# Hearing loss meta-analysis

# Francis Manno PhD & Raúl R. Cruces PhD

# $10~\mathrm{March},~2020$

# Contents

| Methods                                                                                                    | 3       |
|------------------------------------------------------------------------------------------------------------|---------|
| Eligibility Criteria                                                                                       | 3       |
| Estimatimation of heterogeneity per model                                                                  | 4       |
| Total included studies                                                                                     | 4       |
| Table of included studies (Figure 1.A)                                                                     | 4       |
| Relation between hearing loss (dB) and age (Figure 2.D)                                                    | 6       |
| Studies characteristics (Figure 2.E, 2.F)                                                                  | 7       |
| Brain structure (GM, WM) and MRI measures $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$ | 8       |
| Frequency table: Brain structure (GM, WM) and MRI measures                                                 | 8       |
| Brain structure (GM, WM) and side                                                                          | Ć       |
| Brain structure (GM, WM) by MRI measure (volume) and ROI $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$    | g       |
| Studies characteristics (Figure 2.A, 2.B): Brain structure (GM, WM) by MRI measure (volume and FA)         | e<br>10 |
| MRI measures by ROI (Figure 2.C)                                                                           | 10      |
| Relations of all MRI measurements of GM and WM with age                                                    | 11      |
| Gray matter relation with Age by volume (Figures 3.A and 3.B)                                              | 12      |
| White matter relation with Age by volume and FA (Figures 3.C, 3.D and 3.F)                                 | 13      |
| Gray and White matter relation with Age by asymmetry                                                       | 13      |
| Table of estimates and meta-regression: WM and GM relation with age by MRI measures (volume and FA)        | 14      |

| Gray Matter Volume: Random effects model no intercept covariated by Big area                                                                                                                                                                                 |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Gray Matter volume: Random enects model no intercept covariated by big area                                                                                                                                                                                  | 16                                    |
| ACQUIRED - Meta-regressions of Gray Matter by Volume                                                                                                                                                                                                         | 19                                    |
| CONGENITAL - White Matter by VOLUME                                                                                                                                                                                                                          | 22                                    |
| ACQUIRED - White Matter by VOLUME (ONLY BILATERAL)                                                                                                                                                                                                           | 25                                    |
| CONGENITAL - White Matter by FA fractional anisotropy                                                                                                                                                                                                        | 26                                    |
| ACQUIRED - White Matter by FA fractional anisotropy (ONLY RIGHT)                                                                                                                                                                                             | 29                                    |
| Supplementary material: heterogeneity per model                                                                                                                                                                                                              | 32                                    |
| Heterogeney: GM volume Right                                                                                                                                                                                                                                 | 32                                    |
| Heterogeney: GM volume Left                                                                                                                                                                                                                                  | 33                                    |
| Heterogeney: WM FA Right                                                                                                                                                                                                                                     | 34                                    |
| Heterogeney: WM FA Left                                                                                                                                                                                                                                      | 35                                    |
| Heterogeney: WM volume Right                                                                                                                                                                                                                                 | 36                                    |
| Heterogeney: WM volume Left                                                                                                                                                                                                                                  | 37                                    |
| Meta-regressions of Gray Matter Volume & Brain Areas: Random effects model no intercept covariated by Side                                                                                                                                                   | 38                                    |
| Meta-regressions of White Matter FA & Brain Areas: Random effects model no intercept covariated by Side                                                                                                                                                      | τ<br>49                               |
|                                                                                                                                                                                                                                                              |                                       |
| Meta-regressions of White Matter Volume & Brain Areas: Random effects model no integer covariated by Side                                                                                                                                                    | ·-<br>57                              |
|                                                                                                                                                                                                                                                              |                                       |
| cept covariated by Side                                                                                                                                                                                                                                      | 57<br>63                              |
| cept covariated by Side Supplementary material: Forest-plots of other Measures                                                                                                                                                                               | <b>63</b>                             |
| cept covariated by Side  Supplementary material: Forest-plots of other Measures  Hesch gyrus FA white matter                                                                                                                                                 | <b>63</b>                             |
| cept covariated by Side  Supplementary material: Forest-plots of other Measures  Hesch gyrus FA white matter                                                                                                                                                 | <b>63</b> 63 64                       |
| cept covariated by Side  Supplementary material: Forest-plots of other Measures  Hesch gyrus FA white matter                                                                                                                                                 | <b>63</b> 63 64 <b>65</b>             |
| cept covariated by Side  Supplementary material: Forest-plots of other Measures  Hesch gyrus FA white matter  STG Volume White matter  Measures of White matter Integrity  White matter: RD                                                                  | <b>63</b> 63 64 <b>65</b> 65          |
| cept covariated by Side  Supplementary material: Forest-plots of other Measures  Hesch gyrus FA white matter  STG Volume White matter  Measures of White matter Integrity  White matter: RD  White matter: MD                                                | <b>63</b> 63 64 <b>65</b> 65 66       |
| cept covariated by Side  Supplementary material: Forest-plots of other Measures  Hesch gyrus FA white matter  STG Volume White matter  Measures of White matter Integrity  White matter: RD  White matter: MD  White matter: Mean Kurtosis                   | <b>63</b> 63 64 <b>65</b> 65 66       |
| cept covariated by Side  Supplementary material: Forest-plots of other Measures  Hesch gyrus FA white matter  STG Volume White matter  Measures of White matter Integrity  White matter: RD  White matter: MD  White matter: Mean Kurtosis  White matter: AD | <b>63</b> 63 64 <b>65</b> 65 66 67 68 |

| Resources                                                     | 7  |
|---------------------------------------------------------------|----|
| Galbraith plot                                                | 70 |
| Baujat plot to identify studies contributing to heterogeneity | 70 |
| The L'Abbé plot                                               | 70 |
| Meta Plots                                                    | 70 |

#### Methods

#### Eligibility Criteria

We included peer-review publications in English, involving patients with bilateral congenital and mixed hearing loss and controls with structural Magnetic Resonance Imaging. We included cross-sectional studies with control groups, that investigated the structural relation between MRI changes and the hearing loss. The most common MRI measures were **volume**, **FA**, **VBM** and **thickness**. Each measure was assignated to a specific ROI and to a big brain area. (eg. HG and superior temporal lobe belong to **temporal lobe**). A total of 59 studies were included, 6 of them contained incomplete information. A total of 2778 patients and 4214 controls.

Notes for inclusion:

- 1. I excluded Xia et al. Chin J Rad, 2008 because I don't understand chinese and it appears to be the same data as Xia et al. Chin J Med Img Tech, 2008.
- 2. Kim et al. Hear Res 2014 used two groups prelingual deaf and post lingual deaf, I used the average for the main table.
- 3. Xia et al. Chin J Med Img Tech, 2008 had a total of 40 patients, two groups 9-12 years and 19-22 years, no controls.
- 4. Zheng et al. Sci Rep, 2017 this variables change; Con rangeLow Con rangeHigh. Why? I didn't find them on the orignal paper.

Effect size direction was directly include in the Cohen's D value by mutiplying by -1 if the effect was decrease and by 1 if it was none of increased. Forests plots were generated form the meta-regression with subgroups left and right. We measure a general regression for white and gray mater by Etiology (congenital and acquired) with subgroups (left and right).

Effects were summarized across studies using the generic inverse-variance weighting method with DerSimonian and Laird random effects. Studies were weighted by 1/SEš (where SE is the standard error). For the effect size we used Hedges'G, wich takes into account the sample size.

$$Hedges'G = \frac{X_1 - X_2}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}}$$

#### **Assumptions:**

- 1. We assume that the calculation of the cohen's D is correct.
- 2. We assume that the direction of the effect is correct.

3. Variance was estimated using the cohen's D and sample size of each study. Our estimated variance was used for all meta-regressions, therefore we could have and additional bias in-between studies variance and heterogeneity calculations. We should have calculated the effect size from the mean and standard deviation from each study. Variance was estimated using the following formula:

$$Variance = \frac{n1+n2}{n1\times n2} + \frac{Hedges'G^2}{2\times (n1+n2-2)}$$

#### Estimation of heterogeneity per model

We estimated heterogeneity in results using the  $\tau$  statistic, which represents the standard deviation in the meta-regression models, we used the heterogeneity test x2 and I2.

