NOEKEON

CipherFreek

Department of EECS Indian Institute of Technology Bhilai

November 27, 2020

- Introduction
- 2 Cipher Specifications
- 3 Observations
- 4 Brownie Point Nominations
- Conclusion

0000

- Block Cipher
 - 128-bit key
 - 128-bit block
- 16 rounds, Nr=16

- resistance against cryptanalysis
- no shortcut attacks
- Efficiency
 - Speed
- Design
 - Code/Circuit Compactness
 - Smart Cards

- Protection of Confidentiality , in our terms
 Privacy
- Data integrity and Authentication
- One-way function
- Self-Inverse Bit-Slice Cipher

- Cipher Specifications

Round Transformation

- Nr=16
- The Round Transformation is composed of different transformations
 - Round Constant Addition
 - Theta
 - Pi1
 - Gamma
 - Pi2

The State

- The different transformations operate on the intermediate result, called **the State**
- state consists of 4 32-bit words a_0 , a_1 , a_2 , a_3

Round Constant Addition

Theta

Theta is a linear mapping that takes the Working Key k and operates on the state

Theta

The design criteria for Theta:

- Involution
- Small number of operations
- Relevant diffusion
- Symmetry

Pi1 and Pi2

Gamma Illustrated

Key Schedule Modes

Indirect-Key

- 1 Introduction
- 2 Cipher Specifications
- 3 Observations
- 4 Brownie Point Nominations
- Conclusion

Strength agaisnt known attacks

- Linear and differential cryptanalysis: propagation analysis
- Truncated differentials
- Symmetry properties and slide attacks
- Weak keys
- Related-key attacks
- Hidden weaknesses and Trapdoors

Implementation

Hardware Suitability

Implemented in small number of gates:

- 640 XOR gate
- 64 AND
- 64 NOR

High speed: small gate delay

- 7 XOR
- 1 AND
- 1 NOR

Software Performance

- Particulary suitable for 32-bit processors and a bit difficult for 8-bit processors.
- Pentium-II

NOEK	EON /	VOEKEON ^{−1}	bit rate @ 200MHz	
525 c	ycles	525cycles	49 Mbit/s	

ARM7

codesize	NOEKEON	NOEKEON ⁻¹	bit rate @28.56MHz
332 bytes	712 cycles	712 cycles	5.1Mbit/s
3688 bytes	475 cycles	475 cycles	7.7Mbit/s

Protection agaisnt Implementation attacks

- Fixed set of instructions.
- State splitting which counters Differential power analysis at a low cpu cost because of few non-linear operations.
- Direct-key mode counters key schedule attacks.

- Brownie Point Nominations

Weakness of NOEKEON

- All round keys are same.
- The linear and non-linear part of the round has order 2!.
- If round constants are removed:
 - all rounds are equal.
 - there is symmetry within the words.
 - the cipher and its inverse are equal.
- Non-linearity is only provided by some binary ANDs.

- 1 Introduction
- 2 Cipher Specifications
- 3 Observations
- 4 Brownie Point Nominations
- Conclusion

Strength and advantages of NOEKEON

- In specialized hardware implementations, it is ultra compact and quick;
- Allows efficient DPA-resistant software implementations;
- a very low RAM requirement in software implementations.
- has a very small amount of code.
- efficient on wide range of platforms.
- It is very easy to memorize because of its simple design.

Thanks

Team Members

- Guntuku Sai Rishitha
- Ram Tiwari
- Saurav Raj

Implementation Info

• Github Link: https://github.com/ramtw/CipherFreek