סיכומי הרצאות ⁻ חדו"א 1א

מיכאל פרבר ברודסקי

תוכן עניינים

2	נוסחאות כלליות	1
2	חסמים עליונים ותחתונים	2
2	התחלה של סדרות	3
2	הגדרת הגבול	
3	חשבון גבולות	
3		

נוסחאות כלליות 1

בינום:

א"ש הממוצעים:

א"ש ברנולי:

א"ש המשולש:

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$ $\frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \cdot \dots \cdot a_n} \ge \frac{n}{\frac{1}{a_1} + \dots + \frac{1}{a_n}}$ $\left(1+x\right)^{n}\geq 1+nx$ מתקיים $x>-1,n\in\mathbb{N}$ לכל |a+b| < |a| + |b|

חסמים עליונים ותחתונים

 $x \leq M$, $x \in A$ יקרא חסם מלעיל של A אם לכל M $M \leq x$, $x \in A$ יקרא חסם מלרע של A אם לכל M

אקסיומת השלמות: לכל קבוצה לא ריקה וחסומה מלעיל קיים חסם עליון קטן ביותר, ונסמן $\sup A$ אותו ב-

a < b < a < b כך ש־a < a < b כד שימושית: אם אז לכל $b = \sup A$ אז לכל שימושית: אם

|b-a|<arepsilon בין ש־ $a\in A$ כיים $b\in B$ אם לכל של אם לכל ש־בים אבורה: נאמר ש־ $a\in A$ כך של

 $S = \mathbb{R}$ עענה: $S = \emptyset$, $a < b \in \mathbb{R}$ לכל \iff \mathbb{R} צפופה ב־ $S \subseteq \mathbb{R}$

 $a \in (a,b)$ טענה: לכל a < b, קיים a < b

 $\frac{m}{k} \geq b$ יהי ש־a>0. יהי המספר הקטן ביותר כך ש־a>0. יהי הוניח המספר הקטן ביותר כך ש־ $a<\frac{m-1}{k}$ אם כך, $a<\frac{m-1}{k}$ אם מעונו. אם $a<\frac{m-1}{k}$ אם מעונו. אם $a<\frac{m-1}{k}$ אם בוסף, $a+\frac{1}{k}< a+(b-a)=b$ וסיימנו. אם $a<\frac{m-1}{k}< b+x$ נוסיף את $a=\frac{m-1}{k}$ עבור $a=\frac{m-1}{k}$ ועבור $a=\frac{m-1}{k}$ קיים $a=\frac{m-1}{k}$ מש"ל. $a=\frac{m-1}{k}$ מש"ל.

[a,b]ענה: \mathbb{Q} צפופה ב־ \mathbb{R} ו־ $[a,b] \cap \mathbb{Q}$ צפופה ב

התחלה של סדרות 3

 $(a_n)_{n=1}^{\infty}$ או (a_n דרות ב־

 $a_n \leq M$,n כך שלכל M כל אם **קיים מלעיל** אם סדרה **חסומה מלעיל** אם קיים

 $M \leq a_n$, מאמר שסדרה **חסומה מלרע** אם קיים M כך שלכל

 $|a_n| \leq M$, אם קיים M כך שלכל, חסומה אם נאמר שסדרה חסומה

הגדרת הגבול 3.1

 $a_n o L$ אם: או $\lim_{n o \infty} a_n = L$ ונסמן, $a_n o L$ או ווא ווא נאמר שהגבול של

 $\forall \varepsilon > 0. \exists n_0 \in \mathbb{N}. \forall n > n_0. |a_n - L| < \varepsilon$

 $\lim_{n\to\infty}a_n=\infty$ אם: אם, הוא $\lim_{n\to\infty}a_n=\infty$ ונסמן, הוא $\lim_{n\to\infty}a_n=\infty$ אם:

 $\forall M > 0. \exists n_0 \in \mathbb{N}. \forall n > n_0. a_n > M$

L=L' אז $\lim_{n o\infty}a_n=L,\lim_{n o\infty}a_n=L'$ משפט (יחידות הגבול): אם

3.2 חשבון גבולות

יהיו $a_n o a, b_n o b$ ש־ל סדרות כך שיר $(a_n), (b_n)$ יהיו

- $a_n + b_n \rightarrow a + b \bullet$
 - $a_n \cdot b_n \to a \cdot b \bullet$
- b
 eq 0אם $b_n
 eq 0$ אם אם $b_n
 eq 0$ אם הייט א $rac{a_n}{b_n}
 ightarrow rac{a}{b}$
 - $|a_n| \to |a| \bullet$
 - n לכל $a_n \geq 0$ אם $\sqrt{a_n} o \sqrt{a}$

3.3 טענות על גבולות

 $a \leq b$ אז: $a_n \leq b_n$ שלנה: יהיו מתכנסות סדרות $(a_n) \to a, (b_n) \to b$ טענה: יהיו

 $x_n o x, y_n o x$ אם $x_n o x$ אם $x_n o x_n o x_n$ (כמעט) לכל הסנדוויץ': יהיו x_n, y_n, z_n סדרות כך ש־ x_n, y_n, z_n יהיו אז $x_n o x_n o x_n$

 $x_n o \infty$ אז $y_n o \infty$ ו ו $x_n o y_n$ אז הרחבה: אם

 $|a_n| > r$, $n > n_0$ כך שלכל n_0 כיים n_0 אז קיים $a_n \to L
eq 0$ טענה: תהי $a_n \to L \neq 0$ טענה:

 $a_n o 0$ גאז $0 \le a_n^{1/n} \le lpha$, שלכל השורש: אם קיים 0 < lpha < 1 כלל השורש: אם קיים