Systems Analysis and Control

Matthew M. Peet Illinois Institute of Technology

Lecture 22: The Nyquist Criterion

Overview

In this Lecture, you will learn:

Complex Analysis

- The Argument Principle
- The Contour Mapping Principle

The Nyquist Diagram

- The Nyquist Contour
- Mapping the Nyquist Contour
- The closed Loop
- Interpreting the Nyquist Diagram

Review

Recall: Frequency Response

Input:

$$u(t) = M\sin(\omega t + \phi)$$

Output: Magnitude and Phase Shift

$$y(t) = |G(i\omega)|M\sin(\omega t + \phi + \angle G(i\omega))|$$

Frequency Response to $\sin \omega t$ is given by $G(\imath \omega)$

Review

Recall: Bode Plot

The Bode Plot is a way to visualize $G(\iota\omega)$:

1. Magnitude Plot: $20\log_{10}|G(\imath\omega)|$ vs. $\log_{10}\omega$

2. Phase Plot: $\angle G(\imath \omega)$ vs. $\log_{10} \omega$

Bode Plots

If we only want a single plot we can use ω as a parameter.

A plot of $Re(G(\imath\omega))$ vs. $Im(G(\imath\omega))$ as a function of ω .

- Advantage: All Information in a single plot.
- AKA: Nyquist Plot

Question: How is this useful?

To Understand Nyquist:

- Go back to Root Locus
- Consider a single zero: G(s) = s.

Draw a curve around the pole

What is the phase at a point on the curve?

$$\angle G(s) = \angle s$$

Consider the phase at four points

1.
$$\angle G(a) = \angle 1 = 0^{\circ}$$

2.
$$\angle G(b) = \angle - i = -90^{\circ}$$

3.
$$\angle G(c) = \angle -1 = -180^{\circ}$$

4.
$$\angle G(d) = \angle i = -270^{\circ}$$

The phase decreases along the curve until we arrive back at a.

• The phase resets at a by $+360^{\circ}$

The reset is **Important!**

- There would be a reset for any closed curve containing z or any starting point.
- We went around the curve *Clockwise* (CW).
 - If we had gone Counter-Clockwise (CCW), the reset would have been -360° .

M. Peet Lecture 22: Control Systems 7 / 30

Now consider the Same Curve with

$$G(s) = s + 2$$

Phase at the same four points

1.
$$\angle G(a) = \angle 3 = 0^{\circ}$$

$$2. \ \angle G(b) = \angle 2 - i \cong -30^{\circ}$$

3.
$$\angle G(c) = \angle 1 = 0^{\circ}$$

4.
$$\angle G(d) = \angle 2 + i \cong 30^{\circ}$$

In this case the transition back to 0° is smooth.

• No reset is required!

Question What if we had encircled 2 zeros?

Phase at the same four points

1.
$$\angle G(a) = 0^{\circ}$$

2.
$$\angle G(b) = -180^{\circ}$$

3.
$$\angle G(c) = -360^{\circ}$$

4.
$$\angle G(d) = -540^{\circ}$$

• The phase resets at a by $+720^{\circ}$

Rule: The reset is $+360 \cdot \#_{zeros}$.

Question What about encircling a pole?

Consider the phase at four points

1.
$$\angle G(a) = \angle 1 = 0^{\circ}$$

2.
$$\angle G(b) = \angle \frac{1}{-i} = \angle i = 90^{\circ}$$

3.
$$\angle G(c) = \angle - 1 = 180^{\circ}$$

4.
$$\angle G(d) = \angle \frac{1}{i} = \angle - i = 270^{\circ}$$

• The phase resets at a by -360°

Rule: The reset is $-360 \cdot \#_{poles}$.

Question: What if we combine a pole and a zero?

Consider the phase at four points

- 1. $\angle G(a) = 0^{\circ}$
- 2. ∠ $G(b) = -60^{\circ}$
- 3. $\angle G(c) = 0^{\circ}$
- **4**. $\angle G(d) = 60^{\circ}$
 - There is *no reset* at *a*.

Rule: Going CW, the reset is $+360 \cdot (\#_{zeros} - \#_{poles})$.

A consequence of the Argument Principle from Complex Analysis.

