DOMAIN INVARIANT TRANSFER KERNEL LEARNING

Guide: Prof. Harish Karnick

Md Enayat Ullah, 12407 Abheet Aggarwal, 12012 December 2, 2015

Indian Institute of Technology Kanpur

MOTIVATION

MOTIVATION

- · Generalization Error Bound for identical probability distributions is guaranteed by Statistical Learning Theory.[1]
- · Big data era resulted in proliferation of huge amount of hetrogenous data.
- · Performance drops significantly when standard supervised classifiers are evaluated on datasets outside their domain.[2]

LITERATURE REVIEW

DISTRIBUTION DISCREPANCY(PARAMETRIC)

· Kullback-Leibler Divergence, Bregman divergence:

$$D_{KL}(P,Q) = \int_{-\infty}^{\infty} p(x) \log \frac{p(x)}{q(x)} dx$$

Problem: Density-estimation: non-trivial.

DISTRIBUTION DISCREPANCY(NON-PARAMETRIC)

• Theorem: Let p and q be probability measures and \mathcal{H} be a universal RKHS, then MMD(p,q)=0 iff p=q.

$$MMD(p,q) \triangleq \sup_{\|f\|_{\mathcal{H}} \le 1} (\mathbb{E}_{x \sim p}[f(x)] - \mathbb{E}_{z \sim q}[f(z)])$$

$$MMD(\mathcal{X}, \mathcal{Z}) \triangleq \left\| \frac{1}{n} \sum_{i=1}^{n} \phi(x_i) - \frac{1}{m} \sum_{j=1}^{m} \phi(z_j) \right\|_{\mathcal{H}}$$

- \cdot ϕ : Encapsulates the higher-order statistics.
- **Problem:** Involves an intermediate SDP step $\sim O(n^{6.5})$ Computationally Prohibitive.

5

OTHER APPROACHES

 Multiple Kernel Learning(MKL): Ensemble of pre-computed kernels.[3]

Problem: Inadequate to fully encode the data distribution

 Surrogate Kernel Matching(SKM): Linearly transforms the source kernel onto the eigenspace of target kernel.[4]

Problem: Cannot capture non-linear kernel maps.

APPROACH

PROBLEM DEFINITION: DOMAIN

• **Domain**: A domain \mathcal{D} is composed of an d-dimensional feature space \mathcal{F} and a marginal probability distribution P(x) i.e. $\mathcal{D} = \{\mathcal{F}, P(x)\}, x \in \mathcal{F}.$

PROBLEM DEFINITION: TKL

- Transfer Kernel Learning: Given a labeled source domain $\mathcal{Z} = \{(z_1, y_1), ...(z_m, y_m)\}$ and an unlabeled target domain $\mathcal{X} = \{x_1, ..., x_n\}$ with $\mathcal{F}_{\mathcal{Z}} = \mathcal{F}_{\mathcal{X}}, \mathcal{Y}_{\mathcal{Z}} = \mathcal{Y}_{\mathcal{X}}$, we learn a domain-invariant kernel $k(z, x) = \langle \phi(z), \phi(x) \rangle$ such that $P(\phi(z)) \simeq P(\phi(x))$.
- **Problem:** ϕ cannot be explicitly represented.

OVERVIEW

 $P(\phi(X)) \sim P(\phi(Z)) \implies K_{\mathcal{X}} \sim K_{\mathcal{Z}}$ [4] **Problem**: Empirical(Data-dependent) kernel matrices, different dimensions $K_{\mathcal{Z}} \in \mathbb{R}^{m \times m}$, $K_{\mathcal{X}} \in \mathbb{R}^{n \times n}$

· Solution:

- · Generate $\overline{K}_{\mathcal{Z}}$ extrapolated, using the eigensystem of $K_{\mathcal{X}}$ (embodies the structure of X) Nystrom Approximation
- · Match extrapolated $\overline{K}_{\mathcal{Z}}$ to ground truth $K_{\mathcal{Z}}$ to learn hyperparameters Spectral Kernel design

NYSTOM APPROXIMATION

• Mercers Theorem: Let k(z,x) be a continuous symmetric non-negative function which is positive semi-definite and square integrable w.r.t. distribution p(x), then

$$k(z,x) = \sum_{i=1}^{\infty} \lambda_i \phi_i(z) \phi_i(x)$$

The eigenvalues λ_i 's and orthonormal eigenfunctions ϕ_i 's are the solutions of:

 $\int k(z,x)\phi_i(x)p(x)dx = \lambda_i\phi_i(z)$

Assumption: \mathcal{X} and \mathcal{Z} are identically distributed.

