WO 00/71701

10 Pect PCT/PTO 173 SEP 2001 09/936588 PCT/US00/14122

SEQUENCE LISTING

<110> XU, Ming-Qun
 EVANS, Thomas C.
 PRADHAN, Sriharsa
 COMB, Donald G.
 PAULUS, Henry
 SUN, Luo
 CHEN, Lixin
 GHOSH, Inca
 NEW ENGLAND BIOLABS, INC.
 BOSTON BIOMEDICAL RESEARCH INSTITUTE

<120> METHOD FOR GENERATING SPLIT, NON-TRANSFERABLE GENES THAT ARE ABLE TO EXPRESS AN ACTIVE PROTEIN PRODUCT

<130> NEB-163-PCT

<140> <141>

<150> 60/135,677 <151> 1999-05-24

<160> 134

<170> PatentIn Ver. 2.0

<210> 1 <211> 19 <212> DNA

<213> Escherichia colí

<400> 1

ggacggggaa ctaactatg

<210> 2

<211> 20

<212> DNA

<213> Escherichia coli

<400> 2

ccacgatgac gcaccacgcg

<210> 3

<211> 30

<212> DNA

<213> Escherichia coli

_

19

ggaggggca tatgaatggc gcacagtggg	30
<210> 4	
<211> 25	
<212> DNA	
<213> Escherichia coli	
Value 1 de la constante de la	
<400> 4	
ggggggtcat gataatttct ccaac	25
<210> 5	
<211> 28	
<212> DNA	
<213> Escherichia coli	
<400> 5	
ccgggtggcg taattatgcc ggtttacg	28
<210> 6	
<211> 28	
<212> DNA	
<213> Escherichia coli	
<400> 6	
cgtaaaccgg cataattacg ccacccgg	28
<210> 7	
<211> 14	
<212> PRT	
<213> Synechocystis PCC6803	
<400> 7	
Leu Glu Lys Phe Ala Glu Tyr Cys Phe Asn Lys Ser Thr Gly	
1 5 10	
<210> 8	
<211> 21	
<212> PRT	
<213> Escherichia coli	
ALIS ESCUCITORIA COLL	
<400> 8	
Cys Ala Gln Trp Val Val His Ala Leu Arg Ala Gln Gly Val Asn Thr	
1 5 10 15	
Val Phe Gly Tyr Gly	

<210> 9	
<211> 20	
<212> PRT	
<213> Escherichia coli	
<400> 9	
Cys Val Trp Pro Leu Val Pro Pro Gly Ala Ser Asn Ser Glu Met Leu	
1 5 10 15	
Glu Lys Leu Ser	
20	
<210> 10	
<211> 26	
<212> DNA	
<213> Escherichia coli	
ZIJ EBCHELICHIA COII	
<400> 10	
gggggtcatg aatggcgcac agtggg	26
gggggttatg aatggtgtat agtggg	
<210> 11	
<211> 34	
<212> DNA	
<213> Escherichia coli	
VZIJV ESCHELICHIA COII	
<400> 11	
gegegetega gttgatttaa eggetgetgt aatg	34
gegegerega gregaretaa eggergerge aatg	<i>-</i>
<210> 12	
<211> 32	
<211> 32 <212> DNA	
<213> Escherichia coli	
4400- 12	
<400> 12	32
gcgcgaccgg ttgtgactgg cagcaacact gc	32
010 12	
<210> 13	
<211> 31	
<212> DNA	
<213> Escherichia coli	
<400> 13	_
ggggggctgc agtcatgata atttctccaa c	31

WO 00/71701	PCT/US00/1412
<210> 14	
<211> 22	
<212> DNA	
<213> MAIZE	
<400> 14	
atcagtacac agtoctgcca to	22
accaytacac agreetyeea te	2.2
<210> 15	
<211> 20	
<212> DNA	
<213> MAIZE	
<400> 15	
gagacagccg ccgcaaccat	20
<210> 16	
<211> 29	
<212> DNA	
<213> MAIZE	
<400> 16	
gggcccatat ggccaccgcc gccgccgcg	29
<210> 17	
<211> 29	
<212> DNA	
<213> MAIZE	
<400> 17	
gggccctcga ggcttccttc aagaagagc	29
<210> 18	
<211> 29	
<212> DNA	
<213> MAIZE	
<400> 18	
gggccaccgg tacatcaaag aagagcttg	29
sayoutung dagagoody	23
<210> 19	
<211> 31	
<212> DNA	
<213> MAIZE	
<400> 19	
ggggctgcat tcagtacaca gtcctgccat c	31

<211> 44

```
<210> 20
<211> 7
<212> PRT
<213> Synechocystis PCC6803
<400> 20
Leu Glu Lys Phe Ala Glu Tyr
  1
<210> 21
<211> 7
<212> PRT
<213> Synechocystis PCC6803
<400> 21
Cys Phe Asn Lys Ser Thr Gly
<210> 22
<211> 21
<212> PRT
<213> MAIZE
<400> 22
Cys Lys Gly Ala Asp Ile Leu Val Glu Ser Leu Glu Arg Cys Gly Val
                                     10
1
Arg Asp Val Phe Ala
             20
<210> 23
<211> 21
<212> PRT
<213> MAIZE
<400> 23
Cys Ile Pro Ser Gly Gly Ala Phe Lys Asp Met Ile Leu Asp Gly Asp
                                     10
Gly Arg Thr Val Tyr
             20
<210> 24
```

WO 00/71701	PCT/US00/141
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic,	
based on Salmonella typhimurium	
<400> 24	
ggatectaag aaggagatat acccatggaa teectgaegt taca	44
<210> 25	
<211> 38	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic,	
based on Salmonella typhimurium	
<400> 25	
gtcgacgctc tcctgcagtt aggcaggcgt actcattc	38
<210> 26	
<211> 38	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic,	
based on Salmonella typhimurium	
<400> 26	
gctttgctcc tggcggcttt accttgtggt aaaaccgc	. 38
<210> 27	
<211> 38	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic,	
based on Salmonella typhimurium	
<400> 27	38
gcggttttac cacaaggtaa agccgccagg agcaaagc	38
<210> 28	
<211> 25	

