Ελάχιστο Συνδετικό Δέντρο

Δημήτρης Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Ελάχιστο Συνδετικό Δέντρο (MST)

- \square Συνεκτικό μη-κατευθ. $\mathsf{G}(\mathsf{V},\,\mathsf{E},\,\mathsf{w})$ με βάρη $w:E\mapsto \mathbb{R}_{>0}$
 - lacksquare Βάρος υπογραφήματος $T(V,E_T)$: $m{w}(T) = \sum_{e \in E_T} m{w}(e)$
- Ζητούμενο: ελάχιστου βάρους συνεκτικό υπογράφημα που καλύπτει όλες τις κορυφές.
 - lacksquare Συνεκτικό (εξ' ορισμού) + ακυκλικό (ελάχιστο) \Rightarrow Δέντρο.
 - \blacksquare Minimum Spanning Tree (MST, EΣΔ).
- Πρόβλημα συνδυαστ. βελτιστοποίησης με πολλές και σημαντικές εφαρμογές.
 - Σχεδιασμός συνδετικού δικτύου (οδικού, τηλεπ/κου, ηλεκτρικού) με ελάχιστο κόστος.

Δέντρα: Βασικές Ιδιότητες

- Δέντρο: συνεκτικό και ακυκλικό γράφημα.
- □ Για κάθε απλό μη-κατευθ. γράφημα T(V, E), τα παρακάτω είναι ισοδύναμα:
 - Τ δέντρο.
 - Κάθε ζευγάρι κορυφών ενώνεται με μοναδικό μονοπάτι.
 - Τ συνεκτικό και |E| = |V| 1.
 - Τ ακυκλικό και |E| = |V| 1.
 - Τ ελαχιστικά συνεκτικό.
 - Τ μεγιστικά ακυκλικό.

Τομές, Σύνολα Τομής, και ΕΣΔ

- □ Τομή (S, V \ S): διαμέριση κορυφών σε 2 σύνολα S, V \ S.
- Σύνολο τομής δ(S, V \ S): ακμές ένα άκρο στο S και άλλο άκρο στο V \ S.
 - δ(S, V \ S): ὁλες οι ακμές που διασχίζουν τομή (S, V \ S).
- □ Σύνολο ακμών Ε' **διασχίζει** τομή (S, V \ S) αν E' \cap δ(S, V \ S) ≠ Ø.
- (Ε)ΣΔ ορίζεται από σύνολο ακμών (ελάχιστου) βάρους που διασχίζει όλες τις τομές.
 - Άπληστη στρατηγική: ενόσω
 «αγεφύρωτη» τομή, διέσχισέ
 την με ακμή ελάχιστου βάρους.

Άπληστος Αλγόριθμος για ΕΣΔ

- 'Εστω Δ δάσος (σύνολο ακμών χωρίς κύκλους).
- □ Ακμή e ∉ Δ είναι ακμή επαύξησης για Δ αν:
 - e διασχίζει μια τομή (S, V \ S) που δεν διασχίζει το Δ, και
 - e είναι ελάχιστου βάρους μεταξύ ακμών δ(S, V \ S).
- Ακμή επαύξησης για δάσος Δ συνιστά ἀπληστη επιλογή που σε |V|-1 βήματα οδηγεί σε ΕΣΔ:
 - Αν Δ δάσος και e ακμή επαύξησης Δ,
 Δ ∪ { e } δάσος.
 - e δεν δημιουργεί κύκλο.
 - Av $\Delta \subset E\Sigma\Delta$ και e ακμή επαύξησης Δ , $\Delta \cup \{e\} \subseteq E\Sigma\Delta$.

Άπληστος Υπολογισμός ΕΣΔ

- \square Έστω $T(V, E_T)$ ΕΣΔ για G(V, E, w).
- Αφαιρώντας ακμή e από E_T προκύπτουν δύο συνεκτικές
 συνιστώσες, έστω S και V \ S αντίστοιχα σύνολα κορυφών.
 - \mathbf{G}_{S} και $\mathbf{G}_{V\setminus S}$ αντίστοιχα επαγόμενα υπογραφήματα, και \mathbf{T}_{S} και $\mathbf{T}_{V\setminus S}$ αντίστοιχα υποδέντρα.
- Αρχή βελτιστότητας:
 - lacktriangle T_S αποτελεί $E\Sigma\Delta$ για G_S και $T_{V\setminus S}$ αποτελεί $E\Sigma\Delta$ για $G_{V\setminus S}$.
- Ιδιότητα ἀπληστης επιλογής:
 - e είναι μια ελάχιστου βάρους ακμή που διασχίζει τομή (S, V \ S).
- □ Άπληστος αλγόριθμος για ΕΣΔ!

