# Multi-Domain Neural Machine Translation with Word-Level Domain Context Discrimination

Jiali Zeng Jinsong Su Huating Wen Yang Liu Jun Xie Yongjing Yin Jianqiang Zhao

Reporter: Xiachong Feng

### **Author**



Jiali Zeng 厦门大学数字媒体计算研究中心 曾嘉莉 2017级硕士研究生



Jinsong Su 厦门大学数字媒体计算研究中心 苏劲松 副教授、硕士生导师

# Challenge

- Training a NMT model for a specific domain requires a large quantity of parallel sentences in such domain, which is often not readily available.
- The translated sentences often **belong to multiple domains**, thus requiring a NMT model general to different domains.

### **Previous**

 Using mixed-domain parallel sentences to construct a unified model that allows translation to switch between different domains.

### **Motivation**

- 1. Since the <u>textual styles</u>, sentence structures and terminologies in different domains are often remarkably distinctive, whether such domain-specific translation knowledge is effectively preserved could have a direct effect on the performance of the NMT model.
- Words in a sentence are related to its domain



- 3. It is also reasonable for our model to pay more attention to these domain-related words than the others during model training.
- Context = domain-specific + domain-shared

## Model



## **Encoder**



**Bidirectional GRU** 

## **Encoder**



Domain classifier that aims to distinguish different domains in order to generate domainspecific source-side contexts.

Adversarial domain classifier capturing source-side domain shared contexts.

### **Domain Classifier**



$$E_r(\mathbf{x}) = \sum_{i=1}^N \alpha_i h_i,$$

where  $\alpha_i = \frac{exp(e_i)}{\sum_{i'}^{N} exp(e_{i'})}$ ,  $e_i = (v_a)^{\top} \tanh(W_a h_i),$ 

$$\mathcal{J}_{dc}^{s}(\mathbf{x}; \boldsymbol{\theta_{dc}^{s}}) = \log p(d|\mathbf{x}; \boldsymbol{\theta_{dc}^{s}})$$

**Object Func** 

$$p(\cdot|\mathbf{x}; \boldsymbol{\theta_{dc}^s})$$

$$= softmax(W_{dc}^{s\top} ReLU(E_r(\mathbf{x})) + b_{dc}^s),$$

**Attention** 

# Effective Domain Mixing for Neural Machine Translation *WMT17*



**Domain Specific** 

# Effective Domain Mixing for Neural Machine Translation *WMT17*



### **Adversarial Domain Classifier**



## **Encoder**



$$egin{aligned} g_i^r &= sigmoid(W_{gr}^{(1)}E_r(\mathbf{x}) + W_{gr}^{(2)}h_i + b_{gr}) & h_i^r &= g_i^r \odot h_i, \ g_i^s &= sigmoid(W_{gs}^{(1)}E_s(\mathbf{x}) + W_{gs}^{(2)}h_i + b_{gs}) & h_i^s &= g_i^s \odot h_i. \end{aligned}$$

### Decoder

$$s_j = GRU(s_{j-1}, y_{j-1}, c_j^r, c_j^s).$$

GRU Hidden

$$c_{j}^{r} = \sum_{i=1}^{N} rac{\exp(e_{j,i}^{r})}{\sum_{i'=1}^{N} \exp(e_{j,i'}^{r})} \cdot h_{i}^{r},$$
 where  $e_{j,i}^{r} = a(s_{j-1}, h_{i}^{r}),$ 

**a** is a feedforward neural network.



## Decoder

$$E_r(\mathbf{y}) = \sum_{j=1}^M eta_j s_j,$$
 where  $eta_j = rac{\exp(e_j)}{\sum_{j'}^M \exp(e_{j'})},$   $e_j = (v_b)^ op anh(W_b s_j),$ 

NMT Training Objective with Word-Level Cost Weighting.

$$egin{aligned} \mathcal{J}_{nmt}(\mathbf{x},\mathbf{y};oldsymbol{ heta_{nmt}}) \ = & \sum_{j=1}^{M} (1+eta_j) \log p(y_j|\mathbf{x},y_{< j};oldsymbol{ heta_{nmt}}), \end{aligned}$$



# **Overall Training Objective**

$$egin{aligned} \mathcal{J}(\mathcal{D};oldsymbol{ heta}) &= \sum_{(\mathbf{x},\mathbf{y},d)\in\mathcal{D}} \{\mathcal{J}_{nmt}(\mathbf{x},\mathbf{y};oldsymbol{ heta_{nmt}}) \ &+ \mathcal{J}_{dc}^s(\mathbf{x};oldsymbol{ heta_{dc}}) + \mathcal{J}_{dc}^t(\mathbf{y};oldsymbol{ heta_{dc}}^t) \ &+ \mathcal{J}_{adc}^{s1}(\mathbf{x};oldsymbol{ heta_{adc}}) + \lambda \cdot \mathcal{J}_{adc}^{s2}(\mathbf{x};oldsymbol{ heta_{adc}}) \} \end{aligned}$$

