

问题的提出:

参数估计是统计推断的基本问题之一,实际工作中碰到的总体X, 它的分布类型往往是知道的,只是不知道其中的某些参数, 例如:产品的质量指标X服从正态分布,其概率密度为:

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} - \infty < x < +\infty$$

但参数 μ , σ^2 的值未知,要求估计 μ , σ^2 ,有时还希望以一定的可靠性来 估计µ值是在某个范围内或者不低于某个数。

参数估计问题就是要求通过样本估计总体分布所包含的未知参数的值。

- 1/22页 -

参数估计的两种方法: 点估计法和区间估计法

§ 3 参数的点估计

点估计的问题就是根据样本 (X_1, X_2, \dots, X_n) ,对每一个未知参数 θ_i $(i = 1, 2, \dots, k)$,构造出一个统计量 $\hat{\theta}_i = \hat{\theta}_i (X_1, X_2, \dots, X_n)$,作为参数 θ_i 的估计,称为 θ_i 的估计量。

点估计有两种方法:矩估计法和极大似然估计法

一) 矩估计法:

设总体X的分布函数为 $F(x;\theta_1,\theta_2,\cdots,\theta_k),(\theta_1,\theta_2,\cdots,\theta_k)$ 是待估计的未知参数,假定总体X的k阶原点矩 $E(X^k)$ 存在,

则有:
$$E(X^v) = \mu_v(\theta_1, \theta_2, \dots, \theta_k)$$
 $v = 1, 2, \dots, k$, 对于样本 $X = (X_1, X_2, \dots, X_n)$,

其v阶样本矩是:
$$A_v = \frac{1}{n} \sum_{i=1}^n X_i^v$$
 $v = 1, 2, \dots, k$

用样本矩作为总体矩的估计,即令:

$$\begin{cases} \mu_{1}(\theta_{1}, \theta_{2}, \cdots, \theta_{k}) = A_{1} \\ \mu_{2}(\theta_{1}, \theta_{2}, \cdots, \theta_{k}) = A_{2} \\ \vdots \\ \mu_{k}(\theta_{1}, \theta_{2}, \cdots, \theta_{k}) = A_{k} \end{cases}$$

解此方程即得 $(\theta_1, \theta_2, \dots, \theta_k)$ 的一个矩估计量 $(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_k)$

二. 极大似然估计法

▶ 极大似然估计的原理介绍

考察以下例子:

假设在一个罐中放着许多白球和黑球,并假定已经知道两种球的数目之比是1:3,但不知道哪种颜色的球多。如果用返回抽样方法从罐中任取n个球,则其中黑球的个数为x的概率为:

$$P(x;p) = \binom{n}{x} p^x q^{n-x}$$
, 其中 $q = 1 - p$,由假设知, $p = \frac{1}{4}$ 或 $\frac{3}{4}$

若取n=3,如何通过x来估计p值

先计算抽样的可能结果x在这两种p值之下的概率:

x	0	1	2	3
$P\left(x,\frac{3}{4}\right)$	1/64	9/64	27/64	27/64
$P\left(x,\frac{1}{4}\right)$	27/64	27/64	9/64	1/64

从上表看到:

$$x = 0, P\left(0, \frac{1}{4}\right) = \frac{27}{64} > P\left(0, \frac{3}{4}\right) = \frac{1}{64},$$
取 $p = \frac{1}{4}$ 更合理;

x=1 类似;

$$x = 2, P\left(2, \frac{1}{4}\right) = \frac{9}{64} < P\left(2, \frac{3}{4}\right) = \frac{27}{64}, \mathbb{R}p = \frac{3}{4}\mathbb{E}^{2}$$

x=3类似;

于是有:
$$\hat{p}(x) = \begin{cases} \frac{1}{4} & x = 0,1\\ \frac{3}{4} & x = 2,3 \end{cases}$$

极大似然原理:

对每个x,取p(x),使 $P(x;p(x)) \ge P(x;p')$,P'是不同于 $\hat{p}(x)$ 的另一值;

极大似然估计法:

设总体X的概率密度为 $f(x,\theta)$ (或分布率 $p(x,\theta)$), $\theta = (\theta_1,\theta_2,\cdots,\theta_k)$ 为未知参数, $\theta \in \Theta$, Θ 为参数空间,即 θ 的取值范围。设 (x_1,x_2,\cdots,x_n) 是样本 (X_1,X_2,\cdots,X_n) 的一个观察值:

1. 作似然函数
$$L(x_1, x_2, \dots, x_n, \theta) = \prod_{i=1}^n f(x_i, \theta)$$
(或= $\prod_{i=1}^n p(x_i, \theta)$)

2. 求使 $L(x_1, x_2, \dots, x_n, \theta)$ 达到最大的 θ 值, 称为 θ 的极大似然估计量

「说明」在求 $L(x_1, x_2, \dots, x_n, \theta)$ 的最大值时,通常转换为求:

$$lnL(x_1, x_2, \dots, x_n, \theta) = \sum_{i=1}^n ln f(x_i, \theta)$$
的最大值, lnL 称为对数似然函数, $L(x_1, x_2, \dots, x_n, \theta)$ 通常记为 $L(\theta)$

§ 2 估计量的评选标准

从表1看到,对总体的未知参数可用不同方法求得不同的估计量,如何评价好坏?

通常用三条标准检验: 无偏性, 有效性, 相合性

→ 无偏性

定义: 若参数 θ 的估计量 $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$,满足 $E(\hat{\theta}) = \theta$,则称 $\hat{\theta}$ 是 θ 的一个无偏估计量。

若 $E(\hat{\theta}) \neq \theta$,那么 $E(\hat{\theta}) - \theta$ 称为估计量 $\hat{\theta}$ 的偏差若 $\lim_{n \to \infty} E(\hat{\theta}) = \theta$,则称 $\hat{\theta}$ 是 θ 的渐近无偏估计量

纠偏方法

如果 $E(\hat{\theta}) = a\theta + b, \theta \in \Theta$, 其中a, b是常数,且 $a \neq 0$ 则 $\frac{1}{a}(\hat{\theta} - b)$ 是 θ 的无偏估计。

在例7中,取 $X_{(n)}^* = \frac{n+1}{n} X_{(n)}, 则 X_{(n)}^* 是 \theta$ 的无偏估计

无偏性是对估计量的一个最常见的重要要求, 是"好"估计的标准之一。

无偏性的统计意义是指在大量重复试验下,由 $\hat{\theta}(X_1,\dots,X_n)$ 所作的估计值的平均恰是 θ ,从而无偏性保证了 $\hat{\theta}$ 没有系统误差。

→ 有效性

*定义:设 $\hat{\theta}_1$, $\hat{\theta}_2$ 是 θ 的两个无偏估计,如果 $D(\hat{\theta}_1) \leq D(\hat{\theta}_2)$,对一切 $\theta \in \Theta$ 成立

则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。

例8: 设总体 $X \square U[0,\theta]$, X_1, \dots, X_n 是取自X的样本,已知 θ 的两个无偏估计为 $\theta_1 = 2\bar{X}, \theta_2 = \frac{n+1}{n}X(n)$ [见例7],判别 θ_1 与 θ_2 哪个有效 $(n \ge 2$ 时)?

解:
$$D(\theta_1) = D(2\bar{X}) = \frac{4}{n} \cdot \frac{\theta^2}{12} = \frac{\theta^2}{3n}$$

曲
$$f_{X_{(n)}}(x) = \begin{cases} \frac{nx^{n-1}}{\theta^n} & 0 < x < \theta \\ 0 &$$
其它 $\Rightarrow E(X_{(n)}^2) = \int_0^\theta \frac{nx^{n+1}}{\theta^n} dx = \frac{n}{n+2}\theta^2$

于是
$$D(\theta_2) = \frac{(n+1)^2}{n^2} \left\{ E(X_{(n)}^2) - \left[E(X_{(n)}) \right]^2 \right\} = \frac{\theta^2}{n(n+2)}$$

因为
$$D(\theta_1) = \frac{\theta^2}{3n} > \frac{\theta^2}{n(n+2)} = D(\theta_2) \Rightarrow \theta_2 比 \theta_1$$
更有效

➡相合性

*定义: 设 $\hat{\theta}(X_1,\dots,X_n)$ 为参数 θ 的估计量,若对于任意 $\theta \in \Theta$,当 $n \to +\infty$ 时, $\hat{\theta}_n$ 依概率收敛于 θ ,即 $\forall \varepsilon > 0$,有: $\lim_{n \to +\infty} P\{|\hat{\theta}_n - \theta| \ge \varepsilon\} = 0$ 成立,则称 $\hat{\theta}_n$ 为 θ 的相合估计量或一致估计量

§ 3 区间估计

引言:点估计是由样本求出未知参数 θ 的一个估计值 $\hat{\theta}$,

而区间估计则要由样本给出参数的一个估计范围,并指出

该区间包含 θ 的可靠程度。假设 (X_1, \dots, X_n) 是总体X的一个样本,

区间估计的方法是给出两个统计量 $\hat{\theta}_1 = \hat{\theta}_1(X_1, \dots, X_n), \hat{\theta}_2 = \hat{\theta}_2(X_1, \dots, X_n)$

使区间 $\left[\hat{\theta}_1,\hat{\theta}_2\right]$ 以一定的可靠程度盖住 θ 。

置信区间 置信度

 \Rightarrow 定义: 设总体X的分布函数 $F(x;\theta)$ 含有一个未知参数 θ 对给定的值 $\alpha(0<\alpha<1)$,

如果有两个统计量 $\hat{\theta}_1 = \hat{\theta}_1(X_1, \dots, X_n)$, $\hat{\theta}_2 = \hat{\theta}_2(X_1, \dots, X_n)$,

使得:

$$P\left\{\hat{\theta}_1(X_1,\dots,X_n) \le \theta \le \hat{\theta}_2(X_1,\dots,X_n)\right\} \ge 1-\alpha \quad \forall \theta \in \Theta \quad (7-1)$$

则称随机区间 $(\hat{\theta}_1, \hat{\theta}_2)$ 是 θ 的双侧 $1-\alpha$ 置信区间; 称 $1-\alpha$ 为置信度;

 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 分别称为双侧置信下限和双侧置信上限。

单侧置信区间

在以上定义中, 若将(7-1)式改为:

$$P\left\{\hat{\theta}_1\left(X_1,\dots,X_n\right) \le \theta\right\} \ge 1-\alpha, \quad \forall \theta \in \Theta \qquad (7-2)$$

则称 $\hat{\theta}_1(X_1,\dots,X_n)$ 为 θ 的单侧置信下限。

随机区间 $(\hat{\theta}_1, +\infty)$ 是 θ 的置信度为 $1-\alpha$ 的单侧置信区间。

又若将(7-2)式改为:

$$P\left\{\theta \le \hat{\theta}_2\left(X_1, \dots, X_n\right)\right\} \ge 1 - \alpha, \quad \forall \theta \in \Theta \qquad (7 - 3)$$

则称 $\hat{\theta}_2(X_1,\dots,X_n)$ 为 θ 的单侧置信上限。

随机区间 $\left(-\infty,\hat{\theta}_{2}\right)$ 是 θ 的置信度为 $1-\alpha$ 的单侧置信区间。

正态总体均值方差的区间估

(-) 单个正态总体 $N(\mu,\sigma^2)$ 的情形

 X_1, X_2, \cdots, X_n 来自 $N(\mu, \sigma^2), \bar{X}$ 和 S^2 分别为样本均值和方差,置信度为 $1-\alpha$

1. 均值μ的置信区间

(1) σ²已知时

 \bar{X} 是 μ 的无偏估计,由 $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$ $\square N(0,1)$

有
$$P\left\{\left|\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\right| < Z_{\alpha/2}\right\} = 1-\alpha$$

$$\mathbb{P}P\left\{\overline{X} - \frac{\sigma}{\sqrt{n}}Z_{\alpha/2} < \mu < \overline{X} + \frac{\sigma}{\sqrt{n}}Z_{\alpha/2}\right\} = 1 - \alpha$$

置信区间为:
$$\left(\bar{X} - \frac{\sigma}{\sqrt{n}} Z_{\alpha/2}, \bar{X} + \frac{\sigma}{\sqrt{n}} Z_{\alpha/2}\right)$$

思考题:

均值 μ 的置信度 $1-\alpha$ 的 置信下限是什么呢?

答案:
$$\bar{X}$$
- $\frac{\sigma}{\sqrt{n}}z_{\alpha}$

(2) σ²未知时

有
$$P\left\{-t_{\alpha/2}(n-1) < \frac{\overline{X} - \mu}{S/\sqrt{n}} < t_{\alpha/2}(n-1)\right\} = 1 - \alpha$$

$$\mathbb{EP}\left\{ \overline{X} - \frac{S}{\sqrt{n}} t_{\alpha/2} \left(n - 1 \right) < \mu < \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha/2} \left(n - 1 \right) \right\} = 1 - \alpha$$

置信区间为:
$$\left(\bar{X} - \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1), \bar{X} + \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1)\right)$$

2. 方差 σ^2 的置信区间

设μ未知

$$\mathbb{EP}\left\{\frac{(n-1)S^{2}}{\chi_{\alpha/2}^{2}(n-1)} < \sigma^{2} < \frac{(n-1)S^{2}}{\chi_{1-\alpha/2}^{2}(n-1)}\right\} = 1 - \alpha$$

置信区间为:
$$\frac{\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right) }{\chi^2_{1-\alpha}(n-1)} \frac{\left(\frac{(n-1)S^2}{\chi^2_{1-\alpha}(n-1)}\right) }{\chi^2_{1-\alpha}(n-1)}$$

方差 σ ²的置信度 $1-\alpha$ 的 置信上限是什么?

答案:

$$\frac{(n-1)S^{2}}{\chi_{1-\alpha}^{2}(n-1)}.$$

置信区间的含义:

若反复抽样多次,每个样本值确定一个区间 $(\underline{\theta}, \overline{\theta})$,每个这样的区间或者包含 θ 的真值,或者不包含 θ 的真值。(见下图)在例10中,

当 $\alpha = 0.05$,即置信水平为95%时,20个区间中只有大约1个不包含 μ 值; 当 $\alpha = 0.01$,即置信水平为99%时,100个区间中将有99个包含 μ 值;

雨课堂 Rain Classroom

《 概率论与数理统计 》 - 18/22页 -

(二) 两个正态总体 $N(\mu_1,\sigma_1^2),N(\mu_2,\sigma_2^2)$ 的情形

$$X_1, X_2, \dots, X_{n_1}$$
来自 $N(\mu_1, \sigma_1^2), Y_1, Y_2, \dots, Y_{n_2}$ 来自 $N(\mu_2, \sigma_2^2),$

$$\bar{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i, \bar{Y} = \frac{1}{n_2} \sum_{j=1}^{n_2} Y_j, \quad S_1^2 \pi S_2^2$$
分别为第一,二个总体的样本方差,置信度为 1- α .

1. $\mu_1 - \mu_2$ 的置信区间

$$(1)$$
 σ_1^2 , σ_2^2 已知时

有
$$\frac{\left(\overline{X}-\overline{Y}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}}\sim N\left(0,1\right)$$

置信区间为:
$$\left[\left(\overline{X} - \overline{Y} \right) \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right]$$

(2) $\sigma_1^2 = \sigma_2^2 = \sigma^2, \sigma^2$ 未知

此时由第六章定理6.8,
$$\frac{\left(\bar{X}-\bar{Y}\right)-\left(\mu_{1}-\mu_{2}\right)}{S_{w}\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}\sim t\left(n_{1}+n_{2}-2\right)$$

置信区间为:
$$\left[\left(\overline{X} - \overline{Y} \right) \pm t_{\frac{\alpha}{2}} \left(n_1 + n_2 - 2 \right) S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right]$$

其中
$$S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}, S_w = \sqrt{S_w^2}$$

 $\int_{2}^{2} \frac{\sigma_1^2}{\sigma_2^2}$ 的置信区间

设μ1,μ2未知

有
$$P\left\{F_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)<\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}< F_{\frac{\alpha}{2}}(n_1-1,n_2-1)\right\}=1-\alpha$$

$$\mathbb{RP} P\left\{ \frac{S_1^2}{S_2^2} \frac{1}{F_{\frac{\alpha}{2}}(n_1 - 1, n_2 - 1)} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{S_1^2}{S_2^2} \frac{1}{F_{1 - \frac{\alpha}{2}}(n_1 - 1, n_2 - 1)} \right\} = 1 - \alpha$$

置信区间为:
$$\left[\frac{S_1^2}{S_2^2} \frac{1}{F_{\frac{\alpha}{2}}(n_1-1,n_2-1)}, \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)} \right]$$

正态总体均值、方差的置信区间与单侧置信限

	待估 参数	其他 参数	W的分布	置信区间	单侧置信限
一个正态总体	μ	σ^2 已知	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \square N(0,1)$	$\left(\bar{X} \pm \frac{\sigma}{\sqrt{n}} Z_{\alpha/2} \right)$	$\overline{\mu} = \overline{X} + \frac{\sigma}{\sqrt{n}} Z_{\alpha}$ $\underline{\mu} = \overline{X} - \frac{\sigma}{\sqrt{n}} Z_{\alpha}$
	μ	σ^2 未知	$t = \frac{\overline{X} - \mu}{S/\sqrt{n}} \square t(n-1)$	$\left(\bar{X}\pm\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right)$	$\overline{\mu} = \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha} (n-1)$ $\underline{\mu} = \overline{X} - \frac{S}{\sqrt{n}} t_{\alpha} (n-1)$
	σ^2	μ未知	$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \square \chi^2 (n-1)$	$\left(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)},\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}\right)$	$\overline{\sigma^2} = \frac{(n-1)S^2}{\chi_{1-\alpha}^2 (n-1)}$ $\underline{\sigma^2} = \frac{(n-1)S^2}{\chi_{\alpha}^2 (n-1)}$
两个正态总体	$\mu_1 - \mu_2$	$\sigma_{\scriptscriptstyle 1}^{\scriptscriptstyle 2},\sigma_{\scriptscriptstyle 2}^{\scriptscriptstyle 2}$ 已知	$Z = \frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \square N(0, 1)$	$\left(\overline{X} - \overline{Y} \pm Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right)$	$\begin{split} \overline{\mu_1 - \mu_2} &= \overline{X} - \overline{Y} + Z_{\alpha} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \\ \underline{\mu_1 - \mu_2} &= \overline{X} - \overline{Y} - Z_{\alpha} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \end{split}$
	$\mu_1 - \mu_2$	$\sigma_1^2 = \sigma_2^2$ $= \sigma^2 未知$	$t = \frac{\left(\bar{X} - \bar{Y}\right) - \left(\mu_{1} - \mu_{2}\right)}{S_{w}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} \Box t(n_{1} + n_{2} - 2)$	$\left(\bar{X} - \bar{Y} \pm t_{\alpha/2} (n_1 + n_2 - 2) S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$	$\begin{split} \overline{\mu - \mu} &= \overline{X} - \overline{Y} + t_{\alpha} (\eta + \eta_{2} - 2) S_{\alpha} \sqrt{\frac{1}{\eta_{1}} + \frac{1}{\eta_{2}}} \\ \underline{\mu - \mu} &= \overline{X} - \overline{Y} - t_{\alpha} (\eta_{1} + \eta_{2} - 2) S_{\alpha} \sqrt{\frac{1}{\eta_{1}} + \frac{1}{\eta_{2}}} \end{split}$
	$rac{\sigma_1^2}{\sigma_2^2}$	μ ₁ , μ ₂ 未知	$F = \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \square F(n_1 - 1, n_2 - 1)$	$\begin{pmatrix} \frac{S_1^2}{S_2^2} \frac{1}{F_{\alpha/2} \left(n_1 - 1, n_2 - 1\right)}, \\ \frac{S_1^2}{S_2^2} \frac{1}{F_{1-\alpha/2} \left(n_1 - 1, n_2 - 1\right)} \end{pmatrix}$	$ \frac{\boxed{\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}} = \frac{S_{1}^{2}}{S_{2}^{2}} \frac{1}{F_{1-\alpha} (n_{1}-1, n_{2}-1)} $ $ \underline{\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}} = \frac{S_{1}^{2}}{S_{2}^{2}} \frac{1}{F_{\alpha} (n_{1}-1, n_{2}-1)} $