Индивидуальный проект Геометрическая криптография

Арсений Балобанов

5 января 2015 г.

Введение

Геометрическая криптография - отдельная область криптографии, впервые предложенная к изучению Ади Шамиром, Рональдом Линн Ривестом и Майком Бурместером в 1996 году [1]. В геометрической криптографии в качестве сообщений и шифров выступают такие геометрические объекты как угол и интервал, а вычисления производятся с помощью циркуля и линейки. В основу протоколов геометрической криптографии ложатся неразрешимые или трудноразрешимые задачи геометрии, например, удвоение куба, квадратура круга. Методы геометрической криптографии мало применимы на практике, однако, они расширяют аудиторию науки в целом и могут быть использованы в педагогике в качестве поясняющих примеров более сложных криптографических протоколов.

Геометрическая криптография

Современная теория алгоритмов основывается на представлении данных в виде последовательностей символов (обычно битов), и осуществлению над ними операций из довольно небольшого набора (например, конъюнкция и дизъюнкция). Но вычисления можно производить и над другими представлениями данных. Например, довольно хорошо изучена модель построения циркулем и линейкой. Напомним стандартные операции, разрешенные в построении:

- 1. Через две различные точки можно провести единственную прямую
- 2. Можно построить точку пересечения двух различных пересекающихся прямых
- 3. Имея две различные точки A и B можно построить три точки C_1, C_2, C_3 отличные от A и B такие что:
 - (a) C_1 лежит на прямой проходящей через A и B между A и B
 - (b) C_2 лежит на прямой проходящей через A и B, и B между A и C_2
 - (c) C_3 не лежит на прямой проходящей через A и B
- 4. Для интервала AB и луча CD можно построить точку E на луче CD такую, что AB и CE конгруэнтны
- 5. Можно построить точку (точки) пересечения окружности и пересекающей ее прямой

Подробнее об аксиомах и аксиоматических понятиях, таких как "точка", "прямая", "конгуэнтность" можно прочитать в [2].

Неотъемлемой частью криптографических протоколов является возможность создания "секретов", скрытых от противника. Они не могут быть

построены циркулем и линейкой с помощью имеющихся объектов, иначе, противник сможет найти их. Поэтому вводится дополнительная аксиома выбора случайных точек:

6. На единичной окружности можно построить случайную точку

Протокол идентификации

Алиса (Прувер) хочет установить способ доказательства описания своей личности Бобу (Верификатору).

Инициализация

Алиса строит случайный угол X_A с помощью аксиомы 6. Затем строит угол Y_A равный утроенному углу X_A , после построения публикует копию угла Y_A . Задача утроения угла подвластна любому школьнику знакомому с геометрией, а вот задача деления угла на три равных, наоборот, не разрешима. Трисекция угла выступает своего рода односторонней функцией в геометрической криптографии, поэтому Алиса уверена, что только она знает величину угла X_A .

Протокол

- 1. Алиса передает Бобу копию угла R, который она построила утроением угла K, который она построила случайным образом
- 2. Боб подкидывает монетку и сообщает Алисе результат
- 3. Если Боб говорит "орел", Алиса передает Бобу копию угла K и Боб проверяет, что $3\cdot K=R$ Если Боб говорит "решка", Алиса передает Бобу копию угла $L=K+X_A$, и Боб проверяет, что $3\cdot L=R+Y_A$

Эти три шага повторяются независимо t раз, и Боб принимает доказательство Алисы только если все t проверок успешны.

Утверждение 1

Описанный выше протокол является протоколом доказательства знания угла X_A (личности Алисы), с ошибкой 2^{-t} , а также протоколом с нулевым разглашением.

Доказательство.

Если Алиса и Боб будут следовать протоколу, то, ясно что, Боб примет доказательство Алисы.

Самозванец же, который не знает угол X_A , не сможет построить оба угла L и K, иначе он смог бы построить угол $L-K=X_A$. Поэтому, Боб примет доказательство Алисы с вероятностью не более чем $\frac{1}{2}$ на каждой итерации,

и следовательно, с вероятностью не более 2^{-t} на всех t итерациях. Отсюда следует, что данный протокол - протокол доказательства знания (Proof of knowledge) X_A [3].

Для доказательства нулевого разглашения, будем симулировать то, что "видит" Боб во время исполнения протокола. Боб "видит" сообщения Алисы и свои броски монеты. Эти состояния можно записать как тройки (R, "орел", K) и (R, "решка", L). Для симуляции владельца секрета, можно выбрать K случайно, и взять $R=3\cdot K$, выбрать случайное L и разрешить $3\cdot L=R+Y_A$ относительно R. Таким образом, Боб может симулировать действия Алисы, тем самым получает нулевое разглашения относительно X_A .

Теорема 1 (Гаусса - Ванцеля)

Правильный n-угольник можно построить c помощью циркуля и линейки тогда и только тогда, когда $n=2^k\cdot p_1\cdot\ldots\cdot p_m$, где p_i - различные простые числа Φ ерма $(2^{2^a}+1)$.

Теорема 2 (Ванцель)

Задача трисекции угла α разрешима тогда и только тогда, когда разрешимо в квадратных радикалах уравнение

$$4x^3 - 3x - \cos(\alpha) = 0$$

Применения протокола идентификации

Геометрическая криптография может адаптировать многие криптографические примитивы. Рассмотрим два расширения описанного протокола: параллельное исполнение и "множественный секрет".

