

POTENCIALIZANDO O DESEMPENHO COM NOSQL

Andre Luiz Sazana Waleczki | RM:559685

Guilherme Vinícius dos Santos | RM:560564

Henrique Caproni Siqueira | RM:560105

Renan Thiago Aviz e Silva | RM:560849

Thiago Evangelista Dias | RM:559403

Versão 3

HISTÓRICO DE VERSÕES

Versão	Data	Responsável	Descrição
1	14/06/2024	Patrícia Maura Angelini	Versão Inicial Template PBL Fase 5 - CAP 01 - POTENCIALIZANDO O DESEMPENHO COM
			NOSQL
2	18/06/2024	Rita de Cássia	Revisão acadêmica
		Rodrigues	
3	19/03/2025	Andre Luiz Sazana Waleczki	Criação de conteúdo

FICHA CATALOGRÁFICA [NÃO PREENCHER - PARA USO DO DEPTO DE EAD E BIBLIOTECA]

A000a Sobrenome, Nome

Título [livro eletrônico] / Nome Sobrenome. -- São Paulo : Fiap, 2016.

x MB; ePUB

Bibliografia.

ISBN 000-00-00000-00-0

Categoria. 2. Subcategoria. S., Nome. II. Título.

CDU 000.000.00

TEMPLATE - POTENCIALIZANDO O DESEMPENHO COM NOSQL Versão 2 – Página 4 de 21

RESUMO

Template para atividade de PBL fase 5 1º ano TSC.

Palavras-chave: PBL. FASE 5. TEMPLATE

LISTA DE FIGURAS

Encontrando os outliers na coluna quantidade
<pre># Definir os limites de outliers usando o método do IQR Q1 = df['quantidade'].quantile(0.25) # Primeiro quartil Q3 = df['quantidade'].quantile(0.75) # Terceiro quartil IQR = Q3 - Q1 # Intervalo interquartil</pre>
<pre># Definir limites para outliers limite_inferior = Q1 - 1.5 * IQR limite_superior = Q3 + 1.5 * IQR</pre>
<pre># Filtrar os outliers outliers = df[(df['quantidade'] < limite_inferior) (df['quantidade'] > limite_superior)]</pre>
Exibir a quantidade de outliers encontrados print(f"Número de outliers na coluna 'quantidade': {len(outliers)}") [14] v 0.0s
··· Número de outliers na coluna 'quantidade': 11283
Analisando o impacto dos outliers nas vendas
<pre># Média das vendas com outliers media_com_outliers = df['valor_total_bruto'].mean()</pre>
<pre># Criar um DataFrame sem os outliers df_sem_outliers = df[(df['quantidade'] >= limite_inferior) & (df['quantidade'] <= limite_superior)]</pre>
<pre># Média das vendas sem outliers media_sem_outliers = df_sem_outliers['valor_total_bruto'].mean()</pre>
<pre>print(f"Média das vendas (com outliers): {media_com_outliers:.2f}") print(f"Média das vendas (sem outliers): {media_sem_outliers:.2f}")</pre>
[15] ✓ 0.0s Média das vendas (com outliers): 568.16
Média das vendas (sem outliers): 319.91 Figura 1 – Algoritmo construído em python com as bibliotecas pandas, seaborn,
matplotlib, numpy, math e scipy15
Figura 2 - Algoritmo construído em python com as bibliotecas pandas, seaborn,
matplotlib, numpy, math e scipy Fonte: Elabvorado pela equipe (2025)
Figura 3 – Algoritmo construído em python com as bibliotecas pandas, seaborn, matplotlib, numpy, math e scipy16
Figura 4 – Algoritmo construído em python com as bibliotecas pandas, seaborn,
matplotlib, numpy, math e scipy1
Figura 5 – Algoritmo construído em python com as bibliotecas pandas, seaborn,
matplotlib, numpy, math e scipy18 Figura 6 – Matriz de correlação construído em python com a biblioteca matplotlib19
ngara o matriz de correlação construido em python com a biblioteca matplotib R

LISTA DE QUADROS

ro! Indicador não definido.		
		 Er
Quadro 1 – Quadro resumo da	s tarefas do PBL	

LISTA DE TABELAS

No table of figures entries found.

LISTA DE CÓDIGOS-FONTE

No table of figures entries found.

LISTA DE COMANDOS DE PROMPT DO SISTEMA OPERACIONAL

No table of figures entries found.

