Math/STAT 319 Homework 9 Due Apr. 5 (one page)

- 1. Ex 10.3 (revised) Let μ_1 denote true average tread life for a premium brand of P205/65R15 radial tire and let μ_2 denote true average tread life for an economy brand of the same size. Assume normality and use the following data: $m=45, \bar{x}=42500, \sigma_1=2200, n=45, \bar{y}=36800$ and $\sigma_2=1500$ for
 - (a) Test $H_0: \mu_1 \mu_2 = 5000$ versus $H_0: \mu_1 \mu_2 > 5000$ at the level 0.01.
 - (b) What is the 95% confidence lower bound for $\mu_1 \mu_2$?
 - (c) How would the conclusion change if σ_1 and σ_1 are unknown and replaced by s_1 and s_2 ?
- 2. Ex 10.31 (revised) The article "Characterization of Bearing Strength Factors in Pegged Timber Connections" (J. Struct. Engrg., 1997: 326C332) gave the following summary data on proportional stress limits for specimens constructed using two different types of wood:

Type of wood	Sample size	Sample Mean	Sample SD
Red oak	14	8.48	0.79
Douglas fir	10	6.65	1.28

Assume that both samples were selected from normal distributions and use the pooled t procedure:

- (a) carry out a test of hypotheses to decide whether the true average proportional stress limit for red oak joints exceeds that for Douglas fir joints by more than 1 MPa.
- (b) What is the 95% confidence lower bound for $\mu_1 \mu_2$? μ_1 denote true average proportional stress limit for red oak and μ_2 denote true average proportional stress limit for Douglas fir.