The Genomic Knowledge Gap

Representing the information

- Sequences(biology) and strings (computer science)
- DNA/RNA/Protein sequences are represented as strings
- Standard alphabets
 - DNA {A,T,G,C} {R,Y,N}
 - RNA {A,U,G,C} {R,Y,N}
 - Protein {A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y} {X,U,*}

Formalization of sequence representation

- A DNA sequence s is a finite string from the alphabet N={A,T,G,C} of nucleotides
- A genome is the set of all DNA sequences associated with an organism or an organelle
- Subsequences a.k.a "slices":
- s=ATATGTCGTGCA
- s(3:6)=ATGT
- S(8) = G

Formalization of sequence representation

- Subsequences a.k.a "slices":
 - s=ATATGTCGTGCA
 - s(3:6)=ATGT
 - s(8) = G
- Concatenations:
 - s(3:6) + s(8) = ATGT+G = ATGTG

Probabilistic models of sequences: why?

- We want to find "interesting" elements in a genome
- Interesting → statistically significant
- Genes vs. non-genes: length, base composition
 - Edge requirement: start/stop codons
- Introns vs. exons
- More?

Simple model: multinomial

- Nucleotides are independent and identically distributed (i.i.d)
- p(A)+p(C)+p(G)+p(T) = 1
- Even simpler: p(A)=p(C)=p(G)=p(T)=0.25

$$p(s) = \prod_{i=1}^{n} p(s(i))$$

Multinomial model

- p(A) = 0.19 p(C)=0.21 p(G)=0.27 p(T)=0.32
- $p(AA) = 0.19*0.19 = 0.19^2 = 0.0361$
- $p(AAAAAAA) = 0.19^7 = 8.94 \times 10^{-6}$
- p(AATGCGT) =?

Multinomial model

- p(A) = 0.19 p(C)=0.21 p(G)=0.27 p(T)=0.32
- $p(AA) = 0.19*0.19 = 0.19^2 = 0.0361$
- $p(AAAAAAA) = 0.19^7 = 8.94 \times 10^{-6}$
- p(AATGCGT) =?

A human genome is 3x10⁹ base-pairs. How many AATGCGT would you expect to find by chance?

Multinomial model

- Pros: simple, works quite a few times. Good as a baseline
- Con: i.i.d assumption: we know nucleotides are not independent nor identically distributed

Markov sequence model

	Α	С	G	Т
Α	P _{AA}	P _{AC}	P _{AG}	P_{AT}
С	P _{CA}	P _{CC}	p _{CG}	P _{CT}
G	P _{GA}	P _{GC}	p_{GG}	P _{GT}
т	P _{TA}	PTC	P _{TG}	P _{TT}

Look ma! No i.i.d!!

Markov Transition Matrix

	То А	ТоС	To G	ТоТ
From A	0.6	0.2	0.1	0.1
From C	0.1	0.1	8.0	0
From G	0.2	0.2	0.3	0.3
From T	0.1	0.8	0	0.1

ACGCGTAATCAAAATCGGTCGTCGGAAAAAAAAAAATCG

Probabilistic models: summary

- "All models are wrong, but some are useful"
- Markov chain and multinomial models are both used
- Statistical anomalies discovered by the model may have biological significance

Why is GC content important?*

$$\frac{G+C}{A+T+G+C}\times \ 100$$

Why is GC content important?

- Identifying horizontal gene transfer elements: change point analysis
- Coding regions have a higher GC content
- Systematics
 - GC-rich: Actinobacteria (60-70%)
 - AT-rich: Plasmodium (~20%)
- Annealing temperature for PCR primers

k-mer frequency analysis

- Analyzing the frequency of "words" in the genome
- 1-mer words: A, T, G, C
- 2-mer words: AA, AT, AG, AC, TA, TT,TG,TC...
- 3-mer words: AAA, AAT, AAG...
- Number of k-mers = 4^k
- Number of protein k-mers = ?

