CS 301: Languages and Automata

Fall 2015

Practice Exam #1

September 23, 2015

 Problem 1 True/false. For each of the claims below, say whether it is true or false. If the claim is false, give a counterexample; if the claim is true, briefly explain why it is true. a. If A contains a finite number of strings, then A^C, the complement of A, is regular.
b. The intersection of the language of a NFA and the language of a regular expression
is regular.
c. A NFA can have zero states.
d. Let f be a homomorphism. If $f(A)$ is regular, then A is regular.
e. If A is a language and M is a DFA such that M accepts every string in A , then A is regular.

For a language L, define

EVENS
$$(L) = \{ w \in L \mid w \text{ is of even length} \}.$$

For example, for $L = \{\epsilon, 0, 00, 000\}$, EVENS $(L) = \{\epsilon, 00\}$.

a. Using the notation above, show that if L is a regular language (over any alphabet Σ), EVENS(L) is also a regular language.

b. Show that there exists a language $L_{\rm b}$ (over the alphabet of your choice) such that $L_{\rm b}$ is not regular but EVENS($L_{\rm b}$) is regular.

c. Show that there exists a language L_c (over the alphabet of your choice) such that L_c is not regular and EVENS(L_c) is also *not* regular.

Problem 3 Closure properties.

a. Give an example of a nonregular language L such that L^* is regular, or prove that this is impossible. [Hint: Think about Σ^* .]

b. Prove that the class of nonregular languages is closed under complement or give a counterexample.

c. Prove that the language $\{w \mid w \text{ has the same number of as as bs}\}$ is not regular using closure properties of regular languages.

Problem 4 Double. For a language A, define Double(A) = $\{ww \mid w \in A\}$. Show that regular languages are *not* closed under Double. That is, give a regular language A such that Double(A) is not regular.

Problem 5 Half. For a language A, define $A_{\frac{1}{2}-}=\{x\mid\exists y\text{ such that }|x|=|y|\text{ and }xy\in A\}.$ Prove that if A is regular, then $A_{\frac{1}{2}-}$ is regular. This problem is very hard! Don't bother thinking about it until you understand the others. [Hint: Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA recognizing A and for each $q\in Q$, let $N_q=(Q,\Sigma,\delta',q,F)$ be an NFA whose start state is q and whose transition function is $\delta'(r,a)=\{s\in Q\mid\delta(r,b)=s\text{ for some }b\in\Sigma\}.$ (Note that $\delta'(r,a)$ doesn't depend on a.) Now perform a cartesian product-like construction to build an NFA N from M and the N_q whose set of states is $Q'=Q\times\prod_{q\in Q}Q=Q^{|Q|+1}$. That is, if M has n=|Q| states, then N will have n^{n+1} states, each of which is a (n+1)-tuple. Consider what the language of each N_q is.]

Problem 6 Constructions. This will be updated with a problem in a day or so.