Formulario de Distribuciones de Probabilidad

28 de mayo de 2025

Índice

1.	Dist	cribuciones de Probabilidad para Variables Aleatorias Discretas	3
	1.1.	3.1.1 Ensayos de Bernoulli	3
	1.2.	3.1.2 Distribución Binomial	4
	1.3.	3.1.2 Distribución Geométrica	5
	1.4.	3.1.3 Distribución Hipergeométrica	6
	1.5.	3.1.3 Distribución de Poisson	7
	1.6.	3.1.4 Aproximación entre las Distribuciones Binomial y Poisson	8
	D .		9
2.	Distribuciones de Probabilidad para Variables Aleatorias Continuas		
	2.1.	3.2.1 Distribución Exponencial	9
	2.2.	3.2.1 Distribución Gamma	10
	2.3.	3.2.2 Distribución Normal (Gaussiana)	11

ÍNDICE 2

Simbología General

- X: Variable aleatoria.
- P(X = x): Probabilidad de que la variable aleatoria X tome el valor específico x.
- E[X] o μ : Esperanza matemática o media de la variable aleatoria X. Representa el valor promedio esperado.
- Var(X) o σ^2 : Varianza de la variable aleatoria X. Mide la dispersión de los valores de X alrededor de su media.
- ullet σ : Desviación estándar de la variable aleatoria X. Es la raíz cuadrada de la varianza.
- f(x): Función de densidad de probabilidad (para variables continuas).
- F(x): Función de distribución acumulada. $F(x) = P(X \le x)$.

1. Distribuciones de Probabilidad para Variables Aleatorias Discretas

1.1. 3.1.1 Ensayos de Bernoulli

Un **ensayo de Bernoulli** es un experimento aleatorio con exactamente dos resultados posibles: "éxitoz "fracaso", donde la probabilidad de éxito es constante.

- Parámetro:
 - p: Probabilidad de éxito en un solo ensayo. $(0 \le p \le 1)$
 - q: Probabilidad de fracaso en un solo ensayo, donde q = 1 p.
- Variable Aleatoria X:
 - X = 1 si el resultado es "éxito".
 - X = 0 si el resultado es "fracaso".
- Función de Probabilidad (o de Masa):

$$P(X = x) = p^{x}(1 - p)^{1-x}$$
 para $x \in \{0, 1\}$

• Esperanza Matemática:

$$E[X] = p$$

Varianza:

$$Var(X) = p(1-p) = pq$$

- Busca situaciones con un único intento o experimento.
- Solo dos resultados posibles (ej: lanzar una moneda, un producto es defectuoso o no).
- p: Se da directamente o se deduce del contexto (ej: "la probabilidad de que una pieza sea defectuosa es 0.05", entonces p = 0.05).

1.2. 3.1.2 Distribución Binomial

Describe el número de éxitos en una secuencia de n ensayos de Bernoulli independientes entre sí, con una probabilidad fija p de éxito en cada ensayo.

■ Parámetros:

- n: Número total de ensayos independientes. (Entero positivo)
- p: Probabilidad de éxito en cada ensayo. $(0 \le p \le 1)$
- Variable Aleatoria X: Número de éxitos en n ensayos. $X \in \{0, 1, 2, ..., n\}$.
- Función de Probabilidad:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$
 para $k \in \{0, 1, \dots, n\}$

Donde $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ es el coeficiente binomial, que representa el número de maneras de elegir k éxitos de n ensayos.

• Esperanza Matemática:

$$E[X] = np$$

Varianza:

$$Var(X) = np(1-p) = npq$$

- Número fijo de intentos (n).
- Cada intento tiene solo dos resultados (éxito/fracaso).
- La probabilidad de éxito (p) es constante para cada intento.
- Los intentos son independientes.
- n: Número de veces que se repite el experimento (ej: "se lanzan 10 monedas", n = 10).
- p: Probabilidad de éxito en un solo intento (ej: "probabilidad de cara es 0.5", p = 0.5).
- k: El número específico de éxitos que se pregunta (ej: "probabilidad de obtener exactamente 3 caras", k = 3).

