Topological spaces II

Introduction to Model Theory (Third hour)

September 30, 2021

Section 1

Subspaces

The case of metric spaces

Let (M, d) be a metric space. Let (M_0, d_0) be a subspace, meaning

- $M_0 \subseteq M$.
- d_0 is the restriction of d to M_0 .

Fact

Suppose $X \subseteq M_0$.

- U is open in (M_0, d_0) iff there is an open set U' in (M, d) with $U = U' \cap M_0$.
- C is closed in (M_0, d_0) iff there is a closed set C' in (M, d) with $C = C' \cap M_0$.

Subspaces

Let (S, T) and (S_0, T_0) be topological spaces.

Definition

 (S_0, \mathcal{T}_0) is a *subspace* of (S, \mathcal{T}) if $S_0 \subseteq S$ and the following equivalent conditions hold:

- U is open in (S_0, \mathcal{T}_0) iff there is an open set U' in (S, \mathcal{T}) with $U = U' \cap S_0$.
- C is closed in (S_0, \mathcal{T}_0) iff there is a closed set C' in (S, \mathcal{T}) with $C = C' \cap S_0$.

The subspace topology

Fact

Suppose (S, \mathcal{T}) is a topological space and $S_0 \subseteq S$. There is a unique topology \mathcal{T}_0 on S_0 making (S_0, \mathcal{T}_0) be a subspace of (S, \mathcal{T}) .

 \mathcal{T}_0 is called the *subspace topology* on S_0 . It is simply

$$\mathcal{T}_0:=\{\mathit{U}\cap \mathit{S}_0:\mathit{U}\in\mathcal{T}\}.$$

Corollary

Subspaces of (S, T) correspond bijectively with subsets of S.

Open and closed subspaces

Definition

A subspace $(S_0, \mathcal{T}_0) \subseteq (S, \mathcal{T})$ is *open* (resp. *closed*) if S_0 is an open (resp. closed) subset of S.

Fact

Let S_0 be an open subspace of S and suppose $X \subseteq S_0$. Then X is open in S_0 iff X is open in S.

Fact

Let S_0 be a closed subspace of S and suppose $X \subseteq S_0$. Then X is closed in S_0 iff X is closed in S.

The discrete topology

Let S be a set. The *discrete topology* is the topology where all subsets of S are open.

Fact

A topological space (S, T) is discrete if and only if every singleton $\{p\}$ is open.

Discrete sets

Let S be a topological space:

Definition

A set $X \subseteq S$ is *discrete* if the subspace topology on X is discrete.

Definition

A point $p \in X$ is *isolated* if there is a neighborhood $N \ni p$ with $N \cap X = \{p\}$.

Fact

X is discrete if and only if every point is isolated.

Section 2

Product spaces

The product of two topological spaces

Let (S_1, \mathcal{T}_1) and (S_2, \mathcal{T}_2) be two topological spaces.

Definition

The product topological space is $(S_1 \times S_2, \mathcal{T}_{\times})$, where the product topology \mathcal{T}_{\times} has a basis $\{U_1 \times U_2 : U_1 \in \mathcal{T}_1, \ U_2 \in \mathcal{T}_2\}$.

Example

The product topology on $\mathbb{R} \times \mathbb{R}$ has basic open sets $(a, b) \times (c, d)$ with a < b and c < d.

This is the usual topology on \mathbb{R}^2 .

The product topology on metric spaces

Let (M_1, d_1) and (M_2, d_2) be two metric spaces. We can define several metrics on $M_1 \times M_2$:

$$d((x_1, x_2); (y_1, y_2)) := \sqrt{d(x_1, y_1)^2 + d(x_2, y_2)^2}$$

$$d'((x_1, x_2); (y_1, y_2)) := d(x_1, y_1) + d(x_2, y_2)$$

$$d''((x_1, x_2); (y_1, y_2)) := \max(d(x_1, y_1), d(x_2, y_2))$$

Fact

Each of these is a metric on $M_1 \times M_2$. They all define the same topology, which is the product topology on $M_1 \times M_2$.

The product topology and limits

Fact

Let S_1, S_2 be two topological spaces. Let $a_1, a_2, ...$ be a sequence in S_1 and $b_1, b_2, ...$ be a sequence in S_2 . Then $\lim_{i \to \infty} (a_i, b_i) = (c, d)$ if and only if

$$\lim_{i\to\infty} a_i = c$$
$$\lim_{i\to\infty} b_i = d.$$

This almost characterizes the product topology.

The product topology and continuity

Let S_1 and S_2 be topological spaces and $S_1 \times S_2$ be the product.

- **①** The projection maps $S_1 \times S_2 \to S_1$ and $S_1 \times S_2 \to S_2$ are continuous.
- ② Let S_0 be a topological space and let $f_i: S \to S_i$ be a function for i=1,2. Let $(f_1,f_2): S_0 \to S_1 \times S_2$ be the function $(f_1,f_2)(x)=(f_1(x),f_2(x))$. Then

 (f_1, f_2) is continuous $\iff f_1$ and f_2 are continuous.

