SqueezeNet

Мотивация

- 1. Сети стали слишком большими, distributed learning зачастую упирается в пересылку градиентов, так как весов стало сотни миллионов.
- 2. Меньший вес модели нужен для более быстрого доставления модели к клиенту (например, пересылать 4 GB сеть на клиент для self driving саг это очень неприятно)
- 3. Большие сети нельзя запустить на слабых процессорах типа мобильных, или FPGA.

Идеи SqueezeNet

- 1. Заменить 3х3 фильтры на 1х1, так как 1х1 фильтр содержит в 9 раз меньше параметров.
- 2. Уменьшить количество входных каналов для сверток 3x3, так как количество параметров (без bias) для свертки 3x3 это (number of input channels) · (number of filters) · ($3 \cdot 3$).
- 3. Делать downsampling ближе к "концу"сети, но более агрессивный. Действительно, max pooling или свертки со stride > 1 снижают размер активационных карт. Но так как в статье цель снизить количество параметров, то, возможно, перспективно делать такой downsample начиная с какогото момента, а первичные слои оставить полными.

Основной модуль статьи

Основной модуль статьи - модуль Fire, он воплощает в себе все идеи выше.

Figure 1: Microarchitectural view: Organization of convolution filters in the **Fire module**. In this example, $s_{1x1} = 3$, $e_{1x1} = 4$, and $e_{3x3} = 4$. We illustrate the convolution filters but not the activations

У него 3 основных параметра:

 s_{1x1} — количество сверток 1x1 в squeeze модуле,

 e_{1x1} — количество сверток 1x1 в expand модуле,

 $e_{3x3}-$ количество сверток 3x3 в expand модуле

Figure 2: Macroarchitectural view of our SqueezeNet architecture. Left: SqueezeNet (Section 3.3); Middle: SqueezeNet with simple bypass (Section 6); Right: SqueezeNet with complex bypass (Section 6).

Реализация

Авторы реализовали три подхода:

- 1. SqueezeNet. Сеть, состоящая из модулей Fire и max pooling'ов.
- 2. SqueezeNet + Skip Connections. Resnet like skip connections там, где размерность выхода совпадает с размерностью входа.
- 3. SqueezeNet + complex Skip Connections. Тут они взяли подход №2 и добавили skip connections с свертками 1х1, чтобы выровнять входную и выходную размерности.

Поговорим пока про первый подход. Таблица размерностей SqueezeNet:

Table 1: SqueezeNet architectural dimensions. (The formatting of this table was inspired by the Inception2 paper (Ioffe & Szegedy, 2015).)

layer name/type	output size	filter size / stride (if not a fire layer)	depth	S _{1x1} (#1x1 squeeze)	e _{1x1} (#1x1 expand)	e _{3x3} (#3x3 expand)	S _{1x1} sparsity	e _{1x1}	e _{3x3}	# bits	#parameter before pruning	#parameter after pruning
input image	224x224x3										-	-
conv1	111x111x96	7x7/2 (x96)	1				1	L00% (7x7))	6bit	14,208	14,208
maxpool1	55x55x96	3x3/2	0									
fire2	55x55x128		2	16	64	64	100%	100%	33%	6bit	11,920	5,746
fire3	55x55x128		2	16	64	64	100%	100%	33%	6bit	12,432	6,258
fire4	55x55x256		2	32	128	128	100%	100%	33%	6bit	45,344	20,646
maxpool4	27x27x256	3x3/2	0									
fire5	27x27x256		2	32	128	128	100%	100%	33%	6bit	49,440	24,742
fire6	27x27x384		2	48	192	192	100%	50%	33%	6bit	104,880	44,700
fire7	27x27x384		2	48	192	192	50%	100%	33%	6bit	111,024	46,236
fire8	27x27x512		2	64	256	256	100%	50%	33%	6bit	188,992	77,581
maxpool8	13x12x512	3x3/2	0									
fire9	13x13x512		2	64	256	256	50%	100%	30%	6bit	197,184	77,581
conv10	13x13x1000	1x1/1 (x1000)	1					20 % (3x3)		6bit	513,000	103,400
avgpool10	1x1x1000	13x13/1	0									
	activations		pa	rameters				compress	ion info		1,248,424 (total)	421,098 (total)

Здесь pruning - это процесс, придуманный Han et al. в 2015, который зануляет некоторые веса в модели, которые ниже определенного порога, таким образом превращая матрицы в разреженные.

