

UFPI - UNIVERSIDADE FEDERAL DO PIAUÍ DEPARTAMENTO DE COMPUTAÇÃO / CCN DOCENTE: KELSON ROMULO TEIXEIRA AIRES

DISCIPLINA: CIRCUITOS DIGITAIS

PEDRO MARQUES DA SILVA JUNIOR CARLOS MENESES GUIMARÃES SOUSA

IMPLEMENTAÇÃO EM VHDL E ANÁLISE DA FUNÇÃO BOOLEANA XOR UTILIZANDO APENAS PORTAS NAND

> ABRIL DE 2018 TERESINA

1. Objetivos

- 1.1. Transformar o circuito dado em um equivalente, utilizando apenas portas NAND.
- 1.2. Implementar tal função usando VHDL.
- 1.3. Analisar os resultados da função e fazer sua tabela verdade e seu mapa de pulsos.

2. A função

A função dada foi: $F(A,B) = \overline{A}B + A\overline{B}$

Segue a transformação:

1. $\overline{\overline{A}B+A\overline{B}}$ aplicando a dupla negação na fórmula inteira

2. $(\overline{\overline{A}B})(\overline{A}\overline{B})$ aplicando a regra de De Morgan

3. $(\overline{A} \wedge B) \wedge (A \wedge \overline{B})$ substituindo por portas NAND 4. $((A \wedge A) \wedge B) \wedge (A \wedge (B \wedge B))$ substituindo as negações por portas NAND

5. Agora temos um circuito equivalente utilizando apenas portas NAND

Sua tabela verdade segue abaixo:

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

1. Tabela verdade da função

3. Implementação do Código

Através do *software* Quartus, a função foi implementada na linguagem VHDL. O código segue abaixo:

```
| Tibrary leee; use ieee.std_logic_1164.all; | BENTITY xor_nand_gate IS | F: OUT BIT | END xor_nand_gate; | END xor_nand_gate IS | BEGIN | F <= ((A NAND A) NAND (B NAND (B NAND B)); | END behavior; | END behavior; |
```

2. Implementação da função em VHDL

4. Conclusão

Utilizando o *software* ModelSim foi possível verificar que a Tabela Verdade da função é equivalente ao Mapa de Pulsos gerado pelo simulador utilizado. Sendo assim a equivalência entre a função " $\overline{A}B+A\overline{B}$ " e a função " $((A\wedge A)\wedge B)\wedge (A\wedge (B\wedge B))$ " é verdadeira, sendo que na segunda podemos implementar o circuito utilizando apenas portas NAND. Seguem abaixo o Mapa de Pulsos e o projeto do circuito:

3. Mapa de Pulsos

4. Circuito resultante da função

4. Referências

TOCCI, Ronald. Sistemas Digitais: Princípios e Aplicações. Ed. 11. Pearson.

DE LA VEGA, Alexandre Santos: Apostila de Teoria para Circuitos Digitais. Niterói: UFF, 2015.