

SEQUENCE LISTING

<110> Zahner, Joseph E.

<120> Inhibitor of cell proliferation and methods of use thereof.

<130> ME 04-001

<140>

<141> 2004-01-04

<150> 10/083,889

<151> 2002-02-27

<160> 25

<170> Microsoft Word 97

<210> 1

<211> 1530

<212> DNA

<213> Homo sapiens

<300>

<301> Liu, J.H.

Wei, S.

Burnette, P.K.

Gamero, A.M.

Hutton, M

Djeu, J.Y.

<302> Functional association of TGF-beta receptor II with cyclin B

<303> Oncogene

<304> 18

<305> 1

<306> 269-275

<307> 1999-01-07

<308> Genbank Accession No. NM_004701

<309> 2000-11-01

<400> 1

aatcctggaa caaggctaca gcgtcgaaga tccccagcgc tgccggctcg gagaggcagtc 60

ctaacggcgc ctcgtacgct agtgtcctcc cttttcagtc cgctccctc cctgggccgg 120

gctggcactc ttgccttccc cgtccctcat ggcgctgctc cgacgcccga cggtgtccag 180

tgattttggag aatattgaca caggagttaa ttctaaagtt aagagtcatg tgactattag 240

gcgaactgtt ttagaagaaa ttggaaatag agttacaacc agagcagcac aagtagctaa 300

gaaagctcag aacaccaaag ttccagttca acccacaaaa acaacaaatg tcaacaaaca 360

actgaaacct actgcttctg tcaaaccagt acagatggaa aagttggctc caaagggtcc 420

ttctcccaca cctgaggatg tctccatgaa ggaagagaat ctctgccaag cttttctga 480

tgccttgctc tgcaaaatcg aggacattga taacgaagat tgggagaacc ctcagctctg	540
cagtgactac gttaaggata tctatcagta tctcaggcag ctggagggtt tgcagtccat	600
aaacccacat ttcttagatg gaagagatat aaatggacgc atgcgtgcc a ctttagtgg	660
ttggctggta caagtccact ccaagtttag gcttcgcag gagactctgt acatgtgcgt	720
tggcattatg gatcgatttt tacaggttca gccagttcc cggaagaagc ttcaattagt	780
tgggattact gctctgctct tggcttccaa gtatgaggag atgtttctc caaatattga	840
agactttgtt tacatcacag acaatgctta taccagttcc caaatccgag aaatggaaac	900
tctaattttg aaagaattga aatttgagtt gggtcgaccc ttgccactac acttcttaag	960
gcgagcatca aaagccgggg aggttgatgt tgaacagcac acttagcca agtatttgat	1020
ggagctgact ctcatcgact atgatatggt gcattatcat cttcttaagg tagcagcagc	1080
tgcttcctgc ttgtctcaga aggttctagg acaaggaaaa tggacttaa agcagcagta	1140
ttacacagga tacacagaga atgaagtatt ggaagtcatg cagcacatgg ccaagaatgt	1200
ggtgaaagta aatgaaaact taactaaatt catcgccatc aagaataagt atgcaagcag	1260
caaactcctg aagatcagca tgatccctca gctgaactca aaagccgtca aagaccttgc	1320
ctccccactg ataggaaggt cctaggctgc cgtggccct gggatgtgt gttcattgt	1380
gcccttttc ttattggttt agaactctt atttgtaca tagtcctctg gtctatctca	1440
tgaaacctct tctcagacca gtttctaaa catatattga gaaaaataa agcgatttgt	1500
ttttcttaag gtaa	1530

<210> 2
<211> 398
<212> PRT
<213> Homo sapiens

<300>

<301> Liu, J.H.
Wei, S.
Burnette, P.K.
Gamero, A.M.
Hutton, M
Djeu, J.Y.