PCT/US00/14122

WO 00/71701		PCT/US00/14122

WO 00/71701	PCT/US00/141
<212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic, based on Salmonella typhimurium	
<400> 28 gcccctaaag acacaattat tcgcg	25
<210> 29 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic, based on Salmonella typhimurium	
<400> 29 cagcggcgcc gtcatcagca gagcg	25
<210> 30 <211> 25 <212> DNA <213> Artificial Sequence	·
<220> <223> Description of Artificial Sequence: Synthetic, based on Salmonella typhimurium	
<400> 30 gcgaaccacc actaccaaca atttg	25
<210> 31 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic, based on Salmonella typhimurium	

- <400> 31 25 tatctccacg ccaaaggttt tcatt
- <210> 32. <211> 21

WO 00/71701

WO 00/71701	PCT/US00/14122
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Synthetic, based on Salmonella typhimurium</pre>	
<400> 32	
gaatattgcc tgtcttttgg t	21
<210> 33	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic,	
based on Salmonella typhimurium	
<400> 33	
gttaaagcag ttagcagcga t	21
<210> 34	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic, based on Salmonella typhimurium	
<400> 34	
tgctgaatat tgcctgtctt ttgg	24
2210x 35	
<210> 35	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic, based on Salmonella typhimurium	
<400> 35	
ccgttaaagc agttagcagc gatagc	26
<210> 36	
<211 \ 44	

WO 00/71701	PCT/US00/14122
<212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic,	
based on Salmonella typhimurium	
<400> 36 ggatcctaag aaggagatat acccatggaa tccctgacgt taca	44
ggatcctaag aaggagatat acceaeggaa 20019 9	
<210> 37 <211> 39	
<211> 39 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic, based on Salmonella typhimurium	
<400> 37	39
gatatectge agttaacetg gagagtgata etgttgace	
<210> 38 <211> 36	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic, based on Salmonella typhimurium	
<400> 38	36
gatatcccat gggacgctat ctggtcgagg gcgatg	
<210> 39	
<211> 38	
<212> DNA <213> Artificial Sequence	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: Synthetic, based on Salmonella typhimurium</pre>	
<400> 39	38
gtcgacgete teetgcagtt aggeaggegt acteatte	
<210> 40 <211> 31	
S/11/ 31	

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic from Synechocystis species PCC6803

<400> 40

tgctgaatat gcgctgtctt ttggtaccga a

31

<210> 41

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic from
 Synechocystis species PCC6803