SUMÁRIO

POTENCIALIZANDO O DESEMPENHO COM NOSQL	11
1.PROVA DE CONCEITO DE BANCO DE DADOS NOSQL	11
1.1 Análise de cenários	11
1.2 Cenário 1	
1.2.1 Justificativa do cenário 1	11
1.2.2 Empresa que usa o cenário 1	12
1.3 Cenário 2	12
1.3.1 Justificativa do cenário 2	
1.3.2 Empresa que usa o cenário 2	13
1.4 Cenário 3	13
1.4.1 Justificativa do cenário 3	
1.4.2 Empresa que usa o cenário 3	14
2 ANÁLISE DOS DADOS DE VENDAS	14
2.1 Quantidade	
2.2 Preço	16
2.2 Correlações	
GLOSSÁRIO	19

POTENCIALIZANDO O DESEMPENHO COM NOSQL

1.PROVA DE CONCEITO DE BANCO DE DADOS NOSQL

1.1 Análise de cenários

A realização de testes de cenários é essencial para validar a adequação de diferentes bancos de dados NoSQL a necessidades específicas do e-commerce da Melhores Compras. Abaixo, detalhamos os cenários analisados, justificando as escolhas e fornecendo exemplos de empresas que já utilizam as soluções sugeridas.

1.2 Cenário 1

Quando um cliente seleciona um produto, a plataforma de e-commerce exibe, adicionalmente, recomendações de outros itens, baseadas nas compras de quem comprou esse produto e em outras promoções correlatas. No contexto atual, esse cálculo está demorando muito tempo para ser feito utilizando estruturas relacionais, dado o volume de dados envolvidos.

1.2.1 Justificativa do cenário 1

Para esse cenário, um banco de dados NoSQL do tipo Grafo foi escolhido, pois permite modelar eficientemente relações complexas entre produtos e clientes. A estrutura de grafos possibilita consultas altamente otimizadas, eliminando a necessidade de JOINs e garantindo desempenho superior na recomendação de produtos.

O banco de dados em grafo Neo4j é a melhor solução, pois:

Lida com relações complexas de forma eficiente, Oferece consultas extremamente rápidas sem necessidade de JOINs; altamente escalável, suportando grandes volumes de dados e conexões;

1.2.2 Empresa que usa o cenário 1

Empresas como Netflix, Facebook e Amazon utilizam bancos de dados de grafos para recomendações personalizadas. O Neo4j é um dos bancos mais populares para esse tipo de aplicação.

Podemos citar a Amazon que utilizou o Neo4j para modelar relacionamentos complexos entre produtos, clientes e comportamentos de compra. Permitindo recomendações altamente personalizadas, como "clientes que compraram este item também compraram...". A estrutura de grafos facilita a análise de relações em tempo real, tornando as recomendações mais precisas e escaláveis.

1.3 Cenário 2

A definição da entrega de um produto em 24h depende da disponibilidade de estoque do centro de distribuição mais próximo do endereço de entrega. Se o cliente optar por essa entrega rápida, é necessário realizar a reserva no centro de distribuição e atualizar o estoque automaticamente. Nos testes preliminares, o modelo relacional apresentou baixo desempenho devido ao volume de dados e à alta frequência de atualizações.

1.3.1 Justificativa do cenário 2

O banco de dados NoSQL Colunar Apache Cassandra é a melhor solução, dentre vários benefícios, citamos alguns:

Escalabilidade Horizontal: O Cassandra é projetado para escalar horizontalmente, adicionando mais nós ao cluster conforme o volume de dados e transações aumenta.

Alta Disponibilidade: Com sua arquitetura distribuída, o Cassandra garante que os dados estejam sempre disponíveis, mesmo em caso de falhas de hardware ou de rede. Desempenho em Escrita: O Cassandra é otimizado para operações de escrita, o que é essencial para cenários de atualização frequente de estoque.

Consistência Ajustável: O Cassandra permite ajustar o nível de consistência dos dados, oferecendo flexibilidade para equilibrar desempenho e precisão.

1.3.2 Empresa que usa o cenário 2

Podemos citar a eBay, uma das maiores plataformas de e-commerce do mundo, enfrenta desafios semelhantes ao gerenciar estoques de milhões de produtos e garantir atualizações em tempo real para disponibilidade e reservas. A eBay utiliza o Apache Cassandra para armazenar e gerenciar dados relacionados a transações, estoque e disponibilidade de produtos. O Cassandra permite que a eBay atualize o estoque em tempo real e garanta que as informações estejam consistentes em todos os seus data centers distribuídos. O Cassandra oferece alta escalabilidade e tolerância a falhas, permitindo que a eBay lide com picos de tráfego e atualizações frequentes de estoque sem comprometer o desempenho.

1.4 Cenário 3

A tela de detalhes de um produto recebe constantemente novas informações, como reviews, versões, dados de entrega, imagens e recomendações. Para armazenar esse conjunto dinâmico de informações, um banco relacional tradicional pode ser ineficiente devido à rigidez de seu esquema.

1.4.1 Justificativa do cenário 3

O banco de dados NoSQL orientado a documentos MongoDB é a melhor solução, dentre vários benefícios, citamos alguns:

Flexibilidade de Esquema: O MongoDB permite armazenar dados em formato de documentos JSON/BSON, o que facilita a adição de novos campos (como reviews, imagens ou informações de entrega) sem alterar a estrutura do banco de dados.

Desempenho em Leitura e Escrita: O MongoDB é otimizado para operações de leitura e escrita frequentes, essenciais para cenários de atualização constante de informações de produtos.

Escalabilidade Horizontal: O MongoDB permite escalar horizontalmente, adicionando mais nós ao cluster para lidar com o crescimento do volume de dados e tráfego.

Consultas Complexas: O MongoDB suporta consultas avançadas, incluindo buscas por texto, agregações e filtros, o que é útil para exibir informações dinâmicas na tela de detalhes do produto.

1.4.2 Empresa que usa o cenário 3

Empresas como eBay, Forbes, Cisco e SAP.

Podemos citar a eBay novamente, onde a empresa precisa gerenciar informações dinâmicas e complexas sobre milhões de produtos, incluindo reviews, imagens, detalhes de entrega e recomendações. A eBay utiliza o MongoDB para armazenar dados de produtos de forma flexível e escalável. O MongoDB permite que a eBay adicione novos campos (como reviews ou informações de entrega) sem alterar a estrutura do banco de dados, além de oferecer desempenho otimizado para consultas frequentes. A flexibilidade do MongoDB permite que a eBay atualize rapidamente as informações dos produtos e ofereça uma experiência personalizada aos usuários.

2 ANÁLISE DOS DADOS DE VENDAS

2.1 Quantidade

O método do intervalo interquartil (IQR) foi utilizado para identificar outliers na coluna quantidade. Onde foram detectados 11.283 outliers.

A média das vendas foi recalculada sem os outliers, resultando em uma média mais precisa (reduzindo de 568,16 para 319,91).

Uma estimativa de variabilidade foi calculada ignorando os outliers:

Desvio padrão das vendas sem outliers: 19.789,14.

Coeficiente de variação: 6.185,84%.

Amplitude interquartil (IQR) das vendas sem outliers: 62,00.

```
Encontrando os outliers na coluna quantidade
        # Definir os limites de outliers usando o método do IQR
Q1 = df['quantidade'].quantile(0.25) # Primeiro quartil
Q3 = df['quantidade'].quantile(0.75) # Terceiro quartil
         IQR = Q3 - Q1 # Intervalo interquartil
          Definir limites para outliers
         limite_inferior = Q1 - 1.5 * IQR
         limite_superior = Q3 + 1.5 * IQR
         # Filtrar os outliers
         outliers = df[(df['quantidade'] < limite_inferior) | (df['quantidade'] > limite_superior)]
        # Exibir a quantidade de outliers encontrados
        print(f"Número de outliers na coluna 'quantidade': {len(outliers)}")
      ✓ 0.0s
    Número de outliers na coluna 'quantidade': 11283
    Analisando o impacto dos outliers nas vendas
        # Média das vendas com outliers
media_com_outliers = df['valor_total_bruto'].mean()
        df_sem_outliers = df[(df['quantidade'] >= limite_inferior) & (df['quantidade'] <= limite_superior)]</pre>
         media_sem_outliers = df_sem_outliers['valor_total_bruto'].mean()
        print(f"Média das vendas (com outliers): {media_com_outliers:.2f}")
        print(f"Média das vendas (sem outliers): {media_sem_outliers:.2f}")
[15] / 0.0s
··· Média das vendas (com outliers): 568.16
    Média das vendas (sem outliers): 319.91
```

Figura 1 – Algoritmo construído em python com as bibliotecas pandas, seaborn, matplotlib, numpy, math e scipy

Fonte: Elaborado pela equipe (2025)

```
# Desvio padrão das vendas sem outliers
desvio_padrao = df_sem_outliers['valor_total_bruto'].std()

# Coeficiente de variação (CV) = Desvio padrão / Média
cv = desvio_padrao / df_sem_outliers['valor_total_bruto'].mean()

# Amplitude interquartil (IQR)
01_sem = df_sem_outliers['valor_total_bruto'].quantile(0.25)
03_sem = df_sem_outliers['valor_total_bruto'].quantile(0.75)
IQR_sem = 03_sem - 01_sem

# Exibir os resultados
print(f"Desvio padrão das vendas (sem outliers): {desvio_padrao:.2f}")
print(f"Coeficiente de variação (sem outliers): {cv:.2k}")
print(f"Amplitude interquartil (IQR) das vendas (sem outliers): {IQR_sem:.2f}")

16] 

Desvio padrão das vendas (sem outliers): 19789.14
Coeficiente de variação (sem outliers): 6185.84%
Amplitude interquartil (IQR) das vendas (sem outliers): 62.00
```

Figura 2 - Algoritmo construído em python com as bibliotecas pandas, seaborn, matplotlib, numpy, math e scipy

Fonte: Elabvorado pela equipe (2025)

2.2 Preço

A média geral dos preços foi calculada, e um teste t de amostra única foi aplicado para comparar as médias por região em relação à média da população.

Para todas as regiões (Centro-Oeste, Nordeste, Norte, Sudeste, Sul), os p-valores foram maiores que 0.05, indicando que não há diferença estatisticamente significativa entre a média de preço de cada região e a média geral.

A mesma análise pode ser aplicada às modalidades de pagamento.

```
Teste de Hipótese: Média de Preços por Região vs. Média Geral
        df_sem_outliers = df_sem_outliers.dropna(subset=['valor'])
        # Média geral dos preços
        media_geral = df_sem_outliers['valor'].mean()
[17] V 0.0s
   Hipóteses:
   H₀ (Hipótese Nula): A média dos preços em cada região é igual à média geral.
   H<sub>1</sub> (Hipótese Alternativa): A média dos preços em pelo menos uma região é diferente da média geral.
   teste t por região
        # Média geral dos preços
        media_geral = df_sem_outliers['valor'].mean()
        resultados_regiao = {}
        for regiao, grupo in df_sem_outliers.groupby('regiao_pais'):
            stat, p_value = stats.ttest_1samp(grupo['valor'], media_geral)
            resultados_regiao[regiao] = p_value
        for regiao, p in resultados_regiao.items():
            resultado = "Rejeita H<sub>0</sub> (diferença significativa)" if p < 0.05 else "Não rejeita H<sub>0</sub> (sem diferença significativa)"
            print(f"Região: {regiao} | p-valor: {p:.5f} | {resultado}")
    Região: Centro Oeste | p-valor: 0.74499 | Não rejeita H₀ (sem diferença significativa)
     Região: Nordeste | p-valor: 0.81259 | Não rejeita H₀ (sem diferença significativa)
     Região: Norte | p-valor: 0.99952 | Não rejeita H₀ (sem diferença significativa)
     Região: Sudeste | p-valor: 0.79856 | Não rejeita H₀ (sem diferença significativa)
     Região: Sul | p-valor: 0.77760 | Não rejeita H₀ (sem diferença significativa)
```

Figura 3 – Algoritmo construído em python com as bibliotecas pandas, seaborn, matplotlib, numpy, math e scipy

Figura 4 – Algoritmo construído em python com as bibliotecas pandas, seaborn, matplotlib, numpy, math e scipy

2.2 Correlações

Correlação alta entre valor e valor_comissao (0.94)

Isso sugere que a comissão é fortemente influenciada pelo valor do produto. Quanto mais caro o produto, maior a comissão.

Correlação alta entre valor total bruto e valor comissao (0.90)

Indica que o total bruto de vendas está intimamente ligado à comissão paga.

Correlação moderada entre lucro liquido e valor (0.76)

Produtos mais caros tendem a gerar mais lucro líquido, mas essa relação não é perfeita.

Correlação baixa entre quantidade e lucro_liquido (0.24)

Sugere que vender mais unidades nem sempre se traduz em mais lucro, o que pode indicar variações de margem de lucro entre os produtos.

