Analysis

Lent 2016

CONTENTS 2

Contents

1	Differentiation		3
	1.1	Complex differentiation	4
	1.2	Trigonometric and Hyperbolic functions	10
	1.3	Derivative of higher orders	12
2	Power series		17
3	3 Integration		21

1 Differentiation

Theorem. (IFT) Assume I is an open interval, $f: I \to \mathbb{R}$ is differentiable on I, $f'(x) \neq 0 \forall x \in I$. Then J = f(I) is an open interval, f is strictly monotonic, and hence bijection $I \to J$. Moreover, $f^{-1}: J \to I$ is differentiable, and

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$$

Proof. \underline{f} is injective: if x < y and f(x) = f(y). Then by Rolle's theorem (f differentiable and hence continuous on I), $\exists c \in (x,y)$ s.t. f'(c) = 0. Contradiction. \underline{f} is strictly monotonic: $\forall x < y$ in I, either f(x) < f(y) or f(x) > f(y). We next show that $\forall a < b < c$ in I either f(a) < f(b) < f(c) or f(a) > f(b) > f(c). If not then $\exists a < b < c$ in I s.t.

either f(a) < f(b), f(b) > f(c)

or f(a) > f(b), f(b) < f(c).

In the first case, fix w s.t. $\max(f(a), f(c)) < w < f(b)$. Then f(a) < w < f(b) so by IVT, $\exists x \in (a, b)$ s.t. f(x) = w, and f(b) > w > f(c) so by IVT $\exists y \in (b, c)$ s.t. f(y) = w. Contradicts with injectivity.

The other case is similar (apply the first case to (-f)).

Fix a < b in I. We show that if f(a) < f(b) then f is strictly increasing on I. The case f(a) > f(b) will be similar and then f is strictly decreasing on I.

Let $x \in I$. If x < a then considering the triple x < a < b we obtain f(x) < f(a). If a < x then

either x < b and considering a < x < b, get f(a) < f(x)

or x > b and considering a < b < x, get f(a) < f(x)

or x = b and then f(a) < f(b) = f(x).

So far we have $\forall x < y$ in I if x = a or y = a then f(x) < f(y).

For arbitrary x < y in I with $a \neq x$ and $a \neq y$ we have 3 cases: a < x < y, x < a < y, x < y < a, applying the previous claim we get f(x) < f(y).

<u>J is an interval</u>: Let x < y < z in \mathbb{R} s.t. $x, z \in J$. We have $a, b \in I$ s.t. x = f(a), z = f(b). So by IVT, $\exists c$ between a, b s.t. f(c) = y, so $y \in J$.

J is an open interval: Given $y \in J, \exists b \in I \text{ s.t. } f(b) = y.$

 \overline{I} is an open interval, so $\exists a, c \in I, a < b < c$.

Then either f(a) < f(b) < f(c) or f(a) > f(b) > f(c).

So y is not an endpoint of J.

Now $f: I \to J$ is a strictly monotonic bijection, so $f^{-1}: J \to I$ is continuous by Theorem 3.6.

 f^{-1} differentiable: Let $y \in J$. We consider

$$\frac{f^{-1}\left(y+k\right)-f^{-1}\left(y\right)}{k}\text{ as }k\rightarrow0.$$

For given k, let $h=f^{-1}\left(y+k\right)-f^{-1}\left(y\right)$ and let $x=f^{-1}\left(y\right)$. Then $f^{-1}\left(y+k\right)=h+f^{-1}\left(y\right)=x+h,$

k = f(x+h) - f(x),

$$\frac{f^{-1}(y+k) - f^{-1}(y)}{k} = \frac{h}{f(x+h) - f(x)}$$
$$= \frac{1}{\frac{f(x+h) - f(x)}{h}}$$

Here $h=h\left(k\right)$ depends on $k,\,h\left(k\right)\neq0$ if $k\neq0$ and $h\left(k\right)\rightarrow0$ as $k\rightarrow0$ since f^{-1} is continuous.

So

$$\frac{f^{-1}(y+k) - f^{-1}(y)}{k} \to \frac{1}{f'(x)} = \frac{1}{f'(f^{-1}(y))}.$$

Example. Fix $n \in \mathbb{N}$, consider $f:(0,\infty) \to \mathbb{R}, f(x) = x^n$. f is strictly increasing, onto $(0,\infty)$, differentiable, $f'(x) = nx^{n-1}$. We have $f^{-1}:(0,\infty) \to (0,\infty), f^{-1}(x) = x^{\frac{1}{n}}$ (definition). The extra information from IFT is that f^{-1} is differentiable, and

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$
$$= \frac{1}{n(y^{\frac{1}{n}})^{n-1}}$$
$$= \frac{1}{n}y^{\frac{1}{n}-1}.$$

For $\alpha = \frac{p}{q}, \, p, q \in \mathbb{N}, \, x^{\alpha} = \left(x^{\frac{1}{q}}\right)^p$ is differentiable by Chain Rule: $\frac{d}{dx}\left(x^{\alpha}\right) = p\left(x^{\frac{1}{q}}\right)^{p-1} \cdot \frac{1}{q}x^{\frac{1}{q}-1} = \alpha x^{\alpha-1}.$ For $\alpha \in \mathbb{Q}, \alpha < 0, x^{\alpha} = \frac{1}{x^{-\alpha}}$ is differentiable, and $\frac{d}{dx}\left(x^{\alpha}\right) = -\frac{1}{(x^{-\alpha})^2} \cdot (-\alpha) \, x^{-\alpha-1} = \alpha x^{\alpha-1}.$ Need $\exp p$, $\log p$ for $\alpha \in \mathbb{R}$.

1.1 Complex differentiation

Given $f: \mathbb{C} \to \mathbb{C}$, $a \in \mathbb{C}$, we say f is complex differentiable at a if

$$\lim_{h \to 0} \frac{f((a+h) - f(a))}{h}$$

exists and we denote the limit by f'(a) and call it the *derivative of* f *at* a. Say f is *complex differentiable* on \mathbb{C} (or *holomorphic*) if it's complex differentiable at every $a \in \mathbb{C}$.

f is complex differentiable at $a \iff \exists \lambda \in \mathbb{C} \ f(a+) = f(a) + \lambda h + \epsilon(h) \cdot h$, where $\epsilon(h) \to 0$ as $h \to 0$. Then $\lambda = f'(a)$.

Proposition. f is complex differentiable at $a \implies f$ is continuous at a.

Property 2, Theorem 3 also hold.

For $z\in\mathbb{C}$, $\sum_{n=0}^{\infty}\frac{z^n}{n!}$ converges absolutely and hence converges. For z=0 ok, for $z\neq 0$ we use the ratio test:

$$\frac{\left|\frac{z^{n+1}}{(n+1)!}\right|}{\left|\frac{z^n}{n!}\right|} = \frac{|z|}{n+1} \to 0 \text{ as } n \to \infty.$$

We define the exponential function $\exp: \mathbb{C} \to \mathbb{C}$ by $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$.

Theorem. (Properties of exp)

- 1) $\exp(z+n) = \exp(z) \exp(w) \ \forall z, w \in \mathbb{C};$
- 2) $\exp(0) = 1, \exp(z) \neq 0 \forall z \in \mathbb{C};$
- 3) $\overline{\exp(z)} = \exp(\overline{z});$
- 4) $\exp(x) \in \mathbb{R} \forall x \in \mathbb{R};$
- 5) $\exp(ix) \in T = \{z \in \mathbb{C} | |z| = 1\} \forall x \in \mathbb{R};$

So $\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n) (\sum_{n=0}^{\infty} b_n).$

- 6) exp is complex differentiable at 0, $\exp'(0) = 1$;
- 7) exp is holomorphic, and $\exp'(z) = \exp(z)$.

$$\begin{aligned} & Proof. \ 1) \ \text{Let} \ a_k = \frac{z^n}{n!}, b_n = \frac{w^n}{n!}, c_n = \frac{(z+w)^n}{n!} \ \text{for} \ n \geq 0. \\ & c_n = \frac{1}{n!} \sum_{j=0}^n \binom{n}{j} z^j w^{n-j} = \sum_{j=0}^n \frac{1}{j!(n-j)!} z^j w^{n-j} = \sum_{j+k=n}^n a_j b_j. \end{aligned}$$

$$& | \sum_{n=0}^N c_n - \left(\sum_{n=0}^N a_n\right) \left(\sum_{n=0}^N b_n\right) |$$

$$& = | \sum_{n=0}^N \sum_{j+k=n} a_j b_k - \sum_{j,k=0}^N a_j b_k |$$

$$& = | \sum_{j,k=0,j+k>N}^N a_j b_k |$$

$$& \leq \sum_{j,k=0,j+k>N}^N |a_j| |b_k|$$

$$& \leq \sum_{j,k=0,j>\frac{N}{2} \text{ or } k>\frac{N}{2}} |a_j| |b_k|$$

$$& \leq \sum_{j,k=0,j>\frac{N}{2} \text{ or } k>\frac{N}{2}} |a_j| |b_k|$$

$$& \leq \sum_{\frac{N}{2} < j \leq N} |a_j| \cdot \sum_{k=0}^N |b_k| + \sum_{\frac{N}{2} < k \leq N} |b_k| \cdot \sum_{j=0}^N |a_j|$$

$$& \to 0 \text{ as } N \to \infty. \end{aligned}$$

2) $\exp(0)$ by definition. $1 = \exp(0) = \exp(z + (-z)) = \exp(z) \exp(-z)$. So $\exp(z) \neq 0 \forall z \in \mathbb{C}$.

3) $\overline{\exp(z)} = \exp(\overline{z}) \, \forall z \in \mathbb{C}.$

$$\overline{\exp(z)} = \left(\lim_{N \to \infty} \sum_{n=0}^{N} \frac{z^n}{n!}\right)$$

$$= \lim_{N \to \infty} \overline{\left(\sum_{n=0}^{N} \frac{z^n}{n!}\right)}$$

$$= \lim_{N \to \infty} \sum_{n=0}^{N} \frac{(\overline{z})^n}{n!}$$

$$= \exp(\overline{z}).$$

 $\underline{4) \exp{(x)}} \in \mathbb{R} \forall x \in \mathbb{R} \text{ and } \exp{(ix)} \in T \forall x \in \mathbb{R}.$ $\underline{\exp{(x)}} = \exp{(\overline{x})} = \exp{(x)}, \text{ so } \exp{(x)} \in \mathbb{R}.$

$$|\exp(ix)|^2 = \exp(ix)$$

$$= \exp(ix) \exp(-ix)$$

$$= \exp(0)$$

$$= 1.$$

5) $\exp'(0) = 1$.

$$\exp(h) = \sum_{n=0}^{\infty} \frac{h^n}{n!}$$

$$= 1 + h + \sum_{n=2}^{\infty} \frac{h^n}{n!}$$

$$= \exp(0) + h + h \sum_{n=2}^{\infty} \frac{h^{n-1}}{n!}.$$

Define $\epsilon(h) = \sum_{n=2}^{\infty} \frac{h^{n-1}}{n!}$. Need $\epsilon(h) \to 0$ as $h \to 0$. We have

$$\begin{split} |\epsilon\left(h\right)| &\leq \sum_{n=2}^{\infty} |\frac{h^{n-1}}{n!} \\ &= \sum_{n=2}^{\infty} \frac{|h|^{n-1}}{n!} \\ &\leq \sum_{n=2}^{\infty} |h|^{n-1} \text{ assume } |h| \leq 1 \\ &= \frac{|h|}{1 - |h|} \end{split}$$

So $\epsilon(h) \to 0$ as $h \to 0$. Done.

