

4. Propagação da Radiação Eletromagnética

Considere-se uma fonte luminosa (S). A fonte emite ondas sinusoidais em todas as direções. As frentes de onda são superfícies que unem pontos em que a fase da perturbação ótica (da onda) é constante. Os raios luminosos são perpendiculares às frentes de onda; são, portanto, linhas paralelas ao vetor de propagação ou vetor de onda. "Logo" os raios luminosos divergem a partir de uma fonte pontual.

Após a passagem por um **sistema ótico** (superfície refletora e refratora) os raios luminosos "convergem" para um "ponto" (P). Se toda a radiação que diverge de (S) e passa pelo sistema ótico "convergir" em (P) estamos perante um **sistema ótico** estigmático perfeito ou ideal. Os pontos (S) e (P) são conjugados, ficando um no chamado espaço objecto e o outro no espaço imagem. Devido ao princípio da reversibilidade se a fonte estiver em (P) a imagem é o ponto (S).

4. Propagação da Radiação Eletromagnética

O conceito de raio luminoso é fundamental em ótica geométrica.

O princípio de Fermat (princípio do tempo mínimo) permite deduzir as leis da reflexão e da refração (Lei de Snell)

<u>Lei da Reflexão</u> – ângulo de incidência igual ao ângulo de reflexão $\theta_1 = \theta'_1$ (1)

<u>Lei da refração (Lei de Snell</u>) – $n_1 sen_{\theta_1} = n_2 sen_{\theta_2}$ (2)

Muita atenção à definição de ângulo de incidência, de reflexão e de refração.

<u>Índice de refração</u>: razão entre a velocidade de propagação da radiação no vazio e no interior de um dado material. Pela definição, **n é sempre maior que 1.**

$$n(\lambda) = \frac{c}{v(\lambda)}$$
(3)

A velocidade de propagação de uma dada radiação num dado meio é uma característica dessa radiação. Ou seja, radiação com c.d.o. diferente terá uma velocidade de propagação, no mesmo meio, diferente.

O facto de *n* ser função de λ dá origem à dispersão. A dispersão obriga a uma visão atomística da matéria (ver slides 41 e 42).

44

4. Propagação da Radiação Eletromagnética

Relacionado com o princípio de Fermat, ou do tempo mínimo, pode-se definir um conceito muito importante em ótica – Percurso Ótico, Δ = nd.

O tempo t que uma dada radiação demora a atravessar a distância d, é dado por

$$t = \frac{d}{v} = \frac{nd}{c} = \frac{\Delta}{c}$$

Como se vê $\Delta = nd$ e representa o espaço que a radiação $t = \frac{d}{dt} = \frac{nd}{dt} = \frac{\Delta}{dt}$ percorreria, no mesmo tempo, se se propagasse à velocidade c.

Vamos analisar algumas situações decorrentes da Lei de Snell

A situação trivial é a de um raio que incide segundo a normal à superfície em que

$$\theta_i = \theta' = \theta_t = \mathbf{0}$$

Quando a radiação passa dum meio com *n* maior para outro com *n* inferior, o feixe refratado afasta-se da normal. Existe um valor para o ângulo de incidência, para o qual o feixe refratado faz um ângulo de 90º com a normal. A partir desse valor de ângulo de incidência, chamado ângulo crítico, deixa de existir feixe refratado. Dáse a chamada Reflexão Interna Total (RIT)

$$n_1 \operatorname{sen} \theta_C = n_2 \operatorname{sen} 90^\circ$$

$$\theta_{\rm C} = {\rm sen}^{-1} ({\rm n}_2/{\rm n}_1)$$

4. Propagação da Radiação Eletromagnética

Para uma interface vidro/ar, $\theta_{\rm C}$ ~42°.

Verifica-se experimentalmente (e vamos ver de seguida pelas equações de Fresnel) que a repartição da intensidade luminosa entre os feixes refletidos e refratados depende da relação entre os dois índices de refração, mas também do ângulo de incidência θ_1 .

À medida que θ_1 aumenta, aumenta a intensidade do feixe refletido e diminui a do feixe refratado. Para a situação de RIT, θ_1 = θ '= θ_C , θ_2 = 90°, deixa de haver feixe refratado e a intensidade do feixe incidente é igual à intensidade do feixe refletido.

