Flow Shop Problem

Przemysław Pastuszka

Instytut Informatyki UWr

30 grudnia 2013

Przypomnienie problemu

Dane wejściowe

J - zbiór prac do wykonania $J=\{j^{(0)},j^{(1)},\ldots,j^{(n)}\}$ M - zbiór maszyn $M=\{m^{(0)},m^{(1)},\ldots,m^{(k)}\}$ $f:J\times M\to\mathbb{R}$ - funkcja opisująca czasy wykonania zadań na maszynach

Przypomnienie problemu

Założenia

- wszystkie prace muszą zostać wykonane
- każda z prac jest wykonywana kolejno na maszynach od $m^{(0)}$ do $m^{(k)}$
- maszyna może wykonywać co najwyżej jedno zadanie w danym momencie

Przypomnienie problemu

Założenia

- wszystkie prace muszą zostać wykonane
- każda z prac jest wykonywana kolejno na maszynach od $m^{(0)}$ do $m^{(k)}$
- maszyna może wykonywać co najwyżej jedno zadanie w danym momencie

Nasz cel

Znaleźć taką permutację J, że łączny czas wykonania wszystkich zadań jest jak najmniejszy.

Testowane algorytmy

- CDS
- NEH
- algorytm genetyczny

Szczegóły algorytmu genetycznego

- chromosom jest permutacją
- mutacja zamienia miejscami elementy permutacji
- krzyżowanie za pomocą PMX
- rodzice wybierani metodą turniejową
- elitism

Implemetacja

Cały kod można znaleźć na stronie: http://github.com/rtshadow/flowshop