1.3. 3.1.2 Distribución Geométrica

Describe el número de ensayos de Bernoulli independientes necesarios para obtener el primer éxito. Hay dos versiones comunes:

- a) X: Número de ensayos hasta el primer éxito (incluido el éxito). $X \in \{1, 2, 3, \dots\}$.
- b) Y: Número de fracasos antes del primer éxito. $Y \in \{0, 1, 2, \dots\}$, donde Y = X 1.

Usaremos la primera definición (X).

- Parámetro:
 - p: Probabilidad de éxito en cada ensayo. (0
- Variable Aleatoria X: Número de ensayos hasta el primer éxito.
- Función de Probabilidad (para X = número de ensayos):

$$P(X = k) = (1 - p)^{k-1}p$$
 para $k \in \{1, 2, 3, \dots\}$

• Esperanza Matemática:

$$E[X] = \frac{1}{p}$$

• Varianza:

$$Var(X) = \frac{1-p}{p^2} = \frac{q}{p^2}$$

- Se repiten ensayos de Bernoulli hasta que ocurre el primer éxito.
- La probabilidad de éxito (p) es constante.
- Los ensayos son independientes.
- La pregunta se centra en "¿cuántos intentos hasta el primer éxito?.º "probabilidad de que el primer éxito ocurra en el k-ésimo intento".
- p: Probabilidad de éxito en un solo intento (ej: "probabilidad de encontrar un artículo defectuoso es 0.1", p = 0.1).
- k: El número del ensayo en el cual ocurre el primer éxito (ej: .el primer defectuoso se encuentra en la quinta inspección", k = 5).

1.4. 3.1.3 Distribución Hipergeométrica

Modela el número de éxitos en una muestra de tamaño n, extraída sin reemplazo de una población finita de tamaño N que contiene K éxitos.

■ Parámetros:

- N: Tamaño total de la población. (Entero positivo)
- K: Número total de éxitos en la población. $(0 \le K \le N)$
- n: Tamaño de la muestra extraída sin reemplazo. $(0 \le n \le N)$
- Variable Aleatoria X: Número de éxitos en la muestra de tamaño n. El rango de X es $\max(0, n (N K)) \le k \le \min(n, K)$.
- Función de Probabilidad:

$$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

Donde $\binom{a}{b} = \frac{a!}{b!(a-b)!}$ es el coeficiente binomial.

• Esperanza Matemática:

$$E[X] = n\frac{K}{N}$$

Varianza:

$$Var(X) = n\frac{K}{N} \left(1 - \frac{K}{N}\right) \frac{N - n}{N - 1}$$

El término $\frac{N-n}{N-1}$ es el factor de corrección para poblaciones finitas.

- Muestreo sin reemplazo de una población finita.
- La probabilidad de éxito cambia para cada extracción.
- Hay dos grupos en la población (ej: éxitos/fracasos, defectuosos/no defectuosos).
- N: Tamaño total de la población (ej: una caja contiene 50 fusibles", N = 50).
- K: Número de elementos con la característica de interés (éxitos) en la población (ej: "10 de los cuales son defectuosos", K = 10).
- n: Tamaño de la muestra seleccionada (ej: "se seleccionan 5 fusibles al azar", n = 5).
- k: Número de éxitos que se busca en la muestra (ej: "probabilidad de que exactamente 2 sean defectuosos", k = 2).

1.5. 3.1.3 Distribución de Poisson

Modela el número de veces que ocurre un evento durante un intervalo específico (tiempo, distancia, área, volumen, etc.). La tasa promedio de ocurrencia es constante.

- Parámetro:
 - λ : Tasa promedio de ocurrencia del evento en el intervalo dado. ($\lambda > 0$)
- Variable Aleatoria X: Número de ocurrencias del evento en el intervalo. $X \in \{0, 1, 2, ...\}$.
- Función de Probabilidad:

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$
 para $k \in \{0, 1, 2, \dots\}$

Donde $e \approx 2,71828$ es la base del logaritmo natural.

