Lecture 3

Michael Brodskiy

Professor: M. Onabajo

September 11, 2024

- Frequency Dependence (Impedance)
 - Capacitor

$$Z_c = \frac{1}{j\omega C}$$

- Inductors

$$Z_L = j\omega L = SL$$

- Note, for capacitors impedance decreases with frequency, while it increases with frequency for inductors
- DC Coupling
 - Amplifier stages are directly connected together
 - High-frequency gain decreases ("rolls off") due to unwanted ("parasitic") capacitances and inductances
- AC Coupling
 - Input-coupling capacitors are sometimes referred to as DC-blocking Capacitors
 - Improved isolation between stages because the capacitors "block" DC current/voltages $(Z_c = 1/j\omega C \rightarrow \text{infinite impedance at } \omega = 0)$
 - $-\,$ Impacts the low-frequency response
- Impact of Parasitics (Stray Inductances/Capacitances)
 - Stray inductances/capacitances (often called "parasitics") result from non-ideal properties of materials:
 - \ast Integrated circuits, chip packages, printed circuit boards, cables, \ldots

- High-frequency gain reduction from:
 - * Capacitors in parallel with the signal path
 - * Inductors in series with the signal path
- Computer-based simulations are used for complex models and circuits
- Half-Power Bandwidth

$$-P_o = (AV_{\rm inRMS})^2/R_L \rightarrow P_o = P_{max}/2 \text{ when } A = A_{max}/\sqrt{2}$$

– By convention, the frequencies f_H and f_L at which $P_o = P_{max}/2$ are referred to as half-power frequencies or -3db frequencies

* Note:
$$20 \log (A_{max}/\sqrt{2}) = 20 \log (A_{max}) - 20 \log (\sqrt{2}) = A_{max(dB)} - 3.01 dB$$

- Amplifier bandwidth: $B = f_H f_L$
- Complex Gain, Frequency Response
 - Complex transfer function $T(j\omega)$

*
$$s = j\omega = j(2\pi f) \rightarrow T(s) = \frac{V_o(s)/V_i(s)}{s}$$

* Frequency-dependent gain and phase

*
$$|T| \angle \phi = R + jX$$
, where $|T| = (R^2 + X^2)^{1/2}$, $\phi = \tan^{-1}(\frac{X}{R})$

• First-Order Low-Pass Filter

$$-V_o(s) = V_i(s) \frac{Z_c}{Z_c + Z_r}$$
, where $Z_r = R$, $Z_c = \frac{1}{sC} = \frac{1}{j\omega C}$

$$-T(j\omega) = \frac{V_o(j\omega)}{V_i(j\omega)} = \frac{1/(j\omega C)}{(1/j\omega C) + R} = \frac{1}{1 + j\omega RC}$$

- Let
$$\omega_o = (1/RC) = (1/\tau)$$
 and $K = 1$

* $\tau=RC$ is the only time constant of this circuit with a single pole formed by the resistor and capacitor

$$* T(j\omega) = \frac{K}{[1 + j\frac{\omega}{\omega_o}]}$$

- Transfer Function Normalization (First-Order LPF Case)
 - Typically, $K \neq 1$
 - When normalizing a magnitude response, plot: $|T(j\omega)/K|$
 - * $20\log(|T(j\omega)/K|) = 20\log(1) = 0$ [dB] becomes max gain
 - Low-pass filter characteristics:

* For
$$\omega \ll \omega_o$$
: $|T(j\omega)/K| \approx 1 \ (0[dB])$

* For
$$\omega >> \omega_o$$
: $|T(j\omega)/K| \approx \frac{\omega_o}{\omega} \rightarrow$ high-frequency roll-off

- * Slope is -20[dB]/decade (or -6[dB]/octave)
- Bode Plot of the Low-Pass Filter
 - Attenuates high-frequency signal components
 - "Corner frequency" \leftrightarrow -3[dB] frequency is the "cutoff frequency"
 - * Often labeled $f_c(\omega_c)$, f_{3dB} , (ω_{3dB}) , $f_o(\omega_o)$, or $f_B(\omega_B)$
 - * In the LPF case, the corner frequency is often called "bandwidth of the filter"
- First-Order High Pass Filter

$$T(j\omega) = \frac{1}{1 - j(\omega_o/\omega)}$$

- Where $\omega_o = 1/(RC) = (1/\tau)$, with $\tau = RC$ as the time constant
- In general:

$$T(j\omega) = \frac{K}{1 - j(\omega_o/\omega)}$$

- * As $\omega \to 0$, $T(j\omega \to)$ (low frequency rejection)
- * As $\omega \to \infty$, $T(j\omega \to K)$ (high frequency transmission)
- Bode Plot of the High-Pass Filter
 - Attenuates low-frequency components
 - "Corner frequency" \leftrightarrow -3[dB] frequency is the "cutoff frequency"
 - * Often labeled $f_c(\omega_c)$, f_{3dB} , (ω_{3dB})
 - * $f_{3dB} \neq bandwidth$
- Bandpass (Mid-Band) Filter
 - Attenuates signal components outside of bandwidth
 - Bandwidth: $B = f_{c(LP)} f_{c(HP)} = f_{\text{High3DB}} f_{\text{Low3dB}}$
- Ideal Operational Amplifiers (Op-Amps)
 - Infinite open-loop differential gain $A_{dOL} = V_o/(V_+ V_-)$
 - Infinite input impedance $(R_i = \infty, i_{in+} = i_{in-} = 0)$
 - Zero output impedance $(R_o = 0)$
 - Zero common-mode gain (CMRR= $A_{dOL}/A_{cm}=\infty$)
 - Infinite bandwidth (no high or low frequency gain roll-off)

• The Summing-Point Constraint

- Only applies when the op-amp is used in negative feedback, which is often the case
- Assuming the ideal op-amp (in particular: $A_{dOL}=\infty$), the feedback action forces $V_+-V_-=0$ (a virtual short-circuit between the terminals)
 - * No current flow into the input terminals