Principal Component Analysis (PCA)

Discovering the Multiverse

erola.fenollosa@gmail.com

X @Erola_Fenollosa

www.erolafenollosa.weebly.com

Aims of the session

2) Recognise different applications of PCA Q

3) Identify what is needed to build and report a PCA and when is not

appropriated to use it

4) Be conscient of the limitations of PCA through its mechanics

EXTRA: Build your own PCA

Principal component Analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.

When is it useful to use a PCA?

- Reduce dimensionality \rightarrow You have multiple variables with trade-offs
- Contrast sites, genotypes, conditions multidimensionaly: understand what makes groups diferent
- Detect outliers within groups
- Contrast groups variance (i.e. Plasticity)
- Estimate level of similarity by overlap

The data

This a whole topic itself, but ideally your data should:

- Not contain missing values
- Contain more than two numerical variables
- Can contain one or more factors or grouping variables
- Data does not contain predictor categorical variables (if so, different analysis should be used)
- Be paired: each row represents the same biological replicate

\square	Α	В	С	D	E	F	G	Н	1
1	season	Species	leafangle	leafTemp	fvfm	h	area	lma	looh
2	estiu	AC	80	25.4	0.758	11.3333	2.201	66.7878	20.6107
3	estiu	AC	90	26.2	0.761	11.8317	3.066	67.8408	20.5299
4	estiu	AC	130	26.6	0.733	9.58427	1.193	74.6018	29.1841
5	estiu	AC	110	27	0.677	11.9268	1.333	92.2731	40.1276
6	estiu	AC	130	25.3	0.779	15.2143	4.102	75.0853	4.63958
7	estiu	AC	90	24.9	0.738	11.9167	1.321	81.7562	19.0654
8	estiu	AC	60	26.8	0.747	9.5	1.779	80.9444	40.9843
9	estiu	AC	120	28.9	0.756	7.32792	4.259	72.3174	39.7237
10	estiu	ACs	150	29.2	0.742	8.86486	1.764	104.875	28.6699
11	estiu	ACs	130	52.1	0.766	16.1442	0.942	110.403	18.4774
12	estiu	ACs	130	35.5	0.786	16.8007	2.823	104.853	16.1958
13	estiu	ACs	90	46.2	0.655	14.4479	3.9994	105.516	7.76234
14	estiu	ACs	160	27	0.69	14.4771	2.353	111.347	11.813
15	estiu	ACs	130	45	0.781	10.7487	1.549	123.305	42.9233
16	estiu	ACs	100	46.9	0.768	13.3691	2.852	104.488	12.0324
17	estiu	ACs	170	42.2	0.647	8.24082	4.242	115.512	15.8204
18	estiu	CM	170	34.6	0.799	6.64053	3.259	207.426	27.946
19	estiu	CM	150	38.4	0.749	5.98673	2.682	252.796	21.5128
20	estiu	CM	180	24.2	0.754	7.22546	2.6	250.769	28.0027
21	estiu	CM	160	23.6	0.8	6.53992	3.014	261.778	26.7143
22	estiu	CM	170	39.4	0.85	6.32127	2.096	210.878	24.1357
22	activ	CM	160	25.2	0.777	E 75702	1 021	170.7	24 2200

The dissimilarity concept. Everything is relative!

The dissimilarity game

And now... α -Toc

Take an object. If you had to describe the object in just two dimensions how would you do it? How would you take a picure of it so the observer can identify it?

Take a picure and discuss with the person on your left

Dimensions reduction

The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

Which PC captures higher variation?

Multiple axis of variation

You can find grups considering multiple variables

But... What is the deal? The hidden dimensions

Always report the percentatge of variance explain by each component

What does PC1 and PC2 mean?

They are just new variables constituted from old variables, we could say they are just formulas. For exemple, in the ChIT, RWC and a-Toc exemple, PC1 could be something like:

Which species are drought tolerant?

Let's see some examples. Find a partner and try to understand PC1 and PC2 of two examples.

