Projektdirektiv

Visualisering av elektronstruktur

Personer

Beställare: Rickard ArmientoHandledare: Johan JönssonExpert: Peter Steneteg

Bakgrund

Elektronstrukturberäkningar är ett viktigt verktyg inom teoretisk fysik för att förstå hur materials och molekylers egenskaper kan härledas från kvantmekaniska effekter. För att förstå dessa egenskaper är det viktigt att kunna analysera data från sina beräkningar, något som i vissa fall förenklas genom visualisering och ofta helt och hållet kräver att man kan visualisera sin data. Inviwo är ett kraftfullt forskningsverktyg som utvecklas av Visualiseringscenter i Norrköping. Inviwo gör det möjligt att styra visualisering med programmering och att konstruera användargränssnitt för interaktiv visualisering.

Projektidé

Projektet går ut på att skapa ett verktyg för att visualisera viktiga egenskaper från elektronstrukturberäkningar. Verktyget ska bestå av APIer för att programmatiskt utföra visualisering samt eventuellt ett grafiskt användargränssnittför dessa APIer.

Mjukvara ifrån tidigare projektomgång finns tillgänglig för projektgruppen och får användas för att underlätta uppfyllandet av kraven.

Syfte

Projektet syftar till att utveckla kreativiteten samt att ge färdigheter i fysikaliskt tänkande och analys av teoretiska resultat. Projektet bedrivs så realistiskt som möjligt för att vara en träning inför det kommande yrkeslivet. Resultatet av projektarbetet ska hålla hög vetenskaplig och teknisk kvalité och

baseras på moderna kunskaper, dokumenteras i form av projekt-och tidsplan, krav-och designspecification samt i en teknisk/vetenskaplig rapport, presenteras muntligt, demonstreras och följas upp i en efterstudie.

Mål

Att i visualiseringsverktyget Inviwo utveckla ett system för visualisering av resultatet av elektronstrukturberäkningar. Att demonstrera systemets funktionalitet genom att använda det till att illustrera några befintliga beräkningsresultat.

Krav på systemet

- Systemet ska implementeras i Inviwo.
- Källkoden i systemet bör licensieras med BSD 2-clause "simplified" licence.
- Kod som integreras med Inviwo ska tillgängliggöras under Inviwos utvecklaravtal.
- Tillhandahållna python-moduler ska vara användarvänliga och möjliggöra visualisering med kommandon på hög nivå.
- Systemet bör effektivt kunna hantera stora filer.
- Systemet bör översätta input-filer i textformat till det binära filformatet HDF5.
- Systemet bör tillhandahålla ett grafiskt gränssnitt (GUI) för vanligt förekommande visualiseringsuppgifter.
- Installation och uppstart av systemet bör vara enkel för användaren.
- Systemet bör utnyttja befintlig kod för hantering av inläsning av datafiler och hantering av bl.a. kristallstrukturer.
- Ska kunna läsa in resultat skapade med beräkningsprogrammet VASP.
- Bör kunna läsa inresultat från något annat beräkningsprogram, t.ex. Elk.
- Systemet ska kunna läsa indata direkt ifrån utdatafiler ifrån beräkningsprogram och visualisera detta.
- Ska visualisera kristallstruktur som atompositioner i enhetscellen.
- Systemet ska kunna visualisera den elektrontäthet som resulterat ifrån en beräkning.
- Visualiseringen ska utnyttja Inviwos funktionalitet f\u00f6r volymsrendrering f\u00f6r partiell transparens.
- Visualiseringen ska tillåta interaktion i form av rotering, skalning, etc.
- Användaren ska kunna reglera en brytpunkt för vilken full transparensinträder för att kunna tydliggöra
 - strukturer bättre.
- Systemet bör tillåta dynamisk visualisering baserad på en serie av atompositioner i utdatafiler.
- Ska visualisera projicerad tillståndstäthet härrörande tillvarje separat atom i en kristalls enhets-cell.

- Tillåta att visualisering tillhörande atomer bara visas på vissa atomer, som kan väljas dynamiskt med
 - t.ex. musklick.
- Ska implementera (alternativt utöka befintlig implementation med) visualisering av minst två av följande egenskaper:
 - Elastiska konstanter.
 - Fermi-ytor.
 - ELF.
 - Krafter på atomer.
 - Bandstruktur.
 - Total DOS.
 - Parkorrelationsfunktionen.
 - Illustration av partiell elektrondensitet.

Slutgodkännande

För systemets godkännande krävs en interaktiv demonstration av systemets färdigheter som utförs

i samband med leverans.

Leveranser

Se kursens Lisamsida.

Övriga krav

Projektet ska bedrivas enligt LIPS-modellen och samtliga dokument ska utgå från LIPS-mallar. I förefasen ingår att projektgruppen ska ta fram en kravspecifikation, en systemskiss och en projektplan med tidplan. Samtliga dessa dokument ska godkännas av beställaren. Efter godkänd projektplan (BP2) får projektet ta maximalt 1500 arbetstimmar att slutföra. Projektgruppen ska utföra kontinuerlig tidsredovisning som skickas till beställaren en gång per vecka. Vid begäran ska gruppen även skicka in en statusrapport. Vid slutleveransen ska det finnas ett fungerande interaktivt visualiseringssystem, teknisk dokumentation med användaranvisning, en teknisk/naturvetenskaplig rapport samt slutrapport. Projektets delleveranser

och slutleverans ska senast ske vid de datum som finns specificerade på kursens Lisamsida. Även

formen för slutleveransen beskrivs på denna sida. Dokumentationen sparas på kursens Lisamsida.