Property Price Analysis and Prediction

October 4, 2020

```
[1]: # For library input
     import warnings
     warnings.filterwarnings('ignore')
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
     import pandas.util.testing as tm
     import statsmodels.api as sm
     import numpy as np
[2]: #Read CSV
     data = pd.read_csv('full_data_20200920.csv')
[3]: # Check if there is missed value
     print(data.info())
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 190794 entries, 0 to 190793
    Data columns (total 21 columns):
     #
         Column
                                      Non-Null Count
                                                       Dtype
                                      _____
                                                       ____
     0
         Unnamed: 0
                                      190794 non-null
                                                       int64
     1
         Project Name
                                      190794 non-null
                                                       object
     2
         Address
                                      190794 non-null
                                                       object
     3
         No. of Units
                                      190794 non-null int64
     4
         Area (sqm)
                                      190794 non-null int64
     5
         Type of Area
                                      190794 non-null object
     6
         Transacted Price ($)
                                      190794 non-null int64
     7
         Nett Price($)
                                      190794 non-null object
     8
         Unit Price ($ psm)
                                      190794 non-null int64
         Unit Price ($ psf)
                                      190794 non-null int64
     10 Sale Date
                                      190794 non-null object
     11 Property Type
                                      190794 non-null object
     12
        Tenure
                                      190794 non-null
                                                       object
     13
        Completion Date
                                      190794 non-null
                                                       object
        Type of Sale
                                      190794 non-null
                                                       object
     15 Purchaser Address Indicator 190794 non-null
                                                       object
     16 Postal District
                                      190794 non-null
                                                       int64
```

```
17 Postal Sector 190794 non-null int64
18 Postal Code 190794 non-null int64
19 Planning Region 190794 non-null object
20 Planning Area 190794 non-null object
dtypes: int64(9), object(12)
```

memory usage: 30.6+ MB

None

0.0.1 Exploratory Data Analysis on Private Property

```
[4]: # Show number of transcations in each distrcit

Trans_by_district = pd.DataFrame(data['Postal District'].value_counts().

→sort_values())

Trans_by_district
```

```
Postal District
[4]:
                        23
     6
     26
                      1054
     25
                      1795
     7
                      1917
     1
                      2432
     2
                      2503
     8
                      2703
     4
                      3003
     17
                      4281
     22
                      4718
     11
                      4861
     28
                      4925
     13
                      5634
     27
                      5865
     21
                      6233
     12
                      6451
     20
                      6593
     3
                      8975
     9
                      9443
     16
                      9631
     5
                      9964
     23
                     10086
     10
                     11088
     14
                     11592
     18
                     14434
     15
                     14893
     19
                     25697
```

```
[5]: #Histogram to plot number of transcations in each distrcit plt.figure(figsize=(15,7))
```


0.0.2 Box plot

```
[6]: #Amend the column of Sales Date into a datetime object (month_year)
data['Month_Year'] = pd.to_datetime(data['Sale Date']).dt.to_period('M')

#Drop the first column (Unnamed: 0)
data = data.drop('Unnamed: 0', axis=1)
```

```
[7]: data_temp = data.loc[data['Month_Year'] > '2018-12']
    data_temp['Month_Year']

plt.figure(figsize=(20,10))
    sns.boxplot( x = data_temp['Postal District'], y = data_temp['Unit Price ($_\text{\temp} \)
    \text{\temp}sf)'], data=data)
    plt.xlabel('Districts', fontsize=14)
    plt.xticks(rotation=90)
    plt.ylabel('Unit Price ($ psf)', fontsize=14)
    plt.title('Distribution of Price psf from 2019 Onwards', fontsize=20)
```

[7]: Text(0.5, 1.0, 'Distribution of Price psf from 2019 Onwards')

We can see that District location could be a critical factor which determines the property price.

Data Pre-processing and ARIMA

```
[8]: #Average_monthly for each district

Average_monthly = data.groupby(['Postal District', 'Month_Year'],

→as_index=False)['Unit Price ($ psf)'].mean()

Average_monthly_df = pd.DataFrame(Average_monthly)
```

[9]: Average_monthly_df.info()
Average_monthly_df['Postal District'].value_counts()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3154 entries, 0 to 3153
Data columns (total 3 columns):

#	Column	Non-Null Count	Dtype
0	Postal District	3154 non-null	int64
1	Month_Year	3154 non-null	<pre>period[M]</pre>
2	Unit Price (\$ psf)	3154 non-null	float64
dtyp	es: float64(1), int6	4(1), period[M](1)
memo	ry usage: 98.6 KB		

[9]: 27 121 3 121

```
4
      121
8
      121
10
      121
12
      121
14
      121
16
      121
18
      121
20
      121
22
      121
28
      121
1
      121
5
      121
9
      121
11
      121
13
      121
15
      121
17
      121
19
      121
21
      121
23
      121
2
      121
25
      120
26
      120
7
      116
       15
Name: Postal District, dtype: int64
```

Our dataset period is from 2010-Sep to 2020-Sep, so there should be 121 datapoints.

District 6 has too little datapoint so we drop the analysis on district 6

For district 25,26, and 7, they have 116 and 120 points, therefore we will assume the missing monthly price is the same as previous monthly price

```
Average_monthly_df_filled['Postal District'].value_counts()
[10]: 27
           121
     25
           121
     4
           121
           121
     8
     10
           121
     12
           121
     14
           121
           121
     16
     18
           121
     20
           121
     22
           121
     26
           121
     28
           121
     1
           121
     3
           121
     5
           121
     7
           121
     9
           121
     11
           121
     13
           121
     15
           121
     17
           121
           121
     19
     21
           121
     23
           121
           121
     Name: Postal District, dtype: int64
[11]: Average_monthly_df_filled.rename(columns={0: "Unit Price ($ psf)"},__
      →inplace=True)
     Average_monthly_df_filled.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 3146 entries, 0 to 3145
     Data columns (total 3 columns):
                             Non-Null Count Dtype
      #
          Column
     ___
                             -----
         Month_Year
                             3146 non-null
      0
                                             period[M]
          Postal District
                             3146 non-null
                                             int64
          Unit Price ($ psf) 3146 non-null
                                             float64
     dtypes: float64(1), int64(1), period[M](1)
     memory usage: 73.9 KB
```

#To check

```
[12]: # Plot monthly average unit price for each district for past ten years
for i in [x for x in range(1,29) if x != 6 and x !=24]:
    Average_monthly_df_filled.loc[(Average_monthly_df_filled['Postal District']
    →== i)].plot(y='Unit Price ($ psf)')
    plt.title('District ' + str(i))
    plt.show()
```


Take log on Unit Price (\$ psf)

```
[13]: #Add a column to store log_psf

Average_monthly_df_filled.loc[:, 'log_psf'] = np.

→log(Average_monthly_df_filled['Unit Price ($ psf)'])

Average_monthly_df_filled.head()
```

```
[13]:
       Month_Year Postal District Unit Price ($ psf)
                                                          log_psf
           2010-09
      0
                                  1
                                            1955.500000 7.578401
      1
           2010-09
                                  2
                                            1762.523810 7.474502
      2
           2010-09
                                  3
                                            1129.108696 7.029184
      3
           2010-09
                                  4
                                            1404.771429 7.247630
                                  5
      4
           2010-09
                                            1318.385027 7.184163
```

Utilize ARIMA model and forecast for each district

```
[14]: import pmdarima as pm
   from statsmodels.tsa.arima_model import ARIMA
   from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
   import matplotlib.pyplot as plt
   from math import e
```

```
[15]: import numpy as np
def mape(y_true, y_pred):
    return np.mean(np.abs((y_pred - y_true) / y_true)) * 100
```

```
[16]: # Print model summaries, plots, and prediction results for all districts except
      →Distrct 6 & 24
     districts = []
     MAPE = []
     percentage_change = []
     log_Predicted = []
     log Currentprice = []
     for i in [x for x in range(1,29) if x = 6 and x = 24]:
             →i,'======"""
)
             # train the model
             train_size = round(0.9 *_
      →len(Average_monthly_df_filled[(Average_monthly_df_filled['Postal District']
      →== i)]))
             test\_size = round(0.1 *_{\square}
      →len(Average_monthly_df_filled[(Average_monthly_df_filled['Postal District']
      →== i)]))
             train = Average_monthly_df_filled[(Average_monthly_df_filled['Postalu
      →District'] == i)][:train_size]
             test = Average monthly_df_filled[(Average monthly_df_filled['Postal_
      →District'] == i)][train_size:]
             if len(train) >= 50:
                 model = pm.auto_arima(train[(train['Postal District'] ==__
      →i)]['log_psf'], suppress_warnings=True)
                 #print(model.summary())
                 temp = model.order
                 p, d, q = temp[0], temp[1], temp[2]
                 #print(model.plot_diagnostics())
                 #model.resid()
                 #plot_acf(model.resid(), lags=20)
                 #plt.show()
                 #plot_pacf(model.resid(), lags=20)
                 #plt.show()
                 pred = model.predict(test size)
                 Test = pd.DataFrame()
                 Test['pred'] = list(pred)
                 MAPE_ij = mape(list(test['log_psf']), Test['pred'])
                 model_p = pm.
      →auto arima(Average monthly df filled[(Average monthly df filled['Postalu
      →District'] == i)]['log_psf'],suppress_warnings=True)
```

```
\#model\ p = ARIMA(Average\ monthly\ df[(Average\ monthly\ df['Postal_{\sqcup}
 →District'] == i)&(Average_monthly_df['Tenure_dummy(>900)'] ==_
 \rightarrow j) ['log_psf'], order=(p, d, q))
           pred p = model p.predict(36)
           print(model_p.summary())
           print()
           # integrate the results
           districts.append(i)
           MAPE.append(MAPE_ij)
           percentage_change.append(float(100*(pred_p[-1:] -__
 →float(Average_monthly_df_filled[(Average_monthly_df_filled['Postalu
 →District'] == i)]['log_psf'][-1:]))))
           log_Predicted.append(float(pred_p[-1:]))
           log_Currentprice.
 →append(float(Average_monthly_df_filled[(Average_monthly_df_filled['Postalu
 →District'] == i)]['log_psf'][-1:]))
       else:
           pass
SARIMAX Results
______
Dep. Variable:
                                  No. Observations:
                                                                 121
Model:
                  SARIMAX(1, 0, 1)
                                 Log Likelihood
                                                             105.976
Date:
                  Sun, 04 Oct 2020 AIC
                                                             -203.952
Time:
                         21:00:39 BIC
                                                             -192.769
                              O HQIC
Sample:
                                                             -199.410
                            - 121
Covariance Type:
                             opg
                                                    [0.025
              coef
                     std err
                                          P>|z|
                                                               0.975
intercept
            2.4818
                       1.535
                                1.617
                                          0.106
                                                    -0.526
                                                               5.490
ar.L1
            0.6757
                       0.200
                                3.370
                                          0.001
                                                    0.283
                                                               1.069
ma.L1
            -0.4160
                       0.241
                                -1.727
                                          0.084
                                                    -0.888
                                                                0.056
sigma2
           0.0100
                       0.001
                                11.310
                                          0.000
                                                     0.008
                                                                0.012
```

6.38

Warnings: [1] Covariance matrix calculated using the outer product of gradients (complexstep). SARIMAX Results y No. Observations: Dep. Variable: 121 67.362 Model: SARIMAX(0, 1, 2) Log Likelihood Sun, 04 Oct 2020 AIC Date: -128.724Time: 21:00:42 BIC -120.361O HQIC Sample: -125.328- 121 Covariance Type: opg ______ coef std err z P>|z| [0.025 0.975] ______

