Lab 4 - Repetição por condição

\sim	
()h	etivos:
$\mathcal{O}_{\mathcal{O}}$	Cuvos.

☐ Compreender o uso de while loops

Exercício 1 – Qual a soma?

Escreva um programa que leia repetidamente números inteiros digitados pelo teclado, até que o valor -1 seja inserido.

Como resultado, o programa deve determinar a **soma** dos valores fornecidos, sem incluir o valor **-1**.

Entrada	1
	2
	3
	4
	-1
Saída correta	10

Exercício 2 – Par ou ímpar?

Escreva um programa que leia repetidamente números inteiros digitados pelo teclado, até que um valor **negativo** seja inserido.

Para cada número lido, imprima a mensagem "**PAR**", se ele for par ou mensagem "**IMPAR**", se ele for ímpar. Ignore o valor de parada.

Entrada	12
	23
	34
	45
	-1

Exercício 3 – Divisão por zero?!

Escreva um programa que calcula a **média** de uma coleção de valores digitados pelo usuário, com precisão de **duas casas** decimais. O usuário irá inserir 0 para indicar que não há mais valores a serem fornecidos.

Entrada	a -50
	-30
	-100
	-2
	0
Saída correta	a -45.50
Entrada	192
	245
	-100
	-145
	0

Exercício 4 – Crescimento populacional

Escreva um programa que receba como entradas as seguintes grandezas:

- Número de habitantes de uma cidade A
- Número de habitantes de uma cidade B
- Percentual de crescimento populacional da cidade A
- Percentual de crescimento populacional da cidade B

O programa deverá determinar o **número de anos** necessários para que a população da cidade **A** iguale ou ultrapasse a população da cidade **B**, mantidos os percentuais de crescimento.

Entrada	100000 200000 3.0 1.5
Saída correta	48

Exercício 5 – O vírus de Micaleteia

Micaleteia foi infectada por um vírus raro, mas já está sendo tratada. Quando a quantidade de células de defesa (leucócitos) for o dobro da quantidade de vírus, ela estará totalmente curada.

Escreva um programa que leia as seguintes informações:

- Quantidade inicial de cópias do vírus no sangue de Micaleteia.
- Quantidade inicial de leucócitos no sangue.
- Percentual de multiplicação diária do vírus.
- Percentual de multiplicação diária dos leucócitos.

Como saída, determine quantos dias Micaleteia levará para ser curada.

Entrada	9000 1000 1 60
Saída correta	7

Exercício 6 – Saldo mensal

Uma pessoa investe uma quantia numa aplicação que rende 4% ao mês.

Escreva um programa que leia as seguintes informações:

- 1. O valor (em reais) inicialmente investido
- 2. A quantidade de meses da aplicação.

Como resultado, imprima repetidamente o saldo do investimento, mês a mês. Arredonde os resultados com duas casas decimais, pois este problema envolve valores monetários.

Entrada	1000 3
Saída correta	1040.00 1081.60 1124.86
Entrada	2000.0 5
Saída correta	2080.00 2163.20 2249.73 2339.72 2433.31

Exercício 7 – Queda livre

Um objeto cai livremente a partir de uma altura H_0 . Escreva um programa que leia o valor dessa posição inicial, em metros.

Como saída, imprima, a cada segundo, as seguintes informações:

- 1. O tempo, em segundos.
- 2. A altura correspondente do objeto em relação ao solo.

O programa deve terminar quando o objeto atingir o solo ($H \le 0$). Arredonde os valores de altura com uma casa decimal.

A distância até o solo de um objeto em queda livre é dada pela seguinte fórmula:

$$H = H_0 - \frac{1}{2}gt^2$$

onde:

- g = 9,8 m/s² é a aceleração da gravidade; e
- t é o tempo transcorrido em segundos.

Entrada 100.0

```
Saída correta t = 0

h = 100.0

t = 1

h = 95.1

t = 2

h = 80.4

t = 3

h = 55.9

t = 4

h = 21.6
```

Exercício 8 – Área do círculo

Escreva um programa em Python que calcule e apresente na tela a área de cada círculo através da fórmula A = PI * R * R, onde R representa o raio do círculo. Considere PI = 3.14159 e imprima o resultado com 2 casas decimais. Repetir o processo enquanto o valor de R informado pelo usuário for maior que 0.

