CLAIMS

We claim:

1	1. A wing for a micro air vehicle, comprising:		
2	at least one layer of a resilient material having a camber forming a concave surface		
3	facing downward;		
4	wherein the wing is bendable from a steady state position in a first direction such that		
5	tips of the wing may be bent toward the concave surface but not substantially in a second		
6	direction that is generally opposite to the first direction; and		
7	wherein the wing is capable of returning to the steady state position by releasing the		
8	tips of the wing.		
1	2. The wing for a micro air vehicle of claim 1, wherein the at least one layer of a		
2	resilient material comprises a leading edge formed from a first material that is different from		
3	the material forming a remainder of the at least one layer.		
1	3. The wing for a micro air vehicle of claim 2, wherein the leading edge is		
2	formed from an aramid fiber/epoxy mixture and at least a portion of the remainder of the at		
3	least one layer is formed from a mixture of carbon fiber and epoxy.		
1	4. The wing for a micro air vehicle of claim 1, wherein the at least one layer of a		
2	resilient material is formed from pre-impregnated carbon/epoxy fiber cloth.		

{WP160439;1} 11

5. The wing for a micro air vehicle of claim 1, wherein the at least one layer of a 1 resilient material is formed from an aramid fiber/epoxy mixture. 2 1 6. The wing for a micro air vehicle of claim 1, wherein the at least one layer of a 2 resilient material is formed from materials selected from the group consisting of fiber 3 reinforced laminates, sheet metal, foam materials, and plastics. 7. The wing for a micro air vehicle of claim 6, wherein the fiber reinforced 1 2 laminates are selected from the group consisting of carbon fiber reinforced polymers, glass 3 reinforced polymers, and aramid reinforced polymers. 8. The wing for a micro air vehicle of claim 6, wherein the sheet metal is selected 1 2 from the group consisting of spring steel, aluminum, stainless steel, and titanium. The wing for a micro air vehicle of claim 1, wherein a wing span of the wing 9. 1 2 is between about three inches and about twenty four inches. 1 10. The wing for a micro air vehicle of claim 1, wherein the wing is capable of being bent around a central body of a micro air vehicle so that the micro air vehicle including 2 the wing may fit within a tube having a diameter of about three inches. 3

12

1	11. The wing for a micro air vehicle of claim 1, further comprising a riser section
2	forming a concave portion on an upper surface of the wing proximate to a trailing edge of the
3	wing.
1	12. A micro air vehicle, comprising:
2	a central body;
3	a wing attached to the central body, wherein the wing comprises:
4	at least one layer of a resilient material having a camber forming a concave
5	surface facing downward;
6	wherein the wing is bendable from a steady state position in a first direction
7	such that tips of the wing may be bent toward the concave surface but not
8	substantially in a second direction that is generally opposite to the first direction; and
9	wherein the wing is capable of returning to the steady state position by
10	releasing the tips of the wing.
,	· ·
1	13. The micro air vehicle of claim 12, wherein the at least one layer of a resilient

- material comprises a leading edge formed from a first material that is different from the material forming a remainder of the at least one layer.
- 14. The micro air vehicle of claim 13, wherein the leading edge is formed from an aramid fiber/epoxy mixture and at least a portion of the remainder of the at least one layer is formed from a mixture of carbon fiber and epoxy.

{WP160439;1} 13

The micro air vehicle of claim 12, wherein the at least one layer of a resilient 15. 1 material is formed from pre-impregnated carbon/epoxy fiber cloth. 2 16. The micro air vehicle of claim 12, wherein the at least one layer of a resilient 1 material is formed from an aramid fiber/epoxy mixture. 2 The micro air vehicle of claim 12, wherein the at least one layer of a resilient 1 17. material is formed from materials selected from the group consisting of fiber reinforced 2 3 laminates, sheet metal, foam materials, and plastics. The micro air vehicle of claim 17, wherein the fiber reinforced laminates are 1 18. selected from the group consisting of carbon fiber reinforced polymers, glass reinforced 2 3 polymers, and aramid reinforced polymers. The micro air vehicle of claim 17, wherein the sheet metal is selected from the 19. 1 2 group consisting of spring steel, aluminum, stainless steel, and titanium. 20. The micro air vehicle of claim 12, wherein a wing span of the wing is between 1 2 about three inches and about twenty four inches. The micro air vehicle of claim 12, wherein the wing is capable of being bent 1 21. 2 around a central body of a micro air vehicle so that the micro air vehicle including the wing 3 may fit within a tube having a diameter of about three inches.

14

{WP160439;1}

22. The micro air vehicle of claim 12, further comprising a riser section forming a 1 2 concave portion on an upper surface of the wing proximate to a trailing edge of the wing. 23. The micro air vehicle of claim 12, further comprising a tail coupled to the 1 2 central body that is generally orthogonal to the wing. The micro air vehicle of claim 12, further comprising a tail coupled to the 1 24. 2 central body that is generally vertical to the wing. 1 25. A wing for a micro air vehicle, comprising: 2 a support structure forming an outline of the wing including a leading edge, a trailing edge, and wing tips; 3 at least one layer of a material attached to the support structure forming a surface of 4 the wing and having a camber forming a concave surface facing downward; 5 6 wherein the wing is bendable from a steady state position in a first direction such that 7 tips of the wing may be bent toward the concave surface but not substantially in a second 8 direction that is generally opposite to the first direction; and wherein the wing is capable of returning to the steady state position by releasing the 9 tips of the wing. 10 A wing for a micro air vehicle of claim 25, wherein the support structure is 1 26.

formed from a plurality of ribs.

