This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A compound of formula I

$$R^{11} - A_a - Z_{12}^{11} - O_b - D_d - Y_{13}^{11}$$

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or a halogenated or unsubstituted alkyl radical having 1 to 15 carbon atoms, in which one or more CH₂ groups are optionally replaced, independently of one another, by -C≡C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

A stands for ,
$$\longrightarrow$$
 , or \longrightarrow , \longrightarrow ,

a is 0, 1 or 2;

Z¹¹ represents a single bond, $-CH_2-CH_2-$, $-CF_2-CF_2-$, $-CF_2-CH_2-$, $-CH_2-$ CF₂-, $-CH_2-$ O-, $-O-CH_2-$, $-CF_2-$ O- or $-O-CF_2-$;

W denotes >CH- or >C=;

B and D, independently of one another, stand for

$$- \underbrace{ \begin{array}{c} L^1 \\ \\ \\ \text{or} \end{array}}_{L^3} :$$

b and d, independently of one another, are 0 or 1;

- denotes =O, =C(SR¹²)(SR¹³), =CF₂, -H, -F, -Cl, -Br, -I, -CN, -OH, -SH, -CO-R¹⁴, -OSO₂R¹⁵, -C(=S⁺R¹²)(-SR¹³)X⁻, -B(OR¹⁶)(OR¹⁷), -BF₃⁻Cat⁺, -Si(OR¹⁸)(OR¹⁹)(OR²⁰) or alkyl, where alkyl denotes a halogenated or unsubstituted alkyl radical having 1 to 15 C atoms, in which one or more CH₂ groups are optionally replaced, independently of one another, by -C=C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;
- Y¹² and Y¹³, independently of one another, denote H or alkyl, where alkyl denotes a halogenated or unsubstituted alkyl radical having 1 to 15 C atoms, in which one or more CH2 groups are optionally replaced, independently of one another, by -C≡C-, -CH=CH-, -O-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

 L^1 , L^2 and L^3 , independently of one another, denote H or F;

 R^{12} and R^{13} , independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p-unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups are optionally substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;

R¹⁴ denotes OH, O-aryl, O-aralkyl, O-alkyl, Cl, Br, aryl, aralkyl or alkyl;

R¹⁵ denotes aryl, aralkyl or a halogenated or unsubstituted alkyl radical having 1 to 15 carbon atoms, in which alkyl radical one or more CH₂ groups are optionally replaced, independently of one another, by
-C≡C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

 R^{16} and R^{17} denote H or an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p- unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups are optionally substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;

R¹⁸, R¹⁹ and R²⁰, independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms;

Cat⁺ is an alkali metal cation or a quaternary ammonium cation;

and

X is a weakly coordinating anion;

with the proviso provisos that

if $b+d \neq 0$,

then W denotes >CH-;

if
$$Y^{11}$$
 is connected to B or D = L^3

then Y^{11} does not denote =0, = $C(SR^{12})(SR^{13})$ or = CF_2 ;

$$\begin{array}{c|c} & & & L^1 \\ \hline & & & & \\ L^2 & & L^3 \end{array} \begin{array}{c} L^1 \\ \hline & & \\ L^2 \end{array} \begin{array}{c} & & \\ & & \\ L^2 \end{array}$$

if W is connected directly to

where d is 0 or

1,

then Y¹¹ denotes -H, -I, -SH, -CO₂R¹⁴, -OSO₂R¹⁵, -C(=S⁺R¹²)(SR¹³)X⁻, -B(OR¹⁶)(OR¹⁷), -BF₃⁻Cat⁺, -Si(OR¹⁸)(OR¹⁹)(OR²⁰) or alkyl, where alkyl denotes a halogenated or unsubstituted alkyl radical having 1 to 15 C atoms, in which one or more CH₂ groups have each been replaced, independently of one another, by -C=C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another and alkyl does not stand for alkoxy;

if d = 1,

then B does not stand for ; and

if a is 2,

that Y denotes >CH- if b+d \neq 0; that Y does not denote =0, =C(SR¹²)(SR¹³) or =CF₂ if Y¹¹ is connected to B