Άπληστη Επιλογή: Ορθότητα

- \square Έστω δάσος $\Delta \subset \mathsf{E}\Sigma\Delta$ και $e = \{u, v\}$ ακμή επαύξησης Δ . Τότε $\Delta \cup \{e\} \subseteq \mathsf{E}\Sigma\Delta$.
 - (S, V \ S) τομή που δεν διασχίζει Δ και διασχίζει η ακμή e.
 - e ελάχιστου βάρους μεταξύ ακμών του δ(S, V \ S).
 - lacktriangle Έστω Τ ΕΣΔ τ.ω. $\Delta \subseteq \mathsf{T}$. Υποθέτουμε ότι $\Delta \cup \{e\} \not\subseteq T$
 - Έστω p μονοπάτι u v στο T, και
 e' = {x, y} ακμή T που διασχίζει (S, V \ S).
 - $lacksquare ext{Aφού w(e)} \leq ext{w(e'), και το} \ T' = (T \cup \{e\}) \setminus \{e'\} ext{ είναι } lacksquare ext{ΣΔ} ext{:} \ w(T') = w(T) + w(e) w(e') \leq w(T)$
 - lacktriangle Έχουμε ότι $\Delta \subseteq \mathsf{T}$ και $e' \not\in \Delta$. Άρα $\Delta \subseteq T \setminus \{e'\} = T' \setminus \{e\}$
 - lacksquare ... Kal $\Delta \cup \{e\} \subseteq T'$

Άπληστος Αλγόριθμος για ΕΣΔ

```
MST(G(V, E, w))

\Delta \leftarrow \emptyset;

while |\Delta| < |V| - 1 do

Υπολόγισε μια ακμή επαύξησης e για \Delta;

\Delta \leftarrow \Delta \cup \{e\};

return(\Delta);

\Box Αρχικά \Delta = \emptyset δάσος και υποσύνολο κάθε E\Sigma\Delta.

\Box Επαγωγικά, e ακμή επαύξησης για \Delta:

\Box \Delta \cup \{e\} δάσος και υποσύνολο κάποιου E\Sigma\Delta.

\Box Όταν |\Delta| = |V| - 1, \Delta δέντρο, άρα και E\Sigma\Delta.
```

Αλγόριθμος Kruskal

```
MST-Kruskal(G(V,E,w))
Ταξινόμησε αχμές σε αύξουσα σειρά βάρους, w(e_1) \leq \cdots \leq w(e_m). \Delta \leftarrow \emptyset; i \leftarrow 1;
while |\Delta| < |V| - 1 and i \leq m do
if \Delta \cup \{e_i\} δεν έχει χύχλο then
\Delta \leftarrow \Delta \cup \{e_i\};
i \leftarrow i + 1;
```

- Υλοποίηση: κὑκλος στο $\Delta \cup \{e_i\}$ ελέγχεται με Union-Find.
 - Χρόνος εκτέλεσης: Θ(mlog m).
- Ορθότητα: αν e_i προστεθεί τότε ακμή επαύξησης για Δ:
 - □ Όχι κὑκλος, ἀρα e_i διασχίζει μια τομή που δεν διασχίζει το Δ.
 - Αύξουσα σειρά βάρους: e_i ελάχιστου βάρους (πρώτη που ελέγχεται) από όσες ακμές διασχίζουν συγκεκριμένη τομή.

Αλγόριθμος Kruskal: Παράδειγμα

Αλγόριθμος Prim: Παράδειγμα

Αλγόριθμος Prim

- Υλοποίηση:
 - Ελάχιστο c[v]: ουρά προτεραιότητας.
 - Binary heap: $\Theta(m \log n)$
 - Fibonacci heap: $\Theta(m+n\log n)$
- Ορθότητα:
 - {v, p[v]} αποτελεί ακμή επαύξησης:
 - □ Διασχίζει τομή (S, V \ S).
 - □ Ελάχιστου βάρους μεταξύ ακμών του δ(S, V \ S).

```
MST-Prim(G(V, E, w), s)
     for all u \in V do
           c[u] \leftarrow \infty; p[u] \leftarrow \text{NULL};
     c[s] \leftarrow 0; S \leftarrow \emptyset; \Delta \leftarrow \emptyset;
     while |S| < |V| do
           u \notin S : c[u] = \min_{v \notin S} \{c[v]\};
           S \leftarrow S \cup \{u\};
            for all v \in AdjList[u] do
                 if v \not\in S and w(u,v) < c[v] then
                       c[v] \leftarrow w(u,v);
                       p[v] \leftarrow u;
           if p[u] \neq \text{NULL then}
                 \Delta \leftarrow \Delta \cup \{u, p[u]\};
```

