Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

50X1-HUM

Page Denied

AIR TECHNICAL INTELLIGENCE TRANSLATION

(Title Unclassified)
INTERIOR BALLISTICS

Ъу

M. B. Serevryakov

State Printing House of the Defense Industry

Moscow, 1949, 2nd Edition

672 Pages

(Part 1 of 10 Parts, Pages 1-82)

, AIR TECHNICAL INTELLIGENCE CENTER

The manual contains the theoretical principles of interior ballistics and the contemporary methods of solution of its main problems. The course includes investigations and studies accomplished in recent years in various branches of this science. Also, a short historical description is given of the development of interior ballistics. The latter emphasizes the leading part played by Russian scientists prior to the October revolution, and particularly after it.

Considerable attention is given to the practical aspects of a series of problems. Reference is made to a sixable quantity of test data, examples and problems helpful in mastering the method of basic ballistic calculations.

The demestic interior ballistics, comparably to all other related branches of artillery sciences, progressed and developed along outlines peculiar to themselves. Artillery sciences and techniques, among them interior ballistics, constantly expanded and developed during the years of Stalin's Five Year Plans. This created types of artillery systems which were markedly superfer, as respects quality, to these of foreign armies, as presen by the practice of the Great Escoland For (Gorld Uni II).

Artillery technology continued to develop after the Market and the statements.

Artillory technology continued to devolop after the second the despote on it are increased. These, the technology of the problem which interior balkistics has to ease with addition to the wind of the will be the second of the second o

publication of a new study would be adequate for the interchnology and which would further development of this

published in 1939. It contains, and chapters, which present solutions are sulting from the development of

The manual reflects an extension out in the Interior Ballistics Buduring the years of the Great Buduring the years of the Great Buduring to it.

Basically, the course was given investigations of our Soviet set the Interior Ballistics Department

Studies of foreign authors
of clarification of the history
relate mainly to studies on impa
and on some others conducted pa

The course is designated a of the engineering departments institutions of higher educate employees of design offices, active in processing, investigatillery weapons and ammunitate a wide circle of scientifications of institutions and ammunitations of the circle of scientifications are courses of the circle of scientifications and ammunitations are circle of scientifications of the circle of scientifications are circle of scientifications of the circle of scientifications are circle of scientifications of the circle of scient

interior ballistics, which meands of modern artillery rials and methods for the science.

es of newly written sections of problems in complex cases there technology.

thodical study, carried t of the Artillery Academy (World War II) and

including locturers of Artillery Academy.

and only for the purposes the combustion,

my and other

the libratories

types of

the be of use

students in

The course is composed of the introduction and three sections.

For the most part, the introduction is newly written. Special emphasis is placed on the relation of interior ballistics to the design of artillery types and ammunition. A new chapter entitled "From the History of the Bevelopment of Interior Ballistics" was written, stressing the leading part of Bussian scientists prior to and after the Catalay revolution.

The first smaller, entitled "Physical Principles of Interior Shillistics", publishes an account of the physical principles of Enterior ballistics and of the phenomena taking place during finding the start of Junior combustion to the end of the period of the proceed have by the first chapter, supplicing indigential to proceed have by the first chapter, supplicing indigential to proceed and their basic characteristics.

us ordented of a stiller three expressions

Cortal contains

on the basis of the physical principle of combustion, in accordance with the method of Professor N.E. Serebriakov.

Chapter VII, "Mumerical Methods of Solution," was kept without much change.

Chapter VIII, discussing empirical methods and tables, was considerably abbreviated, because the former lest their importance with the existence of precise tables composed on the basis of analytical formulas. At the same time, the correction tables of Professor V.E. Slukhotski were added.

In Chapter IX, "Tabular Methods for the Solution of Interior Ballistics Problems," the fundamentals for the compilation of the very re-written, and material was added on the new tables.

The idea of the method of relative variables and a second number of parameters, evolved during recent years by Danielles B.H. Chunev, Professor H.F. Brendev, Lecturer H.S. Committee

L.I. Sviridov, is introduced in the course for the firm and

The theory of similarity is so arranged that its property feeled inherently from formulas used as a basis for the state of ballistic tables.

Chapter X, "Ballistic Benigs of Boapens," is written, offering new methods for pulying this the theoretical substantiation and nor exists a self-stant deviloped by the methor, purpose of variants in exhaustation. In case or explanation of gas life by the potton of boards.

711

The third section, "Solution of Interior Ballistics Problems
in Cases," gives solutions of interior ballistics problems
for inin special cases of great interest in practical applications.
instance, Chapter XI includes:

The solution of problems for combination projectiles; which

The solution of problems for mortars, with consideration of all escape of gases through the clearance, and with reference led example of calculation.

acceleration, treated by Professor G.V. Oppokov.

The and last chapter clarifies peculiarities of ballistic

as a conical bore, and offers ideas on the design of

way, the course covers the greater part of the basic

Portion of the study was written by Professor M.E.

Bector of Technical Sciences, Active Member of the

tillery Sciences, Major-General of Artillery Engineering

but six pages of print were written by Professor

Boctor of Technical Sciences, Major-General of

Insering Services.

for criticism in reviewing the manual, and to

Ventuel for a review of the study and for a series of

rs also express gratitude to the junior scientific

C C

collaborator P.I. Lizorkin, who made a series of basic calculations and provided examples; and to the editor, Colonel-Engineer B.V. Smirenskii, for his great services in the preparation of the manual for printing.

M. Serebraikov

G. Oppobov

2) Motion or flight in the air of a projectile discharged from a weapon with a muzzle (maximum) velocity, and undergoing the effects of gravity and of air resistance until the moment of impact with the target.

In connection with those two periods of motion, ballistics, are divided into two basic sections: interior ballistics, and exterior ballistics. This is done on the basis of the characteristics of the phenomena and processes studied.

Exterior ballistics are a study of the flight of a projectile from the moment of its departure from the bore, or from the end of the period of after-effect, when it has its highest velocity, to the moment of impact with the target. By determining the principle of air resistance to the motion of the projectile, exterior ballistics permit determination of the angle to the herizon, and velocity, with which a projectile of a given caliber, weight and form should be fired in order for it to strike a target at a given distance, at a given angle of fall and with a given velocity, or to pass through a given point of space (firing at aerial targets).

Interior ballistics are a study of phenemena and processes taking place during the discharge, and, particularly, the motion of the projectile in the bore, the characteristics of its accollegation, and the principles of the positive gains' pressure gaught (see figs. 1 and 2). The discharge itself represents a precise of the very rapid conversion of the initial chanical energy of the proder into thermal, and them into a kinetic energy of minimum of the projectile - charge - barrel - gas carriage spints

21

projectile velocity in a given meason, for given tharge conditions in particular to determine the maximum prosesses g_{ij} and the smalle velocity v_{ij} of the projection

The second fundamental applican of interior lightestes is the problem of the hallistic stages of weapons. The problem countries of a determination of the making factors of the hardel of a gen and of the leading countries (hotget of charge, which and form of profler) which will give a projectile of a gings without and weight with a given musule subjectly, at a corresponding maximum generators.

The first problem is improporated in this mare gumpral task, as the final step.

In addition to these frameworks problems, interior ballisties server to solve a considerately matter of related problems of an emperimental and theoretical matters, which paralle for measure definition of our consept of the discharge photograps.

The scope of interior militaties covers the disputional and consigning of conditions and facilities controlling the characteristics of gas pressure and projectile velocity variations in the book the distribution of general relies controlling the discharge prodisplicated processes because in this phenomenia, the treatment of the controls arising in the investigating facilities, the treatment of bysecial equipment for investigating facilities, the treatment of bysecial equipment for investigating facilities controls for the investigating facilities occurred the investigation of the projection of vays leading to the furnish displacent of interior billiotics.

2

With respect to its seeps, interior ballistics offers an

TIT

unusually wide and variable field. In the process of investigating its numerous interdependent processes and phenomena, one will have to deal with a large number of parameters, variable values and characteristics of weapons, projectile and charge.

Therefore, in a determination of relations between various values characterizing a discharge, as well as in solving problems of interior ballistics, it is necessary to approach the phenomenon initially through its basic characteristics, to simplify it and give a schematic solution for some not quite precise assumptions; then to proceed to a clarification of the effects of secondary factors; and having found these, to include them into the elementary schematic functions, thus expanding the latter and making them more complex. Of course, this type of complex arrangement of the various processes, when expressed mathematically, results at times in quite complex functions representing relations between the basic values.

The following basic processes are distinguishable in the discharge phenomenon:

- 1) The process of powder combustion and the production of high-temperature gases, strongly compressed and containing a large reserve of energy. The rate of powder combustion, or the rate of its explosive conversion, depends basically on the pressure and temperature of the gases, and on the temperature and characteristics of the powder.
- 2) The process of the conversion of the thermal energy, contained in the heated and strongly compressed gases, into kinetic energy of motion of the projectile - charge - barrel system.

STA

3) The processes of projectile motion, barrel recoil, and motion of gases of the charge, all overcoming a number of different resistances.

All these processes are interrelated, take place simultaneously and exert complementary effects.

For the purpose of studying the first series of processes, it is necessary to be familiar with the principles of physics, physical chemistry, thermo-chemistry and the theory of explosive substances, because powder is a propulsive explosive substance. General physical principles for gases are also applicable to powder gases, while the rules of chemical kinetics apply to the combustion of powder.

For the purpose of investigation and calculation of the energy conversion process on the basis of thermodynamics, a balance of energy in a discharge is compiled, with a calculation of heat accumulation and of its expenditure for the performance of various external functions and the heating up of the gun bore wall. In this connection, the first principle of thermodynamics is utilized.

Principles of theoretical and applied mechanics and of gas dynamics are applicable, and are utilized for an investigation of the projectile, gas and barrel motion, and for the calculation of resistance forces.

All these precesses are expressed by definite mathematical functions and formulas, which permit interrelating the elements of the discharge and conditions of charging, and which yield solutions to a whole series of problems arising in an analysis of the phonouens of a discharge.

ivz

It is clear from the above statements that interior ballistics utilizes the following branches of science in the molding of its fundamentals: physics, physical chemistry, theory of explosives, thermodynamics, theoretical and applied mechanics, and mathematics.

Because the discharge of weapons is the object of its investigations, interior ballistics shows their specifized technical artillery character, in conformance to their tasks, on the basis of a complex application of all those general technical branches of science.

An artillery ballistic specialist should detect conditions which permit the most advantageous exploitation of the weapon and its charge, and the best possible perfection of discharge control. He can exert influence on the type, volume and form of the powder, the design and weight of the projectile, the design of the weapon and the relation between chamber volume and bore. Combining all these factors, he should attempt to modify the results of the discharge process to conform to practical requirements.

BREAKDOWN OF INTERIOR BALLISTICS INTO BRANCHES

Interior ballistics investigates the most complex artillery phenomena, the discharge, and teaches how to control it. That is, how to calculate the design of the bore, and to regulate the efflux of gases, in a combustion of powder, in a manner insuring the attainment of a given initial velocity of the projectile at a given value of maximum gas pressure.

The experimental investigation of the phenomena of a discharge and the combustion of powder considers the simultaneous effects of

xvi1

the following factors, distinguishing the phenomena of discharge from the common physico-chemical processes:

- 1) Higher value of pressure (2000-3000 atm. and more).
- 2) High temperature of powder gases (2500°-2600°C).
- 3) Short duration of the phenomenon (0.001-0.060 sec).
- 4) Combustion of the powder in a varying space, with the performance of various types of functions by the gases.

Powder plays a decisive part in the phenomena of discharge.

Therefore special consideration should be given to the investigation of the principle of gas formation in a combustion of powder in the bore at the time of discharge.

The principles of gas formation are first studied under simpler conditions, in an invariable space, by igniting charges of powder - in special, so-called manometric bombs. The latter permit bringing the pressure up to 3000 àtm. and more. The increase of pressure in this type of bomb during the ignition of a given charge of powder is registered by means of special devices.

Because the volume of a manometric bomb, in which the combustion of powder occurs, remains constant and the gases do not perform any work, it is easier to investigate the principles of gas formation.

Enowing the principles of pewder gas formation in a constant space, it is possible to calculate the changes for a variable space where makes propolling the projectile perform work and cool off.

In connection with this method of investigation, interior ballistics is usually divided into two basic branches: pyrodynamics and pyrostatics.

zviii

Pyrostatics investigates principles of powder combustion, gas formation and pressure development in simpler cases, in a constant space, as for instance with an immovable projectile (statics). Having determined those rules, we utilize them to control the process of powder combustion during a discharge from a weapon.

Pyrodynamics, using pyrostatic data on the principles of gas formation, investigates the phenomenon of discharge in all its complexity, where a conversion of energy occurs together with the combustion of the powder and the inception of the motion of the projectile (dynamics). At the same time, the gases perform a series of mechanical functions and cool off.

Gas dynamics investigates phenomena connected with the motion and escape of gases, such as the escape of gases from the bore during the period of after-effects, their escape through openings in muzzle brakes, through the clearance in mortars, through mostiles of reactive projectiles, etc.

The theoretical assumptions of pyrostatics and pyrodynamics are based on and verified by experiments conducted in special laboratories, as well as on firing ranges, by firing conventional or specially adapted weapons.

Ballistic equipment for the investigation of phenomena occurring in a discharge is very extensive and varied. Its design, principles of functioning and methods of utilization are contained in a special course, entitled "Experimental Ballistics."

THE PERSONNER OF INTERIOR RALLISTICS IN THE SESION OF ARTILLEST

x1x

The theoretical and experimental investigation of the phenomena

of discharge facilitates the solution of problems of the ballistic design of weapons. In a ballistic design, the design factors of the bore, the weight of the charge and quantity of powder are determined for a given caliber and weight of the projectile and for its mussle velocity. Subsequently, the principles of gas pressure variation inside of the bore and the principle of projectile acceleration in its motion along the bore are calculated. In addition, calculations are made on the gas pressure variations and velocity of projectile during the period of the after-effects of gases on the projectile and the gas carriage.

The results of the calculations are represented in the form of curves ρ , ℓ and v, ℓ being a function of the trajectory, the curves ρ , t and v, t as well as v, t (where v is the recoil speed) as a function of time (figs. 1 and 2).

These data, obtained by a solution of interior ballistics problems for a selected variant of the ballistic design of the weapon, are elementary, and basic for the subsequent calculations of the barrel, carriage, projectile, charge, fuse and shell case.

On the basis of these data, obtained in a solution of interior ballistics problems, the gun designer calculates the barrel (thickness of wall, weight of barrel, design of breech block assembly, location of center of gravity). He calculates the form, depth and width of lands and grooves in the bore, and treats the design of the counter-recoil facilities, as well as the gun mount in general. The ammunition designer calculates the body of the projectile and its drive collar for strength, calculates the charge of explosive substance,

STA

the shell case and the primer cup; he designs the fuze mechanism and time fuzes. The technologist at a powder factory calculates and designs pressing dies and determines the technological process of powder preparation on the basis of a given form and grain size of powder.

In this manner, a series of branches of artillery sciences are used for the design and building of new weapons and ammunition for them. These sciences are interior and exterior ballistics, strength of weapons, the theory of gun mounts, the theory of fuze and projectile design, the technology of powder and explosive substances, and metal working. In this connection, interior ballistics provide the principal and fundamental information.

The design of a rather complex aggregate, such as the modern artillery weapon with its attached fire control devices, and of its ammunition, is a product of the results of prolonged calculations

Each of the component parts of that aggregate requires for its manufacture a complex and prolonged technological process.

THE HISTORY OF THE DEVELOPMENT OF INTERIOR BALLISTICS

The history of the development of interior ballistics is inseparably connected with the general development of artillery.

The origin of firearms and the history of the development of artillery up to 1860 is presented in the well known article of Engels entitled "Artillery" [1]. Without reference to the earlier stages of this development and the conversion from a Nome industry to the factory methods of veapons and assumition production, we quote an extract from that article on the development of ballistics

EEL

as a science:

The end of the 17th and the beginning of the 18th centuries comprised the period when artillery was finally incorporated into the military organizations of a majority of countries, the elimination of its medieval guild character, and its recognition as a special military branch, promoted its adaptation to normal and rapid development. This resulted in an almost instantaneous and quite appreciable progress. The diversity and irregularity of calibers and types became apparent, along with the unreliability of all existing empirical rules and the complete lack of precisely determined principles. It became impossible to endure these conditions any longer. Therefore large-scale tests were conducted everywhere, in order to clarify the problems of caliber, the relation of caliber to charge, as well as of the length and weight of the gun, the distribution of metal in the gun, the range of fire, the effects of recoil on the gun carriage, etc.

The result of this was a significant simplification of calibers, better distribution of metal in the gun, and a very considerable reduction of the charge, which then amounted to from one-third to one-half of the weight of the projectile."

In Russia, Peter I exhibited a great deal of interest in the development of artillery. He personally wrote the "Guide to the Utilization of Artillery." During the reign of Peter I, the Russian artillery became one of the best in Europe.

The progress of artillery science, mainly in the field of investigation of projectile flight and air resistance (Galileo,

Eernouilli, Euler and others), ran parallel to the organizational and tactical improvements of artillery.

In his classical study entitled "Hydrodynamica," Daniel Bernouilli gave the basic knowledge about gases, introduced to science the conception of an expansion of gases in consequence of their buoyancy, and showed how on the basis of this expansion to calculate the motion of a projectile in the bore of gun.

The famous mathematician Euler, member of the Russian Academy of Sciences, gave considerable attention in his studies to the investigation of processes occurring in the bore of a weapon. However, as a result of the lack of means for experimental investigation at that time, his studies were limited to the setting up of problems.

In the middle of the 18th century, Robins submitted the first instrument for determinations of projectile velocity. Called the "ballistic pendulum," it was used up to the 1860's. In Robins' study, entitled "New Principles of Artillery Science" and written in 1742, ballistics were first divided into exterior and interior ballistics. In this connection, the scope of interior ballistics was defined as follows: "Enowing the length and caliber of the gun, the weight of the cannon ball, the powder charge and the elastic force at the first moment of ignition, to determine the velocity with which the projectile will depart from the gun."

The technical reorganization of the artillery proceeded parallel to the theoretical and experimental investigations. This embraced the reduction of the number of calibers, improvement in charging and mechanisms, and increasing combat qualities.

xx111

The period 1750-1760 witnessed a great step in the development of the Russian artillery. At that time, a number of new artillery types ("unicorns") were introduced under the leadership of Count P.I. Shuvalov. Also, the loading of the guns was modified by the introduction of powder bags for the charges; and new organization of the artillery was effected. Shuvalov's "unicorns" exhibited superior combat properties not only during the Seven Year War (1756-1763, when the Russian armies occupied Berlin), but also during the Homeland war of 1812, particularly in battle of Borodino. These artillery types lasted for nearly one hundred years, up to the introduction of rifled guns. The basic personalities active in the reorganization of artillery in other countries (Friedrich II of Prussia, Gribeval in France) to all intents followed in Shuvalov's footsteps.

Fundamental theoretical and experimental ballistic investigations, which produced proper assumptions about the phenomenon of discharge and its uniformity, were conducted beginning with the second half of the 19th century, on the basis of the general development of technicology and a series of related branches of science.

The first theory of powder combustion, published abroad in 1857, was written by the Emssian chemist Shipkov and the German chemist Bunsen. In 1860, Captain A.P. Gorlov wrote an article on the motion of the projectile in the bore of a rifled gun. An abstract of this article was contained in the reports of the Paris Academy of Sciences in 1862. In 1868, Colonel H.P. Pedorov determined the effect of powder combustion conditions on the composition of the

xxiv

products, by firing a pistol and a four-pound cannon. These studies laid the foundation for the development of proper hypotheses on the combustion of powder in a discharge, and were used in much later studies by numerous researchers.

Significant progress of experimental ballistics, expressed in the appearance of two basic instruments which are still widely used in our times (the chronograph of Le Boulanger for measurements of projectile velocity and Nobel's crusher gage for measurements of powder gas pressure), occurred in the 1860's.

The crusher gage, which permits estimating gas pressure on the basis of the compression of a copper column, laid the foundation for the development of a special branch of experimental ballistics, "manometry," and promoted the production of manometric bombs. The latter facilitated investigations of the principles of powder combustion at high pressures.

From 1868 to 1875, Nobel and Abel conducted experiments on the ignition of black powder in a manometric bomb. They determined the quantitative and qualitative composition of combustion products, their thermal capacity, the amounts of emissible heat, combustion temperature, and also the dependence of the maximum pressure on the power of the powder and uniformity of charging.

These investigations were based on studies of the properties and characteristics of powder combustion products in a discharge, made earlier by Shipkov, Bunsen and Fedorov.

During the second half of the 19th century, the general principles of a knowledge of heat and of the kinetic theory of

XXV

gases, as well as the fundamentals of chemistry and other branches of science, developed parallel to the above investigations. They permitted objecting a scientific theoretical basis for the process of powder objection, and for the comparison of the energy of pewder gases into the kinetic energy of the projectile and of the gases.

The differential equation was introduced in 1864. On the limits of the first law of thermodynamics, this equation served to determine the equilibrium of the energy duitted during the combustion of the powder charge and the energy expended for the performance of manufacture functions (2008).

The French metallist: Cappo used this equation in 1876 for solutions of problem occurring in artillery practice. Cappo's formulas were the bigite functional bullistic formulas, in almost all countries. In our country they was replaced by the formulas of A.F. Brink, and lights by the familias employed by Professor E.F. Broadev from 1866 sampled 1910. (See Applies farther on).

A great contribution to the desillation of not only interior ballistice, but also of artillery in general, was made by the invention of anti-part powder: the pyramylin powder of Vol (Fernia scientist, change, powder specialist, 1804), the nitroglyceris powder of Nebel and thel in England (1805-1800), and the pyrocolloid powder of D.I. Manufactor in this country (8000).

After improved the manemetric back and equipping it with registration of the granuse increase as a function of time, Yel determined the efficience between the practically instantaneous

combustion of black powders and the uniform gradual combustion of smokeless colloidal powders. This permitted regulation of the gas supply by varying the dimensions of powder elements.

A new type of powder was prepared as a result of numerous theoretical and laboratory studies. It was smokeless, colloidal on a pyroxylin basis, and was obtained by an ethyl alcohol compound treatment of pyroxylin explosive substance. Vel projected and prepared a strip-type, pyroxylin powder for a 65 mm gun. By firing, he obtained results fully verifying calculated data. The new powder proved to be almost three times as powerful as black powder, and produced a significant increase of projectile velocity, with a lower pressure of powder gases in the bore.

Aside from the elimination of smoke on battlefields and n considerable increase of the range of fire, the introduction of smokeless powders also caused a modification of battle tactics.

In Russia, a specimen of the French pyroxylin powder was obtained. Experiments toward its production began in 1887 at the Okhtensk gunpowder factory; while firing tests with it were conducted by the research committee of the same factory.

The famous Russian chemist D.I. Mendeleev in the 1890's developed a special pyroxylin powder, which offered numerous advantages in a comparison with Vel's powder. However, the Artillery Committee rejected the powder of D.I. Mendeleev for armament purposes, under the influence of the at that time customary neglect of the prominent personalities of Russian science, and the worship of all that was foreign. The value of this powder was

xxvii

properly recognized in the U.S.A. where it was adapted for armament purposes. During the period of the first world war, 1914-1918, the Russian army obtained considerable quantities of the pyrocolloid powder from the U.S.A.

Disregarding the fact that the technology and industry of Tsarist Russia were at a lower level than the foreign standards, our ballistics scientistics frequently surpassed foreign researchers from the theoretical point of view, and played a leading part in the treatment of numerous problems. Many of their studies were immediately sent abroad and utilized. We have already mentioned the outstanding studies of Shipkov, Gorlov and Fedorov from 1857 to 1868.

The first course of interior ballistics in Russia was written by Colonel P.M. Albitski in 1870, and read at the Artillery Academy.

In 1879, Colonel Enlakutskii, a pupil of the Artillery Academy, published a study on tests conducted to determine conditions of the development of abnormal pressures in firearm bores, which long before Yel, touched on the problem of the propagation of undulatory gas motion. His studies were transferred the following year to France.

Colonel V.A. Pashkevich, a very skilled and talented artillery man, became successor to Albitskii. From 1885 to 1891, he wrote a course in interior ballistics: Part 1, theoretical; Part 2, experimental. In 1893, these books were translated into English in the U.S.A. His instructions on experimental ballistics were used at the Artillery Academy, for many years afterwards.

From among the most distinguished scientists active during the second half of the 19th century and at the beginning of the 20th

STAT

xxviii

century in the development of theoretical and experimental ballistics in Russia, it is proper to mention the founder of world-wide interior ballistics, Professor of the Artillery Academy N.V. Manevskii (born in 1823, active from 1850 to 1892,) and his pupil and follower N.A. Zabudskii (born in 1853, active from 1880 to 1917).

Although these two scientists acquired their fame through studies in the field of exterior ballistics, they have made great contributions to the development of interior ballistics.

For example, prior to the design of a 60-pounder smooth-bore gun, and before the investigations of Nobel, Manevskii submitted in 1856 an original method of determining the powder gas pressure at various cross sections of the bore of artillery weapons.

The gun calculated by Manevskii was built, and, when tested, showed considerably better results than the guns competing with it and built from the designs of other people, including English scientists.

In 1867, N.V. Manevskii organized special tests for the experimental determination of the projectile travel in the bore of a four-pounder gun as a function of time. From this information, curves of powder gas pressure in relation to projectile travel and time were plotted by means of calculations.

This study was of great importance to the development of interior ballistics and the design of guns.

xxix

N. V. Manevskii

In 1878, N.V. Manevskii was elected corresponding member of the Academy of Sciences, ("People of Russian Science," published by the Academy of Science of the USSR, 1944, volume 11).

Professor of the Artillery Academy N.A. Zabudskii, a pupil and successor of N.V. Manevskii, was greatly and successfully active in the theoretical direction, as well as in the field of the development of artillery technology.

In 1911, the French Academy of Sciences elected N.A. Zabudskii to corresponding membership of its department of mechanics, in recognition of his scientific accomplishments in ballistics. In the field of interior ballistics, N.A. Zabudskii completed in 1904 a study on investigations of pressure in the bore of several guns, and gave numerous empirical formulas for muzzle velocity and maximum pressure.

Later, in 1914, he published his main study on the experimental determination of pressure and velocity curves as a function of projectile travel in the bore of 300 mm field gun, applying for the first time to this purpose the original method of progressive shortening of the gun barrel.

On the basis of these investigations, he gave empirical formulas

for the dependence of nuzzle velocity of the projectile and of the maximum pressure of powder gases on the variation of numerous conditions of charging (weight of charge, weight of projectile, volume of chamber, size of powder).

This fundamental study of N.A. Zabudskii had a major share in the evolution of proper assumptions on the dependencies in the bore of a weapon during a discharge, and is used in part up to the present time.

In 1892, Colonel A.F. Brink began to lecture in the course of interior ballistics at the Artillery Academy. In 1901, he wrote a complete course of interior ballistics. For this purpose, he used the formulas of Cappo, and new expressions for coefficients and exponents for pyroxylin powders. These appeared for the first time in literature. In addition, he submitted his own empirical formula for the pressure curve.

N.A. Zabudskii

At the time, this course was the most complete among all systems of instruction known abroad, as then noted by Professor N.F. Drozdov.

This course of instruction was transferred to Germany and the U.S.A.

In 1903, Colonel N.F. Drozdov, lecturer at the Artillery Academy, submitted an article, contained in the Artillery Journal. It was the first mathematically precise solution in world literature of a basic problem of interior ballistics. It had none of the simplifications used prior to that time. In 1910, this study was considerably enlarged, and published in a separate edition. It was offered by him as a dissertation toward the attainment of a degree.

The tables compiled by him in 1920, on the basis of his solution, contributed greatly to the simplification and speeding up of ballistic calculations, and to the solution of a series of varied problems relating to the ballistic design of guns. Also, they served as a prototype for a whole series of detailed tables compiled later on. (Science and Research, Institute of Artillery, GAU).

The first dissertation study on interior ballistics in Russia was written and defended in 1904 by Captain of the Guard I.P. Grave, instructor at the Artillery Academy. This study dealt with the experimental and theoretical investigation of the principle of powder combustion rate and pressure development in the combustion of powder in a constant space. The study was of considerable scientific interest, and was translated in France in a somewhat

eviated form.								
In	1908	appeared	the	study	by	Charbonne	(France)	entitled

maxa11

"Interior Ballistics." He proposed the division of interior ballistics into the fundamental branches: pyrostatics and pyrodynamics. He defined more precisely the conceptions of pressure propulsion, and the calculation of secondary functions in a discharge. While criticizing the geometrical principle of combustion evolved by Vel, he presented his own method of determining the principle of powder combustion on the basis of tests in a manometric bomb. This principle was also used by him in the solution of the basic problem of pyrodynamics.

The French ballistics specialist Siugo, who wrote a course of instruction for interior ballistics in 1926, should be counted among the circle of followers of Charbonne who developed his solution and rendered it more precise.

Parallel to the theoretical school of thought of Charbonne and Siugo, there existed in France an empirical approach by Gosse and Liubill who submitted solutions to the problem of interior ballistics on the basis of utilizing the results of a very large number of discharges.(1922).

The studies of the German ballistics specialist Erans can be mentioned among the experimental activities of the beginning of the 20th century. He published a "Course of Ballistics" in three volumes (exterior, interior and experimental. 1920 through 1936). Eranz organized a special ballistic laboratory at the Technical Military Academy in Berlin, and invented a number of new instruments of the investigation of discharge phenomena,

From among Italian authors, mention should be made of Biance

STAT

xxx111

who gave the solution to a problem of interior ballistics (1917). With certain modifications introduced by Professor I.P. Grave, this solution was accepted and taught at the Academy of Artillery for many years afterwards.

Having given due recognition to the studies of several foreign scientists, it would be improper to pass up in silence the disregard of the works of our national scientists by the foreign literature on ballistics. For example, one of the recent theoretical courses of interior ballistics of the French ballistics specialist Vinter (1939) discusses widely and in detail the French school of interior ballistics as fundamental in character. It discusses the accomplishments of the Italian school of interior ballistics as a branch of the French school of ballistics, and refers to the names of English, German and American scientists. However, it entirely fails to mention representatives of our national Soviet school of interior ballistics. Also, nothing is said of the studies of the distinguished scientist, Professor N.F. Drozdov, who had between 1903 and 1910 already given the first, mathematically precise solution in world literature, of the fundamental problem of interior ballistics. Meanwhile, it is well known that Professor N.F. Drosdov is one of the founders of the Soviet school of ballistics, which contributed quite a few valuable and pioneer studies to many fields of interior ballistics. This disregard of Seviet scientists undoubtedly has a political character, in spite of the statements of burgeois scientists as to the non-political nature of science. Even during the pre-revolution period, Russian

STAT

XXX1V

artillery scientists, using development tests of national artillery and artillery technology, as well as the ideas of leading foreign artillery scientists, successfully treated and independently solved the main theoretical and practical problems of artillery science in general and of ballistics in part. The research of K.V.

Lanevskii, K.A. Zabudskii, V.E. Trofimov, W.F. Drozdov, I.P. Grave and others are outstanding contributions to the science of artillery, and have retained their value even to the present time. The major part of these investigations were printed in the older and widely known Artillery Journal, which appeared for the first time in 1806. Artillery and interior ballistics underwent a still greater development after the Great October Revolution.

A new era in the development of artillery and artillery science in the new Soviet state began with the victory in October of 1917. The Bolshevik Party and the Soviet Government headed by Lenin and Stalin have enthusiastically supported artillery scientists from the very beginning of the existence of the Red Army, and have revised their task and goals to the present mission of universal strengthening of the armed forces of the Soviet Union for the purpose of preserving it from capitalist encirclement.

In response to the appeal to the Party and the government, to selflessly prevent the conquest of the Soviet Republic, patriotic artillery scientists urgently undertook the task of organization and improvement of Soviet artillery, using the best traditions of Russian artillery science for the purpose of fullfilling this mission.

There were many difficulties at the beginning of this course:

XXX

collapse of the economy, a poor material and technical foundation for the development of artillery science and technology. However these difficulties were surmounted, and artillery science continued to work on the further development and the increase of the power of the artillery of the Bed Army.

In this connection, a significant part was played by the activities of the Commission for Special Artillery Research, 1919 through 1926, under the leadership of the famous Russian artillery scientist V.M. Trofimov.

V.M. Trofimov

V.M. Trofimov was born in 1864. He graduated with top honors in 1892 from the Academy of Artillery and gave 25 years of his life to scientific and practical study at the Main Artillery Range. He was director of this range from 1910 to 1917, and has done much for the development and improvement of its equipment and organization, particularly during the time of the war from 1914 to 1918.

During his stay at the range, V.M. Trofimov conducted a large number of scientific investigations. Many of his studies were

STAT

incorporated in firing manuals, while some were translated into foreign languages.

For his study entitled "The Effects of Shrapnel from the 300 mm Gun" (1903), V.H. Trofimov was awarded the Rasskazov and the greater Mikhailov medals.

The period of particularly intensive activities of V.M.

Trofimov is connected with the studies of the Commission for

Special Artillery Research (KOSARTOP), which was formed through
his initiative in 1919 for the purpose of working on problems
connected with firing over very long distances.

After obtaining data on the shelling of Paris by the Germans over a distance of about 120 km, V.M. Trofimov undertook to obtain equal results in Russia, and began his efforts in 1918, in disregard of the difficult materials conditions.

He recruited the aid of several young employees of the range, and conducted a number of preliminary investigations in order to find ways of attaining the designated goal.

Using recent material, V.M. Trofimov submitted his principle of air density variation with altitude. Because firing over very long ranges involves variations of air density over a very wide range, Trofimov utilized, for the first time in ballistics, the method of numerical integration of the differential equations of exterior ballistics to calculate the trajectory (similarly to the system of Euler: breakdown into small pertions and solution of each portion). For this purpose, he used the study of Academician A.M. Erylov, entitled "On an Approximate Eumerical Solution of Common Differential Equations" (1918).

i i vxxx

of investigations, he determined type of firing is possible, and of firing over ranges up to 140 km. dies had to be made in order to a problem of this type. It was most advantageous design of the to make the projectile streamlined fast and uniformly burning gun s bore, etc. The EGGAETOP (Commission was formed under the leadership of dealing with all these problems. mission for Special Artillery period of blockade and full isolation wortheless, the work of this commission ar of death of V.H. Trofimov) progressed m major part in the development of Russian tain period of time, the Commission march became the central point of the s and studies of the Commission fer m 1919 to 1926, is a period of ty which cannot be compared with any years preceding the war of 1914 to mientific research studies conducted stically all important and pressing tical character, were of decisive s of the Artillery Academy, volume w wiii STAT

XXXI).

In addition to problems directly connected with super-long range firing, the Commission for Special Artillery Research processed the technical and tactical requirements for new artillery types, as well as for self-propelled artillery, mortars, problems of gas dynamics, etc. These activities provided the foundation for the modernization of the artillery of the Red Army, which was accomplished several years later.

V.M. Trofimov recruited not only all leading artillery scientists of the Artillery Committee (*) for work with the Commission, but also all professors from the Artillery Academy (**) and a number of leading civilian scientists (***) active in fields related to artillery.

At the same time, V.M. Trofimov used the freshman workers in science, who, under the guidance of leading scientists, attended the School of Science at the Commission for Special Artillery Research. Subsequently, many of them became leading specialists

(*) Professor G.A. Zabudskii (gun powder); V.I. Rdultovskii (projectiles, fuzes); M.F. Rosenberg and A.G. Matiumin (technology, manufacture of guns); G.P. Eisnemskii (gunpowder); V.V. Makeladze (firing and tactics); V.A. Pashkevich (ballistics, mathematics); P.A. Durliakhov (gun carriages) and others.

(*) Director of the Academy, Professor S.G. Petrovich (mechanics and exterior ballistics); Professors: N.F. Brosdov (strength of guns, interior ballistics); I.P. Grave (interior ballistics); V.V. Machaikov (exterior ballistics); A.V. Saposhnikov (chemistry, gunpowder and explosives); I.A. Erylov (metallurgy); lecturers F.F. Lender (gun carriages); O.G. Fillippov (gunpowder, interior ballistics) and others.

(**) Academician A.E. Erylov (mathematics, mechanics); Professor H.E. Ehukovskii (mechanics, aerodymanics); S.A. Chaplygin (hydromechanics); N.W. Bukhgoltz and V.P. Vetchinkin (gas dynamics); N.P. Molchanov (meteorology) and others.

xxx1x

in various fields of artillery activities (D.A. Venttsel, B.N. Okunev, V.E. Slukhotzkii, M.E. Serebriakov).

In addition to the personal recruiting of leading scientists and specialists, the Commission for Special Artillery Research maintained close relations with a number of national scientific and technical institutions.

About 150 monographs relating to scientific and research studies conducted by the personnel of the Commission for Special Artillery Research, as well as about 80 design treatments, were published during the period of its activities.

The studies of the Commission for Special Artillery Research were of great importance for the assembling of a number of outstanding research people around problems of artillery material. After the death of V.M. Trofimov, the direction of the Commission was transferred to the hands of the outstanding specialist in the field of super-long range firing, Professor E.A. Berkalov, who has also obtained a great deal of experience in this field.

Due to the attention given by the party, the government, and particularly by Comrade Stalin to this problem, the efforts to improve the artillery of the Red Army, and to scientifically insure its development, continued to expand during the following period of time.

During the years of Stalin's Five-Year Plans, our country created the material and technical foundation necessary to provide the armed forces with modern combat material and, among those, artillery. Material conditions necessary to a fruitful development

x1

of scientific and technical artillery thought were created, parallel with the development of our industry and economy.

A number of designing offices were established under the direction of Heroes of Socialist Labor V.G. Grabin, I.I. Ivanov, F.F. Petrov and other designers, which produced many samples of artillery types. These showed superior combat and technical qualities during the period of the Great Homeland War. All these activities were personally supervised by Comrade Stalin, who examined test specimens of new artillery types and issued instructions on the course of their further development.

Comrade Stalin's anxiety in connection with the development of scientific artillery thought found its expression in the establishment of the Academy of Artillery Sciences in 1946, for the purpose of processing basic scientific problems confronting the artillery.

A new generation of Soviet artillery scientists and ballistics specialists grew up during the 30 years of existence of the Soviet government. The first to be counted among those are: Academician A.A. Blagonravov, president of the Academy of Artillery Sciences; M.F. Vasiliev, member of the governing body of the Academy of Artillery Sciences; K.K. Snitko, A.A. Tolochkov, D.A. Venttsel, M.E. Serebriakov, V.E. Slukhotzkii, Ia. M. Shapiro, active members of the Academy of Artillery Sciences; and Professors B.M. Okunev, G.V. Oppokov. These are followed by the younger generation of science workers: M.S. Gorokhov, M.A. Mamontov and others.

It can be definitely stated that, in our Union, we have established a leading Soviet scientific school of artillery designers

and ballistic specialists, who are making their way in the field of artillery science and technology.

Like V.M. Trofinov, two leading scientists of our country, who became the instructors and educators of numerous generations of Russian ballistic specialists and designers, had a major share in the formation of this scientific school. These were the distinguished worker in science and technology of REFER (Russian Soviet Federative Socialist Republic), Colonel General of Artillery Rikolai Federovich Drosdov, laureate of Stalin's medal, member of the Presidium of the Academy of Artillery Sciences; and Enjor General of Artillery Engineering Services Ivan Platomovich Grave, laureate of Stalin's medal and active member of the Academy of Artillery Sciences.

As already stated, N.F. Brondov submitted the first mathematically precise solution in world literature of the fundamental problem of interior ballistics, without any of the approximations utilized by foreign authors.

Since 1911, he has lectured for many years at the Artillery Academy in the course of weapon design, and from 1920 in the course of interior ballistics of the Haval Academy.

Professor N.F. Drosdov has written a number of studies toward the expansion of his method, and has compiled special tables for solution of problems in interior ballistics.

These tables were of great importance for the efforts on acceleration of ballistic design and improvement of our artillery systems, since the calculations of the latter were considerably simplified by the existence of these tables.

During very recent times (1947-1948), N.F. Drozdov has written two more studies. One pertains to the properties of highest power artillery weapons. The other presents solutions of the interior ballistics problem in relative variables for simple and combination charges, with appended tables which considerably expedite computations.

Professor N.F. Drozdov is the founder of the Russian School for the Ballistic Design of Guns, which created a number of outstanding artillery types.

Professor I.P. Grave lectured for many years (from 1911 till 1934) on interior ballistics at the Artillery Academy, and wrote the most complete course of theoretical interior ballistics in world literature. With respect to its variety of included material and the completeness of exposition, this study may be justly named an encyclopedia of theoretical interior ballistics. This course is composed of four volumes of pyro-dynamics (1932-to 1937) and pyrostatics (1938). The course contains extensive material, and presents a criticism of Russian and foreign articles and studies. All those are analyzed, and cite reference literature. For the first time in our literature, problems of gas dynamics and ballistics of an incompletely enclosed space are submitted to particular consideration in this study.

Aside from this, I.P. Grave had contributed largely to the development of an experimental base, at the Artillery Academy by Organizing a ballistics laboratory in 1926.

After 1938 and during the period of the Great Homeland War, Professor I.P. Grave held the chair of interior ballistics at the Artillery Academy, conducted a series of investigations, and wrote several studies on current problems of interior ballistics.

The Soviet School of Ballistics, whose cadre grows constantly, successfully solves all of the more complicated practical problems that occur, and lays out new paths of development for interior ballistics.

In the past, as well as particularly during the period of Seviet development, our national science of ballistics kept ahead of foreign thought with respect to many more important problems.

