Chapitre 7. Ensembles \mathbb{Z} et \mathbb{R} : ce qu'il faut savoir.

Introduction : les ensembles de nombres à connaître

- N l'ensemble des entiers naturels : 0, 1, 2, 3, ...
- $\bullet~\mathbbmss{Z}$ l'ensemble des entiers relatifs, constitué des entiers naturels et de leurs opposés.
- \mathbb{Q} l'ensemble des nombres rationnels, c'est-à-dire les nombres s'écrivant $\frac{p}{q}$ avec p et q entiers, q non nul (on peut même supposer $q \in \mathbb{N}^*$).
- D l'ensemble des nombres décimaux, c'est-à-dire les nombres s'écrivant

Insuffisance de $\mathbb Q$:

- Nous avons vu au chapitre 2 qu'il n'existait pas de $r \in \mathbb{Q}$ tel que $r^2 = 2...$
- D'autres nombres ayant une signification physique simple comme π ne sont pas rationnels...
- \mathbb{R} l'ensemble des réel, a été construit pour palier à ces problèmes. La construction rigoureuse de \mathbb{R} est difficile, hors programme.

 \mathbb{R} est muni d'une relation d'ordre \leq , ce qui permet de représenter géométriquement l'ensemble des réels par <u>la droite numérique</u>, qui est un axe muni d'une origine O et dirigé par un vecteur \overrightarrow{i} unitaire. Pour tout réel x, on identifie x au point x d'abscisse x (i.e. le point qui vérifie $\overrightarrow{OM} = x$ \overrightarrow{i}).

On a les inclusions suivantes :

Mentionnons aussi $\mathbb{C} = \{a + ib \mid a, b \text{ réels}\}$ qui vérifie $\mathbb{R} \subset \mathbb{C}$. Mais sur \mathbb{C} , il n'y a pas de relation d'ordre \leq .

Un réel qui n'est pas rationnel, comme $\sqrt{2}$, s'appelle un irrationnel. L'ensemble des irrationnels est donc $\mathbb{R}\backslash\mathbb{Q}$.

1 Dans \mathbb{Z} : un peu d'arithmétique

1.a Divisibilité dans $\mathbb Z$

Définition:

```
Soient (a,b) \in \mathbb{Z}^2. On dit que <u>a divise b</u> si
On dit aussi :
b est <u>divisible</u> par a;
a est un <u>diviseur</u> de b;
b est un <u>multiple</u> de a.
On note alors a|b.
```

Exemples:

- 3|12 et 4|12; les diviseurs positifs de 12 sont
- 1 et -1 divisent
- Soit a un entier; a divise toujours
- 0 divise seulement

Remarque : Si a|b, peut-on dire que $a \le b$?

Proposition:

- $\forall (a,b) \in \mathbb{Z}^2, \ a|b \text{ et } b|a \Longrightarrow$
- $\forall (a,b,c) \in \mathbb{Z}^3, \ a|b \text{ et } b|c \Longrightarrow$
- $\forall (a, b, c) \in \mathbb{Z}^3, \ a|b \text{ et } a|c \Longrightarrow$
- $\forall (a, b, c, d) \in \mathbb{Z}^4, \ a|b \text{ et } c|d \Longrightarrow$

Division euclidienne dans \mathbb{N}^* 1.b

Théorème:

(Division euclidienne) Soient $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$.

Démonstration 1

Remarques: avec les notations précédentes,

- $b|a \iff r = 0$
- \bullet q s'obtient avec une partie entière :

On a
$$\frac{a}{b} = q + \frac{r}{b}$$
.

Comme $0 \le r < b$ et b > 0, on a $0 \le \frac{r}{b} < 1$.

Ainsi, $\frac{a}{b}$ est égal à l'entier q plus un nombre de $[0,1[\::\:q=\lfloor\frac{a}{b}\rfloor$

En Python:

Le reste dans la division euclidienne de a par b s'obtient avec : a % b

Le quotient dans la division euclidienne de a par b s'obtient avec : a // b.

Le reste r est le premier entier, obtenu à partir de a en soustrayant un certain nombre de fois b, qui soit strictement inférieur à b. Le quotient q est alors le nombre de fois qu'il a fallu enlever la quantité b à a pour obtenir r.

Il est donc facile d'écrire une fonction en Python réalisant la division euclidienne : en partant a, on soustrait b tant que la quantité obtenue est supérieure ou égale à b.

def division_euclidienne(a,b): r = aq = 0while r >= b: r = r - bq = q + 1return(q,r)

1.c Nombres premiers

Définition:

On dit qu'un entier p est un nombre premier s'il est supérieur ou égal à 2, et si ses seuls diviseurs positifs sont 1 et lui-même, i.e. si :

Les premiers nombres premiers :

- Pour montrer qu'un entier $p \geq 2$ est premier,
- Pour montrer qu'un entier $p \ge 2$ n'est pas premier,

Proposition:

Tout entier $n \geq 2$ admet au moins un diviseur premier.

Proposition:

Il y a une infinité de nombres premiers.

Démonstration 2

Proposition:

(Décomposition en facteurs premiers) Tout entier $n \geq 2$ s'écrit sous la forme :

La décomposition est unique à l'ordre des facteurs près.

Exemple: 1980 =

1.d pgcd, ppcm, algorithme d'Euclide

Définition:

Soient a et b des entiers naturels non nuls.

Le PGCD de a et b est le plus grand des diviseurs positifs communs à a et à b.

On le note pgcd(a, b) ou $a \wedge b$.

Le PPCM de a et b est le plus petit des multiples strictement positifs communs à a et à b.

On le note ppcm(a, b) ou $a \vee b$.

Quand l'un des entiers est nul, on peut étendre la définition : lorsque $a \neq 0$, pgcd(a, 0) = a. En effet, a est le plus grand diviseur de a, et c'est un diviseur de a.

Exemples:

$$pgcd(6,9) = pgcd(12,8) = pgcd(25,12) =$$

$$ppcm(6,9) = ppcm(12,8) = ppcm(5,3) =$$

De manière générale, on peut montrer que $pgcd(a, b) \times ppcm(a, b) =$

C'est une conséquence du résultat général suivant :

Proposition:

Soit a et b des entiers supérieurs ou égaux à 2.

On les décompose en facteurs premiers; plus précisément, on identifie les nombres premiers p_1, \ldots, p_n qui interviennent dans les décompositions de a et b:

$$a = p_1^{\alpha_1} \dots p_n^{\alpha_n}$$
 et $b = p_1^{\beta_1} \dots p_n^{\beta_n}$

avec $\alpha_1, \beta_1, \dots, \alpha_n, \beta_n$ des éléments de \mathbb{N}

(on peut par exemple avoir $\alpha_i = 0$ si p_i n'est pas un facteur premier de a).

Le PGCD de a et b sera :

Le PPCM de a et b sera :

Calculons par exemple les PGCD et PPCM de 24 et 32, puis de 1980 et 75 :

C'est le PPCM qui sert dans la mise au même dénominateur. Par exemple :

$$\frac{5}{24} + \frac{11}{32} =$$

Algorithme d'Euclide

Il permet de trouver le PGCD de a et b en calculant des restes successifs, et à l'aide du résultat suivant :

Proposition:

Soit $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$. Notons r le reste dans la division euclidienne de a par b. On a : $\operatorname{pgcd}(a,b) = \operatorname{pgcd}(b,r)$.

Démonstration 3

On en tire l'algorithme :

Posons $r_0 = a$ et $r_1 = b$. On cherche $\operatorname{pgcd}(r_0, r_1)$.

En notant r_2 le reste dans la division euclidienne de r_0 par r_1 , on a donc $\operatorname{pgcd}(r_0, r_1) = \operatorname{pgcd}(r_1, r_2)$.

- Si $r_2 = 0$, $pgcd(r_1, r_2) = r_1$, on a réussi;
- Sinon, on calcule le reste r_3 dans la division euclidienne de r_1 par r_2 : on a $\operatorname{pgcd}(r_1, r_2) = \operatorname{pgcd}(r_2, r_3)...$

Et ainsi de suite, jusqu'à obtenir un reste nul.

Calculons par exemple $207 \wedge 162$:

2 Dans \mathbb{R} : borne supérieure et borne inférieure

2.a Définitions

Rappels du chapitre 1:

Définition:

Soit A une partie de \mathbb{R} .

- On dit que A est <u>majorée</u> si : $\exists M \in \mathbb{R}$ tel que $\forall x \in A, x \leq M$. Dans ce cas, on dit que M est un majorant de A.
- On dit qu'un réel M est un <u>maximum de A</u> si <u>c'est un élément de A</u> et si c'est un majorant de A.

Autrement dit si : $M \in A$ et $\forall x \in A, x \leq M$.

Un maximum, s'il existe, est unique; on le note $\max(A)$, et on l'appelle aussi <u>le plus</u> grand élément de A.

Définition:

- On dit que A est minorée si : $\exists m \in \mathbb{R}$ tel que $\forall x \in A, m \leq x$. Dans ce cas, on dit que m est un minorant de A.
- On dit qu'un réel m est un minimum de A si c'est un élément de A et si c'est un minorant de A.

Autrement dit si : $m \in A$ et $\forall x \in A, m \leq x$.

Un minimum, s'il existe, est unique; on le note min(A), et on l'appelle aussi <u>le plus</u> petit élément de A.

Définition:

On dit que A est bornée si elle est à la fois minorée et majorée.

Dire que A est bornée revient à dire : $\exists K \ge 0$ tel que $\forall x \in A, |x| \le K$.

Proposition:

- $\bullet~$ Toute partie non vide et majorée de $\mathbb Z$ possède
- Toute partie non vide et minorée de Z possède
 En particulier :

Exemples:

- [0,1]
- Par contre, [0, 1[

Pourtant, pour [0,1[, 1 a un rôle particulier : non seulement c'est un majorant, mais c'est surtout le meilleur, l'optimum, car c'est

Définition:

```
Soit A une partie de \mathbb{R}.
On dit que A admet une borne supérieure si
Si c'est le cas,
```

L'unicité vient du fait qu'un minimum (ici le minimum des majorants), s'il existe, est unique.

Dire que M est la borne supérieure de A, c'est dire que M majore A et qu'il n'y a pas de majorant de A qui soit strictement plus petit que M.

Exemples:

- $[0, +\infty[$
- [0, 1[
- [0,1]
- Q*_

Lien entre les notions

- Si A admet un maximum, alors A admet une borne supérieure et $\max(A) = \sup(A)$.
- Si $\sup(A)$ existe, il y a deux cas :
 - Soit $\sup(A) \in A$, alors $\max(A)$ existe et $\max(A) = \sup(A)$.
 - Soit $\sup(A) \notin A$, alors A n'a pas de maximum.

Démonstration 4

Définition:

```
Soit A une partie de \mathbb{R}.
On dit que A admet une borne inférieure si
Si c'est le cas,
```

L'unicité vient du fait qu'un maximum (ici le maximum des minorants), s'il existe, est unique.

Dire que m est la borne inférieure de A, c'est dire que m minore A et qu'il n'y a pas de minorant de A qui soit strictement plus grand que m.

Exemples:

- $]-\infty,1]$
- [0,1]
- [0, 1]

2.b Propriété de la borne supérieure

Théorème:

(Propriété de la borne supérieure)

- Toute partie non vide et majorée de $\mathbb R$ admet une borne supérieure.
- \bullet Toute partie non vide et minorée de $\mathbb R$ admet une borne inférieure.

C'est spécifique à \mathbb{R} : par exemple, \mathbb{Q} n'a pas cette propriété (il existe des parties A de \mathbb{Q} , non vides et majorées, mais qui n'ont pas de borne supérieure dans Q).

Remarque: Lorsque A est une partie non majorée de \mathbb{R} , on s'autorise à écrire $\sup(A) = +\infty$. De même, on pourra écrire $\inf(A) = -\infty$ si A n'est pas minorée.

Exercice:

Soient A et B des parties non vides de \mathbb{R} telles que, pour tout $a \in A$ et tout $b \in B$, $a \leq b$. Montrer que sup A et inf B existent et que sup $A \leq \inf B$.

Démonstration 5

2.c Intervalles de \mathbb{R}

Rappel:

Définition:

On appelle intervalle de \mathbb{R} toute partie de \mathbb{R} de l'une des formes suivantes (où a, b désignent des réels tels que $a \leq b$):

$$\emptyset, \quad \mathbb{R}, \quad [a,b], \quad [a,b[, \quad]a,b[, \quad [a,+\infty[, \quad]a,+\infty[, \quad]-\infty,b[, \quad]-\infty,b[$$

Remarques:

- [a, b] s'appelle un segment.
- On dit que l'intervalle est ouvert s'il est de l'un des types suivants :

Proposition:

(Caractérisation des intervalles)

Soit I une partie de \mathbb{R} .

I est un intervalle de $\mathbb R$ si et seulement si :

Démonstration 6

On pourrait utiliser cela comme définition des intervalles de \mathbb{R} ; on dit que les intervalles de \mathbb{R} sont les parties convexes de \mathbb{R} .

3 Partie entière et approximations décimales d'un réel

3.a Partie entière : définition, propriétés

Théorème-définition:

Soit $x \in \mathbb{R}$. Il existe un unique entier relatif $n \in \mathbb{Z}$ tel que

Cet entier est appelé partie entière de x, on le note E(x) ou |x|.

Retenir:

• La propriété qui caractérise |x|:

$$\lfloor x \rfloor \in \mathbb{Z} \text{ et } \lfloor x \rfloor \le x < \lfloor x \rfloor + 1$$

C'est le plus grand entier qui soit inférieur ou égal à x.

• Quelques exemples :

$$|1.5| =$$

$$|0.2| =$$

$$|-2.2| =$$

$$|-0.8| =$$

- Comment reconnaître la partie entière?
 - À l'aide d'une écriture de x:
 - À l'aide d'un encadrement de x:

 \triangle Si on a obtenu seulement $p \le x \le p+1$ avec p entier, que peut-on dire?

• Courbe représentative de la fonction partie entière :

Proposition:

- $x = |x| \iff x \in \mathbb{Z}$.
- La fonction partie entière est croissante, c'est-à-dire que :
- Si $n \in \mathbb{Z}$, alors |x+n| = |x| + n

$$\triangle$$
 En général $\lfloor x+y \rfloor \neq \lfloor x \rfloor + \lfloor y \rfloor!$

Démonstration 7

Remarque: Soit $n \in \mathbb{Z}$. L'entier p tel que n = 2p dans le cas où n est pair, tel que n = 2p + 1 dans le cas où n est impair, s'obtient par une formule unique à l'aide de la partie entière :

3.b Approximations décimales d'un réel

Partons d'un exemple : " $\sqrt{2} = 1,414213562...$ "; " $\sqrt{2} \sim 1,414213562$ " (écritures à éviter en maths!) On souhaite être précis en parlant de valeur décimale approchée par défaut ou par excès :

$$1,41 < \sqrt{2} < 1,42$$

$$1,414 < \sqrt{2} < 1,415$$

$$1,4142 < \sqrt{2} < 1,4143$$

Dans le dernier encadrement, on a bien des valeurs approchées de $\sqrt{2}$ à 10^{-4} près car :

On a aussi que la différence entre ces valeurs approchées est exactement 10^{-4} .

Recherche dans le cas général

Soit $x \in \mathbb{R}$, on cherche des nombres décimaux r_d et r_e :

- avec n chiffres après la virgule et tels que $r_e r_d =$
- \bullet et qui encadrent x:

Proposition:

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$.

Les valeurs approchées décimales de \boldsymbol{x} à 10^{-n} près sont :

Autrement dit, on a l'inégalité :

Proposition:

Soit $x \in \mathbb{R}$. Les valeurs approchées décimales de x à 10^{-n} près tendent vers x lorsque n tend vers $+\infty$.

Ainsi, pour tout $x \in \mathbb{R}$, il existe une suite de rationnels qui converge vers x

Démonstration 8

On dit que $\mathbb Q$ est dense dans $\mathbb R$.

Plan du cours

1	Dans $\mathbb{Z}:$ un peu d'arithmétique		2
	1.a	Divisibilité dans $\mathbb Z$	2
	1.b	Division euclidienne dans \mathbb{N}^*	3
	1.c	Nombres premiers	4
	1.d	pgcd, ppcm, algorithme d'Euclide	5
2	Dans $\mathbb R$: borne supérieure et borne inférieure		7
	2.a	Définitions	7
	2.b	Propriété de la borne supérieure	9
	2.c	Intervalles de \mathbb{R}	9
3	Partie entière et approximations décimales d'un réel		10
	3.a	Partie entière : définition, propriétés	10
	3.b	Approximations décimales d'un réel	11