STATISTIK -PROJEKT

VSEVOLOD DORSKIY

AUFGABE ZUM PROJEKT

- Die Homo Ludens GmbH produziert und vertreibt Spielzeug. Auch wenn elektronisches Spielzeug in den letzten Jahren immer mehr Einzug in unseren Kindezimmern gehalten hat, setzt man weiterhin auch auf klassische Produkte.
- Neben ständiger Beobachtung der Märkte ist auch ein wachsames Auge auf die eigene Produktion zu richten, so dass auf ungünstige Veränderungen schnell und gezielt reagiert werden kann.
- Zusätzlich werden regelmäßig Informationen über die Konkurrenz gesammelt, um sicherzustellen, dass man hier nicht den Anschluss verliert.

AUFGABE ZUM PROJEKT

Untersuchen Sie das vorliegende Material und beantworten Sie dem Unternehmen einige Fragen:

- Wie sieht die aktuelle Fehlerzusammensetzung im Vergleich zur Vergangenheit aus? Gibt es Unterschiede? Falls ja: Wo ist der Brennpunkt?
- Lohnt sich die weitere Untersuchung eines Schweren Fliegers?
- Sind wir bei unserem Flugmodell noch konkurrenzfähig?
- · Können wir das Modell soweit verbessern, dass wir konkurrenzfähig sind?

Soweit nicht anders angegeben, beträgt das Signifikanzniveau 1- α = 95%

 Wie sieht die aktuelle Fehlerzusammensetzung im Vergleich zur Vergangenheit aus? Gibt es Unterschiede? Falls ja: Wo ist der Brennpunkt?

Zur Verfügung wurde folgendes Datenmaterial gestellt:

1_Produktqualität.xlsx

 Stichprobe der Fehlermeldungen der drei Produktionslinien und historische Daten über die bisherige Zusammensetzung.

Um Daten zu analysieren, benutzen wir den χ^2 -Test

• Der χ^2 -Test darf eingesetzt werden, um zu überprüfen, ob ein gegebener Datensatz der angenommen Verteilung entspricht (Anpassungstest)

Voraussetzungen zum Test

- ✓ Nominale Daten
- ✓ Die Anzahl aller Werte ≥ 5
- ✓ Die Daten sind unabhängig voneinander

Vergleichung der Fehlerzusammensetzungen

Fehler	Linie1	Linie2	Linie3	Erwartungen
Allgemeine Verarbeitung	10%	15%	11%	9%
Flügelfaltung	13%	12%	20%	12%
Flügelgeometrie	16%	20%	21%	22%
Körperfaltung	18%	14%	12%	17%
Körpergeometrie	28%	25%	20%	20%
Papier	9%	8%	12%	12%
Sonstige	5%	6%	6%	8%

Die größten Abweichungen gibt es bei der Körpergeometrie und der Körperfaltung

Wir führen die paarweise Vergleichung der heutigen Fehlermeldungen (Erwartungen) mit den historischen Daten der Linien in Excel und in R-Studio durch

Ursprüngliche Daten

Fehler	Linie1	Linie2	Linie3	Erwartungen
Allgemeine Verarbeitung	10	15	11	9%
Flügelfaltung	13	12	20	12%
Flügelgeometrie	16	20	21	22%
Körperfaltung	18	14	12	17%
Körpergeometrie	27	25	20	20%
Papier	9	8	12	12%
Sonstige	5	6	6	8%

Hypothese₀: Jeder Datensatz entspricht der angenommenen Verteilung (den Erwartungen). Es gibt keinen signifikanten Unterschied zwischen den Datensätzen (den Linien) und den heutigen Fehlermeldungen (den Erwartungen)

Hypothese₁: Nicht jeder Datensatz entspricht der angenommenen Verteilung (den Erwartungen). Es gibt signifikanten Unterschied zwischen einem der Datensätze (einer Linie) und den heutigen Fehlermeldungen (den Erwartungen)

