AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (currently amended): A polymerizable composition comprising:

a binder polymer containing at least an acid group having an acid dissociation constant (pKa) of 5.5 or more and a radical addition polymerizable group; and a radical-generating compound capable of generating a radical with light or heat, wherein the binder polymer comprises a structural unit that has the acid group and that is represented by a formula selected from the group consisting of formulae (2), (3), (4), (5), (6), (7) and (8):

Formula (2)

wherein in formula (2), X represents an alkylene group, a substituted alkylene group,
-CH₂CH₂OCH₂CH₂-,

wherein R¹ represents a hydrogen atom, a halogen atom, or an alkyl group; each of R² and R³ independently represents a hydrogen atom, a halogen atom, an alkyl group, a substituted alkyl group, an aromatic group, a substituted aromatic group, -OR⁴, -COOR⁵, -COONHR⁶, -COR⁷, or -CN; R² and R³ may be bonded to each other to form a ring; each of R⁴ to R⁷ independently represents an alkyl group or an aromatic group; and n represents 2 or 3;

Formula (3)

$$H_2C = C - R$$
 $O = C - O - X - N - C - N - Y - OH$

wherein in formula (3), R represents a hydrogen atom or an alkyl group; X represents a divalent linking group; and Y represents a divalent aromatic group which may have substituents;

Formula (4)

wherein in formula (4), each of R¹ and R² independently represents a hydrogen atom, an alkyl group, or a carboxylic acid group; R³ represents a hydrogen atom, a halogen atom, or an alkyl group; R⁴ represents a hydrogen atom, an alkyl group, a phenyl group, or an aralkyl group; X represents a divalent organic group linking a nitrogen atom to a carbon atom in an aromatic ring; n represents 0 or 1; and Y represents a phenylene group or a naphthylene group, each of which may have substituents;

Formula (5)

$$\begin{array}{c|c}
 & R_1 \\
\hline
 & C \\
 &$$

.

wherein in formula (5), R_1 represents a hydrogen atom, a halogen atom, a cyano group, or an alkyl group; each of R_2 and R_3 independently represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxyl group, or an aryl group; each of R^4 , R^5 and R^6 independently represents a hydrogen atom, an alkyl group, an aryl group or a halogen atom; X represents an atom necessary for completing a monocyclic or polycyclic carbocyclic aromatic ring system; and n represents 1, 2 or 3;

Formula (6)

$$H_2C = C$$
 $CO = X^1 - R^2 - SO_2NH - R^3$

Formula (7)

$$H_2C = C C_0 - X^2 - R^5 - NH - SO_2 - R^6$$

wherein in formulae (6) and (7), each of X¹ and X² independently represents –O- or –NR⁷-; each of R¹ and R⁴ independently represents –H or –CH₃; each of R² and R⁵ independently represents an alkylene group, a cycloalkylene group, an arylene group or an aralkylene group each having from 1 to 12 carbon atoms and each of which may have substituents; R³ represents –H or an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group each having from 1 to 12 carbon atoms and each of which may have substituents; R⁶ represents an alkyl group, a

each of which may have substituents; and R⁷ represents a hydrogen atom or an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group each having from 1 to 12 carbon atoms and each of which may have substituents;

Formula (8)

wherein in formula (8), A¹ represents a hydrogen atom, a halogen atom, or an alkyl group having from 1 to 4 carbon atoms; B¹ represents a phenylene group or a substituted phenylene group; B² represents an alkylene group having from 2 to 6 carbon atoms or a phenylene group, wherein each of which may have substituents; B³ represents a divalent organic group; each of X¹ and X² independently represents –CO- or –SO₂-; Y represents –CO-R¹ or –SO₂-R¹; R¹ represents an alkyl group, a substituted alkyl group, an aromatic group, or a substituted aromatic group; and each of m and j represents 0 or 1.

- **2. (original):** A polymerizable composition according to claim 1, wherein the acid group and the radical addition polymerizable group are introduced as a side chain of the binder polymer.
- **3. (original):** A polymerizable composition according to claim 1, wherein the acid group and the radical addition polymerizable group are introduced into terminal ends of a main chain of the binder polymer.
- **4. (original):** A polymerizable composition according to claim 1, wherein the pKa of the acid group is in a range from 7 to 11.5.

5-11. (canceled).

12. (currently amended): A polymerizable composition according to claim 1, wherein the binder polymer comprises at least one of a structural unit that includes the radical addition polymerizable group and that is represented by one of the following-general formulae (9) to (11):

General formula Formula (9)

General formula Formula (10)

General formula Formula (11)

wherein in the above formulas, each of A^1 , A^2 and A^3 independently represents an oxygen atom, a sulfur atom, or $-N(R^{21})$ -; R^{21} represents a hydrogen atom or an alkyl group which may have substituents; each of G^1 , G^2 and G^3 independently represents a divalent organic group; each of X and Z independently represents an oxygen atom, a sulfur atom, or $-N(R^{22})$ -; R^{22} represents a hydrogen atom or an alkyl group which may have substituents; Y represents an oxygen atom, a sulfur atom, a phenylene group which may have substituents, or $-N(R^{23})$ -; R^{23} represents an

alkyl group which may have substituents; and each of R¹ to R²⁰ independently represents a monovalent inorganic or organic group.

