SEMICONDUCTOR TOSHIBA

TECHNICAL DATA

TOSHIBA PHOTOCOUPLER

TLP620, TLP620-2, TLP620-4

GaAs IRED & PHOTO-TRANSISTOR

PROGRAMMABLE CONTROLLERS

AC/DC-INPUT MODULE

TELECOMMUNICATION

The TOSHIBA TLP620, -2 and -4 consists of a photo-transistor optically coupled to two gallium arsenide infrared emitting diode connected in inverse parallel.

The TLP620-2 offers two isolated channels in an eight lead plastic DIP package, while the TLP620-4 provides four isolated channels in a sixteen plastic DIP package.

Collector-Emitter Voltage : 55V (Min.)

Current Transfer Ratio : 50% (Min.)

Rank GB : 100% (Min.)

PIN CONFIGURATIONS (TOP VIEW)

: ANODE, CATHODE 1, 3, 5, 7 2, 4, 6, 8 : CATHODE, ANODE 9, 11, 13, 15 : EMITTER

10, 12, 14, 16 : COLLECTOR

ത

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

These TOSHIBA products are intended for use in general commercial applications (office equipment, communication equipment, measuring equipment, domestic appliances, etc.). please make sure that you consult with us before you use these TOSHIBA products in equipment which may involve life threatening or critical application, including but not limited to such uses as atomic energy control, airplane or spaceship instrumentation, traffic signals, medical instrumentation, communication control, all types of safety devices, etc. TOSHIBA cannot accept and hereby disclaims liability for any damage which may occur in case the TOSHIBA products are used in such equipment or applications without prior consultation with TOSHIBA.

SEMICONDUCTOR **TOSHIBA**

TECHNICAL DATA

TLP620, TLP620-2, TLP620-4

(TLP620)

• UL Recognized : UL1577, File No. E67349

 $\bullet \quad \text{Isolation Voltage} \qquad : 5000 V_{\mbox{rms}} \mbox{(Min.)}$

• Option (D4) type

VDE Approved : DIN VDE0884/08.87, Certificate No. 68384

Maximum Operating Insulation Voltage : 630VpK Highest Permissible Over Voltage : 6000VpK

(Note) When a VDE0884 approved type is needed,

please designate the "Option (D4)".

Creepage Distance : 6.4mm (Min.)
Clearance : 6.4mm (Min.)
Insulation Thickness : 0.4mm (Min.)

MAXIMUM RATINGS (Ta = 25°C)

	CITA DA COMPINIONIO	GILLEDOI	RAT			
	CHARACTERISTIC	SYMBOL	TLP620	TLP620-2 TLP620-4	UNIT	
	Forward Current	I _F (RMS)	60	50	mA	
	Forward Current Derating	ΔI _F /°C	$-0.7 (\mathrm{Ta} \ge 39^{\circ}\mathrm{C})$	-0.5 (Ta \geq 25°C)	mA/°C	
LED	Pulse Forward Current	IFP	$1(100\mu\mathrm{s}$ pu	lse, 100pps)	100pps) A	
1	Power Dissipation (1 Circuit)	$P_{\mathbf{D}}$	100	70	mW	
	Power Dissipation Derating	ΔPD/°C	-1.0	-0.7	mW/°C	
	Junction Temperature	$T_{\rm j}$	1	25	°C	
	Collector-Emitter Voltage	v_{CEO}	55		V	
	Emitter-Collector Voltage	v_{ECO}	7		V	
OR	Collector Current	$I_{\mathbf{C}}$	50		mA	
DETECTOR	Collector Power Dissipation (1 Circuit)	PC	150	100	mW	
	Collector Power Dissipation Derating (1 Circuit) (Ta≥25°C)	△P _C /°C	-1.5	-1.0	mW/°C	
	Junction Temperature	$T_{\rm j}$	1	25	°C	
Sto	rage Temperature Range	$\mathrm{T_{stg}}$	-55~150		°C	
Op	erating Temperature Range	$T_{ m opr}$	-55~100		°C	
Lea	nd Soldering Temperature	${ m T_{sold}}$	260 (10s)		°C	
Tot	al Package Power Dissipation	P_{T}	250	150	mW	
	al Package Power Dissipation rating (Ta≥25°C, 1 Circuit)	$\Delta P_{\mathrm{T}}/^{\circ}\mathrm{C}$	-2.5	-1.5	mW/°C	
Iso	lation Voltage	$BV_{\mathbf{S}}$	5000 (AC, 1 min., RH≤60%)		V_{rms}	

TLP620 – 2
1996 – 4 – 8
TOSHIBA CORPORATION

SEMICONDUCTOR **TOSHIBA**

TLP620, TLP620-2, TLP620-4

TECHNICAL DATA

(TLP620)

