

Instituto de Geociências e Ciências Exatas (IGCE) Pós-Graduação em Ciência da Computação

Auxílio a Deficientes Visuais utilizando Redes Neurais Convolucionais e Competição e Cooperação de Partículas

Jefferson Antonio Ribeiro Passerini Orientador: Prof. Dr. Fabricio Aparecido Breve

Agenda

- Introdução
- Objetivos e Motivação
- Fundamentação Teórica
- Trabalhos Relacionados
- Metodologia
- Resultados
- Cronograma de Execução
- Considerações Finais

Introdução

- 2,2 bilhões de pessoas com algum tipo de deficiência visual no mundo (ONU, 2019);
- 35 milhões de pessoas com deficiência visual no Brasil, onde aproximadamente 506 mil eram totalmente cegas (IBGE, Censo 2010);
- Evolução das tecnologias assistivas; Visão Computacional;
- Smartphone como recurso assistivo.

Objetivos

Objetivo Principal:

 Detecção de obstáculos a partir de imagens capturadas de dispositivos móveis sem a necessidade de servidores remotos para processamento.

Objetivos

Objetivo Estudos Especiais:

- Estudo bibliográfico dos conceitos a serem utilizados na pesquisa;
- Levantamento de trabalhos correlatos;
- Estabelecer um metodologia pra continuidade da pesquisa.

Fundamentação Teórica: Deficiência Visual

- Classificação da deficiência visual: 1-Def. visual leve; 2-Def. visual moderada; 3-Cegueira; 4-Cegueira severa; 5-Cegueira muito severa; 6-Cegueira total.
- Mudanças de comportamento como na forma de andar (GERUSCHAT et al, 2006; BICKET et al, 2020; TURANO et al, 2021);
- Diferenças no processo de aprendizagem (adaptação) do cego congênito e do cego tardio (PASQUALOTO; PROULX, 2012; PASQUALOTO; LAM; PROULX, 2013):
 - Cego tardio possui desenvolvimento do cérebro igual ou próximo a de uma pessoa com visão;
 - Cego congênito possuem habilidades superiores de memória auditiva.

Fundamentação Teórica: Deficiência Visual

Fonte: Adaptado de Hu et al. (2019).

DMRI 🛮 Degeneração macular relacionada a idade

Fundamentação Teórica: CNN e Deep Learning

- Deep Learning é utilizado em diferentes aplicações, sendo derivado das redes neurais convencionais, mas supera consideravelmente seu desempenho (LECUN; BENGIO; HINTON, 2015);
- É capaz de analisar funções complexas e não lineares, gerar representações de recursos distribuídos e hierárquicos e permite o uso eficaz de dados rotulados e não rotulados (PANG et al., 2018);
- Os modelos de aprendizado profundo tem uma representação de dos multicamadas simulando o que ocorre nas regiões sensoriais do cérebro humano. Sendo as redes neurais convolucionais (CNN) o modelo de rede que trouxe maior visibilidade para esse modelo de aprendizado (ALZUBAIDI et al., 2021).

Fundamentação Teórica: CNN e Deep Learning

- As CNNs são redes neurais do tipo feedfoward e extraem características dos dados através de convoluções (LI et al., 2020);
- São compostas por camadas de convolução; ativação (ReLU) e de síntese de informações (*Pooling*) para a extração das características e uma camada totalmente conectada (*fully conected*) para a classificação.

Fonte: Adaptado de Alzubaidi et al. (2021).

Fundamentação Teórica: CNN e Deep Learning

Tabela 1 – Visualização de Arquiteturas de CNNs

Model	Inovação	Camadas	Conjunto de Dados	Taxa de erro (%)	Tamanho da entrada	Ano
AlexNet	Dropout e ReLU	8	ImageNet	15,3	227x 227x3	2012
Network-in- Network (NIN)	Nova Camada "mlpconv", GAP	3	CIFAR-10 CIFAR-100 MNIST	10,41 35,68 0,45	32x32x3	2013
ZefNet	Visualização de camadas intermediárias	8	ImageNet	11,7	224x224x3	2014
VGG	Maior profundidade e filtro pequeno	16, 19	ImageNet	7,3	224x224x3	2014
GoogleLeNet	Maior profundidade, conceito de bloco, tamanhos diferentes de filtros, conceito de concatenação	22	ImageNet	6,7	224x224x3	2015
Inception-V3	Melhor representação dos recursos, filtro pequeno	48	ImageNet	3,5	229x229x3	2015
Highway	Conceito de multi- percurso	19, 32	CIFAR-10	7,76	32x32x3	2015
Incepton-V4	Transformada dividida e conceito de integração	70	ImageNet	3,08	229x229x3	2016
ResNet	Robusto contra overfitting devido a simetria baseado no mapeamento " <i>skip-</i> <i>links</i> "	152	ImageNet	3,57	224x224x3	2016

