WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/49, 15/73, 15/86, 7/00, 5/10,
1/19, 1/21, C07K 14/155, A01K 67/027

(11) International Publication Number: WO 98/39451

(43) International Publication Date: 11 September 1998 (11.09.98)

(21) International Application Number: PCT/US98/04147

(22) International Filing Date: 4 March 1998 (04.03.98)

(30) Priority Data: 08/811,682 5 March 1997 (05.03.97) US

(71) Applicant (for all designated States except US): NORTH CAROLINA STATE UNIVERSITY [US/US]; 1 Holladay Hall, Campus Box 7003, Raleigh, NC 27695-7003 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TOMPKINS, Wayne, A., F. [CA/US]; 4700 Hillsborough Street, Raleigh, NC 27695 (US). TOMPKINS, Mary, B. [CA/US]; 4700 Hillsborough Street, Raleigh, NC 27695 (US). YANG, Joo-Sung [KR/US]; 4311 Spruce Creek Street, Philadelphia, PA (US).

(74) Agents: BENNETT, Virginia, C. et al.; Myers, Bigel, Sibley & Sajovec, L.L.P., P.O. Box 37428, Raleigh, NC 27627 (US).

(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: FELINE IMMUNODEFICIENCY VIRUS CLONE JSY3

(57) Abstract

A full length genomic clone (JSY3) of FIV-NCSU₁ was isolated and sequenced. The JSY3 molecular clone retains in the *in vivo* biological characteristics of the parent virus, including the ability to cause a significant inversion of the CD4+/CD8+ ratio by six weeks post infection.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
ВВ	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	LS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
cu	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

FELINE IMMUNODEFICIENCY VIRUS CLONE JSY3

This invention was made with government support under Public Health Service grant NO1 AI 35515 from the NIAIDS-DAIDS. The government may have certain rights to this invention.

Field of the Invention

This invention concerns a Feline Immunodeficiency Virus molecular clone which is highly infectious in vivo and which produces immunodeficiency in infected subjects.

Background of the Invention

Feline immunodeficiency virus lentivirus of cats, is associated with feline acquired immunodeficiency syndrome (AIDS). See N. Pedersen et al., Science 235: 790 (1987). Disorders associated with FIV infection include chronic gingivitis/stomatitis, chronic upper respiratory infections, chronic enteritis, and recurrent ocular disease. See R. English et al., J. Am. Vet. Med. Assoc. 196: 1116 (1990); N. Pedersen et al., Vet. Immunol. Immunopathol. 21: 111 (1989); J. Yamamoto et al., J. Am. Vet. Med. Assoc. 194: 213 (1989). What is known to date of the pathogenesis of FIV infection suggests that it is a valuable animal model for other retroviral diseases, such as human immunodeficiency virus-1 (HIV-1) infection. HIV-1 and FIV belong to the lentivirus subfamily of retroviruses, have similar morphology, protein composition, and Mg2+-dependency of their reverse transcriptases (RT). See N. Pedersen et al., Science 235: 790 (1987); N.

10

15

20

25

30

35

Pedersen et al., Vet. Immunol. Immunopathol. 21:111 (1989). They both display tropism for T lymphocytes and monocytes and are capable of inducing these cells to form syncytia. See D. Brunner and N. Pedersen, J. Virol. 63: 5483 (1989); M. Gardner and P. Luciw, FASEB Journal 3: 2593 (1989). HIV-1 displays a particular tropism for CD4 lymphocytes, which leads to their gradual depletion and an inversion of the CD4:CD8 ratio. See A. Dalgleish et al., Nature 312: 763 (1984). The pathogenesis of HIV-1 infection has been attributed to virus-induced reduction of CD4 lymphocyte numbers and functions, resulting in decreased immune responsiveness and subsequent severe secondary infections. See M. McChesney and M. Oldstone, Ad. Immunol. 45: 335 (1989).

Yamamoto et al. studied the early events in the pathogenesis of FIV in kittens. See J. Yamamoto et al., Am. J. Vet. Res. 49: 1246 (1988). These kittens developed an acute infection syndrome similar to that seen in HIV-1, including low grade fever and transient generalized lymphadenopathy. More recent studies by Ackley et al., J. Virol. 64: 5652 (1990), utilized monoclonal antibodies directed against feline CD4' and CD8' homologues and Pan T lymphocyte profiles analyze in SPF experimentally infected with FIV. These authors reported that a significant inversion of the CD4*:CD8* ratios occurred only in cats infected for 18 months or more. inversion was associated with a decrease in absolute number of CD4 cells and an increase in CD8 cells.

A panel of monoclonal antibodies specific for feline T cell subsets (M. Tompkins et al., Vet. Immunol. Immunopathol. 26: 305 (1990)) has been used to analyze T cell numbers and profiles in cats naturally infected with FIV. See C. Novotney et al., AIDS 4: 1213 (1990). Similar to the observation of Ackley et al. supra, cats naturally infected with FIV have an inverted CD4*:CD8* ratio characterized by a selective reduction in CD4* cells.

10

15

20

25

30

35

Summary of the Invention

A first aspect of the present invention is an isolated feline immunodeficiency virus (FIV) having all of the identifying characteristics of FIV clone JSY3.

A further aspect of the present invention is an isolated feline immunodeficiency virus (FIV) whose proviral DNA comprises a DNA sequence selected from SEQ ID NO:1 and sequences which vary from SEQ ID NO:1 due to the degeneracy of the genetic code.

A further aspect of the present invention is a biologically pure culture of host cells containing feline immunodeficiency virus as described above.

A further aspect of the present invention is isolated DNA comprising a DNA sequence selected from SEQ ID NO:1 and sequences which vary from SEQ ID NO:1 due to the degeneracy of the genetic code; vectors containing such DNA; and host cells containing and capable of expressing such vectors.

A further aspect of the present invention is isolated DNA comprising a DNA sequence selected from (a) SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:19, and (b) sequences which vary from those of (a) above due to the degeneracy of the genetic code; vectors containing such DNA; and host cells containing and capable of expressing such vectors.

A further aspect of the present invention is a polypeptide having a sequence selected from SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:15, SEQ ID NO:17, and SEQ ID NO:20.

A further aspect of the present invention is a specific pathogen free (SPF) cat infected with feline immunodeficiency virus clone JSY3.

Brief Description of the Drawings

Figure 1A - 10 provide the DNA sequence of the FIV-NCSU, insert of the lambda clone. The first three nucleotides are part of the lambda vector DNA sequence; the FIV

proviral DNA sequence begins with the fourth nucleotide of Figure 1A. The gag region (and the p15, p25, p24a and p10 regions therein), the pol region (and two open reading frames (orf) therein, and the env region (and the transmembrane (TM) protein therein) are indicated.

5

10

15

20

25.

30

35

Figure 2A - 2H aligns the group specific antigen (gag) open reading frame of the FIV NCSU₁ JSY3 molecular clone with those of six known FIV strains: FIV PPR, FIV Z1, FIV CG, FIV 14, FIV TM1 and FIV TM2.

Figure 3A - 30 aligns the envelope protein sequence of FIV NCSU₁ JSY3 molecular clone with those of five known FIV strains: FIV 14, FIV Z1, FIV CG, FIV 19k, and FIV PPR.

Figure 4 is a schematic of the strategy used for the molecular cloning of the FIV JSY3 full-length genome, beginning with total cellular DNA from FCD4E cells directly infected with FIV-NCSU₁.

Detailed Description of the Invention

A major limitation of the FIV model for the study of retroviral infection is the unavailability of molecular clones that retain the pathogenic characteristics of the wild-type viruses. Genetically homogeneous molecular clones of FIV that retain the biological and disease-causing properties of the pathogenic wild-type populations are useful for understanding the molecular basis for determinants of FIV pathogenesis, treatment of FIV, and the relevance of FIV to other retroviral infections.

The FIV molecular clones FIV-14 (Olmsted et al., PNAS USA 86:2448 (1989)), FIV-pF34 of FIV-Petaluma (Sparger et al., Virology 205:546 (1994)), FIV-pPPR of FIV-PPR (Sparger et al., Virology 205:546 (1994)), pFTM191CG of FIV-TM1 (Miyazawa et al., J. Virol. 65:1572 (1991)), and 19K1 of FIV Amsterdam-19 (Siebelink et al., J. Virol. 66:1091 (1992)), have been reported to be infectious in vivo as determined by seroconversion, cell-associated virus, and the presence of FIV provirus. No clone has been reported as pathogenic to the extent that it causes immunodeficiency

5

10

15

20

25

30

35

and increased susceptibility to secondary opportunistic infections.

An isolate of FIV (FIV-NCSU₁) that is pathogenic in vivo, as measured by a severe loss of CD4+ cells and development of secondary infections, severe wasting, neurological disease, and B-cell lymphomas, has been described recently (English et al., J. Infect. Dis. 170:543 (1994)). Davidson et al. (Am. J. Pathol. 143:1486 (1993)) were able to demonstrate that FIV-NCSU₁ causes a relatively early and profound state of immunodeficiency, as measured by loss of resistance to challenge with a Toxoplasma gondii strain with a low level of virulence. This dual FIV-T. gondii infection provides a model with which to determine the ability of FIV isolates as well as molecular clones of FIV to cause immunodeficiency.

A full length FIV-NCSU₁ genome (JSY3) was cloned directly from FIV-NCSU, infected feline CD4+ lymphocyte (FCD4E) genomic DNA and identified by polymerase chain reaction (PCR) amplification with 5'-LTR, gag, env, 3'-LTR Supernatant collected from FCD4E cells cocultured with JSY3-transfected Crandell feline kidney (CrFK) cells was used as inoculum. Cell-free JSY3 virus was cytopathogenic for FCD4E lymphocytes, but did not To determine in vivo infect CrFK cells in vitro. infectivity and pathogenesis, 6 young adult SPF cats were inoculated with cell-free JSY3 virus. Provirus was detected at 2 wk post-infection, and was still detectable at 25 weeks post infection as determined by gag region PCR/Southern blot analysis of peripheral blood mononuclear cell (PBMC) lysates. Infectious virus was recovered from PBMC at six weeks and 25 weeks post infection, and antibody response to FIV was detected by four weeks post infection. In the acute phase of infection, JSY3 provirus was found only in the CD4+ lymphocyte subset; however, by 14 weeks post invention the greatest provirus burden was detected in B lymphocytes. All six cats were panleukopenic at two weeks post infection, CD4+:CD8+ ratios were inverted by six

5

10

15

20

25

30

35

-6-

and 5/6 developed post-infection, cats weeks lymphadenopathy by ten weeks post infection. To determine if the JSY3 molecular clone caused immunodeficiency similar to the parent wild-type FIV-NCSU,, the cats were challenged with the low virulence ME49 strain of Toxoplasma gondii (T. gondii) at 29 weeks post infection. Five of six cats developed acute respiratory distress and required euthanasia. Histopathologic examination of the severely affected cats revealed generalized inflammatory reactions and the presence of T. gondii tachyzoites in multiple None of the six age- and sex-matched SPF cats tissues. inoculated with only T. gondii developed clinical disease. These results indicate that the pathogenesis of the molecularly cloned NCSU, JSY3 isolate is similar to the wild-type FIV-NCSU, and induces immunodeficiency in cats.

The JSY3 molecular clone retains the essential in vitro and in vivo biological characteristics of the parent virus. This clone was obtained from an EMBL3 lambda phage library made from FCD4E cells, and the intact genomic structure was confirmed by PCR comparison with the FIV-pPPR molecular The JSY3 molecular clone recovered was highly infectious for PBMCs and FCD4E cells but failed to infect CrFK cells, thus retaining the tropism of the parent FIV-NCSU, virus. Miyazawa et al. (Miyazawa et al., J. Virol. 65:1572 (1991)) and Siebelink et al. (Siebelink et al., J. Virol. 66:1091 (1992)) reported that CD4+ lymphoblastoid MYA-1 cell-derived or bone marrow-derived cell line molecular clones of FIV recovered from transfected CrFK cells failed to reinfect CrFK but retained their tropism for PBMC and CD4+ cell cultures. Similarly, the PBMCderived molecular clone FIV-pPPR replicated efficiently in PBMCs but did not infect adherent cells such as CrFK or G355-5 cells (Phillips et al., J. Virol. 64:4605 (1990)), whereas the FIV-p34 clone, derived from the CrFK-adapted Petaluma isolate, replicated efficiently in feline adherent cells, including CrFK cells, but inefficiently in PBMCs (Sparger et al., Virology 205:546 (1994)).

5

10

15

20

25

30

35

-7-

JSY3 clone retains the in vivo biological The characteristics of the parent NCSU1 virus. Both viruses caused a significant inversion of the CD4+/CD8+ ratio by six weeks post infection. As reported previously for a number of biological isolates of FIV (Ackley et al., J. Virol. 64:5652 (1990); Torten et al., J. Virol. 65:2225 (1991); Willett et al., Immunology, 78:1 (1993)), including the NCSU, isolate (English et al., J. Infect. Dis. 170:543 (1994); Tompkins et al., J. Am. Vet. Med. Assoc. 199:1311 (1991)), the inverted CD4+/CD8+ ratio caused by the JSY3 clone was the result of a loss of CD4+ lymphocytes and an increase in CD8+ lymphocytes. Consistent with the NCSU₁ biological isolate, the JSY3 molecular clone caused a strong antibody response to gag and env antigens, and PBMCs had a high burden of FIV provirus during the acute-stage infection.

The JSY3 clone exhibited a pattern similar to the parent FIV-NCSU₁ (English et al., J. Virol. 67:5175 (1993)) of high provirus burden in CD4+ cells during acute-stage infection, followed by a gradual shift to a panlymphotropic pattern during the transition from the acute to the asymptomatic stage of infection.

Derivation of molecular clones of viruses from in vitro culture systems poses the risk of selection of some viral genotypes over others (see Dahl et al., J. Virol. 61:1602 (1987; Evans et al., J. Immunol. 138:3415 (1987); Meyerhans 58:901 (1989)), or introduction Cell modifications in cultured virus, (see Hirsch et al., Nature 341:767 (1989); Kodama et al.; J. Virol. 63:4709 (1989)). For FIV, Sparger et al. (Sparger et al., Virology 205:546 (1994)) reported that the pF34 clone derived from the CrFKadapted Petaluma isolate is less pathogenic than the parent Petaluma virus isolated from PBMCs. In contrast the FIVpPPR molecular clone derived from PPR-infected PBMCs and show isolate PPR parent biological pathogenicities, including virus burden in PBMCs and reduced CD4+/CD8+ ratios (Sparger et al., Virology 205:546

-8-

(1994)). The JSY3 molecular clone also retains the essential biological characteristics of the parent isolate. This may be largely because the risk of culture-related artifacts was minimized by isolating FIV-NCSU, genomic DNA from FIV-inoculated CD4+ lymphocytes (FCD4E cells). The FCD4E cells used had been in laboratory culture for several years, but remained interleukin-2 dependent and appeared to express a normal rather than a transformed phenotype and thus represent as near as possible in vitro the primary in vivo target of FIV.

5

10

15

20

25

30

35

The value of a molecular clone for studies of pathogenesis depends on its ability to replicate the disease caused by its biological parent virus. isolate of FIV causes an acute-stage clinical disease fever and lymphadenopathy that characterized by transient and resolves as the infection progresses to the clinically asymptomatic stage of infection. The JSY3 acute-stage infection was also characterized by a fever and clinically lymphadenopathy that was followed by a asymptomatic stage.

Davidson et al. (Am. J. Pathol. 143:1486 (1993)) reported that cats infected with FIV-NCSU, become highly susceptible to a normally avirulent strain of T. gondii as early as 18 weeks post-FIV infection. This dual FIV-T. gondii infection was utilized herein to determine if infection with clone JSY3 also caused an immunodeficiency early in the asymptomatic stage of infection; T. gondii infection of cats with prior JSY3 infection resulted in severe clinical infection as described below.

The present observations indicate that the JSY3 molecular clone causes a major impairment in the immune response, resulting in enhanced susceptibility to secondary infection by *T. gondii*. Thus, JSY3 possesses all of the essential biological characteristics of the parent NCSU₁ isolate, including induction of immunodeficiency.

10

15

20

25

30

35

A. The JSY3 Genome

The DNA sequence of the JSY3 provirus clone of FIV-NCSU, is provided in **Figure 1**, with the group specific antigen (gag), polymerase (pol), and envelope protein (env) regions marked. The JSY3 proviral DNA sequence consists of 9471 base pairs (SEQ ID NO:1).

The coding region of gag is nucleotides 631-1980 of SEQ ID NO:1 (SEQ ID NO:4) and encodes a 450 amino acid product (SEQ ID NO:2).

The coding region for the p15 protein is nucleotides 631-1035 of SEQ ID NO:1 (SEQ ID NO:5), with a polypeptide product of 135 amino acids (SEQ ID NO:6).

The coding region for the p25 protein is nucleotides 1036-1704 of SEQ ID NO:1 (SEQ ID NO:7), with a polypeptide product of 223 amino acids (SEQ ID NO:8).

The coding region for the p24a protein is nucleotides 1264-1305 of SEQ ID NO:1 (SEQ ID NO:9), with a polypeptide product of 14 amino acids (SEQ ID NO:10).

The coding region for the pl0 protein is nucleotides 1717-1980 of SEQ ID NO:1 (SEQ ID NO:11), with a polypeptide product of 88 amino acids (SEQ ID NO:12).

The coding region of pol is amino acids 2151-5991 of SEQ ID NO:1 (SEQ ID NO:13). Two open reading frames (orfs) are found in the pol region. Orf 1 is nucleotides 2151-5243 of SEQ ID NO:1 (SEQ ID NO:14), encoding a product of 1031 amino acids (SEQ ID NO:15); Orf 2 is nucleotides 5239-5991 of SEQ ID NO:1 (SEQ ID NO:16) and encodes a product of 251 amino acids (SEQ ID NO:17).

The env coding region is inucleotides 6269-8824 of SEQ ID NO:1 (SEQ ID NO:18) and encodes a protein of 852 amino acids (SEQ ID NO:3). The transmembrane (TM) peptide is encoded by nucleotides 8339-8374 of SEQ ID NO:1 (SEQ ID NO:19), and is 12 amino acids in length (SEQ ID NO:20).

Figure 2 aligns the gag open reading frames of the JSY3 clone of NCSU₁ (FIV-NCSU), FIV PPR, FIV Z1, FIV CG, FIV 14, FIV TM1, and FIV TM2. Figure 3 aligns the whole envelope protein sequence of clone JSY3 of NCSU₁ with FIV 14, FIV Z1,

-10-

FIV CG, FIV 19k, and FIV PPR.

5

10

15

20

25

30

35

Amino acid sequences disclosed herein are presented in the amino to carboxy direction, from left to right. amino and carboxy groups are not presented in the sequence. Nucleotide sequences are presented herein by single strand only, in the 5' to 3' direction, from left to right. Nucleotides and amino acids are represented herein in the recommended by the IUPAC-IUB Biochemical Nomenclature Commission, or (for amino acids) by three letter code in accordance with 37 C.F.R. §1.822 established usage. See, e.g. PatentIn User Manual, 99-102 (Nov. 1990) (U.S. Patent and Trademark Office, Office of the Assistant Commissioner for Patents, Washington D.C. 20231); U.S. Patent No. 4,871,670 to Hudson et al. at Col. 3, lines 20-43 (applicants specifically intend that the disclosure of this and all patent references cited herein are to be incorporated herein by reference).

Aspects of the present invention are achieved by a viral clone having the DNA sequence as provided herein for Feline Immunodeficiency Virus clone JSY3.

B. Identification of Antigenic Fragments

Antigenic fragments of the present invention are peptides which contain at least one epitope (antibody binding site) which binds antibodies which bind to the FIV clone of the present invention. The antigenic fragments are preferably capable of inducing an immune response when administered to a feline subject, as discussed in greater detail below. In addition, the antigenic fragments preferably bind antibodies which do not bind to prior FIV isolates. DNA encoding such antigenic fragments may be used to transform host cells to thereby produce such antigenic fragments, as explained in greater detail below.

Antigenic fragments may be identified by a variety of means. A protein from FIV clone JSY3 (such as the envelope protein, the gag open reading frame product, or a gag peptide such as pl0, pl5, p24a or p25) may be fragmented

10

15

30

35

with a protease, and the fragments tested to determine whether or not a fragment reacts with antiserum against the protein. See, e.g., J. Robinson et al., Mol. Cell Biochem. Another technique is to synthesize 21, 23-32 (1978). peptides which are fragments of the entire protein, and determine whether the individual fragments are recognized by neutralizing antibodies against the protein. See, e.g., J. Gerin et al., in Vaccines 85: Molecular and Chemical Basis of Resistance to Parasitic, Bacterial and Viral Diseases, 235-239 (Lerner et al., eds. 1985). another method useful for obtaining immunogenic fragments of a protein is by isolation and identification monoclonal escape mutants. In this strategy, FIV is produced in the presence of a monoclonal antibody to the The only virus which can grow under these conditions are those with a mutation in the nucleotide sequence which codes for an epitope to which the monoclonal antibody binds. A mutant virus which grows under these conditions is referred to as the "monoclonal escape mutant." The monoclonal escape mutant is then sequenced 20 and the mutant sequence compared with the nucleotide sequence of clone JSY3 to find the specific location of the mutation. The mutation is located in a region which codes for a protective epitope, or an "immunogenic fragment." See, e.g., J. Lopez et al., Location of a Highly Conserved 25 Neutralizing Epitope in the F Glycoprotein of Human Respiratory Syncytial Virus, J. Virol. 64, 927 (1990).

C. Genetic Engineering Techniques

The production of DNA, vectors, transformed host cells, FIV virus, proteins, and protein fragments of the present invention by genetic engineering techniques can be carried out in accordance with methods known in the art. See, e.g., U.S. Patent No. 4,761,371 to Bell et al. at Col. 6 line 3 to Col. 9 line 65; U.S. Patent No. 4,877,729 to Clark et al. at Col. 4 line 38 to Col. 7 line 6; U.S. Patent No. 4,912,038 to Schilling at Col. 3 line 26 to Col.

5

10

15

20

25

30

35

14 line 12; and U.S. Patent No. 4,879,224 to Wallner at Col. 6 line 8 to Col. 8 line 59.

Vectors are replicable DNA constructs used to either amplify or express DNA of the present invention. expression vector is a replicable DNA construct in which DNA of the present invention is operably linked to control sequences capable of expressing that DNA in a suitable control sequences Generally, transcriptional promoter, an optional operator sequence to control transcription, a sequence encoding suitable mRNA ribosomal binding sites, and sequences which control the termination of transcription and translation. vectors include plasmids, viruses (e.g., vaccinia virus, baculovirus, cytomegalovirus), phage, adenovirus, integratable DNA fragments (i.e., fragments integratable into the host genome by recombination).

DNA regions are operably linked or operably associated when they are functionally related to each other. For example, a promoter is operably linked to a coding sequence if it controls the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to permit translation.

Transformed host cells are cells which have been transformed or transfected with vectors as described above. Transformed host cells ordinarily express the DNA of the present invention. As used herein, host cells containing the FIV clone JSY3 refer to isolated cells (or cultures of such cells) naturally infected with JSY3, including cells containing the JSY3 proviral DNA integrated into cellular DNA. Suitable host cells include prokaryote, yeast or higher eukaryotic cells such as mammalian cells and insect cells.

Prokaryote host cells include gram negative or gram positive organisms, for example Escherichia coli (E. coli) or Bacilli. Exemplary host cells are E. coli W3110 (ATCC 27,325), E. coli B, E. coli X1776 (ATCC 31,537), E. coli 294 (ATCC 31,446). A broad variety of suitable prokaryotic

5

10

15

20

25

30

35

-13-

and microbial vectors are available. E. coli is typically transformed using pBR322. Promoters most commonly used in recombinant microbial expression vectors include the β-lactamase (penicillinase) and lactose promoter systems (Chang et al., Nature 275:615 (1978); and Goeddel et al., Nature 281:544 (1979)), a tryptophan (trp) promoter system (Goeddel et al., Nucleic Acids Res. 8:4057 (1980) and EPO App. Publ. No. 36,776) and the tac promoter (H. De Boer et al., Proc. Natl. Acad. Sci. USA 80:21 (1983)). The promoter and Shine-Dalgarno sequence are operably linked to the DNA of the invention, i.e., they are positioned so as to promote transcription of messenger RNA from the DNA.

Eukaryotic microbes such as yeast cultures may also be transformed with vectors of the present invention. e.g., U.S. Patent No. 4,745,057. Saccharomyces cerevisiae is the most commonly used yeast, although other yeast may also be used. Yeast vectors may contain an origin of replication from the 2 micron yeast plasmid or an autonomously replicating sequence (ARS), a promoter, a JSY3 polyadenylation sequences for region, coding transcription termination, and a selection gene. exemplary plasmid is YRp7, (Stinchcomb et al., Nature 282:39 (1979); Kingsman et al., Gene 7:141 (1979); Tschemper et al., Gene 10:157 (1980)). Suitable promoting sequences in yeast vectors include the promoters for metallothionein, 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem. 255:2073 (1980) or other glycolytic enzymes (Hess et al., J. Adv. Enzyme Reg. 7:149 (1968); and Holland et al., Biochemistry 17:4900 (1978)).

Host cells such as insect cells (e.g., cultured Spodoptera frugiperda cells) and expression vectors such as the baculovirus expression vector (e.g., vectors derived from Autographa californica MNPV, Trichoplusia ni MNPV, Rachiplusia ou MNPV, or Galleria ou MNPV) may be employed in carrying out the present invention, as described in U.S. Patents Nos. 4,745,051 and 4,879,236 to Smith et al. In general, a baculovirus expression vector comprises a

5

10

15

20

25

30

35

baculovirus genome containing the gene or coding region to be expressed inserted into the polyhedrin gene at a position ranging from the polyhedrin transcriptional start signal to the ATG start site and under the transcriptional control of a baculovirus polyhedrin promoter.

Examples of useful mammalian host cell lines are VERO and HeLa cells, Chinese hamster ovary (CHO) cell lines, and WI138, BHK, COS-7, CV, and MDCK cell lines. transcriptional and translational control sequences in expression vectors to be used in transforming vertebrate cells are often provided by viral sources. For example, commonly used promoters are derived from Adenovirus 2, and Simian Virus 40 (SV40). See, e.g., U.S. Patent No. 4,599,308. An origin of replication may be provided either by construction of the vector to include an exogenous origin, such as may be derived from SV40 or other viral (e.g. Polyoma, Adenovirus, VSV, or BPV) source, or may be provided by the host cell chromosomal replication mechanism. If the vector is integrated into the host cell chromosome, the latter is often sufficient. Rather than using vectors which contain viral origins of replication, one can transform mammalian cells by the method of cotransformation with a selectable marker and DNA of the present invention, as described in U.S. Pat. No. 4,399,216.

Alternatively, the invention DNA sequences can be translated into RNA, which can then be transfected into amphibian cells for transcription into protein. Suitable amphibian cells include Xenopus oocytes.

Use of the phrase "substantial sequence similarity" in the present specification and claims means that DNA, RNA or amino acid sequences which have slight and non-consequential sequence variations from the actual sequences disclosed and claimed herein are considered to be equivalent to the sequences of the present invention. In this regard, "slight and non-consequential sequence variations" mean that "similar" sequences (i.e., the sequences that have substantial sequence similarity with

-15-

the DNA, RNA, or proteins disclosed and claimed herein) will be functionally equivalent to the sequences disclosed and claimed in the present invention. Functionally equivalent sequences will function in substantially the same manner to produce substantially the same compositions as the nucleic acid and amino acid compositions disclosed and claimed herein.

5

10

15

20

25

30

As used herein, the term 'gene' refers to a DNA sequence that incorporates (1) upstream (5') regulatory signals including the promoter, (2) a coding region specifying the product, protein or RNA of the gene, (3) downstream (3') regions including transcription termination and polyadenylation signals and (4) associated sequences required for efficient and specific expression.

The term 'promoter' refers to a region of a DNA sequence that incorporates the necessary signals for the efficient expression of a coding sequence. This may include sequences to which an RNA polymerase binds but is not limited to such sequences and may include regions to which other regulatory proteins bind together with regions involved in the control of protein translation and may include coding sequences.

D. Vaccines and Vaccine Formulations.

The present invention provides for a variety of different vaccines useful for protecting feline species against FIV. Examples include live attenuated clone JSY3 virus, fixed whole virus, host cells which express virus antigen on the surface thereof (with the cells optionally fixed), preparations of virus fragments, purified proteins, antigenic fragments of proteins, and antigenic peptides which are derivatives of the antigenic fragments (as discussed in detail below). These various compounds and mixtures are generically referred to herein as active agents.

Live attenuated FIV clone JSY3 virus is made by serial passage of the virus in tissue culture or genetically

5

10

15

20

25

30

35

-16-

altered by recombinant techniques, in accordance with known procedures. Fixed virus is made by contacting live virus (attenuated or unattenuated) to a suitable fixative, such as formalin.

Preparations of viral fragments are made by lysing host cells, such as *E. coli* cells, transformed with a vector encoding the FIV of the present invention or a portion thereof. For example, the vector may encode a JSY3 DNA segment which produces hollow virus particles which are antigenic. The lysate may be used in crude form, partially purified, or a particular viral protein (or antigenic fragment thereof) such as the envelope protein purified to homogeneity, and used as an active agent for a vaccine against FIV.

Host cells such as yeast cells may be transformed with vectors of the present invention capable of expressing JSY3 proteins, or antigenic fragments thereof, on the surface of the host cells, and the transformed host cells used as an active vaccine agent per se or fixed (e.g., with formalin) and used as an active agent.

selected from the Antigenic peptides are group consisting of antigenic fragments of FIV clone JSY3 proteins, such as the envelope protein, the gag open reading frame product, and gag peptides (such as pl0, pl5, p24a, p25) and the antigenic equivalents thereof (i.e., Antigenic peptides may be analogs or derivatives). recombinant chemically synthesized or produced by The antigenic fragments are preferably not techniques. more than 20 amino acid residues in length, and are more preferably not more than 10 amino acid residues in length. The antigenic equivalents are selected from the group (a) modified peptides comprising the consisting of: aforesaid antigenic fragments modified by the inclusion of one or more changes to the amino acid sequence thereof; and (b) longer peptides which incorporate the sequence of the aforesaid fragments or the aforesaid modified peptides and which have (i) up to four extra amino acid residues

-17-

attached to the C-terminal end thereof, (ii) up to four extra amino acid residues attached to the N-terminal end thereof, or (iii) up to four extra amino acid residues attached to the C-terminal end thereof and up to four extra amino acid residues attached to the N-terminal end thereof.

5

10

15

20

25

30

35

The term "antigenic equivalents," as used herein, refers to proteins or peptides which bind to an antibody which binds to the protein or peptide with which equivalency is sought to be established. Antibodies which are used to select such antigenic equivalents are referred to as "selection antibodies" herein. Preferred selection antibodies are monoclonal antibodies which bind to clone JSY3, but preferably not to isolates of FIV other than FIV strain NCSU1 (such as the Petaluma strain isolated by N. Pedersen), and most preferably not to other molecular clones of FIV NCSU1.

One or more amino acids of an antigenic peptide sequence may be replaced by one or more other amino acids which does not affect the antigenicity of that sequence. Such changes can be guided by known similarities between amino acids in physical features such as charge density, hydrophobicity/hydrophilicity, size and configuration. For example, Thr may be replaced by Ser and vice versa, Asp may be Replaced by Glu and vice versa, and Leu may be replaced by Ile and vice versa.

