

### COSC 221 - Introduction to Discrete Structures

Lecture - Logic-01

#### Readings

- ▶ Propositional Logic: Sections 3.1, 3.2, 3.3
- ▶ Predicate Logic: Sections 3.4
- Computer Science Connections
  - 1. Computational Complexity (Section 3.3)
  - 2. Modern Compilers (Section 3.3)
- 3. Game Trees (Section 3.4)



Propositions

A statement that is either true or false



Propositions

A statement that is either true or false

- ▶ Propositions
- Connectives

- 1. It is snowing
- 2. It is July 1
- 3. He is a student
- 4. 2+2=5
- 5. 2 + 2 = 4



Propositions

▶ Propositions
▶ Connectives

A statement that is either true or false

#### Propositions and Their Truth Value

- 1. It is snowing
- 2. It is July 1
- 3. He is a student
- 4. 2+2=5
- 5. 2 + 2 = 4

- Q.1) Which one is NOT a proposition?
  - A) 1

B) 2

C) 3

D) 4



#### Propositions

- ▶ Propositions
- Connectives

A statement that is either true or false

- 1. It is snowing
- 2. It is July 1
- 3. He is a student
- 4. 2+2=5
- 5. 2 + 2 = 4

- Boolean Variable



#### Propositions

- ▶ Propositions
- Connectives

#### A statement that is either true or false

$$p = "It is snowing"$$

- $\triangleright$  p = F today, but
- $\triangleright$  p = T on a snowing day

- 1. It is snowing
- 2. It is July 1
- 3. He is a student
- 4. 2+2=5
- 5. 2 + 2 = 4

- Conceptually indivisible
- Boolean Variable



Propositions

- ▶ Propositions
- Connectives

#### A statement that is either true or false

- $p = " \, It \, \, is \, \, snowing"$ 
  - $\triangleright$  p = F today, but
  - $\triangleright$  p = T on a snowing day

- Atomic propositions
- Compound propositions

- Conceptually indivisible



**Propositions** 

- Propositions

Operators for building Compound Propositions

### Propositions and Their Truth Value

- Atomic propositions
- Compound propositions

#### Logic Connectives

```
abla p \wedge q \qquad \text{(negation)} 

abla \wedge q \qquad \text{(and, conjunction)} 

abla \vee q \qquad \text{(or, disjunction)} 

abla \Rightarrow q \qquad \text{(implications)}
```



- Propositions
- Connectives

#### Example 1. Compound Proposition

p: "John is a CS major", q: "John is a Math major"

- $\triangleright$   $p \land q, p \lor q$
- $\triangleright p \land \neg q \quad (p, \text{ but not } q)$
- $ightharpoonup \neg p \wedge \neg q$  (neither p, nor q)

#### Propositions and Their Truth Value

- Atomic propositions

#### Logic Connectives

$$abla p \wedge q \qquad \text{(negation)}$$
 $abla p \wedge q \qquad \text{(and, conjunction)}$ 
 $abla v \wedge q \qquad \text{(or, disjunction)}$ 
 $abla p \Rightarrow q \qquad \text{(implications)}$ 



**Propositions** 

- ▶ Propositions
- Connectives

Q.2) Is the assertion correct?

"A compound proposition is either T or F, but not both."

A) No

B) Yes

C) Depends

D) Hard to Tell

#### Propositions and Their Truth Value

- Atomic propositions
- Compound propositions

#### Logic Connectives

```
abla p \wedge q \qquad \text{(negation)}

abla \wedge q \qquad \text{(and, conjunction)}

abla \vee q \qquad \text{(or, disjunction)}

abla p \Rightarrow q \qquad \text{(implications)}
```



#### **Propositions**

- PropositionsConnectives
- Boolean expression/formula over p, q. Truth value depends on
  - truth value of p
  - truth value of q
  - the logic connectives

- Atomic propositions



#### **Additional Notes**

Logic is the study of the principles of reasoning, including the mathematical foundation of well-defined languages and valid inference methods.

#### Propositional Logic (Calculus)

CORE CONCEPT

#### "Formal" system for reasoning with propositions

- Syntax well-defined expressions

# UBC

#### Truth Values and Truth Tables

- > Atomic Propositions
- Compound Propositions

How to decide the truth value of a compound statement?



#### Truth Values and Truth Tables

- Atomic Propositions

Not defined by propositional logic itself! Depends on the "world" state.

$$\triangleright$$
 p = F today, but

$$\triangleright$$
 p = T on a snowing day

How to decide the truth value of a compound statement?



