

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER – 15 EXAMINATIONS

Subject Code: 17311

Model Answer- Mechanics of Structure

Total Pages: 0 | / 30

Important Instruction to Examiners:-

- 1) The answers should be examined by key words & not as word to word as given in the model answers scheme.
- 2) The model answers & answers written by the candidate may vary but the examiner may try to access the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance.
- 4) While assessing figures, examiners, may give credit for principle components indicated in the figure.
- 5) The figures drawn by candidate & model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credit may be given step wise for numerical problems. In some cases, the assumed contact values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding.
- 7) For programming language papers, credit may be given to any other programme based on equivalent concept.

Important notes to examiner

Subject Code: 1731)

Model Answer

Page No: ___/ N

Q .NO	SOLUTION	MARKS
1. A		
ه	Persendicular Axis theorem	
1	Statement - i'f Ixx and Ivy are the	
-	moment's of inertia of a Plane section	
	about the two mutually Perfendiwlers	
	axes, meeting at 'o' then the moment	
	of inextia, Izz about the third assis	
	ZZ Les to Plane and Passing through	
7	the intersection of X-X con8 Y-Y is	
of Security	given by	OIM
	V IZZ = Ixx + Iyy	
1		
	(* X	
	the third coxis ZZ is	
1	Z & couled ces Polor Axis.	
	i.e. Izz = Ip	
	Ip= Ixx + Iyy	olm
	where Ip = policer moment of Inertia	
	Choic IP = folder, thorners of the the	
Ы	consider a triangular section ABC of	
	base b & hightin' as shown in fig.	

Subject Code: 1731)

Model Answer

Page No:

Q.NO	SOLUTION	MARKS
9.1) A		
6		
	ounti the centre of Gravity of triangle will be cet a distance of h/g from	3
	the base AB.	
	The base Ap	
	P	
	/ \ h	
	X X X	
	h/3	
5	A B	
-	K - P - N	
	m. I. of, triumgle about the horizonal	
	Axis PQ Passing through it's cafex 'c'	
	is given by	
	3	
	7 = b.h	M50
1	7	
- 1		
c)	* Ductility: - it is the Property of	
/-	material to undergo a considerable	
	deformation under tension without	OIM
	m 01-100 m	
×	it is the property of material due to which it can be drawn into	D
	maileability: - it is the Property of a	
×	matereal by virtue of which it get's	OIM
	Permanently deformed by compression.	
	without roptose or	
I	it is the property of a material due to which it can be drawn into)

* it is the property of a material due to which it can be drawn into

Subject Code: 17311

Model Answer

Q .NO	SOLUTIO	ON	MARKS
0.1 A)		a a	
9)	nomina Breaking stre	SS Actual Breaking 5tress	
•) it is the ratio of Youd	Dift is the ratio of	
19		local cet Breceking Pt.	olM
	11.10	to the reduced	
1 I E	section, Area.	cross sectionce, area.	
45	11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	at forecture.	
Υ.			
	nominal breaking stress	@ Actual brocking	ı
915	is less than ultimate	stress is higher	01 M
of beautiful	stress.	theen ultimate. stress	۶.
@	end conditions of	column.	
		<u> </u>	12M
) Both end hinged	124	FOT
1	2) Both end fixed	$L=\frac{L}{2}$	each
	3> one end fixed	and other end hinged	1=/2
	1) one end fixed o	and other end free	4=24
1.74.4			
f)	(i) if 4=0, but 27 =1		
	1,156		(3)
	then column end,	s. himqee.	OIM
(i) if 4 = 0, 24 = 0	Et la mariation of a	
	0 ~		
	then column end	is free.	OIM

Subject Code: [731]

