MATH 350-2 Advanced Calculus

W.R. Casper

Department of Mathematics California State University Fullerton

August 26, 2024

Outline

- Real Analysis Lecture 2
 - Types of real numbers
 - Integers
 - Upper Bound and Supremum
 - Decimal expansions

Types of real numbers
Integers
Upper Bound and Supremum
Decimal expansions

Outline

- Real Analysis Lecture 2
 - Types of real numbers
 - Integers
 - Upper Bound and Supremum
 - Decimal expansions

The **real numbers** are the unique field \mathbb{R} satisfying Axiom 1-Axiom 9, plus an extra axiom called the completeness axiom.

 $\mathbb{R} =$ the one and only complete, ordered field

A complete ordered field *F* satisfies

The **real numbers** are the unique field \mathbb{R} satisfying Axiom 1-Axiom 9, plus an extra axiom called the completeness axiom.

 $\mathbb{R} =$ the one and only complete, ordered field

A complete ordered field *F* satisfies

completeness axiom: every bounded set of numbers $S \subseteq F$ has a supremum $\sup(S)$

The **real numbers** are the unique field \mathbb{R} satisfying Axiom 1-Axiom 9, plus an extra axiom called the completeness axiom.

 $\mathbb{R} =$ the one and only complete, ordered field

A complete ordered field *F* satisfies

- **completeness axiom**: every bounded set of numbers $S \subseteq F$ has a supremum $\sup(S)$
 - Understanding what this is challenging, but will be fundamental to the entire course!

The **real numbers** are the unique field \mathbb{R} satisfying Axiom 1-Axiom 9, plus an extra axiom called the completeness axiom.

 $\mathbb{R} =$ the one and only complete, ordered field

A complete ordered field *F* satisfies

- **completeness axiom**: every bounded set of numbers $S \subseteq F$ has a supremum $\sup(S)$
 - Understanding what this is challenging, but will be fundamental to the entire course!
 - Intuitively, it represents the fact that the real line has no holes or gaps.

Types of real numbers Integers Upper Bound and Supremum Decimal expansions

Real intervals

Given an ordered field, we can intervals

Given an ordered field, we can intervals

open and closed intervals

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$
 and $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$

Given an ordered field, we can **intervals**

open and closed intervals

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$
 and $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$

half-open intervals

$$[a,b) = \{x \in \mathbb{R} : a \le x < b\}$$
 and $(a,b] = \{x \in \mathbb{R} : a < x \le b\}$

Given an ordered field, we can intervals

open and closed intervals

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$
 and $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$

half-open intervals

$$[a,b) = \{x \in \mathbb{R} : a \le x < b\}$$
 and $(a,b] = \{x \in \mathbb{R} : a < x \le b\}$

semi-infinite open intervals

$$(-\infty, a) = \{x \in \mathbb{R} : x < a\}$$
 and $(a, \infty) = \{x \in \mathbb{R} : a < x\}$

Given an ordered field, we can intervals

open and closed intervals

$$(a,b) = \{x \in \mathbb{R} : a < x < b\} \text{ and } [a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

half-open intervals

$$[a,b) = \{x \in \mathbb{R} : a \le x < b\}$$
 and $(a,b] = \{x \in \mathbb{R} : a < x \le b\}$

semi-infinite open intervals

$$(-\infty, a) = \{x \in \mathbb{R} : x < a\}$$
 and $(a, \infty) = \{x \in \mathbb{R} : a < x\}$

semi-infinite closed intervals

$$(-\infty, a] = \{x \in \mathbb{R} : x \le a\}$$
 and $[a, \infty) = \{x \in \mathbb{R} : a \le x\}.$

Types of real numbers
Integers
Upper Bound and Supremum
Decimal expansions

Outline

- Real Analysis Lecture 2
 - Types of real numbers
 - Integers
 - Upper Bound and Supremum
 - Decimal expansions

Inductive sets

A subset S of \mathbb{R} is called a **inductive set** if

- 1 ∈ S
- if $x \in S$ then $x + 1 \in S$

Inductive sets

A subset S of \mathbb{R} is called a **inductive set** if

- 1 ∈ S
- if $x \in S$ then $x + 1 \in S$

Examples:

$$\mathbb{R}$$
, \mathbb{Q} , $(0,\infty)$, \mathbb{Z} , \mathbb{N} ,...

Types of real numbers
Integers
Upper Bound and Supremum
Decimal expansions

Integers and rationals

How do we reverse-engineer the integers from the reals?

Integers and rationals

How do we reverse-engineer the integers from the reals?

the set of positive integers is

 $\mathbb{Z}_+ = \{x : x \text{ belongs to every inductive set}\}$

Integers and rationals

How do we reverse-engineer the integers from the reals?

• the set of positive integers is

$$\mathbb{Z}_+ = \{x : x \text{ belongs to every inductive set}\}$$

integers are

$$\mathbb{Z} = \{x : x \text{ is zero or } \pm x \text{ is a positive integer}\}$$

Integers and rationals

How do we reverse-engineer the integers from the reals?

• the set of positive integers is

$$\mathbb{Z}_+ = \{x : x \text{ belongs to every inductive set}\}$$

integers are

$$\mathbb{Z} = \{x : x \text{ is zero or } \pm x \text{ is a positive integer}\}$$

rationals are

$$\mathbb{Q} = \{a/b : a, b \in \mathbb{Z}, \ b \neq 0\}.$$

Types of real numbers Integers Upper Bound and Supremum Decimal expansions

Induction

Principle of Induction:

If S is an inductive set, then $\mathbb{Z}_+ \subseteq S$

Types of real numbers
Integers
Upper Bound and Supremum
Decimal expansions

Induction

Principle of Induction:

If *S* is an inductive set, then $\mathbb{Z}_+ \subseteq S$

Question

Waaaaait...How is this induction?!

Principle of Induction:

If *S* is an inductive set, then $\mathbb{Z}_+ \subseteq S$

Question

Waaaaait...How is this this induction?!

Example: Let's prove n(n + 1) is divisible by 2 for all positive integers n, using the Principle of Induction.

Principle of Induction:

If *S* is an inductive set, then $\mathbb{Z}_+ \subseteq S$

Question

Waaaaait...How is this induction?!

Example: Let's prove n(n + 1) is divisible by 2 for all positive integers n, using the Principle of Induction.

Proof:

Principle of Induction:

If *S* is an inductive set, then $\mathbb{Z}_+ \subseteq S$

Question

Waaaaait...How is this induction?!

Example: Let's prove n(n + 1) is divisible by 2 for all positive integers n, using the Principle of Induction.

Proof:

Let

$$S = \{n \in \mathbb{Z}_+ : 2|n(n+1)\}$$

.

Principle of Induction:

If *S* is an inductive set, then $\mathbb{Z}_+ \subseteq S$

Question

Waaaaait...How is this this induction?!

Example: Let's prove n(n + 1) is divisible by 2 for all positive integers n, using the Principle of Induction.

Proof:

Let

$$S = \{n \in \mathbb{Z}_+ : 2|n(n+1)\}$$

. We see that $1 \in S$ because 2 divides 1(1+1).

Principle of Induction:

If *S* is an inductive set, then $\mathbb{Z}_+ \subseteq S$

Question

Waaaaait...How is this induction?!

Example: Let's prove n(n + 1) is divisible by 2 for all positive integers n, using the Principle of Induction.

Proof:

Let

$$S = \{n \in \mathbb{Z}_+ : 2|n(n+1)\}$$

. We see that $1 \in S$ because 2 divides 1(1+1).

Now suppose $x \in S$. (This is our usual inductive assumption).

Example: Let's prove n(n + 1) is divisible by 2 for all positive

integers n, using the Principle of Induction.

Proof continued:

Example: Let's prove n(n + 1) is divisible by 2 for all positive integers n, using the Principle of Induction.

Proof continued:

Then 2 divides x(x + 1), so x(x + 1) = 2k for some integer k.

Example: Let's prove n(n + 1) is divisible by 2 for all positive integers n, using the Principle of Induction.

Proof continued:

Then 2 divides x(x + 1), so x(x + 1) = 2k for some integer k. This means (x + 1)(x + 2) = x(x + 1) + 2(x + 1) = 2(k + x + 1).

Example: Let's prove n(n + 1) is divisible by 2 for all positive integers n, using the Principle of Induction.

Proof continued:

Then 2 divides x(x+1), so x(x+1) = 2k for some integer k. This means (x+1)(x+2) = x(x+1) + 2(x+1) = 2(k+x+1). Thus 2 divides (x+1)(x+2), showing that $x+1 \in S$.

Example: Let's prove n(n + 1) is divisible by 2 for all positive integers n, using the Principle of Induction.

Proof continued:

Then 2 divides x(x + 1), so x(x + 1) = 2k for some integer k.

This means (x+1)(x+2) = x(x+1) + 2(x+1) = 2(k+x+1).

Thus 2 divides (x + 1)(x + 2), showing that $x + 1 \in S$.

Since x + 1 was arbitrary, this shows that S is an inductive set.

Example: Let's prove n(n + 1) is divisible by 2 for all positive integers n, using the Principle of Induction.

Proof continued:

Then 2 divides x(x + 1), so x(x + 1) = 2k for some integer k.

This means (x+1)(x+2) = x(x+1) + 2(x+1) = 2(k+x+1).

Thus 2 divides (x + 1)(x + 2), showing that $x + 1 \in S$.

Since x + 1 was arbitrary, this shows that S is an inductive set.

By the Principle of Induction, this means $\mathbb{Z}_+ \subseteq S$.

Example: Let's prove n(n + 1) is divisible by 2 for all positive integers n, using the Principle of Induction.

Proof continued:

Then 2 divides x(x + 1), so x(x + 1) = 2k for some integer k.

This means (x+1)(x+2) = x(x+1) + 2(x+1) = 2(k+x+1).

Thus 2 divides (x + 1)(x + 2), showing that $x + 1 \in S$.

Since x + 1 was arbitrary, this shows that S is an inductive set.

By the Principle of Induction, this means $\mathbb{Z}_+ \subseteq S$.

In other words $n \in S$ for every positive integer n.

Example: Let's prove n(n + 1) is divisible by 2 for all positive integers n, using the Principle of Induction.

Proof continued:

Then 2 divides x(x + 1), so x(x + 1) = 2k for some integer k.

This means (x+1)(x+2) = x(x+1) + 2(x+1) = 2(k+x+1).

Thus 2 divides (x + 1)(x + 2), showing that $x + 1 \in S$.

Since x + 1 was arbitrary, this shows that S is an inductive set.

By the Principle of Induction, this means $\mathbb{Z}_+ \subseteq S$.

In other words $n \in S$ for every positive integer n.

Hence 2 divides n(n + 1) for every positive integers n.

Prime numbers

A positive integer p is **prime** if its only positive divisors are 1 and p.

Theorem (Apostol Theorem 1.5)

Every integer is prime or a product of primes

Theorem (Apostol Theorem 1.8)

If p is prime and p divides ab, then p divides a or p divides b.

Theorem (Fundamental Theorem of Arithmetic (Apostol Theorem 1.9))

Every integer n > 1 has a unique factorization as a product of primes, up to reordering.

Types of numbers

Transcendental Numbers

MATH

Numbers which are not of the form a/b with $a, b \in \mathbb{Z}$ are called **irrational**.

 Discovered by Hippasus, a pythagorean (a student of Pythagoras)

Numbers which are not of the form a/b with $a, b \in \mathbb{Z}$ are called **irrational**.

Pythagoras drowned Hippasus at sea for his discovery

Numbers which are not of the form a/b with $a, b \in \mathbb{Z}$ are called **irrational**.

- Pythagoras drowned Hippasus at sea for his discovery
- dramatic reenactment, found online:

Numbers which are not of the form a/b with $a, b \in \mathbb{Z}$ are called **irrational**.

- Pythagoras drowned Hippasus at sea for his discovery
- dramatic reenactment, found online:

Numbers which are not of the form a/b with $a, b \in \mathbb{Z}$ are called irrational.

- Pythagoras drowned Hippasus at sea for his discovery
- dramatic reenactment, found online:

Numbers which are not of the form a/b with $a, b \in \mathbb{Z}$ are called **irrational**.

- Pythagoras drowned Hippasus at sea for his discovery
- anime style:

Numbers which are not of the form a/b with $a, b \in \mathbb{Z}$ are called **irrational**.

- Pythagoras drowned Hippasus at sea for his discovery
- anime style:

Types of real numbers
Integers
Upper Bound and Supremum
Decimal expansions

Challenge!

Problem

Can you prove that if $n \in \mathbb{Z}_+$ is not a perfect square, then \sqrt{n} is irrationial? (Apostol Theorem 1.10)

Problem

Can you prove that if $n \in \mathbb{Z}_+$ is not a perfect square, then \sqrt{n} is irrationial? (Apostol Theorem 1.10)

Solution

We prove by contradiction.

Problem

Can you prove that if $n \in \mathbb{Z}_+$ is not a perfect square, then \sqrt{n} is irrationial? (Apostol Theorem 1.10)

Solution

We prove by contradiction. Assume $\sqrt{n} = a/b$ for integers a, b.

Problem

Can you prove that if $n \in \mathbb{Z}_+$ is not a perfect square, then \sqrt{n} is irrationial? (Apostol Theorem 1.10)

Solution

We prove by contradiction. Assume $\sqrt{n} = a/b$ for integers a, b. Without loss of generality, we may assume gcd(a, b) = 1.

Problem

Can you prove that if $n \in \mathbb{Z}_+$ is not a perfect square, then \sqrt{n} is irrationial? (Apostol Theorem 1.10)

Solution

We prove by contradiction. Assume $\sqrt{n} = a/b$ for integers a, b. Without loss of generality, we may assume gcd(a, b) = 1. Then $b^2n = a^2$.

Problem

Can you prove that if $n \in \mathbb{Z}_+$ is not a perfect square, then \sqrt{n} is irrationial? (Apostol Theorem 1.10)

Solution

We prove by contradiction. Assume $\sqrt{n} = a/b$ for integers a, b. Without loss of generality, we may assume gcd(a, b) = 1. Then $b^2n = a^2$. Since gcd(a, b) = 1, a^2 must divide n, ie. $n = n'a^2$.

Problem

Can you prove that if $n \in \mathbb{Z}_+$ is not a perfect square, then \sqrt{n} is irrationial? (Apostol Theorem 1.10)

Solution

We prove by contradiction. Assume $\sqrt{n} = a/b$ for integers a, b. Without loss of generality, we may assume $\gcd(a, b) = 1$. Then $b^2n = a^2$. Since $\gcd(a, b) = 1$, a^2 must divide n, ie. $n = n'a^2$. It follows that $b^2n' = 1$, so b^2 divides 1.

Problem

Can you prove that if $n \in \mathbb{Z}_+$ is not a perfect square, then \sqrt{n} is irrationial? (Apostol Theorem 1.10)

Solution

We prove by contradiction. Assume $\sqrt{n} = a/b$ for integers a, b. Without loss of generality, we may assume gcd(a, b) = 1. Then $b^2n = a^2$. Since gcd(a, b) = 1, a^2 must divide n, ie. $n = n'a^2$. It follows that $b^2n' = 1$, so b^2 divides 1. This implies n' divides 1, so $n' = \pm 1$.

Problem

Can you prove that if $n \in \mathbb{Z}_+$ is not a perfect square, then \sqrt{n} is irrationial? (Apostol Theorem 1.10)

Solution

We prove by contradiction. Assume $\sqrt{n} = a/b$ for integers a, b. Without loss of generality, we may assume $\gcd(a, b) = 1$. Then $b^2n = a^2$. Since $\gcd(a, b) = 1$, a^2 must divide n, ie. $n = n'a^2$. It follows that $b^2n' = 1$, so b^2 divides 1. This implies n' divides 1, so $n' = \pm 1$. Since n > 0, n' > 0 so n' = 1.

Problem

Can you prove that if $n \in \mathbb{Z}_+$ is not a perfect square, then \sqrt{n} is irrationial? (Apostol Theorem 1.10)

Solution

We prove by contradiction. Assume $\sqrt{n}=a/b$ for integers a,b. Without loss of generality, we may assume $\gcd(a,b)=1$. Then $b^2n=a^2$. Since $\gcd(a,b)=1$, a^2 must divide n, ie. $n=n'a^2$. It follows that $b^2n'=1$, so b^2 divides 1. This implies n' divides 1, so $n'=\pm 1$. Since n>0, n'>0 so n'=1. Thus $n=a^2$, which is a contradiction.

Types of real numbers
Integers
Upper Bound and Supremun
Decimal expansions

Algebraic and Transcendental

Irrational numbers can be further divided into to categories

Algebraic and Transcendental

Irrational numbers can be further divided into to categories

 algebraic numbers: numbers which are roots of polynomials with integer coefficients, like

$$\sqrt{2}$$
, $\sqrt{3}$, and $\sqrt[3]{\sqrt{5}+\sqrt{7}}$.

Algebraic and Transcendental

Irrational numbers can be further divided into to categories

algebraic numbers: numbers which are roots of polynomials with integer coefficients, like

$$\sqrt{2}$$
, $\sqrt{3}$, and $\sqrt[3]{\sqrt{5}+\sqrt{7}}$.

transcendental numbers: numbers which are not algebraic, like

$$\pi$$
, e , e^{π} , and maybe $\pi + e$?

Algebraic and Transcendental

Irrational numbers can be further divided into to categories

 algebraic numbers: numbers which are roots of polynomials with integer coefficients, like

$$\sqrt{2}$$
, $\sqrt{3}$, and $\sqrt[3]{\sqrt{5}+\sqrt{7}}$.

transcendental numbers: numbers which are not algebraic, like

$$\pi$$
, e , e^{π} , and maybe $\pi + e$?

transcendentals are mysterious ... but most real numbers are transcendental!

Types of real numbers Integers Upper Bound and Supremum Decimal expansions

Outline

- Real Analysis Lecture 2
 - Types of real numbers
 - Integers
 - Upper Bound and Supremum
 - Decimal expansions

An **upper bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

 $x \le b$ for all $x \in S$.

An **upper bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$x \le b$$
 for all $x \in S$.

In this case, we say *S* is **bounded above** by *b*.

An **upper bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$x \le b$$
 for all $x \in S$.

An **upper bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$x \le b$$
 for all $x \in S$.

An **upper bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$x \le b$$
 for all $x \in S$.

In this case, we say S is **bounded above** by b. If $b \in S$ also, then b is called a **maximal element** of S **Examples:**

• 34 is an upper bound of [-1,5], but not a maximal element

An **upper bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$x \le b$$
 for all $x \in S$.

- 34 is an upper bound of [-1,5], but not a maximal element
- 5 is a maximal element of [-1, 5]

An **upper bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$x \le b$$
 for all $x \in S$.

- 34 is an upper bound of [-1,5], but not a maximal element
- 5 is a maximal element of [-1, 5]
- 3 is an upper bound of [0,3), but not a maximal element

An **upper bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$x \le b$$
 for all $x \in S$.

- 34 is an upper bound of [-1,5], but not a maximal element
- 5 is a maximal element of [-1, 5]
- 3 is an upper bound of [0,3), but not a maximal element
- ullet \mathbb{Z}_+ has no upper bound

An **upper bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$x \le b$$
 for all $x \in S$.

- 34 is an upper bound of [-1,5], but not a maximal element
- 5 is a maximal element of [-1, 5]
- 3 is an upper bound of [0,3), but not a maximal element
- ullet \mathbb{Z}_+ has no upper bound
- [3,7) has an upper bound but no maximal element

Types of real numbers
Integers
Upper Bound and Supremum
Decimal expansions

Challenge!

Problem

Show that if *S* has a maximal element, then it is unique.

Types of real numbers Integers Upper Bound and Supremum Decimal expansions

Challenge!

Problem

Show that if *S* has a maximal element, then it is unique.

Hint: use the definition!

lypes of real numbers
Integers
Upper Bound and Supremum
Decimal expansions

Challenge!

Problem

Show that if *S* has a maximal element, then it is unique.

Hint: use the definition!

Solution

Suppose that b_1 and b_2 are both maximal elements of S.

Problem

Show that if *S* has a maximal element, then it is unique.

Hint: use the definition!

Solution

Suppose that b_1 and b_2 are both maximal elements of S.

Then $x \le b_1$ and $x \le b_2$ for all $x \in S$.

Problem

Show that if S has a maximal element, then it is unique.

Hint: use the definition!

Solution

Suppose that b_1 and b_2 are both maximal elements of S.

Then $x < b_1$ and $x < b_2$ for all $x \in S$.

Moreover, $b_1 \in S$ and $b_2 \in S$.

Problem

Show that if *S* has a maximal element, then it is unique.

Hint: use the definition!

Solution

Suppose that b_1 and b_2 are both maximal elements of S.

Then $x \le b_1$ and $x \le b_2$ for all $x \in S$.

Moreover, $b_1 \in S$ and $b_2 \in S$.

Since $b_1 \in S$ and b_2 is an upper bound of S, $b_1 \leq b_2$.

Problem

Show that if *S* has a maximal element, then it is unique.

Hint: use the definition!

Solution

Suppose that b_1 and b_2 are both maximal elements of S.

Then $x \le b_1$ and $x \le b_2$ for all $x \in S$.

Moreover, $b_1 \in S$ and $b_2 \in S$.

Since $b_1 \in S$ and b_2 is an upper bound of S, $b_1 \leq b_2$.

Likewise, since $b_2 \in S$ and b_1 is an upper bound of S, $b_2 \leq b_1$.

Problem

Show that if *S* has a maximal element, then it is unique.

Hint: use the definition!

Solution

Suppose that b_1 and b_2 are both maximal elements of S.

Then $x \le b_1$ and $x \le b_2$ for all $x \in S$.

Moreover, $b_1 \in S$ and $b_2 \in S$.

Since $b_1 \in S$ and b_2 is an upper bound of S, $b_1 \leq b_2$.

Likewise, since $b_2 \in S$ and b_1 is an upper bound of S, $b_2 \leq b_1$.

By the trichotomy, we find $b_1 = b_2$.

Problem

Show that if *S* has a maximal element, then it is unique.

Hint: use the definition!

Solution

Suppose that b_1 and b_2 are both maximal elements of S.

Then $x \le b_1$ and $x \le b_2$ for all $x \in S$.

Moreover, $b_1 \in S$ and $b_2 \in S$.

Since $b_1 \in S$ and b_2 is an upper bound of S, $b_1 \leq b_2$.

Likewise, since $b_2 \in S$ and b_1 is an upper bound of S, $b_2 \leq b_1$.

By the trichotomy, we find $b_1 = b_2$.

Now we can say *the* maximum, max(S)

Supremum

A **supremum** of a set S of real numbers is a real number $b \in \mathbb{R}$ such that

- b is an upper bound of S
- if b' < b, then b' is not an upper bound of S

Supremum

A **supremum** of a set S of real numbers is a real number $b \in \mathbb{R}$ such that

- b is an upper bound of S
- if b' < b, then b' is not an upper bound of S

In other words

a supremum is a least upper bound

Challenge!

Problem

Show that if S has a supremum, then it is unique.

Challenge!

Problem

Show that if *S* has a supremum, then it is unique.

Hint: use the definition!

Challenge!

Problem

Show that if *S* has a supremum, then it is unique.

Hint: use the definition!

Solution

Suppose that b_1 and b_2 are both suprema of S.

Problem

Show that if *S* has a supremum, then it is unique.

Hint: use the definition!

Solution

Suppose that b_1 and b_2 are both suprema of S. Then b_1 and b_2 are both upper bounds of S.

Problem

Show that if *S* has a supremum, then it is unique.

Hint: use the definition!

Solution

Suppose that b_1 and b_2 are both suprema of S.

Then b_1 and b_2 are both upper bounds of S.

Since b_1 is a least upper bound, $b_1 \leq b_2$.

Problem

Show that if *S* has a supremum, then it is unique.

Hint: use the definition!

Solution

Suppose that b_1 and b_2 are both suprema of S.

Then b_1 and b_2 are both upper bounds of S.

Since b_1 is a least upper bound, $b_1 \le b_2$.

Since b_2 is also a least upper bound, $b_2 \le b_1$.

Problem

Show that if *S* has a supremum, then it is unique.

Hint: use the definition!

Solution

Suppose that b_1 and b_2 are both suprema of S.

Then b_1 and b_2 are both upper bounds of S.

Since b_1 is a least upper bound, $b_1 \leq b_2$.

Since b_2 is also a least upper bound, $b_2 \le b_1$.

By the trichotomy, we find $b_1 = b_2$.

Problem

Show that if *S* has a supremum, then it is unique.

Hint: use the definition!

Solution

Suppose that b_1 and b_2 are both suprema of S.

Then b_1 and b_2 are both upper bounds of S.

Since b_1 is a least upper bound, $b_1 \leq b_2$.

Since b_2 is also a least upper bound, $b_2 \le b_1$.

By the trichotomy, we find $b_1 = b_2$.

Now we can say *the* supremum, sup(S)

Challenge!

Problem

Show that if S has a maximum element. Then S has a supremum and $\max(S) = \sup(S)$

Problem

Show that if S has a maximum element. Then S has a supremum and max(S) = sup(S)

Hint: use the definition!

Problem

Show that if S has a maximum element. Then S has a supremum and $\max(S) = \sup(S)$

Hint: use the definition!

Solution

Let
$$b = \max(S)$$
.

Problem

Show that if S has a maximum element. Then S has a supremum and $\max(S) = \sup(S)$

Hint: use the definition!

Solution

Let $b = \max(S)$.

Then *b* is an upper bound of *S* and $b \in S$.

Problem

Show that if S has a maximum element. Then S has a supremum and $\max(S) = \sup(S)$

Hint: use the definition!

Solution

Let $b = \max(S)$.

Then b is an upper bound of S and $b \in S$.

If b' is another upper bound of S, then by definition $b \le b'$.

Problem

Show that if S has a maximum element. Then S has a supremum and $\max(S) = \sup(S)$

Hint: use the definition!

Solution

Let $b = \max(S)$.

Then *b* is an upper bound of *S* and $b \in S$.

If b' is another upper bound of S, then by definition $b \le b'$.

Thus *b* is the least upper bound of *S*.

Completeness Axiom

Now we have the machinery in place to state the Completeness Axiom.

