

Discussion CAEsaaaaaar



### Recap



**Motivation**: we have validation dataset to measure how well the model is. But what if the validation dataset is poorly-chosen?



**Solution**: repeat the trials, change validation dataset, (test) average accuracy across all trials





# **Recap**: We can make the model more complex to capture non-linear data

**Problem**: What is the right degree complexity?

Or what features should be dropped?



#### **Solution:**

Re



gura

rization

#### Regularization

$$y = ax + b$$

$$y =$$

$$y = a_1 x + a_2 x^2$$
 $+ a_3 x^3 + b$ 
 $y = a_1 x + a_2 x$ 
 $+ a_3 x^3 + b$ 
 $y = a_1 x + a_2 x$ 
 $+ a_3 x^3 + b$ 
 $+ a_3 x^$ 

```
Y= 1.3x+0.4
                               y=0.8x+0.9
                                  point: (1, 1.7), (2, 3)
Modify Cost (A) to be = { [predicted on observed (i)]?
                            + \(\chi \times \((\slope)^2\)

penalty term
         2 = 1
Ex. Blue: 0 + (1)(1.3)^2 = 1.69
     Green: (1.7-1.5)^2 + (2.5-3)^2 + 1(0.8)^2
                   0.04 + 0.25 + 0.64
                  = 0.93
                             lower cost function
                                               value
Expand from this 2D example to 3D, each feature
 has its own slope a; , then in general
   Ridge regression: Cost(a) = \frac{1}{2m} \tau (preda-obs)^2
                      +\lambda\left(\alpha_1^2+\alpha_2^2+\ldots+\alpha_h^2\right)
```

we can get higher testing accuracy even if training

Key takeaway: We find a way

accuracy is low

to make the model underfits, so

## Note: there is another type of regularization, which is called **Lasso**

The difference is that the penalty term, we use **absolute** instead of squaring the parameters

| Ridge                                              | Lasso                           |
|----------------------------------------------------|---------------------------------|
| Squared the parameters                             | Take absolute of the parameters |
| Parameters get close to zero                       | Parameters can reach zero       |
| Better when we believe every parameters are useful | Can exclude useless parameters  |

$$Cost(\theta) = \frac{1}{2} \sum_{i=1}^{n} (predicted_{\theta}(x_i) - y_i)^2 + \lambda \sum_{i=1}^{n} |\theta_i|$$



Statquest Youtube video: Ridge vs Lasso Regression, Visualized!!!

https://www.youtube.com/watc h?v=Xm2C\_gTAl8c

#### But you know, I learned something today



- We use cross validation to average models across all trials, instead of accidentally pick the invalid test data
- We use ridge/lasso regression to lower training accuracy, but get higher test accuracy