Акустостимулированная активация связанных дефектов в твердых растворах CdHgTe

© А.И. Власенко, Я.М. Олих, Р.К. Савкина

Институт физики полупроводников Национальной академии наук Украины, 252028 Киев, Украина

(Получена 29 июня 1998 г. Принята к печати 7 сентября 1998 г.)

Представлены результаты акустодинамических исследований электрофизических параметров (эффективной концентрации электронов $n=1/eR_H$ и их холловской подвижности $\mu_H=R_H/\rho$) для кристаллов $n\text{-}\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$ ($x\approx0.22$). Показано, что ультразвуковое нагружение (интенсивностью до $0.5\cdot10^4\,\mathrm{Bt/m^2}$) приводит к увеличению значений n и μ_H в области примесной проводимости ($T\approx100\,\mathrm{K}$). Наблюдаемые эффекты объясняются акустостимулированным освобождением (активацией) связанных дефектов донорного типа и соответствующим понижением рассеивающего потенциала на неоднородностях сплава. В рамках предложенной дислокационной модели оценены характерные параметры акустоэлектрического взаимодействия.

1. Введение

Известно, что для кристаллов Cd_xHg_{1-x} Те характерно наличие связанных на протяженных структурных несовершенствах (дислокации, включения второй фазы, малоугловые границы и пр.) примесных и собственных точечных дефектов. Вполне вероятно, что под действием температуры или других внешних факторов, в частности при высокочастотном интенсивном ультразвуковом (УЗ) нагружении кристалла, они могут становиться электрически активными и вносить дополнительный вклад в проводимость. Ранее влияние УЗ нагружения на электрофизические (ЭФ) и фотоэлектрические параметры кристаллов Cd_xHg_{1-x}Te исследовалось в основном в режиме остаточных эффектов (после УЗ обработок) [1,2]. Как было установлено, природа акустостимулированных (АС) эффектов в полупроводниках типа А^{II}В^{VI} определяется акустодислокационным взаимодействием и эффективной трансформацией поглощенной УЗ энергии во внутренние колебательные состояния кристалла [3]. Поглощенная УЗ энергия в образце Cd_xHg_{1-x} Те интенсифицирует диффузионное перераспределение точечных неравновесных дефектов между объемом "субблока" и протяженными дефектами [4–6]. Однако при динамическом УЗ нагружении допороговой интенсивности в образцах с квазиравновесным состоянием дефектной структуры происходят иные АС процессы, проявляющиеся в обратимых изменениях электрических и акустических параметров [5,6], которые требуют специального изучения.

С целью выяснения механизма АС дефектопреобразования в данной работе исследованы температурные и амплитудные (от интенсивности УЗ) зависимости ЭФ параметров (концентрации $n=1/eR_H$ и холловской подвижности $\mu_H=R_H/\rho$) кристаллов $n\text{-}\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$ ($x\approx 0.22$).

2. Методика эксперимента

Для реализации режима динамического УЗ нагружения стандартная холловская (в поле постоянного магнита 0.45 Тл) схема эксперимента была дополнена акустическими элементами [7]. Продольные УЗ колебания (частотой $f = 5 \div 7 \,\mathrm{M}\Gamma$ ц, интенсивностью $W_{US} \le 0.5 \cdot 10^4 \, {\rm Br/m^2}$) генерировались преобразователем из ниобата лития (срез Y-35 0) и через кварцевый буфер, который использовался для электрической развязки и акустического согласования, подавались на образец. С целью предотвращения необратимых УЗ эффектов интенсивность W_{US} не превышала $0.5 \cdot 10^4 \,\mathrm{BT/m^2}$, причем высокие значения W_{US} использовались только при низких температурах $T < 200 \, \text{K}$. Особое внимание уделялось контролю температуры вследствие возможности дополнительного УЗ разогрева. Точность поддержания температуры в процессе УЗ измерений не хуже 0.2 К. Схема УЗ, нагружения образца приведена на вставке к рис. 1.

