

How Low Temperatures Are Produced

Although the efficiency of an "ideal" refrigerator does not depend on the working substance, in practice *the choice of working substance is very important* because

At the lowest **T**, these two flows of thermal energy compensate each other.

More on Enthalpy
$$H = U(T) + PV = \int_{0}^{T} C_{P} dT$$

Recall: $\Delta U + P\Delta V = \Delta H$

$$\begin{pmatrix} dH = dU + PdV + VdP & P = const \\ \Rightarrow dH = dU + PdV \end{pmatrix}$$

The latent heat L of phase transformation at P = const:

$$(H_1 - H_2)_P = L$$

$$\int dH = dU + PdV + VdP = TdS + VdP$$
 $dS = \frac{L}{T}$

Cooling of Gases

constant
$$\Delta P = P_1 - P_2$$
.

- (a) an "expansion engine" $(\delta \mathbf{W} \neq 0)$;
- (b) a porous membrane or a constriction.

$$(\delta \mathbf{W} = 0).$$

$$H_1 - H_2 = (U_1 + P_1V_1) - (U_2 + P_2V_2) = \delta W$$

Simple Expansion Refrigerator

This process works for both *ideal* and *real* gases.

$$-\delta W = H_1 - H_2$$

For an ideal monatomic gas:

$$H = \frac{5}{2} N k_B T \quad T_1 - T_2 = \frac{2}{5} \frac{W}{N k_B}$$

The Joule-Thomson Process

(b) *Throttling* process

$$H_1 - H_2 = \delta W = 0$$

- Irreversible!!
- Real gases only

Isenthalpic expansion:

$$H_1 = H_2$$

For an *ideal* gas, :
$$H = \frac{f+2}{2}Nk_BT$$

$$\Delta H = 0 \implies \Delta T = 0$$

The JT Process in Real Gases (low density)

$$U(T,V) = U_{kin}(T) + U_{pot}(V)$$

$$\Delta H = 0, \, \Delta V > 0 \implies \Delta T < 0$$

The JT Process in Real Gases (high density)

At *high densities*, the effect is reversed: the sign of ΔT depends on initial T and P.

$$\Delta H = 0, \, \Delta V > 0 \implies \Delta T > 0$$

The JT Process in Real Gases (cont.)

All gases have *two inversion temperatures*: in the range between the upper and lower inversion temperatures, the JT process *cools* the gas, outside this range it *heats* the gas.

Gas	boiling <i>T</i> (P=1 bar)	inversion <i>T</i> @ P=1 bar
CO ₂	195	(2050)
CH₄	112	(1290)
O_2	90.2	893
N_2	77.4	621
H_2	20.3	205
⁴ He	4.21	51
³ He	3.19	(23)

Liquefaction of Gases

For air, the inversion T is above RT. In 1885, Carl von Linde liquefied air in a liquefier based solely on the JT

process:

Linde refrigerator

"Efficiency" of liquefaction

Estimate of efficiency: let 1 mole of gas enter the liquefier, suppose that the fraction λ is liquefied.

$$H_{in} = \lambda H_{liq} + (1 - \lambda) H_{out}$$

$$H_{in} = H(T_{in}, P_{in}) \ H_{out} = H(T_{out}, P_{out})$$

$$\lambda = \frac{H_{out} - H_{in}}{H_{out} - H_{liq}}$$

Liquefaction takes place if

$$H_{out} = H\left(T_{out}, P_{out}\right) > H_{in} = H\left(T_{in}, P_{in}\right)$$

Example (Pr. 4.34, Pg 143)

The fraction of N_2 liquefied on each pass through a Linde cycle operating between $P_{in} = 100$ bar and $P_{out} = 1$ bar at $T_{in} = 200$ K:

$$\lambda = \frac{H_{out} - H_{in}}{H_{out} - H_{liq}}$$

$$\lambda = \frac{H_{out} - H_{in}}{H_{out} - H_{liq}}$$
 $H_{in}(100\text{bar}, 200\text{K}) = 4442 \text{ J/mole}$
 $H_{out}(1\text{bar}, 200\text{K}) = 5800 \text{ J/mole}$

$$H_{liq}(1bar, 77K) = -3407 \text{ J/mole}$$

Historical Development of Refrigeration

Cooling by Evaporation of Liquids

$$\delta Q = \frac{dn}{dt} \left[H_{liq} - H_{vap} \right] = \frac{dn}{dt} L_{vap}$$

 $\delta \, Q$ – the cooling power, dn/dt – the number of molecules moved across the liquid/vapor interface

Usually a pump with a constant-volume pumping speed is used, and thus the mass flow *dn/dt* is proportional to the vapor pressure.

$$\frac{dn}{dt} \propto P_{vap}(T) \propto \exp\left(-\frac{1}{T}\right)$$
 Pr. 5.35

Substanc	boiling T	melting T	Latent heat	Price
е	(P=1 bar)	(P=1 bar)	kJ/liter	\$ / liter
H ₂ O	373.15	273.15	2252	
Xe	165.1	65.1 161.3 303		
O_2	90.2	54.4	245	
N_2	77.4	63.3	160	0.3
H ₂	20.3	14.0	31.8	
⁴ He	4.21		2.56	8
³ He	3.19		0.48	5x10 ⁴

Cryoliquids

the cooling power diminishes rapidly with decreasing *T*(at *T*→0, δ*S*becomes small for all processes)

the evaporation cooling of Liquid Helium

P , torr	10-4	10-3	10-2	10-1	1	10	100
<i>T</i> (⁴ He), K	0.56	0.66	0.79	0.98	1.27	1.74	2.64
<i>T</i> (³ He), K	0.23	0.28	0.36	0.47	0.66	1.03	1.79

Kitchen Refrigerator

Expansion valve

Compressor

Cold reservoir

of Vaporization

(fridge interior) T=5°C A liquid with suitable characteristics (e.g., Freon) circulates through the system. The compressor pushes the liquid through the condenser coil at a high pressure (~ 10 atm). The liquid sprays through a throttling valve into the evaporation coil which is maintained by the compressor at a low pressure (~ 2 atm).

$$COP = \frac{Q_C}{Q_H - Q_C} = \frac{H_1 - H_4}{H_2 - H_3 - (H_1 - H_4)} = \frac{H_1 - H_4}{H_2 - H_1}$$

The enthalpies H_i can be found in tables.

$$H_3 = H_4, \Rightarrow H_3^{\text{liquid}} = x \cdot H_4^{\text{liquid}} + (1 - x) \cdot H_4^{\text{gas}}$$

 $S_2 = S_1 \rightarrow T_2 \rightarrow H_2(T_2, P_2)$

/ Compression

HOT

Dilution Refrigerator (down to a few mK)

evaporation cooling with a **non-exponential** dependence $P_{\text{vap}}(T)$

Molar fraction of He-3 in the mixture (%)

$$dQ(T) \propto \Delta H \cdot \frac{dn}{dt} \propto \left[\Delta H \propto \int_{0}^{T} \Delta C dT \propto T^{2} \right] \propto T^{2}$$

 ΔH – the enthalpy difference between the ${}^{3}\text{He-rich}$ and dilute phases

Cooling by Adiabatic Demagnetization

Let's consider a quantum system with Boltzmann distribution of population probabilities for two discrete levels:

$$n_i \propto e^{-\frac{E_i}{k_B T}}$$

$$E_i = -k_B T \ln n_i$$

1-2 - **Isothermal** increase of \boldsymbol{B} from $\boldsymbol{B_1}$ to $\boldsymbol{B_2}$. The upper energy level rises because \boldsymbol{W} has been done by external forces. If $\boldsymbol{T} = \boldsymbol{const}$, the work performed must be followed by population rearrangement, so that the red line is shifted, but its slope $\sim \boldsymbol{T}$ remains the same: e.g., if the magnetic field is increased, the population must decrease at the highest level and increase at the lowest – \boldsymbol{S} decreases!

2-3 - Adiabatic decrease of \boldsymbol{B} (the specimen is thermally isolated). $\boldsymbol{S} = \text{const}$: the population of \boldsymbol{each} level must be kept constant, while its $\boldsymbol{E_i}$ varies. The red line slope decreases – \boldsymbol{T} decreases!

$$S\!\!\left(N, \frac{\mu B}{k_B T}\right) = N k_B \!\!\left[\ln \!\!\left(2 \cosh \frac{\mu B}{k_B T} \right) - \frac{\mu B}{k_B T} \tanh \frac{\mu B}{k_B T} \right]$$

Nobel Prize in Physics 1997

Laser cooling

- Very dilute gas (avoid condensing)
- Momentum transfer from photons
- \rightarrow slowing down of molecules $\rightarrow T_{\text{K.E.}}$ decrease

$$P_{photon} = \frac{h}{\lambda}, \ \Delta P_{\text{molecule}} \approx P_{\text{photon}}, \ \langle \text{K.E.} \rangle = \frac{\left(P_{\text{molecule}}\right)^2}{2m}$$

$$\Rightarrow \langle \text{K.E.} \rangle_{\text{min}} = \frac{\left(P_{\text{photon}}\right)^2}{2m}$$

http://www.colorado.edu/physics/2000/bec/lascool1.html