

$$I_C = 90A, T_C = 100^{\circ}C$$

$$t_{\text{SC}} \ge 5 \mu \text{s}, \; T_{\text{J(max)}} = 175 ^{\circ} \text{C}$$

 $V_{CE(ON)}$ typ. = 1.65V @ Ic = 75A

Applications

- Welding
- H Bridge Converters

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode

G	С	Е
Gate	Collector	Emitter

Features -	→ Benefits
Low V _{CE(ON)} and switching losses	High efficiency in a wide range of applications
Optimized diode for full bridge hard switch converters	Optimized for welding and H bridge converters
Square RBSOA and maximum junction temperature 175°C	Improved reliability due to rugged hard switching performance and higher power capability
5µs short circuit SOA	Enables short circuit protection scheme
Positive V _{CE (ON)} temperature coefficient	Excellent current sharing in parallel operation
Lead-free, RoHS compliant	Environmentally friendly

Base part number	Package Type	Standard Pack		Orderable Part Number
		Form	Quantity	
IRGP6690DPBF	TO-247AC	Tube	25	IRGP6690DPBF
IRGP6690D-EPBF	TO-247AD	Tube	25	IRGP6690D-EPBF

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	600	V
I _C @ T _C = 25°C	Continuous Collector Current	140	
I _C @ T _C = 100°C	Continuous Collector Current	90	
I _{CM}	Pulse Collector Current, V _{GE} = 15V	225	۸
I _{LM}	Clamped Inductive Load Current, V _{GE} = 20V ①	300	Α
I _{FRM} @ T _C = 100°C	Diode Repetitive Peak Forward Current ®	45	
I _{FM}	Diode Maximum Forward Current ®	300	
$V_{\sf GE}$	Continuous Gate-to-Emitter Voltage	±20	V
P_D @ T_C = 25°C	Maximum Power Dissipation	483	W
P_D @ T_C = 100°C	Maximum Power Dissipation	241	
T_J	Operating Junction and	-40 to +175	С
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting Torque, 6-32 or M3 Screw	10 lbf·in (1.1 N·m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$ (IGBT)	Thermal Resistance Junction-to-Case-(each IGBT) ②			0.31	
$R_{\theta JC}$ (Diode)	Thermal Resistance Junction-to-Case-(each Diode) ②			2.10	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink (flat, greased surface)		0.24		C/VV
R _{0,JA}	Thermal Resistance, Junction-to-Ambient (typical socket mount)			40	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)CES}$	Collector-to-Emitter Breakdown Voltage	600		_	V	$V_{GE} = 0V, I_{C} = 100\mu A$ ③
$\Delta V_{(BR)CES}/\Delta T_{J}$	Temperature Coeff. of Breakdown Voltage		0.55	_	V/°C	$V_{GE} = 0V, I_{C} = 3mA (25^{\circ}C-175^{\circ}C)$
			1.65	1.95		$I_C = 75A, V_{GE} = 15V, T_J = 25^{\circ}C$
$V_{CE(on)}$	Collector-to-Emitter Saturation Voltage	1	2.05	_	V	$I_C = 75A$, $V_{GE} = 15V$, $T_J = 150$ °C
			2.10			$I_C = 75A$, $V_{GE} = 15V$, $T_J = 175$ °C
$V_{GE(th)}$	Gate Threshold Voltage	4.0	_	6.5	V	$V_{CE} = V_{GE}$, $I_C = 2.1 \text{mA}$
$\Delta V_{GE(th)}/\Delta T_{J}$	Threshold Voltage Temperature Coeff.		-19	_	mV/°C	$V_{CE} = V_{GE}, I_{C} = 2.1 \text{mA} (25^{\circ}\text{C}-175^{\circ}\text{C})$
gfe	Forward Transconductance	1	50	_	S	$V_{CE} = 50V, I_{C} = 75A, PW = 20\mu s$
1	Collector-to-Emitter Leakage Current	1	1.5	100	μA	$V_{GE} = 0V, V_{CE} = 600V$
I _{CES}	Collector-to-Emitter Leakage Current	1	1.4	_	mA	$V_{GE} = 0V, V_{CE} = 600V, T_{J} = 175^{\circ}C$
I _{GES}	Gate-to-Emitter Leakage Current		_	±200	nA	$V_{GE} = \pm 20V$
	Diada Farward Valtaga Dran		2.3	3.3	V	I _F = 18A
V_{FM}	Diode Forward Voltage Drop		1.5	_		I _F = 18A, T _J = 175°C

