Сопротивление среды

4 На горизонтальном столе лежат брусочки массой m и 2m связанные практически ненатянутой нитью. Коэффициент трения брусочков о стол μ и 2μ соответственно. Постройте график зависимости силы натяжения нити от горизонтальной силы F приложенной к первому брусочку. Найдите ускорение системы.

 Φ (Физтех 2002) Толстая однородная веревка массой m=0,3 кг соединена с бруском массой 6m легкой нитью, перекинутой через блок. Коэффициент трения скольжения между бруском и наклонной плоскостью $\mu=0,1$. Угол наклона плоскости к горизонту $\beta=30^\circ$. Найти ускорение бруска. Найти силу натяжения веревки в точке B, для которой $BD=\frac{1}{4}AD$. Массой блока и трением в его оси пренебречь.

В на длинном гладком горизонтальном столе лежит доска массы m_2 и длины L, на левом конце которой находится груз массы m_1 . Коэффициент трения между грузом и доской равен μ . Трение между доской и столом отсутствует. Груз m_1 связан с грузом M длинной невесомой нитью, перекинутой через невесомый блок (рис.). Система начинает двигаться из состояния покоя.

- (a) При каких значениях коэффициента трения μ груз m_1 и доска m_2 будут двигаться как единое целое (без проскальзывания)?
- (b) Найдите минимальное значение коэффициента трения μ_{\min} , при котором возможно движение без проскальзывания.
- (c) Пусть $\mu = \mu_{\min}/2$. В этом случае груз m_1 и доска m_2 будут двигаться с разными ускорениями. Через какое время t после начала движения груз соскользнёт с доски?
- Считайте, что $m_1 = M = 1$ кг, $m_2 = 2$ кг. Длину доски L примите равной 1 м. Известно, что длина груза много меньше L. Ускорение свободного падения примите равным $g = 10 \text{ м/c}^2$.

Небольшую шайбу толкнули вверх вдоль наклонной плоскости с углом наклона α с начальной скоростью v_0 .

- (a) Через какое время t_0 шайба вернётся в исходную точку при отсутствии трения?
- (b) При каких значениях коэффициента трения μ шайба возвратится назад?
- (c) Определите время t_{μ} возврата шайбы в исходную точку при наличии трения.
- (d) При каком значении коэффициента трения μ время t_{μ} будет равно t_0 времени возврата шайбы при отсутствии трения?

- **5.** Мальчик выстрелил из пневматического пистолета маленьким шариком, направив ствол пистолета вертикально вверх. Спустя время $\tau = 8.7$ с шарик вернулся в точку, откуда был произведён выстрел, имея в момент падения скорость $u_2 = 37$ м/с. Какова скорость u_1 , с которой шарик вылетел из ствола пистолета, если сила сопротивления воздуха пропорциональна скорости шарика? Ускорение свободного падения g = 10 м/с².
- На гладкой горизонтальной поверхности стола находится призма, упирающаяся в гладкую вертикальную стенку. Поверхность призмы наклонена под углом γ к горизонту. Велосипедное колесо массой m движется вверх по призме, катясь без проскальзывания и имея при прохождении точки A скорость v_0 . При движении колеса вверх призма давит на стенку с постоянной силой F. На какое максимальное расстояние удалится колесо от точки A при движении вверх?

- **7**. Однажды у Карлсона заглох моторчик, и он начал падать вертикально вниз с постоянной скоростью $v_1 = 6 \text{ м/c}$. После ремонта моторчик стал развивать постоянную силу тяги. Из-за этого при вертикальном подъёме Карлсон выходил на скорость $v_2 = 3 \text{ м/c}$. С какой постоянной скоростью он двигался в горизонтальном полёте? Считать силу сопротивления воздуха пропорциональной квадрату скорости. Карлсон, будучи в меру упитанным, одинаково обтекаем во всех направлениях.
- Шайба, брошенная вдоль наклонной плоскости, скользит по ней, двигаясь вверх, а затем возвращается к месту броска. График зависимости модуля скорости шайбы от времени приведён на рисунке. Найти угол наклона плоскости к горизонту.

Тележка и ящик с равными массами удерживаются упором A (см. рисунок) на поверхности горки, наклонённой под углом α (tg $\alpha=0,4$) к горизонту. Упор убирают, ящик и тележка приходят в движение. Во сколько раз при этом уменьшается сила давления тележки на ящик? Коэффициент трения скольжения между ящиком и поверхностью горки $\mu=0,2$. Соприкасающиеся поверхности стенок ящика и тележки считать гладкими и расположенными перпендикулярно поверхности горки.