3. Результаты эксперимента

На рис. 1 представлены типичные для исследованных образцов n- $\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$ температурные зависимости концентрации электронов n, измеренные как без УЗ нагружения (кривая I), так и в присутствии УЗ нагружения (кривая 2) в диапазоне $T=77\div200\,\mathrm{K}$. Методика подготовки образцов к измерениям описана в работах [1,2,9]. При $T<10\,\mathrm{K}$ наблюдалось насыщение зависимости n(T), т.е. проводимость имела примесный характер. На рис. 1 приведены также зависимости $\mu_H(T)$ и данные по подвижности для структурно совершенного образца (кривая 4) [8]. Как видно, значения μ_H для наших образцов при низких температурах ($T<120\,\mathrm{K}$) меньше подвижности в структурно совершенном кристалле, что свидетельствует о неоднородности исследованных образ-

цов [9,10]. Следует отметить, что термодинамическая неупорядоченность на уровне 2-3% является общей особенностью данного материала вследствие специфики его фазовой диаграммы и во многом определяет физические свойства материала в целом [8,11].

Влияние УЗ нагружения на ЭФ параметры в области примесной проводимости ($T < 120\,\mathrm{K}$) проявляется в уменьшении величины R_H и увеличении μ_H для всех исследованных образцов (см. таблицу). Важно отметить, что при включении и выключении УЗ нагружения происходит обратимая релаксация ЭФ параметров, и значения n и μ_H возвращаются к исходным. Время такой релаксации в зависимости от образца, интенсивности ультразвука и температуры колеблется от единиц до сотен секунд.

Амлитудные зависимости $n(\sigma_{US})$ и $\mu_H(\sigma_{US})$ от эффективного УЗ напряжения σ_{US} для одного из образцов приведены на рис. 2. Величина σ_{US} определяется как

$$\sigma_{US} = (2\rho v_{US}W_{US})^{1/2},$$

где ρ — плотность кристалла, v_{US} — скорость ультразвука в кристалле, для $\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}\ \rho\approx 7.6\,\mathrm{\kappa r}/\mathrm{m}^3,$

Рис. 1. n-Cd_{0.21}Hg_{0.79}Te (образец 3). Температурные зависимости концентрации $n=1/eR_H$ (1–3) и холловской подвижности $\mu_H=R_H/\rho$ (1', 2', 4) для образца № 3 n-Cd_{0.21}Hg_{0.79}Te. 1 и 1' — без (УЗ) нагружения, 2 и 2' — в присутствии УЗ нагружения ($\sigma_{US}\approx 4\cdot 10^5$ Па), 3 — теоретическая зависимость собственной концентрации для $x\approx 0.21$, 4 — подвижность структурно совершенного кристалла [8]. На вставке — схема УЗ нагружения образца: 1 — образец, 2 — пьезопреобразователь, 3 — буфер. Магнитное поле направлено перпендикулярно к плоскости пьезопреобразователя.

Рис. 2. Зависимости изменения концентрации $\Delta n_{US} = n(T_i, \sigma_{US}) - n(T_i, 0)$ (верхние кривые) и подвижности μ_H (нижние кривые) от напряжения ультразвуковых колебаний σ_{US} , измеренные при температурах T_i , K: I — 87, 2 — 93, 3 — 103, на образце 2 n-Cd_{0.22}Hg_{0.78}Te.

 $v_{US} \approx 3.4 \cdot 10^3 \, \mathrm{m/c}$. Видно, что с увеличением УЗ нагрузки происходит экспоненциальный рост n, причем наклон зависимости $\lg n = f(\sigma_{US})$ несколько увеличивается с температурой. На всех амплитудных зависимостях $\mu_H(\sigma_{US})$ наблюдается начальный участок линейного увеличения μ_H с последующим их насыщением. Однако в отличие от зависимости $n(\sigma_{US})$ наклон линейного участка $\mu_H(\sigma_{US})$ заметно не меняется с повышением температуры, тогда как порог насыщения при этом сдвигается в область меньших значений σ_{US} .

