1. Installation of Wireshark

- Action: Installed Wireshark on the system.
- Details: Downloaded the software from the official website:
 https://www.wireshark.org/download.html
 Selected the version compatible with the operating system (e.g., Windows 11, macOS, or Linux) and followed the installation wizard. Launched Wireshark to confirm successful installation.

2. Initiation of Packet Capture

- Action: Began capturing packets on the active network interface.
- **Details:** Opened Wireshark and selected the active interface (e.g., Wi-Fi or Ethernet) from the list of available options. Clicked "Start" with administrative privileges to initiate real-time packet capture.

3. Generation of Network Traffic

- **Action:** Generated network traffic by browsing a website or pinging a server.
- Details: Opened a web browser and visited https://www.example.com, or used the command line to execute ping google.com. Performed these actions for approximately 30-60 seconds to create sample traffic for analysis.

4. Termination of Capture

- Action: Stopped the packet capture after one minute.
- **Details:** Returned to Wireshark and clicked the "Stop" button (red square) after capturing traffic for about one minute. Verified that a sufficient number of packets were recorded in the interface.

5. Application of Protocol Filters

- Action: Applied filters to isolate packets by protocol.
- Details: Utilized the Wireshark filter bar to apply specific protocol filters: typed http to view HTTP traffic, dns for DNS queries, and tcp for TCP packets. Pressed Enter after each filter to display relevant packets.

6. Identification of Protocols

- **Action:** Identified at least three different protocols in the captured traffic.
- **Details:** Analyzed the filtered packets and used the "Protocol Hierarchy" option (right-click a packet > Statistics > Protocol Hierarchy) to confirm protocols. Identified examples include:
 - o **HTTP**: Traffic on port 80 related to web browsing.
 - o **DNS**: Queries on port 53 for domain name resolution.
 - o **TCP**: Handshake packets on various ports for reliable data transfer.

Packet Analysis with Wireshark on a Personal Network

HTTP Packets:

ICMP Packets:

DNS Packets:

DNS Packets:

7. Export of Capture File

- Action: Exported the captured traffic as a .pcap file.
- Details: Navigated to File > Save As in Wireshark, chose a save location, named the file (e.g., network_capture_20250630.pcap), and saved it in .pcap format for future reference or analysis.

8. Summary of Findings

- Action: Summarized the analysis of captured packets and their details.
- **Details:** Reviewed the capture, which included approximately 500 packets over one minute. Key observations:
 - HTTP: Approximately 100 packets showed GET requests to example.com, indicating webpage loading.

Packet Analysis with Wireshark on a Personal Network

- DNS: Around 20 packets resolved example.com to an IP address (e.g., 93.184.216.34).
- TCP: About 300 packets included handshake sequences (SYN, SYN-ACK, ACK) on ports like 80 or 443.
- No anomalies (e.g., excessive traffic or unexpected ports) were noted in this controlled test.