



Jochen Weschta

Founder & CEO SCADIX GmbH

### Moderne PKI-Architekturen Kurzlebige Zertifikate,

ACME und Zero Trust in der Praxis

# Wer ist SCADIX?

- Wir sind ein modernes IT-Consulting-Unternehmen.
- Open Source ist unser Werkzeug für Innovation und Fortschritt.
- Wir machen Unternehmen durch Technologie zukunftsfähig.
- Unser Motor:
  Leidenschaftliche ITExpert:innen, die Innovation
  leben.





### Important News

Reduktion von öffentlichen SSL/TLS Zertifikaten

```
15.03.2020 -> 398 days
```

15.03.2026 -> **200** days

15.03.2027 -> **100** days

15.03.2029 -> **47** days

10 days for domain validation



# Be prepared

Rückblick in der Zeit



### Zeitalter: On Premise



- Infrastruktur vollständig on-premise
- Service-Exposition über eine zentrale Firewall
- Verschlüsselte Kommunikation innerhalb des LANs nicht erforderlich

"Wir sind hinter der Firewall - Verschlüsselung im LAN unnötig"



### Zeitalter: Neumoderne

- Bedarf nach Verschlüsselung auch für interne Services erkannt
- Einführung von Microsoft Certificate Services (MSCS) ab Windows Server 2000
- Zertifikatserstellung erfolgt oft manuell oder teilautomatisiert
- Einsatz von Zertifikaten mit langer Laufzeit



### Zeitalter: Cloud Native

- Zunahme von Cloud-Diensten im Unternehmensumfeld
- Notwendigkeit zur sicheren Verbindung zwischen On-Premise und Cloud-Services
- Abschied vom Konzept des "always trusted LANs"

Jede Kommunikation muss verschlüsselt erfolgen

• Verwaltung von Zertifikaten verursacht hohen Personal- und Zeitaufwand



# Radikale Automatisierung des Zertifikatsmanagementes

Was ist ACME?





### Was ist ACME?

- ACME = Automatic Certificate Management Environment
- Enwicklung: Let's Encrypt (ACMEv1) dep. 01.07.21
- ACMEv2 offizieller Standard gemäß RFC 8555

#### Ziel von ACME:

- Automatisierte Ausstellung von Zertifikaten
- Verifizierung des Domainbesitzes
- Vermeidung manueller Prozesse bei der Zertifikatsbeantragung





## Bedeutung Zero-Trust

• "Vertraue niemandem - jede Anfrage muss verifiziert werden."

• ACME validiert jede Zertifikatsanfrage automatisch (z.B. HTTP-01, DNS-01).

• Menschliches Vertrauen wird durch technische Verifikation ersetzt - Kernprinzip von Zero-Trust.

Extern vs Intern





### Extern vs Intern

#### Externe Zertifikate:

- Verwendet für öffentliche Webservices, APIs, Mail-Server etc.
- Von öffentlich anerkannten Certificate Authorities (CAs) signiert
- Sicherstellung der Vertrauenswürdigkeit im Internet

#### Interne Zertifikate:

- Für die Kommunikation innerhalb des Unternehmensnetzwerks
- Häufig von einer internen Certificate Authorities (CA) ausgestellt
- Ermöglicht verschlüsselte Kommunikation ohne öffentliches Vertrauen

Zertifikat Livecycle intern



# Zertifikat Livecycle intern



#### Manuelle Prozesse:

- Zertifikate werden oft über Microsoft Certificate Services (MSCS) erstellt, die nicht ACME-fähig sind
- Prozess oft manuell oder teilautomatisiert mit Shell-Skripten
- Human Gates verhindern einen vollständig automatisierten Ablauf

# Zertifikat Livecycle intern



#### Benötigte Rollen:

- Person 1: Admin der CA (Zertifikate ausstellen)
- Person 2: Applikationsexperte und Ersteller des Signing Requests (CSR)
- Person 3: Admin, der das Zertifikat ausrollt, in die Anwendung integriert und den Applikationsservice neu startet