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max	Units	Conditions
Q_g	Total Gate Charge	_	140	_		I _C = 75A
Q_{ge}	Gate-to-Emitter Charge	_	40	_	nC	V _{GE} = 15V
Q_{gc}	Gate-to-Collector Charge	_	60	_		V _{CC} = 400V
E _{on}	Turn-On Switching Loss	_	2.4	_		
E _{off}	Turn-Off Switching Loss	_	2.2	_	mJ	$I_C = 75A$, $V_{CC} = 400V$, $V_{GE} = 15V$
E _{total}	Total Switching Loss	_	4.6	_		$R_G = 10\Omega$, L = 400 μ H, $T_J = 25$ °C
t _{d(on)}	Turn-On delay time	_	85	_		•
t _r	Rise time	_	86	_	ns	Energy losses include tail & diode
$t_{d(off)}$	Turn-Off delay time	_	222	_	115	reverse recovery ®
t _f	Fall time	_	53			
E _{on}	Turn-On Switching Loss	_	3.1	—		
E _{off}	Turn-Off Switching Loss	_	2.8	_	mJ	$I_{\rm C}$ = 75A, $V_{\rm CC}$ = 400V, $V_{\rm GE}$ =15V
E _{total}	Total Switching Loss	_	5.9	_		$R_G = 10\Omega$, $L = 400\mu$ H, $T_J = 175$ °C
t _{d(on)}	Turn-On delay time	_	67	_		
t _r	Rise time	_	92	_	ne	Energy losses include tail & diode
t _{d(off)}	Turn-Off delay time	_	227	_	ns	reverse recovery ®
	Fall time	_	78	_		
c_{ies}	Input Capacitance	_	4720	_		$V_{GE} = 0V$
C _{oes}	Output Capacitance	_	270	_	pF	$V_{CC} = 30V$
C _{res}	Reverse Transfer Capacitance	_	140	_		f = 1.0MHz
RBSOA	Reverse Bias Safe Operating Area	FULL SQUARE			$T_J = 175^{\circ}C$, $I_C = 300A$ $V_{CC} = 480V$, $Vp \le 600V$ $V_{GE} = +20V$ to $0V$	
SCSOA	Short Circuit Safe Operating Area	5	_	_	μs	$T_J = 150$ °C, $V_{CC} = 400$ V, $Vp \le 600$ V $V_{GE} = +15$ V to 0V
Erec	Reverse Recovery Energy of the Diode	_	210	_	μJ	T _J = 175°C
t _{rr}	Diode Reverse Recovery Time	_	90	_	ns	$V_{CC} = 400V, I_F = 18A$
I _{rr}	Peak Reverse Recovery Current		26		Α	V_{GE} = 15V, Rg = 10 Ω

Notes:

- ① V_{CC} = 80% (V_{CES}), V_{GE} = 20V, L = 400 μ H, R_G = 10 Ω .
- ② R_{θ} is measured at T_{J} of approximately 90°C.
- Pulse width limited by max. junction temperature.
- S Values influenced by parasitic L and C in measurement.
- 6 fsw =40KHz, refer to figure 26.

Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMs of fundamental)

Fig. 2 - Maximum DC Collector Current vs. Case Temperature

Fig. 4 - Forward SOA $T_C = 25^{\circ}C; T_J \le 175^{\circ}C; V_{GE} = 15V$

Fig. 3 - Power Dissipation vs. Case Temperature

Fig. 5 - Reverse Bias SOA $T_J = 175^{\circ}C$; VGE = 20V

Fig. 6 - Typ. IGBT Output Characteristics $T_J = -40$ °C; $tp = 20\mu s$

Fig. 8 - Typ. IGBT Output Characteristics $T_J = 175^{\circ}\text{C}$; tp = 20µs

Fig. 10 - Typical V_{CE} vs. V_{GE} $T_{J} = -40^{\circ}C$

Fig. 7 - Typ. IGBT Output Characteristics $T_J = 25$ °C; $tp = 20\mu s$

Fig. 9 - Typ. Diode Forward Voltage Drop Characteristics

Fig. 11 - Typical V_{CE} vs. V_{GE} $T_J = 25^{\circ}C$

Fig. 12 - Typical V_{CE} vs. V_{GE} T_J = 175°C

Fig. 14 - Typ. Energy Loss vs. $I_{\mathbb{C}}$ T_J = 175°C; L = 400 μ H; V_{CE} = 400V, R_G = 10 Ω ; V_{GE} = 15V

Fig. 16 - Typ. Energy Loss vs. R_G T_J = 175°C; L = 400 μ H; V_{CE} = 400V, I_{CE} = 75A; V_{GE} = 15V

Fig. 13 - Typ. Transfer Characteristics $V_{CE} = 50V$; tp = 20µs

Fig. 15 - Typ. Switching Time vs. I_C T_J = 175°C; L = 400 $\mu H;$ V_{CE} = 400 V, R_G = 10 $\Omega;$ V_{GE} = 15 V

Fig. 17 - Typ. Switching Time vs. R_G $T_J = 175^{\circ}C$; L = 400 μ H; $V_{CE} = 400V$, $I_{CE} = 75A$; $V_{GE} = 15V$

Fig. 18 - Typ. Diode I_{RR} vs. I_{F} $T_{.I}$ = 175°C

Fig. 20 - Typ. Diode I_{RR} vs. di_F/dt V_{CC} = 400V; V_{GE} = 15V; I_F = 18A; T_J = 175°C

Fig. 22 - Typ. Diode E_{RR} vs. I_F $T_J = 175$ °C

Fig. 19 - Typ. Diode I_{RR} vs. R_G $T_J = 175^{\circ}C$

Fig. 21 - Typ. Diode Q_{RR} vs. di_F/dt V_{CC} = 400V; V_{GE} = 15V; T_J = 175°C

Fig. 23 - V_{GE} vs. Short Circuit Time V_{CC} = 400V; T_{C} = 25°C

Fig. 25 - Typical Gate Charge vs. V_{GE} $I_{CE} = 75A$

Fig. 26 - Typical Gate Charge vs. V_{GE}

Fig. 27 - Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)

Fig. 28 - Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)

Fig.C.T.1 - Gate Charge Circuit (turn-off)

Fig.C.T.3 - S.C. SOA Circuit

Fig.C.T.5 - Resistive Load Circuit

Fig.C.T.2 - RBSOA Circuit

Fig.C.T.4 - Switching Loss Circuit

Fig.C.T.6 - BVCES Filter Circuit

Fig. WF1 - Typ. Turn-off Loss Waveform @ T_J = 175°C using Fig. CT.4

Fig. WF3 - Typ. Diode Recovery Waveform @ T_J = 175°C using Fig. CT.4

Fig. WF2 - Typ. Turn-on Loss Waveform $@T_J = 175^{\circ}C$ using Fig. CT.4

Fig. WF4 - Typ. S.C. Waveform a T_J = 150°C using Fig. CT.3

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994

2. DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127)
PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.

6. LEAD FINISH UNCONTROLLED IN L1.

4P TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 * TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC.

