Package 'sim1000G'

October 14, 2022

Type Package
Title Genotype Simulations for Rare or Common Variants Using Haplotypes from 1000 Genomes
Version 1.40
Date 2019-05-30
Author Apostolos Dimitromanolakis <apostolis@live.ca>, Jingxiong Xu <jingxiong.xu@mail.utoronto.ca>, Agnieszka Krol <krol@lunenfeld.ca>, Laurent Briollais <laurent@lunenfeld.ca></laurent@lunenfeld.ca></krol@lunenfeld.ca></jingxiong.xu@mail.utoronto.ca></apostolis@live.ca>
Maintainer Apostolos Dimitromanolakis <apostolis@live.ca></apostolis@live.ca>
Description Generates realistic simulated genetic data in families or unrelated individuals.
License GPL (>= 2)
Depends R (>= 2.15.2), stats, hapsim, MASS, stringr, readr
NeedsCompilation no
VignetteBuilder knitr, prettydoc, rmarkdown
RoxygenNote 6.1.0
Suggests knitr, prettydoc, testthat, gplots, rmarkdown
Encoding UTF-8
Repository CRAN
Date/Publication 2019-06-09 19:50:03 UTC
R topics documented:
sim1000G-package computePairIBD1 computePairIBD12 computePairIBD2 createVCF crossoverCDFvector downloadGeneticMap generateChromosomeRecombinationPositions

2 sim1000G-package

sim10		Simulations of rare/common variants using haplotype data frogenomes	om 100	00
Index				27
	writePED			26
		odel		
	-	nFile		
	-			
	_			
	-	Map		
		oring		
		ons		
	•			
	•			
	-	lividuals		
	=	eticMap		
		nbination Vector		
	generateRecombination	onDistances_noInterference	. 	9
	generateRecombination	onDistances	. 	9
	generateFakeWholeG	genomeGeneticMap		8

Description

Documentation and examples can be found at the package directory folder inst/doc or at our github url: https://adimitromanolakis.github.io/sim1000G/inst/doc/SimulatingFamilyData.html

Details

See also our github repository page at: https://github.com/adimitromanolakis/sim1000G

computePairIBD1 3

·	Computes pairwise IBD1 for a specific pair of individuals. See function computePairIBD12 for description.
---	---

Description

Computes pairwise IBD1 for a specific pair of individuals. See function computePairIBD12 for description.

Usage

```
computePairIBD1(i, j)
```

Arguments

- i Index of first individual
- j Index of second individual

Value

Mean IBD1 as computed from shared haplotypes

4 computePairIBD12

computePairIBD12

Computes pairwise IBD1/2 for a specific pair of individuals

Description

Computes pairwise IBD1/2 for a specific pair of individuals

Usage

```
computePairIBD12(i, j)
```

Arguments

- i Index of first individual
- j Index of second individual

Value

Mean IBD1 and IBD2 as computed from shared haplotypes

computePairIBD2 5

computePairIBD2

Computes pairwise IBD2 for a specific pair of individuals

Description

Computes pairwise IBD2 for a specific pair of individuals

Usage

```
computePairIBD2(i, j)
```

Arguments

- i Index of first individual
- j Index of second individual

Value

Mean IBD2 as computed from shared haplotypes

6 crossoverCDFvector

createVCF Creates a regional vcf file using bcftools to extract a region from 1000 genomes vcf files

Description

Creates a regional vcf file using bcftools to extract a region from 1000 genomes vcf files

Usage

createVCF()

Value

none

crossoverCDFvector

Contains recombination model information.

Description

This vector contains the density between two recombination events, as a cumulative density function.

Usage

crossoverCDFvector

Format

An object of class logical of length 1.

downloadGeneticMap 7

downloadGeneticMap	Downloads a genetic map for a particular chromosome under
	GRCh37 coordinates for use with sim1000G.

Description

Downloads a genetic map for a particular chromosome under GRCh37 coordinates for use with sim1000G.

