Contrôle de Chimie – N°2 – R

Durée 1 heure

Corrigés

Veuillez répondre à toutes les questions suivantes et indiquer les réponses sur les lignes et/ou dans les espaces qui suivent les données.

Annexe: le tableau périodique + l'échelle d'électronégativité

1. Donner les formules brutes des composés qui se forment à partir des couples d'ions suivants (charge des ions non donnée, attention à l'ordre des atomes dans le composé!).

(5 points)

- a. Br / Rb RbBr b. Al / sulfate $Al_2(SO_4)_3$
- c. Fe(II) / O FeO **d.** H / Mg e. hydroxyde / Sn(II) Sn(OH)₂ MgH_2
- 2. Donner les trois réactions chimiques équilibrées entre les éléments/molécules suivants:

(3 points)

- a. potassium (K) et soufre (S): $2 K + S \rightarrow K_2 S$
 - **b.** calcium (Ca) et l'eau: $Ca + 2 H_2O \rightarrow Ca(OH)_2 + H_2$
 - **c.** Na₂O(s) et HCl(aq): $Na_2O + 2 HCL \rightarrow 2 NaCl + H_2O$
- $\bf 3$ a. Classer les atomes suivants selon l'ordre **croissant** de la première énergie d'ionisation, I_1 : / 2 points)

$$Al-B-C-F-N-Na-Ne-O$$
 $Na < Al < B < C < O < N < F < Ne$

b. Classer les espèces des ensembles suivants selon l'ordre croissant de leur volume :

/ 2 points)

(i)
$$F^- - N^{3-} - O^{2-}$$
 $F^- < O^{2-} < N^{3-}$

(ii)
$$Br^- - Cl^- - K^+ - Na^+$$
 $Na^+ < K^+ < Cl^- < Br^-$

- c. Parmi les expressions suivantes pour un atome X, laquelle correspond à la définition exacte de l'énergie de deuxième ionisation ? Souligner la bonne réponse. / 1 point) (
- a. $X(g) + e^{-} \rightarrow X^{-}(g)$ b. $X^{-}(g) \rightarrow X(g) + e^{-}$ c. $X(s) \rightarrow X^{+}(s) + e^{-}$

- d. $X(g) \rightarrow X^{+}(g) + e^{-}$ e. $X^{+}(g) + e^{-} \rightarrow X(g)$ d. $X^{+}(g) \rightarrow X^{2+}(g) + e^{-}$

4. Quelles sont les propriétés magnétiques (para- ou diamagnétiq	ue) du Fe, dı	ı Fe ²⁺ et du Fe ³⁺ ? Justifier
les réponses à l'aide des cases quantiques et comparer l'intensité	é magnétique	e (classement sans calcul)
des trois espèces avec explication.	(/ 4 points)

Fe: $[Ar]4s^23d^6$

paramagnétique

$$Fe^{2+}:[Ar]4s^03d^6$$

paramagnétique

$$Fe^{3+}$$
: $[Ar]4s^03d^5$

paramagnétique

Comparaison et explication :

$$Fe (4e^-c\acute{e}lib^-) = Fe^{2+}(4^{e-}c\acute{e}lib.) < Fe^{3+}(5 e^-c\acute{e}lib.)$$

5. Représenter les espèces suivantes selon la notation de Lewis et leur géométrie (l'atome en gras est l'atome central): / 4 points)

 N_2H_2

 N_2H_4

 NCl_3

CaCO₃

$$Ca^{+2} \quad \overline{|0} = C$$

- 6. L'ammoniac (NH₃) est produit à partir de ses constituants élémentaires gazeux. Ecrire
- a) l'équation chimique équilibrée de cette réaction et
- b) la formation d'une molécule de NH₃ selon la notation de Lewis (à partir des atomes!)

(/ 2 points)

- a) réaction équilibrée : $N_2 + 3 H_2 \rightarrow 2 NH_3$
- b) réaction selon Lewis:

Voir polycopié « Résultats des exercices » page 161.

7. Quelles sont les deux conditions nécessaires pour une molécule qui est composée d'au moins trois atomes différents d'être qualifié comme dipôle ?

(/ 2 points)

- a. une liaison doit être polaire
- b. pas de symétrie qui annule la polarité d'une liaison
- **8**. Préciser et justifier tous les types de liaison pour les molécules suivantes. / 5 points)
- covalente polaire, $\Delta X = 0.76$ a. HBr: liaison non-métal / non-métal

b. $CaCO_3$: covalente polaire entre C et O ($\Delta X = 0.89$), ionique entre Ca et O ($\Delta X = 2.44$),

c. Au: métallique (réseau métallique)

d. F_2 : covalente pure ($\Delta X = 0.0$),

e. Na₂O: ionique ($\Delta X = 2.51$), liaison métal / non-métal

9. Les molécules suivantes, peuvent-elles en principe exister? Répondre à l'aide des diagrammes des orbitales moléculaires et de l'ordre de liaison. Préciser aussi, si elles sont dia- ou paramagnétiques et justifier la réponse.

(/ 6 points)

 \mathbf{a} . Be₂

(2-2)/2 = 0 diamagnétique pas possible

b. O₂⁺

ordre: (6-1)/2 = 2.5 paramagnétique possible

Nombre de points : ______ / 36 points Note : ______