Regular and Nonregular Languages: The Pumping Lemma for Regular Languages (Part 2)

COMS3003A: Lecture Note 8

April 22, 2021

Recap: The pumping lemma for regular languages

A weaker form of the above theorem, commonly known as *the* pumping lemma:

Theorem:

Suppose L is a regular language. Then there is an integer n so that for any $x\in L$ with $|x|\geq n$, there are strings $u,\,v$, and w so that

$$x = uvw \ ,$$

$$|uv| \le n \ ,$$

$$|v| > 0 \ ,$$
 for any $m \ge 0, uv^m w \in L \ .$

The correct argument can be visualized as a game we play against an opponent.

Our goal is to win the game by establishing a contradiction of the pumping lemma, while the opponent tries to foil us.

There are four moves in the game.

- **1** The opponent picks n.
- ② Given n, we pick a string $x \in L$ of length equal or greater than n. We are free to choose any x, subject to $x \in L$ and $|x| \ge n$.
- **3** The opponent chooses the decomposition uvw, subject to $|uv| \le n$ and |v| > 0. We have to assume that the opponent makes the choice that will make it hardest for us to win the game.
- We try to pick m in such a way that the pumped string uv^mw is not in L. If we can do so, we win the game.

A strategy that allows us to win whatever the opponent chooses is a proof that the language is not regular.

In this respect, Step 2 is crucial.

While we cannot force the opponent to pick a particular decomposition of x, we may be able to choose x so that the opponent is very restricted in Step 3, forcing a choice of u, v, and w that allows us to produce a violation of the pumping lemma on our next move.

Let $\Sigma = \{a, b\}$. Show that

$$L = \left\{ ww^R \mid w \in \Sigma^* \right\} ,$$

where w^R denotes the reverse of w, is not regular.

Whatever n the opponent picks in Step 1, we can always choose a

$$x = a^n b^n b^n a^n .$$

Because of this choice, and the requirement that $|uv| \le n$, the opponent is restricted in Step 3 to choosing a v that consists entirely of a's.

In Step 4, we use m=0.

The string obtained in this way has fewer a's on the left than on the right and so cannot be of the form ww^R .

Therefore L is not regular.

If we had chosen x too short, then the opponent could have chosen a v with an even number of b's.

In that case, we couldn't have reached a violation of the pumping lemma in Step 4.

Suppose we chose a string consisting of all a's, say

$$x = a^{2n} .$$

The opponent need only pick

$$v = aa$$
.

Then $uv^mw \in L$ for every $m \ge 0$, and we lose. Note that, if the opponent picked

$$v = a$$
,

then $uv^0w \not\in L$, but we cannot claim that we have reached a contradiction just because the pumping lemma is violated for some specific values of n or uvw.

Weak form of the pumping lemma

Sometimes we can get by without using n:

Suppose L is an infinite regular language. Then there are strings $u,\,v,\,{\rm and}\,w$ so that

$$|v|>0$$
 and

$$uv^mw \in L$$
 for every $m \ge 0$

Sketch of proof:

 ${\cal L}$ has infinitely many elements.

Therefore, no matter how big n is, L contains an x with $|x| \ge n$.

This is sufficient to prove that

$$L = \left\{ 0^i 1^i \mid i \ge 0 \right\}$$

is not regular.

- Suppose $v=0^j$, for some $j\geq 1$: If $uv^{m'}w\in L$ for some $m'\geq 0$, then $uv^{m'+1}w\not\in L$.
- Suppose $v = 1^j$, for some $j \ge 1$: Analogous to previous case.
- Suppose v contains 01: Then $uv^2w \notin L$.

The weak form is not sufficient in the case of the following two languages.

- $L = \{0^i y \mid i \ge 0, y \in \{0, 1\}^* \text{ and } |y| \le i\}$ Choose v = 0. Then $0v^m 1 \in L$ for all m > 0.
- L_{pal} , the language of all palindromes over $\{0,1\}$. Choose v=0. Then $1v^m1\in L_{\mathrm{pal}}$ for all $m\geq 0$.

Even weaker form of the pumping lemma:

Suppose L is an infinite regular language.

Then there are integers p and q, with q>0, so that for every $m\geq 0$, L contains a string of length p+mq.

In other words, the set of integers

$$\mathsf{lengths}(L) = \{|x| \mid x \in L\}$$

contains the 'arithmetic progression' of all integers p + mq, where $m \ge 0$.

Proof

In the previous theorem, let p = |u| + |w| and q = |v|.

This form is not sufficient to prove that

$$L = \left\{ 0^i 1^i \mid i \ge 0 \right\}$$

is not regular, since

$$\mathsf{lengths}(L) = \{0, 2, 4, \ldots\}$$

and thus contains all integers 0 + m2, $m \ge 0$.

It is sufficient in the case of

- $\{a^{2^n} \mid n \ge 1\}$,
- $\bullet \ \left\{a^{n^2} \mid \ n \ge 1\right\}$ and
- $\{0^n \mid n \text{ prime}\}$

Consider

$$L = \{0^n \mid n \text{ prime}\} = \{0^2, 0^3, 0^5, 0^7, \dots\}$$

We need to show that

- L is not regular, therefore that
- the set of primes cannot contain a set $\{p+mq\mid m\geq 0\}$, therefore that
- for any $p \ge 0$ and q > 0, there is an integer m so that p + mq is not prime.

Let m = p + 2q + 2. Then

$$p + mq = p + (p + 2q + 2) q$$

$$= (p + 2q) + (p + 2q) q$$

$$= (p + 2q) (1 + q)$$

This is not prime.

This example shows that an FA is not powerful enough to determine for an arbitrary integer whether it is prime.

The pumping lemma cannot show a language is regular Consider

$$L = \left\{a^i b^j c^j \mid i \geq 1 \text{ and } j \geq 0\right\} \cup \left\{b^j c^k \mid j, k \geq 0\right\}$$

L is not regular, but the conclusions of the pumping lemma hold.

Using the Myhill-Nerode theorem, we show that L is not regular. Consider ab^j and ab^k , where 0 < j < k. Then c^j distinguishes the two strings.

Then all equivalence classes $\left[ab^{j}\right]$, $j\geq0$, are distinct. Therefore L is not regular.

The conclusions of the pumping lemma hold.

Take n = 1. Suppose $x \in L$ and $|x| \ge n$.

x can have two forms.

- $x=a^ib^jc^j$, where i>0. Let $u=\lambda$, v=a, $w=a^{i-1}b^jc^j$. Then for any $m\geq 0$, $uv^mw=a^ma^{i-1}b^jc^j=a^{m+i-1}b^jc^j\in L$.
- $x=b^ic^j$. Let $u=\lambda$, and v equal the first symbol in x. Then for any $m\geq 0$, uv^mw has m copies of the first symbol in x, and is in L.