TopAL - Tópicos de Álgebra Linear Lista 4

1. Considere o teorema:

Teorema 1 Seja $T \in \mathcal{L}(V, W)$ injetora e sobrejetora. Seja $S \subset V$. Então,

- (i) $[S] = V \Leftrightarrow [T(S)] = W$.
- (ii) $S \notin L.I. \Leftrightarrow T(S) \notin L.I..$

Para cada item, e cada direção da afirmação, reduza a hipótese ao mínimo necessário, e verifique que o que sobrou é essencial com contra-exemplos.

- 2. Seja W subespaço de V, ambos de dimensão infinita. V/W deve ter dimensão finita?
- 3. Seja V o espaço vetorial das funções polinomiais p de $\mathbb R$ em $\mathbb R$ que tem grau menor ou igual a 2. Definamos três funcionais sobre V por

$$L_1(p) = \int_0^1 p(x) dx$$
 $L_2(p) = \int_0^2 p(x) dx$ $L_3(p) = \int_0^{-1} p(x) dx$

4. Se A e B são matrizes complexas, mostre que é impossível ter

$$AB - BA = I$$
.

- 5. Sejam W_1 e W_2 subespaços de um espaço vetorial V de dimensão finita. Demonstrar que
 - (i) $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$.
 - (ii) $(W_1 \cap W_2)^0 = W_1^0 + W_2^0$.
- 6. Seja V espaço vetorial de dimensão finita, W subespaço de V e $f \in W^*$. Mostre que existe $g \in V^*$ tal que

$$g(v) = f(v), \quad \forall v \in W.$$

- 7. Seja $f \in \mathbb{K}^2$ definido $f(\alpha_1, \alpha_2) = a\alpha_1 + b\alpha_2$. Para cada um dos operadores lineares T seguintes, sendo $g = T^t f$, determine $g(\alpha_1, \alpha_2)$.
 - (i) $T(\alpha_1, \alpha_2) = (\alpha_1, 0);$
 - (ii) $T(\alpha_1, \alpha_2) = (-\alpha_2, \alpha_1);$
 - (iii) $T(\alpha_1, \alpha_2) = (\alpha_1 \alpha_2, \alpha_1 + \alpha_2).$
- 8. Seja V o espaço das funções polinomiais sobre o corpo dos números reais. Sejam a e b números reais fixos e seja f o funcional linear sobre V definido por

$$f(p) = \int_{a}^{b} p(x) \mathrm{d}x.$$

Se D é o operador derivação sobre V, o que é $D^t f$?

9. Seja V o espaço das matrizes n por n, e seja B uma matriz desse espaço fixa. Se T é o operador linear sobre V definido por T(A) = AB - BA, e se f é a função traço, o que é $T^t f$?

1