DL Scaling rules

Denis Sapozhnikov, HSE AMI 202

Motivation

- You want to reproduce Somebody et al. from AnyAl
- You have implemented the entire article
- You do not have 8192 TPU as Somebody et al
- You choose small batch size and keep the other parameters the same
- You sucks

SGD scaling rule (Goyal et al. 2017)

Linear Scaling Rule: When the minibatch size is multiplied by k, multiply the learning rate by k.

Adam scaling rule (Malladi et al. 2022)

Definition C.3 (Adam Scaling Rule). When running Adam (Kingma & Ba, 2015) with batch size $\hat{B} = \kappa B$, use a learning rate $\hat{\eta} = \sqrt{\kappa \eta}$, beta coefficients $\hat{\beta}_1 = 1 - \kappa \times (1 - \beta_1)$, $\hat{\beta}_2 = 1 - \kappa \times (1 - \beta_2)$, and adaptivity parameter $\hat{\epsilon} = \frac{\epsilon}{\sqrt{\kappa}}$ (Malladi et al., 2022).

- Beta1 is typically 0.9
- Formula breaks for k> 10
- Should we really scale beta's?
- Well, may be

Adam scaling rule (Malladi et al. 2022): scale betas

Definition C.3 (Adam Scaling Rule). When running Adam (Kingma & Ba, 2015) with batch size $\hat{B} = \kappa B$, use a learning rate $\hat{\eta} = \sqrt{\kappa} \eta$, beta coefficients $\hat{\beta}_1 = 1 - \kappa \times (1 - \beta_1)$, $\hat{\beta}_2 = 1 - \kappa \times (1 - \beta_2)$, and adaptivity parameter $\hat{\epsilon} = \frac{\epsilon}{\sqrt{\kappa}}$ (Malladi et al., 2022).

Cannot find any dependency on beta1

better, but not too much

Adam scaling rule (Malladi et al. 2022): large batches

Definition C.3 (Adam Scaling Rule). When running Adam (Kingma & Ba, 2015) with batch size $\hat{B} = \kappa B$, use a learning rate $\hat{\eta} = \sqrt{\kappa \eta}$, beta coefficients $\hat{\beta}_1 = 1 - \kappa \times (1 - \beta_1)$, $\hat{\beta}_2 = 1 - \kappa \times (1 - \beta_2)$, and adaptivity parameter $\hat{\epsilon} = \frac{\epsilon}{\sqrt{\kappa}}$ (Malladi et al., 2022).

EMA scaling rule (Busbridge et al. 2023)

Definition 1.2 (EMA Scaling Rule). When computing the EMA update (Definition 1.1) of a model undergoing stochastic optimization with batch size $\hat{B} = \kappa B$, use a momentum $\hat{\rho} = \rho^{\kappa}$ and scale other optimizers according to their own scaling rules.

EMA scaling rule (Busbridge et al. 2023): Adam

Definition 1.2 (EMA Scaling Rule). When computing the EMA update (Definition 1.1) of a model undergoing stochastic optimization with batch size $\hat{B} = \kappa B$, use a momentum $\hat{\rho} = \rho^{\kappa}$ and scale other optimizers according to their own scaling rules.

Links:

- Busbridge et al. How to Scale Your EMA. [link]
- Goyal et al. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour.
 [link]
- Malladi et al. On the SDEs and Scaling Rules for Adaptive Gradient Algorithms.[link]
- You et al. Large Batch Optimization for Deep Learning: Training BERT in 76 minutes. [link]
- Godbole et al. Deep Learning Tuning Playbook. [link]

LAMB scaling rule* (You et al. 2020)

Batch Size	512	1K	2K	4K	8K	16K	32K
Learning Rate	$\frac{4}{2^{3.0} \times 100}$	$\frac{4}{2^{2.5} \times 100}$	$\frac{4}{2^{2.0} \times 100}$	$\frac{4}{2^{1.5} \times 100}$	$\frac{4}{2^{1.0} \times 100}$	$\frac{4}{2^{0.5} \times 100}$	$\frac{4}{2^{0.0} \times 100}$
Warmup Epochs	0.3125	0.625	1.25	2.5	5	10	20
Top-5 Accuracy	0.9335	0.9349	0.9353	0.9332	0.9331	0.9322	0.9308
Top-1 Accuracy	0.7696	0.7706	0.7711	0.7692	0.7689	0.7666	0.7642

SGD

$$egin{aligned} v_{t+1} &= \mu \cdot v_t - \eta \cdot
abla_{ heta} J(heta) \ heta_{t+1} &= heta_t + v_{t+1} \end{aligned}$$

$$egin{aligned} \eta^l &= \eta \cdot rac{\| heta^l\|}{\|
abla_{d}J(heta^l)\| + \lambda \cdot \| heta^l\|} \ heta^l_{t+1} &= heta^l_{t} - \eta^l \cdot
abla_{ heta}J(heta^l) \end{aligned}$$

Where:

- ullet v_t is the momentum term at iteration t
- ullet μ is the momentum coefficient.

Here:

- θ^l and $\nabla_{\theta}J(\theta^l)$ are the parameters and their gradients for layer l.
- η^l is the adaptive learning rate for layer l.

LARS

- η is the global learning rate.
- λ is a weight decay parameter.

LAMB

1. Compute the moment estimates:

$$egin{aligned} m_t &= eta_1 \cdot m_{t-1} + (1-eta_1) \cdot
abla_{ heta} J(heta) \ v_t &= eta_2 \cdot v_{t-1} + (1-eta_2) \cdot
abla_{ heta} J(heta)^2 \end{aligned}$$

2. Compute bias-corrected moment estimates:

$$\hat{m}_t = rac{m_t}{1-eta_1^t} \ \hat{v}_t = rac{v_t}{1-eta_2^t}$$

3. Layer-wise learning rate adaptation:

$$egin{aligned} r_t^l &= rac{\|\hat{m}_t^l\|}{\sqrt{\hat{v}_t^l + \epsilon}} \ \eta^l &= \eta \cdot rac{\| heta^l\|}{r_t^l} \end{aligned}$$

4. Parameter update:

$$heta_{t+1}^l = heta_t^l - \eta^l \cdot \hat{m}_t^l$$