Mathematische Statistik

Vorlesungsmitschrieb zur Vorlesung "Mathematische Statistik (Statistik I)" Dr. Klar / Universität Karlsruhe / Sommersemester 2007 $^{\rm 1}$

Stand: 10. Januar 2017

¹Dieser inoffizielle Mitschrieb der Vorlesung wurde mit ausdrücklicher Genehmigung von Herrn Dr. Klar auf http://mitschriebwiki.nomeata.de/ veröffentlicht, Herr Dr. Klar ist für den Inhalt dieser Seiten nicht verantwortlich. Der Mitschrieb erhebt keinen Anspruch auf Vollständigkeit und Richtigkeit!

Inhaltsverzeichnis

1	Grundbegriffe, Motivation	1
2	Klassische statistische Verfahren unter Normalverteilungs-Annahme	7
3	Schätzer und ihre Eigenschaften	15
4	Schätzmethoden	2 1
5	Optimale erwartungstreue Schätzer	33
6	Exponentialfamilien	43
7	Suffizienz und Vollständigkeit	5 1
8	Asymptotik von Schätzfehlern	61
9	Robuste Schätzer	67
10	Grundbegriffe der Testtheorie	77
11	Neyman-Pearson-Tests (NP-Tests)	80
12	UMPU Tests ("UMP unbiased")	89
13	Konfidenzbereiche	99
14	Lineare statistische Modelle	107

1 Grundbegriffe, Motivation

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ Wahrscheinlichkeitsraum, $(\mathfrak{X}, \mathcal{B})$ messbarer Raum¹ (sogenannter Stichprobenraum).

 $X:\ \Omega \to \mathfrak{X}$ Zufallsvariable

$$P(B) := P^X(B) := \mathbb{P}(X^{-1}(B)), \ B \in \mathcal{B}$$

Verteilung von X (\hookrightarrow Wahrscheinlichkeitsraum ($\mathfrak{X}, \mathcal{B}, P$))

Statistischer Entscheidung liegt Datenmaterial (Beobachtung) $x \in \mathfrak{X}$ zugrunde.

Grundannahme:

- 1) $x = X(\omega)$ für ein $\omega \in \Omega$, d.h. x ist Realisierung von X
- 2) P ist (teilweise) unbekannt

Ziel: Aufgrund von x Aussagen über P machen!

Sei $\mathcal{M}^1(\mathfrak{X}, \mathcal{B}) := \{P : P \text{ ist Wahrscheinlichkeitsmaß auf } \mathcal{B}\}.$

1.1 Definition

Eine Verteilungsannahme ist eine Teilmenge $\wp \subset \mathcal{M}^1(\mathfrak{X}, \mathcal{B})$. Das Tripel $(\mathfrak{X}, \mathcal{B}, \wp)$ heißt statistischer Raum (statistisches Modell).

1.2 Beispiel

$$(\mathfrak{X},\mathcal{B})=(\mathbb{R}^n,\mathcal{B}^n)$$

$$\wp:=\{P:\ \exists \ \text{Wahrscheinlichkeitsmaß}\ Q \ \text{auf}\ \mathcal{B}^1 \ \text{mit}\ P=\underbrace{Q\otimes\ldots\otimes Q}_{n\ \text{Faktoren}}\}$$

Mit anderen Worten $X = (X_1, \dots, X_n), X_1, \dots, X_n$ stochastisch unabhängig mit gleicher Verteilung Q, $X_1, \dots, X_n \stackrel{\text{uiv}}{\sim} Q$.

 $^{^{1}}$ β steht hier für eine beliebige σ -Algebra, die Borelsche σ -Algebra wird mit \mathcal{B}^{d} bezeichnet, wobei d die Dimension angibt

1.3 Beispiel

$$(\mathfrak{X},\mathcal{B}) = (\mathbb{R}^n, \mathcal{B}^n)$$

$$\wp := \{ P : \exists (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_{>0} \text{ mit } P = \mathcal{N}(\mu, \sigma^2) \otimes \ldots \otimes \mathcal{N}(\mu, \sigma^2) \}$$

Also $X_1, \ldots, X_n \stackrel{\text{uiv}}{\sim} \mathcal{N}(\mu, \sigma^2)$.

Ein-Stichproben-Normalverteilungs-Annahme

1.4 Beispiel

$$(\mathfrak{X},\mathcal{B})=(\mathbb{R}^{m+n},\mathcal{B}^{m+n})$$

$$\wp:=\{P:\ \exists\ \mathrm{W'maße}\ Q_1,Q_2:\ P=\underbrace{Q_1\otimes\ldots\otimes Q_1}_{m\ \mathrm{Faktoren}}\otimes\underbrace{Q_2\otimes\ldots\otimes Q_2}_{n\ \mathrm{Faktoren}}\}$$

Also
$$X=(X_1,\ldots,X_m,Y_1,\ldots,Y_n),~X_1,\ldots,X_m,Y_1,\ldots,Y_n$$
 unabhängig,
$$X_1,\ldots,X_m \overset{\mathrm{uiv}}{\sim} Q_1,Y_1,\ldots,Y_n \overset{\mathrm{uiv}}{\sim} Q_2.$$

1.5 Beispiel

 $(\mathfrak{X}, \mathcal{B})$ wie in 1.4

$$\wp := \{P : \exists (\mu, \nu, \sigma^2) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}_{>0} : P = \mathcal{N}(\mu, \sigma^2) \otimes \ldots \otimes \mathcal{N}(\mu, \sigma^2) \otimes \mathcal{N}(\nu, \sigma^2) \otimes \ldots \otimes \mathcal{N}(\nu, \sigma^2) \}$$

 $X_1, \dots, X_m, Y_1, \dots, Y_n$ unabhängig

$$X_i \overset{\text{uiv}}{\sim} \mathcal{N}(\mu, \sigma^2), Y_j \overset{\text{uiv}}{\sim} \mathcal{N}(\nu, \sigma^2)$$

2 unabhängige normalverteilte Stichproben mit gleicher Varianz

1.6 Definition

Eine **Parametrisierung** von $\wp \subset \mathcal{M}^1(\mathfrak{X}, \mathcal{B})$ ist eine bijektive Abbildung $\Theta \ni \vartheta \to P_{\vartheta} \in \wp$.

Ist X eine Zufallsvariable mit Verteilung P_{ϑ} , so schreibt man auch

$$\begin{array}{l} E_{\vartheta}(X) \\ \operatorname{Var}_{\vartheta}(X) \\ (*) \ F_{\vartheta}(t) := P_{\vartheta}(X \leq t) = P_{\vartheta}((-\infty, t]) \end{array} \right\} \text{falls X reellwertig}$$

1.7 Definition 3

$$(**)$$
 $P_{\vartheta}(B) = P_{\vartheta}(X \in B), B \in \mathcal{B}$

Schreibweisen (*), (**) unterstellen

$$(\Omega, \mathcal{A}, \mathbb{P}) = (\mathfrak{X}, \mathcal{B}, P), X = \mathbf{id}_{\Omega}$$

[eigentlich: $P_{\vartheta}(B) := \mathbb{P}(X^{-1}(B)) = \mathbb{P}(X \in B)$]

1.7 Definition

Eine Verteilungsklasse $\wp = \{P_\vartheta : \vartheta \in \Theta\}$ heißt ϑ -parametrisch, wenn sie sich "zwanglos" durch einen Parameterraum $\Theta \subset \mathbb{R}^k$ parametrisieren lässt. Ist $\vartheta = (\vartheta_1, \vartheta_2)$ und interessiert nur ϑ_1 , so heißt ϑ_1 Hauptparameter und ϑ_2 Nebenparameter oder Störparameter.

1.8 Beispiele

- a) In Beispiel 1.3: 2-parametrige Verteilungsannahme, wobei $\vartheta=(\mu,\sigma^2),\,\Theta=\mathbb{R}\times\mathbb{R}_{>0}.$
- b) In Beispiel 1.5: 3-parametrig, $\vartheta = (\mu, \nu, \sigma^2)$, $\Theta = \mathbb{R} \times \mathbb{R} \times \mathbb{R}_{>0}$ Hier meistens: (μ, ν) Hauptparameter

Häufig interssiert von \wp der Wert eines reellwertigen Funktionals $\gamma: \wp \to \mathbb{R}$ anstelle von P, z.B. (falls P Wahrscheinlichkeitsmaß auf \mathcal{B}^1)

$$\gamma(P) := \int_{\mathbb{R}} x dP(x)$$

(Erwartungswert von X)

Falls $\wp = \{P_{\vartheta} : \vartheta \in \Theta\}$, so schreibt man auch $\gamma(\vartheta) := \gamma(P_{\vartheta})$, fasst also γ als Abbildung $\gamma : \Theta \to \mathbb{R}$ auf.

Problem:

"Enge" Verteilungsannahme täuscht oft nicht vorhandene Genauigkeit vor. \wp sollte das <u>wahre</u> P enthalten. (realistisch?)

Bei diskreten Zufallsvariablen ergibt sich \wp manchmal zwangsläufig; bei stetigen Zufallsvariablen ist \wp häufig nicht vorgezeichnet.

4

1.9 Typische Fragestellungen der Statistik

- a) Punktschätzung Schätze aufgrund von $x \in \mathfrak{X}$ den Wert $\gamma(\vartheta) \in \mathbb{R}$ möglichst "gut".
- b) <u>Konfidenzbereiche</u> Konstruiere "möglichst kleinen", von x abhängigen Bereich, der $\gamma(\vartheta)$ mit "großer Wahrscheinlichkeit" enthält.
- c) Testprobleme Es sei $\Theta = \Theta_0 + \Theta_1$ eine Zerlegung von Θ . Teste die Hypothese $H_0: \vartheta \in \Theta_0$ gegen die Alternative $H_1: \vartheta \in \Theta_1$.

1.10 Asymptotische Betrachtungen

Häufig liegt Folge $(X_j)_{j\in\mathbb{N}}$ unabhängiger Zufallsvariablen zugrunde (alle auf nicht interessierenden Wahrscheinlichkeitsräume $(\Omega, \mathcal{A}, \mathbb{P})$ definiert) mit Werten in einem Messraum $(\mathfrak{X}_0, \mathcal{B}_0)$.

Häufig: $P^{X_j} = P \ \forall j$ (identische Verteilung)

Unter der Verteilungsannahme $P \in \wp_0 \subset \mathcal{M}^1(\mathfrak{X}_0, \mathcal{B}_0)$ nimmt dann die Folge $(X_j)_{j \in \mathbb{N}}$ Werte im statistischen Raum

$$(\mathfrak{X},\mathcal{B},\wp):=(imes_{j=1}^{\infty}\mathfrak{X}_{0},\bigotimes_{j=1}^{\infty}\mathcal{B}_{0},\{\bigotimes_{j=1}^{\infty}P:\ P\in\wp_{0}\})$$

an. Also: X_1, X_2, \ldots unabhängig, \mathfrak{X}_0 -wertig mit gleicher Verteilung $P \in \wp_0$

1.11 Statistiken

Es seien $(\mathfrak{X}, \mathcal{B})$ Stichprobenraum und $(\mathcal{T}, \mathcal{D})$ Messraum. Eine messbare Abbildung $T: \mathfrak{X} \to \mathcal{T}$ heißt Statistik (Stichprobenfunktion). Häufig: $(\mathcal{T}, \mathcal{D}) = (\mathbb{R}, \mathcal{B}^1)$.

Wichtigstes Beispiel:

$$\overline{\mathfrak{X}} = \mathbb{R}^n, \mathcal{T} = \mathbb{R}$$

$$T(x_1,\ldots,x_n) = \frac{1}{n} \sum_{i=1}^n x_i$$

Stichproben-Funktionen bewirken eine **Datenkompression**. Statistische Entscheidungen wie Ablehnung von Hypothesen hängen von $x \in \mathfrak{X}$ im Allgemeinen durch den Wert T(x) einer geeigneten Statistik ab. Bei Tests: Statistik $\hat{=}$ Testgröße $\hat{=}$ Prüfgröße

1.11 Statistiken 5

Sind $X_1, \ldots, X_n \stackrel{uiv}{\sim} P$, so nennt man X_1, \ldots, X_n eine Stichprobe vom Umfang n aus der Verteilung P.

Ist $T(X_1,\ldots,X_n)$ eine mit X_1,\ldots,X_n operierende Statistik, so schreib man auch $T_n:=T_n(X_1,\ldots,X_n):=T(X_1,\ldots,X_n)$.

Insbesondere bei bei asymptotischen Betrachtungen ist $(T_n)_{n\geq 1}$ dann eine Folge von Statistiken.

2 Klassische statistische Verfahren unter Normalverteilungs-Annahme

2.1 $\chi_s^2, t_s, F_{r,s}$ -Verteilung

Y besitzt die Dichte

a) $N_1, \ldots, N_s \stackrel{uiv}{\sim} \mathcal{N}(0, 1)$ Verteilung von $Y := N_1^2 + \ldots + N_s^2$ heißt Chi-Quadrat-Verteilung mit s Freiheitsgraden (χ_s^2 -Verteilung).

$$f(y) = \frac{1}{2^{\frac{s}{2}} \Gamma(\frac{s}{2})} e^{-\frac{y}{2}} y^{\frac{s}{2} - 1}, \ y > 0$$

Dabei:

$$\Gamma(t) = \int_0^\infty e^{-x} x^{t-1} dx, \ t > 0$$

(Gamma-Funktion)

$$\Gamma(x+1) = x\Gamma(x)$$
 $(x>0)$, $\Gamma(n+1) = n!$ $(n \in \mathbb{N})$, $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
Es gilt:

$$EY = s$$
, $Var(Y) = 2s$

b) Seien $N_0, N_1, \dots, N_s \stackrel{uiv}{\sim} \mathcal{N}(0, 1)$. Die Verteilung von

$$y := \frac{N_0}{\sqrt{\sum_{j=1}^s N_j^2/s}}$$

heißt (studentsche) t-Verteilung mit s
 Freiheitsgraden (t_s -Verteilung). Dichte:

$$f(y) = \frac{1}{\sqrt{\pi s}} \frac{\Gamma(\frac{s+1}{2})}{\Gamma(\frac{s}{2})} (1 + \frac{y^2}{s})^{-\frac{s+1}{2}}, \ y \in \mathbb{R}$$

$$E(Y) = 0 \ (s \ge 2), Var(Y) = \frac{s}{s-2} \ (s \ge 3)$$

 $s=1^2$:

$$f(y) = \frac{1}{\sqrt{\pi}} \frac{1}{\sqrt{\pi}} \frac{1}{1+y^2} = \frac{1}{\pi(1+y^2)}, \ y \in \mathbb{R}$$

c) Es seien R,S unabhängig, $R \sim \chi_r^2, \ S \sim \chi_s^2.$ Die Verteilung von

$$Y := \frac{\frac{1}{r}R}{\frac{1}{s}S}$$

²Cauchy-Verteilung

heißt F(isher)-Verteilung mit
r Zähler- und s Nenner-Freiheitsgraden (kurz: $Y \sim F_{r,s}$).

Dichte:

$$f(y) = \frac{\Gamma(\frac{r+s}{2})(\frac{r}{s})^{\frac{r}{2}}y^{\frac{r}{2}-1}}{\Gamma(\frac{r}{2})\Gamma(\frac{s}{2})(1+\frac{r}{s}y)^{\frac{r+s}{2}}}, \ y > 0$$

Es gilt:

$$E(Y) = \frac{s}{s-2}, \ s > 2, \quad Var(Y) = \frac{2s^2(r+s-2)}{r(s-2)^2(s-4)}, \ s > 4$$

2.2 Satz

Es seien $X_1, \ldots, X_n \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma^2)$.

$$\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i, \ \hat{\sigma}_n^2 := \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

Dann gilt:

- a) $\bar{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}).$
- b) $\frac{n}{\sigma^2}\hat{\sigma}_n^2 \sim \chi_{n-1}^2$
- c) \bar{X}_n und $\hat{\sigma}_n^2$ sind unabhängig.

Beweis

- a) klar
- b),c) Sei $Z_j := X_j \mu$, $Z := (Z_1, \dots, Z_n)^T$. Es gilt: $Z \sim \mathcal{N}_n(0, \sigma^2 \cdot I_n)$. Sei $H = (h_{ij})$ orthogonale $n \times n$ -Matrix mit $h_{nj} = \frac{1}{\sqrt{n}}, \ 1 \leq j \leq n$.

$$Y = (Y_1, \dots, Y_n)^T := HZ$$

 $Y \sim \mathcal{N}_n(0, \sigma^2 H H^T) = \mathcal{N}(0, \sigma^2 I_n), \text{ d.h. } Y_1, \dots, Y_n \stackrel{uiv}{\sim} \mathcal{N}(0, \sigma^2).$ Es gilt:

$$\sum_{j=1}^{n} Y_j^2 = ||Y||^2 = ||Z||^2 = \sum_{j=1}^{n} Z_j^2$$

$$Y_n = \frac{1}{\sqrt{n}} \sum_{j=1}^{n} Z_j = \sqrt{n} (\bar{X}_n - \mu)$$

2.3 Korollar 9

Mit $\bar{Z}_n := \frac{1}{n} \sum_{j=1}^n Z_j$ folgt:

$$\sum_{i=1}^{n} (X_j - \bar{X}_n)^2 = \sum_{j=1}^{n} (Z_j - \bar{Z}_n)^2 = \sum_{j=1}^{n} Z_j^2 - n\bar{Z}_n^2$$

$$= \sum_{j=1}^{n} Y_j^2 - Y_n^2$$

$$= \sum_{j=1}^{n-1} Y_j^2$$

$$= \sigma^2 \sum_{j=1}^{n-1} \left(\frac{Y_j}{\sigma}\right)^2$$

$$= \sqrt{N(0,1)}$$

 \Rightarrow b)

Wegen $\sum_{j=1}^n (X_j - \bar{X}_n)^2 =$ Funktion von Y_1, \dots, Y_{n-1} und $\bar{X}_n =$ Funktion von Y_n sind $\hat{\sigma}_n^2$ und \bar{X}_n unabhängig (Blockungslemma).

2.3 Korollar

In der Situation von 2.2 sei³

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 = \frac{n}{n-1} \hat{\sigma}_n^2$$

Dann gilt:

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{S_n} \sim t_{n-1}$$

Beweis:

$$\sqrt{n} \frac{\bar{X}_n - \mu}{S_n} = \frac{\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma}}{\sqrt{\frac{\frac{1}{\sigma^2} \cdot \sum_i (X_i - \bar{X}_n)^2 / n - 1}{\sim \chi_{n-1}^2}}}$$

Zähler und Nenner sind unabhängig und der Zähler ist $\mathcal{N}(0,1)$ -verteilt. $\overset{2.1b)}{\Rightarrow}$ Behauptung

³Stichprobenvarianz

2.4 Korollar

Sei $0 < \alpha \le 1$ und sei $t_{n-1,1-\frac{\alpha}{2}}$ das $(1-\frac{\alpha}{2})$ -Quantil der t_{n-1} -Verteilung.⁴ Dann gilt:

$$P_{\mu,\sigma^2}\left(\left|\frac{\sqrt{n}(\bar{X}_n-\mu)}{S_n}\right| \le t_{n-1,1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

Oder äquivalent:

$$P_{\mu,\sigma^2}\left(\bar{X}_n - \frac{S_n}{\sqrt{n}}t_{n-1,1-\frac{\alpha}{2}} \le \mu \le \bar{X}_n + \frac{S_n}{\sqrt{n}}t_{n-1,1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

Sprechweise:

 $[\bar{X}_n - \frac{S_n}{\sqrt{n}}t_{n-1,1-\frac{\alpha}{2}}, \bar{X}_n + \frac{S_n}{\sqrt{n}}t_{n-1,1-\frac{\alpha}{2}}]$ ist ein Konfidenzintervall (Vertrauensintervall) zur Konfidenzwahrscheinlichkeit (Vertrauenswahrscheinlichkeit) $1 - \alpha$ für μ . (Störparameter σ^2 tritt hier nicht auf!)

2.5 Ein-Stichproben-t-Test (1-SP-t-Test)

Seien $X_1, \ldots, X_n \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma^2), \ \vartheta = (\mu, \sigma^2), \ \Theta := \mathbb{R} \times \mathbb{R}_{>0}.$ Zu testen sei $H_0: \ \mu = \mu_0$ gegen $H_1: \ \mu \neq \mu_0$ (μ_0 gegebener Wert).

$$H_0/H_1 \leftrightarrow \Theta_0/\Theta_1$$

$$\Theta_0 := \{ \vartheta = (\mu, \sigma^2) \in \Theta : \ \mu = \mu_0 \}$$

$$\Theta_1 := \{ \vartheta = (\mu, \sigma^2) \in \Theta : \ \mu \neq \mu_0 \}$$

Sei $(x_1, \ldots, x_n) =: x$ Realisierung von X_1, \ldots, X_n .

$$\bar{x}_n := \frac{1}{n} \sum_{i=1}^n x_i$$

$$s_n^2 := \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}_n)^2$$

$$T(x_1,\ldots,x_n) := \frac{\sqrt{n}(\bar{x}_n - \mu_0)}{s_n}$$

 $^{^4}$ \rightarrow Abbildung 2.1

(Zweiseitiger) 1-SP-t-Test zum Niveau α : H_0 ablehnen, falls

$$|T(x_1,\ldots,x_n)| \ge t_{n-1,1-\frac{\alpha}{2}}$$

Kein Widerspruch zu H_0 , falls

$$|T(x_1,\ldots,x_n)| < t_{n-1,1-\frac{\alpha}{2}}$$

Sei $\vartheta \in \Theta_0$, also $\mu = \mu_0$. $\Rightarrow T(X_1, \dots, X_n) \sim t_{n-1}$

$$\Rightarrow P(|T(X_1,\ldots,X_n)| \ge t_{n-1,1-\frac{\alpha}{2}}) = \alpha \quad \forall \vartheta \in \Theta_0$$

[Das bedeutet, wenn H_0 gilt, ist die Wahrscheinlichkeit H_0 trotzdem abzulehnen α . (\rightarrow Niveau)]

Bemerkungen:

- 1) Entsprechend einseitige Tests⁵, z.B. $H_0: \mu \ge \mu_0$ gegen $H_1: \mu < \mu_0$. H_0 ablehnen, falls $|T(x_1,\ldots,x_n)| \ge t_{n-1,\alpha}^6$
- 2) Sei

$$f(x, \vartheta) := \prod_{j=1}^{n} f_1(x_j, \vartheta) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n \exp(-\frac{1}{2\sigma^2} \sum_{j=1}^{n} (x_j - \mu)^2)$$

Die Prüfgröße $T(x_1,\ldots,x_n)$ des t-Tests ergibt sich aus einem allgemeinen "Rezept":

Bilde den (verallgemeinerten) Likelihood-Quotienten

$$\lambda(x) := \frac{\sup_{\vartheta \in \Theta_0} f(x, \vartheta)}{\sup_{\vartheta \in \Theta} f(x, \vartheta)}$$

und lehne $H_0: \vartheta \in \Theta_0$ für zu "kleine" Werte von $\lambda(x)$ ab.

Es gilt:

$$(n-1)(\lambda(x)^{-\frac{2}{n}}-1)=T^2(x_1,\ldots,x_n)$$

(Blatt 2, Aufgabe 6)

 $^{^{5}}$ vgl. Stochstik I (\rightarrow Wahl der Nullhypothese)

⁶etc.; Niveau α

2.6 Satz

Seien $X_1, \ldots, X_m, Y_1, \ldots, Y_n$ unabhängig.

$$X_i \sim \mathcal{N}(\mu, \sigma^2) \ \forall i, \ Y_i \sim \mathcal{N}(\nu, \sigma^2) \ \forall j$$

$$\bar{X}_m := \frac{1}{m} \sum_{i=1}^m X_i, \ \bar{Y}_n := \frac{1}{n} \sum_{i=1}^n Y_i$$

Dann gilt:

$$\bar{X}_m \sim \mathcal{N}(\mu, \frac{\sigma^2}{m}), \ \bar{Y}_n \sim \mathcal{N}(\nu, \frac{\sigma^2}{n})$$
$$\bar{X}_m - \bar{Y}_n - (\mu - \nu) \sim \mathcal{N}(0, \frac{\sigma^2}{m} + \frac{\sigma^2}{n}) = \mathcal{N}(0, \frac{m+n}{mn}\sigma^2)$$

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X}_m)^2 \sim \chi_{m-1}^2$$

$$\frac{1}{\sigma^2} \sum_{j=1}^{n} (Y_j - \bar{Y}_n)^2 \sim \chi_{n-1}^2$$

 $\bar{X}_m,\,\bar{Y}_n$ und die letzten beiden Größen sind stochastisch unabhängig!

Sei

$$S_{m,n}^2 := \frac{1}{m+n-2} \left(\sum_{i=1}^n (X_i - \bar{X}_m)^2 + \sum_{i=1}^n (Y_j - \bar{Y}_n)^2 \right)$$

Dann gilt weiter:

$$(m+n-2)\cdot S_{m,n}^2/\sigma^2 \sim \chi_{m+n-2}^2$$

2.7 Korollar

In der Situation von 2.6 gilt:

$$\frac{\sqrt{\frac{mn}{m+n}}(\bar{X}_m - \bar{Y}_n - (\mu - \nu))}{S_{m,n}} \sim t_{m+n-2}$$

Beweis:

Wie Korollar 2.3.

2.8 Korollar 13

2.8 Korollar

$$P_{\mu,\nu,\sigma^2}\left(\sqrt{\frac{mn}{m+n}}\frac{|\bar{X}_m - \bar{Y}_n - (\mu - \nu)|}{S_{m,n}} \le t_{m+n-2,1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

D.h.

$$\bar{X}_m - \bar{Y}_n \pm \frac{S_{m,n}}{\sqrt{\frac{mn}{m+n}}} t_{m+n-2,1-\frac{\alpha}{2}}$$

ist Konfidenzintervall für $\mu - \nu$ zur Konfidenzwahrscheinlichkeit $1 - \alpha$.

2.9 (Zweiseitiger) 2-SP-t-Test

Situation von 2.6.

$$H_0: \mu = \nu \ (\mu - \nu = 0), H_1: \mu \neq \nu \ (\mu - \nu \neq 0)$$

Mit

$$\Theta := \{ \vartheta = (\mu, \nu, \sigma^2) : -\infty < \mu, \nu < \infty, \sigma^2 > 0 \}$$

$$\Theta_0 := \{ (\mu, \nu, \sigma^2) \in \Theta : \mu = \nu \}$$

$$\Theta_1 := \{ (\mu, \nu, \sigma^2) \in \Theta : \mu \neq \nu \}$$

gilt: $H_0 = \theta \in \Theta_0$, $H_1 = \theta \in \Theta_1$.

Prüfgröße:

$$T_{m,n}(x_1, \dots, x_m, y_1, \dots, y_n) := \sqrt{\frac{mn}{m+n}} \frac{\bar{x}_m - \bar{y}_n}{s_{m,n}}$$

Testentscheidung:

 $\overline{H_0}$ ablehnen, falls $|T_{m,n}| \ge t_{m+n-2,1-\frac{\alpha}{2}}$. Kein Widerspruch zu H_0 , falls $|T_{m,n}| < t_{m+n-2,1-\frac{\alpha}{2}}$.

Es gilt:

$$P(|T_{m,n}(X_1,\ldots,X_m,Y_1,\ldots,Y_n)| \ge t_{m+n-2,1-\frac{\alpha}{2}}) = \alpha \ \forall \vartheta \in \Theta_0$$

D.h. Test hat Niveau α .

2.10 F-Test für den Varianz-Quotienten

Situation wie in 2.6, aber $Y_j \sim \mathcal{N}(\nu, \tau^2)$ ($\tau^2 \neq \sigma^2$ möglich). Zu testen: $H_0: \sigma^2 = \tau^2$ ($\frac{\sigma^2}{\tau^2} = 1$) gegen $H_1: \sigma^2 \neq \tau^2$ ($\frac{\sigma^2}{\tau^2} \neq 1$). Prüfgröße des F-Tests für Varianzquotienten ist

$$Q_{m,n} = \frac{\frac{1}{m-1} \sum_{i=1}^{m} (X_i - \bar{X}_m)^2}{\frac{1}{n-1} \sum_{i=1}^{n} (Y_j - \bar{Y}_n)^2}$$

Unter H_0 gilt $Q_{m,n} \sim F_{m-1,n-1}$.

Ablehnung von H_0 erfolgt für große und kleine Werte von $Q_{m,n}$ [Meist⁷: Ablehnung für $Q_{m,n} \geq F_{m-1,n-1,1-\frac{\alpha}{2}}, \ Q_{m,n} \leq F_{m-1,n-1,\frac{\alpha}{2}}$]

 $^{^7 {\}rightarrow}$ Abbildung 2.2

3 Schätzer und ihre Eigenschaften

Es seien $(\mathfrak{X}, \mathcal{B}, \{P_{\vartheta} : \vartheta \in \Theta\})$ ein statistischer Raum, $\gamma : \Theta \to \Gamma$ ein Funktional, wobei $\Gamma \supset \gamma(\Theta)$, A_{Γ} eine σ -Algebra auf Γ .

3.1 Definition

Ein **Schätzer** für $\gamma(\vartheta)$ ist eine messbare Abbildung $S: (\mathfrak{X}, \mathcal{B}) \to (\Gamma, A_{\Gamma})$. S(x) heißt **Schätzwert** für $\gamma(\vartheta)$ zur Beobachtung $x \in \mathfrak{X}$.

3.2 Beispiel

$$(\mathfrak{X},\mathcal{B}) = (\{0,1\}^n, \mathcal{P}(\{0,1\}^n)), \, \Theta = (0,1), \, P_{\vartheta} = \bigotimes_{j=1}^n \mathrm{Bin}(1,\vartheta)$$
$$\gamma(\vartheta) = \vartheta$$

$$S(x_1,\ldots,x_n) := \frac{1}{n} \sum_{j=1}^n X_j$$

(relative Trefferhäufigkeit)

$$\Gamma = [0, 1] = \bar{\Theta}, \ A_{\Gamma} = \mathcal{B}^1 \cap [0, 1]$$

[Beachte: $\gamma(\Theta) = \Theta \subset \Gamma$]

Die Güte eines Schätzers wird über die Verteilung $P_{\vartheta}^{S(X)}$ von S(X) unter ϑ beurteilt. Für jedes $\vartheta \in \Theta$ sollte $P_{\vartheta}^{S(x)}$ "stark um $\gamma(\vartheta)$ konzentriert" sein.

3.3 Definition (Sei $\Gamma \subset \mathbb{R}^k$.)

- a) S erwartungstreu (unbiased) für $\gamma(\vartheta) :\Leftrightarrow E_{\vartheta}S(X) = \gamma(\vartheta) \ \forall \vartheta \in \Theta$
- b) $b_S(\vartheta) := E_{\vartheta}S(X) \gamma(\vartheta)$ heißt Verzerrung (bias) von S an der Stelle
- c) Ist $S_n = S_n(X_1, ..., X_n)$, $n \ge 1$ eine Schätzfolge, so heißt (S_n) asymptotisch erwartungstreu für $\gamma(\vartheta)$: \Leftrightarrow

$$\lim_{n \to \infty} E_{\vartheta} S_n = \gamma(\vartheta) \ \forall \vartheta \in \Theta$$

Erwartungstreue: $\forall \vartheta \in \Theta$: Schwerpunkt von $P_{\vartheta}^{S(X)}$ ist $\gamma(\vartheta)$

3.4 Definition (Sei $\Gamma \subset \mathbb{R}$.)

S mediantreu für $\gamma(\vartheta) : \Leftrightarrow \operatorname{med}_{\vartheta} S(X) = \gamma(\vartheta) \ \forall \vartheta \in \Theta.$

Dabei:

Sei Y Zufallsvariable mit Verteilungsfunktion F.

$$F^{-1}(q) := \inf\{x \in \mathbb{R} : F(x) \ge q\}, \ 0 < q < 1$$

$$\operatorname{med} Y := \operatorname{med} F := \frac{1}{2} \left(F^{-1} \left(\frac{1}{2} \right) + \underbrace{F^{-1} \left(\frac{1}{2} + 0 \right)}_{= \lim_{x \to \frac{1}{2} +} F^{-1} (x)} \right)$$

 \rightarrow Median⁸

<u>Mediantreue:</u> $\forall \vartheta \in \Theta$:

$$P_{\vartheta}(S(X) \le \gamma(\vartheta)) = P_{\vartheta}(S(X) \ge \gamma(\vartheta)) \ge \frac{1}{2}$$

(In jeweils 50% der Fälle Unter- bzw. Überschätzung.)

Beispiele:

a) X_1, \ldots, X_n reellwertig, $X_1, \ldots, X_n \stackrel{uiv}{\sim} P_{\vartheta}, \mu(\vartheta) := E_{\vartheta} X_1$ $(E_{\vartheta}|X_1| < \infty).$

 \bar{X}_n ist erwartungstreu für $\mu(\vartheta)$ X_1 ist erwartungstreu für $\mu(\vartheta)$

b) Wie a), $E_{\vartheta}X_1^2 < \infty$. $\sigma^2(\vartheta) := \operatorname{Var}_{\vartheta}(X_1)$.

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

 S_n^2 ist erwartungstreu für $\sigma^2(\vartheta)$.

 $^{^8 \}rightarrow$ Abbildung 3.1

Beweis:

$$E_{\vartheta}S_n^2 = \frac{1}{n-1}E_{\vartheta}\left[\sum_{i=1}^n ((X_i - \mu(\vartheta)) - (\bar{X}_n - \mu(\vartheta)))^2\right]$$

$$= \frac{1}{n-1}\left[\sum_{i=1}^n \underbrace{E_{\vartheta}(X_i - \mu(\vartheta))^2}_{=\operatorname{Var}_{\vartheta}(X_i)} - n\underbrace{E_{\vartheta}(\bar{X}_n - \mu(\vartheta))^2}_{=\operatorname{Var}_{\vartheta}(\bar{X}_n) = \frac{\sigma^2(\vartheta)}{n}}\right]$$

$$= \frac{1}{n-1}(n\sigma^2(\vartheta) - \sigma^2(\vartheta))$$

$$= \sigma^2(\vartheta)$$

c)
$$X_1, \dots, X_n \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma^2), \ \vartheta = (\mu, \sigma^2), \ \gamma(\vartheta) = E_{\vartheta} X_1 = \mu$$

$$\bar{X}_n \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}) \ \Rightarrow \ \text{med}_{\vartheta} \ \bar{X}_n = \mu$$

 $\Rightarrow \bar{X}_n$ ist mediantreu für $\gamma(\vartheta)$.

