AMENDMENTS TO THE DRAWINGS

Please replace the drawings with the attached formal drawing sheets (forty-six (46) different sheets, Figs. 1A-9E) submitted herewith.

Applicants: Chadwick et al. Docket No. 28110/36120C 1/46

<u>u</u>	-
GATATTGACC	TAAATTGGCC TGCGTGACCC GCCCACTTGG TGTAAAAGAA GAACCGGCCA
AAGCAGAGGC	TGTAAAAGAA
AGGAATGAAG AGTGTATTGG CTGAATCTTC AAGCAGAGGC GATATTGACC	GCCCACTTGG
AGTGTATTGG	TGCGTGACCC
AGGAATGAAG	TAAATTGGCC
ACGI I GACAC	ATGTGCTTTT

AAGGGAGGGC CTGAAGGACC TCCACAGGAG TGTGAGCAGC ACTGCTTCAG CAACAAAGCC 180

120

09

TTC 231 Phe	CAG 279 Gln 25	AAT 327 Asn	ACT 375 Thr	CAG 423
ACT TCC TGG GGG GCT GTC Thr Ser Trp Gly Ala Val 5	AGC ACT GTC TTC TAC AGA GAA C Ser Thr Val Phe Tyr Arg Glu G	TTG TCT TCC ATG TGC CCC ATT P Leu Ser Ser Met Cys Pro Ile A 35	ATG TTT GAT GCG GGC AGC Met Phe Asp Ala Gly Ser 55	GTG CAG AAA ACA GCA GGA
ATCTTGGGAA GAAT ATG GCC Met Ala	ATA GCC TGC GTT GGC Ile Ala Cys Val Gly 15	TTT GAA GGT GTC TTC Phe Glu Gly Val Phe 30	GGC ACC TTT TAT GGA Gly Thr Phe Tyr Gly 45	ATT CAT GTT TAC ACT
TCAGGTCCAC ATCT	ATG CTG ATC Met Leu Ile 10	CAG ACC TGG Gln Thr Trp	GTC AGT GCC Val Ser Ala	GGA GCT CGG

65

9

Applicants: Chadwick et al. Docket No. 28110/36120C 2/46

471	519	567	615	663	711
ctt Leu	GAG Glu 105	AGG Arg	GAG Glu	AAT Asn	se rcc ly ser
gga Gly	CAG Gln	GAA Glu 120	CCT Pro	AAG Lys	666 61y
ccg Pro	GTC Val	TGG Trp	CTG Leu 135	TTC Phe	GAT Asp
aag Lys	ACT Thr	CAC His	TTG Leu	ATC Ile 150	ATG Met
gtg Val 85	GAG Glu	AGC Ser	CGT Arg	GAG Glu	ATC Ile 165
tct Ser	GCT Ala 100	AGA Arg	CTC	GAG Glu	AGC Ser
gat Asp	GGT Gly	CCC Pro 115	GGA Gly	GTA Val	GTT Val
ttt Phe	CAG Gln	ATC Ile	GCC Ala 130	GAG Glu	AGC Ser
att Ile	AAA Lys	TCG Ser	ACG Thr	TTG Leu 145	GGC Gly
gaa Glu 80	CCC	GAC Asp	GCA Ala	CTC Leu	GAT Asp 160
ggt Gly	CAG Gln 95	AAA Lys	AAA Lys	CTG	CCA
gaa Glu	GAT Asp	GCC Ala 110	CTG Leu	GCT Ala	GTC Val
ctg Leu	GTG Val	GTG Val	GTT Val 125	CAG	CTG
ttt Phe	TTT Phe	GAG Glu	GTG Val	GCC Ala 140	TTC Phe
ccc Pro 75	GCT Ala	TTG	CCG	AAA Lys	CCT Pro 155

TCT Ser 90 CTC Leu ACC Thr CAG Gln TCA Ser

Applicants: Chadwick et al. Docket No. 28110/36120C 3/46

759	807	855	903	951	666
CAG Gln 185	GGT Gly	GAA Glu	ACT Thr	GCA Ala	A CAT y His 265
GGT Gly	GGG Gly 200	CTG	AGC Ser	GCT Ala	GGA Gly
ACA Thr	CTG	ACC Thr 215	AAC Asn	AAA Lys	GAT Asp
CTA Leu	GAC Asp	AAA Lys	TTT Phe 230	CTG	ACT Thr
TTT Phe	CTT	GAG	ATG Met	GGA G1y 245	666 Gly
AAC Asn 180	ACC Thr	TTT Phe	GAG Glu	TTT Phe	AAA Lys 260
GTG Val	GGG Gly 195	CAG Gln	TTT Phe	GGA Gly	GCA Ala
ACC Thr	GTG Val	CCC Pro 210	TCC Ser	TTG Leu	GAA Glu
GTT Val	ACT Thr	CTA Leu	ACT Ihr 225	TAC Tyr	CTG
TGG Trp	GAG Glu	TTT Phe	CTC	AGT Ser 240	GCC Ala
GCC Ala 175	CAG Gln	ACG Thr	TAC Tyr	CAT	GGA Gly 255
CTA Leu	GGC Gly 190	ATC Ile	66C 61y	ACA Thr	CTG
ATA Ile	CGT Arg	CAA Gln 205	AGG Arg	TAT Tyr	ACT Thr
GGC Glу	GGT Gly	ACC	CCT Pro 220	CTC Leu	GCA
GAA Glu	CAT His	TCC	ACA Thr	AAG Lys 235	CTG
TAT Tyr 170	CTG Leu	GCC Ala	CAA Gln	TTT Phe	AGA Arg 250

Applicants: Chadwick et al. Docket No. 28110/36120C 4/46

Ę	ט	360					355					350				
1287	GTG Val	GAA Glu	AGA Arg	GCC Ala	AAA Lys	AGA Arg	GAA Glu	TTT Phe	GAT Asp	GAA Glu	GTT Val	AAA Lys	TTA Leu	GTT Val	666 61y	GGC Gly
	Lys 345	Glu	Tyr	Asp	Ile	Leu 340	His	Thr	Asp	Ala	Ala 335	Arg	Asp	Tyr	Tyr	Tyr 330
1239	AAG	GAA	TAT	GAT	ATC	${ m TTG}$	CAC	ACA	GAC	GCT	229	CGA		TAC	TAC	TAC
1 2 1	Ser	IIC Phe	Ala	Tyr	11C Phe 325	Ala	Ser	61y	Arg	010 Val 320	Glu	Glu	Pro	CAG Gln	CAC His 315	Leu
1143	AAA Lys	666 61y	CAG Gln	GTA Val 310	GTA Val	AGG Arg	CTG	GTG Val	GAA Glu 305	GCG Ala	TAT Tyr	TGC Cys	CCC	GAA Glu 300	TTT Phe	GGC Glу
1095	ATG Met	GAG Glu	GGG Gly 295	GAA Glu	CAA Gln	AAC Asn	GGT Gly	GGT Gly 290	TAT Tyr	CAG Gln	TAC Tyr	AAA Lys	GTG Val 285	GGT G1y	666 G1y	TTT Phe
1047	ATC Ile	TGG Trp 280	GAG Glu	GCA Ala	GAA Glu	TTG	TGG Trp 275	AGA Arg	CCA Pro	TTA Leu	TGT Cys	GCC Ala 270	AGT	CGA Arg	TTT Phe	ACG Th <i>r</i>

AND NUCLEIC ACIDS
Applicants: Chadwick et al.
Docket No. 28110/36120C
5/46

1335	1383	1431	1479	1527	1575
ATG Met	GCC Ala	GAC Asp	CAT His 425	CCA Pro	TCT Ser
TGC Cys	ттт Рће	AGA Arg	666 G1y	GAA G1u 440	CTC
CTC Leu 375	66C 61y	CAT His	TCT Ser	TCT Ser	GAC Asp 455
TTC Phe	TTG Leu 390	CAA Gln	GTC Val	ATT Ile	TCT Ser
CCT	GGT Gly	GAA Glu 405	CCA Pro	TGC Cys	TTT Phe
AGT Ser	GAT Asp	AGT Ser	GCT Ala 420	GCC Ala	ACA Thr
66C 61y	AAA Lys	GAA Glu	CCT	GAA Glu 435	GAG Glu
TCG Ser 370	TTG Leu	AAA Lys	TCA Ser	TCT Ser	TCA Ser 450
TCC Ser	CTG Leu 385	CAC	CTT Leu	ACC Thr	GAC Asp
TTC Phe	GCC Ala	GCT Ala 400	CAC His	TCC	GTG Val
AGC Ser	ACA Thr	ACA Thr	GGC Gly 415	AGC Ser	GGC Gly
666 61y	ATC Ile	CTT Leu	GGG G1γ	CCA Pro 430	GAA Glu
TTG Leu 365	TAC Tyr	CCT	CTT Leu	AGG Arg	CAG Gln 445
AAC Asn	ACT Thr 380	CAC His	GGC Glу	CTG	TCA Ser
GAC Asp	CTC Leu	CGG Arg 395	TTG Leu	CAG Gln	TTC Phe
TGT Cys	GAC Asp	GAA Glu	TGG Trp 410	CAC His	GTT Val

