1	1. (aurrently asticnded)	A method for optimizing a wireless electromagnetic
2	communications network, co	omprising:
3	a wireless electroma	gnetic communications network, comprising
4	a set of node	s, said set of nodes further comprising,
5	at lea	st a first subset wherein each node is MIMO-capable,
6	comp	rising:
7	·	an antennae array of M antennae, where $M \ge one$,
8		a transceiver for each antenna in said spatially diverse
9		antennae array,
10		means for digital signal processing to convert analog radio
11		signals into digital signals and digital signals into analog
12		radio signals,
13		means for coding and decoding data, symbols, and control
14		information into and from digital signals,
15		diversity capability means for transmission and reception of
16		said analog radio waves[signals],
17		and,
18.		means for input and output from and to a non-radio
19	•	interface for digital signals;
20	said set of	nodes being deployed according to design rules that prefer
21	meeting the	following criteria:
22	said	set of nodes further comprising two or more proper subsets of
23	node	s, with a first proper subset being the transmit uplink / receive
24	dow	alink set, and a second proper subset being the transmit
25	dow	nlink / receive uplink set;
26	each	node in said set of nodes belonging to no more transmitting
27	uplir	nk or receiving uplink subsets than it has diversity capability
28	mean	ns;
29	each	node in a transmit uplink / receive downlink subset has no
30	more	e nodes with which it will hold time and frequency coincident

1.

31	communications in its field of view, than it has diversity
32	capability;
33	each node in a transmit downlink / receive uplink subset has no
34	more nodes with which it will hold time and frequency coinciden
35	communications in its field of view, than it has diversity
36	capability;
37	each member of a transmit uplink / receive downlink subset canno
38	hold time and frequency coincident communications with any
39	other member of that transmit uplink / receive downlink subset;
40	and,
41	each member of a transmit downlink / receive uplink subset canno
42	hold time and frequency coincident communications with any
43	other member of that transmit downlink / receive uplink subset;
44	transmitting, in said wireless electromagnetic communications network
45	independent information from each node belonging to a first proper subset, to one
46	or more receiving nodes belonging to a second proper subset that are viewable
4 7	from the transmitting node;
48	processing independently, in said wireless electromagnetic communication
49	network, at each receiving node belonging to said second proper subset
50	information transmitted from one or more nodes belonging to said first prope
51	subset;
52	and,
53	dynamically adapting the diversity channels[capability means] and said proper
54	subsets to optimize said network.
55	
56	
57	2. (currently amended) A method for optimizing a wireless electromagnetic
58	communications network, comprising:
59	a wireless electromagnetic communications network, comprising
60	a set of nodes, said set of nodes further comprising,

61	at least a first subset wherein each node is MIMO-capable,
62	comprising:
63	a spatially diverse antennae array of M antennae, where M
64	\geq two,
65	a transceiver for each antenna in said spatially diverse
66	antennae array,
67	means for digital signal processing to convert analog radio
68	signals into digital signals and digital signals into analog
69	radio signals,
70	means for coding and decoding data, symbols, and control
71	information into and from digital signals,
72	diversity capability means for transmission and reception of
73	said analog radio waves[signals],
74	and,
75	means for input and output from and to a non-radio
76	interface for digital signals;
77	said set of nodes being deployed according to design rules that prefer
78	meeting the following criteria:
79	said set of nodes further comprising two or more proper subsets of
80	nodes, with a first proper subset being the transmit uplink / receive
81	downlink set, and a second proper subset being the transmit
82	downlink / receive uplink set;
83	each node in said set of nodes belonging to no more transmitting
84	uplink or receiving uplink subsets than it has diversity capability
85	means;
86	each node in a transmit uplink / receive downlink subset has no
87	more nodes with which it will hold time and frequency coincident
88	communications in its field of view, than it has diversity
89	capability;
90	each node in a transmit downlink / receive uplink subset has no
91	more nodes with which it will hold time and frequency coincident

92	communications in its field of view, than it has diversity	
93	capability;	
94	each member of a transmit uplink / receive downlink subset cannot	
95	hold time and frequency coincident communications with any	
96	other member of that transmit uplink / receive downlink subset;	
97	and,	
98	each member of a transmit downlink / receive uplink subset cannot	
99	hold time and frequency coincident communications with any	
100	other member of that transmit downlink / receive uplink subset;	
101	transmitting, in said wireless electromagnetic communications network,	
102	independent information from each node belonging to a first proper subset, to one	
103	or more receiving nodes belonging to a second proper subset that are viewable	
104	from the transmitting node;	
105	processing independently, in said wireless electromagnetic communications	
106	network, at each receiving node belonging to said second proper subset	
107	information transmitted from one or more nodes belonging to said first proper	
108	subset;	
109	and,	
110	dynamically adapting the diversity ehannels [capability means] and said proper	
111	subsets to optimize said network.	
112		
113		
114	3. (original) A method as in claim 1, wherein dynamically adapting the diversity	
115	channels and said proper subsets to optimize said network further comprises:	
116		
117	using substantive null steering to minimize SINR between nodes transmitting and	
118	receiving information.	
119		
120	4. (original) A method as in claim 1, wherein dynamically adapting the diversity	
121	channels and said proper subsets to optimize said network further comprises:	
122		

123	using max-SINR null- and beam-steering to minimize intra-network interference.
124	
125	5. (original) A method as in claim 1, wherein dynamically adapting the diversity
126	channels and said proper subsets to optimize said network further comprises:
127	
128	using MMSE null- and beam-steering to minimize intra-network interference.
129	
130	
131	6. (original) A method as in claim 1, wherein dynamically adapting the diversity
132	channels and said proper subsets to optimize said network further comprises:
133	·
134	designing the network such that reciprocal symmetry exists for each pairing of
135	uplink receive and downlink receive proper subsets.
136	
137	7. (original) A method as in claim 1, wherein dynamically adapting the diversity
138	channels and said proper subsets to optimize said network further comprises:
139	
140	designing the network such that substantial reciprocal symmetry exists for each
141	pairing of uplink receive and downlink receive proper subsets.
142	
143	8. (original) A method as in claim 1, wherein the network uses TDD communication
144	protocols.
145	
146	9. (original) A method as in claim 1, wherein the network uses FDD communication
147	protocols.
148	
149	10. (original) A method as in claim 3, wherein the network uses simplex communication
150	protocols.
151	

- 152 11. (original) A method as in claim 1, wherein the network uses random access packets,
- and receive and transmit operations are all carried out on the same frequency channels for
- each link.

155

- 156 12. (original) A method as in claim 1, wherein dynamically adapting the diversity
- 157 channels and said proper subsets to optimize said network further comprises

158

if the received interference is spatially white in both link directions, setting

160

- 161 $g_1(a) \propto w_2^* q$ and $g_2(q) \propto w_1^* (q)$ at both ends of the link, where
- $\{g_2(q), w_1(q)\}$ are the linear transmit and receive weights used in the
- downlink;

164

- but if the received interference is not spatially white in both link directions,
- 166 constraining $\{g_1(q)\}\$ and $\{g_2(q)\}\$ to preferentially satisfy:

167

$$Q_{21}$$

$$\sum g^{T}_{169}(q)R_{i1i1}[n_{1}(q)]g^{*}_{1}(q) = \sum Tr\{R_{i1,i1}(n)\} = M_{1}R_{1}$$

170
$$q = 1$$
 $n=1$

171

$$Q_{12}$$

$$\sum g^{T}_{2}(q)R_{i2i2}[n_{2}(q)]g^{*}_{2}(q) = \sum Tr\{R_{i2i2}(n)\} = M_{2}R_{2}.$$

