Matematiikan ja tilastotieteen laitos Topologia I Kurssikoe 4.5.2010, ratkaisut

1. Määritä euklidisen tason \mathbb{R}^2 osajoukon

$$A = \{(x, y) \in \mathbf{R}^2 \mid 0 < y < 1 - x^2\}$$

sisäpisteiden joukko int(A) ja reuna ∂A . Oikea vastaus riittää! Kannattaa piirtää kuva.

Ratk. Tulos on

$$int(A) = \{(x,y) \in \mathbf{R}^2 \mid 0 < y < 1 - x^2\}$$
 ja
$$\partial A = \{(x,y) \in \mathbf{R}^2 \mid -1 \le x \le 1, y = 0\} \cup \{(x,y) \in \mathbf{R}^2 \mid -1 \le x \le 1, y = 1 - x^2\}.$$

- 2. (a) Olkoon kuvaus $f: X \to Y$ jatkuva, ja olkoon (x_n) jono X:ssä. Osoita, että jos jono (x_n) suppenee, niin sen kuvien jono (y_n) , jossa $y_n = f(x_n)$, suppenee Y:ssä.
- (b) Olkoon $f: X \to Y$ peräti homeomorfismi. Osoita, että jos kuvien jono (y_n) , jossa $y_n = f(x_n)$, suppenee, niin jono (x_n) suppenee X:ssä.
- Ratk. (a) Väite. Jos jono (x_n) suppenee, niin suppenee myös jono (y_n) , jossa $y_n = f(x_n)$.
- Tod. Oletetaan että $x_n \to a \in X$. Koska kuvaus $f: X \to Y$ on jatkuva ja siten jonojatkuva, erityisesti pisteessä a, niin $y_n = f(x_n) \to f(a)$. Jono (y_n) siis suppenee kohti pistettä $f(a) \in Y$.
- (b) Väite. Jos jono (y_n) , jossa $y_n = f(x_n)$, suppenee, suppenee myös jono (x_n) . Tod. Koska kuvaus $f: X \to Y$ on homeomorfismi, käänteiskuvaus $f^{-1}: Y \to X$ on jatkuva, ja sille pätee $x_n = f^{-1}(f(x_n)) = f^{-1}(y_n)$. Sovelletaan (a)-kohtaa.
- 3. (a) Määrittele metrisen avaruuden (X,d) yhtenäisyys. Lisäksi, olkoon $A\subset X$. Kuinka joukon A yhtenäisyys käsitteenä palautuu edellä määrittelemääsi avaruuden yhtenäisyyteen?
- (b) Osoita seuraava: Olkoon (X,d) metrinen avaruus. Jos on olemassa sellainen $A \subset X$, että $\emptyset \neq A \neq X$ ja $\partial A = \emptyset$, ts. A:n reuna on tyhjä, niin avaruus X on epäyhtenäinen.
- Ratk. (a) Avaruus (X,d)on yhtenäinen, jos ei ole sen osajoukkoja $A,B\subset X,$ joille pätee
- (1) $X = A \cup B$ (2) $A \cap B = \emptyset$
- (3) $A \neq \emptyset \neq B$ (4) A ja B ovat avoimia avaruudessa X.

Osajoukko $A \subset X$ on yhtenäinen, jos avaruus (A, d_A) varustettuna indusoidulla metriikalla (yleisessä topologisessa avaruudessa relatiivitopologialla) on yhtenäinen.

(b) Väite. Jos löytyy $A\subset X$, jolla $\emptyset\neq A\neq X$ ja $\partial A=\emptyset$, niin avaruus X on epäyhtenäinen.

Tod. Merkitään $B = X \setminus A$. Silloin $B \neq \emptyset$. Tunnetusti $\partial A = \bar{A} \cap cl(X \setminus A) = \bar{A} \cap \bar{B}$. Oletuksen mukaan $\bar{A} \cap \bar{B} = \emptyset$. Lisäksi, koska $A \subset \bar{A}$ ja $B \subset \bar{B}$, niin $\bar{A} \neq \emptyset \neq \bar{B}$ ja $X = A \cup B \subset \bar{A} \cup \bar{B}$. Koska \bar{A} on suljettu, $\bar{B} = X \setminus \bar{A}$ on avoin. Vastaavasti \bar{A} on avoin. Joukot \bar{A} ja \bar{B} siis toteuttavat määritelmän ehdot (1)-(4). Siten X on epäyhtenäinen.

Huom. Kohdassa (4) voidaan yhtä hyvin edellyttää, että joukot A ja B ovat suljettuja. Siten kohdassa (b) riittää, että \bar{A} ja \bar{B} ovat suljettuja.

4. Todista kurssin lause: Olkoon (X,d) metrinen avaruus. Olkoot A ja B sen erillisiä ja epätyhjiä osajoukkoja, A kompakti ja B suljettu. Tällöin d(A,B)>0. Saa käyttää läheisesti asiaan liittyviä lauseita.

Ohje. Jos mokomaa tarvitsee, voi pitää tunnettuna että

$$d(A, B) = \inf\{d(x, y) \mid x \in A, y \in B\} = \inf\{d(x, B) \mid x \in A\}.$$

Ratk. Väite. d(A, B) > 0.

Tod. Koska A on kompakti, tunnetun lauseen mukaan löytyy sellainen $a \in A$, että d(a,B) = d(A,B).

Koska B on suljettu, on $X\setminus B$ avoin, ja koska $a\in A\subset X\setminus B$, löytyy sellainen r>0 että $B(a,r)\cap B=\emptyset$. Siten $d(a,y)\geq r$ kaikilla $y\in B$, joten

$$d(A, B) = d(a, B) = \inf\{d(a, y) \mid y \in B\} \ge r > 0.$$

Alku toisin: Jos ei muista alussa käytettyä lausetta, voi soveltaa esimerkiksi jatkuvaa funktiota $f: X \to \mathbf{R}, \ f(x) = d(x, B)$, joka tunnetusti saavuttaa miniminsä kompaktissa joukossa A, sanokaamme pisteessä $a \in A$. Tällöin

$$d(A,B) = \inf\{d(x,B) \mid x \in A\} = \inf\{f(x) \mid x \in A\} = \min\{f(x) \mid x \in A\}$$

= $f(a) = d(a,B)$.

Jatko kuten edellä.