# Компьютерная дингвистика Конспекты по предмету

Милов Данила

# ОГЛАВЛЕНИЕ

| $\Gamma$ ЛАВА $1$ | Конечные преобразователи Страниц | A 2_ |
|-------------------|----------------------------------|------|
| 1.1               | Конечные преобразователи         | 2    |
| 1.2               | Морфологический анализ           | 4    |
| 1.3               | Алгоритм Портера                 | 11   |

# Глава 1

# Конечные преобразователи

## 1.1 Конечные преобразователи

#### Определение 1.1.1: Конечный преобразователь

Шестёрка  $S = (Q, \Sigma, \Delta, q_0, \delta, F)$ , где:

Q — множество состояний,

 $\Sigma$  — входной алфавит,

 $\delta \subset Q \times \Sigma^* \times \delta \times Q$  — конечное множество переходов(программа),

 $q_0$  — начальное состояние,

 $F \subseteq Q$  — множество закл. состояний

#### Определение 1.1.2: Конфигурация

Тройка (q, u, v), где  $q \in Q, u \in \Sigma^*, v \in \Delta^*$ 

#### Определение 1.1.3: Переход за один шаг(⊦)

 $(q,u,v) \vdash_S (p,x,y)$ , если существует  $w \in \Sigma^*, t \in \Delta^*$ : u=wx,y=vt и  $q,w \to p,v \in \delta$ 

#### Определение 1.1.4: Отношение, вычисляемое S

 $R(S) = \{(x,y): (q_0,x,\varepsilon) \vdash_S^* (q_f,\varepsilon,y)$  для некоторого  $q_f \in F\}$ 

#### Определение 1.1.5: Детерминированный КП

Шестёрка  $S=(Q,\Sigma,\Delta,\delta,q_0,F)$ , где  $\delta:Q\times\Sigma\to Q\times\Delta^*$ 

### Вопрос 1: Построить КП

 $\Sigma = \{a,b,c,\$\}$ 

Заменить все чётные символы b на с(нумерация с 1).



## Вопрос 2: Построить КП

 $\Sigma = \{a,b,c,\$\}$ 

Стереть все символы а, стоящие непосредственно после символов b.



#### Вопрос 3: Построить КП

 $\Sigma = \{a, b\}$ 

Удалить из х все блоки символов а чётной длины.



#### Note:

Домашнее задание:

 $N_{\underline{0}}134(B,\Gamma),133,137$ 

# 1.2 Морфологический анализ

Задачи морфологического анализа:

- 1. Дано слово, поставить его в нужную форму.
- 2. Дано слово, найти его начальную форму.

#### Предложение 1.2.1 Рассматриваемые характеристики

- $\bullet$  N существительное(noun)
- V глагол(verb)
- SG единственное число(singular)
- PL множественное число(plural)

#### Пример 1.2.1

 $cat+N+PL \Rightarrow cats$  $cats \Rightarrow cat+N+PL$ 

#### Определение 1.2.1: Морфологические правила

Определяют, как образуются формы.

Пример: английский язык, множественное число = ед. число + s.

#### Определение 1.2.2: Орфографические правила

Определяют, как меняется написание.

Пример — англ. язык, мн. число:

Слово заканчивается на  $s \to вставить e$ .

Слово заканчивается на  $y \rightarrow$  заменить на ie.

Слово является исключением → особый случай.

#### Определение 1.2.3: Основа

«Главная часть» слова.

#### Определение 1.2.4: Аффексы

Части слова, приписываемые к основе:

- 1. Префиксы: пишутся спереди.
- 2. Суффиксы: пишутся сзади.
- 3. Инфиксы: пишутся внутри.
- 4. Циркумфиксы: спереди и сзади.

#### Note:

Для морфологического анализатора необходимы:

- 1. Словарь список основ и аффексов.
- 2. Морфотактика правила объединения морфем.
- 3. Орфографические правила.

# **Пример 1.2.2** (Автомат, проверяющий правильность определения множественного числа)

reg-noun — правильные существительные;

irreg-sg-noun — единственное число «неправильных» существительных; irreg-pl-noun — множественное число «неправильных» существительных;

plural(-s) - s.



#### Определение 1.2.5: Префиксное дерево

Есть множество слов  $S = \{S_1, \ldots, S_n\}$ .

- 1. Рёбра дерева помечены символами.
- 2. Рёбра, выходящие из одной вершины, помечены разными символами.
- 3. На пути из корня в листья написаны слова из S.
- 4. Для каждого  $S_i$  существует вершина v такая, что на пути из корня в v написано  $S_i(v)$  отмечены i).