174
$$q = 1$$
 $n=1$

175

176

177

178 13. (original) A method as in claim 1, wherein:

```
179
              a proper subset may incorporate one or more nodes that are in a receive-only
180
              mode for every diversity channel.
181
182
       14. (original) A method as in claim 1, wherein:
183
184
              the network may dynamically reassign a node from one proper subset to another.
185
186
       15. (original) A method as in claim 1, wherein:
187
188
              the network may dynamically reassign a proper subset of nodes from one proper
189
               subset to another.
190
191
192
        16. (original) A method as in claim 7, wherein the step of designing the network such
193
       that substantial reciprocal symmetry exists for the uplink and downlink channels further
194
195
        comprises:
196
               if the received interference is spatially white in both link directions, setting
197
198
               g_1(a) \propto w^*_2 q and g_2(q) \propto w^*_1(q) at both ends of the link, where
199
               \{g_2(q), w_1(q)\} are the linear transmit and receive weights used in the
200
201
               downlink;
202
               but if the received interference is not spatially white in both link directions,
203
               constraining \{g_1(q)\} and \{g_2(q)\} to preferentially satisfy:
204
205
206
               Q_{21}
               \sum g^{T}_{1}(q)R_{i1i1}[n_{1}(q)]g^{*}_{1}(q) = \sum Tr\{R_{i1i1}(n)\} = M_{1}R_{1}
 207
```

n=1q = 1208 209 N_2 Q_{12} 210 $\sum g^{T}_{2}(q)R_{i2i2}[n_{2}(q)]g^{*}_{2}(q) = \sum Tr\{R_{i2i2}(n)\} = M_{2}R_{2}$ 211 n=1212 q = 1213 214 215 17. (original) A method as in claim 1, wherein the means for digital signal processing in 216 said first subset of MIMO-capable nodes further comprises: 217 218 an ADC bank for downconversion of received RF signals into digital signals; 219 a MT DEMOD element for multitone demodulation, separating the received 220 signal into distinct tones and splitting them into 1 through K_{feed} FDMA channels, 221 said separated tones in aggregate forming the entire baseband for the 222 transmission, said MT DEMOD element further comprising 223 a Comb element with a multiple of 2 filter capable of operating on a 128-224 225 bit sample; and, an FFT element with a 1,024 real-IF function; 226 a Mapping element for mapping the demodulated multitone signals into a 426 227 active receive bins, wherein 228 each bin covers a bandwidth of 5.75MHz; 229 each bin has an inner passband of 4.26MHz for a content envelope; 230 each bin has an external buffer, up and down, of 745kHz; 231 each bin has 13 channels, CH0 through CH12, each channel having 320 232 kHz and 32 tones, T0 through T31, each tone being 10kHz, with the inner 233 30 tones being used information bearing and T0 and T31 being reserved; 234

each signal being 100µs, with 12.5µs at each end thereof at the front and rear end thereof forming respectively a cyclic prefix and cyclic suffix buffer to punctuate successive signals;

and,

a symbol-decoding element for interpretation of the symbols embedded in the signal.

18. (original) A method as in claim 1, wherein dynamically adapting the diversity channels and said proper subsets to optimize said network further comprises

using at each node the receive combiner weights as transmit distribution weights during subsequent transmission operations, so that the network is preferentially designed and constrained such that each link is substantially reciprocal, such that the ad hoc network capacity measure can be made equal in both link directions by setting at both ends of the link:

$$g_2(q) \alpha w_2(k,q) \text{ and } g_1(k,q) \alpha w_1(k,q)$$
,

where $\{g_2(k,q), \mathbf{w}_1(k,q)\}$ are the linear transmit and receive weights to transmit data $d_2(k,q)$ from node $n_2(q)$ to node $n_1(q)$ over channel k in the downlink, and where $\{\mathbf{g}_1(k,q),\mathbf{w}_2(k,q)\}$ are the linear transmit and receive weights used to transmit data $d_1(k,q)$ from node $n_1(q)$ back to node $n_2(q)$ over equivalent channel k in the uplink.

263	
264	19. (original) A method as in claim 1, wherein the step of each node in a transmit
265	downlink / receive uplink subset having no more nodes with which it will hold time and
266	frequency coincident communications in its field of view, than it has diversity capability
267	further comprises:
268	
269	designing the topological, physical layout of nodes to enforce this constraint
270	within the node's diversity channel means limitations.
271	
272	
273	
274	20. (original) A method as in claim 1, wherein the step of each node in a transmit uplink
275	/ receive downlink subset having no more nodes with which it will hold time and
276	frequency coincident communications in its field of view, than it has diversity capability
277	further comprises:
278	
279	designing the topological, physical layout of nodes to enforce this constraint
280	within the node's diversity channel means limitations.
281	
282	
283	21. (original) A method as in claim 1, wherein the step of dynamically adapting the
284	diversity channels and said proper subsets to optimize said network further comprises:
285	
286	allowing a proper subset to send redundant data transmissions over multiple
287	frequency channels to another proper subset.
288	
289	22. (original) A method as in claim 1, wherein the step of dynamically adapting the
290	diversity channels and said proper subsets to optimize said network further comprises:
291	
292	allowing a proper subset to send redundant data transmissions over multiple
293	simultaneous or differential time slots to another proper subset.

294	
295	
296	23. (original) A method as in claim 1, wherein said transmitting proper subset and
297	receiving proper subset diversity capability means for transmission and reception of said
298	analog radio waves further comprise:
299	
300	spatial diversity of antennae.
301	
302	
303	24. (original) A method as in claim 1, wherein said transmitting proper subset and
304	receiving proper subset diversity capability means for transmission and reception of said
305	analog radio waves further comprise:
306	
307	polarization diversity of antennae.
308	
309	
310	25. (original) A method as in claim 1, wherein said transmitting proper subset and
311	receiving proper subset diversity capability means for transmission and reception of said
312	analog radio waves further comprise:
313	
314	any combination of temporal, spatial, and polarization diversity of antennae.
315	
316	
317	26. (original) A method as in claim 1, wherein the step of dynamically adapting the
318	diversity channels and said proper subsets to optimize said network further comprises:
319	
320	incorporating network control and feedback aspects as part of the signal encoding
321	process.
322	
323	27. (original) A method as in claim 1, wherein the step of dynamically adapting the
324	diversity channels and said proper subsets to optimize said network further comprises:

325	
326	incorporating network control and feedback aspects as part of the signal encoding
327	process and including said as network information in one direction of the
328	signalling and optimization process, using the perceived environmental
329	condition's effect upon the signals in the other direction of the signalling and
330	optimization process.
331	
332	
333	28. (original) A method as in claim 1, wherein the step of dynamically adapting the
334	diversity channels and said proper subsets to optimize said network further comprises:
335	
336	adjusting the diversity channel use between any proper sets of nodes by rerouting
337	any active link based on perceived unacceptable SINR experienced on that active
338	link and the existence of an alternative available link using said adjusted diversity
339	channel.
340	
341	
342	29. (original) A method as in claim 1, wherein the step of dynamically adapting the
343	diversity channels and said proper subsets to optimize said network further comprises:
344	
345	switching a particular node from one proper subset to another due to changes in
346	the external environment affecting links between that node and other nodes in the
347	network.
348	
349	
350	30. (original) A method as in claim 1, wherein the step of dynamically adapting the
351	diversity channels and said proper subsets to optimize said network further comprises:
352	
353	dynamically reshuffling proper subsets to more closely attain network objectives
354	by taking advantage of diversity channel availability.
355	

356	31. (original) A method as in claim 1, wherein the step of dynamically adapting the
357	diversity channels and said proper subsets to optimize said network further comprises:
358	
359	dynamically reshuffling proper subsets to more closely attain network objectives
360	by accounting for node changes.
361	
362	32. (original) A method as in claim 31, wherein said node changes include any of:
363	
364	adding diversity capability to a node, adding a new node within the field of view
365	of another node, removing a node from the network (temporarily or permanently),
366	or losing diversity capability at a node.
367	
368	
369	33. (original) A method as in claim 1, wherein the step of dynamically adapting the
370	diversity channels and said proper subsets to optimize said network further comprises:
371	
372	suppressing unintended recipients or transmitters by the imposition of signal
373	masking.
374	
375	34. (original) A method as in claim 33, wherein the step of suppressing unintended
376	recipients or transmitters by the imposition of signal masking further comprises:
377	
378	imposition of an origination mask.
379	
380	34. (original) A method as in claim 33, wherein the step of suppressing unintended
381	recipients or transmitters by the imposition of signal masking further comprises:
382	
383	imposition of a recipient mask.
384	
385	35. (original) A method as in claim 33, wherein the step of suppressing unintended
386	recipients or transmitters by the imposition of signal masking further comprises:

