

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Prof^a. Karla Lima

Elementos de Álgebra - Matemática

Exercícios de Fixação

17 de março de 2025

(1) As mensagens entre duas agências de espionagem, Gama e Rapa, são trocadas usando uma linguagem de códigos, onde cada número inteiro entre 0 e 25 representa uma letra, conforme mostra a tabela a seguir:

Α	В	C	D	Е	F	G	Н	I	J	K	L	М
7	10	22	9	5	4	18	2	17	25	23	12	14
N	0	Р	Q	R	S	Т						

A agência Gama enviou para a Rapa o nome de um espião codificado na matriz

$$A = \begin{pmatrix} 11\\1\\0\\0\\2 \end{pmatrix}.$$

Para decodificar uma palavra de cinco letras, dada por uma matriz A, de ordem 5×1 formada por inteiros entre 0 e 25, deve-se multiplicá-la pela matriz de conversão:

$$C = \begin{pmatrix} 1 & 9 & 0 & 0 & 0 \\ 0 & 3 & 5 & 20 & 2 \\ 0 & 0 & 0 & 0 & 7 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 3 \end{pmatrix}$$

e, usando-se a tabela dada, converter os números em letras.

Utilizando-se esse processo, conclui-se que o nome do espião é:

- a) DIEGO
- b) SHUME
- c) SADAN
- d) RENAN
- e) RAMON
- (2) Sendo $X=\begin{pmatrix} 2 & 3 \end{pmatrix},\,Y=\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix},\,\alpha=2$ e $\beta=3,$ verifique que:

a)
$$\alpha(X+Y) = \alpha X + \alpha Y$$

b)
$$(\alpha + \beta)X = \alpha X + \beta Y$$

(3) Sejam as matrizes:

$$A = (a_{ij})_{2 \times 2}, \quad \text{em que} \quad a_{ij} = \begin{cases} i+j, & \text{se } i \neq j, \\ 1, & \text{se } i = j. \end{cases}$$

$$B = (b_{ij})_{2\times 2}, \quad \text{em que} \quad b_{ij} = \begin{cases} 0, & \text{se } i \neq j, \\ 2i - j, & \text{se } i = j. \end{cases}$$

Calcule:

a)
$$C = 2A - 3B$$

b)
$$D = A + \frac{1}{4}B$$

(4) Sejam $A = (a_{ij})_{4\times 3}$ e $B = (b_{ij})_{3\times 4}$ duas matrizes definidas por:

$$a_{ij} = i + j$$
, para A ,

$$b_{ij} = 2i + j$$
, para B .

Se $A \times B = C$, então qual é o elemento c_{32} da matriz C?

(5) Uma fábrica de mochilas utiliza três tamanhos de zíper na confecção de dois modelos de mochilas, conforme indicado no quadro a seguir.

	Modelo X	Modelo Y
Pequeno	4	2
Médio	2	3
Grande	1	2

Essa fábrica recebeu a seguinte encomenda par ao último trimestre do ano:

	Outubro	Novembro	Dezembro
Mochila X	50	100	200
Mochila Y	50	150	100

Os dois modelos fabricados têm compartimentos internos nos quais também são utilizados zíperes.

- a) Escreva a matriz $T_{3\times 2}$ que representa a quantidade de zíperes, por tamanho, utilizada em cada modelo de mochila.
- b) Escreva a matriz $E_{2\times 3}$ para representar a quantidade de mochilas, por modelo, encomendada para o último trimestre do ano.
- c) Calcule o produto $T\cdot E$ e responda: quantos zíperes de tamanho médio serão necessários para confeccionar as mochilas encomendadas no mês de novembro?
- (6) Fazer outros exercícios do Capítulo IV do livro: Fundamentos da Matematica Elementar 4.

GABARITO

- (1) Alternativa e.
- (2) Demonstrar.

(3) a)
$$C = \begin{pmatrix} -1 & 6 \\ 6 & -4 \end{pmatrix}$$
, b) $B = \begin{pmatrix} \frac{1}{4} & \frac{3}{2} \\ \frac{3}{2} & 0 \end{pmatrix}$

$$(4) c_{32} = 94$$

(5) a)
$$T = \begin{pmatrix} 4 & 2 \\ 2 & 3 \\ 1 & 2 \end{pmatrix}$$
, b) $E = \begin{pmatrix} 50 & 100 & 200 \\ 50 & 150 & 100 \end{pmatrix}$, c) 650 zíperes.