Αλγόριθμος Boruvka

- «Παράλληλη» εκδοχή γενικού άπληστου αλγόριθμου.
 - Αρχικά κάθε κορυφή αποτελεί μία συνεκτική συνιστώσα.
 - Φάση: ενόσω #συνεκτικών συνιστωσών > 1:
 - Κάθε συνεκτική συνιστώσα σ επιλέγει στο ΕΣΔ την ελαφρύτερη ακμή με ένα άκρο στο σ (ακμή επαύξησης).
 - Μια ακμή μπορεί να επιλεγεί και από τα δύο άκρα της.
 - Απαραίτητη ολική διάταξη των ακμών (χωρίς ισοπαλίες), διαφορετικά μπορεί να σχηματιστούν κύκλοι.
 - Συνεκτικές συνιστώσες ενημερώνονται με βάση ακμές που επιλέχθηκαν στην τρέχουσα φάση.
- Ολική διάταξη ακμών (χωρίς ισοπαλίες): υπολογίζει ΕΣΔ.
 - Κάθε ακμή που επιλέγεται, αποτελεί ακμή επαύξησης: ελάχιστου βάρους ακμή που διασχίζει μία τομή.
 - Όχι κύκλοι: μοναδική ελαφρύτερη ακμή διασχίζει κάθε τομή.

Αλγόριθμος Boruvka: Παράδειγμα

Αλγόριθμος Boruvka

- (Ακολουθιακή) υλοποίηση σε $O(m \log n)$.
 - Κάθε φάση σε χρόνο O(m) με δύο περάσματα των ακμών.
 - 1° πέρασμα βρίσκει ελαφρύτερη ακμή κάθε συνιστώσας.
 - 2° πέρασμα εντάσσει ελαφρύτερες ακμές στο ΕΣΔ και ενημερώνει / συμπτύσσει συνιστώσες (π.χ., με BFS/DFS).
 - Σε κάθε φάση, #συνιστωσών μειώνεται στο μισό.
 - #φάσεω $V = O(\log n)$.
- Πολλοί σύγχρονοι αλγόριθμοι (σχεδόν) γραμμικού χρόνου βασίζονται σε ιδέα Boruvka.

Κανόνες Σχηματισμού ΕΣΔ

- Ακμή e που για κάποια τομή (S, V \ S), αποτελεί ελάχιστου βάρους ακμή που διασχίζει τομή (S, V \ S):
 - e **ανήκει** σε κάποιο ΕΣΔ.
 - Γρήγορη επιλογή τέτοιων ακμών χωρίς κύκλους, και ένταξη σε ΕΣΔ.
- Ακμή e που για κάποιον κύκλο C αποτελεί μέγιστου βάρους ακμή κύκλου C:
 - Αν βάρος ε μεγαλύτερο από βάρος άλλων ακμών του C, e **δεν ανήκει** σε κανένα ΕΣΔ.
 - Αν όλες οι ακμές του C έχουν ίδιο βάρος, e **δεν ανήκει** σε κάποιο ΕΣΔ.
 - Ενόσω υπάρχει κύκλος C, αποκλεισμός (μιας) βαρύτερης ακμής C.

Συζήτηση

Deterministic comparison based algorithms.

- O(m log n)
- O(m log log n).
- $O(m \beta(m, n))$.
- $O(m \log \beta(m, n))$.
- $O(m \alpha (m, n)).$

[Jarník, Prim, Dijkstra, Kruskal, Boruvka]

[Cheriton-Tarjan 1976, Yao 1975]

[Fredman-Tarjan 1987]

[Gabow-Galil-Spencer-Tarjan 1986]

[Chazelle 2000]

Holy grail. O(m).

Notable.

O(m) randomized. [Karger-Klein-Tarjan 1995]

O(m) verification. [Dixon-Rauch-Tarjan 1992]

Συζήτηση – Ασκήσεις

- □ Έστω γράφημα G με διαφορετικά βάρη στις ακμές.
 - Νδο κάθε ΕΣΔ του G περιέχει την ακμή ελάχιστου βάρους.
 - Νδο G έχει μοναδικό ΕΣΔ.
 - Αληθεύει ότι η ακμή μέγιστου βάρους δεν ανήκει στο ΕΣΔ;
- Έστω γράφημα G με κύκλο C.
 - Νδο η ακμή μέγιστου βάρους του C (αν είναι μοναδική)
 δεν ανήκει σε κανένα ΕΣΔ του G.
- □ Έστω Τ ΕΣΔ για γράφημα G(V, E, w).
 - Να δείξετε ότι Τ παραμένει ΕΣΔ για G(V, E, w/2).
 - Αληθεύει ότι το Τ παραμένει ΕΣΔ για G(V, E, w+k);

Συζήτηση – Ασκήσεις

- (Ντετερμινιστικός) αλγόριθμος ΕΣΔ με χρόνο εκτέλεσης $O(m \log \log n)$;
- Υπολογισμός ΕΣΔ Τ υπό περιορισμούς ότι κάποιες ακμές πρέπει να (μην) ανήκουν στο Τ;
- Υπολογισμός ΣΔ Τ με δεύτερο μικρότερο βάρος;
- \square Bottleneck κόστος ΣΔ Τ: $b(T) = \max_{e \in T} \{w(e)\}$
 - Υπολογισμός ΣΔ με ελάχιστο bottleneck κόστος;