387	
388	imposition of any combination of origination and recipient masks.
389	
390	36. (original) A method as in claim 33, wherein the step of dynamically adapting the
391	diversity channels and said proper subsets to optimize said network further comprises:
392	
393	using signal masking to secure transmissions against unintentional, interim
394	interception and decryption by the imposition of a signal mask at origination, the
395	transmission through any number of intermediate nodes lacking said signal mask,
396	and the reception at the desired recipient which possesses the correct means for
397	removal of the signal mask.
398	
399	37. (original) A method as in claim 36, wherein the signal masking is shared by a proper
400	subset.
401	
402	38. (original) A method as in claim 1, wherein the step of dynamically adapting the
403	diversity channels and said proper subsets to optimize said network further comprises:
404	
405	heterogenous combination of a hierarchy of proper subsets, one within the other,
406	each paired with a separable subset wherein the first is a transmit uplink and the
407	second is a transmit downlink subset, such that the first subset of each pair of
408	subsets is capable of communication with the members of the second subset of
409	each pair, yet neither subset may communicate between its own members.
410	
411	39. (original) A method as in claim 1, wherein the step of dynamically adapting the
412	diversity channels and said proper subsets to optimize said network further comprises:
413	
414	using as many of the available diversity channels as are needed for traffic between
415	any two nodes from 1 to NumChannels, where NumChannels equals the maxima
416	diversity capability between said two nodes.
417	

118	40. (original) A method as in claim 1, wherein the step of dynamically adapting the
419	diversity channels and said proper subsets to optimize said network further comprises:
120	
1 21	usng a water-filling algorithm to route traffic between an origination and
422	destination node through any intermediate subset of nodes that has available
423	diversity channel capacity.
424	
425	41. (original) A method for optimizing a wireless electromagnetic communications
426	network, comprising:
427	
428	a wireless electromagnetic communications network, comprising
429	
430	a set of nodes, said set further comprising,
431	at least a first subset of MIMO-capable nodes, each MIMO-
432	capable node comprising:
433	a spatially diverse antennae array of M antennae, where M
434	≥ two, said antennae array being polarization diverse, and
435	circularly symmetric, and providing 1-to-M RF feeds;
436	a transceiver for each antenna in said array, said transceiver
437	further comprising
438	a Butler Mode Forming element, providing spatial
439	signature separation with a FFT-LS algorithm,
440	reciprocally forming a transmission with shared
441	receiver feeds, such that the number of modes out
442	equals the numbers of antennae, establishing such
443	as an ordered set with decreasing energy, further
444	comprising:
445	a dual-polarization element for splitting the
446	modes into positive and negative polarities
447	with opposite and orthogonal polarizations,
448	that can work with circular polarizations,

449	and
450	a dual-polarized link CODEC;
451	a transmission/reception switch comprising,
452	a vector OFDM receiver element;
453	a vector OFDM transmitter element;
454	a LNA bank for a receive signal, said LNA
455	Bank also instantiating low noise
456	characteristics for a transmit signal;
457	a PA bank for the transmit signal that
458	receives the low noise characteristics for
459	said transmit signal from said LNA bank;
460	an AGC for said LNA bank and PA bank;
461	a controller element for said
462	transmission/reception switch enabling
463	baseband link distribution of the energy over
464	the multiple RF feeds on each channel to
465	steer up to K_{feed} beams and nulls
466	independently on each FDMA channel;
467	a Frequency Translator;
468	a timing synchronization element controlling
469	said controller element;
470	further comprising a system clock,
471	a universal Time signal element;
472`	GPS;
473	a multimode power management element
474	and algorithm;
475	and,
476	a LOs element;
477	said vector OFDMreceiver element comprising
478	an ADC bank for downconversion of
479	received RF signals into digital signals;

480	a MT DEMOD element for multitone
481	demodulation, separating the received signal
482	into distinct tones and splitting them into 1
483	through K _{feed} FDMA channels, said
484	separated tones in aggregate forming the
485	entire baseband for the transmission, said
486	MT DEMOD element further comprising
487	a Comb element with a multiple of 2
488	filter capable of operating on a 128-
489	bit sample; and,
490	an FFT element with a 1,024 real-IF
491	function;
492	a Mapping element for mapping the
493	demodulated multitone signals into a 426
494	active receive bins, wherein
495	each bin covers a bandwidth of
496	5.75MHz;
497	each bin has an inner passband of
498	4.26MHz for a content envelope;
499	each bin has an external buffer, up
500	and down, of 745kHz;
501	each bin has 13 channels, CH0
502	through CH12, each channel having
503	320 kHz and 32 tones, T0 through
504	T31, each tone being 10kHz, with
505	the inner 30 tones being used
506	information bearing and T0 and T31
507	being reserved;
508	each signal being 100μs, with 12.5μs
509	at each end thereof at the front and
510	rear end thereof forming respectively
-	

511	a cyclic prefix and cyclic suffix
512	buffer to punctuate successive
513	signals;
514	a MUX element for timing modification
515	capable of element-wise multiplication
516	across the signal, which halves the number
517	of bins and tones but repeats the signal for
518	high-quality needs;
519	a link CODEC, which separates each FDMA
520	channel into 1 through M links, further
521	comprising
522	a SOVA bit recovery element;
523	an error coding element;
524	an error detection element;
525	an ITI remove element;
526	a tone equalization element;
527	and,
528	a package fragment retransmission
529	element;
530	a multilink diversity combining element,
531	using a multilink Rx weight adaptation
532	algorithm for Rx signal weights $\mathrm{W}(k)$ to
533	adapt transmission gains $G(k)$ for each
534	channel \mathbf{k} ;
535	an equalization algorithm, taking the signal
536	from said multilink diversity combining
537	element and controlling a delay removal
538	element;
539	said delay removal element separating signal
540	content from imposed pseudodelay and

	' 1in amountal gianal delay and
541	experienced environmental signal delay, and
542	passing the content-bearing signal to a
543	symbol-decoding element;
544	said symbol-decoding element for
545	interpretation of the symbols embedded in
546	the signal, further comprising:
547	an element for delay gating;
548	a QAM element; and
549	a PSK element;
550	said vector OFDM transmitter element comprising:
551	a DAC bank for conversion of digital signals
552	into RF signals for transmission;
553	a MT MOD element for multitone
554	modulation, combining and joining the
555	signal to be transmitted from 1 through K_{feed}
556	FDMA channels, said separated tones in
557	aggregate forming the entire baseband for
558	the transmission, said MT MOD element
559	further comprising
560	a Comb element with a multiple of 2
561	filter capable of operating on a 128-
562	bit sample; and,
563	an IFFT element with a 1,024 real-IF
564	function;
565	a Mapping element for mapping the
566	modulated multitone signals from 426
567	active transmit bins, wherein
568	each bin covers a bandwidth of
569	5.75MHz;
570	each bin has an inner passband of
	4.26MHz for a content envelope;
571	1 /

	1.1. 1
572	each bin has an external buffer, up
573	and down, of 745kHz;
574	each bin has 13 channels, CH0
575	through CH12, each channel having
576	320 kHz and 32 tones, T0 through
577	T31, each tone being 10kHz, with
578	the inner 30 tones being used
579	information bearing and T0 and T31
580	being reserved;
581	each signal being 100µs, with 12.5µs
582	at each end thereof at the front and
583	rear end thereof forming respectively
584	a cyclic prefix and cyclic suffix
585	buffer to punctuate successive
586	signals;
587	a MUX element for timing modification
588	capable of element-wise multiplication
589	across the signal, which halves the number
590	of bins and tones but repeats the signal for
591	high-quality needs;
592	a symbol-coding element for embedding the
593	symbols to be interpreted by the receiver in
594	the signal, further comprising:
595	an element for delay gating;
596	a QAM element; and
597	a PSK element;
598	a link CODEC, which aggregates each
599	FDMA channel from 1 through M links,
600	further comprising
601	a SOVA bit recovery element;
602	an error coding element;
•	