Antigenic equivalents may be formed by modifying reactive groups within a natural sequence or modifying the N-terminal amino and/or C-terminal carboxyl group. Such equivalents include salts formed with acids and/or bases, particularly physiologically acceptable inorganic and organic acids and bases. Other equivalents include modified carboxyl and/or amino groups on the synthetic peptide to produce esters or amides, or amino acid protecting groups such as N-t-butoxycarbonyl. Preferred modifications are those which provide a more stable, active peptide which will be less prone to enzymatic degradation in vivo.

For use as a vaccine, the active agents of the present invention may be administered to the subject by any suitable means. Exemplary are by intramuscular injection, by subcutaneous injection, by intravenous injection, by intraperitoneal injection, by oral injection, and by nasal spray.

5

10

15

20

25

30

35

The amount of active agent administered will depend upon factors such as route of administration, species, and the use of booster administrations. In general, a dosage of about .1 to about 100 μg per pound subject body weight may be used, more particularly about 1 μg per pound.

Vaccine formulations of the present invention comprise the active agent in a pharmaceutically acceptable carrier. The active agent is included in the carrier in an amount effective to protect the subject being treated. Pharmaceutically acceptable carriers are preferably liquid, particularly aqueous, carriers, such as sodium phosphate buffered saline. The vaccine formulation may be stored in a sterile glass container sealed with a rubber stopper through which liquids may be injected and formulations withdrawn by syringe.

Vaccine formulations of the present invention may optionally contain one or more adjuvants. Any suitable adjuvant can be used, exemplary being aluminum hydroxide, aluminum phosphate, plant and animal oils, synthetic polymers and the like, with the amount of adjuvant the nature of the particular depending on employed. In addition, the vaccine formulations may also stabilizer, exemplary more contain one or carbohydrates such as sorbitol, mannitol, starch, sucrose, dextrin, and glucose, proteins such as albumin or casein, and buffers such as alkaline metal phosphates and the like.

E. Infection of Cats with FIV clone JSY3.

Cats infected with FIV clone JSY3 are useful as a model system for the study of retroviral infections, such as by HIV. Cats used for this purpose are preferably specific

-19-

pathogen-free (SPF) cats, which are commercially available from sources such as Charles River Laboratories and Berkshire Laboratories. Infected cats are preferably maintained as a single colony of two or more cats, all infected with FIV clone JSY3. The colony may be maintained in a single room with each cat housed in an appropriate cage, in accordance with standard practices for the maintenance of animals. A colony will consist of a plurality of infected cats, typically from ten, fifteen, twenty, thirty or more cats; the number of individual cats will vary according to need. Preferably, all members of the colony are SPF cats (i.e., free of pathogens other than FIV clone JSY3).

5

10

15

20

25

30

35

SPF cats may be infected with FIV clone JSY3 by any suitable means, such as by intraperitoneal, intravenous, or subcutaneous injection with a solution containing FIV clone JSY3. The solution may be blood from a previously infected cat, a blood fraction containing peripheral blood mononuclear cells from a previously infected cat, a pharmaceutically acceptable carrier such as saline solution containing FIV clone JSY3, etc.

Cats infected with FIV clone JSY3 are particularly useful as a model system for immunodeficient states associated with retroviral infection because of the rapid inversion of the CD4*:CD8* ratio caused by JSY3. When used as a model system, the cat or cats infected with FIV clone JSY3 is subjected to a treatment, which treatment is a candidate for use in combating retroviral infections, and the progress of the FIV infection cat or cats thereafter examined. A control group of cats infected with FIV clone JSY3 but untreated, or placebo treated, may be included as a control group. A slowing in the progression of the disease in the cats indicates that the treatment may be useful for combating retroviral diseases in other animal subjects. Typically, the candidate treatment will then be subjected to further screening procedures and toxicological testing to determine whether the treatment may be

-20-

clinically useful. The treatment to which the cats are subjected may be any treatment, such as the administration (e.g., candidate antiretroviral candidate drugs compounds) or drug combinations, including small organic compounds, peptides, or proteins, which may be administered orally or parenterally, or may involve treatments other than the administration of drugs such as a biological response modifier or a vaccine. The progress of the disease in the cats after treatment can be monitored by any suitable means, such as examination for inhibition of the deterioration of CD4 cell levels, declines circulating levels of the FIV GAG protein, the weight of the cat and its general appearance, etc.

5

10

15

20

25

30

35

An advantage of using JSY3 infected cats as a model for retroviral disease as described above is that the FIV virus is not infectious to humans. A disadvantage of this model is that cats are somewhat large animals; mice are much more practical as animal models of disease.

An additional aspect of the present invention is an immunodeficient mouse containing feline tissue, which feline tissue is capable of infection with feline immunodeficiency virus (FIV). The mouse is infected with FIV clone JSY3, and used as an animal model in essentially the same manner as cats as described above. Any suitable immunodeficient mouse may be employed, such as SCID mice (e.g., the C.B.-17 scid/scid mouse) athymic mice such as the nude mouse, and mice which have been rendered immunodeficient by treatment with radiation. The mouse may be deficient in T lymphocytes function alone (e.g., athymic mice), but is preferably deficient in both T and B lymphocyte function.

The feline tissue which the immunodeficient mice contains preferably comprises one or more of the following: feline thymus tissue, feline lymph node tissue, feline liver cells, feline bone marrow cells, feline peripheral blood mononuclear cells such as peripheral blood lymphocytes and peripheral blood monocytes, and feline

-21-

spleen cells. The feline tissue may be introduced into the mouse by any suitable means, such as intraperitoneal injection, intravenous injection, surgical implantation, and combinations thereof. Feline tissue may be introduced as organized tissues (e.g., thymus and lymph node) or as discrete cells. One example is an immunodeficient mouse having feline thymus tissue and/or lymph node tissue example is Another implanted. surgically peripheral blood which mouse into immunodeficient mononuclear cells have been intraperitoneally injected.

F. Diagnostic Probes.

5

10

15

20

25

30

35

The FIV clone JSY3 nucleotide sequence can be used to generate hybridization probes which specifically bind to FIV clone JSY3 genetic material, or the genetic material of FIV clones having all of, or essentially all of, the identifying characteristics of FIV clone JSY3, to determine the presence of such FIV in cats. The hybridization probe may be selected so that it does not bind to known FIV isolates (such as the Petaluma strain) other than NCSU1, or to any FIV isolate or clone other than JSY3. Hybridization probes may be cDNA fragments or oligonucleotides, and may discussed detectable group as labelled with a Pairs of probes which will serve as PCR hereinbelow. primers for the JSY3 genome or a portion thereof may be used in accordance with the process described in U.S. Patents Nos. 4,683,202 and 4,683,195.

For example, an illustrative embodiment of the above probes comprises DNA sequences set forth in SEQ ID NOS:4, 5, 7, 9, 11, 13, 14, 16, 18, and 19, or suitable fragments thereof.

The term "labelled" is used herein to refer to the conjugating or covalent bonding of any suitable detectable group, including enzymes (e.g., horseradish peroxidase, β -glucuronidase, alkaline phosphatase, and β -D-galactosidase), fluorescent labels (e.g., fluorescein, luciferase), and radiolabels (e.g., 14 C, 131 I, 3 H, 32 P, and

PCT/US98/04147

135S) to the compound being labelled. Techniques for labelling various compounds, including proteins, peptides, and antibodies, are well known. See, e.g., Morrison, Methods in Enzymology 32b, 103 (1974); Syvanen et al., J. Biol. Chem. 284, 3762 (1973); Bolton and Hunter, Biochem. J. 133, 529 (1973).

G. DNA Sequence and Genome Organization

5

10

15

20

25

30

35

Isolated DNA from the JSY3 provirus may be used to generate hybridization probes, which may be used in diagnostic assays as discussed above. Isolated DNA capable of expressing antigenic proteins or antigenic fragments thereof may be used for producing proteins which are also useful in diagnostic assays.

An aspect of the present invention is oligonucleotide probes which selectively hybridize to DNA encoding a group antigen (qaq) polypeptide (or an antigenic fragment thereof) of FIV clone JSY3 under stringent conditions, which probes do not bind to DNA encoding the group antigen (gag) polypeptide of the following known FIV strains under the same stringency conditions: FIV-Petaluma (U.S. Patent No. 5,037,753); FIV-PPR (Phillips et al., J. Virology, 64:4605 (1990)); FIV-TM1 and FIV-TM2 (Miyazawa et al., Arch. Virology 108:59 (1989)); FIV-UT113 (Verschoor et al., J. Cell. Biochem., Suppl. 14D:143 (1990). Conditions which will permit other DNA coding for an FIV gag polypeptide to hybridize to the DNA of FIV clone JSY3 gag polypeptide can be determined in a routine manner. For example, hybridization may be carried out under conditions of reduced stringency or even stringent conditions (e.g., conditions represented by a wash stringency of 0.3M NaCl, 0.03M sodium citrate, and 0.1% SDS at 60°C or even 70° C) to DNA encoding the gag polypeptide of FIV clone JSY3 disclosed herein in a standard in situ hybridization assay. See J. Sambrook et al., Molecular Cloning, A Laboratory Manual (2nd Ed. 1989) (Cold Spring Harbor Laboratory)).

In general, DNA which codes for FIV gag polypeptide or

10

15

20

25

30

35

antigenic fragments thereof and which hybridizes to DNA encoding gag polypeptide (or antigenic fragments thereof) of FIV clone JSY3 disclosed herein will have at least 75%, 80%, 85%, or even 90% or more sequence similarity with the DNA of the gag polypeptide (or antigenic fragments thereof) of FIV clone JSY3 disclosed herein. Further, DNA which codes for FIV gag polypeptide (or antigenic fragments thereof), or which codes for a gag polypeptide or antigenic fragment coded for by DNA which hybridizes to the DNA which codes for FIV clone JSY3 gag polypeptide or antigenic fragment thereof, but which differ in codon sequence from these due to the degeneracy of the genetic code, are also an aspect of this invention. The degeneracy of the genetic code, which allows different nucleic acid sequences to code for the same protein or peptide, is well known in the literature. See, e.g., U.S. Patent No. 4,757,006 to Toole et al. at Col. 2, Table 1.

A particular embodiment of the foregoing also disclosed herein is isolated DNA encoding the group antigen (gag) polypeptide or an antigenic fragment thereof, of FIV clone JSY3, and isolated DNA encoding the envelope protein or an antigenic fragment thereof, where the DNA is: (a) isolated DNA encoding group antigen (gag) polypeptide or envelope protein, or an antigenic fragment thereof, of FIV clone JSY3, (b) isolated DNA which hybridizes to isolated DNA of (a) above under stringent conditions and which encodes a antigen (qaq) immunodeficiency virus group polypeptide, envelope protein, or antigenic fragment thereof with at least 75%, 80%, 85% or even 90% or more sequence similarity to isolated DNA of (a) above; or (c) isolated DNA differing from the isolated DNAs of (a) and (b) above in nucleotide sequence due to the degeneracy of encodes which code, and genetic immunodeficiency virus group antigen (gag) polypeptide, envelope protein, or antigenic fragment thereof encoded by the isolated DNAs of (a) or (b), above.

An illustrative embodiment of the foregoing DNA which

5

10

15

20

25

30

35

-24-

codes for FIV clone JSY3 gag polypeptide (or antigenic fragments thereof) is DNA according to SEQ ID NO:4 or a portion thereof; DNA according to SEQ ID NO:5 (p15) or a portion thereof; DNA according to SEQ ID NO:7 (p25) or a portion thereof; DNA according to SEQ ID NO:9 (p24a) or a portion thereof; DNA according to SEQ ID NO:11 (pl0) or a An illustrative embodiment of the portion thereof. foregoing DNA which codes for FIV clone JSY3 envelope protein (or antigenic fragments thereof) is SEQ ID NO:18 or Also disclosed herein are recombinant DNA SEQ ID NO:19. sequences comprising vector DNA and a DNA encoding group specific antigen (gag) polypeptides of clone JSY3, or the envelope protein of JSY3, or antigenic fragments thereof (as given above).

The FIV provirus includes the structural genes for group-specific antigens (gag gene), envelope proteins (env gene) and reverse transcriptase (pol gene), as well as several short open reading frames similar to those of other lentiviruses. Omsted et al., Proc. Natl. Acad. Sci. USA, 86, 2448 (1989); Olmsted et al., Proc. Natl. Acad. Sci. The gag gene of FIV has been USA, 86, 8088 (1989). reported to encode a polyprotein of about 450 amino acids, which is subjected to postranslational cleavage. Talbot et al., Proc. Natl. Acad. Sci. USA, 86, 5743 (1989); Phillips et al., J. Virology, 64, 4605 (1990). The gag gene and its predicted protein product has been reported to be highly conserved among isolates of FIV. Phillips et al., J. Virology, 64, 4605 (1990); Morikawa et al., Virology, 183, 288 (1991). FIV gag gene has been expressed in baculovirus vectors and assembled into virus-like particles. Morikawa et al., Virology, 183, 288 (1991).

Isolated and purified FIV clone JSY3 group antigen (gag) polypeptide, envelope protein, or antigenic fragments thereof are also an aspect of the present invention. These polypeptides or fragments are coded for by: (a) isolated DNA which encodes group antigen (gag) polypeptide or envelope protein, or an antigenic fragment thereof, of FIV

10

15

20

25

clone JSY3; (b) isolated DNA which hybridizes to isolated DNA of (a) above under stringent conditions and which encodes a FIV gag polypeptide, envelope protein, antigenic fragment thereof with at least 75% sequence similarity to isolated DNA of (a) above; or (c) isolated DNA differing from the isolated DNAs of (a) and (b) above in nucleotide sequence due to the degeneracy of the genetic code, and which encodes a FIV gag polypeptide, envelope protein, or antigenic fragment thereof encoded by DNAs of (a) or (b), above. By antigenic polypeptide is meant a polypeptide which is able to raise (with the aid of an adjuvant if necessary) an antibody response in cats. polypeptide may be a fragment of a polypeptide naturally occurring in FIV particles. The fragment may be from a naturally occurring polypeptide or produced by isolation or synthesis of a gene or coding region encoding a desired polypeptide and expression within an appropriate expression system.

An illustrative embodiment of the foregoing polypeptides is the JSY3 group antigen specific polypeptide (SEQ ID NO:2) and peptides thereof (SEQ ID NO:6 (p15); SEQ ID NO:8 (p25); SEQ ID NO:10 (p24a); SEQ ID NO:12 (p10)); and the JSY3 envelope protein (SEQ ID NO:3) and TM protein (SEQ ID NO:19).

The present invention is explained in greater detail in the non-limiting Examples set forth below.

EXAMPLE 1

Materials and Methods

Viruses. The biological parent virus isolate FIV-NCSU₁

(US Patent No. 5,413,927 to Tompkins et al.) was obtained from the peripheral blood mononuclear cells (PBMCs) of a cat naturally infected with FIV and has been described elsewhere (Davidson et al., Am. J. Pathol. 143:1486 (1993); English et al., J. Virol. 67:5175 (1993); English et al., J. Infect. Dis. 170:543 (1994); Tompkins et al., J. Am. Vet. Med. Assoc. 199:1311 (1991)). The NCSU₁ isolate (or

10

15

20

25

30

35

"NCSU-1") is available from the American Type Culture Collection (ATCC Number VR2333), 12301 Parklawn Drive, Rockville, Maryland 20852 USA (deposited in accordance with the provisions of the Budapest Treaty, July 23, 1991). See U.S. Patent 5,413,927 to Tompkins et al. The FIV-NCSU1 molecular clone JSY3 inoculum was collected from an FCD4E feline lymphocyte culture which had been cocultured with transfected Crandell feline kidney (CrFK) cells (see below).

Molecular cloning of the FIV proviral genome. Genomic DNA was isolated by equilibrium centrifugation in CsClethidium bromide gradients (Maniatis et al., laboratory manual, Cold Spring A cloning: Laboratory, Cold Spring Harbor, NY) from 5 x 107 FCD4E cells (interleukin-2-dependent, FIV-NCSU1-infected feline CD4+ lymphocytes) inoculated with FIV-NCSU, obtained from the original source cat. 'As shown in Figure 4, FCD4E genomic DNA which had been partially digested with Sau3AI and size fractionated was cloned into the EMBL3 lambda vector arm. libraries were screened primarily by plaque hybridization with a gag region PCR product probe (838 bp) as described elsewhere (Maniatis et al., Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY). A full-length clone was identified by PCR of phage suspension with six primer sets designed from FIV-14 sequences (GenBank accession no. M25381). primer sets amplified 5' long terminal repeat, gag, env, long terminal repeat regions under the PCR and conditions described below. • The following primers were used for identification of the full-length lambda clone JSY3 (each primer designated by the 5' nucleotide of the complete FIV-14 sequence): 3U (U3) 5'-GGA TGA GTA TTG GAA CCC TGA A-3' (SEQ ID NO:21); 337L (U5) 5'-GAT TCC GAG ACC TCA CAG GTA A-3' (SEQ ID NO:22); 447U 5'-AAT AGG GAA GCA GTA GCA GAC-3' (SEQ ID NO:23); 829L 5'-GTA AAT CGC AAA TAA CCA ACC-3' (SEQ ID NO:24); 919U (FIV7) 5'-TGA CGG TGT CTA CTG CTG CT-3' (SEQ ID NO:25); 1756L (FIV8) 5'-CAC ACT GGT

-27-

CCT GAT CCT TTT-3' (SEQ ID NO:26); 1057U 5'-CCA CAA TAT GTA GCA CTT GAC C-3' (SEQ ID NO:27); 1639L 5'-GGG TAC TTT CTG GCT TAA GGT G-3' (SEQ ID NO:28); 6938U 5'-GGG GGA CCT ACC TTG GGG AAT TGG GCT-3' (SEQ ID NO:29); 7252L 5'-GGT GAT CAT GAT CAG TGG GAT TTG TAA TGG GTC TG-3' (SEQ ID NO:30); 7252L 5'-GGT GAT CAT GAT CAG TGG GAT TTG TAA TGG GTC TG-3' (SEQ ID NO:31); 8859U 5'-ATA AGG GAG ATA CTG TGC TGA-3' (SEQ ID NO:32); 9029L 5'- GCG ATC TTC TAA CTC TGT CAT-3' (SEQ ID NO:33).

10

15

20

25

30

35

DNA transfection. Ten micrograms of lambda clone DNA was transfected into CrFK and AH927 (a feline embryonic fibroblast cell line) cells by using the cationic liposome DOTAP (Boehringer Mannheim, Indianapolis, Ind.) according to the manufacturer's protocol. Twenty-four hours after transfection, these cells were cocultured for 72 hours with FCD4E or concanavalin A (10 μ g/ml)-stimulated normal cat PBMCs. FCD4E (or PBMCs) and CrFK (or AH927) cells were then cultured separately. Culture supernatant was collected at 3- to 4- day intervals and assayed for RT activity. Pooled samples for in vivo infection were titrated in FCD4E cells by the 50% tissue culture infective dose (TCID₅₀) method.

In vitro infections with JSY3 clone. Cultures of FCD4E or DEAE-dextran-treated CrFK cells were inoculated with cell-free FIV-NCSU, JSY3 clone containing 2 x 104 cpm of RT activity. The culture supernatant was collected twice weekly and assayed for RT activity.

In vivo FIV infection. Six 6-month old female cats were inoculated intravenously with 10⁶ TCID₅₀s of the JSY3 clone. Nine age- and sex-matched specific-pathogen-fee (SPF) cats were inoculated with wild-type FIV-NCSU₁, and nine mock-infected SPF cats were used as controls. The wild-type FIV-NCSU₁ infected group was examined up to 18 weeks post infection (p.i.) in parallel with the JSY3-infected cats.

Blood sampling. Whole blood was collected by jugular venipuncture into sodium citrate anticoagulant tubes. Aliquots were removed for complete blood counts and flow

cytometry, and plasma was collected for anti-FIV antibody assays. PBMCs were purified over Percoll as described (Tompkins et al., Vet. Immunol. Immunopathol., 16:1 (1987)). PBMCs were then cocultured with FCD4E cells for infectious virus recovery, lysed for provirus detection by PCR, or sorted for lymphocyte subset tropism studies.

5

10

15

20

25

30

35

analysis by flow cytometry. subset Lymphocyte Lymphocyte subsets were determined by two-color flow cytometric analysis as described (Davidson et al., Am. J. Pathol. 143:1486 (1993)) using a panel of monoclonal et al., Vet. immunol. (Tompkins (MAbs) antibodies Immunopathol. 26:305 (1990)). Briefly, plasma was removed, the cells were washed twice in phosphate-buffered saline (PBS), and MAbs were added in a combination of fluorescein isothiocyanate-labeled anti-cat immunoglobulin (Kirkegaard & Perry Laboratories, Inc., Gaithersburg, MD) and biotin-T-cell antibodies orfluorescein anti-pan isothiocyanate-labeled anti-CD8 and biotin-labeled anti-CD4 antibodies. Biotin-labeled antibodies were developed with phycoerythrin. Erythrocytes were lysed with fluorescenceactivated cell sorter (FACS) lysing solution (Becton Dickinson Immunocytometry Systems, San Jose, CA), and the percent positively stained lymphocytes was determined by flow cytometric analysis using a Becton Dickinson FACScan. The absolute numbers for each lymphocyte subset were calculated by multiplying the percent positive cells by the total number of lymphocytes, determined by a complete blood count and differential performed on the blood sample.

PCR-Southern blot analysis for FIV-provirus detection. Percoll-purified PBMCs were washed with PBS, and cell pellets were stored at -70°C until assayed. Cells (106) were lysed in 200 μ l of 1 x PCR buffer and digested with 600 μ g of proteinase K per ml. An 838-bp length of the FIV gag region was amplified with the primer set 919U-1756L. Amplification was performed as described previously (English et al., J. Virol. 67:5175 (1993)), with minor modifications. Briefly, 2 μ l of cell lysate (equivalent to

-29-

10⁴ cells) was amplified in a 100- μ l PCR mixture (1 x PCR buffer, 1.5 mM MgCl₂, 200 μ M each deoxynucleoside triphosphate, 0.5 μ M each primer, and 2.5 U of Taq DNA polymerase over 40 cycles (one cycle was 94°C for 1 minute, 59°C for 2 minutes, and 72°C for 1 minute, final extension was done at 72°C for 10 minutes). Amplified products were resolved on a 1.2% agarose gel, blotted, and hybridized with radiolabeled internal oligonucleotides probe.

5

10

15

20

25

30

35

Western blot analysis for plasma antibody to FIV. The Western blot (immunoblot) assay was performed as described (Novotney et al., AIDS 4:1213 (1990)).

RT activity assay. The Mg²⁺ -dependent RT activity assay was performed as described (Novotney et al., AIDS 4:1213 (1990)) and is a modification of a procedure of Goff et al., J. Virol. 38:239 (1981)).

Lymphocyte subset sorting of feline PBMCs. The JSY3 clone-infected cat PBMCs were sorted into CD4+, CD8+ and B lymphocyte subsets using MiniMACS (Miltenyi Sunnyvale, CA) magnetic beads. Percoll-enriched PBMCs were divided among three tubes and incubated at 4°C for 30 minutes with biotin-labeled anti-CD4 or anti-CD8 or anticanine B-cell MAb (B5) for a non-immunoglobulin-positive Bcell epitope (English et al., J. Virol. 67:5175 (1993)). Streptavidin-conjugated MiniMACS beads were then added, and the cells were incubated for an additional 20 minutes at 4°C and then positively sorted. A fraction of each sorted subset was analyzed for purity by two-color flow cytometry. Cells were stained with biotin-labeled MAbs, developed with phycoerythrin-conjugated streptavidin, and analyzed on the FACScan. The remaining sorted lymphocytes were stored at -70°C until they were assayed for the presence of FIV provirus by PCR-Southern blotting.

T. gondii infection. Twenty-nine weeks after infection with the JSY3 clone, cats were inoculated via the carotid artery with 10,000 tachyzoites of the ME49 strain of T. gondii as described (Davidson et al., Am. J. Pathol. 143:1486 (1993)). Six age- and sex-matched SPF cats were

also inoculated with *T. gondii* as controls. The cats were examined daily for clinical signs of illness using scoring criteria (Davidson et al., Am. J. Pathol. 143:1486 (1993)). Cats with severe clinical signs indicative of generalized toxoplasmosis were euthanized by barbiturate overdose.

5

10

15

20

25

3.0

35

Postmortem examination. Following euthanasia, a gross necropsy was performed and tissues were sampled for microscopic examination. Tissues were fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned and stained with hematoxylin and eosin stain.

EXAMPLE . 2

Molecular Cloning and Sequencing of the JSY3 Proviral Genome

A total of 5 x 10⁷ FCD4E cells were infected with wild-type FIV-NCSU, from the FIV-NCSU, source cat. Genomic DNA from this culture was cloned into the EMBL3 lambda vector arm. Primary hybridization-positive clones, determined by plaque hybridization with a randomly labeled 838 bp FIV gag PCR product probe, were screened further by PCR as described in Example 1. Five microliters of phage plaque suspensions of each hybridization-positive clone was directly amplified with six different primer sets, and a full-length proviral clone was identified (designated JSY3). The specificity of each FIV PCR product was established by comparing it with the FIV-pPPR plasmid clone (Phillips et al., J. Virol. 64:4605 (1990)).

The genomic proviral insert was subcloned into pJEM vectors, and the provirus genome was sequenced by primer directed sequencing, using techniques as are known in the art. Nucleotide and predicted amino acid sequences were computer analyzed, and open reading frames (orfs) were identified.

The provirus DNA sequence of the JSY3 provirus clone of $FIV-NCSU_1$ is provided in **Figure 1**, with the group specific antigen (gag), polymerase (pol), and envelope protein (env) regions marked. As shown in **Figure 1**, the DNA sequence

5051-332

5

10

15

20

25

30

consists of 9471 base pairs (SEQ ID NO:1).

The coding region of gag is nucleotides 631-1980 of SEQ ID NO:1 (SEQ ID NO:4) and encodes a 450 amino acid product (SEQ ID NO:2).

-31-

The coding region for the p15 protein is nucleotides 631-1035 of SEQ ID NO:1 (SEQ ID NO:5), with a polypeptide product of 135 amino acids (SEQ ID NO:6).

The coding region for the p25 protein is nucleotides 1036-1704 of SEQ ID NO:1 (SEQ ID NO:7), with a polypeptide product of 223 amino acids (SEQ ID NO:8).

The coding region for the p24a protein is nucleotides 1264-1305 of SEQ ID NO:1 (SEQ ID NO:9), with a polypeptide product of 14 amino acids (SEQ ID NO:10).

The coding region for the p10 protein is nucleotides 1717-1980 of SEQ ID NO:1 (SEQ ID NO:11), with a polypeptide product of 88 amino acids (SEQ ID NO:12).

The coding region of pol is amino acids 2151-5991 of SEQ ID NO:1 (SEQ ID NO:13). Two open reading frames (orfs) are found in the pol region. Orf 1 is nucleotides 2151-5243 of SEQ ID NO:1 (SEQ ID NO:14), encoding a product of 1031 amino acids (SEQ ID NO:15); Orf 2 is nucleotides 5239-5991 of SEQ ID NO:1 (SEQ ID NO:16) and encodes a product of 251 amino acids (SEQ ID NO:17).

The env coding region is nucleotides 6269-8824 of SEQ ID NO:1 (SEQ ID NO:18) and encodes a protein of 852 amino acids (SEQ ID NO:3). The transmembrane (TM) peptide is encoded by nucleotides 8339-8374 of SEQ ID NO:1 (SEQ ID NO:19), and is 12 amino acids in length (SEQ ID NO:20).

Figure 2 aligns the gag open reading frames of the JSY3 clone of NCSU₁ (FIV-NCSU) with known FIV isolates FIV PPR, FIV Z1, FIV CG, FIV 14, FIV TM1, and FIV TM2. Figure 3 aligns the whole envelope protein sequence of clone JSY3 of NCSU₁ with known FIV isolates FIV 14, FIV Z1, FIV CG, FIV 19k, and FIV PPR.

5

10

15

20

25

30

35

-32-

EXAMPLE 3

Biological Activity of JSY3

To determine the biological activity of the JSY3 clone, lambda DNA was transfected into CrFK, AH927, and FCD4E cells, which were then cocultured with FCD4E cells or While no RT activity was detected in culture supernatants of JSY3-transfected CrFK or AH927 cells when cultured alone, RT activity was detected when the transfected cells were cocultured with either PBMCs or FCD4E cells (data not shown). The replication kinetics of FIV in FCD4E cells is more rapid than in PBMCs because of the greater percentage of CD4+ cells in the FCD4E culture. Supernatants collected at 15 and 19 days of culture from FCD4E cells were filtered (0.2 μm pore size) and stored in aliquots for use an in vitro and in vivo inocula. inocula were designated the FIV-NCSU1-JSY3 clone. No RT activity was detected in the FCD4E cultures directly transfected with JSY3, suggesting that the transfection was unsuccessful (data not shown).

To determine the *in vitro* infectivity of the JSY3 clone, FCD4E and CrFK cells were inoculated with cell-free JSY3 clone. Similarly to the FIV-NCSU₁ wild-type virus (English et al., *J. Virol.* 67:5175 (1993)), the JSY3 clone replicated efficiently in FCD4E cells, resulting in syncytium formation and cell death (data not shown). However, the JSY3 clone was unable to infect CrFK cells.

EXAMPLE 4

In vivo Infectivity of JSY3

To determine the $in\ vivo$ infectivity of the JSY3 molecular clone, six SPF cats were inoculated intravenously with 10 $_6$ TCID $_{50}$ of JSY3 clone. Nine age-matched SPF cats were inoculated with 10 6 TCID $_{50}$ s of FIV-NCSU $_1$, also produced in FCD4E cells. Plasma and PBMCs were collected at various times post infection, and tested for antibodies to FIV by Western blotting and tested for cell-associated FIV

10

15

20

25

30

35

provirus by PCR. As previously reported (English et al., J. Infect. Dis. 170:543 (1994); Tompkins et al., J. Am. Vet. Med. Assoc. 199:1311 (1991)) cats infected with FIV-NCSU, parent virus were anti-FIV positive by 4 weeks post infection and were provirus positive by PCR by 2 weeks post infection (data not shown).

The response of cats infected with the JSY3 clone was similar to that of the cats infected with the wild-type. By four weeks post infection, all six cats had antibody to the FIV gag proteins p17 and p24, and they were still antibody positive at 25 weeks post infection (data not shown). The presence of FIV provirus in PBMCs from six cats infected with the JSY3 clone was determined by PCR and southern analysis. A PBMC lysate (equivalent to 104 cells) was amplified with the gag region primer set 919U-1756L, resolved on an agarose gel, and subjected to Southern blot analysis with a 5'-end-labeled internal probe. Provirus was detected in PBMCs from all cats by two weeks post infection (data not shown). All cats remained provirus positive when the amount of cell lysate in the PCR mixture was increased (data not shown).

To establish the presence of infectious virus in PBMCs from the JSY3-infected cats, PBMCs collected at 6 and 25 weeks post infection were cocultured with FCD4E cells and the supernatants were assayed for RT activity. Syncytium formation and cell death were observed in cocultures from all six cats at both six and 25 weeks p.i. RT activity was detectable in all cocultures by 8 to 10 days and peaked by 16 to 18 days of culture (data not shown).

