

CSCI 3104: Algorithms Spring 2022 Recitation #15 - Complexity II

SOLUTIONS

Problem 1

need to be able to get from any edge vert to any other edge vert in d-1 steps exactly... create either 1 or 2

For each of the following problems, argue whether it is a) in P or b) NP-complete.

a. Bipartite Determination. Given a graph G = (V, E), is G bipartite (that is, can we partition $V = V_1 \cup V_2$ such that V_1, V_2 are disjoint and for all $u, v \in V_i$, $(u, v \notin E?)$

This is in P. We perform a BFS, labelling nodes "1" or "0" on the odd or even iterations of our algorithm, respectively. If we ever examine an already-examined node of the wrong parity, terminate and return False, otherwise return True. BFS takes polynomial time.

b. Heavy Cycle Detection. Given a (nonnegatively) weighted graph G = (V, E, w) and number k > 0, is there a simple cycle of weight at least k?

This is NP-complete.

First, we claim this is in NP. Given a cycle as an ordering of vertices $C = \{v_1, v_2, \dots, v_m\} \subseteq$ V, we check that: • (v_i, v_{i+1}) inV for all $1 \le i \le m-1$ and (v_m, v_1) inV

weight s • the total weight of edges taken is at least k

Once $\begin{picture}(0,0) \put(0,0){\line(0,0){10}} \put$

the first two steps takes O(n) time, and the final one takes at most $O(n^2)$ time, so all checks can be completed in polynomial time.

Seconds, we show that this is NP-complete via reduction from Hamiltonian Cycle. Given a graph G = (V, E), run Heavy Cycle Detection(G = (V, E, 1), k = n), where all edges have weight 1 and we ask if there is a simple cycle of weight at least n.

No simple cycle can have weight greater than n (it would have to take more edges than there are vertices and thus visit some vertex twice), and a simple cycle of weight n visits exactly all vertices once.

Thus, a Hamiltonian cycle satisfies the Heavy Cycle Detection problem, and a heavy cycle detected corresponds to a Hamiltonian cycle on the original graph.

c. Unit-Weight Knapsack. Given a capacity $C \in \mathbb{R}$ and set S of objects, each of which has weight 1 and value v_i , can we choose a subset of items with total weight at most C and total value $\geq k$?

This is in P.

CAUTION: Unconstrained Knapsack is NP-complete. The dynamic programming formulation is pseudopolynomial, meaning it is polynomial in the size of inputs rather than the number of inputs.

The greedy-by-largest-value algorithm produces the most valuable collection, which can be computed in $O(n \log n)$ time for the sort.

KNAPSACK PROBLEM "PSEUDO-Polynomial" (NP-complete)

int n

for 1+0 n:

print n

W = max capacity n = 4 = 1000 n = 8 = 1000 n = 16 10000 n = 16 10000