

Санкт-Петербургский государственный университет Кафедра системного программирования

Разработка алгоритма для задачи достижимости с регулярными ограничениями

Порсев Денис Витальевич, 19.Б10-мм

Научный руководитель: к.ф.-м.н., Григорьев С.В., доцент кафедры информатики

Санкт-Петербург 2022

Графовые запросы

- Графовое представление данных
 - Метки на ребрах
 - Формальные ограничения
- Регулярные запросы к графовым БД
 - Достижимость и обход графа
 - Поиск путей в графе
 - Путь ограничен регулярной грамматикой

Рис.: Представление в виде графа

Мотивация создания алгоритма

- Регулярные запросы активно используются на практике
 - ▶ В языках запросов: SPARQL v1.1, Cypher и др.
 - Существующие подходы неэффективны на различных графах
- Новый подход: линейная алгебра
 - ▶ Использование разреженной матрицы смежности
 - ▶ Основные подходы к регулярным запросам используют BFS
 - ▶ BFS выражен в терминах линейной алгебры
 - ► SuiteSparse:GraphBLAS реализация примитивов линейной алгебры
- Подготовка к запросам с контекстно-свободными ограничениями

Постановка задачи

Цель: разработать алгоритм для задачи достижимости с регулярными ограничениями (RPQ) для нескольких стартовых вершин **Задачи:**

- Провести обзор алгоритмов RPQ и методов решения задачи
- Разработать матричный алгоритм, решающий задачу регулярной достижимости
- Реализовать разработанный алгоритм
- Провести экспериментальное исследование алгоритма

Задача достижимости с регулярными ограничениями

Определение (Задача регулярной достижимости в графе для нескольких стартовых вершин)

Имеется:

- ullet Регулярный язык $\mathcal{R} = \langle Q, \Sigma, P, F, Q_{src} \rangle$
- ullet Направленный помеченный граф $\mathcal{G} = \langle V, E, L
 angle$
- ullet Множество начальных вершин $V_{src}\subset V$

Постановка задачи 1:

• Найти множество $\{w \mid \exists \ путь \ \pi = (e_1, \ldots, e_n), e_k = (v_k, l_k, v_{k+1}), \ \tau.ч. \ L(\pi) = (l_1 l_2 \ldots l_n) \in L(\mathcal{R}), \ v_1 \in V_{src}, w \in V\}$

Постановка задачи 2:

• Найти множество пар $\{(v,w) \mid \exists$ путь π , т.ч. $L(\pi) = (I_1 I_2 \dots I_n) \in L(\mathcal{R}), v_1 \in V_{src}, w \in V\}$

Основные алгоритмы RPQ

Два основных подхода:

- Алгоритм lpha-RA, реляционная алгебра
- Использование FA, конечные автоматы

Основные алгоритмы RPQ: Использование FA

Идея:

- ullet Регулярный запрос представляется в виде автомата ${\mathcal R}$
- ullet Граф представляется в виде автомата ${\mathcal G}$
- Пересечение $\mathcal R$ и $\mathcal G$ содержит информацию о достижимых вершинах

Оптимизация:

ullet Матричный BFS синхронно по ${\mathcal R}$ и ${\mathcal G}$

$$Q_1 = (sameAs \cdot isLocated)^+$$

Рис.: Представление регулярного запроса в виде автомата

Разработанный алгоритм

Входные данные: $\mathcal{R}, \mathcal{G}, V_{src}$

Выходные данные: $\mathcal P$ - матрица достижимых пар вершин

- ullet Посимвольно декомпозируем в булевые матрицы $Bool_{\mathcal{R}_a}$ и $Bool_{\mathcal{G}_a}$
- Синхронизируем обход с помощью следующей матрицы

$$\mathfrak{D} = \begin{bmatrix} Bool_{\mathcal{R}_s} & 0\\ 0 & Bool_{\mathcal{G}_s} \end{bmatrix} \tag{1}$$

• Строим матрицу с начальными вершинами, которая будет хранить найденные во время обхода вершины

$$M^{k \times (k+n)} = \begin{bmatrix} Id_k & Matrix_{k \times n} \end{bmatrix}$$
 (2)

- Пока М меняется:
 - lacktriangle Перемножаем $M imes \mathfrak{D}$ для получения новых вершин
 - ightharpoonup Переставляем строчки в M для преобразования к начальному виду
 - ightharpoonup Записываем найденные вершины в ${\cal P}$

Условия эксперимента

Оборудование:

- Intel Core i7-10750H 6×2.60 GHz
- 16 Gb DDR4 RAM

Graph	# Vertices	# Edges
core	1 323	2 752
enzyme	48 815	86 543
eclass	239 111	360 248
go	582 929	1 437 437

Таблица: Графы

Name	Query
Q_1	a*
Q_2	a∙b*
Q_3	a·b*·c*
Q ₄	(a b)*
Q_5	a·b*·c
Q_6	a*·b*·c
Q ₇	a·b·c*
Q ₈	a?∙b*
Q ₉	(a b) ⁺
Q ₁₀	$(a b)^+ \cdot c^*$
Q ₁₁	a∙b

Таблица: Шаблоны запросов

Экспериментальное исследование (SS)

Экспериментальное исследование (MS 1000)

Результаты

- Проведен обзор основных методов и алгоритмов решения задачи регулярной достижимости
- Разработан алгоритм, решающий задачу достижимости с регулярными ограничениями, в терминах линейной алгебры
- Реализован¹ разработанный алгоритм
- Проведено экспериментальное исследование алгоритма

¹https://github.com/JetBrains-Research/CFPQ PyAlgo/pull/34

Алгоритм в псевдокоде

Algorithm 1 Алгоритм достижимости в графе с регулярными ограничениями на основе поиска в ширину, выраженный с помощью операций матричного умножения

```
1: procedure BFSBASEDRPQ(\mathcal{R} = \langle Q, \Sigma, P, F, q \rangle, \mathcal{G} = \langle V, E, L \rangle, V_{src})
        \mathcal{P} \leftarrow \text{Матрица смежности графа}
       \mathfrak{D} \leftarrow Bool_{\mathcal{R}} \bigoplus Bool_{\mathcal{G}}
                                                                ⊳ Построение матриц Э
4: M \leftarrow CreateMasks(|Q|, |V|)
                                                     ⊳ Построение матрицы М
        M' \leftarrow SetStartVerts(M, V_{src})
                                                    Заполнение нач. вершин
        while Матрица M меняется do
6:
             M \leftarrow M' \langle \neg M \rangle \triangleright Применение комплементарной маски
7:
             for all a \in (\Sigma \cap L) do
8:
                 M' \leftarrow M any.pair \mathfrak{D} \qquad \triangleright Матр. умножение в полукольце
9:
                 M' \leftarrow TransformRows(M') \triangleright Приведение M' к виду M
10:
             Matrix \leftarrow extractRightSubMatrix(M')
11:
             V \leftarrow Matrix.reduceVector() \triangleright Сложение по столбцам
12:
             for k \in 0 ... |V_{src}| - 1 do
13:
                 W \leftarrow \mathcal{P}.aetRow(k)
14:
                 \mathcal{P}.setRow(k, V + W)
15:
        return \mathcal{P}
16:
```

Экспериментальное исследование (MS 10)

Экспериментальное исследование (MS 100)