FIG. 1E

Applicants: Chadwick et al. Docket No. 28110/36120C 6/46

1629		
TATAAGGAGG GAGGGGTTTT		
TATAAGGAGG		
TGG CCC GAA ACC CGT TAACTGGTTT		
CGT	Arg	465
ACC	Thr	
GAA	Glu	
CCC	Pro	
TGG	Trp Pro Glu Thr	
229	Ala	460
AAA	Lys	
GGA	Gly	

9

TAGATGAGTC TTG	ITGCTCTTGA	CTCTTGA GCCTAGTGAT TTGGGCTTCA ATGATTTGCA CATCTAATGT 1689	TTGGGCTTCA	ATGATTTGCA	CATCTAATGT	1689
GAATAGCTCC TAA	FAACCACTTG	CCACTTG GTGGGTGCAT GGCTGGCACC AGACTGTAAA TCTTTTGGGA 1749	GGCTGGCACC	AGACTGTAAA	TCTTTTGGGA	1749
TCTTTGTAC A	AGAGTCCTGC	TTCTTTGTAC AGAGTCCTGC AAAGGAAAAA AGAGAAAAGG TTTGGAACTC	AGAGAAAAGG	TTTGGAACTC	CATGCTAGAT 1809	1809
TGCGAGTTCA GAG	SAGACAGGTC	ACAGGIC CCTGGGGACC AAAGAACAAT CTCGTTTCAA CCCTTGGATG	AAAGAACAAT	CTCGTTTCAA	CCCTTGGATG	1869
CCTCATTGCT TTG	ITGAATGGAT	AATGGAT TCATTTTGC TTATAAGCTG ATTTACTGAA ATCCCATAAC 1929	TTATAAGCTG	ATTTACTGAA	ATCCCATAAC	1929
CCATCAATGC TGT	rGTTAATTTT	TTTCTTCCTA	TITCTICCIA CCCTIATIAC ATICCCIACC CTAAAAGCCT 1989	ATTCCCTACC	CTAAAAGCCT	1989
GGGGGAAATA CCTGGTTTTG	CCTGGTTTTG	CTTCCCATCT	CTTCCCATCT ATAATTGAGA AAGAGGGGGG AAAAGATACT 2049	AAGAGGGGG	AAAAGATACT	2049
GTATTAGAAT TTG	rtgtgtgatc	TGTGATC CTGTGGCACA ATAGATCAAC CAACCCATTT AAAGCTTAAA 2109	ATAGATCAAC	CAACCCATTT	AAAGCTTAAA	2109

FIG. 1

MAR 2 2 2004 S

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS

Applicants: Chadwick et al. Docket No. 28110/36120C 7/46

FIG. 2A

MAR 2 2 2004 S

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C

8/46

ACLPRWLEAEWIFGGV KYQYGGNQEGEMGFEPCYAEVLRVVQGKLHQPEEVR EKVTLESKETYTIDFIGPDEPSGAQCRFLTDEILNKDAQCQSPPCSFNGVHOPSLVRTFK	270	mNTPase yGDPase
SYGGVDYKVKAPKKGSSWK		peanifase potapyrase
TYSGEEFKATAYTSGANFNKCKNTIRKALKLNYPCDYONGTEGGTERY	276	peaNTPase
ENYTLYQFSHLGYGLKEGRNKVNSVLVENALKDGKILKGDNTKTHQLSSPCLPPKVNATN	234	yGDPase
STEKLYTHSYLGFGLKAARLATLGALEAKGTDGHTFR	232	mNTPase
KDYNLYVHSYLNYGQLAGRAEIFKA SRNESNPCALEGCDGY	235	potapyrase
IPYDLYVHSYLHFGREASRAEILKL TPRSPNPCLLAGFNGIY	234	peaNTPase
TNYLLGNIGANGPKLPTAAVFDLGGGSTQIVFEP TFPINEKMVDGEHKF DLKFGD	179	убрраве
VNFLTGQLHGRGQE TVGTLDLGGASTQITFLPQFEK TLEQTPRGYLTSFE	179	mNTPase
INYLLGNLGKDYKS TTATIDLGGGSVQMAYAISNEQFAKAPQNEDG - EPYVQQKH	e 178	potapyrase
VNYALGNLGKKYTK TVGVIDLGGGSVQMAYAVSKKTAKNAPKVADGDDPYIKKVVLKG	176	peanTrase

FIG. 28

Applicants: Chadwick et al. Docket No. 28110/36120C 9/46

PSSTSEACISEPVFSQEGVDSETFSDLSGKAWPETR*	430	mNTPase	
KIRVASS*	448	potapyrase	
FERLMYFV	448	peaNTPase	
ESDSHFCLDLSFQVSLLHTGYDIPLQRELRTGKKIANKE I GWCLGASLPLLKADNW	411	yGDPase	
FLCMDLTYITALLKDGLGFAERHPLTAHKESEQHRDWLGLGGHLSPAPVSGHHQLR	374	mNTPase	
NI - PYLCMDLIYEYTLLVDGFGLNPHKEITVIHDVQYKNYLVGAAWPLGCAIDLVSSTTN	389	potapyrase	
NVASYVCMDLIYQY VLLVDGFGLDPLQKITSGKEIEYQDAIVEAAWPLGNAVEAISALPK	388	peaNTPase	
ESNDIYIFSYFYDRIRPLGMPLSFILNELNDLARIVCKGEETWNSVFSGIAGS LDEL	354	yGDPase	
GSA-FYAFSYYYDRAADIHLIDYE-KGGVLKVEDFERKAREVCD-NLGSFSSGSP	322	mNTPase	
GQKNIHASSFFYDIGAQVGIVDTKFPSALAKPIQYLNAAKVACQTNVADIKSIFPKTQDR	329	potapyrase	
GOKNLFASS SFFYLPEDTGMVDASTPNFILRPVDIETKAKEACALNFEDAKSTYPFLDKK	328	peanTPase	

KCKIQSA

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C 10/46

		ACK II
CD39	47	K - V O K V N E I G I - Y L T D C M E R A R E V I P R S - Q H Q E T P V Y L G A T A G M R L L R M E S E E L A D
ratCD39	47	KY-AQKTDELAA-YLAECMKMSTERIPASKQHQ-TPVYLGATAGMRLLRMESKQSAD
CD39L1	47	SY-ADNPSGASQ-SLVGCLEQALQDVPKER-HAGTPLYLGATAGMRLLNLTNPEAST
chiATPase	47	
peantpase	46	SY-ANNPEQAAKS-LIPLLEQAEDVVPDDLQPKTPVRLGATAGLRLLNGDA-SE 3 pm
potRROP1	46	
ygda1	4	
mNTPase	46	
hcD3912	10	AY-ADDVEKSAQG-IRBLLDVAKQDIPPDSGRP-TPLVLKATAGLRLLPGEKAQ
celegans	51	SFG-DKPEQVVE-YLTPLLRFAEEHIPYEQLGETDLLIFATAGMRLLPEAQKD
y71KD	61	SFE-KKPQDAYKSHIKPLLDFAKNIIPESHWSSCPVFIQATAGMRLLPQDIQS

MAR 2 2 2004

Applicants: Chadwick et al. Docket No. 28110/36120C 12/46

					12/46					
RSLSN-YPF DFQGARIITGQBEGAYGWITINYLLGKFSQKTRWFSIVP	RSLKS-YPFDFQGAKIITGQEEGAYGWITINYLLGRFTQEQSWLNFIS	HTLTQ-YPFDFRGARILSGQBEGVFGWVTANYLLENFI-KYGWVGR	ATLKS-YPFDFGGAKILSGEEGVFGWITANYLLENFI-KRGWLGE	DMLSNRSTEN-VQPD-A-VSIIDGTQEGSYLWVTVNYALGNG	TEHSKD-QWVTILDGTQEGSYMWAAINYLLGNLG	DHLEKDYPPVVEGD - G - VSIMG DEEGVFAWITTNYLLGN IGANG	F - KNSPF - LV - PD - GS	EYL-KHSPF-LV-GD-DCVSIMNGTDEGVSAWXTINFLTGSLKTPG	NGLKSVTALRUSD SNIRIIDGAWEGIYSWIAVNYILGR F - D	QGLKHPABPLYEDCS-AQIQVIDGETEGLYGWLGLNYLYGH FNDYN
RVLDVVERSLSN-Y	EVLAAVSRSLKS - X	SVLMAVTHTLTQ-Y	- CLSAVMATLKS - Y	KILOSVRDMLSNRS	KILQAVRNLVKNOS	KILSAVRDHLEKDY	ALLLEVEEIF	KLLOKVKEYL-KHS	AIIKNLONGLKSVT	SILDGLCQGLKHPA
101	101	101	101	97	97	95	97	19	102	113
CD39	ratCD39	CD39L1	chiATPase	peanTPase	potRROP1	yGDA1	mNTPase	hCD39L2	celegans	y71KD

FIG. 30

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C 13/46

_
α
<u> </u>
_
⋖

CD39	155	YETNNOETF GALDLGGASTOVTF VPONO
ratCD39	155	- DSQKQATPGALDLGGSSTQVTFVPLNQ
CD39L1	152	WPRPRKGTLGAMDLGGASTQITFETTSP
chiATPase	151	WIQSKKKTLGAMDFGGASTQITFETSDAI
peaNTPase	144	KKYTK TVGVIDLGGGSVQMAYAVSKK
potRROP1	144	KDYKS TTATIDLGGGSVQMAYAISNE
yGDA1	146	PKL-PTAAVFDLGGGSTQIVFEPTFPI
mNTPase	146	QE TVGTLDLGGASTQITFLPQFE
hCD39L2	110	GSSVGMLDLGGGSTQIAFLPRVE
celegans	149	KE-NDS-KVGMIDIMGGASVQIAFEIA-NE
y71KD	165	PEVSDHFTFGFMDMGGASTQIAF APHDS

Applicants: Chadwick et al. Docket No. 28110/36120C 14/46

Met

237	G ATG AGA	ACATTITICA GCAGCCGCAG CACGGICCII GGCAAACAAG G AIG AGA 237	CACGGTCCTT	GCAGCCGCAG	ACATTTTCA	AAAACGAGCT
18(AACTTCCAGA	GCGCGGTGCA TGGAATGGGC TATGTGAATG AAAAAAGGTA TCCGTTATGA AACTTCCAGA 180	AAAAAAGGTA	TATGTGAATG	TGGAATGGGC	GCGCGGTGCA
12(GTGGCGGAGC	GCCGCCTGCT CCCCGGAAAA GGGCACTCGT CTCCGTGGGT GTGGCGGAGC 120	GGGCACTCGT	CCCCGGAAAA	GCCGCCTGCT	AAGACCGGCT
09	GGGAGCCCAA	ATCCCGCGGG TGGAGGCCCGG GGTGGCGCCG GCCGGGGCGG GGGAGCCCAA 60	GGTGGCGCCG	TGGAGGCCGG	ATCCCGCGGG	GTGGGGTCGT

0

285	333	381
CCC	TGG	GCC Ala 50
TAC Tyr	AAG Lys	
GCA Ala	ATC Ile	AGG Arg
GTG GCA TAC Val Ala Tyr 15	TAC Tyr	ACC
AAG Lys	GCC Ala 30	ATC Ile
GCG Ala	C TAT GTT GCC P Tyr Val Ala 30	AGC ATC Ser Ile 45
GTG Val	\mathtt{TAT}	TTC Phe
CGG	ATC Ile	TTC
CTG Leu 10	TTC ATC Phe Ile	CAG GCC Gln Ala
AGC	GTG Val 25	CAG Gln
GGG G1у	GGC Glу	ACC C Thr G
CAC His	GTG Val	GCC Ala
AAC Asn	rgr grg ggc grg l Cys Val Gly Val F 25	ACC Thr
TCC Ser 5	CTG	GCC Ala
AAA ATA TCC AAC CAC GGG AGC CTG CGG GTG GCG AAG Lys Ile Ser Asn His Gly Ser Leu Arg Val Ala Lys 5	GGG Gly 20	CGG (Arg.)
AAA Lys	CTG GGG CTG Leu Gly Leu 20	CAC CGG GCC His Arg Ala 35

FIG. 4A

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C 15/46

429	477	525	573	621
E-1 (7)	<i>E</i> '	T 7		4 5 0
GCT	AGC. Ser	GAA Glu	CTT	GAA Glu 130
ACA Thr 65	GGA Gly	AGA Arg	GGT Gly	CGG Arg
666 61y	GCA Ala 80	CCC	CCA Pro	ATC Ile
CTG Leu	GAT Asp	CCC Pro 95	AAG Lys	CAG GGA ATC Gln Gly Ile
CCC Pro	TTT Phe	CGG Arg	GTG Val 110	CAG Gln
AGC	ATG Met	ACC Thr	GCA Ala	GCT Ala 125
GCC CAC Ala His 60	GGG ATC Gly Ile 75	TTC Phe	TTC AAA Phe Lys	AAG AGC Lys Ser
	GGG G1 <i>y</i> 75	CAG Gln	TTC Phe	
CAG Gln	TAC Tyr	TTC Phe 90	ACC Thr	GAA Glu
GGT CAG Gly Gln	TTC Phe	GTC Val	GAA Glu 105	GTT Val
GGT Gly	GTC	CAC His	CAC	GAT Asp 120
TGG Trp 55	GAG	GTA Val	ACC Thr	GAT
CGG	CAC His 70	CGA Arg	TTA Leu	GCT Ala
GGG GCC Gly Ala	GGG G1γ	ACC Thr 85	ACG Thr	TAT Tyr
GGG Glу	GAC Asp	66C 61y	CCC Pro 100	GCC Ala
CCG	GCA Ala	ACT Thr	ACT Thr	TCT Ser 115

MAR 2 2 2004 ES

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS

Applicants: Chadwick et al. Docket No. 28110/36120C 16/46

717	765	813	861
GGA Gly	GCA	ACA Thr	AGC Ser 210
CCT	AAA Lys		GGC Gly
TTA Leu 160	TTT Phe		ACA Th <i>r</i>
CTG Leu	GTA Val	ATG Met	CTG Leu
	GAA Glu		TTC Phe
TTA Leu	AAA Lys		AAC Asn 205
	GTG Val	GTT Val	ATC Ile
GCT Ala 155	AAG Lys		ACC Thr
ACA Th <i>r</i>	CAG Gln 170	GAC Asp	ATC Ile
	CTG Leu	GAT Asp 185	TGG Trp
	TTA Leu	GGG G1γ	GCG Ala 200
CTC	AAG Lys	GTA Val	TCG Ser
GTC Val 150	CAG Gln	CTT Leu	GTT
CTG	GCC Ala 165	TTC Phe	660 61y
CCT Pro	AAG Lys	CCT Pro 180	GAA Glu
ACC Thr	GAA Glu	TCG Ser	GAT Asp 195
	CCT CTG GTC CTC AAG GCC ACA GCT GGC TTA CGC CTG TTA CCT GGA Pro Leu Val Leu Lys Ala Thr Ala Gly Leu Arg Leu Leu Pro Gly 150	CCT CTG GTC CTC AAG GCC ACA GCT GGC TTA CGC CTG TTA CCT GGA Pro Leu Val Leu Lys Ala Thr Ala Gly Leu Arg Leu Leu Pro Gly 150 AAG GCC CAG AAG TTA CTG CAG AAG GTG AAA GAA GTA TTT AAA GCA Lys Ala Gln Lys Leu Leu Gln Lys Val Lys Glu Val Phe Lys Ala 165	CCT CTG GTC CTC AAG GCC ACA GCT GGC TTA CGC CTG TTA CCT GGA Pro Leu Val Leu Lys Ala Thr Ala Gly Leu Arg Leu Leu Pro Gly 150 AAG GCC CAG AAG TTA CTG CAG AAG GTG AAA GAA GTA TTT AAA GCA Lys Ala Gln Lys Leu Leu Gln Lys Val Lys Glu Val Phe Lys Ala 165 CCT TTC CTT GTA GGG GAT GAC TGT GTT TCC ATC ATG AAC GGA ACA Pro Phe Leu Val Gly Asp Asp Cys Val Ser Ile Met Asn Gly Thr 180

FIG. 4(

606

GGA Gly

Len

Leu

GGC G1y 220

GTG Val

AGC Ser

GGG AGC Gly Ser

CCA GGA Pro Gly (215)

AAA ACT (Lys Thr

GAC

MAR 2 2 2004 ST

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS

Applicants: Chadwick et al. Docket No. 28110/36120C 17/46

957	1005	1053	1101	1149
CAG Gln	ACC Thr	GCA Ala	GGA. Gly 290	TGG Trp
CTG	AGG Arg	TCG Ser	GAT Asp	GAG Glu 305
ACC Thr 240	AAC Asn	ATG Met	GCT AAG Ala Lys	GGA Gly
GGC 7	TTT Phe 255	CTG Leu		AAA Lys
GAG Glu	ATG Met	GGG Gly 270	CCT	TTC Phe
CGC GTG Arg Val	CGG Arg	CTC	CAG Gln 285	AGT Ser
	CTG	666 61y	666 61y	CCC Pro 300
CCA Pro 235	GCA Ala	CTC Leu	GAG	TCT Ser
CTG Leu	ACG Thr 250	TAC Tyr	GTG Val	TTG Leu
TTC (Phe	CTG	AGC Ser 265	66C	TGC Cys
GCC Ala	TAC Tyr	TAC Tyr	GGC G1y 280	CCT
ATC Ile	66C Gly	TCC Ser	CTG	AGC Ser 295
CAG Gln 230	CCC GGC Pro Gly	TAT Tyr	ATC (TTG GTC I
ACT Thr	CCA Pro 245	CTC	GCG Ala	
TCC	TCC Ser	AAG Lys 260	CTG	GAG Glu
GGA 1 Gly 9	GCC	TAC Tyr	CGC Arg 275	AAG Lys

