Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

 $\begin{tabular}{ll} \textbf{Reaction scoring formula:} & TUNNEL_COEF*FGI_COEF*STEP*20+1000\\ 0000*(CONFLICT+NON_SELECTIVITY+FILTERS+PROTECT)\\ \end{tabular}$

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 31.25

Figure 1: Outline of path 1

2.1.1 Tebbe Olefination

Substrates:

1. 4-oxo-3-phenylbutansaeure-methylester

Products:

1. methyl 3-phenyl-4-pentenoate

Typical conditions: Cp2TiCl2.AlMe3.toluene

Protections: none

Reference: 10.1016/j.tet.2007.03.015 and 10.1002/9780470638859.conrr617

Retrosynthesis ID: 11714

2.1.2 Allylic oxidation to alcohol

Substrates:

1. methyl 3-phenyl-4-pentenoate

Products:

1. C=CC(O)(CC(=O)OC)c1ccccc1

Typical conditions: ArCOOOH or t-BuOOOH

Protections: none

Reference: DOI: 10.1021/ja00458a072 AND 10.1016/j.tetlet.2013.03.046 AND

10.1039/b612423b

Retrosynthesis ID: 7603

2.1.3 Alkylation of tertiary alcohols

Substrates:

1. Chlorallylene - available at Sigma-Aldrich

 $2. \ C=CC(O)(CC(=O)OC)c1ccccc1$

Products:

1. C=CCOC(C=C)(CC(=O)OC)c1ccccc1

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1016/S0022-1139(00)85021-6 and

Retrosynthesis ID: 31010936

2.1.4 Aldehyde Formation

Substrates:

1. C=CCOC(C=C)(CC(=O)OC)c1ccccc1

Products:

1. C=CCOC(C=C)(CC=O)c1ccccc1

Typical conditions: DIBAL.solvent e.g. DCM

Protections: none

Reference: 10.1039/C39940000483 and 10.1039/C3CC47867J and

10.1021/jo00222a054 and 10.1021/ja9934908 and 10.1021/jo902426z

2.1.5 Tebbe Olefination

Substrates:

 $1. \ C{=}CCOC(C{=}C)(CC{=}O)c1ccccc1$

Products:

 $1. \ C{=}CCOC(C{=}C)(CC{=}C)c1ccccc1$

Typical conditions: Cp2TiCl2.AlMe3.toluene

Protections: none

Reference: 10.1016/j.tet.2007.03.015 and 10.1002/9780470638859.conrr617

Retrosynthesis ID: 11714

2.2 Path 2

Score: 45.00

Figure 2: Outline of path 2

2.2.1 Grignard-Type Reaction

Substrates:

1. 1-Phenylprop-2-en-1-one - available at Sigma-Aldrich

2. Allylmagnesium bromide solution - available at Sigma-Aldrich

Products:

1. 3-phenyl-1,5-hexadien-3-ol

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jo010494y or 10.1016/j.steroids.2015.09.009 or 10.1021/jo061349t or 10.1021/ja056165v (SI page 19)

Retrosynthesis ID: 25134

2.2.2 Alkylation of tertiary alcohols

Substrates:

1. 3-phenyl-1,5-hexadien-3-ol

2. Allyl bromide - available at Sigma-Aldrich

Products:

 $1. \ C{=}CCOC(C{=}C)(CC{=}C)c1ccccc1$

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1002/anie.201909177 and 10.1016/j.jfluchem.2019.109388 and

10.2174/15701786113106660077

Retrosynthesis ID: 31010955

2.3 Path 3

Score: 45.00

Figure 3: Outline of path 3

2.3.1 Grignard-Type Reaction

Substrates:

1. 1-Phenylprop-2-en-1-one - available at Sigma-Aldrich

2. Allylmagnesium bromide solution - available at Sigma-Aldrich

Products:

1. 3-phenyl-1,5-hexadien-3-ol

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jo010494y or 10.1016/j.steroids.2015.09.009 or

10.1021/jo061349t or 10.1021/ja056165v (SI page 19)

Retrosynthesis ID: 25134

2.3.2 Alkylation of tertiary alcohols

Substrates:

1. 3-phenyl-1,5-hexadien-3-ol

2. Allyl iodide - available at Sigma-Aldrich

Products:

1. C=CCOC(C=C)(CC=C)c1ccccc1

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1039/P29910000147 and 10.1038/ncomms7703

2.4 Path 4

Score: 45.00

Figure 4: Outline of path 4

2.4.1 Grignard addition to ketone

Substrates:

1. 1-phenylbut-3-en-1-one - available at Sigma-Aldrich

2. Bromoethylene - available at Sigma-Aldrich

Products:

1. 3-phenyl-1,5-hexadien-3-ol

 $\textbf{Typical conditions:} \ \mathrm{Mg.THF.or.iPrMgClxLiCl}$

Protections: none

Reference: 10.3762/bjoc.9.175 and 10.1016/j.tetlet.2012.08.088 and

10.1002/anie.200504247 (supporting info)

2.4.2 Alkylation of tertiary alcohols

Substrates:

- 1. 3-phenyl-1,5-hexadien-3-ol
- 2. Allyl bromide available at Sigma-Aldrich

Products:

 $1. \ C{=}CCOC(C{=}C)(CC{=}C)c1ccccc1$

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1002/anie.201909177 and 10.1016/j.jfluchem.2019.109388 and

10.2174/15701786113106660077

Retrosynthesis ID: 31010955

2.5 Path 5

Score: 45.00

Figure 5: Outline of path 5

2.5.1 Keto-enol Tautomerism

Substrates:

1. 1-phenylhex-5-en-1-one - available at Sigma-Aldrich

Products:

1. C=CCCC=C(O)c1ccccc1

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

Retrosynthesis ID: 7780

2.5.2 Enolate O-Alkylation

Substrates:

1. C=CCCC=C(O)c1ccccc1

2. Allyl bromide - available at Sigma-Aldrich

Products:

1. C=CCCC=C(OCC=C)c1ccccc1

Typical conditions: Cs2CO3.DMF

Protections: none

Reference: 10.1016/j.bmcl.2012.05.070 and 10.1039/b612336h

Retrosynthesis ID: 14841

2.5.3 Cope rearrangement

Substrates:

1. C=CCCC=C(OCC=C)c1ccccc1

Products:

1. C=CCOC(C=C)(CC=C)c1ccccc1

Typical conditions: KH.THF.or.heat

Protections: none

Reference: 10.1021/jo2013753 AND 10.1021/ja00849a054 AND

 $10.1039/C0CC05215A \ {\rm AND} \ 10.1016/B978-0-08-095167-6.00213-5$