```
exercise2 (Score: 14.0 / 14.0)

1. Written response (Score: 3.0 / 3.0)

2. Test cell (Score: 1.0 / 1.0)

3. Test cell (Score: 1.0 / 1.0)

4. Test cell (Score: 2.0 / 2.0)

5. Test cell (Score: 3.0 / 3.0)

6. Test cell (Score: 1.0 / 1.0)
```

7. Test cell (Score: 3.0 / 3.0)

Lab 2

- 1. 提交作業之前,建議可以先點選上方工具列的Kernel,再選擇Restart & Run All,檢查一下是否程式跑起來都沒有問題,最後記得儲存。
- 2. 請先填上下方的姓名(name)及學號(stduent_id)再開始作答,例如:

```
name = "我的名字"
student id= "B06201000"
```

- 3. 四個求根演算法的實作可以參考lab-2 (https://yuanyuyuan.github.io/itcm/lab-2.html),裡面有教學影片也有範例程式可以套用。
- 4. Deadline: 10/9(Wed.)

In [1]:

```
name = "李澤諺"
student id = "B05902023"
```

Exercise 2

Kepler's equation

In celestial mechanics, Kepler's equation

$$M = E - e \sin(E)$$

relates the mean anomaly M to the eccentric anomaly E of an elliptical orbit of eccentricity e, where 0 < e < 1, see <u>Wiki website</u> (https://en.wikipedia.org/wiki/Kepler's_laws_of_planetary_motion) for the details.

(https://en.wikipedia.org/wiki/kepier_s_taws_or_planetary_motion_flor the details

1. Prove that fixed-point iteration using the iteration function

$$g(E) = M + e \sin(E)$$

is convergent locally.

[Hint: You may use Ostrowski's Theorem mentioned in the lecture note.]

proof.

```
(Top)
```

```
令 h(E) = g(E) - E = M + e sinE - E, \forall E \in \mathbb{R} 取 a \in \mathbb{R} 且 a > M + e,則有 h(a) = M + e sina - a < M + e sina - (M + e) = e(sina - 1) \le 0 取 b \in \mathbb{R} 且 b < M - e,則有 h(b) = M + e sinb - b > M + e sinb - (M - e) = e(sinb + 1) \ge 0 因為 h(E) = M + e sinE - E 在 [a,b] 上連續,且 h(a) < 0 < h(b) 所以由Intermediate Value Theorem,可得 \exists c \in (a,b),使得 h(c) = g(c) - c = 0 即 g(c) = c,由此可知 g 存在fixed point 接著,令 \alpha 為 g 的一個fixed point 因為 g \in C^1(\mathbb{R}),且 \forall E \in \mathbb{R},皆有 |g'(E)| = |\frac{d}{dE}(M + e sinE)| = |e cosE| \le e < 1 因此由Ostrowski's Theorem,可知 \exists \delta > 0,使得 \forall \{x_n\} \subset \mathbb{R},若 |x_0 - \alpha| < \delta,則 \{x_n\} 會converge  因此可得 g 會locally converge
```

2. Use the fixed-point iteration scheme in "Q.1" to solve Kepler's equation for the eccentric anomaly E corresponding to a mean anomaly $M=\frac{2\pi}{3}$ and an eccentricity e=0.5

Part 0. Import libraries

In [2]:

import matplotlib.pyplot as plt
import numpy as np

Part 1. Define the fixed point function

In [3]:

(Top)

```
def fixed_point(
    func,
    x Θ,
    tolerance=1e-7,
    max iterations=5,
    report history=False
):
    '''Approximate solution of f(x)=0 on interval [a,b] by the secant method.
    Parameters
    func : function
        The target function.
    x 0 : float
        Initial guess point for a solution f(x)=0.
    tolerance: float
        One of the termination conditions. Error tolerance.
    max_iterations : (positive) integer
        One of the termination conditions. The amount of iterations allowed.
    report history: bool
        Whether to return history.
    Returns
    solution : float
        Approximation of the root.
    history: dict
       Return history of the solving process if report history is True.
    x = x 0
    iteration = 0
    history = {'estimation' : [] , 'error' : []}
    while True:
        error = abs(func(x) - x)
        history['estimation'].append(x)
        history['error'].append(error)
        iteration += 1
        if (iteration >= max iterations or error < tolerance):</pre>
            return (x , history) if report_history else x
        x = func(x)
```

Test your implementaion with the assertion below.

```
In [4]:
```

Part 2. Assign values to variables anomaly mean "M" and eccentricity "e".

$$M = \frac{2\pi}{3} \quad \text{and} \quad e = 0.5$$

```
In [5]:
```

```
M = 2 * np.pi / 3
e = 0.5
```

In [6]:

```
M_and_e

print('M =', M)
print('e =', e)

### BEGIN HIDDEN TESTS
assert M == 2*np.pi/3, 'M is wrong!'
assert e == 0.5, 'e is wrong!'
### END HIDDEN TESTS
```

```
M = 2.0943951023931953
e = 0.5
```

Part 3. Define the function of Kepler's equation

Recall Kepler's equation:

$$M = E - e\sin(E).$$

So we let the function $f(E) = E - e \sin(E) - M$, then

$$g(E) = E - f(E) = M + e\sin(E)$$

For the instance:

If we want to implement "sin(x)", we will call np.sin(x) with numpy in python.

