GENERALITES SUR LES FONCTIONS

I) ACTIVITES ET RAPPELLES

1.1 Ensemble de définition

Activités 1:

Déterminer les ensembles de définition des fonctions suivantes définies de $\mathbb R$ dans $\mathbb R$:

1.
$$f(x) = \frac{2\sqrt{x+1}}{3x^2 + x - 4}$$
2.
$$g(x) = \frac{\sqrt{2x+1} + 3x}{\sqrt{x-x^2}}$$
3.
$$h(x) = \frac{\tan x}{2\sin x + 1}$$

2.
$$g(x) = \frac{\sqrt{2x+1}+3x}{\sqrt{x-x^2}}$$

3.
$$h(x) = \frac{\tan x}{2\sin x + 1}$$

4.
$$k(x) = \frac{3x+1}{x-E(x)}$$

$$5. \quad u(x) = \sqrt{E(x) - x}$$

6.
$$v(x) = \sqrt{x-1} - \sqrt{1-x}$$
.

Activité 2:

Soit ABCD un rectangle tel que : AB = 5cm et BC = 3cm

M un point qui part de A et se déplace sans arrêt sur ABCD; considérons f(x) la distance MC.

2- a) Déterminer graphiquement les variation de
$$f$$
 sur $[0,16]$.

b) Dresser le tableau de variation de
$$f$$
 sur $[0,16]$.

c) Déterminer –suivant le tableau de variation- les extremums de la fonction
$$f$$
 sur $[0,16]$.

5- a) Vérifier que
$$(\forall x \in \mathbb{R}^+)(f(x+16) = f(x)$$

b) Déterminer
$$f(100)$$
, $f(1000)$ et $f(2017)$.

Activité 3 :

Soit
$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \frac{x^2 + 1}{|x| - 1}$$

1- Déterminer
$$\mathcal{D}_f$$
.

2- Etudier la parité de
$$f$$
.

3- Donner la restriction de
$$f$$
 sur \mathbb{R}^+ .

4- Déterminer les variations de
$$f$$
 sur $[0,1[$ sur $]1; 1+\sqrt{2}]$ et sur $[1+\sqrt{2},+\infty[$.

5- Dresser le tableau de variation de
$$f$$
 sur \mathbb{R} .

II) NOTIONS DE BASE

1) Ensemble de définition

Définition:(fonction)

On appelle fonction numérique à variable réel toute relation d'une partie E de \mathbb{R} vers \mathbb{R} tel que chaque élément x de E à au plus une image dans \mathbb{R} .

Si
$$f(x) = y$$
 alors :

- y est l'image de x par la fonction f
- *x* est l'antécédent de *y* par la fonction *f* .

Définition: (Ensemble de définition d'une fonction)

Soit f une fonction numérique à variable réel de E dans \mathbb{R} , les éléments de E qui ont une image par f forment un ensemble qu'on appelle ensemble de définition de f et on le note : \mathcal{D}_f

$$\mathcal{D}_f = \{x \in E/f(x) \in \mathbb{R}\}$$

Exercice:

Déterminer l'ensemble de définition de la fonction : $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto \sqrt{x - \sqrt{x + 1}}$

Remarque:

Si f est une fonction dont l'ensemble de définition est \mathcal{D}_f , l'application définie de \mathcal{D}_f vers \mathbb{R} s'appelle **l'application** associée à la fonction f.

2) Représentation graphique d'une fonction.

Définition:(Graphe d'une fonction)

Soit f une fonction numérique à variable réel, **le graphe de la fonction** f est l'ensemble des couples (x, f(x)) tels que $x \in D_f$; on le note : \mathcal{G}_f .

$$\mathcal{G}_f = \{(x, f(x)) / x \in D_f\}$$

Si le plan est rapporté à un repère (souvent orthogonal), chaque couple du graphe de f peut être représenté par un point M, l'ensemble des points ainsi définie forme une **courbe** dans le plan qu'on appelle **la courbe représentative de la fonction** f, ou encore **la représentation graphique de la fonction** f on la note par : \mathcal{C}_f

Définition:

Le plan étant rapporté à un repère $\mathcal{R}(0,\vec{\iota},\vec{j})$, la représentation graphique de la fonction f est l'ensemble des points M(x,f(x)) tels que $x\in D_f$.

$$\mathcal{C}_f = \{ M(x, f(x)) / x \in D_f \}$$

$$M(x,y) \in \mathcal{C}_f \iff \begin{cases} x \in D_f \\ y = f(x) \end{cases}$$

Remarque:

Pour qu'une courbe dans le plan soit une courbe d'une fonction numérique à variable réelle il faut et il suffit que chaque parallèle à l'axe des ordonnées coupe cette courbe en au plus un point.

Exemples:

Les courbes suivantes ne sont pas les courbes des fonctions numériques à variable réelle.

Les courbes suivantes sont les courbes des fonctions numériques à variable réelle.

III) FONCTIONS: PAIRE; IMPAIRE; PERIODIQUE

1)Activités :

Activité:

Soit

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto 3x - E\left(3x + \frac{1}{2}\right)$ où E désigne la partie entière.

- 1- a) Supposons qu'il existe un réel T qui vérifie (P): $(\forall x \in \mathbb{R})(f(x+T)=f(x))$; montrer que $3T \in \mathbb{Z}$.
 - b) En déduire la valeur p du plus petit réel strictement positif qui vérifie (P)
- 2- Inversement pour la valeur p trouvée en 1-b) : montrer que $(\forall x \in \mathbb{R})(f(x+p)=f(x))$

Activité 2 :

Compléter la courbe ci-dessous de la fonction h sachant que : $h(x) = \frac{2x}{x^2+1}$.

Activité 3:

La courbe ci-contre est une partie de la courbe de la fonction

$$\text{définie par}: h(x) = \frac{x^2}{x^2 - 1}$$

- 1- Déterminer l'ensemble définition de la fonction h
- 2- Déterminer la nature de h.
- 3- Compléter la courbe C_h

2) Fonction paires, fonctions impaires

2.1 Fonction paire:

Définition:

Soit f une fonction dont l'ensemble de définition est D_f , on dit que la fonction f est paire si :

- $(\forall x \in \mathbb{R})(x \in D_f \Rightarrow -x \in D_f)$
- $(\forall x \in D_f)(f(-x) = f(x))$

Propriété:

Dans le plan muni d'un repère orthogonal, la courbe représentative d'une fonction paire est symétrique par rapport à l'axe des ordonnées.

Preuve: (en exercice)

2.2 Fonctions impaire:

Définition:

Soit f une fonction dont l'ensemble de définition est D_f , on dit que la fonction f est impaire si :

- $(\forall x \in \mathbb{R})(x \in D_f \Rightarrow -x \in D_f)$
- $(\forall x \in D_f)(f(-x) = -f(x))$

Propriété:

La courbe représentative d'une fonction paire est symétrique par rapport à l'origine du repère.

Preuve: (en exercice).

<u>3) Fonctions périodiques :</u>

Définition:

Soit f une fonction dont l'ensemble de définition est D_f , on dit que la fonction f est **périodique** s'il existe un réel T non nul qui vérifie :

- $(\forall x \in \mathbb{R}) \left(x \in D_f \Rightarrow \begin{cases} x + T \in D_f \\ x T \in D_f \end{cases} \right)$
- $(\forall x \in D_f)(f(x+T) = f(x))$

Tout réel T qui vérifie la définition s'appelle une période de la fonction f.

Le plus petit réel p strictement positif qui vérifie la définition s'appelle la période de la fonction f.

Exemples:

- $x \mapsto 3x E\left(3x + \frac{1}{2}\right)$ f est périodique de période $\frac{1}{3}$ Dans l'activité précédente :
- $g: \mathbb{R} \to \mathbb{R}$ $\chi \mapsto \frac{\sin(2x)}{\cos(2x) + 1}$ Soit la fonction
 - 1- Déterminer l'ensemble de définition de la fonction g.
 - 2- Montrer que la fonction g est périodique et déterminer sa période.

Propriété:

Si f est une fonction périodique de période T alors pour tout k dans \mathbb{Z} , kT est une période de f.

Exercice : Démontrer par récurrence sur k la propriété précédente.

Envisager deux cas : k = n et k = -n où n est un entier naturel.

Courbe d'une fonction périodique :

Activité: La courbe ci-dessous est la courbe de la fonction $f(x) = 3x - E\left(3x + \frac{1}{2}\right)$ qui est périodique de période $\frac{1}{2}$

 C_k est la courbe représentative de la restriction de la fonction f sur $D_k = [\frac{-1}{6} + k \times \frac{1}{3}; \frac{1}{6} + k \times \frac{1}{3}]$

- 1- Quelle est la longueur de D_k .
- 2- Déterminer graphiquement les transformations qui transforment C_0 en C_1 , en C_6 et $C_{(-4)}$
- 3- Conjecturer la transformation qui transforme C_0 en C_k .

Théorème:

Soit f une fonction périodique de période p et dont l'ensemble de définition $\overline{D_f}$. On pose :

 $D_k = [a_0 + kT, a_0 + (k+1)T \cap D_f \text{ où } a_0 \text{ est un \'el\'ement de } D_f \text{ et } C_k \text{ la courbe de la restriction de } f \text{ sur } D_k.$

 C_k est l'image de C_0 par la translation t_k de vecteur $\vec{u}_k \binom{kT}{0}$

Preuve: En exercice.

Remarque:

La courbe C_f est la réunion de toutes les courbes C_k où $k \in \mathbb{Z}$, $C_f = \bigcup_{k \in \mathbb{Z}} C_k$

Exercice:

La courbe ci-dessus est la courbe de la restriction de la fonction

 $g: \mathbb{R} \to \mathbb{R}$ $x \mapsto \frac{\sin(2x)}{\cos(2x) + 1}$

sur l'intervalle] $\frac{-\pi}{2}$, $\frac{\pi}{2}$ [

On a montré que cette fonction est périodique de période π , continuer à tracer la courbe \mathcal{C}_f sur $[-2\pi, 2\pi]$

IV) FONCTION MAJOREE, MINOREE, BORNEE

1) Activité

Activité 1 : Soit la fonction f définie par : $f(x) = 2x^2 - 4x + 1$

En utilisant la forme canonique du trinôme f, montrer que $(\forall x \in \mathbb{R})(f(x) \ge -1)$

Activité 2 :

Soit la fonction h définie par : $h: \mathbb{R} \to \mathbb{R}$ $x \mapsto \frac{x}{1+|x|}$

- 1- Déterminer l'ensemble de définition de la fonction h et étudier sa parité.
- 2- Construire la courbe de la restriction de h sur $[0, +\infty[$, puis construire C_f
- 3-Montrer que $(\forall x \in \mathbb{R})(h(x) < 1)$ et que $(\forall x \in \mathbb{R})(h(x) > -1)$
- 4- La fonction h admet-elle un maximum absolu?

Définitions

Soit f une fonction numérique dont l'ensemble de définition est D_f , et D une partie de D_f .

- On dit que : f est **majorée** sur D si $(\exists M \in \mathbb{R})(\forall x \in D)(f(x) \leq M)$
- On dit que : f est **minorée** sur D si $(\exists m \in \mathbb{R})(\forall x \in D)(f(x) \ge m)$
- On dit que f est bornée sur D si elle est majorée et minorée sur D.

Remarque:

- Quand une fonction est majorée sur son ensemble de définition, on se contente de dire qu'elle est majorée.
- ightharpoonup Un majorant M d'une fonction f sur D_f n'est pas nécessairement extremum absolu. Dans la courbe ci-contre 4 est un majorant de f mais pas un extremum absolu (Il n' y a pas de réel α qui vérifie que $f(\alpha)=4$)

Exemple:

- \triangleright La fonction h dans l'activité 2 est majorée par 1 et minorée par -1.
- La fonction f dans l'activité 1 est minorée.
 Montrer par absurde que f ne peut pas être majorée.

Propriété:

- Si f est une fonction majorée par M alors elle majorée par tout nombre M' tel que : $M' \ge M$.
- Si f est une fonction minorée par m alors elle majorée par tout nombre m' tel que : $m' \le m$.