A RIT é o princípio geral de funcionamento das fibras óticas que têm inúmeras aplicações tecnológicas: medicina, transmissão de dados, comunicações. Permitem levar a luz entre dois pontos, mesmo às curvas, praticamente sem perdas.

4. Propagação da Radiação Eletromagnética

Reflexão Especular vs Reflexão Difusa — Pode parecer que a Lei da Reflexão contraria o nosso conhecimento experimental do dia-a-dia. Como se sabe, quando um feixe de luz incide numa folha de papel ou numa parede branca, ele é totalmente refletido (se a parede é branca não absorve nenhuma componente do espetro visível). No entanto a situação é completamente diferente da que se observa se o mesmo feixe incidir num espelho... e for também totalmente refletido. A única diferença entre o papel ou a parede e o espelho está na superfície. A superfície do espelho é lisa (irregularidades superficiais muito inferiores ao c.d.o.) e dá por isso origem à reflexão especular, enquanto que a superfície do papel ou da parede é rugosa e origina uma reflexão difusa.

A nível local, microscópico, toda a reflexão verifica a lei θ_1 = θ ', mas a nível macroscópico a grande maioria dos materiais que nos rodeiam são total ou parcialmente difusores.

Quanto menos difusora for uma superfície, maior é o seu brilho.

4. Propagação da Radiação Eletromagnética

Como já se disse, o facto de n ser função de λ dá origem à **dispersão** (ver slides 41 e 42 do capítulo anterior)

Normalmente n diminui quando λ aumenta, como se mostra na figura junta.

Consideremos que a luz incidente é um feixe de luz branca. O feixe refletido será também luz branca. Relativamente à radiação refratada, consideremos a situação habitual em que a radiação passa do ar para o vidro.

De acordo com a Lei de Snell, $\theta_2 < \theta_1$

Mas, como a radiação vermelha tem maior c.d.o. que a azul, terá menor n e então $n_V < n_A$ e $\theta_{2,V} > \theta_{2,A}$ e assim o feixe azul será mais desviado do que o vermelho, como se vê na figura.

Define-se potência dispersiva de um dado material pela relação

$$\frac{n_{Azul} - n_{Verm}}{n_{Amar} - 1}$$

O inverso da potência dispersiva é o chamado *índice de dispersão* (numero de Abbe)

4. Propagação da Radiação Eletromagnética

Uma das funções dos **prismas** é dispersar a luz.

Como se vê na figura a dispersão que ocorre na primeira interface é aumentada depois na segunda e consegue-se assim uma maior separação cromática.

O mais belo exemplo de dispersão da luz na natureza é sem dúvida o **arco-íris**. Quando está a "chover e a fazer sol" alguma luz branca do Sol, intercetada por gotas de chuva, pode ser dispersa pelas gotas. A luz sofre depois uma RIT dentro das gotas e é de novo refratada, saindo da gota e podendo chegar ao observador... O ângulo entre a linha do Sol e o observador é de cerca de 42°.

4. Propagação da Radiação Eletromagnética

Os prismas, para além de elementos de dispersão, podem ter muitas outras aplicações como divisores de feixe e polarizadores, no entanto a sua utilização mais habitual é a de encaminhamento e desvio da luz. São os chamados prismas de reflexão. O que se pretende é alterar a direção de propagação da luz, através de pelo menos uma RIT, sem que ocorra dispersão. Mostram-se três exemplos

(a) Prisma de ângulo recto

(b) Prisma de Porro

(c) Prisma de reflexão

Em (a) e (b) só há refrações para θ_i = 0 e RIT, logo não há dispersão.

Em (c), pode-se mostrar que, devido à RIT no lado FG, o ângulo de desvio δ é independente de n e portanto também não há dispersão, $\delta = 2 \theta_{i1} + \alpha$

4. Propagação da Radiação Eletromagnética – condições fronteira

As leis do eletromagnetismo, **Equações de Maxwell**, "obrigam" os campos elétrico e magnético a certos constrangimentos, designados por **condições fronteira**, **quando passam através de interfaces**. Embora não seja imediato ver estas condições a partir das equações de Maxwell, temos de as conhecer e aplicar ao estudo da propagação da REM. **As condições fronteira são duas:**

CF1 - A componente paralela (tangente) à superfície de separação dos dois meios (interface) (perpendicular ao plano de incidência) quer do vetor campo eléctrico (\vec{E}) quer do vetor $\vec{H} = \vec{B}/\mu$ é contínua através da interface.