<302> Functional association of TGF-beta receptor II with cyclin B

<303> Oncogene

<304> 18

<305> 1

<306> 269-275

<307> 1999-01-07

<308> Genbank Accession No. NM_004701

<309> 2000-11-01

<400> 2

Met	Ala	Leu	Leu	Arg	Arg	Pro	Thr	Val	Ser	Ser	Asp	Leu	Glu	Asn	Ile
						5			10						15
Asp	Thr	Gly	Val	Asn	Ser	Lys	Val	Lys	Ser	His	Val	Thr	Ile	Arg	Arg
						20		25						30	
Thr	Val	Leu	Glu	Glu	Ile	Gly	Asn	Arg	Val	Thr	Thr	Arg	Ala	Ala	Gln
						35		40					45		
Val	Ala	Lys	Lys	Ala	Gln	Asn	Thr	Lys	Val	Pro	Val	Gln	Pro	Thr	Lys
						50		55				60			
Thr	Thr	Asn	Val	Asn	Lys	Gln	Leu	Lys	Pro	Thr	Ala	Ser	Val	Lys	Pro
						65		70			75				80
Val	Gln	Met	Glu	Lys	Leu	Ala	Pro	Lys	Gly	Pro	Ser	Pro	Thr	Pro	Glu
						85		90						95	
Asp	Val	Ser	Met	Lys	Glu	Glu	Asn	Leu	Cys	Gln	Ala	Phe	Ser	Asp	Ala
						100			105				110		
Leu	Leu	Cys	Lys	Ile	Glu	Asp	Ile	Asp	Asn	Glu	Asp	Trp	Glu	Asn	Pro
						115		120				125			
Gln	Leu	Cys	Ser	Asp	Tyr	Val	Lys	Asp	Ile	Tyr	Gln	Tyr	Leu	Arg	Gln
						130		135			140				
Leu	Glu	Val	Leu	Gln	Ser	Ile	Asn	Pro	His	Phe	Leu	Asp	Gly	Arg	Asp
						145		150			155				160
Ile	Asn	Gly	Arg	Met	Arg	Ala	Ile	Leu	Val	Asp	Trp	Leu	Val	Gln	Val
						165			170			175			
His	Ser	Lys	Phe	Arg	Leu	Leu	Gln	Glu	Thr	Leu	Tyr	Met	Cys	Val	Gly
						180			185			190			
Ile	Met	Asp	Arg	Phe	Leu	Gln	Val	Gln	Pro	Val	Ser	Arg	Lys	Lys	Leu
						195		200				205			
Gln	Leu	Val	Gly	Ile	Thr	Ala	Leu	Leu	Leu	Ala	Ser	Lys	Tyr	Glu	Glu
						210		215			220				
Met	Phe	Ser	Pro	Asn	Ile	Glu	Asp	Phe	Val	Tyr	Ile	Thr	Asp	Asn	Ala
						225		230			235				240
Tyr	Thr	Ser	Ser	Gln	Ile	Arg	Glu	Met	Glu	Thr	Leu	Ile	Leu	Lys	Glu
						245			250				255		
Leu	Lys	Phe	Glu	Leu	Gly	Arg	Pro	Leu	Pro	Leu	His	Phe	Leu	Arg	Arg
						260		265				270			
Ala	Ser	Lys	Ala	Gly	Glu	Val	Asp	Val	Glu	Gln	His	Thr	Leu	Ala	Lys
						275		280			285				
Tyr	Leu	Met	Glu	Leu	Thr	Leu	Ile	Asp	Tyr	Asp	Met	Val	His	Tyr	His

