CPSC 340: Machine Learning and Data Mining

PCA: fit

Bonus slides

PCA Computation: SVD

- How do we fit with normalization/orthogonality/sequential-fitting?
 - It can be done with the "singular value decomposition" (SVD).
 - Take CPSC 302.

- 4 lines of Julia code:
 - mu = mean(X,1)
 - -X = repmat(mu,n,1)
 - -(U,S,V) = svd(X)
 - W = V[:,1:k]'

Computing \tilde{Z} is cheaper now:

$$\widetilde{Z} = \widetilde{X} W^{T} (WW^{T})^{-1} = \widetilde{X} W^{T}$$

$$WW^{T} = \begin{bmatrix} -W_{1} - W_{2} - W_{3} & W_{4} \\ -W_{2} - W_{4} & W_{4} \end{bmatrix}$$

$$= \begin{bmatrix} 100 - 0 \\ 610 & 0 \\ 0 & -0 \end{bmatrix} = \mathbf{I}$$

Making PCA Unique

- PCA implementations add constraints to make solution unique:
 - Normalization: we enforce that $||w_c|| = 1$.
 - Orthogonality: we enforce that $w_c^T w_{c'} = 0$ for all $c \neq c'$.
 - Sequential fitting: We first fit w_1 ("first principal component") giving a line.
 - Then fit w₂ given w₁ ("second principal component") giving a plane.
 - Then we fit w_3 given w_1 and w_2 ("third principal component") giving a space.
 - ...
- Even with all this, the solution is only unique up to sign changes:
 - I can still replace any w_c by –w_c:
 - $-w_c$ is normalized, is orthogonal to the other $w_{c'}$, and spans the same space.
 - Possible fix: require that first non-zero element of each w_c is positive.
 - And this is assuming you don't have repeated singular values.
 - In that case you can rotate the repeated ones within the same plane.