The following facts may be quoted by way of examples:

A mathematically precise solution of the fundamental equation of interior ballistics was offered, for the first time in world literature, by Professor N.F. Drosdov in 1903 in our country.

The problem of solving a series of questions relating to combination charges is completely untouched in the world literature. In our country, these problems were solved by R.F. Drozdov, I.P. Grave, V.E. Slukhotzkii and others, who also presented tables for the solution of problems for the case of combined charges.

An analytic solution of problems for mortars, with calculation of partial escape of gases through the clearance, was submitted in this country in 1940 by M.E. Serebriakov, K.K. Greten, and in more detail by G.V. Oppokov.

Ballistic design and its methodology has been treated most completely, thoroughly and rationally, as a result of the studies of our scientists.

The problem of highest power weapons, or weapons with smallest volume, is solved in this country differently than in French literature. A solution is given which is more economical and advantageous from

x11V

the standpoint of design.

A new method of ballistic analysis of gunpowder, which permits the test determination of the actual principle of powder combustion and recognition of the influence of a whole series of factors previously disregarded (physical principle of combustion), was developed by M.E. Serebriakov in this country between 1923 and 1937.

Also, the solution of ballistic problems through the methods of numerical integration was developed very thoroughly in this country. This method was used for the first time in ballistics by V.M. Trofimov in 1918, in exploitation of the studies of Academician A.N. Krylov.

The methods of numerical solution of problems were developed and expanded in particular details by Professor G.V. Oppokov in a series of his studies.

This incomplete account of the accomplishments of our scientists already permits recognition of the fact that interior ballistics has reached a high theoretical level in our country and progresses along the proper paths. In order to fulfill the mission assigned by Comrade Stalin, "to exceed the accomplishments of foreign science within a short period of time," it is necessary, by means of continued and persistent work, to raise still further the scientific level of our investigations.

Artillery technology develops with each passing year; while the problems confronting interior ballistics widen and become more complex. New methods of solution come into existence. Outdated hypotheses are eliminated, and are replaced by new ones. New experimental methods and more precise equipment are introduced, providing research

scientists with new material and new methods of investigation.

Interior ballistics will progress as a result of the expansion of our knowledge of the discharge and of phenomena accompanying it, the establishment of new rules, the replacement of outdated hypotheses by new ones, the improvement of our ability to direct the discharge along the desired course.

The mission confronting the students of a course in interior ballistics is to become familiar with the modern status of this branch of science and with the theoretical fundamentals of interior ballistics, and to learn to apply them to solution of numerous practical problems arising in the design of various types of artillery and the ammunition for them.

LISTING OF NOMENCLATURE, SYMBOLS AND DEFINITIONS IN THE FIELD OF INTERIOR BALLISTICS

A. BASIC PROPOSITIONS

- 1) The following listing specifies only the most characteristic values used in interior ballistics as one of the branches of artillery science.
- 2) Individual terms relating to variables associated with certain characteristic instants are properly designated by adding the following subscripts to the symbol of the variable value:
 - 0 for the imstant of commencement of projectile motion.
 - m for the instant of maximum pressure of gases.
 - s for the instant of decomposition of the powder grains.
 - k for the instant of the end of powder combustion.
 - d for the instant of the projectile leaving the bore.

STAT

x1vi

- 3) As is proper, interior ballistics utilizes the fe system of units: decimeter-kilogram (force)-second.
- 4) The term "powder grain" is construed as a separation of the powder charge (strip, fluted cylinder, red, calc.
- 5) The initial dimensions of powder grain are the state the grains prior to the commencement of combustion (explication).
- 6) Numbers in parentheses contained in the text of the item number in section B of this listing.
- 7) Nomenclature standardized as technical terms is in heavy type.

tem	B. NOMENCLATURE Nomenclature	5ymbol	Bottle
	I. Characteria	itics of the	Barrel, Projectife
1	Caliber of barrel (cylindrical)	đ	Diameter of best name
la	Caliber of barrel (tapered)	ժ ₀ ժ ջ	Entrance calibor Exit calibor
2	Cross section of bore (grooved)	•	Area of crees in the part grooves have (grooves inches
3	Length of bore	Lkn	Bistance from the here to the the barrel
4	Length of the rifled portion of the bore	Lar	Metanes from of giverns in mails from the
5	Gun chamber		Initial air of cheshor portion with a property projectile
	L	xl vii	STAT

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

Item No.	Komenclature	Symbol	Definition
6	Volume of gun chamber (5)	w _o	
7	Weight of projectile	q	
8	Weight of gunpowder charge	w	
	II. Propert:	les of Po	wder and Powder Gases
9	Heat of formation	4	The quantity of heat emitted by one kilegram of powder burning in a constant space ' and when cooling the gases down to the temperature of 18°C (water vapor)
10	Specific volume of powder gases	v ₁	Volume occupied by games of one kilogram of powder at a temperature of 0°C and a pressure of 760 mm of mercury column (water vapor)
11	Temperature of powder at the time of firing	T ₁	Temperature of powder combustion (heat of formation) measured from 0°K (absolute scale)
12	Energy of powder charge	f	f - PawlT1 (10;11), where 273 p one physical atmosphere
13	Covolume of powder gases	α	A coefficient representing the effect of the volume of gas molecules on the pressure of gases
14	Rate of burning (a variable value)	u	Linear velocity of propagation of combustion reaction of powder towards the center of the powder grain
- 1	Rate of burning under pressure equal to unity.	u ₁	

STAT

xlvi11

			Definition
Item No.	Nomenclature	Symbol	Dellii 11011
	III. Dimensi	lons of Gu	npowder Grain
16	Depth of the burnt layer of a gunpowder grain (variable value)	c	
17	Initial thickness of powder grain	2e ₁	
18	Surface of powder grain (variable value)	ន	
19	Initial surface of powder grain	s ₁	,
20	Volume of powder grain (variable value)	Λ	
21	Initial volume of powder grain	Λ	e l
22	Relative thickness of burned layer of powder grain (variable value)	Z (Z)	$z = \frac{e}{e_1}$ or $z = \frac{\mathcal{K}}{\mathcal{L}_k}$ (16, 17, 32, 33, 14, 15)
23	Relative surface of powder grain	6	$\phi = \frac{8}{8_1} \qquad (18, 19)$
24	Specific volume of burne powder grain (variable value)	,	$\Psi = \frac{\Lambda_1 - \Lambda}{\Lambda_1} (21, 20)$
	IV. Travel, Ve	locities :	
25	Instant of departure		The instant of passage of base of projectile past mussle face of barrel.
26	Relative travel of projectile.	l	Displacement of projectile in relation to the bore, measured from the location of projectile base at the commencement of motion.
27	Total travel of projectile in the bore	£ _d	Travel of projectile in relation to the bore (26) at the instant of departure (25)
28	Relative speed of the	v (v)	Speed of projectile in its

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

Ho.		Symbol	Definition
	projectile (variable value)	v(v)	movement relative to the bore (26)
29	Muzzle velocity	v _d (v _d)	Jectile (28) at the tack
30	Pressure of powder gases (variable value)	P	Mean value of partial
			the initial air space, at the given position of the base of projectile (at a given instant)
31	Mean pressure of powder gases	psr	$p_{sr} = \frac{\varphi_{qv}^2}{2gs L}$ (37, 7, 28, 2, 2
32	Impulse of pressure of powder gases (variable value)	ı	where g - acceleration of gravity I = \int pdt (24, 30), where
33	Impulse of pressure powder gases at the end of powder combustion	I.	t - time $I_{k} = \int_{0}^{t_{k}} pdt (24,30), \text{ where}$ 0
1	V. Special Val	ues and Co	efficients
34	Density of loading	4	$1 = \frac{\omega}{T_0}$ (8:6), where ω is in
35	Gravimetric density of cowder		s, and weight of pewder laced freely in a container f a given shape and volume to the weight of water at C (density equal 1) compying a container of the me volume

Item	Nomenclature	Symbol	Definition
36	Reduced length of chamber	Lo	container, and on the method of placing the powder in it. These factors are specific in each given case. The length of a straight cylinder whose volume is equal to the volume of the gun chamber (6), and whose
			base area corresponds to the area of the cross section of the bore (2)
36a	Actual length of chamber	l _{km}	Distance from the base of the bore to the base of the projectile
37	Factor determining secondary functions	4	A coefficient for evaluating the secondary functions of powder gases (rotation of projectile, gun recoil, friction, etc.)
38	Coefficient of weight of projectile	cq	$c_q = \frac{q}{d^3}$ (7;1), where q in kg and d in dm.
39	Coefficient of charge utilization	New	$ \chi_{\omega} = \frac{qv_0^2}{2g} \frac{1}{\omega} (7; 29; 8) $ where g- acceleration of gravity
40	Coefficient of projectile location at the instant of total combustion of charge	λF	$\gamma_k = \ell_k/\ell_d$ (27) where ℓ_k is travel of projectile (26) at the instant of total combustion of the powder
41	Relative weight of charge	<u>w</u>	E _d v ² ₄
42	Power factor of weapon	Cg	$c_{x} - \frac{x_{d}}{d^{3}} - c_{q} \frac{y_{d}^{2}}{3g}$
43	Efficiency of the charge	rd	r _d - \(\frac{\mathbb{E}_40}{1\omega} \) - \(\lambda \omega \) \(\frac{\omega}{1} \)

Item	Nemencla ture	Symbol	Definition
44	Charging parameter of Professor N.F. Drosdov	B	B - 22 g
	Coefficient of chamber	X	$x = \frac{A_0}{L_{\text{km}}}$ (36; 36a)

STAT

111

PHYSICAL PRINCIPLES PHYSICAL PRINCIPLES OF BALLISTICS

SECTION ONE GUNPOWDER AS THE SOURCE OF ENERGY

CHAPTER I - GENERAL INFORMATION ON GUNPOWDERS

I. TYPES OF POWDERS

Modern gunpowders belong to a group of smokeless colloidal powders. Black powders, used at the time of the invention of gunpowder, are now used in artillery only in the capacity of igniters, in primer cups, in rings of time fuses, and also in shrapnel.

Smokeless powders, which appeared almost simultaneously in France (Vel) and England (Nobel) during the 1880's and 1890's, were rapidly adopted in all countries. Their introduction greatly modified all artillery material and combat tactics.

The basic properties of smokeless powders are: considerably greater energy, and an ability to burn in parallel layers, which permits regulation of the influx of gases forming during the combustion of powder.

The main base of all smokeless powders is pyroxylin, or nitrated cellulose. In this connection, a division is made, as respects the degree of nitration, into highly nitric pyroxylin or No. 1 (nitrogen content 12.9 to 13.3%); lower nitric pyroxylin or No. 2 (nitrogen content 11.9 to 12.3%), and collodion (~11%).

Pyroxylin No. 1 is also called insoluble, because it is practically insoluble in a mixture of alcohol and ethyl ether.

Pyroxylin No. 2 is called soluble, because it dissolves almost completely in the same mixture.

In many countries, a mixture of pyroxylins No. 1 and No. 2 is used for the production of gunpowder (for example, in our country and in France).

In the W.S.A., powder is manufactured with a so-called pyrocollodion base. The latter ranks between No. 1 and No. 2 with respect to nitrogen content (12.5 to 12.75%). It is however entirely soluble in an alcohol-ethyl ether mixture.

Developed by D.I. Mendeleev as early as 1890, pyrocolledion gelatinizes very well, and provides a more homogenous powder substance than the powder containing insoluble pyroxylin.

When subjected to the action of an alcohol and ethyl ether mixture of a given ratio, the pyroxylin will gelatinise under pressure and become a colloid.

A mixture of pyroxylin with a solvent, so as to form a paste, can be given any form (strip, tube, rod, etc.) through extrusion.

Pure pyroxylin powders are prepared:

- a) From a mixture of pyroxylin No. 1 and No. 2 (mixed pyroxylin);
- b) From a pyrocollodion;

c) From one pyroxylin No. 2 (for special purposes).

In addition to pure pyroxylin protests, there are the no-called nitroglycerin penders. The latter contain from 25 to 60% of nitroglycerin, the remainder consisting as gyroxylin and a small

quantity of various admixtures.

Up to the first imperialistic world war of 1914 to 1918, the nitroglycerin powders were divided into two basic groups: the ballistites and the cordites. They differed in their contents of the elements, the quality of the pyroxylin, as well as the solvent gelatinizing the powder.

Ballistites are prepared with a soluble pyroxylin, mainly a colloid with a small nitrogen content. Nitroglycerin is used as the gelatinizing agent. In the preparation of the powder, the substance is flattened out under hot rollers and cut into cubes or rectangular strips.

Cordites are prepared with an insoluble (highly nitric) pyroxylin, with acetone serving as the solvent. It is extruded in the form of cords or tubes.

The first specimens of cordite contained up to 58% of nitroglycerin (cordite M-1); while later specimens contained from 25 to 30% (cordite MD - modified).

with black powders. At the same time they have one substantial disadvantage. Being prepared with an ethyl ether-alcohol solvent or with acetone, they contain some quantity of this free solvent. In this connection, depending upon atmospheric conditions, the solvent can evaporate from the powder, or, vice versa, the powder can absorb moisture from the air. Such variations in the content of volatile substances are reflected quite sharply in the ballistic qualities. These properties, volatility and hygroscopicity, of common pyroxylines prepared from a volatile solvent and, to a lesser degree, mitro-

glycerin powders, make it necessary to store the powder in waterproof packing and, whenever possible, at a constant temperature.

Beginning with the first world war and subsequent to it, there appeared a powder prepared without a solvent or with a non-volatile solvent. Among powders of this type we count a powder prepared from a mixture of pyroxylin and trotyl. This powder, when heated and subjected to high pressure, will gelatinize and can be well pressed. A powder consisting of pyroxylin, nitroglycerin and an admixture of nitro derivatives of the aromatic series (di-nitro-toluol, di-nitro-benzene, centralite and others) also belongs to this type.

These powders are non-hygroscopic, non-volatile, and have a comparatively low ignition temperature. They are much simpler to produce, and therefore find increasing utilization in numerous countries.

Di-nitro-glycolic and nitro-guanidine powders appeared in Germany during the period of the Great Homeland War (World War II), because of the existing shortages of raw materials.

Insofar as pyroxylin is obtained by the nitration of cotton with a mixture of nitric and sulfuric acids, and the free acid remaining in the pyroxylin gradually decomposes it, a complete refining of the latter, for the purpose of eliminating the acid, comprises one of the main operations in the production of pyroxylin. However because traces of acids will remain after the preparation of the powder, and will affect its keeping qualities, about 1 to 2% of a stabilizer is suitably mixed into the powder for the purpose of neutralizing the action of the acids. This stabilizer combines with nitric oxides and neutralizes them. The most commonly used

stabilizers are di-phenyl-amine and centralite (di-ethyl-di-phenyl-urea).

2. GENERAL PROPERTIES OF POWDERS, THEIR FORL, DIMENSIONS AND TYPES

Smokeless powder is a colloidal substance, a gel, and is similar in its external appearance to celluloid. It is semi-transparent or opaque, depending upon the composition of the powder and the thickness of the material. The usual color of pyroxylin powders is grayish green. The color of the nitroglycerin powders is brown. Stabilizing admixtures stain them into various colors (yellow, red, black). Pyroxylin powder is harder than nitroglycerin powders, the latter being more soft and clastic as a result of the presence of liquid nitroglycerin.

The surface of a powder may be rough, dull or polished. Fine-grain powders for small arms are for the most part coated with graphite to increase compacting and to reduce electrification of the powder as a result of friction. In this way, their surface takes on a shining black color resembling by its appearance black gunpowder.

The form of powders is usually varied: strips, rectangular sheets, blocks, cubes, short and long tubes, grooved grains, etc.

powder in the form of thin square flakes, or beads with a hole through them are used for small arms. The ratio of a side of the square of a flake to the thickness varies from 5 to 10. The length of a bead with a hole through it is 5 to 10 times its wall thickness, while its inner diameter is from half to the entire wall thickness. Powder for weapons of small or medium calibers with cartridge loading have the form of long tubes (macaroni), with a ratio of the length

short cylinders with either one or seven holes through them (see further for details). Both of the two latter forms are called granular powders. Their length is 8 to 15 times greater than the wall thickness. (Grains of rifle powders are appropriately shorter.) Powders in the form of long tubes, either for the entire length of the gun chamber or in two semi-charges for half of the gun chamber, are used almost exclusively for weapons of larger caliber with individual loading. Since the loading of those weapons is performed individually and automatically, and the weights and volumes of the charges are larger, it is important to have a sturdy, inflexible charge. This requirement is fully satisfied by a bundle of tightly bound tubes.

The quantity of gases formed during burning of the powder, and the rate of their formation, depend on the weight of the charge and the numerical value for the surface of the powder. The latter depends on the thickness of the powder and its form. The smaller the grains of the powder, the larger their surface is in a given weight of the charge; the larger the quantity of gases forming in unit of time, the higher is the rate of powder combustion. The larger the caliber of the weapon and its length, the longer should the action of gases on the base of the projectile last in order to provide it with a given velocity, and the coarser should the powder be. The wall thickness varies from 0.1 mm for pistol powders to 6 mm for powders for the 354 mm (14 inches) guns. A porous fine powder is used for pistols.

Processing powder. In order to obtain a given form of powder,

* STAT

the substance is forced through perforations (of a die) by means of a press. Strip powders are made either by flattening under rollers and subsequent cutting, or by forcing through a flat slot. In order to illustrate the preparation of powders with channels, a schematic drawing is shown below of a die, through which tubular powder is pressed (figs. 3 and 4).

The powder mass is contained in the space between the plunger A and the plate die BB. Under the pressure of the plunger, the mass is forced through the openings in the die BB and surrounds the attached pin C. The holes in the die are symmetrical relatively to the pin, and are designed in a manner such that their total area is larger than the cross-sectional area of the cylindrical portion d-d.

Figs. 3 and 4 - Diagram of Die for Pressing Powder

1) Bottom view at d-d; 2) top view of the die plate.

In view of the fact that the plunger A moves downward, the mass is extruded in the shape of tubes, which are broken off from time to time.Later, the latter are dried in the open air to eliminate the

7

STAT

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

Nitrogen Content

To characterize a powder with respect to nitration, it is necessary to know the nitrogen content in 1 gram of pyroxylin powder. This is usually expressed in percent or in cm³ MO (nitric oxide) corresponding to 1 gram of pyroxylin powder. (*) The nitrogen content affects the energy of the powder, as well as its rate of combustion. The greater the content of nitrogen is, the stronger is the powder and the more intensively it will burn. On the average, the mitrogen content in pyroxylin fluctuates within the range of 11.8 to 13% (E = 188.5-208 cm³ MO/g of powder).

Content of Volatile Substance in the Powder, Expressed in Percent

In a physical chemical analysis of powder, not only the total content H of volatile substances is determined, but also its component parts. Hamely: volatile substances removable by means of 6 hours of drying at a temperature of 95°C (h%), which are usually considered to be the humidity contained in the powder, and then these inseparable by six hours of drying (h'%) which are attributed to the alcohol-ethyl ether solvent remaining in the powder mass and gelatinising the powder.

The value H is usually related to the thickness of the powder, and the thicker the powder the higher will H be. In this powders H

(*) Relation between the nitrogen content H% and the volume H0 is given by the formula H% - K \times 0.0050257 \times 100, where K is the number of one in 1 gram of powder at 0° and a prossure of 700 mm.

$$(0.6287 \sim \frac{5}{8}), \text{ or } 1 \sim \frac{5}{38} \text{ K} - \frac{\text{K}}{16}$$

equals 2.0 to 2.5%; in powders with a strip thickness of about 1 mm, $H \sim 4.0\%$; in very thick powders, with a thickness up to 6 mm, H reaches up to 7%.

The value H mainly affects the rate of combustion of a powder. The higher H is, the slower the powder burns. The variation of moisture content in a powder, because of atmospheric conditions, is one of the main defects of pyroxylin powders having a volatile solvent.

2. PHYSICAL-SHIMICAL PROPERTIES OF POWERS

Powder is a low explosive; therefore, all physical-chemical properties of explosives and their characteristics are also applicable to powders. These characteristics are:

Quantity of Heat (Q, Cal/kg) emitted in the combustion of 1 kg of powder, and in coeling the gases to the temperature of 15°C. This characteristic is the most essential one, insofar as at the instant of discharge the chemical energy is converted into thermal energy, and the latter into mechanical energy. Also, the larger Q is, the higher is the temperature of powder gases, and the greater is the mechanical work which they can perform.

As a rule, Q is determined by a test in a calorimetric bomb. In this connection, the following must be taken into consideration.

The calorimetric bomb is immersed in water at a temperature of 15°C. The temperature of water rises at the instant of ignition by only a few degrees, under the effect of heat emitted in the bomb, and after that it begins to drop.

10

The test is conducted for a period of 5 to 10 minutes. Consequently, if water vapors are present in the products of the explosion, then

or the explosion, them

they will proceed to condense and, in this manner, the quantity of heat determined in the test will relate to water in the liquid form rather than vapor form. Actually, the water is in a vapor state at the instant of ignition or explosion, and the equation

$$Q_{\overline{W}}$$
 = $Q_{\overline{W}}$ $\div 620 \frac{n}{100}$
 H_2O vapor H_2O liquid

is used for its determination (where n represents the percentage content of water in the decomposition products of the powder, 620 is the quantity of kilocalories absorbed in the condensation of 1 kg of water vapors and reducing their temperature to 15°C).

Because the water is in a vapor state at the instant of explosion or discharge, the actual quantity of heat emitted in this connection is expressed in this way:

$$Q_{\overline{W}} = Q_{\overline{W}} - 620 \frac{n}{100}$$

H20 vapor. H20 liquid

If we convert all the quantity of heat $Q_{\psi^{\dagger}}$, emitted in a combustion of 1 kg of powder, into mechanical energy by multiplying by the mechanical equivalent of heat E=4270 kgdm/cal, then the resultant value $P=\mathbb{E}Q_{\psi}$ will represent the potential energy of the period, or the work it could perform if all its emitted heat would convert into mechanical work. This value is called the potential of the powder.

Volume of Gases w1, dm3/kg, formed in the combustion of 1 kg

of powder, and occupied by them at a pressure of 760 mm and temperature of 0° C.

After the combustion of powder in a calorimetric or manometric bomb, gases may be conducted into the gasemeter, and their volume may be measured at atmospheric pressure and a temperature of 15°C. The letter may then be reduced to 6°C. Then the water present in a vaporous state will condense into a liquid and the volume of gases measured in the gasemeter will be smaller than the actual volume, if the water was in the form of a vapor. Therefore, the volume of gases determined in the gasemeter refers to liquid water

W₁ M₂O liquid

For conversion to the gas volume which they would occupy if the water were in the form of a vapor, the formula

$$w_1$$
 - w_1 + 1240 $\frac{n}{100}$
 H_2O vapor H_2O liquid

is used (where n is the percent of water wapor content in the gaseous mixture, 1240 dn^3 is the volume which would be occupied by one kg of water vapor at atmospheric pressure and θ^0 C). The volume of gases w_1 has great significance, because the greater it is, the greater is the amount of work which can be perferred by the gases in the gam.

Temperature of explosive decomposition, or the temperature of the powder at the time T₁, of firing, i.e., temperature possessed by powder gases ferming during the combustion at the instant of their formation. It is measured on the absolute scale. The higher the temperature of the gases is, the greater is the amount of mechanical work which they can perform in a discharge.

The value T is usually not determined directly during a test, in view of its large magnitude and the short duration of powder combustion. It is determined indirectly. This requires knowledge of the quantity of heat

Q.

H2O vapor,

the composition of the gases, their heat capacity, and their variation with the temperature.

Composition of gases and their heat capacity. An analysis of the gases after powder is ignited in a calorimetric bomb shows that the main bulk of gases from pyroxylin powders is composed of the diatomic gases CO, H₂, N₂, triatomic CO₂ and H₂O (in the form of vapor), and also a small percentage of metane CH₄ and ammonia NH₂. The ratio of these component parts varies somewhat, depending upon the compactness of loading. It is necessary to state that an analysis of gases is not made at the moment of combustion, but later, when the gases cool off. Therefore, the composition of the gases also depends on secondary reactions between the basic gases, while these secondary reactions may themselves depend on the compactness of loading and the conditions of cooling.

Knowing the composition of the gases, it is also necessary to know the <u>heat capacity of gases</u> e_p and c_w , as well as their variation with the temperature(*), in order to make computations of the temperature.

It was determined on the part of experiments emissive by Malliar and Malliar a

the dependence of the heat capacity of gases c_{ψ} on temperature t may in a first approximation be expressed by a limbar function

 $a_w = a + bt$,

where a and b are constant values. These have the same fixed values for all digitalic gases, and others for triatonic gases.

At the present time, a series of very new and accurate formulass are available for the heat especity. They are based on the quantum theory of heat capacity and take into consideration the escillatory notion of atoms. In this connection, numerical observation in the formulas are determined spectroscopically the desiration in formulas).

Professor A.H. Shelight substituted a logarithmic dependence for the selecular heat capacity in the form of

$$\mu_{C_{\psi}} = \pi \cdot 0.9935 \left(\ln \frac{T1}{98.1} + 1 \right)$$

All these formulas show abrupt variations of heat capacity at low temperatures, which cannot be expressed by linear factors. However, under the conditions of a discharge, fines as a rule cool off to a temperature of about 1800-2000°K, between the instant of gas formation at a temperature T₁ = 2000-2000°K to the instant of the projectile's passage through the muscle face. In this range of temperature variations, all empirical and theoretical dependencies can be eigenment to a matinipationly degree of accuracy by the counselinear equation

C. . . . + bt - A + bt,

which we also shall adopt further on in the manual. (For more details, see the energy equilibrium equation)

14

To determine the temperature, we utilize the equality

$$dQ = c_w \cdot dt$$

Substituting $c_{\overline{w}} = a + bt$, we obtain

$$dQ = (a + bt) dt$$
.

By integrating we obtain

$$Q = \int_{0}^{t} (a + bt) dt = at + \frac{bt^{2}}{2}$$
.

From this quadratic equation, we determine t:

$$\frac{\mathbf{b}}{2}\mathbf{t}^2 + \mathbf{a}\mathbf{t} - \mathbf{Q} = 0;$$

$$t = \frac{-a \pm \sqrt{a^2 + 2bQ}}{b}.$$

We select the plus sign before the radical, since minus results in a negative temperature.

Here we have exemplified the method of determining the temperature for given values of a and b, pertaining to any one gas. However, for a mixture of gases the values a and b will be individual for each gas, and may be determined as follows.

Assume that the values of coefficients a and b for each gad will be:

The relative parts by weight for each gas are

while

$$n_1 + n_2 + n_3 + \dots + n_1 + \dots = 1$$

This

$$a = a_1a_1 + a_2a_2 + a_3a_3 + \dots + a_1a_1 + \dots = \sum_{i=1}^{k} a_ia_{i,i}$$

$$b = a_1b_1 + a_2b_2 + a_3b_3 + \dots + a_1b_1 + \dots = \sum_{i=1}^{k} a_ib_{i,i}$$

and these values must be substituted in the equation for compating

Values of the mean molecular heat capacity from θ to t are listed in Table 1(θ).

Table 1

		7		
t, °C	Mg, Og,		152	co ₃
100	6.96	6.95	8.04	9.66
500	7.07	7.02	8.32	10.34
1000	7.30	7.15	8.83	11.88
1800	7.52	7.38	9.46	11.99
2000	7.70	7.86	10.27	13.50
2800	7.84	7.70	11.36	15.00
***	7.96	7.83	12.20	18.74

(+)		D.Y.	Alekseev,	"Fiziehoukaya	Khimiya"	(Physical	Charletry)	,
-----	--	------	-----------	---------------	----------	-----------	------------	---

STA

Since various authors submit different values for a and b, the temperatures computed by the aid of the listed formula vary up to 10%.

More accurate equations are obtainable by an application of the quantum theory.

In view of the fact that interior ballistics equations also include the weight of powder charges, as well as their volumes, one of their physical characteristics, is the specific weight or density of powder δ . The density of powder varies within very narrow limits, from 1.63 to 1.56; and on the average it is assumed in approximate computations to be equal to 1.6. The density of powder depends little on the type of powder. It is equal to 1.6 for both the pyroxylin and nitroglycerin powders. For pyroxylin powders, the density depends on the content of volatile substances H (the higher H, the smaller δ). Powders with a non-volatile solvent have $\delta \approx 1.62$, with δ dependent on the conditions of pressing: the greater the pressure of pressing, the greater is the δ .

For black powders, of varies between 1.50 and 1.80. In extreme cases it reaches 1.90.

Table 2 - Values for Several Physical Chemical Characteristics of Fouders

Characteristics of Po-	For Pyro- xylin Powders	Por Mitro- glycoria Poudors
Calerille value Q cal/kg (water in vaponies state)	900-800	1100-1200
Volume of games v_1 , dm^3/kg (water in various state) Temperature of combustion T_1 , o_K	900-970 2800-2500	960-900 3000-2500

17

		get - (Cent'	d.)	
F				
			200	
			and the second section of the second sec	
	****		1.03-1.06	1.00000

The famous function supplies appointed (a.P. Resonable (diggs to 1809) substitute the lightening contract formulae for the function of preceding position (for altress contest in discount):

#1 - 1816 - 40,788; 27 - 265 + 24.78

Taloulations hand postume formulae give the following values in and Ti (6000 9):

•		Sille 2		
-		12	19	14
	979	931	883	833
2,0	2166	3456	2730	. 2006

During recent points investigations, over equinated to determine the investigation of the investigation of the perfect interiorist (a. by said Y₁ on the composition of the perfect.

The our joining, them distributed the many trees of

If we designate the presentage content of nitrages in pyroxylin as A, and correspondingly distignate the content of nitraglyceria in as A, and correspondingly distignate the content of nitraglyceria in

-

as c, di-butyl-phthalate as d, vaseline as v, separable volatiles as h, inseparable volatiles as h', di-phenyl-amine as s, camphor as ϕ and graphite as g, then the formulas of Sheklein will yield:

 $Q_W = 730 + 148.5 (N - 11.8) + 9.41 n - 28.5 c - 24.3 d - 37.5 v - 24.3 d - 37.5 v$

13.6 h - 26.7 h' - 31.0 s - 32.5 ¢ - 42.0 g, where 730 represents the heat of explosive decomposition of pyroxylin having a nitrogen content of 11.8%.

 $W_1 = 944 - 47.3 (N - 11.8) - 2.45n + 14c + 12d + 23v + 3.4h +$

+ 16.9h' + 14.6s + 17.4 + 10g.

where 944 represents the volume of gases forming during the combustion of pyroxylin having a nitrogen content of 11.8%.

 $T_1^{O}K = 27900 + 375 (H - 11.8) + 22 n-71 c-59 d-100 v-54 h-$

-82 h'-88 s-92 ∳-125g.

where 2790° corresponds to the temperature of the explosive decomposition of pyroxylin having a mitregen content of 11.6%.

S. BALLISTIC PROPERTIES OF GENTOWER

Ballistic properties of guapewder is the term applied to values governing the maximum pressure p_n of pewder gases and to the rate of pressure increase $\frac{dp}{dt}$ during combustion of the pewder inside a constant space.

One of them depends on the antere of the pewder, and if rejected by a definite pattern to the latter's physical-chemical elementalistics. The others are governed by the geometrical data of the popular grains

19

composing the charge.

Deligious descrition describent on the mature of the determined described described the state of the described described described as an additional described describe

In the commention of pender is the here during a distance the presence of the games and the rate of its variation during not only on the characteristics of the pender, but also deter values and parameters related to the design of the uniform and projectile, and characterising the entire artillians of the values $p_{\rm p}$, $p_{\rm p}$). These values may be termed the uniform characteristics of the gan and projectile.

For the time being, only a short definition of ballings, will be presented at this place. A more detailed discussion these properties will be given later, in the chapter on him the

The Parent's of the pender represents the work which the games can perform during the combestion of 1 kg of pender, which heat those games up to the temperature $T_1^{\,\circ}$ and permit then the expline at constant atmospheric pressure.

This work depends on the specific volume of games and the temperature of the explosive decomposition of powder. It is expressed in hy-m/kg

where $p_{\rm h}=1.003$ kg/cm² and represents atmospheric protested $v_{\rm h}$ is the specific volume of games at $\theta^{\rm o}C$ and atmospheric processes; and

T1 is the temperature of explosive decomposition (conjustion) of

powder.

By modifying the properties of the powder in a manner increasing $\mathbf{w_1}$ and $\mathbf{T_1}$, it is possible to also increase the energy of the powder.

The term "energy" appears to be a sort of historical survival, and does not truly define the amount of work. However, since it has been maintained in ballistics, we shall continue to use it in our treatise.

Covolume α in dm^3/kg . In the presence of great pressures, such as develop in the combustion of powder in bombs and weapons, gas densities become so great that the gaseous molecules by themselves occupy a liberally significant part of the space in which the combustion occurs. In physics, this is explained by the introduction of a value, proportional to the volume of gas molecules and equal to the sum of volumes of spheres of influence of each molecule, in the equation for the state of the aggregation of gases. Van-der-Yaals assumed that the volume of these spheres of influence is equal to the quadruplicated volume of the molecules themselves.

This value is called the "covolume." It is specific for a given type of pewder, proportional to the volume of gas molecules, and exerts influence on the value for pressure.

We will assume that covolume is a volume proportional to the volume of melecules of games forming during the combustion of 1 kg of pender. (It is expressed in dm3/kg.)

The ratio of the covolume of a given gas to its volume at θ^0 C and at a pressure of 760 mm, a:w1, varies within marrow limits for various games. Hamoly;

Mitrogen

Mothane

Oxygen

Hydrogen

Carbon dimide

.001350

وجمعته و

. 0000

0.00000

Totally it is assumed that $a \sim 0.001 \text{ m}_2$.

Eisnemskii gave for pyroxylin powders the formula $\alpha=5.7/8^{0.7}$, i.e., $\alpha=0.00108$ w₁.

Evants writes in his study [3]: "In all probability, the eliment from volume to covolume is not a maintant value, but a function of the volume. The commonly accepted proposition that $q = 0.001 \text{ m}_1$ constitutes an approximation, with the error increasing for an increase of parameter. It is most expectate and accurate to grammalish a determination of the covolume on the basis of pressure increases."

Information gained in recent years provides the foundation for the assumption that the covolume becomes smaller with an increase of the pressure of guide above 10,000 kg/cm². The covolume may be differed as a desstant value, under normal desditions and assumption up to 4500 kg/cm².

pute of perder emiliation u_1 at a pressure p-1. Similarly in f and u_1 this value is a derivative of the physical-chemical marketies of penders. Variations of the chemical composition of the pender are reflected very strongly in the value for the rate of combustion. For implement, the rate of combustion u_1 for mitroglyceria penders passesses values from 0.070 to 0.150 m/sec at p=1 kg/cm², depending mainly on the content of nitroglyceria.

The rate of combustion u_1 for pyroxylin powders possesses values from 0.060 to 0.090 mm/sec at $p=1 \text{ kg/cm}^2$, depending on the content of volatile substances.

In the combustion of powder within a constant space, the energy f and the covolume α exert influence on the value of the pressure and on the rate of its intensification. The rate of combustion u_1 influences only the rate of pressure increase.

The value u_1 of the rate of combustion, when related to the pressure p-1 has a compound magnitude dm/sec; kg/dm^2 .

All these characteristic f, α and u_1 depend upon the mature of the powder.

Table 4 - Values f, a and u, for Various Powders

Powder	f in kgdm/kg	in dm ³ /kg	u _l in dm/sec: kg/dm ²
Pyroxylin powders	770,000-950,000	0.90-1.1	0.0000060-0.0000090
Mitroglyceria powders	900,000-1,200,000	0.75-0.85	0.0000070-0.0000150
Black powders	280,000-300,000	~0.5	

The last ballistic characteristic depends upon the geometrical data of the powder. This characteristic is the "Dimensions and form" of powder grains, and the related "specific surface of the powder," the ratio of the initial surface of the powder to its volume. The principle of gas formation and the latte of pressure increase in the combustion of powder depend upon these values.

Chief importance is attributed to the sumilest diseasien, the thickness of the strip or the unil. Seeses the combustion of the

perdaginals (strip, tube) occurs from two sides, the thickness is the light to the fight of the thickness which burns in any distribution).

Apart from the ballistic characteristics of the possion, the descript of leading Anise affects the value and character of the pression increase. It is a characteristic of the cambitions of charging. The density well-backing represents the ratio of wright work charge to the volume T_g, in which the combestion of the possess takes place:

A - W 10/42.

In this sense, if we fill the entire space We will publish, then the density of leading will become a gravimotote density.

of the white. At a given sensity of of powders, it will as greater for a fine powder with remaind edges and limit for a rectangeler grain with pretracting edges. In this commentee, for implance, a granular powder with seven heles graved to be more "smitable for packaging" then the strip type powder. By the same tehen, a shell for a field gan will house 1100 kg of strip powder, and up to 1300 kg of the powder grains haveing seven heles.

In this masser, we have four ballistic characteristics: the energy θ_i the covolume u_i , the rate of combustion u_i at p=1, the dimensions and form of the possion, and the characteristic of the characteristic of the characteristic of the characteristic of

24

With a given composition of the powder, we can regulate the process of pressure increase and the magnitude of the pressure by varying Δ , the dimensions and the form of powder. The dimensions and form of powders are varied because it is necessary in each case to select the dimensions of the powder and the weight of the charge for the gun, in order to obtain the required muzzle velocity of the projectile, under conditions in which the pressure will not exceed a given fixed value governed by the strength of the barrel wall.

The ballistic characteristics will be discussed in greater detail in Section II.

SECTION TWO CHERRAL PYROSTATICS BASIC RELATIONS AND PRINCIPLES OF GAS PANATION DURING THE CONSUMPTION OF POSSESS IN A

I - COMPUTION OF POWERS

1. THE MANCHETRIC DOM:

Pyrostatics investigate the combustion of guapowder in a compatant space. It is one of the fundamental branches of interior ballistics. A familiarity with it is necessary for a clear comprehension of phenomena occurring during a gen discharge.

The combustion of powder is investigated in this connection under simplified (static) conditions, where the motion of the indicatile is distributed, the variations of volume do not exist, and games do not perfer exterior mechanical work. The mechanical work of the games complete of a certain pressure, which the walls of the space in which the combustion takes place are subjected to from within.

On the basis of the experimental investigation of the development of the pressure of the gases during a combustion of powder within a constant space, presidenties form the theory of powder combustion and establish principles of formation for games containing the constant which is expended for the performance of various exterior functions under the conditions of a gan discharge.

In this commontion, investigation is unde of the influence of physical-chemical properties of powder, of ballistic characteristic

and conditions of charging on the development and process of gas pressure.

The latter is in itself a very important factor, affecting the rate

of formation of gases.

Pyrostatics presents the methodology of the ballistic analysis of gunpowders, i.e., the methodology for determining the ballistic characteristics of the powder.

Knowing the ballistic characteristics of a powder and the principles of its combustion in a constant space at a given process of pressure, it is possible to account for the principles of gas formation and pressure development under the even more complicated conditions of a discharge, with an occurrence of projectile motion (pyrodynamics), and a variation of the volume and performance of exterior functions by the gases.

In this manner, pyrostatics offers a source of knowledge and fundamental data necessary for a comprehension and study of the more complicated phenomena occurring during a discharge.

Instruments in which the principles of gas formation during a combustion of powder in a constant space are investigated, are called managerize bombs. In view of the fact that in the course of the subsequent exposition of pyrostatics it will be necessary to take experimental materials as a basis, a description of the design of the most typical managerize bomb is included here for the purpose of lending clarity to statements on obtaining such material.

The manuscrite bomb is a laboratory instrument serving for the purpose of determining the magnitude and character of the increase of gummatre developed by games formed during the combustion of gumpowder or explosives inside a constant enclosed

Making it possible to determine all hellistic characteristics of parties, (energy of the pender, covolume of the pender games, equation of combustion and its rate, as well as governed other configurationistics), the number is bomb at the parties time constitutes and of the fundamental fundaments of an interfer hallistics and

Up to the present time, the Vol bomb, designed in the 1880's eggents to be the most ridely used. In this houle, the pressure is determined from the compression figure of a coppur cylinder, called "crusher." (English word "crush" means to crush or compress,)

The bomb (fig. 5) consists of a cylinder A, made of high-grade stool, which has a server throad in each end of its inner surface. The igniter cap B is servered in at one end, while the cap C with the grasher manemater is servered into the ether and. In the igniter there is an insulated red which conducte the electric current is bedy of the bomb. A thin wire connects the points c and e', and phases through a shell made of tissue paper which contains a given assent of igniter (pyroxylin, black powder). This wire is ignited by the current.

38

The rod p moves within the duct of the crusher cap C, and transmits the pressure of the powder gases to the crusher column k. The latter is made of electrolytic copper. Its other end is placed against the head of a screwed-in plug which serves as an anvil. A small centering rubber ring n is placed on the crusher to obtain coincidence of its axis with that of the rod. The head of the rod r, adjacent to the crusher, has an outwardly protruding extension r' which moves in a lateral guide slot in the head of the rod cap. A light steel pen point s is fastened to the extension. It registers the travel of the rod as a function of time on smoked paper glued to the drum of the chromograph.

The copper obturating rings, d, d, serve to prevent the escape of gases between the walls of the bomb and the screwed-in caps, while the portion of the duct e which borders with the rod is filled up with a mastic to protect the rod from the immediate effects of high temperature gases.

The bomb 6 is fastened in a special clamp 5 mear the drum 2 (fig. 6), in order for the pen point to touch the smoked paper only lightly, and when the drum revolves, to mark on the latter a thin straight line parallel to the base of the cylinder (as en fig. 7).

The tuning fork K is located on the other side of the dram S.

It is caused to vibrate by the opening and cleaning of electromagnets,
e,e, which attract the arms of the tuning Seek. A thin pen point
Lis fastened to one of the latter's arms, recording its oscillations
on the same smeled strip of paper.

prior to the experiment, the drum of the chronograph is put into rapid rotation by means of an electric motor H or a time mechanism. When the rotation becomes uniform, the current is turned on and burns the wire going through the fune. The fine itself ignites the charge of powder located in the bomb.

Fig. 6

10 TO 18 TH

Fig. 7 - Carve of the Compression of the Compression of the Compression is the

The pressure produced during the combustion of the pender games is transmitted through the rod to the crusher, compresses it, and the pen point of the rod plots the compression curve um (fig. 7) in accordance with the process of pressure increase. After the endied the combustion and the attainment of maximum pressure, the red sings, and the pen point draws a straight line by parallel to the initial line. Here, the distance between both of these straight lines is equal to the full compression of the crusher.

Simultaneously with the turning of of the current, the vibrating tuning fork is pisced near the drum for a short period of time by the aid of an automatic mechanism, and its pen point/ draws a wave-like curve "mine curve" about the center line. Because the manhor of tuning fork oscillations per second is already known, and having measured the length of one wave by means of a compagator microscope,

30

we can determine on the circumference of the drum the length corresponding to 0.001 second at a given speed of drum rotation. In this way we obtain a time scale for measuring the crusher compression curve.

After completion of the test, the paper with the sinusoidal curve and the crusher compression curve is taken off and coated with lacquer. After the drying process, the curve is measured under a comparator microscope.

The pattern of the curve and of the sinusoid is shown in fig. 7.

After measuring the compression curve obtained at suitable time intervals, the compression of the crusher is determined as a function of time.

Then, in a given test, the dependence of powder gas pressure increase on time (curve p as a function of t) is obtained on the basis of the dependence of crusher compression on the magnitude of the pressure, the latter having been previously determined experimentally in a press.

In this way we can determine not only the maximum pressure developed by the gases of a charge of given weight (for a given density of loading), but also the pressure increase relatively to time. That is, just those values which depend on the ballistic characteristics of a gampewder.

Consequently, if we know the equations relating the ballistic characteristics to the law of gas pressure increase, and had the bemb test data for any given peoder, we could determine the numerical values of its ballistic characteristics.

In pyrostatics, relationships are also known between the ballistic characteristics of a powder, the condition of the test and test data obtained.

Even now, the manuscric bemb forms the basic apparatus of pyrestatics. Sometimes an elastic manuscrir is used in place of the grasher cap.

The previously mentioned cylindrical crusher began to compress and registered the increase of pressure at appreximately 300 kg/cm². The initial phase of pender combustion remained unexplored.

In order to obtain the entire law of pressure increase from the beginning of ignition to the end of the total combustion of the pander, one can use a crusher shaped so that, having a low redictance at low pressures in the first phases of the combustion process, it gradually increases in resistance as the pressure formasses.

The conical crusher developed by the author in 1923, and obtained by michining a part of a cylindrical crusher into a cone, possessed that property. This type of crusher registers pressures from 5 to 7 up to 19000 kg/cm². In this way, it permits not only the investigation of powder combustion from the very beginning to its end, but also a study of the burning of the igniter itself and the process of powder ignition.

The conical crusher was widely applied in our country in laboratory tests of pender combustion, as well as in determinations of the low pressures of pender games in tests conducted on the firing range.

At the present time, piezoelectric manometers based on modern achievements in electrotechnology and radiotechnology are also used. Still, the main aspect of the business remains thus: the process of pressure increase is registered by one or another method. Then, knowing what type of powder we deal with and the conditions of its combustion, on the basis of the pressure increase, we can determine the rate of gas formation and its dependence on various factors.

2. PRINCIPAL PHASES OF COMBUSTION

In the combustion of powder we can distinguish the following three phases.

Ignition of the powder. In order for the powder to become ignited, it must be heated up in such a manner as to obtain, at any given point of the charge, a temperature higher than its ignition temperature. The ignition of smokeless powder occurs at a temperature of about 200°C. Black powder with an ignition temperature of the order of 300°C, however, ignites and burns made vigorously. After the powder is ignited, even though only at one point, the combustion reaction proceeds by itself as a result of the heat emitted in the combustion of the powder. Two grantumes take place significances: ignition of the powder, and the combustion proper.

Ignition is the process of the propagation of the conbusti reaction over the applace of the positor grain.

Combustion is the process of the propagation of the sanction into the interior of the pender grain.

The above two processes differ one from the other. The figures characterising them and relating to the rates of ignition and

23

combinguing of ampholose and black powders are listed wilder, in

After the ignition of black remains to the services of black remains to the services of black remains to the services of black remains to the services. Moreover, the grain continuous to the services. Moreover, the services of the services

in the Sum of a path over estimated iron varies from 1.40 8

in the of combustion of Mink protoco in the life was also in the sale of grant protoco and that the rate of combustion, or the speed of the transmission of the flame from layer. At the sale of the transmission of the flame from layer. At the does not depend upon the cross-excitent area of the building blank, but that the speeds of combustion are inversely propositions, in the constity of the blocks. It was proved that for an identified we do grant protoco the rate of manufactures.

The rate of combustion of black pender in egod off in an analysis around 0.01 m/sec = 10 mm/sec., 1.e., many times loss than

the rate of ignition.

Smokeless Powders ignite and burn in the open air considerably slower than the black powders.

If we fasten a strip of pyroxylin powder (or a stick of nitroglycerin powder) vertically and ignite an upper corner of it, the strip will burn calmly with a yellowish flame, while the propagation of flames over the surface of the strip will proceed comparatively slowly.

In addition to this, the burning grains will form an angle some time after the beginning of the combustion. This angle will remain constant to the end of the combustion (figs. 8a and b). The magnitude of this angle depends on the ratio of the combustion rate of powder to the rate of ignition.

Assume that the rate of combustion equals u, the rate of ignition u', while u'>u.

If we ignite a strip of powder at one corner (at the point a), them it will burn inside at the rate u, and on the surface at the rate u', for various intervals of time. Assume u' - 2u. Then the strip will have sequential burning surfaces of the type shown in fig. 8, i.e., 1-1-1; 2-2-2;...;5-5-5; 6-6-6. Beginning with the surface 5-5-5, the angle at the top maintains its magnitude and equals two times < coo = < 4.

How, the ratio of rates is u/u' = sin q. In this manner, having measured the angle 9, we can determine how many times the rate of . indition is larger than the rate of combustion. It is of interest that after reaching the constant angle (surface 5-5-5), the shortening of the strip proceeds in unit time not at u (and of compastion), but at u' (rate of ignition). Therefore, meting

	of a stick of a civ de but out of billions	d on.
	1	pro airig dans of Miss
	A State of the sta	
		+** }
	•	
		2-6 1-6
		ted, testing
	o projection cortain	n distance,
		STAT

Fig. 8 - Combustion of a Strip of Powder in the Open Air

1) Front view; 2) side view.

4. COMBUSTION AT A PRESENCE LOWER THAN ATMOSPHERIC

The first observations and experiments were conducted with black powder. They have shown that powder burns less vigorously in rarefied atmosphere on high mountains than at the foot of the same mountains. Experiments on the combustion of powder fuxes at various altitudes and at various barometric pressures verified this conception. These experiments retain their significance even at the present time, because the combustion of powder in time fuxes, during antisircraft firing at aerial targets, takes place much slower than in flat trajectory firing.

5. COMMUNICATE IN A VACUUM

The significance of pressure tourses even more clearly evident in the event of great <u>parechapting</u>. It was preven by experiments that if the parties in placed in a mater the tolk of an air pump, it will empletely fail to thinks, regardless of thringing it into contact with a red bet wire.

A platinum exetainer filled with black powder was bested until

STA

red, in a grantly rerefled attemptors under the well of an air page. After some time pages, the person began in him slanky memority it did not explose, higher the open air. By a platinum with it membered through the attemptor and beautifully, the grains surroughling it will begin the attemptor and beautifully, the grains surroughling it will be consider it will begin the attemptor, and beautifully the grains surroughling will not consider that the time said pages and after the times of seed time, while the others will subject totage.

Apply combestion county points; waly when promises in the second to 1/10 Ats.

In this manner, the implified of the position, which is a facility of the position of a total institution. It is necessary that a constitution of a total property or let. The history the lattice property, the more vigorough; will the powder limits.

The same concepts have been probable from

4. COMMETTER OF PERSON AT INCHASE PROPERTY.

Although this fact was known for a long time, empirically on the probability the total vas known for a long time, empirically determined by the supplier of the 19th empiry.

It should be of interest that to show here he profited at the second of a chemical to for parallel infly such artists of the second of the interest of the int

butters which were processed from a gun them it was discontinued

30

Kastan found that for densities of black powder $\delta \leq 1.64$ there are no residues; for $\delta \approx 1.72$ the residues had an irregular form; while at $\delta > 1.81$, the form of the residues was very similar to the original grains. (In fig. 9, residues are represented by the shaded areas.)

Vel prepared, from one and the same mixture of black powder; tablets and small cylinders of similar shape but of varying dimensions al and a2, and ignited them in a bomb, using the same charging density. Thus, the maximum pressure p_m was the same (for both). The times τ_1 and τ_2 for total combustion were determined by the aid of crusher pressure recordings.

In the first instance, at $0 \le 1.64$, the time of combustion of the powder was not governed by the dimensions; $F_1 = F_2$, regardings of the significant difference in dimensions.

In the second instance, at $\sigma \approx 1.72$, the time increased with an increase of the thickness of the explosive blank; but not however proportionally to the dimensions. This corresponded to the irregular speidues in the experiments by Martan.

Mic - 1.00, the manual was a

At an increased density of loading ($\delta \approx 1.70 - 1.72$), its particles fit closer one to another, the interstices become smaller, and the dispersal under pressure occurs later. Only a very dense mass ($\delta > 1.80$) does not disperse under pressure, and burns in concentric layers.

In this way, the character and rate of combustion of black powders at higher pressures depends on the density o', and even to a greater degree on pressure. The rate of combustion increases with an increase in pressure.

The following characteristic of parallel layer powder combustion, which become known as Vel's characteristic, was determined on the basis of the experiments listed above.

If two powders, identical with respect to chemical composition and having a similar form of grain, but of different dimensions, are burned in a closed space with the same density of leading, and if their hims of total combustion are related to each other as their medical dimensions, or as their coefficients of similarity to the same density, then this is a characteristic of powder combustion by purified layers.

The American, if in the fight instance the charge is composed to the distance of their times of the S. S. will be seen and in the second to th

the the control of the principal statement of the control of the c

then it will burst into flames instantly, practically in and will burn out rapidly. During the emidenties of probombs and weapons, ignition is accomplished by samilies; made of pyroxylin or black powder.

These instantly produce a larger with the grass of the pressure to 15 to conditions, the powder begins to burn to over its entire surface, and the further by concentric layers. That is why the form.

Conducted observations served up.

Vel's law of conduction for emphasis,
the mass of the powder is homogeneous,
the grains of the charge are exactly,
form, was accepted not a basis for a

- 1) The ignition of poster in
- 2) The later of th

STA

The subsequent studies of the twentieth century defined the geometrical principle of combustion more precisely, and introduced consideration of the influence of factors, inexplainable in the light of the basic assumptions.

The geometrical law was originated on the basis of an investigation of pyroxylin powders in a simpler form (strip, tablet, tube). Later, powders in a more complex form made their appearance. These were powders with a multitude of holes (American grain with three, seven and nineteen holes; in our country the grain of Eismienskii with 36 holes), flegmatized powders with an uneven distribution of the flegmatizer over the depth of the powder mass, mitreglycerin powders, in which the nitroglycerin distributed itself unevenly over the powder in storage. Also introduced was the process of graphite covering the surfaces of certain powders, which retarded the ignition process.

The appearance of these new factors demanded a more precise definition of our ideas on the actual character of powder combustion, and required the introduction of corrections to the perfected scheme of combustion.

7. THE THICKY OF POWER COMMUNITION

In 1908, the French research scientist Chartense presented in his study, entitled "Interior Ballistics" [3], a criticism of the Binds assumptions of the granterical principle of confunction, and suppussed doubts as to their correctness.

My commissing more closely strips of course projected in an impropolately burned state from shell calibor plans during

45

46

СТАТ

It is by far more probable that the first bundle, located adjacent to the igniter, will ignite and burn somewhat ahead of the last one, which is located at the bottom of the projectile.

Propagation of ignition. Ignition propagates for the most part in the holes in and interstices between the powder grains. It will proceed more advantageously if the grains are distributed in the direction of chamber axis, than if they were placed irregularly.

The closeness of the grains to one another and to the wall of the gun increases the possibility of the occurrence of causes which result in the failure of the powder to burn by parallel layers.

These considerations were at one time of significance to the improvement of ideas on the actual combustion of powder.

However, Charbonne could not prove experimentally a manhor of the very probable assumptions on ignition which he put forth.

Considerably more complete investigations of the combination of powder were conducted in the experiments of H.E. Serebriahov [4] (1924-1939), who developed the conical crusher of high sensitivity to small pressures, which permitted the registration of pressure increase beginning with 5 to 7 kg/cm².

irregular combustion of such powders, which took into consideration the influence of the varied intensity of combustion of individual elements of the charge.

The theory of irregular combustion shows that the difference in intensity of gas formation in the interior of powder holes, and on the exterior surface of the powder, depends on the density of loading, and varies during the combustion of powder in a gun in accordance with the motion of the projectile.

Since the discovered anomalies were not explainable by the assumptions of the geometrical law, but were caused by peculiarities of the physical-chemical properties of the powder or physical properties of powder gases, the sum total of data representing the actual law of gas formation were called the "physical law of combustion" [5]. For details see Section III.

Biuraur 67 approached the process of combustion from the standpoint of physical chemistry, and introduced the following assumptions as a basis for a scheme of powder combustion:

- 1) Powder burns as a result of attaining its temperature of decomposition by virtue of the impact of previously fermed gas molecules.
- 2) In the gaseous layer directly adjacent to the burning surface of the peeder (centact layer), the reactions are still incomplete (presence of MD, which still fails to react with 60 and M_{\odot}). The temperature of this contact layer is lower than the temperature of explosion obtainable by way of calculation. The rate of pender contaction depends on the temperature of this particular layer at a given pressure.

49

- 2) The reactions end in layers of gas more distant from the burkers of the positor, and the layers of gases become increasingly warmer.
- 4) Upon wenters with the cool wall of the bomb, the games transfer a postion of their best and their temperature decreases.

The same author extempted to determine the influence of the radical energy of pender games on the heating up of pender at law describes of leading and pressures.

Exring remain years (from 1930 on), a number of studies of our science professors In. B. Soldsvich, A.P. Belianv and B.A. Paris Emercial [8] were devoted to the problems relating to the number of the combustion of powders and other explosive substances.

Beginning with the investigation of velatile liquid explicitly, and paying evelyed a theory of their elaboration, Professor Soldwick applied that theory to the combastion of penders [0].

This so-called "thermal" theory considers the combustion of pender to be the result of the heating of its surface to the temperature of decomposition, with a consequent conversion of the public into given, and an increase of the temperature of these cases to the temperature of conbustion.

In this enmeetion, the rate of conjuntion depends on the temperature to which the powder is heated by the action of the het games surrounding it, while the depth of the heating and the increase of temperature depend on the rate of combustion, which is itself dependent on the pressure of the games.

A characteristic of this theory is the detailed chart of thermal energy distribution between the gases and the powder, and the extensive explanation of the significance of the initial temperature of decomposition, of the heating value and heat conductivity of the powder.

Even though this theory cannot be considered entirely complete, it still remains of interest, in view of the fact that it gives details on and perfects our ideas on the process of powder combustion.

8. THE MODERN THEORY OF POWDER COMBUSTION (According to Ia. B. Zeldovich)

In accordance with contemporary views, the combustion of powder occurs as follows.

The nitrocellulose in the surface layer of the powder decomposes. The products of the decomposition come out on the surface (process of gasification) and react in the gaseous phase, increasing the temperature of the gases greatly. The temperature on the surface of the powder is now relatively low, and corresponds to the primary decomposition of mitrocellulose. The temperature distribution in the mass of the powder and in the gases forming during its combustion, is shown by the diagram of fig. 10.

 T_0 - the temperature in the interior of the powder.

 $T_{\rm p}$ - the temperature on the murbose of the powder.

 $T_{\rm g}$ - the temperature of combination (temperature of the gases).

Chemical reactions occur in the shaded areas. In mone 1, gasification; in mone 2, reaction of gases liberated from the powder (reaction of combustion).

The burning surface of the powder has a heated layer (x_g) , whose thickness depends on the temperature conductivity of the powder and its rate of combustion. The decomposition reaction probable in a partion of this layer x_p . One of the fundamental tagks of the theory of powder combustion is to determine the relations existing between the rate of powder combustion and the kinetics of the chemical reaction.

The marface layer temperature value is important not only for determining the relations existing between the kindless of gasification and the rate of manifestion, but also for the investigation of problems connected with the ignition of the panels, another combustion etc.

In the tests of O.I. Leipunskii and Y.I. Aristownes, the following results were obtained in contestion of powder at atmospheric pressure:

For pyroxylin powder $T_p = 200 \pm 45^{\circ}C = 526 \pm 45^{\circ}E$ For nitroglycerin powders $T_p = 320 \pm 45^{\circ}C = 663 \pm 45^{\circ}E$

Fig. 10 - Bistis Man of Temperatures Buring

1) Poudor; 2) games.

The decomposition of pyroxylin does not occur in the entire surface layer, but only in that part of it where the temperature approaches T_p . The thickness of its x_r comprises only about 5% of the thickness of the heated-up layer x_g .

Below, certain characteristics of powders are listed in accordance with the data of O.I. Leipunskii (Table 7).

Table 7						
Specimen of Powder	Calorific Value of Calfg oc	Temperature Conductivity cm ² /sec.	Heat Conductivity cal/cm-sec. OC	Rate of Combustion at p = 1 kg/cm ² mm/sec.		
Pyroxylin	0.29	1.2 · 10 ⁻³	5.5 · 10 ⁻⁴	0.51		
Mitroglycerin	0.34	0.87 · 10 ⁻³	4.8 · 10 ⁻⁴	0.45		

CHAPTER 2 - CHARACTERISTIC EQUATION OF POWDER GASES

(Dependence of Powder Gases' Pressure on the Conditions of Loading)

During the combustion of powder, a large quantity of games is formed. They have a high temperature and exert high pressure on the wall of the gum in which the combustion occurs. The general principles of physics and thermodynamics are applicable to these games. Therefore the characteristics equation expressing the relations between pressure, temperature and specific volume of games should also be valid for this case.

For "ideal" games, whose molecules do not have a volume and fail to attract each other, or for sufficiently rerefied games, the physical form of the equation for unit weight is expressed by the Elapeiron furnila:

pp - 17,

to a to the mounts of shoes;

w is the specific volume at t - 000 and a pressure of 1 atm;

To = 273 + to = absolute temperature of gases;

R is the gameous constant.

Since in a combustion of powder in the manometric bomb, the games have a very high density, then the following Van-der-Wals equation for real games should serve as the equation of their state of assemphtics:

$$\left(\begin{array}{cc} y - \frac{a}{\sqrt{2}} \end{array}\right) \quad (w - b) - bT,$$

where b is the characteristic of molecule volume, and a is the characteristic of condition of gas molecules.

The little feros (of cohesist) may be dissegarded at higher temperatures, so that the equation will then be written in this simplified form:

In this latter form, the equation is accepted in interfer balliotics. This equation pertains to a whit of weight of grown.

If why of powder is burned in the space V_0 and is converted entirely into games whose temperature is equal to the temperature of confunction T_1 , then the preceding equation will be written in this minutes

01

--

(1)

The formula of Van-der-Vaals was evolved theoretically in the 1870's as a result of the assumptions of the kinetic theory of gases.

Investigations of powder combustion, and of gases forming during such process, were begun by Gay-Lussac (1824), and were continued by Bunsen and Shipkov (1850). These investigations were conducted at pressures around 1 atm. However, combustion in guns occurs at higher pressures. Therefore, studies began in the second half of the 19th century on the investigation of powder combustion at higher pressures in manometric bombs.

Detailed experimental investigations (initiated in 1868 and completed in 1880) were conducted in England by Hobel and Abel.

Some data of these experiments are quoted in the "Interior Ballistics" of A.F. Brink _10_7, and also in the study of I.P. Grave entitled "Pyrostatics" _11_7.

The experiments were conducted in manometric bombs, with a limitation of the maximum pressure by means of a cylindrical crusher, and included measurements of the volume of gases and an analysis of their composition. Black powders which were at that time used for military purposes, formed the object of investigation at leading densities $\Delta=0.18-0.90$.

The experiments clarified the composition of the products of powder combustion, the quantity of gaseous products and their volume at 6°C and 760 mm, the quantity of non-gaseous products and the physical form in which they are found at the moment of explosion, the quantity of heat **Q**₀, the mean heat capacity of

decomposition products in a constant space, the temperature of decomposition products, the relations between the pressure and density of loading, the variations occurring in the products of decomposition with a change in the density of loading, the influence of the chemical composition of the powder on the resultant products of decomposition, heat and pressure, and also the effects of grain dimensions, their consistency and humidity content, etc.

Experiments on the clarification of the dependence of the maximum pressure on the density of loading, formed an object of special interest for interior hallistics.

1. THE PORTISEA FOR THE MAXIMUM PRESENTS OF MARKS After conducting a large number of experiments, plotting the values for maximum pressure $p_{\rm m}$ and density of leading Δ in a diagram drawing the curve $p_{\rm m}$, Δ through the points obtained, and fitting an equation to this curve, Nobel and Abel established the following ampirical relation between the density of loading Δ and the maximum

$$P_{\mathbf{a}} = \frac{I\Delta}{1 - \mathbf{a}\Delta}.$$

In this formula, f and α are constant coefficients determined as a result of a number of experiments at various Δ .

Assuming $\Delta = 1/1 + \alpha$, we obtain:

$$p_{n} = \frac{\frac{1}{1 + \frac{1}{1 +$$

At the first glasse, we conclude that the value f has the dimensions of pressure. That type of dimension may be excountered in older courses of interior ballistics, under the theory of explosive

substances. Actually, as it will be shown later, they express the work capacity of the powder gases.

The value f was termed the "energy" of the powder.

The value α represented the volume of liquid and solid residuals in the combustion products of black powder.

The proper physical meaning of the coefficients f and α is clarified by a comparison of formula (2) and a simplified formula (1).

In formula (2) we substitute in the place of \triangle its meaning ω/Ψ_0 , and convert it by multiplication of the numerator and denominator by Ψ_0 . We obtain:

$$\mathbf{p}_{\mathbf{n}} = \frac{\mathbf{f} \Delta}{1 - \alpha \Delta} = \frac{\mathbf{f} \omega}{\mathbf{v}_{0} - \alpha \omega}$$

Formula (1) has the following form for w kg of gases:

$$p_m = \frac{\omega m r_1}{v_0 - b\omega}$$

By comparing two formulas obtained experimentally and theoretically, we find that they are identical at $f = RT_1$ and $\alpha = b$. In formula (2), the value α represents the volume of gas molecules, as does value b in formula (1).

The physical meaning of the value f, the so-called energy of the pewder, is explained by the expression

It is known from thermodynamics that the value R represents the work which the gas performs, if we heat it 1^0 at atmospheric pressure $p_R = 1.633$ kg/cm²:

57

 $R = \frac{P_R v_1}{273}$

Since 1/273 is the coefficient of gas expansion when it is heated 1^0 , then $v_1/273$ is the explanation of the volume \tilde{v}_1 when the gas inchested 1^0 , while the product of p_n by $v_1/278$ is the work that is done by 1 kg of games when the tot T_1^0 at a constant pressure $p_n=1.033$ kg/cm².

Community, $f = \pi r_1 = p_0 \pi_1 r_2/273$ expresses the mask which can be performed by 1 kg of permer games, expanding during leading up to r_1^0 at a constant pressure $p_0 = 1.005$ kg/cm².

Substituting values f in harmonia, α in da^2/kg , and $\Delta = \omega/kg$, kg/da^3 in formula (2), we obtain the value of the presents:

$$\frac{1\Delta}{1-\alpha\Delta} = \frac{1}{1-\alpha\Delta}$$

the values f and α depend on the characteristics of the pender; f on w_1 and T_1 , and $\alpha \approx 0.001w_1$.

The Robol formula, evelying in the basis of companions with black powder.

Powder, Service verified, in Such speciarch actuallies, for sealer than the sealer

for an analysis of the state of

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

dependence of p_m on Δ , represents a portion of a hyperbola, since upon elimination of the denominator it has the form $p_m - \alpha \Delta p_m - f \Delta = 0$ and the discriminant $a_{11}a_{22}$ - a_{12}^2 = $-\alpha^2 < 0$.

If we assume that the formula is correct for points obtained further on in the experiment, then the curve p_m , \triangle goes out into infinity, having approached an asymptote parallel to the axis $y(p_m)$ at $\Delta = 1/\alpha$.

Then

$1 - \alpha \Delta = 0$ and $p_m = \infty$.

If we show the dependence of p_m on Δ in a graph, by plotting Δ on the axis of the abscissa and p_m on the axis of ordinates, then we obtain a curve $p_{\rm m},$ \triangle (fig. 11) passing through the origin of coordinates and having an asymptote in the form of a straight line shaning parallel to the sxis of ordinates at a distance of 1/G from the drigin. Hegative values are not discussed, in view of the fact that they do not have a physical meaning.

Since a is approximately equal to unity for pyroxylin powders, the critical value of Δ , at which p_m should be equal to infinity, is equal to one. For mitroglycerin powders, $\alpha \approx 0.8$ and, consequently, eritical A - 1/0.8 - 1.35.

In practice, densities of loading not higher than 0.25 are spinsted for combustion of powder in a bomb, because the resultant special in such a case is 2600 to 3000 atm. In extreme cases A is to 0.40 are selected, where p₀ = 5500 atm. The gravimetric density of the most "packagazata" rifle powder, in the form of small splinders with one hele through them, amounts to 0.85-0.90, i.e., after then the required critical value. In this case, the calculated pressure would amount to about 50,000 kg/cm².

It is possible to obtain this type of density of loading, and even higher, in practice, by pressing the powder in the form of one designant cylinder fitting to the shape of the vessel in which the designation occurs. In this instance, the density of leading $\Delta=\delta$ with specific weight of the powder. At a density of leading higher than Δ , the process will change into an explosion even prior to the said of the powder combustion.

The dependence y_{in} , \triangle can be represented in the form of a stimulate line, which can be used advantageously to determine two basic ballistic fluoresteristics: the energy of the powder f and the covolume G.

By converting the equation (2), we obtain:

 $= 1 + cp_m.$

(3)

If we accept p_m for g and p_m/Δ for y, then in the new system with the two follows: (2) will be expressed by the lineal equation

y - 2 + 10m

The or the tangent of the sample ? , Seems of the lime with the

arth E

Conducting a series of experiments with several Δ , and having obtained corresponding magnitudes of p_m , we find the ratio p_m/Δ , and we plot the points corresponding to each density of loading on axes p_m/Δ , and p_m of the graph (fig. 12). These points should be located on one straight line. Prolonging this straight line 1-1 to its intersection with the axis of ordinates, we find the energy f. The tangent of the angle formed by this straight line with the axis Δ gives the value of covolume α . Vel conducted experiments with a whole series of explosive substances and powders, and has constructed typical straight lines for them.

Fig. 12 - Dependence of p./d on p., in accord-

Fig. 13 - Characteristic Straight Lines of Three Basic Powders

If we take man values of f and α for the common powders, then exeristic straight lines on the graph p_m/Δ , p_m

a - 1. 200,000; a - 0.0.

and for a series of sec.

2. DETERMINATION OF THE EMERGY OF POWDER AND OF THE COVOLUME OF POWDER GASES

The magnitudes f and α can be determined analytically and graphically.

We have a linear equation with two constant coefficients f and a:

$$\frac{p_{n}}{\Delta} = f + \alpha p_{n}. \tag{3}$$

In order to determine f and α by the aid of this equation, it is necessary to conduct experiments with two densities of leading. Then, the values p_m and p_m/Δ will be known.

If in an experiment, at a density of loading Δ_1 , the resultant pressure was p_1 , while at a density of loading Δ_2 , the pressure was p_2 , we have a system of two equations:

$$\frac{\mathbf{p_2}}{L_2} = \mathbf{f} + \alpha \mathbf{p_2}; \tag{a}$$

$$\frac{p_1}{\Delta_1} = f + \alpha p_1. \tag{b}$$

Subtracting the terms of one equation from the other, we obtain:

$$\frac{p_2}{\Delta_2} - \frac{p_1}{\Delta_1} = \alpha \ (p_2 - p_1),$$

thus

$$\alpha = \frac{\frac{p_2}{\Delta_2} - \frac{p_1}{\Delta_1}}{\frac{p_2}{P_2} - \frac{p_1}{P_1}} \tag{4}$$

and

$$g = \frac{p_1}{\Delta_1} \cdot \frac{p_2}{\Delta_2} \cdot \frac{\Delta_2 - \Delta_1}{p_2 - p_1}$$
 (5)

In place of this equation, it is simpler to determine the value of f by substituting the obtained numerical value for α in equations (a) and (b). Obtaining an identical magnitude of f from either of the two equations serves as a verification of the correctness of calculations of f and α :

$$f = \frac{p_1}{\Delta_1} - \alpha p_1 = \frac{p_2}{\Delta_2} - \alpha p_2. \tag{6}$$

The diagram on fig. 14 gives a graphical illustration of the application of derived equations (4) and (5) for the determination of f and α :

oa =
$$p_1$$
; ob = p_2 ;
ae = $\frac{p_1}{\Lambda_1}$; bg = $\frac{p_2}{\Lambda_2}$;
gf = $\frac{p_2}{\Lambda_2}$ - $\frac{p_1}{\Lambda_1}$; ef = p_2 - p_1 ;

$$\alpha = \frac{gf}{ef} = \frac{\frac{p_2}{\Lambda_2} - \frac{p_1}{\Lambda_1}}{\frac{p_2}{p_2} - p_1}$$
;
ec = $\alpha \cdot p_1$; gd = $\alpha \cdot p_2$;
f = oh = ae - ec = $\frac{p_1}{\Lambda_1}$ - αp_1 ;
f = oh = bg - dg = $\frac{p_2}{\Lambda_2}$ - αp_2 .

Thus, formula (4) for a and formula (6) for f both have a simple graphic interpretation.

In this maker, in order to determine the energy of passing ℓ and the covolume ℓ , it is necessary to consist powder combustion experiments in a bomb at two densities of loading, and then to determine ℓ and ℓ either by use of formulas (4) and (6) or graphically. In this connection, it is not permissible to select densities of loading very close to each other, because the results would be less reliable and a larger error is possible. The best conditions exist when $\Delta_2 - \Delta_1 \sim 0.10$. For instance, for determining ℓ and ℓ for pyrexylin powders, it is advisable to conduct experiments at $\Delta = 0.15$ and 0.26, and for stronger nitroglycerin powders at $\Delta = 0.12$, and 0.20 or 0.22.

At densities of loading below 0.10, it is also possible to obtain unreliable results, because the linear dependence fails at pressures $p_m < 1000$ atm, and the points p_m/Δ , p_m are situated below the straight line: the lower they are, the smaller p_m is. This descriptance is explained by greater losses in heat emission through the walls of the bend, because the combustion of powder takes place slowly at low loading densities. For the same reason, the resultant pressures are lower than in the case where loss of heat through the walls did not occur.

It will be shown helow how lesses through heat transfer are calculated in a determination of f and #.

	•
-	STAT

Fig. 14 - Graphic Determination of the Powder Energy and of the Covolume

In addition to determination of the values f and a on the basis of experimental data, the Nobel and Abel formula is also applicable to the following cases:

1) Knowing f and α , a calculation of p_m is undertaken by the aid of the value Δ .

$$p_{m} = \frac{f\Delta}{1 - \alpha\Delta} = \frac{f}{\frac{1}{\Delta} - \alpha}.$$

2) Knowing f and α , we undertake to calculate, by the aid of p_m , the Δ at which a given pressure would result.

Solving the equation for Δ , we obtain:

$$\Delta = \frac{p_m}{f + \alpha p_m} = \frac{1}{\frac{f}{p_m} + \alpha} .$$

The formula cited is used for solutions of a number of practical problems. For instance, at a given f and G, it can be determined what Δ should be in order to obtain a given magnitude of pressure (assume \sim 3000), so that we may know the densities of leading for which powder may be burned in a beat with an effective pressure of 3000

atm. Or, for instance, to calculate the pressure produced by an igniter of a given weight in a chamber of a given volume, containing a charge of a given weight.

3. HOMERICAL EXAMPLES

In order to better explain the method of determining f and α , the following examples are given.

In solving examples, it is necessary to express all magnitudes by esquistent units. The most used system of units: kilogram -

Example 1. To determine f and α on the basis of the following data:

$$\Delta_1 = 0.15$$
; $p_1 = 1,470 \text{ kg/cm}^2 = 147,000 \text{ kg/cm}^2$;

$$\Delta_2 = 0.25$$
; $p_2 = 2,780 \text{ kg/dm}^2 = 275,000 \text{ kg/dm}^2$

We find the ratios
$$\frac{p_1}{\Delta_1}$$
 and $\frac{p_2}{\Delta_2}$.

$$\frac{P_2}{\Delta_2} = \frac{275,000}{0.25} = 1,100,000 \text{ kg-dm/kg}$$

$$\frac{p_2}{A^2} = \frac{p_1}{A^2} = 199,000; p_2 = p_1 = 128,000.$$

We determine a:

$$\alpha = \frac{\frac{p_2}{\Delta_2} - \frac{p_1}{\Delta_1}}{p_2 - p_1} = \frac{120,000}{128,000} = 0.938.$$

f may be determined from the basic equation, by substituting in it the expression found for α .

$$f = \frac{p_1}{\Delta_1} - \alpha p_1.$$

$$\frac{p_1}{\Delta_1}$$
 = 980,000; αp_1 = 0.938 · 147,000 = 137,900.

$$f = 980,000 - 137,900 - 842,100 \text{ kg-dm/kg}$$

However, if we determine it in accordance with the general equation, then we obtain:

$$f = \frac{p_1}{\Delta_1} \cdot \frac{p_2}{\Delta_2} \cdot \frac{\Delta_2 - \Delta_1}{p_2 - p_1} = 980,000 \cdot 1,100,000 \cdot \frac{0.10}{128,000} = 842,100 \text{ kg-dm/kg}$$

Example 2. Given is f=850,000 kg-dm/kg; $\alpha=0.96$ dm³/kg. To determine the Δ , at which the resultant $p_m=3,200$ kg/dm³ = 320,600 kg/dm². From the basic equation, we find the expression for Δ :

$$\Delta = \frac{p_m}{f + \alpha p_m}$$

We substitute

Exercise. A bank withstands p_m = 4000 kg/cm². Beternine the maximum permissible density of leading for each type of pendar, pyroxylin, nitroglycerin and black, using data in the table for fig. 13.

4. THE REPORT OF RESOR, IN DEPENDENTING PRESSURES p_1 AND p_2 , ON EXHOUS IN DEPENDENTING 2 AND α

Assume that errors δp_1 and δp_2 were made in determining the values for pressures p_1 and p_2 . We will find the corresponding arrors δf_1 , and δf_2 , also δa_1 and δa_2 .

a. Errors in Determining f

For the purpose of investigation, we will take the equation

We differentiate the expression (a) with respect to p₁, regarding all other values as constants:

EDOR OFFICINAL

$$\delta f_1 = \frac{p_2}{\Delta_2} \frac{\Delta_2 - \Delta_1}{\Delta_1} \frac{p_2}{(p_2 - p_1)^2} \delta p_1; \qquad (c)$$

Dividing (c) by (a), we obtain

$$\frac{\delta f_1}{f} = \frac{p_2}{p_1} \frac{\delta p_1}{(p_2 - p_1)} = \frac{p_2}{(p_2 - p_1)} \frac{\delta p_1}{p_1}. \tag{7}$$

Similarly:

$$\delta f_2 = \frac{p_1}{\Delta_1} \frac{\Delta_2 - \Delta_1}{\Delta_2} \frac{-p_1}{(p_2 - p_1)^2} \delta p_2; \tag{d}$$

$$\frac{df_2}{f} = -\frac{p_1}{p_2} \frac{dp_2}{(p_2 - p_1)} = -\frac{p_1}{(p_2 - p_1)} \frac{dp_2}{p_2}.$$
 (8)

An analysis of equations (7) and (8) shows that one and the same absolute error $\sigma p_1 = \sigma p_2$ exerts a varied influence on corresponding errors in the determination of the powder energy f.

The error $+\delta p_1$ at a lower density of loading Δ_1 , increases the energy f; while the error $+\delta p_2$ at a higher density of leading decreases the pender energy f. At the same time, the effect of the magnitude δp_2 at a lev Δ_1 is greater than the effect of δp_2 at a higher Δ_2 , have in the first case at —the multiplier is of the

Manuferedo 2 >1, while de man de man it is 2 <1. Moreover, STAT

both errors of determination increase with a reduction of the difference between the leading densities Δ_1 and Δ_2 , which entails a reduction of the denominator $p_2 - p_1$ and an increase of dz/z. Thus, in order to reduce the error in determining f, it is necessary to increase the difference $p_3 - p_1$, selecting whenever possible a greater difference between Δ_2 and Δ_1 . Still, a large error in the values for pressure p_1 results at too low Δ (<0.10), by virtue of lesses in heat transfer. Therefore in practice Δ_1 = 0.15 and $\Delta_{\mathbf{g}} = 0.25$ are selected for determination of the energy of pyroxylin penders, while Δ_1 = 0.12 and Δ_2 = 0.20-0.23 are taken for mitroglycerin powders.

b. Breeze in Determining a

By differentiating the expression (b), we obtain:

$$\delta a_1 = \frac{\frac{1}{\Delta_1} - \frac{1}{\Delta_2}}{(p_2 - p_1)^2} p_2 \delta p_1 = -\frac{1}{p_2 - p_1} \frac{\delta p_1}{p_1}; \qquad (9)$$

$$\delta a_2 = \frac{\frac{1}{\Delta_1} - \frac{1}{\Delta_2}}{(p_2 - p_1)^2} p_1 \delta p_2 = \frac{\epsilon}{p_2 - p_1} \frac{\delta p_2}{k_2}$$
 (10)

Contrary to dt_1 and dt_2 , the error $du_1 < 0$ and $du_2 > 0$. At in magnitudes of Δ_1 , Δ_2 , p_1 and p_2 , and at $\delta p_1 = \delta p_2$, the error $(\delta a_n > \delta a_1)$ since $p_n > p_1$.

It is evident from a comparison of expressions (7) and (9), all as (8) and (10), that one and the same error dp_1 , or dp_2 , affects f and a in opposite ways.

Dividing (7) by (9) and considering the equality (a), we obtain:

$$\frac{\delta f_1}{f} = -\frac{p_2 - p_1}{\Delta_2 - \Delta_1} \frac{\Delta_2}{p_2} \frac{\Delta_1}{p_1} p_2 \delta \alpha_1 = -\frac{p_2}{f} \delta \alpha_1 = -\frac{\delta \alpha_1}{\Delta_2 - \alpha}$$
(11)

and

$$\frac{df_2}{f} = -\frac{d\alpha_2}{\frac{1}{\Delta_1} - \alpha}.$$
 (12)

It follows from a comparison of equations (11) and (12) that the error $\delta\alpha_2$, of the magnitude α , at a higher density of loading Δ_2 produces a smaller error in the magnitude f than does the error a_1 at a lower density of loading.

5. PRESSURE DURING THE INTERMEDIATE MOMENT. GENERAL FORMULA OF PYROSTATICS

The Mobel equations applies to the instant of attaining maximum pressure, when all the powder is burnt. For the intermediate mement, when all of the powder is not as yet burnt, but only a portion Vos it is converted into gases, we use the physical state equation for we kg of gases:

where the index W indicates that the given magnitude corresponds to the intermediate mement in which the portion of the charge Y is burned and converted into games.

Wy, the five volume of the homb at the given mement, is equal to the volume w_0 , of the bemb after the deduction of the volume of the utill unburnt pender # (1 - #)/s and of the sevolume of games of the burnt powder any.

In this way, the intermediate pressure for the moment in which

71

the portion of the charge Ψ will burn out, will be found on the basis of the formula

$$p_{\gamma} = \frac{q_{\gamma}}{q_{\gamma}} = \frac{q_{\alpha}}{q_{\alpha}} = \frac{$$

Combining the terms with ψ in the denominator, we write the general pyrostatics equation or the physical state equation for the intermediate moment in the second form:

$$p_{\psi} = \frac{2\omega R}{\pi_0 - \frac{\omega}{\delta} - \omega \left(\omega - \frac{1}{\delta}\right) \tau}.$$

Dividing the denominator and the numerator by Wg, and replacing

$$p_{V} = \frac{f\Delta V}{1 - \frac{\Delta}{3} - \Delta \left(\alpha - \frac{1}{3}\right)V} = \frac{fV}{\frac{1}{\Delta} - \frac{1}{3} - \left(\alpha - \frac{1}{3}\right)V}.$$
 (14)

Inserting given expressions of ψ , we can calculate the corresponding expressions of ψ on the basis of this equation.