6) $\exp : \mathbb{C} \to \mathbb{C}$ is holomorphic.

$$\begin{split} \frac{\exp\left(z+h\right)-\exp\left(z\right)}{h} \\ &= \frac{\exp\left(z\right)\cdot\exp\left(h\right)-\exp\left(z\right)}{h} \\ &= \exp\left(z\right)\frac{\exp\left(h\right)-\exp\left(0\right)}{h} \\ &\to \exp\left(z\right) \end{split}$$

as $h \to 0$. So $\exp'(z) = \exp(z)$.

By 4) we have a real function $\exp : \mathbb{R} \to \mathbb{R}$.

Theorem. exp: $\mathbb{R} \to \mathbb{R}$ is a strictly increasing, differentiable bijection of \mathbb{R} onto \mathbb{R}^+ ;

For
$$x \geq 0$$
, $\exp{(x)} \geq 1 + x$ so $\exp{(x)} \rightarrow \infty$ as $x \rightarrow \infty$;
For $x \leq 0$, $\exp{(x)} = \frac{1}{\exp{(-x)}} \rightarrow 0$ as $x \rightarrow -\infty$.

Proof. For $x \ge 0$, $\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ge 1 + x > 0$. So for $x \le 0$,

$$1 = \exp(x + (-x))$$
$$= \exp(x) \exp(-x)$$

So
$$\exp(x) = \frac{1}{\exp(-x)} > 0$$

since $\exp'(x) = \exp(x) > 0 \forall x \in \mathbb{R}$.

By Corollary 6, $\exp: \mathbb{R} \to \mathbb{R}^+$ is strictly increasing. Given $y \in \mathbb{R}^+$, choose $n \in \mathbb{N}$ s.t. $n > y > \frac{1}{n}$. So $\exp(n) \ge 1 + n > y$, and $\exp(-n) = \frac{1}{\exp(n)} \le \frac{1}{1+n} < \frac{1}{n} < y$. By IVT, $\exists x \in (-n,n)$, $\exp(x) = y$. Finally, $\exp(x) \ge 1 + x \to \infty$ as $x \to \infty$ for $x \ge 0$. For $x \le 0$, $\exp(x) = \frac{1}{\exp(-x)} \to 0$ as $x \to -\infty$.

We define the logarithm to be the function $\log : \mathbb{R}^+ \to \mathbb{R}$ that is the inverse of $\exp: \mathbb{R} \to \mathbb{R}^+$.

Theorem. $\log : \mathbb{R}^+ \to \mathbb{R}$ is a strictly increasing, differentiable bijection. For y > 0, $\log'(y) = \frac{1}{y}$, $\log 1 = 0$, $\log(xy) = \log x + \log y \forall x, y > 0$, $\log x \to \infty$ as $x \to \infty$, $\log x \to \infty$ as $x \to 0$.

Proof. If 0 < x < y and $\log x \ge \log y$ then

 $x = \exp(\log x) \ge \exp(\log y) = y$, contradiction.

Since $\exp'(x) = \exp(x) \neq 0 \forall x \in \mathbb{R}$, by IFT, log is differentiable, and

$$\log'(y) = \frac{1}{\exp(\log y)} = \frac{1}{y}.$$

 $\log 1 = 0 \text{ since } 1 = \exp(0).$

 $\exp(\log x + \log y) = \exp(\log x) \exp(\log y) = xy;$

Apply log:

 $\log x + \log y = \log(xy).$

Since log, exp, are strictly increasing, $\log x > c \iff x > \exp c$, $\log x < c \iff$

So it follows immediately that

$$\log x \to \infty \text{ as } x \to \infty,$$

$$\log x \to -\infty \text{ as } x \to 0^+.$$

Definition. Define for x > 0, $\alpha \in \mathbb{R}$

$$x^{\alpha} = \exp(\alpha \log x)$$
.

Theorem. • 1) for $\alpha \in \mathbb{Q}$, x^{α} agrees with the previous definition.

• 2) for $\alpha > 0$, $x \to x^{\alpha}$ is a strictly increasing differentiable bijection: $\mathbb{R}^+ \to \mathbb{R}^+$; for $\alpha < 0, x \to x^{\alpha}$ is a strictly decreasing differentiable bijection: $\mathbb{R}^+ \to \mathbb{R}^+$; $\forall \alpha$, $f(x) = x^{\alpha}, \ f'(x) = \alpha x^{\alpha - 1};$

 $\forall x, y > 0, \forall \alpha, \beta \in \mathbb{R}$:

$$x^{\alpha+\beta} = x^{\alpha}x^{\beta}, (x^{\alpha})^{\beta} = x^{\alpha\beta};$$

• 3)
$$(xy)^{\alpha} = x^{\alpha}y^{\alpha}$$
,
 $x^{\alpha+\beta} = x^{\alpha}x^{\beta}$, $(x^{\alpha})^{\beta} = x^{\alpha\beta}$;
• 4) $\frac{x^{\alpha}}{\exp(x)} \to 0$ as $x \to \infty \forall x \in \mathbb{R}$,

 $\frac{\log x}{x^{\alpha}} \to 0 \text{ as } x \to \infty \forall x > 0.$

Proof. 1)

$$\begin{aligned} x^n &= \exp\left(n\log x\right) \\ &= \exp\left(\log x + \log x + \dots + \log x\right) \text{ n times} \\ &= \exp\left(\log x\right) \exp\left(\log x\right) \dots \exp\left(\log x\right) \text{ n times} \\ &= x \cdot x \cdot \dots \cdot x \text{ n times} \end{aligned}$$

which is the old definition of x^n .

$$\left(x^{\frac{1}{n}}\right)^n = \left(\exp\left(\frac{1}{n}\log x\right)\right)^n$$

$$= \exp\left(\frac{1}{n}\log x\right) \cdot \exp\left(\frac{1}{n}\log x\right) \cdot \dots \cdot \exp\left(\frac{1}{n}\log x\right) \text{ n times}$$

$$= \exp\left(\log x\right)$$

$$= x.$$

So the new $x^{\frac{1}{n}}$ is the unique y > 0 such that $y^n = x$, also same as the old definition.

So now for $\alpha \in \mathbb{Q}^+$, it follows that the two definitions coincide. For $\alpha \in \mathbb{Q}^-$,

$$x^{\alpha} = \exp(\alpha \log x)$$

$$= \exp(-(-\alpha) \log x)$$

$$= \frac{1}{\exp(-\alpha \log x)}$$

$$= \frac{1}{x^{-\alpha}}$$

also the old definition.

2) Immediate from properties of log and exp. e.g. for $f(x) = x^{\alpha} = \exp(\alpha \log x)$, by chain rule,

$$f'(x) = \exp(\alpha \log x) \alpha \frac{1}{x}$$
$$= \alpha \frac{\exp(\alpha \log x)}{\exp(\log x)}$$
$$= \alpha \exp(\alpha \log x - \log x)$$
$$= \alpha \exp((\alpha - 1) \log x)$$
$$= \alpha x^{\alpha - 1}.$$

- 3) also immediate from properties of \log and \exp . (exercise)
- 4) For x > 0, $\exp(x) > \frac{x^n}{n!}$ for any $n \in \mathbb{N}$. Given $\alpha \in \mathbb{R}$, choose $n \in \mathbb{N}$, $n > \alpha$, then

$$\frac{x^{\alpha}}{\exp(x)} < \frac{x^{\alpha}}{x^{-n}n!}$$

$$= (n!) x^{\alpha-n}$$

$$= (n!) \exp((\alpha - n) \log x) \to 0$$

as $x \to \infty$.

Now let $y = \log(x\alpha) = \alpha \log x \to \infty$ as $x \to \infty$, so $\frac{\log x}{x^{\alpha}} = \frac{1}{\alpha} \frac{y}{\exp(y)} \to 0$ as $x \to \infty$.

We can define $x^{\alpha} = \exp\left(\alpha \log x\right)$ for $x \in \mathbb{R}, x > 0$ and $\alpha \in \mathbb{C}$. Exercise: define $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$. Show that $e = \exp\left(1\right), \ e^z = \exp\left(z\right)$. Need $e^z = e^w \iff z - w \in 2\pi\mathbb{Z}$ (what is π ?)

1.2 Trigonometric and Hyperbolic functions

Definition. Define functions $\sin, \cos, \sinh, \cosh : \mathbb{C} \to \mathbb{C}$:

$$\sin z = \frac{e^i z - e^- i z}{2i} = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{6} + \frac{z^5}{120} - \dots$$

$$\cos z = \frac{e^i z + e^- i z}{2} = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!} = 1 - \frac{z^2}{2} + \frac{z^4}{24} - \dots$$

$$\sinh z = \frac{e^z - e^- z}{2} = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$$

$$\cosh z = \frac{e^z + e^- z}{2} = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$$

Proposition. (Properties of trigonometric functions)
1) If f is any of these trigonometric functions, then $\overline{f(z)} > f(\overline{z})$. Also f(-z) = -f(z) for $f = \sin, \sinh(\operatorname{odd})$, f(-z) = f(z) for $f = \cos, \cosh(\operatorname{even})$,

 $\sin(0) = \sinh(0) = 0$, $\cos(0) = \cosh(0) = 1$.

2) $\sin(z+w) = \sin z \cos w + \cos z \sin w, \sin(2z) = 2\sin z \cos z$ $\cos(z+w) = \cos z \cos w - \sin z \sin w, \cos(2z) = \cos^2 z - \sin^2 z$ $\sinh(z+w) = \sinh z \cosh w + \cosh z \sinh w, \sinh(2z) = 2\sinh z \cosh z$ $\cosh(z+w) = \cosh z \cosh w + \sinh z \sinh w, \cosh(2z) = \cosh^2 z + \sinh^2 z.$

3)
$$1 = \cos(0) = \cos^2 z + \sin^2 z$$
$$1 = \cosh(0) = \cosh^2 z - \sinh^2 z$$
4)
$$e^{iz} = \cos z + i \sin z$$

5) All the four functions are complex differentiable, with

$$\sin' z = \cos z$$
, $\cos' z = -\sin z$, $\sinh' z = \cosh z$, $\cosh' z = \sinh z$.

 $e^z = \cosh z + \sinh z$

Proof. Immediate from the previous theorem.

