SBML Model Report

Model name: "Messiha2013 - combined glycolysis and pentose phosphate pathway model"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Kieran Smallbone² at November nineth 2008 at no o' clock in the morning. and last time modified at April eighth 2016 at 5:38 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	76
events	0	constraints	0
reactions	34	function definitions	0
global parameters	10	unit definitions	5
rules	4	initial assignments	0

Model Notes

Messiha2013 - combined glycolysis and pentose phosphate pathway model

¹EMBL-EBI, viji@ebi.ac.uk

 $^{^2} University \ of \ Manchester, \verb+kieran.smallbone@manchester.ac.uk+$

BIOMD000000502 and MODEL1303260018 are combined to examine the response to oxidative stress.

This model is described in the article:Enzyme characterisation and kinetic modelling of pentose phosphate pathway in yeast.Hanan L. Messiha, Edward Kent, Naglis Malys, Kathleen M. Carroll, Pedro Mendes, Kieran SmallbonePeerJ PrePrints 1:e146v2

Abstract:

We present the quantification and kinetic characterisation of the enzymes of the pentose phosphate pathway in Saccharomyces cerevisiae. The data are combined into a mathematical model that describes the dynamics of this system and allows for the predicting changes in metabolite concentrations and fluxes in response to perturbations. We use the model to study the response of yeast to a glucose pulse. We then combine the model with an existing glycolysis one to study the effect of oxidative stress on carbohydrate metabolism. The combination of these two models was made possible by the standardized enzyme kinetic experiments carried out in both studies. This work demonstrates the feasibility of constructing larger network models by merging smaller pathway models.

This model is hosted on BioModels Database and identifiedby: BIOMD0000000503.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resourcefor published quantitative kinetic models.

To the extent possible under law, all copyright and related orneighbouring rights to this encoded model have been dedicated to the publicdomain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of nine unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name mmol

Definition mmol

2.2 Unit mM

Name mM

Definition $mmol \cdot l^{-1}$

2.3 Unit mM_per_s

Name mM per s

Definition $mmol \cdot l^{-1} \cdot s^{-1}$

2.4 Unit per_s

Name per s

Definition s^{-1}

2.5 Unit per_mM_per_s

Name per_mM_per_s

Definition $mmol^{-1} \cdot l \cdot s^{-1}$

2.6 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.7 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.8 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.9 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

	14616 2	. rroper	ties of all comp	our trireri			
Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cell extracellular	cell extracellular		3 3	1 1	litre litre	1	

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

Name cell

3.2 Compartment extracellular

This is a three dimensional compartment with a constant size of one litre.

Name extracellular

4 Species

This model contains 76 species. The boundary condition of 48 of these species is set to true so that these species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
ADP	ADP	cell	$mmol \cdot l^{-1}$	\Box	
ATP	ATP	cell	$\text{mmol} \cdot l^{-1}$		
AcAld	AcAld	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
BPG	BPG	cell	$\operatorname{mmol} \cdot 1^{-1}$		
DHAP	DHAP	cell	$\operatorname{mmol} \cdot 1^{-1}$		
F16bP	F16bP	cell	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$		
F6P	F6P	cell	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$		
G1P	G1P	cell	$\operatorname{mmol} \cdot 1^{-1}$		
G3P	G3P	cell	$\operatorname{mmol} \cdot 1^{-1}$		
G6P	G6P	cell	$\operatorname{mmol} \cdot 1^{-1}$		
GAP	GAP	cell	$\operatorname{mmol} \cdot 1^{-1}$		
GLC	GLC	cell	$\operatorname{mmol} \cdot 1^{-1}$		
NAD	NAD	cell	$\operatorname{mmol} \cdot 1^{-1}$		
P2G	P2G	cell	$\operatorname{mmol} \cdot 1^{-1}$		
P3G	P3G	cell	$\operatorname{mmol} \cdot 1^{-1}$		
PEP	PEP	cell	$\operatorname{mmol} \cdot 1^{-1}$		
PYR	PYR	cell	$\operatorname{mmol} \cdot 1^{-1}$		
T6P	T6P	cell	$\operatorname{mmol} \cdot 1^{-1}$		
UDP	UDP	cell	$\text{mmol} \cdot l^{-1}$		
UTP	UTP	cell	$\mathrm{mmol}\cdot \mathrm{l}^{-1}$		
AMP	AMP	cell	$\operatorname{mmol} \cdot 1^{-1}$		

6	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
	NADH	NADH	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	UDG	UDG	cell	$mmol \cdot l^{-1}$		\checkmark
	ACE	ACE	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	\checkmark
	EtOH	EtOH	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	
	F26bP	F26bP	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	GLCx	GLCx	extracellular	$mmol \cdot l^{-1}$		
	GLY	GLY	cell	$mmol \cdot l^{-1}$		
	SUC	SUC	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	
Produced by SBML218TEX	TRH	TRH	cell	$mmol \cdot l^{-1}$		
duc	ADH1	ADH1	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	
ed	CDC19	CDC19	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square	
by	ENO1	ENO1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
<u>&</u>	ENO2	ENO2	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	
\leq	FBA1	FBA1	cell	$mmol \cdot l^{-1}$	\square	
Ä	GLK1	GLK1	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	
$\stackrel{\square}{\times}$	GPD1	GPD1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
	GPD2	GPD2	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	
	GPM1	GPM1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square	
	HOR2	HOR2	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square	
	HXK1	HXK1	cell	$mmol \cdot l^{-1}$	\square	
	HXK2	HXK2	cell	$mmol \cdot l^{-1}$	\square	
	PDC1	PDC1	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	
	PDC5	PDC5	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	
	PDC6	PDC6	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\square	
	PFK1	PFK1	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	
	PFK2	PFK2	cell	$mmol \cdot l^{-1}$		
	PGI1	PGI1	cell	$\operatorname{mmol} \cdot 1^{-1}$	\square	

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
PGK1	PGK1	cell	$\operatorname{mmol} \cdot 1^{-1}$		\overline{Z}
PGM1	PGM1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\mathbf{Z}}$
PGM2	PGM2	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	$\overline{\mathbb{Z}}$	$\overline{\mathbf{Z}}$
RHR2	RHR2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
TDH1	TDH1	cell	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$	
TDH3	TDH3	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	$\overline{\mathbf{Z}}$	$\overline{\checkmark}$
TPI1	TPI1	cell	$\text{mmol} \cdot 1^{-1}$	$\overline{\mathbb{Z}}$	
TPS1	TPS1	cell	$\text{mmol} \cdot 1^{-1}$	$\overline{\mathbb{Z}}$	$\overline{\checkmark}$
TPS2	TPS2	cell	$\operatorname{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $	
UGP1	UGP1	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	$ \overline{\mathbf{Z}} $	
E4P	E4P	cell	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
G6L	G6L	cell	$\operatorname{mmol} \cdot 1^{-1}$		
NADPH	NADPH	cell	$mmol \cdot l^{-1}$	\Box	
P6G	P6G	cell	$\operatorname{mmol} \cdot 1^{-1}$		
R5P	R5P	cell	$\operatorname{mmol} \cdot 1^{-1}$		
Ru5P	Ru5P	cell	$\operatorname{mmol} \cdot 1^{-1}$		
S7P	S7P	cell	$\operatorname{mmol} \cdot 1^{-1}$		
X5P	X5P	cell	$\operatorname{mmol} \cdot 1^{-1}$		
NADP	NADP	cell	$\operatorname{mmol} \cdot 1^{-1}$		
GND1	GND1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
GND2	GND2	cell	$\operatorname{mmol} \cdot 1^{-1}$		
NQM1	NQM1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
RKI1	RKI1	cell	$\operatorname{mmol} \cdot 1^{-1}$		
RPE1	RPE1	cell	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $	
SOL3	SOL3	cell	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $	
TAL1	TAL1	cell	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $	
TKL1	TKL1	cell	$mmol \cdot l^{-1}$	\square	

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
ZWF1	ZWF1	cell	$mmol \cdot l^{-1}$		\overline{Z}

5 Parameters

This model contains ten global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
sum_AxP			6.020	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\hspace{1cm}}$
sum_NAD			1.590	$\text{mmol} \cdot l^{-1}$	
sum_UxP			1.398	$\text{mmol} \cdot l^{-1}$	
sum_NADP			0.330	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
$Kx5p_TAL$			0.670	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
${\tt Ke4p_TAL}$			0.946	$\operatorname{mmol} \cdot 1^{-1}$	
${\tt Kr5p_TAL}$			0.235	$\operatorname{mmol} \cdot 1^{-1}$	
${\tt Kgap_TAL}$			0.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Kf6p_TAL			1.100	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{A}}$
Ks7p_TAL			0.150	$\operatorname{mmol} \cdot 1^{-1}$	$ \mathbf{Z} $

6 Rules

This is an overview of four rules.

6.1 Rule AMP

Rule AMP is an assignment rule for species AMP:

$$AMP = sum_AxP - [ATP] - [ADP]$$
 (1)

Derived unit $mmol \cdot l^{-1}$

6.2 Rule NADH

Rule NADH is an assignment rule for species NADH:

$$NADH = sum_NAD - [NAD]$$
 (2)

Derived unit $mmol \cdot l^{-1}$

6.3 Rule UDG

Rule UDG is an assignment rule for species UDG:

$$UDG = sum_{-}UxP - [UTP] - [UDP]$$
(3)

Derived unit $mmol \cdot l^{-1}$

6.4 Rule NADP

Rule NADP is an assignment rule for species NADP:

$$NADP = sum_NADP - [NADPH]$$
 (4)

Derived unit $mmol \cdot l^{-1}$

7 Reactions

This model contains 34 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO
1	ADH	ADH	AcAld+NADH ADH1, AcAld, NADH, EtO	H. NAD = 000017 E tOH +
			NAD	
2	AK	AK	$2 ADP \xrightarrow{ADP, AMP, ATP} ATP + AMP$	0000176
3	ATPase	ATPase	$ATP \xrightarrow{ATP} ADP$	0000176
4	ENO	ENO	P2G ENO1, ENO2, ENO1, P2G, PEP, ENO2 PEP	0000176
5	FBA	FBA	$F16bP \xrightarrow{FBA1, FBA1, F16bP, DHAP, GAP} DHAP+$	0000176
			GAP	
6	GPD	GPD	DHAP+NADH ADP, ATP, F16bP, GPD1, GPD2, D	DHAP, NADH, G3P, NAD, F16bl
			NAD	
7	GPM	GPM	$P3G \xrightarrow{GPM1, GPM1, P3G, P2G} P2G$	0000176
8	GPP	GPP	$G3P \xrightarrow{HOR2, RHR2, G3P} GLY$	0000176
9	нхк	HXK	$GLC+ATP \xrightarrow{HXK1, T6P, HXK2, GLK1, HXK1, GLC}$	C, ATP, G6P, ADP, T6P, HXK2,
			ADP	
10	PDC	PDC	PYR PDC1, PDC5, PDC6, PDC1, PYR, PDC5, PDC	-6 -0 0.000117 16
11	PFK	PFK	$ATP+F6P = \frac{AMP, F26bP, PFK1, PFK2, PFK2, F6P, APP + F6P}{APP + F6P} = \frac{AMP, F26bP, PFK1, PFK2, PFK2, F6P, APP + F6P}{APP + F6P} = \frac{AMP, F26bP, PFK1, PFK2, PFK2, F6P, APP + F6P}{APP + F6P} = \frac{AMP, F26bP, PFK1, PFK2, PFK2, F6P, APP + F6P}{APP + F6P} = \frac{AMP, F26bP, PFK1, PFK2, PFK2, F6P, APP + F6P}{APP + F6P} = \frac{AMP, F26bP, PFK1, PFK2, PFK2, F6P, APP + F6P}{APP + F6P} = \frac{AMP, F26bP, PFK1, PFK2, PFK2, F6P, APP + F6P}{APP + F6P} = \frac{AMP, F26bP, APP + F6P}{APP + F6P} = \frac{AMP, APP + F6P}{APP + F6P} = AMP, APP + F6$	ATP, F16bP, ADP, AMP, F26bP
			F16bP	
12	PGI	PGI	$G6P \xrightarrow{PGI1, PGI1, G6P, F6P} F6P$	0000176

