Referències ràpides per a l'R (by Max Fisher & M. Graells)

Taules de sintaxis del llenguatge R

Elementals

Comanda	Comentari sobre la comanda	Exemple(Input)	(ouput)
#	Serveix per ficar comentaris.	#This is a code comment	
*	Operador producte.	3*2	[1] 6
sqrt()	Funció arrel quadrada.	sqrt(196)	[1] 14
pi	Quocient de la longitud d'una circumferència entre el doble del seu radi.	-pi	[1] -3.141593
е	Com prefixe potència de deu	3e2 #Thermopylae number	[1] 300
as.complex()	a+bi amb a i b reals	as.complex(-4) #-4 vist com a nombre complex	[1] -4+0i
i	Unitat Complexa	3i	[1] 0+3i
II II	Per donar una cadena.	"En el Nom de Edmon"	[1] "En el Nom de Edmon"
T	Variable Booleana. Veritat.	T #TRUE	[1] TRUE
F	Variable Booleana. Fals.	F #FALSE	[1] FALSE
NA	Not available, hi ha alguna dada que falta o que no té sentit, en algun lloc.	NA #NADENA	[1] NA
print()	Si afegim l'argument quote=FALSE, aleshores imprimeix els <i>Strings</i> sense ''s o "'s.	<pre>print('"', quote=FALSE)</pre>	[1] "
+,-,*,/,^	Operadors bàsics, en igual odre; suma, resta, producte, quocient, potència. (Nota: El vectors o llistes és sumen component a component).	(1+2-3*4/5^6)	[1] 2.999232

Successions

Comanda	Comentari sobre la comanda	Exemple(Input)	(ouput)
rep()	Repeat, serveix per repetir el primer argument n vegades el segon argument.	rep(":)",2) #El doble de content	[1] ":)" ":)"
1:10	Successions (llista) d'enters.	1:10 #Comptar nombre de suspesos	[1] 1 2 3 4 5 6 7 8 9 10
5:1 seq("by=)	Dóna els valors dels enters de gran a petit. Serveix per fer llistes de nombres més elaborades. Podem pensar que ens dóna fins l'enèsim nombre d'una successió. De -pi fins a pi de 0.5 en 0.5.	5:1 seq(-pi,pi,by=.5)	[1] 5 4 3 2 1 [1] -3.1415927 -2.6415927 -2.1415927 -1.6415927 -1.1415927 -0.6415927 [7] -0.1415927 0.3584073 0.8584073 1.3584073 1.8584073 2.3584073 [13] 2.8584073
seq(, , lenght=)	També podem ficar l' especificador lenght= per demanar 10 valors equiespaiats entre dos nombres de la recta real.	<pre>seq(-pi,pi,length=10),</pre>	seq(-pi,pi,length=10)

Comanda	Comentari sobre la comanda	Exemple(Input)	(ouput)
seq(,by=, lenght=)	Podem combinar les dues opcions per a fer una llista de lenght valors de by en by a partir d'un valor donat, en aquest cas 1.	seq(1,by=.05,length=10)	[1] 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45
espera= c("H","O", "P","E")	També podem definir un $array/llista/vector$ de $Strings$.	c("N",espera[2])	[1] "N" "O"

Arrays

Recordem la **Regla de reutilització**: si tenim dos vector de diferents mides **a** i **b**. Suposem que el vector més curt és **b**. Aleshores en fer l'operació **a*b,a+b,a-b**, etc; tenim que les operacions és fan *component* a *component* i quan s'acaben les *components* de **b**, aleshores és reciclen, en el mateix ordre, fins acabar amb totes les components de **a**.

