

Ano Lectivo 2004/2005

Prof. Márcio Santos http://www.marcio.site.vu informarcio@gmail.com

Turma 12º21

Estrutura, Organização e Tratamento de Dados

Unidade 5: Álgebra Relacional e SQL

SQL - STRUCTURED QUERY LANGUAGE

1 - Evolução histórica

A história da linguagem SQL começa em Junho de 1970 com a publicação por E. F. Cood, no ACM journal, de um artigo intitulado "A Relational Model of Data for Large Shared Data Banks".

A primeira implementação da linguagem SEQUEL foi desenvolvida pela IBM e tinha por objectivo a implementação do modelo de Cood. A evolução desta linguagem deu origem ao SQL.

A primeira implementação comercial de SQL foi realizada pela Relational Software, Inc., hoje conhecida por Oracle Corporation.

Nos dias de hoje, a linguagem SQL é considerada um Standard dos Sistemas Gestores de Base de Dados Relacionais. Por isso, todos os fabricantes a integram nos seus produtos.

Existem, até ao momento, 5 gerações de linguagem:

1ª geração - Código Máquina

2ª geração - Assembley

3ª geração -Pascal, C, Cobol, Fortran, Basic

4ª geração - SQL

5ª geração - C++, Java, Delphi, Visual Basic.

Embora se possa pensar que o SQL resulta de uma evolução das linguagens de 3ª geração, isso não é verdade.

As características abreviadas das linguagens de 3ª geração são:

- Existências de variáveis, vectores,
- Existências de instruções condicionais (If, Switch, Case)
- Existência de ciclos (For, While, Do., While, Repeat... Until)
- Possibilidade de escrita de funções e procedimentos.

Ora nenhuma destas características está presente na linguagem SQL, sendo uma linguagem que, pela sua simplicidade, não se destina apenas a informáticos, mas a todos os potenciais utilizadores de SGBDs.

2 - Definição

A SQL (Structured Query Language) é uma linguagem de interrogação para o sistema relacional. Sendo que, embora possua características que permitam criar, alterar e remover todas os componentes de uma base de dados, como tabelas, consultas, chaves, etc., será apresentada como linguagem de manipulação de dados.

A SQL que será apresentada, baseia-se na estrutura de funcionamento de um SGBDR em plataforma Windows, o Microsoft Access. No entanto, ao longo destas notas, serão apresentados os confrontos com outros SGBDR distintos: O Sql Server (Microsoft), o Sql AnyWhere (Sybase) e o Oracle (Oracle).

Estrutura básica de expressão de SQL:

SELECT (projecção da álgebra relacional)

FROM (lista das relações)

WHERE (predicado da selecção)

Ou seja:

SELECT a₁, a₂, a₃, ...a_n (campos pretendidos)

FROM r_1 , r_2 , r_3 , ... r_n (tabelas dos campos pretendidos)

WHERE p (condições a serem satisfeitas)

Sendo que a cláusula WHERE é opcional.

♦ Pretende-se seleccionar os nomes de balcões existentes na relação (A-CONTAS).

SELECT nome balcão

FROM a-contas

Nota: Nas linguagens formais (álgebra relacional), usa-se a noção matemática de conjuntos para exprimir relações, pelo que não aparecem tuplos repetidos. Em SQL é possível a duplicação nas relações.

3 - Comando SELECT (Selecção Simples)

A interrogação de qualquer Base de Dados Relacional faz-se sempre utilizando o comando SELECT. A sintaxe do comando SELECT é a seguinte:

SELECT campo₁, campo₂, ... campo_n

FROM tabela 1, tabela 2, tabela n

[WHERE Condição]

[GROUP BY]

[HAVING]

[ORDER BY]

Os parêntesis rectos, em sintaxes de comandos, indicam que essa componente é opcional, ou seja poderá ou não ser utilizada.

3.1 - Seleccionar todos os registos

Considerando uma tabela Postal, com os atributos Código e Local, pretende-se seleccionar todos os registos da tabela Postal.

	Access	Sql Server	Oracle	SyBase	

SELECT Código, Local

FROM Postal

SELECT Código, Local FROM Postal

Depois de executado o comando, o resultado obtido será:

Código	Local
1000	LISBOA
1100	LISBOA
1500	LISBOA
2000	SANTARÉM
2040	RIO MAIOR
2300	TOMAR
4000	PORTO

3.2 - Seleccionar todas as colunas

Considerando uma tabela Pessoa, com os atributos Id, Nome, Idade, Salário, Telefone e Cod postal, pretende-se seleccionar todas as pessoas da tabela Pessoa.

	Access	Sql Server	Oracle	SyBase
--	--------	------------	--------	--------

SELECT * FROM Pessoa

ld	Nome	Idade	Salário	Telefone	Cod_postal
42	António Dias	43	74000	789654	1000
5	Célia Morais	36	170000	123456	1100
32	Florinda Simões	35	147000		4000
37	Isabel Espada	28	86000		2040
49	José António	17	210000		1000
14	Nascimento Augusto	35	220000	456123	2300

A ordem pela qual as colunas são apresentadas é a ordem pela qual são colocadas na cláusula SELECT, ou, no caso de se colocar asterisco, é a ordem pela qual foram criadas na tabela.

Pretende-se seleccionar o nome, salário e idade das pessoas da tabela Pessoa.

Access	Sql Server	Oracle	SyBase		
OFLECT Name Only in the Landon Brown					

SELECT Nome, Salário, Idade FROM Pessoa

Depois de executado o comando, o resultado obtido será:

Nome	Salário	Idade
António Dias	74000	43
Célia Morais	170000	26
Florinda Simões	147000	35
Isabel Espada	86000	28
José António	210000	17
Nascimento Augusto	220000	35

3.3 - Restrição (Cláusula WHERE)

A operação de restrição permite restringir o número de linhas a apresentar, que satisfaçam a condição pretendida.

