Probability - Session 3

Some important discrete distributions — the Binomial and Poisson distributions

Elizabeth Williamson with thanks to Jennifer Rogers

Foundations of Medical Statistics

Session objectives

By the end of the session you should be able to:

- calculate probabilities using permutations and combinations
- state key properties of the Bernouilli, binomial and Poisson distributions.
- explain the assumptions of the binomial and Poisson distributions.
- explain the assumptions underlying the derivation of the Poisson distribution

Outline

Calculating probability distribution functions

Permutations and combinations

Bernoulli distribution

Binomial distribution

Hypergeometric distribution

Poisson distribution

Summary

Reminder: random variables

A random variable X is a variable which takes a numerical value which depends on the outcome of the random experiment under consideration.

A discrete random variable can be characterised by its **probability distribution function**.

ightharpoonup P(X=x) for all the x values which X can take.

Simple example — the Bernouilli distribution:

- A single binary outcome (1=success, 0=failure)
- ▶ $P(X = 1) = \pi$

Today: obtaining probability distribution functions for some important discrete distributions

Calculating probabilities

Recall that the probability of an event can be defined as the relative frequency of that event in repeated experiments, e.g.

$$P(\text{roll a six}) = \lim_{n \to \infty} \frac{\text{number of 6s in } n \text{ rolls}}{n}$$

Calculating probabilities

If:

- finite number of possible outcomes, and
- each outcome is equally probable.

Then

$$P(\text{event } A \text{ occurs}) = \frac{\text{number of outcomes in which event } A \text{ occurs}}{\text{total number of outcomes}}$$

Simple example: rolling a die

To do this, we must count how many possible outcomes there are, and how many of these for which the event of interest occurs.

For example, consider rolling a die:

- \triangleright We are interested in P(rolling an even number).
- ightharpoonup Outcomes where we roll an even number: $\{2,4,6\}$
- ▶ Outcomes in total: {1, 2, 3, 4, 5, 6}

$$P(\text{rolling an even number}) = \frac{3}{6} = 0.5.$$

However... in more complex situations it is not so easy to calculate the number of outcomes.

Outline

Calculating probability distribution functions

Permutations and combinations

Bernoulli distribution

Binomial distribution

Hypergeometric distribution

Poisson distribution

Summary

Permutations and combinations

Combinatorics is the branch of maths concerned with counting.

A *permutation* is an arrangement **with** regard to order, whereas in a *combination* the order does not matter.

For example, the letters AB and BA are two different permutations, but the same combination of letters.

Permutations

If we have 3 distinct objects, labelled A, B and C, how many permutations are there? There are 6 permutations:

ABC ACB BAC BCA CAB CBA

More generally, suppose we have n different objects. In how many ways can n different objects be arranged? Each arrangement (i.e. respecting different orders) is a permutation.

Permutations of *n* objects

Consider a box with n compartments that we are going to fill with the n different objects.

To find the number of permutations, we consider the number of possibilities of filling each box.

- ▶ There are *n* ways of filling the first box.
- For each of these n ways, there are then n-1 ways of filling the second.
- **...**
- At the end, there is only 1 way of filling the last box.

So the total number of ways of filling the boxes is 'n-factorial':

$$n \times (n-1) \times \ldots \times 3 \times 2 \times 1 = n!$$

Permutations of x objects from n

Now suppose we are only selecting x objects from the n available.

How many permutations are there are of x objects from n?

- ▶ There are *n* objects to choose from to begin with.
- ▶ Then n-1 to choose from.
- **...**
- For the xth object, there are n x + 1 to choose from.

So there are $n \times (n-1) \dots \times (n-x+1)$ ways in total.

We write ${}^{n}P_{x}$ for the number of permutations of x objects from n.

Permutations of x objects from n

It can be useful to express ${}^{n}P_{\times}$ in a more concise manner.

$${}^{n}P_{x} = n \times (n-1) \dots \times (n-x+1)$$

$$= \frac{n(n-1)(n-2)...(n-x+1)(n-x)(n-x-1)... \times 3 \times 2 \times 1}{(n-x)(n-x-1)... \times 3 \times 2 \times 1}$$

$$= \frac{n!}{(n-x)!}.$$

Example

How many 4 digit bank pin numbers are there in which we can only use each digit at most once?

Example

How many 4 digit bank pin numbers are there in which we can only use each digit at most once?

$$\begin{array}{rcl}
^{10}P_4 & = & \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{6 \times 5 \times 4 \times 3 \times 2 \times 1} \\
& = & 10 \times 9 \times 8 \times 7 = 5040.
\end{array}$$

Combinations of x objects from n

Suppose now we are not concerned with the order of the x objects.