If we assume $\psi = 1$ in equation (14), then it converts to a general equation:

The second syrostatics equation, characterising the manifesto

of the pressure in a combustion of powder, shows that, according to the degree of powder combustion completed, the free space $\ensuremath{\mathtt{T}} \psi$ (in the denominator) increases to the value $\omega \Psi / \sigma$ as a result of liberation of the space from the combustion of powder, and decreases as a result of the addition of the molecular volume of formed gas (covolume) αωΨ (fig. 15).

Fig. 15 - Scheme of Variations in the Free Volume of the Bomb During a Combustion of Powder

- beginning of combustion; 2) intermediate moment; end of combustion.

Investigation shows that in the final count, the free volume decreases with the progress of combustion. Consequently, the pressure p_{Ψ} does not increase propertionately to the burnt fraction of Ψ , but faster.

Actually, at the beginning of the combustion, at $\Psi=0$ and a wity of loading Δ , the free space in the chamber (or in the both) At the end of the combustion, at $\psi = 1$, the free

Since for pyremylia and mitroglyceria powders

$$\alpha > \frac{1}{d} \left(\alpha = 1.0 - 0.8, \quad \delta = 1.6 \text{ and } \frac{1}{d} = 0.628 \right),$$

73

> Tq > T1.

i.e., the free seasons of the chamber, or of the bemb, is smaller at the end of the companion than at the impleming of it.

c. Trupe Million V W y

The general Manuals of propertation is of great importance. Interior buildings, Minoly, establishing relations between the burnt fraction of the Charge T and the presente at that instable it also permits stating the inverse problem; to determine, on the basis of the magnitude of pressure at a given senset, what proper the charge E has implicately burnt up to that spacest. The RESEARCH are of importance to the gas formation characteristic of the

Actually, by selecting prossure magnitudes over given infinitely of time, we can especially the corresponding magnitudes of Y depictudes of the couple which we obtained in the test with the legislation of time. Consequently, we are in a particular judge the variations of the burnt fraction of the charge relations time, and the with prigns formation.

Solving opening (16) for 4 , we obtain

$$v = \frac{\frac{1}{2}}{\frac{1}{R_{Y}}} + \frac{1}{a - \frac{1}{3}} = \frac{P_{Y} \left(\frac{1}{2} - \frac{1}{4}\right)}{1 + P_{Y} \left(a - \frac{1}{3}\right)}$$

Replacing f by p_m (1 - $\alpha\Delta)/\Delta$, and subtracting and adding $1/\Delta$ in the denominator, we can modify equation (15) to this form:

$$\gamma = \frac{1}{1 + \frac{1 - \alpha \Delta}{1 - \frac{\Delta}{f}}} , \qquad (16)$$

where $\boldsymbol{p}_{\underline{m}}$ is the maximum gas pressure in the given experiment.

In this equation, the ratio $(1-\alpha\Delta)/(1-\Delta/d)$ is a value constant for a given experiment and characterizing the conditions of charging (we will designate it by δ). p_m is also constant, with only p_{ψ} varying.

The magnitude $\delta=(1-\alpha\Delta)/(1-\Delta/d)$ represents the ratio of the free space of the bomb at the end of the combustion $W_1=W_0$ $(1-\alpha\Delta)$ to its free space at the beginning of the combustion $W_{\Delta}=W_0$ $(1-\Delta/d)$. This value is always less than unity; at $\Delta=0.25$, $\alpha=1$, and d=1.6, $\delta=0.89$. At smaller Δ , the magnitude δ approaches unity.

7. CONSIDERATION OF THE INFLUENCE OF THE IGNITER

The general pyrostatics equation determines the pressure developed in a constant space by gases formed during the combustion of powder. In this connection, atmospheric pressure is disregarded, because of its smallness as compared with the pressure of powder gases.

In Hobel's experiments with black powders, black powder was also used for the igniter, and the weight of the igniter was included in the over-all weight of the charge for the purpose of calculating the density of loading.

Doually, during experiments in a bomb or discharges from guas,

Comment of a specific by beans of a different type Spiter

(Comment of the processor, and spatter the product through its

consider the processor and spatter the product through its

consider the processor and spatter the product through its

consider the processor and specific to the product through its

consider the consequent through by the sould be brilled

consider the consequent through the space of spatter manager of spatter through

consequent to the processor of the spatter of the spatte

tions An allows. The adjustment for the covolume of justine for the constant of further forms and the constant of the last of the constant of the last of the last

the feet department of the property of the combination of the property of the combination of the property of the combined star of the property of the combined star of the property of the combined states of the property of the combined star of the comb

Disregarding once more the magnitude $\alpha_B \omega_B$, as compared with the value for the free space $\Psi_{\Psi} = \Psi_0 - \frac{\omega}{\delta} - \left(\alpha - \frac{1}{\delta}\right) \omega_{\Psi}$, we obtain:

$$p_{\psi}^{*} = \frac{r_{B}\omega_{B} + r_{W}}{w_{\psi}} = \frac{r_{B}\omega_{B}}{w_{\psi}} + p_{\psi},$$

where p_{ψ} is the pressure of powder gases without allowance for the effect of the igniter, and is expressed by the general pyrostatics equation

$$p_{\psi} = \frac{f \omega \psi}{\Psi \psi}$$
.

Since Ψ_{ψ} diminishes, then $f_{\underline{B}}\omega_{\underline{B}}/\Psi_{\psi}$ increases.

At the end of the combustion, the total pressure p'_{m} , with an allowance for the effects of the igniter, is expressed by the equation:

$$p_{\underline{m}}^{*} = \frac{f_{\underline{m}}\omega_{\underline{n}} + f\omega}{\Psi_{\underline{n}} - \alpha\omega - \alpha_{\underline{m}}\omega_{\underline{n}}} \approx \frac{f_{\underline{m}}\omega_{\underline{n}}}{\Psi_{\underline{0}} - \alpha\omega} + \frac{f\omega}{\Psi_{\underline{0}} - \alpha\omega} = p_{\underline{n}}^{*} + p_{\underline{m}}^{*},$$

والشاول

$$p_B^1 = \frac{r_{B^0}}{v_A - \alpha \omega} = \frac{r_{B^0}}{1 - \alpha \Delta} \quad \text{and} \quad p_B = \frac{r_{M^0}}{v_0 - \alpha \omega} = \frac{r\Delta}{1 - \alpha \Delta}$$

" equation without consideration of the igniter).

1 - a4 <1 -4/4, then p' > 25 .

Under the existing conditions of functioning in a manemotate bank ($\Delta < 0.25$; $\alpha \approx 1$; $\delta \approx 1.6$), left such close product is located in the range from 0.60 to 1. That is, the difference between

p* and p; door not exceed 10%. Since, generally speaking, \$10 } pressure of the ignition is small (from \$6; to 50, and not more \$100 kg/cm²), \$250 if may be authors \$250 a agricult to 50 and not more \$250 kg/cm²), \$250 if may be authors \$250 a agricult \$250 and not more \$250 and not make \$250 and no

Therefore, from here on we shall demaider the following standing as applicable:

In view of this amounties, which this preactly studied to the further extended to the property of the property

Apole

The equation that the even of passage of games registered in a subsective book, in collective he a sun of the

pressures: the pressure of igniter gases p_B , and the pressure of powder gases p_{ψ} ; or p_m , determinable on the basis of the initial generalized pyrostatics equation, or Nobel's equation without consideration of the influence of the igniter.

Determining ψ from the last equation, we obtain the magnitude ψ taking into consideration the influence of the igniter:

$$\psi = \frac{\frac{1}{\Delta} - \frac{1}{\delta}}{\frac{\mathbf{f}}{\mathbf{p}' - \mathbf{p}_{\mathbf{B}}} + \alpha - \frac{1}{\delta}} = \frac{1}{1 + \frac{1 - \alpha \Delta}{1 - \frac{\Delta}{\delta}}} \frac{\mathbf{p}'_{\mathbf{B}} - \mathbf{p}'}{\mathbf{p}' - \mathbf{p}_{\mathbf{B}}'}$$

The included pressures $p_{\mathbf{n}}^{*}$ and p^{*} constitute the actual pressure registered by the crusher, or by any other instrument.

Since the equation renders calculations of a series of expressions for Ψ very awkward in plotting an experimental pressure curve registered by the instrument, we have compiled tables for the purpose of expediting the work involved. From the magnitude of the ratio $(p'-p_B)/(p_m'-p_B)$, it is simple and easy to find, by the aid of these tables, the corresponding expressions of Ψ as a function of time t, and to make a ballistic analysis of the powder.

The magnitude of the denominator $p_n^*-p_n^*$ is constant for a given experiment; p^* is taken from the measurement of the pressure curve; also from it, we mentally calculate the pressure p_n^* of the ignitor games, constant for all points of measurement. Then we determine, by the aid of a milide rule,

$$\beta = \frac{p_1' - p_2}{p_1' - p_2}$$

We make the conversion listed above.

$$\psi = -\frac{p' - p_B}{p' - p_B + \delta (p_B' - p')} = \frac{p' - p_B}{p' - p_B + \delta / p_B' - p_B - (p' - p_B)/2}$$

$$\frac{\frac{p'-p_0}{p_0'-p_0}}{\frac{p'-p_0}{p_0'-p_0}}(1-\delta)+\delta$$

At this time, the same ratio $\beta = (p' - p_0)/(p_0' - p_0)$ is introduced into the denominator and the numerator; and consequently Wappears as a function of the constant magnitude 3 and the variable 8:

$$\Psi = \frac{\beta}{3+(1-3)\beta}.$$

The magnitude $\beta=(p^*-p_p)/(p_n^*-p_p)$ varies within the range from 0 to 1. The magnitude $\theta=(1-\alpha\Delta)/(1-\Delta/\delta)$ which depends on three constints α , δ and Δ (when α approaches 1, δ approaches 1.6), namedly varies from 0.86 to 1, depending on the fluctuations of Δ , within the limits of 0.88-0.

The tables are arranged for each expression of 0, from 0.86 to 0.87 by variations of 0.81, at 0.81 variations of the ratio $(p'-p_B)/(p_B'-p_B') \text{ within the range from 0 to 1.}$

The arrangement of the table is analogous to tables of four-place logarithms.

The tables are in the supplement, which also includes instructions for their use.

Knowing the principle of Ψ variation relatively to time, it is also possible to find the experimental law of variation of the magnitude $\frac{d\Psi}{dt}$, i.e., the rate of gas formation. This value is one of the more important characteristics. Knowledge of it permits regulating the efflux of gases during a combustion of powder, and checking the law of gas pressure variation.

8. ON REDUCED LENGTES

Among other things, the pressure in the bore of the gun appears as a function of the volume of initial air space, corresponding to the location of the projectile in the bore at a given instant. At the beginning of the powder combustion, this volume W is equal to the volume of the chamber W_0 . Subsequently, it increases with the motion of the projectile to a volume equal to the volume of a cylinder having the cross section of the gun bore (including greater) as its base, and the length of the travel $\mathcal L$ of the projectile as its height:

W - Wa + = & .

gince, in practice, pressure is commonly expressed as a function of the travel accomplished by the projectile, suther than of the volume, it is more entered to replace all volumes by corresponding lengths. However, in view of the fact that cross sections of the chamber are not identical at various points, and are larger than the cross section of the bore, the volumes of the chamber and of the large

STA

are not proportional to actual lengths. Therefore, to facilitate a more convenient operation with additional equations obtained in pyrodynamics, "reduced lengths" are introduced to replace chamber volumes in equations by cylinder volumes of equal magnitude and having the cross section area of the gun bore as their basis. The length of such cylinders is called "the reduced length of the chamber." It is designated by \mathcal{L}_0 , and determined by the expression:

$$\ell_0 = \frac{v_0}{s}$$
.

Since the actual cross section of the chamber will be larger than s, the reduced length ℓ_0 will be greater than the actual length of chamber ℓ_{km} . (*)

The volume of the initial air space will now appear as:

$$\mathbf{W} = \mathbf{s} \, \ell_0 + \mathbf{s} \, \ell = \mathbf{s} \, (\ell_0 + \ell).$$

After deduction of the volume of the still incompletely burnt powder and the covolume of the burnt portion of the charge, the free volume of the initial air space will be expressed in this way:

 $W_0 + sL - \frac{\omega}{\delta} (1 - \Psi) - \alpha \omega \Psi = \Psi \Psi + sL$ It can be represented in the form of a sum

$$= L_{\psi} + = L - = (L_{\psi} + L),$$

(*) The introduction of the reduced length is a purely mathematical operation. It fails to consider the influence of the fact the chamber, and of its cross section, on the gas formation last consequently on the magnitude of gas pressure.

4C128

CHAPTER III - CALCULATING THE HEAT LOST TO THE WALLS DURING BURNING OF POWDER IN A CLOSED CHAMBER

When powder is bursed in a closed chamber (in a bomb), a portion of the heat energy is lost on heating the walls of the bomb. As a result, the pressure p_m developed by the gases is somewhat lower than the theoretical pressure; the latter would be obtained if all the thermal energy emitted during the combustion of the given powder were utilized to increase the pressure of the gases.

This loss of heat depends on a number of loading factors.

Experiments conducted by professor S.P. Vukolov in the Naval Technical Research Laboratory back in 1895 and 1896 had shown that at $\Delta=0.20$ the pressures p_m developed in a standard bomb and in a bomb whose interior surface was lined with a thin layer of nonconductive mica were different. The resultant pressures were: 2033 kg/cm² in the bomb without the mica layer and 2202 kg/cm² in the bomb containing the mica, the difference - 169 kg/cm² - comprises about 8%.

It was stated previously (in the theory of powder combustion), in the discussion of problems relating to powder ignition in a gun, that the contact of the powder grains with the cool surface of the chamber slows down the ignition process.

The following simple experiment in the open air will show this to be true. If a strip of powder is clamped vertically in a locksmith's metal vise and ignited from the top, the process of burning will be arrested upon reaching the vise. The strip will be extinguished because a considerable portion of the heat is taken up by the cold

NAD-83664

84

It is known that a nonsimultaneous ignition distorts the initial shape of the grain and causes deviations from the ideal law of combustion. Consequently, the transfer of heat to the walls should have an effect not only on the magnitude of pressure, but also on the character of its development.

By disregarding losses in a bomb due to heat transfer we commit an error in the determination p_m and, consequently, an error in the magnitude of energy f and covolume 1 determined on the basis of experiments with a manometric bomb.

In view of this heat transfer, Nobel's formula will hold true for pressures above 1000 kg/cm². At lower pressures, corresponding to charging densities of $\triangle < 0.10$, the points in the diagram $\frac{p_m}{\triangle}$ versus p_m will fall below the straight line relationship expressed by the known equation $\frac{p}{\triangle} = f + \alpha p_m$.

Systematic experiments conducted by assistant A.I. Kokhanov in 1933, at charging densities of from 0.015 to 0.20, have shown that a hyperbolic curve abc, approaching asymptotically the straight line de (fig. 16), is obtained in the system of coordinates $\frac{p_m}{\triangle}$, p_m instead of a straight line. The smaller the value of \triangle , the greater is the deviation from the theoretical relationship.

The results obtained in determining the powder energy f and covolume α may therefore differ, depending on the charging densities at which the tests were conducted. The higher the value of \triangle , the greater will be the magnitude of f and the smaller the covolume α (points b and c). And, conversely, small values of \triangle should produce a small energy and a large covolume (points a and b).

Our experiments have also disclosed the following.

If a powder of the same composition but of different thickness is burned in a bomb at the same value of 2, the maximum pressure p will be the lower the thicker the powder. Therefore, the energy produced by thick powders, determined without taking the heat losses into consideration, will also be the smaller, the thicker the powder. This can be explained by the fact that a thick powder burns longer and, consequently, a larger portion of the heat is transmitted to the walls of the bomb.

If an identical powder is burned at the same \cdot in bombs of different sizes, the value of p_m will be higher in the larger bomb, because the surface per unit weight of powder charge is smaller in the larger bomb, and hence the heat losses will be smaller in it.

All of these facts confirm the presence of cooling through the walls of the bomb. The considerable number of tests conducted by various investigators made it possible to determine quantitatively the corrections to be introduced in the charging of powders of various thickness under different conditions of loading, in order to obtain pressures corrected for heat transfer. Although these corrections are not final, nevertheless their introduction served to explain the phenomena discussed above. Miuraur's correction may be considered to be the best founded among corrections of this type.

86

Fig. 16 - $\frac{p_m}{\triangle}$ as a Function of p_m , According to Kokhanov.

According to Niuraur the heat loss through transfer is proportional to the number of collisions between the powder gas molecules and the walls of the bomb, and this number is in turn proportional to the surface of the bomb S_{ℓ} , pressure p and time t. For a fluctuating pressure, the loss is proportional to S_{ℓ} and $\int pdt$. Also, because $\int pdt$ does not depend on \triangle , the loss of heat $\triangle Q$ through the surface of valls S_{ℓ} is constant for any powder charge ω or \triangle . This was confirmed by Miuraur who conducted tests at different values of \triangle . Inasmuch as the total quantity of the heat evolved is proportional to the weight of the charge ω , the relative loss $\frac{\triangle Q}{Q}$ is inversely proportional to ω or \triangle . Consequently, $\frac{\triangle Q_{\ell}}{Q}$ is proportional to $\frac{S_{\ell}}{\omega}$ $\int pdt$.

The magnitude of maximal pressure at a given value of \(\triangle is \) governed by the volume of the bomb(*). Actually, an n% pressure

37

^(*) Consequently, magnitudes f and d will also depend on the volume of the bomb in which the combustion takes place, while the magnitude of f pdt should not change because of cooling through the walls of the bomb.

drop entails a corresponding prolongation of the period of burning; the curve p,t becomes distorted, but the area \int pdt remains unchanged.

All this was checked and verified by our tests with bombs of different sizes. The following important deduction can be reached from the above: the rate of burning $u_1 = \frac{e_1}{1-1}$ can be determined with the same degree of accuracy in both large and small bombs, regardless of the heat lost through the walls.

Experiments for calculating heat losses. For quantitative determination of heat losses Miuraur conducted experiments at $\triangle = 0.20$ in a bomb measuring 150 cm³ by volume. In one case the powder was burned under normal conditions, and in another a steel, trough-shaped insert with projections or ridges was inserted into the bomb in such a manner that its exterior surface did not come in contact with the surface of the bomb (fig. 17).

In the first instance, when the cooled surface S_1 was equal to the surface of the bomb S_4 , the obtained pressure was p_1 ; in the second case, when the cooled surface S_2 was larger, i.e., when it consisted of the surface of the bomb S_4 and the surface of the insert $S_{BKN} = S_4 + S_{BKN}$, the resultant pressure p_2 was lower. The pressure difference $\Delta p = p_1 - p_2$ resulted in consequence of the surface area difference $S_2 - S_1 = S_{BKN}$.

In order to determine the pressure in the absence of cooling, calculations were made of such an increment $\triangle p'$, which corresponded to a change in the surface area $\triangle S$ equal to the surface area of the bomb S_4 :

$$\frac{\Delta p}{\Delta p} = \frac{s_6}{s_{BKL}} \quad \text{or} \quad \Delta p = \Delta p \frac{s_{BKL}}{s_6}$$

X

In this manner, pressure $p_1+\Delta p'$ would correspond to the surface S=0, i.e., it would correspond to the condition in which losses due to heat transfer were absent.

Knowing p_1 and $\Delta p'$, Miuraur determined the relative correction for heat transfer $\frac{\Delta p'}{p}=\frac{\Delta P_m}{p}$, which was equal to $\frac{\Delta T}{T_1}$ in a constant volume.

Such tests conducted with a large number of powders of varied thicknesses and properties established the significant dependence of pressure loss $\frac{\Delta P_{m_g}}{P_{m_g}}$ on the time of powder burning at Δ = 0.20, the magnitude S_g/ω in these tests being equal to 7.774 cm²/g = 77.74 dm²/kg.

The experiments were conducted with cylindrical crushers. Very strong igniters of gunpowder were used to determine the actual powder burning time t_k . The igniters developed a pressure of $p_n \approx 250~kg/cm^2$, which provided the crusher with small residual compression.

The obtained data was plotted, and the curve $\frac{P_m}{P_m}q$, or $\frac{7.T}{T_1}q$. as a function of the time of burning t_k , was termed "curve C" (fig. 18).

In order to determine the losses due to heat transfer under conditions other than those discussed, the powder must first be tested at $\triangle = 0.20$ and the time of burning t_k found, and the magnitude $C_{\rm M} = \frac{\triangle P_{\rm M}}{P_{\rm M}}$ then determined from curve C. Losses under other conditions (in a different bomb and at a different density of loading), can be found by means of the following formula:

$$\frac{\Delta P_{\rm H}}{P_{\rm H}} = \frac{\Delta T}{T_1} = \frac{C_{\rm H} S}{7.774} \frac{S_{\rm f}}{\omega} = \frac{C_{\rm H} S}{7.774} \frac{S_{\rm f}}{W_0} \frac{1}{\Delta}. \tag{17}$$

 $C_{\underline{M}}$ depends on the thickness and nature of the powder, while $S_{\underline{d}}/W_{\underline{0}}$ characterizes the relative surface of the bomb (exposed surface of

bomb) and can be calculated as the exposed surface of a uniform cylinder ($2e_1 = d$, length = 2c); \triangle characterizes the conditions of loading:

$$\frac{S_{\emptyset}}{W_{0}} = \frac{2}{e_{1}} = \frac{2 + \frac{B}{2}}{d : 2} = \frac{2 + \frac{d}{2c}}{d : 2} = \frac{4}{d} + \frac{1}{c}.$$

The relative surface of the bomb diminishes as the diameter d and length 2c are increased. When volume W_0 is increased 8 times, $S_0^{-1}W_0$ diminishes approximately by one half.

Formula (17) shows that $\frac{\Delta p_m}{p_m}$ in a given bomb increases as Δ is reduced and hence the losses are particularly high at low values of Δ .

Fig. 17 - Test Arrangement for Calculating Losses due to Heat Transfer.

Fig. 18 - Curve C, Characterizing the Losses Due to Heat Transfer (according to Miuraur).

Ordinate: pressure loss in %; abscissa: milliseconds; 1) curve "C"

Large igniters are not necessary when working with conical crushers, because almost instantaneous ignition results at the low value of $p_n \approx 100\text{--}120 \text{ kg/cm}^2$.

Therefore, Miuraur's data cannot be directly applied to our test results and to powder tests for determining heat transfer, without conducting special tests. However, using the theoretical formula as a basis, it is possible to compute the burning time at $\Delta=0.20$ and $p_B=250~kg/cm^2$ and to determine the order of the coefficient values C_M for powders of various thicknesses, in order to introduce the necessary correction for heat loss.

The table presented below contains the results of such calculations,

bomb) and can be calculated as the exposed surface of a uniform cylinder ($2e_1 - d$, length - 2c); \triangle characterizes the conditions of loading;

$$\frac{S_{\vec{q}}}{W_0} = \frac{\alpha}{e_1} = \frac{2 + \beta}{d : 2} = \frac{2 + \frac{d}{2c}}{d : 2} = \frac{4}{d} + \frac{1}{c}.$$

The relative surface of the bomb diminishes as the diameter d and length 2c are increased. When volume W_0 is increased 8 times, S_C/W_0 diminishes approximately by one half.

Formula (17) shows that $\frac{\Delta P_m}{P_m}$ in a given bomb increases as Δ is reduced and hence the losses are particularly high at low values of Δ .

Fig. 17 - Test Arrangement for Calculating Losses due to Heat Transfer.

Fig. 18 - Curve C, Characterizing the Losses Due to Heat Transfer (according to Miuraur).

Ordinate: pressure loss in %; abscissa: milliseconds; 1) curve "C."

Large igniters are not necessary when working with conical crushers, because almost instantaneous ignition results at the low value of $p_{\rm n} \approx 100\text{--}120~{\rm kg/cm^2}$.

Therefore, Miuraur's data cannot be directly applied to our test results and to powder tests for determining heat transfer, without conducting special tests. However, using the theoretical formula as a basis, it is possible to compute the burning time at $\Delta=0.20$ and $p_B=250~kg/cm^2$ and to determine the order of the coefficient values C_M for powders of various thicknesses, in order to introduce the necessary correction for heat loss.

The table presented below contains the results of such calculations,

obtained from curve C.

ik was determined from formula:

$$t_{k} = 2.303 \tau \log \frac{p_{m}}{p_{B}}$$
,

where

$$\tau = \frac{\mathbf{e}_1}{\mathbf{u}_1} \cdot \frac{1 - 2\Delta}{\mathbf{f} \cdot \Delta} = \frac{\mathbf{e}_1}{\mathbf{u}_1} \cdot \frac{1}{\mathbf{p}_m}$$

(for a powder with a constant burning surface area) (Table 8).

Table 8 - Values of coefficient $C_{\underline{M}}$ for pyroxylin powders

INDIE										
Thickness of powder 0	.30	0.30 flegm.	0.40	1.00	2.00	4.00				
2e ₁ in am	90	70	80	75	72	62				
Rate of combustion ul										
$\frac{dm}{sec} : \frac{kg}{dm^2} \cdot 10^7$ Coefficient $\frac{1}{\tau}$	1220	950	813	305	146	69				
Burning time in milliseconds, at $\triangle = 0.20$ and $p_0 = 250 \text{ kg/cm}^2$	1.76	2.26	2.64	7.00	14.6	31				
Heat transfer coefficient	1.5		2.6	4.0	5.0	6.				
C _M in %	ــــــــــــــــــــــــــــــــــــــ			owder	in a l	daod				

Corrections for heat loss during burning of powder in a bomb can be introduced by the aid of this table.

Let us introduce the correction for heat loss when determining

f and d. We shall assume that tests were conducted with a bomb having solume $\Psi_0 = 78.5 \text{ cm}^3$ at two loading densities $\triangle_1 = 0.15$ and $\triangle_2 = 0.25$. The powder is 1 mm thick.

 $p_{m1}=1435~kg/cm^2$, $p_{m2}=2760~kg/cm^2$, $p_{m2}=p_{m1}=1325$. We determine f and α without taking the heat-transfer losses into consideration:

$$\frac{p_{m1}}{\Delta_1} = 9570, \frac{p_{m2}}{\Delta_2} = 11,020; \frac{p_{m2}}{\Delta_2} = \frac{p_{m1}}{\Delta_1} = 1450.$$

$$\alpha = \frac{1450}{1325} = 1.096 \text{ dm}^{3/kg}$$

f = 957,000 - 1.096 · 143,300 = 800,000 kg-dm/kg.

We now introduce the correction for heat losses in pressures p_{m1} and p_{m2} , and determine the corrected values of energy f_0 and covolume a_0 .

$$\frac{\Delta P_{m}}{P_{m}} = \frac{S_{6}}{V_{0}} \frac{1}{\triangle} \frac{C_{M}^{0}}{7.774}.$$

According to the table, $C_{\underline{M}} = 4\%$. For a bomb of volume $W_0 = 78.5 \text{ cm}^3$

$$\frac{s_y}{w_0} = 1.30 \text{ cm}^{2/\text{cm}^3}.$$

$$\frac{S_6}{W_0} \frac{1}{7.774} = 0.1673; 0.1673 \cdot 4 = 0.6692.$$

$$\Delta P_m = \frac{S_6}{W_0} \frac{C_M S}{7.774} \frac{P_m}{\Delta} \left\{ \begin{array}{l} \Delta P_{m1} = 0.6692 \cdot 9570 = 64 \text{ kg/cm}^2 \\ \Delta P_{m2} = 0.6692 \cdot 11,040 = 74 \text{ kg/cm}^2 \end{array} \right.$$

$$P_m = P_{m1} + \Delta P_{m1} = 1435 + 64 = 1499 \text{ kg/cm}^2 \left. \begin{array}{l} P_{m1} = 10,000; \\ \frac{\Delta P_{m2}}{\Delta P_{m2}} = P_{m2} + \Delta P_{m2} = 2760 + 74 = 2834 \text{ kg/cm}^2 \end{array} \right.$$

CTAT

$$p_{m2} - p_{m1} = 1335 \text{ kg/cm}^2;$$

$$\frac{p_{m2}}{\Delta_2} - \frac{p_{m1}}{\Delta_1} = 1340;$$

$$a_0 = \frac{1340}{1335} = 1.004 \text{ dm}^3/\text{kg} = 1.00.$$

f = 1,000,000 - 1.004 · 1499 = 849,500 kg-dm/kg 850,000 kg-dm/

As can be seen from the above results, the introduction of a correction for the heat lost has increased the energy of the powder from f=800,000 to 850,000 kg-dm/kg, i.e., by 6.25%, and reduced the magnitude of covolume from 1.096 to $1 \text{ dm}^3/\text{kg}$, i.e., by 9.6%.

The same powder burned in a bomb having a volume of $25.25~\mathrm{cm}^3$, an at the same loading density, will give $p_{m1} = 1405~\mathrm{kg/cm}^2$ and $p_{m2} = 272~\mathrm{kg/cm}^2$. On the basis of this data, the resultant magnitudes of energy f and covolume α will be:

$$f = 774,000 \text{ kg} - dm/kg$$
 and $\alpha = 1.16 \text{ dm}^3/\text{kg}$.

For this bomb

$$\frac{8_6}{W_0} = 1.89 \text{ cm}^2/\text{cm}^3.$$

Corrections in pressure for heat transfer will be as follows:

$$\Delta p_{m1} = 95 \text{ kg/cm}^2$$
 and $\Delta p_{m2} = 110 \text{ kg/cm}^2$;
 $f = 850,000 \text{ and } \alpha = 1.00$.

In this way, magnitudes f and G for a bomb of small volume are obtained with a larger percentage of error: the energy will be

smaller and the covolume will be higher than their true values.

As shown by Kokhanov's experiments, these errors are extremely large for very low loading densities and thick powders.

The introduction of corrections for heat transfer losses by the above method provides practically identical values of f and α for all loading densities, and transforms the hyperbola $\frac{p}{m}$, p_m obtained in Kokhanov's experiments into a straight line, as it should be $\sqrt{5}$.

The table presented below lists values of magnitudes $\frac{s_{\ell}}{w_0}$ and $\frac{s_{\ell}}{w_0} = \frac{1}{7.774}$ for manometric bombs of the most typical dimensions (Table 9).

Table 9

W ₀ , cm ³	21.8	25.25	78.5	120	146.5	216	Krupp's 3320 bomb
d ₀	2.2	3.0	4.4	4.4	3.0	4.4	8.0
S ₆	2.17	1.89	1.30	1.16	1.48	1.05	0.53
S _d	0.279	0.243	0.1673	0.1495	0.184	0.135	0.0682

Curve $\mathbf{C_{M}}$ is expressed as a function of the burning time $\mathbf{t_{k}}$ of powder at \triangle = 0.20.

Inasmuch as the burning time of powder t_k is directly proportional to the total pressure impulse $\int\limits_0^1 p dt$, the dependence of C as a function of I_k can be plotted independently of the loading density. Work of this type was conducted by M.I. Samarina at the Naval Artillery Research Institute in 1938, at which time experiments were repeated with bombs with and without steel inserts. The pressure was recorded

by means of conical crushers. The values of $\frac{\Delta p_m}{p_m} = c_A S$ were plotted as a function of I_k (fig. 19). The form of the curve differs somewhat from curve CMltk.

Fig. 19 - Curve C_{A} , Characterizing Losses due to Heat Transfer (according to the Naval Artillery Research Institute data).

Bomb tests for determining f and a involve heat losses in the form of heat transfer to walls of the bomb, and, therefore, pressures p_1 and p_2 contain an error in their determined values, δp_1 and δp_2 being inversely proportional to magnitudes $\frac{1}{p_1} = \frac{\alpha \Delta_1}{\delta p_2}$ and $\frac{1}{p_1} = \frac{\alpha \Delta_2}{p_2}$, and $\frac{\delta p_2}{p_3} = \frac{\delta p_3}{p_3} = \frac{S_\delta}{w_0} = \frac{1}{\sqrt{3}} = \frac{C_M S_\delta}{7.774}$, where C_M

is the heat transfer coefficient.

Corrections for heat losses in the powder energy f and the magnitude of covolume can be determined after introducing corrections for heat losses in the values of pressures p_1 and p_2 , by adding the equalities (7), (8), (9) and (10), taking into consideration equality (a) (see Chapter II):

$$\delta_{1} = \delta_{1} + \delta_{1} = \frac{\Delta_{2} - \Delta_{1}}{\Delta_{2} + \Delta_{1}} \frac{1}{(p_{2} - p_{1})^{2}} (p_{2}^{2} \delta_{p_{1}} - p_{1}^{2} \delta_{p_{2}}) = \frac{\Delta_{2} - \Delta_{1}}{p_{2} - p_{1}} \frac{p_{2}}{\Delta_{2}} \frac{p_{1}}{\Delta_{1}} \frac{p_{2}^{2} \delta_{p_{1}} - p_{1}^{2} \delta_{p_{2}}}{(p_{2} - p_{1})^{p_{2}p_{1}}} = f \frac{p_{2} \frac{\delta_{p_{1}}}{p_{1}} - p_{1} \frac{\delta_{p_{2}}}{p_{2}}}{p_{2} - p_{1}}.$$

Finally,

$$\frac{p_{2} \frac{\delta p_{1}}{p_{1}} - p_{1} \frac{\delta p_{2}}{p_{2}}}{\frac{\delta f}{f} - \frac{p_{2} - p_{1}}{p_{2}}};$$
(18)

$$\frac{1}{2a} = \delta_{31} + \delta_{32} - \frac{1}{(p_{2} - p_{1})^{2}} - (p_{2}\delta_{p_{1}} - p_{1}\delta_{p_{2}}) - \frac{1}{(p_{2} - p_{1})^{2}} - r \frac{\delta_{p_{1}}}{(p_{2} - p_{1})^{p_{1}}} - r \frac{\delta_{p_{1}}}{p_{1}} - \frac{\delta_{p_{2}}}{p_{2}}.$$
(19)

When the corrections for heat transfer are taken into account

$$\frac{\delta p}{p} = \frac{C_{M}^{\frac{1}{2}}}{7.774} = \frac{S_{d}}{V_{0}} = \frac{1}{\Delta}.$$

For a given powder, C_{M} = const, and for a given bomb, $\frac{S_{g}}{T_{O}}$ = const only A changes.

Designating

$$\frac{C_{M}}{7.774} = \frac{S_{6}}{V_{0}} - D,$$

$$\frac{\delta p_1}{p_1} - \frac{D}{\Delta_1}; \quad \frac{\delta p_2}{p_2} - \frac{D}{\Delta_2}.$$

Substituting these expressions in formulas (18) and (19), we obtain:
$$\frac{\delta f}{f} = \frac{D\left(\frac{P_2}{\Delta_1} - \frac{P_1}{\Delta_2}\right)}{P_2 - P_1}; \tag{20}$$

$$\delta_{\alpha} = -\frac{1}{fD} \frac{\frac{1}{\Delta_{1}} - \frac{1}{\Delta_{2}}}{\frac{1}{p_{2}} - \frac{1}{p_{1}}} = -\frac{f^{2}D}{\frac{1}{p_{1}} \cdot \frac{1}{p_{2}}}.$$
 (21)

Let us apply the example presented above.

Example. 1 mm thick powder is burned in a bomb having a volume of 78.5 cm^3 ; the powder coefficient is $C_{\underline{M}} = 44$; and the value of $\frac{S_6}{T_0}$ for this bomb = 1.30 cm²/cm³.

$$\frac{S_6}{W_0} = \frac{C_M S}{7.774} = 0.1673 \cdot 4 = 0.66928 = 0.006692 = D.$$

$$\Delta_1 = 0.15$$
; $p_1 = 1433$; $\frac{p_1}{\Delta_1} = 9570$ | Without correction for heat transfer losses $f = 800,000 \text{ kg-dm/kg}$; $\Delta_2 = 0.25$; $p_2 = 2756$; $\frac{p_2}{\Delta_2} = 11,020$ | $\alpha = 1.096 \text{ dm}^3/\text{kg}$.

We shall now calculate the corrections for f and a taking the heat transfer into account:

$$\frac{\delta_{1}}{\delta_{1}} = 0.6692 \frac{\frac{2756}{0.15} - \frac{1433}{0.25}}{\frac{2756}{0.15} - \frac{1433}{0.25}} = 0.6692 \frac{18,350 - 5730}{1323} = 6.45;$$

$$f_0 = f \left(1 + \frac{\delta f}{f}\right) = 800,000 \cdot 1.064 = 852,000 \text{ kg-dm/kg};$$

$$\delta a = -\frac{t^2 \cdot p}{p_1 p_2} = -\frac{800,000^2 \cdot 0.006692}{143,300 \cdot 275,600} = -0.1085;$$

$$a_1 = a + \delta a = 1.096 = 0.1085 = 0.9875 \approx 0.99$$
.

CHAPTER IV - THE LAW OF GAS FORMATION

1. DEFINITION

The study of the law of gas formation under the simplest condition in a constant volume, permits the application of the obtained relation ships to the determination of pressure in the bore of a weapon when the gun is fired, i.e., under conditions of variable volume.

The general pyrostatics formula

$$p_{\psi} = \frac{f\omega\psi}{W_{0} - \frac{\omega}{\delta} - \left(\alpha - \frac{1}{\delta}\right)\omega\psi} = \frac{f\omega\psi}{W_{\psi}}$$

shows that the magnitude of gas pressure at given conditions of loading (W_0 , ω , f, α , δ) is governed by the amount of the burned portion of the charge ψ , where $\omega\psi$ is the gravimetric inflow of powder gases at a given instant, and $f\omega\psi$ is the inflow of the energy contained in this quantity of gas.

Keeping in mind that W_{ij} varies slightly under conditions prevail in a manometric bomb, it may be said that the pressure is almost proportional to the burned portion of the charge ψ at the given powder energy f and the given loading density.

Correspondingly, the nature of pressure increase in time $\frac{dp}{dt}$ under the same conditions of loading is also determined in the main by the change of magnitude $\frac{d\psi}{dt}$ with time.

The law of gas formation is a term defining the change of the magnitude of ψ with time and of its derivative $\frac{d\psi}{dt}$, known as the "rate of gas formation" or "volumetric rate of burning."

An analysis of this magnitude $\frac{d\psi}{dt}$ makes it possible to determine the means by which the gas inflow during burning of powder can be regulated.

2. RATE OF GAS FORMATION

We shall derive the formula for the rate of gas formation, based on the burning of powder in parallel layers.

Let us assume that the burning of a powder grain of arbitrary shape proceeds in concentric layers at a constant rate in all directions. At some instant the grain, whose initial volume is \wedge_1 and whose initial surface is S_1 , has a volume /, and a surface S (fig. 20). We shall also assume that a layer of thickness de is burned during the time interval dt. Then, the volume burned during the time interval dt will be expressed by formula:

whence

Differentiating both sides of this equality with respect to t, we get:

99

OT 4 T

An analysis of this magnitude $\frac{d\psi}{dt}$ makes it possible to determine the means by which the gas inflow during burning of powder can be regulated.

2. RATE OF GAS FORMATION

We shall derive the formula for the rate of gas formation, based on the burning of powder in parallel layers.

Let us assume that the burning of a powder grain of arbitrary shape proceeds in concentric layers at a constant rate in all directions. At some instant the grain, whose initial volume is \wedge_1 and whose initial surface is S_1 , has a volume /, and a surface S (fig. 20). We shall also assume that a layer of thickness de is burned during the time interval dt. Then, the volume burned during the time interval dt will be expressed by formula:

whence

Differentiating both sides of this equality with respect to t, we get:

99

OT 4 T

$$\frac{d\psi}{dt} = \frac{\frac{\Lambda_{CF}}{d\Lambda_1}}{dt} = \frac{s}{\Lambda_1} \frac{de}{dt} = \frac{s}{\Lambda_1} u.$$

Multiplying and dividing the right side by S_1 , we get:

$$\frac{d\psi}{dt} = \frac{s_1}{\Lambda_1} \frac{s}{s_1} u.$$

The first two multiples in the right side of the expression depend on the geometry of the powder grain:

- $\frac{s_1}{\wedge_1} = \frac{\text{the initial exposed area of the powder grain or the specific}}{\text{surface per unit grain volume at the start of burning; it}}$ will be shown later that this area depends on the form and the dimensions of the grain;
- S
 1 the relative surface of a powder grain; it varies during burning and depends only on the form of the grain and on the relative thickness of the burnt powder layer, but not o its absolute dimensions.

As will be shown later, the third multiple, the linear rate of burning $u=\frac{de}{dt}$, depends on the type of powder, the pressure under which the powder burns, and on its temperature.

In order to determine the rate of burning in an actual test bomb under variable pressure, it is necessary to know the thickness variation of the burning layer per unit of time, and to this end it is necessary to establish the purely geometrical relation between the thickness of the burned layer and the volume of the powder gases in their various forms.

Fig. 20 - Diagram of Powder Burning in Parallel Layers.

If the pressure curve plotted as a function of time, or a table of the values of p versus t is available from the bomb test, the values of ψ , t can be calculated by means of the general pyrostatics formula (or from special tables), following which the geometrical law of burning can be applied to establish the relationship between the thickness of the powder, the value of ψ and $\frac{S}{S_1}$, and to derive the dependenc of the initial exposure $\frac{S_1}{\Lambda_1}$ on the form and dimensions of the grains. The numerical differentiation of ψ and ψ and ψ with respect to time t will permit obtaining from the experiment the rate of gas formation and the linear rate of burning, as well as their variation, during the burning of the powder.

The establishment of all these relationships will facilitate the analysis of those factors which can be used to control the quantity and the intensity of gas formation during the burning of powder and therefore, will permit the control of the phenomena of a gun discharge.

