Tutorials 6

Cryptography

Question 1: CRT (two equations)

☐ Find an *x* that solves the following simultaneous congruences:

$$x \equiv 3 \pmod{7}$$

 $x \equiv 5 \pmod{9}$

Question 2: CRT (three equations)

☐ Find an *x* that solves the following simultaneous congruences:

$$x \equiv 1 \pmod{5}$$

 $x \equiv 3 \pmod{7}$
 $x \equiv 6 \pmod{9}$

Question 3: OTP

□ The one-time pad encryption of plaintext cat (when converted from ASCII to binary) under key k is

10010100 10000111 01011100

- a) What is the key k?
- b) Is it secure if the same key is used to encrypt another 3-letter word? Why or why not?

Letter	ASCII Code	Binary
a	097	01100001
b	098	01100010
С	099	01100011
d	100	01100100
e	101	01100101
f	102	01100110
g	103	01100111
h	104	01101000
i	105	01101001
j	106	01101010
k	107	01101011
1	108	01101100
m	109	01101101
n	110	01101110
0	111	01101111
p	112	01110000
q	113	01110001
r	114	01110010
S	115	01110011
t	116	01110100
u	117	01110101
V	118	01110110
W	119	01110111
X	120	01111000
У	121	01111001
Z	122	01111010
Cryptography 6-4		

Question 4: Affine Cipher

Consider the encryption function as follows:

$$E(x) = ax + b \pmod{m}.$$

If the cipher is used to encrypt messages in English (i.e. an alphabet of 26 letters), then m is chosen as 26.

- a) How can we ensure that decryption can be done?
- b) What is the value of $\phi(26)$?
- c) How many possible keys are there?
- d) Suppose a = 9, b = 6, and the ciphertext (which contains only one single letter) is 20. Find the plaintext.

Question 5: RSA

Use the RSA algorithm to encrypt the message m represented by the decimal number 32 with N=85 and e=61.

- a) Compute the ciphertext, *c.*
- b) Factorize *N*, and check your answer in (a) by decryption.
 - In practice, *N* is a very large number, so that factorization is extremely time consuming.