

AMENDMENTS TO THE CLAIMS

Claim 1 (currently amended): A data converter for converting an input signal to a digital signal, the data converter comprising:

5 n comparison units for respectively comparing the input signal with n reference signals to generate the corresponding digital signal, each of the comparison units including a positive output end and a negative output end, the digital signal being generated according to a positive output and a negative output of the comparison units in a differential manner; and

10 n switch circuits respectively electrically connected to the positive output end and the negative output end of the n comparison units; wherein for a k^{th} comparison unit, ~~the corresponding-a~~ k^{th} switch circuit corresponding to the k^{th} comparison unit is further electrically connected to ~~the-a~~ positive output end of ~~the-a~~ $k^{\text{th}}\text{-}1$ comparison unit and ~~the-a~~ negative output end of ~~the-a~~ $k^{\text{th}}\text{+}1$ comparison unit;

15 wherin when the k^{th} comparison unit performs an auto-zeroing process, the k^{th} switch circuit generates a digital signal corresponding to an interpolated value of the k^{th} comparison unit from ~~a-the~~ positive output of the $k^{\text{th}}\text{-}1$ comparison unit and ~~a-the~~ negative output of the $k^{\text{th}}\text{+}1$ comparison unit.

20 25

Claim 2 (original): The data converter of claim 1 wherein each of the comparison units comprises a latching circuit for outputting the digital signal.

30 Claim 3 (currently amended): The data converter of claim 1 wherein each of the comparison units comprises an amplifier for amplifying a voltage difference between the input signal and ~~the corresponding-a~~ reference signal so as to generate a corresponding positive output and a corresponding negative output.

Claim 4 (original): The data converter of claim 3 wherein each of the comparison

units further comprises a feedback circuit electrically connected between an output end and an input end of the amplifier, and when the comparison unit performs the auto-zeroing process, the feedback circuit conducts.

5 Claim 5 (original): The data converter of claim 1 wherein the data converter further comprises a voltage dividing circuit for generating the n reference signals.

10 Claim 6 (currently amended): A method for a data conversion circuit for converting an input signal to a corresponding digital signal, the data conversion circuit comprising:

15 n comparison units for respectively comparing the input signal with n reference signals to generate the corresponding digital signal, each of the comparison units including a positive output end and a negative output end, the digital signal being generated according to a positive output and a negative output of the comparison units in a differential manner, the method comprising:

20 when a k^{th} comparison unit is performing an auto zeroing process, substituting the digital signal of the k^{th} comparison unit with a replacement signal generated according to outputs of the a positive output end of the $k^{\text{th}}-1$ comparison unit and the a negative output end of the $k^{\text{th}}+1$ comparison unit, such that when the output of the positive output end of the $k^{\text{th}}-1$ comparison unit is less than the output of the negative output end of the $k^{\text{th}}+1$ comparison unit, the replacement signal is a first digital value, and when the output of the positive output end of the $k^{\text{th}}-1$ comparison unit is greater than the output of the negative output end of the $k^{\text{th}}+1$ comparison unit, the replacement signal is a second digital value.

25 30 Claim 7 (original): The method of claim 6 wherein the first digital value is a high logical value, and the second digital value is a low digital value.

Claim 8 (currently amended): A data converter for converting an analog input signal to

a plurality of digital bits, the data converter comprising:

5 n first comparison units for respectively comparing the input signal with n reference signals, each of the comparison units including a positive output end for outputting a first positive output and a negative output end for outputting a first negative output;

10 n second comparison units for respectively comparing the input signal with the n reference signals, each of the second comparison units including a positive output end for outputting a second positive output and a negative output end for outputting a second negative output; and

15 an output unit electrically connected to the n first comparison units and the n second comparison units for generating digital bits corresponding to the n first comparison units and the n second comparison units, the output unit comprising:

20 n-1 interpolating units electrically connected to the n first comparison units and the n second comparison units, a kth interpolating unit being electrically connected to a kth and a k^{th+1}-kth+1 first comparison units and a kth and a k^{th+1} second comparison units for units for adding a third positive output to the first and second positive outputs of the nfirst-n first comparison units and the nsecond-n second comparison units and adding a third negative output to the first and second negative outputs of the nfirst-n first comparison units and the nsecond-n second comparison units; wherein when the kth and the k^{th+1} first comparison units perform units perform an auto-zeroing process, the kth interpolating unit is capable of utilizing the second positive outputs of the kth and the k^{th+1} second comparison units for generating the third positive output and utilizing the second negative outputs of the kth and the k^{th+1} second comparison units for generating the third negative output;

25 wherein the output unit generates a digital bit interpolated between a digital bit corresponding to the kth second comparison unit and a digital bit corresponding to the k^{th+1} second comparison unit according to the third

positive output and the third negative output in a differential manner.

5 Claim 9 (currently amended): The data converter of claim 8 wherein the output unit further comprises a plurality of latches electrically connected to the first comparison units, the second comparison units, and the interpolating units for outputting the digital bits.

