

SEQUENCE LISTING

<110> CORY, SUZANNE ADAMS, JERRY HUANG, DAVID C.S. O'CONNOR, LIAM STRASSER, ANDREAS PUTHALAKATH, HAMSA O'REILLY, LORRAINE

RECEIVED

OCT 1 7 2001 TECH CENTER 1600/2900

<120> NOVEL THERAPEUTIC MOLECULES

<130> 017227/0159

<140> 09/508,832

<141> 2000-07-10

<150> PCT/AU98/00772

<151> 1998-09-17

<150> AU PO 9263

<151> 1997-09-17

<150> AU PO 9373

<151> 1997-09-24

<160> 39

<170> PatentIn Ver. 2.1

<210> 1

<211> 332

<212> DNA

<213> Mus sp.

<220>

<221> CDS

<222> (1)..(330)

<400> 1

atg gcc aag caa cct tct gat gta agt tct gag tgt gac aga gaa ggt Met Ala Lys Gln Pro Ser Asp Val Ser Ser Glu Cys Asp Arg Glu Gly

gga caa ttg cag cct gct gag agg cct ccc cag ctc agg cct ggg gcc Gly Gln Leu Gln Pro Ala Glu Arg Pro Pro Gln Leu Arg Pro Gly Ala 20

cct acc tcc cta cag aca gaa ccg caa gct tcc ata cga cag tct cag 144 Pro Thr Ser Leu Gln Thr Glu Pro Gln Ala Ser Ile Arg Gln Ser Gln 35

gag gaa cct gaa gat ctg cgc ccg gag ata cgg att gca cag gag ctg Glu Glu Pro Glu Asp Leu Arg Pro Glu Ile Arg Ile Ala Gln Glu Leu 50

```
cgg cgg atc gga gac gag ttc aac gaa act tac aca agg agg gtg ttt
Arg Arg Ile Gly Asp Glu Phe Asn Glu Thr Tyr Thr Arg Arg Val Phe
                     70
gca aat gat tac cgc gag gct gaa gac cac cct caa atg gtt atc tta
                                                                   288
Ala Asn Asp Tyr Arg Glu Ala Glu Asp His Pro Gln Met Val Ile Leu
                 85
caa ctg tta cgc ttt atc ttc cgt ctg gta tgg aga agg cat tg
Gln Leu Leu Arg Phe Ile Phe Arg Leu Val Trp Arg Arg His
                                105
            100
<210> 2
<211> 110
<212> PRT
<213> Mus sp.
Met Ala Lys Gln Pro Ser Asp Val Ser Ser Glu Cys Asp Arg Glu Gly
Gly Gln Leu Gln Pro Ala Glu Arg Pro Pro Gln Leu Arg Pro Gly Ala
                                 25
Pro Thr Ser Leu Gln Thr Glu Pro Gln Ala Ser Ile Arg Gln Ser Gln
Glu Glu Pro Glu Asp Leu Arg Pro Glu Ile Arg Ile Ala Gln Glu Leu
Arg Arg Ile Gly Asp Glu Phe Asn Glu Thr Tyr Thr Arg Arg Val Phe
                     70
Ala Asn Asp Tyr Arg Glu Ala Glu Asp His Pro Gln Met Val Ile Leu
Gln Leu Leu Arg Phe Ile Phe Arg Leu Val Trp Arg Arg His
            100
<210> 3
<211> 422
<212> DNA
<213> Mus sp.
<220>
<221> CDS
<222> (1)..(420)
<400> 3
atg gcc aag caa cct tct gat gta agt tct gag tgt gac aga gaa ggt
Met Ala Lys Gln Pro Ser Asp Val Ser Ser Glu Cys Asp Arg Glu Gly
gga caa ttg cag cct gct gag agg cct ccc cag ctc agg cct ggg gcc
                                                                   96
Gly Gln Leu Gln Pro Ala Glu Arg Pro Pro Gln Leu Arg Pro Gly Ala
             20
                                 25
```

B2

										agg Arg						144
										cct Pro						192
										cga Arg 75						240
										gca Ala						288
										agg Arg						336
gat Asp	tac Tyr	cgc Arg 115	gag Glu	gct Ala	gaa Glu	gac Asp	cac His 120	cct Pro	caa Gln	atg Met	gtt Val	atc Ile 125	tta Leu	caa Gln	ctg Leu	384
	_				_	_	_		_	agg Arg		tg				422

<210> 4
<211> 140
<212> PRT
<213> Mus sp.

<400> 4

Met Ala Lys Gln Pro Ser Asp Val Ser Ser Glu Cys Asp Arg Glu Gly
1 1 5 10 15

Gly Gln Leu Gln Pro Ala Glu Arg Pro Pro Gln Leu Arg Pro Gly Ala 20 25 30

Pro Thr Ser Leu Gln Thr Glu Pro Gln Asp Arg Ser Pro Ala Pro Met 35 40 45

Ser Cys Asp Lys Ser Thr Gln Thr Pro Ser Pro Pro Cys Gln Ala Phe 50 60

Asn His Tyr Leu Ser Ala Met Ala Ser Ile Arg Gln Ser Gln Glu Glu 65 70 75 80

Pro Glu Asp Leu Arg Pro Glu Ile Arg Ile Ala Gln Glu Leu Arg Arg 85 90 95

Ile Gly Asp Glu Phe Asn Glu Thr Tyr Thr Arg Arg Val Phe Ala Asn 100 105 110

Asp Tyr Arg Glu Ala Glu Asp His Pro Gln Met Val Ile Leu Gln Leu 120 Leu Arg Phe Ile Phe Arg Leu Val Trp Arg Arg His <210> 5 <211> 590 <212> DNA <213> Mus sp. <220> <221> CDS <222> (1)..(588) atg gcc aag caa cct tct gat gta agt tct gag tgt gac aga gaa ggt Met Ala Lys Gln Pro Ser Asp Val Ser Ser Glu Cys Asp Arg Glu Gly gga caa ttg cag cct gct gag agg cct ccc cag ctc agg cct ggg gcc Gly Gln Leu Gln Pro Ala Glu Arg Pro Pro Gln Leu Arg Pro Gly Ala cet ace tee cta cag aca gaa eeg caa ggt aat eee gae gge gaa ggg 144 Pro Thr Ser Leu Gln Thr Glu Pro Gln Gly Asn Pro Asp Gly Glu Gly 40 gac ege tge ece cae gge age eet cag gge eeg etg gee eea eeg gee 192 Asp Arg Cys Pro His Gly Ser Pro Gln Gly Pro Leu Ala Pro Pro Ala 55 age eet gge eet tit get ace aga tee eea ett tie ate tit gig aga 240 Ser Pro Gly Pro Phe Ala Thr Arg Ser Pro Leu Phe Ile Phe Val Arg 70 75 aga tot tot ctg ctg toe egg toe toe agt ggg tat tte tet tit gae 288 Arg Ser Ser Leu Leu Ser Arg Ser Ser Ser Gly Tyr Phe Ser Phe Asp aca gac agg age eeg gea eee atg agt tgt gac aag tea aca eaa ace 336 Thr Asp Arg Ser Pro Ala Pro Met Ser Cys Asp Lys Ser Thr Gln Thr cca agt cct cct tgc cag gcc ttc aac cac tat ctc agt gca atg gct 384 Pro Ser Pro Pro Cys Gln Ala Phe Asn His Tyr Leu Ser Ala Met Ala 120 tcc ata cga cag tct cag gag gaa cct gaa gat ctg cgc ccg gag ata 432 Ser Ile Arg Gln Ser Gln Glu Glu Pro Glu Asp Leu Arg Pro Glu Ile 135 cgg att gca cag gag ctg cgg cgg atc gga gac gag ttc aac gaa act Arg Ile Ala Gln Glu Leu Arg Arg Ile Gly Asp Glu Phe Asn Glu Thr