EXAMPLE 5

Lymphocyte Subset Changes in JSY3-infected Cats

Lymphocyte profiles in naturally and experimentally FIV-infected cats are well documented (Ackley et al., J. Virol. 64:5652 (1990); English et al., J. Infect. Dis. 170:543 (1994); Hoffmann-Fezer et al., J. Virol. 66:1484 (1992); Novotney et al., AIDS 4:1213 (1990); Tompkins et

10

15

20

al., J. Am. Vet. Med. Assoc. 199:1311 (1991)). To determine whether the JSY3 clone causes hematologic and immunologic abnormalities similar to those biological parent FIV-NCSU1, lymphocyte subset profiles were analyzed by two-color flow cytometry. As reported for NCSU, (English et al., J. Infect. Dis. 170:543 (1994); Tompkins et al., J. Am. Vet. Med. Assoc. 199:1311 (1991)), both the biological virus and the JSY3 clone caused a panlymphopenia two to four weeks p.i. The parent FIV-NCSU1 and the JSY3 molecular clone caused parallel alterations CD4+/CD8+ ratio (data not shown). At six weeks p.i., the mean CD4+/CD8+ cell ratios (\pm standard errors) decreased from 3.48 \pm 0.50 to 1.30 \pm 0.21 for the parent virusinfected cats. By using total cell counts and flow cytometric analysis of lymphocyte subsets, the decrease in the CD4+/CD8+ ratio was determined to be the result of a decrease in CD4+ lymphocytes and an increase in CD8+ lymphocytes (data not shown). These results indicate that clone-infected cats have hematologic JSY3 the including CD4+ CD8+ abnormalities, immunologic lymphocyte changes similar to those of cats infected with the biological parent virus.

EXAMPLE 6

In vivo Lymphocyte Tropism

The in vivo hematopoietic target cells of FIV isolates, 25 including NCSU1, have been reported to be CD4+, CD8+, monocytes, and B lymphocytes (Beebe et al., J. Virol. 68:3080 (1994); Brown et ali, J. Virol. 65:3359 (1991); English et al., J. Virol. 67:5175 (1993)). To determine has a molecular clone JSY3 the whether 30 panlymphotropism in vivo, PBMCs from JSY3 clone infected cats were sorted into CD4+, CD8+, and B populations using antibody-coated magnetic beads. cell subset was lysed, PCR amplified with the gag region 919U-1756L primer set, and analyzed by Southern blotting. 35 As previously reported for the NCSU, parent virus, FIV provirus was first detected in CD4+ lymphoctyes during the acute-stage infection with JSY3 (2 to 4 weeks p.i.) (data not shown). At a later stage of infection (as early as 14 weeks p.i.), FIV provirus was found in CD8+ and B lymphocytes in addition to CD4+ lymphocytes, as reported for FIV-NCSU₁ (English et al., J. Virol. 67:5175 (1993)). All six JSY3-infected cats showed similar shifts in provirus burden from predominately CD4+ cells during the acute-stage infection to predominately B cells during the asymptomatic stage. While CD4+ and CD8+ cells were not always positive for provirus under PCR conditions described in Example 1, provirus was always able to be detected in these cells during the asymptomatic-stage infection by increasing cell numbers or using nested primers described by English et al., J. Virol. 67:5175 (1993). JSY3 molecular clone, similar to the parent biological isolate, exhibits a CD4+ tropism during the acute-stage infection that then shifts to a panlymphotropism as the infection progresses.

20

25

30

35

5

10

15

EXAMPLE 7

JSY3-Infected Cats

Acute-stage disease. In the primary phase of infection (2 to 16 weeks p.i.), both the JSY3- and the parent isolate-infected cats developed low-grade fevers, panlymphopenia, neutropenia, and generalized lymphadenopathy (data not shown), as has been reported for a number of biological isolates of FIV (Yamamoto et al., Am. J. Vet. Res. 49:1246 (1988)), including NCSU1 (English et al., J. Infect. Dis. 170:543 (1994)).

challenge. Davidson et al., (Am. J. Pathol. 143:1486 (1993)) reported that FIV-NCSU₁ causes immune system impairment in cats as early as eighteen weeks after infection and enhances susceptibility to a primary t. gondii infection. To determine if the molecular clone JSY3 caused immune impairment early in the asymptomatic stage of

5

10

15

20

25

30

35

infection, the cats were parenterally inoculated with the ME49 strain of T. gondii 29 weeks after JSY3 infection. six age-matched SPF control cats were similarly infected with T. gondii. At the time of T. gondii inoculation, all six FIV-infected cats were clinically normal; however, they had a marked decrease in their CD4+/CD8+ ratios comparison with preinfection ratios and those of the control cats (data not shown). Only one of six T. gondiiinfected cats in the non-FIV-inoculated group had positive clinical scores, as a result of anorexia and lethargy on days 8 to 11 after inoculation. Cats in this group also developed multifocal chorioretinitis beginning on days 7 to 10 after inoculation, which resolved over a three week The infection was otherwise subclinical in these cats. This clinical response is similar to that previously reported for healthy cats challenged with the mildly virulent ME49 strain of T. gondii (Davidson et al., Invest. Ophthalmol. Visual Sci. 34:3653 (1993); Davidson et al., Am. J. Pathol. 143:1486 (1993)).

Five of the six FIV-positive cats challenged with t. gondii had positive clinical scores in all three categories (attitude, appetite, and respiratory signs), and the total scores were higher than those of the T. gondii control group. Beginning on days 6 to 9 after inoculation, three FIV-infected cats challenged with T. gondii developed high fevers, depression, and moderate to severe ocular lesions, including chorioretinitis with subretinal granuloma formation, localized retinal detachment, and fibrinous Severe and progressive tachypnea, anterior uveitis. were noted, icterus tachycardia, and dyspnea, interstitial and consolidated lung sounds were auscultated. These three cats were euthanized when moribund on day 9 or Two of the three remaining cats 10 after inoculation. developed mild to moderate clinical toxoplasmosis but recovered. This clinical course of T. gondii infection in JSY3 infected cats, including the high morbidity, was similar to that reported by Davidson et al. (Am. J. Pathol. WO 98/39451 PCT/US98/04147

-37-

143:1486 (1993)) for cats infected with $NCSU_1$.

5

10

15

20

Postmortem findings. Postmortem exams were performed on the three FIV-T.gondii-infected cats that euthanized to confirm that their clinical disease was due One cat had gross evidence of to toxoplasmosis. interstitial pneumonia. All three animals had foci of discoloration in the liver consistent with hepatic necrosis, and the hearts contained foci of myocardial necrosis. Histologically, lesions were present in the lungs, livers, hearts, and brains of the three cats, and were similar to those seen in cats with dual FIV-NCSU1-T. gondii infection as described by Davidson et al., (Am. J. Pathol. 143:1486 (1993)). Except for the heart, T. gondii tachyzooites were seen in all tissues examined. tachyzooites were never numerous but most conspicuous as clusters inside of macrophages in the regions of severe inflammation and necrosis in the brain, lung, and liver.

The foregoing examples are illustrative of the present invention, and are not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: Tompkins, Wayne A.F. Tompkins, Mary B. Yang, Joo-Sung
- (ii) TITLE OF INVENTION: Feline Immunodeficiency Virus Clone
- (iii) NUMBER OF SEQUENCES: 33
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Bell Seltzer Park & Gibson
 - (B) STREET: PO Drawer 34009
 - (C) CITY: Charlotte
 - (D) STATE: North Carolina
 - (E) COUNTRY: USA
 - (F) ZIP: 28234
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0. Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Bennett, Virginia C.
 - (B) REGISTRATION NUMBER: 37.092
 - (C) REFERENCE/DOCKET NUMBER: 5051-332
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 919-420-2200
 - (B) TELEFAX: 919-881-3175
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9471 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 631..1980

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 6269..8824

(xi) SEQUENCE DESCRIPTION: SEO ID NO:1:

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
TGGGATGAGT ATTGGGACCC TGAAGAAATA GAAAGAATGC TTATGGACTA GTGACTGTTT	60
ACGAACAAAT GATAAATGAT GGAAACAGCT GAGCATGACT CATAGTTAAA GCGCTAGCAG	120
CTGCTTAACC GCAAAACCAC ATCCTATGTA AAGCTTGCTG ATGACGTATA ATTTGCTCCA	180
CTGTAAAAGT ATATAACCAG TGCTTTGTGA GACTTCGGGG AGTCTCTCCG TTGAGGACTT	240
TCGAGTTCTC CCTTGAGGCT CCCACAGATA CAATAAATAT TTGAGATTGA ACCCTGTCAA	300
GTATCTGTGT AATCTTTTT ACCTGTGAGG TCTCGGAATC CGGGCCGAGA ACTTCGCAGT	360
TGGCGCCCGA ACAGGGACTT GATTGAGAGT GATTGAGGAA GTGAAGCTAG AGCAATAGAA	420
AGCTGTTAAG CAGAACTCCT GCTGACCTAA ATAGGGAAGC AGTAGCAGAC GCTGCTAACA	480
GTGAGTATCT CTAGTGAAGC AGACTCGAGC TCATAATCAA GTCACTGTTT AAAGGCCCAG	540
ATAAATTACA TCTGGTGACT CTTCGCGGAC CTTCAAGCCA GGAGATTCGC CGAGGGACAG	600
TCAACAAGGT AGGAGAGATT CTGCAGCAAC ATG GGG AAC GGA CAG GGG CGA GAT Met Gly Asn Gly Gln Gly Arg Asp 1	654
TGG AAA ATG GCC ATT AAG AGA TGT AGT AAT GTT GCT GTA GGA GTA GGG Trp Lys Met Ala Ile Lys Arg Cys Ser Asn Val Ala Val Gly Val Gly 10 15 20	702
GGG AAG AGT AAA AAA TTT GGA GAA GGG AAT TTC AGA TGG GCC ATT AGA Gly Lys Ser Lys Lys Phe Gly Glu Gly Asn Phe Arg Trp Ala Ile Arg 25 30 35	750
ATG GCT AAT GTA TCT ACA GGA CGA GAA CCT GGT GAT ATA CCA GAG ACT Met Ala Asn Val Ser Thr Gly Arg Glu Pro Gly Asp Ile Pro Glu Thr 45	798
TTA GAT CAA CTA AGG TTG GTT ATT TGC GAT TTA CAA GAA AGA AGA GAA Leu Asp Gln Leu Arg Leu Val Ile Cys Asp Leu Gln Glu Arg Arg Glu 60 65 70	846
AAA TTT GGG TCG AGC AAA GAA ATT GAC ATG GCA ATT GTT ACA TTA AAA Lys Phe Gly Ser Ser Lys Glu Ile Asp Met Ala Ile Val Thr Leu Lys 75 80 85	894
GTC TTT GCG GTA GTA GGA CTT TTA AAT ATG ACA GTG TCT ACT GCT GCT Val Phe Ala Val Val Gly Leu Leu Asn Met Thr Val Ser Thr Ala Ala	942
90 95 100	

Ala Ala Glu Asn Met Tyr Thr Gln Met Gly Leu Asp Thr Arg Pro Ser 105 110 115 120	
ATG AGA GAA GCA GGA GGA AAA GAG GAA AGC CCT CCA CAG GCA TCT CCT Met Arg Glu Ala Gly Gly Lys Glu Glu Ser Pro Pro Gln Ala Ser Pro 125	1038
ATT CAA ACA GCA AAT GGA GCA CCA CAA TAT GTA GCA CTT GAC CCA AAA Ile Gln Thr Ala Asn Gly Ala Pro Gln Tyr Val Ala Leu Asp Pro Lys 140 150	1086
ATG GTG TCC ATT TTT ATG GAA AAG GCA AGA GAA GGA TTA GGA GGT GAG Met Val Ser Ile Phe Met Glu Lys Ala Arg Glu Gly Leu Gly Glu 155 160 165	1134
GAA GTT CAG CTA TGG TTT ACT GCC TTC TCT GCA AAT TTA ACA CCT ACT Glu Val Gln Leu Trp Phe Thr Ala Phe Ser Ala Asn Leu Thr Pro Thr 170 175 180	1182
GAC ATG GCC ACA TTA ATA ATG GCC GCA CCA GGG TGC GCT GCA GAT AAA Asp Met Ala Thr Leu Ile Met Ala Ala Pro Gly Cys Ala Ala Asp Lys 195	1230
GAA ATA TTG GAT GAA AGC TTA AAG CAA TTG ACG GCA GAG TAT GAT CGT Glu Ile Leu Asp Glu Ser Leu Lys Gln Leu Thr Ala Glu Tyr Asp Arg 205 215	1278
ACC CAT CCT CCT GAT GGA CCT AGA CCA TTA CCC TAT TTT ACT GCA GCA Thr His Pro Pro Asp Gly Pro Arg Pro Leu Pro Tyr Phe Thr Ala Ala 220 225 230	1326
GAA ATT ATG GGT ATA GGA TTA ACT CAA GAA CAA CAA GCA GAA GCA AGA Glu Ile Met Gly Ile Gly Leu Thr Gln Glu Gln Gln Ala Glu Ala Arg 235 240 245	1374
TTT GCA CCA GCT AGG ATG CAG TGT AGA GCA TGG TAT CTC GAG GCA CTA Phe Ala Pro Ala Arg Met Gln Cys Arg Ala Trp Tyr Leu Glu Ala Leu 250 260	1422
GGA AAA TTG GCC GCC ATA AAA GCT AAG TCT CCT CGA GCT GTG CAG TTA Gly Lys Leu Ala Ala Ile Lys Ala Lys Ser Pro Arg Ala Val Gln Leu 280	1470
AGA CAA GGA GCT AAG GAA GAT TAT TCA TCC TTT ATA GAC AGA TTG TTT Arg Gln Gly Ala Lys Glu Asp Tyr Ser Ser Phe Ile Asp Arg Leu Phe 285	1518
GCC CAA ATA GAT CAA GAA CAA AAT ACA GCT GAA GTT AAG TTA TAT TTA Ala Gln Ile Asp Gln Glu Gln Asn Thr Ala Glu Val Lys Leu Tyr Leu 300 305	1566
AAA CAG TCA TTA AGC ATG GCT AAT GCT AAT GCA GAA TGT AAA AAG GCA Lys Gln Ser Leu Ser Met Ala Asn Ala Asn Ala Glu Cys Lys Lys Ala 315 320 325	1614
ATG AGC CAC CTT AAG CCA GAA AGT ACC CTA GAA GAA AAG CTG AGA GCT	1662

Met Ser His Leu Lys Pro Glu Ser Thr Leu Glu Glu Lys Leu Arg Ala 330 335 340	
TGT CAA GAA GTA GGC TCA CCA GGA TAT AAA ATG CAA CTC TTG GCA GAA Cys Gln Glu Val Gly Ser Pro Gly Tyr Lys Met Gln Leu Leu Ala Glu 350 350 350	1710
GCT CTT ACA AAA GTT CAA GTA GTG CAA TCA AAA GGA TCA GGA CCA GTG Ala Leu Thr Lys Val Gln Val Val Gln Ser Lys Gly Ser Gly Pro Val 365 370	1758
TGT TTC AAC TGT AAA AAA CCA GGA CAT CTA GCA AAA CAG TGT AGA GAT Cys Phe Asn Cys Lys Lys Pro Gly His Leu Ala Lys Gln Cys Arg Asp 380 385	1806
GTG AAA AAA TGT AAA TGT GGA AAG CCT GGT CAT TTA GCT GCC AAA Val Lys Lys Cys Asn Lys Cys Gly Lys Pro Gly His Leu Ala Ala Lys 395 400 405	1854
TGC TGG CAA GGT GGT AAA AAG AAT TCG GGA AAC TGG AAG GCG GGG CGA Cys Trp Gln Gly Gly Lys Lys Asn Ser Gly Asn Trp Lys Ala Gly Arg 410 415 420	1902
GCT GCA GCC CCA GTG AAT CAA GTG CAG CAA GCA GTA ATG CCA TCT GCA Ala Ala Ala Pro Val Asn Gln Val Gln Gln Ala Val Met Pro Ser Ala 425 430 440	1950
CCT CCA ATG GAG GAG AGA CTA TTG GAT TTA TAAATTATAA TAAAGTAGGT Pro Pro Met Glu Arg Leu Leu Asp Leu 445	2000
ACTACTACAA CATTAGAAAA GAGGCCAGAA ATACTTATAT TTGTAAATGG GTACCCTATA	2060
AAATTITTAT TAGATACAGG AGCAGATATA ACAATTITAA ATAGGAGAGA TITTCAAGTA	2120
AAAAATTCTA TAGAAAATGG AAGGCAAAAT ATGATTGGAG TAGGAGGAGG AAAGAGAGAGA	2180
ACAAATTATA TCAATGTGCA TTTAGAGATT AGAGATGAAA ATTATAAGAC ACAATGTATA	2240
TTTGGCAATG TTTGTGTCTT AGAAGATAAC TCATTAATAC AACCATTATT AGGGAGAGAT	2300
AATATGATTA GATTCAATAT TAGGTTAGTA ATGGCTCAAA TITCTGACAA GATTCCAATA	2360
GTAAAAGTAA AAATGAAGGA TCCAAATAAA GGACCTCAAA TAAAACAATG GCCATTAACA	2420
AATGAAAAAA TTGAAGCTTT AACAGAAATA GTAGAAAGAC TAGAAAGAGA AGGGAAAGTA	2480
AAAAGAGCAG ATCCAAATAA CCCATGGAAT ACACCAGTAT TTGCAATAAA AAAGAAAAGT	2540
GGAAAATGGA GAATGCTCAT AGATTTTAGA GAATTGAACA AATTAACTGA GAAAGGGGCA	2600
GAAGTCCAGT TAGGACTCCC TCATCCTGCT GGATTAAAAA TGAAAAAACA AGTTACTGTG	2660
CTAGATATAG GAGATGCATA CTTCACTATT CCCTTGGATC CAGACTATGC TCCCTATACT	2720
GCATTCACAT TACCTAGAAA GAATAATGCA GGACCAGGGA GGAGATATGT ATGGTGCAGT	2780

TTACCACAGG GGTGGGTTCT AAGCCCATTG ATATATCAAA GTACTTTAGA TAATATAATA	2840
CAACCTTTA TTAGACAAAA TCCTGAGTTA GATATTTATC AATATATGGA TGACATTTAT	2900
ATAGGATCAA ACTTAAGTAA AAAGGAGCAT AAAGAAAAAG TAGAAGAATT AAGAAAATTG	2960
TTATTATGGT GGGGATTTGA AACCCCGGAA GACAAATTAC AAGAAGAGCC CCCATATAAG	3020
TGGATGGGCT ATGAATTACA TCCATTAACA TGGTCAATAC AGCAAAAACA ATTAGAAATT	3080
CCAGAAAGAC CCACATTAAA TGAACTGCAG AAATTAGCAG GTAAGATAAA CTGGGCCAGT	3140
CAAACTATCC CAGACTTAAG TATAAAAGAA CTAACTAACA TGATGAGAGG AGATCAGAAG	3200
TTAGACTCAA TAAGAGAATG GACTGTGGAA GCCAAGAGAG AAGTACAAAA AGCTAAGGAA	3260
GCTATTGAGA TGCAAGCACA GCTAAATTAT TATGATCCCC ACCGAGAATT ATATGCAAAA	3320
TTAAGTTTAG TGGGACCACA TCAAATATGT TATCAAGTGT ATCATAAGAA CCCAGAATGT	3380
ATTITATGGT ATGGTAAGAT GAATAGACAA AAGAAAAAGG CAGAAAATAC CTGTGATATA	3440
GCTCTAAGGG CATGTTATAA AATAAGAGAA GAATCTATTA TAAGAATAGG AAAAGAACCA	3500
ATATATGAAA TACCTACTTC TAGAGAAGCC TGGGAGTCAA ATTTAATTAA TTCACCATAT	3560
CTTAAGGCCC CACCTCCTGA GGTAGAATAT ATCCATGCTG CTGTGAATAT AAAAAGAGCA	3620
TTAAGTATGA TAAAAGATGT TCCAATACCA GAAGCAGAAA CGTGGTATAT AGATGGAGGC	3680
AGAAAGCTAG GAAAAGCAGC AAAAGCAGCC TATTGGACAG ATACAGGGAA GTGGCAAGTA	3740
ATGGAGTTAG AAGGCAGTAA TCAGAAGGCA GAAGTACAAG CATTATTATT GGCATTAAAA	3800
GCAGGATCAG AGGAAATGAA TATTATAACA GATTCACAAT ATGTTATAAA TATTATTCTT	3860
CAACAACCAG ATATGATGGA GGGAATCTGG CAAGAAGTTT TAGAAGAATT GGAGAAAAAA	3920
ACAGCAATAT TTATAGATTG GGTCCCAGGA CATAAAGGTA TTCCAGGAAA TGAGGAAGTA	3980
GATAAGCTTT GTCAAACAAT GATGATAATA GAAGGGGATG GGATATTAGA TAAAAGGTCA	4040
GAAGATGCGG GATATGATTT ATTGGCTGCA AAAGAAATAC ATTTATTGCC AGGAGAGGTA	4100
AAAGTAATAC CAACAGGGGT AAAGCTAATG CTGCCTAAAG GACATTGGGG ACTAATAATG	4160
GGAAGAAGCT CGATAGGGAG TAAAGGATTG GATGTATTAG GAGGGGTAAT AGATGAAGGA	4220
TATCGAGGTG AAATTGGAGT AATAATGATT AATGTATCAA GAAAATCAAT CACCTTAATG	-4280
GAACAACAAA AGATAGCACA ATTAATAATA TTGCCTTGTA AACATGAAGT ATTAGAACAA	4340
GGAAAAGTTG TAATGGATTC AGAGAGAGGA GACAAAGGTT ATGGGTCAAC AGGAGTATTC	4400
TCCTCTTGGG TTGACAGGAT TGAGGAAGCA GAAATAAATC ATGAAAAATT TCACTCAGAT	4460

CCACAATACT TAAGGACTGA ATTTAATTTA CCCAAGATGG TTGCAGAAGA GATAAGACGA 4520 AAGTGCCCTG TATGTAGAAT CAGAGGAGAA CAAGTGGGAG GACAATTGAA AATAGGGCCT 4580 GGAATATGGC AAGTGGATTG CACACACTTT AATAGTAAGA TAATCATTGT AGCAGTACAT 4640 GTGGAATCAG GATTTTTATG GGCACAGATA ATTCCACAGG AGACTGCAGA TTGTACAGTC 4700 AAGGCTCTTC TGCAACTTAT ATGTGCTCAT AATGTTACAG AATTACAAAC AGACAATGGA 4760 CCAAATTITA AAAATCAGAA AATGGAAGGT TTATTAAATT TTATGGGAAT AAAACATAAA 4820 TTAGGGATAC CAGGTAACCC ACAATCACAG GCATTAGTGG AAAATGCTAA TAACACATTA 4880 AAAGCTTGGA TTCAAAAATT CCTACCAGAG ACTACCTCTC TGGATAATGC TCTGGCCCTA 4940 GCCCTGTATA GTCTCAACTT TAAACAAAGG GGTAGACTAG GAAGGATGGC CCCTTATGAA 5000 TTATACATAC AACAAGAATC ATTAAGAATA CAAGACTATT TTTCGCAGAT TCCACAAAAG 5060 TTAATGATGC AGTGGGTGTA TTACAAAGAT CAAAAAGACA AAAAATGGAA GGGACCAATG 5120 AGAGTGGAAT ATTGGGGACA AGGATCAGTA TTATTAAAGG ATGAAGAGAA GGGATATTTT 5180 CTTGTACCTA GGAGACACAT AAGAAGAGTC CCAGAACCCT GCACTCTTCC TGAAGGGGAT 5240 GAGTGÁCGAA GATTGGCAGG TAAGTAGAAG ACTCTTTGCA GTGCTCCAAG GAGGAGTACG 5300 TAGTGCTATG CTATACATAT CTAGACTACC TCCGGACGAA AGAGAAAGGT ATAAAAAAAGA 5360 CTTTAAGAAA AGGCTTTTGG AAAAGGAAAC AGGATTCATA CAGAGATTAA GAAAAGCGGA 5420 AGGAATAAGG TGGAGCTTCC ATACTAGAGA TTATTATATA GGATATGTAA GAGAGATGGT 5480 GGCCGGATCT AGTCTACCAG ATAGTTTAAG ACTGTATATT TATATAAGCA ATCCATTGTG 5540 GCACTGGTCA TACCGTCCTG GCCTGACAAA TTTTAATACA GAATGGCCTT TTGTGAATAT 5600 GTGGATAAAG ACAGGATTCA TGTGGGATGA TATTGAAAGC CAGAATATTT GCAAAGGAGG 5660 AGAGATTICA CATGGATGGG GACCTGGAAT GGTGGGAATT GTGATAAAAG CTTTTAGTTG-5720 TGGAGAAAGA AAGATTGAGG CTACTCCTGT AATGATTATA AGAGGAGAAA TAGATCCAAA 5780 AAAATGGTGT GGAGATTGTT GGAATTTGAT GTGTCTTAGG AACTCACCTC CACAGACTTT 5840 ACAAAGACTT GCTATGTTGG CATGTGGCGT GCCGGCTAAG GAGTGGCGAG GATGCTGTAA 5900 TCAACGCTTT GTTTCTCCTT ACAGAACGCC TGCTGATTTG GAGGTCATTC AATCCAAGCC 5960 CAGCTGGAGT CTATTATGGT CAGGGAGCCT ATGAATGGAA GACATACTAA CATTATTTAA 6020 TAAGGTCACT AAGAAACTAG AAAAGGAAAA AGCTATCAGA ATATTTGTAT TAGCACATCA 6080 ATTAGAAAGG GACAAAGTTA TTAGATTACT ACAAGGATTA GTTTGGAGAC ATAGATTTAA 6140

GAAACCCCAA ACAAAATACT GTTTATGTTG GTTCTGTTGC AAATTCTACT ATTGGCAGTT	6200
GCAATCTACA TTATCAATAA CTACTGCTTA GAAATACTTA TAATAATATT TCATTTGCAA	6260
CAATAATT ATG GCA GAA GGA TTT GCA GCC AAT AGA CAA TGG ATA GGA CCA Met Ala Glu Gly Phe Ala Ala Asn Arg Gln Trp Ile Gly Pro 1 5 10	6310
GAA GAA GCT GAA GAG TTA TTA GAT TTT GAT ATA GCA ACA CAA ATG AAT Glu Glu Ala Glu Glu Leu Leu Asp Phe Asp Ile Ala Thr Gln Met Asn 15 20 25 30	6358
GAA GAA GGG CCA CTA AAT CCA GGG ATG AAC CCA TTT AGG GTA CCT GGA Glu Glu Gly Pro Leu Asn Pro Gly Met Asn Pro Phe Arg Val Pro Gly 35 40 45	6406
ATA ACA GAT AAA GAA AAG CAA GAC TAT TGT AAC ATA TTA CAA CCT AAG Ile Thr Asp Lys Glu Lys Gln Asp Tyr Cys Asn Ile Leu Gln Pro Lys 50 55 60	6454
TTA CAA GAT TTA CGG AAT GAA CTT CAA GAG GTA AAA CTA GAA GAA GGA Leu Gln Asp Leu Arg Asn Glu Leu Gln Glu Val Lys Leu Glu Glu Gly 65 70 75	6502
AAT GCA GGT AAG TTT AGA AGG GCA AGA TAT TTA AGA TAT TCT GAT GAA Asn Ala Gly Lys Phe Arg Arg Ala Arg Tyr Leu Arg Tyr Ser Asp Glu 80 85	6550
AAT GTG CTA TCT ATA GTC TAT TTG CTA ATA GGA TAT CTA AGA TAT TTA Asn Val Leu Ser Ile Val Tyr Leu Leu Ile Gly Tyr Leu Arg Tyr Leu 95 100 105	6598
ATA AAT CGT AGG AGT TTA GGA TCT TTA AGA CAT GAT ATA GAC ATA GAA Ile Asn Arg Arg Ser Leu Gly Ser Leu Arg His Asp Ile Asp Ile Glu 115	6646
ACA CCT CAA GAG GAA TAT TAT AGT AAT AGT GAA AGG GGT ACC ACA TTA Thr Pro Gln Glu Glu Tyr Tyr Ser Asn Ser Glu Arg Gly Thr Thr Leu 130 135	6694
AAT CAA AAA TAT GCG AGA AGA TGT TGT GTT AGC ACA CTT ATT ATG TAT Asn Gln Lys Tyr Ala Arg Arg Cys Cys Val Ser Thr Leu Ile Met Tyr 145 150 155	6742
TTA ATT CTT TTT GCA GTA GGC ATC TGG TGG GGA GCT AGA GCA CAA GTA Leu Ile Leu Phe Ala Val Gly Ile Trp Trp Gly Ala Arg Ala Gln Val 160 165 170	6790
GTG TGG AGA CTT CCC CCT TTA GTA GTT CCA GTA GAA GAA TCA GAA ATA Val Trp Arg Leu Pro Pro Leu Val Val Pro Val Glu Glu Ser Glu Ile 175 180 185	6838
ATT TTT TGG GAT TGT TGG GCA CCA GAA GAA CCC GCC TGT CAA GAC TTT Ile Phe Trp Asp Cys Trp Ala Pro Glu Glu Pro Ala Cys Gln Asp Phe 195 200 205	6886

CTT GGG GCA ATG ATA CAT CTA AAA GCT AGT ACG AAT ATA AGT ATA CAA Leu Gly Ala Met Ile His Leu Lys Ala Ser Thr Asn Ile Ser Ile Gln 210 215	6934
GAG GGA CCT ACC TTG GGG AAT TGG GCT AGA GAA ATA TGG GGA ACA TTA Glu Gly Pro Thr Leu Gly Asn Trp Ala Arg Glu Ile Trp Gly Thr Leu 235	6982
TTC AAA AAG GCT ACC AGA CAA TGT AGA AGA GGT AGA ATA TGG AAA AGA Phe Lys Lys Ala Thr Arg Gln Cys Arg Arg Gly Arg Ile Trp Lys Arg 240 245	7030
TGG AAT GAA ACT ATA ACA GGA CCA TTA GGA TGT GCT AAT AAC ACA TGT Trp Asn Glu Thr Ile Thr Gly Pro Leu Gly Cys Ala Asn Asn Thr Cys 255 260 270	7078
TAT AAT ATT TCA GTA ATA GTA CCT GAT TAT CAA TGT TAT CTA GAC CGA Tyr Asn Ile Ser Val Ile Val Pro Asp Tyr Gln Cys Tyr Leu Asp Arg 285	7126
GTA GAT ACT TGG TTA CAA GGG AAA GTA AAT ATA TCA TTA TGT CTA ACA Val Asp Thr Trp Leu Gln Gly Lys Val Asn Ile Ser Leu Cys Leu Thr 295	7174
GGA GGA AAA ATG TTG TAC AAT AAA TAT ACA AAA CAA TTA AGC TAT TGT Gly Gly Lys Met Leu Tyr Asn Lys Tyr Thr Lys Gln Leu Ser Tyr Cys 315	7222
ACA GAC CCA TTA CAA ATC CCA CTG ATC AAT TAT ACA TTT GGA CCT AAT Thr Asp Pro Leu Gln Ile Pro Leu Ile Asn Tyr Thr Phe Gly Pro Asn 330	7270
CAA ACA TGT ATG TGG AAC ACT TCA CAA ATT CAG GAC CCT GAG ATA CCA Gln Thr Cys Met Trp Asn Thr Ser Gln Ile Gln Asp Pro Glu Ile Pro 345	7318
AAA TGT GGA TGG TGG AAT CAA AGA GCC TAT TAT AAA AAT TGT AAA TGG Lys Cys Gly Trp Trp Asn Gln Arg Ala Tyr Tyr Lys Asn Cys Lys Trp 365	7366
GAA AAA ACA GAT GTA AAG TTT CAT TGT CAA AGA ACA CAG AGT CAG CCT Glu Lys Thr Asp Val Lys Phe His Cys Gln Arg Thr Gln Ser Gln Pro 370	7414
GGA ACA TGG CTT AGA GCA ATC TCG TCA TGG AGA CAA AGG AAT AGA TGG Gly Thr Trp Leu Arg Ala Ile Ser Ser Trp Arg Gln Arg Asn Arg Trp 395	7462
GAA TGG AGA CCA GAT TTT GAA AGT GAA AAG GTG AAA ATA TCT CTA AAG Glu Trp Arg Pro Asp Phe Glu Ser Glu Lys Val Lys Ile Ser Leu Lys 400 405	7510
TGT AAT AGC ACA AAA AAC CTA ACC TTT GCA ATG AGA AGT TCA GGA GAT Cys Asn Ser Thr Lys Asn Leu Thr Phe Ala Met Arg Ser Ser Gly Asp 420	7558

