

FCC PART 22H, 24E TEST AND MEASUREMENT REPORT

AnyDATA.NET Inc

Daego Bldg, 8th Fl., 1591-10,

Kwanyang-Dong, Dongan-Gu, Anyang City, Kyunggi-Do, Korea

FCC ID: V6VADU-510D

Report Type: **Product Type:**

CDMA 1x/EVDO USB Modem Original Report

Test Engineer: Jack Liu

Report Number: R0811195-2224

Report Date: 2009-03-30

Boni Baniqued

Reviewed By: Sr. RF Engineer

Prepared By: Bay Area Compliance Laboratories Corp. (84)

1274 Anvilwood Ave.

Sunnyvale, CA 94089, USA

Tel: (408) 732-9162 Fax: (408) 732 9164

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government. * This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*" ...

TABLE OF CONTENTS

I	GE	NERAL INFORMATION	5
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
	1.2	MECHANICAL DESCRIPTION.	
	1.3		
	1.4		
	1.5		
	1.6		
	1.7		
	1.8		
2	SYS	STEM TEST CONFIGURATION	8
	2.1	JUSTIFICATION	
	2.2	EUT Exercise Software	8
	2.3	SPECIAL ACCESSORIES	
	2.4		
	2.5	REMOTE SUPPORT EQUIPMENT	8
	2.6	LOCAL SUPPORT EQUIPMENT	
	2.7		
	2.8	INTERFACE PORTS AND CABLING.	8
3	SUN	MMARY OF TEST RESULTS	9
4	§2.1		
	4.1	APPLICABLE STANDARD	10
	4.2	TEST PROCEDURE	
	4.3	TEST EQUIPMENT LIST AND DETAILS	10
	4.4	TEST SETUP BLOCK DIAGRAM	
	4.5		
	4.6	TEST DATA	12
5	§2.1	047 - MODULATION CHARACTERISTIC	15
	5.1		
,			
6			
	6.1		
	6.2		
	6.3		
	6.4		
	6.5	TEST DATA & PLOTS	17
7	§2.1	IT EXERCISE SOFTWARE ECIAL ACCESSORIES. JUIPMENT MODIFICATIONS MOTE SUPPORT EQUIPMENT CAL SUPPORT EQUIPMENT WER SUPPLY AND LINE FILTERS JEFFACE PORTS AND CABLING. ARY OF TEST RESULTS PLICABLE STANDARD ST PROCEDURE ST EQUIPMENT LIST AND DETAILS. ST SETUP BLOCK DIAGRAM FOR INDIVIDUAL STANDARD ST DATA - MODULATION CHARACTERISTIC PPLICABLE STANDARD ST PROCEDURE ST EQUIPMENT LIST AND DETAILS. ST DATA - MODULATION CHARACTERISTIC PPLICABLE STANDARD ST PROCEDURE ST EQUIPMENT LIST AND DETAILS. ST SETUP BLOCK DIAGRAM ST DATA - MODULATION CHARACTERISTIC PPLICABLE STANDARD ST PROCEDURE ST EQUIPMENT LIST AND DETAILS. ST PROCEDURE ST EQUIPMENT LIST AND DETAILS. VIRONMENTAL CONDITIONS ST DATA & PLOTS , \$22.917, & \$24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS PPLICABLE STANDARD ST PROCEDURE ST PROCEDURE ST PROCEDURE ST PROCEDURE ST FOCCEDURE ST FOCCEDURE	
	7.1		
	7.2		
	7.3		
	7.4	ENVIRONMENTAL CONDITIONS	
	7.5	TEST DATA & PLOTS	
8	82.1		
-	8.1		
	8.2		
	0.2	1L311 ROCEDURE	

