EE231A Information Theory Lecture 13: The Rate Distortion Function

- A. Rate vs Distortion for Lossy Compression
- B. Calculation of the Rate vs. Distortion Function
- $C.\ R(D)$ for a Gaussian source

Part 13A:
Rate vs. Distortion
for
Lossy Compression

Lossy Compression

• $X_1, X_2, ..., X_n$ are i.i.d. from alphabet \mathcal{X} ,

• If R < H(X), such a scheme cannot guarantee that $\hat{X}^n = X^n$. There is a loss in fidelity.

Measuring Distortion

- Distortion Metrics $d: \mathcal{X} \times \hat{\mathcal{X}} \to R^+$
- Maximum Distortion $d_{\max} = \max_{x \in \mathcal{X}: \hat{x} \in \hat{\mathcal{X}}} d(x, \hat{x})$
- Bounded distortion $d_{\text{max}} < \infty$

Hamming Distortion

$$d(x,\hat{x}) = \begin{cases} 0 & \hat{x} = x \\ 1 & \hat{x} \neq x \end{cases}$$

• For Hamming distortion $E[d(x,\hat{x})] = P(\hat{X} \neq X)$

Squared-Error Distortion

$$d(x,\hat{x}) = (x - \hat{x})^2$$

Distortion between sequences

• Distortion between sequences

$$d(x^{n}, \hat{x}^{n}) = \frac{1}{n} \sum_{i=1}^{n} d(x_{i}, \hat{x}_{i})$$

• Other definitions are possible...

Distortion of block-based lossy compression

$$E\left[d\left(X^{n},g_{n}\left(f_{n}\left(X^{n}\right)\right)\right)\right] = \sum_{x^{n}}p(x^{n})d\left(X^{n},g_{n}\left(f_{n}\left(X^{n}\right)\right)\right)$$

Rate Distortion Pair

• A rate, distortion pair (R, D) is *achievable* if there is a sequence of $(2^{nR}, n)$ lossy compression codes (f_n, g_n) with

$$\lim_{n\to\infty} E\bigg[d\bigg(X^n, g_n\bigg(f_n(X^n)\bigg)\bigg)\bigg] \le D .$$

Rate-Distortion function

• For X i.i.d. $\sim p(x)$ and $d(x,\hat{x})$ bounded

$$R(D) = \min_{p(\hat{x}|x), E[d] \le D} I(X; \hat{X})$$

Achievable Pairs R,D

 Rate distortion function bounds achievable pairs R, D

Part 13B:
Calculation of the Rate Distortion
Function

Rate-Distortion function

• For X i.i.d. $\sim p(x)$ and $d(x,\hat{x})$ bounded

$$R(D) = \min_{p(\hat{x}|x), E[d] \le D} I(X; \hat{X})$$

$$E[d] = \sum_{x,\hat{x}} p(x,\hat{x})d(x,\hat{x})$$

$$= \sum_{x,\hat{x}} p(x)p(\hat{x} \mid x)d(x,\hat{x})$$
This is what we control.

Proof will come later

- Proof that R(D) is achievable is in a future lecture.
- Today, we focus on how to compute R(D).

Computing R(D)

- First example: R(D) for a binary source with Hamming distortion: $P(x=1) = p \le \frac{1}{2}$
- One way to find R(D) is to find a lower bound on $I(X; \hat{X})$ and then achieve it.
- We have the constraint $E[d] = P(\hat{X} \neq X) \leq D$

Lower bound on $I(X; \hat{X})$

$$I(X; \hat{X}) = H(X) - H(X | \hat{X})$$

$$= H(p) - H(X \oplus \hat{X} | \hat{X})$$

$$\geq H(p) - H(X \oplus \hat{X})$$

$$= H(p) - H(P(X \neq \hat{X}))$$

$$\geq H(p) - H(D) \qquad \text{for } D \leq \frac{1}{2}$$

Achievability of the lower bound

- So $R(D) \ge H(p) H(D)$
- Can we achieve $I(X; \hat{X}) = H(p) H(D)$ with $E(d) \le D$?
- We need to find a $p(x,\hat{x})$ that does that.

The Test Channel

- H(p)-H(D) is the $I(X;\hat{X})$ for a BSC with transition probability D and output distribution p,1-p.
- Can we find an input distribution $p(\hat{x})$ to make it work?

Achievability of the lower bound (cont.)

$$P(X = 0) = (1 - D)P(\hat{X} = 0) + DP(\hat{X} = 1)$$

$$= 1 - p$$

$$P(X = 1) = (1 - D)P(\hat{X} = 1) + DP(\hat{X} = 0)$$

$$= p$$

$$p(\hat{x}=0) = \frac{1-p-D}{1-2D}$$
$$p(\hat{x}=1) = \frac{p-D}{1-2D}$$

• So R(D) = H(p) - H(D).

Part 13C: R(D) for a Gaussian source

One bit quantization of Gaussian

- $R(D) = \min_{p(\hat{x}|x), E[d] \le D} I(X; \hat{X})$
- Consider one bit quantization of a Gaussian.

• Optimal 1-bit quantization

$$S_{1} = \{x : x > 0\} \qquad \hat{x}_{1} = \sqrt{2/\pi\sigma}$$

$$S_{2} = \{x : x \leq 0\} \qquad \hat{x}_{2} = -\sqrt{2/\pi\sigma}$$

$$E[(x - \hat{x}_{i}(x))^{2}] = \frac{\pi - 2}{\pi}\sigma^{2} = 0.36\sigma^{2}$$
(Conditional mean)

R(D) for Gaussian source

- R(D) for $X_1, X_2,...$ i.i.d. $N(0,\sigma^2)$
- Find a lower bound on $I(X; \hat{X})$ and achieve it.

$$I(X; \hat{X}) = h(X) - h(X | \hat{X})$$

$$= \frac{1}{2} \log(2\pi e \sigma^{2}) - h(X - \hat{X} | \hat{X})$$

$$\geq \frac{1}{2} \log(2\pi e \sigma^{2}) - h(X - \hat{X})$$

$$\geq \frac{1}{2} \log(2\pi e \sigma^{2}) - h(\mathcal{N}(0, E(X - \hat{X})^{2}))$$

$$\geq \frac{1}{2} \log(2\pi e \sigma^{2}) - h(\mathcal{N}(0, D))$$

Gaussian test channel

$$I(X; \hat{X}) \ge \frac{1}{2} \log(2\pi e \sigma^{2}) - h(\mathcal{N}(0, D))$$

$$= \frac{1}{2} \log\left(\frac{\sigma^{2}}{D}\right)$$

$$= \frac{1}{2} \log\left(1 + \frac{\sigma^{2} - D}{D}\right)$$

$$R(D) = \frac{1}{2} \log\left(\frac{\sigma^{2}}{D}\right)$$

$$Z \sim \mathcal{N}(0, D)$$

$$\hat{X} \sim \mathcal{N}(0, \sigma^{2} - D) \longrightarrow X \sim \mathcal{N}(0, \sigma^{2})$$

R(D) for Gaussian channel (cont.)

• So we can achieve the lower bound.

$$R(D) \bigg|_{D=0.36\sigma^2} = \frac{1}{2} \log \left(\frac{1}{0.36} \right)$$
$$= 0.737 \text{ bits}$$

or
$$R(0.25\sigma^2) = 1$$
 bit

So Information Theory indicates we can do a better job than optimal one-bit quantization by considering multiple symbols at a time.