#### 14.32 Recitation 5

Nina Wang

MIT Department of Economics

Lecture 10

#### Table of Contents

Nonlinear Regressions

2 Practice Problems

#### Table of Contents

Nonlinear Regressions

2 Practice Problems

# Polynomial Regressions

$$Y_i = \alpha + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_r X_i^r + \gamma Z_i + e_i$$

- We use a polynomial regression when we suspect that there might be a polynomial relationship between independent and dependent variables.
  - Example: We might suspect that the returns to schooling on earnings increase over time (ie difference between 4-5 years of schooling is different from difference between 11-12 years of schooling).

□ → < □ → < □ → < □ → </li>
 □ → < □ → </li>

### Polynomial Regressions

$$Y_i = \alpha + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_r X_i^r + \gamma Z_i + e_i$$

- What if we're unsure of whether to use polynomial terms or not?
  - We can test the coefficient on the polynomial term. If it is significant, then the polynomial model has a better fit than the linear model.

## Polynomial Regressions

#### educ2

|          |       |            |        |           | educ2 sex | height educ | reg earnings |
|----------|-------|------------|--------|-----------|-----------|-------------|--------------|
| 17,87    | s =   | ber of obs | N      | MS        | df        | SS          | Source       |
| 837.1    | =     | , 17865)   | _ F    |           |           |             |              |
| 0.000    | =     | b > F      | .1 F   | 5.1114e+1 | 4         | 2.0446e+12  | Model        |
| 0.157    | =     | quared     | 5 F    | 61058109  | 17,865    | 1.0908e+13  | Residual     |
| 0.157    | d =   | R-squared  | _ /    |           |           |             |              |
| 2471     | =     | t MSE      | 4 F    | 72486354  | 17,869    | 1.2953e+13  | Total        |
| interval | conf. | [95% c     | P>   t | t         | Std. err. | Coefficient | earnings     |
| 519.328  | 984   | 259.39     | 0.00   | 5.87      | 66.30547  | 389.3636    | height       |
| 1312.84  | 368   | -202.33    | 0.15   | 1.44      | 386.5061  | 555.2525    | educ         |
| 156.810  | 554   | 99.615     | 0.00   | 8.79      | 14.58987  | 128.2131    | educ2        |
| 1354.36  | 171   | -711.51    | 0.54   | 0.61      | 526.9841  | 321.4227    | sex          |
| -2095.44 | . 48  | -20399.    | 0.01   | -2.41     | 4669.168  | -11247.46   | cons         |

>1.96

### Log Regressions

- Log transformations alter the way we interpret regressions
- There are 3 types of log transformed regressions
  - Log-linear
  - Linear-Log
  - Log-Log

## Log-Linear Regressions

$$ln(Y_i) = \alpha + \beta X_i + \gamma Z_i + e_i$$

- The dependent variable is log transformed.
- One unit change in X increases/decreases Y by  $\beta \cdot 100\%$

→ □ ト → □ ト → 三 ト → 三 → つへの

Nina Wang (MIT) 14.32 Recitation 1 Fall 2023 8 / 22

### Log-Linear Regressions

$$ln(Earnings_i) = \alpha + \beta_1 height_i + \beta_2 educ_i + e_i$$

| Source                        | SS          | df        | MS          |                | er of obs        | =        | 17,870             |
|-------------------------------|-------------|-----------|-------------|----------------|------------------|----------|--------------------|
| Model                         | 1267.86936  | 3         | 422.623121  | Prob           | 17866)<br>> F    | =        | 1150.56<br>0.0000  |
| Residual                      | 6562.55097  | 17,866    | .367320664  |                | uared            | =        | 0.1619             |
| Total                         | 7830.42034  | 17,869    | . 438212566 | -              | R-squared<br>MSE | =        | 0.1618<br>.60607   |
|                               |             |           |             |                |                  |          |                    |
| logearnings                   | Coefficient | Std. err. | t           | P> t           | [95% co          | onf.     | interval]          |
| logearnings                   | Coefficient | Std. err. | t<br>6.66   | P> t <br>0.000 | [95% c           |          |                    |
| logearnings<br>height<br>educ |             |           |             |                |                  | 78       | interval] .0139567 |
| height                        | .0107823    | .0016195  | 6.66        | 0.000          | .00760           | 78<br>92 | .0139567           |

Nina Wang (MIT) 14.32 Recitation 1 Fall 2023 9 / 22

## Linear-Log Regressions

$$Y_i = \alpha + \beta \ln(X_i) + \gamma Z_i + e_i$$

- The independent variable is log transformed
- One percent change in X is associated with change in Y of  $0.01\beta$  units.

Nina Wang (MIT) 14.32 Recitation 1 Fall 2023 10 / 22

# Example

$$Y_i = 450.2 + 62.35 \ln(X_i) + e_i$$

- Where  $Y_i$  is math SAT score,  $X_i$  is the expenditure per student
- How do we interpret the 62.35?



