Missing Data

Author: Nicholas G Reich

This material is part of the statsTeachR project

Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Your **CAMPUS**

survey.umass.edu

MANY VOICES OUR UMASS

Today's Lecture

- Types of missing data
- Ways to describe missing data
- Multiple imputation

Those who can extrapolate from incomplete data

Best practices

Hard to argue with an approach that does the following:

- quantify the completeness of covariate data
- present and discuss patterns of or reasons for missing data
- provide details about your approach for handling missing data in the analysis

Proposed guidelines for reporting missing covariate data (Burton and Altman 2004)

Quantifying missing data

```
library(Hmisc)
getHdata(titanic)
colnames(titanic)
##
   [1] "pclass" "survived"
                         "name"
                                   "age"
                                             "embarked"
##
   [6] "home.dest" "room"
                         "ticket"
                                   "boat"
                                             "sex"
na.pattern(titanic)
                  not missing
## pattern
 ##
                 315
           0001000010 0001010000 0001010010 0001100010 0001110010
##
        51
                 95
                                   41
                                                    478
```

Quantifying missing data

library(Amelia)
missmap(titanic)

Quantifying missing data

What percentage of each variable's observations are missing?

```
nrow(titanic)
## [1] 1313
colSums(is.na(titanic))
##
      pclass survived
                             name
                                         age
                                              embarked home.dest
                                                                       room
           0
                      0
                                0
                                         680
                                                   492
                                                              559
##
##
      ticket
                  boat
                              sex
##
                   966
                                0
```

Formal Missing Data Classifications

Missing Completely at Random (MCAR)

RARE

■ No data, observed or unobserved, are related to missingness.

 No unobserved data are related to missingness, but missingness may depend on observed data.

Missing Not at Random (MNAR) or unignorable missingness

■ Missingness relationship cannot be simplified: it depends on unobserved data!

What kind of missingness did the titanic dataset have?

Missing Completely at Random (MCAR)

■ No data, observed or unobserved, are related to missingness.

Missing at Random (MAR)

 No unobserved data are related to missingness, but missingness may depend on observed data.

Missing Not at Random (MNAR) or unignorable missingness

Missingness relationship cannot be simplified: it depends on unobserved data!

What kind of missingness did the titanic dataset have?

What kind of missingness did the titanic dataset have?

Example code used to create the last graphic

Harder than it should be, it felt like... Code adapted from this page.

```
t3 <- titanic %>%
  group_by(pclass, age_mis) %>%
  summarise(count=n()) %>%
  mutate(perc=count/sum(count))

ggplot(t3, aes(x = pclass, y = perc*100, fill = age_mis)) +
  geom_bar(stat="identity", width = 0.7) +
  labs(x = "class", y = "percent", fill = "missing") +
  theme_minimal(base_size = 14)
```

Testing for the different types of data

Tests about the type of data you have

- MAR vs. MNAR: Not a definitive test here. Best option is to use your domain-specific knowledge about the data.
- MCAR vs. MAR: Little's test can weigh evidence for/against these two settings.

Little's H_0 : The data is MCAR

Low p-values suggest that the data are MAR; high p-values suggest they are MCAR.

```
test <- BaylorEdPsych::LittleMCAR(titanic[,c("pclass", "survived", "age", "sex"
## this could take a while
test$p.value
## [1] 0</pre>
```

Types of analyses for missing data

Analysis strategies (in rough order of desirability, low to high)

- MCAR only: Complete case a.k.a. "listwise deletion"
- Ad-hoc methods (e.g. mean imputation)
- Weighting methods
- MAR: Likelihood-based approaches (e.g. EM algorithm)
- MAR: Multiple Imputation (many flavors)
- MAR: Bayesian methods

bette,

Complex

Multiple imputation

General approach

- For each missingness pattern, a model is built to use the available covariates to estimate the missing covariates.
- Random samples are taken from the predictive distribution to create multiple "complete" datasets.
- Typically, 10-15 datasets is seen as being sufficient.
- Coefficient and SE estimates are combined across datasets.

