UNIVERSIDAD NACIONAL DE CAJAMARCA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA DE SISTEMAS DEPARTAMENTO ACADÉMICO DE FÍSICA

GUÍA DE APRENDIZAJE

1. Nombre de la asignatura: Física I

2. Docente: MsC. Lic. Fis. Alan Edgardo Guzmán Arana

3. Competencia que desarrolla la asignatura:

- Aplica el método científico en la experimentación a fin de desarrollar proyectos de investigación.
- Adquiere conceptos fundamentales y principios o leyes de la Física Clásica relacionados con el contenido de la asignatura para aplicarlos en situaciones reales.
- Analiza y explica fenómenos físicos para aplicarlos en las ciencias de la ingeniería.
- Valora la importancia de la utilización de equipos e instrumentos de medición para adquirir destrezas en la toma de datos.
- 4. Nivel de logro de la competencia al que contribuye la asignatura: Nivel 1.

5. Resultado de la asignatura en relación con la competencia:

- Plantea y resuelve problemas de cinemática, estática y dinámica de la partícula y así como del cuerpo rígido, mediante la aplicación de los principios fundamentales del movimiento, aplicados al campo de la ingeniería.
- Resuelve y plantea problemas de ingeniería aplicando el principio de conservación de la energía y el momento lineal y angular.
- Realiza un trabajo de investigación de carácter científico sobre uno de los temas abordados en el silabo

6. Resultados de aprendizaje (RA). Los resultados de aprendizaje de la asignatura son los siguientes:

- RA 1. Interpreta el comportamiento de fenómenos físicos. Reconoce la importancia del álgebra vectorial y los sistemas de medición. Analiza y resuelve problemas de estática, reconociendo la importancia del equilibrio y determinación de los centros de gravedad en la carrera.
- RA 2. Analiza y resuelve problemas de cinemática y reconoce la importancia de la cinemática en su carrera.
- RA 3. Analiza y resuelve problemas de dinámica, trabajo y potencia. Reconoce la importancia de la dinámica en su carrera. Analiza y resuelve problemas de dinámica de un sistema de partículas y cuerpo rígido. Reconoce la importancia de la dinámica de un sistema de partículas y cuerpo rígido en su carrera.

7. Horario de clases:

GRUPO	HORARIO	OBSERVACIONES
В	LUNES: 14 H – 16 H	TEORIA
	JUEVES: 18 H – 20 H	PRACTICA

Grupo B:

Estudiante	Email
ALIAGA MEDINA, BRAYAN JESUS	baliagam23_1@unc.edu.pe
ALIAGA SANCHEZ, ANGEL ALEJANDRO MAGNO	aaliagas22_2@unc.edu.pe
ALVAREZ HORNA, ERICK ANTONY	ealvarezh21_1@unc.edu.pe
BOLAÑOS ARANA, JOSE DAVID	jbolanosa22_1@unc.edu.pe
CAMACHO ZAMORA, ANDERSON DAVID	acamachoz23_2@unc.edu.pe
CARRASCO GUEVARA, KELVIN NEISER	kcarrascog23_2@unc.edu.pe
CARUAJULCA TIGLLA, ALEX ELI	acaruajulcat22_2@unc.edu.pe
CHALAN MUÑOZ, DANTE YENER	dchalanm23_2@unc.edu.pe
CORONADO RODRIGUEZ, AUGUSTO TAKESHI	acoronador23_2@unc.edu.pe
DE LA CRUZ SANCHEZ, GERARDO	gdelacruzs21_1@unc.edu.pe
DIAZ CUEVA, CARLOS ALBERTO	cdiazc23_2@unc.edu.pe
FLORES QUISPE, DIEGO	dfloresq23_1@unc.edu.pe
GAVIDIA VARGAS, ISLANY ARACELY	igavidiav23_2@unc.edu.pe
GUERRERO CORCUERA, SERGIO SEBASTIAN	sguerreroc23_1@unc.edu.pe
HERRERA MORALES, GIOANA YHADIXA	gherreram23_1@unc.edu.pe
HERRERA VASQUEZ, WILMER	wherrerav22_2@unc.edu.pe
HUARIPATA RODRIGUEZ, CESAR ULISES	chuaripatar23_2@unc.edu.pe
LIMAY RODRIGUEZ, ADRIANA ANTHONELA	alimayr23_2@unc.edu.pe
LLANOS CERQUIN, MELANIE BRIZETH	mllanosc23_1@unc.edu.pe
LOZANO GUEVARA, NEYRI	nlozanog23_1@unc.edu.pe
MANOSALVA VASQUEZ, ALDAIR RIBALDO	amanosalvav23_2@unc.edu.pe
MOLINA GUERRERO, WILSER BLADIMIRO	wmolinag23_2@unc.edu.pe
ORRILLO MARCHENA, JHEFERSON TAYLOR	jorrillom21_1@unc.edu.pe
PEREZ BRICEÑO, DARICK ANDRE	dperezb23_1@unc.edu.pe
PEREZ HUACCHA, CRISTOPHER DANIEL	cperezh23_1@unc.edu.pe
ROBLES MORALES, KENLLY ALBERTH	kroblesm23_2@unc.edu.pe
RODRIGUEZ CHAVEZ, JOEL	jrodriguezc23_1@unc.edu.pe
SANGAY GUTIERREZ, RUBEN MAURICIO	rsangayg20_1@unc.edu.pe
SAUCEDO SALAZAR, ROBERT HAROL	rsaucedos23_1@unc.edu.pe
SILUPU VILCHEZ, ISMAEL	isilupuv22_1@unc.edu.pe
TERAN CHAVEZ, TONY ANDERSON	tteranc23_2@unc.edu.pe
VALENCIA MISAHUAMAN, MOISES MAGDIEL	mvalenciam21_1@unc.edu.pe
VARGAS PAREDES, JHON EMERSON	jvargasp23_1@unc.edu.pe