Vergleichung für Linie 1

Excelrechnung

Fehler	Historische Daten (Linie 1)	Erwartungen	Csi_sq (Linie1)
Allgemeine Verarbeitung	10	8,82	0,16
Flügelfaltung	13	11,76	0,13
Flügelgeometrie	16	21,56	1,43
Körperfaltung	18	16,66	0,11
Körpergeometrie	27	19,6	2,79
Papier	9	11,76	0,65
Sonstige	5	7,84	1,03
Summe	98	98	6,30

$$\chi^2$$
= 6,30; P_{wert} = 0,39; Degrees of Freedom = 6

$$\chi^2_{kritisch}$$
 = 12,59; $\chi^2 < \chi^2_{kritisch}$

Rechnung in R-Studio

with(Dataset, chisq.test(x=Linie1,p=Erwartungen))

Chi-squared test for given probabilities

data: Linie1

X-squared = 6.3006, df = 6, p-value = 0.3904

$$P_{wert} = 0.39 > \alpha (0.05)$$

Wir bleiben bei der *Hypothese₀*. Der Datensatz (Linie 1) entspricht der angenommenen Verteilung (den Erwartungen)

Vergleichung für Linie 2

Excelrechnung

Fehler	Historische Daten (Linie 2)	Erwartungen	Csi_sq (Linie2)
Allgemeine Verarbeitung	15	9	4,00
Flügelfaltung	12	12	-
Flügelgeometrie	20	22	0,18
Körperfaltung	14	17	0,53
Körpergeometrie	25	20	1,25
Papier	8	12	1,33
Sonstige	6	8	0,50
Summe	100	100	7,79

$$\chi^2$$
= 7,79; P_{Wert} = 0,25; Degrees of Freedom = 6

$$\chi^2_{kritisch}$$
 = 12,59; $\chi^2 < \chi^2_{kritisch}$

Rechnung in R-Studio

with(Dataset, chisq.test(x=Linie2,p=Erwartungen))

Chi-squared test for given probabilities

data: ObsLinie2

X-squared = 7.7946, df = 6, p-value = 0.2535

$$P_{Wert} = 0.25 > \alpha (0.05)$$

Wir bleiben bei der *Hypothese₀*. Der Datensatz (Linie 2) entspricht der angenommenen Verteilung (den Erwartungen)

Vergleichung für Linie 3

Excelrechnung

Fehler	Historische Daten (Linie 3)	Erwartungen	Csi_sq (Linie3)
Allgemeine Verarbeitung	11	9,18	0,36
Flügelfaltung	20	12,24	4,92
Flügelgeometrie	21	22,44	0,09
Körperfaltung	12	17,34	1,64
Körpergeometrie	20	20,4	0,01
Papier	12	12,24	0,00
Sonstige	6	8,16	0,57
Summe	102	102	7,60

$$\chi^2$$
= 7,60; P_{wert} = 0,27; Degrees of Freedom = 6

$$\chi^2_{kritisch} = 12,59$$
; $\chi^2 < \chi^2_{kritisch}$

Rechnung in R-Studio

with(Dataset, chisq.test(x=Linie3,p=Erwartungen))

Chi-squared test for given probabilities

data: ObsLinie3 X-squared = 7.6018, df = 6, p-value = 0.2688

 $P_{Werf} = 0.27 > \alpha (0.05)$

Wir bleiben bei der $Hypothese_0$. Der Datensatz (Linie 3) entspricht der angenommenen Verteilung (den Erwartungen)

Alle Datensätze (Linien) entsprechen der angenommenen Verteilung (den Erwartungen). Es gibt keinen signifikanten Unterschied zwischen den vorherigen Daten und der heutigen Fehlerzusammensetzung

Lohnt sich die weitere Untersuchung eines schweren Fliegers?

Zur Verfügung wurde folgendes Datenmaterial gestellt:

2_Gewicht.xlsx

• Zwei Stichproben zum Vergleich des Grundmodells mit einem beschwerten Flieger.