10 Claim 10 (currently amended): The data converter of claim 8 wherein each of the first and second comparison units comprises an amplifier for amplifying a voltage difference between the input signal and the corresponding reference signal so as to generate a corresponding positive output and a corresponding negative output.

15 Claim 11 (original): The data converter of claim 10 wherein each of the first and second comparison units further comprises a feedback circuit electrically connected between an output end and an input end of the amplifier, and when the comparison unit performs the auto-zeroing process, the feedback circuit conducts.

20 Claim 12 (original): The data converter of claim 8 wherein the data converter further comprises a voltage dividing circuit for generating the n reference signals.

25 Claim 13 (original): The data converter of claim 8 wherein the third positive output is interpolated between the second positive output of the kth and the kth+1 second comparison units, and the third negative output is interpolated between the second negative output of the kth and the kth+1 second comparison units.

30 Claim 14 (currently amended): A method for a data converter for converting an analog input signal to a plurality of digital bits, the data converter comprising: n first comparison units for respectively comparing the input signal with n reference signals, each of the comparison units including a positive

output end for outputting a first positive output and a negative output end for outputting a first negative output, a digital bit corresponding to a first comparison unit being generated from the first positive output and the first negative output in a differential manner;

5 n second comparison units for respectively comparing the input signal with the n reference signals, each of the second comparison units including a positive output end for outputting a second positive output and a negative output end for outputting a second negative output, a digital bit corresponding to a second comparison unit being generated from the second positive output and the second negative output in a differential manner, the method comprising:

10 when a k^{th} and a $k^{\text{th}}+1$ first comparison units perform an auto-zeroing process, utilizing the second positive outputs of a k^{th} and a $k^{\text{th}}+1$ second comparison units for generating a third positive output, utilizing the second negative outputs of the k^{th} and the $k^{\text{th}}+1$ second comparison units for generating a third negative output, and generating a digital bit interpolated between a digital bit corresponding to the k^{th} second comparison unit and a digital bit corresponding to the $k^{\text{th}}+1$ second comparison unit according to the third positive output and the third negative output in ~~the~~a differential manner;

15

20

Claim 15 (currently amended): The method of claim 14 wherein the third positive output is interpolated between ~~these~~the ~~second~~the second positive outputs of the k^{th} and the $k^{\text{th}}+1$ second comparison units, and the third negative output is interpolated between the second negative outputs of the k^{th} and the $k^{\text{th}}+1$ second comparison units.

25

Claim 16 (currently amended): A data converter for converting an ~~analog~~input signal to a plurality of digital bits, the data converter comprising:

30 n first comparison units for respectively comparing the input signal with n reference signals, each of the comparison units including a positive output end for outputting a first positive output and a negative output

end for outputting a first negative output;

5 n second comparison units for respectively comparing the input signal with the n reference signals, each of the second comparison units including a positive output end for outputting a second positive output and a negative output end for outputting a second negative output; and

an output unit electrically connected to the n first comparison units and the n second comparison units for generating digital bits corresponding to the n first comparison units and the n second comparison units, the output unit comprising:

10 n-1 interpolating units electrically connected to the n first comparison units and the n second comparison units, a kth interpolating unit being electrically connected to a plurality of (kth to k^{th+p}kth+p) first comparison units and a plurality of (kth to k^{th+p}kth+p) second comparison units for adding a plurality of positive outputs to the first and second positive outputs of the nfirst-n first comparison units and the nsecond-n second comparison units and adding a plurality of negative outputs to the first and second negative outputs of the nfirst-n first comparison units and the nsecond-n second comparison units; wherein p is an integer, and when some first comparison units perform an auto-zeroing process, the kth interpolating unit is capable of utilizing the second positive outputs of the plurality of second comparison units for generating a plurality of positive outputs and utilizing the second negative outputs of some second comparison units for generating some negative outputs;

15 wherein the output unit generates a digital bit interpolated between a digital bit corresponding to the kth second comparison unit and a digital bit corresponding to the k^{th+p}kth+p second comparison unit according to the positive outputs and the negative outputs in a differential manner.

20

25

30 Claim 17 (currently amended): The data converter of claim 16 wherein the output unit further comprises a plurality of latches electrically connected to the first

comparison units, the second comparison units, and the interpolating units for outputting the digital bits.

- Claim 18 (currently amended): The data converter of claim 16 wherein each of the
5 first and second comparison units comprises an amplifier for amplifying a voltage difference between the input signal and ~~the corresponding~~ a reference signal so as to generate a corresponding positive output and a corresponding negative output.
- 10 Claim 19 (original): The data converter of claim 18 wherein each of the first and second comparison units further comprises a feedback circuit electrically connected between an output end and an input end of the amplifier, and when the comparison unit performs the auto-zeroing process, the feedback circuit conducts.
- 15
- Claim 20 (currently amended): The data converter of claim 16 wherein each of the positive outputs is interpolated between the second positive outputs of the k^{th} to ~~and the $k^{\text{th}}+p$~~ second comparison units, and ~~the~~ each of the negative outputs is interpolated between the second negative outputs of the k^{th} and the $k^{\text{th}}+p$ second comparison units.
- 20