Exercises in PDE and Functional Analysis

Exercise Sheet 6

Jendrik Stelzner

Exercise 1

For every $n \in \mathbb{N}$ let $e^{(n)} \in \ell^1$ be the sequence with $e_n^{(n)} = 1$ and $e_i^{(n)} = 0$ for all $i \neq n$.

(i)

We may regard A as a map $A: \ell^{\infty} \to \mathbb{R}^{\mathbb{N}}$, which is then linear. We can then compute

$$||a||_{\infty} = \sup_{n \in \mathbb{N}} |a_n| = \sup_{n \in \mathbb{N}} ||Ae^{(n)}||_1 \le ||A||.$$

We also have for every $x \in \ell^1$ that

$$||Ax||_1 = \sum_{n \in \mathbb{N}} |a_n x_n| = \sum_{n \in \mathbb{N}} |a_n| |x_n| \le \sum_{n \in \mathbb{N}} ||a||_{\infty} |x_n| = ||a||_{\infty} \sum_{n \in \mathbb{N}} |x_n| = ||a||_{\infty} ||x||_1.$$

This shows that $||A|| = ||a||_{\infty}$.

Suppose now that $a \in \ell^{\infty}$, so that $||A|| = ||a||_{\infty} < \infty$. We then find for every $x \in \ell^1$ that $||Ax||_1 \le ||A|| ||x||_1 < \infty$, and hence that A restricts to a linear map $\ell^1 \to \ell^1$. We then have $A \in \mathcal{L}(\ell^1)$ because $||A|| < \infty$.

Suppose now that $A \in \mathcal{L}(\ell^1)$. Then in particular $||a||_{\infty} = ||A|| < \infty$ and hence $a \in \ell^1$.

(ii)

We have that

$$\mathcal{N}(A) = \{ (x_n)_n \in \ell^1 \mid (a_n x_n)_n = 0 \}$$

= $\{ (x_n)_n \in \ell^1 \mid x_n = 0 \text{ for every } n \in \mathbb{N} \text{ with } a_n \neq 0 \}.$

Hence $\mathcal{N}(A) = 0$ if and only if $a_n \neq 0$ for every $n \in \mathbb{N}$. We now observe the following:

Claim 1. Let $y = (y_n)_n \in \ell^1$ be a sequence with support $S := \{n \in \mathbb{N} \mid y_n \neq 0\}$. If $\inf_{n \in S} |a_n| > 0$ then the sequence y is contained in the range $A(\ell^1)$.

Proof. It holds in particular that $a_n \neq 0$ for every $n \in S$. The sequence $x = (x_n)_n$ with

$$x_n := \begin{cases} y_n/a_n & \text{if } n \in S, \\ 0 & \text{otherwise}, \end{cases}$$

is therefore well-defined. This sequence satisfies Ax = y, and it is again contained in ℓ^1 : The constant

$$C \coloneqq \frac{1}{\inf_{n \in S} |a_n|} = \sup_{n \in S} \frac{1}{|a_n|}$$

is by assumption well-defined, and we have that

$$||x||_1 = \sum_{n \in \mathbb{N}} |x_n| = \sum_{n \in S} \frac{|y_n|}{|a_n|} \le C \sum_{n \in S} |y_n| = C \sum_{n \in \mathbb{N}} |y_n| = C ||y||_1.$$

It hence follows from $y \in \ell^1$ that also $x \in \ell^1$.

Suppose now that $y \in \ell^1$ and that $\varepsilon > 0$. Then there exist a sequence $y' \in \ell^1$ with finite support such that $||y - y'||_1 < \varepsilon$. (The sequence y' results from y by cutting this sequence off after sufficiently many terms.) It follows from the above claim that y' is contained in the range $A(\ell^1)$, because $a_n \neq 0$ for every $n \in \mathbb{N}$ and y' has only finite support. This shows that $A(\ell^1)$ is dense in ℓ^1 .

