APPLICATIONS OF HOMOLOGY

1 Jordan Curve Theorem, etc.

- homeo onto image. in this case, any injective continuous map.

Theorem. Let $h: S' \to \mathbb{R}^2$ embedding. Then \mathbb{R}^2 -h(S') has exactly 2 connected components.

Easy for nice curves (e.g. polygonal). Must consider things like Osgood curves, which have positive (extensor) area (these are obtained by perturbing space filling curves).

Prop: (a) If $h: D^k \to S^n$ an embedding, then $\widetilde{H}_i(S^n - h(D^k)) = 0 \ \forall i$

(b) If $h: S^k \to S^n$ an embedding, K < n, then $\widetilde{H}_i: (S^n - h(S^k)) = \begin{cases} \mathbb{Z} & i = n - k - 1 \\ 0 & \text{otherwise} \end{cases}$

(.b) implies any S^{n-1} in S^n divides S^n into two components, each with homology of a point. For n=2, Jordan Curve Thm.

For n=3, it is possible for one component to be not simply connected. (Alexander homed sphere.)

(b) also implies $H_1(S^3 - knot) \cong \mathbb{Z}$.

Proof of Prop: (a) Induct on K K=0 ~ 5°-h(Dk) = R° / Replace Dk with Ik. [et A=Sn-h(Ik-1 x [0,1/2]) B= 50 - h (IK-1 x [1/2, 1]) Induction $\Rightarrow \hat{H}_i(AUB) = \hat{H}_i(S^n - h(I^{k-1} \times \frac{1}{2})) = 0$. Mayer-Vietoris => 重: Ĥi (AnB) → Ĥi (A) ⊕ Ĥi (B) isomorphism ∀i. $S_{0}^{n}-h(D^{k})$ So if [x] +0 in Hi(Sn-h(DK)) then x +0 in Hi(Sn-half of h(DIK)) Say these halves converge to Ik-1 × {p}. By above, \propto a boundary in $\widetilde{H}_i(S^n - h(I^{k-1} \times \{p\}))$ Say x = dp. B compact \Rightarrow [X]=0 at some finite stage. ~> contradiction.

> (b) Induction K. K=0 ~> Sn-h(S0) ~ Sn-1 x R / Let SK = DK USK-1 DK $A = S^{n} - h(D_{+}^{k})$ $B = S^{n} - h(D_{-}^{k})$ Mayer-Vietoris plus (a) → $\widetilde{H}_{i+1}(S^n - h(S^{k-1})) \cong \widetilde{H}_i(S^n - h(S^k))$

擨

Exercise. Examine the case K=n ~ S" cannot embed in R" TR cannot embed in 12" m>n. Aside: Alexander Horned Sphere

The Alexander Horned Ball is the intersection $\bigcap_{i=1}^{n} X_i$

$$TT_1 (AHB^c) = \langle \alpha_0, \alpha_1, \dots | [\alpha_1, \alpha_2] = \alpha_0$$

$$[\alpha_3, \alpha_4] = \alpha_1 [\alpha_5, \alpha_6] = \alpha_2$$
...

This group is nontrivial — it is an increasing union of free groups. But since each or; is a commutator, the abelianization is trivial.

2) Invariance of Domain

Theorem U open in \mathbb{R}^n , $h: U \to \mathbb{R}^n$ embedding $\Rightarrow h(u)$ open in \mathbb{R}^n .

Proof Think of R as Sn-pt. Equivalent to show h(U) open in S. Let X&U, Dn = disk about x in U. Suffices to show h(int D") open in S" $Prop(b) \Rightarrow S^n - h(D^n)$ has 2 path components. The components are $h(int D^n)$, $S^n - h(D^n)$. Indeed: · Since h(int D") path conn, these sets are dispirit · Sn - h(Dn) path conn by Prop (b) Since $S^n - h(\partial D^n)$ open in S^n ($h(\partial D^n)$ compact in Hausdorff), its path components = connected components (true for lac. comp.) An open set with finitely many comp. must have each comp. open $\Rightarrow h(int D^n)$ open in $S^n - h(\partial D^n)$ ⇒ open in So 网

Cor: M = compact n - manifold, N = connected n - manifoldThen any embedding $M \xrightarrow{h} N$ is surjective, hence a homeo.

Proof: h(M) closed in N (compact in Hausdorff)

Since N conn, suffices to show h(M) open in N.

Let $x \in M$. Choose neighborhood V of h(x) homeo to \mathbb{R}^n .

Choose nbhd U of x in $h^{-1}(V)$ homeo to \mathbb{R}^n . $h|_{U}$ an embedding into V. Thm $\Rightarrow h(U)$ open in V, hence open in N.

3 Division Algebras

An algebra over \mathbb{R} is \mathbb{R}^n with bilinear multiplication $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ $(a, b) \mapsto ab$

So: a(b+c) = ab+ac, (a+b)c = ac+bc, x(ab) = (xa)b = a(xb)

H is a division algebra if ax=b, xa=b always

Solvable for a ≠ 0. ("no zero divisors")

Four classical examples: R, C, Quaternions, Octonians

Theorem. IR & C are the only finite dimensional division algebras over IR that are commutative and have id.

