# MXNet: Lightweight, Flexible, and Efficient Deep Learning Library

Naiyan Wang TuSimple

## MXNet is developed by over 100 collaborators Special thanks to

Tianqi Chen
UW

Mu Li CMU/Amazon Bing Xu
Turi

**Yuan Tang** 

Chiyuan Zhang
MIT

Junyuan Xie
UW

Yizhi Liu

MediaV

**Tianjun Xiao** 

Microsoft

**Yutian Li** 

Stanford

Uptake

**Qian Kou** 

Indiana University

**Hu Shiwen** 

Shanghai

**Chuntao Hong** 

Microsoft

Min Lin

Qihoo 360

**Naiyan Wang** 

TuSimple

**Tong He** 

Simon Fraser University

Minjie Wang

NYU

**Valentin Churavy** 

OIST



Ali Farhadi UW/AI2



Carlos Guestrin
UW/Turi



Alexander Smola CMU/Amazon



Zheng Zhang NYU Shanghai

## Deep Learning

Image Understanding



**Speech Recognition** 



Natural Language Processing



"Deep Learning" trend in the past 10 years

## Packages









theano

Caffe





### MXNet's Approach

Lightweight

Modular and extendable

trade-off

 User defined flexibility-efficiency
 Mixed declarative and imperative programming

Transparent scaling

Community driven open source

Deploy everywhere

## Dependency Scheduling Engine



#### Need for Parallelism

- Speed is critical to deep learning
- Parallelism leads to higher performance
  - Parallelization across multiple GPUs
  - Parallel execution of small kernels
  - Overlapping memory transfer and computation

• ...







## Parallel Programs are Painful to Write...

• ... because of dependencies



## Solution: Auto Parallelization with Dependency Engine

• Single thread abstraction of parallel environment

## import mxnet as mx A = mx.nd.ones((2,2)) \*2 C = A + 2 B = A + 1 D = B \* C

Dependency Engine



#### Symbolic vs. Imperative Deep Learning



## Neural Networks as Symbolic Graph

- Most packages represent networks as graphs
  - MXNet, Caffe, Theano, Tensorflow, CNTK, ...
- Easy to store, port, and optimize
  - Parallelization, buffer sharing, operator fusion, serialize and deploy, ...



### Deep Learning is More Than DAG

- All is good ...
  - ... until you start adding too many things to it ...



## You just reinvented programming language

•••

and lost most advantages of using graph

#### Neural Networks as Imperative Program

• DL, or ML in general, is largely tensor algebra.

codes

- Torch, Chainer, Matlab, R, Numpy, ...
- Imperative programs are flexible but hard to optimize:

#### Neural Networks as Imperative Program

- DL, or ML in general, is largely tensor algebra.
  - Torch, Chainer, Matlab, R, Numpy, ...
- Imperative programs are flexible but hard to optimize:

import numpy as np  

$$a = np.ones(10)$$
  
 $b = np.ones(10) * 2$   
 $c = b * a$   
 $d = c + 1$ 

c cannot share memory with d, because it could be used in future

```
A = Variable('A')

B = Variable('B')

C = B * A

D = C + 1

f = compile(D)

d = f(A=np.ones(10), B=np.ones(10)*2)
```

C can share memory with D, because C cannot be seen by user

## MXNet's Approach: Mixed Programming

- Mix symbolic and imperative operations to get benefit of both.
- Symbolic graph: heavy, standard operations.
  - >90% of runtime, <10% of coding time.
- Imperative program: light, project specific operations.
  - <10% of runtime, >90% of coding time.
- Dependency Engine allows seamless combination of two parts.
- Only optimize the bottleneck!

#### MXNet's Approach: Static Graph

- In MXNet, graphs are simple and static:
  - Simple DAG without fancy logic
  - Fixed topology and tensor shapes
- Static graphs are:
  - Faster to build: multiple graphs instead of loop and condition.
  - Easier to optimize: Static memory planning, asynchronous execution, ...
- Flexibility compensated by imperative operations.

#### Smallest GPU Memory Footprint

Static graph enables aggressive memory sharing.





#### Trade Speed for Memory

#### MXNet Mirror:

- Discard result of small Ops on forward pass (ReLU, BN, etc).
- Re-compute on backward pass.
- 30%-50% memory saving at 90% speed.

#### MXNet Memmonger:

- Only keep result of  $\sqrt{N}$  (anchor layers) out of N layers on forward pass.
- Re-compute  $\sqrt{N}$  layers between two anchor layers on backward pass.
- Train  $O(\sqrt{N})$  times larger model at 75% speed.

#### Parallel & Distributed Training



#### Drop-in Parallel Training

• Scaling to Multi-GPU machine as easy as one line change:

```
model = mx.mod.Module(net, ctx=mx.gpu(0))
```

-> model = mx.mod.Module(net, ctx=[mx.gpu(0), mx.gpu(1)])

• Near linear speedup on a single machine:



## Parallel Training: Under the Hood

- Read a data partition
- Pull the weight
- Compute the gradient
- Push the gradient
- Update the weight



### Distributed Training



- Scale to multi-machine with the same key-value store interface.
- 2x faster than Tensorflow on >10 4GPU machines
- Latest Update: 74x
   acceleration on 10 machines
   with 8GPUs in each machine.

Figure by Carlos Guestrin @Turi

#### Parallel & Distributed Training



#### Plugin Extensions

#### TorchModule:

 Use Torch NN layers and tensor functions in MXNet graph. fc1 = mx.sym.TorchModule(lua string='nn.Linear(784, 128)', ...)

#### CaffeOp:

Use Caffe layers in MXNet graph.
 fc1 = mx.symbol.CaffeOp(prototxt="layer{type:\"InnerProduct\" inner product param{num output: 128} }", ...)

#### • WrapCTC:

Use Baidu's CTC module for sequence learning in MXNet.

#### OpenCV:

Multi-threaded OpenCV interface that by pass GIL for fast image IO.

#### Mainstream Applications in Vision/NLP/Speech

- Image Classification
  - Inception/ResNet
- Object Detection
  - Faster RCNN
- Image Segmentation
  - FCN/Deeplab
- OCR
  - Warp-CTC
- Char LSTM/Char CNN/Speech Acoustic Modeling/Neural Art...

### Runs Everywhere



#### Code with Any Language



















#### Train in the Cloud

## Load data from distributed filesystems







:

multithreaded read/write to hide network latency

#### Launch distributed jobs



SSH



**MPI** 



qsub



Yarn

:

easily extend to other cluster resource management software

### Deploy Everywhere



#### **Amalgamation**

- ◆ Fit the core library with all dependencies into a single C++ source file
- ◆ Easy to compile on iii iii







BlindTool by Joseph Paul Cohen, demo on Nexus 4

#### Runs in browser with Javascript

The first image for search "dog" at images.google.com

Outputs "beagle" with prob = 73%within 1 sec



## Thanks