$$\frac{1}{2} \frac{1}{1}$$

that Y¹¹ denotes -H, -I, -SH, -CO₂R¹⁴, -OSO₂R¹⁵, -C(=S⁺R¹²)(SR¹³)X⁵, -B(OR¹⁶)(OR¹⁶)(OR¹⁷), -BF₃⁻Cat⁺, -Si(OR¹⁸)(OR¹⁹)(OR²⁰) or alkyl, where alkyl denotes a halogenated or unsubstituted alkyl radical having 1 to 15 C atoms, in which one or more CH₂ groups have each been replaced, independently of one another, by -C=C-, -CH=CH-, O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another and alkyl does not stand for

$$\begin{array}{c|c}
 & L^1 \\
 & \downarrow \\
 & \downarrow$$

alkoxy, if W is connected directly to d is 0 or 1;

that B does not stand for-

ifd = 1: and

that A can adopt identical or different meanings if a is 2.

2. (Withdrawn) A compound according to Claim 1, wherein

A stands for

- 3. (Previously Presented) A compound according to Claim 1, wherein a is 0.
- 4. (Previously Presented) A compound according to Claim 1, wherein Y^{12} and Y^{13} denote H.
- 5. (Previously Presented) A compound according to Claim 1, wherein Z^{11} represents a single bond, -CF₂O- or -OCF₂-.
- 6. (Previously Presented) A compound according to Claim 1, wherein R¹¹ denotes an unbranched halogenated or unsubstituted alkyl radical having 1 to 7 carbon atoms.
- 7. (Withdrawn) A compound according to Claim 1, wherein Y^{11} denotes =0, =C(SR¹²)(SR¹³) or =CF₂.
- 8. (Previously Presented) A compound according to Claim 1, wherein Y^{11} denotes -H, -F, -Cl, -Br, -I, -OH, -CO₂H, -C(=S⁺R¹²)(-SR¹³)X⁻, -B(OR¹⁶)(OR¹⁷), -BF₃⁻Cat⁺ or -Si(OR¹⁸)(OR¹⁹)(OR²⁰).

- (Withdrawn) A compound according to Claim 1, wherein
 X denotes BF₄, CF₃SO₃, C₄F₉SO₃, PF₆, SbF₆ or AsF₆.
- 10. (Previously Presented) A compound according to Claim 1, wherein b is 0 and d is 0.
- 11. (Previously Presented) A compound according to Claim 1, wherein b is 1 and d is 0.
- 12. (Withdrawn) A compound according to Claim 1, wherein b is 1 and d is 1.
- 13. (Withdrawn) A process for preparing a compound of claim 1, which is a compound of formula IA

$$R^{11} - A_a - Z_{12}^{11} - V_{13}^{13}$$
 IA

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

A stands for ,
$$\longrightarrow$$
 , \longrightarrow or \longrightarrow , \longrightarrow

a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

 Z^{11} represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂-CH₂-, -CH₂-O-, -O-CH₂-, -CF₂-O- or -O-CF₂-;

W denotes >C=;

 Y^{11} denotes =0, =C(SR¹²)(SR¹³) or =CF₂;

Y¹² and Y¹³, independently of one another, denote H or alkyl; and

 R^{12} and R^{13} , independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p-unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups are optionally substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;

comprising

reacting a compound of formula II

$$R^{11}$$
 A_a Z^{11} CHO

in which R^{11} , A, a and Z^{11} are as defined above for the compound of formula IA,

in a reaction step (A1)

(A1) in the presence of a base with a compound of formula III

$$R^{31}O$$

$$V^{12}$$

$$V^{13}$$
III

in which Y^{12} and Y^{13} are as defined above for the compound of formula IA, and R^{31} denotes an alkyl radical having 1 to 15 carbon atoms, to give a compound of formula IV

$$R^{11}$$
 A_a Z^{11} $COOR^{31}$ IV

in which R¹¹, A, a, Z¹¹, Y¹² and Y¹³ are as defined above for the compound of formula IA, and R³¹ is as defined above for the compound of formula III; and subsequently converting, in a reaction step (A2),