Proof. We'll show: a fin. dim. comm. div alg. has dim ≤ 2 . Suppose \mathbb{R}^n has a comm. div. alg. Structure.

Define $f: S^{n-1} \to S^{n-1}$ by $f(x) = \frac{x^2}{|x^2|}$ included map $f: \mathbb{RP}^{n-1} \to S^{n-1}$ Claim: f injective $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 \Rightarrow x^2 -$

A little more algebra to get full theorem.

$$f: S^n \to S^n \longrightarrow f_*: H_n(S^n) \to H_n(S^n)$$

 $d = \text{degree} \text{ of } f.$

Facts (i) deg id = 1

(ii) deg
$$f = 0$$
 if f not surjective

(iii) deg $f = \deg g \iff f \cong g \implies due$ to Hapf.

(iv) deg $f = \deg f$ deg g

(v) deg $f = -1$ $f = reflection$ along equator

(vi) deg (antipodal) = $(-1)^n$

4 Hairy Ball Theorem

Theorem. S" has a continuous field of nonzero tangent vectors iff n is odd.

Proof. Det v(x) = vector field on S? Translate v(x) to origin $v(x) \perp v(x) \perp x$ in \mathbb{R}^{n+1} $v(x) \neq 0 \forall x \rightarrow \text{can (eplace } v(x) \text{ with } v(x) \mid v(x) \mid x \neq 0$ $v(x) \mid x \neq 0$

One more fact about degree:

(vi) If f has no fixed points, then $\deg f = (-1)^{n+1}$ proof: find homotopy to antipodal map (straight line)

(5) Prop: 72/27 is only group that can act freely on S° if n is even.

Pf: Say G ← S° → d: G → {±1} homomorphism by (iv)

Action free $\Rightarrow d(mg) = (-1)^{n+1} g \neq id$ by (vi) $n \text{ even } \Rightarrow |\ker d| = 1 \Rightarrow G \cong \mathbb{Z}/2\mathbb{Z}$.

Can also use degree to compute cellular homology \longrightarrow compute homology of \mathbb{CP}^n , $S^n \times S^n$, T^n , \mathbb{RP}^n , L(p,q), etc. see text.

@ Borsuk-Ulam Theorem

Prop: Say $f: S^n \to S^n$, $f(-x) = -f(x) \ \forall \ x \ (add map)$. Then f has odd degree.

Theorem: $g: S^n \to \mathbb{R}^n \Rightarrow \exists \times \text{ s.t. } g(x) = g(-x)$.

Proof: Let f(x) = g(x) - g(-x), say $f(x) \neq 0 \forall x$.

Replace f(x) by f(x)/|f(x)| $f: S^n \to S^{n-1}$ odd

Prop $\Rightarrow f|equotor has odd degree$.

But either hemisphere gives a nullhomotopy.

Contendiction.

1 Lefschetz Fixed Point Theorem

Trace: for $\varphi: A \rightarrow A$ A = f.g. abelian group $tr \varphi = tr(A/torsion \rightarrow A/torsion)$

X = Space with finitely generated homology, trivial H_i : $i \gg N$. e.g. finite simplicial complex.

The Lefschetz number of $f: X \rightarrow X$ is $T(f) = \sum_{i=1}^{n} (-1)^{i} tr(f_*: H_i(X) \rightarrow H_i(X))$

Theorem Z(f) = sum of indices of fixed points

assume fixed' points are isolated

In particular $T(f) \neq 0 \implies \text{fixed points}$ Browner FPT is corollary.

The Index of fixed point p is $deg(\overline{f}:(X,X-p) \rightarrow (X,X-p))$

Linear maps. Modulo torsion, RP^n n even has homology of pt. \Rightarrow every map has a fixed point \Rightarrow every linear map $R^n \rightarrow R^n$, n odd has an eigenvector (can also use elementary reasoning).

Can do many examples of LFPT with surfaces, e.g.

Preparation: Approximation by simplicial maps

Simplicial maps. K, L simplicial complexes

K→L simplicial if simplices → simplices, linearly.

Theorem. K= finite simplicial complex, L= simplicial complex.

Any f: K -> L is homotopic to a map that is simplicial w.r.t. Some subdivision of K.

Idea of Proof that $T(f) \neq 0 \implies \exists$ fixed points.

Assume $f: X \to X$ has no fixed points Simplicial approx $\longrightarrow g: X \to X$ Simplicial, homotopic to f $g(\sigma) \cap \sigma = \emptyset \ \forall \ \text{Simplices } \sigma.$

Note T(f) = T(g). To show $tr(g_*) = 0$ in all dim.

Key: $Z(g) = \sum (-1)^n \operatorname{tr}(g_*: H_n(X^n, X^{n-1}) \longrightarrow H_n(X^n, X^{n-1}))$ We the fact that g takes X^n to X^n plus some algebra.

Since g permutes cells without fixing any, all of these traces are O.

1