• Esperanza Matemática:

$$E[X] = \lambda$$

Varianza:

$$Var(X) = \lambda$$

- El problema describe el número de eventos que ocurren en un intervalo (de tiempo, espacio, etc.).
- Los eventos ocurren de forma independiente.
- La tasa promedio de ocurrencia (λ) es constante.
- λ : Se da como una tasa promedio (ej: ün promedio de 3 llamadas por minuto", $\lambda = 3$ para un intervalo de un minuto). **Importante**: Asegúrate de que λ corresponda al mismo intervalo para el cual se pregunta la probabilidad. Si la tasa es por unidad de tiempo/espacio y la pregunta es sobre un múltiplo o fracción de esa unidad, ajusta λ proporcionalmente. (Ej: si la tasa es 2 eventos/hora, y se pregunta por 3 horas, el nuevo $\lambda = 2 \times 3 = 6$).
- k: Número específico de eventos cuya probabilidad se busca (ej: "probabilidad de que ocurran exactamente 5 llamadas", k = 5).

1.6. 3.1.4 Aproximación entre las Distribuciones Binomial y Poisson

La distribución de Poisson puede usarse como una aproximación de la distribución Binomial cuando:

- n (número de ensayos en la Binomial) es grande (generalmente $n \ge 20$ o $n \ge 50$).
- $\blacksquare p$ (probabilidad de éxito en la Binomial) es pequeña (generalmente $p \leq 0{,}05$ o $p \leq 0{,}1).$
- El producto $np = \lambda$ es moderado (generalmente np < 5 o np < 7).

En estas condiciones, si $X \sim Binomial(n, p)$, entonces P(X = k) se puede aproximar usando una Poisson con $\lambda = np$.

$$P_{Binomial}(X=k) \approx P_{Poisson}(X=k) = \frac{e^{-np}(np)^k}{k!}$$

¿Cómo aplicar?:

- 1. Verifica las condiciones: n grande, p pequeña.
- 2. Calcula $\lambda = np$.
- 3. Usa la fórmula de Poisson con este λ .

Esta aproximación es útil porque calcular los coeficientes binomiales $\binom{n}{k}$ para n grande puede ser computacionalmente intensivo.

2. Distribuciones de Probabilidad para Variables Aleatorias Continuas

2.1. 3.2.1 Distribución Exponencial

Modela el tiempo hasta que ocurre un evento en un proceso de Poisson (es decir, el tiempo entre eventos consecutivos de Poisson).

- Parámetro:
 - λ : Tasa de ocurrencia del evento (la misma λ de la distribución de Poisson, número de eventos por unidad de tiempo). ($\lambda > 0$)
 - O alternativamente, $\beta = 1/\lambda$: Tiempo promedio entre eventos.
- Variable Aleatoria X: Tiempo hasta la ocurrencia del primer evento, o tiempo entre eventos. $(X \ge 0)$
- Función de Densidad de Probabilidad (PDF):

$$f(x;\lambda) = \lambda e^{-\lambda x}$$
 para $x \ge 0$

$$f(x; \beta) = \frac{1}{\beta} e^{-x/\beta}$$
 para $x \ge 0$

• Función de Distribución Acumulada (CDF):

$$F(x) = P(X \le x) = 1 - e^{-\lambda x}$$
 para $x \ge 0$

De aquí, $P(X > x) = e^{-\lambda x}$.

• Esperanza Matemática:

$$E[X] = \frac{1}{\lambda} = \beta$$

Varianza:

$$Var(X) = \frac{1}{\lambda^2} = \beta^2$$

- Describe el tiempo de espera para un evento, o la duración de algo.
- Relacionada con la distribución de Poisson: si el número de eventos en un tiempo t sigue una Poisson (λt) , entonces el tiempo entre eventos sigue una Exponencial (λ) .
- λ : Tasa de ocurrencia (ej: "los clientes llegan a una tasa de 2 por minuto", $\lambda = 2$ clientes/minuto. El tiempo entre llegadas es Exponencial con $\lambda = 2$).
- β : Tiempo promedio entre eventos (ej: .el tiempo promedio entre fallas es de 100 horas", $\beta = 100$, entonces $\lambda = 1/100$).

- x: El valor específico de tiempo para el cual se calcula la probabilidad (ej: "probabilidad de que el tiempo hasta la próxima llegada sea menor a 0.5 minutos", x = 0.5).
- Recuerda la propiedad de "falta de memoria": P(X > s + t | X > s) = P(X > t). El tiempo transcurrido no afecta la probabilidad del tiempo restante.