No entanto, para efectuar as restrições, é necessária a utilização de operadores que serão apresentados de seguida:

4 - Operadores

4.1 - Operadores Relacionais

<u> </u>				
Operador	Descrição	Exemplo	Resultado	
=	Igual a	7=5	Falso	
>	Maior que	7>5	Verdadeiro	
<	Menor que	7<5	Falso	
>=	Maior ou Igual que	7>=5	Verdadeiro	
<=	Menor ou Igual que	7<=5	Falso	
<> ou !=	Diferente	7<>5	Verdadeiro	

Pretende-se seleccionar, da tabela Pessoa, todas as pessoas com idade igual a 35 anos.

Access	Sql Server	Oracle	SyBase
--------	------------	--------	--------

SELECT *

FROM Pessoa

WHERE idade = 35

ld	Nome	Idade	Salário	Telefone	Cod_postal
32	Florinda Simões	35	147000		4000
14	Nascimento Augusto	35	220000	456123	2300

♦ Pretende-se seleccionar, da tabela Pessoa, a identificação (Id), o Nome e Salário das pessoas com idade maior ou igual a 18 anos.

Access Sql Server Oracle SyBase

SELECT Id, Nome, Salário FROM Pessoa WHERE idade >= 18

4.2 - Operadores Lógicos

Operador	Exemplo
AND	condição ou atributo AND condição ou atributo
OR	condição ou atributo OR condição ou atributo
NOT	NOT condição

♦ Pretende-se seleccionar, da tabela Pessoa, o Id, Nome, Idade e Salário de todas as pessoas com idade entre os 30 e os 40 anos.

Access Sql Server Oracle SyBase

SELECT Id, Nome, Idade, Salário

FROM Pessoa

WHERE idade >= 30 AND idade <= 40

Depois de executado o comando, o resultado obtido será:

ld	Nome	Idade	Salário
5	Célia Morais	36	170000
32	Florinda Simões	35	147000
14	Nascimento Augusto	35	220000

♦ Pretende-se seleccionar, da tabela Pessoa, o Id, Nome e Idade das pessoas com idades maiores que os 40 anos e menores que os 30 anos.

is maiores que os 40 anos e menores que os 30 anos.							
Δορος	Sal Sarvar	Oracle	SyRasa				

SELECT Id, Nome, Idade

FROM Pessoa

WHERE idade < 30 OR idade > 40

Depois de executado o comando, o resultado obtido será:

ld	Nome	Idade
42	António Dias	43
37	Isabel Espada	28
49	José António	17

♦ Pretende-se seleccionar, da tabela Pessoa, o Id, Nome e Idade das pessoas com idades maiores que os 40 anos e menores que os 30 anos.

Access	3	Sql Server	Oracle	SyBase

SELECT Id, Nome, Idade

FROM Pessoa

WHERE **NOT** (idade >= 30 **AND** idade <= 40)

Depois de executado o comando, o resultado obtido será:

ld	Nome	Idade
42	António Dias	43
37	Isabel Espada	28
49	José António	17

No caso apresentado, caso não sejam colocados os parêntesis, o resultado obtido é diferente e incorrecto.

Access	Sql Server	Oracle	SyBase

SELECT Id, Nome, Idade

FROM Pessoa

WHERE **NOT** idade >= 30 **AND** idade <= 40

Depois de executado o comando, o resultado obtido será:

ld	Nome	Idade
37	Isabel Espada	28
	José António	17

4.3 - Operador BETWEEN

Este operador permite especificar intervalos de valores.

SELECT campo₁, campo₂, ... campo_n

FROM tabela 1, tabela 2, tabela n

WHERE valor [NOT] **BETWEEN** valor1 **AND** valor2

♦ Pretende-se seleccionar, da tabela Pessoa, o Id, Nome, Idade e Salário de todas as pessoas com idade entre os 30 e os 40 anos.

Access Sql Server Oracle SyBase

SELECT Id, Nome, Idade, Salário

FROM Pessoa

WHERE idade **BETWEEN** 30 AND 40

Depois de executado o comando, o resultado obtido será:

ld	Nome	Idade	Salário
5	Célia Morais	36	170000
32	Florinda Simões	35	147000
14	Nascimento Augusto	35	220000

♦ Pretende-se seleccionar, da tabela Pessoa, o Id, Nome, Idade e Salário de todas as pessoas cuja idade não está compreendida entre os 30 e os 40 anos.

Access Sql Server Oracle SyBase

SELECT Id, Nome, Idade, Salário

FROM Pessoa

WHERE idade **NOT BETWEEN** 30 **AND** 40

Ou

SELECT Id, Nome, Idade, Salário

FROM Pessoa

WHERE **NOT** idade **BETWEEN** 30 **AND** 40

4.4 - Operador IN

Este operador permite especificar conjuntos de valores.

SELECT campo₁, campo₂, ... campo_n

FROM tabela 1, tabela 2, tabela n

WHERE valor [NOT] IN (valor₁, valor₂, valor_n)

♦ Pretende-se seleccionar, da tabela Postal, os códigos postais existentes para os locais (LISBOA e RIO MAIOR).

Access	Sql Server	Oracle	SyBase

SELECT *

FROM Postal

WHERE Local **IN** ("LISBOA", "RIO MAIOR")

Código	Local
1000	LISBOA
1100	LISBOA
1500	LISBOA
2040	RIO MAIOR

♦ Pretende-se seleccionar, da tabela Postal, os códigos postais existentes cujos os locais não sejam (LISBOA e RIO MAIOR).

Access Sql Server Oracle SyBase

SELECT *

FROM Postal

WHERE Local **NOT IN** ("LISBOA", "RIO MAIOR")

Depois de executado o comando, o resultado obtido será:

Código	Local
2000	SANTARÉM
2300	TOMAR
4000	PORTO

4.5 - Operador IS

Este operador permite efectuar o tratamento de nulos (NULL) – strings vazias. NULL não é zero, é string vazia. A comparação com NULL terá de ser efectuada sempre com o operador IS, caso contrário devolve sempre Falso.

