Local Maximum from Mesh Data

OBJECTIVE

Objective

To create a code to find the local maxima mesh from the given mesh data based on the Element value of each mesh.

Fig.1 shows a sample mesh data in 3D, with material Yield Strength as element value. This code can be used as a generic function to find the local media of any mesh data like Yield Strength, temperature, Endurance Data etc.

Input Data

Input contains three files

File number one contains Element ID with the values of each Elements Second File contains element ID with its nodes(By Node ID) where it got created Third File contain the coordinates of each Node.

Element ID	Element Value	Nodes
E ₁	18	N26, N27, N28
E ₂	14	N1, N26, N27
E ₃	20	N1, N2, N26
E ₄	10	N1, N19, N27
E ₅	13	N26, N28, N29
E ₆	11	N2, N25, N26
E ₇	10	N24, N26, N30
E ₈	9	N26, N29, N30

Fig:1

Representative Mesh Data

This slide uses a dummy mesh data with imaginative values for better understanding.

Above is the sample of an element/mesh and its nodes from the dummy mesh data(*Fig.3*).

Element = E_1

Element Value = 18

Nodes for $E_1 = N26$, N27, N28

Fig:3

Local Maxima/Hot_Spot

An element whose value is higher than the neighbouring elements value.

In Fig. 1, the Elements/Mesh E_3 , E_{13} , E_{27} , E_{27} , E_{30} are the Local maxima or Hot_spots in the sample data.