# Analyse de la sécurité de primitives symétriques dédiées à diverses techniques de preuve

### Soutenance de Stage Clémence Bouvier stage encadré par Anne Canteaut et Léo Perrin

2 septembre 2020



# Stage à l'INRIA

 $\mbox{\bf INRIA}$  : Institut National de Recherche en Informatique et en Automatique Équipe-projet  $\mbox{\bf COSMIQ}$ 

Stage encadré par Anne Canteaut et Léo Perrin



### Plan

# Analyse de la sécurité de primitives symétriques dédiées à diverses techniques de preuve

- Contexte
  - Usages émergents en cryptographie symétrique
  - Degré algébrique
  - Présentation de MiMC
- Contributions pendant le stage
  - Degré algébrique de MiMC
  - Degré algébrique de la transformation inverse



# Usages émergents en cryptographie symétrique

#### Cryptographie symétrique :

- chiffrement à flots
- chiffrement par blocs : indistinguable d'une permutation aléatoire



FIGURE - Chiffrement par blocs



FIGURE - Permutation aléatoire

# Usages émergents en cryptographie symétrique

**Problématique** : Analyser la sécurité de nouvelles primitives symétriques

Protocoles nécessitant de nouvelles primitives :

- calcul multi-partite (MPC)
- chiffrement homomorphe (FHE)
- systèmes de preuve à apport nul de connaissance (zk-SNARK, zk-STARK)

Déploiement de la Blockchain

Primitives conçues pour minimiser le nb de multiplications dans un corps fini  $\Rightarrow$  utilisation de fonctions non-linéaires sur un corps finis  $\mathbb{F}_q$  de grande taille (tel que  $\mathbb{F}_{2^n}$  où  $n \sim 128$ , ou des corps premiers)

# Degré algébrique

Soit  $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ , il existe alors une unique représentation polynomiale univariée sur  $\mathbb{F}_{2^n}$  de degré au plus  $2^n - 1$ :

$$F(x) = \sum_{i=0}^{2^n-1} b_i x^i; b_i \in \mathbb{F}_2^n$$

#### Définition

**Degré algébrique** de  $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ :

$$\deg(F) = \max\{wt(i), \ 0 \le i < 2^n, \ \text{et} \ b_i \ne 0\}$$

### Proposition [BC13]

Si  $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$  est une permutation, alors

$$\deg(F^{-1}) = n - 1 \iff \deg(F) = n - 1$$

# Le chiffrement par bloc MiMC

### Construction de MiMC [AGR+16] :

- blocs de n bits  $(n \approx 127)$
- clé k de n bits
- déchiffrement : remplacer  $x^3$  par  $x^s$  où  $s = (2^{n+1} 1)/3$



FIGURE - Chiffrement MiMC avec r tours

Analyser la sécurité du chiffrement : Cryptanalyse

⇒ Étudier l'évolution du **degré algébrique** de la transformation



### Analyse de la sécurité

Un premier palier :

• Tour 1 : deg = 2

$$\mathcal{P}_1(x) = (x+k)^3 = x^3 + kx^2 + k^2x + k^3$$

$$1 = [1]_2 \ 2 = [10]_2 \ 3 = [11]_2$$

• Tour 2 : deg = 2

$$\mathcal{P}_{2}(x) = ((x+k)^{3} + k_{1})^{3}$$

$$= x^{9} + kx^{8} + k_{1}x^{6} + k^{2}k_{1}x^{4} + k_{1}^{2}x^{3} + (k^{4}k_{1} + kk_{1}^{2})x^{2}$$

$$+ (k^{8} + k^{2}k_{1}^{2})x + (k^{3} + k_{1})^{3} \quad \text{où } k_{1} = k + c_{1}$$

$$1 = [1]_2 \ 2 = [10]_2 \ 3 = [11]_2 \ 4 = [100]_2 \ 6 = [110]_2 \ 8 = [1000]_2 \ 9 = [1001]_2$$



# Observation du degré algébrique de MiMC

FIGURE – Évolution du degré algébrique de la fonction de chiffrement (pgm Sage et C)



# Étude du degré algébrique de MiMC

### Proposition

Liste des exposants susceptibles d'apparaître dans le polynôme :

$$\mathcal{M}_r = \{3j \mod (2^n - 1) \text{ où } j \leq i, i \in \mathcal{M}_{r-1}\}$$

Si 
$$3^r < 2^n - 1$$
:  
borne max =  $2 \times \lfloor \log_2(3^r)/2 \rfloor$   
borne min =  $wt(3^r)$ 

FIGURE – Comparaison du degré observé avec les bornes (pour n = 25)



# Étude du degré algébrique de MiMC

**Conjecture :** Évolution du degré algébrique :  $2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$ 

Étude des monômes absents dans le polynôme :

- aucun exposant  $\equiv 5,7 \mod 8$  donc absence des exposants  $2^{2k}-1$   $\underline{\text{Exemple}}\ 63 = 2^{2\times 3}-1 \not\in \mathcal{M}_4 = \{0,3,\ldots,81\}$   $\Rightarrow deg < 6 = wt(63)$
- si  $k = \lfloor \log_2(3^r) \rfloor$ , pour tout r > 4,  $2^{k+1} 5 > 3^r$ <u>Exemple</u>  $\lfloor \log_2(3^8) \rfloor = 12$  et  $3^8 = 6561 < 8187 = 2^{13} - 5$  $\Rightarrow deg < 12 = wt(8187)$

