定理 1.20~A から B への関係を P , B から C への関係を Q , C から D への関係を S とすると , $(P \circ Q) \circ S = P \circ (Q \circ S)$ となる。

【証明】

- (1) $< a,d > \in (P \circ Q) \circ S$ とすると , $< a,c > \in P \circ Q$ かつ $< c,d > \in S$ となる $c \in C$ が存在する。また , $< a,b > \in P$ かつ $< b,c > \in Q$ となる $b \in B$ が存在するので , $< a,b > \in P$ かつ $< b,d > \in Q \circ S$ 。 すなわち , $< a,d > \in P \circ (Q \circ S)$ 。 ゆえに , $(P \circ Q) \circ S \subseteq P \circ (Q \circ S)$ 。
- (2) $< a,d> \in P \circ (Q \circ S)$ とすると , $< a,b> \in P$ かつ $< b,d> \in Q \circ S$ となる $b \in B$ が存在する。また , $< b,c> \in Q$ かつ $< c,d> \in S$ となる $c \in C$ が存在するので , $< a,c> \in P \circ Q$ かつ $< c,d> \in S$ 。 すなわち , $< a,d> \in (P \circ Q) \circ S$ 。 ゆえに , $(P \circ Q) \circ S \supseteq P \circ (Q \circ S)$ 。
- (1),(2)より $(P \circ Q) \circ S = P \circ (Q \circ S)$ 。