

A brief introduction about taus

Feng Zhang, Frank Jensen

CMS DAS @LPC 09/01/2023

Elementary particle family

Why taus

- Heaviest lepton: 1.78 GeV
- Understanding the nature of Higgs boson
- Search for Higgs-like couplings
- Puzzles about lepton universality and flavor violation

Examples of tau involved analyses

Profile of the tau lepton

Decay mode	Meson resonance	$\mathcal{B}\left[\% ight]$
$\overline{ au^- ightarrow \mathrm{e}^- \overline{ u}_\mathrm{e} u_ au}$		17.8
$ au^- o \mu^- \overline{ u}_\mu u_ au$		17.4
$ au^- ightarrow ext{h}^- u_ au$		11.5
$ au^- ightarrow ext{h}^- \pi^0 u_ au$	$\rho(770)$	26.0
$ au^- ightarrow \mathrm{h}^- \pi^0 \pi^0 u_ au$	$a_1(1260)$	10.8
$ au^- ightarrow ext{h}^- ext{h}^+ ext{h}^- ext{v}_ au$	a ₁ (1260)	9.8
$ au^- ightarrow h^- h^+ h^- \pi^0 \nu_ au$		4.8
Other modes with hadrons		1.8
All modes containing hadrons		64.8

- Tau is the only lepton heavy enough to decay into hadrons
- Finite lifetime 0.29 picosecond, nearly light speed (c ≈ 300K km/s), totally flight distance ≈ 90µm
- Around 35% of tau decays into light leptons and neutrinos
- 65% decays into hadrons + neutrinos
 - Reconstruct different decay modes to identify taus
 - We often say "taus" meaning "hadronic decay taus"

Tau reconstruction: hadrons-plus-strips algorithm

- \circ π^0 are reconstructed from e and γ deposits in rectangular regions in ECAL, called **strips**
- Input: charged hadrons, electrons, and photons reconstructed by the CMS particle-flow algorithm from a jet cone
- Reconstructed decay modes of taus:
 - 1-prong
 - 1-prong + π^0
 - 3-prongs (+ π^0 s)
- Charged hadrons (h) can be pions (predominately), Kaons

Decay mode	Meson resonance	$\mathcal{B}\left[\% ight]$
$ au^- ightarrow \mathrm{e}^- \overline{ u}_\mathrm{e} u_\mathrm{ au}$		17.8
$ au^- o \mu^- \overline{ u}_\mu u_ au$		17.4
$ au^- ightarrow h^- u_{ au}$		11.5
$ au^- ightarrow ext{h}^- \pi^0 u_ au$	$\rho(770)$	26.0
$ au^- ightarrow \mathrm{h}^- \pi^0 \pi^0 u_ au$	$a_1(1260)$	10.8
$ au^- ightarrow ext{h}^- ext{h}^+ ext{h}^- u_ au$	a ₁ (1260)	9.8
$ au^- ightarrow ext{h}^- ext{h}^+ ext{h}^- \pi^0 u_ au$		4.8
Other modes with hadrons		1.8
All modes containing hadrons		64.8

You will learn more about it in the first exercise

Find taus amongst jets, electrons, muons

- Quark and gluon formed jets are abundant at the LHC
- They usually contain charged hadrons and π0 s and lead to reconstructed tau candidates

- Distinguishing taus from them are essential:
 - Multiplicity, isolation (transverse momentum sum of particles other than the tau decay products)
 - No intermediate resonances with defined mass
 - Tau lifetime
- Multiplevariable (MVA) classifier:
 - Combine different piece of information above
 - Distinguish taus from jets, electrons, muons
- Deep neural network (DeepTau) classifier:
 - Advanced machine learning technique

You will learn more about it in the second exercise

Conclusion

- Tau reconstruction is complex and challenging but well worth the effort given its importance in Higgs physics, lepton universality, and many other new physics searches
- Significant algorithmic advances are still possible as recently demonstrated by new Deep neural network classifiers
- You will learn:
 - How taus are reconstructed and how efficient the tau reconstruction algorithm is
 - How well we can currently distinguish taus from jets (possibly electrons and muons)
- The goal is to:
 - Equip you with basic understanding of tau reconstruction and identification in CMS
 - Give you ideas how you can help improve taus!