Bayesian Mallows Model for Rank Data

장태영

서울대학교 통계학과, 베이즈통계 연구실

2021. 11. 12

1/49

CONTENTS

Motivation

A Bayesian Mallows model for complete rankings

CONTENTS

Motivation

A Bayesian Mallows model for complete rankings

Motivation

- Ranking and comparing items
 - Crucial for collecting information about preferences in many areas from marketing to politics
 - Netflix, Spotify, 배달의 민족, ...

Example data

> head(sushi_rankings)

	shrimp	sea	eel	tuna	squid	sea urchin	salmon	roe	egg	fatty	tuna	tuna	roll	cucumber	roll
[1,]	2		8	10	3	4		1	5		9		7		6
[2,]	1		8	6	4	10		9	3		5		7		2
[3,]	2		8	3	4	6		7	10		1		5		9
[4,]	4		7	5	6	1		2	8		3		9		10
[5,]	4		10	7	5	9		3	2		8		1		6
[6,]	4		6	2	10	7		5	1		9		8		3

What we want to do?

- Find consensus ranking of the items
- Extensions of model for pairwise comparisons, preference prediction and clustering.

CONTENTS

Motivation

A Bayesian Mallows model for complete rankings

Elementary settings

- Setting : n items and N assessors. $\mathbf{R}_j \in \mathcal{P}_n$ denotes the ranking(the full set of ranks given to the n items) of assessor j for each $j = 1, \dots, N$. (\mathcal{P}_n is a permutation set)
- $d(\cdot, \cdot): \mathcal{P}_n \times \mathcal{P}_n \to [0, \infty)$ is a distance function between two rankings.
 - Kendall distance : number of pairs of distinct elements whose order in the two rankings are the opposite.
 - Footrule distance : ℓ_1 distance
 - Spearman's distance : ℓ_2 distance

Mallows model

• Mallows model is a class of non-uniform joint distributions for a ranking ${\bf r}$ on ${\cal P}_n$.

$$P(\mathbf{r}|\alpha, \boldsymbol{\rho}) = Z_n(\alpha, \boldsymbol{\rho})^{-1} \exp\{-\frac{\alpha}{n} d(\mathbf{r}, \boldsymbol{\rho})\} I(\mathbf{r} \in \mathcal{P}_n)$$

- $\rho \in \mathcal{P}_n$ is the latent consensus ranking.
- $\alpha>0$ is a scale (or precision) parameter. i.e. α represents the level of agreement between assesssors, so that as α gets larger, ranking **r** aggregates more to ρ
- $Z_n(\alpha, \rho) = \sum_{\mathbf{r} \in \mathcal{P}_n} e^{-\frac{\alpha}{n}d(\mathbf{r}, \rho)}$ is the partition function.
 - In physics, a 'partition function' describes the statistical properties of a system in thermodynamic equilibrium. (Source : Wikipedia)
 - Here, just consider this as a normalizing factor.

Likelihood function

- Assume that observed rankings $\mathbf{R}_1, \cdots, \mathbf{R}_N$ are conditionally independent given α and $\boldsymbol{\rho}$ and each of them is distributed according to the Mallows model with these parameters.
- Likelihood takes the form as

$$P(\mathbf{R}_1, \cdots, \mathbf{R}_N | \alpha, \boldsymbol{\rho}) = Z_n(\alpha, \boldsymbol{\rho})^{-N} \exp\{-\frac{\alpha}{n} \sum_{j=1}^N d(\mathbf{R}_j, \boldsymbol{\rho})\} \prod_{j=1}^N I(\mathbf{R}_j \in \mathcal{P}_n)$$

• For large n, finding the MLE of ρ given fixed α is not feasible because the space of permutations \mathcal{P}_n has n! elements.

Right-invariant distance and partition function

- For any right-invariant distance, it holds $d(\mathbf{r}_1, \mathbf{r}_2) = d(\mathbf{r}_1 \mathbf{r}_2^{-1}, \mathbf{1}_n)$ where $\mathbf{1}_n = \{1, 2, \cdots, n\}$ and $\mathbf{r}_1 \mapsto \mathbf{r}_1 \mathbf{r}_2^{-1}$ is relabelling map. Note that a right-invariant distance is unaffected by a relabelling of the items.
- Partition function $Z_n(\alpha, \rho)$ does not depend on ρ .

장태영 (서울대학교)

Right-invariant distance and partition function

- For some choice of right-invariant distance like Kendall distance, the partition function can be analytically computed.
- But there are important and natural right-invariant distances for which the computation of the partition function is not feasible, such as the footrule distance and the Spearman's distance.

12 / 49

Prior distributions

- Assume a priori that α and ρ are independent
- In this paper, the uniform prior $\pi(\rho) = \frac{1}{n!} I(\rho \in \mathcal{P}_n)$ is employed.
- Also, for the scale parameter, this paper used a truncated exponential prior with density $\pi(\alpha|\lambda) = \lambda e^{-\lambda\alpha} I(\alpha \in [0,\alpha_{max}])/(1-e^{-\lambda\alpha_{max}})$ where the cut-off point $\alpha_{max} < \infty$ is large compared to the values supported by the data. In practice, in the computations involving the sampling of values for α , truncation was never applied. We assign λ a fixed value close to zero, implying a prior density for α which is quite flat.
 - In short, prior $\alpha \sim \textit{Exp}(\frac{1}{\lambda})$ with small λ is used practically for α .

