Теория конечных графов

Метрические характеристики. Матричное представление графов

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Литература

- 1. Зарипова Э.Р., Кокотчикова М.Г. Лекции по дискретной математике: Теория графов. Учебное пособие. М., изд-во: РУДН, 2013, 162 с.
- 2. Харари Ф. «Теория графов», М.: КомКнига, 2006. 296 с.
- 3. Судоплатов С.В., Овчинникова Е.В. «Элементы дискретной математики». Учебник. М.: Инфра-М; Новосибирск: НГТУ, 2003. 280 с.
- 4. Шапорев С.Д. «Дискретная математика. Курс лекций и практических занятий». СПб.: БХВ-Петербург, 2007. 400 с.: ил.
- 5. Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- 6. Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- 7. Учебный портал РУДН, раздел «Теория конечных графов» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26342

Метрические характеристики

Рассмотрим связный невзвешенный неорграф $G = (\mathbf{V}, \mathbf{E})$, $V_{_i}, V_{_j}, V_{_k} \in \mathbf{V}$.

Пусть $d(V_i, V_j)$ — длина (количество ребер) кратчайшей простой цепи между V_i и V_j , и положим, что $d(V_i, V_j) = \infty$, если V_i и V_j находятся в разных компонентах связности. Такое расстояние будет удовлетворять следующим аксиомам метрики:

- 1) $d(V_i, V_j) \ge 0$,
- 2) $d(V_i, V_j) = 0 \Leftrightarrow V_i = V_j$,
- 3) $d(V_i, V_j) = d(V_j, V_i)$,
- 4) $d(V_i, V_j) + d(V_i, V_k) \ge d(V_i, V_k)$.

Метрические характеристики

Эксцентриситетом фиксированной вершины $V_{_j}$ называется величина $e(V_{_i}) = \max_{V_{_i} \in \mathbf{V}} d(V_{_i}, V_{_j})$.

Диаметром графа $G = (\mathbf{V}, \mathbf{E})$ называется величина $d(G) = \max_{V_i \in \mathbf{V}} e(V_i) \, .$

Вершина V_i называется периферийной, если $e(V_i) = d(G)$.

Радиусом графа $G = (\mathbf{V}, \mathbf{E})$ называется величина

$$r(G) = \min_{V_i \in \mathbf{V}} e(V_i).$$

Вершина V_i называется центральной, если $e(V_i) = r(G)$.

Множество всех центральных вершин графа называется его центром.

Матрица инцидентности для неорграфа

Пусть
$$G = (\mathbf{V}, \mathbf{E})$$
 — неорграф, имеющий n вершин $(|\mathbf{V}|=n)$ и m ребер $(|\mathbf{E}|=m)$, т.е. $\mathbf{V} = \{V_1, V_2, ..., V_n\}$, $\mathbf{E} = \{e_1, e_2, ..., e_m\}$.

Матрицей инцидентности для графа $G = (\mathbf{V}, \mathbf{E})$ будет называться матрица:

$$A = \left[a_{i,j}\right]_{i=\overline{1,n}, j=\overline{1,m}} = egin{bmatrix} A & e_1 & e_2 & \dots & e_m \ \hline V_1 & & & & \ \hline V_2 & & & a_{i,j} \ & \dots & & & \ \hline V_n & & & & \ \hline \end{array}$$

Матрица инцидентности для неорграфа
$$0$$
, если ребро $e_{_{j}}$ не инцидентно вершине $V_{_{i}}$; где $a_{i,j} = \begin{cases} 0, \text{ если ребро } e_{_{j}} \text{ инцидентно вершине } V_{_{i}}; \\ 2, \text{ если ребро } e_{_{j}} \text{ - петля в вершине } V_{_{i}}. \end{cases}$

и
$$i = \overline{1,n}$$
, $j = \overline{1,m}$.

Свойство 1:

$$a_{i,j} = \sum_{i=1}^{n} a_{i,j} = 2,$$
 $a_{i,j} = \sum_{j=1}^{m} a_{i,j} = \delta(V_i).$

В каждом столбце ровно по две единицы, кроме столбцов, соответствующих петлям. В столбцах, соответствующих петлям, только одна цифра 2.

Свойство 2:

В случае, когда граф можно разбить на два или более несвязных компоненты, то матрица инцидентности будет иметь блочнодиагональную структуру при условии, что вершины первой компоненты пронумерованы первыми, второй компоненты вторыми, и т.д. (то есть по возрастанию).

