Introduction to mRNA-seq Analysis

Rosalba Giugno Simone Avesani Manuel Tognon

Transport derived Ultrafines and the Brain Effects (TUBE)

https://www.tube-project.eu/

TUBE's Partners

Many partners each of one specialized in a different experimental phase:

- Finland: sample collection and library preparation
- Czech Republic: sequencing, epigenetics
- Italy (Verona): data analysis

Alzheimer's Disease

Alzheimer's Disease

- Neurodegenerative disease
- Irreversible disease
- Average life expectancy is 10 years

Alzheimer's Disease

- Neurodegenerative disease
- Irreversible disease
- life expectancy is 10 years

Main symptoms:

- loss of memory
- repetitive or impulsive behavior
- loss of physical abilities
- loss of memory smell

Challenges

- There is no cure
- There is no a diagnostic test

exclusion of all other pathologies

It is very difficult to study the evolution of the disease

Goal of the experiment

Try to find an innovative way to study the Alzheimer's disease evolution

Discover a potential way to diagnose the disease

Goal of the experiment

Try to find an innovative way to study the Alzheimer's disease evolution

Discover a potential way to diagnose the disease

Starting from the Olfactory Mucosa

Olfactory Mucosa

- Divide nose cavity from the brain
- The odors perception take place

loss of memory smell

• **STEP 1**: take OM samples with biopsy from healthy, sick and mild cognitive subjects

			age when	ApoE	
Group	ID	gender	biopsied	genotype	
	102	female	78	34	
	105	female	73	33	
	106	male	67	34	
	108	female	73	34	
control (10)	109	male	64	34	
con (1	110	female	72	33	
	111	female	72	33	
	112	female	73	33	
	113	female	70	33	
	115	male	68	33	

age						age				
				when	ApoE				when	ApoE
	Group	ID	gender	biopsied	genotype	Group	ID	gender	biopsied	genotype
		201	male	82	34	AD (12)	301	female	64	33
		205	male	77	34		302	male	80	33
		207	male	68	33		303	female	67	44
	MCI (11)	208	male	63	34		304	female	58	44
		209	male	72	23		305	female	80	33
		210	female	72	33		306	female	75	44
		212	female	73	22		307	male	71	44
		213	female	72	33		308	male	61	34
		214	female	76	33		309	female	67	44
		215	female	62	34		311	male	60	33
		216	male	63	44		313	male	65	44
							314	male	71	34

• STEP 2: sequence the genomic content of the cells sampled

NB: different type of sequencing!

Bulk vs Single Cell sequencing

Bulk vs Single Cell sequencing

Bulk vs Single Cell sequencing

STEP 3: search if there are genomic differences between healthy and sick samples

Genes more or less expressed in sick subjects respect to healthy subjects!

Quality Control

Pre-processing

Quality Control after preprocessing

Pipeline

Quantification

R analysis

Differential expression analysis