# **Experiment**

- Chinese-English translation
  - Laws, Spoken, Thesis, News
- English-French translation
  - Medical, News, Parliamentary

| Task  | Domain        | Train | Dev | Test |
|-------|---------------|-------|-----|------|
| CH-EN | Laws          | 219K  | 600 | 456  |
|       | Spoken        | 219K  | 600 | 455  |
|       | Thesis        | 299K  | 800 | 625  |
|       | News          | 300K  | 800 | 650  |
| EN-FR | Medical       | 1.09M | 800 | 2000 |
|       | News          | 180K  | 800 | 2000 |
|       | Parliamentary | 2.04M | 800 | 2000 |

# **Experiment**

### 1. DL4NMT-single

Attentional NMT trained on a single domain dataset.

#### 2. DL4NMT-mix

attentional NMT trained on mix-domain training set.

#### 3. DL4NMT-finetune

 first trained using out-of-domain training corpus and then fine-tuned using in-domain dataset.

#### 4. DC

introduces embeddings of source domain tag

#### 5. ML1

 shares encoder representation and separates the decoder modeling of different domains.

### 6. ML2

NMT with domain classification via multitask learning.

#### 7. ADM

adversarial training to achieve the domain adaptation in NMT.

#### 8. TTM

adding target-side domain tag

| Model                  | Laws  | Spoken | Thesis | News  |  |  |
|------------------------|-------|--------|--------|-------|--|--|
| Contrast Models (1×hd) |       |        |        |       |  |  |
| OpenNMT                | 45.82 | 9.15   | 13.93  | 19.73 |  |  |
| DL4NMT-single          | 43.66 | 5.49   | 14.54  | 18.74 |  |  |
| DL4NMT-mix             | 46.82 | 8.95   | 15.93  | 20.33 |  |  |
| DL4NMT-finetune        | 54.19 | 8.77   | 16.71  | 21.55 |  |  |
| +DC                    | 49.83 | 9.18   | 16.71  | 20.58 |  |  |
| +ML1                   | 46.82 | 6.66   | 15.10  | 20.17 |  |  |
| +ML2                   | 48.95 | 9.45   | 15.85  | 20.48 |  |  |
| +ADM                   | 48.30 | 9.41   | 16.34  | 20.06 |  |  |
| +TTM                   | 49.05 | 9.36   | 16.42  | 20.44 |  |  |
| Contrast Models (2×hd) |       |        |        |       |  |  |
| DL4NMT-single          | 44.48 | 6.29   | 14.66  | 19.87 |  |  |
| DL4NMT-mix             | 48.74 | 9.01   | 16.12  | 20.14 |  |  |
| DL4NMT-finetune        | 54.69 | 9.07   | 17.11  | 21.85 |  |  |
| +DC                    | 50.43 | 9.38   | 16.45  | 20.44 |  |  |
| +ML1                   | 49.49 | 7.67   | 15.50  | 20.34 |  |  |
| +ML2                   | 50.05 | 9.35   | 16.03  | 20.64 |  |  |
| +ADM                   | 48.33 | 9.06   | 16.59  | 19.69 |  |  |
| +TTM                   | 49.92 | 9.01   | 16.38  | 21.04 |  |  |
| Our Models             |       |        |        |       |  |  |
| +WDC(S)                | 54.55 | 10.12  | 17.22  | 22.16 |  |  |
| +WDC(T)                | 51.94 | 9.76   | 17.72  | 21.02 |  |  |
| +WDC                   | 55.03 | 10.20  | 18.04  | 22.29 |  |  |

# **Visualizations of Gating Vectors**



# Visualizations of Sentence Representations and Annotations



# Illustrations of Domain-Specific Target Words

| Domain | Top10 Target Words                                                                                                       |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| Laws   | Article, Chapter, Principles, regulations, Provisions, Political, Servants, specify, China, Municipal                    |  |  |
| Spoken | meanly, Rusty, 1910s, scours, mountaintops, paralyze, Puff, perpetrators, hitter, weightlifting                          |  |  |
| Thesis | aggregation, Activities, Computation, Alzhei-<br>mer, nn, Contemporarily, EVALUATION,<br>ethoxycarbonyl, sCRC, Announced |  |  |
| News   | months, agency, outweighed, unconstitution-<br>ally, Congolese, session, Asia, news, hurts,<br>francs                    |  |  |

Table 3: Examples of Domain-Specific Target Words.

# Thanks!