第 3 节 椭圆中的设点设线方法(★★★☆)

强化训练

1.(2021・全国乙卷・★★)设 B 是椭圆 $C: \frac{x^2}{5} + y^2 = 1$ 的上顶点,P 在 C 上,则|PB|的最大值为()

(A) $\frac{5}{2}$ (B) $\sqrt{6}$ (C) $\sqrt{5}$ (D) 2

答案: A

解法 1: |PB| 可用两点间距离公式算,故设点 P 的坐标,

由题意,B(0,1),设 $P(x_0,y_0)$,则 $|PB|^2 = x_0^2 + (y_0-1)^2$ ①,

上式有 x_0 和 y_0 两个变量,可利用椭圆方程消元, x_0 只有平方项,故消 x_0 ,

由点P在椭圆C上可得 $\frac{x_0^2}{5} + y_0^2 = 1$,所以 $x_0^2 = 5 - 5y_0^2$,

代入①得: $|PB|^2 = 5 - 5y_0^2 + y_0^2 - 2y_0 + 1 = -4y_0^2 - 2y_0 + 6 = -4(y_0 + \frac{1}{4})^2 + \frac{25}{4}$, $-1 \le y_0 \le 1$,

所以当 $y_0 = -\frac{1}{4}$ 时, $|PB|^2$ 取得最大值 $\frac{25}{4}$,故 $|PB|_{\text{max}} = \frac{5}{2}$

解法 2: 也可将点 P 的坐标设为三角形式,由题意,B(0,1),可设 $P(\sqrt{5}\cos\theta,\sin\theta)$,

则 $|PB| = \sqrt{(\sqrt{5}\cos\theta)^2 + (\sin\theta - 1)^2} = \sqrt{5\cos^2\theta + \sin^2\theta - 2\sin\theta + 1}$, 将 $\cos^2\theta$ 换成 $1 - \sin^2\theta$, 可统一函数名,

所以 $|PB| = \sqrt{5(1-\sin^2\theta)+\sin^2\theta-2\sin\theta+1} = \sqrt{-4\sin^2\theta-2\sin\theta+6} = \sqrt{-4(\sin\theta+\frac{1}{4})^2+\frac{25}{4}}$

故当 $\sin \theta = -\frac{1}{4}$ 时,|PB|取得最大值 $\frac{5}{2}$.

2. (★★★) 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$, 直线 $y = kx(k \in \mathbf{R})$ 与 C 的一个交点为 B, 若 |OB| 的取值范

围是(b,2b],则椭圆C的离心率为()

(A) $\frac{1}{2}$ (B) $\frac{\sqrt{2}}{2}$ (C) $\frac{\sqrt{3}}{2}$ (D) $\frac{3}{4}$

答案: C

解析: B 在椭圆上运动,|OB| 可通过设 B 的坐标来算,

设 $B(x_0, y_0)(x_0 \neq 0)$,则 $|OB| = \sqrt{x_0^2 + y_0^2}$ ①,

有x₀, y₀两个变量,可利用椭圆方程消元,

由 B 在椭圆上可得 $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$, 所以 $y_0^2 = b^2 - \frac{b^2}{a^2} x_0^2$,

代入①得:
$$|OB| = \sqrt{x_0^2 + b^2 - \frac{b^2}{a^2} x_0^2}$$

$$=\sqrt{\frac{a^2-b^2}{a^2}x_0^2+b^2}=\sqrt{\frac{c^2}{a^2}x_0^2+b^2}$$
 ②,

因为 $-a \le x_0 \le a \perp x_0 \ne 0$,所以 $0 < x_0^2 \le a^2$,

代入②得: $b < |OB| \le \sqrt{c^2 + b^2} = a$,又由题意,

 $b < |OB| \le 2b$, 所以 a = 2b, 故 $a^2 = 4b^2 = 4(a^2 - c^2)$,

整理得: $\frac{c^2}{a^2} = \frac{3}{4}$, 所以椭圆 C 的离心率 $e = \frac{c}{a} = \frac{\sqrt{3}}{2}$.

【反思】本题其实是将一个好记的性质证明了一下:椭圆上动点到其中心的距离的取值范围是[b,a].