155

150

By

									,							
tac Tyr	aca Thr	agg Arg	agg Arg	gtg Val 165	ttt Phe	gca Ala	aat Asn	gat Asp	tac Tyr 170	cgc Arg	gag Glu	gct Ala	gaa Glu	gac Asp 175	cac His	528
									cgc Arg							576
	_	agg Arg 195	His	tg												590
<212	.> 19 ?> PF		o.													
_																
<400 Met 1		Lys	Gln	Pro 5	Ser	Asp	Val	Ser	Ser 10	Glu	Cys	Asp	Arg	Glu 15	Gly	
Gly	Gln	Leu	Gln 20	Pro	Ala	Glu	Arg	Pro 25	Pro	Gln	Leu	Arg	Pro 30	Gly	Ala	
Pro	Thr	Ser 35	Leu	Gln	Thr	Glu	Pro 40	Gln	Gly	Asn	Pro	Asp 45	Gly	Glu	Gly	
Asp	Arg 50	Cys	Pro	His	Gly	Ser 55	Pro	Gln	Gly	Pro	Leu 60	Ala	Pro	Pro	Ala	
Ser 65	Pro	Gly	Pro	Phe	Ala 70	Thr	Arg	Ser	Pro	Leu 75	Phe	Ile	Phe	Val	Arg 80	
Arg	Ser	Ser	Leu	Leu 85	Ser	Arg	Ser	Ser	Ser 90	Gly	Tyr	Phe	Ser	Phe 95	Asp	
Thr	Asp	Arg	Ser 100	Pro	Ala	Pro	Met	Ser 105	Cys	Asp	Lys	Ser	Thr 110	Gln	Thr	
Pro	Ser	Pro 115	Pro	Cys	Gln	Ala	Phe 120	Asn	His	Tyr	Leu	Ser 125	Ala	Met	Ala	
Ser	Ile 130	Arg	Gln	Ser	Gln	Glu 135	Glu	Pro	Glu	Asp	Leu 140	Arg	Pro	Glu	Ile	
Arg 145	Ile	Ala	Gln	Glu	Leu 150	Arg	Arg	Ile	Gly	Asp 155	Glu	Phe	Asn	Glu	Thr 160	
Tyr	Thr	Arg	Arg	Val 165	Phe	Ala	Asn	Asp	Tyr 170	Arg	Glu	Ala	Glu	Asp 175	His	
Pro	Gln	Met	Val 180	Ile	Leu	Gln	Leu	Leu 185	Arg	Phe	Ile	Phe	Arg 190	Leu	Val	
Trp	Arg	Arg 195	His												•	

BA

```
<210> 7
<211> 416
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)..(414)
<400> 7
atg gca aag caa cct tct gat gta agt tct gag tgt gac cga gaa ggt
Met Ala Lys Gln Pro Ser Asp Val Ser Ser Glu Cys Asp Arg Glu Gly
aga caa ttg cag cct gcg gag agg cct ccc cag ctc aga cct ggg gcc
Arg Gln Leu Gln Pro Ala Glu Arg Pro Pro Gln Leu Arg Pro Gly Ala
cct acc tcc cta cag aca gag cca caa gac agg agc cca gca ccc atg
Pro Thr Ser Leu Gln Thr Glu Pro Gln Asp Arg Ser Pro Ala Pro Met
agt tgt gac aaa tca aca caa acc cca agt cct cct tgc cag gcc ttc
Ser Cys Asp Lys Ser Thr Gln Thr Pro Ser Pro Pro Cys Gln Ala Phe
     50
                         55
                                                                   240
aac cac tat ctc agt gca atg gct tcc atg agg cag gct gaa cct gca
Asn His Tyr Leu Ser Ala Met Ala Ser Met Arg Gln Ala Glu Pro Ala
                     70
gat atg cgc cca gag ata tgg atc gcc caa gag ttg cgg cgt atc gga
                                                                   288
Asp Met Arg Pro Glu Ile Trp Ile Ala Gln Glu Leu Arg Arg Ile Gly
                 85
                                                                   336
gac gag ttt aac gct tac tat gca agg agg gta ttt ttg aat aat tac
Asp Glu Phe Asn Ala Tyr Tyr Ala Arg Arg Val Phe Leu Asn Asn Tyr
            100
                                105
caa gca gcc gaa gac cac cca cga atg gtt atc tta cga ctg tta cgt
                                                                   384
Gln Ala Ala Glu Asp His Pro Arg Met Val Ile Leu Arg Leu Leu Arg
                            120 .
                                                                   416
tac att gtc cgc ctg gtg tgg aga atg cat tg
Tyr Ile Val Arg Leu Val Trp Arg Met His
                        135
    130
<210> 8
<211> 138
<212> PRT
<213> Homo sapiens
<400> 8
Met Ala Lys Gln Pro Ser Asp Val Ser Ser Glu Cys Asp Arg Glu Gly
```

