MARMARA ÜNİVERSİTESİ – ATATÜRK EĞİTİM FAKÜLTESİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ BÖLÜMÜ SAYISAL ANALİZ DERSİ FİNAL SINAVI SORULARI

- 1) $\ln x + 3x = 0$ denkleminin kökünü kirişler yöntemiyle bulunuz. (15p)
- 2) $e^{-x} 4x = 0$ denkleminin kökünü teğetler yöntemiyle bulunuz. (15p)
- 3) x'in 2,75 , 3,75 , 4,75 değerleri için $f(x) = \ln x$ fonksiyonunun Lagrange ve Newton interpolasyon polinomlarını bulup x = 3,5 için interpolasyon hatayı bulunuz. (6-7-7p)
- 4) (-3, -8), (-1, -5), 1, -2), (3, 2,), (4, 3), (5, 5) ve (6, 8) noktaları için f(x) = Ax + B en küçük kareler doğrusunu ve ortalama-etkin-maksimum hatayı bulunuz. (12-3-3-2p)
- 5) $A=\begin{pmatrix}3&-1&0\\2&2&-2\\4&0&-1\end{pmatrix}$ matrisinin özdeğer ve özvektörleri nelerdir? (7,5-7,5p)
- 6) 15, 48, 105, 192, 309, 480, 693, 960 okunuşunda hatalı terimi bulup hatayı düzeltiniz. (10p)
- 7) $\int_1^6 \left(\frac{x^2}{10} + e^{lnx}\right) dx$ integralini h = 1 seçerek yamuk ve simpson ile bulunuz. (5-5p)
- 8) Aşağıdaki maliyet matrisine göre hangi işçinin hangi işe atanması gerektiğini minimum maliyetle ve maksimum kârla ayrı ayrı bulunuz. (10-10p)

		İŞLER					
		Α	В	C	D		
işçiler	1	11	14	15	16		
	2	15	12	16	12		
	3	10	13	16	11		
	4	14	16	19	17		

Yanda gezgin satıcı problemi için maliyet matrisi verilmiştir.
Optimale yakın gezgin satıcının planını bulmak için "En Yakın Yaklaşım" yöntemini uygulayınız. (10p)

	Α	В	С	D	E
Α	•	35	50	125	110
В	35	-	45	80	70
С	50	45	-	90	75
D	125	80	90	•	60
E	110	70	75	60	-

- 10) $a_n=4a_{n-1}-4a_{n-2}$, $a_0=2$, $a_1=8$ olan indirgeme bağıntısını ve a_5 'i bulunuz. (10p)
- 11) $a_n = 6a_{n-1} 11a_{n-2} + 6a_{n-3}$, $a_0 = 3$, $a_1 = 6$, $a_2 = 14$ olan bağıntıyı ve a_6 'yı bulunuz. (25p)
- 12) Bir adam 1. Şehirden 10. Şehire ulaşmak istemektedir.

- 13) Genel terimi $3a_{n-1} + 3^n$ olan ve $a_0 = 5$ olan bağıntıyı bulunuz. (10p)
- 14) $a_n=3a_{n-1}+2b_{n-1}$ $a_0=1$ $a_n=a_{n-1}+4a_{n-2}$ $b_0=2$ olan bağıntıyı bulunuz. (35p)
- 15) Genel terimi 4n. a_{n-1} olan ve $a_0=8$ olan bağıntıyı bulunuz. (10p)
- 16) $a_n-a_{n-1}=2n$, $n\geq 1$, $a_0=5$ olan bağıntıyı bulunuz. (10p)
- 17) $f(x,y,z) = 4x^2 + 3y^2 + 8xy 7yz 12x + 9y + 21z 35$ fonksiyonunun ekstremumlarını bulup konveksliğini inceleyiniz. (20p)
- 18) $\min z = 2x 3y + 6z$ Kısıtlar $3x - 4y - 6z \le 2$ $x + 3y - 2z \ge 5$ $2x + y + 2z \ge 11$

 $x \ge 0$, $y \ge 0$, $z \ge 0$ LP probleminin dualini alıp Simpleks yöntemiyle çözünüz. (30p)

Önemli: Sadece 100 puanlık soru cevaplayınız.

Not: Soru 1 ve 2 için virgülden sonra 6 hane, 3-4 ve 7 için virgülden sonra 4 hane alınız.

Süre:65 dak.

Başarılar Dilerim.

Yrd. Doc. Dr. MEHMET TEKTAŞ