(A2) the compound of formula IV into a compound of formula IA1

$$R^{11} - A_a - Z_{12}^{11} - O$$
IA1

and optionally converting, in a reaction step (A3),

(A3) the compound of formula IA1 into a compound of formula IA2

$$R^{11}$$
 A_a Z^{11} CF_2 IA2

by reaction with CF_2Br_2 in the presence of $P(N(R^{21})_2)_3$, $P(N(R^{21})_2)_2(OR^{22})$ or $P(N(R^{21})_2)(OR^{22})_2$, where R^{21} and R^{22} , independently of one another, denote an alkyl radical having 1 to 15 carbon atoms; or optionally converting, in a reaction step (A3'),

(A3') the compound of formula IA1 into a compound of formula IA3

$$R^{11}$$
 A_a Z^{11} A_a A_a

by reaction with $CHG(SR^{12})(SR^{13})$, in which G denotes $P(OCH_2R^{23})_3$, where R^{23} is a perfluorinated alkyl radical having 1 to 5 carbon atoms, or $Si(CH_3)_3$ or $Si(CH_2CH_3)_3$, and R^{12} and R^{13} are as defined above for the compound of formula IA, in the presence of a strong base.

14. (Withdrawn) A process for preparing a compound of claim 1, which is a compound of formula IB

$$R^{11}$$
 A_a Z^{11} A_a A_a

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

 Z^{11} represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂-CF₂-, -CH₂-O-, -O-CH₂-, -CF₂-O- or -O-CF₂-;

Y¹¹ denotes -H, -F, -Cl, -Br, -I, -CN, -OH or -B(OR¹⁶)(OR¹⁷);

Y¹² and Y¹³, independently of one another, denote H or alkyl;

L¹, L² and L³, independently of one another, denote H or F; and

 R^{16} and R^{17} , independently of one another, denote H or an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p- unit, where p=2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups are optionally substituted by at least one

unbranched or branched alkyl radical having 1 to 8 carbon atoms;

comprising

reacting, in a reaction step (B1),

(B1) a compound of formula IA1

$$R^{11} - A_{a} - Z^{11}$$

$$Y^{12}$$

$$Y^{13}$$
IA1

in which R^{11} , A, a, Z^{11} , Y^{12} and Y^{13} are as defined above for the compound of formula IB, with a compound of formula V

$$M \longrightarrow L^1$$
 Q
 V

in which L¹, L² and L³ are as defined above for the compound of formula IB,

M denotes Li, Cl-Mg, Br-Mg or I-Mg, and Q denotes H, F, Cl, Br, I or CN, with formation of a compound of formula IB1

$$R^{11}$$
 A_a $Z_{Y^{12}}^{11}$ A_a A

in which R¹¹, A, a, Z¹¹, Y¹², Y¹³, L¹, L² and L³ are as defined for the compound of formula IB, and Q is as defined for the compound of formula V; and optionally reacting, in a reaction step (B2),

(B2) the compound of the formula IB1 in which Q denotes Br with $B(OR^{16})(OR^{17})(OR^{24})$, where R^{16} , R^{17} and R^{24} are an unbranched or branched alkyl radical having 1 to 15 carbon atoms, or with $HB(OR^{16})(OR^{17})$, where R^{16} and R^{17} denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p- unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH2 groups are optionally substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms, in the presence of an alkyllithium base,

to give a compound of formula IB2

$$R^{11}$$
 A_a Z^{11} A_a A_a

and optionally converting, in a reaction step (B3),

(B3) the compound of formula IB2 into a compound of formula IB3

$$R^{11}$$
 A_a Z^{11} A_a A_a

by reaction with an aqueous acid;

and/or optionally converting, in a reaction step (B4),

(B4) the compound of formula IB2 or the compound of formula IB3 into a compound of formula IB4

$$R^{11}$$
 A_a Z^{11} A_a A_a

by reaction with hydrogen peroxide in alkaline or acidic solution.

