Sistema de Karaoke en Tiempo Real con Separación de Fuentes y Transcripción de Letras mediante IA

Alejandro Garcia Dopico

Resumen

Lyraoke, es una plataforma de procesamiento musical en tiempo real con separación de fuentes y transcripción adaptativa para obtener un **Karaoke**.

1. Estado del Arte

1.1 Separación de Fuentes Musicales

HTDemucs: Arquitectura híbrida de transformadores y CNN para separación de alta calidad.

MUSDB18HQ: Dataset de referencia para tareas de separación musical.

Estudios previos demuestran que el fine-tuning mejora el rendimiento en dominios específicos (ej. Rouard et al., 2022).

1.2 Transcripción de Letras

Whisper: Modelo de reconocimiento de voz multilingüe con marcas temporales a nivel de palabra.

Sincronización en tiempo real: Desafíos en la alineación de letras transcritas con la reproducción.

1.3 Sistemas de Karaoke

Los sistemas tradicionales dependen de pistas pregrabada. Lyraoke automatiza este proceso dinámicamente mediante IA.

2. Desarrollo

2.1 Arquitectura del Sistema

Flujo de trabajo de Lyraoke:

- 1. **Entrada**: Archivo de audio proporcionado por el usuario.
- 2. **Separación de fuentes**: HTDemucs divide el audio en stems (voz, batería, bajo, otros).
- 3. **Transcripción**: Whisper convierte la pista vocal en texto con marcas temporales.
- Reproducción: Las letras se muestran sincronizadas con la voz.

2.2 Fine-Tuning de HTDemucs

Dataset

- Base: MUSDB18HQ (150 canciones).
- Aumentación: 5 canciones de hyperpop en español para adaptación al género.

Configuración

- Modelo: HTDemucs preentrenado (4 stems).
- Modificaciones:
 - Últimas 3 capas del decoder descongeladas.
 - Resto de capas congeladas para evitar olvido catastrófico.
- Función de pérdida: L1 + pérdida espectral multiescala.
- Hiperparámetros:
 - Segmentos de 5 segundos.
 - Tasa de aprendizaje: 1e-5 (AdamW).

2.3 Transcripción y Sincronización

- Whisper: Modelo "large-v3" para transcripción multilingüe.
- Alineación: Las marcas temporales de Whisper sincronizar letras con la reproducción.

3. Resultados

3.1 Rendimiento en Separación

Métrica	Modelo Original	Modelo Fine-Tuned	Mejora
Voz (SDR)	8.17 dB	8.19 dB	+0.02 dB
Batería	8.73 dB	8.79 dB	+0.06 dB
Вајо	6.97 dB	7.04 dB	+0.07 dB
Otros	5.60 dB	5.60 dB	±0.00 dB

3.2 Latencia

- Procesamiento total: 7–10 segundos (separación + transcripción).
- Viabilidad en tiempo real: Lograda con buffering de audio.

4. Conclusiones

- Lyraoke demuestra la viabilidad de un sistema de karaoke automatizado mediante IA, aunque el fine-tuning no tiene un impacto demasiado grande a mejorar el modelo.
- Limitaciones:
 - Dataset pequeño para fine-tuning.
 - o Dependencia de GPU para uso en tiempo real (Más tiempo de entrenamiento).
- Trabajo futuro:.
 - Integrar feedback de usuarios para corregir letras mal sincronizadas.

5. Bibliografía

Artículo Principal

Dopico, A. [Alejandro]. (2024). Lyraoke: Sistema de Karaoke en Tiempo Real con Separación de Fuentes y Transcripción de Letras mediante IA. Revista de Inteligencia Artificial en Producción Musical, *1*(1), 1–12. https://github.com/Alejandro-Dopico/Lyraoke-IA

Repositorios y Datasets

1. HTDemucs:

Facebook Research. (2022). *HTDemucs: Separación de Fuentes Musicales con Transformadores Híbridos* [Software]. GitHub. https://github.com/facebookresearch/demucs

2. Whisper:

OpenAl. (2023). *Whisper: Reconocimiento de Voz a Gran Escala* [Software]. GitHub. https://github.com/openai/whisper

3. MUSDB18HQ:

SigSep. (2017). *Dataset para Separación de Fuentes Musicales* [Dataset]. GitHub. https://github.com/sigsep/sigsep-mus-db

4. Sound Demixing Challenge 2023 (MDX Challenge):

Alcrowd. (2023). Sound Demixing Challenge – Music Demixing (MDX) Track [Concurso y Benchmark].

https://www.aicrowd.com/challenges/sound-demixing-challenge-2023

5. DeepSeek:

DeepSeek Al. (2024). DeepSeek: Modelo de lenguaje de propósito general para asistencia técnica y generación de código [IA Asistente]. GitHub. https://github.com/deepseek-ai/DeepSeek-Coder