#### FLORIDA STATE UNIVERSITY

# Assignment 1: Relations and Their Properties

## **Tyler Moses**

January 18, 2018

### 1 EXERCISE

For the relation:  $R = \{(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)\}$  on the set  $A = \{1,2,3,4\}$ , explain/show whether or not the relation is the following:

- (a) reflexive,
- (b) symmetric
- (c) antisymmetric
- (d) transitive

#### 1.1 SOLUTION

#### (a) reflexive:

Assume that the relation above is reflexive, then  $\forall a \in A \implies (a, a) \in R$  however  $1 \in A$  and  $(1, 1) \notin R \blacksquare$ 

#### (b) symmetric:

If *R* was symmetric then,  $\forall (a,b) \in R \implies (b,a) \in R$ , however  $(1,4) \in R \land (4,1) \notin R \blacksquare$ 

#### (c) antisymmetric:

If *R* was antisymmetric, then  $\forall x \forall y [((x, y) \in R \land (y, x)) \in R \implies (x = y)]$ , however  $(1, 3) \in R \land (3, 1) \in R \land (1 \neq 3)$ 

#### (d) transitive:

If *R* was transitive, then  $\forall x \forall y \forall z [(x,y) \in R \land (y,z) \in R \implies (x,z) \in R]$ , however  $(1,3) \in R \land (3,1) \in R \land (1,1) \not\in R \blacksquare$ 

#### 2 EXERCISE

Let the sets be relations on the real numbers:  $R_1 = \{(a, b) \in \mathbb{R}^2 | a \ge b\}$ , the "greater than or equal to" relation, and let  $R_2 = \{(a, b) \in \mathbb{R}^2 | a \ne b\}$ , the "unequal to" relation. Find:

- (a)  $R_1 \cap R_2$
- (b)  $R_1 R_2$
- (c)  $R_1 \oplus R_2$

#### 2.1 SOLUTION

(a)  $R_1 \cap R_2$ :

Let  $R = R_1 \cap R_2$ , then by definition

$$R = \{(a, b) \in \mathbb{R}^2 | (a \ge b) \land (a \ne b)\} \implies R = \{(a, b) \in \mathbb{R}^2 | (a > b)\} \blacksquare$$

**(b)**  $R_1 - R_2$ :

Let  $R = R_1 - R_2$ , then by definition:

$$R = R_1 \cap \overline{R_2} = \{(a, b) \in \mathbb{R}^2 | (a \ge b) \land \neg (a \ne b)\} = \{(a, b) \in \mathbb{R}^2 | (a \ge b) \land (a = b)\} = \{(a, b) \in \mathbb{R}^2 | (a = b)\} \blacksquare$$

(c)  $R_1 \oplus R_2$ :

Let  $R = R_1 \oplus R_2$ , then:

$$R = (R_1 - R_2) \cup (R_2 - R_1)$$

where,

$$(R_2 - R_1) = R_2 \cap \overline{R_1} = \{(a, b) \in \mathbb{R}^2 | (a \neq b) \land \neg (a \geq b)\} = \{(a, b) \in \mathbb{R}^2 | (a \neq b) \land (a < b)\} = \{(a, b) \in \mathbb{R}^2 | (a < b)\}$$
 and

$$R_1 - R_2 = \{(a, b) \in \mathbb{R}^2 | (a = b)\}$$

from the previous example. Therefore:

$$R = \{(a, b) \in \mathbb{R}^2 | (a = b) \lor (a < b)\} = \{(a, b) \in \mathbb{R}^2 | (a \le b)\} \blacksquare$$

#### 3 EXERCISE

- (a) How many **binary** relations are there on the set  $\{a, b, c\}$ ?
- (b) If  $R = \{(1,1), (1,2), (2,4), (3,1), (3,0)\}$ ,  $S = \{(1,2), (2,0), (3,1), (0,0), (4,3)\}$  find  $R \circ S$

### 3.1 SOLUTION

#### (a) How many binary relations are there on the set $\{a, b, c\}$ ?

By definition a binary operation is a subset of the cartesian product of A, therefore we have  $2^n$  where n = |AXA| = |A|x|A| = 3x3 = 9 therefore  $2^9 \blacksquare$ 

**(b)** If  $R = \{(1,1), (1,2), (2,4), (3,1), (3,0)\}$ ,  $S = \{(1,2), (2,0), (3,1), (0,0), (4,3)\}$  find  $R \circ S$  By definition,

$$R \circ S = \{(a, c) | (a, b) \in R \land (b, c) \in S(\exists b)\}$$

or

$$R \circ S = \{(1,2), (1,0), (2,3), (3,2), (3,0)\}$$

### 4 EXERCISE

R is the relation represented by the matrix  $M_R = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ , find the matrix for:

- (a)  $R^{-1}$
- (b)  $\overline{R}$
- (c)  $R \circ R$

#### 4.1 SOLUTION

(a) 
$$R^{-1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

**(b)** 
$$\overline{R} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

(c) 
$$R \circ R = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

### 5 EXERCISE

(a) The relation R is on  $\{1,2,3\}$ . Represent the relation

$$R = \{(1,1), (2,1), (2,2), (2,3), (3,2)\}$$

with a matrix.

- (b) By looking at the matrix, is the relation *R* reflexive? Why or why not?
- (c) Draw the directed graph that represents the relation R.

#### 5.1 SOLUTION

(a) Represent the above relation as a matrix.

$$M_R = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

(b) Does this matrix represent a reflexive relation?

No, 
$$\exists i | M_{i,i} \neq 1$$
 aka  $M_{3,3} = 0$ .

(c) Draw the directed graph that represents the relation R.