# Was ist ein CSR?

#### CSR = Certificate Signing Request

- Zentraler Bestandteil der Zertifikatserstellung zur Beantragung eines signierten Zertifikats bei einer CA
- CSR-Files können von verschiedenen Nutzern erstellt werden und enthalten alle nötigen Eigenschaften für die Zertifikatsanforderung



| Eigenschaft                      | Beschreibung                                     |  |
|----------------------------------|--------------------------------------------------|--|
| Öffentlicher Schlüssel           | Entspricht dem privaten Schlüssel                |  |
| Common Name (CN)                 | Domain oder Servername (z.B. example.com)        |  |
| Organization (O)                 | Name der Organisation                            |  |
| Organizational Unit (OU)         | Abteilung innerhalb der Organisation             |  |
| Country (C)                      | Land des Antragstellers                          |  |
| State (ST)                       | Bundesland oder Region                           |  |
| Locality (L)                     | Stadt oder Ort                                   |  |
| Subject Alternative Names (SANs) | Optionale zusätzliche Namen oder IP-<br>Adressen |  |
| Signatur                         | Mit dem privaten Schlüssel signierte Anfrage     |  |

# Zertifikat Livecycle intern



#### Herausforderungen:

- Notwendigkeit für **mindestens 2-3** Fachkräfte (Applikationsexperte, Automatisierungsadmin, Zertifikatsmanager)
- Manuelle Schritte (Human Gates) verlängern den Prozess erheblich
- Sicherheitsaspekte werden nicht ausreichend geprüft
- Wer überprüft, ob das Zertifikat korrekt verwendet wird und nicht missbräuchlich auf anderen Servern?



# ineffizient und riskant

Zertifikat Livecycle extern



# Zertifikat Livecycle extern



#### Fortgeschrittene automatisierte Workflows:

• Der Einsatz von ACME Client's wie "certbot" nimmt Einzug, durch den Einsatz von freien Let's Encrypt Zertifikaten.

#### • Let's Encrypt:

- Kostenlos, automatisiert und Open Source
- Eingeschränkte Funktionen und Support

#### • SECTIGO/Globalsign:

- Umfassender Service, inklusive erweiterten Funktionen, Support und Compliance
- Bevorzugt durch Unternehmen mit spezifischen Geschäftsanforderungen und Compliance-Vorgaben



## Wie erhalte ich ähnlich elegante Lösung in meiner internen Infrastruktur?

Best Practice
PKI
Infrastruktur





### Best Practice PKI

Nicht empfohlen

 Empfohlen



# Unterschied online/offline CA?

| Kategorie      | Online-CA                       | Offline-CA                       |
|----------------|---------------------------------|----------------------------------|
| Erreichbarkeit | Netzwerkbasiert, automatisiert  | nur manuelle Nutzung             |
| Sicherheit     | Mittel                          | Hoch                             |
| Flexibilität   | Hoch (API, ACME etc.)           | Gering                           |
| Einsatzzweck   | Zertifikatsausstellung, Renewal | Root-Vertrauen, Signatur von CAs |





# Hosted (Sub) ordinate CA?

#### Vorteile:

- Verantwortung für Root CA entfällt.
- Zertifikate gelten "out of the box" als sicher, da über die OS-Packages die Root CA's verteilt werden.





Was ist denn der Unterschied?

Sub CA
vs
Intermediate
CA?



# Unterschied: Sub-CA vs Intermediate



Technisch ist es das gleiche.



| Begriff                 | Bedeutung                                                                                                              |
|-------------------------|------------------------------------------------------------------------------------------------------------------------|
| Intermediate CA         | Eine <b>Zertifizierungsstelle</b> ,<br>deren Zertifikat <b>von einer</b><br><b>Root CA</b> signiert wurde              |
| Subordinate CA (Sub-CA) | Einfach ein<br>untergeordneter CA-<br>Knoten – also jede CA<br>unterhalb der Root, egal<br>ob Intermediate oder tiefer |



## Unabhängig und Eigenverantwortlich

Was ist die STEPCA?





- OpenSource Lösung smallstep.
- Ein leichtgewichtiges CA-System für das Management von Zertifikaten
- Vollständig in Go geschrieben, verfügbar als Einzelbinary oder Container.



