Datum 11. 9. 2019	SPŠ CHOMUTOV	Třída A4
Číslo úlohy 2	MĚŘENÍ NA STABILIZÁTORECH	Jméno PETŘÍK

Zadání

Změřte vlastnosti stabilizátoru 7805.

Schéma

Zatěžovací charakteristika

Zapojení pro dosažení jiného než konstrukčního napětí

Zdroj konstantního proudu

Tabulka použitých přístrojů

Zařízení	Značka	Údaje	Evidenční číslo
Oddělovací transformátor	ОТ	220/220 V - 100VA	LE1 493
Autotransformátor	RT	0-250V	LE1 1529
Voltmetr	V	0-600V ⊓ ₺ ☆	LE2 1941/2
Voltmetr	V	0-600V ⊓ ₺ ☆	LE2 2256/3
Ampérmetr	А	0-5A ⊓↓☆	LE2 2244/12
Dekáda	R _b , R ₁	0 – 111 111 Ω	LE1 1924
Dekáda	Ra, R2	0 – 111 111 Ω	LE1 1926
Reostat	Rz	44 Ω	LE2 421
Reostat	R_Z	100 Ω	LE 5085

&1 Co je úkolem stabilizátoru?

Stabilizátor udržuje konstantní napětí při měnícím se vstupním proudu a napětí a měnící se zátěži v určitém pracovním pásmu.

&2.1 V katalogu vyhledejte mezní hodnoty int. stab. MA7805

Mezní hodnoty:

U_I	max. max.	35 40	٧
P_W	max.	vnitřně omezen	W
ϑ_j	max.	0 + 125	°C
ϑ_{stg}	max.	-55+155	°C
R _{thjc} R _{thja}	max. max.	4 35	K/W K/W
	U _I Pw ϑ _j ϑ _{stg} R _{thjc}	$egin{array}{lll} egin{array}{lll} egin{arra$	U_I max. 40 P_W max. vnitřně omezen ϑ_j max. $0 \dots + 125$ ϑ_{stg} max. $-55 \dots + 155$ R_{thjc} max. 4

&2.2 Navrhněte velikost zatěžovacího odporu R_Z tak, aby bylo možno měření provést v rozsahu proudů od 0,1 I_N do I_N .

$$R_{Zmax} = \frac{U_{jm}}{0.1I_N} = \frac{5}{0.1} = 50 \,\Omega$$

&2.3 Zatěžovací charakteristika

Dodržená podmínka			
I (A)	U ₁ (V)	U ₂ (V)	
1,0	8,0	5	
0,8	8,8	5	
0,6	9,4	5	
0,4	10,4	5	
0,2	11,5	5	
0,0	13,0	5	

Nedodržená podmínka		
U_1 (V)	U ₂ (V)	
5,2	2,9	
5,5	3,5	
5,9	3,9	
6,3	4,3	
6,7	4,6	
7,1	4,9	
7,5	5,0	
8,0	5,0	
8,5	5,0	
10,1	5,0	
	U ₁ (V) 5,2 5,5 5,9 6,3 6,7 7,1 7,5 8,0 8,5	

&3.2 vypočítejte R_a pro dosažení 8 V

$$R_b = 150 \Omega$$

$$R_a = \frac{(U_2 - U_{jm}) \times R_b}{U_{jm}}$$

$$R_a = \frac{(8 - 5) \times 150}{5}$$

$$R_a = 90 \Omega$$

Odpor R_a následně upraven na 75 Ω .

$$I_{0} = \frac{U_{2} - U_{jm} - \frac{U_{jm}}{R_{b}} \times R_{a}}{R_{a}}$$

$$I_{0} = \frac{8 - 5 - \frac{5}{150} \times 75}{75}$$

$$I_{0} = 6, 6 mA$$

&3.3 Změřte zatěžovací charakteristiku. Zpracujte tabelárně a graficky

I	U ₁ (V)	U ₂ (V)
1,0	11,0	8
0,8	11,8	8
0,6	12,6	8
0,4	13,8	8
0,2	14,6	8
0,0	16,0	8

&3.5 Vypočtěte hodnotu odporu R_1 pro I_2 = 0,05A. Odpor R_2 nabývá hodnot 0 až 200 Ω . Určete potřebnou velikost vstupního napětí.

$$R_{1} = \frac{U_{jm}}{I_{2}}$$

$$R_{1} = \frac{5}{0,05}$$

$$R_{1} = \mathbf{100} \Omega$$

$$U_{1} = (R_{1} + R_{2_{max}}) \times I_{2} + 3$$

$$U_{1} = (100 + 200) \times 0,05 + 3 = \mathbf{18} V$$

&3.6

Zapojený obvod při R_1 = 104 Ω se choval přesně tak jak měl a nedocházelo v rozsahu zátěže 0–200 Ω k žádným změnám proudu I_2 .

&3.7 Zapojení se Zenerovou diodou

Zenerovu diodu zvolíme tak aby $U_Z \approx U_2 - U_{JM}$

Závěr

Měřením jsme si ověřili předpoklady o stabilizátoru. Díky svým vlastnostem se hodí do přesných analogových přístrojů jako napěťová nebo proudová reference.