Project Design Phase-II

Technology Stack (Architecture &Stack)

Date	28 October 2022
Team ID	PNT2022TMID34843
Project Name	Project – Personal Expense Tracker Application
Maximum Marks	4 Marks

Technical Architecture:

Table-1: Components & Technologies:

S. No	Component	Description	Technology
1.	User Interface	Web UI, Mobile App, Chatbot	HTML, CSS, JavaScript /
		etc.	Angular JS / React JS etc.
2.	User Login	User can login either through	Google OAuth for Google
	_	their gmail account or an	Signin.
		account in the app server	Hashed password in DB
3.	Graph	Rendering plots and graphs	Seaborn, Mathplotlib
	Visualisation	based on the user spending data	
4.	Accounts	User can view and mange all	Python, Flask and Trusted
		their financial accounts for real-	bank database for verification
		time tracking of expenses	
5.	Notifications	Alerts and suggestions on	InfoSphere MDM Notification
		expenses and earning/saving	Framework
		money techniques	
6.	Database	The Income and Expense data	MySQL, NoSQL, etc.
		are stored in the MySQL	
		database	
7.	Cloud Database	Database service on Cloud	IBM DB2, IBM Cloudant etc.
8.	File Storage	Used to store the Financial data	IBM Block Storage or Other
		of the user	Storage Service or Filesystem
9.	Google OAuth	Allows user to share their	Google Drives
		information and permission from	
		the users to store files in their	
		Google Drives	
10.	Cloud	Application Deployment on	Local, Cloud Foundry,
	Deployment	Local System/Cloud	Kubernetes, etc
		Local Server Configuration:	
		Cloud Server Configuration:	

Table-2: Application characteristics:

S. No	Characteristics	Description	Technology
1.	Open-Source	IBM Open-Source and other	Python-Flask
	Frameworks	options available	
2.	Security	List all the security/ access	Container Registry,
	Implementations	controls implemented, use of	Kubernetes Cluster
		firewalls etc.	
3.	Scalable	Data-driven vertical architecture	Container Registry,
	Architecture		Kubernetes Cluster
4.	Availability	Maintaining the availability of	Container Registry,
		application by using distributed	Kubernetes Cluster

		servers and high performance IBM frameworks	
5.	Performance	Increasing the UI performance	Kubernetes Cluster
		and customer satisfaction with latest technology and support	