ResNet-V2 "residual links" WideResnet Diminuiu a profundidade e aumento a largura 28 CIFAR-10 3,89 32x3 CIFAR-100 18,85 aumento a largura Xception Convoluções separáveis em profundidade 71 ImageNet 0,055 229x separáveis em profundidade Residual Apresentou a técnica de atenção 452 CIFAR-10 3,90 40x4 CIFAR-100 20,40 CIFAR-100 20,40 ImageNet Squeeze- and- modeladas entre excitation networks 152 ImageNet 2,25 229x 229x 229x 229x 229x 229x 229x 22							
Xception Convoluções 71 ImageNet 0,055 229x separáveis em profundidade Residual Apresentou a técnica 452 CIFAR-100 3,90 40x4 attention neural network Squeeze- Interdependências 152 ImageNet 2,25 229x and- modeladas entre excitation canais networks DenseNet Blocos de camadas e 201 CIFAR-10 3,46 224x camadas conectadas umas com as outras ImageNet 3,54 HRNetV2 Representações de alta resolução MPII 256x Human 384x			164	ImageNet	3,52	229x229x3	2016
separáveis em profundidade Residual Apresentou a técnica 452 CIFAR-10 3,90 40x4 attention de atenção CIFAR-100 20,40 neural network Squeeze- Interdependências 152 ImageNet 2,25 229x and- modeladas entre excitation canais 320x networks DenseNet Blocos de camadas e 201 CIFAR-10 3,46 224x camadas conectadas umas com as outras ImageNet 3,54 HRNetV2 Representações de alta resolução MPII 256x MPII 256x MPII 256x MPII 384x	WideResnet	profundidade e			,	32x32x3	2016
attention neural network Squeeze- Interdependências 152 ImageNet 2,25 229x and- excitation networks DenseNet Blocos de camadas e camadas conectadas umas com as outras ImageNet 3,54 HRNetV2 Representações de alta resolução CIFAR-10 2000 224x 1800 256x 1800 256x 1800 256x 1800 256x 1800 256x 1800 2000 2000 2000 2000 2000 2000 2000	Xception	separáveis em	71	ImageNet	0,055	229x229x3	2017
and- excitation networks modeladas entre canais 224x 320x DenseNet Blocos de camadas e camadas conectadas umas com as outras 201 CIFAR-10 CIFAR-100 ImageNet 17,18	attention neural		452			40x40x3	2017
camadas conectadas umas com as outras CIFAR-100 ImageNet 17,18 3,54 HRNetV2 Representações de alta resolução - COCO 224x MPII 256x Human Human 384x	and- excitation	modeladas entre	152	ImageNet	2,25	229x229x3 224x224x3 320x320x3	2017
resolução MPII 256x Human 384x	DenseNet	camadas conectadas	201	CIFAR-100	17,18	224x224x3	2017
Fonto: Adantado do Alzubaidi et al (2021)	HRNetV2	resolução	-	MPII Human Pose		224x224x3 256x256x3 384x288x3	2020

Fonte: Adaptado de Alzubaidi et al (2021).

Fundamentação Teórica: Transfer learning

- A transferência de aprendizado parte da premissa que os dados rotulados são escassos, assim afirma que é possível transferir representações aprendidas para outras tarefas;
- A transferência de aprendizado se justifica pela necessidade de grandes bases de dados para treinamento das CNNs (WEISS; KHOSHGOFTAAR; WANG, 2016). Em domínios especiais a quantidade de dados disponíveis para treinamento geralmente são insuficientes (TAN et al., 2018);
- Vários trabalhos demonstram da utilização de treinamento com tipos de dados diferentes da aplicação destino: Cook, Feuz e krishnan (2013); Cao et al. (2013), Oquab et al. (2014), Shin et al. (2016), Alzubaidi et al. (2020);

