

Description of ether examples YOTS

9/14/2018

Agenda

- Software tools required
- → MII 10/100Mbps example
- \rightarrow
- \rightarrow
- \rightarrow

Installing software tools

- Please install free software tools shown in below
 - Wireshark (https://www.wireshark.org/download.html)
 - python 2.7.X or 3.4+ (https://www.python.org/downloads/)
 - scapy (https://scapy.readthedocs.io/en/latest/installation.html)

Description of this application

- This example transmits/receives ether frames.
- In this example, TVII transmit ether packet back if it received ether packet.
- You can check transmitting/receiving ether frames using your PC with free software "Python Scapy" and "Wireshark".

Set up hardware (PSVP adaptor board)

Short TP211 and TP213

Close JP13, JP15, JP17

Set up hardware (CYTVII-C-2D-500-BGA_CPU_BOARD)

- MII 100Mbps
 - Open R234 and R241
 - Close all related jumpers
- RGMII 1000Mbps
 - Open R234
 - Close all related jumpers

Set up hardware (CYTVII-C-2D-327-BGA_CPU_BOARD)

- MII 100Mbps
 - Open R234 and R241 and R235
 - Close all related jumpers
- RGMII 1000Mbps
 - Open R234 and R243
 - Close all related jumpers

Set up your PC

1. Open "Control Panel"->"Network and Internet"->"Network and Sharing Center" and click "Change adapter settings"

- 2. Right click on the LAN which is connected to the TVII board and click "Properties"
- 3. Click the "Configure" button 4. Select "Advanced" tab 5. Select "Speed and Duplex" in "Property" box
- 6. Select the speed you want (See next slide)

Set up your PC

- MII 100Mbps
 - Select "100 Mbps Full duplex"
- RGMII 1000Mbps
 - Select "Auto Negotiation"

Modify the example and execute it

- Set the preprocessor macro "EMAC_INTERFACE" "EMAC_MII"
- Set the preprocessor macro "EMAC_LINKSPEEP" in the C code so that the speed becomes as you like. (e.g. If you want to try 100Mbps, define "EMAC_LINKSPEEP" as "ETH_LINKSPEED_100")
- If, you use "EMAC_MII" and "ETH_LINKSPEED_100" and if you use PC, you have to disable auto MDI/MDI-X negotiation of the PHY.

- If you use "MII 100Mbps" with windows PC, search word "YOTS" in the code and uncomment the line to disable auto negotiation.
- Build your project and execute it.

Launch the "Wireshark"

- 1. Launch the "Wireshark" and select the LAN and make sure that the wireshark started capturing
- 2. Set the filter as "eth.src == 2.0.0.0.0.2 or eth.src == 4.0.0.0.0.4"

Python scapy (find ether interface)

- launch command prompt.
- type "scapy"
- type conf.route and find your ether interface connected to the TVII

>>> conf.route					
Network	Netmask	Gateway	Iface	Output IP	Metric
0.0.0.0	0.0.0.0	10.13.56.1	Intel(R) Dual Band Wireless-AC 8265	10.13.56.60	35
10.13.56.0	255.255.248.0	0.0.0.0	Intel(R) Dual Band Wireless-AC 8265	10.13.56.60	291
10.13.56.60	255.255.255.255	0.0.0.0	Intel(R) Dual Band Wireless-AC 8265	10.13.56.60	291
10.13.63.255	255.255.255.255	0.0.0.0	Intel(R) Dual Band Wireless-AC 8265	10.13.56.60	291
127.0.0.0	255.0.0.0	0.0.0.0	Software Loopback Interface 1	127.0.0.1	331
127.0.0.1	255.255.255.255	0.0.0.0	Software Loopback Interface 1	127.0.0.1	331
127.255.255.255	255.255.255.255	0.0.0.0	Software Loopback Interface 1	127.0.0.1	331
192.168.1.0	255.255.255.0	0.0.0.0	<pre>Intel(R) Ethernet Connection (4) I219-LM</pre>	192.168.1.1	281
192.168.1.1	255.255.255.255	0.0.0.0	Intel(K) Ethernet Connection (4) 1219-LM	192.168.1.1	281
192.168.1.255	255.255.255.255	0.0.0.0	<pre>Intel(R) Ethernet Connection (4) I219-LM</pre>	192.168.1.1	281
224.0.0.0	240.0.0.0	0.0.0.0	Software Loopback Interface 1	127.0.0.1	331
224.0.0.0	240.0.0.0	0.0.0.0	<pre>Intel(R) Ethernet Connection (4) I219-LM</pre>	192.168.1.1	281
224.0.0.0	240.0.0.0	0.0.0.0	Intel(R) Dual Band Wireless-AC 8265	10.13.56.60	291
255.255.255.255	255.255.255.255	0.0.0.0	Software Loopback Interface 1	127.0.0.1	331
255.255.255.255	255.255.255.255	0.0.0.0	<pre>Intel(R) Ethernet Connection (4) I219-LM</pre>	192.168.1.1	281
255.255.255.255	255.255.255.255	0.0.0.0	Intel(R) Dual Band Wireless-AC 8265	10.13.56.60	291

Python scapy (Sending raw packet)

- create a raw ether packet instance. (>>> raw_packet = Ether())
- set source MAC address (>>> raw_packet.src = "2:0:0:0:0:2")
- set destination MAC address (>>> raw_packet.dst = "4:0:0:0:0:4")
- set type (>>> raw_packet.type = 0x0800)
- set payload (>>> raw_packet.payload = Raw(load = "Hello")
- Send the packet (>>> sendp(raw_packet, iface = "<your inaterface name>")

```
>>> raw_packet = Ether()
>>> raw_packet.src = "4:0:0:0:0:4"
>>> raw_packet.dst = "2:0:0:0:0:2"
>>> raw_packet.type = 0x0800
>>> raw_packet.payload = Raw(load = "Hello")
>>> sendp(raw_packet, iface = "Intel(R) Ethernet Connection (4) I219-LM")
.
Sent 1 packets.
```


Make sure transmitting/receiving frame

- 1. Your PC transmits the frame, destination address of which is "04:00:00:00:00:04"
- 2. Your PC receives the frame, destination address of which is "02:00:00:00:00:02"