CF2 - A componente perpendicular à superfície de separação dos dois meios (interface) (paralela ao plano de incidência) quer do vetor \vec{B} quer do vetor \vec{B} ó contínuo etravéo de interface

4. Propagação da Radiação Eletromagnética – condições fronteira

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

Vejamos agora quais as relações entre as amplitudes \vec{E}_{0i} , \vec{E}_{0r} e \vec{E}_{0t}

Consideremos uma onda plana monocromática que incide na superfície de separação de dois meios (interface). Vamos considerar dois casos:

 $m{a}$) $m{E}$ perpendicular ao plano de incidência

 $m{b}$) $m{ec{E}}$ paralelo ao plano de incidência

a) \vec{E} perpendicular ao plano de incidência (ou seja paralelo à interface) $(E_{\theta i} \perp)$

Esta condição implica que \vec{B} seja **paralelo** ao plano de incidência e então $\hat{k} \times \vec{E} = v\vec{B}$

$$\hat{k} \cdot \vec{E} = 0$$

Na interface, uma vez que as componentes de \vec{E} tangentes à interface de são iguais de um lado e de outro (CF1), temos então, em qualquer instante e em qualquer ponto:

$$ec{E}_{0i} + ec{E}_{0r} = ec{E}_{0t}$$
 (eq.1)

Onda incidente cujo campo elétrico \vec{E} é normal ao plano de incidência. (\otimes / \odot - vetor apontado para dentro/fora do plano do papel)

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

Para aplicação das condições fronteira temos de considerar $\vec{H} = \frac{B}{A}$

A mesma condição de continuidade aplicada para o campo elétrico (CF1) exige também a continuidade das componentes tangenciais de H sobre a interface.

$$-\frac{B_i}{\mu_i}\cos\theta_i + \frac{B_r}{\mu_r}\cos\theta_r = -\frac{B_t}{\mu_t}\cos\theta_t \qquad \text{(eq.2)}$$

mas,
$$B_i = \frac{E_i}{v_i}$$
; $B_r = \frac{E_r}{v_r}$; $B_t = \frac{E_t}{v_t}$

sabe-se ainda que
$$\begin{array}{ll} v_i = v_r & \textit{(mesmo meio)} \\ \theta_i = \theta_r & \textit{(lei da reflexão)} \end{array}$$

A eq.2 fica
$$\rightarrow \frac{1}{\mu_i v_i} (E_i - E_r) \cos \theta_i = \frac{1}{\mu_t v_t} E_t \cos \theta_t$$
 (eq.2-a)

Então, na interface, fazendo t = 0 e r = 0, podemos escrever:

$$\frac{n_i}{\mu_i} \left(E_{0i} - E_{0r} \right) \cos \theta_i = \frac{n_t}{\mu_t} E_{0t} \cos \theta_t \qquad \text{(eq.2-b)}$$

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

Combinando (eq.2-b) com (eq.1) obtém-se :

$$\left(\frac{E_{0r}}{E_{0i}}\right)_{\perp} = \frac{\frac{n_i}{\mu_i} \cos \theta_i - \frac{n_t}{\mu_t} \cos \theta_t}{\frac{n_i}{\mu_i} \cos \theta_i + \frac{n_t}{\mu_t} \cos \theta_t} \qquad \mathbf{e} \qquad \left(\frac{E_{0t}}{E_{0i}}\right)_{\perp} = \frac{2\frac{n_i}{\mu_i} \cos \theta_i}{\frac{n_i}{\mu_i} \cos \theta_i + \frac{n_t}{\mu_t} \cos \theta_t}$$

⊥ - È perpendicular ao plano de incidência

No caso dos dielétricos, $\mu_i \approx \mu_t \approx \mu_0$ e então fica

$$\mu_i \approx \mu_t \approx \mu_0$$
 e então fica

Coeficiente de reflexão

$$r_{\perp} = \left(\frac{E_{0r}}{E_{0i}}\right)_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$
 Eq. Fresnel 1