3.5 Definition (Sei $\Gamma \subset \mathbb{R}^k$.)

Schätzfolge $S_n = S_n(X_1, \dots, X_n), n \ge 1$, heißt (schwach) konsistent für $\gamma(\vartheta) :\Leftrightarrow$

$$P_{\vartheta}(\|S_n(X_1,\ldots,X_n) - \gamma(\vartheta)\| \ge \varepsilon) \to 0 \quad \forall \varepsilon > 0 \ \forall \vartheta \in \Theta$$
$$(\forall \vartheta \in \Theta : S_n \xrightarrow{P_{\vartheta}} \gamma(\vartheta))$$

3.6 Bemerkung (Sei $\Gamma \subset \mathbb{R}$.)

 (S_n) asymptotisch erwartungstreu für $\gamma(\vartheta)$ und $\operatorname{Var}_{\vartheta} S_n \to 0 (n \to \infty) \Rightarrow (S_n)$ konsistent für $\gamma(\vartheta)$.

[Beweis:]

$$P_{\vartheta}(|S_{n} - \gamma| \geq \varepsilon) \leq P_{\vartheta}(|S_{n} - ES_{n}| + |ES_{n} - \gamma| \geq \varepsilon)$$

$$\leq P_{\vartheta}(|S_{n} - ES_{n}| \geq \frac{\varepsilon}{2} \text{ oder } |ES_{n} - \gamma| \geq \frac{\varepsilon}{2})$$

$$\leq P_{\vartheta}(|S_{n} - ES_{n}| \geq \frac{\varepsilon}{2}) + P_{\vartheta}(|ES_{n} - \gamma| \geq \frac{\varepsilon}{2})$$

$$\stackrel{(*)}{\leq} \frac{\operatorname{Var}(S_{n})}{(\frac{\varepsilon}{2})^{2}} + P_{\vartheta}(|ES_{n} - \gamma| \geq \frac{\varepsilon}{2})$$

$$\to 0 \ (n \to \infty)$$

(*): Tschebyscheff

Kurz:

$$|S_n - \gamma| \le \underbrace{|S_n - E_{\vartheta}S_n|}_{P_{\vartheta} \to 0 \ (1)} + \underbrace{|E_{\vartheta}S_n - \gamma|}_{P_{\vartheta} \to 0 \ (2)} \stackrel{P_{\vartheta}}{\to} 0$$

(1): Tschebyscheff, (2): asymptotisch erwartungstreu

Obiges Beispiel a):

 \overline{X}_n konsistent für $\mu(\vartheta)$, falls $E_{\vartheta}X_1^2 < \infty$ nach 3.6. Starkes Gesetz der großen Zahlen (SGGZ): $\overline{X}_n \overset{P_{\vartheta} - f.s.}{\longrightarrow} E_{\vartheta}X_1$ (ohne weitere Voraussetzung) $\Rightarrow \overline{X}_n \overset{P_{\vartheta}}{\longrightarrow} E_{\vartheta}X_1$

3.7 Bemerkung und Definition (Sei $\Gamma \subset \mathbb{R}$.)

$$MQA_S(\vartheta) := E_{\vartheta}(S(X) - \gamma(\vartheta))^2$$

heißt mittlere quadratische Abweichung von S an der Stelle ϑ . Es gilt:

$$MQA_S(\vartheta) = E_{\vartheta}(S(X) - E_{\vartheta}S(X))^2 + (E_{\vartheta}S(X) - \gamma(\vartheta))^2 = Var_{\vartheta}S(X) + b_s^2(\vartheta)$$

3.8 Beispiel

 $X_1, \ldots, X_n \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma^2), \, \mu, \sigma^2$ unbekannt Schätzer von σ^2 :

$$\tilde{\sigma}_n^2(c) = c \cdot \sum_{j=1}^n (X_j - \bar{X}_n)^2$$

Ziel: c so wählen, dass MQA von $\tilde{\sigma}_n^2(c)$ minimal wird.

$$E_{\vartheta}(\tilde{\sigma}_n^2(c)) = c\sigma^2 \cdot E_{\vartheta}[\underbrace{\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X}_n)^2}_{\sim \chi^2_{n-1}}] = c\sigma^2 \cdot (n-1)$$

$$\operatorname{Var}_{\vartheta}(\tilde{\sigma}_n^2(c)) = c^2 \sigma^4 \cdot 2(n-1)$$

3.8 Beispiel 19

Damit:

$$\begin{aligned} \mathrm{MQA}_{\tilde{\sigma}_{n}^{2}(c)}(\vartheta) &=& 2(n-1)c^{2}\sigma^{4} + (c\sigma^{2}(n-1) - \sigma^{2})^{2} \\ &=& \dots \\ &=& \sigma^{4}(n^{2} - 1)\left[(c - \frac{1}{n+1})^{2} + \frac{2}{(n-1)(n+1)^{2}}\right] \\ &\stackrel{!}{=}& \min \end{aligned}$$

Dies führt offensichtlich auf $c = \frac{1}{n+1}$.

4 Schätzmethoden

a) Maximum-Likelihood-Schätzer (ML-Schätzer)

ML-Methode (R. A. Fisher) setzt dominierte Verteilungsklasse $\wp := \{P_{\vartheta} : \vartheta \in \Theta\}$ voraus. $(\Theta \subset \mathbb{R}^k)$ Im Folgenden: $(\mathfrak{X}, \mathcal{B}) = (\mathbb{R}^n, \mathcal{B}^n)$

4.1 Grundannahmen

1) $\exists \sigma$ -endliches Maß μ auf \mathcal{B} mit:

$$\forall N \in \mathcal{B}: \ \mu(N) = 0 \Rightarrow \ P_{\vartheta}(N) = 0 \ \forall \vartheta \in \Theta$$

d.h. P_{ϑ} stetig bzgl. $\mu \ \forall \vartheta$. ($\Rightarrow P_{\vartheta}$ besitzt Dichte bzgl. μ)

- 2) Im Folgenden stets
 - (i) $\mu = \lambda^n$ (Borel-Lebesgue-Maß) (\rightarrow stetige Verteilung)

oder

(ii) $\mu = Z$ ählmaß auf einer abzählbaren Menge $A \subset \mathbb{R}^n$. (\rightarrow diskrete Verteilung)

Im Falle (i) bezeichne $f(x,\vartheta)=\frac{dP_{\vartheta}}{d\lambda^n}(x)$ die Lebesgue-Dichte von X, also

$$P_{\vartheta}(X \in B) = \int_{B} f(x, \vartheta) d\lambda^{n}(x), \ B \in \mathcal{B}$$

Im Falle (ii) bezeichne $f(x,\vartheta)=\frac{dP_{\vartheta}}{d\mu}(x)$ die Zähldichte von X, also

$$f(x,\vartheta) = P_{\vartheta}(X=x), \ x \in A$$

$$P_{\vartheta}(X \in B) = \sum_{x \in B \cap A} f(x, \vartheta)$$

⁹Beachte Schreibweise aus Stochastik II!

4.2 Definition und Bemerkung

Für jedes $x \in \mathbb{R}^n$ heißt die Abbildung

$$L_x: \left\{ \begin{array}{ll} \Theta & \to & [0, \infty) \\ \vartheta & \mapsto & L_x(\vartheta) := f(x, \vartheta) \end{array} \right.$$

die Likelihood-Funktion zur Stichprobe x.

Jeder Wert $\hat{\vartheta}(x) \in \Theta$, der Lösung t von

$$L_x(t) = \sup_{\vartheta \in \Theta} L_x(\vartheta) \quad (*)$$

ist, heißt (ein) ML-Schätzwert für $\vartheta \in \Theta$

- (i) Im Allgemeinen Existenz gesichert, falls Θ abgeschlossen ist.
- (ii) Falls Θ nicht abgeschlossen, so häufig $\vartheta \mapsto f(x,\vartheta)$ auf $\bar{\Theta}$ fortsetzbar. Dann sieht man $\hat{\vartheta}(x)$ auch als Lösung an, wenn sup in (*) im Punkt $\hat{\vartheta}(x) \in \bar{\Theta} \setminus \Theta$ angenommen wird.

Eine messbare Funktion $\hat{\vartheta}: (\mathbb{R}^n, \mathcal{B}^n) \to (\bar{\Theta}, \bar{\Theta} \cap \mathcal{B}^k)$ heißt **ML-Schätzer** für ϑ , wenn für jedes $x \in \mathfrak{X}$ gilt: $\hat{\vartheta}(x)$ ist Lösung von (*) im obigen Sinn¹⁰.

4.3 Bemerkungen

- (i) Oft ist $L_x(\cdot) = f(x, \cdot)$ differenzierbar. Dann liefert $\frac{\partial}{\partial \vartheta} f(x, \vartheta) \stackrel{!}{=} 0 \in \mathbb{R}^k$ die lokalen Maximalstellen von L_x im Inneren Θ^0 von Θ .
- (ii) Oft: $X = (X_1, \dots, X_n), X_1, \dots, X_n \stackrel{uiv}{\sim} f_1(\xi, \vartheta)$ [Dichte von X_1 .] Dann:

$$f(x,\vartheta) = \prod_{j=1}^{n} f_1(x_j,\vartheta), \ x = (x_1,\dots,x_n)$$

Log-Likelihood-Funktion

$$\log L_x(\vartheta) = \sum_{j=1}^n \log f_1(x_j, \vartheta)$$

 $\frac{\partial}{\partial \theta} \log L_x(\theta) \stackrel{!}{=} 0 \rightarrow \text{Maximal stellen von } L_x \text{ in } \Theta^0$

¹⁰siehe Punkt (ii)

4.4 Satz (Invarianzprinzip für ML-Schätzer)

Sei $g: \mathbb{R}^k \to \mathbb{R}^l$ messbar und

$$M_x(\gamma) := \sup_{\vartheta: \ g(\vartheta) = \gamma} L_x(\vartheta)$$

(sogenannte von g induzierte Likelihood-Funktion)

Ist $\hat{\vartheta}$ ML-Schätzer für $\vartheta \in \Theta$, so ist $\hat{\gamma} := g(\hat{\vartheta})$ der ML-Schätzer für $\gamma = g(\vartheta) \in \Gamma := g(\Theta)$, es gilt also $M(\hat{\gamma}) \geq M(\gamma) \ \forall \gamma \in \Gamma$. (Plug-In-Methode)

Beweis:¹¹

Aus

$$M_x(g(\hat{\vartheta})) = \sup_{\vartheta: g(\vartheta) = g(\hat{\vartheta})} L_x(\vartheta) \ge L_x(\hat{\vartheta})$$

und

$$M_x(g(\hat{\vartheta})) \le \sup_{\gamma \in \Gamma} M_x(\gamma) = L_x(\hat{\vartheta})$$

folgt

$$M_x(g(\hat{\vartheta})) = L_x(\hat{\vartheta}) \ge M_x(\gamma) \quad \forall \gamma \in \Gamma$$

4.5 Beispiel

$$X_1, \dots, X_n \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma^2), \ \vartheta = (\mu, \sigma^2)$$

$$\hat{\vartheta}(x) = (\bar{X}_n, \hat{\sigma}_n^2)$$

$$\begin{array}{ll} \Rightarrow & \bar{X}_n \text{ ist ML-Schätzer für } \mu \\ & \hat{\sigma}_n^2 \text{ ist ML-Schätzer für } \sigma^2 \\ & \hat{\sigma}_n = + \sqrt{\hat{\sigma}_n^2} \text{ ist ML-Schätzer für } \sigma \end{array}$$

b) Minimum-Quadrat-Schätzer (MQ-Schätzer)

4.6 Situation

Seien X_1, \ldots, X_n stochastisch unabhängig.

Annahme:

 $EX_j = \mu_j(\vartheta)$, wobei $\vartheta \in \mathbb{R}^p$ unbekannt, $\mu_j : \mathbb{R}^p \to \mathbb{R} \ (j = 1, \dots, n)$ bekannte Regressionsfunktionen.

¹¹In der 1. Zeile gilt eigentlich bereits Gleichheit.

Für $\varepsilon_j := X_j - EX_j$ gilt dann: $\varepsilon_1, \ldots, \varepsilon_n$ unabhängig, $E(\varepsilon_j) = 0 \ \forall j, \ X_j = \mu_j(\vartheta) + \varepsilon_j \ (j = 1, \ldots, n)$ bzw.

$$X = \mu(\vartheta) + \varepsilon$$

wobei

$$X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix}, \ \mu(\vartheta) = \begin{pmatrix} \mu_1(\vartheta) \\ \vdots \\ \mu_n(\vartheta) \end{pmatrix}, \ \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

Schätzmethode von ϑ durch Methode der kleinsten Quadrate, d.h. durch Minimierung der Fehlerquadratsumme

$$Q(\vartheta) := \sum_{j=1}^{n} (X_j - \mu_j(\vartheta))^2 = ||X - \mu(\vartheta)||^2$$

Sind μ_1, \ldots, μ_n stetig differenzierbar, so gilt mit

$$M(\vartheta) := \begin{pmatrix} \frac{\partial}{\partial \vartheta_1} \mu_1(\vartheta) & \cdots & \frac{\partial}{\partial \vartheta_p} \mu_1(\vartheta) \\ \vdots & & \vdots \\ \frac{\partial}{\partial \vartheta_1} \mu_n(\vartheta) & \cdots & \frac{\partial}{\partial \vartheta_p} \mu_n(\vartheta) \end{pmatrix}$$

$$\frac{\partial}{\partial \vartheta}Q(\vartheta) = -2 \cdot M^T(\vartheta) \cdot (X - \mu(\vartheta))$$

Beweis:

Sei allgemein $f, g: \mathbb{R}^p \to \mathbb{R}^q$.

Jacobi-Matrix

$$J_{f} = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{p}} \\ \vdots & & \vdots \\ \frac{\partial f_{q}}{\partial x_{1}} & \cdots & \frac{\partial f_{q}}{\partial x_{p}} \end{pmatrix} \in \mathbb{R}^{q \times p}$$

$$\Rightarrow \underbrace{J_{f^{T} \cdot g}^{T}}_{\in \mathbb{R}^{p}} = \underbrace{J_{f}^{T} \cdot g}_{\in \mathbb{R}^{p} \times q} + \underbrace{J_{g}^{T} \cdot f}_{\in \mathbb{R}^{p}} \qquad (*)$$

[Beachte: f,g vektorwertig!]

Hier speziell:
$$f(\vartheta) = g(\vartheta) = X - \mu(\vartheta)$$

$$\Rightarrow Q(\vartheta) = f^{T}(\vartheta) \cdot f(\vartheta)$$

$$\Rightarrow J_{f} = -M(\vartheta) = J_{g}$$

$$\stackrel{(*)}{\Rightarrow} \frac{\partial}{\partial \vartheta} [f^T(\vartheta) \cdot f(\vartheta)] = -M^T(\vartheta)g - M^T(\vartheta)f$$
$$= -2M^T(\vartheta)(X - \mu(\vartheta))$$

Die Lösungen $\hat{\vartheta}$ von

$$Q(\hat{\vartheta}) = \min_{\vartheta \in \mathbb{R}^p} Q(\vartheta)$$

(sogenannte MQ-Schätzer) befinden sich also unter den Lösungen ϑ der sogenannten **Normalengleichung**

$$M^{T}(\vartheta) \cdot \mu(\vartheta) = M^{T}(\vartheta) \cdot X$$

4.7 Beispiel (Einfach lineare Regression)

$$\vartheta = (\vartheta_0, \vartheta_1) \in \mathbb{R}$$

$$\mu_i(\vartheta) = \vartheta_0 + \vartheta_1 t_i \ (i = 1, \dots, n)$$

 t_i bekannt, nicht alle gleich.

$$Q(\vartheta) = \sum_{i=1}^{n} (X_i - \vartheta_0 - \vartheta_1 t_i)^2 = \min_{\vartheta_0, \vartheta_1}!$$
$$M^T(\vartheta) = \begin{pmatrix} 1 & \dots & 1 \\ t_1 & \dots & t_n \end{pmatrix}$$

Normalengleichung:

$$\begin{pmatrix} 1 & \dots & 1 \\ t_1 & \dots & t_n \end{pmatrix} \begin{pmatrix} \vartheta_0 + \vartheta_1 t_1 \\ \vdots \\ \vartheta_0 + \vartheta_1 t_n \end{pmatrix} = \begin{pmatrix} 1 & \dots & 1 \\ t_1 & \dots & t_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\Leftrightarrow n\vartheta_0 + \vartheta_1 \sum_{i=1}^n t_i = \sum_{i=1}^n x_i$$

$$\vartheta_0 \sum_{i=1}^n t_i + \vartheta_1 \sum_{i=1}^n t_i^2 = \sum_{i=1}^n t_i x_i$$

Mit
$$\bar{t} = \frac{1}{n} \sum_{i=1}^{n} t_i$$
, $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ folgt

$$\hat{\vartheta}_0 = \bar{x} - \hat{\vartheta}_1 \bar{t}$$

$$\hat{\vartheta}_1 = \frac{\sum_{i=1}^n t_i x_i - n \bar{t} \bar{x}}{\sum_{i=1}^n (t_i - \bar{t})^2}$$

 $m Wegen^{12}$

$$\sum_{i} a_i b_i - n\bar{a}\bar{b} = \sum_{i} (a_i - \bar{a})(b_i - \bar{b}) = \sum_{i} (a_i - \bar{a})b_i$$

folgt

$$\hat{\vartheta}_1 = \hat{\vartheta}_1(X) = \frac{\sum_{i=1}^n (t_i - \bar{t}) x_i}{\sum_{i=1}^n (t_i - \bar{t})^2}$$

und somit

$$E(\vartheta_1) = \frac{1}{\sum_i (t_i - \bar{t})^2} \sum_i (t_i - \bar{t})(\vartheta_0 + \vartheta_1 t_i) = \vartheta_1$$

Falls $Var(X_i) = \sigma^2 \ \forall i$, so gilt:

$$Var(\hat{\vartheta}_1) = \frac{1}{(\sum_i (t_i - \bar{t})^2)^2} \sum_i (t_i - \bar{t})^2 \sigma^2 = \frac{\sigma^2}{\sum_{i=1}^n (t_i - \bar{t})^2}$$

 $[Var(\hat{\vartheta}_1) = MQA, da erwartungstreu; t_i so wählen, dass <math>Var(\hat{\vartheta}_1)$ klein wird, also möglichst weit auseinander.] Weiter gilt

$$E(\hat{\vartheta}_0) = E\bar{X} - \bar{t}E(\hat{\vartheta}_1) = \frac{1}{n}\sum_{i=1}^n (\vartheta_0 + \vartheta_1 t_i) - \bar{t}\vartheta_1 = \vartheta_0 + \vartheta_1 \bar{t} - \vartheta_1 \bar{t} = \vartheta_0$$

Bemerkungen:

(i) Falls $\text{Var}(X_i)=\sigma^2 \ \forall i \ (\text{Cov}(X_i,X_j)=0 \ \forall i\neq j \ \text{wegen Unabhängigkeit}^{13}),$ so gilt mit $\bar{t^2}=\frac{1}{n}\sum_{i=1}^n t_i^2$

$$\operatorname{Var}(\hat{\vartheta_0}) = \frac{\sigma^2 t^2}{n(\bar{t}^2 - (\bar{t})^2)}$$

(ii) Falls $X_i \sim \mathcal{N}(\mu, \sigma^2) \ \forall i$, so ist der MQ-Schätzer auch ML-Schätzer für ϑ

 $^{{}^{12}\}sum_{13}(a_i - \bar{a})\bar{b} = \bar{b}\sum_{13}(a_i - \bar{a}) = 0$ ¹³Voraussetzung!

4.8 Definition 27

c) Momentenmethode

Definition 4.8

Es seien $X_1, \ldots, X_n \stackrel{uiv}{\sim} X$, X reellwertig, $P^X \in \{P_{\vartheta} : \vartheta \in \Theta\}, \ \Theta \subset \mathbb{R}^k$

$$\vartheta = (\vartheta_1, \dots, \vartheta_k)$$

Annahme

- (i) $E|X^k| < \infty$
- (ii) Es gibt Funktionen $g_1, \ldots, g_k : \mathbb{R}^k \to \mathbb{R}$ mit

$$\vartheta_1 = g_1(EX, \dots, EX^k)$$

$$\vartheta_k = g_k(EX, \dots, EX^k)$$

Sei $\bar{X}_n^l = \frac{1}{n} \sum_{j=1}^n X_j^l \ (l=1,\ldots,k).$ Dann ist der Momentenschätzer für ϑ

$$\hat{\vartheta} := \begin{pmatrix} g_1(\bar{X}_n^1, \dots, \bar{X}_n^k) \\ \vdots \\ g_k(\bar{X}_n^1, \dots, \bar{X}_n^k) \end{pmatrix}$$

$$\overline{X_i} \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma^2), \ \mu = EX, \ \sigma^2 = EX^2 - (EX)^2
\Rightarrow \hat{\mu}_n = \bar{X}_n^1, \ \hat{\sigma}_n^2 = \bar{X}_n^2 - (\bar{X}_n^1)^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

Probleme:

 g_1, \ldots, g_k nicht explizit gegeben.

Ausreißeranfälligkeit.

Momentenschäter sind nicht "robust".

$\underline{\text{Beachte}}$

Momentenschätzer sind konsistent, falls g_1,\ldots,g_k stetig sind an der Stelle $(EX,\ldots,EX^k).$

4.9 Beispiel (Gamma-Verteilung)

 $X_1, \ldots, X_n \stackrel{uiv}{\sim} \Gamma(\alpha, \beta)$, Dichte

$$f(x, \alpha, \beta) = \frac{\beta^{\alpha} x^{\alpha - 1} e^{-\beta x}}{\Gamma(\alpha)} (x > 0)$$

$$\begin{array}{l} \vartheta = (\alpha,\beta) \in \Theta = \mathbb{R}_{>0} \times \mathbb{R}_{>0} \\ X \sim f(x,\alpha,\beta) \Rightarrow EX = \frac{\alpha}{\beta}, EX^2 = \frac{\alpha(\alpha+1)}{\beta^2} \ \Rightarrow \end{array}$$

$$\alpha = \frac{(EX)^2}{EX^2 - (EX)^2} =: g_1(EX, EX^2)$$

$$\beta = \frac{EX}{EX^2 - (EX)^2} =: g_2(EX, EX^2)$$

 \Rightarrow Momentenschätzer

$$\hat{\alpha} = \frac{(\bar{X}_n^1)^2}{\bar{X}_n^2 - (\bar{X}_n^1)^2} = \frac{\bar{X}_n^2}{\hat{\sigma}_n^2}$$

$$\hat{\beta} = \frac{\bar{X_n}}{\hat{\sigma_n^2}}$$

d) Ein nichtparametrisches Schätzprinzip

Seien $X_1, \ldots, X_n \stackrel{uiv}{\sim} F$, $F(t) = P(X \leq t)$, $t \in \mathbb{R}$, F unbekannt

4.10 Definition

Die durch

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \{ X_i \le t \}, \ t \in \mathbb{R}$$

definierte Funktion heißt **empirische Verteilungsfunktion** (EVF) von X_1, \ldots, X_n .

Die Realisierungen von \hat{F}_n sind Treppenfunktionen.

$$\hat{F}_n(t_0) \stackrel{f.s.}{\to} E[\mathbf{1}\{X_1 \le t_0\}] = P(X_1 \le t_0) = F(t_0)$$

4.11 Satz von Glivenko-Cantelli

Sei $\hat{F}_n^{\omega}(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{X_i(\omega) \leq t\}, \ \omega \in \Omega.$

Falls $X_1, \ldots, X_n \stackrel{uiv}{\sim} F$ auf Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$, so gilt

$$\mathbb{P}(\{\omega \in \Omega : \lim_{n \to \infty} \underbrace{\sup_{t \in \mathbb{R}} \left| \hat{F}_n^{\omega}(t) - F(t) \right|}_{=: \|\hat{F}_n^{\omega} - F\|_{\infty}} = 0\}) = 1$$

 $\frac{\text{Kurz: }}{\|\hat{F}_n^{\omega} - F\|_{\infty}} \to 0 \quad \mathbb{P} - f.s.$ (Stochastik II, Henze)

4.12 \hat{F}_n als nichtparametrischer ML-Schätzer

Sei \mathfrak{F} die Menge aller Verteilungsfunktionen auf $\mathbb{R}, X_1, \ldots, X_n \stackrel{uiv}{\sim} F \in \mathfrak{F}$. Sei P_F das zu F gehörende Wahrscheinlichkeitsmaß auf \mathcal{B}^1 , also

$$P_F([a,b]) = F(b) - F(a), \ a < b$$

$$P_F(\{x\}) = F(x) - F(x-0), \ x \in \mathbb{R}$$

Sei (x_1, \ldots, x_n) Realisierung von (X_1, \ldots, X_n) . Die durch

$$L_x: \begin{array}{ccc} \mathfrak{F} & \to & [0,\infty) \\ G & \mapsto & L_x(G) := \prod_{i=1}^n P_G(\{x_i\}) \end{array}$$

definierte Funktion heißt nichtparametrische Likelihood-Funktion zu $x=(x_1,\ldots,x_n)$.

Beachte: $L_x(G) = 0$, falls $P_G(\{x_i\}) = 0$ für ein i. 14

Behauptung:

 $\overline{L_x(\cdot)}$ wird maximal für $G(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{x_i \leq t\}.$

Beweis:

Seien z_1, \ldots, z_k die unterschiedlichen Werte unter $x_1, \ldots, x_n, n_1, \ldots, n_k$ die entsprechenden Vielfachheiten.

$$L_x(G) = \prod_{i=1}^n P_G(\{x_i\}) = \prod_{j=1}^k \underbrace{P_G(\{z_j\})}_{=:p_j}^{n_j} = \prod_{j=1}^k p_j^{n_j}$$

Setze $\hat{p}_j := \frac{n_j}{n}, j = 1, \dots, k$, Verteilungsfunktion ist \hat{F}_n .

¹⁴z.B. für G stetig

F sei beliebige Verteilungsfunktion mit $p_j := F(z_j) - F(z_j - 0) > 0, j = 1, \ldots, k$ mit $p_j \neq \hat{p}_j$ für mindestens ein j. Es gilt für x > 0:

$$\log x \le x - 1 \quad (*)$$

 $\log x = x - 1$ nur für x = 1.

$$\log\left(\frac{L_x(F)}{L_x(\hat{F}_n)}\right) = \sum_{j=1}^k n_j \cdot \log(\frac{p_j}{\hat{p}_j})$$

$$= n \sum_{j=1}^k \hat{p}_j \cdot \log(\frac{p_j}{\hat{p}_j})$$

$$\stackrel{(*)}{<} n \sum_{j=1}^k \hat{p}_j (\frac{p_j}{\hat{p}_j} - 1)$$

$$= n (\sum_{j=1}^k p_j - \sum_{j=1}^k \hat{p}_j)$$

$$< 0$$

$$\Rightarrow L_x(F) < L_x(\hat{F}_n) \blacksquare$$

4.13 Nichtparametrisches Schätzprinzip

Seien $X_1, \ldots, X_n \stackrel{uiv}{\sim} F$, $F \in \mathfrak{F}$, \mathfrak{F} Menge von Verteilungsfunktionen (Verteilungsannahme).

Sei $\gamma: \mathfrak{F} \to \mathbb{R}$ Funktional.

Interessierender Parameter sei $\gamma(F)$. "Rezept": Schätze $\gamma(F)$ durch $\gamma(\hat{F}_n)$

4.14 Beispiele

a)
$$\mathfrak{F} := \{F : \underbrace{\int |x|F(dx)}_{=E|X_1|} < \infty \}$$

$$\gamma(F) := \int xF(dx)(=EX_1)$$

$$\gamma(\hat{F}_n) = \int x\hat{F}_n(dx) = \frac{1}{n}\sum_{i=1}^n X_i = \bar{X}_n$$

4.14 Beispiele 31

b)
$$\mathfrak{F}:=\{F:\ \int x^2F(dx)<\infty\}$$

$$\gamma(F):=\int (x-\int ydF(y))^2dF(x)=\mathrm{Var}(X_1)$$

$$\gamma(\hat{F}_n)=\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X}_n)^2$$

c)
$$\mathfrak{F}:=\{F:\ F \text{ hat Lebesgue-Dichte } f\}$$

$$\gamma(F) = F'(t_0) = f(t_0)$$
$$\gamma(\hat{F}_n) = ?$$

5 Optimale erwartungstreue Schätzer

5.1 Definition

Seien X_1, \ldots, X_n reelle Zufallsvariablen, $T = T(X_1, \ldots, X_n)$ reellwertige Statistik.

T heißt **linear** : $\Leftrightarrow \exists c_1, \dots, c_n \in \mathbb{R} \text{ mit } T = \sum_{j=1}^n c_j X_j$

5.2 Satz

Seien $X_1, \ldots, X_n \stackrel{uiv}{\sim} X$, $EX^2 < \infty$, $\mu := EX$, $\sigma^2 := \text{Var}(X)$, (μ, σ^2) unbekannt. Es sei T ein beliebiger linearer erwartungstreuer Schätzer für μ . Dann gilt:

$$\operatorname{Var}(T) \ge \operatorname{Var}(\bar{X}_n) = \frac{\sigma^2}{n}$$

Beweis:

Sei
$$T = \sum_{j=1}^{n} c_j X_j$$
.

T erwartungstreu

$$\Rightarrow \mu = E(T) = \mu \sum_{j=1}^{n} c_j$$
$$\Rightarrow \sum_{j=1}^{n} c_j = 1$$

$$Var(T) = \sigma^2 \sum_{j=1}^{n} c_j^2$$

$$\underbrace{\left(\sum_{j=1}^{n} c_{j} \cdot 1\right)^{2}}_{=1} \leq \sum_{j=1}^{n} c_{j}^{2} \underbrace{\sum_{j=1}^{n} 1^{2}}_{=n}$$

(Cauchy-Schwarz)

$$\sum_{j=1}^{n} c_j^2 \ge \frac{1}{n}$$

$$\sum_{j=1}^{n} c_j^2 = \frac{1}{n} \Leftrightarrow c_j = \frac{1}{n} \ \forall j$$

$$\Rightarrow T = \bar{X}_n$$
.

5.3 Situation

Sei $(\mathfrak{X}, \mathcal{B}, \{P_{\vartheta} : \vartheta \in \Theta\}), \Theta \subset \mathbb{R}^k$, ein statistischer Raum. $X_1, \ldots, X_n \stackrel{uiv}{\sim} P_{\vartheta}$.

$$g:\ \Theta \to \mathbb{R}$$
 Funktional

 $g(\vartheta)$ interessierender Parameter.

Sei

$$U_q = \{T \mid T : \mathfrak{X}^n \to \mathbb{R} \text{ messbar}, E_{\vartheta}T = g(\vartheta) \ \forall \vartheta \in \Theta, E_{\vartheta}T^2 < \infty \ \forall \vartheta \in \Theta \}$$

die Menge aller erwartungstreuen Schätzer für $g(\vartheta)$ mit endlicher Varianz.

Annahme: $U_g \neq \emptyset$

Sei

$$m(\vartheta) := \inf \{ \operatorname{Var}_{\vartheta}(T) : T \in U_q \}$$

5.4 Definition

Ein $T_0 \in U_g$ mit $\operatorname{Var}_{\vartheta}(T_0) = m(\vartheta) \ \forall \vartheta \in \Theta$ heißt **UMVUE**. (Uniformly Minimum Variance Unbiased Estimator)

5.5 Satz

Falls T_1 und T_2 UMVUE, so gilt

$$P_{\vartheta}(T_1 = T_2) = 1 \ \forall \vartheta \in \Theta$$

Beweis:

 U_g ist konvex, d.h.

$$S, T \in U_q \implies \lambda S + (1 - \lambda)T \in U_q \ \forall \lambda \in [0, 1]$$

Seien T_1, T_2 UMVUE.

$$\Rightarrow \frac{1}{2}(T_1 + T_2) \in U_g$$

$$\Rightarrow \underbrace{\operatorname{Var}_{\vartheta}(\frac{1}{2}(T_1 + T_2))}_{=\frac{1}{4}(\operatorname{Var}_{\vartheta}(T_1) + \operatorname{Var}_{\vartheta}(T_2) + 2\operatorname{Cov}_{\vartheta}(T_1, T_2))} \ge \operatorname{Var}_{\vartheta}(T_1)(= m(\vartheta) = \operatorname{Var}_{\vartheta}(T_2))$$

$$\Rightarrow \operatorname{Var}_{\vartheta}(T_1) \le \operatorname{Cov}_{\vartheta}(T_1, T_2) \overset{\operatorname{CSU}}{\le} \sqrt{\operatorname{Var}_{\vartheta}(T_1) \operatorname{Var}_{\vartheta}(T_2)} = \operatorname{Var}_{\vartheta}(T_1)$$

$$\Rightarrow \operatorname{Var}_{\vartheta}(T_1) = \operatorname{Cov}_{\vartheta}(T_1, T_2)$$

$$\Rightarrow \operatorname{Var}_{\vartheta}(T_1 - T_2) = \operatorname{Var}_{\vartheta}(T_1) + \operatorname{Var}_{\vartheta}(T_2) - 2\operatorname{Cov}_{\vartheta}(T_1, T_2) = 0$$

$$E_{\vartheta}(T_1 - T_2) = 0$$

$$\Rightarrow P_{\vartheta}(T_1 = T_2) = 1. \blacksquare$$

5.6 Definition und Satz

Sei

$$S_n := \{ \pi = (\pi(1), \dots, \pi(n)) : \pi \text{ Permutation von } \{1, \dots, n\} \}$$

Für Statistik $T: \mathfrak{X}^n \to \mathbb{R}$ sei $T^{\pi}(X_1, \ldots, X_n) = T(X_{\pi(1)}, \ldots, X_{\pi(n)})$. In der Situation von 5.3 heißt T (im wesentlichen) symmetrisch : \Leftrightarrow

$$P_{\vartheta}(T^{\pi} = T) = 1 \ \forall \vartheta \in \Theta \forall \pi \in \mathcal{S}_n$$

 $T_0 \in U_g \text{ UMVUE} \Rightarrow T \text{ symmetrisch.}$

Beweis:

Sei $\pi \in \mathcal{S}_n$, $\vartheta \in \Theta$ beliebig.

