

Copyleft - 2018 D.A.S PUBLISHED BY D.A.S

BOOK-WEBSITE.COM

Is not Licensed yet.

2018

-1	Conceitos	
1	Introdução à Genética Quantitativa	. 7
1.1	Interação Aditiva	8
1.2	Interação de Dominância	9
1.3	Grau médio de Dominância	10
1.4 1.4.1 1.4.2 1.4.3	Caráter Quantitativo Variância Genética	12
1.5.1 1.5.2 1.5.3 1.5.4	Ganho de Seleção Média Predita Número de Genes Exemplo	14 14 14
2 2.1 2.2	Introdução à Genética de Populações Frequência Genica Equilíbrio de Harday-Weinberg (EHW)	19 19 20

- 1 Introdução à Genética Quantitativa ... 7
- 1.1
- Interação Aditiva Interação de Dominância 1.2
- 1.3 Grau médio de Dominância
- 1.4 Caráter Quantitativo
- 1.5 Herdabilidade
- 2 Introdução à Genética de Populações 19
- 2.1 Frequência Genica
- Equilíbrio de Harday-Weinberg (EHW) 2.2

A genética quantiativa, em suma, é o entendimento da relação entre fenótipo e genótipo. Para isto, é necessário estudar tudo que influência esta relção.

O modelo básico para um ambiente é F = G + A. Sendo F (Fenótipo), G (Genótipo) e A (Ambiente). Para que este modelo seja aplicado a vários ambientes, é necessário adicionar outro parâmetro GA que consiste na interação entre genótipo e ambiente. Como resultado temos F = G + A + GA.

A análise do fenótipo pode ser qualitativa, como é feita na genética mendeliana, ou quantiativa como será visto ao longo do texto.

Fator	Caráter Qualitativo	Caráter Quantitativo
Controle Gênico	Poucos	Poligênica
Efeito Ambiental	Nenhum ou Pouco	Alto
Distribuição dos Dados	Discreto (Classe)	Contínuo
Estado do Caráter	(P1xP2) e Qui Quadrado	Média e Variância
Interação Alélica	Dominância completa, incompleta e codominância	Aditiva e Não Aditiva

Table 1.1: Caráter qualitativo x quantitativo

Os alelos são segmentos homólogos de DNA, os alelos dominantes, são representados por letras maiúsculas, enquanto os recessivos são representados por letras minúsculas. A Interação Alélica consiste na interação ou não de genes alélicos.

As interações alélicas qualitativas são: dominância completa, dominância incompleta e codominância. As interações alélicas quantitativas podem se dividir em aditivas: quando cada alelo contribui individualmente para o valor genotípico e consequentemente para o valor fenotípico final; não aditivas: que podem ser dominância completa, parcial ou sobredominância.

A Epstasia não é uma interação alélica, consiste em uma interação gênica.

As interações de dominância criam uma perturbação na análise quantitativa do melhoramento genético.

1.1 Interação Aditiva

Para as demonstrações assuma dois genes A: A1,A2 e B: B1, B2. Além disso vamos adimitir valores para A1,B1,A2 e B2; sendo A1 = B1 = 30 unidades e A2 = B2 = 5 unidades.

Temos:

- 1. Parental 1 (P1): A1A1B1B1 (120 unidades)
- 2. Parental 2 (P2): A2A2B2B2 (20 unidades)
- 3. *P1 e P2 são puros e contrastantes

O cruzamento entre P1 e P2 terá como resultado F1 (A1A2B1B2), realizando a autofecundação em F1, teremos F2 que poderá gerar os genótipos como mostra a tabela abaixo:

Genótipos	Frequência	Valor Genotípico
A1A1B1B1	1/16	120
A1A1B1B2	2/16	95
A1A1B2B2	1/16	70
A1A2B1B1	2/16	95
A1A2B1B2	4/16	70
A1A2B2B2	2/16	45
A2A2B1B2	1/16	70
A2A2B1B1	2/16	45
A2A2B2B2	1/16	20

Table 1.2: Genótipos Possíveis em F2

Considere \overline{X} como a média aritmética de um conjunto de valores.

A média pode ser calculada utlizando a soma simples ou a frequência dos itens.