Model Answer

Page No: ___/N

Q .NO	SOLUTION	MARKS
91A)		
(9)	Proof resilience. (U max)	
	the maximom amount of strain	
	energy which can be stored by a	
	member or a body without exceeding	OIM
	the elestic limit. is colled as. proof	- 4
	resilience.	A
	2	4
1/1	U max = 6 .V	MIO
of Persons	2E	
	where 6= stress. Produced cet	
	elcestic limit	
	E = modulus of elesticity	
	V = Volume of body.	
	in the state of th	
(h)	Graduel 1000 Sodden 1000	
	6 salve (out	
(1)	Stress Boduced is Ostress Boduced is $6 = \frac{1}{A}$	oim
	$6 = \frac{P}{A}$ $6 = \frac{2P}{A}$	
(2)	Stress due to goodel @ stress due to sode	ŋ
	load is lesser load is higher	OIM
	then sudden load then the goodua	
	. (000).	

SUMMER – 15 EXAMINATIONS Model Answer

subject Code: [731]

SOLUTION MARKS O.NO a-1(B)a) Assumption in bending Theory is The elastic limit is not exceeded. ii) The beam intially shaight and unshressed. FOX iii) each longitudinal fiber is true to expand or contract MAN independently from every other layer. Four in The resultant force accoust transverse section of the beam is zero. The deformation of the section due to shear force is neglected. vi) the material of the beam is homogene -ous cond isotopic. vii) Toconsverse section of the beam which is plane before bending will remain's picene after the bending viii) the beam is stressed well up to Propostional limit such that, it must obeys. Hooke's law, ix) the value of young's modulus (E) is same in tension and in combression Bending egg M - 6b = E I Y R MIG where Pt = Bend. moment = Mr I = m. I. of sect about the N.A. Passing through the centroid of section. I = INA = IXX OIM 6b = Bending strest in layer ata. distiy' from N-A.

Subject Code: 17311

Model Answer

Page No: ___/ N

Q .NO	count SOLUTION	MARKS
1 (B) (ii	y= Distance of the layer from the N-A	-
	of the beam cross-section	
	E = modolus of, elesticity, of beam majorio	al l
	R= Radius of, concertise of bent of	
	bean,	
	9mox =1:59ev	
(b)	h/2 gman	
	Meubiel Axis.	02M
-	b + 1 1.33 9 ov	}
1	consider a triangular section of base	
	board hight hos shown in fig the	
94.001	N.A. Posses. through the cembroid 6' act ce	
7	dist. h/3 from the bose,	
	$\frac{Q_{\text{cov}} = S - S}{A + \frac{1}{2}bh}$	hM
Éliten	9NA = 4 900V	12M
	the max. shear stress. occur. cet ce distance	1
	h/2 from the boere.	
	9max = 1.59cov	IM
	A CONTRACT OF THE STATE OF THE	

SUMMER – 15 EXAMINATION <u>Model Answer</u>

Page No: 08/30

Subject Code: [73])

Q.NO	SOLUTION	MARKS
Q-1-B	is short column	
(cc)	when the ratio of effective length to the least	02M
	latural dimensions of the column is less than 12,	
	then it is called a short. Column.	
	C)	
	when the ratio of effective length to the least	
	radius of gyration is less than 45, then it is	
	called short column.	
	ii> long column.	
	when the ratio of effective length to the	02M
794	least radius of gyration is greater than 45	
	then it is called a long column	
1		
1		
123		
	1 3 16 19	
2		

Page No: 09/30 N Subject Code: Model Answer SOLUTION MARKS Q.NO Q-2(a) Somm 7 = 66.77 mm somm 25 BG 2 7=73-23 mm 70mm i) Area calculation A1 = 30x00 = 100000002 Az = 130x20 = 2600 mm2 Azz 70x30 = 2100 mm M ii) Distance of commis from the base AA 41= 70+20+50/2 = 115 mm 42 = 70+ 20/2 = 70+10=80mm 43 = 70/2 - 35 mm Y= 1500 × 115 + 2600 × 80 + 200 × 35 1500 + 2600 + 200 Y= 73.23mm 01.W KXI brit ot (iii IGI = 30×503 = 312.5 × 13 mm4 12M h1=66-79 = 41-77 h=41-77 mm 1/2M 1xx1= 161+ D1h1 = 3125 × 103 + 1500 × (41:99) 1xx1 = 2.929 × 106 mm

