Interpretable Machine Learning

PDP - Comments and Extensions

Learning goals

- PD plots and relation to ICE plots
- Interpretation of PDP
- Extrapolation and Interactions in PDPs
- Centered ICE and PDP

COMMENTS ON EXTRAPOLATION

Extrapolation can cause issues in regions with few observations or if features are correlated

- **Example:** Features x_1 and x_2 are strongly correlated
- Black points: Observed points of the original data
- Red: Grid points used to calculate the ICE and PD curves (several unrealistic values)
 - \Rightarrow PD plot at $x_1 = 0$ averages predictions over the whole marginal distribution of feature x_2
 - \Rightarrow May be problematic if model behaves strange outside training distribution

COMMENTS ON INTERACTIONS

- PD plots: averaging of ICE curves might obfuscate heterogeneous effects and interactions
 - \Rightarrow Ideally plot ICE curves and PD plots together to uncover this fact
 - \Rightarrow Different shapes of ICE curves suggest interaction (but do not tell with which feature)

COMMENTS ON INTERACTIONS - 2D PARTIAL DEPENDENCE

- Humidity and temperature interact with each other at high values (see shape difference)
 - → Shape of ICE curves at different horizontal and vertical slices varies (for high values)
- Low to medium humidity and high temperature ⇒ many rented bikes

CENTERED ICE PLOT (C-ICE) • Goldstein et al. (2015)

Issue: Difficult to identify heterogenous ICE curves if curves have different intercepts (are stacked)

Solution: Center ICE curves at fixed reference value $x' \sim \mathbb{P}(\mathbf{x}_S)$, often $x' = \min(\mathbf{x}_S)$

⇒ Easier to identify heterogenous shapes with c-ICE curves

$$\begin{aligned} \hat{f}_{S,cICE}^{(i)}(\mathbf{x}_S) &= \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}^{(i)}) - \hat{f}(x', \mathbf{x}_{-S}^{(i)}) \\ &= \hat{f}_S^{(i)}(\mathbf{x}_S) - \hat{f}_S^{(i)}(x') \end{aligned}$$

$$\Rightarrow$$
 Visualize $\hat{f}_{S,clCE}^{(i)}(\mathbf{x}_S^*)$ vs. \mathbf{x}_S^*

CENTERED ICE PLOT (C-ICE) • Goldstein et al. (2015)

Issue: Difficult to identify heterogenous ICE curves if curves have different intercepts (are stacked)

Solution: Center ICE curves at fixed reference value $x' \sim \mathbb{P}(\mathbf{x}_S)$, often $x' = \min(\mathbf{x}_S)$

⇒ Easier to identify heterogenous shapes with c-ICE curves

$$\begin{aligned} \hat{f}_{S,cICE}^{(i)}(\mathbf{x}_S) &= \hat{f}(\mathbf{x}_S, \mathbf{x}_{-S}^{(i)}) - \hat{f}(x', \mathbf{x}_{-S}^{(i)}) \\ &= \hat{f}_S^{(i)}(\mathbf{x}_S) - \hat{f}_S^{(i)}(x') \end{aligned}$$

 \Rightarrow Visualize $\hat{t}_{S,CCF}^{(i)}(\mathbf{x}_{S}^{*})$ vs. \mathbf{x}_{S}^{*}

Interpretation

(vellow curve: analog to PDP the average of c-ICE curves):

On average, the number of bike rentals at \sim 97 % humidity decreased by 1000 bikes compared to a humidity of 0 %

CENTERED ICE PLOT (C-ICE)

For categorical features, c-ICE plots can be interpreted as in LMs due to reference value

Interpretation:

- The reference category is x' = SPRING
- Golden crosses: Average number of bike rentals if we jump from SPRING to any other season
 - ⇒ Number of bike rentals drops by
 - \sim 560 in WINTER and is slightly higher in SUMMER and FALL compared to SPRING

