

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ : B01J 31/18, C07F 9/6571, 15/04	A1	(11) Internationale Veröffentlichungsnummer: WO 99/13983
		(43) Internationales Veröffentlichungsdatum: 25. März 1999 (25.03.99)

(21) Internationales Aktenzeichen: PCT/EP98/05733	(81) Bestimmungsstaaten: AL, AU, BG, BR, BY, CA, CN, CZ, GE, HU, ID, IL, JP, KR, KZ, LT, LV, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) Internationales Anmeldedatum: 9. September 1998 (09.09.98)	
(30) Prioritätsdaten: 197 40 180.5 12. September 1997 (12.09.97) DE	
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).	
(72) Erfinder; und	
(75) Erfinder/Anmelder (<i>nur für US</i>): FISCHER, Jakob [DE/DE]; Blumenstrasse 19, D-85414 Kirchdorf (DE). SIEGEL, Wolfgang [DE/DE]; Goethestrasse 34b, D-67117 Limburgerhof (DE).	
(74) Anwälte: KINZEBACH, Werner usw.; Reitstötter, Kinzebach & Partner, Sternwartstrasse 4, D-81679 München (DE).	

(54) Title: **CATALYST COMPRISING AT LEAST ONE PHOSPHONITE LIGAND BASED NICKEL (O) COMPLEX AND METHOD FOR THE PRODUCTION OF NITRILES**

(54) Bezeichnung: **KATALYSATOR, UMFASSEND WENIGSTENS EINEN NICKEL(O)KOMPLEX AUF BASIS EINES PHOSPHONITLIGANDEN UND VERFAHREN ZUR HERSTELLUNG VON NITRILEN**

(57) Abstract

The invention relates to a catalyst, comprising at least one nickel (O) complex containing at least one monodentate, bidentate or multidentate phosphonite ligand of general formula (I) or the salts or mixtures thereof. The invention also relates to a method for producing said catalysts and to a method for producing monoolefinic C₅-mononitriles with a non conjugated C=C and C≡N -bond by catalytic hydrocyanation of butadiene or a hydrocarbon mixture containing 1,3 butadiene, characterised in that hydrocyanation occurs in the presence of one such catalyst.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft einen Katalysator, umfassend wenigstens einen Nickel(O)komplex, welcher mindestens einen ein-, zwei- oder mehrzähligen Phosphonitliganden der allgemeinen Formel (I), oder Salze und Mischungen davon, umfasst, Verfahren zur Herstellung dieser Katalysatoren, und ein Verfahren zur Herstellung von Gemischen monoolefinischer C₅-Mononitrile mit nichtkonjugierter C=C- und C≡N-Bindung durch katalytische Hydrocyanierung von Butadien oder eines 1,3-Butadien-haltigen Kohlenwasserstoffgemisches, das dadurch gekennzeichnet ist, dass die Hydrocyanierung in Gegenwart eines solchen Katalysators erfolgt.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korca	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

Katalysator, umfassend wenigstens einen Nickel(0)Komplex auf Basis eines Phosphonitliganden und Verfahren zur Herstellung von Nitrilen

5

Beschreibung

Die vorliegende Erfindung betrifft einen Katalysator, der einen Nickel(0)Komplex umfasst, welcher mindestens einen ein-, zwei- 10 oder mehrzähnigen Phosphonitliganden umfasst, worin der Phosphor und eines der Sauerstoffatome der Phosphonitgruppe Teil eines 5- bis 8-gliedrigen Heterocyclus sind, sowie ein Verfahren zur Herstellung von Gemischen monoolefinischer C₅-Mononitrile durch katalytische Hydrocyanierung in Gegenwart eines solchen Katalysators.

15

zur großtechnischen Herstellung von Polyamiden besteht weltweit ein großer Bedarf an α,ω-Alkylendiaminen, welche dabei als ein wichtiges Ausgangsprodukt dienen. α,ω-Alkylendiamine, wie z. B. das Hexamethylendiamin, werden fast ausschließlich durch Hydrierung der entsprechenden Dinitrile gewonnen. Fast alle großtechnischen Wege zur Herstellung von Hexamethylendiamin sind daher im Wesentlichen Varianten der Herstellung des Adipodinitrils, von dem jährlich weltweit etwa 1,0 Mio. Tonnen produziert werden.

25 In K. Weissermel, H.-J. Arpe, Industrielle Organische Chemie, 4. Auflage, VCH Weinheim, S. 266 ff. sind vier prinzipiell unterschiedliche Routen zur Herstellung von Adipinsäuredinitril beschrieben:

- 30 1. die dehydratisierende Aminierung der Adipinsäure mit Ammoniak in der Flüssig- oder Gasphase über intermediär gebildetes Diamid;
2. die indirekte Hydrocyanierung des 1,3-Butadiens über die Zwischenstufe der 1,4-Dichlorbutene;
- 35 3. die Hydrodimerisierung von Acrylnitril in einem elektrochemischen Prozess; und
- 40 4. die direkte Hydrocyanierung von 1,3-Butadien mit Cyanwasserstoff.

Nach dem letztgenannten Verfahren erhält man in einer ersten Stufe durch Monoaddition ein Gemisch isomerer Pentennitrile, das 45 in einer zweiten Stufe zu vorwiegend 3- und 4-Pentennitril isomerisiert wird. Anschließend wird in einer dritten Stufe durch anti-Markownikow-Cyanwasserstoffaddition an 4-Pentennitril das

- Adipinsäuredinitril gebildet. Die Umsetzung erfolgt dabei in der Flüssigphase in einem Lösungsmittel, wie z. B. Tetrahydrofuran, bei einer Temperatur im Bereich von 30 - 150 °C und drucklos. Dabei werden als Katalysatoren Nickelkomplexe mit Phosphin- bzw. 5 Phosphit-Liganden und Metallsalz-Promotoren verwendet. In einen Heterocyclus integrierte Phosphonitliganden zur Stabilisierung des Nickels werden in dem oben genannten Review nicht beschrieben.
- 10 In "Applied Homogeneous Catalysis with Organometallic Compounds", Bd. 1, VCH Weinheim, S. 465 ff. wird allgemein die heterogen und homogen katalysierte Addition von Cyanwasserstoff an Olefine beschrieben. Dabei werden vor allem Katalysatoren auf Basis von Phosphin-, Phosphit- und Phosphinit-Komplexen des Nickels und 15 Palladiums verwendet. Zur Herstellung von Adipinsäuredinitril durch Hydrocyanierung von Butadien werden vorwiegend Nickel(0)-Phosphitkatalysatoren, ggf. in Gegenwart einer Lewis-Säure als Promotor verwendet. Allgemein lässt sich die Reaktion in die drei Schritte gliedern: 1. Synthese von Mononitrilen durch Hydro- 20 cyanierung von 1,3-Butadien; 2. Isomerisierung; 3. Synthese von Dinitrilen. Bei der Bildung des Monoadditionsproduktes erhält man ein Isomerengemisch, welches u. a. 3-Pentennitril und 2-Methyl-3-butennitril umfasst.
- 25 Übliche Katalysatoren für die Hydrocyanierung von 1,3-Butadien sind vor allem die bereits genannten Nickel(0)-Phosphitkatalysatoren.
- C. A. Tolman et al. beschreiben in Organometallics 1984, 3, S. 33 30 f. die katalytische Hydrocyanierung von Olefinen in Gegenwart von Nickel(0)-Phosphitkomplexen unter spezieller Berücksichtigung der Effekte von Lewis-Säuren auf die Cyanwasserstoffaddition.
- In Advances in Catalysis, Band 33, 1985, Academic Press Inc., S. 35 1 f. wird übersichtsartig die homogen Nickel-katalysierte Hydrocyanierung von Olefinen beschrieben. Als Katalysatoren werden Nickel(0)-Komplexe mit Phosphin- und Phosphitliganden eingesetzt.
- In J. Chem. Soc., Chem. Commun., 1991, S. 1292, werden chirale 40 Aryldiphosphite als Liganden für Hydrocyanierungskatalysatoren beschrieben. Bei diesen Liganden ist die Phosphitgruppe über zwei ihrer Sauerstoffatome an die 3- und 3'-Positionen einer 2,2'-Binaphthyleinheit gebunden, mit der sie so einen 7-gliedrigen Heterocyclus bildet. Zusätzlich können zwei dieser Heterocyclen eben- 45 falls über eine 2,2'-Binaphthyleinheit zu einem zweizähnigen Chelatliganden verknüpft sein.

3

In J. Chem. Soc., Chem. Commun., 1991, S. 803 f., werden dazu analoge Chelatdiphosphit-Komplexe von Nickel(0) und Platin(0) beschrieben, wobei anstelle einer 2,2'-Binaphthyleinheit eine Biphenyleinheit eingesetzt wird.

5

Die WO 95/28228 beschreibt ein Verfahren zur Hydrocyanierung von aliphatischen Monoolefinen, die gegebenenfalls zusätzlich eine nichtkonjugierte Nitrilgruppe oder eine nichtkonjugierte oder konjugierte Estergruppe aufweisen. Die eingesetzten Nickel(0)-Katalysatoren umfassen dabei ebenfalls zweizähnige Phosphitliganden, bei denen die Phosphitgruppen Teile von Aryl-anellierte Heterocyclen sind.

Die WO 95/29153 beschreibt ein Verfahren zur Hydrocyanierung von 15 Monoolefinen, wobei Katalysatoren auf Basis von nullwertigem Nickel und einzähnigen Phosphitliganden eingesetzt werden. Bei diesen Liganden ist die Phosphitgruppe wiederum zusammen mit zwei ihrer Sauerstoffatome Teil eines Aryl-annellierten 7-gliedrigen Heterocyclus. Das dritte Sauerstoffatom der Phosphitgruppe trägt 20 einen t.-Butyl-substituierten Phenylrest, welcher gegebenenfalls noch weitere Substituenten aufweisen kann.

Die WO 96/11182 beschreibt ein Verfahren zur Hydrocyanierung von aliphatischen, monoethylenisch ungesättigten Verbindungen, bei 25 denen die ethylenische Doppelbindung nicht in Konjugation zu einer anderen ungesättigten Gruppe steht oder bei denen die ethylenische Doppelbindung in Konjugation zu einer Estergruppe steht. Dabei wird ein Nickel(0)-Katalysator auf Basis eines mehrzähnigen Phosphitliganden in Gegenwart einer Lewis-Säure als Promotor eingestellt. Die Phosphitgruppen dieser mehrzähnigen Liganden sind 30 dabei wiederum Bestandteile von Aryl-annellierte Heterocyclen und ggf. über Aryl-anellierte Gruppen verbrückt.

Die WO 96/22968 beschreibt ein Verfahren zur Hydrocyanierung di-olefinischer Verbindungen und zur Isomerisierung der resultierenden, nichtkonjugierten 2-Alkyl-3-monoalkennitrile durch Umsetzung eines acyclischen, aliphatischen Diolefins mit einer Cyanwasserstoffquelle. Die Umsetzung findet dabei in der flüssigen Phase statt. Es werden Hydrocyanierungskatalysatoren eingesetzt, die 40 denen in der WO 96/11182 beschriebenen analog sind.

Die US-A 5,512,695 hat einen der WO 95/28228 entsprechenden Offenbarungsgehalt.

45 Neben den zuvor beschriebenen Hydrocyanierungskatalysatoren auf Basis von ein-, zwei- und mehrzähnigen Phosphitliganden sind auch Katalysatoren auf Basis von Phosphinitliganden bekannt. In J. Am.

Chem. Soc., 1994, 116, S. 9869 f. und in der US-A-5,484,902 sind Katalysatoren für die enantioselektive Hydrocyanierung aromatischer Vinylverbindungen auf der Basis von einem chiralen, nicht-racemischen, zweizähnigen Chelatphosphinitliganden beschrieben.

