一、选择题: $1 \sim 10$ 小题,每小题 5 分,共 50 分.下列每题给出的四个选项中,只有一个选项 是最符合题目要求的.

1. 函数
$$f(x) = \begin{cases} \frac{e^x - 1}{x}, & x \neq 0, \\ 1, & x = 0 \end{cases}$$

A. 连续且取得极小值.

B. 连续且取得极大值.

C. 可导且导数等于零.

D. 可导目导数不为零.

2. 设函数 f(x,y) 可微,且 $f(x+1,e^x) = x(x+1)^2$, $f(x,x^2) = 2x^2 \ln x$,则 $\mathrm{d}f(1,1) =$

A. dx - dy.

B. dx + dy.

C. dy.

D. $-d\nu$.

3. 设函数 $f(x) = \frac{\sin x}{1 + r^2}$ 在 x = 0 处的 3 次泰勒多项式为 $ax + bx^2 + cx^3$,则

A. $a = 1, b = 0, c = \frac{7}{6}$.

B. $a = 1, b = 0, c = -\frac{7}{6}$.

C. $a = -1, b = -1, c = -\frac{7}{6}$.

D. $a = -1, b = -1, c = \frac{7}{6}$.

4. 设函数 f(x) 在区间[0,1] 上连续,则 $\int_{0}^{1} f(x) dx =$

A. $\lim_{n\to\infty} \sum_{k=1}^{n} f\left(\frac{2k-1}{2n}\right) \frac{1}{n}$.

B. $\lim_{n\to\infty}\sum_{k=1}^n f\left(\frac{2k-1}{2n}\right)\frac{1}{2n}.$

C. $\lim_{n\to\infty}\sum_{k=1}^{2n}f\left(\frac{k-1}{2n}\right)\frac{1}{n}$. D. $\lim_{n\to\infty}\sum_{k=1}^{2n}f\left(\frac{k}{2n}\right)\frac{2}{n}$.

5. 二次型 $f(x_1,x_2,x_3) = (x_1+x_2)^2 + (x_2+x_3)^2 - (x_3-x_1)^2$ 的正惯性指数与负惯性指数依 次为

A. 1,1.

6. 已知 $\boldsymbol{\alpha}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\boldsymbol{\alpha}_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\boldsymbol{\alpha}_3 = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$, 记 $\boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1$, $\boldsymbol{\beta}_2 = \boldsymbol{\alpha}_2 - k\boldsymbol{\beta}_1$, $\boldsymbol{\beta}_3 = \boldsymbol{\alpha}_3 - l_1\boldsymbol{\beta}_1 - l_2\boldsymbol{\beta}_2$. 若 $\boldsymbol{\beta}_1$,

 β_2 , β_3 两两正交,则 l_1 , l_2 依次为

A. $-\frac{5}{2}, \frac{1}{2}$. B. $\frac{5}{2}, \frac{1}{2}$.

C. $\frac{5}{2}$, $-\frac{1}{2}$. D. $-\frac{5}{2}$, $-\frac{1}{2}$.

7. 设 A,B 为 n 阶实矩阵. 下列结论不成立的是

 $A. r \begin{vmatrix} \mathbf{A} & \mathbf{AB} \\ \mathbf{O} & \mathbf{A}^{\mathrm{T}} \end{vmatrix} = 2r(\mathbf{A}).$

 $B. r \begin{bmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{O} & \mathbf{A}^{\mathrm{T}} \mathbf{A} \end{bmatrix} = 2r(\mathbf{A}).$

 $C. r \begin{vmatrix} \mathbf{A} & \mathbf{B} \mathbf{A} \\ \mathbf{O} & \mathbf{A} \mathbf{A}^{\mathrm{T}} \end{vmatrix} = 2r(\mathbf{A}).$

 $D. r \begin{pmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{P} \mathbf{A} & \mathbf{A}^{\mathrm{T}} \end{pmatrix} = 2r(\mathbf{A}).$