PC1 = 0.5 ChIT + 0.1 RWC - 0.4 aTOC PC2 = - 0.1 ChIT - 0.8 RWC + 0.1 aTOC

Comarca	Temp media	anua Precipitaciones	Humedad	Vel. Viento	fedia Temp r	maedia Temp m	Altitud
Alt Camp	14.70	450,20	67,00	2.50	20,17	9,93	290,00
Alt Empordà	15,90	762,80	66,00	3,50	20,63	10,92	24,00
Alt Penedès	14,50	522,70	77,00	1,90	21,34	8,88	238,00
Alt Urgell	11,50	402,50	59,00	1.70	18,77	4.99	849,00
Alta Ribagorça	10,00	615,40	65,00	1,20	18,92	2.55	824,00
Anois	14,20	487,00	65,00	2.30	20,38	9,86	312.00
Bages	13,50	420.20	70,00	1.10	21,09	6.80	349,00
Balx Camp	15,50	505,80	70,00	3,70	20,83	10,88	231,00
Saix Ebre	15,60	513,00	69,00	4,80	20,63	11,59	179,00
Baix Empordà	14,90	818,60	73,00	2,10	22,14	8,43	29,00
Baix Llobregat	15,60	511,70	66,00	1.70	21,77	11,18	220,00
Baix Penedès	16,60	601,40	71,00	2,20	21,94	11,59	60,00
Barcelonès	15,30	540.20	68,00	4,20	19,94	11,71	411,00
Berguedà	11,40	589.40	71,00	1.20		6,25	
Cerdanya	8.50	439,60	66,00	3.50	18,10 17,29	0,57	1096.00
Conca de Barberà	13,50	366.00	69,00	3,40	19,43		The second second
Garraf	15,50	661.60	75,00	0.60	22,00	8,18	441,00
		1777 (23 Table)		V 20 00 00 10		10,60	171,00
Garrigues	13,20	359,70	66,00	2,60	18,57	7,63	490,00
Garrotxa	12,50	740,90	75,00	1.40	19,44	6,45	422,00
Gironès	15,80	599,90	71,00	1,40	22,38	9,97	100,00
Maresme	17,10	521,40	70,00	2,60	21,23	13,32	45,00
	15,80	421,80	71,00	2,50	19,97	11,96	7,00
Montsià	0.000	200.00					
Noguera	13,60	332,80	74,00	1,10	20,55	7,30	245,00
Noguera Osona	13,60 11 80	332,80 621 80	74,00 71.00	1,10	20,55	7,30	245,00
Noguera Osona Pallars Jussã	13,60 11,80 11		71 00	100	10 23	202	
Noguera Osona Pallars Jussa Pla d'Urgeli	13,60 11,80 11,		71 00	100		202	
Noguera Osona Pailars Jussă Pla d'Urgeli Pla de l'Estany	13,60 11,80 11, 14		71 00	100	10 23	202	
Noguera Osona Pallars Jussa Pla d'Urgell Pla de l'Estany Priorat	13,60 11 AD 11 14 14		71 00	100	10 23	202	
Noguera Osona Pallars Jussà Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre	13,60 11 AD 11 14 14 11	821 RG	71 00	100	10 23	202	
Noguera Osona Pallars Jussa Pla d'Urgell Pla de l'Estany Priorat	13,60 11 80 11 14 14 11 11 9		71 00	100	10 23	202	
Noguera Osona Pallars Jussà Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre	13,60 11 80 11 14 14 11 11 9	821 RG	71 00	100	10 23	202	
Noguera Osona Pallars Jussă Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripollès Segarra Segrià	13,60 11 80 11 14 14 11 11 9	3,6	71 00	100	10 23	202	
Noguera Osona Pallars Jussà Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripollès Segarra	13,60 11 80 11 14 14 11 11 9 11 11	821 RG	71 00	100	10 23	202	
Noguera Osona Pallars Jussă Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripollès Segarra Segrià	13,60 11 AD 11 14 14 15 17 9 11 11 14 14	3,6	71 00	100	10 23	202	
Noguera Osona Pallars Jussă Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripollès Segarra Segrià Selve	13,60 11 AD 11 14 14 15 17 9 11 11 14 14	3,6	71 00	100	10 23	202	
Noguera Osona Pallars Jussă Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripollès Segarra Segrià Selve Solsonès	13,60 11 AD 11 14 14 15 17 9 11 11 14 14	3,6	71 00	100	10 23	202	
Noguera Osona Pallars Jussă Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripollès Segarra Segrià Selve Solsonès Tarragonès	13,60 11 AD 11 14 14 15 17 9 11 11 14 14	3,6	71 00	100	10 23	202	
Noguera Osona Pallars Jussă Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripollès Segarra Segrià Selve Solsonès Tarragonès Terra Alta	13,60 11 AD 11 14 14 15 17 9 11 11 14 14	3,6	71 00	100	10 23	202	
Noguera Osona Pallars Jussă Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripollès Segarra Segrià Selve Solsonès Tarragonès Terra Alta Urgell	13,60 11 AD 11 14 14 15 17 9 11 11 14 14	3,6	71 00	100	P_2 vs PCOM	202	
Noguera Osona Pallars Jussă Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripoliès Segarra Segrià Selve Solsonès Tarragonès Terra Alta Urgell Val d'Aran	13,60 11 90 11 14 11 11 11 11 11 11 11 11 11 11 11	3,5 2,6 1,6 0,6	71 00	100	P_2 vs PCOM	202	
Noguera Osona Pallars Jussă Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripoliès Segarra Segrià Selve Solsonès Tarragonès Terra Alta Urgell Val d'Aran Vallès Occidentai	13,60 11 90 11 14 11 11 11 11 11 11 11 11 11 11 11	3,6	71 00	100	P_2 vs PCOM	202	
Noguera Osona Pallars Jussă Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripoliès Segarra Segrià Selve Solsonès Tarragonès Terra Alta Urgell Val d'Aran Vallès Occidentai	13,60 11 90 11 14 11 11 11 11 11 11 11 11 11 11 11	3,5 2,6 1,6 0,6	71 00	100	P_2 vs PCOM	202	
Noguera Osona Pallars Jussă Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripoliès Segarra Segrià Selve Solsonès Tarragonès Terra Alta Urgell Val d'Aran Vallès Occidentai	13,60 11 an 11 11 11 11 11 11 11 11 11 11 11 11 11	3,5 2,6 1,6 0,6	71 00	100	P_2 vs PCOM	202	
Noguera Osona Pallars Jussă Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripoliès Segarra Segrià Selve Solsonès Tarragonès Terra Alta Urgell Val d'Aran Vallès Occidentai	13,60 11 an 11 11 11 11 11 11 11 11 11 11 11 11 11	3,6 2,6 1,6 0,6	71 00	100	P_2 vs PCOM	202	
Noguera Osona Pallars Jussă Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripoliès Segarra Segrià Selve Solsonès Tarragonès Terra Alta Urgell Val d'Aran Vallès Occidentai	13,60 11 90 11 11 11 11 11 11 11 11 11 11 11 11 11	3,6 2,6 1,6 0,6	71 00	100	P_2 vs PCOM	202	
Noguera Osona Pallars Jussă Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripoliès Segarra Segrià Selve Solsonès Tarragonès Terra Alta Urgell Val d'Aran Vallès Occidentai	13,60 11 90 11 11 11 11 11 11 11 11 11 11 11 11 11	3,6 2,6 1,6 0,6	71 00	100	P_2 vs PCOM	202	
Noguera Osona Pallars Jussă Pla d'Urgell Pla de l'Estany Priorat Ribera d'Ebre Ripoliès Segarra Segrià Selve Solsonès Tarragonès Terra Alta Urgell Val d'Aran Vallès Occidentai	13,60 11 90 11 11 11 11 11 11 11 11 11 11 11 11 11	3,6 2,6 1,6 0,6	71 00	too de PCOM	P_2 vs PCOM	202	

