CS565: INTELLIGENT SYSTEMS AND INTERFACES

Getting Started with NLP

Semester: July – November 2020

Ashish Anand

Associate Professor, Dept of CSE

IIT Guwahati

Recap

Defined NLP

Discussed two broad school of thoughts

Discussed existence of ambiguity of natural languages

Discussed different levels of NLP

Objective

- Getting started with NLP
 - Corpora
 - Text Pre-processing and Normalization

GETTING STARTED WITH NLP

Essential resources and basic pre-processing

Source: Corpora

• Corpora (plural for *corpus*: large, (un)structured set of texts)

- Different types of corpora
 - Monolingual
 - Parallel Multilingual/Comparable/Aligned
 - Learner Corpus
 - Diachronic Corpus

Building Corpora

- Organizational / Consortium effort
 - Linguistic Data Consortium (LDC) [www.ldc.upenn.edu]
 - European Language Resources Association (ELRA) [www.elra.info/en]
 - Indian Language Technology Proliferation and Deployment Centre [http://tdil-dc.in/index.php?lang=en]

Individual effort

Examples of Corpora

Corpus	Tokens	Types
Switchboard phone conversations	2.4 million	20000
Shakespeare	884,000	31000
Brown	1 million	38000
Google N-grams	1 trillion	13 million

Two ways to talk about words:

- 1. Tokens: number of running words
- 2. Types: number of distinct words

More Examples of Corpora

- Access to multiple corpus from tools like NLTK
- Building from databases such as PubMed, free text from web, Wikipedia, Social media platforms etc.
- Shared task challenges: ACE, CoNLL, SemEval, BioAsq, SQuAD, CORD-19

• Caution: One shoe does not fit all.

Text Preprocessing

- Removing non-text (e.g. tags, ads)
- Text Normalization
 - Segmentation: Word and Sentence Segmentation
 - Normalizing Word Formats
 - Spelling Variations: Labeled/labelled
 - Capitalization: Led/LED
 - Lemmatization
 - Stemming
 - Morphological analysis: dealing with smallest meaning-bearing units

TEXT NORMALIZATION

Tokenization: Word Segmentation

Definition

• Process to divide the input text into units, also called, *tokens*, where each is either a *word* or a *number* or a *punctuation mark*.

What counts as a word?

I am interested in Natural Language Processing, but I'm not sure of the required prerequisites.

What counts as a word?

- Should I count punctuation as a word?
- Should I treat I'm as one word or break them into three words: I,
 ', m? [Clitic]
- Should I consider "Natural Language Processing" as one word or 3 words?

What counts as a word?

• Kucera and Francis (1967) defined "graphic word" as follows:

• "a string of contiguous alphanumeric characters with space on either side; may include hyphens and apostrophes, but no other punctuation marks"

Problem with graphic word definition

- Too restrictive
 - Should we consider "\$12.20" or "Micro\$oft" or ":)" as a word?

 We can expect several variants especially in forums like Twitter etc. which may not obey exact definition but should be considered as a word.

- Simple Heuristic: Whitespace
 - "a space or tab or the new line" between words.
 - Still to deal with several issues.

Defining words: Problems

Periods

- Wash. vs wash
- Abbreviations at the end vs. in the middle e.g. etc.
- More on this while discussing sentence segmentation

Single apostrophes

- Contractions such as I'll, I'm etc.: should be taken as two words or one word?
- Penn Treebank split such contractions.
- Phrases such as *dog's vs. yesterday's* in "The house I rented yesterday's garden is really big".
- Orthographic-word-final single quotation such as "boys' toys".

Defining words: Problems

Hyphenation

- Again the same question "do sequences of letters with a hyphen in between count as one word or two?
- Occurrences like e-mail, co-operate vs. non-lawyer, so-called, text-based
- Inconsistency in using words like "cooperate" as well as "co-operate"
- Line-breaking hyphen vs. actual hyphen happens at the end of line [haplology]
- Hyphens to indicate correct grouping of words: take-it-or-leave it in "a final take-it-or-leave it offer"

Word with a whitespace between its parts

- New Delhi, San Francisco
- ... the New Delhi-New Jalpaiguri special train ...