Fórmula 1.1.1 — Média.

$$\overline{X} = \frac{\sum_{1}^{n} x_{i}}{n} \tag{1.1}$$

(1.2)

Fórmula 1.1.2 — Média.

$$\overline{X} = \frac{\sum_{i=1}^{n} f_i \times x_i}{f_i} \tag{1.3}$$

Utilizando os dados da tabela 1.2, pode-se calcular a média dos valores genotípicos de F2.

Solução 1.1.1 — Solução do Exemplo.

$$\overline{X} = \frac{\sum_{1}^{n} f_i \times x_i}{f_i} \tag{1.4}$$

$$\overline{X} = \frac{1 \times 120 + 2 \times 95 + 2 \times 70 + 2 \times 95 + 4 \times 70 + 2 \times 45 + 1 \times 70 + 2 \times 45 + 1 \times 20}{16}$$
(1.5)

$$\overline{X} = 70 \tag{1.6}$$

(1.7)

Quando a interação é aditiva, a médica de qualquer descendência é igual a média de seus pais.

Segregantes transgressivos consistem em indivíduos em que seus valores genotípicos sejam maiores ou menores que seus pais. Para exemplificar, considere A1,B1,C1,D1 = 30 unidades e A2,B2,C2,D2 = 5 unidades. Considere os seguintes valores:

- 1. P1 = A1A1B1B1C2C2D2D2
- 2. P2 = A2A2B2B2C1C1D1D1
- 3. F1 = A1A2B1B2C1C1D1D2
- 4. F2 = Autofecundação de F1

Dentre as 81 possibiblidades de F2, pode-se listar dois exemplos de segregantes transgressivos:

- 1. F2-1 = A1A1B1B1C1C1D1D1 = 240 unidades
- 2. F2-2 = A2A2B2B2C2C2D2D2 = 40

1.2 Interação de Dominância

As interações de dominância ocorrem quando existe a relação de dominância entre alelos, ou seja, quando o alelo dominante está presente, o recessivo não contribui para a característica. Para exemplificar considere:

- 1. Gene A, sendo 'A' (Dominante) e 'a' (recessivo)
- 2. Gene B, sendo 'B' (Dominante) e 'b' (recessivo)
- 3. AA = 60 unidades
- 4. Aa = 60 unidades
- 5. aa = 10 unidades
- 6. BB = 60 unidades
- 7. Bb = 60 unidades
- 8. bb = 10 unidades

Considere também os parentais P1:AABB (120 unidades) e P2:aabb (15 unidades). O cruzamento entre P1 e P2 dá origem ao descendente F1:AaBb (120). Neste caso, quando existe relação de dominância, o valor genotípico não será a média de seus parentais, podendo ser igual a um deles, como foi o caso.

Genótipos	Frequência	Valor Genotípico
AABB	1/16	120
AABb	2/16	120
AAbb	1/16	70
AaBB	2/16	120
AaBb	4/16	120
Abbb	2/16	70
aaBB	1/16	70
aaBb	2/16	70
aabb	1/16	20

Table 1.3: Genótipos Possíveis em F2

Com base nos dados da 1.3 a média de F2 = 95, como a média de F1 é 120, pode-se concluir que houve a diminuição na média dos valores genotípicos.

X	AB	Ab	aB	ab
AB	AABB	AABb	AaBB	AaBb
Ab	AABb	AAbb	AaBb	Aabb
aВ	AaBB	AaBb	AaBB	aaBb
ab	AaBb	Aabb	aaBb	aabb

Table 1.4: Genótipos Possíveis

1.3 Grau médio de Dominância

O grau médio de dominância mede a posição relativa do heterozigoto em relação à média dos homozigotos.

Figure 1.1: Grau Médio de Dominância

O valor do grau médio de dominância pode ser obtido dividindo-se d por a, esses valores são apresentados na 1.1.

Resultado da Divisão	Interação Intra Alélica
d/a = 0	Interação Aditiva
d/a = 1	Dominância Completa
0 < d/a < 1	Dominância Parcial
d/a > 1	Sobredominância

Table 1.5: Genótipos Possíveis

O efeito de dominância mascara o processo de seleção, pois, ele dificulta o conhecimento dos indivíduos superiores pelos efeitos aditivos.

1.4 Caráter Quantitativo

O modelo para o estudo do caráter quantitativo é:

Fórmula 1.4.1 — Fórmula Geral. F = G + A

Definição 1.4.1 Considere V(X) como a variância de X e Cov(X) como a covariância de X.

$$V(F) = V(G+A) \rightarrow V(F) = V(G) + V(A) + 2 \times Cov(G+A)$$

$$\tag{1.8}$$

Como:

$$Cov(G+A) = 0 (1.9)$$

Temos:

$$V(F) = F(G+A) \to V(F) = V(G) + V(A)$$
 (1.10)

A variância (V) é descrita pela seguinte fórmula:

Fórmula 1.4.2

$$V(F) = \frac{\sum_{1}^{n} (x_i - \overline{X})^2}{n - 1} \tag{1.11}$$

Fórmula 1.4.3

$$V(F) = \frac{\sum_{1}^{n} x^{2} - [\sum_{1}^{n} x]^{2}}{n - 1}$$
(1.12)

Para o cálculo da dedução da variância ambiental, considere um gene A, com dois alelos 'A' e 'a'.

Genótipos	Nº Indivíduos	Frequência	Valor Genotípico	Val. Gen. Codificado
AA	n1	n1/n = D	X1 = u + a	a
Aa	n2	n2/n = H	X2 = u + d	d
aa	n3	n3/n = R	X3 = u - a	-a

Table 1.6: Dedução

Aplicando a fórmula da média na média genotípica:

Definição 1.4.2 — Média Genotípica.

$$Mg = \frac{\sum_{1}^{n} f_i \times x_i}{f_i} \tag{1.13}$$

$$Mg = D \times a + H \times d + R \times -a \tag{1.14}$$

$$Mg = D \times a + H \times d + R \times -a$$
 (1.14)
 $Mg = a \times (D - R) + H \times d$ (1.15)

$$Mg = u + a \times (D - R) + H \times d \tag{1.16}$$

1.4.1 Variância Genética

$$Va(x) = (\sum_{i=1}^{n} x_i^2) - (\sum_{i=1}^{n} f_i \times x_i)^2$$
(1.17)

$$V(G) = D \times a^{2} + H \times d^{2} + R \times (-a)^{2} - [a \times (D - R) + H \times d]^{2}$$
(1.18)

1.4.2 Estudo do Caráter

Para o estudo do caráter, considere:

- 1. P1: AA
- 2. P2: aa
- 3. F1: Aa (P1xP2)
- 4. F2: [AA,Aa,aa]

Definição 1.4.3 — Análise de P1.

$$Mg(P1) = u + a \times (D - R) + H \times d \tag{1.19}$$

$$Mg(P1) = u + a \times (1 - 0) + 0 \times d$$
 (1.20)

$$Mg(P1) = u + a \tag{1.21}$$

(1.22)

Definição 1.4.4 — Variância de P1.

$$V(P1) = D \times a^{2} + H \times d^{2} + R \times (-a)^{2} - [a \times (D - R) + H \times d]^{2}$$
(1.23)

$$V(P1) = 1 \times a^2 + 0 \times d^2 + 0 \times (-a)^2 - [a \times (1-0) + 0 \times d]^2$$
(1.24)

$$V(P1) = 1 \times a^2 + -1 \times a^2 \tag{1.25}$$

$$V(P1) = 0 \tag{1.26}$$

Portanto, como só existe um genótipo possível, não existe variância. A análise de P2 utiliza o mesmo método de P1, portanto, não há variância em P2.

Definição 1.4.5 — Análise de F2.

$$Mg(F2) = u + a \times (\frac{1}{4} - \frac{1}{4}) + \frac{1}{2} \times d$$
 (1.27)

$$Mg(F2) = u + \frac{1}{2} \times d \tag{1.28}$$

(1.29)

Definição 1.4.6 — Variância de F2.

$$V(F2) = D \times a^{2} + H \times d^{2} + R \times (-a)^{2} - [a \times (D - R) + H \times d]^{2}$$
(1.30)

$$V(F2) = \frac{1}{4} \times a^2 + \frac{1}{2} \times d^2 + \frac{1}{4} \times (-a)^2 - \left[a \times \left(\frac{1}{4} - \frac{1}{4}\right) + \frac{1}{2} \times d\right]^2$$
 (1.31)

$$V(F2) = \frac{1}{4} \times a^2 + \frac{1}{2} \times d^2 + \frac{1}{4} \times (a)^2 - \left[\frac{1}{2} \times d\right]^2$$
 (1.32)

$$V(F2) = \frac{1}{2} \times a^2 + \frac{1}{2} \times d^2 - \frac{1}{4} \times d^2$$
 (1.33)

$$V(F2) = \frac{1}{2} \times a^2 + \frac{1}{4} \times d^2 \tag{1.34}$$

(1.35)

