

Введение в обработку текста

AI Community Innopolis

План на сегодня

1. Задачи обработки текста

- Классификация / регрессия
- Сегментирование текста (Sequence Labeling)
- Моделирование языка
- Машинный перевод
 (Sequence-to-Sequence)
- Семантическое сходство

2. Методы обработки текста

- о Токенизация
- Лемматизация
- Byte-Pair Encoding

3. Извлечение признаков из текста

- Bag-of-words
- o TF-IDF
- Word2Vec
- FastText
- o ELMo
- Агрегация эмбеддингов слов

Задачи обработки текста

Статья 1

Внести в Федеральный закон от 7 июля 2003 года № 126-ФЗ "О связи" следующие изменения:

- 1) в статью 2 дополнить пунктом 28.5 следующего содержания:
- "28.5) точка обмена трафиком сооружения связи и (или) совокупность средств связи, с использованием которых собственник или их владелец обеспечивает возможность для соединения (включая прямое взаимодействие) и пропуска трафика между сетями связи операторов связи, собственников или владельцев технологических сетей связи, а также иных лиц, имеющих номер автономной системы:":
 - 2) в части 2 статьи 12:
- а) абзац 2 изложить в следующей редакции "определяет порядок их взаимодействия;";
 - б) дополнить абзацем 5 следующего содержания:

	iditoc icitci.	
	Mariya Moiseeva Консьерж-сервис Иннополиса	15:01
	Дорогие жители 👭 В здании АДЦ. им. Попова проходит мероприятие с жёстким контрольно-пропус	
	А как быть с тем, что доставку не пропускают в город вообще? Нам везут достаточно объемную детскую кровать, а машину не пускают даже в жк.	
	Екатерина Малолетова Вот интересно, значит, это было известно. Ведь в технопарк ходят не только резиденты.	15:01
	Igor Moiseev Mariya Moiseeva	15:02
	А как быть с тем, что доставку не пропускают в город вообще? Нам везут достаточно объемную детс никак, обратно везут уже.	
	Mariya Moiseeva Как в таком случае быть? Переплачивать еще раз за доставку? или грузить на себя?	15:03
	Екатерина Малолетова	15:03
	Mariya Moiseeva А как быть с тем, что доставку не пропускают в город вообще? Нам везут достаточно объемную детс	
	Что за ужас! Совсем что ли уже все с ума посходили? 😡	


```
class MaskedKMaxAveragePooling(nn.Module):
    Performs adaptive max (or k-max) pooling.
    It takes some maximum statistics (not exactly top k elements) and averages them.
    :arg k: number of maximum elements to pick
    11 11 11
    def __init__(self, k=3):
        super().__init__()
        self.k = k
    def forward(self, x, mask):
        :param x: An float tensor with shape of [batch_size, seq_len, s]
        :param mask: An byte tensor with shape of [batch_size, seq_len]
        Equals one for padding elements and zero for everything else.
        :return: An float tensor with shape of [batch_size, s]
        weights = torch.ones_like(mask).float()
        weights.masked_fill_(mask, 0)
        weights = weights.unsqueeze(2)
        x = (x * weights)
        x = x.transpose(1, 2) # [batch_size, s, seq_len]
        top_k = F.adaptive_max_pool1d(x, output_size=self.k) # [batch_size, s, self.k]
        return top_k.mean(dim=2)
```


- Что-то из символов
- Символы идут по порядку
- Иногда символы группируются вместе (например, в слова)

Корпусы

Корпус – набор текстов на одном языке.

- Все сообщения в чатах Иннополиса
- Художественные произведения на русском
- Википедия
- Весь код на Python из Гитхаба
- Новости, твиты, статьи...
- Научные корпусы: НКРЯ, Тайга, OpenCorpora

Национальный корпус русского языка

главная

Частотное распределение популярных словоформ и словосочетаний (основной корпус)

архив новостей

Словоформы 2-граммы 3-граммы 4-граммы 5-граммы 6

поиск в корпусе

При подсчёте не учитывались знаки препинания и регистр.

Приведены результаты, встречающиеся не менее чем в 100 документах.

Объём всего корпуса: 192689044 словоформы.

что такое корпус? состав и структура

статистика

OTAT MOTA

графики частоты

морфология

обороты

синтаксис

семантика

параметры текстов

studiorum

Nº	Словосочетание	Документы	Частота	
1	о том что	11793	37235	
2	в том что	12321	36961	
3	до сих пор	8947	24284	
4	<u>ит</u> д	6916	22828	
5	для того чтобы	7661	19722	
6	в том числе	9206	19309	
7	в то время	6072	19037	
8	в это время	4456	16541	
9	в то же	6130	16088	
10	по крайней мере	5195	15865	
11	то же время	6032	15695	

Классификация текстов

Текст \rightarrow категория, свойственная тексту

- Намерение пользователя
 - \circ "Слушай Алиса, какая погода?" \rightarrow /get_weather
- Определение тональности
 - \circ "дебилы у вас там сидят" \to "негатив"
- Фильтрация запросов пользователей
 - \circ "направьте заказ в Казань" \to "не новый заказ"

Регрессия по тексту

Текст \rightarrow численная характеристика

- Рейтинг отзыва
 - \circ "супер фильм, но затянут" \rightarrow 4
- Оценка стоимости тендера
 - \circ "закупка станков" \rightarrow 32 млн $\mathop{}^{\triangleright}$
- Определение возраста пользователя
 - \circ "что по матеше задали" \to 14

Сегментирование текста

Текст \rightarrow токены \rightarrow категория токена

- Part-of-speech Tagging
 - ["я", "люблю", "собак"] → ["местоимение", "глагол", "существительное"]
- Named Entity Recognition
 - ["Путин", "посетил", "Иннополис"] →
 ["личность", "---", "город"]

Моделирование языка

Корпус → генеративная модель

$$P(w_1, \dots, w_m) = \prod_{i=1}^m P(w_i \mid w_1, \dots, w_{i-1}) pprox \prod_{i=1}^m P(w_i \mid w_{i-(n-1)}, \dots, w_{i-1})$$

Моделирование языка

Позволяет провести анализ корпуса текстов, не требует разметки

Работает в подсказках в сенсорных клавиатурах

Основа для более сложных методов обработки текстов

СМИ сообщили о закрытии «Роснано» «Газпром» объявил профинансирован перед Россией «Сагрессивный мир» отдала проводить российские компании i 3300, train 4.546863555908203 test 4.691991806030273

В Москве задержали 16 тысяч человек за изнасилование детей В сети появились антисессурий для российской военной авиации Сотрудники МЧС подтвердили причастность к теракту в Дагестане «Мы проочность, которые мы, геты жить» В Москве пройдет фестиваль фестиваль для институтов

i 3400, train 4.516148090362549 test 4.798953056335449

Россия и Археологи сообщили о готовности Турции и Киевом Шотландский судья отказался отпуск на должность президента по Пограничному В Британии нашли тайный в 2017 году бомбардировщик «Армата» ІААГ объяснила отсутствие продаж в России СМИ сообщили о планах Роскосмосадить за «самую» і 3500, train 4.5042595863342285 test 4.536854267120361

Лавров назвал Обаму «копедо» В Москве задержали двух подозреваемых в убийстве трех человек В сети появилось видео убийства Вороненкова в Забайкалье

«Невозь не детям сказть»

В Москве осудили поддельную помощь в заложники двух человек

Семантическое сходство (Text Similarity)

Текст_1 → эмбеддинг_текста_1
Текст_2 → эмбеддинг_текста_2
эмбеддинг_текста_1, эмбеддинг_текста_2 → похожесть текстов

Позволяет кластеризовывать схожие тексты, а также помогает с поиском документов.

Полученные эмбеддинги могут быть использованы как признаки в классификаторах, а также для few-shot learning (в случае крайне маленьких выборок).

Машинный перевод

Текст \rightarrow токены \rightarrow токены

- Машинный перевод ("where are my dragons" \rightarrow "где мои драконы")
- Суммаризация (текст новости \rightarrow заголовок)
- Диалоговая система ("как дела" \to "норм, сам как")

По сути, это та же языковая модель, но запомнившая текущий текст.

Подход распространяется на другие задачи, которые сводятся к последовательностям чего-либо (например, речь → текст)

Методы обработки текста

Токенизация

Это такая декомпозиция задачи — переход к более понятным элементам, от символов к группам символов.

- Токенизация документа на предложения
- Токенизация предложения на слова

Токенизация на предложения

Весь текст разбиваем на последовательность предложений.

```
>>> from rusenttokenize import ru_sent_tokenize
>>> text = "Пока везде закрыто. Ждём."
>>> ru_sent_tokenize(text)
['Пока везде закрыто.', 'Ждём.']
```

Токенизация на слова

Одно предложение разбиваем на последовательность слов.

```
>>> from deeppavlov.models.tokenizers.ru_tokenizer import
RussianTokenizer
>>> tokenizer(['Пока везде закрыто.', 'Ждём.'])
[['пока', 'везде', 'закрыто'], ['ждём']]
```

Считать ли знаки препинания словами?

Словарь

Поскольку мир конечен, набор токенов, с которыми мы работаем тоже ограничен. Его называют словарем.

Особенно важно задумываться об этом при работе с русским языком, который очень флективен: "Му" ↔ "мой", "моя", "мое", "мои", "моим"

Если слова нет в словаре, то мы его выкидываем или заменяем на токен <OOV> / <UNK> (out-of-vocabulary / unknown).

Лемматизация

Один из способов снизить размер словаря — привести все слова к нормальному виду (например к единственному числу, именительному падежу).

```
>>> tokenizer = RussianTokenizer(lemmas=True)
>>> tokenizer(['Пока везде закрыто.', 'Ждём.'])
[['пока', 'везде', 'закрытый'], ['ждать']]
```

Снятие (морфологической) омонимии

Обратная проблема: одно слово из словаря может иметь разные роли в предложении.

"Печь пироги" \leftrightarrow "присел на *печь*"

Одно из решений проблемы — определение части речи слова и приписывание ее к токену:

"Печь пироги" \rightarrow ["печь_VERB", "пирог_NOUN"]

"Присел на печь" \rightarrow ["присесть_VERB", "на_PREP", "печь_NOUN"]

Byte-Pair Encoding

Другой способ — дробить предложение не на слова, а на подслова. Один из алгоритмов, которые находит набор фиксированного размера таких подслов — BPE.

"миша ест котлету" → ["_ми", "ша", "_e", "ст", "_кот", "лет", "у"]

NB: современные методы вроде BERT активно используют именно такой подход (алгоритм SentencePiece).

Пример: https://nlp.h-its.org/bpemb/ru/

Извлечение признаков из текста

One-hot Encoding

Токены → индексы в словаре

Плюсы: просто

Минусы: разреженность, не отражает похожесть токенов (синонимы и антонимы одинаково далеки)

Размер словаря

Bag-of-words

В таком представлении слов их легко агрегировать для одного предложения: достаточно сложить. Однако теряется информация о порядке слов.

TF-IDF

Не все йогурты слова одинаково полезны. Общая лексика есть в многих документах (те же предлоги, союзы), а особенность документу придают редкие слова.

TF-IDF — такая замена единице в One-hot Encoding, которая выполняет именно эту роль. Эта величина больше для редких слов и меньше для частых.

TF-IDF

Word2Vec — эмбеддинги слов

Токены \rightarrow векторы из семантического пространства

Плюсы: синонимы похожи, слова разных смыслов непохожи

Минусы: вектор слова не зависит от контекста ("«лист» дерева" и "«лист» бумаги" — для «лист» один вектор в обоих случаях)

Word2Vec

Как построить векторы для слов?

- Много текстов без разметки
- Слово \rightarrow случайный вектор
- Вектор слова → вектор вероятностей слов контекста без самого слова (Skip-gram)
- Учим: знаем какие слова были в контекстах и какие не были

В итоге имеем логистическую регрессию, количество классов = размер словаря

Word2Vec

Дистрибутивная семантика: свойства слов выражаются векторами.

FastText

Слово моделируется набором посимвольных n-грамм.

Для каждой формируется отдельный вектор, вектор слова – сумма векторов n-грамм.

За счет такого построения — более стоек к опечаткам и позволяет обрабатывать слова вне словаря.

Represent a word as a bag of character n-grams, e.g. for n = 3:

$$G_{where}$$
 : _wh, whe, her, ere, re_, _where_

Model a word vector as a sum of sub-word vectors:

SGNS:

FastText:

$$sim(u, v) = \langle \phi_u, \theta_v \rangle$$
 $sim(u, v) = \sum_{g \in G_v} \langle \phi_u, \theta_g \rangle$

ELMo — Embeddings from Language Models

Эмбеддинги формируются при помощи рекурретной нейронной сети, строяющей языковую модель.

Результат: эмбеддинг слова зависит от контекста.

Решается проблема омонимии.

https://jalammar.github.io/illustrated-bert/

ELMo — Embeddings from Language Models

Рекуррентная нейронная сеть обучается как языковая модель.

В процессе получаются скрытые состояния для каждого токена последовательности.

Эти признаки зависят как от текущего токена, так и от предыдущих.

https://jalammar.github.io/illustrated-bert/

ELMo — Embeddings from Language Models

На деле языковая модель строится на основе признаков, полученных в обоих направлениях.

Эмбеддинг получается конкатенацией промежуточных скрытых состояний в обоих направлениях, а затем суммой с весами и по слоям векторов скрытого состояния для каждого слова.

https://jalammar.github.io/illustrated-bert/

Агрегация эмбеддингов слов

Так, мы получили эмбеддинги для слов, как получить эмбеддинг предложения?

- Усреднить
 - С весами TF-IDF (бейзлайн для маленьких предложений)
 - Учить веса слов как параметры или предсказывать их отдельной нейронкой
 - Попробовать различные <u>пуллинги</u> (усреднить == Average Pooling)
 - И сконкатенировать различные пуллинги вместе
- Оставить как есть и бахнуть аттеншен (если машинный перевод)
- Экзотика
 - Например, в BERT к предложению конкатенируется токен <CLS> и его эмбеддинг считается эмбеддингом всего предложения (в fine-tuning в задаче классификации)