Fundamentação Teórica: Seleção de Características

- Análise de Componentes Principais (PCA) (JOLLIFFE, 2002);
- ISOMAP (TENENBAUM; SILVA; LANGFORD, 2000);
- Locally Linear Embedding (LLE) (ROWEIS; SAUL, 2000);
- K_{II} Isomaps (Saxena; Gupta; Mukerjee, 2004);
- t-Distributed Stochastic Neighbor Embedding (T-SNE) (MAATEN;HINTON, 2008);
- Uniform Approximation and Projection (UMAP) (McINNES; HEALY; MELVILLE, 2020);

Fundamentação Teórica: Classificador

- Competição e Cooperação de Partículas (PCC) (Breve et al., 2002);
 - Aprendizado Semi-supervisionado;
 - Utiliza rede complexa para representação dos dados, onde os vértices estão interligados utilizando o modelo Knn, admitindo a Distância Euclidiana como métrica;
 - Cada vértice representa uma instância dos dados;
 - Deve ser fornecidos alguns rótulos para o modelo;
 - Partículas navegam pela rede complexa competindo e cooperando para dominar os vértices não rotulados
 - Navegação pode seguir: regra gulosa ou aleatória.

	Tabela 3 - Trabalhos Analisados por área de domínio
Domínio	Trabalhos Pesquisados
Detecção de Obstáculos	Neha e Shakib (2021); Ansari et al. (2020); Romadhone et al. (2020); Jiang et al. (2019); Parikh et al. (2018); Yang et al. (2018); Buchs et al. (2017); Rizzo et al. (2017); Hoang et al. (2017); Lin et al. (2017); Tepelea et al. (2017); Dang et al. (2016); Everding et al. (2016); Krishnan et al. (2016); Saffory et al. (2016); Pisa et al. (2016); Poggi e Mattoccia (2016); Yasuno et al. (2016); Ye et al. (2016); Gupta et al. (2015); Kumar et al. (2014); Niitsu et al. (2014); Sadi et al. (2014); Vera et al. (2014); Tapu et al. (2017a); Tapu et al. (2017b); Tapu et al. (2013); Scherlen et al. (2007).
Detecção de Buracos	Islam e Said (2018).
Identificação de Locais	Alghamdi et al (2013).
Identificação de faixas de pedestres	Berriel et al. (2017a); Berriel et al. (2017b); Poggi et al. (2015).
Navegação Interna	Fusco e Coughlan (2020); Cheraghi <i>et al.</i> (2017); Kassim <i>et al.</i> (2016); Stoll <i>et al.</i> (2015); Nakajima e Haruyama (2013).
Navegação Externa	Krishnan et al. (2016); Gupta et al. (2015); Fan et al. (2014).
Identificação de Pessoas	Kumar et al. (2017); Majeed e Baadel (2016); Neto et al. (2016).
Identificação de Portas e Maçanetas	Niu et al. (2017); Wang et al. (2013).
Auxílio a utilização de interfaces de dispositivos inteligentes	Akkapusit; Ko (2021).
Descrição de ambientes	Malek et al. (2017).
	Fonte: O autor (2021).

Fonte: O autor (2021).

Tabela 4 - Trabalhos analisados - unidades de processamento

	abola i i i abalilo all'allocato all'idadeo de processimente
Processamento	Trabalhos Pesquisados
Computador	Jiang et al. (2019); Islam e Sadi (2018); Yang et al. (2018); Berriel et al.
	(2017a); Berriel et al. (2017b); Hoang et al. (2017); Malek et al. (2017); Niu et
	al. (2017); Rizzo et al. (2017); Dang et al. (2016); Neto et al. (2016); Kumar e
	Meher (2015); Takizawa <i>et al.</i> (2015); Stoll <i>et al.</i> (2015); Wang <i>et al.</i> (2013);
	Scherlen et al. (2007).
Smartphone	Akkapusit e Ko (2021); Neha e Shakib (2021); Fusco e Coughlan (2020);
	Cheraghi et al. (2017); Kumar et al. (2017); Krishnan et al. (2016); Saffory et
	al. (2016); Tanveer et al. (2015); Niitsu et al. (2014); Vera et al. (2014);
	Alghamdi <i>et al.</i> (2013); Nakajima e Haruyama (2013).
Computador +	Parikh et al. (2018); Lin et al. (2017); Tapu et al. (2017a); Tapu et al. (2017b);
Smartphone	Majeed e Baadel (2016); Tepelea <i>et al.</i> (2017); Tapu <i>et al.</i> (2013).
Computador +	Kassim <i>et al.</i> (2016).
Arduino	
Raspberry Pi ou	Ansari et al. (2020); Romadhome e Husein (2020); Yassuno et al. (2016);
Arduino	Gupta et al. (2015); Fan et al. (2014); Kumar et al. (2014); Sadi et al. (2014).
FPGA	Poggi e Mattoccia (2016) - Odroid U3; Ye et al. (2016) – Gumstix Overo
	AirStorm; Poggi et al. (2015) - Odroid U3.
Outros Dispositivos	Pisa et al. (2016) - Radar; Buchs et al. (2017) – sensor IR industrial.
Não foi definido	Everding et al (2016).
	Fonto: O autor (2021)

