#### دورهی آموزشی «علم داده» Data Science Course



جلسه سیام (بخش چهارم) آشنایی با سه بهینهساز بسیار مهم در یادگیری ماشین

AdaGrad, RMSprop & Adam

مدرس: محمد فزونی عضو هیئت علمی دانشگاه گنبدکاووس

### Learning rate schedules

نیازی نیست که تمام جزئیات این روشها رو بدونیم. فقط نوع عملکردشون کافیه

**AdaGrad** 

**RMSProp** 



Just use AdaGrad plz

/adaptive gradient algorithm/

2011

It dynamically varies the learning rate at each update and for each weight individually

این روش سعی داره نرخ یادگیری رو برای هر وزن، در هر بروزرسانی تغییر بده

# ُقبِلاً ما چہ میکردیم؟



$$w(t+1) = w(t) - \eta \frac{\partial L}{\partial w}(t)$$

$$w(t+1) - w(t) = -\eta \frac{\partial L}{\partial w}(t)$$

$$\Delta w = -\eta \frac{\partial L}{\partial w}(t)$$

$$\Delta w = -\eta \frac{\partial L}{\partial w}(t)$$

$$\Delta w_i(t) = -\frac{\eta}{\sqrt{G_i(t)} + \epsilon} \frac{\partial L}{\partial w_i}(t)$$

$$\Delta w_i(t) = -\frac{\eta}{\sqrt{G_i(t)} + \epsilon} \frac{\partial L}{\partial w_i}(t)$$



$$\Delta w_i(t) = -\frac{\eta}{\sqrt{G_i(t)} + \epsilon} \frac{\partial L}{\partial w_i}(t)$$



/adaptive gradient algorithm/

$$\Delta w_i(t) = -\frac{\eta}{\sqrt{G_i(t)} + \epsilon} \frac{\partial L}{\partial w_i}(t)$$

$$G_i(t) = G_i(t-1) + \left(\frac{\partial L}{\partial w_i}(t)\right)^2$$

with beginning point  $G_i(0) = 0$ 

$$\Delta w_i(t) = -\frac{\eta}{\sqrt{G_i(t)} + \epsilon} \frac{\partial L}{\partial w_i}(t)$$

$$G_i(t) = G_i(t - 1) + \left(\frac{\partial L}{\partial w_i}(t)\right)^2$$

$$G_i(0) = 0$$

$$G_i(1) = 0 + \text{non-neg}$$

$$G_i(2) = [0 + \text{non-neg}] + \text{non-neg}$$

$$\vdots$$

G (t) is monotonously increasing function (each consequent G is bigger or equal to the previous one)

/adaptive gradient algorithm/

$$\Delta w_i(t) = -\frac{\eta}{\sqrt{G_i(t)} + \epsilon} \frac{\partial L}{\partial w_i}(t)$$

$$G_i(t) = G_i(t-1) + \left(\frac{\partial L}{\partial w_i}(t)\right)^2$$

with beginning point  $G_i(0) = 0$ 

- Smart
- · Adaptive learning rate schedule
- · Based on the training itself
- Per weight

Different weights do not reach their optimal values simultaneously

/adaptive gradient algorithm/

$$\Delta w_i(t) = -\frac{\eta}{\sqrt{G_i(t)} + \epsilon} \frac{\partial L}{\partial w_i}(t)$$

$$G_i(t) = G_i(t-1) + \left(\frac{\partial L}{\partial w_i}(t)\right)^2$$

with beginning point  $G_i(0) = 0$ 

## **RMSprop**

/root mean square propagation/

$$\Delta w_i(t) = -\frac{\eta}{\sqrt{G_i(t)} + \epsilon} \frac{\partial L}{\partial w_i}(t)$$

$$G_i(t) = \beta G_i(t-1) + (1-\beta) \left(\frac{\partial L}{\partial w_i}(t)\right)^2$$

with beginning point  $G_i(0) = 0$ 

/adaptive gradient algorithm/

$$\Delta w_i(t) = -\frac{\eta}{\sqrt{G_i(t)} + \epsilon} \frac{\partial L}{\partial w_i}(t)$$

$$G_i(t) = G_i(t-1) + \left(\frac{\partial L}{\partial w_i}(t)\right)^2$$

with beginning point  $G_i(0) = 0$ 

## **RMSprop**

/root mean square propagation/

$$\Delta w_i(t) = -\frac{\eta}{\sqrt{G_i(t)} + \epsilon} \frac{\partial L}{\partial w_i}(t)$$

$$G_i(t) = \beta G_i(t-1) + (1-\beta) \left(\frac{\partial L}{\partial w_i}(t)\right)^2$$

with beginning point  $G_i(0) = 0$ 

 $\beta$  – yet another hyperparameter usually, around ~0.9

No longer monotonous, so it can adapt upwards and downwards

# AdaGrad, RMSprop

$$\Delta w_i(t) = -\frac{\eta}{\sqrt{G_i(t)} + \epsilon} \frac{\partial L}{\partial w_i}(t)$$

- Smart
- Adaptive learning rate schedule
- Based on the training itself
- Per weight

Can it get any better???

#### Learning rate schedules



$$\Delta w_i(t) = -\frac{\eta}{\sqrt{G_i(t)} + \epsilon} \frac{\partial L}{\partial w_i}(t)$$

AdaGrad, RMSprop

#### **Momentum**



$$w \leftarrow w(t) - \eta \frac{\partial L}{\partial w}(t) - \alpha \eta \frac{\partial L}{\partial w}(t-1)$$
Current update
Update a moment ago

#### **Adam**

/adaptive moment estimation/

$$\Delta w_i(t) = -\frac{\eta}{\sqrt{G_i(t)} + \epsilon} \frac{\partial L}{\partial w_i}(t)$$

AdaGrad, RMSprop







The most advanced optimizer (very fast and efficient)



#### Adam

/adaptive moment estimation/

**RMSprop** 

Momentum

$$\Delta w_i(t) = -\frac{\eta}{\sqrt{G_i(t)} + \epsilon} \frac{\partial L}{\partial w_i}(t)$$

$$w \leftarrow w(t) - \eta \frac{\partial L}{\partial w}(t) - \alpha \eta \frac{\partial L}{\partial w}(t-1)$$



$$\Delta w_i(t) = -\frac{\eta}{\sqrt{G_i(t)} + \epsilon} M_i(t)$$

$$M_i(t) = \alpha M_i(t-1) + (1-\alpha) \frac{\partial L}{\partial w_i}(t)$$

As with all science, data science is a long chain of academic research building on top of each other

# **Enough is Enough**

قبل از اینکه بریم سراغ چندتا پروژهی انجام شده، در ویدیوی بعدی کمی راجع به پیشپردازش صحبت خواهیم کرد و بعد از اون

چیزهای باحالتری رو خواهم گفت