13 / 49

Posterior distributions

• The posterior distribution for ρ and α is given by

$$P(\rho, \alpha | \mathbf{R}_1, \cdots, \mathbf{R}_N) \propto \frac{\pi(\rho)\pi(\alpha)}{Z_n(\alpha)^N} \exp\left\{-\frac{\alpha}{n} \sum_{j=1}^N d(\mathbf{R}_j, \rho)\right\}$$
 (1)

 The purpose of MCMC algorithm following is to obtain samples from this posterior.

Metropolis-Hastings algorithm

- A general form of the Metropolis Hastings algorithm is as follows: Target probability distribution is $p_0(x)$ for r.v. X. Given a current value $x^{(s)}$ of X,
 - **①** Generate x^* from a proposal distribution $J_s(x^*|x^{(s)})$
 - 2 Compute the acceptance ratio

$$r = \frac{p_0(x^*)}{p_0(x^{(s)})} / \frac{J_s(x^*|x^{(s)})}{J_s(x^{(s)}|x^*)} = \frac{p_0(x^*)}{p_0(x^{(s)})} \frac{J_s(x^{(s)}|x^*)}{J_s(x^*|x^{(s)})}$$

- 3 set $x^{(s+1)}$ to x^* with probability $\min(1,r)$ i.e. Sample $u \sim unif(0,1)$ and then if u < r set $x^{(s+1)} = x^*$, else set $x^{(s+1)} = x^{(s)}$
- The primary restriction placed on $J_s(x^*|x^{(s)})$ is that it does not depend on values in the sequence previous to $x^{(s)}$ so that the algorithm generates a Markov chain.
- By Ergodic Thm, the empirical distribution of samples generated from such a Markov chain will converge to the stationary distribution(of the Markov chain), which agrees with the target distribution.

Source : Hoff 2009. (textbook)

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - ② Then, given α and ρ' , update α by proposing α'

- Leap-and-Shift Proposal(L&S)
- Leap step
 - **1** Fix an integer $L \in \{1, 2, \dots, \lfloor \frac{n-1}{2} \rfloor \}$ (which is a tuning parameter for MCMC algorithm)
 - 2 Draw a random number $u \sim Unif\{1, 2, \dots, n\}$
 - **3** Define $S \subset \{1, 2, \dots, n\}$ by $S = [\max(1, \rho_u - L), \min(n, \rho_u + L)] \setminus {\rho_u}$
 - **1** Draw a random number $r \sim Unif(S)$
 - **5** Let $\rho^* \in \{1, 2, \cdots, n\}^n$ have elements

$$\begin{cases} \rho_i^* = \rho_i & i \in \{1, 2, \cdots, n\} \setminus \{u\} \\ \rho_u^* = r \end{cases}$$

- Shift step
 - Let $\Delta = \rho_u^* \rho_u$. Note that $\Delta \neq 0$
 - 2 Define the proposed $\rho' \in \mathcal{P}_n$ by below :

$$\begin{cases} \rho_u' = \rho_u^* \\ \rho_i' = \rho_i - 1 & \textit{if } \rho_u < \rho_i \leq \rho_u^* \\ \rho_i' = \rho_i & \textit{otherwise} \end{cases}$$

 $\textbf{0} \ \ \text{If} \ \Delta < 0 \ \text{then}$

$$\begin{cases} \rho_u' = \rho_u^* \\ \rho_i' = \rho_i + 1 & \text{if } \rho_u > \rho_i \ge \rho_u^* \\ \rho_i' = \rho_i & \text{otherwise} \end{cases}$$

Example of Leap and Shift proposal

```
> \#n=8, L=3
> print(r)
[1] 4 5 8 6 3 7 1 2
> print(u)
Г17 4
> setdiff(max(r[u]-L,1):min(r[u]+L,n),r[u])
[1] 3 4 5 7 8
> print(r.star)
[1] 4 5 8 3 3 7 1 2
> print(r.prime)
Γ17 5 6 8 3 4 7 1 2
```

