Пусть l_1 -длина от первого элемента до начала цикла, а l_2 -длина цикла.

$$t - l_1 = 2t - l_1 \pmod{l_2},$$

где t-колличество итераций. Если существует $t \neq 0$ при котором равенство верно, то цикл существует.

Из свойств сравнения по модулю:

$$t = 2t \pmod{l_2},$$

что верно только при $t=kl_2$. При таких значениях t алгоритм остановится на расстоянии $kl_2-l_1 \pmod{l_2}$. Следовательно, расстояние до начала цикла будет равно l_1 и мы можем получить начало цикла запустив два указателя(один от головы, второй от точки встречи зайца и черепахи). Начало цикла будет совпадать с точкой встречи указателей.

Оценим сложность алгоритма: алгоритм Флойда имеет сложность $O(\lambda+\mu)$, алгоритм поиска начала требует μ итераций, следовательно, сложность алгоритма $O(\lambda+2\mu)$ (λ -длина цикла, μ -индекс начала цикла). Алгоритм потребляет O(1) памяти, так-как мы используем только 2 указателя независимо от входных данных.