<400> 41

ccgttaaacg ccgcagcagc gatagcgcc

29

<210> 42

<211> 178

<212> PRT

<213> Escherichia coli

<400> 42

Tyr Ala Val Asp Lys Ala Asp Leu Leu Leu Ala Leu Gly Val Arg Phe 1 5 10 15

Asp Asp Arg Val Thr Lys Ile Glu Ala Phe Ala Ser Arg Ala Lys Ile 20 25 30

Val His Val Asp Ile Asp Pro Ala Glu Ile Gly Lys Asn Lys Gln Pro 35 40 45

His Val Ser Ile Cys Ala Asp Val Lys Leu Ala Leu Gln Gly Met Asn 50 55 60

Ala Leu Leu Glu Gly Ser Thr Ser Lys Lys Ser Phe Asp Phe Gly Ser
65 70 75 80

Trp Asn Asp Glu Leu Asp Gln Gln Lys Arg Glu Phe Pro Leu Gly Tyr 85 90 95

Lys Thr Ser Asn Glu Glu Ile Gln Pro Gln Tyr Ala Ile Gln Val Leu 100 105 110

Asp Glu Leu Thr Lys Gly Glu Ala Ile Ile Gly Thr Gly Val Gly Gln 115 120 125

His Gln Met Trp Ala Ala Gln Tyr Tyr Thr Tyr Lys Arg Pro Arg Gln 130 135 140

Trp Leu Ser Ser Ala Gly Leu Gly Ala Met Gly Phe Gly Leu Pro Ala 145 150 155 160

Ala Ala Gly Ala Ser Val Ala Asn Pro Gly Val Thr Val Val Asp Ile 165 170 175

Asp Gly

<210> 43

<211> 179

<212> PRT

<213> Escherichia coli

<400> 43

Tyr Ala Val Asp Ser Ser Asp Leu Leu Leu Ala Phe Gly Val Arg Phe 1 5 10 15

Asp Asp Arg Val Thr Gly Lys Leu Glu Ala Phe Ala Ser Arg Ala Lys 20 25 30

Ile Val His Ile Asp Ile Asp Ser Ala Glu Ile Gly Lys Asn Lys Gln 35 40 45

Pro His Val Ser Ile Cys Ala Asp Ile Lys Leu Ala Leu Gln Gly Leu 50 55 60

Asn Ser Ile Leu Glu Ser Lys Glu Gly Lys Leu Lys Leu Asp Phe Ser 65 70 75 80

Ala Trp Arg Gln Glu Leu Thr Glu Gln Lys Val Lys His Pro Leu Asn 85 90 95

Phe Lys Thr Phe Gly Asp Ala Ile Pro Pro Gln Tyr Ala Ile Gln Val 100 105 110

Leu Asp Glu Leu Thr Asn Gly Asn Ala Ile Ile Ser Thr Gly Val Gly
115 120 125

Gln His Gln Met Trp Ala Ala Gln Tyr Tyr Lys Tyr Arg Lys Pro Arg

130 135 140

Gln Trp Leu Thr Ser Gly Gly Leu Gly Ala Met Gly Phe Gly Leu Pro 145 150 155 160

Ala Ala Ile Gly Ala Ala Val Gly Arg Pro Asp Glu Val Val Asp 165 170 175

Ile Asp Gly

<210> 44

<211> 179

<212> PRT

<213> Escherichia coli

<400> 44

Tyr Ala Val Asp Ser Ser Asp Leu Leu Leu Ala Phe Gly Val Arg Phe
1 5 10 15

Asp Asp Arg Val Thr Gly Lys Leu Glu Ala Phe Ala Ser Arg Ala Lys 20 25 30

Ile Val His Ile Asp Ile Asp Ser Ala Glu Ile Gly Lys Asn Lys Gln
35 40 45

Pro His Val Ser Ile Cys Ala Asp Ile Lys Leu Ala Leu Gln Gly Leu 50 55 60

Asn Ser Ile Leu Glu Ser Lys Glu Gly Lys Leu Lys Leu Asp Phe Ser 65 70 75 80

Ala Trp Arg Gln Glu Leu Thr Val Gln Lys Val Lys Tyr Pro Leu Asn 85 90 95

Phe Lys Thr Phe Gly Asp Ala Ile Pro Pro Gln Tyr Ala Ile Gln Val 100 105 110

Leu Asp Glu Leu Thr Asn Gly Ser Ala Ile Ile Ser Thr Gly Val Gly
115 120 125

Gln His Gln Met Trp Ala Ala Gln Tyr Tyr Lys Tyr Arg Lys Pro Arg 130 135 140

Gln Trp Leu Thr Ser Gly Gly Leu Gly Ala Met Gly Phe Gly Leu Pro 145 150 155 160

Ala Ala Ile Gly Ala Ala Val Gly Arg Pro Asp Glu Val Val Asp 165 170 175

Ile Asp Gly

<210> 45

<211> 180

<212> PRT

<213> Escherichia coli

<400> 45

Met Thr Met His Asn Ala Asp Val Ile Phe Ala Val Gly Val Arg Phe
1 5 10 15

Asp Asp Arg Thr Thr Asn Asn Leu Ala Lys Tyr Cys Pro Asn Ala Thr 20 25 30

Val Leu His Ile Asp Ile Asp Pro Thr Ser Ile Ser Lys Thr Val Thr 35 40 45

Ala Asp Ile Pro Ile Val Gly Asp Ala Arg Gln Val Leu Glu Gln Met 50 55 60

Leu Glu Leu Leu Ser Gln Glu Ser Ala His Gln Pro Leu Asp Glu Ile 65 70 75 80

Arg Asp Trp Trp Gln Gln Ile Glu Gln Trp Arg Ala Arg Gln Cys Leu 85 90 95

Lys Tyr Asp Thr His Ser Glu Lys Ile Lys Pro Gln Ala Val Ile Glu 100 105 110

Thr Leu Trp Arg Leu Thr Lys Gly Asp Ala Tyr Val Thr Ser Asp Val 115 120 125

Gly Gln His Gln Met Phe Ala Ala Leu Tyr Tyr Pro Phe Asp Lys Pro 130 135 140

Arg Arg Trp Ile Asn Ser Gly Gly Leu Gly Thr Met Gly Phe Gly Leu 145 150 155 160

Pro Ala Ala Leu Gly Val Lys Met Ala Leu Pro Glu Glu Thr Val Val 165 170 175

Cys Val Thr Gly

<210> 46

<211> 170

<212> PRT

<213> Escherichia coli

<400> 46

Phe Ala Val Gln Glu Cys Asp Leu Leu Ile Ala Val Gly Ala Arg Phe
1 5 10 15

Asp Asp Arg Val Thr Gly Lys Leu Asn Thr Ser Ala Pro His Ala Ser 20 25 30

Val Ile His Met Asp Ile Asp Pro Ala Glu Met Asn Lys Leu Arg Gln 35 40 45

Ala His Val Ala Leu Gln Gly Asp Leu Asn Ala Leu Leu Pro Ala Leu 50 55 60

Gln Gln Pro Leu Asn Gln Cys Asp Trp Gln Gln His Cys Ala Gln Leu 65 70 75 80

Arg Asp Glu His Ser Trp Arg Tyr Asp His Pro Gly Asp Ala Ile Tyr 85 90 95

Ala Pro Leu Leu Leu Lys Gln Leu Ser Asp Arg Lys Pro Ala Asp Cys
100 105 110

Val Val Thr Thr Asp Val Gly Gln His Gln Met Trp Ala Ala Gln His
115 120 125

Ile Ala His Thr Arg Pro Glu Asn Phe Ile Thr Ser Ser Gly Leu Gly
130 135 140

Thr Met Gly Phe Gly Leu Pro Ala Ala Val Gly Ala Gln Val Ala Arg 145 150 155 160

Pro Asn Asp Thr Val Val Cys Ile Ser Gly 165 170

<210> 47

<211> 35

<212> DNA

<213> Escherichia coli

<400> 47

WO 00/71701	PCT/US00/14122
gccttaatta accatgaggg aagcggtgat cgccg	35
<210> 48	
<211> 34	
<212> DNA	
<213> Escherichia coli	
<400> 48	
tgcggtcgac tttgccgact accttggtga tctc	34
<210> 49	
<211> 41	
<212> DNA	
<213> Escherichia coli	
<400> 49	
cccaagettg gegecatgag taaaggagaa gaaettttea e	41
<210> 50	
<211> 36	
<212> DNA	
<213> Escherichia coli	
<400> 50	
gcgaccggtt tatttgtata gttcatccat gccatg	36
<210> 51	
<211> 39	
<212> DNA	
<213> Escherichia coli	
<400> 51	
agggaattcg tcgacaaatt tgctgaatat tgcctgtct	39
<210> 52	
<211> 38	
<212> DNA	
<213> Escherichia coli	
<400> 52	
ggcctcgagt tatttaattg tcccagcgtc aagtaatg	38
<210> 53	
<211> 41	
<212> DNA	
<213> Escherichia coli	
<400> 53	

