Ŷ数学外卖─行列式、矩阵

许子寒、赵思铭

2024年10月20日

1 行列式

题目 1 (逐差法). 计算 n 阶行列式:

$$|A| = \begin{vmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ 1 & -1 & 0 & \dots & 0 & 0 \\ 0 & 2 & -2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & n-1 & 1-n \end{vmatrix}$$

题目 2 (求和法). 计算 n 阶行列式:

$$|A| = \begin{vmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ n & 1 & 2 & \dots & n-2 & n-1 \\ n-1 & n & 1 & \dots & n-3 & n-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 3 & 4 & 5 & \dots & 1 & 2 \\ 2 & 3 & 4 & \dots & n & 1 \end{vmatrix}$$

题目 3 (爪形行列式). 计算 n 阶行列式, 其中 $a_i \neq 0 (2 \leq i \leq n)$:

(1)

$$|A| = \begin{vmatrix} a_1 & b_2 & b_3 & \dots & b_n \\ c_2 & a_2 & 0 & \dots & 0 \\ c_3 & 0 & a_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_n & 0 & 0 & \dots & a_n \end{vmatrix}$$

(2)

$$|A| = \begin{vmatrix} a_1 & b_2 & \cdots & b_n \\ b_1 & a_2 & \cdots & b_n \\ \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & \cdots & a_n \end{vmatrix}.$$

题目 4. 设
$$a,b,c$$
 互不相同, $\begin{vmatrix} b+c & c+a & a+b \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = 0$,计算 $a+b+c$.

题目 5 (升阶法). 求下列 n 阶行列式的值:

$$|A| = \begin{vmatrix} 1 & 1 & \dots & 1 & 1 \\ x_1 & x_2 & \dots & x_{n-1} & x_n \\ x_1^2 & x_2^2 & \dots & x_{n-1}^2 & x_n^2 \\ \vdots & \vdots & & \vdots & \vdots \\ x_1^{n-2} & x_2^{n-2} & \dots & x_{n-1}^{n-2} & x_n^{n-2} \\ x_1^n & x_2^n & \dots & x_{n-1}^n & x_n^n \end{vmatrix}.$$

题目 6 (H/降阶法). 计算 n 阶行列式:

(1)

$$|A| = \begin{vmatrix} 1 + a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & 1 + a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_nb_1 & a_nb_2 & \cdots & 1 + a_nb_n \end{vmatrix}.$$

(2)

$$|A| = \begin{vmatrix} a_1b_1 & 1 + a_1b_2 & \cdots & 1 + a_1b_n \\ 1 + a_2b_1 & a_2b_2 & \cdots & 1 + a_2b_n \\ \vdots & \vdots & \ddots & \vdots \\ 1 + a_nb_1 & 1 + a_nb_2 & \cdots & a_nb_n \end{vmatrix}.$$

题目 7. 已知 221, 238, 289 都是 17 的倍数, 下列行列式不能被 17 整除的是:

题目 8. 下列 n(n > 2) 阶行列式必为零的是:

- (1) 零元素的个数大于 $n^2/2$ (2) 零元素的个数大于 n^2-n
- (3) 零元素的个数大于 n (4) 对角线上的元素全为零.

題目 9. 设
$$|A|=$$
 $\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 2 & 5 & 6 & 7 \\ 1 & 16 & 81 & 256 \end{vmatrix}$, 令 M_{ij},A_{ij} 分别表示其 (i,j) 位置上的余子式和代数余子式,计算 $M_{31}+4A_{32}+9M_{33}-16M_{34}$.

矩阵 2

题目 10. 设 A 为 n 阶对称阵, 求证: A 是零矩阵的充要条件是对任意的 n 维列向量 α , 有

$$\alpha^T A \alpha = 0.$$

题目 11.

- (1) 对 n 阶方阵 A, B, 只要 AB = E, 则 A, B 必为可逆矩阵且互为逆矩阵.
- (2) 若只要求矩阵 A, B 满足 AB 和 BA 存在, 且 AB = E, 是否还能得出 BA = E?
- (3) 设 n 阶方阵 A, B, 满足 A + B = AB, 证明: AB = BA.

题目 12.

- (1) 设 $A \neq n$ 阶方阵, 且 $A \neq E$, 证明: 若 $A^2 = E$, 则 A + E 非可逆矩阵.
- (2) 设 A, B 是 n 阶方阵, 且 A + 2B = 2AB, 证明 A E 可逆, 并求 $(A E)^{-1}$.

题目 13. 若 A, B 都是由非负实数组成的矩阵且 AB 有一行等于零, 求证: 或者 A 有一行为零, 或者 B有一行为零.

題目 14.
$$(1) A = \begin{pmatrix} 1 & 2 & -1 \\ -1 & -2 & 1 \\ 2 & 4 & -2 \end{pmatrix}, \; 求 A^n$$

$$(2) A = \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}, \quad \stackrel{?}{\not \sim} A^r$$

题目 15. 求证:和所有 n 阶矩阵乘法可交换的矩阵必是纯量阵 kI_n .

题目 16. 设 A 为 n 阶矩阵, 求证: $|A^*| = |A|^{n-1}$.

感谢参加我们的讲座! 麻烦填写一下反馈问卷, 帮助我们之后更好地开展活动, 谢谢!

外卖讲座反馈问卷

外卖官网: tongjimath.github.io

Bilibili: 一题 _ 撬动数学