Usage

```
downloadGeneticMap(chromosome, dir = NA)
```

Arguments

chromosome	Chromosome number to download recombination distances from.
dir	Directory to save the genetic map to (default: temporary directory)

Examples

```
downloadGeneticMap(22, dir=tempdir() )
```

generateChromosomeRecombinationPositions

Generates a recombination vector arising from one meiotic event. The origin of segments is coded as (0 - haplotype1, 1 - haplotype2)

Description

Generates a recombination vector arising from one meiotic event. The origin of segments is coded as (0 - haplotype1, 1 - haplotype2)

Usage

```
generateChromosomeRecombinationPositions(chromosomeLength = 500)
```

Arguments

```
chromosomeLength
```

The length of the region in cm.

Examples

```
library("sim1000G")
# generate a recombination events for chromosome 4
readGeneticMap(4)
generateChromosomeRecombinationPositions(500)
```

 ${\tt generateFakeWholeGenomeGeneticMap}$

Generates a fake genetic map that spans the whole genome.

Description

Generates a fake genetic map that spans the whole genome.

Usage

```
generateFakeWholeGenomeGeneticMap(vcf)
```

Arguments

vcf

A vcf file read by function readVCF.

 ${\tt generate} Recombination {\tt Distances}$

Generate inter-recombination distances using a chi-square model. Note this are the distances between two succesive recombination events and not the absolute positions of the events. To generate the locations of the recombination events see the example below.

Description

Generate inter-recombination distances using a chi-square model. Note this are the distances between two succesive recombination events and not the absolute positions of the events. To generate the locations of the recombination events see the example below.

Usage

```
generateRecombinationDistances(n)
```

Arguments n

Number of distances to generate

Value

vector of distances between two recombination events.

Examples

```
library("sim1000G")
distances = generateRecombinationDistances(20)
positions_of_recombination = cumsum(distances)
if(0) hist(generateRecombinationDistances(20000), n=100)
```

generateRecombinationDistances_noInterference

Generate recombination distances using a no-interference model.

Description

Generate recombination distances using a no-interference model.

Usage

generateRecombinationDistances_noInterference(n)

Arguments

n

Number of distances to generate

Value

recombination distances in centimorgan

Examples

```
library("sim1000G")
mean ( generateRecombinationDistances_noInterference ( 200 ) )
```

 ${\tt generateSingleRecombinationVector}$

Genetates a recombination vector arising from one meiotic event. The origin of segments is coded as (0 - haplotype1, 1 - haplotype2)

Description

Genetates a recombination vector arising from one meiotic event. The origin of segments is coded as (0 - haplotype1, 1 - haplotype2)

Usage

```
generateSingleRecombinationVector(cm)
```

Arguments

cm

The length of the region that we want to generate recombination distances.

generateUniformGeneticMap

Generates a uniform genetic map.

Description

Generates a uniform genetic map by approximating 1 cm / Mbp. Only used for examples.

Usage

```
generateUniformGeneticMap()
```

Examples

generateUnrelatedIndividuals

Generates variant data for n unrelated individuals

Description

Generates variant data for n unrelated individuals

Usage

```
generateUnrelatedIndividuals(N = 1)
```

Arguments

Ν

how many individuals to generate

12 geneticMap

Value

IDs of the generated individuals

Examples

```
library("sim1000G")

examples_dir = system.file("examples", package = "sim1000G")
vcf_file = file.path(examples_dir, "region.vcf.gz")
vcf = readVCF( vcf_file, maxNumberOfVariants = 100 , min_maf = 0.12)
genetic_map_of_region =
    system.file("examples",
        "chr4-geneticmap.txt",
        package = "sim1000G")

readGeneticMapFromFile(genetic_map_of_region)
startSimulation(vcf, totalNumberOfIndividuals = 1200)
ids = generateUnrelatedIndividuals(20)

# See also the documentation on our github page
```

geneticMap

Holds the genetic map information that is used for simulations.

Description

Holds the genetic map information that is used for simulations.

Usage

geneticMap

Format

An object of class environment of length 0.

getCMfromBP 13

getCMfromBP	Converts centimorgan position to base-pair. Return a list of centimorgan positions that correspond to the bp vector (in basepairs).

Description

Converts centimorgan position to base-pair. Return a list of centimorgan positions that correspond to the bp vector (in basepairs).

Usage

```
getCMfromBP(bp)
```

Arguments

bp

vector of base-pair positions

Examples

```
library("sim1000G")
examples_dir = system.file("examples", package = "sim1000G")
vcf_file = sprintf("%s/region.vcf.gz", examples_dir)
vcf = readVCF( vcf_file, maxNumberOfVariants = 100,
    min_maf = 0.12)

# For realistic data use the function downloadGeneticMap
generateUniformGeneticMap()
getCMfromBP(seq(1e6,100e6,by=1e6))
```

 ${\tt loadSimulation}$

Load some previously saved simulation data by function saveSimulation

Description

Load some previously saved simulation data by function saveSimulation

Usage

```
loadSimulation(id)
```

Arguments

id

Name the simulation to load which was previously saved by saveSimulation

Examples

newFamily3generations Generates genotype data for a family of 3 generations

Description

Generates genotype data for a family of 3 generations

Usage

```
newFamily3generations(familyid, noffspring2 = 2, noffspring3 = c(1, 1))
```

Arguments

```
familyid What will be the family_id (for example: 100)

noffspring2 Number of offspring in generation 2

Number of offspring in generation 3 (vector of length noffspring2)
```

Value

family structure object

Examples

newFamilyWithOffspring

Simulates genotypes for 1 family with n offspring

Description

Simulates genotypes for 1 family with n offspring

Usage

```
newFamilyWithOffspring(family_id, noffspring = 2)
```

Arguments

```
family_id What will be the family_id (for example: 100)
noffspring Number of offsprings that this family will have
```

Value

family structure object

```
ped_line = newFamilyWithOffspring(10,3)
```

16 newNuclearFamily

newNuclearFamily

Simulates genotypes for 1 family with 1 offspring

Description

Simulates genotypes for 1 family with 1 offspring

Usage

```
newNuclearFamily(family_id)
```

Arguments

```
family_id What will be the family_id (for example: 100)
```

Value

family structure object

```
library("sim1000G")
examples_dir = system.file("examples", package = "sim1000G")
vcf_file = file.path(examples_dir, "region.vcf.gz")
vcf = readVCF( vcf_file, maxNumberOfVariants = 100 ,
    min_maf = 0.12 ,max_maf = NA)

genetic_map_of_region = system.file("examples",
    "chr4-geneticmap.txt",
    package = "sim1000G")
readGeneticMapFromFile(genetic_map_of_region)

startSimulation(vcf, totalNumberOfIndividuals = 1200)
fam1 = newNuclearFamily(1)
fam2 = newNuclearFamily(2)

# See also the documentation on our github page
```

pkg.opts 17

pkg.opts

Holds general package options

Description

Holds general package options

Usage

pkg.opts

Format

An object of class environment of length 1.

plotRegionalGeneticMap

Generates a plot of the genetic map for a specified region.

Description

The plot shows the centimorgan vs base-pair positions. The position of markers that have been read is also depicted as vertical lines

Usage

plotRegionalGeneticMap(bp)

Arguments

bp

Vector of base-pair positions to generate a plot for library("sim1000G") examples_dir = system.file("examples", package = "sim1000G") vcf_file = sprintf(" vcf = readVCF(vcf_file, maxNumberOfVariants = 100, min_maf = 0.12) # For realistic data use the function readGeneticMap generateUniformGeneticMap() pdf(file=tempfile()) plotRegionalGeneticMap(seq(1e6,100e6,by=1e6/2)) dev.off()

18 readGeneticMap

printMatrix

Utility function that prints a matrix. Useful for IBD12 matrices.

