

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУ — Информатика и системы управления КАФЕДРА ИУ7 — Программное обеспечение ЭВМ и информационные технологии

ОТЧЕТ ПО ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ

Студент		
Пронин Арсе	ний Сергеевич	
Группа		
ИУ	7-82Б	
Тип практики		
преддиплом	ная практика	
Название предприятия		
НУК ИУ МГТУ	им. Н. Э. Баумана	
Студент		Пронин А. С.
Руководитель практики от предприятия		Никульшина Т. А.
Руководитель практики		Кострицкий А. С.
Оценка		

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

	УТВЕРЖДАЮ Заведующий кафедрой ИУ7 Рудаков И. В.
	«13» мая 2023 г.
ЗАДАНИЕ	
на прохождение производстве	-
(преддипломная прав	стика)
Студент 4 курса группы ИУ7-82Б	
Пронин Арсений Сергеевич	
в период с 15.05.2023 г. по 28.05.2023 г.	
Предприятие: НУК ИУ МГТУ им. Н. Э. Баумана	
Руководитель практики от предприятия (наставник):	
Никульшина Т. А.	
Руководитель практики от кафедры:	
Кострицкий А. С.	
Задание:	
1. Изучить программные средства проектирования и раз	работки информационных систем.
2. Собрать материалы в области разработки информаци	ионных систем.
3. Получить практические навыки в области разработки	информационных систем.
Дата выдачи задания «13» мая 2023 г.	
Руководитель практики от кафедры	Кострицкий А. С.
Руководитель практики от предприятия	Никульшина Т. А.

Пронин А. С.

Студент

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1 Основная часть	5
1.1 Формализованная постановка задачи	5
1.2 Входные и выходные данные	5
1.3 Реализация	6
1.4 Сравнительный анализ времени выполнения этапов метода	7
ЗАКЛЮЧЕНИЕ	8
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	9
ПРИЛОЖЕНИЕ А	11
ПРИЛОЖЕНИЕ Б	14

введение

Во время выполнения выпускной квалификационной работы был разработан метод анализа активности пользователей системы автоматизированного проектирования с использованием поиска последовательных шаблонов.

1 Основная часть

1.1 Формализованная постановка задачи

Для выполнения работы необходимо формализовать задачу анализа активности пользователей САПР. Поставленная задача представлена в нотации IDEF0 на рисунке 1.1. На вход программе подаются информация о выполненных командах и пользовательские параметры: минимальный уровень поддержки, минимальный и максимальный разрывы между командами. Используя методы поиска последовательных шаблонов система определяет часто встречающиеся последовательности команд.

Рисунок 1.1 — IDEF0-диаграмма нулевого уровня

1.2 Входные и выходные данные

Данная программа разрабатывается для анализа логов САПР NanoCAD, которые имеют следующий вид: каждая строчка, содержащая действие, начинается с даты и времени выполнения. Начало каждой команды обозначается ее названием, заключенной в символы '<' и '>'. Завершение команды обозначается аналогично, но перед названием команды добавляется символ '/'.

Также поддерживается считывание обезличенных логов, которые не содержат информации о параметрах команд, включая время выполнения. В таком случае время выполнения для каждой команды в сессии будет выставлено автоматически, начиная с 0, увеличивая это значения на 1 для каждой следующей команды.

Кроме этого на вход программе подаются минимальный уровень поддержки, а также минимальный и максимальный разрывы между командами.

На выходе программа выдает часто встречающиеся последовательности команд, их уровни поддержки и коэффициент зависимости. Коэффициент зависимости показывает насколько команды в последовательности зависят друг от друга и считается как отношение поддержки последовательности к произведению поддержек всех подпоследовательностей состоящих из 1 команды. Если значение коэффициента <= 1, значит зависимости нету. Если же > 1, то зависимость есть. Чем больше единицы, тем вероятней то, что эти команды использовались вместе.

1.3 Реализация

За преобразование логов из текста в таблицу базы данных отвечает класс LogReader. Он может считать все файлы с расширением *.log в выбранной директории и её поддиректориях, записывая все команды в таблицу logs для выбранной на текущий момент базы данных. Также можно указать, нужно ли учитывать завершение команды как отдельное действие, если она началась и закончилась одновременно.

За взаимодействие с базами данных отвечает класс *DataBase*. Данный класс позволяет создавать базы данных, переключаться между ними и как записывать в них необходимые данные, так и считывать их.

