Types of Visualizations (Beyond Numeric/Statistical)

John Keyser

CONNECTION AND FLOW

Graph Drawing

 Graph Drawing is a whole research area of its own

 Often just understanding the adjacency relationships is the goal

 The way to lay out and draw the nodes, edges, etc. can vary significantly

Node-link Layouts

 The direction and length of the edges can be used to provide information

Node-link Enhancements

 Can use color, size to provide information at nodes and/or edges

Image from:

Image from:

Arc Diagram

- Vertices are along a line
- Edges are semicircle or elliptical arcs

Chord Diagram

- Entities arranged around circle
- Arcs drawn between entities
 - Shows flow or connection between pairs
 - One asymmetric arc
 - Two directed arcs
 - Larger is more important
 - Can be directed or show net flow
- Usually needs explanation for understanding

Sankey Diagram

- Shows flow or connections for different stages, times, or categories
- Width of band shows proportion moving from one level to next

HIERARCHICAL VISUALIZATIONS

Hierarchies

- Hierarchical classifications are common in data representations
 - Trees
 - Organizational charts
 - Time (Year/Month/Day/Hour/Minute/Second)
 - Directory structure
 - Presentations/writing
 - Etc.
- Key aspect: each item can be represented as a subcomponent of a single "parent" item

Using Hierarchies in Visualizations

- Viewer should be able to understand data, and how it relates
- Hierarchy should be used to organize and display data so that the groupings are clear
 - The display of the hierarchy itself can also be used to capture a variable
 - Or, the hierarchy can just be used to clarify relationships

Indentation

- One of the simplest ways to demonstrate hierarchical relationship
 - Indentation
 level shows
 generation,
 most recent
 item of lesser
 level is parent
 - e.g. code in Python

Node-link layout

- The most basic approach like traditional tree diagrams in **Computer Science**
- Root at top (or left, bottom)
- Each generation at same height
- No crossing lines
- Limitations to size of feasible tree

Images from:

Image from:

Node-link Layouts

Tree does not have to be laid out in hierarchy

 Placement of root, direction of nodes, edge shape, etc. can change

Reingold-Tilford "Tidy" Trees

- An algorithm to produce "nice" layouts of trees in traditional sense
 - Compact layout
 - Isomorphic subtrees are drawn the same way
 - Preserves ordering, symmetry
 - Idea has been adapted

Cone Trees

- Can put trees in 3D rather than 2D
 - Allows greater spread, less clutter
 - Also common to place in hyperbolic space,

and draw projection

3D can have issues

Depth, occlusion, etc.

Dendrogram

- Dendrograms use orthogonal lines
- All leaves are at the same level

Cluster Dendrogram

Dendrograms With Heat Maps

Dendrograms combine easily with grid layouts

Icicle Trees

- Each generation of tree is a new level
- All levels are same width
- Children implied by lining up underneath parent
- Size can encode a variable (e.g. amount)

Image from:

https://www.cs.umd.edu/~ben/papers/Wongsuphasawat2011LifeFlow.pdf

Radial Subdivision

 Many of the linear forms we've seen can be wrapped around a circle to create a radial version.

Radial Dendrogram Layouts

Dendrograms can be laid out in linear or in

circular/other forms

I the transfer of the tr

Images from:

"Sunburst" - Radial Icicle Tree

Images from:

https://www.syncfusion.com/jquery/aspnet-web-forms-ui-controls/sunburst-chart and https://link.springer.com/chapter/10.1007/978-3-030-45442-5 21

Enhancing Radial Layouts

Information can be added along the outer edge of a

radial layout

Image from:

https://public.flourish.studio/visualisation/4269868/

CONTAINMENT

Hierarchy By Containment

- Basic Idea: we will show hierarchy by containment
 - Sort of like a Venn Diagram

Circle Packing

- Idea is to use a Venn-like approach to show hierarchy
- Circle size can show values
 - Onlycomparable atsame generation

Carbon emissions around the world (2014) Turkey Thailand Russia Italy **United Kingdom** China Taiwan Iran Germany Poland Indonesia Japan Saudi Arabia South Africa Australia Brazil Canada Mexico **USA**

Africa

South America

Oceania

North America

Tree Maps

- Divide a rectangular region by hierarchy
 - Alternate horizontal/vert ical divisions by generation
- Area is used to show a value
- Color often used to show second value (dependent variables)

Tree Maps and Hierarchy

- The hierarchy is sometimes difficult to determine
 - The dividing lines are often not obvious
 - Usually not the best choice if hierarchy is critical to understand
- Several algorithms for optimizing treemap layout when there are many entities at one level
 - Clustering, squarification, etc.

Image from:

Tree Maps - Containment

- Hierarchy
 can be made
 explicit by
 labeling
 containment
- But, area is no longer comparable at all levels

Tree Maps - Containment

Image from:

https://www.devexpress.com/Products/NET/Controls/WinForms/TreeMap/

Tree Maps and Ordering

- Tree maps can be used without hierarchy or containment
 - One gets assigned to provide "nice" layout
 - Techniques can be used to modify size to make layout more appealing
 - The ordering may be adjusted for layout
 - Useful when there are many items at one level

Tree Maps Advantages

 Can display large amounts of data, multiple variables, with little waste

Still to Come

- We will discuss maps separately next time
 - As well as taxonomies of visualizations
- Class reminders:
 - No class/office hours Monday & Tuesday (Fall break)
 - Due today: HW 2 and Survey 5
 - Paper selection: 1 week from today
 - Step 2: 2 weeks from today
 - Coming up: Survey 6