

Instrumentation for Linac-based X-Ray FELs

Henrik Loos

12th Beam Instrumentation Workshop May 1-4, 2006

Outline

- XFEL introduction
- LCLS overview
- Electron beam diagnostics
 - Transverse Beam Properties
 - Longitudinal Beam Properties
- Photon beam diagnostics

loos@slac.stanford.edu

X-Ray FEL Features

- ~1Å photon wavelength or ~10keV photon energy
- Uses SASE principle to amplify and saturate spontaneous radiation in ~100m of undulator
- Requires
 - Multi GeV beam energy

$$\lambda_R = \frac{\lambda_U}{2\gamma^2} \left(1 + K_{rms}^2 \right)$$

- kA peak beam current
- ■Micron beam emittance to match photon beam phase space $\frac{\lambda}{\epsilon \approx \Delta}$

X-Ray FEL Parameters

Electron Beam		LCLS	XFEL	SCSS
Energy	GeV	4.3-13.6	10-20	6.1
Peak Current	kA	3.4	5	3
Bunch Charge	nC	0.2-1	1	1
Norm. Slice Emittance	μm	1.2	1.4	0.85
Bunch Length	fs	70	80	80
Slice Energy Spread	MeV	1.4	2.5	0.25

Photon Beam		LCLS	XFEL	SCSS
Saturation Length	m	60-100	40-170	80
Photon Energy	keV	0.8-8	0.2-12.4	12
Peak Power	GW	4-8	22-135	3

Henrik Loos

LCLS Accelerator Layout

BIW 2006

Linear

LCLS Diagnostics Tasks

- Charge
 - Toroids (Gun, Inj, BC, Und)
 - Faraday cups (Gun & Inj)
- Trajectory & energy
 - Stripline BPMs (Gun, Inj, Linac)
 - Cavity BPMs (Und)
 - Profile monitors (Inj), compare position with alignment laser
- Transverse emittance & energy spread
 - Wire scanners
 - YAG screen (Gun, Inj)
 - OTR screens (Inj, Linac)

- Bunch length
 - Cherenkov radiators + streak camera (Gun)
 - Transverse cavity + OTR (Inj, Linac)
 - Coherent radiation power (BC)
- Slice measurements
 - Horizontal emittance
 - T-cavity + quad + OTR
 - Vertical Emittance
 - OTR in dispersive beam line + quad
 - Energy spread
 - T-cavity + OTR in dispersive beam line

Diagnostics Requirements

Parameter	Method	Unit	Resolution
Current	Toroid, FC	%	2
Position	Stripline BPM	μm	5 - 20
	Cavity BPM	μm	1
Beam Size	Wire Scanner	μm	5
	YAG	μm	15 – 30
	OTR	μm	5 – 30
Bunch Length	Streak Camera	fs	300
	Transverse Cavity	Slices	10
	BLM	%	5

loos@slac.stanford.edu

LCLS Linac Diagnostics

Beam Profile Monitors (YAG & OTR)

- YAG requirements
 - Use 100µm thick crystals to meet resolution
 - GTF measurements show feasibility
- OTR requirements
 - Optimize yield to enable beam profile measurement at 0.2nC

OTR '	yield for	100mrad	angular	acceptance

Energy (MeV)	QE (%), 450-650 nm	QE (%), 400-750 nm
135	0.44	0.75
4300	0.98	1.68
13500	1.17	1.99

- Provide sufficient depth of field for imaging of 45° foil
 - Simulation shows 1mm DOF for f/# of 5 within 20µm resolution
- Match direction of reflection with axis of dispersion or T-CAV deflection
- Foil is aluminum to optimize TR yield and 1µm thick to minimize radiation

Optics Layout

- Used for all standard YAG/OTR screens
- Telecentric lens
 - 55mm focal length
 - >100 line pairs/mm
 - Magnification up to 1:1
- Stack of 2 insertable neutral density filters
- Beam splitter and reticule for in situ calibration
- Megapixel CCD with 12bit and 4.6µm pixel
- Radiation shielding required in main linac tunnel

OTR/YAG Optics Design

Courtesy V. Srinivasan

OTR Imager with Tilted Geometry

- Need wide field of view in focus for measurements in spectrometer beam line
- Tilt OTR screen and CCD by 5 degrees in 1:1 imaging
- 10um resolution

B.X. Wang et al. PAC05

Simulation of OTR Beam Size Measurement

- Simulation of CCD image
 - Include 0.5% TR yield, photon shot noise, and typical CCD parameters for quantum efficiency, read out noise, pixel size, digitizer gain
- Calculation of beam size
 - Generate beam profile with 10σ bounding box
 - Compare rms width of profile with original Gaussian beam size
- Simulation agrees well with OTR measurement at GTF
- Error of 5% in beam size for beam of 0.1nC, 260μm at 10μm resolution

Longitudinal Diagnostics

- Gun region
 - Cherenkov radiator & streak camera
- Bunch length and slice emittance
 - Transverse cavity
- Longitudinal feedback loop
 - Integrated power from coherent radiation