290	295	300
Pro Ser Lys Val Ala Ala Ala Ser Cys Leu Ser Gln Lys Val Leu		
305	310	315
Gly Gln Gly Lys Trp Asn Leu Lys Gln Gln Tyr Tyr Thr Gly Tyr Thr		
325	330	335
Glu Asn Glu Val Leu Glu Val Met Gln His Met Ala Lys Asn Val Val		
340	345	350
Lys Val Asn Glu Asn Leu Thr Lys Phe Ile Ala Ile Lys Asn Lys Tyr		
355	360	365
Ala Ser Ser Lys Leu Leu Lys Ile Ser Met Ile Pro Gln Leu Asn Ser		
370	375	380
Lys Ala Val Lys Asp Leu Ala Ser Pro Leu Ile Gly Arg Ser		
385	390	395
<210> 3		
<211> 70		
<212> PRT		
<213> Homo sapiens		
<400> 3		
Met Ala Leu Leu Arg Arg Pro Thr Val Ser Ser Asp Leu Glu Asn Ile		
5	10	15
Asp Thr Gly Val Asn Ser Lys Val Lys Ser His Val Thr Ile Arg Arg		
20	25	30
Thr Val Leu Glu Glu Ile Gly Asn Arg Val Thr Thr Arg Ala Ala Gln		
35	40	45
Val Ala Lys Lys Ala Gln Asn Thr Lys Val Pro Val Gln Pro Thr Lys		
50	55	60
Thr Thr Asn Val Asn Lys		
65	70	
<210> 4		
<211> 398		
<212> PRT		
<213> Homo sapiens		
<220>		
<221> Site		
<222> (32)		
<223> arginine or alanine		
<220>		
<221> Site		
<222> (35)		
<223> leucine or alanine		

<220>
 <221> Site
 <222> (38)
 <223> isoleucine or alanine

<220>
 <221> Site
 <222> (40)
 <223> asparagine or alanine

<400> 4
 Met Ala Leu Leu Arg Arg Pro Thr Val Ser Ser Asp Leu Glu Asn Ile
 5 10 15

Asp Thr Gly Val Asn Ser Lys Val Lys Ser His Val Thr Ile Arg Xaa
 20 25 30

Thr Val Xaa Glu Glu Xaa Gly Xaa Arg Val Thr Thr Arg Ala Ala Gln
 35 40 45

Val Ala Lys Lys Ala Gln Asn Thr Lys Val Pro Val Gln Pro Thr Lys
 50 55 60

Thr Thr Asn Val Asn Lys Gln Leu Lys Pro Thr Ala Ser Val Lys Pro
 65 70 80

Val Gln Met Glu Lys Leu Ala Pro Lys Gly Pro Ser Pro Thr Pro Glu
 85 90 95

Asp Val Ser Met Lys Glu Glu Asn Leu Cys Gln Ala Phe Ser Asp Ala
 100 105 110

Leu Leu Cys Lys Ile Glu Asp Ile Asp Asn Glu Asp Trp Glu Asn Pro
 115 120 125

Gln Leu Cys Ser Asp Tyr Val Lys Asp Ile Tyr Gln Tyr Leu Arg Gln
 130 135 140

Leu Glu Val Leu Gln Ser Ile Asn Pro His Phe Leu Asp Gly Arg Asp
 145 150 160

Ile Asn Gly Arg Met Arg Ala Ile Leu Val Asp Trp Leu Val Gln Val
 165 170 175

His Ser Lys Phe Arg Leu Leu Gln Glu Thr Leu Tyr Met Cys Val Gly
 180 185 190

Ile Met Asp Arg Phe Leu Gln Val Gln Pro Val Ser Arg Lys Lys Leu
 195 200 205

Gln Leu Val Gly Ile Thr Ala Leu Leu Ala Ser Lys Tyr Glu Glu
 210 215 220

Met Phe Ser Pro Asn Ile Glu Asp Phe Val Tyr Ile Thr Asp Asn Ala
 225 230 240

Tyr Thr Ser Ser Gln Ile Arg Glu Met Glu Thr Leu Ile Leu Lys Glu

245	250	255
Leu Lys Phe Glu Leu Gly Arg Pro Leu Pro Leu His Phe Leu Arg Arg		
260	265	270
Ala Ser Lys Ala Gly Glu Val Asp Val Glu Gln His Thr Leu Ala lys		
275	280	285
Tyr Leu Met Glu Leu thr Leu Ile Asp Tyr Asp Met Val His Tyr His		
290	295	300
Pro Ser Lys Val Ala Ala Ala Ser Cys Leu Ser Gln Lys Val Leu		
305	310	315
Gly Gln Gly Lys Trp Asn Leu Lys Gln Gln Tyr Tyr Thr Gly Tyr Thr		
325	330	335
Glu Asn Glu val Leu Glu Val Met Gln His Met Ala Lys Asn Val Val		
340	345	350
Lys Val Asn Glu Asn Leu Thr Lys Phe Ile Ala Ile Lys Asn Lys Tyr		
355	360	365
Ala Ser Ser Lys Leu Leu Lys Ile Ser Met Ile Pro Gln Leu Asn Ser		
370	375	380
Lys Ala Val Lys Asp Leu Ala Ser Pro Leu Ile Gly Arg Ser		
385	390	395

