Elements of Econometrics. Lecture 10. Heteroscedasticity.

FCS, 2022-2023

ASSUMPTIONS FOR MODEL A VIOLATION:

- 1. Reasons
 Consequences
 Detection
 Remedial measures
- A.4 The disturbance term is homoscedastic: $\sigma_{u_i}^2 = \sigma_u^2$ for all i (Gauss-Markov 2 condition)

Heteroscedasticity: $\sigma_{u_i}^2 = \sigma_i^2$

Reasons: the factors combined in the disturbance term may change in scale together with X.

HETEROSCEDASTICITY

Consequences of heteroscedasticity:

- 1. Standard errors of the regression coefficients are estimated wrongly and the t tests (and F test) are invalid.
- 2. OLS estimators are inefficient (though still unbiased).

HETEROSCEDASTICITY: EXAMPLE

The regression of Manufacturing on GDP (28 large developed countries, without USA and Japan)

UNBIASEDNESS OF THE REGRESSION COEFFICIENTS: NO NEED OF HOMOSCEDASTICITY

$$\hat{\beta}_2 = \beta_2 + \frac{\sum (X_i - \bar{X})(u_i - \bar{u})}{\sum (X_i - \bar{X})^2} = \beta_2 + \sum a_i u_i$$

$$\sum (X_i - \bar{X})(u_i - \bar{u}) = \sum (X_i - \bar{X}) u_i$$

$$\bar{u}\sum(X_i - \bar{X}) = 0$$
 since $\sum(X_i - \bar{X}) = 0$

$$E(\hat{\beta}_2) = E(\beta_2) + E\left(\sum a_i u_i\right)$$

$$= \beta_2 + \sum E(a_i u_i) = \beta_2 + \sum a_i E(u_i)$$

HETEROSCEDASTICITY: PRECISION OF b2 COEFFICIENT, SLR

Heteroscedasticity-consistent (Robust) standard errors

$$\sigma_{\hat{\beta}_{2}}^{2} = \mathbb{E}\left\{ \left(\hat{\beta}_{2} - \mathbb{E}(\hat{\beta}_{2}) \right)^{2} \right\} = \mathbb{E}\left\{ \left(\hat{\beta}_{2} - \beta_{2} \right)^{2} \right\} = \mathbb{E}\left\{ \left(\sum_{i=1}^{n} a_{i} u_{i} u_{i} \right)^{2} \right\} = \mathbb{E}\left\{ \left(\sum_{i=1}^{n} a_{i} u_{i} u_{i} \right)^{2} \right\} = \mathbb{E}\left\{ \left(\sum_{i=1}^{n} a_{i} u_{i} u_{i} \right)^{2} \right\} = \mathbb{E}\left\{ \left(\sum_{i=1}^{n} a_{i} u_{i} u_{i} \right)^{2} \right\} = \mathbb{E}\left\{ \left(\sum_{i=1}^{n} a_{i} u_{i} u_{i} \right)^{2} \right\} = \mathbb{E}\left\{ \left(\sum_{i=1}^{n} a_{i} u_{i} u_{i} \right)^{2} \right\} = \mathbb{E}\left\{ \left(\sum_{i=1}^{n} a_{i} u_{i} u_{i} u_{i} \right)^{2} \right\} = \mathbb{E}\left\{ \left(\sum_{i=1}^{n} a_{i} u_{i} u_{i} u_{i} \right)^{$$

The formula for $\hat{\beta}_2$ population variance differs from the standard one. It can be greater or less, depending on σ_i^2 behaviour.

HETEROSCEDASTICITY DETECTION:

GENERAL CASE

General: White test for heteroscedasticity (White, 1980), for detection of any form of association between σ_i^2 and the regressors.

Since σ_i^2 are unobservable, \hat{u}_i^2 are used as proxies.

The White test consists of two steps:

- 1. Regressing the squared residuals on the explanatory variables in the model, their squares, and their cross-products, omitting any duplicative variables.
- 2. Test statistic nR^2 is calculated, using R^2 from this regression. Under the null hypothesis of no association (homoscedasticity), it is distributed as a chi-squared statistic with degrees of freedom equal to the number of regressors, including the constant, minus one, in large samples. F-test can be also applied. It is also a large-samples test here, and the results are usually the same.

So, after estimating the model $Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u$

the regression

$$\hat{u}_{i}^{2} = \beta_{1} + \beta_{2}X_{2i} + \beta_{3}X_{3i} + \beta_{4}X_{2i}^{2} + \beta_{5}X_{3i}^{2} + \beta_{6}X_{2i}X_{3i} + v_{i}$$

is estimated

HETEROSCEDASTICITY DETECTION:

Breusch-Pagan Test

The Breusch-Pagan (or Breusch-Pagan-Godfrey) test for heteroscedasticity, for detection of between σ_i^2 and the regressors. Comparing to the White test, includes less parameters to estimate. Since σ_i^2 is unobservable, \hat{u}_i^2 is used as a proxy.

The test consists of two steps:

- 1. Regressing the squared residuals on the explanatory variables in the model.
- 2. Test statistic nR^2 is calculated, using R^2 from this regression. Under the null hypothesis of no association (homoscedasticity), it is distributed as a chi-squared statistic with degrees of freedom equal to the number of regressors, including the constant, minus one, in large samples.

F-test can be also applied. It is also a large-samples test here, and the results are usually the same.

After estimating the model

$$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u$$

the regression

$$\hat{u}_{i}^{2} = \beta_{1} + \beta_{2} X_{2i} + \beta_{3} X_{3i} + v_{i}$$

is estimated

HETEROSCEDASTICITY DETECTION: GOLDFELD-QUANDT TEST:

The Goldfeld–Quandt test is a test for this type of heteroscedasticity. The sample is divided into three ranges containing n_1 observations with the smallest values of the X and n_2 observations with the largest values, the rest in the middle. Then the model is estimated for two extreme subsamples, with RSS₁ and RSS₂. Normally $n_1/n=n_2/n=3/8$ is recommended.

Here the null hypothesis of homoscedasticity is rejected at the 0.1% level.

WHITE AND BREUSCH-PAGAN TESTS EXAMPLE

$$LGEARN = \beta_1 + \beta_2 S + \beta_3 ASVABC + u$$

Dependent Variable: LGEARN Method: Least Squares Included observations: 570

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.777056	0.132301	5.873384	0.0000
S	0.077404	0.010007	7.734779	0.0000
ASVABC	0.012379	0.002662	4.650030	0.0000

R-squared 0.227830 Mean dependent var 2.456463 S.D. dependent var 0.541347 S.E. of regression 0.476537

Sum squared resid 128.7586 F-statistic 83.64712 Durbin-Watson stat 1.728273

$$RES1_{i}^{2} = \beta_{1} + \beta_{2}S_{i} + \beta_{3}ASVABC_{i} + \beta_{4}S_{i}^{2} + \beta_{5}ASVABC_{i}^{2} + \beta_{6}S_{i}ASVABC_{i} + v_{i}$$

$$RES1_i^2 = \beta_1 + \beta_2 S_i + \beta_3 ASVABC_i + v_i$$

We will apply the White test in the Earnings Function (EAEF 40). Assume that in the true model *LGEARN* depends only on *S* and *ASVABC*.

EViews: View→Residual Diagnostics → Heteroscedasticity Tests → White (with or without cross terms); or Breusch-Pagan-Godfrey

WHITE TEST EXAMPLE

$$RES1_{i}^{2} = \beta_{1} + \beta_{2}S_{i} + \beta_{3}ASVABC_{i} + \beta_{4}S_{i}^{2} + \beta_{5}ASVABC_{i}^{2} + \beta_{6}S_{i}ASVABC_{i} + v_{i}$$

Dependent Variable: RES2 Method: Least Squares Included observations: 570

Variable C S ASVABC S2 ASVABC2 SASV	Coefficient	Std. Error	t-Statistic	Prob.
	1.504124	0.608615	2.471388	0.0138
	-0.088943	0.074242	-1.198013	0.2314
	-0.033729	0.020207	-1.669187	0.0956
	0.002982	0.003686	0.808916	0.4189
	0.000385	0.000244	1.573253	0.1162
	8.13E-05	0.001411	0.057587	0.9541
R-squared S.D. dependent var Sum squared resid Durbin-Watson stat nR ² =570*0.019295	91.46633 1.846331	Mean dependent var S.E. of regression F-statistic Prob(F-statistic) chi ² _{crit,5%} (5)=11.07	0.225892 0.402709 2.219325 0.051024	

The null-hypothesis of homoscedasticity is not rejected here at the 5% level, but marginally. The same conclusion would be done using F-statistic.

