Varietà differenziabili Corso di Laurea in Matematica A.A. 2024-2025 Docente: Andrea Loi

- 1. Sia S^n la sfera unitaria in \mathbb{R}^{n+1} . Trovare un atlante differenziabile di S^n con 2(n+1) carte.
- 2. Dire se la struttura differenziabile su S^n definita dall'esercizio precedente e la struttura differenziabile su S^n data dalle proiezioni stereografiche coincidono.
- 3. Dimostrare che l'atlante topologico definito a lezione sul prodotto di due varietà differenziabili definisce una struttura differenziabile su $M \times N$.
- 4. Sia S uno spazio topologico e \sim una relazione d'equivalenza aperta su S. Dimostare che lo spazio quoziente S/\sim é T_2 se e solo se

$$R = \{(x, y) \in S \times S \mid x \sim y\}$$

é un sottoinsieme chiuso di $S \times S$.

- 5. Sia S uno spazio topologico N_2 e \sim una relazione d'equivalenza aperta su S. Dimostrare che lo spazio quoziente S/\sim é N_2 .
- 6. Dimostrare che \mathbb{R}/\mathbb{Q} non è uno spazio topologico N_2 .
- 7. Dimostrare che $\mathbb{R}P^1$ è omeomorfo a S^1/\sim_a .
- 8. Dimostrare che la grassmanniana G(k,n) é uno spazio topologico connesso e compatto.
- 9. Dimostrare che la grassmanniana G(k,n) è una varietà differenziabile.
- 10. Dimostrare che per ogni k < n la grassmanniana G(k,n) è omeomorfa a G(n-k,n).