CAG AAA GCA (Gln Lys Ala i

Ser

AGG Arg

GAA

AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C 18/46

1245	1293	1341	1389	1437	1485
AAC Asn	TTC Phe	GAG Glu 370	TAC Tyr	TGC Cys	CCC
CAA Gln	GCT Ala	GCG Ala	AAG Lys 385	TCA Ser	GC TTT ly Phe
CTT Leu	TAT Tyr	GAT Asp	GCC Ala	TTC Phe 400	66c 61y
GTC Val 335	TTC Phe	ATA Ile	GCA Ala	CCC	TTC Phe 415
GAG Glu	GAC Asp 350	CTC	ATC Ile	AGC Ser	GAG Glu
TCA Ser	GTG Val	GGC Gly 365	GAG Glu	AGC Ser	CAG Gln
GTG Val	CAT His	GTG Val	TTC Phe 380	CAG Gln	CTC
AGA Arg	AAG Lys	GGT Gly	GAC Asp	CCG Pro 395	CTA Leu
GCC Ala 330	GTG Val	GCT Ala	666 61y	CAG Gln	CTG Leu 410
GCT Ala	GAA Glu 345	GCA Ala	GTG Val	ACA Thr	AGC Ser
TGT Cys	GAG Glu	CTT Leu 360	GTG Val	GAG Glu	GTC Val
CTG Leu	ACG Thr	GAC Asp	CTG Leu 375	CTG Leu	TAC Tyr
GAG Glu	AGG Arg	TAC Tyr	AGC Ser	ACC Thr 390	ACC Thr
CAC His 325	CAC His	TAT Tyr	66C 61y	CGG Arg	CTC Leu
CTG	GTG Val 340	TAC Tyr	GGA Gly	TGT Cys	GAC Asp
AGC Ser	AGA Arg	TCC Ser 355	AAG Lys	GTG Val	ATG Met

Applicants: Chadwick et al. Docket No. 28110/36120C 19/46

629

1533	
ACC	۲ ج
CGG AAA ATT GAC AAT GTT GAG ACC	The state of the second of the
\mathtt{GTT}	V_{α}
AAT	2
GAC	2
ATT	
AAA	7 170
992	7 7
ACT	E Y
CTC	<u>ר</u>
GTG CTG AAG CTC ACT	110
CTG	ָבָ בַּ
\mathtt{GTG}	[67]
AAA	Twe
AGĊ	Sor
ည်	۲,

	1581		
	AGA	n Arg	450
	AAC AGA	Asn	
	CTG	Leu	
	TCC	Ser	
430	GAC	: Ile Asp Ser Leu Asn	
	ATC	Ile	445
	TAC	Gly Ala Ile Phe His Tyr	
	CAT	His	
	TTT	Phe	
425	ATT	Ile	
	229	Ala	440
	999	Gly	
	CTG	Len	
	GCT	Ala	
420	$_{ m TGG}$	Trp	
	AGC	Ser	435

1		
	1	
GCCATCCCTG TCCCCGTCAG		
GCCATCCCTG		
GCC TCA TAGTGGCCGA		
TCA	Ser	
၁၁၅	Ala	455
CCA	Pro	
AGT	Ser	
AAG	Lys	
CAG	Gln	

1749
GCTGGC ACTTTCTGCA CACTGGCTCT GGGACTTGCA GAAGGCCTGG 1749
GGGACTTGCA
CACTGGCTCT
ACTTTCIGCA
CCGTGCTGGC
ACAGCACAGG

1809
ATCAGCCT CTTCCAGTCA CATCTGGCCA GAGGGCTGTC TGGACCTGGG
GAGGGCTGTC
CATCTGGCCA
CTTCCAGTCA
GCATCAGCCT
TGCTGCCCTG

1869
CACCTGT CTGCCTGGGC TCCAAGTGGG CAGGACCAGG ACAGAACCAC 1869
CAGGACCAGG
TCCAAGTGGG (
CTGCCTGGGC
TGCCACCTGT
CCCTGCTCAA

AGGCACACAC TGAGGGGGCA GTGTGGCTCC CTGCCTGTCC CATCCCCATG CCCCGTCCGC 1929

• Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C 20/46

9

 $\boldsymbol{\sigma}$

9

 $\boldsymbol{\sigma}$

GGGGCTGTGG	CTGCTGCTGT	GCATGTCCCT	GCTGCTGT GCATGTCCCT GCGATGGGAG TCTTGTCTCC CAGCCTGTCA	TCTTGTCTCC	CAGCCTGTCA	1989
GTTTCCTCCC	CAGGGCAGAG	CICCCCIICC	GGGCAGAG CTCCCCTTCC TGCAAGAGTC TGGGAGGCGG TGCAGGCTGT	TGGGAGGCGG	TGCAGGCTGT	2049
CCTGGCTGCT	CTGGGGAAGC	CGAGGGACAG	CTGGGGAAGC CGAGGGACAG CCATAACACC CCCGGGACAG TAGGTCTGGG 2109	CCCGGGACAG	TAGGTCTGGG	2109
CGGCACCACT	GGGAACTCTG	GACTTGAGTG	GGGAACTCTG GACTTGAGTG TGTTTGCTCT TCCTTGGGTA TGAATGTGTG 2169	TCCTTGGGTA	TGAATGTGTG	2169
AGTTCACCCA	GAGGCCTGCT	CTCCTCACAC	AGTTCACCCA GAGGCCTGCT CTCCTCACAC ATTGTGTGGT	TTGGGGTTAA TGATGGAGGG	TGATGGAGGG	2229
AGACACCTCT	TCATAGACGG	CAGGTGCCCA	TCATAGACGG CAGGTGCCCA CCTTTCAGGG AGTCTCCCAG CATGGGCGGA 2289	AGTCTCCCAG	CATGGGCGGA	2289
TGCCGGGCAT	GAGCTGCTGT AAACTATTTG		TGGCTGTGCT GCTTGAGTGA CGTCTCTGTC	GCTTGAGTGA	CGTCTCTGTC	2349
GTGTGGGTGC	CAAGTGCTTG TGTAGAAACT		GTGTTCTGAG CCCCCTTTTC	CCCCCTTTTC	TGGACACCAA 2409	2405
CTGTGTCCTG	TGAATGTATC	GCTACTGTGA	TGAATGTATC GCTACTGTGA GCTGTTCCCG CCTAGCCAGG GCCATGTCTT	CCTAGCCAGG	GCCATGTCTT	2469
AGGTGCAGCT	GTGCCACGGG	TCAGCTGAGC	GIGCCACGGG TCAGCIGAGC CACAGICCCA GAACCAAGCI CICGGIGICI	GAACCAAGCT		2529

6

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C 21/46

2762

2709

CGGGCCACCA TCCGCCCACC TCGGGCTGAC CCCACCTCCT CCATGGACAG TGTGAGCCCC TICCACTCCC AATAAAAGGT GAGCTGCTTC GTGTCGGGGC TGAGCCCCTT CACGAGCTGA ACCTCATGTG TGTGGCGTCA CAGTGCCCGG TCCTGCTCAG AGTGAATGTA GGGCCGTGCA

2589

FIG. 4H

Applicants: Chadwick et al. Docket No. 28110/36120C 22/46

FIG. 5A

FIG. 5B

Applicants: Chadwick et al. Docket No. 28110/36120C 23/46

FIG. 5D

FIG. 5E

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C 24/46

09
TCCGAATCGG
T AGTCGCCTTC
CGGCAGCGCT
GCCGCCTCTG
CTGGCCGCGG
ACCCACGCGT

09	112	
ATCGG	TGT Cys	
CCGAA	ATG TTC ACT GTG CTG ACC CGC CAA CCA TGT Met Phe Thr Val Leu Thr Arg Gln Pro Cys 1	
J.	CAA Gln	
SCCTI	CGC Arg	
AGTC	ACC Thr	
CT 1	CTG Leu 5	
AGCC	GTG Val	
0990	ACT Thr	
ICTG	TTC Phe	
GCC1	ATG Met 1	
)))	AG	
CIGGCCGCGG	CTAGGAGAAA AG ATG TTC ACT GTG CTG ACC CGC CAA CCA TGT Met Phe Thr Val Leu Thr Arg Gln Pro Cys 1	
ACCCACGCGT CTGGCCGCGG GCCGCCTCTG CGGCAGCGCT AGTCGCCTTC TCCGAATCGG	CTCCGCACAG CT	

160	208
ATT GCC Ile Ala 25	ACT GTC Thr Val
ATC A Ile 1	
ACC	AGT ATC
Thr	Ser Ile
CCA ACC ATC Pro Thr Ile	\Box
ACT	CTT
Thr	Leu
TAC CGA ACT Tyr Arg Thr	C TTG CTT GTG AGT ATT GTG GTA CTT GT 1 Leu Leu Val Ser Ile Val Val Leu Va
TAC	GTG
Tyr	Val
AAG GCC CTC	ATT
Lys Ala Leu	Ile
GCC	AGT
Ala	Ser
AAG	GTG
Lys	Val
CTC Leu 15	CTT Leu
GGC	TTG
Gly	Leu
GAG CAA GCA GGC CTC Glu Gln Ala Gly Leu 15	GTG GTC Val Val
CAA	TTG GTG
Gln	Leu Val
GAG	TTG
Glu	Leu

4 C		
00		
00		

. ,	
CAA	Gln
TAT	Tyr
GTG	Val
TAC GTG	Tyr
GTC	Val
ACA	Thr
SA ACC ACA	Thr
A(Arg
TCA	Ser
3 TCT TCA	Ser
99	Gly Ser
229	Ala
TG GAT	eu Asp
\mathcal{O}	Len
GTG	Val
ATT	Ile