WO 00/71701	PCT/US00/14122
agctttgttt aaaccatggt taaagttatc ggtcgtagat c	41
<210> 54	
<211> 43	
<212> DNA	
<213> Escherichia coli	
<400> 54	43
cagcgtcgac ggcgccgtgg gatttgttaa agcagttagc agc	43
<210> 55	
<211> 31	
<212> DNA	
<213> Escherichia coli	
<400> 55	31
catgccatgg gggaagcggt gatcgccgaa g	31
<210> 56	
<211> 39	
<212> DNA	
<213> Escherichia coli	
<400> 56	39
acgcgagctc ttatttaatt gtcccagcgt caagtaatg	33
<210> 57	
<211> 34	
<212> DNA	
<213> Escherichia coli	
<400> 57	34
cgaattctat ggttaaagtt atcggtcgta gatc	3
<210> 58	
<211> 36	
<212> DNA	
<213> Escherichia coli	
<400> 58	36
agcccgcggt tatttgtata gttcatccat gccatg	
<210> 59	
<211> 154	
<212> DNA	
<213> Nicotiana tabacum	
<400> 59	

```
gaatagatct acatacacct tggttgacac gagtatataa gtcatgttat actgttgaat 60
 aacaagcctt ccattttcta ttttgatttg tagaaaacta gtgtgcttgg gagtccctga 120
 tgattaaata aaccaagatt ttaccttaat taag
 <210> 60
 <211> 151
 <212> DNA
 <213> Nicotiana tabacum
 <400> 60
 gatcctggcc tagtctatag gaggttttga aaagaaagga gcaataatca ttttcttgtt 60
 ctatcaagag ggtgctattg ctcctttctt tttttctttt tatttattta ctagtatttt 120
 acttacatag acttttttgt ttacgtattc t
 <210> 61
<211> 185
<212> DNA
<213> Nicotiana tabacum
<400> 61
catatggcgt ccatgatete etegteegeg gtgaceaegg teageegege gtecaeggtg 60
cagteggeeg eggtggeece gtteggegge etcaagteea tgaeeggett eeeggteaag 120
aaggtcaaca cggacatcac gtccatcacg agcaacggcg gcagggtgaa gtgcatgcga 180
agagc
<210> 62
<211> 6232
<212> DNA
<213> Unknown
<220>
<223> nucleotides 1-2492: E. coli vector pLITMUS28 (New
      England Biolabs, Inc.)
<220>
<223> nucleotides 2493-5993: Nicotiana tabaceum
<223> Nucleotides 5993-6232: E.coli vector pLITMUS28
      (New England Biolabs, Inc.)
<400> 62
gttaactacg tcaggtggca cttttcgggg aaatgtgcgc ggaaccccta tttgtttatt 60
tttctaaata cattcaaata tgtatccgct catgagacaa taaccctgat aaatgcttca 120
ataatattga aaaaggaaga gtatgagtat tcaacatttc cgtgtcgccc ttattccctt 180
ttttgcggca ttttgccttc ctgtttttgc tcacccagaa acgctggtga aagtaaaaga 240
tgctgaagat cagttgggtg cacgagtggg ttacatcgaa ctggatctca acagcggtaa 300
gateettgag agttttegee eegaagaaeg tteteeaatg atgageaett ttaaagttet 360
```

gctatgtggc	gcggtattat	cccgtgttga	cgccgggcaa	gagcaactcg	gtcgccgcat	420
acactattct	cagaatgact	tggttgagta	ctcaccagtc	acagaaaagc	atcttacgga	480
tggcatgaca	gtaagagaat	tatgcagtgc	tgccataacc	atgagtgata	acactgcggc	540
caacttactt	ctgacaacga	tcggaggacc	gaaggagcta	accgcttttt	tgcacaacat	600
gggggatcat	gtaactcgcc	ttgatcgttg	ggaaccggag	ctgaatgaag	ccataccaaa	660
cgacgagcgt	gacaccacga	tgcctgtagc	aatggcaaca	acgttgcgca	aactattaac	720
tggcgaacta	cttactctag	cttcccggca	acaattaata	gactggatgg	aggcggataa	780
agttgcagga	ccacttctgc	gctcggccct	tccggctggc	tggtttattg	ctgataaatc	840
tggagccggt	gagcgtgggt	ctcgcggtat	cattgcagca	ctggggccag	atggtaagcc	900
ctcccgtatc	gtagttatct	acacgacggg	gagtcaggca	actatggatg	aacgaaatag	960
acagatcgct	gagataggtg	cctcactgat	taagcattgg	taactgtcag	accaagttta	1020
ctcatatata	ctttagattg	atttaccccg	gttgataatc	agaaaagccc	caaaaacagg	1080
aagattgtat	aagcaaatat	ttaaattgta	aacgttaata	ttttgttaaa	attcgcgtta	1140
aatttttgtt	aaatcagctc	attttttaac	caataggccg	aaatcggcaa	aatcccttat	1200
aaatcaaaag	aatagcccga	gatagggttg	agtgttgttc	cagtttggaa	caagagtcca	1260
ctattaaaga	acgtggactc	caacgtcaaa	gggcgaaaaa	ccgtctatca	gggcgatggc	1320
ccactacgtg	aaccatcacc	caaatcaagt	tttttggggt	cgaggtgccg	taaagcacta	1380
aatcggaacc	ctaaagggag	cccccgattt	agagcttgac	ggggaaagcg	aacgtggcga	1440
gaaaggaagg	gaagaaagcg	aaaggagcgg	gcgctagggc	gctggcaagt	gtagcggtca	1500
cgctgcgcgt	aaccaccaca	cccgccgcgc	ttaatgcgcc	gctacagggc	gcgtaaaagg	1560
atctaggtga	agatcctttt	tgataatctc	atgaccaaaa	tcccttaacg	tgagttttcg	1620
ttccactgag	cgtcagaccc	cgtagaaaag	atcaaaggat	cttcttgaga	tcctttttt	1680
ctgcgcgtaa	tctgctgctt	gcaaacaaaa	aaaccaccgc	taccagcggt	ggtttgtttg	1740
ccggatcaag	agctaccaac	tctttttccg	aaggtaactg	gcttcagcag	agcgcagata	1800
ccaaatactg	ttcttctagt	gtagccgtag	ttaggccacc	acttcaagaa	ctctgtagca	1860
ccgcctacat	acctcgctct	gctaatcctg	ttaccagtgg	ctgctgccag	tggcgataag	1920
tcgtgtctta	ccgggttgga	ctcaagacga	tagttaccgg	ataaggcgca	gcggtcgggc	1980
tgaacggggg	gttcgtgcac	acagcccagc	ttggagcgaa	cgacctacac	cgaactgaga	2040
tacctacagc	gtgagctatg	agaaagcgcc	acgcttcccg	aagggagaaa	ggcggacagg	2100
tatccggtaa	gcggcagggt	cggaacagga	gagcgcacga	gggagcttcc	agggggaaac	2160
gcctggtatc	tttatagtcc	tgtcgggttt	cgccacctct	gacttgagcg	tcgatttttg	2220
tgatgctcgt	caggggggcg	gagcctatgg	aaaaacgcca	gcaacgcggc	ctttttacgg	2280
ttcctggcct	tttgctggcc	ttttgctcac	atgtaatgtg	agttagctca	ctcattaggc	2340
accccaggct	ttacacttta	tgcttccggc	tcgtatgttg	tgtggaattg	tgagcggata	2400
acaatttcac	acaggaaaca	gctatgacca	tgattacgcc	aagctacgta	atacgactca	2460
ctagtgggca	gatcttcgaa	tgcatcgcgc	gcttgacgat	atagcaattt	tgcttggatt	2520
tatcagtcga	agcaggagac	aatatacctt	gatattctcg	atcattcttt	gattcaaagc	2580
atcgttccat	ctcaattgaa	aaagcaaata	acgtttcaag	aacaaatcta	gttctgcttc	2640
cgtgttgctt	ttgtattgtt	ttttctttt	acccttcttt	gtgtctgatt	ccgcgtaatc	2700
tttttaaga	gcgttttgat	gttttgagag	aacagggccc	agatttcctt	tgttttctat	2760
atctgatcca	cgctctttt	ctccttgact	tgcgggttct	tttgcttctt	gaattcgatt	2820
	ttatttgatc					
attttgacta	acattttcat	ttgtattcaa	atttaaaaga	agtaatttgc	ttggtataat	2940
	attttatata					
cagattcaat	atgggacgat	ttaatatttt	ttcattcatt	cccatccaat	caaaaaaggc	3060
ttttttcgaa	tttttttgat	tgttttctgg	attttgatga	atcgtaagat	aaaaaagcc	3120
	attttatcaa			-		
actgttggta	tcgatcttaa	cccaggcctc	aatatcttct	ttttgtctaa	gagaaaaatg	3240

