

Technical Datasheet

ZAM PLEI N

Power Monitoring Meter

Power Monitoring Meter

ZAM PLEI N measures important electrical parameters in 3 phase 4 wire, 3 phase 3 wire, 1 phase 2 wire and 1 phase 3 wire (split-phase) network. It displays many parameters at a glance. It measures electrical parameters like Active / Reactive / Apparent power and all basic parameter. The instrument has one optional built in relay output which can be configured as limit output. MODBUS RTU over RS-485 is built in for remote monitoring and configuration.

Product Features:

True RMS measurement

The instrument measures distorted waveform up to 15th harmonic

Front panel keys

Two keys are useful for easy setup navigation and changing. setup parameters

Storage of parameters

The instrument stores minimum and maximum values of System Voltage, System Current, Power. Also Run Hour, On Hours, number of AUX interrupts and Max Demand are stored.

Display

- 3 Line, 4 Digit bright Red LED display and indication LEDs
- Display can be configured for automatic scrolling of parameters or manual scrolling through 2 touch keys as per requirement and application of user.

It is possible to program primary, secondary of external potential transformer (PT) & primary, secondary of external current transformer (CT) via front panel keys and MODBUS

MODBUS (RS485) Output

- RS 485 output enables the instrument to transmit all the Measured parameters over standard MODBUS protocol
- The instrument can be configured via MODBUS communication.

Demand

- The Instrument integrates demand value for Active Power (kW), Apparent Power (kVA), Reactive Power (kVar) and Current (A).
- The demand integration time can be configured from 5 to 60 minutes.

Limit (Alarm) Output

- Potential free 1NO contact
- Fully configurable trip point, hysteresis, on and off delays for Limit Output operation

Low back depth

The instrument has low back depth (behind the panel) of 27mm.

Auxiliary supply

- Higher Auxiliary power supply with voltage range 60V-300V AC/DC.
- Lower Auxiliary power supply with voltage range 20V-60V AC/DC.

Compliance to International Safety standards

Compliance to International Safety standard IEC 61010-1:2018

EMC Compatibility

Compliance to International standard IEC 61326

Power Monitoring Meter

Technical Specifications:

Input Voltage				
Nominal input voltage (AC RMS)	288.68VLN (500VLL)			
System PT primary values	100VLL to 1200kVLL programmable on site.			
	(1000MVA maximum power)			
	(1200kVLL when CT primary ≤ 1002A)			
Max continuous input voltage	120% of nominal value			
Overload Indication	"-OL-" >121% of Nominal value			
Nominal input voltage burden	< 0.1VA approx. per phase (at nominal 240V)			
Overload Withstand	2 x rated value for 1 second, repeated 10			
	times at 10 second intervals			
Input Current				
Nominal input current	1A / 5A onsite programmable			
System CT primary values	From 1A to 9999A			
	(1000MVA maximum power)			
	(9999A when PT primary ≤ 120kVLL)			
Max continuous input current	120% of nominal value			
Overload Indication	"-OL-" >121% of Nominal value			
Nominal input current burden	< 0.3VA approx. per phase (at 5A)			
Overload Withstand	20 x rated value for 1 second,			
	repeated 5 times at 5 minute intervals			
Auxiliary Supply				
Higher Auxiliary supply range	60-300 V AC/DC (230V nominal)			
Lower Auxiliary supply range	20-60 V AC/DC			
Aux Supply frequency	45 to 65 Hz range			
Auxiliary Supply burden	< 4VA approx (230V nominal)			
Operating Measuring Ranges				
Current	5 120% of nominal value			
Voltage	10 120% of nominal value			
Power Factor	0.5 Lag 1 0.5 Lead			
Frequency	40Hz to 70Hz			

Power Monitoring Meter

Reference Conditions for Accuracy	
Reference temperature	23°C +/- 2°C
Influence of temperature	0.025%/°C for Voltage & 0.05%/°C for Current
Input Waveform	Sinusoidal (distortion factor 0.005)
Input frequency	50/60 Hz ± 2%
Voltage range	10 120% of nominal Value
Current range	5 120% of nominal Value
Power range	40 120% of nominal Value of Voltage
	10 120% of nominal Value of Current
Power Factor/ Phase Angle	40 120 % of nominal Value of Voltage
	40 120% of nominal Value of Current

Electrical Connection:

Network Types:

It is recommended that the wires used for connections to the instrument should have lugs crimped at the end. That is, the connections should be made with Lugged wires for secure connections.