12	No	Id	Name	Reaction Equation	SBO
	13	PGK	PGK	ADP+BPG PGK1, PGK1, ADP, BPG, P3G, ATP	 XT 0 000176
				P3G	
	14	PGM	PGM	$G6P \xrightarrow{PGM1, PGM2, G6P, G1P} G1P$	0000176
	15	PYK	PYK	$ADP + PEP \leftarrow CDC19, F16bP, CDC19, PEP, ADP, PY$	′R, ATP, F16bP = 0000176==== ATP+
				PYR	C NADII TDII
	16	TDH	TDH	GAP+NAD TDH1, TDH3, TDH1, GAP, NAD, BP	G, NADH, 1DH3 = 0000176 BPG+
				NADH	
Pr	17	TPI	TPI	DHAP TPI1, TPI1, DHAP, GAP	0000176
oduc	18	TPP	TPP	$T6P \xrightarrow{TPS1, TPS2, T6P} TRH$	0000176
ed b	19	TPS	TPS	$G6P + UDG \xrightarrow{TPS1, TPS2, G6P, UDG} T6P + UDP$	0000176
9 SB	20	UGP	UGP	$G1P + UTP \xrightarrow{UGP1, UTP, G1P, UDG} UDG$	0000176
Produced by SBML2PTEX	21	$acetate_branch$	acetate_branch	$AcAld + NAD \xrightarrow{AcAld, NAD} ACE + NADH$	0000176
AEX	22	udp_to_utp	udp_to_utp	$UDP + ATP \xrightarrow{UDP, ATP} UTP + ADP$	0000176
	23	HXT	HXT	$GLCx \xrightarrow{GLCx, GLC} GLC$	0000185
	24	GND	GND	P6G+NADP GND1, GND2, GND1, P6G, NADP, F	Ru5P NADPH, GND2 $Ru5P+$
				NADPH	
	25	RKI	RKI	$Ru5P \xrightarrow{RKI1, RKI1, Ru5P, R5P} R5P$	0000176
	26	RPE	RPE	$Ru5P \xrightarrow{RPE1, RPE1, Ru5P, X5P} X5P$	0000176
	27	SOL	SOL	$G6L \xrightarrow{SOL3, SOL3, G6L, P6G} P6G$	0000176
	28	TAL	TAL	$GAP + S7P \xrightarrow{TAL1, NQM1, TAL1, GAP, S7P, F6P, I}$	E4P. NOM1 = 0000176 ` F6P+
				E4P	

Nº	Id	Name	Reaction Equation	SBO
29	TKL_E4P	TKL (E4P:F6P)	X5P+E4P	7, F6P, R5P, S7P -0000176 GAP+
30	TKL_R5P	TKL (R5P:S7P)	F6P X5P+R5P	P, S7P, E4P, F6P
31	ZWF	ZWF	G6P+NADP ZWF1, ZWF1, G6P, NADP, G6L, NAI	DPH -0000016716+
32	NADPH_oxidase	NADPH oxidase	$NADPH \xrightarrow{NADPH} NADP$	0000176
33	E4P_sink	E4P sink	$E4P \xrightarrow{E4P} \emptyset$	0000176
34	R5P_sink	R5P sink	$R5P \xrightarrow{R5P} \emptyset$	0000176

7.1 Reaction ADH

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name ADH

SBO:0000176 biochemical reaction

Reaction equation

$$AcAld + NADH \xrightarrow{ADH1, ADH1, AcAld, NADH, EtOH, NAD} EtOH + NAD$$
 (5)

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
AcAld	AcAld	
NADH	NADH	

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
ADH1	ADH1	
ADH1	ADH1	
AcAld	AcAld	
NADH	NADH	
EtOH	EtOH	
NAD	NAD	

Products

Table 8: Properties of each product.

Id	Name	SBO
EtOH	EtOH	
NAD	NAD	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = vol\left(cell\right) \\ \cdot \frac{\left[ADH1\right] \cdot kcat \cdot \left(\frac{\left[AcAld\right] \cdot \left[NADH\right]}{Kacald \cdot Kinadh} - \frac{\left[EtOH\right] \cdot \left[NAD\right]}{Kacald \cdot Kinadh \cdot Keq}\right)}{1 + \frac{\left[NADH\right]}{Kinadh} + \frac{\left[AcAld\right] \cdot \left[NADH\right]}{Kinadh \cdot Kacald} + \frac{\left[EtOH\right] \cdot Knad}{Kinadh \cdot Ketoh} + \frac{\left[NAD\right]}{Kinadh} + \frac{\left[AcAld\right] \cdot \left[NADH\right]}{Kinadh \cdot Kacald} + \frac{\left[EtOH\right] \cdot Knad}{Kinadh \cdot Kinadh \cdot K$$

Table 9: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat			176.000	s^{-1}	<u> </u>
Ketoh			17.000	$\text{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Kinad			0.920	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	$\overline{\mathbf{Z}}$
Knad			0.170	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	$\overline{\mathbf{Z}}$
Knadh			0.110	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	$\overline{\mathbf{Z}}$
Kinadh			0.031	$\text{mmol} \cdot 1^{-1}$	
Kacald			0.462	$\text{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Kiacald			1.100	$\text{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Kietoh			90.000	$\text{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Keq]	14492.754	dimensionless	$ \overline{\checkmark} $

7.2 Reaction AK

This is a reversible reaction of one reactant forming two products influenced by three modifiers.

Name AK

SBO:0000176 biochemical reaction

Reaction equation

$$2ADP \xrightarrow{ADP, AMP, ATP} ATP + AMP \tag{7}$$

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
ADP	ADP	

Modifiers

Table 11: Properties of each modifier.

Id	Name	SBO
ADP	ADP	
AMP	AMP	
ATP	ATP	

Products

Table 12: Properties of each product.

Id	Name	SBO
ATP	ATP AMP	

Kinetic Law

Derived unit $0.0010 \text{ mol} \cdot \text{s}^{-1}$

$$v_{2} = \text{vol}\left(\text{cell}\right) \cdot \mathbf{k} \cdot \left(\left[\text{ADP}\right] \cdot \left[\text{ADP}\right] - \frac{\left[\text{AMP}\right] \cdot \left[\text{ATP}\right]}{\text{Keq}}\right) \tag{8}$$

Table 13: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k Keq				$mmol^{-1} \cdot l \cdot s^{-1}$ dimensionless	Ø

7.3 Reaction ATPase

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name ATPase

SBO:0000176 biochemical reaction

Reaction equation

$$ATP \xrightarrow{ATP} ADP \tag{9}$$

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
ATP	ATP	

Modifier

Table 15: Properties of each modifier.

Id	Name	SBO
ATP	ATP	

Product

Table 16: Properties of each product.

Id	Name	SBO
ADP	ADP	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{cell}) \cdot \frac{\frac{\text{Vmax} \cdot [\text{ATP}]}{\text{Katp}}}{1 + \frac{[\text{ATP}]}{\text{Katp}}}$$
(10)

Table 17: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax				$mmol \cdot l^{-1} \cdot s^{-1}$	\square
Katp			3.00	$\operatorname{mmol} \cdot 1^{-1}$	\square

7.4 Reaction ENO

This is a reversible reaction of one reactant forming one product influenced by six modifiers.

Name ENO

SBO:0000176 biochemical reaction

Reaction equation

$$P2G \xrightarrow{ENO1, ENO2, ENO1, P2G, PEP, ENO2} PEP$$
 (11)

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
P2G	P2G	

Modifiers

Table 19: Properties of each modifier.

Id	Name	SBO
ENO1	ENO1	
ENO2	ENO2	
ENO1	ENO1	
P2G	P2G	
PEP	PEP	
ENO2	ENO2	

Product

Table 20: Properties of each product.

Id	Name	SBO
PEP	PEP	

Kinetic Law

Derived unit contains undeclared units

$$v_{4} = \text{vol}(\text{cell}) \cdot \frac{[\text{ENO1}] \cdot \text{kcat}.\text{ENO1} \cdot \left(\frac{[\text{P2G}]}{\text{Kp2g}.\text{ENO1}} - \frac{[\text{PEP}]}{\text{Kp2g}.\text{ENO1} \cdot \text{Keq}}\right)}{1 + \frac{[\text{P2G}]}{\text{Kp2g}.\text{ENO1}} + \frac{[\text{PEP}]}{\text{Kpep}.\text{ENO1}}} + \text{vol}(\text{cell}) \cdot \frac{[\text{ENO2}] \cdot \text{kcat}.\text{ENO2} \cdot \left(\frac{[\text{P2G}]}{\text{Kp2g}.\text{ENO2}} - \frac{[\text{PEP}]}{\text{Kp2g}.\text{ENO2} \cdot \text{Keq}}\right)}{1 + \frac{[\text{P2G}]}{\text{Kp2g}.\text{ENO2}} + \frac{[\text{PEP}]}{\text{Kpep}.\text{ENO2}}}$$
(12)

Table 21: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat_EN01			7.600	s^{-1}	
Kp2g_EN01			0.043	$\text{mmol} \cdot l^{-1}$	
Kpep_EN01			0.500	$\text{mmol} \cdot 1^{-1}$	
kcat_ENO2			19.870	s^{-1}	
Kp2g_EN02			0.104	$mmol \cdot l^{-1}$	
$Kpep_ENO2$			0.500	$\text{mmol} \cdot l^{-1}$	
Keq			6.700	dimensionless	

7.5 Reaction FBA

This is a reversible reaction of one reactant forming two products influenced by five modifiers.

Name FBA

SBO:0000176 biochemical reaction

Reaction equation

$$F16bP \xrightarrow{FBA1, FBA1, F16bP, DHAP, GAP} DHAP + GAP$$
 (13)

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
F16bP	F16bP	

Modifiers

Table 23: Properties of each modifier.

Id	Name	SBO
FBA1	FBA1	
FBA1	FBA1	
F16bP	F16bP	
DHAP	DHAP	
GAP	GAP	

Products

Table 24: Properties of each product.

Id	Name	SBO
DHAP	DHAP	
GAP	GAP	

Kinetic Law

Derived unit contains undeclared units

$$v_{5} = vol\left(cell\right) \cdot \frac{\left[FBA1\right] \cdot kcat \cdot \left(\frac{\left[F16bP\right]}{Kf16bp} - \frac{\left[DHAP\right] \cdot \left[GAP\right]}{Kf16bp \cdot Keq}\right)}{1 + \frac{\left[F16bP\right]}{Kf16bp} + \frac{\left[DHAP\right]}{Kdhap} + \frac{\left[GAP\right]}{Kgap} + \frac{\left[F16bP\right] \cdot \left[GAP\right]}{Kf16bp \cdot Kigap} + \frac{\left[DHAP\right] \cdot \left[GAP\right]}{Kdhap \cdot Kgap}}$$
(14)

Table 25: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat			4.139	s^{-1}	
Kf16bp			0.451	$\operatorname{mmol} \cdot 1^{-1}$	
Keq			0.069	$\operatorname{mmol} \cdot 1^{-1}$	
Kdhap			2.000	$\text{mmol} \cdot 1^{-1}$	
Kgap			2.400	$\text{mmol} \cdot 1^{-1}$	
Kigap			10.000	$mmol \cdot l^{-1}$	\square

7.6 Reaction GPD

This is a reversible reaction of two reactants forming two products influenced by twelve modifiers.

Name GPD

SBO:0000176 biochemical reaction

Reaction equation

$$DHAP + NADH \xrightarrow{ADP, ATP, F16bP, GPD1, GPD2, DHAP, NADH, G3P, NAD, F16bP, ATP, ADP} G3P + NAD \tag{15}$$

Reactants

Table 26: Properties of each reactant.

Id	Name	SBO
DHAP	DHAP	
NADH	NADH	

Modifiers

Table 27: Properties of each modifier.

Id	Name	SBO
ADP	ADP	
ATP	ATP	
F16bP	F16bP	
GPD1	GPD1	
GPD2	GPD2	
DHAP	DHAP	
NADH	NADH	
G3P	G3P	
NAD	NAD	
F16bP	F16bP	
ATP	ATP	
ADP	ADP	

Products

Table 28: Properties of each product.