 -0.6394
 0.076
 -8.372
 0.000

 -0.2300
 0.078
 -2.941
 0.003

 -0.789 ma.L2 -0.383 -0.077 0.0188 0.002 8.477 0.000 0.014 0.023 Ljung-Box (Q): 32.45 Jarque-Bera (JB): 3.44 Prob(Q): 0.80 Prob(JB): 0.18 Heteroskedasticity (H): 1.37 Skew: -0.05Prob(H) (two-sided): 0.32 Kurtosis: 3.82 ______ [1] Covariance matrix calculated using the outer product of gradients (complexstep). -----Results of District 3 ------SARIMAX Results ______ y No. Observations: Dep. Variable: 121 Model: SARIMAX(1, 1, 1) Log Likelihood 170.434 Date: Sun, 04 Oct 2020 AIC -332.869Time: 21:00:46 BIC -321.719Sample: O HQIC -328.341

- 121

Covariance	Type:	opg

========	coef	std err	z	P> z	[0.025	0.975]	
intercept	0.0022	0.001	3.725	0.000	0.001	0.003	
ar.L1	0.5292	0.086	6.166	0.000	0.361	0.697	
ma.L1	-0.9122	0.050	-18.261	0.000	-1.010	-0.814	
sigma2	0.0034	0.000	12.425	0.000	0.003	0.004	
=== Ljung-Box ((116.46	Į):		34.74	Jarque-Bera	(JB):		
Prob(Q): 0.00			0.71	71 Prob(JB):			
Heteroskedas 0.87	sticity (H):		0.43	Skew:			
Prob(H) (two 7.50	Prob(H) (two-sided): 0.01 Kurtosis:						

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

_____ Dep. Variable: y No. Observations: 121 Model: SARIMAX(2, 0, 0) Log Likelihood 113.097 Date: Sun, 04 Oct 2020 AIC -218.194 Time: 21:00:50 BIC -207.011 Sample: O HQIC -213.653

- 121

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
intercept ar.L1	3.5320 0.3394	0.838 0.106	4.214 3.204	0.000	1.889 0.132	5.175 0.547
ar.L2	0.1798	0.091	1.976 10.170	0.048	0.001	0.358
sigma2 =======		0.001	=========	0.000 ======	=========	0.011

===

Ljung-Box (Q): 25.24 Jarque-Bera (JB):

15.39

Prob(Q): 0.97 Prob(JB):

0.00						
Heteroskedast	ticity (H):		0.59	Skew:		
0.17 Prob(H) (two-	-aidad).		0.10	Kurtosis:		
4.71	-sided):		0.10	Kurtosis:		
==========				========		.=======
===						
Warnings: [1] Covariandstep).	ce matrix c	alculated us	sing the o	uter product	of gradients	s (complex-
			s of Dist [MAX Resul	rict 5 ===== ts		
Don Variable			No	Observations	=========	121
Dep. Variable Model:		RIMAX(O, 1,	•	Likelihood	•	153.113
Date:		n, 04 Oct 20	•	Likelinood		-298.226
Time:	bu	21:00:				-287.076
Sample:		21.00	O HQIC			-293.698
		- 1				
Covariance T	ype:		pg			
========	coef	std err	z	P> z	[0.025	0.975]
intercept	0.0031	0.002	1.515	0.130	-0.001	0.007
ma.L1	-0.5433		-5.156	0.000	-0.750	-0.337
ma.L2	-0.1660	0.114	-1.455	0.146	-0.390	0.058
sigma2	0.0045	0.000	12.247	0.000	0.004	0.005
=======================================		========				
Ljung-Box (Q) 61.19):		31.99	Jarque-Bera	(JB):	
Prob(Q): 0.00			0.81	Prob(JB):		
Heteroskedast	ticity (H):		0.51	Skew:		
Prob(H) (two-sided): 0.04 Kurtosis: 6.50						
=========		=======		========		
===						
Warnings: [1] Covariand step).	ce matrix c	alculated us	sing the o	uter product	of gradients	s (complex-
				=		

=========					.=======	
Dep. Variable	:		y No.	Observations:		121
Model:		RIMAX(O, 1,	•			36.729
Date:		n, 04 Oct 2	_			-69.458
Time:		21:00				-63.883
Sample:			O HQIO	7		-67.194
bamp10.		_	121			01.101
Covariance Ty	ne:		opg			
•	_					
	coef	std err	z	P> z	[0.025	0.975]
ma.L1	-0.5800	0.058	-9.950	0.000	-0.694	-0.466
sigma2	0.0316	0.003	11.808	0.000	0.026	0.037
			=======			
===						
Ljung-Box (Q)	:		32.31	Jarque-Bera	(JB):	
66.13						
Prob(Q):			0.80	Prob(JB):		
0.00						
Heteroskedast	icity (H):		1.40	Skew:		
-0.98						
Prob(H) (two-	sided):		0.29	Kurtosis:		
6.06						
===						
Warnings:						
[1] Covarianc	e matrix c	alculated u	sing the o	outer product	of gradients	s (complex-
step).						
=========	=======			trict 8 =====		=======
			IMAX Resul			
=======================================		=======				
Dep. Variable		D.T.M (2	Ü	Observations:		121
Model:		RIMAX(O, 1,	•	Likelihood		131.956
Date:	Su	n, 04 Oct 2				-257.912
Time:		21:01				-249.550
Sample:			O HQIO	C		-254.516
		-	121			
Covariance Ty	pe:		opg			
=========	coef	======= std err	======= Z	 P> z	[0.025	0.975]
		200 EII		1 / 1 4 1		0.910]
intercept	0.0018	0.001	1.713	0.087	-0.000	0.004
ma.L1	-0.8679	0.051	-17.087	0.000	-0.967	-0.768
sigma2	0.0064	0.001	7.913	0.000	0.005	0.008
=========			=======			

26

===

Ljung-Box (Q)	:		19.28	Jarque-Bera	(JB):	
1.76 Prob(Q):			1.00	Prob(JB):		
0.42			1.00	FIOD(JB).		
Heteroskedast	icity (H)	•	1.31	Skew:		
0.18	1010j (11)	•	1.01			
Prob(H) (two-	sided):		0.39	Kurtosis:		
3.47						
==========						
===						
Warnings:						
	e matrix	calculated	using the o	uter product	of gradients	(complex-
step).						
==========		=====Resu	lts of Dist	rict 9 =====		=======
			RIMAX Resul			
=========		========		:=======	=======	=======
Dep. Variable	:		y No.	Observations:		121
Model:		ARIMAX(1, 1	_	Likelihood		156.644
Date:	S	un, 04 Oct				-307.287
Time:		21:0	1:06 BIC			-298.925
Sample:			O HQIC	,		-303.891
Commission on Ton		-	121			
Covariance Ty	pe: =======		opg =======			.======
	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.3820	0.109	3.503	0.000	0.168	0.596
ma.L1	-0.8323	0.072	-11.528	0.000	-0.974	-0.691
sigma2	0.0043	0.001	7.606	0.000	0.003	0.005
==========	=======	========				=======
===			00 50		(ID)	
Ljung-Box (Q)	:		38.53	Jarque-Bera	(JB):	
2.74 Prob(Q):			0.54	Prob(JB):		
0.25			0.54	PIOD(JD).		
Heteroskedast	icity (H)	•	0.74	Skew:		
0.37	1010j (11)	•	0., 1			
Prob(H) (two-	sided):		0.34	Kurtosis:		
2.94						
=========	======	========	=======	=========		=======
===						

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

======================================							
Dep. Variab Model: Date: Time: Sample: Covariance	le: Type:	SARIMAX(0, 1 Sun, 04 Oct 21:0	y 2020 01:14 0 121 opg	No. Log AIC BIC HQIC	C		121 159.569 -315.138 -309.563 -312.874
	coei	f std err		z	P> z	[0.025	0.975]
ma.L1 sigma2	-0.5986 0.0041	0.074 0.000	-8 10	.037 .278	0.000	-0.745 0.003	-0.453 0.005
=== Ljung-Box (13.14 Prob(Q): 0.00 Heteroskeda 0.33 Prob(H) (tw 4.48	Q): sticity (I		43 0 1	.07 .34 .91	Jarque-Bera Prob(JB): Skew: Kurtosis:		
Warnings: [1] Covaria step).	nce matri:	Resu		Dist	outer product of the contract	of gradients	(complex-
Dep. Variab Model: Date: Time: Sample: Covariance			-		Observations: Likelihood		121 146.156 -288.313 -282.738 -286.049
	coei	f std err		z	P> z	[0.025	0.975]
ma.L1 sigma2	-0.7666 0.005			.106 .258	0.000	-0.866 0.004	-0.667 0.006

Ljung-Box (Q): 23.05 Jarque-Bera (JB): 9.66 Prob(Q): 0.99 Prob(JB): 0.01 Heteroskedasticity (H): 1.53 Skew: Prob(H) (two-sided): 0.19 Kurtosis: Warnings: [1] Covariance matrix calculated using the outer product of gradients (complex-SARIMAX Results ______ y No. Observations: Dep. Variable: 121 SARIMAX(0, 1, 2) Log Likelihood Sun, 04 Oct 2020 AIC Model: 136.967 Date: -267.935Time: 21:01:21 BIC -259.572O HQIC -264.539Sample: - 121 Covariance Type: opg ______ coef std err z P>|z| [0.025 ______ -0.5030 0.074 -6.803 0.000 -0.648 0.090 -2.488 -0.2232 0.013 ma.L2 -0.399 -0.0470.001 11.475 0.000 0.0059 0.005 ______ Ljung-Box (Q): 31.17 Jarque-Bera (JB):

92.23

0.84 Prob(JB): Prob(Q):

0.00

Heteroskedasticity (H): 1.74 Skew:

0.95

Prob(H) (two-sided): 0.08 Kurtosis:

6.86

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complexstep).

======================================						
			IMAX Resul			
Don Variable	=======	========		Observations	========	121
Dep. Variable Model:		SARIMAX(0, 1,	•	Likelihood	•	110.734
Date:		Sun, 04 Oct 20	•	Linciliood		-213.468
Time:		21:01				-202.318
Sample:			O HQIO	C		-208.940
<u>-</u>		- ;	121			
Covariance Ty	pe:	•	opg			
========	======	========	=======			
	coef	std err	z 	P> z 	[0.025 	0.975]
intercept	0.0045	0.002	1.879	0.060	-0.000	0.009
ma.L1	-0.4113	0.073	-5.607	0.000	-0.555	-0.268
	-0.3753		-5.278	0.000	-0.515	-0.236
sigma2	0.0092	0.001	10.665	0.000	0.007	0.011
=======================================	======	========			=======	========
Ljung-Box (Q)	:		31.06	Jarque-Bera	(JB):	
85.07				-		
Prob(Q):			0.84	Prob(JB):		
0.00						
Heteroskedast	icity (H):	0.23	Skew:		
0.63						
Prob(H) (two- 6.93	sided):		0.00	Kurtosis:		
0.93						
===						
Warnings:						
[1] Covarianc	e matrix	calculated us	sing the	outer product	of gradient	s (complex-
step).						
========	======	=====Resul			=======	========
		SAR	IMAX Resul	lts		
Don Variable		========		 Observations	========	121
Dep. Variable Model:		SARIMAX(0, 1,	•	Likelihood	•	157.111
Date:		Sun, 04 Oct 20	•	LINCIIIIOUU		-306.221
Time:		21:01				-295.071
Sample:			0 HQI	C		-301.693
•		- ;	121			
Covariance Ty	pe:		opg			
=========	======	========			=======	=======
	coef	std err	z	P> z	[0.025	0.975]

