Discrete random walks with memory: Models and applications

Ing. Tomáš Kouřim

Institute of Information Theory and Automation, CAS CR Prague

16.9.2019

Outline

- 1. Prepare mathematical model
- Describe its properties
- Apply it on data

Outline

- 1. Prepare mathematical model
- 2. Describe its properties
- Apply it on data

Outline

- 1. Prepare mathematical model
- 2. Describe its properties
- 3. Apply it on data

Random walk

Definition

A man starts from a point O and walks I yards in a straight line; he then turns through any angle whatever and walks another I yards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and $r + \delta r$ from his starting point, O.

[Karl Pearson: The problem of the random walk. (1905)]

Where is the "Drunken sailor"?

Random walk

Definition

A man starts from a point O and walks I yards in a straight line; he then turns through any angle whatever and walks another I yards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between r and $r + \delta r$ from his starting point, O.

[Karl Pearson: The problem of the random walk. (1905)]

Where is the "Drunken sailor"?

Random walk

Definition

Let $\{X_k\}_{k=1}^{\infty}$ be a sequence of discrete random variables. For each positive integer n, let S_n denote the sum $X_1+X_2+\cdots+X_n$, with $S_0=0$. The sequence $\{S_n\}_{n=1}^{\infty}$ is called a random walk. If the common range of the X_k 's is \mathbb{R}_m , then $\{S_n\}$ is a random walk in \mathbb{R}_m .

If for $\forall k$; $X_k \sim B(p=\frac{1}{2})$, the walk is called the standard random walk.

Random walk properties

- Discrete random process
- n—dimensional, on a matrix, graph, finite or infinite set
- Self avoiding, reinforced
- Brownian motion, polymer creation, games simulation, sports simulation

Random walk with memory

- Based on standard random walk (Bernoulli distribution with p = 0.5, discrete time).
- ► Constant total step size:

$$I_i^+ + I_i^- = 2 \ \forall i \in \mathbb{N}.$$

At the beginning the step sizes are equal $(I_1^+ = I_1^- = 1)$ and further for t > 1 evolve using a memory parameter $\lambda \in (0, 1)$:

$$X_{t-1} = 1 \to \begin{cases} I_t^+ = \lambda I_{t-1}^+ \\ I_t^- = 2 - \lambda I_{t-1}^+ \end{cases} \quad X_{t-1} = -1 \to \begin{cases} I_t^+ = 2 - \lambda I_{t-1}^- \\ I_t^- = \lambda I_{t-1}^- \end{cases}$$

► Loïc Turban. On a random walk with memory and its relation with markovian processes. Journal of Physics A: Mathematical and Theoretical (2010).

Random walk with varying transition probability

- ▶ Based on standard random walk (Bernoulli distribution with p = 0.5, discrete time).
- Step size remains constant, transition probability changes
- First step realized according to starting probability p_0 which then for t > 1 evolve using a memory parameter $\lambda \in (0, 1)$:

$$X_t = 1 \rightarrow p_t = \lambda p_{t-1}$$

$$X_t = -1 \to p_t = 1 - \lambda(1 - p_{t-1})$$

Example - RW evolution

$$P_t = \lambda P_{t-1} + \frac{1}{2}(1-\lambda)(1-X_t)$$

$$P_t = p_0 \lambda^t + \frac{1}{2} (1 - \lambda) \sum_{i=1}^t \lambda^{t-i} (1 - X_i)$$

$$\triangleright$$
 $EP_t = (2\lambda - 1)^t p_0 + \frac{1 - (2\lambda - 1)^t}{2}$

$$ES_t = S_0 + (2p_0 - 1) \frac{1 - (2\lambda - 1)^t}{2(1 - \lambda)}$$

$$P_t = \lambda P_{t-1} + \frac{1}{2}(1-\lambda)(1-X_t)$$

$$P_t = p_0 \lambda^t + \frac{1}{2} (1 - \lambda) \sum_{i=1}^t \lambda^{t-i} (1 - X_i)$$

$$ightharpoonup EP_t = (2\lambda - 1)^t p_0 + \frac{1 - (2\lambda - 1)^t}{2}$$

$$ES_t = S_0 + (2p_0 - 1) \frac{1 - (2\lambda - 1)^t}{2(1 - \lambda)}$$

$$P_t = \lambda P_{t-1} + \frac{1}{2}(1-\lambda)(1-X_t)$$

$$P_t = p_0 \lambda^t + \frac{1}{2} (1 - \lambda) \sum_{i=1}^t \lambda^{t-i} (1 - X_i)$$

•
$$EP_t = (2\lambda - 1)^t p_0 + \frac{1 - (2\lambda - 1)^t}{2}$$

$$\triangleright$$
 $ES_t = S_0 + (2p_0 - 1)\frac{1 - (2\lambda - 1)^t}{2(1 - \lambda)}$

$$P_t = \lambda P_{t-1} + \frac{1}{2}(1-\lambda)(1-X_t)$$

$$P_t = p_0 \lambda^t + \frac{1}{2} (1 - \lambda) \sum_{i=1}^t \lambda^{t-i} (1 - X_i)$$

$$ightharpoonup EP_t = (2\lambda - 1)^t p_0 + \frac{1 - (2\lambda - 1)^t}{2}$$

$$\triangleright$$
 $ES_t = S_0 + (2p_0 - 1)\frac{1 - (2\lambda - 1)^t}{2(1 - \lambda)}$

Example - Expected transition probability

Example - Transition probability variance

Example - Expected position of the walker

Example - Walker's position variance

Formulas to obtain next transition probability P_i :