Interprétations géométriques :

- \triangleright La courbe d'une fonction majorée par M est au-dessous de la droite D: y = M (figure 1)
- \triangleright La courbe d'une fonction minorée par m est au-dessus de la droite D: y = m (figure 2)

Propriété:

Soit f une fonction numérique dont l'ensemble de définition est D_f ; f est bornée si et seulement si : $(\exists \alpha \in \mathbb{R}^+)(\forall x \in D_f)(|f(x)| \leq \alpha)$

Preuve: (en exercice)

V) COMPARAISON DE DEUX FONCTIONS

<u>1) Signe d'une fonction</u>

Activité :

Soit la fonction définie sur \mathbb{R} par : $f(x) = 2x^2 + x + 1$ Montrer que $(\forall x \in \mathbb{R})(f(x) \ge 0)$

Définition:

Soit f une fonction dont l'ensemble de définition est D_f , et D une partie de D_f .

- On dit que : f est positive sur D si $(\forall x \in D)(f(x) \ge 0)$.
- On dit que : f est négative sur D si $(\forall x \in D)(f(x) \le 0)$.

Remarque:

- ightharpoonup Si f est positive sur D_f on dit que f est positive et on écrit : $f \ge 0$
- ightharpoonup Si f est négative sur D_f on dit que f est négative et on écrit : $f \le 0$
- Une fonction positive est minorée par 0, par contre une fonction négative est majorée par 0.

Sur la courbe ci-contre la fonction f change de signe : f est négative sur $]-\infty,-1]$ et positive sur $[-1,+\infty[$

Définition:

Soient f et g deux fonctions dont les domaines de définitions sont respectivement D_f et D_g et D une partie commune entre D_f et D_g ($D \subset D_f \cap D_g$)

On dit que f et plus grande que g sur D si $(\forall x \in D)(f(x) \ge g(x))$ et on écrit $f \ge g$ sur D

Interprétation géométrique :

Si $f \ge g$ sur D alors C_f est au-dessus de C_g

Exemple:

Sur la figure ci-contre \mathcal{C}_f est la courbe de la fonction

 $f(x) = 2x^2 + 4x$ et C_g est la courbe représentative de

la fonction $g(x) = \frac{x-2}{x+1}$

- Sur $[\alpha, -1[$ on a : $g \ge f$.
- Sur $]-\infty,\alpha]\cup]-1,+\infty[$ on a $f\geq g$

Exercice:

Considérons les fonctions $f(x) = x^2 - 2x$ et $g(x) = \frac{2x}{x-1}$

- 1- Résoudre dans \mathbb{R} l'équation f(x) = g(x)
- 2- Construire les courbes C_f et C_a
- 3- Nous définissons le réel Sup(a, b) par : Sup(a, b) = a si $a \ge b$.

Soit la fonction h définie par :

$$h(x) = \sup(f(x), g(x))$$

- a) Donner une expression de h en fonction de x
- b) Construire la courbe représentative de h.

VI) VARIATION D'UNE FONCTION ET EXTREMUMS

1) Activités et définition.

Activité1:

A partir de la courbe ci-contre d'une fonction f,

- 1-Déterminer la monotonie de f sur les intervalles $]-\infty,-1]$; [-1,0] et sur $[0,+\infty[$
- 2-Dresser le tableau de variations de la fonction f.
- 3-Déterminer les extremums de la fonction f et leurs natures.

Activité 2 :

Soit la fonction

$$g: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto |x^2 + x - 2|$$

- 1- Ecrire des expressions de la fonction *g* sans la valeur absolue.
- 2- Etudier la monotonie de la fonction g
- 3- Dresser le tableau de variation de la fonction g.
- 4- Déterminer les extremums de la fonction f et leurs natures.

Activité 3:

Soit la fonction

$$h: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto x^2 + 4x + 1$

Montrer que la fonction h n'admet pas de maximum absolu.

<u>Définitions</u>: (Monotonie d'une fonction)

Soit f une fonction numérique à variable réelle dont l'ensemble de définition est D_f . I un intervalle de D_f .

