Algorithm: Topot:
$$A \in \mathbb{C}^{man}$$
 $m \ge n$

for $k = 1, \dots m$ DO

 $x = A (k:m, k)$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_k}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_i}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_i}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_i}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_i}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_i}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_i}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_i}{n | y_{in}|} | x_{in}|_{in} | e_i + x$
 $y = \frac{x_i}{n | y_{in}|} | x_{in}|_{in} |$