## Cavity ringdown spectroscopy

What if we do absorption spectroscopy over a very long range?

What if the absorption feature we need to measure is really weak or if you need very high precision?

What do you think we can do?

# What if the absorption feature we need to measure is really weak, or if you need very high precision?

- Integrate longer
- Use a more sensitive detector
- Cool the detector to lower thermal noise in the system
- Control laser frequency to high degree
- USE A REALLY LONG PATH SO THAT THE ABSORPTION IS GREATER
  - But what's the limit of that? Can I make a path that's a kilometer long?

## Cavities! (not in your teeth hopefully)

- Two mirrors properly aligned such that they light is an incredibly high number of "bounces" in the mirror.
  - Gives a very long effective path length
  - High intensity in the laser cavity

#### But how does it work?

- A laser pulse bounces around the cavity and a little energy from it leaks out each round trip
- You can approximate the peaks of each bounce together as an exponential decay
- Light intensity is an exponential function of extinction coefficient in the cavity

$$\begin{split} I_{\text{out}} &= I_{\text{in}} \, \exp \Bigg[ - \Bigg\{ \frac{(1-R)c}{L} t + \Bigg( \substack{\text{absorption loss for} \\ \text{sample per round trip}} \Bigg) \Bigg( \substack{\text{total number of} \\ \text{round trips}} \Bigg) \Bigg\} \Bigg] \\ &= I_{\text{in}} \, \exp \Bigg[ - \Bigg\{ \frac{(1-R)c}{L} t + (2\alpha d) \Big( \frac{tc}{2L} \Big) \Big\} \Bigg] \\ &= I_{\text{in}} \, \exp \Big[ - \frac{tc}{L} \{ (1-R) + (\alpha d) \} \Big] \\ &= I_{\text{in}} \, \exp [-\frac{t}{T}]; \quad \text{where } \tau = \frac{L}{[(1-R) + \alpha d]c} \end{split}$$



## How do we actually get the data from that exponential0

- Take the natural log of the exponential decay
- Fit a line to it
- Solve for the absorption



#### **Problems**

- Very narrowband measurements
- Slow since you need to record multiple ringdowns
- VERY FINNICKY TO SETUP
  - You have at least four mirrors that need to be set up just-so to actually get it where you need it
- Requires some way to modulate the cavity or power within it
  - Pulsed laser
    - Diode lasers are great for this because optical feedback into it, can lock it to a frequency; See "external cavity diode lasers"
  - Modulate cavity off resonance
- Need a fast detector
- Need some really good, high reflectance mirrors
  - Normally we have 99.9% reflective, to do this well you need 99.999% reflective
- Need to match the lasers' spatial modes to the spatial modes of the cavity

#### What You're gonna build