Wegen $X_1, \ldots, X_n \stackrel{uiv}{\sim} P_{\vartheta}$ folgt $T_0^{\pi} \sim T_0$ unter P_{ϑ}

$$\Rightarrow E_{\vartheta}(T_0^{\pi}) = E_{\vartheta}(T_0) = g(\vartheta)$$

$$\Rightarrow \operatorname{Var}_{\vartheta}(T_0^{\pi}) = \operatorname{Var}_{\vartheta}(T_0) = m(\vartheta)$$
 \rightarrow \tau_0^{\pi} \in U_g, \text{ UMVUE}

Satz $5.5 \Rightarrow P_{\vartheta}(T_0^{\pi} = T_0) = 1.$

5.7 Reguläre Verteilungsklassen

Situation:

Sei $(\mathfrak{X}, \mathcal{B}, \{P_{\vartheta} : \vartheta \in \Theta)$ statistischer Raum mit $(\mathfrak{X}, \mathcal{B}) = (\mathbb{R}^n, \mathcal{B}^n), \Theta \subset \mathbb{R}^k, \Theta$ offen.

 $X = (X_1, ..., X_n)$ Zufallsvektor mit Verteilung P_{ϑ} ($\vartheta \in \Theta$), P_{ϑ} besitze Dichte $f(x, \vartheta)$ bezüglich μ , dabei sei μ entweder das Lebesgue-Maß oder das Zählmaß auf einer abzählbaren Teilmenge des \mathbb{R}^n .

 $T: \mathbb{R}^n \to \mathbb{R}^s$ sei Statistik mit $E_{\vartheta} ||T||^2 < \infty$, Kovarianzmatrix¹⁵ von T:¹⁶

$$\operatorname{Var}_{\vartheta}(T) := E_{\vartheta}[(T - E_{\vartheta}T)(T - E_{\vartheta}T)^T]$$

 $^{^{15}}$ Schreibweise für Kovarianzmatrix hier nicht ${\rm Cov}_\vartheta,$ sondern ${\rm Var}_\vartheta.$ Beachte dazu die Fälle s=1 und s>1!

 $^{^{16}}$ Bei Vektoren manchmal Schreibweise x' für x^T .

Folgende Regularitätsbedingungen sollen gelten:

a) $\forall x \in \mathfrak{X}$ existiert $\frac{\partial}{\partial \vartheta_i} f(x, \vartheta)$ und ist stetig. $(j = 1, \dots, k)$

b)

$$\frac{d}{d\vartheta} \int f(x,\vartheta)\mu(dx) = \int \frac{d}{d\vartheta} f(x,\vartheta)\mu(dx)$$

wobei hier $\frac{d}{d\vartheta} := (\frac{\partial}{\partial \vartheta_1}, \dots, \frac{\partial}{\partial \vartheta_k})^T$.

Der k-dimensionale Zufallsvektor

$$\mathcal{U}_n(\vartheta) := \frac{d}{d\vartheta} \log f(X,\vartheta) = \frac{\frac{d}{d\vartheta} f(X,\vartheta)}{f(X,\vartheta)}$$

heißt Score-Vektor.

Die $k \times k$ -Matrix

$$I_n(\vartheta) := E_{\vartheta}[\mathcal{U}_n(\vartheta) \cdot \mathcal{U}_n(\vartheta)^T] = \left(E_{\vartheta} \left[\frac{\partial}{\partial \vartheta_i} \log f(X, \vartheta) \frac{\partial}{\partial \vartheta_j} \log f(X, \vartheta) \right] \right)_{i, i = 1, \dots, k}$$

heißt **Fisher-Informationsmatrix** (von f an der Stelle ϑ):

c) $I_n(\vartheta)$ existiert und ist positiv definit.

Eine Verteilungsklasse $\{P_{\vartheta}: \vartheta \in \Theta\}$, die die Bedingungen (a)-(c) erfüllt, heißt **regulär**.

5.8 Lemma

In der Situation von 5.7 gilt:

 $E_{\vartheta}\mathcal{U}_n(\vartheta) = 0 \ \forall \vartheta \in \Theta \text{ und somit } I_n(\vartheta) = \operatorname{Var}_{\vartheta}(\mathcal{U}_n(\vartheta)), \ \vartheta \in \Theta, \text{ d.h. die Fisher-Informationsmatrix ist Kovarianzmatrix des Score-Vektors.}$

Beweis:

$$E_{\vartheta}\mathcal{U}_{n}(\vartheta) \stackrel{(*)}{=} \int \frac{\frac{d}{d\vartheta}f(x,\vartheta)}{f(x,\vartheta)}f(x,\vartheta)d\mu(x) \stackrel{(b)}{=} \frac{d}{d\vartheta} \underbrace{\int f(x,\vartheta)d\mu(x)}_{=1} = 0$$

(*): Integration bezüglich P_{ϑ} ; P_{ϑ} hat aber Dichte $f(x,\vartheta)$ bezüglich μ

5.9 Bemerkung

Gelegentlich werden die weiteren Voraussetzungen

d) $\forall x \in \mathfrak{X}$ existiert $\frac{\partial^2}{\partial \vartheta_i \partial \vartheta_j} f(x, \vartheta)$ und ist stetig. $(i, j = 1, \dots, k)$

e)

$$\frac{\partial^2}{\partial \vartheta_i \partial \vartheta_j} \int f(x, \vartheta) \mu(dx) = \int \frac{\partial^2}{\partial \vartheta_i \partial \vartheta_j} f(x, \vartheta) \mu(dx) \ \forall i, j = 1, \dots, k$$

benötigt.

Wir führen noch die folgenden Notationen ein:

$$W_n(\vartheta) := \left(\frac{\partial^2}{\partial \vartheta_i \partial \vartheta_j} \log f(X, \vartheta)\right)_{1 \le i, j \le k} =: \frac{d^2}{d\vartheta d\vartheta^T} \log f(X, \vartheta)$$

5.10 Lemma

Unter (d) und (e) gilt:

$$I_n(\vartheta) = -E_{\vartheta}W_n(\vartheta)$$

Beweis:

Wegen

$$\frac{\partial^2}{\partial \vartheta_i \partial \vartheta_j} \log f = \frac{\frac{\partial^2}{\partial \vartheta_i \partial \vartheta_j} f}{f} - \frac{(\frac{\partial}{\partial \vartheta_i} f)(\frac{\partial}{\partial \vartheta_j} f)}{f^2}$$

folgt

$$E_{\vartheta}(W_{n}(\vartheta)) = \int \frac{d^{2}}{d\vartheta d\vartheta^{T}} \log f(x,\vartheta) \cdot f(x,\vartheta) d\mu(x)$$

$$= \underbrace{\left(\int \frac{\partial^{2}}{\partial\vartheta_{i}\partial\vartheta_{j}} f(x,\vartheta)\mu(dx)\right)_{i,j}}_{=0 \text{ nach (e) [vgl. 5.7]}}$$

$$-\left(\int \frac{\partial}{\partial\vartheta_{i}} \log f(x,\vartheta) \cdot \frac{\partial}{\partial\vartheta_{j}} \log f(x,\vartheta) \cdot f(x,\vartheta) d\mu(x)\right)_{i,j}$$

$$= -E_{\vartheta}[\mathcal{U}_{n}(\vartheta)\mathcal{U}_{n}n(\vartheta)^{T}]$$

$$= -I_{n}(\vartheta)$$

5.11 Reguläre Statistiken (Schätzer)

In der Situation von 5.7 heißt eine Statistik $T: \mathbb{R}^n \to \mathbb{R}^s$ regulär, falls gilt:

- f) Die Funktion $\Theta \ni \vartheta \mapsto E_{\vartheta}T \in \mathbb{R}^s$ ist stetig differenzierbar.
- g) Differenziation und Integration können vertauscht werden:

$$\frac{\partial}{\partial \vartheta_j} \int T(x) f(x, \vartheta) \mu(dx) = \int T(x) \frac{\partial}{\partial \vartheta_j} f(x, \vartheta) \mu(dx) \ j = 1, \dots, k$$

Mit

$$C_n(\vartheta) := \begin{bmatrix} \frac{\partial}{\partial \vartheta_1} E_{\vartheta} T_1 & \cdots & \frac{\partial}{\partial \vartheta_1} E_{\vartheta} T_s \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial \vartheta_k} E_{\vartheta} T_1 & \cdots & \frac{\partial}{\partial \vartheta_k} E_{\vartheta} T_s \end{bmatrix}_{k \times s} = \frac{d}{d\vartheta} E_{\vartheta} T^T$$

wird Bedingung (g) zu

$$C_n(\vartheta) = E_{\vartheta}[\mathcal{U}_n(\vartheta)T^T]$$

Wegen $E_{\vartheta}[\mathcal{U}_n(\vartheta)] = 0$ folgt

$$C_n(\vartheta) = E_{\vartheta}[\mathcal{U}_n(\vartheta)(T - E_{\vartheta}T)^T]$$

5.12 Strukturlemma

Vorbemerkung:

Seien A,B $n \times n$ -Matrizen.

 $A \geq B$: $\Leftrightarrow A - B$ positiv semidefinit¹⁷ ($\Leftrightarrow x^T A x \geq x^T B x \ \forall x \in \mathbb{R}^n$) (,, \geq " definiert Loewner-Halbordnung)

Es seien $T: \mathbb{R}^n \to \mathbb{R}^s$ eine Statistik, P_{ϑ} Verteilung auf \mathcal{B}^n , $V(\vartheta)$ ein k-dimensionaler Zufallsvektor mit $E_{\vartheta}V(\vartheta)=0$ und positiv definiter Kovarianzmatrix

$$J(\vartheta) = E_{\vartheta}[V(\vartheta) \cdot V(\vartheta)^T]$$

Definiert man

$$D(\vartheta) := E_{\vartheta}[V(\vartheta) \cdot (T - E_{\vartheta}T)^T]$$

 $(k \times s\text{-Matrix})$, so gilt¹⁸:

$$\operatorname{Var}_{\vartheta}(T) \ge D^{T}(\vartheta) \cdot J^{-1}(\vartheta) \cdot D(\vartheta)$$

 $^{^{17}}A - B > 0$

 $^{^{18}}$ Var $_{\vartheta}(T)$ ist Kovarianzmatrix, da T vektorwertig; im Folgenden wird diese Schreibweise bei (Zufalls-)Vektoren meistens angewandt (...)

"=" gilt genau dann, wenn $T=E_{\vartheta}T+D^T(\vartheta)\cdot J^{-1}(\vartheta)\cdot V(\vartheta)$ P_{ϑ} -f.s.

Beweis:

Für jeden Zufallsvektor $Y_{k\times 1}$ gilt:

(i)
$$E[YY^T] \ge 0$$

(ii)
$$E[YY^T] = 0 \Leftrightarrow Y = 0$$
 P-f.s.

[zu (i):

$$\forall a \in \mathbb{R}^k : \ a^T E[YY^T]a = E[a^T YY^T a] = E[(a^T Y)^2] \ge 0$$

zu (ii): "⇒"

$$EYY^T = 0 \implies \forall j: EY_j^2 = 0 \implies Y = 0 \text{ P-f.s.}$$
]

Setze
$$Y := T - E_{\vartheta}T - D^{T}(\vartheta) \cdot J^{-1}(\vartheta) \cdot V(\vartheta)$$
.

Dann gilt:

$$0 \stackrel{(i)}{\leq} E_{\vartheta}[YY^{T}] \stackrel{(*)}{=} E_{\vartheta}[(T - E_{\vartheta}T)(T - E_{\vartheta}T)^{T}] \\ - \underbrace{E_{\vartheta}[(T - E_{\vartheta}T)V^{T}(\vartheta)]}_{=D^{T}(\vartheta)} J^{-1}(\vartheta)D(\vartheta) \\ = D^{T}(\vartheta) \\ - D^{T}(\vartheta)J^{-1}(\vartheta)\underbrace{E_{\vartheta}[V(\vartheta)(T - E_{\vartheta}T)^{T}]}_{=D(\vartheta)} \\ + D^{T}(\vartheta)J^{-1}(\vartheta)\underbrace{E_{\vartheta}[V(\vartheta) \cdot V^{T}(\vartheta)]}_{=J(\vartheta)} J^{-1}(\vartheta)D(\vartheta) \\ = \operatorname{Var}_{\vartheta}(T) - D^{T}(\vartheta)J^{-1}(\vartheta)D(\vartheta)$$

(*): Beachte: J symmetrisch,
$$J = E_{\vartheta}[\cdot]$$
, $D = E_{\vartheta}[\cdot]$. $[Y = (T - E_{\vartheta}T) - (D^{T}(\vartheta) \cdot J^{-1}(\vartheta) \cdot V(\vartheta))]$

"="
$$\stackrel{(ii)}{\Leftrightarrow}$$
 Y = 0 P-f.s. ■

5.13 Satz (Cramér-Rao-Ungleichung)

Es seien $\{P_{\vartheta}:\vartheta\in\Theta\}$ reguläre Verteilungsklasse und $T:\mathbb{R}^n\to\mathbb{R}^s$ reguläre Statistik. Dann gilt:

(1)
$$\operatorname{Var}_{\vartheta}(T) \ge \left(\frac{d}{d\vartheta} E_{\vartheta} T^{T}\right)^{T} \cdot I_{n}^{-1}(\vartheta) \cdot \left(\frac{d}{d\vartheta} E_{\vartheta} T^{T}\right) \quad (\vartheta \in \Theta)$$

$$= \text{``in (1) gilt} \Leftrightarrow T = E_{\vartheta}T + (\frac{d}{d\vartheta}E_{\vartheta}T^{T})^{T} \cdot I_{n}^{-1}(\vartheta) \cdot \mathcal{U}_{n}(\vartheta)$$

Beweis

5.12 mit
$$V(\vartheta) := \mathcal{U}_n(\vartheta), E_{\vartheta}\mathcal{U}_n(\vartheta) = 0$$
 (Lemma 5.8), $J(\vartheta) = I_n(\vartheta), D(\vartheta) = E_{\vartheta}[\mathcal{U}_n(\vartheta)(T - E_{\vartheta}T)^T] = C_n(\vartheta) = \frac{d}{d\vartheta}E_{\vartheta}T^T$ (5.11).

5.14 Bemerkungen

a) Ist T erwartungstreu für $g(\vartheta)$, so gilt

$$E_{\vartheta}T = g(\vartheta) \ \forall \vartheta \in \Theta$$

 \Rightarrow rechte Seite von 5.13(1) ist nicht von T abhängig.

b) Falls k=s und T erwartungstreu für ϑ , so gilt $E_{\vartheta}T=\vartheta \ \forall \vartheta \in \Theta$ und somit $\frac{d}{d\vartheta}E_{\vartheta}T^T=I_k \Rightarrow$

$$\operatorname{Var}_{\vartheta} T \ge I_n^{-1}(\vartheta)$$

$$, = " \Leftrightarrow T = \vartheta + I_n^{-1}(\vartheta) \frac{d}{d\vartheta} \log f(X,\vartheta) \quad P_\vartheta - f.s.$$

c) Falls $X = (X_1, ..., X_n)$ und $X_1, ..., X_n \stackrel{uiv}{\sim} f_1(\xi, \vartheta)$, so gilt:

$$f(x,\vartheta) = \prod_{j=1}^{n} f_1(x_j,\vartheta)$$

$$\mathcal{U}_n(\vartheta) = \frac{d}{d\vartheta} \sum_{j=1}^n \log f_1(X_j, \vartheta) = \sum_{j=1}^n \underbrace{\frac{d}{d\vartheta} \log f_1(X_j, \vartheta)}_{\text{uiv mit } E_{\vartheta}(\cdot) = 0}$$

5.15 Beispiel 41

$$\Rightarrow I_{n}(\vartheta) = E_{\vartheta}[\mathcal{U}_{n}(\vartheta)\mathcal{U}_{n}^{T}(\vartheta)]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \underbrace{E_{\vartheta}[\frac{d}{d\vartheta} \log f_{1}(X_{i},\vartheta) \frac{d}{d\vartheta} \log f_{1}(X_{j},\vartheta)^{T}]}_{=0 \text{ für } i \neq j}$$

$$= n \cdot \underbrace{E_{\vartheta}[\frac{d}{d\vartheta} \log f_{1}(X_{1},\vartheta) \cdot \frac{d}{d\vartheta} \log f_{1}(X_{1},\vartheta)T]}_{=:I_{1}(\vartheta)}$$

$$= n \cdot I_{1}(\vartheta)$$

 \Rightarrow Schranke in 5.13(1) geht mit $\frac{1}{n}$ gegen 0.

d) Ist $\Theta \subset \mathbb{R}^1$, $T : \mathbb{R}^1 \to \mathbb{R}^1$, $\gamma(\vartheta) := E_{\vartheta}(T), \vartheta \in \Theta$, $X_1, \ldots, X_n \stackrel{uiv}{\sim} f_1(\xi, \vartheta)$ wie in (c), so folgt:

$$\operatorname{Var}_{\vartheta}(T) \ge \frac{(\gamma'(\vartheta))^2}{n \cdot I_1(\vartheta)}, \ \vartheta \in \Theta$$

e) T heißt **CR-effizient**, falls in 5.13(1) Gleichheitszeichen gilt. Achtung: CR-effizienzierter Schätzer muss nicht existieren.

5.15 Beispiel

$$X_{1}, \dots, X_{n} \overset{uiv}{\sim} \operatorname{Bin}(1, \vartheta), \vartheta \in \Theta = (0, 1), \ \mu = \operatorname{Z\"{a}hlma} \Hauf \{0, 1\}^{n}.$$

$$f_{1}(\xi, \vartheta) = \vartheta^{\xi} \cdot (1 - \vartheta)^{1 - \xi}, \ \xi \in \{0, 1\}$$

$$f(x, \vartheta) = \prod_{j=1}^{n} f_{1}(x_{j}, \vartheta) = \vartheta^{\sum_{j} x_{j}} (1 - \vartheta)^{n - \sum_{j} x_{j}}, \ x \in A$$

$$\log f(x, \vartheta) = \sum_{j} x_{j} \log \vartheta + (n - \sum_{j} x_{j}) \log(1 - \vartheta)$$

$$\frac{d}{d\vartheta} \log f(x, \vartheta) = \frac{\sum_{j} x_{j}}{\vartheta} - \frac{n - \sum_{j} x_{j}}{1 - \vartheta} = \frac{\sum_{j} x_{j} - n\vartheta}{\vartheta(1 - \vartheta)}$$

$$\Rightarrow I_{n}(\vartheta) = E_{\vartheta}[(\frac{d}{d\vartheta} \log f(X, \vartheta))^{2}]$$

$$= \frac{1}{\vartheta^{2}(1 - \vartheta)^{2}} E_{\vartheta}[(\sum_{j=1}^{n} X_{j} - n\vartheta)^{2}]$$

$$\xrightarrow{\operatorname{Bin}(n, \vartheta)} = n\vartheta(1 - \vartheta)$$

[Erwartungswert von $Bin(n, \vartheta) = n\vartheta$, also ist in der vorletzten Zeile die Varianz von $Bin(n, \vartheta)$ gesucht.]

(1) "Raten" Sei
$$T(x) := \frac{1}{n} \sum_{j=1}^{n} x_{j}$$
.
$$E_{\vartheta}T = \vartheta$$

 \Rightarrow T erwatungstreu $5.14(d) \Rightarrow$

$$\underbrace{\operatorname{Var}_{\vartheta} T}_{=\frac{1}{n}\operatorname{Var}_{\vartheta}(X_{1})=\frac{1}{n}\vartheta(1-\vartheta)} \ge I_{n}^{-1}(\vartheta) = \frac{\vartheta(1-\vartheta)}{n}$$

 \Rightarrow T ist UMVUE

(2) Konstruktion nach 5.13 durchführen

$$T(X) \stackrel{5.14(b)}{=} \vartheta + \underbrace{\frac{\vartheta(1-\vartheta)}{n}}_{I_n(\vartheta)^{-1}} \cdot \underbrace{\frac{\sum_{j=1}^n X_j - n\vartheta}{\vartheta(1-\vartheta)}}_{\frac{d}{d\vartheta} \log f(X,\vartheta)} = \bar{X}_n$$

6 Exponentialfamilien

Es sei $(\mathfrak{X}, \mathcal{B})$ Messraum, $\mathcal{M}^1(\mathfrak{X}, \mathcal{B})$ Menge aller Wahrscheinlichkeitsmaße auf \mathcal{B} .

6.1 Definition

Eine Verteilungsklasse $\wp = \{P_{\vartheta} : \vartheta \in \Theta\} \subset \mathcal{M}^1(\mathfrak{X}, \mathcal{B})$ heißt **Exponentialfamilie** : \Leftrightarrow es existiert ein σ -endliches dominierendes Maß μ auf \mathcal{B} , für ein $k \in \mathbb{N}$ existieren $q_1, \ldots, q_k, c : \Theta \to \mathbb{R}$ und messbare Funktionen $T_1, \ldots, T_k : \mathfrak{X} \to \mathbb{R}, h : \mathfrak{X} \to \mathbb{R}_{>0}$ mit

$$f(x,\vartheta) := \frac{dP_\vartheta}{d\mu}(x) = c(\vartheta) \cdot e^{\sum_{j=1}^k q_j(\vartheta) T_j(x)} \cdot h(x) \quad \text{μ-f.\"{\it u}$.}$$

6.2 Bemerkungen

- a) Mit $q(\vartheta) := (q_1(\vartheta), \dots, q_k(\vartheta))^T$ und $T(x) := (T_1(x), \dots, T_k(x))^T$ ist $f(x,\vartheta) = c(\vartheta) e^{q(\vartheta)^T T(x)} h(x)$
- b) c ist Normierungskonstante:

$$c(\vartheta) = \left[\int e^{q(\vartheta)^T T(x)} h(x) \mu(dx) \right]^{-1} > 0$$

c) Der Träger $\{x: f(x,\vartheta) > 0\}$ hängt nicht von ϑ ab, insbesondere gilt

$$\forall N \in \mathcal{B}: P_{\vartheta_1}(N) = 0 \Leftrightarrow P_{\vartheta_2}(N) = 0 \qquad (\vartheta_1, \vartheta_2 \in \Theta)$$

(d.h. es gilt $P_{\vartheta_1} \ll P_{\vartheta_2}, P_{\vartheta_2} \ll P_{\vartheta_1}$).

- d) Im Folgenden gelte immer:
 - (i) Die Funktionen $1, q_1, \ldots, q_k$ sind linear unabhängig
 - (ii) Die Funktionen $1, T_1, \ldots, T_k$ sind linear unabhängig auf dem Komplement jeder μ -Nullmenge

(sogenannte (strikt) k-parametrige Exponentialfamilie).

Dann ist k kleinstmöglich gewählt, und q sowie T sind bis auf nicht ausgeartete affine Transformationen $q\mapsto Aq+a,\,T\mapsto BT+b$ (μ -f.ü.) eindeutig bestimmt.

6.3 Beispiele

a) $P_{\vartheta} := \mathcal{N}(\mu, \sigma^2), \ \vartheta := (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_{>0} =: \Theta.$ Die Lebesguedichte ist

$$f(x,\vartheta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$= \underbrace{\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\mu^2}{2\sigma^2}\right)}_{=:c(\vartheta)} \exp\left(\frac{\mu}{\sigma^2}x - \frac{1}{2\sigma^2}x^2\right) \cdot \underbrace{1}_{=:h(x)}$$

Mit $q(\vartheta) := (\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2}), \ T(x) := (x, x^2)$ folgt, dass hier eine (strikt) zweiparametrige Exponentialfamilie vorliegt.

b) $P_{\vartheta} := \mathcal{N}(\vartheta, \vartheta^2), \ \vartheta \in \mathbb{R}_{>0} =: \Theta.$ Die Lebesguedichte ist

$$f(x,\vartheta) = \frac{1}{\sqrt{2\pi\vartheta^2}} \exp\left(-\frac{(x-\vartheta)^2}{2\vartheta^2}\right)$$
$$= \underbrace{\frac{1}{\sqrt{2\pi\vartheta^2}}}_{=:c(\vartheta)} \exp\left(\frac{1}{\vartheta}x - \frac{1}{2\vartheta^2}x^2\right) \cdot \underbrace{1}_{=:h(x)}$$

Mit $q(\vartheta) := (\frac{1}{\vartheta}, -\frac{1}{2\vartheta^2})$, $T(x) := (x, x^2)$ folgt wieder, dass eine (strikt) zweiparametrige Exponentialfamilie vorliegt (obwohl der Parameterraum Θ eindimensional ist!)

c) $P_{\vartheta} := \text{Bin}(n, \vartheta), \ \vartheta \in (0, 1) =: \Theta.$ Die Zähldichte ist

$$f(x,\vartheta) = \binom{n}{x} \vartheta^x (1-\vartheta)^{n-x} = (1-\vartheta)^n \exp\left(x \log \frac{\vartheta}{1-\vartheta}\right) \binom{n}{x}.$$

Mit $c(\vartheta) := (1-\vartheta)^n$, $q(\vartheta) := \log \frac{\vartheta}{1-\vartheta}$, T(x) := x und $h(x) := \binom{n}{x}$ folgt, dass $\wp := \{ \operatorname{Bin}(n,\vartheta) : \vartheta \in \Theta \}$ eine einparametrige Exponentialfamilie ist.

d) Die Menge aller Gleichverteilungen $\{U(0,\vartheta), \vartheta \in \mathbb{R}_{>0}\}$ ist nach 6.2(c) keine Exponentialfamilie.

6.4 Satz 45

6.4 Satz

Es seien $X_1, \ldots, X_n \stackrel{uiv}{\sim} P_{\vartheta}$, wobei P_{ϑ} Element einer k-parametrigen Exponentialfamilie $\{P_{\vartheta}: \vartheta \in \Theta\}$ ist. Dann gehöhrt auch die Verteilung von $X := (X_1, \ldots, X_n)$ zu einer k-parametrigen Exponentialfamilie mit

$$q(\vartheta)$$
 und $T_{(n)}(x) := \sum_{j=1}^{n} T(x_j)$.

Beweis:

Sei $\mu^n := \mu \otimes \cdots \otimes \mu$ das n-fache Produktmaß auf $\mathcal{B}^n := \mathcal{B} \otimes \cdots \otimes \mathcal{B}$ und

$$P_{\vartheta}^n := P_{\vartheta} \otimes \cdots \otimes P_{\vartheta}$$

die Verteilung von X unter P_{ϑ} . Wir erhalten mit $x := (x_1, \dots, x_n)$:

$$\frac{dP_{\vartheta}^{n}}{d\mu^{n}}(x) = \prod_{j=1}^{n} \frac{dP_{\vartheta}}{d\mu}(x_{j}) \quad \mu\text{-f.\"{u}}.$$

$$= \prod_{j=1}^{n} \left[c(\vartheta) \exp\left(q^{T}(\vartheta)T(x_{j})\right) h(x_{j}) \right] \quad \mu\text{-f.\"{u}}.$$

$$= c(\vartheta)^{n} \exp\left(q^{T}(\vartheta) \sum_{j=1}^{n} T(x_{j})\right) \prod_{J=1}^{n} h(x_{j}) \quad \mu\text{-f.\"{u}}.$$

Bemerkung:

In der Situation von Satz 6.4 ist der ML-Schätzer $\hat{\vartheta}_n$ für ϑ eine Funktion von $\sum_{j=1}^n T(X_j)$.

In der Darstellung

$$f(x, \vartheta) = c(\vartheta) \exp(q^T(\vartheta)T(x))h(x)$$

hängt $c(\cdot)$ von ϑ nur über $q:=q(\vartheta)\in Q:=q(\Theta)\subset\mathbb{R}^k$ ab, das heißt es gilt

$$c(\vartheta) = C\left(q(\vartheta)\right)$$

für ein geeignetes $C: Q \to \mathbb{R}$.

q heißt natürlicher Parameter. Somit lässt sich f ausdrücken als

$$f(x,q) = \frac{dP_q}{d\mu}(x) = C(q)e^{q^T \cdot T(x)}h(x)$$

Die Menge

$$Q_* := \{ q \in \mathbb{R}^k : 0 < \int e^{q^T T(x)} h(x) \mu(dx) < \infty \}$$

heißt natürlicher Parameterraum der Exponentialfamilie. Es gilt

$$Q = q(\Theta) \subset Q_*$$
.

6.5 Satz

 Q_* ist konvex und enthält ein nicht-ausgeartetes k-dimensionales Intervall.

Beweis:

Für $q, r \in Q_*$ und $\lambda \in [0, 1]$ gilt

$$0 < \int e^{(\lambda q^T + (1-\lambda)r^T)T} h d\mu$$

$$= \int \left(e^{q^T T}\right)^{\lambda} \left(e^{r^T T}\right)^{1-\lambda} h d\mu$$

$$\leq \int \max\left(e^{q^T T}, e^{r^T T}\right) h d\mu$$

$$= \int \left(e^{q^T T} + e^{r^T T}\right) h d\mu < \infty$$

Die zweite Aussage folgt dann aus der linearen Unabhängigkeit von $1, q_1, \dots, q_k$.

Bemerkung:

Im Folgenden setzen wir $\vartheta := q$, betrachten also Exponentialfamilien

$$f(x,\vartheta) = \frac{dP_{\vartheta}}{d\mu}(x) = C(\vartheta)e^{\vartheta^T T(x)}h(x) \tag{1}$$

mit $\vartheta \in \Theta := \left\{ \vartheta \in \mathbb{R}^k: \ 0 < \int e^{\vartheta^T T(x)} h(x) \mu(dx) < \infty \right\}.$ Weiter sei

$$b(\vartheta) := -\log C(\vartheta).$$

6.6 Lemma

Es sei $\varphi: \mathfrak{X} \to \mathbb{R}$ eine messbare Abbildung mit

$$E_{\vartheta}|\varphi| = \int |\varphi(x)|f(x,\vartheta)\mu(dx) < \infty$$

6.7 Satz 47

Sei

$$A_{\varphi}(\vartheta) := \int \varphi(X) e^{\vartheta^T T(x)} h(x) \mu(dx), \quad \vartheta \in \Theta^0$$
 (2)

Dann ist $A_{\varphi}:\Theta^0\to\mathbb{R}$ beliebig oft differenzierbar und die Differentiation in (2) kann unter dem Integralzeichen vorgenommen werden beziehungsweise Integration und Differentiation können vertauscht werden.

Beweis:

Witting, 1985, S. 151f.

6.7 Satz

- a) Die Funktion $b(\vartheta)$, $\vartheta \in \Theta^0$, ist beliebig oft differenzierbar.
- b) Besitzt X die Dichte $f(x, \vartheta)$ aus (1), so gilt:

$$E_{\vartheta}T(X) = \frac{d}{d\vartheta}b(\vartheta)$$

$$\operatorname{Var}_{\vartheta} T(X) = \frac{d^2}{d\vartheta d\vartheta^T} b(\vartheta)$$

Beweis:

a)
$$\varphi \equiv 1$$
 in $6.6 \Rightarrow A_{\varphi}(\vartheta) = C(\vartheta)^{-1} = e^{b(\vartheta)}$
 $6.6 \Rightarrow \text{Behauptung}$

b)

$$E_{\vartheta}T(X) = e^{-b(\vartheta)} \int T(x)e^{\vartheta^{T}T(x)}h(x)\mu(dx)$$

$$= e^{-b(\vartheta)} \int \frac{d}{d\vartheta}e^{\vartheta^{T}T(x)}h(x)\mu(dx)$$

$$\stackrel{6.6}{=} e^{-b(\vartheta)} \frac{d}{d\vartheta} \underbrace{\int e^{\vartheta^{T}T(x)}h(x)\mu(dx)}_{=e^{b(\vartheta)}}$$

$$= \frac{d}{d\vartheta}b(\vartheta)$$

$$E_{\vartheta}[T(X) \cdot T(X)^{T}] = e^{-b(\vartheta)} \int T(x) e^{\vartheta^{T}T(x)} T(x)^{T} h(x) \mu(dx)$$

$$= e^{-b(\vartheta)} \int \frac{d^{2}}{d\vartheta d\vartheta^{T}} e^{\vartheta^{T}T(x)} h(x) \mu(dx)$$

$$= e^{-b(\vartheta)} \frac{d^{2}}{d\vartheta d\vartheta^{T}} e^{b(\vartheta)}$$

$$= \frac{d^{2}}{d\vartheta d\vartheta^{T}} b(\vartheta) + \underbrace{\left(\frac{d}{d\vartheta} b(\vartheta)\right) \left(\frac{d}{d\vartheta} b(\vartheta)\right)^{T}}_{=E_{\vartheta}T(X) \cdot (E_{\vartheta}T(X))^{T}}$$

$$\Rightarrow \operatorname{Var}_{\vartheta} T(X) = \frac{d^2}{d\vartheta d\vartheta^T} b(\vartheta)$$

6.8 CR-Effizienz in Exponentialfamilien

Seien $X_1, \ldots, X_n \stackrel{uiv}{\sim} f_1(\xi, \vartheta) = e^{-b(\vartheta)} e^{\vartheta^T T(\xi)} h(\xi)$ wie in (1). $\Rightarrow X = (X_1, \ldots, X_n)$ besitzt die Dichte

$$f(x, \vartheta) = e^{-nb(\vartheta)} \cdot \exp(\vartheta^T \sum_{i=1}^n T(x_i)) \prod_{j=1}^n h(x_j)$$

Sei
$$S(X) = \frac{1}{n} \sum_{j=1}^{n} T(X_j)$$
.

$$\Rightarrow E_{\vartheta}S(X) = E_{\vartheta}T(X_1) \stackrel{6.7}{=} \frac{d}{d\vartheta}b(\vartheta), \ \vartheta \in \Theta$$

 \Rightarrow S erwartungstreu für $\frac{d}{d\vartheta}b(\vartheta)$. Behauptung: S(X) ist CR-effizient.