Exemple:

```
> a=c(1,2,3,4);b=c(-1,1);
> a*b
[1] -1 2 -3 4
```

Comanda	Comentari sobre la comanda	$\operatorname{Exemple}(Input)$	(ouput)
a <- c(1,0,-1,1)	Assignar valor vectorial c(1,0,-1,1) a la variable a. La c ve de concatenar.	a<- c(1,0,-1,1) #Forma de fer ho vella (previus versions R)	
a=c(1, 0, -1, 1)	Assignar valor vectorial c(1,0,-1,1) a la variable a. Sintaxis més nova. Pot no funcionar en <i>obsolets</i> .	a=c(1,0,-1,1)	
c(a,b)	També serveix per concatenar vectors. Siguin a=c(1,2) i b=c(3,4), llavors c(a,b) retornara el vector c(1,2,3,4).	c(c(1,2),c(3,4))	[1] 1 2 3 4
a[2]	Retorna la segona component del vector a. El vector no està indexat per 0.	<pre>c(1,2)[1] #Suposem c(1,2)=a definit prèviament</pre>	[1] 1
c(1, 2, 4, 4)[-3]	Retorna el vector c(1,2,4,4) menys la darrera component, és a dir , imprimeix [1] 1 2 4 . El mateix podríem pensar per c(1,2,4,4) [-1] que imprimeix [1] 2 4 4 .	c(1,2,4,4)[-3]	[1] 1 2 4
c(0, 2, 4, 6, 8, 10, 12, 14)[3:4]	Retorna el fragment (o components) del vector desitjat.	c(0,2,4,6,8,10,12,14)[3:4] # Imprimira [1] 4 6	[1] 4 6
c(1, 2, 3, 4, 5)-1	Vector menys un nombre, és interpretar com restar/sumar la quantitat a cada una de les components.	c(1,2,3,4,5)-1	[1] 0 1 2 3 4
c(1, 2, 3, 4, 5)*2	Producte usual de <i>vector</i> per <i>escalar</i> .	c(1,2,3,4,5)*2	[1] 2 4 6 8 10

Funcions Matemàtiques

Comanda	Comentari sobre la comanda	Exemple(Input)	(ouput)
max(a) i min(a)	Dóna el valor màxim, i mínim, de totes les components del vector a, respectivament. Això també es pot veure com la norma infinit.	min(c(8,3,7)); max(c(8,3,7));	[1] 3 [1] 8
sum(a)	Suma totes les components del vector a.	sum(c(8,3,7));	[1] 18
prod(a)	Dóna el producte de totes les components del vector a.	prod(c(8,3,7));	[1] 168
prod(a)	Dóna el producte de totes les components del vector a.	prod(c(8,3,7));	[1] 168
choose (n,k)	$n\ sobre\ k$, nombre combinatori, combinacions de agafar k, elements sense ordre, d'un conjunt de n elements.	choose(6,4);	[1] 15
factorial(n)	Dóna n factorial, $n!$.	<pre>factorial(4); factorial(5); factorial(6);</pre>	[1] 24 [1] 120 [1] 720
<pre>lfactorial(n)</pre>	Serveix per obtenir directament el logaritme del valor factorial. Cal recordar que $log(n!) = log(1 \cdot 2 \cdot 3 \cdot \dots \cdot n) = log(1) + log(2) + \dots + log(n)$.	<pre>> lfactorial(4); lfactorial(5); lfactorial(6);</pre>	[1] 3.178054 [1] 4.787492 [1] 6.579251
<pre>g=function(x_1, x_2, x_3){ operacions amb variables}</pre>	Serveix per definir noves funcions a partir de les anteriors.	<pre>f= function(x){x^2-1};f(2); a=c(1,2,3); f(a); # Aplica funció component a component</pre>	[1] 3 [1] 0 3 8

Gràfics

Comentari sobre la comanda	Comanda	Gràfic
Representa els punts al pla que defineixen dos vector amb la mateixa longitud, un per els valor de les abscisses OX, i l'altre per les ordenades OY.	x=c(3,1,5,3); y=c(1,3,3,5); plot(x,y);	#Veure PlotTypeL .png
Representa una línia que uneix els punts al pla (per orde de component) que defineixen dos vector amb la mateixa longitud, un per els valor de les abscisses OX, i l'altre per les ordenades OY.	<pre>x=c(3,1,5,3); y=c(1,3,3,5); plot(x,y, type="1");</pre>	<pre>#Veure PlotTypeL.png</pre>
Per dibuixar fragments de funcions o corbes planes parametritzades. Observem que col=2 fa referència a que el color per efectuar el gràfic és el color 2, que tal com podem veure, fa referència al color vermell.	curve(exp(-x^2),from=-3,to=3,col=2)	#VeureCurveBellGauss.png
Per introduir llegendes als gràfics de fragments de, funcions o corbes planes parametritzades.	<pre>curve(exp(-x^2),from=-3,to=3,col=2); legend('topright', 'exp(-x^2)', lty=1,col=2);</pre>	#Veure *LegendBellGauss.png
Per afegir la recta horitzontal i vertical que passa pel zero, respectivament.	<pre>curve(exp(-x^2),from=-3,to=3,col=2); abline(h=0); abline(v=0);</pre>	# Veure CurveLines*
Podem prescindir de for=i to= i simplement ficar els dos valors per el paràmetre després de la funció sin(x). main=dibuix permet ficar un títol al gràfic.	<pre>curve(sin(x),-pi,pi, main="dibuix")</pre>	#Veure CosSinO1.png

Comentari sobre la comanda	Comanda	Gràfic
El argument add=T (T de True i F de False) permet ficar diversos gràfics junts.lty=2 fa referencia a line type és ha dir línia tipus 2, que tal com podem veure és una línia discontinua. col=2 ens indica que el gràfic és dibuixarà amb color vermell.	; curve(cos(x),add=T,lty=2,col=2);	#Veure CosSin02.png
Com abans a legend(), 'topright' indica la posició. El vector de Strings indicarà el nom de les dos gràfiques sobreposades. lty=c(1,2) indica que el primer element de la llegenda és amb línia contínua lty=1 i el segon amb línia discontinua lty=2. El color és col=1 per negre i col=2 per al vermell, primera i segona gràfica respectivament.	<pre>; legend('topright',c('sin(x)','cos(x)') ,lty=c(1,2),col=c(1,2));</pre>	#Veure CosSin03.png
Amb abline(h=0,v=0); afegim les rectes horitzontals h i verticals v que passen per zero =0 al gràfic. També podem pensar que això és el mateix que ficar els eixos OXi OY.	; abline(h=0,v=0);	#Veure CosSinO4.png
Amb point() podem dibuixar punts1:1 fa referencia a la regió del eix d'abscisses que agafem per dibuixar punts, amb punts equidistants. El vector c(0,1,0.5) indica el nombre de punts i els valors de les ordenades. col=c(3,4,5) indica els colors ; col=3 verd,col=4blau, col=5 cian.pch= fa referència a la forma dels punts. Potser passa el mateix que amb els colors col=23 és el mateix que col=7, cicle 23-8*2=7.	; points(-1:1,c(0,1,0.5), pch=c(18,20,22), col=c(3,4,5));	#Veure CosSinO5.png
Podem afegir més d'una gràfica en una finestra amb par(mfrow=c(NumFiles,NumColum)), en aquest cas dues files i una columna par(mfrow=c(2,1)). Podem definir el punt equiespaiats de 0 a 2π amb distància 0.1 al eix 0X. Amb cercles o bé amb línies type="1", obtenint el mateix resultat (o bé augmentant la precisió establerta per defecte). També podriem fer servir la funció lines()	<pre>par(mfrow=c(2,1); curve(sin(x),-pi,pi,lty=3,col=3); curve(cos(x),lty=2,col=2); x=seq(0,2*pi,by=0.1); plot(x,sin(x)); plot(x,sin(x), type="l");</pre>	<pre>#Veure TwoPicturesInOne01.png TwoPicturesInOne02.png #Veure PlotWithSeq.png</pre>

x=c(3,1,5,3); y=c(1,3,3,5); plot(x,y);

PlotTypeDefault.png

x=c(3,1,5,3); y=c(1,3,3,5); plot(x,y, type="l");

curve(exp(-x^2),from=-3,to=3,col=2)

legend('topright','exp(-x^2)',lty=1,col=2);

CurveLegendBellGauss.png

legend('topright','exp(-x^2)',lty=1,col=2);

curve(sin(x),-pi,pi, main="dibuix");

CosSinO1.png

curve(cos(x),add=T,lty=2,col=2)

CosSinO2.png

abline(h=0,v=0)

CosSinO4.png

points(-1:1,c(0,1,0.5),pch=c(18,20,22), col=c(3,4,5));

CosSinO5.png

par(mfrow=c(2,1); curve(sin(x),-pi,pi,lty=3,col=3); curve(cos(x),lty=2,col=2);

TwoPicturesInOneO1.png

par(mfrow=c(2,1); curve(sin(x),-pi,pi,lty=3,col=3); curve(cos(x),lty=2,col=2);

TwoPicturesInOneO2.png

```
par(mfrow=c(2,1); x=seq(0,2*pi,by=0.1); plot(x,sin(x)); plot(x,sin(x), type="1");
```


Bucles i condicionals

Una recomanació: Sempre que sigui possible, en R, usarem funcions amb vectors i evitarem l'ús de condicionals i bucles. Per qüestions d'eficiència en el temps de CPU.

