Úvod do kvantové mechaniky: Domácí úkoly z přednášek

Michal Grňo

30. srpna 2020

1 Projekce spinu do obecného směru

1.1 Zadání

Nechť projekce spinu do osy z je 1/2. S jakou pravděpodobností naměříme projekci spinu $\pm 1/2$ do obecného směru?

1.2 Řešení

Zavedeme si jednotkový vektor \vec{n} parametrizovaný sférickými souřadnicemi:

$$\vec{n} = \begin{pmatrix} \sin \vartheta \cos \varphi \\ \sin \vartheta \sin \varphi \\ \cos \vartheta \end{pmatrix}$$

Zavedeme si operátor $\hat{S}_{\vec{n}} = \vec{n} \cdot \hat{\vec{S}}$, kde $\hat{\vec{S}}$ reprezentujeme Pauliho maticemi:

$$\hat{\vec{S}} = \frac{1}{2} \begin{pmatrix} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix} \\ \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \end{pmatrix}$$

Operátor $\hat{S}_{\vec{n}}$ nám potom vyjde:

$$\hat{S}_{\vec{n}} = \frac{1}{2} \begin{pmatrix} \cos \vartheta & \sin \vartheta \ e^{-i\varphi} \\ \sin \vartheta \ e^{i\varphi} & -\cos \vartheta \end{pmatrix}$$

Víme, že vlastní čísla $\hat{S}_{\vec{n}}$ jsou $\pm 1/2$, přejdeme tedy rovnou k nalezení vlastních vektorů:

$$\ker(\hat{S}_{\vec{n}} - 1/2 \,\hat{I}) = \ker\begin{pmatrix} \cos \vartheta - 1 & \sin \vartheta \, e^{-i\varphi} \\ \sin \vartheta \, e^{i\varphi} & -\cos \vartheta - 1 \end{pmatrix} = \operatorname{span} \left\{ \begin{pmatrix} e^{-i\varphi}(\cot \vartheta + \csc \vartheta) \\ 1 \end{pmatrix} \right\}$$

$$\ker(\hat{S}_{\vec{n}} + 1/2 \,\hat{I}) = \ker\begin{pmatrix} \cos \vartheta + 1 & \sin \vartheta \, e^{-i\varphi} \\ \sin \vartheta \, e^{i\varphi} & -\cos \vartheta + 1 \end{pmatrix} = \operatorname{span} \left\{ \begin{pmatrix} e^{-i\varphi}(\cot \vartheta - \csc \vartheta) \\ 1 \end{pmatrix} \right\}$$

Normalizované vlastní stavy jsou tedy:

$$\left|\pm\vec{n}\right\rangle = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1\pm\cos\vartheta}} \left(\cos\vartheta \pm 1\right)$$

Pravděpodobnost naměření $|\pm \vec{n}\rangle$, je-li stav $|+z\rangle$, je:

$$P = |\langle +z|\pm \vec{n}\rangle|^2 = \left| \begin{pmatrix} 1\\0 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1 \pm \cos \vartheta}} \left(\frac{\cos \vartheta \pm 1}{\mathrm{e}^{\mathrm{i}\varphi} \sin \vartheta} \right) \right|^2 = \left| \frac{1}{\sqrt{2}} \frac{\cos \vartheta \pm 1}{\sqrt{1 \pm \cos \vartheta}} \right|^2 = \frac{1}{2} \pm \frac{1}{2} \cos \theta.$$

2 Rabiho metoda

2.1 Zadání

Mějme částici se spinem ½ v poli s intenzitou

$$\vec{B} = \begin{pmatrix} B_1 \cos \omega t \\ B_1 \sin \omega t \\ B_0 \end{pmatrix},$$

kde $B_1 \ll B_0$, $\omega \approx -KB_0$.

Stav spinu $|\psi(t)\rangle$ začíná v čase t=0 jako $|\pm z\rangle$. S jakou pravděpodobností bude v obecném čase t ve stavu $|-z\rangle$?