Beweis:

$$\operatorname{Var}_{\vartheta} S(X) = \frac{1}{n} \operatorname{Var}_{\vartheta} T(X_1) \stackrel{6.7}{=} \frac{1}{n} \frac{d^2}{d\vartheta d\vartheta^T} b(\vartheta)$$

CR-Ungleichung:

$$\operatorname{Var}_{\vartheta} S(X) \ge C_n(\vartheta)^T I_n(\vartheta)^{-1} C_n(\vartheta)$$

wobei

$$C_n(\vartheta) = \frac{d}{d\vartheta} E_{\vartheta}[S(X)^T] = \frac{d}{d\vartheta} \left[\frac{d}{d\vartheta} b(\vartheta) \right]^T = \frac{d^2}{d\vartheta d\vartheta^T} b(\vartheta)$$

$$I_n(\vartheta) = n \cdot I_1(\vartheta) = n \cdot E_{\vartheta} \left[\frac{d}{d\vartheta} \log f_1(X_1, \vartheta) \cdot \frac{d}{d\vartheta} \log f_1(X_1, \vartheta)^T \right]$$

$$\log f_1(X_1, \vartheta) = -b(\vartheta) + \vartheta^T T(X_1) + \log h(X_1)$$

$$\frac{d}{d\vartheta} \log f_1(X_1, \vartheta) = -\frac{d}{d\vartheta} b(\vartheta) + T(X_1) = T(X_1) - E_{\vartheta} T(X_1)$$

6.9 Beispiel 49

$$\Rightarrow I_n(\vartheta) = n \cdot \operatorname{Var}_{\vartheta} T(X_1) = n \cdot \frac{d^2}{d\vartheta d\vartheta^T} b(\vartheta)$$
$$\Rightarrow C_n(\vartheta)^T I_n(\vartheta)^{-1} C_n(\vartheta) = \frac{1}{n} \frac{d^2}{d\vartheta d\vartheta^T} b(\vartheta)$$

6.9 Beispiel

$$f_1(\xi, \vartheta) = \underbrace{\frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{\mu^2}{2\sigma^2})}_{=C(\vartheta)} \exp(\frac{\mu}{\sigma^2} \cdot \xi - \frac{1}{2\sigma^2} \xi^2)$$

$$\vartheta = (\vartheta_1, \vartheta_2) := (\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2})$$

$$b(\vartheta) = -\log C(\vartheta) = \frac{\mu^2}{2\sigma^2} + \frac{1}{2}\log(2\pi\sigma^2) = -\frac{1}{4}\frac{\vartheta_1^2}{\vartheta_2} + \frac{1}{2}\log(\frac{-\pi}{\vartheta_2})$$

$$\frac{d}{d\vartheta}b(\vartheta) = (-\frac{1}{2}\frac{\vartheta_1}{\vartheta_2}, \frac{1}{4}\frac{\vartheta_1^2}{\vartheta_2^2} - \frac{1}{2\vartheta_2})^T = (\mu, \sigma^2 + \mu^2)^T$$

Fazit:

$$S(X) = (\frac{1}{n} \sum_{j=1}^{n} X_j, \frac{1}{n} \sum_{j=1}^{n} X_j^2)$$

ist erwartungstreu und CR-effizient für $(E_{\vartheta}X_1, E_{\vartheta}X_1^2)$.

$$\frac{\text{Frage:}}{\text{Ist } S_n^2} = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \text{ CR-effizient für } \sigma^2?$$

7 Suffizienz und Vollständigkeit

7.1 Wiederholung

Bedingte Verteilungen

Sei (Ω, \mathcal{A}, P) Wahrscheinlichkeitsraum, $X: \Omega \to \mathbb{R}^k$, $Y: \Omega \to \mathbb{R}^s$ Zufallsvektoren.

Stochastik:

Es existiert Übergangswahrscheinlichkeit $P^{Y|X}$ mit

$$P^{(X,Y)} = P^X \otimes P^{Y|X} \quad (1)$$

$$P^{Y|X}: \left\{ \begin{array}{l} \mathbb{R}^k \times \mathcal{B}^s \to \mathbb{R} \\ (x,B) \to P^{Y|X}(x,B) =: P^{Y|X=x}(B) \end{array} \right.$$

mit $\forall x \in \mathbb{R}^k$: $P^{Y|X=x}(\cdot)$ Wahrscheinlichkeitsmaß auf \mathcal{B}^s $\forall B \in \mathcal{B}^s$: $P^{Y|X=\cdot}(B)$ \mathcal{B}^k – messbar

 $P^{Y|X}$ heißt (eine) bedingte Verteilung von Y bei gegebenem X. $P^{Y|X=x}$ heißt (eine) bedingte Verteilung von Y bei gegebenem X=x.

Schreibweise:

$$P(Y \in B|X = x) := P^{Y|X=x}(B)$$

Dann (1) äquivalent zu

$$P^{(X,Y)}(A \times B) = P(X \in A, Y \in B) = \int_A P(Y \in B | X = x) P^X(dx)$$

 $\forall A \in \mathcal{B}^k, B \in \mathcal{B}^s$

Insbesondere:

$$P(Y \in B) = \int P(Y \in B|X = x)P^X(dx)$$

Falls (X,Y) Dichte f(x,y) bezüglich $\lambda \times \nu$ besitzt, so definiert man bedingte Dichte von Y gegeben X=x durch

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

$$f_X(x) := \int f(x,y)\nu(dy) > 0$$

52

Damit:

$$P(Y \in B|X = x) = \int_{B} f_{Y|X}(y|x)\nu(dy)$$

$$\begin{bmatrix}
P(X \in A, Y \in B) & \stackrel{!}{=} & \int_{A} \left[\int_{B} f_{Y|X}(y|x)\nu(dy) \right] f_{X}(x)\lambda(dx) \\
& = & \int_{A} \int_{B} f(x,y)d(\lambda \times \nu)(x,y)
\end{bmatrix}$$

7.2 Definition

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ Wahrscheinlichkeitsraum, $(\mathbb{R}^n, \mathcal{B}^n, \wp)$ statistischer Raum. $X: \Omega \to \mathbb{R}^n$ Zufallsvektor, $T: \mathbb{R}^n \to \mathbb{R}^s$ Statistik.

T heißt suffizient für $\wp :\Leftrightarrow P^{X|T(X)}$ hängt nicht von $P \in \wp$ ab.

"Die bedingte Verteilung von X gegeben T ist bekannt."

Falls $\wp = \{P_{\vartheta} : \vartheta \in \Theta\}$, so T suffizient für $\vartheta : \Leftrightarrow P^{X|T(X)}$ hängt nicht von ϑ ab.

7.3 Bemerkungen

(i) Wegen

$$\underbrace{P(X \in A, X \in B)}_{=\int_{A} P(X \in B|X=x)P^{X}(dx)} = \int_{A} \mathbf{1}_{A \cap B}(x)P^{X}(dx)$$
$$= \int_{A} \mathbf{1}_{B}(x)P^{X}(dx)$$

gilt
$$P^{X|X=x}(B) = \mathbf{1}_B(x)$$

 \Rightarrow X suffizient für \wp

- (ii) T suffizient für $\wp \Leftrightarrow \forall A \in \mathcal{B}^n: P(X \in A|T(X) = t)$ ist unabhängig von \wp für alle t (im Wertebereich von T)
- (iii) Sei g bijektiv, g, g^{-1} messbar. Dann:

T suffizient $\Leftrightarrow g(T)$ suffizient

7.4 Beispiel 53

7.4 Beispiel

 $X = (X_1, \dots, X_n), X_1, \dots, X_n \stackrel{uiv}{\sim} \text{Bin}(1, \vartheta), \ \vartheta \in (0, 1), \ T(x) = \sum_{j=1}^n x_j.$ Sei $t \in \{0, 1, \dots, n\}, \ x \in \{0, 1\}^n.$

$$\begin{split} P_{\vartheta}(X = x | T = t) &= \frac{P_{\vartheta}(X = x, T = t)}{P_{\vartheta}(T(x) = t)} \\ &= \begin{cases} 0, & \sum_{j=1}^{n} x_{j} \neq t \\ \frac{P_{\vartheta}(X = x)}{P_{\vartheta}(T(x) = t)} = \frac{\prod_{j=1}^{n} \vartheta^{x_{j}} (1 - \vartheta)^{1 - x_{j}}}{\binom{n}{t} \vartheta^{t} (1 - \vartheta)^{n - t}} = \frac{1}{\binom{n}{t}}, \sum_{j=1}^{n} x_{j} = t \end{cases} \end{split}$$

Also:

$$P_{\vartheta}^{X|T(X)=t} = U(\{(s_1, \dots, s_n) : s_j \in \{0, 1\} \ \forall j, \sum_{j=1}^n s_j = t\})$$

Insbesondere ist T suffizient für ϑ . ¹⁹ 7.3(ii) \Rightarrow

$$P_{\vartheta}(X \in A) = \int \underbrace{P(X \in A | T = t)}_{\text{unabhängig von } \vartheta} P_{\vartheta}^{T}(dt)$$

Hier:

$$P_{\vartheta}(X=x) = \sum_{t=0}^{n} P(X=x|T=t)P_{\vartheta}(T=t)$$

$$= \sum_{t=0}^{n} \frac{1}{\binom{n}{t}} \mathbf{1} \{ \sum_{j=1}^{n} x_j = t \} \cdot \binom{n}{t} \vartheta^t (1-\vartheta)^{n-t}$$

$$(= \vartheta^{\sum x_j} (1-\vartheta)^{n-\sum x_j})$$

"In Verteilung von T ist alle Information bezüglich ϑ enthalten." \hookrightarrow Datenreduktion **ohne Informationsverlust**

7.5 Faktorisierungssatz

In der Situation von 7.2 existiere σ -endliches Maß μ auf \mathcal{B}^n mit $P \ll \mu$ $\forall P \in \wp$. Dann sind äquivalent:

(i) T(X) ist suffizient für \wp .

 $^{^{19}}P_{\vartheta}^{X|T(X)=t}$ Gleichverteilung (auf Menge)

(ii) $\exists h: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ messbar, $\forall P \in \wp$ existiert $g_P: \mathbb{R}^k \to \mathbb{R}_{\geq 0}$ messbar mit $\frac{dP}{du}(x) = g_P(T(x)) \cdot h(x), \ x \in \mathbb{R}$

Ist speziell $\wp = \{P_{\vartheta} : \vartheta \in \Theta\}, f(x,\vartheta) := \frac{dP_{\vartheta}}{d\mu}(x), g(T(x),\vartheta) = g_{P_{\vartheta}}(T(x)), \text{ so gilt also:}$

T suffizient
$$\Leftrightarrow f(x, \vartheta) = g(T(x), \vartheta) \cdot h(x) \ \forall x \in \mathbb{R}^n$$

Beweis:

z.B. Shao, Mathematische Statistik, S.104-106 oder Pruscha, S. 77-80

7.6 Besispiel (Ordnungsstatistik)

Sei $X=(X_1,\ldots,X_n),\,X_1,\ldots,X_n$ unabhängig identisch verteilt mit Verteilung $P\in\wp,\,\wp$ die Familie aller Verteilungen auf $\mathbb R$ mit Lebesgue-Dichte.

$$T(X_1,\ldots,X_n) := (X_{(1)},\ldots,X_{(n)})$$

geordnete Stichprobe (Ordnungsstatistik).

$$\frac{dP^n}{d\lambda^n}(x) = \prod_{j=1}^n f(x_j) = \underbrace{\prod_{j=1}^n f(x_{(j)}) \cdot \underbrace{1}_{=h(x)}}_{=g_P(T(x))}$$

 $\overset{7.5}{\Rightarrow}$ T suffizient für \wp .

Bemerkung:

Es gilt

$$P^{X|T(x)=(x_{(1)},\dots,x_{(n)})} = U(\{(x_{\pi_1},\dots,x_{\pi_n}): (\pi_1,\dots,\pi_n) \in \mathcal{S}_n\})$$

7.7 Beispiel (Exponentialfamilien)

In der Situation von Satz 6.4 ist $T_{(n)}(X)$ suffizient für ϑ . [Aufgabe 21(b)]

7.8 Satz von Rao-Blackwell

Sei $(\mathfrak{X}, \mathcal{B}, \{P_{\vartheta} : \vartheta \in \Theta \subset \mathbb{R}^s\})$ statistischer Raum, $g : \Theta \to \mathbb{R}, X : \Omega \to \mathfrak{X}, U_g = \{S \mid S : \mathfrak{X} \to \mathbb{R} \text{ messbar}, E_{\vartheta}S = g(\vartheta) \ \forall \vartheta \in \Theta, E_{\vartheta}S^2 < \infty \ \forall \vartheta \in \Theta\}.$ Annahme: $U_g \neq \emptyset$

Sei $T: \mathfrak{X} \to \mathbb{R}^k$ suffizient für ϑ , $S \in U_g$. Sei $\tilde{S}(X) := E[S(X)|T(X)]^{20}$ Dann gilt:

$$\tilde{S} \in U_q \text{ und } \operatorname{Var}_{\vartheta} \tilde{S}(X) \leq \operatorname{Var}_{\vartheta} S(X) \ \forall \vartheta \in \Theta$$

(Verbesserung erwartungstreuer Schätzer durch suffiziente Statistiken)

Beweis:

$$E_{\vartheta}\tilde{S}(X) = E_{\vartheta}E[S(X)|T(X)] = E_{\vartheta}S(X) = g(\vartheta) \ \forall \vartheta \in \Theta$$

$$\operatorname{Var}_{\vartheta} S(X) = E_{\vartheta}[(S(X) - \tilde{S}(X) + \tilde{S}(X) - \underbrace{E_{\vartheta}S(X)})^{2}]$$

$$= \underbrace{E_{\vartheta}(S(X) - \tilde{S}(X))^{2}}_{\geq 0} + \operatorname{Var}_{\vartheta} \tilde{S}(X)$$

$$+ 2E_{\vartheta}[\underbrace{E_{\vartheta}[(S(X) - \tilde{S}(X))(\tilde{S}(X) - g(\vartheta))|T(X)]}_{=(\tilde{S}(X) - g(\vartheta))} \cdot \underbrace{E_{\vartheta}[S(X) - \tilde{S}(X)|T(X)]}_{=\tilde{S}(X) - \tilde{S}(X) = 0}$$

$$> \operatorname{Var}_{\vartheta} \tilde{S}(X)$$

[Beachte: $E_{\vartheta}\tilde{S}(X) = E_{\vartheta}S(X) = g(\vartheta)$; Regel
n bedingter Erwartungswert²¹]

 $^{^{20}}$ Nicht von ϑ abhängig, da T suffizient. (Sonst wäre \tilde{S} kein Schätzer!)

²¹insbesondere einmal ohne Auswirkung Erwartungswert in Erwartungswert eines bedingten Erwartungswertes umgeschrieben

7.9 Beispiel

$$X_1, \dots, X_n \stackrel{uiv}{\sim} U(0, \vartheta), \ \vartheta \in \Theta = (0, \infty), \ X = (X_1, \dots, X_n)$$

$$S(X) = \frac{2}{n} \sum_{j=1}^n X_j$$

$$\Rightarrow E_{\vartheta} S(X) = 2E_{\vartheta} X_1) = \vartheta$$

d.h. S erwartungstreu für ϑ .

$$\operatorname{Var}_{\vartheta} S(X) = \frac{4}{n} \operatorname{Var}_{\vartheta} X_1 = \frac{4}{n} \cdot \frac{\vartheta^2}{12} = \frac{\vartheta^2}{3n}$$
$$T(X) := \max_{1 \le j \le n} X_j$$

Wegen

$$f(x,\vartheta) = \prod_{j=1}^{n} \frac{1}{\vartheta} \mathbf{1}_{(0,\vartheta)}(x_j) = \underbrace{\frac{1}{\vartheta^n} \cdot \mathbf{1}_{(0,\vartheta)}(\max x_j)}_{=q(T(x),\vartheta)} \cdot \underbrace{1}_{=h(x)}$$

ist T(X) suffizient für ϑ .

Wegen

$$P^{X_1|\max X_j} = \frac{1}{n} \delta_{\max X_j} + \frac{n-1}{n} U(0, \max X_j)$$

folgt

$$\begin{split} \tilde{S}(X) &= E[S(X)|\max_{j} X_{j}] \\ &= \frac{2}{n} \sum_{i=1}^{n} E[X_{i}|\max_{j} X_{j}] \\ &= 2E[X_{1}|\max_{j} X_{j}] \\ &= 2(\frac{1}{n} \cdot \max_{j} X_{j} + \frac{n-1}{n} \frac{\max_{j} X_{j}}{2}) \\ &= \frac{n+1}{n} \max_{j} X_{j} \end{split}$$

$$\operatorname{Var}_{\vartheta} \tilde{S}(X) = \ldots = \frac{\vartheta^2}{n(n+2)} < \operatorname{Var}_{\vartheta} S(X) \text{ für } n \geq 2$$

$$\operatorname{Var}_{\vartheta} \tilde{S}(X) = \ldots = \frac{\vartheta^2}{n(n+2)} = \operatorname{Var}_{\vartheta} S(X) \text{ für } n = 1$$

7.10 Definition 57

7.10 Definition

In der Situation von 7.2 heißt $T: \mathbb{R}^n \to \mathbb{R}^k$ vollständig für $P \in \wp$ (bzw. $\vartheta \in \Theta$, falls $\wp = \{P_\vartheta : \vartheta \in \Theta\}$), falls gilt:

Für jede messbare Funktion $\Psi: \mathbb{R}^k \to \mathbb{R}$ mit $E_P[\Psi(T)] = 0 \ \forall P \in \wp$ (bzw. $E_{\vartheta}[\Psi(T)] = 0 \ \forall \vartheta \in \Theta$) folgt $\Psi(T) = 0$ P-f.s. $\forall P \in \wp$ (bzw. P_{ϑ} -f.s. $\forall \vartheta \in \Theta$).

7.11 Beispiel (Fortsetzung von 7.9)

Behauptung:

 $\overline{T(X)} := \max_{i} X_{i}$ vollständig

Beweis:

Sei $\Psi: \mathbb{R} \to \mathbb{R}$ messbar.

$$E_{\vartheta}\Psi(T) = \int_0^{\vartheta} \Psi(t) \cdot \frac{n}{\vartheta} \left(\frac{t}{\vartheta}\right)^{n-1} dt = \frac{n}{\vartheta^n} \underbrace{\int_0^{\vartheta} \Psi(t) \cdot t^{n-1} dt}_{=:G(\vartheta)}$$

$$\begin{split} E_{\vartheta}\Psi(T) &= 0 \ \forall \vartheta > 0 \Rightarrow G(\vartheta) = 0 \ \forall \vartheta > 0 \\ \Rightarrow \Psi(\vartheta) \cdot \vartheta^{n-1} &= 0 \quad \lambda^1|_{[0,\infty)}\text{-f.s.} \\ \Rightarrow \Psi(\vartheta) &= 0 \quad \lambda^1|_{[0,\infty)}\text{-f.s.} \end{split}$$

$$\Rightarrow P_{\vartheta}(\Psi(T) = 0) = 1$$

7.12 Beispiel

In einer strikt k-parametrigen Exponentialfamilie

$$f(x,\vartheta) = C(\vartheta) \cdot e^{\vartheta^T T(x)} h(x)$$

(mit natürlichem Parameterraum) ist die Statistik T vollständig. (Beweis z.B. Shao, S.110 oder Pruscha, S.82)

Beispiel:

Sei $X_1, X_2 \stackrel{uiv}{\sim} \mathcal{N}(\vartheta, 1), \vartheta \in \mathbb{R}$.

 $T(X_1, X_2) = X_1 + X_2$ ist vollständig nach 7.12.

 $S(X_1, X_2) = X_1 - X_2$ dagegen nicht!

 $T \sim \mathcal{N}(2\vartheta, 2) = P_{\vartheta}^T$

$$E_{\vartheta}\Psi(T) = \int_{\mathbb{R}} \Psi(t) \cdot \underbrace{\varphi_{2\vartheta,2}(t)}_{\text{Dichte NV}} dt$$

$$S \sim \mathcal{N}(0,2) = P_{\vartheta}^S, \ \Psi(S) = S$$
:

$$E_{\vartheta}\Psi(S) = \vartheta - \vartheta = 0 \ \forall \vartheta \in \Theta$$

$$\Rightarrow \Psi(S) = X_1 - X_2 = 0 P_{\vartheta}$$
-f.s.

 $\{P_{\vartheta}^T:\vartheta\in\mathbb{R}\}=\{\mathcal{N}(2\vartheta,2):\vartheta\in\mathbb{R}\}$ ist viel "reichhaltiger" als $\{P_{\vartheta}^S:\vartheta\in\mathbb{R}\}=\{\mathcal{N}(0,2)\}!$

7.13 Satz von Lehmann-Scheffé

In der Situation von 7.8 $(U_g \neq \emptyset)$ sei die suffiziente Statistik T auch vollständig für ϑ . Dann existiert ein eindeutig bestimmter erwartungstreuer Schätzer für $g(\vartheta)$ der Gestalt

$$S^*(X) = h(T(X))$$

mit einer messbaren Funktion $h: \mathbb{R}^k \to \mathbb{R}$. Dieser Schätzer ist UMVUE für $g(\vartheta)$.

Beweis:

Sei $S \in U_q$ und $\tilde{S}(X) := E[S(X)|T(X)].$

Faktorisierungssatz des bedingten Erwartungswerts \Rightarrow es existiert h
 messbar mit

$$\tilde{S}(X) = h(T(X))$$

Annahme: $\exists S_* \in U_g$ mit $S_*(X) = h_*(T(X))$ für ein h_*

$$\Rightarrow E_{\vartheta}[\underbrace{(h-h_*)}_{=:\Psi}(T)] = g(\vartheta) - g(\vartheta) = 0 \ \forall \vartheta \in \Theta$$

$$\stackrel{(+)}{\Rightarrow} h = h_* P_{\vartheta}$$
-f.s. $\forall \vartheta \in \Theta$

(+): Vollständigkeit von T $(\Psi=h-h_*=0)$

 $\tilde{S}(X)$ ist UMVUE für $g(\vartheta)$!

[Annahme: S_2 "besser" als \tilde{S}

$$\Rightarrow \tilde{S}_2(X) = E[S_2(X)|T(X)]$$

"mindestens so gut" wie S_2 (Rao-Blackwell); $\tilde{S}_2 = \tilde{S}$ wegen Eindeutigkeit]

7.14 Beispiel (Fortsetzung von 7.11)

 $\frac{n+1}{n}\max_j X_j$ ist UMVUE für $\vartheta,$ falls $X_1,\dots,X_n \overset{uiv}{\sim} U(0,\vartheta),\ \vartheta>0$ unbekannt.

7.15 Beispiel (Anwendungen von Lehmann-Scheffé)

Sei T vollständig und suffizient für ϑ , $\vartheta \in \Theta$. Finde h, so dass $E_{\vartheta}[h(T)] = g(\vartheta) \ \forall \vartheta \in \Theta$. (Lösen!, Raten!) Falls $\operatorname{Var}_{\vartheta}[h(T)] < \infty \Rightarrow h(T) \ \mathrm{UMVUE}$.

Sei
$$X_1, \ldots, X_n \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma^2), \ \vartheta = (\mu, \sigma^2).$$

(i) Aufgabe 20:

$$\operatorname{Var}_{\vartheta}((\bar{X}_n, S_n^2)^T) = \begin{bmatrix} \frac{\sigma^2}{n} & 0\\ 0 & \frac{2\sigma^4}{n-1} \end{bmatrix}$$
$$\frac{2\sigma^4}{n-1} > \operatorname{CR-Schranke} \frac{2\sigma^4}{n}$$

 $\Rightarrow (\bar{X}_n, S_n^2)$ nicht CR-effizient für ϑ

Aber:

$$T(X) = (\sum_{i} X_i, \sum_{i} X_i^2)$$

suffizient und vollständig für $\bar{\vartheta} = (\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2})$ (nach 7.12). $\Rightarrow T(X) = (\sum_i X_i, \sum_i X_i^2)$ suffizient und vollständig für $\vartheta = (\mu, \sigma^2)$. Sei $h(T(X)) = (\bar{X}_n, S_n^2)$.

$$\left. \begin{array}{l} E_{\vartheta}[h(T(X))] = \vartheta \ \forall \vartheta \\ \operatorname{Var}_{\vartheta}[h(T(X))] \ \text{existiert} \ \forall \vartheta \end{array} \right\} \Rightarrow (\bar{X}_n, S_n^2) \ \text{ist UMVUE für} \ \vartheta = (\mu, \sigma^2)$$

Bemerkung:

Auch (\bar{X}_n, \bar{S}_n^2) suffizient und vollständig für ϑ nach Bemerkung 7.3(ii) und analoge Aussage für Vollständigkeit.

- (ii) Analog: Der Schätzer aus Aufgabe 9 der Form $\sqrt{c_n S_n^2}$ ist UMVUE für σ .
- (iii) Gesucht: UMVUE für $\frac{\mu}{\sigma}$

$$(T_1(X), T_2(X)) := (\sum_i X_i, \sum_i (X_i - \bar{X}_n)^2)$$

 $T_1(X), T_2(X)$ unabhängig, $\frac{T_1(X)}{\sigma^2} \sim \chi^2_{n-1} = \Gamma(\frac{n-1}{2}, \frac{1}{2})$

$$\Rightarrow E_{\vartheta} T_2^{-\frac{1}{2}} = \frac{1}{\sigma} \cdot \frac{\Gamma(\frac{n}{2} - 1)}{\sqrt{2} \Gamma(\frac{n-1}{2})} \ (n \ge 3)$$

$$\operatorname{Var}_{\vartheta} T_2^{-\frac{1}{2}} < \infty \text{ für } n \geq 4$$

$$\Rightarrow E_{\vartheta}(\frac{T_1}{\sqrt{T_2}}) = E_{\vartheta}T_1 \cdot E_{\vartheta}T_2^{-\frac{1}{2}}$$

$$= \frac{\mu}{\sigma} \cdot \frac{n\Gamma(\frac{n}{2} - 1)}{\sqrt{2}\Gamma(\frac{n-1}{2})}$$

$$=: \frac{\mu}{\sigma}K_n$$

$$\Rightarrow K_n^{-1} \cdot \frac{T_1}{\sqrt{T_2}}$$

ist UMVUE für $\frac{\mu}{\sigma}$ für $n \geq 4.$

 $(n \ge 3)$

8 Asymptotik von Schätzfehlern

8.1 Problemstellung

Seien $X_1, X_2, \ldots, X_n \stackrel{uiv}{\sim} P_{\vartheta}$, mit $\vartheta \in \Theta \subset \mathbb{R}^k$. Die Schätzfolge $\hat{\vartheta}_n = \hat{\vartheta}_n(X_1, \ldots, X_n)$ sei konsistent, es gilt also

$$\hat{\vartheta}_n \stackrel{P_{\vartheta}}{\to} \vartheta \text{ für } n \to \infty \quad \forall \vartheta \in \Theta$$

Sei (a_n) eine reelle Folge mit $a_n > 0 \quad \forall n \text{ und } a_n \to \infty \text{ für } n \to \infty$. Die Folge $(\hat{\vartheta}_n)_{n > 1}$ heißt a_n — **konsistent**, wenn

$$a_n(\hat{\vartheta}_n - \vartheta) = O_{P_{\vartheta}}(1) \quad \forall \vartheta \in \Theta.$$

Hierbei bedeutet $Y_n = O_P(1)$ für eine Folge (Y_n) , dass für jedes $\varepsilon > 0$ eine kompakte Menge $K \subset \mathbb{R}^d$ existiert, so dass $P(Y_n \in K) \geq 1 - \varepsilon$ für alle $n \in \mathbb{N}$.

Typischerweise liegt \sqrt{n} -Konsistenz vor, d.h. es gilt

$$\sqrt{n}(\hat{\vartheta}_n - \vartheta) = O_{P_{\vartheta}}(1) \quad \forall \vartheta \in \Theta.$$

Zusätzlich kann man oftmals Aussagen über Konvergenz in Verteilung machen, insbesondere

$$\sqrt{n}(\hat{\vartheta}_n - \vartheta) \stackrel{D_{\vartheta}}{\to} \mathcal{N}_k(0, \Sigma(\vartheta)), \quad \vartheta \in \Theta.$$

8.2 Multivariater Zentraler-Grenzwert-Satz (ZGWS)

Seien $Y_1, Y_2 \dots \stackrel{uiv}{\sim} Y$ mit einer \mathbb{R}^d —wertigen Zufallsvariablen Y mit $E\|Y\|^2 < \infty$. Mit a := EY und $\Sigma := E(Y-a)(Y-a)^T$, gilt

$$\frac{1}{\sqrt{n}} \left(\sum_{j=1}^{n} Y_j - na \right) \stackrel{D}{\to} \mathcal{N}_d(0, \Sigma).$$

²²vergleiche Stochastik II: Straffheit

8.3 δ -Methode

Seien Z_1, Z_2, \ldots d-dimensionale Zufallsvariablen mit

$$\sqrt{n}(Z_n-a) \stackrel{D}{\to} \mathcal{N}_d(0,\Sigma),$$

mit $a := (a_1, \dots, a_d) \in \mathbb{R}^d$ und $\Sigma \in \mathbb{R}^{d \times d}$.

Sei $g:=(g_1,\ldots,g_s)^T:\ \mathbb{R}^d\to\mathbb{R}^s$ differenzierbar und

$$\frac{dg}{da} := \left(\frac{\partial g_j}{\partial a_k}\right)_{\substack{1 \le j \le s, \\ 1 \le k \le d}}$$

dann gilt

$$\sqrt{n} \left(g(Z_n) - g(a) \right) \stackrel{D}{\to} \mathcal{N}_s \left(0, \frac{dg}{da} \Sigma \left(\frac{dg}{da} \right)^T \right).$$

Beweis:

Nach der Definition der Differenzierbarkeit gilt

$$\sqrt{n}\left(g(Z_n) - g(a)\right) = \underbrace{\frac{dg}{da}\sqrt{n}(Z_n - a)}_{=:U_n} + \underbrace{\|\sqrt{n}(Z_n - a)\| \cdot r(Z_n - a)}_{=:V_n},$$

mit $r(Z_n - a) \to 0$ für $Z_n \to a$. Beachte, dass $\|\sqrt{n}(Z_n - a)\| \in O_p(1)$.

Aus $Z_n \stackrel{P}{\to} a$ folgt, dass $r(Z_n - a) \stackrel{P}{\to} 0$, und somit

$$V_n \stackrel{P}{\rightarrow} 0.$$

Aus der Voraussetzung folgt mit dem Abbildungssatz weiter

$$U_n \stackrel{D}{\to} \frac{dg}{da} \cdot T$$

mit $T \sim \mathcal{N}_d(0, \Sigma)$ und somit

$$U_n \stackrel{D}{\to} \mathcal{N}_s \left(0, \frac{dg}{da} \Sigma \left(\frac{dg}{da} \right)^T \right).$$

Die Behauptung folgt schließlich aus dem Lemma von Slutzky.

8.4 Asymptotik des Momentenschätzers (vgl. 4.8)

$$X_1, \ldots, X_n \stackrel{uiv}{\sim} X, \ X \mathbb{R}^1$$
 -wertig, $P^X \in \{P_{\vartheta} : \vartheta \in \Theta\}, \ \Theta \subset \mathbb{R}^k,$
 $\vartheta = (\vartheta_1, \ldots, \vartheta_n)$

Sei
$$m_l := EX^l$$
, $\hat{m}_l = \frac{1}{n} \sum_{i=1}^n X_i^l$ ($\hat{=} \bar{X}_n^l$ aus 4.8)

Voraussetzung:

 $\overline{\vartheta} = g(m_1, \dots, m_k) \text{ mit } g: \mathbb{R}^k \to \mathbb{R}^k$ Momentschätzer: $\hat{\vartheta} = g(\hat{\vartheta}_1, \dots, \hat{\vartheta}_k)$

Sei

$$Y_j := \begin{pmatrix} X_j \\ \vdots \\ X_j^k \end{pmatrix} Y := \begin{pmatrix} X \\ \vdots \\ X^k \end{pmatrix}, \ a := EY = \begin{pmatrix} m_1 \\ \vdots \\ m_k \end{pmatrix}$$

 $E \|Y\|^2 < \infty \Leftrightarrow EX^{2k} < \infty$

$$\Sigma := E[(Y - a)(Y - a)^T] = (E[(X^i - m_i)(X^j - m_j)^T])_{i,j=(1,\dots,k)}$$
$$= (EX^{i+j} - m_i m_j)_{i,j}$$
$$= (m_{i+j} - m_i m_j)_{i,j}$$

 $8.2 \Rightarrow$

$$\frac{1}{\sqrt{n}} \left(\sum_{j=1}^{n} Y_{j} - na \right) = \frac{1}{\sqrt{n}} \left(\begin{pmatrix} \sum_{j} X_{j} \\ \vdots \\ \sum_{j} X_{j}^{k} \end{pmatrix} - n \cdot \begin{pmatrix} m_{1} \\ \vdots \\ m_{k} \end{pmatrix} \right) \\
= \sqrt{n} \cdot \begin{pmatrix} \hat{m}_{1} - m_{1} \\ \vdots \\ \hat{m}_{k} - m_{k} \end{pmatrix} \xrightarrow{D_{\vartheta}} \mathcal{N}(0, \Sigma(\vartheta))$$

Aus 8.3 folgt: Falls $EX^{2k} < \infty$ und g differenzierbar, so gilt:

$$\sqrt{n}(\hat{\vartheta}_n - \vartheta) \stackrel{D_{\vartheta}}{\to} \mathcal{N}_k(0, \frac{dg}{da} \sum (\vartheta)(\frac{dg}{da})T)$$

Achtung: Σ hängt von m_1, \ldots, m_{2k} und somit von unbekanntem ϑ ab.

(Schreibweise "asymptotisch normalverteilt":)

$$\sqrt{n}(\hat{\vartheta}_n - \vartheta) \approx \mathcal{N}_k(0, T) \Leftrightarrow \hat{\vartheta}_n \approx \mathcal{N}_k(\vartheta, \frac{T}{n}), \ \hat{\vartheta}_n \sim AN(\vartheta, \frac{\hat{T}}{n}), \ \hat{T} = T(\hat{\vartheta}_n)$$

8.5 Asymptotik des ML-Schätzers

 $X_1, \ldots, X_n \stackrel{uiv}{\sim} f_1(\xi, \vartheta)$ (Dichte bezüglich dominierendem Maß μ) $\vartheta \in \Theta \subset \mathbb{R}^k$, Θ offen

Regularitätsvoraussetzungen: (a)-(e) aus 5.7- 5.9 seien erfüllt.

Zusätzlich gelte:

 $\{\xi: f_1(\xi,\vartheta)>0\}$ ist unabhängig von $\vartheta!$

$$\forall i, j, l \in \{1, \dots, k\}$$
 existiert $\frac{\partial^3 \log f_1(\xi, \theta)}{\partial \theta_i \partial \theta_j \partial \theta_j} = L_{ijl}(\xi, \theta)$

 $\forall i, j, l \in \{1, \dots, k\} \text{ existiert } \frac{\partial^3 \log f_1(\xi, \vartheta)}{\partial \vartheta_i \partial \vartheta_j \partial \vartheta_l} = L_{ijl}(\xi, \vartheta)$ $\forall \vartheta \in \Theta \ \forall \delta > 0 \ \forall i, j, l \in \{1, \dots, k\} \text{ existiert eine Funktion } M_{i,j,l}(\xi) \geq 0 \text{ mit}$

$$|L_{i,j,l}(\xi,\eta)| \le M_{i,j,l}(\xi), \|\eta - \vartheta\| \le \delta$$

und $E_{\vartheta}M_{i,j,l}(X_1) < \infty$

Sei

$$\mathcal{U}_n(\vartheta) := \sum_{j=1}^n \frac{d}{d\vartheta} \log f_1(X_j, \vartheta), \ E_{\vartheta} \mathcal{U}_n(\vartheta) = 0$$
$$I_n(\vartheta) = E[\mathcal{U}_n(\vartheta)\mathcal{U}_n(\vartheta)^T] = nI_1(\vartheta)$$
$$W_n(\vartheta) = \frac{d}{d\vartheta^T} \mathcal{U}_n(\vartheta), \ E_{\vartheta}[W_n(\vartheta)] = -I_n(\vartheta)$$

8.5.1Satz

Es gelte $\mathcal{U}_n(\hat{\vartheta}_n) = 0$ (d.h. $\hat{\vartheta}_n$ ist Lösung der Likelihood-Gleichung $\mathcal{U}_n(\vartheta) = 0$) und $\hat{\vartheta}_n \stackrel{P_{\vartheta}}{\to} \vartheta$, $\vartheta \in \Theta$ (d.h. $(\hat{\vartheta}_n)_n$ ist konsistent). Dann folgt:

$$\sqrt{n}(\hat{\vartheta}_n - \vartheta) \stackrel{D_{\vartheta}}{\to} \mathcal{N}_k(0, I_1(\vartheta)^{-1})$$

$$\Leftrightarrow \hat{\vartheta}_n \sim AN(\vartheta, \frac{I_n^{-1}}{n})$$

Beweisskizze:

$$0 = \frac{1}{\sqrt{n}} \mathcal{U}_n(\hat{\vartheta}_n)$$

$$\stackrel{\text{Taylor}}{=} \frac{1}{\sqrt{n}} \mathcal{U}_n(\vartheta) + \frac{1}{\sqrt{n}} W_n(\vartheta)(\hat{\vartheta}_n - \vartheta) + \underbrace{\frac{1}{\sqrt{n}} R_n(\vartheta, \hat{\vartheta}_n - \vartheta)}_{z.z.: = o_{P_{\vartheta}}(1)}$$

$$\Rightarrow \underbrace{\frac{1}{n}W_{n}(\vartheta)}_{P_{\vartheta}^{-f.s}-I_{1}(\vartheta)(SGGZ)} \sqrt{n}(\hat{\vartheta}_{n}-\vartheta) = \underbrace{-\frac{1}{\sqrt{n}}\mathcal{U}_{n}(\vartheta)}_{P_{\vartheta}^{-f.s}-I_{1}(\vartheta)(SGGZ)} + o_{P_{\vartheta}}(1) \ (*)$$

$$\xrightarrow{P_{\vartheta}^{-f.s}-I_{1}(\vartheta)(SGGZ)}$$

$$\xrightarrow{\frac{D_{\vartheta}}{\rightarrow}\mathcal{N}_{k}(0,I_{1}(\vartheta))} (ZGWS 8.2)$$

$$\Rightarrow \sqrt{n}(\hat{\vartheta}_n - \vartheta) \stackrel{D_{\vartheta}}{\to} \mathcal{N}_k(0, -I_1(\vartheta)^{-1}I_1(\vartheta)(-I_1(\vartheta)^{-1}))$$

(z.B. Knight, 249 oder Lehmann/Casella, 443-468)²³

Bemerkung: (asymptotische Linearisierbarkeit des Schätzfehlers)

$$(*) \Rightarrow \sqrt{n}(\hat{\vartheta}_n - \vartheta) = I_1(\vartheta)^{-1} \frac{1}{\sqrt{n}} \mathcal{U}_n(\vartheta) + o_{P_{\vartheta}}(1)$$
$$= \frac{1}{\sqrt{n}} \sum_{j=1}^n \underbrace{I_1(\vartheta)^{-1} \frac{d}{d\vartheta} \log f_1(X_j, \vartheta)}_{=:\widetilde{I}(X_j, \vartheta)} + o_{P_{\vartheta}}(1)$$

 $\min E_{\vartheta}\widetilde{l}(X_1,\vartheta) = 0$

8.5.2 Satz

Unter den obigen Voraussetzungen existiert eine Folge $\hat{\vartheta}_n = \hat{\vartheta}_n(X_1, \dots, X_n)$ mit:

Ist ϑ_0 der wahre Parameter, so gilt:

$$\lim P_{\vartheta_0}(\mathcal{U}_n(\hat{\vartheta}_n) = 0, \ \left| \hat{\vartheta}_n - \vartheta_0 \right| \le \varepsilon) = 1 \ \forall \varepsilon > 0$$

Korollar

Besitzt die Likelihood-Gleichung $\mathcal{U}_n(\vartheta) = 0$ für jedes n eine eindeutige Lösung $\hat{\vartheta}_n$, so gilt:

$$\hat{\vartheta}_n \stackrel{P_{\vartheta}}{\to} \vartheta, \ \vartheta \in \Theta$$

Anmerkung:

(1) $\{P_{\vartheta}: \vartheta \in \Theta\}$ mit Dichte $f(x,\vartheta)$ bzgl. dem Maß μ . Dann $\forall \vartheta \neq \vartheta_0$:

$$E_{\vartheta_0} \left[\log \frac{f(X, \vartheta)}{f(X, \vartheta_0)} \right] \overset{\text{Jensensche Ungl.}}{<} \log \underbrace{E_{\vartheta_0} \left[\frac{f(X, \vartheta)}{f(X, \vartheta_0)} \right]}_{\int f(x, \vartheta) dx = 1}$$

$$\Leftrightarrow E_{\vartheta_0}[\log f(X, \vartheta_0)] > E_{\vartheta_0}[\log f(X, \vartheta)] \quad \forall \vartheta \neq \vartheta_0$$

d.h.
$$\theta_0$$
 maximiert $E_{\vartheta_0}[\log f(X,\vartheta)]$ bezüglich $\vartheta!$

 $^{^{23}}o_{P_{\vartheta}}(1)$ bedeutet stochastische Konvergenz gegen 0

(2) Funktional in (*) ist nicht auswertbar, da ϑ_0 unbekannt! Aber:

$$\frac{1}{n} \underbrace{\sum_{i=1}^{n} \log f(X_i, \vartheta)}_{l(X, \vartheta), \text{ "Log-Likelihood Funktion"}} \overset{P_{\vartheta} - f.s.}{\to} E_{\vartheta_0}[\log f(X, \vartheta)] \forall \vartheta \in \Theta$$

Maximierung von $l(X, \vartheta)$ als "Ersatz" für (*).

(3) f,g μ -Dichten:

$$E_f \left[\log \frac{f(X)}{g(X)} \right] \ge 0$$
"=" $\Leftrightarrow f = g$

"Entropie" zwischen f und g, Kullbach-Leibler-Information von g bezüglich f, Kullbach-Leibler-Abstand zwischen f und g

- (4) Was tun, falls Lösung von $U_n(\vartheta) = 0$ nicht eindeutig?
 - (i) Oft ist die Folge von globalen Maxima konsistent. (Theorie von Wald 1949, Le Cam 1953)
 - (ii) Sei (δ_n) konsistent. Wähle Folge ϑ_n^* , die am nächsten zu δ_n liegt $\Rightarrow (\vartheta_n^*)$ konsistent, 8.5.1 anwendbar.
 - (iii) 1-Schritt-MLE verwenden: $(\vartheta_n^{(0)})$ sei \sqrt{n} -konsistent. Mache einen Newton-Schritt zur Lösung von $\mathcal{U}_n(\vartheta) = 0$:

$$\vartheta_n^{(1)} = \vartheta_n^{(0)} - \frac{\mathcal{U}_n'(\vartheta_n^{(0)})}{\mathcal{U}_n'(\vartheta_n^{(0)})}$$

Dann hat $(\vartheta_n^{(1)})_{n\geq 1}$ dasselbe asymptotische Verhalten wie in 8.5.1.

9 Robuste Schätzer

Seien $X_1, \ldots, X_n, X_{n+1} \stackrel{uiv}{\sim} F$, $F \in \mathfrak{F}$: Verteilungsannahme, x_1, \ldots, x_n, x Realisierungen von $X_1, \ldots, X_n, X_{n+1}, X_i$ reellwertig. Sei $\vartheta : \mathfrak{F} \to \mathbb{R}$, $\hat{\vartheta}_n = \vartheta(\hat{F}_n)$ Plug-In-Schätzer für $\vartheta(F)$. $(\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{X_i \leq t\})$

9.1 Definition (Sensitivitätskurve)

$$S(x, \hat{\vartheta}) = \frac{\hat{\vartheta}_{n+1} - \hat{\vartheta}_n}{\frac{1}{n+1}}$$

Dabei: $\hat{\vartheta}_{n+1} = \vartheta(\hat{F}_{n+1})$ basierend auf X_1, \dots, X_n und einer zusätzlichen Beobachtung x.

 $S(x,\hat{\vartheta})$ ist die Änderung von $\hat{\vartheta}$ bei einer zusätzlichen Beobachtung x relativ gesehen zur Masse $\frac{1}{n+1}$ von x.

Beispiele:

a)
$$\vartheta(F) = \int x dF(x), \ \vartheta(\hat{F}_n) = \bar{x}_n$$

$$S(x, \hat{\vartheta}) = \frac{\bar{x}_{n+1} - \bar{x}_n}{\frac{1}{n+1}} = \sum_{i=1}^n x_i + x - \frac{n+1}{n} \sum_{i=1}^n x_i = x - \bar{x}_n$$

linear in $x \Rightarrow$ unbeschränkt in x

Große Änderung von S, falls |x| groß!

b) Sei $\mathfrak{F} = \{F: F \text{ streng monoton wachsend auf } \{x: 0 < F(x) < 1\}\},\ \vartheta(F) = F^{-1}(\frac{1}{2}).$ Sei n = 2r - 1 ungerade.

$$\Rightarrow \vartheta(\hat{F}_n) = x_{(r)} =: x_{r:n}$$

("das r kleinste unter n")

n+1=2r:

$$\hat{F}_{n+1}^{-1}(\frac{1}{2}) = x_{r:n+1}$$

$$\hat{\vartheta}_{n+1}=\vartheta(\hat{F}_{n+1})\in[x_{(r-1)},x_{(r)}]$$

 \Rightarrow S beschränkt in x!

Nachteil der Sensitivitätskurve:

Hängt von Stichprobe ab.

Wünschenswert wäre Abhängigkeit nur von x und F.

9.2 Definition

a) Sei Δ_x die zum Dirac-Maß in x gehörende Verteilungsfunktion, also

$$\Delta_x(y) = \begin{cases} 0, & y < x \\ 1, & y \ge x \end{cases}$$

Die Einflusskurve (*influence curve*) von $\vartheta(F)$ ist

$$\varphi(x,F) = \lim_{t \to 0} \frac{\vartheta((1-t)F + t\Delta_x) - \vartheta(F)}{t}$$
$$= \frac{d}{dt} \vartheta((1-t)F + t\Delta_x)|_{t=0}$$

wobei die Existenz der Ableitung vorausgesetzt wird.

b) $\hat{\vartheta} = \vartheta(\hat{F}_n)$ heißt **robust**, falls $\varphi(x, F)$ beschränkt ist in x.

Bemerkung:

Gegeben:

Stichprobe x_1, \ldots, x_n : Schätze $\vartheta(F)$ durch $\hat{\vartheta}_n = \vartheta(\hat{F}_n)$. Weiterer Wert x: Schätze $\vartheta(F)$ durch $\hat{\vartheta}_{n+1} = \vartheta(\hat{F}_{n+1})$, wobei

$$\hat{F}_{n+1}(y) = \frac{n}{n+1}\hat{F}_n(y) + \frac{1}{n+1}\Delta_x(y)$$

Sei nun $t = \frac{1}{n+1}$, also $1 - t = \frac{n}{n+1}$. Damit gilt:

$$\hat{\vartheta}_{n+1} = \vartheta(\hat{F}_{n+1}) = \vartheta((1-t)\hat{F}_n + t\Delta_x)
= \frac{\vartheta((1-t)\hat{F}_n + t\Delta_x) - \vartheta(\hat{F}_n)}{t}t + \underbrace{\vartheta(\hat{F}_n)}_{=\hat{\vartheta}_n}
\approx \hat{\vartheta}_n + \frac{1}{n+1}\varphi(x,\hat{F}_n)$$

(Diese Approximation setzt voraus, dass $\varphi(x, \hat{F}_n)$ existiert.)

In diesem Fall gilt:

$$\varphi(x, \hat{F}_n) \approx \frac{\hat{\vartheta}_{n+1} - \hat{\vartheta}_n}{\frac{1}{n+1}} = S(x, \hat{\vartheta})$$

9.3 Beispiel 69

9.3 Beispiel

Sei $\vartheta(F) = \int y dF(y)$.

$$\Rightarrow \varphi(x,F) = \lim_{t \to 0} \frac{1}{t} [(1-t) \int y dF(y) + t \cdot \int y d\Delta_x(y) - \int y dF(y)]$$
$$= -\int y dF(y) + x$$
$$= x - \vartheta(F)$$

Hier gilt sogar²⁴: $\varphi(x, \hat{F}_n) = x - \bar{x}_n = S(x, \hat{\theta})$.

9.4 Satz (Eigenschaften von $\varphi(x, F)$)

Sei $\varphi(x, F)$ Einflusskurve von $\vartheta(F)$.

- a) Sei $\vartheta(F)=\int hdF=Eh(X),$ wobei $X\sim F$ und $E|h(X)|<\infty.$ Dann gilt: $\varphi(x,F)=h(x)-\vartheta(F)$
- b) Sei $\vartheta(F) = \vartheta_1(F) + \vartheta_2(F)$ mut Einflusskurven $\varphi_1(x, F), \varphi_2(x, F)$. Dann: $\varphi(x, F) = \varphi_1(x, F) + \varphi_2(x, F)$
- c) Sei $I \subset \mathbb{R}$, $\vartheta(F) = \int_I g(s)\varphi_s(x,F)ds$. Ist $\varphi_s(x,F)$ die Einflusskurve von $\vartheta_s(F)$ $(s \in I)$, so gilt (unter Regularität²⁵):

$$\varphi(x,F) = \int_{I} g(s)\varphi_{s}(x,F)ds$$

d) (Kettenregel) Ist g differenzierbar, so ist die Einflusskurve von $g(\vartheta(F))$ gegeben durch

$$q'(\vartheta(F)) \cdot \varphi(x,F)$$

e) (implizit definierter Parameter) $\vartheta(F)$ sei Lösung der Gleichung $h(F,\vartheta(F))=0$, wobei für festes u $\lambda(x,F,u)$ die Einflusskurve von h(F,u) sei und die Ableitung h'(F,u) nach u existiere. Dann gilt:

$$\varphi(x,F) = -\frac{\lambda(x,F,\vartheta(F))}{h'(F,\vartheta(F))}$$

²⁴vergleiche 9.1, Beispiel (a)

²⁵siehe Beweis

Beweis:

$$\overline{\mathrm{Sei}\ F_{t,x}} = (1-t)F + t\Delta_x.$$

a) Aus

$$\vartheta(F_{t,x}) = (1-t) \int h(y)dF(y) + t \cdot h(x)$$

(vergleiche 9.3) folgt:

$$\frac{1}{t}(\vartheta(F_{t,x}) - \vartheta(F)) = h(x) - \vartheta(F)$$

b) Klar.

c)

$$\varphi(x,F) = \frac{d}{dt}\vartheta(F_{t,x})|_{t=0}$$

$$= \frac{d}{dt}\int_{I}g(s)\vartheta_{s}(F_{t,x})ds|_{t=0}$$

$$\stackrel{(*)}{=} \int_{I}g(s)\frac{d}{dt}\vartheta_{s}(F_{t,x})|_{t=0}ds$$

$$= \int_{I}g(s)\varphi_{s}(x,F)ds$$

(*): Vertauschbarkeit vorausgesetzt! (Regularität)

d)

$$\frac{1}{t}(g(\vartheta(F_{t,x})) - g(\vartheta(F))) = \underbrace{\frac{g(\vartheta(F_{t,x})) - g(\vartheta(F))}{\vartheta(F_{t,x}) - \vartheta(F)}}_{\overset{t \to 0}{\to} g'(\vartheta(F)), \text{ da } \vartheta(F_{t,x}) \overset{t \to 0}{\to} \vartheta(F)}_{\overset{t \to 0}{\to} \varphi(x,F)}$$

$$\cdot \underbrace{\frac{\vartheta(F_{t,x}) - \vartheta(F)}{t}}_{\overset{t \to 0}{\to} \varphi(x,F)}$$

e)
$$0 = \frac{1}{t} \underbrace{\left[h(F_{t,x}, \vartheta(F_{t,x})) - h(F, \vartheta(F))\right]}_{=0} = 0$$

$$= \frac{1}{t} \left[h(F_{t,x}, \vartheta(F_{t,x})) - h(F_{t,x}, \vartheta(F))\right]$$

$$+ \underbrace{\frac{1}{t} \left[h(F_{t,x}, \vartheta(F)) - h(F, \vartheta(F))\right]}_{t \to 0 \lambda(x, F, \vartheta(F))}$$

$$= \underbrace{\frac{h(F_{t,x}, \vartheta(F_{t,x})) - h(F_{t,x}, \vartheta(F))}{h(F, \vartheta(F_{t,x})) - h(F, \vartheta(F))}}_{t \to 0} \cdot \underbrace{\frac{h(F, \vartheta(F_{t,x})) - h(F, \vartheta(F))}{\vartheta(F_{t,x}) - \vartheta(F)}}_{t \to 0 h'(F, \vartheta(F)) \to \varphi(x, F)} + \underbrace{\frac{1}{t} \left[h(F_{t,x}, \vartheta(F)) - h(F, \vartheta(F))\right]}_{t \to 0}$$

Also:

$$h'(F, \vartheta(F)) \cdot \varphi(x, F) + \lambda(x, F, \vartheta(F)) = 0$$

 $\overset{h'\neq 0}{\Rightarrow} \overset{\text{(Forderung)}}{\Rightarrow} \text{ Behauptung.}$

9.5 Bemerkung (Einflusskurven-Heuristik)

Sei $\varphi(x,F)$ Einflusskurve von $\vartheta(F),\ X\sim F$ Oft gilt:

(i)
$$E[\varphi(X,F)] = \int \varphi(x,F)dF(x) = 0$$

(ii)
$$\vartheta(\hat{F}_n) - \vartheta(F) = \int \varphi(x, F) d(\hat{F}_n(x) - F(x)) + R_n$$
, wobei $\sqrt{n}R_n \stackrel{n \to \infty}{\to} 0$ [wird oft als erfüllt angenommen]

(iii)
$$0 < \tau^2(F) = E[\varphi^2(X, F)] < \infty$$

Dann gilt:

$$\sqrt{n}(\hat{\vartheta}_n - \vartheta) = \sqrt{n}(\vartheta(\hat{F}_n) - \vartheta(F)) \stackrel{D}{\to} \mathcal{N}(0, \tau^2(F))$$

Beweis:

Mit (i) und (ii) gilt:

$$\vartheta(\hat{F}_n) - \vartheta(F) = \frac{1}{n} \sum_{i=1}^n \varphi(X_i, F) + R_n$$

$$\Rightarrow \sqrt{n}(\hat{\vartheta}_n - \vartheta) = \underbrace{\frac{1}{\sqrt{n}} \sum_{i=1}^n \varphi(X_i, F)}_{\stackrel{P}{\to} \mathcal{N}(0, \tau^2(F))} + \underbrace{\sqrt{n} R_n}_{\stackrel{P}{\to} 0}$$

Lemma von Slutzky \Rightarrow Behauptung

9.6 Beispiel (Median)

Sei F stetig mit Dichte f = F'. f(x) > 0 für $\{x : 0 < F(x) < 1\}$, $X \sim F$ Median

$$\vartheta(F) = F^{-1}(\frac{1}{2})$$

bzw.
$$F(\vartheta(F)) - \frac{1}{2} = 0 \Leftrightarrow h(F, \vartheta(F)) = 0$$
 mit

$$h(F,u) = F(u) - \frac{1}{2}$$

$$= \int \underbrace{(\mathbf{1}\{x \le u\} - \frac{1}{2})}_{=:\widetilde{h}_u(x)} dF(x)$$

$$= \int \widetilde{h}_u(x) dF(x)$$

$$\stackrel{9.4(a)}{\Rightarrow} \lambda(x, F, u) = \widetilde{h}_u(x) - h(F, u) = \mathbf{1}\{x \le u\} - F(u)$$

$$\stackrel{9.4(c)}{\Rightarrow} \varphi(x,F) = -\frac{\lambda(x,F,\vartheta(F))}{h'(F,\vartheta(F))}$$

$$= -\frac{\mathbf{1}\{x \leq \vartheta(F)\} - F(\vartheta(F))}{f(\vartheta(F))}$$

$$= \frac{\frac{1}{2} - \mathbf{1}\{x \leq \vartheta(F)\}}{f(\vartheta(F))}$$

$$= \begin{cases} -\frac{1}{2f(\vartheta(F))}, & x \leq \vartheta(F) \\ +\frac{1}{2f(\vartheta(F))}, & x > \vartheta(F) \end{cases}$$

Bemerkungen:

- (i) $\hat{\vartheta}$ ist robust
- (ii) \hat{F}_n ist Treppenfunktion $\Rightarrow \varphi(x, \hat{F}_n)$ existiert nicht \Rightarrow Bemerkung nach 9.2 ist hier nicht zutreffend

(iii)
$$E[\varphi(X,F)] = \frac{\frac{1}{2} - P(X \le \vartheta(F))}{f(\vartheta(F))} = 0$$

$$\tau^{2}(F) = E[\varphi^{2}(X,F)] = \frac{1}{4f^{2}(\vartheta(F))}$$

$$\stackrel{9.5}{\Rightarrow} \sqrt{n}(\hat{\vartheta}_{n} - \vartheta) \stackrel{D}{\rightarrow} \mathcal{N}(0, \frac{1}{4f^{2}(\vartheta(F))})$$

Konkret:

$$X_1, \dots, X_n \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma^2), \ \vartheta(F) = \mu$$

$$\Rightarrow \sqrt{n}(\hat{\vartheta}_n - \mu) \stackrel{D}{\to} \mathcal{N}(0, \frac{\pi\sigma^2}{2})$$

$$f(\mu) = \frac{1}{\sqrt{2\pi}\sigma} \cdot 1$$

$$\hat{\vartheta}_n \sim AN(\mu, \underbrace{\frac{\pi\sigma^2}{2n}}_{\tau_1^2})$$

$$\bar{X} \sim \mathcal{N}(0, \underbrace{\frac{\sigma^2}{n}}_{\tau_2^2})$$

 $(\bar{X} \text{ UMVUE})$

$$\frac{\tau_1^2}{\tau_2^2} = \frac{\pi}{2} \approx 1,57$$

Einflusskurve des Medians $\vartheta(F)=F^{-1}(\frac{1}{2})$ ist also

$$\varphi_{\frac{1}{2}}(x,F) = \frac{\frac{1}{2} - \mathbf{1}\{x \le \vartheta(F)\}}{f(\vartheta(F))}$$

Ganz analog: Einflusskurve von $F^{-1}(p)$ ist

(*)
$$\varphi_p(x,F) = \frac{p-\mathbf{1}\{x \le F^{-1}(p)\}}{f(F^{-1}(p))}, \ 0$$

9.7 Beispiel (α -getrimmtes Mittel)

Sei F stetig, $F'=f,\ f(x)>0$ für $\{x:0< F(x)<1\}.$ f symmetrisch mit Zentrum $\mu=EX.$ Für $0<\alpha<\frac{1}{2}$ heißt

$$\mu_{\alpha}(F) = \frac{1}{1 - 2\alpha} \int_{F^{-1}(\alpha)}^{F^{-1}(1 - \alpha)} x \ dF(x) = \frac{1}{1 - 2\alpha} \int_{\alpha}^{1 - \alpha} F^{-1}(p) dp$$

α -getrimmtes Mittel.

Für symmetrische Verteilungen gilt:

$$\mu_{\alpha}(F) = \mu$$

(Denn:)

$$\frac{1}{1 - 2\alpha} \int_{F^{-1}(\alpha)}^{F^{-1}(1 - \alpha)} \mu dF(x) = \mu$$

$$\Rightarrow \mu_{\alpha}(F) - \mu = \frac{1}{1 - 2\alpha} \int_{F^{-1}(\alpha)}^{F^{-1}(1 - \alpha)} (x - \mu) dF(x) = 0$$

Der Plug-In Schätzer für $\mu_{\alpha}(F)$ ist

$$\mu_{\alpha}(\hat{F}_n) = \frac{1}{1 - 2\alpha} \int_{0}^{1 - \alpha} \hat{F}_n^{-1}(p) dp$$

wobe
i $\hat{F}_n^{-1}(t) = X_{(i)},$ falls $\frac{i-1}{n} < t \leq \frac{i}{n}.$ (Aufgabe 16)

In der Praxis wird der (asymptotisch gelichwertige) Schätzer

$$\bar{X}_{n,\alpha} = \frac{1}{n - 2[\alpha n]} \sum_{k=[\alpha n]+1}^{n-[\alpha n]} X_{(k)}$$

verwendet.

Einflusskurve von $\mu_{\alpha}(F)$: 9.4(c) \Rightarrow

$$(**) \qquad \varphi^{\alpha}(x,F) \quad = \quad \frac{1}{1-2\alpha} \int_{\alpha}^{1-\alpha} \varphi_p(x,F) dp$$

$$\stackrel{(*)}{=} \quad \frac{1}{1-2\alpha} \int_{\alpha}^{1-\alpha} \frac{p-\mathbf{1}\{x \leq F^{-1}(p)\}}{f(F^{-1}(p))} dp$$

Nun sei $F(x) < \alpha$. Dann:

$$(**) = \frac{1}{1 - 2\alpha} \int_{\alpha}^{1 - \alpha} (p - 1) \underbrace{\frac{1}{f(F^{-1}(p))}}_{\text{Dichte von } F^{-1}} dp$$

$$= \frac{1}{1 - 2\alpha} \int_{\alpha}^{1 - \alpha} \underbrace{(p - 1)}_{G} dF^{-1}(p)$$

$$\stackrel{(+)}{=} \frac{1}{1 - 2\alpha} [\underbrace{((1 - \alpha) - 1)}_{=G(b)} \cdot F^{-1}(1 - \alpha) - \underbrace{(\alpha - 1)}_{=G(a)} \cdot F^{-1}(\alpha)$$

$$- \underbrace{\int_{\alpha}^{1 - \alpha}}_{=(1 - 2\alpha) \cdot \mu} F^{-1}(p) dp]$$

$$= \frac{1}{1 - 2\alpha} [(-\alpha) \underbrace{(F^{-1}(1 - \alpha) + F^{-1}(\alpha))}_{=2\mu} + F^{-1}(\alpha) - (1 - 2\alpha)\mu]$$

$$= \frac{F^{-1}(\alpha) - \mu}{1 - 2\alpha}$$

(+): partielle Integration (Stochastik II), F weiterhin symmetrisch

Ähnliche Überlegungen für $F(x) > 1 - \alpha$ bzw. $\alpha \le F(x) \le 1 - \alpha$ ergeben:

$$\varphi^{\alpha}(x,F) = \begin{cases} \frac{F^{-1}(\alpha) - \mu}{1 - 2\alpha} , & x < F^{-1}(\alpha) \\ \frac{x - \mu}{1 - 2\alpha} , & F^{-1}(\alpha) \le x \le F^{-1}(1 - \alpha) \\ \frac{F^{-1}(1 - \alpha) - \mu}{1 - 2\alpha} , & x > F^{-1}(1 - \alpha) \end{cases}$$

Insbesondere ist $\varphi^{\alpha}(x, F)$ beschränkt in x.

$$\Rightarrow \bar{X}_{n,\alpha} = \frac{1}{n - 2[\alpha n]} \sum_{k=[\alpha n]+1}^{n-[\alpha n]} X_{(k)}$$

ist robust.

Einflusskurven-Heuristik ergibt:

$$\sqrt{n}(\bar{X}_{n,\alpha}-\mu_{\alpha}) \xrightarrow{D} \mathcal{N}\left(0, \frac{1}{(1-2\alpha)^2} \left[2\alpha(F^{-1}(\alpha)-\mu)^2 + \int_{F^{-1}(\alpha)}^{F^{-1}(1-\alpha)} (x-\mu)^2 dF\right]\right)$$

10 Grundbegriffe der Testtheorie

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ Wahrscheinlichkeitsraum, $(\mathfrak{X}, \mathcal{B}, \{P_{\vartheta} : \vartheta \in \Theta\})$ statistischer Raum, $X : \Omega \to \mathfrak{X}$ Zufallsvariable, $\Theta = \Theta_0 + \Theta_1$ mit $\Theta_0, \Theta_1 \neq \emptyset$. $(\Theta_0 \cap \Theta_1 = \emptyset)$

10.1 Definition

Die Aussage $H_0: \vartheta \in \Theta_0$ heißt (Null-)Hypothese, $H_1: \vartheta \in \Theta_1$ heißt Alternativhypothese oder Alternative.

 $|\Theta_j| = 1 \Rightarrow \Theta_j$ heißt einfach, sonst zusammengesetzt

10.2 Definition

Ein **randomisierter Test** zur Prüfung von H_0 gegen H_1 ist eine messbare Abbildung $\varphi: \mathfrak{X} \to [0,1]$ mit der Interpretation

$$\varphi(x) = P(H_0 \text{ ablehnen} | X = x)$$

Gilt $\varphi(\mathfrak{X}) = \{0,1\}$, so heißt φ nicht randomisiert. Mit $\mathcal{K} := \{x \in \mathfrak{X} : \varphi(x) = 1\}$ gilt dann $\varphi = \mathbf{1}_{\mathcal{K}}$ und die Testvorschrift lautet:

$$x \in \mathcal{K} \Rightarrow H_0$$
 ablehnen $x \in \mathfrak{X} \backslash \mathcal{K} \Rightarrow H_0$ nicht ablehnen

 \mathcal{K} heißt kritischer Bereich (Ablehnbereich), $\mathfrak{X}\backslash\mathcal{K}$ heißt Annahmebereich.

10.3 Bemerkung

Falls $0 < \varphi(x) < 1$, so muss "externes" Bernoulli-Experiment durchgeführt werden; man erhält also Realisierung y einer Zufallsvariablen Y mit $Y \sim \text{Bin}(1, \varphi(x))$.

In praktischen Anwendungen ist "Randomisierung" unerwünscht.

10.4 Definition

Es sei $T: \mathfrak{X} \to \mathbb{R}$ eine messbare Abbildung. Häufig besitzt ein nicht randomisierter Test die Gestalt

$$(*) \quad \begin{array}{ll} T(x) \geq c & \Rightarrow & H_0 \text{ ablehnen} \\ T(x) < c & \Rightarrow & \text{kein Widerspruch zu } H_0 \end{array}$$

(d.h.
$$\mathcal{K} = \{x \in \mathfrak{X} : T(x) \ge c\} = T^{-1}([c, \infty))$$

Dann heißt T Testgröße (Prüfgröße) und $c \in \mathbb{R}$ heißt kritischer Wert. (*) liefert Test mit **oberem Ablehnbereich**.

In $(*) \ge \text{durch} \le \text{und} < \text{durch} > \text{ersetzen} \hookrightarrow \text{Test mit unterem Ablehnbereich}$

10.5 Beispiel

$$(\mathfrak{X},\mathcal{B})=(\mathbb{R}^{m+n},\mathcal{B}^{n+m}),\ X=(\underbrace{X_1,\ldots,X_m}_{\stackrel{uiv}{\sim}F},\underbrace{Y_1,\ldots,Y_n}_{\stackrel{uiv}{\sim}G}),\ X_1,\ldots,Y_n$$
 unabhängig, $\vartheta=(F,G),\ \Theta=\{(F,G):\ F,G\ \mathrm{stetig}\},\ \Theta_0=\{(F,G)\in\Theta:\ F=G\}$
$$H_0:\ F=G$$

$$H_1: F \neq G$$

(nichtparametrisches 2-Stichproben-Problem mit allgemeiner Alternative)

Sei

$$\hat{F}_m(x) = \frac{1}{m} \sum_{i=1}^m \mathbf{1} \{ X_i \le x \}, \ \hat{G}_n(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1} \{ Y_j \le x \}$$

Mögliche Prüfgröße (mit oberem Anlehnbereich):

$$T(X_1, ..., X_m, Y_1, ..., Y_n) = \sup_{x \in \mathbb{R}} |\hat{F}_m(x) - \hat{G}_n(x)|$$

(Kolmogorov-Smirnov-Testgröße)

10.6 Definition und Bemerkung

Ein Fehler 1. Art ist das Verwerfen von H_0 , obwohl H_0 richtig ist. Ein Fehler 2. Art ist das Nichtverwerfen von H_0 , obwohl H_0 falsch ist. 10.7 Definition 79

Entscheidung	H_0 richtig	H_0 falsch
H_0 nicht	richtige	Fehler 2. Art
verwerfen	Entscheidung	
H_0 verwerfen	Fehler 1. Art	richtige
		Entscheidung

Die Funktion

$$G_{\varphi}: \begin{array}{l} \Theta \to [0,1] \\ \vartheta \mapsto G_{\varphi}(\vartheta) := E_{\vartheta}[\varphi] = \int_{\mathfrak{X}} \varphi(x) P_{\vartheta}(dx) \end{array}$$

heißt Gütefunktion des Tests φ .

$$(\varphi = \mathbf{1}_{\mathcal{K}} \Rightarrow G_{\varphi}(\vartheta) = P_{\vartheta}(\mathcal{K}), \ \varphi = \mathbf{1}\{T(x) \ge c\} \Rightarrow G_{\varphi}(\vartheta) = P_{\vartheta}(T \ge c))$$

Ideale Gütefunktion wäre

$$G_{\varphi}(\vartheta) = \left\{ \begin{array}{l} 1, \vartheta \in \Theta_1 \\ 0, \vartheta \in \Theta_0 \end{array} \right.$$

Sei $\alpha \in (0,1)$. φ heißt Test zum **Niveau** $\alpha :\Leftrightarrow G_{\varphi}(\vartheta) \leq \alpha \ \forall \vartheta \in \Theta_0^{26}$

In Praxis übliche Werte: $\alpha = 0,05;\ 0,01;\ 0,001$ Kleines α dient "Sicherung von H_1 ".²⁷

Die Zahl $\sup_{\vartheta \in \Theta_0} G_{\varphi}(\vartheta)$ heißt **Umfang** (size) von φ .

10.7 Definition

Sei

$$\Phi_{\alpha} = \{ \varphi : \mathfrak{X} \to [0, 1] | \sup_{\vartheta \in \Theta_{0}} G_{\varphi}(\vartheta) \le \alpha \}$$

die Menge aller Niveau α -Tests.

$$\Phi_{\alpha} \neq \emptyset$$
, da $\varphi \equiv \alpha \in \Phi_{\alpha}$.

