MACS203: Martingales

1 Théorie de la mesure

les théorèmes de convergence monotone, dominée, et le lemme de Fatou, - les inégalités de Markov, Chebysev, Cauchy-Schwarz, Hölder, Minkowsky, et de Jensen,

Espaces mesurables et mesures

Def. Soit $A \subset \mathcal{P}(\Omega)$. On dit que

- (i) A est une **algèbre** sur Ω si $\Omega \in A$ et est stable par passage au complémentaire et par réunion,
- (ii) $\mathcal A$ est une σ -algèbre si c'est une algèbre stable par union dénombrable. On dit alors que $(\Omega,\mathcal A)$ est un espace mesurable.

Def. Soit $\mathcal{I} \subset \mathcal{P}(\Omega)$. On dit que \mathcal{I} est un π -système s'il est stable par intersection finie.

Def. Soit \mathcal{A} une algèbre sur Ω et $\mu \colon \mathcal{A} \to \mathbf{R}_+$.

- (i) μ est dite additive si $\mu(\varnothing) = 0$ et $\forall A, B \in \mathcal{A}, A \cap B = \varnothing \implies \mu(A \cup B) = \mu(A) + \mu(B)$.
- (ii) μ est dite σ -additive si $\mu(\varnothing)=0$ et $\forall (A_n)_{n\in\mathbb{N}}\subset\mathcal{A}$, si les A_n sont disjoints, $\mu(\cup_n A_n)=\sum_n \mu(A_n)$.
- (iii) Une fonction σ -additive μ sur un espace mesurable (Ω, \mathcal{A}) est appelée **mesure** et on dit que $(\Omega, \mathcal{A}, \mu)$ est un **espace mesuré**.
- (iv) Un espace mesuré $(\Omega, \mathcal{A}, \mu)$ est dit fini si $\mu(\Omega) < \infty$, et σ -fini s'il existe $(\Omega_n)_{n \in \mathbb{N}} \subset \mathcal{A}$ telle que $\mu(\Omega_n) < \infty$ et $\bigcup_{n \in \mathbb{N}} \Omega_n = \Omega$.

Prop. Soit \mathcal{I} un π -système, et μ, ν deux mesures finies sur $(\Omega, \sigma(\mathcal{I}))$. Si $\mu = \nu$ sur \mathcal{I} alors $\mu = \nu$ sur $\sigma(\mathcal{I})$.

Th (Extension de Carathéodory). *Soit* A_0 *une algèbre sur* Ω *et* μ : $A_0 \to \mathbf{R}_+$ σ -additive. Alors il existe une mesure μ *sur* $A := \sigma(A_t)$ *telle que* $\mu = \mu_0$ *sur* A_0 . *Si de plus* $\mu_0(\Omega) < \infty$ *alors une telle extension est unique.*

Def. (i) Sur un espace mesuré $(\Omega, \mathcal{A}, \mu)$, $N \in \mathcal{A}$ est dit **négligeable** si $\mu(N) = 0$.

(ii) Soit $P(\omega)$ une propriété qui ne dépend que de $\omega \in \Omega$. On dit que P est vraie μ -presque partout si $\{w \in \Omega \mid P(\omega) \text{ n'est pas vraie}\}$ est inclus dans un ensemble négligeable.

Prop. Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré et $(A_i)_{i \leq n} \subset \mathcal{A}$. Alors,

- (i) $\mu(\bigcup_{i \leq n} A_i) \leq \sum_{i=1}^n \mu(A_i)$,
- (ii) Si de plus $\mu(\Omega) < \infty$, on a $\mu(\bigcup_{i \leqslant n} A_i) = \sum_{k \leqslant n} (-1)^{k-1} \sum_{i_1 < \dots < i_k \leqslant n} \mu(A_{i_1} \cap \dots \cap A_{i_k})$.

Prop. Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré et $(A_i)_n \subset \mathcal{A}$. Alors,

- (i) $A_n \uparrow A \implies \mu(A_n) \uparrow \mu(A)$,
- (ii) $(A_n \downarrow A \land (\exists k, \mu(A_k) < \infty)) \implies \mu(A_n) \downarrow \mu(A)$.

Lem (de Fatou pour les ensembles). *Soit* $(A_n)_n$ *une suite dans* \mathcal{A} . *Alors,* $\mu(\liminf A_n) \leqslant \liminf \mu(A_n)$.

Lem (inverse Fatou pour les ensembles). *Supposons* $(\Omega, \mathcal{A}, \mu)$ *fini. Soit* $(A_n)_n$ *une suite dans* \mathcal{A} . *Alors,* $\mu(\limsup A_n) \geqslant \lim \sup \mu(A_n)$.

Lem (de Borel-Cantelli). $\sum_n \mu(A_n) < \infty \implies \mu(\limsup A_n) = 0.$

L'intégrale de Lebesgue

Def. On dit qu'une fonction $f:(\Omega,\mathcal{A})\to(\mathbf{R},\mathcal{B}(\mathbf{R}))$ est **mesurable** si l'image réciproque de tout ensemble borélien est dans \mathcal{A} . On note $\mathcal{L}^0(\mathcal{A})$ l'ensemble des fonctions mesurables, $\mathcal{L}^0_+(\mathcal{A})$ si elles sont positives et $\mathcal{L}^\infty(\mathcal{A})$ si elles sont bornées.

Rem. Si $f: \Omega \to \mathbf{R}$ est continue avec Ω un espace topologique, alors f est $\mathcal{B}(\Omega)$ -mesurable et on dit qu'elle est borélienne.

Prop. (i) Pour $f, g \in \mathcal{L}^0(\mathcal{A}), h \in \mathcal{L}^0(\mathcal{B}(\mathbf{R})), \lambda \in \mathbf{R}$, on a $f + g, \lambda f, fg, f \circ g \in \mathcal{L}_0(\mathcal{A})$.

(ii) Pour une suite $(f_n)_n \subset \mathcal{L}_0(\mathcal{A})$, on a inf f_n , $\liminf f_n$, $\sup f_n$, $\limsup f_n \in \mathcal{L}^0(\mathcal{A})$.

Th (des classes monotones). Soit \mathcal{H} une classe de fonctions réelles bornées sur Ω vérifiant

H1 H est un espace vectoriel contenant la fonction constante 1,

H2 pour toute suite croissante $(f_n)_n \subset \mathcal{H}$ de fonctions positives dont la limite $f := \lim \uparrow f_n$ est bornée, on a $f \in \mathcal{H}$. Soit \mathcal{I} un π -système tel que $\{\mathbf{1}_A, A \in \mathcal{I}\} \subset \mathcal{H}$. Alors $\mathcal{L}^{\infty}(\sigma(\mathcal{I})) \subset \mathcal{H}$.

Not. L'intégrale $\int f d\mu$ sera aussi notée $\mu(f)$ par abus de notation.

Def. Pour $f \in \mathcal{L}^0_+(\mathcal{A})$, l'intégrale de f par rapport à μ est définie par $\mu(f) := \sup \{\mu(g) \mid g \in \mathcal{S}^+, g \leqslant f\}$ où \mathcal{S}^+ contient les fonctions de la forme $g = \sum_i a_i \mathbf{1}_{A_i}, a_i \in \bar{\mathbf{R}}_+$ et $\mu(g) = \sum_i a_i \mu(A_i)$.

Lem. $\forall f_1, f_2 \in \mathcal{L}_0^+(\mathcal{A}, f_1 \leqslant f_2 \implies 0 \leqslant \mu(f_1) \leqslant \mu(f_2) \text{ et } \mu(f_1) = 0 \iff f_1 \stackrel{\mu\text{-}p.p.}{=} 0.$

Th (convergence monotone). Soit $(f_n)_n \subset \mathcal{L}^0_+(\mathcal{A})$ une suite croissante μ -p.p., i.e. $\forall n, f_n \overset{\mu$ -p.p. $f_n \in \mathcal{L}^0_+(f_n)$.

Lem (Fatou). *Soit* $(f_n)_n \subset \mathcal{L}^0_+(\mathcal{A})$. *On a* $\mu(\liminf f_n) \leq \liminf \mu(f_n)$.

Def. $f \in \mathcal{L}_0(\mathcal{A})$ est dite μ -intégrable si $\mu(|f|) < \infty$ et son intégrale est définie par $\mu(f) := \mu(f^+) - \mu(f^-)$. On note $\mathcal{L}^1(\mathcal{A}, \mu)$ leur ensemble.

Th (convergence dominée). Soit $(f_n)_n \subset \mathcal{L}_0(\mathcal{A})$ une suite telle que $f_n \xrightarrow{\mu-p,p} f \in \mathcal{L}_0(\mathcal{A})$. Si $\sup_n |f_n| \in \mathcal{L}^1(\mathcal{A},\mu)$, alors $f_n \to f$ dans $\mathcal{L}^1(\mathcal{A},\mu,i.e.\ \mu(|f_n-f|) \to 0$. En particulier, $\mu(f_n) \to \mu(f)$.

Lem (Scheffé). Soit $(f_n)_n \subset \mathcal{L}^1(\mathcal{A}, \mu)$ telle que $f_n \xrightarrow{\mu - p.p.} f \in \mathcal{L}_1(\mathcal{A}, \mu)$. Alors $f_n \to f$ dans $\mathcal{L}_1(\mathcal{A}, \mu)$ ssi $\mu(|f_n|) \to \mu(|f|)$.

Transformées de mesures

Def. Soit $(\Omega_1, \mathcal{A}_1, \mu_1)$ un espace mesuré, $(\Omega_2, \mathcal{A}_2)$ un espace mesurable et $f: \Omega_1 \to \Omega_2$ une fonction mesurable. Alors $\mu_2 = \mu_1 \circ f^{-1}$, notée $\mu_1 f^{-1}$, définit une mesure appelée **mesure image**.

Th (transfert). Soit $\mu_2 = \mu_1 f^{-1}$ et $h \in \mathcal{L}^0(\mathcal{A}_2)$. Alors $h \in \mathcal{L}^1(\mathcal{A}_2, \mu_2) \iff h \circ f \in \mathcal{L}^1(\mathcal{A}_2, \mu_2)$. Dans ces conditions on $a \int_{\Omega_2} h \, \mathrm{d}(\mu_1 f^{-1}) = \int_{\Omega_1} h \circ f \, \mathrm{d}\mu_1$.

Def. Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré et $f \in \mathcal{L}^0_+(\mathcal{A})$. On définit $\forall A \in \mathcal{A}, \nu(A) := \mu(f \mathbf{1}_A) = \int_A f d\mu$.

- (i) $\nu=f\cdot \nu$ est une mesure appelée mesure de **densité** f par rapport à $\mu.$
- (ii) Soit μ_1, μ_2 deux mesures sur un espace mesurable (Ω, A) . On dit que μ_2 est **absolument continue** par rapport à $\mu_1, \mu_2 \prec \mu_1$, si $\forall A \in A, \mu_2(A) = 0 \implies \mu_1(A) = 0$. Sinon on dit que μ_2 est étrangère à μ_1 .
- (iii) Si $\mu_2 \prec \mu_1$ et $\mu_1 \prec \mu_2$, on dit que μ_1 et μ_2 sont **équivalentes**, $\mu_1 \sim \mu_2$. Si $\mu_2 \not\prec \mu_1$ et $\mu_1 \not\prec \mu_2$, on dit que μ_1 et μ_2 sont **singulières**.
- **Th.** (i) Pour $g: \Omega \to \bar{\mathbf{R}}_+ A$ mesurable, on a $(f \cdot \mu)(g) = \mu(fg)$.
- (ii) Pour $g \in \mathcal{L}^0_+(\mathcal{A})$, on a $g \in \mathcal{L}^1(\mathcal{A}, f \cdot \mu)$ ssi $fg \in \mathcal{L}^1(\mathcal{A}, \mu)$ et alors $(f \cdot \mu)(g) = \mu(fg)$.

Inégalités remarquables

Th. Soit f une fonction A-mesurable, et $g: \mathbf{R} \to \mathbf{R}_+$ une fonction borélienne croissante positive.

- (i) $g \circ f$ est mesurable et $\forall c \in \mathbf{R}, \mu(g \circ f) \geqslant g(c)\mu(\{f \geqslant c\})$ (Inégalité de Markov),
- (ii) Si $f^2 \in \mathcal{L}_1(\mathcal{A}, \mu)$, $\forall c > 0$, $c^2\mu(\{|f| \ge c\}) \le \mu(f^2)$ (inégalité de Tchebyshev).

Espaces produits

Th (Fubini). L'application $\mu: A \mapsto \int (\int \mathbf{1}_A d\mu_1) d\mu_2 = \int (\int \mathbf{1}_1 d\mu_2) d\mu_1$ sur $A_1 \otimes A_2$ est une mesure sur $(\Omega_1 \times \Omega_2, A_1 \otimes A_2)$, appelée **mesure produit** de μ_1 et μ_2 , et notée $\mu_1 \otimes \mu_2$. C'est l'unique mesure sur $\Omega_1 \times \Omega_2$ vérifiant $\forall (A_1, A_2) \in A_1 \times A_2, \mu(A_1 \times A_2) = \mu_1(A_1)\mu(A_2)$.

De plus, pour tout f dans $\mathcal{L}^0_+(\mathcal{A}_1 \times \mathcal{A}_2)$ ou $\mathcal{L}^1(\mathcal{A}_1 \otimes \mathcal{A}_2, \mu_1 \otimes \mu_2)$, $\int f d\mu = \int (\int f d\mu_1) d\mu_2 = \int (\int f d\mu_2) d\mu_1 \in \bar{\mathbf{R}}_+$.

Soit $g: \Omega_1 \to \Omega_2$ avec Ω_1 et Ω_2 des ouverts de \mathbf{R}^n . Si g est différentiable en x, on note $Dg(x) := \left(\frac{\partial g_i}{\partial x_j}\right)_{1 \le i,j \le n}$ sa matrice jacobienne en x.

g est un \mathcal{C}^1 -difféomorphisme si g est une bijection telle que g et g^{-1} sont de classe \mathcal{C}^1 . Dans ce cas $\det[Dg^{-1}(y)] = \frac{1}{\det[Dg\circ g^{-1}(y)]}$.

Th. Soit μ_1 une mesure sur $(\Omega_1, \mathcal{B}(\Omega_1))$ de densité par rapport à la mesure de Lebesgue $f_1 \in \mathcal{L}_0^+(\mathcal{B}(\Omega_1))$, i.e. $\mu_1(\mathrm{d}x) = \mathbf{1}_{\Omega_1} f_1(x) \cdot \mathrm{d}x$. Soit g un C^1 -difféomorphisme. La mesure image $\mu_2 = \mu_1 g^{-1}$ est absolument continue par rapport à la mesure de Lebesgue, de densité $f_2 \colon y \mapsto \mathbf{1}_{\Omega_2}(y) f_1(g^{-1}) \left| \det[Dg^{-1}(y)] \right|$ et pour toute fonction $h \colon \Omega_2 \to \mathbf{R}$ positive ou μ_2 -intégrable, $\int_{\Omega_1} h \circ g(x) f_1(x) \, \mathrm{d}x = \int_{\Omega_2} h(y) f_2(y) \, \mathrm{d}y$.

2 Préliminaires de la théorie des probabilités

Variables aléatoires

Def. Soit **T** un ensemble et $\{X_{\tau}, \tau \in \mathbf{T}\}$ une famille quelconque de v.a. La σ -algèbre \mathcal{X} engendrée par cettefamille est la plus petite σ -algèbre sur Ω telle que X_{τ} est \mathcal{X} -mesurable pour tout $\tau \in \mathbf{T}$, i.e.

$$\mathcal{X} = \sigma(X_{\tau}, \tau \in \mathbf{T}) = \sigma(\{X_{\tau}^{-1}(A) \mid \tau \in \mathbf{T}, A \in \mathcal{B}(\mathbf{R})\}).$$

Lem. Soit X et Y deux v.a. sur $(\Omega, \mathcal{A}, \mathbf{P})$ à valeurs respectivement dans \mathbf{R} et \mathbf{R}^n . Alors X est $\sigma(Y)$ -mesurable ssi $\exists f \colon \mathbf{R}^n \to \mathbf{R}, X = f(Y)$.

Espérance de variables aléatoires

Th. Soit $X \in \mathcal{L}^1(\mathcal{A}, \mathbf{P})$ et $g : \mathbf{R}^d \to \bar{\mathbf{R}}$ une fonction convexe telle que $\mathbf{E}(|g(X)|) < \infty$. Alors $\mathbf{E}(g(X)) \geqslant g(\mathbf{E}(X))$.

Def. Soit X une v.a. à valeurs dans \mathbf{R}^d . Sa fonction caractéristique est Φ_X : $\begin{array}{ccc} \mathbf{R}^d & \to & \mathbf{C} \\ u & \mapsto & \mathbf{E} \left[e^{i\langle u|X\rangle} \right] \end{array} .$

Lem. $\Phi_X(0) = 1$ et Φ_X est continue bornée (par 1) sur \mathbf{R}^d .

Prop. Soit $X \sim \mathcal{N}(b, V)$. On a $\Phi_X(u) = e^{\langle u|b \rangle - \frac{1}{2} \langle u|Vu \rangle}$.

Prop. Soit X réelle avec $\mathbf{E}(|X|^p) < \infty$ pour un certain $p \in \mathbf{N}^*$. Alors Φ_X est p fois dérivable et $\forall k \in [1; p], \Phi_X^{(k)}(0) = i^k \mathbf{E}(X^k)$.

Espaces \mathcal{L}^p et convergences fonctionnelles des v.a.

La corrélation entre deux v.a. X et Y est $\mathrm{Cor}(X,Y) = \frac{\mathrm{Cov}(X,Y)}{\|X\|_2 \|Y\|_2}$. Le théorème de Pythagore s'écrit

$$\mathbf{E}(XY) = 0 \implies \mathbf{E}[(X+Y)^2] = \mathbf{E}\left[X^2\right] + \mathbf{E}\left[Y^2\right] \qquad \text{ou} \qquad \mathrm{Cov}(X,Y) = 0 \implies \mathrm{Var}(X+Y) = \mathrm{Var}(X) + \mathrm{Var}(Y) \,.$$

et la loi du parallélogramme s'écrit $\left\|X+Y\right\|_2^2+\left\|X-Y\right\|_2^2=2\left\|X\right\|_2^2+2\left\|Y\right\|_2^2.$

Def. Soit $(X_n)_n$ et X dans \mathcal{L}^0 . On dit que $(X_n)_n$ converge en probabilité vers X si $\forall \varepsilon > 0$, $\lim_{n \to \infty} \mathbf{P}[|X_n - X| \ge 0] = 0$.

Lem. La convergence p.s. ou la convergence en norme dans L^p impliquent la convergence en probabilité.

Lem. La convergence en probabilité est équivalente à la convergence au sens de la distance $D:(X,Y)\mapsto \mathbf{E}(|X-Y|\wedge 1)$

Th. (L^0, D) est un espace métrique complet.

Th. Soit $(X_n)_n$ et X des v.a. dans \mathcal{L}^0 .

- (i) $X_n \longrightarrow X$ p.s. ssi $\sup_{m \ge n} |X_m X| \longrightarrow 0$ en probabilité.
- (ii) $X_n \longrightarrow X$ en probabilité ssi de toute suite croissantes $(n_k)_k \subset \mathbf{N}$, on peut extraire une sous-suite $(n_{k_j})_j$ telle que $X_{n_{k_j}} \longrightarrow X$ p.s.

Cor (Slutsky). Soit ϕ continue. Si $X_n \longrightarrow X$ en probabilités, alors $\phi(X_n) \longrightarrow \phi(X)$ en probabilité.

Def. Une famille C de v.a. est dite uniformément intégrable (U.I.) si $\lim_{c\to\infty} \sup_{X\in C} \mathbf{E}\left[|X|\mathbf{1}_{|X|\geqslant c}\right] = 0$.

Th. Soit $(X_n)_n$ et X des v.a. dans \mathcal{L}^1 . Alors $X_n \longrightarrow X$ dans L^1 si et seulement si $X_n \longrightarrow X$ en probabilité et $(X_n)_n$ est U.I.

Convergence en loi

3 Espérance conditionnelle

Soit un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$ et \mathcal{F}, \mathcal{G} des sous- σ -algèbres de \mathcal{A} .

Th. Pour toute v.a. $X \in L^1(\mathcal{A}, \mathbf{P})$, il existe une v.a. Z telle que

- (i) Z est F-mesurable,
- (ii) $\mathbf{E}|Z| < \infty$,
- (iii) pour tout événement $F \in \mathcal{F}$, on a $\mathbf{E}(X \mathbf{1}_F) = \mathbf{E}(Z \mathbf{1}_F)$.

De plus Z est unique p.s.

Def. La v.a. vérifiant les propriétés ce-dessus est appeleé **version de l'espérance conditionnelle** de X sachant \mathcal{F} , notée $\mathbf{E}(X\mid\mathcal{F})$. Si $\mathcal{F}=\sigma(Y_1,\ldots,Y_n)$, on écrit simplement $\mathbf{E}(X\mid Y_1,\ldots,Y_n)$.

Ex. On a $\mathbf{E}(X \mid \{\emptyset, \Omega\}) = \mathbf{E}(X)$ et $\mathbf{E}(X \mid \sigma(X)) = X$.

Prop. L'opérateur $\mathbf{E}(\cdot \mid \mathcal{F})$ est linéaire et $\forall X \in \mathbb{E}^1(\mathcal{A}, \mathbf{P})$ on a :

- (i) $\mathbf{E}(\mathbf{E}(X \mid \mathcal{F})) = \mathbf{E}(X)$
- (ii) si X est \mathcal{F} -mesurable, $\mathbf{E}(X \mid \mathcal{F}) \stackrel{p.s.}{=} X$,
- (iii) si $X \geqslant 0$, $\mathbf{E}(X \mid \mathcal{F}) \stackrel{p.s.}{\geqslant} 0$,
- (iv) si $g: \mathbf{R}^n \to \mathbf{R}$ est convexe et $\mathbf{E}(|g(X)|) < \infty$ alors $\mathbf{E}(g(X) \mid \mathcal{F}) \geqslant g(\mathbf{E}(X \mid \mathcal{F}))$,
- (v) si $\mathcal{F} \subset \mathcal{G}$, $\mathbf{E}(\mathbf{E}(X \mid \mathcal{G}) \mid \mathcal{F}) = \mathbf{E}(X \mid \mathcal{F})$,
- (vi) si \mathcal{G} est indépendante de $\sigma(\sigma(X), \mathcal{F})$, $\mathbf{E}(X \mid \sigma(\mathcal{F}, \mathcal{G})) = \mathbf{E}(X \mid \mathcal{F})$.

Prop. La convergence monotone, le lemme de Fatou et la convergence dominée restent vraies pour l'espérance conditionnelle.

Prop. Soit $X \in \mathbb{E}^0(A)$ et $Y \in \mathbb{E}^0(\mathcal{F})$. On suppose $\mathbf{E}(|X|) < \infty$ et $\mathbf{E}(|XY|) < \infty$. Alors $\mathbf{E}(XY \mid \mathcal{F}) = Y \cdot \mathbf{E}(X \mid \mathcal{F})$.

Prop. Soit X,Y deux v.a. à valeurs dans \mathbf{R}^n et \mathbf{R}^m respectivement, et $g\colon \mathbf{R}^n\times \mathbf{R}^m\to \mathbf{R}$ une fonction telle que $\mathbf{E}(|g(X,Y)|)<\infty$. Si X et Y sont indépendantes alors $\mathbf{E}(g(X,Y)\mid X)=G(X)$ où $\forall x\in \mathbf{R}^n, G(x):=\mathbf{E}(g(x,Y))$.

Vecteurs gaussiens

Def. X est un vecteur gaussien (ou variable gaussienne multivariée ou variable normale multivariée) si et seulement si $\forall a \in \mathbf{R}^d$, la loi de $\langle a \mid X \rangle$ est une loi gaussienne (éventuellement de variance nulle).

Th. X est un vecteur gaussien d'espérance m et de matrice de covariance Γ si et seulement si sa fonction caractéristique est $t \mapsto \exp(i \langle t \mid m \rangle - \frac{1}{2} t^{\mathsf{T}} \Gamma t)$. On écrit $X \sim \mathcal{N}_d(m, \Gamma)$.

Prop. Soit (X,Y) un vecteur gaussien à valeurs dans $\mathbf{R}^n \times \mathbf{R}^m$, de moyenne $\mu = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}$ et de matrice de variances-

covariances $V = \begin{pmatrix} V_X & V_{XY}^\mathsf{T} \\ V_{XY} & V_Y \end{pmatrix}$. Supposons que $\mathrm{Var}(Y) = V_Y$ est inversible. Alors la loi conditionnelle de X sachant Y = y est gaussienne de moyenne $\mathbf{E}(X \mid Y = y) = \mu_X + V_{XY}V_Y^{-1}(y - \mu_Y)$ et variance $\mathrm{Var}(X \mid Y = y) = y$

 $V_X - V_{XY} V_Y^{-1} V_{XY}^{\mathsf{T}}$.

Processus aléatoires et structure d'information 5

Def. Un **processus** est une suite $(X_n)_n$ de v.a. sur (Ω, \mathcal{A}) à valeurs dans un ensemble mesuré (E, \mathcal{E}) .

Def. Une filtration de \mathcal{A} est une suite croissante $\mathbf{F} = (\mathcal{F}_n)_{n \geqslant 0}$ de sous- σ -algèbres de \mathcal{A} . On dit que $(\Omega, \mathcal{A}, \mathbf{F})$ est un espace probabilisable filtré et $(\Omega, \mathcal{A}, \mathbf{F}, \mathbf{P})$ un espace probabilisé filtré.

 E_X . La suite $(\mathcal{F}_n^X)_{n\in\mathbb{N}}=(\sigma(X_i,i\leqslant n))_{n\in\mathbb{N}}$ est une filtration de \mathcal{A} appelée filtration naturelle de X.

Def. Soit $X = (X_n)_n$ un processus aléatoire et $(\mathcal{F}_n)_n$ une filtration de \mathcal{A} . On dit que X est :

- **F-adapté** si $\forall n \in \mathbb{N}$, X_n est \mathcal{F}_n -mesurable,
- **F-prévisible** si $\forall n \in \mathbb{N}$, X_n est \mathcal{F}_{n-1} -mesurable, où $\mathcal{F}_{-1} := \{\emptyset, \Omega\}$.

Def. Un temps d'arrêt ν est une variable aléatoires à valeurs dans $\mathbf{N} \cup \{\infty\}$ telle que $\forall n \in \mathbf{N}, \{\nu = n\} \in \mathcal{F}_n$. On note \mathcal{T} l'ensemble des temps d'arrêt.

Prop. Soit $(X_n)_{n\in\mathbb{N}}$ un processus **F**-adapté à valeurs dans (E,\mathcal{E}) . Pour tout $A\in\mathcal{E}$, on définit le premier temps *d'atteinte* $T_A := \inf\{n \in \mathbb{N} \mid X_n \in A\}$, avec la convention $\inf \emptyset = \infty$. Alors T_A est un temps d'arrêt.

Prop. Soit $\tau, \theta, (\tau_n)_{n \in \mathbb{N}}$ des temps d'arrêt.

- (i) $\tau \wedge \theta$, $\tau \vee \theta$ et $\tau + \theta$ sont des temps d'arrêt,
- (ii) soit $c \ge 0$ une constante, alors $\tau + c$ et $(1 + c)\tau$ sont des temps d'arrêt,
- (iii) $\lim \inf_n \tau_n$ et $\lim \sup_n \tau_n$ sont des temps d'arrêt.

Prop. Soit $(X_n)_n$ un processus aléatoire à valeurs dans un espace mesuré (E,\mathcal{E}) et τ un temps d'arrêt. Alors $X_\tau \colon \omega \in$ $\Omega \mapsto X_{\tau(\omega)}(\omega)$ est une v.a.

Prop. Pour tout temps d'arrêt $\tau \in \mathcal{T}$, $\mathcal{F}_{\tau} \subset \mathcal{A}$ est une sous- σ -algèbre de \mathcal{A} . Si X est un processus aléatoire \mathbf{F} -adapté, X_{τ} est \mathcal{F}_{τ} -mesurable.

Def. L'information disponible à un temps d'arrêt est $\mathcal{F}_{\tau} := \{A \in \mathcal{A} \mid \forall n \in \mathbb{N}, A \cap \{\tau = n\} \in \mathcal{F}_n\}.$

Prop. Pour tout temps d'arrêt $\tau \in \mathcal{T}$, \mathcal{F}_{τ} est une sous- σ -algèbre de \mathcal{A} . Si X est un processus aléatoire \mathbf{F} -adapté, X_{τ} est \mathcal{F}_{τ} -mesurable.