3. (★★★) 点 P 在椭圆 $\frac{x^2}{4} + y^2 = 1$ 上运动,则当点 P 到直线 l: x+y-4=0 的距离最小时,点 P 的坐标为

答案: $(\frac{4\sqrt{5}}{5}, \frac{\sqrt{5}}{5})$

解法 1: P 在椭圆上运动,可将其坐标设为三角形式,用于分析最值,

设
$$P(2\cos\theta,\sin\theta)$$
,则点 P 到直线 l 的距离 $d = \frac{|2\cos\theta + \sin\theta - 4|}{\sqrt{2}} = \frac{|\sqrt{5}\sin(\theta + \varphi) - 4|}{\sqrt{2}} = \frac{4 - \sqrt{5}\sin(\theta + \varphi)}{\sqrt{2}}$

其中 $\cos \varphi = \frac{\sqrt{5}}{5}$, $\sin \varphi = \frac{2\sqrt{5}}{5}$, 所以当 $\sin(\theta + \varphi) = 1$ 时, d 取得最小值,

目标是求 d 最小时点 P 的坐标,故可由 $\sin(\theta + \varphi) = 1$ 求出 θ ,代入所设的点 P,

$$\sin(\theta + \varphi) = 1 \Rightarrow \theta + \varphi = 2k\pi + \frac{\pi}{2}(k \in \mathbb{Z}) \Rightarrow \theta = 2k\pi + \frac{\pi}{2} - \varphi , \quad \text{fill } \cos\theta = \cos(2k\pi + \frac{\pi}{2} - \varphi) = \sin\varphi = \frac{2\sqrt{5}}{5} ,$$

$$\sin \theta = \sin(2k\pi + \frac{\pi}{2} - \varphi) = \cos \varphi = \frac{\sqrt{5}}{5}$$
, 故点 P 的坐标为 $(\frac{4\sqrt{5}}{5}, \frac{\sqrt{5}}{5})$.

解法 2: 先画图分析距离最小的情形,如图,l'/l,且l'与椭圆 C 相切于点 P,

图中的点P到直线l的距离最小,要求该切点P,先设切线,并与椭圆联立,

设图中
$$l': x + y + m = 0$$
, 联立
$$\begin{cases} x + y + m = 0 \\ \frac{x^2}{4} + y^2 = 1 \end{cases}$$
 消去 y 整理得: $5x^2 + 8mx + 4m^2 - 4 = 0$ ①,

因为l'与椭圆相切,所以方程①的判别式 $\Delta=64m^2-4\times5\times(4m^2-4)=0$,解得: $m=\pm\sqrt{5}$,

应取哪一个呢?可结合图形来看, $x+y+m=0 \Rightarrow y=-x-m \Rightarrow l'$ 在 y 轴上截距是 -m,

由图可知-m>0, 所以m<0, 故 $m=-\sqrt{5}$, 故l'的方程为 $x+y-\sqrt{5}=0$ ②,

将
$$m = -\sqrt{5}$$
 代入①解得: $x = \frac{4\sqrt{5}}{5}$,代入②可得 $y = \frac{\sqrt{5}}{5}$,所以点 P 的坐标为 $(\frac{4\sqrt{5}}{5}, \frac{\sqrt{5}}{5})$.

4. $(2022 \cdot 沈阳模拟 \cdot \star \star \star \star)$ 已知椭圆 $C: x^2 + 4y^2 = m(m > 0)$ 的左、右焦点分别为 F_1 , F_2 , P 是椭圆 C上的动点,若 $\overrightarrow{PF_1} \cdot \overrightarrow{PF_2}$ 的最小值为-1,则 $\overrightarrow{PF_1} \cdot \overrightarrow{PF_2}$ 的最大值为()

(A) 4 (B) 2 (C)
$$\frac{1}{4}$$
 (D) $\frac{1}{2}$

(D)
$$\frac{1}{2}$$

答案: D

解析: 先把椭圆的方程化为标准方程, 找到 a、b、c, $x^2 + 4y^2 = m \Rightarrow \frac{x^2}{m} + \frac{y^2}{m} = 1 \Rightarrow a = \sqrt{m}$, $b = \frac{\sqrt{m}}{2}$,

