1 Diseño antena

El estudiante debe realizar un notebook donde plantee el problema de optimización a partir del enunciado dado y encuentre la solución optima por medio de técnicas de optimización NLP con restricciones.

1.1 Descripción

Se requiere estimar los parámetros del diseño de una antena (la cual esta basada en cables doblados) que permita aumentar la ganancia en la frecuencia de resonancia seleccionada.

DD 11 4	D ' '/	1 1	1 1	1	
Table I:	Descripcion	de los	problemas	de d	optimización.
TOOLO I.	DODGITPOIL	CLC IOD	PICOICIIICO	ac v	op dilling deciding.

Item	3 segmentos	3 segmentos
Función Objetivo	Ganancia máxima	Ganancia media
Restricción	No salirse del cubo	0.35m longitud total

Con la frecuencia de resonancia asignada, para el primer grupo se debe poner como restricción que el conjunto de cables doblados no supere el espacio ocupado por un cubo de $\lambda/2$, donde λ es la longitud de onda (no confundirlo con el λ empleado en multiplicadores de Lagrange), como se muestra en la figura 1. Para el segundo grupo, la restriccion es que la antena no tenga una longitud mayor a 0.35 metros.

Figure 1: Esquema de diseño de la antena, con restricciones dentro del cubo. En rojo el plano de la tierra, y en magenta un ejemplo de una antena doblada en 3 segmentos.

A continuación se presenta un ejemplo en Python usando la libreria necpp [1].

1.2 Codigo en Python

```
from PyNEC import *

# Parameters
thickness = 0.002 #Grosor del alambre en metros
freq = 2500000000 #Frecuencia de resonancia de interes
numSegments = 2 #Numero de segmentos a doblar
waveLength = 299792458.0 / freq #calculo de la longitud de onda
```

C. Guarnizo

```
#Tolerancia entre segmentos
tol = 1e-3
directionality = 2 #Seleccionar que funcion optimizar
def ObjFunc(params):
#Params contiene los elementos x1,y1,z1,x2,y2,z2
x1 = params[0]
y1 = params[1]
z1 = params[2]
x2 = params[3]
y2 = params[4]
z2 = params[5]
#creation of a nec context
context=nec_context()
#get the associated geometry
geo = context.get_geometry()
#Sometimes the design crashes
try:
  #add wires to the geometry
  geo.wire(1, 15, 0.0, 0.0, 0.0, x1, y1, z1, thickness, 1.0, 1.0)
  geo.wire(2, 15, x1+tol, y1+tol, z1+tol, x2, y2, z2, thickness, 1.0, 1.0)
  #finish design
  context.geometry_complete(0)
  #Test signals set-up
  #check: https://pypi.org/project/necpp/
  #Define ground's location
  context.gn_card(1, 0, 0, 0, 0, 0, 0, 0)
  #Define excitation source parameters
  context.ex_card(0, 1, 1, 0, 1.0, 0, 0, 0, 0, 0)
  #Define range of frequencies, this case only 2.5GHz
  context.fr_card(0, 1, freq / 1000000, 0.0)
  #Define radiation pattern parameters
  context.rp_card(0, 17, 45, 0, 5, 0, 0, 0, 0, 5, 8, 0, 0)
  # Objective function output
  if (directionality == 0):
     gain = context.get_gain_max(0)
  elif (directionality==1):
     gain = context.get_gain_min(0)
  else:
     gain = context.get_gain_mean(0)
except: #If simulation crashes then assign -999 to gain value.
  gain = -999.0
return gain
```

1.3 Procedimiento

1. Escribir el código en Python del conjunto de ecuaciones del problema de optimización: función objetivo, restricciones y limites de las variables. Describir las razones por las cuales

C. Guarnizo 2

se escribe cada ecuación.

- 2. Implementar los métodos vistos en clase para solucionar problemas NLP con restricciones. Específicamente, método de penalización cuadrático (QPM) y el método de la barrera logarítmica (LBM). Estos modelos están diseñados para problemas NLP con restricciones de desigualdad.
- 3. Comparar el desempeño de los métodos de optimización, comparando cantidad de iteraciones y tiempo de ejecución de cada iteración. Probar con diferentes puntos de inicializacion y analizar la convergencia de los métodos.
- 4. Emplear una librería para comparar con los resultados obtenidos en el paso 2.
- 5. Escribir en cada paso anterior el análisis realizado y al final las conclusiones.

2 Informe

Desarrollar un notebook en Python, que incluya las siguientes secciones:

- 1. Introducción al problema.
- 2. Código y desarrollo de la solución.
- 3. Análisis de resultados.
- 4. Conclusiones.
- 5. Bibliografía.

2.1 Videos recomendados

- Introducción a al simulación de antenas. https://www.youtube.com/watch?v=vaLx3_F6-b4.
- Medicion de parametros con 4NEC2. https://www.youtube.com/watch?v=s-AaloLVbaY
- Diseño de antenas con Python (antenas evolucionadas/WiFi de 2.4 GHz). https://www.youtube.com/watch?v=RnOdtLyNceI

Referencias

[1] NEC++ functions description, howpublished = https://tmolteno.github.io/necpp/libnecpp_8h.html, note = Accessed: 2023-09-14.

C. Guarnizo 3