Componente		Porcentaje de	Porcentaje
Número	Valor propio	Varianza	Acumulado
1	3,61041	51,577	51,577
2	1,8083	25,833	77,410
3	0,834195	11,917	89,327
4	0,461938	6,599	95,926
5	0,207834	2,969	98,895
6	0,0714179	1,020	99,916
7	0,00590614	0,084	100,000

	Componente	Componente
	1	2
Temperatura media anual	0,521913	-0,0282158
Precipitaciones	-0,0551489	0,590282
Humedad	0,0470988	0,621072
Velocidad Viento	0,1257	-0,486115
Media temperaturas máximas	0,461348	0,0936507
Media temperaturas mínimas	0,49067	-0,0585732
Altitud	-0,502939	-0,128579

https://jllopisperez.com/2012/12/29/tema-17-analisis-de-componentes-principales/

ALUMNO	LENGUA	MATEMÁTICAS	FISICA	INGLES	FILOSOFÍA	HISTORIA	QUÍMICA	EDUCACIÓN FÍSICA
1	5	5	5	5	5	5	5	5
2	7	4	3	8	4	7	3	8
3	5	8	7	6	5	6	7	5
4	7	2	4	8	7	7	3	6
5	8	9	10	8	8	7	9	4
6	4	9	8	4	3	4	7	5
7	6	4	4	6	5	5	3	7
8	4	7	8	3	3	2	8	3
9	5	5	4	5	6	5	5	1
10	7	4	5	7	8	8	4	6
11	7	8	8	7	7	6	7	9
12	4	3	3	4	3	2	1	4
13	7	4	4	7	8	7	4	5
14	3	5	5	2	3	3	5	7
16	5	6	6	5	5	5	8	6