Coeficiente de transmissão

$$t_{\perp} = \left(\frac{E_{0t}}{E_{0i}}\right)_{\perp} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_t}$$

III – ÓTICA ONDULATÓRIA

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

$m{b})$ $m{ec{E}}$ paralelo ao plano de incidência $(E_{ heta i} \parallel)$

Logo \vec{B} é perpendicular ao plano de incidência e paralelo à interface e então

Aplicando de novo as condições fronteira, neste caso a continuidade das componentes tangenciais de \vec{E} ao longo da interface, pode-se escrever

$$E_{0i} \cos \theta_i - E_{0r} \cos \theta_r = E_{0t} \cos \theta_t \qquad \text{(eq.3)}$$

A continuidade de \vec{H} ao longo da interface permite escrever

$$\frac{B_{0i}}{\mu_i} + \frac{B_{0r}}{\mu_r} = \frac{B_{0t}}{\mu_t}$$
 OU

$$\frac{1}{\mu_i v_i} E_{0i} + \frac{1}{\mu_r v_r} E_{0r} = \frac{1}{\mu_t v_t} E_{0t} \qquad \text{(eq.4)}$$

Onda incidente cujo campo elétrico \vec{E} é paralelo ao plano de incidência

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

Rearranjando as relações (3) e (4) considerando $v_i = v_r$, $\theta_i = \theta_r$ e $\mu_i = \mu_r$ tem-se (mesmo meio)

$$\left(\frac{E_{0r}}{E_{0i}}\right)_{\parallel} = \frac{\frac{n_t}{\mu_t} \cos \theta_i - \frac{n_i}{\mu_i} \cos \theta_t}{\frac{n_i}{\mu_i} \cos \theta_t + \frac{n_t}{\mu_t} \cos \theta_i} \qquad \mathbf{e} \qquad \left(\frac{E_{0t}}{E_{0i}}\right)_{\parallel} = \frac{2\frac{n_i}{\mu_i} \cos \theta_i}{\frac{n_i}{\mu_i} \cos \theta_t + \frac{n_t}{\mu_t} \cos \theta_i}$$

|| - paralelo ao plano de incidência

No caso dos dielétricos, $\mu_i \approx \mu_t \approx \mu_0$ e então fica

Coeficiente de reflexão

$$r_{//} = \left(\frac{E_{0r}}{E_{0i}}\right)_{//} = \frac{n_t \cos \theta_i - n_i \cos \theta_t}{n_i \cos \theta_t + n_t \cos \theta_i}$$

Eq. Fresnel 3 (F3)

Coeficiente de transmissão

$$t_{\parallel} = \left(\frac{E_{0t}}{E_{0i}}\right)_{\parallel} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$$

Eq. Fresnel 4 (F4)

- \vec{E} perpendicular ao plano de incidência (ou seja paralelo à interface)
- \vec{B} paralelo ao plano de incidência

Interface

Coeficiente de reflexão

$$r_{\perp} = \left(\frac{E_{0r}}{E_{0i}}\right)_{\perp} = \frac{n_i \cos \theta_i - n_t \cos \theta_t}{n_i \cos \theta_i + n_t \cos \theta_t}$$

Eq. Fresnel 1 (F1)

Coeficiente de transmissão

$$t_{\perp} = \left(\frac{E_{0t}}{E_{0i}}\right)_{\perp} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + n_t \cos \theta_t}$$

Eq. Fresnel 2 (F2)

 \vec{B} perpendicular ao plano de incidência (ou seja paralelo à interface)

 $ec{E}$ paralelo ao plano de incidência

Coeficiente de reflexão

$$r_{//} = \left(\frac{E_{0r}}{E_{0i}}\right)_{//} = \frac{n_t \cos \theta_i - n_i \cos \theta_t}{n_i \cos \theta_t + n_t \cos \theta_i}$$

Eq. Fresnel 3 (F3)

Coeficiente de transmissão

$$t_{\parallel} = \left(\frac{E_{0t}}{E_{0i}}\right)_{\parallel} = \frac{2n_i \cos \theta_i}{n_i \cos \theta_t + n_t \cos \theta_i}$$

Eq. Fresnel 4 (F4)

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

Usando a lei de Snell n_i sen $\theta_i = n_t$ sen θ_t podemos dar às **Equações** de Fresnel em meios dielétricos uma forma ainda mais simples

$$r_{\perp} = -\frac{sen (\theta_i - \theta_t)}{sen (\theta_i + \theta_t)}$$

$$t_{\perp} = \frac{2 \operatorname{sen} \theta_{t} \cos \theta_{i}}{\operatorname{sen} (\theta_{i} + \theta_{t})}$$

$$r_{\parallel} = \frac{tg (\theta_i - \theta_t)}{tg (\theta_i + \theta_t)}$$

$$t_{\parallel} = \frac{2 \operatorname{sen} \theta_{t} \cos \theta_{i}}{\operatorname{sen} (\theta_{i} + \theta_{t}) \cos (\theta_{i} - \theta_{t})}$$

(Os sinais destes coeficientes dependem do sentido escolhido para o campo elétrico). (A orientação de \vec{B} depende do sentido escolhido para \vec{E})

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

Tão importante como deduzir as equações de Fresnel, é analisar as suas implicações em termos de amplitudes e densidades de fluxo refletidas e refratadas e de variações de fase associadas.

\succ Análise dos coeficientes de reflexão e de transmissão em função de θ_i

Podemos representar graficamente as relações *F1*, *F2*, *F3* e *F4* e *F1'*, *F2'*, *F3'* e *F4'* e verificar imediatamente que elas são equivalentes.

Estas representações fazem-se assumindo valores particulares para n_i e n_t .

Na figura junta n_i =1 e n_t =1.5, ou seja $n_t > n_i$ e $\theta_i > \theta_v$ tem-se então

REFLEXÃO EXTERNA

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

Reflexão Externa – quando $n_t > n_i$ ou seja $\theta_i > \theta_t$

Há várias relações fáceis de verificar pelas expressões F1, F2, F3, F4 ou F1', F2', F3' e F4'

$$r_{\parallel} = -r_{\perp}$$
 para $\theta_i = \theta_t = 0$, (por F3' e F1')

$$r_{||} = -r_{\perp} = \frac{n_t - n_i}{n_t + n_i}$$
 para $\theta_i = \theta_t = 0$, (por F3 e F1)

 r_{\perp} é sempre negativo (por F1')

 r_{\parallel} é positivo para θ_i =0 (por F3), é zero para θ_i + θ_t =90° e é (-1) para θ_i =90° (por F3')

 t_{\parallel} e t_{\perp} são sempre positivos (por F2 e F4 ou F2' e F4')

 t_{\parallel} e t_{\perp} são zero para θ_i =90° (por F2' e F4')

 t_{\parallel} e t_{\perp} são zero para θ_i =90° (por F2' e F4')

$$t_{\parallel} = t_{\perp} = \frac{2n_i}{n_t + n_i}$$
 para $\theta_i = \theta_t = 0$, (por F4 e F2)

$$t_{\parallel} + r_{\parallel} = 1$$
 para $\theta_i = \theta_t = 0$, (por F4 e F3)

 $t_{\parallel}+(-r_{\parallel})=1$ para qualquer θ_i (por F2 e F1)

Ao valor de θ_i para o qual r_{\parallel} é zero, chama-se **ângulo** de polarização.

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

 \succ Análise dos coeficientes de reflexão e de transmissão em função de θ_i

Reflexão Interna – quando $n_t < n_i$ ou seja $\theta_i < \theta_t$ Na figura junta n_i = 1.5 e n_t = 1 tem-se então *REFLEXÃO INTERNA*

Algumas relações fáceis de verificar pelas expressões F1, F2, F3, F4 ou F1', F2', F3' e F4'

 r_{\perp} é sempre positivo *(por F1')*

 r_{\perp} cresce até atingir o valor 1 quando θ_t =90° (para θ_t =90°, θ_i = θ_c , ângulo crítico) (por F1')

 r_{\parallel} é negativo para θ_i =0 (por F3), aumenta e atinge o valor +1 para θ_i = θ_c (por F3')

Ao valor de θ_i para o qual r_{\parallel} é 0, chama-se **ângulo de polarização**

 t_{\parallel} e t_{\perp} são sempre maiores do que 1!!! (por *F4* e *F*2)

Discutir, comentar

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

> Análise das variações de fase que ocorrem na reflexão

Fig.6

Fig.7

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

- > Análise das variações de fase que ocorrem na reflexão
 - 1) Os coeficientes de transmissão em amplitude, t_{\perp} e t_{\parallel} , quer se trate de $n_t > n_i$ (para qualquer valor de θ_i) ou de $n_i > n_t$ (para $\theta_i < \theta_c$) são sempre positivos, ou seja, não existe nenhuma troca de sinal (nenhuma variação de fase) nem no valor da amplitude de $(E_{0t})_{\perp}$ nem no de $(E_{0t})_{\parallel}$ relativamente ao valor de E_{0i} .