<210> 5
 <211> 1041
 <212> DNA
 <213> Homo sapiens

<300>
 <301> Watson, R.
 Oskaesson, M.
 Vande Woude, G.F.
 <302> Human DNA sequence homologous to the transforming gene (mos) of
 Moloney murine sarcoma virus.
 <303> EMBO J.
 <304> 4
 <305> 9
 <306> 2245-2248
 <307> 1982-01-07
 <308> Genbank Accession No. NM_004701
 <309> 2000-11-01

<400> 5
 atgccctcgccctggccctacgtccccatccggagcgatgtttcccccattggac 60
 gcgccggccctgcaggactccctcagagcta cctgcgaagctgcttctgggggccacttt
 cctcggggcccgccggctggctgcctgggtctccattgactggagcagg 120
 180

tgcttgctgc agaggctggg agctggaggg tttggctcggtgtacaaggc gacttaccgc	240
ggtgttcctgtggccataaa gcaagtgaac aagtgcacca agaaccgact agcatctcg	300
cggagtttctgggctgagctaacctgtagca aggctgcgcc acgataacat cgtgcgcgt	360
gtggctgcca gcacgcgcac gcccgcaggg tccaatagcc tagggaccat catcatggag	420
ttcggtggca acgtcacttt acaccaagtc atctatggcg ccgcccggcca ccctgagggg	480
gacgcagggg agcctcactg ccgcactgga ggacagttaa gtttgggaaa gtgtctcaag	540
tactcactag atgttgcgaa cggcctgctc ttccctccact cgcaaagcat tgtgcacttg	600
gacctgaagc ccgcgaacat ctgtatcgt gagcaggatg tctgtaaaat tagtgacttc	660
ggttgctctagaagttgga agatctgctgtgcttccaga caccctctta ccctcttagga	720
ggcacataca cccaccgcgc cccggagctc ctgaaaggag agggcgtgac gcctaaagcc	780
gacatttatt ccttgccat cactctctgg caaatgacta ccaagcaggc gccgtattcg	840
ggggagcggc agcacatact gtacgcggtg gtggcctacg acctgcgcccc gtccctctcc	900
gctgccgtct tcgaggactc gctccccggg cagcgccttg gggacgtcat ccagcgtgc	960
tggagaccca gcgcggcgca gaggccgagc gcgcggctgc ttttggtgaa tctcacctct	1020
ttgaaagctg aactcggctg a	1041

<210> 6
<211> 346
<212> PRT
<213> Homo sapiens

<300>
<301> Watson, R.
Oskaesson, M.
Vande Woude, G.F.
<302> Human DNA sequence homologous to the transforming gene (mos) of Moloney murine sarcoma virus.
<303> EMBO J.
<304> 4
<305> 9
<306> 2245-2248
<307> 1982-01-07
<308> Genbank Accession No. NM_004701
<309> 2000-11-01