Также стоит оговорится о технике квантизации под названием Deep Compression, который к момент выхода этой статьи был главным методом "ужимания" сетей.

Результаты SqueezeNet:

Table 2: Comparing SqueezeNet to model compression approaches. By *model size*, we mean the number of bytes required to store all of the parameters in the trained model.

difficult of bytes it	equired to store un o	i tiic pui	unicters in the trum	ca moaci.			
CNN architecture	Compression Approach	Data	Original \rightarrow	Reduction in	Top-1	Top-5	1
		Type	Compressed Model	Model Size	ImageNet	ImageNet	
			Size	vs. AlexNet	Accuracy	Accuracy	
AlexNet	None (baseline)	32 bit	240MB	1x	57.2%	80.3%	1
AlexNet	SVD (Denton et al.,	32 bit	$240MB \rightarrow 48MB$	5x	56.0%	79.4%	1
	2014)						
AlexNet	Network Pruning (Han	32 bit	$240MB \rightarrow 27MB$	9x	57.2%	80.3%	1
	et al., 2015b)						
AlexNet	Deep	5-8 bit	$240MB \rightarrow 6.9MB$	35x	57.2%	80.3%	1
	Compression (Han						
	et al., 2015a)						
SqueezeNet (ours)	None	32 bit	4.8MB	50x	57.5%	80.3%	1
SqueezeNet (ours)	Deep Compression	8 bit	$4.8MB \rightarrow 0.66MB$	363x	57.5%	80.3%	1
SqueezeNet (ours)	Deep Compression	6 bit	$4.8MB \rightarrow 0.47MB$	510x	57.5%	80.3%	
	AlexNet AlexNet AlexNet AlexNet SqueezeNet (ours) SqueezeNet (ours)	CNN architecture Compression Approach AlexNet None (baseline) AlexNet SVD (Denton et al., 2014) AlexNet Network Pruning (Han et al., 2015b) AlexNet Deep Compression (Han et al., 2015a) SqueezeNet (ours) None SqueezeNet (ours) Deep Compression	CNN architecture Compression Approach Data Type AlexNet None (baseline) 32 bit AlexNet SVD (Denton et al., 2014) 32 bit AlexNet Network Pruning (Han et al., 2015b) 32 bit AlexNet Deep Compression (Han et al., 2015a) 5-8 bit SqueezeNet (ours) None 32 bit SqueezeNet (ours) Deep Compression 8 bit	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c } \hline CNN \ architecture & \hline Compression \ Approach & Data \\ \hline CNN \ architecture & Compression \ Approach & Data \\ \hline Type & Compressed \ Model \\ \hline Size & vs. \ AlexNet & Accuracy \\ \hline AlexNet & None \ (baseline) & 32 \ bit & 240MB & 1x & 57.2\% & 80.3\% \\ \hline AlexNet & SVD \ (Denton \ et \ al., \\ \hline 2014) & 32 \ bit & 240MB \rightarrow 48MB & 5x & 56.0\% & 79.4\% \\ \hline AlexNet & Network \ Pruning \ (Han \ et \ al., 2015b) & 240MB \rightarrow 27MB & 9x & 57.2\% & 80.3\% \\ \hline AlexNet & Deep & 5-8 \ bit & 240MB \rightarrow 6.9MB & 35x & 57.2\% & 80.3\% \\ \hline Compression \ (Han \ et \ al., 2015a) & 5-8 \ bit & 4.8MB \rightarrow 6.9MB & 50x & 57.5\% & 80.3\% \\ \hline SqueezeNet \ (ours) & None & 32 \ bit & 4.8MB \rightarrow 0.66MB & 363x & 57.5\% & 80.3\% \\ \hline \ SqueezeNet \ (ours) & Deep \ Compression & 8 \ bit & 4.8MB \rightarrow 0.66MB & 363x & 57.5\% & 80.3\% \\ \hline \end{array}$

SqueezeNet даже без техники Deep Compression имеет размер в 50 раз меньше, чем у AlexNet, прародителя современных сверточных сетей, при этом качество такое же. Применяя Deep Compression авторы получили уменьшение в 510 раз. Модель весит всего 0.47 MB.

Skip Connections?

