Mesures et Opérateurs

18 décembre 2014

Table des matières

	2.1 Définitions et propositions	3
2	Opérateurs non bornés	3
1	Définitions et résultats préliminaires	2
Ι	Opérateurs	2

Première partie

Opérateurs

Définitions et résultats préliminaires 1

⇔ Lemme: de Baire

Soit X un espace métrique complet. Soit $(X_n)_{n\geq 1}$ une suite de fermés. On suppose que

$$\forall n \ge 1, \ \widehat{X_n} = \emptyset$$

Alors

$$\widehat{\bigcup_{i=1}^{\infty} X_i} = \emptyset$$

Démonstration:

On pose $O_n=X_n^C$ le complémentaire de X_n , de sorte que O_n est un ouvert dense. Il s'agit de montrer que $G = \bigcap_{i=1}^{\infty} O_i$ est dense dans X.

Soit ω un ouvert non vide de X. On va prouver que $\omega \cap G \neq \emptyset$.

On choisit $x_0 \in \omega$ et $r_0 > 0$ arbitraires tels que

$$\overline{B(x_0,r_0)}\subset\omega$$

On choisit ensuite $x_1 \in B(x_0, r_0) \cap O_1$ et $r_1 > 0$ tels que :

$$\left\{ \begin{array}{c} \overline{B(x_1,r_1)} \subset B(x_0,r_0) \cap O_1 \\ 0 < r_1 < \frac{r_0}{2} \end{array} \right.$$

Ceci est possible car O_1 est ouvert et dense. Ainsi de sute, on construit par récurrence deux suites (x_n) et (r_n) telles

$$\left\{\begin{array}{c} \overline{B(x_{n+1},r_{n+1})} \subset B(x_n,r_n) \cap O_{n+1} \\ 0 < r_{n+1} < \frac{r_n}{2} \end{array}\right.$$

Il en résulte que la suite (x_n) est de Cauchy. Soit $x_n \to l$. Comme $x_{n+p} \in B(x_n, r_n)$ pour tous $n, p \ge 0$, on obtient à la limite (quand $p \to +\infty$):

$$l \in \overline{B(x_n, r_n)} \ \forall n \ge 0$$

En particulier, $l \in \omega \cap G$.

🛂 Définition: Orthogonal d'un ev

Soit X un espace de Banach.

Si $M\subset X$ est un sev, on pose

$$M^{\perp} = f \in X'; \langle f, x \rangle = 0 \forall x \in M \}$$

$$N^{\perp} = x \in X; \langle f, x \rangle = 0 \forall f \in N$$

 $M^\perp = f \in X'; \langle f, x \rangle = 0 \forall x \in M \}$ Si $N \subset X'$ est un sev, on pose $N^\perp = x \in X; \langle f, x \rangle = 0 \forall f \in N \}$ M^\perp (resp. N^\perp) est l'orthogonal de M (resp. N), qui est un sev fermé de X' (resp. X).

i Proposition:

Soit $M \subset X$ un sev. On a alors

$$\left(M^{\perp}\right)^{\perp} = \overline{M}$$

Soit $N \subset X'$ un sev. On a alors

$$(N^{\perp})^{\perp} \supset \overline{N}$$

1 Proposition:

Soient G et L deux sous-espaces fermés de X. On a :

$$G \cap L = \left(G^{\perp} + L^{\perp}\right)^{\perp}$$

$$G^{\perp} \cap L^{\perp} = (G+L)^{\perp}$$

2 Opérateurs non bornés

2.1 Définitions et propositions

♣ Définition: Opérateur

Soient E et F deux espaces de banach. On appelle opérateur linéaire non borné de E dans F toute application linéaire

$$A:D(A)\subset E\to F$$

définie sur un sous-espace vectoriel $D(A) \subset E$ à valeur dans F. D(A) est le domaine de A. On dit que A est borné s'il existe une constante $c \geq 0$ telle que

$$||Au|| \le c||u|| \ \forall u \in D(A)$$

(Oui, avec cette définition, un opérateur non borné peut être... Borné)

🔩 Définition: Graphe, Image et Noyau

On appelle Graphe de ${\cal A}$ l'ensemble

$$G(A) = \bigcup_{u \in D(A)} [u, Au] \subset E \times F$$

On appelle Image de A l'ensemble

$$R(A) = \bigcup_{u \in D(A)} Au \subset F$$

On appelle Noyau de A l'ensemble

$$N(A) = \{u \in D(A); Au = 0\} \subset E$$

♣ Définition: fermé

On dit qu'un opérateur A est fermé si G(A) est fermé dans $E \times F$.

iRemarque:

- 1. Pour prouver qu'un opérateur A est femré, on procède en général de la manière suivante : on prend une suite (u_n) dans D(A) telle que $u_n \to u$ dans E et $Au_n \to f$ dans F. Il s'agit ensuite de vérifier que
 - (a) $u \in D(A)$
 - (b) f = Au
- 2. Si A est fermé, alors N(A) est fermé.

♦ Définition: Adjoint

Soit $A: D(A) \subset E \to F$ un opérateur linéaire à domaine dense.

L'opérateur $A^*:D(A^*)\subset F'\to E'$, appelé adjoint de A, est l'unique opérateur vérifiant :

$$\langle v, Au \rangle_{F'F} = \langle A^*v, u \rangle_{E'E} \qquad \forall u \in D(A), \ v \in D(A^*)$$

L'existence et l'unicité de cet opérateur vient principalement du théorème de Hahn-Banach dans sa forme analytique. On pose :

$$D(A^*) = \{ v \in F'; \ \exists c \ge 0; |\langle v, Au \rangle| \le c ||u|| \ \forall u \in D(A) \}$$

Il est clair que $D(A^*)$ est un sous-espace vectoriel de F'. On va maintenant définir A^*v pour $v \in D(A^*)$. On considère l'application $g:D(A)\to\mathbb{R}$ définie pour $v\in D(A^*)$ par

$$g(u) = \langle v, Au \rangle_{F'F}$$

On a

$$|g(u)| \le c||u|| \forall u \in E$$

On peut alors appliquer le théorème de Hahn-Banach : on sait que g peut être prolongée en une application linéaire $f: E \to \mathbb{R}$ telle que

$$|f(u)| \le c||u|| \ \forall u \in E$$

Par suite, $f \in E'$. On remarquera que le prolongement de g est unique puisque f est continue sur E et que D(A) est dense. On pose enfin :

$$A^*v = f$$

1 Proposition:

Soit $A:D(A)\subset E\to F$ un opérateur non borné à domaine dense. Alors A^* est fermé.

Démonstration:

Soit $(v_n) \subset D(A^*)$ telle que $v_n \to v$ dans F' et $A^*v_n \to f$ dans E'. Il s'agit de prouver que $v \in D(A^*)$ et $A^*v = f$.

$$\langle v_n, Au \rangle = \langle A^*v_n, u \rangle \ \forall u \in D(A)$$

D'où à la limite, il vient :

$$\langle v, Au \rangle = \langle A^*v, u \rangle$$

Par conséquent, $v \in D(A^*)$ par définition du domaine et $A^*v = f$.

⇔ Corollaire:

Soit $A:D(A)\subset E\to F$ un opérateur non borné, fermé, avec $\overline{D(A)}=E$ (dense). Alors on a : 1. $N(A)=R(A^*)^\perp$ 2. $N(A^*)=R(A)^\perp$ 3. $N(A)^\perp\supset\overline{R(A^*)}$ 4. $N(A^*)^\perp=\overline{R(A)}$

1.
$$N(A) = R(A^*)^{\perp}$$

2.
$$N(A^*) = R(A)^{\perp}$$

3.
$$N(A)^{\perp} \supset \overline{R(A^*)}$$

4.
$$N(A^*)^{\perp} = \overline{R(A)}$$

Démonstration:

On peut très facilement vérifier les égalités suivantes :

$$N(A) \times \{0\} = G(A) \cap (E \times \{0\}) \tag{1}$$

$$E \times R(A) = G(A) + (E \times \{0\}) \tag{2}$$

$$\{0\} \times N(A^*) = G(A)^{\perp} \cap (E \times \{0\})^{\perp}$$
(3)

$$R(A^*) \times F' = G(A)^{\perp} + (E \times \{0\})^{\perp}$$
 (4)

En utilisant 1