Subject Code:

Model Answer

Page No: 10 30 N

SOLUTION	MARKS
$I_{G2} = \frac{130 \times 20^3}{12} = 86.67 \times 10^3 \text{ mm}^4$	12M
$h_2 = 66.77 - \left(50 + \frac{20}{2}\right)$	
hz= 6.77 mm	1/2M
= 86.67×103 + 2600× (6.73)	
1xx2 = 205.84 x103 mm4	01M
IG3 = 30×303 = 875.5×103 mm4	12m
h3 = 73.23-30/ = 38.23 mm	1277
Ixx3 = I6+A3h3= 875.3 x 103 + 400 x (38.28)	
1xx3 = 3.9447 x10 mm9	01 M
Now Ixx=Ixx,+Ixx2+Ixx3	
= 2.929×106+86.67×103+3-9447×106	1/M
	12)
	$I_{G2} = 130 \times 10^{3} = 86.67 \times 10^{3} \text{ mm}^{4}$ $h_{1} = 66.37 - \left(50 + \frac{10}{2}\right)$ $h_{2} = 6.77 \text{ mm}$ $I_{2} = 16.77 \text{ mm}$ $I_{2} = 16.67 \times 10^{3} + 1600 \times (6.73)^{2}$ $I_{2} = 12 \times 10^{3} \times 10^{3} \times 10^{3} \times 10^{3} \times 10^{3} \times 10^{3}$ $I_{3} = 16 \times 10^{3} \times 10^{$

Subject Code:

Model Answer

Page No: 11/30 N

Q .NO	SOLUTION	MARKS
Q-2(b)	K GOOMM K	
	0 /	
e	600mm	
	1 600mm	
	·· i> Area calculation	
	A1 = 600 × 600 = 18000 amm ²	
	2	
	Az= 180000 mm²	1/2M
	$n_1 = \frac{2}{3} \times 600 = 400 \text{ mm}$ $y = \frac{600}{3} = 200 \text{ mm}$	12M
`	N2 = 600+ 600 - 800mm 42 - 3 x600 = 400 mm	1/2 M
	7 - AM+ ALM2 - 180000 X 400 + 180000 X 800	-y -
)	7 - A1 M1+ A2M2 - 180000 X 400 + 180000 X 800 A1+A2 180000 + 180000	- T
	N= 600mm	1,m
	Y= AIYI+AZYL AI+AZ	12 M
	AI+AZ	12)
	7 = 180000 × 200 + 180000 × 400	1
	180000 + 180000	
	7 = 300 mm	12M
	iis MI @ x-x anis	
	h_= 4-4, = 300 - 200 = 100mm	1, M
	hz= 42-4 = 400-300 = 100mm	LM
		12

SUMMER – 15 EXAMINATION <u>Model Answer</u>

Page No: 12/30 N

Q .NO	SOLUTION	MARKS
Q-2(b)	Ixx=[161+A1hi]+[162+A2h2]	
cont.	1XX= [261T HINIST LJG2T HZh2]	
	-[600×6003 + 180000 × 1002.]+	01 M
9	600×6003 12 + 180000×100 ²]	
	Ixx = 2.52 × 10 mm4	olm
	iii) M.I @ 4-4 - anis	
	Iyy = M.I of briangle (1) @ base +	
	M.I of Triangle @ w base	
of Second	$\frac{144 - \frac{6}{12} + \frac{6}{12}}{12}$	011
	$144 = \frac{600 \times 600^3}{6}$	
1	Luy = 600×6003	
	6	
)	144 = 216 × 10° mm ⁷	0112

