

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

FIRST YEAR EXAMINATION (2017/2018) – SEMESTER II – 2018

SCS 1112(R) – Foundations of Computer Science

PART A

Multiple Choice Question Paper

(Two Hours for both parts A and B)

Important Instructions:

- The duration of the whole paper consisting of both parts A and B is Two (2) hours.
- The medium of instruction and questions is English.
- Part A has 20 questions on 7 pages.
- All questions are of the MCQ (Multiple Choice Questions) type.
- All questions should be answered.
- Each question has five (5) choices with **one** correct answer.
- Answers should be marked on the special answer sheet provided.
- Note that questions appear on both sides of the paper.
 If a page is not printed, please inform the supervisor immediately.
- Mark the correct choices on the answer sheet which will be machine marked.
- Completely read and follow the instructions given on the other side of the answer sheet before you shade your correct choices.
- Calculators are NOT allowed.

For each of the Questions, select the correct answer from the five choices given. [40 marks]

- 1. In the universe, we find problems that are unsolvable (or undecidable) or intractable (solving requires more energy than that is available in the universe). Which of the following problem(s) is/are hard, but solvable?
 - i. Given a random sequence of (English) letters, what dictionary words are obtainable from it by unscrambling (reordering)?
 - ii. The answer to the question 'if the only barber in town shaves only those who do not shave themselves, who shaves the barber?'
 - iii. Exhaustive search of for a 1000 bit key, on a key space on the most powerful computer at present
 - a. (i) only b. (ii) only c. (iii) only d. (i) and (ii) only e. none of (i), (ii) and (iii)
- 2. Which of the following statement(s) is/are true with regards to the historical basis of computability?
 - i. David Hilbert proposed that all of mathematics is axiomatisable.
 - ii. Kurt Godel refuted Hilbert's axiomatisation premise through his Incompleteness theorem
 - iii. Alonzo Church and Alan Turing defined the concept of an algorithm, and what is meant by computation
 - a. (i) only b. (ii) only c. (iii) only d. (i) and (ii) only e. all

Answer Questions 3-8 based on the following list of computational problems.

- Knapsack problem Given a knapsack of size W find the maximum value subset of objects O(value, size) out of a total of n-objects that can fit the knapsack
- ii. Graph isomorphism problem Given two graphs G and H, whether the vertices of G when reordered becomes identical to H
- iii. k- clique problem In a given undirected n-vertex graph G, is there any completely connected sub-graphs of size k?
- iv. Hamiltonian cycle problem For a n-vertex directed densely connected graph G, find out a path that visits each and every vertex exactly once.

			٧.				• •		there a s			nat mak	ces a give	en
			vi.	Grap with	h k-col k distin	ourabil	ity prob	lem – C	Can the ve	ertices	of a gra	•		
			vii.	colou Integ numb	er fact	orisatio	n probl	em – w	hat are th	ne inte	ger fact	ors of a	a compo:	site
3.	Which	-		ıd (iv)	only			•	lution? c. (i), (i	iv) and	(vi) on	ly	d. (i) ar	nd (ii)
4.	Which					-			-complete d. (iv) o			ıly		
5.	The 3-which	of t	he pro	blems	3?				sfiability, d. (vi)			_	reduced	to
6.		ilab	le CPU	J regis	sters. V	Vhich o	f the ab	ove pro	f a runnin blems car d. (v) or	n be us	ed to so	olve this		mber
7.									a complex			er of		
8.	Which		(iv) a	ınd (vi		b. (i) a			orial optin c. (i) an		•		and (iv)	only
9.	Which model	?	i. ii. ii. iii.	Evoluationg They probl Simu	utionary genera are abl ems lated a	y algori ations o le to de nnealin	ithms m of evolu	imic na tion act solu its energ	n regards ature's abi ations to c gy minim ns	lity to	propaga atorial o	ate best	solution	
	a.	(i)	only		b. (ii) (only	c. (iii)	only	d. (i) an	d (iii) (only	e. all		

- 10. Suppose the outputs of the following logic gates are plotted on a X-Y coordinate plot for all combinations of their inputs. Which of the following statement(s) is/are true?
 - i. AND outputs are linearly separable
 - ii. OR outputs are linearly separable
 - iii. EXOR outputs are linearly separable
 - a. (i) only
- b. (ii) only
- c. (iii) only
- d. (i) and (ii) only
- e. all
- 11. Given the set of integers S= {1, 4, 16, 64, 256, 1040, 1093, 1284, 1344} and a target t = 3754, to find out a subset of S that sums up to the target, and is known as the *subset sum* problem, has complexity NP. Which of the following statement(s) is/are true with regards to this observation?
 - i. An exhaustive search for the solution costs O(2ⁿ) where n is the number of elements in the set
 - ii. A greedy FCFS solution, though runs in polynomial time, is not optimal
 - iii. The problem is in the category of other combinatorial optimisation problems such as the knapsack problem and the job shop scheduling problem
 - a. (i) only
- b. (ii) only
- c. (iii) only
- d. (i) and (ii) only
- e. all
- 12. The maximum value in an array of numbers a [1..n] can be calculated using the following three computation models. Which of the following statement(s) is/are true?
 - i. Evaluate as max(a[1], ..a[n]) = larger(a[1], max
 (a[2],..a[n])) where, larger (a,b) is a pre-defined function
 - ii. If a[1], a[2]...a[n] are on a shared memory (common pool) then a large number of threads can each evaluate larger (a, b) leaving the final result in the pool
 - iii. A number of processes each holding a single value a [i] arranged in a ring can pass values among its neighbours each evaluating larger (a, b) leaving the last process with the maximum value

- a. (ii) makes use of the stack for evaluation
- b. (i) is a message passing evaluation
- c. (iii) is a parallel evaluation
- d. (iii) is a functional evaluation
- e. (ii) has the highest speed up

Answers Questions 13-15 based on the following list of computational problems.

- i. Face detection in crowds
- ii. Electricity power utilisation minimisation (for air conditioning, ventilation, lighting and escalator usage etc.) in green building design
- iii. Google's Alphazero, the self-learning chess player
- iv. Supply chain logistics (vehicles, personnel, fuel, capacity, delivery timing etc.) optimisation
- 13. A pattern driven computing model would be a core part of the solution in
 - a. (i) and (iii) only b. (i) and (ii) only c. (ii) and (iii) only d. all of (i) to (iv) e. none of the above
- 14. An evolution driven model will be a core part of the solution in
 - a. (i) and (ii) only b. (ii) and (iv) only c. (ii) and (iii) only d. (ii) only e. (iv) only
- 15. A rule based instruction driven model is likely to be a core part of the solution in
 - a. (i) only
- b. (ii) only
- c. (iii) only
- d. (iv) only
- e none

Answer Questions 16-17 based on the following statements:

- i. In a continuous piece of Indian classical music, the seven notes Sa, Ri, Ga, Ma, Pa, Da, Ni occurs as a permutation like, ... Sa, Sa, Ri, Ga, Ga, Da.....
- ii. The finite state automaton (FSA) described by $\{\{q_1, q_2, q_3\}, \{0,1\}, \delta, q_1, \{q_2\}\}$ with δ given by

δ	q ₁	q ₂	qз
0	q ₂	qз	q ₂
1	q ₁	q ₃	q ₁

- 16. Which of the following statement(s) is/are true?
 - i. Whereas (i) is non deterministic, (ii) is a deterministic FSA.
 - ii. Instead of basing on an input alphabet, state transitions in (i) occur probabilistically.
 - iii. Whereas there is no accepting state in (i), there is an accepting state in (ii).
 - a. (i) only
- b. (ii) only
- c. (iii) only
- d. (i) and (iii) only
- e. all
- 17. Which of the following statement(s) is/are true about (ii)?
 - i. It has a binary alphabet with a single accepting state q2.
 - ii. It accepts the string 0ε
 - iii. The language of acceptance is $\{ w \mid w \text{ has odd number of zeroes following zero (nil) or more number of ones} \}$
 - a. (i) only
- b. (ii) only
- c. (iii) only
- d. (i) and (iii) only
- e. all
- 18. An algorithm which has a time complexity of $O(\log \log n)$ takes 3 seconds to execute on a particular computer when n = 256. What would be the most likely time it would take when n = 65536?
 - a. 128 sec.
- b. 256 sec.
- c. 384 sec.
- d. 4 sec.
- e. 1536 sec.
- 19. Which of the given options below provides an increasing order of complexity of functions f_1 , f_2 , f_3 , and f_4 for large n?

$$f_1(n) = 2^n$$

$$f_2(n) = \log (n^{\log n})$$

$$f_3(n) = \log(\log n)$$

$$f_4(n) = n^{\log n}$$

a.
$$f_3, f_4, f_2, f_1$$

b.
$$f_3, f_2, f_1, f_4$$

- c. f_3, f_2, f_4, f_1
- d. f_2, f_3, f_4, f_1
- e. f_2, f_3, f_1, f_4
- 20. Which of the following statement(s) is/are true about low level (machine code) programming?
 - i. There are three broad types of processor instruction sets using which low level programming can be done: register based (RISC), memory based (CISC) and stack based
 - ii. Programmer has a lot of freedom to use a large number of registers when RISC instruction sets are used
 - iii. Memory to memory transfers dominate when stack instruction sets are used.

a.(i) only b. (ii) only c. (iii) only d. (i) and (ii) only e. all

•

. . .

•

(

•

.(