Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

Claim 1 is amended.

Listing of Claims:

1. (Currently Amended) A method for measuring interference power in a time slot code division multiple access system, comprising:

A. performing channel estimation for received signals with channel estimation codes, to obtain the original channel response estimation results \underline{h}_i , $i = 1 \cdots P$, wherein P is the total length of the channel estimation window; characterized in that the method further comprises:

B. predetermining a threshold of number of taps W_1 , and selecting channel response estimation results corresponding to W_1 taps with less power from the original channel response estimation results \underline{h}_i according to the threshold of number of taps W_1 as a roughly estimated result of the interference power; and

C. performing threshold processing on the original channel response estimation results with a signal-to-noise ratio threshold post-processing method by using the roughly estimated result of the interference power and a predetermined signal-to-noise ratio threshold, to obtain an accurate measured result of the interference power.

- 2. (Original) A method for measuring interference power in a time slot code division multiple access system according to claim 1, wherein said threshold of number of taps W₁ is less than the number of taps of the actual interference responses available.
- 3. (Original) A method for measuring interference power in a time slot code division multiple access system according to claim 2, wherein said threshold of number of taps W₁ is in a range of 50 to 90.

- 4. (Original) A method for measuring interference power in a time slot code division multiple access system according to claim 3, wherein said threshold of number of taps W₁ is 80.
- 5. (Original) A method for measuring interference power in a time slot code division multiple access system according to claim 1, wherein in step B, the roughly estimated result of the interference power σ_{n1}^2 is obtained with equation $\sigma_{n1}^2 = \frac{P}{D \cdot W_1} \sum_{i=1}^{P} \left| \underline{h'}_i \right|^2$, wherein $\underline{h'}_i$ is the channel response estimation results for W₁ taps, and D is the noise degradation factor of the corresponding channel estimation code.
- 6. (Original) A method for measuring interference power in a time slot code division multiple access system according to claim 1, wherein step C of performing threshold processing on the original channel response estimation results with a signal-to-noise ratio threshold post-processing method further comprises:
- C1. obtaining the compensated threshold of the interference power Γ_{CHE} with equation $\Gamma_{CHE} = \frac{\sigma_{n1}^2 \varepsilon_{CHE}}{P\beta}$ according to the predetermined signal-to-noise ratio threshold ε_{CHE} , the compensation value β , and the roughly estimated result of the interference power σ_{n1}^2 ;
- C2. selecting channel response estimation results corresponding to W_2 taps with the power lower than the threshold of the interference power Γ_{CHE} from the original channel response estimation results as the interference response results \underline{h}_i^n of the signal-to-noise ratio threshold post-processing;
- C3. obtaining the accurate measured value of the interference power with equation $\sigma_n^2 = \frac{P}{D \cdot W_2} \sum_{i=1}^{P} \left| \underline{h''}_i \right|^2$, wherein D is the noise degradation factor of the corresponding channel estimation code.
- 7. (Original) A method for measuring interference power in a time slot code division multiple access system according to claim 6, wherein said signal-to-noise ratio threshold ε_{CHE} is in

a range of 3 to 5, and wherein said compensation value β is provided for the lower roughly estimated result of the interference power and is in a range of 0.30 to 0.60.

8. (Original) A method for measuring interference power in a time slot code division multiple access system according to claim 7, wherein said signal-to-noise ratio threshold ε_{CHE} is 4, and said compensation value β is 0.41.