#### Пример 1.2.3 (Префиксное дерево)

Префиксное дерево для слов: алгебра, алгоритм, гомоморфизм, гомотопия, гомеоморфизм, шар, шары.



Пример 1.2.4 (Автомат, распознающий множественное число слов)



#### **Пример 1.2.5** (Автомат для распознавания прилагательных(1))

adj-root — корень прилагательного un-, -er, -est, -ly — аффексы слов.



#### Пример 1.2.6 (Автомат для распознавания прилагательных(2))

 $\mathbf{adj\text{-}root}_1$  — корень прилагательного, который может употребляться с приставками

 $\mathbf{adj\text{-}root}_2$  — корень прилагательного, который не может употребляться с приставками

un-, -er, -est, -ly — аффексы слов.

Это недетерминированный вариант автомата(угадываем переход по пустому слову в  $q_1$  или  $q_3$ ).



#### Предложение 1.2.2 Три уровня конечного преобразователя

- 1. Лексический: слово и его признаки.( f o x +N +PL )
- 2. Промежуточный: морфемы и доп.метки $(f \circ x \circ s)$
- 3. Поверхностный: слово( f o x e s )

# **Пример 1.2.7** (Преобразователь слов с лексического уровня в промежуточный)

#### Обозначения:

 $\alpha:\beta$  — читаем  $\alpha$ , пишем  $\beta$ ,  $\alpha$  — читаем  $\alpha$  и печатаем  $\alpha$ .



#### Пример 1.2.8 (Примеры правил)

- 1. Замена Y. Замена -y на -ie перед -s, -i перед -ed. $(try \Rightarrow tries)$
- 2. Удвоение согласной перед -ing/-ed. $(bed \Rightarrow begging)$
- 3. Удаление -е перед -ing,-ed.(make⇒making)
- 4. Вставка -е после -s,-z,-x,-ch,-sh перед -s.(watch⇒watches)

#### Предложение 1.2.3 Запись правил

 $a\Rightarrow b/c\_d$  — Заменить а на b между с и d. a,b,c,d — строки.  $cad\Rightarrow cbd$ 

# **Пример 1.2.9** (КП для распознавания особых случаев образования множественного числа)

Символы:  $s, z, x, ^, \#, др$  — любой другой символ.



#### Определение 1.2.6: Обратное отношение

 $S = (Q, \Sigma, \Delta, \delta, q_0, F), R(S) \subseteq \Sigma^* \times \Delta$  — конечный преобразователь.

 $S' = (Q, \Delta, \Sigma, \delta', q_0, F)$  — конечный преобразователь, для которого множества входных и выходных данных поменяны местами.

А программа имеет вид:

$$\underline{q}, x \to p, y \in \delta \Leftrightarrow q, y \to p, x \in \delta'$$

Тогда:

$$R(S') = (R(S))^{-1}$$

$$(x, y) \in R(S') \Leftrightarrow (y, x) \in R(S)$$

#### Предложение 1.2.4 Морфологический анализ слов

Конечный преобразователь из примера выше может быть использован не только для того, чтобы проверить правильность образования формы множественного числа, но и для того, чтобы на его основе построить автомат S', обратный данному, восстанавливающий второй уровень слова по третьему.

Пример: выделим морфемы в словах cats и foxes. Для этого построим автомат, вычисляющий отношение, обратное R(S).

| $^{\mathrm{c}}$ | a     |       | S     | / /   |   |  |
|-----------------|-------|-------|-------|-------|---|--|
| $q_0$           | $q_0$ | $q_0$ | $q_0$ | $q_1$ |   |  |
| С               | a     | t     | ^     | S     | # |  |

| f         | О     | X                                        | е     |                                                 | S     | #          |       |
|-----------|-------|------------------------------------------|-------|-------------------------------------------------|-------|------------|-------|
| $q_0$ $f$ | $q_0$ | $\begin{vmatrix} q_0 \\ x \end{vmatrix}$ | $q_1$ | $egin{pmatrix} q_2 \ \mathcal{E} \end{pmatrix}$ | $q_3$ | $q_4 \ \#$ | $q_0$ |

# 1.3 Алгоритм Портера

Note:

Алгоритм Портера в презентации Бориса Николаевича



Слово: compiling

- 1. —
- 2. 2.a) compil
  - 2.б) —
- 3. —
- 4. —
- 5. —
- 6. —
- 7. —

#### Вопрос 5: Применить алгоритм

Слово: comlipation

- 1. —
- 2. —
- 3. —
- 4. compilate
- 5. —
- 6. compil
- 7. —

## Note:

Д/з: прогнать алгоритм Портера для слов: formalization, axiomatization, enumeration, fuzzieness, finger, singer