<400> 6
Met Pro Ser Pro Leu Ala Leu Arg Pro Tyr Leu Arg Ser Glu Phe Ser
5 10 15

Pro Ser Val Asp Ala Arg Pro Cys Ser Ser Pro Ser Glu Leu Pro Ala
20 25 30

Lys Leu Leu Leu Gly Ala Thr Leu Pro Arg Ala Pro Arg Leu Pro Arg
 35 40 45

Arg Leu Ala Trp Cys Ser Ile Asp Trp Glu Gln Val Cys leu Leu Gln
 50 55 60

Arg Leu Gly Ala Gly Gly Phe Gly Ser Val Tyr Lys Ala Thr Tyr Arg
 65 70 75 80

Gly Val Pro Val Ala Ile Lys Gln Val Asn Lys Cys Thr Lys Asn Arg
 85 90 95

Leu Ala Ser Arg Arg Ser Phe Trp Ala Glu Leu Asn Val Ala Arg Leu
 100 105 110

Arg His Asp Asn Ile Val Arg Val Val Ala Ala Ser Thr Arg Thr Pro
 115 120 125

Ala Gly Ser Asn Ser Leu Gly Thr Ile Ile Met Glu Phe Gly Gly Asn
 130 135 140

Val Thr Leu His Gln Val Ile Tyr Gly Ala Ala Gly His Pro Glu Gly
 145 150 155 160

Asp Ala Gly Glu Pro His Cys Arg Thr Gly Gly Gln Leu Ser Leu Gly
 165 170 175

Lys Cys Leu Lys Tyr Ser Leu Asp Val Val Asn Gly Leu Leu Phe Leu
 180 185 190

His Ser Gln Ser Ile Val His Leu Asp Leu Lys Pro Ala Asn Ile Leu
 195 200 205

Ile Ser Glu Gln Asp Val Cys Lys Ile Ser Asp Phe Gly Cys Ser Glu
 210 215 220

Lys Leu Glu Asp Leu Leu Cys Phe Gln Thr Pro Ser Tyr Pro Leu Gly
 225 230 235 240

Gly Thr Tyr Thr His Arg Ala Pro Glu Leu Leu Lys Gly Glu Gly Val
 245 250 255

Thr Pro Lys Ala Asp Ile Tyr Ser Phe Ala Ile Thr Leu Trp Gln Met
 260 265 270

Thr Thr Lys Gln Ala Pro Tyr Ser Gly Glu Arg Gln His Ile Leu Tyr
 275 280 285

Ala Val Val Ala Tyr Asp Leu Arg Pro Ser Leu Ser Ala Ala Val Phe
 290 295 300

Glu Asp Ser Leu Pro Gly Gln Arg Leu Gly Asp Val Ile Gln Arg Cys
 305 310 315 320

Trp Arg Pro Ser Ala Ala Gln Arg Pro Ser Ala Arg Leu Leu Leu Val
 325 330 335

Asp Leu Thr Ser Leu Lys Ala Glu Leu Gly
340 345

<210> 7
<211> 16
<212> PRT
<213> Karposi virus

<400> 7
Ala Ala Val Ala Leu Leu Pro Ala Val Leu Leu Ala Leu Leu Ala Pro
 5 10 15

<210> 8
<211> 12
<212> PRT
<213> Mammalian

<400> 8
Ala Ala Val Leu Leu Pro Val Leu Leu Ala Ala Pro
 5 10

<210> 9
<211> 15
<212> PRT
<213> Mammalian

<400> 9
Val Thr Val Leu Ala Leu Gly Ala Leu Ala Gly Val Gly Val Gly
 5 10 15

<210> 10
<211> 17
<212> PRT
<213> HIV-1

<400> 10
Gly Ala Leu Phe Leu Gly Phe Leu Gly Ala Ala Gly Ser Thr Met Gly
 5 10 15

Ala
17

<210> 11
<211> 33
<212> PRT
<213> Caiman sp.

<400> 11
Met Gly Leu Gly Leu His Leu Leu Val Leu Ala Ala Ala Leu Gln Gly
 5 10 15

Ala Met Gly Leu Gly Leu His Leu Leu Leu Ala Ala Ala Leu Gln Gly
 20 25 30

Ala
33

<210> 12
<211> 30
<212> PRT
<213> Influenza

<400> 12
Trp Glu Ala Lys Leu Ala Lys Ala Leu Ala Lys Ala Leu Ala Lys His
5 10 15

Leu Ala Lys Ala Leu Ala Lys Ala Leu Lys Ala Cys Glu Ala
20 25 30

<210> 13
<211> 30
<212> PRT
<213> Influenza

<400> 13
Trp Glu Ala Ala Leu Ala Glu Ala Leu Ala Glu Ala Leu Ala Glu His
5 10 15

Leu Ala Glu Ala Leu Ala Glu Ala Leu Glu Ala Leu Glu Ala
20 25 30

<210> 14
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic amino acid polymer

