Scaled feedhorn beams

Sara M. Simon 09/28/18

Feedhorn design

- MCMC horn design has many inputs
 - Stop
 - Penalty function for optimization (you can optimize the horn many different ways)
 - Frequencies
 - Waveguide diameter
 - Output aperture diameter
- The 6.8 mm horn was optimized for a 13° stop, optimized on efficiency, and optimized from 75-165 GHz
 - Also usually run for 300+ optimizations for full optimization
 - This design is optimized with only 30 optimizations
- Fully optimizing and changing these parameters to fit the specific instrument/goals can further tune feedhorns for improved performance over this 6.8 mm design

Assumptions

- Band is 95/155 GHz from CDT
 - 6.8 mm horn design has a waveguide cutoff at 78 GHz (this is adjustable in the horn design)
- f/# Linear scaling with horn aperture
 - 5.3 mm pixel size design scaled to 6.8 mm pixel size compared to actual 6.8 mm pixel size design shows that f/# is underestimated with this method
 - This means we may be able to achieve the same performance with smaller pixel sizes
- Horn aperture is pixel size-100 um (for sidewall)

Scaling 6.8 mm design

95 GHz Band

Pixel Size	# Pixels	f/# at -8dB	f/# at -10dB	Stop angle -8dB	Stop angle -10dB	Spillover -8dB	Spillover -10dB
8.6 mm	169	1.45	1.30	19.1°	21.1°	0.139	0.115
9.4 mm	147	1.58	1.42	17.5°	19.4°	0.118	0.099

155 GHz Band

Pixel Size	Spillover	Edge Taper (dB)
8.6 mm	0.086	-22.0
9.4 mm	0.077	-22.7

Average Beam Profiles

• Scale angle by horn aperture size relative to 6.8 mm

