In [2]:

```
#Importing all liabraries
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix,accuracy_score
from sklearn.model_selection import GridSearchCV
```

In [3]:

```
company_data=pd.read_csv("Company_Data (1).csv")
company_data.head(10)
```

Out[3]:

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urba
0	9.50	138	73	11	276	120	Bad	42	17	Yı
1	11.22	111	48	16	260	83	Good	65	10	Yı
2	10.06	113	35	10	269	80	Medium	59	12	Yı
3	7.40	117	100	4	466	97	Medium	55	14	Yı
4	4.15	141	64	3	340	128	Bad	38	13	Yı
5	10.81	124	113	13	501	72	Bad	78	16	1
6	6.63	115	105	0	45	108	Medium	71	15	Yı
7	11.85	136	81	15	425	120	Good	67	10	Yı
8	6.54	132	110	0	108	124	Medium	76	10	1
9	4.69	132	113	0	131	124	Medium	76	17	1
4										•

Initial Investigation

In [4]: ▶

company_data.shape

Out[4]:

(400, 11)

In [5]: ▶

company_data.dtypes

Out[5]:

float64 Sales CompPrice int64 Income int64 Advertising int64 Population int64 Price int64 ShelveLoc object int64 Age Education int64 Urban object US object

dtype: object

In [6]:

company_data.isna().sum()

Out[6]:

Sales 0 CompPrice 0 0 Income Advertising 0 0 Population Price 0 ShelveLoc 0 Age 0 Education 0 Urban 0 US 0 dtype: int64

```
In [7]:
```

```
company_data.describe(include='all')
```

Out[7]:

	ShelveLoc	Price	Population	Advertising	Income	CompPrice	Sales	
4(400	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	count
	3	NaN	NaN	NaN	NaN	NaN	NaN	unique
	Medium	NaN	NaN	NaN	NaN	NaN	NaN	top
	219	NaN	NaN	NaN	NaN	NaN	NaN	freq
Ę	NaN	115.795000	264.840000	6.635000	68.657500	124.975000	7.496325	mean
1	NaN	23.676664	147.376436	6.650364	27.986037	15.334512	2.824115	std
2	NaN	24.000000	10.000000	0.000000	21.000000	77.000000	0.000000	min
3	NaN	100.000000	139.000000	0.000000	42.750000	115.000000	5.390000	25%
Ę	NaN	117.000000	272.000000	5.000000	69.000000	125.000000	7.490000	50%
6	NaN	131.000000	398.500000	12.000000	91.000000	135.000000	9.320000	75%
}	NaN	191.000000	509.000000	29.000000	120.000000	175.000000	16.270000	max

Data Preprocessing

```
In [8]: ▶
```

```
#Converted numerical into categorical as per the problem statement
company_data.loc[company_data['Sales']<= 9.50, '<= 9.50']='low'
company_data.loc[company_data['Sales']>9.50, '> 9.50']='high'
```

```
In [9]: ▶
```

```
#Converting all data into numerical data
company_data[['Urban','US']]=pd.get_dummies(company_data[['Urban','US']],drop_first=True)
```

```
In [10]: ▶
```

```
company_data['ShelveLoc']=pd.get_dummies(company_data['ShelveLoc'],drop_first=True)
```

```
In [11]:
```

company_data.head(10)

Out[11]:

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urba
0	9.50	138	73	11	276	120	0	42	17	
1	11.22	111	48	16	260	83	1	65	10	
2	10.06	113	35	10	269	80	0	59	12	
3	7.40	117	100	4	466	97	0	55	14	
4	4.15	141	64	3	340	128	0	38	13	
5	10.81	124	113	13	501	72	0	78	16	
6	6.63	115	105	0	45	108	0	71	15	
7	11.85	136	81	15	425	120	1	67	10	
8	6.54	132	110	0	108	124	0	76	10	
9	4.69	132	113	0	131	124	0	76	17	

In [12]:

del company_data['Sales']

