Lecture 4: Return and Autocorrelation

Zhe Zhao

Stevens Institute of Technology zzhao6@stevens.edu

February 23, 2015

- Return
 - Simple return
 - Log return
- Probability Review
 - Mean and Variance
 - Moments
 - Covariance and Correlation
- 3 Autocorrelation
- Date and Time

Return

Why use return series instead of price series.

- Return is a complete and scale-free summary of an asset.
- Return has more attractive statistical properties. (weakly stationary)

Return

Simple Return

$$1 + R_t = \frac{P_t}{P_{t-1}}$$

$$\therefore R_t = \frac{P_t}{P_{t-1}} - 1 = \frac{P_t - P_{t-1}}{P_{t-1}}$$

Log Return (countinuously compounded return)

$$r_t = log(1 + R_t) = log(P_t/P_{t-1})$$

$$= log(P_t) - log(P_{t-1})$$

Return

For multiple time intervals, say K:

Simple

$$1 + R_{t[k]} = \frac{P_t}{P_{t-k}} = \frac{P_t}{P_{t-1}} \frac{P_{t-1}}{P_{t-2}} \dots \frac{P_{t-k+1}}{P_{t-k}}$$
$$= (1 + R_t)(1 + R_{t-1})(1 + R_{t-2})$$

Log

$$r_{t[k]} = log(1 + R_{t[k]}) = log[\frac{P_t}{P_{t-1}} \frac{P_{t-1}}{P_{t-2}} \dots \frac{P_{t-k+1}}{P_{t-k}}]$$

= $log(\frac{P_t}{P_{t-1}}) \dots log(\frac{P_{t-k+1}}{P_{t-k}}) = \prod_{j=1}^{k-1} r_j$

Continuously Compounding

one year:
$$\lim_{m\to\infty} (1+\frac{r}{m})^m = e^r$$

t years:
$$\lim_{m\to\infty} ((1+\frac{r}{m})^m)^t = e^{rt}$$

Continuously Compounding

Example

Continuously Compounding

Probability Review

Covariance is a measure of how much two random variable change together.

Covariance

$$Cov(X, Y) = E[(X - \mu_x)(Y - \mu_y)] = E[XY] - E[X]E[Y]$$

Covariance

Thus we have: E[XY] = E[X]E[Y] + Cov(X, Y)

Correlation Coefficient

$$\rho = Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

Autocorrelation

What is the relationship between the return of today and of yesterday?

The correlation coefficient of r_t and r_{t-1} is called *lag-l* autocorrelation.

Autocorrelation

lag 1:
$$\rho_1 = Corr(r_t, r_{t-1}) = \frac{Cov(r_t, r_{t-1})}{\sigma_t \sigma_{t-1}} = \frac{Cov(r_t, r_{t-1})}{Var(r_t)}$$

lag 2:
$$\rho_2 = Corr(r_t, r_{t-2}) = \frac{Cov(r_t, r_{t-2})}{\sigma_t \sigma_{t-2}} = \frac{Cov(r_t, r_{t-2})}{Var(r_t)}$$

lag I:
$$\rho_I = Corr(r_t, r_{t-I}) = \frac{Cov(r_t, r_{t-I})}{\sigma_t \sigma_{t-I}} = \frac{Cov(r_t, r_{t-I})}{Var(r_t)}$$

We use γ_I represent lag-I covariance of r_t , apparently:

$$\rho_I = \gamma_I/\gamma_0$$

