EnggTree.com

Reg. No. : E N G G T R E E . C O M

Question Paper Code: 51337

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

For More Visit our Website EnggTree.com Third/Fourth Semester

Mechanical Engineering

ME 3391 – ENGINEERING THERMODYNAMICS

(Common to: Manufacturing Engineering/Mechanical Engineering (Sandwich)/Agricultural Engineering)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

(Use of steam table and Mollier chart, Psychrometric chart are permitted)

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Differentiate: Homogeneous and Heterogeneous System with suitable example.
- 2. What is a PMM1?
- 3. Differentiate Heat Engine and Refrigerator.
- 4. How COP of a heat pump is estimated?
- Comment on the term "available energy" with respect to thermodynamics.
- 6. What is Helmholtz function?
- Calculate the dryness fraction (quality) of steam, which has 1.5 kg of water in suspension with 50 kg of steam.
- 8. List any two advantages obtained by using 'superheated' steam.
- 9. Mention the parameters related by Clausius-Clapeyron equation.
- 10. State Joule's Law.

EnggTree.com

PART B - (5 × 13 = 65 marks)

11. (a) A temperature scale of certain thermometer is given by the relation $t = A \ln P + B$; where A and B are constants and P is the thermometric property of the fluid in the thermometer. If at the ice point and steam point, the thermometric properties are found to be 1.5 and 7.5 respectively, what will be the temperature corresponding to the thermometric property of 3.5 on Celsius scale?

Or

- (b) Air at 1.02 bar, 22 °C, initially occupying a cylinder volume of 0.015 m³, is compressed reversibly and adiabatically by a piston to a pressure of 6.8 bar. Calculate:
 - (i) the final temperature;
 - (ii) the final volume and
 - (iii) the work done

(4+4+5)

- 12. (a) A heat engine receives heat at the rate of 1500 kJ/min and gives an output of 8.2 kW. Determine: (6+7)
 - (i) The thermal efficiency;
 - (ii) The rate of heat rejection.

Or

(b) Brief on the following

(4+4+5)

- (i) Clausius Statement
- (ii) Kelvin-Planck Statement
- (iii) Equivalence of Clausius Statement to the Kelvin-Planck Statement
- 13. (a) A system at 500 K receives 7200 kJ/min from a source at 1000 K. The temperature of atmosphere is 300 K. Assuming that the temperatures of system and source remain constant during heat transfer. Find out:
 - (i) The entropy produced during heat transfer

(7)

(ii) The decrease in available energy after heat transfer

(6)

Or

(b) 1 kg of ice at 0 °C is mixed with 12 kg of water at 27 °C. Assuming the surrounding temperature as 15 °C, Calculate the net increase in entropy and Unavailable energy when the system reaches common temperature.

51337

EnggTree.com

14.	(a)	Vessel having a volume of 0.6 m ³ contains 3.0 kg of liquid water and water vapour mixture in equilibrium at a pressure of 0.5 MPa. Calculate:			
		(i)	Mass and volume of liquid	(7)	
		(ii)	Mass and volume of vapour	(6)	
			Or		
	(b)	press	t amount of heat would be required to produce 4.4 sure of 6 bar and temperature of 250 °C from wate fic heat for superheated steam as 2.2 kJ/kg K.	kg of steam at a er at 30 °C? Take	
15.	(a)	by re 5 °C. proce	The volume of a high altitude chamber is $40~\text{m}^3$. It is put into operation by reducing pressure from 1 bar to 0.4 bar and temperature from 25 °C to 5 °C. How many kg of air must be removed from the chamber during the process? Express this mass as a volume measured at 1 bar 25 °C. Take $R = 287 \text{J/kg}$ K for air.		
	Or				
	(b)	A mixture of hydrogen and oxygen is to be made so that the ratio of H ₂ to O ₂ is 2:1 by volume. If the pressure and temperature are 1 bar and 25 °C respectively Calculate:			
		(i)	The mass of O ₂ required	(9)	
		(ii)	The volume of the container www.EnggTree.com PART C — (1 × 15 = 15 marks)	(4)	
16.	6. (a) A reversible heat Engine operates between f 600 °C and 40 °C. The engine drivoperates between reservoirs at temperature to the heat engine is 200		versible heat Engine operates between two reservoing of the control of the contro	refrigerator which and -20 °C. The	
		(i)	Evaluate the heat transfer to the refrigerant and to the reservoir at 40 °C.	net heat transfer (10)	
		(ii)	Reconsider given that the ' η ' of the heat engin refrigerator are each 40% of their maximum possi		
Or					
	(b)	(i)	Explain: Carnot cycle, its assumptions and rease a theoretical cycle.	ons for rating it as (5)	
		(ii)	A domestic food refrigerator maintains a temporate ambient air temperature is 35 °C. If heat less at the continuous rate of 2 kJ/s, determine necessary to pump this heat out continuously.	aks into the freezer	