Id	Name	SBO
G3P	G3P	
NAD	NAD	

Kinetic Law

Derived unit contains undeclared units

$$v_{6} = vol\left(cell\right) \cdot \frac{\frac{Vmax}{Kdhap \cdot Knadh} \cdot \left(\left[DHAP\right] \cdot \left[NADH\right] - \frac{\left[G3P\right] \cdot \left[NAD\right]}{Keq}\right)}{\left(1 + \frac{\left[F16bP\right]}{Kfbp} + \frac{\left[ATP\right]}{Katp} + \frac{\left[ADP\right]}{Kadp}\right) \cdot \left(1 + \frac{\left[DHAP\right]}{Kdhap} + \frac{\left[G3P\right]}{Kg3p}\right) \cdot \left(1 + \frac{\left[NADH\right]}{Knadh} + \frac{\left[NAD\right]}{Knad}\right)}$$

$$\tag{16}$$

Table 29: Properties of each parameter.

		*			
Id	Name	SBO	Value	Unit	Constant
Vmax			0.783	$mmol \cdot l^{-1} \cdot s^{-1}$	\square
Knadh			0.023	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Kdhap			0.540	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Keq			10000.000	dimensionless	\square
Kfbp			4.800	$\operatorname{mmol} \cdot 1^{-1}$	\square
Katp			0.730	$\operatorname{mmol} \cdot 1^{-1}$	\square
Kadp			2.000	$\operatorname{mmol} \cdot 1^{-1}$	\square
Knad			0.930	$\text{mmol} \cdot 1^{-1}$	
Kg3p			1.200	$\text{mmol} \cdot 1^{-1}$	

7.7 Reaction GPM

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name GPM

SBO:0000176 biochemical reaction

Reaction equation

$$P3G \xrightarrow{GPM1, GPM1, P3G, P2G} P2G$$
 (17)

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
P3G	P3G	

Modifiers

Table 31: Properties of each modifier.

Id	Name	SBO
GPM1	GPM1	
GPM1	GPM1	
P3G	P3G	
P2G	P2G	

Product

Table 32: Properties of each product.

Id	Name	SBO
P2G	P2G	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol}(\text{cell}) \cdot \frac{[\text{GPM1}] \cdot \text{kcat} \cdot \left(\frac{[\text{P3G}]}{\text{Kp3g}} - \frac{[\text{P2G}]}{\text{Kp3g} \cdot \text{Keq}}\right)}{1 + \frac{[\text{P3G}]}{\text{Kp3g}} + \frac{[\text{P2G}]}{\text{Kp2g}}}$$

$$(18)$$

Table 33: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat			400.00	s^{-1}	\checkmark
Kp3g			1.20	$\text{mmol} \cdot 1^{-1}$	
Keq			0.19	dimensionless	
Kp2g			1.41	$mmol \cdot l^{-1}$	\square

7.8 Reaction GPP

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name GPP

SBO:0000176 biochemical reaction

Reaction equation

$$G3P \xrightarrow{HOR2, RHR2, G3P} GLY$$
 (19)

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
G3P	G3P	

Modifiers

Table 35: Properties of each modifier.

Id	Name	SBO
HOR2	HOR2	
RHR2	RHR2	
G3P	G3P	

Product

Table 36: Properties of each product.

Id	Name	SBO
GLY	GLY	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol}\left(\text{cell}\right) \cdot \frac{\frac{\text{Vmax} \cdot [\text{G3P}]}{\text{Kg3p}}}{1 + \frac{[\text{G3P}]}{\text{Kg3p}}}$$
(20)

Table 37: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax			0.883	$\operatorname{mmol} \cdot \mathbf{l}^{-1} \cdot \mathbf{s}^{-1}$	\overline{Z}
Kg3p			3.500	$\text{mmol} \cdot l^{-1}$	\square

7.9 Reaction HXK

This is a reversible reaction of two reactants forming two products influenced by twelve modifiers.

Name HXK

SBO:0000176 biochemical reaction

Reaction equation

$$GLC + ATP \xrightarrow{HXK1, T6P, HXK2, GLK1, HXK1, GLC, ATP, G6P, ADP, T6P, HXK2, GLK1} G6P + ADP \tag{21}$$

Reactants

Table 38: Properties of each reactant.

Id	Name	SBO
GLC	GLC	
ATP	ATP	

Modifiers

Table 39: Properties of each modifier.

Id	Name	SBO
HXK1	HXK1	
T6P	T6P	
HXK2	HXK2	
GLK1	GLK1	
HXK1	HXK1	
GLC	GLC	
ATP	ATP	
G6P	G6P	
ADP	ADP	
T6P	T6P	
HXK2	HXK2	
GLK1	GLK1	

Products

Table 40: Properties of each product.

Id	Name	SBO
G6P	G6P	
ADP	ADP	

Kinetic Law

Derived unit contains undeclared units

$$\begin{split} \nu_{9} &= vol\left(cell\right) \cdot \frac{\left[HXK1\right] \cdot kcat_HXK1 \cdot \left(\frac{\left[GLC\right] \cdot \left[ATP\right]}{Kglc_HXK1 \cdot Katp_HXK1} - \frac{\left[G6P\right] \cdot \left[ADP\right]}{Kglc_HXK1 \cdot Katp_HXK1 \cdot Katp_HXK1}\right)}{\left(1 + \frac{\left[GLC\right]}{Kglc_HXK1} + \frac{\left[G6P\right]}{Kg6p_HXK1} + \frac{\left[T6P\right]}{Kit6p_HXK1}\right) \cdot \left(1 + \frac{\left[ATP\right]}{Katp_HXK1} + \frac{\left[ADP\right]}{Kadp_HXK1}\right)} \\ &+ vol\left(cell\right) \cdot \frac{\left[HXK2\right] \cdot kcat_HXK2 \cdot \left(\frac{\left[GLC\right] \cdot \left[ATP\right]}{Kglc_HXK2 \cdot Katp_HXK2} - \frac{\left[G6P\right] \cdot \left[ADP\right]}{Kglc_HXK2 \cdot Katp_HXK2 \cdot Katp_HXK2 \cdot Katp_HXK2 \cdot Katp_HXK2 \cdot Katp_HXK2 \cdot Katp_HXK2 \cdot Katp_HXK2}\right)}{\left(1 + \frac{\left[GLC\right]}{Kglc_HXK2} + \frac{\left[G6P\right]}{Kg6p_HXK2} + \frac{\left[T6P\right]}{Kit6p_HXK2}\right) \cdot \left(1 + \frac{\left[ATP\right]}{Katp_HXK2} + \frac{\left[ADP\right]}{Kadp_HXK2}\right)} \\ &+ vol\left(cell\right) \cdot \frac{\left[GLK1\right] \cdot kcat_GLK1 \cdot \left(\frac{\left[GLC\right] \cdot \left[ATP\right]}{Kglc_GLK1 \cdot Katp_GLK1} - \frac{\left[G6P\right] \cdot \left[ADP\right]}{Kglc_GLK1 \cdot Katp_GLK1 \cdot Katp_GLK1}\right)}{\left(1 + \frac{\left[GLC\right]}{Kglc_GLK1} + \frac{\left[G6P\right]}{Kg6p_GLK1}\right) \cdot \left(1 + \frac{\left[ATP\right]}{Katp_GLK1} + \frac{\left[ADP\right]}{Kadp_GLK1}\right)} \end{aligned} \tag{222}$$

Table 41: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat_HXK1			10.200	s^{-1}	\overline{Z}
$\tt Kglc_HXK1$			0.150	$\text{mmol} \cdot l^{-1}$	
$\mathtt{Katp_HXK1}$			0.293	$\text{mmol} \cdot 1^{-1}$	
${\tt Kg6p_HXK1}$			30.000	$\text{mmol} \cdot 1^{-1}$	
$\mathtt{Kadp_HXK1}$			0.230	$\text{mmol} \cdot 1^{-1}$	\square
${\tt Kit6p_HXK1}$			0.200	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
kcat_HXK2			63.100	s^{-1}	
$\tt Kglc_HXK2$			0.200	$\operatorname{mmol} \cdot 1^{-1}$	
$\mathtt{Katp_HXK2}$			0.195	$\text{mmol} \cdot 1^{-1}$	
$Kg6p_HXK2$			30.000	$\text{mmol} \cdot 1^{-1}$	
$\mathtt{Kadp_HXK2}$			0.230	$\text{mmol} \cdot 1^{-1}$	
${\tt Kit6p_HXK2}$			0.040	$\text{mmol} \cdot 1^{-1}$	
$\mathtt{kcat_GLK1}$			0.072	s^{-1}	
$\tt Kglc_GLK1$			0.011	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
$\mathtt{Katp}_{\mathtt{GLK1}}$			0.865	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
${\tt Kg6p_GLK1}$			30.000	$\text{mmol} \cdot 1^{-1}$	
${\tt Kadp_GLK1}$			0.230	$\text{mmol} \cdot 1^{-1}$	
Keq			2000.000	dimensionless	$ \overline{\mathscr{A}} $

7.10 Reaction PDC

This is an irreversible reaction of one reactant forming one product influenced by seven modifiers.

Name PDC

SBO:0000176 biochemical reaction

Reaction equation

$$PYR \xrightarrow{PDC1, PDC5, PDC6, PDC1, PYR, PDC5, PDC6} AcAld$$
 (23)

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
PYR	PYR	

Modifiers

Table 43: Properties of each modifier.

Name	SBO
PDC1	
PDC5	
PDC6	
PDC1	
PYR	
PDC5	
PDC6	
	PDC1 PDC5 PDC6 PDC1 PYR PDC5

Product

Table 44: Properties of each product.

Id	Name	SBO
AcAld	AcAld	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}\left(\text{cell}\right) \cdot \frac{\frac{[\text{PDC1}] \cdot \text{kcat_PDC1} \cdot [\text{PYR}]}{\text{Kpyr_PDC1}}}{1 + \frac{[\text{PYR}]}{\text{Kpyr_PDC1}}} + \text{vol}\left(\text{cell}\right)$$

$$\cdot \frac{\frac{[\text{PDC5}] \cdot \text{kcat_PDC5} \cdot [\text{PYR}]}{\text{Kpyr_PDC5}}}{1 + \frac{[\text{PYR}]}{\text{Kpyr_PDC5}}} + \text{vol}\left(\text{cell}\right) \cdot \frac{\frac{[\text{PDC6}] \cdot \text{kcat_PDC6} \cdot [\text{PYR}]}{\text{Kpyr_PDC6}}}{1 + \frac{[\text{PYR}]}{\text{Kpyr_PDC6}}}$$

$$(24)$$

Table 45: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat_PDC1			12.14	s^{-1}	
Kpyr_PDC1			8.50	$\operatorname{mmol} \cdot 1^{-1}$	
kcat_PDC5			10.32	s^{-1}	
Kpyr_PDC5			7.08	$\operatorname{mmol} \cdot 1^{-1}$	
kcat_PDC6			9.21	s^{-1}	
Kpyr_PDC6			2.92	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark

7.11 Reaction PFK

This is an irreversible reaction of two reactants forming two products influenced by eleven modifiers.

Name PFK

SBO:0000176 biochemical reaction

Reaction equation

$$ATP + F6P \xrightarrow{AMP, F26bP, PFK1, PFK2, PFK2, F6P, ATP, F16bP, ADP, AMP, F26bP} ADP + F16bP \xrightarrow{(25)}$$

Reactants

Table 46: Properties of each reactant.

Id	Name	SBO
ATP	ATP	
F6P	F6P	

Modifiers

Table 47: Properties of each modifier.

Id	Name	SBO
AMP	AMP	
F26bP	F26bP	
PFK1	PFK1	
PFK2	PFK2	
PFK2	PFK2	
F6P	F6P	
ATP	ATP	
F16bP	F16bP	
ADP	ADP	
AMP	AMP	
F26bP	F26bP	

Products

Table 48: Properties of each product.

