Parametric Dimension Reduction by Preserving Local Structure – Supplemental Material

Figure 3: We project high dimensional data to planar space for visual comparison. Each dot is a sample and each distinct color indicates a class.

Width Comparison												
Architecture	Bank	Cat & Dog	Cifar10	Cifar100	F_MNIST	Hatespeech	IMDB	Letter	MNIST	Norb	SVHN	Mean
$D \rightarrow 2048 \rightarrow 1024$ $\rightarrow 512 \rightarrow 256 \rightarrow 2$	ี ก จรร	0.894	0.966	0.688	0.883	0.866	0.632	0.851	0.906	0.969	0.974	0.869
$D \rightarrow 1024 \rightarrow 512$ $\rightarrow 256 \rightarrow 128 \rightarrow 2$	0.933	0.895	0.964	0.683	0.882	0.864	0.633	0.844	0.909	0.967	0.974	0.868
$D \rightarrow 512 \rightarrow 256$ $\rightarrow 128 \rightarrow 64 \rightarrow 2$	0.934	0.894	0.962	0.677	0.881	0.861	0.633	0.82	0.895	0.967	0.973	0.863
$D \rightarrow 256 \rightarrow 128$ $\rightarrow 64 \rightarrow 32 \rightarrow 2$	0.934	0.894	0.957	0.667	0.879	0.86	0.633	0.795	0.881	0.964	0.97	0.858
	Depth Comparison											
Architecture	Bank	Cat & Dog	Cifar10	Cifar100	F_MNIST	Hatespeech	IMDB	Letter	MNIST	Norb	SVHN	Mean
$D \rightarrow 1024 \rightarrow 512$ $\rightarrow 512 \rightarrow 256 \rightarrow$ $256 \rightarrow 128 \rightarrow 2$	0.933	0.894	0.965	0.689	0.882	0.862	0.642	0.845	0.91	0.969	0.973	0.869
$D \rightarrow 1024 \rightarrow 512$ $\rightarrow 256 \rightarrow 128 \rightarrow 2$	0.933	0.894	0.963	0.685	0.882	0.864	0.632	0.84	0.904	0.97	0.974	0.867
$D \rightarrow 1024 \rightarrow 512$ $\rightarrow 128 \rightarrow 2$	0.933	0.894	0.961	0.677	0.882	0.867	0.633	0.839	0.894	0.968	0.974	0.866
$D \rightarrow 1024 \rightarrow 512$ $\rightarrow 2$	0.933	0.893	0.954	0.66	0.88	0.863	0.63	0.808	0.882	0.965	0.971	0.858

Table 2: We compared the dimension reduction results achieved using different network architectures. The numbers are determined using Equation ?? in our main paper. We use background colors, where green to white show the low values to high values, to help readers interpret the results. As can be seen, deeper and wider networks can slightly achieve better results, although with the higher computational costs.

