Lógica y Métodos Discretos

LibreIM

Doble Grado de Informática y Matemáticas Universidad de Granada libreim.github.io/apuntesDGIIM

Este libro se distribuye bajo una licencia CC BY-NC-SA 4.0.

Eres libre de distribuir y adaptar el material siempre que reconozcas a los autores originales del documento, no lo utilices para fines comerciales y lo distribuyas bajo la misma licencia.

creativecommons.org/licenses/by-nc-sa/4.0/

Lógica y Métodos Discretos

LibreIM

Doble Grado de Informática y Matemáticas Universidad de Granada libreim.github.io/apuntesDGIIM

Índice

I.	Teoría	5
1.	Inducción y Recurrencia	5
	1.1. Axiomática de Peano	5
	1.2. Aritmética natural	6
	1.2.1. Suma de naturales	6
	1.2.2. Producto de naturales	6
II.	Ejercicios	7

Parte I. Teoría

1. Inducción y Recurrencia

1.1. Axiomática de Peano

Supongamos que existe un conjunto \mathbb{N} . Los elementos de este conjunto se llaman números naturales.

Definición 1.1 (Axiomas de Peano). Los axiomas que definen a $\mathbb N$ son los siguientes:

- A1 El cero es un número natural. $0 \in \mathbb{N}$
- *A2* El siguiente de un número natural es un número natural. Si $n \in \mathbb{N} \Rightarrow \sigma(n) \in \mathbb{N}$
- *A3* Cero no es el siguiente de ningún número natural. $\forall n \in \mathbb{N}, \sigma(n) \neq 0$
- A4 Si los siguientes de dos números naturales son iguales, entonces los números naturales son iguales. $\forall m, n \in \mathbb{N}, \sigma(n) = \sigma(m) \Rightarrow m = n$
- A5 Si un subconjunto de números naturales tiene el cero y siempre que tiene un número tiene a su siguiente, entonces el subconjunto son todos los números naturales.

Teorema 1.1. Todo número natural es distinto del siguiente. $\forall n \in \mathbb{N} n \neq \sigma(n)$

Demostración. Sea $A = \{x \in \mathbb{N} : x \neq \sigma(x)\}$: Como $0 \neq \sigma(0)$, resulta $0 \in A$. Supongamos ahora $n \in A$, es decir, $n \neq \sigma(n)$, luego $\sigma(n) \neq \sigma(\sigma(n))$, por tanto, $\sigma(n) \in A$. Luego $A = \mathbb{N}$.

Teorema 1.2. Para cada número natural distinto de cero, existe un único número natural del que es su siguiente. $\forall n \in \mathbb{N} (n \neq 0 \Rightarrow \exists! m \in \mathbb{N} \text{ tal que } x = \sigma(m))$

Demostración. Sea $A = \{x \in \mathbb{N} : x = 0 \text{ o } m \in \mathbb{N} \text{ tal que } x = \sigma(m)\}$: Como 0 = 0, resulta $0 \in A$. Supongamos ahora $n \in A$, es decir, n = 0 o $n = \sigma(m)$. En cualquier caso, $\sigma(n) = \sigma(n)$, por tanto $\sigma(n) \in A$. Luego $A = \mathbb{N}$. La unicidad es consecuencia de A4.

1. Inducción y Recurrencia

1.2. Aritmética natural

1.2.1. Suma de naturales

Teorema 1.3. Existe una única $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ tal que $\forall m, n \in \mathbb{N}$ verifica:

- m + 0 = m
- $m + \sigma(n) = \sigma(m+n)$

Propiedades 1.1. Para todo $m, n, p \in \mathbb{N}$ se cumple:

- 1. Todo número natural es 0 o es el siguiente de un número natural.
- 2. m + 0 = 0 + m = m.
- 3. $m + 1 = 1 + m = \sigma(m)$.
- 4. (m+n)+p=m+(n+p).
- 5. m + n = n + m.
- 6. Si m + p = n + p, entonces m = n.
- 7. Si m + n = 0, entonces m = n = 0.

1.2.2. Producto de naturales

Teorema 1.4. Existe una única $\cdot : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ tal que $\forall m, n \in \mathbb{N}$ verifica:

- $m \cdot 0 = 0$
- $m \cdot \sigma(n) = m \cdot n + m$

Parte II. Ejercicios