In [14]:

del company_data['<= 9.50']</pre>

In [15]:

company_data.head(20)

Out[15]:

	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban	US
0	138	73	11	276	120	0	42	17	1	1
1	111	48	16	260	83	1	65	10	1	1
2	113	35	10	269	80	0	59	12	1	1
3	117	100	4	466	97	0	55	14	1	1
4	141	64	3	340	128	0	38	13	1	(
5	124	113	13	501	72	0	78	16	0	1
6	115	105	0	45	108	0	71	15	1	(
7	136	81	15	425	120	1	67	10	1	1
8	132	110	0	108	124	0	76	10	0	(
9	132	113	0	131	124	0	76	17	0	1
10	121	78	9	150	100	0	26	10	0	1
11	117	94	4	503	94	1	50	13	1	1
12	122	35	2	393	136	0	62	18	1	(
13	115	28	11	29	86	1	53	18	1	1
14	107	117	11	148	118	1	52	18	1	1
15	149	95	5	400	144	0	76	18	0	(
16	118	32	0	284	110	1	63	13	1	(
17	147	74	13	251	131	1	52	10	1	1
18	110	110	0	408	68	1	46	17	0	1
19	129	76	16	58	121	0	69	12	1	1
4										•

company_data.fillna(value=0,axis=0,inplace=True)

In [17]: ▶

company_data.head(20)

Out[17]:

	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban	US
0	138	73	11	276	120	0	42	17	1	1
1	111	48	16	260	83	1	65	10	1	1
2	113	35	10	269	80	0	59	12	1	1
3	117	100	4	466	97	0	55	14	1	1
4	141	64	3	340	128	0	38	13	1	(
5	124	113	13	501	72	0	78	16	0	1
6	115	105	0	45	108	0	71	15	1	(
7	136	81	15	425	120	1	67	10	1	1
8	132	110	0	108	124	0	76	10	0	(
9	132	113	0	131	124	0	76	17	0	1
10	121	78	9	150	100	0	26	10	0	1
11	117	94	4	503	94	1	50	13	1	1
12	122	35	2	393	136	0	62	18	1	(
13	115	28	11	29	86	1	53	18	1	1
14	107	117	11	148	118	1	52	18	1	1
15	149	95	5	400	144	0	76	18	0	(
16	118	32	0	284	110	1	63	13	1	(
17	147	74	13	251	131	1	52	10	1	1
18	110	110	0	408	68	1	46	17	0	1
19	129	76	16	58	121	0	69	12	1	1

→

In [20]:

company_data['Sales']=pd.get_dummies(company_data['> 9.50'],drop_first=True)

In [21]:

company_data.head(10)

Out[21]:

	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban	US
0	138	73	11	276	120	0	42	17	1	1
1	111	48	16	260	83	1	65	10	1	1
2	113	35	10	269	80	0	59	12	1	1
3	117	100	4	466	97	0	55	14	1	1
4	141	64	3	340	128	0	38	13	1	0
5	124	113	13	501	72	0	78	16	0	1
6	115	105	0	45	108	0	71	15	1	0
7	136	81	15	425	120	1	67	10	1	1
8	132	110	0	108	124	0	76	10	0	0
9	132	113	0	131	124	0	76	17	0	1
4										•

In [27]: ▶

sns.boxplot(x='CompPrice',data=company_data)

Out[27]:

<matplotlib.axes._subplots.AxesSubplot at 0x1c1c6914208>

Out[68]:

In [68]:
company_data['Sales'].unique()

array([0, 1], dtype=uint64)

Model Building

In [28]: ▶

X=company_data.iloc[:, :-2]
y=company_data[["Sales"]]

In [32]:

X

Out[32]:

	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urban	U
0	138	73	11	276	120	0	42	17	1	
1	111	48	16	260	83	1	65	10	1	
2	113	35	10	269	80	0	59	12	1	
3	117	100	4	466	97	0	55	14	1	
4	141	64	3	340	128	0	38	13	1	
395	138	108	17	203	128	1	33	14	1	
396	139	23	3	37	120	0	55	11	0	
397	162	26	12	368	159	0	40	18	1	
398	100	79	7	284	95	0	50	12	1	
399	134	37	0	27	120	1	49	16	1	

