Retail Pricing Strategy Optimization

Table of Contents

- 1. Overview
- 2. Introduction
- 3. Problem Statement
- 4. Business Value
- 5. Dataset Description
- 6. Methodology
 - 6.1 Data Preprocessing
 - 6.2 Exploratory Data Analysis (EDA)
 - 6.3 Model Building
 - 6.4 Model Evaluation
 - 6.5 Price Elasticity Analysis
- 7. Deployment
- 8. Results and Observations
- 9. Conclusion
- 10. Tools and Technologies Used
- 11. References
- 12. Appendix
- 13. Submitted By

1. Overview

This project addresses the challenge of optimizing product pricing in the retail industry using machine learning. By analyzing historical sales and product data, a predictive model was built to estimate how different pricing strategies affect sales quantity and revenue. The model is deployed in a Streamlit web application to support real-time pricing simulation.

2. Introduction

In a highly competitive retail environment, data-driven pricing is essential to maximize profitability and customer satisfaction. Traditional pricing relies on static rules or guesswork. This project aims to build a complete AI/ML solution that enables businesses to simulate pricing scenarios, forecast revenue, and evaluate demand elasticity.

3. Problem Statement

Ineffective pricing strategies result in suboptimal sales, excess inventory, and missed revenue opportunities. The objective is to leverage historical sales data to create a machine learning model that predicts the impact of price changes on sales volume and revenue, enabling optimal pricing decisions.

4. Business Value

- Maximize revenue and profit margin
- Support pricing teams with data-driven recommendations
- Reduce underpricing or overpricing risks
- Understand price sensitivity and customer behavior
- Improve stock management by forecasting demand

5. Dataset Description

Feature Name	Description
product_category_name	Product category name
unit_price	Price per unit
qty	Quantity sold
total_price	unit_price × qty
freight_price	Shipping cost
product_score	Customer rating
product_weight_g	Product weight in grams
comp_1	Competitor price
weekday/weekend/holiday	Temporal features
volume	Size-based product metric

6. Methodology

6.1 Data Preprocessing

- Removed nulls and duplicates
- Converted date strings to datetime
- Label-encoded product categories
- Scaled numerical columns
- Handled outliers using IQR

6.2 Exploratory Data Analysis (EDA)

- Price vs. quantity distribution across categories
- Correlation heatmaps
- Demand trends over time
- Visual insights using Seaborn/Matplotlib

6.3 Model Building

- Target: unit_price or qty
- Models: Linear Regression, Random Forest
- Feature set: volume, product score, comp 1, category, etc.

6.4 Model Evaluation

- Metrics: MSE, RMSE, R²
- Random Forest outperformed Linear Regression
- Feature importance: volume > score > comp 1

6.5 Price Elasticity Analysis

- Formula: Elasticity = % change in quantity / % change in price
- Elastic categories respond significantly to price changes
- Inelastic categories are price stable

7. Deployment

- Model saved using joblib
- Interactive Streamlit dashboard for simulation
- Features: dropdown, slider, prediction output, visualization, CSV download

8. Results and Observations

- RF achieved lowest RMSE
- Elasticity and EDA aligned
- Certain categories showed strong price sensitivity
- Streamlit app allows easy simulation

9. Conclusion

This project successfully implemented an end-to-end ML solution for dynamic retail pricing. It provides actionable insights for business users and supports interactive decision-making via the Streamlit dashboard. Future improvements could include timeseries forecasting and competitor scraping.

10. Tools and Technologies Used

- Python
- pandas, numpy, matplotlib, seaborn
- scikit-learn, joblib
- Streamlit
- Jupyter Notebook, VS Code

11. References

- https://scikit-learn.org
- https://docs.streamlit.io
- Kaggle pricing datasets
- Industry blogs on retail optimization

12. Appendix

- Streamlit App Link: https://retail-pricing-strategy-optimization.streamlit.app/

- Github Repo Link : https://github.com/balaji-mallepalli/Retail-Pricing-Strategy-

Optimization

- Price vs Quantity Plot

13. Submitted By

Balaji Mallepalli

B.Tech CSE (AI/ML)

SRM University – AP

Project Title: Retail Pricing Strategy Optimization

Submission Date: 5th July 2025