How can this observation be used? Consider Stability.

ullet G(s) is stable if it has no poles in the right half-plane

Question: How to tell if any poles are in the RHP?

Solution: Draw a curve around the RHP and count the resets.

Define the Curve:

- Starts at the origin.
- Travels along imaginary axis till $r = \infty$.
- At $r = \infty$, loops around clockwise.
- Returns to the origin along imaginary axis.

A Clockwise Curve

The reset is
$$+360 \cdot (\#_{zeros} - \#_{poles})$$
.

If there is a negative reset, there is a pole in the RHP

If we encircle the right half-plane,

The reset is
$$+360 \cdot (\#_{zeros} - \#_{poles})$$
.

Question 1:

 How to determine the number of resets along this curve?

Question 2:

- Zeros can hide the poles!
- What to do?

Lets answer the more basic question first:

• How to determine the number of resets along this curve?

Definition 1.

Given a contour, $\mathcal{C} \subset X$, and a function $G: X \to X$, the **contour mapping** $G(\mathcal{C})$ is the curve $\{G(s): s \in \mathcal{C}\}$.

In the complex plane, we plot

$$Im(G(s))$$
 vs. $Re(G(s))$

along the curve ${\cal C}$

• Yields a new curve, \mathcal{C}_G .

Key Point: For a point on the mapped contour, $s^* = G(s)$,

$$\angle s^* = \angle G(s)$$

• We measure θ , not phase.

To measure the 360° resets in $\angle G(s)$

- We count the number of $+360^{\circ}$ resets in θ !
- We count the number of times C_G encircles the origin **Clockwise**.

A reset occurs every time \mathcal{C}_G encircles the origin clockwise.

 Makes the resets much easier to count!

Assumes the contour doesn't hit any poles or zeros, otherwise

- $G(s) \to \infty$ and we lose count.
- $G(s) \rightarrow 0$ and we lose count.

Example 1

Remember Direction is important
If the original Contour was counter-clockwise

The reset is
$$+360 \cdot (\#_{poles} - \#_{zeros})$$
.

In this example we see \mathcal{C}_G

- encircles the origin once going Clockwise
 - $\theta_a = 0$
 - $\theta_b = -90^{\circ}$
 - $\theta_c = -180^{\circ}$
 - $\theta_d = -270^{\circ}$
- A Positive Reset of +360°.

Thus
$$+360 \cdot (\#_{poles} - \#_{zeros}) = +360$$

$$(\#_{poles} - \#_{zeros}) = 1$$

At least one pole in the region.

Assume the original Contour was clockwise

The reset is
$$+360 \cdot (\#_{zeros} - \#_{poles})$$
.

There are 5 counter-clockwise encirclements of the origin.

• A Negative Reset of $-360^{\circ} \cdot 5$.

Thus

$$+360 \cdot (\#_{zeros} - \#_{poles}) = -360 \cdot 5$$

 $(\#_{zeros} - \#_{poles}) = -5$

At least 5 poles in the region.

Conclusion: If we can plot the contour mapping, we can find the relative # of poles and zeros.

Definition 2.

The **Nyquist Contour**, C_N is a contour which contains the imaginary axis and encloses the right half-place. The Nyquist contour is clockwise.

A Clockwise Curve

- Starts at the origin.
- Travels along imaginary axis till $r = \infty$.
- At $r = \infty$, loops around clockwise.
- Returns to the origin along imaginary axis.

To map the Nyquist Contour, we deal with two parts

- The imaginary Axis.
- The loop at ∞ .

The Imaginary Axis

- Contour Map is $G(\imath \omega)$
- Plot $Re(G(\imath\omega))$ vs. $Im(G(\imath\omega))$

Data Comes from Bode plot

• Plot $Re(G(\imath\omega))$ vs. $Im(G(\imath\omega))$

Map each point on Bode to a point on Nyquist

The Loop at ∞ : 2 Cases

$$G(s) = \frac{n(s)}{d(s)} = \frac{a_0 s^m + \dots + a_m}{b_0 s^n + \dots + b_n}$$

