FPU

Введение

Стековая машина

Инфиксная нотация

• Стандарт для записи математических выражений

• Бинарные операторы записываются **между** операндами (являются **инфиксами**)

• Пример: 3 + 2 - (1 + 2 * 3)

Как <u>мы</u> вычисляем выражения?

Пример:
$$3 + 2 - (1 + 2 * 3)$$

Расставим порядок вычисления операторов (один из возможных):

Вычисляем:

1:
$$5 - (1 + 2 * 3)$$

$$5 - (1 + 6)$$

Нужно составить алгоритм, вычисляющий выражение так, как это делает человек!

Как бы вы это сделали?

- Также называется
 - польская инверсная записью (ПОЛИЗ)
 - обратная бесскобочная запись
 - постфиксная нотация

• Операторы записываются **после** операндов (являются *постфиксами*)

• Не путать с *польской записью* (префиксной нотацией)

• Индуктивное определение:

Пусть

 E, E_1, E_2 — выражения в инфиксной записи, $\dot{E}, \dot{E}_1, \dot{E}_2$ — эквивалентные им выражения в постфиксной записи,

о – бинарный оператор,

u – унарный оператор

• Индуктивное определение (продолжение)

Тогда:

```
Если Е — переменная или константа, то \dot{\mathsf{E}} = \mathsf{E} Если \mathsf{E} = (\mathsf{E}_1), то \dot{\mathsf{E}} = \dot{\mathsf{E}}_1 Если \mathsf{E} = \mathsf{E}_1 о \dot{\mathsf{E}} = \dot{\mathsf{E}}_1 \dot{\mathsf{E}}_2 о \dot{\mathsf{E}} = \mathsf{E}_1 \dot{\mathsf{E}}_2 о \dot{\mathsf{E}} = \mathsf{E}_1 \dot{\mathsf{E}}_2 о \dot{\mathsf{E}} = \dot{\mathsf{E}}_1 \dot{\mathsf{E}}_2 о \dot{\mathsf{E}} = \dot{\mathsf{E}}_1 \dot{\mathsf{E}}_2 о
```

• Пример:

E	Ė
2	2
3	3
2 * 3	23*
$1 + 2 * 3 = 1 + E_1$	123 * + = 1 E ₁ +
• • •	• • •
3 + 2 - (1 + 2 * 3)	32+123*+-

• ОПН удобна для вычислений!

• Алгоритм, вычисляющий выражения в ОПН, называется стековой машиной

- Пусть
 - push X помещение X в стек
 - рор X извлечение X из стека
- Данные подаются в порядке слева-направо

пока не конец выражения

```
считать операнд или оператор А
если А – операнд
     push A
иначе если А – унарный оператор
     pop X
     push AX
             // А – бинарный оператор
иначе
     pop Y
     pop X
     push XAY
```

• В конце результат находится в вершине стека

• Пример: 32+123*+-

вход	стек	операция
-	пусто	-
3	3	push
2	3 2	push
+	5	рор
		рор
		+
		push
1	5 1	push

вход	стек	операция
2	512	push
3	5123	push
*	516	pop pop *
		push
+	5 7	pop pop +
		push

вход	стек	операция
-	-2	рор
		рор
		-
		push