BH

Arg Gln Leu Gln Pro Ala Glu Arg Pro Pro Gln Leu Arg Pro Gly Ala Pro Thr Ser Leu Gln Thr Glu Pro Gln Asp Arg Ser Pro Ala Pro Met Ser Cys Asp Lys Ser Thr Gln Thr Pro Ser Pro Pro Cys Gln Ala Phe Asn His Tyr Leu Ser Ala Met Ala Ser Met Arg Gln Ala Glu Pro Ala Asp Met Arg Pro Glu Ile Trp Ile Ala Gln Glu Leu Arg Arg Ile Gly Asp Glu Phe Asn Ala Tyr Tyr Ala Arg Arg Val Phe Leu Asn Asn Tyr 100 105 Gln Ala Ala Glu Asp His Pro Arg Met Val Ile Leu Arg Leu Leu Arg 120 Tyr Ile Val Arg Leu Val Trp Arg Met His 135 130 <210> 9 <211> 596 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(594) <400> 9 atg gca aag caa cct tct gat gta agt tct gag tgt gac cga gaa ggt Met Ala Lys Gln Pro Ser Asp Val Ser Ser Glu Cys Asp Arg Glu Gly aga caa ttg cag cct gcg gag agg cct ccc cag ctc aga cct ggg gcc Arg Gln Leu Gln Pro Ala Glu Arg Pro Pro Gln Leu Arg Pro Gly Ala cct acc tcc cta cag aca gag cca caa ggt aat cct gaa ggc aat cac Pro Thr Ser Leu Gln Thr Glu Pro Gln Gly Asn Pro Glu Gly Asn His gga ggt gaa ggg gac agc tgc ccc cac ggc agc cct cag ggc ccg ctg Gly Gly Glu Gly Asp Ser Cys Pro His Gly Ser Pro Gln Gly Pro Leu 240 gcc cca cct gcc agc cct ggc cct ttt gct acc aga tcc ccg ctt ttc Ala Pro Pro Ala Ser Pro Gly Pro Phe Ala Thr Arg Ser Pro Leu Phe atc ttt atg aga aga tcc tcc ctg ctg tct cga tcc tcc agt ggg tat 288 Ile Phe Met Arg Arg Ser Ser Leu Leu Ser Arg Ser Ser Ser Gly Tyr 90 85

ttc Phe	tct Ser	ttt Phe	gac Asp 100	aca Thr	gac Asp	agg Arg	agc Ser	cca Pro 105	gca Ala	ccc Pro	atg Met	agt Ser	tgt Cys 110	gac Asp	aaa Lys	336
tca Ser	aca Thr	caa Gln 115	acc Thr	cca Pro	agt Ser	cct Pro	cct Pro 120	tgc Cys	cag Gln	gcc Ala	ttc Phe	aac Asn 125	cac His	tat Tyr	ctc Leu	384
agt Ser	gca Ala 130	atg Met	gct Ala	tcc Ser	atg Met	agg Arg 135	cag Gln	gct Ala	gaa Glu	cct Pro	gca Ala 140	gat Asp	atg Met	cgc Arg	cca Pro	432
gag Glu 145	ata Ile	tgg Trp	atc Ile	gcc Ala	caa Gln 150	gag Glu	ttg Leu	cgg Arg	cgt Arg	atc Ile 155	gga Gly	gac Asp	gag Glu	ttt Phe	aac Asn 160	480
gct Ala	tac Tyr	tat Tyr	gca Ala	agg Arg 165	agg Arg	gta Val	ttt Phe	ttg Leu	aat Asn 170	aat Asn	tac Tyr	caa Gln	gca Ala	gcc Ala 175	gaa Glu	528
														gtc Val		576
_			aga Arg	_		tg										596

BY

<210> 10 <211> 198 <212> PRT <213> Homo sapiens

<400> 10
Met Ala Lys Gln Pro Ser Asp Val Ser Ser Glu Cys Asp Arg Glu Gly

Arg Gln Leu Gln Pro Ala Glu Arg Pro Pro Gln Leu Arg Pro Gly Ala 20 25 30

Pro Thr Ser Leu Gln Thr Glu Pro Gln Gly Asn Pro Glu Gly Asn His
35 40 45

Gly Glu Gly Asp Ser Cys Pro His Gly Ser Pro Gln Gly Pro Leu 50 55 60

Ala Pro Pro Ala Ser Pro Gly Pro Phe Ala Thr Arg Ser Pro Leu Phe 65 70 75 80

Ile Phe Met Arg Arg Ser Ser Leu Leu Ser Arg Ser Ser Ser Gly Tyr 85 90 95

Phe Ser Phe Asp Thr Asp Arg Ser Pro Ala Pro Met Ser Cys Asp Lys 100 105 110

```
Ser Thr Gln Thr Pro Ser Pro Pro Cys Gln Ala Phe Asn His Tyr Leu
Ser Ala Met Ala Ser Met Arg Gln Ala Glu Pro Ala Asp Met Arg Pro
                        135
Glu Ile Trp Ile Ala Gln Glu Leu Arg Arg Ile Gly Asp Glu Phe Asn
Ala Tyr Tyr Ala Arg Arg Val Phe Leu Asn Asn Tyr Gln Ala Ala Glu
Asp His Pro Arg Met Val Ile Leu Arg Leu Leu Arg Tyr Ile Val Arg
                                185
Leu Val Trp Arg Met His
        195
<210> 11
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
Asp Tyr Lys Asp Asp Asp Lys
<210> 12
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 12
Glu Tyr Met Pro Met Glu
 1
<210> 13
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
```

```
<400> 13
Leu Arg Arg Ile Gly Asp Glu
<210> 14
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 14
                                                                    27
tgggagaaca gggtacatcg atgcggg
<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 15
                                                                    22
gtgaactggg agcggattgt gg
<210> 16
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 16
                                                                    28
cacctgcaca ccgcgatcca ggataacg
<210> 17
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 17
                                                                    24
aggatccacc atggccaagc aacc
<210> 18
<211> 36
<212> DNA
<213> Artificial Sequence
```

