Prova scritta di Calcolo Scientifico

Udine, 13 febbraio 2017

- 1. Sia $\mathcal{F} = \mathcal{F}(2, t, p_{\min}, p_{\max})$ l'insieme di numeri di macchina con l'arrotondamento.
 - Determina t, p_{\min}, p_{\max} con $p_{\max} = t$ in modo che \mathcal{F} contenga 64 elementi positivi e realmax = 15.
 - Dopo aver definito la precisione di macchina u, determina quella di \mathcal{F} .
 - Sia $x = \frac{1}{5}$. Verifica che $x \notin \mathcal{F}$ e determina $\tilde{x} = fl(x) \in \mathcal{F}$.
 - Sia $y = \frac{1}{3}$. Verifica che $y \notin \mathcal{F}$ e determina $\tilde{y} = fl(y) \in \mathcal{F}$.
 - Calcola z = x + y e determina $\tilde{z} = fl(z) \in \mathcal{F}$.
 - Calcola $\tilde{w} = \tilde{x}fl(+)\tilde{y} \in \mathcal{F}$. Che relazione c'è tra \tilde{z} e \tilde{w} ?
 - Definisci i numeri denormalizzati. Quanti sono i numeri denormalizzati per \mathcal{F} ?
- 2. Sia data una funzione f.
 - Definisci l'errore inerente ed il concetto di condizionamento nel calcolo di f.
 - Definisci l'errore algoritmico ed il concetto di stabilità.

Sia
$$f(x) = \sqrt{h(x)}$$
.

- Determina l'indice di condizionamento di f e h. Quando il calcolo di f sarà ben condizionato?
- Supponendo che la radice quadrata sia calcolata con un errore relativo maggiorato da u e che ϵ_h sia l'errore algoritmico del calcolo di h, determina una maggiorazione dell'errore algoritmico ϵ_f del calcolo di f. Quando il calcolo di f sarà stabile?

Sia
$$h(x) = 1 - \sqrt{x+1}$$
.

- Determina per quali valori di x la funzione f è ben definita.
- Studia il condizionamento di f e la stabilità dell'algoritmo che calcola f.
- 3. Sia $f(x) = x^3 3x 1$.
 - Disegna il grafico di f. Localizza le tre radici α, β, γ con $\alpha < \beta < \gamma$.
 - Studia la convergenza ad α del metodo di Newton. La successione ottenuta con $x_0 = -2$ è convergente ad α ? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.
 - Studia la convergenza ad β del metodo di Newton. La successione ottenuta con $x_0 = -\frac{1}{3}$ è convergente a β ? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.
 - Studia la convergenza a γ del metodo di Newton. La successione ottenuta con $x_0 = \frac{3}{2}$ è convergente a γ ? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.

Sia $g(x) = \frac{x^3 - 1}{3}$. Verifica che α, β, γ sono punti fissi di g.

- Studia la convergenza ad α, β, γ del metodo iterativo $x_{k+1} = g(x_k), k = 0, 1, \ldots$ Quando convergente, qual è l'ordine di convergenza?
- 4. Sia data la matrice

$$A = \begin{pmatrix} -2 & 4 & 1\\ \alpha & -1 & -\frac{\alpha}{2}\\ 1 & 3 & \frac{3}{2} \end{pmatrix}.$$

- Calcola la fattorizzazione LU di A, determinando per quali valori di α cò è possibile.
- Per quale scelta di α il sistema Ax = b ha un'unica soluzione?
- Illustra in generale la strategia del pivot parziale per il metodo di Gauss. Perchè si applica?
- Per quali valori di α il metodo di Gauss con il pivot parziale al primo passo effettua uno scambio di righe?
- Sia $\alpha = -1$. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- Proponi un algoritmo per calcolare in generale la soluzione di $Ux = d \operatorname{con} U$ triangolare superiore. Scrivi una pseudocodifica ed analizza il costo computazionale.
- 5. Sia $f(x) = \frac{x-1}{x+2}$. Dati i punti $P_0 = (-1, f(-1)), P_1 = (0, f(0)), P_2 = (1, f(1)),$
 - ullet Determina il polinomio p che interpola i tre punti nella forma di Newton.
 - Scrivi la formula dell'errore f(x) p(x) e determina una limitazione dell'errore $\max_{x \in [-1,1]} |f(x) p(x)|$.
 - Dato l'ulteriore punto $P_3 = (2, f(2))$, determina il polinomio \tilde{p} che interpola i quattro punti nella forma di Newton.
 - Determina il polinomio cubico h di Hermite che interpola P_0 e P_2 .
 - Determina il polinomio q di primo grado di miglior approssimazione dei quattro punti nel senso dei minimi quadrati.
 - Determina il polinomio r di grado zero di miglior approssimazione dei quattro punti nel senso dei minimi quadrati.
- 6. Sia α tale che $f(\alpha) = 0$.
 - Studia il condizionamento del problema.

Sia $x_k \to \alpha$ per $k \to +\infty$.

- Data una precisione tol, proponi ed analizza un criterio di arresto.
- Definisci il concetto di ordine di convergenza.