**Funktionen** 

X.509 Certificate Authority

SSH Certificate Authority

Provisioners

Templates

Cryptographic Protection

# Integration in die Infrastruktur



- StepCA wird in einem Teilbereich der Infrastruktur (Single- oder HA- Setup) platziert.
- Stellt eine REST-API bereit, über die Clients mit der CA kommunizieren.
- Das Admin-Tool "step" ermöglicht die Interaktion mit der Online-CA.
- Unterstützt den ACMEv2-Standard und kann als Alternative zu "certbot" verwendet werden.
- Eignet sich für die **automatische** Ausstellung und **Verwaltung** von Zertifikaten in **internen** Umgebungen.

Neuaufbau oder Migration



### Neuaufbau



```
#> step certificate create --profile root-ca "SCADIX Root CA"
root_ca.crt root_ca.key

#> step certificate create scadix.org scadix.crt scadix.key \\
    --profile leaf --not-after=8760h \\
    --ca ./intermediate ca.crt --ca-key ./intermediate ca.key --bundle
```

By using the --bundle flag we automatically bundle the new leaf certificate with the signing intermediate certificate. TLS-based services will require the bundle in order to verify the full chain.

## Migration



#> \$ step ca init --root=[ROOT\_CERT\_FILE] --key=[ROOT\_PRIVATE\_KEY\_FILE]

#### Vorteil:

- Parallelbetrieb zu alternativen CA's (z.B. MSCS) möglich
- Kein harter Switch notwendig.

Provisioner





- Zweck: Authentifizierung & Autorisierung von Zertifikatsanforderungen
- Typen:
  - JWK JSON Web Key-basierte Authentifizierung
  - OAuth/OIDC Single Sign-on via Identity Provider
  - X5C Basierend auf vorhandenen X.509-Zertifikaten
  - SSHPOP SSH Certificate Proof-of-Possession
  - ACME Automatisierte Zertifikatserneuerung (z.B. via Certbot)
  - Nebula Integration mit Nebula Overlay-Netzwerken
  - SCEP Unterstützung für Simple Certificate Enrollment Protocol
  - K8sSA Authentifizierung über Kubernetes Service Accounts
  - Cloud Provisioners z.B. AWS, GCP, Azure Instanz-Metadaten



# ACME Challenges

| Merkmal          | HTTP-01                                                                             | DNS-01                                                                   |
|------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Nachweis über    | Datei auf http:// <domain>/.well-<br/>known/acme-challenge/<token></token></domain> | DNS-TXT-Eintrag _acme-<br>challenge. <domain> = <token></token></domain> |
| Erfordert        | Öffentlichen HTTP-Zugriff (Webserver)                                               | DNS-Zugriff bzw. API                                                     |
| Typische Nutzung | Webseiten-Zertifikate                                                               | Wildcard-Zertifikate, interne Hosts                                      |
| Wildcard Support | X Kein Wildcard-Support                                                             | ▼ Wildcard-Zertifikate möglich                                           |
| Verifizierung    | IP/Hostname                                                                         | Hostname über DNS                                                        |
| Vorteil          | Einfacher für öffentlich erreichbare<br>Webserver                                   | Kein Webserver notwendig, flexibler für interne/externe Systeme          |

Es gibt noch weitere Challenges als HTTP-01 und DNS-01

# Herausforderungen HTTP-01 Challenge

- Port **80** wird bereits vom Webserver für den redirect auf Port **443** verwendet
- Ausnahme kann definieren werden, sodass der ACME Token über den bestehenden Webserver exposed wird.



```
server {
    listen 80;
    server_name example.com;

location /.well-known/acme-challenge/ {
    root /var/www/html;
  }

location / {
    return 301 https://$host$request_uri;
  }
}
```



Praxis

# ACME basierte Zertifikatserstellung



#> step ca certificate --provisioner acme scadix.org scadix.crt scadix.key

✓ Provisioner: acme (ACME)
Using Standalone Mode HTTP challenge to validate scadix.org. done!
Waiting for Order to be 'ready' for finalization .. done!
Finalizing Order .. done!
✓ Certificate: scadix.crt
✓ Private Key: scadix.key