Id	Name	SBO
ADP	ADP	
F16bP	F16bP	

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = vol\left(cell\right) \cdot \left[PFK2\right] \cdot kcat \tag{26}$$

$$gR \cdot \frac{\left[F6P\right]}{Kf6p} \cdot \frac{\left[ATP\right]}{Katp} \cdot \left(1 - \frac{\frac{\left[F16bP\right] \cdot \left[ADP\right]}{\left[F6P\right] \cdot \left[ATP\right]}}{Keq}\right) \cdot \left(1 + \frac{\left[F6P\right]}{Kf6p} + \frac{\left[ATP\right]}{Katp} + \frac{\frac{gR \cdot \left[F6P\right]}{Kf6p} \cdot \left[ATP\right]}{Katp} + \frac{\left[F16bP\right]}{Katp} + \frac{\left[ADP\right]}{Kadp} +$$

Table 49: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat			209.600	s^{-1}	
gR			5.120	dimensionless	
Kf6p			0.100	$\operatorname{mmol} \cdot 1^{-1}$	\checkmark

Id	Name	SBO	Value	Unit	Constant
Katp			0.710	$\operatorname{mmol} \cdot 1^{-1}$	\square
LO			0.660	dimensionless	\square
Ciatp			100.000	dimensionless	
Kiatp			0.650	$\text{mmol} \cdot 1^{-1}$	\square
Camp			0.085	dimensionless	\square
Kamp			0.100	$\text{mmol} \cdot 1^{-1}$	
Cf26			0.017	dimensionless	
Kf26			$6.82 \cdot 10^{-4}$	$\operatorname{mmol} \cdot 1^{-1}$	
Cf16			0.397	dimensionless	
Kf16			0.111	$\text{mmol} \cdot 1^{-1}$	$ \overline{\mathbf{Z}} $
Catp			3.000	dimensionless	
Kadp			1.000	$\text{mmol} \cdot 1^{-1}$	
Keq			800.000	dimensionless	

7.12 Reaction PGI

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name PGI

SBO:0000176 biochemical reaction

Reaction equation

$$G6P \xrightarrow{PGI1, PGI1, G6P, F6P} F6P$$
 (27)

Reactant

Table 50: Properties of each reactant.

Id	Name	SBO
G6P	G6P	

Modifiers

Table 51: Properties of each modifier.

Id	Name	SBO
PGI1	PGI1	
PGI1	PGI1	
G6P	G6P	

Id	Name	SBO
F6P	F6P	

Product

Table 52: Properties of each product.

Id	Name	SBO
F6P	F6P	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol}\left(\text{cell}\right) \cdot \frac{\left[\text{PGI1}\right] \cdot \text{kcat} \cdot \left(\frac{\left[\text{G6P}\right]}{\text{Kg6p}} - \frac{\left[\text{F6P}\right]}{\text{Kg6p} \cdot \text{Keq}}\right)}{1 + \frac{\left[\text{G6P}\right]}{\text{Kg6p}} + \frac{\left[\text{F6P}\right]}{\text{Kf6p}}}$$
(28)

Table 53: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat			487.360	s^{-1}	\overline{Z}
Kg6p			1.026	$\text{mmol} \cdot 1^{-1}$	
Keq			0.290	dimensionless	
Kf6p			0.307	$\operatorname{mmol} \cdot 1^{-1}$	

7.13 Reaction PGK

This is a reversible reaction of two reactants forming two products influenced by six modifiers.

Name PGK

SBO:0000176 biochemical reaction

Reaction equation

$$ADP + BPG \xrightarrow{PGK1, PGK1, ADP, BPG, P3G, ATP} ATP + P3G$$
 (29)

Reactants

Table 54: Properties of each reactant.

Id	Name	SBO
ADP	ADP	
BPG	BPG	

Modifiers

Table 55: Properties of each modifier.

Id	Name	SBO
PGK1	PGK1	
PGK1	PGK1	
ADP	ADP	
BPG	BPG	
P3G	P3G	
ATP	ATP	

Products

Table 56: Properties of each product.

Id	Name	SBO
	ATP	
P3G	P3G	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}\left(\text{cell}\right) \cdot \frac{\left[\text{PGK1}\right] \cdot \text{kcat} \cdot \left(\frac{\left[\text{ADP}\right]}{\text{Kadp}}\right)^{\text{nHadp}-1} \cdot \left(\frac{\left[\text{BPG}\right] \cdot \left[\text{ADP}\right]}{\text{Kbpg} \cdot \text{Kadp}} - \frac{\left[\text{P3G}\right] \cdot \left[\text{ATP}\right]}{\text{Kbpg} \cdot \text{Kadp} \cdot \text{Keq}}\right)}{\left(1 + \frac{\left[\text{BPG}\right]}{\text{Kbpg}} + \frac{\left[\text{P3G}\right]}{\text{Kp3g}}\right) \cdot \left(1 + \left(\frac{\left[\text{ADP}\right]}{\text{Kadp}}\right)^{\text{nHadp}} + \frac{\left[\text{ATP}\right]}{\text{Katp}}\right)}$$
(30)

Table 57: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat			58.600	s^{-1}	
Keq			3200.000	dimensionless	
Kp3g			4.580	$\text{mmol} \cdot l^{-1}$	\checkmark

Id	Name	SBO	Value	Unit	Constant
Katp			1.990	$\operatorname{mmol} \cdot 1^{-1}$	\overline{Z}
Kbpg			0.003	$\operatorname{mmol} \cdot 1^{-1}$	
Kadp			0.200	$\text{mmol} \cdot 1^{-1}$	
nHadp			2.000	dimensionless	\square

7.14 Reaction PGM

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name PGM

SBO:0000176 biochemical reaction

Reaction equation

$$G6P \xrightarrow{PGM1, PGM2, G6P, G1P} G1P$$
 (31)

Reactant

Table 58: Properties of each reactant.

Id	Name	SBO
G6P	G6P	

Modifiers

Table 59: Properties of each modifier.

Id	Name	SBO
PGM1	PGM1	
PGM2	PGM2	
G6P	G6P	
G1P	G1P	

Product

Table 60: Properties of each product.

Id	Name	SBO
G1P	G1P	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}\left(\text{cell}\right) \cdot \frac{\text{Vmax} \cdot \left(\frac{[\text{G6P}]}{\text{Kg6p}} - \frac{[\text{G1P}]}{\text{Kg6p} \cdot \text{Keq}}\right)}{1 + \frac{[\text{G6P}]}{\text{Kg6p}} + \frac{[\text{G1P}]}{\text{Kg1p}}}$$
(32)

Table 61: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax			0.128	$mmol \cdot l^{-1} \cdot s^{-1}$	
Kg6p			0.050	$\operatorname{mmol} \cdot 1^{-1}$	\square
Kg1p			0.023	$\operatorname{mmol} \cdot 1^{-1}$	\square
Keq			0.167	dimensionless	

7.15 Reaction PYK

This is a reversible reaction of two reactants forming two products influenced by eight modifiers.

Name PYK

SBO:0000176 biochemical reaction

Reaction equation

$$ADP + PEP \stackrel{CDC19, F16bP, CDC19, PEP, ADP, PYR, ATP, F16bP}{=} ATP + PYR$$
 (33)

Reactants

Table 62: Properties of each reactant.

Id	Name	SBO
ADP	ADP	
PEP	PEP	

Modifiers

Table 63: Properties of each modifier.

Id	Name	SBO
CDC19	CDC19	

Name	SBO
F16bP	
CDC19	
PEP	
ADP	
PYR	
ATP	
F16bP	
	F16bP CDC19 PEP ADP PYR ATP

Products

Table 64: Properties of each product.

Id	Name	SBO
ATP	ATP	
PYR	PYR	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol}\left(\text{cell}\right) \cdot \frac{\frac{\left[\text{CDC19}\right] \cdot \text{kcat} \cdot \left(\left[\text{PEP}\right] \cdot \left[\text{ADP}\right] - \frac{\left[\text{PYR}\right] \cdot \left[\text{ATP}\right]}{\text{Keq}}\right)}{\text{Kpep-Kadp}}}{\left(1 + \frac{\left[\text{PEP}\right]}{\text{Kpep}} + \frac{\left[\text{PYR}\right]}{\text{Kpyr}} + \text{L0} \cdot \frac{\frac{\left[\text{ATP}\right]}{\text{Kiatp}} + 1}{\frac{\left[\text{F16bP}\right]}{\text{Kf16p}} + 1}\right) \cdot \left(1 + \frac{\left[\text{ADP}\right]}{\text{Kadp}} + \frac{\left[\text{ATP}\right]}{\text{Katp}}\right)}}$$
(34)

Table 65: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat			20.146	s^{-1}	$\overline{\hspace{1cm}}$
Kpep			0.281	$\text{mmol} \cdot l^{-1}$	
Kadp			0.243	$\text{mmol} \cdot l^{-1}$	
Kpyr			21.000	$\text{mmol} \cdot l^{-1}$	
Katp			1.500	$\text{mmol} \cdot l^{-1}$	
Kiatp			9.300	$\operatorname{mmol} \cdot 1^{-1}$	
Kf16p			0.200	$\operatorname{mmol} \cdot 1^{-1}$	
LO			100.000	dimensionless	
Keq		(6500.000	dimensionless	\checkmark

7.16 Reaction TDH

This is a reversible reaction of two reactants forming two products influenced by eight modifiers.

Name TDH

SBO:0000176 biochemical reaction

Reaction equation

$$GAP + NAD \xrightarrow{TDH1, TDH3, TDH1, GAP, NAD, BPG, NADH, TDH3} BPG + NADH \quad (35)$$

Reactants

Table 66: Properties of each reactant.

Id	Name	SBO
GAP	GAP	
NAD	NAD	

Modifiers

Table 67: Properties of each modifier.

Id	Name	SBO
TDH1	TDH1	
TDH3	TDH3	
TDH1	TDH1	
GAP	GAP	
NAD	NAD	
BPG	BPG	
NADH	NADH	
TDH3	TDH3	

Products

Table 68: Properties of each product.

Id	Name	SBO
BPG	BPG	
NADH	NADH	

Kinetic Law

Derived unit contains undeclared units

$$\begin{split} v_{16} &= vol\left(cell\right) \cdot \frac{\left[\text{TDH1}\right] \cdot kcat_\text{TDH1} \cdot \left(\frac{\left[\text{GAP}\right] \cdot \left[\text{NAD}\right]}{\text{Kgap_TDH1} \cdot Knad_TDH1}} - \frac{\left[\text{BPG}\right] \cdot \left[\text{NADH}\right]}{\text{Kgap_TDH1} \cdot Knad_TDH1}}\right)}{\left(1 + \frac{\left[\text{GAP}\right]}{\text{Kgap_TDH1}} + \frac{\left[\text{BPG}\right]}{\text{Kbpg_TDH1}}\right) \cdot \left(1 + \frac{\left[\text{NAD}\right]}{\text{Knad}_\text{TDH1}} + \frac{\left[\text{NADH}\right]}{\text{Knadh_TDH1}}\right)} \\ &+ vol\left(cell\right) \cdot \frac{\left[\text{TDH3}\right] \cdot kcat_\text{TDH3} \cdot \left(\frac{\left[\text{GAP}\right] \cdot \left[\text{NAD}\right]}{\text{Kgap_TDH3} \cdot Knad_TDH3} - \frac{\left[\text{BPG}\right] \cdot \left[\text{NADH}\right]}{\text{Kgap_TDH3} \cdot Knad_TDH3}}\right)}{\left(1 + \frac{\left[\text{GAP}\right]}{\text{Kgap_TDH3}} + \frac{\left[\text{BPG}\right]}{\text{Kbpg_TDH3}}\right) \cdot \left(1 + \frac{\left[\text{NAD}\right]}{\text{Knad_TDH3}} + \frac{\left[\text{NADH}\right]}{\text{Knadh_TDH3}}\right)} \end{split} \tag{36}$$

Table 69: Properties of each parameter.

			1		
Id	Name	SBO	Value	Unit	Constant
kcat_TDH1			19.120	s^{-1}	$ \overline{\checkmark} $
${\tt Kgap_TDH1}$			0.495	$\operatorname{mmol} \cdot 1^{-1}$	
${\tt Knad_TDH1}$			0.090	$\operatorname{mmol} \cdot 1^{-1}$	
Kbpg_TDH1			0.010	$\text{mmol} \cdot 1^{-1}$	
${\tt Knadh_TDH1}$			0.060	$\text{mmol} \cdot 1^{-1}$	
kcat_TDH3			18.162	s^{-1}	
${\tt Kgap_TDH3}$			0.423	$\operatorname{mmol} \cdot 1^{-1}$	
$Knad_TDH3$			0.090	$\operatorname{mmol} \cdot 1^{-1}$	
Kbpg_TDH3			0.909	$\text{mmol} \cdot 1^{-1}$	
$Knadh_TDH3$			0.060	$\operatorname{mmol} \cdot 1^{-1}$	
Keq			0.005	dimensionless	$ \overline{\mathscr{A}} $

7.17 Reaction TPI

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name TPI

SBO:0000176 biochemical reaction

Reaction equation

$$DHAP \xrightarrow{TPII, TPII, DHAP, GAP} GAP$$
 (37)

Reactant

Table 70: Properties of each reactant.

Id	Name	SBO
DHAP	DHAP	

Modifiers

Table 71: Properties of each modifier.

Id	Name	SBO
TPI1	TPI1	
TPI1	TPI1	
DHAP	DHAP	
GAP	GAP	

Product

Table 72: Properties of each product.

Id	Name	SBO
GAP	GAP	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol} (\text{cell}) \cdot \frac{\frac{[\text{TPI1}] \cdot \text{kcat}}{\text{Kdhap}} \cdot \left([\text{DHAP}] - \frac{[\text{GAP}]}{\text{Keq}} \right)}{1 + \frac{[\text{DHAP}]}{\text{Kdhap}} + \frac{[\text{GAP}]}{\text{Kgap}} \cdot \left(1 + \left(\frac{[\text{GAP}]}{\text{Kigap}} \right)^4 \right)}$$
(38)

Table 73: Properties of each parameter.

		•			
Id	Name	SBO	Value	Unit	Constant
kcat			564.380	s^{-1}	$\overline{\hspace{1cm}}$
Kdhap			6.454	$\text{mmol} \cdot l^{-1}$	
Kgap			5.250	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Kigap			35.100	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	
Keq			0.045	dimensionless	\square

7.18 Reaction TPP

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name TPP

SBO:0000176 biochemical reaction

Reaction equation

$$T6P \xrightarrow{TPS1, TPS2, T6P} TRH$$
 (39)

Reactant

Table 74: Properties of each reactant.

Id	Name	SBO
T6P	T6P	

Modifiers

Table 75: Properties of each modifier.

Id	Name	SBO
TPS1	TPS1	
TPS2	TPS2	
T6P	T6P	

Product

Table 76: Properties of each product.

Id	Name	SBO
TRH	TRH	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{vol}\left(\text{cell}\right) \cdot \frac{\frac{\text{Vmax} \cdot [\text{T6P}]}{\text{Kt6p}}}{1 + \frac{[\text{T6P}]}{\text{Kt6p}}}$$
(40)

Table 77: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax Kt6p				$\begin{array}{c} mmol \cdot \mathbf{l}^{-1} \cdot \mathbf{s}^{-1} \\ mmol \cdot \mathbf{l}^{-1} \end{array}$	✓

7.19 Reaction TPS

This is an irreversible reaction of two reactants forming two products influenced by four modifiers.

Name TPS

SBO:0000176 biochemical reaction

Reaction equation

$$G6P + UDG \xrightarrow{TPS1, TPS2, G6P, UDG} T6P + UDP$$
 (41)

Reactants

Table 78: Properties of each reactant.

Id	Name	SBO
G6P	G6P	
UDG	UDG	

Modifiers

Table 79: Properties of each modifier.

Id	Name	SBO
TPS1	TPS1	
TPS2	TPS2	
G6P	G6P	
UDG	UDG	

Products

Table 80: Properties of each product.

Id	Name	SBO
T6P	T6P	
UDP	UDP	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{vol}\left(\text{cell}\right) \cdot \frac{\frac{\text{Vmax} \cdot [\text{G6P}] \cdot [\text{UDG}]}{\text{Kg6p} \cdot \text{Kudg}}}{\left(1 + \frac{[\text{G6P}]}{\text{Kg6p}}\right) \cdot \left(1 + \frac{[\text{UDG}]}{\text{Kudg}}\right)}$$
(42)

Table 81: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax			0.494	$mmol \cdot l^{-1} \cdot s^{-1}$	\square
Kg6p			3.800	$\operatorname{mmol} \cdot 1^{-1}$	\square
Kudg			0.886	$mmol \cdot l^{-1}$	

7.20 Reaction UGP

This is an irreversible reaction of two reactants forming one product influenced by four modifiers.

Name UGP

SBO:0000176 biochemical reaction

Reaction equation

$$G1P + UTP \xrightarrow{UGP1, UTP, G1P, UDG} UDG$$
 (43)

Reactants

Table 82: Properties of each reactant.

Id	Name	SBO
G1P	G1P	
UTP	UTP	

Modifiers

Table 83: Properties of each modifier.

Id	Name	SBO
UGP1	UGP1	
UTP	UTP	
G1P	G1P	
UDG	UDG	

Product

Table 84: Properties of each product.

Id	Name	SBO
UDG	UDG	

Kinetic Law

Derived unit $0.00100000000000013 \text{ mol} \cdot \text{s}^{-1}$

$$\nu_{20} = \text{vol}\left(\text{cell}\right) \cdot \frac{\frac{\text{Vmax} \cdot [\text{UTP}] \cdot [\text{G1P}]}{\text{Kutp} \cdot \text{Kg1p}}}{\frac{\text{Kiutp} \cdot \text{Kg1p}}{\text{Kutp}} + \frac{[\text{G1P}]}{\text{Kg1p}} + \frac{[\text{UTP}] \cdot [\text{G1P}]}{\text{Kutp} \cdot \text{Kg1p}} + \frac{\frac{\text{Kiutp} \cdot [\text{UDG}]}{\text{Kiudg}}}{\frac{\text{Kiutp} \cdot [\text{UDG}]}{\text{Kiudg}}} + \frac{[\text{G1P}] \cdot [\text{UDG}]}{\text{Kg1p} \cdot \text{Kiudg}}}$$

$$(44)$$

Table 85: Properties of each parameter.

			I		
Id	Name	SBO	Value	Unit	Constant
Vmax			13.255	$mmol \cdot l^{-1} \cdot s^{-1}$	
Kutp			0.110	$\operatorname{mmol} \cdot 1^{-1}$	\square
Kiutp			0.110	$\operatorname{mmol} \cdot 1^{-1}$	\square
Kg1p			0.320	$\operatorname{mmol} \cdot 1^{-1}$	\square
Kiudg			0.004	$mmol \cdot l^{-1}$	\square

7.21 Reaction acetate_branch

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Name acetate_branch

SBO:0000176 biochemical reaction

Reaction equation

$$AcAld + NAD \xrightarrow{AcAld, NAD} ACE + NADH$$
 (45)

Reactants

Table 86: Properties of each reactant.

Id	Name	SBO
AcAld	AcAld	
NAD	NAD	

Modifiers

Table 87: Properties of each modifier.

Id	Name	SBO
AcAld	AcAld	
NAD	NAD	

Products

Table 88: Properties of each product.

Id	Name	SBO
ACE	ACE	
NADH	NADH	

Kinetic Law

Derived unit $s^{-1} \cdot mmol$

$$v_{21} = \text{vol}(\text{cell}) \cdot \mathbf{k} \cdot [\text{AcAld}] \cdot [\text{NAD}]$$
 (46)

Table 89: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k			0.006	$\text{mmol}^{-1} \cdot \mathbf{l} \cdot \mathbf{s}^{-1}$	

7.22 Reaction udp_to_utp

This is an irreversible reaction of two reactants forming two products influenced by two modifiers.

Name udp_to_utp

SBO:0000176 biochemical reaction

Reaction equation

$$UDP + ATP \xrightarrow{UDP, ATP} UTP + ADP$$
 (47)

Reactants

Table 90: Properties of each reactant.

Id	Name	SBO
UDP	UDP	
ATP	ATP	

Modifiers

Table 91: Properties of each modifier.

Id	Name	SBO
UDP	UDP	
ATP	ATP	

Products

Table 92: Properties of each product.

Id	Name	SBO
UTP	UTP	
ADP	ADP	

Kinetic Law

Derived unit $s^{-1} \cdot mmol$

$$v_{22} = \text{vol}(\text{cell}) \cdot \mathbf{k} \cdot [\text{UDP}] \cdot [\text{ATP}]$$
(48)

Table 93: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k			0.075	$mmol^{-1} \cdot l \cdot s^{-1}$	

7.23 Reaction HXT

This is a reversible reaction of one reactant forming one product influenced by two modifiers.

Name HXT

SBO:0000185 transport reaction

Reaction equation

$$GLCx \xrightarrow{GLCx, GLC} GLC$$
 (49)

Reactant

Table 94: Properties of each reactant.

Id	Name	SBO
GLCx	GLCx	

Modifiers

Table 95: Properties of each modifier.

Id	Name	SBO
GLCx GLC	GLCx GLC	
GLC	OLC	

Product

Table 96: Properties of each product.

Id	Name	SBO
GLC	GLC	

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = \text{vol}(\text{cell}) \cdot \frac{\frac{\text{Vmax} \cdot ([\text{GLCx}] - [\text{GLC}])}{\text{Kglc}}}{1 + \frac{[\text{GLCx}]}{\text{Kglc}} + \frac{[\text{GLC}]}{\text{Kglc}} + \frac{\frac{\text{Ki} \cdot [\text{GLCx}]}{\text{Kglc}} \cdot [\text{GLC}]}{\text{Kglc}}}$$
(50)

Table 97: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Vmax Kglc				$\begin{array}{c} mmol \cdot l^{-1} \cdot s^{-1} \\ mmol \cdot l^{-1} \end{array}$	
Ki			0.91	dimensionless	

7.24 Reaction GND

This is an irreversible reaction of two reactants forming two products influenced by eight modifiers.

Name GND

SBO:0000176 biochemical reaction

Reaction equation

$$P6G + NADP \xrightarrow{GND1, \ GND2, \ GND1, \ P6G, \ NADP, \ Ru5P, \ NADPH, \ GND2} Ru5P + NADPH \tag{51}$$

Reactants

Table 98: Properties of each reactant.

Id	Name	SBO
P6G	P6G	
NADP	NADP	

Modifiers

Table 99: Properties of each modifier.

Id	Name	SBO
GND1	GND1	
GND2	GND2	
GND1	GND1	
P6G	P6G	
NADP	NADP	
Ru5P	Ru5P	
NADPH	NADPH	
GND2	GND2	

Products

Table 100: Properties of each product.

Id	Name	SBO
Ru5P	Ru5P	
NADPH	NADPH	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol}\left(\text{cell}\right) \cdot \left(\frac{\frac{[\text{GND1}] \cdot \text{kcat_GND1} \cdot [\text{P6G}] \cdot [\text{NADP}]}{\text{Kp6g_GND1} \cdot \text{Knadp_GND1}}}{\left(1 + \frac{[\text{P6G}]}{\text{Kp6g_GND1}} + \frac{[\text{Ru5P}]}{\text{Kru5p_GND1}}\right) \cdot \left(1 + \frac{[\text{NADP}]}{\text{Knadp_GND1}} + \frac{[\text{NADPH}]}{\text{KnadpLGND1}}\right)} + \frac{[\text{GND2}] \cdot \text{kcat_GND2} \cdot [\text{P6G}] \cdot [\text{NADP}]}{\left(1 + \frac{[\text{P6G}]}{\text{Kp6g_GND2}} + \frac{[\text{Ru5P}]}{\text{Kru5p_GND2}}\right) \cdot \left(1 + \frac{[\text{NADP}]}{\text{Knadp_GND2}} + \frac{[\text{NADPH}]}{\text{Knadph_GND2}}\right)}\right)$$
(52)

Table 101: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat_GND1			28.000	s^{-1}	
${\tt Kp6g_GND1}$			0.062	$\text{mmol} \cdot 1^{-1}$	
${\tt Knadp_GND1}$			0.094	$\operatorname{mmol} \cdot 1^{-1}$	
Kru5p_GND1			0.100	$\operatorname{mmol} \cdot 1^{-1}$	
${\tt Knadph_GND1}$			0.055	$\operatorname{mmol} \cdot 1^{-1}$	
$\mathtt{kcat_GND2}$			27.300	s^{-1}	

Id	Name	SBO	Value	Unit	Constant
Kp6g_GND2			0.115	$mmol \cdot l^{-1}$	
${\tt Knadp_GND2}$			0.094	$\operatorname{mmol} \cdot 1^{-1}$	
Kru5p_GND2			0.100	$\text{mmol} \cdot 1^{-1}$	
${\tt Knadph_GND2}$			0.055	$mmol \cdot l^{-1}$	$ \overline{\mathbf{Z}} $

7.25 Reaction RKI

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name RKI

SBO:0000176 biochemical reaction

Reaction equation

$$Ru5P \xrightarrow{RKI1, RKI1, Ru5P, R5P} R5P$$
 (53)

Reactant

Table 102: Properties of each reactant.

