SREEPATHY INSTITUTE OF MANAGEMENT & TECHNOLOGY, Vavanoor

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

VIth Semester - B.Tech.

Second Internal Examination - April 2024

Course: CST308 - COMPREHENSIVE COURSE WORK

Total N	Mark: 50			Total Time: 1 Hi	rs: 30 Mins
CO1 CO2 CO3	Comprehend the concepts and applications of data structures Comprehend the concepts, functions and algorithms in Operating System Comprehend the organization and architecture of computer systems			Understand	ding(U) ding(U)
CO4 CO5	Comprehend the fundamental principles of database design and manipulation Understanding(U) Comprehend the concepts in formal languages and outcomes theory. Understanding(U)			•	
	Comprehend the concepts in formal languages and automata theory. General Instructions Understanding(U)			umg(U)	
	Each question carries one ma	ark. No negative marks for			
	Total number of questions: 5		followed by 4 massible and	overage of which only ONE is as	
	If more than one option is ch	=	· -	swers of which only ONE is con	rrect.
	Calculators are not permitted				_
1.		m = 0 1, 1) if $(m! = 0 && n = 1$ 1, A $(m, n-1)$ if $(m \neq 0)$	==0)		BL MARK CO1 2(1)
	A) 6	B) 7	C) 9	D) 10	
2.	2. Convert the following expression from reverse polish notation to infix notation ABCDE + \times			ix notation ABCDE $+ \times - /$	CO1 2(1)
	A) $A/(B-C\times D+E)$)	B) $A/(B \times C) - (D$	+ E)	
	C) $A/(B-C\times(D+B)$	3))	D) $A/(B-C) \times (D$	+E)	
3.	Insert keys 4, 12, 8, 16, 6, 18, 24, 7 into an initially empty Binary search tree. Delete the node having the key 6. The Inorder traversal after deletion is A) 4, 12, 7, 8, 24, 18, 16 B) 4, 12, 8, 7, 16, 18, 24			CO1 2(1)	
	C) 4, 7, 8, 12, 16, 18,	24	D) 4, 12, 7, 8, 16, 2	24	
4.	In which of the following inorder and post order		of numbers should be i	inserted into a BST to get	CO1 2(1)
	A) Increasing orderC) Not possible		B) Decreasing OrderD) Any Order	er	
5.	maximum distance (number of edges) from the root to the farthest child. If an m -array tree with height h has L leaves, then which of the following statement is true ?			CO1 2(1)	
	A) $L < m^h$	B) $L \leq m^h$	C) $L > m^h$	D) $L \ge m^h$	
6.	The minimum complex A) $O(n)$	Rity to compute is 3^n is B) $O(log n)$	C) $O(\sqrt{n})$	D) $O(\log^2 n)$	CO1 2(1)
7.	Possible number of tre	es with 4 unlabeled ver	tices is		CO1 2(1)
	A) 7	B) 8	C) 12	D) 14	

8.	A Binary search tree is use not possible?	ed to locate the number	er 43. Which of the follow	ving probe sequences is	CO1 2(1)
	A) 61, 52, 14, 17, 40, 43		B) 2, 3, 50, 40, 60, 43		
	C) 10, 65, 31, 48, 37, 43		D) 81, 61, 52, 14, 41, 4		
9.	Which one of the following	g algorithm design ted	chnique is used to find all	l pairs of shortest	CO1 2(1)
	distance in a graph? A) Dynamic Programming	φ	B) Backtracking		
	C) Greedy	D	D) Divide and conquer		
10.	A sorting method is said to was before the sort. In whi				CO1 2(1)
	A) Quicksort and Insertion	n sort	B) Insertion sort and M	ergeSort	
	C) Quicksort and Heapsor	t	D) Quicksort and Bubb	le sort	
11.	Concurrent access to share				CO2 2(1)
		•	C)Data Inconsistency	D) None of These	
12.	A situation where several poutcome of the execution of	processes access and i	manipulate the same data	concurrently and the	CO2 2(1)
		3) Race Condition	C) Aging	D) Starvation	
13.	The segment of code in w write into files is known a		y change common varia	bles, update tables,	CO2 2(1)
			C)Non-Critical Section	D) Synchronizing	
14.	A memory management consists of 32 page fram respectively:				CO2 2(1)
	ž ,	3) 14 and 29	C) 15 and 14	D) 16 and 32	
15.	Mutual exclusion implies	that			CO2 2(1)
	A) if a process is executing in its critical section, then no other process must be executing in their critical sections C) if a process is executing in its critical section, then all the resources of the system must be blocked until it finishes B) if a process is executing in its critical section, then other processes must be executing in their critical sections D) None of the mentioned			``	
16.	execution Bounded waiting implies allowed to enter its critica		ound on the number of ti	mes a process is	CO2 2(1)
	A) After a process has mac its critical section and b granted		B) When another processection	ess is in its critical	
	C) Before a process has menter its critical section		D) None of the mention	ned	
17.	What are the two kinds of	f semaphores?			CO2 2(1)
	A) Mutex & Counting B	3)Binary&Counting	C)Counting&Decimal	D) Decimal & Binary	
18.	For which of the followin	g purposes, Banker's	s algorithm is used?		CO2 2(1)
	A) Preventing deadlock B	B) Solving deadlock	C) Recover from deadlock	D) None of these	
19.	At a particular time of coroperations and x V operations and x v operations are semaphore is 5, x will be		of a counting semaphor		CO2 2(1)
	A) 18 B	3) 22	C) 15	D) 13	

Name:

Reg. No.:

Reg. No.:		Name:				
20.		e is initialized to 4. The aphore. The final value B) -1		signal) operations are D) -2	CO2 2(1)	
21.	The number of full an A) 8 half-adders, 8 full-adders	d half-adders required B) 1 half-adder, 15 full-adders	to add 16-bit numbers C) 16 half-adders, 0 full-adders	is: D) 4 half-adders, 12 full-adders	CO3 2(1)	
22.	More than one word are put in one cache block to					
	A) Exploit the spatial l a programC) Reduce the miss per	•	B) Exploit the tempo a programD) None of these	oral locality of reference in		
23.	Increasing the RAM of	f a computer typically in	nproves performance be	ecause	CO3 2(1)	
	A) Virtual memory inc	reases	B) Larger RAMs are	faster		
	C) Fewer page faults o	ccur	D) Fewer segmentati	on faults occur		
24.		ructions. A program star ogram counter (all value		cimal). Which one of the	CO3 2(1)	
	A) 400	B) 500	C) 600	D) 700		
25.	Booth's algorithm for a pattern is	integer multiplication gi	ves worst performance	when the multiplier	CO3 2(1)	
	A) 101010 1010	B) 100000 0001	C) 111111 1111	D) 011111 1110		
26.	•	sing asynchronous mode	•	over a 9600 baud serial one start bit, eight data bits, D) 1200	CO3 2(1)	
27.	registers have zero late P2: Four-stage pipeline with stage latencies 0	ency. P1: Four-stage pi e with stage latencies 1	peline with stage laten ns, 1.5 ns, 1.5 ns, 1.5 1 ns. P4: Five-stage pi	Assume that the pipeline cies 1 ns, 2 ns, 2 ns, 1 ns. ns. P3: Five-stage pipeline peline with stage latencies clock frequency? D) 4	CO3 2(1)	
28.	Consider a machine with a byte addressable main memory of 216 bytes. Assume that a direct mapped data cache consisting of 32 lines of 64 bytes each is used in the system. A 50 * 50 two-dimensional array of bytes is stored in the main memory starting from memory location 1100H. Assume that the data cache is initially empty. The complete array is accessed twice. Assume that the contents of the data cache do not change in between the two accesses. How many data cache misses will occur in total? A) 40 B) 50 C) 56 D) 59			CO3 2(1)		
29.	mapped data cache consisting of 32 lines of 64 bytes each is used in the system. A 50 * 50 two-dimensional array of bytes is stored in the main memory starting from memory location 1100H. Assume that the data cache is initially empty. The complete array is accessed twice. Assume that the contents of the data cache do not change in between the two accesses. Which of the following lines of the data cache will be replaced by new blocks in accessing the array for the second time?			CO3 2(1)		
	A) line 4 to line 11	B) line 4 to line 12	C) line 0 to line 7	D) line 0 to line 8		
30.	Consider a direct mapped cache of size 32 KB with block size 32 bytes. The CPU generates 32 bit addresses. The number of bits needed for cache indexing and the number of tag bits are respectively.					
	A) 10, 17	B) 10, 22	C) 15, 17	D) 5, 17		

Reg. No).:	_		Name:		
31.	Consider the following Relationship Entity Dia-gram(ERD)					
	Person M	Qualification N Exam				
	Name NID Exam ID Exam Name Which of the following receible relations will not held if the chora EDD is morned into a					
	Which of the following possible relations will not hold if the above ERD is mapped into a relation model?					
	A) Person (NID, Nam	·		NID, ExamID, QualifiedDate)		
	C) Exam (ExamID, N	ID, ExamName)	D) Exam (ExamI	D, ExamName)		
32.	are two relationships b	between M and N, where	as R1 is one-to-ma	value attributes. R1 and R2 ny and R2 is many-to-many. d R2 in the relational model	CO4 2(1)	
	A) 4	B) 6	C) 7	D) 3		
33.	The E-R model is exp I. Entities II. The relationsl III. The attribute IV. Functional re	nip among entities. s of the entities.			CO4 2(1)	
	A) I, II	B) I, II, IV	C) II, II, IV	D) I, II, II		
34.				and y. read(x); $x := x-50$; f the accounts x and y should	CO4 2(1)	
	A) Atomicity	B) Consistency	C) Isolation	D) Durability		
35.	The best normal form of relation scheme $R(A, B, C, D)$ along with the set of functional dependencies $F = \{AB \rightarrow C, AB \rightarrow D, C \rightarrow A, D \rightarrow B\}$ is					
	A) Boyce-Codd Normal form		B) Third Normal			
	C) Second Normal for		D) First Normal f	Form		
36.	Consider the following schedules involving two transactions. S1: r1(X); r1(Y); r2(X); r2(Y); w2(Y); w1(X) S2: r1(X); r2(X); r2(Y); w2(Y); r1(Y); w1(X) Which one of the following statements is correct with respect to above?				CO4 2(1)	
	A) Both S1 and S2 are C) S1 is conflict serial S2 is not conflict se	izable and	,	2 are not conflict serializable. lict serializable and serializable		
37.	 Which of the following statements is TRUE? D1: The decomposition of the schema R(A, B, C) into R1(A, B) and R2 (A, C) is always lossless. D2: The decomposition of the schema R(A, B, C, D, E) having AD → B, C →DE, B → AE and AE → C, into R1 (A, B, D) and R2 (A, C, D, E) is lossless. 				CO4 2(1)	
	A) Both D1 and D2	B) Neither D1 nor D		D) Only D2		
38.	are two relationships	between E1 and E2 who	ere R1 is one - man	e valued attributes. R1 and R2 y and R2 is many - many. R1 nimum numbers of tables are	CO4 2(1)	

C) 2

D) 1

A) 4

required to represent this situation in the Relational Model?

B) 3

39. Two concurrent executing transactions T1 and T2 are allowed to update same stock item say 'A' in an uncontrolled manner. In such a scenario, following problems may occur:

 $CO4\ 2(1)$

- (a) Dirty read problem
 - (b) Lost update problem
 - (c) Transaction failure
 - (d) Inconsistent database state

Which of the following option is correct if database system has no concurrency module and allows concurrent execution of above two transactions?

- A) (a), (b) and (c) only B) (c) and (d) only
- C) (a) and (b) only
- D) (a), (b) and (d) only
- Find minimum number of tables required for converting the following entity relationship diagram into relational database?

CO4 2(1)

41. Consider the following statements.

CO5 2(1)

- I. If L1 \cup L2 is regular, then both L1 and L2 must be regular.
- II. The class of regular languages is closed under infinite union.

Which of the above statements is/are TRUE?

- A) I only
- B) II only
- C) Both I and II
- D) Neither I nor II
- 42. Which one of the following regular expressions represents the set of all binary strings with an CO5 2(1) odd number of 1's?
 - A) 10*(0*10*10*)*
- B) (0*10*10*)*0*1
- C) (0*10*10*)*10*
- D) ((0+1)*1(0+1)*1)*10*
- 43. If L is a regular language over $\Sigma = \{a,b\}$, which one of the following languages is NOT regular? CO5 2(1)
 - A) L· LR $\{xy \mid x \in L, yR \in L\}$
- B) Prefix (L) = $\{x \in \Sigma^* \mid \exists y \in \Sigma^* \text{ such that } xy \in L\}$

D) 5

- C) Suffix (L) = $\{y \in \Sigma^* \text{ such that } xy \in L\}$
- D) $\{wwR \mid w \in L\}$
- 44. Let L be the language represented by the regular expression $\sum *0011\sum *$ where $\sum = \{0,1\}$. What is CO5 2(1) the minimum number of states in a DFA that recognizes (L) (complement of L)?
 - A) 4

- B) 5
- C) 6

D) 8

45. Which one of the following is TRUE?

CO5 2(1)

- A) The language $L = \{an \ bn \mid n \ge 0\}$ is regular. B) The language $L = \{an \ In \ is \ prime \}$ is regular.
- C) The language $L = \{w | w \text{ has } 3k + 1 \text{ b's for some } k \in \mathbb{N} \quad D)$ The language $L = \{w | w \in \Sigma^* \text{ with } v \in \Sigma^* \text{ with } v$ with $\Sigma = \{a, b\}$ } is regular
 - $\Sigma = \{0, 1\}$ is regular.
- 46. If $L_1 = \{an \mid n \ge 0\}$ and $L_2 = \{bn \mid n \ge 0\}$, consider

CO5 2(1)

I) L1. L2 is a regular language

II) L1.L2 = $\{ \text{ an bn } | n \ge 0 \}$

Which one of the following is CORRECT?

- A) Only (I)
- B) Only (II)
- C) Both (I) and (II)
- D) Neither (I) nor (II)
- 47. Let L₁ recursive language. Let L₂ and L3 be languages that are recursively enumerable but not CO5 2(1) recursive. Which of the following statement is not necessarily true?
 - A) $L2 L_1$ is recursively enumerable.
- B) L1 L3 recursively enumerable
- C) L2 \cap L₁ is recursively enumerable.
- D) L2 \cup L₁ is recursively enumerable.

Reg. No.:	Name:

48. Which one of the following languages over the alphabet $\{0, 1\}$ is described by the regular expression (0+1)*0(0+1)*0(0+1)*

A) The set of all strings containing the substring 00

B) The set of all strings containing at most two 0's $\,$

C) The set of all strings containing at least two 0's

D) The set of all strings that begin and end with either 0 or 1

two 0's

49. The regular expression 0^* (10*)* denotes the same set as

CO5 2(1)

CO5 2(1)

A) (1*0)*1*

B) 0+(0+10)*

C) (0+1)*10 (0+1)*

D) None of these

50. The complement of any arbitrary context-free language is accepted by some

CO5 2(1)

A) PDA but not by any DPDA

B) NFA

C) DPDA

D) None of the above statements are correct