Multiple imputation: example

imputed data for hgb

Multiple imputation: example

imputed data for transferr.sat

Multiple imputation results

Regression coefficients from five imputed data sets

Data	Estimated	b_{θ}	b_I	b_2	\boldsymbol{b}_3	b_4	b_5	/
set	parameter							. (
1	Coefficient	-11.535	-2.780	1.029	031	-0.359	0.572	─ -
	Variance	43.204	3.323	0.013	0.013	0.013	0.012	< 1
2	Coefficient	-11.501	-4.149	1.040	-0.093	-0.583	0.876	, —
	Variance	40.488	2.680	0.010	0.009	0.009	0.007	
3	Coefficient	-10.141	-5.038	0.766	0.123	-0.252	0.625	
	Variance.	42.055	3.301	0.010	0.010	0.010	0.009	
4	Coefficient	-11.533	-6.920	0.870	0.084	-0.458	0.815	
	Variance	28.751	1.796	0.081	0.007	0.007	0.007	
5	Coefficient	-14.586	-1.115	0.718	0.050	-0.373	0.814	
	Variance	32.856	2.362	0.009	0.009	0.009	0.008	
	Mean b _i	-11.859	-4.000	0.885	0.027	-0.405	0.740	
	Mean Var. (\overline{W})	37.471	2.692	0.025	0.010	0.010	0.009	
	Var. of $b_i(B)$	2.682	4.859	0.022	0.008	0.015	0.018	
	T							
	\sqrt{T}	40.69	8.523	0.051	0.020	0.028	0.031	
		6.379	2.919	0.226	0.141	0.167	0.176	
	t	-1.859	-1.370	3.916*	0.191	2.425*	4.204*	

^{*} p < .05 "Var." refers to the squared standard error of the coefficient.

DC Howell, Treatment of Missing Data - Part II.

Multiple imputation results

The final estimated sampling distribution for each β is an average of the sampling distributions from each imputed dataset.

sampling distributions for imputed datasets

Multiple imputation software

There are two commonly used implementations of multiple imputation in R:

- MICE: http://www.stefvanbuuren.nl/mi/
- To be used together: Amelia (runs the MI) and Zelig (fits models to, among other things, MI datasets): http://gking.harvard.edu/amelia and http://zeligproject.org/

Multiple imputation for titanic data # of Lature 13

Multiple imputation for titanic data

```
plot(imp_titanic, which.vars = "age")
```


Multiple imputation for titanic data

```
t2 <- t2[complete.cases(t2),] ## only include complete cases
m_full <- glm(survived~sex+age+pclass, data=t2, family=binomial)</pre>
summary(m_full)$coef
##
                  Estimate
                            Std. Error z value Pr(>|z|)
## (Intercept)
               4.52216290 0471007573 9.601041 7.914121e-22
               -3.08670894 0 241062738 -12.804588 1.545447e-37
## sexmale
               -0.04930858 0 008732002 -5.646882 1.633840e-08
## age
## pclass2nd
               -1.49522913 0 281986441 -5.302486 1.142363e-07
## pclass3rd
               -2.84127142 0.338897350 -8.383870 5.121522e-17
library(Zelig)
m_imp <- zelig(survived~sex+age/pclass, model="logit", data=imp_titanic)</pre>
summary(m_imp)
## Model: Combined Imputations
               Estimate Std.Error z value Pr(>|z|)
##
               3.92513
## (Intercept)
                        0.396870 9.890 0.000e+00 ***
               -2.52819 0.166904 -15.148 0.000e+00 ***
  sexmale
## age
             -0.04712 0.007589 -6.210 5.305e-10 ***
## pclass2nd -1.39975
                         0.236773 -5.912 3.384e-09 ***
## pclass3rd
             -2.88690 0.252901 -11.415 0.000e+00 ***
## ---
```

Best practices

Hard to argue with an approach that does the following:

- quantify the completeness of covariate data
- present and discuss patterns of or reasons for missing data
- provide details about your approach for handling missing data

Proposed guidelines for reporting missing covariate data (Burton and Altman 2004)

Bonus: ROC for Titanic data

```
library(ROCR)
pred <- prediction(predict(m_full, type="response"), t2$survived)
perf <- performance(pred, measure = "tpr", x.measure = "fpr")
plot(perf)</pre>
```