#### Truth Values and Truth Tables

- Atomic Propositions
- Compound Propositions



#### Truth Values and Truth Tables

- Atomic Propositions
- Compound Propositions





#### Truth Values and Truth Tables

- Atomic Propositions
- Compound Propositions





#### Truth Values and Truth Tables

- Atomic Propositions
  - Compound Propositions





#### Truth Values and Truth Tables

- Compound Propositions

### **Example 2.** Truth Table for $(p \lor q) \land \neg (p \land q)$

- $\, \triangleright \,$  and of two or's



#### Truth Values and Truth Tables

- Compound Propositions

#### **Example 3.** Truth Table for $(p \lor q) \land \neg (p \land q)$

- $\triangleright$  Expression over p and q
- > and of two or's

| р | q | $p \lor q$ | <i>p</i> ∧ <i>q</i> | $\neg(p \land q)$ | $(p \lor q) \land \neg (p \land q)$ |
|---|---|------------|---------------------|-------------------|-------------------------------------|
| Т | Т | Т          | T                   | F                 | F                                   |
| Т | F | Т          | F                   | Т                 | Т                                   |
| F | Т | Т          | F                   | Т                 | Т                                   |
| F | F | F          | F                   | Т                 | ?                                   |



#### Truth Values and Truth Tables

- Compound Propositions

Q.3) The value is

A) T

B) F

C) Unknown

D) X

**Example 4.** Truth Table for  $(p \lor q) \land \neg (p \land q)$ 

- > and of two or's

| p | q | $p \lor q$ | <i>p</i> ∧ <i>q</i> | $\neg(p \land q)$ | $(p \lor q) \land \neg(p \land q)$ |
|---|---|------------|---------------------|-------------------|------------------------------------|
| Т | Т | Т          | T                   | F                 | F                                  |
| Т | F | Т          | F                   | Т                 | Т                                  |
| F | Т | Т          | F                   | Т                 | T                                  |
| F | F | F          | F                   | Т                 | ?                                  |



#### Truth Values and Truth Tables

- Compound Propositions

New Connective:  $p \oplus q$ 

"Exclusive OR" (abbreviated as XOR)

### **Example 5.** Truth Table for $(p \lor q) \land \neg (p \land q)$

- > and of two or's

| р | q | $p \lor q$ | $p \wedge q$ | $\neg(p \land q)$ | $(p \lor q) \land \neg(p \land q)$ |
|---|---|------------|--------------|-------------------|------------------------------------|
| Т | Т | Т          | Т            | F                 | F                                  |
| T | F | Т          | F            | Т                 | Т                                  |
| F | Т | Т          | F            | Т                 | Т                                  |
| F | F | F          | F            | Т                 | ?                                  |

#### **Additional Notes**

#### Memorize/Understand the Truth Tables

| р    | q    | $p \wedge q$ | $p \lor q$ | ¬р  | $p \oplus q$     |
|------|------|--------------|------------|-----|------------------|
|      |      | $p \times q$ | ?          | 1-p | (p + q) modulo 2 |
| T(1) | T(1) | 1            | 1          | 0   | 0                |
| T(1) | F(0) | 0            | 1          | 0   | 1                |
| F(0) | T(1) | 0            | 1          | 1 1 | 1                |
| F(0) | F(0) | 0            | 0          | 1   | 0                |

#### **Additional Notes**

#### Announcement: Assignment 1 Online

- > Individual Written Assignment
- Due Feb 2 (Friday), 11:59pm
- > Hand in a digital copy on Canvas.



New Connective:  $p \oplus q$  (XOR)

| p | q | r | $p \oplus q$ | $(p \oplus q) \oplus r)$ |
|---|---|---|--------------|--------------------------|
| Т | Т | Т | F            | T                        |
| Т | Т | F | F            | F                        |
| Т | F | Т | Т            | F                        |
| Т | F | F | Т            | Т                        |

- Q.4) The truth value of  $p \oplus p$  is
- (A) always T
- (B) always F
- (C) T if p is T
- (D) T if *p* is F



New Connective:  $p \oplus q$  (XOR)

| p | q | r | $p \oplus q$ | $(p \oplus q) \oplus r)$ |
|---|---|---|--------------|--------------------------|
| Т | Т | Т | F            | T                        |
| Т | Т | F | F            | F                        |
| Т | F | Т | Т            | F                        |
| Т | F | F | Т            | Т                        |

- Q.5) The truth value of  $(p \oplus q) \oplus r$  is
- (A) always T
- (B) always F
- (C) T if p, q, r are all T
- (D) T if p, q are both T



New Connective:  $p \oplus q$  (XOR)



- Q.5) The truth value of  $(p \oplus q) \oplus r$  is
  - (A) always T
- (B) always F
- (C) T if p, q, r are all T
- (D) T if p, q are both T

True iff one or three  $\mathsf{T}'\mathsf{s}$ 



#### New Connective: $p \oplus q$ (XOR)

#### Parity Function

$$f(x_1,x_2,\cdots,x_n)=1 \text{ iff }$$

 $x_1 \oplus x_2 \oplus \cdots \oplus x_n$ 

is true.

