1	What is claimed is:
2	
3	1. A multiple section capillary for multiplexing a plurality of samples from a plurality of
4	spray devices, said capillary comprising:
5	a first section having a first channel and a sampling orifice, said first section to
6	receive ions from a source; and
7	a second section having a second axial channel and an outlet;
8	wherein said first section is coaxially and electrically connected to said second section,
9	and wherein said sampling orifice is moved to an optimum position for the sampling of ions from
10	a particular sprayer.
l 1	
12	2. A capillary according to claim 1, wherein said second section is greater in length than
13	said first section.
14	
15	3. A capillary according to claim 1, wherein said first section is comprised of a flexible
16	material such that said sampling orifice of said first section can move freely to multiple ion
17	producing means.
18	
19	4. A capillary according to claim 1, wherein said plurality of spray devices are selected from
20	the group consisting of: electrosprayers, nanosprayers, microsprayers and pneumatic sprayers.
21	

, 1	5. A capillary according to claim 1, wherein said first section is connected to said second
2	section via a union.
3	
4	6. A capillary according to claim 1, wherein said capillary connects an ion source region an
5	a mass analyzer region.
6	
7	7. An apparatus for multiplexing a plurality of samples from a plurality of sprayers, said
8	apparatus comprising:
9	a multiple section capillary having first and second sections;
10	a motor;
11	a connecting rod;
12	a sampling device having at least one aperture; and
13	an endcap electrode;
14	wherein said first section has at least one sampling orifice, wherein an exit end of said
15	first section is coaxially and electrically connected to said second section, wherein said sampling
16	device is mounted on said motor using said connecting rod, wherein said endcap electrode direc
17	heated drying gas toward said samples, and wherein said motor rotates said sampling device suc
18	that ions from each of said plurality of sprayers may be introduced into said sampling orifice
19	when said aperture and said sampling orifice are aligned with said sprayers.
20	

21

1	8.	An apparatus according to claim 7, wherein said first section is constructed from flexible
2	mater	ial.
3 .		
4	9.	An apparatus according to claim 7, wherein said sampling orifice leads directly into a
5	first v	acuum region.
6		
7	10.	An apparatus according to claim 7, wherein said sampling device is conical.
8		
9	11.	An apparatus according to claim 7, wherein said apparatus sequentially and repetitively
10	sampl	es said ions from said plurality of sprayers.
11		
12	12.	An apparatus according to claim 7, wherein an electric potential is established between
13	said e	ndcap electrode, said aperture and said plurality of sprayers to facilitate transportation of
14	ions i	nto said sampling device.
15		
16	13.	An apparatus according to claim 7, wherein said sampling device has a plurality of
17	apertı	ares and wherein the number of apertures in said endcap corresponds to the number of said
18	spray	ers being utilized.
19		
20	14.	An apparatus according to claim 7, wherein said rotation of said sampling device is
21	conti	nuous.

1	15.	An apparatus according to claim 7, wherein said rotation of said sampling device is
2	perio	dic such that more time is spent sampling said ions than is spent rotating said sampling
3	devic	e.
4		
5	16.	An apparatus according to claim 7, wherein movement of said sampling device is
6	contr	olled by an electronic controller.
7		
8	17.	An apparatus according to claim 7, wherein said plurality of sprayers are mounted
9	symn	netrically around an axis of said sampling device such that the positioning of said sampling
10	devic	e is substantially the same with respect to each of said plurality of sprayers.
11		
12	18.	An apparatus according to claim 7, wherein the shape of said first section of said multiple
13	capil	lary device substantially conforms to said aperture of said sampling device such that said
14	samp	ling device may rotate around said first section.
15		
16	19.	An apparatus according to claim 7, wherein said apparatus further comprises a feedback
17	devid	ee.
18		
19	20.	An apparatus according to claim 19, wherein said feedback device comprises at least one
20	LED	and at least one photodiode.
21		

