§ Proposition Logic / 谓词逻辑

A direct approximation is

Proposition \approx Sentence \approx Statement

Some sentence (in natural language) can be decomposed into smaller ones: the sentence

If it rains, you have to come to the classroom.

can be decomposed into the pattern If P, then Q. Here we use alphabets for

- Propositions: P, Q, P_1, P_2, \dots
- Connectivities: \rightarrow (implies), \vee (or), \wedge (and), \leftrightarrow (iff), \neg (not), \bot (false).
- Auxiliary: () (brackets).

Definition A sequence of alphabets above is a **proposition** iff it is

- Any atomic proposition P_1, \perp , etc.
- If φ, ψ are propositions, then adding $\to, \leftarrow, \leftrightarrow, \land, \lor$ between them generates propositions.
- If φ is a proposition, then $\neg \varphi$ is also one.

Finally, the set of all propositions PROP $\subset \Sigma^*$ is the smallest one satisfying the definition above.

Proposition Given property A, if

- \forall atomic proposition P, A(P) and $A(\bot)$ holds,
- $\forall \varphi, \psi \in \Sigma^*$, if $A(\varphi)$ and $A(\psi)$ holds, then $A((\varphi \square \psi))$ also holds for any connectivity \square .
- $\forall \varphi \in \Sigma^*$, if $A(\varphi)$ holds, then $A(\neg \varphi)$ also holds.

Then $\forall \varphi \in PROP, A(\varphi)$ holds.

To define some $F: PROP \to \Omega$, it suffices to define

- $H_{\mathrm{atomic}}: \{P_1, P_2, ..., \bot\} \rightarrow \Omega,$
- $H_{\sqcap}: \Omega \times \Omega \to \Omega$,
- $H_{\neg}:\Omega\to\Omega$.

If we set $\Omega = \{0,1\}$, $H_{\wedge} = \min$, $H_{\vee} = \max$, $H_{\neg} : t \mapsto 1 - t$ and so on, then we call this function the **valuation** function $\nu : \operatorname{PROP} \to \{0,1\}$. We denote $[\varphi]_{\nu} := \nu(\varphi)$.

In this definition we consider the **semantics** / 语义 of the statement, whereas only the **syntax** / 语 法 is considered previously.

In mathematical context we may use logical deduction

$$\varphi_1,...,\varphi_n; : \varphi.$$

Converting it to proposition logic we denote it as

$$\varphi_1,...,\varphi_n \vDash \varphi$$

iff for any valuation ν s.t. $\nu(\varphi_1) = \dots = \nu(\varphi_n) = 1$, we also have $\nu(\varphi) = 1$.

Definition If $[\varphi]_{\nu} = 1$ for all valuation ν i.e. for all assignment of $\nu(P)$, then we say φ is a **tautology**, denoted as $\vDash \varphi$.

Proposition If $\vDash \varphi$, then $\vDash \varphi[\psi/p]$ where $\nu'(P_1) = \nu(\psi)$ if $P_1 = \psi$ and $\nu(\varphi)$ otherwise.

§ Natural Deduction

Now we move on to syntactic proofs / 语法证明. Some deduction rules are

$$\frac{\varphi \quad \varphi \to \psi}{\psi}, \quad \frac{\varphi \quad \psi}{\varphi \land \psi}, \quad \frac{\varphi \land \psi}{\varphi}, \quad \frac{\varphi \land \psi}{\psi}, \quad \frac{[\varphi]}{\varphi \to \psi}, \quad \frac{[\neg \varphi]}{\varphi}.$$

An example of proof is proving $\vdash ((\varphi \land \psi) \rightarrow \varphi)$:

$$\frac{\frac{[\varphi \wedge \psi]}{\varphi}}{(\varphi \wedge \psi) \to \varphi}.$$

§ System K

Refer to Sequents and Trees, Section 1.2.2.

Sequents are ordered pairs $\Gamma\Rightarrow\Delta$ (or $\varphi_1,...,\varphi_k\Rightarrow\psi_1,...,\psi_n$ with $k,n\geq0$). It should be interpreted as

- For k,n>1, the sequent $\varphi_1,...,\varphi_k\Rightarrow \psi_1,...,\psi_n$ means $\varphi_1\wedge...\wedge\varphi_k\to \psi_1\vee...\vee\psi_n$ in terms of usual notations,
- k=0 is denoted as \top , and n=0 is denoted as \bot as one may expect.

Given these notations, **System K** consists of the following rules:

$$\begin{split} &(\neg\Rightarrow) \ \frac{\Gamma\Rightarrow\Delta,\varphi}{\neg\varphi,\Gamma\Rightarrow\Delta} & (\Rightarrow\neg) \ \frac{\Gamma,\varphi\Rightarrow\Delta}{\Gamma\Rightarrow\neg\varphi,\Delta} \\ &(\wedge\Rightarrow) \ \frac{\varphi,\psi,\Gamma\Rightarrow\Delta}{\varphi\wedge\psi,\Gamma\Rightarrow\Delta} & (\Rightarrow\wedge) \ \frac{\Gamma\Rightarrow\Delta,\varphi \quad \Gamma\Rightarrow\Delta,\psi}{\Gamma\Rightarrow\Delta,\varphi\wedge\psi} \\ &(\Rightarrow\vee) \ \frac{\Gamma\Rightarrow\Delta,\varphi,\psi}{\Gamma\Rightarrow\Delta,\varphi\vee\psi} & (\vee\Rightarrow) \ \frac{\varphi,\Gamma\Rightarrow\Delta \quad \psi,\Gamma\Rightarrow\Delta}{\varphi\vee\psi,\Gamma\Rightarrow\Delta} \\ &(\Rightarrow\to) \frac{\varphi,\Gamma\Rightarrow\Delta,\psi}{\Gamma\Rightarrow\Delta,\varphi\to\psi} & (\to\Rightarrow) \ \frac{\Gamma\Rightarrow\Delta,\varphi \quad \Gamma,\psi\Rightarrow\Delta}{\varphi\to\psi,\Gamma\Rightarrow\Delta} \end{split}$$

Note that all rules come in symmetrical pairs.