DAFTAR PUSTAKA

- [1] S. Vaidya, P. Ambad, dan S. Bhosle, "Industry 4.0 A Glimpse," *Procedia Manuf*, vol. 20, hlm. 233–238, Jan 2018, doi: 10.1016/J.PROMFG.2018.02.034.
- [2] R. Galin dan R. Meshcheryakov, "Automation and robotics in the context of Industry 4.0: the shift to collaborative robots," *IOP Conf Ser Mater Sci Eng*, vol. 537, no. 3, hlm. 1, Mei 2019, doi: 10.1088/1757-899X/537/3/032073.
- [3] B. Achmad dan M. N. Karsiti, "Visual-based fuzzy navigation system for mobile robot: Wall and corridor follower," dalam *2007 International Conference on Intelligent and Advanced Systems*, IEEE, Nov 2007, hlm. 244–248. doi: 10.1109/ICIAS.2007.4658383.
- [4] M. A. K. Niloy *dkk.*, "Critical Design and Control Issues of Indoor Autonomous Mobile Robots: A Review," *IEEE Access*, vol. 9, hlm. 35338–35370, 2021, doi: 10.1109/ACCESS.2021.3062557.
- [5] Y. Wang, Q. Jin, dan R. Zhang, "Improved fuzzy PID controller design using predictive functional control structure," *ISA Trans*, vol. 71, hlm. 354–363, Nov 2017, doi: 10.1016/J.ISATRA.2017.09.005.
- [6] M. S. Masmoudi, N. Krichen, M. Masmoudi, dan N. Derbel, "Fuzzy logic controllers design for omnidirectional mobile robot navigation," *Appl Soft Comput*, vol. 49, hlm. 901–919, Des 2016, doi: 10.1016/J.ASOC.2016.08.057.
- [7] M. Faisal, R. Hedjar, M. Al Sulaiman, dan K. Al-Mutib, "Fuzzy logic navigation and obstacle avoidance by a mobile robot in an unknown dynamic environment," *Int J Adv Robot Syst*, vol. 10, Jan 2013, doi: 10.5772/54427/ASSET/IMAGES/LARGE/10.5772_54427-FIG14.JPEG.
- [8] P. K. Mohanty dan D. R. Parhi, "Cuckoo search algorithm for the mobile robot navigation," *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*,

- vol. 8297 LNCS, no. PART 1, hlm. 527–536, 2013, doi: 10.1007/978-3-319-03753-0_47/COVER.
- [9] A. M. Zaki, O. Arafa, dan S. I. Amer, "Microcontroller-based mobile robot positioning and obstacle avoidance," *Journal of Electrical Systems and Information Technology*, vol. 1, no. 1, hlm. 58–71, Mei 2014, doi: 10.1016/J.JESIT.2014.03.009.
- [10] X. Li dan B.-J. Choi, "Design of Obstacle Avoidance System for Mobile Robot using Fuzzy Logic Systems," *International Journal of Smart Home*, vol. 7, no. 3, 2013.
- [11] A. Pandey dan D. R. Parhi, "Autonomous mobile robot navigation in cluttered environment using hybrid Takagi-Sugeno fuzzy model and simulated annealing algorithm controller," *World Journal of Engineering*, vol. 13, no. 5, hlm. 431–440, 2016, doi: 10.1108/WJE-08-2016-0055/FULL/XML.
- [12] D. Pratama, F. Ardilla, E. H. Binugroho, dan D. Pramadihanto, "Tilt set-point correction system for balancing robot using PID controller," *ICCEREC* 2015 International Conference on Control, Electronics, Renewable Energy and Communications, hlm. 129–135, Nov 2015, doi: 10.1109/ICCEREC.2015.7337031.
- [13] D. Diana, Amperawan, dan J. Al-Rasyid, "Implementasi Sensor Compas HMC5883L Terhadap Gerak Robot Micromouse dengan Menggunakan Algoritma PID," *Jurnal Teknik Elektro ITP*, vol. 6, no. 2, hlm. 120–124, Jul 2017, doi: 10.21063/JTE.2017.3133616.
- [14] A. Z. Abidin, R. Mardiyanto, dan D. Purwanto, "Implementation of PID controller for hold altitude control in underwater remotely operated vehicle," Proceeding - 2016 International Seminar on Intelligent Technology and Its Application, ISITIA 2016: Recent Trends in Intelligent Computational Technologies for Sustainable Energy, hlm. 665–670, Jan 2017, doi: 10.1109/ISITIA.2016.7828739.

