Librería numérica de Python: NumPy

NumPy - Guía de referencia

Importar NumPy

import numpy as np #Se usa np.array()
from numpy import * #Se usa array()

np.array - Arreglos de NumPy

 $\begin{array}{lll} \text{arr = np.array}([1,2,3]) & \text{#1 dimension} \\ \text{arr = np.array}([[1,0,0], & \text{#2 dimensiones} \\ & [0,1,1]]) \\ \text{arr = np.array (colección,} \\ & \text{dtype = float64}] \end{array}$

Atributos de arreglos

arr.shape	Dimensiones del arreglo			
	en cada eje			
arr.ndim	Cantidad de dimensiones			
arr.size	Número de elementos			
	en el arreglo			
arr.itemsize	Tamaño en bytes del tipo			
	de dato del arreglo			
arr.T	Matriz transpuesta			
arr.real	Parte real de la matriz			
arr.imag	Parte imaginaria de la matriz			

Números aleatorios - np.random

np.random.rand(n,m)

Crea un arreglo de tamaño n x m de números aleatorios con distribución uniforme entre 0 y 1.

np.random.randn(n,m)

Crea un arreglo de tamaño n x m de valores de la distribución normal estándar.

np.random.randint(a,b,shape)

Crea un arreglo de números enteros aleatorios entre a y b con dimensiones shape.

Copias y vistas

#Valor #Referencia
arr.copy() arr.view()

Map

La manera más eficiente de aplicar funciones a un arreglo de NumPy es aplicándola directamente.

>foo	=	lambda a : a**	2
>arr_	_2	= foo(arr)	

Generar arreglos comunes

np.arange(a,b,step)

Arreglo separado uniformemente en el intervalo a y b con pasos de tamaño step.

np.linspace(a,b, n)

Arreglo separado uniformemente en el intervalo a y b con n muestras.

np.zeros((n,m))

Matriz de ceros de tamaño n x m

np.ones((n,m))

Matriz de unos de tamaño n x m

np.eye(n,m)

Matriz de tamaño n x m con unos en la diagonal y ceros en el resto de elementos

np.full((n,m), a)

Matriz de tamaño n x m con a en todos los elementos

np.empty((n,m))

Matriz de tamaño n x m sin inicializar

Tipos de dato dtypes

int8	complex64
int16	complex128
int32	complex256
int64	bool
uint8	object
uint16	byte
uint32	str
uint64	unicode
float16	single
float32	double
float64	longdouble
float128	NaN

Indexado

a[x,y]	Índices separados por comas
a[a:b,c:d]	Rangos por cada eje
a[l_a, l_b]	Arreglo de índices en las
	posiciones l_a[i],l_b[i]
a[i,]	Índice en una dimensión específica

Selección condicional

a > x, a < x Operadores relacionales
y lógicos con arreglos.</pre>

a[a > x]	Retorna un arreglo de booleanos al evaluar la
a[a > x & a < y]	expresión con cada elemento. Se pueden usar arreglos de este tipo para indexar un arreglo.

Operaciones en arreglos

<pre>> a + b > np.add(a,b)</pre>	Suma de matrices
<pre>> a - b > np.subtract(a,b)</pre>	Resta de matrices
<pre>> a * b > np.multiply(a,b)</pre>	Multiplicación entre elementos de matrices
<pre>> a / b > np.divide(a,b)</pre>	División elementos de matrices
> a.dot(b)	Producto punto
> a @ b	Multiplicación matricial

a.max()	a.mean()	a.std()	np.exp(a)	np.sin(a)
a.min()	a.sum()	a.var()	np.log(a)	np.cos(a)

Transformación de arreglos

a.reshape(n,m)

Crea un arreglo de dimensión n x m a partir de un arreglo de n x m elementos.

a.ravel()

Crea un arreglo de 1 dimensión de los elementos del arreglo a.

Combinación de arreglos

np.concatenate((a,b), axis)

Concatena los valores de los arreglos a y b sobre el eje axis

np.vstack((a,b))

Apila verticalmente los arreglos a y b

np.hstack((a,b))

Apila horizontalmente los arreglos a y b

Separación de arreglos

np.hsplit(a, i)

Separa horizontalmente el arreglo a desde el índice i

np.vsplit(a, i)

Separa horizontalmente el arreglo a desde el i