

CHRONOS: Time-Aware Zero-Shot Identification of Libraries from Vulnerability Reports

Yunbo Lyu¹, **Thanh Le-Cong²**, Hong Jin Kang¹, Ratnadira Widyasari¹, Zhipeng Zhao¹, Bach Le², Ming Li³, David Lo¹

¹Singapore Management University, Singapore ²University of Melbourne, Australia ³Nanjing University, China

Motivation

- Increasing usage of third-party libraries → user needs to be aware of the library vulnerabilities.
- National Vulnerability Database (NVD) curate vulnerability reports for third party libraries.
- However, vulnerability report fails to include the list of all affected libraries.
- Human efforts required to identify libraries related to the vulnerability:
 - -Resource and time incentive
 - -Huge number of possible labels

Automated approaches for identifying affected library of a vulnerability report

Problem Statement

<u>Input</u> Vulnerability Report Approach Al Models

Output
Affected Libraries

CVE-2016-7046

Description

Red Hat JBoss Enterprise Application Platform (EAP) 7, when operating as a reverse-proxy with default buffer sizes, allows remote attackers to cause a denial of service (CPU and disk consumption) via a long URL.

References

- x- http://rhn.redhat.com/errata/RHSA-2016-2640.html
- -- http://rhn.redhat.com/errata/RHSA-2016-2641.html
- http://rhn.redhat.com/errata/RHSA-2016-2642.html
- x- http://rhn.redhat.com/errata/RHSA-2016-2657.html
- http://www.securityfocus.com/bid/93173
- https://bugzilla.redhat.com/show_bug.cgi?id=1376646

- Undertow
- EAP 7.0 Wildfly
- ActiveMQ Artermis
- Glassfish JSON
- JSoup

CPE Configurations

- cpe:2.3:a:redhat:jboss enterprise application platform:7.0:*:*:*:*:*:

Prior Work

- Chen et al.[1] from Veracode have formulated the problem as an extreme multi-label classification (XML) problem and utilized FastXML to address this problem.
- Haryono et al.[2] found that the most effective XML approach for library identification is a deep learning-based approach, LightXML.

Category	Model	P@1	R@1	F1@1	P@2	R@2	F1@2	P@3	R@3	F1@3	Avg. F1	Improve vs. FastXML
One-vs-all	DiSMEC	0.79	0.58	0.67	0.57	0.72	0.64	0.44	0.76	0.55	0.62	-3%
Deep learning	XML-CNN	0.80	0.59	0.68	0.58	0.75	0.65	0.44	0.79	0.56	0.63	-1%
Tree-based	FastXML	0.81	0.59	0.69	0.59	0.74	0.65	0.45	0.79	0.57	0.64	0%
Tree-based	ExtremeText	0.84	0.63	0.72	0.59	0.77	0.67	0.45	0.82	0.58	0.66	3%
Tree-based	Parabel	0.87	0.65	0.74	0.62	0.80	0.70	0.47	0.85	0.60	0.68	7%
Tree-based	Bonsai	0.87	0.65	0.74	0.62	0.80	0.70	0.47	0.86	0.61	0.68	7%
Deep learning	LightXML	0.88	0.66	0.75	0.64	0.82	0.72	0.49	0.87	0.63	0.70	10%

- [1] Chen et al. "Automated identification of libraries from vulnerability data." ICSE 2020
- [2] Haryono et al. "Automated identification of libraries from vulnerability data: can we do better?" ICPC 2022

Motivation

+ Assume:

Libraries in Training = Libraries in Inference

+ Random Splitting & No Time-aware

Not suitable as set of affected libraries could evolve over the time

• Testing data: 2018-2019

Year	#Total	#Seen Libraries	#Unseen Libraries
2015	656	312 (47.6%)	344 (52.4%)
2016	896	345 (38.5%)	551 (61.5%)
2017	1094	329 (30.0%)	725 (70.0%)
2018	1094	451 (41.2%)	643 (58.8%)
2019	651	313 (46.5%)	338 (53.5%)

>50% new affected libraries per years

LightXML (SOTA)	Average F1
Current Evaluation	0.7
Time-Aware Evaluation	0.25

Significant Drop in Performance of SOTA

- Model: ZestXML[1]
- Feature Extraction: TF-IDF for both descriptions and labels.
- ZestXML: model the relevance between descriptions and labels by analyzing their linear feature interactions.
- Given a description d and a label l, the relevance score R between are calculated as follows:

$$R(d,l) = d^{\mathsf{T}}Wl$$

Observation 1: Additional documents referenced in the NVD entry, e.g., bug reports, mailing lists, can help distinguish multiple previously unseen labels from one another.

Observation 2: Exploiting temporal connection between vulnerability reports and affected libraries can help boost the prediction accuracy.

- Collecting Reference Data
- Library Sub-word Splitting

- Collecting Reference Data
 - A vulnerability report can come with a list of website references containing useful information to identify library
 - Crawl the web references to retrieve its textual information
 - Too many reference websites ==>
 extract data from a list of 12 domain
 that covers 82.3% vulnerability
 reports
 - Preprocess: remove nonalphanumeric words or stemming

- Library Sub-word Splitting
 - Enriches the features that help determine labels associated with vulnerability reports.
 - Apply Spiral [1] token splitter to split tokens into sub-tokens.
 - org.springframework -> org spring framework
 - pyopenssl -> py openssl

We observe that vulnerabilities in the same time range are more likely to affect the recent versions of the libraries.

CHRONOS uses a strategy to prioritize versions of libraries that have been recently affected by vulnerabilities.

Time-aware Adjustment

Algorithm 1 Time-aware adjustment that favours new library versions and recently observed labels

Require:

end for

end function

- $\mathcal{L}_{highest} \leftarrow \text{top-}i \text{ most relevant labels for each description}$
- version_store ← a map of a label to newer versions of the same library
- cache ← recently seen labels
- $R(d, l) \leftarrow$ a relevance score between a description, d and a label, l
- $f \leftarrow$ an update function. Given in Equation 5

```
1: function TIME-AWARE ADJUSTMENT(\mathcal{L}_{highest})
2: for l \in \mathcal{L}_{highest} do
3: FAVORNEWVERSION(l, version_store, cache)
4: end for
5: for l \in \mathcal{L}_{highest} do
6: R(d, l) \leftarrow f(R(d, l))
```

- The **version store** tracks the different versions of each library.
- The cache stores the recently affected libraries using a Least Recently Used replacement policy.
- Time-aware adjustment use two steps to modify the relevance scores:
 - Replacement: favor newer library versions (line 2-4)
 - Update: Add a recency bias (line 5-7)

Comparison with Baselines

Model	P@1	R@1	F1@1	P@2	R@2	F1@2	P@3	R@3	F1@3	Avg. F1
Exact Matching	0.33	0.26	0.29	0.53	0.41	0.46	0.60	0.46	0.52	0.42
CPE Matcher	0.27	0.26	0.26	-	-	-	-	-	-	-
Traditional IR	0.20	0.18	0.19	0.26	0.25	0.26	0.30	0.29	0.30	0.25
LightXML	0.32	0.21	0.26	0.24	0.28	0.26	0.18	0.29	0.22	0.25
ZestXML	0.56	0.45	0.50	0.63	0.60	0.61	0.67	0.65	0.66	0.59
CHRONOS	0.75	0.61	0.67	0.80	0.75	0.77	0.82	0.79	0.80	0.75
CHRONOS w/o DE	0.70	0.57	0.63	0.75	0.70	0.72	0.77	0.74	0.75	0.70
CHRONOS w/o TA	0.60	0.49	0.54	0.70	0.67	0.68	0.73	0.71	0.72	0.65

CHRONOS outperform baselines by 79-300% in terms of Average F1

Zero-shot learning (ZestXML) perform 2x better than supervised learning (LightXML)

Data Enhancement and Time-aware Adjustment improve ZestXML by 27% over

Conclusion

- We highlight the evolvement of affected libraries in the problem of identifying libraries from vulnerability reports
- We empirical investigate SOTAs on a time-aware evaluation, showing a significant drop on performance of SOTAs
- We propose Chronos, a practical library identification approach based on zero-shot learning along with domain-specific mechanisms: data enhancement and time-aware adjustments
- Our experiments demonstrate that employing both zero-shot learning, and domain-specific mechanisms yields substantial improvements, resulting in Chronos outperforming the state-of-the-art (SOTA) approaches significantly.

Thanks for your listening ****!

Questions are welcome !!