(Category - I Deemed to be University) Porur, Chennai

#### **SRI RAMACHANDRA ENGINEERING AND TECHNOLOGY**

Day-2: 20-10-2020 MODULE -1 Assignment - 1

1. Obtain the asymptotic bound for the recurrence relations given below using Master theorem.

1. 
$$T(n) = 3T(n/2) + n2$$

2. 
$$T(n) = 4T(n/2) + n2$$

3. 
$$T(n) = T(n/2) + 2n$$

$$4. T(n) = 2nT(n/2) + nn$$

5. 
$$T(n) = 16T(n/4) + n$$

6. 
$$T(n) = 2T(n/2) + n \log n + 7. T(n)$$

$$= 2T (n/2) + n / log n 8. T (n) = 2T$$

$$(n/4)$$
+  $n0.51$  9. T  $(n)$  =  $0.5$ T  $(n/2)$ +

$$1/n$$
 10. T (n) = 16T (n/4)+ n!

11. 
$$T(n) = p2T(n/2) + log n 12. T$$

$$(n) = 3T (n/2) + n$$

13. 
$$T(n) = 3T(n/3) + pn$$

14. 
$$T(n) = 4T(n/2) + cn$$

15. 
$$T(n) = 3T(n/4) + n \log n 16. T$$

$$(n) = 3T (n/3) + n/2$$

17. T (n) = 6T (n/3)+ n2 
$$\log n$$

18. 
$$T(n) = 4T(n/2) + n/\log n$$
 19.  $T(n) =$ 

$$64T (n/8) - n2 log n 20. T (n) = 7T$$

$$(n/3) + n2$$

21. 
$$T(n) = 4T(n/2) + \log n$$

2. Solve the following recurrence relation using recursion tree method.

1. 
$$T(n) = T(n/5) + T(4n/5) + n$$

2. 
$$T(n) = 3T(n/4) + cn2$$

3. 
$$T(n) = cn + 2T(n/2)$$

#### **Module 2: Combinatorial Optimization**

**3.** Design a greedy algorithmic technique using binary min heap to encode the word *'mississippi'* using variable length codeword. Calculate the number of bits may be required for encoding the message 'mississippi'?

1.  $a=3 b=2 k=2 p=0 logba \approx 1.5 since logba < k (case 3)$ 

Answer:  $\theta(n2)$ 

2.  $a=4 b=2 k=2 p=0 logba \approx 2 since logba=k (case 1)$ 

Answer:  $\theta(n2logn)$ 

3.  $a=1 b=2 k=1 p=1 logba \approx 0 since logba < k (case 3)$ 

Answer:  $\theta$  (2)

- 4. Masters theorem does not work a not a constant
- 5.  $a=16 b=4 k=1 p=0 logba \approx 2 since logba>k (case 1)$

Answer:  $\theta(n2)$ 

6.  $a=2 b=2 k=1 p=1 logba \approx 1 since logba=k (case 2)$ 

Answer:  $\theta(nlog2n)$ 

7.  $a=2 b=2 k=1 p=-1 logba \approx 1 since logba=k (case 2)$ 

Answer:  $\theta(nloglogn)$ 

8. a=2, b=4, k=0.51 p=0 logba  $\approx 0.5$  since logba<k(case3)

Answer:  $\theta$  (n0.51)

- 9. a=0.5 cannot be solved using masters theorem a<1
- 10.  $a=16 b=4 k=c p=1 logba \approx 2 since logba < k (case 3)$

Answer:  $\theta(n!)$ 

11.  $a=16 b=4 k=c p=1 logba \approx 2 since logba < k (case 3)$ 

Answer:  $\theta(n!)$ 

12.  $a=3 b=2 k=1 p=0 logba \approx 1.58 since logba>k (case1)$ 

Answer: θ(nlog23)

- 13. a=3 b=3 k=0.5 p=0 logba  $\approx$  1 since logba>k (case 1) Answer:  $\theta(n)$
- 14. a=4 b=2 k=1 p=0 logba  $\simeq$  2 since logba>k (case 1) Answer:  $\theta(n2)$
- 15. a=3 b=4 k=1 p=1 logba  $\approx$  0.79 since logba<k (case 3) Answer:  $\theta(nlogn)$
- 16. a=3 b=3 k=1 p=0 logba  $\cong$  1 since logba=k (case 2) Answer:  $\theta(nlogn)$
- 17. a=6 b=3 k=2 p=1 logba  $\approx$  1.63 since logba<k(case3)

  Answer:  $\theta$ (n2logn)
- 18. a=4 b=2 k=1 p=-1 logba  $\approx$  2 since logba>k (case1) Answer:  $\theta(n2)$
- 19.  $a=64 b=8 k=2 p=1 logba \approx 2 since logba=k (case2)$ Answer:  $\theta(n2log2n)$
- 20. a=7 b=3 k=2 p=0 logba  $\simeq$  1.77 since logba<k (case3) Answer:  $\theta$ (n2)
- 21. a=4 b=2 k=0 p=1 logba  $\approx$  2 since logba>k (case1)

  Answer:  $.\theta(n2)$

2. Solve the following recurrence relation using recursion tree method:

1. 
$$T(n) = T(n/5) + T(4n/5) + n$$



- Cost of level-0 = n
- Cost of level-1 = n/5 + 4n/5 = n
- Cost of level-2 =  $n/5^2 + 4n/5^2 + 4n/5^2 + 4^2n/5^2 = n$

Cost of last level = 
$$2^{\log_{5/4} n} \times T(1) = \theta(2^{\log_{5/4} n}) = \theta(n^{\log_{5/4} 2})$$

$$T(n) = \{ n + n + n + ..... \} + \theta(n^{\log_{5/4}2})$$

For log<sub>5/4</sub>n levels

**Ans.**  $\theta(n\log_{5/4}n)$ 

### 2. T(n) = 3T(n/4) + cn2

$$c\left(\frac{n}{4}\right)^{2} \qquad c\left(\frac{n}{4}\right)^{2} \qquad c\left(\frac{n}{4}\right)^{2} \qquad \text{Level-1}$$

$$c\left(\frac{n}{16}\right)^{2} c\left(\frac{n}{16}\right)^{2} c\left(\frac{n}{16}\right)^{2} c\left(\frac{n}{16}\right)^{2} c\left(\frac{n}{16}\right)^{2} c\left(\frac{n}{16}\right)^{2} c\left(\frac{n}{16}\right)^{2} \text{Level-2}$$

- Cost of level- $0 = cn^2$
- Cost of level-1 =  $c(n/4)^2 + c(n/4)^2 + c(n/4)^2 = (3/16) cn^2$
- Cost of level-2 =  $c(n/16)^2 \times 9 = (9/16^2) \text{ cn}^2$

## Cost of last level = $n^{\log_4 3} \times T(1) = \theta(n^{\log_4 3})$

$$T(n) = \left\{ \begin{array}{ccc} cn^2 + \frac{3}{16}cn^2 + \frac{9}{(16)^2}cn^2 + \dots \right\} + \theta \left( \begin{array}{c} log_43 \\ n \end{array} \right)$$

For log4n levels

On solving, we get-

= 
$$(16/13)$$
 cn<sup>2</sup>  $\{1 - (3/16)^{\log_4 n}\} + \theta(n^{\log_4 3})$ 

= (16/13) 
$$cn^2 - (16/13) cn^2 (3/16)^{\log_4 n} + \theta(n^{\log_4 3})$$

**Ans.** = 
$$O(n^2)$$

3.T(n) = cn + 2t(n/2)



# $nk = \theta(nlogn) + c$

assume that  $n/2^k = 1$ :

n = 2^k

k = logn

**3.** Design a greedy algorithmic technique using binary min heap to encode the word *'Mississippi'* using variable length codeword. Calculate the number of bits may be required for encoding the message 'Mississippi'?

Word: Mississippi

| Letter | Frequency | Binary |
|--------|-----------|--------|
| М      | 1         | 000    |
| I      | 4         | 01     |
| S      | 4         | 1      |
| Р      | 2         | 001    |

### **Huffman tree:**



Character code = 4 \* 8 = 32 bits

Huffman code = (2\*3) + 2+1 = 9 bits

Total = 41 bits

Total size of message = (1\*3) + (4\*2) + (4\*1) + (2\*3) = 21 bits

 $\therefore$  Total compressed size = 62 bits



- > M.Sathishkumar
- > E0119052
- > B. Tech CSE AI & ML

21-10-2020

M.Sathishkumar

Student

Signed by: 69097380-d90a-4c4d-9ad0-9a1a3b909ff2