Dealing with cases: Main issue

- Can we make all letters in same case
 - Should we treat "the", "The", and "THE" differently vs. "Mr. Brown" and "brown paints"

Dealing with cases: A Heuristic

- Convert all capital letters to lowercase
 - At the beginning of a sentence, and
 - In headings, titles etc.

Do we see any problem in this heuristic?

Problems with the heuristic

- Dependency on correct detection of sentence boundary
- All names appearing in the beginning of the sentence or in places like titles, gets converted
- More importantly, loss of information
 - Example: words in the middle of a sentence but started with capital letter for emphasizing an important point.

• Objective of the study should determine our decision.

Defining words: Problems: Spoken Corpora

• This lecture umm is main- mainly divided into two components

- Two types of disfluencies
 - Fragments: main-
 - Fillers/Filled pauses: uh.. Umm..

Tokenization in Practice

- Deterministic algorithms based on regular expressions
- Compiled into efficient finite state automata

Word segmentation in other languages

- •请将这句话翻译成中文 [Please translate this sentence into Chinese]
 - Languages like Chinese, Japanese have no spaces between words
 - Japanese is further complicated with multiple alphabets intermingled

- Compound nouns written as a single word
 - Lebensversicherungsgesellschaftsangestellter [Life insurance company employee]

TEXT NORMALIZATION

Word Normalization

Definition

• Converting the words/tokens in a standard format, i.e. chossing a single canonical form for words which can appear in multiple forms. Example: Ph.D., PhD., PhD

Some Examples of Normalization

- Case Folding
 - Conversion into lowercase
 - May be good idea for Information Retrieval (search) purpose
 - May not be good for POS tagging or NER (US: the country vs us: pronoun)

Examples of Word Normalization

Lemmatization

- Task of determining two words have the same root, same POS, same sense but may have different word forms.
- Mostly relevant for IR purpose
- Requires **Morphological Parsing** of words

Stemming

- Crude form of lemmatization
- Consists of chopping off word-final affixes

Word Normalization: Lemmatization: Morphology

 Morphology is study of the way words are built up from smaller meaning-bearing units (Morphemes)

Defining Sentence Boundary

- Something ending with a \.', \?', or \!'
 - Language specific
- Problem with '.'
 - Still 90% of periods are sentence boundary indicators [Riley 1989].
- Sub-sentence structure with the use of other punctuation
 - "The scene is written with a combination of unbridled passion and sure-handed control: In the exchanges inexorability of separation"
- Other issues
 - "You remind me," she remarked, "of your mother."

Defining Sentence Boundary: A heuristic

- Put putative sentence boundaries after occurrences of ., ?, ! (and may be ;, :, -)
- Check presence of following quotation marks, if any move the boundary.
 - "You remind me," she remarked, "of your mother."
- Disqualify a period boundary if
 - It is preceded by a known abbreviation that does not generally occur at the end of sentence such as Dr., Mr. or vs.
 - It is preceded by a know abbrev. that is generally not followed by an uppercase word such as etc. or Jr.
- Disqualify a boundary with a ? or ! If
 - It is followed by a lowercase letter (or name)

Issues with Heuristic or set of pre-defined rules

- Is it possible to define such rules without the help of experts?
- Will it work for all languages?

Machine Learning Methods: Sentence boundary as classification problem

- Riley (1989) used classification trees
 - Features: case & length of the words preceding and following a period; prior prob of words occurring before and after a sentence boundary etc.
- Palmer and Hearst (1997) used neural network model
 - Instead of prior probability, PoS distribution of the preceding and following words.
 - Language-independent model with accuracy of 98-99%
- Reynar and Ratnaparkhi (1997) and Mikheev (1998) used Max. Ent approach
 - Language independent model with accuracy of 99.25%

References

- Chapter 4 [FSNLP]
- Chapter 2 [Jurafsky and Martin 3rd Ed.]