Fonte: O autor (2021).

- Sensores:
 - RGB ☐ 22 trabalhos
 - RGB-D [] 7 trabalhos
 - Stereo
 ☐ 4 trabalhos
 - IR 🛮 4 trabalhos

 - Laser

 4 trabalhos
 - Rfid \square 4 trabalhos
 - GPS \square 6 trabalhos
 - IMU

 ☐ 6 trabalhos
 - Radar ∏ 1 trabalho

Auxílio a Deficientes Visuais utilizando Redes Neurais Convolucionais e Competição e Cooperação de Partículas 17

Trabalhos Correlatos

Tabela 6 - Trabalhos Analisados – Métodos de aprendizado				
Autor	Área de Domínio	Métodos Utilizados		
Akkupusit e Ko (2021)	Auxílio à utilização de interfaces de dispositivos inteligentes	MobileNet V2 (SANDLER et al, 2019)		
Berriel <i>et al.</i> (2017a)	Identificação de faixas de pedestres	CNN - VGG (SIMONYAN; ZISSERMAN, 2015)		
Berriel <i>et al.</i> (2017b)	Identificação de faixas de pedestres	CNN - VGG (SIMONYAN; ZISSERMAN, 2015)		
Fusco e Coughlan (2020)	Navegação Interna através de detecção de símbolos	FastAdaBoost (SCHAPIRE, 2003), Local Binary Patterns (LBP) (OJALA; PIETIKAINEN; HARWOOD, 1994), Histogram of Oriented Gradients (HoG) (DALAL; TRIGGS, 2005), Support Vector Machines (SVM) (CORTES; VAPNIK, 1995)		
Islam e Sadi (2018)	Detecção de buracos	CNN – AlexNet (KRIZHEVESKY; SUTSKEVER; HINTON, 2012)		
Jiang <i>et al.</i> (2019)	Detecção de obstáculos	CNN – Resnet (HE et al., 2016)		
Krishnan et al. (2016)	Detecção de obstáculos e navegação	Speeded Up Robust Features - SURF (BAY; TUYTELAARS; VAN GOOL, 2006)		
Kumar e Meher (2015)	Detecção e identificação de objetos	Convolutional-Recursive deep learning (SOCHER et al., 2012)		
Kumar <i>et al.</i> (2017)	Reconhecimento facial e navegação	Rede Neural Artificial – RNA (YONG; CHEN; WAN, 2013)		

Lin et al. (2017)	Detecção de obstáculos	Processo desconectado: Histogram of Oriented Gradients (HoG) (DALAL; TRIGGS, 2005) e Haar Cascades (VIOLA; JONES, 2001) e processo conectado: F-RCNN (REN et al., 2015) e YOLO (REDMON et al., 2016)
Majeed e Baadel (2016)	Reconhecimento facial	Haar Cascades (VIOLA; JONES, 2001) e Fisherfaces (BELHUMEUR; HESPANHA; KRIEGMAN, 1997)
Malek <i>et al.</i> (2017)	Descrição de ambientes	Extração de características: Local Binary Pattern - LBP (OJALA; PIETIKAINEN; HARWOOD, 1994), Histogram of Oriented Gradients - HoG (DALAL; TRIGGS, 2005), Bag of Words - BoW (WU; HOI; YU, 2010); Aprendizado de características: Auto-Encoder neural network- AE (BALDI, 2012); Classificação: Regressão Logistica
Neha e Shakib (2021)	Detecção de obstáculos	Transformada de Hough e <i>Region of Interest</i> – ROI (FERNANDES; OLIVEIRA, 2008)
Neto et al. (2016)	Reconhecimento facial	Histogram of Oriented Gradients (HoG) (DALAL; TRIGGS, 2005), Principal Components Analysis - PCA (JOLLIFFE, 2002); KNN (BISHOP, 2006)
Niu <i>et al.</i> (2017)	Identificação de portas e maçanetas	CNN - YOLOv2 (REDMON; FARHADI, 2016);
Parikh <i>et al.</i> (2018)	Detecção de obstáculos	CNN - InceptionV3 (SZEGEDY et al., 2016a)
Poggi e Mattoccia (2016)	Detecção de obstáculos	Ransac framework (CHOI; KIM; YU, 2009), Filtro de Kalman (KALMAN, 1960), CNN – LeNet (LECUN <i>et al</i> , 1989)
Poggi <i>et al.</i> (2015)	Identificação de faixas de pedestres	Algoritmo SGM (HIRSHMULLER, 2008), Ransac framework (CHOI; KIM; YU, 2009), Filtro de Kalman (KALMAN, 1960), CNN – LeNet (LECUN <i>et al.</i> , 1989)

