Wrap Up

- Fourier Transform
- · Sampling, Modulation, Filtering
- · Noise and the Digital Abstraction
- · Binary signaling model and Shannon Capacity

Copyright © 2007 by M.H. Perrott All rights reserved.

Cosines and Sines as Basis Functions

 Periodic functions can be approximated by the addition of weighted cosine and sine waveforms with progressively increasing frequency

Fourier Series and Fourier Transform

 The Fourier Series deals with periodic signals

$$x(t) = \sum_{n = -\infty}^{\infty} \hat{X}_n e^{jnw_o t}$$

$$\hat{X}_n = \frac{1}{T} \int_{t_0}^{t_0 + T} x(t)e^{-jnw_0 t} dt$$

 The Fourier Transform deals with non-periodic signals

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df$$

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

Graphical View of Fourier Series

Graphical View of Fourier Transform

$$X(f) = \frac{A\sin(2\pi fT)}{\pi f}$$

This is called a sinc function

M.H. Perrott@2007

Filtering in Continuous and Discrete Time

- · Lowpass, highpass, bandpass filtering
- · Filter response to cosine wave inputs
- · Discrete-Time Fourier Transform
- · Filtering based on difference equations

Copyright © 2007 by M.H. Perrott All rights reserved.

Motivation for Filtering

- · Filtering is used to remove undesired signals outside of the frequency band of interest
 - Enables selection of a specific radio, TV, WLAN, cell phone, cable TV *channel* ...
 - Undesired channels are often called interferers

Lowpass Filter

Highpass Filter

Bandpass Filter

Why is Bandpass Filtering Useful?

- · Allows removal of interfering signals
 - Highpass filtering would be of limited use here
- Typically higher complexity implementation than with lowpass or highpass filters
 - Many RF systems such as cell phones use specialized components called *SAW filters* to achieve bandpass filtering

A More Formal Treatment of Filters

- · An ideal filter would have a "brickwall" magnitude response and zero phase response
 - Practical filters have a more gradual magnitude *rolloff* and a non-zero phase response
- Design of the filter usually focuses on getting a reasonable magnitude rolloff with a specified cutoff frequency f_c (i.e., filter bandwidth)

Designing and Using Filters Within Matlab

- Our lab exercises will have you design and use filters in Matlab
 - Matlab will interface to the USRP board in order to receive "real world" signals from the antenna
- Matlab framework is based on discrete-time sequences (which are indexed on integer values)
 - Correspond to samples of corresponding real world signals (which are continuous-time in nature)

We need another Fourier analysis tool

The Discrete-Time Fourier Transform

- Allows us to deal with non-periodic, discrete-time signals
- · Frequency domain signal is periodic in this case

$$x[n] \Leftrightarrow X(e^{j2\pi\lambda})$$

Where:

$$x[n] = \int_{-1/2}^{1/2} X(e^{j2\pi\lambda})e^{j2\pi\lambda n}d\lambda$$

$$X(e^{j2\pi\lambda}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j2\pi\lambda n}$$

Note: fft function in Matlab used to compute DTFT

Relating to Samples of 'Real World' Signals

- Samples of a continuous-time signal with sample period T leads to frequency domain signal with period 1/T
 - We simply scale frequency axis of fft in Matlab
- · We will say much more about sampling later ...

Filters Within Matlab

- · Implemented as difference equations
 - Current output, y[n], depends on weighted values of previous output samples and current and previous input samples, x[n]

$$y[n] = \sum_{k=1}^{M} a_k y[n-k] + \sum_{k=0}^{N} b_k x[n-k]$$

• Group a and b coefficients as vectors:

$$\mathbf{a} = [a_0 \ a_1 \ \cdots \ a_M], \quad \mathbf{b} = [b_0 \ b_1 \ \cdots \ b_N]$$

