ESTIMATIVA DA BATIMETRIA DO RESERVATÓRIO DE SOBRADINHO POR IMAGENS ORBITAIS

Alice César Fassoni-Andrade¹, Otávio Augusto Passaia¹, Vitor Souza Martins² e Rodrigo Cauduro Dias de Paiva¹

¹Universidade Federal do Rio Grande do Sul – UFRGS. Caixa Postal 15029 – 91501-970 – Porto Alegre – RS, Brasil
²Iowa State University – ISU. Caixa Postal 50011 – Ames – Iowa, United States alice.fassoni, otapassaia, vitors@iastate.edu, rodrigocdpaiva@gmail.com

RESUMO

A matriz energética brasileira é dependente de usinas hidrelétricas e, apesar da importância desses reservatórios, poucos dados de monitoramento, como a batimetria e a curva cota-volume, estão disponíveis. Neste estudo, a batimetria do reservatório de Sobradinho (Bahia) é estimada utilizando uma base de dados global de frequência de água aberta e nível da água do reservatório. As curvas cota-área-volume também são estimadas pela batimetria. Os resultados indicam que há boa concordância entre a curva cota-volume estimada e observada. O volume total do reservatório estimado foi 4,15% inferior ao volume observado (34730 hm³ em relação a 36270 hm³). A técnica proposta para a estimativa da batimetria é uma alternativa para esse tipo de aplicação (curva cota-volume) e pode ser aplicada em outros lagos e reservatórios.

Palavras-chave — curva cota-volume, Landsat, frequência de inundação, nível da água

ABSTRACT

Brazilian energy matrix is highly dependent on hydropower generation. However, few monitoring data are available for most dam reservoirs, such as bathymetry and stage-volume curve. In this study, the bathymetry of the Sobradinho reservoir (Bahia) is estimated using a global open water frequency database and reservoir water level. The stage-area-volume curves are then calculated based on the estimated bathymetry. The results indicate a good agreement between the estimated and observed stage-volume curve. The total estimated volume was 4.15% lower than the observed volume (34730 hm³ out of 36270 hm³). Finally, the proposed approach is an alternative to obtain the bathymetry and stage-volume curve, and it can be applied in other lakes and reservoirs.

Key words — Stage-volume curve, Landsat, flood frequency, water level

1. INTRODUÇÃO

A água dos corpos hídricos é utilizada para diversos fins, como abastecimento humano, geração de energia, pecuária,

irrigação, navegação, manufatura e resfriamento em termelétricas. Com o objetivo de maximizar os benefícios dos recursos de água doce e mitigar os riscos de inundação, dezenas de milhares de barragens artificiais foram construídas nos principais sistemas fluviais do mundo, com capacidades de armazenamento total superior a 8000 km³ [1, 2]. No Brasil, a geração de energia elétrica é o principal motivo para a implementação de reservatórios [3], correspondendo a 68% da matriz energética [4].

Apesar de sua importância para as reservas de água doce, o monitoramento sistemático de lagos e reservatórios é limitado [5], e em termos globais, o conhecimento da batimetria é baixo [6]. Além disso, os registros do armazenamento dos reservatórios nem sempre são compartilhados. Informações detalhadas sobre as curvas cota-área-volume de reservatórios, ou sobre suas estruturas de saída também são difíceis de encontrar [7].

A Resolução Conjunta da Agência Nacional de Águas (ANA) e da Agência Nacional De Energia Elétrica (ANEEL) 003-2010 exige que as usinas pertencentes ao Sistema Interligado Nacional (SIN) atualizem suas curvas cota-áreavolume (batimetria) a cada 10 anos [8]. Entretanto, levantamentos batimétricos em reservatórios são caros. Batimetrias recentes em reservatórios da região semiárida, contratadas pela ANA, tiveram custo entre R\$ 1200 e R\$ 4.400 por hectômetro cúbico (hm³) [9].

Nesse sentido, os dados de sensoriamento remoto são uma alternativa para monitorar os volumes de água em reservatórios, como feito por trabalhos anteriores [6, 10, 11, 12, 13, 14]. Esses trabalhos utilizaram, de forma geral, dados de altimetria e área do espelho d'água para estimar a curva hipsométrica (*dh/da*). No entanto, a classificação da extensão da área tem uma demanda e incerteza associada. Para superar essa limitação, [6] utilizaram o mapeamento da superfície da água de uma base de dados validada (*JRC Global Surface Water*). Os autores também consideraram uma relação linear entre *dh/da*. Por outro lado, [9] estimaram a curva cotavolume de reservatórios considerando uma relação potencial entre a área e a cota, e extrapolaram a curva para estimar o volume absoluto.

Neste trabalho, um método inovador foi proposto para estimar a batimetria do reservatório de Sobradinho utilizando imagens de sensoriamento remoto e gerar curvas cota-áreavolume. O método utiliza a base de dados consolidada do *JRC Global Surface Water* e o nível da água do reservatório.

2. MÉTODO PROPOSTO

O método para estimativa da batimetria do reservatório tem como base o nível da água e a frequência de água aberta no reservatório. Isto é, observa-se que a curva da frequência acumulada do nível da água em ordem decrescente (curva de permanência) e a curva da frequência de inundação versus a cota de fundo do reservatório são idênticas. Por exemplo, um local com cota de fundo z tem uma frequência de inundação f em um certo período, da mesma forma que a frequência que o nível da água excede z, é f (exemplificado na Figura 1). Assim, a partir de um mapa de frequência de inundação e a série temporal do nível da água, ambos os dados para o mesmo período, a cota de fundo pode ser estimada em regiões onde a frequência de inundação é inferior a 100%. Portanto, o método não consegue recuperar a batimetria abaixo da menor área observada no período considerado.

Freq. de inundação de um local com cota de fundo z_2 : f = 50%

Frequência que o nível da água excede z_2 : f = 50%

Figura 1. Exemplo do método proposto para estimativa da batimetria.

3. ÁREA DE ESTUDO E BASE DE DADOS

O método proposto foi aplicado no reservatório de Sobradinho, localizado no norte da Bahia (Figura 2). Esse foi construído em 1982 e pertence à bacia hidrográfica do rio São Francisco. É o maior lago artificial do Nordeste brasileiro, com um espelho d'água de 4.214 km². Por esse motivo esse reservatório foi escolhido para a aplicação do método, facilitando a delimitação de área de água. Além disso, esse reservatório apresenta variação na área de inundação, facilitando sua aplicação. A área de aplicação foi delimitada a partir de uma máscara de água do reservatório disponibilizada pela ANA.

Figura 2. Reservatório de Sobradinho (BA). Frequência de água aberta entre 1991 e 2015 (%).

Os dados utilizados para estimar a batimetria foram o nível da água no reservatório e a frequência de água aberta, ambos para o período de 1991 a 2015. O nível é proveniente do Sistema de Acompanhamento de Reservatórios (SAR), ANA (disponível em http://sar.ana.gov.br/MedicaoSin), enquanto que o mapa de frequência de água aberta foi elaborada no Google Earth Engine utilizando a base de dado global JRC Monthly Water History, v1.0 [15]. Essa base de dado corresponde a imagens mensais, classificadas em água/não-água/sem-dado e foram elaboradas a partir de três milhões de imagens da série Landsat com resolução espacial de 30m e 32 anos de dados [15] (Disponível em https://global-surface-water.appspot.com/).

Em cada pixel da área de aplicação, foi calculada a curva de permanencia do nível da água e relacionada com a frequência de inundação para estimar a cota de fundo. Vale ressaltar que não foi feita nenhuma correção para preenchimento de dados faltantes nos dados do nível, como entre os anos de 1993 a 1998, e nos pixels com cobertura de nuvem (descartados da análise). Dessa forma, o método não considera, necessariamente, dados de nível da mesma data da imagem como usualmente consideram os métodos para estabelecer a curva cota-área do reservatório.

Uma vez que a batimetria do reservatório não está disponível para validação do método, essa foi avaliada comparando a curva cota-volume do reservatório estimada a partir da batimetria e a curva cota-volume disponibilizada pelo ONS (disponível em <http://ons.org.br/>). No entanto, a curva estimada não possui informação no tramo inferior pois a batimetria não é recuperada abaixo do menor nível da água observado no período. Assim, para extrapolar a curva e estimar o volume absoluto, utilizou-se o método descrito em [9]. Nesse sentido, foi ajustando uma regressão potêncial na curva cota-área da forma: Área = $a(cota - H_0)^b$, onde a, b e H_0 são parâmetros estimados. Posteriormente, a curva cota-volume é calculada a partir da integração da curva cotaárea estabelecida pela batimetria e considerando H_0 igual ao nível em que a área e o volume são iguais a zero.

4. RESULTADOS E DISCUSSÃO

A batimetria estimada é apresentada na Figura 3. Observa-se que a batimetria não foi estimada na área em que a cota é mínima (380 m). A Figura 4 mostra a curva cota-área calculada a partir da batimetria (pontos pretos) e a função ajustada (linha vermelha). Dessa forma, a função ajustada - $\text{Á}rea = 18,68 (cota - 371,94)^{1,074} - \text{indica que a cota para}$ o volume nulo é igual a 371,94 m.

Figura 3. Batimetria estimada para o reservatório de Sobradinho (BA).