За реализацию разрабатываемого метода отвечает класс *Calculator*. Он хранит входные параметры метода, а также необходимые для работы данные и последний полученный результат.

Описание данных классов приведено в приложении А.

Пользовательский интерфейс состоит из 4-ех окон. MainWindow — основное окно в котором можно выбирать и просматривать базу данных, считывать в нее логи из выбранной директории, настраивать режимы считывания, задавать параметры метода, запускать его для текущей базы данных и наблюдать результат. DataBaseWindow и ResWindow используются для просмотра базы данных и результатов работы программы в отдельных окнах. Последнее окно CmdListWindow содержит расширенные настройки, в котором можно указать

команды которые будут игнорироваться и которые означают начало новой сессии.

Интерфейс программы см. в приложении Б.

1.4 Сравнительный анализ времени выполнения этапов метода

Чтобы провести сравнительный анализ времени выполнения этапов метода, замерялось их время выполнения с разными значениями минимальной поддержки и количеством записей 1000 раз, а затем делилось на количество замеров. Параметр min_gap был равен нулю, а max_gap имел максимально возможное значение На рисунке 1.2 представлен результат исследования в виде графиков.

Рисунок 1.2— Зависимость времени выполнения разных этапов метода от минимальной поддержки для 66788 записей

В результате анализа, можно сделать вывод, что подсчет поддержки кандидатов занимает большую часть времени, чем их генерация.

ЗАКЛЮЧЕНИЕ

Было разработано программное обеспечение, демонстрирующее практическую осуществимость спроектированного в ходе выполнения выпускной квалификационной работы метода анализа активности пользователей системы автоматизированного проектирования с использованием поиска последовательных шаблонов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Siochi A.C., Ehrich R.W Computer Analysis of User Interfaces Based on Repetition in Transcripts of User Sessions. // ACM Transactions on Information Systems. − 1991. − T. 9. − № 4. − C. 309–335.
- 2. Данилов Н.А., Шульга Т.Э. Метод построения тепловой карты на основе точечных данных об активности пользователя приложения // Прикладная информатика. – 2015. – Т. 10. – № 2. – С. 49–58.
- 3. Danilov N., Shulga T., Frolova N., Melnikova N., Vagarina N., Pchelintseva E. Software usability evaluation based on the user pinpoint activity heat map. // Advances in Intelligent Systems and Computing. 2016. T. 465. C. 217–225.
- 4. Balbo S., Goschnick S., Tong D., Paris C. Leading Usability Evaluations to WAUTER. // Proc. 11th Australian World Wide Web Conf. (AusWeb), Gold Coast, Australia, Southern Cross Univ. 2005. C. 279–290.
- 5. Swallow J., Hameluck D., Carey T. User interface instrumentation for usability analysis: a case study. // CASCON'97. Toronto, Ontario. 1997.
- 6. Shah I. Event patterns as indicators of usability problems. // Jour. of King Saud Univ., Comp. and Inform. Sci. -2008. C. 31-43.
- 7. Mabroukeh N.R., Ezeife C.I. A taxonomy of sequential pattern mining algorithms. // ACM Computing Surveys (CSUR). 2010. Т. 43. № 1. статья № 3.
- 8. Aloysius G., Binu D. An approach to products placement in supermarkets using prefixspan algorithm. // Jour. of King Saud Univ. Comp. and Inform. Sci. 2013. T. 25. № 1. C. 77–87.
- 9. Сытник А.А., Шульга Т.Э., Данилов Н.А., Гвоздюк И.В. Математическая модель активности пользователей программного обеспечения. // Программные продукты и системы. − 2018. − Т. 31. − № 1. − С. 79-84
- 10. Agrawal R., Imielinski T., Swami A.N. Mining Association Rules between Sets of Items in Large Databases // Proceedings of the 1993 ACM