Sei $\widetilde{\Phi}_{\underline{\alpha}} \subset \Phi_{\alpha}$

 $\varphi_1 \in \widetilde{\widetilde{\Phi}}_{\alpha}$ heißt gleichmäßig besser als $\varphi_2 \in \widetilde{\Phi}_{\alpha} : \Leftrightarrow$

$$G_{\omega_1}(\vartheta) \ge G_{\omega_2}(\vartheta) \ \forall \vartheta \in \Theta_1$$

 $\varphi^*\in\widetilde{\Phi}_\alpha$ heißt (gleichmäßig) bester Test in $\widetilde{\Phi}_\alpha:\Leftrightarrow$

$$G_{\varphi^*}(\vartheta) \ge G_{\varphi}(\vartheta) \ \forall \vartheta \in \Theta_1 \ \forall \varphi \in \widetilde{\Phi}_{\alpha}$$

Bezeichnung: UMP-Test ("uniformly most powerfully")

 $^{^{26}}$ Wahrscheinlichkeit für einen Fehler 1. Art ist $\leq \alpha$

 $^{^{27}}$ vgl. "Wahl der Nullhypothese"; das Verwerfen von H_0 ist "fast nie" falsch, also in diesem Fall umgekehrt H_1 auch "fast immer" richtig (…)

11 Neyman-Pearson-Tests (NP-Tests)

Es sei $\Theta_0 = \{\vartheta_0\}$ $\Theta_1 = \{\vartheta_1\}$, f_j sei die Dichte von P_{ϑ_j} bezüglich dem Maß μ auf \mathfrak{X} .

11.1 Definition

 φ heißt NP-Test für $H_0:\vartheta=\vartheta_0$ gegen $H_1:\vartheta=\vartheta_1:\Leftrightarrow \exists c\geq 0\ \exists \gamma\in[0,1]$ mit

(1)
$$\varphi(x) = \begin{cases} 1, & \text{falls } f_1(x) > cf_0(x) \\ \gamma, & \text{falls } f_1(x) = cf_0(x) \\ 0, & \text{falls } f_1(x) < cf_0(x) \end{cases}$$

Beachte²⁸: $E_{\vartheta_0}(\varphi) = P_{\vartheta_0}(f_1 > cf_0) + \gamma P_{\vartheta_0}(f_1 = cf_0)$

(2)
$$Q(x) := \begin{cases} \frac{f_1(x)}{f_0(x)} &, \text{ falls } f_0(x) > 0\\ \infty &, \text{ falls } f_0(x) = 0 \end{cases}$$

$$\widetilde{\varphi}(x) = \begin{cases} 1 & \text{, falls } Q(x) > c \\ \gamma & \text{, falls } Q(x) = c \\ 0 & \text{, falls } Q(x) < c \end{cases}$$

$$\begin{array}{lll} [\mathrm{falls}\ f_0(x) > 0 & \Rightarrow & \varphi(x) = \widetilde{\varphi}(x) \\ \mathrm{falls}\ f_0(x) = 0,\ f_1(x) > 0 & \Rightarrow & \varphi(x) = \widetilde{\varphi}(x) \\ \mathrm{falls}\ f_0(x) = 0,\ f_1(x) = 0 & \Rightarrow & \varphi(x) \neq \widetilde{\varphi}(x)] \end{array}$$

Es gilt: $\{f_0 > 0\} \cup \{f_1 > 0\} \subset \{\varphi = \widetilde{\varphi}\}$

$$\Rightarrow P_{\vartheta_1}(\varphi = \widetilde{\varphi}^*) = P_{\vartheta_1}(\varphi = \widetilde{\varphi}) = 1$$

Beachte: $E_{\vartheta_0}(\widetilde{\varphi}) = P_{\vartheta_0}(Q > c) + \gamma P_{\vartheta_0}(Q = c)$

11.2 Satz

Der Test aus 11.1(1) ist bester Test zum Niveau $\alpha := E_{\vartheta_0}(\varphi)$.

Beweis:

Sei Ψ beliebiger Test mit $E_{\vartheta_0}(\Psi) \leq \alpha$.

Zu zeigen:

$$E_{\vartheta_1}(\varphi) \geq E_{\vartheta_1}(\Psi)$$

²⁸Niveau

Sei
$$M^{(+)} := \{x : \varphi(x) > \Psi(x)\}, M^{(-)} := \{x : \varphi(x) < \Psi(x)\}, M^{(=)} := \{x : \varphi(x) = \Psi(x)\}$$

$$x \in M^{(+)} \Rightarrow \varphi(x) > 0 \Rightarrow f_1(x) \ge cf_0(x)$$

$$x \in M^{(-)} \Rightarrow \varphi(x) < 1 \Rightarrow f_1(x) \le cf_0(x)$$

$$\Rightarrow E_{\vartheta_1}(\varphi - \Psi) = \int_{\mathfrak{X}} (\varphi(x) - \Psi(x))f_1(x)\mu(dx)$$

$$= \int_{M^{(+)}} \underbrace{(\varphi(x) - \Psi(x))}_{\ge cf_0} \underbrace{f_1(x)}_{\ge cf_0} d\mu + \int_{M^{(=)}} \underbrace{(\varphi - \Psi)f_1}_{=0} d\mu$$

$$\ge \int_{M^{(+)}} (\varphi - \Psi)cf_0 d\mu + \int_{M^{(-)}} (\varphi - \Psi)cf_0 d\mu$$

$$= \int_{\mathfrak{X}} (\varphi - \Psi)f_0 d\mu$$

$$= \int_{\mathfrak{X}} \underbrace{(\varphi - \Psi)f_0 d\mu}_{\ge 0}$$

$$\ge 0$$

11.3 Bemerkung

Beweis deckt auch den Fall $\varphi(x) = \gamma(x)$, falls $f_1(x) = cf_0(x)$ ab

11.4 Lemma von Neyman-Pearson

- a) Zu jedem $\alpha \in (0,1)$ existiert ein NP-Test φ der Form 11.1(1).
- b) Ist Ψ ebenfalls bester Test zum Niveau α , so gilt mit φ aus (a) und $D = \{x : f_1(x) \neq cf_0(x)\}$

$$\varphi(x) = \Psi(x)$$
 für μ - fast alle $x \in D$

Beweis:

a) Sei Q wie in 11.1(2). Zu zeigen:

$$\exists c \geq 0 \ \exists \gamma \in [0,1] \ \text{mit} \ P_{\vartheta_0}(Q > c) + \gamma P_{\vartheta_0}(Q = c) = \alpha \ (*)$$

Sei $F_0(t) := P_{\vartheta_0}(Q \le t)$ die Verteilungsfunktion von Q unter ϑ_0 . Dann wird (*) zu $1 - F_0(c) + \gamma(F_0(c - 0)) \stackrel{!}{=} \alpha$.

Setze $c := F_0^{-1}(1 - \alpha)$ und

$$\gamma := \begin{cases} 0, & \text{falls } F_0(c) = F_0(c-0) \\ \frac{F_0(c) - (1-\alpha)}{F_0(c) - F_0(c-0)}, & \text{sonst} \end{cases}$$

b) siehe Pruscha, Vorlesungen über Mathematische Statistik, S. 225

Beispiel: (Poissonverteilung)

$$\overline{X \sim Po}(\lambda), \ (\lambda > 0), \ 0 < \lambda_0 < \lambda_1$$

$$H_0: \lambda = \lambda_0, \ H_1: \lambda = \lambda_1$$

$$f(x,\lambda) = e^{-\lambda} \frac{\lambda^x}{x!} \ x = 1, 2, \dots$$

 \Rightarrow Dichtequotient ist

$$T(x) = \frac{f(x, \lambda_1)}{f(x, \lambda_0)} = \underbrace{\left(\frac{\lambda_1}{\lambda_0}\right)}_{>1}^x e^{-(\lambda_1 - \lambda_0)}$$

streng monoton wachsend in x.

 \Rightarrow Bereich $\{T(x)>c\}$ bzw $\{T(x)=c\}$ kann umgeschrieben werden in $\{x>k\}$ bzw. $\{x=k\}.$

NP-Test

$$\varphi(x) = \begin{cases} 1 & , x > k \\ \gamma & , x = k \\ 0 & , x < k \end{cases}$$

für $\alpha \in (0,1)$ wähle $k \in \mathbb{N}_0, \ \gamma \in [0,1]$ so, dass

$$P_{\lambda_0}(X > k) + \gamma P_{\lambda_0}(X = k) \stackrel{!}{=} \alpha$$

zum Beispiel $\alpha = 0,05, \ \lambda_0 = 1$:

$$P_{\lambda_0}(X=3) = 0,0613, \ P_{\lambda_0}(X>3) = 0,0190$$

 $\Rightarrow P_{\lambda_0}(X \ge 3) > 0,05$

$$P_{\lambda_0}(X > 3) + \gamma P_{\lambda_0}(X = 3) \stackrel{!}{=} 0,05$$

11.5 Definition 83

$$\Rightarrow \gamma = \frac{\alpha - P_{\lambda_0}(X > 3)}{P_{\lambda_0}(X = 3)} = 0,5057$$

Bemerkung:

Wird bei der konkreten Testdurchführung z.B. der Wert x=3 beobachtet, so wird in der Praxis der sogenannte p-Wert

$$p^*(x) = p^*(3)$$

= P_{λ_0} ("mindestens so extremes Ergebnis wie das beobachtete")
= $P_{\lambda_0}(X \ge 3)$
= $0,0803$

 $[p^*(2) > 0, 1, p^*(4) = 0,019, usw]$ angegeben.

Bei diesem Vorgehen wird das Problem der Randomisierung umgangen: Ist zum Beispiel $\alpha = 0.05$ gewählt, so entscheidet man bei $p^*(x) \le 0.05$

Ist zum Beispiel $\alpha = 0.05$ gewählt, so entscheidet man bei $p^*(x) \leq 0.05$ gegen die Hypothese.

Bei $p^*(x) > 0,05$ wird die Hypothese nicht verworfen.

Im Folgenden: "Loslösen" vom Fall $|\Theta_0| = 1 = |\Theta_1|$

Sei $\{P_{\vartheta} : \vartheta \in \Theta\}$ dominiert durch σ -endliches Maß μ auf \mathcal{B} .

$$f(x,\vartheta) = \frac{dP_{\vartheta}}{d\mu}(x)$$

 $\Theta \subset \mathbb{R}^1$, Θ offen

11.5 Definition

Es sei $T: \mathfrak{X} \to \mathbb{R}$ messbar mit $\forall \vartheta, \vartheta' \in \Theta$ mit $\vartheta < \vartheta'$ existiert eine monoton wachsende Funktion $g(\cdot, \vartheta, \vartheta'): \mathbb{R} \to [0, \infty]$ mit

$$\frac{f(x,\vartheta')}{f(x,\vartheta)} = g(T(x),\vartheta,\vartheta'), \ x \in \mathfrak{X}$$

Dann heißt $\{P_{\vartheta}: \vartheta \in \Theta\}$ Klasse mit monotonem Dichtequotienten (DQ) in T.

Falls
$$f(x, \vartheta') > f(x, \vartheta) = 0$$
, so $\frac{f(x, \vartheta')}{f(x, \vartheta)} := \infty$.

11.6 Beispiel

Sei

$$f(x,\vartheta) = c(\vartheta) \cdot e^{q(\vartheta)T(x)} \cdot h(x), \ x \in \mathfrak{X}$$

(einparametrige Exponentialfamilie)

Ist $q: \Theta \to \mathbb{R}$ streng monoton wachsend und gilt $\operatorname{Var}_{\vartheta}(T) > 0 \ \forall \vartheta \in \Theta \quad (*)$, so ist $\{P_{\vartheta}: \vartheta \in \Theta\}$ Klasse mit monotonem DQ in T.

Beweis:

(i) Aus (*) folgt Injektivität von $\Theta \ni \vartheta \to P_{\vartheta}$: Annahme: $\vartheta \neq \vartheta'$ und $P_{\vartheta} = P_{\vartheta'}$

$$\begin{split} \Rightarrow f(\cdot,\vartheta) &= f(\cdot,\vartheta') \; \mu\text{-f.\"{u}}. \\ \Rightarrow \log c(\vartheta) + q(\vartheta) \cdot T(x) &= \log c(\vartheta') + q(\vartheta') \cdot T(x) \; \mu\text{-f.\"{u}}. \\ \Rightarrow T(x) &= \frac{\log c(\vartheta') - \log c(\vartheta)}{q(\vartheta) - q(\vartheta')} \; \mu\text{-f.\"{u}}. \\ \Rightarrow \operatorname{Var}(T) &= 0 \end{split}$$

Widerspruch zu (*)!

(ii) $\vartheta < \vartheta'$

$$\Rightarrow \frac{f(x,\vartheta')}{f(x,\vartheta)} = \frac{c(\vartheta')}{c(\vartheta)} \exp(\underbrace{(q(\vartheta') - q(\vartheta))}_{>0} \cdot T(x)) =: g(T(x),\vartheta,\vartheta')$$

Spezialfall: $Bin(n, \vartheta), 0 < \vartheta < 1$

$$f(x,\vartheta) = \binom{n}{x} \vartheta^x (1-\vartheta)^{n-x} = (1-\vartheta)^n e^{xq(\vartheta)} \binom{n}{x}$$

wobei $q(\vartheta) = \log \frac{\vartheta}{1-\vartheta}$ streng monoton wachsend in ϑ ist. \Rightarrow monotoner DQ in T(x) = x, $x \in \{0, \dots, n\}$

In der Situation von 11.5 sei $H_0:\vartheta\leq\vartheta_0$ gegen $H_1:\vartheta>\vartheta_0$ zu testen. $(\vartheta_0\in\Theta$ vorgegeben)

Für $c^* \in \mathbb{R}$ und $\gamma^* \in [0, 1]$ sei

(*)
$$\varphi^*(x) = \begin{cases} 1, & T(x) > c^* \\ \gamma^*, & T(x) = c^* \\ 0, & T(x) < c^* \end{cases}$$

$$\Rightarrow E_{\vartheta_0}(\varphi^*) = P_{\vartheta_0}(T > c^*) + \gamma^* P_{\vartheta_0}(T = c^*)$$

11.7 Satz 85

11.7 Satz

Die Klasse $\{P_{\vartheta}: \vartheta \in \Theta\}, \Theta \subset \mathbb{R}^1$, besitze monotonen DQ in T. Dann gilt:

a) Ist φ^* von der Form (*) mit $\alpha := E_{\vartheta_0}(\varphi^*) > 0$, so ist φ^* UMP-Test für H_0 gegen H_1 .

- b) Zu vorgegebenem $\vartheta_0 \in \Theta$ und $\alpha \in (0,1)$ existieren $c^* \in \mathbb{R}, \gamma^* \in [0,1]$, so dass φ^* aus (*) ein Test zum Umfang α ist.
- c) Die Gütefunktion $E_{\vartheta}\varphi^*$ ist monoton wachsend und auf $\{\vartheta: 0 < E_{\vartheta}\varphi^* < 1\}$ streng monoton.

Beweis:

a) Sei $\vartheta_1 \in \Theta$ mit $\vartheta_1 > \vartheta_0$ beliebig.

$$H'_0: \vartheta = \vartheta_0$$
 gegen $H'_1: \vartheta = \vartheta_1$

Sei $f_j(x) := f(x, \vartheta_j)$. Wegen

$$\frac{f_1(x)}{f_0(x)} = g(T(x), \vartheta_0, \vartheta_1)$$

existiert zu c^* ein $c := g(c^*, \vartheta_0, \vartheta_1)$ mit

$$\{x: \frac{f_1(x)}{f_0(x)} > c\} \subset \{x: T(x) > c^*\}$$

$$\{x: \frac{f_1(x)}{f_0(x)} < c\} \subset \{x: T(x) < c^*\}$$

[Echte Teilmengen, denn aus $T(x) > c^*$ folgt $g(T(x), \vartheta_0, \vartheta_1) \ge c$.]

Aus

$$0 < \alpha = E_{\vartheta_0} \varphi^*$$

$$= P_{\vartheta_0}(T > c^*) + \gamma^* P_{\vartheta_0}(T = c^*)$$

$$\leq P_{\vartheta_0}(T \geq c^*)$$

$$= P_{\vartheta_0}(\frac{f_1(x)}{f_0(x)} \geq c)$$

folgt $c < \infty$. [Denn: $P_{\vartheta_0}(\frac{f_1(x)}{f_0(x)} = \infty) = 0$]

Für φ^* aus (*) gilt

$$(**) \quad \varphi^*(x) = \begin{cases} 1, & \frac{f_1(x)}{f_0(x)} > c \\ \gamma(x), & \frac{f_1(x)}{f_0(x)} = c \\ 0, & \frac{f_1(x)}{f_0(x)} < c \end{cases}$$

mit $\gamma(x) \in \{0, 1, \gamma^*\}.$

Nach 11.2 und 11.3 ist φ^* bester Test für H_0' gegen H_1' zum Niveau $\alpha = E_{\vartheta_0}(\varphi^*)$.

Da φ^* in (*) nicht von ϑ_1 abhängt, ist (a) für H_0' gegen $H_1: \vartheta > \vartheta_0$ bewiesen.

Teil (c) $\Rightarrow E_{\vartheta}\varphi^* \leq \alpha \ \forall \vartheta \leq \vartheta_0$, d.h. Test φ^* ist UMP-Test für H_0 gegen H_1 zu $\alpha := E_{\vartheta_0}\varphi^*$.

- b) Analog zu 11.4(a). Nach (c) gilt $\sup_{\vartheta \in \Theta_0} E_{\vartheta} \varphi^* = E_{\vartheta_0} \varphi^* = \alpha$, d.h. der Test hat Umfang α .
- c) Sei $\vartheta_1 < \vartheta_2$ beliebig, $\alpha_1 := E_{\vartheta_1} \varphi^*$. Analog zu 11.7 (**) ist φ^* NP-Test für $H_0^* : \vartheta = \vartheta_1$ gegen $H_1^* : \vartheta = \vartheta_2$. Da φ^* besser als $\varphi_1 :\equiv \alpha_1$ folgt

$$\alpha_1 = E_{\vartheta_2}(\varphi_1) \le E_{\vartheta_2}(\varphi^*)$$

d.h. $E_{\vartheta}(\varphi^*)$ monoton wachsend.

(Für strenge Monotonie siehe Pruscha, S. 230)

Anmerkung:

Die Tests in (*) und (**) sind äquivalent. φ^* in (*) hängt nicht von ϑ_1 ab, also hängt auch der Test in (**) nicht von ϑ_1 ab. Dies ist jedoch nicht beweisbar, da ϑ_1 sowohl in $f_1(x)$ als auch in $c = c(\vartheta_0, \vartheta_1)$ eingeht. Beide Tests haben gleichen Ablehnbereich!

11.8 Bemerkung

- a) Testproblem $H_0: \vartheta \geq \vartheta_0$ gegen $H_1: \vartheta < \vartheta_0$ analog. $[\vartheta \text{ durch } -\vartheta \text{ und } T \text{ durch } -T \text{ ersetzen } \Rightarrow \text{ in } (*) \text{ werden } < \text{ und } > \text{ vertauscht}]$
- b) Für zweiseitiges Testproblem $H_0:\vartheta=\vartheta_0$ gegen $H_1:\vartheta\neq\vartheta_0$ existiert i.A. kein UMP-Test zum Niveau α . Ein solcher Test φ^* wäre

(i) UMP-Test für
$$H_0: \vartheta = \vartheta_0$$
 gegen $H_1^>: \vartheta > \vartheta_0$
$$\Rightarrow E_\vartheta \varphi^* < \alpha \ \forall \vartheta < \vartheta_0$$
 ($\hat{=}H_0$)
(ii) UMP-Test für $H_0: \vartheta = \vartheta_0$ gegen $H_1^<: \vartheta < \vartheta_0$
$$\Rightarrow E_\vartheta \varphi^* > \alpha \ \forall \vartheta < \vartheta_0$$
 ($\hat{=}H_1$)

Widerspruch!

11.9 Beispiel (Der einseitige Gauss-Test)

Sei
$$X = (X_1, \dots, X_n), X_1, \dots, X_n \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma_0^2), \sigma_0^2$$
 bekannt. Da
$$\frac{f(x, \mu_1, \sigma_0^2)}{f(x, \mu_0, \sigma_0^2)} = \frac{\exp(-\frac{1}{2\sigma_0^2} \sum_{j=1}^n (x_j - \mu_1)^2)}{\exp(-\frac{1}{2\sigma_0^2} \sum_{j=1}^n (x_j - \mu_0)^2)}$$
$$= \exp(\frac{\mu_1 - \mu_0}{\sigma_0^2} \underbrace{\sum_{j=1}^n (x_j - \mu_0)^2}_{=T(x)})$$

streng monoton wachsend in $T(x) = \sum_j x_j$ ist für $\mu_1 > \mu_0$, besitzt $\{ \otimes \mathcal{N}(\mu, \sigma_0^2) : \mu \in \mathbb{R} \}$ monotonen DQ in $T(x) = \sum_{j=1}^n x_j$ Als UMP-Test zum Neveau α für $H_0 : \mu \leq \mu_0$ gegen $H_1 : \mu > \mu_0$ ergibt sich

$$\varphi^*(x) = \begin{cases} 1, \sum_{j} x_j > c^* \\ \gamma^*, \sum_{j} x_j = c^* \\ 0, \sum_{j} x_j < c^* \end{cases}$$

Da $P_{\mu_0}(\sum_j X_j=c^*)=0$ kann $\gamma^*\in[0,1]$ beliebig gewählt werden, z.B. $\gamma^*=0.$ Außerdem:

$$E_{\mu_0} \varphi^* = P_{\mu_0} \left(\sum_{j=1}^n X_j > c^* \right) = P_{\mu_0} \left(\underbrace{\sqrt{n} \frac{\bar{X}_n - \mu_0}{\sigma_0}}_{\sim \mathcal{N}(0,1)} > \sqrt{n} \frac{\frac{c^*}{n} - \mu_0}{\sigma_0} \right) \stackrel{!}{=} \alpha$$

$$\Rightarrow \sqrt{n} \frac{\frac{c^*}{n} - \mu_0}{\sigma_0} \stackrel{!}{=} z_{1-\alpha} := \Phi^{-1} (1 - \alpha)$$

Ergebnis:

$$\varphi^*(x) = \begin{cases} 1, \sqrt{n} \frac{\bar{x}_n - \mu_0}{\sigma_0} > z_{1-\alpha} \\ 0, \sqrt{n} \frac{\bar{x}_n - \mu_0}{\sigma_0} \le z_{1-\alpha} \end{cases}$$

ist UMP-Test zum Niveau α für $H_0: \mu \leq \mu_0$ gegen $H_1: \mu > \mu_0$.

11.10 Beispiel

(UMP-Tests in einparametrigen Exponentialfamilien)

Sei
$$f_1(x_1, \vartheta) = c(\vartheta)e^{\vartheta T(x)}h(x), \ X_1, \dots, \ X_n \overset{uiv}{\sim} f_1.$$

$$\Rightarrow f(x, \vartheta) = c(\vartheta)^n \exp(\vartheta \sum_i T(x_i)) \prod_i h(x_i)$$

und f hat momotonen DQ in $\tilde{T}(x) = \sum_{j=1}^{n} T(x_j)$ (vgl. 11.6). \Rightarrow UMP-Test zum Niveau α für $H_0: \vartheta \leq \vartheta_0$ gegen $H_1: \vartheta > \vartheta_0$ ist

$$\varphi^*(x) = \begin{cases} 1, \ \tilde{T}(x) > c^* \\ \gamma^*, \ \tilde{T}(x) = c^* \\ 0, \ \tilde{T}(x) < c^* \end{cases}$$

wobei $P_{\vartheta_0}(\widetilde{T}>c^*)+\gamma^*P_{\vartheta_0}(\widetilde{T}=c^*)\stackrel{!}{=}\alpha.$

11.11 Korollar

Sei h = h(t) streng monoton wachsend, $\widetilde{T}(x) = h(T(x))$. In der Situation von 11.7 ist dann auch

$$\tilde{\varphi}^*(x) = \begin{cases} 1 \ , \tilde{T}(x) > \tilde{c}^* \\ \tilde{\gamma}^* \ , \tilde{T}(x) = \tilde{c}^* \\ 0 \ , \tilde{T}(x) < \tilde{c}^* \end{cases}$$

mit \tilde{c}^* , $\underbrace{\tilde{\gamma}^*}_{\in [0,1]}$ gemäß $E_{\vartheta_0} \widetilde{\varphi}^* \stackrel{!}{=} \alpha$ UMP-Test zum Niveau α für H_0 gegen H_1 .

12 UMPU Tests ("UMP unbiased")

Nach Bemerkung 11.8(b) exisitiert im Allgemeinen kein zweiseitiger UMP-Test zu einem Niveau α . Deshalb Einschränkung auf unverfälschte Tests: $\varphi \in \Phi_{\alpha}$ heißt **unverfälscht** (unbiased) zum Niveau α für $H_0: \vartheta \in \Theta_0$ gegen $H_1: \vartheta \in \Theta_1$, falls

(1)
$$E_{\vartheta}\varphi \leq \alpha \ \forall \vartheta \in \Theta_0, \ E_0\varphi \geq \alpha \ \forall \vartheta \in \Theta_1$$

Im Folgenden liegen einparametrige Exponentialfamilien mit Dichte

(*)
$$f(x,\vartheta) = c(\vartheta) \cdot \exp(\vartheta T(x)) \cdot h(x), \ x \in \mathfrak{X}$$

und natürlichem Parameterbereich Θ vor.

Zu testen sei $H_0: \vartheta = \vartheta_0$ gegen $H_1: \vartheta \neq \vartheta_0$.

Nach Lemma 6.12 ist die Gütefunktion $\beta(\vartheta) = E_{\vartheta}\varphi(X)$ beliebig oft differenzierbar. Aus Forderung (1) folgt:

(2)
$$E_{\vartheta_0}\varphi(X) = \alpha$$
, $\frac{d}{d\vartheta}E_{\vartheta}\varphi(X)|_{\vartheta=\vartheta_0} = 0$

Mit

$$c(\vartheta) = \left[\int e^{\vartheta T(x)} h(x) \mu(dx) \right]^{-1}$$

$$c'(\vartheta) = -\int T(x)e^{\vartheta T(x)}h(x)\mu(dx)\cdot c(\vartheta)^2$$

folgt weiter

$$\beta'(x) = \left[\int \varphi(x)c(\vartheta)e^{\vartheta T(x)}h(x)\mu(dx) \right]'$$

$$= c'(\vartheta) \int \varphi(x)e^{\vartheta T(x)}h(x)\mu(dx) + c(\vartheta) \int \varphi(x)T(x)e^{\vartheta T(x)}h(x)\mu(dx)$$

$$= -\bar{c}(\vartheta)^2 \int T(x)e^{\vartheta T(x)}h(x)\mu(dx) \int \varphi(x)e^{\vartheta T(x)}h(x)\mu(dx)$$

$$+E_{\vartheta}[\varphi(x)T(x)]$$

$$= E_{\vartheta}[\varphi(x)T(x)] - E_{\vartheta}T(x)E_{\vartheta}\varphi(x)$$

Damit ist (2) äquivalent zu

(3)
$$E_{\vartheta_0}\varphi(x) = \alpha$$
, $E_{\vartheta_0}[\varphi(x)T(x)] = \alpha E_{\vartheta_0}T(x)$

90

12.1 Satz (UMPU-Tests in einparametrigen Exponentialfamilien)

Exponentialfamilie wie in (*). Weiter sei

$$\varphi^*(x) = \begin{cases} 1, & T(x) < c_1^* \text{ oder } T(x) > c_2^* \\ \gamma_i^*, & T(x) = c_i^* \text{ } (i = 1, 2) \\ 0, & c_1^* < T(x) < c_2^* \end{cases}$$

wobei $c_1^*, c_2^*, 0 \le \gamma_1^*, \gamma_2^* \le 1$ so, dass φ^* (3) erfüllt. Dann:

- a) Unter allen Niveau α Tests für $H_0: \vartheta = \vartheta_0$ gegen $H_1: \vartheta \neq \vartheta_0$ die (3) erfüllen ist φ^* gleichmäßig bester Test.
- b) φ^* ist UMPU-Test zum Niveau α für H_0 gegen H_1 .

Anmerkung:

UMP-Tests sind eventuell auf einer Seite besser, versagen dafür aber auf der anderen Seite. Sie sind hier aber sowieso unzulässig, da sie nicht unverfälscht sind!

12.2 Bemerkungen

a) Aus (3) folgt

$$E_{\vartheta_0}[\varphi(X)\cdot(aT(X)+b)] = a\underbrace{E_{\vartheta_0}[\varphi(X)T(X)]}_{=\alpha E_{\vartheta_0}T} + \alpha\cdot b = \alpha E_{\vartheta_0}[aT(X)+b]$$

d.h. Bedingung (3) und auch die Form des Tests φ^* ändern sich nicht unter linear affinen Transformationen $\tilde{T}(x) = a \cdot T(x) + b \ (a \neq 0)$. Also ist

$$\tilde{\varphi}^*(x) = \begin{cases} 1, & \tilde{T}(x) < \tilde{c}_1^* \text{ oder } \tilde{T}(x) > \tilde{c}_2^* \\ \tilde{\gamma}_i^*, & \tilde{T}(x) = \tilde{c}_i^* \text{ } (i = 1, 2) \\ 0, & \tilde{c}_1^* < T(x) < \tilde{c}_2^* \end{cases}$$

mit $E_{\vartheta_0}\tilde{\varphi}^* \stackrel{!}{=} \alpha$, $E_{\vartheta_0}[\tilde{\varphi}^*\tilde{T}] = \alpha \cdot E_{\vartheta_0}\tilde{T}$ ebenfalls UMPU-Test zum Niveau α für H_0 gegen H_1 .

b) Sei $P_{\vartheta_0}^T$ symmetrisch bezüglich t_0 , d.h.

$$P_{\vartheta_0}(T - t_0 \le -t) = P_{\vartheta_0}(T - t_0 \ge t) \ \forall t \in \mathbb{R}$$

Sei

$$\varphi^*(x) = \begin{cases} 1, & |T(x) - t_0| > c^* \\ \gamma^*, & |T(x) - t_0| = c^* \\ 0, & |T(x) - t_0| < c^* \end{cases}$$

mit
$$P_{\vartheta_0}(T(X) - t_0 > \underbrace{c^*}_{>0}) + \gamma^* P_{\vartheta_0}(T(X) - t_0 = c^*) \stackrel{!}{=} \frac{\alpha}{2}.$$

 $\Rightarrow P_{\vartheta_0}(|T(X) - t_0| > c^*) + \gamma^* P_{\vartheta_0}(|T(X) - t_0| = c^*) = \alpha, \text{ d.h.}$
 $E_{\vartheta_0}\varphi^* = \alpha$ (*).

Weiter gilt: $E_{\theta_0}T(X)=t_0, \, \varphi^*$ symmetrisch bezüglich t_0

$$\Rightarrow E_{\vartheta_0}[\varphi^* \cdot T] = \underbrace{E_{\vartheta_0}[(T - t_0) \cdot \varphi^*]}_{=0 \text{ s.u.}} + t_0 E_{\vartheta_0} \varphi^* \stackrel{(*)}{=} t_0 \cdot \alpha = \alpha \cdot E_{\vartheta_0} T$$

[Betrachte
$$g(t) = (t - t_0) \cdot \varphi^*(t)$$

 $\Rightarrow E_{\vartheta_0}[(T - t_0) \cdot \varphi^*(T)] = \int g(t) P_{\vartheta_0}^T(dt) = 0.$]

D.h. auch die zweite Bedingung in (3) ist erfüllt. φ^* ist also UMPU-Test zum Niveau α für H_0 gegen H_1 . Bestimmung von c^*, γ^* also wie beim einseitigen UMP-Test zum Niveau $\frac{\alpha}{2}$.

Bemerkung:

Form des Tests bleibt unverändert unter streng monotonen Transformationen $\tilde{T}(x) = h(|T(x) - t_0|)$.

12.3 Beispiel (Zweiseitiger Gauss-Test)

 $X_1, \ldots, X_n \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma_0^2), \sigma_0^2 > 0$ bekannt.

$$H_0: \mu = \mu_0 \text{ gegen } H_1: \mu \neq \mu_0$$

Verteilung von $X=(X_1,\ldots,X_n)$ ist einparametrige Exponentialfamilie mit $\vartheta=\frac{\mu}{\sigma_0^2},\,T(x)=\sum_{i=1}^n x_i,\,\sum_{i=1}^n X_i\sim\mathcal{N}(n\mu_0,n\sigma_0^2)$ unter H_0 . Linear affine Transformation

$$\tilde{T}(x) = \frac{T(x) - n\mu_0}{\sqrt{n\sigma_0^2}} = \sqrt{n} \frac{\bar{x}_n - \mu_0}{\sigma_0}$$

liefert $P_{\mu_0}^{\tilde{T}} = \mathcal{N}(0,1)$, also symmetrisch bezüglich 0. Verteilungsfunktion ist stetig

$$\Rightarrow \varphi^* = \begin{cases} 1, & \sqrt{n} \left| \frac{\bar{x}_n - \mu_0}{\sigma_0} \right| > z_{1 - \frac{\alpha}{2}} \\ 0, & \sqrt{n} \left| \frac{\bar{x}_n - \mu_0}{\sigma_0} \right| \le z_{1 - \frac{\alpha}{2}} \end{cases}$$

ist UMPU-Test für H_0 gegen H_1 .

12.4 Beispiel

$$X = (X_1, \dots, X_n), X_i \stackrel{uiv}{\sim} Bin(1, p), 0$$

$$H_0: p = p_0 \text{ gegen } H_1: p \neq p_0$$

Einparametrige Exponentialfamilie mit $\vartheta = \log \frac{p}{1-p}$, $T(x) = \sum_{i=1}^{n} x_i$, $\sum_{i=1}^{n} X_i \sim \text{Bin}(n, p_0)$ unter H_0 .

Im Allgemeinen nicht symmetrisch! UMPU-Test:

$$\Rightarrow \varphi^*(x) = \begin{cases} 1, & \sum x_i < c_1^* \text{ oder } \sum x_i > c_2^* \\ \gamma_i^*, & \sum x_i = c_i^* \\ 0, & c_1^* < \sum x_i < c_2^* \end{cases}$$

mit (komplizierten) Bedingungen für $c_1^*, c_2^*, \gamma_1^*, \gamma_2^*$.

In der Praxis oft:

Konstruktion des Tests aus zwei einseitigen UMP-Tests zum Niveau $\frac{\alpha}{2}$, ist aber nicht UMPU.

Im Folgenden Exponentialfamilie mit

(4)
$$f(x, \vartheta, \xi) = c(\vartheta, \xi) \cdot \exp(\vartheta \cdot U(x) + \sum_{i=1}^{k} \xi_i T_i(x)) \cdot h(x)$$

$$(\vartheta, \xi) \in \Theta \subset \mathbb{R} \times \mathbb{R}^k$$
, Θ konvex, $\dot{\Theta} \neq \emptyset$.

Zu testen:

$$H_0: \vartheta \leq \vartheta_0$$
 gegen $H_1: \vartheta > \vartheta_0$

bzw.

$$\tilde{H}_0: \vartheta = \vartheta_0 \text{ gegen } \tilde{H}_1: \vartheta \neq \vartheta_0$$

 $\xi = (\xi_1, \dots, \xi_k)$ ist Störparameter, $T(x) = (T_1(x), \dots, T_k(x))$

Für festes t ist Dichte in (4) einparametrige Exponentialfamilie.

[Genauer: Man kann zeigen, dass die bedingte Verteilung $P_{\vartheta,\xi}^{U|T=t}$ eine einparametrige Exponentialfamilie mit Dichte

$$c_t(\vartheta) \cdot e^{\vartheta \cdot U} h(x)$$

(unabhängig von ξ) ist.]

 \Rightarrow (bedingte) UMP- bzw. UMPU-Tests für H_0 bzw. \tilde{H}_0 existieren. Es lässt sich zeigen, dass diese bedingten Tests auch für zufälliges T=T(X) optimal sind:

12.5 Satz 93

12.5 Satz

a) Der Test φ_1 , definiert durch

$$\varphi_1(x) = \begin{cases} 1, & U > c(t) \\ \gamma(t), & U = c(t) \\ 0, & U < c(t) \end{cases}$$

wobei $E_{\theta_0}[\varphi_1(U,T)|T=t] \stackrel{!}{=} \alpha$, ist UMPU-Test²⁹ zum Niveau α für H_0 gegen H_1 .

b) Der Test φ_2 , definiert durch³⁰

$$\varphi_2(x) = \begin{cases} 1, & U < c_1(t) \text{ oder } U > c_2(t) \\ \gamma_i^*, & U = c_i(t) \\ 0, & c_1(t) < U < c_2(t) \end{cases}$$

wobei $E_{\vartheta_0}[\varphi_2(U,T)|T=t] \stackrel{!}{=} \alpha,$

$$E_{\vartheta_0}[\varphi_2(U,T) \cdot U|T=t] \stackrel{!}{=} \alpha \cdot E_{\vartheta_0}[U|T=t]$$

ist UMPU-Test zum Niveau α für \tilde{H}_0 gegen \tilde{H}_1 .

Die Tests aus 12.5 können manchmal so transformiert werden, dass $c(t), \gamma(t)$ beziehungsweise $c_1(t), c_2(t), \gamma_i(t)$ nicht von t abhängen.

12.6 Satz

Unter der Verteilungsannahme (4) sei V = h(U, T) eine unter $\vartheta = \vartheta_0$ von T unabhängige reellwertige Statistik. Dann gilt:

a) Ist h(u,t) streng monoton wachsend in u bei festem t, so ist

$$\widetilde{\varphi}_1(v) = \begin{cases} 1, & v > \widetilde{c} \\ \widetilde{\gamma}, & v = \widetilde{c} \\ 0, & v < \widetilde{c} \end{cases}$$

wobei $E_{\vartheta_0}\widetilde{\varphi}_1(V) = \alpha$, UMPU-Test zum Niveau α für H_0 gegen H_1 .

 $^{^{29}}$ Kein Schreibfehler! Test ist kein UMP-Test sondern nur UMPU! 30 besser: $\gamma_i(t)$

b) Gilt h(u,t) = a(t)u + b(t), a(t) > 0 so ist

$$\widetilde{\varphi}_2(v) = \begin{cases} 1, & v < \widetilde{c}_1 \text{ oder } v > \widetilde{c}_2 \\ \widetilde{\gamma}_i, & v = \widetilde{c}_i \\ 0, & \widetilde{c}_1 < v < \widetilde{c}_2 \end{cases}$$

wobe
i $E_{\vartheta_0}\widetilde{\varphi}_2(V)=\alpha,\ E_{\vartheta_0}[\widetilde{\varphi}_2(V)V]=\alpha E_{\vartheta_0}(V)$ UMPU-Test zum Niveau α für
 \widetilde{H}_0 gegen $\widetilde{H}_1.$

Beweis:

- a) Nach Korollar 11.11 bleibt die Form des Tests unter streng monotoner Transformation unverändert, man erhält also einen Test der Form $\widetilde{\varphi}_1$ mit $\widetilde{c} = \widetilde{c}(t), \ \widetilde{\gamma} = \widetilde{\gamma}(t)$. Nach Vorraussetzung ist V aber unabhängig von T unter $\vartheta = \vartheta_0$, deshalb hängen $\widetilde{c}, \widetilde{\gamma}$ nicht von t ab.
- b) folgt analog mit Bemerkung 12.2(a)

Nachweis der Unabhängigkeit von V und T? Übliche Methoden der Wahrscheinlichkeitstheorie, oder

12.7 Satz (Basu's Theorem)

Sei $\wp = \{P_{\vartheta} : \vartheta \in \Theta\}$. Statistik T sei suffizient und vollständig für ϑ . Ist V eine Statistik deren Verteilung nicht von ϑ abhängt, so sind V und T stochastisch unabhängig.³¹

Beispiel:

 $X_1, \ldots, X_n \overset{uiv}{\sim} \mathcal{N}(\mu, \sigma_0^2), \ \sigma_0^2 > 0$ bekannt, $\Theta = \{\mu : \mu \in \mathbb{R}\}, \ T = \sum_{i=1}^n X_i$ suffizient und vollständig für μ .

$$V = \underbrace{\sum_{i=1}^{n} (X_i - \bar{X}_n)^2}_{(*)}$$

$$\begin{split} (*) &= \textstyle \sum_i ((X_i - \mu)(\bar{X}_n - \mu))^2 = \textstyle \sum_{i=1}^n (Y_i - \bar{Y}_n)^2 \text{ wobei } Y_i \sim \mathcal{N}(0, \sigma_0^2) \\ \text{Verteilung von V unabhängig von } \mu \ (V \sim \sigma_0^2 \chi_{n-1}^2). \\ \stackrel{12.7}{\Rightarrow} \text{V und T sind unabhängig.} \end{split}$$

³¹V "ancillary"

12.8 Korollar 95

Beweis:

Sei g beliebige beschränkte Funktion, $m = E_{\vartheta}g(V)$ (unabhänig von ϑ nach Vorraussetzung).

$$h(T(x)) := E_{\vartheta}[g(V) - m|T = T(x)]$$

unabhängig von ϑ , da T suffizient. Wegen

$$E_{\vartheta}h(T) = E_{\vartheta}[E_{\vartheta}[g(V) - m|T]] = 0 \forall \vartheta \in \Theta$$

und der Vollständigkeit von T folgt h(T) = 0 $P_{\vartheta} - f.s.$, also

$$E_{\vartheta}[g(V)|T] = m = E_{\vartheta}g(V) P_{\vartheta} - f.s.$$

und somit die Unabhängigkeit von V und T.

12.8 Korollar

Sei \wp Exponentialfamilie wie in (4), wobei $\vartheta(=\vartheta_0)$ fest gewählt ist. Hängt die Verteilung einer Statistik V nicht von ξ ab, so sind V und T unabhängig.

$\underline{\text{Beweis:}}$

Nach Beispiel 7.7 und 7.12 ist T vollständig und suffizient für ξ . $12.7 \Rightarrow$ Behauptung.

12.9 Beispiel (1-Stichproben-t-Test)

$$X_1, \dots, X_n \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma^2), \ \vartheta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}_{>0}, \ X = (X_1, \dots, X_n)$$

a) $H_0: \mu \leq \mu_0$ gegen $H_1: \mu > \mu_0$ 2-parametrige Exponentialfamilie nach Beispiel 6.3, hat die Form in (4) mit $\vartheta = \frac{\mu}{\sigma^2}$, $\xi = -\frac{1}{2\sigma^2}$, $U(x) = \sum_{i=1}^n x_i$, $T(x) = \sum_{i=1}^n x_i^2$. Ohne Einschränkung sei $\mu_0 = 0$, andernfalls betrachte man $x_i - \mu_0$ anstelle der x_i .

 H_0 , H_1 sind dann äquivalent zu H_0 : $\vartheta \leq 0$, H_1 : $\vartheta > 0$. Betrachte:

$$v = \frac{\sqrt{n}\bar{x}_n}{\sqrt{\frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x}_n)^2}} = \frac{1}{\sqrt{n}} \frac{u}{\sqrt{\frac{t - \frac{u^2}{n}}{n-1}}} =: h(u, t)$$

 $\frac{\partial h(u,t)}{\partial u}>0 \Rightarrow h(u,t)$ streng monoton wachsend in u bei festem t. (Beachte: $t>\frac{u^2}{n}>0.)$

Weiter gilt: Unter $\vartheta = \vartheta_0$ gilt $V \sim t_{n-1}$, also unabhängig von ξ . $\overset{12.8}{\Rightarrow}$ V und T sind stochastisch unabhängig (unter $\vartheta=\vartheta_0).$ $\overset{12.6(a)}{\Rightarrow}$ Der UMPU-Test für $H_0: \mu \leq \mu_0$ gegen $\mu > \mu_0$ zum Niveau α

$$\widetilde{\varphi}_1(v) = \begin{cases} 1, \sqrt{n} \frac{\bar{x}_n - \mu_0}{s} \ge t_{n-1;1-\alpha} \\ 0, \sqrt{n} \frac{\bar{x}_n - \mu_0}{s} < t_{n-1;1-\alpha} \end{cases}$$

b) $\tilde{H}_0: \mu = \mu_0 \text{ gegen } \tilde{H}_1: \mu \neq \mu_0$ Ohne Einschränkung $\mu_0 = 0$, dann $\tilde{H}_0: \vartheta = \vartheta_0 = 0$, $\tilde{H}_1: \vartheta \neq \vartheta_0$

$$h(u,t) = \frac{1}{\sqrt{n}} \frac{u}{\sqrt{\frac{t-u^2/n}{n-1}}}$$

nicht linear in u.

Betrachte

$$\tilde{v} = \tilde{h}(u, t) = \frac{u}{\sqrt{t}} = \frac{\sum x_i}{\sqrt{\sum x_i^2}}$$

Unter $\vartheta = 0$ gilt $\tilde{V} \sim \frac{\sum Y_i}{\sqrt{\sum Y_i^2}}$, wobei $Y_i \sim \mathcal{N}(0, 1)$.³²

 \Rightarrow Verteilung von \tilde{V} ist unabhängig von ξ und symmetrisch um 0. Nach 12.6(b) existiert ein UMPU-Test $\tilde{\varphi}_2(\tilde{v})$, der wegen der Symmetrie der Verteilung von \tilde{V} nach 12.2(b) einen Ablehnbereich der Form $|\tilde{v}| >$ \tilde{c} hat.

Nun gilt

$$v = h(u,t) = g(\tilde{v}) = \sqrt{\frac{n-1}{n}} \frac{\tilde{v}}{\sqrt{1-\tilde{v}^2/n}}$$

bzw. $|v| = g(|\tilde{v}|)$.

 $g(|\tilde{v}|)$ ist streng monoton wachsend auf $[0,\sqrt{n}]^{33}$, so dass nach Bemerkung in 12.2(b) der UMPU-Test auch auf einem Ablehnbereich der Form $|v| \geq c$ basieren kann. Somit ist

$$\tilde{\varphi}_2(x) = \begin{cases} 1, & \sqrt{n} \frac{|\bar{x}_n - \mu_0|}{s} \ge t_{n-1;1 - \frac{\alpha}{2}} \\ 0, & \sqrt{n} \frac{|\bar{x}_n - \mu_0|}{s} < t_{n-1;1 - \frac{\alpha}{2}} \end{cases}$$

UMPU-Test für \tilde{H}_0 gegen \tilde{H}_1 .

³³Erweitere \tilde{v} mit $\frac{1}{\sigma}$ um dies zu erkennen! ³³Beachte: $\tilde{v} \in (-\sqrt{n}, \sqrt{n})$ (nachrechenbar)

12.10 Bemerkung

Ähnliche Überlegungen zeigen, dass auch der ein- bzw. zweiseitige 2-Stichproben-t-Test UMPU-Test ist.

(z.B. Lehmann/Romano, S. 157-161, 3. ed.)

Beispiel (Unabhängigkeitstest unter NV-Annahme) 12.11

$$(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{uiv}{\sim} \mathcal{N}_2(\mu, \nu, \sigma^2, \tau^2, \varrho)$$
, also Dichte³⁴

$$f((x_1, y_1), \dots, (x_n, y_n), \mu, \nu, \sigma^2, \tau^2, \varrho) = (2\pi\sigma\tau\sqrt{1-\varrho^2})^{-n}$$

$$\exp(-\frac{1}{2(1-\varrho^2)}(\frac{1}{\sigma^2}\sum_{i}(x_i-\mu)^2 - \frac{2\varrho}{\sigma\tau}\sum_{i}(x_i-\mu)(y_i-\nu) + \frac{1}{\tau^2}\sum_{i}(y_i-\nu)^2)) \quad (*)$$

Zu testen: \tilde{H}_0 : X_1, Y_1 unabhängig; \tilde{H}_1 : X_1, Y_1 nicht unabhängig

Äquivalent: $H_0: \varrho = 0; H_1: \varrho \neq 0$

Bzw. die einseitige Hypothese $H_0: \varrho \leq 0$ gegen $H_1: \varrho > 0$.

(*) ist Exponentialfamilie wie in (4) mit

$$U = \sum_{i} x_{i} y_{i}, T_{1} = \sum_{i} x_{i}^{2}, T_{2} = \sum_{i} y_{i}^{2}, T_{3} = \sum_{i} x_{i}, T_{4} = \sum_{i} y_{i}$$

$$\vartheta = \frac{\varrho}{\sigma \tau (1 - \varrho^{2})}$$

$$\xi_{1} = -\frac{1}{2\sigma^{2} (1 - \varrho^{2})}, \ \xi_{2} = -\frac{1}{2\tau^{2} (1 - \varrho^{2})},$$

$$\xi_{3} = \frac{1}{1 - \varrho^{2}} (\frac{\mu}{\sigma^{2}} - \frac{\nu \varrho}{\sigma \tau}), \ \xi_{4} = \frac{1}{1 - \varrho^{2}} (\frac{\nu}{\tau^{2}} - \frac{\mu \varrho}{\sigma \tau})$$

a) $H_0: \vartheta \leq 0$ gegen $H_1: \vartheta > 0$

$$R = \frac{\sum_{i} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sqrt{\sum_{i} (X_{i} - \bar{X})^{2} \cdot \sum_{i} (Y_{i} - \bar{Y})^{2}}}$$

empirischer Korrelationskoeffizient nach Pearson. Transformation $X_i \to \frac{X_i - \mu}{\sigma}$, $Y_j \to \frac{Y_j - \nu}{\tau}$ ändert R nicht, deshalb hängt die Verteilung von R nicht von $\mu, \nu, \sigma^2, \tau^2$ ab, sondern nur von ϱ . Für $\vartheta = 0$ ist die Verteilung von R also unabhängig von $\xi_1, \xi_2, \xi_3, \xi_4$.

 $^{^{34}\}varrho$ ist Korrelationskoeffizient (s. Stochastik 1)

Korolar 12.8 \Rightarrow R ist unabhängig von (T_1, \dots, T_4) unter $\vartheta = 0$. $\stackrel{12.6}{\Rightarrow}$ UMPU-Test hat Ablehnbereich der Form $R \geq c$ oder äquivalent

$$w := \frac{R}{\sqrt{\frac{1 - R^2}{n - 2}}} \ge \tilde{c}$$

 $[R = \frac{U - T_3 T_4/n}{\sqrt{(T_1 - T_3^2/n)(T_2 - T_4^2/n)}} \text{ ist streng monoton wachsend in U}$ $\Rightarrow \text{ w ist streng monoton wachsend}^{35} \text{ in U}]$

Nach Aufgabe 36 gilt: $w \sim t_{n-2}$ falls $\varrho = 0$ (bzw. $\vartheta = 0$). Deshalb:

$$\varphi_1(w) = \begin{cases}
1, & w \ge t_{n-2,1-\alpha} \\
0, & w < t_{n-2,1-\alpha}
\end{cases}$$

UMPU-Test zum Niveau α für H_0 gegen H_1 .

b) Test von $\tilde{H}_0: \vartheta=0, \ \tilde{H}_1: \vartheta\neq 0$ R ist linear in U mit um 0 symmetrischer Verteilung für $\vartheta=0$ \Rightarrow UMPU-Test hat Ablehnbereich der Form $|R|\geq \tilde{c}$. Die Funktion $x\to \frac{x}{\sqrt{1-x^2}}$ ist streng monoton wachsend für $0\leq x\leq 1$, woraus wie in 12.9(b) folgt:

$$\varphi_2(w) = \begin{cases} 1, & |w| \ge t_{n-2,1-\frac{\alpha}{1}} \\ 0, & |w| < t_{n-2,1-\frac{\alpha}{2}} \end{cases}$$

ist UMPU-Test zum Niveau α für $\tilde{H}_0: \varrho = 0$ gegen $\tilde{H}_1: \varrho \neq 0$.

 $^{^{35}{\}rm w}$ ist streng monoton wachsend in R (Beachte: $R\in[-1,1]$ und $w'(R)>0\;\forall R\in(-1,1))$

13 Konfidenzbereiche

Sei $(\mathfrak{X}, \mathcal{B}, \{P_{\vartheta} : \vartheta \in \Theta\})$ statistisches Modell, $g : \Theta \to \mathbb{R}^s$.

13.1 Definition

Sei $\alpha \in (0,1)$. Eine Abbildung $C: \mathfrak{X} \to \mathcal{P}(\mathbb{R}^s)$ heißt **Konfidenzbereich** für $g(\vartheta)$ zum Niveau $1-\alpha$ genau dann, wenn

- (1) $\{x \in \mathfrak{X}: C(x) \ni g(\vartheta)\} \in \mathcal{B} \quad \forall \vartheta \in \Theta$
- (2) $P_{\vartheta}(\{x \in \mathfrak{X}: C(x) \ni g(\vartheta)\}) \ge 1 \alpha \quad \forall \ \vartheta \in \Theta.$

Falls $X: \Omega \to \mathfrak{X}$ eine Zufallsvariable mit Verteilung P_{ϑ} ist, so die zweite Bedingung gleichbedeutend mit

$$P_{\vartheta}(C(X) \ni g(\vartheta)) \ge 1 - \alpha \quad \forall \ \vartheta \in \Theta.$$

Falls s=1 und C(x) für alle $x\in\mathfrak{X}$ ein Intervall ist, so heißt $C(\,\cdot\,)$ ein Konfidenzintervall. 36

Beispiel:

$$X = (X_1, ..., X_n), X_1, ..., X_n \stackrel{uiv}{\sim} \mathcal{N}(\mu, \sigma^2), \ \vartheta = (\mu, \sigma^2), \ g(\vartheta) = \mu$$
$$C(X) = [\bar{X}_n - \frac{S_n}{\sqrt{n}} \cdot t_{n-1;1-\frac{\alpha}{2}}, \bar{X}_n + \frac{S_n}{\sqrt{n}} \cdot t_{n-1;1-\frac{\alpha}{2}}]$$

ist Konfidenzintervall zum Niveau $1 - \alpha$ nach 2.4.

13.2 Bemerkung (Pivot-Methode)

Praktische Berechnung von Konfidenzintervallen:

Finde Funktion k so, dass die Verteilung von $k(X, \vartheta)$ unabhängig von ϑ ist, d.h., dass $H(x) := P_{\vartheta}(k(X, \vartheta) \le x)$ unabhängig von ϑ ist.

Dann existieren Konstanten a,b:

$$P_{\vartheta}(a \le k(X, \vartheta) \le b) \ge 1 - \alpha \ \forall \vartheta \in \Theta$$

 $^{^{36}}$ Anmerkung: Ermitteln wir z.B. das 95%-Konfidenzintervall für den wahren Erwartungswert einer Population, dann bedeutet dies, dass wir bei durchschnittlich 5 von 100 gleichgroßen Zufallsstichproben ein Konfidenzintervall ermitteln, das den Erwartungswert nicht enthält.

Falls man das Ereignis $\{a \leq k(X, \vartheta) \leq b\}$ umschreiben kann als $\{U(X) \leq b\}$ $g(\vartheta) \leq O(X)$, so ist [U(X), O(X)] Konfidenzintervall für $g(\vartheta)$ zum Niveau $1-\alpha$.

Im Beispiel oben:

Verteilung von

$$k(X,\vartheta) = \frac{\sqrt{n}(\bar{X}_n - \mu)}{S_n}$$

unabhängig von
$$\vartheta=(\mu,\sigma^2)$$
.
$$\frac{\sqrt{n}(\bar{X}_n-\mu)}{S_n} \text{ ist Pivot für } g(\vartheta)=\mu. \\ [\{-t_{n-1;1-\frac{\alpha}{2}} \leq k(X,\vartheta) \leq t_{n-1;1-\frac{\alpha}{2}}\} \to C(X) \text{ im Beispiel oben}]$$

Weiteres Beispiel:

$$X_1, \ldots, X_n \stackrel{uiv}{\sim} U(0, \vartheta), \ \vartheta > 0, \ g(\vartheta) = \vartheta$$

MLE³⁷ von ϑ : $X_{(n)} = \max_{1 \le i \le n} X_i$

Verteilungsfunktion von $X_{(n)}$ ist $(\frac{x}{\vartheta})^n, 0 \le x \le \vartheta$ \Rightarrow Verteilungsfunktion von $\frac{X_{(n)}}{\vartheta}$ ist $x^n, 0 \le x \le 1$, also ist $\frac{X_{(n)}}{\vartheta}$ Pivot für ϑ .

Wähle a,b so, dass

$$P_{\vartheta}(a \le \frac{X_{(n)}}{\vartheta} \le b) = b^n - a^n \stackrel{!}{=} 1 - \alpha \ (\forall \vartheta \in \Theta)$$

Dann ist $\left[\frac{X_{(n)}}{b}, \frac{X_{(n)}}{a}\right]$ $(1-\alpha)$ -Konfidenzintervall für ϑ .

Wie a und b wählen?

- Intervall [a, b] "kleinstmöglich" wählen
- andere Optimalitätsbegriffe

13.3 Zusammenhang zwischen Konfidenzintervallen und (nichtrandomisierten) Tests

1. C(x) sei Konfidenzinterwall zum Niveau $1 - \alpha$ für ϑ (d.h. $P_{\vartheta}(C(X) \ni \vartheta) \ge 1 - \alpha \ \forall \vartheta \in \Theta).$

Zu testen ist $H_0: \vartheta = \vartheta_0$ gegen $H_1: \vartheta \neq \vartheta_0$.

Definiere Test φ :

$$\varphi(x) = \begin{cases} 1 & , \ \vartheta_0 \notin C(x) \\ 0 & , \ \vartheta_0 \in C(x) \end{cases}$$

³⁷ML-Schätzer (*Estimator*)

Umfang von φ :

$$E_{\vartheta_0}\varphi(x) = 1 - \underbrace{P_{\vartheta_0}(\vartheta_0 \in C(x))}_{\geq 1-\alpha} \leq \alpha$$

d.h. φ ist Niveau α -Test.

2. Umgekehrt sei für jedes $\vartheta_0 \in \Theta$ ein Niveau α -Test $\varphi_{\vartheta_0}(x)$ für obige Situation gegeben (d.h. $P_{\vartheta_0}(\varphi_{\vartheta_0}(X) = 0) \ge 1 - \alpha$, $\vartheta_0 \in \Theta$). Definiere $C^*(x) = \{\vartheta_0 : \varphi_{\vartheta_0}(x) = 0\}$

$$\Rightarrow P_{\vartheta}(C^*(X) \ni \vartheta) = P_{\vartheta}(\varphi_{\vartheta}(x) = 0) > 1 - \alpha \quad \forall \vartheta \in \Theta$$

d.h. $C^*(X)$ ist $(1-\alpha)$ -Konfidenzbereich für ϑ .

Beispiel (1 Stichproben-t-Test):

1. $(1-\alpha)$ -Konfidenzintervall für μ : $[\bar{x}_n - \frac{s_n}{\sqrt{n}}t_{n-1,1-\frac{\alpha}{2}}, \bar{x}_n + \frac{s_n}{\sqrt{n}}t_{n-1,1-\frac{\alpha}{2}}]$. Lehne $H_0: \mu = \mu_0$ ab, falls $\mu_0 \notin$ Konfidenzintervall.

$$\hat{=} |\mu_0 - \bar{x}_n| > \frac{s_n}{\sqrt{n}} t_{n-1, 1-\frac{\alpha}{2}}$$

$$\hat{=} \frac{\sqrt{n}|\bar{x}_n - \mu_0|}{s_n} > t_{n-1, 1 - \frac{\alpha}{2}}$$

2. Umgekehrt:

$$\frac{\sqrt{n}|\bar{x}_n - \mu_0|}{s_n} > t_{n-1, 1-\frac{\alpha}{2}}$$

Ablehnbereich für Test φ_{μ_0} von $H_0: \mu = \mu_0$ gegen $H_1: \mu \neq \mu_0$ für jedes $\mu_0 \in \mathbb{R}$.

$$C^*(x) = \{\mu : \varphi_{\mu}(x) = 0\}$$

$$= \{\mu : \frac{\sqrt{n}|\bar{x}_n - \mu_0|}{s_n} \le t_{n-1,1-\frac{\alpha}{2}}\}$$

$$= \{\bar{x}_n - \frac{s_n}{\sqrt{n}}t_{n-1,1-\frac{\alpha}{2}} \le \mu \le \bar{x}_n + \frac{s_n}{\sqrt{n}}t_{n-1,1-\frac{\alpha}{2}}\}$$

 $(1-\alpha)$ -Konfidenzintervall für μ .

Bemerkungen:

(i) Es besteht also eine Dualität zwischen Signifikanztests und Konfidenzbereichen, allerdings nur, wenn eine ganze Schar von Hypothesen $H_{\vartheta_0}: \vartheta = \vartheta_0$ getestet wird.

Bei Beschränkung auf einen Test (was bei praktischer Testdurchführung immer der Fall ist) ist der Test "weniger" informativ.

[Allerdings: Bei Tests wird in der Praxis p-Wert (siehe Beispiel nach 11.4) angegeben ⇒ andere Information als Konfidenzintervall].

(ii) UMP(U)-Tests führen auf Konfidenzbereiche, die gewisse (komplizierte) Optimalitätseigenschaften haben.
 (Im Allgemeinen aber nicht kürzeste Konfidenzintervalle.)

13.4 Definition

Ist für jedes n die Abbildung $C_n : \mathfrak{X}_n \to \mathbb{R}^s$ ein Konfidenzbereich für $g(\vartheta)$, basierend auf (X_1, \ldots, X_n) , und gilt

$$\lim_{n \to \infty} P_{\vartheta} \left(\left\{ (x_1, \dots, x_n) \in \mathfrak{X}_n : C_n(x_1, \dots, x_n) \ni g(\vartheta) \right\} \right) = 1 - \alpha$$

für alle $\vartheta \in \Theta$, so heißt die Folge (C_n) ein **asymptotischer Konfidenzbereich** für $g(\vartheta)$ zum Niveau $1 - \alpha$.

13.5 Beispiel

$$X_1, \ldots, X_n \stackrel{uiv}{\sim} X, EX^2 < \alpha, F(x) = P(X \le x), \vartheta := F,$$

 $g(\vartheta) = \int x dF(x) = EX =: \mu$

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \stackrel{P}{\to} \sigma^2 := \text{Var}(X)$$

ZGWS:
$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \stackrel{D}{\to} \mathcal{N}(0, 1)$$

$$\Rightarrow \lim_{n \to \infty} P_{\vartheta}(\bar{X}_n - \frac{S_n}{\sqrt{n}}\Phi^{-1}(1 - \frac{\alpha}{2}) \le \mu \le \bar{X}_n + \frac{S_n}{\sqrt{n}}\Phi^{-1}(1 - \frac{\alpha}{2})) = 1 - \alpha$$

asymptotisches Konfidenzintervall zum Niveau $1-\alpha$

13.6 Hilfssatz

$$Y \sim \mathcal{N}_k(0, \Sigma), \ \Sigma > 0 \implies Y^T \Sigma^{-1} Y \sim \chi_k^2.$$

Beweis:

$$\Sigma^{-1/2}Y \sim \mathcal{N}_k(0, I_k) \Rightarrow \|\Sigma^{-1/2}Y\|^2 = Y^T \Sigma^{-1}Y \sim \chi_k^2.$$

13.7 Asymptotische Konfidenzbereiche in parametrischen Modellen

Seien $X_1 \dots, X_n \stackrel{uiv}{\sim} f(\xi; \vartheta), \ \vartheta \in \Theta, \ \Theta \subset \mathbb{R}^k$ offen und f eine reguläre Dichte im \mathbb{R}^s bezüglich μ (= λ^s oder Zählmaß).

Sei $\hat{\vartheta}_n$ eine Schätzfolge für ϑ mit der Eigenschaft

$$\sqrt{n}(\hat{\vartheta}_n - \vartheta) \xrightarrow{D_{\vartheta}} \mathcal{N}_k(0, \Sigma(\vartheta)), \quad \vartheta \in \Theta$$
 (1)

wobei $\Sigma(\vartheta) > 0$ und $\Sigma(\cdot)$ stetig.

Aus (1) und Hilfssatz 13.6 folgt, dass

$$n(\hat{\vartheta}_n - \vartheta)^T \Sigma(\hat{\vartheta}_n)^{-1} (\hat{\vartheta}_n - \vartheta) \xrightarrow{D_{\vartheta}} \chi_k^2, \quad \vartheta \in \Theta$$

das heißt

$$\lim_{n \to \infty} P_{\vartheta} \left(n(\hat{\vartheta}_n - \vartheta)^T \Sigma (\hat{\vartheta}_n)^{-1} (\hat{\vartheta}_n - \vartheta) \le \chi_{k;1-\alpha}^2 \right) = 1 - \alpha \quad \forall \, \vartheta \in \Theta.$$

Da die Menge

$$\left\{ \vartheta \in \mathbb{R}^k : (\hat{\vartheta}_n - \vartheta)^T \Sigma (\hat{\vartheta}_n)^{-1} (\hat{\vartheta}_n - \vartheta) \le \frac{\chi_{k;1-\alpha}^2}{n} \right\}$$

ein Ellipsoid in \mathbb{R}^k mit Zentrum $\hat{\vartheta}_n$ ist, handelt es sich hier um einen elliptischen Konfidenzbereich für ϑ .

Falls $q: \mathbb{R}^k \to \mathbb{R}$ differenzierbar ist, so folgt aus (1), dass

$$\sqrt{n}(g(\hat{\vartheta}_n) - g(\vartheta)) \quad \xrightarrow{D_{\vartheta}} \quad \mathcal{N}(0, \sigma^2(\vartheta)),$$

wobei

$$\sigma^{2}(\vartheta) = g'(\vartheta)^{T} \Sigma(\vartheta) g(\vartheta).$$

Somit gilt

$$\frac{\sqrt{n}(g(\hat{\vartheta}_n) - g(\vartheta))}{\sigma(\hat{\vartheta}_n)} \xrightarrow{D_{\vartheta}} \mathcal{N}(0,1).$$

Mit $r_n = \sigma(\hat{\vartheta}_n) \cdot \Phi^{-1} \left(1 - \frac{\alpha}{2}\right) / \sqrt{n}$ folgt

$$\lim_{n \to \infty} P_{\vartheta} \left(g(\hat{\vartheta}_n) - r_n \le g(\vartheta) \le g(\hat{\vartheta}_n) + r_n \right) = 1 - \alpha.$$

Man hat also einen asymptotischen Konfidenzbereich für $g(\vartheta)$ konstruiert.

13.8 Beispiele

a) $X_1, ..., X_n \stackrel{uiv}{\sim} \text{Bin}(1, p), \ 0$ ZGWS:

$$\sqrt{n}(\hat{p}_n - p) \stackrel{D}{\to} \mathcal{N}(0, \underbrace{p(1-p)}_{=\Sigma(\vartheta)})$$

$$g: \mathbb{R} \to \mathbb{R}, \ g(p) = \log \frac{p}{1-p}$$
 "logit"-Funktion $g'(p) = \frac{1}{p(1-p)}$

$$\Rightarrow \sigma^2(p) = g'(p)^2 \Sigma(p) = \frac{1}{p(1-p)} = \frac{1}{p} + \frac{1}{1-p}$$
$$\Rightarrow \sqrt{n} \left(\log \frac{\hat{p}_n}{1-\hat{p}_n} - \log \frac{p}{1-p}\right) \stackrel{D}{\to} \mathcal{N}(0, \frac{1}{p(1-p)})$$

und

$$\left[\log \frac{\hat{p}_n}{1-\hat{p}_n} - \frac{\Phi^{-1}(1-\frac{\alpha}{2})}{\sqrt{n\hat{p}_n(1-\hat{p}_n)}}, \log \frac{\hat{p}_n}{1-\hat{p}_n} + \frac{\Phi^{-1}(1-\frac{\alpha}{2})}{\sqrt{n\hat{p}_n(1-\hat{p}_n)}}\right]$$

ist asymptotisches (1 – $\alpha)$ -Konfidenzintervall für log $\frac{p}{1-p}.$

b) Konfidenzintervall für "log odds ratio" $X_1, \ldots, X_n \sim \text{Bin}(1, p), Y_1, \ldots, Y_n \sim \text{Bin}(1, q)$

$$\Theta = \log \frac{\frac{p}{1-p}}{\frac{q}{1-q}}, \ \Theta = 0 \Leftrightarrow p = q$$

siehe Übung

13.9 Beispiel

Sei
$$X_1, \ldots, X_n \stackrel{uiv}{\sim} \mathcal{N}_2(\mu, \Sigma), \ X_i = \begin{pmatrix} X_i^{(1)} \\ X_i^{(2)} \end{pmatrix}, \ \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

 Σ regulär, $\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix}, \ \bar{X}_n = \begin{pmatrix} \bar{X}_n^{(1)} \\ \bar{X}_n^{(2)} \end{pmatrix}$ mit $\bar{X}_n^{(k)} = \frac{1}{n} \sum_{i=1}^n X_i^{(k)},$
 $k = 1, 2$

 $\underline{\Sigma}$ bekannt: $\sqrt{n}(\bar{X}_n - \mu) \sim \mathcal{N}_2(0, \Sigma)$

$$\Rightarrow P_{\mu}(\underbrace{n(\bar{X}_{n} - \mu)^{T} \Sigma^{-1}(\bar{X}_{n} - \mu)}_{\text{elliptischer } (1 - \alpha) - \text{Konfidenzbereich für } \mu) \sim \chi_{2}^{2}$$

Beispiel 105 13.9

 $\underline{\Sigma}$ unbekannt: Konsistenter Schätzer für Σ ist

$$\hat{\Sigma}_n = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n) (X_i - \bar{X}_n)^T$$

$$\vartheta = (\mu, \Sigma), \ \hat{\vartheta}_n = (\bar{X}_n, \hat{\Sigma}_n)$$

 $\vartheta=(\mu,\Sigma),\ \hat{\vartheta}_n=(\bar{X}_n,\hat{\Sigma}_n)$ Für $n>d(=2)^{38}$ ist $\hat{\Sigma}_n$ nicht singulär mit Wahrscheinlichkeit 1.

$$\Rightarrow n(\bar{X}_n - \mu)^T \hat{\Sigma}_n^{-1} (\bar{X}_n - \mu) \stackrel{D}{\rightarrow} \chi_2^2$$

Betrachte
$$g(\vartheta) = \mu_1 - \mu_2$$
.
 $g'(\vartheta) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \ \sigma^2(\vartheta) = (1, -1)\Sigma \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \sigma_{11} - 2\sigma_{12} + \sigma_{22}$

$$\Rightarrow \frac{\sqrt{n}((\bar{X}_n^{(1)} - \bar{X}_n^{(2)}) - (\mu_1 - \mu_2))}{\sigma(\hat{\vartheta}_n)} \stackrel{D}{\rightarrow} \mathcal{N}(0, 1)$$

 $^{^{38}\}mathrm{d}$ ist Dimension

14 Lineare statistische Modelle

14.1 Definition

Es seien $X=(X_1,\ldots,X_n)^T$ ein (beobachtbarer) Zufallsvektor, $C=(c_{ij})_{i=1,\ldots,s\atop j=1,\ldots,s}$ eine bekannte $n\times s$ -Matrix mit $\mathrm{Rang}(C)=s$ (insbesondere $n\geq s$), $\vartheta=(\vartheta_1,\ldots,\vartheta_s)^T$ unbekannter Parametervektor, $\varepsilon=(\varepsilon_1,\ldots,\varepsilon_n)^T$ ein (nicht beobachtbarer) Zufallsvektor mit

$$E(\varepsilon) = 0, \ \operatorname{Var}(\varepsilon) = E(\varepsilon \cdot \varepsilon^T) = \sigma^2 \cdot I_n$$

 σ^2 unbekannt.