<pre>intercept ma.L1 ma.L2 sigma2 ====================================</pre>	0.0039 -0.5987 -0.2103 0.0042	0.002 0.105 0.104 0.000	2.395 -5.707 -2.014 9.493	0.017 0.000 0.044 0.000	0.001 -0.804 -0.415 0.003	0.007 -0.393 -0.006 0.005
=== Ljung-Box (Q)	١.		32.39	Jarque-Bera	(IR).	
255.89			32.39	Jarque-Dera	(3D).	
Prob(Q): 0.00			0.80	Prob(JB):		
Heteroskedast	cicity (H):		1.91	Skew:		
Prob(H) (two- 9.21	-sided):		0.04	Kurtosis:		
=======================================		=======				
Warnings: [1] Covariance matrix calculated using the outer product of gradients (complex-step).						
			[MAX Resul	.ts 		
Dep. Variable				Observations:		121
Model:	SA	RIMAX(1, 1,	1) Log	Likelihood		147.481
Date:	Su	n, 04 Oct 20				-286.961
Time:		21:01:				-275.811
Sample:		- 1	O HQIC	;		-282.433
Covariance Ty	/pe:		pg			
========		std err		P> z		0.975]
intercept	0.0016	0.001	2.211	0.027	0.000	0.003
-				0.003		
ma.L1	-0.9200	0.043	-21.356	0.000	-1.004	-0.836
sigma2	0.0050	0.000	10.763	0.000	0.004	0.006
====		=======			========	=======
Ljung-Box (Q) 156.84):		39.12	Jarque-Bera	(JB):	
Prob(Q): 0.00			0.51	Prob(JB):		
Heteroskedast	ticity (H):		4.15	Skew:		
Prob(H) (two- 7.71	-sided):		0.00	Kurtosis:		

Warnings: [1] Covariance matrix calculated using the outer product of gradients (complexstep). SARIMAX Results y No. Observations: Dep. Variable: 121 164.671 Model: SARIMAX(1, 0, 1) Log Likelihood Sun, 04 Oct 2020 AIC Date: -321.341 Time: 21:01:37 BIC -310.158Sample: O HQIC -316.799- 121 Covariance Type: opg ______ coef std err z P>|z| [0.025 0.975] ______ intercept 0.8336 0.360 2.316 0.021 ar.L1 0.8811 0.051 17.131 0.000 ma.L1 -0.4039 0.111 -3.630 0.000 0.128 0.780 0.982 -0.622 -0.186 0.0038 0.000 9.889 0.000 0.003 sigma2 0.005 Ljung-Box (Q): 22.88 Jarque-Bera (JB): 25.08 Prob(Q): 0.99 Prob(JB): 0.00 Heteroskedasticity (H): 0.57 Skew: Prob(H) (two-sided): 0.08 Kurtosis: Warnings: [1] Covariance matrix calculated using the outer product of gradients (complexstep). SARIMAX Results ______ Dep. Variable: y No. Observations: 121 SARIMAX(1, 1, 2) Log Likelihood Model: 133.732 Sun, 04 Oct 2020 AIC Date: -259.463Time: 21:01:42 BIC -248.313

Sample: 0 HQIC -254.935

- 121

Covariance Type: opg

========		========	========	========		=======
	coef	std err	z	P> z	[0.025	0.975]
ar.L1	-0.8780	0.074	-11.888	0.000	-1.023	-0.733
ma.L1	0.4301	0.096	4.490	0.000	0.242	0.618
ma.L2	-0.5328	0.073	-7.275	0.000	-0.676	-0.389
sigma2	0.0063	0.001	12.214	0.000	0.005	0.007

===

Ljung-Box (Q): 27.92 Jarque-Bera (JB):

67.43

Prob(Q): 0.93 Prob(JB):

0.00

Heteroskedasticity (H): 1.84 Skew:

0.80

Prob(H) (two-sided): 0.06 Kurtosis:

6.31

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

======Results of	District	18	
SARIMAX	Results		

______ y No. Observations: Dep. Variable: 121 SARIMAX(1, 1, 2) Log Likelihood Model: 189.554 Date: Sun, 04 Oct 2020 AIC -369.108 Time: 21:01:45 BIC -355.170 Sample: O HQIC -363.448

- 121

Covariance Type: opg

========		========		=======	========	=======
	coef	std err	z	P> z	[0.025	0.975]
intercept	0.0073	0.004	1.702	0.089	-0.001	0.016
ar.L1	-0.8480	0.130	-6.520	0.000	-1.103	-0.593
ma.L1	0.2895	0.132	2.188	0.029	0.030	0.549
ma.L2	-0.6348	0.105	-6.060	0.000	-0.840	-0.429
sigma2	0.0025	0.000	13.588	0.000	0.002	0.003
========		========		=======	========	========

===

Ljung-Box (Q): 31.65 Jarque-Bera (JB):

674.40						
Prob(Q):			0.82	Prob(JB):		
0.00			0.05	a.		
Heteroskedast	ticity (H):		3.27	Skew:		
Prob(H) (two-	-sided):		0.00	Kurtosis:		
13.79	Diada,.		0.00	nar oobib.		
=========		=======	=======	========	========	
===						
Warnings:						
•	ce matrix o	alculated u	sing the o	uter product	of gradients	(complex-
step).			26 00 0	user product	01 81 44 101	(00p_0
-						
=========				rict 19 =====	========	
		SAR 	IMAX Resul	ts 		
Dep. Variable	e:		y No.	Observations:		121
Model:		RIMAX(O, 1,	v			171.619
Date:	Su	n, 04 Oct 2	020 AIC			-335.238
Time:		21:01	:49 BIC			-324.088
Sample:			O HQIC	!		-330.710
		_	121			
Covariance Ty	pe:		opg			
=========	coef	std err	7	P> z	 [0 025	0 975l
				1/121		0.975]
intercept	0.0038	0.002	1.784	0.074	-0.000	0.008
ma.L1	-0.5063	0.090	-5.612	0.000	-0.683	-0.329
ma.L2	-0.1774	0.108	-1.638	0.101	-0.390	0.035
sigma2	0.0033	0.000	8.591	0.000	0.003	0.004
=======================================		=======	=======	========	========	
Ljung-Box (Q)) •		18.83	Jarque-Bera	(IB) ·	
34.90	•		10.00	Jarque Bera	(31).	
Prob(Q):			1.00	Prob(JB):		
0.00						
Heteroskedast	ticity (H):		0.62	Skew:		
1.03 Prob(H) (two-	-gidod).		0 12	Kurtosis:		
4.66	-sided):		0.13	var cosis:		
T.00						

Warnings:

===

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

	SAR	IMAX Resu	lts		
Dep. Variable: Model: Date: Time: Sample: Covariance Type:	SARIMAX(0, 1, Sun, 04 Oct 20 21:01:	y No. 2) Log 020 AIC :51 BIC 0 HQI	Observations: Likelihood		121 146.586 -285.173 -274.023 -280.645
coe	std err		P> z		
•		-5.243	0.000 0.036		-0.275 -0.010
======================================		49.42 0.15 0.37 0.00	Jarque-Bera Prob(JB): Skew: Kurtosis:	======= (JB):	
Warnings: [1] Covariance matri: step).	Result SARI	ts of Dis	trict 21 ===== lts		
Dep. Variable: Model: Date: Time: Sample: Covariance Type:	SARIMAX(0, 1, Sun, 04 Oct 20 21:01:	y No. 1) Log 020 AIC :54 BIC 0 HQI 121 0pg	Observations: Likelihood		121 143.365 -282.730 -277.155 -280.466
coe	f std err		P> z		0.975]

-7.997

0.000

-0.727

-0.441

-0.5835

ma.L1

0.073

sigma2	0.0053	0.000	11.546	0.000	0.004	0.006
=======================================		=======	:======	=========	:======:	========
Ljung-Box (Q) 39.36	:		25.16	Jarque-Bera ((JB):	
Prob(Q): 0.00			0.97	Prob(JB):		
Heteroskedast	icity (H):		0.90	Skew:		
0.93 Prob(H) (two- 5.11	sided):		0.73	Kurtosis:		
=========				=========		=======
===						
Warnings: [1] Covariance step).	e matrix ca	lculated us	sing the o	uter product o	of gradients	s (complex-
	:=======			rict 22 =====		
=========	========		MAX Resul	ts ========	.=======	
Dep. Variable Model: Date:	SAR	IMAX(0, 1,	2) Log	Observations: Likelihood		121 127.931 -249.862
Time: Sample:		21:01:	O HQIC			-241.500 -246.466
Covariance Ty	pe:		pg			
=========				======================================		
	coei 	std err	z 	P> z	[0.025 	0.975]
ma.L1	-0.3572		-3.634	0.000	-0.550	-0.165
ma.L2 sigma2	-0.3833 0.0069	0.100 0.001	-3.835 11.679	0.000 0.000	-0.579 0.006	-0.187 0.008
		=======				
=== Ljung-Box (Q)	:		31.46	Jarque-Bera ((JB):	
73.29 Prob(Q):			0.83	Prob(JB):		
0.00 Heteroskedast	icity (H):		0.43	Skew:		
1.10 Prob(H) (two-	sided):		0.01	Kurtosis:		

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complexstep). SARIMAX Results ______ Dep. Variable: y No. Observations: Model: SARIMAX(1, 1, 2) Log Likelihood 130.765 Date: Sun, 04 Oct 2020 AIC -253.531 21:02:05 BIC Time: -242.381O HQIC Sample: -249.003 - 121 Covariance Type: opg ______ coef std err z P>|z| [0.025] ______

 -0.4054
 0.245
 -1.657
 0.097
 -0.885

 -0.0512
 0.238
 -0.215
 0.830
 -0.519

 -0.5345
 0.120
 -4.443
 0.000
 -0.770

 ar.L1 0.074 ma.L1 0.416 ma.L2 -0.299 sigma2 0.0066 0.001 11.739 0.000 0.005 0.008 _____ Ljung-Box (Q): 25.00 Jarque-Bera (JB): 93.67 Prob(Q): 0.97 Prob(JB): 0.00 Heteroskedasticity (H): 0.60 Skew: 1.31 Prob(H) (two-sided): 0.11 Kurtosis: [1] Covariance matrix calculated using the outer product of gradients (complexstep). SARIMAX Results y No. Observations: Dep. Variable: 121 Model: SARIMAX(3, 0, 0) Log Likelihood 104.741 Date: Sun, 04 Oct 2020 AIC -199.48121:02:11 BIC Time: -185.502O HQIC Sample: -193.804- 121 Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
intercept	1.7604	0.606	2.903	0.004	0.572	2.949
ar.L1	0.5781	0.088	6.534	0.000	0.405	0.752
ar.L2	-0.1072	0.112	-0.959	0.338	-0.326	0.112
ar.L3	0.2685	0.088	3.039	0.002	0.095	0.442
sigma2	0.0103	0.001	8.124	0.000	0.008	0.013
=== Ljung-Box (0 0.36 Prob(Q):	Į):		44.90	Jarque-Bera Prob(JB):	(JB):	
0.83 Heteroskedas	sticity (H):		1.55	Skew:		
Prob(H) (two	o-sided):		0.17	Kurtosis:		
=======================================						
Warnings:						

Covariance Type:

[1] Covariance matrix calculated using the outer product of gradients (complexstep).

