Dr. Brigitte Breckner Dr. Anca Grad

Winter semester 2013-2014

Exercise Sheet no.8

Analysis for CS

GROUPWORK:

(G 21)

Let $u, v \in \mathbb{R}^n$. Denote by $\alpha = \langle u, v \rangle$, $\beta = ||u||$ and $\gamma = ||v||$.

- a) Using the properties of the scalar product and the definition of the Euclidean norm, determine in terms of α , β and γ the numbers $\langle u+v,v\rangle$, $\langle u,2u-3v\rangle$ and ||u-v||.
- b) If n = 3, u = (-1, 2, 3) and v = (-2, 1, -3),
 - b1) compute α , β and γ ,
- b2) determine all reals r > 0 with the property that the open ball B(u, r) doesn't contain the point v,
- b3) determine all reals t with the property that the closed ball $\overline{B}(u,5)$ contains the vector (1,-1,t).

(G 22)

Decide whether the following sequences $(x^k)_{k\in\mathbb{N}^*}$ in \mathbb{R}^n are convergent or not, and, in case they are convergent, determine their limit.

a)
$$n = 2$$
 and $x^k = \left(\left(-\frac{1}{2}\right)^k, (-1)^k\right)$, b) $n = 3$ and $x^k = \left(\frac{2^k}{k!}, \frac{1 - 4k^7}{k^7 + 12k}, \frac{\sqrt{k}}{e^{3k}}\right)$,

c)
$$n = 2$$
 and $x^k = \left(\frac{\sin k}{k}, -k^3 + k\right)$, d) $n = 4$ and $x^k = \left(\frac{2^{2k}}{\left(2 + \frac{1}{k}\right)^{2k}}, \frac{1}{\sqrt[k]{k!}}, (e^k + k)^{\frac{1}{k}}, \frac{\alpha^k}{k}\right)$, where $\alpha \in \mathbb{R}_+$ is fixed.

(G 23) (Train your brain)

Prove **TH2** in lecture no. 8 concerning the uniqueness of the limit of a convergent sequence in \mathbb{R}^n .

Homework:

(H 20) (To be delivered in the next exercise-class)

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = e^{2x} \sin x$. Write down:

- a) Taylor's polynomial $T_2(x,0)$,
- b) the remainder term $R_2(x,0)$, for $x \in \mathbb{R} \setminus \{0\}$, according to Taylor's formula,
- c) $(e^{2x})^{(n)}$, for $n \in \mathbb{N}$, $x \in \mathbb{R}$,
- d) $f^{(n)}(x)$, for $n \in \mathbb{N}$, $x \in \mathbb{R}$, using also the formula for $\sin^{(n)}(x)$ given in exercise (H 18).

(H 21)

Let $f:(0,\infty)\to\mathbb{R}$ be defined by $f(x)=\frac{1}{x}$, and let $n\in\mathbb{N}$. Write down:

- a) $f^{(n)}(x)$, for x > 0,
- b) Taylor's polynomial $T_n(x, 1)$,
- c) the remainder term $R_n(x,1)$, for $x \in (0,\infty) \setminus \{1\}$, according to Taylor's formula.

(H 22)

Let $x, y \in \mathbb{R}^n$. Using the definition of the Euclidean norm and the properties of the scalar product, prove the following equality, known as the *parallelogram identity*

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Remark. A particular case (if n=2) of the above identity is a result that belongs to elementary geometry. It states that the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the two diagonals.