0.1 Schur 定理

回顾 Schur 定理.

命题 0.1

设 $A \neq n$ 阶实矩阵, 虚数 a+bi 是 A 的一个特征值,u+vi 是对应的特征向量, 其中 u,v 是实列向量. 求证:u,v 必线性无关. 若 A 是正规矩阵, 则 u,v 相互正交且长度相同(取实列向量空间的标准内积).

证明 由假设

$$A(u + vi) = (a + bi)(u + vi) = (au - bv) + (av + bu)i.$$
(1)

假设 u,v 线性相关,不妨设 $u \neq 0,v = ku$,则 (1 + ki)Au = (1 + ki)(a + bi)u,于是 Au = (a + bi)u,由此可得 Au = au,bu = 0,这与 $b \neq 0$ 且 $u \neq 0$ 相矛盾.

若 A 是正规矩阵, 在(1)式中比较实部和虚部得到

$$A\mathbf{u} = a\mathbf{u} - b\mathbf{v}, \quad A\mathbf{v} = a\mathbf{v} + b\mathbf{u}.$$

因为 A 正规, 故由命题??可知,u+vi 也是 A' 的属于特征值 a-bi 的特征向量, 即

$$A'(u + vi) = (a - bi)(u + vi) = (au + bv) + (av - bu)i.$$

比较实部和虚部得到

$$A'u = au + bv$$
, $A'v = av - bu$.

又 (Au, u) = (u, A'u), (Au, v) = (u, A'v), 将 Au, A'u 及 A'v 代入得到

$$(a\mathbf{u} - b\mathbf{v}, \mathbf{u}) = (\mathbf{u}, a\mathbf{u} + b\mathbf{v}), \quad (a\mathbf{u} - b\mathbf{v}, \mathbf{v}) = (\mathbf{u}, a\mathbf{v} - b\mathbf{u}).$$

由此可得 (u,v) = 0, (u,u) = (v,v).

命题 0.2

证明:n 阶实方阵 A 必正交相似于下列分块上三角矩阵:

$$C = \begin{pmatrix} A_1 & & * & & \\ & \ddots & & & \\ & & A_r & & \\ & & & c_1 & \\ & & & \ddots & \\ & & & & c_k \end{pmatrix}$$

其中 $A_i(1 \le i \le r)$ 是二阶实矩阵且 A_i 的特征值具有 $a_i \pm b_i \mathrm{i}(b_i \ne 0)$ 的形状, $c_i(1 \le j \le k)$ 是实数.

证明 对阶数 n 进行归纳. 当 n=0 时表示归纳过程已结束, 当 n=1 时结论显然成立. 现设对阶小于 n 的矩阵结论成立, 下分两种情况对 n 阶矩阵 A 进行讨论.

首先,假设 A 有实特征值 λ . 因为 A 和 A' 有相同的特征值,故 λ 也是 A' 的特征值. 将 A 看成是 n 维实列向量空间 \mathbb{R}^n (取标准内积) 上的线性变换,显然 A' 是 A 的伴随. 设 e_n 是 A' 的属于特征值 λ 的单位特征向量,则 $L(e_n)^\perp$ 是 A 的不变子空间. 将 A 限制在 $L(e_n)^\perp$ 上,由归纳假设,存在 $L(e_n)^\perp$ 的标准正交基 e_1, \cdots, e_{n-1} ,使得线性变换 A 在这组基下的表示矩阵为分块上三角矩阵. 于是在标准正交基 e_1, e_2, \cdots, e_n 下,线性变换 A 的表示矩阵就是要求的矩阵 C. 因为线性变换 A' 在同一组标准正交基下的表示矩阵为 C',故由 $A'e_n = \lambda e_n$ 可知 $\lambda = c_k$.