SARIMAX Results

Dep. Variable:	у	No. Observations:	121
Model:	SARIMAX(1, 1, 1)	Log Likelihood	118.088
Date:	Sun, 04 Oct 2020	AIC	-228.175
Time:	21:02:14	BIC	-217.025
Sample:	0	HQIC	-223.647

- 121

opg

=========		=======	========	=======	========	=======
	coef	std err	z	P> z	[0.025	0.975]
intercept	0.0024	0.001	1.972	0.049	1.42e-05	0.005
ar.L1	0.2627	0.101	2.606	0.009	0.065	0.460
ma.L1	-0.8728	0.055	-15.843	0.000	-0.981	-0.765
sigma2	0.0081	0.001	8.115	0.000	0.006	0.010

Ljung-Box (Q): 36.88 Jarque-Bera (JB):

7.10

Prob(Q): Prob(JB): 0.61

0.03

Heteroskedasticity (H): 2.48 Skew:

-0.53 Prob(H) (two-3.55	-sided):		0.01	Kurtosis:		
===						
step).				outer product		
=========			s of Dist MAX Resul	crict 27 ===== Lts		========
Dep. Variable Model: Date: Time: Sample:	e: SAF Sur	RIMAX(0, 1, 2 1, 04 Oct 202 21:02:1 - 12	y No. 2) Log 20 AIC 19 BIC 0 HQIC			121 148.552 -291.104 -282.742 -287.708
	coef	std err	z	P> z	[0.025	0.975]
ma.L2 sigma2	-0.2633 0.0049	0.093 0.000	-2.823 11.693	0.012 0.005 0.000	-0.446 0.004	-0.081 0.006
=== Ljung-Box (Q) 61.50			35.06	Jarque-Bera		
Prob(Q): 0.00			0.69	Prob(JB):		
Heteroskedast	cicity (H):		0.68	Skew:		
0.85 Prob(H) (two- 6.07	-sided):		0.22	Kurtosis:		
=======================================	:======					========
Warnings: [1] Covariand step).	ce matrix ca	alculated usi	ing the c	outer product	of gradients	(complex-
========			s of Dist MAX Resul	rict 28 ===== lts		=======
Dep. Variable	: :	RIMAX(1, 1, 1	y No.	Observations Likelihood		121 136.384

 Date:
 Sun, 04 Oct 2020
 AIC
 -266.768

 Time:
 21:02:26
 BIC
 -258.406

 Sample:
 0
 HQIC
 -263.372

- 121

Covariance Type: opg

=======	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.6429	0.102	6.333	0.000	0.444	0.842
ma.L1	-0.9283	0.051	-18.116	0.000	-1.029	-0.828
sigma2	0.0060	0.001	10.241	0.000	0.005	0.007

===

Ljung-Box (Q): 24.53 Jarque-Bera (JB):

31.75

Prob(Q): 0.97 Prob(JB):

0.00

Heteroskedasticity (H): 0.83 Skew:

0.11

Prob(H) (two-sided): 0.56 Kurtosis:

5.51

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

The Result table

```
[17]: Result_1 = pd.DataFrame({'district': districts, 'MAPE': MAPE, 'log_Predicted':_\( \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\t
```

[17]:	district	MAPE	log_Predicted	<pre>log_Currentprice</pre>	Predicted	\
18	20	0.710170	7.577187	7.380002	1953.127327	
1	2	1.846413	7.675950	7.488453	2155.871823	
12	14	0.410972	7.498114	7.331785	1804.635319	
23	26	1.170766	7.147431	6.984716	1270.836826	
16	18	0.441463	7.303875	7.179381	1486.046496	
25	28	1.046103	7.024037	6.900328	1123.312170	
17	19	0.715485	7.402667	7.279652	1640.353697	
4	5	0.395657	7.450505	7.330332	1720.731237	

22	25	1.685449	6.756545	6.646391	859.666818
11	13	0.703470	7.624110	7.522610	2046.956892
13	15	1.103909	7.434468	7.344958	1693.356315
3	4	0.781964	7.346149	7.262453	1550.214907
2	3	0.369448	7.794391	7.718808	2426.950447
21	23	1.151870	7.039318	6.967995	1140.609504
14	16	0.670500	7.008690	6.972271	1106.204694
9	11	2.047353	7.551950	7.518142	1904.452798
15	17	1.139743	6.938309	6.907073	1031.025002
20	22	0.875019	6.947774	6.930495	1040.830375
8	10	0.909143	7.680636	7.677465	2165.997183
7	9	0.565334	7.735511	7.739460	2288.177880
19	21	0.902176	7.430290	7.451450	1686.296517
24	27	0.939378	6.857823	6.895345	951.294145
0	1	0.529892	7.652918	7.715792	2106.783476
10	12	1.055623	7.291148	7.357769	1467.253584
5	7	4.266047	7.845551	7.950855	2554.344535
6	8	1.319041	7.380913	7.528108	1605.054631
	Currentpr	ice percen	tage increase		

	Currentprice	percentage_increase
18	1603.592593	0.217970
1	1787.285714	0.206227
12	1528.107143	0.180961
23	1080.000000	0.176701
16	1312.095238	0.132575
25	992.600000	0.131687
17	1450.483146	0.130902
4	1525.888889	0.127691
22	770.000000	0.116450
11	1849.387755	0.106829
13	1548.370370	0.093638
3	1425.750000	0.087298
2	2250.275862	0.078512
21	1062.090909	0.073928
14	1066.642857	0.037090
9	1841.142857	0.034386
15	999.318182	0.031728
20	1023.000000	0.017429
8	2159.138889	0.003176
7	2297.230769	-0.003941
19	1722.358209	-0.020937
24	987.666667	-0.036827
0	2243.500000	-0.060939
10	1568.333333	-0.064450
5	2838.000000	-0.099949
6	1859.583333	-0.136874

0.0.3 Now we want to want to focus on 'resale' property market

```
[18]: #Check the values in feature ['Type of Sale']
     data['Type of Sale'].unique()
[18]: array(['Resale', 'New Sale'], dtype=object)
[19]: #Subset the data
     data_resale = data[data['Type of Sale'] == 'Resale']
     data_resale.info()
     <class 'pandas.core.frame.DataFrame'>
     Int64Index: 82389 entries, 0 to 190793
     Data columns (total 21 columns):
         Column
                                     Non-Null Count Dtype
     --- ----
                                      _____
         Project Name
                                     82389 non-null object
         Address
      1
                                     82389 non-null object
                                    82389 non-null int64
      2
         No. of Units
      3
         Area (sqm)
                                    82389 non-null int64
      4
         Type of Area
                                    82389 non-null object
      5
         Transacted Price ($)
                                    82389 non-null int64
         Nett Price($)
                                    82389 non-null object
      7
         Unit Price ($ psm)
                                   82389 non-null int64
         Unit Price ($ psf)
                                    82389 non-null int64
         Sale Date
                                    82389 non-null object
      10 Property Type
                                    82389 non-null object
      11 Tenure
                                    82389 non-null object
      12 Completion Date
                                     82389 non-null object
      13 Type of Sale
                                     82389 non-null object
      14 Purchaser Address Indicator 82389 non-null object
      15 Postal District
                                     82389 non-null int64
      16 Postal Sector
                                    82389 non-null int64
      17 Postal Code
                                    82389 non-null int64
      18 Planning Region
                                    82389 non-null object
      19 Planning Area
                                     82389 non-null object
      20 Month_Year
                                     82389 non-null period[M]
     dtypes: int64(8), object(12), period[M](1)
     memory usage: 13.8+ MB
[20]: #Average_monthly for each district
     Average_monthly_resale = data_resale.groupby(['Postal District', 'Month_Year'],_
      →as_index=False)['Unit Price ($ psf)'].mean()
     Average_monthly_resale_df = pd.DataFrame(Average_monthly_resale)
[21]: Average_monthly_resale_df.info()
     Average_monthly_resale_df['Postal District'].value_counts()
```

```
<class 'pandas.core.frame.DataFrame'>
     Int64Index: 3127 entries, 0 to 3126
     Data columns (total 3 columns):
          Column
                              Non-Null Count Dtype
          _____
                              -----
      0
          Postal District
                              3127 non-null
                                               int64
      1
          Month Year
                              3127 non-null
                                               period[M]
          Unit Price ($ psf) 3127 non-null
                                               float64
     dtypes: float64(1), int64(1), period[M](1)
     memory usage: 97.7 KB
[21]: 27
            121
      8
            121
      20
            121
      22
            121
      14
            121
      12
            121
      10
            121
      3
            121
      5
            121
      9
            121
      16
            121
      11
            121
      4
            121
      15
            121
      17
            121
      19
            121
      21
            121
      23
            121
      18
            121
      1
            120
      26
            120
      28
            119
      25
            119
      13
            118
      2
            116
      7
            109
      6
              7
      Name: Postal District, dtype: int64
     Fill in missing value
[22]: #Input missing datapoint (except district 6)
      # Drop District 6
      Average_monthly_df_drop_resale =_
      →Average_monthly_resale_df[Average_monthly_resale_df['Postal District'] != 6]
      #Input missing datapoint
```

```
# make it as a pivot table
     pivot_2 = Average_monthly_df_drop_resale.pivot(index='Month_Year', columns =___
      #Fill in missing values
     pivot_2.fillna(method='ffill', inplace=True)
     #Back to an array
     Average_monthly_df_filled_resale = pivot_2.stack().reset_index()
     Average_monthly_df_filled_resale.sort_values(['Month_Year', 'Postal District'])
     #To check
     Average monthly df filled resale['Postal District'].value_counts()
[22]: 27
           121
     25
           121
     4
           121
     8
           121
     10
           121
     12
           121
     14
           121
           121
     16
     18
           121
     20
           121
     22
           121
     26
           121
     28
           121
     1
           121
     3
           121
     5
           121
     7
           121
     9
           121
           121
     11
     13
           121
     15
           121
     17
           121
     19
           121
     21
           121
     23
           121
           121
     Name: Postal District, dtype: int64
[23]: Average_monthly_df_filled_resale.rename(columns={0: "Unit Price ($ psf)"},__
      →inplace=True)
     Average_monthly_df_filled.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 3146 entries, 0 to 3145
     Data columns (total 4 columns):
                             Non-Null Count Dtype
        Column
```

```
0
     Month_Year
                         3146 non-null
                                         period[M]
     Postal District
                         3146 non-null
                                          int64
 1
 2
     Unit Price ($ psf) 3146 non-null
                                          float64
     log_psf
                         3146 non-null
 3
                                          float64
dtypes: float64(2), int64(1), period[M](1)
memory usage: 98.4 KB
```

```
[24]: # Plot monthly average unit price of resale properties for each district for → past ten years

for i in [x for x in range(1,29) if x != 6 and x !=24]:
    Average_monthly_df_filled_resale.
    →loc[(Average_monthly_df_filled_resale['Postal District'] == i)].plot(y='Unit_orange of the part of the pa
```



```
[25]: #Add a column to store log_psf
     Average_monthly_df_filled_resale.loc[ : , 'log_psf'] = np.
      →log(Average_monthly_df_filled_resale['Unit Price ($ psf)'])
     Average_monthly_df_filled_resale.head()
       Month Year Postal District Unit Price ($ psf)
[25]:
                                                     log_psf
          2010-09
                                        1842.100000 7.518662
                               1
     0
     1
          2010-09
                                        1586.833333 7.369496
     2
          2010-09
                               3
                                        1066.400000 6.972044
          2010-09
     3
                                        1494.769231 7.309727
          2010-09
                               5
                                         895.509434 6.797393
[26]: # Print model summaries, plots, and prediction results for all districts except
      →Distrct 6 & 24
     districts_2 = []
     MAPE_2 = []
     percentage_change_2 = []
     log Predicted 2 = []
     log_Currentprice_2 = []
     for i in [x for x in range(1,29) if x != 6 and x != 24]:
            =======')
             # train the model
```

```
train_size = round(0.9 *_
→len(Average monthly df filled resale[(Average monthly df filled resale['Postal
→District'] == i)]))
       test size = round(0.1 *
→len(Average_monthly_df_filled_resale[(Average_monthly_df_filled_resale['Postalu
⇔District'] == i)]))
       train =
→ Average monthly df_filled_resale[(Average monthly df_filled_resale['Postalu
→District'] == i)][:train_size]
       test =
→ Average_monthly_df_filled_resale[(Average_monthly_df_filled_resale['Postalu
→District'] == i)][train_size:]
       if len(train) >= 50:
           model = pm.auto_arima(train[(train['Postal District'] ==__
→i)]['log_psf'], suppress_warnings=True)
           print()
           temp = model.order
           p, d, q = temp[0], temp[1], temp[2]
           #print(model.plot_diagnostics())
           #model.resid()
           #plot_acf(model.resid(), lags=20)
           #plt.show()
           #plot_pacf(model.resid(), lags=20)
           #plt.show()
           pred = model.predict(test size)
           Test = pd.DataFrame()
           Test['pred'] = list(pred)
           MAPE_i = mape(list(test['log_psf']), Test['pred'])
           model p resale = pm.
→auto_arima(Average_monthly_df_filled_resale[(Average_monthly_df_filled_resale[|Postal_u
→District'] == i)]['log_psf'],suppress_warnings=True)
           \#model_p = ARIMA(Average\_monthly\_df[(Average\_monthly\_df['Postal_log_monthly_df]')]
\rightarrow District'] == i)\mathcal{E}(Average\ monthly\ df['Tenure\ dummy(>900)'] == 1
\rightarrow j)]['log_psf'],order=(p, d, q))
           pred_p_resale = model_p_resale.predict(36)
           print(model_p_resale.summary())
           print()
           # integrate the results
           districts_2.append(i)
           MAPE_2.append(MAPE_i)
```

