

FASTSchoolofComputing

Al2002 – Artificial Intelligence Spring 2024

Instructor Name: Maham Naeem TA Name: Mansoor Tariq

Email: maham.naeem@lhr.nu.edu.pk TA Email: <u>|201369@lhr.nu.edu.pk</u>

Office Location: Office # 62 Block F

Office Hours: Tuesday/Thursday 11:30 to 1:00 PM

Course Information

Program: BS(CS) Credit Hours: 3 and (1 for Lab) Type: Core Pte-requisites: Data Structures

Class Venue: NB-305

Class Time: BCS-6A Mon/Fri 11:30 – 1:00pm

Course Learning Outcomes (CLOs):

The course learning outcomes of this course are:

1. Understand principles and techniques of artificial intelligence

- 2. Identify the problems and their solutions with respect to intelligent solutions
- 3. Model a solution for a given problem using artificial intelligence tools and techniques
- **4.** Examine latest trends in AI and its applications
- 5. Able to propose and implement AI based state of the art solutions

Course Textbooks:

1. Stuart Russell, Peter Norvig - Artificial Intelligence a Modern Approach - (3rd Edition)

Additional references and books related to the course:

- 2. George F. Luger Artificial Intelligence
- 3. Tom Mitchell Machine Learning

(Tentative) Grading Criteria:

Assignments (10%) Quizzes (10%) Project (10%) Midterms (30%) Final Exam (40%)

- Grading scheme for this course is Absolute under application of CS department's grading policies.
- Minimum requirement to pass this course is to obtain at least 50% absolute marks. Course

Policies:

- Quizzes may be announced or surprised. No Late Submissions or Makeup Quizzes.
- Students bear all the responsibility for protecting their assignments. In case of cheating, both parties will be considered equally responsible.
- **Plagiarism** in any work (Labs, Quiz, Assignment, Midterms, and Final Exam) from any source, Internet or a Student will result in **F** grade or deduction of absolute marks.

80% attendance is required for appearing in the Final exams.

Tentative Weekly Schedule

Topic	Details	Weak
Introduction	 Introduction and Applications Knowledge and Reasoning Blocks world and Predicate Calculus Introduction to Agent and Agent Architectures – PEAS 	1
Strategies for State Space Search	Blind/Uninformed/Brute-force Search Depth First Search (DFS) Breadth First Search (BFS) Iterative Deepening Search (IDS) Uniform Cost Search (UCS) Direction of Search, Branching Factor	2
	Heuristic/Informed Search - Hill Climbing Search - Best First Search - Algorithm A - A* Search Informedness, Monotonicity, Admissibility, Optimality, Completeness,	3
	Adversarial Search Algorithms (Game Playing) - Minimax Search - Alpha-Beta Pruning - Evaluation Functions - Move generators and evaluators Problem Solving by Searching	4
	Evolutionary Search: - Genetic Algorithm - Genetic Programming - Automatic/Evolutionary Programming	5
Introduction to Machine Learning, Data Mining, & Data	Classification (ANN) - Architecture: Feed-Forward Neural Network and Recurrent Network - Activation Functions - Types of Problems for Neural Networks - Training Algorithms - Perceptron Learning Rule - Hebb Learning Rule - Back Propagation Algorithm (Gradient Descent Learning) - Issues of ANN - Recurrent Networks (Elman and Jordon)	6-7
Science	Clustering - k-means and k-medoids algorithm - Cobweb	8-9
	Regression - Simple and Multiple Linear Regression - Attribute/Feature Selection	10-11

– WEKA - Assignment	