Model Answer

Page No: 13/36

ON. Q	SOLUTION	MARKS
Q-2 Cc)	is y by y c	
(cc)	Di T	
	0 0/2	
	× ig × i,	
	1 10/2	
	Base	
	A 6/2 / 6/24	
	1 79 1	
	late to the NO	
\$2\$A	Az bxd	
	$h = \frac{d}{2}$	- 100
		1,00
-	1) let las= lose= lot Hn	20)
	i) let $LAB = LBase = LG + AB^2$ $= \frac{bd^3}{12} + bxdx(\frac{d}{2})^2$	1/21
	·	
,	$= bd^3 + bdd^2$	
	$= bd^{3} \times bd^{3}$	-/-(-}-)-
	12 4	
	$= bd^3, 3bd^3$	9.5
	12 12	
7-	$= \frac{4 \text{ bd}3}{12}$	1
		- M
	Igase = bd3	o I.M
2		
	ii) Moment of inertia from side AB	w
	let IAD= Tside= I&+ Ab	1/2 M
	let IAD = Tside = $\frac{16t \text{ Ab}^2}{12}$ $= \frac{db^3}{12} + b \times d \times \left(\frac{b}{2}\right)^2$	1/2 M
		018
	$1AD = \frac{db^3}{3}$	012

SUMMER - 15 EXAMINATION Model Answer

Subject Code: 17311

Page No: 14/30 N

Q .NO	SOLUTION	MARK
Q-2- c-ii)	Draw stress-strain curve for mild steel unoer tensile loading showing Important points on it.	04 M
	Ultimate stress Yield stress A D diagram or nominal stress-strain A D diagram or nominal stress-strain (it is the stress at failure) Linear range	04 M

Model Answer

Page No: 15/30

Q .NO	SOLUTION	MARKS
a-3(a)	48 48	
	20 20	
	1 m y 1.5 m y lm	
	2p Sted 2p 2p Sted 2p	
	4P-2P= Aluminium 4P-2P 2P 2P	0119
1	20 20	-0111
-	givendata	
A 40000	i> Asted = 75 mm ² ii> AAI = 300mm ²	
	SL= 2mm	
	Sh = Sh, + Sh2 + Sh3	01 M
	SL= (P.L) A·E) Still (P.L) A·E) AI + (P.L) A·E Still	OIM
	2 2P X 1000 , 2P X 1500 _ 2P X 1000	OIM
)	75 X 20 X 104 300 X 7 X 104 75 X 20 X 104	
	2 2000P, 3000P 2000P	OIM
LIK T	$2 = -1.3333 \times 10^{4} + 1.4286 \times 10^{4} - 1.3333 \times 10^{54}$	0110
	2 = -1.238 × 104 P	
	P 2	OM
	1.238 × 10-4	1,1,
±-	P= -16.15 X103 N (-ve sign indicate P is P= 16.15 KN compressive in nature	01 M

Model Answer

Page No: 16/30

Q .NO	SOLUTION	MARKS
Q-3 (b)	steu bar given	
20.00	20 mm d p=500 KM	
	3 Es - 12:23	
	400mm Es - 13.33	
	F ·	
ANS	i> Total area = 400×400 = 160000mm2	1 ₂ M
7	ii) Area of stey = 4 x II x 202 = 1256.63 mm2	12 /2 M
	iii> Area of concrete = Total area - Area of sted	
	= 160000 -1256.63	
	= 158.74 × 103 mm	次M
p brand	iv) 6s - Es =m	
1	65 = 13.33 [65 = 13.33 6c]	½M
	v) P= Ps+Pc	
	= 65 As + 60 Ac	oIM
/	= 13.33 6 × 1256.63 + 6 × 158.74 × 103	alm
	= 16.75087 × 103 6c + 158.74 × 103 6c	
	500×103 = 175.49 ×103 6c	010
	$6c = \frac{500 \times 10^3}{175.49 \times 10^3}$	OIM
	175.49 × 103	
	6c = 2.849 N/mm ²	01 M
	6s = 13.33 × 2.849	
	65 = 37.979 N/mm ²	011

