

### L3 - Síťová vrstva II.

- Typy přenosů na L3
  - Unicast
    - Samostatné vysílání "jeden s jedním"
  - Broadcast
    - Všesměrové vysílání "jeden všem v dané sítí"
  - Multicast
    - Skupinové vysílání "jeden všem v dané skupině"
  - Anycast
    - Skupinové vysílání nejbližšímu členovy "jeden nejbližšímu členovy dané skupiny"
  - Geocast
    - Skupinová vysílání dané lokaci "jeden všem v dané geolokaci"



### Unicast

- Nejběžnější forma přenosu
- V zásadě se dá říší, že se jedná o přenos 1:1
  - Jeden účastník jednomu jinému účastníkovi
- Přenos může být realizován v rámci stejné LAN
  - Bez použití L3 směrování
- Přenos může být realizován mezi více LAN či WAN
  - S použitím L3 směrování
- Typické použití
  - Téměř veškeré běžně používané služby
    - HTTP, SMTP, POP/IMAP, FTP ....
- Nenáročný z pohledu zatížení sítě



zdroj: https://www.hitechmv.com/ipv4-unicast-broadcast-and-multicast/



## Replikovaný Unicast

- Pokud potřebujeme odesílat data více účastníkům, musíme v případě použití unicastu přenosy opakovat
- Pro každého účastníka jsou ze zdroje odeslána vlastní data
- Výhodou je, že jednotlivé "streamy" na sebe nejsou vázané
  - Tedy chyba v jednom nemusí ovlivnit více vysílání
    - Ale samozřejmě může, pokud je chyba ve zdroji data např poškozený soubor
- Další výhodou je, že nepotřebuje žádné extra vybavení či adresaci
  - Proč také, jedná se o více běžných přenosů
- Nevýhod je v tomhle případě více
  - Vysílač musí znát všech přijímače
    - Všichni k němu musí být připojeni
  - Data odchází tolikrát, kolik přijímačů je připojeno
    - Což může být extrémně náročné na kapacitu linky a snadno může vést k saturaci linky a následně defakto k DDOS
      - Tolik účastníků chce čerpat data, až se zdroj stane nedostupný
  - Reálně data neodchází ve stejný okamžik
    - Zde záleží na konkrétní službě někde to může vadit někde nemusí
      - Pro sledování video prezentace to jistě nevadí
        - Sice to uvidím každý divák v drobným posunem, ale to ničemu nevadí
      - Pro sledování on-line prezentace s možností reagovat už to problém být může
        - Ptám se na něco co reálně proběhlo před "nějakým časem" zpět
        - Hodně bude záležet na počtu klientů



zdroj: https://havel.mojeservery.cz/mikrotik-blokovani-omezovani-multicast-provozu/

### Broadcast

- U unicastu nastane "neřešitelný" problém pokud budu chtít oslovit všechna zařízení v síti
  - V uvozovkách proto, že v určitých krajních situacích si mohu pomoci výčtem
    - Např pokud sem součástí sítě 192.168.1.0/29, která reálně může obsahovat stroje 192.168.1.1-6 mohu obeslat všechny, ale pokud je v LAN více sítí, oslovím zas jen část
- Řešením je broadcast tedy vysílání "jeden všem"
  - Všem == všem na které vidím
- Výhodou je, že se odesílají jen jedna data a to na speciální adresu, která identifikuje "všechny v dané L2 síti"
  - Nemusím tedy řešit kdo vše v síti je, jen "řeknu" VŠEM
- Velice jednoduché na realizaci díky speciální broadcastové adrese
- Nevýhodou je, že data musejí v sítí přijmout a zpracovat všichni
  - Tedy i ti, kteří je nepotřebují
  - Dochází k zatěžování sítě i CPU na koncových stanicích
- Rozdíl mezi broadcastem a unicastem pro více stanic z pohledu zatížení sítě, je patrný mezi L2 prvky
  - Unicast posílá tolik dat kolik je přijímačů pro dva propojené switche
  - Broadcast, pro dva propojené switche, posílá data jen jednou a až na jednotlivých koncových portech se data "množí"
- Využití má všude tam, kde potřebuje oslovit všechny ve stejné sítí
  - DHCP ještě nevím o sítí nic a potřebuji se na nastavení zeptat, ale koho když o síti nic nevím ....?
  - ARP nastavení sítě už znám, ale hledám převod IP x MAC
  - SMB zjišťování okolních PC ve stejné síti



