Han Gong

Induction formal proof

5.4.2

Suppose $b_1, b_2, b_3, ...$ is the sequence defined as follow:

$$b_1=4,\ b_2=12$$

$$b_k=b_{k-2}+b_{k-1} \ \ \text{for all integer}\ k\geq 3$$

Prove that b_n is divisible by 4 for all integers $n \ge 1$

Theorem:

With the sequence defined as above, b_n is divisible by 4 for all integers $n \geq 1$.

Proof:

By definition of the sequence:

$$b_1 = 4$$

$$b_2 = 12$$

$$b_3 = b_{3-2} + b_{3-1} = b_1 + b_2$$

$$b_4 = b_{4-2} + b_{4-1} = b_2 + b_3$$

Set the statement: F(n) is b_n is divisible by 4.

We uses strong mathematical induction to prove that for every integer $n \in \mathbb{Z}, n \geq 1, F(n)$ is true. Basis:

To show that F(1), F(2) are true, b_1, b_2 must be divisible by 4, by definition of divisible:

If $a, b \in \mathbb{Z}$ and $a \neq 0$, a|b if there is an integer $c \in \mathbb{Z}$ such that $a \cdot c = b$.

Since $b_1 = 4$, and $b_2 = 12$, we have the following:

$$\frac{b_1}{4} = 1 \in \mathbb{Z}$$

$$\frac{b_2}{4} = 3 \in \mathbb{Z}$$

Where for b_1 , $b_1 = b$, c = 1, a = 4, where $b_1|4$, b_1 is divisible by 4.

Also for b_2 , $b_2 = b$, c = 3, a = 4, where $b_2|4$, b_2 is divisible by 4.

Both F(1), F(2) are true, therefore the basis are true.

Induction:

Suppose integer $k \in \mathbb{Z}, k \geq 3$, if F(i) is true for integer $i \in \mathbb{Z}, 1 \leq i \leq k$, then F(k+1) is true.

The induction hypothesis states that: $k \in \mathbb{Z}, k \geq 3$, and b_k is divisible by 4 for all integers $i \in \mathbb{Z}, 1 \leq i \leq k$.

We will show that F(k+1) is true, b_{k+1} is divisible by 4.

By definition, $k \geq 3$, which implies that $k+1 \geq 3$ and $k-1 \geq 2$, so we have:

$$b_{k+1} = b_{k-1} + b_k$$

By our inductive hypothesis, b_{k-1} and b_k are divisible by 4 since $k \le k$, $k-1 \le k$. By definition of divisibility, we have the following:

$$b_k = 4 \cdot x \ x \in \mathbb{Z}$$

$$b_{k-1} = 4 \cdot y \ y \in \mathbb{Z}$$

Substituting b_k, b_{k-1} into b_{k+1} , we have:

$$b_{k+1} = b_{k-1} + b_k$$

$$b_{k+1} = 4x + 4y$$

$$b_{k+1} = 4(x+y)$$

Substituting

Factoring

By integer addition, we have integer $z \in \mathbb{Z}, z = x + y$ Substituting t into b_{k+1} , we have:

$$b_{k+1} = 4z$$

Recall the definition of divisibility, b_{k+1} is divisible by 4.

Hence F(n) is true for n = k + 1. Induction is true.

Since both the basis and induction are true, therefore the original statement:

$$b_1 = 4, b_2 = 12$$

$$b_k = b_{k-2} + b_{k-1}$$
 for all integer $k \ge 3$

 b_n is divisible by 4 for all integers $n \ge 1$ is true. QED