By

3

A Section of the Sect

```
<223> Description of Artificial Sequence: Primer
<400> 18
                                                                    36
gttctagatc agcacatctc tctgggatag aaccac
<210> 19
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 19
                                                                    28
gcaagettee tgtgcaatee gtatetee
<210> 20
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 20
                                                                    30
ggaagettge aacgaaactt acacaaggtg
<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 21
                                                                    24
gcaagcttcc gggcgcagat cttc
<210> 22
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 22
                                                                    28
caaagettee tgtgcaatee gtatetee
<210> 23
<211> 30
<212> DNA
```

```
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 23
                                                                    30
ggaagctttg aacgaaactt acacaaggtg
<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 24
                                                                    24
caaagcttcc gggcgcagat cttc
<210> 25
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 25
                                                                    28
taagttctga gtgtgacaga gaaggtgg
<210> 26
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 26
                                                                    28
cagttgtaag ataaccattt gagggtgg
<210> 27
<211> 18
<212> PRT
<213> Homo sapiens
<400> 27
Val Val His Leu Thr Leu Arg Gln Ala Gly Asp Asp Phe Ser Arg Arg
                                      10
Tyr Arg
<210> 28
```

Duf

```
<211> 18
<212> PRT
<213> Homo sapiens
<400> 28
Ala Val Lys Gln Ala Leu Arg Glu Ala Gly Asp Glu Phe Glu Leu Arg
Tyr Arg
<210> 29
<211> 18
<212> PRT
<213> Homo sapiens
Pro Leu His Gln Ala Met Arg Ala Ala Gly Asp Glu Phe Glu Thr Arg
Phe Arg
<210> 30
<211> 18
<212> PRT
<213> Homo sapiens
Lys Ala Leu Glu Thr Leu Arg Arg Val Gly Asp Gly Val Gln Arg Asn
His Glu
<210> 31
<211> 18
<212> PRT
<213> Homo sapiens
<400> 31
Lys Leu Ser Glu Cys Leu Lys Arg Ile Gly Asp Glu Leu Asp Ser Asn
Met Glu
<210> 32
<211> 18
<212> PRT
<213> Homo sapiens
<400> 32
Gln Val Gly Arg Gln Leu Ala Ile Ile Gly Asp Asp Ile Asn Arg Arg
Tyr Asp
```

k

```
<210> 33
<211> 18
<212> PRT
<213> Homo sapiens
<400> 33
Arg Tyr Gly Arg Glu Leu Arg Arg Met Ser Asp Glu Phe Val Asp Ser
Phe Lys
<210> 34
<211> 18
<212> PRT
<213> Homo sapiens
Ala Leu Ala Leu Arg Leu Ala Cys Ile Gly Asp Glu Met Asp Val Ser
                                      10
Leu Arg
<210> 35
<211> 18
<212> PRT
<213> Homo sapiens
Asn Ile Ala Arg His Leu Ala Gln Val Gly Asp Ser Met Asp Arg Ser
                  5
Ile Pro
<210> 36
<211> 18
<212> PRT
<213> Homo sapiens
<400> 36
Leu Thr Ala Ala Arg Leu Lys Ala Leu Gly Asp Glu Leu His Gln Arg
Thr Met
<210> 37
<211> 18
<212> PRT
<213> Homo sapiens
<400> 37
Trp Ile Ala Gln Glu Leu Arg Arg Ile Gly Asp Glu Phe Asn Ala Tyr
                  5
```

DN

```
Tyr Ala
```

<210> 38 <211> 20 <212> PRT

<213> Homo sapiens

<400> 38

Met Arg Pro Glu Ile Trp Ile Ala Gln Glu Leu Arg Arg Ile Gly Asp 1 5 10 15

Glu Phe Asn Ala

<210> 39 <211> 20

<211> 20 <212> PRT

<213> Caenorhabditis elegans

<400> 39

Gln Glu Glu Thr Ile Arg Trp Ala Gln Glu Leu Arg Leu Arg Cys Leu 1 5 10 15

Val Thr Thr Arg

20