

DATA SCIENCE

Procesamiento Distribuído con Apache Spark

Introduction to stream processing

Spark Structured Streaming

Spark MLlib

Práctica 4

Stream Processing

Stream Processing

Los datos se origin como un flujo constante

Procesamiento **batch** => datasets finitos

Procesamiento de **streams** => datasets infinitos

Stream processing se refiere a procesar el dato en el instante que se recibe de manera contínua.

Operaciones sobre streams

FILTER

INNER JOIN

Windowing de un stream

Consiste en dividir un stream en partes discretas para computar métricas con contexto (count, min, max, median, etc.)

Windowing

PROCESSING TIME WINDOW

EVENT TIME WINDOW

Tiempo del eventos vs Tiempo de Procesamiento

- Tiempo del evento: momento en el tiempo donde ocurrió el evento
- Tiempo de procesamiento:
 momento en el cual el sistema
 recibe el dato del evento y lo
 procesa.
- Idealmente iguales pero por lo general tienen diferencias.

Tiempo del eventos vs Tiempo de Procesamiento

Tipos de Procesamiento

Spark Structured Streaming

Utilizando Spark Streaming

Data stream as an unbounded Input Table

- Spark se ocupa de mantener la consistencia entre el ingreso de datos, el procesamiento y la escritura al destino.
- Spark necesita fuentes de datos donde los mismos pueden volver a ser leídos una vez consumidos (Kafka, Kinesis, HDFS).
- Se describe la query a correr similar a una operación sobre
 Dataframes y Spark se ocupa de correrla constantemente.

Ejemplo

14

Modelo de ejecución

Modos de Output

- Append: solamente las filas nuevas agregadas a la tabla de procesamiento serán escritas al storage externo.
- Completo: toda la tabla de resultados en memoria será enviada al storage externo en cada trigger.
- Update: solamente las filas que tengan cambios serán actualizadas en el sistema externo. Este modo solamente funciona con destinos que permitan updates como MySQL.

Watermarking

Watermarking es una forma en la cual herramientas como Spark simbolizan que no van a procesar mensajes más viejos que cierto tiempo

```
windowedCountsDF = \
eventsDF \
  .withWatermark("eventTime", "10 minutes") \
  .groupBy(
    "deviceId",
    window("eventTime", "10 minutes", "5 minutes")) \
  .count()
```

Ejemplo con Watermarking

www.digitalhouse.com (<)>

Spark MLlib

Spark MLlib

- MLlib estandariza muchos algoritmos y técnicas de feature engineering para combinarlos en un mismo workflow denominado Pipeline.
- Cuando procesamos texto para predicción tenemos que:
 - Dividir en palabras el texto de cada documento.
 - Convertir estas palabras en un vector de features.
 - Entrenar un modelo con el vector y los labels asociados.
 - Realizar predicciones sobre nuevos documentos.

- En MLlib un workflow se representa como un objeto Pipeline con muchos PipelineStages (Transformers y Estimators).
- Transformer: es un algoritmo que transforma un DataFrame en otro con el método transform().
- Estimator: algoritmo que puede ser entrenado con los datos con el método fit() y da como resultado un Transformer.
- Parameter: tanto los Estimators como los Transformers tienen parámetros que permiten configurarlos.

Spark MLlib

www.digitalhouse.com

Práctica

