

A NOTE ON AUTOMORPHISMS OF FREE NILPOTENT GROUPS

SANDRO MATTAREI

ABSTRACT. We exhibit normal subgroups of a free nilpotent group F of rank two and class three, which have isomorphic finite quotients but are not conjugate under any automorphism of F .

A remarkable fact about free profinite groups of finite rank is that any isomorphism between finite quotients of such a group F lifts to an automorphism of F . This is true, more generally, if F a free pro- \mathcal{C} -group of finite rank, where \mathcal{C} is a family of finite groups closed under taking subgroups, homomorphic images and direct products, and containing nontrivial groups. A proof and the relevant definitions can be found in [FJ86, Proposition 15.31], but the essence of the argument goes back to Gaschütz [Gas55]. In preparation for a summer school on “*Zeta functions of groups*” held by Marcus du Sautoy and the author in June 2002 in Trento (Italy), du Sautoy suggested that this may remain true for (abstract) free nilpotent groups F , and asked the author, who was responsible for that part of the course, to provide a proof. If confirmed, this claim would have simplified the course by avoiding the need to set up the language of profinite groups.

Unfortunately, this claim already fails for F a free abelian group of rank one, that is, an infinite cyclic group: in this case F has exactly two automorphisms, while its quotient of order n has $\varphi(n)$ automorphisms, and $\varphi(n) > 2$ for $n > 4$. A milder statement which would have been sufficient for our purposes would be that any two normal subgroups of F with finite isomorphic quotients are conjugate under some automorphism of F . This is also false, and one does not have to dig much deeper in order to find a counterexample. We first record an example suggested by the anonymous referee. It is based on a three-generated group of order p^6 and class two, which was studied in [DH75]. After that we present an example where F is two-generated and the quotients have order p^4 . This order is easily seen to be minimal for such an example.

2000 *Mathematics Subject Classification.* Primary 20E05; secondary 20F18.

Key words and phrases. Free nilpotent group, automorphism.

The author is grateful to Ministero dell’Istruzione, dell’Università e della Ricerca, Italy, for financial support of the project “Graded Lie algebras and pro- p -groups of finite width”.

Example. The groups G of odd order p^6 satisfying $G' = Z(G) = G^p$ were classified by Daves and Heineken in [DH75] in terms of dualities of a three-dimensional vector space over the field of p elements. In particular, the group G in their case (I) has a p -group as the full group of automorphisms. One can realize G as the quotient of the free nilpotent group $F = \langle x, y, z \rangle$ of rank three and class two modulo the normal subgroup M_r generated by $(F')^p$ and the three elements

$$x^{rp}[y, x], \quad y^{rp}[z, x], \quad z^{rp}[z, x]^{-1}[z, y],$$

where r is any integer prime to p . When $r = 1$ the relations associated with these three elements correspond to the matrix $D = (a_{ij}) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$ as described in [DH75, p. 219], with x, y, z in place of x_1, x_2, x_3 . However, all choices of r prime to p give rise to isomorphic groups F/M_r . Assuming $p \neq 2, 3, 7$, we can choose r such that $r^3 \not\equiv \pm 1 \pmod{p}$. In particular, we may always take $r = 2$. Then M_1 and M_r are not conjugate under $\text{Aut}(F)$.

In order to see this it suffices to show that no isomorphism of F/M_r onto F/M_1 lifts to an automorphism of F . One isomorphism of F/M_r onto F/M_1 is obtained by mapping x, y, z to x^r, y^r, z^r , respectively. This induces an automorphism of their common quotient $F/M_1 M_r = F/F' F^p$, with determinant r^3 when the latter is viewed as a vector space over the field of p elements. Any other isomorphism of F/M_r onto F/M_1 is obtained by composing the one described with an automorphism of F/M_1 . Since the latter has p -power order, and hence determinant one on $F/F' F^p$, we conclude that every isomorphism of F/M_r onto F/M_1 induces an automorphism of $F/F' F^p$ with determinant r^3 . Because automorphisms of F induce maps of determinant ± 1 on F/F' viewed as a free \mathbb{Z} -module, and $r^3 \not\equiv \pm 1 \pmod{p}$, they cannot induce any isomorphism of F/M_r onto F/M_1 .

A more careful analysis, such as that in the proof of the Theorem below, would reveal that for any odd prime p (thus including 3 and 7), the subgroups M_r and M_s are conjugate under $\text{Aut}(F)$ if and only if $r \equiv \pm s \pmod{p}$. We leave the details to the interested reader and only suggest to use the fact that the subgroups $\langle G', x \rangle$ and $\langle G', x, y \rangle$ of $G = F/M_1$ are characteristic. In fact, according to [DH75], $\text{Aut}(G)$ is generated by the automorphism determined by $x \mapsto x, y \mapsto xy, z \mapsto yz$ together with the p^9 central automorphisms, which induce the identity map on G/G' .

In the two-generated example which we present now the group of automorphisms of the finite quotients is not a p -group. Hence the proof is more involved, and we formally state the result as a theorem.

Theorem. *Let $F = \langle x, y \rangle$ be the free nilpotent group of rank two and class three, and let p be a prime greater than three. For $r = 1, \dots, p-1$*

set

$$N_r = \langle x^{p^2}, y^p, x^{-rp}[y, x, x], [y, x, y] \rangle^F,$$

where the superscript F denotes taking the normal closure in F . Then F/N_r is a p -group of order p^4 , class three and exponent p^2 . All quotients F/N_r are isomorphic. However, N_r and N_s belong to the same orbit under $\text{Aut}(F)$ if and only if $r = s$ or $r = p - s$.

