PROCESS MEASUREMENT & MONITORING LABOLATORY 1

การใช้งานโปรแกรม LabVIEW

วัตถุประสงค์

- 1. ศึกษาการใช้งานโปรแกรม LabVIEW 2014®
- 2. สามารถประยุกต์ใช้งานพังก์ชั่นในโปรแกรม LabVIEW 2014® ได้

อุปกรณ์ที่ใช้การทดลอง

- 1. โปรแกรม LabVIEW 2014®
- 2. Notebook

ทฤษฎีที่เกี่ยวข้อง

โปรแกรม LabVIEW 2014®

LabVIEW ย่อมาจาก Laboratory Virtual Instrument Engineering Workbench เป็นโปรแกรม คอมพิวเตอร์ที่สร้างเพื่อนำมาใช้ในด้านการจัดการวัดและเครื่องมือวัดสำหรับงานทางวิศวกรรม ซึ่งเป็น โปรแกรมประเภท GUI (Graphic User Interface) นั้นคือผู้ใช้พัฒนาโปรแกรมไม่จำเป็นต้องเขียน code หรือ

คำสั่งใดๆ ทั้งสิ้น และภาษาที่ใช้ในโปรแกรมจะเรียกว่าเป็นภาษารูปภาพหรือเรียกอีกอย่างว่าภาษา G (Graphical Language) ซึ่งจะแทนการเขียนโปรแกรมเป็นบรรทัดภาษาพื้นฐานเช่น C, BASIC หรือ FORTRAN ด้วยรูปภาพ หรือสัญลักษณ์ทั้งหมดโดยจะช่วยอำนวยความสะดวกและสามารถลดเวลาในการเขียนโปรแกรมลงไปได้มากโดยเฉพาะ ในงานเขียนโปรแกรมคอมพิวเตอร์เพื่อเชื่อมต่อกับอุปกรณ์ภายนอกเช่น Port หรือ Card ต่างๆรวมถึงการจัดวาง ตำแหน่งในหน่วยความจำเพื่อที่จะสามารถรวบรวมข้อมูลมาใช้ในการคำนวณและเก็บขอมูลให้ได้ประโยชน์สูงสุด

สำหรับโปรแกรมที่พัฒนาขึ้นโดย LabVIEW จะเรียกว่า Virtual Instrument (VI) เพราะลักษณะที่ ปรากฏทางจอภาพเมื่อเริ่มใช้งานจะเหมือนกับเครื่องมือหรืออุปกรณ์ทางวิศวกรรมในขณะเดียวกันหลังฉากของอุปกรณ์ เสมือนจริงเหล่านั้นจะเป็นการทำงานของพังก์ชันต่างๆซึ่งในหนึ่ง Virtual Instrument (VI) จะประกอบด้วย ส่วนประกอบ 2 ส่วนคือ

1. Front Panel เป็นส่วนตั้งค่าการวัดและอ่านค่าตัวเลขหรือกราฟที่ออกมาจากblock diagram จึงทา หน้าที่เสมือนเครื่องมือวัดจริงโดย input ที่ป้อนเข้าไปจะเป็นตัวควบคุม ส่วน output ที่ออกมาจะเป็นตัว แสดงผล

Front Panel

สำหรับหน้า Front Panel ของ LabVIEW จะมีส่วนประกอบที่สำคัญ 2 แบบคือ

- 1.) Controls มีหน้าที่เป็นตัวควบคุมคือการใส่ค่า Input จากผู้ใช้ลักษณะของ Controls เช่น ปุ่มปรับค่า, สะพานปิด–เปิดไฟ, แทงเลื่อนเพื่อปรับค่า, การให้ค่าด้วยตัวเลข Digital หรืออื่นๆดังนั้น Controls คือการ กำหนดค่าหรือแหล่ง (source)
- 2.) Indicators มีหน้าที่เป็นตัวแสดงผลเพียงอย่างเดียวโดยจะรับค่าที่ได้จากแหล่งข้อมูลมาแสดงผลซึ่งอาจ ปรากฏในรูปของกราฟ, เข็มชี้, ระดับของเหลวหรืออื่นๆ Indicators นี้เปรียบเสมือน output เพื่อให้ผู้ใช้ได้ทราบค่า สิ่งที่เรากำลังวิเคราะห์อยู่และผู้ใช้งานจะไม่สามารถปรับค่าต่างๆบน Indicators ได้โดยตรงแต่จะต้องมีแหล่งข้อมูลที่ ส่งให้กับ Indicators เหล่านี้
 - 2. Block Diagram ทำหน้าที่เสมือนเป็น Source Code โดยใช้โปรแกรมภาษากราฟฟิก องค์ประกอบ ของ block diagram นี้จะแทนโปรแกรม Node เช่น For Loop, Case Structure และฟังก์ชัน ทางคณิตศาสตร์ เป็นต้น

