PROBLEM DEFINITION

MISSION: Create mobility system to deliver three blue balls into the basket

Side quests

What do we know & What should we do

Design / Manufacture

Ball collecting system Integrated configuration Heat transfer

Temperature Control Energy Management

Dynamics

Vibration Control Optimized Mobility Control

Controlling Mobility System Image Recognition Path Planning

Design - Ball Collecting

Brainstorming

Grab with arm

Point contact / Line contact Top grabbing / Side grabbing Plane Contact (Glove)

Sticking

Glue Piercing

Sweeping

Net on arm Golf ball collector Pinball

Suction

Vacuum holder

Scooping

Tossing the boll Shovel type arm

Design - Ball Collecting

Evaluation – Decision Matrix

Grab with arm

Sticking

Sweeping

Suction

Scooping

	Weight	Grab	Sticking	Sweeping	Suction	Scooping
Mass	6	S	+	+	-	S
Efficiency	8	S	+	+	-	S
Time	8	S	+	+	+	S
Reliability	8	S	-	S	S	-
Safety	5	S	-	S	-	S
Creativity	5	S	+	+	+	+
Aesthetic	1	S	+	-	+	S
Feasibility	10	S	-	+	-	-
Durability	6	S	-	+	S	S
Total		0	-1	42	-15	-13

Design

Concept generation (TRIZ)

- 1. If we use many motor, system reliability is good but Energy, Complexity is High.
- **2.** Collecting ball is easy when collector area is large, but energy increases

-Reliability & Energy

- 11. Beforehand Cushioning
- 19. Periodic Action
- 21. Skipping
- 27. Cheat Short Living

-Area of moving object & Energy

- 9. Preliminary Action
- 19. Periodic Action
- 29. Pneumatic and Hydraulic
- 32. Color Changes

Rotating Sweeper

Design

Significant Specifications

- **-Speed of motors** spec has most significant effect on performance.
- -The number of motor affects temperature control and motor control
- -Camera/Lidar location affects Path planning and Image identification

Energy Management

Least Energy consumption

Mechanical Energy (Main motor)

Electrical Energy

50*W*

60W

20% of energy heats up battery

 $q_{battery} = hA(T - T_{\infty})$ $h \sim 20W/Km^2$

 $A \sim 0.1 m^2$

 $(T-T_{\infty}) \sim 10K$

Intel Nuc: 25W (idle)

NI myRIO: 14W

RPLidar, DFR0315: 4W

Logitech HD pro webcam :3W

Temperature control

Cooling Mechanism (Passive)

1. Fin

2. Thermal Conducting vent

3. Design factors

Temperature control

Cooling Mechanism (Passive)

1. Fin

2. Thermal Conducting vent

3. Design factors

$$q_{battery} = f(E)$$
 (increasing function)
 $T_{battery} = T_{\infty} + \frac{q_{battery}}{\eta_o h A_t}$

Assume: $q_{battery} \propto m$ (increasing function) $A_t \propto m^{\wedge}(\frac{2}{3})$

$$\left. \frac{dT_{battery}}{dm} \right|_{m_{opt}} = 0$$

$$m_{cooler,opt} = m_{opt} - m_{sys, w/ocooler}$$

Temperature control

Cooling Mechanism (Active)

Fan

Coolant (Fluid)

ICE Pack

JT Expansion

	Weight	Fan	Coolant	ICE Pack	JT Expansion
Mass	6	S	-	S	+
Efficiency	8	S	+	+	+
Maintenance	3	S	-	-	-
Reliability	8	S	+	+	+
Safety	10	S	-	-	-
Creativity	5	S	S	-	+
Aesthetic	1	S	+	-	+
Feasibility	10	S	-	-	-
Durability	6	S	S	-	-
Cost	2	S	-	+	-
Total		0	-11	-17	0

Vibration Control

Naïve analysis

Angular velocity: 55rpm (5.8rad/s)

Base Vibration's Angular frequency: 44 rad/s

Equation of motion:

$$m\ddot{x} = \sum F = -k(x - y) - c(\dot{x} - \dot{y}) \text{ or}$$

$$m\ddot{x} + c\dot{x} + kx = c\dot{y} + ky$$

$$m = 0.5kg$$

y = 2.3 sin(44t) (mm)

Vibration Control

$$\frac{X}{Y} = \sqrt{\frac{1 + (2\zeta r)^2}{(1 - r^2)^2 + (2\zeta r)^2}}$$

OpenCV/ ROS / LabView Integration

OpenCV

Functions

- -Detect & Locate Ball
- -Determine Color
- -Reduce Noise

- -Help Motion Analysis and Object Tracking
- -Camera Calibration
- -2D Reconstruction

ROS

[1521443698.298353819]: send msg = 298229445

[1521443698.298386537]: send msg = 358

🚫 🖨 📵 wognl@wognl-GT60-2QD: ~

INFO] [1521443698.298766618]: recieve msg = 298229445 INFO] [1521443698.298788056]: recieve msg = 358

LabView