### Broadcast - Broadcastová doména

- Pokud se tedy broadcast šíří všude, co jej zarazí ?
- L3 prvek směrovač/router
- Broadcastová doména je oblast, kde se šíří broadcast a je limitovaná směrovačem
  - Kolizní doména jak už víme je oblast,
     kde může dojít ke kolizi souběžnému a neoddělitelnému vysílání
  - Kolizní doména je
    - Jeden port switche / bridge / routeru
    - Všechny porty hubu



## Broadcast - typy broadcastu

- Broadcast můžeme řešit na více úrovních ISO/OSI
  - L2 a L3
- Podle použité úrovně se budou odesílat různá data na různé adresy
  - Na L2 rámce na L3 pakety
- Zároveň se bude lišit dosah broadcastové komunikace
  - Tedy kam až se může vysílaná zpráva šířit
- Rozlišuje tři typy broadcastových zprav:
  - L2 Broadcast
  - Lokální L3 broadcast
  - Cílený L3 broadcast

## Broadcast - typy broadcastu: L2 broadcast

- Základní varianta vše směrového vysílání je realizována na L2 ISO/OSI
- Posílaná data mají charakter rámce / framu
- To, že se jedná o broadcast je definovanou adresou příjemce
- Pro Ethernet je MAC pro L2 broadcast FF:FF:FF:FF:FF
  - Samé jedničky
- Takový rámec je
  - Na hubu kopírován na všechny porty
    - Hub to ani jinak neumí jedná se o více-portový opakovač
  - Switch / bridge jej kopírují na všechny porty kromě příchozího
    - Kopírují rámec ne jen signál
    - Na vše krom příchozího aby nedošlo k zacyklení broadcastové bouři
      - Ono k ní stejně může dojít pokud je v síti smyčka, což lze řešit pomocí STP protokolu
  - Router na takový rámec odpoví, ale dále jej nešíří
    - Rozuměj na další porty

```
255.255.255.255 Echo (ping) request id=0x6801, seq=0/0, ttl=64 (broadcast)
     10.1.1.11
                                Echo (ping) reply
    10.1.1.33
                10.1.1.11
                                                    id=0x6801, seq=0/0, ttl=64
    10.1.1.22
                10.1.1.11
                                Echo (ping) reply id=0x6801, seq=0/0, ttl=64
                10.1.1.11
                                Echo (ping) reply
                                                    id=0x6801, seq=0/0, ttl=255
ICMP 10.1.1.1
Frame 3: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface 0
 Ethernet II, Src: ee:ee:ee:11:11:11, Dst: ff:ff:ff:ff:ff
 Internet Protocol Version 4, Src: 10.1.1.11, Dst: 255.255.255.255
Internet Control Message Protocol
```