Horario de consultas:

Viernes de 10:00 am a 12:00 am.

9. Metodología de desarrollo de sesiones:

Las sesiones se inician con una evaluación de conocimientos previos de una duración de 5 minutos. Seguidamente se accede a la conferencia de duración variable donde se realizarán exposiciones o presentaciones por parte del docente. Aquí se pueden aclaran dudas sobre los temas colgados previamente y que han sido revisados por los estudiantes (videos, lecturas, PPT, módulos, etc.),

En un tercer momento se pueden asignar tareas individuales o colaborativas para desarrollarlas dentro del horario de clases, manteniéndose la sesión abierta para atender preguntas y dudas que los estudiantes pudieran tener.

En un cuarto momento los estudiantes presentan a todo el grupo los resultados de las tareas o ejercicios desarrollados, para recibir aportes y llegar a conclusiones con apoyo del docente o los envían vía correo al docente para su evaluación.

10. Metodología de desarrollo de sesiones asíncronas:

Todos los estudiantes tienen la obligación de revisar los contenidos del curso subidos en el aula virtual (video clases, lecturas, PPTs, audios, etc.), participar en foros, desarrollar las tareas que se le asigne dentro de los plazos establecidos por el docente y si tuviese alguna dificultad, no dude en comunicarse con él. Recuerde que la enseñanza requiere disciplina, constancia y organización y que la dedicación que le otorgue a las actividades asignadas juega un rol muy importante en su aprendizaje; para ser exitosos se necesita contar con hábitos de estudio y una organización de sus actividades personales, familiares y/u otras.

11. Metodología de desarrollo de tareas y trabajo de investigación:

Los estudiantes están en la obligación de desarrollar las tareas asignadas, ya sean de carácter individual o grupal, las cuales debe realizarlas dentro de los plazos establecidos. La manera como las desarrollen dependerá de las características de cada una.

El trabajo de investigación será realizado de manera escalonada, cada avance será sustentado para ser evaluado.

12. Metodología de desarrollo de evaluaciones:

Las evaluaciones se realizan según lo programado en el silabo y, para evidenciar el cumplimiento de los indicadores de desempeño en los estudiantes se hará uso de listas de cotejo y rúbricas. Estos instrumentos señalan los criterios de evaluación a considerar, los cuales se harán conocer a los estudiantes en la clase previa a la evaluación programada, a fin de que puedan prepararse de la mejor manera.

Los exámenes serán en base a problemas propuestos uno por cada unidad académica. El proyecto de investigación desarrollado por cada estudiante se evalúa escalonadamente, a medida que éste va avanzando en su desarrollo, utilizando rúbricas para evidenciar el cumplimiento de los indicadores.