เอกสารประกอบการอบรมคอมพิวเตอร์ โอลิมปิกวิชาการ ค่าย 2 27 มีนาคม — 22 เมษายน 2563

การแบ่งแยกและเอาชนะ (Divide and Conquer)

Divide and Conquer

หลักการ

- แบ่งปัญหาออกเป็นปัญหาย่อยๆ ที่เป็นอิสระต่อกัน (ซึ่งแตกต่างจากขั้นตอนวิธี Dynamic Programming ปัญหาย่อย<u>ไม่</u>เป็นอิสระต่อกัน)
- หาคำตอบของปัญหาย่อย เมื่อปัญหาย่อยมีขนาดที่เล็กพอ
- คำตอบของปัญหาย่อยเหล่านั้นจะถูกนำไปหาคำตอบของปัญหาเริ่มต้น (สำหรับกรณีปกติ)

Divide and Conquer

```
a[0]+...+a[n-1] = ?
```

- If n=1, then return a[0]
- If n>1, then

applying the same method recursively

applying the same method recursively

แบบฝึกหัด

```
จงเขียนรหัสเทียมสำหรับหาผลรวม a[0]+...+a[n-1] โดยใช้เทคนิค Divide and Conquer

Sum(a,L,R):

n=R-L+1

if n=1 then

return

if n>1 then

return
```

การค้นหาแบบทวิภาค (Binary Search)

• Input: A : ตัวแปรอาร์เรย์ที่มีการเรียงลำดับข้อมูลแล้ว

x: ค่าที่ต้องการค้นหาในอาร์เรย์ A

BinarySearch(A,L,R,x)

L		R
0	 m	 n
A[0]	 A[m]	 A[n]

m=floor((L+R)/2)

 $X \leq A[m]$?

L	R
0	 m
A[0]	 A[m]

L		R
m+1	:	n
A[m+1]		A[n]

BinarySearch(A,L,m,x)

BinarySearch(A,m+1,R,x)

Output: return ดัชนีของ A ถ้า x อยู่ใน A

return -1 ถ้า x ไม่อยู่ใน A

การค้นหาแบบทวิภาค (Binary Search)

• A=[2,4,7,8,10,13,15], x=4

Ш						R
0	1	2	3	4	5	6
2	3	4	8	10	13	15

L			R			
0	1	2	3	4	5	6
2	3	4	8	10	13	15

		L	R			
0	1	2	3	4	5	6
2	3	4	8	10	13	15

m=.....

m =.....

m =.....

A=[2,4,7,8,10,13,15], x=5

L						R
0	1	2	3	4	5	6
2	3	4	8	10	13	15

L			R			
0	1	2	3	4	5	6
2	3	4	8	10	13	15

		L	R			
0	1	2	3	4	5	6
2	3	4	8	10	13	15

		L,R				
\circ	1	2	3	4	5	6
2	3	4	8	10	13	15

m=.....

m =.....

m =.....

แบบฝึกหัด

จงเขียนรหัสเทียมสำหรับปัญหาการค้นหาแบบทวิภาค (Binary Search)

โดยใช้เทคนิค Divide and Conquer

ใช้การเรียกใช้ตัวเอง

BinarySearch(A,L,R,x):

การเรียงข้อมูลแบบ Mergesort

การเรียงข้อมูล A[0],...,A[n-1] น้อยไปมาก

การเรียงข้อมูลแบบ Mergesort

การเรียงข้อมูลในอาร์เรย์ A[0],...,A[n-1]

- แบ่งอาร์เรย์ A ออกเป็น 2 ส่วนเท่ากัน : A[0],...,A[[n/2]-1] และ A[[n/2]],...,A[n-1]
- โดยที่แต่ละส่วนถูกส่งไปจัดเรียงด้วยวิธีเดียวกันกับอาร์เรย์ A
- รวมอารเรย์ที่มีขนาดเล็กกว่าและถูกจัดเรียงแล้ว ไว้ด้วยกันเป็นอาร์เรย์เดียวที่ถูกจัดเรียง

```
ALGORITHM Mergesort(A[0..n-1])

//Sorts array A[0..n-1] by recursive mergesort

//Input: An array A[0..n-1] of orderable elements

//Output: Array A[0..n-1] sorted in nondecreasing order

if n > 1

copy A[0..\lfloor n/2 \rfloor - 1] to B[0..\lfloor n/2 \rfloor - 1]

copy A[\lfloor n/2 \rfloor ..n-1] to C[0..\lceil n/2 \rceil - 1]

Mergesort(B[0..\lfloor n/2 \rfloor - 1])

Mergesort(C[0..\lceil n/2 \rceil - 1])

Merge(B, C, A) //see below
```

```
ALGORITHM Merge(B[0..p-1], C[0..q-1], A[0..p+q-1])

//Merges two sorted arrays into one sorted array

//Input: Arrays B[0..p-1] and C[0..q-1] both sorted

//Output: Sorted array A[0..p+q-1] of the elements of B and C i \leftarrow 0; j \leftarrow 0; k \leftarrow 0

while i < p and j < q do

if B[i] \le C[j]

A[k] \leftarrow B[i]; i \leftarrow i+1

else A[k] \leftarrow C[j]; j \leftarrow j+1

k \leftarrow k+1

if i=p

copy C[j..q-1] to A[k..p+q-1]

else copy B[i..p-1] to A[k..p+q-1]
```

Quiz (Divide and Conquer)

จงเขียนรหัสเทียมเพื่อหา

- 1. ตำแหน่งของสมาชิกที่มากที่สุดของอาร์เรย์ A ที่มีขนาด n (A[0],...,A[n-1])
- 2. ค่ามากที่สุดและน้อยที่สุดของอาร์เรย์ A ที่มีขนาด n
- $oldsymbol{3}$. หาค่าของ $oldsymbol{a}^n$ เมื่อ $oldsymbol{n}$ เป็นจำนวนเต็มบวก

(A[0],...,A[n-1]) (A[0],...,A[n-1])