Приближенное равновесие Нэша для анонимных игр

17 декабря 2018 г.

1 Abstract

В сатье строится PTAS для равновесия Нэша со смешанными стратегиями в анонимных играх в случаях, когда количество стратегий постоянно. Для каждого набора смешанных стратегий мы генерируем естественное распределение и показываем, что близость распределений относительно некоторой метрики влечет близость соответствующих наборов. В дальнейшем, мы примененяем вероятностные методы, чтобы дискретизировать распределения наших наборов. После генерации дискретных наборов мы используем динамическое програмиирование и получаем требуемый PTAS.

Определение 1 Анон. игрой называется $G=(n,S,(u_l^i)),\ n$ -кол-во игроков, S-мн-во стратегий, $u_l^i:\Pi_{n-1}^S\to [0,1],\Pi_{n-1}^S=((x_1,...,x_S):x_i$ -неотрицательные целые числа $\wedge\sum_{m=1}^{|S|}x_m=n-1$

Определение 2 Смешанный набор стратегий - это отображение $\delta:[n] \to \Delta^S,$ где Δ^S -множество распределений на S.

Определение 3 Смешанное равновесие Нэша - это отображение δ т.ч. $E_{x \sim \delta_{-i}, l \sim \delta_i} u_l^i(x) \geq E_{x \sim \delta_{-i}} u_t^i(x), \forall i \in [n], t \in S$

Теорема 1 Существует РТАS для задачи поиска смешанного равновесия Нэша для анонимных игр с постоянным числом стратегий. Точнее, существует функция g такая, что для всех $\epsilon \geq 0$, ϵ -равновесие Нэша анонимной игры $G = (n, S, (u_i^l))$ может быть вычислено за время $n^{g(S,1/\epsilon)}$