Graduate Industrial Organization Introduction & Measuring Market Power

Yuta Toyama

Last updated: September 30, 2018

Introduction

Introduction

- Instructor: Yuta Toyama
 - ► Background:
 - Undergraduate in Economics at Kyoto
 - Master in Public Policy & Economics at U-Tokyo
 - ▶ Ph.D. in Economics at Northwestern
 - Field: Empirical studies in industrial organization
- ► Office: Building 3-1233
- ▶ Office hours: Friday 11:50-12:50

Course Description and Requirement

Go to syllabus.

Theme 1 (/2): Introduction to Graduate IO

- ▶ What is IO?: Cabral (2017) "the working of markets and industries, in particular the way firms compete with each other"
- Economics of imperfect competition
 - 1. Is there market power?

- 2. How do firms acquire and maintain market power?
- 3. Implications of market power?
- 4. Role for public policy?

Theme 2 (/2): Introduction to Structural Estimation IO

▶ 3 Steps in structural econometric modeling

Introduction

- ▶ Step 1: Construct an explicit economic model,
- ► Step 2: Estimate model primitives (preference, technology, etc)
- ► Step 3: Simulation of counterfactual cases
- Complementary to causal inference / program evaluation

Course Plan

Introduction

- 1. Measuring market power
 - Issue: How to measure markup and test market conduct when cost information is not observable?
- 2. Estimation of Production function
 - Technology (cost function) / Evolution & distribution of TFP
 - Issue: How to deal with endogeneity issue due to "unobserved productivity"?
- Estimation of demand function (differentiated products)
 - So many things we can answer!
 - Issue: How to model and estimate consumer demand in a tractable way?
- 4. Estimation of Single-Agent Dynamic Discrete Choice Model
 - Durable goods, inventory, investment, entry/exit, etc.
 - Issue: How to estimate a forward-looking model by avoiding computational burden?

Caveat: Topics I do NOT cover

- Econometrics of models with strategic interactions (except for oligopoly pricing)
 - 1. Auction models
 - 2. Static discrete games (e.g., entry/exit)
 - 3. Dynamic games (e.g., investment, R&D, merger, etc)
 - 4. Models with information asymmetry
- ► Why?

Introduction

- 1. Time constraint.
- 2. Multiplicity of equilibria makes econometrics tough.
- Might have lectures in "Economic Studies" in Spring 2019?

Topic 1: Measuring Market Power

- Goal: Infer the "competitiveness" of market from data without cost information
 - Quantify markup (= price MC).
 - ► Test the mode of competition (Cournot? Collusion?)
- ▶ We focus on the case with homogeneous goods
 - Later on differentiated products
- Plan:
 - ▶ Review of basic oligopoly theory (Reference: Tirole 1988)
 - Empirical analysis in History: Structure-Conduct-Performance paradigm
 - "New" Empirical IO (NEIO) or "De facto" Empirical IO (DEIO) (by Steven Berry)

Monopoly Problem

 \triangleright Consider monopolist's problem with inverse demand P(Q) and cost C(Q)

$$\max_{Q} P(Q) \cdot Q - C(Q)$$

FOC

$$P(Q) + \frac{\partial P}{\partial Q}Q - MC(Q) = 0$$

Then,

$$\underbrace{P(Q) + \frac{\partial P}{\partial Q}Q}_{MR} = MC(Q)$$

Or.

$$\underbrace{\frac{P(Q) - MC(Q)}{P(Q)}}_{\text{markup}} = -\frac{\partial P}{\partial Q} \frac{Q}{P} = \frac{1}{|\epsilon_d|}$$

Lerner's index or inverse-elasticity rule

Lerner's formula:

$$P\left(1 + \frac{1}{\epsilon_d}\right) = MC$$

- ▶ Implication 1: Higher $|\epsilon_d|$ implies lower markup
- ▶ Implication 2: The monopolist never produces in the inelastic portion $(|\epsilon_d| < 1)$ of the demand curve.
- ▶ Implication 3: If you knew ϵ_d , you can back out MC.

