ANALYSIS -I

B V Rajarama Bhat

Indian Statistical Institute, Bangalore

Now that we have the real number system in place we can build the edifice of real analysis.

- Now that we have the real number system in place we can build the edifice of real analysis.
- ► This includes notions such as sequences and their limits, continuity, differentiability, integration and so on.

- Now that we have the real number system in place we can build the edifice of real analysis.
- ► This includes notions such as sequences and their limits, continuity, differentiability, integration and so on.
- ► Three basic results we keep using repeatedly:

- Now that we have the real number system in place we can build the edifice of real analysis.
- ► This includes notions such as sequences and their limits, continuity, differentiability, integration and so on.
- Three basic results we keep using repeatedly:
- ► (i)

$$\inf\{x\in\mathbb{R}:x>0\}=0.$$

- Now that we have the real number system in place we can build the edifice of real analysis.
- ► This includes notions such as sequences and their limits, continuity, differentiability, integration and so on.
- ▶ Three basic results we keep using repeatedly:
- (i) inf $\{x \in \mathbb{R} : x > 0\} = 0.$
- ▶ (ii) For any $\epsilon > 0$, there exists a natural number $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \epsilon$.

- Now that we have the real number system in place we can build the edifice of real analysis.
- ► This includes notions such as sequences and their limits, continuity, differentiability, integration and so on.
- Three basic results we keep using repeatedly:
- ► (i)

$$\inf\{x\in\mathbb{R}:x>0\}=0.$$

- ▶ (ii) For any $\epsilon > 0$, there exists a natural number $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \epsilon$.
- ▶ (iii) Triangle inequality: For $x, y, z \in \mathbb{R}$,

$$|x-y| \le |x-z| + |z-y|.$$

- Now that we have the real number system in place we can build the edifice of real analysis.
- ► This includes notions such as sequences and their limits, continuity, differentiability, integration and so on.
- ▶ Three basic results we keep using repeatedly:
- ► (i)

$$\inf\{x\in\mathbb{R}:x>0\}=0.$$

- ▶ (ii) For any $\epsilon > 0$, there exists a natural number $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \epsilon$.
- ▶ (iii) Triangle inequality: For $x, y, z \in \mathbb{R}$,

$$|x-y| \le |x-z| + |z-y|.$$

▶ We have already proved these results.

Definition and Examples

▶ Definition 15.1 : A sequence of real numbers

$$a_1, a_2, a_3, \dots$$

or written equivalently as $\{a_n\}_{n\in\mathbb{N}}$ is a function $a:\mathbb{N}\to\mathbb{R}$ with $a_n=a(n)$.

Definition and Examples

▶ Definition 15.1 : A sequence of real numbers

$$a_1, a_2, a_3, \dots$$

or written equivalently as $\{a_n\}_{n\in\mathbb{N}}$ is a function $a:\mathbb{N}\to\mathbb{R}$ with $a_n=a(n)$.

Example 15.2: Consider the function $a : \mathbb{N} \to \mathbb{N}$ defined by $a(n) = n^2$, this gives us the sequence,

$$1, 4, 9, 16, \ldots,$$

also written as $\{n^2\}_{n\in\mathbb{N}}$.

Definition and Examples

▶ Definition 15.1 : A sequence of real numbers

$$a_1, a_2, a_3, \dots$$

or written equivalently as $\{a_n\}_{n\in\mathbb{N}}$ is a function $a:\mathbb{N}\to\mathbb{R}$ with $a_n=a(n)$.

Example 15.2: Consider the function $a : \mathbb{N} \to \mathbb{N}$ defined by $a(n) = n^2$, this gives us the sequence,

$$1, 4, 9, 16, \ldots,$$

also written as $\{n^2\}_{n\in\mathbb{N}}$.