Figura 4. Curva cota-área estimada a partir da batimetria (preto) e ajustada (vermelho).

A curva cota-volume resultante da integração (preta) e a curva observada (ONS, azul) são apresentadas na Figura 5. Para a comparação das curvas, considerou-se o volume correspondente a menor e a maior cota observada no período (1991-2015), i.e. as cotas 381 e 393 m, respectivamente.

O volume total do reservatório estimado sensoriamento remoto (correspondente à cota 393m) foi 4,15% inferior ao volume observado (34730 hm³ em relação a 36270 hm³). Essa ligeira subestimativa foi observada a partir da cota 391m e pode estar relaciona a subestimativa na classificação da área de água aberta das imagens uma vez que pixels com cobertura de nuvem não são considerados no cálculo da área. Para cotas mais baixas, o volume foi ligeiramente superestimado, com erro relativo de no máximo 6,8% (cota 385m).

Figura 5. Curva cota-volume estimada (preto) e observada (azul) para o reservatório de Sobradinho (BA).

5. CONCLUSÕES

Esse trabalho apresentou uma nova abordagem para estimar a batimetria do reservatório de Sobradinho com aplicação para estimar a curva cota-volume. A metodologia utilizou uma base de dados de imagens e nível da água, podendo ser aplicada para outros reservatórios e lagos.

Apesar da batimetria não ser validada com dados in situ, a curva cota-volume estimada sugere boa concordância com a curva observada e resultados satisfatórios. A vantagem em relação aos métodos utilizados em trabalhos anteriores é que a nova abordagem não necessita de dados de nível e área do mesmo dia para estabelecer a curva cota-área. No entanto, a batimetria não ser recuperada abaixo da menor superfície da água observada e um método para estimar o volume absoluto é necessário.

A sugestãoão para trabalhos futuros é a avaliação do método com um mapeamento mais rigoroso das áreas de água-aberta e utilização de dados sem falhas.

6. REFERÊNCIAS

- [1] Nilsson, C. et al, "Fragmentation and flow regulation of the world's large river systems", *Science*, v. 308, n. 5720, p. 405-408, 2005.
- [2] Lehner, B. et al, "High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management", *Frontiers in Ecology and the Environment*, v. 9, n. 9, p. 494-502, 2011.
- [3] Bravo, J. M. et al, "Incorporating forecasts of rainfall in two hydrologic models used for medium-range streamflow forecasting", *Journal of Hydrologic Engineering*, v. 14, n. 5, p. 435-445, 2009.
- [4] Empresa de Pesquisa Energética, "Balanço energético nacional 2017: ano base 2016", Rio de Janeiro: EPE, 2017.
- [5] Gao, H, "Satellite remote sensing of large lakes and reservoirs: From elevation and area to storage", *Wiley Interdisciplinary Reviews: Water*, v. 2, n. 2, p. 147-157, 2015.
- [6] Busker, T. et al, "A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry", *Hydrology and Earth System Sciences*, 2018.
- [7] Collischonn, B. et al, "Modelagem hidrológica de uma bacia com uso intensivo de água: Caso do Rio Quaraí-RS" *Revista Brasileira de Recursos Hídricos*, v. 16, n. 4, p. 119-134, 2011.
- [8] ANA/ANEEL, "Resolução Conjunta nº 3, de 10 de agosto de 2010".

- [9] Collischonn, B.; Clarke, R. T, "Estimation and uncertainty of remote-sensing-based Depth-Area-Volume (DAV) relationships" *Revista Brasileira de Recursos Hídricos*, v. 21, n. 4, p. 719-727, 2016.
- [10] Avisse, N. et al, "Monitoring small reservoirs' storage with satellite remote sensing in inaccessible areas", *Hydrology and Earth System Sciences*, v. 21, n. 12, p. 6445, 2017.
- [11] Crétaux, J.-F. et al, "Lake volume monitoring from space", *Surveys in Geophysics*, v. 37, n. 2, p. 269-305, 2016.
- [12] Duan, Z.; Bastiaanssen, W. G. M, "Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data", *Remote Sensing of Environment*, v. 134, p. 403-416, 2013.
- [13] Smith, L. C.; Pavelsky, T. M, "Remote sensing of volumetric storage changes in lakes", *Earth Surface Processes and Landforms*, v. 34, n. 10, p. 1353-1358, 2009.
- [14] Gao, H.; Birkett, C.; Lettenmaier, D. P., "Global monitoring of large reservoir storage from satellite remote sensing", *Water Resources Research*, v. 48, n. 9, 2012.
- [15] Pekel, J. et al, "High-resolution mapping of global surface water and its long-term changes", *Nature*, [s. l.], v. 540, n. 7633, p. 418–422, 2016.