5713768264 West Lafayette, IN zhou956@purdue

Zhe Zhou

Homepage GitHub LinkedIn

EDUCATION

PhD of Computer Science

2018.8 - 2025.4 (expected)

Purdue University, Advised by Prof. Suresh Jagannathan

Main courses: Programming Languages, Reasoning about Programs, Compiling and Programming Systems
Operating Systems, Pattern Recognition and Decision-Making Processes (GPA: 4.0)

Bachelor of Computer Science

2013.9 - 2017.7

Peking University, Advised by Prof. Guangyu Sun

Work Experience

Full Time C++ Software Engineer

 $\bf 2017.7 - 2018.7$

Megvii

Beijing, China 2024.5 - 2024.9

Applied Scientist Internship

Amazon Santa Clara, CA, USA

RESEARCH INTEREST

refinement types, property-based testing, specification inference, program synthesis, distributed system

SKILLS&LANGUAGES

Mostly used: Ocaml, Coq, Z3

Familiar with: Dafny, SML, C, C++, Java, Python, Scala, Haskell, P

Publication

Data-Driven Abductive Inference of Library Specifications

OOPSLA'21

Zhe Zhou, Robert Dickerson, Benjamin Delaware, and Suresh Jagannathan

(Distinguished Artifact)

Covering All the Bases: Type-based Verification of Test Input Generators

PLDI'23

Zhe Zhou, Ashish Mishra, Benjamin Delaware, and Suresh Jagannathan

(Distinguished Paper)

A HAT Trick: Automatically Verifying Representation Invariants Using Symbolic Finite Automata

PLDI'24

Zhe Zhou, Qianchuan Ye, Benjamin Delaware, and Suresh Jagannathan

Derivative-Guided Symbolic Execution

POPL'25

Yongwei Yuan, **Zhe Zhou**, Julia Belyakova, and Suresh Jagannathan (Conditional Accepted)

SERVICE

External Review Committee Member Artifact Evaluation Committee Member OOPSLA'23

PLDI'23

PROJECT

Temporal Refinement Type System

PLDI'24, POPL'25, In progress

Equip standard refinement type system with temporal specifications to verify effectful programs and distributed system.

Underapproximate Refinement Type System

PLDI'23, In progress

Design a refinement type system that verifies the coverage property of the random test generator.

Data-driven Specifications Inference

OOPSLA'21

Design a data-driven inference procedure which is guided by counterexamples to infer specifications of multiple the blackbox library APIs that are consistent with the given whitebox client code.

LLM for Proof Synthesis

In progress

Combine Large Language Model (LLM) and symbolic approach in PL community to synthesize Coq proof.