Correlação praticamente nula entre quantidade e valor_total_bruto (-0.00)

Isso pode significar que o total bruto de vendas não depende muito do número de unidades vendidas, mas sim do preço individual dos produtos.

```
Calculando a Matriz de Correlação
           # Selecionando apenas colunas numéricas para calcular a correlação correlacao = df_sem_outliers[['valor', 'quantidade', 'valor_total_bruto', 'valor_comissao', 'lucro_liquido']].corr()
            print(correlacao)
[20] ✓ 0.0s - 場 Abrir "correlacao" no Data Wrangler
                                     valor quantidade valor_total_bruto valor_comissao \

        valor
        1.000000
        -0.114768

        quantidade
        -0.114768
        1.000000

        valor_total_bruto
        0.042358
        0.002573

        valor_comissao
        0.935674
        -0.057014

        lucro_liquido
        0.760086
        0.243796

                                                                 0.042358
                                                                             0.002573
                                                                                                  -0.057014
                                                                             1.000000
                                                                                                   0.898261
                                                                          0.898261
                                                                                                   1.000000
                                                                            0.026457
                                                                                                   0.740181
                                lucro_liquido
                                      0.760086
       valor
       guantidade
                                        0.243796
       valor_total_bruto
                                        0.026457
       valor_comissao
                                        0.740181
       lucro_liquido
                                        1.000000
           plt.figure(figsize=(8, 6))
            sns.heatmap(correlacao, annot=True, cmap='coolwarm', fmt=".2f", linewidths=0.5)
            plt.title('Matriz de Correlação das Variáveis')
            plt.savefig('matriz_correlacao.png')
           # Exibir o gráfico
plt.show()
```

Figura 5 – Algoritmo construído em python com as bibliotecas pandas, seaborn, matplotlib, numpy, math e scipy

Figura 6 – Matriz de correlação construído em python com a biblioteca matplotlib

GLOSSÁRIO

NoSQL	Tipo de banco de dados não relacional, projetado para armazenar e recuperar grandes volumes de dados de forma eficiente, sem a necessidade de esquemas rígidos.
Banco de Dados de Grafos	Modelo de banco de dados NoSQL que utiliza nós e arestas para representar e armazenar relações complexas entre entidades, como recomendações de produtos.

TEMPLATE - POTENCIALIZANDO O DESEMPENHO COM NOSQL Versão 2 – Página 20 de 21

Neo4j	Banco de dados de grafos amplamente utilizado para modelagem de relações complexas e análise de redes sociais.
Banco de Dados Colunar	Tipo de banco de dados NoSQL otimizado para leitura e escrita de grandes volumes de dados estruturados em colunas, como o Apache Cassandra.
Apache Cassandra	Banco de dados colunar distribuído, altamente escalável, utilizado por empresas como Netflix e Twitter para gerenciar grandes volumes de dados.
Google Bigtable	Banco de dados colunar do Google, utilizado para armazenamento de dados massivos e escaláveis, como no Google Analytics.
Banco de Dados de Documentos	Modelo de banco NoSQL que armazena informações em documentos JSON ou BSON, permitindo alta flexibilidade e eficiência.
MongoDB	Banco de dados de documentos NoSQL que permite armazenamento escalável de dados sem estrutura fixa.
Amazon DynamoDB	Serviço de banco de dados NoSQL gerenciado pela AWS, otimizado para alta disponibilidade e escalabilidade.
Recomendações Baseadas em Grafos	Técnica de recomendação que utiliza bancos de dados de grafos para sugerir produtos ou serviços com base em interações e preferências de usuários.
Intervalo Interquartil (IQR)	Método estatístico utilizado para identificar outliers em um conjunto de dados, analisando a dispersão dos valores dentro dos quartis.
Desvio Padrão	Medida estatística que representa a variação ou dispersão dos dados em relação à média.
Coeficiente de Variação	Índice estatístico que mede a dispersão relativa dos dados em relação à média.

TEMPLATE - POTENCIALIZANDO O DESEMPENHO COM NOSQL Versão 2 – Página 21 de 21

Correlação	Medida estatística que indica a relação entre duas variáveis, variando entre -1 (correlação negativa perfeita) e 1 (correlação positiva perfeita).
Matriz de Correlação	Representação gráfica da correlação entre diferentes variáveis dentro de um conjunto de dados.
Teste T	Método estatístico utilizado para comparar médias e verificar se há diferença estatisticamente significativa entre grupos de dados.
JOINs	Operação em bancos de dados relacionais utilizada para combinar registros de duas ou mais tabelas baseadas em uma chave comum, muitas vezes impactando o desempenho.