■図3-10:顧客データと利用履歴データの結合結果

	5 6	/ク27:脳							stomer id"	how="left")						
	$customer_join = pd.merge(customer_join, uselog_customer, one "customer_jd", how="[eft"] \\ customer_join = pd.merge(customer_join, uselog_weekday[["customer_jd", "routine_flg"]], one "customer_jd", how="left") \\ customer_join-head()$																
	customer_id		name	class	gender	start_date	end_date	campaign_id	is_deleted	class_name	price	campaign_name	mean	median	max	min	ros
	0	OAB32399	XXXX	G01	F	2015-05- 01	NaT	CA1	0	オールタイ ム	10500	通常	4.833333	5.0	8	2	
	1	PL270116	XXXXX	C01	М	2015-05- 01	NaT	CA1	0	オールタイ ム	10500	通常	5.083393	5.0	7	3	
	2	OA974876	XXXXX	C01	M	2015-05- 01	NaT	CA1	0	オールタイ ム	10500	通常	4.583333	5.0	6	3	
	3	HD024127	XXXXX	C01	F	2015-05- 01	NaT	CA1	0	オールタイ ム	10500	通常	4.833333	4.5	7	2	
	4	HD661448	YYYYY	C03	E	2015-05-	NaT	CA1	0	ナイト	6000	通常	3.916667	4.0	6	1	

もうだいぶ慣れてきたのではないでしょうか。

二回結合を行っていますが、結合に使用する**ジョインキー**はcustomer_idで、 結合方法は**レフトジョイン**となります。表示された結果を見ると、先ほど集計した、 median等やroutine_flgが結合されていることがわかります。

2行目の結合の際には、結合するuselog_weekdayの列をジョインキーのcustomer_idと結合したいroutine_flgに絞って結合を行っています。

念の為、欠損値も確認しておきましょう。

customer_join.isnull().sum()

実行するとend_date以外に欠損値がないことがわかります。これで、結合が 問題なくできていることが確認できました。

いよいよ、利用履歴も加味した形で顧客の分析となるのですが、その前に、せっかく利用履歴で**時間的な変化のデータ**を追加することができたので、会員期間という軸をもう1つ追加しておきましょう。

それでは、会員期間を計算して列に追加していきます。

会員期間は、単純にはstart_dateとend_dateの差になります。ただし、2019年3月までに退会していないユーザーに関しては、end_dateに欠損値が入っています。そのため、差の計算ができません。そこで、ここでは2019年4

月30日として会員期間を算出しましょう。いろんな計算方法はありますが、2019年3月31日で算出する場合、実際に2019年3月31日で退会した人(2月末までに退会申請をした人)と区別がつかなくなるためです。

それでは、期間を計算していきましょう。ここでは、月単位で集計を行いましょう。

```
from dateutil.relativedelta import relativedelta

customer_join["calc_date"] = customer_join["end_date"]

customer_join["calc_date"] = customer_join["calc_date"].fillna(pd.to_datet ime("20190430"))

customer_join["membership_period"] = 0

for i in range(len(customer_join)):
    delta = relativedelta(customer_join["calc_date"].iloc[i], customer_join["start_date"].iloc[i])

    customer_join["membership_period"].iloc[i] = delta.years*12 + delta.mo
    nths

customer_join.head()
```

■図3-11:会員期間の計算結果

1行目でrelativedeltaを使用するためにライブラリのインポートをしています。これは、日付の比較に使用します。2行目で、日付計算用の列をend_dateベースに作成し、3行目で、欠損値に2019年4月30日を代入しています。

その後、データフレームを上から順番に計算し、会員期間を月単位で算出しています。