MCO2 - Technical Report

- 1. Define the goal of the TIC-TAC-TOE agent
 - a. The goal of the TIC-TAC-TOE agent is to be the first one to land three of its own corresponding mark(X/O) vertically, horizontally or diagonally to win.
- 2. Formulate the problem
 - a. The agent can place its own mark in any block in the 3x3 square, as long as the specific block isn't taken by the agent's own and opponent's moves.
 - b. The players, user and the TIC-TAC-TOE agent, will take turns in putting their corresponding marks. Following that, the player who has the 'X' mark will get to take the first move.
 - c. The first one to land their own mark, either vertically, horizontally or diagonally, wins. However, when either of the players failed to put their marks in a row but there are no other moves that could be done, the game would end in a draw.
 - d. The game ends when one of the players has been able to land 3 of their corresponding marks in a row, or there are no moves to be done.
- 3. Determine the specific states and configurations that the agent operates on
 - a. Level 0
 - i. The agent gets all valid and possible moves then chooses and performs random valid moves on each round.
 - b. Level 1
 - i. The agent first checks number of moves opponent needs to complete any single winning move
 - ii. Then, the agent checks the number of moves AI needs to complete any single winning move
 - iii. Following that, the agent do the move which has the lower number of moves to complete any single winning move
 - iv. Lastly, as a backup, if moveToStop and moveToWin are both equal to -1, which means that no player has done a move yet, get the middle position (1, 1).
 - c. Level 2
 - i. The agent follows the Minimax algorithm, to get the best possible move, to get the best possible outcome.
- 4. Determine the specific actions, and the states (configurations) on which the actions are applicable (include illustrations for transition table)

Player : X < -> AI : O

a. Level 0

STATE	ACTION	ILLUSTRATION:	ILLUSTRATION:
		Player 1	AI

AI Turn	Picks random valid move	X O X	
		Player 1	has won!

b. Level 1

STATE	ACTION	ILLUSTRATION: STATE	ILLUSTRATION: EFFECT
1st Round: Player 1 chooses (1, 1)	Picks the block closest to obtain goal state.	х	Х
2nd Round: Player 1 only has 1 move left to win.	Player 1 has less moves to win so it blocks the winning move. (moveToStop)	X O	X O O X
3rd Round: moveToStop and moveToWin are equal	Picks the move to win (moveToWin)	X	X O O X X
4th Round: Player 1 only has 1 move left to win	Picks the move to stop Player 1 from winning. (moveToStop)	X O O X X X X	X O O X X X O
		It's a	draw!

c. Level

STATE	ACTION	ILLUSTRATION:	ILLUSTRATION:
		STATE	EFFECT

1st Round: Player 1 chooses (1, 1)	Picks the best block at the current circumstances.	х	Х
2nd Round: Player 1 only has 1 move left to win.	Picks the block(2,1) to prevent losing.	X O	x
3rd Round: moveToStop and moveToWin are equal	Picks the block(1,2) to minimize loss.	X	X O O X X
4th Round: Player 1 only has 1 move left to win	Picks block (3,3) to prevent losing.	x 0 0 x x x x	x o o x x x x o
		It's a	draw!

- 5. Specify how the goal state can be determined and detected by the agent
 - a. The goal state can be determined by the agent, when the agent has recognized that it can do a winning move.
- 6. Describe the three levels of rational behavior
 - a. Level 0
 - i. In this level, the agent just takes in all the possible movements, then it picks on one of the possible moves randomly and performs it.
 - ii. No smart algorithm is used.

b. Level 1

- i. The agent follows an algorithm.
- ii. The agent always calculates the number of moves for each player to complete a winning move.
 - 1. The agent picks depending on the number of moves left for each player to complete a winning move
 - 2. If the player has less moves to complete a winning move, then the AI would stop the player's winning move by blocking it
 - 3. If the AI has equal or less moves to complete a winning move, then the AI would do that complete winning move in order to win.

c. Level 2

- i. The agent follows the Minimax algorithm.
- ii. The goal of the algorithm is to minimize the worst case scenario every move by minimizing the Player's and maximizing the AI's chance of winning.