15. (Withdrawn) A process for preparing a compound of claim 1, which is a compound of formula IC

$$R^{11} - A_a - Z^{11} - O - Y^{11}$$
IC

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

Z¹¹ represents a single bond, $-CH_2-CH_2-$, $-CF_2-CF_2-$, $-CF_2-CH_2-$, $-CH_2-$ CF₂-, $-CH_2-$ O-, $-O-CH_2-$, $-CF_2-$ O- or $-O-CF_2-$;

 Y^{11} denotes =0, =C(SR¹²)(SR¹³) or =CF₂;

Y¹² and Y¹³, independently of one another, denote H or alkyl; and

 R^{12} and R^{13} , independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a $-(CH_2)_p$ - unit, where p=2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups are optionally substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;

comprising

converting, in a reaction step (C1),

(C1) a compound of formula IB4

$$R^{11}$$
 A_a Z^{11} A_a A_a

in which R^{11} , A, a, Z^{11} , Y^{12} and Y^{13} are as defined above for the compound of formula IC, and L^1 , L^2 and L^3 denote H,

into a compound of formula IC1

$$R^{11} - A_a - Z^{11}$$
 O IC1

using hydrogen in the presence of a transition-metal catalyst; and optionally converting, in a reaction step (C2),

(C2) the compound of formula IC1 into a compound of formula IC2

$$R^{11}$$
 A_a Z^{11} CF_2 CF_2 CF_2

by reaction with CF_2Br_2 in the presence of $P(N(R^{21})_2)_3$, $P(N(R^{21})_2)_2(OR^{22})$ or $P(N(R^{21})_2)(OR^{22})_2$, where R^{21} and R^{22} , independently of one another, are an alkyl radical having 1 to 15 carbon atoms; or optionally converting, in a reaction step (C2'),

(C2') the compound of formula IC1 into a compound of formula IC3

$$R^{11}$$
 A_a Z_{12}^{11} A_a A_a

by reaction with CHG(SR¹²)(SR¹³), in which G denotes P(OCH₂R²³)₃, where

 R^{23} is a perfluorinated alkyl radical having 1 to 5 carbon atoms, or $Si(CH_3)_3$ or $Si(CH_2CH_3)_3$, and R^{12} and R^{13} are as defined above for the compound of formula IC, in the presence of a strong base.

16. (Withdrawn) A process for preparing a compound of claim 1, which is a compound of formula ID

$$R^{11}$$
 A_a Z_{12}^{11} A_a A_a

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

 Z^{11} represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂-CF₂-, -CH₂-O-, -O-CH₂-, -CF₂-O- or -O-CF₂-;

 Y^{11} denotes -CO₂H or -C(=S⁺R¹²)(-SR¹³)X⁻;

Y¹² and Y¹³, independently of one another, denote H or alkyl;

 L^{1} , L^{2} and L^{3} , independently of one another, denote H or F;

 R^{12} and R^{13} , independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p-unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups are optionally substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms; and

X is a weakly coordinating anion;

comprising

reacting, in a reaction step (D1),

(D1) a compound of formula IB1

$$R^{11}$$
 A_a Z^{11} Q Q IB1

in which R¹¹, A, a, Z¹¹, Y¹², Y¹³, L¹, L² and L³ are as defined for the compound of formula ID, and Q denotes H or Br,

with an organometallic base and CO2 to give a compound of formula ID1

$$R^{11} - A_a - Z^{11}$$

$$Y^{12}$$

$$Y^{13} L^3 L^2$$

$$CO_2H$$

$$ID1$$

in which R^{11} , A, a, Z^{11} , Y^{12} , Y^{13} , L^1 , L^2 and L^3 are as defined for the compound of formula ID;

and optionally converting, in a reaction step (D2),

(D2) the compound of formula ID1 into a compound of formula ID2

$$R^{11}$$
 A_a $Z_{Y^{12}}^{11}$ A_a A

in the presence of an acid HX using HSR¹² and HSR¹³ or using HSR¹²R¹³SH.