603	an error detection element;
604	an ITI remove element;
605	a tone equalization element;
606	and,
607	a package fragment retransmission
608	element;
609	a multilink diversity distribution element,
610	using a multilink Tx weight adaptation
611	algorithm for Tx signal weights to adapt
612	transmission gains $G(k)$ for each channel
613	k, such that $g(q;k) \propto w^*(q;k)$;
614	
615	a TCM codec;
616	a pilot symbol CODEC element that integrates with said
617	FFT-LS algorithm a link separation, a pilot and data signal
618	elements sorting, a link detection, multilink combination,
619	and equalizer weight calculation operations;
620	means for diversity transmission and reception,
621	and,
622	means for input and output from and to a non-radio
623	interface;
624	
625	said set of nodes being deployed according to design rules that prefer
626	meeting the following criteria:
627	
628	said set of nodes further comprising two or more proper subsets of
629	nodes, with a first proper subset being the transmit uplink / receive
630	downlink set, and a second proper subset being the transmit
631	downlink / receive uplink set;
632	

each node in said set of nodes belonging to no more transmitting 633 uplink or receiving uplink subsets than it has diversity capability 634 means: 635 636 each node in a transmit uplink / receive downlink subset has no 637 more nodes with which it will hold time and frequency coincident 638 communications in its field of view, than it has diversity 639 capability; 640 641 each node in a transmit downlink / receive uplink subset has no 642 more nodes with which it will hold time and frequency coincident 643 communications in its field of view, than it has diversity 644 capability; 645 646 each member of a transmit uplink / receive downlink subset cannot 647 hold time and frequency coincident communications with any 648 other member of that transmit uplink / receive downlink subset; 649 650 and, 651 652 each member of a transmit downlink / receive uplink subset cannot 653 hold time and frequency coincident communications with any 654 other member of that transmit downlink / receive uplink subset; 655 656 transmitting, in said wireless electromagnetic communications network, 657 independent information from each node belonging to a first proper subset, to one 658 or more receiving nodes belonging to a second proper subset that are viewable 659 from the transmitting node; 660 661 processing independently, in said wireless electromagnetic communications 662 network, at each receiving node belonging to said second proper subset, 663

information transmitted from one or more nodes belonging to said first proper 664 665 subset; 666 and, 667 668 designing the network such that substantially reciprocal symmetry exists for the 669 uplink and downlink channels by, 670 671 if the received interference is spatially white in both link directions, setting 672 673 $g_1(a) \propto w_2^*q$ and $g_2(q) \propto w_1^*(q)$ at both ends of the link, 674 where $\{g_2(q), w_1(q)\}$ are the linear transmit and receive weights 675 used in the downlink; 676 677 but if the received interference is not spatially white in both link 678 directions, constraining $\{g_1(q)\}$ and $\{g_2(q)\}$ to satisfy: 679 680 Q_{21} 681 $\sum g^{T}_{1}(q)R_{i1i1}[n_{1}(q)]g^{*}_{1}(q) =$ 682 q = 1683 N_1 684 \sum $Tr\{R_{i1i1}(n)\} = M_1R_1$ 685 n=1686 687 Q_{12} 688 $\sum g^{T}_{2}(q)R_{i2i2}[n_{2}(q)]g^{*}_{2}(q) =$ 689

q = 1

n=1 Σ $Tr\{R_{i2i2}(n)\} = M_2R_{2,}$ N_2 using any standard communications protocol, including TDD, FDD, simplex, and, optimizing the network by dynamically adapting the diversity channels between nodes of said transmitting and receiving subsets. 42. (original) A method as in claim 41, wherein said a transmission/reception switch further comprises: an element for tone and slot interleaving. 43. (original) A method as in claim 41, wherein said TMC codec and SOVA decoder are replaced with a Turbo codec. A method as in claim 1, wherein the step of dynamically adapting 44. (original) the diversity channels and said proper subsets to optimize said network further comprises: optimizing at each node acting as a receiver the receive weights using the MMSE technique to adjust the multitone transmissions between it and other nodes.

720	45. (original) A method as in claim 1, wherein the step of dynamically adapting the
721	diversity channels and said proper subsets to optimize said network further comprises:
722	
723	optimizing at each node acting as a receiver the receive weights using the MAX
724	SINR to adjust the multitone transmissions between it and other nodes.
725	
726	
727	46. (original) A method as in claim 1, wherein the step of dynamically adapting the
728	diversity channels and said proper subsets to optimize said network further comprises:
729	
730	optimizing at each node acting as a receiver the receive weights, then optimizing
73.1	the transmit weights at that node by making them proportional to the receive
732	weights, and then optimizing the transmit gains for that node by a max-min
733	criterion for the link capacities for that node at that particular time.
734	
735	
736	47. (original) A method as in claim 1, wherein the step of dynamically adapting the
737	diversity channels and said proper subsets to optimize said network further comprises:
738	·
739	including, as part of said network, one or more network controller elements that
740	assist in tuning local node's maximum capacity criteria and link channel diversity
741	usage to network constraints.
742	
743	
744	48. (original) A method as in claim 1, wherein the step of dynamically adapting the
745	diversity channels and said proper subsets to optimize said network further comprises:
746	

- characterizing the channel response vector $\mathbf{a}_1(f,t;n_2,n_1)$ by the observed 747 (possibly time-varying) azimuth and elevation $\{\theta_1(t;n_2,n_1),$ 748 $\varphi_1(f,t;n_2,n_1)$ of node n_2 observed at n_1 . 749 750 49. (original) A method as in claim 1, wherein the step of dynamically adapting the 751 diversity channels and said proper subsets to optimize said network further comprises: 752 753 characterizing the channel response vector $\mathbf{a}_1(f,t;n_2,n_1)$ as a superposition of 754 direct-path and near-field reflection path channel responses, e.g., due to scatterers 755 in the vicinity of n_1 , such that each element of $a_1(f,t;n_2,n_1)$ can be modeled 756 as a random process, possibly varying over time and frequency. 757 758 50. (original) A method as in claim 1, wherein the step of dynamically adapting the 759 diversity channels and said proper subsets to optimize said network further comprises: 760 761 presuming that $\mathbf{a}_1(f,t;n_2,n_1)$ and $\mathbf{a}_1(f,t;n_2,n_1)$ can be substantively 762 time invariant over significant time durations, e.g., large numbers of OFDM 763 symbols or TDMA time frames, and inducing the most significant frequency and 764 time variation by the observed timing and carrier offset on each link. 765 766 767
- 51. (original) A method as in claim 1, wherein the step of dynamically adapting the
 diversity channels and said proper subsets to optimize said network further comprises:

770

in such networks, e.g., TDD networks, wherein the transmit and receive frequencies are identical $(f_{21}(k) = f_{12}(k) = f(k))$ and the transmit and

- receive time slots are separated by short time intervals $(t_{21}(l) = t_{12}(l) + \Delta_{21}(l))$
- 774 $\approx t(l)$, and $\mathbf{H}_{21}(k,l)$ and $\mathbf{H}_{21}(k,l)$ become substantively reciprocal,
- such that the subarrays comprising $\mathbf{H}_{21}(k,l)$ and $\mathbf{H}_{21}(k,l)$ satisfy $\mathbf{H}_{21}(k,l)$
- 776 $; n_2, n_1) \approx \delta_{21}(k, l; n_1, n_2) \mathbf{H}^T_{12}(k, l; n_1, n_2), \text{ where } \delta_{21}(k, l; n_1, n_2)$
- (n_1, n_2) is a unit-magnitude, generally nonreciprocal scalar, equalizing the
- observed timing offsets, carrier offsets, and phase offsets, such that $\lambda_{21}(n_2, n_1)$
- $pprox \lambda_{12}(n_1,n_2), \ au_{21}(n_2,n_1) pprox au_{12}(n_2,n_1), \ and \ au_{21}(n_1,n_2) pprox au_{12}$
- (n_2, n_1) , by synchronizing each node to an external, universal time and
- frequency standard, obtaining $\delta_{21}(k, l; n_1, n_2) \approx 1$, and establishing
- network channel response as truly reciprocal $\mathbf{H}_{21}(k,l) \approx \mathbf{H}_{21}^T(k,l)$.
- 783
 784 52. A method as in claim 51, wherein the synchronization of each node is to Global
- 785 Position System Universal Time Coordinates (GPS UTC).
- 787 53. (original) A method as in claim 51, wherein the synchronization of each node is to a
- 788 network timing signal.

