Rank-74243 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1499026777

General information

Number of lines	4
Number of points	25
Number of singular points	2
Number of Eckardt points	1
Number of double points	2
Number of single points	13
Number of points off lines	9
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{4}
Type of lines on points	$3, 2^2, 1^{13}, 0^9$

Singular Points

The surface has 2 singular points:

$$0: P_0 = \mathbf{P}(1,0,0,0) = \mathbf{P}(1,0,0,0) 1: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 4 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{PI}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{336} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{336} = \mathbf{Pl}(0, 0, 0, 0, 0, 1)_{101}$$

$$\ell_{3} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_{1}$$

Rank of lines: (0, 16, 336, 356)

Rank of points on Klein quadric: (0, 2, 101, 1)

Eckardt Points

The surface has 1 Eckardt points: $0: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0).$

Double Points

The surface has 2 Double points: The double points on the surface are:

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_1$$

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_2$$

Single Points

The surface has 13 single points: The single points on the surface are:

0: $P_3 = (0,0,0,1)$ lies on line ℓ_3 1: $P_5 = (1,1,0,0)$ lies on line ℓ_0 2: $P_6 = (2,1,0,0)$ lies on line ℓ_0 3: $P_7 = (3,1,0,0)$ lies on line ℓ_0 4: $P_8 = (1,0,1,0)$ lies on line ℓ_1 5: $P_9 = (2,0,1,0)$ lies on line ℓ_1 6: $P_{10} = (3,0,1,0)$ lies on line ℓ_1

7: $P_{11} = (0, 1, 1, 0)$ lies on line ℓ_2 8: $P_{15} = (0, 2, 1, 0)$ lies on line ℓ_2 9: $P_{19} = (0, 3, 1, 0)$ lies on line ℓ_2 10: $P_{38} = (0, 0, 1, 1)$ lies on line ℓ_3 11: $P_{53} = (0, 0, 2, 1)$ lies on line ℓ_3 12: $P_{69} = (0, 0, 3, 1)$ lies on line ℓ_3

The single points on the surface are:

Points on surface but on no line

The surface has 9 points not on any line: The points on the surface but not on lines are:

 $0: P_{27} = (1, 1, 0, 1)$ $1: P_{33} = (3, 2, 0, 1)$ $2: P_{36} = (2, 3, 0, 1)$ $3: P_{46} = (1, 2, 1, 1)$ $4: P_{50} = (1, 3, 1, 1)$

 $5: P_{59} = (2, 1, 2, 1)$ $6: P_{63} = (2, 2, 2, 1)$ $7: P_{76} = (3, 1, 3, 1)$ $8: P_{84} = (3, 3, 3, 1)$

Line Intersection Graph

$$\begin{array}{c|c} 0123 \\ \hline 0 & 0110 \\ 1 & 1011 \\ 2 & 1101 \\ 3 & 0110 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_0	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3
in point	P_0	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3
in point	P_1	P_2	P_2

Line 3 intersects

Line	ℓ_1	ℓ_2
in point	P_2	P_2

The surface has 25 points:

The points on the surface are:

$0: P_0 = (1,0,0,0)$	$9: P_{10} = (3, 0, 1, 0)$	18: $P_{50} = (1, 3, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	$10: P_{11} = (0, 1, 1, 0)$	$19: P_{53} = (0, 0, 2, 1)$
$2: P_2 = (0, 0, 1, 0)$	11: $P_{15} = (0, 2, 1, 0)$	$20: P_{59} = (2, 1, 2, 1)$
$3: P_3 = (0,0,0,1)$	$12: P_{19} = (0, 3, 1, 0)$	$21: P_{63} = (2, 2, 2, 1)$
$4: P_5 = (1, 1, 0, 0)$	13: $P_{27} = (1, 1, 0, 1)$	$22: P_{69} = (0,0,3,1)$
$5: P_6 = (2, 1, 0, 0)$	$14: P_{33} = (3, 2, 0, 1)$	$23: P_{76} = (3, 1, 3, 1)$
$6: P_7 = (3, 1, 0, 0)$	$15: P_{36} = (2, 3, 0, 1)$	$24: P_{84} = (3, 3, 3, 1)$
$7: P_8 = (1,0,1,0)$	16: $P_{38} = (0,0,1,1)$	
$8 \cdot P_0 = (2 \ 0 \ 1 \ 0)$	$17 \cdot P_{4c} = (1 \ 2 \ 1 \ 1)$	