SELECT campo₁, campo₂, ... campo_n

FROM tabela ₁ , tabela ₂, tabela _n

WHERE valor IS [NOT] NULL

Pretende-se seleccionar da tabela Pessoa, os Nomes das pessoas sem telefone.

Access	Sql Server	Oracle	SyBase

SELECT Nome

FROM Pessoa

WHERE Telefone IS NULL

Depois de executado o comando, o resultado obtido será:

Nome
Florinda Simões
Isabel Espada
José António

Pretende-se seleccionar, da tabela Pessoa, os dados das pessoas com telefone.

	,	· · · · · · · · · · · · · · · · · · ·	
Access	Sql Server	Oracle	SyBase

SELECT Id, Nome, Idade, Salário, Telefone, Cod_postal

FROM Pessoa

WHERE Telefone IS NOT NULL

Depois de executado o comando, o resultado obtido será:

ld	Nome	Idade	Salário	Telefone	Cod_postal
42	António Dias	43	74000	789654	1000
5	Célia Morais	36	170000	123456	1100
14	Nascimento Augusto	35	220000	456123	2300

4.6 - Operador LIKE

Access

Este operador permite resolver alguns problemas naturais que existem quando se pretende comparar strings.

Sal Server

A utilização do operador LIKE permite fazer comparações de partes da string. Para tal, utilizam-se dois WILDCARDS.

Oracle

WILDCARD	SIGNIFICADO
*	Qualquer string de zero ou mais caracteres
?	Um caracter qualquer

SyBase

Access		Sql Server	Oracle	SyBase	
WILDCARD			SIGNIFICADO		
%		Qualquer string	Qualquer string de zero ou mais caracteres		
_ (underscore)) Um caracter qu	alquer		

♦ Consideremos uma tabela Mensagem, com os atributos Id_Msg e Mensagem, referente a mensagens de uma empresa comercial.

Pretende-se seleccionar os códigos de mensagem e descrição das mensagens que comecem pela letra T.

Access Sql Server Oracle SyBase

SELECT *

FROM Mensagem

WHERE Mensagem LIKE "T*"

Depois de executado o comando, o resultado obtido será:

ld_Msg	Mensagem
80	Transportes
90	Telefonemas
105	Tratamentos

♦ Pretende-se seleccionar os códigos de mensagem e descrição das mensagens que terminem em "as".

Access	Sal Server	Oracle	SyBase
,	 	0.0.0.0	

SELECT *

FROM Mensagem

WHERE Mensagem LIKE "*as"

Depois de executado o comando, o resultado obtido será:

ld_Msg	Mensagem
10	Comissão de Vend as
90	Telefonem as

♦ Pretende-se seleccionar os códigos de mensagem e descrição das mensagens que possuam a palavra "Vendas".

Ac	ccess	Sql Server	Oracle	SyBase

SELECT *

FROM Mensagem

WHERE Mensagem LIKE "*Vendas*"

Depois de executado o comando, o resultado obtido será:

Id_Msg	Mensagem
10	Comissão de Vendas
40	Vendas Extra

Pretende-se seleccionar os códigos de mensagem e descrição das mensagens cuja segunda letra seja "e".

SELECT*

FROM Mensagem

WHERE Mensagem LIKE "?e*"

ld_Msg	Mensagem
40	Vendas Extra
90	T e lefonemas

4.7 - Precedência dos operadores

ORDEM	OPERADOR	SÍMBOLO
1 ^a Parêntesis		()
2 ^a	Multiplicação / Divisão	* /
3 ^a	Adição /Subtracção	+ -
4 ^a	NOT	
5 ^a	AND	
6 ^a	OR	

♦ Pretende-se seleccionar, da tabela Pessoa, o Id, Nome e Idade das pessoas com idades maiores que os 29 anos e sem telefone e as pessoas com idades inferiores a 28 anos.

Access	Sql Server	Oracle	SyBase
SELI	ECT Id, Nome, Idade		
FRO	M Pessoa		
WHE	RE Idade <= 27 OR		
Idade >= 30 AND			
Telefone IS NULL			

É equivalente a:

SELECT Id, Nome, Idade

FROM Pessoa

WHERE Idade <= 27 OR

(Idade >= 30 AND Telefone IS NULL)

♦ Pretende-se seleccionar, da tabela Pessoa, o Id, Nome e Idade das pessoas com idades maiores que os 29 anos e as pessoas com idades inferiores a 28 anos, que não possuam telefone.

Access	Sql Server	Oracle	SyBase	
SELECT Id, Nome, Idade				
FROM Pessoa				
WHERE (Idade <= 27 OR Idade >= 30)				
AND Telefone IS NIII I				

5 - Ordenação

A ordenação pode ser realizada através da cláusula ORDER BY no comando SELECT. Esta cláusula, se existir, aparece sempre posicionada no final do comando SELECT.

```
SELECT campo<sub>1</sub>, campo<sub>2</sub>, ... campo<sub>n</sub>
FROM tabela <sub>1</sub> , tabela <sub>2</sub>, .... tabela <sub>n</sub>
[WHERE Condição ]
[GROUP BY ......]
[HAVING ......]
```

[ORDER BY Campo [ASC | DESC], Campo [ASC | DESC]...]

Onde **Campo** representa o nome de um Campo, uma Expressão ou a Posição pela qual se pretende ordenar o resultado do SELECT.

ASC indica que a ordenação é ASCendente e DESC indica que a ordenação é DESCendente.

Por defeito, ou seja, caso não seja indicado um tipo de ordenação, esta é efectuada por ordem ascendente.

5.1 - Ordenando por uma coluna

Considerando a tabela Pessoa, pretende-se ordenar os dados por idade.