786

789

793

- 790 54. (original) A method as in claim 51, wherein the synchronization of each node is to a
- 791 combination of Global Position System Universal Time Coordinates (GPS UTC) and a
- 792 network timing signal.
- 794 55. (original) A method as in claim 1, wherein the step of dynamically adapting the
- 795 diversity channels and said proper subsets to optimize said network further comprises:

797	for such parts of the network where the internode channel responses possess
798	substantive multipath, such that $\mathbf{H}_{21}(k$, l ; n_2 , $n_1)$ and $\mathbf{H}_{21}(k$, l
799	(n_1, n_1) have rank greater than unity, making the channel response
800	substantively reciprocal by:
801	
802	
803	(1) forming uplink and downlink transmit signals using the matrix formula
804	in EQ. 40;
805	(2) reconstructing the data intended for each receive node using the
806	matrix formula in EQ. 41;
807	(3) developing combiner weights that $\{\mathbf w_1(k,l;n_2,n_1)\}$ and
808	$\{\mathbf{w}_2(k,l;n_1,n_2)\}$ that substantively null data intended for
809	recipients during the symbol recovery operation, such that for $n_1 \neq n_2$:
810	(4) developing distribution weights $\{\mathbf g_1(k,l;n_2,n_1)\}$ and
811	$\{\mathbf{g}_2(k,l;n_1,n_2)\}$ that perform equivalent substantive nulling
812	operations during transmit signal formation operations;
813	(5) scaling distribution weights to optimize network capacity and/or power
814	criteria, as appropriate for the specific node topology and application
815	addressed by the network;
816	(6) removing residual timing and carrier offset remaining after recovery of
817	the intended network data symbols;
818	and

(7) encoding data onto symbol vectors based on the end-to-end SINR 819 obtainable between each transmit and intended recipient node, and 820 decoding that data after symbol recovery operations, using channel coding 821 and decoding methods develop in prior art. 822 823 824 825 56. (original) A method as in claim 1, wherein dynamically adapting the diversity 826 channels and said proper subsets to optimize said network further comprises: 827 828 forming substantively nulling combiner weights using an FFT-based least-squares 829 algorithms that adapt $\{\mathbf w_1(k,l\,;n_2,\,n_1)\}$ and $\{\mathbf w_2(k,l\,;n_1,\,n_2)\}$ to 830 values that minimize the mean-square error (MSE) between the combiner output 831 data and a known segment of transmitted pilot data; 832 applying the pilot data to an entire OFDM symbol at the start of an adaptation 833 frame comprising a single OFDM symbol containing pilot data followed by a 834 stream of OFDM symbols containing information data; 835 wherein the pilot data transmitted over the pilot symbol is preferably given by 836 EQ. 44 and EQ. 45, such that the "pseudodelays" $\delta_1(n_1)$ and $\delta_2(n_2)$ are 837 unique to each transmit node (in small networks), or provisioned at the beginning 838 of communication with any given recipient node (in which case each will be a 839 function of n_1 and n_2), giving each pilot symbol a pseudorandum component; 840 maintaining minimum spacing between any pseudodelays used to communicate 841 with a given recipient node that is larger than the maximum expected timing 842 offset observed at that recipient node, said spacing should also being an integer 843 multiple of 1/K, where K is the number of tones used in a single FFT-based LS 844

algorithm;

additional OFDM symbols for transmission of pilot symbols, either lengthening 847 the effective value of K, or reducing the maximum number of originating nodes 848 transmitting pilot symbols over the same OFDM symbol; 849 also providing K large enough to allow effective combiner weights to be 850 constructed from the pilot symbols alone; 851 then obtaining the remaining information-bearing symbols, which are the uplink 852 and downlink data symbols provided by prior encoding, encryption, symbol 853 randomization, and channel preemphasis stages, in the adaptation frame, by EQ. 854 46 and EQ. 47; 855 removing at the recipient node, first the pseudorandom pilot components from the 856 received data by multiplying each tone and symbol by the pseudorandom 857 components of the pilot signals, using EQ. 47 and EQ. 48; 858 thereby transforming each authorized and intended pilot symbol for the recipient 859 node into a complex sinusoid with a slope proportional to the sum of the 860 pseudodelay used during the pilot generation procedure, and the actual observed 861 timing offset for that link, and leaving other, unauthorized pilot symbols, and 862 symbols intended for other nodes in the network, untransformed and so appearing 863 as random noise at the recipient node. 864 865 57. (original) A method as in claim 55, wherein the FFT-Least Squares algorithm is that 866 867 shown in Figure 37. 868 58. (original) A method as in claim 55, wherein the pseudodelay estimation is refined 869 using a Gauss-Newton recursion using the approximation: 870

and if K is not large enough to provide a sufficiency of pseudodelays, using

871	$\exp\{-j2\pi\Delta(k-k_0)/PK\}\approx 1-j2\pi\Delta(k-k_0)/PK.$
872	
873	
874	59. (original) A method as in claim 1, wherein wherein dynamically adapting the
875	diversity channels and said proper subsets to optimize said network further comprises:
876	using the linear combiner weights provided during receive operations are
877	construct linear distribution weights during subsequent transmit operations, by
878	setting distribution weight $\mathbf{g}_1(k,l;n_2,n_1)$ proportional to
879	$\mathbf{w}^*_{1}(k,l;n_2,n_1)$ during uplink transmit operations, and
880	$\mathbf{g}_2(k,l;n_1,n_2)$ proportional to $\mathbf{w^*}_2(k,l;n_1,n_2)$ during downlink
881	transmit operations; thereby making the transmit weights substantively nulling
882	and thereby allowing each node to form frequency and time coincident two-way
883	links to every node in its field of view, with which it is authorized (through
884	establishment of link set and transfer of network/recipient node information) to
885	communicate.
886	
887	
888	60. (original) A method as in claim 1, wherein each node in the first subset of nodes
889	further comprises:
890	,
891	a LEGO implementation element and algorithm.
892	
893	
894	61. (original) A method as in claim 1, wherein dynamically adapting the diversity
895	channels and said proper subsets to optimize said network further comprises:
896	
897	balancing the power use against capacity for each channel, link, and node, and
898	hence for the network as a whole by:

899	establishing a capacity objective ${f B}$ for a particular Node 2 receiving from
900	another Node 1 as the target to be achieved by node 2
901	solving, at Node 2 the local optimization problem:
902	
903	$\min \Sigma_{\mathbf{q}} \; \pi_{\mathbf{l}}(q) \equiv 1^{\mathrm{T}} \mathbf{\pi}_{\mathbf{l}} \; \text{such that}$
904	$\Sigma_{q \in Q(m)} \log(1 + \gamma(q)) \ge \beta(m),$
905	
906	where $\pi_1(q)$ is the SU (user 1 node) transmit power for link
907	number q ,
908	$\gamma(q)$ is the signal to interference noise ratio (SINR) seen at the
909	output of the beamformer,
910	lis a vector of all 1s,
911	and _
912	π_1 is a vector whose q^{th} element is $p_1(q)$,
913	the aggregate set $Q(m)$ contains a set of links that are grouped
914	together for the purpose of measuring capacity flows through those
915	links;
916	using at Node 2 the local optimization solution to moderate the transmit
917	and receive weights, and signal information, returned to node 1;.
918	and,
919	using said feedback to compare against the capacity objective B and
920	incrementally adjust the transmit power at each of Node 1 and Node 2
921	until no further improvement is perceptible.
922	
923	
924	62. (original) A method as in claim 1, wherein dynamically adapting the diversity
925	channels and said proper subsets to optimize said network further comprises:

926	
927	using the downlink objective function in EQ. 5 and EQ. 6 at each node to perform
928	local optimization;
929	reporting the required feasibility condition, $\sum_{q \in Q(m)} \pi_1(q) \leq R_1(m)$;
930	and,
931	modifying $eta(m)$ as necessary to stay within the constraint.
932	
933	
934	63. (original) A method as in claim 60[61], wherein:
935	
936	the capacity constraints $oldsymbol{eta}(m)$ are determined in advance for each proper subset
937	of nodes, based on known QoS requirements for each said proper subset.
938	
939	
940	64. (original) A method as in claim 60[61], wherein said network further seeks to
941	minimize total power in the network as suggested by EQ. 4.
942	
943	65. (original) A method as in claim 60[61], wherein said network sets as a target
944	objective for the network ${\bf B}$ the QoS for the network.
945	
946	66. (original) A method as in claim 60[61], wherein said network sets as a target
947	objective for the network B a vector of constraints.
948	
949	67. (original) A method as in claim 60[61], wherein the local optimization problem is
950	further defined such that:
951	Turmer defined such that:
951	the receive and transmit weights are unit normalized with respect to the
952	background interference autocorrelation matrix;
953	Onother American and and and and and and and and and a
フンサ	

