PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-202194

(43)Date of publication of application: 30.07.1999

(51)Int.CI.

G02B 13/00 G02B 13/18 G11B 7/00 G11B 7/135

(21)Application number: 10-006409

(71)Applicant:

CANON INC

(22)Date of filing:

16.01.1998

(72)Inventor:

NISHIKAWA KOICHIRO

(54) HIGH-NUMERICAL-APERTURE OPTICAL SYSTEM AND OPTICAL INFORMATION RECORDING AND REPRODUCING **DEVICE USING SAME**

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a high-NA(numerical aperture) optical system with good image forming performance and the optical information recording and reproducing device using this optical system by suppressing small a spherical aberration generated owing to variation in the thickness of the transparent protection substrate part of a recording medium.

SOLUTION: This high-numerical-aperture optical system converges the luminous flux from a light source on the information surface of the recording medium through the transparent protection substrate part 16 of the recording medium 6. The optical system has optical elements, such as a nearly hemispherical convex lens and an objective, arranged along the optical path, at a fine air interval on the transparent protection substrate part 16 and the respective optical elements of the optical system are so positioned that the spherical aberration generated by the optical system is less than a specific value against specific thickness variation of the transparent protection substrate part 15.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-202194

(43)公開日 平成11年(1999)7月30日

(51) Int.Cl. ⁸	徽別記号	FΙ	
G 0 2 B 13/0	0	G 0 2 B 13/00	·
13/1	8	13/18	·
G11B 7/0	0	G11B 7/00	Q
7/1	35	7/135	Α
		審査請求 未請求	請求項の数6 OL (全 7 頁)
(21)出願番号	特願平10-6409	(71)出願人 0000010	007
A. T.		キヤノ	ン株式会社
(22)出願日	平成10年(1998) 1月16日	東京都大	大田区下丸子3丁目30番2号
		(72)発明者 西川	幸一郎
			大田区下丸子3丁目30番2号 キヤ 式会社内
		(74)代理人 弁理士	
••		·	
			·

(54) 【発明の名称】 高開口数光学系及びそれを用いた光学的情報記録再生装置

(57)【要約】

【課題】 記録媒体の透明保護基板部の厚み変化に伴って発生する球面収差を、小さく抑えることで、結像性能のよい高NAの光学系、および、この光学系を用いた光学的情報記録再生装置を提供する。

【解決手段】 光源からの光束を、記録媒体の透明保護基板部を通して該記録媒体の情報面に集光する高開口数光学系であって、前記光学系は、その光路上に、前記透明保護基板部に対して微小な空気間隔を介して、略半球形状の凸球面レンズ、対物レンズなどの光学要素を配置しており、前記透明保護基板部の所定の厚み変動に対して、前記光学系で発生する球面収差が所定値以内になるように、前記光学系の各光学要素が位置決めされていることを特徴とする。

1

【特許請求の範囲】

【請求項1】 光源からの光束を、記録媒体の透明保護 基板部を通して該記録媒体の情報面に集光する高開口数 光学系であって、

前記光学系は、その光路上に、前記透明保護基板部に対 して微小な空気間隔を介して、略半球形状の凸球面レン ズ、対物レンズなどの光学要素を配置しており、

前記透明保護基板部の所定の厚み変動に対して、前記光 学系で発生する球面収差が所定値以内になるように、前 記光学系の各光学要素が位置決めされていることを特徴 10 とする光学系。

【請求項2】 前記透明保護基板部の前記所定の厚み変 動が±50μmであり、これに対する前記光学系の各光 学要素で発生する球面収差の前記所定値が、±0.2λ p-v(ただし、λは前記光学系で使用される光の波 長)であることを特徴とする請求項1に記載の光学系。

【請求項3】 前記光学系のNA(開口数)が0.80 以上0.96以下であることを特徴とする請求項1また は請求項2に記載の光学系。

の曲率半径をa、厚みをSd、前記記録媒体の透明保護 基板部の厚みをtとした時、(Sd+t-a)/aの値 がゼロより大きく、0.48以下であることを特徴とす る請求項1ないし3の何れかに記載の光学系。

【請求項5】 前記光学系における微小な空気間隔が、 0~32μmの所定の値に設定されていることを特徴と する請求項1ないし4の何れかに記載の光学系。

【請求項6】 光源からの光束を、記録媒体の透明保護 基板部を通して該記録媒体の情報面に集光し、情報の記 録/再生を行う光学的情報記録再生装置において、 請求項1ないし5の何れかに記載の光学系を用いたこと を特徴とする光学的情報記録再生装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光源からの光束を 光学的情報記録媒体に集光する光学系、及び、それを用 いた光学的情報記録再生装置に関する。

[0002]

【従来の技術】近年、光源からの光束を光学的情報記録 媒体に集光し、情報の記録/再生を行う光学的情報記録 40 再生装置において、より高密度な装置を実現するための 研究が盛んに行われている。

【0003】例えば、髙開口数(High Numerical Apert ure:以下、高NAと称す)を達成した光学系に関する技 術が、特開平8-315404号公報に記述されてい る。ととでは、凸球面レンズ、所謂、ソリッドイマージ ョンレンズ (Solid ImmersionLens: SIL)を、対物 レンズと記録媒体との間に配置し、高NA光学系を形成 している。

【0004】即ち、凸球面レンズの曲率半径と厚み、記 50 (Sd+t-a)/aの値がゼロより大きく、0.48

録媒体の透明保護基板部の厚み、さらに、凸球面レンズ と透明保護基板部との間隔を、所望の値にして、対物レ ンズ形状を最適化することで、高NA光学系を実現して いる。

2

[0005]

【発明が解決しようとする課題】ところが、一般に、光 学的情報記録再生装置では、記録/再生方式などの異な る複数種の記録媒体を対象としていて、記録媒体自体 は、同一の仕様で製造されているとしても、その透明保 護基板部の厚さにバラツキがある。また、製造工程にお ける誤差で、一つ種類の記録媒体の間でも、透明保護基 板部の厚さに、許容し難い程のバラツキがある場合もあ

【0006】図8に、従来例のような場合における記録 媒体の透明保護基板部の厚み変化と発生する球面収差の 関係を示す。通常、記録媒体の透明保護基板部の厚みに 対する規格は、中心値に対して±50μm程度である。 従って、従来例の場合、透明保護基板部の厚み変化のみ で、 | ₩40 | = 0 . 4~0 . 5 λp - v (ここで、₩ 【請求項4】 前記光学系における凸球面レンズの球面 20 40は3次の球面収差、入は使用波長を表す)程度の球 面収差が発生してしまうことになる。即ち、上述の従来 例の場合、記録媒体の透明保護基板部の厚み変化に伴 い、大きな球面収差が発生し、結像性能が著しく損なわ れるという問題があった。

> 【0007】本発明は、上記問題点を解決するためにな されたもので、その目的とするところは、記録媒体の透 明保護基板部の厚み変化に伴って発生する球面収差を、 小さく抑えることで、結像性能のよい高NAの光学系、 および、この光学系を用いた光学的情報記録再生装置を 30 提供することにある。

[0008]

【課題を解決するための手段】このため、本発明では、 光源からの光束を、記録媒体の透明保護基板部を通して 該記録媒体の情報面に集光する高開口数光学系であっ て、前記光学系は、その光路上に、前記透明保護基板部 に対して微小な空気間隔を介して、略半球形状の凸球面 レンズ、対物レンズなどの光学要素を配置しており、前 記透明保護基板部の所定の厚み変動に対して、前記光学 系で発生する球面収差が所定値以内になるように、前記 光学系の各光学要素が位置決めされていることを特徴と

【0009】との場合、前記透明保護基板部の前記所定 の厚み変動が±50μmであり、これに対する前記光学 系の各光学要素で発生する球面収差の前記所定値が、± $0.2 \lambda p - v$ (ただし、 λ は前記光学系で使用される 光の波長)であること、前記光学系のNA(開口数)が 0.80以上0.96以下であること、前記光学系にお ける凸球面レンズの球面の曲率半径をa、厚みをSd、 前記記録媒体の透明保護基板部の厚みをもとした時、

3

以下であること、更には、前記光学系における微小な空気間隔が、 $0\sim32\mu$ mの所定の値に設定されていることが、本発明の実施の形態として、より有効である。

【0010】また、本発明では、光源からの光束を、記録媒体の透明保護基板部を通して該記録媒体の情報面に集光し、情報の記録/再生を行う光学的情報記録再生装置において、前述の高NA光学系を用いたことを特徴とする。

