CSC110 Lecture 17: Modular Arithmetic

David Liu, Department of Computer Science

Navigation tip for web slides: press ? to see keyboard navigation controls.

Announcements & Today's plan

- Assignment 3 has been posted—please start early!
 - Check out the A3 FAQ (+ corrections)
 - Additional TA office hours
 - Review advice on academic integrity
- PythonTA survey 1

Joonho's last class 👀

Today you'll learn to...

- 1. Define modular equivalence.
- 2. State and prove some properties of modular equivalence.
- 3. Translate between a proof of existence and an algorithm.
- 4. Define the terms order and Euler totient function and state properties of these term.

Modular Arithmetic

Definition

Let $a, b, n \in \mathbb{Z}$, and assume $n \neq 0$. We say that a is equivalent to b modulo n when $n \mid a - b$. In this case, we write $a \equiv b \pmod{n}$.

Examples:

$$10 \equiv 1 \pmod{3}$$
 $10 \equiv 601 \pmod{3}$
 $10 \equiv -2 \pmod{3}$

Modular equivalence and remainders

Warning: $a \equiv b \pmod{n}$ does NOT mean that b is the remainder when a is divided by n.

But...

Theorem. Let $a, b, n \in \mathbb{Z}$ and assume $n \neq 0$. Then $a \equiv b \pmod{n}$ if and only if a % n = b % n.

Modular equivalence and arithmetic operations

For all $a, b, c, d, n \in \mathbb{Z}$, if $n \neq 0$ and $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$, then:

- 1. $a+b \equiv c+d \pmod{n}$
- $2. a b \equiv c d \pmod{n}$
- $3. ab \equiv cd \pmod{n}$

Example: Proof of 1 $(a + b \equiv c + d \pmod{n})$

Let $a, b, c, d, n \in \mathbb{Z}$. Assume that:

- $n \neq 0$
- $ullet \ a \equiv c \pmod n$, i.e., $\exists k_1 \in \mathbb{Z}, \ c-a = k_1 n$
- $ullet \ b \equiv d \pmod n$, i.e., $\exists k_2 \in \mathbb{Z}, \ d-b=k_2n$

We want to prove that $a+b\equiv c+d\pmod n$, i.e., $\exists k_3\in\mathbb{Z},\; (c+d)-(a+b)=k_3n.$

(rough work)

Given: the two equations

$$c - a = k_1 n$$
$$d - b = k_2 n$$

Want: the equation

$$(c+d) - (a+b) = \underline{\hspace{1cm}} n$$

Let $k_3 = k_1 + k_2$.

Then we can prove $(c+d)-(a+b)=k_3n$ with a calculation:

$$(c+d) - (a+b) = (c-a) + (d-b)$$

= $k_1n + k_2n$
= $(k_1 + k_2)n$
= k_3n

Exercise 1: Modular arithmetic practice

You proved this statement in Question 3 of the exercise:

$$orall a,b,c\in\mathbb{Z},\; orall n\in\mathbb{Z}^+,\; a\equiv b\pmod n \Rightarrow ca\equiv cb\pmod n$$

What about the converse?

$$orall a,b,c\in\mathbb{Z},\; orall n\in\mathbb{Z}^+,\; ca\equiv cb\pmod n \Rightarrow a\equiv b\pmod n$$

In other words, can we "divide by c" in modular equivalence?

Let n = 12. Let a = 3, b = 6, and c = 4. Then:

- $\bullet \ ca = 12 \equiv 0 \pmod{12}$
- $cb = 24 \equiv 0 \pmod{12}$
- But $a \not\equiv b \pmod{12}$

What is division?

In normal arithmetic, division relies on taking reciprocals:

$$\frac{a}{b} = a \times b^{-1}$$

What is division?

What's the equivalent of a reciprocal in modular arithmetic?

$$10 \times 5 \equiv 1 \pmod{7}$$

$$10 \times \ldots \equiv 1 \pmod{15}$$

Theorem (Modular inverse theorem).

Let $n \in \mathbb{Z}^+$ and $a \in \mathbb{Z}$. If gcd(a, n) = 1, then there exists $p \in \mathbb{Z}$ such that $ap \equiv 1 \pmod{n}$.

We call this p a modular inverse of a modulo n.

Proof of the Modular inverse theorem

Let $n \in \mathbb{Z}^+$ and $a \in \mathbb{Z}$. Assume $\gcd(a,n) = 1$. We want to prove that there exists $p \in \mathbb{Z}$ such that $ap \equiv 1 \pmod{n}$.