Componente		Porcentaje de	Porcentaje
Número	Valor propio	Varianza	Acumulado
1	3,71043	46,380	46,380
2	2,86078	35,760	82,140
3	0,953481	11,919	94,059
4	0,215574	2,695	96,753
5	0,151316	1,891	98,645
5	0,0628091	0,785	99,430
7	0,0317443	0,397	99,827
3	0,0138659	0,173	100,000

Tabla de Pesos de los Compo	Componente	Componente
	1	2
LENGUA	0,500113	0,0853043
MATEMATICAS	-0,112909	0,555049
FÍSICA	-0,0517681	0,574789
INGLÉS	0,498752	0,036556
FILOSOFÍA	0,450292	0,121881
HISTORIA	0,49264	0,0635768
QUIMÍCA	-0,0726488	0,573763
EDUCACIÓN FÍSICA	0,187002	-0,0694516

RESEARCH ARTICLE PLANT BIOLOGY

Ancient trees are essential elements for high-mountain forest conservation: Linking the longevity of trees to their ecological function

Ot Pasques^{a,b} ond Sergi Munné-Bosch^{a,b,1}

Edited by Richard Dixon, University of North Texas, Denton, TX; received October 13, 2023; accepted December 24, 2023

ORIGINAL PAPER

Functional segregation of resource-use strategies of native and invasive plants across Mediterranean biome communities

Javier Galán Díaz : Enrique G. de la Riva · Jennifer L. Funk · Montserrat Vilà

Fig. 1 Principal Component Analysis (PCA) of eight plant traits from 137 natives (blue triangles) and invasive (red dots) plant species in Mediterranean communities (4–5 replicates per species). The table shows the loadings and variance associated with each principal component with eigenvalues over 1. The most relevant traits of each principal component have been

shaded. Traits: LMA: leaf mass per area, Amass: mass-based photosynthetic rate, WUE: instantaneous water use efficiency, Nmass: mass-based leaf nitrogen concentration, Pmass: mass-based leaf phosphorus concentration, PNUE: photosynthetic nitrogen-use efficiency, PPUE: photosynthetic phosphorus-use efficiency, and Height: vegetative plant height

spectrum

plant

form

and

r¹⁰, Christian Wirth². er¹⁴, Peter B. Reich^{15,1}. er¹⁴, Peter B. Reich^{15,1}. ², S. Joseph Wright²³, ³, Bill Shipley³¹, Donal ³, Miguel D. Mahecha

> ckie¹⁸, Andrew i vé Jactel^{25,26}, Cl

PCS 0.95 0 LMA PC1 Angiosperm Woody Gymnosperm Non-woody Pteridophyte 4 PC1 PC1

Figure 2 | The global spectrum of plant form and function. a, Projection of global vascular plant species (dots) on the plane defined by principal component axes (PC) 1 and 2 (details in Extended Data Table 1 and Extended Data Fig. 2). Solid arrows indicate direction and weighing of vectors representing the six traits considered; icons illustrate low and high extremes of each trait vector. Circled numbers indicate approximate position of extreme poles of whole-plant specialization, illustrated by typical species (Extended Data Table 2). The colour gradient indicates

regions of highest (red) to lowest (white) occurrence probability of species in the trait space defined by PC1 and PC2, with contour lines indicating 0.5, 0.95 and 0.99 quantiles (see Methods, kernel density estimation). Red regions falling within the limits of the 0.50 occurrence probability correspond to the functional hotspots referred to in main text. b, c, location of different growth-forms (b) and major taxa (c) in the global spectrum.

A lot of exemples to practice

Contents lists available at ScienceDirect

Science of the Total Environment

Science Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

C3 and C4 plant systems respond differently to the concurrent challenges of mercuric oxide nanoparticles and future climate CO₂

Hamada AbdElgawad ^a, Yasser M. Hassan ^a, Modhi O. Alotaibi ^{b,*}, Afrah E. Mohammed ^b, Ahmed M. Saleh ^{c,d,**}

Fig. 5. Principal component analysis (PCA) of growth, photosynthesis, respiration and metabolites and enzymes involved in sugars and proline biosynthesis in wheat (W) and maize (M) grown under control conditions (aCO₂), HgO-NPs, eCO₂ or coexistence of HgO-NPs and eCO₂. Variances explained by the first two components (PC1 and PC2) appear in parentheses.

Fig. 2 The result of PCA in experiment II. a Projection of the cases on factor-plane (A/E: soybean varieties—Alíz/Emese, C/D: control/drought stressed plants), b the PC1 loading values of the 20 measured parameters (abbreviations of the traits are in Table 1)

Acta Physiologiae Plantarum (2019) 41:56 https://doi.org/10.1007/s11738-019-2842-9

ORIGINAL ARTICLE

Selection of plant physiological parameters to detect stress effects in pot experiments using principal component analysis

Anna Füzy¹ · Ramóna Kovács¹ · Imre Cseresnyés¹ · István Parádi^{1,2} · Tibor Szili-Kovács¹ · Bettina Kelemen¹ · Kálmán Rajkai¹ · Tünde Takács¹

What is principal component analysis?

Markus Ringnér

Nature Biotechnology 26, 303–304 (2008) Cite this article

99k Accesses | 1237 Citations | 87 Altmetric | Metrics

Principal component analysis is often incorporated into genome-wide expression studies, but what is it and how can it be used to explore high-dimensional data?

Figure 1 Principal component analysis (PCA) of a gene expression data set. (a) Each dot represents a breast cancer sample plotted against its expression levels for two genes. (In a–c, e, samples are colored according to estrogen receptor (ER) status: ER+, red; ER-, black). (b) PCA identifies the two directions (PC1 and PC2) along which the data have the largest spread. (c) Samples plotted in one dimension using their projections onto the first principal component (PC1) for ER+, ER- and all samples separately. (d) The variance of the principal components when PCA is applied to all 8,534 genes with expression levels for all samples. (e) PCA biplot with samples plotted in two dimensions using their projections onto the first two principal components, and two genes plotted using their weights for the components (green points). The scale shown is for the samples; for the genes, the scale should be divided by 950. (f) Samples plotted as in e but colored according to *ERBB2* status (blue, *ERBB2*+; brown, *ERBB2*-; green, unknown).

Enhanced Secondary- and Hormone Metabolism in Leaves of Arbuscular Mycorrhizal *Medicago truncatula*^{1[OPEN]}

Lisa Adolfsson,^{a,2} Hugues Nziengui,^{a,2} Ilka N Abreu,^{b,3} Jan Šimura,^{c,3} Azeez Beebo,^{a,3} Andrei Herdean,^a Jila Aboalizadeh,^a Jitka Široká,^c Thomas Moritz,^b Ondřej Novák,^c Karin Ljung,^b Benoît Schoefs,^d and Cornelia Spetea^{a,4}

Figure 3. Quantification of hormones in *M. truncatula* leaves. A, PCA score plot (explained variance $R^2 = 0.722$ and predicted variance $Q^2 = 0.0801$; ellipse, Hotelling's T2 [95%]). B, Content of cytokinin species (tZR, trans-zeatin riboside; tZ9G, trans-zeatin 9-glucoside; DHZ, dihydrozeatin; DHZ9G, dihydrozeatin 9-glucoside) and the stress-related hormones JA-Ile, ABA, and SA. Bars represent means \pm sp from six plants. Asterisks indicate significant differences between treatments and the control (one-way ANOVA, P < 0.05 [*], P < 0.01 [**], and P < 0.001 [***]; GraphPad Prism). FW, Fresh weight.

Research Article

Performance of Ambrosia artemisiifolia and its potential competitors in an experimental temperature and salinity gradient and implications for management

Hana Skálová1,*, Wen-Yong Guo1, Lenka Moravcová1 and Petr Pyšek12

Figure 1. Principal component analysis (PCA) of the plant characteristics measured at different temperatures and salinities. Different colours indicate different species and shapes indicate treatment levels. The ellipses define the 95% confidence intervals of the species. Factor loadings from the principal components analyses of (a) temperature and (b) salinity are shown. The arrows

¹Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43 Průhonice, Czech Republic

²Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44 Prague, Czech Republic

Author e-mails: hana.skalova@ibot.cas.cz (HS), guowyhgy@gmail.com (WYG), lenka.moravcova@ibot.cas.cz (LM), pysek@ibot.cas.cz (PP)

^{*}Corresponding author

Journal of Experimental Botany, Vol. 68, No. 16 pp. 4463–4477, 2017 doi:10.1093/jxb/erx220 Advance Access publication 29 June 2017 This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)

RESEARCH PAPER

Getting back to nature: a reality check for experiments in controlled environments

Maria Grazia Annunziata¹, Federico Apelt¹, Petronia Carillo², Ursula Krause¹, Regina Feil¹, Virginie Mengin¹, Martin A. Lauxmann¹, Karin Köhl¹, Zoran Nikoloski^{1,3}, Mark Stitt¹ and John E. Lunn^{1,*}

Fig. 1. Principal component analysis (PCA) of metabolite data from Arabidopsis plants. (A) PCA of metabolite data from plants grown in a naturally illuminated greenhouse (orange circles) or in controlled environment chambers with a 12-h photoperiod and daily light integral (DLI) of 7 mol m⁻² d⁻¹. The artificial illumination was provided by white fluorescent tubes (blue symbols) or LED lights (grey symbols), with either a constant (squares) or sinusoidal (triangles) light profile during the day. Numbers indicate the time of harvest in hours after dawn (zeitgeber time, ZT); ED, end of day (ZT12); EN I, end of preceding night (ZT0); EN II, end of night (ZT24). The percentages of total variance represented by principal component 1 (PC1) and principal component 2 (PC2) are shown in parentheses. (B) The loadings of individual metabolites (red) on the principal components shown in (A) and the (average) loadings of the individual experimental conditions (blue). Glucose and fructose were not included in the PCA due to the very high variability in the data.

Artic

Microbe-Plant Growing Media Interactions Modulate the Effectiveness of Bacterial Amendments on Lettuce Performance Inside a Plant Factory with Artificial Lighting

Thijs Van Gerrewey ^{1,2,3,4} Maarten Vandecruys ³ Nele Ameloot ⁴, Maaike Perneel ⁵, Marie-Christine Van Labeke ⁶, Nico Boon ² and Danny Geelen ^{1,*}

Figure 4. Principal component analysis (PCA) of the lettuce yield and quality variables under different BCI-plant growing medium treatments. (a) PCA biplot of individual samples to PC 1 and PC 2. Symbols indicate the type of plant growing medium (M1–10 and control M, the commercial plant growing medium) and colors indicate BCI treatment (S1–5, negative control C, and positive control PCPM: Ellipses denote 95% confidence interval of C, S1, S2, and S3. The plant performance parameters are shoot fresh weight (FW), lettuce head area (LHA), root fresh weight (RW), shoot dry weight (DW), total phenolic content (TPC), Nitrate content, chlorophyll a+b (Chl), and carotenoids (Carot); (b) Quality of representation (cos²) correlation circle of variables to PC 1 and PC 2. The color gradient indicates the quality of representation of the variables; (c) Contribution plot of the top 25 samples to PC 1 and PC 2. Colors are the same as in a. The dashed line indicates the expected average contribution if the contribution of the samples were uniform; (d) Contribution plot of variables to PC 1 and PC 2. The dashed line indicates the expected average contribution of the variables were uniform.

ENVIRONMENTAL BIOTECHNOLOGY

Deciphering differences in the chemical and microbial characteristics of healthy and *Fusarium* wilt-infected watermelon rhizosphere soils

Tianzhu Meng¹ · Qiujun Wang¹ · Pervaiz Abbasi² · Yan Ma¹

Fig. 5 Principal component analysis (PCA) and redundancy analysis (RDA) of the microbial communities based on genera distributions in the rhizosphere soils of healthy, Fusarium oxysporum-infected, and dead watermelon plants. Healthy, the watermelon plants were healthy and not infected by F. oxysporum. Infected, the watermelon plants were infected by F. oxysporum and showed typical Fusarium wilt symptoms. Dead, the watermelon plants were infected by F. oxysporum and died. PCA of bacterial (a) and fungal (b) communities at the genus level. RDA

ordination plots show the relationships between the top 20 bacterial (c) and fungal (d) genera and soil environmental factors. All of the environmental variables (red lines with arrows) shown were tested by partial Monte-Carlo permutations at the P < 0.05 level and selected according to their marginal effects in descending order. C/N, ratio of TC to TN; MA, soil total microbial activity. The health index (HI) denotes a healthy plant as "2," the plant infected by F. oxysporum as "1," and the dead plant infected by F. oxysporum as "0"