SARIMAX Results

Dep. Variable: y No. Observations: 121

Model: SARIMAX(1, 0, 1) Log Likelihood 88.288

Date: Sun, 04 Oct 2020 AIC -168.577

Time: 21:02:34 BIC -157.394

Sample: 0 HQIC -164.035

- 121

Covariance Type: opg

	coef	std err	Z	P> z	[0.025	0.975]
intercept	2.7472	1.857	1.479	0.139	-0.893	6.388
ar.L1	0.6369	0.245	2.595	0.009	0.156	1.118
ma.L1	-0.3982	0.290	-1.371	0.170	-0.968	0.171
sigma2	0.0135	0.002	8.567	0.000	0.010	0.017

===

Ljung-Box (Q): 53.01 Jarque-Bera (JB):

30.06

Prob(Q): 0.08 Prob(JB):

0.00

Heteroskedasticity (H): 0.54 Skew:

-0.86

Prob(H) (two-sided): 0.05 Kurtosis:

4.74

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

SARIMAX Results

========		SAR =========				=======
Dep. Variable	e:		y No.	Observations:		121
Model:	Ş	SARIMAX(3, 1,	1) Log	Likelihood		54.358
ate:	9	Sun, 04 Oct 2	020 AIC			-96.717
Cime:		21:02				-79.992
Sample:			O HQI	C		-89.924
			121			
Covariance Ty	ype: ======		opg =======			
	coef	std err	z	P> z	[0.025	0.975]
ntercept	0.0035	0.001	3.486	0.000	0.002	0.006
r.L1	0.0299	0.093	0.323	0.747	-0.152	0.211
r.L2	-0.1170		-1.290		-0.295	0.061
ır.L3	-0.1401		-1.594		-0.312	0.032
na.L1	-0.9515				-1.039	-0.864
igma2 	0.0232	0.002	9.996	0.000	0.019	0.028
==						
jung-Box (Q) 6.67):		19.35	Jarque-Bera	(JB):	
rob(Q):			1.00	Prob(JB):		
.00 eteroskedas	ticity (U	١.	1.44	Skew:		
0.39	cicity (II.	<i>)</i> .	1.44	Drew.		
?rob(H) (two-	-sided):		0.26	Kurtosis:		
:======:: :==	======		======			=======
arnings:	co matriv	calculated u	sing the	outer product	of gradients	(complex
tep).	ce matrix	carcurated u	sing the	outer product	or gradients	(complex
				trict 2		========
=======	======	======Kesul	ts of Dis	tiict 3		
		SAR	IMAX Resu	lts		
	======	SAR	IMAX Resu	lts =======		======
======================================	======== e:	SAR	IMAX Resu	lts ======== Observations:		121
======== ep. Variable odel:	======= e: {	SAR ====================================	IMAX Resu ======= y No. 4) Log	lts =======		121 180.344
======================================	======= e: {	SAR SARIMAX(1, 1, Sun, 04 Oct 2	IMAX Resu y No. 4) Log 020 AIC	lts ======== Observations:		121 180.344 -346.689
======================================	======= e: {	SAR ====================================	IMAX Resu y No. 4) Log 020 AIC :49 BIC	lts Observations: Likelihood		121 180.344 -346.689 -327.176
eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	======= e: {	SAR ====================================	IMAX Resu y No. 4) Log 020 AIC :49 BIC	lts Observations: Likelihood		121 180.344 -346.689

	coef	std err	z	P> z	[0.025	0.975]
intercept	0.0077	0.005	1.558	0.119	-0.002	0.017
ar.L1	-0.9288	0.075	-12.362	0.000	-1.076	-0.782
ma.L1	0.4376	0.124	3.533	0.000	0.195	0.680
ma.L2	-0.5756	0.101	-5.717	0.000	-0.773	-0.378
ma.L3	-0.0798	0.098	-0.812	0.417	-0.272	0.113
ma.L4	0.1936	0.099	1.965	0.049	0.001	0.387
sigma2	0.0029	0.000	6.701	0.000	0.002	0.004
========		=======			========	=======

===

Ljung-Box (Q): 34.18 Jarque-Bera (JB):

0.68

Prob(Q): 0.73 Prob(JB):

0.71

Heteroskedasticity (H): 1.42 Skew:

0.12

Prob(H) (two-sided): 0.27 Kurtosis:

2.73

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

SARIMAX Results

______ Dep. Variable: y No. Observations: 121 Model: SARIMAX(2, 0, 2) Log Likelihood 125.729 Date: Sun, 04 Oct 2020 AIC -239.457 Time: 21:02:57 BIC -222.682 Sample: O HQIC -232.644

- 121

Covariance Type: opg

========						
	coef	std err	z	P> z	[0.025	0.975]
intercept	1.3114	0.910	1.441	0.150	-0.473	3.095
ar.L1	-0.0481	0.090	-0.533	0.594	-0.225	0.129
ar.L2	0.8690	0.089	9.816	0.000	0.696	1.043
ma.L1	0.2745	0.134	2.044	0.041	0.011	0.538
ma.L2	-0.5633	0.145	-3.877	0.000	-0.848	-0.279
sigma2	0.0073	0.001	8.719	0.000	0.006	0.009

===

Ljung-Box (Q): 5.16			32.99	Jarque-Bera	(JB):	
Prob(Q):			0.78	Prob(JB):		
0.08						
Heteroskedasti	city (H)	:	0.85	Skew:		
-0.33 Prob(H) (two-s	ided).		0.60	Kurtosis:		
3.77	ided).		0.00	Kui tobib.		
	======					
===						
II.						
Warnings: [1] Covariance	motrix /	anlaulatad u	sing the e	utor product	of gradients	(complex-
step).	maulix (calculated us	sing the o	uter product	or gradients	(combiex-
2004)						
	======	=====Resul	ts of Dist	rict 5 =====		
		GAD	TWAN D 3			
==========	=======	SAK. 	IMAX Resul ======	.ts :=======	:=======	=======
Dep. Variable:			y No.	Observations:		121
Model:		ARIMAX(0, 1,	•	Likelihood		200.605
Date:	Sı	ın, 04 Oct 20	020 AIC			-395.210
Time:		21:03	:00 BIC			-386.848
Sample:			O HQIC			-391.814
•		- :	121			
Covariance Typ	e:	(opg			
=========	=======					
	coei	std err 	Z 	P> z	[0.025	0.975]
ma.L1	-0.6894	0.096	-7.146	0.000	-0.879	-0.500
ma.L2	0.1300	0.101	1.293	0.196	-0.067	0.327
sigma2	0.0021	0.000	7.100	0.000	0.001	0.003
	=======	========				
<pre>Ljung-Box (Q):</pre>			36.02	Jarque-Bera	(IR).	
0.39			30.02	Jarque Dera	(3D).	
Prob(Q):			0.65	Prob(JB):		
0.82						
Heteroskedasti	city (H)	:	0.74	Skew:		
-0.10 Prob(H) (two-s	idod).		0.33	Kurtosis:		
2.80	idea).		0.33	MUL COSIS.		
==========					.========	

Warnings:

===

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

		SA	RIMAX Resul	lts		
======= Dep. Variable		========		Observations:		 121
Model:		SARIMAX(1, 1	•			22.647
Date:		Sun, 04 Oct	_			-39.295
Time:		21:0	03:04 BIC			-30.932
Sample:			O HQIO	C		-35.899
		-	121			
Covariance Ty =======	-		opg			
		std err		P> z	[0.025	0.975]
 ar.L1	0.3957	0.123	3.220	0.001	0.155	0.637
ma.L1	-0.8126	0.082	-9.931	0.000	-0.973	-0.652
sigma2	0.0400	0.005	8.871	0.000	0.031	0.049
	======					
=== Ljung-Box (Q)	:		30.41	Jarque-Bera	(JB):	
19.88 Prob(Q):			0.86	Prob(JB):		
0.00			0.80	F10D(JD).		
Heteroskedast	icitv (H	I):	2.61	Skew:		
-0.81	,	•				
Prob(H) (two-	sided):		0.00	Kurtosis:		
	sided):		0.00	Kurtosis:		
Prob(H) (two-	sided): ======		0.00	Kurtosis:		=======
Prob(H) (two-	sided): ======		0.00	Kurtosis: 		
Prob(H) (two- 4.17 ====================================	sided):		0.00	Kurtosis:		
Prob(H) (two- 4.17 ====================================	======	calculated			of gradient	======================================
Prob(H) (two- 4.17 ====================================	======	calculated		Kurtosis:	of gradient	s (complex
Prob(H) (two- 4.17 ====================================	======	calculated			of gradient	s (complex
Prob(H) (two- 4.17 ====================================	====== e matrix		using the d		-	-
Prob(H) (two- 4.17 ====================================	====== e matrix	=====Resu	using the d	outer product	-	-
Prob(H) (two- 4.17 ====================================	======================================	=====Resu SA	using the outling the outline of Distance and RIMAX Results in the contract of	outer product trict 8 ======		
Prob(H) (two-4.17 ====================================	======================================	:====Resu SA	using the calls of Distantial RIMAX Results of No.	outer product trict 8 ====== Its Observations:		 121
Prob(H) (two-4.17	======================================	SA SARIMAX(3, C	using the cults of Dist	outer product trict 8 ======		121 131.300
Prob(H) (two-4.17 ====================================	======================================	SARIMAX(3, C	using the calls of Distance of	outer product trict 8 ====== Its Observations:		121 131.300 -252.601
Prob(H) (two-4.17 ====================================	======================================	SARIMAX(3, C	using the calls of Distance y No. (2020 AIC 03:08 BIC	outer product trict 8 ====== Its Observations Likelihood		121 131.300 -252.601
Prob(H) (two-4.17 ====================================	======================================	SARIMAX(3, C Sun, 04 Oct 21:0	using the cults of Dist	outer product trict 8 ====== Its Observations Likelihood		121 131.300 -252.601
Prob(H) (two-4.17 ====================================	e matrix	SARIMAX(3, C Sun, 04 Oct 21:0	using the call the ca	outer product trict 8 ====== Its Observations Likelihood		121 131.300 -252.601
Prob(H) (two-4.17 ===================================	======= e matrix ======= :	SARIMAX(3, 0 Sun, 04 Oct 21:0	using the control of Distance	outer product trict 8 ====== Its Observations Likelihood		121 131.300 -252.601 -238.622 -246.924

intercept	4.1012	0.885	4.635	0.000	2.367	5.836
ar.L1	0.1092	0.088	1.247	0.212	-0.062	0.281
ar.L2	0.1451	0.112	1.298	0.194	-0.074	0.364
ar.L3	0.1732	0.076	2.284	0.022	0.025	0.322
sigma2	0.0067	0.001	8.029	0.000	0.005	0.008
	=======	========	:======			=======
=== Ljung-Box (Q) •		29.44	Jarque-Bera	(IB)·	
3.79	, .		20.11	Jarque Dera	(01).	
Prob(Q):			0.89	Prob(JB):		
0.15				,		
Heteroskedas	ticity (H):		1.06	Skew:		
-0.37	·					
Prob(H) (two	-sided):		0.86	Kurtosis:		
3.46						
========	=======					
===						
TT						
Warnings:	aa matmin a	-laula+ad ua	ring the s	ton nnoduct	of modiant	. (
step).	ce matrix ca	arcurated us	sing the c	uter product	or gradients	s (comprex-
scep).						
		=====Result	s of Dist	rict 9 =====		
		SARI	MAX Resul	ts		
	=======					
Dep. Variabl			•	Observations:	:	121
Model:		RIMAX(0, 1,	_	Likelihood		158.255
Date:	Sui	n, 04 Oct 20				-312.510
Time:		21:03:				-306.935
Sample:			O HQIC	;		-310.246
C		- 1				
Covariance T	ype: =======) 	pg 			
	coef	std err	z	P> z	[0.025	0.975]
	0.6044	0.070	0 055	0.000	0.750	0.404
				0.000		
sigma2		0.001		0.000	0.003	
===						
Ljung-Box (Q):		30.32	Jarque-Bera	(JB):	
0.43	, -		00.02	- 440 2014	(3-)	
Prob(Q):			0.87	Prob(JB):		
0.81				(,		
Heteroskedas	ticity (H):		1.44	Skew:		
0.14	√/ ·					
Prob(H) (two	-sided):		0.25	Kurtosis:		
, , , ,	•					