所以 $c = \sqrt{a^2 - b^2} = \frac{\sqrt{3}m}{2}$,故 $F_1(-\frac{\sqrt{3}m}{2},0)$, $F_2(\frac{\sqrt{3}m}{2},0)$, $\overline{PF_1} \cdot \overline{PF_2}$ 可用坐标来计算,于是设P的坐标,

设
$$P(x_0, y_0)$$
,则 $\overrightarrow{PF_1} = (-\frac{\sqrt{3m}}{2} - x_0, -y_0)$, $\overrightarrow{PF_2} = (\frac{\sqrt{3m}}{2} - x_0, -y_0)$,

所以 $\overrightarrow{PF_1} \cdot \overrightarrow{PF_2} = (-\frac{\sqrt{3m}}{2} - x_0)(\frac{\sqrt{3m}}{2} - x_0) + (-y_0)^2 = x_0^2 + y_0^2 - \frac{3m}{4}$ ①,有 x_0 、 y_0 两个变量,可用椭圆方程消 元,

点 P 在椭圆 $C \perp \Rightarrow x_0^2 + 4y_0^2 = m \Rightarrow x_0^2 = m - 4y_0^2$,代入①整理得: $\overrightarrow{PF_1} \cdot \overrightarrow{PF_2} = \frac{m}{4} - 3y_0^2$,

因为
$$-\frac{\sqrt{m}}{2} \le y_0 \le \frac{\sqrt{m}}{2}$$
,所以 $0 \le y_0^2 \le \frac{m}{4}$,故 $-\frac{m}{2} \le \frac{m}{4} - 3y_0^2 \le \frac{m}{4}$,即 $-\frac{m}{2} \le \overrightarrow{PF_1} \cdot \overrightarrow{PF_2} \le \frac{m}{4}$ ②,

由题意, $\overrightarrow{PF_1} \cdot \overrightarrow{PF_2}$ 的最小值为-1,所以 $-\frac{m}{2} = -1$,解得:m = 2,代入②知 $\overrightarrow{PF_1} \cdot \overrightarrow{PF_2}$ 的最大值为 $\frac{1}{2}$.

5. (2022 • 上海模拟 • ★★★★)已知定点 A(a,0)(a>0)到椭圆 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 上的点的距离的最小值为 1,

则a的值为

答案: 2或4

解析: 设 P(x,y) 为椭圆上一点,则 $|PA|^2 = (x-a)^2 + y^2$ ①,

上式中有 x 和 y 两个变量,可利用椭圆方程消元, y 只有平方项,故消 y,

因为点 *P* 在椭圆上,所以 $\frac{x^2}{9} + \frac{y^2}{4} = 1$,故 $y^2 = 4 - \frac{4}{9}x^2$,

代入①得: $|PA|^2 = x^2 - 2ax + a^2 + 4 - \frac{4}{9}x^2 = \frac{5}{9}x^2 - 2ax + a^2 + 4$, 其中 $-3 \le x \le 3$,

记 $f(x) = \frac{5}{6}x^2 - 2ax + a^2 + 4(-3 \le x \le 3)$,因为 $|PA|_{\min} = 1$ 且 $f(x) = |PA|^2$,所以 $f(x)_{\min} = 1$,

下面求 $f(x)_{min}$, f(x)的参数 a > 0, 求最值应分对称轴 $x = \frac{9a}{5}$ 在区间内和在区间右侧两种情况讨论,

当
$$0 < \frac{9a}{5} \le 3$$
时, $0 < a \le \frac{5}{3}$,如图 1, $f(x)_{\min} = f(\frac{9a}{5}) = \frac{5}{9} \cdot (\frac{9a}{5})^2 - 2a \cdot \frac{9a}{5} + a^2 + 4 = 4 - \frac{4a^2}{5}$,

令
$$4 - \frac{4a^2}{5} = 1$$
解得: $a = \pm \frac{\sqrt{15}}{2}$, 均不满足 $0 < a \le \frac{5}{3}$, 舍去;

当
$$\frac{9a}{5} > 3$$
时, $a > \frac{5}{3}$,如图 2, $f(x)_{min} = f(3) = \frac{5}{9} \times 3^2 - 2a \cdot 3 + a^2 + 4 = a^2 - 6a + 9$,

令
$$a^2 - 6a + 9 = 1$$
解得: $a = 2$ 或 4,均满足 $a > \frac{5}{3}$;

综上所述, a的值为2或4.

