Projet d'aide à la décision

Paul Adenot, Etienne Brodu, Maxime Gaudin, Monica Golumbeanu, Yoann Rodière $5\ {\rm octobre}\ 2010$

Table des matières

Ι	Programmation Linéaire monocritère	3
1	Données 1.1 Contraintes	
2	Objectif : Comptable 2.1 Modélisation 2.2 Décisions	
3	Objectif : Responsable d'atelier 3.1 Modélisation 3.2 Décisions	
4	Objectif : Responsable des stocks 4 1 Modélisation	8

Résumé

Première partie

Programmation Linéaire monocritère

Hexanome 4203 1 DONNÉES

1 Données

Soient:

- \mathbf{T} la matrice des temps unitaires d'usinage d'un produit sur une machine (minutes) (C.f. Table 1).
- Q la matrice de quantité de matières premières par produit (C.f. Table 2).
- S la matrice des quantité maximum de matières premières (C.f. Table 3).
- V la matrice des prix de vente des produits finis (C.f. Table 4)
- A la matrice des prix d'achat des matières premières.
- C la matrice des coûts horaires des machines (C.f. Table 5).

1.1 Contraintes

Considérons:

- -7 machines $j \in 1, 2, 3, 4, 5, 6, 7$
- 6 produits $i \in A, B, C, D, E, F$
- $-n_i$ le nombre de d'unités i fabriquées

L'ensemble de la chaine de production est régie par les contraintes suivantes :

- Le nombre de produits usinés : Il doit être non nul

$$n_i \ge 0 \tag{1}$$

 Le temps d'occupation de chaque machine i : Il doit être inférieur au temps de travail

$$\sum_{j=A}^{F} T_{j,i} \cdot n_j \le 2.8.60.5 = 4800 \tag{2}$$

soit un temps de travail en deux huit, 5 jours par semaine.

- L'utilisation de chaque matière première i : Elle doit être inférieure au stock

$$\sum_{j=A}^{F} Q_{i,j}.n_j \le S_i \tag{3}$$

1.1.1 Modélisation sous forme matricielle

Pour donner au problème une forme standard, nous allons le modéliser par des inéquations et des produits matriciels. Les contraintes C0, C1 et C2 se traduisent trivialement de la manière suivante :

$$A.n \le b \tag{4}$$

Avec : $(A) = (-I \ T^t \ Q)b = (0 \ 0 \ 0 \ 0 \ 0 \ 4800 \ 4800 \ 4800 \ 4800 \ 4800 \ 4800 \ 4800 \$

4800

Hexanome 4203 1 DONNÉES

 $4800 \\ S^t)$

2 Objectif: Comptable

Le comptable cherche à maximiser les bénefices sous les contraintes définies précedemment.

2.1 Modélisation

Soit n_i le nombre de produit i fabriqué. Le coup fixe de production n'influant pas sur notre décision, nous ne considérerons que le coût variable de production. Il est défini par la formule suivante :

$$CV(i) = n_i * \left(\sum_{j=1}^{7} T_{i,j} \cdot \frac{C_{i,j}}{60} + \sum_{k=1}^{3} Q_{k,i} \cdot A_k\right)$$

Le chiffre d'affaire par produit est :

$$CA(i) = n_i.V_i$$

Par conséquent le bénefice par produit se calcule de la manière suivante :

$$B(i) = CA(i) - CV(i)$$

$$B(i) = n_i * \left(V_i - \sum_{j=1}^{7} T_{i,j} \cdot \frac{C_{i,j}}{60} + \sum_{k=1}^{3} Q_{k,i} \cdot A_k\right)$$

2.2 Décisions

3 Objectif: Responsable d'atelier

Le responsable d'atelier cherche à maximiser le nombre d'unités (toutes catégories confondues) produites sous les contraintes définies précedemment.

3.1 Modélisation

Soit N le nombre de produits fabriqués.

$$N = \sum_{i=A}^{F} \tag{5}$$

3.2 Décisions

4 Objectif: Responsable des stocks

Le responsable des stocks cherche à minimiser le nombre de de produits dans son stock sous les contraintes définies précedemment.

4.1 Modélisation

Soit $Stock(n_i)$ le nombre de produits en stock (en unités de stock). Cette fonction est la somme des produits fabriqués à laquelle on soustrait la quantité de matières premières utilisée.

On a ainsi la formule suivante, où n_i est la quantité de produit usiné (pour chaque produit i), et $Q_{i,j}$ est la quantité de matière première par produit pour chaque produit i et chaque matière première j.

$$Stock(n_i) = \sum_{i} n_i - \sum_{i} n_i \times Q_{i,j}$$
 (6)

(formule pas encore valide)