2

is between about three inches and about twenty four inches. 30. The wing for a micro air vehicle of claim 25, wherein the wing is capable of being bent around a central body of a micro air vehicle so that the micro air vehicle including the wing may fit within a tube having a diameter of about three inches.	1	21.	A wing for a finero an venicle of claim 20, wherein the plurantly of rios are	
29. The wing for a micro air vehicle of claim 25, wherein a wing span of the wing is between about three inches and about twenty four inches. 30. The wing for a micro air vehicle of claim 25, wherein the wing is capable of being bent around a central body of a micro air vehicle so that the micro air vehicle including the wing may fit within a tube having a diameter of about three inches. 31. The wing for a micro air vehicle of claim 25, further comprising a riser section forming a concave portion on an upper surface of the wing proximate to the trailing edge of the wing.	2	formed from carbon fiber strands.		
29. The wing for a micro air vehicle of claim 25, wherein a wing span of the wing is between about three inches and about twenty four inches. 30. The wing for a micro air vehicle of claim 25, wherein the wing is capable of being bent around a central body of a micro air vehicle so that the micro air vehicle including the wing may fit within a tube having a diameter of about three inches. 31. The wing for a micro air vehicle of claim 25, further comprising a riser section forming a concave portion on an upper surface of the wing proximate to the trailing edge of the wing.				
The wing for a micro air vehicle of claim 25, wherein a wing span of the wing is between about three inches and about twenty four inches. The wing for a micro air vehicle of claim 25, wherein the wing is capable of being bent around a central body of a micro air vehicle so that the micro air vehicle including the wing may fit within a tube having a diameter of about three inches. The wing for a micro air vehicle of claim 25, further comprising a riser section forming a concave portion on an upper surface of the wing proximate to the trailing edge of the wing.	1	28.	A wing for a micro air vehicle of claim 25, wherein the at least one material is	
is between about three inches and about twenty four inches. The wing for a micro air vehicle of claim 25, wherein the wing is capable of being bent around a central body of a micro air vehicle so that the micro air vehicle including the wing may fit within a tube having a diameter of about three inches. The wing for a micro air vehicle of claim 25, further comprising a riser section forming a concave portion on an upper surface of the wing proximate to the trailing edge of the wing.	2	comprised of	latex.	
is between about three inches and about twenty four inches. The wing for a micro air vehicle of claim 25, wherein the wing is capable of being bent around a central body of a micro air vehicle so that the micro air vehicle including the wing may fit within a tube having a diameter of about three inches. The wing for a micro air vehicle of claim 25, further comprising a riser section forming a concave portion on an upper surface of the wing proximate to the trailing edge of the wing.				
The wing for a micro air vehicle of claim 25, wherein the wing is capable of being bent around a central body of a micro air vehicle so that the micro air vehicle including the wing may fit within a tube having a diameter of about three inches. The wing for a micro air vehicle of claim 25, further comprising a riser section forming a concave portion on an upper surface of the wing proximate to the trailing edge of the wing.	1	29.	The wing for a micro air vehicle of claim 25, wherein a wing span of the wing	
being bent around a central body of a micro air vehicle so that the micro air vehicle including the wing may fit within a tube having a diameter of about three inches. 31. The wing for a micro air vehicle of claim 25, further comprising a riser section forming a concave portion on an upper surface of the wing proximate to the trailing edge of the wing.	2	is between ab	oout three inches and about twenty four inches.	
being bent around a central body of a micro air vehicle so that the micro air vehicle including the wing may fit within a tube having a diameter of about three inches. 31. The wing for a micro air vehicle of claim 25, further comprising a riser section forming a concave portion on an upper surface of the wing proximate to the trailing edge of the wing.				
the wing may fit within a tube having a diameter of about three inches. 31. The wing for a micro air vehicle of claim 25, further comprising a riser section forming a concave portion on an upper surface of the wing proximate to the trailing edge of the wing.	1	30.	The wing for a micro air vehicle of claim 25, wherein the wing is capable of	
31. The wing for a micro air vehicle of claim 25, further comprising a riser section forming a concave portion on an upper surface of the wing proximate to the trailing edge of the wing.	2	being bent are	ound a central body of a micro air vehicle so that the micro air vehicle including	
forming a concave portion on an upper surface of the wing proximate to the trailing edge of the wing.	3	the wing may	fit within a tube having a diameter of about three inches.	
forming a concave portion on an upper surface of the wing proximate to the trailing edge of the wing.				
3 the wing.	1	31.	The wing for a micro air vehicle of claim 25, further comprising a riser section	
	2	forming a cor	ncave portion on an upper surface of the wing proximate to the trailing edge of	
	3	the wing.		