Completeness Axiom

Now we have the machinery in place to state the Completeness Axiom.

Now we have the machinery in place to state the Completeness Axiom.

completeness axiom: if S is any subset of real numbers which is bounded above, then it has a supremum $\sup(S)$

Now we have the machinery in place to state the Completeness Axiom.

completeness axiom: if S is any subset of real numbers which is bounded above, then it has a supremum $\sup(S)$

Examples:

Now we have the machinery in place to state the Completeness Axiom.

• completeness axiom: if S is any subset of real numbers which is bounded above, then it has a supremum $\sup(S)$

Examples:

• 3 is the supremum of (0,3)

Now we have the machinery in place to state the Completeness Axiom.

• completeness axiom: if S is any subset of real numbers which is bounded above, then it has a supremum $\sup(S)$

Examples:

- 3 is the supremum of (0,3)
- 1 is the supremum of

$$\left\{\frac{n}{n+1}:n\in\mathbb{Z}_+\right\}$$

Now we have the machinery in place to state the Completeness Axiom.

• completeness axiom: if S is any subset of real numbers which is bounded above, then it has a supremum $\sup(S)$

Examples:

- 3 is the supremum of (0,3)
- 1 is the supremum of

$$\left\{\frac{n}{n+1}:n\in\mathbb{Z}_+\right\}$$

 \bullet π is the supremum of

$${3,3.1,3.14,3.141,3.1415,3.14159,3.141592,\dots}$$
.

Challenge

Problem

Prove that if *A* is a set of integers that is bounded above, then *A* has a maximum.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$. Since b - 1 is not an upper bound, so there exists $a \in A$ with b - 1 < a.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$. Since b-1 is not an upper bound, so there exists $a \in A$ with b-1 < a.

If $a' \in A$, then a' is an integer and therefore a' = a + k for $k \in \mathbb{Z}$.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$. Since b - 1 is not an upper bound, so there exists $a \in A$ with b - 1 < a.

If $a' \in A$, then a' is an integer and therefore a' = a + k for $k \in \mathbb{Z}$. Since b is an upper bound, $b \ge a + k > b - 1 + k$, making 0 > k - 1.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$. Since b - 1 is not an upper bound, so there exists $a \in A$ with b - 1 < a.

If $a' \in A$, then a' is an integer and therefore a' = a + k for $k \in \mathbb{Z}$. Since b is an upper bound, $b \ge a + k > b - 1 + k$, making 0 > k - 1.

Therefore $k \le 0$ and $a' \le a$.

Solution

The set A is bounded above, so it has a supremum $b = \sup(A)$. Since b - 1 is not an upper bound, so there exists $a \in A$ with b - 1 < a.

If $a' \in A$, then a' is an integer and therefore a' = a + k for $k \in \mathbb{Z}$. Since b is an upper bound, $b \ge a + k > b - 1 + k$, making 0 > k - 1.

Therefore $k \le 0$ and $a' \le a$.

It follows that a is an upper bound of A, and since $a \in A$ it is a maximum.

Lower bounds and infima

A **lower bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$b \le x$$
 for all $x \in S$.

Lower bounds and infima

A **lower bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$b \le x$$
 for all $x \in S$.

In this case, we say S is **bounded below** by b.

Lower bounds and infima

A **lower bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$b \le x$$
 for all $x \in S$.

In this case, we say S is **bounded below** by b. If $b \in S$ also, then b is called a **minimal element** of S.

Lower bounds and infima

A **lower bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$b \le x$$
 for all $x \in S$.

In this case, we say S is **bounded below** by b. If $b \in S$ also, then b is called a **minimal element** of S. An **infimum** of a set S of real numbers is a real number $b \in \mathbb{R}$ such that

- b is a lower bound of S
- if b < b', then b' is not a lower bound of S

Lower bounds and infima

A **lower bound** for a set $S \subseteq \mathbb{R}$ is a number b such that

$$b \le x$$
 for all $x \in S$.

In this case, we say S is **bounded below** by b. If $b \in S$ also, then b is called a **minimal element** of S. An **infimum** of a set S of real numbers is a real number $b \in \mathbb{R}$ such that

- b is a lower bound of S
- if b < b', then b' is not a lower bound of S

In other words

an infimum is a greatest lower bound

The first property of suprema is that they must be arbitrarily close to elements of the set.

Theorem (Approximation Property)

Let $S \subseteq \mathbb{R}$ be bounded above, and let $b = \sup(S)$. Then for all $\epsilon > 0$, there exists $a \in S$ with

$$b - \epsilon < a < b$$
.

Proof.

Since $b - \epsilon < b$, the definition of a supremum implies $b - \epsilon$ cannot be an upper bound.

Proof.

Since $b - \epsilon < b$, the definition of a supremum implies $b - \epsilon$ cannot be an upper bound.

Therefore thre must exist $a \in S$ with $a > b - \epsilon$.

For each n, let s_n denote the sum

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}.$$

For each n, let s_n denote the sum

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}.$$

Notice that

$$s_1 < s_2 < s_3 < s_4 < \dots$$

For each n, let s_n denote the sum

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}.$$

Notice that

$$s_1 < s_2 < s_3 < s_4 < \dots$$

Consider the set

$$S = \{s_n : n \in \mathbb{Z}_+\}.$$

For each n, let s_n denote the sum

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}.$$

Notice that

$$s_1 < s_2 < s_3 < s_4 < \dots$$

Consider the set

$$S = \{s_n : n \in \mathbb{Z}_+\}.$$

For every *n*,

$$s_n \leq 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 3 - \frac{1}{2^n} < 3$$

so S is bounded above by 3.