Description

Utility function that prints a matrix. Useful for IBD12 matrices.

Usage

```
printMatrix(m)
```

Arguments

m

Matrix to be printed

Examples

```
printMatrix ( matrix(runif(16), nrow=4) )
```

readGeneticMap

Reads a genetic map downloaded from the function downloadGeneticMap or reads a genetic map from a specified file. If the argument filename is used then the genetic map is read from the corresponding file. Otherwise, if a chromosome is specified, the genetic map is downloaded for human chromosome using grch37 coordinates.

Description

The map must contains a complete chromosome or enough markers to cover the area that will be simulated.

Usage

```
readGeneticMap(chromosome, filename = NA, dir = NA)
```

Arguments

chromosome	Chromosome number to download a genetic map for , or
filename	A filename of an existing genetic map to read from (default NA).
dir	Directory the map file will be saved (only if chromosome is specified).

Examples

```
readGeneticMap(chromosome = 22)
```

 ${\tt readGeneticMapFromFile}$

Reads a genetic map to be used for simulations. The genetic map should be of a single chromosome and covering the extent of the region to be simulated. Whole chromosome genetic maps can also be used.

Description

The file must be contain the following columns in the same order: chromosome, basepaire, rate(not used), centimorgan

Usage

```
readGeneticMapFromFile(filelocation)
```

Arguments

filelocation Filename containing the genetic map

```
## Not run:
fname = downloadGeneticMap(10)
cat("genetic map downloaded at :", fname, "\n")
readGeneticMapFromFile(fname)
## End(Not run)
```

20 readVCF

readVCF

Read a vcf file, with options to filter out low or high frequency markers.

Description

Read a vcf file, with options to filter out low or high frequency markers.

Usage

```
readVCF(filename = "data.vcf", thin = NA, maxNumberOfVariants = 400,
    min_maf = 0.02, max_maf = NA, region_start = NA, region_end = NA)
```

Arguments

filename Input VCF file

thin How much to thin markers

maxNumberOfVariants

Maximum number of variants to keep from region

min_maf Minimum allele frequency of markers to keep. If NA skip min_maf filtering.

max_maf Maximum allele frequency of markers to keep. If NA skip max_maf filtering.

region_start Extract a region from a vcf files with this starting basepair position

region_end Extract a region from a vcf files with this ending basepair position

Value

VCF object to be used by startSimulation function.

resetSimulation 21

resetSimulation Removes all individuals that have been simulated and resets the simulator.	!-
--	----

Description

Removes all individuals that have been simulated and resets the simulator.

Usage

```
resetSimulation()
```

Value

nothing

Examples

```
resetSimulation()
```

Retrieve a matrix of simulated genotypes for a specific set of individual IDs

Description

Retrieve a matrix of simulated genotypes for a specific set of individual IDs

Usage

```
retrieveGenotypes(ids)
```

Arguments

ids

Vector of ids of individuals to retrieve.

22 saveSimulation

Examples

saveSimulation

Save the data for a simulation for later use. When simulating multiple populations it allows saving and restoring of simulation data for each population.

Description

Save the data for a simulation for later use. When simulating multiple populations it allows saving and restoring of simulation data for each population.

Usage

```
saveSimulation(id)
```

Arguments

id

Name the simulation will be saved as.

setRecombinationModel 23

```
# For realistic data use the functions downloadGeneticMap
generateUniformGeneticMap()

startSimulation(vcf, totalNumberOfIndividuals = 200)

ped1 = newNuclearFamily(1)

saveSimulation("sim1")
```

Description

Set recombination model to either poisson (no interference) or chi-square.

Usage

```
setRecombinationModel(model)
```

Arguments

model Either "poisson" or "chisq"

```
generateUniformGeneticMap()

do_plots = 0

setRecombinationModel("chisq")
if(do_plots == 1)
  hist(generateRecombinationDistances(100000),n=200)

setRecombinationModel("poisson")
if(do_plots == 1)
  hist(generateRecombinationDistances(100000),n=200)
```

24 startSimulation

SIM

Holds data necessary for a simulation.