Prop. Soit τ et θ deux temps d'arrêt. Alors $\{\tau \leqslant \theta\}$, $\{\tau \geqslant \theta\}$ et $\{\tau = \theta\}$ appartiennent à $\mathcal{F}_{\tau} \cap \mathcal{F}_{\theta}$, et pour toute v.a. Xintégrable, on a $\mathbf{E}(\mathbf{E}(X \mid \mathcal{F}_{\tau}) \mid \mathcal{F}_{\theta}) = \mathbf{E}(\mathbf{E}(X \mid \mathcal{F}_{\theta}) \mid \mathcal{F}_{\tau}) = \mathbf{E}(X \mid \mathcal{F}_{\tau \wedge \theta}).$

Chaînes de Markov 6

Soit $X = (X_n)_{n \in \mathbb{N}}$ un processus stochastique défini sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbf{P})$ et à valeurs dans un espace d'états discret E, fini ou dénombrable.

Not. π_n est la distribution marginale de $X_n: \forall x \in E, \pi_n(x) := \mathbf{P}(X_n = x)$.

Def. On dit que X est un chaîne de Markov si $\forall A \subset E, \forall n \in \mathbb{N}^*, \mathbf{P}[X_n \in A \mid \mathcal{F}_{n-1}^X] = \mathbf{P}[X_n \in A \mid X_{n-1}].$

Les probabilités de transition sont représentées par les matrices de transition P_n définies par $\forall n \in \mathbb{N}, \forall x, y \in \mathbb{N}$ $E, P_n(x,y) := \mathbf{P}[X_n = y \mid X_{n-1} = x]$. Ce sont des matrices stochastiques : leurs composantes sont positives et leurs lignes somment à l'unité.

Prop. Soit $(P_n)_{n\in\mathbb{N}^*}$ une suite de matrices stochastiques sur E. Pour toute distribution initiale π_0 il existe une chaîne de Markov de loi initiale π_0 et de matrices de transition $(P_n)_{n \in \mathbb{N}^*}$.

Les probabilités marginales π_n se déduisent par $\forall n \in \mathbf{N}^*, \pi_n = \pi_0 P_1 \dots P_n$, où π_0 est un vecteur ligne de taille Card(E).

Prop (Formule de Chapman-Kolmogorov). $\forall x, y \in E, \forall k \in [0, n], \mathbf{P}(X_n = y \mid X_0 = x) = \sum_{x \in E} \mathbf{P}(X_n = y \mid X_0 = x)$ $X_k = z)\mathbf{P}(X_k = z \mid X_0 = x).$

Not. \mathbf{P}_x est la probabilité conditionelle sachant $X_0 = x$, et \mathbf{E}_x est l'espérance associée.

Th (Propriété de Markov forte). Soit $(X_n)_{n\in\mathbb{N}}$ une chaîne de Markov et τ un temps d'arrêt à valeurs dans N. Alors $\forall A \subset E, \forall n \in \mathbf{N}^*, \mathbf{P}(X_{\tau+n} \in A \mid \mathcal{F}^X_{\tau+n-1}) = \mathbf{P}(X_{\tau+n} \in A \mid X_{\tau+n-1}).$

Def. Une chaîne de Markov est dite **homogène** si sa matrice de transition P_n est indépendante de n.

Lois invariantes et classification des états

Soit X une chaîne de Markov homogène de matrice de transition P.

Def. Une probabilité ν sur E est représentée par un vecteur ligne $(\nu(x))_{x\in E}$. On dit que ν est une probabilité invariante pour X si $\nu P = \nu$.

Th. Soit E un espace d'état fini. Alors il existe au moins une probabilité invariante.

Si
$$\forall x \in E, \forall n \in \mathbf{N}\pi_n(x) > 0$$
 on définit $Q_n(x,y) := \mathbf{P}(X_n = y \mid X_{n+1} = x) = \frac{P(y,x)\pi_n(y)}{\pi_{n+1}(x)}$.

Def. On dit que X (homogène) est **réversible** par rapport à une mesure de probabilité ν si $\forall x, y \in E, \nu(x)P(x,y) =$ $\nu(y)P(y,x)$, i.e. si les lois marginales π_n sont données par ν , $Q_n=P$ pour tout n.

Prop. Soit ν une mesure de probabilité par rapport à laquelle X est invariant. Alors ν est une probabilité invariante.

Def. Soit $x \in E$. On définit le temps d'arrêt de premier retour à $x : R_x := R_1^x = \inf\{n \in \mathbf{N}^* \mid X_n = x\}$. x est dit récurrent si $\mathbf{P}(R_x < \infty) = 1$, dont récurrent positif si $\mathbf{E}_x(R_x) < \infty$ et récurrent nul si $\mathbf{E}_x(R_x) = \infty$. Sinon on dit que x est **transitoire** ou **transient**.

On introduit les mesures à valeurs dans $[0,\infty]$ définies par $\forall x,y\in E, \mu_x(y)=\mathbf{E}_x\left[\sum_{n=0}^{R_x-1}\mathbf{1}_{\{X_n=y\}}\right]=0$ $\sum_{n \in \mathbf{N}} \mathbf{P}_x(R_x > n, X_n = y).$

Prop. Soit $x \in E$. Alors,

- (i) $\mu_x P = \mu_x \, ssi \, x \, est \, un \, \acute{e}tat \, r\acute{e}current$,
- (ii) μ_x est une mesure finie ssi x est récurrent positif, dans ce cas $\nu_x = \frac{\mu_x}{\mathbf{E}_x(R_x)}$ est une probabilité invariante.

