

João Vicente Souto joao.vicente.souto@posgrad.ufsc.br

Parallel Computing - Computer Science INE/UFSC, Florianópolis

September 29, 2020

Presentation Outline

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

- Introduction
- Virtualization
- 3 Migration
 - Pre-Copy Migration
 - Post-Copy Migration
- Metrics
- LW Processors
 - Kalray MPPA-256
- Motivation and Justification

Introduction

Virtualization

Migration
Pre-Copy Migration

Post-Copy Migration

Metrics

LW Processors

Kalray MPPA-256

Motivation and Justification

Introduction

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Transferring a process between machines

- Proposed for:
 - Load balancing
 - Fault tolerance
 - System administration
 - Data access locality
- Arising of distributed systems
- Solutions established:
 - MOSIX (1985)
 - V (1988)
 - OSF/1 AD TNC (1995)

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

- Transferring a process between machines
- Proposed for:
 - Load balancing
 - Fault tolerance
 - Improved system administration
 - Data access locality
- Arising of distributed systems
- Solutions established:
 - MOSIX (1985)
 - V (1988)
 - OSF/1 AD TNC (1995)

Introduction

Virtualization

Post-Copy Migration

Metrics

IW Processors

- Despite the research efforts, migration has not achieved widespread use
- Treating residual dependency is a difficult task:
 - Opened files stored in the source node
 - Opened communicators with other processes
 - Shared resources
 - Internal kernel state.
- Solution: Virtualization

Introduction

Virtualization

Post-Copy Migration

Metrics

IW Processors

Motivation and Justification

 Despite the research efforts, migration has not achieved widespread use

Treating residual dependency is a difficult task:

- Opened files stored in the source node
- Opened communicators with other processes
- Shared resources
- Internal kernel state.
- Solution: Virtualization

Introduction

Virtualization

Post-Copy Migration

Metrics

IW Processors

- Despite the research efforts, migration has not achieved widespread use
- Treating residual dependency is a difficult task:
 - Opened files stored in the source node
 - Opened communicators with other processes
 - Shared resources
 - Internal kernel state.
- Solution: Virtualization

Introduction

Virtualization

Migration Pre-Copy Migration

Post-Copy Migration

Metrics

LW Processors

Kalrav MPPA-256

Motivation and Justification

Virtualization

Virtualization

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Create a Virtual Version of Computing Resources

- CPU
- Memory
- Storage device
- Network device

Features

- Improved previous features
- Power management
- Security

Two types

- Virtual Machines (VM)
- Containers

Virtualization

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Create a Virtual Version of Computing Resources

- CPU
- Memory
- Storage device
- Network device

Features

- Improved previous features
- Power management
- Security

Two types

- Virtual Machines (VM)
- Containers

Virtualization

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Create a Virtual Version of Computing Resources

- CPU
- Memory
- Storage device
- Network device

Features

- Improved previous features
- Power management
- Security

Two types

- Virtual Machines (VM)
- Containers

Virtual Machines (VM)

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

- Encapsulates a whole operating system
- Depends on a Hypervisor to provide the hardware resources
 - Full virtualization
 - Paravirtualization

Migration of VMs

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Memory content

- Hypervisor allocated memory
- Guest OS allocated memory
- Application requested memory
- Disk content
 - Hypervisor allocated blocks
 - Guest OS used blocks
 - Application used blocks

Migration of VMs

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Memory content

- Hypervisor allocated memory
- Guest OS allocated memory
- Application requested memory

Disk content

- Hypervisor allocated blocks
- Guest OS used blocks
- Application used blocks

Containers

Introduction

Virtualization

Migration Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

OS-level virtualization

- Multiple isolated user space instances (Shared OS)
- Lightweight compared to VMs
 - Linux Containers
 - Docker

Migration of Containers

Introduction

Virtualization

Pre-Copy Migration Post-Copy Migration

Metrics

LW Processors

- Transfer the file system of the container
- Save the state of the container into a file (all processes and their resources)
- Transfer the container file
- Restart the container

Introduction

Virtualization

Migration

Pre-Copy Migration
Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Migration

Migration Techniques

Introduction

Virtualization

Migration Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Generally, there are three stages of memory transfer:

- Push Copy (iteration copy) stage
- Stop-and-Copy stage
- Pull Copy (On-demand copy) stage
- Migration techniques
 - Stop-and-Copy
 - Pre-Copy
 - Post-Copy
 - Hybrid

Migration Techniques

Introduction

Virtualization

Migration Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Generally, there are three stages of memory transfer:

- Push Copy (iteration copy) stage
- Stop-and-Copy stage
- Pull Copy (On-demand copy) stage

Migration techniques:

- Stop-and-Copy
- Pre-Copy
- Post-Copy
- Hybrid

Introduction

Virtualization

Migration Pre-Copy Migration

Post-Copy Migration

Metrics

LW Processors

Pre-Copy Scenario

Introduction

Virtualization

Migration

Pre-Copy Migration Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Resource reservation and transfer preparation

I V Souto

Introduction

Virtualization

Migration

Pre-Copy Migration Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Sending the memory pages before the execution context

