Soit Σ un alphabet possédant au moins 2 lettres. Pour L un langage sur Σ et k>1 on pose

$$L^{(k)} = \{ w^k \mid w \in L \} \text{ et } L^{1/k} = \{ w \mid w^k \in L \}$$

- 🙀 Question 0 Calculer $L^{1/2}$ pour L reconnu par l'expression régulière $ab(\Sigma\Sigma)^*$
- Question 1 Pour $k, l \ge 1$, montrer que $\bullet \ \left(L^{(k)}\right)^{(l)} = L^{(kl)}$ $\bullet \ \left(L^{1/k}\right)^{1/l} = L^{1/kl}$ $\bullet \ \left(L^{1/k}\right)^{(k)} \subseteq L$

- **Question 2** Donner un langage rationnel L tel que $\forall k \geq 2, L^{(k)}$ n'est pas rationnel
- Montrer que pour L reconnu par un automate $A=(\Sigma,Q,q_i,\delta,F),$ on a **9** Question 3

$$w \in L^{1/2} \Leftrightarrow \exists q \in Q, \begin{cases} \delta(q_i, w) = q \\ \delta(q, w) \in F \end{cases}$$

- Question 4 Montrer que si L rationnel, alors $L^{1/2}$ aussi.
- Duestion 5 Montrer que soit $k \in \mathbb{N}$, si L est rationnel, alors $L^{1/k}$ aussi.
- Si L est rationnel, est-ce forcément aussi le cas de $\bigcup_{k>1} L^{1/k}$? 🙀 Question 6
- ${f 3}$ Question 7 ${(L^{1/2})}^{(2)}$ Donner un algorithme qui détermine si un langage rationnel L respecte L=
- Montrer que si L est rationnel, alors $\mathrm{Root}(L)=\left\{w\in\Sigma^*:w^{|w|}\in L\right\}$ l'est aussi. **U** Question 8