Листок по теме «Линейная регрессия»

Кантор Виктор

16 февраля 2018 г.

1 Формулировка задачи

Пусть, для начала, есть векторы признаков x_1, \cdots, x_l для l объектов. На них же известны значения прогнозируемой величины y_1, \cdots, y_l . Будем пытаться аппроксимировать зависимость этой величины от признаков линейной: $y \approx \hat{y} = < w, x > = w^T x$, где w - вектор параметров, который мы хотим настроить на обучающей выборке. Здесь мы также имеем ввиду, что могли бы рассматривать более широкий класс зависимостей $\hat{y} = < w, x > +w_0$, но мысленно добавив к x фиктивный признак $x_0 = 1$ (равный единице для всех объектов), мы всегда сведем задачу к предыдущей.

Пусть, далее, мы хотим минимизировать суммарную потерю на обучающей выборке:

$$Q(w) = \sum_{i=1}^{l} L(y_i, \hat{y}_i) \to \min_{w}$$

И пусть, кроме того, функция потерь квадратичная: $L(y_i, \hat{y}_i) = (y_i - \hat{y}_i)^2$. Наконец, пусть X – матрица признаков, строки которой соответствуют признаковым описаниям объектов x_1, \dots, x_l (т.е. в матрице l строк), вектором y будем обозначать вектор длины l с координатами y_i , вектором \hat{y} – вектор длины l с координатами \hat{y}_i .

- 1. Как тогда выразить вектор \hat{y} через w и X?
- 2. Как записать функционал Q(w) через \hat{y} и y? Что получится, если подставить выражение для \hat{y} ?
- 3. Как выражается \hat{y} через столбцы матрицы X? В каком линейном пространстве лежит \hat{y} (в терминах линейных обочек набора векторов)?

2 Нормальное уравнение (normal equation)

1. Покажите справедливость следующего выражения:

$$\frac{\partial}{\partial x}(Ax+b)^T(Ax+b) = 2A^T(Ax+b)$$

2. Приравняв производную Q(w) по вектору w к нулю, выразите вектор весов w в точке минимума через X и y. Полученное выражение носит название Normal Equation. Запомните, как оно получается — пригодится на экзамене.

3 Геометрическая интерпретация

- 1. Вспомните, что у вас получалось в последнем вопросе из раздела "формулировка задачи". Мы хотим минимизировать сумму квадратов отклонений, значит мы хотим для заданного вектора y найти в этом линейном пространстве точку \hat{y} , которая будет самой близкой к вектору y. Нетрудно сообразить, что такой точкой будет проекция y на линейное пространство, в котором должен жить \hat{y} . Чему в этом случае равно скалярное произведение $\langle x^{(j)}, \hat{y} y \rangle$, где $x^{(j)}$ j-ый столбец матрицы X?
- 2. Исходя из предыдущего пункта, чему будет равно произведение

$$X^T(\hat{y}-y)$$
 ?

3. Закончите геометрический вывод нормального уравнения, подставив сюда выражение для \hat{y} и выразив w.

4 Вероятностная интерпретация

- Вспомните формулу плотности одномерного нормального распределения и как оцениваются параметры распределения методом максимального правдоподобия.
- 5. Предположим, что для каждого объекта x_i наблюдаемое значение величины y_i распределено нормально с матожиданием \hat{y}_i (некоторым "истинным значением"в рамках линейной модели, которое мы хотим оценить) и дисперсией σ^2 , одинаковой для всех i. Напишите минимизируемый функционал в задаче оценки \hat{y}_i по методу максимального правдоподобия.
- 6. Покажите, что метод максимумального правдоподобия в этом случае приводит к минимизации суммы квадратов отклонений.
- 7. Теперь вы видите, что есть связь между функцией потерь и нашим преставлением о распределении "правильных ответов". А какое распределение привело бы к минимизации суммы модулей отклонений?

5 l2-регуляризация: гребневая регрессия (ridge regression)

- 8. Давайте теперь добавим к функционалу Q(w) штрафное слагаемое $\tau ||w||^2$. Дифференцируя по вектору w получите новое выражение для его оптимального значения.
- 9. Покажите, что это это дает тот же результат, что и добавление к матрице X^TX единичной матрицы I, умноженной на τ (с последующим применением стандартной формулы).

10. Модификация матрицы из предыдущего пункта изменяет собственные числа матрицы, меняя число обусловленности и позволяя обратить X^TX , если до модификации обращение было неустойчиво. Но при этом сохраняются собственные векторы матрицы. Покажите, как меняются минимальное и максимальное собственное число и число обусловленности матрицы. А затем, — что собственные векторы остаются теми же.

6 l1-регуляризация: лассо Тибширани (LASSO)

- 11. Применив теорему Куна-Таккера, покажите, что добавление ограничения $||w||_{l1} < r$ равносильно добавлению штрафного слагаемого $\tau ||w||_{l1}$ в функционал Q(w) для некоторого τ .
- 12. Попробуйте с помощью теоремы или из геометрических соображений объяснить, почему минимум попадает в "угловые точки" шаров l1-нормы (т.е. почему зануляются некоторые коэффициенты w), и почему с увеличением τ нулей будет становиться больше.

7 Дополнительные вопросы

- 13. Покажите, что если предварительно центрировать выборку, параметр сдвига w_0 получится равным нулю.
- 14. Представьте теперь, что вы пытаетесь восстановить пряму по известным ее точкам на изображении. Здесь вам уже захочется минимизировать не сумму квадратов отклонений по y, а сумму квадратов расстояний от известных точек до прямой. Как в этом случае будут выглядеть формулы для коэффициентов искомой прямой $w_x x + w_y y + w_0 = 0$?
- Придумайте изящный ответ на предыдущий вопрос с помощью метода главных компонент.