Biplot of the first two principal components from a PCA of the Darlingtonia plant data. Each plant is represented by a symbol, with colors corresponding to the four sites. The red vectors point in the directions in which variables increase most strongly

Marina Pérez-Llorca^{1,2} · Andrea Casadesús¹ · Sergi Munné-Bosch^{1,2} · Maren Müller¹

b

Volume 7 • 2019

10.1093/conphys/coz075

Research article

Increased chilling tolerance of the invasive species *Carpobrotus edulis* may explain its expansion across new territories

Erola Fenollosa 1,2,* and Sergi Munné-Bosch 1,2,†

Figure 1: (A) Kernel density estimation for C. edulis occurrences in response to annual mean temperature and precipitation. (B) Correlation circle for the PCA-env analysis, with the 19 bioclimatic WorldClim variables (X1-19). Bioclimatic variables full names can be found at: http://worldclim.org/bioclim. (C) Niche dynamics stability, expansion and unfilling (in blue, red and green respectively) in the multivariate climatic space for native compared to the European niche of C. edulis considering the two first components from the PCA-env. D Stands for Schoener's D overlap value. Solid and dashed lines delineate 100 and 75% of the available background environment, respectively.

Why wouldn't work a PCA?

- No lineality
- Too much variables
- Data is not paired

Which percentatge of variable explained is acceptable for you?

How to report a PCA

- Show % variance explained
- Explore Components weights and find a biological explanation, report variable vectors or components weights.

POPULATION ECOLOGY - ORIGINAL RESEARCH

Geographic patterns of seed trait variation in an invasive species: how much can close populations differ?

Erola Fenollosa 1,20 · Laia Jené 1 · Sergi Munné-Bosch 1,2

Other multidimensional techniques

- MDS, NDMS
- CCA
- Discriminant analysis

Fig. 1 a Relative location of the nine studied populations (filled circles) of C. edulis distributed in three differentiated zones: Maresme (M), Costa Brava (CB) and Cap de Creus (CA). b Results of multidimensional scaling analysis (MDS) evaluating differences in nine seed traits among studied populations. Traits indicated in grey have significant (P < 0.01) contribution population variability. Ellipses represent 95% of confidence intervals. P-values correspond to PERMANOVA results for Zone and Population (nested in Zone) factors

Difficult question: What is the difference between PCA and MDS?

Submitted to PPL 2024

Invasion amidst the shadows: A higher water use and improved physiological performance relative to natives underlies a potentially invader's success

Fenollosa, E.1,2*, Munné-Bosch, S.1,2, Pintó-Marijuan, M.1,2

- 1. Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, <u>Avinguda Diagonal 643</u>, 08028, Barcelona, Spain
- Institute of Research in Biodiversity (IRBio-UB), Avinguda Diagonal 643, 08028, Barcelona,
 Spain

^{*}Correspondence: Erola Fenollosa (erola.fenollosa@gmail.com)

The basic steps to build a PCA

Standarize

Compute (Check variance %)

Understand the components

onderstand the components

http://www.sthda.com/english/artic les/31-principal-componentmethods-in-r-practical-guide/112pca-principal-component-analysisessentials/

Plot

Aims of the session

1) Understand PCA in scientific articles

- 2) Recognise different applications of PCA Q
- 3) Identify what is needed to build and report a PCA and when is not appropriated to use it
- 4) Be conscient of the limitations of PCA through its mechanics

EXTRA: Build your own PCA

Principal Component Analysis (PCA)

Discovering the Multiverse

erola.fenollosa@gmail.com

X @Erola_Fenollosa

www.erolafenollosa.weebly.com

WINEQUALITY:

https://archive.ics.uci.edu/dataset/186/wine+quality

IRIS

https://archive.ics.uci.edu/dataset/53/iris

PIZZA, DIABETES, USArrests https://github.com/f-imp/Principal-Component-Analysis-PCAover-3-datasets/tree/master