Oligopoly: Cournot Model (Nash in quantity)

- Consider N firms index by i
- Profit

$$\pi_i = P(Q)q_i - C_i(q_i)$$

where $Q = \sum_{i} q_{i}$ (total quantity in the market).

▶ FOC (given $Q_{-i} = \sum_{j \neq i} q_j$)

$$(P(Q) - MC_i(q_i)) + q_i \frac{\partial P}{\partial Q} = 0$$

Again,

$$P(Q) + q_i \frac{\partial P}{\partial Q} = MC_i(q_i)$$

$$P\left(1 + s_i \cdot \frac{Q}{P} \frac{\partial P}{\partial Q}\right) = MC_i(q_i)$$

Or,

$$\frac{P - MC_i}{P} = \frac{s_i}{|\epsilon_D|}$$

- It nests several cases:
 - Perfect competition: $n \to \infty$ (or $s_i \to 0$)
 - Monopoly: n = 1 ($s_i = 1$)
- ► Market-share-weighted

$$LI \equiv \sum_{i} \frac{P - MC_{i}}{P} s_{i}$$
$$= \sum_{i} \frac{s_{i}^{2}}{|\epsilon_{D}|} = \frac{HHI}{|\epsilon_{D}|}$$

where Hirschman-Herfindal Index $HHI \equiv \sum_{i} s_{i}^{2}$.

HHI and Antitrust Policy

▶ Let weighted MC $\bar{MC} = \sum_i s_i MC_i$

$$\frac{P - \bar{MC}}{P} = \frac{HHI}{|\epsilon_D|}$$

- ► HHI as an "incomplete" measure of market power!!
- Markup depends on both HHI and ϵ_D .
- ► HHI is used as a screening devise in merger review by antitrust authorities.
- Ex: Japanese-FTC does not review a proposed merger in detail if it satisfies
 - 1. $HHI \leq 1500$ before merger
 - 2. $HHI > 1500 \& HHI \le 2500$ before merger and $\Delta HHI \le 250$
 - 3. HHI > 2500 before merger and $\Delta HHI < 150$.

Summary of Theory

- Consider quantity competition of homogeneous goods.
- ► Firm-level FOC (or firm-level markup) is

$$\frac{P - MC_i}{P} = \frac{\theta_i}{|\epsilon_D|},$$

where

$$heta_i = egin{cases} 1 & \textit{monopoly(collusion)} \\ s_i & \textit{Cournot} \\ 0 & \textit{perfect competition} \end{cases}$$

- Note: Bertrand (price competition)?
 - Bertrand competition in homogeneous goods leads to competitive outcome (Bertrand paradox).
 - ▶ Kreps and Scheinkman (1983): Production choice in 1st stage & price competition in 2nd stage" leads to Cournot outcome.
 - Bertrand competition is used for differentiated products case.

Empirical Approach 1: SCP Paradigm

- Classical (but obsoleted) approach: Structure-Conduct-Peformance Paradigm
 - ightharpoonup Idea: Market Structure ightharpoonup Conduct ightharpoonup Performance
 - ▶ Regress "performance" on "structure".
- ▶ In Cournot equilibrium, $\frac{P-MC}{P} = \frac{HHI}{|\epsilon_D|}$, motivating the regression

$$\log(\frac{P - MC_j}{P}) = \beta_0 + \beta_1 \log(HHI_j) + \beta_2 \log(|\epsilon_{D,j}|) + u_j$$

for $j = 1, \dots, J$ cross-section of markets (industries).

- ► Effects of HHI (structure) on margin (performance)
- ▶ Cournot competition: $\beta_1 = 1$, Perfect competition: $\beta_1 = 0$. Test these.
- Or, you might want to discuss "effects of competition on profit".

Many Problems!!

1. Data:

- ▶ Dep var: accounting profits/returns on assets, price-cost-margin from Census of manufacturing
 - None of these are true economic margins (Fisher and McGowan 1983)
- Additional variables: elasticity of demand, product differentiation
 - ightharpoonup Rarely observed ightharpoonup cannot control for differences across markets/industries.

2. Simultaneity issues:

- Do we think HHI is exogenous? No!
 - ► HHI depends on market shares, which depends on P and MC
- S-C-P affect each other!!

