Previously

- Berstein–Vizirani
- Simon's problem
- Period finding
- Shor's order finding
- Question: What do these tasks have in common?
 - Common generalization
 - Solve efficiently on a quantum computer?
 - Useful for anything interesting?

Groups

- Definition: A set G and a binary operation $\circ: G \times G \to G$ such that
 - Associativity: $x \circ (y \circ z) = (x \circ y) \circ z$
 - Identity element: there exists $e \in G$ such that $e \circ x = x = x \circ e$ for every $x \in G$
 - Inverse: for every $x \in G$, there exists $y \in G$ such that $x \circ y = y \circ x = e$
 - (Can show that such y is unique, and use x^{-1} in place of y)
- Then G together with \circ is called a *group*.
- If $x \circ y = y \circ x$ for every $x, y \in G$, then G is a commutative group (or an abelian group).

Examples of groups

- $G = \{0,1\}^n$
- $G = \mathbb{Z}/N\mathbb{Z}$
- $G = (\mathbb{Z}/N\mathbb{Z})^*$
- $G = \mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z}$
- Fact: every finite commutative group is "isomorphic" to

$$\mathbb{Z}/N_1\mathbb{Z} \times \mathbb{Z}/N_2\mathbb{Z} \times ... \times \mathbb{Z}/N_k\mathbb{Z}.$$

• Infinite commutative groups: \mathbb{Z} , \mathbb{R}

Non-commutative examples

- Symmetric group S_n
 - G is the set of all permutations of $\{1,\ldots,n\}$, that is, all bijections $\pi\colon\{1,\ldots,n\}\to\{1,\ldots,n\}$
 - • is composition, that is π_1 π_2 means "do π_2 then do π_1 "
 - *e* = ...?
 - π^{-1} means ...?
- Not commutative. Why?

Non-commutative examples

- Dihedral group D_n
 - G permutations $\pi\colon\{1,\ldots,n\}\to\{1,\ldots,n\}$ that are automorphisms of the cycle graph of length n
- Fact: G contains n reflections, n-1 rotations, and one identity.
- Example: n = 4

Subgroups

- Definition: Given a group G with \circ , a subset H of G is a subgroup of G when H together with \circ also form a group.
- Take an element $h \in G$, subgroup generated by H is ...?
- Example: $G = \mathbb{Z}/16\mathbb{Z}$ and h = 4
- Can also generate subgroup by two elements $h_1, h_2 \in G$.
- Example: Dihedral group D_n is a subgroup of S_n generated by ...?

Cosets

- Definition: Suppose H is a subgroup of G, the left-coset of H with representative $x \in G$, denoted by xH, is $\{xh : h \in H\}$.
- Examples: $G = \mathbb{Z}/16\mathbb{Z}$ and H is generated by 4. What are the cosets?
- Facts:
 - |xH| = |H|
 - Any two cosets xH and yH are either identical or disjoint
 - The cosets of H partition G

Hidden subgroup problem

- Definition: A labeling F of G is H-periodic if F has the same label on all elements in xH for each coset xH, and F gives different cosets different labels.
- Hidden subgroup problem for G
 - Givne a quantum circuit implementing $F \colon G \to \{0,1\}^m$
 - Promised F is H-periodic, where H is a secret subgroup of G
 - Find H or a set of generators of H
- Example: Berstein-Vazirani, Simon's problem, Period-finding over $\mathbb{Z}/N\mathbb{Z}$

Solve HSP quantumly

• Step 1: Prepare uniform superposition

$$\frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle$$

• Step 2: Load "data" F:

$$\frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle |F(x)\rangle$$

- Step 3: Measure answer qubits, and get some label C^* .
 - State collapses to …?

- Get a random coset state $|gH\rangle = ...?$
- Recall: a probability distribution over quantum states is called a mixed state
- ρ_H := uniform distribution over all coset states $|gH\rangle$
- Question: can we learn H from ρ_H ?
- Idea:
 - Apply the appropriate Fourier transform for G and measure
 - Obtain a "clue" about H
 - Deduce H (hopefully) from the clues

- Fact 1: When G is finite commutative, that is $G = \mathbb{Z}/N_1\mathbb{Z} \times ... \times \mathbb{Z}/N_k\mathbb{Z}$, the appropriate Fourier transform is $DFT_{N_1} \otimes ... \otimes DFT_{N_k}$, which can be implemented efficiently by a quantum circuit.
- Fact 2: When G is not commutative, the appropriate Fourier transform can be implemented efficiently in most cases, but don't know how to deduce H from clues efficiently.