【0011】従って、このような発明の構成によって、 果を、図3、図4、図5に示す。光学系11の開口数 記録媒体の透明保護基板部の厚み変化に伴い発生する球 10 NA、ソリッドイマージョンレンズ5の曲率半径を a (完全半球ならば、その厚みは a となる)、厚みの増 NA光学系、及び、その光学系を用いた装置を提供する をt (ソリッドイマージョンレンズが完全半球ならば ことが可能となる。 t は透明保護基板部の厚みとなる)、t / a = r とす

[0012]

【発明の実施の形態】以下、本発明の実施の形態を、図1に示す光ディスク装置用光へッドに適用した事例を参照して、具体的に説明する。ここでは、半導体レーザー1からのビームをコリメーター2で平行ビームとし、ビーム整形付きビームスプリッター3を通して、光学系11で記録媒体6内の情報記録面上にスポットを形成する。

【0013】 ことでの記録は、例えば、上記スポットを 高強度にし、磁気ヘッド12を変調することによりなさ れる。記録媒体6からの反射光は、ビーム整形付きビー ムスプリッター3で分離され、1/2波長板7で、偏光 面を略45度回転させられ、集光レンズ8にて、偏光ビ ームスプリッター9を介して、センサー10に集光す る。そして、センサー10からの出力は、演算により、 サーボ信号、情報データ信号となる。

【0014】光学系11は、図2に示すように、その光 30路に、対物レンズ4、ソリッドイマージョンレンズ5、記録媒体6の順序で配置された構成で、ソリッドイマージョンレンズ5と記録媒体6の透明保護基板部16との間には、微小な空気間隔(以下、エアーギャップと称す)が形成されている。なお、ソリッドイマージョンレンズ5と記録媒体6の透明保護基板部16とは、等しい屈折率に設定されている。図2は、との実施の形態を示している。

【0015】図2から理解されるように、ソリッドイマージョンレンズ5への光の入射が、略垂直、或いは、一 40 点斜線で示されている光軸との相対的角度が大きくなるように屈折するので、記録媒体6の透明保護基板部16の屈折率をnとした時、光学系11の開口数(NA)は、対物レンズ4単体での開口数のn倍強となり、高NAが達成される。

【0016】ととろで、回折限界の性能が得られる波面 収差は、RMS値で 0.072λ rms以内である。そして、主な収差は、球面収差、コマ収差、非点収差であり、 0.072λ rmsを各収差に振り分けると、球面 収差は、 0.6λ p-v以内となる。

【0017】また、上述したような光学系の場合、球面 収差の発生要因は、対物レンズ4の固有エアーギャップ (AIR GAP)の変動によるもの、記録媒体の透明保護基 板部の厚み変化によるものが考えられる。従って、各要 因に振り分けると、記録媒体の透明保護基板部の厚み変化によるものは、0.2 λ p - v以下となる。

4

[0019]図3の(a)には、r=0.333、n=
1.58で、光学系11の開口数をNAの値とした場合、透明保護基板部16の厚み変動ΔtがΔt=±50
μ mの時に発生する球面収差が、最小の時(実線)のエアーギャップ値、発生する球面収差が±0.2λp-ν以内で許容されるエアーギャップの最大値(点線)、及び、許容されるエアーギャップの最小値(一点斜線)の相対関係を示している。

【0020】図3の(b)には、図3の(a)に基づいて、光学系11の開口数、NAの値と公差(発生する球面収差が最小の時のエアーギャップ値と、許容されるエアーギャップの最大値あるいは最小値との差異の内、小さい方の値)との関係を示している。なお、この値は絶対値で示してある。また、ここでは、対物レンズ4の形状が、所定のNA、r、n、及び、任意のエアーギャップで異なり、個々の条件下で、形状を最適化している。更に、図4、図5も同様の条件下で得られた。

【0021】図3の(a)、(b)により、NAが0.96で、ほぼ公差が無くなることが解る。ここでは、公差が無くなるNAが、r、nが大きくなると、若干、小さい方へシフトし、r、nが小さくなると、若干、大きい方へシフトする。しかし、概ね、0.96で代表できる。

【0022】ところで、本発明においては、高NAの効果を、従来のソリッドイマージョンレンズを使用しない装置での記録容量に対して、少なくとも2倍以上の記録容量を実現できることにあると考える。因みに、従来のソリッドイマージョンレンズを使用しない装置では、対物レンズの開口数は0.50~0.60程度である。従って、2倍以上の記録容量を達成するためには、スポットサイズが1/1.4以下に縮小されなければ、つまり、NAを1.4倍以上にしなければならない。

