Week 3 - Check Your Understanding

 $1. \ \, {\rm Multiple\ linear\ model\ cannot\ incorporate\ a\ categorical\ response}.$

*a. True

b. False

2.	Multiple linear regression is a special case of generalized linear model with a link function being the identity function.
	*a. True
	b. False
3.	A normal distribution is a special case of exponential distribution. *a. True
	b. False
4.	The least squares method can be applied to solve for optimal estimations of model parameters for any generalized linear model.
	a. True *b. False
5.	The maximum likelihood method can be used to solve for parameter estimations in linear regression. *a . True
	b. False
6.	The sum squares decomposition of $TSS = RSS + Reg SS$ also holds in generalized linear model.
	a. True *b. False
7.	We can use AIC and BIC to decide how many predictors to include in the generalized linear model. $^{*}a$. True
	b. False
8.	In logistic regression, the response mean can be interpreted as the probability that the response equals one or zero. *a. True
	b. False
9.	One wants to model a counting response, she/he should use
	a. Probit Regression *b. Poisson Regression