101

CTAT

3. THE EFFECT PRODUCED BY THE GEOMETRY OF A POWDER GRAIN ON GAS FORMATION

The inflow of gases per unit of time for a powder of a given type (f, α, δ, u_1) can be regulated by the loading density or by the dimensions and the shape of the powder grains.

The effect of the geometry of the given grains on the rate of gas formation depending on the thickness of the powder burned at the given instant, can be determined by means of the basic conditions of the geometrical law of combustion.

The geometrical law of combustion permits determining the relationship between the relative thickness of the powder burned at the given instant $z=\frac{e}{e_1}$, the burnt portion of the grain $\psi=\frac{\wedge_{cr}}{\wedge_1}$ (\bigwedge_{cr} being the volume of the burnt portion of the powder), and the relative surface of the powder $S=S/S_1$ at the same instant. The dependence of the product $\Sigma=\frac{S_1}{\wedge_1}\frac{S}{S_1}$ on the shape and the dimensions of the powder (grain) can be established at the same time, which product enters the formula for determining the rate of gas formation and has a great effect on the law governing the gas pressure develops during a discharge.

A. Relation Between the Burnt Portion of Powder \(\psi\) and the Relative Thickness of Powder \(\mathbf{z}\), Consumed at the Same Instant (Inflow of Gases)

Investigations show that the dependence of ψ on z for all forms powder is expressed by a formula of the same type(*):

$$\psi = \chi_z (1 + \lambda_z + \mu_z^2),$$
 (22)

where \varkappa , λ , μ are shape characteristics - constant values depending on the shape of the grain; they possess a particular numerical value for each grain shape inherent to the given grain form.

The thickness of the burnt layer e varies during burning from 0 to e_1 ; the relative thickness z varies from 0 to 1; and the relative volume \forall fluctuates between 0 and 1.

We shall now derive the dependence of \vee on z for strip powder (a parallelepiped with three different dimensions) (fig. 21). We shall introduce the designations: $2e_1$ for the thickness of the strip, 2b for the width of the strip, and 2c for its length:

$$\frac{2e_1}{2b} = \alpha; \qquad \frac{2e_1}{2c} = \beta.$$

Fig. 21 - Burning Diagram of a Powder Strip.

Magnitudes α and β characterize the span of the strip in thickness and length. Furthermore, inasmuch as all the dimensions become reduced in all directions by a magnitude $2e_1$ during the full burning of the powder, $\alpha = \frac{2e_1}{2b}$ represents the relative reduction of the strip in width and $\beta = \frac{2e_1}{2c}$ represents the relative reduction of its length during the full burning period of the powder.

Inasmuch as

$$2e_1 \le 2b \le 2c$$
,

$$1 > 4 > 3 > 0$$
.

Let us assume that at the given instant a layer of powder of thickness e will be burned on all sides. The volume burned can be determined more easily as the difference between the initial volume Λ_1 and the remaining volume $\Gamma_{\rm occ}$.

We will have (see fig. 21):

$$\psi = \frac{\Lambda_{cr}}{\Lambda_1} = \frac{\Lambda_1 - \Lambda_{ocr}}{\Lambda_1} = 1 - \frac{\Lambda_{ocr}}{\Lambda_1}$$
:

$$\triangle_{1} - 2e_{1} \cdot 2b \cdot 2c;$$

$$\frac{\bigwedge_{ocr}}{\bigwedge_{1}} = \frac{e_{1} - e_{1}}{e_{1}} = \frac{b - e_{1}}{b} = \frac{c - e_{1}}{c} = \left(1 - \frac{e_{1}}{e_{1}}\right) \left(1 - \frac{e_{1}}{b}\right) \left(1 - \frac{e_{1}}{c}\right) :$$

bu t

$$\frac{\mathbf{e}}{\mathbf{e}_1} = \mathbf{z}, \frac{\mathbf{e}}{\mathbf{b}} = \frac{\mathbf{e}_1}{\mathbf{b}} \frac{\mathbf{e}}{\mathbf{e}_1} = \alpha \mathbf{z}, \frac{\mathbf{e}}{\mathbf{c}} = \frac{\mathbf{e}_1}{\mathbf{c}} \frac{\mathbf{e}}{\mathbf{e}_1} = \beta \mathbf{z};$$

then

$$\frac{\triangle_{\text{oct}}}{\triangle_{\text{ct}}} = (1 - z) (1 - \alpha z) (1 - \beta z).$$

104

STAT

Upon removing the parentheses we obtain:

$$\frac{\triangle_{ocr}}{\triangle_{1}} = 1 - (1 + \alpha + \beta) z + (\alpha + \beta + \alpha\beta)z^{2} - \alpha\beta z^{2}.$$

Substituting this expression in the formula for ψ , we find:

$$4 = (1 + \alpha + \beta)z - (\alpha + \beta + \alpha\beta)z^2 + \alpha\beta z^3$$

or, reducing it to the general form of equation (22), we get:

$$\psi = (1 + \alpha + \beta)z \left[1 - \frac{\alpha + \beta + \alpha\beta}{1 + \alpha + \beta}z + \frac{\alpha\beta}{1 + \alpha + \beta}z^2\right].$$

Introducing the designations

$$1 + \alpha + \beta = \chi; \quad -\frac{\alpha + \beta + \alpha\beta}{1 + \alpha + \beta} = \lambda; \quad \frac{\alpha\beta}{1 + \alpha + \beta} = \mu, \tag{23}$$

we obtain a general type formula:

$$\psi = \kappa z \left(1 + \lambda z + \mu z^2\right)$$
.

At the end of burning at z=1 $\psi=1$, and formula (23) assumes an equality in the form

$$1 = x \left(1 + \lambda + \mu\right), \tag{24}$$

which must be satisfied by the numerical characteristics \mathscr{L} , λ and μ .

105

0.7.4.7

This equality serves to verify the values of the characteristics calculated by means of formula (23).

The characteristics &, λ and μ depend on the ratio of the dimensions: the shorter and the narrower the strip, the greater is α and β ; the longer the strip, the closer is & to unity and λ and μ to zero.

B. The Law Governing the Change of the Powder Surface When the Powder is Burned.

Formula (22) is a general formula for all powder shapes; the difference will be only in the numerical values of the characteristics \mathcal{L} , λ and μ . Using this formula as a basis, we shall derive a formula for depicting the relative surface $\frac{S}{S_1}$ and the initial exposure $\frac{S_1}{\Delta_1}$, characterizing the effect of the shape and dimensions of the powder on the rate of gas formation.

Differentiating ψ with respect to z, we find:

$$\frac{d\psi}{dz} = \Re\left(1 + 2\chi z + 3\mu z^2\right). \tag{25}$$

Inasmuch as

$$\frac{d\psi}{dz} = \frac{d\psi}{dt} \frac{dt}{de} \frac{de}{dz}$$

and

$$\frac{d\psi}{dt} = \frac{s_1}{\Lambda_1} \cdot \frac{s}{s_1} u, \quad \frac{dt}{de} = \frac{1}{u}, \quad \frac{de}{dz} = \frac{de}{d\frac{e}{e_1}} = e_1,$$

106

STAT

then

$$\frac{d\psi}{dz} = \frac{s_1}{\Lambda_1} \cdot \frac{s}{s_1} u \frac{e_1}{u} = \frac{s_1}{\Lambda_1} e_1 \frac{s}{s_1}.$$

Substituting this expression in the left side of equation (25), we obtain

$$\frac{S_1}{\Lambda_1} e_1 \frac{S}{S_1} - \Re \left(1 + 2\lambda z + 3\mu z^2\right). \tag{26}$$

At the start of burning z=0, S=S, $\frac{S}{S_1}=1$, and equation (26) at the start of burning will be written as follows:

$$\frac{\mathbf{s}_1}{\Lambda_1} \ \mathbf{e}_1 \ \mathbf{\hat{\kappa}} \ . \tag{27}$$

Dividing each term of (26) by (27), we will find the desired relationship:

$$6 = \frac{s}{s_1} - 1 + 2\lambda z + 3\mu z^2. \tag{28}$$

At the start of burning, at z = 0,

at the end of burning, at z = 1,

$$G_{K} = \frac{s_{K}}{s_{1}} = 1 + 2\lambda + 3\mu.$$

107

STAT

While the powder burns and z varies from 0 to 1, the change of 6 will mainly depend on the magnitude and sign of the characteristic λ , since μ is small compared to λ .

If the surface of the powder diminishes while burning (strip, cube, bar, $\lambda < 0$) the shape of such a powder is called regressive; if the surface area becomes greater during burning (powder with multiple perforations, $\lambda < 0$), the powder is called progressive.

The 6 function depends on λ and μ , i.e., on the shape of the grain and its dimensional ratio, rather than on the absolute dimensions of the powder. The greater the value of λ , the greater will be the surface change of the powder in burning.

From equality (27) we obtain an expression for the initial exposure which is of great importance in controlling the rate of gas formation:

$$\frac{\mathbf{S}_1}{\Delta_1} = \frac{\mathbf{g}}{\mathbf{e}_1};\tag{29}$$

this equality shows that the initial burning area of the powder depends on its shape (characteristic &), as well as on its dimensions (e₁). The smaller the value of e₁, the thinner is the powder, and the greater will be the quantity of gases which it will evolve per unit of time.

Substituting (28) in (25), we obtain formula

$$\frac{d\psi}{dz} = \chi \cdot \sigma,$$

which will be used in plotting the graph for ψ , z.

C. Determination of ψ , z for Other Grain Shapes.

a) Tubular grain with a single perforation (fig. 22).

Designating:

2e, - web thickness

D - outside diameter

d - inside diameter

2c - length of tube;

$$\frac{2e_1}{2c} = \frac{e_1}{c} = \beta$$
 (which is the same as for strip powder);

$$\Lambda_1 = \frac{\pi}{4} (D^2 - d^2) 2c;$$

$$\Lambda_{\text{OCT}} = \frac{\pi}{4} \left[(D - 2e)^2 - (d + 2e)^2 \right] (2c - 2e);$$

$$\frac{\Lambda_{\text{OC1}}}{\Lambda_{1}} = \frac{\sqrt{(D-2e)^{2}-(d+2e)^{2}}\sqrt{(c-e)}}{D^{2}-d^{2}} = \frac{c-e}{c}.$$

Fig. 22 - Burning of a Tubular Grain.

Removing the parentheses and bearing in mind that

and

$$\frac{\mathbf{e}}{c} - \frac{\mathbf{e}_1}{c} \frac{\mathbf{e}}{\mathbf{e}_1} - \mathbf{s} \cdot \mathbf{z},$$

we get:

$$\frac{\Lambda_{\text{oct}}}{\Lambda_{1}} = \frac{\sqrt{D^{2} - d^{2} - 2(D + d)2e^{7}}}{D^{2} - d^{2}} \left(1 - \frac{e}{c}\right) = \frac{(D - d - 2 + 2e)}{D - d} \left(1 - \frac{e}{c}\right) = \frac{e}{c}$$

$$= (1 - z) \left(1 - \beta z\right) = 1 - (1 + \beta)z + \beta z^{2};$$

$$\psi = 1 - \frac{\Lambda_{\text{oct}}}{\Lambda_1} = (1 + \beta)z - \beta z^2 = (1 + \beta)z \left(1 - \frac{\beta}{1 + \beta}z\right).$$

Assuming 1 + β = \aleph , - $\frac{\beta}{1+\beta}$ = λ and μ = 0, we get once again a general type formula

$$\psi = xz (1 + \lambda z)$$
,

where the terms μz^2 is missing, because $\mu = 0$.

It can be easily seen that a tube is equivalent to a strip whose dimension in width does not change in burning. This is equivalent to a strip of infinite width, where $\alpha=0$.

In such a case, the characteristics of strip powder will be

110

CTAT

 $x = 1 + 0 + \beta = 1 + \beta;$

$$\lambda = -\frac{0+\beta+0}{1+\beta} = -\frac{\beta}{1+\beta};$$

 $\mu = 0$,

i.e., the same as those obtained for tubular powder.

It is of interest to note that characteristics & and ' for a tubular grain do not depend on the diameter, but, rather, on the web thickness 2e and the length of the tube 2c.

b) Grain shapes which are derivatives of strip powder

It can be easily seen that the following grain shapes can be obtained from a strip as special cases of the latter:

- 1) square rod: 2b = 2c; α = β;
- 2) square slab: $2e_1 = 2b$; $\alpha = 1$; $\beta > 0$;
- 3) cube: $2e_1 2b 2c$; $\alpha \beta 1$.

The characteristics of these shapes, as well as of strips and tubes, are given below in Table 10; also given in this table are the values of $\theta_{\rm K}$ at the end of powder burning.

111

STAT

Table 10

Powder Shape	ж	λ	ļ	$\sigma_{K} = 1 + 2\lambda + 3\mu$
Tube (infinitely wide strip)	1 + β	- 3 1 + 3	0	1 - 3 1 + 5
Strip	1 + a + B	$-\frac{\alpha+\beta+\alpha\beta}{1+\alpha+\beta}$	$\frac{a\beta}{1+a+\beta}$	$\frac{(1 - \alpha) (1 - \beta)}{1 + \alpha + \beta}$
Square Rod	1 + 29	$\frac{2\beta + \beta^2}{1 + 2\beta}$	8 ² 1 + 28	$\frac{\left(1-\hat{\beta}\right)^2}{1+2\hat{\beta}}$
Square Slab	2 + ß	$-\frac{1+2\beta}{2+\beta}$	<u>β</u> 2 +β	0
Cube	3	-1	1 3	0

The data presented in the table shows that all the grain characteristics are increased in changing over from a tubular to a cube shape: $\mathcal E$ increases from 1 to 3, $|\lambda|$ - from a small fraction to 1, μ - from 0 to 1/3.

Since X characterizes the initial surface area $\frac{S_1}{\Lambda_1}$ for a given powder thickness $2e_1$, the increase of X shows that in changing over from a strip to a cube, with the web thickness $2e_1$ remaining the same, the initial surface area is increased almost three times whereas the simultaneous increase of λ indicates a more drastic reduction of the surface area.

The diagram in fig. 23 clarifies the above: the heavy broken line divides the strip into square rods, the dotted line divides it into square slabs, while the dot-and-dash line divides it into cubes of the same thickness as that of the strip.

Increasing the tube length will ultimately result in a powder grain with a constant burning surface, for which

$$x = 1, \lambda = 0, \mu = 0;$$

consequently, the relations between \downarrow , z and G, z will be expressed by the following formulas:

$$\psi = z$$
; $\psi = 1$.

Fig. 23 - A Strip Divided into Dergative ...apes.

The same law governing the burning of powder will apply to tubular powder inhibited at its ends.

Examples of Calculating the Characteristics of Powder Shapes

1. Strip powder CN (SP); dimensions in millimeters: 1 by 18 by 300.

$$\alpha = \frac{2e_1}{2b} = \frac{1}{18} = 0.05555; \ x = 1 + \alpha + \beta = 1.0589;$$

$$\beta = \frac{2e_1}{2c} = \frac{1}{300} = 0.00333; \ \lambda = \frac{-(\alpha + \beta + \alpha\beta)}{x} = -\frac{0.05907}{1.0589} = -0.05575;$$

$$\alpha\beta = 0.00019; \quad \mu = \frac{\alpha\beta}{R} = \frac{0.00019}{1.0589} = 0.00018;$$

$$\sigma_{\kappa} = 1 + 2\lambda + 3\mu = 1 - 0.11150 + 0.00054 \approx 0.889;$$

$$\frac{S_1}{\Lambda_1} = \frac{x}{e_1} = \frac{1.0589}{0.50} = 2.1178 \text{ mm}^2/\text{mm}^2.$$

For the same powder reduced to 40 mm in length, the characteristics will change as follows:

$$z = 1.086$$
; $\lambda = -0.0758$; $\mu = 0.00129$; $A_{K} = 0.852$; $\frac{S_{1}}{A_{1}} = 2.161$.

2. A tubular grain having the same wall thickness and length as the strip powder:

$$2e_1 = 1$$
; $2c = 300$;
 $\alpha = 0$, $\beta = \frac{1}{300} = 0.00333$; $\alpha\beta = 0$.

$$x = 1 + 5 = 1.00333; 1 = -\frac{3}{1 + 5} = -\frac{0.00333}{1.0033} = -0.00332;$$

$$d_{K} = \frac{s_{K}}{s_{1}} = 1 + 2\lambda = 1 = 0.00664 = 0.9934;$$

$$\frac{s_1}{\Lambda_1} = \frac{\kappa}{e_1} = \frac{1.0033}{0.5} = 2.0066.$$

The same tube 40 mm in length:

$$x = 1.025$$
; $\lambda = -0.0244$;

$$\frac{s_1}{s_1}$$
 = 2.050; s_K = 0.9512.

114

STAT

Compared to a strip of the same length, a tube has a smaller effective surface area and a lower degree of regression. The surface area and regression in the burning area increase with decrease in length.

If we calculate the characteristics for shapes having the form of solids of revolution, we will find that their characteristics are expressed by precisely the same ratios as given in the table of characteristics for parallelepipeds; the only changes occur in the values of α and β , which are expressed in terms of the dimensions of the solids of revolution.

Table 11, below, contains shape characteristics for solids of revolution in the form of a solid rod, sphere and tube.

Table 11 - Shape Characteristics of Solids of Revolution

asic	dime	nsions	α -	• 1 b	s -	<u>•</u> 1	αв	x =	1 +	a + :	3 \ \ \	$-\frac{a}{1}$	+ 1	3 +	9	и -	1	+	3	+	8
Re ₁	2ь	2c		D		С	Ì	l													_
								S	pher	e						1	1				
2R	2R	2 R		ı	1		1	3			- 3	3 -	-1				3				
			1				Sol	ıd cy	lind	er (rod)										
2R	2R	2c														2	+	5			
solid cylinder whose diameter equals its height																					
2R	2R	2R		1	1		1	:	3		-						<u>1</u> 3				
1		l				Cvl	ind	rica	pla	te	(pell	et)									
2• ₁	22	2R	R	- 8	e ₁ R	- B	B ²	1 +	28		-	28 · 1 +	+ β ²	-		1	β ² + 2	- 18			
'		'	•		'				Tub							ı					
R-r	œ	2c		0	R	<u>-</u> -	8	1 +	β		-	<u>β</u> 1 +	В				0				
1 1								•	11	5											

STAT

Table 11 (Cont'd.)
Ring-shaped pellet

	2e 1	000	R-r	o	$\frac{2e_1}{R-r} = 8$	$\begin{vmatrix} 0 & 1 + 3 \end{vmatrix}$	-	<u> </u>	e e	o
- 1	(2c ₀)		!				j			-

A comparison of the data in Tables 10 and 11 will show that the characteristics \mathbf{x} , \mathbf{A} , \mathbf{u} of some of the grain shapes listed in these tables are identical, and that therefore the law governing the change of volume ψ and surface area G as a function of the relative burned thickness \mathbf{z} is the same. Such shapes are termed equivalent shapes.

They are exemplified, for example, by a cube, a sphere, a cylinde whose height equals its diameter, or by square and round slabs, and square and round bars.

D. Graphical Illustration of the Relationships Between 6-z, $\psi-z$, $6-\psi$

Knowing the general expressions for the inflow of gases

$$\psi = R z(1 + kz + \mu z^2)$$

and for the law governing the change of relative surface

$$G = 1 + 2\lambda z + 3\mu z^2$$
,

we can by assigning specific values to z, calculate the corresponding values of Θ and ψ and plot a graph for the investigated regressive grain shapes.

These diagrams are termed "progressive data sheets."

116

ΤΔΤΡ

We shall consider the following shapes: 1 - tube; 2 - strip; 3 - square plate; 4 - a solid slab; 5 - cube or sphere.

a) &, z diagram (fig. 24) (progressive data sheet).

Since λ is negative and μ is small in all the shapes under consideration, curves ω , z will always lie below the horizontal dotted line 1-1, which corresponds to a powder with a constant burning surface

At the start of burning, when z=0, s=1 for all powder shapes. At the end of burning, when z=1, the values of σ_K will vary for different grain shapes. The expressions for these values are given in Table 10. Inasmuch as for a tubular grain $\mu=0$, the expression $\sigma=1+2\lambda z$ will depict a straight line with an angular coefficient 2λ , where $\lambda<0$; the straight line 1 is very close to the horizontal 1-1.

For strip powder, as well as all the other powder shapes, $6-1+2\lambda z+3\mu z^2 \text{ where } \lambda <0\,.$

$$\frac{d\theta}{dz} = 2\lambda + 6\mu z; \frac{d^2\theta}{dz^2} = 6\mu > 0.$$

Consequently, curve ${\mathfrak G}$, z is convex with respect to the z-sxis. At the start of burning

$$\left(\frac{d6}{dz}\right)_0 - 2\lambda < 0.$$

Since the value of μ is small for a strip, the curvature of the line is very slight; the values of λ and μ increase as the shape

117

СТАТ

becomes more regressive, the angle of inclination of the tangent at the origin of the coordinate axes increases, as does the curvature of the curve itself. In the case of a solid slab the curve has a pronounced downward burge, and passes through zero ($\mathfrak{S}_{K}=0$) when z=1 (curve 4).

In the case of a cube the downward slope and the convexity are maximum, when ψ_{K} = 0, z = 1 (curve 5).

Thus the diagram shows that the cube is the most regressive of the five powder shapes considered here; the surface of the cube ciminishes abruptly at the very start of burning and approaches zero at the end of burning. The least regressive powder shape is the tube, whose burning (surface) area remains practically constant at all times (reduction does not exceed 1%). Powder in the shape of a cube, at a given thickness of elements, gives off a maximum quantity of gases per unit of time at the start of burning; this quantity diminishes rapidly with burning. On the other hand, the quantity of gases given off by a tubular powder grain remains practically constant.

b) \(\psi, z\) Diagram (fig. 25):

$$\psi = rz(1 + \lambda z + \mu z^2).$$

Previously, we had the expression (9):

$$\frac{d\psi}{dz} = \chi (1 + 2\lambda z + 3\mu z^2) = \chi \sigma;$$

when
$$z = 0$$
 $c = 1$ and $\left(\frac{d\psi}{dz}\right)_0 = \varkappa$.

Fig. 24 - Change in area during regressive burning of powders of different shapes $\sigma = f(z)$.

Fig. 25 - The effect of grain shape on gas inflow for regressive powders $\psi = F(z)$.

 $\frac{d\,\psi}{dz}$ is the tangent of the slope angle of curve ψ , z with the abscissa, while the shape characteristic \varkappa represents the slope angle of the curve at the origin of the coordinates.

When $z = 0 \ \forall = 0$, c = 1; when $z = 1 \ \psi = 1$.

All the curves are located within a square whose sides equal unity.

All the curves originate at the origin of the coordinates and pass through point $\psi=1$, z=1; the tangent of the angle of inclination at the origin is $\left(\frac{d\psi}{dz}\right)=x$. Further variation of the angle of inclination is characterized by the value of ε . Inassuch as ε diminishes in all the powder shapes considered here, the angle of inclination of all the curves diminishes also, and hence all the curves are convex upwards. In the case of a tubular grain ε approaches unity and the change of ε is small; curve 1 practically merges with a diagonal drawn from the origin of the coordinate system. For a cube, $\varepsilon=3$ is maximum; curve 5 has the greatest angle of inclination at the origin and the greatest variation of this angle corresponds to the variation of ε . In the case of a cube and a slab $\varepsilon_{\varepsilon}=0$,

and hence the curves are tangent to the horizontal line 1-1 when z = 1.

The arrangement of the remaining curves 2, 3, and 4 is obvious and does not require any explanation.

The diagram shows that for a given value of z the portion of the burnt grain ψ will be the larger, the more regressive is the powder and the greater is χ . For example, in the case of tubular grain, at the instant the first half of the thickness (z=0.5) is burned, the burnt portion of volume ψ will be equal to 0.5005, and in the case of a cube, when z=0.5, $\psi=\frac{7}{8}=0.875$.

Consequently, a more regressive powder gives off a larger quantity of gases during the first half of the burning process, and a smaller such quantity, during the second half.

c) The G, ψ diagram has the greatest practical value, because it can be more easily compared with experimental data when evaluating the pressure curves obtained in the burning of powder in a manometric bomb. ψ is determined from the value of p by the aid of the general formula of pyrostatics, while φ goes into $\frac{d\psi}{dt}$ obtained by the numerical differentiation of the dependence of ψ on t. When this data is available, a comparison can be made of the theoretical and the experimental results.

Inassuch as the equation for ψ , z is a third power equation, and ε , z is a second power equation, z is usually not eliminated when determining the dependence of ε , ψ ; rather, by assigning definite values to z, the corresponding values of ψ and ε are computed, and the results are then plotted on the ε , ψ diagram.

120

STAT

How will the $\mathfrak G$, z diagram change after it is transformed into a $\mathfrak G$, ψ diagram (fig. 26)?

Fig. 20 - Lifted of the Shape of Regressive Powder Grains on the Change of the Powder Area During Burning - $G = \mathcal{G}(\psi)$.

Similarly to the G, z diagram, 6-1 when $\psi=0$. At the end of burning when $\psi=1$, G_K will have the same values as when z=1. Consequently, the position of the initial and final points will not change.

Since all curves of ψ , z are situated above the diagonal dividing the square ψ , z in half, the magnitude ψ > z will correspond to some value of z, and this magnitude will be the greater, the more regressive is curve ψ , z.

Therefore, when ψ is replaced by z, all the points on curves G, z (see fig. 24), while remaining at the same height, will shift to the right and the amount of displacement will be the greater, the more regressive is curve ψ , z or G, z (see fig. 26).

d) A binomial formula for the relationship ψ , z.

The examples given here for calculating the characteristics \varkappa , λ , μ for strip type powder show that μ is very small for strip and plate type grains, and that the term μz^2 does not appreciably affect the law governing the variation of ψ and δ . Therefore, in order to

simplify the expression subsequently entering the rather complex formulas of pyrodynamics in the solution of the basic problem, a binomial formula is used to express ψ for strip type powders without impairing the accuracy, by neglecting the term μz^2 in parenthesis. The influence of the neglected term μz^2 is compensated for by changing the remaining characteristics of and λ , based on the following considerations.

Having a complete trinomial formula

$$\psi = xz(1 + iz + \mu z^2)$$

with known characteristics, we shall replace it by a binomial formula with new characteristics \varkappa_1 and λ_1 :

$$\psi = \times_1 \mathbf{z} (1 + \lambda_1 \mathbf{z}).$$

In both equations $\psi=0$ when z=0. We shall establish the following conditions in order to determine coefficients \varkappa_1 and $\varkappa_1:=1$) when z=1 (end of burning), the binomial formula must give us $\psi=1$, and 2) when z=0.5, the value of ψ determined by means of the binomial formula must have the same value as ψ found by means of the trinomial formula at the same value of z=0.5.

We thus obtain a system of two equations with two unknown coefficients \varkappa_1 and λ_1 :

when z - 1

$$\varkappa(1 + \lambda + \mu) = 1 - \varkappa_1(1 + \lambda_1);$$

when z = 0.5

$$\frac{\cancel{K}}{2} \quad \left(1 \; + \; \frac{\cancel{\lambda}}{2} \; + \; \frac{\cancel{\mu}}{4}\right) \; = \; \frac{\cancel{\mu}_1}{2} \quad \left(1 \; + \; \frac{\cancel{\lambda}_1}{2}\right).$$

Solving this system, we get _12_7:

$$\varkappa_1 - \varkappa - \frac{\varkappa\mu}{2} - \varkappa \left(1 - \frac{\mu}{2}\right)$$
.

We can obtain from the first equation of the system

$$\lambda_1 = \frac{1}{\varkappa_1} - 1;$$

$$\lambda_1 = \frac{\lambda + \frac{3}{2} \mu}{1 - \frac{\mu}{2}}.$$

Since both λ_1 and $\lambda < 0$, for the absolute values thereof

$$|\lambda_1| = \frac{|\lambda| - \frac{3}{2} \mu}{1 - \frac{\mu}{2}}.$$

When the values of the characteristics \varkappa and λ_1 are determined in this manner, the second degree curve ψ , z and the third degree curve ψ , z will coincide at the starting point z=0, then at z=0.5, and finally at the end point z=1.

Thus, in the case of strip-type powder, the curves practically coincide also at the intermediate points, when the values of \varkappa_1 and λ_1 are chosen as above.

Thus, the binomial formula can be used for strip and plate type powders also in the future

$$= x_1 z (1 + \lambda_1 z).$$

Similarly, we shall have for the surface ratio

$$x = 1 + 2 \frac{\lambda}{1} z$$

Eliminating z from this system of equations, we get the dependence of σ on ψ in the following form:

$$G = \frac{1}{i} + 4 \frac{A_1}{\kappa_1} + \dots$$

For a given value of ϕ , this relationship permits a direct calculation of the corresponding value of G.

Hereafter, we shall drop the indexes of the characteristics of and $\boldsymbol{\lambda}$.

4. PROGRESSIVE-BURNING POWDERS

A. General Data

In all the regressive types of powder considered here, excepting tubular powders, the surface area always diminishes when the powder is burned, because burning proceeds inside the grain in concentric layers. A tubular grain is the exception in this respect: the surface of the perforation is displaced in burning from the axis of the tube outwards, thus increasing its area, and hence partly compensates

for the reduction of the exterior surface area. The tubular type of powder would represent a powder of constant burning area bordering between progressive and regressive forms of powder, if the tube were not to burn from its ends and remain unchanged in length.

Fig. 27 - Grain with Seven Perforations:

a - before burning;b - at the instant of decomposition.

At the start of burning the total surface of the tube of length 2c will be expressed by the following formula, if the end-areas and reduction in length are disregarded:

$$S_1 = 2\pi R_2 c + 2\pi r \cdot 2c = 2\pi (R + r) \cdot 2c$$
.

When the thickness burnt on the inside and the outside of the tube is e, the surface at that instant and at the same tube length will be

$$S = 2\pi(R - e)2c + 2\pi(r + e)2c = 2\pi(R + r)2c;$$

consequently, the surface area $S = S_1$ - const, because the reduction of the exterior surface is compensated for by the equivalent enlargement of the interior surface.

Under such conditions the constancy of the surface area does not depend on the diameter of the perforation. This property of the perforation surface to increase in burning indicates a means for obtaining a grain of the progressive type. This will require the use of grains with several perforations, whereby the increased surface area of the latter will compensate for the reduction of the outside area.

The grain with 7 perforations is based on this principle; the centrally disposed perforation along the axis of the grain compensates the decrease in the outside area, and the six radially disposed perforations in the vertices of a regular hexagon serve to increase the area during burning. The outside surface is located at a distance of 2e from the perforations. In such an arrangement (fig. 27a) the web thickness, i.e., the distance between the centrally located perforation and the outer perforations, as well as between the latter and the outer surface, will be the same, so that all the webs will burn simultaneously.

Burning from the perforation centers proceeds along concentric cylindrical surfaces, forming circles in section; when the latter converge and the thickness e₁ is burned in all directions, the grain disintegrates into 12 rods of irregular cross section (slivers): 6 inner, small rods and 6 outer larger rods (fig. 27b). These products of decomposition burn with a sharp reduction of the burning surface, similarly to a solid slab, and provide even greater regression because of the presence of sharp, rapidly burning projecting angles. Thus all progressive powder grains with several perforations, whose initial burning is accompanied by increased surface area disintegrate

126

at some instant into regressively burning products of decomposition. This is the undesirable characteristic of powders of the progressive type.

A grain with 7 perforations usually has a standard dimension ratio: the web thickness $2e_{1}^{}$ between the perforations themselves as well as between the latter and the outer wall must be the same and equal to twice the diameter of the perforation (or the perforation diameter d must be equal to half of the web thickness e_1):

accordingly, the outside grain diameter is

 $D = 4 \cdot 2e_1 + 3d = 11d = 11e_1$.

The length of the grain 2c is not great, it is usually equal to (2-2.5) D or (20-25)d.

Fig. 28 - Products of Decomposition of a Grain with 7 Perforations.

At this dimension ratio, the surface increase at the time of decomposition amounts to about 37% ($S_g/S_l = 1.37$, where S_g is the surface being burned at the instant decomposition occurs). At the same time, if the perforations are spaced correctly, about 85% of the

grain will be burned ($\psi_{\text{m}} \approx 0.85$). Consequently, about 15% of the grain is burned regressively with a sharp reduction of the surface area. If the spacing of the perforations is irregular, decomposition does not take place at the same instant: webs of the least thickness are burned first, followed by gradual burning of the thicker webs; a portion of the grain undergoes progressive burning and the remaining portion suffers a sharp reduction of its area. The maximum value of $\mathbf{S}_{\mathbf{B}}$ is smaller than in a normal grain, and this corresponds also to a lower value of $\psi_{\mathbf{g}}$.

If we inscribe a circle in the outer prism of decomposition (fig. 28), its radius $\rho = 0.1772(d + 2e_1) / 12_7$; in the case of standard dimensions $\rho = 0.1772 \cdot 3e_1 = 0.5316e_1 \approx 0.532e_1$.

The radius of the circle inscribed in the inner prisms of decomposition $\rho' = 0.0774(d + 2e_1) = 0.2322e_1 = 0.232e_1$. Therefore, at the end of burning of the grain as a whole, when the burning surfaces merge at the center of the outside prisms of decomposition, the thickness burned will be $e_{K} - e_{1} + \rho - e_{1} + 0.532e_{1} - 1.532e_{1}$.

Thus the burning of progressive powders is subdivided into two sharply differing phases: 1) prior to decomposition z varies from 0 to 1, ψ varies from 0 to $\psi_{\mathbf{g}}$ <1; burning proceeds with a gradually increasing area; 2) after decomposition z changes from 1 to

 $z_{K} = \frac{e_{1} + \rho}{e_{1}} = 1 + \rho/e_{1}$, ψ changes from ψ_{S} to 1; burning is progressive.

Some authors (V.E. Slukhotsky) consider it more expedient to consider $z_{K} = 1$ when $\psi = 1$; then, at the instant of decomposition, $s_s = \frac{v_1}{v_1 + \rho} < 1$ ($s_s = 0.653$ for standard dimensions).

Disintegration and regressive burning of the powder in the second phase are the defects of powders of the progressive type. In order to decrease the products of decomposition, a great many grain shapes were suggested by various authorities, of which the most interesting ones are the shapes suggested by Walsh and Kisnemsky.

Walsh's grain is an improved grain with 7 perforations, whose outer wall is not a continuous (single) cylindrical surface of diameter D = 11d, but, rather, consists of six cylindrical surfaces circumscribed about the axis of each perforation of radius $r = \frac{d}{2} + 2e_1 \quad \text{(in the case of standard dimensions } r = 2.5d = 2.5e_1\text{)}.$ The cross section of such a grain is as shown in fig. 29a, and at the instant of decomposition its section takes on the form shown in fig. 29b.

Fig. 29 - Walsh's Grain with 7 perforations.

Fig. 30 - Burning of Kisnemsky's Grain.

a) Before burning; b) at the instant of decomposition.

A grain of this type is often called a "shaped grain."

The dimensions of the products of decomposition in such a grain are considerably smaller than in an ordinary grain with 7 perforations.

Calculations show that $\psi_s\approx 0.95$, i.e., that 95% of the grain undergoes progressive burning, and only 5% is regressive. Also, for the same dimensions d, $2e_1$ and 2c as in a standard grain, the surface area increase is the same, or 37%, so that $6e_s\approx 1.37$.

The Kisnemsky grain was designed for the purpose of eliminating the products of decomposition on the one hand, and for obtaining a grain of "greater progressivity" on the other. It is in the form of a square slab with square perforations disposed in two mutually perpendicular directions (fig. 30a). According to Kisnemsky, the square perforation should burn in parallel layers and retain its square form, so that burning would terminate without decomposition. Furthermore, a large number of narrow perforations should provide a highly progressive grain (according to calculations $\frac{1}{K} \approx 2$). This is the powder recommended by Kisnemsky for obtaining extra-long-range firing; the KOCAPTOR (Kosartop) (Special Artillery Research Committee), headed by V.M. Trofimov, was the body engaged in the investigation of this type of powder at the time. All the theoretical work on the performance of this powder was carried out by V.A. Pashkevich.

It was found that Kisnemsky's estimates were not justified either with regard to burning without decomposition, or with regard to high progressivity. Tests had shown that the square-shaped perforation does not retain its shape, because burning from the corners of the square proceeds at the same rate as along a normal to the side of the square (there is no reason to believe that the powder would burn more rapidly along the diagonal than in other directions); it proceeds from each corner in concentric circles, whose radius equals the thickness

of the burnt layer in the direction of normals to the sides of the square. As a result, the cross section is that of a square with rounded corners, and at the instant of decomposition the shape of the grain appears as in fig. 30b.

The products of decomposition amounting to 10% remain between the perforations. Hence $\psi_{\bf S}$ is not 1 but is about 0.90 (90% of the grain burns progressively). $\varphi^{\alpha}=(\sqrt{2-1})e_1$, because $e_1+\rho$ is the diagonal of a square with side e_1 .

For reasons which will be discussed later, the powder suggested by Kisnemsky did not show the high progressive quality anticipated by him.

Fig. 31 - A Grain of Kisnemsky's Powder Before and After Disintegration (Obtained in Firing).

Figure 31, on the left, is a Kisnemsky grzin with 35 perforations before burning; on the right is the same grain incompletely burned and ejected from the gun after firing. The photograph clearly shows the products of the starting disintegration having the form of the "ace of diamonds" in cross section; the perforations are almost round.

131

Fig. 32 - Transformation of a Square Perforation into a Round One.

Figure 32 is a large grain with a single perforation: a) before burning; b and c) intermediate states. Inasmuch as the side of the square perforation is small in comparison with the web thickness, the perforation is transformed into a circle.

- B. Determination of the Characteristics of Progressive Powders
 - a) First phase, first method.

The law governing burning and the change of the surface of progressive type powders is expressed by the same general formulas:

$$\psi = xz(1 + \lambda z + \mu z^2),$$
 $G = 1 + 2\lambda z + 3\mu z^2,$

as for regressive types; the difference is only in the numerical values of the characteristics \varkappa , λ and μ and in their signs $(\lambda>0,\,\mu<0)$. The derivation of the characteristics equations is obtained similarly to regressive powders, and only the obtained expressions themselves are somewhat more complex than for regressive powders.

132

•

We shall introduce the following designations: 2c - grain length, 2e - web thickness; d - diameter of perforation; D - grain diameter; n - number of perforations.

The burned portion of the charge is:

$$\psi = 1 - \frac{\Lambda_{\text{oc}\tau}}{\Lambda_1}; \quad \frac{2e_1}{2c} = \beta;$$

$$\frac{D + nd}{2c} = \Gamma_1; \quad \frac{D^2 - nd^2}{(2c)^2} = Q_1.$$

It can be easily seen that the magnitude $T_1 = D + nd/2c$ is the ratio of the perimeter of the grain's cross section to a circumference whose diameter equals the length of the tube 2c. The magnitude $Q_1 = \frac{D^2 - nd^2}{(2c)^2}$ is the ratio between the base area and the area of a circle whose diameter is 2c.

The initial grain volume is

The unburned portion of the grain by volume at a given instant is

Bearing in mind that

$$\frac{2e}{2c} = \frac{2e_1}{2c} = \frac{2e}{2e_1} = \beta z$$

and dividing each term in the parenthesis by the denominator, we get:

$$\frac{\Lambda_{\text{ocr}}}{\Lambda_{1}} = \left[1 - \frac{2(D + nd)}{D^{2} - nd^{2}} \right] = -\frac{(n - 1)}{D^{2} - nd^{2}} (2e)^{2} \left[(1 - \beta z), \frac{1}{2}\right]$$

or, substituting Π_1 . 2c for D + nd and Q_1 (2c)² for D^2 - nd², we have:

$$\begin{split} \frac{\Lambda_{\text{oct}}}{\Lambda_{1}} &= \left[1 - \frac{2 \, \Pi_{1} \cdot 2c \cdot 2e}{Q_{1}(2c)^{2}} - \frac{n - 1}{Q_{1}(2c)^{2}}(2e)^{2}\right] (1 - \beta z) = \\ &= \left(1 - \frac{2\Pi_{1}}{Q_{1}} \beta z - \frac{n - 1\beta^{2}z^{2}}{Q_{1}}\right) (1 - \beta z) = \\ &= 1 - \left(1 + \frac{2\Pi_{1}}{Q_{1}}\right) \beta z - \left(\frac{n - 1 - 2\Pi_{1}}{Q_{1}}\right) \beta^{2}z^{2} + \frac{n - 1}{Q_{1}} \beta^{3}z^{3}; \\ \psi &= 1 - \frac{\Lambda_{\text{oct}}}{\Lambda_{1}} = \left(1 + \frac{2\Pi_{1}}{Q_{1}}\right) \beta z + \frac{(n - 1) - 2\Pi_{1}}{Q_{1}} \beta^{2}z^{2} - \frac{n - 1}{Q_{1}} \beta^{3}z^{3} = \\ &= \frac{Q_{1} + 2\Pi_{1}}{Q_{1}} \beta z \left(1 + \frac{n - 1 - 2\Pi_{1}}{Q_{1} + 2\Pi_{1}} \beta z - \frac{(n - 1)\beta^{2}}{Q_{1} + 2\Pi_{1}} z^{2}\right). \end{split}$$

We thus get a general type formula:

$$\psi = \kappa z (1 + \lambda z + \mu z^2),$$

where

These formulas show that for powders with many perforations the characteristic $\mu < 0$ and hence the convexity of curve $\mathfrak G$, z is directed upwards (when n=1, $\mu=0$). The sign of λ depends on the difference $(n-1)-2\Pi_1$, and in ordinary powders with 7 perforations of standard dimensions $\lambda>0$. When the grain is shortened λ may become equal to zero: this will occur when $n-1-2\Pi_1=0$ or $n-1-2\frac{D+nd}{2c}=0$, whence

(*) These formulas are suitable not only to progressive powders where n>1, but also for regressive shapes – solids of revolution, for example for n=1 (tube) and n=0 (round slab without perforations). Hence, they are general formulas: thus, for example, for a tube when $n=1,\,\lambda<0,\,\mu=0$, when n=0 (solid slab) $\lambda<0,\,\mu>0$, as was established in the previous formulas.

