STAT455 - Mini-Investigation 3

How does age affect male elephant mating patterns? An article by Poole(1989) investigated whether mating success in male elephants increases with age and whether there is a peak age for mating success. To address this question, the research team followed 41 elephants for one year and recorded both their ages and their number of matings. The data (Ramsey and Schafer) is found in elephant.csv, and the variables are: - MATINGS = the number of matings in a given year - AGE = the age of the elephant in years.

We want to model the number of matings, using age as the explanatory variable.

a) Which type of model is most appropriate for these data? Explain your reasoning.

We can use a Poisson regression model for elephant matings, because the response is a discrete and positive count

b) Fit the model you chose, with a linear term for AGE. Display the model summary. Also display confidence intervals associated with the model parameters.

M1

Exponentiated Coefficients for M1:

```
(Intercept) AGE 0.2055619 1.0711071
```

Confidence Intervals for M1

```
confint(MP1)
```

```
2.5 % 97.5 % (Intercept) -2.66669764 -0.52892903 AGE 0.04167776 0.09563762
```

Exponentiated Confidence Intervals:

```
2.5 % 97.5 % (Intercept) 0.0694813 0.5892357 AGE 1.0425585 1.1003602
```

c) Write 1-2 sentences interpreting the estimate and p-value associated with the age coefficient. In your interpretations, write rounded numbers (i.e. say 3.22 instead of $e^{1.17}$).

The exponentiated coefficient for AGE is approximately 1.07, indicating that for each one-year increase in age, the expected number of matings increases by about 7%. This effect is statistically significant, as indicated by the very small p-value (5.81e-07), suggesting strong evidence against the null hypothesis that age has no effect on the number of matings.

d) For each age, calculate the mean number of matings. Take the log of each mean and plot it by AGE. Explain what the plot tells us about the appropriateness of the linearity assumption in Poisson regression.

Figure 1: Log of Mean Matings by Age.

The points seem to follow a linear trend, suggesting that the log-linear relationship assumed in Poisson regression is reasonable. Overall, the plot supports the linearity assumption and the simple linear model seems to be appropriate for now.

e) Group the elephants by age, with age ranges of (25-30], (30-35], (30-40], (40-45], (45-50], (50-55]. Create histograms displying the number of matings by elephants in each age group. (Hint: use the cut function). Create a table displaying the average number of matings in each age range, as well as the variance. Does this table raise any concerns about any assumptions related to the Poisson regression model? If so, which?

Table 1: Grouped by Age

AgeGroups	Mean_Matings	Var_Matings	n
(25,30]	1.083333	0.9924242	12
(30,35]	2.400000	0.93333333	10
(35,40]	3.142857	5.8095238	7
(40,45]	3.666667	6.0000000	9
(45,50]	4.500000	12.5000000	2
(50,55]	9.000000	NA	1

AgeGroups Mean_Matings Var_Matings n

The table raises concerns about the mean=variance assumption. Some groups, like (25,30] and (30,35], show underdispersion while (35,40] and (45,50], show overdispersion. This suggests that a standard Poisson model may not be appropriate, and we might consider using a quasi-Poisson model. Additionally, the small sample sizes in some groups (45,50] and (50,55], make their variance estimates unreliable. We might want to combine these into one group.

f) Perform a goodness of fit test for the model. Are your results consistent with your observations in (d) and (e)? Explain why or why not.

MP1\$deviance

[1] 51.01163

MP1\$df.residual

[1] 39

1-pchisq(MP1\$deviance, MP1\$df.residual)

[1] 0.09426231

The goodness-of-fit test results show a residual deviance of 51.01 with 39 degrees of freedom, and a p-value of 0.094, which is not statistically significant. This suggests that the Poisson model is an adequate fit for the data overall. The visualization further supports this, as the observed deviance falls within the expected range of the chi-square distribution.

These results are partially consistent with the observations from (d) and (e). In (d), the log-linear plot suggested that a Poisson model was reasonable in terms of linearity. However, in (e), we observed overdispersion and underdispersion in different age groups, which could suggest some deviation from Poisson assumptions. While the overall goodness-of-fit test does not indicate a poor fit, the variance patterns in (e) still suggest that it might be be worth using a quasi-Poisson model.

Question 2:

An article in the *Journal of Animal Ecology* by Bishop(1972) investigated whether moths provide evidence of "survival of the fittest" with their camouflage traits. Researchers glued equal numbers of light and dark morph moths in lifelike positions on tree trunks at 7 locations from 0 to 51.2 km from Liverpool. They then recorded the number of moths removed after 24 hours, presumably by predators. The hypothesis was that, since tree trunks near Liverpool were blackened by pollution, light morph moths would be more likely to be removed near Liverpool.

Data (Ramsey and Schafer, 2002) can be found in moth.csv and contains the variables below.

```
- `MORPH` = light or dark
```

- `DISTANCE` = kilometers from Liverpool
- `PLACED` = number of moths of a specific morph glued to trees at that location
- `REMOVED` = number of moths of a specific morph removed after 24 hours

We want to model the number of moths removed out of the total number placed, using morph and distance as explanatory variables.

a) Which type of model is most appropriate for these data? Explain your reasoning.

The response variable represents the proportion of moths removed out of the total placed. Since each moth is either removed or not, the data follows a binomial outcome. The most appropriate model for this data is Binomial Logistic Regression.

b) Fit the model you chose. Display the summary output.