### Broadcast – typy broadcastu: Lokální L3 broadcast

- Lokální nebo také místní či běžný broadcast
- Posíláme L3 paket a posíláme jej na L3 broadcastovou adresu
  - Např pro lpv4 je to 255.255.255.255
  - Stejně jako na L2 i na L3 se jedná o adresu, kde jsou binárně samé "1"
- Realizace bude provedena tak, že se tento paket umístí do L2 rámce s adresou FF:FF:FF:FF:FF:FF a odešle se jako L2 broadcastový rámec
- Odpovědi docházejí už na konkrétní L3 adresu odesílatele
- Hub / Switch / Bridge danou zprávu posílají dále
- Router opět jen odpovídá, ale na další porty ji nekopíruje
  - Protože ví, že se jedná o broadcast
- Stejně jako u L2 je možné realizovat jen v rámci jedné LAN
  - Logicky, protože router nás jinam nepustí



```
255.255.255.255 Echo (ping) request id=0x6801, seq=0/0, ttl=64 (broadcast)
     10.1.1.11
     10.1.1.33
                10.1.1.11
                                Echo (ping) reply
                                                     id=0x6801, seq=0/0, ttl=64
     10.1.1.22
                10.1.1.11
                                Echo (ping) reply
                                                     id=0x6801, seq=0/0, ttl=64
                 10.1.1.11
                                Echo (ping) reply
                                                     id=0x6801, seq=0/0, ttl=255
ICMP 10.1.1.1
Frame 3: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface 0
 Ethernet II, Src: ee:ee:ee:11:11:11, Dst: ff:ff:ff:ff:ff
 Internet Protocol Version 4, Src: 10.1.1.11, Dst: 255.255.255.255
Internet Control Message Protocol
```

# Broadcast – typy broadcastu: Cílený L3 broadcast

- Podobě jako v předchozím případě i lokálního broadcastu posíláme paket, ale zde na jinou adresu
- Už nepoužíváme obecnou adresu 255.255.255.255, ale používáme broadcastovou adresu sítě, do které chceme vysílat
  - Např u IPv4 se jedná o nejvyšší adresu v síti síť je jak víme definovaná maskou
    - Ona může být definovaná i třídou adres pro classfull sítě, ale třídy adrese pojí s konkrétní výchozí maskou
    - A 8, B/16, C/24
  - Např pro 10.1.1.0/24 bude broadcastová adresa 10.1.1.255
    - Tedy binárně opět samé "1", ale JEN ve variabilní části adresy
- Pokud se je jedná o síť, jejíchž jsem součástí, je situace stejné jako u lokální broadcastu
- Ale pokud se nejedná o lokální síťím je situace dramaticky odlišná
  - Tento paket je v počátku šířen jako unicast
    - Logicky, protože pro 10.1.1.0/24 je 10.1.1.255 broadcast, ale pro 10.1.0.0/16 je to plnohodnotná adresa
  - Tento paket tedy projde routerem/routery až do cílové sítě
    - Na základě běžného směrování
  - A teprve až na routeru, který spravuje cílovou síť, začne být šířen jako lokální broadcast
  - Protože cílový router má na jednom interface síť 10.1.1.0/24 a tedy ví, že se jedná o broadcastovou adresu
  - L2 broadcast se použije až na posledním routeru
- Odpověď jde pak klasickým unicast paketem
  - A řídí se klasickým směrováním
- Povolení tohoto typu komunikace představuje bezpečnostní riziko
  - Mohl posílat požadavky do cizích sítí a zjišťovat živé stroje
  - Typicky se defaultně zakazuje



## Broadcast - typy broadcastu: Cílený L3 broadcast - příklad



### Multicast

- Broadcastová komunikace umí poslat data všem v rámci jedné LAN, ale jak řešit situaci
  - Ale data jdou VŠEM v dané LAN
- Replikovaný unicast umí poslat data na více příjemců i v různých sítích
  - Ale za cenu tolika datových toku od zdroje kolik je příjemců přenosu
- Multicast je řešení pro situace, kdy potřebuje poslat stejná data více účastníkům, ale
  - Nechceme / nemůžeme být omezeni na jednu LAN
  - Potřebujeme minimalizovat datové toky
    - To obecně chceme vždy ;)
  - Skupina příjemců není předem známa a ani nijak místně vázaná
    - Tohle neplatí tak obecně musí být v rámci celé cesty multicast dostupný
- Multicast funguje tak, že tam kde jdou data společnou cestou, tedy v unicastu by bylo více paralelních přenosu, jsou přenášena jen jednou a teprve tam, kde se cesty dělí se kopírují na více portů
  - Ale jednou cestou / portem jde vždy jen jedna kopie data
- Multicast je nespolehlivý aby spolehlivý byl, muselo by docházet k potvrzování a případně opakování dat – a to je problém pro "live" data
  - Upřednostňujeme kontinuální datový tok, před jistotou doručení všech dat