17. (Withdrawn) A process for preparing a compound of claim 1, which is a compound of formula IE

$$R^{11}$$
 A_a Z^{11} Y^{12} Y^{13} IE

MERCK-3017

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

A stands for ,
$$\longrightarrow$$
 , \longrightarrow or \longrightarrow ,

a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

 Z^{11} represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂-CF₂-, -CH₂-O-, -O-CH₂-, -CF₂-O- or -O-CF₂-;

 Y^{11} denotes -CO₂H or -C(=S⁺R¹²)(-SR¹³)X⁻;

Y¹² and Y¹³, independently of one another, denote H or alkyl;

 R^{12} and R^{13} , independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p-unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups are optionally substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms; and

X is a weakly coordinating anion; comprising

converting, in a reaction step (E1),

(E1) a compound of formula ID1

$$R^{11} - A_a - Z^{11}$$

$$Y^{12}$$

$$Y^{13} L^3$$

$$L^2$$

$$D1$$

in which R^{11} , A, a, Z^{11} , Y^{12} and Y^{13} are as defined above for the compound of formula IE, and L^1 , L^2 and L^3 denote H, into a compound of formula IE1

$$R^{11}$$
 A_a Z^{11} CO_2H IE1

using hydrogen in the presence of a transition-metal catalyst; and optionally converting, in a reaction step (E2),

(E2) the compound of formula IE1 into a compound of formula IE2

$$R^{11}$$
 A_a Z^{11} A_a Z^{11} A_a Z^{12} A_a A_a

in the presence of an acid HX using $\mathrm{HSR^{12}}$ and $\mathrm{HSR^{13}}$ or using $\mathrm{HSR^{12}R^{13}SH}$.

18. (Previously Presented) A compound according to claim 1, which is a compound of one of the following formulae

$$R^{11} - A_a - Z^{11}$$

$$CF_2$$

$$I6$$

$$R^{11} - A_{a} - Z^{11}$$

$$R^{11} - A_a - Z^{11}$$
 SR^{12} SR^{13} SR^{13}

$$R^{11} - A_a - Z^{11} \qquad \qquad CO_2H \qquad \qquad I10$$

$$R^{11} - A_a - Z^{11}$$
 SR^{13} X^{-} III

$$R^{11}$$
 A_a Z^{11} CO_2H I12

$$R^{11} - A_a - Z^{11}$$
 SR^{12} X^{-} II3

$$R^{11}$$
 A_a Z^{11} CO_2H I14

$$R^{11} - A_{a} - Z^{11}$$
 S_{R}^{13} X^{5} I15

$$R^{11} - A_a - Z^{11}$$
 I16

wherein R^{11} , A, a, Z^{11} , Y^{11} , L^1 , L^2 , L^3 , R^{12} , R^{13} and X^2 have the meanings indicated for the compound of formula I.

19. (Previously Presented) A compound according to claim 1, which is a compound of one of the following formulae

$$C_{n}H_{2n+1} \longrightarrow O \qquad I1a$$

$$C_{n}H_{2n+1} \longrightarrow O \qquad I1b$$

$$C_{n}H_{2n+1} \longrightarrow O \qquad I1c$$

$$C_{n}H_{2n+1} \longrightarrow O \qquad I2a$$

$$C_{n}H_{2n+1} \longrightarrow O \qquad I2b$$

$$C_{n}H_{2n+1} \longrightarrow O \qquad I2b$$

$$C_{n}H_{2n+1} \longrightarrow O \qquad I3a$$

$$C_{n}H_{2n+1} \longrightarrow O \qquad I3a$$

$$C_{n}H_{2n+1} \longrightarrow O \qquad I3a$$

$$C_{n}H_{2n+1}$$
 $C_{n}H_{2n+1}$
 $C_{n}H_{2n+1$

$$C_{n}H_{2n+1}$$
 $C_{n}H_{2n+1}$
 $C_{n}H_{2n+1$

wherein n is an integer of 1 to 7.

20. (Previously Presented) A compound according to claim 10, wherein C_nH_{2n+1} is straight-chain.