Matemática Discreta

6^a AULA

Universidade de Aveiro 2014/2015

http://moodle.ua.pt

Matemática Discreta

Sequências e sucessões

Composição de funções

Funções particulares

Referências bibliográficas

Sequências

Definição (de sequência finita)

Uma sequência finita de um conjunto A é uma função

$$egin{aligned} a: & [k] &
ightarrow & A \ n & \mapsto & a(n) \end{aligned}$$

onde $[k] = \{1, 2, ..., k\}$. Neste caso, *a* diz-se uma sequência de comprimento k.

Notação:

- Escrevemos a_n em vez de a(n);
- Uma sequência a de k elementos de um conjunto A denota-se por

$$a = (a_1, ..., a_k), a_i \in A, i = 1, ..., k$$

Matemática Discreta

Sequências e sucessões

Exemplo

Considerando a função

$$egin{aligned} a: & [3] &
ightarrow & \mathbb{N} \ & n & \mapsto & 2n \end{aligned}$$

podemos denota-la por a = (2, 4, 6).

• Deve observar-se que se trata de uma sequência de comprimento 3.

Sucessão

Definição (de sucessão)

Uma sucessão de elementos de um conjunto A é uma sequência com uma infinidade de elementos do conjunto A (que se designam por termos), ou seja, é uma função

$$a: \mathbb{N} \to A$$
.

Notação: a sucessão $(a_1, a_2, ...)$ denota-se por $(a_n)_{n \in \mathbb{N}}$.

Exemplo: $(2n)_{n\in\mathbb{N}}$ é a sucessão $(2,4,6,8,\ldots)$.

Matemática Discreta

Composição de funções

A composição de funções é um caso particular da composição de relações

Se
$$f : A \rightarrow B$$
 e $g : B \rightarrow C$, então

$$g \circ f: A \rightarrow C$$

 $x \mapsto g \circ f(x) = g(f(x))$

Exemplo: considerando as funções

$$f: \mathbb{R} \to \mathbb{R}$$
 e $g: \mathbb{R} \to \mathbb{R}$ $x \mapsto x+1$

vamos determinar as funções $g \circ f$ e $f \circ g$.

Mais geralmente

Dada a família de funções $f_i: A_i \to A_{i+1}, i = 1, \dots, p$, define-se a função composta

$$f_p \circ f_{p-1} \circ \cdots \circ f_1 : A_1 \rightarrow A_{p+1}$$

 $X \mapsto f_p(f_{p-1}(\ldots(f_1(X))))$

Exemplo: considerando a função $f: \mathbb{N} \rightarrow \mathbb{N}$ definida por

$$f(n)=\left\{egin{array}{ll} 3n+1 & ext{se } n ext{ \'e impar} \ rac{n}{2} & ext{caso contr\'ario} \ ext{escolhendo} \ n_1 \in \mathbb{N}, ext{ podemos definir sequência} \end{array}
ight.$$

$$n_{k+1} = f(n_k), k = 1, 2, \dots$$

ou seja, $n_{k+1} = f^k(n_1), k = 1, 2, ...$ Assim, n_{k+1} é a imagem de n_1 pela composição k vezes da função f com ela própria.

Matemática Discreta

Composição de funções

O problema de Collatz

Relativamente à função f anteriormente definida, compondo f com ela própria, obtêm-se sucessivamente os valores:

$$f(1) = 4$$
, $f(4) = 2$, $f(2) = 1$.
 $f(2) = 1$.
 $f(3) = 10$, $f(10) = 5$, $f(5) = 16$, $f(16) = 8$, $f(8) = 4$, $f(4) = 2$.
 $f(4) = 2$.
 $f(5) = 16$, $f(16) = 8$, $f(8) = 4$.
 $f(6) = 3$.
 \vdots

Note-se que a partir do momento que se obtém 1, a sequência passa a ser 1, 4, 2, 1, 4, 2, 1, Aparentemente, qualquer que seja o número inicial, a sequência obtida passa por 1. Conjectura de Collatz. $\forall n \in \mathbb{N} \ \exists k \in \mathbb{N} : \ f^k(n) = 1$.

Restrições e extensões de funções

Definição

Dada uma função $f: A \to B$ e $X \subseteq A$, designa-se por restrição de f a X (e escreve-se $f|_X$), a função $f|_X: X \to B$ definida por $f|_X(x) = f(x)$, para todo $x \in X$.

Por sua vez, diz-se que f é uma extensão de $f|_X$ a A.

Exemplo: considerando a função $f: \mathbb{N} \to \mathbb{N}$ definida por $f(n) = n^2$, para todo $n \in \mathbb{N}$ e $X = \{1, 2, 3\} \subseteq \mathbb{N}$. A restrição de f a X é a função $f|_X = \{(1, 1), (2, 4), (3, 9)\}$.

Matemática Discreta

Funções particulares

Função identidade e função inversa

Definição (de função identidade)

A função

$$\mathsf{id}: A \to A$$

designa-se por função identidade sobre A.

Nota: a função identidade é uma bijecção (a notação id_A é utilizada para indicar que se trata da função identidade definida em A).

Função invertível

Definição (de função invertível)

Uma função $f: A \rightarrow B$ diz-se invertível se existe uma função $g: B \rightarrow A$ tal que

$$g \circ f = id_A$$
 e $f \circ g = id_B$.

A função g designa-se por função inversa de f e denota-se f^{-1} .

Nota: observe-se que se f é invertível, então f^{-1} também é e $(f^{-1})^{-1} = f$.

Teorema

Uma função é invertível se e só se é uma bijecção.

Matemática Discreta

Funções particulares

Exemplo

Vamos determinar, caso existam, as inversas das seguintes funções:

1)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = ax + b$, onde $a, b \in \mathbb{R}$ e $a \neq 0$;

2)
$$g: \mathbb{R} \to (0, +\infty)$$
, tal que $g(x) = e^x$;

3)
$$h: \mathbb{Z} \to \mathbb{N}$$
, tal que $h(n) = \begin{cases} 2n+1 & \text{para} & n \geq 0 \\ -2n & \text{para} & n < 0 \end{cases}$.

Referências bibliográficas

- Referência bibliográfica principal:
 - D. M. Cardoso, J. Szymanski e M. Rostami, *Matemática Discreta: combinatória, teoria dos grafos e algoritmos*, Escolar Editora, 2009.
- Referências bibliográficas complementares:
 - N. L. Biggs, *Discrete Mathematics*, Oxford University Press, 2nd Ed. (2002).
 - J. S. Pinto, *Tópicos de Matemática Discreta*, Universidade de Aveiro 1999 (disponível na página da disciplina).