- ◇ 以下关于多体并行系统的描述,哪些是正确的
- ◆ A、每个存储体模块具有相同的容量
- ◆ B、每个存储体模块具有相同的存取速度
- ◆ C、多个存储体模块能够并行工作
- ◆ D、采用低位交叉编址方式,每个存储体内地址是连续的
- ◆ E、高位交叉编址方式有利于存储器的扩充

ABCE

根据Cache的工作原理,如果CPU要访问的存储字不在 Cache中,则

- A. 直接将主存中的存储字读出,并通过数据总线传送给 CPU
- B. 将主存中该存储字所在的存储块全部调入Cache
- C. CPU与Cache之间的数据交换是以存储字为单位
- D. 每个存储块由若干存储字组成, 是定长的

根据Cache的工作原理,如果CPU要访问的存储字不在 Cache中,则

- A. 直接将主存中的存储字读出,并通过数据总线传送给CPU
- B. 将主存中该存储字所在的存储块全部调入Cache
- C. CPU与Cache之间的数据交换是以存储字为单位
- D. 每个存储块由若干存储字组成, 是定长的

Cache的命中率与以下哪些因素有关

- A、Cache的容量
- B、存储字块长度
- C、Cache的存取时间
- D、主存的存取时间

A

1.在直接映射方式中,主存字块号由两部分组成,高位部分是主存字块标记,低位部分是()

2.在全相联映射方式中,Cache字块的标记位记录的内容与主存字块号是什么关系

Cache地址结构

Cache字块
地址字块
内地址

1.在直接映射方式中,主存字块号由两部分组成,高位部分是主存字块标记,低位部分是(Cache字块号)

2.在全相联映射方式中,Cache字块的标记位记录的内容与主存字块号是什么关系

直接映射

Cache字块标记中存放的是主存字块号

- 3.在组相联映射方式中,主存字块号由两部分组成
- , 高位部分是主存字块标记, 低位部分是()

- 3.在组相联映射方式中,主存字块号由两部分组成
- , 高位部分是主存字块标记, 低位部分是(组号)

课后作业

第1题

- ◆任意选择一个英文字母(大小写均可), 给出该字母加汉明(hamming)校验后的 16进制表示形式,能纠1位错即可。要求 写出计算过程。
- ◆提示:每个字母由8位二进制数表示。例如大写字母A用十进制数表示为65。参见ASCII表

ASCII表

(American Standard Code for Information Interchange 美国标准信息交换代码)

(American Standard Code for Information Interchange 天国孙语自志文揆代码)																										
高四	収位	ASCII控制字符										ASCII打印字符														
1		0000						0001					0010 0011		0100 0101			01	01	00	0111					
					0						1				2		3	4	1	5	5		5			7
低四位	Z	十进制	字符	Ctrl	代码	转义 字符	字符解释	十进制	字符	Ctrl	代码	转义 字符	字符解释	十进制	字符	十进制	字符	十进制	字符	十进制	字符	十进 制	字符	十进制	字符	Ctrl
0000	0	0		^@	NUL	\0	空字符	16	>	^P	DLE		数据链路转义	32		48	0	64	a	80	P	96	•	112	p	
0001	1	1	:	^A	SOH		标题开始	17	4	^Q	DC1		设备控制 1	33	!	49	1	65	A	81	Q	97	a	113	q	
0010	2	2	•	^B	STX		正文开始	18	1	^R	DC2		设备控制 2	34	11	50	2	66	В	82	R	98	b	114	r	
0011	3	3	*	^C	ETX		正文结束	19	!!	^S	DC3		设备控制 3	35	#	51	3	67	C	83	S	99	c	115	s	
0100	4	4	•	^D	EOT		传输结束	20	9	^T	DC4		设备控制 4	36	\$	52	4	68	D	84	T	100	d	116	t	
0101	5	5	*	^E	ENQ		查询	21	§	^U	NAK		否定应答	37	%	53	5	69	E	85	U	101	e	117	u	
0110	6	6	•	^F	ACK		肯定应答	22	_	^V	SYN		同步空闲	38	&	54	6	70	F	86	V	102	f	118	v	
0111	7	7	•	^G	BEL	\a	响铃	23	1	^W	ЕТВ		传输块结束	39	•	55	7	71	G	87	W	103	g	119	w	
1000	8	8	•	^H	BS	\b	退格	24	1	^X	CAN		取消	40	(56	8	72	H	88	X	104	h	120	X	
1001	9	9	0	^	HT	\t	横向制表	25	1	^Y	EM		介质结束	41)	57	9	73	I	89	Y	105	i	121	y	
1010	A	10	0	^J	LF	\n	换行	26	\rightarrow	^Z	SUB		替代	42	*	58		74	J	90	Z	106	j	122	Z	
1011	В	11	₫	^K	VT	lv	纵向制表	27	←]^	ESC	\e	溢出	43	+	59	;	75	K	91	I	107	k	123	{	
1100	С	12	Q	^L	FF	\f	换页	28	L	^/	FS		文件分隔符	44	,	60	<	76	L	92	1	108	1	124		
1101	D	13	Þ	^M	CR	\r	回车	29	\leftrightarrow	^]	GS		组分隔符	45	-	61	=	77	M	93]	109	m	125	}	
1110	E	14	T ₂	^N	SO		移出	30	\blacktriangle	۸۸	RS		记录分隔符	46	23.0	62	>	78	N	94	٨	110	n	126	~	
1111	E	15	\$	^0	SI		移入	31	▼	^_	US		单元分隔符	47	1	63	?	79	0	95	_	111	0	127	Δ	^Backspace 代码: DEL
1	注:表中的ASCII字符可以用"Alt + 小键盘上的数字键"方法输入。																									