Unusual k-mers

- Words that are highly frequent or highly infrequent may have a biological meaning
- CTAG kinks DNA
- Palindromic k-mers: restriction sites: EcoRI / GAATTC
- CpG islands

Statistical sequence analysis

 Base composition of the genome and variations in the genome of *H. influenzae* (20 Kbp window size)

Statistical sequence analysis

 Base composition of the genome and variations in the genome

The Odds Ratio

Observed / expected

Example for the AT dimer:

$$\frac{P(AT)}{P(A)\times P(T)}$$

Odds ratio >> 1 or << 1: unusual dimer

Genome statistics: conclusion

- Whole genome statistics lets us broadly typify a genome
- Statistical biases along a genome tell us about:
 - Horizontal gene transfer
 - Possible coding regions
 - isochores

Data Formats

- For analysis, sequences are stored in text files, which are read by programs
- Programs are very finicky about what they read
- A number of standard formats exist
- 1 letter<--> 1 base (or amino-acid)
- Information in addition to the sequence:
 - Source organism, keywords, unique database identifiers, sequence features...

FASTA Format

- Pros: simple.
- Cons: does not contain information about the sequence

See for yourself

- Steroidogenic Acute Regulatory Protein (StAR)
- http://www.ncbi.nlm.nih.gov/protein/71152974
- http://www.uniprot.org/uniprot/P49675
- http://www.uniprot.org/uniprot/P49675.txt
- http://www.uniprot.org/uniprot/P49675.fasta
- http://www.uniprot.org/uniprot/P49675.gff

Finding Genes

What is a Gene?*

What is a Gene?*

- Basic unit of heredity in an organism
- Do not confuse gene with allele!
- Genes have products: protein or RNA

ORF Finding

- ORF: Open Reading Frame
- Also called gene finding, gene calling
- Uses the conservative definition of a gene: i.e. a contiguous coding unit
- Hey, we have to start somewhere!

To ORF or not to ORF?

- Today's limits: protein coding genes
- Prokaryotes (no messy introns)

ORF finding algorithm*

?

ORF finding algorithm 1*

Pros and Cons of ORF Finder 1*

Pros and Cons of ORF Finder 1*

- Pros:
 - Simple
- Cons:
 - How do we set the length threshold?
 - What if a true ORF is shorter than the length threshold? Or a false ORF longer than the the length threshold?
 - Should length be the only determinant of being a true ORF?

Hypothesis testing (ifs and buts)

- Ho: A potential ORF does not code for a gene
- H1: A potential ORF codes for a gene

if but	Ho is true	Ho is false
Ho is rejected	Type I error (FALSE POSITIVE)	No error
Ho is not rejected	No error	Type II error (FALSE NEGATIVE)

Hypothesis testing

- Ho: A potential ORF does not code for a gene
- H1: A potential ORF a true ORF

Type I error:saying that some sequence is an ORF, when it is not (FALSE POSITIVE)

More big words to confuse you

- Significance level: the probability of committing a Type I error. Also called α
- Test statistic: what we wish to test Ho against. In our case, ORF length
- p-value: the probability of finding the observed or more extreme test statistic when Ho is true
 - if p-value < significance level the result is significant:
 Ho is rejected.
- Significant result: not necessarily a true result.

Back to ORF Finding

- Informal: How long does an ORF have to be to be considered "significant"?
- Formal: what is the probability of an ORF of k or more codons arising by chance?
- More formal: what is the threshold value of k so that 95% of random ORFs are < k?

First stab at finding a good ORF length

- Assume codons are uniformly distributed in the genome
- P(consecutive run of k non-stop-codons) = $(61/64)^k$

First stab at finding a good ORF length

- Assume codons are uniformly distributed in the genome
- P(consecutive run of k non-stop-codons) = $(61/64)^k$
- Setting α =0.05 we get k=62
- (61/64)62
- 62*3=186bp

?=62

Refining finding a good ORF length

- Codons are NOT uniformly distributed!
- In fact, their distribution varies between genomes (and even within a genome).
- We need to refine the null model on a per-genome basis

?=62

Randomizing Genomes

 We can permute (shuffle) the genome for a genome-specific null-model.

Choosing a threshold

Choosing a threshold

