Algebra liniowa 1R, Lista 4

- 1. Uzasadnij równości: M(N+P) = MN + MP, (M+N)P = MP + NP, t(MN) = (tM)N = M(tN), $\det(M^{-1}NM) = \det(N), \ \det(tM) = t^2 \det(M), \ \operatorname{tr}(MN) = \operatorname{tr}(NM), \ \operatorname{tr}(M+N) = \operatorname{tr}(M) + \operatorname{tr}(N),$ $\operatorname{tr}(M^{-1}NM) = \operatorname{tr}(N) \ (M, N, P \text{ sa macierzami, } t \in \mathbf{R}).$
- 2. Sprawdź, że przekształcenia liniowe płaszczyzny z operacjami dodawania i mnożenia przez skalar spelniają aksjomaty przestrzeni liniowej.
- mają aksjomaty przestrzem mnowej.

 3. Dla jakich wartości parametru c macierz $\begin{pmatrix} 2 & c \\ -c & 1 \end{pmatrix}$ ma (a) zero, (b) jedną, (c) dwie wartości własne.
- 4. Znajdź wielomian charakterystyczny, wartości własne i wektory własne macierzy
 (a) $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, (b) $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, (c) $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, (d) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, (e) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, (f) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

 5. Niech $A = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Oblicz A^2 , A^3 i A^4 . Sformułuj narzucającą się hipotezę, a następnie udowodnij ją indukcyjnio
- 6. Sprawdź, że jedyną wartością własną macierzy $\begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$ jest 5. To samo zrób dla macierzy $\begin{pmatrix} 5 & 1 \\ 0 & 5 \end{pmatrix}$. Sprawdź, że jedna z tych macierzy diagonalizuje się, a druga nie.
- 7. Przedstaw macierz $M=\begin{pmatrix}3&0\\4&2\end{pmatrix}$ w postaci PDP^{-1} , gdzie D jest macierzą diagonalną. Zastosuj tę postać do obliczenia 6-tej potęgi macierzy M.
- 8. Znajdź macierz przekształcenia liniowego, dla którego $\binom{1}{0}$ jest wektorem własnym o wartości własnej $-\frac{1}{2}$, zaś $\binom{1}{1}$ jest wektorem własnym o wartości własnej 1.
- 9. Podaj przykład liniowego przekształcenia płaszczyzny, które zachowuje pole, zmienia orientację i ma wartość własna π .
- 10. Które z poniższych przekształceń diagonalizują się? Dla tych które diagonalizują się, znajdź wartości własne oraz bazę wektorów własnych. (Wsk.: Rozwiązuj to zadanie geometrycznie, bez odwoływania (a) R_{θ} , (b) S_{ℓ} (ℓ – pewna prosta przechodząca przez O), (c) J_r , (d) P_U .
- 11. Napisz warunek na liczby a,b,c,d gwarantujący, że macierz $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ ma dwie różne wartości własne.
- 12. Niech $A = PMP^{-1}$. Uzasadnij, że wielomiany charakterystyczne macierzy A oraz M sa równe (wsk.: można to zrobić odwołując się do wzorów z ćwiczenia 1). Wywnioskuj, że jeśli macierz M ma dwie różne wartości własne λ , μ , to $\det(M) = \lambda \mu$, $\operatorname{tr}(M) = \lambda + \mu$. Czy założenie $\lambda \neq \mu$ jest istotne?
- 13. Zalóżmy, że przekształcenie liniowe E spełnia warunek $E \circ E = E$. Jakie wartości własne może mieć to przekształcenie? Czy koniecznie musi być przekształceniem zerowym lub identycznościowym?
- 14. Uzasadnij, że jeśli $A = PDP^{-1}$ (gdzie D jest diagonalna), to kolumny P są wektorami własnymi A.
- 15. Załóżmy, że wektory $U,W\in\mathbf{R}^2$ są l
nz, zaś macierz A spełnia warunki $AU=5U+4W,\,AW=3U+2W.$ Udowodnij, że istnieje odwracalna macierz P, taka że $A = P\binom{53}{42}P^{-1}$. Uogólnij.
- 16. Zalóżmy, że przekształcenie liniowe płaszczyzny A ma dwie różne wartości własne λ , μ . Uzasadnij, że Azachowuje orientację wtedy i tylko wtedy gdy $\lambda \mu > 0$, zaś zmienia orientację wtedy i tylko wtedy gdy $\lambda\mu < 0$. Wywnioskuj, że przekształcenie S_ℓ (gdzie ℓ jest dowolną prostą przechodzącą przez O) zmienia orientację.
- 17. Załóżmy, że $\det(F x \cdot Id)$ ma podwójny pierwiastek λ , mimo że F nie jest jednokładnościa. Udowodnij, że istnieją liniowo niezależne wektory U, W, takie że $F(U) = \lambda U, F(W) = U + \lambda W$. Czy macierz F diagonalizuje się? Jeśli nie, to czy potrafisz wskazać dla niej jakiś substytut diagonalizacji? (Wsk. zad. 16)
- 18. Udowodnij prawdziwość zdania $(\forall A \in M_{2\times 2}(\mathbf{R}))((\exists \lambda, \mu \in \mathbf{R})(\exists P \in M_{2\times 2}(\mathbf{R}))(A = P\binom{\lambda \ 0}{0 \ \mu}P^{-1}) \iff$
- $((\exists \lambda \in \mathbf{R})(A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix})) \vee (\exists a, b \in \mathbf{R})(a \neq b \wedge \det(A aI) = 0 \wedge \det(A bI) = 0))).$ 19. Niech $M = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}$, zaś U niech będzie dowolnym wektorem. Zbadaj jak szybko rośnie długość wektora M^nU gdy n dąży do nieskończoności. (Uzasadnij, że istnieje stała C zależna (jak?) od wektora U, taka że granica $\lim_{n\to+\infty} \frac{\|M^n U\|}{C^n}$ jest liczbą dodatnia.)