# Étude du degré algébrique de MiMC

**Conjecture :** Évolution du degré algébrique :  $2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$ 

Étude des monômes d'exposant de poids maximal, présents dans le polynôme :

• 
$$2^{2k-1} - 5$$
 et  $2^{2k} - 7$  si  $\lfloor \log_2(3^r) \rfloor = 2k$   
Exemple  $27 = 2^{2 \times 3 - 1} - 5$ ,  $57 = 2^{2 \times 3} - 7 \in \mathcal{M}_4 = \{0, 3, \dots, 81\}$   
 $\Rightarrow deg = 4 = wt(27) = wt(57)$ 

• 
$$2^{2k+1} - 5$$
 si  $\lfloor \log_2(3^r) \rfloor = 2k + 1$   
Exemple  $123 = 2^{2 \times 3 + 1} - 5 \in \mathcal{M}_5 = \{0, 3, \dots, 243\}$   
 $\Rightarrow deg = 6 = wt(123)$ 

$$\Rightarrow$$
 palier lorsque  $\lfloor \log_2(3^r) \rfloor = 2k-1$  et  $\lfloor \log_2(3^{r+1}) \rfloor = 2k$ 



### Forme des coefficients

FIGURE – Comparaison du degré algébrique pour les tours r de MiMC avec  $x^9$  et pour les tours 2r de MiMC avec  $x^3$  (n = 23)



Exemple : coefficients des monômes d'exposant de poids maximal au tour 4

$$27: c_1^{18} + c_2^2$$

$$30:c_1^{17}$$

51 : 
$$c_1^{10}$$

54 : 
$$c_1^9$$
 +





### Étude la transformation inverse

FIGURE – Évolution du degré algébrique de la fonction de déchiffrement



Fonction inverse :  $F: x \mapsto x^s, s = (2^{n+1} - 1)/3$ 

# Quelques pistes étudiées

$$s = (2^{n+1} - 1)/3 = [101..01]_2$$

- Palier entre les tours 1 et 2
  - Tour 1 : deg = wt(s) = (n+1)/2
  - Tour 2 :  $deg = \max\{wt(js), \text{ pour } j \leq s\} = (n+1)/2$

### Proposition

pour  $j \leq s$  tel que  $wt(j) \geq 2$ :

$$wt(js) \in \begin{cases} [wt(j) - 1, (n-1)/2] & \text{si } wt(j) \equiv 2 \mod 3 \\ [wt(j), (n+1)/2] & \text{sinon} \end{cases}$$

## Quelques pistes étudiées

$$s = (2^{n+1} - 1)/3 = [101..01]_2$$

- Palier entre les tours 1 et 2
  - Tour 1 : deg = wt(s) = (n+1)/2
  - Tour 2 :  $deg = \max\{wt(js), \text{ pour } j \leq s\} = (n+1)/2$

### Proposition

pour  $j \leq s$  tel que  $wt(j) \geq 2$ :

$$wt(js) \in \begin{cases} [wt(j) - 1, (n-1)/2] & \text{si } wt(j) \equiv 2 \mod 3 \\ [wt(j), (n+1)/2] & \text{sinon} \end{cases}$$

• Comportement sur les tours suivants :

**Conjecture :** si  $2 \le j \le 2^n - 2$  on a

$$wt(js) \in \begin{cases} [k, (n+2k-3)/2] & \text{si } wt(j) = 2k \\ [k+2, (n+2k+1)/2] & \text{si } wt(j) = 2k+1 \end{cases}$$



## Autres permutations

Autres permutations avec un palier entre les tours 1 et 2 :

### Proposition

Soit 
$$F: \mathbb{F}_2^n \to \mathbb{F}_2^n, x \mapsto x^d$$
 où  $d = 2^k - 1$ . Si  $d^2 < 2^n - 1$ , alors :

$$deg((x^d + c)^d) = deg(x^d)$$
 où  $c$  est une constante

Mais pas de palier entre les tours 1 et 2 pour l'inverse de ces permutations!

### Exemple (dans $\mathbb{F}_{2^{11}}$ )

- chiffrement :  $15 = 2^4 1 \Rightarrow$  palier
- déchiffrement :  $15^{-1} = 273$  donc
  - degré algébrique au tour 1:3=wt(273)
  - degré algébrique au tour 2 :  $5 = wt(273 \times 273 \mod 2^n 1)$



### Conclusion

### Bilan du stage

paliers dans l'évolution du degré de la fonction de chiffrement MiMC

$$2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$$

- transformation inverse
  - palier entre les tours 1 et 2
  - tours suivants?

### Conclusion

### Bilan du stage

paliers dans l'évolution du degré de la fonction de chiffrement MiMC

$$2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$$

- transformation inverse
  - palier entre les tours 1 et 2
  - tours suivants?

### Perspectives

Thèse à l'INRIA sous la direction d'Anne Canteaut et Léo Perrin

- structure algébrique univariée simple
  - étudier l'impact sur la résistance aux attaques classiques
  - rechercher de nouvelles techniques d'attaques
- primitive définie sur un corps premier



Merci pour votre attention