◇ 校验码的位置

每个校验位Pi在汉明码中被分在编号2i-1的位置

A 65 01000001

d = 8, p = 4

数据位: D8 D7 D6 D5 D4 D3 D2 D1

校验位: P4 P3 P2 P1

码字: D8 D7 D6 D5 P4 D4 D3 D2 P3 D1 P2 P1

汉明码编号 H₁₂ H₁₁ H₁₀ H₉ H₈ H₇ H₆ H₅ H₄ H₃ H₂ H₁

每个校验位参与二进制序列位置编号为1的数据位的校验

$$P1 = D1 \oplus D2 \oplus D4 \oplus D5 \oplus D7 = 0$$

$$P2 = D1 \oplus D3 \oplus D4 \oplus D6 \oplus D7 = 0$$

$$P3 = D2 \oplus D3 \oplus D4 \oplus D8 = 0$$

$$P4 = D5 \oplus D6 \oplus D7 \oplus D8 = 1$$

校验后的数据为 010010000100 = 484H

- ◈ 需要一个8M×8位的主存储器,现有存储芯片为256K×4位。问:
- (1) 共需要多少个芯片组成主存储器?
- (2) 该芯片有多少根地址线,多少根数据线?
- (3) 说明CPU与存储芯片之间地址线是如何连接的, 可画图示意
- (4) 写出主存地址160C0FH所在芯片的最小地址, 要求给出计算过程

- ◈ 需要一个8M×8位的主存储器,现有存储芯片为256K×4位。问:
- (1) 共需要多少个芯片组成主存储器?

64

- ◈ 需要一个8M×8位的主存储器,现有存储芯片为256K×4位。问:
- (2) 该芯片有多少根地址线,多少根数据线?

地址线 18 数据线 4

- ◈ 需要一个8M×8位的主存储器,现有存储芯片为256K×4位。问:
- (3) 说明CPU与存储芯片之间地址线是如何连接的, 可画图示意

将256K×4位的存储芯片扩展组成256K×8位的存储器

用256K×8位存储芯片组成8M×8位的存储器

地址线中的 $A_{18} \sim A_{22}$ 经过地址译码器产生有效的片选信号 $CS_0 \sim CS_{31}$

- ◈ 需要一个8M×8位的主存储器,现有存储芯片为256K×4位。问:
- (4) 写出主存地址160C0FH所在芯片的最小地址, ,要求给出计算过程

地址范围	000000H 03FFFFH 040000H	256K×8
	07FFFFH_	
160C0FH	<u>140000H</u>	
	17FFFFH	•••••

- ◇ 某Cache主存系统采用2路组相联映射方式,存储 单元按字节编址,每个存储块包含2个字节, Cache有4组。问:
- (1) Cache的容量,不考虑标记等信息。
- (2) 现有主存地址10101010, 写出主存块标记,组号和块内地址

- ◇ 某Cache主存系统采用2路组相联映射方式,存储 单元按字节编址,每个存储块包含2个字节, Cache有4组。问:
- (1) Cache的容量,不考虑标记等信息。

16B

- ◆ 某Cache主存系统采用2路组相联映射方式,存储 单元按字节编址,每个存储块包含2个字节, Cache有4组。问:
- (2) 现有主存地址10101010, 写出主存块标记,组号和块内地址

主存块标记: 10101

组号: 01

块内地址: 0

- ◆ 某Cache主存系统采用2路组相联映射方式,存储 单元按字节编址,每个存储块包含2个字节, Cache有4组。问:

00011010(D) 、00011011(D) 、11111000(7C) 、 11111010(7D) 、01101000(34) 、00001001(4) 、 00000000(0) 、00011010(D)

说明:采用组相联映射方式时,每个主存块 必须映射到Cache中指定的组中

第4题

Consider a disk drive with 8 surfaces(记录面), 800 tracks(磁道/柱面) per surface, and 64 sectors(扇区) per track. Sector size is 1KB. The average seek time(平均寻道时间) is 8 ms, and the drive rotates at 7200 rpm.

- (1) What is the disk capacity?
- (2) What is the average access time of reading one sector?

存储容量=8×800×64×1024=400MB

$$t_A = t_s + \frac{1}{2r} + \frac{n}{rN}$$

平均存取时间 = 寻道时间+旋转延迟时间+数据传送时间= 8 + 1000 / (2×120)+ 1024×1000 / (120×64×1024) = 12.30ms

第5题

- (1) Cache与主存有何区别
- (2) CPU如何使用Cache
- (3) Cache如何影响CPU的性能