Access	Sql Server	Oracle	SyBase
SELECT *		SELECT *	
FROM Pesso	a ou	FROM Pessoa	
ORDER BY I	dade	ORDER BY Ida	ide ASC

Depois de executado o comando, o resultado obtido será:

ld	Nome	Idade	Salário	Telefone	Cod_postal
49	José António	17	210000		1000
37	Isabel Espada	28	86000		2040
32	Florinda Simões	35	147000		4000
14	Nascimento Augusto	35	220000	456123	2300
5	Célia Morais	36	170000	123456	1100
42	António Dias	43	74000	789654	1000

5.2 - Ordenando por várias colunas

Consideremos a tabela Comissões, com os atributos Id_comissão, Id_mensagem e valor. Pretende-se ordenar os dados da tabela comissão por Id_comissão e por Id_ mensagem.

Access Sql Server Oracle SvB	<u> </u>	<u> </u>				•
Access I Surserver I Oracie I Syr	000	Cy/Doo	Oragla	Cal Carvar	Λ 00000	
7.00000	ase	SyBase	Oracie	Sqi Server	Access	

SELECT *

FROM Comissão

ORDER BY Id_comissão, Id_mensagem

Depois de executado o comando, o resultado obtido será:

o comando, o rocanda o conar			
Id_comissão	ld_mensagem	Valor	
14	10	10500	
14	70	400	
14	100	3750	
25	10	2500	
25	30	3370	
37	40	14230	
47	110	120	

♦ Pretende-se ordenar os dados da tabela comissão, cujo Id_comissão seja inferior a 30, por Id comissão ascendentemente e por valor descendentemente.

	Access	Sql Server	Oracle	SyBase

SELECT *

FROM Comissão

WHERE Id_comissão < 30

ORDER BY Id comissão ASC, Valor DESC

Depois de executado o comando, o resultado obtido será:

Id_comissão	ld_mensagem	Valor
14	10	10500
14	100	3750
14	70	400
25	30	3370
25	10	2500

5.3 - Selecção de expressões

Consideremos a tabela Pessoa. Pretende-se o nome e idade de todas as pessoas, seleccionando a idade que irão ter daqui a 3 anos, ordenando os dados de saída por nome.

Access	Sal Server	Oracle	SvBase

SELECT Nome, Idade, Idade + 3 FROM Pessoa

ORDER BY Nome

Depois de executado o comando, o resultado obtido será:

Nome	Idade	Expr1002
António Dias	43	46
Célia Morais	36	39
Florinda Simões	35	38
Isabel Espada	28	31
José António	17	20

O resultado do cálculo é atribuído a uma Expr 1002, sendo que esta varia de sistema para sistema e é atribuída automaticamente.

♦ Pretende-se o nome e idade de todas as pessoas, seleccionando a idade que irão ter daqui a 3 anos, ordenando os dados de saída por nome, e atribuíndo a idade actual a (Idade_actual) e a idade daqui a 3 anos a (Idade_em_2004).

Access Sql Server Oracle SyBase

SELECT Nome, Idade AS Idade_actual, Idade+3 AS Idade_em_2004 FROM Pessoa

ORDER BY Nome

Depois de executado o comando, o resultado obtido será:

Nome	Idade_actual	ldade_em_2004
António Dias	43	46
Célia Morais	36	39
Florinda Simões	35	38
Isabel Espada	28	31
José António	17	20

5.4 - Ordenação e NULLs

A forma como o NULL é colocado no resultado ordenado de um SELECT depende de sistema para sistema.

Alguns sistemas consideram o valor NULL menor que qualquer outro valor. Outros colocam o valor NULL sempre no topo dos valores, seja a ordenação ascendente ou descendente.

5.5 - Eliminação de repetições (DISTINCT e ALL)

A cláusula DISTINCT colocada a seguir ao SELECT, permitir retirar os dados repetidos. A cláusula ALL colocada a seguir ao SELECT, mostra todos os conjuntos de valores existentes, repetidos ou não.

♦ Considerando uma tabela Postal, com os atributos Código e Local, pretende-se seleccionar todos os Locais da tabela Postal.

Access	Sql Server	Oracle	SyBase
SELECT ALL Local		SELECT DISTING	T Local
FROM Postal		FROM Postal	

aace ee comanace	, oo roodhadoo oo	iaco coiac.
Local		Local
LISBOA		LISBOA
LISBOA		SANTARÉM
LISBOA		RIO MAIOR
SANTARÉM		TOMAR
RIO MAIOR		PORTO
TOMAR		
PORTO		

Notas: As cláusulas DISTINCT e ALL só podem ser colocadas imediatamente a seguir ao SELECT.

Sintaxes inválidas:

SELECT Id, **DISTINCT** Id_mensagem SELECT **DISTINCT** Id, **ALL** Id_mensagem

6 - Juntando várias tabelas

O Modelo Relacional estabelece claramente as regras para a divisão da informação entre tabelas, de forma a evitar a duplicação da informação.

Esta dispersão da informação por diferentes tabelas é facilmente manipulável através da linguagem SQL, um vez que a ligação entre estas será realizada através das chaves estrangeiras.

A junção entre tabelas faz-se colocando na cláusula FROM o conjunto de tabelas que se pretende juntar.

SELECT campo₁, campo₂, ... campo_n *

FROM tabela 1, tabela 2, tabela n

Consideremos as seguintes relações (Pessoa e Postal):

ld	Nome	Idade	Telefone	Cod_postal
71	António Dias	43	789654	1000
54	Célia Morais	36	123456	1000
12	Isabel Silva	28		2040
49	José António	17	333555	2000

Código	Local
1000	Lisboa
2000	Santarém
2040	Rio Maior
4000	Porto

6.1 - Produto Cartesiano de Tabelas

Access Sql Server	Oracle	SyBase
-------------------	--------	--------

SELECT * FROM Pessoa, Postal

Obtém-se um resultado bastante inesperado e que consiste no produto cartesiano de dois conjuntos de elementos.

