ECE380 Digital Logic

Number Representation and Arithmetic Circuits: Number Representation and Unsigned Addition

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 16-1

Positional representation

- First consider integers
 - Begin with positive only descriptions and expand to include negative numbers
 - Numbers that are positive only are unsigned and numbers that can also assume negative values are signed
- For the decimal system:
 - A number consists of digits having ten possible values (0-9)
 - Each digit represents a multiple of a power of 10 $(123)_{10}=1\times10^2+2\times10^1+3\times10^0$
- In general, an integer is represented by n decimal digits

$$D = d_{n-1}d_{n-2}...d_1d_0$$

Representing the value

$$V(D) = d_{n-1}x10^{n-1} + d_{n-2}x10^{n-2} + ... + d_1x10^1 + d_0x10^0$$

Electrical & Computer Engineering

Positional representation

- Because the digits have 10 possible values and each digit is weighted as a power of 10, we say that decimal numbers are base-10 or radix-10 numbers
- In digital systems we commonly use the binary, or base-2, number system in which digits can be 0 or 1
 - Each digit is called a bit
- The positional representation is $B=b_{n-1}b_{n-2}...b_1b_0$
- Representing a integer with the value

 $V(B) = b_{n-1}x2^{n-1} + b_{n-2}x2^{n-2} + ... + b_1x2^1 + b_0x2^0$

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 16-3

Positional representation

- The binary number 1101 represents the value
 V=1x2³ + 1x2² + 0x2¹ + 1x2⁰
 V=8+4+1=13
- So (1101)₂=(13)₁₀
- The range of numbers that can be represented by a binary number depends of the number of bits used
- In general, using n bits allows a representation of positive integers in the range 0 to $2^{n}-1$

Electrical & Computer Engineering

Decimal/Binary conversion

- A binary number can be converted to a decimal number directly by evaluating the expression
 V(B)=b_{n-1}x2ⁿ⁻¹ + b_{n-2}x2ⁿ⁻² + . . . + b₁x2¹ + b₀x2⁰
- using decimal arithmetic (by expansion)
- Converting from a decimal to a binary number can be preformed by successively dividing the decimal number by 2 as follows
 - Divide the decimal number (D) by 2 producing a quotient D/2 and a remainder. The remainder will be 0 or 1 (since we divide by 2) and will represent a single bit (the LSB) of the binary equivalent
 - Repeatedly divide the generated quotient by 2 until the quotient=0. For each divide, the remainder represents one of the binary digits (bits) of the binary equivalent

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 16-5

Decimal/Binary conversion

Convert $(857)_{10}$

Remainder $857 \div 2$ 4281 LSB $428 \div 2 =$ 214 0 $214 \div 2 = 107$ 0 $107 \div 2 =$ 531 $53 \div 2 =$ 26 $26 \div 2 =$ 13 0 $13 \div 2 = 6$ 1 $6 \div 2 =$ 3 0 $3 \div 2 = 1$ 1 $1 \div 2 =$ MSB

Result is $(1101011001)_2$

Electrical & Computer Engineering

Octal and hexadecimal numbers

 Positional notation can be used for any radix (base). If the radix is r, then the number

$$K=k_{n-1}k_{n-2}...k_1k_0$$

has the value

$$V(K) = \sum_{i=0}^{n-1} k_i \times r^i$$

- Numbers with radix-8 are called octal and numbers with radix-16 are called hexadecimal (or hex)
 - For octal, digit values range from 0 to 7
 - For hex, digital values range from 0-9 and A-F

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 16-7

Numbers in different systems

Decimal	Binary	Octal	Hex
0	0000	0	0
1	0001 1		1
2	0010	0010 2	
3	0011	0011 3	
4	0100	4	4
5	0101 5		5
6	0110 6		6
7	0111	7	7

Decimal	Binary	Octal	Hex
8	1000 10		8
9	1001 11		9
10	1010	1010 12	
11	1011	011 13	
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Electrical & Computer Engineering

Binary to hex or octal conversion

 Group binary digits into groups of four and assign each group a hexadecimal digit.

• Binary-to-octal:

• Hexadecimal-to-binary:

• Octal-to-binary:

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 16-9

Unsigned number addition

Additional of two 1-bit numbers gives four possible combinations

Electrical & Computer Engineering

Unsigned number addition

- Larger numbers have more bits involved
 - There is still the need to add each pair of bits
 - But, for each bit position i, the addition operation may include a carry-in from bit position i-1

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 16-1

Full adder circuit

C_i	Xi	y_i	C_{i+1}	s_{i+1}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$C_i$$
 C_i C_i

$$s_i = x_i \oplus y_i \oplus c_i$$

$$c_i \xrightarrow{X_i Y_i} 00 \quad 01 \quad 11 \quad 10 \\ 0 \quad 0 \quad 0 \quad 1 \quad 0 \\ 1 \quad 0 \quad 1 \quad 1 \quad 1$$

$$C_i = X_i Y_i + Y_i C_i + X_i C_i$$

Electrical & Computer Engineering

Ripple-carry adder

- In performing addition, we start from the least significant digit and add pairs of digits progressing to the most significant digit
- If a carry is produced in position i, it is added to operands (digits) in position i+1
- A chain of full adders, connected in sequence, can perform this operation
- Such a configuration is called a *ripple-carry* adder because of the way the carry signal
 'ripple' through from stage to stage

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 16-15

Ripple-carry adder

Electrical & Computer Engineering

Ripple-carry adder

- Each full adder introduces a certain delay before its s_i and c_{i+1} outputs are valid
 - The propagation delay through the full adder
- Let this delay be ∆t
- The carry out of the first stage c_1 arrives at the second stage Δt after the application of the x_0 and y_0 inputs
- The carry out of the second stage c_2 arrives at the third stage with a delay of $2\Delta t$, and so on
- The signal c_{n-1} is valid after $(n-1)\Delta t$, and the complete sum is available after a delay of $(n)\Delta t$
- The delay obviously depends on the size of the numbers (*i.e.* the number of bits)

Electrical & Computer Engineering