(iii)

If $\inf_{n\in\mathbb{N}}|a_n|>0$ then it follows from Claim 1 that $A(\ell^1)=\ell^1$. If on the other hand $\inf_{n\in\mathbb{N}}|a_n|=0$ then we distinguish between two cases:

- If $a_n = 0$ for some $n \in \mathbb{N}$ then $e^{(n)} \notin A(\ell^1)$ and hence $A(\ell^1) = \ell^1$.
- Suppose otherwise that $a_n \neq 0$ for every $n \in \mathbb{N}$. Then there exist a subsequence $(a_{n(k)})_k$ with $|a_{n(k)}| \leq 1/k$ for every k. Let $y = (y_n)_n \in \ell^1$ be the sequence with $y_{n(k)} = 1/k^2$ for every k and $y_n = 0$ otherwise. Then y is not contained in the range $A(\ell^1)$:

There would otherwise exist a sequence $x = (x_n)_n \in \ell^1$ with Ax = y. It would then follow for every k that

$$\frac{1}{k^2} = |y_{n(k)}| = |a_{n(k)}||x_{n(k)}| \le \frac{1}{k}|x_{n(k)}|,$$

and hence $|x_{n(k)}| \geq 1/k$. But then $x \notin \ell^1$, a contradition.

Suppose that $A \in \mathcal{K}(\ell^1)$. Then $C := \overline{A(B(0,2))}$ is compact. But suppose that also $|a_n| \to 0$. Then there exists for some $\varepsilon > 0$ a subsequence $(|a_{n(k)}|)_k$ with $|a_{n(k)}| > \varepsilon$ for every k. Then

$$||Ae_{n(k)} - Ae_{n(k')}|| = |a_{n(k)}| + |a_{n(k')}| > 2\varepsilon$$

for all k' > k. This shows that the sequence $(Ae_{n(k)})_k$ in C has not subsequence that is Cauchy, and hence no subsequence that is convergent. But this contradicts the compactness of C.

Suppose on the other hand that $a_n \to 0$ let $\varepsilon > 0$. To show that $\overline{A(B(0,1))}$ is compact it sufficies to show that A(B(0,1)) is precompact because ℓ^1 is complete. So let $\varepsilon > 0$. We need to show for B := B(1,0) that A(B) is covered by finitely many ε -balls.

It follows from $a_n \to 0$ that there exist some N with $|a_n| < \varepsilon/4$ for all n > N. Let $C := \max(|a_1|, \ldots, |a_N|, 1)$. It then holds for all $x, y \in B$ that

$$||Ax - Ay||_{1} = \sum_{n=1}^{\infty} |a_{n}||x_{n} - y_{n}|$$

$$= \sum_{n=1}^{N} |a_{n}||x_{n} - y_{n}| + \sum_{n=N+1}^{\infty} |a_{n}||x_{n} - y_{n}|$$

$$\leq \sum_{n=1}^{N} C|x_{n} - y_{n}| + \sum_{n=N+1}^{\infty} \frac{\varepsilon}{4} |x_{n} - y_{n}|$$

$$\leq C \sum_{n=1}^{N} |x_{n} - y_{n}| + \frac{\varepsilon}{4} ||x - y||_{1}$$

$$\leq C \sum_{n=1}^{N} |x_{n} - y_{n}| + \frac{\varepsilon}{4} (||x||_{1} + ||y||_{1})$$

$$\leq C \sum_{n=1}^{N} |x_{n} - y_{n}| + \frac{\varepsilon}{2}.$$
(1)

The normed vector space $(\mathbb{R}^N, \|\cdot\|_1)$ is finite-dimesional and complete, so its unit ball B' := B(0,1) us precompact. Hence there exist finitely many $x'_1, \ldots, x'_n \in B'$ such that for every $y' \in B'$ there exists some index i with $\|x'_i - y'\| < \varepsilon/(2C)$. By padding the vectors x'_1, \ldots, x'_r with zeroes we get sequences $x_1, \ldots, x_r \in \ell^1$ with $\|x_i\|_1 = \|x'_i\|_1 < 1$ and hence $x_i \in B$.

For a sequence $y \in B$ the truncated vector $y' = (y_1, \ldots, y_N) \in \mathbb{R}$ is contained in the unit ball B' because $||y'||_1 \leq ||y||_1 \leq 1$. Hence there exist some index i with $||x_i' - y'|| < \varepsilon/(2C)$. The calculation (1) then shows that

$$||Ax_i - Ay||_1 \le C||x_i' - y'||_1 + \frac{\varepsilon}{2} < C\frac{\varepsilon}{2C} + \frac{\varepsilon}{2} = \varepsilon.$$

Hence we find that A(B) is covered by the finitely many open balls $B(Ax_i, \varepsilon)$.

Exercise 2

We note that the closed sets \overline{U}_1 and \overline{U}_2 are again bounded, and hence compact. Their product $\overline{U}_1 \times \overline{U}_2$ is therefore also compact.

