THUYẾT TRÌNH BÀI THI CUỐI KY

Môn học : Xử lý tín hiệu số

Sinh viên thực hiện: Nguyễn Tri An

Lóp: 19TCLC_DT2

Nội dung tổng quát

Phần I:

- 1. Thuật toán phân biệt khoảng lặng và tiếng nói.
- 2. Thuật toán tìm ngưỡng.

Phần II:

- 1. Thuật toán tìm F0 trên miền tần số dùng phép biến đổi Fast Fourier.
- 2. Cách xử lý để tìm các đỉnh phù hợp.

Phần III:

1. Kết quả và nhận xét.

Phân biệt tiếng nói và khoảng lặng

Sơ đồ khối thuật toán :

Thuật toán tìm ngưỡng

Sơ đồ khối thuật toán:

Phương pháp Histogram

Khảo sát sai số biên chuẩn

Khảo sát sự ảnh hưởng tham số W lên kết quả thuật toán

Tên file lab	W = 1	W = 2	W = 3
01MDA	Denta = 190 ms	Denta = 200 ms	Denta = 202 ms
02FVA	Denta = 360 ms	Denta = 360 ms	Denta = 370 ms
03MAB	Denta = 120 ms	Denta = 120 ms	Denta = 120 ms
06FTB	Denta = 1250 ms	Denta = 1250 ms	Denta = 1250 ms

Kết luận: Chọn W = 1. Vì W = 1 có độ lệch so với biên chuẩn là bé nhất và ổn định nhất.

Khảo sát sự chính xác thuật toán

Thống kê ngưỡng tín hiệu huấn luyện	
Tín hiệu	Threshold
01MDA	0.0119
02FVA	0.0116
03MAB	0.0130
06FTB	0.0141
Trung bình	0.01265

Ngưỡng tính theo thuật toán		
Tín hiệu	Threshold	
30FTN	0.0144	
42FQT	0.0169	
44MMT	0.0113	
45MDV	0.0132	

Nhận xét:

Thuật toán Histogram trong việc tính ngưỡng cho ra ngưỡng tương đối chính xác nhưng còn cao ở file nhiễu lớn, vị trí sai nằm ở biên cuối tín hiệu =>Linh hoạt.

Tính ngưỡng theo thống kê cho ra kết quả khá chính xác => Bị động.

Thuật toán tìm F0 trên miền tần số

Sơ đồ khối thuật toán

Cách xử lý tìm các đỉnh phù hợp

Sơ đồ khối thuật toán

Kết quả file kiểm thử 30FTN

- Kết quả vẽ biên của thuật toán khá chính xác.
- Kết quả tìm F0 của nguyên âm thứ nhất bị mất do không tìm được đỉnh thỏa điều kiện.

F0_Mean	F0_Std	Độ lệch biên
0.9%	211.2%	200ms

Kết quả file kiểm thử 42FQT

- Kết quả vẽ biên của thuật toán sai ở một vài biên cuối.
- Kết quả tìm F0 khá chính xác, còn xuất hiện một vài pitch ảo.

F0_Mean	F0_Std	Độ lệch biên
3.17%	387%	940ms

Kết quả file kiểm thử 44MMT

- Kết quả vẽ biên của thuật toán khá chính xác
- Kết quả tìm F0 khá chính xác, còn xuất hiện một vài pitch ảo không đáng kể.

F0_Mean	F0_Std	Độ lệch biên
4.7%	298.8%	190ms

Kết quả file kiểm thử 45MDV

- Kết quả vẽ biên của thuật toán sai ở một vài biên cuối
- Kết quả tìm F0 khá chính xác, còn xuất hiện một vài pitch ảo.

F0_Mean	F0_Std	Độ lệch biên
0.39%	154.4%	730ms

Nhận xét chung

- Kết quả thuật toán Histogram trong việc tính ngưỡng cho ra các biên sai số thấp, vị trí sai nằm ở biên cuối tín hiệu, linh hoạt, vì một số đoạn tiếng nói có năng lượng thấp.
 - □ Biến N của hàm FFT có ảnh hưởng khá lớn đến việc phân tích phổ trong việc tìm F0 (độ rõ của phổ).
 - ☐ Cách xử lý peak còn khá đơn giản và chưa tối ưu vì chưa đưa ra kết quả chính xác nhất. Có thể áp dụng bộ lọc trung vị để đưa ra kết quả tốt hơn.
 - ☐ Một số cách xử lý tìm F0 khác : HPS ,...

Những điều đã học được

- ✓ Cải thiện kỹ năng viết nội dung và trình bày slide.
- ✓ Cải thiện khả năng sử dụng tiếng Anh, phân tích tài liệu thông qua việc tìm tư liệu trên Internet cũng như việc đọc các tài liệu tham khảo mà giảng viên đã giao.
- ✓ Tích lũy thêm nhiều kiến thức bổ ích trong lĩnh vực xử lý tín hiệu, cụ thể là xử lý tín hiệu tín nói.

Tài liệu tham khảo

Thuật toán Histogram

Nguồn: <u>An Improved Speech Segmentation and Clustering Algorithm Based on SOM and K-Means (hindawi.com)</u>

❖ Slide chương 6 Digital Signal Processing Nguồn : Tài liệu 4SV thầy Ninh Khánh Duy

❖ Tài liệu hàm findpeak(), fft()

Nguồn: MathWorks - Makers of MATLAB and Simulink - MATLAB & Simulink

Cảm ơn thầy đã lắng nghe