O produto cartesiano entre as tabelas Pessoa e Postal associa a cada linha da tabela Pessoa o conjunto das linhas da tabela Postal.

Dado que na tabela Pessoa existem 4 registos e na tabela Postal existem 4 registos, o resultado do produto cartesiano será 4*4 = 16 registos.

O resultado do produto cartesiano será:

ld	Nome	Idade	Telefone	Cod_postal	Código	Local
71	António Dias	43	789654	1000	1000	Lisboa
71	António Dias	43	789654	1000	2000	Santarém
71	António Dias	43	789654	1000	2040	Rio Maior
71	António Dias	43	789654	1000	4000	Porto
54	Célia Morais	36	123456	1000	1000	Lisboa
54	Célia Morais	36	123456	1000	2000	Santarém
54	Célia Morais	36	123456	1000	2040	Rio Maior
54	Célia Morais	36	123456	1000	4000	Porto
12	Isabel Silva	28		2040	1000	Lisboa
12	Isabel Silva	28		2040	2000	Santarém
12	Isabel Silva	28		2040	2040	Rio Maior
12	Isabel Silva	28		2040	4000	Porto
49	José António	17	333555	2000	1000	Lisboa
49	José António	17	333555	2000	2000	Santarém
49	José António	17	333555	2000	2040	Rio Maior
49	José António	17	333555	2000	4000	Porto

O pretendido seria a junção entre as tabelas Pessoa e Postal. Para tal é necessário, na cláusula WHERE, indicar as chaves estrangeiras de ligação.

Access Sql Server Oracle SyBase

SELECT *

FROM Pessoa, Postal

WHERE Cod_postal = Código

Neste caso, o resultado da selecção seria:

	· · · · · · · · · · · · · · · · · · ·					
ld	Nome	Idade	Telefone	Cod_postal	Código	Local
71	António Dias	43	789654	1000	1000	Lisboa
54	Célia Morais	36	123456	1000	1000	Lisboa
12	Isabel Silva	28		2040	2040	Rio Maior
49	José António	17	333555	2000	2000	Santarém

6.2 - <u>Equi-Join</u>

Acontece quando todas as colunas das tabelas são apresentadas e a ligação entre as tabelas é feita através de uma igualdade, dando origem assim a duas colunas de conteúdos exactamente iguais.

Access Sql Server Oracle SyBase
SELECT *

EDOM Deces

FROM Pessoa, Postal

WHERE Cod_postal = Código

Neste caso, o resultado da selecção seria:

ld	Nome	Idade	Telefone	Cod_postal	Código	Local
71	António Dias	43	789654	1000	1000	Lisboa
54	Célia Morais	36	123456	1000	1000	Lisboa
12	Isabel Silva	28		2040	2040	Rio Maior
49	José António	17	333555	2000	2000	Santarém

6.3 - Natural Join

Acontece quando todas as colunas envolvidas na ligação entre tabelas são apresentadas sem repetição de colunas.

epelição de colulia:	o.		
Access	Sql Server	Oracle	SyBase
	ECT Pessoa.*, Posta M Pessoa, Postal	l.Local	

WHERE Cod_postal = Código

Neste caso, o resultado da selecção seria:

ld	Nome	Idade	Telefone	Cod_postal	Local
71	António Dias	43	789654	1000	Lisboa
54	Célia Morais	36	123456	1000	Lisboa
12	Isabel Silva	28		2040	Rio Maior
49	José António	17	333555	2000	Santarém

Estes dois tipos de ligação entre tabelas fazem parte de um tipo de ligação mais geral denominada INNER JOIN.

Num INNER JOIN, apenas são apresentados os registos em que exista ligação entre as tabelas.

6.4 - INNER JOIN

Embora existam diversos tipos de ligação entre tabelas (JOIN), este é o tipo mais comum e utilizado.

♦ Pretende-se seleccionar o nome e morada completa (código e localidade) de todas as pessoas da tabela Pessoa.

Access Sql Server Oracle SyBase

SELECT Nome, Cod_postal, Local

FROM Pessoa, Postal

Where Cod_postal = Código

Depois de executados os comandos, os resultados obtidos serão:

Nome	Cod_postal	Local
António Dias	1000	Lisboa
Célia Morais	1000	Lisboa
Isabel Silva	2040	Rio Maior
José António	2000	Santarém

Embora ainda de uso pouco comum, é possível, em alguns sistemas, escrever o mesmo SELECT num formato em que se especifique a natureza do Join (INNER), no mesmo exemplo mas ordenando o resultado por Código Postal.

Access Sql Server Oracle SyBase

SELECT Nome, Cod_postal, Local

FROM Pessoa INNER JOIN Postal

ON Pessoa.Cod postal = Postal.Código

ORDER BY Pessoa.Cod postal

Depois de executados os comandos, os resultados obtidos serão:

Nome	Cod_postal	Local
António Dias	1000	Lisboa
Célia Morais	1000	Lisboa
José António	2000	Santarém
Isabel Silva	2040	Rio Maior

6.5 - OUTER JOIN

O conceito do Outer Join é obter numa ligação a totalidade das linhas de uma tabela, ainda que não exista o correspondente valor na outra tabela a que esta está ligada pela junção.

Pretende-se seleccionar o nome e morada completa (código e localidade) de todas as pessoas da tabela Pessoa, assim como todos os código postais existentes na tabela Postal.

Access	Sql Server	Oracle	SyBase
--------	------------	--------	--------

SELECT Nome, Cod_postal, Código, Local

FROM Postal LEFT JOIN Pessoa

ON Postal.Código = Pessoa.Cod postal

Depois de executados os comandos, os resultados obtidos serão:

Nome	Cod_postal	Código	Local
António Dias	1000	1000	Lisboa
Célia Morais	1000	1000	Lisboa
		1100	Lisboa
José António	2000	2000	Santarém
Isabel Silva	2040	2040	Rio Maior
		2300	Tomar
		4000	Porto

Todas as linhas da tabela Postal são apresentadas. Se existir correspondente na coluna Cod_postal da tabela Pessoa, são mostrados os dados, senão as entradas da tabela Pessoa são preenchidas a NULL.

