Ayudantía 4 - Mat043

7 de octubre de 2021

Modelos de probabilidad discreta

Considerando la notación: P(X=x)=p(x) y considerando X,Y variables aleatorias y $\lambda\in\mathbb{R}$, entocnes se tiene que :

- 1. $\sum_{x} p(x) = 1$
- 2. $E(X) = \sum_{x} xp(x)$
- 3. $E(g(x)) = \sum_{x} g(x)p(x)$
- 4. $E((x-\mu)^2) = \sum_x (x-\mu)^2 p(x)$
- 5. $E(\lambda x + y) = \lambda E(x) + E(y)$
- 6. $V(x) = E((x E(x))^2) = E(x^2) E(x)^2$
- 7. $V(\lambda x) = \lambda^2 V(x)$

donde p(x) es la distribucio ´n de X y $F_X(x) = P(X \le x)$ su función de distribución.

Variables aleatorias discretas

 $X:\Omega \to \mathbb{R}$ una v.a. diremos que es discreta si Rec(X) es discreto.

- 1) $P(X = k) \ge 0 \ \forall k \in \mathbb{R}$
- 2) $\sum_{k\in\mathbb{R}} P(X=k) = 1$
- 3) $P(X \in B) = \sum_{k \in B} P(X = k)$

Considerando un dado cargado de 6 caras, la v.a. sería el número del dado, entonces $x \in \{1,2,3,4,5,6\}$ donde su función de probabildad está dada por

$$p(x) = c \cdot 0.7^{x} \cdot 0.3^{6-x}, \ x = 1, 2, 3, 4, 5, 6$$

- Calcular c
- Realizar una tabla para la funcón de probabilidad y su distribución F.
- Calcular $P(x \in \{2, 3, 4\})$ y P(x > 2)

Como $p(x)=c0,7^x0,3^{6-x}$ es la distribución de probabilidad de x, se tiene que $\sum_{x=1}^6 p(x)=1$, entonces:

$$p(1) = c0,\!7^10,\!3^5 = 0,\!001701c$$

$$p(2) = c0,\!7^20,\!3^4 = 0,\!003969c$$

$$p(3) = c0.7^30.3^3 = 0.009261c$$

$$p(4) = c0.7^40.3^2 = 0.021609c$$

$$p(5) = c0,7^50,3^1 = 0,050421c$$

$$p(6) = c0.7^60.3^0 = 0.117649c$$

Entonces, se tiene que $\sum p(x) = 0.20461c = 1$, por lo tanto, c = 4.8873.

$$p(x) = 4,8873 \cdot 0.7^{x} \cdot 0.3^{6-x}$$

Tablita

Χ	p(x)	F(x)
1	0.83 %	0.83 %
2	1.94 %	2.77 %
3	4.53 %	7.3 %
4	10.56 %	17.86 %
5	24.64 %	42.50 %
6	57.50 %	100 %

Luego,

$$P(x \in \{2, 3, 4\}) = P(2 \le x \le 4) = \sum_{x=2}^{4} p(x) = 17,03\%$$
$$P(x > 2) = 1 - P(x \le 2) = 1 - F(2) = 97,23\%$$

Utilizando los valores anteriores, agregamos los valores pertinentes para calcular E(x) y V(x):

Χ	p(x)	xp(x)	$(x - E(x))^2$	$(x - E(x))^2 p(x)$
1	0.83 %	0.83 %	18.40	15.27 %
2	1.94 %	3.88 %	10.82	20.99 %
3	4.53 %	13.59 %	5.24	23.74 %
4	10.56 %	42.24 %	1.66	17.53 %
5	24.64 %	123.20 %	0.08	1.97 %
6	57.50 %	345.00 %	0.50	28.75 %

Considerando la función $p: X \to \mathbb{R}$ como:

$$p(x) = \begin{cases} a/3 & si \ x = -1 \\ 5/9 & si \ x = 2 \\ a/3 & si \ x = 3 \\ a^2 & si \ x = 4 \\ a/3 & si \ x = 7 \\ 0 & e.o.c. \end{cases}$$

Donde $X = \{-1, 0, 1, 2, 3, 4, 5, 6, 7\}.$

Encontrar el valor de a para que p sea una función de probabilidad y obtener $F_X(x) = P(X \le x)$ su función de distribución.

Luego, calcular los siguientes

- P(x > 3)• $P(x > 2|x \ge 1)$

Modelo de probabildiad Bernoulli

Para una v.a. $X \in \{0,1\}$ binaria, donde puede interpretarse como 1= éxito y 0= fracaso.

Se tiene que X sigue un modelo Bernoulli ssi su distribución está dada como $p(x)=p^x(1-p)^{x-1}$ y se expresa como

$$X \sim Bernoulli(p)p(x) = p^{x}(1-p)^{x-1}$$

donde p es la probabilidad de éxito.

Entonces, calculando su esperanza y varianza:

$$p(1) = p, p(0) = 1 - p$$
, entonces $p(1) + p(0) = 1$, por lo tanto es función de probabilidad.

E(x) = p, luego

$$V(x) = \sum_{x} (x - E(x))^{2} p(x) = (1 - p)^{2} p + (0 - p)^{2} (1 - p) = p(1 - p)$$

Finalmente:

$$X \sim Ber(p) \Rightarrow E(x) = p, \ yV(x) = p(1-p)$$