<400> 14
Leu Ala Arg Leu Leu Ala Arg Leu Leu Ala Arg Leu Leu Ala Arg Leu
5 10 15

Leu Ala Arg Leu Leu Ala Arg Leu
20

<210> 15
<211> 18
<212> PRT
<213> Unknown

<220>
<223> amphipathic cationic amino acid polymer

<400> 15
Lys Leu Leu Lys Leu Leu Lys Leu Trp Lys Leu Leu Leu Lys Leu

5

10

15

Leu Lys
18

<210> 16
<211> 15
<212> PRT
<213> Drosophila melanogaster

<400> 16
Arg Gln Ile Lys Ile Trp Phe Gln Arg Arg Met Lys Lys Trp Lys
5 10 15

<210> 17
<211> 11
<212> PRT
<213> HIV-1

<400> 17
Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg
5 10

<210> 18
<211> 8
<212> PRT
<213> HIV-1

<400> 18
Gly Arg Lys Lys Arg Arg Gln Arg
5

<210> 19
<211> 34
<212> PRT
<213> Mammal

<400> 19
Asp Ala Ala Thr Ala Thr Arg Gly Arg Ser Ala Ala Ser Arg Pro Thr
5 10 15

Glu Arg Pro Arg Ala Pro Ala Arg Ser Ala Ser Arg Pro Arg Arg Pro
20 25 30

Val Glu
34

<210> 20
<211> 27
<212> PRT
<213> Artificial sequence

<220>

<223> Composite peptide containing elements of galanin and mastoparan

<400> 20

Gly Trp Thr Leu Asn Ser Ala Gly Tyr Leu Leu Gly Lys Ile Asn Leu
5 10 15

Lys Ala Leu Ala Ala Leu Ala Lys Lys Ile Leu
20 25

<210> 21

<211> 1375

<212> DNA

<213> Homo sapiens

<400> 21

gaattcgcca	ggaagaagcg	gaggcaacga	aatcctggaa	caaggctaca	gcgtcgaaga	60
tccccagcgc	tgcgggctcg	gagagcagtc	ctaacggcgc	ctcgtacgct	agtgtccctcc	120
cttttcagtc	cgcgtccctc	cctgggccgg	gctggcactc	ttgccttccc	cgtccctcat	180
ggcgctgctc	cgacgcccga	cggtgtccag	tgatttggag	aatattgaca	caggagttaa	240
ttctaaagtt	aagagtcatg	tgactattag	gcgaactgtt	ttagaagaaa	ttggaaatag	300
agttacaacc	agagcagcac	aagtagctaa	gaaagctcag	aacaccaaag	ttccagttca	360
acccaccaaa	acaacaaatg	tcaacaaaca	actgaaacct	actgcttctg	tcaaaccagt	420
acagatggaa	aagttggctc	caaagggtcc	ttctcccaca	cctgaggatg	tctccatgaa	480
ggaagagaat	ctctgccaag	cttttctga	tgccttgctc	tgcaaaatcg	aggacattga	540
taacgaagat	tgggagaacc	ctcagctctg	cagtgactac	gttaaggata	tctatcagta	600
tctcaggcag	ctggagggttt	tgcaagtccat	aaaccacat	ttcttagatg	gaagagatat	660
aaatggacgc	atgcgtgcca	tccttagtgga	ttggctggta	caagtccact	ccaagtttag	720
gcttctgcag	gagactctgt	acatgtgcgt	tggcattatg	gatcgatttt	tacaggttca	780
gccagttcc	cggaagaagc	ttcaattagt	tgggattact	gctctgctct	tggcttccaa	840
gtatgaggag	atgtttctc	caaatatgt	agactttgtt	tacatcacag	acaatgctta	900
taccagttcc	caaatccgag	aaatggaaac	tctaattttg	aaagaattga	aattttagtt	960
gggtcgaccc	ttgccactac	acttcttaag	gcgagcatca	aaagccgggg	aggttcatgt	1020
tgaacagcac	acttagcca	agtatttgat	ggagctgact	ctcatcgact	atgatatgtt	1080
gcattatcat	ccttctaagg	tagcagcagc	tgcttcctgc	ttgtctcaga	aggttctagg	1140
acaaggaaaa	tggaacttaa	agcagcagta	ttacacagga	tacacagaga	atgaagtatt	1200