I will make a new column called REMAINING using PLACED - REMOVED

22

A tibble: 6 x 5 MORPH DISTANCE PLACED REMOVED REMAINING <chr> <dbl> <dbl> <dbl> <dbl> 1 light 0 56 17 39 0 2 dark 56 14 42 3 light 7.2 80 28 52 4 dark 7.2 80 20 60 5 light 24.1 52 18 34

52

24.1

6 dark

30

MB1

```
MB1 <- glm(cbind(REMOVED, REMAINING) ~ DISTANCE + MORPH , family = binomial(link="logit"), date of the desired control of the desired con
summary(MB1)
Call:
glm(formula = cbind(REMOVED, REMAINING) ~ DISTANCE + MORPH, family = binomial(link = "logit"
               data = moth)
Coefficients:
                                                 Estimate Std. Error z value Pr(>|z|)
DISTANCE
                                                 0.005314 0.004002 1.328 0.18422
MORPHlight -0.404052 0.139377 -2.899 0.00374 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
               Null deviance: 35.385 on 13 degrees of freedom
Residual deviance: 25.161 on 11 degrees of freedom
AIC: 93.836
Number of Fisher Scoring iterations: 4
```

Exponetiated MB1 Coefficients:

```
(Intercept) DISTANCE MORPHlight 0.4806144 1.0053278 0.6676093
```

c) Write sentences interpreting the coefficients associated with the DISTANCE and MORPH variables.

The DISTANCE coefficient (1.0053) suggests that for each 1 km increase, the odds of removal increase by 0.53%, though this effect is not statistically significant (p = 0.184). The MORPH coefficient (0.668) shows that light morph moths have 33.2% lower odds of being removed

compared to dark morphs (p = 0.0037), suggesting that dark moths are more likely to survive, supporting the camouflage hypothesis.

- d) Calculate the probability of a moth being removed assuming it is 15 km from Liverpool and is light MORPH. Then, calculate the probability of a moth being removed assuming it is 35 km from Liverpool and is dark MORPH.
- [1] "Probability of light moth being removed with distance of 15km from Liverpool"
- [1] 0.2578771
- [1] "Probability of dark moth being removed with distance of 35km from Liverpool"
- [1] 0.3666304

A logit is the log of the odds of a moth being removed within 24 hours. The following code will create an empirical logit plot of logits vs. distance, faceted by morph.

Empirical logits by distance

e) What should we conclude from the plots in (d)? What do they say about the possibility of an interaction between morph and distance?

The empirical logit plots suggest a potential interaction between morph and distance. For dark moths, the log-odds of removal increase with distance, meaning they are more likely to be removed further from Liverpool. In contrast, for light moths, the log-odds decrease, suggesting they are less likely to be removed at greater distances. This opposite trend indicates that morph type influences how distance affects removal probability, supporting the need for an interaction term in the model.

f) Create a model with DISTANCE, MORPH, and the interaction between both variables. Display the summary output.

MB₂

AIC: 83.904

```
Call:
glm(formula = cbind(REMOVED, REMAINING) ~ DISTANCE * MORPH, family = binomial(link = "logit"
   data = moth)
Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
(Intercept)
                  DISTANCE
                   0.018502
                             0.005645 3.277 0.001048 **
                   0.411257
                             0.274490 1.498 0.134066
MORPHlight
DISTANCE: MORPHlight -0.027789
                             0.008085 -3.437 0.000588 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 35.385 on 13 degrees of freedom
Residual deviance: 13.230 on 10 degrees of freedom
```

Exponentiated Coefficients

(Intercept)	DISTANCE	MORPHlight DIST	ANCE:MORPHlight
0.3233608	1.0186745	1.5087133	0.9725935

g) As distance gets farther from the city, do light moths become more or less likely to be removed? What about dark moths? Cite values from your model output in (f) to justify your answer.

The exponentiated coefficients show that dark moths become more likely to be removed as distance increases, with the odds of removal increasing by 1.87% per kilometer (1.0187). In contrast, light moths become less likely to be removed further from Liverpool, as indicated by the interaction term (0.9726), meaning their odds of removal decrease by 2.74% per kilometer. At 0 km (Liverpool), light moths initially have 50.87% higher odds of being removed than dark moths (1.5087), but this effect diminishes with distance. These results support the idea that light moths gain a survival advantage in less polluted areas, where tree trunks are lighter, while dark moths are more vulnerable when further from the city.

h) Perform a drop-in-deviance test whether there is evidence of an interaction between distance and morph. Explain your conclusion in context.

```
anova(MB1, MB2, test = "Chisq")
Analysis of Deviance Table
```

The drop-in-deviance test shows a significant reduction in deviance (11.931, p = 0.00055) when adding the interaction term between distance and morph, indicating that the interaction significantly improves model fit. This suggests that the effect of distance on moth removal differs between light and dark morphs.

i) Test the goodness-of-fit for the interaction model. What can we conclude about this model?

MB2\$deviance

[1] 13.2299

MB2\$df.residual

[1] 10

1-pchisq(MB2\$deviance, MB2\$df.residual)

[1] 0.2111003

The goodness-of-fit test for the interaction model shows a residual deviance of 13.23 with 10 degrees of freedom, resulting in a p-value of 0.211. Since the p-value is greater than 0.05, we do not have strong evidence to reject the model, indicating that it fits the data well. The observed deviance falls within an expected range, suggesting that the model adequately captures the variability in moth removal.