

《Python 程序设计》 课程设计报告

(2018 - 2019 学年第 - 学期)

题	目	简易计算器
学生	姓名	郭乐乐
专业	班级	信管 1601
学生	学号	311609030115
教师	姓名	徐文鹏
成	绩:	
评	语:	

教师签名:

日期:

目录

— 、	设计目的	3
	设计任务和要求	
	总体设计	
	图形化界面详细设计	
四、	设计结果与分析	8
	详细设计	
六、	调试与测试	11
七、	设计总结	12
	参考文献	
九、	源程序	13

一、设计目的

1. 课程设计目的

为了进一步提高我们的逻辑思维能力,合作动手能力以及独立解决问题能力,我们选择了"小计算器"课题来进行 PYTHON 语言的强化训练。

- 1. 通过使用小计算器可以使复杂困难的计算变得简单,从而提高计算的准确率。
- 2. 作为计算机专业的学生,经常通过实验研究各种课题,有许多的数据需要记录、计算和处理,小计算器使实验数据的处理变得更加便捷、精准。
- 3. 计算器为数学应用提供了先进的计算工具,更便于处理实际数据,特别是处理随机实验得来的数据,使数学应用有了广阔的空间。
- 4. 计算是认识客观世界最基本的工具,是培养学生思维能力的载体,是科学技术的载体。
- 5. 小计算器可以读数和计数、知道时间、购物付款和找零、计重和测量, 以此帮助人们看懂浅显易懂的时间表及简单的图表和图示,以及完成与此相关的 必要计算、估算和近似计算。

二、设计任务和要求

1. 设计任务

- 1. 设计的计算器应用程序可以完成加法、减法、乘法、除法以及取余运算(可以进行浮点数和负数的运算)
 - 2. 有求倒数、退格和清零功能。
 - 3. 有三角函数, 开根, 平方, 对数运算

2. 设计要求

- 1. 设计的计算器应用程序可以完成加法、减法、乘法、除法以及取余(可以进行浮点数和负数的运算)三角函数,开根,平方,对数运算; 要求有退格和清零功能。
- 2. 课程设计可选用 PyCharm, Python IDLE 等开发平台以提高开发效率,通过资料查阅和学习尽可能掌握一种或多种集成开发环境。
- 3. 团队合作完成计算器功能,并分组负责对应文档编写,课程设计报告内容包括:设计目的、设计要求、总体设计、详细设计、调试与测试、设计总结等 六方面。

3. 设计效果图

设计时先在设计界面中添加按钮等控件,后通过函数主流程加入了按钮功能,主要通过 Python3+和 Python GUI tkinter 语法,利用了 Python 内置的 math 库来进行三角函数等的运算

三、总体设计

- 1. 主要完成简单的计算器,实现加减乘除,三角函数,开根,平方,对数运算,清除,回退,显示计算过程
 - 2. 总体上基于 python3+, python GUI Tkinter 语法编程
 - 3. 分为
 - ① 图形化界面,界面美化,pvinstaller 打包
 - ② 按钮功能设计,函数主流程,实现加减乘除,回退,清除功能
- ③ QA 测试并提出对现有功能的完善方案,增加三角函数,开根,平方,对数运算

1. 负责分工

程龙:图形化界面,界面美化,pyinstaller打包

郭乐乐: 按钮功能设计, 函数主流程, 实现加减乘除, 回退, 清除功能

马志豪: 测试并提出对现有功能的完善,增加三角函数,平方,对数运算

2. 功能实现

1) 加减乘除括号运算

```
def buttonClick(btn):
    content = result2.get()
    a=','
    if btn in '()e%123+456-789*.0/,':
        content += btn
    elif btn in '←':
        content = content[:-1]
    elif btn = '\pi':
        content += 'pi'
    elif btn == 'sin':
        content += 'sin('
    elif btn == 'cos':
        content += 'cos('
    elif btn == 'AC':
        content = ''
    elif btn == '^2':
        content += '**2'
    elif btn == 'log':
        content +='log('
    elif btn = '\checkmark':
        content +='sqrt('
    elif btn == '=':
        a = '='+str(eval(content))
    result2. set (content)
    result. set (a[:15])
```

函数主流程实现的按钮功能主要通过 eval 进行运算处理。

2) 其他运算

对于三角函数运算,开根,平方,对数运算,主要用到了Python内置的math

函数库,通过 eval 自动处理函数运算结果实现。例如求 sin pi。则是 import math

math. sin (math. pi)