5 Als Ligand wird dabei vorzugsweise ein Phenyl-2,3-bis-O-(3,5-bis-(trifluormethyl)phenyl)phosphino-4,6-O-benzyliden- β -D-glucopyranosid eingesetzt.

Die US-A 5,523,453 beschreibt ein Verfahren zur Hydrocyanierung 10 von Monoolefinen, welche gegebenenfalls zusätzlich eine Cyano-gruppe aufweisen können, in Gegenwart einer Lewis-Säure als Pro-motor und einem Nickel(0)-Katalysator. Diese Katalysatoren weisen Liganden auf Basis von Chelatphosphiniten auf, bei denen zwei arylsubstituierte Phosphinitgruppen über ihr Sauerstoffatom und 15 eine Aryl-anellierte Alkylenbrücke miteinander verknüpft sind.

Keine der zuvor genannten Literaturstellen beschreibt Hydrocya-nierungskatalysatoren auf Basis von Phosphonitliganden, wobei die Phosphonitgruppe Teil eines 5- bis 8-gliedrigen Heterocyclus ist.

20 Die US-A 3,766,237 beschreibt ein Verfahren zur Hydrocyanierung ethylenisch ungesättigter Verbindungen, welche weitere funktio-nelle Gruppen, wie z. B. Nitrile, aufweisen können, in Gegenwart eines Nickelkatalysators. Diese Nickelkatalysatoren tragen vier 25 Liganden der allgemeinen Formel M(X,Y,Z), wobei X, Y und Z unab-hängig voneinander für einen Rest R oder OR stehen und R ausge-wählt ist unter Alkyl- und Arylgruppen mit bis zu 18 Kohlenstoff-atomen. Dabei werden jedoch nur Phosphine und Phosphite explizit genannt und in den Beispielen für die Hydrocyanierung eingesetzt. 30 Dagegen ist nicht offenbart, dass Phosphonite, bei denen die Phosphonitgruppe Teil eines Heterocyclus ist, als Liganden für Nickel(0)-Hydrocyanierungskatalysatoren eingesetzt werden können.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, neue Kata-35 lysatoren auf Basis von nullwertigem Nickel zur Verfügung zu stellen, die bei der Hydrocyanierung von 1,3-Butadien-haltigen Kohlenwasserstoffgemischen sowie bei der Erst- und Zweitaddition von Cyanwasserstoff zur Herstellung von Adipodintril eine gute Selektivität und eine gute katalytische Aktivität aufweisen.

40 Überraschenderweise wurden nun Katalysatoren auf Basis von Nickel(0)-Komplexen gefunden, welche mindestens einen ein-, zwei- oder mehrzähnigen Phosphonitliganden umfassen, wobei die Phospho-nitgruppe Teil eines 5- bis 8-gliedrigen Heterocyclus ist.

5

Gegenstand der vorliegenden Erfindung ist somit ein Katalysator, umfassend einen Nickel(0)komplex, mit mindestens einem ein-, zwei- oder mehrzähnigen Phosphonitliganden der allgemeinen Formel I

5

10 worin

- A zusammen mit dem Teil der Phosphonitgruppe, an den es gebunden ist, für einen 5- bis 8-gliedrigen Heterocyclus steht, der gegebenenfalls zusätzlich ein-, zwei- oder dreifach mit Cycloalkyl, Aryl und/oder Hetaryl anelliert sein kann, wobei die anellierten Gruppen je einen, zwei oder drei Substituenten, ausgewählt unter Alkyl, Alkoxy, Halogen, Nitro, Cyano oder Carboxyl tragen können,
- 20 R¹ für Alkyl, Aryl oder Hetaryl steht, welche einen, zwei oder drei der folgenden Substituenten: Alkyl, Cycloalkyl, Aryl, Alkoxy, Cycloalkyloxy, Acyl, Aryloxy, Halogen, Trifluormethyl, Nitro, Cyano, Carboxyl oder NE¹E² tragen können, wobei E¹ und E² gleich oder verschieden sein können und für Alkyl, Cycloalkyl oder Aryl stehen, oder

R¹ für einen Rest der allgemeinen Formel II

30 steht, worin

- X für eine C₃- bis C₆-Alkylenbrücke steht, welche ein, zwei oder drei Doppelbindungen aufweisen und/oder ein-, zwei- oder dreifach mit Aryl und/oder Hetaryl anelliert sein kann, wobei die Aryl- oder Hetarylgruppen einen, zwei oder drei der folgenden Substituenten: Alkyl, Cycloalkyl, Aryl, Alkoxy, Cycloalkyloxy, Aryloxy, Halogen, Trifluormethyl, Nitro, Cyano, Carboxyl oder NE¹E² tragen können, wobei E¹ und E² die zuvor angegebenen Bedeutungen besitzen,
- 40 Y für einen Rest der Formeln III.1 oder III.2

45

6

5

(III.1)

(III.2)

steht, worin

10

D die zuvor für A angegebenen Bedeutungen besitzen kann,

oder Salze und Mischungen davon.

15

Im Rahmen der vorliegenden Erfindung umfasst der Ausdruck 'Alkyl' geradkettige und verzweigte Alkylgruppen. Vorzugsweise handelt es sich dabei um geradkettige oder verzweigte C₁-C₈-Alkyl-, bevorzugter C₁-C₆-Alkyl- und besonders bevorzugt C₁-C₄-Alkylgruppen. Bei-
20 spiele für Alkylgruppen sind insbesondere Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, 2-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, 2-Pentyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 2-Hexyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Di-
25 methylbutyl, 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl, 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl-2-methylpropyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 2-Ethylpen-
tyl, 1-Propylbutyl, Octyl.

30

Bei der Cycloalkylgruppe handelt es sich vorzugsweise um eine C₅-C₇-Cycloalkylgruppe, wie Cyclopentyl, Cyclohexyl oder Cycloheptyl.

35

Wenn die Cycloalkylgruppe substituiert ist, weist sie vorzugsweise 1, 2, 3, 4 oder 5, insbesondere 1, 2 oder 3 Substituenten, ausgewählt unter Alkyl, Alkoxy oder Halogen auf.

Aryl steht vorzugsweise für Phenyl, Tollyl, Xylyl, Mesityl, Naph-
40 thyl, Anthracenyl, Phenanthrenyl, Naphthacenyl und insbesondere für Phenyl oder Naphthyl.

Substituierte Arylreste weisen vorzugsweise 1, 2, 3, 4 oder 5, insbesondere 1, 2 oder 3 Substituenten, ausgewählt unter Alkyl,
45 Alkoxy oder Halogen auf.

Hetaryl steht vorzugsweise für Pyridyl, Chinolinyl, Acridinyl, Pyridazinyl, Pyrimidinyl oder Pyrazinyl.

Substituierte Hetarylreste weisen vorzugsweise 1, 2 oder 3 Substituenten, ausgewählt unter Alkyl, Alkoxy oder Halogen auf.

Die obigen Ausführungen zu Alkyl-, Cycloalkyl- und Arylresten gelten entsprechend für Alkoxy-, Cycloalkyloxy- und Aryloxyreste.

10 Die Reste NE¹E² stehen vorzugsweise für N,N-Dimethyl, N,N-Diethyl, N,N-Dipropyl, N,N-Diisopropyl, N,N-Di-n-butyl, N,N-Di-t.-butyl, N,N-Dicyclohexyl oder N,N-Diphenyl.

Halogen steht für Fluor, Chlor, Brom und Iod, bevorzugt für
15 Fluor, Chlor und Brom.

Eine bevorzugte Ausführungsform der Erfindung sind Katalysatoren, die mindestens einen Phosphonitliganden der Formel I umfassen, wobei A zusammen mit dem Teil der Phosphonitgruppe, an den es gebunden ist, für einen 5- oder 6-gliedrigen Heterocyclus steht, der gegebenenfalls ein- oder zweifach mit Aryl und/oder Hetaryl anelliert sein kann, wobei die anellierten Gruppen einen, zwei oder drei der zuvor angegebenen Substituenten tragen können.

25 Der Rest A steht dann z. B. für einen 2,2'-Biphenylen-, 2,2'-Binaphthylen- oder 2,3-Xylylen-Rest, der 1, 2 oder 3 Substituenten, ausgewählt unter Alkyl, Alkoxy oder Halogen, tragen kann. Alkyl steht dabei vorzugsweise für C₁-C₄-Alkyl und insbesondere für t.-Butyl. Alkoxy steht dabei vorzugsweise für C₁-C₄-Alkoxy und insbesondere für Methoxy. Halogen steht insbesondere für Fluor, Chlor oder Brom.

Insbesondere steht A für einen Rest der Formeln IV.1, IV.2 oder IV.3:

35

40

(IV.1)

(IV.2)

(IV.3)

worin

R² und R³ unabhängig voneinander für Wasserstoff, Alkyl, Alkoxy, Halogen, Trifluormethyl, Nitro oder Cyano stehen, und

R⁴ für Wasserstoff, Alkyl, vorzugsweise Methyl, oder Aryl, vorzugsweise Phenyl, steht, welches gegebenenfalls mit Alkyl, Alkoxy, Halogen, Trifluormethyl, Nitro oder Cyano substituiert sein kann.

5

Die obigen Ausführungen zu bevorzugten Resten A gelten entsprechend für Reste D.

Nach einer weiteren bevorzugten Ausführungsform umfassen die er-
10 findungsgemäßen Katalysatoren mindestens einen Phosphitliganden der Formel I, wobei

R¹ für Phenyl oder Naphthyl steht, welches einen, zwei oder drei der folgenden Substituenten: Alkyl, Alkoxy, Halogen, Nitro, Cyano, Carboxyl oder NE¹E² tragen kann, wobei E¹ und E² die
15 zuvor angegebenen Bedeutungen besitzen, oder

R¹ für einen Rest der Formel II steht, worin

X für eine C₄- bis C₅-Alkylenbrücke steht, welche eine oder
20 zwei Doppelbindungen aufweisen und/oder ein- oder zweifach mit Aryl und/oder Hetaryl anelliert sein kann, wobei die Aryl- oder Hetarylgruppen einen, zwei oder drei der folgenden Substituenten: Alkyl, Cycloalkyl, Aryl, Alkoxy, Cycloalkyloxy, Aryloxy, Halogen, Nitro, Cyano, Carboxyl
25 oder NE¹E² tragen können, wobei E¹ und E² die zuvor angegebenen Bedeutungen besitzen, und

Y für einen Rest der Formeln III.1 oder III.2 steht, worin D für einen Rest der Formeln IV.1, IV.2 oder IV.3 steht.
30

Wenn R¹ für Phenyl oder Naphthyl steht, so weist dieses vorzugsweise 1, 2 oder 3 Substituenten, ausgewählt unter C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Halogen auf. Insbesondere sind die Substituenten ausgewählt unter t.-Butyl, Methoxy, Trifluormethyl, Fluor, Chlor
35 und Brom.

Wenn R¹ für einen Rest der Formel II steht, worin X für eine C₄-C₅-Alkylenbrücke steht, so ist diese vorzugsweise ein- oder zweifach mit Phenyl und/oder Naphthyl anelliert, wobei die Phenyl- oder Naphthylgruppen 1, 2 oder 3 der folgenden Substituenten t.-Butyl, Methoxy, Fluor, Chlor oder Brom aufweisen können.
40

Bevorzugt steht in der Formel I R¹ für einen Rest der allgemeinen Formel II, worin X für einen Rest der Formeln X.1 bis X.5

steht, worin

Z für O, S, NR¹⁶ oder CHR¹⁷ steht, wobei

20 R¹⁶ für Alkyl, Cycloalkyl oder Aryl steht, und

R¹⁷ für Wasserstoff, Alkyl, Cycloalkyl oder Aryl steht, wobei der Arylsubstituent einen, zwei oder drei Substituenten, die ausgewählt sind unter Alkyl, Alkoxy, Halogen, Trifluormethyl, Nitro, Alkoxycarbonyl oder Cyano, tragen kann,

³⁰ R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴ und R¹⁵ unabhängig voneinander für Wasserstoff, Alkyl, Alkoxy, Halogen, Trifluormethyl, Nitro, Alkoxy carbonyl oder Cyano stehen.