We performed a multi-level meta-analytic model, over our multiple effect size estimates nested withing variables: Etiology, side and Big brain area. We expected that the underlying true effects are more similar for the same level of the grouping variables than thrue effects arising from different levels.

We can account for the correlation in the true effects by adding a random effect to the model at the level corresponding to the grouping variable.

The dataset contains the result from 54 studies, each comparing different measurements between patients and controls. The difference of between groups was quantified in terms of Hedges'G and Cohen's D.

#### Total included studies

Table 1: Total unique studies 54

|                          | Hearing Loss | Healthy |
|--------------------------|--------------|---------|
| Total number of patients | 2778         | 4214    |
| Number mean              | 47.08        | 71.42   |
| Number sd                | 128.5        | 250.6   |
| Age mean                 | 33.07        | 30.96   |
| m Age~SD                 | 22.66        | 20.5    |
| %Female mean             | 50.02        | 55.71   |
| %Female sd               | 12.05        | 12.78   |

Table 2: Acquired studies 13

|                          | Hearing Loss | Healthy |
|--------------------------|--------------|---------|
| Total number of patients | 1766         | 3146    |
| Number mean              | 110.4        | 196.6   |
| Number sd                | 239          | 468.2   |
| Age mean                 | 64.6         | 55.27   |
| Age~SD                   | 7.863        | 13.85   |
| %Female mean             | 45.1         | 56.52   |
| %Female sd               | 15.09        | 12.9    |

Table 3: Congenital studies 41

|                                         | Hearing Loss | Healthy |
|-----------------------------------------|--------------|---------|
| Total number of patients                | 1012         | 1068    |
| Number mean                             | 23.53        | 24.84   |
| Number sd                               | 17.18        | 15.04   |
| Age mean                                | 21.06        | 20.99   |
| $\widetilde{\mathrm{Age}}\ \mathrm{SD}$ | 12.48        | 13.06   |
| %Female mean                            | 51.83        | 55.41   |
| %Female sd                              | 10.37        | 12.88   |

# Table of included studies (Figure 1.A)

Table 4: Studies with incomplete information (NA)

|           | Source                             | MRI Tesla | all.techniques | all.measures              |
|-----------|------------------------------------|-----------|----------------|---------------------------|
| 5         | 2006, Kara et al. J Neuroradiol    | 1.5       | VBM            | length, Thickness, volume |
| 9         | 2008, Xia et al. Chin J Med Img    | 1.5       | VBM            | volume                    |
| 12        | 2010, Husain et al. Brain Res      | 3         | DTI, VBM       | FA, volume                |
| <b>26</b> | 2014, Lyness et al. Neuroimage     | 1.5       | DTI            | FA, MD, RD                |
| 41        | 2017, Karns et al. Hear Res        | 3         | DTI            | AD, FA, RD, volume        |
| 48        | 2018, Kumar U, Mishra M. Brain Res | 3         | VBM            | Thickness, VBM            |

Table 5: Included studies

|           | Source                                         | MRI Tesla | all.techniques | all.measures                                                  |
|-----------|------------------------------------------------|-----------|----------------|---------------------------------------------------------------|
| 1         | 2000, Bavelier et al. J Neurosci               | 1.5       | VBM            | volume                                                        |
| 2         | 2003, Emmorey et al. PNAS                      | 1.5       | VBM            | asymmetry, GM+WM, ratio GM/WM, volume                         |
| 3         | 2003, Penhune et al. Neuroimage                | 1.5       | VBM            | asymmetry, ratio GM/WM, volume                                |
| 4         | 2004, Chang et al. Neuroreport                 | 3         | DTI            | asymmetry, FA                                                 |
| 6         | 2007, Meyer et al. Restor Neurol<br>Neurosci   | 3         | VBM            | volume                                                        |
| 7         | 2007, Shibata DK. Am J<br>Neuroradiol          | 1.5       | VBM            | volume                                                        |
| 8         | 2008, Allen et al. J Neurosci                  | 1.5       | VBM            | asymmetry, ratio GM/WM, Vo                                    |
| 10        | 2009, Kim et al. Neuroreport                   | 3         | DTI, VBM       | FA, volume                                                    |
| 11        | 2009, Wang et al. Chin J Med<br>Img Tech       | 3         | DTI            | FA                                                            |
| 13        | 2010, Leporé et al. Hum Brain<br>Mapp          | 1.5       | VBM            | VBM                                                           |
| 14        | 2010, Li, et al. J Clin Rad                    | 1.5       | VBM            | volume                                                        |
| 15        | 2010, Liu et al. Chin J Med Img<br>Tech        | 3         | CT             | FA                                                            |
| 16        | 2011, Smith et al. Cereb Cortex                | 3         | VBM            | asymmetry, ratio GM/WM, volume                                |
| 17        | 2012, Li et al. Brain Res                      | 3         | CT             | Thickness                                                     |
| 18        | 2012, Li et al. Hum Brain Mapp                 | 3         | DTI            | AD, FA, RD                                                    |
| 19        | 2013, Allen et al. Front Neuroanat             | 1.5       | VBM            | asymmetry, volume                                             |
| 20        | 2013, Boyen et al. Hear Res                    | 3         | VBM            | volume                                                        |
| 21        | 2013, Miao et al. Am J<br>Neuroradiol          | 3         | DTI            | FA, RD                                                        |
| <b>22</b> | 2013, Pénicaud et al. Neuroimage               | 1.5       | VBM            | volume                                                        |
| 23        | 2014, Hribar et al. Hear Res                   | 3         | DTI, VBM       | AD, FA, Thickness                                             |
| <b>24</b> | 2014, Kim et al. Hear Res                      | 3         | VBM            | volume                                                        |
| <b>25</b> | 2014, Lin et al. Neuroimage                    | 1.5       | VBM            | volume                                                        |
| 27        | 2014, Olulade et al. J Neurosci                | 3         | VBM            | volume                                                        |
| 28        | 2014, Profant et al. Neuroscience              | 3         | DTI, VBM       | AD, CT, FA, MD, RD, Surface volume                            |
| 29        | 2014, Profant et al. Neuroscience              | 3         | DTI, VBM       | AD, CT, FA, MD, RD, Surface volume                            |
| 30        | 2015, Huang et al. PLoS One                    | 1.5       | DTI            | FA, MD                                                        |
| 31        | 2015, Tae Investig Magn Reson<br>Imaging       | 1.5       | VBM            | VBM                                                           |
| 32        | 2016, Amaral et al. Eur J<br>Neurosci          | 3         | VBM            | asymmetry, Thickness                                          |
| 33        | 2016, Chinnadurai et al. Magn<br>Reson Imaging | 1.5       | DTI            | AD, Axial Kurtosis, FA, Mean<br>Kurtosis, Radial Kurtosis, RD |
| 34        | 2016, Ma et al. AJNR Am J<br>Neuroradiol       | 3         | DTI            | AD, FA, MD, RD                                                |
| 35        | 2016, Shi et al. Neuroreport                   | 3         | VBM            | volume                                                        |
| 36        | 2016, Shiell et al. Neural<br>Plasticity       | 3         | CT             | Thickness                                                     |
| 37        | 2016, Smittenaar et al. Open<br>Neuroimag J    | 1.5       | CT             | CT                                                            |