- SIGMOD international conference on Management of data. SIGMOD '93. Washington, D.C., USA. 1993. T. 22(2). C. 207-216.
- 11. Agrawal R., Srikant R. Fast algorithms for mining association rules // Proceedings of the 20th International Conference on Very Large Data Bases, VLDB. Santiago, Chile. 1994. C. 487-499.
- 12. Zaki J Mohammed, Meira Jr Wagner. Data Mining and Analysis: Fundamental Concepts and Algorithms. New York: Cambridge University Press, 2014. C. 595
- 13. Agrawal R., Srikant R. Mining Sequential Patterns // Proc. of the 11th Int'l Conference on Data Engineering. 1995. C. 3–14.
- 14. Srikant R., Agrawal R. Mining Sequential Patterns: Generalizations and Performance Improvements // EDBT. Springer Berlin Heidelberg. 1996. C. 1–17.
- 15. Интеллектуальный анализ данных: учеб. пособие. Томск: Издательский Дом Томского государственного университета, 2016. С. 120
- 16. Card S., Moran T., Newell A. The keystroke-level model for user performance time with interactive systems. // Communications of the ACM. $1980. T. 23. N_{2} 7. C. 396-410.$
- 17. Бьёрн Страуструп Язык программирования С++ специальное издание. Москва: Бином, 2010. 1136 с.
- 18. Qt documentation [Электронный ресурс] // Qt. URL: http://doc.qt.io/ (дата обращения: 14.08.2021)

ПРИЛОЖЕНИЕ А

Листинг 1.1 - Knacc LogReader

```
class LogReader
{
public:
 LogReader();
  static shared ptr<LogReader> instance();
  void readLogs(QString dir name = "./");
  void readLogsWithoutTime(QString dir name = "./");
  void includeEndCmds(bool val = true);
  QStringList getIgnoreList() const;
 QStringList getNewSessionCmdsList() const;
  void setIgnoreList(QStringList list);
  void setNewSessionCmdsList(QStringList list);
private:
  void readFile(const QFileInfo& file_info, QList<QString> &commands, int
     &session id);
  void readDir(const QString& abs path, QList<QString> &commands, int
     &session id);
  void readFileWithoutTime(const QFileInfo& file info, QList<QString>
     &commands, int &session id);
  void readDirWithoutTime(const QString& abs path, QList<QString> &commands,
     int &session id);
  int getTimeFromRecord(QString r);
  bool getCommandFromRecord(QString r, QString& res);
  QStringList getAllCommandsFromRecord(QString r);
  QStringList getTwoCommandsFromRecord(QString r);
private:
 QDir:: Filters dir filters;
  QStringList ignore commands;
  QStringList new session commands;
  bool end cmds;
};
```

Листинг 1.2 — Класс DataBase

```
enum Status
 OK = 0,
 EXEC ERROR,
 EMPTY RES,
 DATABASE OPEN ERROR,
 DATABASE DOES NOT EXISTS,
 DATABASE IS NOT VALID
};
class DataBase
public:
 DataBase();
  static shared_ptr<DataBase> instance();
  Status setSQLiteDataBase(QString db_name = "db_name");
  Status resetSQLiteDataBase();
  bool databaseExists (QString db name);
  Status getRowsInLogs(QString db_name, int &rows_number);
  Status getSessionsInLogs(int &sessions n);
  Status addCommand(int session id, const QString& datetime, const QString
     &cmd, int &id);
  Status addCommand(int session_id, int int_time, const QString &cmd, int &id);
  Status getCmdsMap(QMap<int, QString>& cmds map);
  Status getSessionsNum(int& sessions num);
  Status getAllLogs(int commands num, QList<Session>& sessions);
  QString lastError();
private:
  inline Status execQuery(QString query);
private:
  QString m last error;
  QString cur_db_name;
  QSqlQuery m query;
};
```

Листинг 1.3 — Класс Calculator

```
class Calculator
{
public:
  Calculator();
  QList \leq get Frequent Sequences (double min sup = -1, int min gap = -1,
     int \max gap = -1;
  void printFrequentSequences();
  QString getSeqStr(const Sequence &seq);
  void setSameCmds(bool val);
private:
  void prepareGSP();
  QList<Sequence> generateCandidates1();
  QList<Sequence> generateCandidates();
  bool findCommand(int cmd, const Session& session, int min_time, int
     prev cmd id, int &time, int &id) const;
  bool sessionSupportsSequence(const Session& session, const Sequence& seq);
  Sequence findFreqSequenceByCommand(int cmd);
  double calcLift (Sequence seq);
  int countSupport(QList<Sequence> &candidates, const QList<Session> &sessions);
  void sortFrequentSequences();
private:
  QList<Sequence> freq_seqs;
  QList<Sequence> cur freq seqs;
 QMap<int, QString> cmds map;
  int sessions count = 0;
  QString db_file_path;
  double min_support = 0.5;
  int \min gap = 0;
 int max_gap = INT_MAX;
  bool same cmds = true;
```

ПРИЛОЖЕНИЕ Б

Рисунок 1.1 — Интерфейс программы 1

Рисунок 1.2 — Интерфейс программы 2