In [7]:

```
def f(E):
    return E - e * np.sin(E) - M

def g(E):
    return M + e * np.sin(E)
```

```
In [8]:
```

```
test_f_and_g

print('M =', M)

# f(0) = -M, g(0) = M
print('f(0) =', f(0))
print('g(0) =', g(0))

### BEGIN HIDDEN TESTS
from random import random
rd_number = random()
assert f(rd_number) == rd_number - 0.5*np.sin(rd_number) - 2*np.pi/3, 'f is wrong!'
assert g(rd_number) == 2*np.pi/3 + 0.5*np.sin(rd_number), 'g is wrong!'
### END HIDDEN TESTS
```

```
M = 2.0943951023931953

f(0) = -2.0943951023931953

g(0) = 2.0943951023931953
```

Part 4. Plot the function f(E) and g(E)

In [9]:

```
fig, ax = plt.subplots(figsize=(16, 4))
search_range = np.arange(-10, 10, 0.01)
ax.plot(search_range, f(search_range))
ax.set_title(r'$f(E) = E - e\,\sin(E) - M$')
ax.grid(True)
ax.axhline(y=0)
ax.axvline(x=0)
plt.show()
```


In [10]:

```
fig, ax = plt.subplots(figsize=(16, 4))
search_range = np.arange(-10, 10, 0.01)
ax.plot(search_range, g(search_range))
ax.set_title(r'$g(E) = M + e\,\sin(E)$')
ax.grid(True)
ax.axhline(y=0)
plt.ylim(1,3)
plt.show()
```


Part 5. Find the solution of "E"

```
In [11]:
```

(Top)

 $root = fixed_point(func = g , x_0 = 2 , tolerance = 1e-7 , max_iterations = 100 , report_history = False)$

In [12]:

```
the_root_of_E (Top)

print('My estimation of root:', root)

### BEGIN HIDDEN TESTS
assert abs(root - 2.425) < 0.002, 'root is wrong!'

### END HIDDEN TESTS
```

My estimation of root: 2.423405402184932

3. An " exact " formula for E is known:

$$E = M + 2\sum_{m=1}^{\infty} \frac{1}{m} J_m(me) \sin(mM);$$

where $J_m(x)$ is the Bessel function of the first kind of order m.

Use this formula to compute E. How many terms are needed to produce the value obtained in "Q.2" until convergence?

Part 0. Import package

```
In [13]:
```

from scipy.special import jn # Bessel function

Part 1. Define the function

For the convenience, we define the function h(m) as

$$h(m) \triangleq \frac{2}{m} J_m(me) \sin(mM)$$

If we want to implement " **Bessel function** " $J_m(x)$, we can call jn(m,x) in Python.

In [14]:

(Top)

```
def h(m):
    return (2 / m) * jn(m , m * e) * np.sin(m * M)
```

```
In [15]:
```

h

test the function of h
print('h(1) =', h(1))
assert round(h(1), 5) == 0.41962

BEGIN HIDDEN TESTS
from random import random
rd_number = random()
assert h(rd_number) == 2*jn(rd_number, rd_number*0.5)*np.sin(rd_number*(2*np.pi/3))/rd_number, 'h is wron
g!'
END HIDDEN TESTS

```
h(1) = 0.41962127776423175
```

```
AssertionError

Traceback (most recent call last)

<ipython-input-15-69cf0965b94d> in <module>
6 from random import random
7 rd_number = random()
----> 8 assert h(rd_number) == 2*jn(rd_number, rd_number*0.5)*np.sin(rd_number*(2*np.pi/3))/rd_number, 'h is wrong!'
9 ### END HIDDEN TESTS

AssertionError: h is wrong!
```

Part 2. Find how many terms we need to achieve the result obtained Q.2 in a tolerance 10^{-7} .

That is to find _numterms such that

$$\left| \text{ root } - \left(M + \sum_{k=1}^{\text{num_terms}} h(k) \right) \right| < 10^{-7}$$

For example, the following cell shows the implmentation with only 1 term.

In [16]:

```
LHS = root
RHS = M + h(1)
error = abs(LHS-RHS)
print('Left hand side is the estimation of root by the fixed-point method:', LHS)
print('Right hand side is the approximation by the formula in only 1 term:', RHS)
print('The error between LHS and RHS:', error)
```

Left hand side is the estimation of root by the fixed-point method: 2.423405402184932 Right hand side is the approximation by the formula in only 1 term: 2.514016380157427 The error between LHS and RHS: 0.09061097797249529

In [17]:

```
LHS = root
RHS = M + h(1)
num_terms = 1
tolerance = 1e-7

while (abs(LHS - RHS) >= tolerance):
    num_terms += 1
RHS += h(num_terms)
```