## Multicast - příklad

# Multicast: One-to-Many Multicast Receiver

Source Server

One Multicast packet

**Multicast Receiver** 

**Multicast Receiver** 

### Multicast - porovnání s unicastem



### Multicast - použití

- Typicky tam, kde potřebujeme distribuovat větší množství stejných data ve stejný okamžik skupině příjemců
- Velmi často se používá pro distribuci video/zvukového vysílání
  - Stream videa
  - videokonference
- Distribuované interaktivní hry / simulace
  - Stejnou situaci potřebujeme aby vidělo naráz více účastníků
- Hromadné kopírování dat
  - Například klonování pevných disků
  - Na KIV používáme UDPCast ke klonování stanic
- Konfigurace skupin zařízení
  - Například NTP synchronizace času

### Multicast - Adresace

- Multicast, podobě jako broadcast se řeší na L2 i L3 úrovni
  - A tedy pro switch i router se chová zcela jinak
- Na úrovni L2 se používají speciální MAC adresy pro multicast
  - Ty tvoří pevně daný prefix
    - Pro Ethernet je to 01:00:5E
  - A následně 23 bitů přímo z L3 IP multicastové adresy
- Na úrovni L3 má multicast vyhrazené adresy třídy D
  - 224.0.0.0/4224.0.0.0 až 239.255.255.255
- Jednotlivé skupiny adres mají svůj předdefinovaný specifický význam



# Multicast - L3 adresy a jejich význam

| IP multicast address range                                | Description                              | Routable |
|-----------------------------------------------------------|------------------------------------------|----------|
| 224.0.0.0 to 224.0.0.255                                  | Local subnetwork <sup>[1]</sup>          | No       |
| 224.0.1.0 to 224.0.1.255                                  | Internetwork control                     | Yes      |
| 224.0.2.0 to 224.0.255.255                                | AD-HOC block 1 <sup>[2]</sup>            | Yes      |
| 224.3.0.0 to 224.4.255.255                                | AD-HOC block 2 <sup>[3]</sup>            | Yes      |
| 232.0.0.0 to 232.255.255.255                              | Source-specific multicast <sup>[1]</sup> | Yes      |
| 233.0.0.0 to 233.251.255.255                              | GLOP addressing <sup>[4]</sup>           | Yes      |
| 233.252.0.0 to 233.255.255.255                            | AD-HOC block 3 <sup>[5]</sup>            | Yes      |
| 234.0.0.0 to 234.255.255.255 <sup>[citation needed]</sup> | Unicast-prefix-based                     | Yes      |
| 239.0.0.0 to 239.255.255.255                              | Administratively scoped <sup>[1]</sup>   | Yes      |

zdroj: https://en.wikipedia.org/wiki/Multicast\_address

| Well-Known Reserved Multicast Addresses |                         |  |  |  |  |
|-----------------------------------------|-------------------------|--|--|--|--|
| Address                                 | Usage                   |  |  |  |  |
| 224.0.0.1                               | All multicast hosts     |  |  |  |  |
| 224.0.0.2                               | All multicast routers   |  |  |  |  |
| 224.0.0.4                               | DVMRP routers           |  |  |  |  |
| 224.0.0.5                               | All OSPF routers        |  |  |  |  |
| 224.0.0.6                               | OSPF designated routers |  |  |  |  |
| 224.0.0.9                               | RIPv2 routers           |  |  |  |  |
| 224.0.0.10                              | EIGRP routers           |  |  |  |  |
| 224.0.0.13                              | PIM routers             |  |  |  |  |
| 224.0.0.22                              | IGMPv3                  |  |  |  |  |
| 224.0.0.25                              | RGMP                    |  |  |  |  |