We write ${}^{n}C_{x}$ for the number of combinations of x objects from n objects.

► The number of ways of permuting x objects from n different objects is

$$^{n}P_{x}=\frac{n!}{(n-x)!}$$

- ► There are x! ways of permuting x objects
- \triangleright i.e. each combination of x objects has x! permutations.
- → Therefore,

$${}^{n}C_{x} = \frac{{}^{n}P_{x}}{x!} = \frac{n!}{x!(n-x)!}$$

 nC_x is also sometimes written $\binom{n}{x}$, which we call "n choose x".

Example: the UK National Lottery

- you select 6 numbers from 1 to 59.
- balls labelled 1 to 59 are jumbled up; 6 are selected at random.
- ▶ you win the jackpot if your 6 choices match the 6 drawn from the machine (irrespective of the order).

What is the probability of winning the jackpot?

▶ There are $^{59}C_6$ ways of choosing 6 balls from 59

$$^{59}C_6 = 45,057,474$$

- Each of these outcomes is equally likely.
- So the probability that your selected 6 are drawn is

$$1/45,057,474 = 0.00000002219$$

Outline

Calculating probability distribution functions

Permutations and combinations

Bernoulli distribution

Binomial distribution

Hypergeometric distribution

Poisson distribution

Summary

The Bernoulli distribution

A random variable X follows a Bernoulli distribution if it takes two possible values 0 and 1, and has probability distribution:

$$P(X = 1) = \pi$$

 $P(X = 0) = 1 - \pi$

The expectation and variance are:

$$E(X) = \pi,$$
 $Var(X) = \pi(1 - \pi)$

Outline

Calculating probability distribution functions

Permutations and combinations

Bernoulli distribution

Binomial distribution

Hypergeometric distribution

Poisson distribution

Summary

The binomial distribution is very important in medical statistics.

A binomial distribution counts the number of successes in a series of n independent Bernoulli trials.

If X follows a binomial distribution we write $X \sim bin(n, \pi)$

For example,

- ▶ The number of boys in a 4-child family, $X \sim bin(4, 0.51)$.
- ▶ If 10 patients are given an experimental drug, the number who recover follows a binomial distribution, $X \sim bin(10, \pi)$

As an example,

- Consider families with 4 children.
- Let X denote how many boys there are (of 4 children).
- X can take values x = 0, 1, 2, 3, 4.
- ightharpoonup What is P(X=x)?
 - Assume that the probability that a child is male is 0.51.
 - Assume that the gender of each child is independent of the gender of the other children.

Let us consider some particular outcomes

► The probability of no boys:

$$P(GGGG) = 0.49 \times 0.49 \times 0.49 \times 0.49 = 0.49^4$$

▶ The probability that the first child is a boy, but no others:

$$P(BGGG) = 0.51 \times 0.49 \times 0.49 \times 0.49 = 0.51 \times 0.49^{3}$$

▶ The probability that the second child is a boy, but no others:

$$P(GBGG) = 0.49 \times 0.51 \times 0.49 \times 0.49 = 0.51 \times 0.49^{3}$$

More generally, the probability of a family having a particular order of x boys and (4-x) girls is: $0.51^{x} \times 0.49^{(4-x)}$

Number of boys in a family of 4 children

Note that the different possible outcomes are not equally likely.

However, the different ways of having x boys in a family all have the same probability.

Thus,

$$P(X = x) = \{\text{Number of ways of having } x \text{ boys}\} \times 0.51^{x} \times 0.49^{(4-x)}$$

Number of ways of having x boys in a family of 4 children

Consider the number of ways of having 2 boys in a family of 4

- ► There are 4 births
- ► Each way of having 2 boys in the family corresponds to a combination of two of the birth numbers.
 - ▶ E.g. the combination 1,2, corresponds to BBGG.
 - ► E.g. the combination 1,4, corresponds to BGGB.
- ▶ We know there are 4C_2 combinations of 2 objects from 4.

There are 4C_x ways of having x boys in a family of 4. So,

$$P(X = x) = {}^{4}C_{x} \times 0.51^{x} \times 0.49^{(4-x)}$$

Graph of the probability distribution function for the number of boys in a 4-child family

More generally, suppose we conduct n independent trials, each of which results in a 'success' or 'failure', with constant probability of success π .

Then letting X denote the number of successes, X follows a binomial distribution, $X \sim binomial(n, \pi)$, and

$$P(X = x) = {}^{n}C_{x}\pi^{x}(1-\pi)^{n-x}$$
$$= {n \choose x}\pi^{x}(1-\pi)^{n-x}$$

for x = 0, 1, ..., n.

Expectation and variance of the Binomial distribution

If $X \sim Bin(n, \pi)$ then X represents the number of successes in a series of n independent Bernoulli trials.

- Let X_i , i = 1, ..., n be independent Bernoulli trials.
- ▶ Then we can write $X = \sum_{i=1}^{n} X_i$.

$$E(X) = E\left(\sum_{i=1}^{n} X_i\right) \qquad Var(X) =$$

$$= \sum_{i=1}^{n} E(X_i)$$

$$= \sum_{i=1}^{n} \pi$$

$$= n\pi.$$

Expectation and variance of the Binomial distribution

If $X \sim Bin(n, \pi)$ then X represents the number of successes in a series of n independent Bernoulli trials.

- Let X_i , i = 1, ..., n be independent Bernoulli trials.
- ▶ Then we can write $X = \sum_{i=1}^{n} X_i$.

$$E(X) = E\left(\sum_{i=1}^{n} X_i\right) \qquad Var(X) = Var\left(\sum_{i=1}^{n} X_i\right)$$

$$= \sum_{i=1}^{n} E(X_i) \qquad = \sum_{i=1}^{n} Var(X_i)$$

$$= \sum_{i=1}^{n} \pi$$

$$= n\pi.$$

Outline

Calculating probability distribution functions

Permutations and combinations

Bernoulli distribution

Binomial distribution

Hypergeometric distribution

Poisson distribution

Summary

The hypergeometric distribution

Suppose we are estimating prevalence by taking a sample of size n from a population of size N.

Assume that M subjects in the population have the disease of interest.

What is the distribution of X = number of sampled subjects with the disease?

The hypergeometric distribution

There are:

- $ightharpoonup ^{N}C_{n}$ ways of choosing n subjects from a population of size N.
- $^{M}C_{x}$ ways of choosing x subjects with the disease from the M with the disease in the population.
- ▶ $^{N-M}C_{n-x}$ ways of choosing the n-x remaining non-diseased subjects.

Each selection of n subjects occurs with equal probability. Thus,

$$P(X = x) = \frac{\binom{M}{x} \binom{N - M}{n - x}}{\binom{N}{n}}$$

Example: the lottery

Returning to the lottery example, the number of matched balls follows a hypergeometric distribution.

To find P(X = 3), think of the 6 numbers which are drawn from the machine, and the 53 which are not drawn.

There are 6C_3 ways of choosing the 3 matches that we get.

For each of these, there are ${}^{53}C_3$ ways of choosing the 3 that do not match.

So we have:

$$P(X = 3) = \frac{{}^{6}C_{3} \times {}^{53}C_{3}}{{}^{59}C_{6}}$$
$$= 0.010$$

Outline

Calculating probability distribution functions

Permutations and combinations

Bernoulli distribution

Binomial distribution

Hypergeometric distribution

Poisson distribution

Summary

The Poisson distribution

- ► The Poisson distribution is used to model the number of events occurring in a fixed time interval T when:
 - events occur randomly in time,
 - they occur at a constant rate λ per unit time,
 - they occur independently of each other.
- Examples where this might arise:
 - Emissions from a radioactive source,
 - ▶ The number of deaths in a large cohort of people over a year,
 - ▶ The number of car accidents occurring in a city over a year.

We are now going to derive the probability distribution function of the Poisson distribution

Events occur a constant rate of λ per unit of time.

▶ Over time T we expect $E(X) = \lambda T$ events.

Imagine dividing the interval T into n sub-intervals.

- \triangleright Each sub-interval is length T/n.
- We expect $\lambda T/n$ events in each sub-interval

- Increasing *n* gives more, shorter, intervals
- ▶ Increase *n* until each interval contains at most one event

Then,

- within each sub-interval we have a Bernoulli outcome
- the total number of intervals in which an event occurs is Binomial

We let X = total number of intervals in which an event occurs

- ▶ $X \sim Bin(n, \pi)$ as $n \to \infty$ where n is the number of intervals
- ▶ The probability of an event in each small interval is $\pi = \lambda T/n$
- We write $\mu = \lambda T$, giving $\pi = \mu/n$
- ▶ The probability distribution function of *X* is:

$$P(X = x) = \binom{n}{x} \pi^{x} (1 - \pi)^{n - x} = \binom{n}{x} \left(\frac{\mu}{n}\right)^{x} \left(1 - \frac{\mu}{n}\right)^{n - x}$$

$$P(X = x) = \binom{n}{x} \left(\frac{\mu}{n}\right)^x \left(1 - \frac{\mu}{n}\right)^{n-x}$$

$$P(X = x) = {n \choose x} \left(\frac{\mu}{n}\right)^{x} \left(1 - \frac{\mu}{n}\right)^{n-x}$$
$$= \frac{n!}{x!(n-x)!} \left(\frac{\mu}{n}\right)^{x} \left(1 - \frac{\mu}{n}\right)^{n-x}$$

$$P(X = x) = \binom{n}{x} \left(\frac{\mu}{n}\right)^{x} \left(1 - \frac{\mu}{n}\right)^{n-x}$$

$$= \frac{n!}{x!(n-x)!} \left(\frac{\mu}{n}\right)^{x} \left(1 - \frac{\mu}{n}\right)^{n-x}$$

$$= \frac{n!}{n^{x}(n-x)!} \frac{\mu^{x}}{x!} \left(1 - \frac{\mu}{n}\right)^{n-x}$$

$$P(X = x) = {n \choose x} \left(\frac{\mu}{n}\right)^x \left(1 - \frac{\mu}{n}\right)^{n-x}$$

$$= \frac{n!}{x!(n-x)!} \left(\frac{\mu}{n}\right)^x \left(1 - \frac{\mu}{n}\right)^{n-x}$$

$$= \frac{n!}{n^x(n-x)!} \frac{\mu^x}{x!} \left(1 - \frac{\mu}{n}\right)^{n-x}$$

Now, as
$$n o \infty$$
,

$$\frac{n!}{n^{x}(n-x)!} = \frac{n(n-1)...(n-x+1)}{n^{x}} \to 1$$

$$P(X = x) = {n \choose x} \left(\frac{\mu}{n}\right)^x \left(1 - \frac{\mu}{n}\right)^{n-x}$$

$$= \frac{n!}{x!(n-x)!} \left(\frac{\mu}{n}\right)^x \left(1 - \frac{\mu}{n}\right)^{n-x}$$

$$= \frac{n!}{n^x(n-x)!} \frac{\mu^x}{x!} \left(1 - \frac{\mu}{n}\right)^{n-x}$$

Now, as $n \to \infty$,

$$\frac{n!}{n^{x}(n-x)!} = \frac{n(n-1)...(n-x+1)}{n^{x}} \to 1$$

and

$$\left(1-\frac{\mu}{n}\right)^{n-x} \approx \left(1-\frac{\mu}{n}\right)^n \to e^{-\mu},$$

$$P(X = x) = {n \choose x} \left(\frac{\mu}{n}\right)^x \left(1 - \frac{\mu}{n}\right)^{n-x}$$

$$= \frac{n!}{x!(n-x)!} \left(\frac{\mu}{n}\right)^x \left(1 - \frac{\mu}{n}\right)^{n-x}$$

$$= \frac{n!}{n^x(n-x)!} \frac{\mu^x}{x!} \left(1 - \frac{\mu}{n}\right)^{n-x}$$

Now, as
$$n \to \infty$$
,

$$\frac{n!}{n^{x}(n-x)!} = \frac{n(n-1)...(n-x+1)}{n^{x}} \to 1$$

and

$$\left(1-\frac{\mu}{n}\right)^{n-x} \approx \left(1-\frac{\mu}{n}\right)^n \to e^{-\mu},$$

So we have

$$P(X=x) \to \frac{\mu^x}{x!} e^{-\mu}$$
 as $n \to \infty$.

Properties of the Poisson distribution

▶ The number of events occurring in a fixed interval T at a constant rate λ follows a Poisson distribution with parameter $\mu = \lambda T$,

$$X \sim \mathsf{Poisson}(\mu = \lambda T)$$

if

$$P(X = x) = \frac{\mu^x}{x!} e^{-\mu}$$
, for $x = 0, 1, 2, ...$

In the practical session, you will prove that:

- \triangleright $E(X) = \mu$
- $ightharpoonup Var(X) = \mu$

Outline

Calculating probability distribution functions

Permutations and combinations

Bernoulli distribution

Binomial distribution

Hypergeometric distribution

Poisson distribution

Summary

Summary

- Combinatorics
 - A permutation is an arrangement with regard to order,
 - In a combination the order does not matter.
- ► The binomial distribution:
 - used when we have a sequence of independent binary (Bernouilli) trials with constant probability of success.
 - ▶ has expectation $n\pi$ and variance $n\pi(1-\pi)$.
- ► The Poisson distribution:
 - used to model the number of events occurring independently at a constant rate in a fixed time interval
 - ▶ has expectation equal to its variance $(= \mu)$