Entrada	9
	13.5
	14
	0
Saída correta	254.47
	572.55
	615.75

Exercício 9 – Atingido o limite!

Escreva um programa em Python que leia números inteiros até que a soma de tais números totalize no mínimo n (n também será fornecido pelo usuário). Devem ser lidos tantos valores quantos necessários para que o limite seja atingido ou superado. Quando isto ocorrer, o programa também deve exibir quantos números foram lidos e sua média (com 1 casa decimal).

Entrada	10 3 2 2 5
Saída correta	4 3.0

Exercício 10 – Situação do aluno

Escreva um programa em Python que leia a média parcial dos alunos de uma turma até que uma nota inválida seja digitada (menor que zero ou maior que 10). Seu programa deve imprimir na tela a situação de cada aluno: "APROVADO" se NF >= 7; "FINAL" se 3 <= NF < 7; "REPROVADO" se NF < 3.

Entrac	la 2
	4.5
	8
	-1
Saída corre	ta REPROVADO FINAL APROVADO

Exercício 11 – Intervalos de temperatura

Faça um programa em Python que mostre uma tabela de conversão de graus celsius para fahrenheit para todos valores inteiros entre (e incluindo) um valor inicial e final em célsius, informados pelo usuário, mostrando o valor em celsius e ao lado o valor em fahrenheit aproximado para 1 casa decimal.

O usuário informará também o intervalo entre estes valores para conversão (de um em um, de dois em dois, etc.). O usuário pode desejar consultar vários intervalos de temperatura, portanto, ao final, seu programa deve perguntar se o usuário deseja continuar (S – sim, N – não).

Entrada	1
	5
	1
	S
	6
	10
	2
	N

Saída correta	1 33.8
	2 35.6
	3 37.4
	4 39.2
	5 41.0
	6 42.8
	8 46.4
	10 50.0

Exercício 12 – Percentual dos valores

Faça um programa em Python que leia uma quantidade não determinada de números inteiros. Calcule o percentual dos valores positivos e negativos em relação ao total de valores fornecidos. O número que encerrará a leitura será o zero.

Os valores devem ser impressos com 1 casa decimal.

Entrada	a -1 -1 -2 7 -8 -9 12 -20
Saída corret	-

Exercício 13 – Média dos valores

Faça um programa em Python que leia uma quantidade não determinada de números naturais. Calcule a média dos valores pares, a média de valores ímpares e a quantidade total dos números lidos. A leitura encerrará quando for digitado um valor menor ou igual a zero.

Imprima os valores de média com 1 casa decimal.

Entrad	a 98
	54
	29
	0
Saída corret	a 76.0
Saída corret	a 76.0

Exercício 14 – Porcentagem de notas

Escreva um programa em Python que leia um número indeterminado de notas entre 0.0 e 10.0. Ao final imprima a quantidade e a porcentagem de notas maiores ou iguais a 7. A digitação deve ser encerrada quando for digitada uma nota inválida.

Entrada	2
	2
	6.5
	3
	9
	-1
Saída correta	1
	20.0

Exercício 15 – Análise de dados

Foi feita uma pesquisa entre os habitantes de uma região. Foram coletados os dados de idade e quantidade de filhos. Faça um programa em Python que informe:

- a média de idade do grupo (1 casa decimal);
- quantidade de pessoas com mais de 3 filhos;
- porcentagem de pessoas com menos de 20 anos que tem filhos (1 casa decimal);

• quantidade de pessoas entrevistadas.

O programa finaliza a leitura dos dados quando for digitado um valor negativo para a idade.

Entrada	25
	2
	45
	7
	18
	1
	50
	6
	-1
Saída correta	34.5
Guida correta	2
	_
	25.0
	25.0 4
	25.0 4

Exercício 16 – Levantamento de produção

A fábrica WK produz uma quantidade de automóveis por dia e deseja fazer um levantamento sobre essa produção. Escreva um programa em Python que leia a quantidade de automóveis produzida diariamente, enquanto não for digitado um número negativo. Ao final, o programa deve mostrar na tela a quantidade total de automóveis produzidos, a quantidade de dias considerados na pesquisa, e a quantidade média de carros produzidos por dia.

Entrada		
		0
		0
		20
		30
		0
		0
		200
		300
		-1

Saída correta 550 8 68.8