Опр. 1. Кольцом называется непустое множество K с операциями сложения и умножения, обладающими следующими свойствами:

- \bullet относительно сложения K есть абелева группа (называемая **аддитивной группой** кольца K);
- a(b+c) = ab + ac и (a+b)c = ac + bc для любых $a,b,c \in K$ (дистрибутивность умножения относительно сложения).

Кольцо K называется **ассоциативным**, если умножение в нем ассоциативно, т. е. (ab)c = a(bc) для любых $a,b,c \in K$.

Кольцо K называется **кольцом с единицей**, если в K существует нейтральный элемент относительно умножения, обозначаемый обычно через 1, т.е. 1a = a1 = a для любого $a \in K$.

Кольцо K называется **коммутативным**, если K — ассоциативное кольцо с единицей, в котором умножение коммутативно, т. е. ab = ba для любых $a, b \in K$.

Полем называется коммутативное кольцо, содержащее не менее двух элементов, в котором всякий ненулевой элемент обратим.

- **Опр. 2.** Элемент a^{-1} кольца с единицей называется **обратным** к элементу a, если $aa^{-1}=a^{-1}a=1$. Элемент, имеющий обратный, называется **обратимым** или **единицей кольца**. Множество K^* обратимых элементов кольца K является группой по умножению. Она называется **мультипликативной группой** или **группой обратимых элементов** кольца K.
- **Опр. 3.** Элемент $a \neq 0 \in K$ называется **делителем нуля**, если найдется такой элемент $b \neq 0$, что ab = 0.
- **Опр. 4. Гомоморфизмом** коммутативных колец называется отображение $\varphi: K \to L$ множеств, при котором сохраняются операции, то есть $\forall a,b \in K$ выполнены равенства $\varphi(a+b) = \varphi(a) + \varphi(b), \ \varphi(a \cdot b) = \varphi(a) \cdot \varphi(b).$ Аналогично определяется **изоморфизм** колец (это гомоморфизм + биекция).

Т. к. кольца — абелевы группы по сложению, при гомоморфизме выполняется $\varphi(0) = 0, \varphi(-a) = -\varphi(a)$.

Опр. 5. Коммутативное кольцо без делителей нуля называется **областью целостности** или **кольцом целостности**.

Опр. 6. Пусть K — область целостности. Будем говорить, что элемент $a \in K$ делит элемент $b \in K$ (обозначим a|b, или b : a), если найдётся такое $r \in K$, что ar = b.

 Γ руппа обратимых элементов K^* действует на всё кольцо K умножениями слева. Элементы, находящиеся в одной орбите этого действия, будем называть **ассоциированными**, а сами орбиты — **классами ассоциированности**.

То есть элементы x и y кольца K являются **ассоциированными**, если найдётся такое $r \in K^*$, что x = ry. Обозначение: $x \sim y$.

Опр. 7. Пусть K — область целостности. Необратимый ненулевой элемент $x \in K$ называется **неразложимым**, если $x = ab \Rightarrow \begin{bmatrix} a \in K^* \\ b \in K^* \end{bmatrix}$.

Опр. 8. Пусть K — область целостности. Назовём ненулевой необратимый элемент $x \in K$ простым, если $x \mid ab \Rightarrow \begin{bmatrix} x \mid a \\ x \mid b \end{bmatrix}$.

Опр. 9. Область целостности K называется **евклидовым кольцом**, если существует такое отображение (**норма**) $N: K \setminus \{0\} \to \mathbb{Z}_{\geqslant 0}$, что для любых $a,b \in K \setminus \{0\}$ выполнены два условия:

- 1. $N(ab) \geqslant N(a)$;
- 2. найдутся такие элементы $q, r \in K$, что a = qb + r и либо r = 0, либо N(r) < N(b).

Опр. 10. Область целостности K называется факториальным кольцом, если выполнены следующие два условия:

- 1. (существование разложения) любой элемент $x \in K$, $x \neq 0$ представляется в виде произведения неразложимых элементов с точностью до ассоциированности, то есть $x = up_1 \dots p_k$, где $u \in K^*$, p_i неразложимые элементы;
- 2. (единственность разложения) данное разложение единственно в следующем смысле. Пусть $x = up_1 \dots p_k = wq_1 \dots q_l$ два разложения, где u, w обратимы, а p_i, q_j неразложимые элементы. Тогда k = l и элементы q_j можно перенумеровать так, чтобы для всех i элементы p_i и q_i были ассоциированны.

Опр. 11. Корнем из единицы степени \mathbf{n} называется $z \in \mathbb{C}$: $z^n = 1$.

Корень из 1 степени 3, находящийся в верхней полуплоскости, обозначается ω .

 $\forall u \in \mathbb{C}$ определим $\mathbb{Z}[u] = \bigcup_{n=0}^{\infty} \{a_o + a_1 u + \dots + a_n u^n \mid a_o, \dots, a_n \in \mathbb{Z}\}$ — множество, порождённое элементом u над \mathbb{Z} .

