This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

09122222

PUBLICATION DATE

13-05-97

APPLICATION DATE

31-10-95

APPLICATION NUMBER

07284220

APPLICANT :

KYOCERA CORP:

INVENTOR :

MASUDA SHINGO;

INT.CL.

A61L 27/00 A61F 2/30 B29C 69/00

TITLE

MANUFACTURE OF SLIDING MEMBER FOR PROSTHETIC JOINT

ABSTRACT :

PROBLEM TO BE SOLVED: To provide a sliding member for an prothetic joint having a small creep deformation factor and no deterioration of a surface layer and excellent in sliding characteristic and abrasion resistance by irradiating a prescribed quantity of γ -rays to ultrahigh-molecular weight polyethylene as the absorbed dose, heat-treating it at the prescribed temperature, then molding it into the desired shape by cut machining.

SOLUTION: γ -rays 500-10,000kGy are irradiated to ultrahigh-molecular weight polyethylene as the absorbed dose, it is heat-treated at 80-200°C, then it is cut-machined into the desired shape to manufacture a sliding member for an prothetic joint. When γ -ray irradiation and heat treatment are combined, the creep deformation is suppressed to less than 1%, and the creep resistance and abrasion resistance can be remarkably improved. The sliding member is molded into the desired shape by cut machining after γ -ray irradiation and heat treatment, the deteriorated raw material surface of the ultrahigh-molecular weight polyethylene is removed, and the sliding characteristic and abrasion resistance of the sliding face can be improved.

COPYRIGHT: (C) JPO