SCLS160D - DECEMBER 1982 - REVISED SEPTEMBER 2003

- Wide Operating Voltage Range of 2 V to 6 V
- Outputs Can Drive Up To 10 LSTTL Loads
- Low Power Consumption, 80-μA Max I_{CC}

SN54HC4040 . . . J OR W PACKAGE SN74HC4040 . . . D, DB, N, NS, OR PW PACKAGE (TOP VIEW)

- Typical t_{pd} = 12 ns
- ±4-mA Output Drive at 5 V
- Low Input Current of 1 μA Max

SN54HC4040 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

description/ordering information

The 'HC4040 devices are 12-stage asynchronous binary counters, with the outputs of all stages available externally. A high level at the clear (CLR) input asynchronously clears the counter and resets all outputs low. The count is advanced on a high-to-low transition at the clock (CLK) input. Applications include time-delay circuits, counter controls, and frequency-dividing circuits.

ORDERING INFORMATION

TA	PACKAGE†	PACKAGET	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP - N	Tube of 25	SN74HC4040N	SN74HC4040N
		Tube of 40	SN74HC4040D	
	SOIC - D	Reel of 2500	SN74HC4040DR	HC4040
		Reel of 250	SN74HC4040DT	
-40°C to 85°C	SOP - NS	Reel of 2000	SN74HC4040NSR	HC4040
	SSOP - DB	Reel of 2000	SN74HC4040DBR	HC4040
		Tube of 90	SN74HC4040PW	
	TSSOP - PW	Reel of 2000	SN74HC4040PWR	HC4040
		Reel of 250	SN74HC4040PWT	
	CDIP - J	Tube of 25	SNJ54HC4040J	SNJ54HC4040J
-55°C to 125°C	CFP – W	Tube of 150	SNJ54HC4040W	SNJ54HC4040W
	LCCC - FK	Tube of 55	SNJ54HC4040FK	SNJ54HC4040FK

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti,com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTION TABLE (each buffer)

ı	INP	UTS	FUNCTION					
ı	CLK	CLR	FUNCTION					
ı	↑	L	No change					
ı	\downarrow	L	Advance to next stage					
ı	Χ	Н	All outputs L					

logic diagram (positive logic)

Pin numbers shown are for the D, DB, J, N, NS, PW, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	0.5 V to 7 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) (see Note 1)	±20 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) (see Note 1)	±20 mA
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ_{JA} (see Note 2): D package	73°C/W
DB package	82°C/W
N package	67°C/W
NS package	64°C/W
PW package	108°C/W
Storage temperature range, T _{sta}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCLS160D - DECEMBER 1982 - REVISED SEPTEMBER 2003

recommended operating conditions (see Note 3)

			SN	SN54HC4040		SN74HC4040				
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage		2	5	6	2	5	6	V	
		V _{CC} = 2 V	1.5			1.5				
VIH	High-level input voltage	V _{CC} = 4.5 V	3.15			3.15			V	
		V _{CC} = 6 V	4.2			4.2			1	
		V _{CC} = 2 V			0.5			0.5	V	
VIL	Low-level input voltage	V _{CC} = 4.5 V			1.35			1.35		
		V _{CC} = 6 V			1.8			1.8		
VI	Input voltage		0		VCC	0		VCC	V	
Vo	Output voltage		0		VCC	0		VCC	V	
		V _{CC} = 2 V			1000			1000		
Δt/Δv†	Input transition rise/fall time	V _{CC} = 4.5 V			500			500	ns	
		V _{CC} = 6 V			400			400		
TA	Operating free-air temperature		-55		125	-40		85	°C	

[†] If this device is used in the threshold region (from V_{IL} max = 0.5 V to V_{IH} min = 1.5 V), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at t_t = 1000 ns and V_{CC} = 2 V does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEST CONDITIONS		.,	T _A = 25°C			SN54HC4040		SN74HC4040		
PARAMETER	I IEST CC	ONDITIONS	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V	1.9	1.998		1.9		1.9		
		I _{OH} = -20 μA	4.5 V	4.4	4.499		4.4		4.4		
∨он	VI = VIH or VIL		6 V	5.9	5.999		5.9		5.9		V
		I _{OH} = -4 mA	4.5 V	3.98	4.3		3.7		3.84		
		I _{OH} = -5.2 mA	6 V	5.48	5.8		5.2		5.34		
		I _{OL} = 20 μA	2 V		0.002	0.1		0.1		0.1	
			4.5 V		0.001	0.1		0.1		0.1	
V _{OL}	$V_I = V_{IH}$ or V_{IL}		6 V		0.001	0.1		0.1		0.1	V
		I _{OL} = 4 mA	4.5 V		0.17	0.26		0.4		0.33	
		I _{OL} = 5.2 mA	6 V		0.15	0.26		0.4		0.33	
lį	$V_I = V_{CC}$ or 0		6 V		±0.1	±100		±1000		±1000	nA
lcc	$V_I = V_{CC}$ or 0,	I _O = 0	6 V			8		160		80	μΑ
Ci			2 V to 6 V		3	10		10		10	pF

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN54HC4040, SN74HC4040 12-BIT ASYNCHRONOUS BINARY COUNTERS

SCLS160D - DECEMBER 1982 - REVISED SEPTEMBER 2003

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

			.,	T _A = :	25°C	SN54H	C4040	SN74H	C4040	
			Vcc	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V		5.5		3.7		4.3	
^f clock	Clock frequency		4.5 V		28		19		22	MHz
			6 V		33		22		25	
	Pulse duration	CLK high or low	2 V	90		135		115		ns
			4.5 V	18		27		23		
			6 V	15		23		20		
t _W		CLR high	2 V	70		105		90		
			4.5 V	14		21		18		
			6 V	12		18		15		
	Setup time, CLR inactive before CLK↓		2 V	60		90		75		
t _{su}			4.5 V	12		18		15		ns
			6 V	10		15		13		

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF (unless otherwise noted) (see Figure 1)

	FROM	то		Τ _Δ	χ = 25°C	;	SN54H	C4040	SN74H	C4040	
PARAMETER	(INPUT)	(OUTPUT)	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
			2 V	5.5	10		3.7		4.3		
f _{max}			4.5 V	28	45		19		22		MHz
			6 V	33	53		22		25		
	CLK	QA	2 V		62	150		225		190	
^t pd			4.5 V		16	30		45		38	ns
•			6 V		12	26		38		32	
	CLR	Any	2 V		63	140		210		175	
^t PHL			4.5 V		17	28		42		35	ns
			6 V		13	24		36		30	
		Any	2 V		28	75		110		95	
t _t			4.5 V		8	15		22		19	ns
			6 V		6	13		19		16	

operating characteristics, $T_A = 25^{\circ}C$

		PARAMETER	TEST CONDITIONS	TYP	UNIT
ſ	C _{pd}	Power dissipation capacitance	No load	88	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and test-fixture capacitance.

- B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \ \Omega$, $t_\Gamma = 6 \ ns$, $t_f = 6 \ ns$.
- C. For clock inputs, $f_{\mbox{max}}$ is measured when the input duty cycle is 50%.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms