$\begin{cases} \frac{\delta^2 u}{\delta x^2} - \frac{\delta u}{\delta t} - \frac{\delta inx}{\delta t} \\ \frac{\partial v}{\partial x^2} - \frac{\delta u}{\delta t} - \frac{\delta inx}{\delta t} \end{cases}$ $\frac{\partial^2 u}{\partial x^2} - \frac{\delta inx}{\delta t}$ $\frac{\partial^2 u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial^2 u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial^2 u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$ $\frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial x}$		
(S) NON- 1-0 NON- 1- 1-0 NON- 1- 1-0 NON- 1		
$\frac{\partial^2 U_S}{\partial x^2} = Sinx$ $\frac{\partial U_S}{\partial x} = \int Sinx dx - Cosx + \alpha - i U_S (x) = \int (\alpha - Cosx) dx - \alpha x - Sinx + d $ $U_S(0) = T_0$ $U_S(0) = T_0$ $U_S(0) = T_0 - i b = T_0 U_S(0) = T_1 - i \alpha n + T_0 = T_1$		
- رع = +ر- رق الم		
$V(x,y) = \frac{\partial V}{\partial x^2} - \frac{\partial V}{\partial y} = 0$ $V(x,y) = \frac{1}{2} X(x,y) = \frac{1}{2} X(x,y) = 0$ $V(x,y) = \frac{1}{2} X(x,y) = \frac{1}{2} X(x,y) = 0$ $V(x,y) = 0$ $V(x,y$		
$-1 \times_{A} + b_{\sigma} \times = 0 - 1 \times cvi = \frac{1}{2} + coibx + 13 \sum_{i=1}^{n} bx \qquad xcoi = 0 - 1 \times cvi = 0$		
-18 SinTP=0-1 PT=NT -, P=N XnIII: Bu Sinnx		
That Patries - The care che mit - Valviti- Or Ent Sinnx		
عول رزی و در ایم و د		
$D_{n} = \frac{2}{n} \left(\int f(x) \int \sin x dx + \int \int \sin x \int \sin x dx + \int \int \frac{\tau_{1} - \tau_{2}}{n} \int x dx + \int \int \frac{\tau_{2} - \tau_{3}}{n} \int \frac{1}{n} \int$		

الرابار الله عابر قوار است. الله عابر قوار عابر عابر الله عابر قوار عابر عابر الله عابر قوار عابر عابر الله عابر قوار الله عابر الله عا

- 1 BK=0 - 1 B=0 - 1 K(1) = AUSKX

د تت کنیم که بدلیل کراندار دورن Csmy سی

Scanned by CamScanner

Scanned by CamScanner

دللروس مس مروس مسد

9	J, نع قو ل: 81918p	الماصلات مندسي	8/048472 · 25/4848
	المراتفاي مرای اين بادله صرح مرفاً ورتا الامتواط موزی داره شده است اسباط من اين است		
	2 - 3 (150) -1	Tr 302 - 12 100 .	كر باي سروط را باير حواما كرين
	0 (1,9,0)= far,9	سرگ ها کاران	2 (+17,71= Ra) = 17,8+1 L
	1 10 / F= 0 = 0	سُوط بسرات ارك	
	-, -, (1R) 1 1	T = 1 T = 1	-K-\ 0 X K ₅ X
	,	1 1/1 1/03/6 1/03/84	(118) +(0)=+(1)=0
	-) A=0, V=n +n(p))= Bn Sinnp	
	X RAX + x RX + cx2 n	17, R=0 - R(x)=(th(x)	1+DNN(4) X-FX
	Ren = C July 1-1 DN	CIN CIN D=0	Brial-CN gr(1KL)
	-10(1,9,E)=0-)	kb= dmn -, Km= dmn	Rhar = Cmnth (dmnr)
	+mn + K2c2+mn=0 -	-> Tmm(E) = Emm Coskety	Fran Sinket
-) U(1,9, E) = \[\]	Zmn Cuskit	+ Xmm Sinker) Trans
	Xmm, Zmy block	16 ~ LIS TUN BA SAN	كدرران الم عالمة لك سكرل غراس
	Links Charles		Seemed by Constant