TAT Tyr	GGA Gly	GAA Glu	GTA Val	ACG Thr 435	Gly	GC A1	T] a :	TGG Trp	ATA Ile	GAG G1u 440	ا۲ ا	TT (he (GGA Gly	TGT Cys	C/	15 /	NGA Nrg 145	AAT Asn		7606
AAA Lys	TCA Ser	AAA Lys	CTT Leu 450	CAT His	GAT Asp	G/ G1	A (GCA Ala	AGG Arg 455	TTT Phe	· A	GA / .rg	ATT Ile	AGA Arg	با	GT / ys / 60	AGA Arg	TGG Trp		7654
AAT Asn	ATA Ile	GGG Gly 465	Glu	AAT Asr	AC(Thi	: T(er	CTC Leu 470	ATT Ile	GAT Asp	T A	CA hr	TGT Cys	GGA G1y 475	Α	AC :	ACT Thr	CAA G1n		7702
AAT Asn	GTT Val 480	Ser	GGG Gly	GC/ Ala	A AA' a Asi	٦ P	CT ro 85	GTA Val	GAT Asp	TGT Cys	ΓA s T	hr	ATG Met 490	TA1 Tyr	G	CA	AAT Asn	AAA Lys	•	7750
ATG Met 495	TAC Tyr	AAT Asr	TGT Cys	TC Se	T TT. r Le 50	u G	AA ln	AAC Asn	GGG Gly	TT	e I	ACT Thr 505	ATG Met	AA(Lys	G G	TA /al	GAT Asp	GAC Asp 510)	7798
CTT Leu	ATT Ile	ATO Met	G CAT	T TT 5 Ph 51	e As	T A n M	TG	ACA Thr	AAA Lys	GC A1 52	a١	STA Val	GAA Glu	AT(3 T	TAT Tyr	AAT Asn 525	ATI	<u> </u>	7846
GCT Ala	GG/ Gly	A AA ⁻ / Asi	T TGO 1 Try 53	p Se	T TG r Cy	T A	CA hr	TCT Ser	GAC Asp 535	Le	G (CCA Pro	CCA Pro	AC. Th	r	TGG Trp 540	GGG Gly	TA ⁻ Tyi	<u> </u>	7894
AT(Me1	AA [*] Ası	T TG n Cy 54	s As	C TG n Cy	iT AC 's Th	A A	\AT \sn	AAT Asr 550	Ser	AA As	T (GAT Asp	AAT Asr	AC Th 55	r	AGA Arg	ATG Met	GC/ A1	A a	7942
TG Cy:	r cc s Pr 56	o As	C AA n As	T CA n G1	A G(n G	ly i	ATC []e 565	Leu	A AG(I Ar	AA g As	AT sn	TGG Trp	TA7 Tyr 57(` AS	C n	CCA Pro	GTA Val	GC. A1	A a	7990
GG G1 57	A TT y Le 5	A CG u Ar	A CA	A TO	er L	TG (eu (80	GAA Glu	AA(Lys	G TA	T CA	VA I n	GTT Val 585	٧a	A AA 1 Ly	A 'S	CAA G1n	CCA Pro	GA As 59	P	8038
TA Ty	C TT	A GT	G GT	al P	CA G ro G 95	GG ly	GAA Glu	GT(C AT 1 Me	tG	lu	TAT Tyr	· AA · Ly	A A(s Th	T	AGA Arg	AGG Arg 60	یا ن	A 'S	8086
AG Ar	iG GO	CAG(la I	ГТ С 1е Н 1 0	AT G is V	∏ al	AT(TT. Le	A GC u Al 61	a L	TT eu	GCA Ala	A AC 1 Th	A G r Va	ΓA	TTA Leu 620	2ei	T AT	G et	8134
G(CC G(la G	ly A	CA G 1a G 25	GG A ly T	CG G	GG ily	GCT Ala	T AC a Th 63	r Al	T A a I	TA 1e	GGG Gly	AT y Me	t V	TA al 35	ACA Thr	CA Gli	A TA n Ty	AT /r	8182
C, H	AC C is G 6	AA G 1n V 40	TT C al L	TA 0 eu A	iCA /	ACC hr	CA Hi 64	s Gil	A G/ n G	VA G Iu A	CT (1a	AT Ile	T GA e G1 65	u L	AG ys	GT0 Val	AC Th	T G/ r G	∖A lu	8230

GCC TTA AAG ATA AAC AAC TTG AGA TTA GTT ACA TTA GAG CAT CAA GTA Ala Leu Lys Ile Asn Asn Leu Arg Leu Val Thr Leu Glu His Gln Val 655 660 670	8278
CTA GTA ATA GGA TTA AAA GTA GAA GCT ATG GAA AAA TTT TTA TAT ACA Leu Val Ile Gly Leu Lys Val Glu Ala Met Glu Lys Phe Leu Tyr Thr 675 680 685	8326
GCT TTC GCT ATG CAA GAA TTA GGA TGT AAT CAA AAT CAA TTC TTC TGC Ala Phe Ala Met Gln Glu Leu Gly Cys Asn Gln Asn Gln Phe Phe Cys 690 695	8374
AAA GTC CCT CCT GAA TTG TGG ATG AGG TAT AAT ATG TCT ATA AAT CAA Lys Val Pro Pro Glu Leu Trp Met Arg Tyr Asn Met Ser Ile Asn Gln 705 710 715	8422
ACA ATA TGG AAT CAT GGA AAT ATA ACT TTG GGG GAA TGG TAT AAC CAA Thr Ile Trp Asn His Gly Asn Ile Thr Leu Gly Glu Trp Tyr Asn Gln 720 725 730	8470
ACA AAA GAT TTA CAA CAA AAG TTT TAT GAA ATA ATA ATG GAC ATA GAA Thr Lys Asp Leu Gln Gln Lys Phe Tyr Glu Ile Ile Met Asp Ile Glu 740 745	8518
CAA AAT AAT GTA CAA GGG AAA AAA GGG ATA CAA CAA TTA CAA AAG TGG Gln Asn Asn Val Gln Gly Lys Lys Gly Ile Gln Gln Leu Gln Lys Trp 755	8566
GAA GAT TGG GTA GGA TGG ATA GGA AAT ATT CCA CAA TAC TTA AAG GGA Glu Asp Trp Val Gly Trp Ile Gly Asn Ile Pro Gln Tyr Leu Lys Gly 770 775	8614
CTA TTG GGA GGT ATC TTG GGA ATA GGA TTA GGA GTG TTA TTA ATT Leu Leu Gly Gly Ile Leu Gly Ile Gly Leu Gly Val Leu Leu Leu Ile 785 790 795	8662
TTA TGT TTA CCC ACA TTG GTT GAT TGT ATA AGA AAT TGT ATC CAC AAG Leu Cys Leu Pro Thr Leu Val Asp Cys Ile Arg Asn Cys Ile His Lys 800 805	8710
ATA CTA GGA TAC ACA GTA ATT GCA ATG CCT GAA GTA GAA GGA GAA GAA Ile Leu Gly Tyr Thr Val Ile Ala Met Pro Glu Val Glu Gly Glu 825 815	8758
ATA CAA CCA CAA ATG GAA TTG AGG AGA AAT GGT AGG CAA TGT GGC ATA Ile Gln Pro Gln Met Glu Leu Arg Arg Asn Gly Arg Gln Cys Gly Ile 835	8806
TCT GAA AAA GAG GAG GAA TGATGAAGTA TCTCAGACTT ATTTTATAAG Ser Glu Lys Glu Glu 850	8854
GGAGATGCTG TGCTGAGTTC TTCCCTTTGA GGAAGGTATG TCATATGAAT CCATTTCAAA	8914
TCAAATTAAA CTAATAAAGT ATGTATTATA AGGTAAAAAG AAAAAAAA	8974

^^C^^^C	٨٨٨٥٢٢٦٢٨	ΔΩΔΑΤΔΤΩΔΤ	GACAGCTTTA	GAAGATCGCT	TTAGAAAGCT	9034
ATTTGGCACA	AATTCTACAA	CGGGAGACAG	TACAGTGGAA	TCTGACGATG	AACCTCCTAA	9094
AAAAGAAAAA	AGGGTGGACT	GGGATGAGTA	TTGGGACCCT	GAAGAAATAG	AAAGAATGCT	9154
TATGGACTAG	TGACTGTTTA	CGAACAAATG	ATAAATGATG	GAAACAGCTG	AGCATGACTC	9214
ATAGTTAAAG	CGCTAGCAGC	TGCTTAACCG	CAAAACCACA	TCCTATGTAA	AGCTTGCTGA	9274
TGACGTATAA	TTTGCTCCAC	TGTAAAAGTA	TATAACCAGT	GCTTTGTGAG	ACTTCGGGGA	9334
GTCTCTCCGT	TGAGGACTTT	CGAGTTCTCC	CTTGAGGCTC	CCACAGATAC	AATAAATATT	9394
TGAGATTGAA	CCCTGTCAAG	TATCTGTGTA	ATCTTTTTA	CCTGTGAGGT	CTCGGAATCC	9454
GGGCCGAGAA	CTTCGCA					9471

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Gly Asn Gly Gln Gly Arg Asp Trp Lys Met Ala Ile Lys Arg Cys
1 10 15

Ser Asn Val Ala Val Gly Val Gly Gly Lys Ser Lys Lys Phe Gly Glu 20 25 30

Gly Asn Phe Arg Trp Ala Ile Arg Met Ala Asn Val Ser Thr Gly Arg 35 40 45

Glu Pro Gly Asp Ile Pro Glu Thr Leu Asp Gln Leu Arg Leu Val Ile 50 60

Cys Asp Leu Gln Glu Arg Arg Glu Lys Phe Gly Ser Ser Lys Glu Ile 65 70 75 80

Asp Met Ala Ile Val Thr Leu Lys Val Phe Ala Val Val Gly Leu Leu 85 90 95

Asn Met Thr Val Ser Thr Ala Ala Ala Ala Glu Asn Met Tyr Thr Gln 100 105 110

Met Gly Leu Asp Thr Arg Pro Ser Met Arg Glu Ala Gly Gly Lys Glu 115 120 125

Glu Ser Pro Pro Gln Ala Ser Pro Ile Gln Thr Ala Asn Gly Ala Pro 130 135 140 Gln Tyr Val Ala Leu Asp Pro Lys Met Val Ser Ile Phe Met Glu Lys 150 155 160

Ala Arg Glu Gly Leu Gly Gly Glu Glu Val Gln Leu Trp Phe Thr Ala 175

Phe Ser Ala Asn Leu Thr Pro Thr Asp Met Ala Thr Leu Ile Met Ala 180 185 190

Ala Pro Gly Cys Ala Ala Asp Lys Glu Ile Leu Asp Glu Ser Leu Lys 195 200 205

Gln Leu Thr Ala Glu Tyr Asp Arg Thr His Pro Pro Asp Gly Pro Arg 210 215 220

Pro Leu Pro Tyr Phe Thr Ala Ala Glu Ile Met Gly Ile Gly Leu Thr 225 230 235 . 240

Gln Glu Gln Gln Ala Glu Ala Arg Phe Ala Pro Ala Arg Met Gln Cys 245 250 255

Arg Ala Trp Tyr Leu Glu Ala Leu Gly Lys Leu Ala Ala Ile Lys Ala 260 265 270

Lys Ser Pro Arg Ala Val Gln Leu Arg Gln Gly Ala Lys Glu Asp Tyr 275 280 285

Ser Ser Phe Ile Asp Arg Leu Phe Ala Gln Ile Asp Gln Glu Gln Asn 290 295 300

Thr Ala Glu Val Lys Leu Tyr Leu Lys Gln Ser Leu Ser Met Ala Asn 305 310 315

Ala Asn Ala Glu Cys Lys Lys Ala Met Ser His Leu Lys Pro Glu Ser 335

Thr Leu Glu Glu Lys Leu Arg Ala Cys Gln Glu Val Gly Ser Pro Gly 340 345

Tyr Lys Met Gln Leu Leu Ala Glu Ala Leu Thr Lys Val Gln Val Val 355

Gln Ser Lys Gly Ser Gly Pro Val Cys Phe Ash Cys Lys Lys Pro Gly 370 380

His Leu Ala Lys Gln Cys Arg Asp Val Lys Lys Cys Asn Lys Cys Gly 385 390 400

Lys Pro Gly His Leu Ala Ala Lys Cys Trp Gln Gly Gly Lys Lys Asn 405 410 415

Ser Gly Asn Trp Lys Ala Gly Arg Ala Ala Ala Pro Val Asn Gln Val 420 425 430

Gln Gln Ala Val Met Pro Ser Ala Pro Pro Met Glu Glu Arg Leu Leu 435 440 445 Asp Leu 450

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 852 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Ala Glu Gly Phe Ala Ala Asn Arg Gln Trp Ile Gly Pro Glu Glu
1 1 15

Ala Glu Glu Leu Leu Asp Phe Asp Ile Ala Thr Gln Met Asn Glu Glu 20 25 30

Gly Pro Leu Asn Pro Gly Met Asn Pro Phe Arg Val Pro Gly Ile Thr 35 40 45

Asp Lys Glu Lys Gln Asp Tyr Cys Asn Ile Leu Gln Pro Lys Leu Gln 50 60

Asp Leu Arg Asn Glu Leu Gln Glu Val Lys Leu Glu Glu Gly Asn Ala 65 70 75 80

Gly Lys Phe Arg Arg Ala Arg Tyr Leu Arg Tyr Ser Asp Glu Asn Val 85 90 95

Leu Ser Ile Val Tyr Leu Leu Ile Gly Tyr Leu Arg Tyr Leu Ile Asn 100 105 110

Arg Arg Ser Leu Gly Ser Leu Arg His Asp Ile Asp Ile Glu Thr Pro 115 120 125

Gln Glu Glu Tyr Tyr Ser Asn Ser Glu Arg Gly Thr Thr Leu Asn Gln 130 135

Lys Tyr Ala Arg Arg Cys Cys Val Ser Thr Leu Ile Met Tyr Leu Ile 145 150 160

Leu Phe Ala Val Gly Ile Trp Trp Gly Ala Arg Ala Gln Val Val Trp 165 170 175

Arg Leu Pro Pro Leu Val Val Pro Val Glu Glu Ser Glu Ile Ile Phe 180 185 190

Trp Asp Cys Trp Ala Pro Glu Glu Pro Ala Cys Gln Asp Phe Leu Gly 195 200 205

Ala Met Ile His Leu Lys Ala Ser Thr Asn Ile Ser Ile Gln Glu Gly 210 215 220

Pro Thr Leu Gly Asn Trp Ala Arg Glu Ile Trp Gly Thr Leu Phe Lys 225 Lys Ala Thr Arg Gln Cys Arg Arg Gly Arg Ile Trp Lys Arg Trp Asn Glu Thr Ile Thr Gly Pro Leu Gly Cys Ala Asn Asn Thr Cys Tyr Asn 260 265 270 Ile Ser Val Ile Val Pro Asp Tyr Gln Cys Tyr Leu Asp Arg Val Asp 275 280 285 Thr Trp Leu Gln Gly Lys Val Asn Ile Ser Leu Cys Leu Thr Gly Gly 290 295 300 Lys Met Leu Tyr Asn Lys Tyr Thr Lys Gln Leu Ser Tyr Cys Thr Asp 315 310 Pro Leu Gln Ile Pro Leu Ile Asn Tyr Thr Phe Gly Pro Asn Gln Thr 330 Cys Met Trp Asn Thr Ser Gln Ile Gln Asp Pro Glu Ile Pro Lys Cys Gly Trp Trp Asn Gln Arg Ala Tyr Tyr Lys Asn Cys Lys Trp Glu Lys 355 360 Thr Asp Val Lys Phe His Cys Gln Arg Thr Gln Ser Gln Pro Gly Thr 370 380 Trp Leu Arg Ala Ile Ser Ser Trp Arg Gln Arg Asn Arg Trp Glu Trp 385 390 395 Arg Pro Asp Phe Glu Ser Glu Lys Val Lys Ile Ser Leu Lys Cys Asn 405 410 415 Ser Thr Lys Asn Leu Thr Phe Ala Met Arg Ser Ser Gly Asp Tyr Gly 420 425 Glu Val Thr Gly Ala Trp Ile Glu Phe Gly Cys His Arg Asn Lys Ser Lys Leu His Asp Glu Ala Arg Phe Arg Ile Arg Cys Arg Trp Asn Ile 450 460 Gly Glu Asn Thr Ser Leu Ile Asp Thr Cys Gly Asn Thr Gln Asn Val 465 470 480 Ser Gly Ala Asn Pro Val Asp Cys Thr Met Tyr Ala Asn Lys Met Tyr 485 Asn Cys Ser Leu Gln Asn Gly Phe Thr Met Lys Val Asp Asp Leu Ile 505 Met His Phe Asn Met Thr Lys Ala Val Glu Met Tyr Asn Ile Ala Gly Asn Trp Ser Cys Thr Ser Asp Leu Pro Pro Thr Trp Gly Tyr Met Asn Cys Asn Cys Thr Asn Asn Ser Asn Asp Asn Thr Arg Met Ala Cys Pro 550 Asn Asn Gln Gly Ile Leu Arg Asn Trp Tyr Asn Pro Val Ala Gly Leu Arg Gln Ser Leu Glu Lys Tyr Gln Val Val Lys Gln Pro Asp Tyr Leu Val Val Pro Gly Glu Val Met Glu Tyr Lys Thr Arg Arg Lys Arg Ala 600 Ala Ile His Val Met Leu Ala Leu Ala Thr Val Leu Ser Met Ala Gly Ala Gly Thr Gly Ala Thr Ala Ile Gly Met Val Thr Gln Tyr His Gln Val Leu Ala Thr His Gln Glu Ala Ile Glu Lys Val Thr Glu Ala Leu 650 Lys Ile Asn Asn Leu Arg Leu Val Thr Leu Glu His Gln Val Leu Val Ile Gly Leu Lys Val Glu Ala Met Glu Lys Phe Leu Tyr Thr Ala Phe 680 Ala Met Gln Glu Leu Gly Cys Asn Gln Asn Gln Phe Phe Cys Lys Val Pro Pro Glu Leu Trp Met Arg Tyr Asn Met Ser Ile Asn Gln Thr Ile 705 710 715 720 Trp Asn His Gly Asn Ile Thr Leu Gly Glu Trp Tyr Asn Gln Thr Lys Asp Leu Gln Gln Lys Phe Tyr Glu Ile Ile Met Asp Ile Glu Gln Asn Asn Val Gin Gly Lys Lys Gly Ile Gln Gln Leu Gln Lys Trp Glu Asp 755 Trp Val Gly Trp Ile Gly Asn Ile Pro Gln Tyr Leu Lys Gly Leu Leu Gly Gly Ile Leu Gly Ile Gly Leu Gly Val Leu Leu Leu Ile Leu Cys 790 Leu Pro Thr Leu Val Asp Cys Ile Arg Asn Cys Ile His Lys Ile Leu Gly Tyr Thr Val Ile Ala Met Pro Glu Val Glu Glu Glu Ile Gln 825 820

WO 98/39451 PCT/US98/04147

-53-

Pro Gln Met Glu Leu Arg Arg Asn Gly Arg Gln Cys Gly Ile Ser Glu 835 840 845

Lys Glu Glu Glu 850

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1350 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

ATGGGGAACG GACAGGGCG AGATTGGAAA ATGGCCATTA AGAGATGTAG TAATGTTGCT 60 GTAGGAGTAG GGGGAAGAG TAAAAAATTT GGAGAAGGGA ATTTCAGATG GGCCATTAGA 120 ATGGCTAATG TATCTACAGG ACGAGAACCT GGTGATATAC CAGAGACTTT AGATCAACTA 180 AGGTTGGTTA TTTGCGATTT ACAAGAAAGA AGAGAAAAAT TTGGGTCGAG CAAAGAAATT 240 GACATGGCAA TTGTTACATT AAAAGTCTTT GCGGTAGTAG GACTTTTAAA TATGACAGTG 300 TCTACTGCTG CTGCAGCTGA AAATATGTAC ACTCAGATGG GATTAGACAC TAGACCATCT 360 ATGAGAGAG CAGGAGGAAA AGAGGAAAGC CCTCCACAGG CATCTCCTAT TCAAACAGCA 420 AATGGAGCAC CACAATATGT AGCACTTGAC CCAAAAATGG TGTCCATTTT TATGGAAAAG 480 GCAAGAGAAG GATTAGGAGG TGAGGAAGTT CAGCTATGGT TTACTGCCTT CTCTGCAAAT 540 TTAACACCTA CTGACATGGC CACATTAATA ATGGCCGCAC CAGGGTGCGC TGCAGATAAA 600 GAAATATTGG ATGAAAGCTT AAAGCAATTG ACGGCAGAGT ATGATCGTAC CCATCCTCCT 660 GATGGACCTA GACCATTACC CTATTTTACT GCAGCAGAAA TTATGGGTAT AGGATTAACT 720 CAAGAACAAC AAGCAGAAGC AAGATTTGCA CCAGCTAGGA TGCAGTGTAG AGCATGGTAT 780 CTCGAGGCAC TAGGAAAATT GGCCGCCATA AAAGCTAAGT CTCCTCGAGC TGTGCAGTTA 840 AGACAAGGAG CTAAGGAAGA TTATTCATCC TTTATAGACA GATTGTTTGC CCAAATAGAT 900 CAAGAACAAA ATACAGCTGA AGTTAAGTTA TATTTAAAAC AGTCATTAAG CATGGCTAAT 960 GCTAATGCAG AATGTAAAAA GGCAATGAGC CACCTTAAGC CAGAAAGTAC CCTAGAAGAA 1020 AAGCTGAGAG CTTGTCAAGA AGTAGGCTCA CCAGGATATA AAATGCAACT CTTGGCAGAA 1080

336

GCTCTTA	CAA A	GTTC/	AAGT	AGT(GCAAT	rca A	VAAG(GATC/	AG GA	ACCA	GTGT	a TT	CAA(CTGT	1140
AAAAAAC	CAG G/	ACATC [*]	TAGC	AAA	ACAG [*]	TGT /	AGAG/	ATGT	GA A	4444	TGTA	A TA	A ATG	TGGA	1200
AAGCCTG	GTC A	ГТТАG	CTGC	CAA	ATGC	TGG (CAAG	GTGG	TA A	AAAG	AATT	C GG	GAAA	CTGG	1260
AAGGCGG	GGC G	AGCTG	CAGC	CCC	AGTG.	AAT	CAAG	TGCA	GC A	AGCA	GTAA	T GC	CATC	TGCA	1320
CCTCCAA	TGG A	GGAGA	GACT	ATT	GGAT	TTA									1350
(2) INF	ORMAT	ION F	OR S	EQ I	D NO	:5:									
(i	(B	UENCE) LEN) TYF) STF)) TOF	IGTH: PE: r RANDE	405 nucle DNES	bas eic a SS: s	se pa scid singl	iirs								
(i	i) MOL	.ECUL	ETYF	PE: [ONA (geno	omic))							
(i	x) FE/ (/	ATURE A) NAI B) LO	ME/KI	EY: (CDS 14	05									
(x	i) SE	QUENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:5:						
ATG GG Met Gl	G AAC y Asn 855	Gly	CAG Gln	GGG Gly	Arg	GAT Asp 860	TGG Trp	AAA Lys	ATG Met	Ala	ATT Ile 865	AAG Lys	AGA Arg	TGT Cys	48
AGT AA Ser As 87	sn Val	GCT Ala	GTA Val	GGA Gly	GTA Val 875	GGG Gly	GGG Gly	AAG Lys	5er	AAA Lys 880	AAA Lys	TTT Phe	GGA Gly	GAA Glu	96
GGG AA Gly As 885	AT TTO sn Phe	: AGA : Arg	TGG Trp	GCC Ala 890	ATT Ile	AGA Arg	ATG Met	GCT Ala	AAT Asn 895	GTA Val	TCT Ser	ACA Thr	GGA Gly	CGA Arg 900	144
GAA CI Glu P	CT GG ro Gly	GAT Asp	ATA Ile 905	CCA Pro	GAG Glu	ACT Thr	TTA Leu	GAT Asp 910	CAA G1h	CTA Leu	AGG Arg	TTG Leu	GTT Val 915	ATT	192
TGC G Cys A	AT TT. sp Le	A CAA u Gln 920	Glu	AGA Arg	AGA Arg	GAA Glu	AAA Lys 925	rne	GGG Gly	TCG Ser	AGC Ser	AAA Lys 930	GAA Glu	ATT	240
GAC A	TG GC Met Al 93	a Ile	GTT Val	ACA Thr	TTA Leu	AAA Lys 940	Val	TTT	GCG Ala	GTA Val	GTA Va1 945	bly	CTT Leu	TTA Leu	288

AAT ATG ACA GTG TCT ACT GCT GCA GCT GAA AAT ATG TAC ACT CAG Asn Met Thr Val Ser Thr Ala Ala Ala Ala Glu Asn Met Tyr Thr Gln

WO 98/39451 PCT/US98/04147

-55-

950 955 960

ATG GGA TTA GAC ACT AGA CCA TCT ATG AGA GAA GCA GGA GGA AAA GAG
Met Gly Leu Asp Thr Arg Pro Ser Met Arg Glu Ala Gly Gly Lys Glu
965 970 980

GAA AGC CCT CCA CAG GCA TCT Glu Ser Pro Pro Gln Ala Ser 985 405

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 135 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Gly Asn Gly Gln Gly Arg Asp Trp Lys Met Ala Ile Lys Arg Cys
10 15

Ser Asn Val Ala Val Gly Val Gly Gly Lys Ser Lys Lys Phe Gly Glu
20 25 30

Gly Asn Phe Arg Trp Ala Ile Arg Met Ala Asn Val Ser Thr Gly Arg

Glu Pro Gly Asp Ile Pro Glu Thr Leu Asp Gln Leu Arg Leu Val Ile 50 60

Cys Asp Leu Gln Glu Arg Arg Glu Lys Phe Gly Ser Ser Lys Glu Ile 65 70 80

Asp Met Ala Ile Val Thr Leu Lys Val Phe Ala-Val Val Gly Leu Leu 85 90 95

Asn Met Thr Val Ser Thr Ala Ala Ala Ala Glu Asn Met Tyr Thr Gln
100 105 110

Met Gly Leu Asp Thr Arg Pro Ser Met Arg Glu Ala Gly Gly Lys Glu 115 120 125

Glu Ser Pro Pro Gln Ala Ser 130

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 669 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 1..669

	(xi)	SEC	UENC	CE D	ESCRI	PTIC	N: S	EQ I	D NC):7:						
CCT . Pro	ATT Ile	CAA Gln	ACA Thr	GCA Ala 140	AAT Asn	GGA Gly	GCA Ala	CCA Pro	CAA G1n 145	TAT Tyr	GTA Val	GCA Ala	CTT Leu	GAC Asp 150	CCA Pro	48
AAA Lys	ATG Met	GTG Val	TCC Ser 155	Ile	TTT Phe	ATG Met	GAA G1u	AAG Lys 160	GCA Ala	AGA Arg	GAA Glu	GGA Gly	TTA Leu 165	GGA Gly	GGT Gly	96
GAG Glu	GAA Glu	GTT Val 170	CAG Gln	CTA Leu	TGG Trp	TTT Phe	ACT Thr 175	Ala	TTC Phe	TCT Ser	GCA Ala	AAT Asn 180	Leu	ACA Thr	CCT Pro	144
ACT Thr	GAC Asp 185	Met	GCC Ala	ACA Thr	TTA Leu	ATA Ile 190	ATG Met	GCC Ala	GCA Ala	CCA Pro	GGG Gly 195	Lys	GCT Ala	GCA Ala	GAT Asp	192
AAA Lys 200	GAA Glu	ATA Ile	Leu	GA ⁻ LAS	GAA Glu 205	ı Ser	TTA Leu	AAG Lys	CAA Glr	1T0 Let 210	ı ım	GCA Ala	GAG Glu	TAT Tyr	GAT Asp 215	240
CGT Arg	ACC Thr	CAT	CCT Pro	T CC D Pr 22	o Ast	GG/ Gly	A CCT / Pro	AGA Arg	CCA Pro 225) Lei	A CCC u Pro	TAT Tyr	TTT Phe	ACT Thr 230	GCA Ala	288
GCA Ala	GAA Glu	ATT LITE	ATO Me 23	t Gl	T ATA	A GG/ e G1;	A TTA y Lei	A ACT I Thi 240	r Gil	A GA n Gl	A CAA u Gli	A CAA n Gli	A GCA n Ala 245	ושונ	GCA Ala	336
AGA Arg	TTT Phe	GC/ e A1a 25	a Pr	A GC o Al	T AG a Ar	G AT	G CA(t G1) 25	n Ly	T AG/ s Ar	A GC g Al	A TG	G TATP Ty 26	r Lei	GAC Glu	G GCA L Ala	384
CT/ Lei	A GG/ u G1; 26	y Ly	A Π s Le	G GQ eu A	CC GC la Al	C AT a I1 27	e Ly	A GC s Al	T AA a Ly	G TC s Se	T CC r Pr 27	O AI	A GC g Ala	T GT(a Va	G CAG 1 Gln	432
TT/ Lei 28	u Ar	A CA g Gl	A GO n G	GA G(CT AA la Ly 28	∕s Gil	A GA u As	T TA p Ty	T TC r Se	A TO r Se 29	. PI	T AT ie Il	A GA e As	C AG p Ar	A TTG g Leu 295	480
TT Ph	T GC e Al	C CA a G1	A A n I	TA G le A	AT C/	A GA In G	A CA	A AA in As	AT AC sn Th	CA GO	CT GA la Gl	VA GT Iu Va	T AA il Ly	G TT s Le	A TAT u Tyr	528