A refração (transmissão) ocorre sem qualquer variação de fase na interface

Analisemos agora o sinal de $(E_{0r})_{\parallel}$ e de $(E_{0r})_{\perp}$ relativamente a $(E_{0i})_{\parallel}$ e a $(E_{0i})_{\perp}$ Temos de distinguir a situação de reflexão externa da de reflexão interna.

- Na reflexão externa $(n_t > n_i)$ já vimos que r_{\perp} é sempre negativo, qualquer que seja o valor de θ_i , ou seja, na reflexão externa o sinal de $(E_{0r})_{\perp}$ é sempre contrário ao sinal de $(E_{0i})_{\perp}$, logo, a componente perpendicular ao plano de incidência do campo elétrico refletido $(E_{0r})_{\perp}$, sofre uma variação de fase de π , na interface.
- 3) Na reflexão interna $(n_i > n_t)$, r_{\perp} é positivo até $\theta_i = \theta_c$, ou seja, o sinal de $(E_{0r})_{\perp}$ é igual ao sinal de $(E_{0i})_{\perp}$, logo, a componente perpendicular ao plano de incidência do campo elétrico refletido $(E_{0r})_{\perp}$, não sofre qualquer variação de fase na interface, para $\theta_i < \theta_c$.

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

Análise das variações de fase que ocorrem na reflexão

A análise da variação de fase na componente do campo elétrico refletida na direção paralela ao plano de incidência $(E_{0r})_{\parallel}$ vai-se fazer duma forma idêntica, distinguindo a situação de **reflexão externa da de reflexão interna**.

- 4) Na reflexão externa $(n_t > n_i)$, $r_{||}$ é positivo até $\theta_i = \theta_p$ e passa depois a negativo, ou seja, na reflexão externa o sinal de $(E_{0r})_{||}$ é igual ao de $(E_{0i})_{||}$ até $\theta_i = \theta_p$ e depois passa a ser contrário, logo, a componente paralela ao plano de incidência do campo eléctrico refletido $(E_{0r})_{||}$ não sofre qualquer variação de fase para $0 < \theta_i < \theta_p$ e sofre uma variação de fase de π para $\theta_i > \theta_p$.
- Na reflexão interna ($n_i > n_t$), o coeficiente $r_{||}$ é negativo até $\theta_i = \theta_p$ e passa a positivo quando $\theta_p < \theta_i < \theta_c$ (para $\theta_i > \theta_c$ r_{||} é complexo) ou seja a componente paralela ao plano de incidência do campo eléctrico refletido (E_{or}) _{||}, sofre uma variação de fase de π para $\theta_i < \theta_p$ e não sofre qualquer variação de fase para $\theta_p < \theta_r < \theta_c$.

Nos casos de reflexão interna, os coeficientes r_{\perp} , r_{\parallel} , t_{\perp} e t_{\parallel} são complexos, para $\theta_i > \theta_c$. Pode-se mostrar que, nestas condições, existe uma variação de fase de π , lenta e contínua, desde $\theta_i = \theta_c$ até 90°, como se mostra nas figuras juntas.

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

Análise das variações de fase que ocorrem na reflexão

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

Análise das variações de fase que ocorrem na reflexão

Fig.9 Campo eléctrico E refletido para vários ângulos, em situações de reflexão externa

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

Análise das variações de fase que ocorrem na reflexão

Fig.10 Campo eléctrico E refletido para vários ângulos, em situações de reflexão interna

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

Refletância e Transmitância

Já definimos irradiância (potência por unida de área):

$$I = \langle S \rangle = \frac{c^2 \varepsilon_0}{2} E_0 B_0 = \frac{c \varepsilon_0}{2} E_0^2 = \frac{c}{2\mu_0} B_0^2$$

$$I = \langle S \rangle = c \varepsilon_0 E_{qm}^2 = \frac{c}{\mu_0} B_{qm}^2$$
(ver slide 39 do capítulo anterior)

$$I = \langle S \rangle = c\varepsilon_0 \ E_{qm}^2 = \frac{c}{\mu_0} B_{qm}^2$$

(ver slide 39 anterior)

Considere-se um feixe de luz, de secção circular, a incidir sobre uma dada interface.