Power Monitoring Meter

Technical Specifications:

Accuracy			
Parameter	Accuracy Class 0.5		
Voltage	± 0.5% of Nominal value		
Current	± 0.5% of Nominal value		
Frequency	± 0.1% of mid frequency		
Active Power	± 1% of Nominal value		
Re-Active Power	± 1% of Nominal value		
Apparent Power	± 1% of Nominal value		
Power Factor/ angle	±2°		
Applicable Standards			
EMC	IEC 61326 - 1,Table 2		
Immunity	IEC 61000-4-2, 4-3, 4-4, 4-5, 4-6, 4-8, 4-11		
Emission	CISPR 11		
Safety	IEC 61010-1:2017		
IP for water & dust	IEC 60529		
Isolation			
Pollution degree	2		
Installation category	III		
High voltage test :			
All Circuit Vs Surface	3.5 kV RMS, 50Hz, 1min		
Input + AUX Vs Others	3.3 kV RMS, 50Hz, 1min		
Input Voltage Vs Input Current	2.2 kV RMS, 50Hz, 1min		
Input Vs AUX	3.3 kV RMS, 50Hz, 1min		
RS 485 Vs Relay	2.2 kV RMS, 50Hz, 1min		
Environmental			
Operating temperature	-10 to +60°C		
Storage temperature	-25 to +70°C		
Relative humidity	0 95% RH (non condensing)		
Warm up time	Minimum 3 minute		
Shock (As per IEC60068-2-27)	Half sine wave, Peak acceleration		
	30gn (300 m/s^2), duration 18ms.		
Vibration	10 15010 Hz, 0.15mm amplitude		
Number of Sweep cycles	10 per axis		
Enclosure	IP20 (Terminal side) and IP54 (Front side)		
Interfaces			
Relay	250 VAC, 5A AC		
	30VDC, 5A DC		
MODBUS	Rs485,		
	Baud rate: 4.8k,9.6k,19.2k, 38.4k		
	57.6k bps (Response time > 200ms)		

Power Monitoring Meter

Measured Parameter System wise:

Sr. No.	Parameter	3 Phase 4 Wire	3 Phase 3 Wire	1 Phase	1 Phase 3 Wire
1	System Volts	√	$\sqrt{}$	$\sqrt{}$	√
2	System Current	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
3	Voltage L1	$\sqrt{}$	x	x	$\sqrt{}$
4	Voltage L2	$\sqrt{}$	x	x	$\sqrt{}$
5	Voltage L3	$\sqrt{}$	x	x	x
6	Voltage L12	$\sqrt{}$	$\sqrt{}$	x	$\sqrt{}$
7	Voltage L23	$\sqrt{}$	$\sqrt{}$	x	x
8	Voltage L31	$\sqrt{}$	$\sqrt{}$	x	x
9	Current L1	$\sqrt{}$	$\sqrt{}$	x	$\sqrt{}$
10	Current L2	$\sqrt{}$	$\sqrt{}$	x	$\sqrt{}$
11	Current L3	$\sqrt{}$	$\sqrt{}$	Х	x
12	Frequency	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
13	System Active Power	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
14	Active Power L1	$\sqrt{}$	x	x	$\sqrt{}$
15	Active Power L2	$\sqrt{}$	x	x	$\sqrt{}$
16	Active Power L3	$\sqrt{}$	x	x	х
17	System Re-active Power	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
18	Re-active Power L1	$\sqrt{}$	x	x	$\sqrt{}$
19	Re-active Power L2	$\sqrt{}$	x	x	$\sqrt{}$
20	Re-active Power L3	$\sqrt{}$	x	x	x
21	System Apparent Power	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
22	Apparent Power L1	$\sqrt{}$	x	x	$\sqrt{}$
23	Apparent Power L2	$\sqrt{}$	x	x	$\sqrt{}$
24	Apparent Power L3	$\sqrt{}$	x	×	x
25	System Phase Angle	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
26	System Power Factor	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
27	Power Factor L1	$\sqrt{}$	x	x	$\sqrt{}$
28	Power Factor L2	$\sqrt{}$	x	x	$\sqrt{}$
29	Power Factor L3	$\sqrt{}$	x	X	x
30	Phase Angle L1	$\sqrt{}$	x	Х	$\sqrt{}$
31	Phase Angle L2	$\sqrt{}$	x	Х	$\sqrt{}$
32	Phase Angle L3	$\sqrt{}$	x	Х	Х
33	RPM	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
34	Min and Max System Voltage	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
35	Min and Max System Current	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
36	Run Hour	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

Power Monitoring Meter

Measured Parameter System wise:

Measured Parameter System wise:			√: Available	x : Not Available	
Sr. No.	Parameter	3 Phase 4 Wire	3 Phase 3 Wire	1 Phase	1phase 3 Wire
37	On Hour	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
38	Number of Interruptions	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
39	Current Demand	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
40	kVA Demand	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
41	Import kW Demand	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
42	Export kW Demand	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
43	Max Current Demand	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
44	Max kVA Demand	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
45	Max Import kW Demand	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
46	Max Export kW Demand	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
47	Neutral Current	$\sqrt{}$	x	Х	x
48	Inductive kVar Demand	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
49	Capacitive kVar Demand	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
50	Max Inductive kVar Demand	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
51	Max Capacitive kVar Demand	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

Order Code:

Z : None

S: 1 Relay Output

M: RS485

R: RS485 + 1 Relay Output

L: 20-60 V AC/DC H: 60-300 V AC/DC

Ziegler

Redefine Innovative Metering

Ziegler Instrumentation UK Ltd.

Central Buildings, Woodland close old woods Trading Estate, Torquay Devon, TQ2 7BB, United Kingdom +44-1376 335271 info@ziegler-instrument.com | ziegler-instrument.com