Trabajo práctico N°6: Función lineal

Se llama **función lineal** a aquella cuya fórmula es y = mx + b.

Los números m y b reciben el nombre de pendiente y ordenada al origen, respectivamente.

La función $y = \frac{3}{2}x + 1$ es lineal. También se puede escribir $f(x) = \frac{3}{2}x + 1$

Cuando la variable x varía aumentando en 2 unidades, la variable y aumenta 3 unidades. Esa variación está representada por la **pendiente** de la recta que es igual a $\frac{3}{2}$ (la pendiente SIEMPRE es el número que acompaña a la letra x

La recta interseca al eje y en el punto (0; 1). La ordenada en este punto es la **ordenada al origen** de la recta. La ordenada al origen en la función es SIEMPRE el número que no tiene x, se lo llama **término independiente**

La función $y = -\frac{2}{3}x + 3$ es lineal. También se puede escribir $f(x) = -\frac{2}{3}x + 3$

Cuando la variable x aumenta 3 unidades, la variable y disminuye 2 unidades. Esta variación se expresa a través de una **pendiente negativa** igual a $-\frac{2}{3}$

La **raíz** de una función es la abscisa del punto en donde la recta interseca al eje x. Para determinar la raíz, hay que plantear y resolver una ecuación (procedimiento analítico)

Por ejemplo, para encontrar la raíz en el segundo caso, se debe plantear la siguiente ecuación:

$$-\frac{2}{3}x + 3 = 0$$
 Se iguala la fórmula de la función con la ecuación del eje x, cuya fórmula es $y = 0$

$$-\frac{2}{3}x = -3$$

$$x = \frac{9}{2}$$
 Es raíz

- 1. Respondan y expliquen las respuestas
 - **a.** ¿Cuál es el valor de la ordenada al origen en y = 3x?
 - **b.** Si la pendiente es negativa, ¿La recta crece o decrece?
 - c. ¿Cómo es la posición de la recta si la pendiente es 0?

- **d.** Si la función lineal tiene ordenada igual a 0, ¿Dónde interseca al eje x?
- 2. Marquen con una X las fórmulas que corresponden a una función lineal. Luego, indiquen la pendiente y la ordenada de esas funciones.

					_
a. y	=	2x	+	3	

c.
$$y = 4x$$

e.
$$y = x^3$$

Pendiente: Pendiente: Pendiente:

Ordenada: _____ Ordenada: ____

Ordenada: _____

b.
$$y = x^2 + 1$$

d.
$$y = -x + 2$$

f.
$$y = x$$

Pendiente: ___

Ordenada: ___

__ Ordenada: _____

Ordenada: ___

3. Completen las tablas y representen gráficamente las funciones

х	У
- 2	- 4
- 1	- 2
0	0
1	2
2	4

X	У
- 2	6
- 1	4
0	2
1	0
2	- 2

4. Resuelvan

Un taxi compra un costo fijo de \$ 10 y \$ 8 por kilómetro recorrido.

- a. ¿Cuál es la fórmula que representa la situación?
- **b.** ¿Cuál es la pendiente? ¿Y la ordenada?
- **c.** Completen la tabla y representen en un sistema de ejes cartesianos.

x : distancia recorrida	y : precio
2	
4	
6	
8	

Gráfico de una función lineal

Para graficar una función lineal, podemos hacerlo a través de su ecuación explicita y = m . x + b, conociendo simplemente el valor de la ordenada al origen (0; b) y su pendiente (m) Vamos a ver unos ejemplos:

Supongamos que queremos graficar la función y = 2x + 3

Primero identificamos m y b \rightarrow m = 2; b = 3

La ordenada siempre es al origen es $(0; b) \rightarrow El$ punto es: (0; 3), el **Primer paso** es ubicar es punto en el sistema de ejes cartesiano. El **Segundo paso** es pensar m como una fracción $m = \frac{2}{1}$, una vez hecho esto nos colocamos en el punto que marcamos de la ordenada y de ahí nos movemos en el eje x hacía la derecha la cantidad de veces que nos indique el denominador de m (el denominador de m es 1, por la tanto nos movemos 1 lugar a la derecha. Una vez que nos desplazamos, desde ese muevo lugar en el **Tercer paso** tenemos subir en el eje y cantidad de lugares que nos indique el numerador de m (el numerador es 2, por lo tanto subimos dos lugares hacía arriba) y luego realizando estos mismos pasos, nos movemos dos a la derecha y subimos 2, podemos encontrar más puntos, pero con dos puntos que tengamos ya es suficiente para poder graficar la recta (**Paso 4**).

NOTA: Si la pendiente es negativa, cuando nos movemos en el eje y, tenemos que movernos hacia abajo en lugar de subir, pero lo demás se hace igual que en este ejemplo

Segundo paso

Tercer paso

4to paso

Supongamos que queremos graficar la función y = -2x + 3

Primero identificamos m y b \rightarrow m = -2; b = 3

En este caso a diferencia del anterior una vez que nos ubicamos en la ordenada al origen (0; 3) como la fracción de m es \rightarrow m = $-\frac{2}{1}$, una vez que nos colocamos en ese punto nos desplazamos 1 lugar a la derecha en el eje x, y de ahí bajamos dos lugares en el eje y

5. Representen las siguientes funciones en un mismo sistema de ejes cartesianos

a.
$$y_1 = 2x + 4$$

b.
$$y_2 = -x - 1$$

c.
$$y_3 = 5 - 2x$$

d.
$$y_4 = \frac{2}{3}x$$

6. Completen.

Función	Pendiente	Ordenada	Creciente, decreciente o constante	Cero o raíz
y = -4x + 5				
	7	- 1		
y = 15 + 3x				
	0	– 5		
y = -8x				

- 7. Escriban ${\bf V}$ (verdadero) o ${\bf F}$ (falso) según corresponda. Expliquen las respuestas.
 - a. Si la pendiente de una función lineal es positiva, la función es decreciente.
 - **b.** Si la pendiente de una función lineal es positiva, la función es creciente.
 - **c.** La ordenada al origen se relaciona con la inclinación que tiene la recta.
 - d. Una función lineal siempre tiene ordenada al origen.
 - e. Si una función lineal tiene pendiente positiva, es decreciente.