2.91						
===		:=======	=======	=======		=======
step).			-	-	of gradients	-
			s of Dist: MAX Resul [:]			======
Dep. Variabl Model: Date: Time: Sample:	SAF Sur	IMAX(1, 1, 1, 04 Oct 20 21:03:	3) Log 1 20 AIC 17 BIC 0 HQIC	 Observations: Likelihood		121 169.907 -327.814 -311.089 -321.022
========	coef	std err	z	P> z	[0.025	0.975]
intercept ar.L1 ma.L1 ma.L2 ma.L3 sigma2	0.0026 -0.5315 -0.0960 -0.5003 -0.3654 0.0034	0.236	3.516 -1.714 -0.328 -2.120 -3.332 7.727	0.000 0.087 0.743 0.034 0.001 0.000	0.001 -1.139 -0.669 -0.963 -0.580 0.003	0.004 0.076 0.477 -0.038 -0.150 0.004
======================================	sticity (H):		37.19 0.60 0.82 0.55	Jarque-Bera Prob(JB): Skew: Kurtosis:	(JB):	
=== Warnings:					of gradients	

SARIMAX Results

			=====	====	.========		
Dep. Variable			•		Observations:		121
Model:		ARIMAX(O, 1,		_	Likelihood		182.739
Date:	St	ın, 04 Oct 2					-361.478
Time:		21:03		BIC			-355.903
Sample:				HQIC	;		-359.214
a		_	121				
Covariance T		.=======	opg =====	====	:========	=======	========
	coef	std err		z	P> z	[0.025	0.975]
					0.000		
•					0.000		
======================================	=======			====			
Ljung-Box (Q) 3.32):		33.	82	Jarque-Bera (JB):	
Prob(Q): 0.19			0.	74	Prob(JB):		
0.19 Heteroskedas [.] 0.10	ticity (H):		2.	14	Skew:		
0.10 Prob(H) (two [.]	-sided):		0.	02	Kurtosis:		
3.79							
3.79 ====================================			=====	====			
======================================	ce matrix c	calculated u	sing t	he o	outer product o	f gradient	s (complex-
======================================			_		outer product on		-
Warnings: [1] Covariandstep).		=====Resu]	_	Dist	rict 12 =====		-
Warnings: [1] Covariandstep).		=====Resu]	ts of	Dist Lesul	rict 12 ====== ts		
Warnings: [1] Covariandstep). ===================================	======================================	=====Resul SAF	ts of RIMAX R =====	Dist esul	ts Observations:		 121
Warnings: [1] Covariandstep). ===================================	======== ========= e: SA	=====Resul SAF ===================================	ts of TIMAX R ====== y 1)	Dist esul ==== No. Log	rict 12 ====== ts		.=====================================
Warnings: [1] Covariandstep). ===================================	======== ========= e: SA	SAF SAF SAF SARIMAX(2, 1,	ts of RIMAX R ====== y 1) 2020	Dist esul ==== No. Log AIC	ts Observations:		121 158.495 -306.991
Warnings: [1] Covariandstep). Dep. Variable Model: Date:	======== ========= e: SA	=====Resul SAF ===================================	ts of RIMAX R ====== y 1) 2020 3:22	Dist Lesul No. Log AIC BIC	ts Observations: Likelihood		121 158.495 -306.991 -293.053
Varnings: [1] Covariandstep). Dep. Variable Model: Date:	======== ========= e: SA	SAF SAF SAF SAF SARIMAX(2, 1, SARIMAX(2, 1, SARIMAX(2, 1, SARIMAX(2, 1,	ts of RIMAX R ====== y 1) 2020 3:22 0	Dist esul ==== No. Log AIC	ts Observations: Likelihood		121 158.495 -306.991
Warnings: [1] Covariandstep). ===================================	======= ========== e: SA Su	SAF SAF SAF SAF SARIMAX(2, 1, SARIMAX(2, 1, SARIMAX(2, 1, SARIMAX(2, 1,	ts of RIMAX R ====== y 1) 2020 3:22 0 121	Dist Lesul No. Log AIC BIC	ts Observations: Likelihood		121 158.495 -306.991 -293.053
Varnings: [1] Covariandstep). Dep. Variable Model: Date: Fime: Sample:	======= ========== e: SA Su	SAF SAF SAF SAF SARIMAX(2, 1, SARIMAX(2, 1, SARIMAX(2, 1, SARIMAX(2, 1,	ts of RIMAX R ====== y 1) 2020 3:22 0	Dist Lesul No. Log AIC BIC	ts Observations: Likelihood		121 158.495 -306.991 -293.053
Warnings: [1] Covariandstep). ===================================	======= ========== e: SA Su	SAF SAF SAF SAF SARIMAX(2, 1, SARIMAX(2, 1, SARIMAX(2, 1, SARIMAX(2, 1,	ts of RIMAX R ====== y 1) 2020 3:22 0 121	Dist Lesul No. Log AIC BIC	ts Observations: Likelihood		121 158.495 -306.991 -293.053
Warnings: [1] Covariandstep). ===================================	======== e: St St ype:	SAF SAF SAF SARIMAX(2, 1, In, 04 Oct 2 21:03	ts of RIMAX R y 1) 2020 3:22 0 121 opg	Dist esul No. Log AIC BIC HQIC	ts Observations: Likelihood		121 158.495 -306.991 -293.053 -301.331
Warnings: [1] Covariandstep). ===================================	======== e: Sr Sr ype: ====================================	SAF SAF SAF SARIMAX(2, 1, In, 04 Oct 2 21:03	ts of RIMAX R y 1) 2020 3:22 0 121 opg 1.	Dist	ts Observations: Likelihood P> z	[0.025	121 158.495 -306.991 -293.053 -301.331
======================================	======== e: Su ype: ========== coef	SAF SAF SAF SARIMAX(2, 1, IN, 04 Oct 2 21:03 - std err 0.003	ts of RIMAX R y 1) 2020 3:22 0 121 opg 11.	Dist	ts ts Observations: Likelihood P> z 0.095	[0.025 -0.001	121 158.495 -306.991 -293.053 -301.331

sigma2	0.0041	0.000	11.5	515	0.000	0.003	0.005
===	========	=======	:=====		=======	========	
Ljung-Box (Q 188.18):		18.1	16	Jarque-Bera	(JB):	
Prob(Q):			1.0	00	Prob(JB):		
0.00 Heteroskedas	ticity (H):		1.3	36	Skew:		
1.08 Prob(H) (two	-		0.3	22	Kurtosis:		
8.74	-sided).		0.3	00	Rui tosis.		
=======================================	=======	========			========	========	
Warnings: [1] Covarian step).	ce matrix ca	lculated us	sing th	ie o	uter product	of gradients	complex-
_		D] +	£ D	\	: 12		
		=====ĸesu±t	s oi D)1ST	rict 13 =====		
========			MAX Re		ts =======		
Dep. Variable			•		Observations:		121
Model:		IMAX(0, 1,		_	Likelihood		83.834
Date:	Sun	, 04 Oct 20		AIC			-161.668
Time:		21:03:		BIC			-153.305
Sample:				IQIC			-158.272
		- 1					
Covariance T	ype: =======	(pg ======		========	========	
	coef	std err		z	P> z	[0.025	0.975]
intercept	0.0033	0.002	1.6	 592	0.091	-0.001	0.007
ma.L1	-0.8556	0.055	-15.5	574	0.000	-0.963	-0.748
sigma2	0.0143	0.001	13.2		0.000	0.012	0.016
===	========	=======			========	========	:=======
Ljung-Box (Q 241.18):		77.3	39	Jarque-Bera	(JB):	
Prob(Q):			0.0	00	Prob(JB):		
0.00 Heteroskedas	ticity (H):		0.2	29	Skew:		
-1.41 Prob(H) (two	•		0.0		Kurtosis:		
9.34	sided).		0.0	,0	nui cosis.		
=========	=======	=======				========	

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

SARIMAX Results

Dep. Variable:	у	No. Observations:	121
Model:	SARIMAX(0, 1, 1)	Log Likelihood	163.720
Date:	Sun, 04 Oct 2020	AIC	-321.441
Time:	21:03:27	BIC	-313.078
Sample:	0	HQIC	-318.045

- 121

Covariance Type: opg

==========						
	coef	std err	z	P> z	[0.025	0.975]
intercept ma.L1	0.0032 -0.7698	0.001 0.055	2.236 -13.966	0.025	0.000 -0.878	0.006 -0.662
sigma2	0.0038	0.000	10.627	0.000	0.003	0.004

===

Ljung-Box (Q): 44.22 Jarque-Bera (JB):

33.82

Prob(Q): 0.30 Prob(JB):

0.00

Heteroskedasticity (H): 0.66 Skew:

0.57

Prob(H) (two-sided): 0.19 Kurtosis:

5.34

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

SARIMAX Results

Dep. Variable: y No. Observations: 121
Model: SARIMAX(0, 1, 1) Log Likelihood 209.650

 Date:
 Sun, 04 Oct 2020
 AIC
 -415.300

 Time:
 21:03:30
 BIC
 -409.725

 Sample:
 0
 HQIC
 -413.036

_

- 121

Covariance T	_		pg 			
				P> z		
ma.L1	-0.6344	0.075	-8.416	0.000	-0.782	-0.487
				0.000		
•						
===						
Ljung-Box (Q) 14.42):		33.45	Jarque-Bera	(JB):	
Prob(Q): 0.00			0.76	Prob(JB):		
Heteroskedas	ticity (H):		1.46	Skew:		
Prob(H) (two-	-sided):		0.23	Kurtosis:		
4.07	========		=======	.========	=========	=======
===						
Warnings:					c 1: .	/ 3
[1] Covariand step).	ce matrix c	alculated us	ing the c	outer product	of gradients	(complex-
scep).						
=========		=====Result	s of Dist	rict 16 =====	.=======	
		1002420				
			MAX Resul			
Dep. Variable				Observations:		121
Model:		RIMAX(0, 1,	•			214.879
Date:		n, 04 Oct 20	•	LINCIIIIOOQ		-425.758
Time:	54	-	32 BIC			-420.183
Sample:		21.00.	O HQIC	•		-423.494
bampie.		- 1		,		120.101
Covariance T	vne:		pg			
	_					
				P> z		
	-0.5302	0.074	-7.163	0.000	-0.675	-0.385
sigma2	0.0016	0.000	6.686	0.000	0.001	0.002
=========	=======		=======			=======
=== (C)	\		20.00	I D	(ID).	
Ljung-Box (Q)):		30.88	Jarque-Bera	(JR):	
Prob(Q):			0.85	Prob(JB):		
0.19						
Heteroskedas	ticity (H):		1.71	Skew:		
Prob(H) (two	-sided):		0.09	Kurtosis:		