【0023】即ち、ソリッドイマージョンレンズ5を使 50 用した光学系11では、そのNAを0.50~0.60

の約1. 4倍、換言すれば、およそ0. 80以上としな ければならない。これを式で表現すれば、

 $0.80 \le NA \le 0.96$ が望ましい。

[0024] 図4の(a) は、NA=0.87、n= 1.58で、r (= t/a) の値と、透明保護基板部 l 6の厚み変動 Δ t が Δ $t = \pm 5$ 0 μ m の時に発生する球 面収差が、最小の時 (実線) のエアーギャップ値、発生 する球面収差が±0.2λp-v以内で許容されるエア ーギャップの最大値(点線)、及び、許容されるエアー 10 1.50で、最大のエアーギャップの値は、32μmで ギャップの最小値 (一点斜線) との関係を示している。 【0025】図4の(b)は、図4の(a) に基づい て、r(= t/a)の値と公差との関係を示している。 との値は絶対値で示してある。図4の(a)、(b)よ り、rが0.48で、ほぼ公差が無くなることが、ま た、rの値が小さくなれば、単調に公差が増えることが 解る。とれを式で表現すれば

..... (2) $0 < r \le 0.48$ が望ましい。

で、透明保護基板部16の屈折率nと、透明保護基板部 16の厚み変動△tが△t=±50μmの時に発生する 球面収差が、最小の時(実線)のエアーギャップ値、発 生する球面収差が $\pm 0.2 \lambda p - v$ 以内で許容されるエ アーギャップの最大値(点線)、及び、許容されるエア ーギャップの最小値(一点斜線)との関係を示してい

【0027】通常、記録媒体の透明保護基板部の材質 は、ポリカーボネイトが採用されていて、屈折率は約 1.58である。また、その材質がガラスである場合 は、通常、1.5程度である。従って、1.58を中心 値として、下限が1.50程度、上限が1.66程度の 値を採用した。

[0028]図5から、 $n=1.50\sim1.58\sim1.$ 66で、許容されるエアーギャップの値にして、±15 %程度の変化があることが解る。また、図3、図4、図 5より、NAが小さい時にrの値は0.2~0.3の * *間、あるいは、屈折率nが小さい時ほど、許容されるエ アーギャップが大きいことが解る。即ち、(1)式にお いて、NA=0. 80、r=0. 2~0. 3、n=1. 50で、最大値近傍となる。

【0029】実際、NA=0.80、r≒0.26、n = 1.50の時、記録媒体の透明保護基板部16の厚み 変動Δ t.がΔ t = ± 5 0 μ m の時に発生する球面収差が 最小の時、エアーギャップは18 µmである。そこに公 差を加味すると、NA=0.80、r=0.22、n= ある。従って、許容されるエアーギャップは、下はゼロ より大きく、32μm程度までである。これを式で表現 すれば

 $0 < a \le 32 \mu m$ (3)

図6は、上記検討より得られた数値を基にして、近似関 数的に得られたグラフを示す。とこで、X軸はr (= t /a)の値を、Y軸は光学系11の開口数NA、Z軸は エアーギャップ値αを表している。なお、図中、αはn =1.58の時の曲面を、βはn=1.50時の曲面を 【0026】図5は、NA=0.87、r=0.333 20 示している。各曲面は、エアーギャップ値が大きくなる 方向に公差を載せてある。従って、図6からも、許容さ れるエアーギャップが、下はゼロより大きく、32μm 程度であることが確認される。

[0030]

【実施例】次に、実施例の具体的数値について述べる。 表1には、式(1)~式(3)を満した条件が示されて おり、ことでは、光学系11の開口数NAが0.87、 ソリッドイマージョンレンズ5が完全半球で、曲率半径 a=1.2mm、透明保護基板部厚0.4mmであり、 30 Cれに対してエアーギャップは12 µmである。なお、 基板はポリカーボネイトであり、 n=1.58である。 また、対物レンズ4は、非球面レンズで、非球面係数は 表2に示すもので、その形状は、光線高さをhとして、 下式で表される。

[0031] - 【数1】

$$X = \frac{h^2/r}{1 + \sqrt{1 - (1 + k)(h/r)^2}} + Ah^4 + Bh^6 + Ch^8 + Dh^{10} + Eh^{12}$$

[0032]