gataattttc	caatcaaaat	attttctatc	gagatttctt	tctatatata	gaatattgcc	3300
					tgtgtttgga	
					atctagaaat	
					catatctata	
					cattttcttt	
					ttcgattttg	
					tagaccatct	
					aataacctct	
					gtaaataaat	
					atgattattg	
					aattaaggta	
					acaaatcaaa	
					atatactcgt	
					aagcttccca	
					tatactgttg	
					tgggagtccc	
					cctagtctat	
					agggtgctat	
					agacttttt	
_					gattgagtat	
					attctataac	
					aaatagtcct	
					cttaatttag	
					gataagtagg	
					ttttttatag	
tcgaaataaa	gtgaatttt	ttttgattat	taatttttc	ttgatttatt	tcattattgg	4800
					ttaattctgg	
					aattttagaa	
aataatggaa	tttccatatt	aatcgagtat	ttcttcttt	taatatttgg	aaaatctttt	4980
ttggcgattc	gaattttta	atattatttg	ttttattagg	actaatgtct	atttctggag	5040
ttactttctt	tttctctttt	gtaattcttt	ctatttgatt	tttgattgta	cttgttctat	5100
cagtcaaatc	cttcattttg	ctttctatca	gtgaagaatt	tggccaattt	ccagattcaa	5160
tttgactaaa	tgattcgtta	attatctgat	tactcattag	agaatctttt	tctttttcg	5220
tttcattcga	ttcatctatt	tctttgagtc	taaataatac	aattggattt	acttttgaaa	5280
gttcttttt	cattttttt	ataaatagac	tacttttgat	aagccatttt	ttggtttctt	5340
ttgaaattct	tcgaaataat	tttattttc	ctttgaaaac	ttttagagtt	ataaaatatt	5400
tctttttgaa	ttttccaatt	tttttttcga	gttccttaaa	aatgggctca	aaaaaagaag	5460
ggcgttttcg	gggagaacca	aagggaagtt	cagcttccat	tccccaaact	gttaaaaaac	5520
aaaaatcatc	tttttgtttt	ttcttttca	ttagctctcc	acgggaggag	tacagtttag	5580
atatatgcca	aggtttcaga	caaaaaggaa	ataatattt	gatctgaatg	ccatctttca	5640
accaattttt	tggaaattct	gtttctgata	attgaacacc	attataagta	catttaatat	5700
gcatttctct	attccattcc	tgcaaatctt	cagaccattc	aggaagttgc	aagactaaca	5760
tacgcccgag	atttttggct	attatcaatg	aaggtaatac	aatatattt	cgaagaattg	5820
attgagttat	taacatgtaa	cctcttatta	tttgcgcaaa	aggaatggta	tcccaggctt	5880
ctgctatctc	tatccgtgct	ttttcctttc	ttttgttctc	cccttttttg	tccttttcct	5940
ttttctcttc	tctttttgtt	tgttcttctc	tagactctag	aatcttgaat	tcggtaccct	6000
ctagtcaagg	ccttaagtga	gtcgtattac	ggactggccg	tcgttttaca	acgtcgtgac	6060
tgggaaaacc	ctggcgttac	ccaacttaat	cgccttgcag	cacatccccc	tttcgccagc	6120

```
tggcgtaata gcgaagaggc ccgcaccgat cgcccttccc aacagttgcg cagcctgaat 6180
ggcgaatggc gcttcgcttg gtaataaagc ccgcttcggc gggctttttt tt
<210> 63
<211> 6477
<212> DNA
<213> Unknown
<220>
<223> Nucleotides 1-2482: E. coli vector pLITMUS28 (New
      England Biolabs, Inc.)
<220>
<223> Nucleotides 2493-6242: Nicotiana tabaceum
<220>
<223> Nucleotides 6243-6477: E. coli vector pLITMUS28
      (New England Biolabs, Inc.)
<400> 63
gttaactacg tcaggtggca cttttcgggg aaatgtgcgc ggaaccccta tttgtttatt 60
tttctaaata cattcaaata tgtatccgct catgagacaa taaccctgat aaatgcttca 120
ataatattga aaaaggaaga gtatgagtat tcaacatttc cgtgtcgccc ttattccctt 180
ttttgcggca ttttgccttc ctgtttttgc tcacccagaa acgctggtga aagtaaaaga 240
tgctgaagat cagttgggtg cacgagtggg ttacatcgaa ctggatctca acagcggtaa 300
gatccttgag agttttcgcc ccgaagaacg ttctccaatg atgagcactt ttaaagttct 360
gctatgtggc gcggtattat cccgtgttga cgccgggcaa gagcaactcg gtcgccgcat 420
acactattct cagaatgact tggttgagta ctcaccagtc acagaaaagc atcttacgga 480
tggcatgaca gtaagagaat tatgcagtgc tgccataacc atgagtgata acactgcggc 540
caacttactt ctgacaacga tcggaggacc gaaggagcta accgcttttt tgcacaacat 600
gggggatcat gtaactcgcc ttgatcgttg ggaaccggag ctgaatgaag ccataccaaa 660
cgacgagcgt gacaccacga tgcctgtagc aatggcaaca acgttgcgca aactattaac 720
tggcgaacta cttactctag cttcccggca acaattaata gactggatgg aggcggataa 780
agttgcagga ccacttctgc gctcggccct tccggctggc tggtttattg ctgataaatc 840
tggagccggt gagcgtgggt ctcgcggtat cattgcagca ctggggccag atggtaagcc 900
ctcccgtatc gtagttatct acacgacggg gagtcaggca actatggatg aacgaaatag 960
acagatcgct gagataggtg cctcactgat taagcattgg taactgtcag accaagttta 1020
ctcatatata ctttagattg atttaccccg gttgataatc agaaaagccc caaaaacagg 1080
aagattgtat aagcaaatat ttaaattgta aacgttaata ttttgttaaa attcgcgtta 1140
aatttttgtt aaatcagctc attttttaac caataggccg aaatcggcaa aatcccttat 1200
aaatcaaaag aatagcccga gatagggttg agtgttgttc cagtttggaa caagagtcca 1260
ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa ccgtctatca gggcgatggc 1320
ccactacgtg aaccatcacc caaatcaagt tttttggggt cgaggtgccg taaagcacta 1380
aatcggaacc ctaaagggag cccccgattt agagcttgac ggggaaagcg aacgtggcga 1440
gaaaggaagg gaagaaagcg aaaggagcgg gcgctagggc gctggcaagt gtagcggtca 1500
cgctgcgcgt aaccaccaca cccgccgcgc ttaatgcgcc gctacagggc gcgtaaaagg 1560
atctaggtga agatcctttt tgataatctc atgaccaaaa tcccttaacg tgagttttcg 1620
ttccactgag cgtcagaccc cgtagaaaag atcaaaggat cttcttgaga tcctttttt 1680
```