 $\frac{D + nd}{2c} - \frac{n-1}{2}.$

Under such conditions, perforated powder is no longer progressive.

In particular, for a grain of standard cross section with 7 perforations, whose D = 11d, the condition λ = 0 is satisfied when

$$2c - 6d - 3 \cdot 2e_1$$
,

and since $\mu < 0\,,$ the area of such a short grain will diminish when burned.

A study of the A coefficient shows that progressivity increases with the number of perforations, if the diameter of the perforations at the same web thickness decreases and the length of the slab increases.

The expression for the surface (area) change will have the following general form:

$$6 = 1 + 2\lambda z + 3\mu z^2$$
.

In the case of rectangular shapes, such as the Kisnemsky grain, the magnitude π_1 is the ratio between the perimeter of the cross section and the perimeter of a square with side 2c equal to the length of the slab, and Q_1 is the ratio between the cross-sectional area of the grain and the area of the same square with side 2c.

If we call the side of a square slab A_1 , the side of the square perforation a_1 , the length of the slab 2c and the number of perforations a^2 (a horizontal and vertical rows),

$$\eta_1 = \frac{(A_1 + n^2 a_1)}{2c}, \ Q_1 = \frac{A_1^2 - n^2 a_1^2}{(2c)^2}, \ \beta = \frac{2e_1}{2c}.$$

These formulas hold true for Walsh's grain as well, but inasmuch as the cross section of this grain is more complex, the formulas for Π_1 and Q_1 are likewise more complex.

The outside wall of Walsh's grain can be considered as consisting of six arcs whose lengths equal 1/3 of a circumference of diameter $d_1 = d + 2 \cdot 2e_1$ and which are described from the centers of six perforations, and six arcs each measuring 1/6 of a circumference of diameter d_1 described from the outside vertices of equilateral triangles with side $a_1 = 2e_1 + d_1$, whose other two vertices lie in the center of the perforations (fig. 33).

In such a case the cross-sectional area \mathbf{S}_{T} of the grain consists of the following elements:

- 1) 12 triangles with side a_1 less three sectors of a circle of diameter d_1 at their apexes;
- 2) six sectors each measuring 1/3 of a circle of diameter δ_1 less six sectors each equivalent to 1/3 of a circle of diameter d_1 :

$$\mathbf{S}_{T} = 12 \left(\frac{\sqrt{3}}{4} \ \mathbf{a}^{2} - 3 \frac{1}{6} \frac{\pi}{4} \ \mathbf{d}_{1}^{2} \right) + 6 \frac{1}{3} \frac{\pi}{4} (\delta_{1}^{2} - \mathbf{d}_{1}^{2}) =$$

$$= \frac{\pi}{4} \left(\frac{12\sqrt{3}}{\pi} \ \mathbf{a}^{2} - 8\mathbf{d}_{1}^{2} + 2\delta_{1}^{2} \right).$$

The perimeter P of the grain will consist of:

- 1) six arcs each measuring 1/3 of a circumference of diameter δ_1 ;
- 2) seven circles of diameter d1;
- 3) six arcs each measuring 1/6 of a circumference of diameter \mathbf{d}_1 (in the angles included in the outside web.

$$P = \pi \left(0 \frac{1}{3} \delta_1 + 7d_1 + 0 \frac{1}{6} d_1 \right) = \pi (2\delta_1 + 8d_1) = 2\pi (\delta_1 + 4d_1).$$

Then:

$$\beta = \frac{2e_1}{2c_1};$$

$$\Pi_1 = \frac{p}{\pi 2c_1} = \frac{2(\delta_1 + 4d_1)}{2c_1};$$

$$Q_{1} = \frac{S_{T}}{\frac{\pi}{4}(2c_{1})^{2}} = \frac{\frac{12\sqrt{3}}{\pi}a_{1}^{2} + 2\delta_{1} - 8d_{1}^{2}}{(2c_{1})^{2}}.$$

rig. 33 - Diagram of Walsh's Grain. 138

STA

b) A binomial formula for the second phase.

Since for a standard grain with 7 perforations the characteristic μ is small, the law governing burning $\psi=f(z)$ can also be expressed with sufficient accuracy by means of a binomial formula:

$$\psi = \varkappa_1 z (1 + \lambda_1 z).$$

The characteristics \varkappa_1 and λ_1 will be found under the condition that when z=1, $\psi=\psi_S$, and when z=0.5, the value of ψ according to a trinomial formula would be equal to the value of ψ according to the binomial one. We thus obtain a system of two equations as for regressive powders:

when z - 1

$$\varkappa(1+\lambda+\mu)=\psi_{\mathbf{s}}=\varkappa_{1}(1+\lambda_{1});$$

when z = 0.5

$$\frac{d}{2}\left(1 + \frac{\lambda}{2}t\frac{\mu}{4}\right) - \frac{d_1}{2}\left(1 + \frac{\lambda_1}{2}\right)$$

Solving it we get

$$\varkappa_1 = \varkappa \left(1 - \frac{\mu}{2}\right)$$

and then

$$\lambda_1 = \frac{\psi_0}{\varkappa_1} - 1$$

(instead of $\lambda_1 = \frac{1}{z_1} - 1$ for regressive powders).

 $\underline{\text{Example}}$. Compute the shape characteristics of progressive powders. Grain with 7 perforations.

$$2e_1 - 1$$
; $d - 0.5$; $D - 5.5$; $2c - 12.5$ mm

$$\beta = \frac{2e_1}{2c} = \frac{1}{12.5} = 0.08; \quad \frac{0}{1} = \frac{0 + 7d}{2c} = \frac{9}{12.5} = 0.720;$$

$$Q_1 = \frac{D^2 - 7d^2}{(2c)^2} = \frac{30.25 - 7 \cdot 0.25}{156.25} = \frac{28.50}{156.25} = 0.1824$$
:

$$Q_1 + 2\Pi_1 = 0.1824 + 2 \cdot 0.720 = 1.6224;$$

$$R = \frac{Q_1 + 2\Pi_1}{Q_1} B = \frac{1.6224}{0.1824} \cdot 0.08 = 0.712;$$

$$\lambda = \frac{(n-1) - 2\Pi_1}{Q_1 + 2\Pi_1} \beta = \frac{6 - 1.44}{1.622} \cdot 0.08 = 0.225;$$

$$\mu = -\frac{(n-1)\beta_1^2}{Q_1 + 2\Pi_1} = -\frac{6 \cdot 0.0064}{1.622} = -0.0237;$$

$$\psi_s = \varkappa(1 + \lambda + \mu) = 0.712(1 + 0.225 - 0.0237) = 0.712 \cdot 1.2013 = 0.855;$$

$$\theta_a = 1 + 2 \lambda + 3\mu = 1 + 0.45 - 0.0711 = 1.379.$$

In the case of the binomial formula $\psi = \mathcal{L}_1 z(1 + \lambda_1 z)$:

$$x_1 - x \left(1 - \frac{u}{2}\right) = 0.712 \cdot \left[1 - \left(-\frac{0.0237}{2}\right)\right] = 0.712 \cdot 1.0118 = 0.720;$$

$$\lambda_1 = \frac{\Psi_B}{\ell_1} = 1 = \frac{0.855}{0.720} = 1 = 0.1873;$$

$$\psi_{\rm g} = \mathcal{X}_1(1 + \lambda_1) = 0.720(1 + 0.1873) = 0.855;$$

$$G_{\mathbf{S}} = 1 + 2 \lambda_{1} = 1.375.$$

It can be seen that the difference between the values of $\Theta_{\bf S}$ corresponding to the instant of disintegration obtained by trinomial and binomial formulas would be very small (0.004), so that in practice the binomial formula can be used for powders with 7 perforations in the first phase of burning.

c) Second phase (after disintegration).

The products obtained after decomposition in the form of small prisms of triangular cross section (with curved sides) burn regressively with rapid surface reduction, similarly to a square or round slab.

A detailed investigation made by G.V. Oppokov [13_7, using the assumption that burning proceeds in strictly parallel layers, provides general expressions: one - prior to burning of the thinner inside prisms, and the other - until the end of burning of the outside prisms. Using the formulas suggested by him as a basis, Oppokov

prepared a table for the values of ψ as a function of z when the small and large prisms are burned and then when only the remainders of the large prisms are burned. An analysis of his data shows that the change in the surface area of the products of decomposition almost corresponds to the change in the surface of a cube, i.e., its burning is more regressive than in the case of a prismatic slab.

The binomial formula can be used for determining the relationship ψ , z in the second phase. Transferring the origin of the coordinates to the point of decomposition $(z_s = 1, \psi = \frac{1}{s})$ we will have

$$\psi - \psi_s = \kappa_2(z - 1) \left[(1 + \kappa_2)z - 1 \right] \left[(30) \right]$$

with z varying from 1 to z_K.

We shall determine κ_2 and λ_2 by imposing the following requirements:

- 1) when $z = z_K$, ψ must equal unity according to formula (30);
- 2) at the end of burning when $z=z_{K}$ the surface s must become equal to zero.

Differentiating equation (30) with respect to z, we get:

$$\frac{d\psi}{dz} = \frac{s}{\Lambda_1} e_1 = \kappa_2 \left[-1 + 2\lambda_2(z - 1) \right]^{7}.$$

The second requirement will be satisfied if:

$$1 + 2\lambda_2(z_K - 1) = 0.$$

142

The first requirement will be written thus:

$$1 - \psi_{\mathbf{S}} = \kappa_{2}(z_{\mathbf{K}} - 1) = 1 + \lambda_{2}(z_{\mathbf{K}} - 1) \mathcal{J}.$$

Solving this equation we find that

$$\lambda_2 = \frac{-1}{2(z_{K} - 1)}; \quad x_2 = \frac{2(1 - \psi_g)}{z_{K} - 1}.$$

Calculations by means of these formulas show that for a standard grain with 7 perforations when $z_{K} = 1.532 - \psi_{S} = 0.855$:

$$\lambda_2 = \frac{1}{2 \cdot 0.532} = -0.94; \quad \kappa_2 = \frac{2 \cdot 0.145}{0.532} = 0.545;$$

for Walsh's grain when $z_{K} = 1.232$ and $\varphi_{S} = 0.95$

$$\lambda_2 = \frac{-1}{2 \cdot 0.232} = -2.16; \, \varkappa_2 = \frac{2 \cdot 0.05}{0.232} = 0.432.$$

C. Graphic Representation of Relations & - z, y - z, G-w

In order to construct diagrams ψ - z; $\frac{s}{s_1}$ -z; $\frac{s}{s_1}$ - ψ for progressive

shapes, we shall resort to the following general formulas:

$$\psi = \Re z (1 + \lambda z + \mu z^2)$$
 and $\frac{s}{s_1} = 1 + 2\lambda z + 3\mu z^2$,

which are applicable also to these shapes, but now when x = 1

 $\psi=\psi_{\rm S}<1$; the end of burning occurs when z>1, the coefficient $\mu=0$ (not only for grains with 7 perforations, but also for the Kisnemsky grain.)

Accordingly, the diagrams will appear as shown in fig. 34 and 35:

- I grain with 7 perforations;
- II grain with shaped outer web;
- III Kisnemsky's grain.

Fig. 34 - 6= f(z) relationship for progressive grains.

Fig. 35 - ψ = $f_1(z)$ relationship for progressive grains.

Inasmuch as $\mu < 0$, the convexity of the S/S₁, z curves is directed upwards. When constructing an S/S₁ diagram as a function of ψ , the corresponding points of theS/S₁,z diagram will be displaced to the left (the reverse of regressive grains), this displacement being the smaller the greater is the value of z; hence the S/S₁, ψ curves will likewise remain convex upwards as do the S/S₁, z curves (fig. 36).

Fig. 36 - s- $f_2(\psi)$ Ref. on for Progressive Powders.

a) Inhibited powders of high progressivity

Inhibited powders constitute one of the forms of nightly progressive powders.

These powders first appeared in Russia soon after the appearance of Kisnemsky's powders and were developed jointly with the latter.

This problem was studied by O.G. Filippov, an instructor at the Artiller Academy, in 1920-1928.

Inhibited powder is obtained from ordinary tubular powder, whose outside surface is coated with a special nonburning substance.

When such a powder is ignited, only the inside surface of the grain burns, which surface increases in proportion to the diameters ratio $\mathbf{D_0}$: $\mathbf{d_0}$. When the diameter of the perforation equals the thickness of the tube

$$\frac{s_K}{s_1} - \frac{b_0}{d_0} - 3.$$

The resulting progressiveness is greater than in a Kisnemsky grain with 36 perforations.

Fig. 37 - Inhibited Tubular Powder.

Notwithstanding the apparent simplicity of this idea and the theoretical possibility of obtaining high progressivity, the practical realization of same was found to be very difficult, because the inhibitor layer must not burn and must be capable of protecting the outer tube surface from burning. At the same time it must be sufficiently strong to withstand abrasion when shaken and be strong enough not to be torn off the surface by the action of the gases.

The undesirable property of inhibited powders is greater smoking when fired, due to the disintegration of the inhibitor at the instant the shell is ejected from the bore of the gun.

b) Characteristics of inhibited powders.

The outside surface and ends of the powder are inhibited and

In contradistinction to an ordinary tube, the web thickness of do not burn. an inhibited powder burns in one direction only and should therefore be denoted by e rather than by 2e1, which is the usual designation.

Applying the general method, we get:

146

$$\Lambda_1 = \frac{\pi}{4} \left[\left(d_0 + 2e_1 \right)^2 - d_0^2 \right] \left[2e - \frac{\pi}{4} 2e \right] \left[2d_0^2 e_1 + 4e_1^2 \right] - \pi 2e \left(d_0^2 e_1 + e_1^2 \right);$$

$$\Lambda_{\text{OCT}} = \frac{\pi}{4} \left[\left(\frac{d_0}{d_0} + 2e_1 \right)^2 - \left(\frac{d_0}{d_0} + 2e \right)^2 \right] = \pi 2c \left[\frac{d_0}{d_0} e_1 + e_1^2 - \left(\frac{d_0}{d_0} e + e^2 \right) \right];$$

$$\frac{-\frac{e}{e_1} + \frac{e_1}{d_0} + \frac{e}{e_1}}{-\frac{1}{d_0} + \frac{e^2}{e_1}} = 1 - \frac{\frac{e}{e_1} + \frac{e_1}{d_0} + \frac{e}{e_1}}{1 + \frac{e}{d_0}} = 1 - \frac{\frac{e_1}{d_0} + \frac{e_1}{d_0}}{1 + \frac{e_1}{d_0}}$$

$$\psi = 1 - \frac{\triangle_{\text{OCT}}}{\triangle_1} = \frac{1}{1 + \frac{e_1}{d_0}} z \left(1 + \frac{e_1}{d_0} z\right);$$

Comparing it with the usual formula $\varphi = \kappa z(1 + \lambda z)$, we get:

$$\lambda = \frac{e_1}{d_0}, \quad \mathcal{L} = \frac{1}{1 + \lambda} = \frac{1}{1 + \frac{e_1}{d_0}};$$

$$G = \frac{8}{8_1} = 1 + 2\lambda z = 1 + \frac{2e_1}{d_0} z; \quad G_{K} = 1 + \frac{2e_1}{d_0} = \frac{D_0}{d_0}$$

When the tube thickness e equals its diameter d o

$$\lambda = 1$$
; $\kappa = \frac{1}{1 + \lambda} = 0.5$; $\alpha_{K} = 1 + 2 = 3$.

By reducing the diameter of the perforation with the web thickness remaining the same, the geometric progressiveness can be considerably increased:

$$d_0 = \frac{e_1}{2}$$
; $\lambda = 2$; $\lambda = \frac{1}{3}$; $\omega_K = 1 + 2\lambda = 5$.

CHAPTER V - BURNING RATE

The burning rate of powder mainly depends on its properties and temperature, and the pressure and temperature of the gases surrounding

Inasmuch as the temperature of the gases formed during burning of powder as yet does not lend itself to experimental determination, the burning rate is usually expressed as a function of its properties and gas pressure which is known from experiment at any given instant of time.

The functional dependence of the burning rate u on pressure of the form u=f(p) is known as the "burning rate law," and this law is expressed by various empirical formulas as given by different authors.

Experimental determination of the burning rate of powder is possible on the basis of a test curve depicting pressure as a function of time; this involves the use of the fundamental relationship of the geometrical law of burning giving the relation between ψ and $z = e/e_1$.

1

148

For determining the burning rate, use is usually made of strip, plate or tubular powder, of uniform thickness; its dimensions are carefully measured, the mean values of $2e_1$, 2b, 2c or $2e_1$, D_0

The powder is then burned in a manometric bomb using a strong igniter, to insure simultaneous ignition along the entire powder surface so as not to impair the initial dimensions used for calculating the % and % characteristics.

The analysis of the bomb test data is conducted in the following manner.

Having obtained from the bomb test a curve of pressure p as a function of time t, and upon determining for this powder on the basis of the derived relationships the law governing the variation of ψ with z or e and constructing the corresponding ψ , z or ψ , e diagram, we can determine the rate of burning u at the given pressure. Indeed, knowing the values of p, we can determine by means of the general pyrostatics formula or from tables the values of ψ , for which we take the values of e from the ψ , e diagram. The difference between the neighboring values of e will give the increment Δ e for the time interval Δ t, known from measurement of the p, t curve; the Δ e/ Δ t ratio gives the burning rate u at p which is an average value for the given section. Thus, having at our disposal calculated data in the form of a table, we can determine the variation in the burning rate and of the given powder due to change of pressure p (Table 12).

Table 12 - Determining the Burning Rate u = f(p)

diagram on the the geo	iuxiliary table or iiagram compiled Table Derived from Test Data on the basis of the geometric law of burning								
		1	2	3	4	5	6	7	
Z	+	e	t	р	р _{ср}		According Auxiliary Diagram	to Δe	<u>△e</u> – u
0	0	0	Q	РВ	1(p _B + p')	0	0	∆e',- - e' -0	u'
z '	ψ.	•	t'	p ·	$\frac{1}{2}(p' + p'')$	4.	e	Δe" - - e" -e'	u"
z	ψ"	e'	t	p ''		ψ-	е"	1	
		•		-					1
				-					1
			-						
		.	-						
		.	-						
			-	-					
			-						
	•	•	-	-					
			.	-		•	•		
1	1	•1	t _K	Pm		1	•1		

plotting the obtained values of u, $p_{\rm CP}$ ($p_{\rm CP} = p_{\rm mean}$ - Translator) on a graph, we can find the change of u with change of pressure p, and thus determine the burning rate law.

The formulas most often used for determining the burning rate are the following.

a) Vieille's formula (exponential equation)

 $u - Ap^{\nu}$,

where A and ν depend on the nature of the powder, and, in particular, ν may be equal to unity.

The smaller the value of ν , the less sensitive is the powder to pressure changes.

For smokeless powders Vieille used v=2/3, and for ordinary black powders v=1/2. Our tests with slowly burning black powders for a time fuze gave the value of v=1/5.

G.A. Zabudsky used V=0.93 for pyroxyline powders. Some authors use V=1 for cordites and V=1.07 for ballistite.

b) Binomial formula

u = a + bp.

It was first used by Prof. S.P. Vukolov (1891-1897) in the Naval Technical Laboratory, and then by Wolf (1903) and Prof. I.P. Gravé (1904). Muiraur employed this formula considerably later (1930-1935).

In his thesis (1904) I.P. Gravé [14] compared formula $u = Ap^{\nu}$ with formula u = ap + b by analyzing a large number of bomb tests conducted by himself and others and arrived at the following conclusion: "Both formulas can be considered equally valid for expressing the law governing the change of burning rate under varying pressure, because the mean errors obtained with the use of these formulas are

generally the same, and both formulas give practically identical results."

This deduction which appears strange at first glance, namely, that a parabola (semicubical) and a straight line not passing through the origin give identically accurate results, can be explained as follows.

The first tests in bombs since the year 1880 were conducted with the use of cylindrical crushers which do not permit recording pressures below $300-400~{\rm kg/cm^2}$ (fig. 38). The test data (points) are usually scattered to a certain extent and do not lie on a definite line. As a result, some of the investigators drew a parabola $u=Ap^+$ through these points, and others drew a straight line u=ap+b which does not pass through the origin of the coordinates (curve 2).

The conclusion arrived at by Prof. Gravé confirms the fact that both lines pass sufficiently close to the points plotted on the basis of tests at pressures exceeding $400~{\rm kg/cm}^2$.

The relationship u=f(p) could not be obtained experimentally at low pressures ($<400~kg/cm^2$) at that time, and the question of the true relationship continued to remain open.

c) Formula u - Ap.

Charbonier (1908) first accepted the burning rate law in its general form $u = Ap^r$, and then, on the basis of his own analysis of test curves p, t obtained in bomb tests, arrived at the conclusion that for French strip-type B powders \forall can be taken equal to \forall = 1.

This law was accepted also by our Prof. N.F. Drozdov in his thesis / 15_7 in the year 1910.

In 1913, Schmitz burned tubular powders in a large Krupp bomb, using an elastic bar with an optical method of recording pressures instead of a crusher. He succeeded in obtaining a full curve of the pressure increase in the bomb from the start to the end of powder burning. In order to evaluate the accuracy of either burning rate law, he introduced a new criterion, and proved by means of an actual test the justness of the burning rate law in the form u = Ap.

Fig. 38 - Dependence of Burning Rate on Pressure.

The criterion determining the justness of this law confirmed by experiment is presented below.

We shall assume that the following law holds true:

since the burning rate is a ratio between the increment of the burned thickness de and the corresponding time element dt, i.e.,

$$u = \frac{de}{dt}$$
,

then

Integrating, we get:

$$\int_{0}^{e} de = e = A \int_{0}^{t} pdt \text{ or } \int_{0}^{t} pdt = \frac{e}{A}.$$

Burning terminates when thickness e is burned. The full time of burning will be $t_{\vec{k}},$ and we will have:

$$e_1 - A \int_0^{t_K} pdt$$

whence

$$\int_{0}^{t_{K}} pdt = \frac{e_{1}}{A} = const (for the given powder).$$

Magnitudes \mathbf{e}_1 and A characterize the dimensions and nature of the powder and do not depend on the conditions of loading

It follows: that if the burning rate law u = Ap is correct, the pressure impulse of the powder gases depends only on the burned thickness of the powder, on the burning rate coefficient, and on the characteristic properties of the powder, and does not depend on the loading density.

The full pressure impulse during the full time of burning equals half of the thickness e₁ of the burning layer divided by the burning rate coefficient A, and does not depend on the loading density.

Fig. 39 - p, t Curves for Different Loading Densities.

When conducting tests with tubular powder of one kind in a Krupp bomb, with \triangle varying from 0.12 to 0.26, and upon measuring the area under the pressure curves p = f(t), Schmitz had found that the areas

 $\int\limits_{0}^{t_{K}} \text{pdt found by experiment are actually equal to one another, which } \\ 0 \\ \text{finding confirms the validity of the } u = \text{Ap law}.$

Figure 39 shows the form and arrangement of p, t curves.

The greater the loading density, the smaller is the burning time and the higher is the gas pressure p, t curve.

Were the u=de/dt=ap+b law valid, then, after transformation, we would have:

and

$$\int_{0}^{K} pdt = e_1/a - \frac{b}{a}t_K.$$

Inasauch as $t_{\underline{R}}$ decreases when \triangle increases, then, according to the u=ap+b law, the full gas pressure impulse should become greater with increase of loading density.

When applying the $u=Ap^{\nu}$ law, where $\nu<1$, an analogous

Schmitz's tests have shown that $\left\{\begin{array}{c} t_K \\ \end{array}\right\}$ pdt does not depend on the deduction is obtained.

loading density, which served to prove the validity of the u - Ap law.

These tests had attracted the attention of many investigators and provided data for the verification of theoretical deduction and investigations. The latter include the work of Eulraur on the study of the burning rates of colloidal powders (1927-1928) and of calculating the amount of heat transferred to the walls during burning of powder (1924-1925).

M.E. Serebriakov's tests with pyroxyline and nitroglycerine powders confirmed the validity of the u = Ap law. These tests will be discussed in greater detail in section III dealing with the physical

Thus it may be assumed that the value of u as the rate of law of burning. penetration of the burning reaction inside the grain is directly proportional to pressure, i.e., it is expressed by the formula:

Here A can be expressed as the ratio between the burning rate at p=1 (we shall designate it by u_1) and the magnitude of this pressure p - 1:

$$A = u_1/1$$

(the subscript "l" indicates that this burning rate refers to pressure p = 1).

156

This formula can be rewritten thus:

$$u = u_1 \cdot \frac{p}{1} - u_1 p;$$

when $p = 1 u = u_1$.

The dimensionality of the value of $u_{\hat{l}}$ can be seen from the equality

$$u_1 = \frac{u}{p} \frac{dm}{sec} : \frac{kg}{dm^2},$$

i.e., this represents the rate referred to unit pressure.

Similarly to powder energy f and covolume 1, the magnitude u constitutes a fundamental ballistic characteristic of powder and, similarly to f and α , depends on the physical and chemical properties of the powder.

The value of u_1 for pyroxyline powders varies from 0.0000060 to 0.0000090 dm/sec : kg/dm^2 . The thicker the powder, the greater is the content of volatiles and the slower is the burning of the powder. The higher the nitrogen content in pyroxyline, the more rapid is the burning. In nitroglycerine powders \mathbf{u} depends in the main on the nitroglycerine content itself, and the greater its content the more rapid is the burning. The admixture of dinitro-derivatives in powders in a nonvolatile solvent usually reduces the burning rate.

Varying of the content of volatiles by +1% lowers the burning rate of pyroxyline powders by 10-12%.

The following empirical formula for determining the burning rate of pyroxyline powders, introduced for the first time by

N.F. Drozdov / 16_7 in our country, appears in American literature:

$$u_1 = 10^{-4}$$
 0.0025 ϵ 48 (180 - t°) + 2561h + 908.5h'

where $\ell = 69,400$ (N - 6.37) - powder energy in kg-m/kg;

to = temperature of powder;

h = content of volatile substances in %, removed by six hours of drying (moisture);

h - content of residual solvent in % - not removed after six hours of drying;

N = nitrogen content in %.

This formula clearly shows the effect of various individual factors on the burning rate, but does not give sufficient satisfactory results as regards our own domestic powders.

The following formula is better adopted to our pyroxyline powders and is more convenient for performing the necessary calculations:

$$u_1 = \frac{0.175(N - 6.37)}{0.04(220 - t^0) + 3h + h'} \frac{nm}{sec} : \frac{kg}{dm^2} =$$

$$= \frac{0.175 \cdot 10^{-4} (N - 6.37)}{0.04(220 - t^{0}) + 3h + h'} \frac{dm}{sec} : \frac{kg}{dm^{2}},$$

where 220 is the ignition temperature of the powder;

$$\epsilon = 700,000(N - 6.37 \text{ kg-dm/kg}).$$

158

Letan assumed on the basis of the kinetic theory of gases that the burning of powder is a process in which the powder molecules are split by the impact of gas molecules, and offers the following formula for determining u1:

ining
$$u_1$$
:
$$u_1 = -\frac{g}{\delta \sqrt{\pi c_p}} \left(1 + \frac{c_1^2}{c_p^2}\right) e^{\frac{c_1^2}{c_p^2}},$$

where g = acceleration of gravity;

 δ - physical density of powder;

c = probable velocity of molecules of gases formed in burning
 of nowder: of powder;

c = velocity of active gas molecules, whose kinetic energy is sufficient to split off at least one molecule when the surface of the powder undergoes an impact.

c and c depend on the nature of the powder and of the gases formed during its combustion.

Schmitz had conducted his tests at loading densities Δ of from 0.12 to 0.26. Later tests had shown that at very low loading densities n pdt is a linearly decreasing function of $(\Delta \ge 0.015)$ the integral time:

$$\int_{0}^{t_{K}} pdt = s_{0} - \pi t.$$

As was shown above, such a relationship is obtained under the burning rate law u = ap + b.

In the tests conducted by M.E. Serebriakov [5] and A.I. Kokhanov it was shown that the integral but changes with increase of the time of burning only in the case of powders of considerable thickness (2e₁ > 0.5); in the case of very thin powders, the full impulse, even at low loading densities, does not depend on the loading density. This shows that the speed of the process governing the heating of the entire powder mass is of importance, and that the increase of the powder temperature increases the burning rate u and reduces the value of the integral

$$\int_{0}^{t_{K}} pdt = e_{1}/u_{1}.$$

In order to determine the effect of heating on the burning rate of powder under a given constant pressure, tests were conducted with powder strips burned at different temperatures in open air. It was found that the time of burning of a strip of a given length varies from 14.1 seconds at $t=15^{\circ}\text{C}$ to 9.4 seconds at $t=50^{\circ}\text{C}$, and hence the rate of burning increases 1 1/2 times. The integral $\int \text{pdt} = \text{p}_{\text{g}} \cdot \text{t}_{\text{K}}$ was reduced in the same proportion, where p_{g} is atmospheric pressure.

The effect of heating on the burning rate of powder can be confirmed by the following tests.

If several charges of the same density are burned in succession in a bomb without cooling, the latter becomes quite hot. The powder inside the bomb becomes heated also, because the time between charging and the end of burning is considerable (several minutes). The value of the integral becomes smaller with each successive test, which

condition points at an increasing rate of burning \mathbf{u}_1 for the same powder thickness.

These tests permit the conclusion that the reduction of the integral I_K with decrease of \triangle for thick powders when $\Delta < 0.10$ is the result of heating of the powder mass under the condition of relatively slow burning, whereby the degree of heating and hence the increase in the value of u_1 is the greater, the smaller the value of Δ , i.e., the slower is the burning of the powder at low pressures.

Inasmuch as the integral of I_K decreases with the decrease of Z., the above will be theoretically valid if the burning rate laws $u=Ap^{V}$ and u=ap+b are adhered to. Tests conducted by M.E. Serebriakov (1932) with powders with hard solvents showed that at pressures $p_m>1000~kg^2cm^2$ the linear law u=Ap can be applied to determine the burning rate, and that at pressures $p_m<1000~kg^2cm^2$ the law expressed by the formula $u=A_1p^{0.82}$ will apply.

In analyzing later tests conducted by Prof. Yu. A. Pobedonostsev in bombs with nozzles at very low pressures (5 to 250 atm), Prof. Ya.M. Shapiro arrived at the relationship $u=0.37~\mathrm{p}^{0.7}$ which, seemingly, is contradictory to the relationship $u=\mathrm{Ap}$.

Actually, as was shown above, the decrease of the integral $\int pdt$ at small values of \triangle can be explained also when applying the $u=u_1p$ law by the increase of the burning rate u_1 due to heating of the powder. This explanation is founded on the theory of prof. Ya.B. Zeldovich mentioned earlier.

In any case a more accurate evaluation of either expression for the burning rate law requires further investigations (see Section III).

Inasmuch as powders in gun barrels burn under high pressures and under high loading densities, the following burning rate law may be considered valid for such powders:

$$u - u_1 p$$
.

Going back to the formula for expressing the rate of gas formation, we can now write it as follows:

$$\frac{d\psi}{dt} = \frac{s_1}{\Delta_1} \frac{s}{s_1} u_1 p \tag{31}$$

or

$$\frac{d\dot{\gamma}}{dt} = \frac{\varkappa}{e_1} u_1 \frac{S}{S_1} = \frac{\varkappa}{I_K} \omega_p, \qquad (32)$$

where $\frac{s_1}{\Lambda_1}$ and $\frac{s}{s_1}$ depend on the geometry of the powder;

- u is the burning rate of powder when p=1; it characterizes 1 the nature of the powder and the degree to which it is heated;
- p is the pressure at which the powder is burned; it characterizes the influence of the surrounding medium on the powder and depends on Δ , f, α , δ , ψ .

CHAPTER VI - PRESSURE VARIATION AS A FUNCTION OF TIME

We have derived above the following formulas: a) a formula for determining the rate of gas formation

$$\frac{d\phi}{dt} = \frac{S_1}{\Lambda_1} \frac{S}{S_1} u_1 p = \frac{\kappa}{e_1} u_1 dp = \frac{\kappa}{I_K} ep$$
 (33)

and b) the general pyrostatics formula which takes the igniter into account

$$p = p_{B} + \frac{f \triangle \psi}{1 - \frac{\Delta}{\delta} - \Delta n - \frac{1}{\delta} \psi}, \qquad (34)$$

where $N_{ij} = 1 - \frac{N}{\delta} - Z$, $\alpha = \frac{1}{\delta} - \frac{1}{\delta} = \frac{W_{ij}}{W_{ij}}$ is the relative free space in the bomb in which the powder is burned.

It is necessary to determine the dependence of the pressure change on time when the powder is burned in a constant volume, i.e., to give an analytical expression for the relationship between p=f(t), dp/dt and the full time of burning t_K .

Differentiating equation (34) with respect to t, we get after simple transformations:

$$\frac{dp}{dt} = \frac{f\Delta \left(A_{c} + \Delta \left(a - \frac{1}{\delta} \right) \psi}{A_{c}^{2}} = \frac{d\psi}{dt} = \frac{fA}{(1 - 2A)} = \frac{1 - \frac{2}{\delta} \cdot (1 - 2A)}{A_{c}^{2}} = \frac{d\psi}{dt}.$$

 $1-\frac{\Delta}{\delta}$ is the value of N_{ψ} at the start of burning;

 $1 - \alpha \wedge$ the same at the end of burning,

$$1 - \frac{\Delta}{\delta} > \wedge_{\psi} > 1 - 2\Delta.$$

It may be assumed with sufficient accuracy for practical purposes that when $\psi_{\rm CP}$ = 1/2

$$\mathbf{K}_{\text{tcp}} = \frac{\left(1 - \frac{\Delta}{\delta}\right) \quad (1 - \alpha \Delta)}{\bigwedge_{\text{tcp}}^{2}} \approx 1.$$

Then, making use of the relation (33), we get:

$$\frac{dp}{dt} = \frac{f\Delta}{1 - 2\Delta} \frac{dv}{dt} = \frac{f\Delta}{1 - 2\Delta} \frac{u_1}{e_1} e_p.$$
 (35)

In order to simplify further derivations, we shall consider a powder whose surface area changes little when burned, so that it may be assumed that $G=G_{\mbox{cp}}$ = const.

To such powders belong the tube and the strip, for which the binomial relationship $\psi=\Re z(1+\lambda z)$ is valid, whereby for the end of burning $(z=1,\psi=1)$

$$1 = \times (1 + \lambda);$$

$$G_{cp} = \frac{1+1+2^{\frac{1}{2}}}{2} = 1+1$$

Therefore

$$\kappa G_{cp} = \kappa (1 + \lambda) = 1,$$

and for tubular or (to a lesser degree) strip powder

$$\frac{dp}{dt} = \frac{f\triangle}{1 - \alpha\triangle} \frac{u_1}{e_1} p = \frac{p_m - p_B}{I_K} p. \tag{36}$$

164

We shall introduce the designation

$$\tau = \frac{e_1}{u} \frac{1 - 3\Delta}{1 + 1} = \frac{1}{p_p} \frac{K}{1 - p_B} = \frac{1}{2} \sec \frac{\pi}{1};$$
 (37)

then

$$\frac{dp}{dt} = \frac{p}{t}. \tag{38}$$

Upon separating the variables:

$$\frac{dp}{p} = \frac{dx}{t}$$

Integrating, we get

$$\int_{P_B}^{p} \frac{dp}{p} = \frac{1}{\tau} \int_{0}^{t} dt \text{ or } \ln \frac{p}{p_B} = \frac{\tau}{\tau} ,$$

whence on the one hand

$$t = 2.303 t \log \frac{p}{p_B}$$
 (39)

and for the end of burning

$$t_{K} = 2.303 \tau \log \frac{p_{m}}{p_{B}};$$
 (40)

165

STA

on the other hand

$$\frac{t}{\tau} = \frac{t}{\tau}$$

$$\frac{p}{p_B} = e \quad \text{or } p = p_B e \quad ,$$

$$p_B$$
(41)

and for the end of burning

$$p_{n} = p_{B}e^{\frac{t_{K}}{\tau}}.$$
(42)

Thus, all the required relationships are terrived:

$$p = p_B e \to$$

$$\tau_{K} = 2.303 \tau \log \frac{p_{m}}{p_{B}}$$

$$\frac{dp}{dt} = \frac{p_m - p_B}{I_k} p = \frac{f\Delta}{1 - 2\Delta} \frac{u_1}{e_1} p;$$

$$\tau = \frac{I_K}{p_a - p_B} = \frac{e_1}{u_1} \frac{1 - 2\Delta}{f\Delta} = \sec J.$$

The magnitude $\tau = \frac{e_1}{u_1(p_m - p_B)} = \frac{e_1}{u_m}$ constitutes the burning time

of the powder if it burned at constant pressure $p_m - p_B$ throughout.

The full time of burning at a given loading density is proportional to τ and $\log p_{\rm m}/p_{\rm B}$, in other words, it is directly proportional to the

thickness of the powder and inversely proportional to the energy of the powder f and rate of burning u_1 , and decreases with the increase of Δ and p_m (since the value of p_m in the denominator of t is more effective than in the numerator under the logarithm); it also decreases with the increase of the igniter pressure p_B .

For tubular powder the relation p=f(t) serves as a characteristic curve, whose slope angle $(dp/dt=\tan\phi)$ must continuously increase in proportion to the gas pressure during the entire combustion process, the rate of increase being the higher, the greater are the values of f, \triangle, u_1 and the smaller the powder thickness e_1 . At the end of burning the slope angle must be maximum (see figs. 39-42).

We shall derive the relation for the powder gas pressure impulse on the basis of formula (41)

$$\int_{0}^{t} pdt = p_{B} \int_{0}^{t} e^{-dt} - p_{B}^{\tau} \int_{0}^{t} e^{-d} \frac{t}{\tau} =$$

$$= p_{B}\tau(e - 1) = \tau(p - p_{B}) = \frac{e_{1}}{u_{1}} \frac{p - p_{B}}{p_{m} - p_{B}}.$$
 (43)

For the end of burning $p = p_m$ and

$$\int_{0}^{t_{K}} pdt = \frac{e_{1}}{u_{1}} = I_{K}.$$
 (44)

The derived formulas confirm the general laws of powder burning

and show that the pressure, the time for complete combustion and the rate of pressure increase depend on the ballistic characteristics and density of loading. Thus, it is precisely the ballistic characteristics f, α , u_1 , the shape and dimensions of the powder (\varkappa, \circ, e_1) and the loading density \triangle that can be used to control the magnitude and rate of pressure increase of the gases evolved during the burning of powder in a constant volume and to regulate the phenomenon of powder burning and gas formation.

Example. Determine the maximum pressure and time of burning of tubular powder (2e₁ = 1.00 mm) when $\Delta = 0.25$;

$$f = 900,000 \text{ kg} - dm'kg$$
; $z = 1.00 \text{ dm}^3/\text{kg}$;

 $u_1 = 0.0000075 \text{ dm/sec}$: kg/dm^2 , igniter pressure $p_B = 50 \text{ kg/cm}^2$;

$$p_m = p_B + \frac{f\Delta}{1 - 3\Delta} = 5000 + \frac{900000 \cdot 0.25}{1 - 1.0 \cdot 0.25} = 305,000 \text{ kg/dm}^2 = 3050 \text{ kg/cm}^2$$

$$I_{K} = \frac{e_{1}}{u_{1}} = \frac{0.005}{0.0000075} = 667 \text{ kg/dm}^{2} \cdot \text{sec},$$

$$\tau = \frac{I_K}{p_B - p_B} = \frac{667}{300000} = 0.002223 \text{ sec};$$

$$t_{K} = 2.303 \text{ t log} \frac{p_{m}}{p_{B}} = 2.303 \cdot 0.002223 \text{ log} \frac{3050}{50} = 2.303 \cdot 0.002223$$

168

CTAT

Curves $p = p_B^e$ for the given powder will have the following form:

a) at different \triangle and the same p_B (fig. 40)

$$\int_{0}^{t_{\mathbf{K}}} pdt - \int_{0}^{t_{\mathbf{K}}} pdt - \int_{0}^{t_{\mathbf{K}}} pdt$$

b) at the same α and different p_B (fig. 41)

$$\mathbf{p_m^+} = \mathbf{p_m^+} = \mathbf{p_B^+} = \mathbf{p_B^+}; \;\; \mathbf{p_m^+} = \mathbf{p_m^{'''}} = \mathbf{p_B^{'''}} = \mathbf{p_B^{''''}}$$

$$\int_{0}^{t_{K}} pdt = \int_{0}^{t_{K}''} pdt = \int_{0}^{t_{K}'''} pdt.$$

Fig. 40 - p,t Curves at Different Fig. 41 - p, t Curves at Different Values of Δ and the Same Value of Δ .

For powders of the same kind but varying thickness $e_1^\prime < e_1^{\prime\prime} < e_1^{\prime\prime}$ at the same loading density and the same igniter pressure p_B , curves p_B , twill have the form shown in fig. 42, where

 $|t_{K}^{(i)}|:|t_{K}^{(i)}|:|t_{K}^{(i)}|=|e_{1}^{(i)}|:|e_{1}^{(i)}|:|e_{1}^{(i)}|:|$

When burning powder in small bombs of limited elongation (ratio between length of bomb and its diameter not exceeding 2-3), the curves of pressure increase are gradual in character.