zdroj: https://tutorzine.com/introduction-to-ip-multicasting/

### Multicast - Princip fungování

- V první řadě je nutné aby zařízení, která se mají multicastové komunikace účastnit ji podporovala a byla na nich povolena
  - S koncovými stanice obvykle problém není, ale na L2 i L3 prvcích se multicast často zakazuje
    - Důvodem je jak bezpečnost tak stabilita sítě, protože multicast může zařízení více zatěžovat
- Následně je nutné, aby se koncová stanice registrovala alespoň do jedné multicastové skupiny
  - Samozřejmě může i do více
  - Registrací stanice vyjadřuje přání přijímat data skupiny
  - K registrace s využívá protokol IGMP
- Samotný přenos se liší v rámci LAN a WAN
  - v L2 se použije multicastová MAC
  - V L3 je třeba použít multicastové směrování k doručování dat
    - Jedná se např o PIM-SM, PIM-DM, DVMRP, MOSPF



zdroj: https://community.arubanetworks.com/blogs/arunhasan11/2020/10/20/how-to-configure-verify-and-troubleshoot-igmp-and-pim-sm-functionality

### Multicast - Chování na L2 a L3

#### Chování na L2

- Velice podobné broadcast
- Pro switch jsou dvě možné varianty
  - Bez IGMP Snoopingu data se kopírují na všechny porty kromě příchozího
    - Opět je třeba řešit zacyklení STP
  - S IGMP Snoopingem data se kopírují jen na porty, kde je o daný multicast zájem
- Na rozdíl od broadcastu se ale nezpracovává na všech stanicích,
   ale jen na těch, které mají o data zájem jsou součástí skupiny
  - To poznají na základě MAC, ve které je část IP adresy

#### Chování na L3

- Zde je situace proti unicastu složitější, protože paket může být nutné zaslat na více portů
- Je nutné předcházet zacyklení proto se vytváří distribuční strom a data se posílají jen do větví
  - Kořenem stromu je buď první router u zdroje nebo například dohodnutý router



zdroj:

https://support.huawei.com/enterprise/en/doc/EDOC1100116611/a0355a 52/igmp-snooping

# Multicast – Registarace do skupiny: IGMP

- IGMP Internet Group Management Protocol
- Slouží ke komunikaci mezi lokální stanicí a místním routerem
- Pokud stanice chce přijímat multicast protokol, musí se zaregistrovat na lokálním routeru
- Router musí vědět, že na daném portu odkud přišel požadavek je někdo kdo chce přijímat multicast data dané skupiny
- Zároveň routeru umožňuje zjišťovat, zda registrovaná zařízení mají o členství stále zájem
  - Aby se detekovaly mrtvé stanice /aplikace
  - A aby se tím snížil zbytečný trafik
  - Zjišťování probíhá opakovaně protože se mění v čase
- Existují tři veze IGMP
  - IGMPv1
  - IGMPV2
  - IGMPv3



# Multicast – Registarace do skupiny: IGMPv1

- Obsahuje dva typy zpráv
  - Reportovací
    - Klient informuje lokální router o tom, že chce být člen skupiny
  - Dotazovací
    - Router se ptá klientů, zda jsou stále ještě součástí skupin do kterých se
      - Cílem je eliminovat zbytečné přenosy
      - Pokud neodpoví nikdo, skupina na routeru zanikne
      - Dotaz se posílá každých 60s, s tím že timeout je 180s
      - Dotaz se posílá na 224.0.0.1 s TTL=1
        - » Neopustí lokání síť
      - Vzniká zde problém, že router se nedozví o tom, že stanice opustila skupinu
        - » Například proto, že klient ukončil aplikaci