ggaagtcatg cagcacatgg ccaagaatgt ggtgaaagta aatgaaaact taactaaatt 1260
 catcgccatc aagaataagt atgcaaggcag caaactcctg aagatcagca tgatccctca 1320
 gctgaactca aaagccgtca aagaccttgc ctccccactg ataggaaggt cctag 1375

 <210> 22
 <211> 408
 <212> PRT
 <213> Homo sapiens

 <400> 22
 glu phe gly arg lys lys arg arg gln arg Met Ala Leu Leu Arg Arg
 5 10 15

 Pro Thr Val Ser Ser Asp Leu Glu Asn Ile Asp Thr Gly Val Asn Ser
 20 25 30

 Lys Val Lys Ser His Val Thr Ile Arg Arg Thr Val Leu Glu Glu Ile
 35 40 45

 Gly Asn Arg Val Thr Thr Arg Ala Ala Gln Val Ala Lys Lys Ala Gln
 50 55 60

 Asn Thr Lys Val Pro Val Gln Pro Thr Lys Thr Thr Asn Val Asn Lys
 65 70 75 80

 Gln Leu Lys Pro Thr Ala Ser Val Lys Pro Val Gln Met Glu Lys Leu
 85 90 95

 Ala Pro Lys Gly Pro Ser Pro Thr Pro Glu Asp Val Ser Met Lys Glu
 100 105 110

 Glu Asn Leu Cys Gln Ala Phe Ser Asp Ala Leu Leu Cys Lys Ile Glu
 115 120 125

 Asp Ile Asp Asn Glu Asp Trp Glu Asn Pro Gln Leu Cys Ser Asp Tyr
 130 135 140

 Val Lys Asp Ile Tyr Gln Tyr Leu Arg Gln Leu Glu Val Leu Gln Ser
 145 150 155 160

 Ile Asn Pro His Phe Leu Asp Gly Arg Asp Ile Asn Gly Arg Met Arg
 165 170 175

 Ala Ile Leu Val Asp Trp Leu Val Gln Val His Ser Lys Phe Arg Leu
 180 185 190

 Leu Gln Glu Thr Leu Tyr Met Cys Val Gly Ile Met Asp Arg Phe Leu
 195 200 205

 Gln Val Gln Pro Val Ser Arg Lys Lys Leu Gln Leu Val Gly Ile Thr
 210 215 220

 Ala Leu Leu Leu Ala Ser Lys Tyr Glu Glu Met Phe Ser Pro Asn Ile
 225 230 235 240

Glu	Asp	Phe	Val	Tyr	Ile	Thr	Asp	Asn	Ala	Tyr	Thr	Ser	Ser	Gln	Ile
245									250						255
Arg	Glu	Met	Glu	Thr	Leu	Ile	Leu	Lys	Glu	Leu	Lys	Phe	Glu	Leu	Gly
260								265						270	
Arg	Pro	Leu	Pro	Leu	His	Phe	Leu	Arg	Arg	Ala	Ser	Lys	Ala	Gly	Glu
275							280							285	
Val	Asp	Val	Glu	Gln	His	Thr	Leu	Ala	lys	Tyr	Leu	Met	Glu	Leu	thr
290							295				300				
Leu	Ile	Asp	Tyr	Asp	Met	Val	His	Tyr	His	Pro	Ser	Lys	Val	Ala	Ala
305							310				315				320
Ala	Ala	Ser	Cys	Leu	Ser	Gln	Lys	Val	Leu	Gly	Gln	Gly	Lys	Trp	Asn
							325			330				335	
Leu	Lys	Gln	Gln	Tyr	Tyr	Thr	Gly	Tyr	Thr	Glu	Asn	Glu	val	Leu	Glu
							340			345				350	
Val	Met	Gln	His	Met	Ala	Lys	Asn	Val	Val	Lys	Val	Asn	Glu	Asn	Leu
							355			360				365	
Thr	Lys	Phe	Ile	Ala	Ile	Lys	Asn	Lys	Tyr	Ala	Ser	Ser	Lys	Leu	Leu
							370			375				380	
Lys	Ile	Ser	Met	Ile	Pro	Gln	Leu	Asn	Ser	Lys	Ala	Val	Lys	Asp	Leu