2.2 Řešení

Hamiltonián systému je

$$\hat{H} = -K \; \hat{\vec{S}} \cdot \vec{B},$$

kde $\hat{\vec{S}}$ reprezentujeme Pauliho maticemi. Využijeme rozklad $\hat{\vec{S}}$ na žebříkové operátory \hat{S}_{\pm} :

$$\hat{S}_{\pm} = \hat{S}_{x} \pm i\hat{S}_{y} = \frac{1}{2} \begin{pmatrix} 0 & 1 \pm 1 \\ 1 \mp 1 & 0 \end{pmatrix} = \begin{cases} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \end{cases} = |\pm\rangle \langle \mp|.$$

Navíc víme, že

$$\hat{S}_{z} = \frac{1}{2}(|+\rangle\langle +|-|-\rangle\langle -|).$$

Podobně rozložíme \vec{B} :

$$B_{\pm} = B_{\rm x} \pm i B_{\rm y} = B_1(\cos \omega t \pm i \sin \omega t) = B_1 e^{\pm i \omega t}.$$

Nyní můžeme vyjádřit hamiltonián ve tvaru

$$\hat{H} = -K \, \hat{\vec{S}} \cdot \vec{B} = -K \, \left(\frac{1}{2} (\hat{S}_{+} B_{-} + \hat{S}_{-} B_{+}) + \hat{S}_{z} B_{z} \right) = -\frac{K}{2} \left(B_{1} e^{-i\omega t} |+\rangle \langle -| + B_{1} e^{+i\omega t} |-\rangle \langle +| + |+\rangle \langle +| - |-\rangle \langle -| \right),$$

tedy v maticové formě

$$\langle \pm | \hat{H} | \pm \rangle = -\frac{K}{2} \begin{pmatrix} B_0 & B_1 e^{-i\omega t} \\ B_1 e^{+i\omega t} & -B_0 \end{pmatrix}.$$

Nyní se můžeme pustit do řešení samotné Schrödingerovy rovnice.

$$-i\frac{d}{dt} |\psi\rangle = \hat{H}(t) |\psi\rangle$$

$$-i\frac{d}{dt} \begin{pmatrix} c_{+}(t) \\ c_{-}(t) \end{pmatrix} = -\frac{K}{2} \begin{pmatrix} B_{0} & B_{1}e^{-i\omega t} \\ B_{1}e^{+i\omega t} & -B_{0} \end{pmatrix} \begin{pmatrix} c_{+}(t) \\ c_{-}(t) \end{pmatrix}$$

$$-i\dot{c}_{+} = -\frac{KB_{0}}{2} c_{+} - \frac{KB_{1}}{2} e^{-i\omega t} c_{-}$$

$$-i\dot{c}_{-} = +\frac{KB_{0}}{2} c_{-} - \frac{KB_{1}}{2} e^{+i\omega t} c_{+}$$
(2)

Z rovnice (1):
$$c_{-} = \frac{2}{KB_{1}} e^{+i\omega t} \left(i\dot{c}_{+} - \frac{KB_{0}}{2} c_{+} \right) = e^{+i\omega t} \left(i\frac{2}{KB_{1}}\dot{c}_{+} - \frac{B_{0}}{B_{1}} c_{+} \right)$$

Z rovnice (2):
$$-i\frac{d}{dt} e^{+i\omega t} \left(i \frac{2}{KB_1} \dot{c}_+ - \frac{B_0}{B_1} c_+ \right) = \frac{KB_0}{2} e^{+i\omega t} \left(i \frac{2}{KB_1} \dot{c}_+ - \frac{B_0}{B_1} c_+ \right) - \frac{KB_1}{2} e^{+i\omega t} c_+$$

$$\downarrow \downarrow$$

$$0 = \ddot{c}_+ + i\omega \dot{c}_+ + \underbrace{\left(\frac{B_0^2 K^2}{4} - \frac{B_0 K \omega}{2} - \frac{B_1^2 K^2}{4} \right) c_+}$$

Máme tedy rovnici typu

$$\lambda^{2} + i\omega\lambda + \kappa = 0$$

$$\lambda = \frac{-i\omega \pm \sqrt{(i\omega)^{2} - 4\kappa}}{2} = -\frac{i}{2}\omega \pm \frac{i}{2}\sqrt{\omega^{2} + 4\kappa}$$

$$f = C_{1} \exp i(-\frac{\omega}{2} + \frac{1}{2}\sqrt{\omega^{2} + 4\kappa})t + C_{2} \exp i(-\frac{\omega}{2} - \frac{1}{2}\sqrt{\omega^{2} + 4\kappa})t$$

 $f'' + i\omega f' + \kappa f = 0$

Odmocninu můžeme ještě dále zjednodušit zanedbáním členu s B_1^2 , který je výrazně menší než ostatní členy (viz zadání).