Case 1: G(s) is Proper, but not strictly

- Degree of d(s) same as n(s)
- As $\omega \to \infty$, G(s) becomes constant
 - Magnitude becomes fixed

$$\lim_{s \to \infty} \frac{n(s)}{d(s)} = \frac{n(s)}{d(s)} = \frac{a_0}{b_0}$$

Phase varies (More on this later)

We can use the Nyquist Plot

The Loop at ∞ :

$$G(s) = \frac{n(s)}{d(s)} = \frac{a_0 s^m + \dots + a_m}{b_0 s^n + \dots + b_n}$$

Case 1: G(s) is Strictly Proper

- Degree of d(s) greater than n(s)
- As $\omega \to \infty$, $|G(\imath \omega)| \to 0$

$$\lim_{s \to \infty} G(s) = \lim_{\omega \to \infty} \frac{n(s)}{d(s)} = 0$$

Can't tell what goes on at ∞ !

Nyquist Plot is useless

If we limit ourself to proper, but not strictly proper.

Because the Nyquist Contour is clockwise,

The number of clockwise encirclements of 0 is

 \bullet The $\#_{poles} - \#_{zeros}$ in the RHP

Conclusion: Although we can map the RHP onto the Nyquist Plot, we have two problems.

- Can only determine $\#_{poles} \#_{zeros}$
- Doesn't work for strictly proper systems.

Our solution to all problems is to consider Systems in Feedback

- Assume we can plot the Nyquist plot for the open loop.
- What happens when we close the loop?

The closed loop is

$$\frac{kG(s)}{1+kG(s)}$$

We want to know when

$$1 + kG(s) = 0$$

Question: Does $\frac{1}{k} + G(s)$ have any zeros in the RHP?

Closed Loop

This is a better question.

 $\frac{1}{k} + G(s)$ is Proper, but not Strictly

$$\frac{1}{k} + G(s) = \frac{d(s) + kn(s)}{kd(s)}$$

- Degree of d(s) greater than or equals n(s)
- degree(d(s) + kn(s)) = degree(d(s))

Numerator and denominator have same degree!

We know about the poles of $\frac{1}{k} + G(s)$

- poles are the poles of the open loop
- We know if the open loop is stable!
- we know if any poles are in RHP.

Closed Loop

Mapping the Nyquist contour of $\frac{1}{k} + G(s)$ is easy!

- 1. Map the Contour for G(s)
- 2. Add $\frac{1}{k}$ to every point

M. Peet

Lecture 22: Control Systems

Closed Loop

Conclusion: If we map the Nyquist Contour for $\frac{1}{k} + G(s)$

- The # of clockwise encirclements of 0 is $\#_{poles} \#_{zeros}$ of closed loop in the RHP.
- The # of zeros of $\frac{1}{k} + G(s)$ in RHP is # of clockwise encirclements plus # of open-loop poles of G(s) in RHP.

Instead of shifting the plot, we can shift the origin to point $-\frac{1}{k}$

The number of unstable closed-loop poles is N+P, where

- N is the number of clockwise encirclements of $\frac{-1}{k}$.
- P is the number of unstable open-loop poles.

If we get our data from Bode, typically P=0

Example

Two CCW encirclements of $-\frac{1}{k}$

- Assume 1 unstable Open Loop pole P=1
- Encirclements are CCW: N=-2
- N + P = -1: No unstable Closed-Loop Poles

Example

Nyquist lets us quickly determine the regions of stability

The Suspension Problem

- Open Loop is Stable: P = 0
- No encirclement of -1/k
 - ▶ Holds for any k > 0

Closed Loop is *stable* for any k > 0.

Example

The Inverted Pendulum with Derivative Feedback

- Open Loop is Unstable: P=1
- CCW encirclement of -1/k
 - ▶ Holds for any $-2 < \frac{-1}{k} < 0$
 - ▶ Holds for any $k > \frac{1}{2}$
- When $k \geq \frac{1}{2}$, N = -1

Closed Loop is *stable* for $k > \frac{1}{2}$.

Summary

What have we learned today?

Complex Analysis

- The Argument Principle
- The Contour Mapping Principle

The Nyquist Diagram

- The Nyquist Contour
- Mapping the Nyquist Contour
- The closed Loop
- Interpreting the Nyquist Diagram

Next Lecture: Drawing the Nyquist Plot