Gewicht
2,046
2,646
2,76
2,779
2,921
3,417

	mean	sd	IQR	0%	25%	50%	75%	100% n	
Base	2,887516	0,247016	0,30315	2,4344	2,72125	2,8554	3,0244	3,7527	90
Gewicht	2,778744	0,222515	0,2757	2,0462	2,6457	2,7597	2,9214	3,4169	90

- Daten sind intervalskaliert
- Die Mittelwerte und die Streuung sind vergleichbar

- Kein größer Untershied zwischen den Mittelwerten, die Varianzgleichheit
- Beide Verteilungen deuten auf Ausreißer hin, Datensätze müssen für Normalität uberprüft werden

Prüfung der Normalverteilung

Shapiro-Wilk normality test

p-values adjusted by the Holm method:

unadjusted	adjusted
------------	----------

Base 0,00032931 0,00065861

Gewicht 0,45390486 0,45390486

 P_{Wert} (Base) < 0,05 – keine Normalverteilung

- Die Stichprobe (Gewicht) ist normalverteilt, aber der Datensatz (Base) hat keine Normalität
- Die Transformationsmöglichkeit zeigt keine Verbesserung bei der Normalisierung der Daten. Es wird ein nichtparametrischer Test durchgeführt

*Hypothese*₀: Median (Base) >= Median (Gewicht). Die Flugzeit des Basismodells >= die Flugzeit des beschwerten Fliegers

Hypothese₁: Median (Base) < Median (Gewicht). Die Flugzeit des Basismodells < die Flugzeit des beschwerten Fliegers

Wilcoxon rank sum test with continuity correction

data: variable by factor

W = 5042, p-value = 0.9977

alternative hypothesis: true location shift is less than 0

 $P_{Wert} > 0.05$ –wir verbleiben bei der *Hypothese*₀

Es gibt keine genügenden Beweise, dass die Flugzeit des beschwerten Fliegers besser ist als die des Grundmodells. Die weitere Untersuchung eines schweren Fliegers lohnt sich nicht

Sind wir bei unserem Flugmodell noch konkurrenzfähig?

Zur Verfügung wurde folgendes Datenmaterial gestellt:

3_Technischer Vergleich mit Konkurrenz.xlsx

- Daten zum Vergleich des eigenen Flugmodells mit Konkurrenzmodellen. Der Datensatz bietet Ihnen einen Flugzeitvergleich [s] zwischen unserem Modell und der Konkurrenz.
- Die technischen Parameter der einzelnen Modelle k\u00f6nnen Sie der anh\u00e4ngenden Tabelle entnehmen.

Unser.Modell	Konkurr	ent.A	Konkurrent.B	Konku	ırrent.C	Konkurrent	:.D		
Min. :2.590	Min. :	5.420	Min. :2.410	Min	. :4.600	Min. :5.40	00		
1st Qu. :2.855	1st Qu. :	7.045	1st Qu. :2.788	1st Qu	. :4.912	1st Qu. :5.8	17		
Median :3.060	Median :	7.290	Median :3.000	Mediar	:5.205	Median :6.0	20		
Mean :3.081	Mean :	7.210	Mean :2.977	Mear	:5.183	Mean :6.03	37		
3rd Qu. :3.345	3rd Qu. :	7.500	3rd Qu. :3.083	3rd Qu	. :5.378	3rd Qu. :6.2	65		
Max. :3.620	Max. :	7.840	Max. :3.490	Max	. :6.160	Max. :6.6	70		
	mean	sd	IQR	0%	25%	50%	75%	100%	n
Konkurrent,A	7,210333	0,37577	0,455	6,42	7,045	7,29	7,5	7,84	30
Konkurrent,B	2,977333	0,247678	0,295	2,41	2,7875	3	3,0825	3,49	30
Konkurrent,C	5,182667	0,355061	0,465	4,6	4,9125	5,205	5,3775	6,16	30
Konkurrent,D	6,037333	0,321719	0,4475	5,4	5,8175	6,02	6,265	6,67	30
Unser, Modell	3,081	0,2832	0,49	2,59	2,855	3,06	3,345	3,62	30

- Die Daten sind intervalskaliert
- Die Mittelwerte der Gruppen unterscheiden sich stark, die Streuung in den Gruppen nicht so groß

- Der Unterschied zwischen den Gruppen ist offensichtlich
- Die Datensätze sehen normalverteilt aus

