Smart Contracts and Blockchain Technology

Lecture 7. Digital signatures

Christian Ewerhart

University of Zurich

Fall 2022

Copyright © 2022, Christian Ewerhart.

All rights reserved.

Without permission of the author, it is not allowed to distribute this script or parts of it.

Introduction and overview

Last lecture: Cryptographic underpinnings

- Hash functions
- Residue class fields
- Discrete logarithm problem

This lecture: Digital signatures

- Private and public keys
- Ethereum wallet addresses
- Elliptic curve cryptography

Digital signatures (1)

A problem

Signing a letter is easy...

...but how do we sign an electronic message?

Digital signatures (2)

Public-key cryptography

Public-key cryptography, also known as asymmetric cryptography, is the basis of modern information security.

Asymmetric means: There is no shared secret!

The protocol allows a sender to digitally sign a message. This allows the receiver of the message to verify that:

- the message comes from the sender (authentication), and
- the message has not been modified (integrity).

Non-repudiation is a closely related legal concept, which captures that there is evidence usable in court that proves that the sender has created a specific message.

Digital signatures (3)

Asymmetric cryptography

Asymmetric cryptography uses a combination of a **private key** and a **public key**. An example for a key pair in Ethereum is:

A 256-bit **private key** in hexadecimal representation:

k=0xf8f8a2f43c8376ccb0871305060d7b27b0554d2cc72bccf41b2705608452f315

A corresponding 520-bit **public key**, likewise in hexadecimal representation:

 $K = 0 \times 046 e 145 ccef 1033 dea 239875 dd 00 df b 4 fee 6 e 3348 b 84985 c 92 f 103444683 bae 07 b 83 b 5 c 38 e 5 e 2 b 0 c 8529 d7 f a 3 f 6 4 d46 da a 1 e c e 2 d9 a c 14 c a b 9477 d 042 c 84 c 32 c c d 0$

Public key -> prefix 0x04 (8 bits) and is followed by two elliptic coordinates -> public key is uncondensed

Digital signatures (4)

Trapdoor functions

The public key is computed as the value of a **trapdoor function** when evaluated at the private key.

A trapdoor function is:

- difficult to invert (just as a hash function), but in contrast to a simple hash function, it is also
- **homomorphic**, meaning that arithmetic operations on the input translate into arithmetic operations on the output.

Digital signatures (5)

Examples for trapdoor functions

Exponentiation in finite fields

- Computing the residue class $r \equiv g^m \mod p$ for some generator $g \in \mathbb{F}_p$, with p prime, is simple.¹
- However, computing the **discrete logarithm** m from r (given the prime p and the generator g) is very difficult.

Scalar multiplication on elliptic curves

- Scalar multiplication on elliptic curves over a finite field \mathbb{F}_p is comparably simple (as will be seen).
- However, inverting the operation is nearly impossible if p is sufficiently large.

¹E.g., computing $g^{37} \equiv g^{32} \cdot g^4 \cdot g^1$, with $g^4 \equiv (g^2)^2$ and $g^{32} = ((g^4)^2)^2$ requires only six multiplications. This technique is known as **repeated squaring** or **square & multiply**.

Digital signatures (6)

Determination of the Ethereum address

Private key k (a number)
-> Trapdoor
Public key k·G = K -> K=(xk, xy)
-> generator of (E, +) elliptic curve
E=(xE, xy)

Start with the public key:

 $K = 0 \times 046e145ccef1033dea239875dd00dfb4fee6e3348b84985c92f103444683bae07b83b5c38e5e2b0c8529d7fa3f64d46daa1ece2d9ac14cab9477d042c84c32ccd0$

The prefix 0x04 is dropped before the hash is computed:

K'=6e145ccef1033dea239875dd00dfb4fee6e3348b84985c92f103444683bae07b83b5c38e5e2b0c8529d7fa3f64d46daa1ece2d9ac14cab9477d042c84c32ccd0

Compute the Keccak256 of the byte code:

Keccak256(K') =

 $0 \times 2 a 5 b c 3 4 2 e d 6 16 b 5 b a 5 7 3 2 2 6 9 0 0 1 d 3 f 1 e f 8 2 7 5 5 2 a e 1 1 1 4 0 2 7 b d 3 e c f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 9 6 f 1 f 0 8 6 b a 0 f 0 8 6 b a$

To obtain the **Ethereum wallet address**, keep the last 20 bytes (and add the prefix 0x, as usual):

0x001d3f1ef827552ae1114027bd3ecf1f086ba0f9

Digital signatures (7)

Elliptic curves

An elliptic curve E over the real numbers consists of:

• the set of solutions $(x, y) \in \mathbb{R}^2$ of a cubic equation of the form

$$y^2 = x^3 + ax + b, (1)$$

where $a,b\in\mathbb{R}$ are constants such that $\Delta\equiv 4a^3-27b^2\neq 0$, and

ullet a **point at infinity**, denoted by \mathcal{O} .

Digital signatures (8)

Addition on elliptic curves

Surprising fact: Two points $P,Q\in \mathbf{E}$ can be geometrically **added** to obtain a new point $P+Q\in \mathbf{E}$.

Digital signatures (9)

Addition on elliptic curves (cont.)

This also works in "nongeneric cases":

$$P + \mathcal{O} = P, \tag{2}$$

$$P + (-P) = \mathcal{O}, \tag{3}$$

where -P = (x, -y) is the **inverse** of P.

Lemma:

- P + Q = Q + P (commutativity)
- (P+Q)+S=Q+(P+S) (associativity) \rightarrow brackets are not needed...

Digital signatures (10)

Algebraic counterpart of addition

The **slope** of the line connecting two points P and Q (in generic position) is given as

$$\sigma = \frac{y_P - y_Q}{x_P - x_Q}.$$
(4)

Then the **sum** P + Q has the coordinates

$$x_{P+Q} = \sigma^2 - x_P - x_Q, (5)$$

$$y_{P+Q} = -y_P + \sigma(x_P - x_{P+Q}).$$
 (6)

Another surprising fact: These geometrically motivated formulas work in the same way for elliptic curves over finite fields (i.e., where $(x, y) \in \mathbb{F}_p$ for some prime p).

Digital signatures (11)

Elliptic curve over a finite field

Shown is the set of solutions to $y^2 = x^3 - x$ over the finite field \mathbb{F}_{61} .

Digital signatures (12)

Scalar multiplication on elliptic curves

Scalar multiplication by n corresponds to an iterated addition:

$$n \cdot P = \underbrace{P + \ldots + P}_{n \text{ times}} \tag{7}$$

This is the trapdoor function:

- Scalar multiplication is easy.²
- However, determining n from $Q = n \cdot P$ and P can be very hard.

This is called the discrete logarithm problem for elliptic curves.

²Use a variant of the square & multiply technique: "double & add"

Digital signatures (13)

The elliptic curve used by Ethereum and Bitcoin

Ethereum and Bitcoin use the same elliptic curve, called secp256k1.

That elliptic curve is defined over the finite field \mathbb{F}_p through

$$y^2 \equiv x^3 + 7 \bmod p, \tag{8}$$

where $p = 2^{256} - 2^{32} - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1$, which is a very large prime.³

The generator used is (prefix 04 followed by x and y coordinates):

G=0479BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798

483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8

³In fact, p=115 792 089 237 316 195 423 570 985 008 687 907 853 269 984 665 640 564 039 457 584 007 908 834 671 663

Digital signatures (14)

Signing a message

Suppose you plan to send an **electronic message** m, and you wish to add a digital signature so that the receiver can verify that the received message is authentic and unchanged.

You create a cryptographically secure random number q, the **ephemeral private key.**

Then, you compute the **ephemeral public key** $Q = q \cdot G$ on the elliptic curve $\mathbf{E} = \mathbf{secp256k1}$.

Then, the **digital signature** $(r,s) \in \mathbb{F}_p \times \mathbb{F}_p$ is given as

$$r = x_Q, (9)$$

$$s \equiv q^{-1}(\operatorname{Keccak256}(m) + rk) \operatorname{mod} p. \tag{10}$$

Digital signatures (15)

Verifying a signature

Suppose you receive a message m, augmented by a digital signature (s, r).

Calculate in \mathbb{F}_p :

$$w \equiv s^{-1} \bmod p, \tag{11}$$

$$u_1 \equiv \operatorname{Keccak256}(m)w \operatorname{mod} p,$$
 (12)

$$u_2 \equiv rw \bmod p, \tag{13}$$

Next, calculate on the elliptic curve $\mathbf{E} = \mathbf{secp256k1}$.the point

$$\widehat{Q} = u_1 \cdot G + u_2 \cdot K. \tag{14}$$

If $x_{\widehat{O}} = r$, then **the signature is valid!**

Digital signatures (16)

Crucial point

Each signature requires a new ephemeral private key.

Digital signatures (17)

Bibliographic notes

This chapter is based on Antonopoulos and Wood (2018, Chapters 4 and 6).

The basic idea underlying asymmetric cryptography is due to Diffie and Hellman (1976) and Merkle (1978).

Digital signatures (18)

References

Antonopoulos, Andreas M., and Gavin Wood. Mastering ethereum: building smart contracts and dapps. O'Reilly Media, 2018.

Diffie, W., & Hellman, M. E. (1976). New directions in cryptography (1976) https://doi. org/10.1109.

R. C. Merkle, "Secure communication over an insecure channel." Common. Ass. Comput. Moch., vol. 21. pp. 294-299, Apr. 1978.