Materiał na konwersatorium:

- 20. Ciag Fibonacciego jest zadany rekurencyjnie wzorami $f_0 = 1$, $f_1 = 1$, $f_{n+1} = f_n + f_{n-1}$ dla $n \ge 1$. Wyprowadź jawny wzór na n-ty wyraz tego ciagu według następującego planu:
 - Wyprowadź jawny wzór na n-ty wyraz tego ciągu według następującego planu: a) Niech $X_n = \binom{f_n}{f_{n+1}}$, $M = \binom{0}{1}$. Pokaż, że $X_0 = \binom{1}{1}$, $X_{n+1} = MX_n$, $X_n = M^nX_0$.
 - b) Zdiagonalizuj macierz M: znajdź jej wartości własne i wektory własne i zapisz ją w postaci PDP^{-1} , gdzie D jest macierzą diagonalną.
 - c) Znajdź wzór na M^n i wywnioskuj z niego wzór na f_n .
 - d) Jak zmieni się odpowiedź, jeśli przyjąć $f_0=7,\,f_1=3,\,f_{n+1}=f_n+f_{n-1}$ dla $n\geq 1.$
- 21. Zbadaj, dla jakich a, b macierz $\binom{0\,1}{b\,a}$ ma dwie różne wartości własne. Zbadaj, dla jakich a, b potrafisz znaleźć jawny wzór na n-ty wyraz ciągu zadanego równaniem rekurencyjnym $f_{n+1}=af_n+bf_{n-1}$ $(n\geq 1)$, znając f_0 i f_1 . Spróbuj zmierzyć się z przypadkiem $f_0=0$, $f_1=1$, $f_{n+1}=2f_n-f_{n-1}$.

Zadania ze starego kolokwium:

- 1. Znajdź jawny wzór na n-ty wyraz ciągu zadanego rekurencyjnie: $a_0 = 4$, $a_1 = 1$, $a_{n+1} = -3a_n + 10a_{n-1}$ dla $n \ge 1$.
- 2. Załóżmy, że wektory $A,B,C\in\mathbf{R}^2$ spełniają warunek $\|A+B+C\|=9$. Czy wynika stąd, że przynajmniej jeden z wektorów A,B,C
 - a) ma długość ≥ 3 ?
 - b) ma długość ≤ 3 ?
- 3. Niech ℓ oznacza prostą o równaniu x=1, zaś $F:\mathbf{R}^2\to\mathbf{R}^2$ niech będzie przekształceniem liniowym o następującej własności: jeśli $p\in\ell$, to $F(p)\in\ell$.
 - a) Udowodnij, że $\binom{0}{1}$ jest wektorem własnym F.
 - b) Udowodnij, że 1 jest wartością własną F.
 - c) Udowodnij, że jeśli wartość własna F odpowiadająca wektorowi własnemu $\binom{0}{1}$ nie jest równa 1, to istnieje punkt $q \in \ell$ taki że F(q) = q.
- 4. Jaka jest największa możliwa długość wektora A, jeśli wiadomo, że $|\langle \binom{1}{1}, A \rangle| \le 1$ i $|\langle \binom{1}{2}, A \rangle| \le 1$? (Wsk: rysunek może pomóc.)
- 5. Niech $A=\begin{pmatrix}100&\frac{401}{200}\\50&1\end{pmatrix}$. Udowodnij, że dla dowolnego $X\in\mathbf{R}^2$

$$\lim_{n \to +\infty} \det(A^n X, A^{n+1} X) = 0.$$