This implies that $\sin x, \cos x \in \mathbb{R}$ for $x \in \mathbb{R}$. Since $\cos^2 x + \sin^2 x = 1$, we have $\cos x, \sin x \in [-1, 1]$. Have functions $\sin, \cos : \mathbb{R} \to [-1, 1]$

$$\cos x = \sum_{n=0}^{\infty} \left(-1\right)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \left(-\frac{x^6}{6!} + \frac{x^8}{8!}\right) + \left(-\frac{-x^10}{10!} + \frac{x^12}{12!}\right) + \dots$$

At x = 2, each term in the brackets is negative.

$$\cos(z) < 1 - \frac{2^2}{2} + \frac{2^4}{4!} = 1 - 2 + \frac{16}{84} < 0$$

Since $\cos(0) = 1 > 0$ and \cos is continuous, by IVT

$$\exists z \in (0, 2) \, s.t. \cos(z) = 0.$$

So $A = \{z \ge 0 | \cos(z) = 0\} \ne \phi$ is bounded below by 0, so inf A exists.

Definition. $\pi = 2 \times \inf A$, i.e. $\frac{\pi}{2} = \inf A$.

Claim:

$$\cos\frac{\pi}{2} = 0$$

and so $\frac{\pi}{2} \geq 0$, and it is the least positive zero of cos.

Proof. $\forall n \in \mathbb{N}, \ \frac{\pi}{2} + \frac{1}{n} > \inf A$, so $\exists x_n \in A \text{ s.t. } \frac{\pi}{2} + \frac{1}{n} > x_n \geq \frac{\pi}{2}$. So $x_n \to \frac{\pi}{2}$ and have $\cos(x_n) \to \cos\frac{\pi}{2}$.(cos is continuous). So $\cos\frac{\pi}{2} = 0$. $\cos(x) > 0$ for $x \in (0, \frac{\pi}{2})$. So $\sin'(x) = \cos x < 0$ and hence \sin is strictly increasing on $[0, \frac{\pi}{2}]$.

So $\sin^2\frac{\pi}{2}=1-\cos^2\frac{\pi}{2}=1$, so $\sin\frac{\pi}{2}=1$. And $\sin x>0$ on $\left(0,\frac{\pi}{2}\right)$ and hence cos is strictly decreasing on $\left[0,\frac{\pi}{2}\right]$. $\sin\pi=2\sin\frac{\pi}{2}\cos\frac{\pi}{2}=0$, $\cos\pi=\cos^2\frac{\pi}{2}-\sin^2\frac{\pi}{2}=-1$. $\sin(\pi-x)=\sin\pi\cos(-x)+\cos\pi\sin(-x)=\sin x$. $x\to\frac{\pi}{2}+x$, $\sin\left(\frac{\pi}{2}-x\right)=\sin\left(\frac{\pi}{2}+x\right)$; $x\to-x$, $\sin(\pi+x)=\sin(-x)=-\sin(x)=-\sin(\pi+x)$; $\sin(2\pi+x)=-\sin(-x)=\sin x$. So $\sin(2\pi n+x)=\sin x \forall x\in\mathbb{R} \forall n\in\mathbb{Z}$. $\sin\left(x+\frac{\pi}{2}\right)=\sin x\cos\frac{\pi}{2}+\cos x\sin\frac{\pi}{2}=\cos x\implies \text{usual properties of cos (symmetry, periodicity)}.$

Proposition. For $z \in \mathbb{C}$, $e^z = 1 \iff z \in 2\pi i\mathbb{Z}$. So $e^z = e^w \iff z - w \in 2\pi i\mathbb{Z}$.

Proof. If $z = 2\pi i n, n \in \mathbb{Z}$ then

$$e^z = e^{(2\pi n)}i$$

= $\cos(2\pi n) + 2\sin(2\pi n)$
= $\cos(0) + i\sin(0)$
= 1.

Conversely, assume $e^z = 1$ and write z = x + iy, $x, y \in \mathbb{R}$,

$$1 = e^z = e^x e^{iy}$$

taking modulus,

$$1 = e^x$$

Sox = 0.

So $1 = e^{iy} = \cos(y) + i\sin(y)$ and hence $\cos(y) = 1$. Since \cos is strictly decreasing on $[0, \pi]$, we have

$$\cos t = 1, t \in [0, \pi] \iff t = 0$$

Since cos is symmetric in $x = \pi$, for $t \in [0, 2\pi)$,

$$\cos t = 1 \iff t = 0$$

Now choose $n \in \mathbb{Z}$ s.t. $y - 2\pi n \in [0, 2\pi)$.

Then $\cos(y-2\pi n)=\cos(y)=1$ and so $y-2\pi n=0$. Hence $z\in 2\pi i\mathbb{Z}$.

For $x \in \mathbb{R}$,

$$\sinh x = \frac{e^x - e^{-x}}{2} \in \mathbb{R}, \sinh : \mathbb{R} \to \mathbb{R}$$
$$\cosh x = \frac{e^x + e^{-x}}{2} \in \mathbb{R}, \cosh : \mathbb{R} \to \mathbb{R}$$

 $\cosh x > 0$, $\sinh'(x) = \cosh(x)$. So sinh is strictly increasing. $\cosh'(x) = \sinh(x) > 0$ for x > 0. So cosh is strictly increasing on $[0, \infty)$.

 $\cosh x > \sinh x$, and

$$\frac{\cosh x}{\sinh x} = \frac{1 + e^{-2x}}{1 - e^{-2x}} \to 1$$

as $x \to \infty$.

Define $\tan z = \frac{\sin z}{\cos z}$, $\tanh z = \frac{\sinh z}{\cosh z}$.

1.3 Derivative of higher orders

Definition. Let $A \subset \mathbb{R}, f : A \to \mathbb{R}$ be a function.

For $a \in A$, say f is twice differentiable at a if f is defined and differentiable on some open interval I containing a ($I \subset A$), and $f' : I \to \mathbb{R}$, $x \to f'(x)$ is differentiable at a. The second derivative of f at a is (f')'(a).

We denote this by f''(a) or $f^{(2)}(a)$ (also sometimes write $f^{(1)}$ for $f', f^{(0)}$ for f). f is twice differentiable on A if f is twice differentiable at every $a \in A$, then the second derivative of f is the function $f'': A \to \mathbb{R}, x \to f''(x)$.

In this case $\forall a \in A \exists r > 0, (a - r, a + r) \subset A$.

Typically $A = \mathbb{R}$ or some open interval or $\mathbb{R} \setminus \{0\}$.

In general for $n \geq 2$, f is n times differentiable at a if f is n-1 times differentiable on some open interval I containing a, and $f^{(n-1)}: I \to \mathbb{R}, x \to f^{(n-1)}(x)$ is differentiable at a. We write $f^{(n)}(a)$ for $(f^{(n-1)})'(a)$ called the n^{th} derivative of f at a.

f is n times differentiable on A if f is n times differentiable at every $a \in A$.

Then the n^{th} derivative of f on A is the function: $f^{(n)}: A \to \mathbb{R}, x \to f^{(n)}(x)$. f is infinitely differentiable on A (or C^{∞}) if f is n times differentiable on A $\forall n \in \mathbb{N}$.

f is n times continuously differentiable on A (or C^n) if f is n times differentiable on A, and $f^{(n)}: A \to \mathbb{R}$ is continuous.

Example. Let

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

be a polynomial. Then

$$p'(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1}$$

is also a polynomial. So by induction, p is C^{∞} .

Theorem. Let $n \in \mathbb{N}$, $a \in \mathbb{R}$, let f be n times differentiable at a. Then $\exists \delta > 0$ and a function $R_n : (-\delta, \delta) \to \mathbb{R}$ s.t.

$$f(a+h) = f(a) + f'(a)h + \frac{f''(a)}{2}h^2 + \dots + \frac{f^{(n)}(a)}{n!} + R_n(h)$$
 (1)

for all $h \in (-\delta, \delta)$, and $R_n(h) = o(h^n)$, i.e.

$$\frac{R_n(h)}{h^n} \to 0$$

as $h \to 0$.

Proof. By definition, $\exists \delta > 0$ s.t. f is defined and is n-1 times differentiable on $(a-\delta, a+\delta)$, and

$$f^{(n)}(a) = \lim_{h \to 0} \frac{f^{(n-1)}(a+h) - f^{(n-1)}(a)}{h}.$$

We define

$$R_n(n) = f(a+h) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} h^k, |h| < \delta$$

So (1) holds.

 $\bullet n = 1$:

$$\frac{R_{1}\left(h\right)}{h} = \frac{f\left(a+h\right) - f\left(a\right)}{h} - f'\left(a\right) \to 0$$

 $\bullet n \geq 2 : R_n(h)$ is (n-1) times differentiable, and

$$\begin{split} R_{n}^{(k)}\left(h\right) &= f^{(k)}\left(a+h\right) \\ &= \sum_{l=k}^{n} \frac{f^{(l)}\left(a\right)}{l!} l\left(l-1\right) \ldots \left(l-k+1\right) h^{l-k}, \end{split}$$

$$R_{n}^{(k)}(0) = 0 \ \forall k = 0, 1, ..., n - 1.$$

Now let

$$g(h) = h^{n},$$

$$g^{(k)}(h) = n(n-1)\dots(n-k+1)h^{n-k},$$

$$g^{(k)}(0) = 0,$$

$$g^{(k)}(h) \neq 0 \ \forall 0 < |h| < \delta.$$

Then

$$\begin{split} \frac{R_{n}^{(n-1)}\left(h\right)}{g^{(n-1)}\left(h\right)} &= \frac{f^{(n-1)}\left(a+h\right) - f^{(n-1)}\left(a\right) - hf^{(n)}\left(a\right)}{\left(n!\right)h} \\ &= \left(\frac{1}{n!}\right) \left[\frac{f^{(n-1)}\left(a+h\right) - f^{(n-1)}\left(a\right)}{h} - f^{(n)}\left(a\right)\right] \to 0 \end{split}$$

as $h \to 0$.

So apply L' Hôpital's rule (n-1) times, we obtain

$$\frac{R_n\left(h\right)}{h^n} \to 0$$

as $h \to 0$.

Suppose f is a C^{∞} function. Then the previous theorem applies for all n. So

$$f(a+h) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} h^{k} + R_{n}(h)$$

$$\implies (?) f(a+h) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} h^{k}$$

(called the *Taylor series*) on $(-\delta, \delta)$ on some $\delta > 0$?

Example. $f = \exp : \mathbb{R} \to \mathbb{R}$.

f' = f, so f is C^{∞} and $f^{(n)} = f \ \forall n$.

Taylor series at 0:

$$\sum_{k=0}^{\infty} \frac{1}{k!} h^k = \exp\left(h\right)$$

for all $h \in \mathbb{R}$...

In general the answer is NO!

Problem. R_n depends on n. What if $R_n\left(h\right)=n^{n+1}h^{n+1}$? For all $n, \frac{R_n(h)}{h^n} \to 0$ as $h \to 0$. For fixed $h \neq 0, R_n\left(h\right) \not\to 0$ as $n \to \infty$.

Theorem. (Taylor's theorem with the Lagrange remainder)

Let $a \in \mathbb{R}$, $\delta > 0$, $n \in \mathbb{N}$. Assume $f: (a - \delta, a + \delta) \to \mathbb{R}$ is n times differentiable. Then $\forall h \in (-\delta, \delta), \exists \theta \in (0, 1) \text{ s.t.}$

$$f(a+h) = f(a) + \sum_{k=1}^{n-1} \frac{f^{(k)}(a)}{k!} h^k + \frac{f^{(n)}(a+\theta h)}{n!} h^n.$$

Remark. • when n = 1:

$$f(a+h) = f(a) + f'(a+\theta h) h,$$

$$\frac{f(a+h) - f(a)}{h} = f'(a+\theta h)$$

while $a + \theta h$ is between a and a + h. So this is MVT!