$$\sqrt{\omega^2 + 4\kappa} = \sqrt{\omega^2 + B_0^2 K^2 - 2B_0 K\omega - B_1^2 K^2} \approx \sqrt{\omega^2 - 2B_0 K\omega + B_0^2 K^2} = B_0 K - \omega$$

Pro c_+ tedy dostáváme:

$$c_{+}(t) = e^{-i\omega t/2} \left(C_{1} e^{+it \frac{B_{0}K - \omega}{2}} + C_{2} e^{-it \frac{B_{0}K - \omega}{2}} \right)$$

$$c_{+}(t) = e^{-i\omega t/2} \left(D_{1} \cos \frac{B_{0}K - \omega}{2} t + D_{2} \sin \frac{B_{0}K - \omega}{2} t \right)$$

Dosazením do (2) získáme:

$$c_{-}(t) = e^{+i\omega t} e^{-\omega t/2} \left(i \frac{2}{KB_1} \frac{d}{dt} \left(D_1 \cos \frac{B_0 K - \omega}{2} t + D_2 \sin \frac{B_0 K - \omega}{2} t \right) - \frac{B_0}{B_1} \left(D_1 \cos \frac{B_0 K - \omega}{2} t + D_2 \sin \frac{B_0 K - \omega}{2} t \right) \right)$$

Konstanty D_n určíme z počáteční podmínky $|\psi(t=0)\rangle = |\pm z\rangle$ a z požadavku, aby byl stav $|\psi(t)\rangle$ normalizovaný. Pro přehlednost si zavedeme označení $\psi_{\pm}(0) \equiv |\pm z\rangle$.

$$1 = \langle \pm z | \psi_{\pm}(0) \rangle = \begin{cases} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{cases} \cdot \begin{pmatrix} D_1 \\ D_3 \end{pmatrix}$$

Tedy pro ψ_+ máme $D_1=1,\ D_2=0,$ pro ψ_- zase $D_3=1,\ D_4=0.$ Zbylé konstanty dopočítáme dosazením. Celkově platí:

$$|\psi_{+}(t)\rangle = \begin{pmatrix} e^{-i\omega t/2} & \cos\frac{B_0 K - \omega}{2} t \\ i e^{+i\omega t/2} & \sin\frac{B_0 K - \omega}{2} t \end{pmatrix}, \quad |\psi_{-}(t)\rangle = \begin{pmatrix} i e^{-i\omega t/2} & \sin\frac{B_0 K - \omega}{2} t \\ e^{+i\omega t/2} & \cos\frac{B_0 K - \omega}{2} t \end{pmatrix}.$$

Pokud by nastal případ $\omega = -B_0 K$, máme:

$$\left|\psi_{+}(t)\right\rangle = \begin{pmatrix} \mathrm{e}^{+\mathrm{i}KB_{0}t/2} & \cos B_{0}Kt \\ \mathrm{i}\,\mathrm{e}^{-\mathrm{i}KB_{0}t/2} & \sin B_{0}Kt \end{pmatrix}, \quad \left|\psi_{-}(t)\right\rangle = \begin{pmatrix} \mathrm{i}\,\mathrm{e}^{+\mathrm{i}KB_{0}t/2} & \sin B_{0}Kt \\ \mathrm{e}^{-\mathrm{i}KB_{0}t/2} & \cos B_{0}Kt \end{pmatrix}.$$

3 \mathcal{PT} -symetrický hamiltonián

3.1 Zadání

Máme zadány operátory

$$\hat{\Gamma} = \begin{pmatrix} K & -\mathrm{i}a \\ -\mathrm{i}a & -K \end{pmatrix}, \quad \hat{\mathcal{P}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

kde $K, a \in \mathbb{R}_+$. Ukažte, že

1.
$$\hat{\mathcal{P}}^2 = \mathbb{1}$$
. $\hat{\Gamma}^+ = \hat{\mathcal{P}} \hat{\Gamma} \hat{\mathcal{P}}$

2.
$$\hat{\Gamma} |\pm\rangle = \pm \Gamma |\pm\rangle$$
, $\Gamma = \sqrt{K^2 - a^2}$, tedy pro $a < K$ je neporušena \mathcal{PT} -symetrie.

3. pro
$$a > K$$
 platí $\langle \pm | \hat{\mathcal{P}} | \pm \rangle = 0$

Pro $\mathcal{PT}\text{-symetrick\'e}$ operátory platí upravená relace úplnosti

$$\mathbb{1} = \sum_{n} (-1)^n |n\rangle \langle n| \hat{\mathcal{P}}.$$

Ověřte její platnost pro $\hat{\Gamma}$ při a < K.

Definujeme operátor

$$\hat{\mathcal{C}} := \sum_{n} |n\rangle \langle n| \,\hat{\mathcal{P}},$$

ten komutuje s $\hat{\varGamma}$ i
 $\hat{\mathcal{P}}$ a tvoří základ skalárního součinu, pod kterým je
 $|n\rangle$ ortonormální systém:

$$(\psi, \phi)_{\mathcal{CPT}} := \langle \psi | \hat{\mathcal{P}} \hat{\mathcal{C}} | \phi \rangle.$$

Vypočtěte $\hat{\mathcal{C}}$ a pro a < K ověřte, že

1.
$$\hat{C}^2 = 1$$

2.
$$\hat{\mathcal{C}} |\pm\rangle = \pm |\pm\rangle$$

3.
$$\hat{\mathcal{C}} |+\rangle \langle +|\hat{\mathcal{P}} + \hat{\mathcal{C}} |-\rangle \langle -|\hat{\mathcal{P}} = \mathbb{1}$$

4.
$$\langle m | \hat{\mathcal{P}} \hat{\mathcal{C}} | n \rangle = \delta_{mn}$$

3.2 Řešení

$$\hat{\mathcal{P}}^{2} = \begin{pmatrix} 1 & \\ & -1 \end{pmatrix}^{2} = \begin{pmatrix} 1 & \\ & & 1 \end{pmatrix}$$

$$\hat{\mathcal{P}} \hat{\Gamma} \hat{\mathcal{P}} = \begin{pmatrix} 1 & \\ & -1 \end{pmatrix} \begin{pmatrix} K & -ia \\ -ia & -K \end{pmatrix} \begin{pmatrix} 1 & \\ & -1 \end{pmatrix} = \begin{pmatrix} K & ia \\ ia & -K \end{pmatrix} = \hat{\Gamma}^{+}$$

$$0 = |\hat{\Gamma} - \lambda \mathbb{1}| = \begin{vmatrix} K - \lambda & -ia \\ -ia & -K - \lambda \end{vmatrix} = -(K - \lambda)(K + \lambda) + a^{2} = \lambda^{2} - (K^{2} - a^{2})$$

$$\lambda = \pm \sqrt{K^{2} - a^{2}} \equiv \pm \Gamma$$

$$|\pm\rangle \propto \left(\sqrt{\left(\frac{K}{a}\right)^{2} - 1} \pm \frac{K}{a}\right)$$

$$\mp i$$

$$C_{\pm} = \left\| \left(\sqrt{\left(\frac{K}{a}\right)^{2} - 1} \pm \frac{K}{a}\right) \right\|^{2} = \left|\sqrt{\left(\frac{K}{a}\right)^{2} - 1} \pm \frac{K}{a}\right|^{2} - 1$$

Normalizovat vektory $|\pm\rangle$ by nám nepřineslo žádnou výhodu, zapamatujeme si tedy pouze, jakým faktorem chceme případný výsledek dělit. Přistoupíme k výpočtu $\langle \pm | \hat{\mathcal{P}} | \pm \rangle$:

$$\langle \pm | \hat{\mathcal{P}} | \pm \rangle \propto \left(\operatorname{conj} \sqrt{\left(\frac{K}{a} \right)^2 - 1} \pm \frac{K}{a} + \operatorname{i} \right) \begin{pmatrix} 1 \\ -1 \end{pmatrix} \left(\sqrt{\left(\frac{K}{a} \right)^2 - 1} \pm \frac{K}{a} \right) = \left| \sqrt{\left(\frac{K}{a} \right)^2 - 1} \pm \frac{K}{a} \right|^2 + 1$$

Pro a>K si můžeme a parametrizovat jako $a(t)=K\cosh t,\ t\in\mathbb{R}.$ Potom nám vyjde:

$$\langle \pm | \, \hat{\mathcal{P}} \, | \pm \rangle \propto \left| \sqrt{\frac{1}{\cosh^2 t} - 1} \, \pm \frac{1}{\cosh t} \right|^2 + 1 = \left| \sqrt{\frac{1 - \cosh^2 t}{\cosh^2 t}} \, \pm \frac{1}{\cosh t} \right|^2 + 1$$