Electroestática

Alejandro Zubiri Funes

Resumen

- Permitividad eléctrica del espacio: $\epsilon_0 = 8.854 \cdot 10^{-12} \, (\frac{C^2}{N \cdot m^2})$
- Constante de Coulomb: $K=9\cdot 10^9=\frac{1}{4\pi\epsilon_0}\left(\frac{N\cdot m^2}{C^2}\right)$
- $1(C) \approx -q_e \cdot 6 \cdot 10^{18}$
- Carga de un electrón: $q_e = -1.6 \cdot 10^- 19 \, (C)$
- $\bullet\,$ Carga de un protón: $q_p=-q_e$
- Campo eléctrico en un punto: $\mathbf{E} = K \frac{Q}{r^2} \hat{\mathbf{r}} \left(\frac{N}{C} \right)$
- Ley de Coulomb: $\mathbf{F} = q\mathbf{E} = K \frac{qQ}{r^2}\hat{\mathbf{r}}(N)$
- Potencial eléctrico: $V = K \frac{Q}{r} \left(\frac{J}{C} \right)$
- $\bullet\,$ Energía potencial eléctria: $P=qV\left(J\right)$
- Trabajo por fuerza externa: $W_{ext} = q(\Delta V) = q(V_f V_0) (J)$
- Trabajo por campo: $W_{campo} = -W_{ext} = -q(\Delta V) = -q(V_f V_0) (J)$
- $A = \frac{C}{s}$
- $\bullet \ C \cdot V = J$

Definiciones

Definición (Conductor). Material que permite que las cargas eléctricas se muevan con gran facilidad por él.

Definición (Insulador). Material que dificulta el movimiento de las cargas eléctricas.

Ley de Coulomb

La ley de Coulomb establece que la fuerza entre dos cargas puntuales es la siguiente:

 $\mathbf{F} = K \frac{q_1 q_2}{r^2} \hat{\mathbf{r}} \left(N \right)$

donde $\hat{\mathbf{r}}$ es el vector unitario al que apuntará cada fuerza. En función de los signos de las cargas, estas se **atraerán** o se **repelerán**. Esta ley sigue el **principio de superposición de fuerzas**.

Definición (Principio de superposición de fuerzas). La fuerza ejercida simultáneamente en una carga por un número n de cargas es la suma vectorial de las fuerzas que ejercerían **individualmente** cada carga.

Esta ley solo debería ser usada en el **vacío**, ya que la presencia de un material intermediario cambiaría la fuerza que actua en cada carga, ya que parte de la carga se induce en el material intermediario.