Anexo desarrollo de hardware

Rubén Arce

28 de noviembre de 2020

Índice

1.	Intr	roducción		
2.	Emi	Emisor beacon		
	2.1.	Aspectos a considerar		
	2.2.	Circuito eléctrico		
		2.2.1. Microcontrolador		
		2.2.2. Alimentación		
	2.3.	PCB de control		
	2.4.	Imágenes reales		
3.	Rec	eptor beacon o gateway		
	3.1.	Aspectos a considerar		
		Circuito eléctrico		
		3.2.1. Microcontrolador		
		3.2.2. Alimentación		
	3.3.	PCB de control		
	3.4.	Imágenes reales		
	3.5.			
Íı	ndio	ce de figuras		
	1.	Renderizado de PCB del Beacon		
	2.	PCB del Beacon obtenida con Kicad		
	3.	Renderizado de PCB del master o gateway		
	4.	Fuentes de alimentación de la PCB master		
	5.	Renderizado de PCB del master o gateway		
	6.	Renderizado de PCB del master o gateway		
	7.	Images reales de la PCB gateway		

1. Introducción

Los diseños eléctricos y trazado de las pistas del circuito se han llevado a cabo con Kicad en su versión 5.1.6, se ha empleado este programa debido a que, en primer lugar es de software abierto y completamente gratuito y en segundo lugar debido a que corre en Linux y es capaz de llevar a cabo cualquier diseño complejo sin problema.

Todas las PCBs se han llevado a cabo en dos capas con un espesor estándar de 1,6mm y con acabado superficial HASH plomo estaño en los primeros prototipos. En la verisión final se empleará acabado ENIG, o de oro electrolítico para mejorar las especificaciones y durabilidad de la misma.

Se han empleado tanto componentes SMD como through hole, se ha priorizado el precio en la selección de los mismos.

2. Emisor beacon

2.1. Aspectos a considerar

Las premisas para seleccionar el mejor microcontrolador han sido las siguientes:

- 1. Bajo consumo
- 2. Tamaño reducido
- 3. Bluetooth y posibilidad de wifi en caso de eliminar el dispositivo emisor.
- 4. Precio muy competitivo.

2.2. Circuito eléctrico

2.2.1. Microcontrolador

En el caso de microcontrolador se ha optado por un ESP32 de la empresa Espressif (https://www.espressif.com/) debido en gran medida a que dispone de wifi y bluetooth así como de unas excelentes herramientas de desarrollo de software.

2.2.2. Alimentación

Para llevar a cabo la alimentación el microcontrolador y teniendo en cuenta que se han de garantizar los 3,3V en la entrada del micro se ha optado por una batería de Ion-Litio de 1400mAh que además tiene un tamaño reducido. El rango de tensión de la tarjeta va de 12V a 3,6V en el caso de que se opte por alimentarlo de otra forma.

2.3. PCB de control

Una vez tenidas en cuenta estas especificaciones en el esquema eléctrico se ha llevado a cabo el ruteo de la tarjeta.

Figura 1: Renderizado de PCB del Beacon

Vemos que se han llevado a cabo el trazado de pistas con planos de masa para evitar el efecto de la electricidad estática de las personas no afecte demasiado a la electrónica.

Dejando lo más despejada la zona de la antena para mejor la ganancia de la misma y en conscuencia el alcance.

2.4. Imágenes reales

Tras llevar a cabo la fabricación de las tarjetas prototipo estos son los resultados:

Figura 2: PCB del Beacon obtenida con Kicad

Figura 3: Renderizado de PCB del master o gateway

3. Receptor beacon o gateway

3.1. Aspectos a considerar

- 1. Velocidad de procesamiento: el número máximo de equipos a localizar puede ser superior a 500, es por ello por lo que quedan descartados los microcontrodores de 8bits y cristales de menos de 16MHz.
- 2. Wifi/bluetooth: Han de escuchar a los beacons y subir los datos a internet, es por ello por lo que se hace indispesable que cuente con los dos.

3.2. Circuito eléctrico

3.2.1. Microcontrolador

Teniendo en cuenta estas condiciones previas y contando con procesadores ESP32 del diseño anterior se ha optado por compartir el procesador para ambos equipos. Con esto conseguimos que el software y librerías sean compatibles al $100\,\%$ y ahorre tiempo de desarrollo.

3.2.2. Alimentación

En este caso y puesto que la tarjeta se encontrará estática en un lugar cercano a un enchufe se brindan las siguientes opciones de alimentación:

- 1. 220 VAC.
- 2. 12 VDC.
- 3. 5 VDC, en el caso de que se disponga de un ordenador cerca se podría conectar por USB.

Figura 4: Fuentes de alimentación de la PCB master

3.3. PCB de control

Se ha optado por llevar a cabo el trazado de pistas de alimentación por la cara top y por la bottom las de señal, vemos que hay dos conectores en el extremos de la tarjeta, uno con una UART para comunicarse con otros sistemas de las planta y otro conector para sensores i2c, pensado para la lectura de humedad y temperatura y envío de estos datos a la web de control.

Figura 5: Renderizado de PCB del master o gateway

En el apartado de planos se puede ver con mayor detalle el esquema eléctrico y dimensiones de la tarjeta.

Figura 6: Renderizado de PCB del master o gateway

3.4. Imágenes reales

Por último y tras fabricar las tarjetas e imprimir las cajas que lo contienen se obtiene el siguiente resultado:

Figura 7: Images reales de la PCB gateway

3.5. Conclusiones

Una vez recibidas las PCBs se fueron ensamblando y soldado a mano sin mayor incidentes que la confusión en la posición de un led que por supuesto tras cargar el firmaware en la tarjeta no se iluminó. Solucionado el incidente y por suerte el versión 1 de las tarjetas fue la definitiva.