Upper half plane is not euquivalent to plane

Consider upeer half-plane: $\mathbf{H}: \{(\mathbf{x}, \mathbf{y}), \mathbf{y} > \mathbf{0}\}$ and all the plane \mathbf{C} . They are not holomorphically equivalent, i.e. it does not exist analytical bijection $\mathbf{H} \leftrightarrow \mathcal{C}$. Indeed \mathbf{H} is holomorphically equivalent to disc $D_2: \{(x, y), x^2 + y^2 < 1\}$ (Klein map). This implies that disc is equivalent to \mathbf{C} . Let $F: \mathbf{C} \leftrightarrow \mathbf{H}$. Then F is analytical bounded function on \mathbf{C} , and due to Lioville Theorem F maps \mathbf{C} to the point.

Really crazy effective application of Lioville theorem!!!