Id	Name	SBO
Ru5P	Ru5P	

Modifiers

Table 103: Properties of each modifier.

Id	Name	SBO
RKI1	RKI1	
RKI1	RKI1	
Ru5P	Ru5P	
R5P	R5P	

Product

Table 104: Properties of each product.

Id	Name	SBO
R5P	R5P	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \frac{\frac{\text{vol(cell)} \cdot [\text{RKII}] \cdot \text{kcat} \cdot \left([\text{Ru5P}] - \frac{[\text{RSP}]}{\text{Keq}} \right)}{\text{Kru5p}}}{1 + \frac{[\text{Ru5P}]}{\text{Kru5p}} + \frac{[\text{R5P}]}{\text{Kr5p}}}$$
(54)

Table 105: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat			335.00	s^{-1}	\overline{Z}
Kru5p			2.47	$\text{mmol} \cdot 1^{-1}$	
Kr5p			5.70	$\text{mmol} \cdot 1^{-1}$	
Kiru5p			9.88	$\text{mmol} \cdot 1^{-1}$	
Keq			4.00	dimensionless	

7.26 Reaction RPE

This is a reversible reaction of one reactant forming one product influenced by four modifiers.

Name RPE

SBO:0000176 biochemical reaction

Reaction equation

$$Ru5P \xrightarrow{RPE1, RPE1, Ru5P, X5P} X5P \tag{55}$$

Reactant

Table 106: Properties of each reactant.

Id	Name	SBO
Ru5P	Ru5P	

Modifiers

Table 107: Properties of each modifier.

Id	Name	SBO
RPE1	RPE1	
RPE1	RPE1	
Ru5P	Ru5P	
X5P	X5P	

Product

Table 108: Properties of each product.

Id	Name	SBO
X5P	X5P	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \frac{\frac{\text{vol(cell)} \cdot [\text{RPE1}] \cdot \text{kcat} \cdot \left([\text{Ru5P}] - \frac{[\text{X5P}]}{\text{Keq}} \right)}{\text{Kru5p}}}{1 + \frac{[\text{Ru5P}]}{\text{Kru5p}} + \frac{[\text{X5P}]}{\text{Kx5p}}}$$
(56)

Table 109: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat			4020.00	s^{-1}	$ \overline{\square} $
Kru5p			5.97	$\text{mmol} \cdot 1^{-1}$	
Kx5p			7.70	$\text{mmol} \cdot 1^{-1}$	
Keq			1.40	dimensionless	\square

7.27 Reaction SOL

This is an irreversible reaction of one reactant forming one product influenced by four modifiers.

Name SOL

SBO:0000176 biochemical reaction

Reaction equation

$$G6L \xrightarrow{SOL3, SOL3, G6L, P6G} P6G$$
 (57)

Reactant

Table 110: Properties of each reactant.

Id	Name	SBO
G6L	G6L	

Modifiers

Table 111: Properties of each modifier.

Id	Name	SBO
SOL3	SOL3	
SOL3	SOL3	
G6L	G6L	
P6G	P6G	

Product

Table 112: Properties of each product.

Id	Name	SBO
P6G	P6G	

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \frac{\frac{\text{vol(cell)} \cdot [\text{SOL3}] \cdot \text{kcat} \cdot [\text{G6L}]}{\text{Kg6l}}}{1 + \frac{[\text{G6L}]}{\text{Kg6l}} + \frac{[\text{P6G}]}{\text{Kp6g}}}$$

$$(58)$$

Table 113: Properties of each parameter.

		1			
Id	Name	SBO	Value	Unit	Constant
kcat			4.3	s^{-1}	
Kg6l			0.8	$mmol \cdot l^{-1}$	
Kp6g			0.5	$\text{mmol} \cdot 1^{-1}$	

7.28 Reaction TAL

This is a reversible reaction of two reactants forming two products influenced by eight modifiers.

Name TAL

SBO:0000176 biochemical reaction

Reaction equation

$$GAP + S7P \xrightarrow{TAL1, NQM1, TAL1, GAP, S7P, F6P, E4P, NQM1} F6P + E4P \qquad (59)$$

Reactants

Table 114: Properties of each reactant.

Id	Name	SBO
GAP	GAP	
S7P	S7P	

Modifiers

Table 115: Properties of each modifier.

Id	Name	SBO
TAL1	TAL1	
NQM1	NQM1	
TAL1	TAL1	
GAP	GAP	
S7P	S7P	
F6P	F6P	
E4P	E4P	
NQM1	NQM1	

Products

Table 116: Properties of each product.

Id	Name	SBO
F6P	F6P	
E4P	E4P	

Kinetic Law

Derived unit contains undeclared units

$$\begin{split} v_{28} &= \text{vol}\left(\text{cell}\right) \cdot \left(\frac{\frac{\left[\text{TAL1}\right] \cdot \text{kcat}.\text{TAL1} \cdot \left(\left[\text{GAP}\right] \cdot \left[\text{S7P}\right] - \frac{\left[\text{F6P}\right] \cdot \left[\text{E4P}\right]}{\text{Keq}}\right)}{\text{Kgap}.\text{TAL1} \cdot \text{Ks7p}.\text{TAL1}}} \right. \\ &+ \frac{\frac{\left[\text{GAP}\right]}{\text{Kgap}.\text{TAL1}} + \frac{\left[\text{F6P}\right]}{\text{Kf6p}.\text{TAL1}}\right) \cdot \left(1 + \frac{\left[\text{S7P}\right]}{\text{Ks7p}.\text{TAL1}} + \frac{\left[\text{E4P}\right]}{\text{Ke4p}.\text{TAL1}}\right)}{\frac{\left[\text{NQM1}\right] \cdot \text{kcat}.\text{NQM1} \cdot \left(\left[\text{GAP}\right] \cdot \left[\text{S7P}\right] - \frac{\left[\text{F6P}\right] \cdot \left[\text{E4P}\right]}{\text{Keq}}\right)}{\text{Kgap}.\text{NQM1} \cdot \text{Ks7p}.\text{NQM1}}} \\ &+ \frac{\left[\text{GAP}\right]}{\left(1 + \frac{\left[\text{GAP}\right]}{\text{Kgap}.\text{NQM1}} + \frac{\left[\text{F6P}\right]}{\text{Kf6p}.\text{NQM1}}\right) \cdot \left(1 + \frac{\left[\text{S7P}\right]}{\text{Ks7p}.\text{NQM1}} + \frac{\left[\text{E4P}\right]}{\text{Ke4p}.\text{NQM1}}\right)}\right)} \end{split}$$

Table 117: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat_TAL1			0.694	s^{-1}	lacksquare
${\tt Kgap_TAL1}$			0.272	$\text{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
$Ks7p_TAL1$			0.786	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
Kf6p_TAL1			1.440	$\operatorname{mmol} \cdot 1^{-1}$	$\overline{\mathbf{Z}}$
${\tt Ke4p_TAL1}$			0.362	$\operatorname{mmol} \cdot 1^{-1}$	
$kcat_NQM1$			0.694	s^{-1}	<u></u>
${\tt Kgap_NQM1}$			0.272	$\text{mmol} \cdot 1^{-1}$	<u></u>
Ks7p_NQM1			0.786	$\text{mmol} \cdot 1^{-1}$	<u></u>
Kf6p_NQM1			1.040	$\operatorname{mmol} \cdot 1^{-1}$	<u></u>
${\tt Ke4p_NQM1}$			0.305	$\operatorname{mmol} \cdot l^{-1}$	Z
Keq			1.050	dimensionless	$\overline{\mathscr{A}}$

7.29 Reaction TKL_E4P

This is a reversible reaction of two reactants forming two products influenced by ten modifiers.

Name TKL (E4P:F6P)

SBO:0000176 biochemical reaction

Reaction equation

$$X5P + E4P \xrightarrow{TKL1, R5P, S7P, TKL1, X5P, E4P, GAP, F6P, R5P, S7P} GAP + F6P \qquad (61)$$

Reactants

Table 118: Properties of each reactant.

Id	Name	SBO
X5P	X5P	
E4P	E4P	

Modifiers

Table 119: Properties of each modifier.

Id	Name	SBO
TKL1	TKL1	
R5P	R5P	
S7P	S7P	
TKL1	TKL1	
X5P	X5P	
E4P	E4P	
GAP	GAP	
F6P	F6P	
R5P	R5P	
S7P	S7P	

Products

Table 120: Properties of each product.

Id	Name	SBO
GAP	GAP	
F6P	F6P	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \frac{\frac{\text{vol(cell)} \cdot [\text{TKL1}] \cdot \text{kcat} \cdot \left([\text{X5P}] \cdot [\text{E4P}] - \frac{[\text{GAP}] \cdot [\text{F6P}]}{\text{Keq}} \right)}{\text{Kx5p.TAL} \cdot \text{Ke4p.TAL}}}{\left(1 + \frac{[\text{X5P}]}{\text{Kx5p.TAL}} + \frac{[\text{GAP}]}{\text{Kgap.TAL}} \right) \cdot \left(1 + \frac{[\text{E4P}]}{\text{Ke4p.TAL}} + \frac{[\text{F6P}]}{\text{Kf6p.TAL}} + \frac{[\text{R5P}]}{\text{Kr5p.TAL}} + \frac{[\text{S7P}]}{\text{Ks7p.TAL}} \right)}}$$
(62)

Table 121: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat			47.1	s^{-1}	
Keq			10.0	dimensionless	\square

7.30 Reaction TKL_R5P

This is a reversible reaction of two reactants forming two products influenced by ten modifiers.

Name TKL (R5P:S7P)

SBO:0000176 biochemical reaction

Reaction equation

$$X5P + R5P \xrightarrow{TKL1, E4P, F6P, TKL1, X5P, R5P, GAP, S7P, E4P, F6P} GAP + S7P$$
 (63)

Reactants

Table 122: Properties of each reactant.

Id	Name	SBO
X5P R5P	X5P R5P	

Modifiers

Table 123: Properties of each modifier.

Id	Name	SBO
TKL1	TKL1	
E4P	E4P	
F6P	F6P	
TKL1	TKL1	
X5P	X5P	
R5P	R5P	
GAP	GAP	
S7P	S7P	
E4P	E4P	
F6P	F6P	

Products

Table 124: Properties of each product.

Id	Name	SBO
GAP	GAP	
S7P	S7P	

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = \frac{\frac{\text{vol(cell)} \cdot [\text{TKL1}] \cdot \text{kcat} \cdot \left([\text{X5P}] \cdot [\text{R5P}] - \frac{[\text{GAP}] \cdot [\text{S7P}]}{\text{Keq}} \right)}{\text{Kx5p.TAL} \cdot \text{Kr5p.TAL}}}{\left(1 + \frac{[\text{X5P}]}{\text{Kx5p.TAL}} + \frac{[\text{GAP}]}{\text{Kgap.TAL}} \right) \cdot \left(1 + \frac{[\text{E4P}]}{\text{Ke4p.TAL}} + \frac{[\text{F6P}]}{\text{Kf6p.TAL}} + \frac{[\text{R5P}]}{\text{Kr5p.TAL}} + \frac{[\text{S7P}]}{\text{Ks7p.TAL}} \right)}$$
(64)

Table 125: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat Keq			40.5 1.2	s ⁻¹ dimensionless	✓

7.31 Reaction ZWF

This is an irreversible reaction of two reactants forming two products influenced by six modifiers.