 ${
m Torga} \; \mathbb{Z}[\omega] -$ числа Эйзенштейна.

Опр. 12. Наибольший общий делитель (НОД) (a,b) двух элементов $a,b \in K$ — области целостности, есть их общий делитель, который делится на все их другие общие делители.

Опр. 13. Подкольцо $S \subset K$ есть подгруппа по сложению, замкнутая относительно умножения (т. е. $\forall a,b \in S \ ab \in S$).

Опр. 14. Идеал I коммутативного кольца K — это такое множество элементов, что

- 1. $(I, +) \subset (K, +)$ подгруппа по сложению.
- 2. Для любых элементов $a \in K$ и $x \in I$ верно, что $ax \in I$.

Таким образом, подкольцо $I \subset K$ называется идеалом, если $\forall a \in K, x \in I \hookrightarrow ax \in I$.

Опр. 15. $0 \subset K, K \subset K$ — идеалы. Они называются **тривиальными**.

Опр. 16. $(a_1,\ldots,a_n)=\{a_1x_1+\ldots+a_nx_n\mid x_1,\ldots,x_n\in K\}$ — идеал, порождённый элементами a_1,\ldots,a_n .

Опр. 17. Конечно порождённый идеал — идеал, порождённый конечным количеством элементов.

Опр. 18. $(a) = \{ax \mid x \in K\}$ — главный идеал или идеал, порождённый одним элементом.

Опр. 19. Область целостности, в которой все идеалы главные, называется **кольцом главных идеалов** (сокращённо КГИ).

Опр. 20. Назовём нетривиальный идеал I **простым**, если $ab \in I \Rightarrow \begin{bmatrix} a \in I \\ b \in I \end{bmatrix}$.

Опр. 21. Назовём нетривиальный идеал I максимальным, если он максимальный по включению, то есть не существует идеала J такого, что $I \subsetneq J \subsetneq K$.

Опр. 22. Элементы $x,y \in K$ называются **взаимно простыми**, если у них нет нетривиальных общих делителей.

Будем называть многочлен $f \in K[x]$ **примитивным**, если его коэффициенты взаимно просты.

Опр. 23. Расширением полей называется вложение полей $K \supset F$.

Вложение — инъективное отображение $F \to K$.

Опр. 24. Определение $F(\alpha_1, ..., \alpha_n)$ см. в №30.

Элемент $\alpha \in K$ алгебраичен над F, если выполнено одно из двух эквивалентных условий:

- 1. расширение $F(\alpha) \supset F$ конечно;
- 2. α корень многочлена $f(x) \in F[x]$.

Опр. 25. Трансцендентный элемент — элемент, не являющийся алгебраическим.

Опр. 26. Расширение $K \supset F$ называется **алгебраическим**, если оно состоит из элементов, алгебраических над F.

Опр. 27. Пример алгебраического расширения поля.

- Расширение $\mathbb{C} \supset \mathbb{R}$ является алгебраическим.
- Расширение $F \supset F$ является алгебраическим.
- Любое конечное расширение $K \supset F$ является алгебраическим.

Примеры алгебраических элементов (не нужно в вопросе, на всякий случай).

- В расширении $\mathbb{Q} \subset \mathbb{C}$ элементы $\sqrt{2}, \sqrt{3}, \sqrt[n]{7}, i, i + \sqrt{3}$ поля \mathbb{C} алгебраические над \mathbb{Q} .
- В $\mathbb{R} \subset \mathbb{C}$ все элементы алгебраичны над \mathbb{R} .
- В любом расширении $K \supset F$ элементы F являются алгебраическими над F.

Опр. 28. Пример не алгебраического расширения поля.

Если в расширении есть трансцендентный элемент, оно не алгебраическое.

- В расширении $\mathbb{Q} \subset \mathbb{C}$ элементы π, e трансцендентны над \mathbb{Q} .
- В расширении $F \subset F(x)$ элемент x трансцендентный над F. Тут x тот x из определения кольца многочленов F[x], а не элемент F, как могло бы показаться (контрпример: рассмотрим расширение $\mathbb{Q}(\sqrt{2}) \supset \mathbb{Q}$, тогда многочлен $x^2 2$ имеет своим корнем $\sqrt{2} \Rightarrow \sqrt{2}$ алгебраический).

Вспомним, как определяли многочлен как финитную последовательность элементов кольца, и x у нас был $(0,1,0,\ldots,0)$, а элемент $a\in F$ мы отождествляли с последовательностью $(a,0,\ldots,0)$, т. е. при этом $F\subset F[x]$. Элемент x — не алгебраический, потому что расширение $F(x)\supset F$ бесконечно.