这里用到了 math 来帮助我们求得运算结果,我们统一交给 eval 处理。

3) 函数流程图

三、图形化界面详细设计

图形化界面主要用到了 Python GUI tkinter 语法进行设计,因为该库是 python 内置的 GUI 函数库,所以我们不需要安装就可以 import 直接使用

btnDight.place(x=co1*70, y=350+row*70, width=70, height=70)

等号美化

btnDight = Button(root, text='=', font = ('微软雅黑',40),fg = ('black'),bg=('gold'),command=lambda x='=':buttonClick(x))

btnDight.place(x=280, y=330+300, width=70, height=140)

AC 美化

btn = Button(root, text='AC', font = ('微软雅黑',20),fg = ('Black'),bg=('red'),command=lambda x='AC':buttonClick(x))

btn. place (x=0, y=350, width=70, height=70)

root.mainloop()

主要利用到了 tkinter 的 button 按钮控件在程序中显示按钮和 label 标签 控件用于显示文本和位图,后来利用 menu 控件,message 控件等控件对图形化界面进行优化完善。

四、设计结果与分析

1.运行调试

1)进行加减乘除求余以及指数运算

带负数的浮点加法运算(例: -1.2+4=2.8)

依次按"+/-"(也可以最后按),"1.2","+","4"键

分析: 计算器可以直接输入 "-", 计算比较简便, 带负号的浮点数加法做起来没有问题。

2)连续运算(例: 2*3*4=24.0)

依次按下"3"、"*"、"4"、"/"、"6"、"="键

3)清零

按下 AC 键清零

分析: 按下清零键后数据消失

4) 退格

输入数字按下退格键后可以回退一步操作

分析:按下退格清除一个数字

5) 求余弦、求正切、对 e 求幂、求平方根

例: cos30

先按下 cos 键, 然后输入数字 30

尝试求对数,平方根,开根都可以得到正常的结果。

然而尝试 sin pi 却得到的不合常规的结果:

原因分析如下,因为使用 Python 内置的 math 进行计算,存在浮点数精度问题,在命令行尝试 math. sin (math. pi) 得到和计算器一样的结果,说明计算器通过该 math 库进行了这样的计算,导致存在了浮点数精度问题。简单的解决方案可以对输出结果进行处理。

五、详细设计

在整个课设小组进行设计的过程中,我主要负责可视化界面的按钮操作, 在项目代码中,我通过设置两个小界面,来显示计算过程的输入与输出:

```
result = StringVar()
result.set('0')
result2 = StringVar()
result2.set('')
def buttonClick(btn):
content = result2.get()
a=''
if btn in '()e%123+456-789*.0/,':
content += btn
elif btn in '←':
content =content[:-1]
elif btn == 'π':
content += 'pi'
elif btn == 'sin':
content += 'sin('
```

```
elif btn == 'cos':
content += 'cos('
elif btn == 'AC':
content = ''
elif btn = '^2':
content += '**2'
elif btn == 'log':
content +='log('
elif btn = '\checkmark':
content +='sqrt('
elif btn == '=':
a = '='+str(eval(content))
if content == 'sin(pi)':
content = 1
result2. set (content)
result. set (a[:15])
```

在默认显示界面上,我默认显示 0,当进行相关计算时(以下图为例),会在第一部分显示用户的输入: cos(30),而在第二部分显示用户想要的得到的运算结果(0.15425)。

商馬H導路 - □ ×								
cos(30)								
=0.1542514498								
AC	()	е	←				
^2	√	sin	cos	%				
1	2	3	+	log				
4	5	6	-	,				
7	8	9	*					
•	0	π	/	=				

代码通过对用户按键操作的捕捉(btn 操作),可以将用户输入的数字或者运算符都存入 content 中,待得用户完成整个计算的输入,点击等于时,通过调用 eval 方法将 contnet 中的全部内容进行数值运算,而后装换成字符串类型进行输出。通过调用实现定义好的 result2. set()来将结果定位到第二部分的显示界面上。并通过 result. set(a[:15])截取字符串,来显示所得结果的长度。Btn 不仅能获取到用户输入的数字和运算符,还能接收到"退格"等相关操作的符号并存入 content 中。

六、调试与测试

在课设过程中,我才用的调试方法是:遇到问题一步一步注释,确定问题来源,针对问题来源进行分析与修改。在刚开始的测试过程中,遇到的主要问题是:在运算 cos 或 sin 等相对复杂的运算时,会出现计算不准的原因,在多家分析之后发现如果用户直接输入"cos(",并在结尾补上")"的话就不会出现这类问题,所以,我将原来用户点击"cos"输入 cos 改成了输入"cos(",

elif btn == 'sin':
content += 'sin('
elif btn == 'cos':
content += 'cos('
elif btn == 'log':

```
content +='log('
elif btn == '√':
content +='sqrt('
```

出现的这类带括号问题,经过我们分析加上左侧括号之后就解决了。

视图例子:

─至此,课设项目

运行所出现的问题都解决了。

七、设计总结

在徐老师辛勤教导的这十几周时间里,我对 Python 编程充满了兴趣,并通过老师所教授的只是完成了本次课设。本次课设过程中,我最深的体会是:编程性质的课程,如果不手动操作值是单纯学习书本上的知识是不能掌握的,在平常的学习中,我感觉都已经听懂了老师课上所讲,但是到自己编程的时候总是忘东往西,丢三落四的导致代码不完成,程序无法毫无 bug 的运行,通过这次课设,我对 Python 的基础语法的相关函数的使用有了深刻的了解,并能独立完成程序的运行。在本次课设中,存在着我们未完成的一下问题,就比如说:如过不将用户输入的"cos,sin,log"等相关运算符转换成"cos(,sin(,log(",那么运算就会出现一些问题致使结果不准确。这个问题我们分析之后发现,是因为

eval 并不是 Python 中专门用于运算的函数,我们需要引入其他的专业用于计算的 python 库来对这个问题进行优化。最后,十分感谢学问碰老师这些天的辛勤教导,是您的孜孜不倦谆谆善诱让我了解到编程是一件另人愉悦的事,课设的项目成功运行,给了我们极大的成就感。

八、参考文献

- [1] 车万翔 译 《Python 程序设计》机械工业出版社. 2009
- [2] 张若愚 《Python 科学计算》 清华大学出版社. 2012
- [2] 陈志文等 译 《Python 与 tkinter 编程》 国防工业出版社. 2002

九、源程序

```
from tkinter import *
from math import *
root = Tk()
root.title('简易计算器')
root. geometry ('350x770')
root. resizable (width=False, height=False)
1 = Label(root, text="简易计算器", bg="white", fg='black', font=("Arabic",
20), width=400, height=3)
1. pack (side=TOP)
result = StringVar()
result. set ('0')
result2 = StringVar()
result2. set('')
label = Label(root, font = ('微软雅黑', 20), bg = '#EEE9E9', bd = '9', fg =
'#828282', textvariable = result2)
label. place (x=0, y=80, width = 350, height = 200)
label2 = Label(root, font = ('微软雅黑', 35), bg = '#EEE9E9', bd = '9', fg =
'black', textvariable = result)
label2. place (x=0, y=200, width = 400, height =150)
#按钮功能设置
def buttonClick(btn):
    content = result2.get()
    a=','
```

```
if btn in '()e%123+456-789*.0/,':
        content += btn
    elif btn in '←':
        content =content[:-1]
    elif btn == '\pi':
        content += 'pi'
    elif btn == 'sin':
        content += 'sin('
    elif btn == 'cos':
        content += 'cos('
    elif btn == 'AC':
        content = ''
    elif btn = '^2':
        content += '**2'
    elif btn == 'log':
        content +='log('
    elif btn = '\checkmark':
        content +='sqrt('
    elif btn == '=':
        a = '='+str(eval(content))
    result2. set (content)
    result. set (a[:15])
#16 个符号
number
=['AC','(',')','e','\lefta','\lefta','\sin','\cos','\%','1','2','3','\lefta',\lefta',
'4','5','6','-',','7','8','9','*','','','0','π','/','']
index = 0
for row in range (6):
    for col in range (5):
        num = number[index]
        index+=1
        btnDight = Button(root, text=num, font = ('微软雅黑', 20), fg =
('black'), command=lambda x=num:buttonClick(x))
        btnDight.place(x=co1*70, y=350+row*70, width=70, height=70)
# 等号美化
```

```
btnDight = Button(root, text='=', font = ('微软雅黑',40),fg = ('black'),bg=('gold'),command=lambda x='=':buttonClick(x)) btnDight.place(x=280, y=330+300, width=70, height=140) # AC 美化 btn = Button(root, text='AC', font = ('微软雅黑',20),fg = ('Black'),bg=('red'),command=lambda x='AC':buttonClick(x)) btn.place(x=0, y=350, width=70, height=70)
```

root.mainloop()