» Nombres complexes : résumé

Définition

L'ensemble des nombres complexes est noté \mathbb{C} , il contient les nombres réels mais aussi le nombre i qui n'est pas réel et qui vérifie $i^2 = -1$.

Écriture d'un nombre complexe

Un nombre complexe z peut s'écrire sous trois formes :

- \blacksquare la forme algébrique, z = x + iy: x est la partie réelle et y la partie imaginaire.
- la forme trigonométrique, $z = r(\cos(\theta) + i\sin(\theta))$: r est le module (strictement positif) et θ l'argument.
- \implies la forme exponentielle, $z = re^{i\theta}$: r est le module et θ l'argument.

Passage d'une écriture à l'autre

Ces trois formes ne sont pas indépendantes et on peut passer de l'une à l'autre. Pour passer de la forme algébrique à la forme trigonométrique :

$$r = \sqrt{x^2 + y^2}$$
$$\cos(\theta) = \frac{x}{r}$$
$$\sin(\theta) = \frac{y}{r}$$

Pour déterminer la valeur de θ sans calculatrice, il faut se référer au cercle trigométrique : il faut pour cela que la valeur de θ soit dessus. Dans le cas contraire, on utilisera forcément la calculatrice.

Pour passer de la forme trigonométrique à la forme algébrique :

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

Quant à la forme exponentielle, ce n'est rien de plus qu'une autre façon de voir la forme trigonométrique par le biais de la formule d'Euler :

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Forme alégrique d'un quotient

Il se peut que l'on ait à déterminer la forme algébrique d'un nombre de ce type :

$$\frac{3+i}{2-i}$$

L'erreur à ne pas faire est de dire : "la partie réelle est $\frac{3}{2}$ et la partie imaginaire est $\frac{1}{-1}$ ".

La méthode correcte est de multiplier le numérateur et le dénominateur du nombre complexe par le conjuguée du dénominateur (c'est le même nombre complexe que le dénominateur sauf qu'on change le signe de sa partie imagiNombres complexes TSTI2D

naire). Dans notre exemple, cela donne:

$$\frac{3+i}{2-i} = \frac{(3+i)(2+i)}{(2-i)(2+i)} = \frac{3\times 2 + 3i + 2i + i^2}{2^2 + 2i - 2i - i^2} = \frac{6+5i-1}{4+1} = \frac{5}{5} + \frac{5}{5}i = 1+i$$

Interprétation géométrique

Les différentes écritures d'un nombre complexe peuvent s'interpréter géométriquement :

Calculatrice (TI)

Avec la calculatrice, il est possible d'obtenir toutes les réponses demandées si on s'y prend bien.

Quelques indications générales :

- on doit mettre la calculatrice en mode complexe dans le menu.
- on doit savoir si sa calculatrice est en dégrés ou en radians.
- on doit aller dans le menu maths puis complex.
- pour l'argument, on utilisera la commande arg ou angle.
- pour le module la commande abs.
- pour passer de la forme algébrique à la forme exponentielle, la commande polaire.
- pour passer de la forme exponentielle à la forme algébrique, la commande rect.