Motivation/Background

- Ubiquitous threat of antibiotic resistant bacteria
- Investigate effect of different cellular transformation rates on antibiotic resistant bacterial population growth

Diagram of cell with plasmids

Background

- Plasmids
- Fitness cost
- Transformation

Simulation Methods

- Combined approach of Kinetic Monte Carlo simulation and numerical modeling
- Gillespie algorithm
- Well-mixed population
- Carrying capacity
- Constant, Linear, Recycled α
- Symmetric division

Constant α 1.1 2.75 2.25 1.75 1.25 0.9 2.5 2 0.075 0.1275 0.18 Symmetric Division S_0 : 1e+03 R_0 : 1e+03 P_0 : 1e+04 K: 1e+04 Susceptible Resistant Plasmids 10 15 Time steps (minutes) Reactions Equations $S \to 2S$ $\frac{dS}{dt} = \mu_1 \left(1 - \frac{S+R}{K} \right) S - \alpha S$ $S \to R$ $R \to 2R$ $\frac{dR}{dt} = \mu_2 \left(1 - \frac{S+R}{K} \right) R + \alpha S - \delta R$ $R \to \varnothing$

Conclusions

- Point
- Point
- Point

Future Work

- Simulation on a lattice
- Adding antibiotics
- Asymmetric division

Acknowledgements/References

Thank you etc etc

 $\frac{dP}{dt} = -\alpha \left(\frac{P}{P_0}\right) S + \delta R(t)$

- Source 1
- Source 2