Block Diagram

นอกจากนี้ยังมีส่วนอื่นๆ เช่น ไอคอน เครื่องมือ และฟังก์ชันต่างๆ เพื่อการออกแบบในสองส่วนด้านบนดังที่กล่าวข้างต้น

ไอคอนเครื่องมือ และฟังก์ชันต่างๆ

ความสามารถของโปรแกรม LabVIEW

เนื่องจากบริษัทNational Instrument(NI) ซึ่งเป็นผู้พัฒนาโปรแกรม LabVIEW มี Product ในการพัฒนา อยู่มากมายทั้ง Hardware และ Software จึงทาให้โปรแกรม LabVIEW มีความสามารถในการติดต่อ Hardware อย่างหลากหลายเช่น

Hardware

การใช้ โปรแกรม LabVIEW เพื่อเชื่อมต่อกับฮาร์ดแวร์ภายนอกทำได้โดยผ่านทางการ์ด DAQ (Data Acquisition) การเชื่อมต่อสามารถเชื่อมต่อกับพอร์ต (Port) ได้หลายชนิด เช่น พอร์ตขนาน (Parallel Port), พอร์ตอนุกรม (serial port), GPIB, และHPIBเป็นต้น จึงมีแนวความคิดในการออกแบบวงจรขึ้นมา โดยกำหนด คุณสมบัติให้เป็นบอร์ดแบบภายนอกเชื่อมต่อกับคอมพิวเตอร์ผ่านทางพอร์ตอนุกรม(RS-232) มีจำนวนอินพุต-เอ้าต์พุต 16 ช่อง (Channel) อินพุตทำงานได้ทั้งโหมดดิจิตอลอินพุตและอนาลอกอินพุต สำหรับเอ้าต์พุตกำหนด ให้เป็นแบบ ดิจิตอลเอ้าต์พุต ออกแบบให้สร้างง่ายและต้นทุนต้องไม่สูงมากจนเกินไป

Software

- Protocol ต่างๆในทางอุตสาหกรรม LabVIEW ก็สามารถติดต่อสื่อสารได้รวมทั้ง PLC ยี่ห้อต่างๆ และงาน SCADA LabVIEW ก็สามารถทำได้เหมือนโปรแกรม SCADA ทั่วไป และบริษัท NIยังมี PLC ของตนเองขายอีก
- ความสามารถในการทำ Image Processing ก็ทำได้ไม่แพ้ Image Processing ในท้องตลาด
- สามารถติดต่อกับ Database มาตรฐานรวมทั้งการควบคุมการทำงานกับโปรแกรม MS-OFFICE และอื่นๆ ใน windows

ตัวอย่างการใช้งานโปรแกรม

1. การใช้ฟังก์ชัน Numeric

ไปหน้า Front Panel >> คลิกเมาส์ขวา >> Numeric

มีหลากหลายแบบสามารถเลือกได้ตามความต้องการของผู้ใช้

ฟังก์ชัน GATE Numeric การบวก ลบเลข

ไปหน้า Block Diagram >> คลิกเมาส์ขวา >> Numeric

สามารถเลือกได้ตามความต้องการของผู้ใช้

ตัวอย่างการใช้ฟังก์ชัน Numeric ในการบวกเลขหา Output

ส่วน Block Diagram

ส่วน Front Panel

Example 1: จงคำนวณสูตรพีฐาโกรัส $A^2+B^2=C^2$

ให้ A, B เป็น Input และ C เป็น Output

จะได้
$$C=\sqrt{(A^2+B^2)}$$

ส่วน Block Diagram

ส่วน Front Panel

2. การใช้ฟังก์ชัน Formula Node

ไปหน้า Block Diagram >> คลิกเมาส์ขวา >> Structures >> Formula Node

ซึ่ง Output ที่ได้จะเป็นไปตามที่เราโปรแกรมไว้ในกรอบ Formula Node ตัวอย่างเช่น C = A+B

