4절 차수

• 아래 두 알고리즘 중에서 어떤 알고리즘 선택?

■ 알고리즘 A의 시간 복잡도: 100*n*

■ 알고리즘 B의 시간 복잡도: 0.01 n^2

• $0.01n^2$ 과 100n 중에 누구의 복잡도가 더 커보임?

- 정답: *n*의 크기에 따라 달라짐.
 - $n \le 10,000$: 알고리즘 B 선택
 - *n* > 10,000: 알고리즘 A 선택
- 이유:

$$0.01n^2 > 100n \quad \iff \quad n^2 > 10000n$$
$$\iff \quad n > 10000$$

"궁극적으로 더 빠름"

- 'n > 10,000인 임의의 양의 정수 n에 대해 $0.01n^2$ 이 100n 보다 크다'를 다르게 표현하면 다음과 같음.
 - $0.01n^2$ 이 100n 보다 궁극적으로 크다
- 다음 성질을 갖는 정수 $N \ge 0$ 이 존재할 때 f(n)이 g(n) 보다 궁극적으로 크다 라고 말함:
 - n > N인 임의의 양의 정수 n에 대해 f(n) > g(n).

- 시간 복잡도의 기준으로 볼 경우:
 - g(n)이 f(n) 보다 궁극적으로 빠르다 \iff f(n)이 g(n) 보다 궁극적으로 크다

차수(Θ , 쎄타)의 직관적 이해

$\Theta(n)$: 1차 시간 복잡도

- 100*n*
- 0.001n + 100
- 등등

$\Theta(n^2)$: 2차 시간 복잡도

- $5n^2$
- $0.1n^2$
 - + *n*
 - + 100
- 등등

$\Theta(n^3)$: 3차 시간 복잡도

- $7n^3$
- n^3
 - $+5n^2$
 - + 100n
 - + 2
- 등등

고차항의 지배력

• 예제: $0.1n^2 + n + 100$ 에서 2차 항 $0.1n^2$ 이 함수 전체를 지배함

n	$0.1n^{2}$	$0.1n^2 + n + 100$
10	10	120
20	40	160
50	250	400
100	1,000	1,200
1,000	100,000	101,100

복잡도 카테고리의 직관적 이해

• 1차, 2차, 3차 등의 시간복잡도를 갖는 함수들의 집합을 복잡도 카테고리라고 함.

매우 효율적인 알고리즘의 복잡도 예제

 $\Theta(1)$: 상수 복잡도

- 0
- 1
- 1000
- 1억 등등 모든 상수

$\Theta(\lg n)$: 로그 복잡도

- lg n
- 2 lg
 n
- $\frac{1}{2}$ \lg n +3

$\Theta(n)$: 1차 복잡도

- n
- 100*n*
- 0.001n + 10000

 $\Theta(n \mid \lg n)$: 엔 로그 엔(n \log n) 복잡도

경우에 따라 괜찮은 알고리즘의 복잡도 예제

 $\Theta(n^2)$: 2차 복잡도

- n^2
- $5n^2$
- $0.1n^2$
 - + *n*
 - + 100

$\Theta(n^3)$: 3차 복잡도

- n^3
- $0.001n^3$
 - $+5n^2$
 - +2n
 - +7
- $100n^3$
 - + *n*
 - + 100

사실상 사용할 수 없는 알고리즘의 복잡도 예제

 $\Theta(2^n)$: 지수 복잡도

 $\Theta(n!)$: 팩토리얼 복잡도

복잡도 함수의 증가율

시간복잡도별 실행시간 비교

• 가정: 단위연산 실행시간 = 1 ns (원서 오류 주의: 약 0.230 초)