INDIVIDUAL ELECTRICAL CHARACTERISTICS (Ta = 25°C)

	CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	Forward Voltage	$V_{\mathbf{F}}$	$I_F = \pm 10 mA$	1.0	1.15	1.3	V
LED	Forward Current	$I_{\mathbf{F}}$	$V_{\mathbf{F}} = \pm 0.7 V$	1	2.5	20	μ A
	Capacitance	C_{T}	V=0, $f=1MHz$	I	60	_	pF
	Collector-Emitter Breakdown Voltage	V (BR) CEO	$I_{\mathrm{C}}\!=\!0.5\mathrm{mA}$	55	_	-	V
DETECTOR	Emitter-Collector Breakdown Voltage	V _{(BR)ECO}	$I_{ m E}\!=\!0.1{ m mA}$	7	_	_	v
TE	Collector Dark Current	Iana	$V_{ m CE}$ = 24 V		10	100	nA
DE	Confector Dark Current	ICEO	$V_{CE}=24V$, $Ta=85$ °C	1	2	50	μ A
	Capacitance (Collector to Emitter)	CCE	$V_{ ext{CE}}$ =0, f=1MHz		10	_	pF

COUPLED ELECTRICAL CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Current Transfer Ratio	$I_{\mathbf{C}}/I_{\mathbf{F}}$	I _F =±5mA, V _{CE} =5V Rank GB	50	_	600	%
		Rank GB	100	_	600	
Saturated CTR	Id/In/	$I_F = \pm 1 \text{mA}, \ V_{CE} = 0.4 \text{V}$		60	<u> </u>	- %
Saturated CTR	IC/IF(sat)	Rank GB	30	_	_	10
		$I_C=2.4mA$, $I_F=\pm 8mA$	I	_	0.4	
Collector-Emitter Saturation Voltage	V _{CE} (sat)	$I_{\rm C} = 0.2 {\rm mA}, \ I_{\rm F} = \pm 1 {\rm mA}$	I	0.2	_	V
Volume		Rank GB	I	_	0.4	
Off-State Collector Current	I _{C (off)}	$V_{F} = \pm 0.7V, \ V_{CE} = 24V$		1	10	μ A
CTR Symmetry	I _{C (ratio)}	$I_{C}(I_{F} = -5mA) / I_{C}(I_{F} = +5mA)$	0.33	1	3	_

ISOLATION CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Capacitance Input to Output	c_{S}	V _S =0, f=1MHz	_	0.8	_	pF
Isolation Resistance	$R_{\mathbf{S}}$	$V_S = 500V$	5×10^{10}	1014	_	Ω
		AC, 1 minute	5000	_	_	**
Isolation Voltage	$BV_{\mathbf{S}}$	AC, 1 second, in oil	_	10000	_	$V_{ m rms}$
		DC, 1 minute, in oil	_	10000	_	V_{dc}

TLP620 – 3
1996 – 4 – 8
TOSHIBA CORPORATION

SEMICONDUCTOR **TOSHIBA**

TECHNICAL DATA

TLP620, TLP620-2, TLP620-4

(TLP620)

SWITCHING CHARACTERISTICS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Rise Time	$\mathbf{t_r}$			2		
Fall Time	$\mathbf{t_f}$	$V_{ m CC}$ = 10V $I_{ m C}$ = 2mA	_	3		
Turn-on Time	ton	$1C = 2mA$ $R_{L} = 100\Omega$		3		μ s
Turn-off Time	$t_{ m off}$	- . 1		3		
Turn-on Time	ton	D 1010(E: 1)	_	2		
Storage Time	$t_{\mathtt{s}}$	$R_L=1.9k\Omega$ (Fig.1) $V_{CC}=5V$, $I_F=\pm 16mA$	_	15	_	μ s
Turn-off Time	tOFF	VCC = 5 V, 1 _F = ± 15mm1	_	25	_	

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	v_{CC}	_	5	24	V
Forward Current	I _{F (RMS)}	_	16	20	mA
Collector Current	IC	_	1	10	mA
Operating Temperature	T_{opr}	-25	_	85	°C

Fig.1 Switching Time Test Circuit

TLP620 – 4
1996 – 4 – 8
TOSHIBA CORPORATION

TLP620, TLP620-2, TLP620-4

TECHNICAL DATA

(TLP620)

TLP620 – 5
1996 – 4 – 8
TOSHIBA CORPORATION

TECHNICAL DATA

(TLP620)

TLP620 - 6 1996 - 4 - 8 TOSHIBA CORPORATION TECHNICAL DATA

(TLP620)

TLP620 - 7 1996 - 4 - 8 TOSHIBA CORPORATION TECHNICAL DATA

(TLP620)

