QF Group Theory CC2022 By Zaiku Group

Lecture 10

Delivered by Bambordé Baldé

Friday, 08/7/2022

Session Agenda

- 1. Learning Journey Timeline
- 2. Course Approach Overview
- 3. NIST PQC Comment

Pre-session Comments

- 1. Symmetric Groups over Sets
- 2. Concrete Examples & Challenges

Main Session

Learning Journey Timeline

quantumformalism.com

Cryptosystem	RSA	Diffie-Hellman KE (DHKE)	Elliptic Curve Cryptography (ECC)
Underlying Mathematical Hardness Problem	Prime Factorization	Discrete Logarithm Problem	Elliptic Curve Discrete Logarithm Problem
Can it be solved by a quantum algorithm?	Yes	Yes	Yes

Current Public Key Cryptography

NIST IR 8413

Third Round Status Report

Table 4. Algorithms to be Standardized

Public-Key Encryption/KEMs

Digital Signatures

CRYSTALS-KYBER

CRYSTALS-Dilithium

FALCON

SPHINCS+

Table 5. Candidates advancing to the Fourth Round

Public-Key Encryption/KEMs Digital Signatures

BIKE

Classic McEliece

HQC

SIKE

NIST's PQC Standards Proposal

Symmetric Groups over Sets

Definition 1.0

Let X be a nonempty set. The set of all bijective maps on X is denoted Sym(X) i.e. $Sym(X) = \{f : X \longrightarrow X \mid f \text{ is a bijection}\}.$

- Some authors use the notation Sym_X instead of Sym(X).
- When X is finite with cardinality n then the notation S_n is used!
- It's easy to show that the composition of maps \circ is a binary operation in Sym(X) i.e. $f_2 \circ f_1 \in Sym(X)$ for all $f_1, f_2 \in Sym(X)$.

Proposition 1.0

Sym(X) forms a group under the composition \circ with the identity map $id_X: X \longrightarrow X$ as the group identity.

Proof: Homework challenge!

• In general, is Sym(X) an abelian or nonabelian group?

Concrete Example (S_3)

Let $X = \{1, 2, 3\}$. Then $Sym(X) = S_3$ has 3! = 6 elements including:

• $id_X: X \longrightarrow X$ defined as $id_X(1) = 1$, $id_X(2) = 2$ and $id_X(3) = 3$. id_X can be represented using the 'two-line notation'

$$id_X = \left(egin{array}{cccc} 1 & 2 & 3 \ \downarrow & \downarrow & \downarrow \ 1 & 2 & 3 \end{array}
ight)$$

 $\circ \sigma_1: X \longrightarrow X$ defined as $\sigma_1(1) = 2$, $\sigma_1(2) = 1$ and $\sigma_1(3) = 3$. In two-line notation σ_1 becomes represented as

$$\sigma_1 \,= \left(egin{array}{cccc} 1 & 2 & 3 \ \downarrow & \downarrow & \downarrow \ 2 & 1 & 3 \end{array}
ight)$$

 $\sigma_2: X \longrightarrow X$ defined as $\sigma_2(1)=1, \ \sigma_2(2)=3$ and $\sigma_2(3)=2.$ In two-line notation σ_2 becomes represented as

$$\sigma_2 \, = \left(egin{array}{cccc} 1 & 2 & 3 \ \downarrow & \downarrow & \downarrow \ 1 & 3 & 2 \end{array}
ight)$$

S₃ Challenges

Challenge 1

Identify the remaining elements of S_3 using the two-line notation without using arrows. Also, complete the following challenges:

- **①** Compute $\sigma_2 \circ \sigma_1$.
- 2 Compute σ_1^2 , σ_1^3 , σ_2^2 and σ_2^3 .
- **3** Find σ_1^{-1} and σ_2^{-1} .
- Find at least a nontrivial subgroup of S_3 . Even better, can you identify all the nontrivial subgroups of S_3 ?
- **5** Is any of the identified nontrivial subgroups of S_3 cyclic?

Challenge 2

Let $H_3 = \{ \sigma \in S_3 \mid \sigma(3) = 3 \} \subset S_3$. Is H_3 a subgroup of S_3 ?

• If H_3 is a subgroup, is it cyclic?

Concrete Example (S_4)

Let $X = \{1, 2, 3, 4\}$. Then $Sym(X) = S_4$ has 4! = 24 elements including:

①
$$id_X: X \longrightarrow X$$
 defined as $id_X(1) = 1$, $id_X(2) = 2$ $id_X(3) = 3$ and $id_X(4) = 4$. id_X can be represented using the 'two-line notation'

$$id_X \, = \left(egin{array}{cccc} 1 & 2 & 3 & 4 \ \downarrow & \downarrow & \downarrow & \downarrow \ 1 & 2 & 3 & 4 \ \end{array}
ight)$$

②
$$\sigma_1: X \longrightarrow X$$
 defined as $\sigma_1(1)=3$, $\sigma_1(2)=2$, $\sigma_1(3)=1$ and $\sigma_1(4)=4$. In two-line notation σ_1 becomes represented as

$$\sigma_1 \,= \left(egin{array}{ccccc} 1 & 2 & 3 & 4 \ \downarrow & \downarrow & \downarrow & \downarrow \ 3 & 2 & 1 & 4 \end{array}
ight)$$

•
$$\sigma_2: X \longrightarrow X$$
 defined as $\sigma_2(1) = 4$, $\sigma_2(2) = 3$, $\sigma_2(3) = 2$ and $\sigma_2(4) = 1$. In two-line notation σ_2 becomes represented as

$$\sigma_2 = \left(egin{array}{ccccc} 1 & 2 & 3 & 4 \ \downarrow & \downarrow & \downarrow & \downarrow \ 4 & 3 & 2 & 1 \end{array}
ight)$$

quantumformalism.com

S₄ Challenges

Challenge 1

Identify the remaining elements of S_4 using the two-line notation. Also, complete the following challenges:

- **①** Compute $\sigma_2 \circ \sigma_1$.
- 2 Compute σ_1^2 , σ_1^3 , σ_2^2 and σ_2^3 .
- $\bullet \quad \mathsf{Find} \ \sigma_1^{-1} \ \mathsf{and} \ \sigma_2^{-1}.$
- Tind at least two nontrivial subgroups of S_4 . Even better, can you identify all the nontrivial subgroups of S_4 ?
- **1** Is any of the identified nontrivial subgroups of S_4 cyclic?

Challenge 2

Let $H_4 = \{ \sigma \in S_4 \mid \sigma(4) = 4 \} \subset S_4$. Is H_4 a subgroup of S_4 ?

• If H_4 is a subgroup, is it cyclic?

Food for thought

- In practice, we are more interested in studying Sym(X) when X has an additional structure rather than just being a plain set! This motivates the following natural questions:
 - Let X be a group. What interesting subgroup of Sym(X) that would be interesting to study?
 - 2 Let X be a topological space. What interesting subgroup of Sym(X) that would be interesting to study?
- 3 Let X be an n- dimensional smooth manifold. What interesting subgroup of Sym(X) that would be interesting to study?
- What if X is a complex Hilbert space? What interesting subgroup of Sym(X) that would be interesting to study?

GitHub: github.com/quantumformalism

YouTube: youtube.com/ZaikuGroup

Discord: discord.gg/SPcmcsXMD2

Twitter: twitter.com/ZaikuGroup

LinkedIn: linkedin.com/company/zaikugroup