Proof. It is well known that each element of F can be written as $x^i y^j [y, x]^k [y, x, x]^l [y, x, y]^m$ for uniquely determined integers i, j, k, l, m , see [Hal59, Theorem 11.2.4]. It is then easy to deduce that each coset of $K = \langle x^{p^2}, y^p, [y, x, y] \rangle^F$ in F has a unique representative of the form $x^i y^j [y, x]^k [y, x, x]^l$, with $0 \leq i < p^2$ and $0 \leq j, k, l < p$. This also follows from a general result giving \mathbb{F}_p -bases, in terms of basic commutators and their powers, for the factors of the lower p -central series of a free group, see [Sco91, Lemmas 1.11 and 1.12], for instance. In particular, K has index p^5 in F , and hence $N_r = \langle K, x^{-rp}[y, x, x] \rangle$ has index p^4 in F . Clearly, F/N_r has class three and exponent p^2 .

We will determine all endomorphisms of F which map N_r into N_s and induce an isomorphism between the quotient groups F/N_r and F/N_s . Since M/N_r , where $M = \langle x^p, y \rangle^F$, is the only abelian maximal subgroup of F/N_r , we may restrict our attention to endomorphisms which map M into itself. Thus, let ψ be an endomorphism of F such that $\psi(x) = x^i y^j c$ and $\psi(y) = y^k d$, for some integers i, j, k and some $c, d \in F' F^p$. We may also assume that i and k are prime to p , because this is a necessary condition for inducing an isomorphism of F/N_r onto F/N_s and, in particular, an automorphism of $F/F' F^p$.

As a special case of [Hup67, Hilfssatz III.10.9(b)] or [LGM02, Corollary 1.1.7(i)], if a, b are elements of a p -group G of class less than p , and if the normal closure of b is abelian of exponent p , then $(ab)^p = a^p$. Since $\langle y, [y, x], [y, x, x], K \rangle/K$, the normal closure of yK in F/K , is abelian of exponent p , and because of standard commutator identities, we have

$$\begin{aligned} \psi(x^{p^2}) &= ((x^i y^j c)^p)^p \equiv (x^{ip})^p \equiv 1 \pmod{K} \\ \psi(y^p) &= (y^k d)^p \equiv 1 \pmod{K} \\ \psi([y, x, y]) &= [y^k d, x^i y^j c, y^k d] \equiv [y, x, y]^{ik^2} \equiv 1 \pmod{K}. \end{aligned}$$

Thus, ψ maps K into itself. Because of our assumption that i and k are prime to p , it induces an automorphism of $F/F' F^p$, and hence an automorphism of F/K , since the former is the Frattini quotient of the latter. Finally, we have

$$\begin{aligned} \psi(x^{-rp}[y, x, x]) &= (x^i y^j c)^{-rp} [y^k d, x^i y^j c, x^i y^j c] \\ &\equiv x^{-irp} [y, x, x]^{i^2 k} \pmod{K}. \end{aligned}$$

Consequently, ψ maps N_r into N_s if and only if $x^{-irp}[y, x, x]^{i^2k}$ equals a power of $x^{-sp}[y, x, x]$, that is, if and only if $iks \equiv r \pmod{p}$. If this condition is met, and it certainly can by a suitable choice of i and k , then ψ induces an isomorphism of F/N_r onto F/N_s , as desired.

It remains to see when the endomorphism ψ of F is an automorphism. Recall that F , being a finitely generated nilpotent group, is hopfian, that is, each surjective endomorphism of F is an automorphism [MKS76, Theorem 5.5]. Thus, ψ is an automorphism if and only if it is surjective, that is, if and only if it induces an automorphism of its Frattini quotient $F/\Phi(F) = F/F'$. It follows that ψ is an automorphism of F if and only if $ik = \pm 1$. Consequently, N_r and N_s belong to the same orbit under $\text{Aut}(F)$ if and only if $r \equiv \pm s \pmod{p}$. \square

REFERENCES

- [DH75] G. Daues and H. Heineken, *Dualitäten und Gruppen der Ordnung p^6* , Geometriae Dedicata **4** (1975), no. 2/3/4, 215–220. MR MR0401907 (53 #5733)
- [FJ86] Michael D. Fried and Moshe Jarden, *Field arithmetic*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 11, Springer-Verlag, Berlin, 1986. MR MR868860 (89b:12010)
- [Gas55] Wolfgang Gaschütz, *Zu einem von B. H. und H. Neumann gestellten Problem*, Math. Nachr. **14** (1955), 249–252 (1956). MR MR0083993 (18,790b)
- [Hal59] Marshall Hall, Jr., *The theory of groups*, The Macmillan Co., New York, N.Y., 1959. MR MR0103215 (21 #1996)
- [Hup67] B. Huppert, *Endliche Gruppen. I*, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967. MR MR0224703 (37 #302)
- [LGM02] C. R. Leedham-Green and S. McKay, *The structure of groups of prime power order*, London Mathematical Society Monographs. New Series, vol. 27, Oxford University Press, Oxford, 2002, Oxford Science Publications. MR MR1918951 (2003f:20028)
- [MKS76] Wilhelm Magnus, Abraham Karrass, and Donald Solitar, *Combinatorial group theory*, revised ed., Dover Publications Inc., New York, 1976, Presentations of groups in terms of generators and relations. MR MR0422434 (54 #10423)
- [Sco91] Carlo M. Scoppola, *Groups of prime power order as Frobenius-Wielandt complements*, Trans. Amer. Math. Soc. **325** (1991), no. 2, 855–874. MR MR998129 (91j:20051)

E-mail address: mattarei@science.unitn.it

URL: <http://www-math.science.unitn.it/~mattarei/>

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI DI TRENTO, VIA SOMMARIVE 14, I-38050 POVO (TRENTO), ITALY