• (1) says

$$f(a+h) = f(a) + \sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!} h^{k} + R_{n}(h),$$

$$R_{n}(h) = \frac{h^{n}}{n!} \left(f^{(n)}(a+\theta h) - f^{(n)}(a) \right)$$

This is not obviously $o(h^n)$.

Proof. For n=1 the theorem is just MVT. For $n \geq 2$, fix $h \in (-\delta, \delta)$, WLOG $h \neq 0$. Choose $A \in \mathbb{R}$ s.t.

$$f(a+h) = f(a) + \sum_{k=1}^{n-1} \frac{f^{(k)}(a)}{k!} h^k + \frac{Ah^n}{n!}$$

want to prove:

$$A = f^{(n)} \left(a + \theta h \right)$$

for some $\theta \in (0,1)$.

Define

$$g(t) = f(t) + \sum_{k=1}^{n-1} \frac{f^{(k)}(t)}{k!} (a+h-t)^k + \frac{A}{n!} (a+h-t)^n$$

For t in the closed interval between a and a+b. g is continuous differentiable on the open interval between a and a+h. Taylor expansion of f about t:

$$f(t+u) = f(t) = \sum_{k=1}^{n-1} \frac{f^{(k)}(t)}{k!} u^k + \text{error}$$

when u = a + h - t,

$$f(a+h) = f(t) + \sum_{k=1}^{n-1} \frac{f^{(k)}(t)}{k!} (a+h-t)^k + \text{error}$$

Now

$$g(a) = f(a+h),$$

$$g(a+h) = f(a+h)$$

By Rolle's theorem, $\exists \theta \in (0,1)$ s.t. $g'(a + \theta h) = 0$.

$$g'(t) = f'(t) + \sum_{k=1}^{n-1} \left[-\frac{f^{(k)}(t)}{(k-1)!} (a+h-t)^{k-1} + \frac{f^{(k+1)}(t)}{k!} (a+h-t)^k \right] - A \frac{(a+h-t)^{n-1}}{(n-1)!}$$

$$= \frac{f^{(n)}(t)}{(n-1)!} (a+h-t)^{n-1} - A \frac{(a+h-t)^{n-1}}{(n-1)!}$$

So
$$g'(a + \theta h) = 0$$
, which implies $A = f^{(n)}(a + \theta h)$.

Example. Fix $\alpha \in \mathbb{R}$, $f:(-1,\infty) \to \mathbb{R}$.

$$f(x) = (1+x)^{\alpha} = \exp(\alpha \log(1+x))$$

$$f'(x) = \alpha (1+x)^{\alpha-1}$$

$$f''(x) = \alpha (\alpha - 1) (1+x)^{\alpha-2}$$

$$f^{(n)}(x) = \alpha (\alpha - 1) \dots (\alpha - n + 1) (1+x)^{\alpha-n}$$

So f is C^{∞} on $(-1, \infty)$ and its Taylor series at 0 is

$$\sum_{n=0}^{\infty} \binom{\alpha}{n} x^n = 1 + \alpha x + \frac{\alpha (\alpha - 1)}{2} x^2 + \dots$$

This converges to $f(x) \ \forall x \in (-1,1)$ (binomial theorem).

Remark. • $\alpha \in \mathbb{Z}, \alpha \geq 0$, then $\alpha^{\underline{n}} = 0 \forall n > \alpha$.(c.f. number and sets, falling power)

So

$$\sum_{n=0}^{\infty} {\alpha \choose n} x^n = \sum_{n=0}^{\alpha} {\alpha \choose n} x^n = (1+x)^n$$

• $\alpha = -1$:

$$(1+x)^{-1} = \frac{1}{1-(-x)} = \sum_{n=0}^{\infty} (-x)^n$$
$$\alpha^{\underline{n}} = (-1)(-2)...(-n) = (-1)^n n!$$

Proof for general α deferred until Chapter 6(integration). We an give a proof for $|x| < \frac{1}{2}$. From the previous theorem:

$$f(x) = \sum_{k=0}^{n} {\binom{\alpha}{k}} x^{k} + {\binom{\alpha}{n+1}} (1 + \theta_{n} x)^{n+1} x^{n+1}$$

for some $\theta_n \in (0,1)$.

$$\left| \frac{x^{n+1}}{(n+1)!} \alpha^{n+1} (1 + \theta_n x)^{\alpha - n - 1} \right| \le C \cdot n^m (2|x|)^n$$

(for $m < \in \mathbb{N}, m > |\alpha|$)

$$\left| \frac{x}{1 + \theta_n x} \le \frac{|x|}{1 - |\theta_n x|} \le 2|x| \right|$$

2 Power series

Definition. A series of the form

$$\sum_{n=0}^{\infty} a_n \left(z - a \right)^n$$

is a power series about a. Here $(a_n)_{n=0}^{\infty}$ is a complex sequence, $a, z \in \mathbb{C}$. Think of a, (a_n) as fixed and z as a variable.

Consider

$$D = \left\{ z \in \mathbb{C} | \sum_{n=0}^{\infty} a_n (z - a)^n \text{ converges } \right\}$$

and define $f: D \to \mathbb{C}$,

$$f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n$$

Example. 1) $\sum_{n=0}^{\infty} \frac{1}{n!} z^n$. $a_n = \frac{1}{n!}$, a = 0. Here $D = \mathbb{C}$ and $f = \exp$.

2) $\sum_{n=1}^{\infty} \frac{-1}{n} (1-z)^n$. a = 1, $a_n = \frac{(-1)^{n-1}}{n}$, $a_0 = 0$ (note $(1-z)^n = (-1)^n (z-1)^n$). 3) $\sum_{n=1}^{\infty} n^n z^n$. $a_n = n$, $n \ge 1$, $a_0 = 0$, a = 0. D={0}: given $z \ne 0$, $\exists N$ s.t. |Nz| > 1. Then $\forall n \ge N$, $|(nz)^n| \ge 1$. So

Notation. $D(a,r) = \{z \in \mathbb{C} | |z-a| < r\}$ the open disc with centre a, radius r. $\bar{D}(a,r) = \{z \in \mathbb{C} | |z-a| < r\}$ the closed disc with centre a, radius r.

Note: $\{z \mid \sum a_n (z-a)^n \text{ converges }\} = \{z \mid \sum a_n z^n \text{ converges }\} + a$. So WLOG

Theorem. Suppose $\sum_{n=0}^{\infty} a_n w^n$ converges. Then $\forall z \in \mathbb{C}$, if |z| < |w|, then $\sum_{n=0}^{\infty} a_n z^n$ converges absolutely.

Proof. Since $\sum a_n w^n$ converges, $a_n w^n \to 0$ as $n \to \infty$. So $\exists N \leq \mathbb{N}, \ \forall n \geq N, \ |a_n w^n| \leq 1$. Then $\forall n \geq \mathbb{N},$

$$|a_n z^n| = |a_n w^n \left(\frac{z}{w}\right)^n| \le |\frac{z}{w}|^n$$

This converges as $\left|\frac{z}{w}\right| < 1$ (geometric series). So by comparison test, $\sum a_n z^n$ converges absolutely.

Convention. 1) Let $[0, \infty] = [0, \infty) \cup \{\infty\}$.

Extend \leq to $[0, \infty]$ by $x \leq \infty \ \forall x \in [0, \infty]$, so $x < \infty \ \forall x \in [0, \infty]$.

2) So $|z| < \infty \ \forall z < \mathbb{C}$, and $\not\exists z \in \mathbb{C}, |z| > \infty$. Write $D(a, \infty) = \mathbb{C}$ by convention.

3) $A \subset [0, \infty), a \neq \phi$. If a is not bounded above then $\forall C \geq 0, \exists a \in A \text{ s.t. } a > C$. We define $\sup A = \infty$.

Theorem. For power series

$$\sum_{n=0}^{\infty} a_n \left(z - a \right)^n$$

2 POWER SERIES

18

There exists a unique $R \in [0, \infty]$ s.t. $\forall z \in \mathbb{C}$,

$$|z-a| < R \implies \sum_{n=0}^{\infty} a_n (z-a)^n$$
 converges absolutely,
 $|z-a| > R \implies \sum_{n=0}^{\infty} a_n (z-a)^n$ diverges.

Proof. WLOG let a = 0.

• uniqueness: Suppose R < S both work. Then fix $z \in \mathbb{C}$ with R < |z| < S. Definition of $R \implies \sum a_n z^n$ diverges; Definition of $S \implies \sum a_n z^n$ converges absolutely. Contradiction.

• existence: Let

$$A = \left\{ |z| \mid \sum_{n=0}^{\infty} a_n z^n \text{ converges} \right\}$$

 $A \neq \phi$ as $0 \in A$. Let $R = \sup A$ (recall that $\sup A = \infty$ when A is not bounded above).

Let $z \in \mathbb{C}$. If |z| < R, then $\exists w \in \mathbb{C}$ s.t. |z| < |w| and $\sum_{n=0}^{\infty} a_n w^n$ converges. Hence by the previous theorem, $\sum_{n=0}^{\infty} a_n z^n$ converges absolutely. If |z| > R, then $|z| \in A$, so $\sum_{n=0}^{\infty} a_n z^n$ diverges.

Definition. R is called the radius of convergence of $\sum_{n=0}^{\infty} a_n (z-a)^n$.

Remark. This theorem says nothing about convergence or otherwise of the power series when |z - a| = R.

Example. \bullet 1)

$$\sum_{n=0}^{\infty} z^n$$

converges if |z| < 1 (to $\frac{1}{1-z}$). When $|z| \ge 1$, then $|z^n| \ge 1$ $\forall n$, so $z^n \not\to 0$ and $\sum z^n$ is divergent. It follows that R = 1.

2)

$$\sum_{n=1}^{\infty} \frac{z^n}{n}$$

converges if z = -1 by the alternating series test. So $R \ge 1$.

On the other hand, this diverges when z=1 (harmonic series). So $R \leq 1$. So R=1.

(in fact the series converges $\forall z \text{ s.t. } |z| = 1, z \neq 1$).

• 3)

$$\sum_{n=1}^{\infty} \frac{z^n}{n^2}$$

Here

$$|z| \le 1 \implies |\frac{z^n}{n^2}| \le \frac{1}{n^2}$$

So by the comparison test, the series converges absolutely. So $R \ge 1$. When |z| > 1 then $|\frac{z^n}{n^2}| = \frac{|z^n|}{n^2} \to \infty$ as $n \to \infty$. So the series diverges. So $R \le 1$. So R = 1 (the series converges absolutely for all |z| = 1).

Theorem. Assume

$$\sum_{n=0}^{\infty} a_n \left(z - a \right)^n$$

has radius of convergence R > 0.