Опр. 29. Для данного элемента $\alpha \in K$ назовём **минимальным многочленом** многочлен $m_{\alpha} = m_{\alpha,F}$ со старшим коэффициентом 1, удовлетворяющий одному из СЭУ (следующих эквивалентных условий):

- 1. Для идеала $I_{\alpha,F} := (m_{\alpha,F})$ выполнено $I_{\alpha,F} = \{f(x) \in F[x] \mid f(\alpha) = 0\};$
- 2. m_{α} многочлен из I_{α} минимальной степени;
- 3. m_{α} неприводимый многочлен из I_{α} .
- **Опр. 30.** Через $F(\alpha_1, ..., \alpha_n)$ обозначим минимальное поле в K, содержащее F и $\alpha_1, ..., \alpha_n$.
- **Опр. 31.** Назовём **полем разложения** многочлена f(x) над полем F такое расширение $L \supset F$, что L содержит все корни многочлена f(x) и не существует нетривиального подполя $K \subset L$, удовлетворяющего тому же условию.

Опр. 32. Поле K называется **алгебраически замкнутым**, если выполнено одно из следующих эквивалентных условий:

- (1) Любое алгебраическое расширение над K тривиально.
- (2) Любой многочлен $f(x) \in K[x]$ с deg $f(x) \ge 1$ имеет корень в K.
- (3) Любой многочлен $f(x) \in K[x]$ с deg $f(x) \ge 1$ раскладывается на линейные множители в K.
- (4) Все неприводимые над K многочлены имеют степень 1.
- (5) Для любого многочлена $f(x) \in K[x]$ с $\deg f(x) \ge 1$ его поле разложения совпадает с K.
- **Опр. 33. Алгебраическим замыканием** поля F называется алгебраическое расширение $K=\overline{F}$ поля F, которое является алгебраически замкнутым полем.

Опр. 34. Даны точки 0 и 1 комплексной плоскости. Точку $x \in \mathbb{C}$ можно построить, если найдётся такая последовательность точек $x_0 = 0, x_1 = 1, \ldots, x_n = x$, где точка x_k получается из точек $\{x_0, x_1, \ldots, x_{k-1}\}$ при помощи применения трёх следующих действий:

- 1. Провести прямую через ранее построенные точки.
- 2. Провести окружность с центром в уже построенной точке, проходящую через другую построенную точку.
- 3. Построить точку пересечения двух *различных* прямых, прямой и окружности, двух *различных* окружностей, полученных в результате действий 1 и 2.

Опр. 35. Обозначим через ξ_n **примитивный корень** n-ой степени из 1, то есть корень многочлена x^n-1 , который не является корнем многочлена x^k-1 при k< n.

Опр. 36. Алгебраические над F элементы α и β называются **сопряженными**, если $m_{\alpha,F}=m_{\beta,F}$ (или, эквивалентно, $m_{\alpha,F}(\beta)=0$).

Опр. 37. Признак неприводимости Эйзенштейна

Пусть f(x) — многочлен с целыми коэффициентами и существует такое простое число p, что:

- 1. старший коэффициент f(x) не делится на p;
- 2. все остальные коэффициенты f(x) делятся на p;
- 3. свободный член f(x) не делится на p^2 .

Тогда многочлен f(x) неприводим над полем рациональных чисел.

Более общая формулировка из Lecture all.pdf:

Пусть F — факториальное кольцо, $I \subset F$ — простой идеал, $f(x) = a_n x^n + \dots + a_1 x + a_0 \in F[x]$ — многочлен степени n > 1. Если $a_0, a_1, \dots, a_{n-1} \in I, a_0 \notin I^2, a_n \notin I$, то у f(x) нет делителей степени d при $1 \le d \le n-1$.

Опр. 38. $\varphi: F \to F$, где φ — изоморфизм, — **автоморфизм** поля F (изоморфизм поля на себя).

Степенью [K:F] расширения $K\supset F$ называется размерность K над F как линейного пространства.

Пусть $F \subset K$ — расширение полей. Множество автоморфизмов K, оставляющих F на месте, является группой и называется **группой автоморфизмов** и обозначается $\mathrm{Aut}_F(K) = \mathrm{Aut}([K:F])$. Если F — основное поле ($\mathbb Q$ или $\mathbb Z_p$), то символ F опускают.

Опр. 39. Пусть $H \subset \operatorname{Aut}_F(K)$ — подгруппа. Тогда $K^H = \{x \in K \mid \forall h \in H \ h(x) = x\}$ является полем, причём $K \supset K^H \supset F$.

Опр. 40. Пусть $K \supset F$ — конечное расширение. Будем называть это расширение **нормальным**, или **расширением Галуа** если выполнено одно из следующих эквивалентных условий:

- (1) Вместе с каждым элементом поле K содержит и все сопряженные;
- (2) K поле разложение многочлена $f(x) \in F[x]$;
- (3) $|\operatorname{Aut}_F K| = [K : F];$
- (4) $K^{\operatorname{Aut}_F K} = F$.

Опр. 41. Группа автоморфизмов расширения Галуа K, сохраняющих F, $\mathrm{Aut}_F K$, называется **группой Галуа** $\mathrm{Gal}_F K$.