By the **GCD Characterization theorem**, there exist $p,q\in\mathbb{Z}$ such that

$$1 = pa + qn$$

Rearranging, we have 1-pa=qn, and so by the definition of divisibility $n\mid 1-pa$.

Then by the definition of modular equivalence, $pa \equiv 1 \pmod{n}$.

Theorem. (Modular division)

Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. If gcd(a, n) = 1, then for all $b \in \mathbb{Z}$, there exists $k \in \mathbb{Z}$ such that $ak \equiv b \pmod{n}$.

Exercise 2: Modular division

Modular exponentiation and order

Consider:

The powers of 2 modulo 7 enter a cycle of length 3:

1, 2, 4, 1, 2, 4, 1, 2, 4, ...

What about other bases $a \in \{0, 1, \dots, 6\}$? (2^k , 3^k , etc.)

Base a	Cycle length
0	1
1	1
2	3
3	6
4	3
5	6
6	2

order (cycle length)

Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. We define the **order of** a **modulo** n to be the smallest positive integer k such that $a^k \equiv 1 \pmod{n}$, when such a number exists.

We denote the order of a modulo n as $ord_n(a)$.

For example, $\operatorname{ord}_7(2) = 3$ and $\operatorname{ord}_7(3) = 6$.

Consider $\operatorname{ord}_{17}(a)$ —notice anything?

Base a	$\operatorname{ord}_{17}(a)$
0	1
1	1
2	8
3	16
4	4
5	16
6	16
7	16
8	8

Base a	$\operatorname{ord}_{17}(a)$
9	8
10	16
11	16
12	16
13	4
14	16
15	8
16	2

It seems that $ord_{17}(a)$ is always a factor of 16...

Fermat's Little Theorem.

Let $p, a \in \mathbb{Z}$ and assume p is prime and that $p \nmid a$. Then $a^{p-1} \equiv 1 \pmod{p}$.

How can we extend this to non-prime numbers?

The **Euler totient function** (or **Euler phi function**) is defined as:

$$\varphi:\mathbb{Z}^+ o\mathbb{N}$$

$$\varphi(n) = \left| \left\{ a \mid a \in \{1, \dots, n-1\} \text{ and } \gcd(a, n) = 1 \right\} \right|$$

Examples

- $\varphi(5) = 4 \ (\{1, 2, 3, 4\})$
- $\varphi(17) = 16 \ (\{1, 2, \dots, 16\})$
- For any prime number p, $\varphi(p)=p-1$ ($\{1,2,\ldots,p-1\}$)

- $\varphi(6) = 2 \ (\{1,5\})$
- $\varphi(15) = 8 \quad (\{1, 2, 4, 7, 8, 11, 13, 14\})$

$$\varphi(15)$$

1. Start with 15 - 1 = 14 numbers.

2.	Remove	the	multiples	of	3:
	14 - 4 =	10.			

3. Remove the multiples of 5: 10 - 2 = 8.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	

1	2	3	4	5
6	7	8	9	10
11	12	13	14	

1	2	3	4	5
6	7	8	9	10
11	12	13	14	

$\varphi(pq)$

Theorem. For all prime numbers $p,q\in\mathbb{Z}^+$, $\varphi(pq)=(p-1)(q-1)$.

Proof sketch.

- Start with pq-1 numbers $(\{1,2,\ldots,pq-1\})$.
- Remove the (q-1) multiples of p.
 - (pq-1) (q-1)
- Remove the (p-1) multiples of q.
 - (pq-1) (q-1) (p-1)

The remaining count is:

$$(pq-1) - (q-1) - (p-1) = pq - q - p + 1$$

= $(p-1)(q-1)$

Generalizing Fermat's Little Theorem

Fermat's Little Theorem.

Let $p, a \in \mathbb{Z}$ and assume p is prime and that $p \nmid a$.

Then $a^{p-1} \equiv 1 \pmod{p}$.

Euler's Theorem.

Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$, and assume $\gcd(a,n) = 1$.

Then $a^{\varphi(n)} \equiv 1 \pmod{n}$.

We'll use Euler's Theorem next week in our study of cryptographic algorithms, so stay tuned!

Summary

Today you learned to...

- 1. Define modular equivalence.
- 2. State and prove some properties of modular equivalence.
- 3. Translate between a proof of existence and an algorithm.
- 4. Define the terms order and Euler totient function and state properties of these term.

Homework

- Readings:
 - From today: 7.4, 7.5
 - Next week: Chapter 8
- Work on Assignment 3
- Prep 7 to be posted after class today

Good luck with your MAT137 test!