For each n, let s_n denote the sum

$$s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}.$$

Notice that

$$s_1 < s_2 < s_3 < s_4 < \dots$$

Consider the set

$$S = \{s_n : n \in \mathbb{Z}_+\}.$$

For every n,

$$s_n \le 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 3 - \frac{1}{2^n} < 3$$

so S is bounded above by 3. Therefore S has a supremum, $\sup(S)$.

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists N with $s_N > \sup(S) - \epsilon$.

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists N with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S).$$

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists N with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S).$$

This says $\sup(S)$ is *really* close to s_N .

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists N with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S).$$

This says $\sup(S)$ is *really* close to s_N . Taking ϵ smaller and smaller

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists N with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S)$$
.

This says $\sup(S)$ is *really* close to s_N . Taking ϵ smaller and smaller

$$\sup(S) = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists *N* with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S)$$
.

This says $\sup(S)$ is *really* close to s_N . Taking ϵ smaller and smaller

$$\sup(S) = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

If we remember Taylor series

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists *N* with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S).$$

This says $\sup(S)$ is *really* close to s_N . Taking ϵ smaller and smaller

$$\sup(S) = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

If we remember Taylor series

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$

Even if ϵ is very small ($\epsilon = 0.000000001$), $\sup(S) - \epsilon$ is not an upper bound of S.

So there exists *N* with $s_N > \sup(S) - \epsilon$.

$$s_1 < s_2 < s_3 < s_4 < \cdots < \sup(S) - \epsilon < s_N < \cdots < \sup(S)$$
.

This says $\sup(S)$ is *really* close to s_N . Taking ϵ smaller and smaller

$$\sup(S) = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

If we remember Taylor series

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$

We've just shown that $e^1 = e$ exists.

Also, suprema play nicely with addition.

Theorem (Additive Property)

Let $A, B \subseteq \mathbb{R}$ be bounded above set

$$C = \{x + y : x \in A, y \in B\}.$$

Then C is bounded above and

$$\sup(C) = \sup(A) + \sup(B).$$

Proof.

Let
$$a = \sup(A)$$
, $b = \sup(B)$, and $c = \sup(C)$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and

therefore $z = x + y \le a + b$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Next, note for all $x \in A$ and $y \le B$ that $x \le c - y$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Next, note for all $x \in A$ and $y \le B$ that $x \le c - y$.

Therefore c - y is an upper bound of A and $a \le c - y$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Next, note for all $x \in A$ and $y \le B$ that $x \le c - y$.

Therefore c - y is an upper bound of A and $a \le c - y$.

It follows that $y \le c - a$ for all $y \in B$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Next, note for all $x \in A$ and $y \le B$ that $x \le c - y$.

Therefore c - y is an upper bound of A and $a \le c - y$.

It follows that $y \le c - a$ for all $y \in B$.

Thus c - a is an upper bound of B, and it follows $b \le c - a$.

Proof.

Let $a = \sup(A)$, $b = \sup(B)$, and $c = \sup(C)$.

We will prove $c \le a + b$ and then $a + b \le c$.

First, note a is an upper bound of A, so $x \le a$ for all $x \in A$.

Also *b* is an upper bound of *b*, so $y \le b$ for all $y \in B$.

If $z \in C$, then z = x + y for some $x \in A$ and $y \in B$, and therefore $z = x + y \le a + b$.

Therefore a + b is an upper bound of C.

This means $c \le a + b$.

Next, note for all $x \in A$ and $y \le B$ that $x \le c - y$.

Therefore c - y is an upper bound of A and $a \le c - y$.

It follows that $y \le c - a$ for all $y \in B$.

Thus c - a is an upper bound of B, and it follows $b \le c - a$.

Therefore $a + b \le c$.

Challenge

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Challenge

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Challenge

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists The number b is an upper bound and if b' < b, then b' is not.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists The number b is an upper bound and if b' < b, then b' is not. Then b-1 < b by Axiom 7, so b-1 cannot be an upper bound.

19QQ

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists The number b is an upper bound and if b' < b, then b' is not. Then b-1 < b by Axiom 7, so b-1 cannot be an upper bound. This means there exists $n \in \mathbb{Z}_+$ with b-1 < n.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists

The number b is an upper bound and if b' < b, then b' is not.

Then b-1 < b by Axiom 7, so b-1 cannot be an upper bound.

This means there exists $n \in \mathbb{Z}_+$ with b-1 < n.

It follows from Axiom 7 that b < n + 1.

Problem

Use the completeness axiom to prove that the \mathbb{Z}_+ is not bounded above. (Apostol Theorem 1.17)

Hint: assume it is and consider $\sup(\mathbb{Z}_+) - 1$

Solution

Assume it is.

The completeness axiom implies that $b = \sup(\mathbb{Z}_+)$ exists

The number b is an upper bound and if b' < b, then b' is not.

Then b-1 < b by Axiom 7, so b-1 cannot be an upper bound.

This means there exists $n \in \mathbb{Z}_+$ with b - 1 < n.

It follows from Axiom 7 that b < n + 1.

However, $n+1 \in \mathbb{Z}$, so this contradicts b being an upper bound.