Example 15.3 (Fibonacci sequence): This is the sequence:

$$1, 1, 2, 3, 5, 8, \ldots,$$

defined 'recursively', by $a_1 = 1$, $a_2 = 1$ and $a_n = a_{n-2} + a_{n-1}$ for n > 3.

Limit of a sequence

▶ Definition 15.2: A sequence of real numbers $\{a_n\}_{n\in\mathbb{N}}$ is said to be convergent if there exists a real number x, where for every $\epsilon>0$, there exists a natural number K (depending upon ϵ) such that

$$|a_n-x|<\epsilon, \quad \forall n\geq K.$$

In such a case, $\{a_n\}_{n\in\mathbb{N}}$ is said to converge to x, and x is said to be the limit of $\{a_n\}_{n\in\mathbb{N}}$.

Limit of a sequence

▶ Definition 15.2: A sequence of real numbers $\{a_n\}_{n\in\mathbb{N}}$ is said to be convergent if there exists a real number x, where for every $\epsilon > 0$, there exists a natural number K (depending upon ϵ) such that

$$|a_n-x|<\epsilon, \quad \forall n\geq K.$$

In such a case, $\{a_n\}_{n\in\mathbb{N}}$ is said to converge to x, and x is said to be the limit of $\{a_n\}_{n\in\mathbb{N}}$.

▶ A sequence which is not convergent is said to be divergent.

Limit of a sequence

▶ Definition 15.2: A sequence of real numbers $\{a_n\}_{n\in\mathbb{N}}$ is said to be convergent if there exists a real number x, where for every $\epsilon > 0$, there exists a natural number K (depending upon ϵ) such that

$$|a_n-x|<\epsilon, \quad \forall n\geq K.$$

In such a case, $\{a_n\}_{n\in\mathbb{N}}$ is said to converge to x, and x is said to be the limit of $\{a_n\}_{n\in\mathbb{N}}$.

- ▶ A sequence which is not convergent is said to be divergent.
- We may write, $|a_n x| < \epsilon$, equivalently as $x \epsilon < a_n < x + \epsilon$ or as $a_n \in (x \epsilon, x + \epsilon)$.

Example 15.3 (Constant sequence): Choose and fix a real number c. Let $\{a_n\}_{n\in\mathbb{N}}$ be the sequence defined by $a_n=c, \ \forall n\in\mathbb{N}$. So it is the sequence:

$$c, c, c, c, \ldots$$

Then $\{a_n\}_{n\in\mathbb{N}}$ is convergent and it converges to c.

Example 15.3 (Constant sequence): Choose and fix a real number c. Let $\{a_n\}_{n\in\mathbb{N}}$ be the sequence defined by $a_n=c, \ \forall n\in\mathbb{N}$. So it is the sequence:

$$c, c, c, c, \ldots$$

Then $\{a_n\}_{n\in\mathbb{N}}$ is convergent and it converges to c.

▶ Proof: For any $\epsilon > 0$, we may take K = 1.

Example 15.3 (Constant sequence): Choose and fix a real number c. Let $\{a_n\}_{n\in\mathbb{N}}$ be the sequence defined by $a_n=c, \ \forall n\in\mathbb{N}$. So it is the sequence:

$$c, c, c, c, \ldots$$

Then $\{a_n\}_{n\in\mathbb{N}}$ is convergent and it converges to c.

- ▶ Proof: For any $\epsilon > 0$, we may take K = 1.
- ► Then,

$$|a_n-c|=|c-c|=0<\epsilon, \quad \forall n\geq K.$$

Example 15.3 (Constant sequence): Choose and fix a real number c. Let $\{a_n\}_{n\in\mathbb{N}}$ be the sequence defined by $a_n=c, \ \forall n\in\mathbb{N}$. So it is the sequence:

$$c, c, c, c, \ldots$$

Then $\{a_n\}_{n\in\mathbb{N}}$ is convergent and it converges to c.