Report Number: R0811195-2224

8.3	TEST EQUIPMENT LIST AND DETAILS	35
8.4	ENVIRONMENTAL CONDITIONS	
8.5	TEST DATA	36
9 §22	2.917 & §24.238 – BAND EDGE	37
9.1	APPLICABLE STANDARD	
9.2	TEST PROCEDURE	
9.3	TEST EQUIPMENT LIST AND DETAILS	
9.4	ENVIRONMENTAL CONDITIONS	
9.5	TEST DATA & PLOTS	
10	§2.1055 (A), §2.1055 (D), §22.355, & §24.235 - FREQUENCY STABILITY	44
10.1	APPLICABLE STANDARD	44
10.2	TEST PROCEDURE	44
10.3	TEST EQUIPMENT LIST AND DETAILS	44
10.4	ENVIRONMENTAL CONDITIONS	
10.5	TEST DATA	45
11	§1.1307(B) (1) & §2.1093 - RF EXPOSURE	47
11.1	APPLICABLE STANDARD	47
11.2	TEST RESULT	47
12	EXHIBIT A - FCC ID LABELING AND WARNING STATEMENT	48
12.1	APPLICABLE STANDARD	48
12.2	PROPOSED FCC ID LABEL	
12.3	PROPOSED LABEL LOCATION ON EUT	49
13	EXHIBIT B - TEST SETUP PHOTOGRAPHS	50
13.1	RADIATED EMISSIONS BELOW 1 GHZ- FRONT VIEW	50
13.2	RADIATED EMISSIONS BELOW 1 GHz - REAR VIEW	50
13.3	RADIATED EMISSIONS ABOVE 1 GHZ- FRONT VIEW	
13.4	RADIATED EMISSIONS ABOVE 1 GHz - REAR VIEW	51
14	EXHIBIT C - EUT PHOTOGRAPHS	52
14.1	EUT- Front side View	52
14.2	EUT- BACK SIDE VIEW	52
14.3	EUT – RIGHT SIDE VIEW	
14.4	EUT – Left Side View	
14.5	EUT-UNCOVERED VIEW	
14.6	EUT INTERNAL – BOARD ASSEMBLY TOP VIEW 1	
14.7	EUT INTERNAL – BOARD ASSEMBLY TOP VIEW 2	
14.8	EUT INTERNAL – BOARD ASSEMBLY BOTTOM VIEW	
14.9	EUT INTERNAL – RF BOARD ASSEMBLY TOP (WITH RF SHEILDING) VIEW	
14.10	EUT INTERNAL – RF BOARD ASSEMBLY TOP (RF SHEILDING REMOVED) VIEW	
14.11	EUT INTERNAL – RF BOARD ASSEMBLY BOTTOM	57

DOCUMENT REVISION HISTORY

Revision Number Report Number Description of Revis		Description of Revision	Date of Revision
0	R0811195-2224	Original Report	2009-03-30

1 GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

This measurement and test report has been compiled on behalf of AnyDATA.NET Inc. and their product model: ADU-510D, FCC ID: V6VADU-510D which is a CDMA 1x/EV-DO USB Modem. This EUT supports CDMA2000 and 1xEV-DO (Rev. 0 & Rev. A).

Description	Specification
Frequency Band	Cellular Band: 824~849 MHz (TX) 869~894 MHz (RX) PCS Band: 1850~1910 MHz (TX) 1930~1990 MHz (RX)
Rated Power	0.25 Watt (24 dBm)
Number of Channel	832 for Cellular Band 42 for PCS
CDMA Protocol	1xRTT / EVDO

1.2 Mechanical Description

The EUT measures approximately 96mm (L) \times 35mm (W) \times 10.8 mm (H), and weighs approximately 34 g.

1.3 EUT Photo

Additional Photos in Exhibit C

^{*} The test data gathered are from typical production sample, serial number: B2036 Sample ID: 72207 provided by the BACL.

1.4 Objective

This type approval report is prepared on behalf of *AnyDATA.NET Inc* in accordance with Part 2, Subpart J, Part 22 Subpart H, and Part 24 Subpart E of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for RF output power, modulation characteristic, occupied bandwidth, spurious emissions at antenna terminal, field strength of spurious radiation, frequency stability, band edge, and conducted and radiated margin.

This measurement and test report only pertains to the CDMA 1xRTT and 1x/EV-DO 850/1900 portion of the EUT.