Test auf Normalität

Alle $P_{Werte} > \alpha$: Alle Datensätze sind normalverteilt

Bartlett test of homogeneity of variances

data: variable by factor Bartlett's K-squared = 6.29, df = 4, p-value = 0.1785

$P_{Wert} > \alpha$: Die Varianzhomogenität ist bestätigt

Hypothese_o: Alle Stichproben haben die gleichen Mittelwerte

Hypothese₁: Nicht alle Stichproben weisen die gleichen Mittelwerte auf. Es gibt einen signifikanten Unterschied zwischen mindestens zwei Stichproben

```
summary(AnovaModel.1)
             Df Sum Sq Mean Sq F value Pr(>F)
            4 411.5 102.9 1004 <2e-16 ***
factor
Residuals 145 14.9 0.1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                           sd data:n
                mean
Konkurrent.A 7.210333 0.3757703
Konkurrent.B 2.977333 0.2476780
                                  30
Konkurrent.C 5.182667 0.3550613
                                  30
Konkurrent.D 6.037333 0.3217188
Unser.Modell 3.081000 0.2832003
                                  30
```

- P_{Wert} < α: Wir wenden uns der Hypothese₁ zu. Es gibt einen signifikanten Unterschied zwischen mindestens zwei Stichproben
- Wir gehen nun zum paarweisen Vergleich über

Paarweiser Vergleich

Linear Hypotheses:

95% family-wise confidence level

- Unser Modell ist in einer Familie (b) mit dem Konkurrent B

Unser Modell ist vergleichbar nur mit dem Konkurrenten B und schlechter als Konkurrenten A,C und D. Es gibt keine Hinweise, dass unser Flugmodell noch konkurrenzfähig ist

	Körper-breite	Flügel-länge	Körper-länge	Papier-gewicht
Unser Modell	20 mm	80 mm	80 mm	80 g
Konkurrent A	35 mm	130 mm	130 mm	80 g
Konkurrent B	20 mm	80 mm	80 mm	80 g
Konkurrent C	35 mm	80 mm	80 mm	80 g
Konkurrent D	35 mm	80 mm	130 mm	90 g

Die Ähnlichkeit der Flugeigenschaften unseres Modells mit dem Konkurrenten B wird durch die gleichen Modellparameter bestätigt

· Können wir das Modell soweit verbessern, dass wir konkurrenzfähig sind?

Zur Verfügung wurde folgendes Datenmaterial gestellt:

4_Produktoptimierung.xlsx

• Es sind bereits Flugdaten eines geänderten Modells erfasst worden, in denen wichtige Parameter für die Flugzeit untersucht wurden

Prüfung der Normalverteilung

Shapiro-Wilk normality test

p-values adjusted by the Holm method:

	unadjusted	adjusted
20 mm,130 mm,130 mm,80 g	0,55958	1
20 mm,130 mm,130 mm,90 g	0,56399	1
20 mm,130 mm,80 mm,80 g	0,68726	1
20 mm,130 mm,80 mm,90 g	0,85775	1
20 mm,80 mm,130 mm,80 g	0,73391	1
20 mm,80 mm,130 mm,90 g	0,73805	1
20 mm,80 mm,80 mm,80 g	0,73938	1
20 mm,80 mm,80 mm,90 g	0,67322	1
35 mm,130 mm,130 mm,80 g	0,67137	1
35 mm,130 mm,130 mm,90 g	0,59614	1
35 mm,130 mm,80 mm,80 g	0,42902	1
35 mm,130 mm,80 mm,90 g	0,87351	1
35 mm,80 mm,130 mm,80 g	0,2986	1
35 mm,80 mm,130 mm,90 g	0,91805	1
35 mm,80 mm,80 mm,80 g	0,18676	1
35 mm,80 mm,80 mm,90 g	0,69987	1

Alle $P_{Werte} > \alpha$: Alle Datensätze sind normalverteilt

Prüfung auf Homonität der Varianzen

Bartlett test of homogeneity of variances

data: Zeit by interaction(Flügel.L, Körper.B, Körper.L, Papier)

Bartlett's K-squared = 5.6717, df = 15, p-value = 0.9848

 $P_{Wert} > \alpha$: Die Varianzen der einzelnen Gruppen können als gleich angesehen werden