2.74						
===	=======	=======	=======			=======
Warnings: [1] Covariance step).	e matrix ca	lculated u	sing the o	outer product	of gradients	(complex-
		====Resul	ts of Dist	trict 17 =====		
			IMAX Resul			
Dep. Variable Model: Date: Time: Sample: Covariance Type	: SAR Sun	IMAX(0, 1, , 04 Oct 2 21:03	y No. 1) Log	Observations: Likelihood		121 181.820 -359.639 -354.064 -357.375
=========		=======	=======			
				P> z		
ma.L1 sigma2	0.0028	0.000	10.068	0.000	0.002	0.003
=== Ljung-Box (Q) 24.69				Jarque-Bera		
Prob(Q):			0.42	Prob(JB):		
0.00 Heteroskedast: -0.67	icity (H):		0.64	Skew:		
Prob(H) (two-s 4.77	sided):		0.16	Kurtosis:		
===		=======	=======			
Warnings: [1] Covariance step).	e matrix ca	lculated u	sing the	outer product	of gradients	(complex-

SARIMAX Results _____

y No. Observations: SARIMAX(2, 1, 3) Log Likelihood Dep. Variable: 121 206.638 Model: Sun, 04 Oct 2020 AIC -399.276 Date:

Time: 21:03:43 BIC -379.763 Sample: O HQIC -391.352

- 121

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
intercept	0.0091	0.006	1.641	0.101	-0.002	0.020
ar.L1	-1.4133	0.260	-5.445	0.000	-1.922	-0.905
ar.L2	-0.6232	0.248	-2.513	0.012	-1.109	-0.137
ma.L1	0.7598	0.313	2.424	0.015	0.145	1.374
ma.L2	-0.2630	0.170	-1.547	0.122	-0.596	0.070
ma.L3	-0.2158	0.219	-0.985	0.325	-0.645	0.214
sigma2	0.0019	0.000	7.425	0.000	0.001	0.002
========		========		========	========	========

Ljung-Box (Q): 36.06 Jarque-Bera (JB):

3.29

Prob(Q): 0.65 Prob(JB):

0.19

Heteroskedasticity (H): 0.93 Skew:

-0.40

Prob(H) (two-sided): 0.82 Kurtosis:

3.18

[1] Covariance matrix calculated using the outer product of gradients (complex-

SARIMAX Results

______ y No. Observations: Dep. Variable: 121 SARIMAX(3, 1, 0) Log Likelihood 217.363 Model: Sun, 04 Oct 2020 AIC Date: -424.726

Time: 21:03:49 BIC -410.789 -419.066

O HQIC Sample:

- 121 Covariance Type:

opg ______ coef std err z P>|z| [0.025 0.975] ______ intercept 0.0060 0.004 1.533 0.125 -0.002 0.014 ar.L1 -0.5396 0.100 -5.406 0.000 -0.735 -0.344 ar.L2 -0.4901 0.108 -4.535 0.000 -0.702 -0.278

sigma2	0.0016	0.000	7.402	0.000	-0.389 0.001	0.002
===						=======
Ljung-Box (G)):		37.32	Jarque-Bera	(JB):	
Prob(Q): 0.03			0.59	Prob(JB):		
Heteroskedas	sticity (H):		1.06	Skew:		
Prob(H) (two	o-sided):		0.85	Kurtosis:		
===	=======					=======
Warnings: [1] Covarian step).	ce matrix ca	alculated u	sing the o	uter product	of gradients	(complex-
		=====Resul	ts of Dist	rict 20 =====		
			IMAX Resul			
Dep. Variable Model: Date: Time: Sample: Covariance T	.e: SAI Sui	RIMAX(0, 1, n, 04 Oct 20 21:03	y No. 1) Log	Observations: Likelihood		121 176.279 -346.558 -338.195 -343.162
				P> z	[0.025	0.975]
intercept	0.0041	0.002	2.094	0.036	0.000	0.008
ma.L1	-0.6240	0.069	-9.096	0.000	-0.758	-0.490
sigma2	0.0031	0.000	8.621 ======	0.000	0.002	0.004
=== Ljung-Box (Q 1.78)):		39.58	Jarque-Bera	(JB):	
Prob(Q): 0.41			0.49	Prob(JB):		
Heteroskedas 0.06	ticity (H):		1.66	Skew:		
Prob(H) (two			0.11	Kurtosis:		
===	:=======			========		=======

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

SARIMAX Results

Dep. Variable: y No. Observations: 121

Model: SARIMAX(0, 1, 1) Log Likelihood 182.384

Date: Sun, 04 Oct 2020 AIC -360.768

Time: 21:03:56 BIC -355.193

Sample: 0 HQIC -358.504

- 121

Covariance Type: opg

	coef	std err	z	P> z 	[0.025	0.975]
ma.L1	-0.5246	0.077	-6.855	0.000	-0.675	-0.375
sigma2	0.0028	0.000	8.328	0.000	0.002	0.003

===

Ljung-Box (Q): 40.23 Jarque-Bera (JB):

2.28

Prob(Q): 0.46 Prob(JB):

0.32

Heteroskedasticity (H): 0.56 Skew:

-0.18

Prob(H) (two-sided): 0.07 Kurtosis:

3.57

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

SARIMAX Results

Dep. Variable: y No. Observations: 121
Model: SARIMAX(0, 1, 1) Log Likelihood 150.501

Date: Sun, 04 Oct 2020 AIC -297.001 Time: 21:03:58 BIC -291.426

Sample: 0 HQIC -294.737

- 121

Covariance T	-	op 	_			
	coef	std err	z	P> z	[0.025	0.975]
		0.077				
sigma2	0.0047	0.001	7.834	0.000	0.004	0.006
===						
Ljung-Box (Q) 0.72):		47.10	Jarque-Bera	(JB):	
Prob(Q): 0.70			0.20	Prob(JB):		
Heteroskedas -0.18	ticity (H):		1.38	Skew:		
Prob(H) (two- 3.13	-sided):		0.31	Kurtosis:		
=======================================		========	======	=========		=======
step).		alculated usi =====Results		-	-	-
		SARIM	AX Resul	ts		
Dep. Variable	======= e:	========	v No.	Observations:	 :	121
Model:		RIMAX(0, 1, 2	-			230.803
Date:	Su	n, 04 Oct 202	O AIC			-453.606
Time:		21:04:0	1 BIC			-442.456
Sample:			O HQIC	!		-449.078
		- 12	1			
Covariance T	-	op =========	_	========		=======
		std err				
		0.002				
		0.118				
		0.090				
_		0.000				
===						
Ljung-Box (Q) 29.78):		21.77	Jarque-Bera	(JB):	
Prob(Q): 0.00			0.99	Prob(JB):		
Heteroskedas	ticity (H):		2.62	Skew:		

-0.29	(1 1 1)		0.00				
Prob(H) 5.37	(two-sided):		0.00	Kurtosis:			
======			=======	=========		=======	
===							
Warnings [1] Cova	s: ariance matrix cal	culated us	ing the o	uter product o	of gradients	(complex-	
======		====Result	s of Dist	rict 25 =====			
			MAX Resul				
Dep. Vai	======================================			======================================		121	
Model:		MAX(0, 1,	•			115.271	
Date:		04 Oct 20				-222.541	
Time:		21:04:				-211.391	
Sample:			O HQIC			-218.013	
_		- 1	21				
Covaria	nce Type:	0	pg				
======		=======	======	==========	-	=======	
	coef 	std err	z 	P> z 	[0.025 	0.975]	
ma.L1	-0.5378	0.092	-5.819	0.000	-0.719	-0.357	
ma.L2	-0.4150	0.105		0.000	-0.620	-0.210	
ma.L3	0.2110	0.086	2.455	0.014	0.043	0.380	
sigma2	0.0085	0.001	9.614	0.000	0.007	0.010	
===							
Ljung-Bo 9.78	ox (Q):		38.12	Jarque-Bera ((JB):		
Prob(Q):	:		0.56	Prob(JB):			
Heterosl	kedasticity (H):		3.24	Skew:			
	(two-sided):		0.00	Kurtosis:			
4.29							
===							
_	Warnings: [1] Covariance matrix calculated using the outer product of gradients (complex-step).						
======		====Result	s of Dist	rict 26 =====		========	

SARIMAX Results

========		========				=======
Dep. Variabl	e:		y No.	Observations:		121
Model:	SA	RIMAX(O, 1,	2) Log	Likelihood		112.023
Date:	Su	n, 04 Oct 20	20 AIC			-218.045
Time:		21:04:	13 BIC			-209.683
Sample:			O HQI	C		-214.649
		- 1	.21			
Covariance T	ype:	C	pg			
========	=======	========	:======	=========	========	======
	coef	std err	z 	P> z	[0.025 	0.975]
ma.L1	-0.6355	0.082	-7.704	0.000	-0.797	-0.474
ma.L2	-0.1500	0.105	-1.430	0.153	-0.355	0.056
sigma2	0.0090	0.001	8.519	0.000	0.007	0.011
=== Ljung-Box (Q):		38.72	Jarque-Bera	(JB):	
8.42				1		
Prob(Q):			0.53	Prob(JB):		
0.01						
Heteroskedas	ticity (H):		3.00	Skew:		
-0.11						
Prob(H) (two	-sided):		0.00	Kurtosis:		
4.28						
========	=======	========		========	========	
===						
Warnings.						
Warnings:	co matrix c	alculated ne	ing the	outer product	of gradients	(complex-
step).	ce matrix c	arcurated us	sing the	outer product	or gradients	(comprex
восру.						
========	=======	=====Result	s of Dis	trict 27 =====		
		SARI	MAX Resu	lts		
Dan Variabl					========	
Dep. Variabl Model:		DTMAV/O 4	•	Observations:		121 180.000
		RIMAX(2, 1,	_	Likelinood		
Date:	Su	n, 04 Oct 20				-350.000
Time:		21:04:		~		-336.063
Sample:		- 1	0 HQI	J		-344.340
Covariance T	wne.		ng			
Covariance T	• -		pg ======		=========	======
	• -				[0.025	0.975]
	coef	std err	z	P> z	[0.025	0.975]
intercept	coef 0.0040	std err 0.003	z 1.606	P> z 	[0.025 	0.975]
	coef 0.0040	std err 0.003	1.606 -2.159	P> z 0.108 0.031	[0.025 	0.975]

sigma2	0.0029	0.000	7.183	0.000	-0.806 0.002	0.004
===						
Ljung-Box (Q 1.42):		44.10	Jarque-Bera	(JB):	
Prob(Q): 0.49			0.30	Prob(JB):		
Heteroskedas	ticity (H):		1.60	Skew:		
Prob(H) (two 3.11	-sided):		0.14	Kurtosis:		
===	=======	=======	=======			
Warnings: [1] Covarian step).	ce matrix c	alculated u	sing the o	outer product	of gradients	(complex-
		=====Resul	ts of Dist	rict 28 =====		
			IMAX Resul			
Dep. Variabl Model: Date: Time: Sample:	e: SAI Sui	RIMAX(0, 1, n, 04 Oct 2 21:04	y No. 1) Log 020 AIC :19 BIC 0 HQIC	Observations Likelihood		121 139.515 -273.030 -264.667 -269.634
Covariance T			opg =======	:=======		=======
				P> z	[0.025	0.975]
intercept	0.0039	0.002	1.947	0.052	-2.69e-05	0.008
ma.L1	-0.7289	0.062	-11.735			-0.607
sigma2 =======	0.0057 ======	0.001	8.470 ======	0.000	0.004	0.007
=== Ljung-Box (Q 7.36):		44.93	Jarque-Bera	(JB):	
Prob(Q): 0.03			0.27	Prob(JB):		
Heteroskedas	ticity (H):		0.98	Skew:		
Prob(H) (two 3.91			0.96	Kurtosis:		
===	========	========	=======	:========	========	=======