2.2. 3.2.1 Distribución Gamma

Generaliza la distribución Exponencial. Modela el tiempo hasta que ocurren α eventos en un proceso de Poisson. También se usa en otras áreas como la modelización de sumas de variables aleatorias exponenciales.

■ Parámetros:

- α : Parámetro de forma (shape parameter). ($\alpha > 0$) (Número de eventos)
- β : Parámetro de escala (scale parameter). ($\beta > 0$) (Inverso de la tasa, $\beta = 1/\lambda$)
- O alternativamente, λ o θ : Parámetro de tasa (rate parameter), donde $\lambda = 1/\beta$.
- Variable Aleatoria X: Tiempo hasta la ocurrencia del α -ésimo evento. $(X \ge 0)$
- Función de Densidad de Probabilidad (PDF) (usando α y β):

$$f(x; \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}$$
 para $x \ge 0$

Donde $\Gamma(\alpha)=\int_0^\infty t^{\alpha-1}e^{-t}dt$ es la función Gamma. Propiedades de la función Gamma:

- $\Gamma(\alpha) = (\alpha 1)!$ si α es un entero positivo.
- $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$.
- $\Gamma(1/2) = \sqrt{\pi}$.
- Esperanza Matemática:

$$E[X] = \alpha \beta$$

Varianza:

$$Var(X) = \alpha \beta^2$$

Casos Especiales:

• Si $\alpha = 1$, la distribución Gamma se convierte en la distribución Exponencial con parámetro β (o tasa $\lambda = 1/\beta$).

• Si $\beta = 2$ y $\alpha = \nu/2$ (donde ν son los grados de libertad), la distribución Gamma es una distribución Chi-cuadrado (χ^2_{ν}) .

¿Cómo identificar y obtener valores?:

- Problemas que involucran el tiempo hasta que ocurren múltiples eventos de Poisson.
- Suma de variables aleatorias exponenciales independientes e idénticamente distribuidas.
- α : Número de eventos a esperar (ej: "tiempo hasta que lleguen 5 clientes", $\alpha = 5$). Si α es entero, $\Gamma(\alpha) = (\alpha 1)!$.
- β : Tiempo promedio entre eventos (inverso de la tasa λ del proceso de Poisson subyacente) (ej: "los clientes llegan a una tasa de 2 por minuto", $\lambda = 2$, entonces $\beta = 1/2$).
- El cálculo de probabilidades $P(X \le x)$ o P(X > x) a menudo requiere integración numérica o el uso de software estadístico, a menos que α sea un entero y se pueda relacionar con la suma de probabilidades de Poisson.

2.3. 3.2.2 Distribución Normal (Gaussiana)

Es una de las distribuciones más importantes en estadística, caracterizada por su forma de campana simétrica. Muchos fenómenos naturales y mediciones se aproximan a esta distribución.

- Parámetros:
 - μ : Media de la distribución (centro de la campana). $(-\infty < \mu < \infty)$
 - σ^2 : Varianza de la distribución (cuán ancha es la campana). ($\sigma^2 > 0$)
 - σ : Desviación estándar. ($\sigma > 0$)
- Variable Aleatoria $X: X \sim N(\mu, \sigma^2)$. $(-\infty < X < \infty)$
- Función de Densidad de Probabilidad (PDF):

$$f(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

• Esperanza Matemática:

$$E[X] = \mu$$

Varianza:

$$Var(X) = \sigma^2$$

Distribución Normal Estándar

Un caso especial de la distribución normal donde $\mu = 0$ y $\sigma = 1$. Se denota como $Z \sim N(0,1)$.

■ PDF para Z:

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$

• CDF para Z:

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

Los valores de $\Phi(z)$ se obtienen de tablas de la normal estándar o software.

Estandarización y Cálculo de Probabilidades

Cualquier variable aleatoria normal $X \sim N(\mu, \sigma^2)$ puede transformarse en una variable normal estándar Z mediante la **estandarización**:

$$Z = \frac{X - \mu}{\sigma}$$

Esto permite calcular probabilidades para cualquier $X \sim N(\mu, \sigma^2)$ usando la tabla de la normal estándar: $P(X \leq x) = P\left(\frac{X-\mu}{\sigma} \leq \frac{x-\mu}{\sigma}\right) = P\left(Z \leq \frac{x-\mu}{\sigma}\right) = \Phi\left(\frac{x-\mu}{\sigma}\right)$.

