Collaboration and Competition (Tennis) — MADDPG Report

Author: Marco Abramo

Date: 2025-09-26

Overview

We solve the Unity *Tennis* environment using **MADDPG** with decentralized actors and centralized critics. Two agents cooperate to keep the ball in play. Per Udacity's criterion, the project is considered *solved* when the 100-episode moving average of the *per-episode maximum* agent score is ≥ 0.5 .

1 Environment

- Agents: 2
- State (per agent): 24 dims (8 observations × 3-frame stack)
- Action (per agent): 2-D continuous, range [-1, 1]
- Reward: +0.1 for a successful return; small negatives if the ball hits the ground or goes out
- Episode termination: when either agent is done
- Metric: for each episode, take max of the two agents' scores; track a 100-episode moving average

2 Learning Algorithm: MADDPG

For each agent $i \in \{1, 2\}$, we learn an actor $\mu_{\theta_i}(s_i)$ mapping local state s_i to a continuous action a_i , and a centralized critic $Q_{\phi_i}(s_1, s_2, a_1, a_2)$ that observes the joint state-action.

Critic target (TD):

$$y_i = r_i + \gamma Q_{\phi_i'}(s_1', s_2', a_1', a_2'), \qquad a_j' = \mu_{\theta_i}'(s_j'),$$
 (1)

and we minimize the MSE: $\mathcal{L}_{\text{critic},i} = (Q_{\phi_i}(s_1, s_2, a_1, a_2) - y_i)^2$.

Actor update (deterministic policy gradient):

$$\nabla_{\theta_i} J \approx \mathbb{E} \left[\nabla_{a_i} Q_{\phi_i}(s_1, s_2, a_1, a_2) \big|_{a_i = \mu_{\theta_i}(s_i)} \nabla_{\theta_i} \mu_{\theta_i}(s_i) \right], \tag{2}$$

treating the other agents' actions as fixed during agent i's policy gradient.

Target networks (soft updates):

$$\phi_i' \leftarrow \tau \phi_i + (1 - \tau)\phi_i', \qquad \theta_i' \leftarrow \tau \theta_i + (1 - \tau)\theta_i'.$$
 (3)

3 Network Architectures

Let $S_{\text{all}} = 2 \times 24$ and $A_{\text{all}} = 2 \times 2$.

- Actor (per agent): Linear(24 \rightarrow 256) \rightarrow ReLU \rightarrow Linear(256 \rightarrow 256) \rightarrow ReLU \rightarrow Linear(256 \rightarrow 2) \rightarrow tanh (actions scaled to [-1,1]).
- Centralized Critic (per agent): Linear($S_{\rm all} \to 256$) $\to {\rm ReLU} \xrightarrow{{\rm concat} \ A_{\rm all}} \to {\rm Linear}(256 + A_{\rm all}) \to 256$) $\to {\rm ReLU} \to {\rm Linear}(256 \to 1)$.

4 Implementation Details

- Replay Buffer (shared): stores concatenated joint states/actions and per-agent reward/done vectors.
- Credit assignment (fix): each critic trains with its own $(r_i, done_i)$; averaging rewards over agents stalled learning.
- Exploration: OU noise per agent with σ decaying over episodes; a 200-episode random warmup (uniform actions in [-1,1]) seeds diverse transitions.
- Stability: 4 updates per env step; critic gradient clipping ($||g|| \le 1$); critic L2 regularization; actions cast to float32 before stepping into Unity.
- Checkpoints: saved only when the success criterion is reached, to keep the folder clean.

5 Hyperparameters

Component	Value
$\overline{\text{Discount } \gamma}$	0.99
Soft update τ	1e-3
Replay buffer size	1e6
Batch size	256
Actor learning rate	1e-4
Critic learning rate	1e-3
Critic L2 (weight decay)	1e-5
Updates per step	4
Random warmup	200 episodes (uniform $[-1,1]$)
OU noise σ decay	$0.30 \rightarrow 0.05$ over first 1000 episodes
Critic grad clip	1.0
Seed	1

6 Results

- Solved in 995 episodes.
- 100-episode moving average at solve: 0.501.

Console at convergence:

Solved in 995 episodes! 100-episode average: 0.501 Saving checkpoints...

Evaluation. A separate script loads the saved checkpoints and runs 100 deterministic episodes (noise OFF). If available, the plot scores_eval.png is included below.

Figure 1: Deterministic evaluation over 100 episodes (noise OFF).

7 Ablations / What Did Not Work Initially

- Averaging rewards across agents for critic targets \Rightarrow flat learning ($\approx 0.03-0.05$).
- Passing **float64** actions to Unity ⇒ long stretches of zero scores; casting to **float32** fixed it.
- Too-aggressive actor LR destabilized coordination; reducing to 1e-4 improved stability.

8 Reproducibility & How to Run

- Dependencies: numpy, torch, matplotlib, unityagents
- Place the Unity binary at envs/Tennis_Windows_x86_64/Tennis.exe (or update ENV_PATH).
- Train:

python train.py

• Evaluate (deterministic, noise OFF):

python eval.py

9 Further Work

Algorithmic upgrades.

- TD3-style MADDPG: twin critics, target policy smoothing, and delayed policy updates to reduce overestimation bias and stabilize training.
- Parameter sharing across actors (and optionally critics) with *role/agent encodings* to improve sample efficiency and generalization.
- Prioritized Experience Replay (PER) with importance sampling to focus updates on informative transitions.
- n-step returns / $TD(\lambda)$ to propagate reward information more quickly through time.
- Normalization layers & value scaling: LayerNorm in hidden layers; PopArt/mean—std value normalization for robust critic targets.
- Exploration variants: parameter-space noise, adaptive OU σ , or clipped Gaussian noise with schedule.
- Attention-based critics (MAAC) for scalable centralized value functions when the number of agents grows.

Stability & regularization.

- Entropy or action regularization on actors; spectral norm or weight decay sweeps for critics.
- Observation/reward normalization (running mean-std), and target network update schedule ablations.

Partial observability.

• Recurrent policies/critics (LSTM/GRU) to capture temporal dependencies beyond frame stacking and improve credit assignment.

Data efficiency & scaling.

- Increase #updates per env step with smaller batches; try distributed rollouts or asynchronous data collection.
- Population-Based Training (PBT) or automated schedules for LR, noise σ , and τ .

Evaluation & reproducibility.

• Multiple random seeds with confidence intervals; component ablations (PER, twin critics, normalization, recurrence); standardized logging and checkpoints.

10 References

- Ryan Lowe et al., Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments (MADDPG), NeurIPS 2017.
- Timothy P. Lillicrap et al., Continuous control with deep reinforcement learning (DDPG), 2015.