3. Interpretation

Positive correlation between *HHI* and profits can be due to cost advantage (good performance) or high markups (bad performance).

A bit of digression: SCP approach in more general

- ► SCP paradigm has been used to answer questions other than testing market power.
- In particular, effects of competition on something
 - Ex: R&D (investment), advertisement, product variety, etc.
- ▶ Biggest issue: Endogeneity of competition.

Example: Effects of competition on R&D

- ► Two counteracting forces of competition on R&D
 - Positive: Replacement effect (Arrow, 1962), Preemptive motivation
 - Negative: Schumpeterian effect. Bigger firms are likely to have a higher ability to innovate, thus concentration would be good.
- Inverted U-shape relationship

Aghion et al (2006, QJE): a kind of SCP approach

▶ The relationship between patents on learner index at year-industry level.

Scatter Plot of Innovation on Competition

The figure plots a measure of competition on the x-axis against citationweighted patents on the y-axis. Each point represents an industry-year. The scatter shows all data points that lie in between the tenth and ninetieth deciles in the citation-weighted patents distribution. The exponential quadratic curve that is overlaid is reported in column (2) of Table 1.

► They use change in antitrust policy & privatization as IV for Lerner index in regression, and still find inverted-U.

Igami and Uetake (2018): Fully structural approach

- Estimate and solve dynamic game of mergers, innovation, and exit
- Prob of R&D as a function of # of competitors in the market

Plateau shape.

Some Recent Paper with good instruments

- ► Illanes and Moshary (2018): "Market Structure and Product Variety: Evidence from a Natural Experiment in Liquor Licensure"
- ▶ Question: Effects of market structure (# of firms) on prices, quantities, and product assortment.
- Context:
 - ▶ Since the end of Prohibition, a monopoly on spirit sales in Washington.
 - Washington privatize sales of alcohol goods in 2011.
 - ▶ Private retailers were allowed to enter the market so long as their store size exceeded 10,000 feet squared.
- Use regression discontinuity design to estimate the effect of the number of firms.
- ► Chandra and Weinberg (2018, Management Science) "How Does Advertising Depend on Competition? Evidence from U.S. Brewing"
 - Exploit the merger at the national-level to obtain the (exogenous) variation of local-lyel concentration

Approach in New Empirical IO

- 1. Price-cost-margin are not assumed to be observed, rather we estimate marginal costs.
- 2. Study a specific industry, using time series or a cross section of geographical markets.
 - 2.1 Deal with the simultaneity problem.
- 3. Conduct is viewed as a parameter to be estimated
 - 3.1 Ties more directly to theory (not always) and deals with interpretation.

Bresnahan (1982, Economic Letters)

- Question: Can we distinguish between competitive & non-competitive behavior in the absence of marginal cost data?
- Demand (homogenous goods) for market (period) t

$$Q_t = \alpha_0 + \alpha_1 P_t + \alpha_2 Y_t + \epsilon_t$$

- \triangleright Q_t : quantity, P_t : price, Y_t : exogenous demand shifter
- Marginal cost (symmetric for all firms):

$$MC_t = \beta_0 + \beta_1 Q_t + \beta_2 W_t + \eta_t$$

 \triangleright W_t : exogenous cost shifter (fuel cost, wage, etc)

- ▶ Consider the supply relationship from FOC $MR_t = MC_t$:
- ▶ Write MR_t with **conduct parameter** θ

$$MR = P_t + \theta \left(\frac{\partial P}{\partial Q} \right) Q$$

The supply relationship:

$$P_t = \theta \left(-\frac{Q_t}{\alpha_1} \right) + \beta_0 + \beta_1 Q_t + \beta_2 W_t + \eta_t$$

- \blacktriangleright θ indexes different models of pricing
 - $\theta = 1$ if monopoly,
 - ightharpoonup heta = 0 if perfect competition
 - $ightharpoonup heta = 1/N_t$ if Cournot competition