(i)

The integral $(T_K f)(x) = \int_{U_2} K(x,y) f(y) \, \mathrm{d}y$ is well-defined for every $f \in \mathrm{C}(\overline{U}_2)$ and $x \in \overline{U}_1$: The function $K(x,-)f \colon \overline{U}_2 \to \mathbb{R}$ is continuous, and \overline{U}_2 is compact. The function K(x,-)f is therefore integrable on \overline{U}_2 , and hence also on U_2 .

For $f \in C(\overline{U}_2)$ the function $T_K f \colon \overline{U}_1 \to \mathbb{R}$ is again continuous: We have for all $x, x' \in \overline{U}_1$ that

$$|(T_K f)(x) - (T_K f)(x')| = \left| \int_{U_2} K(x, y) f(y) \, dy - \int_{U_2} K(x', y) f(y) \, dy \right|$$

$$= \left| \int_{U_2} [K(x, y) - K(x', y)] f(y) \, dy \right|$$

$$\leq \int_{U_2} |K(x, y) - K(x', y)| |f(y)| \, dy.$$
(2)

The function K is uniformly continuous because $\overline{U}_1 \times \overline{U}_2$ is compact. Hence there exist for every $\varepsilon > 0$ some $\delta > 0$ with $|K(x,y) - K(x',y)| < \varepsilon$ whenever $||x - x'|| < \delta$. It then follows from (2) whenever $||x - x'|| < \delta$ that

$$|(T_K f)(x) - (T_K f)(x')| \le \int_{U_2} \varepsilon |f(y)| \, \mathrm{d}y = \varepsilon \int_{U_2} |f(y)| \, \mathrm{d}y = C\varepsilon,$$

for the constant $C\coloneqq \int_{U_2} |f(y)|\,\mathrm{d}y.$ It holds that

$$C = \int_{U_2} |f(y)| \, \mathrm{d}y \le \int_{\overline{U}_2} |f(y)| \, \mathrm{d}y < \infty$$

because \overline{U}_2 is compact and f is continuous on \overline{U}_2 . This shows that $T_K f$ is continuous. We have thus shown that the map $T_K \colon \mathrm{C}(\overline{U}_2) \to \mathrm{C}(\overline{U}_1)$ is well-defined. The linearity of T_K follows with the linearity of the integral.

It remains to show T_K is continuous. Let

$$C \coloneqq \sup_{x \in U_1} \int_{U_2} |K(x, y)| \, \mathrm{d}y.$$

This constant is finite: We have that $\int_{U_2} |K(x,y)| dy = (T_{|K|}1)(x)$ where 1 denotes the constant 1-function, and we have seen above that $T_{|K|}1$ is continuous on \overline{U}_2 . Hence

$$C = \sup_{x \in U_1} \int_{U_2} |K(x,y)| \, \mathrm{d}y \leq \sup_{x \in U_1} (T_{|K|} 1)(x) \leq \sup_{x \in \overline{U}_1} (T_{|K|} 1)(x) < \infty$$

because \overline{U}_1 is compact. We now find that

$$|(T_K f)(x)| = \left| \int_{U_2} K(x, y) f(y) \, dy \right| = \int_{U_2} |K(x, y)| |f(y)| \, dy$$

$$\leq \int_{U_2} |K(x, y)| ||f||_{\infty} \, dy = \int_{U_2} |K(x, y)| \, dy \, ||f||_{\infty} \leq C ||f||_{\infty}.$$

Hence $||T_K|| \leq C < \infty$.

(ii)

We have shown above that $||T_K|| \leq \sup_{x \in U_1} \int_{U_2} |K(x,y)| \, dy$. To show on the other hand that $\sup_{x \in U_1} \int_{U_2} |K(x,y)| \, dy \leq ||T_K||$ we need to show that

$$\int_{U_2} |K(x,y)| \, \mathrm{d}y \le ||T_K||$$

for every $x \in U_1$. For this we fix $x \in U_1$.

We would like to find a suitable test function $f \in C(\overline{U}_2)$ with both $||f||_{\infty} \leq 1$ and $\int_{U_2} |K(x,y)| \, \mathrm{d}y \leq |(T_K f)(x)|$ because then $|(T_K f)(x)| \leq ||T_K f||_{\infty} \leq ||T_K||$ and hence $\int_{U_2} |K(x,y)| \, \mathrm{d}y \leq ||T_K||$. We won't construct such a test function f itself, but instead a sequence $(f_n)_n$ of test functions which play the role of f.