Ein lineares Modell (LM) wird beschrieben durch die Gleichung

$$X = C\vartheta + \varepsilon \tag{1}$$

also

$$\begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} = \begin{pmatrix} c_{11} & \cdots & c_{1s} \\ \vdots & & \vdots \\ c_{n1} & \cdots & c_{ns} \end{pmatrix} \begin{pmatrix} \vartheta_1 \\ \vdots \\ \vartheta_s \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

C heißt "Designmatrix".

(1) heißt klassisch, falls $\varepsilon \sim \mathcal{N}_n(0, \sigma^2 I_n)$.

Bemerkungen:

- a) Im klassischen LM gilt: $X \sim \mathcal{N}_n(C\vartheta, \sigma^2 I_n)$. Die Beobachtungen X_1, \ldots, X_n sind also unabhängig, aber nicht identisch verteilt.
- b) $\operatorname{Rang}(C) = s \Leftrightarrow C^T C$ nicht singulär Denn^{39} :

$$C^T C$$
 singulär $\Leftrightarrow \exists u \in \mathbb{R}^s, u \neq 0 : C^T C u = 0$
 $\Leftrightarrow \exists u \in \mathbb{R}^s, u \neq 0 : u^T C^T C u = (C u)^T C u = 0$
 $\Leftrightarrow \exists u \in \mathbb{R}^s, u \neq 0 : C u = 0$
 $\Leftrightarrow \operatorname{Rang}(C) < s$

 $[\]overline{^{39}}$ In der Hinrichtung multipliziere $C^TCu=0$ mit u^T , in der Rückrichtung multipliziere Cu=0 mit C^T .

14.2 Beispiele

a) $X_i = \vartheta + \varepsilon_i, i = 1, \dots, n$

$$(s=1, \ C=\begin{pmatrix}1\\\vdots\\1\end{pmatrix})$$

(wiederholte Messung)

b) $X_i = a + bt_i + \varepsilon_i, i = 1, ..., n$

$$(s=2, a=\vartheta_1, b=\vartheta_2, C=\begin{pmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_n \end{pmatrix})$$

(einfache lineare Regression)

c) $X_i = a + bt_i + ct_i^2 + \varepsilon_i, i = 1, ..., n$

$$(s = 3, \ \vartheta = (a, b, c)^T, \ C = \begin{pmatrix} 1 & t_1 & t_1^2 \\ \vdots & \vdots & \vdots \\ 1 & t_n & t_n^2 \end{pmatrix})$$

(einfache quadratische Regression)

d) $X_i = \sum_{j=1}^s \vartheta_j \cdot f_j(t_i) + \varepsilon_i$, i = 1, ..., n $f_1, ..., f_s$ beliebige gegebene Funktionen! (allgemeine (lineare) Regression)

z.B. $f_j(t) = \sin(\omega_j \cdot t)$ (trigonometrische Regression)

e) $X_i = a + bu_i + cv_i + \ldots + gz_i + \varepsilon_i, i = 1, \ldots, n$

$$\vartheta = \begin{pmatrix} a \\ \vdots \\ g \end{pmatrix}, C = \begin{pmatrix} 1 & u_1 & v_1 & \cdots & z_1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & u_n & v_n & \cdots & z_n \end{pmatrix})$$

(multiple lineare Regression)

f) $X_{1,i} = \vartheta_1 + \varepsilon_{1,i}, i = 1, \dots, n_1$ $X_{2,i} = \vartheta_2 + \varepsilon_{2,i}, i = 1, \dots, n_2$

$$\begin{pmatrix} X_{1,1} \\ \vdots \\ X_{1,n_1} \\ X_{2,1} \\ \vdots \\ X_{2,n_2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 0 & 1 \\ \vdots & \vdots \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \vartheta_1 \\ \vartheta_2 \end{pmatrix} + \begin{pmatrix} \varepsilon_{1,1} \\ \vdots \\ \varepsilon_{1,n_1} \\ \varepsilon_{2,1} \\ \vdots \\ \varepsilon_{2,n_2} \end{pmatrix}$$

(2-Stichproben-Modell)

g) $X_{i,j} = \vartheta_i + \varepsilon_{i,j}, i = 1, ..., k, j = 1, ..., n_i$ (Modell der einfachen Varianzanalyse, 1-faktorielle ANOVA) z.B. Effekt $X_{i,j}$ bei k unterschiedlichen Behandlungen

14.3 Schätzung von ϑ

Sei $R(C) := \{C\vartheta : \vartheta \in \mathbb{R}^s\}$ s-dimensionaler Unterraum des \mathbb{R}^n . 14.1(1) besagt $EX \in R(C)$.

Forderung: $||X - C\vartheta||^2 = \min_{\vartheta}!$ (kleinste-Quadrate-Methode; vgl. 4.6)

Lösung:

$$\hat{\vartheta} = \hat{\vartheta}(X) = (C^T C)^{-1} \cdot C^T X$$

Beweis:

Wegen $\mu(\vartheta) = C\vartheta$ folgt $M(\vartheta) = \left(\frac{\partial \mu_i}{\partial \vartheta_j}\right)_{i,i} = C$ in 4.6 und somit die Normalengleichung $C^T C \vartheta = C^T X$.

Da C^TC nach Bemerkung 14.1(b) invertierbar ist, ist

$$\hat{\vartheta} = \hat{\vartheta}(X) = (C^T C)^{-1} \cdot C^T X$$

die (einzige) Lösung.

Bemerkung:

 $\overline{\text{Es gilt}^{40}}$:

$$E_{\vartheta,\sigma^2}(\hat{\vartheta}) = (C^T C)^{-1} C^T \underbrace{E_{\vartheta,\sigma^2}(X)}_{=C\vartheta} = \vartheta$$

d.h. $\hat{\vartheta}$ ist erwartungstreu für ϑ .

$$\operatorname{Var}_{\vartheta,\sigma^{2}}(\hat{\vartheta}) = (C^{T}C)^{-1}C^{T} \underbrace{\operatorname{Var}_{\vartheta,\sigma^{2}}(X)}_{=\operatorname{Var}_{\vartheta,\sigma^{2}}(\varepsilon) = \sigma^{2} \cdot I_{n}} \cdot C(C^{T}C)^{-1} = \sigma^{2}(C^{T}C)^{-1}$$

Beispiele:

a) In 14.2(b) (einfache lineare Regression) ist (vgl. 4.7)

$$\hat{\vartheta}_1 = \bar{X} - \hat{\vartheta}_2 \bar{t}, \ \hat{\vartheta}_2 = \frac{\sum_{i=1}^n t_i X_i - n \cdot \bar{t} \cdot \bar{X}}{\sum_{i=1}^n (t_i - \bar{t})^2}$$

⁴⁰Beachte: $(A^T)^{-1} = (A^{-1})^T$

b) In 14.2(g) (ANOVA) ist

$$C = \begin{pmatrix} 1 & & & & \\ \vdots & & & & \\ 1 & & & & \\ & 1 & & & \\ & & \ddots & & \\ & & & 1 & & \\ & & & \ddots & \\ & & & 1 & & \\ & & & \vdots & & \\ & & & 1 \end{pmatrix}, \ C^T C = \begin{pmatrix} n_1 & & & 0 \\ & n_2 & & & \\ & & \ddots & & \\ 0 & & & n_k \end{pmatrix}$$

und somit

$$\hat{\vartheta} = \begin{pmatrix} \hat{\vartheta}_1 \\ \vdots \\ \hat{\vartheta}_k \end{pmatrix} = \begin{pmatrix} \frac{1}{n_2} \sum_{j=1}^{n_1} X_{1,j} \\ \vdots \\ \frac{1}{n_k} \sum_{j=1}^{n_k} X_{k,j} \end{pmatrix} =: \begin{pmatrix} \bar{X}_{1+} \\ \vdots \\ \bar{X}_{k+} \end{pmatrix}$$

(+ bedeutet, dass hier summiert wird)

14.4 Satz (Gauß-Markov-Theorem)

Es sei $a \in \mathbb{R}^s$. Dann ist $T := a^T \hat{\vartheta}$ bester linearer erwartungstreuer Schätzer für $a^T \vartheta$. (BLUE)

Beweis:

Sei S = S(X) linearer Schätzer für $a^T \vartheta$.

$$\Rightarrow \exists b \in \mathbb{R}^n : S = b^T X$$

S erwartungstreu für $a^T \vartheta \Rightarrow$

$$E_{\vartheta,\sigma^2}S = b^T E_{\vartheta,\sigma^2}X = b^T C\vartheta \stackrel{!}{=} a^T \vartheta \ \forall \vartheta$$

$$\Rightarrow b^T C = a^T (*)$$

$$\operatorname{Var}_{\vartheta,\sigma^2}(S))b^T \underbrace{\operatorname{Var}_{\vartheta,\sigma^2} X}_{\sigma^2 L_r} \cdot b = \sigma^2 b^T b$$

$$\operatorname{Var}_{\vartheta,\sigma^2}(T) = a^T \operatorname{Var}_{\vartheta,\sigma^2}(\hat{\vartheta}) a = \sigma^2 a^T (C^T C)^{-1} a \stackrel{(*)}{=} \sigma^2 b^T C (C^T C)^{-1} C^T b$$

$$\Rightarrow \operatorname{Var}_{\vartheta,\sigma^{2}}(S) - \operatorname{Var}_{\vartheta,\sigma^{2}}(T) = \sigma^{2} b^{T} (I_{n} - \underbrace{C(C^{T}C)^{-1}}_{=:P} C^{T}) b$$

Wegen
$$P=P^T=P^2$$
 folgt $Q=Q^T=Q^2$ (vgl. Aufgabe 44) folgt
$$b^TQb=b^TQ^2b=b^TQ^TQb=\|Qb\|^2\geq 0$$

 \Rightarrow Behauptung

Beispiele:

- a) 1-faktorielle ANOVA (14.2(g), Beispiel 14.3(b)) $a^T = (0, \dots, 0, \underbrace{1}_{a_i}, 0, \dots, 0, \underbrace{-1}_{a_j}, 0, \dots, 0), \ a^T\vartheta = \vartheta_i \vartheta_j$ Differenz der Erwartungswerte der i-ten und j-ten Gruppe. $T = a^T \hat{\vartheta} = \bar{X}_{i+} \bar{X}_{j+} \text{ ist BLUE für } a^T\vartheta.$
- b) einfache lineare Regression $a = \begin{pmatrix} 1 \\ t^* \end{pmatrix}, \ a^T \vartheta = \vartheta_1 + \vartheta_2 t^*$ $T = a^T \hat{\vartheta} = \hat{\vartheta}_1 + \hat{\vartheta}_2 t^* \text{ ist BLUE.}$ Hier:

$$C = \begin{pmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_n \end{pmatrix}$$

$$C^T C = \begin{pmatrix} n & n\bar{t} \\ n\bar{t} & \sum t_i^2 \end{pmatrix}, \quad (C^T C)^{-1} = \frac{1}{\sum (t_i - \bar{t})^2} \begin{pmatrix} \frac{1}{n} \sum t_i^2 & -\bar{t} \\ -\bar{t} & 1 \end{pmatrix}$$

$$\Rightarrow \operatorname{Var}_{\vartheta,\sigma^2}(\hat{\vartheta}_1) = \sigma^2 \frac{\frac{1}{n} \sum t_i^2}{\sum (t_i - \bar{t})^2}$$

$$\operatorname{Var}_{\vartheta,\sigma^2}(\hat{\vartheta}_2) = \sigma^2 \frac{1}{\sum (t_i - \bar{t})^2} \quad (\text{vgl. 4.7})$$

$$\operatorname{Cov}_{\vartheta,\sigma^2}(\hat{\vartheta}_1, \hat{\vartheta}_2) = \frac{-\sigma^2 \bar{t}}{\sum (t_i - \bar{t})^2} \quad (= 0, \text{ falls } \bar{t} = 0)$$

$$\operatorname{Var}_{\vartheta,\sigma^2}(T) = \sigma^2 a^T (C^T C)^{-1} a$$

$$= \frac{\sigma^2}{\sum (t_i - \bar{t})^2} (\frac{1}{n} \sum t_i^2 - 2t^* \bar{t} + (t^*)^2)$$

$$= \sigma^2 (\frac{1}{n} + \frac{(t^* - \bar{t})^2}{\sum (t_i - \bar{t})^2})$$

14.5 Schätzung von σ^2

$$\hat{\sigma}^2 = \hat{\sigma}^2(X) = \frac{1}{n} \| \underbrace{X - C\hat{\vartheta}}_{=:\hat{\varepsilon}} \|^2 = \frac{1}{n} \| \hat{\varepsilon} \|^2 = \frac{\hat{\varepsilon}^T \hat{\varepsilon}}{n}$$
(\$\hat{\varepsilon}\$ Residuenvektor)

Bemerkung:

 $\overline{\hat{\sigma}^2}$ ist asymptotisch erwartungstreu, aber nicht erwartungstreu für σ^2 , da nach Aufgabe 44

$$\hat{S}^2 = \frac{n}{n-s} \hat{\sigma}^2 = \frac{1}{n-s} \left\| \hat{\varepsilon} \right\|^2$$

erwartungstreu für σ^2 ist.

Ab jetzt stets klassisches lineares Modell $(\varepsilon \sim \mathcal{N}_n(0, \sigma^2 I_n))!$

14.6 Satz

Im (klassischen) linearen Modell gilt:

- a) $(\hat{\vartheta}, \hat{\sigma})$ ist ML-Schätzer für (ϑ, σ^2)
- b) $\hat{\vartheta} \sim \mathcal{N}_s(\vartheta, \sigma^2(C^TC)^{-1})$
- c) $\frac{n}{\sigma^2}\hat{\sigma}^2 \sim \chi_{n-s}^2$
- d) $\hat{\vartheta}$ und $\hat{\sigma}^2$ sind stochastisch unabhängig

Beweis:

a)
$$X \sim \mathcal{N}_n(C\vartheta, \sigma^2 I_n)$$

$$\Rightarrow f(x, \vartheta, \sigma^2) = \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - (C\vartheta)_i)^2\}$$

$$= \frac{1}{(\sigma^2 2\pi)^{\frac{n}{2}}} \exp\{-\frac{\|x - C\vartheta\|^2}{2\sigma^2}\}$$

$$=: L_x(\vartheta, \sigma^2)$$

14.6Satz 113

Maximieren von L_x bezüglich ϑ bei festem σ^2 führt auf Minimierung von $||x - C\vartheta||^2$, Lösung ist $\hat{\vartheta}$.

$$\frac{\partial \log L_x(\hat{\vartheta}, \sigma^2)}{\partial \sigma^2} \stackrel{!}{=} 0$$

$$\hat{\sigma}^2 = \frac{1}{n} \left\| x - C\hat{\vartheta} \right\|^2$$

folgt aus Bemerkung 14.3 und Normalverteilungs-Annahme

$$\begin{split} \varepsilon^T \varepsilon &= (X - C\vartheta)^T (X - C\vartheta) \\ &= (X - C\hat{\vartheta} + C(\hat{\vartheta} - \vartheta))^T (X - C\hat{\vartheta} + C(\hat{\vartheta} - \vartheta)) \\ &= (\hat{\varepsilon} + C(\hat{\vartheta} - \vartheta))^T (\hat{\varepsilon} + C(\hat{\vartheta} - \vartheta)) \\ &\Rightarrow \underbrace{\varepsilon^T \varepsilon}_{\sim \chi_n^2} = \frac{\hat{\varepsilon}^T \hat{\varepsilon}}{\sigma^2} + \underbrace{(\hat{\vartheta} - \vartheta)^T \frac{C^T C}{\sigma^2} (\hat{\vartheta} - \vartheta)}_{\sim \chi_s^2 \ (1)} + 2 \underbrace{\hat{\varepsilon}^T C}_{(2)} \frac{(\hat{\vartheta} - \vartheta)}{\sigma^2} \end{split}$$

(1) nach Hilfssatz 13.6 und (b)

$$(2) = \varepsilon^{T} (I_n - P)^{T} C = \varepsilon^{T} (I_n - P) C = 0$$

Zu zeigen: $\frac{\hat{\varepsilon}^T\hat{\varepsilon}}{\sigma^2}\sim\chi^2_{n-s}$ Die charakteristische Funktion von χ^2_k ist

$$\varphi_{\chi_k^2}(t) = \int_{-\infty}^{\infty} e^{itx} f_k(x) dx = (1 - 2it)^{-\frac{k}{2}}$$

Unabhängigkeit von $\hat{\vartheta}$ und $\hat{\varepsilon}$ nach (d)

$$\Rightarrow (1 - 2it)^{-\frac{n}{2}} = \varphi_{\frac{\hat{\varepsilon}^T\hat{\varepsilon}}{\sigma^2}}(t) \cdot (1 - 2it)^{-\frac{s}{2}}$$

$$\Rightarrow \varphi_{\frac{\hat{\varepsilon}^T\hat{\varepsilon}}{2}}(t) = (1 - 2it)^{-\frac{n-s}{2}}$$

Eindeutigkeitssatz für charakteristische Funktionen

$$\Rightarrow \frac{\hat{\varepsilon}^T \hat{\varepsilon}}{\sigma^2} = \frac{n}{\sigma^2} \hat{\sigma}^2 \sim \chi_{n-s}^2$$

d)
$$\hat{\vartheta} = (C^T C)^{-1} C^T X = (C^T C)^{-1} C^T (C\vartheta + \varepsilon) = \vartheta + (C^T C)^{-1} C^T \varepsilon$$

$$\hat{\varepsilon} = X - C \hat{\vartheta}$$

$$= (I_n - C(C^T C)^{-1} C^T) X$$

$$= (I_n - P)(C\vartheta + \varepsilon)$$

$$= \underbrace{(I_n - P)C}_{C - C = 0} \vartheta + (I_n - P)\varepsilon$$

$$= (I_n - P)\varepsilon$$

$$(= Q\varepsilon)$$

$$\Rightarrow \underbrace{\operatorname{Cov}(\hat{\vartheta}, \hat{\varepsilon})}_{s \times n \text{ Matrix}} = \operatorname{Cov}(\vartheta + (C^T C)^{-1} C^T \varepsilon, (I_n - P)\varepsilon)$$

$$= \operatorname{Cov}((C^T C)^{-1} C^T \varepsilon, (I_n - P)\varepsilon)$$

$$= \underbrace{(C^T C)^{-1} C^T}_{s \times n} \cdot \underbrace{\operatorname{Cov}(\varepsilon, \varepsilon)}_{= \operatorname{Var}(\varepsilon) = \sigma^2 I_n} \cdot \underbrace{(I_n - P)^T}_{n \times n}$$

$$= \sigma^2 (C^T C)^{-1} (\underbrace{(I_n - P) C}_{= 0})^T$$

$$\begin{split} \hat{\varepsilon} &= (I_n - P)\varepsilon \sim \mathcal{N}_n(0, (I_n - P)\sigma^2(I_n - P)^T) = \mathcal{N}_n(0, \sigma^2(I_n - P))\\ \hat{\varepsilon}, \hat{\vartheta} \text{ normalverteilt und unkorreliert} &\Rightarrow \hat{\vartheta}, \hat{\varepsilon} \text{ unabhängig} \\ &\Rightarrow \hat{\vartheta}, \hat{\sigma}^2 \text{ stochastisch unabhängig}. \end{split}$$

Bemerkung:

 $\overline{\hat{\varepsilon} \sim \mathcal{N}_n(0, (I_n - P)\sigma^2)}$, d.h. die $\hat{\varepsilon}_i$ haben nicht die gleiche Varianz.

14.7 Konfidenzbereiche für ϑ

a) elliptischer Konfidenzbereich für ϑ :

$$\hat{\vartheta} - \vartheta \sim \mathcal{N}(0, \sigma^2 (C^T C)^{-1})$$

$$\Rightarrow (\hat{\vartheta} - \vartheta)^T \frac{C^T C}{\sigma^2} (\hat{\vartheta} - \vartheta) \sim \chi_s^2; \ \frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-s}^2$$

Beide Größen sind stochastisch unabhängig.

$$\Rightarrow \frac{\frac{1}{s}(\hat{\vartheta} - \vartheta)^T C^T C(\hat{\vartheta} - \vartheta)}{\frac{n}{n-s}\hat{\sigma}^2} \sim F_{s,n-s}$$

$$\Rightarrow C_E := \{ y \in \mathbb{R}^s : \frac{\frac{1}{s}(\hat{\vartheta} - y)^T C^T C(\hat{\vartheta} - y)}{\hat{s}^2} \leq F_{s,n-s,1-\alpha} \}$$
erfüllt $P_{\vartheta,\sigma^2}(C_E(X) \ni \vartheta) = 1 - \alpha \ \forall \vartheta, \sigma^2, \text{ d.h. } C_E \text{ ist ein (exakter)}$

$$(1 - \alpha)\text{-Konfidenzbereich für } \vartheta.$$

b) Konfidenzintervall für ϑ_j :

Sei
$$(C^T C)^{-1} =: (b_{ij})_{s \times s}. \ \hat{\vartheta}_j \sim \mathcal{N}(\vartheta_j, b_{jj}\sigma^2)$$

$$\stackrel{14.6(c),(d), 2.1}{\Rightarrow} \frac{\frac{\hat{\vartheta}_{j} - \vartheta_{j}}{\sigma\sqrt{b_{jj}}}}{\sqrt{\frac{n}{n-s}\frac{\hat{\sigma}^{2}}{\sigma^{2}}}} = \frac{\hat{\vartheta}_{j} - \vartheta_{j}}{\hat{s} \cdot \sqrt{b_{jj}}} \sim t_{n-s} (\sim \sqrt{F_{1,n-s}})$$

$$\Rightarrow P_{\vartheta,\sigma^2}(|\hat{\vartheta}_j - \vartheta_j| \le t_{n-s,1-\frac{\alpha}{2}} \cdot \hat{s}\sqrt{b_{jj}}) = 1 - \alpha$$

d.h. $\hat{\vartheta}_j \pm t_{n-s,1-\frac{\alpha}{2}} \cdot \hat{s}\sqrt{b_{jj}}$ ist zweiseitiges $(1-\alpha)$ -Konfidenzintervall für ϑ_j .

c) quaderförmiger Konfidenzbereich für ϑ ("Bonferroni-Methode"): Regel von den kleinen Ausnahmewahrscheinlichkeiten:

$$P(A_j) \ge 1 - \frac{a}{s}, \ j = 1, \dots, s \ \Rightarrow \ P(\bigcap_{j=1}^s A_j) \ge 1 - \alpha$$

Denn:

$$P(\bigcap_{j=1}^{s} A_j) = 1 - P((\bigcap_{j=1}^{s} A_j)^C) = 1 - P(\bigcup_{j=1}^{s} A_j^C) \ge 1 - \sum_{j=1}^{s} P(A_j^C) \ge 1 - \alpha$$

Somit gilt für

$$C_Q(x) := \times_{j=1}^s [\hat{\vartheta}_j(x) - r(x), \hat{\vartheta}_j(x) + r(x)]$$

mit
$$r(x) := t_{n-s,1-\frac{\alpha}{2s}} \cdot \hat{s}\sqrt{b_{jj}}$$
:

$$P_{\vartheta,\sigma^2}(C_Q(X)\ni\vartheta)\ge 1-\alpha\ \forall\vartheta,\sigma^2$$

d.h. C_Q ist quaderförmiger $(1-\alpha)$ -Konfidenzbereich für ϑ .

Bemerkung:

 $\overline{C_E}$ hat kleineres Volumen wie C_Q , aber C_Q ist leichter zu interpretieren

d) Konfidenzintervall für $a^T\vartheta$:

$$a^T \hat{\vartheta} \sim \mathcal{N}(a^T \vartheta, \sigma^2 \cdot a^T (C^T C)^{-1} a)$$

$$\Rightarrow \frac{a^T(\hat{\vartheta} - \vartheta)}{\hat{s}\sqrt{a^T(C^TC)^{-1}a}} = \frac{\frac{a^T(\hat{\vartheta} - \vartheta)}{\sigma\sqrt{a^T(C^TC)^{-1}a}}}{\sqrt{\frac{\hat{s}^2}{\sigma^2}}} \sim t_{n-s}$$

 \Rightarrow Mit $r := t_{n-s,1-\frac{\alpha}{2}} \cdot \hat{s} \sqrt{a^T (C^T C)^{-1} a}$ ist $[a^T \hat{\vartheta} - r, a^T \hat{\vartheta} + r] (1 - \alpha)$ -Konfidenzintervall für $a^T \vartheta$.

Beispiel:

einfache lineare Regression (vgl. Beispiel 14.4(b))

$$a = \begin{pmatrix} 1 \\ t^* \end{pmatrix}, \ r = t_{n-2,1-\frac{\alpha}{2}} \cdot \hat{s} \sqrt{\frac{1}{n} + \frac{(t^* - \bar{t})^2}{\sum_i (t_i - \bar{t})^2}}$$

 $[\hat{\vartheta}_1 + \hat{\vartheta}_2 \cdot t^* - r, \hat{\vartheta}_1 + \hat{\vartheta}_2 \cdot t^* + r] \text{ ist } (1 - \alpha) \text{-Konfidenzintervall für } a^T \vartheta = \vartheta_1 + \vartheta_2 \cdot t^*.$

14.8 Tests von linearen Hypothesen im linearen Modell

$$X = C\vartheta + \varepsilon, \ \varepsilon \sim \mathcal{N}_n(0, \sigma^2 \cdot I_n)$$

Zu testen sei "lineare Hypothese"

$$H_0: H\vartheta = h \text{ gegen } H_1: H\vartheta \neq h$$

Dabei: H $r \times s$ -Matrix, Rang(H) = r (insbesondere $r \leq s$), $h \in \mathbb{R}^r$ gegeben

$$H_0 = \Theta_0 := \{(\vartheta, \sigma^2) \in \underbrace{\mathbb{R}^s \times \mathbb{R}_{>0}}_{=\Theta} : H\vartheta = h\}, H_1 = \Theta \setminus \Theta_0$$

14.9 Beispiele

a) $X_j = \vartheta_1 + \vartheta_2 \cdot t_j + \varepsilon_j, j = 1, \dots, n$ (einfache lineare Regression)

$$H_0: \vartheta_2 = 0$$
 gegen $H_1: \vartheta_2 \neq 0$

"Lineare Hypothese": H = (0,1), h = 0 (s = 2, r = 1)

$$H_0: H \cdot \begin{pmatrix} \vartheta_1 \\ \vartheta_2 \end{pmatrix} = 0$$

Möglicher Test: Verallgemeinerter Likelihood-Quotienten-Test Testgröße Λ_n bzw. log Λ_n .

$$\Lambda_n := \frac{\sup_{(\vartheta, \sigma^2) \in \Theta_0} f(x, \vartheta, \sigma^2)}{\sup_{\Theta} f(x, \vartheta, \sigma^2)}$$

<u>Unter H_0 :</u> $X_j = \vartheta_1 + \varepsilon_j$, $X_j \sim \mathcal{N}(\vartheta_1, \sigma^2)$, ML-Schätzer für ϑ_1 : \bar{X}_n <u>Ohne Restriktion:</u> ML-Schätzer = KQ-Schätzer⁴¹ = $\hat{\vartheta}$ (Satz 14.6(a))

Als Schätzer für σ^2 wird aber üblicherweise in beiden Fällen der Schätzer $\hat{\sigma}^2$ aus Obermodell verwendet!

Dann⁴²:

$$\log \Lambda_n = -\frac{1}{2\hat{\sigma}^2} \left[\sum_{i=1}^n (X_i - \bar{X}_n)^2 - \sum_{i=1}^n (X_i - (\hat{\vartheta}_1 + \hat{\vartheta}_2 t_i))^2 \right]$$

$$=: SS_0 = SS_1 (=n\hat{\sigma}^2)$$

Als Testgröße wird

$$T := \frac{SS_0 - SS_1}{\frac{SS_1}{n-2}}$$

verwendet. Es gilt:

 $^{^{41}}$ Kleinste-Quadrate-Schätzer

 $^{^{42}}$ SS: sum of squares

14.9 Beispiele 117

(i)
$$\frac{SS_1}{\sigma^2} \sim \chi_{n-2}^2$$
 (nach 14.6(c))

(ii)
$$\frac{SS_0}{\sigma^2} \sim \chi^2_{n-1}$$
 unter H_0 (nach 2.2)

(iii) $SS_0 - SS_1$ und SS_1 stochastisch unabhängig (ohne Beweis)

$$\frac{SS_0}{\underline{\sigma^2}} = \frac{SS_0 - SS_1}{\sigma^2} + \underbrace{\frac{SS_1}{\underline{\sigma^2}}}_{\sim \chi_{n-2}^2}$$

$$\Rightarrow \frac{SS_0-SS_1}{\sigma^2} \sim \chi^2_{n-1-(n-2)} = \chi^2_1$$
unter H_0 (vgl. Beweis von 14.6(c))

Damit $T \sim F_{1,n-2}$ unter H_0 .

b)
$$X_{i,j} = \vartheta_j + \varepsilon_{i,j} \ (i = 1, \dots, k, j = 1, \dots, n_i)$$
 (einfache Varianzanalyse⁴³)

$$H_0: \vartheta_1 = \ldots = \vartheta_k$$

("kein Effekt des zu untersuchenden Faktors")

$$\underbrace{\begin{pmatrix} 1 & 0 & -1 \\ & \ddots & \vdots \\ 0 & 1 & -1 \end{pmatrix}}_{=:H \in \mathbb{R}^{k-1 \times k}} \cdot \begin{pmatrix} \vartheta_1 \\ \vdots \\ \vartheta_k \end{pmatrix} = \underbrace{\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}}_{=:h \in \mathbb{R}^{k-1}}$$

$$Rang(H) = k - 1(= r)$$

Testgröße: (vgl. Aufgabe 45)

$$\frac{\overline{Sei} \ \overline{X}_{i+} = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{i,j}, \ \overline{X}_{++} = \frac{1}{n} \sum_{i,j} X_{i,j}, \ n = \sum_{i=1}^k n_i,
SQZ = \sum_{i=1}^k n_i (\overline{X}_{i+} - \overline{X}_{++})^2, SQI = \sum_{i,j} (X_{i,j} - \overline{X}_{i+})^2$$

$$\sum_{i,j} (X_{i,j} - \bar{X}_{++})^2 = \text{SQI} + \text{SQZ}$$

$$T := \frac{\frac{\text{SQZ}}{k-1}}{\frac{\text{SQI}}{n-k}} \sim F_{k-1,n-k} \text{ unter } H_0$$

 $[\]overline{^{43}}k \hat{=} s$

14.10 Die Testgröße bei allgemeinen linearen Hypothesen

$$\hat{\vartheta} \sim \mathcal{N}_{j}(\vartheta, \sigma^{2}(C^{T}C)^{-1})$$

$$\Rightarrow H\hat{\vartheta} \sim \mathcal{N}_{r}(H\vartheta, \sigma^{2}\underbrace{H(C^{T}C)^{-1}H^{T}})$$

$$=:B$$

$$\frac{\frac{1}{r} \cdot \frac{1}{\sigma^{2}}(H\hat{\vartheta} - H\vartheta)^{T}B^{-1}(H\hat{\vartheta} - H\vartheta)}{\frac{\hat{s}^{2}}{\sigma^{2}}} \sim \frac{\frac{\chi_{r}^{2}}{\chi_{n-s}^{2}}}{\frac{\chi_{n-s}^{2}}{\eta_{n-s}^{2}}} \sim F_{r,n-s}$$

(Zähler und Nenner sind stochastisch unabhängig.) Sei

$$T := \frac{\frac{1}{r}(H\hat{\vartheta} - h)^T (H(C^T C)^{-1} H^T)^{-1} (H\hat{\vartheta} - h)}{\hat{s}^2} \sim F_{r,n-s} \text{ unter } H_0$$

Der sogenannte **F-Test** im linearen Modell besitzt die Gestalt: H_0 ablehnen, falls $T \geq F_{r,n-s,1-\alpha}$. Kein Widerspruch zu H_0 , falls $T < F_{r,n-s,1-\alpha}$.

Bemerkung:

Für die Beispiele aus 14.9 stimmt die obige Testgröße mit den Testgrößen aus 14.9(a) bzw. (b) überein.