|           | Source                                          | MRI Tesla | all.techniques | all.measures       |
|-----------|-------------------------------------------------|-----------|----------------|--------------------|
| 38        | 2016, Wu et al. Brain Res                       | 1.5       | VBM            | ADC, FA            |
| 39        | 2016, Wu et al. Brain Res                       | 1.5       | VBM            | ADC, FA            |
| 40        | 2016, Wu et al. Brain Res                       | 1.5       | VBM            | ADC, FA            |
| <b>42</b> | 2017, Kim et al. Neuroreport                    | 3         | DTI            | FA                 |
| 43        | 2017, Shiell & Zatorre. Hear Res                | 3         | DTI            | AD, MD, RD, volume |
| 44        | 2017, Zheng et al. Sci Rep                      | 3         | DTI            | FA, Mean Kurtosis  |
| 45        | 2018, Benetti et al. Neuroimage                 | 4         | DTI            | AD, FA, RD         |
| 46        | 2018, Chen et al. Behav Neurosci                | 3         | VBM            | volume             |
| 47        | 2018, Feng et al. PNAS                          | 3         | VBM            | VBM                |
| 49        | 2018, Park et al. Biomed Res Int                | 3         | DTI            | FA                 |
| 50        | 2018, Pereira-Jorge et al. Neural<br>Plast      | 1.5       | VBM            | volume             |
| 51        | 2018, Ren et al. Front Neurosci                 | 3         | CT, VBM        | Thickness, volume  |
| <b>52</b> | 2018, Uchida et al. Front Aging<br>Neurosci     | 3         | VBM            | volume             |
| 53        | 2018, Uchida et al. Front Aging<br>Neurosci     | 3         | VBM            | volume             |
| <b>54</b> | 2018, Zou et al. Otol Neurotol                  | 3         | DTI            | AK, FA, MK, RK     |
| 55        | 2019, Belkhiria et al. Front.<br>Aging Neurosci | 3         | VBM            | CT, volume         |
| 56        | 2019, Belkhiria et al. Front.<br>Aging Neurosci | 3         | VBM            | CT, volume         |
| 57        | 2019, Luan et al. Front Neurosci                | 3         | DTI, VBM       | FA, MD, volume     |
| 58        | 2019, Ponticorvo et al. Hum<br>Brain Mapp       | 3         | VBM            | volume             |
| 59        | 2019, Xu et al. J Magn Reson<br>Imaging         | 3         | VBM            | volume             |

# Relation between hearing loss (dB) and age (Figure 2.D)





# Studies characteristics (Figure 2.E, 2.F)





Fig.2.F – Effect direction



#### Brain structure (GM, WM) and MRI measures

#### Highlights

- a. Most of the studies that measured Gray matter focus on cortical changes (volume, thicknes and VBM).
- b. White matter studies are more heterogeneous in their measurements.
- c. Diffusion tensor (DT) derived mesurements are the most frequent in white matter, followed by volume.
- c.1 It is harder to interpret a meta-analysis of multiple white matter measurements because its effect varies widely in different directions. The measurements derived from DT have the most differences.

We conduct our meta-analysis using the  $\mathbf{TWO}$  most frequent measurements for gray and white matter. We use *volume* for GM and *fractional anysotropy* for WM.

Further meta regressions can be found in the supplementary material.

#### **Gray Matter**

- thickness
- VBM

#### White Matter integrity

- mean diffusivity MD
- radial diffusivity RD
- axial diffusivity AD
- mean kurtosis

#### White Matter volume

- thickness (I am unsure how they did this)
- VBM
- volume

#### Biletareal - GM volume

- WM volume
- WM fractional anisotropy

#### Frequency table: Brain structure (GM, WM) and MRI measures

Table 6: Matter vs measure (continued below)

|                        | AD | ADC | AK | asymmetry | Axial Kurtosis | CT | FA  | GM+WM |
|------------------------|----|-----|----|-----------|----------------|----|-----|-------|
| GM                     | 0  | 0   | 2  | 9         | 0              | 23 | 8   | 0     |
| $\mathbf{W}\mathbf{M}$ | 39 | 12  | 2  | 8         | 3              | 0  | 117 | 0     |

Table 7: Table continues below

|                        | length | MD | Mean Kurtosis | MK | Radial Kurtosis | ratio GM/WM | RD |
|------------------------|--------|----|---------------|----|-----------------|-------------|----|
| $\mathbf{G}\mathbf{M}$ | 0      | 2  | 0             | 2  | 0               | 0           | 0  |
| $\mathbf{W}\mathbf{M}$ | 1      | 17 | 27            | 2  | 3               | 0           | 26 |

|                        | RK | Surface | Thickness | VBM | Vol proportion | volume |
|------------------------|----|---------|-----------|-----|----------------|--------|
| $\mathbf{G}\mathbf{M}$ | 2  | 4       | 14        | 43  | 6              | 194    |
| $\mathbf{W}\mathbf{M}$ | 2  | 0       | 10        | 16  | 6              | 79     |

Table 9: Matter vs Side

|          | asymmetry | bilateral | left | right     | total |
|----------|-----------|-----------|------|-----------|-------|
| GM<br>WM | 9         | 59<br>164 | 130  | 109<br>97 | 2     |
| VV IVI   | 10        | 104       | 93   | 97        | 1     |

#### Brain structure (GM, WM) and side

**Matter vs Side** 



Brain structure (GM, WM) by MRI measure (volume) and ROI



# Studies characteristics (Figure 2.A, 2.B): Brain structure (GM, WM) by MRI measure (volume and FA)



# MRI measures by ROI (Figure 2.C)



#### Relations of all MRI measurements of GM and WM with age



# Gray matter relation with Age by volume (Figures 3.A and 3.B)



# White matter relation with Age by volume and FA (Figures 3.C, 3.D and 3.F)



#### Gray and White matter relation with Age by asymmetry



Table of estimates and meta-regression: WM and GM relation with age by MRI measures (volume and  ${\rm FA}$ )

| Model    | r     | p-value | t.stat | df |
|----------|-------|---------|--------|----|
| GM.vol.L | -0.27 | 0.0103  | -2.62  | 85 |
| WM.vol.L | 0.26  | 0.1687  | 1.41   | 28 |
| WM.fa.L  | -0.09 | 0.7393  | -0.34  | 13 |
| GM.vol.R | -0.07 | 0.5343  | -0.62  | 69 |
| WM.vol.R | 0.23  | 0.316   | 1.03   | 19 |
| WM.fa.R  | -0.55 | 2e-04   | -4.04  | 38 |

#### WM FA right and Age

# GM vol left and Age





# Meta-regression: Variables by Etiology, Brain matter and MRI measure













## Gray Matter Volume: Random effects model no intercept covariated by Big area

Table 11: Congenital - Gray Matter Volume

Mixed-effect model: k= 114 : tau^2= 1.35 (SE= 0.22 ) I^2= 91.08 %, H^2= 11.21 Residual heterogeneity: QE(df= 98 )= 1048.28 , p.val= 7.08528565862191e-159 Test of moderators (big areas): QM(df= 16 )= 48.63 p.val= 3.78635028624703e-05

Table 12: Table continues below

|                      | $_{ m HedgeG}$ | se     | zval    | ci.lo   | ci.up     |
|----------------------|----------------|--------|---------|---------|-----------|
| left cerebellum      | 0.9013         | 0.3735 | 2.413   | 0.1693  | 1.633     |
| left cingulate       | 1.5            | 0.9037 | 1.66    | -0.2712 | 3.271     |
| left frontal         | -0.588         | 0.4468 | -1.316  | -1.464  | 0.2877    |
| left insular cortex  | 0.0628         | 0.6065 | 0.1035  | -1.126  | 1.252     |
| left occipital       | -0.5252        | 0.4567 | -1.15   | -1.42   | 0.3699    |
| left parietal        | -0.8875        | 0.5149 | -1.724  | -1.897  | 0.1217    |
| left temporal        | -0.116         | 0.2235 | -0.5189 | -0.554  | 0.3221    |
| left Thalamus        | 1.282          | 1.213  | 1.056   | -1.097  | 3.66      |
| right cerebellum     | 1.682          | 0.7284 | 2.309   | 0.254   | 3.109     |
| right cingulate      | -0.8018        | 1.193  | -0.6721 | -3.14   | 1.536     |
| right entorhinal     | 0.05865        | 0.6339 | 0.09251 | -1.184  | 1.301     |
| right frontal        | -2.559         | 0.7143 | -3.583  | -3.959  | -1.159    |
| right insular cortex | -0.1339        | 0.598  | -0.2239 | -1.306  | 1.038     |
| right occipital      | -1.73          | 0.8957 | -1.932  | -3.486  | 0.02545   |
| right parietal       | -1.113         | 0.4445 | -2.503  | -1.984  | -0.2413   |
| right temporal       | -0.5427        | 0.2729 | -1.989  | -1.078  | -0.007815 |

|                      | pval      | N  |
|----------------------|-----------|----|
| left cerebellum      | 0.01581   | 11 |
| left cingulate       | 0.09694   | 2  |
| left frontal         | 0.1882    | 8  |
| left insular cortex  | 0.9175    | 4  |
| left occipital       | 0.2502    | 7  |
| left parietal        | 0.08478   | 6  |
| left temporal        | 0.6039    | 30 |
| left Thalamus        | 0.2909    | 1  |
| right cerebellum     | 0.02096   | 3  |
| right cingulate      | 0.5015    | 1  |
| right entorhinal     | 0.9263    | 4  |
| right frontal        | 0.0003399 | 3  |
| right insular cortex | 0.8228    | 4  |
| right occipital      | 0.05341   | 2  |
| right parietal       | 0.01233   | 8  |
| right temporal       | 0.04675   | 20 |