Review: Identification of Demand-Supply Equations

▶ Suppose $\theta = 0$ for now, so that

Demand :
$$Q_t = \alpha_0 + \alpha_1 P_t + \alpha_2 Y_t + \epsilon_t$$

Supply : $P_t = \beta_0 + \beta_1 Q_t + \beta_2 W_t + \eta_t$

- Equilibrium is determined by the intersection of these two curves.
- ▶ We observe $\{Q_t, P_t, Y_t, W_t\}_{t=1}^T$
- Under what conditions can we identify (estimate) demand and supply curves?
- ► (See blackboard)
 - \triangleright Demand: Need cost shifter for instrumenting P_t
 - ightharpoonup Supply: Need demand shifter for instrumenting P_t .

Going back to Bresnahan (1982)

We have

Demand :
$$Q_t = \alpha_0 + \alpha_1 P_t + \alpha_2 Y_t + \epsilon_t$$

Supply : $P_t = \beta_0 + \left(-\frac{\theta}{\alpha_1} + \beta_1\right) Q_t + \beta_2 W_t + \eta_t$

- \triangleright Question: Can we identify (estimate) θ ?
- \blacktriangleright We can estimate $(\alpha_0, \alpha_1, \alpha_2)$ by using W_t as an IV for P_t in demand model.
- ▶ Using Y_t as an IV for Q_t , we estimate $\beta_0, -\frac{\theta}{\alpha_1} + \beta_1$, and β_2 .
- ▶ However, we cannot distinguish θ and $\beta_1!!$

Figure: Two MC (MC^c and MC^m) can be rationalized by data

Fig. 1.

When can we identify θ ?

- ▶ Idea 1: Assume constant MC (i.e., $\beta_1 = 0$). Can get θ .
- ▶ Idea 2: Demand rotation

$$Q_t = \alpha_0 + \alpha_1 P_t + \alpha_2 Y_t + \alpha_3 P_t Z_t + \epsilon_t$$

- ightharpoonup Demand slope changes with Z_t
- Supply relationship is

$$P_t = \beta_0 + \left(-\frac{\theta}{\alpha_1 + \alpha_3 Z_t} + \beta_1\right) Q_t + \beta_2 W_t + \eta_t$$

▶ Define $Q_t^* = -Q_t/(\alpha_1 + \alpha_3 Z_t)$. Then,

$$P_t = \beta_0 + \beta_1 Q_t + \beta_2 W_t + \theta Q_t^* + \eta_t$$

Using instruments, we can identify all the parameters!!

Figure with Rotation

Fig. 2.

Some Comments

- ► Though the model is parametric and linear, same argument can be applied to more general setting.
 - Lau (1982, Economics letters) for nonlinear setting
 - ▶ Berry and Haile (2014, EMA) for nonparametric setting.

Porter (1983, Bell): "Joint Executive Committee"

- Question: We observe price (and quantity) shifts over time. Are they due to
 - (exogenous) shifts in the demand and cost functions, or
 - due to price wars (collusive to noncooperative behavior)?
- Background:
 - The Joint Executive Committee (JEC) was a cartel that controlled the eastbound railway grain shipment.
 - It was before the Sherman Act and therefore was explicit.
 - ▶ The cartel used an internal enforcement mechanism similar to the trigger strategy.

Price changes over time

FIGURE 1
PLOT OF GR, PO, PN AS A FUNCTION OF TIME

Theory from Green and Porter (1984, Econometrica)

- Dynamic model of collusion under demand unvertainty
 - Firms compete in prices;
 - Demand uncertainty;
 - Firms collude: set price between Bertrand and monopoly;
 - Firms observe demand, which is a noisy signal of competitors behavior.
 - low demand could be due to a deviation in collusion or aggregate low demand;
 - ▶ If the demand falls below a threshold (trigger) then firms switch to Bertrand pricing for *T* periods, i.e., there is a price war;
- Prediction:
 - along the equilibrium path price wars occur.
 - Other predictions: timing of price wars (triggers) and no cheating in equilibrium.
- Empirical analysis: Is this theory consistent with the data?
 - Is price fluctuation consistent with the change in behavior?

Model

▶ Demand:

$$\log Q_t = \alpha_0 + \alpha_1 \log P_t + \alpha_2 L_t + (month \ dummies) + U_{Dt}$$

- $ightharpoonup L_t = 1$ if lake opens. (Lake steamers as substitutes)
- Note: No rotation of demand shock. How to ID conduct?
- N firms with cost function

$$C_i(q_{it}) = a_i q_{it}^{\delta} + F_i,$$

 $MC_i(q_{it}) = \delta a_i q_{it}^{\delta-1}$

where $\delta > 1$ and F_i is fixed cost (assume to be small).

Supply relationship

$$P_t \cdot \left(1 + \frac{\theta_{it}}{\alpha_1}\right) = mc_i(q_{it})$$

- 1. $\theta_{it} = 1$ if joint-profit-maximization,
- 2. $\theta_{it} = 0$ if competitive pricing.
- 3. $\theta_{it} = s_{it} (= q_{it}/Q_t)$ if Cournot
- Aggregate to market-level

$$P_t \cdot \left(1 + \frac{\theta_t}{\alpha_1}\right) = \sum_{i=1}^N s_{it} mc_i(q_{it})$$

where $\theta_t \equiv \sum_i s_{it} \theta_{it}$.

Given functional form assumption, the market share is

$$s_{it} = rac{a_i^{1/(1-\delta)}}{\sum_j q_j^{1/(1-\delta)}} \equiv s_i$$

in each of the three cases.

Porter (1983)

0000000000

$$P_t \cdot \left(1 + \frac{\theta_t}{\alpha_1}\right) = DQ_t^{\delta - 1}$$

where $D = \delta(\sum_i a_i^{1/1-\delta})^{1-\delta}$ and

$$\log(P_t) = \log(D) - \log\left(1 + rac{ heta_t}{lpha_1}
ight) + (\delta - 1) \cdot \log Q_t$$

- You cannot distinguish D and θ_t from this equation!!
- Idea: use systematic change in conduct θ_t

Estimating Equation

► Supply equation for estimation

$$\log(P_t) = \beta_0 + \beta_1 \log(Q_t) + \beta_2 S_t + \beta_3 I_t + U_{2t}$$

- \triangleright S_t : structural dummies (reflecting entry of new firms).
- \triangleright U_{2t} : error term
- $ightharpoonup I_t$ represents regime of competition

$$I_t = egin{cases} 1 & \textit{if cooperative} \\ 0 & \textit{if price wars} \end{cases}$$

- if firms max joint profits during cooperative period, $\beta_3 = -\log(1+1/\alpha_1)$
- \triangleright β_3 measures difference in conduct between $I_t = 0$ and $I_t = 1$.

Estimation

- Case 1: If you observe I_t,
 - 2SLS regressions
 - Trade press reports the regime (colluding or not).
- Case 2: Unobserved I_t
 - ightharpoonup mis-measurement of I_t might be a concern.
 - Assume that

$$I_t = egin{cases} 1 & \textit{with prob } \lambda \ 0 & \textit{with prob } 1 - \lambda \end{cases}$$

where λ is parameter to be estimated.

The model becomes a switching regression and can be estimated by MLE.

Results

TABLE 3 Estimation Results* Two Stage Least Squares Maximum Likelihood (Employing PO) (Yielding PN)** Variable Demand Supply Demand Supply C9.169 -3.9449.090 -2.416(.184)(1.760)(.149)(.710)LAKES -.437 -.430(.120)(.120)GR-.742-.800 (.121)(.091)DM1-.201-.165(.055)(.024)DM2-.172-.209(.080)(.036)DM3-.322-.284(.064)(.027)DM4 -.208-.298(.170)(.073)PO/PN .382 .545 (.059)(.032)TQG.251 .090 (.171)(.068) \mathbb{R}^2 .312 .320 .307 .863 .398 .243 .399 .109

^{*} Monthly dummy variables are employed. To economize on space, their estimated coefficients are not reported. Estimated standard errors are in parentheses.

- Cooperative period prices exceed those implied by competitive setting.
- But, are lower than those under static joint profit maximization.
- He formally tests the model without switching against the one with switching, and reject the former.

- ▶ It needs to be a good measure, of course!
- ► Sugar industry (Genosove and Mullin, 1998)
- ▶ Vitamin Cartel (Igami and Sugaya 2018)
- Electricity industry:
 - ▶ Bushnell, Borenstein, and Wolak (2002), Wolfram (1999)
 - ► Fabra and Reguant (2014)
 - ► Hortacsu and Puller (2006), Hortacsu et al (2018)

Igami and Sugaya (2018) "Vitamin Cartels"

Question: Why did some cartels survive for a decade while others collapsed after only a few years?

Background and Approach

- Brief history:
 - ▶ 1989: Start collusion between Roche and BASF. Later invite others (RP, Japanese makers, etc)
 - ▶ 1999: RP applied for Corporate Leniency Program (end of cartels).
- Great deal of data is available !!
 - Investigation by EC: details on strategy and belief
 - ▶ Bernheim report in litigation: detailed cost information
- Empirical analysis : Test incentive compatibility constraints (ICC)
 - ► Theory: "cooperation is stable if-and-only-if incentive compatible".
 - Use cost data and demand to measure the ICC!

Model

- lacktriangle Expected profit in au given info at t: $\pi_{i, au|t}=(P_{ au|t}-c_{i,t})q_{i, au|t}$.
 - ► Note: we know costs!
- Three cases:
 - $\rightarrow \pi_{i,\tau|t}^{C}$: joint-profit maximization
 - $\blacktriangleright \pi_{i,\tau|t}^{D}$: Deviation (non-compliance)
 - $\blacktriangleright \pi_{i,\tau|t}^{N}$: Static Nash (noncooperation). Punishment (trigger strategy).
- ▶ Payoff if comply with the cartel agreement

$$V_{i,\tau|t}^{\mathcal{C}} = \sum_{s \geq \tau} \beta^{\tau - 1} \pi_{i,s|t}^{\mathcal{C}}$$

Payoff if not comply

$$V_{i,\tau|t}^{D} = \underbrace{\sum_{s=\tau}^{\tau+2} \beta^{s-1} \pi_{i,s|t}^{D}}_{\text{deviation return}} + \underbrace{\sum_{s \geq \tau+3} \beta^{s-1} \pi_{i,s|t}^{N}}_{\text{punishment}}$$

Incentive compatibility constraint (ICC)

▶ The trigger strategy is equilibrium if and only if

$$\min_{i \in I, \tau \geq t} \underbrace{V_{i,\tau|t}^C - V_{i,\tau|t}^D}_{\equiv \Delta V_{i,\tau|t}} \geq 0$$

- ► Given information at period *t*, the predicted payoff from deviation should be positive for all future periods and all firms.
- Use cost and demand information to construct

$$\Delta \underline{V_{i,t}} \equiv \min_{\tau > t} \Delta V_{i,\tau|t}$$

and to see whether (and when) $\Delta V_{i,t}$ becomes negative.

▶ Note: several discount factor β should be examined.

Roche's ICC for Vitamin C (Cartel collapsed)

Roche's ICC for Other Vitamin (Cartel continued till investigation)

Applications from Electricity Markets (generation in wholesale market)

- ► Fuel cost is a good cost measure of electricity generation.
 - especially for fossil-fuel plants (coal, gas, and oil)
- ▶ Bushnell, Borenstein, and Wolak (2002), Wolfram (1999)
 - ▶ Q: How far the market outcome is from competitive benchmark?
 - Use cost data and demand curve to simulate competitive outcome.
- ► Fabra and Reguant (2014)
 - Q: Do power plants consider opportunity costs of emissions permits for CO2 in their pricing (bidding) strategy in wholesale electricity market?
 - ► A: Yes! Almost full consideration.
- ► Hortacsu and Puller (2008), Hortacsu et al (2018)
 - ▶ Q: Do firms follow Bayes-Nash equilibrium in their bidding strategy?
 - ▶ Simulate BNE with cost data and (exp-post) residual demand.
 - ▶ A: Bigger firms do, but smaller firms not. Difference due to level of strategic thinking (level-*k* theory).