|   | р | q | r | $p \oplus q$ | $(p \oplus q) \oplus r)$ |
|---|---|---|---|--------------|--------------------------|
|   | Т | Т | Т | F            | T                        |
| Ī | Т | Т | F | F            | F                        |
| Ī | Т | F | Т | Т            | F                        |
|   | Т | F | F | T            | \_T/                     |
|   |   |   |   |              |                          |

- Q.5) The truth value of  $(p \oplus q) \oplus r$  is
  - (A) always T
- (B) always F
- (C) T if p, q, r are all T
- (D) T if p, q are both T

True iff one or three T's



| Parity Function                           |  |
|-------------------------------------------|--|
| $f(x_1,x_2,\cdots,x_n)=1 \text{ iff}$     |  |
| $x_1 \oplus x_2 \oplus \cdots \oplus x_n$ |  |
| is true.                                  |  |

| p | q | r | $p \oplus q$ | $(p \oplus q) \oplus r)$ |
|---|---|---|--------------|--------------------------|
| Т | Т | Т | F            | T                        |
| Т | Т | F | F            | F                        |
| Т | F | Т | Т            | F                        |
| Т | F | F | Т            | Т                        |

## Error-Correcting Codes (Section 4.2.4: Hamming Codes)

Message Codeword Received Error Position

abcd 0000 0000 1000 000 bit a



| New Connective: $p \oplus q$ (XOR)        |  |  |  |  |
|-------------------------------------------|--|--|--|--|
| Parity Function                           |  |  |  |  |
| $f(x_1,x_2,\cdots,x_n)=1 \text{ iff}$     |  |  |  |  |
| $x_1 \oplus x_2 \oplus \cdots \oplus x_n$ |  |  |  |  |

| р | q | r | $p \oplus q$ | $(p \oplus q) \oplus r)$ |
|---|---|---|--------------|--------------------------|
| Т | Т | Т | F            | T                        |
| Т | Т | F | F            | F                        |
| Т | F | Т | T            | F                        |
| Т | F | F | Т            | Т                        |









Receiver calculate three parity bits

no error

 $b \oplus c \oplus d$ 

>

 $|\mathbf{x}|_{\mathbf{x}}$ 

 $a \oplus c \oplus d$ 

 $a \oplus b \oplus d$ 

COSC 221 (yong.gao@ubc.ca, UBC Okanagan ) (4 / 6)

Sender calculates three parity bits

 $b \oplus c \oplus d$ 

 $a \oplus c \oplus d$ 

 $a \oplus b \oplus d$ 

4 D > 4 B > 4 E > 4 E > 3

parity bit #1:  $b \oplus c \oplus d$ 

parity bit #2:  $a \oplus c \oplus d$ 

parity bit #3:  $a \oplus b \oplus d$ 



New Connective:  $p \oplus q$  (XOR)

| p | q | r | $p \oplus q$ | $(p \oplus q) \oplus r)$ |
|---|---|---|--------------|--------------------------|
| Т | Т | Т | F            | Т                        |
| Т | Т | F | F            | F                        |
| Т | F | Т | Т            | F                        |
| Т | F | F | Т            | Т                        |

Q.6) Is this truth table complete?

- (A) Yes
- (B) No



New Connective:  $p \oplus q$  (XOR)

| p | q | r | $p \oplus q$ | $(p \oplus q) \oplus r)$ |
|---|---|---|--------------|--------------------------|
| Т | Т | Т | F            | T                        |
| Т | Т | F | F            | F                        |
| Т | F | Т | Т            | F                        |
| Т | F | F | Т            | Т                        |

Q.7) If not, how many rows are missing?

- (A) 1
- (B) 2
- (C) 3
- (D) 4



New Connective:  $p \oplus q$  (XOR)

| p | q | r | $p \oplus q$ | $(p \oplus q) \oplus r)$ |
|---|---|---|--------------|--------------------------|
| Т | Т | Т | F            | Т                        |
| Т | Т | F | F            | F                        |
| Т | F | Т | Т            | F                        |
| Т | F | F | Т            | Т                        |

Q.7) If not, how many rows are missing?

- (A) 1
- (B) 2
- (C) 3
- (D) 4

Total number of truth assignments: 2<sup>3</sup>



Modelling Tool

- > Propositions
- ▶ Truth Values
- ▶ Connectives



Modelling Tool

- Propositions
- ▶ Truth Values
- Connectives





Modelling Tool

- Propositions
- ▶ Truth Values
- Connectives





#### Modelling Tool

- Propositions
- ▶ Truth Values
- Connectives

Gold in the third row

 $\triangleright g_{3,1} \lor g_{3,2} \lor g_{3,3} \lor g_{3,4}$ 



### References I

