

第三十一课树的存储结构

版权声明:本课件及其印刷物、视频的版权归成都国嵌信息技术有限公司所有,并保留所有权力:任何单位或个人未经成都国嵌信息技术有限公司书面授权,不得使用该课行及共和副物、视频从事商业、教学活动。已经取得书面授权的,应在授权范围内使用,并注明"来源:国嵌"。违反上述声明者,我们将追究其法律责任。

树的讨论

讨论中.....

- ❖ 小B: 线性表可以直接利用内存线性的特性用数组实现,树结构是非 线性的,肯定不能用数组直接实现吧?!
- ❖ 小A: 我觉得链式结构应该可以实现树,但是树中每个结点的孩子又 是数目不定的,该如何定义呢?
- ❖ 小C: 我觉得是不是先定义好结点间的关系,再设计结构体呢?
- ❖ 小D: 真的很难哦。。。

- ❖ 无法直接用数组表示树的逻辑结构
- ❖ 但可以设计结构体数组对结点间的关系进行表述

Index	Data	Parent	Child
0	A	-1	1, 2, 3
1	В	0	4, 5
2	С	0	NULL
3	D	0	6, 7, 8
4	Е	1	NULL
5	F	1	NULL
6	Н	3	NULL
7	Ι	3	NULL
8	J	3	NULL

思考:

- √树结构需要添加删除结点,数组存储是否足够灵活?
- √每个结点的子结点可以有多个,如何存储?

- ❖ 利用链表组织树中的各个结点
- * 链表中的前后关系不代表结点间的逻辑关系
- ❖ 结点的逻辑关系由child数据域描述
- * child数据域保存其他结点的存储地址

```
typedef struct _tag_GTreeNode GTreeNode;
struct _tag_GTreeNode
{
    GTreeData* data;
    GTreeNode* parent;
    LinkList* child;
};
```

树结点结构体

```
typedef struct _tag_TLNode TLNode;
struct _tag_TLNode
{
    LinkListNode header;
    GTreeNode* node;
};
```

链表结点结构体

树中每一个结点包含一个指向父结点的指针

嵌入式Linux技术咨询QQ号: 550491596

注意:

树结点在链表中的位置不代表树的任何逻辑关系。

树中每一个结点都是同一个链表中的数据元素

嵌入式Linux技术咨询QQ号: 550491596

树的详细架构图

嵌入式Linux技术咨询QQ号: 550491596

手把手教你写代码

通用树结构的创建

嵌入式Linux技术咨询QQ号: 550491596

小结

- ❖ 本节中的树结构是一种通用的数据结构
- ❖ 利用链表组织树结点
 - 能够便利的存取结点
 - 链表的维护具有一定复杂性

树结构的非线性特性 和递归定义的特性是 树结构实现难度较大 的根本原因。