# Multicast – Registarace do skupiny: IGMPv2

- Vychází s IGMPv1 snaží se řešit jeho nedostatky
- Zavádí proti IGMPv1 čtyři novinky:
  - Zavádí Leave message, kde klient informuje server, že už není členem skupiny
    - Ta se posílá na IP 224.0.0.2
    - Urychluje ukončení zbytečných streamů a zároveň zánik prázdných skupin
  - Upravuje timeouty
    - Dotaz na hosty se posílá každých 125s
  - Zavádí volbu hlavního routeru v dané sítí
    - Pokud je jich v jedné LAN více
    - Router s nejnižší IP ( porovnáno binárně )
    - Pokud zaslechnu dotazovací zprávu od routeru s nižší IP,
       přestane své zprávy na 400s posílat, pokud pak další neuslyší považuje
       původní stanici za mrtvou a začne posílat dotazy čímž dojde k nové volbě
  - Zavádí specifická dotazy pro danou skupinu
    - Dokáže nově adresovat hosty v jednotlivých skupinách

#### IGMPv2 – Joining a Group



#### IGMPv2 - Leaving a Group



#### IGMPv2 – Maintaining a Group



# Multicast – Registarace do skupiny: IGMPv3

- Opět vychází z IGMPv1 a IGMPv2 a je s nimi zpětně kompatibilní
- Info o opuštění skupiny posílá na 224.0.0.22
- Nově zavádí možnost více zdrojů v jedné skupině
  - Tedy už nemusí být jen jeden zdroj dat, ale může jich být více
  - Nepřipojuji se tedy jen ke skupině, ale i ke konkrétnímu zdroj
  - Nově tedy rozlišujeme dva modely
    - ASM Any source multicast
      - Sice může být více zdrojů v jedné skupině, ale nerozlišují se
    - SSM Source specific multicast
      - Může být více zdrojů, které jsou ale nově díky IGMPv3 rozlišitelné a je tedy možné si zvolit skupiny i zdroj

#### IGMPv3 – Joining a Group



zdroj: https://mrncciew.com/2012/12/25/igmp-basics/

## Multicast - Skupinové směrování

- IGMP nám vyřešilo registraci stanic do jednotlivých skupin na lokálních routerech
- Dalším krokem je přenos a směrování data mezi zdrojem a přijímačem
- S běžnými směrovacími metodami zde nevystačíme

Protože cílů kam data směruje může být více - dle příslušnosti přijímačů ve skupinách za jednotlivými

porty routeru

- Nad sítí, což je zdroj/e, seznam příjemců a seznam routerů, se snažíme vytvořit strom
  - Aby bylo možné společnou cestou posílat data jen jednou
  - Stromy jsou dvojího typu source-base a shared-base
- Směrovacích protokolů v multicast je více:
  - DVMRP
  - MOSPF
  - PIM-DM
  - PIM-SM
  - CBT



zdroj: https://www.researchgate.net/figure/Classification-of-Multicast-Routing-Protocols\_fig2\_278023165

## Multicast - Skupinové směrování: Stromy

- Source-base tree Source tree Zdrojový strom
  - Kořen je vysílač, listy jsou příjemci
  - Pro různé zdroje v jedné skupině budou různé stromy
    - Označují se (S,G), např (192.168.1.1, 225.1.1.1)
  - Využívají jej Dense mode protokoly ( husté )
- Shared-base tree Shared tree sdílené stromy
  - Kořen stromu pro danou skupinu je vždy na jednom místě bez ohledu na zdroj dat
  - Kořen je označován jako RP Rendesvous point
  - Označované jako (\*, G), např (\*, 225.1.1.1)
  - Existuje ve dvou variantách
    - Jednosměrný data jsou unicastem poslána na kořen a ten pak zajišťuje jejich distribuci
    - Obousměrný zdroj posílá data směrem ke kořeni a zároveň směrem k listům
  - Využívají jej Sparce mode protokoly ( řídké )
  - Vzniká problém při výpadku RP