Access	Sql Server	Oracle	SyBase

SELECT Nome, Cod_postal, Código, Local

FROM Postal, Pessoa

WHERE Código = Cod_postal (+)

Access Sql Server Oracle SyBase

> SELECT Nome, Cod_postal, Código, Local FROM Postal, Pessoa

WHERE Código * = Cod_postal

6.6 - OUTER JOIN

Quando o Outer Join é efectuado à direita, são considerados todos os registos da tabela da direita e apenas os registos correspondentes na tabela da esquerda.

Consideremos as seguintes relações (Pessoa e Comissão):

Id	Nome	Idade
71	António Dias	43
12	Isabel Silva	28
49	José António	17
85	João Silva	49

ld	ld_msg	Valor
49	10	1250
49	70	750
71	12	100
71	15	200

Pretende-se seleccionar todas as pessoas da tabela pessoa, assim como os correspondentes valores de comissão.

> Access Oracle Sql Server SyBase

> > SELECT Nome. Valor

FROM Comissão RIGHT JOIN Pessoa

ON Comissão.ld = Pessoa.ld

Depois de executados os comandos, os resultados obtidos serão:

Nome	Valor
António Dias	100
António Dias	200
Isabel Silva	
José António	1250
José António	750
João Silva	

Access Sql Server Oracle SyBase
--

SELECT Nome, Valor

FROM Comissão, Pessoa WHERE Comissão.ld (+) = Pessoa.ld

		. ,	
Access	Sql Server	Oracle	SyBase

SELECT Nome, Valor

FROM Comissão, Pessoa WHERE Comissão.ld = * Pessoa.ld

6.7 - SELF JOIN

- O Self Join é uma variante do Inner Join, em que se comparam duas colunas da mesma tabela.
- Pretende-se saber quais os tipos de códigos postais existentes diferentes do local LISBOA.

Access	Sql Server	Oracle	SyBase
SELEC	T p1.Código, p2.Loc	al	
FROM	Postal.p1, Postal.p2		
WHERE p1.Código = p2.Código			
AND			
	p2.Local <> "Lish	ooa"	

6.8 - UNION

Uma união não é propriamente uma ligação entre tabelas. A **UNION** permite juntar o conteúdo de múltiplos comandos SELECT.

Pretende-se juntar o código e a descrição da tabela mensagens aos códigos postais.

Access	Sql Server	Oracle	SyBase
Access		Olacie	OVDase

SELECT Id_msg, Mensagem FROM Mensagem **UNION**

SELECT Código, Local FROM Postal

Depois de executados os comandos, os resultados obtidos serão:

ld_msg	Mensagem
10	Comissão de vendas
30	Vendas extra
40	Refeições
1000	Lisboa
2040	Rio Maior
4000	Porto

Na UNION, o número de campos a seleccionar em cada um dos comandos SELECT tem de ser igual. O nome dos campos não é relevante, mas o tipo de dados que pode ser agrupado depende de sistema para sistema.

♦ Pretende-se juntar as tabelas Postal (cujos locais contenham a string "OR") e Mensagem (cujas Id sejam inferiores a 30), ordenando o resultado por mensagem.

()			-
Access	Sql Server	Oracle	SyBase

SELECT Id_msg, Mensagem FROM Mensagem

WHERE Id_msg < 30

UNION

SELECT Código, Local FROM Postal

WHERE Local LIKE "*OR*"

ORDER BY mensagem

6.9 - INTERSECT

O operador **INTERSECT** permite juntar o resultado de dois comandos SELECT, apresentando apenas as linhas que resultem de ambos os comandos.

Pretende-se seleccionar as linhas da tabela Postal cujo Código é menor ou igual a 5000 e é maior ou igual a 3000.

Access	Sql Server	Oracle	SyBase	
SELECT * FROM Postal				
WHERE Código >= 3000 AND Código <= 5000				
Access	Sql Server	Oracle	SyBase	

SELECT * FROM Postal WHERE Código >= 3000

INTERSECT

SELECT * FROM Postal WHERE Código <= 5000

6.10 - MINUS

O operador <u>MINUS</u> devolve os registos que resultem do primeiro SELECT e que não aparecem no segundo.

♦ Pretende-se seleccionar as linhas da tabela Postal cujo Código é menor ou igual a 5000, ignorando todos os elementos cujo código está entre 2000 e 3000.

<i>,</i> 0	,	0		
Access	Sql Server	Oracle	SyBase	
SELECT * FROM Postal				
WHERE Código <= 5000 AND				
Código NOT BETWEEN 2000 AND 3000				
Access	Sql Server	Oracle	SyBase	

SELECT * FROM Postal WHERE Código <= 5000

MINUS

SELECT * FROM Postal WHERE Código BETWEEN 2000 AND 3000

6.11 - RESUMO DAS JUNÇÕES

<u> </u>	<u> </u>
JOIN	Descrição
Produto Cartesiano	Juntar cada linha da tabela T1 com todas as linhas de T2.
INNER JOIN	Junção tradicional, em que apenas são apresentadas as linhas
	comuns às duas tabelas.
OUTER JOIN	Extensão do Inner Join ao proporcionar todos os registos de
	uma das tabelas, mesmo que sobre estes não exista qualquer
	ligação.
UNION	Todos os registos de qualquer das pesquisas (sem duplicados).
UNION ALL	Todos os registos de qualquer das pesquisas (com duplicados).
INTERSECT	Todos os registos comuns a ambas as pesquisas.
MINUS	Todos os registos da primeira pesquisa que não aparecem na
	segunda.