576

624

669

300	305	310
TTA AAA CAG TCA TTA AGC ATG GCT Leu Lys Gln Ser Leu Ser Met Ala 315	T AAT GCT AAT GCA ASn Ala ASn Ala 320	GAA TGT AAA AAG Glu Cys Lys Lys 325
GCA ATG AGC CAC CTT AAG CCA GA Ala Met Ser His Leu Lys Pro Gl 330	u sei iiii Eca aia	GAA AAG CTG AGA Glu Lys Leu Arg 340
GCT TGT CAA GAA GTA GGC TCA CC Ala Cys Gln Glu Val Gly Ser Pr 345	A GGA TAT AAA ATG o Gly Tyr Lys Met 355	WIII 200 200
(2) INFORMATION FOR SEQ ID NO: (i) SEQUENCE CHARACTER! (A) LENGTH: 223 a (B) TYPE: amino a (D) TOPOLOGY: lin	ISTICS: amino acids acid	
(ii) MOLECULE TYPE: pro		
(xi) SEQUENCE DESCRIPTI		
Pro Ile Gln Thr Ala Asn Gly A		l Ala Leu Asp Pro 15
Lys Met Val Ser Ile Phe Met G 20	25	
Glu Glu Val Gln Leu Trp Phe 3	Thr Ala Phe Ser A 40	la Asn Leu Thr Pro 45
Thr Asp Met Ala Thr Leu Ile 50	Met Ala Ala Pro G	ly Cys Ala Ala Asp 60
Lys Glu Ile Leu Asp Glu Ser 65 70	Leu Lys Gln Leu T 75	hr Ala Glu Tyr-Asp 80
Arg Thr His Pro Pro Asp Gly 85	Pro Arg Pro Leu P 90	ro Tyr Phe Thr Ala 95
Ala Glu Ile Met Gly Ile Gly 100	Leu Thr Gln Glu 6 105	Gin Gin Ala Giu Ala 110
Arg Phe Ala Pro Ala Arg Met 115	120	
Leu Gly Lys Leu Ala Ala Ile 130 135		
Leu Arg Gln Gly Ala Lys Glu 145 150	Asp Tyr Ser Ser 155	Phe Ile Asp Arg Leu 160

Phe Ala Gln Ile Asp Gln Glu Gln Asn Thr Ala Glu Val Lys Leu Tyr 165 170 175

Leu Lys Gln Ser Leu Ser Met Ala Asn Ala Asn Ala Glu Cys Lys Lys 180 185

Ala Met Ser His Leu Lys Pro Glu Ser Thr Leu Glu Glu Lys Leu Arg 195 200 205

Ala Cys Gln Glu Val Gly Ser Pro Gly Tyr Lys Met Gln Leu Leu 210 215 220

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS (B) LOCATION: 1..42
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GCA GAG TAT GAT CGT ACC CAT CCT CCT GAT GGA CCT AGA CCA Ala Glu Tyr Asp Arg Thr His Pro Pro Asp Gly Pro Arg Pro 225 230 235

42

(2) INFORMATION FOR SEQ ID. NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Ala Glu Tyr Asp Arg Thr His Pro Pro Asp Gly Pro Arg Pro 10^{-1}

-59-	
(2) INFORMATION FOR SEQ ID NO:11:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 264 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1264	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	40
ACA AAA GTT CAA GTA GTG CAA TCA AAA GGA TCA GGA CCA GTG TGT TTC Thr Lys Val Gln Val Val Gln Ser Lys Gly Ser Gly Pro Val Cys Phe 15 20 25 30	48
AAC TGT AAA AAA CCA GGA CAT CTA GCA AAA CAG TGT AGA GAT GTG AAA Asn Cys Lys Pro Gly His Leu Ala Lys Gln Cys Arg Asp Val Lys 45	96
AAA TGT AAT AAA TGT GGA AAG CCT GGT CAT TTA GCT GCC AAA TGC TGG Lys Cys Asn Lys Cys Gly Lys Pro Gly His Leu Ala Ala Lys Cys Trp 50 60	144
CAA GGT GGT AAA AAG AAT TCG GGA AAC TGG AAG GCG GGG CGA GCT GCA Gln Gly Gly Lys Lys Asn Ser Gly Asn Trp Lys Ala Gly Arg Ala Ala 65 70 75	192
GCC CCA GTG AAT CAA GTG CAG CAA GCA GTA ATG CCA TCT GCA CCT CCA Ala Pro Val Asn Gln Val Gln Gln Ala Val Met Pro Ser Ala Pro Pro 80 85	240
ATG GAG GAG AGA CTA TTG GAT TTA Met Glu Glu Arg Leu Leu Asp Leu 95	264
(2) INFORMATION FOR SEQ ID NO:12:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 88 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	

Thr Lys Val Gln Val Val Gln Ser Lys Gly Ser Gly Pro Val Cys Phe 10°

Asn Cys Lys Lys Pro Gly His Leu Ala Lys Gln Cys Arg Asp Val Lys Lys Cys Asn Lys Cys Gly Lys Pro Gly His Leu Ala Ala Lys Cys Trp Gln Gly Gly Lys Lys Asn Ser Gly Asn Trp Lys Ala Gly Arg Ala Ala Ala Pro Val Asn Gln Val Gln Gln Ala Val Met Pro Ser Ala Pro Pro 80 Met Glu Glu Arg Leu Asp Leu Asp Leu 85

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3841 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

ATGATTGGAG TAGGAGGAGG AAAGAGAGGA ACAAATTATA TCAATGTGCA TTTAGAGATT 60 AGAGATGAAA ATTATAAGAC ACAATGTATA TTTGGCAATG TTTGTGTCTT AGAAGATAAC 120 TCATTAATAC AACCATTATT AGGGAGAGAT AATATGATTA GATTCAATAT TAGGTTAGTA 180 ATGGCTCAAA TTTCTGACAA GATTCCAATA GTAAAAGTAA AAATGAAGGA TCCAAATAAA 240 GGACCTCAAA TAAAACAATG GCCATTAACA AATGAAAAAA TTGAAGCTTT AACAGAAATA 300 GTAGAAAGAC TAGAAAGAGA AGGGAAAGTA AAAAGAGCAG ATCCAAATAA CCCATGGAAT 360 ACACCAGTAT TTGCAATAAA AAAGAAAAGT GGAAAATGGA GAATGCTCAT AGATTTTAGA 420 GAATTGAACA AATTAACTGA GAAAGGGGCA GAAGTCCAGT TAGGACTCCC TCATCCTGCT 480 GGATTAAAAA TGAAAAAACA AGTTACTGTG CTAGATATAG GAGATGCATA CTTCACTATT 540 CCCTTGGATC CAGACTATGC TCCCTATACT GCATTCACAT TACCTAGAAA GAATAATGCA 600 GGACCAGGGA GGAGATATGT ATGGTGCAGT TTACCACAGG GGTGGGTTCT AAGCCCATTG 660 ATATATCAAA GTACTTTAGA TAATATAATA CAACCTTTTA TTAGACAAAA TCCTGAGTTA 720 GATATTTATC AATATATGGA TGACATTTAT ATAGGATCAA ACTTAAGTAA AAAGGAGCAT 780

AAAGAAAAAG TAGAAGAATT AAGAAAATTG TTATTATGGT GGGGATTTGA AACCCCGGAA	040
GACAAATTAC AAGAAGAGCC CCCATATAAG TGGATGGGCT ATGAATTACA TCCATTAACA	900
TGGTCAATAC AGCAAAAACA ATTAGAAATT CCAGAAAGAC CCACATTAAA TGAACTGCAG	960
AAATTAGCAG GTAAGATAAA CTGGGCCAGT CAAACTATCC CAGACTTAAG TATAAAAGAA	1020
CTAACTAACA TGATGAGAGG AGATCAGAAG TTAGACTCAA TAAGAGAATG GACTGTGGAA	1080
GCCAAGAGAG AAGTACAAAA AGCTAAGGAA GCTATTGAGA TGCAAGCACA GCTAAATTAT	1140
TATGATCCCC ACCGAGAATT ATATGCAAAA TTAAGTTTAG TGGGACCACA TCAAATATGT	1200
TATCAAGTGT ATCATAAGAA CCCAGAATGT ATTTTATGGT ATGGTAAGAT GAATAGACAA	1260
AAGAAAAAGG CAGAAAATAC CTGTGATATA GCTCTAAGGG CATGTTATAA AATAAGAGAA	1320
GAATCTATTA TAAGAATAGG AAAAGAACCA ATATATGAAA TACCTACTTC TAGAGAAGCC	1380
TGGGAGTCAA ATTTAATTAA TTCACCATAT CTTAAGGCCC CACCTCCTGA GGTAGAATAT	1440
ATCCATGCTG CTGTGAATAT AAAAAGAGCA TTAAGTATGA TAAAAGATGT TCCAATACCA	1500
GAAGCAGAAA CGTGGTATAT AGATGGAGGC AGAAAGCTAG GAAAAGCAGC AAAAGCAGCC	1560
TATTGGACAG ATACAGGGAA GTGGCAAGTA ATGGAGTTAG AAGGCAGTAA TCAGAAGGCA	1620
GAAGTACAAG CATTATTATT GGCATTAAAA GCAGGATCAG AGGAAATGAA TATTATAACA	1680
GATTCACAAT ATGTTATAAA TATTATTCTT CAACAACCAG ATATGATGGA GGGAATCTGG	1740
CAAGAAGTTT TAGAAGAATT GGAGAAAAAA ACAGCAATAT TTATAGATTG GGTCCCAGGA	1800
CATAAAGGTA TTCCAGGAAA TGAGGAAGTA GATAAGCTTT GTCAAACAAT GATGATAATA	1860
GAAGGGGATG GGATATTAGA TAAAAGGTCA GAAGATGCGG GATATGATTT ATTGGCTGCA	1920
AAAGAAATAC ATTTATTGCC AGGAGAGGTA AAAGTAATAC CAACAGGGGT AAAGCTAATG	1980
CTGCCTAAAG GACATTGGGG ACTAATAATG GGAAGAAGCT CGATAGGGAG TAAAGGATTG	2040
GATGTATTAG GAGGGGTAAT AGATGAAGGA TATCGAGGTG AAATTGGAGT AATAATGATT	2100
AATGTATCAA GAAAATCAAT CACCTTAATG GAACAACAAA AGATAGCACA ATTAATAATA	2160
TTGCCTTGTA AACATGAAGT ATTAGAACAA GGAAAAGTTG TAATGGATTC AGAGAGAGAG	2220
GACAAAGGTT ATGGGTCAAC AGGAGTATTC TCCTCTTGGG TTGACAGGAT TGAGGAAGCA	2280
GAAATAAATC ATGAAAAATT TCACTCAGAT CCACAATACT TAAGGACTGA ATTTAATTTA	2340
CCCAAGATGG TTGCAGAAGA GATAAGACGA AAGTGCCCTG TATGTAGAAT CAGAGGAGAA	2400
CAAGTGGGAG GACAATTGAA AATAGGGCCT GGAATATGGC AAGTGGATTG CACACACTTT	2460

AATAGTAAGA TAATCATTGT AGCAGTACAT GTGGAATCAG GATTTTTATG GGCACAGATA	2520
ATTCCACAGG AGACTGCAGA TTGTACAGTC AAGGCTCTTC TGCAACTTAT ATGTGCTCAT	2580
AATGTTACAG AATTACAAAC AGACAATGGA CCAAATTTTA AAAATCAGAA AATGGAAGGT	2640
TTATTAAATT TTATGGGAAT AAAACATAAA TTAGGGATAC CAGGTAACCC ACAATCACAG	2700
GCATTAGTGG AAAATGCTAA TAACACATTA AAAGCTTGGA TTCAAAAATT CCTACCAGAG	2760
ACTACCTCTC TGGATAATGC TCTGGCCCTA GCCCTGTATA GTCTCAACTT TAAACAAAGG	2820
GGTAGACTAG GAAGGATGGC CCCTTATGAA TTATACATAC AACAAGAATC ATTAAGAATA	2880
CAAGACTATT TITCGCAGAT TCCACAAAAG TTAATGATGC AGTGGGTGTA TTACAAAGAT	2940
CAAAAAGACA AAAAATGGAA GGGACCAATG AGAGTGGAAT ATTGGGGACA AGGATCAGTA	3000
TTATTAAAGG ATGAAGAGAA GGGATATTTT CTTGTACCTA GGAGACACAT AAGAAGAGTC	3060
CCAGAACCCT GCACTCTTCC TGAAGGGGAT GAGTGACGAA GATTGGCAGG TAAGTAGAAG	3120
ACTOTTTGCA GTGCTCCAAG GAGGAGTACG TAGTGCTATG CTATACATAT CTAGACTACC	3180
TCCGGACGAA AGAGAAAGGT ATAAAAAAAGA CTTTAAGAAA AGGCTTTTGG AAAAGGAAAC	3240
AGGATTCATA CAGAGATTAA GAAAAGCGGA AGGAATAAGG TGGAGCTTCC ATACTAGAGA	3300
TTATTATATA GGATATGTAA GAGAGATGGT GGCCGGATCT AGTCTACCAG ATAGTTTAAG	3360
ACTGTATATT TATATAAGCA ATCCATTGTG GCACTGGTCA TACCGTCCTG GCCTGACAAA	3420
TTTTAATACA GAATGGCCTT TTGTGAATAT GTGGATAAAG ACAGGATTCA TGTGGGATGA	3480
TATTGAAAGC CAGAATATTT GCAAAGGAGG AGAGATTTCA CATGGATGGG GACCTGGAAT	3540
GGTGGGAATT GTGATAAAAG CTTTTAGTTG TGGAGAAAGA AAGATTGAGG CTACTCCTGT	3600
AATGATTATA AGAGGAGAAA TAGATCCAAA AAAATGGTGT GGAGATTGTT GGAATTTGAT	3660
GTGTCTTAGG AACTCACCTC CACAGACTTT ACAAAGACTT GCTATGTTGG CATGTGGCGT	3720
GCCGGCTAAG GAGTGGCGAG GATGCTGTAA TCAACGCTTT GTTTCTCCTT ACAGAACGCC	3780
TGCTGATTTG GAGGTCATTC AATCCAAGCC CAGCTGGAGT CTATTATGGT CAGGGAGCCT	3840
A	3841

(2)	INFORMATION	FOR	SEQ	ID	NO:14:
-----	-------------	-----	-----	----	--------

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3093 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 1..3093

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

((xi)	SEC)UEN(JE L)£3	CKI	7110	N . 3	CQ.	ΙU	110	. <u>.</u> .								
ATG A	11e 90	Gly	Val	Gly	y G	ily (95	LyS	Arg	u	i y	1111	100	; ;	<i>,</i> ,	110	, , , , ,			48
CAT His 105	TTA Leu	GAG G1u	ATT Ile	AG. Ar	g P	GAT Asp L10	GAA Glu	AAT Asn	TAT Tyr	A. L.	yэ	ACA Thr 115	CA/ G1r	4 T n (TGT Cys	ATA Ile	Pho	T (GGC Gly 120	96
AAT Asn	GTT Val	TGT Cys	GTC Val	TT Le 12	u	GAA Glu	GAT Asp	AAC Asn	TCA Ser	L	TA .eu .30	ATA Ile	CA G1:	A (n l	CCA Pro	TTA Leu	Le 13	٠.	GGG Gly	144
AGA Arg	GAT Asp	AAT Asn	AT0 Me1	וו	Т <i>i</i>	AGA Arg	TTC Phe	AAT Asr	ATI 116 145	= -	\GG \rg	TTA Leu	GT Va	Α.	ATG Met	GCT Ala 150	٠.	A n	ATT Ile	192
TCT Ser	GAC Asp	AAG Lys 155		T CO e Pi	CA	ATA Ile	GTA Val	. AA/ Lys 160	GT/ Va	4 <i>A</i> 1 L	AAA _ys	ATG Met	AA Ly	\G /S	GAT Asp 165	CCA Pro	AA As	T n	AAA Lys	240
Gly	CCT Pro	Glr	AT n Il	A A e L	AA ys	CAA Gln	TGG Trp 175	Pr	A TT o Le	A <u>/</u> u	ACA Thr	AAT Asr	u	AA lu 80	AAA Lys	ΑΠ Ile	G/ e G	\A lu	GCT Ala	288
TTA Leu 185	Thr	A GA	A AT u Il	A G e V	TA al	GAA Glu 190	Arg	A CT g Le	A GA u G1	A . u .	AGA Arg	GA¥ G10 195	ı u	GG ly	AAA Lys	GT/ Va	A A	4A ys	AGA Arg 200	336
GCA Ala	GA AS	T CC p Pr	A AA o As	sn A	AC Isn 205	Pro	TG Tr	G AA p As	T AC n Th	CA nr	CCA Pro 210	, va	A T I P	TT he	GCA Ala	A ATA	-	AA ys 15	AAG Lys	384
AA/ Lys	A AG s Se	T GG r Gl	y L	4A] ys 20	ΓGG Γrp	AGA Arg	A AT g Me	G CT t Le	tu 1	ΓΑ 1 e 25	GA ^T Asp	T TT o Ph	T A e A	GA Arg	GA/ G1u	1 TT u Le 23	G A u A	AC sn	: AAA I Lys	432
TT. Le	A AC u Th	T GA	AG A lu L	AA (ys (GGG Gly	GC/ Al	A GA a G1	A G	rc c al G	AG 1n	TT. Le	A GG u G1	A C y l	CTC _eu	CC Pr	T CA o Hi	T C s F	CT	GCT Ala	480

		235					240					245				
Gly	TTA Leu 250	AAA Lys	ATG Met	AAA Lys	AAA Lys	CAA G1n 255	GTT Val	ACT Thr	GTG Val	CTA Leu	GAT Asp 260	ATA Ile	GGA Gly	GAT Asp	GCA Ala	528
TAC Tyr 265	TTC Phe	ACT Thr	ATT Ile	CCC Pro	TTG Leu 270	GAT Asp	CCA Pro	GAC Asp	TAT Tyr	GCT Ala 275	CCC Pro	TAT Tyr	ACT Thr	GCA Ala	TTC Phe 280	576
ACA Thr	TTA Leu	CCT Pro	AGA Arg	AAG Lys 285	AAT Asn	AAT Asn	GCA Ala	GGA Gly	CCA Pro 290	GGG Gly	AGG Arg	AGA Arg	TAT Tyr	GTA Val 295	TGG Trp	624
TGC Cys	AGT Ser	TTA Leu	CCA Pro 300	CAG Gln	GGG Gly	TGG Trp	GTT Val	CTA Leu 305	AGC Ser	CCA Pro	TTG Leu	ATA Ile	TAT Tyr 310	GIN	AGT Ser	672
ACT Thr	TTA Leu	GAT Asp 315	Asn	ATA Ile	ATA Ile	CAA Gln	CCT Pro 320	Phe	ATT Ile	AGA Arg	CAA Gln	AAT Asn 325	Pro	GAG G1u	TTA Leu	720
GAT Asp	ATT Ile 330	Tyr	CAA Glr	TAT Tyr	ATG Met	GAT Asp 335	Asp	ATT	TAT Tyr	ATA Ile	GGA G1y 340	/ Ser	AAC Asn	TTA Leu	AGT Ser	768
AAA Lys 345	Lys	GAG Glu	CAT His	AAA Lys	GAA Glu 350	ı Lys	GTA Val	GAA Glu	GAA Glu	TTA Leu 355	ı Arg	AAA J Lys	TTG Leu	TTA Leu	TTA Leu 360	816
TGG Trp	TGG Trp	GGA Gly	A TT / Phe	GAA Glu 365	ı Thr	CCG Pro	GAA Glu	A GAC J Asp	2 AAA 2 Lys 370	Leu	A CAA u Glr	A GAA n Glu	A GAG u Glu	CCC Pro 375	CCA Pro	864
TAT Tyr	AA(G TG(S Trp	G ATO	t Gly	C TAT y Tyi	Γ GAA	TTA Let	A CAT His 385	s Pro	A TTA	A ACA	A TG(r Tr¦	390 390	116	CAG Gln	912
CA/ G1r	A AAA n Ly:	A CA/ s G1: 39:	n Le	A GA u Gl	A AT	T CC/ e Pro	A GA/ O G1(40)	u Arg	A CCO	C AC/ o Thi	A TT. r Le	A AA u Asi 40	กษแ	A CTO	G CAG	960
AA. Ly:	A TT. s Le 41	u Al	A GG a G1	T AA y Ly	G AT. s Il	A AA e As 41	n Ir	G GC	C AG a Se	T CA	A AC n Th 42	r 11	C CC/ e Pro	A GA(o Ast	C TTA D Leu	1008
AG Se 42	r Il	A AA e Ly	A GA 's G1	A CT u Le	A AC u Th 43	r As	C AT n Me	G AT t Me	G AG t Ar	A GG g G1 43	y As	T CA p G1	G AA n Ly	G TT/ s Le	A GAC u Asp 440	1056
TC Se	A AT	A AG e Ar	SA GA ng Gl	VA TO lu Tr 44	p Tr	T GT Ir Va	G GA 1 G1	A GC u Al	C AA a Ly 45	's Ar	iA GA ·g G1	vA GT Iu Va	A CA	A AA n Ly 45	A GCT s Ala 5	1104
AA Ly	AG GA Vs G1	AA GO Lu Al	CT A la [l	IT GA le Gl	AG AT Iu Me	G CA	A GC	CA CA la G1	NG CT In Le	TA AA eu As	AT TA sn Ty	AT TA yr Ty	AT GA /r As	T CC p Pr	C CAC o His	1152

-05-	
460 465 470	
CGA GAA TTA TAT GCA AAA TTA AGT TTA GTG GGA CCA CAT CAA ATA TGT Arg Glu Leu Tyr Ala Lys Leu Ser Leu Val Gly Pro His Gln Ile Cys 475 480 485	1200
TAT CAA GTG TAT CAT AAG AAC CCA GAA TGT ATT TTA TGG TAT GGT AAG Tyr Gln Val Tyr His Lys Asn Pro Glu Cys Ile Leu Trp Tyr Gly Lys 490 500	1248
ATG AAT AGA CAA AAG AAA AAG GCA GAA AAT ACC TGT GAT ATA GCT CTA Met Asn Arg Gln Lys Lys Ala Glu Asn Thr Cys Asp Ile Ala Leu 505 510 520	1296
AGG GCA TGT TAT AAA ATA AGA GAA GAA TCT ATT ATA AGA ATA GGA AAA Arg Ala Cys Tyr Lys Ile Arg Glu Glu Ser Ile Ile Arg Ile Gly Lys 525 530	1344
GAA CCA ATA TAT GAA ATA CCT ACT TCT AGA GAA GCC TGG GAG TCA AAT Glu Pro Ile Tyr Glu Ile Pro Thr Ser Arg Glu Ala Trp Glu Ser Asn 540 545	1392
TTA ATT AAT TCA CCA TAT CTT AAG GCC CCA CCT CCT GAG GTA GAA TAT Leu Ile Asn Ser Pro Tyr Leu Lys Ala Pro Pro Pro Glu Val Glu Tyr 555 560 565	1440
ATC CAT GCT GCT GTG AAT ATA AAA AGA GCA TTA AGT ATG ATA AAA GAT Ile His Ala Ala Val Asn Ile Lys Arg Ala Leu Ser Met Ile Lys Asp 570 575	1488
GTT CCA ATA CCA GAA GCA GAA ACG TGG TAT ATA GAT GGA GGC AGA AAG Val Pro Ile Pro Glu Ala Glu Thr Trp Tyr Ile Asp Gly Gly Arg Lys 585 590 600	1536
CTA GGA AAA GCA GCA AAA GCA GCC TAT TGG ACA GAT ACA GGG AAG TGG Leu Gly Lys Ala Ala Lys Ala Ala Tyr Trp Thr Asp Thr Gly Lys Trp 605 610	1584
CAA GTA ATG GAG TTA GAA GGC AGT AAT CAG AAG GCA GAA GTA CAA GCA Gln Val Met Glu Leu Glu Gly Ser Asn Gln Lys Ala Glu Val Gln Ala 620 625	1632
TTA TTA TTG GCA TTA AAA GCA GGA TCA GAG GAA ATG AAT ATT ATA ACA Leu Leu Ala Leu Lys Ala Gly Ser Glu Glu Met Asn Ile Ile Thr 635 640 645	1680
GAT TCA CAA TAT GTT ATA AAT ATT ATT CTT CAA CAA CCA GAT ATG ATG Asp Ser Gln Tyr Val Ile Asn Ile Ile Leu Gln Gln Pro Asp Met Met 650 655	1728
GAG GGA ATC TGG CAA GAA GTT TTA GAA GAA TTG GAG AAA AAA A	1776
ATA TTT ATA GAT TGG GTC CCA GGA CAT AAA GGT ATT CCA GGA AAT GAG Ile Phe Ile Asp Trp Val Pro Gly His Lys Gly Ile Pro Gly Asn Glu	1824

					685					6	90					69	ō		
GAA Glu	GTA Val	GA As	ρĹ	AG ys 700	CTT Leu	TGT Cys	CAA G1n	ACA Thr	ATO Met 705	, M	TG . et	ATA Ile	ATA Ile	GAA Glu	GGG Gly 710	GA ⁻ As _l	T (GGG Gly	1872
ATA Ile	TTA Leu	GA As 71	ρl	AAA _ys	AGG Arg	TCA Ser	GAA Glu	GAT Asp 720	Ala	G G G G	iGA ily	TAT Tyr	GAT Asp	TTA Leu 725	TTG Leu	GC A1	T (GCA Ala	1920
AAA Lys	GAA G1u 730	AT Il	A (CAT	TTA Leu	TTG Leu	CCA Pro 735	GGA Gly	GA(G1)	G G u V	TA /al	AAA Lys	GTA Val 740	ATA Ile	CCA Pro	AC Th	A (GGG Gly	1968
GTA Val 745	AAG Lys	CT Le	ΓA . eu	ATG Met	CTG Leu	CCT Pro 750	AAA Lys	GGA Gly	CA Hi	T T s T	ΓGG Γrp	GGA Gly 755	CTA Leu	ATA Ile	ATG Met	GG G1	у	AGA Arg 760	2016
AGC Ser	TCG Ser	A]	ΓA le	GGG Gly	AGT Ser 765	AAA Lys	GGA Gly	TTG Leu	GA I As	ΡÌ	GTA Val 770	TTA Leu	GGA Gly	GGG Gly	GTA Val	AT 11 77	е	GAT Asp	2064
GAA Glu	GGA Gly	Λ Τ/ / Τ <u>'</u>	AT yr	CGA Arg 780	GGT Gly	GAA Glu	ATT	GG/ Gly	A GT / Va 78	1	ATA Ile	ATG Met	ATT Ile	AAT Asr	GTA Val 790	56	CA er	AGA Arg	2112
AAA Lys	TC/ Ser	·I	TC le 95	ACC Thr	TTA Leu	ATC Met	GAA Glu	CA Gli 80	n Gl	A In	AAG Lys	ATA Ile	GCA Ala	CAA Glr 805	ı Lei	A AT	ΓA le	ATA Ile	2160
TTG Leu	CC Pro 81	o C	GT ys	AAA Lys	CAT His	GA/ Glu	GT/ 1 Va 1 81	l Le	A GA u G1	\A lu	CAA G1n	GGA Gly	AAA Lys 820	· Va	r GT/ I Va	A AT	TG et	GAT Asp	2208
TCA Ser 829	~ G1	G A u A	AGA Arg	GGA Gly	GAC Asp	2 AA 2 Ly: 83	s G1	T TA y Ty	T G(r G	GG ly	TCA Ser	ACA Thr 835	راتا (A GT/ Va	A TTO	C To	CC er	TCT Ser 840	2256
TG(Tr	G GT o Va	T (SAC Asp	AGG Arg	AT 116 84	e Gl	G GA u G1	A GC u Al	A G a G	AA lu	ATA 11e 850	AST	r CAT n His	「GA ₃ G1	A AA u Ly	5 P	TT he 55	CAC His	2304
TC. Se	A GA r As	T (CCA Pro	CA/ G1/ 86/	n Ty	C TT r Le	A AG u Ar	G AC g Tr	ir G	AA 1u 65	TTT	AA Asi	r TT/ n Lei	A CC u Pr	C AA o Ly 87	5 M	TG	GTT Val	2352
GC A1	A GA a G	lu (GAG Glu 875	ı Il	A AG e Ar	A CG g Ar	A AA g Ly	rs Cy	GC C /s P 30	CT ro	GT/ Va	A TG I Cy	T AG	A AT g Il 88	e Ar	A G	GA 11 y	GAA Glu	2400
CA G1	n V	TG a 1 90	GG/ Gly	A GG / G1	A CA y G1	Α TI n Le	G A/ eu Ly 89	/S 1	TA G	GG 11y	CC Pr	T GG o Gl	A AT y Il 90	e ir	iG CA	A G n V	TG /al	GAT Asp	2448
T(C)	GC A	CA hr	CA(C TT s Ph	T AA ne As	AT AG	ST Aver Li	AG A ys I	TA A	ATC Ile	AT II	T GT e Va	A GC	A GT a Va	TA CA	AT (aTG /al	GAA Glu	2496

		015	920
905	910	915	
TCA GGA TTT TTA TGG Ser Gly Phe Leu Trp 925	GCA CAG ATA ATT CCA Ala Gln Ile Ile Pro 930	CAG GAG ACT GCA GAT Gln Glu Thr Ala Asp 935	0
ACA GTC AAG GCT CTT Thr Val Lys Ala Leu 940	CTG CAA CTT ATA TGT Leu Gln Leu Ile Cys 945	GCT CAT AAT GTT ACA Ala His Asn Val Thr 950	GAA 2592 Glu
TTA CAA ACA GAC AAT Leu Gln Thr Asp Asn 955	GGA CCA AAT TTT AAA Gly Pro Asn Phe Lys 960	AAT CAG AAA ATG GAA Asn Gln Lys Met Glu 965	GGT 2640 Gly
TTA TTA AAT TTT ATG Leu Leu Asn Phe Met 970	GGA ATA AAA CAT AAA Gly Ile Lys His Lys 975	A TTA GGG ATA CCA GG Leu Gly Ile Pro Gly 980	AAC 2688 Asn
CCA CAA TCA CAG GCA Pro Gln Ser Gln Ala 985	A TTA GTG GAA AAT GC a Leu Val Glu Asn Al 990	T AAT AAC ACA TTA AA a Asn Asn Thr Leu Ly 995	A GCT 2736 s Ala 1000
AAA TT	C CTA CCA GAG ACT AC e Leu Pro Glu Thr Th 05	ו אבו רבת עאל עאווייי	T CTG 2784 a Leu 15
GCC CTA GCC CTG TA Ala Leu Ala Leu Ty 1020	T AGT CTC AAC TTT AA r Ser Leu Asn Phe Ly 1025	A CAA AGG GGT AGA CT s Gln Arg Gly Arg Le 1030	A GGA 2832 Eu Gly
AGG ATG GCC CCT TA Arg Met Ala Pro Ty 1035	AT GAA TTA TAC ATA CA Ar Glu Leu Tyr Ile G 1040	AA CAA GAA TCA TTA AG In Gln Glu Ser Leu A 1045	GA ATA 2880 ng Ile
T	CG CAG ATT CCA CAA A er Gln Ile Pro Gln L 1055	AG TTA ATG ATG CAG TO ys Leu Met Met Gln T 1060	GG GTG 2928 rp Val
ALA CAT C	AA AAA GAC AAA AAA T In Lys Asp Lys Lys T 1070	GG AAG GGA CCA ATG A rp Lys Gly Pro Met A 1075	GA GTG 2976 rg Val 1080
GAA TAT TGG GGA C	AA GGA TCA GTA TTA 1 Sin Gly Ser Val Leu L 1085	En FAD Voh min min -	AG GGA 3024 ys Gly 095
TAT TTT CTT GTA (Tyr Phe Leu Val F 1100	CCT AGG AGA CAC ATA A Pro Arg Arg His Ile A 1105	AGA AGA GTC CCA GAA (Arg Arg Val Pro Glu I 1110	CCC TGC 3072 Pro Cys
ACT CTT CCT GAA (Thr Leu Pro Glu (1115	GGG GAT GAG Gly Asp Glu		3093