Name ZWF

SBO:0000176 biochemical reaction

Reaction equation

$$G6P + NADP \xrightarrow{ZWF1, ZWF1, G6P, NADP, G6L, NADPH} G6L + NADPH$$
 (65)

Reactants

Table 126: Properties of each reactant.

Id	Name	SBO
G6P	G6P	
NADP	NADP	

Modifiers

Table 127: Properties of each modifier.

Id	Name	SBO
ZWF1	ZWF1	
ZWF1	ZWF1	
G6P	G6P	
NADP	NADP	
G6L	G6L	
NADPH	NADPH	

Products

Table 128: Properties of each product.

Id	Name	SBO
G6L	G6L	
NADPH	NADPH	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \frac{\frac{\text{vol(cell)} \cdot [\text{ZWF1}] \cdot \text{kcat} \cdot [\text{G6P}] \cdot [\text{NADP}]}{\text{Kg6p} \cdot \text{Knadp}}}{\left(1 + \frac{[\text{G6P}]}{\text{Kg6p}} + \frac{[\text{G6L}]}{\text{Kg6l}}\right) \cdot \left(1 + \frac{[\text{NADP}]}{\text{Knadp}} + \frac{[\text{NADPH}]}{\text{Knadph}}\right)}$$
(66)

Table 129: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kcat			189.000	s^{-1}	<u> </u>
Kg6p			0.042	$\operatorname{mmol} \cdot 1^{-1}$	
Knadp			0.045	$\operatorname{mmol} \cdot 1^{-1}$	
Kg6l			0.010	$\operatorname{mmol} \cdot 1^{-1}$	
Knadph			0.017	$\operatorname{mmol} \cdot 1^{-1}$	

7.32 Reaction NADPH_oxidase

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name NADPH oxidase

SBO:0000176 biochemical reaction

Reaction equation

$$NADPH \xrightarrow{NADPH} NADP \tag{67}$$

Reactant

Table 130: Properties of each reactant.

Id	Name	SBO
NADPH	NADPH	

Modifier

Table 131: Properties of each modifier.

Id	Name	SBO
NADPH	NADPH	

Product

Table 132: Properties of each product.

Id	Name	SBO
NADP	NADP	

Kinetic Law

Derived unit $s^{-1} \cdot mmol$

$$v_{32} = \text{vol}(\text{cell}) \cdot \mathbf{k} \cdot [\text{NADPH}] \tag{68}$$

Table 133: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k			1.0	s^{-1}	\overline{Z}

7.33 Reaction E4P_sink

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name E4P sink

SBO:0000176 biochemical reaction

Reaction equation

$$E4P \xrightarrow{E4P} \emptyset \tag{69}$$

Reactant

Table 134: Properties of each reactant.

Id	Name	SBO
E4P	E4P	

Modifier

Table 135: Properties of each modifier.

Id	Name	SBO
E4P	E4P	

Kinetic Law

Derived unit $s^{-1} \cdot mmol$

$$v_{33} = \text{vol}(\text{cell}) \cdot \mathbf{k} \cdot [\text{E4P}] \tag{70}$$

Table 136: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
k		1.0	s^{-1}	Ø

7.34 Reaction R5P_sink

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name R5P sink

SBO:0000176 biochemical reaction

Reaction equation

$$R5P \xrightarrow{R5P} \emptyset \tag{71}$$

Reactant

Table 137: Properties of each reactant.

Id	Name	SBO
R5P	R5P	

Modifier

Table 138: Properties of each modifier.

Id	Name	SBO
R5P	R5P	

Kinetic Law

Derived unit $s^{-1} \cdot mmol$

$$v_{34} = \text{vol}(\text{cell}) \cdot \mathbf{k} \cdot [\text{R5P}] \tag{72}$$

Table 139: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k			1.0	s^{-1}	\blacksquare

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

• parameters without an unit definition are involved or

• volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

8.1 Species ADP

Name ADP

SBO:0000247 simple chemical

Initial concentration 1.29 mmol·l⁻¹

This species takes part in 14 reactions (as a reactant in AK, PGK, PYK and as a product in ATPase, HXK, PFK, udp_to_utp and as a modifier in AK, GPD, GPD, HXK, PFK, PGK, PYK).

$$\frac{\mathrm{d}}{\mathrm{d}t}ADP = v_3 + v_9 + v_{11} + v_{22} - 2v_2 - v_{13} - v_{15}$$
(73)

8.2 Species ATP

Name ATP

SBO:0000247 simple chemical

Initial concentration $4.29 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in 16 reactions (as a reactant in ATPase, HXK, PFK, udp_to_utp and as a product in AK, PGK, PYK and as a modifier in AK, ATPase, GPD, GPD, HXK, PFK, PGK, PYK, udp_to_utp).

$$\frac{d}{dt}ATP = v_2 + v_{13} + v_{15} - v_3 - v_9 - v_{11} - v_{22}$$
(74)

8.3 Species AcAld

Name AcAld

SBO:0000247 simple chemical

Initial concentration $0.178140579850657 \text{ mmol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in ADH, acetate_branch and as a product in PDC and as a modifier in ADH, acetate_branch).

$$\frac{d}{dt}AcAld = v_{10} - v_1 - v_{21} \tag{75}$$

8.4 Species BPG

Name BPG

SBO:0000247 simple chemical

Initial concentration $7.36873499865602 \cdot 10^{-4} \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in PGK and as a product in TDH and as a modifier in PGK, TDH).

$$\frac{d}{dt}BPG = v_{16} - v_{13} \tag{76}$$

8.5 Species DHAP

Name DHAP

SBO:0000247 simple chemical

Initial concentration $1.1613768527467 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in GPD, TPI and as a product in FBA and as a modifier in FBA, GPD, TPI).

$$\frac{d}{dt}DHAP = v_5 - v_6 - v_{17} \tag{77}$$

8.6 Species F16bP

Name F16bP

SBO:0000247 simple chemical

Initial concentration $4.58321859006931 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in FBA and as a product in PFK and as a modifier in FBA, GPD, GPD, PFK, PYK, PYK).

$$\frac{d}{dt}F16bP = v_{11} - v_5 (78)$$

8.7 Species F6P

Name F6P

SBO:0000247 simple chemical

Initial concentration $0.235441221891221 \text{ mmol} \cdot l^{-1}$

This species takes part in ten reactions (as a reactant in PFK and as a product in PGI, TAL, TKL-E4P and as a modifier in PFK, PGI, TAL, TKL-E4P, TKL_R5P, TKL_R5P).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{F6P} = v_{12} + v_{28} + v_{29} - v_{11} \tag{79}$$

8.8 Species G1P

Name G1P

SBO:0000247 simple chemical

Initial concentration $0.539248506344921 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in UGP and as a product in PGM and as a modifier in PGM, UGP).

$$\frac{d}{dt}G1P = v_{14} - v_{20} \tag{80}$$

8.9 Species G3P

Name G3P

SBO:0000247 simple chemical

Initial concentration $0.274002929191284 \text{ mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in GPP and as a product in GPD and as a modifier in GPD, GPP).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{G3P} = v_6 - v_8 \tag{81}$$

8.10 Species G6P

Name G6P

SBO:0000247 simple chemical

Initial concentration $0.772483203645216 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in ten reactions (as a reactant in PGI, PGM, TPS, ZWF and as a product in HXK and as a modifier in HXK, PGI, PGM, TPS, ZWF).

$$\frac{\mathrm{d}}{\mathrm{d}t}G6P = v_9 - v_{12} - v_{14} - v_{19} - v_{31} \tag{82}$$

8.11 Species GAP

Name GAP

SBO:0000247 simple chemical

Initial concentration $0.315891028770503 \text{ mmol} \cdot 1^{-1}$

This species takes part in twelve reactions (as a reactant in TDH, TAL and as a product in FBA, TPI, TKL_E4P, TKL_R5P and as a modifier in FBA, TDH, TPI, TAL, TKL_E4P, TKL_R5P).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GAP} = v_5 + v_{17} + v_{29} + v_{30} - v_{16} - v_{28} \tag{83}$$

8.12 Species GLC

Name GLC

SBO:0000247 simple chemical

Initial concentration $6.28000179338242 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in HXK and as a product in HXT and as a modifier in HXK, HXT).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GLC} = v_{23} - v_9 \tag{84}$$

8.13 Species NAD

Name NAD

SBO:0000247 simple chemical

Initial concentration $1.50329030201531 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in TDH, acetate_branch and as a product in ADH, GPD and as a modifier in ADH, GPD, TDH, acetate_branch).

$$\frac{\mathrm{d}}{\mathrm{d}t} NAD = v_1 + v_6 - v_{16} - v_{21}$$
 (85)

8.14 Species P2G

Name P2G

SBO:0000247 simple chemical

Initial concentration $0.0677379081099344 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in ENO and as a product in GPM and as a modifier in ENO, GPM).

$$\frac{\mathrm{d}}{\mathrm{d}t} P2G = v_7 - v_4 \tag{86}$$

8.15 Species P3G

Name P3G

SBO:0000247 simple chemical

Initial concentration $0.469825011134444 \text{ mmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in GPM and as a product in PGK and as a modifier in GPM, PGK).

$$\frac{d}{dt}P3G = v_{13} - v_7 (87)$$

8.16 Species PEP

Name PEP

SBO:0000247 simple chemical

Initial concentration $0.610005413358042 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in PYK and as a product in ENO and as a modifier in ENO, PYK).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{PEP} = v_4 - v_{15} \tag{88}$$

8.17 Species PYR

Name PYR

SBO:0000247 simple chemical

Initial concentration $2.10847140717419 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in PDC and as a product in PYK and as a modifier in PDC, PYK).

$$\frac{d}{dt}PYR = v_{15} - v_{10} \tag{89}$$

8.18 Species T6P

Name T6P

SBO:0000247 simple chemical

Initial concentration $0.02 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in TPP and as a product in TPS and as a modifier in HXK, HXK, TPP).

$$\frac{d}{dt}T6P = v_{19} - v_{18} \tag{90}$$

8.19 Species UDP

Name UDP

SBO:0000247 simple chemical

Initial concentration $0.2815 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in udp_to_utp and as a product in TPS and as a modifier in udp_to_utp).

$$\frac{d}{dt}UDP = v_{19} - v_{22} \tag{91}$$

8.20 Species UTP

Name UTP

SBO:0000247 simple chemical

Initial concentration $0.6491 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in UGP and as a product in udp_to_utp and as a modifier in UGP).

$$\frac{d}{dt}UTP = v_{22} - v_{20} \tag{92}$$

8.21 Species AMP

Name AMP

SBO:0000247 simple chemical

Initial concentration $0.44 \text{ } \text{mmol} \cdot l^{-1}$

Involved in rule AMP

This species takes part in four reactions (as a product in AK and as a modifier in AK, PFK, PFK). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

8.22 Species NADH

Name NADH

SBO:0000247 simple chemical

Initial concentration $0.0867096979846952 \text{ mmol} \cdot 1^{-1}$

Involved in rule NADH

This species takes part in seven reactions (as a reactant in ADH, GPD and as a product in TDH, acetate_branch and as a modifier in ADH, GPD, TDH). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

8.23 Species UDG

Name UDG

SBO:0000247 simple chemical

Initial concentration $0.467246194874247 \text{ mmol} \cdot 1^{-1}$

Involved in rule UDG

This species takes part in four reactions (as a reactant in TPS and as a product in UGP and as a modifier in TPS, UGP). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

8.24 Species ACE

Name ACE

SBO:0000247 simple chemical

Initial concentration $223.000253398294 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a product in acetate_branch), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}ACE = 0 \tag{93}$$

8.25 Species Et OH

Name EtOH

SBO:0000247 simple chemical

Initial concentration $221.890311417536 \text{ } \text{mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a product in ADH and as a modifier in ADH), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{EtOH} = 0\tag{94}$$

8.26 Species F26bP

Name F26bP

SBO:0000247 simple chemical

Initial concentration $0.0030 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in PFK, PFK), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{F}26\mathrm{b}\mathrm{P} = 0\tag{95}$$

8.27 Species GLCx

Name GLCx

SBO:0000247 simple chemical

Initial concentration $74 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in HXT and as a modifier in HXT), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GLCx} = 0\tag{96}$$

8.28 Species GLY

Name GLY

SBO:0000247 simple chemical

Initial concentration $0.15 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in GPP), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GLY} = 0\tag{97}$$

8.29 Species SUC

Name SUC

SBO:0000247 simple chemical

Initial concentration $0 \text{ mmol} \cdot l^{-1}$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SUC} = 0\tag{98}$$

8.30 Species TRH

Name TRH

SBO:0000247 simple chemical

Initial concentration $0.0153878853696526 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in TPP), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TRH} = 0\tag{99}$$

8.31 Species ADH1

Name ADH1

SBO:0000252 polypeptide chain

Initial concentration $0.163908510928009 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in ADH, ADH), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ADH1} = 0\tag{100}$$

8.32 Species CDC19

Name CDC19

SBO:0000252 polypeptide chain

Initial concentration $2.0483901071712 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in PYK, PYK), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CDC19} = 0\tag{101}$$

8.33 Species EN01

Name ENO1

SBO:0000252 polypeptide chain

Initial concentration $0.686371954155832 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in ENO, ENO), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ENO1} = 0\tag{102}$$

8.34 Species EN02

Name ENO2

SBO:0000252 polypeptide chain

Initial concentration $1.97444629317817 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in ENO, ENO), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ENO2} = 0\tag{103}$$

8.35 Species FBA1

Name FBA1

SBO:0000252 polypeptide chain

Initial concentration $1.33839465704882 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in FBA, FBA), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{FBA1} = 0\tag{104}$$

8.36 Species GLK1

Name GLK1

SBO:0000252 polypeptide chain

Initial concentration $0.0450869624419226 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in HXK, HXK), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GLK1} = 0\tag{105}$$

8.37 Species GPD1

Name GPD1

SBO:0000252 polypeptide chain

Initial concentration $0.00683511177089872 \text{ mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in GPD), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GPD1} = 0\tag{106}$$

8.38 Species GPD2

Name GPD2

SBO:0000252 polypeptide chain

Initial concentration $7.93405666424228 \cdot 10^{-4} \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in GPD), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GPD2} = 0\tag{107}$$

8.39 Species GPM1

Name GPM1

SBO:0000252 polypeptide chain

Initial concentration $0.73000029889707 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a modifier in GPM, GPM), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GPM1} = 0\tag{108}$$

8.40 Species HOR2

Name HOR2

SBO:0000252 polypeptide chain

Initial concentration $0.0054734695639756 \text{ mmol} \cdot 1^{-1}$

This species takes part in one reaction (as a modifier in GPP), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{HOR2} = 0\tag{109}$$

8.41 Species HXK1

Name HXK1

SBO:0000252 polypeptide chain

Initial concentration $0.0167807457149784 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a modifier in HXK, HXK), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{HXK1} = 0\tag{110}$$

8.42 Species HXK2

Name HXK2

SBO:0000252 polypeptide chain

Initial concentration $0.0613313539705155 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in HXK, HXK), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{HXK2} = 0\tag{111}$$

8.43 Species PDC1

Name PDC1

SBO:0000252 polypeptide chain

Initial concentration $1.06781077822834 \text{ } \text{mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a modifier in PDC, PDC), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PDC1} = 0\tag{112}$$

8.44 Species PDC5

Name PDC5

SBO:0000252 polypeptide chain

Initial concentration $0.0123547443267676 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in PDC, PDC), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PDC5} = 0\tag{113}$$

8.45 Species PDC6

Name PDC6

SBO:0000252 polypeptide chain

Initial concentration $0.00654086421106118 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in PDC, PDC), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PDC6} = 0\tag{114}$$

8.46 Species PFK1

Name PFK1

SBO:0000252 polypeptide chain

Initial concentration $0.0467850299063124 \text{ } mmol \cdot l^{-1}$

This species takes part in one reaction (as a modifier in PFK), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PFK1} = 0\tag{115}$$

8.47 Species PFK2

Name PFK2

SBO:0000252 polypeptide chain

Initial concentration $0.0390366215332091 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in PFK, PFK), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PFK2} = 0\tag{116}$$

8.48 Species PGI1

Name PGI1

SBO:0000252 polypeptide chain

Initial concentration $0.1382907072901 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in PGI, PGI), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PGI1} = 0\tag{117}$$

8.49 Species PGK1

Name PGK1

SBO:0000252 polypeptide chain

Initial concentration $0.257656912658955 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in PGK, PGK), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PGK1} = 0\tag{118}$$

8.50 Species PGM1

Name PGM1

SBO:0000252 polypeptide chain

Initial concentration $0.00326229546307459 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in PGM), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PGM1} = 0\tag{119}$$

8.51 Species PGM2

Name PGM2

SBO:0000252 polypeptide chain

Initial concentration $0.00125868877176552 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in PGM), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PGM2} = 0\tag{120}$$

8.52 Species RHR2

Name RHR2

SBO:0000252 polypeptide chain

Initial concentration $0.0511804773718313 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in GPP), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RHR2} = 0\tag{121}$$

8.53 Species TDH1

Name TDH1

SBO:0000252 polypeptide chain

Initial concentration $0.350864642801396 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in TDH, TDH), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TDH1} = 0\tag{122}$$

8.54 Species TDH3

Name TDH3

SBO:0000252 polypeptide chain

Initial concentration $4.20440474648547 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in TDH, TDH), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TDH3} = 0\tag{123}$$

8.55 Species TPI1

Name TPI1

SBO:0000252 polypeptide chain

Initial concentration $0.294357819645508 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in TPI, TPI), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TPI1} = 0\tag{124}$$

8.56 Species TPS1

Name TPS1

SBO:0000252 polypeptide chain

Initial concentration $0.00339248174237065 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in TPP, TPS), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TPS1} = 0\tag{125}$$

8.57 Species TPS2

Name TPS2

SBO:0000252 polypeptide chain

Initial concentration $0.00265985181347494 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in TPP, TPS), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TPS2} = 0\tag{126}$$

8.58 Species UGP1

Name UGP1

SBO:0000252 polypeptide chain

Initial concentration $0.00620211419860714 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in one reaction (as a modifier in UGP), which does not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{UGP1} = 0\tag{127}$$

8.59 Species E4P

Name E4P

SBO:0000247 simple chemical

Initial concentration $0.029 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in TKL_E4P, E4P_sink and as a product in TAL and as a modifier in TAL, TKL_E4P, TKL_R5P, TKL_R5P, E4P_sink).

$$\frac{\mathrm{d}}{\mathrm{d}t}E4P = v_{28} - v_{29} - v_{33} \tag{128}$$

8.60 Species G6L

Name G6L

SBO:0000247 simple chemical

Initial concentration $0.1 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in SOL and as a product in ZWF and as a modifier in SOL, ZWF).

$$\frac{d}{dt}G6L = v_{31} - v_{27} \tag{129}$$

8.61 Species NADPH

Name NADPH

SBO:0000247 simple chemical

Initial concentration $0.16 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in NADPH_oxidase and as a product in GND, ZWF and as a modifier in GND, ZWF, NADPH_oxidase).

$$\frac{d}{dt}NADPH = v_{24} + v_{31} - v_{32}$$
 (130)

8.62 Species P6G

Name P6G

SBO:0000247 simple chemical

Initial concentration 0.25 mmol·l⁻¹

This species takes part in four reactions (as a reactant in GND and as a product in SOL and as a modifier in GND, SOL).

$$\frac{d}{dt}P6G = v_{27} - v_{24} \tag{131}$$

8.63 Species R5P

Name R5P

SBO:0000247 simple chemical

Initial concentration $0.118 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in TKL_R5P, R5P_sink and as a product in RKI and as a modifier in RKI, TKL_E4P, TKL_E4P, TKL_R5P, R5P_sink).

$$\frac{\mathrm{d}}{\mathrm{d}t}R5P = v_{25} - v_{30} - v_{34} \tag{132}$$

8.64 Species Ru5P

Name Ru5P

SBO:0000247 simple chemical

Initial concentration $0.033 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in RKI, RPE and as a product in GND and as a modifier in GND, RKI, RPE).

$$\frac{\mathrm{d}}{\mathrm{d}t} R u 5 P = v_{24} - v_{25} - v_{26} \tag{133}$$

8.65 Species S7P

Name S7P

SBO:0000247 simple chemical

Initial concentration $0.082 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in TAL and as a product in TKL_R5P and as a modifier in TAL, TKL_E4P, TKL_E4P, TKL_R5P).

$$\frac{d}{dt}S7P = v_{30} - v_{28} \tag{134}$$

8.66 Species X5P

Name X5P

SBO:0000247 simple chemical

Initial concentration $0.041 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in TKL_E4P, TKL_R5P and as a product in RPE and as a modifier in RPE, TKL_E4P, TKL_R5P).

$$\frac{\mathrm{d}}{\mathrm{d}t}X5P = v_{26} - v_{29} - v_{30} \tag{135}$$

8.67 Species NADP

Name NADP

SBO:0000247 simple chemical

Initial concentration $0.17 \text{ } \text{mmol} \cdot l^{-1}$

Involved in rule NADP

This species takes part in five reactions (as a reactant in GND, ZWF and as a product in NADPH-oxidase and as a modifier in GND, ZWF). Not these but one rule determines the species' quantity because this species is on the boundary of the reaction system.

8.68 Species GND1

Name GND1

SBO:0000252 polypeptide chain

Initial concentration $0.013 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in GND, GND), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GND1} = 0\tag{136}$$

8.69 Species GND2

Name GND2

SBO:0000252 polypeptide chain

Initial concentration $0.0030 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in GND, GND), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GND2} = 0\tag{137}$$

8.70 Species NQM1

Name NQM1

SBO:0000252 polypeptide chain

Initial concentration $0.02 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in TAL, TAL), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NQM1} = 0\tag{138}$$

8.71 Species RKI1

Name RKI1

SBO:0000252 polypeptide chain

Initial concentration 0.05 mmol·1⁻¹

This species takes part in two reactions (as a modifier in RKI, RKI), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{R}\mathbf{K}\mathbf{I}\mathbf{1} = 0\tag{139}$$

8.72 Species RPE1

Name RPE1

SBO:0000252 polypeptide chain

Initial concentration $0.03 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in RPE, RPE), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{RPE1} = 0\tag{140}$$

8.73 Species SOL3

Name SOL3

SBO:0000252 polypeptide chain

Initial concentration $0.0296 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in SOL, SOL), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SOL3} = 0\tag{141}$$

8.74 Species TAL1

Name TAL1

SBO:0000252 polypeptide chain

Initial concentration $0.144 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in TAL, TAL), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TAL1} = 0\tag{142}$$

8.75 Species TKL1

Name TKL1

SBO:0000252 polypeptide chain

Initial concentration $0.455 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in four reactions (as a modifier in TKL_E4P, TKL_R5P, TKL_R5P, TKL_R5P), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{T}\mathrm{KL}1 = 0\tag{143}$$

8.76 Species ZWF1

Name ZWF1

SBO:0000252 polypeptide chain

Initial concentration $0.02 \text{ mmol} \cdot 1^{-1}$

This species takes part in two reactions (as a modifier in ZWF, ZWF), which do not influence its rate of change because this constant species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}ZWF1 = 0\tag{144}$$

A Glossary of Systems Biology Ontology Terms

SBO:0000176 biochemical reaction: An event involving one or more chemical entities that modifies the electrochemical structure of at least one of the participants.

SBO:0000185 transport reaction: Movement of a physical entity without modification of the structure of the entity

SBO:0000247 simple chemical: Simple, non-repetitive chemical entity

SBO:0000252 polypeptide chain: Naturally occurring macromolecule formed by the repetition of amino-acid residues linked by peptidic bonds. A polypeptide chain is synthesized by the ribosome. CHEBI:1654

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany