REAL TIME COMMUNICATION SYSTEM POWERED BY AI FOR SPECIALLY ABLED

A PROJECT REPORT

Submitted by

HELAN. J (Reg. No 912619104015)

NIROSHIKA. R (Reg. No 912619104014)

RANJANI. K (Reg. No 912619104019)

ROOPINA. R (Reg. No 912619104021)

In partial full filment for the award of the degree

Of

BACHELOR OF ENGINEERING

In

COMPUTER SCIENCE AND ENGINEERING

SRI BHARATHI ENGINEERING COLLEGE FOR WOMEN

KAIKKURICHI, PUDUKKOTTAI-622 303

ANNA UNIVERSITY: CHENNAI600 025

DEC 2022

PROJECT REPORT FORMAT

1. INTRODUCTION

- 1.1. Project Overview
- 1.2. Purpose

2. LITERATURE SURVEY

- 2.1. Existing problem
- 2.2. References
- 2.3. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1. Empathy Map Canvas
- 3.2. Ideation & Brainstorming
- 3.3. Proposed Solution
- 3.4. Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1. Functional requirement
- 4.2. Non-Functional requirements

5. PROJECT DESIGN

- 5.1. Data Flow Diagrams
- 5.2. Solution & Technical Architecture
- 5.3. User Stories

6. PROJECT PLANNING & SCHEDULING

6.1. Sprint Planning & Estimation

- 6.2. Sprint Delivery Schedule
- 6.3. Reports from JIRA

7. CODING & SOLUTIONING

- 7.1. Feature 1
- 7.2. Feature 2
- 7.3. Database Schema (if Applicable)

8. TESTING

- 8.1. Test Cases
- 8.2. User Acceptance Testing

9. RESULTS

9.1. Performance Metrics

10. ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code

GitHub & Project Demo Link

1. INTRODUCTION

1.1. Project Overview

People get to know one another by sharing their ideas, thoughts, and experiences with those around them. There are numerous ways to accomplish this, the best of which is the gift of "Speech." Everyone can very convincingly transfer their thoughts and understand each other through speech. It will be unjust if we overlook those who are denied this priceless gift: the deaf and dumb. In such cases, the human hand has remained the preferred method of communication.

1.2. Purpose

In our society, we have people with disabilities. The technology is developing day by day but no significant developments are undertaken for the betterment of these people. Communications between deaf-mute and a normal person has always been a challenging task. It is very difficult for mute people to convey their message to normal people. Since normal people are not trained on hand sign language. In emergency times conveying their message is very difficult. The human hand has remained a popular choice to convey information in situations where other forms like speech cannot be used. Voice Conversion System with Hand Gesture Recognition and translation will be very useful to have a proper conversation between a normal person and an impaired person in any language.he project aims to develop a system that converts the sign language into a human hearing voice in the desired language or text to convey a message to normal people, as well as convert speech into understandable sign language for the deaf and dumb. We are making using of a convolution neural network to create a model that is trained on different hand gestures. An app is built which uses this model. This app enables deaf and dumb people to convey their information using signs which get converted to human-understandable language and speech is given as output.

2. LITRATURE SURVEY

S.No	Journal and Authors	Title	Methodol ogy	Pros	Cons
1.	International Journal of Advanced Trends in Computer Science and Engineering Authors - Bayan Mohammed Saleh, -Reem Ibrahim Al Beshr's -Muhammad UsmanTariq	D-Talk: Sign Language Recognition System for People with Disability using Machine Learning and Image Processing - 2020	- Multilay er Network -Neural network	This paper focuses on the classification methods used in prior recognition scheme for sign Recognition.	The system is very sensitive. It catches any element in the box. So, the user must be careful to have a blank background
2.	International Journal of Innovative Research in Science, Engineering and Technology Authors -Kedar Potdar -Gauri Nagavkar	Real-time Communication System for the Deaf and Dumb – 2017	-Flex sensors -Arduino	These electrical signals are then processed using an Arduino micro controller and a Python-based backend for text-to-speech conversion	TTS functionality can be eliminated by adding a portable computer like the Raspberry Pi

3.	American-Eurasian Network for Scientific Information Authors -D.Narashiman -T.Mala	Sign gesture representation using and-or tree -2015	-Sign gesture rendering - Dynamic sign generati on	The advantage of the proposed method over the earlier method is that the location of the hand position is clearly mentioned.	unavailability of good sign languagetutor, lack of importance to that community
4.	Intelligent Technologies for Communication, Learning and Teaching	Assistive & augmenti ve Communi cation for the Disabled - 2014	-Viola -Jones Face	An enhanced interpersonal-human interaction for people with special needs,	This would be another domain for further research on how a machine

2.1 Existing Problem

Some of the existing solutions for solving this problem are:

Technology

One of the easiest ways to communicate is through technology such as a smart phone or laptop. A deaf person can type out what they want to say and a person who is blind or has low vision can use a screen reader to read the text out loud. A blind person can also use voice recognition software to convert what they are saying in to text so that a person who is Deaf can then read it.

Interpreter

If a sign language interpreter is available, this facilitates easy communication if the person who is deaf is fluent in sign language. The deaf person and person who is blind can communicate with each other via the interpreter. The deaf person can use sign language and the interpreter can speak

what has been said to the person who is blind and then translate anything spoken by the blind person into sign language for the deaf person.

Just Speaking

Depending on the deaf person's level of hearing loss, they may be able to communicate with a blind person who is using speech. For example, a deaf person may have enough residual hearing (with or without the use of an assistive hearing device such as a hearing aid) to be able to decipher the speech of the person who is blind or has low vision. However, this is often not the most effective form of communication, as it is very dependent on the individual circumstances of both people and their environment (for example, some places may have too much background noise).

2.2. References

- [1] Bigham, J. P., Jayant, C., Miller, A., White, B., & Yeh, T. (2010, June). VizWiz:: LocateIt-enabling blind people to locate objects in theirenvironment. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops (pp. 65-72). IEEE.
- [2] Manduchi, R., Kurniawan, S., & Bagherinia, H. (2010, October). Blind guidance using mobile computer vision: A usability study. In Proceedings of the 12th international ACM SIGACCESS conference on Computers and accessibility (pp. 241-242).
- [3] Ivanchenko, V., Coughlan, J., Gerrey, W., & Shen, H. (2008, October). Computer vision-based clear path guidance for blind wheelchair users. In Proceedings of the 10th international ACM SIGACCESS onference on Computers and accessibility (pp. 291-292).
- [4] Johnson, A., Grønli, T. M., & Bygstad, B. (2012). Making touch-based mobile phones accessible for the visually impaired. Norsk

- informatikkonferanse, (Bodø, Norway, 2012).
- [5] Matusiak, K., Skulimowski, P., & Strurniłło, P. (2013, June). Object recognition in a mobile phone application for visually impaired users. In 2013 6th International Conference on Human System Interactions (HSI) (pp. 479-484). IEEE.
- [6] Hermus, K., & Wambacq, P. (2006). A review of signal subspace speech enhancement and its application to noise robust speech recognition. EURASIP Journal on Advances in Signal Processing, 2007(1), 045821.
- [7] Dimitrov, V., Jullien, G., & Muscedere, R. (2017). Multiple-base number system: theory and applications.CRC press.
- [8] Huyan, Z., Xu, L., Fang, S., Liu, Z., Zhang, X., & Li, L. (2014). Field information acquisition system research based on offline speech recognition. Int. J. Database Theory Application, 7, 45-58.
- [9] Oman khanlen, A. E., & Ogaga-Oghene, J. (2013). The Dynamics of Global Strategy and Strategic Alliances in International Trade and Investment. INTERNATIONAL JOURNAL OF RESEARCH IN

COMPUTER APPLICATION & MANAGEMENT, 3(12), 41-48.

- [10] Kamble, K., & Kagalkar, R. (2014). A review: translation of text to speech conversion for Hindi language. International Journal of Science and Research (IJSR) Volume, 3.
- [11] Arora, S. J., & Singh, R. P. (2012). Automatic speech recognition: a review. International Journal of Computer Applications, 60(9).
- [12] BELGHIT, H., & BELLARBI, A. Object Recognition Based on ORB Descriptor for Marker less

Augmented Reality.

[13] Gill, J. (2000). Personal electronic mobility devices. Information for Professionals Working with Visually Disabled People. http://www.tiresias.org.

- [14] Chen, C., & Raman, T. V. (2009). Announcing eyes-free shell for Android. Retrieved December, 21, 2016.
- [15] Coughlan, J., & Manduchi, R. (2009). Functional assessment of a camera phone-based way finding system operated by blind and visually impaired users. International Journal on Artificial IntelligenceTools, 18(03), 379-397.
- [16] Coughlan, J., & Manduchi, R. (2007). Color targets: Fiducials to help visually impaired people find their way by camera phone. EURASIP Journal on Image and Video Processing, 2007, 1-13.
- [17] Kumar, A., & Chourasia, A. (2018). Blind Navigation System Using Artificial Intelligence. International Research Journal of Engineering and Technology, 5(3).
- [18] Jiang, R., Lin, Q., & Qu, S. (2016). Let Blind People See: Real-Time Visual Recognition with Results Converted to 3D Audio. Report No. 218, Standard University, Stanford, USA.
- [19] Bigham, J. P., Jayant, C., Miller, A., White, B., & Yeh, T. (2010, June). VizWiz:: LocateIt-enabling blind people to locate objects in their environment. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops (pp. 65-72). IEEE.
- [20] Bigham, J. P., Jayant, C., Miller, A., White, B., & Yeh, T. (2010, June). VizWiz:: LocateIt-enabling blind people to locate objects in their environment. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops (pp. 65-72). IEEE.
- [21] Manduchi, R., Kurniawan, S., & Bagherinia, H. (2010, October). Blind guidance using mobile computer vision: A usability study. In Proceedings of the 12th international ACM SIGACCESS conference on Computers and accessibility (pp. 241-242).

2.3. Problem Statement Definition

The main problem statement is to acute design which can provide voice to voiceless indicate glove. It shows that with the help or use of these smart glove there won't be any miscommunication between two distinct groups and they will have the scope to discuss fluently. The glove is developed with flex sensors, contact sensors and accelerometer to estimate flexion of the fingers and the turnof hand. With different signals, hand motion assumes an essential part, as it communicates the client's perspective in less time. The aim is to only play out these mind blogging calculation and activities on the server and create the discourse on cell phones. It sometime uncomfortable to the users

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

An empathy map is a collaborative tool teams can use to gain a deeper insight into their customers. Much like a user persona, an empathy map can represent a group of users, such as a customer segment. The empathy map was originally created by Dave Gray and has gained much popularity within the agile community

An empathy map helps to map what a design team knows about the potential audience. This tool helps to understand the reason behind some actions a user takes deeply. This tool helps build Empathy towards users and helps design teams shift focus from the product to the users who are going to use the product

3.2. IDEATION & BRAINSTORM

Brainstorming is a group problem-solving method that involves the spontaneous contribution of creative ideas and solutions. This technique requires intensive, freewheeling discussion in which every member of the group is encouraged to think aloud and suggest as many ideas as possible based on their diverse knowledge

.

Step-1: Team Gathering, Collaboration and select the problem statement

Step-1 is define Team Gathering, Collaboration and select the problem statement concept of the project.

Step2: Brainstorm Idea, Listening and Grouping

Step 2 is define Brainstorm idea, listening and grouping concept of the project.

3.3. Proposed Solution

The following table is describe the details of proposed system.

S. No.	Parameter	Description
1.	Problem Statement(Problem to be solved)	Sign Language is a visual means of communicating using gestures, facial expressions, and body language with specially- Abled. Since normal people are not trained in sign language, in times of emergency conveying their message is very difficult. Hence, there is a need for a system that recognizes different signs and empowersthem in communicating with normal people
2.	Idea / Solution description	The idea is to create an end-end application that predicts the ISL signs from a live video and translates the same to voice such that conversing is at ease
3.	Social Impact/ Customer Satisfaction	 Communication is achieved without the helpof additional humanintervention. No additional hardware support is needed to use the application Improve their career opportunities in the industry can provide instantresults to users
4.	Novelty / Uniqueness	We use a stopping symbol to group the letters into a word and generate a sentence and the resulted prediction is converted into speech to convey the information in a convenient manner

3.4. Problem Solution fit

The following table is describe the details of problem solution of this project.

4. REQUIREMENT ANALYSIS

4..1 Functional Requirements

The Functional Diagram Dsfines the details of how man requirements are te developer needed.

FR. NO	FUNCTIAL REQUIREMENTS	SUB REQUIREMETNS
FR-1	User Registration	Registration Through Form
		Registration Through Mail
FR-2	User Confirmation	Confirmation Via Email
		Confirmtion Via OTP
FR-3	User Login	Login Through Form
		Login Through Mail
FR-4	Image Upload	Image Upload Via Drog &
		Drop
		Image Upload Via
		Checking From Local
		SubSystem
FR-5	Text Entry	Text Entry By Typing
		Text Entry By Copy, Paste
FR-6	Conversion	Sign-Language to Speech
		Conversion
		Text-to Sign Language
		Conversio
FR-7	Activity Log	View List OF Active Users
		View Log Of Translation
		Performed

4.2. Non-Functional requirements

FR. NO	FUNCTIAL REQUIREMENTS	DESCRIPTION
NFR-1	Usability	The application can be used
		by clients without priority
		knowledge of machine
		learning algorithm.
NFR-2	Security	Access is provided only to
		register users, either
		through a username-
		password
FNR-3	Reliability	The application has an
		extremely low failure rate
		/down time and has a clear,
		predictable flow of
		operation
NFR-4	Performance	The application provides
		accurate translation from
		sign-language in to speech
		as well as text-to -sign
		language
NFR-5	Availability	Clients can use application
		to perform conversation
		provide they have a stable
		internet connection
NFR-6	Scalability	The application seamlessly
		and efficient handles a
		growing number of clients/
		users without any
		significant reduction in
		performance

5. PROJECT DESIGN

5.1. Data Flow Diagrams

A Data flow diagram(DFD) is a traditional visual representation of the information flows with in a system. A neat and clear DFT can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information and where data is stored.

5.2 Solution & Technical Architecture

Technical Architecture: The Deliverable shall include the architectural diagram as below and the information as per the table 2 Real-Time Communication System Powered by AI for Specially Abled

Table-1 : Components & Technologies:

S. No	Components	Description	Technology
1.	User Interface	The user interface is the point of human computer interaction and communication in device.	Python flask, HTML, CSS/JavaScript.
2	Flash UI	Flash's user interface components let you interact with the users that use your site and gather information.	Using the cloud, it can be executed.
3.	Models	Support Vector Machine (SVM) is subsequently applied to classify our gesture image dataset.	Machine Learning.

4.	Image	Image processing is used to	ANN, CNN, Open
		extract signs from the image	CV
		using neural network.	
5	Evaluate data	Aims to estimate the	NLP.
		generalization accuracy of a	
		model on future (unseen/out-	
		of-sample) data.	
6	Unstructured data	Unstructured data is a	Natural Language
		conglomeration of many	Processing (NLP).
		varied types of data that are	
		stored in their native formats	
7	Structured data	Typically categorized as	Machine language
		quantitative data is highly	and artificial
		organized and easily	intelligence tools.
		decipherable by machine	
		learning algorithms.	
8.	File Storage	File storage requirements to	IBM Block
		store the trained model in	Storage or Cloud
		order to use it whenever it is	object
		needed.	
9.	ML service	Provides a full range of tools	Python, IBM
		and services so that you can	Watson.
		build, train, and deploy	
		Machine Learning models	
	•	•	•

5.3 User Stories

User Type	Functional	User story	User story/task	Acceptance	priority	Release
	Requireme	number		criteria		
	nt					
	(Epic)					
Customer	Registrati	USN-1	As a user, I can	I can	High	Sprint
(deaf	on		register for the	registered my		1
people)			application by	account		
			entering my			
			email,password,and			
			confirming my			
			password			
		USN-2	As a user, I will	I can received	High	Sprint 2
			receive confirmation	conformation		
			email once I have	gmail and		
			registered for the	click confirm		
			application			
	Login	USN-3	As a user, I can log	I can	Low	Sprint 1
			into the application	registered and		
			through gmail	access the		
				dashboard		
				with gmail		
				login		
		USN-4	As a user, I can see	I can login	Medium	Sprint 2
			my application and	and see my		
			made changes in any	account at		
			browsers	anywhere		
	Dashboard	USN-5	As a user, I can create	I can access	High	Sprint 1
			my account in a given	my		
			dashboard	account/dash		
				board		
			l .		l	

Customer		USN-6	As a user, I can	I can	High	Sprint 2
(dumb	Registrati		register my	registered my		
people)	on		application through	account		
			gmail			
		USN-7	As a user, I can	I can receive	Low	Sprint 2
			receive confirmation	confirmation		
			mail &get verification	mail and		
			code from OTP &	click confirm		
			gmail			
	Login	USN-8	As a user, I can log	I can login	Medium	Sprint 1
			into my account by	and see my		
			any web browsers	account		
	Dashboard	USN-9	As a user, I can create	I can create	High	Sprint 2
		0511-9	my account in a given	my account		
			dashboard	& access into		
				dashboard		

6. PROJECT PLANNING & SCHEDULING

6.1. Sprint Planning & Estimation

Milestone	Functional	Milestone	Milestone Story / Task
	Requirement (Epic)	Story Number	
Milestone 1	Data Collection	M1	We're collecting dataset
			for building our project
			and creating two folders,
			one for training and
			another one for testing.
Milestone 2	Image Preprocessing	M2	Importing image data
			generator libraries and
			applying image data
			generator functionality to
			train the test set
Milestone 3	Building Model	M3	Importing the model
			building libraries,
			Initializing the model,
			Adding Convolution
			layers, Adding the
			Pooling layers, Adding
			the Flatten layers, Adding
			Dense layers, Compiling
			the model Fit and Save
			the model.
Milestone 4	Testing Mode	M4	Import the packages first.
			Then we save the model
			and Load the test image
			process it and predict it.

Milestone 5	Application Layer	M5	Build the flask
			application and the
			HTML pages.
Milestone 6	Train Conversation	M6	Register for IBM Cloud
	Engine		and train Image
			Classification Model
Milestone 7	Final Result	M7	To ensure all the
			activities and resulting
			the final output.

6.2. Sprint Delivery Schedule

Product Backlog, Sprint Schedule, and Estimation

Sprint	Functional	User	User Story / Task	Story	Priority	Team Members
	Requirement	Story		Points		
	(Epic)	Number				
Sprint 1	Data	USN-1	Dataset has to be	12	High	HELAN
	Collection		collected			NIROSHIKA
Sprint 1	Image	USN-2	Collected images	8	Medium	HELAN
	Preprocessi		has to be			RANJANI
	ng		preprocessed			ROOPINA
Sprint 2	Model	USN-3	Import the required	12	High	RANJANI
	Building		libraries, add the			ROOPINA
			necessary layers			
			and compile the			
			model			
Sprint 2	Model	USN-4	Training the image	8	Medium	HELAN
	Building		classification			NIROSHIK

			model usingCNN			RANJANI
Sprint 3	Training &	USN-5	Training the model	20	High	ROOPINA
	Testing		and testing the			RANJANI
			model's			NIROSHIKA
			performance			
Sprint 4	Implementati	USN-6	Converting the	20	High	HELAN
	on of the		input sign language			
	application		images into			
			English			

6.3. Reports from JIRA

Burn up Report

The JIRA Reports tells the details of burn-up report by using all the sprint activities.

Sprint Burndown Chart

The JIRA file tells the details of sprint burndown by using all the sprints

Velocity Report

The JIRA file tells the details of how the velocity is working by the use of all sprint

7. CODING & SOLUTIONING

7.1. Feature 1

7.1.1. Python

Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. It is high-level built in data structures, combined with dynamic typing and dynamic binding, make it very attractive for Rapid Application Development, as well as for use as a scripting or glue language to connect existing components together. Python's simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program maintenance. Python supports modules and packages, which encourages program molecularity and code reuse. The Python interpreter and the extensive standard library are available in source or binary form without charge for all major platforms, and can be freely distributed.

7.1.2. CNN

In deep learning, a convolution neural network (CNN, or ConvNet) is a class of artificial neural network (ANN), most commonly applied to analyze visual imagery. CNNs are also known as Shift Invariant or Space Invariant Artificial Neural Networks (SIANN), based on the shared-weight architecture of the convolution kernels or filters that slide along input features and provide translation-equivalent responses known as feature maps.

Counter-intuitively, most convolutional neural networks are not invariant to translation, due to the downsampling operation they apply to the input. They have applications in image and video recognition, recommender systems, image classification, image segmentation, medical image analysis, natural language

processing, brain—computer interfaces, and financial time series.

CNNs are regularized versions of multi layer perceptrons. Multi layer perceptrons usually mean fully connected networks, that is, each neuron in one layer is connected to all neurons in the next layer. The "full connectivity" of these networks make them prone to over fitting data.

7.1.3 Python Flask

Flask is a web framework, it's a Python module that lets you develop web applications easily. It's has a small and easy-to-extend core: it's a micro framework that doesn't include an ORM (Object Relational Manager) or such features.

It does have many cool features like url routing, template engine. It is a WSGI web app framework.

To jumpstart a coding and programming career, it is crucial to master core concepts like a programming language and since it's all about Python programming, it is paramount that developers understand and have great expertise in the basic fundamentals of Python programming. Various concepts like data structure, exception handling, object-oriented programming, and more are important to excel in a programming career.

7.2. Feature 2

7.2.1. IBM Cloud

IBM Cloud is a suite of cloud computing services from IBM that offers both platform as a service (PaaS) and infrastructure as a service (IaaS).

IBM Cloud Paas, which is based on the open source cloud platform Cloud Foundry

-- developers can use IBM services to create, manage, run and deploy various types of applications for the public cloud, as well as for local or on-premises environments. IBM Cloud supports various programming languages, such as Java, Node.js, PHP and Python and extends to support other languages.

7.2.2. IBM Watson

The Watson is designed to make it easy for you to use data from diverse sources, trust the recommendations and predictions from your AI models, and get more value from your AI, faster. With Watson, you have access to the most complete portfolio of AI capabilities for business, whether it's tools for building your own models, pre-built applications to accelerate time to value, or access to a robust ecosystem of partners across multiple industries.

8. TESTING

8..1 TEST CASES

A test case has components that describe input, action and an expected response, in order to determine if a feature of an application is working correctly. A test case is a set of instructions on "HOW" to validate a particular test objective / target, which when followed will tell us if the expected behaviour of the system

S.	Scenario	Input	Exceed output	Actual Output
NO				
	_			
1.	Dataset	train and test	Image can be	Dataset are stored in
		image	predicted by	the database
			compared to dataset.	
2.	Image	sign images	Text letters are come	Sign image converted
	G			o o
	processing		in the output	in to text letters
			1	

8.2. USER ACCEPTANCE TESTING

This sort of testing is carried out by users, clients, or other authorized bodies to identify the requirements and operational procedures of an application or piece of software. The most crucial stage of testing is acceptance testing since it determines whether or not the customer will accept the application or program. It could entail the application's U.I., performance, usability, and usefulness. It is also referred to as end-user testing, operational acceptance testing, and user acceptance testing (UAT).

9. RESULTS

9.1 Performance Metrics

The proposed procedure was implemented and tested with set of images. The set of 15750 images of Alphabets from "A" to "I" are used for training database and a set of 2250 images of Alphabets from "A" to "I" are used for testing database. Once the gesture is recognize the equivalent Alphabet is shown on the screen.

10. ADVANTAGES & DISADVANTAGES

Advantages:

- 1. It is possible to create a mobile application to bridge the communication gap between deaf and dumb persons and the general public.
- 2. As different sign language standards exist, their dataset can be added, and the user can choose which sign language to read.

Disadvantages:

- 1. The current model only works from alphabets A to I.
- 2. In absence of gesture recognition, alphabets from J cannot be identified as they require some gesture input from the user.
- 3. As the quantity/quality of images in the dataset is low, the accuracy is not great, but that can easily be improved by change in dataset.

11. CONCLUSION

Sign language is a useful tool for facilitating communication between deaf and hearing people. Because it allows for two-way communication, the system aims to bridge the communication gap between deaf people and the rest of society. The proposed methodology translates language into English alphabets that are understandable to humans.

This system sends hand gestures to the model, who recognizes them and displays the equivalent Alphabet on the screen. Deaf people can use their hands to perform sign language, which will then be converted into alphabets, thanks to this project.

12. FUTURE SCOPE

Having a technology that can translate hand sign language to its corresponding alphabet is a game changer in the field of communication and AI for the specially abled people such as deaf and dumb. With introduction of gesture recognition, the web app can easily be expanded to recognize letters beyond 'I', digits and other symbols plus gesture recognition can also allow controlling of software/hardware interfaces.

It will contribute to the development of improved communication for the deafened. The majority of people are unable to communicate via sign language, which creates a barrier to communication.

As a result, others will be able to learn and comprehend sign language and communicate with the deaf and dumb via the web app. According to scientific research, learning sign language improves cognitive abilities, attention span, and creativity.

13. APPENDIX

Source Code

Data_Collection_and_Data_Preprocessing (1).ipynb

```
#***IMPORTING NECESSARY LIBRARIES***
from google.colab import drive
drive.mount('/content/drive')
import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
from keras.preprocessing.image import ImageDataGenerator
!unzip '/content/drive/MyDrive/test_set.zip'
!unzip '/content/drive/MyDrive/training_set.zip'
#**RENAMING DATA FILES**
def rename_imgs(file_name):
  folder_path = r'/content/drive/MyDrive/test_dataset'+file_name
  num = 0
  for file in os.listdir(folder_path):
    # if num%10 == 0:
        print(f'Renamed {num} files...')
    # os.rename(folder_path+'\\'+file,
folder_path+'\\'+file_name+'_'+str(num)+'.jpeg')
    num += 1
fn = "
rename_imgs(fn)
file names = "
for fn in file names:
  rename_imgs(fn)
```

```
# **DISPLAYING SAMPLE IMAGES FROM DATASET**
train data path = 'train dataset/'
test_data_path = 'test_dataset/'
def display(img,sign=None):
  img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
  fig = plt.figure(figsize=(7,7))
  ax = fig.add_subplot(111)
  plt.title(sign)
  ax.imshow(img)
## **Training Data Images**
sign_img = cv2.imread('/content/drive/MyDrive/train_dataset/3/23.jpg')
display(sign_img,'a')
sign_img = cv2.imread('/content/drive/MyDrive/test_dataset/A/244.jpg')
display(sign_img,'A')
sign_img = cv2.imread('/content/drive/MyDrive/test_dataset/D/7.jpg')
display(sign_img,'D')
sign_img = cv2.imread('/content/drive/MyDrive/train_dataset/3/340.jpg')
display(sign_img,'3')
sign img = cv2.imread('/content/drive/MyDrive/test dataset/H/7.jpg')
display(sign_img,'7')
sign_img = cv2.imread('/content/drive/MyDrive/test_dataset/Z/1.jpg')
display(sign_img,'Z')
sign_img = cv2.imread('/content/drive/MyDrive/test_dataset/P/8.jpg')
display(sign_img,'5')
# **Test Data Images**
sign_img = cv2.imread('/content/drive/MyDrive/test_dataset/S/15.jpg')
display(sign_img,'S')
sign_img = cv2.imread('/content/drive/MyDrive/test_dataset/Z/1.jpg')
display(sign_img,'Z')
sign_img = cv2.imread('/content/drive/MyDrive/test_dataset/7/8.jpg')
display(sign_img,'7')
```

```
#**AUGMENTATION AND PREPROCESSING THE DATASET**
**Creating ImageDataGenerator**
image_gen = ImageDataGenerator(rotation_range=30,
                 width_shift_range=0.1,
                 height_shift_range=0.1,
                 shear range=0.2,
                 zoom_range=0.2,
                 rescale=1/255,
                 horizontal_flip=True,
                 fill_mode='nearest',
                 validation_split=0.25)
**Original Image**
sign_img = cv2.imread('/content/drive/MyDrive/test_dataset/3/100.jpg')
display(sign_img,'3')
**Augmented Images**
display(image_gen.random_transform(sign_img))
display(image_gen.random_transform(sign_img))
#**SPLITING INTO TRAIN AND VALIDATION DATASET**
**Train Data Generator**
train_data_gen =
image_gen.flow_from_directory('/content/drive/MyDrive/train_dataset',
                        target_size=(250,250),
                        batch_size=16,
                        shuffle=True,
                        class_mode='binary',
                        subset='training')
**Validation Data Generator**
validation_data_gen =
image_gen.flow_from_directory('/content/drive/MyDrive/train_dataset',
                        target_size=(250,250),
```

```
batch_size=16,
                          shuffle=True,
                          class_mode='binary',
                          subset='validation')
**Test Data Generator**
test_data_gen =
image_gen.flow_from_directory('/content/drive/MyDrive/test_dataset',
                          target_size=(250,250),
                          batch_size=8,
                          shuffle=True,
                          class_mode='categorical',
                          )
train_data_gen.class_indices
test_data_gen.classes
len(train_data_gen.classes)
len(test_data_gen.classes)
```

_

!unzip '/content/drive/MyDrive/training_set.zip'

extracting: training_set/G/1231.png extracting: training_set/G/1232.png inflating: training_set/G/1233.png inflating: training_set/G/1234.png inflating: training_set/G/1235.png inflating: training_set/G/1236.png inflating: training_set/G/1237.png inflating: training_set/G/1238.png inflating: training_set/G/1239.png
inflating: training_set/G/124.png inflating: training_set/G/1240.png inflating: training_set/G/1241.png inflating: training_set/G/1242.png inflating: training_set/G/1243.png inflating: training_set/G/1244.png
inflating: training_set/G/1245.png extracting: training_set/G/1246.png inflating: training_set/G/1247.png inflating: training_set/G/1248.png inflating: training_set/G/1249.png inflating: training_set/G/125.png inflating: training_set/G/1250.png inflating: training_set/G/1251.png inflating: training_set/G/1252.png inflating: training_set/G/1253.png
inflating: training_set/G/1254.png inflating: training_set/G/1255.png inflating: training_set/G/1256.png inflating: training_set/G/1257.png inflating: training_set/G/1258.png inflating: training_set/G/1259.png
inflating: training_set/G/126.png inflating: training_set/G/1260.png inflating: training_set/G/1261.png extracting: training_set/G/1262.png inflating: training_set/G/1263.png inflating: training_set/G/1264.png inflating: training_set/G/1265.png inflating: training_set/G/1266.png inflating: training_set/G/1267.png extracting: training_set/G/1268.png inflating: training_set/G/1269.png inflating: training_set/G/127.png
inflating: training_set/G/1270.png inflating: training_set/G/1271.png inflating: training_set/G/1272.png inflating: training_set/G/1273.png inflating: training_set/G/1274.png inflating: training_set/G/1275.png inflating: training_set/G/1276.png
inflating: training_set/G/1277.png inflating: training_set/G/1278.png inflating: training_set/G/1279.png inflating: training_set/G/1279.png inflating: training_set/G/128.png inflating: training_set/G/1280.png inflating: training_set/G/1281.png inflating: training_set/G/1282.png inflating: training_set/G/1283.png inflating: training set/G/1284.png

sign_img = cv2.imread('/content/drive/MyDrive/test_dataset/A/244.jpg')
display(sign_img,'A')

sign_img = cv2.imread('/content/drive/MyDrive/train_dataset/3/23.jpg')
display(sign_img, 'a')

sign_img = cv2.imread('_/content/drive/MyDrive/test_dataset/Z/1.jpg')
display(sign_img,'Z')

Test Data Images

Initialize the model.ipynb

#import imagedatagenerator

from keras.preprocessing.image import ImageDataGenerator #training datagen

```
train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=
0.2,horizontal_flip=True)
#testing datagen
test_datagen=ImageDataGenerator(rescale=1./255)
import tensorflow as tf
import os
# Initialize The Model
#create model
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Dropout
from keras.layers import Flatten
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import matplotlib.pyplot as plt #to view graph in colab itself
import IPython.display as display
from PIL import Image
import pathlib
!unzip '/content/drive/MyDrive/test_set.zip'
! unzip '/content/drive/MyDrive/training_set.zip'
x_train=train_datagen.flow_from_directory('/content/training_set',target_size=(64,
64),batch size=200,
                         class_mode='categorical',color_mode="grayscale")
x_test=test_datagen.flow_from_directory('/content/test_set',target_size=(64,64),bat
```

```
ch_size=200,

class_mode='categorical',color_mode="grayscale")

a=len(x_train)

b=len(x_test)

print(a)

print(b)

# Add Layers

#create model

model=Sequential()
```

Add the convolution layer.ipnb

#import imagedatagenerator

from keras.preprocessing.image import ImageDataGenerator

#training datagen

 $train_datagen=ImageDataGenerator (rescale=1./255, shear_range=0.2, zoom_range=0.2, zoom_rang$

0.2,horizontal_flip=True)

#testing datagen

test_datagen=ImageDataGenerator(rescale=1./255)

import tensorflow as tf

import os

Initialize The Model

#create model

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Convolution2D

from keras.layers import MaxPooling2D

from keras.layers import Dropout

```
from keras.layers import Flatten
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import matplotlib.pyplot as plt #to view graph in colab itself
import IPython.display as display
from PIL import Image
import pathlib
!unzip '/content/drive/MyDrive/test_set.zip'
!unzip '/content/drive/MyDrive/training_set.zip'
x_train=train_datagen.flow_from_directory('/content/training_set',target_size=(64,
64),batch_size=200,
                         class_mode='categorical',color_mode="grayscale")
x_test=test_datagen.flow_from_directory('/content/test_set',target_size=(64,64),bat
ch_size=200,
                         class_mode='categorical',color_mode="grayscale")
a=len(x_train)
b=len(x_test)
print(a)
print(b)
# Add Layers
#create model
model=Sequential()
model.add(Convolution2D(32,(3,3),input_shape=(64,64,1),activation='relu'))
```

Add_the_flatten_layer.ipynb

#import imagedatagenerator

from keras.preprocessing.image import ImageDataGenerator

#training datagen

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=

0.2, horizontal_flip=True)

#testing datagen

test_datagen=ImageDataGenerator(rescale=1./255)

import tensorflow as tf

import os

Initialize The Model

#create model

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Convolution2D

from keras.layers import MaxPooling2D

from keras.layers import Dropout

from keras.layers import Flatten

```
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import matplotlib.pyplot as plt #to view graph in colab itself
import IPython.display as display
from PIL import Image
import pathlib
!unzip '/content/drive/MyDrive/test_set.zip'
!unzip '/content/drive/MyDrive/training_set.zip'
x_train=train_datagen.flow_from_directory('/content/training_set',target_size=(64,
64),batch_size=200,
                         class_mode='categorical',color_mode="grayscale")
x_test=test_datagen.flow_from_directory('/content/test_set',target_size=(64,64),bat
ch_size=200,
                         class_mode='categorical',color_mode="grayscale")
a=len(x_train)
b=len(x_test)
print(a)
print(b)
# Add Layers
#create model
model=Sequential()
model.add(Convolution2D(32,(3,3),input_shape=(64,64,1),activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
#1st hidden layer
model.add(Dense(units=512,activation='relu'))
#2nd hidden layer
model.add(Dense(units=261,activation='relu'))
#output layer
model.add(Dense(units=9,activation='softmax'))
```

Add Layers

```
[ ] #create model
    model=Sequential()

[ ] model.add(Convolution2D(32,(3,3),input_shape=(64,64,1),activation='relu'))

[ ] model.add(MaxPooling2D(pool_size=(2,2)))

[ ] model.add(Flatten())

[ ] #1st hidden layer
    model.add(Dense(units=512,activation='relu'))
    #2nd hidden layer
    model.add(Dense(units=261,activation='relu'))

[ ] #output layer
    model.add(Dense(units=9,activation='softmax'))
```

Adding_The_Dense_Layers.ipynb

#import imagedatagenerator

from keras.preprocessing.image import ImageDataGenerator

#training datagen

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True)

#testing datagen

test_datagen=ImageDataGenerator(rescale=1./255)

import tensorflow as tf

import os

Initialize The Model

#create model

from keras.models import Sequential

from keras.layers import Dense

 $from\ keras.layers\ import\ Convolution 2D$

from keras.layers import MaxPooling2D

from keras.layers import Dropout

```
from keras.layers import Flatten
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import matplotlib.pyplot as plt #to view graph in colab itself
import IPython.display as display
from PIL import Image
import pathlib
!unzip '/content/drive/MyDrive/test_set.zip'
!unzip '/content/drive/MyDrive/training_set.zip'
x_train=train_datagen.flow_from_directory('/content/training_set',target_size=(64,
64),batch_size=200,
                         class_mode='categorical',color_mode="grayscale")
x_test=test_datagen.flow_from_directory('/content/test_set',target_size=(64,64),bat
ch_size=200,
                         class_mode='categorical',color_mode="grayscale")
a=len(x_train)
b=len(x_test)
print(a)
print(b)
# Add Layers
#create model
model=Sequential()
model.add(Convolution2D(32,(3,3),input_shape=(64,64,1),activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
#1st hidden layer
model.add(Dense(units=512,activation='relu'))
#2nd hidden layer
model.add(Dense(units=261,activation='relu'))
#output layer
model.add(Dense(units=9,activation='softmax'))
```

Compile_The_Model.ipynb

#import imagedatagenerator

from keras.preprocessing.image import ImageDataGenerator

#training datagen

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True)

#testing datagen

test_datagen=ImageDataGenerator(rescale=1./255)

import tensorflow as tf

import os

Initialize The Model

#create model

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Convolution2D

from keras.layers import MaxPooling2D

from keras.layers import Dropout

from keras.layers import Flatten

from tensorflow.keras.preprocessing.image import ImageDataGenerator

import numpy as np

import matplotlib.pyplot as plt #to view graph in colab itself

import IPython.display as display

from PIL import Image

import pathlib

!unzip '/content/test_set.zip'

x_train=train_datagen.flow_from_directory('/content/training_set',target_size=(64, 64),batch_size=200,

class_mode='categorical',color_mode="grayscale")

x_test=test_datagen.flow_from_directory('/content/test_set',target_size=(64,64),bat ch_size=200,

```
class_mode='categorical',color_mode="grayscale")
a=len(x_train)
b=len(x_test)
print(a)
print(b)
# Add Layers
#create model
model=Sequential()
model.add(Convolution2D(32,(3,3),input_shape=(64,64,1),activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
#1st hidden layer
model.add(Dense(units=512,activation='relu'))
#2nd hidden layer
model.add(Dense(units=261,activation='relu'))
#output layer
model.add(Dense(units=9,activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accurac
y'])
Fit_And_Save_The_Model.ipynb
#import imagedatagenerator
from keras.preprocessing.image import ImageDataGenerator
#training datagen
train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=
0.2,horizontal_flip=True)
#testing datagen
test_datagen=ImageDataGenerator(rescale=1./255)
import tensorflow as tf
import os
# Initialize The Model
```

```
#create model
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Dropout
from keras.layers import Flatten
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import matplotlib.pyplot as plt #to view graph in colab itself
import IPython.display as display
from PIL import Image
import pathlib
from google.colab import drive
drive.mount('/content/drive')
!unzip '/content/drive/MyDrive/test_set.zip'
!unzip '/content/drive/MyDrive/training_set.zip'
x_train=train_datagen.flow_from_directory('/content/training_set',target_size=(64,
64),batch size=200,
                         class_mode='categorical',color_mode="grayscale")
x_test=test_datagen.flow_from_directory('/content/test_set',target_size=(64,64),bat
ch size=200,
                         class_mode='categorical',color_mode="grayscale")
a=len(x_train)
b=len(x_test)
print(a)
print(b)
# Add Layers
#create model
model=Sequential()
model.add(Convolution2D(32,(3,3),input_shape=(64,64,1),activation='relu'))
```

```
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
#1st hidden layer
model.add(Dense(units=512,activation='relu'))
#2nd hidden layer
model.add(Dense(units=261,activation='relu'))
#output layer
model.add(Dense(units=9,activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accurac y'])
model.fit_generator(x_train,steps_per_epoch=len(x_train),epochs=10,validation_d ata=x_test,validation_steps=len(x_test))
model.save('aslpng2.h5')
```

```
| model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
| model.fit_generator(x_train,steps_per_epoch=len(x_train),epochs=10,validation_data=x_test,validation_steps=len(x_test))
| /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: UserNarning: 'Model.fit_generator' is deprecated and will be removed in a future version. Please use 'Model.fit', which supports generators.
| **Testry point for launching an IFython kernel. | **Testry point for launching and iFython kernel. | **Testry poi
```

$Import_ImageDataGenerator_Library_And_Configure_It.ipynb$

```
# **Image Preprocessing**
# **Import ImageDataGenerator Library And Configure It**
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Training Datagen
train_datagen =
ImageDataGenerator(rescale=1/255,zoom_range=0.2,horizontal_flip=True,vertical)
```

_flip=False)

Testing Datagen

test_datagen = ImageDataGenerator(rescale=1/255)

import tensorflow as tf

import os

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout,

MaxPooling2D

from tensorflow.keras.preprocessing.image import ImageDataGenerator

import numpy as np

import matplotlib.pyplot as plt

import IPython.display as display

from PIL import Image

import pathlib

Import_The_Required_Model_ Building_Libraries.ipynb

#import imagedatagenerator

from keras.preprocessing.image import ImageDataGenerator

#training datagen

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True)

#testing datagen

test_datagen=ImageDataGenerator(rescale=1./255)

import tensorflow as tf

import os

IMPORTING LIBRARIES TO INITIALIZE NEURAL NETWORK LAYER

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Convolution2D

from keras.layers import MaxPooling2D

from keras.layers import Dropout

```
from keras.layers import Flatten
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import numpy as np
import matplotlib.pyplot as plt #to view graph in colab itself
import IPython.display as display
from PIL import Image
import pathlib
!unzip '/content/drive/MyDrive/test_set.zip'
!unzip '/content/drive/MyDrive/training_set.zip'
x_train=train_datagen.flow_from_directory('/content/training_set',target_size=(64,
64),batch_size=200,
                         class_mode='categorical',color_mode="grayscale")
x_test=test_datagen.flow_from_directory('/content/test_set',target_size=(64,64),bat
ch_size=200,
                         class_mode='categorical',color_mode="grayscale")
a=len(x_train)
b=len(x_test)
print(a)
print(b)
```

Test the model.ipynb

```
!unzip '/content/drive/MyDrive/test_set.zip'
!unzip '/content/drive/MyDrive/training_set.zip'
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import numpy as np
import cv2
img = image.load_img('/content/test_set/H/107.png',target_size = (100,100))
from skimage.transform import resize
def detect(frame):
```

```
img=image.img_to_array(frame)
img = resize(img,(64,64,1))
img = np.expand_dims(img,axis=0)
pred=np.argmax(model.predict(img))
op=['A','B','C','D','E','F','G','H','I']
print("THE PREDICTED LETTER IS ",op[pred])
import model
model=load_model('/content/drive/MyDrive/test_dataset/H/107.png')
img=image.load_img('/content/drive/MyDrive/test_dataset/H/107.png')
detect(img)
img = image.load_img('/content/test_set/A/110.png')
pred=detect(img)
```

TEST THE MODEL

```
[ ] from tensorflow.keras.models import load_model
    from tensorflow.keras.preprocessing import image
   import numpy as np
   import cv2
[ ] from skimage.transform import resize
    def detect(frame):
      img=image.img_to_array(frame)
       img = resize(img,(64,64,1))
       img = np.expand_dims(img,axis=0)
      pred=np.argmax(model.predict(img))
      op=['A','B','C','D','E','F','G','H','I']
     print("THE PREDICTED LETTER IS ",op[pred])
[ ] img=image.load_img("/content/test_set/E/107.png")
   detect(img)
   1/1 [-----] - 0s 24ms/step
    THE PREDICTED LETTER IS E
[ ] img = image.load_img('/content/test_set/H/110.png')
  pred=detect(img)
   1/1 [-----] - 0s 26ms/step
   THE PREDICTED LETTER IS H
[ ] img=image.load_img('/content/test_set/D/111.png')
   detect(img)
   1/1 [-----] - 0s 180ms/step
    THE PREDICTED LETTER IS D
```

Open.cv

```
import cv2
import numpy as np
import matplotlib.pyplot as plt
# **Image processing**
# Create a image
img1 = np.zeros((400,600,3),np.uint8)
plt.imshow(img1)
# Draw a circle
circle = cv2.circle(img1, (300,200), 50, (255,0,0), -1) # (0,0,0)--->(R,G,B)
plt.imshow(img1)
# Drawing rectangle
rectangle = cv2.rectangle(img1,(200,100),(400,300),(0,255,0),6)
plt.imshow(img1)
line1 = cv2.line(img1,(200,100),(400,300),(0,0,255),4)
line2 = cv2.line(img1,(200,300),(400,100),(0,0,255),4)
plt.imshow(img1)
circle = cv2.circle(img1, (300,200), 50, (255,255,0), -1) # (0,0,0)--->(R,G,B)
plt.imshow(img1)
# Text on image
text = cv2.putText(img1, 'openCV', (200,50), cv2.FONT_HERSHEY_SIMPLEX,
2, (255,255,255),5)
plt.imshow(img1)
```

```
# Reading the image
img = cv2.imread('/content/boy.png',1)
plt.imshow(img)
# Convert BGR to RGB
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img_rgb)
# Convert BGR to Gray
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
plt.imshow(img_gray)
# Finding shape
img_rgb.shape
img_gray.shape
# Resize the image
resize = cv2.resize(img_rgb,(500,1000))
print(resize.shape)
plt.imshow(resize)
# Image crop
crop = resize[130:370,150:300]
plt.imshow(crop)
# Edge Detection
edge = cv2.Canny(img_rgb,100,200)
plt.imshow(edge)
```

Blur image

r = resize[130:370,150:300]blur = cv2.GaussianBlur(r,(13,13),cv2.BORDER_DEFAULT) plt.imshow(resize) plt.imshow(blur)

Output:

<matplotlib.image.AxesImage at 0x7f5aa1affd10>

<matplotlib.image.AxesImage at 0x7f5aa1984bd0>

<matplotlib.image.AxesImage at 0x7f5aa17247d0>

<matplotlib.image.AxesImage at 0x7f5aa1690c10>

<matplotlib.image.AxesImage at 0x7f5aa160a050>

(1000, 500, 3) <matplotlib.image.AxesImage at 0x7f5aa157d8d0>

<matplotlib.image.AxesImage at 0x7f5aa1563350>

<matplotlib.image.AxesImage at 0x7f5aa14bba90>

Index.html

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0, shrinkto-fit=no">

<title>SmartBridge_WebApp_VideoTemplate</title>

link

rel="stylesheet"

href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css">

link

rel="stylesheet"

href="https://use.fontawesome.com/releases/v5.12.0/css/all.css">

<link rel="stylesheet" href="assets/css/Banner-Heading-Image.css">

<link rel="stylesheet" href="assets/css/Navbar-Centered-Brand.css">

```
<link rel="stylesheet" href="assets/css/styles.css">
</head>
<body style="background: rgb(39,43,48);">
   <nav class="navbar navbar-light navbar-expand-md py-3" style="background:</pre>
#212529:">
    <div class="container">
                 <div></div><a class="navbar-brand d-flex align-items-center"
href="#"><span
               class="bs-icon-sm bs-icon-rounded bs-icon-primary d-flex justify-
content-center align-items-center me-2 bs-icon"><i
                            class="fas fa-flask"></i></span><span style="color:
rgb(255,255,255);">Real-Time Communication
            System Powered By AI For Specially Abled</span></a>
       <div></div>
     </div>
  </nav>
  <section>
     <div class="d-flex flex-column justify-content-center align-items-center">
         <div class="d-flex flex-column justify-content-center align-items-center"</pre>
id="div-video-feed"
                    style="width: 640px;height: 480px;margin: 10px;min-height:
480px;min-width: 640px;border-radius: 10px;border: 4px dashed rgb(255,255,255)
;">
              <img src="{{ url for('video feed') }}" style="width: 100%;height:</pre>
100%;color: rgb(255,255,255);text-align: center;font-size: 20px;"
            alt="Camera Access Not Provided!">
       </div>
     </div>
        <div class="d-flex flex-column justify-content-center align-items-center"</pre>
style="margin-bottom: 10px;"><button
```

```
class="btn btn-info" type="button" data-bs-target="#modal-1" data-bs-
toggle="modal">Quick Reference
         -<strong> ASL Alphabets</strong></button></div>
  </section>
  <section>
     <div class="container">
       <div class="accordion text-white" role="tablist" id="accordion-1">
          <div class="accordion-item" style="background: rgb(33,37,41);">
              <h2 class="accordion-header" role="tab"><button class="accordion-
button" data-bs-toggle="collapse"
                 data-bs-target="#accordion-1 .item-1" aria-expanded="true"
                 aria-controls="accordion-1.item-1"
                                         style="background: rgb(39,43,48);color:
rgb(255,255,255);">About The Project</button></h2>
             <div class="accordion-collapse collapse show item-1" role="tabpanel"</pre>
data-bs-parent="#accordion-1">
              <div class="accordion-body">
                   Artificial Intelligence has made it possible to
handle our daily activities in new and simpler ways. With the ability to automate
tasks that normally require human
                        intelligence, such as speech and voice recognition, visual
perception, predictive text
                     functionality, decision-making, and a variety of other tasks, AI
can assist people with
                         disabilities by significantly improving their ability to get
around and participate in
                          daily activities. <br > Currently, Sign Recognition is
available <strong>only for
                       alphabets A-I</strong> and not for J-Z, since J-Z alphabets
also require Gesture
                    Recognition for them to be able to be predicted correctly to a
```

```
certain degree of
                  accuracy.
             </div>
           </div>
         </div>
         <div class="accordion-item" style="background: rgb(33,37,41);">
             <h2 class="accordion-header" role="tab"><button class="accordion-
button collapsed"
                 data-bs-toggle="collapse" data-bs-target="#accordion-1 .item-2"
aria-expanded="false"
                aria-controls="accordion-1.item-2"
                                       style="background: rgb(39,43,48);color:
rgb(231,241,255);">Developed By</button></h2>
            <div class="accordion-collapse collapse item-2" role="tabpanel" data-</pre>
bs-parent="#accordion-1">
             <div class="accordion-body">
                               Students at "SRI BHARATHI
ENGINEERING COLLEGE FOR WOMEN"
                  Program. <br/>
<br/>
br><1. <strong>HELAN</strong><br/>
<br/>
2.
                     <strong>NIROSHIKA</strong> <br>>3. <strong>RANJANI
</strong><br>4. <strong>ROOPINA</strong>
                </div>
           </div>
         </div>
       </div>
    </div>
  </section>
  <div class="modal fade" role="dialog" tabindex="-1" id="modal-1">
    <div class="modal-dialog" role="document">
       <div class="modal-content">
```

```
<div class="modal-header">
                          <h4 class="modal-title">American Sign Language -
Alphabets</h4><button type="button"
                               class="btn-close" data-bs-dismiss="modal" aria-
label="Close"></button>
         </div>
                       <div class="modal-body"><img src="{{ url_for('static',</pre>
filename='img/ASL_Alphabets') }}" width="100%"></div>
                  <div class="modal-footer"><button class="btn btn-secondary"
type="button"
             data-bs-dismiss="modal">Close</button></div>
       </div>
    </div>
  </div>
                                                                        <script
src="https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/js/bootstrap.bundle.min.js">
</script>
</body>
</html>
```


Banner-Heading-Image.css

```
.fit-cover {
  object-fit: cover;
}
```

Navbar-Centered-Brand.css

```
.bs-icon {
   --bs-icon-size: .75rem;
   display: flex;
   flex-shrink: 0;
   justify-content: center;
```

```
from flask import Flask, Response, render_template
from camera import Video
app = Flask(__name__)
@app.route('/')
def index():
  return render_template('index.html')
def gen(camera):
  while True:
    frame = camera.get_frame()
    yield(b'--frame\r\n'
       b'Content-Type: image/jpeg\r\n\r\n' + frame +
       b'\r\n\r\n'
@app.route('/video_feed')
def video_feed():
  video = Video()
  return Response(gen(video), mimetype='multipart/x-mixed-replace; boundary =
frame')
if __name__ == '__main__':
  app.run()
```

app.py

<u>camera.py</u>

```
import cv2
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
```

```
class Video(object):
  def __init__(self):
    self.video = cv2.VideoCapture(0)
    self.roi_start = (50, 150)
    self.roi\_end = (250, 350)
    self.model = load_model('asl_model.h5') # Execute Local Trained Model
     # self.model = load_model('IBM_Communication_Model.h5') # Execute IBM
Trained Model
    self.index=['A','B','C','D','E','F','G','H','I']
    self.y = None
  def del (self):
    self.video.release()
  def get_frame(self):
    ret,frame = self.video.read()
    frame = cv2.resize(frame, (640, 480))
    copy = frame.copy()
    copy = copy[150:150+200,50:50+200]
    # Prediction Start
    cv2.imwrite('image.jpg',copy)
    copy_img = image.load_img('image.jpg', target_size=(64,64))
    x = image.img_to_array(copy_img)
    x = np.expand_dims(x, axis=0)
```

flask1.py

```
from flask import Flask, render_template
app = Flask(__name__, template_folder='Templates', static_folder='static')
@app.route('/')
def index():
    return render_template('index.html')
if __name__ =='__main__':
    a pp.run(debug = True)
```

Output:

Cuick Reference - ASI, Alphabets

About The Project

Artificial Intelligence has made it possible to handle our daily activities in new and simpler ways. With the ability to automate tasks that normally require human intelligence, such as speech and voice recognition, visual perception, predictive text functionality, decision-making, and a variety of other tasks, Al can assist people with disabilities by significantly improving their ability to get around and participate in daily activities.

Currently, Sign Recognition is available **entry for alphabets A-4** and not for J-Z, since J-Z alphabets also require Gesture Recognition for them to be able to be predicted correctly to a certain degree of accuracy.

Developed By

Real-Time Communication System Powered By AI For Specially Abled

Quick Reference - ASL Alphabets

About The Project

Artificial Intelligence has made it possible to handle our daily activities in new and simpler ways. With the ability to automate tasks that normally require human intelligence, such as speech and voice recognition, visual perception, predictive text functionality, decision-making, and a variety of other tasks, AI can assist people with disabilities by significantly improving their ability to get around and participate in daily activities.

Currently, Sign Recognition is available only for alphabets A-I and not for J-Z, since J-Z alphabets also require Gesture Recognition for them to be able to be predicted correctly to a certain degree of accuracy.

Developed By

GitHub & Project Demo Link

Github

https://github.com/IBM-EPBL/IBM-Project-6465-1658829715

Project Demo Link

http://sc.com.ly/show/e3e6cb46-3072-4f3f-b032-c4fee26034fe