Grace Terhljan, Soumya Menon

Mentor: Fernanda Rivera Omana

University of Waterloo, WiM Directed Reading Program

April 09, 2024

Overview

- Graph Theory Basics
 - Definitions and Examples
 - Vertex and Edge Colouring
- Ramsey Numbers
 - Ramsey Numbers
 - Existence of Ramsey Numbers
- 3 Anti-Ramsey Numbers/Rainbow Numbers

- A graph, G = (V, E) is a finite nonempty set of **vertices**, and a set called the **edges**, where each edge is a two element subset of the vertices.
- The set of all vertices is represented by V(G) and the set of edges by E(G)
- **Example:** Graph with vertex set $V = \{1, 2, 3, 4\}$ and edge set $E = \{12, 14, 13, 24\}$

- The **order** of a graph G is |V(G)|
- The **size** of a graph G is |E(G)|
- Example: This graph has order 4 and size 4

- The **neighbourhood** of a vertex v is the set of all vertices adjacent to it, denoted by $N_G(v)$
- The **degree** of a vertex v is the size of the neighbourhood of v, $d_G(v) = |N_G(v)|$
- Example: $N_G(4) = \{1, 2\}$ and $d_G(4) = 2$

• A **subgraph** of a graph G is a graph H whose vertex set is a subset of the vertex set of G, and the edge set is a subset of the edges adjacent to both vertices from V(H)

• Example:

Examples of Basic Graphs

- Paths of length n are denoted by P_n
- Cycles of size n are denoted by C_n
- Examples: C_4 and P_4

Examples of Basic Graphs

- **Diamonds** are of order 4 and size 5 and are produced by removing an edge from K_4
- **Stars** of size n are denoted by S_n
- Examples: S_5

Examples of Basic Graphs

• A **complete graph**, K_n , is a graph on n vertices where every pair of vertices is connected with an edge (so there are $\binom{n}{2}$ total edges)

• Example: K_5

Edge Colourings

• A **k-edge colouring** of a graph *G* is a function that assigns each edge in a graph, an integer (or *colour*) from 1 to *k*, where each number is used at least once

Ramsey Numbers

Definition

For two positive integers k and l, the **Ramsey Number** r(k, l) is defined as the smallest positive integer n such that if every edge of K_n is colored red or blue, then a monochromatic K_k or K_l is produced.

e.g.
$$r(3,3) = 6$$

K6 with a red K3

Existence of Ramsey Numbers

Theorem

For any two integers $k \ge 2$ and $l \ge 2$,

$$r(k, l) \le r(k, l-1) + r(k-1, l)$$

We prove this using induction on k + l, starting with the base case at k + l = 4. For the sake of time, we will look at the induction step.

Proof

Let n = r(k-1, l) + r(k, l-1).

Consider the complete graph K_n with an arbitrary red-blue colouring. Let $v \in V$. Then we can look at the red and blue neighbourhoods of v. Let A be the red neighbourhood of v and B be the blue neighbourhood of v.s

$$|A| + |B| = n - 1 = r(k - 1, l) + r(k, l - 1) - 1$$

 $\Rightarrow |A| \ge r(k - 1, l) \text{ or } |B| \ge r(k, l - 1)$

4 D > 4 D > 4 E > 4 E > E 9 Q C

Proof (cont.)

WLOG, let us consider the case of $|A| \ge r(k-1, I)$. Since $|A| \ge r(k-1, I)$, then A must contain a red K_{k-1} or blue K_I . If A contains a blue K_I then we have already satisfied the original claim of

$$r(k, l) \le r(k, l-1) + r(k-1, l)$$

If it contains a red K_{k-1} , then to create a red K_k for our original claim to be satisfied, we can just connect the K_{k-1} to v with the existing red edges to get a red K_k , satisfying our claim.

Examples of Ramsey Numbers

Theorem (Ramsey number r(3,3) [3])

$$r(3,3)=6$$

Theorem (Ramsey number r(3,4) [1])

$$r(3,4) = 9$$

Theorem (Ramsey Number r(5,5) [1])

43 [Geoffrey Exoo (1989)] $\leq r(5,5) \leq$ 48 [Angeltveit and McKay (2017)]

Definition

A graph G is **totally multicoloured (or rainbow)** with respect to a given colouring whenever each edge in G has a unique colour

Definition

Given a graph G of order p with no isolated vertices and $n \ge p$, the **rainbow number** of G, $rb_n(G)$, is the smallest positive integer k such that every k-colouring of K_n , with all k colours being used at least once, results in a totally multicoloured G

Definition

Given a graph G of order p with no isolated vertices and $n \ge p$, the **rainbow number** of G, $rb_n(G)$, is the smallest positive integer k such that every k-colouring of K_n , with all k colours being used at least once, results in a totally multicoloured G

Definition

The **anti-Ramsey number**, $ar_n(G)$, of G is the maximum number of colours that can be used to colour K_n without producing a totally multicoloured G.

It follows that $rb_n(G) = ar_n(G) + 1$

Theorem [3]

Theorem (Rainbow Number of K_3)

For $n \geq 3$, $rb_n(K_3) = n$

Proof Outline

There are two parts to the proof, we show $rb_n(K_3) \geq n$ and $rb_n(K_3) \leq n$

Proof of $rb_n(K_3) \ge n$

- To show $rb_n(K_3) \ge n$, we give an (n-1)-colouring of K_n that doesn't contain a rainbow K_3
- Label the vertices $\{v_1, v_2, \dots, v_n\}$, and then assign the edge $v_i v_j$ for i < j the colour i.
- For any three vertices of K_n , one vertex will have a smaller index than the other two. Then both of edges adjacent to that vertex will be the same colour, and we conclude there can be no rainbow K_3

Proof of $rb_n(K_3) \leq n$

- To show $rb_n(K_3) \le n$, we need to show that in any n-colouring of K_n we get a rainbow K_3 .
- For an n-edge colouring of K_n , let H be a rainbow subgraph of size n containing the smallest cycle C

Ck, 45K5n

Other Rainbow Numbers [3]

Theorem (Rainbow Number of P_3)

For
$$n \ge 3$$
, $rb_n(P_3) = 2$

Theorem (Rainbow Number of $2K_2$)

If
$$n = 4$$
, $rb_n(2K_2) = 4$, and if $n \ge 5$, $rb_n(2K_2) = 2$

Theorem (Rainbow Number of K_4)

For
$$n \geq 4$$
, $rb_n(K_4) = \lfloor \frac{n^2}{4} \rfloor + 2$

Theorem (Rainbow Number of $K_{1,3}$)

For
$$n \geq 4$$
, $rb_n(K_{1,3}) = \lfloor \frac{n}{2} \rfloor + 2$

Thank you!

References

- [1] G. Chartrand, P. Zhang. A First Course in Graph Theory. *Dover Publications*, 2012
- [2] J. A. Bondy, U. S. R. Murty. Graph Theory with Applications. *University of Waterloo*. 1976
- [3] G. Chartrand, P. Zhang. Chromatic Graph Theory. CRC Press, 2012
- [4] J. J. Montellano-Ballesteros. Totally Multicolored diamonds. *Universidad Nacional Autonóma de México*, 2008