- On dit que : f est **croissante** sur I si : $(\forall (a,b) \in I^2)(a \le b \Rightarrow f(a) \le f(b))$
- On dit que : f est strictement croissante sur I si : $(\forall (a,b) \in I^2)(a < b \Rightarrow f(a) < f(b))$
- On dit que : f est **décroissante** sur I si : $(\forall (a,b) \in I^2)(a \le b \Rightarrow f(a) \ge f(b))$
- On dit que : f est strictement décroissante sur I si : $(\forall (a,b) \in I^2)(a < b \Rightarrow f(a) > f(b))$
- On dit que f est **monotone** sur l'intervalle I s'il est croissante ou bien décroissante sur I.
- On dit que f est **strictement monotone** sur l'intervalle I s'il est strictement croissante ou bien strictement décroissante sur I.

2) Taux de variation d'une fonction

2.1 Définition

Définition:

Soit f une fonction dont D_f est son ensemble de définition ; I un intervalle inclus dans D_f . a et b deux éléments distincts de I ; le nombre $T_{(a,b)} = \frac{f(a) - f(b)}{a - b}$ s'appelle **le taux d'accroissement de la fonction f entre a et b.**

Théorème:

Soit f une fonction dont D_f est son ensemble de définition ; I un intervalle inclus dans D_f .

- la fonction f est **croissante** sur I si et seulement si $(\forall (a,b) \in I^2)(a \neq b \Rightarrow T_{(a,b)} \geq 0)$
- la fonction f est **décroissante** sur I si et seulement si $(\forall (a,b) \in I^2)(a \neq b \Rightarrow T_{(a,b)} \leq 0)$

Preuve: En exercice

Exercices:

- 1- Etudier la monotonie de la fonction $f(x) = \sqrt{x+1} + \sqrt{x}$ sur \mathbb{R} .
- 2- Etudier la monotonie de la fonction $g(x) = \frac{x}{x^2+1} \operatorname{sur} [0,1]$ et $\operatorname{sur} [1,+\infty[$

2.2 Monotonie et parité:

Propriété:

- Soit f une fonction paire dont le domaine de définition est D_f , I un intervalle dans $D_f \cap \mathbb{R}^+$, et I' son symétrique par rapport à 0.
 - si f est croissante sur I alors elle est décroissante sur I'
 - si f est décroissante sur I alors elle est croissante sur I'
- Soit f une fonction **impaire** dont le domaine de définition est D_f , I un intervalle dans $D_f \cap \mathbb{R}^+$, et I' son symétrique par rapport à 0.
 - si f est croissante sur I alors elle est croissante sur I'
 - si f est décroissante sur I alors elle est décroissante sur I'

Preuve:

On suppose que f est paire : soit I un intervalle dans $D_f \cap \mathbb{R}^+$, et I' son symétrique par rapport à 0.

Soient a' et b' deux éléments de I' alors il existe a et b dans I tels que a' = -a et b' = -b

3) Extremums

3.1 Extremums absolues

<u>Activité</u>: Soit la fonction f définie sur \mathbb{R} par : $f(x) = \frac{2}{1+x^2}$; Montrer que $(\forall x \in \mathbb{R})(f(x) \le f(0))$

Définition:

Soit f une fonction numérique dont l'ensemble de définitions est $D_{\!f}$

- On dit que f admet un maximum absolu en α si : $(\forall x \in D_f)(f(x) \le f(\alpha))$. On écrit : $\max_{x \in D_f} f(x) = f(\alpha)$
- On dit que f admet un minimum absolu en α si : $(\forall x \in D_f)(f(x) \ge f(\alpha))$. On écrit : $\min_{x \in D_f} f(x) = f(\alpha)$

Remarque:

Si f admet un maximum absolu en α alors $f(\alpha)$ est un majorant de f.

Si f admet un minimum absolu en α alors $f(\alpha)$ est un minorant de f

3.2 Extremums relatifs

<u>Activité</u>: Soit la fonction g définie sur \mathbb{R} par : $g(x) = \frac{x}{1+x^2}$

- 1- Etudier la parité de la fonction g.
- 2- Etudier les variations de la fonction g sur [0,1] et sur $[1,+\infty[$
- 3- Dresser le tableau de variation de f sur \mathbb{R} .

