Radius of Convergence

John M. Ernsthausen

Joint work with Ned Nedialkov

McMaster University Canada

Nedialkov Group Presentation October 21, 2020

Problem

Given the first k+1 coefficients of the power series (PS) expansion of an $f:\mathbb{R}\to\mathbb{R}$

$$f(t) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$
 (1)

estimate the radius of convergence (RC) of this series

We are interested in estimating the RC of Taylor series solutions of ODEs and DAEs

Needed for reliable stepsize control

The RC tests of CC

Corliss and Chang, Solving Ordinary Differential Equations Using Taylor Series, ACM TOMS, 1982, pp. 114 - 144

The coefficients of a general PS follow no patterns PS of a real valued function any or ODE solution? follow a few very definite patterns

- characterized by the location of primary (closest to z₀) singularity
- effects of secondary (second closest) singularities diminish as number of coefficients increases

CC idea

For sufficiently large k, c_k behave like the coefficients of

single-pole model

$$v(z) \stackrel{\text{def}}{=} (a-z)^{-s} \qquad s \neq 0, -1, -2, \dots$$
 (2)

or conjugate-pair model

$$w(z) \stackrel{\text{def}}{=} (z^2 - 2bz + a^2)^{-s} \qquad s \neq 0, -1, -2, \dots$$
 (3)

We know the coefficients of (2) and (3) Find which model the c_k fit, i.e. find a, s in (2) and a, b, s if (3) We know the RC in (2) and (3) Use it as an approximation of RC of (1).

Example

Single pole

Example

Conjugate pair of poles

Figure 1: One necessarily real (primary) pole

This graph from Corliss and Chang, Solving Ordinary Differential Equations Using Taylor Series, ACM TOMS, 1982, pp. 114 - 144

Figure 2: One necessarily real (primary) pole with a secondary pole nearby

This graph from Corliss and Chang, Solving Ordinary Differential Equations Using Taylor Series, ACM TOMS, 1982, pp. 114 - 144

One pole: Three term analysis

Data fitting

Model the given (finite) real series (scale h) by a pole on the real axis which is radius a away and has order of singularity s

$$v(z) \stackrel{\text{def}}{=} (a-z)^{-s}$$
 $s \neq 0, -1, -2, \dots$

Any function with only one primary pole or logarithmic singularity has the form f(v(z)) where f is analytic in some region

On circle centered at zero v has Taylor coefficients

$$k(v)_{k+1} = (v)_k (k+s-1) \frac{h}{a}$$

Automatic differentiation formula for u^p with p=-a and u=a-z. All derivatives of u zero except the first one which is -1

One pole: Three term analysis (continued)

Data fitting

Derive this result from k and k-1 recursion relations.

 $RC \stackrel{\text{def}}{=} a$. Then

$$\frac{h}{RC} = \frac{h}{a} = k \frac{(v)_{k+1}}{(v)_k} - (k-1) \frac{(v)_k}{(v)_{k-1}}$$

For Order s (Use estimated RC from above)

order
$$\stackrel{\text{def}}{=} s = k \frac{(v)_{k+1}}{(v)_k} \frac{RC}{h} - k + 1$$

If the series has one primary pole or logarithmic singularity, this test will detect it

Compute two estimates. Terms N-2, N-1, N. If the two estimates of h/RC do not agree (Relative backward error), then series does not have one primary real pole or logarithmic singularity

Complex conjugate pair of poles: Six term analysis Data fitting

Model the given (finite) real series (scale h) by a Complex conjugate pair of poles which is radius a away and has order of singularity s

$$b \in \mathbb{R}$$
 and $\cos \theta \stackrel{\text{def}}{=} b/a$ (Picture would help here)

Model

$$w(z) \stackrel{\text{def}}{=} (z^2 - 2bz + a^2)^{-s}$$
 $s \neq 0, -1, -2, \dots$

On circle centered at zero w has Taylor coefficients

$$k(w)_{k+1} = 2(w)_k (k+s-1) \frac{h}{a} \cos \theta - (w)_{k-1} (k+2s-2) \left(\frac{h}{a}\right)^2$$

Reduced derivative formula for u^p with p = -a and $u = z^2 - 2bz + a^2$.

Six term analysis (continued)

Data fitting

Unknowns:
$$\beta_1 = (h/a)\cos\theta$$
, $\beta_2 = s\beta_1$, $\beta_3 = (h/a)^2$, $\beta_4 = s\beta_3$

Equations:

$$k(w)_{k+1} = (k-1)(w)_k \beta_1 + (w)_k \beta_2 - (k-2)(w)_{k-1} \beta_3 - 2(w)_{k-1} \beta_4$$

for
$$k = N - 1, N - 2, N - 3, N - 4$$

Linear system. Feasible solution unless $\beta_3 < 0$ or $|\cos \theta| > 1$ or large residual where residual is backward error checked against data from N-5 equation

Two values for s may disagree (a lot). Optimization problem minimizing norm of β . Enforce $\beta_3 \geq 0$ and $|\cos \theta| \leq 1$ in box constraints.

Top line analysis: The ratio test

Data fitting

Best linear fit y(k) = mk + b in the 2-norm to the points

$$\left\{ (n,\log_{10}|c_n|), (n+1,\log_{10}|c_{n+1}|), \ldots, (N,\log_{10}|c_N|) \right\}$$

for some sufficiently large n so that convergence guaranteed

$$\sum_{n=0}^{\infty} c_n$$
 converges then $c_n \to 0$ as $n \to \infty$ The model parameter m will be negative

Compute the ratio in the ratio test with linear least squares best fit model. Then

$$\log_{10} \left| \frac{y(k+1)}{y(k)} \right| = \log_{10} |y(k+1)| - \log_{10} |y(k)| = m$$

which is independent of k.

Top line analysis (continued) Data fitting

Have convergence analysis for top-line analysis

To find Order of singularity μ and the best possible RC

- ▶ Integrate sequence 3 times. Set $\mu = 4$
- Search for the sequence which opens downward.
- ightharpoonup Differentiate the result up to 7 times reducing μ by one for each differentiation
- If cannot find such a sequence, conservatively use the final estimate RC but μ unknown

Figure 3: Top-line analysis shows divergent TS and rejected step

Figure 4: Top-line analysis indicates convergent TS and stepsize