Introduction to Search Relevance Ranking-Session III – Knowedge Distillation

Tutorial Link: https://dlranking.github.io/dlrr/

Data source: https://huggingface.co/datasets/xglue

XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation)

Presenters: Xue Li, Keng-hao Chang

Notebooks: Xue Li

Date: August 14th, 2022

Agenda

- Knowledge distillation
- Case study in DistilBert
- Case study in Microsoft Ads for Ranking
- The colab

Pre-train and fine-tune

- Natural Language Processing
- Pre-train on unsupervised tasks, e.g. Language Modeling
- Fine-tune on downstream NLP tasks, e.g. Question Answering

 Large & powerful NLP models, even beat human!

Pre-train

cheap large data on related domain

Fine-tune

Expensive well-labeled data on downstream task

GLUE – General Language Understanding Evaluation

GLUE Scores (Top 8)

How large are pre-trained NLP models?

Call outs

Will cover

- Knowledge distillation
- Practices of knowledge distillation

Will not cover

Other smaller model techniques (Albert, Electra)

Response level knowledge distillation

- Vs. Logits
- Soft label, dark knowledge, Hinton
- Analogous to label smoothing
- Limited to supervision learning

$$L_{ResD}(z_t, z_s) = \mathcal{L}_R(z_t, z_s) , \qquad (1)$$

$$p(z_i, T) = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)} , \qquad (2)$$

$$L_{ResD}(p(z_t, T), p(z_s, T)) = \mathcal{L}_R(p(z_t, T), p(z_s, T)) . \quad (3)$$

Fig. 5 The specific architecture of the benchmark knowledge distillation (Hinton et al., 2015).

Feature-based knowledge distillation

• L2-norm distance, L1-norm distance, $L_{FeaD}(f_t(x), f_s(x)) = \mathcal{L}_F(\Phi_t(f_t(x)), \Phi_s(f_s(x)))$, cross entropy loss, cosine loss

Case study: distillBert

- 3 losses
 - Distillation loss
 - Training loss
 - Cosine loss
- DistillBERT model retains almost 97% of the original BERT-base model's language undersetanding when evaluated on GLUE benchmarks. In addition to this, it is 40% smaller and 60% faster at inference.

Case study: Knowledge Distillation from Internal Representations

Figure 2: Performance vs. parameters trade-off. The points along the lines denote the number of layers used in BERT, which is reflected by the number of parameters in the x-axis.

Figure 1: Knowledge distillation from internal representations. We show the internal layers that the teacher (left) distills into the student (right).

- Offline distillation
- Online distillation
 - o Both teacher and student are updated simutaneously
- Self distillation

Residual learning

Fig. 9 Relationship of the teacher and student models.

Case study: search relevance ranking at Microsoft Ads

- Point-wise relevance score
- Used as externality in ranking
 - pDefect = 1-Relevance
 - Bid * pClick w*pDefect

Text Ads #1 Text Ads #2 Text Ads #3

Ads 0

Adidas

\$70.00

Adidas

Women's

\$100.00

Amazon.com

Women's .

18% price drop

Choice of student model

- Two tower
 - CDSSM, TwinBert
 - Doc embedding is offline computed
- BERT-like
 - cannot support fast compute, latency prohibitive.

Knowledge distillation for search Relevance

Teacher Training

 Narrow the gap between pre-trained models and target tasks

Inference Data

• Score both labeled / unlabeled data

- Train a deployable student model
- Using scored unlabeled data

Student Fine-tuning

- Fine-tune student model
- Using scored labeled data

Recipe of AdsBERT Distillation

Initializatio n

Pre-trained BERT 340M params

Pretrain

MLM/NSP 400M Ads data

Finetune

8 ad tasks 40M samples

Inference

Vast amount Proper distribution

Distillation

CDSSM keep 70%

AUC gain

Case study: TwinBert

Table 2: ROC-AUC of TwinBERT models comparing with C-DSSM, BERT $_3$ and BERT $_{12}$ on two test sets

Model	AUC ₁	AUC_2
C-DSSM	0.8713	0.8571
BERT ₃	0.8995	0.9107
TwinBERT _{cos}	0.8883	0.8743
TwinBERT _{res}	0.9010	0.9113
$BERT_{12}$	0.9011	0.9137

Table 3: Density differences of all 4 labels by comparing top 5 results from TwinBERT $_{\cos}$ and C-DSSM

bad	fair	good	excellent
-7.4%	-2.6%	1.9%	18.8%

Figure 1: TwinBERT Architecture

Output

Colab

• QADSM task in <u>xGLUE</u> dataset, which is extracted from real Bing Ads traffic.

Appendix

After seeing a lot of examples, the network can act as a <u>maximum likelihood</u>

<u>estimator</u>, but it needs to be exposed to many examples before it can assign good probabilities, as the labels it sees are samples from a distribution with extremely high variance.

- If you've done transfer learning before, you can see where this is going.
 The big idea is:
 We can take a large pre-trained model like BERT, called the **teacher**, fine-tune it on the
- BERT, called the **teacher**, fine-tune it on the target task if it differs from the pre-training task, use it to predict the probabilities for our data, then use the probabilities as "soft labels" for the target model, the **student**. This way we can communicate the target distribution to the network with fewer examples!

 This also corresponds to training a student to reproduce the behavior of the teacher as accurately as possible, but with fewer parameters.

Case study: DistilBert

Relation-based knowledge distillation

Case study: Acoustic Modeling by Amazon Alexa

- Parthasarathi and Strom (2019) leveraged student-teacher training to generate soft targets for 1 million hours of unlabeled speech data where the training dataset consisted only of 7000 hours of labeled speech.
- The teacher model produced a probability distribution over all the output classes. The student model also produced a probability distribution over the output classes given the same feature vector and the objective function optimized the cross-entropy loss between these two distributions. Here, knowledge distillation helped simplify the generation of target labels on a large corpus of speech data.

Separability enables fast retrieval via ANN