4. Обсуждение результатов

При анализе экспериментальных данных естественно исходить из того, что поведение ЭФ характеристик в области низких температур $T < 120\,\mathrm{K}$ определяется состоянием дефектности структуры, а динамические изменения n и μ_H в УЗ поле являются следствием неравновесных, кратковременных процессов на переменном токе (АС процессов) преобразования этого состояния. Необходимо отметить, что ранее рассматриваемые механизмы остаточных АС изменений ЭФ параметров в образцах $n\text{-Cd}_x\text{Hg}_{1-x}\text{Te}$ (внутренний АС отжиг [2,4], распад включений HgTe [11] и др.) при динамическом режиме УЗ нагружения не являются определяющими.

№ образца	T, K	$1/(eR_H^0),$ $10^{20} \mathrm{m}^{-3}$	$\mu_H^0, \ \mathrm{m}^2/\mathrm{B}\cdot\mathrm{c}$	$\sigma_{US},$ $10^5 \Pi a$	$1/(eR_H^{US}),$ $10^{20} \mathrm{m}^{-3}$	$\mu_H^{US}, \ { m m}^2/{ m B}\cdot{ m c}$	γ_n , $10^{-27} \mathrm{m}^3$	$\gamma_{\mu}/\Delta E,$ $10^{-26}\mathrm{m}^3/\mathrm{эB}$	Δ <i>E</i> , эB
1*	77	9.3	4.0	5.3	14.7	7.0	6.1	14	0.05
2	87	3.1	5.5	3.7	4.4	9.1	6.2	6.6	0.09
2	93	3.2	6.7	3.7	4.5	8.4	7.4	6.6	0.11
2	103	3.9	6.8	3.7	5.4	7.6	9.7	6.6	0.14

Значения холловских параметров и расчетных параметров акустоэлекрического взаимодействия для исследованных образцов $n\text{-Cd}_x\text{Hg}_{1-x}\text{Te}\ (x\approx 0.21-0.22)$

Примечание. Индексами "0" помечены параметры, полученные в отсутствие УЗ нагружения, индексами "US" — при УЗ нагружении. Значения ΔE оценены в предположении $\gamma_{\mu}=\gamma_{n}$.

Действительно, для однородного протекания по всему объему субблока выше перечисленных диффузионных процессов требуется наличие источников (или стоков) точечных дефектов (дислокации, малоугловые границы, включения второй фазы и др. [12]), а также достаточно высокие коэффициенты диффузии и длительности обработок. С учетом наблюдаемых времен релаксации и аппроксимации известных высокотемпературных коэффициентов химической диффузии [13], в случае низких температур (Т < 150 К) диффузионная длина даже для самой подвижной компоненты твердого раствора межузельных атомов Hgi, как показывают оценки, не превышает нескольких постоянных решетки. Это позволяет сделать предположение о неравновесном характере АС процессов в кристаллах Cd_xHg_{1-x} Те, главным подтверждением чему служит их обратимость и отсутствие остаточных явлений.

Определяющим фактором, обусловливающим протекание АС процессов, является наличие атмосфер примесей и собственных дефектов, "связанных" на дислокациях и других несовершенствах, которые могут находиться как в нейтральном, так и в ионизованном состоянии, образуя в последнем случае области пространственного заряда (ОПЗ). При УЗ нагружении часть связанных дефектов может отрываться и переходить в электрически активное состояние путем термоактивации с последующей ионизацией, наравне с уже ранее ионизованными дефектами.

4.1. Влияние ультразвука на концентрацию электронов

Обозначим вклад "свободных" доноров N_d^0 и "свободных" акцепторов N_a^0 в общую концентрацию носителей заряда в отсутствие УЗ нагружения как $n_0=N_d^0-N_a^0$, а вклад связанных дефектов — $n_b=N_d^b-N_a^b$. Важно отметить, что для исследуемых кристаллов $\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$ ($x\approx0.21\div0.23$) все уровни донорных примесей практически совпадают с дном зоны проводимости и ионизованы уже при гелиевых температурах, а собственная концентрация при $T\leq100\,\mathrm{K}$ $n_i< n_b\ll n_0$. С учетом этого, но без учета кратности ионизации различных примесных уровней, концентрацию носителей можно

записать в виде

$$n = n_0 + n_b = (N_d^0 - N_a^0) + (N_d^b - N_a^b).$$
 (1)

Тепловая активация связанных дефектов для каждой группы описывается соответствующим выражением [13]:

$$N_{d,a}^b(T) = N_0^b \exp(-U_0/kT),$$
 (2)

где $N_{d,a}^b$ — концентрации дефектов донорного или акцепторного типа, которые в результате тепловой активации переходят в электрически активное состояние; N_0^b — общая концентрация связанных дефектов; U_0 — энергия их связи (активации). Пренебрегая для кристаллов n-типа термоакустической активацией (и (или) гетерированием) дефектов акцепторного типа N_a^b (по сравнению с N_d^b), из соотношений (1) и (2) запишем

$$n(T) - n_0 = n_b(T) = N_0^b \exp(-U_0/kT).$$
 (3)

Процесс термоактивации связанных дефектов должен проявляться в виде слабой температурной зависимости концентрации в области примесной проводимости. Ясно, что в случае $n_b \ll n_0$ заметить такую зависимость n(T)очень трудно. Однако, как показал тщательный анализ наших и литературных экспериментальных данных, для некоторых образцов Cd_xHg_{1-x} Те слабый рост n (в интервале $80 < T < 150 \, \mathrm{K}$) наблюдается. Следует еще раз подчеркнуть, что рост концентрации в данной области температур не может быть связан с ионизацией примесей либо с вкладом собственных носителей $(n_i < n_b \ll n_0)$. Приняв, что $n_0 \approx n(77 \, \text{K})$, из экспериментальных данных по зависимости n(T), измеренных в отсутсвие У3, с помощью соотношения (3) были оценены значения $U_0 = (0.05 \pm 0.02)$ эВ и $N_0^b = (2 \pm 1) \cdot 10^{22}$ м⁻³. Безусловно, эти параметры очень важны для выяснения конкретной природы связанных дефектов, однако из-за сравнительно узкого температурного диапазона, в котором проводились наши исследования (до 78 К), точность определения N_0^b и U_0 невысокая.

Влияние УЗ нагружения на ЭФ параметры будем рассматривать в рамках дислокационных механизмов [3,4], т.е. конкретизируя U_0 , с одной стороны, как энергию связи примесей с дислокациями, а с другой стороны, как энергию колебательного движения дислокаций. Рассмотрим случай обратимых эффектов при допороговых значениях интенсивности W_{US} , когда поступательным движением дислокаций можно пренебречь. Из теории известно, что внешнее механическое нагружение понижает энергию связи дислокации с дефектом приблизительно по линейному закону [14,15]. Приняв в случае УЗ нагружения, что $U_{US} = U_0 - \gamma_n \sigma_{US}$ [3], перепишем выражение (2) в виде

$$N_d^b(T, \sigma_{US}) = N_0^b \exp\left[-(U_0 - \gamma_n \sigma_{US})/kT\right], \qquad (4)$$

где γ_n — эффективный коэффициент взаимодействия УЗ волны с дефектами кристалла. Поскольку величина $\sigma_{US} \equiv \sigma_0 \cos(2\pi ft)$ входит в показатель экспоненты в формуле (4), то среднее значение изменения концентрации за период звуковой волны $\Delta n_{US} = n(T_i, \sigma_{US}) - n(T_i, 0)$ не будет равно нулю при $(\gamma_n \sigma_{US}/kT_i) \geqslant 1$, где T_i — фиксированная температура, при которой проводятся амплитудные измерения. Это означает, что при растяжении некоторого микрообъема кристалла рост концентрации ионизированных дефектов в этом микрообъеме не компенсируется в полупериоде сжатия [3].