Rizzo et al. (2017)	Detecção de obstáculos	CNN
Tapu <i>et al.</i> (2013)	Detecção e reconhecimento de objetos	Scale-Invariant Feature Transform (SIFT) (LOWE, 1999); Speeded Up Robust Features - SURF (BAY; TUYTELAARS; VAN GOOL, 2006); Bag of Visual Words - BoVW (CSURKA et al., 2004); Histogram of Oriented Gradients -HoG (DALAL; TRIGGS, 2005)
Tapu <i>et al.</i> (2017a)	Detecção e reconhecimento de objetos	Bag of Visual Words - BoVW (CSURKA et al., 2004); representação de imagem – VLAD (JEGOU; DOUZE; SCHMID, 2011); Histogram of Oriented Gradients -HoG (DALAL; TRIGGS, 2005); Support Vector Machines (SVM) (CORTES; VAPNIK, 1995)
Tapu <i>et al.</i> (2017b)	Detecção e reconhecimento de objetos	CNN - YOLO (REDMON et al., 2016)
Yang <i>et al.</i> (2018)	Detecção de obstáculos	CNN SegNet (BADRINARAYANAN; KENDAL; CIPOLLA, 2017)
Ye et al. (2016)	Detecção de obstáculos	Gaussian Mixture Model – GMM (BISHOP, 2006)

Fonte: O autor (2021).

Auxílio a Deficientes Visuais utilizando Redes Neurais Convolucionais e Competição e Cooperação de Partículas 19

Trabalhos Correlatos

Tabela '	7 - Trabalhos Analisados – C	conjunto de Dados e Resultados
Autor	Conjunto de Dados	Resultados
Akkupusit e Ko (2021)	EgoGesture Dataset + Base Própria para modelos de botões de interface (368 imagens)	Testes com 20 voluntários; 16 deram opiniões positivas
Berriel et al. (2017a)	Google Street View / Google Maps (245.768 imagens – 74047 imagens com faixa de pedestre e 171721 sem faixas de pedestres)	Acurácia: 96,9%
Berriel et al. (2017b)	IARA Dataset / GOPRO Dataset (Bases Próprias)	Acurácia: 96,51%
Fusco e Coughlan (2020)	Não utilizaaram	Realizaram testes de percurso que demonstraram a validade da proposta apresentada
Islam e Sadi (2018)	KITTI Road Dataset (289 imagens) / Pothole Detection Dataset (90 imagens)	Acurácia: 97,12%
Jiang et al. (2019)	Base Própria Imagens (200 imagens estereoscópicas)	Precisão de 76,6%
Krishnan et al. (2016)	Base Própria	Não há informações sobre acurácia
Kumar e Meher (2015)	Composição de Base Própria (330 imagens para treinamento e 455 imagens para testes) + MIT Indoor Dataset	Acurácia de 94,27% para base própria Acurácia de 43,5% para base de terceiros
Kumar et al. (2017)	Base Própria	Acurácia: 90% na identificação de pessoas
Lin <i>et al</i> (2017)	Base Própria – 1710 imagens	Acurácia: 60%
Majeed e Baadel (2016)	Base Própria	Acurácia acima de 90%