其次, 假设 A 没有实特征值, 并设 a+bi 是 A 的虚特征值. 因为 A 和 A' 有相同的特征值, 故 a+bi 也是 A' 的特征值. 假设 A' 的属于特征值 a+bi 的特征向量为 $\alpha+\beta i$, 其中 α,β 是实列向量, 则有

$$A'(\alpha + \beta i) = (a + bi)(\alpha + \beta i).$$

比较实部和虚部得到

$$A'\alpha = a\alpha - b\beta$$
, $A'\beta = b\alpha + a\beta$.

由例 9.86 可知, α , β 必线性无关. 设 $U = L(\alpha, \beta)$ 为 \mathbb{R}^n 的子空间,则上式表明 U 是线性变换 A' 的不变子空间,于是 U^{\perp} 是 A' 的伴随 A 的不变子空间. 注意到 $\dim U^{\perp} = n-2$, 故由归纳假设,存在 U^{\perp} 的标准正交基 e_1, \cdots, e_{n-2} ,使得线性变换 A 在这组基下的表示矩阵为分块上三角矩阵:

$$\begin{pmatrix} A_1 & * \\ & \ddots & \\ & & A_{r-1} \end{pmatrix}.$$

在U中选取一组标准正交基 e_{n-1} , e_n ,则在标准正交基 e_1 , e_2 , \cdots , e_n 下,线性变换A的表示矩阵为:

$$D = \begin{pmatrix} A_1 & & * \\ & \ddots & \\ & & A_{r-1} \\ & & & A_r \end{pmatrix}.$$

由于线性变换 A' 在同一组标准正交基下的表示矩阵为 D',故 A_r 是 A' 在 U 的标准正交基 e_{n-1}, e_n 下的表示矩阵. 又 $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ 是 A' 在 U 的基 α , β 下的表示矩阵,于是 A_r 相似于 $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$,从而它的特征值也为 $a \pm bi$.

命题 0.3

设 n 阶实矩阵 A 的特征值全是实数, 求证:A 正交相似于上三角矩阵.

证明 这是命题 0.2的直接推论. 另外, 也可由命题??和矩阵 QR 分解的实版本进行证明.

命题 0.4

设 A,B 是实方阵且分块矩阵 $\begin{pmatrix} A & C \\ O & B \end{pmatrix}$ 是实正规矩阵, 求证:C = O 且 A,B 也是正规矩阵.

证明 由已知

$$\begin{pmatrix} A & C \\ O & B \end{pmatrix} \begin{pmatrix} A' & O \\ C' & B' \end{pmatrix} = \begin{pmatrix} A' & O \\ C' & B' \end{pmatrix} \begin{pmatrix} A & C \\ O & B \end{pmatrix},$$

从而 AA' + CC' = A'A. 由于 tr(AA' + CC') = tr(A'A) = tr(AA'), 故可得 tr(CC') = 0, 再由 C 是实矩阵可推出 C = O, 于是 AA' = A'A, BB' = B'B.

命题 0.5

设A是n阶实正规矩阵, 求证: 存在正交矩阵P, 使得

$$P'AP = \operatorname{diag}\{A_1, \cdots, A_r, c_{2r+1}, \cdots, c_n\}.$$

其中
$$A_i = \begin{pmatrix} a_i & b_i \\ -b_i & a_i \end{pmatrix} (1 \leqslant i \leqslant r)$$
 是二阶实矩阵, $c_j(2r+1 \leqslant j \leqslant n)$ 是实数.

证明 由命题 0.2,A 正交相似于命题 0.2中的分块上三角矩阵, 再反复用命题 0.4的结论可知这是个分块对角矩阵. 又因为每一块都是正规矩阵, 故或是二阶正规矩阵 A_i , 或是实数 c_j (一阶矩阵). 对于二阶正规矩阵的情形, 由命题 0.1的证明过程可知, 若设 A_i 的特征值为 $a_i + b_i$ i, 对应的特征向量为 u + vi, 令 $P_i = (\frac{u}{\|u\|}, \frac{v}{\|v\|})$, 则 P_i 为二阶正交

矩阵, 且 $P'_iA_iP_i = \begin{pmatrix} a_i & b_i \\ -b_i & a_i \end{pmatrix}$.