1- In the following circuits, specify the feedback network, main amplifier section and the type of the feedback.

2- Determine the sign of the feedback in the following circuits.

3- In the circuit shown below, $R_i(\omega)$ and $R_o(\omega)$ are the input resistance and output resistance in terms of ω . How do $R_i(\omega)$ and $R_o(\omega)$ change as the frequency varies from 0 to infinity. (Hint: Capacitor is modeled as an open-circuit in ω =0 and as a short-circuit as the frequency goes to infinity)

4- Calculate the input resistance of the following figure.

5- In the following circuit, specify the type of the feedback configuration. In addition, calculate the current gain $(\frac{i_o}{i_s})$ and the output resistance.

6- In the following circuit, specify R_F so that $\frac{i_o}{v_S} = 0.1$. The gain of the main amplifier is assumed to be very large.

7- Calculate the voltage gain $(\frac{v_o}{v_s})$ and the input resistance (R_{in}) of the following circuit.

- 8- a) In the following circuit, prove that the feedback sign is negative. In addition, specify the type of the feedback configuration.
 - b) Calculate the voltage gain, input resistance and output resistance of the circuit.

- 9- In the following circuit, suppose that $I_C=1$ mA and $\beta=100$ for all of the transistors.
 - a) Specify the feedback loop of the circuit and show that the feedback sign is negative.
 - b) Specify the type of the feedback configuration.
 - c) Calculate the voltage gain.
 - d) Calculate the input and the output resistances (R_{in} and R_{out})

Good Luck- M.R. Ashraf