1.5 Related Submittal(s)/Grant(s)

N/A

1.6 Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 22 Subpart H - Cellular Radiotelephone Service Part 24 Subpart E - PCS

Applicable Standards: TIA/EIA603-C, ANSI C63.4-2003.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.7 Measurement Uncertainty

Report Number: R0811195-2224

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the values ranging from ± 2.0 dB for Conducted Emissions tests and ± 4.0 dB for Radiated Emissions tests are the most accurate estimates pertaining to uncertainty of EMC measurements at BACL Corp.

Detailed instrumentation measurement uncertainties can be found in BACL Corp. report QAP-018.

1.8 Test Facility

The test site used by BACL Corp. to collect radiated and conducted emissions measurement data is located at its facility in Sunnyvale, California, USA.

The test sites at BACL have been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission, Industry Canada, and Voluntary Control Council for Interference has the reports on file and is listed under FCC registration number: 90464, IC registration number: 3062A, and VCCI Registration Number: C-2463 and R-2698. The test site has been approved by the FCC, IC, and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm

2 SYSTEM TEST CONFIGURATION

2.1 Justification

The EUT was configured for testing according to TIA/EIA 603-C.

The final qualification test was performed with the EUT operating at normal mode.

2.2 EUT Exercise Software

Agilent 8960 (HP E5155C) Wireless Communication test set was used to activate the EUT. CDMA 2000 CDMA 1xEV-DO (Rev 0 & Rev A)

2.3 Special Accessories

N/A

2.4 Equipment Modifications

No modifications were made to the EUT

2.5 Remote Support Equipment

N/A

2.6 Local Support Equipment

Manufacturer	Description	Model	Serial Number
HP	Laptop	T41	99-KHVP2

2.7 Power Supply and Line Filters

Manufacturer Description		Model	Serial Number
AC/DC Adapter	USB version AC/DC Adapter	ZT-688	B1995

2.8 Interface Ports and Cabling

Cable Description	From	To	
USB cable	EUT	AC/DC Adapter	

Report Number: R0811195-2224 Page 8 of 57 FCC Part 22H/24E Test Report

3 SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
\$ 2.1046 \$ 22.913 \$ 24.232	RF Output Power	Compliant
§ 2.1047	Modulation Characteristics	N/A*
\$ 2.1049 \$ 22.917 \$ 24.238	Out of Band Emissions, Occupied Bandwidth	Compliant
\$ 2.1051, \$ 22.917 \$ 24.238 (a)	Spurious Emissions at Antenna Terminals	Compliant
§ 2.1053 § 22.917 (a) § 24.238 (a)	§ 2.1053 § 22.917 (a) Field Strength of Spurious Radiation	
§ 22.917 §24.238	Band Edge	Compliant
\$ 2.1055 (a) \$ 2.1055 (d) \$ 22.355 \$ 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliant
§2.1093	RF Exposure	Compliant **

^{*} According to FCC § 2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

^{**} According to §1.1310 and §2.1093 SAR Evaluation is required, please refer to SAR report R0811195-SAR.

4 §2.1046, §22.913(a), & §24.232 – RF OUTPUT POWER

4.1 Applicable Standard

According to FCC §2.1046 and §22.913 (a), the ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC §2.1046 and §24.232 (a), in no case may the peak output power of a base station transmitter exceed 2 watts.

4.2 Test Procedure

Conducted:

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

Radiated (ERP and EIRP):

TIA-603-C §2.2.17

4.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Due Date
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-05-31
Agilent	Analyzer, Communications	E5155C	GB44051221	2009-08-08
Sunol Sciences	Antenna	ЈВ1	A103105-3	2009-03-25
A.R.A	Horn Antenna	DRG-118/A	1132	2009-07-28
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2009-07-01
HP	Pre-Amplifier	8449B	3008A01978	2009-10-21
HP	Pre-Amplifier	8447D	2944A06639	2009-12-19

Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

4.4 Test setup Block Diagram

4.5 Environmental Conditions

Temperature:	12 °C ~ 18 °C
Relative Humidity:	50 % ~ 60 %
ATM Pressure:	101.2kPa ~ 101.4kPa

^{*} Testing performed by Jack Liu on 2009-02-12 and 2009-03-03

4.6 Test Data

Conducted Power

Cellular Band Part 22H:

