| t c                       | features=iris.data  target=iris.target  df=pd.DataFrame(features,columns=['sepal length in cm', 'sepal width in cm', 'petal length in cm', 'petal width in cm'])  df['target']=target  df head()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1<br>2<br>3<br>4     | 4.9 3.0 1.4 0.2 0<br>4.7 3.2 1.3 0.2 0<br>4.6 3.1 1.5 0.2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ra<br>Da<br>di<br>me      | class 'pandas.core.frame.DataFrame'> tangeIndex: 150 entries, 0 to 149 ata columns (total 5 columns):  ## Column Non-Null Count Dtype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| m                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0<br>1<br>2               | 1 - 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| sepal width in cm         | and pair mulater (st., house "carpest")  accessor as a segretar float of all and the baccess and the company of |
|                           | petal length in cm - 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| se se pe pe ta di         | df.skew()  depal length in cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Density S Density         | print(sout(foot))  sns. distplof(dT coil) plt. show()  epai length in cm := 0.3117539585022863  04  05  05  07  08  09  09  09  09  09  00  00  00  00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| susity Density de Density | 010 005 005 005 005 005 005 005 005 005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4. 4. 3. 2.               | 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2. 2. 1. 1. 0. 0. F       | plt.scatter(data=df,x='petal length in cm',y='petal width in cm')  plt.schow()  plt.scatter(data=df,x='sepal width in cm',y='petal width in cm')  plt.scatter(data=df,x='sepal width in cm',y='petal width in cm')  plt.schow()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. 0. 0.                  | plt.scatter(data=df, x='sepal length in cm', y='petal length in cm')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7 6 5 4 3 2 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | ### 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                           | plt. show()  225 250 275 100 125 130 135  ard drop(dr[dr['sepal width in cm']==2.0] index, axis=0, inplace=true)  dr drop(dr[dr['sepal width in cm']==2.0] index, axis=0, inplace=true)  plt. figure(figslee(6.8))  and brop(dr[dracdr, xe'sepal width in cm', hue='target')  plt. figure(figslee(6.8))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5                         | 225 250 275 300 325 350 375 sepal width in cm 350 oxylot(data=df, x='potal_width in cm', hue='target') plt. show() plt. show()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.                        | 10 0's 10 1's 2'0 2's petal width in cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5                         | plt.figure(figsize=(8,8)) sns.buxplot(data=dr,x='petal length in cm',hwe='target') plt.show()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 1 1                     | from sklearn.metrics import accuracy_score, confusion_matrix,classification_report from sklearn.model_selection import train_test_split ,cross_val_score from sklearn.linear_model import LogisticRegression from sklearn.leiphbors import KNeighborsclassifier from sklearn.ere import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.semble import RandomForestClassifier , AdaBoostClassifier , GradientBoostingClassifier from xgboost import XGBClassifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| >                         | <pre>x=df.iloc[:,:-1].values y=df.iloc[:,-1].values  xtrain,xtest,ytrain,ytest=train_test_split(x,y,random_state=0)  models=[('logistic Regression</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                         | <pre>('Xtreame Boosting Classifier :- ',XGBClassifier()) ]  accuracy=[] for name, model in models:     print(name)     model.fit(xtrain,ytrain)     ypred=model.predict(xtest)     print(classification_report(ytest,ypred))     accuracy.append(accuracy_score(ytest,ypred)) ogistic Regression     precision recall f1-score support</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| KI                        | 0 1.00 1.00 1.00 1.00 15 1 1.00 0.91 0.95 11 2 0.92 1.00 0.96 11  accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| De We                     | eceision Tree :-     precision recall f1-score support  0 1.00 1.00 1.00 1.00 15 1 1.00 0.91 0.95 11 2 0.92 1.00 0.96 11  accuracy 0.97 0.97 37 macro avg 0.97 0.97 0.97 37 eighted avg 0.98 0.97 0.97 37 support vectore Classifier :-     precision recall f1-score support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| R                         | 0 1.00 1.00 1.00 15 1 0.91 0.91 0.91 11 accuracy macro avg 0.94 0.94 0.94 37 reighted avg 0.95 0.95 0.95 37 tandom Forest Clasifier :- precision recall f1-score support  0 1.00 1.00 1.00 15 1 1.00 0.91 0.95 11 2 0.92 1.00 0.96 11 accuracy macro avg 0.97 0.97 37 reighted avg 0.98 0.97 0.97 37 reighted avg 0.98 0.97 0.97 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A(                        | da Boosting Classifier :-     precision recall f1-score support  0 1.00 1.00 1.00 15 1 0.91 0.91 0.91 11 2 0.91 0.91 0.91 11 2 0.91 0.91 0.91 11 accuracy 0.95 37 macro avg 0.94 0.94 0.94 37 recighted avg 0.95 0.95 37  irradient Boosting Classifier :-     precision recall f1-score support  0 1.00 1.00 1.00 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| X                         | 1 1.00 0.91 0.95 11 2 0.92 1.00 0.96 11 accuracy 0.97 37 macro avg 0.97 0.97 37 reighted avg 0.98 0.97 0.97 37  ctreame Boosting Classifier :- 21:18:34] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed or' to 'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.  precision recall f1-score support  0 1.00 1.00 1.00 15 1 1.00 0.91 0.95 11 2 0.92 1.00 0.96 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| k                         | accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0<br>t:                   | 21:28:32] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'multi:softprob' was changed or' to 'mlogloss'. Explicitly set eval_metric if you'd like to restore the old behavior.    precision   recall   f1-score   support                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ti                        | print('trainnig score',xgb.score(xtrain,ytrain)) print('testing score',xgb.score(xtest,ytest))  rainnig score 0.972222222222222 esting score 0.972972972973  df.to_csv('iris_dataset')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |