Reproducible Research: Peer Assessment 1

Anh

8/20/2021

Loading and preprocessing the data

Load necessary libraries

```
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(lattice)
Read the file
activity = read.csv("activity.csv")
Process datetime column of the data
activity$fixed_date = as.Date(activity$date)
activity$week_day = weekdays(activity$fixed_date)
```

What is mean total number of steps taken per day?

Calculate the total number of steps taken per date (fixed_date)

Create a histogram of the total number of steps per day

Total steps per day histogram

Calculate the mean and median of the total number of steps per day

```
(mean(total_steps$`sum(steps)`, na.rm = TRUE))
## [1] 10766.19
(median(total_steps$`sum(steps)`, na.rm = TRUE))
```

[1] 10765

What is the average daily activity pattern?

Create a dataset of steps in 5-minute interval and take their average

```
intervals <- aggregate(steps ~ interval, activity, mean)</pre>
```

Make a time series plot (i.e. type = "1") of the 5-minute interval (x-axis) and the average number of steps taken, averaged across all days (y-axis)

Average Number of Steps per Interval

Which 5-minute interval, on average across all the days in the dataset, contains the maximum number of steps?

```
max_steps = max(intervals$steps)
(intervals[intervals$steps == max_steps, ])
```

```
## interval steps
## 104 835 206.1698
```

Imputing missing values

Calculate the total number of missing values in the dataset

```
nrow(activity[is.na(activity$steps), ])
```

```
## [1] 2304
```

For this exercise, I have chosen to impute NA values by the mean of the 5-minute intervals of the weekdays.

```
activity_wo_na = activity %>%
group_by(week_day, interval) %>%
mutate(steps = ifelse(is.na(steps), mean(steps, na.rm = TRUE), steps))
```

Aggregate the total number of steps per day in the new dataset with NAs imputed

```
total_steps_wo_na = activity_wo_na %>%
  group_by(fixed_date) %>%
  summarise(sum(steps))
```

```
(mean(total_steps_wo_na$`sum(steps)`))
```

[1] 10821.21

```
(median(total_steps_wo_na$`sum(steps)`))
```

[1] 11015

Create a histogram of total number of steps per day, categorised by two datasets (one with NAs and one with NAs imputed)

```
hist(total_steps_wo_na$`sum(steps)`, breaks = 5, xlab = "Steps",
    main = "Total Steps per Day with NAs Fixed",col = "Black")
hist(total_steps$`sum(steps)`, breaks = 5, xlab = "Steps",
    main = "Total Steps per Day with NAs Fixed", col = "Grey", add = TRUE)
legend("topright", c("Imputed Data", "Non-NA Data"), fill= c("black", "grey"))
```

Total Steps per Day with NAs Fixed

Are there differences in activity patterns between weekdays and weekends?

Create a new column to determine if the week_day is weekday or weekend

Summarise the number of steps by intervals and weekday category (weekdays or weekend)

'summarise()' has grouped output by 'interval'. You can override using the '.groups' argument.

Plot

Average Steps per Interval Based on Type of Day