		Method	Bank	Cat & Dog	Cifar10	Cifar100	F_MNIST	Hatespeech	IMDB	Letter	MNIST	Norb	SVHN	Mean
		AE	0.941	0.920	0.970	0.899	0.982	0.881	0.532	0.977	0.948	0.989	0.984	0.911
		DLMP	0.955	0.919	0.964	0.886	0.981	0.926	0.669	0.986	0.953	0.990	0.974	0.928
	uity	PCA	0.947	0.914	0.944	0.864	0.979	0.850	0.414	0.974	0.942	0.973	0.955	0.887
	Continuity	Param_T	0.959	0.933	0.977	0.923	0.988	0.935	0.769	0.987	0.971	0.992	0.983	0.947
	ŏ	Param_U	0.966	0.925	0.976	0.919	0.988	0.926	0.733	0.989	0.969	0.991	0.983	0.942
		Ours	0.963	0.932	0.975	0.923	0.987	0.936	0.722	0.989	0.970	0.993	0.983	0.943
		t-SNE	0.968	0.931	0.979	0.936	0.988	0.959	0.814	0.995	0.980	0.997	0.986	0.958
		AE	0.982	0.824	0.957	0.855	0.966	0.897	0.617	0.951	0.913	0.961	0.972	0.900
	SS	DLMP	0.892	0.804	0.925	0.748	0.946	0.757	0.553	0.931	0.819	0.951	0.950	0.843
	Trustworthiness	PCA	0.900	0.798	0.849	0.683	0.913	0.815	0.607	0.822	0.734	0.873	0.810	0.800
/ da	orth	Param_T	0.967	0.816	0.946	0.830	0.962	0.856	0.600	0.946	0.905	0.942	0.970	0.885
Ŕ	ustw	Param_U	0.941	0.821	0.950	0.838	0.964	0.857	0.596	0.960	0.916	0.950	0.969	0.887
	Tri	Ours	0.980	0.825	0.953	0.846	0.965	0.861	0.605	0.954	0.913	0.957	0.970	0.894
		t-SNE	0.995	0.951	0.990	0.974	0.992	0.989	0.807	0.999	0.992	0.999	0.991	0.971
	od hit	AE	0.862	0.932	0.925	0.332	0.678	0.810	0.605	0.470	0.717	0.907	0.968	0.746
		DLMP	0.857	0.934	0.862	0.233	0.664	0.786	0.609	0.519	0.711	0.939	0.934	0.732
		PCA	0.849	0.925	0.452	0.176	0.530	0.804	0.596	0.283	0.470	0.784	0.635	0.591
	orho	Param_T	0.861	0.936	0.906	0.290	0.694	0.796	0.617	0.582	0.788	0.941	0.963	0.761
	Neighborhood hit	Param_U	0.860	0.934	0.959	0.318	0.693	0.801	0.630	0.606	0.835	0.951	0.970	0.778
		Ours	0.865	0.937	0.962	0.327	0.701	0.809	0.595	0.645	0.854	0.967	0.970	0.785
		t-SNE	0.863	0.939	0.976	0.631	0.803	0.819	0.649	0.925	0.940	0.999	0.980	0.866
	Continuity	AE	0.941	0.920	0.970	0.899	0.982	0.881	0.532	0.977	0.948	0.989	0.984	0.911
		DLMP	0.954	0.907	0.962	0.868	0.973	0.926	0.658	0.986	0.950	0.990	0.971	0.922
		PCA	0.947	0.914	0.944	0.864	0.979	0.850	0.414	0.974	0.942	0.973	0.955	0.887
		Param_T	0.959	0.933	0.977	0.922	0.987	0.935	0.769	0.987	0.971	0.992	0.982	0.947
		Param_U	0.958	0.925	0.976	0.919	0.988	0.924	0.733	0.989	0.969	0.991	0.982	0.941
		Ours	0.963	0.932	0.975	0.923	0.987	0.936	0.722	0.987	0.967	0.993	0.981	0.942
		t-SNE	0.967	0.931	0.976	0.934	0.986	0.959	0.796	0.995	0.979	0.997	0.984	0.955
		AE	0.982	0.824	0.957	0.855	0.966	0.897	0.617	0.951	0.913	0.961	0.972	0.900
	SS	DLMP	0.878	0.781	0.919	0.730	0.946	0.756	0.553	0.931	0.819	0.951	0.950	0.838
ethod	rthiness	PCA	0.900	0.798	0.849	0.683	0.913	0.815	0.607	0.822	0.734	0.873	0.810	0.800
met	wort	Param_T	0.967	0.815	0.944	0.814	0.961	0.856	0.600	0.941	0.905	0.942	0.969	0.883
By m	Trustwo	Param_U	0.941	0.821	0.950	0.838	0.963	0.857	0.594	0.960	0.916	0.946	0.969	0.887
	Τ	Ours	0.976	0.825	0.953	0.846	0.965	0.849	0.599	0.949	0.913	0.957	0.970	0.891
		t-SNE	0.995	0.951	0.990	0.974	0.992	0.989	0.807	0.999	0.992	0.999	0.991	0.971
	l hit	AE	0.862	0.932	0.925	0.332	0.678	0.810	0.605	0.470	0.717	0.907	0.968	0.746
		DLMP	0.853	0.930	0.857	0.229	0.664	0.778	0.606	0.519	0.651	0.913	0.934	0.721
	Neighborhood hit	PCA	0.849	0.925	0.452	0.176	0.530	0.804	0.596	0.283	0.470	0.784	0.635	0.591
	borh	Param_T	0.851	0.933	0.888	0.290	0.686	0.796	0.602	0.582	0.754	0.894	0.963	0.749
	eigh	Param_U	0.860	0.934	0.952	0.314	0.693	0.801	0.630	0.600	0.813	0.935	0.970	0.773
	ž	Ours	0.862	0.937	0.962	0.313	0.701	0.800	0.595	0.645	0.816	0.967	0.968	0.779
		t-SNE	0.863	0.935	0.969	0.624	0.803	0.819	0.642	0.925	0.940	0.999	0.978	0.863

Table 3: We compared our method with baselines on a variety of datasets in terms of continuity, trustworthiness, and neighborhood hit. Similarly, we use background colors, where green to white show the low values to the high values, to help readers interpret the results.