If, however, the powder is burned in a long bomb (lm long by 22mm in dia.) with the powder concentrated at one of its ends, the pressure increase recorded by a meter takes the shape of a wave. In the case of thin powders this condition obtains at relatively low loading densities, of the order of 0.05-0.075, and in the case of thick powders, when \triangle is of the order of 0.20-0.25. As the loading density is increased, the growth of the pressure recorder by the crusher increases also: thus, at $\triangle \approx 0.20$, for powders ~ 0.3 mm thick, the maximum pressure varied from 2200-2300 to 7500 kg/cm²; in the case of thick powders at the same value of \triangle the pressure was found to be ~ 4000 kg/cm².

Fig. 42 - p, t Curves at Various Values of e_1 and a Constant Value of \triangle .

If the crusher comes are placed at the ends of a long bomb and

170

CTAT

the powder is ignited from the side at one of the ends, the curves of the pressure growth at both ends will appear wave-like in form if the charge is not distributed uniformly, whereby the maximum of one curve will correspond to the minimum of the other at the same instant of time. These tests show that a wave-like process of pressure distribution occurs in a bomb, where the pressure waves are reflected from one end of the closed pipe to the other.

All of the tests described above were conducted by Vieille in a special long bomb, using cylindrical crushers for recording the pressure growth at both ends. We had verified Vieille's deductions on a similar test set-up using conical crushers.

When the charge concentrated at one end of the bomb is ignited, a localized pressure increase occurs due to gases becoming separated or detached from the burning surface. This pressure increase is the greater, the larger the surface area of the charge, i.e., the thinner the powder. Due to the action of the localized pressure, the gases begin to move to the opposite end of the bomb in the form of a stream whose rate of flow increases rapidly, thus tending to form a vacuum at the point of the start of burning. Upon reaching the opposite end, the gas stream will stop abruptly at its forward end and its kinetic energy will be expended in compressing this part of the bomb until the pressure developed in it exceeds the pressure at the place occupied by the charge. The movement of the stream will then be reversed and the burning of the charge will proceed more intensely under the pressure of the gas stream, creating once again a localized pressure increase. This phenomenon will then be repeated.

At the end of burning of the charge the phenomenon takes on the character of a damped oscillating gas motion inside the bomb.

Similar conditions may occur in the bore of a gun barrel. Therefore, when the loading density is low and the chamber is not completely
filled with powder, it is recommended to uniformly distribute the
charge along the entire length of the chamber.

STAT

Pade Denied

ORIGINAL

TIONIII - BALLISTIC BASIS OF TH COMBUSTION THE ON THE POWDERS

CHAPTER I - METHOD FOR THE BALLISTIC ANALYSIS OF POWDERS

1. AN ATTEMPT TO CORRELATE THE THEORETICAL LAW WITH BOMB TESTS.

Formula dp/dt = Tp derived in the preceding chapter for tubular powders shows that dp/dt increases in proportion with p, and inasmuch as p itself continues to increase until the end of burning, the slope angle of the dp/dt curve must theoretically continue to increase also.

Nevertheless, in all the p, t curves obtained in burning powders in a manometric bomb, the maximum slope angle is obtained not at the maximum pressure at the end of the curve but, rather, at some $p_1 < p_{\underline{m}}$ The point of inflexion i corresponds to pressure p, following which the p, t curve becomes concave instead of convex, and often approaches the end of burning when $dp/dt \approx 0$ (for strip and tubular powders).

The validity of the geometric law of burning was questioned for the first time by Charbonier, who attempted to investigate real powders and all their defects peculiar to manufacturing processes.

Using for his observations an imperfect cylindrical crusher and analyzing the shape of the pressure curves obtained in a manometric bomb, Charbonier introduced a special "shape function" to account for the actual burning of the powder, which was supposed to represent an analytical expression linking the relative surface area S/S1 with the burned portion of the charge Y.

The exponent of this function was determined not by the shape of the grain but, rather, on the basis of the bomb test.

173

A. Derivation of a General Formula for the Shape Function

Let us find the relation between the value of the surface area ratio S/S_1 at a given instant and the burned portion of the charge Ψ for powders of the simplest shapes: for a sphere burning in parallel layers towards the center, for a solid cylinder, and for an infinitely wide strip.

a) Sphere. The initial volume of the sphere is $\Delta_1 = 4/3 \Pi R^3$ (fig. 43). The volume of the burned portion $\Delta_{CC} = \Delta_1 - \Delta_{occ} = \frac{4}{3} \Pi(R^3 - r^3)$. The burned portion of the grain

$$\psi = \Lambda \Delta_1 = 1 - \frac{\Lambda_{\text{ocr}}}{\Lambda_1} = 1 - (\frac{r}{R})^3.$$
(45) (*)

The initial surface area $S_1=4\pi R^2$. The area at the given instant is $S=4\pi r^2$.

Therefore,

$$\frac{S}{S_1} = \left(\frac{r}{R}\right)^2. \tag{46}$$

Eliminating $\frac{r}{R}$ from (45) and (46), we get:

$$\frac{s}{s_1} - (1 - \Psi)^{\frac{3}{3}}. \tag{47}$$

(*) Subscript or - abbreviation of the word burned, subscript or - abbreviation of the word remainder - translator.

Fig. 43 - Burning Diagram for a Sphere (a Right Circular Cylinder).

b) Solid cylinder. Let the height of the cylinder h be great in comparison with its diameter and let us assume that the effect produced by the decrease in length on the volume change may be disregarded.

Then, referring to fig. 43:

$$A_1 = \pi R^2 h;$$
 $A_{ch} = \pi (R^2 - r^2) h;$ $S = 2\pi r h;$ $S_1 = 2\pi R h;$ $\psi = 1 - \left(\frac{r}{R}\right)^2;$ $\frac{S}{S_1} = \frac{r}{R}.$

Cancelling r/R from the expression for ψ and S/S_1 , we get

$$s/s_1 = (1 - \psi)^{1/2}$$
.

c) Infinitely wide strip (the effect produced by the changes along the edges may be disregarded). The surface S remains constant, i.e., $3/S_1 = 1$, and we can write:

$$s/s_1 - (1 - \gamma)^0 - 1$$
.

175

Thus in the case of typical regressive powder shapes the value of the area ratio S/S_1 is expressed as a function of the same kind

$$s/s_1 = (1-y)^{\beta}$$
,

where the exponent $\beta=2/3$ for a sphere, $\beta=1/2$ for a cylinder, $\beta=0$ for an infinite strip (powder with a constant burning area).

Actually of course the burning of powder deviates from this ideal law, and Charbonier had determined the 8 exponent from an actual bomb test, by setting on the p, t curve the maximum pressure p_m and pressure p_i at the point of inflexion;

$$\beta = \frac{p_{m} - p_{1}}{p_{1}}.$$
 (48)

STAT

The more uniform will be the burning of the powder, the higher will be the point of inflexion, the smaller the numerator, and the closer will the denominator and 3 exponent approach zero, and the more will the burning approach the condition of burning with a constant surface:

$$p_1 = \frac{p_m}{1 + \beta}.$$

For a sphere $p_i = 3/5 p_m$;

For a slab $p_i = 2/3 p_m$; for $\beta = 0 p_i = p_m$.

For French cannon strip-type powders "B" it was determined by actual tests that $\beta=0.2$ and for rifle plate-type powder BF - $\beta=0.5$. This shows that in actual practice plate powders burn similarly to a

theoretical solid cylinder of the more regressive type. The curve $\sigma = (1-Y)\beta$ when $\beta = 0.2$ and 0.5 is shown in fig. 45 (curves 1 and 2).

The σ , ψ curves for the same powder shapes burned according to the geometric law are shown in fig. 45 in the form of a dotted line (1' - strip, 2' - plate). Curves 1 and 2 are arranged below curves 1' and 2', respectively.

Fig. 44 - p, t Curve With a point of Inflexion.

Fig. 45 - Shape Function $\sigma = f(\psi)$.

According to Charbonier: 1) surface y in all powders tends toward zero at the end of burning (because when $\psi=1,\ \delta=0$), whereby this sharp surface reduction starts the sooner, the more regressive is the powder; 2) the actual burning of the powder is more regressive than it should be according to the geometric law; 3) the possible reason thereof is the heterogeneity of the mass and the nonsimultaneous ignition of all the elements of the charge.

At the same time his investigations made it possible to establish a connection between the theoretical formula and the experimental data, using for this purpose the p, t curve for pressure increase, obtained by burning powder in a manometric bomb.

Thus Charbonier had introduced an evaluation of the progressivity of burning on the basis of bomb tests rather than on the basis of the powder shape, and had concluded correctly that the progressivity of the shape does not fully determine the progressivity of burning - a. process depending not only on the geometry of the grain, but also on the physical and chemical properties and conditions of loading and ignition.

as regards the evaluation of the nature of burning, still does not sufficiently reflect the latter, inasmuch as of the entire pressure test curve p, t only two points were utilized for the determination of β : point p_m at the end of burning and point p₁ which is also close to the end of burning. The basic part of the curve was not utilized; this is partly explained by the fact that the curve was recorded by means of cylindrical crushers, and hence its form at the start of burning was unknown.

Nevertheless, maximum pressure is usually obtained in a gun after about half of the charge is burned, and hence the nature of burning from the start to the instant when the first half of the charge is burned must influence both the position of the maximum pressure in a gun as well as its magnitude. Actually, of course, the position of the inflexion point on the pressure curve in a bomb may not be closely associated with the first half of the burning process.

Therefore, the defect of the Charbonier method lies in the fact that the pressure curve remains unused on the whole.

In 1923-1924 M.E. Serebriakov obtained by means of a conical crusher full curves of the pressure increase of powder gases obtained by burning powder in a manometric bomb, and developed a new method for the analysis of powder burning utilizing the entire pressure curve for the purpose.

This analysis is conducted on the basis of the test characteristic of the burning progressivity of powder $\sqrt{4/7}$. This characteristic is obtained by sectional analysis of the entire pressure curve from the start to the end of burning; it shows the change in the intensity of gas formation during the entire burning process.

Using this method, a series of new hitherto unknows peculiarities were disclosed of the actual process of powder burning and its deviation from the geometric law; also proven by means of direct tests were some of the formulations originally assumed by Charbonier.

The principles of this method follow.

2. TEST CHARACTERISTIC "T" OF THE PROGRESSIVE BURNING OF POWDER

The Use of Function T for the Analysis of the Burning of Powder.

In choosing a test characteristic for the progressive burning of powder, the expression used must be such as would be determinable on the basis of geometric data for the ideal case, assuming that the powder mass is fully homogeneous.

At the same time the numerical value of this characteristic must be found exclusively from such bomb test data whose values at any given instant are considered reliable within pre-established limits.

When powder is burned in a bomb, we get a pressure curve as a function of time, and it may be assumed that the pressure at every given instant is known to be correct within the limits of accuracy of the recording device itself.

If it is assumed that the powder energy f and its density δ are constant throughout the entire mass and that no cooling occurs through the walls of the bomb, i.e., if we make the usual assumption peculiar to ballistics, then, on the basis of the general pyrostatics formula, the pressure p at a given loading density is fully determined by the amount of the burned portion of charge ψ regardless of the powder shape and its rate of burning.

Indeed, the dependence of p on \forall is expressed by the formula

$$p - p_B = \frac{f \Delta \psi}{1 - \frac{\Delta}{\sigma} - \Delta \psi \left(\alpha - \frac{1}{\sigma}\right)},$$

into which time does not enter, and the pressure is determined by the burned portion of charge ψ when the other factors remain constant.

If, however, in addition to pressure its increase with relation to time must be known also, the magnitude of dp/dt will be determined by the velocity of gas formation dy/dt and by its variation with time.

The values of this magnitude are determined directly from test, because in measuring the curve the values of p are known at definite time intervals t, as are the values of ψ corresponding to these

values of p. If the intervals taken are sufficiently small, the values of the increment $\Delta \psi$ can be found as the difference between two neighboring intervals, following which $\Delta \psi/\Delta t$ can be found as well (limit - $d\psi/dt$).

The value of d\(\frac{d\psi}{dt} \) which, in the case of the geometric law of burning, is expressed by the formula $\frac{d\psi}{dt} = \frac{S_1}{\Lambda_1} \frac{S}{S_1} u_1 p$, depends on pressure. In order to compare various burning periods with respect

to the rate of gas formation (increasing and decreasing rates) at constant pressure, as is usually done in the case of the geometric law, the obtained values $d\psi/dt$ must be reduced to constant pressure, i.e., a comparison must be made of the values $d\psi/dt$: $p=\frac{1}{p}\frac{d\psi}{dt}$.

If the value of $\frac{1}{p}\frac{d\psi}{dt}$ increases as burning progresses, the powder will burn progressively, if it decreases - the burning is regressive.

Henceforth we shall designate this magnitude by \(\Gamma\) (gamma):

$$\Gamma = \frac{1}{p} \frac{d\psi}{dt}$$
.

It represents the specific rate of gas formation reduced to p=1, which we shall hereafter call the intensity of gas formation.

Its variation during the burning process is characterized by the powder from the point of view of progressive burning, rather than by the shape of the grain alone. The dimensionality of Γ , which is

equal to $\frac{1}{\frac{kg}{dn^2}}$, is the inverse of the dimensionality of

pressure impulse.

181

In the ideal case at constant pressure the value of P varies in proportion to the powder surface, as it does in the case of the geometric law of burning, and this value is therefore a characteristic of progressivity.

Actually, if ignition were to occur instantaneously along the entire area of the charge and the pressure during the entire process were to remain constant and equal to p_0 , then a chemically homogeneous powder composition would burn according to the geometric law in parallel layers. In such a case the intensity of gas formation would wary in proportion to the change in area.

Indeed,

$$\frac{d\psi}{dt} = \frac{s_1}{s_1} \frac{s}{s_1} u = \frac{s_1}{s_1} \frac{s}{s_1} u_1 p_0.$$

The magnitude of r will be represented in the following form:

$$r = \frac{1}{p_0} \frac{df}{dt} = \frac{s_1}{s_1} \frac{s}{s_1} u_1$$

When the composition of the powder is homogeneous, u_1 is constant and S_1/Λ_1 is a constant; hence the variation of Γ will be proportional to the S/S_1 ratio, i.e., the characteristic of the progressivity of burning will coincide with the powder grain characteristic.

Thus, as the test characteristic of the progressivity of burning, we can take the value $\Gamma = \frac{1}{p} \frac{dy}{dt}$ - the intensity of gas formation.

The value of Γ is found by the sectional analysis of the pressure test curve in a constant volume.

The function | enables us to evaluate the progressivity of the actual burning of powders of any shape and size, of both a homogeneous and heterogeneous mass.

The rate of gas formation in burning powder in a bomb can be evaluated by its actual law of burning even if the shape and dimensions of the powder are not known. The nature of the burned powder is determined by the values

 ψ and $\frac{1}{p}$ $\frac{d\psi}{dt}$.

The law of burning expressed by the function $\Gamma=\frac{1}{p}\frac{d\psi}{dt}$ and obtained by analyzing the pressure test curve p, t, wherein are reflected the peculiarities of the properties of actual powder and the deviations of its burning from that of an ideal powder, is called the experimental or physical law of burning.

Along with the $\Gamma,\,\psi$ and $\Gamma,\,t$ curves, the curve showing the pressure impulse variation $\int\limits_0^t pdt$ as a function of ψ also serves as a characteristic of actual powder burning.

These integral curves and their values will be discussed in detail later in the text.

The procedure for analyzing the p, t curve for determining $\int pdt$, ψ and Γ , ψ is illustrated in Table 13.

When computing Δ , the mean value must be taken between the initial $\Delta_0=\frac{\omega}{\Psi_0}$ and $\Delta_{\underline{K}}$ at the end of burning:

183

$$\Delta_{K} = \frac{\omega}{\Psi_{0} + s \epsilon} ,$$

where ε - compression produced by the crusher;

s - cross section of the piston.

The covolume effect of the igniter $a_{\overline{B}}$ can be disregarded:

$$\Delta_{\rm cp} = \frac{\Delta_0 + \Delta_{\rm K}}{2} = \frac{\omega}{W_0 + s \frac{\xi}{2}}.$$

The Γ , ψ and Γ , t diagrams offer a visual interpretation of the change in the intensity of gas formation and enable one to analyze the processes—occurring during ignition of the charge and during actual burning of the powder with all its peculiarities.

The diagrams in fig. 46, 47, 48 and 49 contain experimental p, t curves as a function of time for tubular powders (fig. 46), strip powders (fig. 47), powders with 7 perforations (fig. 48) and Eisnemsky's powder with 36 perforations (fig. 49), and also curves showing the variation of Γ as a function of t, where the corresponding Γ and p points lie on the same vertical.

For a constant value of u_1 , the change of $\Gamma = \frac{S_1}{\Lambda_1} u_1 \frac{S}{S_1}$ must proceed in proportion to the change of the geometric surface ratio S/S_1 , i.e., in the case of strip and tubular powders $\frac{S}{S_1}$ must be maximum at the start and undergo a very small decrease during burning; at the end, in the case of the geometric law of burning, $S_K/S_1 = 0.90$.

Nevertheless, the Γ , t curves in fig. 46 and 47 are very peculiar in character: they start at some small value (pressure) and then proceed to ascend; after reaching the maximum at t ≈ 0.0045 (which corresponds to a pressure of 150-170 kg/cm²) the curve begins to descend, and after t = 0.0115 for strip powder and 0.0135 for tubular powder the Γ curve drops abruptly to zero. On the p, t curves this condition corresponds to the inflexion point p_1 .

Table 13

1	2	3	4	5	6	7	8	9
t	p(*)	Δр	p _{cp}	p _{cp} Δt - ΔΙ	I - Σp _{cp} ·Δt ≈ \footnote{\sqrt}	$\beta = \frac{p - p_B}{p_B - p_B}$	ψ(***)	ΔΨ
0	P _B	Δр'	p' cp	ΔΙ'	0	0	O	ΔΨ'
t'	р'	Δρ"	p P _{CP}	Δι"	Ι' - ΔΙ'	э.	Ψ.	74
t"	p"	∆p'''	p'''	Δ1'''	1" - 1' + Δ1"	a	Ψ".	Δψ
t"	p'''	∆ p'''	•		Ι = Ι + ΣΙ	a	Ψ"	
				•	•	•		
	.						•	•
	1.						•	•
	1.					•		•
t _K	P _m				$I_{K} - \sum_{0}^{K} (\Delta I)$	1	1	

Remarks.

(*) When analyzing the pressure increase curve for the purpose of calculating the pow the portion representing the burning of the igniter is discarded and the analysis is star

(**) When plotting the curve on the diagram, the values of β from column "6" are p of ψ , because both β and β relate to the same pressure. As regards the value of β , it change in the rate of gas formation on the curve section representing the variation of β hence its values are plotted as a function of the mean β characterizing the given section

(***) When computing Ψ by means of the tables, the entrant number is the parameter in steps of 0.01 from 0.86 to 0.97.

186

ORIGINAL

	Table	13		TT	10	11
5	6	7	8	9		
- ΔI	I - Σp _{cp} ·Δt ≈ \footnote{1}	$\beta = \frac{p - pB}{p_m - p_B}$	Ψ(***)	ΔΨ		У ср
	0	0	o	ΔΨ٠	$\Gamma' = \frac{\Delta \Psi'}{\Delta I}$	Ψcp ¶
	ι' - Δι'	3.	Å.	74	r" - 4"	Y _{ср}
	Ι" - Ι' + ΔΙ"	9	₩	Δψ	Γ" - <u>Δψ</u> "	ү ср
	Ι = Ι + ∇Ι	9	٨			
					•	
	·				•	.
	$I_{K} = \sum_{0}^{K} (\Delta I)$	I	I			_

pressure increase curve for the purpose of calculating the powder characteristics, he burning of the igniter is discarded and the analysis is started at pressure $p_{\rm B}$.

curve on the diagram, the values of Spdt from column "6" are plotted as a function and ψ relate to the same pressure. As regards the value of Γ , it characterizes the formation on the curve section representing the variation of ψ between ψ_1 and ψ_{1+1} ; A as a function of the mean ψ characterizing the given section of the $\Delta\psi$ variations.

of the tables, the entrant number is the parameter $\delta = \frac{1-\alpha\Delta}{1-\Delta/S}$, varying

(), t curves with many perforations deviate from the theoretical to an even greater degree (fig. 48 and 49).

In fig. 48 the maximum \cap obtains at t = 0.0095 (p \approx 240), the rise of the \cap curve being rather gradual and smooth up to the point of maximum. Upon passing the maximum, the curve drops slowly throughout the entire burning process up to t = 0.019; this is followed by a sharper drop, which corresponds to the decomposition of the grain and the afterburning of the regressive products of decomposition.

Fig. 46 - \(\Gamma\), t Characteristic for Tubular Powder.

Pig. 47 - [, t Characteristic for Strip Powder

1) p kg/cm²; 2) tubular; 3) t (sec). 1) p kg/cm²; 2) strip; 3) t(sec)

On fig. 49, $^{-}$ rises slowly at first, and at t = 0.0075 (p = 120) it proceeds to ascend very sharply; the ordinate increases almost two-fold and has a maximum at t = 0.009 (p = 180); after reaching the maximum the curve undergoes a continuous drop becoming more pronounced at t = 0.015, which corresponds to the instant the grain undergoes decomposition.

Fig. $48 = \Gamma$, t Characteristic for a Grain with 7 perforations

1) p kg/cm²; 2) grain with τ perforations; 3) t (sec).

Fig. 49 - 7, t Characteristic for Kisnemsky's Grain with 30 Perforations.

1) p k_R/cm^2 , 2) Kisnemsky's grain with 36 perforations; 3) t (sec).

Thus during the process of burning from $p\approx 200~{\rm kg/cm^2}$ to the end, perforated grains burn with a seemingly decreasing surface area, whereas theoretically the area should continue to increase until

C, ψ curves. In order to obtain a more detailed comparison of the test data with theoretical data, the Γ curves are plotted as a function of the burned portion of the charge Ψ, because if plotted as a function of time, when the pressure continuously increases and the process of burning is accelerated, the Γ curve becomes distorted in the direction of the abscissa (x - axis): the initial sections (of the curve) at low pressures are stretched, and those at higher pressures - at the end of burning - compressed.

The obtained curves of Γ plotted as a function of ψ are presented in the diagram of fig. 50-53, which diagrams also show theoretical curves of $\Gamma_T = \frac{S_1}{\Lambda_1} u_1 \frac{S}{S_1}$ when S/S_1 varies according to the geometric

law of burning.

The average value of u_1 for pyroxylin powders is taken to be 0.075 mm/sec.

An analysis of experimental Γ , ψ curves for powders of simple shapes (fig. 50 and 51) will show that such curves consist of four distinct sections.

Fig. 50 - \square , φ Characteristic Curve for Tubular Powder.

Section I of the curve starts not at the maximum, as it should be in the case of instantaneous ignition, but, rather, increases from a small value to the maximum; the T maximum is obtained at $\gamma = 0.05$ - 0.08 and considerably exceeds the theoretical maximum.

Fig. 51 - F, \(\psi \) Characteristic Curve for Strip Powder.

Section II - \sqcap drops from maximum to a point from which the curve follows a theoretical path - a section depicting accelerated burning; this section is confined between the limits of $\psi=0.05$ - 0.08 and

ψ≈0.30**.**

189

Section III depicts normal burning which coincides with the geometric law; ψ varies from 0.30 to 0.85 - 0.90.

Section IV from $\psi \simeq 0.85\text{--}0.90$ to the end of burning. Here the experimental curve deviates from the theoretical downward and drops to zero at $\psi = 1$.

The Γ , ψ curves for powders with marrow perforations (figs. 52 and 53) have even a larger number of deviations from the theoretical. Furthermore, the reduction of the ordinates of Γ corresponding to powder decomposition commences at $\psi_{\rm S}$ on = 0.70-0.75 and has no sharp angle point. Decomposition proceeds gradually because in practice the web thicknesses in a grain are not uniform, and a partial decomposition commences after the smallest thickness is burned. Increasingly thicker elements are gradually burned away and progressive burning occurs simultaneously with regressive burning of the products of decomposition.

Fig. 52 - , U Characteristic Curve for a Grain with 7 Perforations.

190

Fig. 53 - $^{\circ}$, φ Characteristic Curve for a Kisnemsky Grain with 36 Perforations.

As a result, the transition from burning with an increasing surface to the afterburning of the products of decomposition is gradual rather than abrupt in character.

CHAPTER 2 - BALLISTIC ANALYSIS OF THE ACTUAL BURNING OF POWDER

- 1. TESTS FOR INVESTIGATING THE IGNITION OF POWDER
- A. Effect of the Size and Nature of the Igniter
 - a) Theoretical Data.

We had derived above (fig. 50) a formula for determining the full time of burning when the powder is ignited instantaneously:

$$t_{K} = 2.303 \text{ tlog } p_{m}/p_{B}$$

and shown that for a given loading density the time of burning decreases with the increase of the igniter pressure.

Calculations show that for $\Delta \approx 0.20$ at $p_m - p_B = 2000$ kg/cm² and at $p_B = 20$; 40; 60 and 120 kg/cm², t_K varies within the following limits (Table 14).

۰	_	-	_	_	•	-	_	_	_	_	_	_	•		

Table 14

P _B	20	40	60	120			
t _K , sec	0.0140	0.0119	0.0107	0.0087			
t _K	1.01	1.37	1.23	1.00			
1 K 120		l		<u></u>			

In this case the Γ , t and Γ , \forall curves (for strip powders) must start at the maximum and then descend slightly as the surface area of powder 6 decreases.

Hence, in the case of instantaneous ignition at $z\approx 0.20$, if $t_{K=120}$ is taken as the unit time at $p=120~kg^2cm^2$, the time of burning $t_{K=20}$ will be increased by 61% if the igniter pressure is decreased to $20~kg^2cm^2$.

Actual tests show however that the difference in the periods of burning at such igniter pressures is considerably greater.

b) Test Data.

Strip powder "Cff" about 1 mm thick (1 x 18 x 40) was burned in a manometric bomb at $\Delta=0.20$ using batches of igniter material developing a pressure of $p_{\rm B}=20$, 40, 60 and 120 kg/cm².

The igniter used was dry powdered pyroxylin. Pressure was recorded by means of conical crushers. The test data are presented below in Table 15.

STAT

Table 15

PВ	20	40	60	120
t _K , sec	0.0280	0.0160	0.0133	0.0090
t _K 120	3.10	1.60	1.48	1.00
t _K reop	0.0140	0.0119	0.9107	0.0087

Note: t_{K} reop = t_{K} theoretical

A comparison of this data with the figures in the preceding table shows that the difference in the burning periods is considerably greater than the theoretical difference. Particularly great is the divergence between the test time t_K and the theoretical one when the igniter used was weak: $p_B = 20~{\rm kg/cm^2} / \frac{t_{K-on}}{t_{K-teop}} = 2$; (*) this divergence becomes smaller as p_B increases and practically disappears at $p_B = 120~{\rm kg/cm^2}$ (ratio $t_{K-on} = t_{K-teop} \approx 1$).

Analogous relationships were obtained with other samples (igniter materials).

Inasmuch as the p, t curves showed no sharp changes along their ascent, Γ , t and Γ , Ψ curves obtained from the analysis of corresponding p, t curves from the start to the end of burning were utilized for the analysis of the processes of ignition.

(*) Subscript "on" stands for the word "test," subscript "meop" stands for the word theoretical - translator.

In order to determine experimentally, by the aid of function \(\Gamma\), the process of ignition - whether instantaneous or gradual, it was necessary to determine the presence of the following conditions:

Fig. 54 - Theoretical Γ , t Curves at Different Values of p_B .

Fig. 55 - Experimental $p_1^{\rm t}$ and $\Gamma_1^{\rm t}$ Curves at Different Igniter Pressures.

a) Tmm/sec; b) P kg/cm²; c) t (sec).

- l. If the ignition is instantaneous, the curve of Γ variation for strip and tubular powders burning with a decreasing surface must start at the maximum.
- 2. If the ignition is instantaneous, the shape of the F curve must not depend on the size of the igniter, because after the entire surface is ignited its change must follow one and the same law.

194

The theoretical Γ t, curves must have the form shown in fig. 54. The above diagram (fig. 55) illustrates the experimental p, t curves obtained from the instant the powder became ignited; the Γ , t curves corresponding to them are plotted to the same scale of time t under the corresponding p, t curves. With the smallest igniter ω_B , developing a pressure of about 20 kg/cm², the Γ , t curve starts a very short distance above the origin and has a very long and gradually ascending section gradually changing to a steep slope, following which Γ maximum is reached (at p = about 225 kg/cm²); this is followed by a rather sharp descent and, finally, by a very sharp drop at the end of the process. The growth of the ordinates of the curve at the start of burning corresponds to an increase of the burning area of the powder when its ignition proceeds gradually (curve 1).

When the igniter is increased by weight $(2ai_B - \text{curve } 2)$ the starting ordinate of Γ increases, i.e., a larger area becomes enveloped at the same time, the length of the slowly ascending section of the curve becomes smaller. Otherwise the Γ , t curves practically remain unchanged; they seem to tend to shift to the left towards the origin of the coordinates, whereby the maximum value of Γ is the same as in the first case, at pressure $p = 225-250 \text{ kg/cm}^2$. When the igniter is maximum $6\Phi_B$ ($p_B = 127 \text{ kg/cm}^2 - \text{curve } 3$), the curve Γ starts almost at the maximum point.

These results indicate that ignition at pressures of 20 to 60 kg/cm² does not proceed instantaneously, and is the slower, the lower the igniter pressure — and only at $p_B \gg 125~kg/cm^2$ is the ignition almost instantaneous.

Inasmuch as in guns the pressure developed by the igniter is between 10 and 40 $\rm kg/cm^2$, the ignition will not be instantaneous. This is confirmed by the hangfire phenomenon.

Fig. 56 - Experimental $^{-}$, γ Curves at Different Igniter Pressures.

If we plot on a diagram the same curves of "as a function of ψ to facilitate—their comparison with curves of the variation of S/S as a function of ψ , we shall obtain a diagram as illustrated in fig. 56.

When plotted as a function of ψ , the general appearance of the \mathbb{T} , ψ curves changes, they resemble more curves S/S_1 , ψ , but with certain deviations. As the value of ω_B increases, the maximum of \mathbb{T} shifts from $\psi \approx 0.10$ towards the origin of the coordinates, and the descent of the curve becomes increasingly sharper whereby its end shifts from $\psi_4 = 0.85$ to $\psi = 1$.

This indicates that during the interval it takes for the entire surface of a strip powder charge to become ignited, about 5-10% of the entire charge will be burned.

The larger the igniter, the more rapidly will the flame envelope the surface of the powder and the later will the start of decomposition and afterburning of the strip occur.

In the tests mentioned, the point of inflexion, whose position on the pressure curve serves to determine the exponent β as a "function of the shape," varied as follows when the igniter changed from $\omega_{\rm B}$ to $6\omega_{\rm B}$: ψ_1 = 0.85; 0.875; 0.90; 0.92.

Therefore, the smaller the igniter, the longer will it take for the entire surface of the powder to become ignited, and the more heterogeneous will be the strip in thickness; this results in a curve in which the point of inflexion occurs at an earlier stage.

If the exponent β as a "function of shape" is calculated by the formula

$$\beta = \frac{p_{m} - p_{1}}{p_{1}} = \frac{p_{m}}{p_{1}} - 1 \approx \frac{1}{\psi_{1}} - 1,$$

then, as p_B varies from 20 to 120 kg/cm², we will obtain, respectively:

$$\beta = 0.18; 0.14; 0.11; 0.09.$$

The above deductions fully confirm in actual tests that the noninstantaneous ignition must affect the subsequent burning of the powder in a specific manner, increasing the value of β and making the burning process more regressive (transition from curve 4 to curve 1 in fig. 56). A comparison of the Γ , ψ curves in fig. 56 with

the "shape function" graph for strip powders at $\beta=0.2$ (fig. 45), shows an almost full coincidence of both the middle and terminal sections of these curves. However, the initial portions of the curves representing the first third of the process considerably differ from the theoretical form. They include: 1) ascending sections not present in the $\delta=(1-\Psi)^{\beta}$ curve; 2) "ballooning" or a rather sharp increase of the ordinate compared with the Charbonier curve within the limits of $\Psi\approx 0.10$ and $\Psi\approx 0.30$.

"Ballooning," i.e., the sharp increase of the ordinate, represents an abnormal increase in the rate of gas formation at the start of burning, which ascent gradually levels off and coincides with the theoretical curve in the second third of the process; this phenomenon was not known to exist earlier.

Thus, it is proven by the aid of Γ , t and Γ , ψ curves, that the ascending first section of the curve from Γ to $\Gamma_{\rm max}$ at the start of burning represents a process of gradual ignition and the increase of the burning area of the powder due to noninstantaneous ignition. Ignition may be considered practically instantaneous only at $p_{\rm B} = 120-150~{\rm kg/cm^2}$.

If batches of pyroxyline and granulated black powder (of the rifle type) are prepared in such a manner as to produce the same pressure p_B, the ignition process will be more vigorous in the case of black powder, so that the latter will not succeed in getting fully burned by the time the basic charge of pyroxyline powder begins to burn (sic).

This is in full accord with the nature of the igniters. Whereas the products of decomposition of pyroxylin constitute a high temperature gas mixture, in the case of black powder these products also contain incandescent hard particles. The impacts of many such incandescent hard particles help to ignite the surface of the powder more rapidly than do the impacts of gas molecules.

2. THE NATURE OF "BALLOONING."

"Ballooning" is a term designating a condition where the test curve of progressivity of exceeds the theoretical curve (Section 11). This phenomenon is observed in powders with a volatile solvent, and is peculiar to a greater extent to thick powders than to thin ones, and to nitroglycerine powders than to pyroxylin ones. Powders with a solid solution produce practically no ballooning, - their burning approaches the geometric law more closely.

The cause of ballooning can be discovered by choosing powders of the same shape and size but of different properties.

In such a case the exposed grain area and the change in the surface area will be the same in both powders, and the difference in the values of $\Gamma_{\rm on}$ and $\Gamma_{\rm reop}$ (i.e., $\Gamma_{\rm test}$ and $\Gamma_{\rm theor}$. - respectively) can be obtained only because of the difference in the burning rate u_1 , because

$$\Gamma = \frac{s_1}{\Lambda_1} \cdot \frac{s}{s_1} u_1.$$

The shape of the Γ , ψ curves obtained by burning two samples of tubular powder of the same size is shown in fig. 57; curve 1

199

corresponds to a powder with a volatile solvent, and curve 2 to a powder with a solid solvent (trotyl + pyroxylin).

The first one produces considerable ballooning, and in the second there is practically no ballooning at all. The difference between the ordinates of these two curves is explained by the difference in their rate of burning because of the heterogeneous mass of the first sample produced by wetting the powder in water for the purpose of removing the excess of volatiles. When wetted, the powder becomes more porous on the outside and this tends to increase the rate of burning of the outer layers; as the burning layer is shifted inwardly, the rate of burning slows down. The inner portion of the powder layer is usually not affected by the wetting operation and therefore burns at a normal rate.

A somewhat higher rate of burning u_1 of the outer layers of powder with a solid solvent, homogeneous throughout its mass, can be partly explained by the more penetrating and intensive heating of the boundary layers of the powder at low pressures, while burning process proceeds with a relatively small absolute speed, and by reduced heating - as the burning process proceeds with a higher absolute rate of speed when the pressure increases to above 500 kg/cm². The layers of powder directly in contact with the burning surface will, in this case, become less heated and to a smaller depth, as a result of which the value of u_1 , and with it the value of Γ , will become decreased.

This explanation suggested by the author in 1937 [5] is now substantiated in the theory of powder burning developed by Prof. Ya. B.

Zeldovich, although the cause of ballooning has not been fully established as yet.

In any case, ballooning is the accelerated burning of the outer powder layers, occurring at relatively low pressures and, mainly, in the case of powders with volatile solvents.

The thicker the powder and the smaller its mean burning rate, the higher will be its relative degree of ballooning.

Ballooning becomes nil when the pressure is increased because of accelerated burning.

An analysis of the experimental Γ , γ curves made it possible to establish the following empirical relationship between the burning rate u_1 and the depth of the layer:

$$u_1 - u_1'e^{-a\sqrt{z}}$$
,

- where u' = the burning rate of the outer layer (u' for almost all pyroxylin powders is of the same order 0.0000120 to 0.0000125 dm/sec : kg/dm²);
 - z = relative thickness of the burned layer, equal to ψ for tubular powder and approaches ψ for strip powder:
 - a coefficient characterizing the drop in the burning rate and determined from the r, w curve.

Fig. 57 - Intensity of Gas Formation in Powders of Different Properties.

This formula is valid for values of z from 0 to $z_{\rm c} \approx 0.3$, and the magnitude of a can be found by the following formula:

$$a = \frac{\ln \frac{u_1}{u_1}}{\sqrt{z_c}} = \frac{2.303}{\sqrt{z_c}} = \log \frac{u_1}{u_1},$$

where u_1 is the constant burning rate of internal layers after $z = z_c$.

The curves in fig. 58 show the variation of rate u_1 from one layer to another in the case of "CN" powder 1 mm thick and " S_{14} " powder 6 mm thick; for the first powder $u_1' = 0.0_4120$, $u_1 = 0.0_575$ and a = 0.858; for the second powder $u_1' = 0.0_4125$, $u_1 = 0.0_560$ and a = 1.34.

The " 6_{14} " powder has a considerably higher content of volatiles, and hence its average burning rate $u_1 = 0.0_560$; the content of volatiles in "CN" powder is smaller and $u_1 = 0.0_575$. However, inas-

much as thick powders are subjected to longer periods of wetting, the burning rate of their outer layers is even higher than in the "CN" powder $(0.0_4125$ and $0.0_4120)$.

Fig. 58 - Change of ul During Burning.

The above formula shows that the burning rate of powders with a volatile solvent is not constant, as was assumed previously, but variable, being higher in the outer layers than in the inner ones. As a result, the effective burning of powder is more regressive than that assumed on the basis of a changing burning area S only, while considering the rate \mathbf{u}_1 constant.

If the deviation of burning from the geometric law is due to the difference in the thickness of the elements of the charge and to the heterogeneity of the powder mass, would it be possible to obtain a f, w curve without ballooning? Is it possible to realize the geometric law of burning in actual practice? Well, the above is possible by observing certain conditions.

203

Fig. 59 - P, ψ Curve without Ballooning.

1) Test curve; 2) geometric law.

A solid cylindrical powder rod without a solvent (the mass is homogeneous) 7.5 mm in diameter by 42 mm long with rounded (spherical) ends, was fastened along the axis of a 21.5 cm³ bomb by means of a frame made of thin copper wire. This arrangement facilitated ignition, and all the burning surfaces were subjected to identical conditions as regards the freedom of gas separation.

The weight of the igniter was such as would develop a pressure $p_{\rm B}$ = 160 kg/cm², and insure instantaneous ignition.

Figure 59 contains an experimental Γ , ψ curve and its corresponding curve of the geometric law of burning at $u_1 = 0.069 \text{ mm/sec.}$

According to this diagram, no ballooning is observed on the test curve; the latter almost fully coincides with the theoretical curve upon reaching a maximum.

This shows that a powder which is entirely homogeneous in all its layers and is subjected to identical conditions as regards the freedom of gas separation from its surface elements, burns according to the geometric law.

A powder with a volatile solvent, whose burning rate varies from layer to layer deviates from the geometric law.

2	0	4

Furthermore, it is impossible to distribute a charge in such a manner where all the surfaces would be placed under identical conditions as regards freedom of gas separation, and to obtain a condition where the deviation from the geometric law would always be the greater, the greater is the difference in the conditions of burning at different portions of the charge.

3. THE POINT OF INFLEXION ON THE PRESSURE CURVE.

When deriving the theoretical relationship between pressure increase and time, it was shown that in the case of tubular and strip powders in which the burning area varies little, the rate of pressure increase must grow continuously and have a maximum value at the end of burning. Indeed, in the expression

$$\frac{dp}{dt} = \frac{f\Delta}{1 - \alpha\Delta} \frac{u_1}{e_1} \times \frac{S}{S_1} p$$
 (49)

the value of $S/S_1 \approx const$, and p grows continuously.

At the same time, the many tests conducted by various investigators show that when tubular and strip powders are burned in a bomb, an inflexion point invariably occurs on the p, t curves, following which dp/dt decreases and approaches zero, and the curve takes on a "beak-like" shape.

Charbonier had determined the exponent β from test from the position of the inflexion point in his suggested expression for the "shape functions."

Some of the authors were of the opinion that the hook in the curve is the result of the crusher's "setting" after the end of burning by the inertia of the small piston, and does not depend on the law of powder burning.

The analysis of formula (49) indicates that in order to obtain the deflection point (dp/dt = const), it is necessary to maintain the condition $S \cdot p$ = const, and inasmuch as the gas pressure in the bomb undergoes a continuous increase, the burning powder surface must decreas at the point of inflexion (S = const/p).

If, however, the reduction of the surface area proceeds faster than the pressure increase, then Sp and dp/dt will decrease in value, and the convex side of the p, t curve will be directed upwards.

Such curves are observed before the end of burning in the case of powders with 7 perforations, whose surface area rapidly decreases after decomposition.

It can be shown by test that the position of the point of inflexion when burning strip powders, depends on the degree of homogeneity of the thickness of the plates making up the charge. By carefully selecting the proper strip thickness and arranging them in such a manner that the igniter gases would immediately envelope their entire surface, and using a strong igniter in order to obtain a simultaneous and instantaneous ignition, a p, t curve can be obtained with practically no inflexion at all, or, at any rate, a curve without a "beak."

