Kolmosť priamok

1. Napíšte všeobecnú rovnicu priamky, ktorá prechádza bodom A a je kolmá na priamku BC, ak je:

a)
$$A[1, -4]$$
, $B[3, -7]$, $C[3, 2]$ (D.ú.)

2. Napíšte všeobecnú rovnicu priamky, ktorá prechádza bodom A a je kolmá na priamku p

a)
$$A[4,3]$$
, $p: y = 2x + 1$ (D.ú.)

b) A[6,1], p:
$$y = -\frac{3}{2}x + \frac{1}{3}$$

3. Je daný bod H [2;3;5] a priamky a, b, c, d. Určte súradnice piat kolmíc vedených z bodu H na jednotlivé priamky:

a:
$$x = 1 + t$$
, $y = -3 - 3t$, $z = 2-2t$, $t \in R$

b:
$$x = 2$$
, $y = s$, $z = 2 + s$, $s \in R$

c:
$$x = v$$
, $y = 4 - v$, $z = 3 + 2v$, $v \in R$

d:
$$x = 5w+7$$
, $y = 3+w$, $z = 1 - 2w$, $w \in R$

- 4. Je daný trojuholník ABC, A[0; 8] B[5; 3] C[16; 2]. Napíšte parametrické vyjadrenie priamky, na ktorej leží výška na stranu BC. Vypočítajte veľkosť výšky na stranu BC.
- 5. V rovine α ležia tri body A[2; -4; 5], B[3; -1;4], C[0; -10; 7]. Napíšte parametrické vyjadrenie priamky, ktorá je kolmá na túto rovinu a prechádza cez bod A.

Kolmosť rovín

- 6. Sú dané body A[2; 0; 5], B[3; -1;4], C[6; 2; -5].
 - a) Napíšte všeobecnú rovnicu roviny α , ktorá prechádza bodom B a je kolmá na priamku AC.
 - b) Napíšte všeobecnú rovnicu roviny β, ktorá prechádza bodom A a je kolmá na priamku BC. (D.ú.)
- 7. Jen daná priamka p a bod E[4; -2; 5]. Napíšte všeobecnú rovnicu roviny, ktorá prechádza bodom E a je kolmá na priamku p, ak

a) p:
$$x = 3 - t$$
, $y = 2 - 4t$, $z = -1 + 3t$, $t \in R$

8. Sú dané priamky a, b, c, d. Nájdite všeobecné rovnice rovín α , β , γ , δ , z ktorých každá prechádza jednou z daných priamok a, b, c, d a je kolmá na rovinu ρ : x + y + 2z - 3 = 0:

a:
$$x = 1 + t$$
, $y = -3 - 3t$, $z = 2-2t$, $t \in R$ (D.d.ú.)

b:
$$x = 2$$
, $y = s$, $z = 2 + s$, $s \in R$

c:
$$x = v$$
, $y = 4 - v$, $z = 3 + 2v$, $v \in R$

d:
$$x = 5w+7$$
, $y = 3+w$, $z = 1 - 2w$, $w \in R$

- 9. Sú dané body L[3 ; -2; 5], M[-2; 5; -4] a rovina ρ . Nájdite všeobecnú rovnicu roviny σ , ktorá prechádza bodmi L, M a je kolmá na ρ , ak
 - a) ρ : x = 1 + t + s, y = 2 t 3s, z = 4 + t 3s, $t,s \in \mathbb{R}$
 - b) $\rho = ABC$; kde A[0; 0; 1], B[0; 2; 0], C[3; 0; 0].
- 10. Daný je bod A a roviny ρ , σ . Nájdite všeobecnú rovnicu roviny, ktorá prechádza bodom A a je kolmá na roviny ρ a σ , ak

a) A[1; -2; 4],
$$\rho$$
: 2x +y - 3z +7 = 0; σ : x - 2y - z + 4 =0

b) A[3; 1; -1],
$$\rho$$
: x + 3y - 2z + 16 = 0; σ : 5x - y + z + 9 = 0