CSE460: VLSI Design

Lecture 15+16: VLSI Physical Design Routing Algorithm

Outline

- Introduction
- Routing Approaches
- Lee's Maze Algorithm
- Extension of Lee's Algorithm
- Memory Requirements

Introduction

- Forming physical connection between pins. First, approx. path (Global Routing), then, placing metal line segment (Detailed Routing)
- After placement phase, the exact locations of circuit blocks and pins are determined.
- Space not occupied by the blocks are used for routing and are called as routing regions.
- Two kinds of approaches to solve global routing problem: Sequential & Concurrent Approach.

Routing Approaches

Sequential Approach:

- In this approach, as the name suggests, pins are routed one by one.
- Order is important: once a region has been routed it may block other nets which are yet to be routed.
- Eg.
- i. **Maze routing** algorithms
- ii. Line-probe algorithms
- iii. Shortest path based algorithms

Concurrent Approach:

- This approach avoids the ordering problem by considering routing of all the nets simultaneously.
- Computationally sophisticated.

Lee's Maze Routing algorithms

- The layout surface is assumed to be made up of a rectangular array of grid cells.
- Each Grid cell represents a square cell where one wire can cross.
- Objective is to find out the shortest path (sequence of grid cells) for connecting two points (Source, S to Target, T).
- When using cells, a wire can either cross or bend.

- Some of the grid cells act as obstacles (Black Cells).
 - -Blocks that are placed on the surface.
 - -Some nets that are already laid out.

Lee's Algorithm : Expansion

Step 1: Wave propagation

- Iterative process
- Starts at the most adjacent cell of the Source.
- Need to find all new cells/grid that are reachable at pathlength 1(i.e, all paths that are just 1 unit in total length(just 1 cell)).
- Using the **pathlength 1** cells, all new cells which are reachable at **pathlength 2** can be found.
- Process is repeated until the target, **T** is reached.
- During ith iteration, <u>non-blocking grid cells</u> at <u>Manhattan</u> distance of i from grid cell **S** are all <u>labeled with</u> i

Note: Manhattan distance is the number of strides (horizontal and/or vertical) required to reach a cell.

Manhattan Distance

Lee's Algorithm

Step 1: Wave propagation (contd)-

- <u>Labeling</u> continues until the target grid cell
 T is marked in iteration L (i.e. when i=L0).
- L0 is the length of the shortest path.

- The process fails if:
 - T is not reached and no new grid cells can be labeled during step i.
 - T is not reached and i equals M, some upper bound on the path length.

Lee's Algorithm

Step 2: Retrace-

- Systematically <u>backtrack</u> from the target cell **T** back towards the source cell **S**.
- If T was reached during step i, then at least one grid cell adjacent to it will be labeled i-1, and so on.
- By tracing the numbered cells in descending order, we can reach S following the shortest path.
- In practice, the **rule of thumb** is <u>not to change the</u> direction of retrace unless one has to do so.
- Minimizes number of bends.

Lee's Algorithm

Step 3: Label clearance-

- All labeled cells except those corresponding to the path just found are cleared.
- Cells along the path are marked as obstacles.
- Search complexity is as involved as the wave propagation step itself.

Initial routing problem:

Step 1: Wave propagation

Т				
		1		
		S	1	
		1		

Step 1: Wave propagation

i = 2 S 2 1

Step 1: Wave propagation

Т					
		2	1	2	3
			S	1	2
	3	2	1	2	3

Step 1: Wave propagation

T					
					4
		2	1	2	3
	4		S	1	2
4	3	2	1	2	3

	T					5
						4
			2	1	2	3
	5	4		S	1	2
5	4	3	2	1	2	3

Step 1: Wave propagation

						6
	Т				6	5
						4
	6		2	1	2	3
6	5	4		S	1	2
5	4	3	2	1	2	3

					7	6
	T			7	6	5
	7					4
7	6		2	1	2	3
6	5	4		S	1	2
5	4	3	2	1	2	3

i = 6

Step 2: Backtrace

Step 3: Clear

Final output (Mark):

- Marked region is now blocked.
- New wave cannot propagate through this merged region unless the same S has another target T.
- If the source has another target
 T, then whole marked (blue)
 region will be considered as
 Source, S which we will explore in Example 2.

Multi-Terminal Nets

- ☐ Step 1: Propagate wave from the source s to the closet target.
 - \Box One of the terminals (A; out of 5) of the net is treated as source, and the rest as targets.
 - ☐ A wave is propagated from the source until one of the targets is reached.
- Step 2: All the cells in the marked path are next labeled as source cells, (total path from A-B is considered as 1 source) and the remaining unconnected terminals as targets.
- ☐ Step 3: Propagate wave from ALL s cells to the other cells.
- ☐ Step 4: Continue until all cells are reached.
- ☐ Step 5: Apply heuristics to further reduce the tree cost

Fig: (a) A as source; B-E as targets (b) A-B as source; C-E as Targets. (c) all paths from source to target were found (d) optimized path from A-B (*low bend*)

Step 1 to 3:

Step 1 to 3 (Again):

Example 2: Extension of Lee's algorithm[Multi point nets/ Target]

(a) Initial state

(b) Finding Path-1; From S to T2

Example 2 : [Multi point nets/ Target]

(c) S-T2 path as a source, **S1** for T1

(d) Finding Path-2; From **\$1** to T2

Example 3: CW/HW

S			
			Т
	Т		

- Find the shortest path for each Target.
- Calculate the memory usage.

Memory Requirement

- Each cell needs to store a number between 1 and L, where L is some bound on the maximum path length.
- For *M* x *N* grid, *L* can be at most *M+N-1*.
- Two things yet to be denoted: empty cell/obstacle.

So,
$$n = ceil(log_2(L+2))$$
 bits per cell

Total memory = $(M \times N \times n)$ bits

			6
			5
1	2	3	4

Here, 3 x 4 grid, 3 bits are required per cell Total memory = 36 bits

Memory Requirement

Examples:

```
1. 2000 x 2000 grid
n = log<sub>2</sub> (4001) = 12
Memory required = 2000 x 2000 x 12 bits = 6 Mbytes
```

2. **3000 x 3000** grid $n = log_2 (6001) = 13$ Memory required = 3000 x 3000 x 13 bits = **14.6** Mbytes

Note: For memory requirement calculations, the maximum path length (L) is always considered to be (M+N-1) if the sequence is a series of natural numbers (1,2,3,4,5,....). Actual path length can be lower or equal to this value. If we use a repeating sequence, L is total number of unique entity.

Memory Optimization

Akers's Observations (1967)

 Adjacent labels for k are either k – 1 or k + 1. Need a labeling scheme such that each label has its preceding label different from its succeeding label.

WAY 1

- Instead of using the sequence <u>1,2,3,4,5,.....</u>
 for numbering the cells, the sequence <u>1,2,3,1,2,3,...</u> is used.(*L=3*)
- For a cell, labels of predecessors and successors are different. So tracing back is easy.
- $ceil(log_2(3+2)) = 3$ bits per cell.

1.5 Mbytes for 2000 x 2000 grid

Memory Optimization [Minimum Cost]

WAY2

- Use the sequence 0,0,1,1,0,0,1,1,...., (*L*=2)
- 0-> First 0; 1-> First 1.
- 0-> Second 0; 1-> Second 1.
- Predecessors and successors are again different. 0, 1
- $ceil(log_2(2+2)) = 2$ bits per cell.

1.0 Mbytes for 2000 x 2000 grid

					1	0
	T			1	0	0
	1					1
1	0		0	0	0	1
0	0	1		S	0	0
0	1	1	0	0	0	1

Fig: Minimum Bend Path

Memory Requirements - Summary

For memory requirement calculations, the critical path length (L) is always considered to be (M+N-1) if the sequence is a series of natural numbers (1,2,3,4,5,....). Actual path length can be lower or equal to this value.

If we use a repeating sequence, L is the total number of unique entities. For example, if we use 1,2,3,1,2,3... repeating sequence, L = 3. If the sequence is 0,1,0,1..., L = 2. So, L does not depend on the actual path length for memory calculation.

If you are asked to calculate the memory used by a definite path, that's a different question. Generally, memory requirements denote the maximum memory required to run the algorithm.

Example 4: Using 001100... Sequence

Label: 0011001
Retrace

References

- 1. Grid Routing- Lecture 16, NPTEL Online certification Courses, IIT Kharagpur.
- 2. M. A. Breuer, M. Sarrafzadeh and F. Somenzi, "Fundamental CAD algorithms," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 19, no. 12, pp. 1449-1475, Dec. 2000, doi: 10.1109/43.898826.
- 3. http://users.eecs.northwestern.edu/~haizhou/357/lec6.pdf

Thank You