· Execute filter using the filter command:

$$y = filter(b, a, x);$$

FIR Filters

 Finite Impulse Response (FIR) filters use only b coefficients in their implementation

$$y[n] = \sum_{k=0}^{N} b_k x[n-k] \Rightarrow H(e^{j2\pi\lambda}) = \sum_{k=0}^{N} b_k e^{-j2\pi\lambda k}$$

· Example:

Filter Order for FIR Filters

$$\Rightarrow H(e^{j2\pi\lambda}) = \frac{1 - e^{-j2\pi\lambda(N+1)}}{1 - e^{-j2\pi\lambda}}$$

Consider two different values for N

- · Higher N leads to steeper filter response
 - We refer to N as the order of the filter

FIR Filter Design in Matlab

- Lowpass, highpass, and bandpass filters can be realized by appropriately scaling the relative value of the b coefficients
 - Higher order (i.e., higher M) leads to steeper responses
- · Perform FIR filter design using fir1 command
- Frequency response observed with freqz command

See Prelab portion of Lab 3 for details ...

AM Modulation and Demodulation

- Multiplication (i.e., mixing) operation shifts in frequency
 - Also creates undesired high frequency components at receiver
- Lowpass filtering passes only the desired baseband signal at receiver

M.H. Perrott@2007 Wrap Up, Slide 8

Frequency Domain Analysis

- When transmitter and receiver local oscillators are matched in phase:
 - Demodulated signal constructively adds at baseband

M.H. Perrott@2007 Wrap Up, Slide 9

I/Q Modulation

- Modulate with both a cosine and sine wave
 - I and Q channels can be broadcast over the same frequency band
- I/Q modulation allows twice the amount of information to be sent compared to basic AM modulation with same bandwidth

Energy Transfer in Wireless Communication

- Receiver antenna is limited in its ability to capture transmitter energy according to its area and distance, r, from transmitter
- · Noise in the receiver causes corruption
 - Amount of corruption depends on signal-to-noise ratio

M.H. Perrott©2007 Wrap Up, Slide 11

The Need for Sampling

- · The boundary between analog and digital
 - Real world is filled with continuous-time signals
 - Computers (i.e. Matlab) operate on sequences
- Crossing the analog-to-digital boundary requires sampling of the continuous-time signals

M.H. Perrott@2007 Wrap Up, Slide 12

Sampling Continuous-Time Signals

- · Impulse train and its Fourier Transform
- · Impulse samples versus discrete-time sequences
- · Aliasing and the Sampling Theorem
- · Anti-alias filtering
- · Comparison of FT, DTFT, Fourier Series

Copyright © 2007 by M.H. Perrott All rights reserved.

An Analytical Model for Sampling

Two step process

- Sample continuous-time signal every T seconds
 - · Model as multiplication of signal with impulse train
- Create sequence from amplitude of scaled impulses
 - Model as rescaling of time axis (T goes to 1)
 - Notation: replace impulses with stem symbols

Can we model this in the frequency domain?

Fourier Transform of Impulse Train

- Impulse train in time corresponds to impulse train in frequency
 - Spacing in time of T seconds corresponds to spacing in frequency of $1/T\,\mathrm{Hz}$
 - Scale factor of 1/T for impulses in frequency domain
 - Note: this is painful to derive, so we won't ...
- The above transform pair allows us to see the following with pictures
 - Sampling operation in frequency domain
 - Intuitive comparison of FT, DTFT, and Fourier Series

Frequency Domain View of Sampling

 Recall that multiplication in time corresponds to convolution in frequency

$$x(t)y(t) \Leftrightarrow X(f) * Y(f)$$

 We see that sampling in time leads to a periodic Fourier Transform with period 1/T

Frequency Domain View of Output Sequence

- · Scaling in time leads to scaling in frequency
 - Compression/expansion in time leads to expansion/compression in frequency
- \cdot Conversion to sequence amounts to \mathcal{T} going to 1
 - Resulting Fourier Transform is now periodic with period 1
 - Note that we are now essentially dealing with the DTFT

Summary of Sampling Process

Sampling leads to periodicity in frequency domain

We need to avoid overlap of replicated signals in frequency domain (i.e., aliasing)

The Sampling Theorem

Overlap in frequency domain (i.e., aliasing) is avoided if:

$$\frac{1}{T} - f_{bw} \ge f_{bw} \quad \Rightarrow \quad \frac{1}{T} \ge 2f_{bw}$$

• We refer to the minimum 1/T that avoids aliasing as the *Nyquist* sampling frequency

Example: Sample a Sine Wave

Sample rate is well above Nyquist rate

- · Time domain: resulting sequence maintains the same period as the input continuous-time signal
- · Frequency domain: no aliasing

Increase Input Frequency Further ...

Sample rate is at Nyquist rate

- · Time domain: resulting sequence still maintains the same period as the input continuous-time signal
- Frequency domain: no aliasing

Increase Input Frequency Further ...

Sample rate is at half the Nyquist rate

- Time domain: resulting sequence now appears as a DC signal!
- Frequency domain: aliasing to DC

Increase Input Frequency Further ...

Sample rate is well below the Nyquist rate

- Time domain: resulting sequence is now a sine wave with a different period than the input
- · Frequency domain: aliasing to lower frequency

The Issue of High Frequency Noise

- · We typically set the sample rate to be large enough to accommodate full bandwidth of signal
- Real systems often introduce noise or other interfering signals at higher frequencies
 - Sampling causes this noise to alias into the desired signal band

Anti-Alias Filtering

- Practical A-to-D converters include a continuoustime filter before the sampling operation
 - Designed to filter out all noise and interfering signals above 1/(2T) in frequency
 - Prevents aliasing

Using the Impulse Train to Compare the FT, DTFT, and Fourier Series

Relationship Between FT and DTFT

Relationship Between FT and Fourier Series

	<u>FT</u>	Fourier Series
Time:	Continuous, Non-Periodic	Continuous, Periodic
Freq:	Non-Periodic, Continuous	Non-Periodic, Discrete

Downsampling, Upsampling, and Reconstruction

- · A-to-D and its relation to sampling
- · Downsampling and its relation to sampling
- · Upsampling and interpolation
- · D-to-A and reconstruction filtering
- · Filters and their relation to convolution

Copyright © 2007 by M.H. Perrott All rights reserved.

Digital Processing of Analog Signals

- Digital circuits can perform very complex processing of analog signals, but require
 - Conversion of analog signals to the digital domain
 - Conversion of digital signals to the analog domain
 - Downsampling and upsampling to match sample rates of A-to-D, digital processor, and D-to-A

Inclusion of Filtering Operations

- A-to-D and downsampler require anti-alias filtering
 - Prevents aliasing
- D-to-A and upsampler require interpolation (i.e., reconstruction) filtering
 - Provides `smoothly' changing waveforms

Summary of Sampling Process (Review)

Sampling leads to periodicity in frequency domain

We need to avoid overlap of replicated signals in frequency domain (i.e., aliasing)

The Sampling Theorem (Review)

Overlap in frequency domain (i.e., aliasing) is avoided if:

$$\frac{1}{T} - f_{bw} \ge f_{bw} \quad \Rightarrow \quad \frac{1}{T} \ge 2f_{bw}$$

• We refer to the minimum 1/T that avoids aliasing as the *Nyquist* sampling frequency

A-to-D Converter

- Operates using both a sampler and quantizer
 - Sampler converts *continuous-time* input signal into a discrete-time sequence
 - Quantizer converts continuous-valued signal/sequence into a discrete-valued signal/sequence
 - Introduces quantization noise as discussed in Lab 4

Frequency Domain View of A-to-D

- Analysis of A-to-D same as for sampler
 - For simplicity, we will ignore the influence of quantization noise in our picture analysis
 - In lab 4, we will explore the influence of quantization noise using Matlab

Downsampling

- · Similar to sampling, but operates on sequences
- Analysis is simplified by breaking into two steps
 - Multiply input by impulse sequence of period N samples
 - Remove all samples of $x_s[n]$ associated with the zero-valued samples of the impulse sequence, p[n]
 - Amounts to scaling of time axis by factor 1/N
 Downsampling Upsamp
 Downsamp
 Downsamp

Frequency Domain View of Downsampling

- Multiplication by impulse sequence leads to replicas of input transform every 1/N Hz in frequency
- Removal of zero samples (i.e., scaling of time axis)
 leads to scaling of frequency axis by factor N

The Need for Anti-Alias Filtering

 Removal of anti-alias filter would allow undesired signals or noise to alias into desired signal band

What is the appropriate bandwidth of the anti-alias lowpass filter?

Upsampler

- Consists of two operations
 - Add N-1 zero samples between every sample of the input
 - \cdot Effectively scales time axis by factor N
 - Filter the resulting sequence, $u_p[n]$, in order to create a smoothly varying set of sequence samples
 - Proper choice of the filter leads to interpolation between the non-zero samples of sequence $u_p[n]$ (discussed in Lab 5)

Frequency Domain View of Upsampling

- Addition of zero samples (scaling of time axis) leads to scaling of frequency axis by factor 1/N
- Interpolation filter removes all replicas of the signal transform except for the baseband copy

D-to-A Converter

- · Simple analytical model includes two operations
 - Convert input sequence samples into corresponding impulse train
 - Filter impulse train to create a smoothly varying signal
 - Proper choice of the reconstruction filter leads to interpolation between impulse train values

Frequency Domain View of D-to-A

- Conversion from sequence to impulse train amounts to scaling the frequency axis by sample rate of D-to-A (1/T)
- Reconstruction filter removes all replicas of the signal transform except for the baseband copy

A Common Reconstruction Filter

- Zero-order hold circuit operates by maintaining the impulse value across the D-to-A sample period
 - Easy to implement in hardware

How do we analyze this?

Filtering is Convolution in Time

 Recall that multiplication in frequency corresponds to convolution in time

$$x(t) * y(t) \Leftrightarrow X(f)Y(f)$$

 Filtering corresponds to convolution in time between the input and the filter impulse response

Frequency Domain View of Filtering

· Zero-order hold is not a great filter, but it's simple...

Advantages of Digital Processing

- Digital components correct small analog errors at each processing step
 - We can build large, reliable systems despite non-ideal components and the presence of bounded noise
- We can accommodate more precision by representing information with longer sequences of symbols
 - Except for the conversion steps, we can use simple digital components do achieve arbitrary precision in processing
- We abstract out the notion of "real time" when converting to sequences of discrete values
 - The speed of intervening digital processing steps is independent of the speed of conversion steps (e.g., we can combine many analog streams into a single high-speed digital stream).

M.H. Perrott@2007

Review of Analog I/Q Modulation

- · Consider modulating with both a cosine and sine wave and then adding the results
 - This is known as I/Q modulation
- The I/Q signals occupy the same frequency band, but one is real and one is imaginary
 - We can recover both of these signals

Review of Analog I/Q Demodulation

- · Demodulate with both a cosine and sine wave
 - Both I and Q channels are recovered!
- I/Q modulation allows twice the amount of information to be sent compared to basic AM modulation with same bandwidth

Summary of Analog I/Q Demodulation

Frequency domain view

· Time domain view

Digital I/Q Modulation

- · Leverage analog communication channel to send discrete-valued symbols
 - Example: send symbol from set {-3,-1,1,3} on both I and Q channels each symbol period
- At receiver, sample I/Q waveforms every symbol period
 - Associate each sampled I/Q value with symbols from set {-3,-1,1,3} on both I and Q channels

Advantages of going Digital

- Allows information to be "packetized"
 - Can compress information in time and efficiently send as packets through network
 - In contrast, analog modulation requires "circuit-switched" connections that are continuously available
 - Inefficient use of radio channel if there is "dead time" in information flow
- Allows error correction to be achieved
 - Less sensitivity to radio channel imperfections
- · Enables compression of information
 - More efficient use of channel
- Supports a wide variety of information content
 - Voice, text and email messages, video can all be represented as digital bit streams

Constellation Diagrams

- Plot I/Q samples on x-y axis
 - Example: sampled I/Q value of $\{1,-3\}$ forms a dot at x=1, y=-3
 - As more samples are plotted, constellation diagram eventually displays all possible symbol values
- Constellation diagram provides a sense of how easy it is to distinguish between different symbols

Sending Digital Bits

- Assign each I/Q symbol to a set of digital bits
 - Example: I/Q = {1,3} translates to bits of 1110
 - Gray coding minimizes bit errors when symbol errors are made
 - Example: I/Q = {1,1} translates to bits of 1010
 - Only one bit change from I/Q = {1,3}

The Impact of Noise

- valuesConstellation points no longer
 - Constellation points no longer consist of single dots for each symbol
- Issue: what is the best way to match received I/Q samples with their corresponding symbols?

Symbol Selection Based on Slicing

- Match I/Q samples to their corresponding symbols based on decision regions
 - Choose decision regions to minimize symbol errors
 - Decision boundaries are also called slicing levels

 $i_r(t)$

 $q_r(t)$

Receiver Output

Transitioning Between Symbols

- Transition behavior between symbols is influenced by both transmit I/Q input waveforms and receive filter
 - We will focus on impact of transition behavior at transmitter today
 - Ignore the impact of noise for this analysis

Influence of Transitions at Transmitter

- Ideal analog communication channel simply transports the transmitter I/Q signals to the receiver
- Constellation diagram can be constructed at *transmitter* to evaluate its performance
 - Bad constellation at transmitter implies bad one at receiver

Transitions and the Transmitted Spectrum

01

11

Baseband Input

- Want transmitted spectrum with minimal bandwidth
 - Wireless communication channels are a shared resource
- Issue: sharply changing
 I/Q waveforms lead to a wide bandwidth spectrum

Impact of Transmit Filter

- · Issue: can lead to intersymbol interference (ISI)
 - Constellation diagram displays vulnerability to making bit errors

Impact of SNR on Receiver Constellation

 SNR influenced by transmitted power, distance between transmitter and receiver, and noise

M.H. Perrott©2007 Wrap Up, Slide 18

Impact of Increased Signal on Constellation

- Increase in received signal power leads to increased separation between symbols
 - SNR is improved if noise level unchanged

Wrap Up, Slide 19

Quantifying the Impact of Noise

- · Minimum separation between symbols: d_{min}
- · PDF of noise: zero mean Gaussian PDF
 - Variance of noise sets the spread of the PDF
- Bit errors: occur when noise moves a symbol by a distance more than dmin/2

M.H. Perrott@2007 Wrap Up, Slide 20

The Binary Symmetric Channel Model

· Provides a binary signaling model of channel

M.H. Perrott@2007 Wrap Up, Slide 21

Resulting Bit Error Rate Versus SNR

Note:

- Bit Error Rate = P_e
- \cdot SNR (dB) =

$$10\log\left(\frac{(d_{min}/2)^2}{\sigma^2}\right)$$

Gaussian PDF for noise

Shannon Capacity

- · In 1948, Claude Shannon proved that
 - Digital communication can achieve arbitrary low bit-errorrates if appropriate *coding* methods are employed
 - The capacity of a *Gaussian channel* with bandwidth *BW* to support arbitrary low bit-error-rate communication is:

$$C = BW \log_2(1 + SNR)$$
 bits/second

Summary

- The Fourier Transform provides a powerful tool for analysis of sampling, modulation, and filtering
- The digital abstraction provides a practical implementation framework for complicated systems
 - Analog signaling is highly susceptible to noise
 - Digital signaling provides noise margin
- We can represent a digital communication channel with a binary signaling model
 - Bit errors are quantified in terms of the signal-to-noise ratio of the overall channel
- Claude Shannon introduced the concept of using coding methods to achieve arbitrarily low bit error rates across practical communication channels

M.H. Perrott©2007 Wrap Up, Slide 24