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1031 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
- Met Ile Gly Val Gly Gly Gly Lys Arg Gly Thr Asn Tyr Ile Asn Val 1 5 15
- His Leu Glu Ile Arg Asp Glu Asn Tyr Lys Thr Gln Cys Ile Phe Gly
 20 25 30
- Asn Val Cys Val Leu Glu Asp Asn Ser Leu Ile Glň Pro Leu Leu Gly 35 40 45
- Arg Asp Asn Met Ile Arg Phe Asn Ile Arg Leu Val Met Ala Gln Ile 50 55 60
- Ser Asp Lys Ile Pro Ile Val Lys Val Lys Met Lys Asp Pro Asn Lys 65 70 75 80
- Gly Pro Gln Ile Lys Gln Trp Pro Leu Thr Asn Glu Lys Ile Glu Ala 85 90 95
- Leu Thr Glu Ile Val Glu Arg Leu Glu Arg Glu Gly Lys Val Lys Arg 100 105 110
- Ala Asp Pro Asn Asn Pro Trp Asn Thr Pro Val Phe Ala Ile Lys Lys 115 120 125
- Lys Ser Gly Lys Trp Arg Met Leu Ile Asp Phe Arg Glu Leu Asn Lys 130 135 140
- Leu Thr Glu Lys Gly Ala Glu Val Gln Leu Gly Leu Pro His Pro Ala 145 150 160
- Gly Leu Lys Met Lys Lys Gln Val Thr Val Leu Asp Ile Gly Asp Ala 165 170 7 175
- Tyr Phe Thr Ile Pro Leu Asp Pro Asp Tyr Ala Pro Tyr Thr Ala Phe 180 185 190
- Thr Leu Pro Arg Lys Asn Asn Ala Gly Pro Gly Arg Arg Tyr Val Trp 195 200 205
- Cys Ser Leu Pro Gln Gly Trp Val Leu Ser Pro Leu Ile Tyr Gln Ser 210 220
- Thr Leu Asp Asn Ile Ile Gln Pro Phe Ile Arg Gln Asn Pro Glu Leu 225 230 235 240

Asp Ile Tyr Gln Tyr Met Asp Asp Ile Tyr Ile Gly Ser Asn Leu Ser 255

Lys Lys Glu His Lys Glu Lys Val Glu Glu Leu Arg Lys Leu Leu Leu 260 265 270

Trp Trp Gly Phe Glu Thr Pro Glu Asp Lys Leu Gln Glu Glu Pro Pro 275 280 285

Tyr Lys Trp Met Gly Tyr Glu Leu His Pro Leu Thr Trp Ser Ile Gln 290 295 300

Gln Lys Gln Leu Glu Ile Pro Glu Arg Pro Thr Leu Asn Glu Leu Gln 305 310 315

Lys Leu Ala Gly Lys Ile Asn Trp Ala Ser Gln Thr Ile Pro Asp Leu 325 330 335

Ser Ile Lys Glu Leu Thr Asn Met Met Arg Gly Asp Gln Lys Leu Asp 340 345

Ser Ile Arg Glu Trp Thr Val Glu Ala Lys Arg Glu Val Gln Lys Ala 355 360 365

Lys Glu Ala Île Glu Met Gln Ala Gln Leu Asn Tyr Tyr Asp Pro His 370 380

Arg Glu Leu Tyr Ala Lys Leu Ser Leu Val Gly Pro His Gln Ile Cys 385 390 400

Tyr Gln Val Tyr His Lys Asn Pro Glu Cys Ile Leu Trp Tyr Gly Lys 405 410 415

Met Asn Arg Gln Lys Lys Lys Ala Glu Asn Thr Cys Asp Ile Ala Leu 420 425 430

Arg Ala Cys Tyr Lys Ile Arg Glu Glu Ser Ile Ile Arg Ile Gly Lys 435 440 445

Glu Pro Ile Tyr Glu Ile Pro Thr Ser Arg Glu Ala Trp Glu Ser Asn 450 455 460

Leu Ile Asn Ser Pro Tyr Leu Lys Ala Pro Pro Pro Glu Val Glu Tyr 465 470 475 480

Ile His Ala Ala Val Asn Ile Lys Arg Ala Leu Ser Met Ile Lys Asp 485 490 495

Val Pro Ile Pro Glu Ala Glu Thr Trp Tyr Ile Asp Gly Gly Arg Lys 500 505

Leu Gly Lys Ala Ala Lys Ala Ala Tyr Trp Thr Asp Thr Gly Lys Trp 515 520 525

Gln Val Met Glu Leu Glu Gly Ser Asn Gln Lys Ala Glu Val Gln Ala 530 535 540

Leu Leu Leu Ala Leu Lys Ala Gly Ser Glu Glu Met Asn Ile Ile Thr 545 Asp Ser Gln Tyr Val Ile Asn Ile Ile Leu Gln Gln Pro Asp Met Met Glu Gly Ile Trp Gln Glu Val Leu Glu Glu Leu Glu Lys Lys Thr Ala 580 585 590 585 Ile Phe Ile Asp Trp Val Pro Gly His Lys Gly Ile Pro Gly Asn Glu Glu Val Asp Lys Leu Cys Gln Thr Met Met Ile Ile Glu Gly Asp Gly Ile Leu Asp Lys Arg Ser Glu Asp Ala Gly Tyr Asp Leu Leu Ala Ala Lys Glu Ile His Leu Leu Pro Gly Glu Val Lys Val Ile Pro Thr Gly 650 Val Lys Leu Met Leu Pro Lys Gly His Trp Gly Leu Ile Met Gly Arg Ser Ser Ile Gly Ser Lys Gly Leu Asp Val Leu Gly Gly Val Ile Asp Glu Gly Tyr Arg Gly Glu Ile Gly Val Ile Met Ile Asn Val Ser Arg Lys Ser Ile Thr Leu Met Glu Gln Gln Lys Ile Ala Gln Leu Ile Ile Leu Pro Cys Lys His Glu Val Leu Glu Gln Gly Lys Val Val Met Asp Ser Glu Arg Gly Asp Lys Gly Tyr Gly Ser Thr Gly Val Phe Ser Ser 740 745 750 Trp Val Asp Arg Ile Glu Glu Ala Glu Ile Asn His Glu Lys Phe His Ser Asp Pro Gln Tyr Leu Arg Thr Glu Phe Ash Leu Pro Lys Met Val Ala Glu Glu Ile Arg Arg Lys Cys Pro Val Cys Arg Ile Arg Gly Glu
785 790 795 800 Gln Val Gly Gln Leu Lys Ile Gly Pro Gly Ile Trp Gln Val Asp Cys Thr His Phe Asn Ser Lys Ile Ile Val Ala Val His Val Glu 825 Ser Gly Phe Leu Trp Ala Gln Ile Ile Pro Gln Glu Thr Ala Asp Cys 845 840

Thr Val Lys Ala Leu Leu Gln Leu Ile Cys Ala His Asn Val Thr Glu 850 855 860

Leu Gln Thr Asp Asn Gly Pro Asn Phe Lys Asn Gln Lys Met Glu Gly 865 870 875

Leu Leu Asn Phe Met Gly Ile Lys His Lys Leu Gly Ile Pro Gly Asn 885 890 895

Pro Gln Ser Gln Ala Leu Val Glu Asn Ala Asn Asn Thr Leu Lys Ala 905 910

Trp Ile Gln Lys Phe Leu Pro Glu Thr Thr Ser Leu Asp Asn Ala Leu 915 920 925

Ala Leu Ala Leu Tyr Ser Leu Asn Phe Lys Gln Arg Gly Arg Leu Gly 930 940

Arg Met Ala Pro Tyr Glu Leu Tyr Ile Gln Gln Glu Ser Leu Arg Ile 945 950 960

Gln Asp Tyr Phe Ser Gln Ile Pro Gln Lys Leu Met Met Gln Trp Val 965 970 975

Tyr Tyr Lys Asp Gln Lys Asp Lys Lys Trp Lys Gly Pro Met Arg Val 980 985 990

Glu Tyr Trp Gly Gln Gly Ser Val Leu Leu Lys Asp Glu Glu Lys Gly 1000 1005

Tyr Phe Leu Val Pro Arg Arg His Ile Arg Arg Val Pro Glu Pro Cys 1010 1020

Thr Leu Pro Glu Gly Asp Glu 1025 1030

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 753 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..753
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

ATG ATT GAC GAA GAT TGG CAG GTA AGT AGA AGA CTC TTT GCA GTG CTC Met Ile Asp Glu Asp Trp Gln Val Ser Arg Arg Leu Phe Ala Val Leu

			1035)				1040					1045	<u>,</u>			
CAA (Gln (Gly (GGA Gly 1050	Val	CGT Arg	AGT Ser	GCT Ala	ATG Met 1055	Leu	TAC Tyr	ATA Ile	TCT Ser	AGA Arg 1060	Leu	CCT Pro	CCG Pro		96
GAC (Asp (GAA Glu 1065	Arg	GAA Glu	AGG Arg	TAT Tyr	AAA Lys 1070	Lys	GAC Asp	TTT Phe	AAG Lys	AAA Lys 1075	Arg	CTT. Leu	TTG Leu	GAA Glu		144
AAG Lys 1080	Glu	ACA Thr	GGA Gly	TTC Phe	ATA Ile 1085	Gln	AGA Arg	TTA Leu	AGA Arg	AAA Lys 1090	Ala	GAA Glu	GGA Gly	ATA Ile	AGG Arg 1095		192
TGG Trp	AGC Ser	TTC Phe	CAT His	ACT Thr 1100	Arg	GAT Asp	TAT Tyr	TAT Tyr	ATA Ile 1105	Gly	TAT Tyr	GTA Val	AGA Arg	GAG Glu 111	Met		240
GTG Val	GCC Ala	GGA Gly	TCT Ser 111	Ser	CTA Leu	CCA Pro	GAT Asp	AGT Ser 112	Leu	AGA Arg	CTG Leu	TAT Tyr	ATT Ile 112	Tyr	ATA Ile		288
AGC Ser	AAT Asn	CCA Pro 113	Leu	TGG Trp	CAC His	TGG Trp	TCA Ser 113	Tyr	CGT Arg	CCT Pro	GGC Gly	CTG Leu 114	Thr	AAT Asn	TTT Phe		336
AAT Asn	ACA Thr 114	Glu	TGG Trp	CCT Pro	TTT Phe	GTG Val 115	Asn	ATG Met	TGG Trp	ATA Ile	AAG Lys 115	_Thr	GGA Gly	TTC Phe	ATG Met		384
TGG Trp 1160	Asp	GAT Asp	ATT	GAA Glu	AGC Ser 116	_G1n	AAT Asn	ATT	TGC Cys	AAA Lys 117	Gly	GGA Gly	GAG Glu	ATT	TCA Ser 1175		432
CAT His	GGA Gly	TGG Trp	GGA Gly	CCT Pro	Gly	ATG Met	GTG Val	GGA Gly	ATT Ile 118	· Val	ATA	AAA Lys	GCT Ala	TTT Phe 119	AGT Ser 0		480
TGT Cys	GGA Gly	GAA Glu	A AGA J Arg 119	j Lys	ATT Ile	GAG Glu	GCT Ala	ACT Thr 120	· Pro	GTA Val	ATO Met	ATT Ile	ATA P Ile 120	: Arg	GGA Gly		528
GAA Glu	ATA Ile	GAT Asp 121	o Pro	A AAA D Lys	AAA Lys	TG0 Trp	G TGT Cys 121	s Gly	A GAT / Asp	TG¶ Cys	TG(Trp	AAT Asr 122	า Leı	ATG Met	TGT Cys		576
CTT Leu	AGG Arg 122	g Asi	C TC/ n Se	A CCT	CCA Pro	A CA(5 Gl) 123	n Thi	r TT/	A CAA u Gli	A AGA n Arg	CT Lei 12	ı Ala	T AT(a Met	TTO Leu	GCA LAla		624
TGT Cys 124	Gly	C GT(y Va	G CC 1 Pr	G GC o Ala	T AA(a Lys 124	s_G1	G TG0 u Tr ₁	G CG. p Ar	A GG/ g Gl:	A TGO y Cys 12	s Cy	T AA' s Asi	T CA n Gli	A CG(n Arg	C TTT g Phe 1255	5	672
GT Va	T TC 1 Se	T CC r Pr	T TA o Ty	C AG	A ACC	G CC r Pr	T GC o Al	T GA a As	T TT	G GA	G GT u Va	C AT 1 I1	T CA e Gl	A TCC n Sei	C AAG r Lys		720

1260

1265

1270

CCC AGC TGG AGT CTA TTA TGG TCA GGG AGC CTA Pro Ser Trp Ser Leu Leu Trp Ser Gly Ser Leu 1275 1280 753

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 251 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Met Ile Asp Glu Asp Trp Gln Val Ser Arg Arg Leu Phe Ala Val Leu 1 15

Gln Gly Gly Val Arg Ser Ala Met Leu Tyr Ile Ser Arg Leu Pro Pro 20 25 30

Asp Glu Arg Glu Arg Tyr Lys Lys Asp Phe Lys Lys Arg Leu Leu Glu . 35 40 45

Lys Glu Thr Gly Phe Ile Gln Arg Leu Arg Lys Ala Glu Gly Ile Arg 50 55 60

Trp Ser Phe His Thr Arg Asp Tyr Tyr Ile Gly Tyr Val Arg Glu Met 65 70 75 80

Val Ala Gly Ser Ser Leu Pro Asp Ser Leu Arg Leu Tyr Ile Tyr Ile 85 90 95

Ser Asn Pro Leu Trp His Trp Ser Tyr Arg Pro Gly Leu Thr Asn Phe 100 105 110

Asn Thr Glu Trp Pro Phe Val Asn Met Trp Ile Lys Thr Gly Phe Met 115 120 125

Trp Asp Asp Ile Glu Ser Gln Asn Ile Cys Ly\$ Gly Gly Glu Ile Ser 130 135 140

His Gly Trp Gly Pro Gly Met Val Gly Ile Val Ile Lys Ala Phe Ser 145 150 160

Cys Gly Glu Arg Lys Ile Glu Ala Thr Pro Val Met Ile Ile Arg Gly 165 170 175

Glu Ile Asp Pro Lys Lys Trp Cys Gly Asp Cys Trp Asn Leu Met Cys 180

Leu Arg Asn Ser Pro Pro Gln Thr Leu Gln Arg Leu Ala Met Leu Ala - 195 200 205

PCT/US98/04147

Cys Gly Val Pro Ala Lys Glu Trp Arg Gly Cys Cys Asn Gln Arg Phe 210 215 Val Ser Pro Tyr Arg Thr Pro Ala Asp Leu Glu Val Ile Gln Ser Lys 230

Pro Ser Trp Ser Leu Leu Trp Ser Gly Ser Leu 245 250 245

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2556 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

ATGGCAGAAG	GATTTGCAGC	CAATAGACAA	TGGATAGGAC	CAGAAGAAGC	TGAAGAGTTA	60
TTAGATTTTG	ATATAGCAAC	ACAAATGAAT	GAAGAAGGC	CACTAAATCC	AGGGATGAAC	120
CCATTTAGGG	TACCTGGAAT	AACAGATAAA	GAAAAGCAAG	ACTATTGTAA	CATATTACAA	180
CCTAAGTTAC	AAGATTTACG	GAATGAACTT	CAAGAGGTAA	AACTAGAAGA	AGGAAATGCA	240
GGTAAGTTTA	GAAGGGCAAG	ATATTTAAGA	TATTCTGATG	AAAATGTGCT	ATCTATAGTC	300
TATTTGCTAA	TAGGATATCT	AAGATATTTA	ATAAATCGTA	GGAGTTTAGG	ATCTTTAAGA	360
CATGATATAG	ACATAGAAAC	ACCTCAAGAG	GAATATTATA	GTAATAGTGA	AAGGGGTACC	420
ACATTAAATO	: AAAAATATGC	GAGAAGATGT	TGTGTTAGCA	CACTTATTAT	GTATTTAATT	480
CTTTTTGCAG	TAGGCATCTG	GTGGGGAGCT	AGAGCACAAG	TAGTGTGGAG	ACTTCCCCCT	540
TTAGTAGTT	CAGTAGAAGA	ATCAGAAATA	ATTTTTTGG	ATTGTTGGGC	ACCAGAAGAA	600
CCCGCCTGT	C AAGACTITCI	TGGGGCAATG	ATACATCTAA	AAGCTAGTAC	GAATATAAGT	660
ATACAAGAG	G GACCTACCT	GGGGAATTG	G GCTAGAGAAA	A TATGGGGAAC	ATTATTCAAA	720
AAGGCTACC	A GACAATGTA(AAGAGGTAG/	A ATATGGAAAA	A GATGGAATGA	AACTATAACA	780
GGACCATTA	G GATGTGCTA	A TAACACATG	T TATAATATT	T CAGTAATAGT	ACCTGATTAT	840
CAATGTTAT	C TAGACCGAG	T AGATACTTG	G TTACAAGGG/	A AAGTAAATAT	ATCATTATGT	900
CTAACAGGA	G GAAAAATGT	T GTACAATAA	A TATACAAAA	C AATTAAGCTA	A TTGTACAGAC	960

CCATTACAAA TCCCACTGAT CAATTATACA TTTGGACCTA ATCAAACATG TATGTGGAAC	1020
ACTICACAAA TICAGGACCC TGAGATACCA AAATGTGGAT GGTGGAATCA AAGAGCCTAT	1080
TATAAAAATT GTAAATGGGA AAAAACAGAT GTAAAGTTTC ATTGTCAAAG AACACAGAGT	1140
CAGCCTGGAA CATGGCTTAG AGCAATCTCG TCATGGAGAC AAAGGAATAG ATGGGAATGG	1200
AGACCAGATT TTGAAAGTGA AAAGGTGAAA ATATCTCTAA AGTGTAATAG CACAAAAAAC	1260
CTAACCTTTG CAATGAGAAG TTCAGGAGAT TATGGAGAAG TAACGGGAGC TTGGATAGAG	1320
TTTGGATGTC ATAGAAATAA ATCAAAACTT CATGATGAAG CAAGGTTTAG AATTAGATGT	1380
AGATGGAATA TAGGGGAGAA TACCTCACTC ATTGATACAT GTGGAAACAC TCAAAATGTT	1440
TCAGGGGCAA ATCCTGTAGA TTGTACCATG TATGCAAATA AAATGTACAA TTGTTCTTTA	1500
CAAAACGGGT TTACTATGAA GGTAGATGAC CTTATTATGC ATTTCAATAT GACAAAAGCT	1560
GTAGAAATGT ATAATATTGC TGGAAATTGG TCTTGTACAT CTGACTTGCC ACCAACATGG	1620
GGGTATATGA ATTGTAACTG TACAAATAAT AGTAATGATA ATACTAGAAT GGCATGTCCT	1680
AACAATCAAG GCATCTTAAG GAATTGGTAT AACCCAGTAG CAGGATTACG ACAATCCTTG	1740
GAAAAGTATC AAGTTGTAAA ACAACCAGAT TACTTAGTGG TCCCAGGGGA AGTCATGGAA	1800
TATAAAACTA GAAGGAAAAG GGCAGCTATT CATGTTATGT TAGCTCTTGC AACAGTATTA	1860
TCTATGGCCG GAGCAGGGAC GGGGGCTACT GCTATAGGGA TGGTAACACA ATATCACCAA	1920
GTTCTAGCAA CCCATCAAGA AGCTATTGAA AAGGTGACTG AAGCCTTAAA GATAAACAAC	1980
TTGAGATTAG TTACATTAGA GCATCAAGTA CTAGTAATAG GATTAAAAGT AGAAGCTATG	2040
GAAAAATTTT TATATACAGC TTTCGCTATG CAAGAATTAG GATGTAATCA AAATCAATTC	2100
TTCTGCAAAG TCCCTCCTGA ATTGTGGATG AGGTATAATA TGTCTATAAA TCAAACAATA	2160
TGGAATCATG GAAATATAAC TTTGGGGGAA TGGTATAACC AAACAAAAGA TTTACAACAA	2220
AAGTTTTATG AAATAATAAT GGACATAGAA CAAAATAATG TACAAGGGAA AAAAGGGATA	2280
CAACAATTAC AAAAGTGGGA AGATTGGGTA GGATGGATAG GAAATATTCC ACAATACTTA	2340
AAGGGACTAT TGGGAGGTAT CTTGGGAATA GGATTAGGAG TGTTATTATT AATTITATGT	2400
TTACCCACAT TGGTTGATTG TATAAGAAAT TGTATCCACA AGATACTAGG ATACACAGTA	2460
ATTGCAATGC CTGAAGTAGA AGGAGAAGAA ATACAACCAC AAATGGAATT GAGGAGAAAT	2520
GGTAGGCAAT GTGGCATATC TGAAAAAGAG GAGGAA	2556

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 36 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS (B) LOCATION: 1..36
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

CAA GAA TTA GGA TGT AAT CAA AAT CAA TTC TTC TGC Gln Glu Leu Gly Cys Asn Gln Asn Gln Phe Phe Cys 260

36

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Gln Glu Leu Gly Cys Asn Gln Asn Gln Phe Phe Cys

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

GGATGAGTAT TGGAACCCTG AA

(2) INFORMATION FOR SEQ ID NO:22:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
GATTCCGAGA CCTCACAGGT AA	22
(2) INFORMATION FOR SEQ ID NO:23:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
AATAGGGAAG CAGTAGCAGA C	21
(2) INFORMATION FOR SEQ ID NO:24:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
GTAAATCGCA AATAACCAAC C	21
(2) INFORMATION FOR SEQ ID NO:25:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid	

	<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
		20
IGAC	GGTGTC TACTGCTGCT	20
(2)	INFORMATION FOR SEQ ID NO:26:	
(2)		
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
CACA	ACTGGTC CTGATCCTTT T	21
(2)	INFORMATION FOR SEQ ID NO:27:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 22 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
CCA	CAATATG TAGCACTTGA CC	22
(2)	INFORMATION FOR SEQ ID NO:28:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 22 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
GGGTACTTTC TGGCTTAAGG TG	22
(2) INFORMATION FOR SEQ ID NO:29:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
GGGGGACCTA CCTTGGGGAA TTGGGCT	27
(2) INFORMATION FOR SEQ ID NO:30:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
GGTGATCATG ATCAGTGGGA TTTGTAATGG GTCTG	35
(2) INFORMATION FOR SEQ ID NO:31:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
GGTGATCATG ATCAGTGGGA TITGTAATGG GTCTG	35

(2)	INFORMATION	FOR	SEQ	ID	NO:32:
-----	-------------	-----	-----	----	--------

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

ATAAGGGAGA TACTGTGCTG A

21

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GCGATCTTCT AACTCTGTCA T

21

THAT WHICH IS CLAIMED IS:

- 1. An isolated feline immunodeficiency virus (FIV) having all of the identifying characteristics of FIV clone JSY3.
- 2. An isolated feline immunodeficiency virus (FIV) whose proviral DNA comprises a DNA sequence selected from the group consisting of SEQ ID NO:1 and sequences which vary from SEQ ID NO:1 due to the degeneracy of the genetic code.
- 3. A biologically pure culture of host cells containing the feline immunodeficiency virus of claim $1. \,$
- 4. A biologically pure culture of host cells containing the feline immunodeficiency virus of claim 2.
- 5. Isolated DNA comprising a DNA sequence selected from the group consisting of SEQ ID NO:1 and sequences which vary from SEQ ID NO:1 due to the degeneracy of the genetic code.
 - 6. A vector comprising DNA of claim 5.
- 7. A vector according to claim 6, wherein said vector comprises bacteriophage lambda.
- 8. A host cell containing and capable of expressing a vector according to claim 6.
- 9. A host cell according to claim 8, wherein said host cell comprises *Escherichia coli*.
- 10. A host cell according to claim 8, wherein said host cell comprises a yeast cell.
- 11. A host cell according to claim 8, wherein said host cell comprises a mammalian host cell.

12. Isolated DNA comprising a DNA sequence selected from the group consisting of:

-82-

- (a) SEQ ID NO:4. SEQ ID NO:5. SEQ ID NO:7. SEQ ID NO:9, SEQ ID NO:11. SEQ ID NO:13. SEQ ID NO:14. SEQ ID NO:16. SEQ ID NO:18. SEQ ID NO:19; and
- (b) sequences which vary from those of (a) above due to the degeneracy of the genetic code.
- 13. A vector comprising DNA of claim 12.
- 14. A vector according to claim 13, wherein said vector comprises bacteriophage lambda.
- 15. A host cell containing and capable of expressing a vector according to claim 13.
- 16. A host cell according to claim 15. wherein said host cell comprises *Escherichia coli*.
- 17. A host cell according to claim 15. wherein said host cell comprises a yeast cell.
- 18. A host cell according to claim 15, wherein said host cell comprises a mammalian host cell.
- 19. A polypeptide having a sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:15, SEO ID NO:17, and SEQ ID NO:20.
- 20. A specific pathogen free (SPF) cat infected with feline immunodeficiency virus clone JSY3.
 - 21. A colony of SPF cats according to claim 20.

1/44

FIGURE 1

430	440	450	460 * *	470 * *	480 * *
* * TTCTGGGATG AG AAGACCCTAC TC → JSY3	CATAACCC I GGG	ACTICIT TA	AGAAAGAA TG FCTTTCTT AC	CTTATGGA CT GAATACCT GA	
* *	OAT	CONNACA CC	TCACCATG AC	TCATAGTT A	AAGCGCTAG
AAATGCTTGT T 550 * *	560 * *	570 * *	580 * *	590 * * TGATGACGT A	600 * *
GTCGACGAAT 7	rggcgttilig Gi 620	630	640	650	660 * *
CCACTGTAAA GGTGACATTT	AGTATATAAC CA TCATATATTG G	OTCCTTTC T	GAGACTTCG G CTCTGAAGC (GGGAGTETET (CCCTCAGAGA (710	720
670 * * CTTTCGAGTT GAAAGCTCAA		* * **********************************	* * `	TATTTGAGAT	* * TGAACCCTGT ACTTGGGACA
730 * * CAAGTATCTG GTTCATAGAC		750 * * TTTACCTGTG AAATGGACAC	* * ΔΩΩΥΥΥΥΥΩΩΛ	* *	•
790 * * AGTTGGCGCC TCAACCGCGC		* *	* *	GAAGTGAAGC	TAGAGCAATA ATCTCGTTAG
^	0 860 * * * T AAGCAGAACT A TTCGTCTTGA	OCTOCTO ACC	* * TAAATAGGGA	· * * *	* * * A GACGCTGCTA

2/44
Figure 1, continued

910	920	930 * *	940	950	960
ACAGTGAGTA	* * TCTCTAGTGA AGAGATCACT	AGCAGACTCG	AGCTCATAAT	CAAGTCACTG	TTTAAAGGCC
970 * *	980 * *	990 * *	1000 * *	1010 * *	1020 * *
CAGATAAATT	ACATCTGGTG TGTAGACCAC	ACTCTTCGCG	GACCTTCAAG	CCAGGAGATT	CGCCGAGGGA
1030	1040 * *	1050 * *	1060 * *	1070 * *	1080 * *
CAGTCAACAA GTCAGTTGTT	GGTAGGAGAG CCATCCTCTC	ATTCTGCAGC TAAGACGTCG	TTGTACCCCT	ACGGACAGGG TGCCTGTCCC N G Q G	CGCTCTAACC
		•	$GAG \rightarrow$		
1090 * *	1100 * *	1110 * *	1120 * *	1130 * *	1140 * *
AAAATGGCCA TTTTACCGGT	TTAAGAGATG AATTCTCTAC I K R C	TAGTAATGTT ATCATTACAA	GCTGTAGGAG CGACATCCTC	TAGGGGGGAA ATCCCCCCTT	GAGTAAAAA CTCATTTTT
1150	1160	1170	1180	1190	1200 * *
TTTGGAGAAG	G GGAATTTCAG CCTTAAAGTG G N F F	ATGGGCCATT	AGAATGGCTA TCTTACCGAT	ATGTATCTAC TACATAGATG	AGGACGAGAA TCCTGCTCTT
1210) 1220	1230	1240	1250	1260
CCTGGTGAT/	A TACCAGAGA	TTTAGATCA/	CTAAGGTTGG	TTATTTGCGA	TTTACAAGAA
	0 128	0 129	1300	1310	1320
AGAAGAGAA TCTTCTCTT	A AATTTGGGT T TTAAACCCA K F G	C GAGCAAAGA G CTCGTTTCT	A ATTGACATGO T TAACTGTAC	CAATTGTTAC	ATTAAAAGTC TAATTTTCAG
133	0 134	0 135	0 136	0 1370	1380
TTTGCGGTA	G TAGGACTTI	T AAATATGAC A TTTATACTG	A GTGTCTACT T CACAGATGA	G CTGCTGCAG C GACGACGTC	C TGAAAATATG G ACTTTTATAC A E N M>

3/44
Figure 1, continued

1390	1400 * *	1410 * *	1420	1430 * *	1440 * *
TACACTCAGA	TGGGATTAGA ACCCTAATCT M G L D	CACTAGACCA GTGATCTGGT	TCTATGAGAG AGATACTCTC	AAGCAGGAGG TTCGTCCTCC	TTTTCTCCTT
AGCCCTCCAC TCGGGAGGTG S P P	p15 ← -	TATTCAAACA ATAAGTTTGT I Q T → p25	GCAAATGGAG CGTTTACCTC A N G	CACCACAATA GTGGTGTTAT A P Q Y	TGTAGCACTT ACATCGTGAA V A L>
GACCCAAAAA	1520 * * * TGGTGTCCAT ACCACAGGTA M V S I	TTTTATGGAA	AAGGCAAGAG TTCCGTTCTC	AAGGATTAGG TTCCTAATCC	AGGTGAGGAA TCCACTCCTT
GTTCAGCTAT	1580 * * * * GGTTTACTGO A CCAAATGACO W F T A	CTTCTCTGCA	AATTTAACAC TTAAATTGTG	CTACTGACAT GATGACTGTA	GGCCACATTA
ATAATGGCC	To 1640 The second sec	G CGCTGCAGA	T AAAGAAATAT A TTTCTTTATA	TGGATGAAAG A ACCTACTTTO	CTTAAAGCAA CGAATTTCGTT
TTGACGGCA AACTGCCGT	G AGTATGATC	G TACCCATCC C ATGGGTAGG	T CCTGATGGA(A GGACTACCT(C CTAGACCAT G GATCTGGTA	T ACCCTATTTT A TGGGATAAAA
175 * ACTGCAGCA TGACGTCGT T A A	* * AG AAATTATGG TC TTTAATACG	* * G TATAGGATT	* * A ACTCAAGAA AT TGAGTTCTT	* * * · · · · · · · · · · · · · · · · ·	* * * A AGCAAGATTT T TCGTTCTAAA

