N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Synthèse d'images et modélisation géométrique Introduction à la synthèse et à OPENGL

Nicholas Journet

12 janvier 2011

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Plan

- ▶ Introduction
- ► Chaîne de synthèse
- ► Introduction à OpenGL

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Bibliographie

- ► Cours de Synthèse d'images et modélisation géométrique - G Thomas -Université de Bordeaux
- ► Introduction à OpenGL X Michelon Linuxorg Cours en ligne

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Synthèse

Synthèse d'image :

- ► Entrée : description géométrique d'une scène
- ▶ Sortie : une image de la scène la plus réaliste possible

Difficultés

- Modéliser la scène avec des primitives géométriques
- Comprendre les mécanismes de la vision, pour rendre l'image réaliste

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Applications

Cinéma, Marketing, jeux, Réalité virtuelle

- ► Domaine : Modélisation géométrique, rendu, animation...
- ► Contraintes : Réalisme et rapidité
- ▶ Programmes : 3DS max, Maya...

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Applications

Conception automobile, navale, architecturale

- ► Domaine : Modélisation géométrique
- Contraintes : Expressivité, détails et rapidité
- ▶ Programmes : Catia, autoCAD...

Logiciel Catia

Modélisation de Notre Dame de Paris

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Applications

Biomédical (imagerie + chirurgie assistée)

- ▶ Domaine : analyse, visualisation, mesure, modélisation, géométrie
- ► Contraintes : fiabilité, réalisme, rapidité.

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Chaîne de synthèse

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Modèle géométrique

- Primitives : sphères, cylindres, cubes
- Constructive Solid Geometry
- Surfaces à base de facettes polygonales (ou Maillages)
- ► Représentations paramétriques (Bézier, B-Splines, Nurbs)

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Primitives

- ► Sphere (Xo, Yo, Zo, R)
- ▶ Boite (Xo, Yo, Zo, W, L, H)
- Cône (Xo, Yo, Zo, R, r, H)

N. Journet

Introduction

Chaîne de synthèse

Introductio OpenGL

Constructive Solid Geometry

- Générer des formes complexes à l'aide de primitives.
- ▶ Dessiner un objet : rogner des parties, percer des trous,...
- ► Coller des pièces entre-elles
- Utilisé généralement dans la CAO.

N. Journet

Introduction

Chaîne de synthèse

Introduction

Constructive Solid Geometry

N. Journet

Introduction

Chaîne de synthèse

Introduction

Un train en CSG

N. Journet

Introductio

Chaîne de synthèse

Introduction OpenGL

Maillage

- Modélisation polygonale : le modèle est assimilé à un ensemble de polygones (liste de sommets et d'arêtes).
- La normale donne l'orientation de la facette (différencier l'extérieur et l'intérieur)
- ► Sans effet de lissage, l'objet apparaîtra anguleux si la définition en facettes est faible.
- C'est la technique majoritairement utilisée dans le jeu vidéo

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Maillage

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Maillage

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Modélisation par courbes

Principe:

- dessiner quelques choses de courbes (lisses et continues)
- édition locale : retouches ponctuelles, influence limitée

http://developer.valvesoftware.com

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Modélisation par courbes

Solution Générale

- courbes paramétriques polynomiales (par morceaux)
- définies par des points de contrôle (enveloppe convexe)
- ► Modèles :Bézier, B-Spline,Nurbs

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

OpenGL: Open Graphics Library

- ► API graphique
 - Couche entre le programmeur et le matériel (ou d'autres programmes)
- ► Environ 250 procédures et fonctions
 - Définition des objets
 - Opérations pour applications interactives

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Présentation OpenGL

- Développé par SGI au début des années 90
- SGI n'est plus propriétaire : license gratuite
- Evolution contrôlée (architecture review board)
 Microsoft (plus depuis 2003), Dell, IBM, Intel, Matrox,
 ATI,...
- Largement utilisé et maintenu
- ► Très bien documenté : www.opengl.org
- Facile à utiliser

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

OpenGL est utilisé pour

- Applications temps réel (3D Studio Max, Maya, ...)
- Environnements virtuels interactifs (ubuntu)
- ▶ Jeux videos (Quake, Warcraft 3, Medal of Honor, ...)

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Fonctionnement de OpenGL

Interprétation client / serveur

- 1. Le programme (client) invoque des commandes (Eg.activation des lumières, rendu de triangles, ...)
- 2. Les commandes sont interprétées et traitées par le serveur "GL"
- OpenGL ne fournit pas le moyen de construire des scènes complexes (utiliser des API plus haut-niveaux : Java3D, OpenInventor,...)
- ► Ne gère pas l'IHM (il faut utiliser la GLUT)

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Primitive géométrique d'OpenGL

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Rendu d'une primitive géométrique

- ▶ Dans un tampon d'images
- Primitives OpenGL
 - ▶ Un ensemble de sommets
 - Un sommet définit : un point, une extrémité d'un segment, le sommet d'un polygone

Rendu OpenGL:

- Données associées à un sommet
 - coordonnées
 - 2. couleur
 - 3. normale
 - 4. coordonnées de texture

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Modes de rendu

- 1. Fil de fer (Wireframe)
- 2. Plat (Flat Shading) : une seule couleur par polygone
- 3. Interpolé : les couleurs des sommets des polygones sont interpolées
- 4. plaquage de texture

N. Journet

Introductio

Chaîne de synthèse

Introduction OpenGL

Elimination des parties cachées

- ▶ A chaque fois qu'un fragment i est dessiné, le z_i (distance au point de vue) est comparé et peut-être stocké dans le tampon de profondeur (Z-buffer)
- Soit z_j la valeur présente dans le z-buffer
 - ▶ Si $z_j > z_i$ le fragment est dessiné
 - Sinon rien n'est fait

http://images.bit-tech.net

N. Journet

Introductio

Chaîne de synthèse

Introduction OpenGL

Modèles de couleurs avec OpenGL

- RGBA
 - Red, Green, Blue, Alpha
 - Un canal pour chaque couleur
 - ▶ 8 bits/canal = 16 million de couleurs
- Couleur indexée (Indexed Color) : un petit nombre de couleurs accédées grâce à un indice dans une table de couleurs

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Transparence avec OpenGL

- ▶ Utilisation d'un modèle RGBA, ma 4ème composante (alpha) spécifie la transparence
 - $\alpha = 0$; polygone complètement transparent
 - ightharpoonup lpha = 1; polygone opaque
- ▶ Deux objets de couleurs (C_s, C_f) sont composés au moment du rendu
 - $C = \alpha * C_s + (1 \alpha)C_f$
 - ► C_s est la couleur du nouveau fragment transparent
 - C_f est la couleur déjà présente dans la mémoire tampon

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Visualisation

Projection orthographique : Projection parallèle, le volume de vue est un cube

N. Journet

Introduction

Chaîne de synthèse

Introduction OpenGL

Visualisation

Projection perspective : Le volume de vue et de découpage est une pyramide

Position caméra

La caméra par défaut est toujours située à l'origine et pointe vers la direction des z négatifs