Project 1

Sequence alignment and dynamic programming

Due to 13/10/17

Problem

Input

- Two sequences of variable length, for example:
 - GGVTTF
 - MEAIAKY
- Gap penalty, for example g = -4
- Substitution matrix, for example BLOSUM 62

Steps

- 1. Compute scores for scoring matrix
- 2. Backtrack to identify all possible alignments

Output

k best alignments/ maximum / alignments (NW/SW)

GGVTTF (m=6) MGGETFA (n=7) Gap = -4 1. Create a matrix S of dimension (m+1)x(n+1) with the first sequence as rows and the second sequences as columns

	M	G	G	E	Т	F	Α
G							
G							
V							
Т							
Т							
F							

GGVTTF (m=6) MGGETFA (n=7) g = -4

- 1. Create a matrix S of dimension (m+1)x(n+1) with the first sequence as rows and the second sequences as columns
- 2. Fill the first row/column with multiples of g

		M	G	G	E	Т	F	A
	0	-4	-8	-12	-16	-20	-24	-28
G	-4							
G	-8							
V	-12							
Т	-16							
Т	-20							
F	-24							

- 1. Create a matrix S of dimension (m+1)x(n+1) with the first sequence as rows and the second sequences as columns
- 2. Fill the first row/column with multiples of g
- 3. Fill other cells according to:

$$max{S(i-1,j)+g,S(i,j-1)+g,S(i-1,j-1)+t(i,j)}$$

		M	G	G	E	Т	F	A
	0	-4	-8	-12	-16	-20	-24	-28
G	-4							
G	-8							
V	-12							
Т	-16							
Т	-20							
F	-24							

- 1. Create a matrix S of dimension (m+1)x(n+1) with the first sequence as rows and the second sequences as columns
- 2. Fill the first row/column with multiples of g
- 3. Fill other cells according to:

$$max\{S(i-1,j)+g,S(i,j-1)+g,S(i-1,j-1)+t(i,j)\}$$

Max{-4+g,-4+g, 0+t('G','M')}

		M	G	G	E	Т	F	A
	0	-4	-8	-12	-16	-20	-24	-28
G	-4							
G	-8							
V	-12							
Т	-16							
Т	-20							
F	-24							

- 1. Create a matrix S of dimension (m+1)x(n+1) with the first sequence as rows and the second sequences as columns
- 2. Fill the first row/column with multiples of g
- 3. Fill other cells according to:

$$max\{S(i-1,j)+g,S(i,j-1)+g,S(i-1,j-1)+t(i,j)\}$$

 $= Max{-8,-8,-3} = -3$

 $Max{-4+g,-4+g, 0+t('G','M')}$ BLOSUM 62

		M	G	G	E	Т	F	А
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3						
G	-8							
V	-12							
Т	-16							
Т	-20							
F	-24							

- 1. Create a matrix S of dimension (m+1)x(n+1) with the first sequence as rows and the second sequences as columns
- 2. Fill the first row/column with multiples of g
- 3. Fill other cells according to:

$$max\{S(i-1,j)+g,S(i,j-1)+g,S(i-1,j-1)+t(i,j)\}$$

$$Max{-8 +g,-3+g,-4+t('G','G')}$$
 = $Max{-12,-7,2}$ = 2

С	9																			
S	-1	4																		
Т	-1	1	5							ı										
Р	-3	-1	-1	7				┢	X۱			"		L		V		6		
Α	0	1	0	-1	4			L	J				J					U	Z	
G	-3	0	-2	-2	0	6														
N	-3	1	0	-2	-2	0	6													
D	-3	0	-1	-1	-2	-1	1	6												
Ε	-4	0	-1	-1	-1	-2	0	2	5											
Q	-3	0	-1	-1	-1	-2	0	0	2	5										
Н	-3	-1	-2	-2	-2	-2	1	-1	0	0	8									
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5								
K	-3	0	-1	-1	-1	-2	0	-1	1	1	-1	2	5							
M	-1	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5						
1	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4					
L	-1	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4				
V	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	3	2	1	3	1	4			
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6		
Υ	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7	
W	-2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11
	C	S	Т	Р	Α	G	N	D	Ε	Q	Н	R	K	М	-1	L	V	F	Υ	W

		M	G	G	E	Т	F	Α
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3	2					
G	-8							
V	-12							
Т	-16							
Т	-20							
F	-24							

GGVTTF (m=6) MGGETFA (n=7) g = -4

- 1. Create a matrix S of dimension (m+1)x(n+1) with the first sequence as rows and the second sequences as columns
- 2. Fill the first row/column with multiples of g
- 3. Fill other cells according to:

$$max\{S(i-1,j)+g,S(i,j-1)+g,S(i-1,j-1)+t(i,j)\}$$

C	9																				
S	-1	ı	4																		
Т	-1	ı	1	5														_			
Р	-3	3	-1	-1	7				┡	X۱			"			П	V		6)
Α	0		1	0	-1	4			L					J					U	Z	-
G	-3	3	0	-2	-2	0	6														
N	-3	3	1	0	-2	-2	0	6													
D	-3	3	0	-1	-1	-2	-1	1	6												
Ε	- 4	+	0	-1	-1	-1	-2	0	2	5											
Q	-3	3	0	-1	-1	-1	-2	0	0	2	5										
Н	-3	3	-1	-2	-2	-2	-2	1	-1	0	0	8									
R	-3	3	-1	-1	-2	-1	-2	0	-2	0	1	0	5								
K	-3	3	0	-1	-1	-1	-2	0	-1	1	1	-1	2	5							
M	-1	ı	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5						
-1	-1	ı	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4					
L	-1	ı	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4				
V	-1	ı	-2	0	-2	0	-3	-3	-3	-2	-2	-3	3	2	1	3	1	4			
F	-2	2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6		
Y	-2	2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7	
W	-2	2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11
	C		S	Т	Р	Α	G	N	D	Е	Q	Н	R	K	М	-1	L	V	F	Υ	W

		M	G	G	E	Т	F	A
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3	2	-2	-6	-10	-14	-18
G	-8	-7	3	8	4	0	-4	-8
V	-12	-7	-1	4	6	4	0	-4
Т	-16	-11	-5	0	3	11	7	3
Т	-20	-15	-9	-4	-1	8	9	7
F	-24	-19	-13	-8	-5	4	14	10

1. Begin with the element of last row, last column

		M	G	G	Е	Т	F	A
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3	2	-2	-6	-10	-14	-18
G	-8	-7	3	8	4	0	-4	-8
V	-12	-7	-1	4	6	4	0	-4
Т	-16	-11	-5	0	3	11	7	3
Т	-20	-15	-9	-4	-1	8	9	7
F	-24	-19	-13	-8	-5	4	14	10

- 1. Begin with the element of last row, last column
- 2. Identify the previous step resulting in this value:
 - 14 + g?
 - 7 + g?
 - 9 + t('F','A')?

		M	G	G	E	Т	F	A
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3	2	-2	-6	-10	-14	-18
G	-8	-7	3	8	4	0	-4	-8
V	-12	-7	-1	4	6	4	0	-4
Т	-16	-11	-5	0	3	11	7	3
Т	-20	-15	-9	-4	-1	8	9	7
F	-24	-19	-13	-8	-5	4	14	10

- 1. Begin with the element of last row, last column
- 2. Identify the previous step resulting in this value:
 - 14 + g?
 - 7 + g?
 - 9 + t('F','A')?

		M	G	G	Е	T	F	Α
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3	2	-2	-6	-10	-14	-18
G	-8	-7	3	8	4	0	-4	-8
V	-12	-7	-1	4	6	4	0	-4
Т	-16	-11	-5	0	3	11	7	3
Т	-20	-15	-9	-4	-1	8	9	7
F	-24	-19	-13	-8	-5	4	14	10

- 1. Begin with the element of last row, last column
- 2. Identify the previous step resulting in this value:
 - 14 + g?
 - 7 + g?
 - 9 + t('F','A')?
- 3. Repeat step 2 until you reach (0,0)

		M	G	G	Е	Т	F	Α
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3	2	-2	-6	-10	-14	-18
G	-8	-7	3	8	4	0	-4	-8
V	-12	-7	-1	4	6	4	0	-4
Т	-16	-11	-5	0	3	11	7	3
Т	-20	-15	-9	-4	-1	8	9	7
F	-24	-19	-13	-8	-5	4	14	10

- 1. Begin with the element of last row, last column
- 2. Identify the previous step resulting in this value:
 - 14 + g?
 - 7 + g?
 - 9 + t('F','A')?
- 3. Repeat step 2 until you reach (0,0)
- 4. Find all possible alignments

M	G	G	— [= 7	ΓΕ	Α
_	G	G '	V ⁻	Γ٦	ΓЕ	_

		M	G	G	Е	Т	F	Α
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3	2	-2	-6	-10	-14	-18
G	-8	-7	3	8	4	0	-4	-8
V	-12	-7	-1	4	6	4	0	-4
Т	-16	-11	-5	0	3	11	7	3
Т	-20	-15	-9	-4	-1	8	9	7
F	-24	-19	-13	-8	-5	4	14	10

Example: affine penalty gap

 $\max\{S(i-1,j)+g,S(i,j-1)+g,S(i-1,j-1)+t(i,j)\}$

We are not able to know if the gap was introduced before the values S(i-1,j) and S(I,j-1)

Different penalties for the initial gap I and the extension gap E

AB-BBD vs AB----BBD

- Matrix initializing must take this into account
- Need two additional matrices to keep gap information in memory, one for each sequence

	M	G	G	Е	Т	F	A
G							
G							
V							
Т							
Т							
F							

Example : pénalité affine

Different penalties for the initial gap I and the extension gap E

First sequence:

- Previous value was not a gap
 - > S(i-1,j) and I
- Previous value was a gap

$$\rightarrow$$
 V(i-1,j) and E

$$V(i,j) = \max\{S(i-1,j) - I, V(i-1,j) - E\}$$

Second sequence:

- Previous value was not a gap
 - > S(i,j-1) and I
- Previous value was a gap

$$\rightarrow$$
 W(i,j-1) and E

$$W(i,j) = \max\{S(i,j-1) - I, W(i,j-1) - E\}$$

Scoring matrix S:

$$S(i,j) = \max\{S(i-1,j-1) + t(i,j), \mathbf{V}(\mathbf{i},\mathbf{j}), \mathbf{W}(\mathbf{i},\mathbf{j})\}\$$

AB-BBD vs AB----BBD

- Matrix initializing must take this into account
- Need two additional matrices to keep gap information in memory, one for each sequence

		M	G	G	E	T	F	Α
	0	-4	-5	-6	-7	-8	-9	-10
G	-4							
G	-5							
V	-6							
Т	-7							
Т	-8							
F	-9							

Example with I = 4 and E = 1

Global vs local alignment

Global

- The negatives values are possible
- Backtracking begins at the last row, last column

Local

- Negatives values are replaced by
 o in the scoring matrix
- Backtracking begins at the maximum value in the scoring matrix

Advices for the project

- Like a scientific report (Intro, methods, results, discussion)
 - No copy-paste from the slides of the lessons
 - No print screen from the terminal
 - Illustrate your explanations with figures/plots
- Answer clearly to the questions

No big block of code! Structure your blocks smartly to explain your implementations

Schedule for the TP: 06/10/17 13/10/17 (last chance!)