Page No: 17/36

Q .NO	+ 64=20 HIMMOLUTION	MARKS
1-3 (c)		
	> so N/mm2	
	62=	
	a = side of cube = 150 mm	
	62 6x = 6y = 6z = SON mm2	
-	The state of the s	
	V= 150×150×150 = 3.375×10 mm3 E=2×105 N/mm2 & U=0.33	17
		olW
	SV - 6x+6y+62 (1-211)	0111
	8V - SO+50+50 (1-3×0.33)	OIM
	N = 2x102 (1-5x0.33)	
-	δν - 150 x (0.34)	OIM
	V 2x105	
-	$\frac{\delta v}{v} = 2.55 \times 10^{-4}$	OIM
	δν= (2.55×104) x (3.375 ×106)	
ž	δν = 860.625 mm ³	01 M
7	$E = 3K(1 - 2\mu)$	olm
	E = 3K(1 - 2L) $2 \times 10^{5} = 3K(1 - 2 \times 0.33)$	OIM
	K= 196.078 ×103 H/mm2	010
16		
	$K = \frac{6}{8v} = \frac{50}{860.628}$,
	$(100)^3$	
	K= 196-078×103 N/mm2	

Subject Code: 17311

Page No: 18/30

Q .NO	SOLUTION	MARKS
0-40	e) given data	
~ 10	L=1m=1000 mm	
	78 100 Sept. 200	
	P= 9 KN	
	t= 20° c d= 12mm E=200 KN/mm2 x= 16 x 106 1° c	
	d= 12mm E=200 KN/mm = x=16 x 10 / C	
	i> stress due to enturnal load (61)	
_		01M
	6-P-9×103-79.579 N/mm2	formula
	$61 - P - 9 \times 10^{3} = 79.579 \text{ N/mm}^{2}$	ol M)
		01 M
of Secure	ii) stress due to Temperature	UN 2
	62 = Ext	OIM
	= 200×10 ³ × 16×10 ⁶ × 20	01M
	$= 64 \text{ N/mm}^2$	oim
2	iii) Total stressés (resultant stresses)	
	residual stress = 79.579 + 64	
	$6 = 143.579 \text{N/mm}^2$	02M)
C Was all		
	175.87	>

Subject Code:

SUMMER – 15 EXAMINATION <u>Model Answer</u>

Page No: 19/30 N

Q.NO	Tage !	10: 1) / 30
Q.NO	SOLUTION	MARKS
Q-4(b)	a = cill of Cillo	
	To a = side of Cube - 200 mm	
	Sv = S200 mm ³	
	13 250 mm, U- 1- 0.25	
	18)	
	$6x - 6y - 6z - 3.8 \times 10^{6}$	2
	6x=6y=6z-3.8×106 - 60.8 N/m	mtolm
	δv - 6x+6y+6z (1-2U)	
	V E	OIM
	67=64=62=6	
	SV - 36 (1-24)	- 1 00
	VEC	OIM)
	5200 - 3×60.8 (1-2×0.25)	
	$(250)^3$ E $(1-2\times0.25)$	0/14/
	3.320 × 1=4 = 182.4 (-)	
	3.328 x 104 - 182.4 x (0.5)	
	3.378 ×104 - 91.2	
1	E	
	F- 91.2	
1	3.328 × 10-4	OJM
	F = 274,020 11/2002	
	$E = \frac{274.038 \text{ H/mm}^2}{\times 10^3}$	OIM
	E= 3K (1-2L)	OIM
	K= E = 274.038 × 103	
	3(1-2U) 3(1-2×0·25)	
	K- 182.692 Nlmm2	3.1.54
	K= 182.692 N/mm2	OIM

Subject Code: [731]

Model Answer

Page No: 4/30

Q.NO	SOLUTION	MARKS
	Step-III > B.M calculation.	
W.	i> Ma=0	
	ii) MB-0	
	111) Mcz 62x2 - (20X1X /2)	
	Mc= 114 KN/M	alw
	iv) MO = 62XI = 62KN/M	
	Step-IV) S.FD & B.M.D	
	SO KN/W EOKN	
7	20 KM 50 KM	
	A C D A B	
-	RA RB	
	1 3m Im Im	
	68KM	
2		
	+VC 8KM S.F.D	02M
	42KM 62KM	
	62KM	4
	1144/17	
	B.W.D	
	OKN/m +VC OKN/m	02 M
6	B (Vi) 11)	