 \mathbf{If}

Estructura: if (condicio) resultatSI else resultatNo

Exemple:

factorial2=function(){if(n<=170) factorial(n) else print("El nombre demanat es massa gran")}</pre>

De fet podem fer servir la **mateixa sintaxis** per el condicional que a C:

factorial2=function(n){if(n<=170){factorial(n);} else{print("Nombre massa gran");}}</pre>

For

Estructura: for (variable en el conjunt E) resultat. El resultat es pot posar entre claus, i si es vol en línies successives, o separades amb punts i comes a la mateixa línia;{operacio1;operacio2;....}.

```
Exemple: Taula amb el producte dels nombres n(n+1)(n+2) per n=1,\cdots,10. h=rep(0,10) # vector on posarem els resultats g=function(n){prod(n:(n+2))} for(i in 1:10){h[i]=g(i)} h  [1] 6 24 60 120 210 336 504 720 990 1320
```

While

Exemple: Ves imprimint i i sumant una unitat mentre i sigui més petit que 6.

```
i <- 1 #~i=1
while (i < 6){
print(i)
i = i+1
}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5</pre>
```

Matrius

Omplir Matrius

Comanda com exemple	Comentari sobre la comanda
matrix(c(1,4,2,5,3,6),nrow=2)	Omplir una matriu per columnes especificant el nombre de files com al segon argument.
matrix(c(1,2,3,4,5,6),2,byrow=T)	Omplir una matriu especificant el nombre de columnes com a segon argument ,i com a tercer: el fet de voler-la omplir per files . On la T és una abreviatura per True.
matrix(c(1,4,2,5,3,6),ncol=3)	Omplir una matriu per columnes especificant el nombre de columnes com a segon argument.
cbind($c(1,3,5),c(2,4,6)$) rbind($c(1,2,3),c(4,5,6)$)	Ajuntar vectors com a columnes per formar una matriu. Ajuntar vectors com a files per formar una matriu.

Coses de Matrius

Sigui A i B matrius, a un vector c(...), aleshores;

Comanda com exemple	Comentari sobre la comanda
dim(A)	Dóna les dimensions de la matriu A.
ncol(A)	Dóna les columnes de la matriu A.

Comanda com exemple	Comentari sobre la comanda
nrow(A)	Dóna les files de la matriu A.
length(A)	Ens dóna el nombre d'elements de la matriu A
dimnames(A)	Si les files i columnes tenen nom , ens els dóna. (Veure: Annex matrius I).
A[i,j]	Element de fila i columna j de la matriu A.
A[i,]	Dóna la fila sencera i de la matriu A.
A[,j]	Dóna la columna sencera j de la matriu A.
as.matrix(a)	El vector a considerat com a matriu columna.
t(A)	Dóna la matriu traspostada de A.
A*B i A/B	Fa referència al producte (o divisió) element per element . NO és el producte habitual.
A%*%B	Producte de matrius en R.
solve(A)	Per calcular la matriu inversa podem fer servir la funció solve.

En general farem servir la funció solve (a,b) per resoldre sistemes lineals on a es la matriu del sistema i b el vector de terme independents AX = B.

Convenció en R: posar noms separats per punts.

Annex matrius I (Noms de matrius)

Exemple (Noms columnes i files)

Podem ficar noms a les columnes i files d'una matriu amb l'argument dimnames=list (NomsFiles, NomColumnes). Donem un primer exemple:

Exemple (Inversos dels nombres de Bernoulli)

Donem-ne un exemple més (amb l'invers dels 8 primers nombres de Bernoulli):

Annex matrius II (Un error)

Malgrat el concepte de **Regla de reutilització**, vist amb les operacions aritmètiques elementals amb *arrays* per defecte, els elements donats per a construir una matriu, han de ser un múltiple de les columnes especificades; o en cas contrari, del nombre de files especificat. Veiem que això es cert, provant de fer el contrari, amb el següent exemple.

```
> b=matrix(c(5,3,-1,3,1,4),nrow=2)
> b=matrix(c(5,3,-1,3,1),nrow=2)
Warning message:
In matrix(c(5, 3, -1, 3, 1), nrow = 2) :
   data length [5] is not a sub-multiple or multiple of the number of rows [2]
```