n	lg n	n	$n \lg n$	n^2	n^3	2^n
10	$0.003~\mu$ s	0.01 μs	0.033 μs	$0.10~\mu$ s	$1.0~\mu$ s	1 μs
20	$0.004~\mu$ s	0.02 μs	$0.086~\mu$ s	$0.40~\mu$ s	$8.0~\mu$ s	1 ms
30	$0.005~\mu$ s	$0.03~\mu$ s	$0.147~\mu$ s	$0.90~\mu$ s	$27.0~\mu$ s	1 초
40	$0.005~\mu$ s	$0.04~\mu$ s	$0.213~\mu$ s	$1.60~\mu$ s	64.0 μs	18.3 분
50	$0.006~\mu$ s	0.05 μs	$0.282~\mu$ s	$2.50~\mu$ s	$125.0 \ \mu s$	13 일
10^2	$0.007~\mu$ s	$0.10~\mu$ s	0.664 μs	$10.00~\mu$ s	1.0 ms	4 × 10 ¹³ 년
10^{3}	$0.010~\mu$ s	$1.00~\mu$ s	9.966 µs	1.00 ms	1.0 초	
10 ⁴	$0.013~\mu s$	$10.00~\mu$ s	$130.000~\mu$ s	100.00 ms	16.7 분	
10 ⁵	$0.017~\mu$ s	$0.10~\mathrm{ms}$	1.670 ms	10.00 초	11.6 일	_
10^{6}	$0.020~\mu$ s	1.00 ms	19.930 ms	16.70 초	31.7 년	
10 ⁷	$0.023~\mu$ s	0.01 초	0.230 초	1.16 일	31, 709 년	
10 ⁸	$0.027~\mu$ s	0.10 초	2.660 초	115.70 일	3.17 × 10 ⁷ 년	
109	0.030 µs	1.00 초	29.900 초	31.70 년		

차수 정의

• 차수(Θ)를 엄밀하게 정의하려면 "큰 O(big O)"와 " Ω (Omega, 오메가)" 개념 필요

'큰 *O*' 표기법

- 다음 성질을 갖는 양의 실수 c와 음이 아닌 정수 N이 존재할 때 $g(n) \in O(f(n))$ 성립:
 - $n \ge N$ 인 임의의 정수 n에 대해 $g(n) \le c \cdot f(n)$

- $g(n) \in O(f(n))$ 읽는 방법:
 - g(n)은 f(n)의 큰 O이다.
 - g(n)의 점근적 상한은 f(n)이다.

• 의미: 입력크기 n에 대해 시간 복잡도 g(n)의 수행시간은 궁극적으로 f(n)보다 나쁘지는 않다.

'큰 O' 표기법 예제

•
$$n^2 + 10n \in O(n^2)$$

■
$$n \ge 10$$
인 경우: $n^2 + 10n$

$$\le 2n^2$$

 \blacksquare 그러므로 c=2와 N=10 선택

•
$$n^2 + 10n \in O(n^2)$$
:

■
$$n \ge 1$$
인 경우: $n^2 + 10n$

$$\leq n^2$$

$$+ 10n^2$$

$$= 11n^2$$

$$lacksymbol{\bullet}$$
 그러므로 $c=11$ 와 $N=1$ 선택

• $5n^2 \in O(n^2)$

■ $n \ge 0$ 인 경우: $5n^2 \le 5n^2$

 $lacksymbol{\bullet}$ 그러므로 c=5와 N=0 선택

•
$$T(n) = n(n-1)/2$$

 $\in O(n^2)$

■
$$n \ge 0$$
인 경우: $n(n-1)/2$
 $\le n^2/2$

■ 그러므로
$$c = 1/2$$
과 $N = 0$ 선택

•
$$n^2 \in O(n^2 + 10n)$$

■
$$n \ge 0$$
인경우: $n^2 \le 1 \times (n^2 + 10n)$

$$lacktriangle$$
 그러므로 $c=1$ 과 $N=0$ 선택

• $n \in O(n^2)$

■ $n \ge 1$ 인 경우: $n \le 1 \times n^2$ 이 성립한다.

 $lacksymbol{\bullet}$ 그러므로 c=1과 N=1 선택

- $n^3 \notin O(n^2)$
 - ullet c와 N을 아무리 크게 지정하더라도, N 보다 큰 어떤 수 n에 대해 $n^3 > c \cdot n^2$ 이 성립한다.
 - 예를 들어, n > c로 잡으면 됨.

• $O(n^2)$: 특정 양의 실수 c에 대해 c n^2 보다 궁극적으로 작은 값을 가지는 함수들의 집합

Ω 표기법

- 다음 성질을 갖는 양의 실수 c와 음이 아닌 정수 N이 존재할 때 $g(n) \in \Omega(f(n))$ 성립:
 - \blacksquare $n \ge N$ 인 임의의 정수 n에 대해 $g(n) \ge c \cdot f(n)$

• $g(n) \in \Omega(f(n))$ 읽는 방법:

■ g(n)은 f(n)의 오메가이다.

■ g(n)의 점근적 하한은 f(n)이다.

• 의미: 입력크기 n에 대해 시간 복잡도 g(n)의 수행시간은 궁극적으로 f(n)보다 효율적이지 못하다.

Ω 표기법 예제

- $n^2 + 10n \in \Omega(n^2)$
 - $n \ge 0$ 인 경우: $n^2 + 10n$ $\ge n^2$
 - $lacksymbol{\bullet}$ 그러므로 c=1과 N=0 선택

• $5n^2 \in \Omega(n^2)$

• $n \ge 0$ 인 경우: $5n^2 \ge 1 \cdot n^2$

 \blacksquare 그러므로, c=1과 N=0 선택

•
$$T(n) = n(n-1)/2$$

 $\in \Omega(n^2)$

■
$$n \ge 2$$
인 경우: $\frac{n(n-1)}{2}$ $\ge \frac{1}{4}n^2$

■ 그러므로 c = 1/4과 N = 2 선택

• $n^3 \in \Omega(n^2)$

- $n \ge 1 인 경우: n^3 \ge 1 \cdot n^2$
- \blacksquare 그러므로, c=1과 N=1 선택

- $n \notin \Omega(n^2)$
 - ullet c를 아무리 작게, N을 아무리 크게 지정하더라도, $n \leq c \cdot n^2$ 을 만족시키는 $n \geq N$ 이 존재.
 - 예를 들어, $n \ge 1/c$ 로 잡으면 됨.

• $\Omega(n^2)$: 특정 양의 실수 c에 대해 c n^2 보다 궁극적으로 큰 값을 가지는 함수들의 집합

Θ 표기법

• $g(n) \in \Theta(f(n))$ 읽는 방법:

■ g(n)의 f(n)의 **차수**이다.

❷ 표기법 예제

•
$$T(n) = n(n-1)/2$$
:
 $\in \Theta(n^2)$

■
$$n \ge 2$$
인 경우: $n(n-1)$
 $/2 \ge \frac{1}{4}n^2$

■
$$n \ge 0$$
인 경우: $n(n-1)$
 $/2 \le \frac{1}{2}n^2$

• 그러므로,
$$c = \frac{1}{4}$$
, $d = \frac{1}{2}$, $N = 2$.

작은 o(small o) 표기법

- 임의의 양의 실수 c에 대해 다음 성질을 갖는 음이 아닌 정수 N이 존재할 때 $g(n) \in o(f(n))$ 성립:
 - $n \ge N$ 인 임의의 정수 n에 대해 $g(n) \le c \cdot f(n)$
- $g(n) \in o(f(n))$ 읽는 방법:
 - g(n)은 f(n)의 '작은 오(small o)이다.

- 의미
- g(n)이 f(n)에 비해 궁극적으로 하찮을 만큼 작다.
- 알고리즘 분석적 측면: 복잡도 g(n)이 복잡도 f(n) 보다 궁극적으로 훨씬 좋다.
 - \circ 이유: c>0이 아무리 작더라도, n이 충분히 크면 g(n)< f(n) 성립하기 때문.

큰 O vs 작은 o

- 큰 O: 하나의 양의 실수 c에 대해서 부등식 성립
- 작은 o: 모든 양의 실수 c에 대해서 부등식 성립

작은 o 표기법 예제

- $n \in o(n^2)$
 - c > 0가 주어졌을 때, $n \ge 1/c$ 인 모든 n에 대해 $n \le c \cdot n^2$ 성립.

• $n \notin o(5n)$

■ c < 1/5인 경우, 임의의 음이 아닌 정수 n에 대해 $n > c \cdot 5n$ 성립.

```
• n^2 \notin o(5n)

■ n 이기때문.

\notin o(5n)
```

작은 o 특성

• g(n) 이면 다음도 성립: $\in o(f(n))$ $g(n) \in O(f(n)) - \Omega(f(n))$

● 증명: 생략.