Матрица инцидентности для неорграфа

Пример 1. Составить для неорграфа матрицу инцидентности. Заметим, что граф не является связным, вершины и ребра пронумерованы последовательно по компонентам

Матрица инцидентности для примера 1 в блочно-диагональном виде

Так как ребро e_1 соединяет вершины V_1 и V_2 , то в первом столбце первой строке ставим единицу и в первом столбце и второй строке ставим единицу, так как ребро e_5 является петлей в вершине V_4 , то в пятом столбце и четвертой строки ставим цифру 2, и так далее:

Матрица смежности для неорграфов

Пусть $G = (\mathbf{V}, \mathbf{E})$ — неорграф, имеющий n вершин $(|\mathbf{V}| = n, \mathbf{V} = \{V_1, V_2, ..., V_n\})$. Матрицей смежности для неорграфа $G = (\mathbf{V}, \mathbf{E})$ будет называться матрица B:

$$B = \left[b_{i,j}
ight]_{i,j=\overline{1,n}} = egin{bmatrix} B & V_1 & V_2 & ... & V_n \ \hline V_1 & & & \ V_2 & & b_{i,j} & \ ... & & \ V_n & & \ \end{matrix},$$

 $b_{i,j} = \{$ число ребер одновременно инцидентных вершинам V_i и V_j , $i,j=\overline{1,n}\,.\}$

Свойство. Матрица смежности для неорграфов всегда является симметричной матрицей относительно главной диагонали.

Матрица смежности для неорграфа

Пример 2. Составить для неорграфа матрицу смежности. Заметим, что граф не является связным, вершины и ребра пронумерованы последовательно по компонентам

Матрица смежности для примера 2

Вершины V_1 и V_2 соединены одним ребром, следовательно, в первой строке и втором столбце стоит единица, и во второй строке и первом столбце тоже единица. Обратите внимание, хотя есть петли, в матрице смежности они обозначатся цифрой 1, т.к. одна петля.

Матрица является симметричной относительно главной диагонали.

Матрица инцидентности для орграфа

Пусть $G = \langle \mathbf{V}, \mathbf{E} \rangle - \text{орграф}$, имеющий n вершин ($|\mathbf{V}| = n$) и m дуг $(|\mathbf{E}|=m): \mathbf{V} = \{V_1, V_2, ..., V_n\}, \mathbf{E} = \{e_1, e_2, ..., e_m\}.$

Матрицей инцидентности для орграфа $G = \langle \mathbf{V}, \mathbf{E} \rangle$ будет называться матрица A:

$$A = \left[a_{i,j}
ight]_{i=\overline{1,n},\,j=\overline{1,m}} = egin{bmatrix} A & e_1 & e_2 & \dots & e_m \ \hline V_1 & & & & \ V_2 & & a_{i,j} & & \ \dots & & & \ V_n & & & \end{bmatrix}$$
, где

- $\begin{bmatrix} 0, & \text{если дуга } e_{_j} & \text{не инцидентна вершине } V_{_i}; \\ 1, & \text{если дуга } e_{_j} & \text{положительно инцидентна} \end{bmatrix}$ $a_{i,j} = \begin{cases} & \text{вершине } V_i(\text{т.e. выходит из вершины } V_i); \\ -1, & \text{если дуга отрицательно инцидентна} \\ & \text{вершине } V_i(\text{т.e. входит в вершину } V_i); \\ 2, & \text{если дуга } e_j - \text{петля в вершине } V_i, \end{cases}$ $i = \overline{1, n}, \ j = \overline{1, m}.$

Матрица инцидентности для орграфа

Пример 3. Составить для орграфа матрицу инцидентности. Заметим, что граф не является связным, вершины и ребра пронумерованы последовательно по компонентам

Матрица инцидентности для примера 3

Так как дуга e_1 направлена из вершины V_1 в V_2 , то в первой строке первого столбца стоит 1, а во второй строке первого столбца стоит -1. Петля в вершине V_4 дает в четвертой строке и четвертом столбце цифру 2, и так далее.

Матрица смежности для орграфа

Пусть $G = \langle \mathbf{V}, \mathbf{E} \rangle$ — орграф, имеющий n вершин $(|\mathbf{V}| = n, \mathbf{V} = \{V_1, V_2, ..., V_n\})$. Матрицей смежности для орграфа $G = \langle \mathbf{V}, \mathbf{E} \rangle$ будет называться квадратная матрица B:

$$B = \left[b_{i,j}
ight]_{i,j=\overline{1,n}} = egin{bmatrix} B & V_1 & V_2 & ... & V_n \ \hline V_1 & & & \ V_2 & & b_{i,j} \ ... & & \ V_n & & \ \end{bmatrix},$$

где $b_{i,j}$ — число дуг, направленных от вершины V_i к вершине V_i , $i,j=\overline{1,n}$.

Матрица смежности для орграфа

Пример 4. Составить для орграфа матрицу смежности. Заметим, что граф не является связным, вершины и ребра пронумерованы последовательно по компонентам

Матрица смежности для примера 4

Отметим, что граф $G = \langle \mathbf{V}, \mathbf{E} \rangle$ является несвязным, и это отражено в блочно-диагональной структуре матрицы инцидентности и смежности.

