Bayes Theory: Risk and Reward

The JCAT Computation Model

John F. Lemmer, PhD AFRL/IFSA john.lemmer@rl.af.mil

Not all Bayes Tools are the Same

Theoretical soundness and accurate modeling you can use!

JCAT Goals

- Model Probabilistic Cause/Effect over time
- Maintain Semantic integrity
 - Probabilities IN
 - Probabilities OUT
 - Enable Model Analysis
- Use and leverage causal concepts e.g.
 - Synergy
 - Necessity ...
- □ Feasibility:
 - Model building
 - Computation

JCAT Computational Model

- The primary contribution of the CAT research has been developing
 - A computational model for achieving CAT goals
 - Developing a user interface involving only SME type knowledge
- Utility of CAT goals is the 'Reward'
- Overcoming difficulties has been the risk.
 - The difficulties overcome are why not all "Bayes Tools" are created equally

So Why Probabilities ?

- □ In a word: Semantics
 - Empirical Semantics
 - Rich Theory
- Like the difference between qualitative and quantitative physics.

The Rewards of Semantics

- Advantages of a theoretically sound foundation
 - Semantics
 - Inputs are well defined (unlike e.g. SIAM)
 - Outputs are well defined
 - Analysis
 - Vs. Prescription
 - Model acceptance/rejection

Understanding the Risk

- What is Bayesian Analysis?
 - What is Bayesian probabilistic analysis?
 - What is Causal analysis?
 - Why are they hard?
- JCAT and its tradeoffs

Dice

JCAT Prediction

Bayesian Inference

Urn Model of Semantics

- Objective probabilities: Urn contains
 - Balls with labels e.g. any subset of {A,B,C,D,E}
 - Prediction is equivalent to rules for labeling the balls
 - Bayesian inference is equivalent to
 - Drawing one ball from an urn
 - Observing some of the labels; computing the probability of other labels on the same ball
 - Model verification
 - Likelihood that observed evidence is consistent with the model
- Subjective probabilities
 - Expert beliefs
 - Verified by model performance

Being Bayesian is Hard

- Many 'Bayesian' tools are based on assumptions which
 - Destroy the semantics
 - e.g. After computation, parameters are not probabilities (except perhaps under extreme assumptions)
 - Limit model fidelity
 - Limit model analysis
- JCAT is based on more benign assumptions
 - As explained in the next few slides
 - Contrasted with alternate assumptions

But what IS Bayesian Analysis?

Textbook Bayes Rule

- Looks simple
- Very limited application
 - Only discrete events

Textbook Bayes Rule

$$p'(q_i) = p(q_i/a) = \frac{p(q_ia)}{p(a)} = \frac{p(q_ia)p(q_i/a)p(a)}{\sum_{i} p(q_i/a)p(q_i)}$$

Ιf

$$p(a) = \sum_{i} p(a/q_i) p(q_i)$$

then the q must be disjoint, limiting the distributions which cannot be more example the distribution in the previous slide cannot be more

What is the General Form of Bayes Rule?

- Very large arrays of numbers
 e.g. more than 2100 in demo
- Thousands of user provided parameters

BI Defined by Example

Prior

С	b Prob	abiliti a	p (.)
0	0	0	. 05
0	0	1	.12
0	1	0	.1
0	1	1	. 15
1	0	0	.08
1	0	1	. 2
1	1	0	. 2
1	1	1	.1

Evidence: p(a) = 1; p(~a) = 0 BR: redistribute prob. to match Eyidence Posterior Probabilities

С	b	а	p(.
0	0	0	0
0	0	1	.21
0	1	0	0
0	1	1	.26
1	0	0	0
1	0	1	.35
1	1	0	0
1	1	1	.18

Early Developments

- nalogy developed between a
 Causal Model and a type of Markov
 model (subsequently know as a
 Bayes Net).
 - If the connections are sufficiently sparse, the so called "Junction Tree" algorithms give real traction on the computability problem
 - BTW modelling time usually destroys the sparseness.

A (Markov Model) Bayesian Network

$$p(A,B,C,D,E) = p(A/B,C)p(B/D,E)p(C)p(D)p(E$$

Bayes Nets

- Markov Model provides a simplified representation of the underlying distribution
- Markov Model
 - Can be justified by causal arguments
 - Conditional Probability Tables are sufficient for specification

A Bayesian Network w/Conditional Probability

Tables

- {A,B,C,D,E} is
 the set of
 variables

```
p(A,B,C,D,E) = p(A/B,C)p(B/D,E)p(C)
```

Modeler Tasks

- Build the graph model of causality
- Build Conditional Probability Tables
 - Full Specification (HUGIN, GENIE)
 - First Order
 - Causal Independence (e.g. SIAM)
 - Disjoint Causes (text book Bayes)
 - CAT approach: a compromise between causal independence and full specification
 - Specify 'alone' causation probability
 - Specify important groups of probabilities which are not causally independent
 - Algorithm estimates remaining groups to fill out the entire CPT

Model Analysis

- Prediction
- Inference from Evidence
 - Given current evidence, predict nuclear capability as...
- Explanation
 - What is causing difference between now and then?
- Model acceptance/rejection
 - Less than 5% chance that evidence was drawn for a 'substantially' different model

The End

So Why Bayesian Probability?

- □ In a word: Semantics
 - Empirical Semantics
 - Empirical because:
 - Inputs can be measured
 - 0utputs can be measured
 - □ Computations result in semantic preserving, scientific predictions.
- Like the difference between qualitative and quantitative physics.

Rewards

- High quality models can be
 - Built feasibly
 - Results can be understood
 - Models can be analyzed

Retrospective on AUAI

- In 1985, a workshop similar to this was held
 - Major issues included "Certainty Factors" (now long dead!) etc.
 - Resulted in an on-going professional association
- Since then, probabilities have taken over main stream AI e.g.
 - Text understanding
 - DARPA Grand Challenge
 - (see current Scientific American)