FM1 Notes, Spring 2020 Asset Pricing Test

I. The CAPM says that:

$$E(\tilde{r}_i) - r_f = \beta_i [E(\tilde{r}_m) - r_f]$$

- 1. Testable implications
- (1) The relationship between expected return and beta is linear.
- (2) Beta is a complete measure of risk of security i in the efficient portfolio m. No other measure of risk in security i should appear in the above equation.
- (3) The equity risk premium is positive, i.e., $[E(\tilde{r}_m) r_f] > 0$.
- 2. Problems with testing the CAPM

- (1) Expected returns are not directly observed. By the assumption of rational expectations, we can use the *ex post* (realized) returns to proxy for the *ex ante* returns.
- (2) Errors-in-variable problems: the beta is not observed. How to deal with that?
- (3) Market portfolio is not observed: the Roll critique.
- (4) Conditioning information.
- II. How to test the unconditional CAPM
- 1. Time-series approach (Black, Jensen and Scholes approach)
- (1) Estimate each stock's beta.
- (2) Group stocks into m portfolios (10 in their case) based on beta. Get time series of returns for the portfolios.
- (3) For each portfolio i, run time-series regression

$$r_{i,t} - r_{f,t} = \alpha_i + \beta_i (r_{m,t} - r_{f,t}) + \varepsilon_{i,t}$$

using observations from t = 1, 2, ..., T.

Then test H_0 : $\alpha_1 = \alpha_2 = \dots = \alpha_m = 0$.

They concluded that H_0 cannot be rejected.

- 2. Cross-section approach (Fama and MacBeth two-stage procedure)
- (1) Estimate beta for each stock.
- (2) Sort stocks into 20 portfolios based on betas. Then estimate the portfolio betas.
- (3) For each month t, run cross-section regression as follows

$$r_{i,t} - r_{f,t} = \gamma_{0,t} + \gamma_{1,t} \beta_i + \gamma_{2,t} \beta_i^2 + \gamma_{3,t} s_i + \eta_{i,t}$$

using observations from i = 1, 2, ..., m. (m = 20 in their case)

(4) Run steps (1)-(3) for each month t. Then test the following hypothesis:

- (i) $\gamma_0 = 0$
- (ii) $\gamma_1 = E(\tilde{r}_m r_f)$
- (iii) $\gamma_2 = 0$
- (iv) $\gamma_3 = 0$

Construct 20 portfolios from all N stocks.

Portfolio formation period: 7 years.

Beta estimation period: 5 years.

Testing period: 4 years.

Do these for non-overlapping intervals.

Computer *t*-statistics based on the time series of the parameter estimates.

Results: Testing for CAPM

	estimate	t-stat	estimate	t-stat	estimate	t-stat	estimate	t-stat
γ_0	0.0048	2.55	0.0036	1.42	0.0041	1.59	0.0008	0.20
γ_1	0.0085	2.57	0.0105	1.79	0.0072	2.20	0.0114	1.85
γ_2			-0.0008	-0.029			-0.0026	-0.86
γ_3					0.0198	0.46	0.0516	1.11

Conclusions

Results support important implications of the two-parameter model.

- (1) There is a trade off between return and risk.
- (2) The linearity assumption cannot be rejected.
- (3) Cannot reject the hypothesis that market portfolio is the only systematic risk for stock returns.
- (4) The Sharpe-Lintner hypothesis that the coefficient is equal to the risk-free rate is rejected.

III. Challenge to the single-factor model

Fama and French use more recent data.

1. Methodology

- (1) First estimate portfolio betas and assign a portfolio's beta to each stock in the portfolio. This allows them to use individual stocks in the Fama-MacBeth tests.
- (2) For each month, run the cross-section regression of return on variables (beta, size, BE/ME, E/P, etc.).
- (3) The time series means of the slope coefficients provide standard test statistics.

2. Main results

					\mathbf{E}/\mathbf{P}	
β	ln(ME)	ln(BE/ME)	ln(A/ME)	ln(A/BE)	Dummy	$\mathbf{E}(+)/\mathbf{F}$
0.15 (0.46)						
	-0.15 (-2.58)					
-0.37 (-1.21)	-0.17 (-3.41)					
		0.50 (5.71)				
			0.50 (5 69)	-0.57 (-5.34)		
					0.57 (2.28)	4.72 (4.57)
	-0.11 (-1.99)	0.35 (4.44)				
	-0 11 (-2 06)		0.35 (4.32)	-0.50 (-4.56)		
	-0.16 (-3.06)				0.06 (0 38)	2.99 (3.04)
	-0.13 (-2.47)	0.33 (4.46)			-0.14 (-0.90)	0.87 (1.23)
	-0.13 (-2.47)		0.32 (4.28)	$-0.46\ (-4.45)$	-0.08 (-0.56)	1.15 (1.57)

3. Summary

- (1) Earlier research found a positive relationship between expected return and beta. Fama and French find weak relation in the more recent data.
- (2) Univariate relations between expected return and size, leverage, E/P, and BE/ME are strong.
- (3) In multivariate tests, size is robust to the inclusion of other variables.
- (4) BE/ME has a stronger role than size.
- (5) The combination of size and BE/ME seems to absorb the roles of leverage and E/P. The results seem to suggest that stock risks are multidimensional. One dimension of risk is proxied by size and another dimension is proxied by BE/ME. It is possible that the risk captured by BE/ME is the relative stress factor.