7 - Funções de agregação

Estas funções, também designadas por <u>Funções Estatísticas</u>, têm por objectivo obter informação sobre conjuntos de linhas especificadas na cláusula WHERE ou sobre grupos de linhas indicadas na cláusula GROUP BY.

Função	Descrição
COUNT	Devolve o número de linhas.
MAX	Devolve o maior valor da coluna.
MIN	Devolve o menor valor da coluna.
SUM	Devolve a soma de todos os valores da coluna.
AVG	Devolve a média (AVeraGe) de todos os valores da coluna.

7.1 - FUNÇÃO COUNT

A função de agregação COUNT devolve o número de linhas que resultam num SELECT. Pode ser utilizada de três formas distintas:

Forma	Descrição
COUNT (*)	Devolve o número de linhas que resulta de um SELECT.
COUNT (coluna)	Devolve o número de ocorrências na coluna diferentes de NULL.
COUNT (DISTINCT coluna)	Devolve o número de ocorrências (sem repetições) na coluna.

Consideremos a seguinte relação Pessoa:

ld	Nome	Idade	Salário	Telefone	Cod_postal
42	António Dias	43	94000	7896544	1000
5	Célia Morais	36	170000	1234565	1000
32	Florinda Simões	35	147000		4000
37	Isabel Espada	28	86000		2040
49	José António	17	210000		1000
14	Nascimento Augusto	35	220000	4561233	2300
75	Pedro Santos	42	235000		2040

Pretende-se saber quantas pessoas existem na tabela Pessoa.

Access Sql Server	Oracle	SyBase
-------------------	--------	--------

SELECT COUNT (*) AS Total

FROM Pessoa

Total	
	7

♦ Pretende-se saber quantas pessoas existem na tabela Pessoa e quantas pessoas possuem telefone.

Access Sql Server Oracle SyBase

SELECT COUNT (*) AS [Total de pessoas],

COUNT (Telefone) AS [Total de telefones]

FROM Pessoa

Depois de executado o comando, o resultado obtido será:

Total de pessoas	Total de telefones
7	3

Pretende-se saber quantos Códigos postais diferentes existem na tabela Pessoa.

Access Sql Server Oracle SyBase

SELECT COUNT (DISTINCT Cod_postal) AS [Cód. postais diferentes] FROM Pessoa

Depois de executado o comando, o resultado obtido será:

Cód.postais diferentes
4

7.2 - MIN e MAX

As funções de agregação MIN e MAX permitem obter o menor e o maior valor de uma determinada coluna.

Pretende-se saber qual o salário mais elevado e o salário mais baixo da tabela Pessoa.

Access	Sql Server	Oracle	SyBase

SELECT MAX (salário) AS [Salário mais elevado], MIN (salário) AS [Salário mais baixo]

IVIIIN (Salario) AS [Salario IIIa

FROM Pessoa

Depois de executado o comando, o resultado obtido será:

Salário mais elevado	Salário mais baixo	
235000	86000	

Pretende-se saber a idade da pessoa mais nova e a idade da pessoa mais velha da tabela Pessoa.

Access	Sql Server	Oracle	SyBase
--------	------------	--------	--------

SELECT MAX (idade) AS [Maior Idade], MIN (idade) AS [Menor Idade] FROM Pessoa

Depois de executado o comando, o resultado obtido será:

Maior Idade	Menor Idade
43	17

♦ Pretende-se saber o nome da primeira e da última pessoa da tabela Pessoa, se a lista fosse ordenada alfabeticamente.

Access	Sql Server	Oracle	SyBase
0=1=0=1441//	\	N	-

SELECT MAX (nome) AS [Primeiro], MIN (nome) AS [Último] FROM Pessoa

Depois de executado o comando, o resultado obtido será:

Primeiro	Último
António Dias	Pedro Santos

7.3 - SUM

A função SUM devolve a soma de uma determinada coluna.

Pretende-se saber o total de salários da tabela Pessoa.

Access	Sql Server	Oracle	SyBase
--------	------------	--------	--------

SELECT SUM (salário) AS [Total de Salários]

FROM Pessoa

Total de Salários 1162000

Pretende-se saber o total das idades da tabela Pessoa.

Access Sql Server Oracle SyBase

SELECT SUM (idade) AS [Total das idades]

FROM Pessoa

Depois de executado o comando, o resultado obtido será:

Total das idades 236

Pretende-se saber o total de salários da tabela Pessoa, assim como o total dos salários do próximo mês, sabendo que os salários serão aumentados em 3%.

Access Sql Server Oracle SyBase

SELECT SUM (salário) AS [Total de Salários],

SUM (salário) * 1.03 AS [Total de Salários com aumento]

FROM Pessoa

Depois de executado o comando, o resultado obtido será:

Total de Salários	Total de Salários com aumento
1162000	1196860

7.4 - AVG

A função AVG devolve a média dos valores de uma determinada coluna.

Pretende-se saber a média das idades da tabela Pessoa.

Access	Sql Server	Oracle	SyBase	

SELECT AVG (idade) AS [Média de Idades] FROM Pessoa

Depois de executado o comando, o resultado obtido será:

Média de idades 33.714285714285714

Existem funções que permitem formatar o resultado do SELECT. Embora essas funções dependam de cada um dos sistemas, no Access a função FORMAT permite indicar sobre quantas casas decimais se pretende visualizar o resultado.

Pretende-se saber a média das idades da tabela Pessoa, formatada a duas casas decimais.

Access Sql Server Oracle SyBase	
---------------------------------	--

SELECT FORMAT (AVG (idade), '0.00') AS [Média de Idades]

FROM Pessoa

Depois de executado o comando, o resultado obtido será:

Média de idades
33.71

NOTA FINAL:

As funções MIN, MAX e COUNT podem ser utilizadas com qualquer tipo de dados. As funções SUM e AVG só podem ser aplicadas a campos numéricos. Se existirem valores NULL estes são ignorados por qualquer uma das funções.