1	21.	An apparatus according to claim 20, wherein said LEDs and said photodiodes are
2	positi	oned to detect alignment of said sampling orifice with said sprayers.
3		
4	22.	An apparatus according to claim 7, wherein said apparatus is used to introduce ions into
5	one o	r more mass analyzers for subsequent analysis.
6		
7	23.	An apparatus according to claim 22, wherein said mass analyzers are selected from the
8	group	consisting essentially of a time-of-flight (TOF) mass analyzer, quadrupole (Q) mass
9	analy	zer, Fourier transform ion cyclotron resonance (FTICR) mass analyzer, ion trap mass
10	analy	zer, magnetic (B) mass analyzer, electrostatic (E) mass analyzer, ion cyclotron resonance
11	(ICR)) mass analyzer, and quadrupole ion trap mass analyzer.
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		

1	24.	An apparatus for multiplexing a plurality of samples from a plurality of sprayers, said		
2	appar	atus comprising:		
3		a multiple section capillary having first and second sections;		
4		a motor;		
5	·	a connecting rod; and		
6		a sampling device having at least one aperture;		
7		wherein said first section has at least one sampling orifice, wherein an exit end of said		
8	first s	ection is coaxially and electrically connected to said second section, wherein said sampling		
9	devic	e is mounted on said motor using said connecting rod, and wherein said motor rotates said		
10	samp	sampling device such that ions from each of said plurality of sprayers may be introduced into		
11	said s	sampling orifice when said aperture and said sampling orifice are aligned with said sprayers.		
12				
13	25.	An apparatus according to claim 24, wherein said first section is constructed from flexible		
14	mate	rial.		
15				
16	26.	An apparatus according to claim 24, wherein said sampling orifice leads directly into a		
17	first	vacuum region.		
18				
19	27.	An apparatus according to claim 24, wherein said sampling device is conical.		
20				
21				

1	28.	An apparatus according to claim 24, wherein said apparatus sequentially and repetitively
2	samp	les said ions from said plurality of sprayers.
3		
4	29.	An apparatus according to claim 24, wherein said sampling device has a plurality of
5	apert	ures.
6		
7	30.	An apparatus according to claim 24, wherein said rotation of said sampling device is
8	conti	nuous.
9		
10	31.	An apparatus according to claim 24, wherein said rotation of said sampling device is
11	perio	dic such that more time is spent sampling said ions than is spent rotating said sampling
12	devi	ce.
13		
14	32.	An apparatus according to claim 24, wherein movement of said sampling device is
15	cont	rolled by an electronic controller.
16		
17	33.	An apparatus according to claim 24, wherein said plurality of sprayers are mounted
18	sym	metrically around an axis of said sampling device such that the positioning of said sampling
19	devi	ce is substantially the same with respect to each of said plurality of sprayers.
20		
21		

1	34.	An apparatus according to claim 24, wherein the shape of said first section of said
2	multip	ole capillary device substantially conforms to said aperture of said sampling device such
3	that s	aid sampling device may rotate around said first section.
4		
5	35.	An apparatus according to claim 24, wherein said apparatus further comprises a feedback
6	devic	e.
7		
8	36.	An apparatus according to claim 35, wherein said feedback device comprises at least one
9	LED	and at least one photodiode.
10		
11	37.	An apparatus according to claim 36, wherein said LEDs and said photodiodes are
12	positi	oned to detect alignment of said sampling orifice with said sprayers.
13		
14	38.	An apparatus according to claim 24, wherein said apparatus is used to introduce ions into
15	one o	r more mass analyzers for subsequent analysis.
16		
17	39.	An apparatus according to claim 38, wherein said mass analyzers are selected from the
18	grou	consisting essentially of a time-of-flight (TOF) mass analyzer, quadrupole (Q) mass
19	analy	zer, Fourier transform ion cyclotron resonance (FTICR) mass analyzer, ion trap mass
20	analy	zer, magnetic (B) mass analyzer, electrostatic (E) mass analyzer, ion cyclotron resonance
21	(ICR) mass analyzer, and quadrupole ion trap mass analyzer.

1	40.	An apparatus for multiplexing a plurality of samples from a plurality of sprayers, said
2	appara	atus comprising:
3		a multiple section capillary having first and second sections; and
4		a sampling device having at least one aperture;
5		wherein said first section has at least one sampling orifice, wherein said first section is
6 .	coaxia	ally and electrically connected to said second section, wherein said sampling device
7	receiv	es ions from each of said plurality of sprayers, and wherein said aperture is in line with
8	said s	ampling orifice at each of said plurality of sprayers.
9		
10	41.	An apparatus according to claim 40, wherein said apparatus further comprises a plurality
11	of sampling orifices, wherein all of said sampling orifices receive said ions and transport said	
12	ions to	o said second section.
13		
14	42.	An apparatus according to claim 40, wherein said sampling device is conical.
15		
16	43.	An apparatus according to claim 40, wherein said apparatus sequentially and repetitively
17	samp	les said ions from said plurality of sprayers.
18		
19	44.	An apparatus according to claim 40, wherein said plurality of sprayers are mounted
20	symn	netrically around an axis of said sampling device such that the positioning of said sampling
21	devic	e is substantially the same with respect to each of said plurality of sprayers.

1	45.	An apparatus according to claim 40, wherein the shape of said first section of said
2	multij	ple capillary device substantially conforms to said apertures of said sampling device.
3		
4	46.	An apparatus according to claim 40, wherein said apparatus further comprises a feedback
5	devic	e.
6		
7	47.	An apparatus according to claim 46, wherein said feedback device comprises at least one
8	LED	and at least one photodiode.
9		
10	48.	An apparatus according to claim 47, wherein said LEDs and said photodiodes are
11	posit	ioned to detect alignment of said sampling orifice with said sprayers.
12		
13	49.	An apparatus according to claim 40, wherein said apparatus is used to introduce ions into
14	one o	or more mass analyzers for subsequent analysis.
15		
16	50.	An apparatus according to claim 49, wherein said mass analyzers are selected from the
17	grou	p consisting essentially of a time-of-flight (TOF) mass analyzer, quadrupole (Q) mass
18	analy	yzer, Fourier transform ion cyclotron resonance (FTICR) mass analyzer, ion trap mass
19	anal	yzer, magnetic (B) mass analyzer, electrostatic (E) mass analyzer, ion cyclotron resonance
20	(ICR	2) mass analyzer, and quadrupole ion trap mass analyzer.
21		

1	51. An endcap electrode for use with a multiple section capillary for multiplexing a plurality
2	of samples from a plurality of sprayers, said endcap comprising:
3	a circular electrode having a central aperture; and
4	at least one slit extending radially from said central aperture for aligning with said
5	plurality of sprayers;
6	wherein said endcap is mounted over a sampling orifice of a capillary tube, and wherein
7	said endcap directs heated drying gas through said slits to dry droplets sprayed by said plurality
8	of sprayers.
9	
10	52. An endcap electrode according to claim 51, wherein an electric potential is applied
11	uniformly between said endcap, said sampling orifice, and each of said plurality of sprayers to
12	facilitate direction of ions into said sampling orifice.
13	
14	53. An endcap electrode according to claim 51, wherein said endcap electrode further
15	comprises a plurality of slits extending radially from said central aperture, and wherein each of
16	said slits is positioned adjacent to one of said plurality of sprayers.
17	
18	
19	
20	
21	

1	54.	An improved method for multiplexing a plurality of samples from a plurality of sprayers
2	into a	mass analyzer through a multiple section capillary device to independently optimize the
3	perfor	mance of each sprayer, said method comprising the steps of:
4		forming sample spray droplets from a plurality of sprayers;
5		desolvating said droplets in an electric field to form sample ions;
6		selecting said sample ions to be transported into said mass analyzer; and
7		transporting said sample ions into said mass analyzer through said multiple
8		section capillary device.
9		
10	55.	An improved method according to claim 54, wherein said plurality of sprayers include
11	ESI s _l	orayers.
12		
13	56.	An improved method according to claim 54, wherein said plurality of sprayers include
14	electro	osprayers and pneumatic sprayers.
15		
16	57.	An improved method according to claim 54, wherein an endcap electrode directs heated
17	drying	g gas onto said droplets to desolvate said droplets to form said sample ions.
18		
19.	58.	An improved method according to claim 54, wherein said sample ions are selected by the
20	positi	oning of said multiple section capillary device.

21

1	59.	An improved method according to claim 34, wherein at least one sampling device is use
2	to select said sample ions.	
3		
4	60.	An improved method according to claim 59, wherein said sampling devices are
5	cylindrical.	
6		
7	61.	An improved method according to claim 59, wherein said sampling device is planar to
8	select said sample ions from said plurality of sprayers in a planar arrangement.	
9		
0		
11		
12		