【表1】

波 長	6 5 0 nm				
入射瞳径	φ3. 48mm				
光学系NA	0.87				
		r	đ	glass	n
対物レンズ	r1	2. 33844	2. 05		1.580380
	г2	-92. 09446	0.65602		1
ソリット*イマーシ*ョンレンス*	13	1. 2	1.2	お*リカーホ*ネイト	1.579669
	г4	Infinity	0. 012		1
透明保護基板部	r 5	Infinity	0.4	ホーリカーホーネイト	1.579669
像 面	16	Infinity			

[0033]

* *【表2】

	r 1	-	r 2
k	$-1. 27022 \times 10^{-1}$	k	-1.39358×10^{-1}
A	-3.38636×10^{-8}	A	3. 44684×10 ⁻³
В	-4.86998×10^{-4}	В	-6.44286×10^{-6}
С	$-6. 27452 \times 10^{-6}$	С	-2.76933×10^{-4}
D	-1.62872×10^{-6}	D	4. 96586×10 ⁻⁵
Е	-2.45250×10^{-6}	E	8. 48012×10 ⁻⁶

図7に、表3に示される組み合わせでの、記録媒体の透 明保護基板部の厚み変化Atと発生する球面収差AW4 0の関係を示す。上記数値例は、表3のA(図7中の 40 【表3】

A) に相当する。

[0034]

10

·	NA	а	t	· r	air gap
A	0.87	1. 2	0. 4	0.333	1 2
В	0. 92	1. 2	0. 4	0.333	1 0
С	0.87	1. 4.4	0. 4	0. 278	16
D	0.87	1. 2	0. 5	0.417	. 8

表3の各組み合わせは、式(1)~式(3)を満しており、また、基板はポリカーボネイトで、n = 1.58である。図7から解るように、表3の各組み合わせにおいては、記録媒体の透明保護基板部の厚み変化 Δ tが±50 μ m以内であるのに対して、発生する球面収差 Δ W40は±0.2 λ p-vである。従って、各組み合わせとも、十分に球面収差の発生が抑えられている。

9

【0035】以上のようにして、記録媒体の透明保護基 板部の厚み変化に伴い発生する球面収差を小さく抑えた 20 高NA光学系が構成された。

[0036]

【発明の効果】以上述べたように、本発明においては、 光源からの光束を、記録媒体の透明保護基板部を通して 該記録媒体の情報面に集光する光学系を、対物レンズ、 略半球形状の凸球面レンズ、微小な空気間隔を挟んで位 置する前記透明保護基板部から構成し、前記透明保護基 板部の所定の厚み変動に対して、前記光学系で発生する 球面収差が所定値以内になるように、光学系を配置した ので、記録媒体の透明保護基板部の厚み変化に伴い発生 30 する球面収差を小さく抑えた高NA光学系を提供すると とができる。

【図面の簡単な説明】

【図1】本発明の光学系を適用した光ディスク装置用光 ヘッドを示す図である。

【図2】本発明の光学系の実施例を示す図である。

【図3】本発明に関する光学系の開口数と、透明保護基 板部の厚み変動が△ t = ± 5 0 μ m の時に発生する球面* * 収差が $\pm 0.2 \lambda p - v$ 以内であるエアーギャップの値 との関係を表すグラフである。

【図4】本発明に関するr (t=t/a)の値と、透明保護基板部の厚み変動が $\Delta t=\pm 50~\mu$ mの時に発生する球面収差が ± 0 . $2~\lambda~p-v$ 以内であるエアーギャップの値との関係を表すグラフである。

【図5】本発明に関する透明保護基板部の屈折率と、透明保護基板部の厚み変動が△ t = ±50 μmの時に発生 20 する球面収差が±0.2 λ p - v以内であるエアーギャップの値との関係を表すグラフである。

【図6】本発明に関する、光学系の開口数、r(= t / a)の値、及び、透明保護基板部の屈折率と、透明保護基板部の厚み変動 Δ t = \pm 5 0 μ m の時に発生する球面 収差が \pm 0. 2 λ p - v 以内であるエアーギャップの値 との関係を近似的に表すグラフである。

【図7】本発明の実施例における透明保護基板部の厚み 変動と発生する球面収差の関係を示すグラフである。

【図8】従来例における透明保護基板部の厚み変動と、 発生する球面収差との関係を示すグラフである。

【符号の説明】

- 1 半導体レーザー
- 4 対物レンズ
- 5 ソリッドイマージョンレンズ
- 6 記録媒体
- 11 光学系
- 16 透明保護基板部

【図4】

[図8]

[図3]

[図6]

