integrals are performed).

The EFT Lagrangian for a nonrelativistic spin-1/2 fermion field with spin-independent interactions is the same as in Ref. [7], but converted to Euclidean form (which means $t \to -i\tau$ and an overall minus sign in defining \mathcal{L}_E and the interaction Lagrangian $\mathcal{L}_E^{\text{int}}$):

$$\mathcal{L}_{E} = \psi^{\dagger} \left[\frac{\partial}{\partial \tau} - \frac{\overrightarrow{\nabla}^{2}}{2M} \right] \psi + \frac{C_{0}}{2} (\psi^{\dagger} \psi)^{2} - \frac{C_{2}}{16} \left[(\psi \psi)^{\dagger} (\psi \overrightarrow{\nabla}^{2} \psi) + \text{ h.c.} \right]
- \frac{C'_{2}}{8} (\psi \overrightarrow{\nabla} \psi)^{\dagger} \cdot (\psi \overrightarrow{\nabla} \psi) + \dots
\equiv \psi^{\dagger} \left[\frac{\partial}{\partial \tau} - \frac{\overrightarrow{\nabla}^{2}}{2M} \right] \psi + \mathcal{L}_{E}^{\text{int}} (\psi^{\dagger}, \psi) , \qquad (1)$$

where $\stackrel{\leftrightarrow}{\nabla} = \stackrel{\longleftarrow}{\nabla} - \stackrel{\longrightarrow}{\nabla}$ is the Galilean invariant derivative and h.c. denotes the Hermitian conjugate. The terms proportional to C_2 and C_2' contribute to s-wave and p-wave scattering, respectively, while the dots represent terms with more derivatives and/or more fields, as well as renormalization counterterms. The Lagrangian Eq. (1) is a particular canonical form, which can be reached via field redefinitions. For example, higher-order terms with time derivatives are omitted, as they can be eliminated in favor of terms with spatial derivatives (see, for example, Ref. [43]). We will restrict ourselves here to spin-1/2 (i.e., degeneracy $\nu = 2$) and spin-independent interactions, which is sufficient to illustrate the formalism and the renormalization issues; generalizing to isospin and spin-dependent interactions is straightforward. We also consider only the C_0 vertex here, but comment at the end on the inclusion of vertices with derivatives.

We first consider a Euclidean generating functional with chemical potential μ and external sources $\eta(x)$ and $\eta^{\dagger}(x)$ [16, 44]:

$$Z[\eta, \eta^{\dagger}; \mu] \equiv e^{-W[\eta, \eta^{\dagger}; \mu]} = \int D\psi_{\alpha} D\psi_{\alpha}^{\dagger} \ e^{-\int d^{4}x \left[\mathcal{L}_{E} - \mu \psi_{\alpha}^{\dagger}(x)\psi_{\alpha}(x) + \eta_{\alpha}^{\dagger}(x)\psi_{\alpha}(x) + \psi_{\alpha}^{\dagger}(x)\eta_{\alpha}(x)\right]} \ , \tag{2}$$

where $\int d^4x$ includes a $d\tau$ integration that runs from $-\beta/2$ to $\beta/2$ (to facilitate the $\beta \to \infty$ limit) and anti-periodic boundary conditions are imposed. For simplicity, normalization factors are considered to be implicit in the functional integration measure. (See Refs. [17, 18, 44] for more detailed treatments of similar path integrals.) We have written the spin index α explicitly in Eq. (2); we will interchangeably use $\alpha = \{1,2\}$ and $\alpha = \{\uparrow,\downarrow\}$ in the sequel to denote individual spins, and the spin indices will be left implicit where there is no chance of confusion. We have kept the chemical potential μ separate from the Lagrangian in Eq. (2) to emphasize its role as an external source. In the next section, we will add a corresponding source coupled to the pair density.

A conventional perturbative expansion is realized by removing the interaction terms from the path integral in (1) in favor of functional derivatives with respect to η and η^{\dagger} and performing the remaining Gaussian integration over ψ and ψ^{\dagger} [16, 44]:

$$Z[\eta, \eta^{\dagger}; \mu] = Z_0 e^{-\int d^4 x \, \mathcal{L}_E^{\text{int}}[\delta/\delta \eta(x), -\delta/\delta \eta^{\dagger}(x)]} e^{\int d^4 y \, d^4 y' \, \eta^{\dagger}(y) \mathcal{G}_0(y, y') \eta(y')} , \qquad (3)$$

where the spin indices are implicit and we have introduced the noninteracting partition function Z_0 . Explicit expressions for the Matusbara Green's function \mathcal{G}_0 in coordinate and

¹ We use units with $\hbar = 1$.

FIG. 1: Hugenholtz diagrams for the unrenormalized W_i functionals in a homogeneous, dilute Fermi system. The vertices are defined in Fig. 5.

momentum space can be found in Ref. [44]. The linked-cluster theorem [44] shows that the difference of the interacting and noninteracting thermodynamic potentials Ω and Ω_0 is given by the sum of connected diagrams from the expansion of Z, with the external sources η^{\dagger} and η set to zero at the end:

$$\Omega(\mu, T, V) - \Omega_0(\mu, T, V) = \frac{1}{\beta} (W[0, 0; \mu] - W_0[0, 0; \mu]) . \tag{4}$$

The connected Feynman diagrams that sum (with appropriate symmetry factors) to $W-W_0$, which are labled W_i with $i \geq 1$, are shown in Fig. 1, with the fermion lines representing Matsubara propagators \mathcal{G}_0 with chemical potential μ [44]. The subscript i labels the leading order to which W_i contributes in the dilute EFT expansion. (In the DR/MS scheme, each diagram contributes to only one order but this is no longer true in DR/PDS.) The chemical potential can be determined for given N by inverting the thermodynamic expression for the particle number, $N = \partial \Omega/\partial \mu$. The regularization and renormalization of divergences arising in the evaluation of the W_i are described below.

B. Kohn-Luttinger-Ward Inversion

The Kohn-Luttinger-Ward (KLW) theorem [26, 27] relates the perturbative calculation of diagrams using the finite-temperature Matsubara formalism in the zero-temperature limit to