10.3.3. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

Рассмотрим линейное однородное уравнение второго порядка

$$a_0 y'' + a_1 y' + a_2 y = 0,$$
 (10.14)

где $a_0, a_1, a_2 \in \square$, $a_0 \neq 0$.

Будем искать решение дифференциального уравнения (10.14) в виде $y = e^{kx}$. Подставим эту функцию в уравнение:

$$y' = k e^{kx}, \ y'' = k^2 e^{kx} \implies a_0 k^2 e^{kx} + a_1 k e^{kx} + a_2 e^{kx} = 0 \implies a_0 k^2 + a_1 k + a_2 = 0.$$
 (10.15)

Если k удовлетворяет уравнению (10.15), то функция $y = e^{kx}$ является решением дифференциального уравнения (10.14).

Уравнение (10.15) называется *характеристическим уравнением* линейного однородного дифференциального уравнения (10.14).

Решение дифференциального уравнения (10.14) будет зависеть от характера корней квадратного уравнения (10.15). Как всякое квадратное уравнение, оно может иметь либо пару действительных различных корней (D>0), либо совпадающие (двукратные) корни (D=0), либо пару комплексно-сопряженных корней (D<0).

Рассмотрим всевозможные случаи.

1) Пусть характеристическое уравнение имеет *различные действительные* корни $k_1 \neq k_2$. Тогда $y_1 = e^{k_1 x}$, $y_2 = e^{k_2 x}$ — решения дифференциального уравнения (10.14), причем $\frac{y_1}{y_2} = \frac{e^{k_1 x}}{e^{k_2 x}} \neq const$. Следовательно, y_1 , y_2 линейно независимы, а потому образуют ф.с.р. По теореме 3 общее решение (10.14) в этом случае имеет вид

$$y = C_1 e^{k_1 x} + C_2 e^{k_2 x}.$$

ПРИМЕР. Найти общее решение дифференциального уравнения y'' - 2y' - 8y = 0.

Составим и решим характеристическое уравнение: $k^2 - 2k - 8 = 0 \implies k_1 = 4, \ k_2 = -2 \implies y_1 = e^{4x}, \ y_2 = e^{-2x} - \phi.c.p.$

Тогда $y = C_1 e^{4x} + C_2 e^{-2x}$ — общее решение этого дифференциального уравнения.

2) Пусть характеристическое уравнение имеет *действительные равные* корни $k_1 = k_2 = k$. Тогда $y_1 = e^{kx}$ — решение дифференциального уравнения (10.14). Покажем, что в качестве второго решения, линейно независимого с этим, можно взять функцию $y_2 = xe^{kx}$.

Подставим эту функцию в уравнение:

$$y' = e^{kx} + kxe^{kx}, \quad y'' = ke^{kx} + ke^{kx} + k^2xe^{kx} = 2ke^{kx} + k^2xe^{kx} \implies a_0(2ke^{kx} + k^2xe^{kx}) + a_1(e^{kx} + kxe^{kx}) + a_2xe^{kx} = 0 \implies x(a_0k^2 + a_1k + a_2) + 2a_0k + a_1 = 0,$$

где k — двукратный корень уравнения (10.15). По теореме Виета $k_1+k_2=2k=-\frac{a_1}{a_0} \implies 2a_0\,k+a_1=0$, поэтому $y_2=x\,e^{k\,x}$ удовлетворяет уравне-

нию (10.14). Кроме того, $\frac{y_1}{y_2} = \frac{e^{kx}}{xe^{kx}} \neq const$, то есть y_1, y_2 образуют ф.с.р., и общее решение дифференциального уравнения (10.14) в этом случае имеет вид:

$$y = e^{kx} \left(C_1 + C_2 x \right).$$

ПРИМЕР. Найти общее решение дифференциального уравнения y'' + 10y' + 25y = 0.

Характеристическое уравнение

$$k^{2} + 10k + 25 = 0 \implies (k+5)^{2} = 0 \implies k_{1,2} = -5.$$

Отсюда ф.с.р. состоит из функций $y_1 = e^{-5x}$, $y_2 = xe^{-5x}$ и общее решение имеет вид $y = e^{-5x} (C_1 + C_2 x)$.

3) Пусть характеристическое уравнение (10.15) имеет комплексные корни $k_{1,2}=\alpha\pm\beta i$. Так как $k_1\neq k_2$, то решения $\overline{y_1}=e^{(\alpha+\beta i)x}$, $\overline{y_2}=e^{(\alpha-\beta i)x}$ линейно независимы, значит, образуют ф.с.р. Но по теореме 1 при любых C_1,C_2 $y=C_1$ y_1+C_2 y_2 — решение (10.14), поэтому подберем постоянные C_1 и C_2 так, чтобы получить пару действительных линейно независимых решений уравнения. Воспользуемся для этого формулой Эйлера (она будет доказана позже в гл.13)

$$e^{i\varphi} = \cos\varphi + i\sin\varphi. \tag{10.16}$$
 Из (10.16) имеем:
$$\overline{y_1} = e^{(\alpha+\beta i)x} = e^{\alpha x} \left(\cos\beta x + i\sin\beta x\right),$$

$$\overline{y_2} = e^{(\alpha-\beta i)x} = e^{\alpha x} \left(\cos\beta x - i\sin\beta x\right).$$

Отсюда новая *действительная* фундаментальная система решений может быть составлена из функций $y_1 = \frac{\overline{y_1} + \overline{y_2}}{2} = e^{\alpha x} \cos \beta x$ и $y_1 = \frac{\overline{y_1} - \overline{y_2}}{2i} = e^{\alpha x} \sin \beta x$, а общее решение дифференциального уравнения (10.14) тогда имеет вид:

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x).$$

ПРИМЕР. Найти общее решение дифференциального уравнения y'' - 2y' + 5y = 0.

Характеристическое уравнение $k^2-2k+5=0$ имеет комплексные корни $k_{1,2}=1\pm 2i$: $\alpha={\rm Re}\ k_1=1,\ \beta={\rm Im}\ k_1=2$.

Следовательно, ф.с.р. данного уравнения состоит из функций $y_1 = e^x \cos 2x$, $y_2 = e^x \sin 2x$, а $y = e^x \left(C_1 \cos 2x + C_2 \sin 2x \right)$ – общее решение.

Все вышесказанное можно систематизировать в виде таблицы:

Дифференциаль- ное уравнение	$a_0 y'' + a_1 y' + a_2 y = 0$		
Характеристиче-			
ское уравнение	$a_0 k^2 + a_1 k + a_2 = 0$		
Корни	$k_1 \neq k_2, \ k_{1,2} \in \square$	$k_1 = k_2 = k, \ k \in \square$	$k_{1,2} = \alpha \pm i \beta$
Ф.с.р.	$y_1 = e^{k_1 x}, \ y_2 = e^{k_2 x}$	$y_1 = e^{kx}, \ y_2 = xe^k$	$\int_{0}^{x} y_1 = e^{\alpha x} \cos \beta x, \ y_2 = e^{\alpha x} \sin \beta x$
Общее решение	$y = C_1 e^{k_1 x} + C_2 e^{k_2}$	$\int_{0}^{x} y = e^{kx} \left(C_1 + x C_2 \right)$	$y = e^{\alpha x} \left(C_1 \cos \beta x + C_2 \sin \beta x \right)$

10.3.4. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ n-го ПОРЯДКА

Для линейного однородного дифференциального уравнения n-го порядка

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0,$$
 (10.17)

 $a_i \in \mathbf{R}$, i = 0,1,...,n, характеристическое уравнение имеет вид: