HW1

UNI: yb2356 Name: Yang Bai

1

f	g	0	0	Ω	ω	Θ
$\log^2 n$	$25\log n$	No	no	yes	yes	No
$\sqrt{\log n}$	$(\log \log n)^4$	no	no	yes	yes	No
$3n\log n$	$n \log 3n$	yes	no	yes	no	yes
$n^{3/5}$	$\sqrt{n}\log n$	No	no	yes	yes	No
$\sqrt{n} + \log n$	$2\sqrt{n}$	yes	no	yes	no	yes
$n^2 2^n$	3^n	yes	yes	no	no	No
$\sqrt{n}2^n$	$2^{n/2 + \log n}$	No	no	yes	yes	No
$n \log 3n$	$\frac{n^2}{\log n}$	yes	yes	no	no	No
n!	2^n	No	no	yes	yes	No
$\log n!$	$\log n^n$	yes	yes	no	no	No

$$f(n) = \frac{1 - \lambda^{n+1}}{1 - \lambda} \qquad (\lambda \neq 1)$$

(1) If $0 < \lambda < 1$:

$$0 < 1 - \lambda < 1$$
, so $f(n) > 1 - \lambda^{n+1}$ for all $n \ge 1$

$$0 < \lambda^{n+1} < 1$$
, so $f(n) < \frac{1}{1-\lambda}$, for all $n \ge 1$

$$(1 - \lambda^{n+1}) \cdot 1 \le f(n) \le \frac{1}{1 - \lambda} \cdot 1$$

Thus $f(n) = \Theta(1)$, if $0 < \lambda < 1$. $c_1 = (1 - \lambda^{n+1})$, $c_2 = \frac{1}{1-\lambda}$, $n_0 = 1$

(2) If $\lambda = 1$:

$$f(n) = n + 1$$

$$f(n) \ge 1 \cdot n$$
 for all $n \ge 1$, $c_1 = 1$

$$f(n) \le 2 \cdot n$$
 for all $n \ge 1$, $c_2 = 2$

Thus $f(n) = \Theta(n)$, if $\lambda = 1$

(3) If $\lambda > 1$:

Let
$$c_1 = \frac{1}{2}$$
, $f(n) \ge \frac{\lambda^n}{2}$ for all $n \ge 1$.

Proof:

$$\frac{\lambda^{n+1} - 1}{\lambda - 1} \ge \frac{\lambda^n}{2}$$
$$\lambda^{n+1} - 1 \ge \frac{\lambda^{n+1}}{2} - \frac{\lambda^n}{2}$$
$$\frac{\lambda^n}{2} (\lambda + 1) \ge 1$$

if $\lambda > 1$, the above inequality holds.

Let $c_2 = \lambda^2$, $f(n) \le \lambda^{n+2}$ for all $n \ge 1$.

Proof:

$$\frac{\lambda^{n+1} - 1}{\lambda - 1} \le \lambda^{n+2}$$
$$\lambda^{n+1}(\lambda^2 - \lambda - 1) + 1 \ge 0$$

if $\lambda > 1$, the above inequality holds.

Thus,
$$f(n) = \Theta(\lambda^n)$$
, if $\lambda > 1$

3.

(1) Let
$$f_1(n) = \frac{1}{n}$$
, $f_1(2n) = \frac{1}{2n}$.
For all $n \ge 1$, $f_1(2n) \le 1 \cdot f_1(n)$. So $f_1(2n) = O(f_1(n))$.

(2) Let
$$f_1(n) = 2^n$$
 , $f_1(2n) = 2^{2n}$ For all $n \ge 1$, $f_1(n) < 1 \cdot f_1(2n)$. So $f_1(2n)$ is not $O(f_1(n))$.

(3) If
$$f = o(g)$$
, for any $c > 0$, there exist $n0$ that, for $n \ge n0$, $f(n) < g(n)$.
Pick a number c1 (c1 > 0), we can find n1 that, for $n \ge n1$, $f(n) \le g(n)$ so $f = O(g)$

4.

(a)

$$T(n) = n + 1 + \frac{n(n+1)}{2} + \sum_{k=1}^{n} \frac{(k-1)k}{2} + \frac{(n-1)n}{2}$$
$$= \frac{5}{4}n^2 + \frac{5}{4}n + 1 + \frac{n(n+1)(2n+1)}{12}$$
$$= \frac{1}{6}n^3 + \frac{3}{2}n^2 + \frac{4}{3}n + 1$$

Suppose $f(n) = n^3$. For $n \ge 1$, $T(n) \le 5n^3$. So $T(n) = O(n^3)$.

(b) For
$$n \ge 1$$
, $T(n) \ge \frac{1}{6}n^3$. So $T(n) = \Omega(n^2)$.

Hence $T(n) = \Theta(n^2)$.

(c)

pseudocode:

for
$$i=1,2,3...,n$$
 do
 $B[i, i] = A[i];$
for $j = i+1, i+2,...,n$ do
 $B[i, j] = B[i, j-1] + A[j];$
End for

End for

$$T'(n) = n + 1 + n + \frac{n(n+1)}{2} + \frac{n(n-1)}{2}$$
$$= n^2 + 2n + 1$$
$$T'(n) = O(n^2)$$
$$n^2 = o(n^3)$$

We can use master's theorem for the first three T(n).

$$T(n) = \sum_{i=0}^{\log_b n} a^i c(\frac{n}{b^i})^k = cn^k \sum_{i=0}^{\log_b n} (\frac{a}{b^k})^i$$

(1) a=4, b=2, c=1, k=3.

$$T(n) = 2n^3 \left(1 - \frac{1}{n}\right) = 2n^3 - 2n^2$$

$$T(n) \le 2n^3 \text{ for all } n \ge 0 \text{ ;}$$

$$T(n) \ge \frac{n^3}{2} \text{ for all } n \ge 2 \text{ ;}$$
 so $T(n) = \Theta(n^3)$

(2) a=8, b=2, c=1, k=2. $a>b^k$

$$T(n)=n^2(n-1)$$

$$T(n)\leq n^3 \ for \ all \ n\geq 0 \ ;$$

$$T(n)\geq \frac{n^3}{2} \ for \ all \ n\geq 2 \ ;$$
 so $T(n)=\Theta(n^3)$

(3) a=6, b=3, c=1, k=1. $a > b^k$

$$T(n) = n\left(2^{\log_3 n} - 1\right) = n\left[(3^{\log_2 3})^{\log_3 n} - 1\right] = n(n^{\log_2 3} - 1)$$

$$= n^{\log_2 3 + 1} - n = n^{\log_2 6} - n$$

$$T(n) \le n^{\log_2 6} \text{ for all } n \ge 0;$$

$$T(n) \ge \frac{n^{\log_2 6}}{2} \text{ for all } n \ge 2;$$

$$T(n) = \Theta(n^{\log_2 6})$$

so $T(n) = \Theta(n^{\log_2 6})$

(4) Suppose $n = 2^m$, $m = \log_2 n$

$$T(2^m) = T\left(2^{\frac{m}{2}}\right) + 1$$

Set $S(m) = T(2^m)$. The new equation is:

$$S(m) = S\left(\frac{m}{2}\right) + 1$$

We can use Master's Theorem for this new S(m).

So
$$S(m) = \Theta(\lg m)$$
, $T(n) = T(2^m) = S(m) = \Theta(\lg m) = \Theta(\log_2 \log_2 n)$

(1) It's easy to calculate that $F_6 = 8, F_7 = 13$ and that $F_6 \ge 2^{\frac{6}{2}}, F_7 \ge 2^{\frac{7}{2}}$.

Then we need to prove that if $F_n \geq 2^{\frac{n}{2}}$ and $F_{n+1} \geq 2^{\frac{1+n}{2}}$, $F_{n+2} \geq 2^{\frac{n+2}{2}}$ holds.

$$F_{n+2} = F_{n+1} + F_n \ge 2^{\frac{1+n}{2}} + 2^{\frac{n}{2}}$$
$$F_{n+2} \ge 2^n$$

$$n \ge 6$$
, so $n \ge \frac{n+2}{2}$, $F_{n+2} \ge 2^{\frac{n+2}{2}}$

Thus, $F_n \ge 2^{\frac{n}{2}}$ holds for all $n \ge 6$.