11/22

# Example

$$Y_i = 450.2 + 62.35 \ln(X_i) + e_i$$

- Where  $Y_i$  is math SAT score,  $X_i$  is the expenditure per student
- How do we interpret the 62.35?
- With every 1% increase in expenditure, expected SAT score increases by 0.62 points.



11 / 22

## Log-Log Regressions

$$ln(Y_i) = \alpha + \beta ln(X_i) + \gamma Z_i + e_i$$

- The independent variable and dependent variable are log transformed
- One percent change in X is associated with a  $\beta\%$  change in Y.
- Also known as elasticity

Nina Wang (MIT) 14.32 Recitation 1 Fall 2023 12 / 22

# Example

$$ln(Y_i) = 0.4 + 2.3 ln(X_i) + e_i$$

- Where  $X_i$  is price of good p and  $Y_i$  is demand (quantity sold in units).
- How do we interpret 2.3?



Nina Wang (MIT) 14.32 Recitation 1 Fall 2023 13 / 22

### Example

$$Y_i = X_1^{f_i} \cdot X_2^{f_2}$$

$$\log Y_i = \beta_i \log X_i + \beta_i \log X_2$$

$$\ln(Y_i) = 0.4 + 2.3 \ln(X_i) + e_i$$

- Where  $X_i$  is price of good p and  $Y_i$  is demand (quantity sold in units).
- How do we interpret 2.3?
- A 1% increase in good p is associated with a 2.3% increase in quantity of goods sold.

Nina Wang (MIT) 14.32 Recitation 1 Fall 2023 13 / 22

# Why do we interpret in percents?

$$\ln(x+c) - \ln(x) = \ln\left(\frac{x+c}{x}\right) = \ln\left(1 + \frac{c}{x}\right) \approx \frac{c}{x}$$

- $\bullet$  This approximation holds for small  $\frac{c}{x},$  works for changes of up to 10%
- In reality, change is small enough that we are almost always able to interpret log transformation in percentages.

Nina Wang (MIT) 14.32 Recitation 1 Fall 2023 14/22

# Why do we use logs?

 A logarithmic transformation is useful for transforming highly skewed variables into a more normalized dataset.





Nina Wang (MIT) 14.32 Recitation 1 Fall 2023 15/22

#### Table of Contents

Nonlinear Regressions

2 Practice Problems

Nina Wang (MIT) 14.32 Recitation 1 Fall 2023 16 / 22

|                                 | (1)         | (2)         | (3)        | (4)         | (5)         | (6)        |
|---------------------------------|-------------|-------------|------------|-------------|-------------|------------|
| Data subset:                    | All         | All         | All        | All         | Male        | Female     |
|                                 | instructors | instructors | nstructors | instructors | instructors | instructor |
| Regressor                       |             |             | <u> </u>   |             |             |            |
| Beauty                          | .410        | .275        | .229       | .237        | .384        | .128       |
|                                 | (.081)      | (.059)      | (.047)     | (.096)      | (.076)      | (.064)     |
| Female                          | 166         | 259         | 210        | 255         | _           | -          |
|                                 | (.098)      | (.085)      | (.075)     | (.088)      |             |            |
| Minority                        | 284         | 249         | 206        | 221         | .060        | 260        |
|                                 | (.015)      | (.012)      | (.014)     | (.012)      | (.101)      | (.139)     |
| Non-native English              | 344         | 253         | 288        | 251         | 427         | 262        |
| _                               | (.152)      | (.134)      | (.112)     | (.132)      | (.143)      | (.151)     |
| tenure track                    | 150         | 136         | 156        | 131         | 056         | 041        |
|                                 | (.114)      | (.094)      | (.110)     | (.092)      | (.089)      | (.133)     |
| intro course                    | 071         | 046         | 079        | 052         | .005        | 228        |
|                                 | (.134)      | (.111)      | (.102)     | (.110)      | (.129)      | (.164)     |
| one-credit course               |             | .687        | .823       | .694        | .768        | .517       |
| (yoga, aerobics,                |             | (.166)      | (.129)     | (.170)      | (.119)      | (.232)     |
| dance, short                    |             | 1 1         |            |             |             |            |
| electives)                      |             | 1 1         |            |             |             |            |
| dresses well                    | -           | - 1         | .243       | -           | -           | -          |
|                                 |             | 1 1         | (.088)     |             |             |            |
| Beauty×D <sub>Beauty&gt;0</sub> | _           | I - I       | -          | .081        | -           | -          |
|                                 |             | / I I       |            | (.135)      |             |            |
| Intercept                       | 4.27        | 4.25        | 4.22       | 4.21        | 4.35        | 4.08       |
|                                 | (.071)      | (0.56)      | (.054)     | (.054)      | (.081)      | (.088)     |
| Summary statistics              |             |             |            |             |             |            |
| $R^2$                           | .224        | .279        | .302       | .285        | .359        | .162       |
| n                               | 463         | 463         | 463        | 463         | 268         | 195        |

Nina Wang (MIT) 14.32 Recitation 1 Fall 2023 17/22

#### Practice 1a

- The following variables are not included in regression 2:
  - Amount of time instructor spends in class
  - Marital status of instructor
- For each, explain whether omission of the variable will result in OVB for the estimated effect of Beauty.

Nina Wang (MIT) 14.32 Recitation 1 Fall 2023 18 / 22

#### Practice 1b

- Suppose you have data on years of teaching experience (Experience)
   of the instructor, and you are considering choosing among three
   possible specifications:
  - regression (2) plus Experience
  - regression (2) plus Experience, Experience<sup>2</sup>, and Experience<sup>3</sup>
  - regression (2) plus log(Experience)
- In your judgment (before you know the results of these regressions), which specification, (i), (ii), or (iii), is the most appropriate? Explain.
- Suppose you estimated regressions for specifications (i) and (ii). How would you decide, based on the empirical evidence, whether (i) or (ii) is more appropriate?

19 / 22

• In a given population of two-earner male-female couples, male earnings have a mean of \$40,000 per year and a standard deviation of \$12,000. Female earnings have a mean of \$45,000 per year and a standard deviation of \$18.000. The correlation between male and female earning for a couple is 0.8. Let C denote the combined earnings for a randomly selected couple. What is the mean and the standard deviation of C? C: M+F E[c] = E[M]+ E[F]

Var[c] = Var[m] + Var[F] + 2 Cov (M,F)

Nina Wang (MIT) 14.32 Recitation 1 Fall 2023 20/22

• In a given population of two-earner male-female couples, male earnings have a mean of \$40,000 per year and a standard deviation of \$12,000. Female earnings have a mean of \$45,000 per year and a standard deviation of \$18,000. The correlation between male and female earning for a couple is 0.8. Let C denote the combined earnings for a randomly selected couple. What is the mean and the standard deviation of C?

• 
$$E[C] = E[M] + E[F] = 40 + 45 = 85$$

• 
$$V[C] = V[M+F] = V[M] + V[F] + Cov[M, F] = 28.52$$

• 
$$Cov[M, F] = Corr[M, F] * SD[M] * SD[F]$$

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

20 / 22

# T, F, Uncer 1311

• One runs a regression  $Y_i=\gamma_0+\gamma_1X_i+e_i$  and gets  $\hat{\gamma_1}=0$ , then it implies that  $R^2=0$ 

$$R^{2} = \frac{ESS}{76S} = \frac{\tilde{\Sigma}}{9} (\tilde{\gamma}_{1} - \tilde{\gamma})^{2} \qquad \vec{\gamma} = \tilde{\gamma} - \vec{\gamma}_{1} \times \vec{\gamma}_{2} \times \vec{\gamma}_{3} = \tilde{\gamma} - \vec{\gamma}_{1} \times \vec{\gamma}_{3} = \tilde{\gamma}_{1} + \tilde{\gamma}_{2} \times \vec{\gamma}_{3}$$

(('-

Nina Wang (MIT) 14.32 Recitation 1 Fall 2023 21 / 22

• One runs a regression  $Y_i=\gamma_0+\gamma_1X_i+e_i$  and gets  $\hat{\gamma_1}=0$ , then it implies that  $R^2=0$ 

- $R^2 = \frac{ESS}{TSS}$
- ESS (Explained Sum of Squares)  $\Sigma (\hat{Y}_i \bar{Y})^2$
- TSS (Total Sum of Squares)  $\Sigma (Y_i \bar{Y})^2$



21 / 22

• One runs a regression  $Y_i=\gamma_0+\gamma_1X_i+e_i$  and gets  $\hat{\gamma_1}=0$ , then it implies that  $R^2=0$ 

- $R^2 = \frac{ESS}{TSS}$
- ESS (Explained Sum of Squares)  $\Sigma (\hat{Y}_i \bar{Y})^2$
- TSS (Total Sum of Squares)  $\Sigma (Y_i \bar{Y})^2$
- Answer: True
  - $\gamma_0 = \bar{Y} \gamma_1 \bar{X} = \bar{Y}$
  - $\hat{Y} = \bar{Y}$ , for all *i*, thus ESS = 0

Nina Wang (MIT)

• A Cobb-Douglas production function relates production Q to factors of production such as capital K, labor L, and raw materials M and an error term using the equation  $Q = \gamma K^{\beta_1} L^{\beta_2} M^{\beta_3} e^i$ , where  $\gamma, \beta_1, \beta_2, \beta_3$  are unknown production parameters. Suppose that you have data on production and the factors of production for a random sample of firms. By transforming the data you can use OLS regression to estimate  $\beta_1, \beta_2, \beta_3$ 

Nina Wang (MIT) 14.32 Recitation 1 Fall 2023 22 / 22

### T/F/ Unwtoin

• A Cobb-Douglas production function relates production Q to factors of production such as capital K, labor L, and raw materials M and an error term using the equation  $Q = \gamma K^{\beta_1} L^{\beta_2} M^{\beta_3} e^i$ , where  $\gamma$ ,  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$  are unknown production parameters. Suppose that you have data on production and the factors of production for a random sample of firms. By transforming the data you can use OLS regression to estimate  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$ 

• We can regress  $\log Q$  on  $\log K$ ,  $\log L$ ,  $\log M$