Список смежности для слабосвязных графов

Списком смежности вершины $V_i \in \mathbf{V}$ называется множество вершин, смежных с ней.

$$u(V_i) = \{V_j : (V_i, V_j) \in \mathbf{E}\}$$
 (для неорграфа) и $u(V_i) = \{V_j : \langle V_i, V_j \rangle \in \mathbf{E}\}$ (для орграфов).

Список смежности для слабосвязных графов

Пример 5. Составить для орграфа список смежности.

Список смежности для примера 5

$$u(V_1) = \{V_3, V_4\},\$$
 $u(V_2) = \{V_3\},\$
 $u(V_3) = \{V_1\},\$
 $u(V_4) = \{V_4\}.$

Теорема о числе ормаршрутов между двумя вершинами орграфа

Матрица B^n дает число ориентированных маршрутов длины n между любыми двумя вершинами ориентированного графа.

Теорема о числе ормаршрутов между двумя вершинами орграфа

<u>Доказательство</u>. (доказательство проводится методом математической индукции)

1) Рассмотрим граф $G = \langle \mathbf{V}, \mathbf{E} \rangle$. Пусть $|\mathbf{V}| = m$. Введем обозначения:

 $b_{i,k}$ – число дуг, соединяющих вершину V_i с вершиной V_k ,

 $b_{\scriptscriptstyle k,\scriptscriptstyle j}$ – число дуг, соединяющих вершину $V_{\scriptscriptstyle k}$ с вершиной $V_{\scriptscriptstyle j}$,

 $b_{i,j}^{(2)}$ — число различных ориентированных маршрутов

длины 2 (то есть маршрут состоит из двух дуг) от вершины V_i к

вершине $V_{_{j}}$ и проходящих через вершину $V_{_{k}}$, k=1,m .

Тогда
$$\sum_{k=1}^{m} b_{i,k} \cdot b_{k,j} = b_{i,j}^{(2)}$$
 . Теорема очевидна для B^2 .

Теорема о числе ормаршрутов между двумя вершинами орграфа

2) Пусть теорема верна для матрицы B^{n-1} . Покажем, что она верна для матрицы $B^n = B^{n-1} \cdot B$.

Если $b_{i,k}^{(n-1)}$ – число всех ормаршрутов длины (n-1) от V_i к V_k ,

 $b_{k,j}$ – число дуг от вершины V_{k} к V_{j} , то

 $b_{{}_{i,k}}^{{}_{(n-1)}} \cdot b_{{}_{k,j}}$ — число всех ормаршрутов от $V_{{}_i}$ к $V_{{}_j}$, проходящих через $V_{{}_k}$.

Тогда $\sum_{k=1}^{m} b_{i,k}^{(n-1)} \cdot b_{k,j} = b_{i,j}^{(n)}$ — число всех ормаршрутов длины n

направленных от V_i к V_j и $b_{i,j}^{(n)}$ – элемент матрицы B^n .

Замечание 1: Если существует l, $\forall n \ge l$: $B^n = 0$, то в графе нет циклов.

Замечание 2: Теорема верна и для неориентированных графов. Маркова Екатерина Викторовна. Лк. 3 по ТКГ. Метрика. Матрицы.

Псевдограф

Псевдографом называется граф, в котором допускаются петли и кратные параллельные ребра.

Пример 6.

Мультиграф

Мультиграфом называется граф, в котором допускаются параллельные ребра и нет петель.

Пример 7.

Простой неорграф

Неорграф называется простым, если он не содержит петель и кратных параллельных ребер.

Планарные и плоские графы

Граф называется **плоским**, если он изображен на плоскости так, что все пересечения ребер являются его вершинами.

Граф называется планарным, если он изоморфен плоскому графу.

Пример 9. Планарный и плоский графы

Планарные и плоские графы

Пример 10. Планарный и плоский графы

Упражнение: определить, является ли граф плоским? планарным?

Пример 11. Объясните свои суждения при выполнении упражнения

Планарные и плоские графы

Пример 11. Планарный и плоский графы

Матрица весов

Для графа $G = (\mathbf{V}, \mathbf{E})$, где $|\mathbf{V}| = n$, матрица весов \mathbf{W} определяется следующим образом:

$$\mathbf{W} = egin{pmatrix} V_1 & \dots & V_n \ \hline V_1 & & & \ \dots & & W_{i,j} \ \hline V_n & & & \end{pmatrix}, \ i,j = \overline{1,n} \ \ \mathbf{M}$$

 $w_{i,j} = \begin{cases} \text{минимальный вес ребра от вершины } V_i \text{ до вершины } V_j, \\ 0, \text{ если } i = j, \\ \infty, \text{ если ребра } (V_i, V_j) \text{ не существует.} \end{cases}$

Тема следующей лекции:

«Алгоритм Краскала»