ctgcgcgtaa	tctgctgctt	gcaaacaaaa	aaaccaccgc	taccagcggt	ggtttgtttg	1740
	agctaccaac					
	ttcttctagt					
ccgcctacat	acctcgctct	gctaatcctg	ttaccagtgg	ctgctgccag	tggcgataag	1920
	ccgggttgga					
tgaacggggg	gttcgtgcac	acagcccagc	ttggagcgaa	cgacctacac	cgaactgaga	2040
	gtgagctatg					
tatccggtaa	gcggcagggt	cggaacagga	gagcgcacga	gggagcttcc	agggggaaac	2160
gcctggtatc	tttatagtcc	tgtcgggttt	cgccacctct	gacttgagcg	tcgatttttg	2220
tgatgctcgt	caggggggcg	gagcctatgg	aaaaacgcca	gcaacgcggc	ctttttacgg	2280
ttcctggcct	tttgctggcc	ttttgctcac	atgtaatgtg	agttagctca	ctcattaggc	2340
accccaggct	ttacacttta	tgcttccggc	tcgtatgttg	tgtggaattg	tgagcggata	2400
acaatttcac	acaggaaaca	gctatgacca	tgattacgcc	aagctacgta	atacgactca	2460
ctagtgggca	gatcttcgaa	tgcatcgcgc	gcaattcacc	gccgtatggc	tgaccggcga	2520
ttactagcga	ttccggcttc	atgcaggcga	gttgcagcct	gcaatccgaa	ctgaggacgg	2580
gtttttgggg	ttagctcacc	ctcgcgggat	cgcgaccctt	tgtcccggcc	attgtagcac	2640
gtgtgtcgcc	cagggcataa	ggggcatgat	gacttgacgt	catcctcacc	ttcctccggc	2700
ttatcaccgg	cagtctgttc	agggttccaa	actcaacgat	ggcaactaaa	cacgagggtt	2760
gcgctcgttg	cgggacttaa	cccaacacct	tacggcacga	gctgacgaca	gccatgcacc	2820
acctgtgtcc	gcgttcccga	aggcacccct	ctctttcaag	aggattcgcg	gcatgtcaag	2880
ccctggtaag	gttcttcgct	ttgcatcgaa	ttaaaccaca	tgctccaccg	cttgtgcggg	2940
ccccgtcaa	ttcctttgag	tttcattctt	gcgaacgtac	tccccaggcg	ggatacttaa	3000
	acagcactgc					
	ctggggtatc					
	agcagagtgc				•	
	gaaattccct					
	gagccctggg					
	ttccggataa					
	cttattcccc					
	ccttctacct					
	tgctgcctcc					
	ggaccagcta					
	cgagcccctc					
	gtttccagct					
	actggaaaca					
	tgagccagga					
	gtagacaaag					
	tcatattcgc					
	ccacgagcct					
	actcacattg					
	acactctacc					
	ctaagtcaaa					
	ttcttttct					
	aaagaaaaaa					
	cctttcttt					
	atcttggttt					
	agaaaataga					
atactcgtgt	caaccaaggt	gtatgtagat	ctattcctgc	aggatatetg	yacccacgaa	#700

```
gcttcccatg ggaatagatc tacatacacc ttggttgaca cgagtatata agtcatgtta 4620
tactgttgaa taaaaagcct tccattttct attttgattt gtagaaaact agtgtgcttg 4680
ggagtccctg atgattaaat aaaccaagat tttaccgttt aaacaccggt gatcctggcc 4740
tagtctatag gaggttttga aaagaaagga gcaataatca ttttcttgtt ctatcaagag 4800
ggtgctattg ctcctttctt tttttctttt tatttattta ctagtatttt acttacatag 4860
acttttttgt ttacattata gaaaaagaag gagaggttat tttcttgcat ttattcatga 4920
ttgagtattc tcctagggtc gagaaactca acgccactat tcttgaacaa cttggagccg 4980
qqccttcttt tcgcactatt acggatatga aaataatggt caaaatcgga ttcaattgtc 5040
aactgcccct atcggaaata ggattgacta ccgattccga aggaactgga gttacatctc 5100
ttttccattc aagagttctt atgcgtttcc acgccccttt gagaccccga aaaatggaca 5160
aatteetttt ettaggaaca catacaagat tegteactac aaaaaggata atggtaaccc 5220
taccattaac tacttcattt atgaatttca tagtaataga aatacatgtc ctaccgagac 5280
agaatttgga acttgctatc ctcttgccta gcaggcaaag atttacctcc gtggaaagga 5340
tgattcattc ggatcgacat gagagtccaa ctacattgcc agaatccatg ttgtatattt 5400
gaaagaggtt gacctccttg cttctctcat ggtacactcc tcttcccgcc gagccccttt 5460
tctcctcggt ccacagagac aaaatgtagg actggtgcca acaattcatc agactcacta 5520
agtcgggatc actaactaat actaatctaa tataatagtc taatatatct aatataatag 5580
aaaatactaa tataatagaa aagaactgtc ttttctgtat actttccccg gttccgttgc 5640
taccgcgggc tttacgcaat cgatcggatt agatagatat cccttcaaca taggtcatcg 5700
aaaggatctc ggagacccac caaagtacga aagccaggat ctttcagaaa acggattcct 5760
attcaaagag tgcataaccg catggataag ctcacactaa cccgtcaatt tgggatccaa 5820
attcgagatt ttccttggga ggtatcggga aggatttgga atggaataat atcgattcat 5880
acagaagaaa aggttctcta ttgattcaaa cactgtacct aacctatggg atagggatcg 5940
aggaagggga aaaaccgaag atttcacatg gtacttttat caatctgatt tatttcgtac 6000
ctttcgttca atgagaaaat gggtcaaatt ctacaggatc aaacctatgg gacttaagga 6060
atgatataaa aaaaagagag ggaaaatatt catattaaat aaatatgaag tagaagaacc 6120
cagattccaa atgaacaaat tcaaacttga aaaggatctt ccttattctt gaagaatgag 6180
gggcaaaggg attgatcaag aaagatcttt tgttcttctt atataaaga tcgtgatggt 6240
accetetagt caaggeetta agtgagtegt attacggact ggeegtegtt ttacaacgte 6300
gtgactggga aaaccctggc gttacccaac ttaatcgcct tgcagcacat ccccctttcg 6360
ccagctggcg taatagcgaa gaggcccgca ccgatcgccc ttcccaacag ttgcgcagcc 6420
tgaatggcga atggcgcttc gcttggtaat aaagcccgct tcggcgggct ttttttt
<210> 64
<211> 31
<212> DNA
<213> Nicotiana tabacum
<400> 64
                                                                  31
aactgcagga atagatctac atacaccttg g
<210> 65
<211> 42
<212> DNA
<213> Nicotiana tabacum
<400> 65
```