AND NOCLEIC ACIDS
Applicants: Chadwick et al.
Docket No. 28110/36120C
25/46

352	400	448	496	544	592
TTC Phe 90	CCC Pro	999 61y	GCC Ala	AAT Asn	GAC Asp 170
ACC Thr	AAC Asn 105	aag Lys	GGA Gly	GCT Ala	TTT Phe
CAA Gln	AAT Asn	gtc Val 120	CTG	GCA Ala	CCC
AGT Ser	GGA Gly	aaa Lys	CAC His 135	ACA Thr	CAG Gln
GTC Val	\mathtt{TAT}	caa Gln	ATT Ile	GAA Glu 150	TCC
GTG Val 85	AGC Ser	atg Met	CCC Pro	AAT Asn	AAG Lys 165
GGA Gly	TCC Ser 100	tgt Cys	ACC Thr	CAA Gln	TTC Phe
ACC Thr	ATC Ile	gag Glu 115	TCC	TTG	TAC Tyr
AAT Asn	GGA Gly	gag Glu	GGA Gly 130	AGG Arg	AGC Ser
AAT Asn	TCT Ser	ttt Phe	CAC His	CTG Leu 145	CAA Gln
GAG Glu 80	GGC Gly	gcc Ala	CTC	TTG Leu	ATC Ile 160
AAA Lys	AAA Lys 95	aga Arg	CAC His	CGC Arg	AGC Ser
GAA	GTG Val	ccc Pro 110	TCC Ser	ATG Met	GAA Glu
GCA Ala	AGT Ser	gtc Val	CCA Pro 125	GGG Glγ	CTT
CCA	TGT Cys	gat Asp	GTT Val	GCT Ala 140	GTC Val
TGG Trp 75	AAA Lys	caa Gln	CAG Gln	ACG Thr	GAA Glu 155

FIG. 6E

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS
Applicants: Chadwick et al.
Docket No. 28110/36120C
26/46

				٧	FIG 6											
880	GAG Glu	AAT Asn 265	CGG Arg	GGC G1у	TAT Tyr	TGC Cys	CAG Gln 260	TTC Phe	AGC Ser	CAC His	ACA Thr	TAC Tyr 255	CTC	ACG Thr	TAC Tyr	GTA Val
832	TAC Tyr 250	GGC Gly	TAT Tyr	CTG	TCC Ser	GTG Val 245	CAG Gln	ATG Met	ATC Ile	GAC Asp	AGC Ser 240	ACC Thr	AAC Asn	CTG	GAT Asp	ATG Met 235
784	AAG Lys	GAG Glu	GGA Gly	GCA Ala	GTG Val 230	TTC Phe	TCC Ser	ATA Ile	CAA Gln	ACC Thr 225	TCC Ser	GCC Ala	GGT G1у	GGT Gly	TTA Leu 220	GAC Asp
736	CTG	GCC Ala	GGT Gly	ACG Thr 215	ACC Thr	GAA Glu	GTG Val	GGA Gly	CAT His 210	CCG	CAC His	GTG Val	TGG Trp	ATG Met 205	CAC His	TGG Trp
688	CTG	AAC Asn	AAG Lys 200	GAG Glu	CTG	TTC Phe	AAT Asn	GGA Gly 195	ATG Met	TTA Leu	\mathtt{TAT}	AAC Asn	GCC Ala 190	ACA Thr	ATT Ile	TGG Trp
640	GGA Gly	TAT Tyr 185	GTA Val	GGG G1у	GAA Glu	GAA Glu	CAA Gln 180	666 61y	TCT Ser	ATT Ile	ATC Ile	CAA Gln 175	GCT Ala	GGT Gly	AGG Arg	TTT Phe

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C 27/46

	ני יוו	ב															
			360					355					350	ı		1	
	Lys	Pro	Gln	Tyr	Val	G1y	Asp	Phe	Ser	Cys	Thr		Gln	Asp	His	Cys	
1168	AAG	CCA	CAG	TAT	\mathtt{GTT}		GAT	$\Gamma \Gamma \Gamma$	\mathtt{TCT}	\mathtt{TGT}	ACC	GAA	CAA	GAT		TGC	
	Ala	Lys 345	Phe	Asp	Phe	I]e	Ser 340	Ala	Val	Lys	G1u	Lys 335		Leu	Ser	Pro	
1120	GCT	AAA		GAC	${ m TTT}$	ATA	TCC	GCT		AAG	GAG	AAG	\mathtt{TGT}	\mathtt{CTG}		CCA	
	Asp 330	Б Б	Thr	Gly	Glu	Phe 325	Thr	Ile	Val	Asp	Asn 320	Pro	Asn	Туг	Ser	Glu 315	
1072	GAC	999		GGA	GAA	$\mathtt{T}\mathtt{T}\mathtt{T}$	ACT	ATC	GTC	GAT	AAT	\mathcal{CCC}	AAC	TAT		GAA	
	Pro	Arg	Gln	Asp	Val 310	Thr	Cys	Leu	Ser	Asp 305	Phe	Val	His	Gly	Met 300	Thr	
1024	CCA	AGG	CAG	GAC	GTG	ACT	IGC	CTG	AGC	GAT	TTT	GTA	CAT	299	ATG	ACC	
	Phe	Ser	Ile	Ser 295	Tyr	Asp	Arg	Pro	Tyr 290	Cys	Pro	Asn	Thr	Leu 285	His	Asn	
916	TTC	AGC	ATC	AGC	TAT	GAT	990	CCT	TAC	TGT	သသ	AAT		CTC	CAT	AAC	
	Lys	Thr	Pro 280	Ser	Asn	Gln	Leu	Leu 275	Met	Ala	Leu	Phe	Lys 270	Lys	Glu	Ala	
928	AAA	ACC AAA	CCI	$_{ m LCT}$	AAT		CIG	CTC		GCA	CTG	TTT	AAG	AAG	GAG	GCT	

FIG. 6D

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C 28/46

1216	1264	1312	1360	1408	1456
AGT Ser	AGC Ser	CTC Leu 410	AAC Asn	ACT Thr	GCC Ala
GCC Ala	TCC Ser	CTG	GCC Ala 425	GAG Glu	NGC ATA Ser Ile
ACA Th <i>r</i>	AAC Asn	CTG Leu	TCA Ser	GAG Glu 440	AGC Ser
TAC Tyr 375	TTC Phe	CCA Pro	TTC Phe	ACA Thr	AGC Ser 455
TAC Tyr	ACC Thr 390	CTC	TGC Cys	TTC Phe	AAT Asn
TTC Phe	GAC Asp	CAG Gln 405	TAC Tyr	AAA Lys	666 G1y
GGA Gly	CTG	AGT Ser	TCT Ser 420	TAC Tyr	GTG Val
GCA Ala	TCC Ser	TGG Trp	CGC Arg	GGT G1y 435	GAA Glu
TTT Phe 370	TTT Phe	AAT Asn	GCC Ala	AAC Asn	AAA Lys 450
GCT Ala	AGC Ser 385	CAG Gln	\mathtt{TAT}	GTG Val	GAA Glu
GTG Val	GGT Gly	TCA Ser 400	GTA Val	TTT Phe	TTT Phe
TTT Phe	TCA Ser	TGC Cys	GAG Glu 415	TTG Leu	CAC His
CCA	CTT Leu	TTC Phe	GAT Asp	CAC His 430	ATA Ile
GGG Gly 365	AAT Asn	AAT Asn	TTT Phe	TAC Tyr	CAA Gln 445
AAA Lys	TTA Leu 380	TGG Trp	AAA Lys	ATC	CCC Pro
ATT Ile	GCT Ala	ACC Thr 395	CCC	TAC	TGG Trp

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C 29/46

1504	1552	1600	1648	1699
TGG TCT CTT GGC TAC ATG CTC AGC CTG ACC AAC CAG ATC CCA GCT GAA 15 Trp Ser Leu Gly Tyr Met Leu Ser Leu Thr Asn Gln Ile Pro Ala Glu 460	AGC CCT CTG ATC CGT CTG CCC ATA GAA CCA CCT GTC TTT GTG GGC ACC 15 Ser Pro Leu Ile Arg Leu Pro Ile Glu Pro Pro Val Phe Val Gly Thr 475 475	CTC GCT TTC TTC ACA GTG GCA GCC TTG CTG TGT CTG GCA TTT CTT GCA 16 Leu Ala Phe Phe Thr Val Ala Ala Leu Leu Cys Leu Ala Phe Leu Ala 500	TAC CTG TGT TCA GCA ACC AGA AGA AAG AGG CAC TCC GAG CAT GCC TTT 16 Tyr Leu Cys Ser Ala Thr Arg Arg Lys Arg His Ser Glu His Ala Phe 510 510	GAC CAT GCA GTG GAT TCT GAC TGAGCCTTCA AAGCAGCTCC TGGAGTCCAA Asp His Ala Val Asp Ser Asp 525
HH	A S 4	CI	T T	D A

TGGCTGCTTA GAGTCAGCCT GGGTGGCACC AGGCAATGCA GGTGAAGTGG CTGCCTTCAG 1759

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS
Applicants: Chadwick et al.
Docket No. 28110/36120C
30/46