Mode	FED	REV	Low CH (824.7 MHz)	Middle CH (836.52 MHz)	High CH (848.31MHz)	Part 22H Limit (dBm)
	RC1	RC1(S02)	24.73	24.94	24.86	38.45
	RC1	RC1(S055)	24.98	24.06	25.02	38.45
	RC2	RC2(S09)	24.58	24.29	24.40	38.45
	RC2	RC2(S055)	24.58	24.87	24.61	38.45
CDMA2000	RC3	RC3(S02)	24.71	25.10	24.94	38.45
1xRTT	RC3	RC3(S055)	25.36	25.18	25.00	38.45
	RC4	RC3(S02)	24.61	24.53	24.56	38.45
	RC4	RC3(S055)	24.49	24.50	24.84	38.45
	RC5	RC4(S09)	24.25	24.64	24.78	38.45
	RC5	RC4(S055)	24.35	25.02	24.79	38.45

Mode	Low CH (824.7 MHz)	Middle CH (836.52 MHz)	High CH (848.31MHz)	Part 22H Limit (dBm)
1xEV-DO Rev 0	25.18	25.04	25.09	38.45
1xEV-DO Rev A	24.30	24.52	24.71	38.45

Note: Limit = 7 Watts = 38.45 dBm

PCS Band Part 24E:

Mode	FED	REV	Low CH (1851.25 MHz)	Middle CH (1880.00 MHz)	High CH (1908.75MHz)	Part 24E Limit (dBm)
	RC1	RC1(S02)	23.68	24.17	24.70	33
	RC1	RC1(S055)	23.37	24.76	24.72	33
	RC2	RC2(S09)	23.50	24.57	24.30	33
	RC2	RC2(S055)	23.83	23.89	24.96	33
CDMA2000	RC3	RC3(S02)	23.54	24.15	24.36	33
1xRTT	RC3	RC3(S055)	24.23	24.32	24.79	33
	RC4	RC3(S02)	23.61	23.72	24.81	33
	RC4	RC3(S055)	23.45	24.25	24.29	33
	RC5	RC4(S09)	23.94	23.90	24.72	33
	RC5	RC4(S055)	23.93	24.14	24.94	33

Mode	Low CH (1851.25 MHz)	Middle CH (1880.00 MHz)	High CH (1908.75MHz)	Part 24E Limit (dBm)
1xEV-DO Rev 0	20.48	21.21	22.73	33
1xEV-DO Rev A	20.32	21.17	21.21	33

Note: Limit 2 Watts = 33 dBm

Radiated Power (ERP and EIRP)

Cellular Band Part 22H:

Indic	cated										
Freq. (MHz)	Amp. (dBuV)	Azimuth (degree)	Height (m)	Polar (H/V)	Freq. (MHz)	Level (dBm)	Antenna Gain Correction (dBi)	Cable Loss (dB)	Absolute Level (dBm)	(dBm)	Margin (dB)
824.70	100.44	199	106	V	824.7	27.18	0	0.21	26.97	38.45	-11.48
824.70	100.39	212	100	Н	824.7	22.04	0	0.21	21.83	38.45	-16.62
836.52	100.39	199	106	V	836.52	26.61	0	0.21	26.40	38.45	-12.05
836.52	100.62	212	100	Н	836.52	22.87	0	0.21	22.66	38.45	-15.79
848.31	99.16	199	106	V	848.31	26.00	0	0.21	25.79	38.45	-12.66
848.31	99.62	212	100	Н	848.31	22.34	0	0.21	22.13	38.45	-16.32

PCS Band Part 24E:

Indic	cated		Test Ante		nna Substituted				Absolute		
Freq. (MHz)	Amp. (dBuV)	Azimuth (degree)	Height (m)	Polar (H/V)	Freq. (MHz)	Level (dBm)	Antenna Gain Correction	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
1851.25	92.85	161	210	V	1851.25	16.03	9.5	0.38	25.15	33	-7.85
1851.25	93.39	113	110	Н	1851.25	16.57	9.5	0.38	25.69	33	-7.31
1880.00	92.52	161	210	V	1880.00	16.25	9.0	0.38	24.87	33	-8.13
1880.00	94.43	114	115	Н	1880.00	18.16	9.0	0.38	26.78	33	-6.22
1908.75	91.56	163	210	V	1908.75	15.36	9.0	0.38	23.98	33	-9.02
1908.75	94.60	118	120	Н	1908.75	18.40	9.0	0.38	27.02	33	-5.98