1.4.3 Variância Ambiental

1.5 Herdabilidade 13

Definição 1.4.7 — Fórmulas mais utilizadas.

$$V(Amb) = V(P1) \tag{1.36}$$

$$V(Amb) = V(P2) \tag{1.37}$$

$$V(Amb) = V(F1) \tag{1.38}$$

$$V(Amb) = \frac{V(P1) + V(P2)}{2} \tag{1.39}$$

$$V(Amb) = \frac{V(P1) + V(P2) + V(F1)}{2}$$

$$V(Amb) = \frac{V(P1) + V(P2) + 2 \times V(F1)}{4}$$
(1.40)

$$V(Amb) = \frac{V(P1) + V(P2) + 2 \times V(F1)}{4} \tag{1.41}$$

(1.42)

1.5 Herdabilidade

A herdabilidade é um coeficiente que expressa a relação entre a variância genotípica e a variância fenotípica, ou seja, mede o nível da correspondência entre o fenótipo e o valor genético.

Definição 1.5.1 — Dedução de Herdabilidade.

$$r = \frac{Cov(x, y)}{\sqrt{v(x) \times v(y)}} \tag{1.43}$$

$$r(F,G) = \frac{Cov(F,G)}{\sqrt{v(F) \times v(G)}}$$
(1.44)

$$r(F,G) = \frac{Cov(G+A,G)}{\sqrt{v(F) \times v(G)}}$$

$$r(F,G) = \frac{Cov(G,G) + Cov(G,A)}{\sqrt{v(F) \times v(G)}}$$
(1.45)

$$r(F,G) = \frac{Cov(G,G) + Cov(G,A)}{\sqrt{v(F) \times v(G)}}$$
(1.46)

$$Como: Cov(G,A) = 0 (1.47)$$

$$\rightarrow r(F,G) = \frac{Cov(G,G)}{\sqrt{v(F) \times v(G)}}$$
(1.48)

$$Como: Cov(X,X) = V(X) \tag{1.49}$$

$$\rightarrow r(F,G) = \frac{V(G)}{\sqrt{v(F) \times v(G)}} \tag{1.50}$$

$$r(F,G) = \sqrt{\frac{[V(G)]^2}{v(F) \times v(G)}}$$
 (1.51)

$$r(F,G) = \sqrt{\frac{[V(G)]}{v(F)}}$$

$$Como: H = \frac{[V(G)]}{v(F)}$$
(1.52)

$$Como: H = \frac{[V(G)]}{v(F)} \tag{1.53}$$

$$\to r(F,G) = \sqrt{H^2} \tag{1.54}$$

(1.55)

Definição 1.5.2 — Fórmula da Herdabilidade.

$$H^2 = \frac{V(G)}{V(F)} \tag{1.56}$$

(1.57)

O valor da herdabilidade pode variar entre 0 e 1. Por definição, quando o valor da herdabilidade é maior que 0,7 é considerado alto para plantas. Em caso de animas, pode variar entre 0,3 e 0,4.

1.5.1 Ganho de Seleção

Definição 1.5.3 — Fórmula do Ganho de Seleção (GS).

$$GS = H^2 \times (\overline{X}_s - \overline{X}_0) \tag{1.58}$$

(1.59)

Sendo Xs a média dos indivíduos selecionados e X0 a média inicial dos indivíduos.

1.5.2 Média Predita

Definição 1.5.4 — Fórmula Média Predita (Xm).

$$Xm = GS + \overline{X}_0 \tag{1.60}$$

(1.61)

1.5.3 Número de Genes

Definição 1.5.5 — Fórmula Número de Genes (Nrg).

$$Nrg = \frac{(\overline{P_1} - \overline{P_2})^2}{8 \times V(G)_{F1}} \tag{1.62}$$

(1.63)

Sendo P1 a média dos parentais 1 e P2 a média dos parentais 2

1.5.4 Exemplo

■ Exemplo 1.1 Considere os dados das apresentados abaixo para resolução das questões.