BREUSCH-PAGAN TEST EXAMPLE

$$RES1_i^2 = \beta_1 + \beta_2 S_i + \beta_3 ASVABC_i + v_i$$

Heteroskedasticity Test: Breusch-Pagan-Godfrey

Null hypothesis: Homoskedasticity

F-statistic	2.076642	Prob. F(2,567)	0.1263
Obs*R-squared	4.144898	Prob. Chi-Square(2)	0.1259
Scaled explained SS	6.575749	Prob. Chi-Square(2)	0.0373

Test Equation:

Dependent Variable: RESID^2

Method: Least Squares Date: 11/12/22 Time: 17:31

Sample: 1 570

Included observations: 570

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C S ASVABC	0.005250 0.005146 0.002987	0.112189 0.008486 0.002257	0.046795 0.606448 1.323162	0.9627 0.5445 0.1863
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.007272 0.003770 0.404097 92.58771 -290.8132 2.076642 0.126303	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Wats c	ent var iterion rion n criter.	0.225892 0.404860 1.030923 1.053795 1.039847 1.805433

The null-hypothesis of homoscedasticity is not rejected here at the 5% level. The same conclusion would be done using F-statistic.

HETEROSCEDASTICITY: REMEDIAL MEASURES.

Generalised Least Squares (GLS). Weighted Regressions.

GLS is OLS on the transformed variables that satisfy the standard LS assumptions. GLS estimators are BLUE.

WLS (Weighted Least Squares) is a special case of GLS for heteroscedasticity case.

$$Y_i = \beta_1 + \beta_2 X_i + u_i \quad \Rightarrow \quad \frac{Y_i}{\sigma_i} = \beta_1 \frac{1}{\sigma_i} + \beta_2 \frac{X_i}{\sigma_i} + \frac{u_i}{\sigma_i}$$

$$\operatorname{Var}(u_i) = \sigma_i^2 \quad \text{, not constant for all } i \qquad \operatorname{Var}\left\{\frac{u_i}{\sigma_i}\right\} = \frac{1}{\sigma_i^2} \operatorname{Var}(u_i) = \frac{\sigma_i^2}{\sigma_i^2} = 1$$

$$Y' = \beta_1 H + \beta_2 X' + u'$$

$$Y' = \frac{Y_i}{\sigma_i}, \quad H = \frac{1}{\sigma_i}, \quad X' = \frac{X_i}{\sigma_i}, \quad u' = \frac{u_i}{\sigma_i}$$

In the revised model, we regress Y on X and H, as defined. Note that there is no intercept in the revised model. β_1 becomes the slope coefficient of the variable $1/\sigma_i$.

HETEROSCEDASTICITY: WEIGHTED AND LOGARITHMIC REGRESSIONS

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

 $var(u_i) = \sigma_i^2$, not constant for all i

 σ_i unknown, but possibly $\sigma_i = \lambda Z_i$

$$\frac{Y_i}{Z_i} = \beta_1 \frac{1}{Z_i} + \beta_2 \frac{X_i}{Z_i} + \frac{u_i}{Z_i}$$

$$\operatorname{var}\left\{\frac{u_i}{Z_i}\right\} = \frac{1}{Z_i^2} \sigma_i^2 = \frac{\sigma_i^2}{\sigma_i^2 / \lambda^2} = \lambda^2$$

$$Y' = \beta_1 H + \beta_2 X' + u'$$
 $Y' = \frac{Y_i}{Z_i}, H = \frac{1}{Z_i}, X' = \frac{X_i}{Z_i}, u' = \frac{u_i}{Z_i}$

The disturbance term in the revised model has constant variance λ^2 . We do not need to know the value of λ^2 .

HETEROSCEDASTICITY-CONSISTENT STANDARD ERRORS: EViews Estimation

$$LGEARN = \beta_1 + \beta_2 S + \beta_3 ASVABC + u$$

Dependent Variable: LGEARN Method: Least Squares Included observations: 570 White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.777056	0.141987	5.472718	0.0000
S	0.077404	0.010639	7.275155	0.0000
ASVABC	0.012379	0.002689	4.602784	0.0000

R-squared	0.227830	Mean dependent var	2.456463
S.D. dependent var	0.541347	S.E. of regression	0.476537
Sum squared resid	128.7586	F-statistic	83.64712

The standard errors are greater but asymptotically valid

Standard errors:
$$s_{\hat{\beta}_2} = \sqrt{\frac{\sum_{i=1}^{n} x_i^2 \hat{u}_i^2}{\left(\sum_{j=1}^{n} x_j^2\right)^2}} = \sqrt{\sum_{i=1}^{n} a_i^2 \hat{u}_i^2}$$

EViews: Proc → Specify/Estimate → LS (specify equation) → Options →

Coefficient Covariance Matrix: White.

Weighted Least Squares: EViews Estimation

$$LGEARN = \beta_1 + \beta_2 S + \beta_3 ASVABC + u$$

Dependent Variable: LGEARN/S (weights are 1/S):

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.073486	0.010766	6.825850	0.0000
1/S	0.918090	0.127407	7.205937	0.0000
ASVABC/S	0.010606	0.002558	4.145702	0.0000
R-squared	0.159513	Mean dependent var	0.182	2388

Heteroskedasticity Test: White

F-statistic	5.484209	Prob. F(4,565)	0.0002
Obs*R-squared	21.30382	Prob. Chi-Square(4)	0.0003

Heteroscedasticity has not been removed. The same result if the weights are 1/ASVABC. So the heteroscedasticity was of some other type.

EViews: $Proc \rightarrow Specify/Estimate - LS$ (specify equation) $\rightarrow Options \rightarrow Weights: Type - inverse standard deviation; weighting series: 1/S.$

HETEROSCEDASTICITY: WEIGHTED REGRESSION, EXAMPLE

In MANU – GDP model Goldfeld-Quandt test found heteroscedasticity of the type $\sigma_i = \gamma GDP_i$. After dividing by GDP, the F statistic is not significant. The heteroscedasticity has been eliminated.

HETEROSCEDASTICITY: DOUBLE LOGARITHMIC REGRESSION

Heteroscedasticity can be also removed in logarithmic model.

The null hypothesis of homoscedasticity is not rejected.

HETEROSCEDASTICITY: WEIGHTED AND LOGARITHMIC REGRESSIONS

$$MA\hat{N}U = 604 + 0.194GDP
(5700) (0.013)$$

$$\frac{MA\hat{N}U}{POP} = 612 \frac{1}{POP} + 0.182 \frac{GDP}{POP}
(1371) (0.016)$$

$$\frac{MA\hat{N}U}{GDP} = 0.189 + 533 \frac{1}{GDP}$$

$$R^2 = 0.70$$

$$R^2 = 0.70$$

$$R^2 = 0.02$$

$$R^2 = 0.02$$

$$R^2 = 0.02$$

$$R^2 = 0.02$$

Here is a summary of the regressions using the four alternative specifications of the model.

HETEROSCEDASTICITY: MONTE CARLO ILLUSTRATION

$$Y_i = 10 + 2.0X_i + u_i$$
 $X_i = \{5,6, ..., 54\}$ $u_i = X_i \varepsilon_i$ $\varepsilon_i \sim N(0,1)$

Monte Carlo simulation: Y = 10 + 2X, X = 5,..., 54, $u_i = X\varepsilon_v$ where ε_i is iid N(0,1)

HETEROSCEDASTICITY: MONTE CARLO ILLUSTRATION

Both OLS and WLS are unbiased, but the WLS estimates distribution has smaller variance. This illustrates OLS inefficiency with heteroscedasticity.

HETEROSCEDASTICITY: MONTE CARLO ILLUSTRATION

Consistent standard errors are valid only in large samples. For small samples, their properties are unknown. They can mislead even more than the OLS standard errors.