Application No. 10/598,663 Amdt. Dated: December 9, 2008

Reply to Office Action Dated: October 16, 2008

Listing of Claims

- (Previously resented) A method of artifact correction in a data set of an object of interest,
 the method comprising the step of: reconstructing an image of the object of interest on the basis
 of the data set; wherein a statistical weighing is performed during reconstruction of the image,
 wherein the reconstruction of the image is performed on the basis of an iterative algorithm
 comprising a plurality of update steps until an end criterion has been fulfilled, wherein each
 update step comprises subtractions weighted with an intrinsic statistical error σ_{Yi} based on
 measured photon counts Y_i, wherein σ_{Yi} is the square root of Y_i.
- (Original) The method according to claim 1, wherein the data set is a projection data set acquired by means of a source of electromagnetic radiation generating a beam and by means of a radiation detector detecting the beam.
- 3. (Original) The method according to claim 2, wherein the source of electromagnetic radiation is a polychromatic x-ray source; wherein the source moves along a helical path around the object of interest; and wherein the beam has one of a cone beam geometry and a fan beam geometry.

(Cancelled)

- 5. (Previously presented) The method according to claim 1, wherein the iterative algorithm is a maximum likelihood algorithm; wherein the reconstructed image has the highest likelihood; and wherein the weighing is performed in each update step of the plurality of update steps.
- 6. (Original) The method according to claim 2, further comprising the step of: determining a number of detected photons during acquisition of the data set; wherein the weighing is based on a statistical error of the number of detected photons.

Application No. 10/598,663 Amdt. Dated: December 9, 2008 Reply to Office Action Dated: October 16, 2008

7. (Original) The method according to claim 5, further comprising the step of: determining a number of detected photons Y_i during acquisition of the data set; wherein the weighing is based on a statistical error σ_{γ_i} of the number of detected photons Y_i ; wherein an update of an attenuation parameter μ_i^{n+1} is calculated from the attenuation parameter μ_i^{n} by

$$\mu_{j}^{n+1} = \mu_{j}^{n} + \mu_{j}^{n} \frac{\sum_{i} l_{y} \left| d_{i} e^{-cl_{i}, \mu^{n}} - Y_{i} \right| / \sigma_{\gamma_{i}}^{2}}{\sum_{i} l_{y} / \sigma_{\gamma_{i}}^{2}} \frac{\sum_{i} l_{y} / \sigma_{\gamma_{i}}^{2}}{\sqrt{\sigma_{\gamma_{i}}^{2} + \sigma_{\gamma_{i}}^{2}}}$$

wherein d_i is a number of photons emitted by the source of radiation; wherein l_{ij} is a basis function of an i-th projection; wherein l_i is a vector of basis functions l_{ij} of the i-th projection; and wherein $< l_i$, $\mu >= \sum_i l_{ij} \mu_i$ is an inner product.

- (Original) The method according to claim 2, wherein the reconstruction of the image is based on a sub-set of at least two projections of all acquired projections of the projection data set.
- 9. (Previously presented) A data processing device, comprising: a memory for storing a data set of an object of interest; a data processor for performing artifact correction in the data set of the object of interest, wherein the data processor is adapted for performing the following operation: loading the data set; reconstructing an image of the object of interest on the basis of the data set; wherein a statistical weighing is performed during reconstruction of the image; wherein the weighing comprises an intrinsic statistical error σ_{Y_i} based on measured photon counts Y_i , where σ_{Y_i} is the square root of Y_i .
- 10. (Original) The data processing device according to claim 9, wherein the reconstruction of the image is performed on the basis of an iterative algorithm comprising a plurality of update steps until an end criterion has been fulfilled; wherein the iterative algorithm

Application No. 10/598,663 Amdt. Dated: December 9, 2008

Reply to Office Action Dated: October 16, 2008

is a maximum likelihood algorithm; wherein the reconstructed image has the highest likelihood; and wherein the weighing is performed in each update step of the plurality of update steps.

- 11. (Original) A CT scanner system, comprising: a memory for storing a data set of an object of interest; a data processor for performing artifact correction in the data set of the object of interest, wherein the data processor is adapted for performing the following operation: loading the data set; reconstructing an image of the object of interest on the basis of the data set; wherein a statistical weighing is performed during reconstruction of the image.
- 12. (Previously presented) An apparatus for performing artifact correction in a data set of an object of interest, comprising:

a processor; and

a computer readable storage medium encoded with computer executable instructions which, when executed by the processor, causes the processor to perform the following operation loading the data set; and

-

reconstructing an image of the object of interest on the basis of the data set; wherein a statistical weighing is performed during reconstruction of the image; wherein the weighing comprises an intrinsic statistical error σ_{Y_i} based on measured photon counts Y_b where σ_{Y_i} is the square root of Y_b .

- 13. (Previously presented) The method of claim 1, wherein the end criterion is met only when a difference between consecutive updates does not exceed a threshold value, wherein the threshold value is defined; wherein if the end criterion is not met a counter is increased by one and iterations continue.
- 14. (Previously presented) The CT scanner system of claim 11, wherein the CT scanner system is connected to a loudspeaker to automatically output an alarm.
- (Previously presented) The apparatus of claim 12, wherein the apparatus is connected to a memory for storage of an image depicting an object of interest.

Application No. 10/598,663 Amdt. Dated: December 9, 2008 Reply to Office Action Dated: October 16, 2008

- 16. (Previously presented) The apparatus of claim 12, wherein the apparatus is connected to a plurality of input/output network and diagnostic devices for further analysis and display of stored data and information.
- (Previously presented) The apparatus of claim 12, wherein the apparatus is further connected to a motion monitor which may monitor the physiological capacities of an object of interest.
- (Previously presented) The apparatus according to claim 12, wherein the processor also determines a number of detected photons during acquisition of the data set.
- 19. (Previously presented) The apparatus of claim 12, wherein the processor further sets a set of attenuation parameters μ_j to an initial value, wherein each attenuation parameter μ_j belongs to a respective interval along a projection of an i-th projection.
- (Previously presented) The apparatus of claim 12, wherein the processor further calculates the attenuation parameters μ_i by:

$$\mu_{j}^{n+1} = \mu_{j}^{n} + \mu_{j}^{n} \frac{\sum_{i} l_{ij} \left[d_{i} e^{-d_{i,i}n^{*}} - Y_{i} \right] / \sigma_{Y_{i}}^{2}}{\sum_{i} l_{ij} / \sigma_{Y_{i}}^{2}} \frac{1}{\sigma_{Y_{i}}^{2}} \frac{1}{\sigma_{$$

wherein d_i is a number of photons emitted by the source of radiation; wherein l_{ij} is a basis function of an i-th projection; wherein l_i is a vector of basis functions l_{ij} of the i-th projection; and wherein $\langle l_i, \mu \rangle = \sum_i l_{ij} \mu_j$ is an inner product.

Application No. 10/598,663 Amdt. Dated: December 9, 2008 Reply to Office Action Dated: October 16, 2008

(Previously presented) The apparatus according to claim 12, wherein the reconstruction of the image is based on a sub-set of at least two projections of all acquired projections of the projection data set.