ASSIGNMENT - 4

Assignment Date	8 October 2022
Student Name	Ms. Abinaya K
Student Roll Number	192IT107
Maximum Marks	2 marks

3.2 BI-VARIATE ANALYSIS [15... #pairplot sns.pairplot(f1) plt.show()

3.3 MULTI-VARIATE ANALYSIS

InA [19... #scatterplot for Age, Annual Income (k\$) and Spending Score (1-100)
sns.scatterplot(x=f1.iloc[:200,:]["Age"],y=f1.iloc[:200,:]["Annual Income (k\$)"],hue=f1.iloc[:200,:]["Spending Score (1-100)"])
plt.show()

4) PERFORM DESCRIPTIVE STATISTICS ON THE DATASET

In [20... f1.describe()

Out[20]:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

	f1 mode(num	eri	_only=T	rue)	
	121mout (IIam				
[21]:	Custome	rID	Age Ar	nnual Income (k\$)	Spending Score (1-100)
	0	1	32.0	54.0	42.0
	1	2	NaN	78.0	NaN
	2	3	NaN	NaN	NaN
	3	4	NaN	NaN	NaN
	4	5	NaN	NaN	NaN
		122		7.00	
	195	196	NaN	NaN	NaN
	196	197	NaN	NaN	NaN
	197	198	NaN	NaN	NaN
	198	199	NaN	NaN	NaN
	199	200	NaN	NaN	NaN
2	200 rows ÃfÂ-	_ 4	columns		
22	f1.median(n	ume	ic_only	-True)	
	CustomerID			100.5	
	Age Annual Incom	ne ((\$)	36.0 61.5	
	Spending Sco dtype: float	ore	(1-100)	50.0	
	utype. 110ac	.04			
[23	f1.skew(nur	meri	c_only=1	True)	
	CustomerID			0.000000	
t[23]:	Age			0.485569	
	Annual Incom			0.321843	
	Spending Sco		(1-100)	-0.047220	
	dtype: floa	t64			
[24	f1.kurt(nur				
	12. Kui C(iiui	iici 1	c_only-	irucy	
	CustomerID				
F[24]:	cas comer 10			-1.200000	
t[24]:	Age			-0.671573	
t[24]:	Age Annual Incom			-0.671573 -0.098487	
t[24]:	Age	ore		-0.671573 -0.098487	
t[24]:	Age Annual Incor Spending Sco dtype: fload	ore t64	(1-100)	-0.671573 -0.098487 -0.826629	
t[24]:	Age Annual Incor Spending Sco	ore t64	(1-100)	-0.671573 -0.098487 -0.826629	
	Age Annual Incor Spending Sco dtype: fload	ore t64	(1-100)	-0.671573 -0.098487 -0.826629	
[24]:	Age Annual Incompending Scottype: float 5) HANDLE I #find the I	ore t64 MIS:	(1-100) SING VA	-0.671573 -0.098487 -0.826629	
	Age Annual Inco Spending Sc dtype: floa 5) HANDLE I	ore t64 MIS:	(1-100) SING VA	-0.671573 -0.098487 -0.826629	
[25	Age Annual Incompending Scottype: float 5) HANDLE I #find the I	ore t64 MIS:	(1-100) SING VA	-0.671573 -0.098487 -0.826629	
	Age Annual Inco Spending Sc dtype: float 5) HANDLE I #find the r fl.isnull() CustomerID Gender	ore t64 MIS:	(1-100) SING VA	-0.671573 -0.098487 -0.826629	
[25	Age Annual Inco Spending Sc dtype: floa 5) HANDLE I #find the r f1.isnull() CustomerID Gender Age	ore t64 MIS: null).su	(1-100) SING VA column:	-0.671573 -0.098487 -0.826629 LUES	
[25	Age Annual Inco Spending Sc dtype: float 5) HANDLE I #find the r fl.isnull() CustomerID Gender	ore t64 MIS: null).su	(1-100) SING VA column: m()	-0.671573 -0.098487 -0.826629	

```
In [23... f1.skew(numeric_only=True)
 Out[23]: CustomerID 0.000000
Age 0.485569
Annual Income (k$) 0.321843
Spending Score (1-100) -0.047220
dtype: float64
 In [24... f1.kurt(numeric_only=True)
 Out[24]: CustomerID -1.200000
Age -0.671573
Annual Income (k$) -0.098487
Spending Score (1-100) -0.826629
dtype: float64
                      5) HANDLE MISSING VALUES
In [25... #find the null columns f1.isnull().sum()
 Out[25]: CustomerID
Gender
Age
Annual Income (k$)
Spending Score (1-100)
dtype: int64
                     6) FIND THE OUTLIERS AND REPLACE THE OUTLIERS
InA [36-
#find outliers-Annual Income (k$)
plt.boxplot(f1["Annual Income (k$)"])
plt.show()
                      140
                                                                            0
                      120
                      100
                        80
                        60
                        40
                        20
                       #handling outliers: InterQuartile Range(IQR)
Q3-np.percentile(f1["Annual Income (k$)"],75,interpolation-'midpoint')
Q1-np.percentile(f1["Annual Income (k$)"],25,interpolation-'midpoint')
IQR-Q3-Q1
print("Q1:", Q1)
print("Q1:", Q3)
print("IQR: ", IQR)
                      Q1: 41.0
Q3: 78.0
IQR: 37.0
  In [38…
                        upperOutlayers=Q3+1.5*IQR
lowerOutlayers=Q1-1.5*IQR
print(upperOutlayers)
print(lowerOutlayers)
                        #find outliers-Spending Score (1-100)
plt.boxplot(f1["Spending Score (1-100)"])
plt.show()
  In [40...
                       #handling outliers: InterQuartile Range(IQR)
Q3-np.percentile(f1["Annual Income (k$)"],75,interpolation='midpoint')
Q1-np.percentile(f1["Annual Income (k$)"],25,interpolation='midpoint')
IgR-Q3-Q1
print("Q1: ", Q1)
print("Q1: ", Q3)
print("IQR: ", IQR)
                      Q1: 41.0
Q3: 78.0
IQR: 37.0
                       upperOutlayers=Q3+1.5*IQR
lowerOutlayers=Q1-1.5*IQR
print(upperOutlayers)
print(lowerOutlayers)
                        f1.drop(np.where(f1["Annual Income (k$)"]>=upperOutlayers)[0],inplace=True) f1.drop(np.where(f1["Annual Income (k$)"]<=lowerOutlayers)[0],inplace=True)
                       #find outliers-Spending Score (1-100)
plt.boxplot(f1["Spending Score (1-100)"])
plt.show()
```

```
#find outliers-Age
plt.boxplot(f1["Age"])
plt.show()
```

