5

10

15

ABSTRACT OF THE DISCLOSURE

There is provided white light illumination system including a radiation source, a first luminescent material having a peak emission wavelength of about 575 to about 620 nm, a second luminescent material having a peak emission wavelength of about 495 to about 550 nm, which is different from the first luminescent material and a third luminescent material having a peak emission wavelength of about 420 to about 480 nm, which is different from the first and second luminescent materials. The LED may be a UV LED and the luminescent materials may be a blend of three or four phosphors. The first phosphor may be an orange emitting Eu²⁺, Mn²⁺ activated strontium pyrophosphate, Sr₂P₂O₇:Eu²⁺, Mn²⁺. The second phosphor may be a blue-green emitting Eu²⁺ activated barium silicate, (Ba,Sr,Ca)₂SiO₄:Eu²⁺. The third phosphor may be a blue emitting SECA phosphor, (Sr,Ba,Ca)₅(PO₄)₃Cl:Eu²⁺. Optionally, the fourth phosphor may be a red emitting Mn⁴⁺ activated magnesium fluorogermanate, 3.5MgO*0.5MgF₂*GeO₂:Mn⁴⁺. A human observer perceives the combination of the orange, blue-green, blue and/or red phosphor emissions as white light.