

Art of Problem Solving 2009 Balkan MO

T	11	3 F	\sim	00	00
Bal	lkan	M	()	20	109

1	Solve the equation $3^x - 5^y = z^2.$
	in positive integers.
	Greece
2	Let MN be a line parallel to the side BC of a triangle ABC , with M on the side AB and N on the side AC . The lines BN and CM meet at point P . The circumcircles of triangles BMP and CNP meet at two distinct points P and Q . Prove that $\angle BAQ = \angle CAP$.
	Liubomir Chiriac, Moldova
3	A 9×12 rectangle is partitioned into unit squares. The centers of all the unit squares, except for the four corner squares and eight squares sharing a common side with one of them, are coloured red. Is it possible to label these red centres C_1, C_2, \ldots, C_{96} in such way that the following to conditions are both fulfilled i) the distances $C_1C_2, \ldots, C_{95}C_{96}, C_{96}C_1$ are all equal to $\sqrt{13}$, ii) the closed broken line $C_1C_2 \ldots C_{96}C_1$ has a centre of symmetry? Bulgaria
4	Denote by S the set of all positive integers. Find all functions $f:S\to S$ such that $f(f^2(m)+2f^2(n))=m^2+2n^2$
	for all $m, n \in S$. Bulgaria

Contributors: Ahiles