A. 若 $P(A \mid B) > P(A)$,则 $P(\overline{A} \mid \overline{B}) > P(\overline{A})$. B. 若 $P(A \mid B) = P(A)$,则 $P(A \mid \overline{B}) = P(A)$. C. 若 $P(A \mid B) > P(A \mid \overline{B})$,则 $P(A \mid B) > P(A)$. D. 若 $P(A \mid A \mid J \mid B) > P(\overline{A} \mid A \mid J \mid B)$,则 P(A) > P(B). 9. 设 (X_1,Y_1) , (X_2,Y_2) ,…, (X_n,Y_n) 为来自总体 $N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho)$ 的简单随机样本. 令 $\theta =$ $\mu_1 - \mu_2$, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$, $\hat{\theta} = \overline{X} - \overline{Y}$, 则 A. $\hat{\theta}$ 不是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2}{n}$. B. $\hat{\theta}$ 是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2}{n}$. $C.\hat{\theta}$ 是 θ 的无偏估计, $D(\hat{\theta}) = \frac{\sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2}{\sigma_2}$. D. $\hat{\boldsymbol{\theta}}$ 不是 $\boldsymbol{\theta}$ 的无偏估计, $D(\hat{\boldsymbol{\theta}}) = \frac{\sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2}{n}$. 10. 设 X_1, X_2, \dots, X_{16} 是来自总体 $N(\mu, 4)$ 的简单随机样本,考虑假设检验问题: $H_0: \mu \leq 10$, $H_{1:\mu} > 10.\Phi(x)$ 表示标准正态分布函数. 若该检验问题的拒绝域为 $W = \{\overline{X} > 11\}$,其中 $\overline{X} = \frac{1}{16} \sum_{i=1}^{10} X_i$,则 $\mu = 11.5$ 时,该检验犯第二类错误的概率为 A. $1 - \Phi(1)$. B. $1 - \Phi(0.5)$. C. $1 - \Phi(1.5)$. D. $1 - \Phi(2)$. 二、填空题: $11\sim16$ 小题,每小题5分,共30分.

8. 设 A, B 为随机事件, 目 0 < P(B) < 1. 下列命题中为假命题的是

$$11. \int_0^{+\infty} \frac{\mathrm{d}x}{x^2 + 2x + 2} = \underline{\qquad}.$$

- 12. 设函数 y = y(x) 由参数方程 $\begin{cases} x = 2e^t + t + 1, \\ y = 4(t-1)e^t + t^2 \end{cases}$ 确定,则 $\frac{d^2y}{dx^2}\Big|_{t=0} =$
- 13. 欧拉方程 $x^2y'' + xy' 4y = 0$ 满足条件 y(1) = 1, y'(1) = 2 的解为 y = 1
- 14. 设 Σ 为空间区域 $\{(x,y,z)\mid x^2+4y^2\leqslant 4,0\leqslant z\leqslant 2\}$ 表面的外侧,则曲面积分 $\iint x^2\mathrm{d}y\mathrm{d}z+1$ $y^2 dz dx + z dx dy =$
- 15. 设 $\mathbf{A} = (a_{ii})$ 为 3 阶矩阵, A_{ii} 为元素 a_{ii} 的代数余子式. 若 \mathbf{A} 的每行元素之和均为 2,且 $|\mathbf{A}|$ = $3, \mathbb{N}A_{11} + A_{21} + A_{31} =$
- 16. 甲、乙两个盒子中各装有2个红球和2个白球,先从甲盒中任取一球,观察颜色后放入乙盒 中,再从乙盒中任取一球. 令X,Y分别表示从甲盒和从乙盒中取到的红球个数,则X与Y的

三、解答题: $17 \sim 22$ 小题, 共 70 分. 解答应写出文字说明、证明过程或演算步骤.

17. (本题满分 10 分)

求极限
$$\lim_{x\to 0} \left[\frac{1+\int_0^x e^{t^2} dt}{e^x-1} - \frac{1}{\sin x} \right].$$

18. (本题满分 12 分)

设
$$u_n(x) = e^{-nx} + \frac{x^{n+1}}{n(n+1)} (n = 1, 2, \dots)$$
,求级数 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛域及和函数.

19. (本题满分12分)

已知曲线 $C:\begin{cases} x^2+2y^2-z=6,\\ 4x+2y+z=30, \end{cases}$ 求 C 上的点到 xOy 坐标面距离的最大值.

20. (本题满分 12 分)

设 $D \subset \mathbf{R}^2$ 是有界单连通闭区域, $I(D) = \iint_D (4-x^2-y^2) \mathrm{d}x\mathrm{d}y$ 取得最大值的积分域记为 D_1 .

- (1) 求 $I(D_1)$ 的值;
- (1) 求 $I(D_1)$ 的值;
 (2) 计算 $\int_{\partial D_1} \frac{(xe^{x^2+4y^2}+y)dx+(4ye^{x^2+4y^2}-x)dy}{x^2+4y^2}$,其中 ∂D_1 是 D_1 的正向边界.

21. (本题满分 12 分)

设矩阵
$$\mathbf{A} = \begin{bmatrix} a & 1 & -1 \\ 1 & a & -1 \\ -1 & -1 & a \end{bmatrix}$$
.

- (1) 求正交矩阵 P,使 $P^{T}AP$ 为对角矩阵;
- (2) 求正定矩阵 C,使 $C^{0} = (a+3)E A$,其中 E 为 3 阶单位矩阵.

22. (本题满分 12 分)

在区间(0,2)上随机取一点,将该区间分成两段,较短一段的长度记为X,较长一段的长度记为Y. 令 $Z = \frac{Y}{X}$.

- (1) 求 X 的概率密度;
- (2) 求 Z 的概率密度;
- (3) 求 $E\left(\frac{X}{Y}\right)$.