Для параллельного исполнения t итераций протокола выполняются одновременно:

- Алиса посылает Бобу t копий углов R_i
- Боб подбрасывает t монет
- Алиса посылает Бобу копии соответствующих углов (шаг 3)

Ожидаемое число испытаний в этом случае - 2^t . Этот протокол может быть реализован, так как не накладывается никаких сложностных ограничений на построения.

Замечание 1

Протокол параллельной идентификации также будет являться протоколом с нулевым разглашением, в отличие от традиционной криптографии, в которой не известно будет ли параллельное исполнения протокола с нулевым разглашением протоколом с нулевым разглашением. Для множественного секрета Алиса строит k случайных углов X_{A_1},\ldots,X_{A_k} и публикует их утроения Y_{A_1},\ldots,Y_{A_k} . Затем Алиса доказывает Бобу, что она знает все углы X_{A_1},\ldots,X_{A_k} с помощью следующего протокола, повторенного t раз:

- 1. Алиса посылает Бобу копию угла R, построенного утроением случайного угла K
- 2. Боб посылает Алисе строку битов b_1,\dots,b_k результат подбрасывания k монет
- 3. Алиса посылает Бобу копию угла $L=K+\sum_{i=1}^{i=k}b_iX_{A_i}$ и Боб проверяет, что $3\cdot L=R+\sum_{i=1}^{i=k}b_iY_{A_i}$

Боб принимает доказательство Алисы только в случае принятия на всех t итерациях. Легко видеть, что ошибка для этого протокола уже 2^{-kt} .

Протокол аутентификации

Пусть m - целое число, которое Алиса хочет подтвердить. Это ограничение не сильное в виду того, что Алиса может опирать только на геометрические объекты, которые можно построить циркулем и линейкой, коих счетно.

В протоколе Алиса строит два угла X_{A_1} и X_{A_2} , и публикует их утроения Y_{A_1} и Y_{A_2} . Алиса доказывает Бобу, что она знает угол $Z=m\cdot X_{A_1}+X_{A_2}$ использую протокол идентификации, рассмотренный выше:

- 1. Алиса посылает Бобу копию угла R, построенного утроением случайного угла K
- 2. Боб подбрасывает монетку, и сообщает Алисе бит b
- 3. Алиса посылает Бобу угол $L = K + b(m \cdot X_{A_1} + X_{A_2})$ Боб проверяет, что $3 \cdot L = R + b(m \cdot Y_{A_1} + Y_{A_2})$

Обобщение протокола идентификации

Пусть N - дополнительный угол, используемый как модуль при выполнении построений суммы и разности углов. Пусть Y - угол, который нужно разделить на три по модулю N. Тогда у уравнения $Y=3\cdot X \ mod(N)$ имеется три решения, которые отличаются на множители $\frac{N}{3}$. Поэтому каждый, кто знает два решения X_1 и X_2 может осуществлять трисекцию по модулю N. Подобное свойство позволяет обобщать многие криптографические конструкции, использующие теорию чисел, в которых знание двух различных корней числа y по модулю n позволяет факторизовать n. Рассмотрим одно применение.

Предположим, что распределение точек в аксиоме 6 не равномерное, тогда описанный протокол идентификации уже не будет протоколом с нулевым разглашением, потому что уже нельзя будет симулировать (R, "решка", L)выбирая случайное L и решая $3 \cdot L = R + Y_A$ (так как R может иметь другое распределение). Поэтому Боб может получить некоторую информацию и построить "секретный" угол Алисы - X_A . Покажем, как использовать соображения выше для усиления безопасности протокола в этом случае. Во-первых, распределение углов должно быть непрерывным, в частности, вероятность выбора конкретного угла K должна быть ноль. Иначе Боб сможет построить углы K и $L=K+X_A$, а из них построить X_A . Пусть N угол, который не может разделить на три части ни Алиса, ни Боб (например, N выбирается случайно доверенным лицом). Для защиты Алиса будет сообщать Бобу не абсолютные значения углов, а их значения по модулю N. Подобный шаг не сделает распределение углов равномерным, но сделает абсолютно не понятным для Боба какая именно из трех трисекций угла Y_A : $X_A,\,X_A+rac{N}{3},\,X_A+2rac{N}{3}$ используется Алисой в L. Даже если Боб будет иметь три такие возможности, он выберет правильную с вероятностью не более $\frac{1}{3}$. Если предположить, что эту схему можно взломать и Боб может построить трисекцию Y_A , с вероятностью $\frac{2}{3}$ это будет не та трисекция, использованная Алисой, поэтому подобное построение с некоторой фиксированной вероятностью приведет к построению трисекции угла N.

Литература

- [1] Mike Burmester, Ronald L Rivest and Adi Shamir "Geometric Cryptography Identification by Angle Trisection" e-Prints, US Department of Energy, OSTI. Retrieved 19 June 2014.
- [2] The New Encyclopedia Brittanica, Volume 19, Geometry, pages 887–936, 1995.
- [3] S. Goldwasser, S. Micali and C. Rackoff. "The Knowledge Complexity of Interactive Proof Systems" Siam J. Comput., Vol 18 (1), pages 186–208, 1989.