- [15] A. E. Akbar, "Implementasi Sistem Navigasi Wall Following Menggunakan Kontroler PID Dengan Metode Tuning Pada Robot Kontes Robot Cerdas Indonesia (KRCI) Divisi Senior Beroda," *Jurnal Mahasiswa Teknik Elektro Universitas Brawijaya*, vol. 1, no. 1, hlm. 114859, 2013, Diakses: 9 April 2023. [Daring]. Tersedia pada: https://www.neliti.com/publications/114859/
- [16] M. H. Barakat, A. T. Azar, dan H. H. Ammar, "Agricultural Service Mobile Robot Modeling and Control Using Artificial Fuzzy Logic and Machine Vision," Advances in Intelligent Systems and Computing, vol. 921, hlm. 453– 465, 2020, doi: 10.1007/978-3-030-14118-9_46/COVER.
- [17] M. Hellmann, "Fuzzy Logic Introduction," *Universite de Rennes*, vol. 1, no. 1, 2001.
- [18] Dadios. Elmer P., Fuzzy Logic: Controls, Concepts, Theories and Applications. IntechOpen, 2012.
- [19] A. Supani dan Azwardi, "Penerapan Logika Fuzzy dan Pulse Width Modulation untuk Sistem Kendali Kecepatan Robot Line Follower," *INKOM Journal*, vol. 9, no. 1, hlm. 1–10, Apr 2015, Diakses: 14 Maret 2023. [Daring]. Tersedia pada: https://jurnal.informatika.lipi.go.id/index.php/inkom/article/view/405
- [20] M. Al-Mallah, M. Ali, dan M. Al-Khawaldeh, "Obstacles Avoidance for Mobile Robot Using Type-2 Fuzzy Logic Controller," *Robotics* 2022, Vol. 11, Page 130, vol. 11, no. 6, hlm. 130, Nov 2022, doi: 10.3390/ROBOTICS11060130.
- [21] A. Najmurrokhman, K. Kusnandar, B. H. Wibowo, dan M. H. R. Amarullah, "DESAIN PENGENDALI LOGIKA FUZZY TIPE TAKAGI-SUGENO-KANG UNTUK MENGATUR KECEPATAN GERAK MOBILE ROBOT," *Prosiding Semnastek*, vol. 0, no. 0, Nov 2018, Diakses: 15 April 2023. [Daring]. Tersedia pada: https://jurnal.umj.ac.id/index.php/semnastek/article/view/3431
- [22] N. Elly Zendrato, O. Darnius, dan P. Sembiring, "Perencanaan Jumlah Produksi Mie Instan Dengan Penegasan (Defuzzifikasi)Centroid Fuzzy

- Mamdani (Studi Kasus: Jumlah Produksi Indomie di PT. Indofood CBP Sukses Makmur, Tbk Tanjung Morawa)," *Saintia Matematika*, vol. 2, no. 2, hlm. 115–126, 2014.
- [23] M. Irhas, I. Iftitah, dan S. A. Azizah Ilham, "PENGGUNAAN KONTROL PID DENGAN BERBAGAI METODE UNTUK ANALISIS PENGATURAN KECEPATAN MOTOR DC," *JFT: Jurnal Fisika dan Terapannya*, vol. 7, no. 1, hlm. 78, Jun 2020, doi: 10.24252/jft.v7i1.13846.
- [24] T. N. Nizar, D. A. Jatmiko, R. Hartono, dan A. I. G. Pratama, "Implementasi dan Uji Kinerja Kontrol PID untuk kestabilan Pesawat Tanpa Awak Tailsitter pada Keadaan Mengambang," *Komputika: Jurnal Sistem Komputer*, vol. 10, no. 1, hlm. 53–59, Mar 2021, doi: 10.34010/komputika.v10i1.3808.
- [25] D. W. Wardhana, A. Wahyudi, dan H. Nurhadi, "Perancangan Sistem Kontrol PID Untuk Pengendali Sumbu Azimuth Turret Pada Turret-Gun Kaliber 20mm," *Jurnal Teknik ITS*, vol. 5, no. 2, Okt 2016, doi: 10.12962/j23373539.v5i2.18110.
- [26] A. E. Akbar, W. Djuriatno, dan P. Siwindarto, "Implementasi Sistem Navigasi Wall Following Menggunakan Kontroler PID Dengan Metode Tuning Pada Robot Kontes Robot Cerdas Indonesia (KRCI) Divisi Senior Beroda," *Jurnal Mahasiswa TEUB*, vol. 1, no. 1, Mar 2013, Diakses: 14 Maret 2023. [Daring]. Tersedia pada: http://elektro.studentjournal.ub.ac.id/index.php/teub/article/view/25
- [27] K. S. Chia, "Ziegler-Nichols Based Proportional-Integral-Derivative Controller for a Line Tracking Robot," *Indonesian Journal of Electrical Engineering and Computer Science*, vol. 9, no. 1, hlm. 221–226, 2018, doi: 10.11591/ijeecs.v9.i1.pp221-226.
- [28] H. Zhao dan Z. Wang, "Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended kalman filter for data fusion," *IEEE Sens J*, vol. 12, no. 5, hlm. 943–953, 2012, doi: 10.1109/JSEN.2011.2166066.

- [29] N. Ahmad, R. A. R. Ghazilla, N. M. Khairi, dan V. Kasi, "Reviews on Various Inertial Measurement Unit (IMU) Sensor Applications," *International Journal of Signal Processing Systems*, vol. 1, hlm. 256–262, 2013, doi: 10.12720/ijsps.1.2.256-262.
- [30] I. Markoulidakis, I. Rallis, I. Georgoulas, G. Kopsiaftis, A. Doulamis, dan N. Doulamis, "Multiclass Confusion Matrix Reduction Method and Its Application on Net Promoter Score Classification Problem," *Technologies* 2021, Vol. 9, Page 81, vol. 9, no. 4, hlm. 81, Nov 2021, doi: 10.3390/TECHNOLOGIES9040081.
- [31] M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani, dan R. Budiarto, "Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking," *IEEE Access*, vol. 8, hlm. 90847–90861, 2020, doi: 10.1109/ACCESS.2020.2994222.
- [32] W. Hu *dkk.*, "Control Position of Mobile Robot Based on Odometry Method and PID Controller," *J Phys Conf Ser*, vol. 1491, no. 1, hlm. 012039, Mar 2020, doi: 10.1088/1742-6596/1491/1/012039.