Malek <i>et al.</i> (2017)	Base Própria (130	Acurácia de 85,4% a 90,06% em testes de
, ,	imagens – 61 treinamento e 70 testes)	laboratório
Neha e Shakib (2021)	Não utilizou	Testes de navegação
Neto et al. (2016)	Base Própria	Acurácia 94,26%
Niu et al. (2017)	Base Própria	Introduziram a base de imagens de mãos e maçanetas e o modelo precisa de ajustes para a correta detecção
Parikh <i>et al.</i> (2018)	Base Própria composta por 35 mil imagens de diversas fontes	Acurácia de 96,39% em testes de laboratório
Poggi e Mattoccia (2016)	Base Própria	Acurácia de 97,93% para cenas urbanas e naturais
Poggi <i>et al.</i> (2015)	2500 imagens de celular de cenários urbanos	Acurácia de 88% a 94% no reconhecimento de faixas de pedestres dependendo da categoria
Rizzo <i>et al.</i> (2017)	Base Própria	Demonstração de processo de fusão de sensores
Tapu <i>et al.</i> (2013)	4500 imagens extraídas do Pascal Dataset	Acurácia por tipo do objeto: Cars – 95%; Bikes – 87%; People – 94%; Obstacles – 90%;
Tapu <i>et al.</i> (2017a)	4500 imagens extraídas do Pascal Dataset + 1200 imagens base própria	Acurácia: Cars – 95,8%; Bikes – 90,7%; People – 95,4%; Obstacles – 93,9%;
Tapu <i>et al.</i> (2017b)	ImageNet (treinamento) e VOT2016 (testes)	Acurácia: Vehicle: 94%; Bikes: 91%; Pedestrian: 95%; Static Obstrution: 90%
Yang <i>et al.</i> (2018)	ADE20k Dataset; Pascal Dataset e COCO Dataset	Acurácia média de 88% e, se considerada a classificação pixel-a-pixel, a acurácia é de 95,3%
Ye <i>et al.</i> (2016)	Base Própria	Acurácia de detecção acima de 86,7% dependendo da classe do objeto.

- Considerações
 - Diversas abordagens aplicadas ao auxílio ao deficiente visual;
 - Métodos de verificação baseados na percepção em testes de uso;
 - Acurácias variando de 60% a 97%;
 - Falta de um conjunto de imagens "ideal" para realização de testes;
 - Utilização de bases próprias.

- Baseada no trabalho de Breve e Fischer (2020) (Python+Matlab);
- Modelo desenvolvido em linguagem Python;
- Adoção da premissa da combinação das CNNs VGG16+VGG19 que obtiveram melhor desempenho no trabalho publicado;
- Sem pooling (síntese da informação)
- Transferência de aprendizado: ImageNet
- Aferir o impacto da utilização de outro processo de seleção de características (PCA e UMAP);
- Utilizar o mesmo conjunto de imagens (342 imagens, onde 175 demonstram caminhos livres e 167 caminhos com obstáculos.

Figura 9 - Ilustração das etapas do método proposto.

Fonte: O autor (2021).

- Configuração de testes:

 - Construção da rede complexa (grafo) com variação em k vizinhos próximos, utilizando a distância euclidiana como métrica;
 - Classificador PCC com configurações padrões e exposto a um conjunto com 20% de dados rotulados;
 - Acurácia utilizada como métrica de aferição de desempenho.

Configuração de testes:

Tabela 8 - Modelagem dos testes realizados

Р	K	Seleção de características	Classificador PCC
1	125	PCA	50 execuções com sorteio de rótulos a cada execução de k
÷	:	:	:
25	125	PCA	50 execuções com sorteio de rótulos a cada execução de \boldsymbol{k}
1	125	UMAP	50 execuções com sorteio de rótulos a cada execução de $\it k$
÷	:	:	:
25	125	UMAP	50 execuções com sorteio de rótulos a cada execução de \boldsymbol{k}
		•	Fonte: O autor (2021)

Forme. \cup autor (2021).

- Configuração de testes:
 - Materiais
 - Notebook com processador Intel I7-9750H de 2,6GHz;
 - 32 GB de memória RAM;
 - SO Windows 10 Home;
 - Python versão 3.8.12, plataforma Anaconda e IDE Spyder 4.1.4.