400 rows × 10 columns

```
In [33]:

y
```

Out[33]:

	Sales
0	0
1	1
2	1
3	0
4	0
395	1
396	0
397	0
398	0
399	1

400 rows × 1 columns

```
In [34]:
```

```
company_data.std()
```

Out[34]:

CompPrice	15.334512				
Income	27.986037				
Advertising	6.650364				
Population	147.376436				
Price	23.676664				
ShelveLoc	0.409589				
Age	16.200297				
Education	2.620528				
Urban	0.456614				
US	0.479113				
Sales	0.413062				
dtype: float64					

In [38]: ▶

```
from sklearn.preprocessing import StandardScaler
scaled_data=StandardScaler()
x_scale=scaled_data.fit_transform(X)
```

Model Training|Model Testing|Model Evaluation

```
In [39]:
```

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(x_scale,y,test_size=0.20,random_state=21)
```

```
In [40]: ▶
```

```
X_train
```

Out[40]:

```
array([[ 2.02574788, -0.95372149, 0.95828906, ..., 0.03820804, 0.64686916, 0.74188112],
[-0.71660219, 1.58643516, -0.69782715, ..., 0.4202884, -1.54590766, 0.74188112],
[-0.78189624, -1.27571318, -0.99893918, ..., -0.72595268, 0.64686916, -1.34792485],
...,
[ 0.26280855, 1.72954258, 0.20550897, ..., -1.4901134, 0.64686916, 0.74188112],
[ 0.78516094, 1.72954258, -0.24615909, ..., -1.4901134, 0.64686916, 0.74188112],
[ -0.91248434, 1.30022032, -0.99893918, ..., -1.4901134, -1.54590766, -1.34792485]])
```

```
In [41]:
```

```
y_train
```

Out[41]:

	Sales
191	0
278	0
272	1
128	0
285	0
368	1
48	0
260	0
312	0
207	0

320 rows × 1 columns

```
In [59]: ▶
```

```
rf_model=RandomForestClassifier(n_estimators=120,n_jobs=-1,random_state=21)
rf_model.fit(X_train,y_train)
```

Out[59]:

```
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', max_depth=None, max_features='auto', max_leaf_nodes=N one,

one,

min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=120, n_jobs=-1, oob_score=False, random_state=21, verbose=0,

warm_start=False)
```

In [60]: ▶

```
y_pred_train=rf_model.predict(X_train)
y_pred_test=rf_model.predict(X_test)
```

```
In [61]: ▶
```

```
print(classification_report(y_test,y_pred_test))
print(confusion_matrix(y_test,y_pred_test))
print(accuracy_score(y_test,y_pred_test))
```

		precision	recall	f1-score	support
	0	0.95	0.93	0.94	74
	1	0.29	0.33	0.31	6
accurac	у			0.89	80
macro av	/g	0.62	0.63	0.62	80
weighted av	/g	0.90	0.89	0.89	80

[[69 5] [4 2]] 0.8875

Model Testing Accuracy: 88.75%

In [64]: ▶

#we are getting the accuracy 88.75, we can say model is good

In [71]: ▶

```
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score

fpr, tpr, thresholds = roc_curve(y, rf_model.predict_proba (x_scale)[:,1])

auc = roc_auc_score(y_test, y_pred_test)
print(auc)

import matplotlib.pyplot as plt
plt.plot(fpr, tpr, color='red', label='rf_model ( area = %0.2f)'%auc)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel('False Positive Rate or [1 - True Negative Rate]')
plt.ylabel('True Positive Rate')
```

0.6328828828828829

Out[71]:

Text(0, 0.5, 'True Positive Rate')

In []: ▶

#we can say that our ROC curve lies at 89%