# Multicast – Skupinové směrování: Stromy: Jednosměrný a obousměrný





Jednosměrný doručovací strom

Obousměrný doručovací strom

# Multicast - Skupinové směrování: Typy protokolů

#### Dense mode

- Využívají zdrojové stromy
  - Kořen stromu je zdroj dat
- Využívají "push" principu
  - Primární předpoklad, že data jsou třeba všude do všech větví stromu
  - Tam, kde jsou větve bez účastníka multicastového provozu, je poslána pro danou větech "prune" zpráva
    - Ta má jen omezenou platnost
  - Po přijetí "prune" už nejsou do dané větve posílána data dané multicastové skupiny
    - Větev byla "oříznuta" "ořezávání větví"
- Používá se tam, kde předpokládáme, že většina směrovačů bude součástí multicastu - "husté zastoupení" / "hustý provoz"
  - Nejde o množství dat, ale zastoupení směrovačů
- Příkladem jsou protokoly DVMRP a PIM-DM

#### Sparce mode

- Využívá sdílené stromy
  - Kořen stromu může být libovolný
- Využívají "pull" principu
  - Snaží se šetřit přenosy, takže posílá data jen tam, kde jsou požadována
  - · Pokud se přijímač přihlásí přes IGMP do multicastové skupiny, router pošle toto info směrem ke kořeni stromu
    - Platnost přihlášení je časově omezena
    - Pokud v dané větvi není žádný živý přijímač je "oříznuta"
- Používá se tam, kde se předpokládá řídké zastoupení směrovačů v multicastové komunikaci proto "řídký"
- Příkladem jsou protokoly PIM-SM či CBT



zdroj: https://www.packetflow.co.uk/what-is-pim-protocol-independent-multicast/

## Multicast - Skupinové směrování: DVMRP

- DVMRP Distance Vector Multicast Routing protocol
- Používá source base stromy a tedy se jedná o dense mode protokol
  - "hustý režim"
- Používá záplavové doručování a ořezávání hran
- Vychází z RIP protokolu, ale je výrazně složitější
- Sám si podobně jako RIP sestavuje i unicastovou směrovací tabulku
  - Je v tomhle ohledu nezávislý
- Strom vytváří pomocí Reverse Path Multicasting (RPM)
  - Pokud přijme zprávu pomocí RP a unicastové směrovací tabulky zkontroluje zda se jedná o nejkratší možnou cestu
    - Pokud ano, pošle data dále na všechny rozhraní krom toho odkud přišel
    - Pokud ne, data zahodí
- Pokud v dané podsíti za routerem už není žádná živá multicastová stanice, posílá **Prune** a dočasně se odpojuje od stromu

## Multicast - Skupinové směrování: DVMRP: Příklad



## Multicast – Skupinové směrování: MOSPF

- MOSPF Multicast OSPF
- Používá source base stromy a tedy se jedná o dense mode protokol
  - "hustý režim"
- Vychází a používá OSPF
  - Unicastové
- Každý MOSPF router v paměti drží info o celé topologii sítě
- Do ceny cest a tedy následně do výpočtu se zohledňuje i počet stanic stanic na dané cestě
  - Čím více stanic tím lépe tím více požadavků odbavím jednou kopií dat
- Je to patrně jediný zástupce link state protokolů pro multicast, ale reálně se příliš nepoužívá
  - Problém je v náročnosti přepočtu po každé změně v síti