Def. Soit $x, y \in E$. On dit que :

- x communique avec y, noté $x \leftarrow y$ si $\exists n \in \mathbb{N}, x_1, \dots, x_n, P(x, x_1) \cdots P(x_n, y) > 0$,
- x et y communiquent, noté $x \leftrightarrow y$, si $x \leftarrow y$ et $y \leftarrow x$.

Def. Une classe $E_0 \subset E$ est dite **irréductible** si $\forall x, y \in E_0, x \leftarrow y$. X est dite irréductible si E est irréductible. Une classe $E_0 \subset E$ est dite **fermée** si $\forall x, y \in E, (x \in E_0 \land x \leftarrow y) \implies y \in E_0$. Si $\{x_0\}$ est fermée, on dit que x_0 est absorbant.

On introduit le **nombre de visite d'un état** $x: N^x := \sum_{n \in \mathbb{N}} \mathbf{1}_{\{X_n = x\}}$.

Prop. Soit $x, y \in E$.

- (i) Si $x \leftarrow y$ et x est récurrent, alors y est récurrent et $N^y = \infty$, \mathbf{P}_x -p.s.
- (ii) $Si x \leftrightarrow y$, alors x et y sont simultanément soit transitoires soit récurrents.

Th. Supposons X irréductible. Alors X est récurrente positive si et seulement si X admet une loi invariante ν . De plus, ν est unique, strictement positive, donnée par $\forall x \in E, \nu(x) = \frac{1}{\mathbf{E}_{\pi}(R_{\pi})}$.

Prop. Soit X une chaîne de Markov sur un espace d'état dénombrable E, et $x \in E$ récurrent. Alors, pour toute mesure $\nu \operatorname{sur} E, \nu \geqslant \nu P \implies \nu = \nu(x)\mu_x.$

Théorèmes ergodiques

Théorèmes ergodiques

Th. Soit X une chaîne de Markov irréductible, $\forall x, y \in E, \frac{1}{n}N_n^y := \frac{1}{n}\sum_{i=0}^n \mathbf{1}_{\{X_i = y\}} \longrightarrow \frac{1}{\mathbf{E}_y(R^y)}$, \mathbf{P}_x -p.s.

En particulier il vient $\forall x,y \in E, \frac{1}{n} \sum_{i=0}^{n} \mathbf{P}(X_i = x) = \frac{1}{n} \sum_{i=0}^{n} \pi_i(x) \longrightarrow \nu(x), \mathbf{P}_y$ -p.s. avec ν une loi invariante.

Th. Soit X une chaîne de Markov irréductible et récurrente positive sur E dénombrable, de matrice de transition P et d'unique loi invariante ν . Alors, pour toute fonction $g\colon E\times E o {f R}$ positive ou telle que ${f E}_
u[|g(X_0,X_1)|]<\infty$, on a $\forall \pi_0, \frac{1}{n} \sum_{i=1}^n g(X_{i-1}, X_i) \xrightarrow{p.s.} \mathbf{E}_{\nu} \left[g(X_0, X_1) \right] = \sum_{x \in E} \nu(x) \sum_{y \in E} P(x, y) g(x, y).$ **Th.** Soit X et g comme précedemment. Supposons qu'il existe $x \in E$ tel que

$$s(x)^2 := \mathbf{E}_x \left[\sum_{i=1}^{R_x} \left(g(X_{i-1}, X_i) - \mathbf{E}_{\nu}(g(X_0, X_1)) \right)^2 \right] < \infty.$$

Alors $\sigma^2 := \nu(x)s(x)^2$ est une constante (indépendante de x) et

$$\sqrt{x}\left(\frac{1}{n}\sum_{i=1}^n g(X_{i-1},X_i) - \mathbf{E}_{\nu}(g(X_0,X_1))\right) \longrightarrow \mathcal{N}(0,\sigma^2) \text{ en loi.}$$

5 Che Bedara - BDE Télécom ParisTech

Convergence des lois marginales et apériodicité

Not. Pour tout état $x \in E$ on définit $I(x) := \{n \in \mathbf{N}^* \mid P^n(x,x) > 0\}$ et $\mathbf{p}(x) := \operatorname{pgcd}(I(x))$.

Prop. Soit X une chaîne de Markov irréductible. Alors la fonction $\mathbf{p}(x) = \mathbf{p}_X$ est constante.

Def. Soit X une chaîne de Markov irréductible. On dit que X est **apériodique** si $\mathbf{p}_X = 1$.

Lem. Pour $x \in E$, $\mathbf{p}(x) = 1 \iff \exists \mathbf{n}(x) \in \mathbf{N}, \forall n \geqslant \mathbf{n}(x), P^n(x, x) > 0$.

Th. Soit X une chaîne de Markov irréductible, apériodique et récurrente positive d'unique loi invariante ν . Alors $\forall x \in E, \pi_n(x) \longrightarrow \nu(x)$.

Prop. Soit X^1 et X^2 deux chaînes de Markov indépendantes de même matrice de transition P irréductible apériodique. Alors la chaîne produit $Y := (X^1, X^2)$ est irréductible apériodique. Si de plus P est récurrente positive, il en est de même pour Y.

Prop. Soit X une chaîne de Markov irréductible apériodique sur E fini. Alors sa matrice de transition P vérifie la **condition de Dobelin**: il existe $k \in \mathbb{N}$, $\epsilon > 0$ et une loi δ sur E tels que $\forall x, y \in E$, $P^k(x, y) \geqslant \epsilon \cdot \delta(y)$.