Exemples

Exemple alçades

Tenim dades de les alçades (en metres) i masses (en grams) de un grup de 6 persones. I en volem calcular L'**índex de massa corporal** o *IMC*, que recordem que es defineix com *el pes* (no com a força, amb Kg) dividit entre l'alçada (en metres) al quadrat.

```
# Obvservem que les operacions amb vectors es fan component a component pes=c(60,72,57,90,95,72) alcada=c(1.75,1.80,1.65,1.90,1.74,1.91) IMC=pes/(alcada^2) IMC
[1] 19.59184 22.22222 20.93664 24.93075 31.37799 19.73630
```

Exemple El problema del aniversari

La probabilitat que en un grup de n persones (amb $n \leq 365$), almenys dues celebrin l'aniversari el mateix dia és

$$p_n = 1 - P(A^c) = 1 - \frac{Var(365, n)}{365^n}$$

L'objectiu és fer un gràfic d'aquestes probabilitats en funció de n.

ProblemOfBirthday.png

Exercicis

Exercici 1

Amb els vectors a=c(2,1,4,7) i b=c(4,0,-1,7), calculeu c=2*a+5*b i d=a*b, on aquesta darrera expressió vol dir el producte component a component (producte escalar de vectors).

Solució:

```
> a=c(2,1,4,7); b=c(4,0,-1,7); c=2*a+5*b; d=a*b; c; d;
[1] 24  2  3  49
[1] 8  0 -4  49
```

Exercici 2

Escriviu una funció de m i n que calculi les variacions Var(m,n). Calculeu Var(365,10). Recordem que:

$$Var(m,n) = \frac{m!}{(m-n)!}$$

Solució:

Si fem servir directament l'expressió obtenim l'error Warning message: In factorial(345) : value out of range in 'gammafn'. Però també podem escriure $Var(m,n)=\binom{m}{n}\cdot n!$.

```
> Var=function(m,n){choose(m,n)*factorial(n)}; Var(365,10);
[1] 3.70608e+25
```

Exercici 3

Un llac té N peixos, amb N desconegut. Per tal d'estimar N fem el següent: pesquem n_1 peixos, els marquem i els tornem al llac. Esperem una estona i pesquem n_2 peixos, dels quals hi ha m de marcats. Suposem: * La primera vegada es pesquen $n_1 = 50$ peixos, que es marquen i es tornen al llac. * La segona vegada també es pesquen $n_2 = 50$, del quals n'hi ha m = 3 marcats.

Designem per p_N la probabilitat que, si al llac hi ha N peixos, en traiem exactament 3 de marcats d'entre els 50. Tenim:

$$p_N = \frac{\binom{50}{3} \cdot \binom{N-50}{47}}{\binom{N}{50}}, \quad N \le 50.$$

Definiu una funció que calculi aquesta probabilitat. Feu un dibuix amb $N=50,\cdots,2000$.. Calculeu la N que maximitza aquesta funció. Indicació: primer trobeu el màxim de p_N amb la funció $\max(\ldots)$.

Solució:

```
 p=function(n)\{choose(50,3)*choose(n-50,47)*(1/choose(n,50))\} \ \# \ Funció \ probabilitat. \\ N=50:2000 \ \# \ valors \ d'interès \\ M=c(max(N[p(N)==max(p(N))]),max(p(N))) \ \# \ Punt \ on \ P_N \ assoleix \ màxim. \\ plot(N,p(N),type="l",col=6,main="Llac amb N peixos"); points(M[1],M[2],col=2); \\ abline(h=M[2],v=M[1]); \\ legend('bottomright',c('p_N','(833,0.238)'),lty=c(1,2),col=c(6,2)); \ \# \ Gràfic \\ \\
```

Llac amb N peixos

LakeWithNFish.png

Exercici 4

• Entreu les matrius

$$A = \begin{pmatrix} 2 & 3 & 4 \\ 4 & 0 & -1 \end{pmatrix} \text{ i } A = \begin{pmatrix} 0 & 1 & 2 \\ -3 & 2 & 1 \end{pmatrix}$$

Calculeu $C=A+B,\,D=2A,\,E=AB^t,$ on aquesta útilma vol dir el producte ordinal de matrius.

• Suigui

$$\begin{pmatrix} 2 & 3 \\ 4 & -1 \end{pmatrix}$$

Calculeu $G = F^{-1}$

• Amb les anotacions de l'Exercici 1, calculeu el producte escalar dels vectors a i b.

Solució:

```
#SolucioPrimerPunt
A=matrix(c(2,4,3,0,4,-1),3); #PitjorManeraEntrarDadees
B<-matrix(c(0,-3,1,2,2,1),ncol=3); #ElMateixQueUnIqual
C=A+B;D<-2*A;E<-A%*%t(B)
A;B;C;D;E #Resultats
   [,1] [,2] [,3]
[1,]
             3
[2,]
             0
        4
                 -1
     [,1] [,2] [,3]
[1,]
        0
             1
             2
[2,]
       -3
                  1
     [,1] [,2] [,3]
[1,]
        2
             4
[2,]
        1
             2
     [,1] [,2] [,3]
[1,]
             6
[2,]
        8
             0
                 -2
     [,1] [,2]
       11
[1,]
             4
[2,]
       -2 -13
#SoluciosegonPunt
F<-matrix(c(2,3,4,-1),nrow=2) #MillorMoltMillor
G=solve(F) #TalQual
G;
          [,1]
                      [,2]
[1,] 0.07142857 0.2857143
[2,] 0.21428571 -0.1428571
#SolucioTercerPunt
a=matrix(c(2,1,4,7),nrow=1); b=matrix(c(4,0,-1,7),ncol=1);
a\%*\%b;
     [,1]
[1,] 53
```

Exercici 5

Tenim una capsa amb 8 boles. Cinc boles tenen nombres positius 1, 2, 3, 4, 5 i les altres boles nombres negatius -1, -2 i -3. Traiem dues boles (sense reposició). Volem calcular la probabilitat que el produce dels nombres corresponents sigui positiu.

Solució habitual: Si el producte es positiu només hi ha dos escenaris possibles: o bé els dos nombres són positius (cas A); o bé els dos són negatius (cas B). Aleshores:

```
Cas B: Cas A:

[-1,-2]; [1,2]; [2,3]; [3,4]; [4,5];

[-1,-3]; [1,3]; [2,4]; [3,5];

[-2,-3]; ; [1,4]; [2,5];

[1,5];
```

és a dir, (3)+(4+3+2+1)=3+7+3=13, combinacions favorables.

Ara veiem que tots els casos possibles (no favorables i favorables) són les combinacions totes les possibles de vuit elements agafats de dos en dos, això és:

/ 8 \ 8!
$$1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$$
 7 \cdot 8 | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ 7 \cdot 8 | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 3 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 3 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 3 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 3 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$ | $1 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 7 \cdot 8$ | $1 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 7 \cdot 8$ | $1 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 7 \cdot 8$ | $1 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 7 \cdot 8$ | $1 \cdot 3 \cdot 4$

Per tant si considerem la probabilitat d'un succés equiprobable com el quocient entre casos favorables entre casos possibles obtenim que:

```
casos favorables 13 ------
P{"Produce dels nombres dos nombres > 0"}= ------ = 0'46428571.

casos possibles 28
```

On ----- denota el 6-període del nombre racional decimal.

```
Solució amb R:
install.packages('combinat')
library(combinat)
Attaching package: 'combinat'
The following object is masked from 'package:utils':
   combn
urna=c(1,2,3,4,5,-1,-2,-3)
CP=combn(urna,2)
CP
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14]
[1,]
[2,]
            3
                          -1
                              -2
                                    -3
                                          3
                                               4
                                                     5
                                                          -1
                                                                      -3
     [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
[1,]
                    3
                          3
                                      4
                                            4
                   -2
                         -3
                                5
                                     -1
                                           -2
                                                 -3
                                                       -1
                                                                   -3
[2,]
        5
             -1
     [,27] [,28]
[1,]
       -1
             -2
[2,]
       -3
             -3
result=CP[1,]*CP[2,]; #Productes
result:
c("P=",length(result[result>0])/dim(CP)[2]); #ComptemPositius
c("P=",length(result[result>0]),"/", dim(CP)[2]) # FracciExacte
                 5 -1 -2 -3 6 8 10 -2 -4 -6 12 15 -3 -6 -9 20
[1]
[20] -4 -8 -12 -5 -10 -15 2 3 6
[1] "P=" "0.464285714285714"
[1] "P=" "13" "/" "28"
```