Semester-VI ELECTRONIC SCIENCE

DEPARTMENT OF INSTRUMENTATION

Category I

(B.Sc. Honours in Instrumentation)

DISCIPLINE SPECIFIC CORE COURSE – 16: Analytical Instrumentation II (INDSC6A)

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credi ts	Credit distribution of the course			Eligibility criteria	Pre- requisite of
		Lectu	Tutori	Practic		the course
		re	al	al/		(if any)
				Practic		
				е		
Analytical	04	03	-	01	Class XII passed	Understand
Instrumentat					with Physics +	ing of
ion II (INDSC6A)					Mathematics/Ap plied	electronics and
					Mathematics +	Chemistry
					Chemistry/	till class XII
					Computer	
					Science/Informati	
					cs Practices	

Learning Objectives

- To understand the perspective of different advanced analytical methods
- To understand the principle, instrumentation, and application of various electro analytical instruments
- To disseminate with principle and instrumentation of thermo analytical instruments along with their applications for analysing products of different origin
- To familiarize with detail principle, instrumentation, operation and applications of IR spectroscopy
- To differentiate between principle, instrumentation and operation of Atomic absorption and atomic emission spectroscopy.
- To understand the principle, instrumentation, and applications of Gas Chromatography (GC) and High-Performance Liquid Chromatography (HPLC)

Learning outcomes

At the end of this course, students will be able to

- Appreciate the potential of different analytical methods for resolving various scientific challenges.
- Describe the principle, instrumentation and application of electro analytical instruments.
- Understand the principle and instrumentation of thermo analytical instruments along with their applications for analyzing products of different origin.
- Understand the different terms, principle, instrumentation, operation, and applications of IR spectroscopy.
- Differentiate between principle, instrumentation and operation of atomic absorption spectroscopy and atomic emission spectroscopy.

SYLLABUS OF DSC-16

Unit-1 (14 hours)

Infrared Spectroscopy: Theory, diatomic molecule as a simple harmonic oscillator, instrumentation, sample handling techniques. Fourier Transform Infrared Spectroscopy (FTIR): instrumentation and advantages.

Atomic Spectroscopy: Principle, comparison of atomic and molecular spectroscopy, Atomic emission spectroscopy (AES): Flame photometer and its instrumentation, atomization process, types of flames- fuel/ oxidant combinations, instrumentation, Interferences and applications. Introduction to Atomic absorption spectroscopy (AAS).

Unit-2 (10 hours)

Electro analytical Methods of Analysis: Potentiometry: Introduction, reference electrode, indicator electrodes, ion-selective electrodes: glass electrode and liquid membrane electrode and their applications, potentiometric titrations.

Unit-3 (12 hours)

Gas Chromatography (GC): Principle, Carrier gasses, different types of injection systems, columns, stationary phases, and detectors. Isothermal mode, temperature-programming mode, applications.

Unit-4 (9 hours)

High Performance Liquid Chromatography (HPLC): mobile phase, isocratic and gradient elution, pumps, injection systems, columns, stationary phases, normal phase and reverse phase chromatography, detectors, and applications.

Practical component:

(30 hours)

1. Determination of concentrations of sodium/calcium/lithium/potassium in sample using Flame Photometer.

- 2. Determination of concentration of sodium/calcium/lithium/potassium ions in sample by standard addition method using flame photometer
- 3. Spectrum interpretation using FTIR.
- 4. Qualitative/Quantitative analysis of samples using Gas chromatography.
- 5. Qualitative/Quantitative analysis of samples using High Performance Liquid Chromatography
- 6. Potentiometric titrations: (i) Strong acid with strong base (ii) weak acid with strong base and (iii) dibasic acid with strong base
- 7. Potentiometric titration of Mohr's salt with potassium dichromate
- 8. pH metric titrations of (i) strong acid and strong base (ii) weak acid and strong base

Essential/recommended readings

- 1. Skoog & Lerry, Instrumental Methods of Analysis, Saunders College Publications, New York, 4th edition, 1970.
- 2. H.H. Willard, L.L Merrit, J.A. Dean, F. A. Settle, Instrumental Methods of Analysis, CBS Publishers, 7th edition, 1988.
- 3. Skoog, Holler and Crouch, Principles of Instrumental Analysis, Cengage Learning, 6th edition, 2007
- 4. James W. Robinson, Eileen Skelly Frame, George M. Frame II, Undergraduate Instrumental Analysis, CRC Press, 7th edition, 2014
- 5. Vogel's Textbook of Qualitative Chemical Analysis, ELBS, 4th edition 1978.

Suggestive readings

- 1. W. Kemp, Organic Spectroscopy, ELBS, 3rd Edition, 1996.
- 2. R.S Khandpur, Handbook of Analytical Instruments, Tata McGraw-Hill, 3rd Edition 2006.
- 3. B.K Sharma, Instrumental Methods of Chemical Analysis, Krishna Prakashan Media, 1st Edition, 2011

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.