Particle spectrograph

Wave operator and propagator

Source constraints/ga	auge generators
SO(3) irreps	Multiplicities
$\tau_{0^{+}}^{#2} == 0$	1
$\tau_{0^{+}}^{\#1} == 0$	1
$\sigma_{0+}^{\#1} == 0$	1
$\tau_{1^{-}}^{\#2\alpha} == 0$	3
$\tau_{1^{-}}^{\#1\alpha} == 0$	3
$\sigma_{1}^{\#2\alpha} == 0$	3
$\sigma_{1}^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + ik\sigma_{1+}^{\#1\alpha\beta} == 0$	3
$\sigma_{1+}^{\#1\alpha\beta} = \sigma_{1+}^{\#2\alpha\beta}$	3
$\sigma_2^{\#1}{}^{\alpha\beta\chi} == 0$	5
$\tau_{2^{+}}^{\sharp 1 \alpha \beta} == 0$	5
$\sigma_{2^{+}}^{\#1\alpha\beta} == 0$	5
Total constraints:	36

$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\sigma_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{\#1}_{+}\alpha\beta$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
·	$\sigma_1^{\#1} + \alpha^{\beta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1^-}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

$\sigma_{2}^{\#1} \alpha \beta$	0	0	0			
$\sigma_{2}^{\#1}{}_{lphaeta}\; au_{2}^{\#1}{}_{lphaeta}\; \sigma_{2}^{\#1}{}_{lphaeta}$	0	0	0			
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	0	0	0			
•	$\sigma_2^{\#1} +^{\alpha\beta}$	$\tau_2^{\#1} \uparrow^{\alpha\beta}$	$\sigma_{2^{-}}^{\#1} +^{lphaeta\chi}$		×	
	σ_2^*	$\tau_2^{\#}$	$\sigma_2^{#1}$		$\omega_{2}^{\#1}$ $_{lphaeta}$	0
#1	$\sigma_0^{\#}$			$\sigma_0^{\#1}$	$_{lphaeta} f_{2}^{\#1} = \omega_{2}^{\#1} \ \omega_{2}^{\#1}$	0
$\sigma_{0}^{\#1}$.	† 0	0	0	0		

0

$\omega_{0}^{\#1} f_{0}^{\#1} f_{0}^{\#2} \qquad \omega_{0}^{\#1}$						
$\omega_{0}^{\#1}$ †	0	0	0	0		
$f_{0}^{\#1}\dagger$	0	0	0	0		
$f_{0}^{#2} \dagger$	0	0	0	0		
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 + t_2$		

0

0

0

0

Massive and massless spectra

(No massless particles)

Unitarity conditions