Archimedian property

Theorem (Apostol Theorem 1.18)

For every $x \in \mathbb{R}$, there exists $n \in \mathbb{Z}_+$ with n > x.

Types of real numbers Integers Upper Bound and Supremum Decimal expansions

Archimedian property

Theorem (Apostol Theorem 1.18)

For every $x \in \mathbb{R}$, there exists $n \in \mathbb{Z}_+$ with n > x.

Proof.

If not, then x is an upper bound of \mathbb{Z}_+ .

Types of real numbers
Integers
Upper Bound and Supremum
Decimal expansions

Archimedian property

Theorem (Apostol Theorem 1.18)

For every $x \in \mathbb{R}$, there exists $n \in \mathbb{Z}_+$ with n > x.

Proof.

If not, then x is an upper bound of \mathbb{Z}_+ .

Theorem (Archimedian Property of Reals)

For every $x, y \in \mathbb{R}$ with x > 0, there exists $n \in \mathbb{Z}_+$ with y < nx.

Archimedian property

Theorem (Apostol Theorem 1.18)

For every $x \in \mathbb{R}$, there exists $n \in \mathbb{Z}_+$ with n > x.

Proof.

If not, then x is an upper bound of \mathbb{Z}_+ .

Theorem (Archimedian Property of Reals)

For every $x, y \in \mathbb{R}$ with x > 0, there exists $n \in \mathbb{Z}_+$ with y < nx.

Proof.

Replace x with y/x in the previous theorem.

Outline

- Real Analysis Lecture 2
 - Types of real numbers
 - Integers
 - Upper Bound and Supremum
 - Decimal expansions

A finite decimal expansion is an expression

$$r = a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \frac{a_3}{10^3} + \dots + \frac{a_n}{10^n},$$

where $a_0 \in \mathbb{Z}_+$ and $0 \le a_k \le 9$ for $1 \le k \le n$.

A finite decimal expansion is an expression

$$r = a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \frac{a_3}{10^3} + \dots + \frac{a_n}{10^n},$$

where $a_0 \in \mathbb{Z}_+$ and $0 \le a_k \le 9$ for $1 \le k \le n$.

Notation:

$$a_0.a_1a_2a_3...a_n$$
.

A finite decimal expansion is an expression

$$r = a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \frac{a_3}{10^3} + \dots + \frac{a_n}{10^n},$$

where $a_0 \in \mathbb{Z}_+$ and $0 \le a_k \le 9$ for $1 \le k \le n$.

Notation:

$$a_0.a_1a_2a_3...a_n$$
.

Any positive real number x > 0 can be approximated by a finite decimal expansion.

Theorem (Apostol Theorem 1.20)

For any real x > 0 and $n \in \mathbb{Z}_+$, there exists a finite decimal expansion $r_n = a_0.a_1a_2...a_n$ with

$$r_n \leq x < r_n + \frac{1}{10^n}.$$

Types of real numbers Integers Upper Bound and Supremun Decimal expansions

Decimal approximations

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum a_0 .

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum a_0 .

Then clearly $x_1 = a - a_0 \in [0, 1)$.

Decimal approximations

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \le x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum a_0 .

Then clearly $x_1 = a - a_0 \in [0, 1)$.

Define a_1, a_2, a_3, \ldots and x_1, x_2, x_3, \ldots recursively by

$$a_k = \max\{a \in \mathbb{Z}_+ : a \leq 10x_k\}$$

and
$$x_{k+1} = 10x_k - a_k$$
.

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum a_0 .

Then clearly $x_1 = a - a_0 \in [0, 1)$.

Define a_1, a_2, a_3, \ldots and x_1, x_2, x_3, \ldots recursively by

$$a_k = \max\{a \in \mathbb{Z}_+ : a \leq 10x_k\}$$

and $x_{k+1} = 10x_k - a_k$. Then $0 \le a_k \le 9$ for all $k \ge 1$

Proof.

Consider the set

$$A = \{a \in \mathbb{Z} : a \leq x\}.$$

The set A is a set of integers which is bounded above by x, so it has a maximum a_0 .

Then clearly $x_1 = a - a_0 \in [0, 1)$.

Define a_1, a_2, a_3, \ldots and x_1, x_2, x_3, \ldots recursively by

$$a_k = \max\{a \in \mathbb{Z}_+ : a \leq 10x_k\}$$

and $x_{k+1} = 10x_k - a_k$. Then $0 \le a_k \le 9$ for all $k \ge 1$ and

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \dots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \dots + \frac{a_n+1}{10^n}$$

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

Decimal expansions

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\dots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

Decimal expansions

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

Decimal expansions

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\dots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

Note: this is slightly different than the usual limit meaning, for two good reasons:

we haven't defined limits

Decimal expansions

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

- we haven't defined limits
- with this definition, numbers have unique decimal expansions!

Decimal expansions

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\ldots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

- we haven't defined limits
- with this definition, numbers have unique decimal expansions!

$$1 \neq 0.999999999...$$

We say that x > 0 has the decimal expansion $a_0.a_1a_2a_3...$ and write

$$x=a_0.a_1a_2a_3a_4\dots$$

if for all $n \in \mathbb{Z}_+$,

$$a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n}{10^n} \le x < a_0 + \frac{a_1}{10} + \frac{a_2}{100} + \cdots + \frac{a_n+1}{10^n}.$$

- we haven't defined limits
- with this definition, numbers have unique decimal expansions!

$$1 \neq 0.99999999...$$