241	CTAGCAAGAT	ACATTGATCC	CCATAAAAAC	CTATGCCCTC	CTCATCTCAC CATTGTATTG CTATGCCCTC CCATAAAAC ACATTGATCC CTAGCAAGAT 241	CTCATCTCAC
235	TGTCATCATC	TAGATTGCAA CCTGTGTT	TAGATTGCAA	CTCTGGTCAC	AGTGGAATTC CCACTTAGGG CTCTGGTCAC	AGTGGAATTC
229	CCATTCTCCA	AAACTATAGA	GTCTCCCAGA	CATAAAAAG	tagatcccga agcacagaga cataaaaag gtctcccaga aaactataga ccattctcca 229	TAGATCCCGA
223	GTCATACAGG	CCAGGCTTCT	CTTCAGGGCA GCAGCCACAG CCAGGCTTCT	CTTCAGGGCA	TGGGGGAGAA GACTTACTTC	TGGGGGAGAA
217	ATATAGTATC	GATCAGTAGA	AACCCCCTCA	GTAAGCAGTG	GACTTTCTTG TAGCAATCTC GTAAGCAGTG AACCCCCTCA GATCAGTAGA ATATAGTATC 217	GACTTTCTTG
211	CTTTAACTAA	TCCCATTGGT	TTATAGTTTT	GAATCTCATT	ATTAAGCATT TCGCCAATCA GAATCTCATT	ATTAAGCATT
205	CAAGATACCC	TTCTTCCTGG	TCCCTCAGTA	TCCATTTCCC	ATTGACCTCA GGGCTCAGTT TCCATTTCCC TCCCTCAGTA TTCTTCCTGG CAAGATACCC 205	ATTGACCTCA
199	ATGTTGAAGA	GTTGAGAAGG TATCAGTTTA ATGTTGAAGA 199	GTTGAGAAGG	GGAAGAGTAA	TTTATATTAA GTTCCCCAGA GGAAGAGTAA	TTTATATTAA
193	GGTCAGGCTC	AGGCCACTAA	GAGAAGAGAC	TTGGGGAACA	actacccaca tgctgatcta ttggggaaca gagaagaga aggccactaa ggtcaggctc 193	ACTACCCACA
187	CAGAGACCTC	TATTGTTCTT	ATTCTGTGCA	TCCCTTGGCT	CCACAGCACC TCTTGAGGCA TCCCTTGGCT ATTCTGTGCA TATTGTTCTT CAGAGACCTC	CCACAGCACC
181	CTGATTTCTG	CTCTCAAATA	GGTCACGTGC	CAAACACCTA	GAAATACAAC TAACTAAAAT CAAACACCTA GGTCACGTGC CTCTCAAATA CTGATTTCTG	GAAATACAAC

FIG. 66

Applicants: Chadwick et al. Docket No. 28110/36120C 31/46

2479 2539 2599 2659 AGCAAATCCA ATGGCTACAA ACTAAAAATC TGCCTTTGCT AGGCTTTTGC TTAGCAAAGG GCTGACTTTC TGATGTTGTC CAGGAATATT TCATAGACCT AAGGAAGCTG CTTTCCCAGA CAAGTATACT GGGGAAAGAA ACCATTCCCA TAACCAATTA AAAGAACTCC TATTTTGTC TATGATTTAC TCTTGACTTT GTCGAATGAG TATTGCATTC CAGATTTTAC ATGGTGTATA CATCCTACTC TAGTCATAGG CTCTGCATAG ATAGAACGAA TATCTCCAAA CATTGTTATC

FIG. 6H

2797

TAAAGAACTA TTATTTTATT

TTTCTTAGCT GAATATGGAA

CATATTGCTG

AGCATTATT

TTGAAAAAA AAAAAAA

Applicants: Chadwick et al. Docket No. 28110/36120C 32/46

9

384

AGC Ser

GTC Val

ATC Ile

TCC ATG TGC (Ser Met Cys)

Ser

ATC Ile

GGT Gly

GAG Glu

Leu 35

AAT

 ∞

0

336	TGG	ne net leu 10 CAG CAG ACT Gln Gln Thr	GCT GTC TCC CAC Ala Val Ser His	TCC TGT GTT TGC AGC Ser Cys Val Cys Ser 15
288	GTG GTA Val Val	GTC TTT TTC ATG CTG GTG Val Phe Phe Met Leu Val	AAAAGA ATG GCC ACT TCT TGG GGC ACA GTC TTT TTC ATG CTG GTG GTA Met Ala Thr Ser Trp Gly Thr Val Phe Phe Met Leu Val Val	GCC ACT Ala Thr
24	ACATCTTGGG	CCACCCAGCC	TGCAGGTGTG CGAGCAGGAT TGCTTCTGCA ACAAAAGCCT CCACCCAGCC ACATCTTGGG 240	CGAGCAGG
18(AAATTGCCTC	AGGAAAGAAA	AAAAAGTGAT ATAATAAAGG AACCAAGGAG AAAATTCAGA AGGAAAGAAA AAATTGCCTC 180	ATAATAAA
12(TGTAAGGTTG	TGTATCCAGA TGTAAGGTTG	AGATCATTA TGGTGCTGTT AGGTAGGACT	TCATACAGAC AAGATCAT
09	GGCTGAATCC	GGAGTGTCTT	GCGCGCGCGT TTTCCTTGTT CCTGGTCAAC AAAGAAATGT GGAGTGTCTT GGCTGAATCC	TTTCCTTG

432			
ATT	Ile		FIG 7A
CGA	Arg Ile		Œ
ACT	Thr	09	
GGA	Gly Thr		
ACT	Thr (
AGC	Ser		
GGG	Gly		
GCA	Ala Gly Ser	52	
GAT	Asp		
TTT	Phe		
ATT ATG TTT	Met		
ATT	Ile		
~	~	$\overline{}$	

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C

w.	20	1 1	
3	3/4	16	

480	528	576	624	672	720
CTA Leu	GTA Val	GTG Val 110	GTC Val	AAG Lys	CTG
ATT Ile	TTT Phe	GAG Glu	GTG Val 125	GCC Ala	TTC Phe
CCA	GCT Ala	TTA Leu	CCA Pro	AAA Lys 140	CCT Pro
CTT Leu 75	TCT Ser	CTC Leu	ACC Thr	CAC His	TCA Ser 155
CAG Gln	CTT Leu 90	GGG Gly	AAG Lys	GAA Glu	AAG Lys
GGA Gly	GGA Gly	CAA Gln 105	AAA Lys	CCA	AGG Arg
CCA Pro	CCA	GTT Val	TGG Trp 120	CTG	TTC Phe
ATG	AAG Lys	ACC Thr	CAC	TTA Leu 135	ATC Ile
AAA Lys 70	GTG Val	GAG Glu	AGT Ser	CGC Arg	GAG Glu 150
CAG Gln	TCT Ser 85	GCT Ala	CGA Arg	CTA Leu	AAG Lys
GTG Val	GAT Asp	GGT Gly 100	CCC Pro	GGA Gly	GTA Val
TTT Phe	TTT Phe	CAG Gln	ATC Ile 115	GCA Ala	GAG Glu
ACC Thr	GTT Val	AAG Lys	TCA Ser	ACA Thr 130	TTT Phe
TAC Tyr 65	GAA Glu	CCT	GAC Asp	GCA Ala	CTC Leu 145
GTT Val	GGG G1y 80	CAA Gln	AAA Lys	AAG Lys	CTG
CAT	GAA Glu	GAT Asp 95	GCC	CTA	GCT

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C 34/46

768	81.6	864	912	096	1008
ATA Ile	CAC His 190	CAA Gln	AGG Arg	TAT Tyr	ACC Thr
66C 61y	66C 61y	ACC Thr 205	CCT Pro	CTC	GCA Ala
GAA Glu	CAT	TCC Ser	ACT Thr 220	AAG Lys	CTA Leu
GAC Asp	CTG Leu	GCC Ala	CAA Gln	TAT Tyr 235	AGA CTA Arg Leu
TCC Ser 170	CAG Gln	GGA Gly	GAA Glu	ACT Thr	GCA Ala 250
GGA Gly	GGT G1y 185	GGG G1у	CTG Leu	AGC Ser	GCT Ala
GAT Asp	ACA Thr	CTA Leu 200	ACT Th <i>r</i>	AAC Asn	AAA Lys
ATG Met	CTG Leu	GAC Asp	AAA Lys 215	TTT Phe	TTG Leu
ATC Ile	TTT Phe	TTG Leu	GAG Glu	ATG Met 230	GGA Gly
AGC Ser 165	AAT Asn	ACC Thr	TTT Phe	GAG Glu	TTT Phe 245
GTT Val	GTG Val 180	GGG Glу	CAG Gln	TTT Phe	GGA Gly
AGT Ser	ACT Thr	GTG Val 195	CCC Pro	TCC Ser	TTG
GGC G1 у	GTT Val	ACT	CTG Leu 210	ACT Thr	TAC Tyr
AAG GGC Lys Gly	TGG Trp	GAG ACT Glu Thr	TTC Phe	CTC Leu 225	AGT
CCA Pro 1160	GCT Ala	CAG Gln	ACG Thr	TAC Tyr	CAT His 240
GTA Val	TTA Leu 175	AGA Arg	ATC Ile	66C G1y	ACA Thr

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C 35/46

1056	1104	1152	1200	1248	1296
AGT Ser 270	GTG Val	CCC Pro	CCA Pro	GAC Asp	r rra e Leu 350
CGG Arg	GGT Gly 285	GAG Glu	CAG Gln	ТАТ Ту <i>к</i>	ATT Ile
TTC Phe	666 61y	TTT Phe 300	CAC His	TAT Tyr	GGT
ACT Thr	TTT Phe	GGC Gly	CTT Leu 315	TAC Tyr	GGG Gly
CAC His	ATC Ile	GTG Val	AAA Lys	TCT Ser 330	AAG Lys
GGG Gly 265	TGG Trp	GAG Glu	GGA Gly	TTC Phe	GAA Glu 345
GAT Asp	GAG Glu 280	666 61y	CGA Arg	GCT Ala	ТАТ Туг
ACT Thr	GCA Ala	GAA Glu 295	GTA Val	TAT Tyr	GAT Asp
666 61y	GAA Glu	CAA Gln	GTG Val 310	TTC Phe	ATT Ile
GAA Glu	TTG	AAC Asn	AGG Arg	TCC Ser 325	ATG Met
ACA Thr 260	TGG Trp	66C 61y	CTG	GGT Gly	GAC Asp 340
GAG Glu	AGA Arg 275	GGT G1y	GTG Val	AGA Arg	ACA Thr
CTG	CCG Pro	TAT Tyr 290	GAA Glu	CAG Gln	GAC Asp
GCC Ala	TTA Leu	CAG Gln	GCC Ala 305	GTC Val	GTT Val
GGA Gly	TGT Cys	TAC Tyr	TAT Tyr	GAG Glu 320	GCT Ala
CTG Leu 255	GCC Ala	AAA Lys	TGC Cys	GAG Glu	CGA Arg 335

Applicants: Chadwick et al. Docket No. 28110/36120C 36/46

Leu	TAC 1392 Tyr	rc 1440 al	iG 1488 eu	1530
		A GTC r Val	C TTG	
AAC Asn 365	AGC Ser	ACA Thr	GCC Ala	
GAT Asp	CTC Leu 380	AGC Ser	TGG Trp	CAT His
TGT	GAT Asp	GAC Asp 395	GGC G1γ	TCC Ser
GTG Val	ATG Met	GCA	ACG Thr 410	ATC Ile
AGG GAA Arg Glu 360	TGC Cys	TTT Phe	GAG Glu	GGC Gly 425
AGG Arg 360	CTG Leu	66C '	ATA Ile	CTG
Ala	TTC Phe 375	TTT Phe	AAC Asn	TCT Ser
caa aca aaa Glu Arg Lys	CCT	GGC G1y 390	AAC Asn	CAG Gln
Arg	AGT Ser	GAT Asp	GTG Val 405	TTG Leu
	GGC Glу	AAG Lys	AAA Lys	CTG Leu 420
111 Phe 355	TCA Ser	TTA Leu	AAG Lys	CAC His
Asp	ACC Thr 370	CTG Leu	ACA Th <i>r</i>	TTT Phe
Glu Asp E	TTC ACC TCA Phe Thr Ser 370	GCC CTG TTA Ala Leu Leu 385	CTC ACA AAG Leu Thr Lys	ACC Thr
Val	AAC Asn	ACA Thr	CAG Gln 400	GCC Ala
Lys Val (GAA Glu	ATC Ile	TTA	GGG (G1y 7415

TGAGGCCACG TACTTCCTTG GAGACCTGCA TTTGCCAACA CCTTTTTAAG GGGAGGAGAG 1590

Gly 425

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C 37/46

	IICIGAACIA	iscicinai ilcigaacia giciggaca rechegaciti gageetagag attraggitt 1650	TCCTGGACTT	GAGCCTAGAG	ATTTAGGTTT	1650
AATTAATTTT	ACACATCTAA	AATTAATTTT ACACATCTAA TGTGAACTGC TGCCTAACCA CTCAAGAGTA CACAGCTGGC 1710	TGCCTAACCA	CTCAAGAGTA	CACAGCTGGC	1710
ACCAGAGCAT	CACAGAGAGC	ACCAGAGCAT CACAGAGAC CCTGTGAGCC AAAAAGTATA GTTTTGGAAC TTAACCTTGG 1770	AAAAAGTATA	GTTTTGGAAC	TTAACCTTGG	1770
AGTGAGAGCC	CAGGGACAGG	AGTGAGAGCC CAGGGACAGG TCCCTGGAAA CCAAAGAAAA ATCGCATTTC AACCCTTTGA 1830	CCAAAGAAAA	ATCGCATTTC	AACCCTTTGA	1830
GTGCCTCATT	CCACTGAATA	GTGCCTCATT CCACTGAATA TTTAAATTTT CCTCTTAAAT GGTAAACTGA CTTATTGCAA 1890	CCTCTTAAAT	GGTAAACTGA	CTTATTGCAA	1890
TCCCAAGACC	CATCAATATC	TCCCAAGACC CATCAATATC AGTATTTTTT TCCTCCCTAT ACAGTGCCCT GCCCACCCTT	TCCTCCCTAT	ACAGTGCCCT	GCCCACCCTT	1950
ATCTGCACCC	ACCICCCCIG	ATCTGCACCC ACCTCCCCTG AAAAAGAGAG AAAAAAAAAA	AAAAAAAAA	AAAAAAA		1998

MAR 2 2 2004 S

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS

Applicants: Chadwick et al. Docket No. 28110/36120C 38/46

↑		
WPAEKENDTGVVHQVEEC/RVKGPGISKFVQKVNEIGIYLTDCMERAREVIPRSQHQETPV	67	CD39
WPAEKENNTGVVSQTFKCSVKGSGISSYGNNPQDVPRAFEECMQKVKGQVPSHL	75	CD39L3
WPADKENDTGIVGQHSSCDVPGGGISSYADNPSGASQSLVGCLEQALQDVPKERHAGT	28	CD39L1
FVQKMPGQLPILEGEVEDSVK - PGLSAFVDQPKQGAETVQGLLEVAKDSIPRSHWKKTPV	67	CD39L4
0 FT-RPPRETPTLTHETFKAVK-PGLSAYADDVEKSAQGIRELLDVAKQDIPFDFWKATPL	120	CD39L2
ACR II		
SNVKTFCSKNILAILGFSSIIAVIALLAVGLTQNKALPENVKYGIVLDAGSSHTSLYIK	۲.	CD39
KALYRTPTIIALVVLLVSIVVLVSITVIQIHKQEVL - PPGLKYGIVLDAGSSRTTVY	16	CD39L3
S M F	7	CD39L1
RIHVY	7	CD39L4
KWHRATATQAFFSITRAAPGARWGQQAH - SPLGTAADGHEVFYGIMFDA	61	CD39L2
	н	CD39
TOPCEONG	Н	CD39L3
	н	CD39L1
	7	CD39L4
MKKGIRYETSRKTSYIFQQPQHGPWQTRMRKISNHGSLRVAKVAYPLGLCVGVFIYVAYI	1	CD39L2

MAR 2 2 2004 S

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES

AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C

39/46

ACR III	EVFKASPFLVGDDCVSIMM	EIFRKSPFLVPKGSVSIMDGSDEG	HTLTQYPF DFRGARILSGQE	SYFKSQPF DFRGAQIISGQEEGVYGWI	RSLSNYPF DFQGARIITGQEEGAYGWITI	ACRIV Ten I	LDLGGGSTQIAFLPRVEGTLQASPPGYLTALRM	LDLGGASTQITTLPQFEKTLEQTPRGYLTSFEM	MDLGGASTQITFETTSPAEDRASE V - QLHL	LDLGGASTQISFVAGEKMDLNTSD IMQVSL	LDLGGASTQVTFVPQNQTIESPDN ALQFR	VEGQPAKDGKELVSPCLSPSFKGEWEHAEVTYR	່ ⊻ື	SALQ THGFHPCWPRGFSTQVLLGDVYQS	LLQNSPTKNHLTNPCYPRDYSISFTMGHVFD	K D I Q V A S N E I - L R D P C F H P G Y K K V V N V S D L Y K T
ACR II	VLKATAGLRLL PGEKAQKLLQKVK	VLKATAGLRLL PEHKAKALLFEVK	Y L GATAGMRLLNLTNPEASTSVLMAVTI	HLGATAGMRLLRLQNETAANEVLESIQ	YLGATAGMRLLRMESEELADRVLDVVEI	7•	LTGSLKTPGGSSVGM	LTGQL HGHRQETVGT	LLENFIKYGWVGRWF RPR - KGTLGAN	LMGNFLEKNLWHMWV HPHGVETTGAL	LLGKESQKTRWFSIUPYETNNQETFGAL	FNRTYKLYSYSYLGLGLMSARLAILGGV	FNSTYKLYTHSYLGFGLKAARLATLGAL	YGQHYRVYTHSFLCYGRDQVLQRLL - AS	YGYVYTLYTHSFQCYGRNEAEKKFL-AM	YGKDYNVYTHSFLCYGKDQALWQKL - AK
	178.	126	118	135	127		235	183	176	193	185	283	231	229	248	242
	CD39L2	CD39L4	CD39L1	CD39L3	CD39		CD39L2	CD39L4	CD39L1	CD39L3	CD39	CD39L2	CD39L4	CD39L1	CD39L3	CD39