주의

•
$$o(f(n)) \neq O(f(n)) - \Omega(f(n))$$

• 다음 함수 g(n)에 대해 $g(n) \in O(n) - \Omega(n)$ 이지만 $g(n) \notin o(n)$ 임: $g(n) = \begin{cases} n & \text{if } n\%2 = 0\\ 1 & \text{if } n\%2 = 1 \end{cases}$

차수의 특성

•
$$g(n) \in O(f(n)) \iff f(n) \in \Omega(g(n))$$

•
$$g(n) \in \Theta(f(n)) \iff f(n) \in \Theta(g(n))$$

• 임의의 *a*, *b* > 1에 대해

$$\log_a n \in \Theta(\log_b n)$$

즉, 로그 함수는 모두 동일한 복잡도 카테고리에 속함.

• b > a > 0이면 다음 성립:

$$a^n \in o(b^n)$$

즉, 지수 함수는 밑수가 다르면 다른 복잡도 카테고리에 속함.

• 임의의 양의 실수 *a*에 대해 다음 성립:

$$a^n \in o(n!)$$

즉, n!은 어떠한 지수 복잡도함수보다 더 나쁘다(느리다).

• 많이 언급되는 복잡도 카테고리를 순서대로 나열하면 다음과 같음:

$$\Theta(\lg n) \ \Theta(n) \ \Theta(n \lg n) \ \Theta(n^2) \ \Theta(n^j) \ \Theta(n^k) \ \Theta(a^n) \ \Theta(b^n) \ \Theta(n!)$$

- g(n)이 f(n)의 카테고리 보다 왼편에 위치한 카테고리에 속한 경우 다음 성립:

$$g(n) \in o(f(n))$$

• $c \ge 0, d > 0, g(n) \in O(f(n)), h(n) \in \Theta(f(n))$ 인 경우 다음 성립:

 $c \cdot g(n) + d \cdot h(n) \in \Theta(f(n))$

예제

```
• 😉
 (\log_4
  n
  \in \Theta
  (lg
  n
• lg
  n
 \in o
  (n
```

```
• 7n^2
\in \Theta
(n^2
```

• 10nlg n $+7n^2$ $\in \Theta$ (n^2)

• 3

극한(limit)을 이용하여 차수를 구하는 방법

정리

- $\lim_{n\to\infty} \frac{g(n)}{f(n)}$ 의 값이
 - 만약c > 0이면, $g(n) \in \Theta(f(n))$,
 - 만약0이면, $g(n) \in o(f(n))$,
 - 만약 ∞ , 즉, 발산하면, $f(n) \in o(g(n))$.

예제

•
$$\frac{n^2}{2} \in o(n^3)$$
:

$$\lim_{n \to \infty} \frac{n^2/2}{n^3} = \lim_{n \to \infty} \frac{1}{2n} = 0$$

• b > a > 0일 때, $a^n \in o(b^n)$:

$$\lim_{n \to \infty} \frac{a^n}{b^n} = \lim_{n \to \infty} \left(\frac{a}{b}\right)^n = 0$$

• a > 0일 때, $a^n \in o(n!)$

■ 증명 생략.

로피탈(L'Hopital)의 법칙

아래 조건이 성립한다고 가정하자.

$$\lim_{n\to\infty} f(n) = \lim_{n\to\infty} g(n) = \infty$$

그러면 다음이 성립한다.

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{g'(n)}{f'(n)}$$

예제

• 다음이 성립한다.

$$\lg n \in o(n)$$

• 이유

$$\lim_{n \to \infty} \frac{\lg n}{n} = \lim_{n \to \infty} \left(\frac{\frac{1}{n \ln 2}}{1} \right) = 0$$

예제

• 다음이 성립한다.

$$\log_a n \in \Theta(\log_b n)$$

• 이유

$$\lim_{n \to \infty} \frac{\log_a n}{\log_b n} = \lim_{n \to \infty} \left(\frac{\frac{1}{n \ln a}}{\frac{1}{n \cdot \ln b}} \right) = \frac{\log b}{\log a} > 0$$