4/44
Figure 1, continued

1810 1820 * * * *	1830	1840 * *	1850	1860 * *
GCACCAGCTA GGATGCAGTG T. CGTGGTCGAT CCTACGTCAC A A P A R M Q C	AGAGCATGG TA	ATCTCGAGG CAG	CTAGGAAA A	TTGGCCGCC TAACCGGCGG
1870 1880 * * * *	1890	1900 * *	1910 * *	1920 * *
ATAAAAGCTA AGTCTCCTCG A TATTTTCGAT TCAGAGGAGC T I K A K S P R	AGCTGTGCAG T	TAAGACAAG GA ATTCTGTTC CT	GCTAAGGA A	AGATTATTCA FCTAATAAGT
1930 1940 * * * *	1950 * *	1960 * *	1970 * *	1980 * *
TCCTTTATAG ACAGATTGTT TAGGAAATATC TGTCTAACAA A	TGCCCAAATA G ACGGGTTTAT C	ATCAAGAAC AA TAGTTCTTG TT	AATACAGC TTATGTCG	TGAAGTTAAG ACTTCAATTC
1990 2000 * * * *	2010	2020 * *	2030 * *	2040 * *
TTATATTTAA AACAGTCATT AAATATAAATT TTGTCAGTAA LYLKQSL	AAGCATGGCT A	NATGCTAATG CA	GAATGTAA CTTACATT	AAAGGCAATG TTTCCGTTAC
2050 2060	2 0 70	2080 * *	2090 * *	2100 * *
AGCCACCTTA AGCCAGAAAG TCGGTGGAAT TCGGTCTTTC S H L K P E S	TACCCTAGAA (ATGGGATCTT (GAAAAGCTGA GA CTTTTCGACT C	AGCTTGTCA FCGAACAGT	AGAAGTAGGC TCTTCATCCG
2110 2120	2130	2140 * *	2150 * *	2160 * *
TCACCAGGAT ATAAAATGCA AGTGGTCCTA TATTTTACGT S P G Y K M Q	ACTCTTGGCA TGAGAACCGT	GAAGCTCTTA C CTTCGAGAAT G E A L T	AAAAGTTCA TTTTCAAGT K V Q	AGTAGTGCAA TCATCACGTT
2170 2180	2190	2200	2210	2220 * *
TCAAAAGGAT CAGGACCAGT AGTTTTCCTA GTCCTGGTCA S K G S G P V	GTGTTTCAAC CACAAAGTTG	TGTAAAAAAC C	AGGACATCT TCCTGTAGA	AGCAAAACAG TCGTTTTGTC
2230 2240 * * * *	2250 * *	2260 * *	2270 * *	2280
TGTAGAGATG TGAAAAAATG ACATCTCTAC ACTTTTTAC	TAATAAATGT	GGAAAGCCTG (STCATTTAGC CAGTAAATCG	TGCCAAATGC ACGGTTTACG

5/44

Figure 1, continued CRDVKKCNKC GKPGHLAAKC> 2330 2320 2290 2300 2310 TGGCAAGGTG GTAAAAAGAA TTCGGGAAAC TGGAAGGCGG GGCGAGCTGC AGCCCCAGTG ACCOTTCCAC CATTITICTT AAGCCCTTTG ACCTTCCGCC CCGCTCGACG TCGGGGTCAC WQGGKKNSGNWKAGRAA APV> 2390 2380 2370 2360 2350 * * AATCAAGTGC AGCAAGCAGT AATGCCATCT GCACCTCCAA TGGAGGAGAG ACTATTGGAT TTAGTTCACG TCGTTCGTCA TTACGGTAGA CGTGGAGGTT ACCTCCTCTC TGATAACCTA NQVQQAVMPSAPPMEER LLD> 2440 2460 2450 2420 2430 2410 TTATAAATTA TAATAAAGTA GGTACTACTA CAACATTAGA AAAGAGGCCA GAAATACTTA AATATTTAAT ATTATTTCAT CCATGATGAT GTTGTAATCT TTTCTCCGGT CTTTATGAAT L> ← p10 2520 2490 2500 2510 2480 2470 TATTTGTAAA TGGGTACCCT ATAAAATTTT TATTAGATAC AGGAGCAGAT ATAACAATTT ATAAACATTT ACCCATGGGA TATTITAAAA ATAATCTATG TCCTCGTCTA TATTGTTAAA 2570 2560 2540 2550 2530 TAAATAGGAG AGATTTTCAA GTAAAAAATT CTATAGAAAA TGGAAGGCAA AATATGATTG ATTTATCCTC TCTAAAAGTT CATTTTTTAA GATATCTTTT ACCTTCCGTT TTATACTAAC M I> → pol ORF1 2630 2610 2620 2600 2590 GAGTAGGAGG AGGAAAGAGA GGAACAAATT ATATCAATGT GCATTTAGAG ATTAGAGATG CTCATCCTCC TCCTTTCTCT CCTTGTTTAA TATAGTTACA CGTAAATCTC TAATCTCTAC G V G G G K R G T N Y I N V H L E I R D> 2700 2680 2690 2670 2660 2650 AAAATTATAA GACACAATGT ATATTTGGCA ATGTTTGTGT CTTAGAAGAT AACTCATTAA TTTTAATATT CTGTGTTACA TATAAACCGT TACAAACACA GAATCTTCTA TTGAGTAATT ENYKTQCIFGNVCVLEDNSL>

6/44 Figure 1, continued

2710	2720	2730 * *	2740	2750	2760 * *
TACAACCATT ATT ATGTTGGTAA TAA I Q P L L	AGGGAGA GA	TAATATGA TT	AGATTCAA T.	ATTAGGTTA G TAATCCAAT C	TAATGGCTC CATTACCGAG
2770 * *	2780	2790 * *	2800 * *	2810 * *	2820 * *
AAATTTCTGA CAA	AGATTCCA AT	TAGTAAAAG TA	VAAAATGAA G FTTTTACTT C	GATCCAAAT A CTAGGTTTA 1	AAAGGACCTC FTTCCTGGAG
2830	2840	2850 * *	2860 * *	2870 * *	2880 * *
AAATAAAACA ATO	GCCATTA AC	CAAATGAAA A GTTTACTTT T	AATTGAAGC 1 ITAACTTCG <i>A</i>	TTAACAGAA / AATTGTCTT	ATAGTAGAAA TATCATCTTT
2890	2900	2910 * *	2920 * *	2930 * *	2940 * *
GACTAGAAAG AG CTGATCTTTC TC R L E R	AAGGGAAA G	T <mark>AAAAAGAG C</mark> ATTTTTCTC G	AGATCCAAA T	TAACCCATGG ATTGGGTACC	AATACACCAG TTATGTGGTC
2950 * *	2960 * *	2970 * *	2980 * *	2990 * *	3000 * *
TATTTGCAAT AA	AAAAGAAA A	GTGGAAAAT 0	GAGAATGCT CCTCTTACGA	CATAGATTIT GTATCTAAAA	AGAGAATTGA TCTCTTAACT
3010	3020	3030 * *	3040 * *	3050 * *	3060 * *
ACAAATTAAC TO TGTTTAATTG AC N K L T	SAGAAAGGG G	GCAGAAGTCC /	AGTTAGGACT FCAATCCTGA	CCCTCATCCT GGGAGTAGGA	GCTGGATTAA CGACCTAATT
3070	3080		3100 * *	3110 * *	3120 * *
AAATGAAAAA AA TITACTTTIT TO K M K K	CAAGTTACT (GTGCTAGATA CACGATCTAT	TAGGAGATGC ATCCTCTACG	ATACTTCACT TATGAAGTGA	TAAGGGAACC
3130 * *	3140 * *	* *	* *		* *
ATCCAGACTA T TAGGTCTGAT A D P D Y	GCTCCCTAT CGAGGGATA	ACTGCATTCA TGACGTAAGT	CATTACCTAG GTAATGGATC	AAAGAATAAT TTTCTTATTA	GCAGGACCAG CGTCCTGGTC A G P>

7/44
Figure 1, continued

3190 3200 * * * *	3210	3220	3230 * *	3240 * *
GGAGGAGATA TGTATGGTGC CCTCCTCTAT ACATACCACG G R R Y V W C	AGTTTACCAC	AGGGGTGGGT TOCCCACCCA	TCTAAGCCCA T AGATTCGGGT A	TGATATATC ACTATATAG
3250 3260 * * * *	3270	3280	3290 * *	3300 * *
AAAGTACTTT AGATAATATA TTTCATGAAA TCTATTATAT Q S T L D N I	ATACAACCTT TATGTTGGAA I Q P	TTATTAGACA AATAATCTGT F I R Q	AAATCCTGAG TTTAGGACTC / N P E	AATCTATAAA L D I>
3310 3320 * * *	3330	3340 * *	3350 * *	3360 * *
ATCAATATAT GGATGACAT TAGTTATATA CCTACTGTA Y Q Y M D D I	TATATAGGAT	CAAACTTAAG	TAAAAAGGAG	CATAAAGAAA GTATTTCTTT
3370 338				
* * * AAGTAGAAGA ATTAAGAAA TTCATCTTCT TAATTCTTT K V E E L R K	A TIGTTATTAT T AACAATAATA	GGTGGGGATT CCACCCCTAA	ACTTTGGGGC	CTTCTGTTTA
3430 344 * * *	0 3450	3460	3470	3480 * *
TACAAGAAGA GCCCCCATA	T AAGTGGATG	G GCTATGAATT C CGATACTTAA	ACATCCATTA	TGTACCAGTT
3490 35 * * *	00 351	0 3520	3530	3540 * *
* * * TACAGCAAAA ACAATTAG. ATGTCGTTTT TGTTAATC I Q Q K Q L	AA ATTCCAGAA	A GACCCACAT	T AAATGAACTG A TTTACTTGAC	GTCTTTAATC
3550 35 * * *	- -	70 358 * *	0 3590 * * *	
CAGGTAAGAT AAACTGGG GTCCATTCTA TTTGACCC A G K I N W	CC AGTCAAACT	TA TCCCAGACT	A HCAIAILL	CHUALIUAL
0020		••	10 3656 * *	
ACATGATGAG AGGAGAT	CAC AAGTTAGA	CT CAATAAGAG GA GTTATTCTO	JI IACCIGACA	G GAAGCCAAGA C CTTCGGTTCT E A K>

8/44
Figure 1, continued

3670 36 * * *	680 3	3690	3700	3710	3720
GAGAAGTACA AAAAGCT	AAG GAAGCTA	ATTG AGATGO	AAGC ACAGC	ΓΑΑΑΤ ΤΑΤΤΑ	TGATC
CTCTTCATGT TTTTCGA	TTC CTTCGAT K E A	TAAC TCTACG I E M	TTCG TGTCG/ Q A Q I	ATITA ATAAT _ N Y Y	ACTAG 'D>
3730 3 * * *	740 3	3750	3760 * *	3770	3780
CCCACCGAGA ATTATAT	GCA AAATTAA	AGTT TAGTG(GACC ACATC	AAATA TGTT <i>A</i>	ATCAAG
GGGTGGCTCT TAATATA P H R E L Y	A K L	S L V	G P H	Q I C	/ Q>
3790 3 * * *	8800 *	3810	3820	3830	3840 * *
TGTATCATAA GAACCCA	AGAA TGTATT	TTAT GGTAT	GGTAA GATGA	ATAGA CAAAA	4gaaaa
ACATAGTATT CTTGGGT	CTT ACATAA E C I	AATA CCATA L W Y	G K M	N R Q I	K K>
3850 ×					
* * * AGGCAGAAAA TACCTG	* * TCAT ATAGCT	* * *CTAA GGGCA	*	: ★ ···································	* * AATCTA
TCCGTCTTTT ATGGAC	ACTA TATCGA	GATT CCCGT	ACAAT ATTT	TATTET CHE	HAGA
–	D I A				
3910 * * *	3920	3930	3940	3950 * *	3960 * *
ΤΤΛΤΛΛΩΛΑΤ ΔΩΩΑΔΑ	AGAA CCAATA	ATATG AAATA	CCTAC TTCT/	AGAGAA GCCT	GGGAGI
AATATTCTTA TCCTTT	TCTT GGTTAT . E P I	IAIAC IIIAI Y E I	P T S	R E A	W E>
3970 * * *	3980	3990	4000	4010	4020
* * * * CAAATTTAAT TAATTC	* * ACCA TATCT	TAAGG CCCC	ACCTCC TGAG	GTAGAA TATA	ATCCATG
GTTTAAATTA ATTAAG S N L I N S	STGGT ATAGA	ATTCC GGGG	rggagg actc	CATCII AIAI	TAGGTAC I H>
* * *	4040 * *	*	* *	* *	* *
CTGCTGTGAA TATAA GACGACACTT ATATT	AAAGA GCATT	AAGTA TGAT	AAAAGA TGTT	CCAATA CCAC	GAAGCAG
A A V N I	K R A L	S M I	K D V	P I P	E A>
4090	4100		4120	4130	4140 * *
AAACGTGGTA TATAG	ATGGA GGCAG	SAAAGC TAGG	* * AAAAGC AGCA	AAAAGCA GCC	TATTGGA
TTTGCACCAT ATATC	TACCT CCGTC	CTTTCG ATCC	TITTCG TCG	ITTTCGT CGG	ATAACCT
ETWYI	v a a f			K A A	. 11

9/44
Figure 1, continued

		4170	4100	<i>4</i> 100	4200
4150 * *	4160 * *	41/U * *	* *	* *	* *
	AAGTGGCAA GTA TTCACCGTT CAT	ATCGAGT TA	GAAGGCAG TA	ATCAGAAG GCA	AGAAGTAC
T D T G		M E L	E G S	N Q K A	E V>
4210	4220	4230	4240	4250 * *	4260 * *
* *	* * TTCCCATTA AA	VCCVCCAT C	GAGGAAAT GA	AATATTATA AC	AGATTCAC
		TOGIOTIA GI	THULLIA C.	IIAIAAIAI IU	ICIAnaia
QALL	L A L K				
4270		4290 * *	4300 * *	4310 * *	4320 * *
* * AATATGTTAT A	AATATTATT CT	TCAACAAC C	AGATATGAT G	GAGGGAATC TO	GCAAGAAG
	TTTATAATAA GA N I I L	ACTTOTIC G	TCTATACTA C	LILLLIAG AL	
4330 * *	4340 * *	4350 * *	4300 * *	* *	* *
	ATTCCACAAA A	ΛΛΛΟΛΟΟΛΑ Τ	TATTTATAGA 1	TIGGGTCCCA G	JALATAAAU
AAAATCTTCT V I F F	TAACCTCTTT T	K T A I	F I D	W V P	G H K>
	4400	4410	4420	4430	4440
	است ال	* *	* ^	•••	
A0T00	AAATGAGGAA G	'ATCTALICG	AAALAGIIII	ITACIACIALI	A10110000
G I P G	NEE	VDK	LCUI	M M 1	i L u
4450	4460	4470	4480	4490 * *	4500 * *
* *	ACATAAAACC	TOAGAAGATG	CGGGATATGA	TTTATTGGCT	CAAAAGAAA
T4000TATAA	TOTATITIO	ACTCT ICLAC	GULLIATALE	AAA I AACCUA	Julilioni
DGIL	D K R				
4510		4530 * *	4540 * *	4550 * *	4560 * *
	- 0004004040	CTAAAAGTAA	TACCAACAGG	GGTAAAGCTA	ATGCTGCCTA
	CGGTCCTCTC P G E		A Hala I Ha I C.C.	LUALLUUMI	IACUACUAN
IHLI					4620
457! *		* *	* *	* * *	* *
		ATGGGAAGAA	GCTCGATAGG	GAGTAAAGGA	TTGGATGTAT
TTCCTGTAA	C CCCTGATTAT W G L I	M G R	S S I G	S K G	L D V>
1 0 11					

10/44 Figure 1, continued

4630 46· * * *	40 4650	4660 * *	4670 * *	4680 * *
TAGGAGGGT AATAGATG ATCCTCCCCA TTATCTAC	AA GGATATCGAG	GTGAAATTGG	AGTAATAATG A	ATTAATGTAI
L G G V I D	E G Y R	G E I G	V I M	I N V>
4690 47 * * *	700 4710 * * *	4720 * *	4730 * *	4740 * *
CAAGAAAATC AATCACCT	TA ATGGAACAAC	AAAAGATAGC	ACAATTAATA	ATATTGCCTT
S R K S I T	L M E Q	QKIA	QLI	I L P>
4750 47 * * *	760 4770 * * *	4780	4790 * *	4800 * *
GTAAACATGA AGTATTAC	GAA CAAGGAAAAG	TTGTAATGGA	TTCAGAGAGA	GGAGACAAAG
CKHEVL	E Q G K	V V M D	SER	G D K>
4810 48 * * *	* * *	* * *	* *	* *
GTTATGGGTC AACAGGA	CAT AAGAGGAGAA	A CCCAACTGTC	CTAACTCCTT	CGTCTTTATT
G Y G S T G	V F S S	WVDR	RIEE	A E I>
4870 4 * * *	880 489 * *	0 4900 * * *	4910	4920 * *
ATCATGAAAA ATTTCAC TAGTACTTTT TAAAGTG	AGT CTAGGTGTT	A TGAATTCCT(ACTTAAATTA	AATGGGTTCT
N H E K F H				
4930 4 * * *	1940 495 * *	0 4960 * * *) 49/U * * *	4980 * *
TGGTTGCAGA AGAGATA ACCAACGTCT TCTCTAT	ITCT GCTITCACG	IG GACATACAT	C TTAGTCTCCT	CTTGTTCACC
M V A E E I				
* * *		* *	* * *	* * *
GAGGACAATT GAAAATA CTCCTGTTAA CTTTTA G G Q L K I	TCCC GGACCTTAT	TA CCGTTCACC	T AACGTGTGTG	AAATTATCAT
			0 5090	
	* *	* *	* * *	* * *
TCTATTAGTA ACATCG	TCAT GTACACCT	TA GTCCTAAAA	A TACCCGTGT(C TATTAAGGTG

11/44
Figure 1, continued

5110 5 * * *	120	5130 *	5140 * *	5150 * *	5160 * *
AGGAGACTGC AGATTGT TCCTCTGACG TCTAACA Q E T A D C	ACA GTCAA	GCTC TTO	CTGCAACT TA GACGTTGA AT	TATGTGCT CA ATACACGA GT	TAATGTTA ATTACAAT
5170 E	5180 * *	5190	5200 * *	5210 * *	5220 * *
CAGAATTACA AACAGAC GTCTTAATGT TTGTCTC T E L Q T D	CAAT GGACC	AAATT TT. TTTAA AA	AAAAATCA GA TTTTTAGT C	NAAATGGAA GG FTTTACCTT CO	CAAATAATT
5230 ± *	5240 * *	5250 *	5260 * *	5270 * *	5280 * *
ATTITATGGG AATAAA TAAAATACCC TTATTI N F M G I K	ACAT AAATT	AGGGA TA	CCAGGTAA C GGTCCATT G	CCACAATCA CA GGTGTTAGT G	AGGCATTAG FCCGTAATC
5290 * * *	5300	5310	5320 * *	5330 * *	5340 * *
TGGAAAATGC TAATAA ACCTTTTACG ATTATT V E N A N N	CACA TTAAA GTGT AATT I T L I	AAGCTT GO FTCGAA CO K A W	GATTCAAAA A CTAAGTTTT T I Q K	TTCCTACCA G TAAGGATGGT C	AGACTACCT TCTGATGGA E T T>
5350 * * *	5360	5370 * *	5380 * *	5390 * *	5400 * *
CTCTGGATAA TGCTCT GAGACCTATT ACGAGA S L D N A L	GGCC CTAG	CCCTGT A GGGACA T	TAGTCTCAA(ATCAGAGTT(CTTTAAACAA A GAAATTTGTT T	GGGGTAGAC CCCCATCTG
5410 * * *	5420 *	5430 * *	5440 * *	5450 * *	5460 * *
TAGGAAGGAT GGCCC ATCCTTCCTA CCGGG L G R M A	CTTAT GAAT	TATACA T ATATGT A	TACAACAAGA ATGTTGTTCT	ATCATTAAGA A TAGTAATTCT T	TACAAGACT TATGTTCTGA
5470 * * *	5480 *	5490 * *	5500 * *	5510 * *	5520 * *
ATTTTTCGCA GATTC TAAAAAGCGT CTAAG Y F S Q I	CACAA AAG	TTAATGA T	TGCAGTGGGT ACGTCACCCA	GTATTACAAA (CATAATGTTT (CIAGILITIC
5530 * * *	5540	5550 * *	5560 * *	5570 * *	5580 * *
ACAAAAAATG GAAGC TGTTTTTTAC CTTCC D K K W K	GACCA ATG	AGAGTGG .	AATATTGGGG TTATAACCCC	ACAAGGATCA TGTTCCTAGT	CATAATAATT

12/44 Figure 1, continued

5 5 90	5600 * *	5610 * *	5620 * *	5630 * *	
AGGATGAAGA GAA TCCTACTTCT CTT K D E E K	AGGGATAT TTTO	CTTGTAC CT	TAGGAGACA (ATCCTCTGT (CATAAGAAGA GTATTCTTCT	GTCCCAGAAC
5650 * * CCTGCACTCT TCC GGACGTGAGA AGC	TGAAGGG GAT	GAGTGAC GA	5680 * * AAGATTGGC	AGGTAAGTAG	5700 * * AAGACTCTTT TTCTGAGAAA
P C T L	M ORF 2 →	S D I	E D W (Q V S R	R L F>
5710 * *	5720 * *	5730	5740 * *	5750 * *	5760 * *
GCAGTGCTCC AA CGTCACGAGG TT A V L Q	GGAGGAGT ACG	TAGTGCT A	TGCTATACA	TATCTAGACT ATAGATCTGA	TGGAGGCCTG
5770 * *	5780 * *	5790 * *	5800 * *	5810 * *	5820 * *
GAAAGAGAAA GG	STATAAAAA AGA	TGAAATTC 7	TTTCCGAAA	ACCTTTTCCT	AACAGGATTC TTGTCCTAAG T G F>
5830 * *			5860 * *	5870 * *	
ATACAGAGAT TATGTCTCTA A	TTCTTTTCG CC	TTCCTTAT 1	TCCACCTCGA	AGGTATGATC	AGATTATTAT TCTAATAATA DYY>
5890 * *	59 0 0	5910 * *	5920 * *	5930 * *	5940
ATAGGATATG T	AAGAGAGAT GG	TGGCCGGA ACCGGCCT	TCTAGTCTAC AGATCAGATG	CAGATAGTTT GTCTATCAAA	A AAGACTGTAT A TTCTGACATA R L Y>
5950 * *	5960 * *	5970 * *	5980 * *	5990 * *	6000
ATTTATATAA G	CAATCCATT G	TGGCACTGG ACCGTGACC	TCATACCGTC AGTATGGCAG	CTGGCCTGA(GACCGGACT(C AAATTITAAT G TITAAAATTA T N F N>

13/44
Figure 1, continued

6010	6020	6030	6040 * *	6050	6 0 60
ACAGAATGGC C	TTTTGTGAA T	TATGTGGATA . ATACACCTAT	aagacaggat '	TCATGTGGGA AGTACACCCT	TGATATIGAA ACTATAACTT
6070	6080	6090	6100 * *	6110	6120 * *
AGCCAGAATA T	TTGCAAAGG /	AGGAGAGATT TCCTCTCTAA	TCACATGGAT	GGGGACCTGG CCCCTGGACC	AATGGTGGGA TTACCACCCT
6130	6140 * *	6150 * *	6160 * *	6170 * *	6180 * *
ATTGTGATAA	AAGCTTTTAG	TTGTGGAGAA AACACCTCTT	AGAAAGATTG TCTTTCTAAC R K I	AGGCTACTCC TCCGATGAGG	TGTAATGATT ACATTACTAA
6190	6200	6210	6220 * *	6230 * *	6240 * *
ATAAGAGGAG	AAATAGATCC	AAAAAAATGG	TGTGGAGATT ACACCTCTAA C G D	GTTGGAATTT CAACCTTAAA	GATGTGTCTT CTACACAGAA
6250	6260	6270 * *	6280 * *	6290 * *	6300 * *
AGGAACTCAC	CTCCACAGAC	TTTACAAAGA	CTTGCTATGT GAACGATACA L A M	TGGCATGTGG ACCGTACACC	CGTGCCGGCT GCACGGCCGA
6310	6320	6330	6340	6350	6360
AAGGAGTGGC	GAGGATGCTG	ATTAGTTGC	: TITGTTTCTC G AAACAAAGAG	GAATGTCTTG	GCCTGCTGAT CGGACGACTA P A D>
6370	6380	6390	6400 * * *	6410	6420
TTGGAGGTCA	TTCAATCCAA	GCCCAGCTG(AGTCTATTAT	GGTCAGGGAG CCAGTCCCTC W S G	CCTATGAATG CGGATACTTAC
6430	644(645	0 6460	6470	6480
GAAGACATAC	TAACATTAT	TAATAAGGT	C ACTAAGAAA	C TAGAAAAGG	A AAAAGCTATC T TTTTCGATAG

14/44 Figure 1, continued

6490	6500 * *	6510	6520	6530	6540 * *
AGAATATTTG	TATTAGCACA ATAATCGTGT	TCAATTAGAA	AGGGACAAAG	TTATTAGATT	ACTACAAGGA
6550	6560 * *	6570 * *	6580 * *	6590 * *	6600 * *
TTAGTTTGGA	GACATAGATT CTGTATCTAA	TAAGAAACCC	CAAACAAAAT	ACTGTTTATG	TTGGTTCTGT
6610		6630 * *	6640 * *	6650 * *	6660 * *
TGCAAATTCT	ACTATTGGCA TGATAACCGT	GTTGCAATCT	ACATTATCAA	TAACTACTGC	TTAGAAATAC
6670		6690 * *	6700 * *	6710 * *	6720 * *
ΤΑΑΤΑΑΤΤ	ATTTCATTTG TAAAGTAAAC	CAACAATAAT	TATGGCAGAA ATACCGTCTT	GGATTTGCAG CCTAAACGTC	CCAATAGACA
	6740	6750	6760	6770	6780
ATGGATAGGA	CCAGAAGAAG	CTGAAGAGTT	A TAATCTAAAA	GATATAGCAA CTATATCGTT	CACAAATGAA
6790 *	6800	6810	6820	6830	6840
TGAAGAAGG(G CCACTAAAT(C GGTGATTTA P L N	C CAGGGATGA G GTCCCTACT	A CCCATTTAGG T GGGTAAATCO	GTACCTGGAACCTT	TAACAGATAA ATTGTCTATT
685	0 686 * *	0 687	0 6880	6890	6900
AGAAAAGCA TCTTTTCGT	A GACTATTGT	A ACATATTAC T TGTATAATG	A ACCTAAGTT/ T TGGATTCAA	A CAAGATTTA(T GTTCTAAAT(C GGAATGAACT G CCTTACTTGA R N E L>
691 *	.0 692	693	694	0 695 * *	0 6960 * * *
TCAAGAGGT	TA AAACTAGAA	G AAGGAAATG	SC AGGTAAGTT	T AGAAGGGCA A TCTTCCCGT	A GATATTTAAG T CTATAAATTC R Y L R>

15/44 Figure 1, continued

6970 * *	6980	6990	7000 * *	7010 * *	7 0 20
ATATTOTOAT O	AAAATGTGC TAT TTTTACACG ATA E N V L	CTATAGT C	TATTTGCTA A	TAGGATATC	ALICIAIAAA
7030 * *	7040 * *	7050 * *	7060 * *	7070 * *	7080 * *
AATAAATCGT A	AGGAGTTTAG GA TCCTCAAATC CT R S L G	TCTTTAAG /	ACATGATATA TGTACTATAT	GACATAGAAA CTGTATCTTT	CACCTCAAGA GTGGAGTTCT
7090 * *	7100 * *	7110 * *	7120 * *	7130 * *	7140 * *
GGAATATTAT	AGTAATAGTG AA TCATTATCAC TT S N S E	AGGGGTAC	CACATTAAAT	CAAAAATATG	GCTCTTCTAC
7150	7160 * *	7170 * *	7180 * *	7190 * *	7200 * *
TTGTGTTAGC	ACACTTATTA TO TGTGAATAAT A	CATAAATTA	TCTTTTTGCA AGAAAAACGT	CATCCGTAGA	שלאטטטטן שט AUC
7210 * *	7220 * *	7230 * *	7240 * *	7250 * *	7260 * *
TAGAGCACAA	GTAGTGTGGA G CATCACACCT C V V W F	ACTTCCCCC	TTTAGTAGTT	CCAGTAGAAG GGTCATCTTC	AATCAGAAA I TTAGTCTTTA
7270 * *	7280	7290 * *	7300	7310	7320
AATTTTTGG	GATTGTTGGG (CACCAGAAGA	\ ACCCGCCTG1 r TGGGCGGACA	CAAGACTITO A GTTCTGAAAG	C TTGGGGCAAT AACCCCGTTA L G A M>
7330	7340	7350 *	736	0 7370 * * *	7380 * * *
GATACATCT	A AAAGCTAGTA	CGAATATAA	G TATACAAGA	G GGACCTACC C CCTGGATGG	T TGGGGAATTG A ACCCCTTAAC L G N W>
739 *	* * *	*	* ^	^	7440 * * *
GGCTAGAGA	A ATATGGGGAA	CATTATTCA	A AAAGGCTAC	C AGACAATGT G TCTGTTACA	TA GAAGAGGTAG NT CTTCTCCATC R R G R>

16/44 Figure 1, continued

7450	7460 * * *	7470 7480	7490 * *	7500 * *
AATATGGAAA AGAT	GGAATG AAACT CCTTAC TTTGA	TATAAC AGGACCATTA ATATTG TCCTGGTAAT I T G P L	GGATGTGCTA CCTACACGAT	ATAACACATG TATTGTGTAC
7510 * *	7520 * * *	7530 7540 * * * *	7550 * *	7560 * *
TTATAATATT TCAG	TAATAG TACCT	TGATTA TCAATGTTAT ACTAAT AGTTACAATA D Y Q C Y	CTAGACCGAG GATCTGGCTC	TAGATACTTG ATCTATGAAC
7570 * *	7580 * * *	7590 7600 * * * * ATTATG TCTAACAGGA	7610 * *	7620 * * TGTACAATAA
CAATGTTCCC TTTC	CATTTAT ATAG	TAATAC AGATTGTCCT	CCTTTTTACA	ACATGTTATT
* *	* *	7650 7660 * * * *	* * *	* *
TATATGTTTT GTT	AATTCGA TAAC	TACAGA CCCATTACAA ATGTCT GGGTAATGTT ; T D P L Q	TAGGGTGACT	AGTTAATATG
7690 * *	7700 * *	7710 7720 * * * *	7730	7740 * *
ATTTGGACCT AAT	CAAACAT GTAT GTTTGTA CATA	TGTGGAA CACTTCACA ACACCTT GTGAAGTGT 1 W N T S Q	A ATTCAGGACC T TAAGTCCTGG	CTGAGATACC GACTCTATGG
7750 * *	7760 * *	7770 778 * * *	0 7790 * * *	7800 * *
AAAATGTGGA TGG	STGGAATC AAAG	GAGCCTA TTATAAAAA CTCGGAT AATATTTTT R A Y Y K N	T TGTAAATGGG A ACATTTACCC	AAAAAACAGA TTTTTTGTCT
7810 * *	7820 * *	7830 784 * * *		
ACATTTCAAA GTA	AACAGTTT CTT	CACAGAG TCAGCCTGG GTGTCTC AGTCGGACC T Q S Q P G	T TGTACCGAAT	CTCGTTAGAG
7870 * *	7880 * *		7910	7920
GTCATGGAGA CA	AAGGAATA GAT	GGGAATG GAGACCAGA ACCCTTAC CTCTGGTCT W E W R P [TA AAACTTTCA(CTTTTCCACTT