Suche nach dem optimalen Modell

	20 mm	35 mm
Körper-breite	-1	1

	80 mm	130 mm
Flügel-länge	-1	1

	80 mm	130 mm
Körper-länge	-1	,

	80 g	90 g
Papier-gewicht	-1	1

Um ein lineares Regressionsmodell zu erstellen, kodieren wir die Daten mit (-1) und (+1)

Erstellen des linearen Regressionsmodells (Schritt 1)

 $Im(formula = Zeit \sim (FL + KB + KL + P)^4, data = Dataset)$

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	5,95202	0,0044487	1337,918	<2e-16	***
FL	1,4344	0,0044487	322,429	<2e-16	***
KB	1,05098	0,0044487	236,243	<2e-16	***
KL	-0,3861	0,0044487	-86,799	<2e-16	***
P	0,83169	0,0044487	186,95	<2e-16	***
FL:KB	0,00852	0,0044487	1,915	0,0561	,
FL:KL	0,0084	0,0044487	1,887	0,0598	,
FL:P	-0,0063	0,0044487	-1,41	0,1593	
KB:KL	0,00056	0,0044487	0,126	0,8994	
KB:P	-0,0089	0,0044487	-1,99	0,0471	*
KL:P	-0,0006	0,0044487	-0,145	0,8846	
FL:KB:KL	-0,0064	0,0044487	-1,438	0,1512	
FL:KB:P	-0,0046	0,0044487	-1,044	0,2969	
FL:KL:P	-0,0083	0,0044487	-1,859	0,0636	,
KB:KL:P	-0,0076	0,0044487	-1,709	0,0881	,
FL:KB:KL:P	0,00694	0,0044487	1,559	0,1196	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.09747 on 464 degrees of freedom Multiple R-squared: **0.9977**, Adjusted R-squared: **0.9976** F-statistic: **1.349e+04** on 15 and 464 DF, **p-value: < 2.2e-16**

- Die 4 Fach-Wechselwirkungen sind nicht signifikant und k\u00f6nnen aus dem Modell entfernt werden
- F = 13490, $P_{Wert} < 0.05$ (Das Modell liefert signifikanten Erklärungsbeitrag)
- R-squared ~1 (Das zeigt, wie viel Prozent der Varianz der abhängigen Variable (Zeit) erklärt wird. Hier ~ 100%)

Erstellen des linearen Regressionsmodells (Schritt 2)

 $Im(formula = Zeit \sim (FL + KB + KL + P)^3, data = Dataset)$

Coefficients:

	-	011 5	(-1 - D / 10)
	Estimate	Std. Error	t value Pr(> t)
(Intercept)	5,95202	0,0044556	1335,862 <2e-16 ***
FL	1,4344	0,0044556	321,934 <2e-16 ***
KB	1,05098	0,0044556	235,88 <2e-16 ***
KL	-0,3861	0,0044556	-86,666 <2e-16 ***
P	0,83169	0,0044556	186,663 <2e-16 ***
FL:KB	0,00852	0,0044556	1,912 0,0564 ,
FL:KL	0,0084	0,0044556	1,884 0,0601 ,
FL:P	-0,0063	0,0044556	-1,407 0,16
KB:KL	0,00056	0,0044556	0,126 0,8996
KB:P	-0,0089	0,0044556	-1,987 0,0475 *
KL:P	-0,0006	0,0044556	-0,145 0,8848
FL:KB:KL	-0,0064	0,0044556	-1,435 0,1518
FL:KB:P	-0,0046	0,0044556	-1,043 0,2976
FL:KL:P	-0,0083	0,0044556	-1,856 0,064 ,
KB:KL:P	-0,0076	0,0044556	-1,707 0,0886 ,
	3,3010	5,55.1000	.,. 3. 3,0000 ,

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.09762 on 465 degrees of freedom Multiple R-squared: **0.9977**, Adjusted R-squared: **0.9976** F-statistic: **1.44e+04** on 14 and 465 DF, **p-value: < 2.2e-16**