Description

Holds data necessary for a simulation.

Usage

SIM

Format

An object of class environment of length 7.

startSimulation Starts and initializes the data structures required for a simulation. A VCF file should be read beforehand with the function readVCF.

Description

Starts and initializes the data structures required for a simulation. A VCF file should be read beforehand with the function readVCF.

Usage

```
startSimulation(vcf, totalNumberOfIndividuals = 2000, subset = NA,
  randomdata = 0, typeOfGeneticMap = "download")
```

Arguments

vcf Input vcf file of a region (can be .gz). Must contain phased data.

totalNumberOfIndividuals

Maximum Number of individuals to allocate memory for. Set it above the num-

ber of individuals you want to simulate.

subset A subset of individual IDs to use for simulation

randomdata If 1, disregards the genotypes in the vcf file and generates independent markers

that are not in LD.

typeOfGeneticMap

Specify whether to download a genetic map for this chromosome

subsetVCF 25

Examples

```
library("sim1000G")
library(gplots)

examples_dir = system.file("examples", package = "sim1000G")
vcf_file = file.path(examples_dir, "region.vcf.gz")

vcf = readVCF( vcf_file, maxNumberOfVariants = 100)

genetic_map_of_region = system.file(
    "examples",
    "chr4-geneticmap.txt",
    package = "sim1000G"
)

readGeneticMapFromFile(genetic_map_of_region)

pdf(file=tempfile())
plotRegionalGeneticMap(vcf$vcf[,2]+1)
dev.off()

startSimulation(vcf, totalNumberOfIndividuals = 200)
```

subsetVCF

Generate a market subset of a vcf file

Description

Generate a market subset of a vcf file

Usage

```
subsetVCF(vcf, var_index = NA, var_id = NA, individual_id = NA)
```

Arguments

vcf VCF data as created by function readVCF

var_index index of number to subset. Should be in the range 1..length(vcf\$varid)

var_id id of markers to subset. Should be a selection from vcf\$varid. NA if no filtering

on id to be performed.

individual_id IDs of individuals to subset. Should be a selection from vcf\$individual_id

Value

VCF object to be used by startSimulation function.

26 writePED

Examples

writePED

Writes a plink compatible PED/MAP file from the simulated genotypes

Description

Writes a plink compatible PED/MAP file from the simulated genotypes

Usage

```
writePED(vcf, fam, filename = "out")
```

Arguments

vcf vcf object used in simulation
fam Individuals / families to be written

filename Basename of output files (.ped/.map will be added automatically)

Index

```
* datasets
                                                  saveSimulation, 22
    {\tt crossoverCDFvector}, {\tt 6}
                                                  setRecombinationModel, 23
    geneticMap, 12
                                                  SIM, 24
    pkg.opts, 17
                                                  sim1000G(sim1000G-package), 2
    SIM, 24
                                                  sim1000G-package, 2
                                                  startSimulation, 24
computePairIBD1, 3
                                                  subsetVCF, 25
computePairIBD12, 4
                                                  writePED, 26
computePairIBD2, 5
createVCF, 6
crossoverCDFvector, 6
downloadGeneticMap, 7
{\tt generateChromosomeRecombinationPositions},
generateFakeWholeGenomeGeneticMap, 8
generateRecombinationDistances, 9
generateRecombinationDistances_noInterference,
{\tt generateSingleRecombinationVector}, \\ 10
generateUniformGeneticMap, 11
generateUnrelatedIndividuals, 11
geneticMap, 12
getCMfromBP, 13
loadSimulation, 13
newFamily3generations, 14
{\tt newFamilyWithOffspring}, 15
newNuclearFamily, 16
pkg.opts, 17
plotRegionalGeneticMap, 17
printMatrix, 18
\verb"readGeneticMap", 18"
readGeneticMapFromFile, 19
readVCF, 20
resetSimulation, 21
retrieveGenotypes, 21
```