Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

www.domainname.com

Red-Black Tree

In this tutorial, you will learn what a red-black tree is. Also, you will find working examples of various operations performed on a red-black tree in C, C++, Java and Python.

(https://srv.carbonads.net/ads/click/x/GTND42QYCWADCK7NFT7LY

ADS VIA CARBON

SEI (HTTP://CARBONADS.NET/?UTM_SOURCE=WWWPROGRAMIZCOM&UTM_MEDIUM=AD_VIA_LINK&UTM_CAMPAIGN=IN_UNIT&UTM_TERM=CARBON)

Red-Black tree is a self-balancing binary search tree in which each node contains an extra bit for denoting the color of the node, either red or black.

A red-black tree satisfies the following properties:

- 1. **Red/Black Property:** Every node is colored, either red or black.
- 2. Root Property: The root is black.
- 3. **Leaf Property:** Every leaf (NIL) is black.
- 4. Red Property: If a red node has children then, the children are always black.
- 5. **Depth Property:** For each node, any simple path from this node to any of its descendant leaf has the same black-depth (the number of black nodes).

An example of a red-black tree is:

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

www.domainname.com

Each node has the following attributes:

- color
- key
- leftChild
- rightChild
- parent (except root node)

How the red-black tree maintains the property of self-balancing?

The red-black color is meant for balancing the tree.

The limitations put on the node colors ensure that any simple path from the root to a leaf is not more than twice as long as any other such path. It helps in maintaining the self-balancing property of the red-black tree.

Operations on a Red-Black Tree

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

www.domainname.com

rotating the subtrees in a rea-black free

In rotation operation, the positions of the nodes of a subtree are interchanged.

Rotation operation is used for maintaining the properties of a red-black tree when they are violated by other operations such as insertion and deletion.

There are two types of rotations:

Left Rotate

In left-rotation, the arrangement of the nodes on the right is transformed into the arrangements on the left node.

Algorithm

1. Let the initial tree be:

2. If y has a left subtree, assign x as the parent of the left subtree of y.

3. If the parent of x p is NULL, make y as the root of the tree.

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

www.domainname.com

6. Make y as the parent of x.

Right Rotate

In right-rotation, the arrangement of the nodes on the left is transformed into the arrangements on the right node.

1. Let the initial tree be:

2. If x has a right subtree, assign y as the parent of the right subtree of x.

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

www.domainname.com

- 3. If the parent of y is NULL, make x as the root of the tree.
- 4. Else if y is the right child of its parent p, make x as the right child of p.
- 5. Else assign \times as the left child of p.

6. Make x as the parent of y.

Left-Right and Right-Left Rotate

In left-right rotation, the arrangements are first shifted to the left and then to the right.

1. Do left rotation on x-y.

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

www.domainname.com

2. Do right rotation on y-z.

In right-left rotation, the arrangements are first shifted to the right and then to the left.

1. Do right rotation on x-y.

2. Do left rotation on z-y.

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

www.domainname.com

Inserting an element into a Red-Black Tree

While inserting a new node, the new node is always inserted as a RED node. After insertion of a new node, if the tree is violating the properties of the redblack tree then, we do the following operations.

- 1. Recolor
- 2. Rotation

Algorithm to insert a node

Following steps are followed for inserting a new element into a red-black tree:

- 1. Let y be the leaf (ie. NIL) and x be the root of the tree.
- 2. Check if the tree is empty (ie. whether x is NIL). If yes, insert newNode as a root node and color it black.
- 3. Else, repeat steps following steps until leaf (NIL) is reached.
 - a. Compare newKey with rootKey.
 - b. If newKey is greater than rootKey, traverse through the right subtree.
 - c. Else traverse through the left subtree.
- 4. Assign the parent of the leaf as parent of newNode.
- 5. If leafKey is greater than newKey, make newNode as rightChild.

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

... , toolgil | Note | to till lote did | i tgitcclitta | oi | newwood |

www.domainname.com

9 Assign DED solar to Car Nada

- 8. Assign RED color to newNode.
- 9. Call InsertFix-algorithm to maintain the property of red-black tree if violated.

Why newly inserted nodes are always red in a red-black tree?

This is because inserting a red node does not violate the depth property of a red-black tree.

If you attach a red node to a red node, then the rule is violated but it is easier to fix this problem than the problem introduced by violating the depth property.

Algorithm to maintain red-black property after insertion

This algorithm is used for maintaining the property of a red-black tree if insertion of a newNode violates this property.

- 1. Do the following until the parent of newNode p is RED.
- 2. If p is the left child of grandParent gP of z, do the following.

Case-I:

- a. If the color of the right child of <code>gP</code> of <code>z</code> is RED, set the color of both the children of <code>gP</code> as BLACK and the color of <code>gP</code> as RED.
- b. Assign gP to newNode.

Case-II:

- c. Else if newNode is the right child of p then, assign p to newNode.
- d. Left-Rotate newNode .

Case-III:

e. Set color of p as BLACK and color of gP as RED.

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

www.domainname.com

Lise, de the lenewing.

- a. If the color of the left child of <code>gP</code> of <code>z</code> is RED, set the color of both the children of <code>gP</code> as BLACK and the color of <code>gP</code> as RED.
- b. Assign gP to newNode.
- c. Else if newNode is the left child of p then, assign p to newNode and Right-Rotate newNode.
- d. Set color of p as BLACK and color of gP as RED.
- e. Left-Rotate gP.
- 4. Set the root of the tree as BLACK.

Deleting an element from a Red-Black Tree

This operation removes a node from the tree. After deleting a node, the redblack property is maintained again.

Algorithm to delete a node

- 1. Save the color of <code>nodeToBeDeleted</code> in <code>origrinalColor</code>.
- 2. If the left child of nodeToBeDeleted is NULL
 - a. Assign the right child of nodeToBeDeleted to x.
 - b. Transplant nodeToBeDeleted with x.
- 3. Else if the right child of nodeToBeDeleted is NULL
 - a. Assign the left child of nodeToBeDeleted into x.
 - b. Transplant [nodeToBeDeleted] with [x].
- 4. Else
 - a. Assign the minimum of right subtree of noteToBeDeleted into y.

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

www.domainname.com

	o. / todigit the intention of y into A.	
	d. If y is a child of $nodeToBeDeleted$, then set the parent of x as y .	
	e. Else, transplant y with rightChild of y.	
	f. Transplant [nodeToBeDeleted] with [y].	
	g. Set the color of y with originalColor.	
5	5. If the originalColor is BLACK, call DeleteFix(x).	

Algorithm to maintain Red-Black property after deletion

This algorithm is implemented when a black node is deleted because it violates the black depth property of the red-black tree.

This violation is corrected by assuming that node x (which is occupying y 's original position) has an extra black. This makes node x neither red nor black. It is either doubly black or black-and-red. This violates the red-black properties.

However, the color attribute of x is not changed rather the extra black is represented in x's pointing to the node.

The extra black can be removed if

- 1. It reaches the root node.
- 2. If x points to a red-black node. In this case, x is colored black.
- 3. Suitable rotations and recolorings are performed.

Following algorithm retains the properties of a red-black tree.

- 1. Do the following until the x is not the root of the tree and the color of x is BLACK
- 2. If \overline{x} is the left child of its parent then,
 - a. Assign w to the sibling of x.

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

www.domainname.com

a. Set the color of the right child of the parent of x as BLACK.
b. Set the color of the parent of x as RED.
c. Left-Rotate the parent of x.
d. Assign the rightChild of the parent of x to w.
c. If the color of both the right and the leftChild of w is BLACK,
Case-II:
a. Set the color of was RED
b. Assign the parent of x to x .
d. Else if the color of the rightChild of w is BLACK
Case-III:
a. Set the color of the <pre>leftChild</pre> of <pre>w</pre> as BLACK
b. Set the color of was RED
c. Right-Rotate w.
d. Assign the rightChild of the parent of x to w.
e. If any of the above cases do not occur, then do the following. Case-IV:
a. Set the color of w as the color of the parent of x .
b. Set the color of the parent of parent of \times as BLACK.
c. Set the color of the right child of was BLACK.
d. Left-Rotate the parent of x.
e. Set x as the root of the tree.
3. Else the same as above with right changed to left and vice versa.
4. Set the color of x as BLACK.

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

www.domainname.com

examples.

Python, Java and C/C++ Examples

Red-Black Tree Applications

- 1. To implement finite maps
- 2. To implement Java packages: java.util.TreeMap and java.util.TreeSet
- 3. To implement Standard Template Libraries (STL) in C++: multiset, map, multimap
- 4. In Linux Kernel

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

www.domainname.com

Next Tutorial:

Red-Black Tree Insertion

(/dsa/insertion-in-a-red-black-tree)

Previous Tutorial:

(/dsa/binarv-search-tree)

 $\widehat{\underline{n}}(\underline{/dsa})$ > Red-Black Tree

Related Tutorials

DS & Algorithms

Greedy Algorithm

(/dsa/greedy-algorithm)

DS & Algorithms

Types of Queue

(/dsa/types-of-queue)

DS & Algorithms

Deque

(/dsa/deque)

DS & Algorithms

Hashing

(/dsa/hashing)

Thank you for printing our content at www.domain-name.com. Please check back soon for new contents.

www.domainname.com