В теории дислокаций величина $\gamma=abl$ имеет смысл активационного объема, где a и l — амплитуда смещения и длина колеблющегося сегмента дислокации соответственно, b — вектор Бюргерса [14]. Отметим, что при анализе колебательного АС движения дислокаций в кристаллах $\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$ предполагается термоактивационный характер их движения, определяемый при температурах $T<300^{\circ}\mathrm{C}$ примесной атмосферой [17]. Поэтому с учетом (4) для анализа амплитудных зависимостей $n(\sigma_{US})$ можно записать:

$$n_b(\sigma_{US}) = n(T_i, \sigma_{US}) - n_0(T_i, 0)$$

= $N_0^b \exp\left[-(U_0 - \gamma_n \sigma_{US})/kT_i\right].$ (5)

Из наклона экспериментальных кривых $\lg[n_b(\sigma_{US})] = f(\sigma_{US})$ при фиксированных значениях температуры T_i (см. рис. 2) по формуле (5) рассчитаны значения γ_n (данные сведены в таблице). Наблюдаемое с ростом температуры увеличение γ_n подтверждает термоактивируемый характер колебания дислокаций в кристаллах типа $\mathbf{A}^{II}\mathbf{B}^{VI}$ [15].

4.2. Влияние ультразвука на подвижность электронов

Переходя к анализу влияния УЗ на зависимость $\mu_H(T)$, напомним, что для кристаллов $\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$ наряду с рассеянием носителей на колебаниях решетки в области температур $T\approx 100\,\mathrm{K}$, во многом определяющим величину μ_H , таким же считается и рассеяние на неоднородностях сплава [1,10,16]. Ясно, что рассмотренный выше процесс УЗ активации связанных доноров не является

однородным по всему объему кристалла, а более эффективен в областях максимального поглощения УЗ энергии, т.е. в областях сруктурных несовершенств (неоднородностей). Следовательно, локальное АС увеличение количества ионизированных доноров ведет к "сглаживанию" флуктуаций потенциала неоднородностей (уменьшение ОПЗ) и в свою очередь дожно сопровождаться уменьшением рассеяния носителей. Для времени релаксации носителей заряда, определяемого главным образом рассеянием на неоднородностях, известно следующее выражение [16]:

$$\tau = A/(m_0^{3/2} \Delta E^2),$$

где m_0 — эффективаная масса, ΔE — рассеивающий потенциал, связанный с неоднородностями твердого раствора, A — коэффициент, зависящий от зонных параметров кристалла и состава твердого раствора [16]. Предполагая, что УЗ нагружение уменьшает ΔE по линейному закону

$$\Delta E_{US} = \Delta E - \gamma_{\mu} \sigma_{US},$$

и пренебрегая влиянием ультразвука на другие параметры, входящие в (6), получаем формулу для оценки изменений величины μ_H в УЗ поле:

$$\Delta\mu_{US} = (\mu_{US} - \mu_0) = (e/m)(\tau_{US} - \tau_0)$$
$$= \mu_0(2\sigma_{US}\gamma_\mu/\Delta E). \tag{7}$$

Если считать, что для наших образцов при $T=100~{\rm K}$ доминирующим механизмом рассеяния является сплавной механизм, то используя выражение (7) и экспериментальные данные рис. 2, можно оценить величину $\gamma \mu/\Delta E$. Данные приведены в таблице. Интересно оценить величину ΔE . Предположив, что $\gamma_{\mu} \approx \gamma_{n}$, получаем, что $\Delta E \approx 0.1$ эВ. Для сравнения заметим, что "нулевым" приближением в теории сплавного механизма рассеяния принимается разница ширины запрещенной зоны для компонент сплава [16].

Поскольку μ_H определяется несколькими механизмами рассеяния электронов $\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$, при AC уменьшении вклада рассеяния на неоднородностях должна возрастать роль иного механизма рассеяния, который, возможно, слабо (или, сравнивая кривые 1' и 2' при $T>150\,\mathrm{K}$, рис. 1 — по-другому) зависит от УЗ. По-видимому, с этим связано наблюдаемое насыщение зависимости $\mu_H(\sigma_{US})$. Последний вывод подтверждается также тем, что в более совершенных кристаллах $\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$, для которых $\mu_H(T)$ близка к кривой 4 (рис. 1), эффект УЗ увеличения подвижности в примесной области уменьшается (см. таблицу, образец 4).