6. (★★★) 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的焦距为 2,右顶点为 A,过原点且与 x 轴不重合的直线交

C于M、N两点,线段AM的中点为B,若直线BN经过C的右焦点,则椭圆C的方程为()

(A)
$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$
 (B) $\left(\frac{x^2}{6} + \frac{y^2}{5} = 1\right)$ (C) $\frac{x^2}{9} + \frac{y^2}{8} = 1$ (D) $\frac{x^2}{36} + \frac{y^2}{32} = 1$

答案: C

解法 1: 由题意, 椭圆的焦距 2c = 2, 所以 c = 1, 故 $a^2 - b^2 = 1$ ①,

如图,接下来若设M的坐标,则N、B也能用M的坐标表示,

设 $M(x_0,y_0)(y_0\neq 0)$,则 $N(-x_0,-y_0)$,由题意,A(a,0),右焦点F(1,0),所以 $B(\frac{a+x_0}{2},\frac{y_0}{2})$,

直线 BN 过右焦点可看成 B、F、N 三点共线,不妨考虑斜率存在的情形,用斜率相等来翻译,

由题意,
$$B$$
、 F 、 N 三点共线,所以 $k_{BF}=k_{NF}$,故 $\dfrac{\dfrac{y_0}{2}}{\dfrac{a+x_0}{2}-1}=\dfrac{y_0}{x_0+1}$,约去 y_0 可解得: $a=3$,

代入①得: $b^2 = 8$,所以椭圆的方程为 $\frac{x^2}{9} + \frac{y^2}{8} = 1$.

解法 2: 记右焦点为 F,椭圆的焦距 2c=2,所以 c=1,故 |OF|=1,且 $a^2-b^2=1$ ①,

涉及中点,也可考虑构造中位线分析,如图,连接OB,由对称性,O为MN中点,

又 B 为 MA 中点,所以 $|OB| = \frac{1}{2} |AN|$,且 OB //AN,平行可产生相似三角形,进而分析相似比,

所以
$$\triangle OBF \hookrightarrow \triangle ANF$$
 ,从而 $\frac{|OF|}{|AF|} = \frac{|OB|}{|AN|} = \frac{1}{2}$,故 $|AF| = 2|OF| = 2$,所以 $|OA| = 3$,即 $a = 3$,

代入①得: $b^2 = 8$,所以椭圆的方程为 $\frac{x^2}{9} + \frac{y^2}{8} = 1$.

【反思】A、B、C 三点共线常用的翻译方法有: ①翻译成 $k_{AB} = k_{AC}$,但大题中出于严密性考虑,需讨论斜率不存在的情况; ②翻译成 \overrightarrow{AB} // \overrightarrow{AC} .

7. $(2022 \cdot 河南模拟 \cdot \star \star \star \star \star)$ 已知椭圆 $C: \frac{x^2}{18} + \frac{y^2}{9} = 1$ 的上、下顶点分别为 A 和 B,点 $P(x_0, y_0)(x_0 \neq 0)$

在椭圆 C 上,若点 $Q(x_1,y_1)$ 满足 $AP \perp AQ$, $BP \perp BQ$,则 $\frac{x_1}{x_0} = ($

(A)
$$-\frac{1}{3}$$
 (B) $-\frac{1}{2}$ (C) $-\frac{\sqrt{2}}{2}$ (D) $-\frac{2}{3}$

答案: B

解析:如图,点Q可以看成直线AQ和BQ的交点,于是写出这两条直线的方程,联立求交点,

曲题意,
$$A(0,3)$$
, $B(0,-3)$, $k_{AP} = \frac{y_0 - 3}{x_0}$, $k_{BP} = \frac{y_0 + 3}{x_0}$,

因为
$$AP \perp AQ$$
, $BP \perp BQ$, 所以 $k_{AQ} = -\frac{x_0}{y_0 - 3}$, $k_{BQ} = -\frac{x_0}{y_0 + 3}$,

从而直线 AQ 的方程为 $y=-\frac{x_0}{y_0-3}x+3$,直线 BQ 的方程为 $y=-\frac{x_0}{y_0+3}x-3$,

联立
$$\begin{cases} y = -\frac{x_0}{y_0 - 3}x + 3 \\ y = -\frac{x_0}{y_0 + 3}x - 3 \end{cases}$$
解得: $x = \frac{y_0^2 - 9}{x_0}$, 故点 Q 的横坐标 $x_1 = \frac{y_0^2 - 9}{x_0}$, 所以 $\frac{x_1}{x_0} = \frac{y_0^2 - 9}{x_0^2}$ ①,

要计算式①右侧的值,可利用椭圆方程来消元,

点
$$P$$
 在椭圆 $C \perp \Rightarrow \frac{x_0^2}{18} + \frac{y_0^2}{9} = 1 \Rightarrow x_0^2 = 2(9 - y_0^2)$,代入①得 $\frac{x_1}{x_0} = \frac{y_0^2 - 9}{2(9 - y_0^2)} = -\frac{1}{2}$.

8.(2022・成都模拟・★★★★)过点M(0,2)且斜率为k的直线l与椭圆 $C: \frac{x^2}{2} + y^2 = 1$ 交于不同的两点P

和 Q,若原点 O 在以 PQ 为直径的圆的外部,则 k 的取值范围是 .

答案: $(-\sqrt{5}, -\frac{\sqrt{6}}{2}) \cup (\frac{\sqrt{6}}{2}, \sqrt{5})$

解析:如图,原点O在以PQ为直径的圆外可翻译成 $\overrightarrow{OP} \cdot \overrightarrow{OQ} > 0$,于是设 $P \cdot Q$ 的坐标,计算 $\overrightarrow{OP} \cdot \overrightarrow{OQ}$,

由题意,直线 l 的方程为 y = kx + 2,设 $P(x_1, y_1)$, $Q(x_2, y_2)$,则 $\overrightarrow{OP} = (x_1, y_1)$, $\overrightarrow{OQ} = (x_2, y_2)$,

所以 $\overrightarrow{OP} \cdot \overrightarrow{OQ} = x_1 x_2 + y_1 y_2$,故可把直线 l 与椭圆联立,结合韦达定理来算 $\overrightarrow{OP} \cdot \overrightarrow{OQ}$,

联立
$$\begin{cases} y = kx + 2 \\ \frac{x^2}{2} + y^2 = 1 \end{cases}$$
 消去 y 整理得: $(2k^2 + 1)x^2 + 8kx + 6 = 0$,

判别式 $\Delta = 64k^2 - 4(2k^2 + 1) \times 6 > 0$,解得: $k < -\frac{\sqrt{6}}{2}$ 或 $k > \frac{\sqrt{6}}{2}$ ①,

由韦达定理, $x_1 + x_2 = -\frac{8k}{2k^2 + 1}$, $x_1 x_2 = \frac{6}{2k^2 + 1}$,

算 $\overrightarrow{OP} \cdot \overrightarrow{OQ}$ 还要用到 y_1y_2 ,可利用点 $P \times Q$ 在直线l上转化为 $x_1 + x_2$ 和 x_1x_2 来算,

$$y_1y_2 = (kx_1 + 2)(kx_2 + 2) = k^2x_1x_2 + 2k(x_1 + x_2) + 4 = k^2 \cdot \frac{6}{2k^2 + 1} + 2k \cdot (-\frac{8k}{2k^2 + 1}) + 4 = \frac{4 - 2k^2}{2k^2 + 1},$$

所以 $\overrightarrow{OP} \cdot \overrightarrow{OQ} = x_1 x_2 + y_1 y_2 = \frac{10 - 2k^2}{2k^2 + 1}$,故 $\overrightarrow{OP} \cdot \overrightarrow{OQ} > 0$ 即为 $\frac{10 - 2k^2}{2k^2 + 1} > 0$,解得: $-\sqrt{5} < k < \sqrt{5}$,

结合①可得 $-\sqrt{5} < k < -\frac{\sqrt{6}}{2}$ 或 $\frac{\sqrt{6}}{2} < k < \sqrt{5}$.