Th. Soit P une matrice de transition vérifiant la condition de Dobelin. Alors il existe une unique loi invariante $\nu \geqslant \epsilon \cdot \delta$ vérifiant

$$\sup_{x \in E} \sum_{y \in E} |P^n(x, y) - \nu(y)| \le 2(1 - \epsilon)^{\lfloor n/k \rfloor}.$$

9 Martingales en temps discret

Martingales et temps d'arrêt

Def. Soit $(X_n)_{n\geqslant 0}$ un processus aléatoire adapté sur l'espace probabilisé filtré $(\Omega, \mathcal{A}, \mathbf{F}, \mathbf{P})$. On dit que X est une **surmartingale** (resp. **sous-martingale**) si X_n est **P**-intégrable pour tout n et $\forall n \in \mathbf{N}^*, \mathbf{E}[X_n \mid \mathcal{F}_{n-1}] \leqslant (\text{resp. } \geqslant)X_{n-1}$. X est une **martingale** s'il est à la fois surmartingale et sous-martingale.

Def. Pour un processus aléatoire $X=(X_n)_{n\geqslant 0}$, on définit le **processus arrêté** au temps d'arrrêt ν par $\forall n\in \mathbb{N}, X_n^{\nu}:=X_{n\wedge \nu}.$

Lem. Soit X une surmartingale (resp. sous-martingale, martingale) et ν un temps d'arrêt. Alors le processus arrêté X^{ν} est une surmartingale (resp. sous-martingale, martingale).

Th. Soit X une martingale (resp. surmartingale) et $\underline{\nu}$, $\overline{\nu}$ deux temps d'arrêt bornés dans \mathcal{T} vérifiant $\underline{\nu} \leqslant \overline{\nu}$ p.s. Alors $\mathbf{E}[X_{\overline{\nu}} \mid \mathcal{F}_{\underline{\nu}}] = (resp. \leqslant) X_{\underline{\nu}}$.

Prop. Soit $X=(X_n)_n$ un processus aléatoire **F**-adapté, $\forall n \in \mathbf{N}, \mathbf{E}(|X_n|) < \infty$. Alors X est une martingale ssi $\mathbf{E}[X_\nu] = \mathbf{E}[X_0]$ pour tout temps d'arrêt n borné.

Def. Une martingale $(X_n)_n$ est **fermée** s'il existe une v.a. réelle intégrable Y telle que $\forall n \in \mathbb{N}, X_n = \mathbf{E}(Y \mid X_n)$. **Th.** Toute martingale fermée est uniformément intégrable.

Th (Inégalité maximale de Doob). Soit $M=(M_n)_{n\geqslant 0}$ une sous-martingale, et $M_n^*:=\sup_{k\leqslant n}M_k$ son processus de maximum courant.

- (i) $\forall c > 0, \forall n \in \mathbf{N}, c\mathbf{P}(M_n^* \geqslant c) \leqslant \mathbf{E}(M_n \mathbf{1}_{M_n^* \geqslant c})$
- (ii) Soit p > 1 et supposons que la sous-martingale M est positive et $\forall n \in \mathbb{N}, M_n \in \mathcal{L}^p$. Alors $M_n^* \in \mathcal{L}^p$ et $\|M_n^*\|_p \leqslant \frac{p}{p-1} \|M_n\|_p$.

Prop (Décomposition de Doob). Soit $(X_n)_n$ un processus aléatoire intégrable. Il existe une martingale $(M_n)_n$ et un processus **F**-prévisible $(V_n)_n$ tels que $M_0 = V_0 = 0$ et $\forall n \ge 0, X_n = X_0 + M_n + V_n$. Cette décomposition est unique.

Rem. On voit que : X est une surmartingale ssi V est décroissant, X est une sous-martingale ssi V est croissant et X est une martingale ssi V=0.

Prop. Soit $X=(X_n)_n$ une martingale de carré intégrable, et $\Delta X_n:=X_n-X_{n-1}$. Alors $X_n^2=X_0^2+N_n+[X]_n$ où $N_n:=2\sum_{i=1}^n X_{i-1}\Delta X_i$, $[X]_n:=\sum_{i=1}^n (\Delta X_i)^2$ et $N_0=[X]_0=0$. Dans cette décomposition, $(N_n)_n$ est une martingale nulle en zéro, et $([X]_n)_n$ est un processus **F**-adapté croissant intégrable appelé variation quadratique de la martingale X.

Def. Un processus $X = (X_n)_{n \in \mathbb{N}}$ est une **martingale locale** s'il existe une suite de temps d'arrêt $(\tau_n)_n$ telle que $\tau_n \longrightarrow \infty$ **P**-p.s. et le processus arrêté X^{τ_n} est une martingale pour tout n.

Lem. Soit $X = \{X_n, n \in [0, N]\}$ une martingale locale telle que $\mathbf{E}[X_n^-] < \infty$. Alors X est une martingale.

10 Convergence des martingales

Rem. La suite $(\mathbf{E}[M_n^2])_{n \in \mathbb{N}}$ est croissante.

Th. Soit $(M_n)_{n\in\mathbb{N}}$ une martingale bornée dans L^2 , i.e. $\sup_n \mathbf{E}[M_n^2] < \infty$. Alors il existe une v.a. $M_\infty \in L^2$ telle que $M_n \xrightarrow{L^2} M_\infty$ et $M_n \xrightarrow{p.s.} M_\infty$.

Th. Soit $(M_n)_{n\in\mathbb{N}}$ une martingale de carré intégrable telle que $\sum_{n\geqslant 1}\frac{1}{n^2}\mathbf{E}[|\Delta M_n|^2]<\infty$. Alors $\frac{1}{n}M_n\longrightarrow 0$ p.s. et dans L^2 .

Th (Loi forte des grands nombres). Soit $(X_n)_{n\geqslant 0}$ une suite iid de v.a. intégrables. Alors $\frac{1}{n}\sum_{i=1}^n X_i \stackrel{p.s.}{\longrightarrow} \mathbf{E}[X_1]$. **Lem.** Soit $(X_n)_{n\in \mathbf{N}}$ une sous-martingale, et a < b. Alors la moyenne du nombre de traversées montantes de l'intervalle $[a\,;b]$ vérifie $\mathbf{E}[U_n^{a,b}]\leqslant \frac{1}{b-a}\mathbf{E}[(X_n-a)^+]$.