Définition:

Soit f une fonction numérique dont l'ensemble de définitions est D_f

- On dit que f admet un maximum relatif en α s'il existe un intervalle ouvert inclus dans D_f et qui contient α tel que : $(\forall x \in I)(f(x) \leq f(\alpha))$.
- On dit que f admet un **minimum relatif** en α s'il existe un **intervalle ouvert inclus dans** D_f et qui contient α tel que : $(\forall x \in I)(f(x) \ge f(\alpha))$.

Propriété:

Soit f une fonction dont l'ensemble de définition est D_f , a , b et c trois éléments de D_f tels que a < b < c et $[a,c] \subset D_f$

- Si f est croissante sur [a, b] et décroissante sur [b, c] alors f admet un maximum relatif en b
- Si f est décroissante sur [a, b] et croissante sur [b, c] alors f admet un minimum relatif en b

f admet un minimum relatif en b

Interprétation géométrique :

Sur la figure ci-contre on a : $f \ \ \text{admet un maximum relatif en } \alpha$ et admet un minimum relatif en β

VII) ETUDE DES FONCTIONS USUELLES (RAPPELLES)

$$1) f(x) = ax^2 + bx + c$$

Propriété:

Soit $f(x) = ax^2 + bx + c$ un trinôme $(a \neq 0)$

- En posant $\alpha = \frac{-b}{2a}$ et $\beta = f\left(\frac{-b}{2a}\right)$ on obtient pour tout réel x; $f(x) = a(x-\alpha)^2 + \beta$ c'est la forme canonique du trinôme f(x).
- La courbe C_f est l'image de la courbe de la fonction $g(x) = ax^2$ par la translation t de vecteur $\vec{u} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$.
- La courbe \mathcal{C}_f dans un repère orthogonal est une parabole de sommet $\Omega(\alpha, \beta)$ et d'axe la droite (Δ) : $x = \alpha$

Les variations de f et sa représentation graphique peut être définies suivant le signe de a comme suite :

En posant
$$\alpha = \frac{-b}{2a}$$
 et $\beta = f\left(\frac{-b}{2a}\right)$

Si a > 0:

Si a < 0:

$2) f(x) = \frac{ax+b}{cx+d}$

Propriété :

Soit f la fonction homographique définie sur $\mathbb{R} - \{\frac{-d}{c}\}$ par $f(x) = \frac{ax+b}{cx+d}$ où $c \neq 0$ et $ad - bc \neq 0$

Ils existent trois réels α , β et γ tels que pour tout x dans D_f on a : $f(x) = \beta + \frac{\gamma}{x-\alpha}$

La courbe C_f est l'image de la courbe (Γ) représentative de la fonction $x \to \frac{\gamma}{x}$ par la translation t de vecteur $\vec{u} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$. La courbe C_f dans un repère orthogonal est une hyperbole de centre $\Omega(\alpha,\beta)$ et d'asymptotes les droites (Δ) : $x = \frac{-d}{c}$ et (Δ') : $y = \frac{a}{c}$.

Pour les variations de f on envisage les deux cas suivants :

Si $\begin{vmatrix} a & b \\ c & d \end{vmatrix} < 0$:

$\left| \text{Si} \begin{vmatrix} a & b \\ c & d \end{vmatrix} > 0 : \right|$

3)
$$f(x) = \sqrt{ax + b}$$

Activité :

 $g: \mathbb{R} \to \mathbb{R}$ $x \mapsto \sqrt{ax+b}$ où $a \neq 0$ Soit g la fonction définie par :

- 1- Déterminer suivant les valeurs de a l'ensemble de définition de g .
- 2- Déterminer le taux d'accroissement de la fonction g en deux réels x_1 et x_2 de D_g
- 3- Dresser suivant les valeurs de a le tableau de variation de la fonction g.

