

Real-Time Predictive Analytics with Big Data

from deployment to production

David M S mith @ revodavid VP Marketing and Community Revolution Analytics

Today we'll discuss:

- What is "real-time predictive analytics with big data?"
 - Case study: UpStream Software
- Real-time big-data stack
- Five phases of deployment to production
- Just what do we mean by "Big Data" and "Real-Time", anyway?
- Recommendations
- Q&A

Real-Time Predictive Analytics with Big Data

- Real Time
 - Milliseconds? Seconds? Hours? Days?
 - In production, continuously updated
- Big Data
 - Size, flow rate, diversity
 - Conflict with 'real time'
- Predictive Analytics
 - Rear view: description, aggregation, tabulation
 - Prediction, inference, statistical modeling

Case Study

www.upstreamsoftware.com

"Given that our data sets are already in the terabytes and are growing rapidly, we depend on Revolution R Enterprise's scalability and fast performance — we saw about a 4x performance improvement on 50 million records. It works brilliantly."

From: "How Big Data is Changing Retail Marketing Analytics" http://bit.ly/upstream-webinar

John Wallace, CEO Upstream Software

UpStream Software

UpStream's Big Data Analytics engine analyzes and optimizes marketing mix for UpStream's retailer clients

- Customer analytics and segmentation
- Revenue/ action attribution among channels and marketing programs
- Customized Next Best Action per individual prospect or customer
- Event-Triggered Marketing: responses to consumer actions

Big Data

- Demographics: consumer, product, market
- Actions: web clicks, email clicks, mobile app usage, call center logs, social, search ...
- Outcomes: impressions, touches, orders (retail, online, mobile)

Predictive Analytics

Real Time

Williams-Sonoma uses big data to zero in on customers

To target individual customers, Williams-Sonoma needed data from a broad swath of sources, a Hadoop platform, and a dashboard to make sense of it all

Predictive vs Descriptive Analytics

- Retail sales are influenced by stores near the home
- Newer customers are more sensitive to marketing
- Google keywords perform worse than you think
- Display advertising performs better than you think
- Online sales benefit more from seasonal events than retail stores

Real-time Big Data Predictive Analytics Stack

Data Layer

- Structured data
 - RDBMS, NoSQL, Hbase, Impala
- Unstructured data
 - Hadoop MapReduce
- Streaming data
 - Web, social, sensors, operational systems
- Some descriptive analytics done here

Analytics layer

- Predictive analytics technology
 - Development environment: build models
 - Production environment:
 - Deploy real-time scoring
 - Engine for dynamic analytics
- Local data mart
 - Static, periodically updated from data layer
 - Improves performance

Integration Layer

- Connective tissue between end-user applications and analytics engine
- Engines for flow control, real-time scoring
 - Rules engine / CEP engine
- API for Dynamic Analytics
 - Brokers communication between app developers and data scientists

Decision Layer

Desktop
Applications
(e.g. Excel)

Business
Intelligence

Mobile Applications

- End-user interface to analytics system
 - Customers
 - Operations
 - Business analysts
 - C-suite
- Familiar & simple interfaces
 - Supports a range of end-user technologies
 - Level of UI complexity dictated by need

Real-Time Deployment

Five phases of deploying real-time predictive analytics with big data to production:

- 1. Data Distillation
- 2. Model Development
- 3. Validation and Deployment
- 4. Real-time Scoring
- Model refresh

Phase 1: Data Distillation

The data in the Data Layer isn't yet ready for predictive modeling. We need to:

- Extract features from unstructured text
 - Topic modeling, sentiment analysis
- Combine disparate data sources
- Filter for populations of interest
- Select relevant features and outcomes for modeling
- Export to the data mart for predictive modeling

Example: Data Distillation in Hadoop

Revolution R Enterprise for Hadoop: bit.ly/r-hadoop

Automating the Extraction Process

- This process needs to be repeatable and maintainable
- Create a re-usable R script:
 - ASCII: rxDataStep
 - SQL: rxImport, ROracle, RMySQL
 - NoSQL: Rcassandra, rmongodb
 - Hadoop: rmr, rhbase, Rhive
 - Appliances: nza, teradataR, PL/R
 - Feeds: rjson, XML, RCurl, twitteR, python
- R script runs from Analytics Layer
 - Processing: in Data Layer
 - Output: structured file for Data Mart

Data Distillation Process

Phase 2: Model development

- Goal: create a predictive model that is
 - Powerful
 - Robust
 - Comprehensible
 - Implementable
- Key requirements for Data Scientists:
 - Flexibility
 - Productivity
 - Speed
 - Reproducibility

The Model Development Cycle

Technology considerations

- Moving Big Data is slow
 - So just move it once, to data mart near the development and production environments
- Static data needed for modeling cycle
 - But have a plan to refresh and update
- Data layer not optimized for predictive analytics
 - But good for descriptive (data distillation)
- Revolution R Enterprise optimizations for the analytics layer
 - R; XDF file format; Parallel External Memory Algorithms

