北京理工大学 2007-2008 学年第二学期

高等数学课程期中考试试卷(B卷)

2008.4.18

学号 ______ 班级 _____ 姓名 _____ 成绩 ____

- 一、填空题(每小题4分,共24分)
- 1. 已知 $\vec{a} = \vec{i} + \vec{j} + \vec{k}$,又设 \vec{b} 是既垂直于 \vec{a} 又垂直于 \vec{y} 轴,且与 \vec{z} 轴正向夹角为锐角的单位向量,则 $\vec{b} =$ ______.

- 5. 设 z = z(x, y) 是由方程 $2x + 2y = z + e^{xz}$ 确定的可微的隐函数,则 z(x, y) 在 (0,1) 点的一阶全微分 dz(0,1) = _______.
- 6. 设 f(x,y) 是连续函数,将累次积分 $I = \int_0^1 dx \int_{-\sqrt{x}}^{\sqrt{x}} f(x,y) dy + \int_1^4 dx \int_{x-2}^{\sqrt{x}} f(x,y) dy$ 交换积分次序后的累次积分形式为 I =
- 二、 (10 分) 设 $z = f(xy, e^{x-y})$, 其中 f 有二阶连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x \partial y}$.
- 三、(12 分) 分别求曲线 Γ : $\begin{cases} x^2 z = 0 \\ 3x + 2y + 1 = 0 \end{cases}$ 上点 M(1, -2, 1) 处的法平面 π 的方程和直线
- L: $\begin{cases} 2x+y-z=0 \\ x-y+z=1 \end{cases}$ 的标准方程,并求直线 L 与法平面 π 的夹角.

四、(10 分) 设 z = z(x, y) 是由方程 $z + \ln z - \int_{y}^{x} e^{-t^{2}} dt = 0$ 确定的可微函数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^{2} z}{\partial x \partial y}$.

五、(10分) 设 $f(x, y) = y^3 - y^2 + xy - x^2$. 求f(x, y)的极值点和极值.

六、(12 分) 设D 是由曲线 $y = \sqrt{8-x^2}$ 与 $2y = x^2$ 所围成的区域在第一象限内的部分. 将二重积分 $I = \iint_D f(x,y) dx dy$ 写成极坐标系下的累次积分,并计算 $I = \iint_D \sqrt{x^2 + y^2} dx dy$.

七、(10分) 求柱面 $y=x^2$, 平面 x-y-z+2=0 与平面 z=0 所围成立体的体积 V.

八、(12 分) 求椭球面 $\Sigma: x^2 + y^2 + 2z^2 = 1$ 上距离平面 $\pi: x - y + 2z = 6$ 最近和最远的点的 坐标, 并写出椭球面 Σ 在此两点处的切平面方程.