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
[27]: Result_resale = pd.DataFrame({'district': districts_2, 'MAPE_resale': MAPE_2,__

→'log_Predicted': log_Predicted_2, 'log_Currentprice': log_Currentprice_2})

Result_resale['Predicted'] = np.exp(Result_resale['log_Predicted'])

Result_resale['Currentprice'] = np.exp(Result_resale['log_Currentprice'])

Result_resale['percentage_increase'] = Result_resale['Predicted'] /__

→Result_resale['Currentprice'] - 1
```

[28]: Result_resale.sort_values('percentage_increase',ascending=False)

[28]:	district	MAPE_resale	log_Predicted	log_Currentprice	Predicted	\
1	2	2.356959	7.734650	7.389255	2286.208453	
25	5 28	0.816297	7.110641	6.900328	1224.933081	
17	7 19	0.510549	7.062730	6.892286	1167.628610	
16	3 18	1.013939	6.939979	6.775366	1032.748821	
18	3 20	0.518624	7.305020	7.151834	1487.749676	
2:	1 23	0.617092	6.968269	6.816325	1062.382141	
24	1 27	0.747008	6.850653	6.718107	944.497907	
12	2 14	1.036005	7.197147	7.079858	1335.615194	
13	3 15	0.677026	7.122803	7.019535	1239.921091	
10	12	0.981370	7.363735	7.279112	1577.718035	
2	3	0.848960	7.620818	7.550661	2040.229982	
7	9	0.740020	7.590645	7.522980	1979.589485	
22	2 25	1.655379	6.712010	6.646391	822.221859	
8	10	0.593739	7.642121	7.580351	2084.159907	
3	4	0.803777	7.318726	7.262453	1508.280872	
23	3 26	1.689026	6.901489	6.851714	993.752897	
1:	1 13	0.898123	7.353787	7.305994	1562.101342	
4	5	0.893910	7.071366	7.037028	1177.755859	
9	11	0.602799	7.363607	7.332762	1577.517042	
14	16	0.855107	6.971146	6.940595	1065.443383	
19	9 21	1.041617	7.100658	7.090077	1212.764806	
15	5 17	0.666870	6.775334	6.770933	875.971745	
20	22	0.861024	6.930941	6.930495	1023.456400	
5	7	2.840476	7.504553	7.597522	1816.292676	
6	8	1.317378	7.163555	7.296413	1291.493865	
0	1	1.771937	7.565580	7.715792	1930.587337	

Currentprice percentage_increase
1 1618.500000 0.412548
25 992.600000 0.234065
17 984.650000 0.185831

```
16
      876.000000
                              0.178937
18
     1276.44444
                              0.165542
21
     912.625000
                              0.164095
24
      827.250000
                              0.141732
12
     1187.800000
                              0.124445
13
     1118.266667
                              0.108788
10
     1449.700000
                              0.088307
2
     1902.000000
                              0.072676
7
     1850.071429
                              0.070007
22
                              0.067821
     770.000000
8
     1959.315789
                              0.063718
3
     1425.750000
                              0.057886
23
     945.500000
                              0.051034
11
     1489.200000
                              0.048953
4
     1138.000000
                              0.034935
     1529.600000
                              0.031327
14
     1033.384615
                              0.031023
19
     1200.000000
                              0.010637
15
     872.125000
                              0.004411
20
     1023.000000
                              0.000446
5
     1993.250000
                             -0.088778
6
     1475.000000
                             -0.124411
0
     2243.500000
                             -0.139475
```

0.0.4 District 2 Resale gives the best result, now focus on District 2 Resale property

SARIMAX Results

=======================================			
Dep. Variable:	у	No. Observations:	121
Model:	SARIMAX(3, 1, 1)	Log Likelihood	54.358
Date:	Sun, 04 Oct 2020	AIC	-96.717
Time:	21:04:22	BIC	-79.992
Sample:	0	HQIC	-89.924
	- 121		
Covariance Type:	opg		

	coef	std err	z	P> z	[0.025	0.975]
intercept	0.0035	0.001	3.486	0.000	0.002	0.006
ar.L1	0.0299	0.093	0.323	0.747	-0.152	0.211
ar.L2	-0.1170	0.091	-1.290	0.197	-0.295	0.061
ar.L3	-0.1401	0.088	-1.594	0.111	-0.312	0.032
ma.L1	-0.9515	0.045	-21.313	0.000	-1.039	-0.864
sigma2	0.0232	0.002	9.996	0.000	0.019	0.028
=======================================	=======	=======	=======			
Ljung-Box (Q):		19.35	Jarque-Bera	(JB):	
16.67				-		
Prob(Q):			1.00	Prob(JB):		
0.00						
Heteroskeda:	sticity (H):		1.44	Skew:		

4.66

0.26

Kurtosis:

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure(432x288)

Prob(H) (two-sided):


```
[30]: # Plot line chart for District 2_Resale property with historical and predict
      model_p_resale_2 = pm.
       →auto_arima(Average_monthly_df_filled_resale[(Average_monthly_df_filled_resale[|Postal_|
       →District'] == 2)]['log_psf'],suppress_warnings=True)
      pred_p_resale_2, conf = model_p_resale_2.predict(36,__
       →return_conf_int=True,alpha=0.05)
      print(pred_p_resale_2)
      print(Average monthly df_filled_resale[(Average monthly_df_filled_resale['Postal,
       →District'] == 2)]['log_psf'][-1:])
     [7.57538216 7.64931942 7.68107367 7.65081729 7.63936205 7.64163551
      7.65080584 7.65594158 7.65822633 7.6599319 7.66251906 7.66559973
      7.66867312 7.67156502 7.67438321 7.67722147 7.68009437 7.68297629
      7.68585161 7.68872082 7.69158936 7.69445952 7.69733067 7.70020174
      7.70307248 7.70594307 7.70881371 7.71168441 7.71455513 7.71742584
      7.72029654 7.72316723 7.72603793 7.72890863 7.73177933 7.73465003]
     3121
             7.389255
     Name: log_psf, dtype: float64
[31]: Test = pd.DataFrame()
      Test['test_periods'] = pd.Series(pd.date_range('2020-10-01', '2023-10-01', frequ
      \Rightarrow = 'M'))
      Test['lower_bounds'] = [i[0] for i in conf ]
      Test['upper_bounds'] = [i[1] for i in conf ]
      Test['prediction'] = list(pred_p_resale_2)
      fig, ax1 = plt.subplots(figsize=(16, 6))
      ax1.plot date( pd.Series(pd.date range('2010-09-01', '2020-10-01', freq = 'M')), |
      → Average_monthly_df_filled_resale[(Average_monthly_df_filled_resale['Postalu
      →District'] == 2)]['Unit Price ($ psf)'],linestyle = 'solid',markeredgecolor_
      →= 'blue', markerfacecolor = 'blue', markersize = 3)
      ax1.plot_date( Test['test_periods'], np.exp(Test['prediction']), linestyle =___
       →'solid', markeredgecolor = 'black', markerfacecolor = 'black', markersize = 3)
      plt.fill between(Test['test periods'], np.exp(Test['lower bounds']), np.
      →exp(Test['upper_bounds']), color='pink', label='95%conf int')
      ax1.set_xlabel('Month_Year',fontsize=14)
      ax1.set_ylabel('Unit Price ($psf)',fontsize=14)
      plt.title('District 2 Prediction', size=20)
      plt.legend()
      plt.show()
```


0.0.5 We also want to know the transaction number in District 2 by full year


```
One thing more: try to run Arima model using the absolute price, not the log price
```

```
[47]: model_p_resale_v2 = pm.

→auto_arima(Average_monthly_df_filled_resale[(Average_monthly_df_filled_resale['Postal_
→District'] == 2)]['Unit Price ($ psf)'], suppress_warnings=True)

print(model_p_resale_v2.summary())

print(model_p_resale_v2.plot_diagnostics())

# To check residual and any ARMA effect left

model_p_resale_v2.resid()

plot_acf(model_p_resale_v2.resid(),lags=20)

plt.show()

plot_pacf(model_p_resale_v2.resid(),lags=20)

plt.show()
```

SARIMAX Results

===========			
Dep. Variable:	у	No. Observations:	121
Model:	SARIMAX(3, 1, 1)	Log Likelihood	-843.597
Date:	Sun, 04 Oct 2020	AIC	1699.194
Time:	21:10:13	BIC	1715.919
Sample:	0	HQIC	1705.986
	- 121		
Covariance Type:	opg		
	======================================	z P> z	[0.025 0.975]

intercept	6.8797	2.224	3.094	0.002	2.521	11.238
ar.L1	-0.0101	0.091	-0.111	0.912	-0.189	0.169
ar.L2	-0.0958	0.091	-1.058	0.290	-0.273	0.082
ar.L3	-0.1766	0.092	-1.916	0.055	-0.357	0.004
ma.L1	-0.9326	0.049	-19.142	0.000	-1.028	-0.837
sigma2	7.371e+04	6158.695	11.969	0.000	6.16e+04	8.58e+04
========			========	=======	========	========

===

Ljung-Box (Q): 20.43 Jarque-Bera (JB):

136.74

Prob(Q): 1.00 Prob(JB):

0.00

Heteroskedasticity (H): 2.88 Skew:

0.84

Prob(H) (two-sided): 0.00 Kurtosis:

7.96

===

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Figure(432x288)

[48]: pred_p_resale_v2, conf_v2 = model_p_resale_v2.predict(36, u return_conf_int=True,alpha=0.05)

```
print(pred_p_resale_v2)
      print(Average monthly df filled resale[(Average monthly df filled resale['Postal
       →District'] == 2)]['Unit Price ($ psf)'][-1:])
     [1989.289883
                    2133.77584362 2219.91546809 2146.58871294 2120.43539384
      2119.39354192 2141.74103869 2153.11370478 2157.92056228 2159.71470207
      2164.10691945 2169.92124248 2176.00427901 2181.48943784 2186.70372032
      2191.93058387 2197.28887662 2202.69247598 2208.08079884 2213.44172131
      2218.79638304 2224.15643227 2229.52186642 2234.88783553 2240.25233161
      2245.61584024 2250.97940555 2256.34332509 2261.70741002 2267.07144931
      2272.43541066 2277.79934795 2283.16330102 2288.52727 2293.89124155
      2299.25520877]
     3121
             1618.5
     Name: Unit Price ($ psf), dtype: float64
[51]: Test = pd.DataFrame()
      Test['test_periods'] = pd.Series(pd.date_range('2020-10-01', '2023-10-01', frequ
      Test['lower_bounds_2'] = [i[0] for i in conf_v2]
      Test['upper bounds 2'] = [i[1] for i in conf v2 ]
      Test['prediction_2'] = list(pred_p_resale_v2)
      fig, ax1 = plt.subplots(figsize=(16, 6))
      ax1.plot_date( pd.Series(pd.date_range('2010-09-01', '2020-10-01', freq = 'M')), ___
      → Average_monthly_df_filled_resale[(Average_monthly_df_filled_resale['Postalu
      →District'] == 2)]['Unit Price ($ psf)'],linestyle = 'solid',markeredgecolor_
      →= 'blue', markerfacecolor = 'blue', markersize = 3)
      ax1.plot_date( Test['test_periods'], Test['prediction_2'], linestyle = ___
      →'solid',markeredgecolor = 'black',markerfacecolor = 'black', markersize = 3)
      plt.fill between(Test['test periods'],
      →Test['lower bounds 2'], Test['upper bounds 2'], color='pink', label='95%conf<sub>11</sub>
      →int')
      ax1.set_xlabel('Month_Year',fontsize=14)
      ax1.set_ylabel('Unit Price ($psf)',fontsize=14)
      plt.title('District 2 Prediction', size=20)
      plt.legend()
      plt.show()
```


[]: