1 Работа с индексами

Формула серной кислоты: H_2SO_4

Квадратичная функция $y(x) = ax_2 + bx + c$

Полином степени $n \in \mathbb{N}$:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

Очень большое число:

$$100^{200^{300}}$$

2 Дроби

Аликвотная дробь:

$$\frac{2}{3} = \frac{1}{2} + \frac{1}{3} = \frac{1}{4} + \frac{1}{4} + \frac{1}{6}.$$

Масштабируемое оформление дроби:

$$\frac{1+\frac{x}{2}}{\frac{y^2}{3}}$$

Немасштабируемо офрмление дроби:

$$\frac{1+\frac{x}{2}}{\frac{y^2}{3}}$$

3 Корни, функции, греческие символы

Для $x\geqslant 1$ и $n\in\mathbb{N}, n\geqslant 2,$ справедливо:

$$\sqrt{x} > \sqrt[3]{x} > \sqrt[4]{x} > \dots > \sqrt[n]{x}$$

Сложная функция:

$$F(\omega, x) = \sqrt{\frac{|\sin(\omega x)| + 1}{3e^{-x}}}$$

4 Скобки

Вычислить:

$$\left(1 + \left\lceil \frac{3x}{5} + \frac{x}{2} \right\rceil \right)^2,$$

где x - целое неотрицательное число (квадратные скобки означают взятие целой части).

5 Суммирование и интегрирование

Гёльдеровы нормы n-мерных векторов:

$$||x||_p = \left(\sum_k |x_k|^p\right)^{\frac{1}{p}}$$

Теорема стокса. Пусть на ориентируемом многообразии M размерности n заданы ориентируемое p-мерное подмногообразие σ и дифференциальная форма ω степени p-1 класса C^1 $(1 \leq p \leq n)$. Тогда если граница подмоногообразия $\delta \sigma$ положительно ориентирована, то

$$\int_{\sigma} d\omega = \int_{\delta\sigma} \omega,$$

где $d\omega$ обозначаетвнешний дифференциал формы ω .