HIERARCHICAL CLUSTERIUS

SETTING: N OBSERVATIONS XI, - XN 6 IR

GIONL: FINO CLUSTERS (GROSPING/SUBSETT) OF PORCETS WHICH AME SIMILAR

OUTPUT: DENDROGRAM (HIERARCHICAL TREE DIAGRAM)

- · AGGLOMENITALE! K-CLUSTER SOLUTION GENERATIED BY MERGING TWO CHITCHS FROM KAI CLUSTER SOLUTION
- · DIVISINE: (k+1) CLUSTER SOLUTION CHERLITED BY SPLITTING ONE CLUSTER FROM K. CLUSTER SAUTION (TOP DOWN)
- CRUSSING K VERTICAL LIMES TO GENERITE K CLUSTORS OF DATA
 - ITEMS WHICH ALE SIMILAR ARE COMPRISED AT LOW HEIGHTS
 - · DIFFERENCES IN HEIGHTS DEFINE HOW CLUB TEMS ARE TOHETHOR
 - · XI, X, MAE MOKE SIMILAR TAAS X4, X7
 - X1, X8 CLUSTER IS WORKE SIMILAR TO X2 THAN
 - HORIZONTAL DISTANCES ARE IRREDEVANT

CLUSTERS ARE MERCHED SPETT BASED OF BESTIMETHITIES OF THEM IN CLUSTER

. For X1, X; Ell & DISTANCE IS A NATION CHOICE OF DUSIMERHAMY

. PEL . MANHATTAN

· p=2: Everous

· 1- Correctorion

$$d(x_i, x_j) = 1 - \rho_{i,j} = 1 - \frac{S_{i,j}}{S_{i,j}}$$

$$Shunger confidence Str. DeV.$$
OF OBSERVATIONS OF $X_i X_i$

Y DISTACLE MEALURES COMPUTED ONCE WHELAGLES, MUT OBJETUATIONS

- · CHOICE OF DISTAGE POSSIMILATORY GIVES RIFE TO DISTAGE
 - · HOW DO WE DETWE DURNIES BETEVERS CLUTTERS

AGGLOMENHUE NETTING

- 1) WATER DISSIMHEARTY MATRIX D. MITTALLY MATE N CLUSTERS!
- 2) FIND SMALLEST DESIMILATETY, CAY DIS IN D=D". MURRE I, I 1000
- 3) COMPLETE DISSIMILARCITES BETWEEN IT AND ALL OTHER CLUSTERS K & IJ

- 4) FORM A NEW (N-1)×(N-1) DISTAGE MATRIX D(2) BY REMOVER, ROWS ASO
 COLUMN I AND J, AND ADDING NEW ROW, COLUMN FOR IT
 - 5) ROTGAT 2-4 (N-1) TIME!
- 6) OUTPUT: LIK OF MERCEO CLUSTERS AT EFFET STEP W/ VALUE (HOIGHT) OF DUSTINHEREITY AT MORKE

EXAMPLE:

$$X_{1} = (1,3)^{T}$$

$$X_{2} = (2,4)^{T}$$

$$X_{3} = (1,5)^{T}$$

$$X_{4} = (5,5)^{T}$$

$$X_{5} = (5,7)^{T}$$

$$X_{7} = (3,0)^{T}$$

$$X_{8} = (3,0)$$

$$0 \quad 1.4 \quad 2 \quad 4.8 \quad 5.7 \quad 6.7 \quad 5.1 \quad 7.3$$

$$0 \quad 1.4 \quad 3.2 \quad 4.2 \quad 5.4 \quad 4 \quad 6.1$$

$$0 \quad 4 \quad 4.5 \quad 5 \quad 3.2 \quad 5.4$$

$$0 \quad 2 \quad 4.1 \quad 4.2 \quad 5.4$$

$$0 \quad 2.2 \quad 3.2 \quad 3.6$$

$$0 \quad 2.2 \quad 1.4$$

$$0 \quad 2.2 \quad 0$$

AVG. LIUXAGE (PRIORITIZES AMERINE DISTANCE BETWEEN CLUSTERS)

MERGED 12 DISTAUCE = VIT

$$D^{(6)} = \begin{cases} 12 & 3 & 4 & 5 & 68 & 7 \\ 12 & 0 & & & 5.2 \\ 4 & & 0 & & 4.8 \\ 5 & & & & 3.0 \\ 68 & & & & & 0 & 2.2 \\ 7 & & & & & 0 \end{cases}$$

MERGED 68 DISTARTE = 1.4

$$D^{(5)} = 123$$
 45 68 7
123 60
47 68
47

COMPLETE (REQUIRES ALL ELEMENTS BETWEET CLUSTURS TO BE CLOSE

- WERGE 23 AT HEIGHT 1.4
- . MERCIE 68 AT HERGHT 1,4
- . MERGE 1,23 AT HEIGHT 2
- · MERCHE 45 AT HEIGHT 2
- · MERGE 68,7 AT HEIGHT 2-2
- · MERGE 45,678 147 HEIGHT 5.4
- · MERCHE 123, 456 78 A. HEIGHT 7.3

SINGLE LINKAGE (ACCEPTS LOCAL, SMALL COLLECTIONS)

- · MERGE 23 PT 1.4
- · MUTCHE 1,23 AT 1.4
- MERGE 68 KT 1.4
- · MERGE 45 NT 2
- · MERGE 68,7 A. 2.2
- · MERGE 45,678 A, 2.2
- · MERGE 123, 45678 M 3.2

Singé	Average	Complete
OF POINTS BETWEEN CLUSTORS ARE CLOSE	INTERMEDIATE	JOINS IF ALL PAIRS OF POINTS BETWEEN CLUSTERS AME CLUSE
SHORTER HEIGHTS		TAUOR HORGHTS
LONG CHAINS OF CLUSTERS JOINED		MANY SMALL COMPACT CLUSTERS
IMP. OF SIZE OF	DEBENS ON 11SE	MID. OF SIZE OF
HUVARIAM UUGER MODOTSUE YRAUSTS WATESUS F PARVIX TRAUSH TEN SINTWATE) ESHAFEIT	MOTH BE ACTERED BY NOTHINGTH TRANSFORMATIONS TO PAIRMISE DIST	INVARIANT UNDER MONOTONE CHANGE TO PAIRWISE THERMICES (STRUTUME NY HEIGHT)

COMPARING DEMORD GRANDS

LET his BE THE HEIGHT THAT X; AND X; WERE WERGED HATO THE SAME CLUSTER

$$H = h_{i,j} = \begin{pmatrix} 0 \\ h_{24} \\ h_{31} \end{pmatrix}$$

COPHEMETIC CORRECTION IS THE (PERRSON) CORRECTION BETWEEN THE M(N-1) PAIRS

(hij, Dij) 1412 je N

2) QUALITY OF THIS MOHERE IS ELIMITED BY USEFFICINESS ON Di

* CONSIDER 2 NON-INTERSECTIVE, BUT CLOSE MANNIFOLDS

D BASED ON EUCLIDEAN DISTANCE

· MOTENA'S UPPER TALL RULE

LET α_0 , ... α_{N-1} ANE THE HEIGHT'S CORRESPONDING TO STAGES BY 0, n-1, ..., 1 CLUSTERS. SELECT THE NOWBER OF CLUSTERS, j', CORRESPONDING TO THE FIRST STAGE IN THE DEMONDS HAVE SITTISFYING α_1 α_2 α_3 α_4 α_5 α_6 α_6

Ex. NCI MICROARRAY DATA

SEE CAMMAS > FILES > NUMBERCAL EXAMPLES > CLUSTERIAG