#### Congenital - GM Volume



#### ACQUIRED - Meta-regressions of Gray Matter by Volume

Random effects model no intercept covariated by Big area

Table 14: Acquired - Gray Matter Volume

Mixed-effect model: k= 56 : tau^2= 2.49 (SE= 0.6 ) I^2= 98.57 %, H^2= 70.1 Residual heterogeneity: QE(df= 41 )= 412.31 , p.val= 8.01499990705428e-63 Test of moderators (big areas): QM(df= 15 )= 29.35 p.val= 0.014479351188099

Table 15: Table continues below

|                   | $_{ m HedgeG}$ | se     | zval   | ci.lo  | ci.up   |
|-------------------|----------------|--------|--------|--------|---------|
| left cingulate    | -2.883         | 1.728  | -1.669 | -6.269 | 0.5024  |
| left frontal      | -1.14          | 0.5268 | -2.164 | -2.173 | -0.1076 |
| left hypothalamus | -1.937         | 1.626  | -1.191 | -5.124 | 1.25    |

|                      | HedgeG   | se     | zval     | ci.lo   | ci.up    |
|----------------------|----------|--------|----------|---------|----------|
| left insular cortex  | -1.353   | 1.641  | -0.8248  | -4.57   | 1.863    |
| left occipital       | -1.398   | 1.642  | -0.8514  | -4.616  | 1.82     |
| left parietal        | 0.3896   | 0.9454 | 0.4121   | -1.463  | 2.243    |
| left temporal        | -0.8302  | 0.6236 | -1.331   | -2.052  | 0.3921   |
| right cingulate      | -1.483   | 0.954  | -1.554   | -3.352  | 0.3872   |
| right entorhinal     | 0.007072 | 1.161  | 0.006091 | -2.269  | 2.283    |
| right frontal        | -1.438   | 0.7012 | -2.05    | -2.812  | -0.06331 |
| right hypothalamus   | -2.047   | 1.151  | -1.778   | -4.304  | 0.2095   |
| right insular cortex | -1.525   | 1.163  | -1.311   | -3.803  | 0.7542   |
| right occipital      | -1.524   | 0.8158 | -1.868   | -3.123  | 0.07522  |
| right parietal       | 0.3405   | 0.9459 | 0.36     | -1.513  | 2.194    |
| right temporal       | 0.727    | 0.5141 | 1.414    | -0.2806 | 1.735    |

|                      | pval    | N  |
|----------------------|---------|----|
| left cingulate       | 0.09509 | 1  |
| left frontal         | 0.03045 | 10 |
| left hypothalamus    | 0.2335  | 1  |
| left insular cortex  | 0.4095  | 1  |
| left occipital       | 0.3945  | 1  |
| left parietal        | 0.6803  | 3  |
| left temporal        | 0.1831  | 7  |
| right cingulate      | 0.1202  | 3  |
| right entorhinal     | 0.9951  | 2  |
| right frontal        | 0.04034 | 6  |
| right hypothalamus   | 0.0754  | 2  |
| right insular cortex | 0.1898  | 2  |
| right occipital      | 0.0618  | 4  |
| right parietal       | 0.7189  | 3  |
| right temporal       | 0.1573  | 10 |

#### Acquired - Gray Matter Volume







#### Acquired - GM Volume



#### CONGENITAL - White Matter by VOLUME

Random effects model no intercept covariated by Big area

Table 17: Congenital White Matter Volume

Mixed-effect model: k= 63 : tau^2= 0.83 (SE= 0.19 ) I^2= 89.36 %, H^2= 9.4 Residual heterogeneity: QE(df= 50 )= 462.69 , p.val= 3.35220276992225e-68 Test of moderators (big areas): QM(df= 13 )= 50.92 p.val= 2.07007590853841e-06

Table 18: Table continues below

|                 | $_{ m HedgeG}$ | se     | zval   | ci.lo  | ci.up   |
|-----------------|----------------|--------|--------|--------|---------|
| left cerebellum | -1.107         | 0.6745 | -1.641 | -2.429 | 0.2149  |
| left cingulate  | -1.379         | 0.9926 | -1.389 | -3.324 | 0.5668  |
| left frontal    | -1.34          | 0.5684 | -2.358 | -2.454 | -0.2262 |

|                      | HedgeG   | se     | zval    | ci.lo   | ci.up    |
|----------------------|----------|--------|---------|---------|----------|
| left insular cortex  | 0.007913 | 0.5504 | 0.01438 | -1.071  | 1.087    |
| left occipital       | 0.5024   | 0.4846 | 1.037   | -0.4475 | 1.452    |
| left parietal        | -1.308   | 0.6914 | -1.892  | -2.663  | 0.04705  |
| left temporal        | -0.478   | 0.2211 | -2.163  | -0.9113 | -0.04478 |
| left tract           | -1.386   | 0.7931 | -1.747  | -2.94   | 0.1688   |
| right cerebellum     | -1.513   | 0.9789 | -1.546  | -3.432  | 0.4051   |
| right forebrain      | -1.386   | 1.122  | -1.235  | -3.584  | 0.8126   |
| right frontal        | -2.31    | 0.5697 | -4.055  | -3.426  | -1.193   |
| right insular cortex | 0.737    | 0.5521 | 1.335   | -0.3451 | 1.819    |
| right temporal       | -0.5529  | 0.2218 | -2.493  | -0.9875 | -0.1183  |

|                      | pval      | N  |
|----------------------|-----------|----|
| left cerebellum      | 0.1007    | 2  |
| left cingulate       | 0.1649    | 1  |
| left frontal         | 0.01838   | 3  |
| left insular cortex  | 0.9885    | 3  |
| left occipital       | 0.2999    | 4  |
| left parietal        | 0.0585    | 2  |
| left temporal        | 0.03058   | 19 |
| left tract           | 0.08061   | 2  |
| right cerebellum     | 0.1221    | 1  |
| right forebrain      | 0.2167    | 1  |
| right frontal        | 5.021e-05 | 3  |
| right insular cortex | 0.1819    | 3  |
| right temporal       | 0.01266   | 19 |

#### **Congenital White Matter Volume**







#### Congenital - WM Volume



## ACQUIRED - White Matter by VOLUME (ONLY BILATERAL)

Not enough values for the Random effects model no intercept covariated by Big area and Side (left or right)

Table 20: acquired White Matter Volume

Mixed-effect model: k= 6 :  $\tan^2 = 0.09$  (SE= 0.21 ) I^2= 59.05 %, H^2= 2.44 Residual heterogeneity: QE(df= 1 )= 2.44 , p.val= 0.118106312179678 Cet of moderators (big areas): QM(df= 5 )= 5.26 p.val= 0.385192885534552