① Let $f: S_1 \times S_2 \to S_0$ be a function. Then f is continuous at $(p,q) \in S_1 \times S_2$ iff the following holds: for any neighborhood $E \ni f(p,q)$, there are neighborhoods $U_1 \ni p$ and $U_2 \ni q$ such that if $p' \in U_1$ and $q' \in U_2$, then $f(p',q') \in E$.

Section 3

Connectedness

Connectedness for topological spaces

Definition

A topological space S is *disconnnected* if there exists a clopen set X other than \varnothing and S. Otherwise, S is *connected*.

Equivalently:

Definition

A topological space S is disconnected if there is a non-constant continuous function $f:S \to \{0,1\}$ where $\{0,1\}$ has the discrete topology. S is connected if every continuous function $f:S \to \{0,1\}$ is constant.

Connectedness for sets

Let S be a topological space.

Definition

A subset $X \subseteq S$ is *connected* (resp. *disconected*) if the subspace X is connected (resp. disconnected).

Fact

Let X be open. Then X is disconnected if and only if $X = X_1 \cup X_2$ where X_1, X_2 are non-empty open sets and $X_1 \cap X_2 = \emptyset$.

Fact

Let X be closed. Then X is disconnected if and only if $X=X_1\cup X_2$ where X_1,X_2 are non-empty closed sets and $X_1\cap X_2=\varnothing$.

Connectedness and continuity

Fact

Let $f: S \to S'$ be continuous. If $X \subseteq S$ is connected, then $f(X) \subseteq S'$ is connected.

Connected components

Definition

A connected component of X is a maximal connected subset of X.

Fact

The connected components form a partition of X. There is an equivalence relation \sim on X such that a \sim b if and only if a and b are in the same connected component.

X is connected if there is just one connected component.

Definition

X is totally disconnected if every connected component is a single point.

Warning (Cantor's Leaky Tent)

There is a connected set $X \subseteq \mathbb{R}^2$ and a point $p \in X$ such that $X \setminus \{p\}$ is totally disconnected.

Path-connectedness

Let X be a set.

Definition

For $p,q\in X$, a "path" in X is a continuous function $f:[0,1]\to X$ such that f(0)=p and f(1)=q.

Definition

X is path-connected if for any $p, q \in X$, there is a path from p to q.

Fact

If X is path-connected, then X is connected.

Warning (Topologist's sine curve)

There is a subset $X \subseteq \mathbb{R}^2$ that is connected but not path connected.

Section 4

Compactness

Compactness

Let (S, T) be a topological space.

Definition

An open cover of S is a set $C \subseteq T$ with $\bigcup C = S$.

A *subcover* of C is another cover C_0 with $C_0 \subseteq C$.

Definition

S is *compact* if every cover has a finite subcover.

 $X \subseteq S$ is *compact* if it is compact as a subspace.

Remark

Let $\mathcal B$ be a basis for $\mathcal T$. In both definitions, it suffices to only consider covers $\mathcal C \subseteq \mathcal B$.

Compactness via FIP

Definition

A family of sets \mathcal{F} has the *finite intersection property* (FIP) if for any $X_1, \ldots, X_n \in \mathcal{F}$, the intersection $\bigcap_{i=1}^n \mathcal{F}$ is non-empty.

Fact

A topological space S is compact if and only if the following holds: let \mathcal{F} be a family of closed sets with FIP. Then $\bigcap \mathcal{F} \neq \emptyset$.

Compactness: important facts

Fact

Let $f: S_1 \to S_2$ be continuous. If $X \subseteq S_1$ is compact, then $f(X) \subseteq S_2$ is compact.

Fact

If S is Hausdorff and $X \subseteq S$ is compact, then X is closed.

Fact

Finite sets are compact.

Fact

A finite union of compact sets is compact.

Fact

A product of compact topological spaces is compact, even infinitely many.

Compactness and cluster points

Definition

b is a cluster point of $a_1, a_2, ...$ if for any neighborhood $N \ni b$, there are infinitely many i with $a_i \in N$.

Warning

In metric spaces, b is a cluster point of a_1, a_2, \ldots iff some subsequence $a_{i_1}, a_{i_2}, a_{i_3}, \ldots$ converges to b. This does not hold in general topological spaces.

Fact

In a compact topological space, any sequence has a cluster point.

Warning

In metric spaces, this characterizes compactness. This does not hold in general topological spaces.

Compactness and quasi-compactness

Warning

English	French
Compact	Quasi-compact
Compact and Hausdorff	Compact

Algebraic geometry often follows the French convention.

Completeness

Fact

A metric space (M, d) is compact iff M is complete and M is totally bounded.

Neither "complete" nor "totally bounded" makes sense in topological spaces:

- \mathbb{R} is homeomorphic to $(0,1)\subseteq\mathbb{R}$.
- \mathbb{R} is complete, but (0,1) is not.
- (0,1) is totally bounded, but \mathbb{R} is not.

Section 5

Metrizability

Metrizability

Definition

A topology \mathcal{T} on a set S is *metrizable* if there is a metric d on S inducing \mathcal{T} .

Not all topologies are metrizable!

- For example, metrizable topologies are always Hausdorff, and non-Hausdorff topologies exist.
- The Sorgenfrey line is not metrizable. The cofinite and trivial topologies are usually not metrizable.
- The order topology on ω_1 is not metrizable.

The discrete topology

Theorem

The discrete topology on a set S is metrizable.

Proof.

Use the "discrete metric"

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y. \end{cases}$$

Three important properties

Let (S, \mathcal{T}) be a topological space.

Definition

S is *second countable* if there is a countable basis $\mathcal{B} \subseteq \mathcal{T}$.

Definition

S is *separable* if there is a countable set $X \subseteq S$ with $\overline{X} = S$ (i.e., X is dense).

Definition

S is Lindelöf if every cover has a countable subcover.

Three important properties

Fact

In metric spaces,

 $(compact) \Longrightarrow (Lindel\"{o}f) \Longleftrightarrow (separable) \Longleftrightarrow (second countable).$

Fact

In topological spaces,

 $(compact) \Rightarrow (Lindel\"{o}f) \Leftarrow (second\ countable) \Rightarrow (separable).$

and no other logical relations hold between these notions.

Metrization theorems

Fact

Let (S, \mathcal{T}) be a compact topological space. Then S is metrizable if and only if S is Hausdorff and second-countable.

There are other more complicated theorems, like Urysohn's metrization theorem and the Bing-Nagata-Smirnov metrization theorem.

Section 6

Polish spaces

Polish spaces

Definition

A topological space (S, T) is *Polish* if

- It is separable.
- It is metrizable, by a complete metric d on S.

Example

 \mathbb{R} is a Polish space.

Polish spaces are important in set theory and computability theory, especially in *descriptive set theory*.

Polish spaces

Fact

Let S be a Polish space.

- Any closed subspace of S is Polish.
- Any open subspace of S is Polish.
- If $X \subseteq S$ is countable, then $S \setminus X$ is a Polish subspace.

Example

The Cantor set is a Polish space.

Example

 $\mathbb{R} \setminus \mathbb{Q}$ is a Polish space.

A typical theorem

Fact

Let S be a Polish space. Then $|S| \leq \aleph_0$ or $|S| = 2^{\aleph_0}$. More generally, if X is an open or closed subset of S, then $|X| \leq \aleph_0$ or $|X| = 2^{\aleph_0}$.

Definition

The collection of *Borel sets* is the smallest $\mathcal{B} \subseteq Pow(S)$ containing the open and closed sets, closed under complements and countable unions and countable intersections.

Fact

Let S be Polish and $X \subseteq S$ be Borel. Then $|X| \leq \aleph_0$ or $|X| = 2^{\aleph_0}$.

Intuition: there are no easy counterexamples to the continuum hypothesis.

Section 7

Beyond point-set topology

An overview

There are many subjects within topology:

- Point-set topology
- Algebraic topology
- Oifferential topology
- Mot theory
- Low-dimensional topology
- Symplectic topology
- **0** ...

We have only been talking about point-set topology.

Technically, it is the foundation for other branches of topology.

But it is nothing like the rest of topology.

Tameness

- "Wild" topological spaces like ${\mathbb Q}$ or the Cantor set are important in point-set topology
- But most topologists study much "tamer" sets, like $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$.
 - ▶ Low-dimensional topologists focus on manifolds.
 - ▶ Algebraic topologists focus on CW complexes or simplicial complexes.

Remark

In model theory, *o-minimality* is a way to avoid "wild" topological spaces and ensure automatic tameness.

Manifolds

Definition

A topological space M is an n-dimensional manifold if the following conditions hold:

- M is Hausdorff.
- For every point $p \in M$, there is an open neighborhood $U \ni p$ homeomorphic to a ball in \mathbb{R}^n (or equivalently, homeomorphic to \mathbb{R}^n).
- M is second countable or paracompact or something. (Conventions vary.)

Example

The circle $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ is a 1-dimensional manifold.

Manifolds

Fact

2-dimensional compact connected manifolds are classified up to homeomorphism.

For more information, see one of the following:

- A Guide to the Classification Theorem for Compact Surfaces by Jean Gallier and Dianna Xu
 - ▶ https://www.cis.upenn.edu/~jean/surfclass-n.pdf
- Fantastic Topological Surfaces and How to Classify Them by Khorben Boyer
 - https://digitalcommons.wou.edu/cgi/viewcontent.cgi? article=1102&context=aes
- An Introduction to Topology: The Classification Theorem for Surfaces by E. C. Zeeman
 - https://www.maths.ed.ac.uk/~v1ranick/surgery/zeeman.pdf.

Smooth manifolds

- So far we have discussed topological manifolds.
- A smooth manifold is a topological manifold with additional information allowing one to talk about derivatives of functions.
- Smooth manifolds are much easier to work with than topological manifolds.
- Smooth manifolds are studied in differential topology.