7) CHECK FOR CATEGORICAL COLUMNS AND PERFORM ENCODING

```
In [43... from sklearn.preprocessing import LabelEncoder

encod=LabelEncoder()
f1('Spending Score (1-100)']=encod.fit_transform(f1['Spending Score (1-100)'])

In [48... print(f1["Spending Score (1-100)"].unique())

[29 66 4 63 30 62 78 1 58 12 82 13 11 65 27 54 23 81 59 3 67 25 51 24
71 2 76 15 20 61 28 22 53 45 37 32 42 50 44 35 31 40 36 41 46 49 38 39
43 34 47 48 33 75 79 9 7 26 57 72 5 8 77 10 80 60 17 74 16 14 73 0
64 68 21 52 70 56 19 55 69 18 6]
```

```
8) SCALING THE DATA
 {\rm In}\hat{\mathbb{A}} [49... from sklearn.preprocessing import scale
 In [50…
                x=f1.drop(columns=['Gender'],axis=1)
                x.head()
  Out[50]:
               CustomerID Age Annual Income (k$) Spending Score (1-100)
               0
                          1 19
                                                                                    29
               1 2 21 15
                                                                                    66
                                                                                     4
                            3 20
                                                16
               2
               3 4 23 16
                                                                                    63
                                             17
               4
                            5 31
                                                                                    30
In [52... x.mean()
 Out[52]: 1.570012358055777e-17
In [54... x.std()
 Out[54]: 1.0
              9) PERFORM CLUSTERING ALGORITHM
In [56... from sklearn.cluster import KMeans
               from sklearn.cluster import KMeans
wcss=[]
for i in range (1,11):
    kmeans-KMeans(n_clusters=i, init='k-means++',random_state=0)
    kmeans.fit(x)
    wcss.append(kmeans.inertia_)
In [57... wcss
Out[57]: [791.99999999998, 508.44874485439107, 368.58328094500737, 257.092939027723, 206.35125359279914, 156.94571620133905, 140.89593744774663, 125.07516278994356, 114.55898071571418, 101.0295653122749]
In [52... x.mean()
 Out[52]: 1.570012358055777e-17
In [54... x.std()
 Out[54]: 1.0
             9) PERFORM CLUSTERING ALGORITHM
In\hat{A} [56... from sklearn.cluster import KMeans
               wcss=[]
for i in range (1,11):
    kmeans=K/Means(n_clusters=i, init='k-means++',random_state=0)
kmeans.fit(x)
                 wcss.append(kmeans.inertia_)
In [57... wcss
 Out[57]: [791.999999999998, 508.44874485439107,
               368.58328054500737,
257.0929393027723,
               206.35125359279914,
156.94571620133905,
               140.89593744774663,
               125.07516278994356,
114.55898071571418,
101.0295653122749]
```

```
In [62—
#BUILD MODEL
kmodel=KMeans(n_clusters=5,init='k-means++',random_state=0)
y_kmeans=kmodel.fit_predict(x)

In [64...

kmodel.labels_

Out[64]: array([0, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0, 4, 0
```

```
plt.scatter(x[y_kmeans==0,0],x[y_kmeans==0,1],s=100,c='red',label='Cluster 1')
plt.scatter(x[y_kmeans==1,0],x[y_kmeans==2,1],s=100,c='plue',label='Cluster 2')
plt.scatter(x[y_kmeans==2,0],x[y_kmeans==2,1],s=100,c='pine',label='Cluster 3')
plt.scatter(x[y_kmeans==3,0],x[y_kmeans==3,1],s=100,c='green',label='Cluster 4')
plt.scatter(x[y_kmeans==4,0],x[y_kmeans==4,1],s=100,c='orange',label='Cluster 5')
plt.scatter(kmeans=cluster_centers_[:, 0],kmeans.cluster_centers_[:, 1],s=300,c='black',label='Centroids')
plt.stater(kmeans=cluster_centers_[:, 0],kmeans.cluster_centers_[:, 1],s=300,c='black',label='Centroids')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score(1-100)')
plt.show()

Clusters of cutomers
```