FIG. 8B

EVLQNRVHRTEEVKHVDFYAFSYYDLAAGVGLIDAEKGG

GQKAAASLHELCAARUS

Ŋ

343

CD39L2

Title: METHODS AND COMPOSITIONS **RELATING TO CD-39-LIKE POLYPEPTIDES** AND NUCLEIC ACIDS

Applicants: Chadwick et al. Docket No. 28110/36120C 40/46

YAGVKE ==	357	CD39
FV AFAGFYYTASALNLSGSF SLDTFNSSTWNFCSQNWSQLPLLLPKFDEVY	367	CD39L3
FV AFSAFFYTVDFLRTSMGLPVATLQQLEAAAVNVCNQTWAQ	342	CD39L1
LK <u>WEDPE</u> RKAREVCDN <u>LENFTSGSPF</u> LCMD <u>LSYITALLKDGFGFADSTVLQLTKKVNNIE</u>	350	CD39L4
LVVGDFEIAAKYVCRTLETQPQSSPFSCMDLTYVSLLLQE-FGFPRSKVLKLTRKIDNVE	403	CD39L2
PCT KRFEMTLPFQQFEIQGIGNYQQCHQSILELFNTSYC - PYSQCAFNGIFLPPLQGD	300	CD39
LCTVDQRPESYNPNDVITFEGTGDPSLCKEKVASIFDFKACHDQETCSFDGVYQPKIKGP	307	CD39L3
PCTMAQRPQNFNSSARVSLSGSSDPHLCRDLVSGLFSFSSC-PFSRCSFNGVFQPPVAGN	283	CD39L1
Y G G N Q E G E V G F E P C Y A E V L R V V R G K L H Q P E E V Q R G S F Y A F S Y Y Y D R A V D T D M I D Y E K G G I	290	CD39L4

411 ۱۱ بم ß TLGYMLNLTNMIPAEQ LTNQIPAE GGVIFQKKAADTAVGWALGYMLNLT S SSIAWSLGYML ILSLLLQGYHFTADSWEHIHFIGKIQGSDAGW EKEVGN OIHE Д E [Z4 K ~ YIYHLFUNGYKFTE **ED**| Ω 5 SRGY OLL SAN H G S C Fi SYCF EY 3 П 418 409 384 CD39L3 CD39L1 CD39

P A

S

GIS

0.8

L G

GWA

410

CD39L4

SWALGAIFHYIDSLNROK

462

CD39L2

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS Applicants: Chadwick et al. Docket No. 28110/36120C 41/46

CD39L2

CD39L4

MAR 2 2 2004 E

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS

Applicants: Chadwick et al. Docket No. 28110/36120C 42/46

TWEFMLVVSCVCSAVSHRNQTWFEGI-FLSSMCPINVSASTLYGIMFDAGSTGTRI KISFLCLIISVIDESTEVFGFVSENASP-YLARLASKFGYSKVOYAAIIDAGSTGSRV DISILPVNDEPGYLQDSKTEQNYPELADAVKSQTSQTCSEEHKYVIMIDAGSTGSRV
LSLLSKNVNAQI - PLRRHLLSHESE HYA
AITSSQYLGNNL-LTSRKIFLKQEEISSYAVVFD
- MKYEYKLLATDEKPPRRKSSGSPNASS
I F Q Q P Q H G P W Q T R M R K <u>I S</u> N H G S L R V A <u>K</u> V A Y P L G L C V <u>G</u> V

FIG. 9A

MAR 2 2 2004 E

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS

Applicants: Chadwick et al. Docket No. 28110/36120C 43/46

		ALK
peaGDP	61	HFNQNLDLLHIGKGVEYYNKITPGLSSYANNPEQAAKSLIPLLEQAEDVVPDDLQPKTPV
potapyrase	63	RFDEKLGLLPIGNNIEYFMATEPGLSSYAEDPKAAANSLEPLLDGAEGVVPQELQSETPL
CD39L2	119	QET - RPPRETETLTHETEKAVKPGLSAYADDVEKSAQGIRELLDVAKQDIPFDFWKATPL
CD39L4	99	TEVQKMPGQLPILEGEVFDSVKPGLSAFVDQPKQGAETVQGLLEVAKDSIPRSHWKKTPV
dNTPase	96	KFNRSFIDNKLVLYEELFKERKPGLSSFADNPAEGAHSIKLLLDEARAFIPKEHWSSTPL
yGDPase	65	KFD VCTSPPTLLDEKFDMLEPGLSSFDTDSVGAANSLDPLLKVAMNYVPIKARSCTPV
		ACR III
реаGDP	121	RLGATAGLRLLNGDASEKILQSVRDMLSNRSTE-NVQPDAVSIIDGTQEGSYLWVTVNYA
potapyrase	123	ELGATAGLRMLKGDAAEKILQAVRNLVKNQSTE-HSKDQWYTILDGTQEGSYMWAAINYL
CD39L2	178	VLKATAGLR LLPGEKAQKLLQKVKEVFK - ASPF - LVGDDCVSIMNGTDEGVSAWITINFL
CD39L4	126	VLKATAGLRLLPEHKAKALLFEVKEIFR-KSPF-LVPKGSVSIMDGSDEGILAWVTVNFL
dNTPase	156	VLKATAGLRLLPASKAENILNAVRDLFA - KSEF - SVDMDAVEIMDGTDEGIFSWFTVNFL
yGDPase	123	AVKATAGLRLLGDAKSSKILSAVRDHLEKDYPFPVVEGDGVSIMGGDEEGVFAWITTNYL
		_ _

FIG. 98

MAR 2 2 2004 5

Title: METHODS AND COMPOSITIONS RELATING TO CD-39-LIKE POLYPEPTIDES AND NUCLEIC ACIDS

Applicants: Chadwick et al. Docket No. 28110/36120C 44/46

						44/4	16						
180 LGNLGKKYTK TVGVIDLGGGSVQMAYAVSKKTAKNAPKVADGDDPYIKKVVLKGIPYD	182 LGNLGKDYKS - TTATIDLGGGSVQMAYAISNEQFAKAPQNEDG - EPYVQQKHLMSKDYN	PPGYLTALRMFNRT	LTSFEMFNST	TDPDQVPVYDK-YMHEVVTSSKKI	GEHKF <u>DL</u> KFG <u>D</u> EN <u>Y</u>		238 LYVHSYLHFGREASRAEILKLTPRSPNPCLLAGFNGIY	239 LYVHSYLNYGQLAGRAEIFKASRNES NPCALEGCDG YY	CLSPSFK	ACLPRWLEA E -	V C V N P I I A N R T	PCLPPKVNATNEK <u>V</u>	
Ä		23	18	21	18		23		28	23	26.	23	
peaGDP	potapyrase	CD39L2	CD39L4	dNTPase	yGDPase		peaGDP	potapyrase	CD39L2	CD39L4	dNTPase	yGDPase	

Applicants: Chadwick et al. Docket No. 28110/36120C 45/46

						45/4	1 6						
6 TYSGEEFKATAYTSG - ANENKCKNTIRKALKLNYPCPYQNCTFGGIWNGG GGNGQKN	7 SYGGVDYKVKAPKG-SSWKRCRRLTRHALKINAKCNIEECTFNGVWNGGGGDGQKN	5 EHAEVTYRVSGQKAAASLHELCAAR USEV LQNRV HRT EEVKHVD	2 IFGGVKYQYGGNQEGEVGFEPCYAE VLRV VRGKL HQP EEVQRGS	8 TYGNVQYKVSGKENGKSSAEQPIVDFDACLELVKSKVMPLVKPKPFTLKQHA	8 LESKETYTIDFIGPDEPSGAQCRFLTDEILNKDAQCQSPPCSFNGVHQPSLVRTFKESND		2 LFASSSFFYLPEDTGMVDASTPNFILRPVDIETKAKEACALNFEDAKSTYPFLDKKNVAS	3 IHASSFFYDIGAQVGIVDTKFPSALAKPIQYLNAAKVACQTNVADIKSIFPKTQDRNI - P	9 FYAFSYYYDLAAGVGLIDAE - KGGSLVVGDFEIAAKYVCRT LETQPQSSP	6 FYAFSYYYDRAVDTDMIDYE - KGGILKVEDFERKAREVCDN LENFTSGSP	O VAAFSYYFERAIESGLVDPL-AGGETTVEAYRKKAQEICAIPNDEQP	8 IYIFSYFYDRTRPLGMPLSFTLNELNDLARIVCKGEETWNSVFSGIAGSL DELESDS	
276	se 277	335	282	308	298		332	18 333	379	326	360	358	
peaGDP	potapyrase	CD39L2	CD39L4	dNTPase	yGDPase		реаGDP	potapyrase	CD39L2	CD39L4	dNTPase	yGDPase	

FIG. 9D

Applicants: Chadwick et al. Docket No. 28110/36120C

CL	110.	2	01	T
	4	6/	46	í

реабрр	392	YVCMDLIYQYVLLVDGFGLDPLQKITSGKEIEYQDAIVEAAWPLGNAVEAISALPKFERL
ротаругаве 392	392	YLCMDLIYEYTLLVDGFGLNPHKELTVIHDVQYKNYLVGAAWPLGCAIDLVSSTTNKIRV
CD39L2	428	FSCMDLTYVSLLLQE-FGFPRSKVLKLTRKIDNVETSWALGAIFHYIDSLNRQKSP
CD39L4	375	FLCMDLSYITALLKDGFGFADSTVLQLTKKVNN IETGWALGATFHLLOSLGISH
dNTPase	406	FMCFDLTFISTLLREGFGLNDGKKIKLYKKIDG HEISWALGCAYNVLTSDEKFSNS
yGDPase	415	HFCLDLSFQVSLLHTGYDIPLQRELRTGKKIANK EIGWCLGASLPLLKADNWKCKI

MYFV	ASS*	* S &			OSA
452	452	483	429	462	471
peaGDP	ротаругазе	CD39L2	CD39L4	dNTPase	yGDPase

FIG. 9E