- ▶ Proof: For any $\epsilon > 0$, we may take K = 1.
- ► Then,

$$|a_n-c|=|c-c|=0<\epsilon, \quad \forall n\geq K.$$

▶ Hence $\{a_n\}_{n\in\mathbb{N}}$ converges to c.

▶ Theorem 15.3 (The uniqueness of limit): Let $\{a_n\}_{n\in\mathbb{N}}$ be a convergent sequence. Then its limit is unique.

- ▶ Theorem 15.3 (The uniqueness of limit): Let $\{a_n\}_{n\in\mathbb{N}}$ be a convergent sequence. Then its limit is unique.
- ▶ Proof: Suppose $\{a_n\}_{n\in\mathbb{N}}$ converges to x,y in \mathbb{R} . We want to show x=y.

- ▶ Theorem 15.3 (The uniqueness of limit): Let $\{a_n\}_{n\in\mathbb{N}}$ be a convergent sequence. Then its limit is unique.
- ▶ Proof: Suppose $\{a_n\}_{n\in\mathbb{N}}$ converges to x,y in \mathbb{R} . We want to show x=y.
- Now for any $\epsilon > 0$, since $\{a_n\}_{n \in \mathbb{N}}$ converges to x, there exists some $K_1 \in \mathbb{N}$ such that

$$|a_n - x| < \epsilon, \quad \forall n \ge K_1.$$

- ▶ Theorem 15.3 (The uniqueness of limit): Let $\{a_n\}_{n\in\mathbb{N}}$ be a convergent sequence. Then its limit is unique.
- ▶ Proof: Suppose $\{a_n\}_{n\in\mathbb{N}}$ converges to x,y in \mathbb{R} . We want to show x=y.
- Now for any $\epsilon > 0$, since $\{a_n\}_{n \in \mathbb{N}}$ converges to x, there exists some $K_1 \in \mathbb{N}$ such that

$$|a_n - x| < \epsilon, \quad \forall n \ge K_1.$$

▶ Similarly, since $\{a_n\}_{n\in\mathbb{N}}$ converges to y, there exists some $K_2 \in \mathbb{N}$ such that

$$|a_n - y| < \epsilon, \quad \forall n \ge K_2.$$

- ▶ Theorem 15.3 (The uniqueness of limit): Let $\{a_n\}_{n\in\mathbb{N}}$ be a convergent sequence. Then its limit is unique.
- ▶ Proof: Suppose $\{a_n\}_{n\in\mathbb{N}}$ converges to x,y in \mathbb{R} . We want to show x=y.
- Now for any $\epsilon > 0$, since $\{a_n\}_{n \in \mathbb{N}}$ converges to x, there exists some $K_1 \in \mathbb{N}$ such that

$$|a_n-x|<\epsilon, \quad \forall n\geq K_1.$$

▶ Similarly, since $\{a_n\}_{n\in\mathbb{N}}$ converges to y, there exists some $K_2 \in \mathbb{N}$ such that

$$|a_n - y| < \epsilon, \quad \forall n \ge K_2.$$

▶ Choose any $n \ge \max\{K_1, K_2\}$. Then both the previous inequalities are true. Then by triangle inequality we get

$$|x-y| \le |x-a_n| + |a_n-y| < \epsilon + \epsilon.$$

- ▶ Theorem 15.3 (The uniqueness of limit): Let $\{a_n\}_{n\in\mathbb{N}}$ be a convergent sequence. Then its limit is unique.
- ▶ Proof: Suppose $\{a_n\}_{n\in\mathbb{N}}$ converges to x,y in \mathbb{R} . We want to show x=y.
- Now for any $\epsilon > 0$, since $\{a_n\}_{n \in \mathbb{N}}$ converges to x, there exists some $K_1 \in \mathbb{N}$ such that

$$|a_n-x|<\epsilon, \quad \forall n\geq K_1.$$

▶ Similarly, since $\{a_n\}_{n\in\mathbb{N}}$ converges to y, there exists some $K_2 \in \mathbb{N}$ such that

$$|a_n - y| < \epsilon, \quad \forall n \ge K_2.$$

▶ Choose any $n \ge \max\{K_1, K_2\}$. Then both the previous inequalities are true. Then by triangle inequality we get

$$|x-y| \leq |x-a_n| + |a_n-y| < \epsilon + \epsilon.$$

Hence

Continuation

► Consequently,

$$0 \le \frac{1}{2}|x - y| < \epsilon$$

for all $\epsilon > 0$.

Continuation

Consequently,

$$0 \le \frac{1}{2}|x - y| < \epsilon$$

for all $\epsilon > 0$.

▶ Since $\inf\{\epsilon: \epsilon > 0\} = 0$, we get $0 \le \frac{1}{2}|x - y| \le 0$,

Continuation

Consequently,

$$0 \le \frac{1}{2}|x - y| < \epsilon$$

for all $\epsilon > 0$.

- ▶ Since $\inf\{\epsilon : \epsilon > 0\} = 0$, we get $0 \le \frac{1}{2}|x y| \le 0$,
- ► Hence $\frac{1}{2}|x-y|=0$ or |x-y|=0, which is same as saying x=y.

▶ Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a sequence converging to x. Then we write:

$$\lim_{n\to\infty}a_n=x.$$

▶ Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a sequence converging to x. Then we write:

$$\lim_{n\to\infty}a_n=x.$$

▶ We say that "The limit of a_n as n tends to infinity exists and is equal to x".

▶ Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a sequence converging to x. Then we write:

$$\lim_{n\to\infty}a_n=x.$$

- We say that "The limit of a_n as n tends to infinity exists and is equal to x".
- Note that here *n* is a dummy variable, that is, if

$$\lim_{n\to\infty}a_n=x$$

then we also have,

$$\lim_{n\to\infty}a_m=x.$$

▶ Suppose $\{a_n\}_{n\in\mathbb{N}}$ is a sequence converging to x. Then we write:

$$\lim_{n\to\infty}a_n=x.$$

- We say that "The limit of a_n as n tends to infinity exists and is equal to x".
- Note that here n is a dummy variable, that is, if

$$\lim_{n\to\infty}a_n=x$$

then we also have,

$$\lim_{m\to\infty}a_m=x.$$

► So the convergence or non-convergence is a property of the whole sequence.

▶ Example 15.5: Consider the sequence $\{b_n\}_{n\in\mathbb{N}}$ where $b_n = \frac{1}{n}$ for every $n \in \mathbb{N}$.

- **Example 15.5**: Consider the sequence $\{b_n\}_{n\in\mathbb{N}}$ where $b_n=\frac{1}{n}$ for every $n\in\mathbb{N}$.
- ► Claim:

$$\lim_{n\to\infty}b_n=0.$$

- **►** Example 15.5: Consider the sequence $\{b_n\}_{n\in\mathbb{N}}$ where $b_n = \frac{1}{n}$ for every $n \in \mathbb{N}$.
- ► Claim:

$$\lim_{n\to\infty}b_n=0.$$

▶ This means that $\{b_n\}_{n\in\mathbb{N}}$ is convergent and it converges to zero.

- Example 15.5: Consider the sequence $\{b_n\}_{n\in\mathbb{N}}$ where $b_n=\frac{1}{n}$ for every $n\in\mathbb{N}$.
- Claim:

$$\lim_{n\to\infty}b_n=0.$$

- ▶ This means that $\{b_n\}_{n\in\mathbb{N}}$ is convergent and it converges to zero.
- ▶ The proof is easy. For any $\epsilon > 0$, choose $K \in \mathbb{N}$ such that

$$0<rac{1}{K}<\epsilon.$$

- Example 15.5: Consider the sequence $\{b_n\}_{n\in\mathbb{N}}$ where $b_n=\frac{1}{n}$ for every $n\in\mathbb{N}$.
- ► Claim:

$$\lim_{n\to\infty}b_n=0.$$

- ▶ This means that $\{b_n\}_{n\in\mathbb{N}}$ is convergent and it converges to zero.
- ▶ The proof is easy. For any $\epsilon > 0$, choose $K \in \mathbb{N}$ such that

$$0<rac{1}{K}<\epsilon.$$

▶ Then for any $n \ge K$, we have $\frac{1}{n} \le \frac{1}{K} < \epsilon$. Hence,

$$|b_n-0|=|\frac{1}{n}|\leq \frac{1}{K}<\epsilon, \ \forall n\geq K.$$

Examples

- Example 15.5: Consider the sequence $\{b_n\}_{n\in\mathbb{N}}$ where $b_n=\frac{1}{n}$ for every $n\in\mathbb{N}$.
- Claim:

$$\lim_{n\to\infty}b_n=0.$$

- ▶ This means that $\{b_n\}_{n\in\mathbb{N}}$ is convergent and it converges to zero.
- ▶ The proof is easy. For any $\epsilon > 0$, choose $K \in \mathbb{N}$ such that

$$0<rac{1}{K}<\epsilon.$$

▶ Then for any $n \ge K$, we have $\frac{1}{n} \le \frac{1}{K} < \epsilon$. Hence,

$$|b_n-0|=|\frac{1}{n}|\leq \frac{1}{K}<\epsilon, \ \forall n\geq K.$$

▶ Consequently, by the definition of convergence, $\{b_n\}$ is convergent, and $\lim_{n\to\infty}b_n=0$.

Examples

- **Example 15.5**: Consider the sequence $\{b_n\}_{n\in\mathbb{N}}$ where $b_n=\frac{1}{n}$ for every $n \in \mathbb{N}$.
- ► Claim:

$$\lim_{n\to\infty}b_n=0.$$

- ▶ This means that $\{b_n\}_{n\in\mathbb{N}}$ is convergent and it converges to zero.
- ▶ The proof is easy. For any $\epsilon > 0$, choose $K \in \mathbb{N}$ such that

$$0<rac{1}{K}<\epsilon.$$

▶ Then for any $n \ge K$, we have $\frac{1}{n} \le \frac{1}{K} < \epsilon$. Hence,

$$|b_n-0|=|\frac{1}{n}|\leq \frac{1}{K}<\epsilon, \ \forall n\geq K.$$

- \triangleright Consequently, by the definition of convergence, $\{b_n\}$ is convergent, and $\lim_{n\to\infty} b_n = 0$.
- We may also write this as: $\lim_{n\to\infty}\frac{1}{n}=0$.

▶ Definition 15.7: A sequence $\{a_n\}_{n\in\mathbb{N}}$ of real numbers is said to be bounded if there exists a positive real number M such that

$$|a_n| \leq M, \ \forall n \in \mathbb{N}.$$

▶ Definition 15.7: A sequence $\{a_n\}_{n\in\mathbb{N}}$ of real numbers is said to be bounded if there exists a positive real number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

- A sequence which is not bounded is said to be unbounded.
- **Example 15.8**: Clearly every constant sequence c, c, ... is bounded by M = |c|.

▶ Definition 15.7: A sequence $\{a_n\}_{n\in\mathbb{N}}$ of real numbers is said to be bounded if there exists a positive real number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

- A sequence which is not bounded is said to be unbounded.
- **Example 15.8**: Clearly every constant sequence c, c, ... is bounded by M = |c|.
- **Example 15.7**: The sequence $\{n\}_{n\in\mathbb{N}}$ is unbounded.

▶ Definition 15.7: A sequence $\{a_n\}_{n\in\mathbb{N}}$ of real numbers is said to be bounded if there exists a positive real number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

- A sequence which is not bounded is said to be unbounded.
- Example 15.8: Clearly every constant sequence c, c, ... is bounded by M = |c|.
- **Example 15.7**: The sequence $\{n\}_{n\in\mathbb{N}}$ is unbounded.
- ► Theorem 15.8: Every convergent sequence of real numbers is bounded. The converse is not true.

▶ Definition 15.7: A sequence $\{a_n\}_{n\in\mathbb{N}}$ of real numbers is said to be bounded if there exists a positive real number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

- A sequence which is not bounded is said to be unbounded.
- Example 15.8: Clearly every constant sequence c, c, ... is bounded by M = |c|.
- **Example 15.7**: The sequence $\{n\}_{n\in\mathbb{N}}$ is unbounded.
- ► Theorem 15.8: Every convergent sequence of real numbers is bounded. The converse is not true.
- ▶ Proof: Suppose $\{a_n\}_{n\in\mathbb{N}}$ converges to x.

▶ Definition 15.7: A sequence $\{a_n\}_{n\in\mathbb{N}}$ of real numbers is said to be bounded if there exists a positive real number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

- A sequence which is not bounded is said to be unbounded.
- Example 15.8: Clearly every constant sequence c, c, ... is bounded by M = |c|.
- **Example 15.7**: The sequence $\{n\}_{n\in\mathbb{N}}$ is unbounded.
- ► Theorem 15.8: Every convergent sequence of real numbers is bounded. The converse is not true.
- ▶ Proof: Suppose $\{a_n\}_{n\in\mathbb{N}}$ converges to x.
- ▶ Take $\epsilon = 1$. Then there exists $K \in \mathbb{N}$, such that

$$|a_n - x| < 1, \quad \forall n \geq K.$$

▶ Definition 15.7: A sequence $\{a_n\}_{n\in\mathbb{N}}$ of real numbers is said to be bounded if there exists a positive real number M such that

$$|a_n| \leq M, \quad \forall n \in \mathbb{N}.$$

Then M is said to be a bound for $\{a_n\}_{n\in\mathbb{N}}$.

- A sequence which is not bounded is said to be unbounded.
- **Example 15.8**: Clearly every constant sequence c, c, ... is bounded by M = |c|.
- **Example 15.7**: The sequence $\{n\}_{n\in\mathbb{N}}$ is unbounded.
- ► Theorem 15.8: Every convergent sequence of real numbers is bounded. The converse is not true.
- ▶ Proof: Suppose $\{a_n\}_{n\in\mathbb{N}}$ converges to x.
- ▶ Take $\epsilon = 1$. Then there exists $K \in \mathbb{N}$, such that

$$|a_n - x| < 1, \quad \forall n \geq K.$$

Note that for $n \ge K$, by triangle inequality,

$$|a_n| = |a_n - 0| \le |a_n - x| + |x - 0| \le 1 + |x|.$$

► Now take,

$$M = \max\{|a_1|, |a_2|, \dots, |a_{K-1}|, |x|+1\}$$

Now take,

$$M = \max\{|a_1|, |a_2|, \dots, |a_{K-1}|, |x|+1\}$$

▶ Then we have, $|a_n| \le M$ for all $n \in \mathbb{N}$. Hence $\{a_n\}_{n \in \mathbb{N}}$ is bounded by M.

► The claim " The converse is not true", is shown by exhibiting a bounded sequence which is not convergent.

- ► The claim " The converse is not true", is shown by exhibiting a bounded sequence which is not convergent.
- ▶ Define $\{c_n\}_{n\in\mathbb{N}}$ by

$$c_n = \left\{ egin{array}{ll} 0 & ext{if} & n & ext{is odd;} \ 1 & ext{if} & n & ext{is even.} \end{array}
ight.$$

- ► The claim " The converse is not true", is shown by exhibiting a bounded sequence which is not convergent.
- ▶ Define $\{c_n\}_{n\in\mathbb{N}}$ by

$$c_n = \left\{ egin{array}{ll} 0 & ext{if} & n & ext{is odd;} \\ 1 & ext{if} & n & ext{is even.} \end{array}
ight.$$

So this is the sequence:

$$0, 1, 0, 1, 0, 1, \ldots$$

▶ Suppose $\{c_n\}_{n\in\mathbb{N}}$ is convergent and it converges to some x.

- ► The claim " The converse is not true", is shown by exhibiting a bounded sequence which is not convergent.
- ▶ Define $\{c_n\}_{n\in\mathbb{N}}$ by

$$c_n = \left\{ egin{array}{ll} 0 & ext{if} & n & ext{is odd;} \\ 1 & ext{if} & n & ext{is even.} \end{array}
ight.$$

So this is the sequence:

$$0, 1, 0, 1, 0, 1, \ldots$$

- ▶ Suppose $\{c_n\}_{n\in\mathbb{N}}$ is convergent and it converges to some x.
- ▶ Then for $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|c_n - x| < \epsilon, \quad \forall n \ge K.$$

- ► The claim " The converse is not true", is shown by exhibiting a bounded sequence which is not convergent.
- ▶ Define $\{c_n\}_{n\in\mathbb{N}}$ by

$$c_n = \left\{ egin{array}{ll} 0 & ext{if} & n & ext{is odd;} \\ 1 & ext{if} & n & ext{is even.} \end{array}
ight.$$

So this is the sequence:

$$0, 1, 0, 1, 0, 1, \ldots$$

- ▶ Suppose $\{c_n\}_{n\in\mathbb{N}}$ is convergent and it converges to some x.
- ▶ Then for $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|c_n-x|<\epsilon, \ \forall n\geq K.$$

▶ Choosing an odd number $n \ge K$, we get $|0 - x| < \epsilon$.

- ▶ The claim "The converse is not true", is shown by exhibiting a bounded sequence which is not convergent.
- ▶ Define $\{c_n\}_{n\in\mathbb{N}}$ by

$$c_n = \left\{ egin{array}{ll} 0 & ext{if} & n & ext{is odd;} \ 1 & ext{if} & n & ext{is even.} \end{array}
ight.$$

So this is the sequence:

$$0, 1, 0, 1, 0, 1, \ldots$$

- ▶ Suppose $\{c_n\}_{n\in\mathbb{N}}$ is convergent and it converges to some x.
- ▶ Then for $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$|c_n-x|<\epsilon, \ \forall n\geq K.$$

- ▶ Choosing an odd number $n \ge K$, we get $|0 x| < \epsilon$.
- ▶ Similarly choosing an even number $n \ge K$, we get $|1-x| < \epsilon$.

► Then by triangle inequality,

$$|0-1| \le |0-x| + |x-1| < \epsilon + \epsilon = 2\epsilon.$$

► Then by triangle inequality,

$$|0-1| \le |0-x| + |x-1| < \epsilon + \epsilon = 2\epsilon.$$

▶ Hence $0 \le \frac{1}{2} < \epsilon$ for every $\epsilon > 0$. This means $\frac{1}{2} = 0$, which is clearly a contradiction.

► Then by triangle inequality,

$$|0-1| \le |0-x| + |x-1| < \epsilon + \epsilon = 2\epsilon.$$

- ▶ Hence $0 \le \frac{1}{2} < \epsilon$ for every $\epsilon > 0$. This means $\frac{1}{2} = 0$, which is clearly a contradiction.
- ▶ This proves that $\{c_n\}_{n\in\mathbb{N}}$ is not convergent.

► Then by triangle inequality,

$$|0-1| \le |0-x| + |x-1| < \epsilon + \epsilon = 2\epsilon.$$

- ▶ Hence $0 \le \frac{1}{2} < \epsilon$ for every $\epsilon > 0$. This means $\frac{1}{2} = 0$, which is clearly a contradiction.
- ▶ This proves that $\{c_n\}_{n\in\mathbb{N}}$ is not convergent.
- ► END OF LECTURE 15