Vorzugsweise steht X für einen Rest der Formel X.1, worin R⁸ und R⁹ für Wasserstoff stehen.

35 Vorzugsweise steht X für einen Rest der Formel X.2a

worin

45

10

- R⁸ für Wasserstoff oder C₁- bis C₄-Alkyl, bevorzugt Methyl, Isopropyl oder tert.-Butyl, steht,
 5 R⁹ für Wasserstoff, C₁- bis C₄-Alkyl, bevorzugt Methyl, Isopropyl oder tert.-Butyl, C₁- bis C₄-Alkoxy, bevorzugt Methoxy, Fluor, Chlor oder Trifluormethyl, steht.

Vorzugsweise steht X für einen Rest der Formel X.3a

10

15

worin

R⁸ und R⁹ die zuvor bei der Formel X.2a angegebenen Bedeutungen
 20 besitzen,

R¹⁷ für Wasserstoff, C₁- bis C₄-Alkyl, bevorzugt Methyl oder Ethyl, Phenyl, p-(C₁- bis C₄-Alkoxy)phenyl, bevorzugt p-Methoxyphenyl, p-Fluorphenyl, p-Chlorphenyl oder p-(Trifluormethyl)phenyl steht.
 25

Vorzugsweise steht X für einen Rest der Formel X.4, worin R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴ und R¹⁵ für Wasserstoff stehen.

30 Vorzugsweise steht X für einen Rest der Formel X.4, worin R⁸, R⁹, R¹⁰, R¹¹, R¹³ und R¹⁵ für Wasserstoff stehen und die Reste R¹² und R¹⁴ unabhängig voneinander für Alkoxy carbonyl, bevorzugt Methoxy-, Ethoxy-, n-Propyloxy- oder Isopropyloxycarbonyl, stehen. Insbesondere stehen die Reste R¹² und R¹⁴ in ortho-Position zur Phos-
 35 phonitgruppe.

Vorzugsweise steht X für einen Rest der Formel X.5, worin R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴ und R¹⁵ für Wasserstoff stehen und Z für CR¹⁷ steht, wobei R¹⁷ die zuvor angegebenen Bedeutungen besitzt.
 40

Vorzugsweise steht X für einen Rest der Formel X.5, worin R⁸, R⁹, R¹⁰, R¹¹, R¹³ und R¹⁵ für Wasserstoff stehen, Z für CR¹⁷ steht und die Reste R¹² und R¹⁴ unabhängig voneinander für Alkoxy carbonyl, bevorzugt Methoxy-, Ethoxy-, n-Propyloxy- oder Isopropyloxycarbonyl, stehen. Insbesondere stehen die Reste R¹² und R¹⁴ in ortho-Position zur Phosphonitgruppe.
 45

11

Nach einer geeigneten Ausführungsform sind die Phosphonitliganden der Formel I ausgewählt unter Liganden der Formel Ia bis Ib

12

15

worin

- 30 R⁵ und R⁶ unabhängig voneinander für Wasserstoff oder Trifluormethyl stehen,
R⁷ für Fluor oder Trifluormethyl steht.

Die erfindungsgemäßen Katalysatoren können einen oder mehrere der
35 Phosphitliganden der Formel I aufweisen. Zusätzlich zu den zuvor
beschriebenen Liganden der allgemeinen Formel I können sie noch
wenigstens einen weiteren Liganden, der ausgewählt ist unter Ha-
logeniden, Aminen, Carboxylaten, Acetylacetonat, Aryl- oder Al-
kylsulfonaten, Hydrid, CO, Olefinen, Dienen, Cycloolefinen, Ni-
40 trilen, N-haltigen Heterocyclen, Aromaten und Heteroaromaten,
Ethern, PF₃ sowie ein-, zwei- und mehrzähnigen Phosphin-, Phosphi-
nit-, Phosphonit- und Phosphitliganden aufweisen. Diese weiteren
Liganden können ebenfalls ein-, zwei- oder mehrzähnig sein und an
das nullwertige Nickel koordinieren. Geeignete weitere phosphor-
45 haltige Liganden sind z. B. die zuvor als Stand der Technik be-
schriebenen Phosphin-, Phosphinit-, und Phosphitliganden.

13

Zur Herstellung der erfindungsgemäß eingesetzten Phosphonitliganden der Formel I kann man z. B. eine Hydroxylgruppen-haltige Verbindung der Formel V mit einem Phosphortrihalogenid, bevorzugt PCl_3 , zu einer Verbindung der Formel VI und diese dann mit einer 5 Hydroxylgruppen-haltigen Verbindung der Formel HOR^1 gemäß folgendem Schema

15 umsetzen,

wobei A und R¹ die zuvor angegebenen Bedeutungen besitzen. Ein solches Verfahren wird in Phosphorus and Sulfur, 1987, Bd. 31, S. 71 ff. für den Aufbau von 6H-Dibenz[c,e][1,2]oxaphosphorin-
20 Ringsystemen beschrieben.

Geeignete Alkohole der Formel V sind z. B. Biphenyl-2-ol, Binaphthyl-2-ol etc.

25 Geeignete Alkohole der Formel HOR^1 sind z. B. 2-tert-Butyl-4-methylphenol, 2-tert-Butylphenol, 4-tert-Butylphenol, 2,6-Di-tert-butyl-4-methylphenol, 2,4-Di-tert-butylphenol, 2,6-Di-tert-butylphenol, 2,4-Dimethylphenol, 2,5-Dimethylphenol, 2,6-Dimethylphenol, 3,4-Dimethylphenol, 3,5-Dimethylphenol, 2-Ethylphenol,
30 3-Ethylphenol, 4-Ethylphenol, 5-Isopropyl-2-methylphenol, m-Kresol, o-Kresol, p-Kresol, 1-Naphthol, 2-Naphthol, Phenol, 1-Brom-2-naphthol, 3-Bromphenol, 5-Chlorchinolin-8-ol, 4-Chlor-3,5-dimethylphenol, 2-Chlor-5-methylphenol, 4-Chlor-3-methylphenol, 2-Chlor-6-nitrophenol, 2-Chlorphenol, 3-Chlorphenol,
35 4-Chlorphenol, 4-Chlorresorcin, 2,3-Dichlorphenol, 2,4-Dichlorphenol, 2,5-Dichlorphenol, 2,6-Dichlorphenol, 3,4-Dichlorphenol, 2-Fluorphenol, 3-Fluorphenol, 4-Fluorphenol, 3-Methyl-4-nitrophenol, 2-Nitroanisol, 4-Nitrobrenzcatechin, 2-Nitrophenol, 3-Nitrophenol, 2-Methoxymethylphenol, 2-Methoxy-4-methylphenol,
40 2-Methoxyphenol, 3-Methoxyphenol, 4-Methoxyphenol. Bevorzugte Alkohole der Formel HOR^1 sind 2,6-Di-tert-butyl-4-methylphenol, 2,4-Di-tert-butylphenol, 2,6-Di-tert-butylphenol, Phenol, 2-Fluorphenol, 3-Fluorphenol, 4-Fluorphenol, 4-Nitrobrenzcatechin, 2-Methoxy-4-methylphenol, 2-Trifluormethylphenol, 3,5-Bis(trifluormethyl)phenol, 4-Cyanophenol, etc..
45

14

Zur Herstellung von zweizähnigen Chelatliganden kann eine Verbindung der Formel HOR¹ eingesetzt werden, wobei der Rest R¹ eine weitere Hydroxylgruppe trägt. Dazu zählen z. B. Biphenyl-2,2'-Diol und Binaphthyl-2,2'-Diol. Weitere geeignete Diole 5 werden in der US-A-5,312,996, Sp. 19 genannt, auf die hier Bezug genommen wird. Werden zur Umsetzung wenigstens 2 Moläquivalente der Verbindung VI eingesetzt, so erhält man einen reinen zweizähnigen Phosphonitliganden der Formel I. Zur Herstellung von zweizähnigen Liganden der Formel I, welche eine Phosphonit- und eine 10 Phosphitgruppe tragen, kann man aber auch eine Verbindung der Formel VI mit einer Verbindung der Formel HOR¹, welche zwei Hydroxylgruppen trägt, zu einem Monokondensationsprodukt umsetzen und dieses dann mit einer Verbindung der Formel VII

15

20 worin D die zuvor für A angegebenen Bedeutungen besitzen kann, zu einem gemischten Liganden der Formel I umsetzen.

Die Verbindungen der Formel VI können gewünschtenfalls isoliert und einer Reinigung, z. B. durch Destillation, unterworfen werden. 25 Die Umsetzung der Verbindung der Formel V zu einer Verbindung der Formel VI verläuft im Allgemeinen bei einer erhöhten Temperatur in einem Bereich von etwa 40 bis etwa 200 °C, wobei die Umsetzung auch unter sukzessiver Temperaturerhöhung geführt werden kann. Zusätzlich kann zu Beginn der Reaktion oder nach einer 30 gewissen Reaktionsdauer eine Lewis-Säure, wie z. B. Zinkchlorid oder Aluminiumchlorid, als Katalysator zugesetzt werden. Die weitere Umsetzung der Verbindungen der Formel VI zu den erfundungsgemäß eingesetzten Phosphonitliganden der Formel I erfolgt im Allgemeinen in Gegenwart einer Base, z. B. einem aliphatischen 35 Amin, wie Diethylamin, Dipropylamin, Dibutylamin, Trimethylamin, Tripropylamin und vorzugsweise Triethylamin oder Pyridin.

Vorteilhafterweise gelingt die Herstellung der erfundungsgemäß eingesetzten Phosphonitliganden der Formel I ohne Verwendung von 40 Magnesium- oder Lithium-organischen Verbindungen. Die einfache Reaktionssequenz erlaubt eine breite Variationsmöglichkeit der Liganden. Die Darstellung gelingt somit effizient und ökonomisch aus leicht zugängigen Edukten.

45 Zur Herstellung der erfundungsgemäßen Katalysatoren kann man mindestens einen Phosphonitliganden der Formel I mit Nickel oder einer Nickelverbindung in Gegenwart eines Reduktionsmittels oder

15

einem Nickelkomplex in einem inerten Lösungsmittel zur Reaktion bringen. Geeignete Nickelverbindungen sind dabei z. B. Verbindungen, in denen das Übergangsmetall eine Oxidationsstufe höher als 0 einnimmt, und die bei der Umsetzung mit dem Phosphonitliganden 5 der Formel I, gegebenenfalls in Gegenwart eines geeigneten Reduktionsmittels, *in situ* reduziert werden. Dazu zählen z. B. die Halogenide, bevorzugt die Chloride, und die Acetate der zuvor genannten Übergangsmetalle. Dabei wird bevorzugt NiCl_2 eingesetzt. Geeignete Reduktionsmittel sind z. B. Metalle, bevorzugt Alkali-10 metalle, wie Na und K, Aluminium, Zink sowie Trialkylaluminiumverbindungen.

Werden zur Herstellung der Phosponit-Nickel(0)-Komplexe bereits Komplexverbindungen des Übergangsmetalls eingesetzt, so liegt in 15 diesen das Übergangsmetall vorzugsweise bereits nullwertig vor. Bevorzugt werden zur Herstellung Komplexe mit Liganden eingesetzt, die den zuvor genannten, zusätzlichen Liganden der erfundungsgemäßen Komplexe entsprechen. In diesem Falle erfolgt die Herstellung durch teilweisen oder vollständigen Ligandenaustausch 20 mit den zuvor beschriebenen Phosphonitliganden der Formel I.

Nach einer geeigneten Ausführungsform des erfundungsgemäßen Verfahrens ist der Nickelkomplex Bis(1,5-cyclooctadien)nickel(0).

25 Geeignete inerte Lösungsmittel zur Herstellung der Nickel(0)-Komplexe sind beispielsweise Aromaten, wie Benzol, Toluol, Ethylbenzol, Chlorbenzol, Ether, vorzugsweise Diethylether und Tetrahydrofuran, oder Halogenalkane, beispielsweise Dichlormethan, Chloroform, Dichlorethan und Trichlorethan. Die Temperatur liegt da-30 bei in einem Bereich von -70 °C bis 150 °C, vorzugsweise von 0 °C bis 100 °C, besonders bevorzugt etwa bei Raumtemperatur.

Wird zur Herstellung der Phosponit-Nickel(0)-Komplexe elementares Nickel eingesetzt, so liegt dieses vorzugsweise als Pulver 35 vor. Die Umsetzung von Nickel und Phosphonitligand erfolgt vorzugsweise in einem Produkt der Hydrocyanierungsreaktion als Lösungsmittel, z. B. in einem Gemisch monoolefinischer C₅-Mononitrile oder bevorzugt in 3-Pentennitril. Gegebenenfalls kann auch der Ligand als Lösungsmittel eingesetzt werden. Die Temperatur 40 liegt in einem Bereich von etwa 0 bis 150 °C, bevorzugt 60 bis 100 °C.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Gemischen monoolefinischer C₅-Mononitrile mit nicht-45 konjugierter C=C- und C≡N-Bindung durch katalytische Hydrocyanierung eines 1,3-Butadien-haltigen Kohlenwasserstoffgemisches, das dadurch gekennzeichnet ist, dass die Hydrocyanierung in Gegenwart

16

mindestens eines der zuvor beschriebenen erfindungsgemäßen Katalysatoren erfolgt.

Vorzugsweise wird zur Herstellung von monoolefinischen C₅-Mononitriilen nach dem erfindungsgemäßen Verfahren ein Kohlenwasserstoffgemisch eingesetzt, das einen 1,3-Butadien-Gehalt von mindestens 10 Vol.-%, bevorzugt mindestens 25 Vol.-%, insbesondere mindestens 40 Vol.-%, aufweist.

10 zur Herstellung von Gemischen monoolefinischer C₅-Mononitrile, die z.B. 3-Pentennitril und 2-Methyl-3-butennitril enthalten und die als Zwischenprodukte für die Weiterverarbeitung zur Adipodinitril geeignet sind, kann man reines Butadien oder 1,3-Butadien-haltige Kohlenwasserstoffgemische einsetzen.

15

1,3-Butadien-haltige Kohlenwasserstoffgemische sind in großtechnischem Maßstab erhältlich. So fällt z.B. bei der Aufarbeitung von Erdöl durch Steamcracken von Naphtha ein als C₄-Schnitt bezeichnetes Kohlenwasserstoffgemisch mit einem hohen Gesamtolenin-20 anteil an, wobei etwa 40 % auf 1,3-Butadien und der Rest auf Monoolefine und mehrfach ungesättigte Kohlenwasserstoffe sowie Alkane entfällt. Diese Ströme enthalten immer auch geringe Anteile von im Allgemeinen bis zu 5 % an Alkinen, 1,2-Dienen und Vinylacetylen.

25

Reines 1,3-Butadien kann z. B. durch extraktive Destillation aus technisch erhältlichen Kohlenwasserstoffgemischen isoliert werden.

30 C₄-Schnitte werden gegebenenfalls von Alkinen, wie z. B. Propin oder Butin, von 1,2-Dienen, wie z. B. Propadien, und von Alkeninen, wie z. B. Vinylacetylen, im Wesentlichen befreit. Ansonsten werden u.U. Produkte erhalten, bei denen eine C=C-Doppelbindung in Konjugation mit der C≡N-Bindung steht. Aus "Applied Heterogeneous Catalysis with Organometallic Compounds", Bd. 1, VCH Weinheim, S. 479 ist bekannt, dass das bei der Isomerisierung von 2-Methyl-3-butennitril und 3-Pentennitril entstehende, konjugierte 2-Pentennitril als ein Reaktionsinhibitor für die Zweitaddition von Cyanwasserstoff zu Adipinsäuredinitril wirkt. Es wurde 35 festgestellt, dass die oben genannten, bei der Hydrocyanierung eines nicht vorbehandelten C₄-Schnitte erhaltenen konjugierten Nitrile auch als Katalysatorgifte für den ersten Reaktionsschritt der Adipinsäureherstellung, die Monoaddition von Cyanwasserstoff, wirken.

45

17

Daher entfernt man gegebenenfalls aus dem Kohlenwasserstoffgemisch solche Komponenten teilweise oder vollständig, die bei katalytischer Hydrocyanierung Katalysatorgifte ergeben, insbesondere Alkine, 1,2-Diene und Gemische davon. Zur Entfernung dieser Komponenten wird der C₄-Schnitt vor der Addition von Cyanwasserstoff einer katalytischen Teilhydrierung unterzogen. Diese Teilhydrierung erfolgt in Gegenwart eines Hydrierungskatalysators, der befähigt ist, Alkine und 1,2-Diene selektiv neben anderen Dienen und Monoolefinen zu hydrieren.

10

Geeignete heterogene Katalysatorsysteme umfassen im Allgemeinen eine Übergangsmetallverbindung auf einem inertem Träger. Geeignete anorganische Träger sind die hierfür üblichen Oxide, insbesondere Silicium- und Aluminiumoxide, Alumosilikate, Zeolithe, Carbide, Nitride etc. und deren Mischungen. Bevorzugt werden als Träger Al₂O₃, SiO₂ und deren Mischungen verwendet. Insbesondere handelt es sich bei den verwendeten heterogenen Katalysatoren um die in den US-A-4,587,369; US-A-4,704,492 und US-A-4,493,906 beschriebenen, auf die hier in vollem Umfang Bezug genommen wird. 20 Weiterhin geeignete Katalysatorsysteme auf Cu-Basis werden von der Fa. Dow Chemical als KLP-Katalysator vertrieben.

Die Addition von Cyanwasserstoff an 1,3-Butadien oder ein 1,3-Butadien-haltiges Kohlenwasserstoffgemisch, z. B. einen vorbehandelten, teilhydrierten C₄-Schnitt, kann kontinuierlich, semikontinuierlich oder diskontinuierlich erfolgen.

Nach einer geeigneten Variante des erfindungsgemäßen Verfahrens erfolgt die Addition des Cyanwasserstoffs kontinuierlich. Geeignete Reaktoren für die kontinuierliche Umsetzung sind dem Fachmann bekannt und werden z. B. in Ullmanns Enzyklopädie der technischen Chemie, Bd. 1, 3. Aufl., 1951, S. 743 ff. beschrieben. Vorzugswise wird für die kontinuierliche Variante des erfindungsgemäßen Verfahrens eine Rührkesselkaskade oder ein Rohrreaktor verwendet.

Gemäß einer bevorzugten Variante des erfindungsgemäßen Verfahrens erfolgt die Addition des Cyanwasserstoffs an 1,3-Butadien oder ein 1,3-Butadien-haltiges Kohlenwasserstoffgemisch semikontinuierlich.

Das semikontinuierliche Verfahren umfasst:

18

- a) Befüllen eines Reaktors mit dem Kohlenwasserstoffgemisch, gegebenenfalls einem Teil des Cyanwasserstoffs und einem gegebenenfalls in situ erzeugten, erfindungsgemäßen Hydrocyanierungskatalysator sowie gegebenenfalls einem Lösungsmittel,
5
 - b) Umsetzung des Gemisches bei erhöhter Temperatur und erhöhtem Druck, wobei bei semikontinuierlicher Fahrweise Cyanwasserstoff nach Maßgabe seines Verbrauchs eingespeist wird,
- 10 c) Vervollständigung des Umsatzes durch Nachreagieren und anschließende Aufarbeitung.

Geeignete druckfeste Reaktoren sind dem Fachmann bekannt und werden z. B. in Ullmanns Enzyklopädie der technischen Chemie, Bd. 1, 15 3. Auflage, 1951, S. 769 ff. beschrieben. Im Allgemeinen wird für das erfindungsgemäße Verfahren ein Autoklav verwendet, der gewünschtenfalls mit einer Rührvorrichtung und einer Innenauskleidung versehen sein kann. Für die obigen Schritte gilt vorzugsweise folgendes zu beachten:

20 Schritt a):
Der druckfeste Reaktor wird vor Beginn der Reaktion mit dem teilhydrierten C₄-Schnitt, Cyanwasserstoff einem Hydrocyanierungskatalysator sowie ggf. einem Lösungsmittel befüllt. Geeignete Lösungsmittel sind dabei die zuvor bei der Herstellung der erfindungsgemäßen Katalysatoren genannten, bevorzugt aromatischen Kohlenwasserstoffe, wie Toluol und Xylol, oder Tetrahydrofuran.

Schritt b):
30 Die Umsetzung des Gemisches erfolgt im Allgemeinen bei erhöhter Temperatur und erhöhtem Druck. Dabei liegt die Reaktionstemperatur im Allgemeinen in einem Bereich von etwa 0 bis 200°C, bevorzugt etwa 50 bis 150 °C, insbesondere 70 bis 120 °C. Der Druck liegt im Allgemeinen in einem Bereich von etwa 0,1 bis 200 bar, 35 bevorzugt etwa 1 bis 200 bar, insbesondere bevorzugt etwa 1 bis 100 bar, speziell 1 bis 50 bar, spezieller bevorzugt 1 bis 15 bar. Dabei wird während der Reaktion Cyanwasserstoff nach Maßgabe seines Verbrauchs eingespeist, wobei der Druck im Autoklaven im Wesentlichen konstant bleibt. Die Reaktionszeit beträgt etwa 40 30 Minuten bis 5 Stunden.

Schritt c):
Zur Vervollständigung des Umsatzes kann sich an die Reaktionszeit eine Nachreaktionszeit von 0 Minuten bis etwa 5 Stunden, bevorzugt etwa 1 Stunde bis 3,5 Stunden anschließen, in der kein Cyanwasserstoff mehr in den Autoklaven eingespeist wird. Die Temperatur wird in dieser Zeit im Wesentlichen konstant auf der zuvor

19

eingestellten Reaktionstemperatur belassen. Die Aufarbeitung erfolgt nach gängigen Verfahren und umfasst die Abtrennung des nicht umgesetzten 1,3-Butadiens und des nicht umgesetzten Cyanwasserstoffs, z. B. durch Waschen oder Extrahieren und die de-
5 stillative Aufarbeitung des übrigen Reaktionsgemisches zur Abtrennung der Wertprodukte und Rückgewinnung des noch aktiven Katalysators.

Gemäß einer weiteren geeigneten Variante des erfindungsgemäßen
10 Verfahrens erfolgt die Addition des Cyanwasserstoffs an das 1,3-Butadien-haltige Kohlenwasserstoffgemisch diskontinuierlich. Dabei werden im Wesentlichen die bei semikontinuierlichen Verfahren beschriebenen Reaktionsbedingungen eingehalten, wobei in Schritt b) kein zusätzlicher Cyanwasserstoff eingespeist, sondern
15 dieser komplett vorgelegt wird.

Allgemein lässt sich die Herstellung von Adipinsäuredinitril aus einem Butadien-haltigen Gemisch durch Addition von 2 Moläquivalenten Cyanwasserstoff in drei Schritte gliedern:

20

1. Herstellung von C₅-Monoolefingemischen mit Nitrifunktion.
2. Isomerisierung des in diesen Gemischen enthaltenen 2-Methyl-3-butennitrils zu 3-Pentennitril und Isomerisierung des so gebildeten und des in den Gemischen bereits aus Schritt 1 enthaltenen 3-Pentennitrils zu verschiedenen n-Pentennitriilen. Dabei soll ein möglichst hoher Anteil an 3-Pentennitril bzw. 4-Pentennitril und ein möglichst geringer Anteil an konjugiertem und gegebenenfalls als Katalysatorgift wirksamen 2-Pentennitril und 2-Methyl-2-butennitril gebildet werden.
3. Herstellung von Adipinsäuredinitril durch Addition von Cyanwasserstoff an das in Schritt 2 gebildete 3-Pentennitril welches zuvor "in situ" zu 4-Pentennitril isomerisiert wird. Als Nebenprodukte treten dabei z. B. 2-Methyl-glutarodinitril aus der Markownikow-Addition von Cyanwasserstoff an 4-Pentennitril oder der anti-Markownikow-Addition von Cyanwasserstoff an 3-Pentennitril und Ethylsuccinodinitril aus der Markownikow-Addition von Cyanwasserstoff an 3-Pentennitril auf.

40

Vorteilhafterweise eignen sich die erfindungsgemäßen Katalysatoren auf Basis von Phosphonitliganden auch für die Stellungs- und Doppelbindungsisomerisierung in Schritt 2 und/oder die Zweitaddition von Cyanwasserstoff in Schritt 3.

45

20

Nach einer geeigneten Ausführungsform des erfindungsgemäßen Verfahrens beträgt das bei der Monoaddition von Cyanwasserstoff an das 1,3-Butadien-haltige Kohlenwasserstoffgemisch erhaltene Mengenverhältnis von 3-Pentennitril zu 2-Methyl-3-butennitril mindestens 1,9:1, bevorzugt mindestens 2,1:1.

Vorteilhafterweise zeigen die erfindungsgemäß eingesetzten Katalysatoren nicht nur eine hohe Selektivität im Bezug auf die bei der Hydrocyanierung von 1,3-Butadien-haltigen Kohlenwasserstoffgemischen erhaltenen Monoadditionsprodukte, sondern sie können bei der Hydrocyanierung auch mit einem Überschuss an Cyanwasserstoff versetzt werden, ohne dass es zu einer merklichen Abscheidung von inaktiven Nickel(II)-Verbindungen, wie z. B. Nickel(II)-Cyanid, kommt. Im Gegensatz zu bekannten Hydrocyanierungskatalysatoren auf Basis nicht-komplexer Phosphin- und Phosphitliganden eignen sich die Katalysatoren der Formel I somit nicht nur für kontinuierliche Hydrocyanierungsverfahren, bei denen ein Cyanwasserstoffüberschuss im Reaktionsgemisch im Allgemeinen wirkungsvoll vermieden werden kann, sondern auch für semi-20 kontinuierliche Verfahren und Batch-Verfahren, bei denen im Allgemeinen ein starker Cyanwasserstoffüberschuss vorliegt. Somit weisen die erfindungsgemäß eingesetzten Katalysatoren und die auf ihnen basierenden Verfahren zur Hydrocyanierung im Allgemeinen höhere Katalysatorrückführungsrationen und längere Katalysatorstandzeiten auf als bekannte Verfahren. Dies ist neben einer besseren Wirtschaftlichkeit auch unter ökologischen Aspekten vorteilhaft, da das aus dem aktiven Katalysator mit Cyanwasserstoff gebildete Nickelcyanid stark giftig ist und unter hohen Kosten aufgearbeitet oder entsorgt werden muss.

30

Neben der Hydrocyanierung von 1,3-Butadien-haltigen Kohlenwasserstoffgemischen eignen sich die Katalysatoren der Formel I im Allgemeinen für alle gängigen Hydrocyanierungsverfahren. Dabei sei insbesondere die Hydrocyanierung von nichtaktivierten Olefinen, z. B. von Styrol und 3-Pentennitril, genannt.

Die zuvor beschriebenen Katalysatoren, die chirale Phosphonitliganden der Formel I umfassen, eignen sich zur enantioselektiven Hydrocyanierung.

40

Die Erfindung wird anhand der folgenden, nicht einschränkenden Beispiele näher erläutert.

Beispiele**A) Herstellung der Liganden Ia bis Ig****5 Beispiel 1:****Herstellung von Ligand Ia**

10 206 g (1,5 mol) Phosphortrichlorid und 204 g (1,2 mol) Biphenyl-2-ol werden unter Rühren in einer Argonatmosphäre langsam auf 50 °C und innerhalb von 8 Stunden weiter auf 140 °C erhitzt. Bei starker Chlorwasserstoffentwicklung färbt sich die Lösung gelb.

15 Nach Abkühlen auf 120 °C fügt man eine katalytische Menge an Zinkchlorid (1,2 g; 17 mmol) zu und erhitzt 24 Stunden bei 140 °C. Bei anschließender Destillation geht das Reaktionsprodukt 6-Chlor-(6H)-dibenz[c,e][1,2]-oxaphosphorin bei einem Siedepunkt von 132 °C (0,2 mbar) über. Ausbeute: 194,8 g (69 %) weiße Kristalle; ^{31}P -NMR-Spektrum: δ (ppm) 134,5.

20 0,1 mol dieses Produkts werden in einer Argonatmosphäre zusammen mit 0,1 mol Phenol in 50 ml Toluol vorgelegt. Bei Raumtemperatur werden 0,1 mol Triethylamin (über KOH getrocknet) zugetropft. Anschließend röhrt man eine Stunde bei 40 °C nach. Das entstandene Triethylammoniumhydrochlorid wird ab-

25 filtriert und die flüchtigen Bestandteile im Hochvakuum entfernt. Zurück bleibt ein durchsichtiges öliges Produkt (100 % Rohausbeute). Zur weiteren Reinigung kann der Ligand mit n-Hexan gewaschen oder umkristallisiert werden.

30 ^{31}P -NMR-Spektrum: δ (ppm) 127,4; Reinheit Rohprodukt: 97 %
 ^1H -NMR: entspricht dem für Ligand Ia erwarteten Spektrum

Beispiel 2:**Herstellung von Ligand Ib**

45 Analog der im Beispiel 1 angegebenen Synthesevorschrift erfolgt die Herstellung des Liganden Ib.

22

^{31}P -NMR-Spektrum: δ (ppm) 125,3

15 ^1H -NMR entspricht dem Strukturvorschlag
Reinheit Rohprodukt: > 90 %

Beispiel 3:

Herstellung von Ligand Ic

20 Analog der in Beispiel 1 angegebenen Synthesevorschrift erfolgt die Herstellung des Liganden Ic.

35 ^{31}P -NMR-Spektrum: δ (ppm) 128,02

^1H -NMR-Spektrum: entspricht dem Strukturvorschlag

^{13}C -NMR-Spektrum: entspricht dem Strukturvorschlag

Reinheit Rohprodukt: > 95 %

40

Beispiel 4:

Herstellung von Ligand Id

45 Analog der in Beispiel 1 angegebenen Synthesevorschrift erfolgt die Herstellung des Liganden Id.

23

5

10

³¹P-NMR-Spektrum: δ (ppm) 131,44¹H-NMR-Spektrum: entspricht dem Strukturvorschlag¹³C-NMR-Spektrum: entspricht dem Strukturvorschlag

15 Reinheit Rohprodukt: > 87 %

Beispiel 5:

Herstellung von Ligand Ie

20

Analog der in Beispiel 1 angegebenen Synthesevorschrift erfolgt die Herstellung des Liganden Ie.

25

30

³¹P-NMR-Spektrum: δ (ppm) 131,41¹H-NMR-Spektrum: entspricht dem Strukturvorschlag35 ¹³C-NMR-Spektrum: entspricht dem Strukturvorschlag

Reinheit Rohprodukt: > 88 %

Beispiel 6:

Herstellung des Liganden If

40

Analog der in Beispiel 1 angegebenen Synthesevorschrift erfolgt die Herstellung von 6-Chlor-(6H)-dibenz[c,e][1,2]-oxaphosphorin.

45

40 g (0,177 mol) 6-Chlor-(6H)-dibenz[c,e][1,2]-oxaphosphorin werden unter Argon zusammen mit 31,7 g (0,088 mol) 5,5'-Dimethoxy-3,3'di-t.-butyl-2,2'-biphenol in 400 ml Toluol vorge-

24

legt. Bei Raumtemperatur werden 20,24 g (0,2 mol) Triethylamin (über KOH getrocknet) zugetropft. Anschließend röhrt man 120 Minuten bei 90 °C nach. Das entstandene Triethylammoniumhydrochlorid wird abfiltriert und der Filterrückstand zur Vervollständigung der Ausbeute mit Tetrahydrofuran nachgewaschen. Von den vereinigten organischen Phasen werden die flüchtigen Bestandteile in Hochvakuum entfernt. Als Produkt erhält man den Liganden If in 100 % Rohausbeute. Der weiß-gelbe Feststoff wird zunächst mit n-Hexan und dann mit Diethylether gewaschen.

15

20

(If)

25

 ^{31}P -NMR-Spektrum: δ (ppm) 128,14

Beispiel 7:
Herstellung von Ligand Ig

30

Analog der in Beispiel 6 angegebenen Synthesevorschrift erfolgt die Herstellung des Liganden Ig. Das erhaltene Rohprodukt weist eine braune Farbe auf und ist leicht klebrig. Es wird zur Reinigung 12 Stunden in n-Hexan kräftig gerührt. Nach Abtrennen der überstehenden Hexanlösung erhält man den Liganden Ig als weißes Pulver.

35

40

(Ig)

45

 ^{31}P -NMR-Spektrum: δ (ppm) 128,41

25

¹H-NMR-Spektrum: entspricht dem Strukturvorschlag
Reinheit Rohprodukt: > 89 %

B) Hydrocyanierungen und Isomerisierungen

5

Beispiel 8 (erfindungsgemäß):

Semikontinuierliche Hydrocyanierung von C₄-Schnitt unter Einsatz von Ligand Ia

10 Tabelle 1: Zusammensetzung des C₄-Schnittes

Verbindung	Vol.-%
1,3-Butadien	40,50
cis-2-Buten	2,65
trans-2-Buten	4,30
Isobuten	30,20
1-Buten	14,30
Isobutan	1,10
n-Butan	2,90
Propin	0,50
Kohlendioxid	0,10
Vinylacetylen	0,35

In einem Glasautoklaven werden unter Argon bei Raumtemperatur 0,41 g (1,5 mmol) Bis(1,5-cyclooctadien)nickel(0), 1,75 g (6 mmol) Ligand Ia und 6 g Toluol miteinander vermengt, wobei sich der Reaktionsansatz sofort gelb-braun färbt. Nach etwa einer Stunde wird eine Mischung aus 20 g C₄-Schnitt mit einer Zusammensetzung gemäß Tabelle 1 in 40 g Toluol zugegeben. Der Glasautoklave wird fest verschlossen und die Reaktionsmischung auf 80 °C erhitzt, wobei sich ein Anfangsdruck von 3,5 bar einstellt. Über einen Zeitraum von 120 Minuten wird eine Mischung aus 4,0 g (0,15 mol) frisch destillierter Blausäure in 40 g Toluol kontinuierlich zudosiert. Danach ist der Druck auf 2,9 bar gefallen. Anschließend lässt man zum Vervollständigen der Reaktion noch 240 Minuten bei etwa 80 °C nachreagieren. Zum Nachspülen des Reaktionsaustrages wird Toluol verwendet. Der Verlauf der Reaktion wird über Druck- und Temperaturmessung verfolgt.

Bei einer anschließenden Cyanid-Bestimmung nach Volhard wird ein Cyanwasserstoffumsatz von 86,7 % ermittelt.

GC-Analytik (Säule: 30 m Stabil-Wachs, Temperaturprogramm: 5 Minuten isotherm bei 50 °C, danach Aufheizen mit einer Geschwindigkeit von 5 °C/min auf 240 °C, Gaschromatograph: Hewlett Packard HP 5890) mit internem Standard (Benzonitril):

26

84,0 % 3-Pentennitril, 4-Pentennitril und 2-Methyl-3-butennitril, bezogen auf eingesetzten Cyanwasserstoff.

Verhältnis 3-Pentennitril : 2-Methyl-3-butennitril = 2,45:1.

5

Beispiel 9 (erfindungsgemäß):

Batch-Hydrocyanierung von 1,3-Butadien unter Einsatz von Ligand Ia

10 In einem Micro-Rührgefäß werden unter Argon 0,10 g (0,37 mmol) Bis(1,5-cyclooctadien)nickel(0), 0,43 g (1,48 mmol) Ligand Ia und 6,0 g Toluol vorgelegt und 120 Minuten bei Raumtemperatur gerührt. Nach Zugabe von 2,0 g (37 mmol) 1,3-Butadien und 1,0 g (37 mmol) frisch destillierter Blausäure wird das Gefäß mit einem dicht schließenden Septum verschlossen und 5 Stunden auf 80 °C unter Eigendruck erhitzt. Nach dem Erkalten wird der flüssige Reaktionsaustrag analysiert.

20 Tabelle 2: Produktverhältnis in GC-Flächen-%

Verbindung	GC-Flächen-%
trans-3-Pentennitril	42,32
4-Pentennitril	0,33
cis-3-Pentennitril	0,63
2-Methyl-3-butennitril	18,20

25 Ausbeute (GC, interner Standard Benzonitril): 93 % 3-Pentennitril, 4-Pentennitril und 2-Methyl-3-butennitril, bezogen auf eingesetzten Cyanwasserstoff.

30 Verhältnis 3-Pentennitril : 2-Methyl-3-butennitril = 2,36:1.

35

Beispiel 10 (erfindungsgemäß):

Batch-Hydrocyanierung von Styrol mit Ligand Ia

40

Unter Argon werden in einem Mikro-Rührgefäß 6,0 g Toluol, 0,10 g (0,37 mmol) Bis(1,5-cyclooctadien)nickel(0) und 0,43 g (1,48 mmol) Ligand Ia vorgelegt und bei Raumtemperatur 120 Minuten gerührt. Nach Zugabe von 1,92 g (18,5 mmol) Styrol und 0,5 g (18,5 mmol) frisch destillierter Blausäure wird das Gefäß mit einem dicht schließenden Septum verschlossen und 5 Stunden auf 120 °C temperiert (Eigendruck). Nach Erkalten wird der flüssige Reaktionsaustrag analysiert. Das Gaschromatogramm zeigt 2-Phenylpropionitril (12,53 Fl.-%) und

45

27

3-Phenylpropionitril (0,16 Fl.-%) sowie unumgesetztes Styrol (57,9 Fl.-%).

Beispiel 11 (erfindungsgemäß):

5 Semikontinuierliche Hydrocyanierung von 3-Pentennitril mit Ligand Ia

In einer Argonatmosphäre werden 0,87 g (3 mmol) Ligand Ia, 10 ml Toluol und 0,27 g (1 mmol) Bis(1,5-cyclooctadien)-nickel(0) vorgelegt und bei Raumtemperatur 30 Minuten gerührt. Nach Zugabe von 16,2 g (200 mmol) 3-Pentennitril und 0,14 g (1 mmol) ZnCl₂ wird auf 65 °C erwärmt. Über einen ge eichten Rotationsverdampfer wird binnen einer Stunde 5,4 g (200 mmol) HCN dest. in einem Argonstrom eingegast. Nach ei 15 ner Stunde Nachreaktionszeit bei 70 °C wird der flüssige Reaktionsaustrag analysiert. Er enthält 2,87 GC-Flächen-% Adipodintril, 0,72 GC-Flächen-% Methylglutarnitril und 78,5 GC-Flächen-% unumgesetztes 3-Pentennitril.

20 Beispiel 12 (erfindungsgemäß):

Isomerisierung von 2-Methyl-3-butennitril zu 3-Pentennitril mit Ligand Ia

Unter Argonatmosphäre werden 1,2 g (4 mmol) Ligand Ia, 10 ml 25 Toluol und 0,275 g (1 mmol) Bis(1,5-cyclooctadien)nickel(0) vorgelegt und bei Raumtemperatur 30 Minuten gerührt. Nach Zugabe von 8,1 g (100 mmol) 2-Methyl-3-butennitril und 0,55 g (4 mmol) ZnCl₂ wird auf 100 °C erwärmt. Der Reaktionsverlauf wird in regelmäßigen Abständen mittels eines Gaschromatographen untersucht. Das Reaktionsergebnis ist in Tabelle 3 angegeben. Alle dort verzeichneten Produkte und Nebenprodukte 30 wurde zuvor mittels Gaschromatographie, GC-MS, GC-MS-IR sowie mittels NMR zugeordnet. Alle Werte, mit Ausnahme von 3-Pen 35 tennitril und 2-Methyl-3-butennitril, sind in GC-Flächen-% angegeben. Bei letzteren wurden die GC-Flächen-% mit Hilfe von Eichmessungen auf Gewichts-% umgerechnet.

40

45

28

Tabelle 3: Produktverhältnis nach 300 Minuten Reaktionsdauer

	Verbindung	Anteil
5	trans-2-Methyl-2-butennitril	2,76
	2-Methyl-3-butennitril	2,75
	trans-2-Pentennitril	0,08
	cis-2-Methyl-2-butennitril	1,56
	4-Pentennitril	0,98
	trans-3-Pentennitril	29,68
	cis-3-Pentennitril	1,74
10	Benzonitril (Standard)	52,34
	Gew.-%	
15	2-Methyl-3-butennitril	3,33
	3-Pentennitril	39,19

Umsatz: 93,16 %

Beispiel 13:

Herstellung eines Nickel(0)-Komplexes aus elementarem Nickel

Die Herstellung eines Phosphonit-Nickel(0)-Komplexes erfolgt ausgehend von Ligand Ia und elementarem Nickelpulver. Unter Argonatmosphäre werden 14,6 g (50 mmol) Ligand Ia, 0,7 g (12,5 mmol) Nickelpulver und 4,7 g 3-Pentennitril vorgelegt und auf 80 °C erwärmt. Nach Zugabe von 2 Tropfen PCl₃ wird 22 Stunden bei 80 °C gerührt. Der rot-braune, viskose Reaktionsaustrag wird nach dem Erkalten über eine Glasfilternutsche abgesaugt. Der durch Elementaranalyse der homogenen Lösung ermittelte Mittelwert beträgt 3,3 Gew.-% (Theorie: 4,78 Gew.-%), entsprechend einer Ausbeute von 69 %, bezogen auf ein gesetztes Nickelpulver.

Beispiel 14 (erfindungsgemäß):

Semikontinuierliche Hydrocyanierung von teilhydriertem C₄-SchnittTabelle 4: Zusammensetzung des C₄-Schnittes

	Verbindung	Vol.-%
40	1,3-Butadien	38,90
	cis-2-Buten	4,30
	trans-2-Buten	7,05
	Isobuten	22,40
	1-Buten	19,80
	Isobutan	0,89
	n-Butan	4,50
	Propin	29 ppm
	Vinylacetylen	159 ppm
	1-Butin	187 ppm

29

In einem Glasautoklaven werden unter Argon bei Raumtemperatur 0,41 g (1,5 mmol) Bis(1,5-cyclooctadien)nickel(0), 2,36 g (6 mmol) Ligand Ib und 6 g Toluol miteinander vermenigt. Nach etwa einer Stunde wird eine Mischung aus 20,8 g C₄-Schnitt mit einer Zusammensetzung gemäß Tabelle 4 in 40 g Toluol zugegeben. Der Glasautoklave wird fest verschlossen und die Reaktionsmischung auf 80 °C erhitzt, wobei sich ein Anfangsdruck von 3,2 bar einstellt. Über einen Zeitraum von 120 Minuten wird eine Mischung aus 4,0 g (0,15 mol) frisch destillierter Blausäure in 40 g Toluol kontinuierlich zudosiert. Danach ist der Druck auf 2,3 bar gefallen. Anschließend lässt man zum Vervollständigen der Reaktion noch 100 Minuten bei etwa 80 °C nachreagieren. Zum Nachspülen des Reaktionsaustrages wird Toluol verwendet. Der Verlauf der Reaktion wird über Druck- und Temperaturmessung verfolgt.

Bei einer anschließenden Cyanidbestimmung nach Volhard wird ein Cyanwasserstoffumsatz von 65,3 % ermittelt.

GC-Analytik (Säule: 30 m Stabilwachs, Temperaturprogramm: 5 Minuten isotherm bei 50 °C, danach Aufheizen mit einer Geschwindigkeit von 5 °C/min auf 240 °C, Gaschromatograph Hewlett Packard HP 5890) mit internem Standard (Benzonitril): 64,7 % 3-Pentennitril, 4-Pentennitril und 2-Methyl-3-butennitril, bezogen auf eingesetzten Cyanwasserstoff.

Verhältnis 3-Pentennitril:2-Methyl-3-butennitril = 2,04 : 1.

Beispiel 15 (erfindungsgemäß):

Batch-Hydrocyanierung von 1,3-Butadien unter Einsatz von Ligand Ib

In einem Mikro-Rührgefäß werden unter Argon 6,0 g Toluol, 0,10 g (0,37 mmol) Bis(1,5-cyclooctadien)nickel(0) und 0,56 g (1,48 mmol) Ligand Ib vorgelegt und 120 Minuten bei Raumtemperatur gerührt. Nach Zugabe von 2,0 g (37 mmol) 1,3-Butadien und 1,0 g (37 mmol) frisch destillierter Blausäure wird das Gefäß mit einem dicht schließenden Septum verschlossen und 5 Stunden auf 80 °C unter Eigendruck erhitzt. Nach dem Erkalten wird der flüssige Reaktionsaustrag analysiert.

30

Tabelle 5: Produktverhältnis in GC-Flächen-%

	Verbindung	GC-Flächen-%
5	trans-3-Pentennitril	40,82
	cis-3-Pentennitril	0,46
	4-Pentennitril	0,22
	cis-2-Methyl-2-butennitril	0,08
	2-Methyl-3-butennitril	19,64
10		

Ausbeute (GC, interner Standard Benzonitril): 89,2 % 3-Pentennitril, 4-Pentennitril und 2-Methyl-3-Butennitril, bezogen auf eingesetzten Cyanwasserstoff.

15

Verhältnis 3-Pentennitril:2-Methyl-3-butennitril = 2,1:1.