NYSTOM APPROXIMATION

· Nystrom Approximation(Quadrature formulae)[5] :

$$\sum_{j=1}^{n} \frac{k(z, x_j)\phi_i(x_j)}{n} \simeq \lambda_i \phi_i(z)$$

- $\cdot \ \overline{K}_{\mathcal{Z}} = \overline{\Phi}_{\mathcal{Z}} \Lambda_{\mathcal{X}} \overline{\Phi}_{\mathcal{Z}}^T$
- · However, Nystrom Approximation is only valid of identical distributions.
- · Nystrom Approximation Error(NAE) essentially embodies MMD, and in case of different distributions, NAE tends to be very large.
- · Minimizing NAE $\equiv K_{\mathcal{X}} = K_{\mathcal{Z}} \equiv P(\phi(x)) = P(\phi(z))$

SPECTRAL KERNEL DESIGN

• Theorem:If a positive semi-definite kernel matrix $\mathbb{K} \in \mathbb{R}_{n \times n}$ has eigensystem $\{\gamma_i, \phi_i\}_{i=1}^n, \gamma_1 \geq ... \geq \gamma_n \geq 0$, then the family of matrices

$$K_{\lambda} = \sum_{i=1}^{n} \lambda_{i} \phi_{i} \phi_{i}^{\mathsf{T}}, \lambda_{1} \geq ... \geq \lambda_{n} \geq 0$$

will produce PSD kernels with K_{λ} as kernel matrices

· How is it different from MKL?

EIGENSYSTEM RELAXATION

- · Learnable parameters: $\overline{K}_{\mathcal{Z}} = \overline{\Phi}_{\mathcal{Z}} \Lambda \overline{\Phi}_{\mathcal{Z}}^{\mathsf{T}}$
- · Kernel matching across domains

$$\min_{\Lambda} \left\| \overline{K}_{\mathcal{Z}} - K_{\mathcal{Z}} \right\|_{\mathcal{F}}^{2} = \left\| \overline{\Phi}_{\mathcal{Z}} \Lambda \overline{\Phi}_{\mathcal{Z}}^{T} - K_{\mathcal{Z}} \right\|_{\mathcal{F}}^{2}$$
$$\lambda_{i} \ge \zeta \lambda_{i+1}, i = 1, ... n - 1$$
$$\lambda_{i} \ge 0, i = 1, ... n$$

- · ζ (DampingFactor) ≥ 1
 - · Eigenspecturm of PSD follows Power law.
 - · Larger eigenvectors contributes more to the knowledge transfer.

· QP problem:

$$\min_{\lambda} (\lambda^{\mathsf{T}} \mathbf{Q} \lambda - 2 \mathbf{r}^{\mathsf{T}} \lambda)$$
$$C \lambda \ge 0$$
$$\lambda \ge 0$$

· Where:

$$Q = (\overline{\Phi}_{\mathcal{Z}}^{T} \overline{\Phi}_{\mathcal{Z}}) \circ (\overline{\Phi}_{\mathcal{Z}}^{T} \overline{\Phi}_{\mathcal{Z}}^{T})$$

$$r = diag(\overline{\Phi}_{\mathcal{Z}}^{T} \overline{\Phi}_{\mathcal{Z}}^{T})$$

$$C = I - \zeta \overline{I}$$

• Improvement: Real-world data usually exhibit the eigengap property r = min(500, n). Take $\lambda \in \mathbb{R}^{r \times 1}$.

SCALABLE IMPLEMENTATION

- Intuition: Why not extrapolate the Kernel matrix $K_{\mathcal{X}}$ using a small sample of \mathcal{X} ?
- $\begin{array}{c} \cdot \ \Phi_{\mathcal{X}} \simeq K_{\mathcal{X}\hat{\mathcal{X}}} \Phi_{\hat{\mathcal{X}}} \lambda_{\hat{\mathcal{X}}}^{-1} \\ \overline{\Phi}_{\hat{\mathcal{Z}}} \simeq K_{\hat{\mathcal{Z}}\mathcal{X}} \Phi_{\mathcal{X}} \lambda_{\hat{\mathcal{X}}}^{-1} \end{array}$
- · Cross domain Nystrom Approximation: $\overline{\Phi}_{\mathcal{Z}} \simeq \mathcal{K}_{\mathcal{Z}\hat{\mathcal{Z}}} \overline{\Phi}_{\hat{\mathcal{Z}}} \Lambda_{\hat{\mathcal{X}}}^{-1}$

SUPPORT VECTOR MACHINES

- · Trained on source kernel matrix $\overline{K}_{\mathcal{Z}} = \overline{\Phi}_{\mathcal{Z}} \Lambda \overline{\Phi}_{\mathcal{Z}}^{\mathsf{T}}$
- · Applied on the cross-domain kernel matrix $\overline{K}_{\mathcal{X}\mathcal{Z}} = \Phi_{\mathcal{X}} \Lambda \overline{\Phi}_{\mathcal{Z}}^{T}$

$$y_{\mathcal{X}} = \overline{K}_{\mathcal{X}\mathcal{Z}}(\alpha \circ y_{\mathcal{Z}}) + b$$

COMPUTATIONAL COMPLEXITY

Algorithm: Transfer Kernel Learning	
Compute $K_Z, K_X, K_Z X$ by kernel k	$O(d(m+n)^2)$
Eigendecompose $\mathcal{K}_{\mathcal{X}}$ for $\{\Lambda_{\mathcal{X}}, \Phi_{\mathcal{X}}\}$	$O(rn^2)$
Extrapolate for source eigensystem $\overline{\Phi}_{\mathcal{Z}}$	O(rmn)
Solve QP problem for eigenspectrum λ	$O(rn^2 + r^3)$

Overall Complexity: $O(d + r)(m + n)^2$

APPROXIMATION ERROR ANALYSIS

$$\cdot \epsilon_{\mathsf{Nys}} = \| \mathsf{K}_{\mathcal{Z}} - \mathsf{K}_{\mathcal{Z}\mathcal{X}} \mathsf{K}_{\mathbb{X}}^{-1} \mathsf{K}_{\mathcal{X}\mathcal{Z}} \|_{\mathcal{F}}$$

$$\cdot \epsilon_{TKL} = \|\overline{\Phi}_{\mathcal{Z}} \Lambda \overline{\Phi}_{\mathcal{Z}}^{T} - K_{\mathcal{Z}}\|$$

$$~\cdot~ \epsilon_{TKL} \leq \epsilon_{NyS} \leq 4m\sqrt[2]{C_k mn\epsilon} + C_k mn\epsilon \|K_{\mathcal{X}}^{-1}\|_{\mathcal{F}}$$

RESULTS

RESULTS, EXPERIMENTS

- · Dataset
 - · Text
 - · 20-Newsgroups: 4 sub-categories
 - · Reuters: 4 sub-categories
 - · Images
 - · Caltech+Amazon : 256 and 31 sub-categories

RESULTS, EXPERIMENTS

Tuned Parameters: $C = 10, \zeta = 2$

Dataset	SVM	TKL
orgs vs people	69.24	76.40
orgs vs place	63.71	75.11
comp vs rec	85.51	90.44
comp vs sci	74.23	83.42
Amazon vs Caltech	62.90	69.80

Table: Accuracies

CONCLUSION AND FUTURE WORK

· Conclusions:

- Domain-invariant kernel learned by directly matching source and target distributions in RKHS.
- · Learned a family of spectral kernals extrapolated by target eigenspace by minimizing the NAE.
- · Outperforms the standard SVM on benchmark datasets.

· Future Work:

- · Non power law damping constraints.
- r = min(500, n) eigenvector selection method can be improved.

REFERENCES I

- V. N. Vapnik and V. Vapnik, Statistical learning theory, vol. 1. Wiley New York, 1998.
- S. J. Pan and Q. Yang, "A survey on transfer learning," *Knowledge and Data Engineering, IEEE Transactions on*, vol. 22, no. 10, pp. 1345–1359, 2010.
- L. Duan, I. W. Tsang, and D. Xu, "Domain transfer multiple kernel learning," *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, vol. 34, no. 3, pp. 465–479, 2012.

REFERENCES II

K. Zhang, V. Zheng, Q. Wang, J. Kwok, Q. Yang, and I. Marsic, "Covariate shift in hilbert space: A solution via sorrogate kernels," in *Proceedings of the 30th International Conference on Machine Learning*, pp. 388–395, 2013.

K. Zhang, I. W. Tsang, and J. T. Kwok, "Improved nyström low-rank approximation and error analysis," in *Proceedings of the 25th international conference on Machine learning*, pp. 1232–1239, ACM, 2008.