Pasos para calcular probabilidades P(a < X < b):

- 1. Identifica μ y σ de la distribución normal.
- 2. Estandariza los valores a y b: $z_1 = \frac{a-\mu}{\sigma}$ $z_2 = \frac{b-\mu}{\sigma}$
- 3. Calcula la probabilidad usando la CDF de la normal estándar: $P(a < X < b) = P(z_1 < Z < z_2) = \Phi(z_2) \Phi(z_1)$.

Propiedades útiles de $\Phi(z)$:

- $P(Z > z) = 1 \Phi(z)$
- $P(Z < -z) = \Phi(-z) = 1 \Phi(z)$ (por simetría)
- $P(|Z| < z) = P(-z < Z < z) = \Phi(z) \Phi(-z) = \Phi(z) (1 \Phi(z)) = 2\Phi(z) 1$

¿Cómo identificar y obtener valores?:

• El problema menciona que una variable sigue una distribución normal, o se refiere a fenómenos que típicamente se modelan así (ej: errores de medición, características físicas de poblaciones grandes).

- Se proporcionan la media (μ) y la desviación estándar (σ) o la varianza (σ^2) .
- μ : Valor promedio o central de la distribución (ej: "la altura promedio es 1.75m", $\mu = 1,75$).
- σ : Medida de dispersión (ej: çon una desviación estándar de 0.1m", $\sigma = 0,1$). Si se da la varianza σ^2 , calcula $\sigma = \sqrt{\sigma^2}$.
- x: El valor específico de la variable para el cual se calcula la probabilidad.
- Usa tablas Z (normal estándar) para encontrar $\Phi(z)$. La tabla da $P(Z \leq z)$.

Aproximación Normal a la Binomial

La distribución Normal puede usarse para aproximar probabilidades de la Binomial cuando n es grande.

Condiciones:

- n es grande.
- p no está demasiado cerca de 0 o 1.
- Generalmente se usa si $np \ge 5$ y $n(1-p) \ge 5$. Algunos textos sugieren $np(1-p) \ge 10$.
- Aproximación: Si $X \sim Binomial(n, p)$, entonces X puede aproximarse por una Normal $N(\mu, \sigma^2)$ donde:
 - $\mu = np$ (media de la Binomial)
 - $\sigma^2 = np(1-p)$ (varianza de la Binomial)
- Corrección por Continuidad: Dado que la Binomial es discreta y la Normal es continua, se aplica una corrección por continuidad.
 - $P_{Binomial}(X = k) \approx P_{Normal}(k 0.5 < X < k + 0.5)$
 - $P_{Binomial}(X \le k) \approx P_{Normal}(X < k + 0.5)$
 - $P_{Binomial}(X < k) \approx P_{Normal}(X < k 0.5)$
 - $P_{Binomial}(X \ge k) \approx P_{Normal}(X > k 0.5)$
 - $P_{Binomial}(X > k) \approx P_{Normal}(X > k + 0.5)$

Pasos para la aproximación:

- 1. Verifica las condiciones (np > 5 y n(1-p) > 5).
- 2. Calcula $\mu = np$ y $\sigma = \sqrt{np(1-p)}$.

- 3. Aplica la corrección por continuidad al valor k de interés.
- 4. Estandariza usando $Z = \frac{(X \pm 0.5) \mu}{\sigma}$.
- 5. Encuentra la probabilidad usando la tabla de la normal estándar.

Ejemplo: Calcular $P(X \le 10)$ para $X \sim Binomial(n = 100, p = 0.2)$.

1.
$$np = 100 \times 0.2 = 20 \ge 5$$
. $n(1-p) = 100 \times 0.8 = 80 \ge 5$. Se cumplen las condiciones.

2.
$$\mu = 20$$
. $\sigma = \sqrt{100 \times 0.2 \times 0.8} = \sqrt{16} = 4$.

3.
$$P(X \le 10) \approx P_{Normal}(X < 10.5)$$
.

4.
$$Z = \frac{10,5-20}{4} = \frac{-9,5}{4} = -2,375.$$

5.
$$P(Z < -2.375) = \Phi(-2.375)$$
. Se busca en la tabla.