Q.NO	SOLUTION	MARKS
95a>	20KN	
	Levim	
	c Conn'')	
	$A \leftarrow 3m \rightarrow 8$	
	3.6KH 3.6KH	
		2.M
1.11	S.FD (KN·m) (-)	
	10-4KN 10-4KH	
	28-8 HN·M	
	20-8 KN-YO	7.
	(+)	
f=b		2m
	B.M.D (KH.M)	
	> Support reulions	
7 :- 1	> Support remisors a> ZFy=0; RA+RB = 20 KN.	
	by ZM@A=0; (20x3)-8-RBX5=0	
	52 = 5RB	
75	- RB = 10-4 KN	im
	: RA = 9.6 KN	:11
2	7 S.F. Calculation	
	7.S.F. at just left of A = 0	
0	TISE of West right of A = RA = 9.6 KM	
95	is Fat just left of G = 9.6 KN	

O Jeet C	ode: 17311 SUMMER - 15 EXAMINATION Model Answer Page No: 2	1/30
ON. 9	SOLUTION	MARKS
ond,	VSF at : 1st Sapt of a = 9.6-20 =-10.4 KN	
14000	VSF at just right of C = 9.6-20 =-10.4 KN PS.F at just left of B = -10.4 KN	2M
	is Feet just right of B = -10-4+RB = 0 KoV.	
	7 29 7 2	
	3> B.m. Calculation.	-
	FIBMat A = B.mat B = 0 KN·m S.S. end	
j	B. mat just left of C	1 3
	MC1 = RAX3 = 9.6X3 = 28.8 KN.M	IM
	iii> B.mat just sight of C	
	Mcg = RAX3-8 = 9.6X3-8 = 20.8 KN·M	
356>		
1911	20 KH/M	
3.0	A 4m D 4m B 2m2	
1-1		
	17 Support sentions	
	a) ZFy=0; RA+RB = 20×10 = 200KN.	
	b) =m@A=0; (20x10x5)-8 RB=0	
	:. RB = 125 KN.	Im
F.B.	: RA = 75 HN	
8		
	27 B.M. Calculation	1.7.
	MA = MC = 0	
	mo = RAX4 - 20X4X2 = 75X4 - 20X4X2 = 140KN	カゴア
	MB = RAX8- 20X8X4 = 75X8-20X8X4 = -40 KN·M	
10		

Q.NO	SOLUTION	
70017		
	140 KN-M)	
ontoo		=
	E B.m.n	
	B·m·D	
	40MN·M)	
	40N.17	
	3> To locate agent of Combrattering (E).	
TEX	3> To Locate point of Contraffexure (E).	9
	Let se be the distance of E from A.	1m
	EME-0	
	: Mx = RA:x - 20xx.zc = 75xe-10x2	 -
	Equating mx to the zero we have.	
	2 - 2	
	$752e - 102c^2 = 0$	
	75-1020 =0	100
	ze = 7.5m. (0<2<8) point E	IM
	lies between AdB.	
95bii	leki)	
80011	A	
)	A JOKN.M	
	2m.	
	D	17
	0	IM
11 18s 1	(-)	
	8·m·D(KH·m) SOKN·M	1011
· ·		
	10	
	17 Support rention ZFy=0; RA+10=0	
	ZFY=0; RA+10=0 RA=-10KN :: RA=10KN (*)	1m

Subject Code: 17311	SUMMER – 15 EXAMINATION Model Answer Page No:	
Q.NO	SOLUTION	MARKS
gsbri) zmeA = c		
MA + 10X	2-20 =0	
MA = 0		-
7.77		
0>0 - 0	1 12-0	
27 B.M. Car		
	A = MA = 0 KN·m.	
ii> Bm at 1	eft of B	2M
MB1 =	-MA*-RAX2 = -10x2 = -20 KN·m	21
122 Om 1	out to B.	
[11/ B:10) at 3	eight of B. -ma-RAX2+20 = 0 KN·m.	
INBR =	= -MA-KHXZ+20 - C14-11	
	6bc	
25c) K 1807	$\eta \eta - \eta$	
2	20mm	
	J= 48.64	
NA -	I	
150mm	dt 121.36/	
(I		-
	1/	
W.	on Obt	
Comes moddie	on is mensioned about the type of begy	7
5,1100 1700101	beam as simply supported beam.	
Assume the	BOKHIM (
~	mmmm	-
	8m	
(Super		
17 Maximum	0 8:00	
	017 200 02 (10 Valve)	2M
11/max	= 1012 - 80x 82 - 640 KN·M	1-11
	No co	

	de: 17311 SUMMER - 15 EXAMINATION Model Answer Page No: 2	6/30
Q.NO	SOLUTION	MARKS
350>	2× m = 0 10	
ont	2> m. I. of section .	
- X	i) Position of N.A.	AW
	$\frac{y_{t} = 9N_{1} + 92N_{2} - (50\times20\times75) + (180\times20\times160)}{91 + 92} $ $(150\times20) + (180\times20)$	+
		1.
	$\underline{y_t} = 121.36 \text{mm}.$	1 m
	Te = 170-121.36 = 48.64 mm.	
	$T_{xx} = \frac{20 \times 150^{3}}{12} + \frac{150 \times 20 (121.36 - 75)^{2}}{12} + \frac{1}{12}$	MF
_	180×293+ 180×20(121·36-160)2	^
	12	
	Ixx = 12.07 x106 + 5.49 x106	
	Ixx = 17.56 x106 mm4	1m
	IXX = 11.30 No 1	
	2> mail and long others	1
	3> Maximum Benching stress	
	Now using Bearling stress equation	٠,٠٠٠
1 0	M - 64	IM
	·	
	• • • • • • • • • • • • • • • • • • • •	1 11 11
		1
The A	: 6bt = M. Xt	
1	I I I I I I I I I I I I I I I I I I I	
11.11	68t. = 640×106 × 121.36 = 4423.14 H/mm	mt = 50
	17.56×106 × 121.36 = 4423.14 H/mm	
· 1	1 VIJSITE/	HILL

	ode: 17311 SUMMER - 15 EXAMINATION Model Answer Page No:	2/30
Q.NO	SOLUTION	MARKS
36a>		
→	Given, h = 230mm, S = 120KN, Tmay = 3-13 Nhmm	
	1) Average shear stress (Tang)	
	Tiener - S - 120×10 - 501.74	1m
	Teng = S - 120×103 = 521.74 9/s Area 230×d d	
	27 For recturgular section,	
	27 For recturgular Section, Tmax = 3 Ting	1M
	3.131 = 3 × 521.74	
19	i. d = 3 x 521.74 - 250.03 mm.	2 M
	37 Minimum radius of gyration Thin	
	Trip = Inin.	土M
	$I_{xx} = bd^3 - 230 \times 250.03^3 - 299.58 \times 10^6 \text{ pm}^4$	IM
e da la	$I_{yy} - db^3 = 250.03 \times 230^3 = 253.50 \times 10^6 \text{ mm}^4$	TM
	:. Imin = Igy = 253.50×106mm4	
	: bmin = 252.50×106 - 66.395 mm.	1m

