MORNING

[Total No. of Questions: 09]

2 2 DEU 2024

[Total No. of Pages: 03]

Uni. Roll No.

Program: B.Tech. (Batch 2018 onward)

Semester: 5

Name of Subject: Finite Element Method

Subject Code: PCME-110

Paper ID: 16376

Scientific calculator is Allowed

Detail of allowed codes/charts/tables etc. Not Applicable......

Time Allowed: 03 Hours

Max. Marks: 60

NOTE:

1) Parts A and B are compulsory.

2) Part-C has Two Questions Q8 and Q9. Both are compulsory, but with internal choice.

3) Any missing data may be assumed appropriately.

Part - A

[Marks: 02 each]

Q1.

- a) List four common types of finite elements.
- b) Differentiate between BAR and TRUSS elements in FEM.
- c) State and explain the principle of minimum potential energy.
- d) List typical areas of engineering where the finite element method is applied.
- e) Find the bandwidth NBW for the one-dimensional model whose nodes are numbered as shown in the figure.

f) Define shape function. What are the characteristics of shape function?

Part - B

[Marks: 04 each]

Q2. Solve the following equations with Gaussian elimination method.

$$x - 2y + 6z = 0$$
; $2x + 2y + 3z = 3$; $-x + 3y = 2$.

- Q3. List and briefly describe the general steps of the finite element method.
- **Q4.** Given that $N = [\xi, 1-\xi^2]$, find $\int_{-1}^{1} Nd\xi$, & $\int_{-1}^{1} N^T Nd\xi$.

Page 1 of 3

- Q5. Write and explain the D matrix showing relationship between stresses and strains.
- Q6. In a plane strain condition $\sigma_x = 150$ MPa, $\sigma_y = -100$ MPa, $E = 2 \times 10^5$ MPa, $\mu = 0.25$. Find the stresses in z-direction and strain in x & y direction.
- Q7. For isometric quadrilateral element, determine the Cartesian co-ordinate of a point P; which has co-ordinate $\xi = 0.57735$, $\eta = 0.57735$.

Part - C

[Marks: 12 each]

Q8. For the bar element shown in the figure, evaluate the global stiffness matrix with respect to the x - y coordinate system. Let the bar's cross-sectional area equal $6x10^{-4}$ m², length equal 1.2 m, and modulus of elasticity equal $2x10^{11}$ Pa. The angle the bar makes with the x axis is 30° .

Determine the Jacobian for the $(x, y) - (\xi, \eta)$ transformation for the element shown in the figure. Also, find the area of the triangle.

Page 2 of 3

Q9. For the bar assemblage shown in the figure, determine the nodal displacements, the forces in each element, and the reactions.

For the five-spring assemblage shown in the figure, determine the displacements at nodes 2 and 3 and the reactions at nodes 1 and 4. Assume the rigid vertical bars at nodes 2 and 3 connecting the springs remain horizontal at all times but are free to slide or displace left or right. There is an applied force at node 3 of 1000 N to the right.

Let $k^{(1)} = 500$ N/mm, $k^{(2)} = k^{(3)} = 300$ N/mm, and $k^{(4)} = k^{(5)} = 400$ N/mm.

Page 3 of 3