Beispiel 16 (erfindungsgemäß):

20

Semikontinuierliche Hydrocyanierung von 3-Pentennitril unter Einsatz von Ligand Ib

25

Unter Argonatmosphäre werden 1,13 g (3 mmol) Ligand Ib, 20 ml Toluol und 0,27 g (1 mmol) Bis(1,5-cyclooctadien)nickel(0) vorgelegt und 30 Minuten bei Raumtemperatur gerührt. Nach Zugabe von 16,2 g (200 mmol) 3-Pentennitril und 0,14 g (1 mmol) ZnCl₂ wird auf 65 °C erwärmt. Über einen geeichten Rotationsverdampfer wird binnen 90 Minuten 5,4 g (200 mmol) frisch destillierte Blausäure in einem Argonstrom eingegast. Nach 1 Stunde Nachreaktionszeit bei 75 °C wird der flüssige Reaktionsaustrag analysiert. Er enthält 2,98 GC-F1.-% Adipodinitril, 0,67 GC-F1.-% Methylglutarnitril sowie 76,3 GC-F1.-% unumgesetztes 3-Pentennitril.

30

Beispiel 17 (erfindungsgemäß):

35

Isomerisierung von 2-Methyl-3-butennitril zu 3-Pentennitril unter Einsatz von Ligand Ib

40

Unter Argonatmosphäre werden 1,5 g (4 mmol) Ligand Ib, 10 ml Toluol und 0,275 g (1 mmol) Bis(1,5-cyclooctadien)nickel(0) vorgelegt und 30 Minuten bei Raumtemperatur gerührt. Nach Zugabe von 8,1 g (100 mmol) 2-Methyl-3-butennitril und 0,55 g (4 mmol) ZnCl₂ wird auf 100 °C erwärmt. Die Reaktionsauswertung erfolgt analog zu Beispiel 12. Das Ergebnis ist in der folgenden Tabelle 6 wiedergegeben.

45

31

Tabelle 6: Produktverhältnis nach 300 Minuten Reaktionsdauer

	Verbindung	Anteil
5	trans-2-Methyl-2-butennitril	7,69
	2-Methyl-3-butennitril	3,87
	trans-2-Pentennitril	1,96
	cis-2-Methyl-2-butennitril	15,06
	4-pentennitril	0,07
	trans-3-Pentennitril	16,82
	cis-3-Pentennitril	0,40
10	Benzonitril (Standard)	51,93
	Gew.-%	
15	2-Methyl-3-butennitril	4,09
	3-Pentennitril	18,20

Umsatz: 90,58 %

15

Beispiel 18 (erfindungsgemäß):

Batch-Hydrocyanierung von 1,3-Butadien unter Einsatz von Li-gand Ic

20

In einem Mikro-Rührgefäß werden unter Argon 6,0 g Toluol, 0,10 g (0,37 mmol) Bis(1,5-cyclooctadien)nickel(0) und 0,57 g (1,48 mmol) Ligand Ic vorgelegt und 120 Minuten bei Raumtemperatur gerührt. Nach Zugabe von 2,0 g (37 mmol) 1,3-Butadien und 1,0 g (37 mmol) frisch destillierter Blausäure wird das Gefäß mit einem dicht schließenden Septum verschlossen und 5 Stunden auf 80 °C unter Eigendruck temperiert. Nach dem Erkalten wird der flüssige Reaktionsaustrag mittels Gaschromatographie analysiert. Das Ergebnis ist in der folgenden Tabelle 7 wiedergegeben.

25

Tabelle 7: Verbindung und GC-Flächen-%

	Verbindung	Vol.-%
35	trans-3-Pentennitril	18,29
	cis-3-Pentennitril	0,12
	cis-2-Methyl-butene-nitril	0,03
	2-Methyl-3-butennitril	8,72

40

Ausbeute (GC, interner Standard Benzonitril): 35,1 % 3-Pentennitril, 4-Pentennitril und 2-Methyl-3-butennitril, bezogen auf eingesetzten Cyanwasserstoff.

Verhältnis 3-Pentennitril:2-Methyl-3-butennitril = 2,11:1.

45

Beispiel 19 (erfindungsgemäß):

32

Semikontinuierliche Hydrocyanierung von 1,3-Butadien unter Einsatz von Ligand Ic

In einem Glasautoklaven werden unter Argon bei Raumtemperatur 5 0,41 g (1,5 mmol) Bis(1,5-cyclooctadien)nickel(0), 2,03 g (6 mmol) Ligand Ic und 6 g Toluol miteinander vermengt. Nach etwa 1 Stunde wird eine Mischung aus 8,1 g 1,3-Butadien in 40 g Toluol zugegeben. Der Glasautoklave wird fest verschlossen und die Reaktionsmischung auf 110 °C temperiert, wobei 10 sich ein Anfangsdruck von 2,0 bar einstellt. Über einen Zeitraum von 120 Minuten wird eine Mischung aus 4,0 g (0,15 mmol) frisch destillierter Blausäure in 40 g Toluol kontinuierlich zudosiert. Danach ist der Druck auf 1,5 bar gefallen. Anschließend lässt man zur Vervollständigung der Reaktion noch 15 310 Minuten bei etwa 110 °C nachreagieren. Zum Nachspülen des Reaktionsaustrags wird Toluol verwendet. Der Verlauf der Reaktion wird über Druck- und Temperaturmessung verfolgt. Bei einer anschließenden Cyanidbestimmung nach Volhard wird ein Cyanwasserstoffumsatz von 74,3 % ermittelt.

20 GC-Analytik (Säule: 30 m Stabilwachs, Temperaturprogramm: 5 Minuten isotherm bei 50 °C, anschließendes Aufheizen auf 240 °C mit einer Geschwindigkeit von 5 °C/min, Gaschromatograph: Hewlett Packard HP 5890) mit internem Standard (Benzonitril): 72,5 % 3-Pentennitril, 4-Pentennitril und 2-Methyl-3-butennitril, bezogen auf eingesetzten Cyanwasserstoff.

Verhältnis 3-Pentennitril:2-Methyl-3-butennitril = 1,89:1.

30 Beispiel 20 (erfindungsgemäß):

Semikontinuierliche Hydrocyanierung von 3-Pentennitril unter Einsatz von Ligand Ic

Unter Argonatmosphäre werden 1,15 g (3 mmol) Ligand Ic, 20 ml 35 Toluol und 0,27 g (1 mmol) Bis(1,5-cyclooctadien)nickel(0) vorgelegt und 30 Minuten bei Raumtemperatur gerührt. Nach Zugabe von 24,3 g (300 mmol) 3-Pentennitril und 0,14 g (1 mmol) ZnCl₂ wird auf 60 °C erwärmt. Über einen geeichten Rotationsverdampfer wird binnen 2 Stunden 5,4 g (200 mmol) destillierte Blausäure in einem Argonstrom eingegast. Nach einer 40 Stunde Nachreaktionszeit bei 70 °C wird der flüssige Reaktionsaustrag analysiert. Er enthält 1,66 GC-F1.-% Adipodinitril, 0,34 GC-F1.-% Methylglutarnitril sowie 82,3 GC-F1.-% unumgesetztes 3-Pentennitril.

33

Beispiel 21 (erfindungsgemäß):

Batch-Hydrocyanierung von 1,3-Butadien unter Einsatz von Ligand Id

- 5 In einem Mikro-Rührgefäß werden unter Argon 6,0 g Toluol, 0,10 g (0,37 mmol) Bis(1,5-cyclooctadien)nickel(0) und 0,46 g (1,48 mmol) Ligand Id vorgelegt und 120 Minuten bei Raumtemperatur gerührt. Nach Zugabe von 2,0 g (37 mmol) 1,3-Butadien und 1,0 g (37 mmol) frisch destillierter Blausäure wird das
10 Gefäß mit einem dicht schließenden Septum verschlossen und 5 Stunden auf 80 °C unter Eigendruck temperiert. Nach dem Erkalten wird der flüssige Reaktionsaustrag analysiert.

Ausbeute (GC, interner Standard Benzonitril): 8,9 % 3-Pentennitril, 4-Pentennitril und 2-Methyl-3-butennitril, bezogen
15 auf eingesetzten Cyanwasserstoff.

Verhältnis 3-Pentennitril:2-Methyl-3-butennitril = 2,1:1.

- 20 Beispiel 22 (erfindungsgemäß):

Semikontinuierliche Hydrocyanierung von 3-Pentennitril unter Einsatz von Ligand Id

Unter Argonatmosphäre werden 0,93 g (3 mmol) Ligand Id, 20 ml
25 Toluol und 0,27 g (1 mmol) Bis(1,5-cyclooctadien)nickel(0) vorgelegt und 30 Minuten bei Raumtemperatur gerührt. Nach Zugabe von 16,2 g (200 mmol) 3-Pentennitril und 0,14 g (1 mmol) ZnCl₂ wird auf 60 °C erwärmt. Über einen geeichten Rotationsverdampfer wird binnen 2 Stunden 5,4 g (200 mmol) destillierte Blausäure in einem Argonstrom eingegast. Nach 1 Stunde
30 Nachreaktionszeit bei 70 °C wird der flüssige Reaktionsaustrag analysiert. Er enthält 1,01 GC-Fl.-% Adipodinitril, 0,25 GC-Fl.-% Methylglutarnitril sowie 84,99 GC-Fl.-% unumgesetztes 3-Pentennitril.

35

Beispiel 23 (erfindungsgemäß):

Batch-Hydrocyanierung von 1,3-Butadien unter Einsatz von Ligand Ie

40 In einem Mikro-Rührgefäß werden unter Argon 6,0 g Toluol, 0,10 g (0,37 mmol) Bis(1,5-cyclooctadien)nickel(0) und 0,62 g (1,8 mmol) Ligand Ie vorgelegt und 120 Minuten bei Raumtemperatur gerührt. Nach Zugabe von 2,0 g (37 mmol) 1,3-Butadien und 1,0 g (37 mmol) frisch destillierter Blausäure wird das
45 Gefäß mit einem dicht schließenden Septum verschlossen und

34

5 Stunden auf 80 °C unter Eigendruck temperiert. Nach dem Erkalten wird der flüssige Reaktionsaustrag analysiert.

Ausbeute (GC, interner Standard Benzonitril): 9,7 % 3-Penten-
5 nitril, 4-Pentennitril und 2-Methyl-3-butennitril, bezogen
auf eingesetzten Cyanwasserstoff.

Verhältnis 3-Pentennitril:2-Methyl-3-butennitril = 1,94:1.

10 Beispiel 24 (erfindungsgemäß):

Semikontinuierliche Hydrocyanierung von 3-Pentennitril unter
Einsatz von Ligand Ie

Unter Argonatmosphäre werden 1,26 g (3 mmol) Ligand Ie, 20 ml
15 Toluol und 0,27 g (1 mmol) Bis(1,5-cyclooctadien)nickel(0)
vorgelegt und 30 Minuten bei Raumtemperatur gerührt. Nach Zu-
gabe von 16,2 g (200 mmol) 3-Pentennitril und 0,14 g (1 mmol)
ZnCl₂ wird auf 60 °C erwärmt. Über einen geeichten Rotations-
verdampfer wird binnen 2 Stunden 5,4 g (200 mmol) destil-
20 lierte Blausäure in einem Argonstrom eingegast. Nach 1 Stunde
Reaktionszeit bei 70 °C wird der flüssige Reaktionsaustrag
analysiert. Er enthält 1,06 GC-Fl.-% Adipodinitril,
0,24 GC-Fl.-% Methylglutarnitril sowie 83,7 GC-Fl.-% unumge-
setztes 3-Pentennitril.

25

30

35

40

45

Patentansprüche

1. Katalysator, umfassend einen Nickel(0)komplex, mit einem
 5 ein-, zwei- oder mehrzähnigen Phosphonitliganden der allge-
 meinen Formel I

10

worin

15

A zusammen mit dem Teil der Phosphonitgruppe, an den es ge-
 bunden ist, für einen 5- bis 8-gliedrigen Heterocyclus
 steht, der gegebenenfalls zusätzlich ein-, zwei- oder
 dreifach mit Cycloalkyl, Aryl und/oder Hetaryl anelliert
 sein kann, wobei die anellierten Gruppen je einen, zwei
 oder drei Substituenten, ausgewählt unter Alkyl, Alkoxy,
 20 Halogen, Nitro, Cyano oder Carboxyl tragen können,

20

25

R¹ für Alkyl, Aryl oder Hetaryl steht, welche einen, zwei
 oder drei der folgenden Substituenten: Alkyl, Cycloalkyl,
 Aryl, Alkoxy, Cycloalkyloxy, Acyl, Aryloxy, Halogen, Tri-
 fluormethyl, Nitro, Cyano, Carboxyl oder NE¹E² tragen
 können, wobei E¹ und E² gleich oder verschieden sein kön-
 nen und für Alkyl, Cycloalkyl oder Aryl stehen, oder

20

R¹ für einen Rest der allgemeinen Formel II

30

steht, worin

35

40

45

X für eine C₃- bis C₆-Alkylenbrücke steht, welche
 eine, zwei oder drei Doppelbindungen aufweisen
 und/oder ein-, zwei- oder dreifach mit Aryl und/
 oder Hetaryl anelliert sein kann, wobei die
 Aryl- oder Hetarylgruppen einen, zwei oder drei
 der folgenden Substituenten: Alkyl, Cycloalkyl,
 Aryl, Alkoxy, Cycloalkyloxy, Aryloxy, Halogen,
 Trifluormethyl, Nitro, Cyano, Carboxyl oder NE¹E²
 tragen können, wobei E¹ und E² die zuvor ange-
 benen Bedeutungen besitzen,

Y für einen Rest der Formeln III.1 oder III.2

36

5

(III.1)

(III.2)

steht, worin

10 D die zuvor für A angegebenen Bedeutungen besitzen kann,

oder Salze und Mischungen davon.

15 2. Katalysator nach Anspruch 1, wobei A zusammen mit dem Teil
der Phosphonitgruppe, an den es gebunden ist, für einen 5-
oder 6-gliedrigen Heterocyclus steht, der gegebenenfalls ein-
oder zweifach mit Aryl und/oder Hetaryl anelliert sein kann,
wobei die anellierten Gruppen einen, zwei oder drei der zuvor
20 angegebenen Substituenten tragen können.

3. Katalysator nach einem der vorhergehenden Ansprüche, wobei A
für einen Rest der Formel IV.1 oder IV.2 oder IV.3

25

(IV.1)

(IV.2)

(IV.3)

30

steht,

worin

35 R² und R³ unabhängig voneinander für Wasserstoff, Alkyl, Alkoxy, Halogen, Trifluormethyl, Nitro oder Cyano stehen,
R⁴ für Wasserstoff, Alkyl, vorzugsweise Methyl, oder Aryl,
vorzugsweise Phenyl, steht, welches gegebenenfalls durch
40 Alkyl, Alkoxy, Halogen, Trifluormethyl, Nitro oder Cyano
substituiert sein kann.

4. Katalysator nach einem der vorhergehenden Ansprüche, wobei

37

R¹ für Phenyl oder Naphthyl steht, welches einen, zwei oder drei der folgenden Substituenten: Alkyl, Alkoxy, Halogen, Nitro, Cyano, Carboxyl oder NE¹E² tragen kann, wobei E¹ und E² die zuvor angegebenen Bedeutungen besitzen, oder

5

R^1 für einen Rest der Formel II steht, worin

10 x für eine C₄- bis C₅-Alkylenbrücke steht, welche eine oder zwei Doppelbindungen aufweisen und/oder ein- oder zweifach mit Aryl und/oder Hetaryl anelliert sein kann, wobei die Aryl- oder Hetarylgruppen einen, zwei oder drei der folgenden Substituenten: Alkyl, Cycloalkyl, Aryl, Alkoxy, Cycloalkyloxy, Aryloxy, Halogen, Nitro, Cyano, Carboxyl oder NE¹E² tragen können, wobei E¹ und E² die zuvor angegebenen Bedeutungen besitzen. und

15

Y für einen Rest der Formeln III.1 oder III.2 steht,
worin D für einen Rest der Formeln IV.1, IV.2 oder
IV.3 steht.

5. Katalysator nach einem der vorhergehenden Ansprüche, wobei in der Formel I R¹ für einen Rest der allgemeinen Formel II steht, worin X für einen Rest der Formeln X.1 bis X.5

25

steht, worin

Z für O, S, NR¹⁶ oder CHR¹⁷ steht, wobei

45

R^{16} für Alkyl, Cycloalkyl oder Aryl steht, und

38

R¹⁷ für Wasserstoff, Alkyl, Cycloalkyl oder Aryl steht, wobei der Arylsubstituent einen, zwei oder drei Substituenten, die ausgewählt sind unter Alkyl, Alkoxy, Halogen, Trifluormethyl, Nitro, Alkoxycarbonyl oder Cyano, tragen kann,

R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴ und R¹⁵ unabhängig voneinander für Wasserstoff, Alkyl, Alkoxy, Halogen, Trifluormethyl, Nitro, Alkoxycarbonyl oder Cyano stehen.

10

6. Katalysator nach einem der vorhergehenden Ansprüche, wobei der Phosphonitligand der Formel I ausgewählt ist unter Liganden der Formeln Ia bis Ih

15

20

25

(Ia)

(Ib)

(Ic)

30

35

(Id)

(Ie)

40

45

39

(If)

15

(Ig)

30

(Ih)

worin

R⁵ und R⁶ unabhängig voneinander für Wasserstoff oder Triflu-

45 or methyl stehen,

R⁷ für Fluor oder Trifluormethyl steht.

7. Verfahren zur Herstellung der Katalysatoren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man mindestens einen Phosphonitliganden der Formel I mit Nickel oder einer Nickelverbindung in Gegenwart eines Reduktionsmittels oder einem Nickel(0)komplex in einem inerten Lösungsmittel zur Reaktion bringt.
8. Verfahren zur Herstellung von Gemischen monoolefinischer C₅-Mononitrile mit nichtkonjugierter C=C- und C≡N-Bindung durch katalytische Hydrocyanierung von Butadien oder eines 1,3-Butadien-haltigen Kohlenwasserstoffgemisches, dadurch gekennzeichnet, dass die Hydrocyanierung in Gegenwart eines Katalysators nach einem der Ansprüche 1 bis 6 erfolgt.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass man ein Kohlenwasserstoffgemisch mit einem 1,3-Butadiengehalt von mindestens 10 Vol.-%, bevorzugt mindestens 25 Vol.-%, insbesondere mindestens 40 Vol.-%, einsetzt.
10. Verfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass man als 1,3-Butadien-haltiges Kohlenwasserstoffgemisch einen C₄-Schnitt aus der Erdölverarbeitung einsetzt.
11. Verfahren nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß man ein Produktgemisch erhält, welches isomere Pentennitrile und Methylbutennitrile, wie 3-Pentennitril, 4-Pentennitril, 2-Methyl-2-butennitril umfasst.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass das Mengenverhältnis von 3-Pentennitril zu 2-Methyl-3-butennitril mindestens 1,9:1, bevorzugt mindestens 2,1:1 beträgt.
13. Verfahren nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass der Katalysator zusätzlich zur Hydrocyanierung auch zur Stellungs- und Doppelbindungsisomerisierung des Kohlenwasserstoffgemisches und/oder der monoolefinischen C₅-Mononitrile eingesetzt wird.
14. Verfahren zur Herstellung von Adipodinitril, dadurch gekennzeichnet, daß man ein gemäß den Ansprüchen 8 bis 13 hergestelltes Gemisch von C₅-Mononitrilen, gegebenenfalls nach weiterer Aufarbeitung und/oder Isomerisierung in Gegenwart eines Katalysators nach einem der Ansprüche 1 bis 6 katalytisch hydrocyaniert.

41

15. Verwendung von Katalysatoren, umfassend einen Liganden der Formel I zur Hydrocyanierung und/oder Stellungs- und Doppelbindungsomerisierung von Olefinen.

5

10

15

20

25

30

35

40

45

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 98/05733

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 B01J31/18 C07F9/6571 C07F15/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 B01J C07F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 96 22968 A (DU PONT) 1 August 1996 siehe Formel 1 und 4 ----	
A	DE 21 61 750 A (HENKEL & CIE GMBH) 14 June 1973 see claim 1 ----	
A	WO 95 29153 A (DU PONT) 2 November 1995 ----	
A	DE 195 23 335 A (MITSUBISHI CHEM CORP) 4 January 1996 ----	
A	DE 43 21 194 A (BASF AG) 5 January 1995 ----	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

- "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

21 January 1999

01/02/1999

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Thion, M

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intern	nal Application No
PCT/EP 98/05733	

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
WO 9622968	A 01-08-1996	US BR CA CN EP JP US	5821378 A 9606718 A 2208040 A 1169143 A 0804412 A 10512879 T 5696280 A		13-10-1998 13-01-1998 01-08-1996 31-12-1997 05-11-1997 08-12-1998 09-12-1997
DE 2161750	A 14-06-1973	NONE			
WO 9529153	A 02-11-1995	US BR CA CN EP JP	5543536 A 9507852 A 2186357 A 1146762 A 0757672 A 9512534 T		06-08-1996 16-09-1997 02-11-1995 02-04-1997 12-02-1997 16-12-1997
DE 19523335	A 04-01-1996	JP SG US US	8073389 A 32381 A 5600032 A 5712403 A		19-03-1996 13-08-1996 04-02-1997 27-01-1998
DE 4321194	A 05-01-1995	CN DE WO EP ES JP US	1125950 A 59401665 D 9500525 A 0705268 A 2097056 T 8511788 T 5717126 A		03-07-1996 06-03-1997 05-01-1995 10-04-1996 16-03-1997 10-12-1996 10-02-1998

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 98/05733

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 B01J31/18 C07F9/6571 C07F15/04

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole)
IPK 6 B01J C07F

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 96 22968 A (DU PONT) 1. August 1996 siehe Formel 1 und 4 ---	
A	DE 21 61 750 A (HENKEL & CIE GMBH) 14. Juni 1973 siehe Anspruch 1 ---	
A	WO 95 29153 A (DU PONT) 2. November 1995 ---	
A	DE 195 23 335 A (MITSUBISHI CHEM CORP) 4. Januar 1996 ---	
A	DE 43 21 194 A (BASF AG) 5. Januar 1995 ---	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, ein Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindenderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfindenderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

21. Januar 1999

01/02/1999

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Thion, M

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP 98/05733

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9622968	A 01-08-1996	US 5821378 A		13-10-1998
		BR 9606718 A		13-01-1998
		CA 2208040 A		01-08-1996
		CN 1169143 A		31-12-1997
		EP 0804412 A		05-11-1997
		JP 10512879 T		08-12-1998
		US 5696280 A		09-12-1997
DE 2161750	A 14-06-1973	KEINE		
WO 9529153	A 02-11-1995	US 5543536 A		06-08-1996
		BR 9507852 A		16-09-1997
		CA 2186357 A		02-11-1995
		CN 1146762 A		02-04-1997
		EP 0757672 A		12-02-1997
		JP 9512534 T		16-12-1997
DE 19523335	A 04-01-1996	JP 8073389 A		19-03-1996
		SG 32381 A		13-08-1996
		US 5600032 A		04-02-1997
		US 5712403 A		27-01-1998
DE 4321194	A 05-01-1995	CN 1125950 A		03-07-1996
		DE 59401665 D		06-03-1997
		WO 9500525 A		05-01-1995
		EP 0705268 A		10-04-1996
		ES 2097056 T		16-03-1997
		JP 8511788 T		10-12-1996
		US 5717126 A		10-02-1998