Teorema 5.4.1 Dependencia e independencia lineal

Dos vectores en un espacio vectorial son linealmente dependientes si y sólo si uno de ellos es un múltiplo escalar del otro.

Demostración

Primero suponga que $\mathbf{v}_2 = c\mathbf{v}_1$ para algún escalar $c \neq 0$. Entonces $c\mathbf{v}_1 - \mathbf{v}_2 = \mathbf{0}$ y \mathbf{v}_1 y \mathbf{v}_2 son linealmente dependientes. Por otro parte, suponga que \mathbf{v}_1 y \mathbf{v}_2 son linealmente dependientes. Entonces existen constantes c_1 y c_2 al menos uno distinto de cero, tales que c_1 $\mathbf{v}_1 + c_2$ $\mathbf{v}_2 = \mathbf{0}$. Si $c_1 \neq 0$, entonces dividiendo entre c_1 se obtiene $\mathbf{v}_1 + (c_2/c_1)\mathbf{v}_2 = \mathbf{0}$, o sea,

$$\mathbf{v}_1 = \left(-\frac{c_2}{c_1}\right)\mathbf{v}_2$$

Es decir, \mathbf{v}_1 es un múltiplo escalar de \mathbf{v}_2 . Si $c_1 = 0$, entonces $c_2 \neq 0$ y, por lo tanto, $\mathbf{v}_2 = \mathbf{0} = 0\mathbf{v}_1$.

EJEMPLO 5.4.1 Dos vectores linealmente dependientes en \mathbb{R}^4

Los vectores
$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 3 \end{pmatrix}$$
 y $\mathbf{v}_2 = \begin{pmatrix} -6 \\ 3 \\ 0 \\ -9 \end{pmatrix}$ son linealmente dependientes ya que $\mathbf{v}_2 = -3\mathbf{v}_1$.

EJEMPLO 5.4.2 Dos vectores linealmente dependientes en \mathbb{R}^3

Los vectores
$$\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$
 y $\begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$ son linealmente independientes; si no lo fueran, se tendría $\begin{pmatrix} 2 \\ 5 \\ -3 \end{pmatrix}$ =

$$c\begin{pmatrix} 1\\2\\4 \end{pmatrix} = \begin{pmatrix} c\\2c\\4c \end{pmatrix}$$
. Entonces $2 = c$, $5 = 2c$ y $-3 = 4c$, lo cual es evidentemente imposible para cualquier número c

Determinación de la dependencia o independencia lineal de tres vectores en \mathbb{R}^3

Determine si los vectores $\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix}$ y $\begin{pmatrix} 0 \\ 1 \\ 7 \end{pmatrix}$ son linealmente dependientes o independientes.

SOLUCIÓN Suponga que
$$c_1 \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} + c_2 \begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 \\ 1 \\ 7 \end{pmatrix} = \mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
. Entonces multi-

plicando y sumando se obtiene $\begin{pmatrix} c_1 + 2c_2 \\ -2c_1 - 2c_2 + c_3 \\ 3c_1 + 7c_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$. Esto lleva al sistema homogéneo de

tres ecuaciones con tres incógnitas c_1 , c_2 y c_3 :