- 8. Calculen de forma analítica los ceros de cada función. Luego, representen las rectas en un sistema de ejes cartesianos.

 - **a.** $y_1 = \frac{3}{5}x 5$ **b.** $y_2 = 5 + \frac{5}{8}x$ **c.** $y_3 = \frac{3}{2}x 4$ **d.** $y_4 = 6x + 2$

- **e.** $y_5 = -3 + 6x$ **f.** $y_5 = \frac{3}{5}x$

Ecuación de la recta

- Para escribir la ecuación de una recta se necesita conocer la pendiente y la ordenada al origen. Datos: m (pendiente) y b (ordenada) \longrightarrow y = mx + b
- Para escribir la ecuación de la recta conociendo la **pendiente** y un **punto** que pertenece a la misma, se deben reemplazar los datos conocidos en la ecuación general de la recta para obtener la ordenada.

Datos: pendiente 2 y pasa por el punto a = (1; 6).

$$y = m \cdot x + b$$

$$6 = 2 \cdot 1 + b$$

- **1.** Se reemplaza y = 6, x = 1 (son las coordenadas del punto a) y la pendiente por 2
- 6 2 = b

b = 4

2. Se despeja *b* (ordenada al origen)

Entonces, m = 2 y b = 4, la ecuación de la recta es y = 2x + 4

Para escribir la ecuación de la recta conociendo dos puntos que pertenecen a la misma, hay que encontrar el valor de la pendiente y de la ordenada.

Datos: pasa por los puntos d = (1:1) y e = (5:-3).

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 Ecuación de la pendiente, conociendo dos puntos

$$m = \frac{-3-1}{5-1}$$
$$m = -1$$

- 1. Se reemplazan las coordenadas de los puntos d y e.
- 2. Se resuelve para encontrar el valor de m (pendiente).

$$y = m$$
 . $x + b$
 $-3 = (-1) \cdot 5 + b$
 $b = 2$

y=m . x+b 3. Se reemplaza el valor de m y las coordenadas de uno de los dos puntos dy e

Entonces, m = -1 y b = 2, la ecuación de la recta es y = -x + 2.

- 9. Respondan y expliquen las respuestas
 - a. La recta y = 3x 2, ¿Pasa por el punto (-4; -14)?
 - **b.** Los puntos (-2;5), (0;2) y (1;4), ¿Pertenecen a la misma recta?
 - c. ¿Se puede determinar la ecuación de la recta si se sabe que tiene pendiente 2 y pasa por el origen de coordenadas?
 - d. ¿Qué datos se necesitan para determinar la ecuación de una recta?

10. Escriban la fórmula de cada función teniendo en cuenta la pendiente y la ordenada

11. Escriban la ecuación de la recta a partir de los siguientes datos

a.
$$m = -\frac{1}{2}$$
; $b = -5$

b.
$$m = -1$$
; $b = 4$

b.
$$m = -1$$
; $b = 4$ **c.** $m = -8$; $b = 2$

- 12. Escriban la ecuación de cada recta teniendo en cuenta los datos. Luego, represéntenlas en un sistema de ejes cartesianos.
 - **a.** Recta R que pasa por r = (-1;5) y la pendiente es -3
 - **b.** Recta S que pasa por s = (2;5) y la pendiente es 4
 - **c.** Recta M que pasa por m = (0,0) y la pendiente es $\frac{1}{2}$
 - **d.** Recta N que pasa por n = (-5;2) y la pendiente es $\frac{2}{5}$
- 13. Escriban la ecuación de la recta que pasa por los puntos dados y grafiquen todas las rectas en un mismo sistema de ejes cartesianos.
 - **a.** Recta A que pasa por p = (-1;3) y q = (2;5).
 - **b.** Recta B que pasa por r = (2;-4) y s = (-3;-1).
 - **c.** Recta C que pasa por t = (0;3) y u = (-1;2).
 - **d.** Recta D que pasa por v = (4;0) y w = (3;-1).
- 14. Resuelvan.

Los puntos r = (1;3), s = (-1;-1), t = (4;-2) forman un triángulo.

- a. Representen los puntos y dibujen el triángulo.
- **b.** Escriban las ecuaciones de las rectas que incluyen a los lados del triángulo.
- **15.** Unan cada ecuación con los puntos que la determinan.

a.
$$y = -\frac{2}{5}x + 2$$

b.
$$y = \frac{1}{3}x - 6$$

c.
$$y = -\frac{1}{2}x + 1$$

d.
$$y = 4x - 2$$

e.
$$y = -3x - 7$$

•
$$(5; -\frac{3}{2})$$
 y $(-2; 2)$

•
$$(\frac{1}{3};-8)$$
 y (1;-10)

•
$$\left(-1; -\frac{19}{3}\right)$$
 y $(3; -5)$

• (0;2) y
$$\left(1;\frac{8}{5}\right)$$