Let $f:D\left(a,R\right)\to\mathbb{C}\left(D\left(a,R\right)\right)$ is the disc with centre a and radius R) be defined by

$$f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n$$

Then

$$\sum_{n=1}^{\infty} n a_n \left(z - a \right)^{n-1}$$

also has radius of convergence R.

Setting

$$g: D(a, R) \to \mathbb{C},$$

 $g(z) = \sum_{n=1}^{\infty} na_n (z-a)^{n-1}$

we have f is complex differentiable on D(a, R), and

$$f'(z) = g(z) \forall z \in D(a, R)$$
.

Remark. So we can differentiate a power series term-by-term inside the radius of convergence. i.e.,

$$\frac{d}{dz}\sum_{n=0}^{\infty} = \sum_{n=0}^{\infty} \frac{d}{dz}$$

But this is dangerous in general.

Corollary. A power series is infinitely complex differentiable inside the radius of convergence.

Example. (non-examinable)

The previous theorem tells that exp is differentiable. We'll deduce that

$$\exp(z+w) = \exp z \cdot \exp w$$

Proof. Let

$$f(z) = \exp(z) \cdot \exp(-z).$$

So
$$f' \equiv 0$$
(?), i.e. $f \equiv 1$, so $\exp(-z) = \frac{1}{\exp(z)}$.
Then fix w , $g(z) = \exp(z + w) \exp(-z)$. So $g' \equiv 0$, $g \equiv \exp w$.
So $\forall z$,

$$\exp(z + w) \exp(-z) = \exp w,$$

$$\exp(z + w) = \exp(z) \exp(w)$$

Theorem. (non-examinable)

Suppose

$$f:D\left(a,R\right)\to\mathbb{C}$$

is complex differentiable. Then $\exists (a_n)_{n=0}^{\infty}$ in \mathbb{C} , s.t.

$$f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n \, \forall z \in D(a, R)$$

Proof. WLOG let a=0. Fix $z\in D(0,R)$. Fix $\delta>0$ s.t. $|z|+\delta< R$ for $0<|h|<\delta$. Then

$$\left| \frac{f(z+h) - f(z)}{h} - g(z) \right| = \sum_{n=1}^{\infty} |a_n| \left| \frac{(z+h)^n - z^n}{h} - nz^{n-1} \right|$$
 (2)

Then look at the second term, i.e. (let $\delta = |h|$)

$$\left|\frac{(z+h)^n - z^n - hnz^{n-1}}{h}\right| \le \sum_{k=2}^n \binom{n}{k} |z|^{n-k} \delta^k \frac{|h|}{\delta^2}$$
$$\le (|z| + \delta)^n \frac{|h|}{\delta^2}$$

So (2) is at most

$$\left(\sum_{n=0}^{\infty} |a_n| \left(|z| + \delta\right)^n\right) \frac{|h|}{\delta^2} \to 0$$

as $h \to 0$.

Corollary. (non-examinable)

Τf

$$f:D\left(a,R\right) \rightarrow\mathbb{C}$$

is complex differentiable, then it is infinitely complex differentiable (holomorphic).

$$f^{(k)}(z) = \sum_{n=k}^{\infty} n(n-1)(n-2)...(n-k+1) a_n (z-a)^{n-k}$$

So

$$f^{(k)}\left(a\right) = n!a_n$$

So

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z - a)^n$$

is the taylor series!

Corollary. (non-examinable)

Let

$$f,g:D\left(a,R\right)\to\mathbb{C}$$

be complex differentiable.

Suppose $\exists \delta > 0 \, (\delta < R)$ s.t.

$$f \equiv g \text{ on } D(a, \delta)$$

Then

$$f \equiv g \text{ on } D(a, R)$$
.

3 Integration

Suppose [a, b] is a closed bounded interval with $a \leq b$, and

$$f:[a,b]\to\mathbb{R}$$

is a bounded function, i.e. $\exists C \text{ s.t. } |f(t)| \leq C \ \forall t \in [a, b].$

A dissection of [a, b] is a finite sequence

$$\mathcal{D}: a = x_0 < x_1 < x_2 < \dots < x_n = b$$

The lower sum of f w.r.t. \mathcal{D} is

$$S_{\mathcal{D}}(f) = \sum_{k=1}^{n} (x_k - x_{k-1}) \inf f[x_{k-1}, x_k]$$

The upper sum of f w.r.t. \mathcal{D} is

$$S_{\mathcal{D}}(f) = \sum_{k=1}^{n} (x_k - x_{k-1}) \sup f[x_{k-1}, x_k]$$

Notation. For $A \subset [a, b]$,

$$\sup_{A} f = \sup \{ f(x) | x \in A \}$$

Note that $S_{\mathcal{D}}(f) \leq S_{\mathcal{D}}(f)$.

Definition. \mathcal{D}' is a *refinement* of \mathcal{D} if it contains all the points in \mathcal{D} . Write $\mathcal{D} \leq \mathcal{D}'$.

Lemma. Let $f:[a,b]\to\mathbb{R}$ be a bounded function. Let \mathcal{D},\mathcal{D}' be dissections of [a,b] with $\mathcal{D}<\mathcal{D}'$. Then

$$S_{\mathcal{D}}(f) \leq S_{\mathcal{D}'}(f) \leq S_{\mathcal{D}'}(f) \leq S_{\mathcal{D}}(f)$$
.

Proof. Say $\mathcal{D}: a = x_0 < x_1 < ... < x_n = b$.

We may assume that \mathcal{D}' has only one extra point c, then the rest can be done by induction.

Choose k s.t. $x_{k-1} < c < x_k$. Then

$$\inf_{[x_{k-1}, x_k]} f \cdot (x_k - x_{k-1}) = (c - x_{k-1}) \cdot \inf_{[x_{k-1}, x_k]} f + (x_k + c) \inf_{[x_{k-1}, x_k]} f
\leq (c - x_{k-1}) \inf_{[x_{k-1}, c]} f + (x_k - c) \inf_{[c, x_k]} f$$

We obtain

$$S_{\mathcal{D}}(f) \leq S_{\mathcal{D}'}(f)$$
.

Similarly,

$$S_{\mathcal{D}'}(f) \leq S_{\mathcal{D}}(f)$$

and we always have

$$S_{\mathcal{D}'}(f) \leq S_{\mathcal{D}'}(f)$$

So done. \Box

22

Corollary. If \mathcal{D}_1 , \mathcal{D}_2 are two dissections of [a,b], then

$$S_{\mathcal{D}_1}(f) \leq S_{\mathcal{D}_2}(f)$$

Here f is as in the previous lemma.

Proof. Let $D = \mathcal{D}_1 \cup \mathcal{D}_2$, the common refinement of \mathcal{D}_1 and \mathcal{D}_2 , i.e. the union of the points of \mathcal{D}_1 and \mathcal{D}_2 . By the previous lemma,

$$S_{\mathcal{D}_{1}}(f) \leq S_{\mathcal{D}}(f) \leq S_{\mathcal{D}}(f) \leq S_{\mathcal{D}_{2}}(f)$$
.

Definition. Let $f:[a,b]\to\mathbb{R}$ be a bounded function.

The upper (Riemann) integral of f on [a, b] is

$$\int_{a}^{b} f = \inf_{\mathcal{D}} S_{\mathcal{D}}(f)$$

i.e. (the inf taken over all dissections \mathcal{D} of [a, b]. The lower (Riemann) integral of f on [a, b] is

$$\int_{a}^{b} f = \sup_{\mathcal{D}} \mathcal{S}_{\mathcal{D}}(f)$$

By the previous corollary, given a dissection \mathcal{D}_1 , $\mathcal{S}_{\mathcal{D}_1}(f)$ is a lower bound of $\{S_{\mathcal{D}}(f) | \mathcal{D} \text{ any dissection of } [a,b]\}$. So the upper integral exists and is at least $\mathcal{S}_{\mathcal{D}_1}(f)$.

Since \mathcal{D}_1 was arbitrary, $\int_a^b f$ is an upper bound of $\{\mathcal{S}_{\mathcal{D}}(f) | \mathcal{D} \text{ any dissection of } [a, b]\}$. Hence $\int_a^b f$ exists and

$$\underline{\int_a^b} f \leq \bar{\int_a^b} f.$$

Definition. (Integrability)

Say f is (Riemann) integrable on [a, b] if it is bounded, and

$$\int_{a_{-}}^{b} f = \int_{a}^{-b} f$$

We define the integral of f on [a,b] to be the common value of them, and denote it by

$$\int_{a}^{b} f$$

or

$$\int_{a}^{b} f(t) dt.$$

23

Proposition. Suppose $f:[a,b]\to\mathbb{R}$ is integrable and let

$$m = \inf_{[a,b]} f$$
$$M = \sup_{[a,b]} f$$

Then

$$m(b-a) \le \int_a^b f \le M(b-a)$$

and

$$|\int_{a}^{b} f| \le (b-a) \sup_{[a,b]} |f|$$

Proof. Consider $\mathcal{D}: a < b$. Then

$$S_{\mathcal{D}}(f) = m(b-a)$$

$$S_{\mathcal{D}}(f) = M(b-a)$$

In addition

$$\begin{split} M & \leq \sup_{[a,b]} |f| \\ m & \geq -\sup_{[a,b]} |f| \end{split}$$

So the result follows.

Example. • 1) If $f(x) = c \ \forall x \in [a, b]$ then f is integrable, and

$$\int_{a}^{b} f(t) dt = c(b - a)$$

Note that m = M = c. Then

$$c\left(b-a\right)=m\left(b-a\right)\leq\int_{a}^{b}f\leq\bar{\int_{a}^{b}}f\leq M\left(b-a\right)=c\left(b-a\right)$$

So the upper and lower integral are equal and the value is c(b-a).

• 2) $f:[0,1] \to \mathbb{R}, f(x) = x$.

Consider

$$\mathcal{D}_n: 0 \le \frac{1}{n} \le \frac{2}{n} \le \dots \le \frac{n}{n} = 1$$

Then

$$S_{\mathcal{D}_n}(f) = \sum_{k=1}^{n} \frac{1}{n} \frac{k-1}{n} = \frac{(n-1)n}{2n^2} = \frac{n-1}{2n} \to \frac{1}{2}$$

So

$$\underline{\int_{0}^{1}} f \ge \sup_{n} \mathcal{S}_{\mathcal{D}_{n}} \left(f \right) = \frac{1}{2}$$

Similarly,

$$S_{\mathcal{D}_n}(f) = \sum_{k=1}^n \frac{1}{n} \frac{k}{n} = \frac{(n+1)n}{2n^2} = \frac{n+1}{2n} \to \frac{1}{2}$$

24

So

$$\int_{0}^{1} f \le \inf_{n} S_{\mathcal{D}_{n}}(f) = \frac{1}{2}$$

So it follows that f is integrable and is equal to $\frac{1}{2}$.