Propriété:

$$4) f(x) = ax^3$$

Activité:

 $h: \mathbb{R} \to \mathbb{R} \\ x \mapsto ax^3 \quad \text{où } a \neq 0$ Soit h la fonction définie par :

1- Montrer que h est une fonction impaire.

- 2- Montrer que le signe du taux d'accroissement de h sur \mathbb{R}^+ est le signe de a
- 3- Dresser suivant les valeurs de lpha le tableau de variation de h

Propriété:

VIII) MONOTONIE DE LA COMPOSITION DE DEUX FONCTION.

Soient f et g deux fonctions dons les ensembles des définitions respectifs D_f et D_g ; I une intervalle de D_f et J un intervalles de D_g tels que : f(I) = J

Soient a_1 et a_2 deux éléments de I tels que : $f(a_1) = b_1$ et $f(a_2) = b_2$

On a:

$$\begin{split} T_{gof} &= \frac{(gof)(a_1) - (gof)(a_2)}{a_1 - a_2} \\ &= \frac{g(f(a_1)) - g(f(a_2))}{a_1 - a_2} \\ &= \frac{g(b_1) - g(b_2)}{b_1 - b_2} \times \frac{b_1 - b_2}{a_1 - a_2} \\ &= \frac{g(b_1) - g(b_2)}{b_1 - b_2} \times \frac{f(a_1) - f(a_2)}{a_1 - a_2} \\ &= T_g \times T_f \end{split}$$

Propriété:

Soient f et g deux fonctions dons les ensembles des définitions respectifs D_f et D_g ; I un intervalle de D_f et Jun intervalles de D_g tels que f(I) = J

- Si f est croissante sur I et g est croissante sur J = f(I) alors $g \circ f$ est croissante sur I.
- Si f est **décroissante** sur I et g est **décroissante** sur J = f(I) alors $g \circ f$ est **croissante** sur I.
- Si f est croissante sur I et g est décroissante sur J = f(I) alors $g \circ f$ est décroissante sur I.
- Si f est **décroissante** sur I et g est **croissante** sur J = f(I) alors $g \circ f$ est décroissante sur I.

Exercice 1:

Soient les fonctions :
$$f: \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{2x+1}{x+1} \qquad \text{et} \qquad g: \mathbb{R} \to \mathbb{R} \\ x \mapsto \sqrt{2x+1} \qquad \text{et } h = fog$$
 1- Exprimer $h(x)$ en fonction de x .

- 1- Exprimer h(x) en fonction de x.
- 2- Déterminer D_h ensemble de définition de h.
- 3- Dresser les tableaux de variation de f et g.
- 4- En déduire les variations de h.

Exercice 2:

Soit la fonction
$$\begin{array}{c} u \colon \mathbb{R} \to \mathbb{R} \\ x \mapsto x^4 - 4x^3 + 2x^2 + 4x + 3 \end{array}$$

- 1- Montrer que $(\forall x \in \mathbb{R})(u(x) = (vot)(x))$ où $t(x) = -x^2 + 2x$ et $v(x) = x^2 + 2x + 3$
- 2- Dresser les tableaux de variation de v et t
- 3- En déduire les variations de u.

IX) REMARQUES SUR LES GRAPHES.

1) Nombre de solution de l'équation f(x) = k

Soit f une fonction dont la courbe représentative est C_f . Le nombre de solutions de l'équation f(x) = k est le nombre de points d'intersection de la courbe C_f avec la droite (Δ): y = k.

Soit f une fonction numérique dont la courbe représentative \mathcal{C}_f

$$k(x) = -f(x)$$
 C_k et C_f sont symétrique par rapport à l'axe (Ox)

$$g(x) = |f(x)|$$

- Si $f(x) \ge 0$ alors g(x) = f(x) et dans ce cas C_g et C_f seront confondues.
- Si $f(x) \le 0$ alors g(x) = -f(x) et dans ce cas C_g et C_f seront symétriques par rapport à l'axe (Ox)

$$h(x) = f(|x|)$$
 Si $x \ge 0$ alors
$$h(x) = f(x) \ \text{ et dans ce}$$
 cas C_h et C_f sont confondues.

La fonction h etant paire alors C_h est symétrique par rapport à l'axe (Oy)