STATS 310B: Theory of Probability II

Winter 2016/17

Lecture 3: January 17

Lecturer: Sourav Chatterjee Scribes: Kenneth Tay

3.1 Martingales

Recall these definitions from last lecture:

Definition 3.1 Let (Ω, \mathcal{F}, P) be a probability space. A **filtration** on this space is an increasing sequence of sub σ -algebras $\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \ldots$

Definition 3.2 A sequence of random variables $Z_1, Z_2, ...$ is **adapted** to a filtration $\{\mathcal{F}_n\}$ if for all n, Z_n is \mathcal{F}_n -measurable.

Definition 3.3 An adapted sequence is called a martingale if:

- 1. $\mathbb{E}|Z_n| < \infty$ for all n, and
- 2. $\mathbb{E}[Z_{n+1} \mid \mathcal{F}_n] = Z_n$ a.s. for all n.

3.1.1 Examples of martingales

- Let Y_1, Y_2, \ldots be independent random variables with $\mathbb{E}Y_i = \mu_i$, and let $\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n)$. Let $Z_n = \sum_{i=1}^n (Y_i - \mu_i)$. Then $\{Z_n\}$ is a martingale.
- Same setting as above. Assume further that $Var(Y_i) = \sigma_i^2 < \infty$. Let $S_n = \sum_{i=1}^n (Y_i \mu_i)$, and let $Z_n = S_n^2 \sum_{i=1}^n \sigma_i^2$. Then $\{Z_n\}$ is a martingale:

$$\mathbb{E}[Z_{n+1} \mid \mathcal{F}_n] = \mathbb{E}\left[(S_n + (Y_{n+1} - \mu_{n+1}))^2 - \sum_{i=1}^{n+1} \sigma_i^2 \middle| \mathcal{F}_n \right]$$

$$= \mathbb{E}\left[S_n^2 + 2S_n (Y_{n+1} - \mu_{n+1}) + (Y_{n+1} - \mu_{n+1})^2 \middle| \mathcal{F}_n \right] - \sum_{i=1}^{n+1} \sigma_i^2$$

$$= S_n^2 + 2S_n \mathbb{E}[Y_{n+1} - \mu_{n+1}] + \mathbb{E}[(Y_{n+1} - \mu_{n+1})^2] - \sum_{i=1}^{n+1} \sigma_i^2$$

$$= S_n^2 - 0 + \sigma_{n+1}^2 - \sum_{i=1}^{n+1} \sigma_i^2$$

$$= Z_n.$$

• Let Y_1, Y_2, \ldots be independent non-negative random variables with $\mathbb{E}Y_i = 1$ for all i. Let $Z_n = \prod_{i=1}^n Y_i$, $\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n)$.

Since Z_n is non-negative,

$$\mathbb{E}|Z_n| = \mathbb{E}Z_n = \mathbb{E}\left[\prod_{i=1}^n Y_i\right] = \prod_{i=1}^n \mathbb{E}Y_i = 1,$$

i.e. $Z_n \in L^1$ for all n. We also have

$$\mathbb{E}[Z_{n+1} \mid \mathcal{F}_n] = \mathbb{E}\left[\prod_{i=1}^{n+1} Y_i \mid \mathcal{F}_n\right]$$
$$= \mathbb{E}[Z_n Y_{n+1} \mid \mathcal{F}_n]$$
$$= Z_n \mathbb{E}[Y_{n+1}]$$
$$= Z_n.$$

Hence, $\{Z_n\}$ is a martingale.

• If X_1, X_2, \ldots i.i.d. and $M(\theta) = \mathbb{E}[e^{\theta X_i}] < \infty$ for some θ , then $Z_n = \frac{e^{\theta \sum_{i=1}^n X_i}}{M(\theta)^n}$ is a martingale. This can be seen from the previous example by setting $Z_n = \prod_{i=1}^n Y_i$, where $Y_i = \frac{e^{\theta X_i}}{M(\theta)}$. (θ is usually chosen such that $M(\theta) = 1$ and $\theta \neq 0$.)

3.2 Stopping Times

Definition 3.4 Let $\{\mathcal{F}_n\}$ be a filtration. A random variable $T: \Omega \to \{1, 2, ...\} \cup \{\infty\}$ is a **stopping time** adapted to $\{\mathcal{F}_n\}$ if $\{T=n\} \in \mathcal{F}_n$ for all n.

Intuitively, a stopping time is a decision rule for stopping a particular process at a random time, and stopping the process at time n depends only on information available at time n.

3.2.1 Examples of stopping times

• Let $Y_1, Y_2, ...$ be independent random variables, $S_n = \sum_{i=1}^n Y_i$, $\mathcal{F}_n = \sigma(Y_1, ... Y_n)$. $(S_0 = \mathbb{E}Y_1, \mathcal{F}_0 = \text{trivial } \sigma\text{-algebra.})$ Let $T = \inf\{k : S_k \geq a\}$ for some given a. (Usual convention: infimum of an empty set is ∞ .)

T is a stopping time:

$${T = n} = {S_0 < a, S_1 < a, \dots, S_{n-1} < a, S_n \ge a} \in \mathcal{F}_n.$$

• Let $T' = \sup\{k : S_k \ge a\}$. Then T' is not a stopping time. (We will prove this later).

3.2.2 Properties of stopping times

- If T is a stopping time, then $\{T \leq n\} = \bigcup_{i=1}^{n} \{T = i\} \in \mathcal{F}_n$.
- $\{T \ge n\} = \{T \le n 1\}^c \in \mathcal{F}_{n-1}.$
- Let T be a stopping time. Take any $n \in \mathbb{N} = \{1, 2, \dots\}$. Let

$$S = \min\{T, n\} = \begin{cases} T & \text{if } T \le n, \\ n & \text{if } T > n. \end{cases}$$

Then S is a stopping time, denoted by $T \wedge n$.