(2)

Pseudocode(recursive)

Function Fibonacci(n)

If n == 0 return 0;

If n==1 return 1;

Return Fn = Fibonacci(n-1) + Fibonacci(n-2)

Running time:

$$T(n) = T(n-1) + T(n-2) = T(n-2) + T(n-3) + T(n-3) + T(n-4)$$

$$= T(n-3) + T(n-4) + T(n-4) + T(n-5) + T(n-4) + T(n-5)$$

$$+ T(n-5) + T(n-6)$$

If n is odd, $T(n) = 2^{\frac{n+1}{2}+1} - 3$; if n is even, $T(n) = 2^{\frac{n}{2}+1} - 1$.

So
$$T(n) = \Omega\left(2^{\frac{n}{2}}\right) (n \ge 1)$$
.

pseudocode (non-recursive)

Function Fibonacci(n)

$$a = 0$$
;

$$b=1$$
:

For i=2 to n

$$c = a + b$$

$$a = b$$

$$b = c$$

End for

Return c

Running time:

$$T(n) = 2 + n + 3 * (n - 1) = 4n - 1$$

 $T(n) = \Theta(n)$

pseudocode (using matrix)

$$\begin{pmatrix} F(n) & F(n+1) \\ F(n+1) & F(n+2) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n$$

// calculate the product of two 2D matrix

Function $Matrix_multiply(M[2][2], P[2][2])$ A[0][0] = M[0][0] *P[0][0] + M[0][1] *P[1][0] A[0][1] = M[0][0] *P[1][0] + M[0][1] *P[1][1] A[1][0] = M[1][0] *P[0][0] + M[1][1] *P[1][0] A[1][1] = M[1][0] *P[1][0] + M[1][1] *P[1][1]Return A

// calculate the power of matrix, recursively

Function *Matrix_power(M[2][2], n)*

If n==1 return M

Temp = Matrix power(M, n/2)

Temp = Matrix multiply(Temp, Temp)

If n is odd, $Temp = Matrix_multiply(Temp,M)$

Return Temp

Function Fibonacci(n)

If n == 0 return 0 M = [0,1; 1,1] $A = Matrix_power(M, n)$ Return A[1][1]

Running time:

$$T(n) = T\left(\frac{n}{2}\right) + O(1)$$

So $T(n) = O(\log n)$

(3)

$$F(n) = \frac{\sqrt{5}}{5} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

F(n) has $\lceil \log_2 F(n) + 1 \rceil$ bits. So adding F(n-1) and F(n-2) costs $\lceil \log_2 F(n-1) + 1 \rceil$ time.

New running time:

• recursive: only have adding of two integers

$$T(n) = T(n-1) + T(n-2) + \lceil \log_2 F(n-1) + 1 \rceil$$

$$= T(n-2) + T(n-3) + \lceil \log_2 F(n-2) + 1 \rceil + T(n-3) + T(n-4)$$

$$+ \lceil \log_2 F(n-3) + 1 \rceil + \lceil \log_2 F(n-1) + 1 \rceil$$

=

$$=\sum_{k=1}^n F(k)\lceil\log_2 F(n-k)+1\rceil$$
 So $T(n)=0\left(n\cdot\left(\frac{1+\sqrt{5}}{2}\right)^n\right)$ $(n\geq 1).$

· Non-recursive: (only has adding of two integers)

$$T(n) = \sum_{k=1}^{n-1} \lceil \log_2 F(k) + 1 \rceil \le \sum_{k=1}^{n-1} \left\lceil n \cdot \log_2 \left(\frac{1 + \sqrt{5}}{2} \right) + 1 \right\rceil$$
$$T(n) = O(n^2)$$

Matrix: (has adding and multiplication of two integers)

$$T(n) = T\left(\frac{n}{2}\right) + O(\lceil \log_2 F(n) + 1 \rceil^2) + O(\lceil \log_2 F(n) + 1 \rceil) + O(1)$$

$$= O\left(\sum_{k=1}^{\log_2 n} \left[\log_2 F\left(\frac{n}{2^k}\right) \right]^2 \right) = O\left(\sum_{k=0}^{\log_2 n} \left(\frac{n}{2^k}\right)^2\right)$$

$$= O(n^2)$$