AxisVM Report Generation Example

Inter-CAD Kft.

September 5, 2022

Contents

	Model Information	3
	1.1 Domains	3
	Results	4
	2.1 ULS	4
	2.1.1 Degree of freedom solution of a domain for a single load case	4
	2.1.2 Von-Mises stress distribution of a domain for a single load case	4
3	XLAM	4
	3.1 Stresses	4
	3.2 Critical combinations	5

1 Model Information

N Node	280
N Line	682
N Surface	404
N Member	6
N Domain	4

1.1 Domains

Figure 1: Domain 1

2 Results

2.1 ULS

2.1.1 Degree of freedom solution of a domain for a single load case.

Figure 2: Degree of Freedom Solution for Domain 1

2.1.2 Von-Mises stress distribution of a domain for a single load case.

Figure 3: Von Mises Stresses for Domain 1

3 XLAM

3.1 Stresses

Stresses of a domain for a single load case

Figure 4: Parallel coordinates plot about the stresses of all the points of a domain.

3.2 Critical combinations

Critical combinations for a single node of a domain Ciritcal combination for Node 161 of Surface 347 of Domain 4 $1.5 \cdot LC1 + 1.05 \cdot LC3 + 1.05 \cdot LC4$

Critical combinations for a domainCiritcal combination for Domain 4

 $1.05 \cdot LC1 + 1.05 \cdot LC2 + 1.5 \cdot LC3 + 1.05 \cdot LC4$

Critical combinations for all domains

The combination resulting the highest maximum efficiency is

$$1.05 \cdot LC1 + 1.05 \cdot LC2 + 1.5 \cdot LC3 + 1.05 \cdot LC4$$
 (1)

Surface stresses:

1.05 * LC1 + 1.05 * LC2 + 1.5 * LC3 + 1.05 * LC4 $\sigma_{xx,\,m,\,t}$ $\sigma_{yy,\,m,\,t}$ $\sigma_{xy,\,m,\,t}$ $\sigma_{xx,\,m,\,b}$ $\sigma_{yy,\,m,\,b}$ $\sigma_{xy,\,m,\,b}$ $\sigma_{xx,\,n}$ $\sigma_{yy,\,n}$ $\sigma_{xy,\,n}$ $\sigma_{xz,\,max}$ $\sigma_{yz,\,max}$ $\sigma_{rx,\,max}$ $\sigma_{ry,\,max}$ - 300 - 20 20 -- 20 40 40 100 10 25 500 10 -30 200 250 - 10 0 10 5 0 100 -10 0 100 -50 /250 -20 +75-500 **-**5 -10 -200 **-**30 -10 -100-100 **-**750 -10100 **-**40 -20 -300 | -20 -125 L -1000

Figure 5: Stresses of a domain.

Efficiancies: