แนวข้อสอบ 7 วิชาสามัญ ปี 2560

กำหนดให้ใช้ค่าต่อไปนี้ สำหรับกรณีที่ต้องแทนค่าตัวเลข

 $g = 9.8 \text{ m/s}^2$

 π = 3.14159

180 *= π* เรเดียน

สัญลักษณ์ log แทนลอการิทีมฐานสืบหรือตามที่กำหนดในโจทย์

log2 = 0.30, log3 = 0.48

อัตราเร็าของเสียงในอากาศ pprox (332+0.6 $t^{\circ}C$) ms $^{-1}$

1. ถ้ากุดท่อน PQ ลงในแนวตั้งฉากกับพื้นด้วยความเร็ว u ลิ่ม ABC จะถอยหนีไปทางซ้ายมือด้วยความเร็วขนาด เท่าไร

1. $u \sin \alpha$ 2. $u \cos \alpha$ 3. $u \sec \alpha$ 4. $u \tan \alpha$ 5. $u \cot \alpha$

- 2. น้ำหนักของมวล m เมื่อซึ่งที่ผิวของดางจันทร์ เท่ากับ mg'จงหามวลของดางจันทร์ กำหนดให้ G แทนค่าคงที่ ลำกลของแรงแรงโน้มถ่าง และ R แทนรัศมีของดางจันทร์
 - 1. $\left(\frac{g'}{G}\right)m$ 2. $\left(\frac{G}{g'}\right)m$ 3. $\frac{Rg'}{G}$ 4. $\frac{R^2g'}{G}$ 5. $\frac{2R^2g'}{G}$

3. A และ B มีมาลเท่ากัน แขาน B ด้ายเชือกเบา $_{\eta}$ ยาว l จากจุด O โดย A เคลื่อนที่เร็ว u เข้าชน B ตรง $_{\eta}$ อย่าง ยืดหยุ่น ค่า u ต้องมีขนาดอย่างน้อยที่สุดเท่าไร B จึงจะเหาี่ยงขึ้นไปถึงระดับเดียวกันกับจุด O ได้พอดี

- 1. $\sqrt{20gl}$
- 2. $\sqrt{5gl}$
- 3. $\sqrt{4gl}$
- $4. \sqrt{2gl}$
- 5. \sqrt{gl}

4. ลูกตุ้มมาล m ผูกห้อยอยู่กับเชือกเบายาว L เคลื่อนที่แบบวงกลมด้ายอัตราเร็วคงตัวในระนาบระดับ ดังรูป เชือกทำมุม heta กับแนวดิ่งตลอดเวลา จงหาดาบของการเคลื่อนที่ของลูกตุ้ม

1.
$$2\pi\sqrt{\frac{L\cos\theta}{g}}$$

1.
$$2\pi\sqrt{\frac{L\cos\theta}{g}}$$

4. $2\pi\cos\theta\sqrt{\frac{L}{g\sin\theta}}$

$$2. \quad 2\pi \sqrt{\frac{L\sin\theta}{g}}$$

5.
$$2\pi \sin \theta \sqrt{\frac{L}{g \cos \theta}}$$

3.
$$2\pi\sqrt{\frac{L\cot\theta}{g}}$$

5. เด็กดนหนึ่งอยู่บนรถซึ่งเคลื่อนที่อยู่บนถนนตรงด้วยความเร็วคงที่ V เขาปาก้อนหินออกไปด้วยความเร็ว u เทียบกับรถทิศทำมุม heta กับทิศที่รถเคลื่อนที่ ก้อนหินจะตกกระทบพื้นห่างจากรถเป็นระยะทางเท่าไร

- 1. ตำแหน่งเดียวกันกับรถ
- 2. น่าหน้ารถอยู่ $\frac{2u^2 \sin \theta \cos \theta}{g}$
- 3. นำหน้ารถอยู่ $(V+u\cos\theta)\frac{2u\sin\theta}{g}$ ฯ. ตามหลังรถอยู่ $\frac{2u^2\sin\theta\cos\theta}{g}$
- 5. ตามหลังรถอยู่ $(V + u\cos\theta)\frac{2u\sin\theta}{g}$