Subject Co	SUMMER - 15 EXAMINATION Model Answer Page No: 28	3/30
Q.NO	SOLUTION	MARKS
366>		
→	Given, D = 200 mm, d = 150mm, L = 5m	
	$f_c = 550 \text{ N/mm}^2$, $a = (1/100)$.	
	TC = 550 NIMM, 4 (1800).	
	i) Runkines crippling load	
	Theresand Corpport	
	PR = fc. Ac	IM
	$P_{R} = \frac{f_{c} \cdot A_{c}}{1 + a \left(\frac{Le}{3min}\right)^{2}}$	
9	Area of column Ac = T (02-d2)	
	- TI (2002-1502)	T V
	Area of column $Ac = T (D^2 - d^2)$ $- T (200^2 - 150^2)$ $A - 13744.46 mm^2$	
24000	Minimum seclius of gyschion	
	, , ,	
	Vmin = Imin - (2004-1504) - 62.5mm	IM
	VA / 13744-46	
	o R	
	16 1 16	
	case-I - Both ends are fixed.	<u> </u>
	Effective length Le = 1 - 5 = 2.5m.	麦M
	22	
	·. PR = 550× 13744.46	
	$1 + \frac{1}{1600} \left(\frac{2500}{62.5} \right)^2$	
	PR - 3779.72 KN.	上M

	ode: 17311 SUMMER - 15 EXAMINATION Model Answer Page No: 29	
Q.NO	SOLUTION	MARKS
3697	1 2 1 1 1 2 1 1 2 2	
iontion	Case-II one end is fixed dother free Effective length Le = 2L = 2x5 = 10 m.	去M
	Effective length Le = 2L = 2x5 = 10m.	211
	: Po - CSDX 13744-46 - 7559.45XIO	
-	$P_{R} = \frac{550 \times 13744 - 46}{1 + \frac{1}{1800} \left(\frac{10000}{62.5}\right)^{2}} = \frac{7559.45 \times 10^{3}}{17}$	
	PR - 444.67 KN	IM
	- 444.67 7174	100
	a - a li mond of otheric hingred	
	Case-III- One and is fixed a cine of the	专M
	Case-III- One end is fixed of other is hinged Exfective length $Le = L = 5 = 3.535m$.	2.1
	:. PR = 550×13744.46	
	$PR = \frac{550 \times 13744.46}{1 + \frac{1}{1600} \left(\frac{3535}{62.5}\right)^2}$	
	02 - 2-22 00 VI	IM
	PR = 2520.32 KN	1
	a T and and hinged	
	Case - N - Book entre de la la	歩か
	Case - IV - Both ends are hinged Effective length, Le - L = 5m.	1
	$PR = \frac{550 \times 13744.46}{1 + \frac{1}{1600} \left(\frac{5000}{62.5}\right)^2}$	
	1 + 1600 (62.5)	
-		
	PR = 1511.89 KN	IM
	TR - EU-S	1
	A Page of the control	
		1 20

Page No: 30/30

Subject Code: 1	7311 Model Answer Page No: 3	nswer Page No: 30	
Q.NO	SOLUTION	MARKS	
360>	•		
-> Gi	ven, D= 25mm, L-1500mm, P= 30KN		
	E = 2-1×105 N/mm2		
17	Area of rod A = I 02 = II (25)2		
	A = 490.87 mm ²	专M	
27	Volume of sod V = AXL = 490.87X1500	麦m	
	$V = 736305 mm^3$ $V = .736.305 \times 10^{-6} m^3$	<u>y , r</u>	
37	street los sombers and red load		
	Stress for Suddenly applied load. 6 = 2P - 2×30×10, = 122.23 N/mm² A 490.87	1 m	
47.	Strain energy stored $U = 6^{2} / V - 122-23 \times 736305$ $2E 2x2-1x10^{5}$	1m	
7	$U = \frac{6200}{2E} - \frac{122-23}{2\times 2-1\times 10^5} \times \frac{736305}{2}$		
	U= 26191.72 N.mm = 26.19 N.m or Jowle	IM	
57	modulus of resilience - U - 26.19.	1m	
	, 00 0 - N 0	λ	
	= 35569.5 Joule/m3	1m	
67	change in Length (St)		
- 7	Change in Length (81) 81 = 61 = 122-23×1500 E 2.1×105	1m	
	8L = 0.873 mm	1m	