

WEBENCH® Design Report

VinMin = 6.0V VinMax = 8.4V Vout = 12.0V Iout = 3.5A Device = TPS61088RHLR Topology = Boost Created = 10/9/15 12:51:00 PM BOM Cost = \$3.45 Footprint = 120.0 mm² BOM Count = 16 Total Pd = 2.68W

Design: 4267293/20 TPS61088RHLR TPS61088RHLR 6.0V-8.4V to 12.00V @ 3.5A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cbst	TDK	C1005X5R1A104K Series= X5R	Cap= 100.0 nF ESR= 20.413 mOhm VDC= 10.0 V IRMS= 0.0 A	1	\$0.01	1005 3 mm ²
2.	Ccomp	AVX	02013A220GAT2A Series= C0G/NP0	Cap= 220.0 pF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0201 2 mm ²
3.	Ccomp2	Samsung Electro- Mechanics	CL02C100JO2ANNC Series= C0G/NP0	Cap= 10.0 pF VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	01005 2 mm ²
4.	Cin	MuRata	GRM188R61C106MA73D Series= X5R	Cap= 10.0 uF VDC= 16.0 V IRMS= 0.0 A	2	\$0.06	0603 5 mm ²
5.	Cin2	MuRata	GRM155R61C104KA88D Series= X5R	Cap= 100.0 nF VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
6.	Cout	TDK	C3216X5R1E226M Series= X5R	Cap= 22.0 uF ESR= 2.246 mOhm VDC= 25.0 V IRMS= 0.0 A	1	\$0.32	1206 11 mm ²
7.	Css	MuRata	GRM155R71C822KA01D Series= X7R	Cap= 8.2 nF VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
8.	Cvcc	TDK	C1608X5R1A105K Series= X5R	Cap= 1.0 uF ESR= 9.603 mOhm VDC= 10.0 V IRMS= 0.0 A	1	\$0.01	1608 5 mm ²
9.	L1	Coilcraft	XAL4020-601MEB	L= 600.0 nH DCR= 9.5 mOhm	1	\$0.60	XAL4020 25 mm ²
10.	Rcomp	Vishay-Dale	CRCW040249K9FKED Series= CRCWe3	Res= 49.9 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
11.	Rfbb	Yageo America	RC0603FR-0782KL Series= ?	Res= 82.0 kOhm Power= 100.0 mW Tolerance= 1.0%	1	\$0.01	0603 5 mm ²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
12. Rfbt	Vishay-Dale	CRCW0402732KFKED Series= CRCWe3	Res= 732.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
13. Rlim	Panasonic	ERJ-8ENF1133V Series= ERJ-8E	Res= 113.0 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
14. Rt	Yageo America	RC1206FR-0782KL Series= ?	Res= 82.0 kOhm Power= 250.0 mW Tolerance= 1.0%	1	\$0.01	1206 11 mm ²
15. U1	Texas Instruments	TPS61088RHLR	Switcher	1	\$2.30	RHL0020A 25 mm ²

Operating Values

-				
#	Name	Value	Category	Description
1.	Cin IRMS	960.446 mA	Current	Input capacitor RMS ripple current
2.	Cout IRMS	3.654 A	Current	Output capacitor RMS ripple current
3.	IC lpk	8.842 A	Current	Peak switch current in IC
4.	lin Avg	7.447 A	Current	Average input current
5.	L lpp	3.327 A	Current	Peak-to-peak inductor ripple current
6.	BOM Count	16	General	Total Design BOM count
7.	FootPrint	120.0 mm ²	General	Total Foot Print Area of BOM components
8.	Frequency	1.54 MHz	General	Switching frequency
9.	Pout	42.0 W	General	Total output power
10.	Total BOM	\$3.45	General	Total BOM Cost
11.	Low Freq Gain	100.261 dB	Op_Point	Gain at 10Hz
12.	Cross Freq	66.337 kHz	Op_point	Bode plot crossover frequency
13.	Duty Cycle	51.225 %	Op_point	Duty cycle
14.	Efficiency	94.002 %	Op_point	Steady state efficiency
15.	Gain Marg	-12.021 dB	Op_point	Bode Plot Gain Margin
16.	IC Tj	113.467 degC	Op_point	IC junction temperature
17.	ICThetaJA	38.8 degC/W	Op_point	IC junction-to-ambient thermal resistance
18.	IOUT_OP	3.5 A	Op_point	lout operating point
19.	Phase Marg	56.774 deg	Op_point	Bode Plot Phase Margin
20.	VIN_OP	6.0 V	Op_point	Vin operating point
21.	Vout p-p	71.342 mV	Op_point	Peak-to-peak output ripple voltage
22.	Cin Pd	0.0 W	Power	Input capacitor power dissipation
23.	Cout Pd	29.987 mW	Power	Output capacitor power dissipation
24.		0.0 W	Power	Output capacitor_x power loss
25.	IC Pd	2.151 W	Power	IC power dissipation
26.	L Pd	498.304 mW	Power	Inductor power dissipation
27.	Total Pd	2.68 W	Power	Total Power Dissipation

Design Inputs

#	Name	Value	Description
1.	lout	3.5	Maximum Output Current
2.	lout1	3.5	Output Current #1
3.	VinMax	8.4	Maximum input voltage
4.	VinMin	6.0	Minimum input voltage
5.	Vout	12.0	Output Voltage
6.	Vout1	12.0	Output Voltage #1
7.	base_pn	TPS61088	Base Product Number
8.	source	DC	Input Source Type
9.	Та	30.0	Ambient temperature

Design Assistance

1. TPS61088 Product Folder: http://www.ti.com/product/TPS61088: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.