ccgctcgagc ttaattaagg taaaatcttg gtttatttaa tc

WO 00/71701	PCT/US00/14
<210> 66	
<211> 33	
<212> DNA	
<213> Nicotiana tabacum	
<400> 66	
gcgaccggtg atcctggcct agtctatagg agg	33
<210> 67	
<211> 34	
<212> DNA	
<213> Nicotiana tabacum	
<400> 67	• •
aggcctagga gaatactcaa tcatgaataa atgc	34
<210> 68	
<211> 34	
<212> DNA	
<213> Nicotiana tabacum	
<400> 68	
ttggcgcgct tgacgatata gcaattttgc ttgg	34
<210> 69	
<211> 34	
<212> DNA	
<213> Nicotiana tabacum	
<400> 69	
ttgcgtacga tttatctcag attagatggt ctag	34
<210> 70	
<211> 35	
<212> DNA	
<213> Nicotiana tabacum	
<400> 70	
ttgcctaggc gtattgataa tgccgtctta accag	35
<210> 71	
<211> 34	
<212> DNA	
<213> Nicotiana tabacum	
<400> 71	
aggggtaccg aattcaagat tctagagtct agag	34

<212> PRT

<210> 72	
<211> 34	
<212> DNA	
<213> Nicotiana tabacum	
<400> 72	
ttggcgcgca attcaccgcc gtatggctga ccgg	34
<210> 73	
<211> 34	
<212> DNA	
<213> Nicotiana tabacum	
<400> 73	2.4
ttgcgtacgc ctttgactta ggattagtca gttc	34
<210> 74	
<211> 34	
<212> DNA	
<213> Nicotiana tabacum	
<400> 74	34
ttgcctaggg tcgagaaact caacgccact attc	74
<210> 75	
<211> 35	
<212> DNA	
<213> Nicotiana tabacum	
<400> 75	
aggggtacca tcacgatctt atatataaga agaac	35
aggggtacea teacgatett atatataaga agaat	
<210> 76	
<211> 250	
<212> DNA	
<213> Nicotiana tabacum	
Algorithm Canada	
<400> 76	
gaattgtgag cgctcacaat tctaggatgt taattgcgcc gacatcataa cggttctggc	60
aaatattctg aaatgagctg ttgacaatta atcatcggct cgtataatgt gtggaattgt	
gagcggataa caatttcaca caggaaacag accatggtga attctagagc tcgaggatcc	
geggtacceg ggcatgcatt cgaagettee ttaageggee gtegacegat geeettgaga	
gcettcaacc	250
<210> 77	
<211> 5	

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 77
Cys Leu Asn Ile Gln
                  5
  1
<210> 78
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 78
Val Phe Lys His Ala
 1
<210> 79
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 79
Leu Phe Lys Gln Pro
<210> 80
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
```