- $\frac{1}{2} [(1+X_i)\lambda P_{i-1} + (1-X_i)(1-\lambda(1-P_{i-1}))]$ Success numbered
- $\frac{1}{2} [(1 X_i)\lambda P_{i-1} + (1 + X_i)(1 \lambda(1 P_{i-1}))]$ Success rewarded
- $\frac{1}{2} [(1+X_i)\lambda_0 P_{i-1} + (1-X_i)(1-\lambda_1(1-P_{i-1}))]$ Success punished with multiple λ
- $\frac{1}{2}[(1-X_i)\lambda_0 P_{i-1} + (1+X_i)(1-\lambda_1(1-P_{i-1}))]$

- Formulas to obtain next transition probability P_i :
 - - Success punished
 - $\frac{1}{2} [(1 X_i)\lambda P_{i-1} + (1 + X_i)(1 \lambda(1 P_{i-1}))]$
 - $\frac{1}{2} [(1+X_i)\lambda_0 P_{i-1} + (1-X_i)(1-\lambda_1(1-P_{i-1}))]$ Success number with multiple λ

- Formulas to obtain next transition probability P_i :
 - $\frac{1}{2}[(1+X_i)\lambda P_{i-1}+(1-X_i)(1-\lambda(1-P_{i-1}))]$
 - Success punished
 - $\frac{1}{2} [(1 X_i)\lambda P_{i-1} + (1 + X_i)(1 \lambda(1 P_{i-1}))]$
 - $\frac{1}{2}[(1+X_i)\lambda_0 P_{i-1} + (1-X_i)(1-\lambda_1(1-P_{i-1}))]$ Success number with multiple λ

- Formulas to obtain next transition probability P_i :
 - - Success punished
 - - Success rewarded
 - - Success punished with multiple λ
 - - Success rewarded with multiple λ

- Formulas to obtain next transition probability P_i :
 - - Success punished
 - - Success rewarded
 - - Success punished with multiple λ
 - - Success rewarded with multiple λ

- Formulas to obtain next transition probability P_i :
 - - Success punished
 - - Success rewarded
 - - Success punished with multiple λ

• Success rewarded with multiple λ

- Formulas to obtain next transition probability P_i:
 - $\frac{1}{2}[(1+X_i)\lambda P_{i-1}+(1-X_i)(1-\lambda(1-P_{i-1}))]$
 - Success punished
 - - Success rewarded
 - - Success punished with multiple λ
 - $\frac{1}{2}[(1-X_i)\lambda_0P_{i-1}+(1+X_i)(1-\lambda_1(1-P_{i-1}))]$
 - Success rewarded with multiple λ

Data generation

- Using Python & Numpy package
- Different parameters:
 - $\lambda \in \{0.01, 0.1, 0.25, 0.5, 0.8, 0.9, 0.99\}$
 - $\bar{\lambda} = \{[0.1, 0.2], [0.2, 0.5], [0.5, 0.8], [0.1, 0.9], [0.5, 0.99], [0.8, 0.01], [0.99, 0.9]\}$

 - 100 walks for each combination

Fitting parameters on generated data

- ightharpoonup Find $\overrightarrow{\lambda}$ with known p_0 , model type
- Find p_0 with known $\overrightarrow{\lambda}$, model type
- Find p_0 , $\overrightarrow{\lambda}$ with known model type
- Find p_0 , $\overrightarrow{\lambda}$ and model type

Parameter fitting evaluation

	SP - 1λ	SR - 1λ	SP - 2λ	SR - 2λ
Find $\overrightarrow{\lambda}$				
Find po				
Find $\overrightarrow{\lambda}$, p_0				
Find $\overrightarrow{\lambda}$, p_0 and type				

- Random processes with memory and one or just few dominant events
 - Reliability analysis, medical data analysis, criminal recidivism
 - Sport modelling
 - Tennis with model "Success rewarded"
 - Applied for live betting on US Open against Tipsport bookmaker
 - Source code and paper available at
 - https://github.com/tomaskourim/mathsport2019

- Random processes with memory and one or just few dominant events
 - Reliability analysis, medical data analysis, criminal recidivism
 - Sport modelling
 - Tennis with model "Success rewarded"
 - Applied for live betting on US Open against Tipsport bookmaker
 - Source code and paper available at https://github.com/tomaskourim/mathsport2019

- Random processes with memory and one or just few dominant events
 - Reliability analysis, medical data analysis, criminal recidivism
 - Sport modelling
 - Tennis with model "Success rewarded"
 - Applied for live betting on US Open against Tipsport hookmaker
 - Source code and paper available at https://github.com/tomaskourim/mathsport2019

- Random processes with memory and one or just few dominant events
 - Reliability analysis, medical data analysis, criminal recidivism
 - Sport modelling
 - Tennis with model "Success rewarded"
 - Applied for live betting on US Open against Tipsport bookmaker
 - Source code and paper available at https://github.com/tomaskourim/mathsport2019

Summary

- New models of Random walk described
- Properties derived
- Strenght of the models shown using simulated data
- Possible real life applications shown
- Source code and paper available at https://github.com/tomaskourim/amistat2019

Next steps

- More detailed model description
 - asymptotic behaivor
 - multidimensional models
- Model improvement
 - Other versions of random walk with memory
 - Combination with other approaches
- Application in other domains

Next steps

- ► More detailed model description
 - asymptotic behaivor
 - multidimensional models
- Model improvement
 - Other versions of random walk with memory
 - Combination with other approaches
- ► Application in other domains

Next steps

- More detailed model description
 - asymptotic behaivor
 - multidimensional models
- Model improvement
 - Other versions of random walk with memory
 - Combination with other approaches
- Application in other domains

Thank you.

tom@skourim.com