Cherenkov Radiators

- Located in gun region for temporal diagnostics of 6 MeV beam from gun
- Convert electron beam time structure into light pulse for streak camera measurement
- Cherenkov light suitable at low beam energies
- Design requirements
 - Match time resolution of radiator to streak camera (Hamamatsu FESCA-200, < 300fs)</p>
 - Generate and transport a sufficient # of photons for 200pC beam to streak camera in laser room (10m away)

Cherenkov Radiator Design

- Fused silica
 - \blacksquare n = 1.458, θ_{CR} = 46.7°
 - Total internal reflection
 - Frosting of back surface
 - $N_{\Phi} = 7.5/e/mm/50nm$ @400nm
- Temporal and spatial resolution
 - Thickness of 100µm
 - $\Delta t = 375 fs$
 - $\Delta x = 190 \mu m$

Courtesy D. Dowell

Optical Transport Layout

- 1:1 relay imaging from radiator to streak camera
- Assume 1% efficiency from frosting to scatter into 100mrad
- 6% acceptance through tube for source of 5mm x 100mrad
- 1.5-10⁵ photons on slit of streak camera for 200 pC

- Translates longitudinal into transverse beam profile when operating at RF zero crossing
- Parasitic operation with kicker and off-axis screen
- Single shot absolute bunch length measurement
- Temporal resolution limited by unstreaked spot size

Transverse Cavity Measurement at TTF

Beam without and with BC 3 (second bunch compressor)

1 picosecond

Scans at high power ~16MW

Courtesy J. Frisch

TCAV in LCLS after BC2

- Short 70fs bunch length requires full RF power for cavity
- Parasitic measurement with beam optics optimized for SASE
- Resolution 20fs sufficient for length measurement

Bunch Length Monitor

- Relative bunch length measurement used for longitudinal feedback
- Non-intercepting, calibrated with interceptive TCAV measurement
- Based on integrated power from coherent radiation source (C*R)

$$W = N_e^2 \int d\omega \frac{dW_1(\omega)}{d\omega} f(\omega), \quad f(\omega) = \left| \int n(t) e^{i\omega t} d\omega \right|^2$$

- Single electron radiation spectrum W₁(ω) depends on radiation source
- Bunch length determined by long wavelengths λ » 2πσ_{rms}
- BC1: 1cm 1mm
- BC2: 1mm .1mm

Radiation Sources

- Wide range of bunch lengths from 25um to 300um
- Diode detectors work well below 300GHz
- Pyroelectric detectors work well above 300GHz
- Long bunches
 - Couple radiation from ceramic gap in beam pipe into waveguides with different diode detectors
- Short bunches
 - Extract coherent radiation from bend magnet with hole mirror and send to a pyroelectric detector

CER Detector Layout

Pyro-Detector

Edge rad. dominates over synchrotron and diffraction

Near field calculation necessary for radiation spectrum at detector

e-Beam

Bunch Length Sensitivity of Detector Signal

- Detection efficiency includes diffraction, vacuum window, water absorption, pyroelectric detector response, and bunch form factor.
- Introduce high and low pass filters at 10cm⁻¹ and 20cm⁻¹.

Gap Radiation Detector

100GHz

horn

diode with

- **Expect 2uJ radiation** energy from 2cm gap for 1nC, 200um bunch (Calculation J. Wu)
- Energy density of 1.6nJ/mm²
- Diode sensitivity ~0.1pJ/mm²
- Disperse pulse in 20cm waveguide to keep diodes in linear range
- Diodes paired to reduce dependence on beam position

Courtesy S. Smith

Photon Beam Diagnostics

- Measure spontaneous radiation for undulator commissioning
- Measure FEL photon beam for SASE commissioning
- Nondestructive measurements of beam properties for user operation

Stanford Synchrotron Radiation Laboratory

LCLS FEE Schematic

Stanford Synchrotron Radiation Laboratory

Wide Field of View Direct Imager

Single shot measurement of f(x,y), x, y,u

Photoelectrons generated by 0.01% FEL

Indirect Imager

Single shot measurement of f(x,y), x, y, uMulti shot measurement of λ

Material Pairs	N	d	Γ	Primary Energy
B ₄ C/SiC	150	60 Å	0.7	8.261 keV
B ₄ C/SiC	35	100 Å	0.75	8.261 keV
Be/SiC	40	110 Å	0.75	0.8261 keV
B ₄ C/SiC	750	20 Å	0.55	24.78 keV
B ₄ C/SiC	450	20 Å	0.55	24.78 keV
B ₄ C/SiC	150	70 Å	0.45	24.78 keV
B ₄ C/SiC	50	100 Å	0.754	2.478 keV

B4C/SiC Test Multilayers Fabricated

Angle selects energy and attenuation

Stanford Synchrotron Radiation Laboratory

Total Energy Calorimeter

Single shot measurement of f(x,y), x, y, u

Thermal diffusion calculations performed

Courtesy R. Bionta

Ion Chamber

Summary

- Electron beam diagnostics based on proven methods
- Photon beam diagnostics needs development of new techniques which are difficult to test due to the lack of a photon source comparable to an X-FEL

Acknowledgements

Thanks to many colleges from the LCLS collaboration