Mapa de calor de acurácia - PCC+PCA

Mapa de calor de acurácia - PCC+PCA

Tabela 9 - PCC+PCA Componentes - melhores acurácias

	I abela 3	- 1 CO 1 OA COMPC	Ticilics — memores acuraci	<u>us</u>
Posição	PCA(p)	k	Acurácia (acc)	Tempo (s)
1	7	25	80,88% ±2,36%	3,66s ±1,09s
2	7	18	80,57% ±2,93%	5,02s ±1,51s
3	7	22	80,55% ±2,63%	4,57s ±1,29s
4	7	16	80,53% ±2,09%	5,19s ±1,42s
5	7	14	80,34% ±2,21%	6,27s ±1,82s
6	6	23	80,23% ±2,70%	3,64s ±0,89s
7	7	23	80,19% ±3,14%	4,22s ±1,38s
8	7	15	80,18% ±2,70%	5,51s ±1,26s
9	11	25	80,12% ±2,51%	3,54s ±0,93s
10	7	19	80,06% ±3,64%	4,53s ±1,26s
11	7	20	80,00% ±3,07%	5,29s ±1,65s
12	7	11	79,96% ±2,14%	7,05s ±1,95s
13	7	21	79,93% ±3,45%	4,29s ±1,13s
14	8	24	79,91% ±2,09%	3,70s ±0,86s
15	7	6	79,89% ±2,18%	12,07s ±3,20s
	·			

Fonte: O autor (2021).

Variação da acurácia em k com componentes p=7 (PCC+PCA)

Mapa de calor de acurácia - PCC+UMAP

Mapa de calor de acurácia - PCC+PCA

Tabela 10 – PCC+UMAP Componentes – melhores acurácias.

	Tabela 10 -	1 OOTOWAL	Componentes – memores acard	icias.
Posição	$UMAP\left(p\right)$	k	Acurácia (acc)	Tempo (s)
1	24	6	89,26% ±1,83%	10,73s ±3,09s
2	24	5	89,20% ±2,59%	12,86s ±4,23s
3	21	5	88,80% ±1,63%	14,11s ±4,63s
4	21	6	88,70% ±0,18%	11,57s ±3,50s
5	24	4	88,49% ±1,93%	14,08s ±4,16s
6	21	15	88,47% ±1,73%	5,03s ±1,47s
7	21	7	88,42% ±1,54%	8,94s ±2,19s
8	21	16	88,38% ±0,17%	4,66s ±1,58s
9	21	8	88,21% ±0,14%	8,89s ±3,06s
10	21	10	88,18% ±1,53%	6,83s ±1,79s
11	22	5	88,10% ±1,79%	12,35s ±4,74s
12	17	8	88,09% ±1,26%	9,05s ±3,06s
13	25	11	88,09% ±1,45%	6,10s ±2,00s
14	21	11	88,04% ±1,83%	6,27s ±1,73s
15	21	9	88,01% ±1,73%	7,05s ±1,85s

Fonte: O autor (2021).

Variação da acurácia em k com componentes p=7 (PCC+UMAP)

Variação da acurácia em p com vizinho k=25 (PCC+UMAP)

Variação da acurácia em p com vizinho k=25 (PCC+UMAP)

Tabela 11 - Acurácias: PCC+UMAP e PCC+PCA

Modelo	Posição	p	k	Acurácia (acc)	Tempo (s)
PCC+UMAP	1	24	6	89,26% ±1,83%	10,73s ±3,09s
PCC+UMAP	2	24	5	89,20% ±2,59%	12,86s ±4,23s
PCC+UMAP	3	21	5	88,80% ±1,63%	14,11s ±4,63s
PCC+UMAP	4	21	6	88,70% ±0,18%	11,57s ±3,50s
PCC+UMAP	5	24	4	88,49% ±1,93%	14,08s ±4,16s
PCC+PCA	1	7	25	80,88% ±2,36%	3,66s ±1,09s
PCC+PCA	2	7	18	80,57% ±2,93%	5,02s ±1,51s
PCC+PCA	3	7	22	80,55% ±2,63%	4,57s ±1,29s
PCC+PCA	4	7	16	80,53% ±2,09%	5,19s ±1,42s
PCC+PCA	5	7	14	80,34% ±2,21%	6,27s ±1,82s
		-	•		-

Fonte: O autor (2021).

Ranking 62.500 execuções o melhor desempenho de PCC+PCA fica na posição 510.

Figura 17 – Análise de dispersão acurácia (*acc*) x tempo de execução (*time*) para os métodos PCC+PCA e PCC+UMAP – (a) PCC+PCA (b) PCC+UMAP (c) PCC+PCA e PCC+UMAP.

Tabela 12 – Comparativo de acurácia utilizando classificador PCC (com 20% de amostras classificadas)

		. /			
Extração	Modelo	Polling	p	\boldsymbol{k}	Acurácia (acc)
VGG16+VGG19	PCC+UMAP	Não	24	6	89,26% ±1,83%
VGG16+VGG19	PCC+PCA	Não	7	2	80,88% ±2,36%
				5	
VGG16	PCC+PCA	Não	10	7	79,53% ±2,40%
VGG19	PCC+PCA	Não	10	8	79,35% ±2,65%
VGG16+VGG19	PCC+PCA	Não	14	4	79,43% ±2,65%
VGG16	PCC+PCA	AVG(Global)	7	6	72,51% ±3,04%
VGG19	PCC+PCA	AVG(Global)	15	3	71,52% ±3,28%
VGG16+VGG19	PCC+PCA	AVG(Global)	10	6	73,43% ±3,10%
VGG16	PCC+PCA	MAX(Global)	7	7	74,30% ±2,80%
VGG19	PCC+PCA	MAX(Global)	20	8	72,28% ±3,87%
VGG16+VGG19	PCC+PCA	MAX(Global)	20	4	73,19% ±3,35%
	VGG16+VGG19 VGG16+VGG19 VGG16 VGG19 VGG16+VGG19 VGG16 VGG19 VGG16+VGG19 VGG16+VGG19 VGG16+VGG19	VGG16+VGG19 PCC+UMAP VGG16+VGG19 PCC+PCA VGG19 PCC+PCA VGG16+VGG19 PCC+PCA VGG16+VGG19 PCC+PCA VGG16 VGG16 VGG16 VGG16 VGG19 PCC+PCA VGG19 PCC+PCA VGG19 PCC+PCA	VGG16+VGG19PCC+UMAPNãoVGG16+VGG19PCC+PCANãoVGG16PCC+PCANãoVGG19PCC+PCANãoVGG16+VGG19PCC+PCANãoVGG16PCC+PCAAVG(Global)VGG19PCC+PCAAVG(Global)VGG16+VGG19PCC+PCAAVG(Global)VGG16PCC+PCAMAX(Global)VGG19PCC+PCAMAX(Global)VGG19PCC+PCAMAX(Global)	VGG16+VGG19 PCC+UMAP Não 24 VGG16+VGG19 PCC+PCA Não 7 VGG16 PCC+PCA Não 10 VGG19 PCC+PCA Não 10 VGG16+VGG19 PCC+PCA Não 14 VGG16 PCC+PCA AVG(Global) 7 VGG19 PCC+PCA AVG(Global) 15 VGG16+VGG19 PCC+PCA AVG(Global) 10 VGG16 PCC+PCA MAX(Global) 7 VGG19 PCC+PCA MAX(Global) 20	VGG16+VGG19 PCC+UMAP Não 24 6 VGG16+VGG19 PCC+PCA Não 7 2 VGG16 PCC+PCA Não 10 7 VGG19 PCC+PCA Não 10 8 VGG16+VGG19 PCC+PCA Não 14 4 VGG16 PCC+PCA AVG(Global) 7 6 VGG19 PCC+PCA AVG(Global) 15 3 VGG16+VGG19 PCC+PCA AVG(Global) 10 6 VGG16 PCC+PCA MAX(Global) 7 7 VGG19 PCC+PCA MAX(Global) 20 8

Fonte: O autor (2021).

 Tabela 13 – Comparativo de acurácia utilizando classificador PCC e CNNs (Transfer learning)

Trabalho	Extração	Modelo	Polling	p	\boldsymbol{k}	Acurácia (acc)
Proposto	VGG16+VGG19	PCC+UMAP	Não	24	6	89,26% ±1,83%
Proposto	VGG16+VGG19	PCC+PCA	Não	7	25	80,88% ±2,36%
Breve e Fischer (2020)	VGG16	Softmax	Não (fine-tu	ınable)		89,40% ±6,50%
Breve e Fischer (2020)	VGG16	Softmax	AVG (fine-t	unable)		89,23% ±7,52%
Breve e Fischer (2020)	Xception	Softmax	AVG (fine-t	unable)		91,68% ±3,58%
Breve e Fischer (2020)	MobileNet	Softmax	AVG (fine-t	unable)		88,89% ±3,36%

Fonte: O autor (2021).

Considerações Finais

- Resultados inicias promissores para a continuidade dos estudos;
- Dificuldade de encontrar conjuntos de imagens padronizados para testes;
- Abordagens futuras.

Obrigado