```
<400> 80
Cys Leu Asn Ser Asp
<210> 81
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 81
Cys Leu Asn Ile Ser
  1
<210> 82
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 82
Cys Leu Asn Thr Asp
 1
<210> 83
<211> 5
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 83
Cys Leu Asn Asn Arg
<210> 84
```

```
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 84
Cys Leu Asn Ser Cys
  1
<210> 85
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 85
Cys Leu Asn Ser Asp
  1
<210> 86
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 86
Cys Leu Asn Thr Leu
  1
<210> 87
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
```

ends of the Tn7 transposon

```
<400> 87
Val Phe Lys Gln Pro
  1
<210> 88
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 88
Cys Leu Asn Ser Met
 1
<210> 89
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 89
Cys Leu Asn Asn Tyr
 1
<210> 90
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 90
```

Cys Leu Asn Met Ala

```
<210> 91
 <211> 5
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: based on the
       ends of the Tn7 transposon
 <400> 91
 Val Phe Lys His Lys
   1
 <210> 92
 <211> 5
 <212> PRT
· <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: based on the
       ends of the Tn7 transposon
 <400> 92
 Cys Leu Asn Thr Lys
  1
 <210> 93
 <211> 5
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: based on the
       ends of the Tn7 transposon
 <400> 93
 Cys Leu Asn Lys Asp
   1
 <210> 94
 <211> 5
 <212> PRT
 <213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 94
Met Phe Lys Gln Ile
  1
<210> 95
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 95
Cys Leu Asn Ile Ile
 1
<210> 96
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 96
Leu Phe Lys His Glu
  1
<210> 97
<211> 5
<212> PRT
<213> Artificial Sequence
 <223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
 <400> 97
 Val Phe Lys His Phe
```

```
5
  1
<210> 98
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 98
Cys Leu Asn Ser Val
 1
<210> 99
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 99
Val Phe Lys Gln Ile
<210> 100
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 100
Met Phe Lys Gln Ala
<210> 101
<211> 5
<212> PRT
```

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 101
Leu Phe Lys His His
                  5
  1
<210> 102
<211> 5
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 102
Leu Phe Lys His Gln
  1
<210> 103
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 103
Met Phe Lys His Val
  1
<210> 104
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
```

```
<400> 104
Val Phe Lys Gln Lys
1
<210> 105
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 105
Leu Phe Lys Gln Gln
 1
<210> 106
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 106
Leu Phe Lys His Ser
 1
 <210> 107
 <211> 5
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: based on the
       ends of the Tn7 transposon
 <400> 107
 Cys Leu Asn Thr Gly
   1
 <210> 108
```

```
<211> 5
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 108
Cys Leu Asn Ser Arg
<210> 109
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 109
Val Phe Lys His Leu
 1
<210> 110
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 110
Cys Leu Asn Asn Ile
<210> 111
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
```

ends of the Tn7 transposon

```
<400> 111
Leu Phe Lys His Gln
  1
<210> 112
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 112
Cys Leu Asn Lys His
<210> 113
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 113
Met Phe Lys Gln Tyr
 1
<210> 114
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
     ends of the Tn7 transposon
<400> 114
```

Cys Leu Asn Lys Gln

```
<210> 115
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 115
Cys Leu Asn Met Ser
  1
<210> 116
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 116
Leu Cys Leu Asn Ile Leu Ala
 1
                  5
<210> 117
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 117
Asn Cys Leu Asn Ile Asn Ala
 1
                  5
<210> 118
<211> 7
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 118
Leu Met Phe Lys His Leu Ser
                 5
  1
<210> 119
<211> 7
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 119
Thr Leu Phe Lys His Thr Arg
<210> 120
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 120
Lys Val Phe Lys Gln Lys Glu
  1
<210> 121
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
       ends of the Tn7 transposon
 <400> 121
 His Leu Val Phe Lys His Leu
```

```
<210> 122
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the Tn7 transposon
<400> 122
Leu Cys Leu Asn Thr Leu Leu
                  5
<210> 123
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: based on the
      ends of the in7 transposon
<400> 123
Leu Cys Leu Asn Asn Leu Val
  1
 <210> 124
 <211> 7
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: based on the
       ends of the Tn7 transposon
 <400> 124
 Glu Val Phe Lys His Glu Gly
                 5
   1
 <210> 125
 <211> 7
 <212> PRT
```



```
<213> Artificial Sequence
```

<220>

<223> Description of Artificial Sequence: based on the ends of the Tn7 transposon

<400> 125

Lys Val Phe Lys Gln Lys Gly 5

- <210> 126
- <211> 7
- <212> PRT
- <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: based on the ends of the Tn7 transposon

<400> 126

Thr Cys Leu Asn Thr Thr Ile 5

- <210> 127
- <211> 7
- <212> PRT
- <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: based on the ends of the Tn7 transposon

<400> 127

Met Cys Leu Asn Asn Met Asn

<210> 128

- <211> 7
- <212> PRT
- <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: based on the ends of the Tn7 transposon

```
<400> 128
   Leu Leu Phe Lys Gln Leu Arg
   <210> 129
   <211> 7
   <212> PRT
   <213> Artificial Sequence
   <220>
   <223> Description of Artificial Sequence: based on the
         ends of the Tn7 transposon
   <400> 129
  Arg Cys Leu Asn Asn Arg Leu
                    5
  <210> 130
  <211> 7
  <212> PRT
  <213> Artificial Sequence
 <220>
  <223> Description of Artificial Sequence: based on the
        ends of the Tn7 transposon
· <400> 130
  Met Val Phe Lys Gln Met Ala
   1
  <210> 131
  <211> 7
  <212> PRT
  <213> Artificial Sequence
  <220>
 <223> Description of Artificial Sequence: based on the
        ends of the Tn7 transposon
  <400> 131
 Ala Met Phe Lys Gln Ala Thr
    1
                   5
```

<210> 132

```
<211> 7
<212> PRT
```

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: based on the ends of the Tn7 transposon

<400> 132

Leu Val Phe Lys His Leu Asp

1

<210> 133

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: based on the ends of the Tn7 transposon

<400> 133

Lys Met Phe Lys Gln Lys Thr

1

5

<210> 134

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: based on the ends of the Tn7 transposon

<400> 134

Tyr Cys Leu Asn Asn Tyr Phe

1