17/44
Figure 1, continued

7930	7940 * *	7950 * *	7960 * *	7970 * *	7980 * *
AATATCTCTA AA	GTGTAATA GO	CACAAAAAA (CTAACCTTT (GGATTGGAAA (GCAATGAGAA G CGTTACTCTT C	TTCAGGAGA AAGTCCTCT
7990 * *	8000 * *	8010	8020 * *	8030 * *	8040 * *
* * TTATGGAGAA GT AATACCTCTT CA Y G E	TAACGGGAG C	TTGGATAGA (GTTTGGATGT (CATAGAAATA A GTATCTTTAT 1	ATCAAAACT FTAGTTTTGA
8050 * *	8060 * *	8070 * *	8080 * *	8090 * *	8100 * *
TCATGATGAA G	CAAGGTTTA G	AATTAGATG	TAGATGGAAT ATCTACCTTA	ATAGGGGAGA A	ATACCTCACT TATGGAGTGA
8110 * *	8120 * *	8130 * *	8140 * *	8150 * *	8160 * *
CATTGATACA T	GTGGAAACA (CTCAAAATGT	TTCAGGGGCA AAGTCCCCGT	AATCCTGTAG TTAGGACATC	ATTGTACCAT
<u> </u>			• • •		
GTATGCAAAT /	AAAATGTACA	ΤΔΔϹΔΔGΔΔΔ	TGTTTTGCCC	AAATGATACT	AGGTAGATGA TCCATCTACT K V D D>
8230 * *	8240	8250 * *	8260	8270 * *	8280 * *
CCTTATTATG	CATTTCAATA	TGACAAAAGC	TGTAGAAATG	TATAATATTG ATATTATAAC	CTGGAAATTG GACCTTTAAC A G N W>
8290 * *	_		8320	8330	8340 * *
GTCTTGTACA	TCTGACTTGC	GTGGTTGTA	C CCCCATATA	, ITAACATTGA	GTACAAATAA CATGTTTATT C T N N>
8350 * *	* *	*	* *	* * *	8400
TAGTAATGAT	AATACTAGAA	: ACCGTACAG	G ATTGTTAGT	T CCGTAGAAT	A GGAATTGGTA T CCTTAACCAT R N W Y>

18/44 Figure 1, continued

8410	8420 * *	8430	8440	8450	8460 * *
TAACCCAGTA G	GCAGGATTAC GA CGTCCTAATG CTO A G L R	CAATCCTT GTTAGGAA	GGAAAAGTAT (CCTTTTCATA (CAAGTTGTAA GTTCAACATT	AACAACCAGA TTGTTGGTCT
8470	8480 * *	8490	8500	8510	8520 * *
TTACTTAGTG G	STCCCAGGGG AA CAGGGTCCCC TT V P G E	GTCATGGA CAGTACCT	ATATAAAACT TATATTTTGA	AGAAGGAAAA TCTTCCTTTT	GGGCAGCTAT CCCGTCGATA
8530 * *	8540 * *	8550 * *	8560 * *	8570 * *	8580 * *
TCATGTTATG AGTACAATAC	TTAGCTCTTG CA AATCGAGAAC GT	ACAGTATT TGTCATAA	ATCTATGGCC TAGATACCGG	GGAGCAGGGA CCTCGTCCCT	CGGGGGCTAC
8590	8600 * *	8610	8620 * *	8630 * *	8640 * *
TGCTATAGGG A	ATGGTAACAC AA	ATATCACCA FATAGTGGT	AGTTCTAGCA TCAAGATCGT	ACCCATCAAG TGGGTAGTTC	AAGCTATTGA
8650	8660 * *	8670 * *	8680	8690 * *	8700 * *
AAAGGTGACT TTTCCACTGA	GAAGCCTTAA AGCTTCGGAATT TO	GATAAACAA CTATTTGTT	CTTGAGATTA GAACTCTAAT	GTTACATTAG CAATGTAATC	AGCATCAAGT
8710 * *	8720 * *	8730 * *	8740	8750 * *	8760 * *
ACTAGTAATA	GGATTAAAAG T CCTAATTTTC A	AGAAGCTAT	GGAAAAATTT CCTTTTTAAA	TTATATACAG AATATATGTC	
8770		8790 * *	8800		
CGTTCTTAAT <u>Q E L</u>	GGATGTAATC A	TTTAGTTAV	A GAAGACGTTT	CAGGGAGGAC	AATTGTGGAT TTAACACCTA E L W M>
8830		885	0 8860		
GAGGTATAAT	ATGTCTATAA A	ATCAAACAA	T ATGGAATCAT	GGAAATATAA	CTTTGGGGGA GAAACCCCCT

19/44

											9/6								
									Fig	ure	1, C	contin	ued		_	_		_	_
R	Υ	N	M	S	I	N	Q	T	I	W	N	Н	G	N	I	I	L	G	£>
		3890			8900			89	10			8920		.	8930 *		-4	89	40 *
	*	*			* ^^^^							* ΤΔΤΤ	GAA		ATAA				
AIGG	i I A 'AT.	ATTG	GTT	VAU/		TA	TAA	G∏	rgt	TTT(CAA	AATA	CTT	TAT	TATT	A	CCTG	TAT	CT
W	۱۱ کر. ۲	N	Q	T	K	D	L	Q	Q	K	F	Υ	Ε	I	I	M	D	I	E>
••																			
		8950			8960	١		89	970			8980			8990 *			90)00
		*		*	*		*		*		*	*	~ ^ ^	*	* ^^^		د ۲ ۸ ۸ ۸	₭ ⊏₸₵₵	* `CT
ACA	VAA	TAAT	GT/	4CA	AGGGA	A A		GG	GA I	ACA	ACA TGT	VAIIA Taat	GTT	VAAL	STGGG CACCC	T	AGA TCT/	AAC(CCA
IGI O		AIIA N	CA V	161 0	HUCCH G	K	K	G	I	Q	() L	Q	K	W	E	D	W	V>
ч																			
							7	, 9 ,	030 *		*	9040		*	9050	,		9(*	*
AGG	۸Τ۵	ερατα	GG	ΔΔΔ	TATT	С	ACA	ATA	CTT	AAA	GG(GACTA	, TT(GGG	AGGT <i>A</i>	\ T	CTT	GGG/	4AT
TCC	TAC	τΔΤΩ	٠ ۲٢	Π	ΓΑΤΑΑ	GG	TGT	TAT	GAA	ПП	CC(CTGAT	· AA(TCCAI	P	GAA		HA
G	V	V I	G	i	۱ I	Р	Q	Y	L	. K	. (j L	L	G	G	1	. L	u	1-
		9070			908	0		9	090	}	4	9100)	*	9110) *		9 *	120 *
۸۵۵	*		k V CT	GT.	κ ΓΛΊΤΔ	* T 1	ΤΔΔΤ	* TT	^ :)TAT	; ; TT	^ DAT	CCAC	\ TT	GGT	TGAT	Γ (TAT	AAG	AAA
TCC	TΔ	ATCC1	T (^A	CA	TAATA	AA	ATTA	AA/	ATA(; AA/	۱TG	GGTG	[AA	CCA	ACTA	4 (AIA	1116	111
G	ì	L G	. J.	1	LL	L	_ I	Ł	_ (ا (-	P T	L	٧	D	(CI	R	N>
		9130)		914	.0		Ç	9150)		916)		917	0		. 9	180
	*	,	*		*	*		*	7	k 	*	CAAT	* ~ ~~	TC/	ACTA	* ር .	۸۸۵۵	⋆ SAGA	ΔΩΔ.
TTO	AT	TCCA	CA	4GA TCT	TACTA	NG (ΆΙΑ: ΤΔΤ	CAI GTI	JAG STC/	AA I TT 4	AAC	CAA N	a cc C GG	ACT	AGTA	C	TTC	TCT	TCT
AA(JAT C	AGG I	ا تا ا	K	I L	(G Y	,	T '	V	I	A M	F) [V		E (6 E	E>
		919	0		920	00			921	0		922	0		923 *	0		9	240
	*		*		*		TC 6/					k NGGCA							AAGA
AA TT	TAC	AACC TTGG	A C	AA.	ATGGAV FACCT	41 TA	ACT(CCT	CTT	T AC	CAT	TCCGT	Λ Λ Τ Α(CAC	CGTAT	Ά	GAC.	П	TTCT
11.	I	Q P) u	Q	M E	•••	L	R	R	N	G	R C) (C (G I		S	E M	< E>
		925	50		92	60			927	0		928	30		929	90			9300
	,	k	*		*	*		*		*	•	*	*		*	*			*
GG	AG	GAATO	T A	GA	AGTAT	CT	CAG	ACT	TAT	T T	TAT.	AAGG(SA G	AIG	CTGT(GACA(عاد	1GA ACT	CAA	GAAG
CC		011A0 E>) F	AC I	ICATA	ĿΑ	GIC	ı u	₩ 1 <i>F</i>	va <i>r</i> v	11A	11000	,	170	unch.	<i>-</i>	,,,,,,	0, 0 .	
	L	<- l	ENV																
		_ =							021	20		വാ	4 0		93	5በ			9360
		93° *	10 *		93 *	320 *		*		3U ★		*	*		*	*		*	

20/44

	Figure 1, continued							
CCTTTGAGGA A	ACCTATCTCA T	17181 ACCANTON	TTTCAAATCA /	λατταδάςτα <i>ι</i>	ΔΤΔΔΔΩΤΑΤΩ			
GGAAACTCCT	TOCATACACT /	TACTTACCT /	ANACTITACT	TAATTEAT	ΓΔΤΤΤΓΔΤΔΓ			
GGAAACICCI	ICCATACAGT A	AIACITAGGI A		IIAHIIUAI	IAT TOATAG			
9370	9380	9390	9400	9410	9420 * *			
TATTATAAGG	 TAAAAAGAAA	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	34464646	44GG4GAAA I	GCCTTCAAGA			
ATAATATTCC /	ATTITICTIT	TTTCTGTTT (CTTCTTCTTC	псспстп	CGGAAGTTCT			
9430	9440 * *	9450	9460	9470 * *	9480 * *			
	AGCTTTAGAA (
TATACTACTC	TCGAAATCTT	CTACCCAAAT	CTTTCGATAA	ACCGTGTTTA	AGATGTTGCC			
TATACTACTG	ICGAMATCTT	CIAGCOAAAI	CITICUATIA	Accaration	7.07.11000			
9490	9500 * *	9510	9520 * *	9530 * *	9540 * *			
	AGTGGAATCT							
CTCTGTCATG	TCACCTTAGA	CTGCTACTTG	GAGGATTTT	тстттттсс	CACCTGACCC			
0550	9560	9570	9580	9590	9600			
* *	9560 * *	* *	* *	* *	* *			
ATGAGTATTG	GGACCCTGAA	GAAATAGAAA	GAATGCTTAT	GGACTAGTGA	CTGTTTACGA			
TACTCATAAC	CCTGGGACTT	CTITATCTTT	CTTACGAATA	CCTGATCACT	GACAAATGCT			
9610	9620 * *	9630	9640	9650	9660			
* *	* *	* *	* *	* *	* *			
ACAAATGATA	AATGATGGAA	ACAGCTGAGC	ATGACTCATA	GTTAAAGCGC	TAGCAGCTGC			
TGTTTACTAT	TTACTACCTT	TGTCGACTCG	TACTGAGTAT	CAATTTCGCG	ATCGTCGACG			
9670	9680 * *	9690	9700	9710	9720			
* *	* *	* *	* *	* *	* *			
TTAACCGCAA	AACCACATCC	TATGTAAAGC	TTGCTGATGA	CGTATAATTT	GCTCCACTGT			
AATTGGCGTT	TTGGTGTAGG	ATACATTTCG	AACGACTACT	GCATATTAAA	CGAGGTGACA			
9730	9740	9750	9760	9770	9780			
	* *	* *	* *	* *	* *			
ΔΔΑΔΩΤΑΤΑΤ	AACCAGTGCT	TTGTGAGACT	TCGGGGAGTC	TCTCCGTTGA	GGACTTTCGA			
TTTTCATATA	TTGGTCACGA	AACACTCTGA	AGCCCCTCAG	AGAGGCAACT	CCTGAAAGCT			
9790	9800	9810	9820	9830	9840			
		* *			* *			
GTTCTCCCTT	GAGGCTCCCA	CAGATACAAT	AAATATTTGA	GATTGAACCC	TGTCAAGTAT			
CAAGAGGGAA	CTCCGAGGGT	GTCTATGTTA	TTTATAAACT	CTAACTTGGG	ACAGTTCATA			
9850	9860	9870	9880	9890	i			
* *		* * *	* * *					
	TTTTTTACCT	GTGAGGTCTC	GGAATCCGGG	CCGAGAACTT	CGCA			
GACACATTAG	AAAAAATGGA	CACTCCAGAG	CCTTAGGCCC	GGCTCTTGAA	GCGT			

FIG. 2

Alignment of Gag Open Reading Frames of FIV Strains

10 20 ± *	GGRDWK MAIKRCSNVA	1. FIV PPR	2. FIV Z1	3. FIV CG	4. FIV 14	5. FIV TM1	6. FIV TM2
90 *	VGVGGKSKKF		: : :	:	:		a
40	GEGNFRWAIR	: : : : :	—— : : : :	: : : : : :		:	
\$ 50	MANVSTGREP	:	: : : : : :			· ·	
09 *	GDIPETLDQL	- 6	- 09 · · · · · · · · · · · · · · · · · ·	- 09 · · · · · · · · · · · · · · · · · ·			- 99

		o ^ -	- o ^ 2	2/44 - 03 - 13	-o ^ -	-0, ^ -	- 120 · · ·
120	TOMGLDTRPS	120	120 .		- 62 .	- 62 .	
	TO.		•	•	•	•	•
	MG	•	•	•	•	•	
	ā	•	ີ. ທ	: ග	ີ. ທ	«	
110	≽ -	: -	´	` ·	 : -		- - .
-	Ë		•		•	•	•
	¥	•		•	•	⊢	-
	STAAAAENMY 1	•	•	•	•	•	•
0.4		:	:	:	:	 : -	:
5 +	AVVGLLNMTV		•	•	•	•	•
	I LEN	•	•		•		<u>:</u>
	Š	•			«	⋖	ď.
	A	•		:	•	•	•
06	* F -	:	:	 :	 .	:	:
	* DMAIVTLKVF		•	•	•	•	•
	M≥	⊢	•	•	•	Ļ.	F
				•	•	•	•
				:		:	:
80	* H				•	:	•
	GSS	•	•	•	•	•	:
	* REKFGSSKEI	•	•	•	•	⊁	⊁
	Œ	•	•	•	•	<u>-</u>	•
20	* Æ	:	·	:	:		
	g * BLVICDLQER		•	•	•	•	•
	15F	•	•	•	•	•	•
•	g RL	بر .				₩ <u>8</u>	TM2 SI.
7	SC	V PF	. Z Z .	Ŏ	. > 2	IV TM1	IV T 2.]
79. PIL	FIV-NCSU g	1. FIV PPR [2141]	2. FIV Z1 [2138]	3. FIV CG [2136]	4. FIV 14 [2132]	5. FIV TM1 [2012] SI.	6. FIV TM2 [2012] SI.
	Ę	1 2	2 2	6 7	4	4, <u>-</u>	

	٨	23/4	4 · o ^ —	o ^ _	g ^ —	o ^
180 * QLWFTAFSAN	180		180 	180	180	180
170 * AREGLGGEEV	- : - : : : : :		· · · · · · · · · · · · · · · · ·		- : : - : - : : : : : : : : : : : :	; ; ; ;
160 * PKMVSIFMEK	: - : : : : :	: - : : : : :			: : : : : : : : : : : : : : : : :	
150 * NGAPQYVALD		· · · · · · · · · · · · · · · · · ·	· - · · · · · ·	· · · · · · · · · · · · · · · · · ·		
140 * PPQASPIQTA	> : : : :	——> · · · · ·	>· · · ·		→	· · · · · · · · · · · · · · · · · · ·
FIG. 2C 130 FIV-NCSU g * MREAGGKEES	1. FIV PPR [2141] T.KG.	2. FIV Z1 [2138] K G	3. FIV CG [2136] K	4. FIV 14 [2132]	5. FIV TM1 [2012] VK. S G	6. FIV TM2 [2012] V K. S G

240	* - -	240 · · ·	240	240 	240 	240
	AAEIMGIGLT				· · · · · · · ·	
230	* DGPRPLPYFT	: -	:	· · · · · · · · · · · · · · · · ·	: : : :	
220	* TAEYDRTHPP	: Z :	—— : : : : :	—— : : : : : :		
210	* EILDESLKOL	:				
200	* MAAPGCAADK				:	
FIG. 2D	FIV-NCSU g * LTPTDMATLI	1. FIV PPR [2141]	2. FIV Z1 [2138]	3. FIV CG [2136]	4. FIV 14 [2132]	5. FIV TM1
	SUBST	ritute s	HEET (RU	ILE 26)		

300	40ID 	900	006	- 00°	008 · · ·	300 300 	- 00
	FIDRLFAQID	•	· · · ·				
290	RQGAKEDYSS 	— : - : : : :	: - : : : : :	: - : : : :		: - : : : : : :	: : : :
280	KAKSPRAVQL	: - : : : : :			: : : : : :		
270	* LEALGKLAA!	· · · · · · · · · · · · · · · · · ·	: : : : : : : :	:	:		: : : : :
260	PARMOCRAWY						
FIG. 2E	FIV-NCSU g * GEQQAEARFA	1. FIV PPR [2141]	2. FIV Z1 [2138]	3. FIV CG [2136]	4. FIV 14 [2132]	5. FIV TM1 [2012]	6. FIV TM2 [2012]
Ī				RULE 26)	س ٠	ا جسیا	

360 * PGYKMQLLAE 360		^· - 390 · · · · · · · · · · · · · · · · · · ·	^ 09E .	^· - 300 · · · · · · · · · · · · · · · · · · ·	360
350 * KLRACQEVGS	—— : - н :	: - н : :			· · · · · · · · · · · · · · · · · · ·
340 * HLKPESTLEE		: : : : : : : :	: ·		: : : : : : :
330 * ANAECKKAMS		· · · · · · · · · · · · · · · · · ·		. PD R	PD. 8.
320 * YLKQSLSMAN	. —— . i Hi 	 H : :	—— . Н	H :	H
FIG. 2F 310 FIV-NCSU g A QEQNTAEVKL 1. FIV PPR		3. FIV CG	4. FIV 14 [2132]	5. FIV TM1 [2012]	6. FIV TM2 [2012]
### 10	2. FIV Z1	_	4. FIV 14 [2132]	5. FIV TM1	6. FIV TM2 [2012]

			27/44				_
420	KPGHLAAKCW QGGKKNSGNW	420 R	420 N.R	NR	420 N.R	420 	420 R.TE>
410	KPGHLAAKCW	- · · · · · · · · · · · · · · · · · · ·			>		Z
400	RDVKKCNKCG	· -		—————————————————————————————————————	—— : : : : : : :	.KEA.R. N.	К E A . R N .
06E	KKPGHLAKQC	c .		cc	cc	œ. : : :	œ. : : : :
380	* KGSGPVCFNC		:			- P R L	
FIG. 2G 370	FIV-NCSU g * ALTKVQVVQS	1. FIV PPR [2141]	2. FIV Z1 [2138]	3. FIV CG [2136]	4. FIV 14 [2132]	5. FIV TM1 [2012]	6. FIV TM2 [2012] R T
	SUBSTITUTE SHEET (RULE 26)						

FIG. 2H

FIV-NCSU	9 430 430	440	450 *
	KAGRAAAPVN	QVQQAVMPSA	PPMEERLLDL
1. FIV PF	PR 	T	K >
2. FIV Z1 [2138]			K >
3. FIV Co	G	M	K >
4. FIV 14		M	K>
5. FIV TI [2012] . V		IV	K>
6. FIV TI	İ	1V	K >

FIG. 3A Alignment of Whole Envelope Protein Sequence

60 CNILQ	-8 [^] .	- 6 [^] . :	-09 ^: :	-09 ···	ж - 8 ,
60 * * EKQDYCNILQ	: Z :	: Z :	Z		
50 * * PFRVPGITDK	— : ш :	—— :	: : : : : :	: σ : :	 -
40 * * EEGPLNPGMN	: > :	: > :	: > :		: > :
30 * * LDFDIATQMN	ø	o			: : : : :
20 * * WIGPEEAEEL	: : : : -i	:			
10 8nv-NCSU * * * MAEGFAANRQ	1. FIV 14 [4221]	2. FIV Z1 [4202]	3. FIV CG [4187]	4. fiv19k [4168] V. G	5. FIV PPR [4102]
ธ์ substitบา				4 7	w <u>~</u>

0	-o ^ -	-o	-o^.	- 8 [^] -	- o ^	
120 * * INRRSLGSLR	.GNK	. N K	. N K	120 .VD.KKF		
110 * * YLLIGYLRYL		, C	7 F CIG.	SFVFV[СТ	
100 * * YSDENVLSIV	S L.HAF	HL.HAF	B L.HAF		S L H . F .	
90 * * GKFRRARYLR	—— : u. :	—— : 			: : : : :	
80 * * GEVKLEEGNA	:	:	:		: : : : : : :	
FIG. 3B 70 env-NCSU 2 * * PKLQDLRNEL	1. FIV 14 [4221]	2. FIV Z1 [4202]	3. FIV CG [4187]	4. fiv19k [4168] A I	5. FIV PPR [4102]	
SUBSTITUTE SHEET (RULE 26)						

				31/44			
* 180	RAQVVWRLPP 					180 	
170	LFAVGIWWGA	о – п –	. GII.YSTT	0	G.1VYST.	111 111 111 G 1 1.1RT VD	
160	€		LG.VTL	. LG.VTL	. LG.VTL	L.G.AAFL	
150	TLNQKYARRC				 g		
140	* * * EYYSNSERGT		Z	 Υ « Σ	Z S O	∑	
FIG. 3C	env-NCSU 2 * * * * * * * * * * * * * * * * * *		1. FIV 14 [4221]	2. FIV Z1 [4202]	3. FIV CG [4187]	4. fiv19k [4168]	000 /12

		A	32/44	^	٨	٨
240	* * AREIWGTLFK	240 –	240	240 – 240 –	240 	240
230	* * IQEGPTLGNW	: -	: -			
220	* * * IHLKASTNIS	: : : :	: · · · · · · · · · · · · · · · · ·	: : : : : : :		: : : : : :
010	PACQDFLGAM	· · · · · · · · · · · · · · · · · · ·	: : : : : :	: : : : : :	:	:
Č	Z00 * * * * IFWDCWAPEE	: : : : : :	:	:		· · · · · · · · · · · · · · · · · ·
FIG. 3D	190 env-NCSU 2 * * * LVVPVEESEI	1. FIV 14 [4221]	2. FIV Z1 [4202]	3. FIV CG [4187]	4. fiv19k [4168]	5. FIV PPR [4102]
	SUBSTIT	UTE SHE	ET (RULE	: 26)		

33/44 LOGKVNISLC 300 300 300 300 900 900 **QCYLDRVDTW** 290 **580** YNISVIVPDY 270 **GPLGCANNTC** 260 **IWKRWNETIT** KATROCRRGR 250 4. fiv19k [4168] 5. FIV PPR [4102] 3. FIV CG [4187] env-NCSU 2 1. FIV 14 [4221] 2. FIV Z1 [4202]

	^.	^.	^ -		·
360 * * KCGWWNQRAY	3€0	360 M	360 M	360 K	360
K K C	· : -		: .	:	· :
350 * * TSQIQDPEIP					
340 * * * FGPNQTCMWN	: ·	:		:	: : : : : : : :
330 * * PLQIPLINYT	—— : : : : : :				: : : : : :
310 320 2 * * * * * LTGGKMLYNK YTKQLSYCTD	:			:	AD
310 * ALYNK				·	a
FIG. 3F env-NCSU 2 * LTGGKM	1. FIV 14 [4221]	2. FIV Z1 [4202]	3. FIV CG [4187]	4. fiv19k [4168]	5. FIV PPR [4102]
SUBSTITUTE SHEET (RULE 26)					

		•		^ _	٨	۸		
420	ISLKCNSTKN	420		420	420	420 		
	ISL.	o.	a	<u>.</u>	o :	ö :		
0 *	y -	: _	: -	: _	> -	:		
410	RPDFESEKVK		•		Œ	•		
*	FES	- :	•	×	•	•		
	RPC	•		•	•	:		
400	<u> </u>	: -	: -	<u>:</u> -	: - :	 :		
4	RWE	•	•		:	:		
+	, OBN	•	•	. :	•	¥		
	SWR		; ; ~		•	•		
390	QPGTWLRAIS SWRQRNRWEW	: -		: -	···			
,	* WLR	L L		· ·	ij	H		
	PGT	o ်	o,	ω.	o,	•		
		:		•	· ·			
380	* RTQS					•		
	COR.	•	•	•	•	•		
	* VKFHCQI	•	•	•	ā	>		
0		-	x	×	:			
370	J2 * * * YKNCKWEKTD	В А —— Ж	В А	Е А К	ġ	/ PPR		
	* 8	•	•	•	Ω	œ.		
5	7KN	4 S.	7 Z Z	0 0 7	4. fiv19k [4168] _{NQ.S.}	PPR.		
ביים. אבו	env-NCSU 2 YKN	1. FIV 14 [4221] N S.	2. FIV Z1 [4202] N R .	3. FIV CG 4187 J N S	4. fiv19k 4168] _{NQ}	5. FIV PPR [4102] _{NS} .		
ב ב	-vne	1.	2. [42]	3. FIV CG [4187] _{NS}	4. 4	5.		
s	SUBSTITUTE SHEET (RULE 26)							

450 470 480 470 480 * * * * * * * * * * * * * * * * * * *	480 – 480 –	H.S	- 480	- 480 - 480 480	- 480 - 480
440 * * YGEVTGAWIE			:	: : : : :	
FIG. 3H 430 env-NCSU 2 * * * LTFAMRSSGD	1. FIV 14	2. FIV Z1	3. FIV CG 1	4. fiv19k	5. FIV PPR [4102]

•	-		-
4	•	10	

	Δ	^	^	- ^	^
540 * * SCTSDLPPTW	540 S S	540 SS	540 S S	540 T N	. 540
SCT	•	•	•	∑ :	×
530 * * * VEMYNIAGNW	: : : :				
		, ,	•	•	•
520 * IMTKA	: 	· · · · · · · · · · · · · · · · · · ·			
520 * * LIMHFNMTKA	•	% :	: : >:	•	· · ·
510 * * A QNGFTMKVDD	:	: : : :	:	· · · · · · · · · · · · · · · · · · ·	: : : : :
	•			<u> </u>	
500 * * YANKMYNCSL					
		o	o	- : :	: :
14 490 U.2 * * SGANPVDCTM	:				•
FIG. 3I env-NCSU 2 SGAN	1. FIV 14 [4221]	2. FIV Z1 [4202]	3. FIV CG [4187]	4. fiv19k [4168]	5. FIV PPR [4102]
SUBSTIT	TUTE SHE	ET (RULE	26)		

FIG. 3K

640 650	T AIGMVTQYHQ VLATHQEAIE KVTEALKINN		39/44 ^	-	-	
620 630	LATVL SMAGAGTGAT					
610 env-NCSU 2 * * * *	YKTRRKRAAI HVMLALATVL	1. FIV 14 [4221] P	2. FIV Z1	3. FIV CG	4. fiv19k	5. FIV PPR

		40/44			
720 * * * RYNMSINQTI	720	720 	720 	720 	720 TL
710 * * FCKVPPELWM			_		. E. K
700 * * * QELGCNQNOF					: : : : : :
690 * * EKFLYTAFAM	: : : : : : :	:	: : : : :	: : : : : :	:
680 * * LVIGLKVEAM	:	:			
FIG. 3L 670 env-NCSU 2 * *	1. FIV 14 [4221]	2. FIV Z1 [4202]	3. FIV CG 4187]	4. fiv19k [4168]	5. FIV PPR [4102]
SUBSTI	TUTE SHE	ET (RULE	26)		

			41/44			
780 *	GWIGNIPQYL 	780	780	780 – R	780	780
* * *	QNNVQGKKGI QQLQKWEDWV	· · · · · · · · · · · · · · · · ·		: : : : : : : : : : : : : : : : :		
* *	QNNVQGKKGI		: : : :			
750	KFYEIIMDIE	· · · · · ·	:		:	:
740	WYNQTKDLQQ	·	×		r	: : -: -: -: -: -: -: -: -:
FIG. 3M 730	env-NCSU Z X X X X X X X X X X X X X X X X X X	1. FIV 14 [4221]	2. FIV Z1 [4202]	3. FIV CG [4187]	4. fiv19k [4168]	5. FIV PPR [4102]
ÇI	IRSTIT	UTF SH	IEET (RUL	E 26)		

_	Z	_
(Y	5
(ľ	5
Ì	<u> </u>	-

	42/44			
840	840	840	840	 840 ETVK>
		:	:	:
				:
	·		: : : :	: : :
1. FIV 14 [4221]	2. FIV Z1 [4202]	3. FIV CG [4187]	4. fiv19k [4168]	5. FIV PPR 4102]
		840	840 840	2d 840 - > -

FIG. 30

	850	
env-NCSU 2	* *	
GRQ	CGISEKE E	E
1. FIV 14	ļ	
[4221]	. M	٠>
2. FIV Z1	!	
[4202]	. M	.>
3. FIV CG		
[4187]	. M	٠>
4. fiv19k	!	
[4168]	. M	٠>
5. FIV PPR	!	
[4102]	. M	>

FIG. 4

INTERNATIONAL SEARCH REPORT

Inte. Jonal Application No PCT/US 98/04147

				PCT	/US 98/04147
PC 6		C12N15/73 C12N1/21	C12N15/86 C07K14/155		C12N5/10
cording to	International Patent Cla	ssification(IPC) or to bot	h national classification a	nd IPC	
FIELDS	SEARCHED				
Inimum do IPC 6	cumentation searched (C12N C07K		owed by classification sym	(bols)	
ocumental	on searched other than	minimum documentation	to the extent that such do	cuments are included in	the fields searched
lectronic d	ata base consulted durin	g the international searc	h (name of data base and	l, where practical, search	terms used)
) O C O C I S VANT		<u> </u>	
Category	Citation of document.		propriate, of the relevant	passages	Relevant to claim No.
X	FELINE IMM INDUCES IM SPECIFIC-F				1-9,11, 12,19-21
	vol. 70, r pages 3011 see abstra see page 3	no. 5, May 199 1-3017, XP0000 act 3012	605486		
Υ	see page (10,13-18			
Y	WO 95 0546 ;TOMPKINS (US)) 23 I see abstra see claims	10,13-18			
Fur	ther documents are lister	d in the continuation of b	ох C. <u>Х</u>	Patent family member	ers are listed in annex.
"A" docum	ategories of cited docum nent defining the general idered to be of particular	state of the art which is r		or priority date and not it	after the international filing date of conflict with the application but principle or theory underlying the
filing "L" docum which	document but published date nent which may throw do his cited to establish the on or other special reaso	ubts on priority claim(s) o publication date of anoth	or or	cannot be considered no involve an inventive step document of particular re	levance; the claimed invention ovel or cannot be considered to o when the document is taken alone levance; the claimed invention
"O" docur	ment referring to an oral or r means nent published prior to the than the priority date clai	disclosure, use, exhibition international filling date	but	document is combined v	involve an inventive step when the with one or more other such docun being obvious to a person skilled same patent family
	e actual completion of the			Date of mailing of the inte	ernational search report
	17 June 1998			24/06/1998	
Name and	mailing address of the II European Patent (NL - 2280 HV Rijs	Office, P.B. 5818 Patentia	pan 2	Authorized officer	
		2040, Tx. 31 651 epo ni,		Galli, I	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inter. Jonal Application No
PCT/US 98/04147

Patent document cited in search repor	t	Publication date		latent family member(s)	Publication date
W0 9505460	A	23-02-1995	US AU US	5413927 A 7514594 A 5665592 A	09-05-1995 14-03-1995 09-09-1997