6. ออกแรง F ดันแผ่นราบมวลเบาบี้ลูกโป่งซึ่งเดิมเป็นรูปทรงกลม ให้ติดกับกำแพงดิ่งอย่างสมมาตร ดังรูป ความ ดันภายในลูกโป่งเท่ากับเท่าไร เก๋าหนดให้ $P_{\scriptscriptstyle a}$ เป็นความดันบรรยากาศ)

- 1. $P_a \frac{F}{A}$ 2. $P_a \frac{F}{2A}$

7. ปล่อยลูกปังปอง m จากหยุดนิ่งที่ความสูง h จากพื้น ให้ตกกระทบพื้น มันจะกระดอนขึ้นด้วยความเร็วต้น เท่าไร ถ้าหากว่าในการกระทบพื้นนั้นมีการสูญเสียพลังงานจลน์ไป 28%

1. $0.28(2gh)^{\frac{1}{2}}$

2. $0.72(2gh)^{\frac{1}{2}}$ 3. $(2gh)^{\frac{1}{2}}$

ч. $1.2(gh)^{\frac{1}{2}}$

5. $(gh)^{\frac{1}{2}}$

8. ใช้สปริงเบาด่าดงตัวสปริง k แขวนก้อนมวล m ไว้ให้อยู่ในแนวดิ่ง จากนั้นดึงก้อนมวลให้ขยับต่ำกว่าระดับสมดุล เล็กน้อยและปล่อยให้เดลื่อนที่กลับเอง ก้อนมวลจะใช้เวลานานเท่าไรจึงเดลื่อนที่กลับมาถึงตำแหน่งสมดุลอีกดรั้ง

1.
$$2\pi\sqrt{\frac{m}{k}}$$

$$4. \quad \pi \sqrt{\frac{m}{k}}$$

$$2. \quad \frac{\pi}{2} \sqrt{\frac{m}{k}}$$

5.
$$\frac{2\pi}{5}\sqrt{\frac{m}{k}}$$

3.
$$\frac{2\pi}{3}\sqrt{\frac{m}{k}}$$

9. ก้อนมาล m แขวนด้วยเชือก ดังรูป จงหาแรงตึงในเชือก 2 กำหนดให้มาลของเชือกน้อยมาก

1. $mg\sin\theta$

٧.

 $mg \cot \theta$

- 2. $mg\cos\theta$
- 5. $mg \sec \theta$
- 3. $mg \tan \theta$

10. แว่นขยายที่ใช้เลนส์นูนที่มีความยาวโฟกัส 5 cm เกิดภาพเสมือนที่ระยะ 15 cm จากเลนส์ จะมีขนาดกำลังขยาย เป็นกี่เท่า

1. 0.25

2. 2

3. 3

4. 3.75

5. 4

11. ถ้าเพิ่มความเข้มของเสียงเป็น 2 เท่าของความเข้มของเสียงเดิม ระดับความเข้มของเสียง(ที่ตำแหน่งเดิม) จะ เพิ่มขึ้นกี่เดซิเบล

1. 0.3 2. 0.6 3. 2 4. 3 5. 6

- 12. เส้นลาดสองเส้นความยาวเท่ากัน เส้นแรกมีเส้นผ่านศูนย์กลาง d เส้นที่สองมีเส้นผ่านศูนย์กลาง 2d ในการทำ ให้เส้นลาดทั้งสองเส้นยืดเป็นระยะเท่ากัน ต้องใช้แรงดึงลาดเส้นที่สองเป็น 3 เท่าของแรงที่ใช้ดึงลาดเส้นแรก ถ้า ลาดเส้นแรกมีมอดูลัสของยัง Y ลาดเส้นที่สองมีมอดูลัสของยังเท่าใด
 - 1. $\frac{1}{12}Y$ 2. $\frac{1}{6}Y$ 3. $\frac{3}{4}Y$ 4. $\frac{3}{2}Y$

- 5. *Y*

13. ค่าของประจุใน $C_{\scriptscriptstyle 1}$ เป็นกี่เท่าของประจุใน $C_{\scriptscriptstyle 2}$

- 1. $\frac{C_1}{C_2}$ 2. $\frac{R_1}{R_2}$

14. น้ำจากท่อสั้นๆ เอียง 45 ที่ก้นถังน้ำสูง h จะพุ่งขึ้นไปได้สูงเท่าไรจากพื้นระดับ

- 1. $\frac{1}{\sqrt{2}}h$
- 2. $\frac{1}{2}h$
- 3. $\frac{1}{4}h$
- $4. \quad \frac{3}{4}h$
- 5. *h*

- 15. จุด S_1 และ S_2 เป็นจุดกำเนิดคลื่นต่อเนื่อง สร้างคลื่นที่มีความยาวคลื่นเท่ากันเฟสเดียวกัน จุด A และจุด B ซึ่งอยู่บนแนวรอยต่อระหว่างจุด S_1 และ S_2 เป็นตำแหน่งของปฏิบัพสองจุดที่อยู่ติดกัน ถ้าระยะระหว่างจุด A และจุด B เท่ากับ b ความยาวคลื่นที่แหล่งกำเนิดทั้งสองสร้างมีค่าเท่าใด
- 2. $\frac{b}{2}$ 3. $\frac{3b}{2}$
- 2*b*
- 4*b*

- 16. ท่อก้นปิด ปากเปิด ยาว L เมตร ให้เสียงก้องที่โหมดต่ำสุดมีความถี่เปลี่ยนไปกี่เฮิรตซ์ เมื่ออุณหภูมิของอากาศ ในท่อสูงขึ้น 10 $\,C\,$ (ให้ถือว่าท่อยาวคงที่ไม่เปลี่ยนแปลงกับอุณหภูมิ)
 - 1. $\frac{3}{20L}$ 2. $\frac{3}{10L}$ 3. $\frac{3}{2L}$ 4. $\frac{3}{L}$

17. ประจุขนาก +Q , -2Q และ +3Q ถูกตรีงอยู่ที่มุมทั้งสามของรูปสี่เหลี่ยมผืนผ้า ซึ่งมีความยาว 3a และ 4a ตามภาพ งานที่ต้องทำเพื่อย้ายประจุ +Q จากตำแหน่งเดิมไปยังตำแหน่ง D ของรูปนี้เหลี่ยมมีค่าเท่าใด กำหนดให้ ค่าคงตัวของคูลอมบ์เท่ากับ k

- $1. \quad -\frac{1}{15} \left(\frac{kQ^2}{a} \right)$

- $4. + \frac{3}{15} \left(\frac{kQ^2}{a} \right)$
- $5. + \frac{16}{45} \left(\frac{kQ}{a} \right)$

18. เมื่อเลือกความต้านทาน R ค่าหนึ่ง โวลต์มิเตอร์และแอมป์มิเตอร์อ่านค่าได้ 8.0 v และ 2.0 A ตามลำดับ จากนั้น เปลี่ยนค่าความต้านทาน R เป็นอีกค่าหนึ่ง โวลต์มิเตอร์และแอมป์มิเตอร์อ่านค่าได้ 10.0 v และ 1.0 A ตามลำดับ แรงเคลื่อนไฟฟ้า ε ของแบตเตอรี่เป็นกี่โวลต์

1. 12 2. 15 3. 18 4. 24 5. 30

19. ตัวเก็บประจุตัวหนึ่งต่ออยู่กับเครื่องกำเนิดสัญญาณรูปไชน์ที่เปลี่ยนความถี่ได้ แต่ค่าแรงเคลื่อนไฟฟ้าไม่เปลี่ยน ในขณะที่ใช้ความถี่ 50 Hz จะมีกระแส rms ผ่านตัวเก็บประจุนี้ 20 mA ถ้าเปลี่ยนความถี่เป็น 200 Hz จะมีกระแส rms ผ่านตัวเก็บประจุนี้กี่ mA

1. 2.5

2. 5.0

3. 40

4. 80

5. 320

- 20. อนุภาค A มาล $m_{_A}$ และอนุภาค B มาล $m_{_B}$ มีประจุและความเร็วเท่ากัน เข้าไปในบริเวณสนามแม่เหล็กที่มี ความเข้มเท่ากัน ทำให้เส้นทางการเคลื่อนที่ของอนุภาคทั้งสองเป็นส่วนหนึ่งของวงกลมที่มีรัศมีความโค้ง $R_{_A}$ และ $R_{\scriptscriptstyle B}$ ตามลำดับ โดยที่ $R_{\scriptscriptstyle A}$ = $2R_{\scriptscriptstyle B}$ อัตราส่วน $m_{\scriptscriptstyle A}$ / $m_{\scriptscriptstyle B}$ มีค่าเท่าใด
 - 1. 2
- 2. $\frac{1}{2}$ 3. $\sqrt{2}$ 4. $\frac{1}{4}$

21. ในการศึกษาปรากฏการณ์โฟโตอิเล็กทริกพบว่า เมื่อใช้แสงที่มีพลังงาน 2.0 ev ฉายไปยังแผ่นโลหะตัวอย่าง จะต้องใช้ความต่างศักย์หยุดยั้ง 0.20 v ถ้าเปลี่ยนเป็นใช้แสงที่มีพลังงาน 2.5 ev จะต้องใช้ความต่างศักย์หยุดยั้ง เท่าใด ในหน่าย v

1. 0.20

2. 0.25

3. 0.30

4. 0.50

5. 0.70

22. นิาตรอนอิสระ จะสลายตัวด้วยเวลาครึ่งชีวิตประมาณ 12 นาที ดังนี้ นิวตรอน (n) \longrightarrow โปรตอน (p) + (อนุภาค X) + ปฏินิวตริโน ($\overline{\nu}$) อนุภาค X คือข้อใด

1. อิเล็กตรอน

2. โพสิตรอน

3. โฟตอนของรังสีแกมมา

นาตริโน

5. ปฏินิวตรอน

23. จะต้องใช้พลังงานกี่อิเล็กตรอนโวลต์ในการไอออนไนส์อะตอมของไฮโดรเจนจากสภาวะโลดอันดับที่สอง (secondexcited state)

(ส์กาวะพื้นของอะตอมไฮโดรเจนมีพลังงาน E=-13.6 eV)

1. 1.5

2. 1.4

3. 1.3

4. 1.2

5. 0.9

24. ทรงกลมโลหะกลวงมีประจุ -Q และมีจุดประจุ +Q อยู่ที่จุดศูนย์กลางทรงกลม จงหาด่าของสนามไฟฟ้าที่ห่าง จากจุดศูนย์กลางเป็นระยะทาง r ดังในรูป (ใช้กฎของคูลอมบ์ในแบบ $rac{q_1q_2}{4\piarepsilon_0r^2}$)

- 1. $\frac{Q}{4\pi\varepsilon_0 r}$ 4. $\frac{Q}{8\pi\varepsilon_0 r^2}$

25. ใช้เชือกดึงเพลาของล้อ 0 ในแนวระดับด้วยแรง F เท่ากับเท่าไร จึงจะทำให้ล้อปืนขึ้นสันสูง $\frac{R}{4}$ ได้พอดี

- 1. $\frac{3}{\sqrt{7}}Mg$
- $2. \quad \frac{\sqrt{7}}{3} Mg$
- $3. \quad \frac{3}{7}Mg$
- $4. \quad \frac{7}{3}Mg$
- 5. $\sqrt{3}Mg$