The probability mass function associated to the transition

$$\begin{split} &P_L(\boldsymbol{\rho}'|\boldsymbol{\rho}) = \sum_{u=1}^n P_L(\boldsymbol{\rho}'|U=u,\boldsymbol{\rho})P(U=u) \\ &= \frac{1}{n} \sum_{u=1}^n \left\{ I_{\{\boldsymbol{\rho}_{-u}\}}(\boldsymbol{\rho}_{-u}^*)I_{\{0 < |\boldsymbol{\rho}_u - \boldsymbol{\rho}_u^*| \le L\}}(\boldsymbol{\rho}_u^*) \left[\frac{I_{\{L+1,\cdots,n-L\}}(\boldsymbol{\rho}_u)}{2L} + \sum_{z=1}^L \frac{I_{\{z\}}(\boldsymbol{\rho}_u) + I_{\{n-z+1\}}(\boldsymbol{\rho}_u)}{L+z-1} \right] \right\} \\ &+ \frac{1}{n} \sum_{u=1}^n \left\{ I_{\{\boldsymbol{\rho}_{-u}\}}(\boldsymbol{\rho}_{-u}^*)I_{\{|\boldsymbol{\rho}_u - \boldsymbol{\rho}_u^*| = 1\}}(\boldsymbol{\rho}_u^*) \left[\frac{I_{\{L+1,\cdots,n-L\}}(\boldsymbol{\rho}_u^*)}{2L} + \sum_{z=1}^L \frac{I_{\{z\}}(\boldsymbol{\rho}_u^*) + I_{\{n-z+1\}}(\boldsymbol{\rho}_u^*)}{L+z-1} \right] \right\} \end{split}$$

장태영 (서울대학교

- Simple representation for the transition probability
 - As we calculate $P(\rho'|\rho)$, we should consider two random draws
 - Draw $u \sim Unif\{1, 2, \cdots, n\}$
 - For S dependent on ρ_u , draw $r \sim Unif(S)$
 - The other works including shift step involve no randomness.
 - Simply put, $P(\rho'|\rho) = \frac{1}{n} \cdot \frac{1}{|S|}$ for many cases.
 - However, if $|
 ho_u'ho_u|=1$ then we should consider something more.
 - When $|\rho_u' \rho_u| > 1$ then u is the only possible index that proposes ρ' from ρ . On the other hand, when $|\rho_u' \rho_u| = 1$, there must be only one index u' other than u s.t. $|\rho_{u'}' \rho_{u'}| = 1$ so that u' can also proposes ρ' from ρ .
 - In this special case, $P(\rho'|\rho) = \frac{1}{n} \cdot \frac{1}{|S|} + \frac{1}{n} \cdot \frac{1}{|S'|}$ where S is produced from drawing u and S' is produced from drawing u'

ullet example of leap and shift proposal when $|oldsymbol{
ho}_u'-oldsymbol{
ho}_u|=1$

```
> \#n=8, L=3
> print(r)
[1] 7 6 2 1 4 8 5 3
> print(u)
Γ17
> setdiff(max(r[u]-L,1):min(r[u]+L,n),r[u])
Γ17 2 3 4 6 7 8
> print(r.star)
[1] 7 6 2 1 4 8 6 3
> print(r.prime)
[1] 7 5 2 1 4 8 6 3
```

• Using this logic, we can rewrite the equality about $P_L(
ho'|
ho)$ as the following

$$P_L(\rho'|\rho) = \sum_{u=1}^n P_L(\rho'|U=u,\rho)P(U=u)$$
$$= \frac{1}{n} \sum_{u=1}^n I(\rho',\rho,u) \frac{1}{|S^{(u)}|}$$

where $I(\rho',\rho,u)$ is an indicator for possibility of proposal from ρ to ρ' given u is drawed and $S^{(u)}$ is the set S given u is drawed If ρ' is proposed from ρ then typically $I(\rho',\rho,u)=1$ for only one u but if $|\rho'_u-\rho_u|=1$ then $I(\rho',\rho,u')=1$ also holds for another u' different from u

• The acceptance probability when updating ρ is min $\{1, r\}$ where r is given as

$$r = \frac{P(\rho', \alpha | \mathbf{R})}{P(\rho, \alpha | \mathbf{R})} \cdot \frac{P_L(\rho | \rho')}{P_L(\rho' | \rho)}$$
$$= \frac{P_L(\rho | \rho')}{P_L(\rho' | \rho)} \cdot \frac{\pi(\rho')}{\pi(\rho)} \exp \left\{ -\frac{\alpha}{n} \sum_{j=1}^{N} \left[d(\mathbf{R}_j, \rho') - d(\mathbf{R}_j, \rho) \right] \right\}$$

- Leap and shift proposal is not a symmetric proposal distribution.
- The term $\sum_{j=1}^{N} \left[d(\mathbf{R}_{j}, \boldsymbol{\rho}') d(\mathbf{R}_{j}, \boldsymbol{\rho}) \right]$ above can be computed efficiently since most elements of $\boldsymbol{\rho}$ and $\boldsymbol{\rho}'$ are equal and we can put aside indices i s.t. $\rho_{i} = \rho'_{i}$

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - ② Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - ② Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - ② Then, given α and ρ' , update α by proposing α'

27 / 49

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - ② Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - ② Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - ② Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - ② Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - ② Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - ② Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - ② Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - ② Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - ② Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - 2 Then, given α and ρ' , update α by proposing α'

37 / 49

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - 2 Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - 2 Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - 2 Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - 2 Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - 2 Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - ② Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - 2 Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - 2 Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - 2 Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - 2 Then, given α and ρ' , update α by proposing α'

- To obtain samples from the posterior distribution (1), we alternate between two steps.
 - **1** Given α and ρ , update ρ by proposing ρ'
 - 2 Then, given α and ρ' , update α by proposing α'

References I