Olympaid Graph Theory Irish Mathematical Olympiad Training

Adam Kelly (ak2316@cam.ac.uk)

August 22, 2021

Basic Definitions

Definition (Graph)

A graph G = (V, E) is a set V of vertices and a set E of unordered pairs of distinct vertices known as edges.

We have a natural way of drawing a graph:

- For each vertex we have a point in the plane,
- For each edge we draw a line between the corresponding pair of vertices.

Example (Path)

The ordered pair (V, E) where $V = \{1, 2, ..., 6\}$ and $E = \{(1, 2), (2, 3), ..., (5, 6)\}$ is a graph.

This graph is known as P_6 , a path on 6 vertices.

Common Graphs

There are some graphs that will appear repeatedly when doing graph theory problems, and we will define them now.

Definition (Path)

We define P_n to be the graph $V = \{1, \ldots, n\}$, and $E = \{(1, 2), (2, 3), \ldots, (n - 1, n)\}$ as shown.

We call this a path on n vertices, and say it has length n-1.

Common Graphs

Definition (Cycle)

We define C_n (for $n \ge 3$) to be the graph $V = \{1, \ldots, n\}$, and $E = \{(1, 2), \ldots, (n - 1, n), (n, 1)\}$ as shown.

We call this the **cycle** on n vertices.

Common Graphs

Definition (Complete Graph)

The **complete graph** on n vertices K_n is the graph with vertices $\{1, \ldots, n\}$ and edges $E = \{(i, j) \mid i \neq j \in V\}$.

n=4

n=5

Note that there is an edge between every pair of vertices.

A Remark on Conventions

Remark. In our definition of a graph, we *don't allow* loops, and there *cannot* be multiple edges between the same set of vertices.

You can define graphs where such things are allowed, but for now we will outlaw them. We also note that edges are *unordered pairs*, so for now edges have no direction.

Notation

Notation. If G=(V,E) is a graph, and we have some edge $\{x,y\}\in E$, we will denote it by xy. We will also define |G|=|V|, and e(G)=|E|.

Example

How many vertices and edges does the graph K_n have?

Notation

Notation. If G=(V,E) is a graph, and we have some edge $\{x,y\}\in E$, we will denote it by xy. We will also define |G|=|V|, and e(G)=|E|.

Example

How many vertices and edges does the graph K_n have?

Solution. We have $|K_n| = n$ and $e(K_n) = {k \choose 2}$, as there is an edge between any pair of vertices.