Dados Pai 1				
13,13	20,35	21,60	17,77	15,74
19,90	24,92	16,81	22,91	15,68
19,05	19,30	20,78	20,64	15,46
17,14	19,21	15,45	17,88	18,43

Table 1.7: Valores Fenotípicos

- 1. Média P1 = 18,6075
- 2. Média P2 = 100.5445
- 3. Média F1 = 15,7740
- 4. Média F2 = 60,1949

Questões:

1.5 Herdabilidade

Dados Pai 2				
103,39	100,94	99,26	104,13	97,54
96,24	106,47	105,45	95,40	104,52
97,60	95,36	98,85	98,89	98,13
98,56	100,37	105,99	104,95	98,85

Table 1.8: Valores Fenotípicos

- 1. Calcule a média fenotípica de P1, P2, F1 e F2;
- 2. Calcule a variância Fenotípica de P1, P2, F1 e F2;
- 3. Calcule a variância Genética de P1, P2, F1 e F2;
- 4. Calcule a herdabilidade e interprete o resultado;
- 5. Calcule o número de genes;
- 6. Calcule o ganho de seleção ao selecionar os 10% melhores;
- 7. Calcule a heterose e heterobeltiose;

Solução 1.5.1 — Média de P1, P2, F1 e F2. Para calcular a média, deve-se utilizar a fórmula da média aritmética por soma de valores:

$$\overline{X} = \frac{\sum_{1}^{n} x_{i}}{n} \tag{1.64}$$

Assim, obtemos como resultado:

$$\overline{P1} = 18,6075$$
 (1.65)

$$\overline{P2} = 100,5445$$
 (1.66)

$$\overline{F1} = 15,7740$$
 (1.67)

$$\overline{F2} = 60,1949$$
 (1.68)

Solução 1.5.2 — Variância Fenotípica de P1, P2, F1 e F2. Para calcular a variância, deve-se utilizar a fórmula da média aritmética por soma de valores:

$$V(F) = \frac{\sum_{1}^{n} x^{2} - \frac{\left[\sum_{1}^{n} x\right]^{2}}{n}}{n_{1}}$$
(1.69)

Assim, obtemos como resultado:

$$V(P1) = 8,1699 (1.70)$$

$$V(P2) = 13,4026 \tag{1.71}$$

$$V(F1) = 15,7740 (1.72)$$

$$V(F2) = 45,1901 \tag{1.73}$$

Solução 1.5.3 — Variância Genética de P1, P2, F1 e F2. Como P1 e P2 são puros, não possuem variância genética. Filhos de pais puros, também não possuem variância. Logo, Vg(P1) = Vg(P2) = Vg(F1) = 0.

Para calcular a variância genética de F2, é necessário utilizar a fórmula:

$$Vg(F2) = Vf(F2) - V(amb)$$

$$(1.74)$$

Para isto vamos calcular a Variância Ambiental:

$$V(amb) = \frac{8,1694 + 13,4026 + 2 \times 15,7740}{4}$$

$$V(amb) = 13,2801 \quad (1.75)$$

Então, temos:

$$Vg(F2) = 45,1901 - 13,2801V(amb) = 31,91$$
 (1.76)

Solução 1.5.4 — Herdabilidade. Para calcular a herdabilidade, é necessário utilizar a fórmula:

$$H^{2} = \frac{V(G)}{V(F)}$$

$$H^{2} = \frac{31,91}{45,1901}$$

$$H^{2} = 0,707$$

(1.77)

1.5 Herdabilidade

Portanto, 70,7% das alterações estão relacionadas aos genes. Por definição, pode-se concluir que é um valor alto.

Solução 1.5.5 — Número do Genes. Para calcular o número de genes, é necessário utilizar a fórumula:

$$Nrg = \frac{(\overline{P_1} - \overline{P_2})^2}{8 \times V(G)_{F1}}$$

$$Nrg = \frac{(18,6075 - 100,5445)^2}{8 \times 31,91}$$

$$Nrg = 27genes \quad (1.78)$$

Solução 1.5.6 — Ganho de Seleção. Para calcular o número de genes, primeiramente devese calcular a média fenotípica dos 10% melhores indivíudos (Xs), após este cálculo, pode-se utilizar a fórumula:

$$GS = H^2 \times (\overline{X}_s - \overline{X}_0)$$

 $GS = 0,707 \times (73,0035 - 60,1949)$
 $GS = 9,044 \quad (1.79)$

Solução 1.5.7 — Média Predita. Para calcular a média predita pode-se utilizar a fórumula:

$$\overline{X_m} = \overline{X_0} + GS$$
 $\overline{X_m} = 60,1949 + 9,04$
 $\overline{X_m} = 69,2394$ (1.80)