- Die 3 Fach-Wechselwirkungen sind nicht signifikant und können aus dem Modell entfernt werden
- F = 14400 (besser als auf dem Schritt 1), $P_{Wert} < 0.05$
- R-squared ~ 1

Erstellen des linearen Regressionsmodells (Schritt 3)

 $Im(formula = Zeit \sim (FL + KB + KL + P)^2, data = Dataset)$

Coefficients:

	Estimate	Std. Error	t value Pr(> t)
(Intercept)	5,95202	0,0044816	1328,089 <2e-16 ***
FL	1,4344	0,0044816	320,06 <2e-16 ***
KB	1,05098	0,0044816	234,508 <2e-16 ***
KL	-0,3861	0,0044816	-86,162 <2e-16 ***
P	0,83169	0,0044816	185,576 <2e-16 ***
FL:KB	0,00852	0,0044816	1,901 0,0579 ,
FL:KL	0,0084	0,0044816	1,873 0,0616 ,
FL:P	-0,0063	0,0044816	-1,399 0,1624
KB:KL	0,00056	0,0044816	0,126 0,9002
KB:P	-0,0089	0,0044816	-1,976 0,0488 *
KL:P	-0,0006	0,0044816	-0,144 0,8855

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.09819 on 469 degrees of freedom Multiple R-squared: **0.9977**, Adjusted R-squared: **0.9976** F-statistic: **1.993e+04** on 10 and 469 DF, **p-value: < 2.2e-16**

- Die 2 Fach-Wechselwirkung KB:P ist signifikant für das Modell. Die anderen 2 Fach-Wechselwirkungen können aus dem Modell entfernt werden
- F = 19930 (besser als auf den Schritten 1 und 2), $P_{Wert} < 0.05$
- R-squared ~ 1

Erstellen des linearen Regressionsmodells (Schritt 4)

 $Im(formula = Zeit \sim (FL + KB + KL + P) + KB:P, data = Dataset)$

Coefficients:

	Estimate S	td. Error	t value	Pr(> t)	
(Intercept)	5,95202	0,004501	1322,356	<2e-16	***
FL	1,4344	0,004501	318,679	<2e-16	***
KB	1,05098	0,004501	233,495	<2e-16	***
KL	-0,3861	0,004501	-85,79	<2e-16	***
P	0,83169	0,004501	184,775	<2e-16	***
KB:P	-0,0089	0,004501	-1,967	0,0498	*

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.09861 on 474 degrees of freedom Multiple R-squared: **0.9976**, Adjusted R-squared: **0.9976** F-statistic: **3.952e+04** on 5 and 474 DF, **p-value: < 2.2e-16**

- Im Modell verbleiben die Konstanten, alle Hauptfaktoren und die Wechselwirkung KB:P
- F = 39520 (besser als auf den vorherigen Schritten), P_{Werf}<0,05
- R-squared ~ 1
- Es ist das endgültige Modell

Zeit = 5,95+ 1,43*(Flügel-länge) + 1,05*(Körper-breite) - 0,39*(Körper-länge) + 0,83*(Papier-gewicht) - 0,009*(Körper-breite : Papier-gewicht)

Optimierung des Modells

- Die Änderung der Flügel-länge von 80 mm auf 130 mm ergibt ein besseres Resultat
- Die Änderung der Körper-breite von 20 mm auf 35 mm bringt positive Wirkung
- Die Änderung der Körper-länge von 80 mm auf 130 mm bringt negative Wirkung
- Papier-Gewichtzunahme von 80 g auf 90 g hat einen positiven Effekt

Optimierung des Modells

Das Wechselwirkungsdiagramm der Faktoren (Körper-breite:Papier-gewicht) zeigt, dass diese Interaktion in unserem Fall keine signifikante Rolle spielt (die Graphen konvergieren nur sehr schwach)

Optimierung des Modells

Optimale Einstellung:

Flügel-länge	+1	130 mm
Körper-breite	+1	35 mm
Körper-länge	-1	80 mm
Papier-gewicht	+1	90 g

Plot of Means

 $Zeit_{maximal} = 5,95 + 1,43*(1) + 1,05*(1) - 0,39*(-1) + 0,83*(1) - 0,009*(0) = 9,65$