Proof:

If
$$k < n$$
, $\{S = k\} = \{T = k\} \in \mathcal{F}_k$.
If $k > n$, $\{S = k\} = \emptyset \in \mathcal{F}_k$.
If $k = n$, $\{S = k\} = \{T \ge n\} \in \mathcal{F}_{n-1} \subseteq \mathcal{F}_n$.

3.2.3 Stopped σ -algebras and random variables

Definition 3.5 Let T be a stopping time w.r.t. some filtration $\{\mathcal{F}_n\}$. The **stopped** σ -algebra of T, denoted by \mathcal{F}_T , is the set of all $A \in \mathcal{F}$ such that for all $n \in \mathbb{N}$, $A \cap \{T = n\} \in \mathcal{F}_n$.

You can think of \mathcal{F}_T as "all events that are dependent only on information up to the stopping time". It is easy to verify that \mathcal{F}_T is indeed a σ -algebra. This σ -algebra is *not* the same as the σ -algebra generated by T.

Example of a random variable in \mathcal{F}_T

Let X_1, X_2, \ldots be i.i.d. ± 1 valued random variables, and let $S_n = \sum X_i$, $S_0 = 0$. Let a < 0 < b be 2 integers, and let $T = \inf\{k : S_k = a \text{ or } b\}$. Then the random variable S_T is \mathcal{F}_T -measurable.

Proof: S_T can be take 2 values (a or b). It suffices to show that $\{S_T = a\} \in \mathcal{F}_T$. But

$${S_T = a} \cap {T = n} = {S_n = a} \cap {T = n} \in \mathcal{F}_n.$$

Definition 3.6 Let $\{\mathcal{F}_n\}$ be a filtration, $\{Z_n\}$ a sequence of random variables adapted to this filtration, and T a stopping time such that $T < \infty$ a.s..

The stopped random variable Z_T is defined as

$$Z_T(\omega) := Z_{T(\omega)}(\omega),$$

that is,

$$Z_T = \sum_{n=1}^{\infty} Z_n 1_{\{T=n\}}.$$

Fact: Z_T is always \mathcal{F}_T -measurable.

3.3 Wald's Lemma (for Bounded Stopping Times)

Theorem 3.7 Let $\{\mathcal{F}_n\}$ be a filtration, $\{Z_n\}$ a martingale adapted to this filtration, T a stopping time w.r.t. this filtration.

Suppose that there exists some $N \in \mathbb{N}$ such that $T \leq N$ a.s. Then $\mathbb{E}Z_T = \mathbb{E}Z_1$.

Proof:

First, observe that when m > n, $\mathbb{E}[Z_m \mid \mathcal{F}_n] = Z_n$ by the tower property of conditional expectation.

Since $1_{\{T=n\}}$ is \mathcal{F}_n -measurable, by definition of conditional expectation, for any $n \leq N$,

$$\mathbb{E}[Z_N 1_{\{T=n\}}] = \mathbb{E}[\mathbb{E}[Z_N \mid \mathcal{F}_n] 1_{\{T=n\}}] = \mathbb{E}[Z_n 1_{\{T=n\}}].$$

Hence

$$\mathbb{E}Z_T = \mathbb{E}\left[\sum_{n=1}^N Z_n 1_{\{T=n\}}\right]$$

$$= \sum_{n=1}^N \mathbb{E}\left[Z_n 1_{\{T=n\}}\right]$$

$$= \sum_{n=1}^N \mathbb{E}\left[Z_N 1_{\{T=n\}}\right]$$

$$= \mathbb{E}\left[Z_N \sum_{n=1}^N 1_{\{T=n\}}\right]$$

$$= \mathbb{E}Z_N$$

$$= \mathbb{E}Z_1.$$

3.3.1 Example (Symmetric random walk)

Let X_1, X_2, \ldots be i.i.d. ± 1 valued random variables with $P\{X_i = 1\} = P\{X_i = -1\} = \frac{1}{2}$. Let $S_n = \sum_{i=1}^n X_i$, $S_0 = 0$. $\{S_n\}$ is a martingale.

Let a < 0 < b be 2 integers, and let $T = \inf\{k : S_k = a \text{ or } b\}$. We will show later that $T < \infty$ a.s.

We can use Wald's Lemma to show that $P(S_T = a) = \frac{b}{b-a}$.

Proof:

For any $n \in \mathbb{N}$, $T \wedge n$ is a bounded stopping time. Hence, by Wald's Lemma, $\mathbb{E}S_{T \wedge n} = \mathbb{E}S_1 = 0$.

Since T is finite a.s., for almost all $\omega \in \Omega$,

$$S_{T \wedge n}(\omega) = S_{(T \wedge n)(\omega)}(\omega)$$
$$= S_{T(\omega) \wedge n}(\omega)$$
$$\to S_{T(\omega)}(\omega)$$

as $n \to \infty$, i.e. $S_{T \wedge n} \stackrel{a.s.}{\to} S_T$. Moreover, $a \le S_{T \wedge n} \le b$ a.s. Hence, by the Bounded Convergence Theorem,

$$\mathbb{E}S_T = \lim_{n \to \infty} \mathbb{E}\left[S_{T \wedge n}\right] = 0.$$

Since S_T can only take on values a or b,

$$\mathbb{E}S_T = aP(S_T = a) + bP(S_T = b) = aP(S_T = a) + b[1 - P(S_T = a)], P(S_T = a) = \frac{b}{b-a}.$$