5 §2.1047 - MODULATION CHARACTERISTIC

5.1 Applicable Standard

According to FCC \S 2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

6 §2.1049, §22.917, §22.905, & §24.238 - OCCUPIED BANDWIDTH

6.1 Applicable Standard

Requirements: CFR 47, Section 2.1049, Section 22.901, Section 22.917 and Section 24.238.

6.2 Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 3 kHz (Cellular /PCS) and the -26 dB bandwidth was recorded.

6.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Due Date	
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-05-31	
Agilent	Analyzer, Communications	E5155C	GB44051221	2009-08-08	

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

6.4 Environmental Conditions

Temperature:	13 °C
Relative Humidity:	60 %
ATM Pressure:	101.6kPa

^{*} Testing performed by Jack Liu on 2009-03-03.

Report Number: R0811195-2224

6.5 Test Data & Plots

Please refer to the following tables and plots.

Cellular Band Part 22H:

Channel	Frequency (MHz)	26 dB Occupied Bandwidth (MHz)	99% Occupied Bandwidth (MHz)					
	1xRTT							
Low	824.7	1.421	1.2694					
Middle	836.52	1.411	1.2595					
High	848.31	1.427	1.2620					
	1xEV-DO Rev. 0							
Low	824.7	1.453	1.2668					
Middle	836.52	1.419	1.2557					
High	848.31	1.430	1.2668					
	1xEV-DO Rev. A							
Low	824.7	1.448	1.2779					
Middle	836.52	1.414	1.2622					
High	848.31	1.424	1.2686					

PCS Band Part 24E:

Channel	Frequency (MHz)	26 dB Occupied Bandwidth (MHz)	99% Occupied Bandwidth (MHz)					
	1xRTT							
Low	1851.25	1.427	1.2643					
Middle	1880.00	1.423	1.2545					
High	1908.75	1.429	1.2652					
	1xEV-DO Rev. 0							
Low	1851.25	1.422	1.2555					
Middle	1880.00	1.434	1.2595					
High	1908.75	1.430	1.2606					
	1xEV-DO Rev. A							
Low	1851.25	1.438	1.2647					
Middle	1880.00	1.428	1.2628					
High	1908.75	1.431	1.2694					

Plots of Occupied Bandwidth for Part 22H

Report Number: R0811195-2224

1xRTT

Low Channel

Middle Channel

High Channel

1xEV-DO Rev. 0

Low Channel

Middle Channel

High Channel

Report Number: R0811195-2224

1xEV-DO Rev. A

Report Number: R0811195-2224

Low Channel

Middle Channel

High Channel

Report Number: R0811195-2224

Plots of Occupied Bandwidth for Part 24E

1xRTT

Low Channel

Middle Channel

High Channel

1xEV-DO Rev. 0

Report Number: R0811195-2224

Low Channel

Middle Channel

High Channel

Report Number: R0811195-2224

1xEV-DO Rev. A

Low Channel

Middle Channel

High Channel

7 §2.1051, §22.917, & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

7.1 Applicable Standard

Requirements: CFR 47, § 2.1051. § 22.917 & §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1057.

7.2 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

7.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Due Date
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-05-31
Agilent	Analyzer, Communications	E5155C	GB44051221	2009-08-08

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

7.4 Environmental Conditions

Temperature:	13 °C
Relative Humidity:	60 %
ATM Pressure:	101.6kPa

^{*} Testing performed by Jack Liu on 2008-03-03.

7.5 Test Data & Plots

Report Number: R0811195-2224

Please refer to the following tables and plots.

Plots of Spurious Emissions for Part 22H

1xRTT

Low Channel (f = 824.7 MHz)

Plot 1a: 30 MHz - 1 GHz

Plot 2a: 1 GHz – 20 GHz

Middle Channel (f = 836.52 MHz)

Plot 1b: 30 MHz - 1 GHz

Plot 2b: 1 GHz - 20 GHz

High Channel (f = 848.31 MHz)

Plot 1c: 30 MHz – 1 GHz

Plot 2c: 1 GHz – 20 GHz

Plots of Spurious Emissions for Part 24E

1xRTT

Low Channel (f = 1851.25 MHz)

Plot 1d: 30 MHz – 1 GHz

Plot 2d: 1 GHz -20 GHz

Middle Channel (f = 1880 MHz)

Plot 1e: 30 MHz – 1 GHz

Plot 2e: 1 GHz -20 GHz

High Channel (f = 1908.75 MHz)

Plot 1f: 30 MHz - 1 GHz

Plot 2f: 1 GHz -20 GHz

8 §2.1053 - RADIATED SPURIOUS EMISSIONS

8.1 Applicable Standard

Requirements: CFR 47, § 2.1053, § 22.917, § 24.238.

8.2 Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \log (TX \text{ Power in Watts}/0.001)$ – the absolute level

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

8.3 Test Equipment List and Details

Report Number: R0811195-2224

Manufacturer	Description	Model	Serial Number	Calibration Due Date
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-05-31
Agilent	Analyzer, Communications	E5155C	GB44051221	2009-08-08
Sunol Sciences	Antenna	JB1	A103105-3	2009-03-25
A.R.A	Horn Antenna	DRG-118/A	1132	2009-07-28
A. H. Systems	Antenna, Horn, DRG	SAS-200/571	261	2009-07-01
HP	Pre-Amplifier	8449B	3008A01978	2009-10-21
HP	Pre-Amplifier	8447D	2944A06639	2009-12-19

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

8.4 Environmental Conditions

Temperature:	13 °C
Relative Humidity:	55 %
ATM Pressure:	101.5kPa

^{*} Testing performed by Jack Liu on 2009-02-13.

8.5 Test Data

Cellular Band, Part 22H:

30 MHz -10 GHz Radiated Emission at 3-meter (Middle Channel, 836.52 MHz)

Indica	ated		Test A	ntenna		Substit	uted		Absolute	Part	22H
Frequency (MHz)	S.A. Amp. (dBuV)	Azimuth (degree)	Height (m)	Polar (H/V)	Frequency (MHz)	S.G. Level (dBm)	Antenna Gain (dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
3346.08	55.84	91	100	V	3346.08	-36.11	9.7	1.67	-28.08	-13	-15.08
1673.04	67.72	207	187	Н	1673.04	-39.69	9.3	1.05	-31.44	-13	-18.44
817.30	62.76	138	100	Н	817.30	-32.32	0.0	0.55	-32.87	-13	-19.87
3346.08	49.87	198	181	Н	3346.08	-41.77	9.7	1.67	-33.74	-13	-20.74
1673.04	64.11	156	100	V	1673.04	-43.55	9.3	1.05	-35.30	-13	-22.30
817.30	57.30	200	100	V	817.30	-36.39	0.0	0.55	-36.94	-13	-23.94
2509.56	52.05	180	110	V	2509.56	-46.6	9.4	1.37	-38.57	-13	-25.57
856.10	58.96	145	100	Н	856.10	-39.06	0.0	0.55	-39.61	-13	-26.61
856.10	55.59	196	100	V	856.10	-40.35	0.0	0.55	-40.90	-13	-27.90
2509.56	50.89	326	103	Н	2509.56	-49.24	9.4	1.37	-41.21	-13	-28.21

PCS Band, Part 24E:

30 MHz -20 GHz Radiated Emission at 3-meter (Middle Channel, 1880 MHz)

Indic	ated		Test A	ntenna		Substituted		Absolute	Par	t 24E	
Frequency (MHz)	S.A. Amp. (dBuV)	Azimuth (degree)	Height (m)	Polar (H/V)	Frequency (MHz)	S.G. Level (dBm)	Antenna Gain (dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
3760	55.91	160	163	V	3760	-40.10	10.9	1.84	-31.04	-13	-18.04
5640	52.22	311	100	V	5640	-39.68	10.6	2.53	-31.61	-13	-18.61
5640	46.62	331	250	Н	5640	-44.34	10.6	2.53	-36.27	-13	-23.27
3760	52.54	249	100	Н	3760	-47.21	10.9	1.84	-38.15	-13	-25.15

9 §22.917 & §24.238 – BAND EDGE

9.1 Applicable Standard

According to § 22.917, the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

According to \$24.238, the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

9.2 Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency, RBW set to 10 kHz.

9.3 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Due Date
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-05-31
Agilent	Analyzer, Communications	E5155C	GB44051221	2009-08-08

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

9.4 Environmental Conditions

Temperature:	13 °C
Relative Humidity:	60 %
ATM Pressure:	101.6kPa

^{*} Testing performed by Jack Liu on 2008-03-03.

9.5 Test Data & Plots

Report Number: R0811195-2224

Please refer to the following plots.

Plots of Band Edge for Part 22H

Report Number: R0811195-2224

1xRTT

Lowest Channel

Highest Channel

1xEV-DO Rev 0

Highest Channel

1xEV-DO Rev. A

Highest Channel

Plots of Band Edge for Part 24E

Report Number: R0811195-2224

1xRTT

Highest Channel

1xEV-DO Rev. 0

Report Number: R0811195-2224

Highest Channel

1xEV-DO Rev. A

Highest Channel

10 §2.1055 (a), §2.1055 (d), §22.355, & §24.235 - FREQUENCY STABILITY

10.1 Applicable Standard

Requirements: FCC § 2.1055 (a), § 2.1055 (d) & following:

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1 of this section.

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤ 3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

10.2 Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

10.3 Test Equipment List and Details

Manufacturer	Description	Description Model Serial Number		Calibration Due Date
Tenney	Temperature oven	Versa Tenn	12.431-8	N/A
Agilent	Spectrum Analyzer	E4440A	US45303156	2009-05-31
Agilent	Analyzer, Communications	E5155C	GB44051221	2009-08-08

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

10.4 Environmental Conditions

Temperature:	13 °C
Relative Humidity:	60 %
ATM Pressure:	101.6kPa

^{*} Testing performed by Jack Liu on 2008-03-03.

10.5 Test Data

Cellular Band, Part 22H:

1) Frequency Stability versus Temperature:

Reference Frequency: 836.52 MHz, Limit: 2.5ppm							
Test Envi	ronment	Frequenc	y Measure with Time	Elapsed			
Temperature (°C)	Power Supplied (Vdc)	Measured Frequency (Hz)	Frequency Error (Hz)	Frequency Error (ppm)			
50	5	836519962	-38	0.045426290			
40	5	836519957	-43	0.051403433			
30	5	836519957	-43	0.051403433			
20	5	836519962	-38	0.045426290			
10	5	836519969	-31	0.037058289			
0	5	836519974	-26	0.031081146			
-10	5	836519971	-29	0.034667432			
-20	5	836519974	-26	0.031081146			
-30	5	836519966	-34	0.040644575			

2) Frequency Stability versus Voltage:

Not Tested (USB device, power is fixed form the Laptop or Desktop)

PCS Band, Part 24E:

1) Frequency Stability versus Temperature:

Reference Frequency: 1880.0 MHz							
Test Envi	ronment	Frequency	Frequency Measure with Time Elapsed				
Temperature (°C) Power Supplied (Vdc)		Measured Frequency (Hz)	Frequency Error (Hz)	Frequency Error (ppm)			
50	5	1879999918	-82	0.043617021			
40	5	1879999923	-77	0.040957447			
30	5	187999935	-65	0.034574468			
20	5	1879999934	-66	0.035106383			
10	5	1879999942	-58	0.030851064			
0	5	1879999945	-55	0.029255319			
-10	5	1879999946	-54	0.028723404			
-20	5	1879999947	-53	0.028191489			
-30	5	1879999903	-97	0.051595745			

2) Frequency Stability versus Voltage:

Not tested (USB device, power is fixed form the Laptop or Desktop)

11 §1.1307(b) (1) & §2.1093 - RF EXPOSURE

11.1 Applicable Standard

According to §1.1310 and §2.1093 SAR Evaluation is required.

11.2 Test Result

Compliant, Refer to SAR Report R0811195-SAR.