Push Copy Stage

Introduction

Virtualization

Pre-Copy Migration Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

When enough memory has been transferred, send the execution context Stop-and-Copy Stage

Introduction

Virtualization

Migration

Pre-Copy Migration Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Resume stopped execution context in the destination

Introduction

Virtualization

Migration

Post-Copy Migration

Metrics

LW Processors

Post-Copy Scenario

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Sends execution context before memory pages

I V Souto

Virtualization

Migration

Post-Copy Migration

Metrics

IW Processors

Motivation and Justification

Merges pull rest of memory pages and any page that generate page faults **Pull Copy Stage**

Introduction

Virtualization

Migration

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Continues execution normally

Introduction

Virtualization

Migration
Pre-Copy Migration

Post-Copy Migration

Metrics

LW Processors

Kalray MPPA-256

Motivation and Justification

Metrics

Performance Metrics

Introduction

Virtualization

Migration

Post-Copy Migration

Metrics

IW Processors

Motivation and Justification

■ Total Migration Time

- Downtime
- Pages Transfered
- Preparation Time
- Resume Time
- Application Degradation
- Page Dirty Rate
- Link Degradation

Introduction

Virtualization

Migration Pre-Copy Migration

Post-Copy Migration

Metrics

LW Processors

Kalrav MPPA-256

Motivation and Justification

LW Processors

Lightweight Manycores Processors

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Overview of a Manycore

Hundreds of Lightweight Cores

- Expose Massive thread-level parallelism
- Feature low-power consumption
- Target MIMD workloads
- Distributed Memory Architecture
- On-Chip Heterogeneity

Lightweight Manycores Processors

Virtualization

Post-Copy Migration

Metrics

LW Processors

Overview of a Manycore

- Hundreds of Lightweight Cores
- **Distributed Memory Architecture**
 - Grants scalability
 - Relies on a Network-on-Chip (NoC)
 - Has constrained memory systems
- On-Chip Heterogeneity

Lightweight Manycores Processors

Introduction

Virtualization

Post-Copy Migration

Metrics

IW Processors

Overview of a Manycore

- Hundreds of Lightweight Cores
- Distributed Memory Architecture
- On-Chip Heterogeneity
 - Features different components

Kalray MPPA-256

A Lightweight Manycore Processor

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Kalrav MPPA-256

Motivation and Justification

■ 288 processing cores

- 16 Compute Cluster (CC)
- 4 I/O Cluster (IO)

Data NoC (D-NoC)

- 256 RX slots
- 8 TX channels
- \blacksquare 8 μ threads for async TX

Control NoC (C-NoC)

- 128 RX slots
- 4 TX channels

Introduction

Virtualization

Migration
Pre-Copy Migration

Post-Copy Migration

Metrics

LW Processors

Kalray MPPA-256

Motivation and Justification

Motivation and Justification

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

- Load balancing
- Fault tolerance
- System administration
- Data locality
- Power management
- Security

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

■ Bring the benefits of migration and process virtualization to lightweight manycores

Load balancing

- Better work distribution
- Fault tolerance
- System administration
- Data locality
- Power management
- Security

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

- Load balancing
- Fault tolerance
 - Save/restore processes state
- System administration
- Data locality
- Power management
- Security

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

- Load balancing
- Fault tolerance
- System administration
 - Allow multiuser execution and management
- Data locality
- Power management
- Security

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

- Load balancing
- Fault tolerance
- System administration
- **Data locality**
 - Move processes to closer to the data source
- Power management
- Security

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

- Load balancing
- Fault tolerance
- System administration
- Data locality
- Power management
 - Separate CPU-bound processes to improve heat dissipation
- Security

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

- Load balancing
- Fault tolerance
- System administration
- Data locality
- Power management
- Security
 - Better isolation and kill suspicious processes

Introduction

Virtualization

Post-Copy Migration

Metrics

IW Processors

Motivation and Justification

■ Parallel and distributed nature of lightweight manycores

- Memory restrictions do not support a complete virtual environment like VMs
- Explore lighter forms of virtualization as at the OS level
- Integrate virtualization into a distributed OS designed for lightweight manycores

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Parallel and distributed nature of lightweight manycores

- **Memory restrictions** do not support a complete virtual environment like VMs
- Explore lighter forms of virtualization as at the OS level
- Integrate virtualization into a distributed OS designed for lightweight manycores

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Parallel and distributed nature of lightweight manycores

- Memory restrictions do not support a complete virtual environment like VMs
- Explore **lighter forms of virtualization**, e.g., OS-level
- Integrate virtualization into a distributed OS designed for lightweight manycores

Introduction

Virtualization

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

Parallel and distributed nature of lightweight manycores

- Memory restrictions do not support a complete virtual environment like VMs
- Explore lighter forms of virtualization, e.g., OS-level
- Integrate virtualization into a distributed OS designed for lightweight manycores

João Vicente Souto joao.vicente.souto@posgrad.ufsc.br

Parallel Computing - Computer Science INE/UFSC, Florianópolis

September 29, 2020

References I

Introduction

Virtualization

Migration
Pre-Copy Migration

Post-Copy Migration

Metrics

LW Processors

Motivation and Justification

