

SHRIDEVI HACKATHON 2024

TITLE PAGE

- Theme Healthcare
- Team Members Name –
- A Pradhyumna, H M Ayush Kumar, K Akhil Kumar, Prajwal Subramanya S N
- College Name Siddaganga Institute Technology

PROBLEM STATEMENT

- •Individuals with chronic diseases often struggle to find dietary guidance tailored to their specific health conditions and personal preferences.
- •Current solutions lack personalization, making it challenging for users to adhere to recommended nutritional plans that could aid in managing symptoms effectively.

PROBLEM STATEMENT

- **Objective:** Develop an Al-powered nutritional advisor to support individuals with chronic diseases (e.g., diabetes, hypertension) in managing their conditions through tailored dietary recommendations.
- Personalized Recommendations: Develop an AI model to provide dietary suggestions based on individual health conditions, preferences, and lifestyle, ensuring recommendations are easy to follow and sustainable.
- Data-Driven Insights: Use machine learning algorithms to analyze large datasets of nutritional information and health outcomes, offering scientifically-backed, conditionspecific dietary guidance.

1. Data Handling & Model Training

- Libraries: Pandas, Scikit-learn (train_test_split, RandomForestClassifier), Joblib.
- Preprocessing: Converts preferences and health_conditions to numeric codes.
- Model: Trained RandomForestClassifier to predict suggestions, saved as nutrition_model.pkl.

2. Database Management

- Database: SQLite.
- Functions:
- init_db(): Initializes database and creates suggestion table.
- insert_user(preferences, health_conditions): Inserts user data.
- insert_multiple_users(num_users): Adds random user data.

3. API Development

•Framework: FastAPI.

•Endpoint: /suggestions:

•Accepts POST requests for user preferences and health_conditions, returns nutrition suggestions.

•Input Model: UserInput Class for data validation.

4. Frontend Development

•Technologies: HTML, CSS, JavaScript.

5. Server Execution

•Command: FastAPI app runs on Uvicorn at localhost:8000

Data Collection and Preprocessing:

- •Gather data on dietary preferences, chronic disease conditions, and relevant nutritional information.
- •Preprocess the data by encoding categorical variables (e.g., preferences and health conditions) into numerical formats suitable for model training.

Model Training:

- •Use a machine learning model, such as a RandomForestClassifier, to predict personalized dietary suggestions based on user inputs.
- •Split the dataset into training and testing sets to evaluate the model's performance.

Database Integration:

- •Initialize an SQLite database to store user dietary preferences and health conditions.
- •Populate the database with initial sample data and set up methods for adding new user data.

Backend API Development:

- •Build a backend API using FastAPI to handle user requests and serve dietary recommendations.
- •Set up endpoints to process user input, make model predictions, and return results to the front end.

Frontend and User Interface:

- •Design a user-friendly web interface for entering dietary preferences, health conditions, and meal preferences.
- •Connect the frontend to the backend API to retrieve and display personalized suggestions.

FEATURES

User Profiling:

• Create detailed user profiles by collecting dietary preferences, health conditions, and lifestyle habits. This allows for personalized nutrition recommendations that cater to each individual's health needs and goals.

Dynamic Meal Planning:

 Offer personalized meal suggestions based on user inputs and health conditions, ensuring that dietary recommendations are not only relevant but also nutritious and aligned with user preferences.

FEATURES

Health Condition Alerts:

• Implement a feature to alert users about dietary constraints associated with their health conditions. The system can suggest safer food alternatives to minimize health risks, enhancing overall well-being.

CHALLENGES FACED

- Challenge: Model Evaluation and Hyperparameter Tuning
 - It is difficult to evaluate the performance of the model and tune the hyperparameters, which limits the ability to increase the accuracy of recommendations.
- **Solution**: Provide a controlled evaluation procedure using cross-validation together with appropriate performance measures (precision, recall, etc.) for the optimization of hyperparameters.
- Challenge: Integration of Frontend and Backend
 - Users may fail to properly integrate the backend API and the frontend, leading to communication failures between components.
- **Solution**: Proper API documentation along with examples of firing off asynchronous requests in the frontend and then parsing the responses.

CHALLENGES FACED

- **Challenge:** Algorithm Bias
 - Machine learning models may inherit biases from training data, leading to unfair or ineffective recommendations.
- **Solution:** Ensure diverse and representative training data. Regularly audit model outputs and implement fairness metrics to identify and mitigate bias in recommendations.
- **Challenge:** User Engagement and Retention:
 - Keeping users engaged with the platform over time can be difficult, especially if they do not see immediate results.
- **Solution:** Incorporate gamification elements, such as progress tracking, rewards for achieving goals, and personalized feedback. Regularly update content and features based on user feedback to maintain interest.