ตัวอย่างการใช้ฟังก์ชัน Formula Node (C = A+B)

ส่วน Block Diagram

ส่วน Front Panel

3. การใช้ฟังก์ชัน Formula

ไปหน้า Block Diagram >> คลิกเมาส์ขวา >> Express >> Arithmetic & Comparison >> Formula

ซึ่งOutput ที่ได้จะเป็นไปตามที่เราเขียนไว้ในตัว Formula

ตัวอย่างการใช้ Formula

ส่วน Block Diagram

ส่วน Front Panel

4. การใช้ AND GATE, OR GATE

เลือกใช้ AND GATE, OR GATE โดยคลิกเมาส์ขวาที่หน้า Block Diagram >> Boolean

เลือกใช้ LED

ตัวอย่างการใช้ AND GATE, OR GATE

ส่วน Block Diagram และ Front Panel

5. การใช้ Greater (มากกว่า)

คลิกเมาส์ขวาที่หน้า Block Diagram >> Comparison >> Greater?

หรือเลือกใช้ฟังก์ชัน Comparison แล้วเลือก Greater ก็ได้

ตัวอย่างการใช้ Greater (มากกว่า)

ส่วน Block Diagram และ Front Panel

6. การใช้ Scaling and Mapping

คลิกเมาส์ขวาที่หน้า Block Diagram >> Express >> Arithmetic & Comparison >> Scaling and Mapping

ตัวอย่างการใช้ Scaling and Mapping แปลงสัญญาณ 4-20 mA to 1-5 V

ส่วน Block Diagram และ Front Panel

7. การใช้ Case Structures

คลิกเมาส์ขวาที่หน้า Block Diagram >> Structures >> Case Structures

ตัวอย่างการใช้ Case Structures

ส่วน Block Diagram และ Front Panel

Example 2: วัดระดับน้ำในแทงค์น้ำโดยให้ LED แสดงผลดังนี้

0-11% LED แสดงผลเป็นสีแดง

11-90% LED แสดงผลเป็นสีเขียว

91-100% LED แสดงผลเป็นสีแดง

วิธีทำ: เลือกใช้พังก์ชัน Comparison แล้วเลือก In Range ตั้งไว้ที่ 11 – 90 เพื่อให้ LED แสดงผลเป็นสีเขียว (ON) นอกนั้นแสดงผลเป็นสีแดง(OFF)

ส่วน Block Diagram และ Front Panel

Example 3: วัดความเร็วหน่วย km/h โดยใช้สวิตซ์เป็นตัวเปลี่ยนค่าแสดงผลความเร็วเป็น km/h กับ mph พร้อมแสดงผลเป็น % และแสดงผล LED เป็น Normal, Warning และ Alarm ดังนี้

- < 80% LED แสดงผลเป็นสีเขียว (Normal)
- 80-90% LED แสดงผลเป็นสีเหลือง (Warning)
- > 90% LED แสดงผลเป็นสีแดง (Alarm)
- * Max speed = รหัสนักศึกษา 3 ตัวท้าย
- ** 1 mph = 1.609 km/h

ส่วน Block Diagram

ส่วน Front Panel

สรุปผลการทดลอง

จาการทดลองทำให้ได้รับความรู้เกี่ยวกับการใช้ฟังก์ชันต่างๆในโปรแกรม LabVIEW 2014 ทำให้เราได้ฝึก ใช้โปรแกรมจริง และฝึกคิด แก้ปัญหาต่างๆที่เกิดขึ้นในแต่ละการทดลอง เพื่อคำนวณหา Output ตามที่เราต้องการ ซึ่ง สามารถนำไปประยุกต์ใช้เพื่อให้เกิดประโยชน์สูงสุดต่อไปในภายหน้าได้