955	the local SINR is expressed as EQ. 8;
956	
957	and the weight normalization in EQ. 6 is used to enable the reciprocity equation at
958	that node, thereby allowing the uplink and downlink function to be presumed
959	identical rather than separately computed.
960	
961	
962	68. (original) A method as in claim 60[61], wherein:
963	
964	very weak constraints to the transmit powers are approximated by using a very
965	simple approximation for $\gamma(q)$.
966	
967	69. (original) A method as in claim 60[61], for the cases wherein all the aggregate sets
968	contain a single link and non-negligible environmental noise is present, wherein the
969	transmit powers are computed as Perron vectors from EQ. 10, and a simple power
970	constraint is imposed upon the transmit powers.
971	
972	70. (original) A method as in claim 60[69], wherein the optimization is performed in
973	alternating directions and repeated.
974	
975	
976	71. (original) A method as in claim $60[61]$, wherein each node presumes the post-
977	beamforming interference energy remains constant for the adjustment interval and so
978	solves EQ. 3 using classic water filling arguments based on Lagrange multipliers, and
979	then uses a similar equation for the reciprocal element of the link.
980	
981	
982	72. (original) Amethod as in claim 60[61], wherein at each node the constrained
983	optimization problem stated in EQ. 13 and 14 is solved using the approximation in EQ.
984	11, and the network further comprises at least one high-level network controller that

985	controls the power constraints $R_1(q)$, and drives the network towards a max-min
986	solution.
987	
988	73. (original) A method as in claim 60[61], wherein each node:
989	
990	is given an initial $\gamma_{0;}$
991	generates the model expressed in EQ. 20, EQ. 21, and EQ. 22;
992	updates the new γ_{α} from EQ. 23 and EQ. 24;
993	determines a target SINR to adapt to;
994	and,
995	updates the transmit power for each link q according to EQ. 25 and EQ. 26.
996	
997	
998	74. (original) A method as in claim 60[61], for each node wherein the transmit power
999	relationship of EQ. 25 and EQ 26 is not known, that:
1000	
1001	uses a suitably long block of N samples is used to establish the relationship, where
1002	N is either 4 times the number of antennae or 128, whichever is larger;
1003	uses the result to update the receive weights at each end of the link;
1004	optimizes the local model as in EQ. 23 and EQ. 24;
1005	and then applies EQ. 25 and EQ. 26.
1006	
1007	
1008	75. (original) A method as in claim $60[61]$ that, for an aggregate proper subset m :
1009	
1010	for each node within the set m, inherits the network objective function model
1011	given in EQ. 28, EQ. 29, and EQ. 30;
1012	elminates the step of matrix channel estimation, transmitting instead from
1013	that node as a single real number for each link to the other end of said link
1014	an estimate of the post beamforming interference power;

1015	and,
1016	receives back for each link a single real number being the transmit power.
1017	
1018	76. (original) A method as in claim 75, that for each pair of nodes assigns to the one
1019	presently possessing the most processing capability the power management
1020	computations.
1021	
1022	77. (original) A method as in claim 74[75] that estimates the transfer gains and the post
1023	beamforming interference power using simple least squares estimation techniques.
1024	
1025	78. (original) A method as in claim 74[75]that, for estimating the transfer gains and post
1026	beamforming interference power:
1027	
1028	instead solves for the transfer gain h using EQ. 31;
1029	uses a block of N samples of data to estimate h using EQ. 32;
1030	obtains an estimation of residual interference power R_e using EQ. 33;
1031	and,
1032	obtains knowledge of the transmitted data symbols $S(n)$ from using
1033	remodulated symbols at the output of the codec.
1034	
1035	79. (original) A method as in claim 77 [78] wherein, instead of obtaining knowledge of
1036	the transmitted data symbols $S(n)$ from using remodulated symbols at the output of the
1037	codec, the node uses the output of a property restoral algorithm used in a blind
1038	beamforming algorithm.
1039	
1040	80. (original) A method as in claim 77 [78] wherein, instead of obtaining knowledge of
1041	the transmitted data symbols $S(n)$ from using remodulated symbols at the output of the
1042	codec, the node uses a training sequence explicitly transmitted to train beamforming
1043	weights and asset the power management algorithms.

1044	
1045	81. (original) A method as in claim 77 [78] wherein, instead of obtaining knowledge of
1046	the transmitted data symbols $S(n)$ from using remodulated symbols at the output of the
1047	codec, the node uses any combination of:
1048	the output of a property restoral algorithm used in a blind beamforming algorithm;
1049	a training sequence explicitly transmitted to train beamforming weights and asset
1050	the power management algorithms;
1051	or,
1052	other means known to the art.
1053	
1054	82. (original) A method as in claim 60[61], wherein each node incorporates a link level
1055	optimizer and a decision algorithm, as illustrated in Figure 32Aand 32B.
1056	
1057	83. (original) A method as in claim 81[82], wherein the decision algorithm is a
1058	Lagrange multiplier technique.
1059	<i>;</i>
1060	84. (original) A method as in claim 60[61], wherein the solution to EQ. 3 is
1061	implemented by a penalty function technique.
1062	
1063	85. (original) A method as in claim 83[84], wherein the penalty function technique:
1064	takes the derivative of $\gamma_{(q)}$ with respect to π_1 ;
1065	and,
1066	uses the Kronecker-Delta function and the weighted background noise.
1067	
1068	86. (original) A method as in claim 83[84], wherein the penalty function technique
1069	neglects the noise term.
1070	
1071	87. (original) A method as in claim 83[84], wherein the penalty function technique
1072	normalizes the noise term to one.
1073	

88. (original) A method as in claim 60[61], wherein the approximation uses the receive 1074 1075 weights. 1076 89. (original) A method as in claim 60[61], wherein adaptation to the target objective is 1077 performed in a series of measured and quantized descent and ascent steps. 1078 1079 90. (original) A method as in claim 60[61], wherein the adaptation to the target 1080 objective is performed in response to information stating the vector of change. 1081 1082 91. (original) A method as in claim 60[61], which uses the log linear mode in EQ. 34 1083 and the inequality characterization in EQ. 35 to solve the approximation problem with a 1084 simple low dimensional linear program. 1085 1086 92. (original) A method as in claim 60[61], develops the local mode by matching 1087 function values and gradients between the current model and the actual function. 1088 1089 93. (original) A method as in claim 60[61], which develops the model as a solution to 1090 the least squares fit, evaluated over several points. 1091 1092 94. (original) A method as in claim 60[61], which reduces the cross-coupling effect by 1093 allowing only a subset of links to update at any one particular time, wherein the subset 1094 members are chosen as those which are more likely to be isolated from one another. 1095 1096 95. (original) A method as in claim 60[61], wherein: 1097 the network further comprises a network controller element; 1098 said network controller element governs a subset of the network; 1099 said network controller element initiates, monitors, and changes the target 1100 objective for that subset; 1101 said network controller communicates the target objective to each node in that 1102 1103 subset; and, 1104

1105	receives information from each node concering the adaptation necessary to meet
1106	said target objective.
1107	
1108	96. (original) A method as in claim 94[95], wherein said network further records the
1109	scalar and history of the increments and decrements ordered by the network controller.
1110	
1111	97. (original) A method as in claim 60[61], wherein for any subset, a target objective
1112	may be a power constraint.
1113	
1114	98. (original) A method as in claim 60[61], wherein for any subset, a target objective
1115	may be a capacity maximization subject to a power constraint.
1116	
1117	99. (original) A method as in claim 60[61], wherein for any subset, a target objective
1118	may be a power minimization subject to the capacity attainment to the limit possible over
1119	the entire network.
1120	
1121	100. (original) A method as in claim 60[61], wherein for any subset, a target objective
1122	may be a power minimization at each particular node in the network subject to the
1123	capacity constraint at that particular node.
1124	
1125	
1126	101. (original) A wireless electromagnetic communications network, comprising:
1127	
1128	a wireless electromagnetic communications network, comprising
1129	
1130	a set of nodes, said set further comprising,
1131	
1132	at least a first subset wherein each node is MIMO-capable,
1133	comprising:
1134	a spatially diverse antennae array of M antennae, where M
1135	\geq one,

1136	a transceiver for each antenna in said array,
1137	means for digital signal processing,
1138	means for coding and decoding data and symbols,
1139	means for diversity transmission and reception,
1140	and,
1141	means for input and output from and to a non-radio
1142	interface;
1143	
1144	said set of nodes further comprising one or more proper subsets of nodes,
1145	being at least one transmitting and at least one receiving subset, with said
1146	transmitting and receiving subsets having a topological arrangement
1147	whereby:
1148	
1149	each node in a transmitting subset has no more nodes with which it
1150	will simultaneously communicate in its field of view, than it has
1151	number of antennae;
1152	
1153	each node in a receiving subset has no more nodes with which it
1154	will simultaneously communicate in its field of view, than it can
1155	steer independent nulls to;
1156	and,
1157	each member of a non-proper subset cannot communicate with any
1158	other member of its non-proper subset;
1159	
1160	transmitting independent information from each node in a first non-proper subset
1161	to one or more receiving nodes belonging to a second non-proper subset that are
1162	viewable from the transmitting node;
1163	
1164	processing independently information transmitted to a receiving node in a second
1165	non-proper subset from one or more nodes in a first non-proper subset is
1166	independently by the receiving node;

1167	and,	
1168	optimizing the network by dynamically adapting the diversity channels between nodes of	
1169	said transmitting and receiving subsets.	
1170		
1171		
1172	102. (original) An apparatus as in claim 100-[101], further comprising an element	
1173	for scheduling according to a Demand-Assigned, Multiple-Access algorithm.	
1174		
1175	103. (original) An apparatus as in claim 100-[101], further comprising for each	
1176	node in said first subset a LEGO adaptation element.	
1177		
1178	104. (original) An apparatus as in claim 100-[101], further comprising:	
1179		
1180	for each node in said first subset a LEGO adaptation element; and,	
1181	one or more network controllers.	
1182		
1183	105. (original) A method as in claim 1, wherein the step of dynamically adapting	
1184	the diversity channels and said proper subsets to optimize said network further comprises:	
1185		
1186		
1187	-	
1188	equalizing those links to provide node-equivalent uplink and downlink capacity.	
1189		
1190	106. (original) A method as in claim 105, further comprising, after the DOF matching:	
1191		
1192	•	
1193		
1194		
1195		
1196		
. 1197		

1198	107. (original) A method as in claim 105, wherein the receive weights are similarly	
1199	modified.	
1200		
1201		
1202		
1203	108. (currently amended) A method for optimizing a wireless electromagnetic	
1204	communications network, comprising:	
1205		
1206	a wireless electromagnetic communications network, comprising	
1207		
1208	a set of nodes, said set of nodes further comprising,	
1209		
1210	at least a first subset wherein each node is MIMO-capable,	
1211	comprising:	
1212	an antennae array of M antennae, where $M \ge one$,	
1213	a transceiver for each antenna in said spatially diverse	
1214	antennae array,	
1215	means for digital signal processing to convert analog radio	
1216	signals into digital signals and digital signals into analog	
1217	radio signals,	
1218	means for coding and decoding data, symbols, and control	
1219	information into and from digital signals,	
1220	diversity capability means for transmission and reception of	
1221	said analog radio waves [signals];	
1222	and,	
1223	means for input and output from and to a non-radio	
1224	interface for digital signals;	
1225		
1226	said set of nodes being deployed according to design rules that prefer	
1227	meeting the following criteria:	
1228		

1229	said set of nodes further comprising two or more proper subsets of
1230	nodes, with a first proper subset being the transmit uplink / receive
1231	downlink set, and a second proper subset being the transmit
1232	downlink / receive uplink set;
1233	
1234	each node in said set of nodes belonging to no more transmitting
1235	uplink or receiving uplink subsets than it has diversity capability
1236	means;
1237	
1238	each node in a transmit uplink / receive downlink subset has no
1239	more nodes with which it will hold time and frequency coincident
1240	communications in its field of view, than it has diversity
1241	capability;
1242	
1243	each node in a transmit downlink / receive uplink subset has no
1244	more nodes with which it will hold time and frequency coincident
1245	communications in its field of view, than it has diversity
1246	capability;
1247	
1248	each member of a transmit uplink / receive downlink subset cannot
1249	hold time and frequency coincident communications with any
1250	other member of that transmit uplink / receive downlink subset;
1251	and,
1252	each member of a transmit downlink / receive uplink subset cannot
1253	hold time and frequency coincident communications with any
1254	other member of that transmit downlink / receive uplink subset;
1255	
1256	transmitting, in said wireless electromagnetic communications network,
1257	independent information from each node belonging to a first proper subset, to one
1258	or more receiving nodes belonging to a second proper subset that are viewable
1259	from the transmitting node;

1260	
1261	processing independently, in said wireless electromagnetic communications
1262	network, at each receiving node belonging to said second proper subset,
1263	information transmitted from one or more nodes belonging to said first proper
1264	subset;
1265	
1266	optimizing at the local level for each node for the channel capacity D_{21}
1267	according to EQ. 49, solving first the reverse link power control problem; then
1268	treating the forward link problem in an identical fashion, substituting the
1269	subscripts 2 for 1 in said equation;
1270	and,
1271	dynamically adapting the diversity channels and said proper subsets to optimize
1272	said network.
1273	
1274	
1275	109. (original) A method as in claim 108, futher comprising:
1276	
1277	for each aggregate subset m , attempting to achieve the given capacity objective,
1278	β , as described in EQ. 50, by:
1279	(1) optimizing the receive beamformers, using simple MMSE processing, to
1280	simultaneously optimize the SINR;
1281	(2) based on the individual measured SINR for each q index, attempt to
1282	incrementally increase or lower its capacity as needed to match the current target;
1283	and,
1284	(3) steping the power by a quantized small step in the appropriate direction;
1285	then,
1286	when all aggregate sets have achieved the current target capacity, then the
1287	network can either increase the target capacity β , or add additional users to
1288	exploit the now-known excess capacity.
1200	
1289	

1290	110. (original)	A method as in claim 106[107], wherein instead of optimizing for
1291	channel capacity, the	network optimizes for QoS.
1292		
1293	111. (original)	A method as in claim 94[95], wherein:
1294		
1295	said network of	controller adds, drops, or changes the target capacity for any node in
1296	the set the net	work controller controls.
1297		
1298	112. (original)	A method as in claim 94[95], wherein:
1299		
1300	said network	controller may, either in addition to or in replacement for altering β ,
1301		change channels between nodes, frequencies, coding, security, or
1302	protocols, pol	arizations, or traffic density allocations usable by a particular node
1303	or channel.	
1304		
1305		
1306	113. (original)	A wireless electromagnetic communications network, comprising:
1307		
1308	a set of nodes	s, said set further comprising,
1309		at least a first subset wherein each node is MIMO-capable,
1310		comprising:
1311		a spatially diverse antennae array of M antennae, where M
1312		\geq one,
1313		a transceiver for each antenna in said array,
1314		13 means for digital signal processing,
1315		14 means for coding and decoding data and symbols,
1316		19 means for diversity transmission and reception,
1317		pilot symbol coding & decoding element
1318		timing synchronization element
1319		and,

1320	means for input and output from and to a non-radio
1321	interface;
1322	
1323	said set of nodes further comprising two or more proper subsets of nodes,
1324	there being at least one transmitting and at least one receiving subset, with
1325	said transmitting and receiving subsets subset having a diversity
1326	arrangement whereby:
1327	
1328	each node in a transmitting subset has no more nodes with which it
1329	will simultaneously communicate in its field of view, than it has
1330	number of antennae;
1331	
1332	each node in a receiving subset has no more nodes with which it
1333	will simultaneously communicate in its field of view, than it can
1334	steer independent nulls to;
1335	and,
1336	each member of a non-proper subset cannot communicate with any
1337	other member of its non-proper subset over identical diversity
1338	channels;
1339	
1340	a LEGO adaptation element and algorithm;
1341	
1342	a network controller element and algorithm;
1343	
1344	whereby each node in a first non-proper subset transmits independent information
1345	to one or more receiving nodes belonging to a second non-proper subset that are
1346	viewable from the transmitting node;
1347	
1348	each receiving node in said second non-proper subset processes independently
1349	information transmitted to a from one or more nodes in a first non-proper subset is
1350	independently by the receiving node;

1351 each node uses means to minimize SINR between nodes transmitting and 1352 receiving information; 1353 1354 the network is designed such that substantially reciprocal symmetry exists for the 1355 1356 uplink and downlink channels by, 1357 if the received interference is spatially white in both link directions, setting 1358 1359 $g_1(a) \propto w^*_2 q$ and $g_2(q) \propto w^*_1(q)$ at both ends of the link, 1360 where $\{g_2(q), w_1(q)\}$ are the linear transmit and receive weights 1361 used in the downlink; 1362 1363 but if the received interference is not spatially white in both link 1364 directions, constraining $\{g_1(q)\}$ and $\{g_2(q)\}$ to satisfy: 1365 1366 1367 Q_{21} $\sum g^{T}_{1}(q)R_{i1i1}[n_{1}(q)]g^{*}_{1}(q) =$ 1368 q = 11369 N_1 1370 $Tr\{R_{i1i1}(n)\} = M_1R_{1i}$ 1371 n=11372 1373 Q_{12} 1374 $\sum g^{T}_{2}(q)R_{i2i2}[n_{2}(q)]g^{*}_{2}(q) =$ 1375 q = 11376 n=1

1377

1378	$\sum \operatorname{Tr}\{R_{i2i2}(n)\} = M_2 R_{2,}$
1379	N_2
1380	
1381	
1382	the network uses any standard communications protocol;
1383	
1384	and,
1385	
1386	the network is optimized by dynamically adapting the diversity channels between
1387	nodes of said transmitting and receiving subsets.
1388	
1389	
1390	114. (original) A wireless electromagnetic communications network as in claim
1391	112 [113]:
1392	wherein each node may further comprise a Butler Mode Forming element, to
1393	enable said node to ratchet the number of active antennae for a particular uplink
1394	or downlink operation up or down.
1395	
1396	
1397	115. (original) A wireless electromagnetic communications network as in claim 50:
1398	incorporating a dynamics-resistant multitone element.
1399	
1400	
1401	116. (original) The use of a method as described in claim 1 for fixed wireless
1402	electromagnetic communications.
1403	
1404	117. (original) The use of an apparatus as described in claim 50 for fixed wireless
1405	electromagnetic communications.
1406	

118. (original) The use of a method as described in claim 1 for mobile wireless 1407 electromagnetic communications. 1408 1409 119. (original) The use of an apparatus as described in claim 50 for mobile wireless 1410 electromagnetic communications. 1411 1412 120. (original) The use of a method as described in claim 1 for mapping operations using 1413 wireless electromagnetic communications. 1414 1415 121. (original) The use of an apparatus as described in claim 50 for mapping operations 1416 using wireless electromagnetic communications. 1417 1418 122. (original) The use of a method as described in claim 1 for a military wireless 1419 electromagnetic communications network. 1420 1421 123. (original) The use of an apparatus as described in claim 50 for a military wireless 1422 electromagnetic communications network. 1423 1424 124. (original) The use of a method as described in claim 1 for a military wireless 1425 electromagnetic communications network for battlefield operations. 1426 1427 125. (original) The use of an apparatus as described in claim 50 for a military wireless 1428 electromagnetic communications network for battlefield operations. 1429 1430 126. (original) The use of a method as described in claim 1 for a military wireless 1431 electromagnetic communications network for Back Edge of Battle Area (BEBA) 1432 1433 operations. 1434 127. (original) The use of an apparatus as described in claim 50 for a military wireless 1435 electromagnetic communications network for Back Edge of Battle Area (BEBA) 1436 operations.. 1437

1438			
1439	128. (original) The use of a method as described in claim 1 for a wireless electromagnetic		
1440	communications network for intruder detection operations.		
1441			
1442	129. (original) The use of an apparatus as described in claim 50 for a wireless		
1443	electromagnetic communications network for intruder detection operations		
1444			
1445	130. (original) The use of a method as described in claim 1 for a wireless electromagnetic		
1446	communications network for logistical intercommunications.		
1447			
1448	131. (original) The use of an apparatus as described in claim 50 for a wireless		
1449	electromagnetic communications network for logistical intercommunications.		
1450			
1451	132. (original) The use of a method as described in claim 1 in a wireless electromagnetic		
1452	communications network for self-filtering spoofing signals.		
1453	t.		
1454	133. (original) The use of an apparatus as described in claim 50 for a wireless		
1455	electromagnetic communications network for self-filtering spoofing signals		
1456			
1457	134. (original) The use of a method as described in claim 1 in a wireless		
1458	electromagnetic communications network for airborne relay over the horizon.		
1459			
1460	135. (original) The use of an apparatus as described in claim 50 for a wireless		
1461	electromagnetic communications network for airborne relay over the horizon.		
1462			
1463	136. (original) The use of a method as described in claim 1 in a wireless electromagnetic		
1464	communications network for traffic control.		
1465	·		
1466	137. (original) The use of a method as in claim 166[1], further comprising the use thereof		
1467	for air traffic control		
1468			

138. (original) The use of a method as in claim 166[1], further comprising the use thereof for ground traffic control. 139. (original) The use of a method as in claim 166[1], further comprising the use thereof for a mixture of ground and air traffic control. 140. (original) The use of an apparatus as described in claim 50 for a wireless electromagnetic communications network for traffic control. 141. (original) The use of an apparatus as in claim 170[50], further comprising the use thereof for air traffic control 142. (original) The use of an apparatus as in claim 170[50], further comprising the use thereof for ground traffic control. 143. (original) The use of an apparatus as in claim 170[50], further comprising the use thereof for a mixture of ground and air traffic control. 144. (original) The use of a method as in claim 1 in a wireless electromagnetic communications network for emergency services. 145. (original) The use of an apparatus as in claim 50 in a wireless electromagnetic communications network for emergency services. 146. (original) The use of a method as in claim 1 in a wireless electromagnetic communications network for shared emergency communications without interference. 147. (original) The use of an apparatus as in claim 50 in a wireless electromagnetic communications network for shared emergency communications without interference.

148. (original) The use of a method as in claim 1 in a wireless electromagnetic 1499 communications network for positioning operations without interference. 1500 1501 149. (original) The use of an apparatus as in claim 50 in a wireless electromagnetic 1502 communications network for positioning operations without interference. 1503 1504 150. (original) The use of a method as in claim 1 in a wireless electromagnetic 1505 communications network for high reliabilty networks requiring graceful degradation 1506 despite environmental conditions or changes.. 1507 1508 151. (original) The use of an apparatus as in claim 50 in a wireless electromagnetic 1509 communications network for high reliabilty networks requiring graceful degradation 1510 despite environmental conditions or changes.. 1511 1512 152. (original) The use of a method as in claim 1 in a wireless electromagnetic 1513 communications network for a secure network requiring assurance against unauthorized 1514 1515 intrusion. 1516 153. (original) The use of a method as in claim 1 in a wireless electromagnetic 1517 communications network for a secure network requiring message end-point assurance. 1518 1519 154. (original) The use of a method as in claim 1 in a wireless electromagnetic 1520 communications network for a secure network requiring assurance against unauthorized 1521 intrusion and message end-point assurance. 1522 1523 155. (original) The use of an apparatus as in claim 50 in a wireless electromagnetic 1524 communications network for a secure network requiring assurance against unauthorized 1525 1526 intrusion. 1527 156. (original) The use of an apparatus as in claim 50 in a wireless electromagnetic 1528 communications network for a secure network requiring message end-point assurance. 1529

157. (original) The use of an apparatus as in claim 50 in a wireless electromagnetic communications network for a secure network requiring assurance against unauthorized intrusion and message end-point assurance. 158. (original) The use of a method as in claim 1 in a cellular mobile radio service. The use of an apparatus as in claim 50 in a cellular mobile radio 159. (original) service. 160. (original) The use of a method as in claim 1 in a personal communication service. 161. (original) The use of an apparatus as in claim 50 in a personal communication service. 162. (original) The use of a method as in claim 1 in a private mobile radio service. 163. (original) The use of an apparatus as in claim 50 in a private mobile radio service. 164. (original) The use of a method as in claim 1 in a wireless LAN. The use of an apparatus as in claim 50 in a wireless LAN. 165. (original) 166. (original) The use of a method as in claim 1 in a fixed wireless access service. 167. (original) The use of an apparatus as in claim 50 in a fixed wireless access service. 168. (original) The use of a method as in claim 1 in a broadband wireless access service.

The use of an apparatus as in claim 50 in a broadband wireless 169. (original) access service. 170. (original) The use of a method as in claim 1 in a municipal area network. The use of an apparatus as in claim 50 in a municipal area network. 171. (original) 172. (original) The use of a method as in claim 1 in a wide area network. 173. (original) The use of an apparatus as in claim 50 in a wide area network. 174. (original) The use of a method as in claim 1 in wireless backhaul. The use of an apparatus as in claim 50 in wireless backhaul. 175. (original) 176. (original) The use of a method as in claim 1 in wireless backhaul. 177. (original) The use of an apparatus as in claim 50 in wireless backhaul. 178. (original) The use of a method as in claim 1 in wireless SONET. 179. (original) The use of an apparatus as in claim 50 in wireless SONET. 180. (original) The use of a method as in claim 1 in wireless SONET. The use of an apparatus as in claim 50 in wireless SONET. 181. (original) 182. (original) The use of a method as in claim 1 in wireless Telematics. The use of an apparatus as in claim 50 in wireless Telematics.

183. (original)