		DIMEN	ISIONS	SIONS		
SYMBOL	INCI	HES	MILLIM	ETERS		
	MIN.	MAX.	MIN.	MAX.	NOTES	
A	.183	.209	4.65	5.31		
A1	.087	.102	2.21	2.59		
A2	.059	.098	1.50	2.49		
b	.039	.055	0.99	1.40		
b1	.039	.053	0.99	1.35		
b2	.065	.094	1.65	2.39		
b3	.065	.092	1.65	2.34		
b4	.102	.135	2.59	3.43		
b5	.102	.133	2.59	3.38		
С	.015	.035	0.38	0.89		
c1	.015	.033	0.38	0.84		
D	.776	.815	19.71	20.70	4	
D1	.515	-	13.08	-	5	
D2	.020	.053	0.51	1.35		
E	.602	.625	15.29	15.87	4	
E1	.530	-	13.46	-		
E2	.178	.216	4.52	5.49		
е	.215	BSC	5.46	BSC		
Øk	.0	10	0.	25		
L	.559	.634	14.20	16.10		
L1	.146	.169	3.71	4.29]	
ØΡ	.140	.144	3.56	3.66		
øP1	-	.291	-	7.39		
Q	.209	.224	5.31	5.69]	
S	.217	BSC	5.51	BSC		
1			1		I	

LEAD ASSIGNMENTS

HEXFET

1.- GATE 2.- DRAIN 3.- SOURCE

4.- DRAIN

IGBTs, CoPACK

1.- GATE

2.- COLLECTOR 3.- EMITTER

4.- COLLECTOR

DIODES

1.- ANODE/OPEN 2.- CATHODE

3.- ANODE

TO-247AC Part Marking Information

EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY LOT CODE 5657

ASSEMBLED ON WW 35, 2001 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

TO-247AC package is not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

SECTION C-C, D-D, E-E

TO-247AD Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994. 1

DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.

LEAD FINISH UNCONTROLLED IN L1.

ØP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 * TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AD.

	DIMENSIONS				
SYMBOL	INC	HES	MILLIN	ETERS	
	MIN.	MAX.	MIN.	MAX.	NOTES
Α	.183	.209	4.65	5.31	
A1	.087	.102	2.21	2.59	
A2	.059	.098	1.50	2.49	
b	.039	.055	0.99	1.40	
ь1	.039	.053	0.99	1.35	
b2	.065	.094	1.65	2.39	
b3	.065	.092	1.65	2.34	
b4	.102	.135	2.59	3.43	
b5	.102	.133	2.59	3.38	
С	.015	.035	0.38	0.89	
c1	.015	.033	0.38	0.84	
D	.776	.815	19.71	20.70	4
D1	.515	-	13.08	-	5
D2	.020	.053	0.51	1.35	
Ε	.602	.625	15.29	15.87	4
E1	.530	-	13.46	-	
E2	.178	.216	4.52	5.49	
е	.215	BSC	5.46	BSC	
Øk	.0	10	0.	25	
L	.780	.827	19.57	21.00	
L1	.146	.169	3,71	4.29	
øΡ	.140	.144	3.56	3.66	
øP1	-	.291	-	7.39	
Q	.209	.224	5.31	5.69	
S	.217	BSC	5.51	BSC	

LEAD ASSIGNMENTS

HEXFET

1 - GATE

2.- DRAIN 3.- SOURCE

4.- DRAIN

IGBTs, CoPACK

1.- GATE

2.- COLLECTOR 3.- EMITTER

4.- COLLECTOR

DIODES

1.- ANODE/OPEN 2.- CATHODE

3.- ANODE

TO-247AD Part Marking Information

EXAMPLE: THIS IS AN IRGP30B120KD-E

WITH ASSEMBLY

LOT CODE 5657

ASSEMBLED ON WW 35, 2000

IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

TO-247AD package is not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

Qualification Level		Industrial				
		(per JEDEC JESD47F) ††				
Moisture Sensitivity Level	TO-247AC	N/A				
	TO-247AD	N/A				
RoHS Compliant		Yes				

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Applicable version of JEDEC standard at the time of product release.

Revision History

	i to viololi i liotol y						
	Date	Comments					
	11/14/2014	• Added I _{FM} Diode Maximum Forward Current = 300A with the note ④ on page 1.					
		• Removed note ④ from switching losses test condition on page 2.					

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/