Theorem. A bounded function $f:[a,b]\to\mathbb{R}$ is integrable if and only if

$$\forall \epsilon > 0 \exists \mathcal{D} \text{ s.t. } S_{\mathcal{D}}(f) - \mathcal{S}_{\mathcal{D}}(f) < \epsilon$$

Proof. • Forward: Since

$$\int_{a}^{b} = \inf_{\mathcal{D}} S_{\mathcal{D}}(f) = \sup_{\mathcal{D}} S_{\mathcal{D}}(f)$$

we know that $\exists \mathcal{D}_1, \mathcal{D}_2$ with

$$S_{\mathcal{D}_{1}}(f) < \int_{a}^{b} f + \frac{\epsilon}{2},$$

$$S_{\mathcal{D}_{2}}(f) > \int_{a}^{b} f - \frac{\epsilon}{2}.$$

Set $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$. Then

$$\int_{a}^{b} f - \frac{\epsilon}{2} < \mathcal{S}_{\mathcal{D}_{2}}\left(f\right) \leq \mathcal{S}_{\mathcal{D}}\left(f\right) \leq S_{\mathcal{D}}\left(f\right) \leq S_{\mathcal{D}_{1}}\left(f\right) < \int_{a}^{b} f + \frac{\epsilon}{2}$$

• Backward: Suppose

$$S_{\mathcal{D}}(f) - \mathcal{S}_{\mathcal{D}}(f) < \epsilon$$

Then

$$\bar{\int_{a}^{b}} f \leq S_{\mathcal{D}}\left(f\right) < \mathcal{S}_{\mathcal{D}}\left(f\right) + \epsilon \leq \underline{\int_{a}^{b}} f + \epsilon$$

So

$$\int_a^b \! f \leq \int_a^b \! f + \epsilon \forall \epsilon > 0$$

Hence

$$\bar{\int_a^b} f \le \int_a^b f$$

So f is integrable.

Corollary. A bounded function $f:[a,b]\to\mathbb{R}$ is integrable if and only if there exists a sequence \mathcal{D}_n of dissections s.t.

$$S_{\mathcal{D}_n}(f) - \mathcal{S}_{\mathcal{D}_n}(f) \to 0$$

as $n \to \infty$. Then both $\mathcal{S}_{\mathcal{D}_n}(f)$ and $S_{\mathcal{D}_n}(f)$ converge to $\int_a^b f$. Moreover, if

$$\mathcal{D}_n : a = x_0^{(n)} < x_1^{(n)} < \dots < x_{m_n}^{(n)} = b$$

and

$$\xi_k^{(n)} \in \left[x_{k-1}^{(n)}, x_k^{(n)} \right]$$

For $k = 1, 2, ..., m_n$. Then

$$\sum_{k=1}^{m_n} f\left(\xi_k^{(n)}\right) \left(x_k^{(n)} - x_{k-1}^{(n)}\right) \to \int_a^b f$$

as $n \to \infty$.

Proof. The first part is immediate from the previous theorem. For the second part,

$$\begin{split} \int_{a}^{b} f &\leq S_{\mathcal{D}_{n}}(f) \\ &= \mathcal{S}_{\mathcal{D}_{n}}(f) + \left(S_{\mathcal{D}_{n}}(f) - \mathcal{S}_{\mathcal{D}_{n}}(f)\right) \\ &\leq \int_{a}^{b} f + \left(S_{\mathcal{D}_{n}}(f) - \mathcal{S}_{\mathcal{D}_{n}}(f)\right) \end{split}$$

Hence

$$S_{\mathcal{D}_n}\left(f\right) \to \int_a^b f$$

as $n \to \infty$. Then

$$\mathcal{S}_{\mathcal{D}_{n}}\left(f\right) = S_{\mathcal{D}_{n}}\left(f\right) - \left(S_{\mathcal{D}_{n}}\left(f\right) - \mathcal{S}_{\mathcal{D}_{n}}\left(f\right)\right) \rightarrow \int_{a}^{b} f$$

Together with

$$\inf_{\left[x_{k-1}^{(n)},x_k^{(n)}\right]}f \leq f\left(\xi_k^{(n)}\right) \leq \sup_{\left[x_{k-1}^{(n)},x_k^{(n)}\right]}f$$

Hence

$$S_{\mathcal{D}_n}\left(f\right) \le \sum_{k=1}^{m_n} f\left(\xi_k^{(n)}\right) \left(x_k^{(n)} - x_{k-1}^{(n)}\right) \le S_{\mathcal{D}_n}\left(f\right)$$

Remark. Darboux: if f is integrable and

$$\mathcal{D}_n : a = x_0^{(n)} < x_1^{(n)} < \dots < x_{m_n}^{(n)} = b$$

is such that

$$|\mathcal{D}_n| = \max_{1 \le k \le m_n} \left(x_k^{(n)} - x_{k-1}^{(n)} \right) \to 0$$

Then

$$S_{\mathcal{D}_n}(f) - \mathcal{S}_{\mathcal{D}_n}(f) \to 0$$

Lemma. Let $f,g:[a,b]\to\mathbb{R}$ be bounded functions. Assume there exists $k\geq 0$ such that

$$|f(x) - f(y)| \le K|g(x) - g(y)| \forall x, y \in [a, b]$$

Then if g is integrable, then f is also integrable.

26

Proof. Given $\epsilon > 0$, there exists \mathcal{D} such that

$$S_{\mathcal{D}}\left(g\right) - \mathcal{S}_{\mathcal{D}}\left(g\right) < \epsilon$$

Now let

$$\mathcal{D}: a = x_0 < x_1 < \dots < x_n = b$$

And let $I = [x_{k-1}, x_k]$. Then

$$\begin{split} \sup_{I} f - \inf_{I} f &= \sup_{x,y \in I} |f\left(x\right) - f\left(y\right)| \\ &\leq K \sup_{x,y \in I} |g\left(x\right) - g\left(y\right)| \\ &= K \left(\sup_{I} g - \inf_{I} g\right) \end{split}$$

Multiply by $|I| = x_k - x_{k-1}$ and sum over k,

$$S_{\mathcal{D}}(f) - \mathcal{S}_{\mathcal{D}}(f) \le K(S_{\mathcal{D}}(g) - \mathcal{S}_{\mathcal{D}}(g)) < k\epsilon$$

As ϵ is arbitrary, f is integrable.

Theorem. Let $f, g : [a, b] \to \mathbb{R}$ be integrable functions. Then 1) $\lambda f + \mu g$ is integrable, and

$$\int_{a}^{b} (\lambda f + \mu y) = \lambda \int_{a}^{b} f + \mu \int_{a}^{b} g$$

2) If $f \leq g$, then

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

3) |f| is integrable, and

$$|\int_{a}^{b} f| \le \int_{a}^{b} |f|$$

- 4) $\max(f, g)$, $\min(f, g)$ are integrable;
- 5) $f \cdot g$ is integrable, and (Cauchy-Schwarz inequality)

$$|\int_a^b fg| \le \left(\int_a^b f^2\right)^{\frac{1}{2}} \left(\int_a^b g^2\right)^{\frac{1}{2}}$$

Proof. 1) Enough to consider f + g, λf for $\lambda \geq 0$, and -f. We know from a previous corollary that there exists a sequence \mathcal{D}_n of dissections of [a, b] s.t. $S_{\mathcal{D}_n}(f)$, $S_{\mathcal{D}_n}(f)$ both converge to $\int_a^b f$, and $S_{\mathcal{D}_n}(g)$, $S_{\mathcal{D}_n}(g)$ both converge to $\int_a^b g$. For an interval $I \subset [a,b]$, we have

$$\sup_{I} (f+g) \leq \sup_{I} f + \sup_{I} g$$

$$\inf_{I} (f+g) \geq \inf_{I} f + \inf_{I} g$$

$$\mathcal{S}_{\mathcal{D}_{n}} (f) + \mathcal{S}_{\mathcal{D}_{n}} (g) \leq \mathcal{S}_{\mathcal{D}_{n}} (f+g) \leq S_{\mathcal{D}_{n}} (f+g) \leq S_{\mathcal{D}_{n}} (f) + S_{\mathcal{D}_{n}} (g)$$

27

As $n \to \infty$, LHS and RHS both tend to $\int_a^b f + \int_a^b g$. So f + g is integrable and

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g$$

Also

$$\sup_{I} (\lambda f) = \lambda \sup_{I} f$$
$$\inf_{I} (\lambda f) = \lambda \inf_{I} f$$

Hence

$$S_{\mathcal{D}_n}(\lambda f) = \lambda S_{\mathcal{D}_n}(f) \to \lambda \int_a^b f$$
$$S_{\mathcal{D}_n}(\lambda f) = \lambda S_{\mathcal{D}_n}(f) \to \lambda \int_a^b f$$

By the previous corollary, λf is integrable and

$$\int_a^b \left(\lambda f\right) = \lambda \int_a^b f$$

Finally,

$$\sup_{I} (-f) = -\inf_{I} f,$$

$$\inf_{I} (-f) = -\sup_{I} f$$

We get

$$S_{\mathcal{D}_n}(-f) = -S_{\mathcal{D}_n}(f) \to -\int_a^b f,$$

$$S_{\mathcal{D}_n}(-f) = -S_{\mathcal{D}_n}(f) \to -\int_a^b f$$

Hence -f is integrable and

$$\int_{a}^{b} (-f) = -\int_{a}^{b} f.$$

2) If $f \leq g$ then $g - f \geq 0$. Hence

$$\int_a^b g - \int_a^b f = \int_a^b \left(g - f\right) \geq \left(b - a\right) \inf_{[a,b]} \left(g - f\right) \geq 0$$

3)Note that

$$||f(x)| - f(y)|| \le |f(x) - f(y)|$$

for all $x, y \in [a, b]$. So by the previous lemma, together with the assumption that f is integrable, we know that |f| is integrable. Since

$$f \leq |f|, -f \leq |f|,$$

by 2) we know that

$$\int_{a}^{b} f \le \int_{a}^{b} |f|,$$
$$-\int_{a}^{b} f = \int_{a}^{b} (-f) \le \int_{a}^{b} |f|$$

Hence

$$|\int_{a}^{b} f| \le \int_{a}^{b} |f|.$$

4) Given $s, t \in \mathbb{R}$,

$$\max\left(s,t\right) = \frac{s+t}{2} + \frac{|s-t|}{2}$$

So if $h = \max(f, g)$, then for all $x \in [a, b]$,

$$h\left(x\right) = \frac{f\left(x\right) + g\left(x\right)}{2} + \frac{\left|f\left(x\right) - g\left(x\right)\right|}{2}$$

Hence h is integrable by 1) and 3). $(\min(f,g)$ can be proved similarly).

5) Let

$$M=\sup_{[a,b]}|f|$$

This exists since f must be bounded on [a, b]. Then for all $x, y \in [a, b]$,

$$|f^{2}(x) - f^{2}(y)| = |f(x) - f(y)| \cdot |f(x) + f(y)| \le 2M|f(x) - f(y)|$$

So by the previous lemma, f^2 is integrable. Hence by 1),

$$fg = \frac{1}{2} \left[(f+g)^2 - f^2 - g^2 \right]$$

is integrable.

Next, we have

$$0 \le \int_{a}^{b} (f - \lambda g)^{2} = \int_{a}^{b} f^{2} + \lambda^{2} \int_{a}^{b} g^{2} - 2\lambda \int_{a}^{b} fg$$

(using 2) and 1) respectively) for all $\lambda \in \mathbb{R}$.

Now put

$$\lambda = \frac{\int_a^b fg}{\int_a^b g^2}$$

After some algebra, we obtain the required inequality.

Proposition. 1) Assume $h:[a,b]\to\mathbb{R}$ satisfies that h(x)=0 for all but finitely many x. Then h is integrable, and

$$\int_{a}^{b} h = 0$$

2) Assume $f:[a,b]\to\mathbb{R}$ is integrable, and g(x)=f(x) for all but finitely many x. Then g is integrable, and

$$\int_{a}^{b} g = \int_{a}^{b} f$$

Proof. Choose

$$a = c_0 < c_1 < \dots < c_n = b$$

s.t. $h(x) = 0 \ \forall x \in [a, b] \setminus \{c_0, c_1, ..., c_n\}$ (it is not necessary for all of $f(c_i)$ to be non-zero).

If

$$M = \max_{0 \le i \le n} |h\left(c_i\right)|$$

Then $|h(x)| \leq M \ \forall x$, so h is bounded.

Fix $\delta > 0$ s.t.

$$\delta < \frac{1}{2} \left(c_k - c_{k-1} \right)$$

for all $1 \le k \le n$.

Now consider $\mathcal{D}: a, a+\delta, c_1-\delta, c_1+\delta, c_2-\delta, c_2+\delta, ..., c_n-\delta, c_n=b$. We have

$$\inf_{[c_{k-1}+\delta,c_k-\delta]}h=\sup_{[c_{k-1}+\delta,c_k-\delta]}h=0$$

for all $1 \le k \le n$.

If $I = [c_k - \delta, c_k + \delta]$ $(1 \le k \le n - 1)$ or $I = [a, a + \delta]$ or $I = [b - \delta, b]$, we have

$$\sup_I h \le M$$

$$\inf_I h \ge -M$$

Hence

$$S_{\mathcal{D}}(h) \ge (n-1) 2\delta(-M) + 2\delta(-M) = -2Mn\delta,$$

$$S_{\mathcal{D}}(h) \le (n-1) 2\delta M + 2\delta M = 2Mn\delta$$

Hence

$$-2Mn\delta \leq \int_a^b h \leq \int_a^{\bar{b}} h \leq 2Mn\delta$$

But δ is arbitrary. So h is integrable and the integral is 0.

2) g = f + (g - f). By 1) g - f is integrable, and

$$\int_{a}^{b} (g - f) = 0$$

So

$$\int_{a}^{b} g = \int_{a}^{b} f$$

Theorem. Every continuous function is integrable.

Proof. Let $f:[a,b]\to\mathbb{R}$ be continuous. That means

$$\forall x \in [a, b] \, \forall \epsilon < 0 \, \exists \delta > 0 \, \forall y \in [a, b] \, |y - x| < \delta \implies |f(y) - f(x)| < \epsilon$$

We claim that

$$\forall \epsilon < 0 \exists \delta > 0 \forall x, y \in [a, b] |y - x| < \delta \implies |f(y) - f(x)| < \epsilon$$

(actually this is the definition of uniform convergence).

Proof of claim: Suppose otherwise. Then

$$\exists \epsilon > 0 \forall \delta > 0 \exists x, y \in [a, b] |y - x| < \delta, |f(y) - f(x)| > \epsilon$$

30

In particular,

$$\forall n \in \mathbb{N}, \exists x_n, y_n \in [a, b] \text{ s.t. } |x_n - y_n| < \frac{1}{n}, |f(x_n) - f(y_n)| \ge \epsilon$$

Now (x_n) is bounded. So by B-W theorem, $\exists k_1 < k_2 < k_3 < \dots$ in \mathbb{N} s.t. $(x_{k_n})_{n=1}^{\infty}$ converges to some $x \in \mathbb{R}$.

Since $a \leq x_{k_n} \leq b$ for all n, we have $x \in [a, b]$. Then since

$$|y_{k_n} - x_{k_n}| < \frac{1}{k_n} \le \frac{1}{n} \to 0$$

as $n \to \infty$, so

$$y_{k_n} = x_{k_n} + (y_{k_n} - x_{k_n}) \to x$$

as $n \to \infty$.

As f is continuous,

$$\epsilon \le |f(x_{k_n}) - f(y_{k_n})| \to |f(x) - f(x)| = 0$$

Contradiction.

Now back to the main proof.

Given $n \in \mathbb{N}$, choose $\delta_n > 0$ s.t.

$$\forall x, y, |x - y| < \delta_n \implies |f(x) - f(y)| < \frac{1}{n}$$

Then choose a dissection \mathcal{D}_n s.t.

(if
$$\mathcal{D}: a = x_0 < x_1 < \dots < x_m = b$$
, then $|\mathcal{D}| = \max_{1 \le k \le m} (x_k - x_{k-1})$)

If I is an interval of \mathcal{D}_n then

$$\sup_{I} f - \inf_{I} f \le \frac{1}{n}$$

Hence

$$S_{\mathcal{D}_n}(f) - \mathcal{S}_{\mathcal{D}_n}(f) \le \frac{1}{n}(b-a) \to 0$$

as $n \to \infty$. So f is integrable.

Theorem. Monotonic functions are integrable.

Proof. Let $f:[a,b]\to\mathbb{R}$ be a monotonic function. WLOG let f be increasing (otherwise look at -f).

Let

$$\mathcal{D}_n: a + \frac{k}{n}(b-a), 0 \le n(n \in \mathbb{N})$$

Then

$$S_{\mathcal{D}_{n}}(f) - S_{\mathcal{D}_{n}}(f) = \sum_{k=1}^{n} \frac{b-a}{n} \left(\sup_{\left[a + \frac{k-1}{n}(b-a), a + \frac{k}{n}(b-a)\right]} f - \inf_{\left[a + \frac{k-1}{n}(b-a), a + \frac{k}{n}(b-a)\right]} \right)$$

$$= \frac{b-a}{n} \sum_{k=1}^{n} \left(f\left(a + \frac{k}{n}(b-a)\right) - f\left(a + \frac{k-1}{n}(b-a)\right) \right)$$

$$= \frac{b-a}{n} \left(f(b) - f(a) \right) \to 0$$

as $n \to \infty$. So f is integrable by the previous corollary.

(A note on the proof of the integral form of Cauchy-Schwarz inequality:

$$0 \le \int_a^b (f - \lambda g)^2 = \int_a^b f^2 + \lambda^2 \int_a^b g^2 - s\lambda \int_a^b fg$$

for all $\lambda \in \mathbb{R}$.

Putting

$$\lambda = \frac{\int_a^b fg}{\int_a^b g^2}$$

yields the result, provided the denominator is not zero.

If $\int_a^b g^2 = 0$, then we get

$$2\lambda \int_{a}^{b} fg \leq \int_{a}^{b} f^{2}$$

for all $\lambda \in \mathbb{R}$.

Since λ is arbitrary, this forces

$$\int_{a}^{b} fg = 0$$

so the result still holds.)

Theorem. Let a < b, f a bounded function on [a, b].

1) If a < c < b and f is integrable on [a, c] and [c, b], then it's integrable on [a, b], and

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

2) If f is integrable on [a, b], then f is integrable on [c, d] whenever $a \le c < d \le b$.

Proof. 1) There exists sequences \mathcal{D}'_n and \mathcal{D}''_n of dissections of [a,c] and [c,b] respectively, such that

$$S_{\mathcal{D}'_{n}}(f), \mathcal{S}_{\mathcal{D}'_{n}}(f) \to \int_{a}^{c} f$$
$$S_{\mathcal{D}''_{n}}(f), \mathcal{S}_{\mathcal{D}''_{n}}(f) \to \int_{c}^{b} f$$

Then

$$\mathcal{D}_n = \mathcal{D}'_n \cup \mathcal{D}''_n$$

is a dissection of [a, b], and

$$S_{\mathcal{D}_{n}}\left(f\right) = S_{\mathcal{D}_{n}'}\left(f\right) + S_{\mathcal{D}_{n}''}\left(f\right) \to \int_{a}^{c} f + \int_{c}^{b} f$$
$$S_{\mathcal{D}_{n}}\left(f\right) = S_{\mathcal{D}_{n}'}\left(f\right) + S_{\mathcal{D}_{n}''}\left(f\right) \to \int_{a}^{c} f + \int_{c}^{b} f$$

So f is integrable on [a, b] and tends to the expected value.

2) Given $\epsilon > 0$, there is a dissection \mathcal{D} of [a, b] s.t.

$$S_{\mathcal{D}}(f) - \mathcal{S}_{\mathcal{D}}(f) < \epsilon$$

WLOG we may assume that c, d are in \mathcal{D} (otherwise add them into \mathcal{D} which refines it, and will make the difference between the upper and lower integral even smaller).

So

$$\mathcal{D}: a = x_0 < x_1 < ... < x_n = b, c = x_{i-1}, d = x_k$$

for some $1 \le j \le k \le n$.

Then

$$D': x_{i-1} < x_i < \dots < x_k$$

is a dissection of [c, d]. Then

$$S_{\mathcal{D}'}(f) - S_{D'}(f) = \sum_{i=j}^{k} (x_i - x_{i-1}) \left(\sup_{[x_{i-1}, x_i]} f - \inf_{[x_{i-1}, x_i]} f \right)$$

$$\leq \sum_{i=1}^{n} (x_i - x_{i-1}) \left(\sup_{[x_{i-1}, x_i]} f - \inf_{[x_{i-1}, x_i]} f \right)$$

$$= S_{\mathcal{D}}(f) - S_{\mathcal{D}}(f)$$

$$< \epsilon$$

So S is integrable on [c, d].

Corollary. Let a, b, f be as in the previous theorem. Consider

$$a = c_0 < c_1 < \dots < c_k = b$$

Then f is integrable on [a, b] if and only if f is integrable on $[c_{j-1}, c_j]$, for all $1 \le j \le k$, and then

$$\int_{a}^{b} f = \sum_{j=1}^{k} \int_{c_{j-1}}^{c_j} f$$

Corollary. Piecewise monotonic functions are integrable. $f:[a,b] \to \mathbb{R}$ is piecewise monotonic if there exists $a=c_0 < c_1 < ... < c_k = b$ such that f is monotonic on each $[c_{j-1}, c_j]$.

Proof. By the theorem that monotonic functions are integrable, and the previous corollary. \Box

Theorem. If a < b, f is a bounded function on [a, b], continuous at all except finitely many points. Then f is integrable.