							385			390				395	
Ala	Ser	Pro	Leu	Ile	Gly	Arg	Ser								
							405								
<210> 23															
<211> 55															
<212> DNA															
<213> Artificial sequence															
<220>															
<223> Synthetic single-stranded oligonucleotide primer															
<400> 23															
aaaagaattc ggcaggaaga agcggaggca acgaatggcg ctcagggtca ctagg															55
<210> 24															
<211> 34															
<212> DNA															
<213> Artificial sequence															
<220>															
<223> Synthetic single-stranded oligonucleotide primer															
<400> 24															
tttgcggcc gctgccttg tcacggcctt agac															34

<210> 25
 <211> 1336
 <212> DNA
 <213> Mus musculus

<400> 25						
aaaagaattc	ggcaggaaga	agcgaggca	acgaatggcg	ctcagggtca	ctaggaacac	60
gaaaattaac	gcagaaaata	aggccaaggt	cagtatggca	ggcgccaaagc	gtgtgcctgt	120
gacagttact	gctgcttcca	agcccgggct	gagaccgaga	actgctcttg	gagacattgg	180
taataaaagtc	agcgaagagc	tacaggcaac	agtgcctctg	aaaagggaaag	caaaaacgct	240
aggtactgga	aaaggtaactg	ttaaagccct	accaaaacct	gtagagaagg	tgcctgtgt	300
tgaaccagag	gtggaacttg	ctgaacctga	gcctgaacct	gaacttgaac	atgttagaga	360
agagaagctt	tctcctgaac	ctattttgt	tgataatccc	tctccaagcc	cgatggaaac	420
atgtggatgt	gcgcctgcag	aagagtatcc	gtgtcaggct	ttctctgatg	taatccttgc	480
agtgagtgac	gtagacgcag	atagtggggc	tgacccaaac	ctctgtagtg	aatatgtgaa	540
agatatctat	gcttatctcc	gacaactgga	ggaagagcag	tcagttagac	caaaatacct	600
acagggtcgt	gaagtgactg	gaaacatgag	agctatcctc	attgactggc	taatacaggt	660
tcagatgaaa	tttaggctgc	ttcaggagac	catgtacatg	actgtgtcca	ttattgatcg	720
gttcatgcag	aacagttgtg	tgcccaagaa	gatgatacag	ctggtcggtg	taacggccat	780
gtttattgca	agcaaataatg	aagacatgta	cccaccagaa	ataggtgact	tcgcctttgt	840
gactaacaac	acgtacacta	agcaccagat	cagacagatg	gagatgaaga	ttctcagagt	900
tctgaacttc	agcctgggtc	gccctctgcc	tctgcacttc	ctccgtagag	catctaaagt	960
cgagagagtt	gacgtcaggc	agcacactct	ggccaaatac	ctcatggagc	tctccatgct	1020
ggactacgac	atggtgcat	ttgctccttc	cagggcattt	tctggggctt	tctgcttagc	1080
gctggaaatt	cttgacaacg	gtgaatggac	accaactctg	cagcactacc	tatcctacag	1140
tgaagactcc	ctgcttcctg	ttatgcagca	cctggctaag	aatgtagtca	tggtgaactg	1200
tggcctcaca	aagcacatga	ctgtcaagaa	caagtatgca	gcatctaagc	atgctaagat	1260
cagcacgctg	gcacagctga	actgtacaca	tgttcagaat	ttgtctaagg	ccgtgacaaa	1320
ggcagcggcc	gcaaaaa					1336