### Multicast - Skupinové směrování: PIM-DM

- PIM-DM Protokol Independent Multicast Dense Mode
- Používá source base stromy a tedy se jedná o dense mode protokol
  - "hustý režim"
    - Stejně jako DVMRP předpokládá, že všichni chtějí přijímat
- Může být použit libovolný směrovací protokol pro zjištění reverzní cesty (RPF Reverse Path Forwarding) pro zjištění nejkratší cesty / eliminaci smyček
- Ve výchozím stavu používá záplavové směrování s následným ořezáváním hran
  - Flood-and-prune
- Existenci ostatních směrovačů zjišťuje pomocí Hello zpráv, které cyklicky každých 30s posílá ostatním směrovačům
  - Tím eliminuje čas, po který by posílal data směrem, kde už nejsou potřeba

## Multicast - Skupinové směrování: PIM-SM

- PIM-SM Protokol Independent Multicast Sparse Mode
- Používá shared base stromy a tedy se jedná o sparse mode protokol
  - "řídký režim"
  - Jako RP je použitý router s nejvyšší IP a je označován jako DR -Designated Router
- Používá Join zprávy
- Nalezení reverzní cesty (RPF) je nezávislé na konkrétním směrovacím protokolu
- Doručovací stromy se budují mezi příjemcem a RP (Randevous Point) univerzální (ASM – Any Source Multicast) strom
- Pokud je cesta ke konkrétnímu zdroji kratší, přechází PIM-SM od ASM ke SSM (Source Specific Multicast)

### Multicast - Skupinové směrování: CBT

- CBT Core Base Tree
- Přebírá charakteristiky PIM-SM
- Řídký režim, explicitní připojení, sdílené doručovací stromy
- Efektivnější při vyhledávání zdrojů než PIM-SM
- Rozděluje síť na jednotlivé Area a vytváří infrastrukturu (páteř) pro doručování multicast zpráv
  - V každé oblasti je jeden "páteřní router"
- Není komerčně používán

# Multicast - Směrování :Porovnání směrovacích protokolů

| Protocol | Dense<br>Mode? | Sparse<br>Mode? | Implicit<br>Join? | Explicit<br>Join? | (S,G) Source- base tree | (*,G)<br>shared<br>tree? |
|----------|----------------|-----------------|-------------------|-------------------|-------------------------|--------------------------|
| DVMRP    | Yes            | No              | Yes               | No                | Yes                     | No                       |
| MOSPF    | Yes            | No              | No                | Yes               | Yes                     | No                       |
| PIM-DM   | Yes            | No              | Yes               | No                | Yes                     | No                       |
| PIM-SM   | No             | Yes             | No                | Yes               | Yes,<br>maybe           | Yes,<br>initially        |
| СВТ      | No             | Yes             | No                | Yes               | No                      | Yes                      |

### Anycast

- Specifický typ přenosu dat a směrování, kde cílem není
  - Jeden konkrétní stroj ( unicast )
  - Všechny stroje v dané síti ( broadcast )
  - Všechny stroje v dané skupině ( multicast )
- Cílem je jeden stroj ze skupiny
- Směrování záleží na zadaných konstantách zdrojů a aktuálním stavu zatížení sítě
- Typické použití je připojení na CDN
  - CDN Content delivery network
    - Sítě poskytující obsah například obrázky
    - Data jsou typy uložena násobně
    - Je "jedno", který z dostupných zdrojů použiji
    - Vybírám tedy jeden z množiny



### Geocast

- Specifická varianta multicastu
- Specifický typ přenosu, kde cílem jsou všechny stroje v dané "lokalitě"
  - Tedy například všechna zařízení v Africe
  - Nemusí jít o opravdu všechna, ale může jít o všechna má zařízení v Africe
  - Není nutné vázanou na kontinenty
- Adresa geocastu může mít tři podoby
  - Bod
  - Kruh se středem a poloměrem
  - Mnohoúhelník defakto seznam bodů



### Porovnání typů přenosů Unicast, Broadcast, Multicast, Anycast



Unicast: One specific receiver



Broadcast: Many receivers, all on the network



Multicast: Many receivers, all of a specific group



Anycast: One receiver, "nearest" of a specific group



Geocast: Many receivers, all of a geographic region

Pictures: Wikipedia