Proof. Choose

$$a = c_0 < c_1 < ... < c_k = b$$

33

such that f is continuous at x if $x \notin \{c_0, c_1, ..., c_k\}$. Let $M = \sup_{[a,b]} |f|$. Choose $\delta > 0$ such that $\delta < \frac{1}{2} (c_j - c_{j-1})$ for all j and

f is continuous on $[c_{j-1} + \delta, c_j - \delta]$ for $1 \leq j \leq k$. So it's integrable, so there exists a dissection \mathcal{D}_i s.t.

$$S_{\mathcal{D}_{j}}\left(f\right) - \mathcal{S}_{\mathcal{D}_{j}}\left(f\right) < \frac{\epsilon}{2k}$$

Now consider

$$\mathcal{D} = \bigcup_{j=1}^{k} \mathcal{D}_{j} \bigcup \{a, b\}$$

which is a dissection of [a, b]. Then

$$S_{\mathcal{D}}(f) - S_{\mathcal{D}}(f) = \sum_{j=1}^{k} \left(S_{\mathcal{D}_{j}}(f) - S_{\mathcal{D}_{j}}(f) \right) + \text{ contributions from the small segments around } c'_{j}s$$

$$\leq k \cdot \frac{\epsilon}{2k} + 2\delta \cdot 2M \cdot (k-1) + \delta \cdot 2M \cdot 2$$

$$= \frac{\epsilon}{2} + 4M\delta k$$

$$< \epsilon$$

Example. (a function that is not integrable)

Let

$$f\left(x\right) = \left\{ \begin{array}{ll} 0 & x \in \mathbb{Q} \\ 1 & x \notin \mathbb{Q} \end{array} \right.$$

for any interval $I \subset [0,1]$ of positive length, we have

$$\sup_{I} f = 1, \inf_{I} f = 0$$

Then for all dissection \mathcal{D} , $S_{\mathcal{D}}(f) = 1$, $S_{\mathcal{D}}(f) = 0$. So

$$\int_{0}^{1} f = 1 \neq 0 = \int_{0}^{1} f$$

So f is not integrable.

Definition. Given a < b, f integrable on [a, b], we define

$$\int_{b}^{a} = -\int_{a}^{b} f$$

So if f is integrable on some closed, bounded interval containing a, b, c (in any order), then

$$\int_a^b f = \int_a^c f + \int_c^b f$$

34

This comes from the theorem about integrals on union of intervals and this definitions (a few cases for signs).

(eg if c < b < a then

$$\int_{c}^{a} f = \int_{c}^{b} f + \int_{b}^{a} f$$
$$-\int_{a}^{c} f = \int_{c}^{b} f - \int_{a}^{b} f$$

So consistent.)

Note:

$$|\int_a^b f| \le |b - a| \sup_{[a,b]} |f|$$

Since if a < b, this holds by proposition 3;

if b < a then

$$|\int_{a}^{b} f| = |-\int_{b}^{a} f| = |\int_{b}^{a} f|$$

$$\leq (a - b) \sup |f| = |b - a| \sup |f|.$$

Definition. (indefinite integral)

Suppose a < b, f is integrable on [a, b] and $c \in [a, b]$. The function

$$F(x) = \int_{c}^{x} f(t) dt, x \in [a, b]$$

is called \underline{an} indefinite integral of f on [a,b] (since this depends on c).

Note:

$$F(y) - F(x) = \int_{x}^{y} f(t) dt$$

This does not depend on c.

Theorem. If a < b, f integrable on [a,b], F is an indefinite integral of f on [a,b], then F is continuous. In fact, there exists some $k \ge 0$ such that

$$|F(y) - F(x)| \le k|y - x|$$

Proof. Let $K = \sup_{[a,b]} |f|$. Then

$$|F(y) - F(x)| = |\int_{x}^{y} f(t) dt|$$

$$\leq |y - x| \cdot \sup_{[a,b]} |f|$$

$$= K|y - x|$$

So the second part is done.

Now given $x \in [a, b], \epsilon > 0$, letting $\delta = \frac{\epsilon}{h}$, we have

$$\forall y \in [a, b], |y - x| < \delta \implies |F(y) - F(x)| < \epsilon.$$

So F is continuous.

Theorem. (Fundamental theorem of Calculus)

Let a, b, f, F be as in the previous theorem. If $c \in [a, b]$ and f is continuous at c, then F is differentiable at c, and

35

$$F'(c) = f(c)$$

Note: if c = a,

$$F'(a) = \lim_{h \to 0^+} \frac{F(a+h) - F(a)}{h}$$

and if c = b,

$$F'\left(b\right) = \lim_{h \to 0^{-}} \frac{F\left(b+h\right) - F\left(b\right)}{h}.$$

Proof. Given $\epsilon > 0$, there is a $\delta > 0$ s.t.

$$\forall t \in [a, b] | t - c | < \delta \implies | f(t) - f(c) | < \epsilon$$

Now we have

$$\left| \frac{F(c+h) - F(c)}{h} - f(c) \right| = \left| \frac{1}{h} \int_{c}^{c+h} f(t) dt - f(c) \right|$$

$$= \left| \frac{1}{h} \int_{c}^{c+h} (f(t) - f(c)) dt \right|$$

$$\leq \frac{1}{|h|} |h| \cdot \sup \left\{ |f(t) - f(c)| : c \leq t \leq c + h \right\}$$

$$< \epsilon$$

Whenever $0 < |h| < \delta$ (provided $c + h \in [a, b]$).

Let a < b, f, F be functions on [a, b]. We say F is an antiderivative of f on [a, b] if F is differentiable on [a, b] and F'(x) = f(x) for all $x \in [a, b]$.

Corollary. Let a < b, f a continuous function on [a, b]. Then f has an antiderivative F on [a, b]. Moreover, if G is any antiderivative of f on [a, b], then

$$\int_{a}^{b} f(t) dt = G(b) - g(a)$$

Proof. For the first part, just take F to be an indefinite integral of f on [a,b]. For the second part, we have

$$(F - G)'(x) = F'(x) - G'(x) = f(x) - f(x) = 0$$

for all x

So (by mean value theorem) F - G is a constant. Hence

$$G(b) - G(a) = F(b) - F(a) = \int_{a}^{b} f(t) dt$$

by definition of indefinite integrals.

36

Remark. • this corollary shows that the differential equation

$$\frac{dy}{dt} = f$$

has a solution when f is continuous, and it is unique up to a constant. So given $y_0 \in \mathbb{R}$, the initial value problem

$$\begin{cases} \frac{dy}{dt} = f \\ y(a) = y \end{cases}$$

has a unique solution.

• this corollary provides a way for computing

$$\int_{a}^{b} f(t) dt$$

when f is continuous.

Theorem. Let a < b, f integrable on [a, b]. Assume f has an antiderivative G. Then

$$\int_{a}^{b} f(t) dt = G(b) - G(a)$$

Proof. By a previous corollary(5) we know that there exists a sequence \mathcal{D}_n of dissections of [a,b] such that $S_{\mathcal{D}_n}(f)$ and $S_{\mathcal{D}_n}(f)$ both converge to $\int_a^b f(t) dt$. Say

$$\mathcal{D}_n : a = x_0^{(n)} < x_1^{(n)} < \dots < x_{m_n}^{(n)} = b$$

for some $m_n \in \mathbb{N}$.

Apply mean value theorem to G on $\left[x_{k-1}^{(n)},x_k^{(n)}\right]$ we get, there exists $\xi_k^{(n)}\in\left(x_{k-1}^{(n)},x_k^{(n)}\right)$ such that

$$\frac{G\left(x_{k}^{(n)}\right) - G\left(x_{k-1}^{(n)}\right)}{x_{k}^{(n) - x_{k-1}^{(n)}}} = G'\left(\xi_{k}^{(n)}\right) = f\left(\xi_{k}^{(n)}\right)$$

So

$$\sum_{k=1}^{m_{n}} f\left(\xi_{k}^{(n)}\right) \left(x_{k}^{(n)} - x_{k-1}^{(n)}\right) = \sum_{k=1}^{m_{n}} \left(G\left(x_{k}^{(n)}\right) - G\left(x_{k-1}^{(n)}\right)\right) = G\left(b\right) - G\left(a\right)$$

Then by corollary 5, $LHS \rightarrow \int_{a}^{b} f(t) dt$ as $n \rightarrow \infty$.

Remark. Let f, G be as in the previous theorem. Then

$$\int_{a}^{x} f(t) dt = G(x) - G(a)$$

for all $x \in [a, b]$.

So any indefinite integral of f must be differentiable.

Corollary. Let a < b, f, g be integrable functions on [a, b]. Assume F, G are antiderivatives of f, g respectively on [a, b]. (eg this happens if f, g are continuous) Then

$$\int_{a}^{b} fG = G(b) F(b) - G(a) F(a) - \int_{a}^{b} Fg$$

Proof. Let

$$H\left(x\right) = F\left(x\right)G\left(x\right)$$

for $x \in [a, b]$. By product rule, H is differentiable, and

$$H'(x) = f(x) G(x) + F(x) g(x)$$

RHS is integrable. Thus

$$H(b) - H(a) = \int_{a}^{b} (fG + Fg)$$

rearrange to get the desired result.

Corollary. (Change of variable)

Let $a < b, \varphi : [a, b] \to \mathbb{R}$ be continuously differentiable. Let f be a continuous function on the closed bounded interval $\varphi([a, b])$. Then

$$\int_{\varphi(a)}^{\varphi(b)} = \int_{a}^{b} f(\varphi(t)) \varphi'(t) dt$$

Remark. As φ is continuous, there exists $c, d \in [a, b]$ such that $\varphi(c) \leq \varphi(x) \leq \varphi(d)$ for all $x \in [a, b]$. Then by IVT,

$$\varphi([a,b]) = [\varphi(c), \varphi(d)]$$

We do not assume that $\varphi(a)$, $\varphi(b)$ are the end points of this interval.

Proof. Let F be an antiderivative of f on $\varphi([a,b])$ (this exists by a previous corollary(17)). By chain rule,

$$(F \circ \varphi)'(t) = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t)$$

ans is continuous. By corollary 17,

$$\int_{a}^{b} f(\varphi(t)) \varphi'(t) dt = F(\varphi(b)) - F(\varphi(a)) = \int_{\varphi(a)}^{\varphi(b)} f(y) dy$$

Note that this corollary remains true if φ is differentiable, φ' is integrable, f is integrable, and f has antiderivative.

(need: φ continuous, f integrable $\implies f \circ \varphi$ integrable).

Theorem. (Taylor's theorem with the integral remainder)

Assume $a, \delta \in \mathbb{R}$, $\delta > 0$, $f: (a - \delta, a + \delta) \to \mathbb{R}$ is n times continuously differentiable. Then for all $h \in (-\delta, \delta)$,

$$f(a+h) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} h^k + \frac{1}{(n-1)!} \int_0^h (h-t)^{n-1} f^{(n)}(a+t) dt$$

Proof. Induction on n:

n = 1:

$$RHS = f(a) + \int_0^h f'(a+t) dt$$
$$= f(a) + f(a+h) - f(a)$$
$$= LHS$$

 $n \ge 1$: assume result for n. Then

$$\frac{1}{n!} \int_0^h (h-t)^n f^{(n+1)}(a+t) dt
= \left[\frac{(h-t)^n}{n!} f^{(n)}(a+t) \right]_0^h + \frac{1}{n!} \int_0^h n (h-t)^{n-1} \cdot f^{(n)}(a+t) dt
= -\frac{h^n}{n!} f^{(n)}(a) + \frac{1}{(n-1)!} \int_0^h (h-t)^{n-1} f^{(n)}(a+t) dt
= -\frac{h^n}{n!} f^{(n)}(a) + \left(f(a+h) - \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} h^k \right)$$

rearrange to get the desired results.