REVOLUTION Predictive Modeling Algorithms

Algorithm	Example Applications	Big Data
Data Step	ETL, data distillation, record/variable selection, variable transformation	✓ ✓
Descriptive Statistics	Exploratory Data Analysis, Data Validation	//
Tables & Cubes	Reporting, contingency analysis	//
Correlation / Covariance	Factor Analysis, Value at Risk	/ /
Linear regression	Forecasting, Net present value estimation	//
Logistic Regression	Response modeling, offer selection	/ /
Generalized Linear Models	Capital reserve estimation, climate modeling	/ /
K-means clustering	Customer Segmentation	/ /
Decision Trees	Dynamic pricing, classification, variable importance	//
Model Prediction	Real-time Scoring (decisions, offers, actions)	/ /
R CRAN packages	Everything else	
Parallel & distributed computing with R	Simulations, By-Group analysis, ensemble models, custom applications	✓

High performance with distributed clusters

Data Scientists / Modelers

Grid computing cluster

Revolution R Enterprise

Platform LSF Microsoft HPC Server Microsoft Azure Ad-hoc grids (SNOW) Shared SMP server Hadoop / HDFS

Phase 3: Model Validation and Deployment

- Scoring rules map parameters to outputs
 - Parameters: information known at real time
 - prospect ID, product, webpage, ...
 - Scores: values inferred in real time
 - prices, recommendations, actions, ...

- Validation: backtest with historical data
- Deployment: code running in real time

Validation for production

- Refresh data mart
- Rebuild model, withholding a validation set
 - Random sampling
- Create accuracy measure
 - ROC, positive rate, false positive rate
- Measure and monitor

Deployment with R code

- Scoring rules captured as "R model objects"
- Move R code directly from development environment to production server
 - No recoding: Lowest cost, greatest speed & reliability
 - Most flexibility (not limited in model choice)
 - Easy to validate with custom accuracy measures

Managing and Scaling Deployed R Code

- Revolution R Enterprise includes RevoDeployR
 - Code management & tracking
 - Security & resource allocation
 - Scalability for real-time demands
 - Web Services API
- Scoring and dynamic analytics
 - Data visualization
 - custom reporting
 - Ad-hoc analytics
 - Interactive data apps

Code Conversion for Scoring

- Business rules (e.g. IBM ILOG)
 - Create directly with R code from model object
- Recode in other languages
 - SQL
 - C++, etc.
- Low latency
- Slow and costly deployment
- Potential for errors

Scoring via PMML

- Some predictive models can be expressed in the PMML standard (<u>www.dmg.org</u>)
 - Not all, but growing all the time

- Easily generate PMML with R "pmml" package
- PMML Scoring Engine: Zementis Adapa
- Databases and appliances may support PMML
 - But supported standards vary

Phase 4: Real-Time Scoring

- Scoring triggered by Decision Layer, brokered by Integration Layer
 - R code
 - Revolution R Enterprise Server
 - In-appliance (e.g IBM PureData System for Analytics)
 - SQL
 - In-database
 - Rules
 - Compiled code
 - Bespoke engines
- May be using hardware from data layer
 - But not the actual data

Real-Time Scoring: review

Phase 5: Model Refresh

- Deployed scoring rules no longer connected to Data Layer or Data Mart
 - Enables real-time performance
 - Need to refresh using recent data

- Model refresh process
 - Use data extract script
 - Re-run model script
 - Statistical review OR automated validation

Scheduled Batch Updates

Revolution R Enterprise Production Server Cluster

Scheduler

RevoDeployR Server

Web Services API

- Periodic model refresh
 - Weekly
 - Daily
 - Hourly
- Automated validate/deploy process

Re-developing the model

- Even then, the underlying structure of the data may change:
 - Important variables become non-significant
 - Non-significant variables become important!
 - New data sources become available
- Model accuracy drift is a warning sign
- Return to Phase 2 or Phase 1

Kilobytes / second

How big is 'Big data'?

Gigabytes → Terabytes

Petabytes → Exabytes

Seconds or less

How fast is 'Real time'?

Hours → Minutes

Weeks → Days

Recommendations

- Architect your Predictive Analytics Stack
 - Best of breed vs single-vendor stack
 - Diversify data sources and decision apps
- R = Predictive Analytics Revolution R Enterprise provides:
 - Analytics Layer: big data, performance
 - Integration Layer: scalability, reliability
- Get Help to Get Started
 - Consider an SI partner for architecture, best practices and implementation advice

Resources

- Revolution R Enterprise : R for Big Data
 - <u>www.revolutionanalytics.com/products</u>
- Revolution Analytics Consulting Services
 - www.revolutionanalytics.com/services
 - Contact us: bit.ly/hey-revo
- Rhadoop : Connecting R and Hadoop
 - bit.ly/r-hadoop
- Contact David Smith
 - david@revolutionanalytics.com
 - @revodavid
 - blog.revolutionanalytics.com

Thank you.

The leading commercial provider of software and support for the popular open source R statistics language.

www.revolutionanalytics.com

650.646.9545

Twitter: @RevolutionR