8 - Agrupando a informação

As funções de agregação são uma ferramenta útil quando usada para obter informação resumida sobre o resultado de um comando SELECT.

No entanto, estas funções podem ser particularmente úteis no tratamento de informação de forma agrupada, não como um todo, mas em grupos mais pequenos.

♦ Pretende-se mostrar as comissões e respectivos valores, ordenando o resultado por Id da tabela comissão.

Access	Sql Server	Oracle	SyBase
			- 7

SELECT Id_comissão, Valor

FROM Comissão ORDER BY Id comissão

Depois de executado o comando, o resultado obtido será:

ao excedidade e comanae, e recalidade oblido cora.				
Id_comissão	Valor		ld_comissão	Valor
14	2600		37	120
14	400		37	5500
14	3750		37	14230
14	10500		37	20
25	370		40	20
25	2400		42	150
25	100		42	20

Pretende-se saber o total de valores de comissões.

Access Sql Server	Oracle	SyBase
-------------------	--------	--------

SELECT SUM(Valor) AS Total

FROM Comissão

Depois de executado o comando, o resultado obtido será:

Total	
	40180

No entanto, se o objectivo fosse obter a soma das comissões por cada Id_comissão, o resultado apresentado não seria o pretendido. Para resolver essas questões é necessário, antes de aplicar as funções de agregação, possuir a informação agrupada.

SELECT campo₁, campo₂, ... campo_n

FROM tabela 1, tabela 2, tabela n

[WHERE Condição]

[GROUP BY]

[HAVING]

[ORDER BY]

8.1 - Cláusula GROUP BY

Esta cláusula divide o resultado de um SELECT em grupos de resultados que irão ser tratados com as funções de agregação.

- A cláusula GROUP BY é utilizada para agrupar informação.
- Os registos são processados em grupos de características semelhantes.
- As funções de agregação podem ser utilizadas para obter informação sobre cada um dos grupos.
- Pretende-se saber, para cada Id, o total de valores de comissões.

to the control party based in the control of the co			
Access	Sql Server	Oracle	SyBase
SELEC	CT Id_comissão, SUI	M(Valor) AS Total	
FROM Comissão			
GROU	GROUP BY Id_comissão		

Id_comissão	Total
14	17250
25	2870
37	19870
40	20
42	170

Pretende-se saber, para cada Id, o maior valor de comissão.

Access Sql Server Oracle SyBase

SELECT Id_comissão, MAX(Valor) AS Maior

FROM Comissão

GROUP BY Id comissão

Depois de executado o comando, o resultado obtido será:

Id_comissão	Maior
14	10500
25	2400
37	14230
40	20
42	150

Poderão ser utilizadas todas as outras funções de agregação, sobre os dados agrupados, sendo que também será possível efectuar ordenação sobre os dados agrupados e calculados.

♦ Pretende-se saber para cada Id, o maior valor de comissão, efectuando a ordenação descendente por maior valor de comissão.

Access	Sql Server	Oracle	SyBase
SELEC	SELECT MAX(Valor) AS Maior, Id_comissão		
FROM Comissão			
GROUP BY Id_comissão			
ORDEF	R BY MAX(Valor) DE	SC	

Depois de executado o comando, o resultado obtido será:

Maior	ld_comissão
14230	37
10500	14
2400	25
150	42
20	40

8.2 - Cláusula HAVING

Esta cláusula serve para fazer restrições ao nível dos grupos que são processados.

Esta cláusula actua sobre o resultado dos grupos, que resultam da função de agrupamento ORDER BY.

♦ Pretende-se saber, para cada Id, o total de valores de comissões. No entanto, só são relevantes os totais superiores a 1000.

Access	Sql Server	Oracle	SyBase
SELEC	SELECT Id_comissão, SUM(Valor) AS Total		
FROM Comissão			
GROUP BY Id_comissão			
HAVIN	HAVING SUM(Valor) > 1000		

Depois de executado o comando, o resultado obtido será:

ld_comissão	Total
14	17250
25	2870
37	19870

♦ Pretende-se saber, para cada Id, o maior valor de comissão. No entanto, só são relevantes os valores inferiores a 3000.

Access	Sql Server	Oracle	SyBase
SELECT Id_comissão, MAX(Valor) AS Maior			
FROM Comissão			
GROUP BY Id comissão			

HAVING MAX(Valor) < 3000

Depois de executado o comando, o resultado obtido será:

Id_comissão	Maior
25	2400
40	20
42	150

8.3 - WHERE vs HAVING

Utiliza-se a cláusula WHERE sempre que se pretende restringir os registos a considerar na selecção. A cláusula HAVING serve para restringir os grupos que foram formados depois de aplicada a restrição da cláusula WHERE.

♦ Pretende-se saber qual o total de comissões para cada Id, considerando apenas aquelas cujo valor seja superior a 1000.

Access	Sql Server	Oracle	SyBase

SELECT Id_comissão, SUM(Valor) AS Total FROM Comissão WHERE valor > 1000 GROUP BY Id comissão

Depois de executado o comando, o resultado obtido será:

Id_comissão	Total	
14	16850	(17250-400)
25	2400	(2870-370-100)
37	19730	(19870-120-20)

♦ Pretende-se saber o total das comissões para cada Id, considerando apenas aquelas cujo valor total seja superior a 1000.

Access Sql Server	Oracle	SyBase
-------------------	--------	--------

SELECT Id_comissão, SUM(Valor) AS Total FROM Comissão GROUP BY Id_comissão HAVING SUM(Valor) > 1000

Depois de executado o comando, o resultado obtido será:

Id_comissão	Total
14	17250
25	2870
37	19870

Nota Final:

Se um comando SELECT possuir a cláusula GROUP BY, todas as colunas seleccionadas (no SELECT) têm que estar presentes na cláusula GROUP BY.