Table 21: Table continues below

|                                                                | $_{ m HedgeG}$                | se                     | zval                       | ci.lo                      | ci.up                    |
|----------------------------------------------------------------|-------------------------------|------------------------|----------------------------|----------------------------|--------------------------|
| bilateral frontal<br>bilateral occipital<br>bilateral parietal | -0.5069<br>-0.3876<br>-0.3876 | 0.35 $0.3494$ $0.3494$ | -1.448<br>-1.109<br>-1.109 | -1.193<br>-1.073<br>-1.073 | 0.1792 $0.2972$ $0.2972$ |

|                                              | HedgeG            | se                 | zval              | ci.lo             | ci.up              |
|----------------------------------------------|-------------------|--------------------|-------------------|-------------------|--------------------|
| bilateral temporal<br>bilateral Total Cortex | -0.02982 $0.2239$ | $0.3486 \\ 0.2691$ | -0.08555 $0.8321$ | -0.713<br>-0.3035 | $0.6534 \\ 0.7514$ |

|                        | pval   | N |
|------------------------|--------|---|
| bilateral frontal      | 0.1476 | 1 |
| bilateral occipital    | 0.2673 | 1 |
| bilateral parietal     | 0.2673 | 1 |
| bilateral temporal     | 0.9318 | 1 |
| bilateral Total Cortex | 0.4053 | 2 |

#### acquired White Matter Volume



Nothing is significant

#### CONGENITAL - White Matter by FA fractional anisotropy

Random effects model no intercept covariated by Big area

Table 23: Congenital White Matter FA

Mixed-effect model: k= 44 : tau^2= 0.04 (SE= 0.04 )

 $I^2 = 24.12 \%, H^2 = 1.32$ 

Residual heterogeneity: QE(df= 33 )= 40.58, p.val=

0.17085782139714

Test of moderators (big areas): QM(df= 11 )= 168.31

 $p.val = 2.632584019 \hat{6}7927 e\text{--}30$ 

Table 24: Table continues below

|                      | HedgeG   | se     | zval     | ci.lo   | ci.up   |
|----------------------|----------|--------|----------|---------|---------|
| left brainstem       | -0.01557 | 0.4891 | -0.03183 | -0.9742 | 0.9431  |
| left cingulate       | 0.297    | 0.2965 | 1.002    | -0.2841 | 0.8781  |
| left occipital       | -0.7254  | 0.3791 | -1.914   | -1.468  | 0.01755 |
| left temporal        | -0.698   | 0.1265 | -5.518   | -0.946  | -0.4501 |
| left tract           | -1.549   | 0.425  | -3.645   | -2.382  | -0.7163 |
| right brainstem      | -0.2476  | 0.4908 | -0.5044  | -1.21   | 0.7145  |
| right insular cortex | -0.8178  | 0.4415 | -1.852   | -1.683  | 0.04759 |

|                 | ${\it HedgeG}$ | se     | zval   | ci.lo  | ci.up   |
|-----------------|----------------|--------|--------|--------|---------|
| right occipital | -0.7254        | 0.3791 | -1.914 | -1.468 | 0.01755 |
| right temporal  | -0.8298        | 0.1036 | -8.013 | -1.033 | -0.6269 |
| right Thalamus  | -0.9238        | 0.1789 | -5.164 | -1.274 | -0.5732 |
| right tract     | -1.004         | 0.2156 | -4.656 | -1.427 | -0.5813 |

|                      | pval      | N  |
|----------------------|-----------|----|
| left brainstem       | 0.9746    | 1  |
| left cingulate       | 0.3165    | 2  |
| left occipital       | 0.05566   | 1  |
| left temporal        | 3.421e-08 | 10 |
| left tract           | 0.000267  | 1  |
| right brainstem      | 0.614     | 1  |
| right insular cortex | 0.064     | 1  |
| right occipital      | 0.05566   | 1  |
| right temporal       | 1.121e-15 | 16 |
| right Thalamus       | 2.416e-07 | 6  |
| right tract          | 3.226e-06 | 4  |

#### **Congenital White Matter FA**







#### **Congenital White Matter FA**



## ACQUIRED - White Matter by FA fractional anisotropy (ONLY RIGHT)

Random effects model no intercept covariated by Big area

Table 26: acquired White Matter FA

Mixed-effect model: k= 11 : tau^2= 0 (SE= 0.15 ) I^2= 0 %, H^2= 1 Residual heterogeneity: QE(df= 6 )= 2.64 , p.val= 0.852507484101014 Test of moderators (big areas): QM(df= 5 )= 71.74 p.val= 4.45450158997401e-14

|                 | HedgeG  | se     | zval   | ci.lo  | ci.up   | p.val     | N |
|-----------------|---------|--------|--------|--------|---------|-----------|---|
| right frontal   | -1.48   | 0.3403 | -4.35  | -2.147 | -0.8134 | 1.36e-05  | 2 |
| right occipital | -0.9105 | 0.3603 | -2.527 | -1.617 | -0.2042 | 0.01151   | 2 |
| right parietal  | -1.703  | 0.4379 | -3.888 | -2.561 | -0.8443 | 0.0001011 | 1 |
| right temporal  | -1.793  | 0.4446 | -4.034 | -2.665 | -0.922  | 5.488e-05 | 1 |
| right tract     | -0.8812 | 0.2272 | -3.878 | -1.326 | -0.4359 | 0.0001052 | 5 |

#### acquired White Matter FA







#### acquired White Matter FA



# Supplementary material: heterogeneity per model

## Heterogeney: GM volume Right



# **GM** volume Right





# **GM** volume Right



## Heterogeney: GM volume Left



## **GM volume Left**



# **GM** volume Left





## Heterogeney: WM FA Right



# WM FA Right



# 2012-Li When the second of th

# WM FA Right



# Heterogeney: WM FA Left



# WM FA Left



# WM FA Left





## Heterogeney: WM volume Right



# **WM volume Right**



# WM volume Right <sup>∞</sup>





# Heterogeney: WM volume Left



# **WM volume Left**



# **WM** volume Left





# Meta-regressions of Gray Matter Volume & Brain Areas: Random effects model no intercept covariated by Side



### Gray matter Volume - parietal





### Gray matter Volume - frontal





# Gray matter Volume – cerebellum

| Year & Author                  | N                   | ROI                                 | Area       |    |             | Weights               | Hedge's G [95% CI]  |
|--------------------------------|---------------------|-------------------------------------|------------|----|-------------|-----------------------|---------------------|
| right                          |                     |                                     |            |    |             |                       |                     |
| 2014-Kim.1                     | 19                  | Culmen                              | cerebellum |    |             | — <del>■ 6.31</del> % | 1.75 [ 0.67, 2.84]  |
| 2014-Kim.3                     | 22                  | Culmen                              | cerebellum |    |             | <del>- 6.6</del> 8%   | 1.71 [ 0.72, 2.70]  |
| 2010-Li,.1                     | 3 <b>2</b> :ere     | ebellar hemisphere                  | cerebellum |    |             | <del></del>           | 1.59 [ 0.79, 2.39]  |
| RE Model for Subgroup (Q = 0.0 | 6, df = 2, p = 0.97 | 7; $I^2 = 0.0\%$ )                  |            |    |             |                       | 1.67 [1.13, 2.21]   |
| left                           |                     |                                     |            |    |             |                       |                     |
| 2014-Kim.4                     | 22                  | Culmen                              | cerebellum |    |             | <del>6</del> ,74%     | 1.61 [ 0.64, 2.59]  |
| 2014-Kim.8                     | 22                  | Declive                             | cerebellum |    |             | <del></del>           | 1.44 [ 0.50, 2.39]  |
| 2010-Li,.2                     | 3 <b>2</b> ere      | ebellar hemisphere                  | cerebellum |    |             | <b>───</b> 7.44%      | 1.40 [ 0.62, 2.18]  |
| 2014-Kim.9                     | 22                  | Culmen                              | cerebellum |    |             | <b>───</b> 6.90%      | 1.30 [ 0.37, 2.23]  |
| 2014-Kim.2                     | 22                  | Culmen                              | cerebellum |    |             | <b>───</b> 6.90%      | 1.30 [ 0.37, 2.22]  |
| 2014-Kim.5                     | 22                  | Culmen                              | cerebellum |    |             | <b>───</b> 6.92%      | 1.27 [ 0.34, 2.19]  |
| 2014-Kim.6                     | 22                  | Culmen                              | cerebellum |    |             | <b>───</b> 6.92%      | 1.26 [ 0.34, 2.18]  |
| 2014-Kim.7                     | 22                  | Culmen                              | cerebellum |    |             | <b>───</b> 6.94%      | 1.21 [ 0.30, 2.13]  |
| 2010-Li,.3                     | 3 <b>2</b> ere      | ebellar hemisphere                  | cerebellum |    |             | <del></del>           | 1.17 [ 0.42, 1.93]  |
| 2014-Olulade.2                 | 60                  | cerebellum                          | cerebellum |    | <b>⊢=</b>   | 8.27% -               | 0.72 [-1.25, -0.20] |
| 2014-Olulade.1                 | 60                  | cerebellum                          | cerebellum |    | <b>⊢=</b> → | 8.23% -               | 0.98 [-1.52, -0.45] |
| RE Model for Subgroup (Q = 80. | 79, df = 10, p = 0  | .00; $I^2 = 82.9\%$ )               |            |    |             |                       | 0.88 [0.30, 1.46]   |
| RE Model for All Studies       | (Q = 96.30, c       | If = 13, p = 0.00; I <sup>2</sup> : | = 80.5%)   |    |             | 100.00%               | 1.04 [ 0.54, 1.53]  |
|                                |                     |                                     |            |    | İ           |                       |                     |
|                                |                     |                                     |            | -5 | C           | 3                     |                     |
|                                |                     |                                     |            |    | Hedge's G   |                       |                     |



### Gray matter Volume - occipital





### Gray matter Volume - insular cortex





# Meta-regressions of White Matter FA & Brain Areas: Random effects model no intercept covariated by Side

#### White matter FA - tract





0.91 0.157 Standard Error -0.18 0.313 0.47 -4.56 -5.66 0.626 -2 0 0.0 0.8 1.2 -6 0.4  $x_i = 1/\sqrt{v_i + \tau^2}$  White matter FA – temporal Mean Difference Zheng et al. S 1.2 Influence on Overall Result Sample Quantiles 0 8.0 ī 7 က 0.4 4 9 10 20 25 0 5 15 -2 1 -1 Squared Pearson Residual Theoretical Quantiles for possible remedies.

#### White matter FA - brainstem



#### White matter FA - Thalamus



#### White matter FA - frontal



## White matter FA - cingulate



#### White matter FA - parietal



#### White matter FA - occipital



# Meta-regressions of White Matter Volume & Brain Areas: Random effects model no intercept covariated by Side



#### White matter Volume - insular cortex



#### White matter Volume - frontal



## White matter Volume - occipital



## White matter Volume - occipital



## White matter Volume - corpus callosum



# Supplementary material: Forest-plots of other Measures

## Hesch gyrus FA white matter

#### White matter FA and HG



## STG Volume White matter

## White matter FA and STG

| Year & Author                | N                       | ROI                        | Area                      |    |             | Weights | Hedge's G [95% CI]   |
|------------------------------|-------------------------|----------------------------|---------------------------|----|-------------|---------|----------------------|
| right                        |                         |                            |                           |    |             |         |                      |
| 2012-Li                      | 98                      | STG                        | temporal                  |    | <del></del> | 8.31% - | -0.58 [-1.00, -0.17] |
| 2014-Hribar                  | 28                      | STG                        | temporal                  |    | <b>⊢</b>    | 6.55%   | -0.82 [-1.59, -0.04] |
| 2017-Kim.1                   | 37                      | STG                        | temporal                  |    | <b>⊢</b>    | 6.38%   | -0.82 [-1.63, -0.01] |
| 2009-Wang.2                  | 12                      | STG                        | temporal                  |    | <b>⊢</b>    | 4.55%   | -1.00 [-2.22, 0.21]  |
| 2018-Zou.2                   | 158                     | STG                        | temporal                  |    | ⊢■⊣         | 8.65% - | -1.02 [-1.35, -0.69] |
| RE Model for Subgroup (Q = 2 | 2.65, df = 4, p = 0.62; | I <sup>2</sup> = 13.4%)    |                           |    | •           |         | -0.84 [-1.10, -0.58] |
| left                         |                         |                            |                           |    |             |         |                      |
| 2009-Wang.1                  | 12                      | STG                        | temporal                  |    | <b>⊢</b>    | 4.87%   | -0.21 [-1.35, 0.92]  |
| 2017-Kim.2                   | 37                      | STG                        | temporal                  |    | <b>—</b>    | 6.38%   | -0.82 [-1.63, -0.01] |
| 2018-Zou.1                   | 158                     | STG                        | temporal                  |    | <b>⊢=</b> ⊣ | 8.64%   | -1.09 [-1.42, -0.75] |
| RE Model for Subgroup (Q = 2 | 2.29, df = 2, p = 0.32; | I <sup>2</sup> = 11.6%)    |                           |    | •           |         | -0.95 [-1.31, -0.59] |
| bilateral                    |                         |                            |                           |    |             |         |                      |
| 2016-Wu.2                    | 77                      | STG                        | temporal                  |    | <b>⊢</b> ■  | 8.06%   | 0.72 [ 0.25, 1.19]   |
| 2016-Wu.3                    | 87                      | STG                        | temporal                  |    | <b>⊢=</b> → | 8.24%   | 0.60 [ 0.17, 1.03]   |
| 2016-Wu.1                    | 66                      | STG                        | temporal                  |    | <b>⊢</b>    | 7.80%   | 0.10 [-0.42, 0.63]   |
| 2017-Zheng.2                 | 110                     | STG                        | temporal                  |    | <b>⊢</b> ■  | 8.41%   | -0.03 [-0.42, 0.37]  |
| 2017-Zheng.1                 | 110                     | STG                        | temporal                  |    | <b>⊢</b>    | 8.27% - | -1.21 [-1.63, -0.78] |
| RE Model for Subgroup (Q = 4 | 47.53, df = 4, p = 0.00 | ); I <sup>2</sup> = 91.3%) |                           |    |             |         | 0.03 [-0.64, 0.71]   |
| asymmetry                    |                         |                            |                           |    |             |         |                      |
| 2009-Wang.3                  | 12                      | STG                        | temporal                  |    | <b>⊢</b>    | 4.88%   | -0.13 [-1.26, 1.00]  |
| RE Model for Subgroup (Q = 0 | 0.00, df = 0, p = 1.00; | $I^2 = 0.0\%$ )            |                           |    |             |         | -0.13 [-1.26, 1.00]  |
| RE Model for All Studie      | es (Q = 96.47, df       | = 13, p = 0.00             | ; I <sup>2</sup> = 84.5%) |    | •           | 100.00% | -0.44 [-0.80, -0.08] |
|                              |                         |                            |                           |    |             |         |                      |
|                              |                         |                            |                           | -5 | 0           | 3       |                      |
|                              |                         |                            |                           | -5 |             | 3       |                      |
|                              |                         |                            |                           |    | Hedge's G   |         |                      |

# Measures of White matter Integrity

White matter: RD

WM & RD



# White matter: MD

WM & MD

| Year & Author                         | N        | ROI                                    | Area      |                  | Weights             | Hedge's G [95% CI]   |
|---------------------------------------|----------|----------------------------------------|-----------|------------------|---------------------|----------------------|
| right                                 |          |                                        |           |                  |                     |                      |
| 2016-Ma.1                             | 29       | HG                                     | temporal  |                  | <u> 5.3</u> 3%      | 2.14 [ 1.22, 3.07]   |
| 2017-Shiell                           | 28       | planum temporale                       | temporal  | <b>⊢_</b>        | 5.72%               | -0.85 [-1.65, -0.06] |
| RE Model for Subgroup (Q = 23.21, df  | = 1, p = | 0.00; I <sup>2</sup> = 95.7%)          |           |                  |                     | 0.63 [-2.30, 3.57]   |
| left                                  |          |                                        |           |                  |                     |                      |
| 2016-Ma.2                             | 29       | Inferior frontal gyrus                 | frontal   |                  | <del>- 5.1</del> 9% | 1.81 [ 0.93, 2.68]   |
| RE Model for Subgroup (Q = 0.00, df = | 0, p =   | 1.00; I <sup>2</sup> = 0.0%)           |           |                  |                     | 1.81 [0.93, 2.68]    |
| bilateral                             |          |                                        |           |                  |                     |                      |
| 2014-Lyness.1                         | 26       | frontal                                | frontal   |                  | <del></del>         | 1.94 [ 0.99, 2.88]   |
| 2014-Lyness.6                         | 26       | occipital                              | occipital | <b></b>          | ■ 5.65%             | 0.97 [ 0.15, 1.78]   |
| 2014-Lyness.5                         | 26       | parietal lobe                          | parietal  | <b>⊢</b>         | <b>5.74</b> %       | 0.61 [-0.18, 1.40]   |
| 2015-Huang.3                          | 44       | IC                                     | brainstem | <b>⊢ =</b> 1     | 6.27%               | 0.28 [-0.32, 0.88]   |
| 2015-Huang.1                          | 44       | ТВ                                     | brainstem | <b>⊢</b>         | 6.27%               | 0.20 [-0.40, 0.79]   |
| 2015-Huang.2                          | 44       | SON                                    | brainstem | <del>-</del>     | 6.27%               | 0.09 [-0.51, 0.68]   |
| 2015-Huang.6                          | 44       | HG                                     | temporal  | <b>⊢</b>         | 6.28%               | 0.00 [-0.59, 0.59]   |
| 2015-Huang.5                          | 44       | AR                                     | Thalamus  | <b>⊢</b>         | 6.28%               | 0.00 [-0.59, 0.59]   |
| 2015-Huang.4                          | 44       | MGB                                    | Thalamus  | <del></del>      | 6.28%               | 0.00 [-0.59, 0.59]   |
| 2014-Lyness.4                         | 26       | temporal                               | temporal  | <b>├</b>         | 5.79%               | 0.00 [-0.77, 0.77]   |
| 2014-Lyness.2                         | 26       | precentral gyrus                       | frontal   | <del>⊢ - i</del> | 5.79%               | 0.00 [-0.77, 0.77]   |
| 2014-Profant.1                        | 39       | acoustic radiation                     | brainstem | <b>⊢</b>         | 6.04%               | -0.04 [-0.72, 0.64]  |
| 2014-Profant.2                        | 39       | HG                                     | temporal  | <b>⊢ =</b>       | 6.00%               | -0.64 [-1.34, 0.06]  |
| 2014-Lyness.3                         | 26       | postcentral gyrus                      | parietal  | <b>⊢</b>         | 5.52%               | -1.37 [-2.23, -0.51] |
| RE Model for Subgroup (Q = 37.15, df  | = 13, p  | $= 0.00; I^2 = 69.6\%)$                |           | •                |                     | 0.12 [-0.21, 0.46]   |
| RE Model for All Studies (Q =         | 75.05    | i, df = 16, p = 0.00; l <sup>2</sup> : | = 83.4%)  | •                | 100.00%             | 0.28 [-0.15, 0.70]   |
|                                       |          |                                        |           | <u> </u>         |                     |                      |
|                                       |          |                                        |           | -5 0             | 3                   |                      |
|                                       |          |                                        |           | Hedge's G        |                     |                      |

# White matter: Mean Kurtosis

WM & Mean Kurtosis

| Year & Author                    | N               | ROI                                 | Area       |    |                                                   | Weights | Hedge's G [95% CI]   |
|----------------------------------|-----------------|-------------------------------------|------------|----|---------------------------------------------------|---------|----------------------|
| bilateral                        |                 |                                     |            |    |                                                   |         |                      |
| 2017-Zheng.9                     | 110             | STG                                 | temporal   |    | <del>⊢=</del> ⊣                                   | 3.779   | 6 0.60 [ 0.20, 1.00] |
| 2017-Zheng.19                    | 110             | IFG                                 | frontal    |    | <del>⊢ =                                   </del> | 3.79%   | 0.38 [-0.01, 0.78]   |
| 2017-Zheng.17                    | 110             | HG                                  | temporal   |    | <del></del>                                       | 3.79%   | 0.38 [-0.02, 0.78]   |
| 2017-Zheng.18                    | 110             | MFG                                 | frontal    |    | <b>⊢</b> ■1                                       | 3.80%   | 0.22 [-0.17, 0.62]   |
| 2017-Zheng.13                    | 110 a           | acoustic radiation                  | brainstem  |    | <del>⊢</del> =-1                                  | 3.81%   | 0.13 [-0.26, 0.52]   |
| 2017-Zheng.15                    | 110             | SON                                 | brainstem  |    | <b>⊢</b> •                                        | 3.81%   | 0.05 [-0.35, 0.44]   |
| 2017-Zheng.24                    | 110             | Hippocampus                         | entorhinal |    | <del>⊢ •</del> →                                  | 3.81%   | 0.00 [-0.39, 0.39]   |
| 2017-Zheng.23                    | 110su           | pramarginal gyrus                   | parietal   |    | <b>⊢</b>                                          | 3.81%   | 0.00 [-0.39, 0.39]   |
| 2017-Zheng.22                    | 110             | Angular gyrus                       | parietal   |    | <b>⊢</b>                                          | 3.81%   | 0.00 [-0.39, 0.39]   |
| 2017-Zheng.21                    | 110             | STG                                 | temporal   |    | <b>⊢</b>                                          | 3.81%   | 0.00 [-0.39, 0.39]   |
| 2017-Zheng.16                    | 110             | MGB                                 | brainstem  |    | <b>⊢</b> ■                                        | 3.81%   | -0.11 [-0.50, 0.28]  |
| 2017-Zheng.20                    | 110             | MTG                                 | temporal   |    | <b>⊢</b> = <u></u> -1                             | 3.80%   | -0.20 [-0.59, 0.20]  |
| 2017-Zheng.12                    | 110             | Hippocampus                         | entorhinal |    | <b>⊢=</b> -I                                      | 3.80%   | -0.32 [-0.71, 0.08]  |
| 2017-Zheng.14                    | 110             | ТВ                                  | brainstem  |    | ⊢ <del>≡</del> ⊣                                  | 3.79%   | -0.46 [-0.86, -0.07] |
| 2017-Zheng.4                     | 110             | MGB                                 | brainstem  |    | <b>⊢</b> ■                                        | 3.79%   | -0.47 [-0.86, -0.07] |
| 2016-Chinnadurai.1               | 50              | IAC                                 | Thalamus   |    | <del>  ■  </del>                                  | 3.10%   | -0.48 [-1.04, 0.08]  |
| 2017-Zheng.7                     | 110             | IFG                                 | frontal    |    | ⊢■→                                               | 3.78%   | -0.50 [-0.90, -0.10] |
| 2016-Chinnadurai.2               | 50              | IC                                  | Thalamus   |    | <del></del> i                                     | 3.09%   | -0.53 [-1.09, 0.03]  |
| 2017-Zheng.8                     | 110             | MTG                                 | temporal   |    | <b>⊢=</b> ─-I                                     | 3.78%   | -0.56 [-0.96, -0.16] |
| 2017-Zheng.5                     | 110             | HG                                  | temporal   |    | <b>⊢=</b> ⊣                                       | 3.78%   | -0.58 [-0.98, -0.17] |
| 2017-Zheng.1                     | 110 a           | acoustic radiation                  | brainstem  |    | ⊢■                                                | 3.78%   | -0.58 [-0.98, -0.18] |
| 2017-Zheng.3                     | 110             | SON                                 | brainstem  |    | ⊢ <del>≡</del> ⊣                                  | 3.76%   | -0.70 [-1.10, -0.29] |
| 2017-Zheng.11                    | 110su           | pramarginal gyrus                   | parietal   |    | <b>⊢=</b> →                                       | 3.76%   | -0.71 [-1.11, -0.30] |
| 2017-Zheng.6                     | 110             | MFG                                 | frontal    |    | <b>⊢</b> ■→                                       | 3.76%   | -0.73 [-1.13, -0.32] |
| 2017-Zheng.2                     | 110             | TB                                  | brainstem  |    | <b>⊢=</b> →                                       | 3.74%   | -0.84 [-1.25, -0.44] |
| 2016-Chinnadurai.3               | 50              | LL                                  | Thalamus   |    | <b>⊢-≡</b>                                        | 3.01%   | -0.92 [-1.51, -0.34] |
| 2017-Zheng.10                    | 110             | Angular gyrus                       | parietal   |    | <b>⊢=</b> 1                                       | 3.70%   | -1.07 [-1.49, -0.65] |
| RE Model for Subgroup (Q = 110.5 | 9, df = 26, p = | $= 0.00; I^2 = 76.6\%)$             |            |    | •                                                 |         | -0.29 [-0.45, -0.12] |
| RE Model for All Studies (C      | Q = 110.59      | , df = 26, p = 0.00; I <sup>2</sup> | = 76.6%)   |    | <b>*</b>                                          | 100.00% | -0.29 [-0.45, -0.12] |
|                                  |                 |                                     |            |    | <u> </u>                                          |         |                      |
|                                  |                 |                                     |            | -5 | 0                                                 | 3       |                      |
|                                  |                 |                                     |            |    | Hedge's G                                         |         |                      |

#### White matter: AD

WM & AD



 $Error \ in \ rma(yi = hedgesG, \ vi = varG, \ data = meta.mod, \ measure = "MD", : \ Fisher \ scoring \ algorithm \ did \ not \ converge. \ See \ 'help(rma)' \ for \ possible \ remedies.$ 

## Other Measures of White Matter

## White matter: Thickness

**WM & Thickness** 



#### White matter: VBM

WM & VBM

| Year & Author                   | N                    | ROI                                 | Area        |    |             |                | Weights | Hedge's G [95% CI]   |
|---------------------------------|----------------------|-------------------------------------|-------------|----|-------------|----------------|---------|----------------------|
| right                           |                      |                                     |             |    |             |                |         |                      |
| 2010-Leporé.7                   | 30                   | MTG                                 | temporal    |    |             | <u> </u>       | - 6.12% | 0.73 [-0.01, 1.47]   |
| 2010-Leporé.4                   | 30                   | STG                                 | temporal    |    |             | <u> </u>       | H 6.12% | 0.73 [-0.01, 1.47]   |
| 2010-Leporé.1                   | 30                   | STG                                 | temporal    |    |             | -              | - 6.12% | 0.73 [-0.01, 1.47]   |
| 2018-Kumar.2                    | 100                  | STG                                 | temporal    |    | <del></del> |                | 7.03%   | -1.47 [-1.92, -1.03] |
| RE Model for Subgroup (Q = 49.  | 03, df = 3, p = 0.00 | ); I <sup>2</sup> = 91.5%)          |             |    |             |                |         | 0.15 [-0.97, 1.27]   |
| left                            |                      |                                     |             |    |             |                |         |                      |
| 2010-Leporé.6                   | 30                   | MTG                                 | temporal    |    |             | _              | 6.12%   | 0.73 [-0.01, 1.47]   |
| 2010-Leporé.5                   | 30 Intr              | aparietal sulcus                    | parietal    |    |             | -              | - 6.12% | 0.73 [-0.01, 1.47]   |
| 2010-Leporé.3                   | 30                   | STG                                 | temporal    |    |             | <u> </u>       | H 6.12% | 0.73 [-0.01, 1.47]   |
| 2010-Leporé.2                   | 30                   | STG                                 | temporal    |    |             | -              | 6.12%   | 0.73 [-0.01, 1.47]   |
| 2018-Kumar.1                    | 100                  | STG                                 | temporal    |    | <b>⊢</b> ■  |                | 7.00%   | -1.64 [-2.10, -1.19] |
| RE Model for Subgroup (Q = 62.  | 80, df = 4, p = 0.00 | ); $I^2 = 90.6\%$ )                 |             |    |             |                |         | 0.23 [-0.75, 1.20]   |
| bilateral                       |                      |                                     |             |    |             |                |         |                      |
| 2010-Leporé.13                  | s <b>βl</b> eniur    | n of corpus callosur                | m cingulate |    |             | <del>-</del>   | 6.12%   | 0.72 [-0.02, 1.46]   |
| 2010-Leporé.12                  | 30 t                 | emporal lobe                        | temporal    |    |             | <del> </del>   | 6.13%   | 0.68 [-0.06, 1.42]   |
| 2010-Leporé.8                   | 30                   | frontal lobe                        | frontal     |    |             | ļ <del>.</del> | 6.14%   | 0.66 [-0.07, 1.40]   |
| 2010-Leporé.11                  | 30                   | parietal lobe                       | parietal    |    |             | <del> </del> ■ | 6.16%   | 0.56 [-0.18, 1.29]   |
| 2010-Leporé.14                  | 30corp               | us callosum genu                    | cingulate   |    |             | -              | 6.18%   | 0.40 [-0.32, 1.13]   |
| 2010-Leporé.10                  | 30                   | occipital lobe                      | occipital   |    |             | <b>⊢</b>       | 6.19%   | 0.26 [-0.46, 0.98]   |
| 2010-Leporé.9                   | 30                   | limbic lobe                         | cingulate   |    |             | <del>-</del>   | 6.20%   | 0.01 [-0.71, 0.73]   |
| RE Model for Subgroup (Q = 3.03 | 3, df = 6, p = 0.81; | $I^2 = 0.0\%$ )                     |             |    |             | •              |         | 0.46 [0.19, 0.74]    |
| RE Model for All Studies        | (Q = 132.56, c       | If = 15, p = 0.00; I <sup>2</sup> : | = 82.9%)    |    |             | •              | 100.00% | 0.30 [-0.11, 0.71]   |
|                                 |                      |                                     |             |    |             | :              |         |                      |
|                                 |                      |                                     |             | -5 |             | 0              | 3       |                      |
|                                 |                      |                                     |             |    | Hedge       | e's G          |         |                      |

## **Meta Plots**

## The L'Abbé plot

In a L'Abbé plot (based on L'Abbé, Detsky, & O'Rourke, 1987), the arm-level outcomes for two experimental groups (e.g., treatment and control group) are plotted against each other. is treatment versus effect, since you have the cohen's d this should be relatively simple.

> WE DON'T HAVE TWO EXPERIMENTAL GROUPS

## Baujat plot to identify studies contributing to heterogeneity

The plot shows the contribution of each study to the overall Q-test statistic for heterogeneity on the horizontal axis versus the influence of each study (defined as the standardized squared difference between the overall estimate based on a fixed-effects model with and without the ith study included in the model) on the vertical axis 2.17. Funnel plot to illustrate publication bias

## Galbraith plot

Radial plot (radial) of variables and cohen's d - Galbraith, Rex (1988). "Graphical display of estimates having differing standard errors". Technometrics, Vol. 30, No. 3, 30 (3): 271–281.

errors". Technometrics, Technometrics, Vol. 30, No. 3. 30 (3): 271–281.

2.18.2. We want to see this type of error plot over time for our patient cohorts by age. we want this for each measure WM and GM versus age on the x-axis so we can see GM and WM over time! Do a monte carlo simulation to connect different age population and create the error.

For a fixed-effects model, the plot shows the inverse of the standard errors on the horizontal axis against the individual observed effect sizes or outcomes standardized by their corresponding standard errors on the vertical axis. On the right hand side of the plot, an arc is drawn corresponding to the individual observed effect sizes or outcomes. A line projected from (0,0) through a particular point within the plot onto this arc indicates the value of the individual observed effect size or outcome for that point.

## Resources

We are following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines: Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., and Prisma Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6:e1000097. doi: 10.1371/journal.pmed.1000097 AND https://www.bmj.com/content/339/bmj.b2535

- https://stackoverflow.com/questions/14426637/how-to-do-bubble-plot

#### Good explanation of some of the plots:

 $\begin{array}{l} \bullet \ \ \text{https://ora.ox.ac.uk/objects/uuid:} ff78831d-6f82-4187-97cc-349058e9abde/download\_file?file\_format=pdf\&safe\_filename=Rahimi\%2Bet\%2Bal\%252C\%2BData\%2Bvisualisation\%2Bfor\%2Bmeta-analysis.pdf\&type\_of\_work=Journal+article\\ \end{array}$