Республиканская олимпиада по математике, 1999 год, 11 класс

- **1.** Докажите, что для любых действительных чисел a_1, a_2, \dots, a_{100} существует такое действительное число b такое, что все числа $a_i + b$ $(1 \le i \le 100)$ иррациональные.
- **2.** Докажите, что для любого нечетного n существует единственный многочлен P(x) n-ой степени, удовлетворяющее уравнению $P\left(x-\frac{1}{x}\right)=x^n-\frac{1}{x^n}$. Верно ли это утверждение для любого натурального n?
- **3.** Окружность вписанная в треугольник ABC касается сторон AB и BC в точках C_1 и A_1 соответственно. Прямые CO и AO пересекает прямую C_1A_1 в точках K и L. M середина AC и $\angle ABC = 60^\circ$. Доказать, что KLM правильный треугольник.
- 4. В одном доме живут семь гномов и у каждого есть своя шляпа. В один день утром два гнома по неосторожности поменялись шляпами. В любое время любые три гнома могут сесть за круглый стол и обменяться шляпами по часовой стрелке. Возможно ли, что к вечеру все гномы будут при своих шляпах.
- **5.** Для действительных чисел $x_1, x_2, ..., x_n$ и $y_1, y_2, ..., y_n$ выполнены неравенства $x_1 \geq x_2 \geq ... \geq x_n > 0$ и

$$y_1 \geq x_1, \;\; y_1 y_2 \geq x_1 x_2, \;\; ... \;, \;\; y_1 y_2 \, ... \, y_n \geq x_1 x_2 \, ... \, x_n.$$

Докажите, что $ny_1 + (n-1)y_2 + \cdots + y_n \ge x_1 + 2x_2 + \cdots + nx_n$.

- **6.** В последовательности натуральных чисел a_1 , a_2 , ..., a_{1999} , $a_n-a_{n-1}-a_{n-2}$ делится на 100 ($3 \le n \le 1999$). Известно, что $a_1=19$ и $a_2=99$. Найдите остаток от деления числа $a_1^2+a_2^2+\cdots+a_{1999}^2$ на 8.
- 7. На сфере с радиусом 1 дана точка P. Три взаимно перпендикулярные луча, выходящие из точки P, пересекают сферу в точках A, B и C. Докажите, что все такие возможные плоскости ABC проходят через фиксированную точку, и найдите максимальную возможную площадь треугольника ABC.

8. Пусть a_1, a_2, \dots, a_n является перестановкой чисел $1, 2, \dots, n$, где $n \geq 2$. Найдите максимальное значение суммы

$$S(n) = |a_1 - a_2| + |a_2 - a_3| + \dots + |a_{n-1} - a_n|.$$