We start with the function $g: \overline{U}_2 \to \mathbb{R}$ given by

$$g(y) := \operatorname{sign}(K(x,y)) = \begin{cases} -1 & \text{if } K(x,y) < 0, \\ 0 & \text{if } K(x,y) = 0, \\ 1 & \text{if } K(x,y) > 0. \end{cases}$$

This function satisfies both $||g||_{\infty} \le 1$ and

$$(T_K g)(x) = \int_{U_2} |K(x, y)| \, \mathrm{d}y,$$
 (3)

but g will in general not be continuous. We will therefore approximate g by continuous functions:

The function g is measurable and bounded, and \overline{U}_1 is bounded. Hence $g \in L^2(\overline{U}_1)$. We similarly have that $K(x,-) \in L^2(\overline{U}_2)$ because K(x,-) is continuous and hence bounded on the compact set \overline{U}_2 . We note that (3) can be expressed as

$$\langle K(x,-),g\rangle_{\mathrm{L}^2(U_2)} = \int_{U_2} |K(x,y)| \,\mathrm{d}y\,.$$

We can now approximate the function g in $L^2(\overline{U}_2)$ by continuous (even smooth) functions, in the sense that there exists a sequence $(g_n)_n$ of continuous maps $g_n : \overline{U}_1 \to \mathbb{R}$ such that $g_n \to g$ in $L^2(\overline{U}_2)$, i.e.

$$||g-g_n||_2\to 0.$$

But the functions g_n may not necessarily satisfy $||g_n||_{\infty} \leq 1$ anymore, so we have adjust them a bit: We replace g_n by the function $f_n \colon \overline{U}_2 \to \mathbb{R}$ given by

$$f_n(y) := \begin{cases} 1 & \text{if } g_n(y) \ge 1, \\ g_n(y) & \text{if } g_n(y) \in [-1, 1], \\ -1 & \text{if } g_n(y) \le -1. \end{cases}$$

We then have the following:

- It again holds that $f_n \in L^2(\overline{U}_2)$ because $|f_n(y)| \leq |g_n(y)|$ for every $y \in \overline{U}_2$.
- The functions f_n are again continuous because $f_n = h \circ g_n$ for the continuous map $h: \mathbb{R} \to \mathbb{R}$ given by

$$h(z) := \begin{cases} 1 & \text{if } z \ge 1, \\ z & \text{if } z \in [-1, 1], \\ -1 & \text{if } z \le -1. \end{cases}$$

• It again holds that $f_n \to g$ in $L^2(\overline{U}_2)$, because $|g(y) - f_n(y)| \le |g(y) - g_n(y)|$ for every $y \in \overline{U}_2$, and hence $||g - f_n||_2 \le ||g - g_n||_2$: If $g_n(y) \in [-1, 1]$ then then this holds true because $f_n(y) = g_n(y)$, and if $g_n(y) \ge 1$ or $g_n(y) \le -1$ then this holds because $g(y) \in [-1, 1]$.

We have more specifically $\|g - f_n\|_{L^2(\overline{U}_2)} \to 0$ and hence also $\|g - f_n\|_{L^2(U_2)} \to 0$ because $\|g - f_n\|_{L^2(U_2)} \le \|g - f_n\|_{L^2(\overline{U}_2)}$. It follows that

$$|(T_K f_n)(x)| = \left| \int_{U_2} K(x, y) f_n(y) \, \mathrm{d}y \right| = \left| \langle K(x, -), f_n \rangle_{\mathrm{L}^2(U_2)} \right| \to \left| \langle K(x, -), g \rangle_{\mathrm{L}^2(U_2)} \right|$$
$$= \left| \int_{U_2} K(x, y) g(y) \, \mathrm{d}y \right| = \left| \int_{U_2} |K(x, y)| \, \mathrm{d}y \right| = \int_{U_2} |K(x, y)| \, \mathrm{d}y.$$

But we also have that

$$|(T_K f_n)(x)| \le ||T_K f_n||_{\infty} \le ||T_K|| ||f_n||_{\infty} \le ||T_K||$$

because $||f_n||_{\infty} \leq 1$. It follows that $\int_{U_2} |K(x,y)| dy \leq ||T_K||$.