Solução 1.5.8 — Heterose e Heterobeltiose. Para calcular a heterose pode-se utilizar a fórumula:

$$h = \overline{F_1} - \frac{\overline{P1} + \overline{P2}}{2}$$

$$h = 69,2710 - \frac{18,6075 + 100,5445}{2}$$

$$h = 9,695$$
(1.81)

Para calcular a heterobeltiose pode-se utilizar a fórumula:

$$h_b = \overline{F_1} - \overline{MelhorPai}$$
 $h_b = 69,2710 - 100,5445$
 $h_b = -31,2735$
(1.82)

Nota: Heterobeltiose consiste na superioridade do híbrido em relação ao progenitor de melhor desempenho. Heterose, consiste no vigor híbrido, de tal maneira que o F1 híbrido destaca-se favoravelmente dos pais homozigotos com relação a um ou mais caracteres desejados.

Para este capítulo, admitir os seguintes termos:

- 1. 1 gene e dois alelos ('A' e 'a')
- 2. D: Frequência de Homozigotos A
- 3. H: Frequência de Heterozigoto
- 4. R: Frequência de Homozigotos a

Genótipos Possíveis	Frequência (f)	Frequência
AA	n1/n	D
Aa	n2/n	Н
aa	n3/n	R

Frequência Genica

Definição 2.1.1 — Frequência do alelo A.

$$Freq(A) = \frac{N^{\circ}alelosA}{N^{\circ}totaldealelos} \qquad Freq(A) = \frac{n1}{n} + \frac{n1}{2 \times n}Freq(A) = D + \frac{H}{2} = p \qquad (2.1)$$

Definição 2.1.2 — Frequência do alelo A.

$$Freq(a) = \frac{N^{\circ}alelosA}{N^{\circ}totaldealelos}$$
 $Freq(a) = \frac{n3}{n} + \frac{n1}{2 \times n}Freq(a) = R + \frac{H}{2} = q$ (2.2)

■ Exemplo 2.1 Seja uma população com 1000 indivíduos, sendo 400 com genótipo AA, 400 com genótipo Aa, 200 indivíduos com genótipo aa. Calcule a frequência genotípica e frequência genica.

Genótipos Possíveis	Frequência (f)	Frequência
AA	n1/n	D = 400/1000 = 0,4
Aa	n2/n	H = 400/1000 = 0.4
aa	n3/n	R = 200/1000 = 0.2

A frquência gênica pode ser calculada obtendo o valor de p e q.

$$Freq(A) = D + \frac{H}{2} = p$$
 $Freq(A) = 0.4 + \frac{0.4}{2}p = 0.6$ $q = 1 - pq = 1 - 0.6$ $q = 0.4$ (2.3)

Equilíbrio de Harday-Weinberg (EHW)

Uma população está em EHW se for suficientemente grande, os acasalamentos forem ao acaso e tiver livre de fatores que alteram a frequência gênica. Assim, as frequências genotípicas e gênicas mantem-se constantes a cada geração.

Os fatores que alteram a frequência gênica podem ser sistemáticos ou dispersivos.

Os fatores sistemáticos são aqueles cuja alteração na frequência gênica podem ser conhecidas, tanto em termos de magnitude quanto em direção, como: seleção, migração e mutação.

Os fatores dispersivos são aqueles em que é possível conhecer apenas a magnitude da alteração da frequência, mas não a direção em que ela foi alterada, como processo dispersivo é considerado a oscilação genética ou amostragem.

Quando uma população está em equilíbrio, as frequências genotípicas são dados pelo quadrado da frquência gênica.

Definição 2.2.1

$$(p+q)^2 = p^2 + 2 \times p \times q + q^2$$
 (2.4)
Sendo: (2.5)
 $p^2 = Freq(AA)$ (2.6)
 e (2.7)
 $q^2 = Freq(aa)$ (2.8)

$$Sendo:$$
 (2.5)

$$p^2 = Freq(AA) \tag{2.6}$$

$$e$$
 (2.7)

$$q^2 = Freq(aa) \tag{2.8}$$

(2.9)

Definição 2.2.2 — Demonstração da teoria de EHW. Para esta demonstração admita:

- 1. freq(A) + freq(a) = 1
- 2. p + q = 1
- 3. freq(AA) = D
- 4. freq(Aa) = H
- 5. freq(aa) = R
- 6. População de tamanho 'n'
- 7. Análise de um gene 'A'