Sendo A a área da interface iluminada, as áreas das secções dos feixes incidente, refletido e refratado são respetivamente, $A\cos\theta_i$, $A\cos\theta_r$ e $A\cos\theta_t$.

Então a potência incidente, refletida e refratada será $I_i A \cos \theta_i$, $I_r A \cos \theta_r$ e $I_t A \cos \theta_t$.

Define-se refletância R como a razão entre a potência refletida e incidente.

Define-se transmitância T como a razão entre a potência transmitida e incidente.

$$R = \frac{I_r \cos \theta_r}{I_i \cos \theta_i} = \frac{I_r}{I_i}$$

$$T = \frac{I_t \cos \theta_t}{I_i \cos \theta_i}$$

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

Refletância e Transmitância

Sendo
$$I_i = \frac{v_i \mathcal{E}_i}{2} E_{0i}^2$$
 , $I_r = \frac{v_r \mathcal{E}_r}{2} E_{0r}^2$ e $v_r = v_i$, $\mathcal{E}_r = \mathcal{E}_i$ (mesmo meio)

$$R = \frac{E_{0r}^2}{E_{0i}^2} = r^2$$

Para a transmitância
$$I_t = \frac{v_t \mathcal{E}_t}{2} E_{0t}^2$$

e então
$$T = \frac{v_t \mathcal{E}_t}{v_i \mathcal{E}_i} \frac{E_{0t}^2}{E_{0i}^2} \frac{\cos \theta_t}{\cos \theta_i} = \frac{n_t \cos \theta_t}{n_i \cos \theta_i} \left(\frac{E_{0t}}{E_{0i}}\right)^2$$

$$T = \frac{n_t cos \theta_t}{n_i cos \theta_i} t^2$$

onde se fez
$$\mu_i = \mu_t = \mu_0$$

Pelo princípio de conservação de energia, $I_i A \cos \theta_i = I_r A \cos \theta_i + I_t A \cos \theta_t$

substituindo *I* pelas respetivas expressões e atendendo a que $n = \frac{c}{v}$; $v = \frac{1}{\sqrt{\varepsilon}}$

$$n_i E_{0i}^2 \cos \theta_i = n_i E_{0r}^2 \cos \theta_i + n_t E_{0t}^2 \cos \theta_t$$

$$1 = \frac{E_{0r}^2}{E_{0i}^2} + \frac{n_t \cos \theta_t}{n_i \cos \theta_i} \frac{E_{0t}^2}{E_{0i}^2} \longrightarrow 1 = R + T$$

(para os casos em que não existe absorção)

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

Refletância e Transmitância

$$R_{\perp} + T_{\perp} = 1$$
$$R_{\parallel} + T_{\parallel} = 1$$

Nas figuras juntas representa-se R_{\perp} e T_{\perp} e R_{\parallel} e T_{\parallel} para n_i =1 e n_t =1.5

Quando $\theta_i = 0$, o plano de incidência é indeterminado. Nesse caso tem-se

$$R = R_{\parallel} = R_{\perp} = \frac{(n_t - n_i)^2}{(n_t + n_i)^2}$$
 (por F1 e F3) $\frac{1}{n_{ti}} = \frac{n_t}{n_i} = 1.5$
 $T = T_{\parallel} = T_{\perp} = \frac{4n_i n_t}{(n_t + n_i)^2}$ (por F2 e F4)

Fig.12

4. Propagação da Radiação Eletromagnética – Equações de Fresnel

>Transmitância de uma lente

$$T=t_1 \cdot t_2 \cdot T_i$$

Em que t_1 e t_2 são as transmitancias nas duas faces da lente e T_i a chamada transmitancia interna que é função do coeficiente de absorção, μ , do material de que é feita a lente:

$$T_i = e^{-\mu X}$$

em que x é a espessura central da lente.