- **13. (original):** A polymerizable composition according to claim 1, wherein a mixing ratio of structural units that have the acid groups relative to total structural units contained in the binder polymer is in a range of from 5 to 70 % by mole.
- **14. (original):** A polymerizable composition according to claim 1, wherein a mixing ratio of structural units that have the radical addition polymerizable groups relative to total structural units contained in the binder polymer is in a range of from 5 to 95 % by mole.
- **15. (currently amended):** A polymerizable composition according to claim 1, wherein the radical-generating compound contains at least one selected from the group consisting of an aromatic iodonium salt, an aromatic sulfonium salt, a titanocene compound, and a trihalomethyl-S-triazine compound represented by the following general formula (17):

General formula Formula (17)

$$C(X^2)_3$$
 N
 N
 N
 N
 N

wherein in general formula (17), X^2 represents a halogen atom; Y^1 represents $-C(X^2)_3$, $-NH_2$, $-NHR^{38}$, $-NR^{38}$, or $-OR^{38}$; R^{38} represents an alkyl group, a substituted alkyl group, an aryl group, or a substituted aryl group; and R^{37} represents $-C(X^2)_3$, an alkyl group, a substituted alkyl group, an aryl group, a substituted aryl group, or a substituted alkenyl group.

- **16. (original):** A polymerizable composition according to claim 1, further comprising a radical polymerizable compound.
- **17. (original):** A polymerizable composition according to claim 16, wherein a mixing ratio of the binder polymer to the radical polymerizable compound is in the range of 1:0.05 to 1:3 by weight.
- **18. (currently amended):** A negative-working planographic printing plate precursor, comprising a support having a recording layer containing a polymerizable composition provided thereon, wherein the polymerizable composition comprises:
- a binder polymer containing an acid group having an acid dissociation constant (pKa) of 5.5 or more and a radical addition polymerizable group; and
 - a radical-generating compound capable of generating radicals with light or heat,

wherein the binder polymer comprises a structural unit that has the acid group and that is represented by a formula selected from the group consisting of formulas (2), (3), (4), (5), (6), (7) and (8):

Formula (2)

wherein in formule (2), X represents an alkylene group, a substituted alkylene group, -CH₂CH₂OCH₂CH₂-,

wherein R¹ represents a hydrogen atom, a halogen atom, or an alkyl group; each of R² and R³ independently represents a hydrogen atom, a halogen atom, an alkyl group, a substituted alkyl group, an aromatic group, a substituted aromatic group, -OR⁴, -COOR⁵, -COONHR⁶, -COR⁷, or

AMENDMENT UNDER 37 C.F.R. § 1.111 U.S. APPLN. NO. 10/645,796

–CN; R^2 and R^3 may be bonded to each other to form a ring; each of R^4 to R^7 independently represents an alkyl group or an aromatic group; and n represents 2 or 3;

Formula (3)

$$H_2C = C - R$$
 $O = C - O - X - N - C - N - Y - OH$

wherein in formula (3), R represents a hydrogen atom or an alkyl group; X represents a divalent linking group; and Y represents a divalent aromatic group which may have substituents;

Formula (4)

wherein in formula (4), each of R¹ and R² independently represents a hydrogen atom, an alkyl group, or a carboxylic acid group; R³ represents a hydrogen atom, a halogen atom, or an alkyl group; R⁴ represents a hydrogen atom, an alkyl group, a phenyl group, or an aralkyl group; X represents a divalent organic group linking a nitrogen atom to a carbon atom in an aromatic ring; n represents 0 or 1; and Y represents a phenylene group or a naphthylene group, each of which may have substituents;

Formula (5)

wherein in formula (5), R_1 represents a hydrogen atom, a halogen atom, a cyano group, or an alkyl group; each of R_2 and R_3 independently represents a hydrogen atom, a halogen atom, an alkyl group, or an aryl group; each of R^4 , R^5 and R^6 independently represents a hydrogen atom, an alkyl group, an aryl group or a halogen atom; X represents an atom necessary for completing a monocyclic or polycyclic carbocyclic aromatic ring system; and n represents 1, 2 or 3;

Formula (6)

$$H_2C = C$$
 $CO = X^1 - R^2 - SO_2NH - R^3$

Formula (7)

$$H_2C = C = C = C = CO = X^2 - R^5 - NH - SO_2 - R^6$$

wherein in formulae (6) and (7), each of X¹ and X² independently represents –O- or –NR²-; each of R¹ and R⁴ independently represents –H or –CH₃; each of R² and R⁵ independently represents an alkylene group, a cycloalkylene group, an arylene group or an aralkylene group each having from 1 to 12 carbon atoms and each of which may have substituents; R³ represents –H or an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group each having from 1 to 12 carbon atoms and each of which may have substituents; R⁶ represents an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group each having from 1 to 12 carbon atoms and each of which may have substituents; and R² represents a hydrogen atom or an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group each having from 1 to 12 carbon atoms and each of which may have substituents; and R² represents a hydrogen atom or an alkyl group, a cycloalkyl group, an aryl group or an aralkyl group each having from 1 to 12 carbon atoms and each of which may have substituents;

Formula (8)

wherein in formula (8), A^1 represents a hydrogen atom, a halogen atom, or an alkyl group having from 1 to 4 carbon atoms; B^1 represents a phenylene group or a substituted phenylene group; B^2 represents an alkylene group having from 2 to 6 carbon atoms or a phenylene group, wherein each of which may have substituents; B^3 represents a divalent organic group; each of X^1 and X^2 independently represents –CO- or –SO₂-; Y represents –CO- R^1 or –SO₂- R^1 ; R^1 represents an alkyl group, a substituted alkyl group, an aromatic group, or a substituted aromatic group; and each of m and j represents 0 or 1.