5. Заключение

В данной работе впервые методом эффекта Холла в присутствии динамического УЗ нагружения исследованы ЭФ параметры в кристаллах Cd_xHg_{1-x} Те. Показано, что

УЗ нагружение интенсивностью $W_{US} \leq 0.5 \cdot 10^4 \, \mathrm{Br/m^2}$ приводит к увеличению эффективной концентрации электронов и их подвижности. Наблюдаемые эффекты объясняются в рамках дислокационной модели акустостимулированного термоактивируемого освобождения связанных дефектов донорного типа и соответствующего понижения рассеивающего потенциала на неоднородностях сплава. Из сравнения экспериментальных данных с теоретическими в рамках предложенной модели оценены характерные параметры акустоэлектрического взаимодействия, значения которых могут быть использованы для предварительных оценок структурного качества исходных полупроводниковых образцов $\mathrm{Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$.

Таким образом, интенсивный звук, активизируя часть связанных дефектов, приводит к заметным кратковременным изменениям электрофизических параметров материала и для кристаллов Cd_xHg_{1-x} Те действительно является "активным" [18].

Список литературы

- Л.А. Карачевцева, А.В. Любченко, К.А. Мысливец, Я.М. Олих. УФЖ, 35, 468 (1990).
- [2] К.А. Мысливец, Я.М. Олих. ФТТ, 32, 682 (1990).
- [3] И.В. Островский. Акустолюминесценция и дефекты в кристаллах (Киев. Выща шк., 1995) гл. 4, гл 6.
- [4] Я.М. Олих, Ю.И. Шавлюк. ФТТ, 38, 468 (1996).
- [5] А.В. Любченко, Я.М. Олих. ФТТ, 27, 2505 (1985).
- [6] В.А. Калитенко, Я.М. Олих, В.М. Перга. УФЖ, 33, 788 (1988).
- [7] Я.М. Олих, Р.К. Савкина. УФЖ, 42, 1385 (1997).
- [8] G. Nimtz, G. Bauer, R. Dornhaus. Phys. Rev. B10, 3302 (1974).
- [9] А.И. Власенко, А.В. Любченко, Е.А. Сальков. УФЖ, 25, 1318 (1980).
- [10] H.R. Vydynat. J. Electrochem. Soc., 128, 2609 (1981).
- [11] П.И. Баранский, А.Е. Беляев, С.М. Комиренко, Н.В. Шевченко. ФТТ, 32, 2159 (1990).
- [12] А.И. Власенко, А.В. Любченко, В.Г. Чалая. ФТП, 30, 377 (1996).
- [13] Ф.А. Заитов, Ф.К. Исаев, А.В. Горшков. Дефектообразование и диффузионные процессы в некоторых полупроводниковых твердых растворах (Баку, Азернешр, 1984) с. 81.
- [14] Д. Хирт, И. Лоттэ. Теория дислокаций (М., Наука, 1972) гл. 16.
- [15] Ю.А. Осипьян, В.Ф. Петренко. В кн.: Физика соединений А^{II}В^{VI} (М., Наука, 1986) с. 35.
- [16] D. Chattopadhyay, B.R. Nag. Phys. Rev., 12, 5676 (1975).
- [17] Б.П. Коман. УФЖ, 32, 908 (1987).
- [18] Я.М. Олих. Тез. докл. XII Всес. конф. по физике полупроводников; Киев, 1990 (Киев, Наук. думка, 1990) ч. 2, с. 87.

Редактор Т.А. Полянская

Acoustostimulated activation of bond defects in CdHgTe alloys

O.I. Vlasenko, Ya.M. Olikh, R.K. Savkina

Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 252028 Kyjiv, Ukraine

Abstract The results are presented of investigation of electrophysical parameters (effective electron concentration $n=1/eR_H$ and Hall mobility $\mu_H=R_H/\rho$) for $n\text{-Cd}_x\mathrm{Hg}_{1-x}\mathrm{Te}$ ($x\approx0.22$) crystals by an acoustodynamic Hall method. It has been found that in a region of the impurity conductivity ($T\approx100\,\mathrm{K}$) under highfrequency intensive ultrasound load ($W<0.5\times10^4\,\mathrm{W/m^2}$) the n and μ_H values increased. The model of thermoacoustic activation of bond defects of the donor type with subsequent downsizing the scattering potential accounts for experimental results.

Ph: (044)265-62-56 Fax: (044)2658342

E-mail: olikh@class.semicond.kiev.ua