

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta048

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ Filiera\ Vocațională,\ profil\ Militar,\ Specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea\ profil\ Militar,\ Specializarea\ profil\ Militar,\ profil\ Militar,\ profil\ Militar,\ Specializarea\ profil\ Militar,\ profil\ Mi$

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore. La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul vectorului $\vec{v} = 3\vec{i} 4\vec{j}$.
- (4p) b) Să se calculeze distanța de la punctul E(-1,1) la dreapta x-y+1=0.
- (4p) c) Să se scrie ecuația cercului cu centrul în E(-1,1) care este tangent la dreapta x-y+1=0.
- (4p) d) Să se calculeze aria triunghiului cu vârfurile în punctele L(1, 2), M(2, 4) și N(3, 8).
- (2p) e) Să se calculeze lungimea laturii BC a triunghiului ABC cu AB = 2, AC = 3 și $m(B\hat{A}C) = 60^{\circ}$.
- (2p) f) Să se determine $a,b,c \in \mathbb{R}$, astfel încât punctele A(1,2,3), B(3,1,2) și C(2,3,1) să aparțină planului x + ay + bz + c = 0.

SUBIECTUL II (30p)

1.

- (3**p**) **a**) Să se calculeze a_7 , dacă $\frac{1}{7} = 0, a_1 a_2 ... a_n ...$
- (3p) b) Să se calculeze probabilitatea ca un element $\hat{x} \in \mathbb{Z}_3$ să verifice relația $\hat{x}^{2007} = \hat{1}$.
- (3p) c) Să se calculeze suma $C_5^0 + C_5^1 + ... + C_5^5$.
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $3^x + 9^x = 12$.
- (3p) e) Să se calculeze suma termenilor raționali ai dezvoltării binomului $(2+\sqrt{3})^3$.
 - 2. Se consideră funcția $f:(0,\infty)\to(0,\infty)$, $f(x)=\ln(x+1)-\ln x$.
- (3p) a) Să se calculeze $f'(x), x \in (0, \infty)$.
- (3p) b) Să se calculeze $\lim_{n \to \infty} (f(1) + f(2) + ... + f(n)).$
- (3p) c) Să se arate că funcția f este convexă pe intervalul $(0, \infty)$.
- (3p) d) Să se arate că funcția f este bijectivă.
- (3p) e) Să se calculeze $\int_{0}^{1} \ln(x+1)dx$.

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

SUBIECTUL III (20p)

Se consideră polinomul $f = X^3 + aX + b$, unde $a,b \in \mathbb{R}$, cu rădăcinile $x_1,x_2,x_3 \in \mathbb{C}$. Notăm

$$S_{k} = x_{1}^{k} + x_{2}^{k} + x_{3}^{k}, \ \forall k \in \mathbb{N}^{*}, \ S_{0} = 3, \ A = \begin{pmatrix} 1 & 1 & 1 \\ x_{1} & x_{2} & x_{3} \\ x_{1}^{2} & x_{2}^{2} & x_{3}^{2} \end{pmatrix} \text{ si } \Delta = \det(A \cdot A^{T}), \text{ unde prin } A^{T}$$

am notat transpusa matricei A. Se știe că $\det(X \cdot Y) = \det(X) \cdot \det(Y)$, $\forall X, Y \in M_3(\mathbb{C})$.

- (4p) a) Să se verifice că $S_1 = 0$ și $S_2 = -2a$.
- **(4p) b)** Să se arate că $S_{n+3} + aS_{n+1} + bS_n = 0$, $\forall n \in \mathbb{N}$.
- (4p) c) Să se calculeze S_3 și S_4 numai în funcție de a și b.
- (2p) d) Să se verifice că $A \cdot A^{T} = \begin{pmatrix} S_{0} & S_{1} & S_{2} \\ S_{1} & S_{2} & S_{3} \\ S_{2} & S_{3} & S_{4} \end{pmatrix}$.
- (2p) e) Să se calculeze Δ în funcție de a și b
- (2p) | f) Să se arate că dacă $x_1, x_2, x_3 \in \mathbb{R}$, atunci $\Delta \ge 0$.
- (2p) $| \mathbf{g} |$ Să se arate că dacă $\Delta \ge 0$, atunci $x_1, x_2, x_3 \in \mathbf{R}$.

SUBIECTUL IV (20p)

Se consideră integralele $I_n = \int_0^{2\pi} \cos x \cos 2x \cos nx dx$, $\forall n \in \mathbb{N}^*$.

Se admite cunoscută formula $2\cos a\cos b = \cos(a+b) + \cos(a-b)$, $\forall a,b \in \mathbf{R}$.

- (4p) a) Să se calculeze $\int_{0}^{2\pi} \cos kx \, dx$, $\forall k \in \mathbb{N}^*$.
- (4p) b) Să se calculeze integrala I_2 .
- (4p) c) Să se arate că dacă $n \in \{5, 6\}$, atunci $\pm 1 \pm 2 \pm ... \pm n \neq 0$, pentru orice alegere a semnelor.
- (2p) d) Să se arate că există o alegere a semnelor astfel încât $\pm 1 \pm 2 \pm ... \pm n = 0$, dacă și numai dacă $n \in \mathbb{N}^*$ este un număr de forma 4k sau 4k + 3.
- (2p) e) Să se arate că $I_n \neq 0$ dacă și numai dacă n este un număr de forma 4k sau 4k + 3.
- (2p) f) Să se calculeze $\lim_{n\to\infty}\frac{I_n}{n}$.
- (2p) g) Pentru $n \in \mathbb{N}^*$, notăm cu $A_n = \{k \in \{1, 2, ..., n\} | I_k \neq 0\}$ și cu a_n numărul de elemente ale lui A_n . Să se calculeze $\lim_{n \to \infty} \frac{a_n}{n}$.