## Zertifikat Insights



#### #> step certificate inspect --short foo.crt

X.509v3 TLS Certificate (ECDSA P-256) [Serial: 1664...3445]

Subject: scadix.org

Issuer: Speedy Intermediate CA

Provisioner: admin [ID: w10U...oZUg]

Valid from: 2024-05-01T21:15:16Z

to: 2024-05-02T21:15:16Z

### Renewal der Zertifikate



#### #> \$ step ca renew --force scadix.crt scadix.key

Your certificate has been saved in foo.crt

#### \$ step certificate inspect --short foo.crt

X.509v3 TLS Certificate (ECDSA P-256) [Serial: 1664...3445]

Subject: scadix.org

Issuer: Speedy Intermediate CA

Provisioner: admin [ID: w10U...oZUg]

Valid from: 2024-05-01T21:15:16Z

to: 2024-05-02T21:15:16Z





• Renewal using systemd

```
ExecCondition=/usr/bin/step certificate needs-renewal ${CERT_LOCATION}
; ExecStart renews the certificate, if ExecStartPre was successful.

ExecStart=/usr/bin/step ca renew --force ${CERT_LOCATION} ${KEY_LOCATION}
```

; Try to reload or restart the systemd service that relies on this cert-renewer ExecStartPost=/usr/bin/env sh -c "! systemctl --quiet is-active %i.service || systemctl try-reload-or-restart %i"

• ...



Abbau des ganzen manuellen fehleranfälligen Workflows.

# Policy/Sicherheitsmaßnahmen



- Zertifikate bleiben bis zum **Ablaufdatum gültig**, sofern die Intermediate CA nicht widerrufen wird.
- Worst Case: Kompromittiertes Wildcard-Zertifikat mit langer Laufzeit  $\rightarrow$  erfordert Widerruf der Intermediate CA  $\rightarrow$  alle zugehörigen Zertifikate werden ungültig.

#### Empfehlung:

- Keine Wildcard-Zertifikate mit langer Laufzeit verwenden.
- Einsatz mehrerer Intermediates mit gemeinsamem Root.
- Besser: Short-Term-Zertifikate mit vollständiger Automatisierung sicherer, einfacher, eleganter.

## Reduktion der Laufzeit



• Reduktion der Laufzeit kann zentral über den Provisionier konfiguriert werden.

```
#> step ca provisioner update acme-provisioner \
  --default-tls-cert-duration=72h \
  --max-tls-cert-duration=168h
```



Vertrauensfrage

### Problem:





## Vertrauensherstellung



• Aufbau Initiale Vertrauensherstellung zwischen einem Client und der CA durch Abruf und Speicherung des CA-Zertifikats

#### => Bootstrapping

(nur notwendig, wenn man eine komplett eigene self signed Root CA verwendet. Bei der Verwendung des Hosted SubCA ist dies nicht erforderlich.

#> step ca bootstrap --ca-url https://ca.scadix.org:9000 --fingerprint
8e91a6ad6ac4983eec193f12f0d5525b40dabaa0b7d026ebba03d17efd010b97 --install

# Finally:





This page uses an encrypted connection, which prevents third parties from viewing your activity or intercepting sensitive information you send on this page.

Certificate for zabbix.scadix.org

#### Security Certificate Detail

Common Name zabbix.scadix.org Summary zabbix.scadix.org

#### **Public Key**

Algorithm Elliptic Curve
Key Size 256 bits
Effective Size 256 bits
Usage Encrypt, Verify, Wrap
Permanent Yes



# Wer setzt noch MSCS (Microsoft Certificate Service) ein?

## Connect





Persönlich auf Veranstaltungen



https://scadix.de



jochen.weschta@scadix.de



jochen.weschta:matrix.scadix.de



https://github.com/scadix-gmbh



https://www.linkedin.com/company/scadix







Jochen Weschta

Founder & CEO SCADIX GmbH

Vielen Dank!

und weiterhin viel Spaß auf dem 21. Linux Info Tag!