А как же Skip Connections? Помогают ли они? Вот результаты:

Table 3: SqueezeNet accuracy and model size using different macroarchitecture configurations

Architecture	Top-1 Accuracy	Top-5 Accuracy	Model Size
Vanilla SqueezeNet	57.5%	80.3%	4.8MB
SqueezeNet + Simple Bypass	60.4%	82.5%	4.8MB
SqueezeNet + Complex Bypass	58.8%	82.0%	7.7MB

Resnet like Skip Connections действительно помогли, увеличивая качество на 2.9 абсолютных процента, не увеличивая количество параметров. Что интересно, обобщенные Skip Connections, которые, кажется, не должны были работать хуже, чем обычные, работаю хуже, при этом увеличивается количество параметров.

Изучение гиперпараметров

Немаловажно, что авторы изучают влияние некоторых параметров сети на размер и качество.

Определение. $Squeeze\ Ratio\ (SR)$ это отношение количества фильтров в squeeze блоке модуля Fire к количеству фильтров в expand блоке.

Изучается влияние вышеопределенного SR и общего отношения количества сверток 3х3 к 1х1.

Интересно, что на втором графике отношения количества сверток к качеству мы видим, что примерно на 50% качество выходит на плато.

(a) Exploring the impact of the squeeze ratio (SR) on model size and accuracy.

(b) Exploring the impact of the ratio of 3x3 filters in expand layers (pct_{3x3}) on model size and accuracy.

Итоги

Авторы начали большую работу над эффективным использованием параметров в сверточных сетях, и эту работу дальше продолжат очень много исследователей и добьются отличных результатов.

MobileNet

Мотивация

- 1. Сосредоточиться не только на маленьком размере, но и низком энергопотреблении и маленьком lattency нейросетей.
- 2. Улучшить результаты SqueezeNet, не увеличивая сеть.

Идея

Главная идея статьи - Depthwise Separable Convolution.

1. Стандартая свертка.

Свертка \mathbb{K} , stride=1, padding=1 математически выражается так:

$$G_{k,l,n} = \sum_{i,j,m} \mathbb{K}_{i,j,m,n} \cdot F_{k+i-1,l+j-1,m},$$

где F - карта активаций.

Стандартная свертка $C \cdot C$ имеет (number of input channels) \cdot (number of filters) \cdot ($C \cdot C$) параметров.

А количество операций будет:

$$D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F$$
,

где D_F - размерность карты активации, М - ширина, N - высота, D_K - размерность свертки.

2. Depthwise separable convolution Depthwise separable convolution состоит из двух слоев: depthwise convolution и pointwise convolution (1х1 свертка).

 $Depthwise\ separable\ convolution\ c\ 1\ \phi ильтром\ на\ канал\ математически\ выражается\ так:$

$$G_{k,l,m} = \sum_{i,j} \mathbb{K}_{i,j,m} \cdot F_{k+i-1,l+j-1,m}$$

То есть она лишается одной пространственной размерности. Чтобы саггрегировать по этой пространственной размерности используется свертка 1x1.

Количество операций будет:

$$D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F$$
,

где D_F - размерность карты активации, М - ширина, N - высота, D_K - размерность свертки.

В итоге получается выигрыш в количестве операций:

$$\frac{D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F}{D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F} =$$

$$=\frac{1}{N}+\frac{1}{D_K^2}$$

Иллюстрация:

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Также авторы вносят два параметра $\alpha \in (0,1]$ - Width Multiplier, который отвечает за размер М и N на каждом слое, равномерно уменьшая их, и $\rho \in (0,1]$ - Resolution Multiplier, который отвечает за размер активационных карт на каждом слое, тоже равномерно уменьшая их. Регулирование этих двух параметров позволяет достичь оптимального баланса в отношении скорость / качество для определенной задачи.

Результаты

Table 8. MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
GoogleNet	69.8%	1550	6.8
VGG 16	71.5%	15300	138

Table 9. Smaller MobileNet Comparison to Popular Models

Model	ImageNet	Million	n Million	
	Accuracy	Mult-Adds	Parameters	
0.50 MobileNet-160	60.2%	76	1.32	
Squeezenet	57.5%	1700	1.25	
AlexNet	57.2%	720	60	

По первому графику видим, что они побеждают GoogleNet, в своё время очень мощную сеть, уменьшая одновременно и количество параметров и количество вычислений. По второму видим, что они побеждают SqueezeNet, при этом делая на несколько порядков меньше вычислений.

Итоги

Такие факторизованные свертки очень хорошо заработали, при чем авторы перенесли результаты на другие задачи CV. Теперь эта модель занимает почетное место бейзлайн модели в почти любой задаче CV.

Список источников

- \bullet SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND $<\!0.5 \mathrm{MB}$ MODEL SIZE
- MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications