MBS Benchmark A03: Andrew's Mechanism

Benchmark Objective

The NMS benchmark problem $\mathbf{A03}$ shows a very small time scale, thus making it difficult to simulate for solvers that cannot reach small time steps [1].

Benchmark Description

Andrew's mechanism [2] (Fig. 1) is a planar system composed of seven bodies interconnected through revolution joints, and driven by a motor located in O. Detailed information about the mechanical structure of each body is reported in Table 4. Positions of reference systems are presented in Fig. 2

Figure 1: Andrew's mechanism sketch.

Spring coefficient	4530 N/ m
Spring rest length	0.077 85 m
Motor torque	$0.033{ m N}{ m m}^{-1}$

Table 1: System Properties and Configuration

	Center of	Mass (CoM)	Mass	Inertia (CoM)	Length
	X [m]	Y [m]	[Kg]	$[Kgm^2]$	[m]
OF	0.00092	0	0.04325	$2.194e^{-6}$	0.007
FE	-0.0115	0	0.00365	$4.41e^{-7}$	0.028
EG	0	0.01421	0.00706	$5.667e^{-7}$	0.02
AG	0.02308	0.00916	0.0705	$1.169e^{-5}$	0.04
AH	-0.00449	-0.01228	0.05498	$1.912e^{-5}$	0.04
HE	-0.01421	0	0.00706	$5.667e^{-7}$	0.02

Table 2: Rod Elements Properties

Center of	Mass (CoM)	Mass	Inertia	Point	X [m]	Y [m]
X [m]	Y [m]	[Kg]	$Kg\ m^2$	В	0	0
0.01042	-0.01874	0 00272	5 255 ₀ -6	D	0.02	-0.018
0.01043	-0.01074	0.02373	3.233 <i>e</i>	E	0	-0.035

Table 3: Triangular Element Properties, points defined in X_{BDE} - Y_{BDE} SoR

Figure 2: Systems of Reference defined for each body of the mechanism.

Point	X [m]	Y[m]			Angle [rad]
O	0	0		β	-0.0620
Α	-0.06934	-0.00227		\hat{OFE}	0
В	0.03635	0.03273		$F\hat{E}B$	2.088
C	0.014	0.072		$F\hat{E}G$	2.341
Table 4: P	oints in gro	und X - Y So	R	$E\hat{G}A$	1.792
				$E\hat{H}A$	1.348

Contact Information

Table 5: Initial Joints Position

Rehabilitation Engineering Group
Department of Management and Engineering
University of Padua

- Web: http://reg.gest.unipd.it
- Email: reg.info@gest.unipd.it

Results

The dynamic simulation of the $\mathbf{A03}$ benchmark was executed for $\mathbf{0.5s}$. The starting position of the simulation is defined by the values in Tab. 5. The objective of the simulation is to measure F displacements and compare them with the reference solution [1].

The simulation with OpenSim perfectly match the reference values as shown in Fig. 3 for a 0.05 s simulation.

Figure 3: Comparison of the point F displacements between Andrew's mechanism model simulated in OpenSim (dashed lines) and MBS benchmark reference (grey lines).

Download

- MBS Benchamark available at: http://goo.gl/ySQ5me
- OpenSim implementation available at: http://goo.gl/R9tl3z
- Videos of OpenSim simulation available at: http://goo.gl/9BBdZH

References

- [1] M. González, D. Dopico, U. Lugrís, J. Cuadrado, "A benchmarking system for MBS simulation software: Problem standardization and performance measurement," in Multibody System Dyn., vol. 6, no.2, 2006, pp. 179–190.
- [2] M. Schiehlen, Multibody Systems Handbook. Springer-Verlag, Dordrecht (1990)