206

Contrariwise, if the charge is intentionally made up of powder strips of a given grade but of varying thickness, the point of inflexion can be made to appear considerably earlier than usual \int_{-5}^{-5}

Moreover, by making up a charge of strips of different grades of powder, we had succeeded in converting the p, t curve into a rectilinear curve along most of its length, i.e., create what would appear a whole series of inflexion points.

The table below contains some of the data obtained by M.E. Serebriakov in his tests, in which he attempted to determine the reasons for the appearance of an inflexion point $\mathcal{L}^- \mathcal{L} = 0.20$; powder-Japanese strip, "Cff"; igniter - dry pyroxylin.

In test No. 1 the charge was made up of strips, considerably varying in thickness; a weak igniter was used.

In test No. 2 the charge was made up of strips of uniform thickness using the same igniter.

In test No. 3 the charge was the same as in test No. 2; a strong igniter was used.

The following was determined in all of these tests: $p_{\hat{1}}$ and $\psi_{\hat{1}}$ at the point of inflexion, powder burning time $t_{\hat{K}}$ and exponent β .

207

Table 16

 $W_0 = 78.5 \text{ cm}^3$

	W ₀ - 78.5 cm										
[est No.	20 ₁ , mm	PB,	kg/cm ²	$\Delta = \frac{\omega + \omega_B}{\Psi_0}$	pm kg/cm ²	pi kg/cm ²	$\binom{dp}{dt}_{max}$ $T/cm^2/sec$		t _K sec	3
					-	0115	1717	428	0.82	0.0355	0.230
1	1	0.92-1.07		20	0.201	2115	1950	480	0.9	0.0348	0.103
	2	1.00-1.01		20	0.201	2150		540	0.9	5 0.0084	0.055
1	_	0.98-1.00	1	125	0.211	2310	2190		. 1		

Curves p, t - Γ , t and Γ , ψ are shown in fig. 60-61.

The obtained results offer a very clear graphic description of

In test No. 1 the pressure curve past the point of inflexion has these tests. a fairly long "beak," and the transition from the point of inflexion to the end of the curve is smooth ($\Delta t = 0.0030$ sec). No smooth transition after p; occurs in test No. 2; there is a sharp break in the curve and the "beak" is considerably shorter ($\Delta t = 0.0013$ sec).

In test No. 3 ignition occurs instantaneously, the uniformity of the thicknesses is retained, the point of inflexion shifts to the very end of burning, $\left(dp/dt\right)_{max}$ increases in value, and the "beak" is totally absent on the p, t curve; the curve terminates at an angle approaching the maximum (Δt < 0.0005 sec). No "aftercompression" of the crusher was noted in this test.

Fig. 60 - p, t and Γ , t Curves at Different Values of p_B and $2e_1$.

a) p, kg/cm²; b) t (sec); l) ... 1.07 mm "Ch" strip; 3) ... 1.00 mm "Ch" strip.

Fig. 61 - Γ , ψ Curves at Different Values of p_B and $2e_1$.

Fig. 62 - F, y Curves at End of Burning of Strips of Different Thicknesses.

Thus, the appearance of an inflexion point is linked with the sharp surface area decrease during burning of powder.

Its position, in the case of strip and tubular powders, depends on the uniformity of the thickness of the strips or tubes at the end of burning.

By choosing the proper conditions of ignition $\rho_{\rm B}$ and thickness of the strips, the position of the inflexion point on the pressure curve can be varied widely.

This point always occurs in the case of powders of nonuniform thickness or perforated powders, in which the burning surface area after decomposition undergoes a sharp decrease and tends towards zero.

4. REASONS LEADING TO A LOWERED INTENSITY OF GAS FORMATION IN THE LAST STAGE OF BURNING

In the case of regressive powders, the experimental Γ , ψ curves in their mid-section between $\psi=0.3$ and $\psi=0.8-0.9$ almost coincide with the theoretical curves; beyond $\psi=0.8-0.9$ the ordinate of the curve begins to drop rapidly and tends towards zero at the end of burning when $\psi=1$.

The reason for this drop lies in the nonuniformity of the plates making up the charge. The thinner the plate, the sooner will it burn. At the end of burning the surface area of such a plate undergoes a specific amount of reduction and this causes a decrease of the

function $\Gamma = \frac{S_1}{\Lambda_1} \frac{S}{S_1} u_1$. The greater the nonuniformity of the charge

in thickness, the earlier will the condition of lowered intensity of

gas formation occur. Furthermore, even an individual strip is usually nonuniform in thickness along its entire width, so that after it is pressed during drying the contraction of the strip is not uniform and the latter acquires a slightly lenticular cross section: it is thicker in the middle than at the ends.

A similar and even greater variation can occur in the web thickness of tubular powder as a result of a nonconcentric perforation. The resulting noninstantaneous ignition causes further impairment of the initial plate dimensions and this advances the time at which the lowered intensity of gas formation at the end of burning occurs. This was shown in T, w curves obtained in tests using igniters of different pressures, and also in fig. 61.

The results of calculating the change in the value of $\frac{s}{A_1}$ u₁, for a charge consisting of plates of strip powder "CHT" varying in thickness from 0.92 to 1.17 mm and tested in a manometric bomb, are presented below.

In order to simplify such calculations, the plates were split up into 6 groups according to thickness; the relative number of plates of the two middle groups taken was greater than of the remaining groups, namely, 0.20 instead of 0.15%.

Theoretically, for a powder of uniform thickness, the ratio (exposure) S/A_1 must vary during burning from 2.07 to 1.76 mm²/mm³, and function Γ - from 0.160 to 0.136.

$$\frac{1}{\frac{\text{kg}}{\text{cm}^2}} \sec \frac{1}{\text{cm}^2} = 0.0775 \frac{\text{mm}}{\text{sec}} : \frac{\text{kg}}{\text{cm}^2} .$$

STATE OF THE STATE

The following table gives the variation of S/Λ_1 and Γ as a function of ψ during the burning of the individual plate groups $\sqrt{-4}$.

Table 17

			1 40 4				
Group No.	1	2	3	4	5	6	Remarks
Plate thick-	0.92	0.97	1.02	1.07	1.12	1.17	2e _{1 cp} - 1.05 mm
Relative num ber of guch plates ha charge	l	0.15	0.20	0.20	0.15	0.15	
Ψ1	0.894	0.931	0.961	0.982	0.994	1.000	i
S ₁	1.526	1.250	0.887	0.530	0.263	0	70 cp - 0.160
$\begin{vmatrix} A_1 \\ C_1 - \frac{S_1}{A_1} u_1 \end{vmatrix}$	0.118	0.097	0.069	0.041	0.020	o	71 cp = 0.136

on the diagram in fig. 62, curve 1 corresponds to the theoretical variation of \cap for powders of average thickness; the descending portion 2 of the \cap_{Teop} curve is obtained on the basis of the above table; this diagram also includes curve 3 of the test curve \cap obtained on the basis of a bomb test. A comparison of the theoretical and test \cap curves shows that their behavior both at the mid-section and at the end of burning is similar. The fact that curve 3 begins to drop ahead of curve 2 is explained by the use of a weak igniter in the test, and by the fact that the noninstantaneous ignition leads to an increased thickness variation.

Conclusions

The above investigations clarify the reasons for the deviation of powder grains of plain shape from the geometric law of burning (Sections 1, 11, and 1V in fig. 50).

The rapidly increasing section of the Γ , ψ curve at the start of burning constitutes a process of gradual ignition; a practically instantaneous ignition and the start of the curve directly from the maximum point is secured by the use of a high pressure igniter $p_B = 120-150 \text{ kg/cm}^2$.

"Ballooning" is the accelerated burning of powders at low pressures and in the presence of layers of nonuniform thickness, occurring as a result of technological processes (wetting) and excessive heating of the powder at low rates of burning.

The point of inflexion on the p, t curve and the corresponding rapid decrease of the intensity of gas formation shortly before the end of burning are due to the nonsimultaneous burning of the elements of the charge of varying thicknesses. The smaller the igniter, the greater will be the variation in the thickness of the powder, the earlier will the inflexion point occur, and the more rapid will be the drop in the intensity of gas formation. By choosing charge elements of the proper thickness and a very weak igniter, a condition can be obtained whereby the burning of the powder at the end would proceed without a sharp drop in the intensity of gas formation, and a p, t curve can be obtained without a point of inflexion.

213

5. BALLISTIC ANALYSIS

A. The Application of Γ, ψ Curves to the Analysis of Burning of Flegmatized Powders

The powder must be flegmatized in order to make it a progressive powder, i.e., a substance tending to slow down the burning of the outer layers must be added to the powder mass. The distribution of the flegmatizer in the powder must be irregular - its concentration must be maximum in the outer layers and gradually diminish towards the center of the grain. Therefore, the burning rate u₁ at p = 1 kg cm², which depends on the nature of the powder, must vary from a minimum in the outer layers to a maximum inside the grain. Progressive burning is thus obtained by changing the composition of the powder mass rather than from the shape of the powder.

Under actual factory conditions flegmatization may be inadequate or excessive, whereby the flegmatizer penetrates the full powder thickness and makes it slow burning rather than progressive in character.

It is of importance therefore to determine the depth of the flegmatizer's penetration, its distribution in the powder, and its effect on the burning rate u_1 .

Usually the penetration of the flegmatizer is determined by coloring the flegmatizer solution with fuchsin (magenta red), and after flegmatization and drying the grain is cut and examined under a microscope.

This method is not very accurate however, because the penetrating properties of fuchsin and the flegmatizer may be different. The microscope enables one to determine the depth of penetration of fuchsin; it does not, however, permit one to determine the degree of distribution of the substance in the powder.

However, bomb tests and their analysis by means of the T function make it quite easy to obtain an accurate evaluation of the distribution of the flegmatizer throughout the mass of the powder.

Indeed, if we were to test in a bomb at a given loading density ordinary powder and then a flegmatized powder, and plot curves of the change of 7 as a function of 4, the difference between these curves would be an appreciable one; this can be seen in fig. 63, which shows the test results obtained with powders with 7 perforations before and after flegmatization.

Whereas the nonflegmatized powder (curve 1) has "ballooning" present on the Γ , ψ curve and then drops to $\psi=0.50$, flegmatized powder (curve 2) produces no ballooning, the ordinates of the curve move upward, and burning is progressive from the start up to $\psi\approx0.50$; thereafter the Γ , ψ curves almost coincide. Therefore, the effect of flegmatization is felt until half of the grain is burned, following which it is terminated. The above makes it possible to calculate the depth to which the flegmatizer has penetrated.

Inasmuch as in both cases the powder grains were of the same shape and dimensions, it may be assumed that the change of S/A_1 with respect to ψ is the same in both cases. Hence the ratio of the ordinates Γ_2/Γ_1 gives the ratio between the elementary burning rates at a given instant,

$$\frac{\Gamma_2}{\Gamma_1} = \frac{\left(\frac{S}{\Lambda_1} u_1\right)_2}{\left(\frac{S}{\Lambda_1} u_1\right)_1} = \frac{\left(u_1\right)_2}{\left(u_1\right)_1};$$

upon determining the value of this ratio for successive values of ψ , a curve can be constructed showing the relative variation of the elementary burning rate, which depends on the distribution of the flegmatizer in the powder mass.

An example of a curve of this type is shown in fig. 64.

1

Fig. 63 - Γ, Ψ Curves for a Powder Before and After Flegmatization.

Fig. 64 - Change of Burning Rate \mathbf{u}_1 in a Flegmatized Powder.

The distribution of the flegmatizer in the powder is not uniform and becomes smaller as the depth of penetration is increased: this is indicated by the minimum value of the burning rate at the start and by the fact that the rate increases according to the law up to $\Psi=0.50$. Thereafter, the relative burning rate becomes equal to unity, i.e., the burning rates of the powders become the same. This indicates that the flegmatizer did not penetrate beyond $\Psi=0.50$ and its corresponding thickness.

Thus flegmatization serves to reduce the intensity of gas formation during the first half of the process. This permits increasing the charge in firing without exceeding the maximum pressure and to obtain a higher shell discharge velocity. But inasmuch as flegmatization usually lowers the powder energy f, in addition to the burning rate u₁, a portion of the increased charge is utilized for the purpose of maintaining the shell velocity which would have been obtained with nonflegmatized powder.

Inasmuch as the burning rate of powders containing uniformly distributed quantities of the flegmatizer can be determined from bomb tests, the variation of the flegmatizer concentration between the powder layers can be determined by the change in the burning rate of powders with different percentage contents of the flegmatizer material.

If the duration of the flegmatization process is overly long, a powder can be obtained in which the distribution of the flegmatizer is practically uniform throughout its entire thickness, and hence the burning of the powder will be slow but not progressive.

B. The Peculiar Burning Characteristics of Nitroglycerine Powders

Analysis by means of the Γ function had shown that English tubular cordite, notwithstanding its regressive shape, gives a somewhat increased value of Γ , after $\psi \approx 0.3$, i.e., its burning is progressive.

It has been established by means of special tests, that a Γ , Ψ curve constructed for freshly manufactured cordite does not differ in anyway from an ordinary Γ , Ψ curve for tubular pyroxylin powder (curve 1-1-1 in fig. 05), after the excess of the solvent (acetone) is removed.

But if the "life" of such a powder is shortened by placing it in a thermostat at $t=50^{\circ}\mathrm{C}$, its energy will be lowered after a while and the T, ψ curve, following ballooning and a descent, will begin to ascend again from $\psi\approx0.3$ to $\psi=0.9$ (curve 2-2). Thereafter, its drop to zero will proceed more sharply, similarly to pyroxylin powders during the end burning of the thicker elements.

Fig. 65 - F, W Curves for Nitroglycerine Powder.

The fact that the energy f has decreased indicates that a portion of the nitroglycerin had evaporated through the outer surface of the powder. The nitroglycerine remaining in the layers close to the surface had shifted onto the surface causing ballooning during burning. This in turn had caused a redistribution of the nitroglycerin in the neighboring layers. Inassuch as the rate of burning depends on the nitroglycerin content in the given layer, the rate should increase in the presence of such a nonuniform distribution as the

burning process penetrates the grain in depth. And since $^{\Gamma}T$ = $\frac{S_1}{\Lambda_1}\frac{S}{S_1}$ u_1 , fincreases because of the increase of u_1 , and the burning of the powder becomes progressive. Therefore the burning characteristic of cordite can change depending upon its "age" and the conditions for its storing, and this change can be easily disclosed by using the test function $^{\Gamma}$ as the analyzer.

CHAPTER 3 - BURNING PROPERTIES OF POWDERS WITH NARROW PERFORATIONS

It was shown above that test curves I, woof the progressivity of burning of powders with many narrow perforations deviate from the geometric law considerably more than do the curves of powders with grains of simple shapes (strip, short tube). Inese deviations are the greater, the longer the perforations, and, hence, the longer the powder grain itself.

The least understood phenomenon from the standpoint of the geometric law of burning are the regressive portions of the T, W curves in the case of perforated powders, whose surface area, theoretically, must undergo a continuous increase until the grain is decomposed.

If we consider such a change of the value of from the standpoint of surface variation in a grain during burning, we get the
impression that the grain becomes decomposed into separate parts
in the form of rods after it is ignited, whose surface changes
regressively. Such a decomposition of a grain during the initial
stage of burning can occur for the reason that the gases formed inside

219

narrow and long perforations do not succeed in fully escaping from the perforations, thus creating a higher pressure which serves to accelerate burning. This pressure becomes so high that the walls of the powder collapse and the grain disintegrates, following which the burning of the powder becomes regressive.

Such an explanation for the regressive form of the Γ curve for a powder with 36 perforations seemed natural at first glance.

Actually, however, an examination of the unburned powder rods obtained after firing has shown that no disintegration of the powder occurred at first. This was evidenced by the presence of many grains with strongly burned but otherwise intact perforations corresponding to $\psi \approx 0.60$, or by grains bearing signs of partial decomposition only (see right-hand photograph in fig. 31).

This condition indicates that the burning of powder with narrow perforations is more complex and depends on factors absent in the burning of powders of simple shapes and usually not taken into consideration.

It is therefore of importance to analyze the peculiarities involved in the burning of powders with narrow perforations and to develop a theoretical approach to the problem dealing with the deviation of such powders from the geometric law, as was disclosed in actual bomb tests.

220

1. THE EFFECT OF PROXIMATE CONTACT BETWEEN BURNING SURFACES

If two powder strips are burned separately in the open air, each strip will burn quietly. If, however, one strip is placed over the other while burning with the burning ends touching, burning at the points of contact will proceed more vigorously and gases will be forcefully ejected from the gap formed between the burning surfaces. This indicates that the gas pressure becomes increased.

An assumption has been made to the effect that if the surfaces of two grains were made to burn separately in one bomb and in close contact in another, the pressure between the contacting surfaces would be higher and the burning of the grains will proceed more vigorously.

A. Tests with a Rod and a Tube.

This assumption was confirmed in an actual test.

Identical powder grains were burned simultaneously in small bombs (21.5 $\,\mathrm{cm}^3$) wherein the grains were arranged differently.

The charge consisted of a tube and rod of nitroglycerin powder.

The rod diameter was such that it could be inserted into the tube with a certain small clearance between them.

In one test the rod was placed in the bomb alongside the tube, and the other rod was inserted into the tube.

Due to its higher burning rate, nitroglycerin powder was found to give a sharper distinction between these parallel tests.

The results were as follows (fig. 66 - p, t and f, t curves): in

221

the first case the p, t curve was smooth, and in the second (rod inside tube) a sharp pressure increase was obtained at p $\approx 100~kg/cm^2$, following which the p, t curve became smooth again while remaining above the first one.

In the first case, curve Γ , ψ (fig. 07) shows a small amount of ballooning at $\psi=0.03$ and then slowly descends to $\psi=0.70$, following which it drops rapidly because the web thickness of the tube is practically fully burned, and the final burning of the tube and the burning of the rod follow.

At the instant $\psi=0.90$ the tube is fully burned (thickness of tube was 1.75 mm and diameter of rod 5 mm) and the rod undergoes the last stages of burning.

In the case of the rod inserted into the tube, the 7, ψ curve balloons sharply at $\psi=0.03$, its apex corresponding to $\psi=0.04$. The maximum ordinate at this point is almost twice as great as that of the corresponding ordinate of 7 of the first test; this is followed by an almost vertical drop down to the first curve ($\psi=0.06$), following which the curves are almost coincident.

In order to clarify these results, the test was repeated in open air. Upon igniting the rod simultaneously at both ends, it was ejected from the tube, apparently because of the pressure difference between the ends in the clearance present between the rod and tube.

STAT

Fig. 66 - The Effect of Contacting Burning Surfaces on C, t.

Fig. 67 - The Effect of Contacting Burning Surfaces on 7, 4.

1 - rod and tube side by side; 2 - rod inserted into tube.

when tested in a bomb, the rate of gas formation rapidly increases because of the high burning rate of nitroglycerin powders, the close proximity of the burning surfaces and the small clearance, and ballooning occurs on the fourve. But due to the pressure difference which may occur at the opposite ends of the clearance, a string of relatively soft cordite would have been forced out of the tube. Thereafter, a close contact between the burning surfaces would have been obviated, and further burning would have continued under conditions almost analogous to the first test. This is indicated by the almost parallel path of the Γ, ψ curves.

The fact that the burning in this case proceeds more vigorously than in the first test is indicated by the condition that the burning of the tube and rod in the second test was concluded ahead of the first one, as can be seen from the T, t curves in the diagram.

Actually, the drop of Γ corresponding to the end of the tube's burning occurs in the first case at t = 0.0095-0.0100 sec, and in the second case - at t = 0.090 sec. The full burning time in the first case is τ = 0.0140, and 0.0130 sec in the second.

These tests are very valuable with regard to the theory of non-uniform powder burning, inasmuch as they show that the sharp increase in the rate of gas formation is not due to the increased surface area (which was the same in both tests), but, rather, to the increased rate of burning caused by the close contact of the burning surfaces and by higher pressure.

As soon as this contact is eliminated, the process proceeds normally. According to the geometric law of burning, all the powder surfaces must burn with the same rate, and a change in the mutual arrangement of the portions of the charge should not affect the law of gas formation.

B. Powders with Narrow Perforations

An identical phenomenon of accelerated gas formation should be observed in the case of powders with narrow and long perforations, wherein the burning surfaces are in close contact. The narrower the perforation, the closer is the contact between the perforation surfaces, and the more vigorous is the burning process. As the perforations are eroded, their surfaces spread apart and the intensity of burning decreases, and as a result the ordinates of the f, w curve become gradually reduced.

224

K

The fact that the burning rate before decomposition, determined by the formula

$$u_1 = \frac{e_1}{\int_{0}^{1} p dt}$$

is considerably greater than the rate after decomposition, at which time the rate is normal, indicates that the burning rate is actually greater in perforated grains than in strip powders. Thus, the burning rate of Kisnemsky's powder with narrow perforations before decomposition, corresponding to the point of inflexion on the pressure curve, is $\mathbf{u}_1 \approx 0.100~\mathrm{mm}/\mathrm{sec}$, compared with strip powder of the same composition whose normal rate is $0.075~\mathrm{mm}/\mathrm{sec}$.

2. THE EFFECT OF THE LENGTH OF PERFORATION ON THE PROGRESSIVE BURNING OF POWDER

According to the geometric law of burning, the narrower and longer the perforation, the more progressive is the shape of the grain.

However, the narrower and longer the perforations, the greater will be the difference between the conditions of burning inside the perforations and at the outer surface, the more difficult will it be for the gases to leave the perforations, and the greater will be the pressure developed in them; and as a result the deviation from the geometric law towards regressive burning will be the greater.

In order to confirm these deductions, we are presenting below the results of tests in a manometric bomb for determining the progressive burning of powders with a large number of narrow

perforations of uniform cross section, but of varying length, and also the results of firing.

Tests for determining the effect of the length of perforations were made with powder No. 8: 36 perforations, relative length in a normal slab $\frac{2c}{a_0}$ = 90.

The charge consisted of normal slabs, of slabs of the same cross-sectional area reduced to 1/4 length $(\frac{2c}{a_0}=22)$, to 1/8 of the normal length $(\frac{2c}{a_0}=11)$, and slabs reduced to 1/10 of normal length $(\frac{2c}{a_0}=9)$. Perforation wall $a_0=0.42$ mm.

If for the sake of simplicity we assume that the powder burns to the very end without decomposing, then, as the length of the slabs is decreased, the geometric progressivity $\frac{S_K}{S_1}$ becomes smaller, and the exposed surface $\frac{S_1}{\Delta_1}$ becomes greater, as can be seen in Table 18.

Table 18

	2c	2c 4	2c 8	2e 10
2c a 0	90	22	11	9
$\frac{\mathbf{s_1}}{\Lambda_1}$	1.37	1.53	1.76	1.89
s _K	2.17	1.83	1.39	1.20

This data shows that a full-length slab (2c) possesses a very high geometric progressivity (2.17), whereas a slab reduced 8 times in length has the progressivity of a grain with 7 perforations.

Theoretical curves of the variation of S/S_1 corresponding to the geometric law of burning without decomposition are shown in the diagram of fig. 68a.

The geometric curves of progressivity ascend from the initial ordinate $S/S_1 = 1$ in the form of a diverging cluster. The ordinates have a maximum value at the end of burning; as the length of the slabs is increased, the slope of the curve, and hence the progressivity, increases.

The test characteristics $\gamma = \frac{1}{p} \frac{d\gamma}{dt}$ were calculated from these curves; then, in order to eliminate the influence of the varying exposure $\frac{S_1}{\Lambda_1}$ entering into the values of Γ , the latter were subdivided into corresponding values of S_1/Λ_1 , i.e., reduced not to the initial volume, but, rather, to the initial surface area S_1 . We shall designate this value of $\gamma : \frac{S_1}{\Lambda_1} = \gamma \frac{\Lambda_1}{S_1}$ by γ_s ; the obtained curves of γ_s as a function of γ are shown in fig. 68.

Fig. 68 - The Effect of the Length of Perforations on the Intensity of Gas Formation.

a) theoretical; b) test curves.

Were the geometric law applicable, $\Gamma = \frac{S_1}{\Lambda_1} \frac{S}{S_1} u_1$; $\Gamma_S = \frac{S}{S_1} u_1$, i.e., the

value of Γ_m at constant burning rate u_1 would vary in proportion

with S/S_1 . Therefore the Γ_g , ψ curves should be of the same form and have the same relative arrangement as the curves of geometric progressivity $\frac{S}{S_1}$, ψ (fig. 68a).

An analysis of these tests shows the contrary to be true, as illustrated by the diagram in fig. 68b.

All the Γ_S curves have a sharp slope at first and a maximum at $\gamma \approx 0.10$, following which their path is regressive. The highest curve is that for the slabs of the greatest length 2c, the shorter the slab, the lower is the Γ_S curve. The mutual disposition of the Γ_S curves is the same as of the S/S_1 curves. But whereas the S/S_1 curves proceed in the form of a diverging cluster and are the more progressive the greater the length of the slab, the experimental Γ_S curves show the reverse: they have a maximum divergence after a sharp ascent at $\gamma = 0.10$, and then proceed in a converging cluster, whereby the greater the slab length, the more regressive is the curve.

For slabs $\frac{2c}{8}$ in length the curve has even a small horizontal section.

Thus the longer the slab, the more will the burning of perforated powders deviate from the geometric law, the steeper will be the slope (ascent) of the $\Gamma_{\rm S}$ curve at the start of burning (while the perforations are still narrow), and the more regressive will the curve be thereafter. Decomposition commences at $\psi \approx 0.70$ and the curves begin to drop to zero at $\psi = 1$.

The following conclusion can be derived from these tests: when powder is burned in a constant volume the change in the intensity of gas formation is the more regressive, the more progressive is the shape of the grain. The true or physical law of burning gives results which are opposite in character to those of the geometric law.

Further analysis will show that the Γ_S curve of the shortest slab 4 is more regressive than curve 3 representing a longer slab $\left(\frac{2c}{8}\right)$. Here the limited geometric progressivity begins to have its effect, and the conclusion is reached that for a powder grain of a given cross section there is such an optimum grain length at which the gas formation is most progressive (or least regressive)

$$\left(\frac{2c}{a_0} \approx 20-25\right) .$$

These bomb test results which are so paradoxical from the standpoint of the geometric law of burning were verified in actual firing tests (Table 19).

229

Table 19 - Results of Firing Using Powders of the Same Cross Section but of Different Lengths

Powder Specimen	2c a	w kg	Pm/cm ²	v _A m/sec	$\frac{\mathbf{s}_1}{\Lambda_1}$	$\frac{s_s}{s_1} - s_s$
Long (2c = 10A ₀)	220	0.950	2285	613	1.39	1.89
Shortened (2c = 3A ₀)	66	1.150	2290	655	1.44	1.81
Short (2c - A ₀)	22	1.100	2285	648	1.59	1.54
Grade 9'7 (with 7 perforations)	24	1.200	2290	655	1.40	1.37

All the specimens gave the same value of p_m , though the longest specimen No. 1 having the most progressive shape produced this pressure with the smallest charge $\omega=0.950$, which serves to explain why the velocity v_{Δ} was the lowest (613 m/sec).

The shortened specimen No. 2 having the least theoretically progressive shape permitted however, without elevating the pressure, to increase the charge to 1.150 kg and thus increase the muzzle velocity to 655 m/sec, i.e., it was actually found to be more progressive. Specimen No. 3, similarly to the bomb test, gave somewhat poorer results than specimen No. 2, producing the same pressure at a somewhat smaller charge (1.100 kg), and v_{Δ} was reduced to 648 m/sec.

These firing tests had shown that powders with narrow perforations give identical results in a bomb and when fired from a gun, and that powders with excessively long and narrow perforations are not profitable, notwithstanding their geometric progressivity. There is

a certain optimum length at which burning is most progressive; in guns at large values of Δ this length may differ from that in a bomb at small values of Δ .

Similarly, firing tests with tubular powders have confirmed the fact that longer tubes in an identical charge produce a higher pressure p_m and velocity v_{Δ} compared with shortened tubes.

These tubes show that powders with narrow perforations do not follow the geometric law and that their deviation from the latter is the greater, the longer the perforation.

A comparison of the results obtained in firing shortened Kisnemsky powders with 36 perforations (No. 2) and ordinary 9/7 powder (No. 4) indicate that notwithstanding the great difference between their geometric progressivity, the 9/7 powder produced the same results (at a considerably simpler manufacturing procedure).

3. THE PUNDAMENTAL THEORY OF NONUNIFORM BURNING OF PERFORATED POWDERS

As was mentioned above, a certain contradiction was disclosed between the actual and geometric law of burning even in powder grains of simple shapes.

Such contradicitions were particularly sharply defined in the case of powders with narrow and long perforations. Test curves of the progressivity of burning are entirely contradictory to the theoretical curves; these deviations increase with the length of the perforations. What is the explanation thereof?

The basic concept of the geometric law rests on the condition that the pressure is always uniform at all the elements of the burning surface of the charge, and that hence the burning rate $u=u_1p$ is also uniform.

This condition would have been valid if the process of burning were to proceed very slowly to permit immediate equalization or balancing of the slightest pressure differences occurring at various points of the bomb, i.e., if the phenomenon were to proceed similarly to static processes.

Actually, of course, the burning process proceeds extremely rapidly to permit equalization of the pressure at different points of the charge, so that the burning rate is actually different at the various points of the burning surface. The difference in intensity must also be pronounced most sharply in the burning of powders with narrow perforations.

It can be easily proved that the rate of burning inside the perforations can be the same as the rate at the surface of the grain. In a chemically homogeneous powder composition the burning rates can be equal only at equal pressures. But if the pressure p" within the perforation equaled the outside pressure p', the gases formed inside the perforations could not escape, unless a pressure difference were present. Therefore, if the inside and outside pressures were equal, the bomb would become filled with the gases formed at the outside surface of the powder only, while the gases in the

232

perforations would remain where formed, which condition is entirely improbable. Thus a simple reasoning shows that the burning rate inside and outside the grain cannot be the same.

By separately applying the pyrostatics formulas to the surface of the perforation and the outside grain surface, it can be shown quantitatively that the pressure inside a narrow perforation cannot equal the pressure at the outside grain surface, and that the pressure increase inside the perforation must proceed considerably more rapidly.

We shall make a preliminary analysis of the values governing the pressure increase obtained in burning powders of simple shapes without perforations, assuming that the grains are uniformly distributed in the bomb, or that only one grain is being burned.

We have introduced the following expression for determining the pressure increase in a constant volume:

$$\frac{dp}{dt} = \frac{f^{\Delta} \left(1 - \frac{\Delta}{J}\right)}{\Lambda_{\Upsilon}^{2}} \frac{s_{1}}{\Lambda_{1}} \frac{s}{s_{1}} u_{1}^{p}.$$

For the initial stage of the burning process $S \approx S_{1}$

then

$$\frac{dp}{dt} = \frac{f\Delta}{-\frac{\Delta}{\delta}} \frac{s_1}{\Lambda_1} u_1 p = \frac{f\omega}{w_0 - \frac{\omega}{\delta}} \frac{s_1}{\Lambda_1} u_1 p,$$
233

but $\frac{\omega}{\Delta_1} = \delta$ - powder density, and

$$\frac{dp}{dt} = f \delta u_1 \frac{S_1}{w_0 - \frac{\omega}{\delta}} p. \tag{50}$$

Designating $h_0 = \frac{\omega}{\delta} = V$, we get

$$\frac{dp}{dt} = f \delta u_1 \frac{S_1}{V} p$$

and hence for a given type of powder (f,\mathcal{J},u_1) and pressure p, the pressure increase dp/dt is determined by the ratio between the burning surface area of the powder and the volume in which the gas is separated from the powder surface.

We shall designate this ratio by ζ :

Burning inside the powder perforation can be viewed as consisting of two consecutive processes:

- 1) accumulation of games separated from the surface of the perforation inside the perforation space;
- 2) outflow of the accumulated games from the perforation if the inside pressure exceeds the pressure at the surface of the grain.

We shall apply formula (50) separately to burning at the inside surface of the perforations and to burning at the outside grain aurface and compare the results.

234

STAT

K

Let us designate the initial volume of each perforation $W_{\widetilde{K}}$ and its surface area $S_{\widetilde{K}}$; the total number of grains in the charge is N, and the number of perforations in each grain is n.

If we assume that the igniter pressure $p_{\mbox{\footnotesize{B}}}$ is the same at the outer surface and inside each perforation, then:

in the perforation
$$\frac{dp^{\prime\prime}}{dt} = f^{\frac{1}{2}}u_{1}p_{B}^{\frac{1}{2}}$$
,

where

4

$$\zeta = \frac{S_K}{W_K} = \frac{\pi d \cdot 2c}{m_A d^2 2c} = \frac{4}{d}$$

and at the outer grain surface S'

$$\frac{dp'}{dt} = f \delta u_1 p_B \xi',$$

where ζ' is the ratio of the entire surface area S' to the volume within which the gases are separated from this surface, i.e.,

$$\xi_{r} = \frac{\mathbb{A}^{0} - \frac{2}{m} - \mathbb{A}^{n}\mathbb{A}^{K}}{s_{r}}.$$

Bearing in mind that $\frac{\omega}{\delta}=\Lambda_1$, where Λ_1 is the volume of the entire charge, and dividing the numerator and denominator ζ' by

$$\xi' = \frac{s'}{\Lambda_1} \frac{1}{\frac{W_0}{\Lambda_1} - 1 - \frac{NnW_K}{\Lambda_1}} = \frac{s_1}{\Lambda_1} \frac{s'}{s_1} \frac{1}{\frac{J}{\Delta} - 1 - \frac{NnW_K}{\Delta_1}}$$

Calculations show that for a standard grain with 7 perforations at $\Delta = 0.20 \ \zeta^{\prime\prime\prime} \approx 70 \ \zeta^{\prime\prime}$; therefore the ratio between the rate of pressure increase in the perforation and the rate at the outer surface will be considerably greater (of the order of several tens):

$$\frac{dp''}{dt} \Rightarrow \frac{dp'}{dt} \text{ and } p'' > p'.$$

Therefore, even if the pressure in a narrow perforation and at the outside surface are equal at a certain moment, the pressure inside the perforation will immediately begin to increase at a faster rate than at the outside surface, and hence the burning rate $u^* = u_1 p^*$ will be higher.

All the reasonings presented above relate to the start of burning and would be entirely valid if no gases were to flow out of the perforations. Actually, inasmuch as the pressure will increase more rapidly inside the perforations, the gas will escape because of the resulting pressure difference, so that the free space within the perforation will be increased and the outside free space, wherein are also collected the gases separating from the outside surface, will be decreased. As a result, the pressure difference will become reduced when both the perforation and the outside surface are burning, and will gradually become equalized.

236

However, due to the extremely high speed of this phenomenon, the gases formed in the perforations are incapable of fully escaping from the narrow openings and become accumulated in the perforations, the pressure increases as a result and in turn increases the rate of burning, so that burning in the perforations at a given pressure within a bomb must invariably proceed at a higher rate than at the outside surfaces of the grain.

Thus the presence of narrow and long perforations in the powder will always cause nonuniform burning in the perforations and at the grain surface, and this nonuniformity results in the anomalous curves of progressivity ", presented above (see diagrams in figs. 48, 49, 52 and 53).

If the loading density Δ is increased, the corresponding value of ζ " for each perforation remains unchanged, the value of ζ ' for the outside surface increases (because the entire ζ ' fraction increases with the increase of Δ), and the ratio ζ ' decreases and tends toward unity.

Tests have shown that the Γ,ψ curves at small values of \triangle actually become more regressive.

Fig. 69 - Burning of Kisnemsky's Powder with Verv Narrow Perforations.

Fig. 70 - Burning of Kisnemsky's Powder with Very Narrow Perforations.

The presence of a considerably increased pressure in very narrow and long perforations can be seen in photographs of slabs of Kisnemsky's powders No. 9 and 10 (figs. 69 and 70) ejected from a gun before they were fully burned. The photographs on the left show slabs of Kisnemsky's powders before burning, the perforations are so narrow (0.1-0.2 mm) that they can be hardly seen because of their fused openings; the photographs on the right are of grains

238

A^

ejected from a gun. Many of the perforations are eroded, which condition can be due only to the presence of a high pressure within the perforations; similar erosions were observed also on the side surfaces of the slabs. The perforations are almost circular in shape.

4. EFFECT PRODUCED BY NONUNIFORM BURNING OF PERFORATED POWDERS ON THE SHAPE OF THE T CURVE

We shall now show that nonuniform burning and excessive gas pressure in narrow perforations can serve to explain the steep ascent at the start and the continuous drop of the \square , \forall curve obtained from the analysis of experimental p, t curves obtained with powders having narrow perforations.

We have the following designations:

- S' outside surface area of burning grain;
- S" combined surface area of all the perforations in the grain
- S = S' + S'' total surface area of the grain;
 - Λ_1 initial volume of grain;
 - u' burning rate at the outside grain surface (u' u_1p');
 - $u^{\prime\prime}$ burning rate inside the perforations ($u^{\prime\prime}$ $u_1p^{\prime\prime}$).

In order to simplify the analysis of the phenomenon, let us assume that the burning rate inside the perforations is uniform and that the burning rate along the entire outside surface is likewise constant.

Let us see now how the test curve of progressivity $\frac{1}{p}$. $\frac{d\psi}{dt}$ in the case of the geometric law will differ from the same curve based on actual burning proceeding with different rates at the outside surface and in the perforations.

239

Let us assume that at a given instant the same portion of the charge ψ was burned in both cases, and that the pressure at the outside surface equaled p' and on the inside surface - p"; it may be assumed that the crusher used in the bomb test records a pressure p'.

Then, in the first case (geometric law of burning), the burning rate on all the surfaces will be the same:

$$u'' = u' ; p' = p'.$$

Using the general formula for the rate of gas formation as the basis, we can write:

$$\left(\frac{d\psi}{dt}\right)_{I} = \frac{s}{\wedge_{1}} u = \frac{s' + s''}{\wedge_{1}} u' = \frac{s' + s''}{\wedge_{1}} u_{1}p';$$

$$\gamma_{I} = \frac{1}{p'} \left(\frac{d\psi}{dt}\right)_{I} = \frac{s' + s''}{\wedge_{1}} u_{1}.$$

In the second case (actual burning), the burning rate differs:

The surface area of the perforations S'' burns with the rate u'', and the outside surface S' - with the rate u'.

$$\frac{\left(\frac{dt}{dt}\right)^{11} - \frac{b}{s.n.} \cdot \left(\frac{dt}{dt}\right)^{11}}{\sqrt{1}} - \frac{\sqrt{1}}{\left(s. + s... \frac{b.}{b..}\right)} \cdot \sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\left(s. + s... \frac{b.}{b..}\right)} \cdot \sqrt{1}}{\sqrt{1}} = \frac{\sqrt{1}}{\left(s. + s... \frac{b..}{b..}\right)} \cdot \sqrt{1}$$

A comparison of the Γ_I and Γ_{II} expressions will show that they differ by their p"/p' factors alongside the surface S" appearing in parenthesis.

Inasmuch as $\frac{p^n}{p^n} > 1$, $\Gamma_{11} > \Gamma_1$, as observed in comparing the theoretical and test curves of Γ .

Hence, when burning is not uniform, the behavior of the powder is such as if the surface area of its perforations were increasing with respect to $p^{\mu \nu}/p^{\nu \nu}$.

Actually this represents an increased rate of gas formation due to the increased burning rate in the perforations.

The difference between the rates of gas formation based on actual and geometric laws of burning will depend upon the ratio

$$\frac{u''}{u'} = \frac{u_1p''}{v_1p'} = \frac{p''}{p'}.$$

As burning progresses, the diameter of the perforation increases, and the ratio $\frac{4}{d}$ and hence of $\frac{y''}{y}$ becomes smaller; the $\frac{p''}{p}$ ratio will decrease also and the Γ_{II} and Γ_{I} curves will converge. This is the very condition actually observed on the Γ, ψ curves.

Thus under conditions of actual burning of progressive powder with narrow perforations in a constant volume the intensity of gas formation will be considerably greater at the start of burning, and the Γ, ψ curve will be situated considerably higher than the theoretical curve.

This difference becomes smaller as burning progresses, and the intensity of gas formation will differ from the theoretical to a smaller degree. During the entire process of burning of progressive powder the value of Phiay generally decrease and hence the burning will be regressive.

The narrower the perforations and the greater their number, the higher will be the ratio between the perforation surface area S^n and the total surface area S_1 , the sharper will be the influence of nonuniform burning and the greater will be the deviation from the geometric law, so that progressive powder grains will actually burn regressively, which is the case observed in the burning of Kisnemsky's powders with 30 perforations.

5. BURNING OF POWDER WITH NARROW PERFORATIONS IN A GUN

Tests show that the $\Gamma_r \psi$ curves at small values of Δ are more regressive than at high values of Δ .

This behavior is most important in clarifying the actual burning of perforated powders in a gun, where the initial loading density is very high (of the order of 0.50-0.70), and decreases continuously as the shell moves through the bore.

It was shown in the theory of nonuniform burning of powder

242

that as the loading density decreases, the difference increases between the values ζ ' and ζ " characterizing the rate of gas pressure increase at the outer surface and inside the powder perforations.

For powders with 7 perforations at $\Delta=0.20~\zeta^{\prime\prime}\approx70~\zeta^{\prime}$, the Γ , Ψ curve of the intensity of gas formation is also regressive.

The powder commences to burn in a gun at considerably higher loading densities (Δ_0 = 0.60-0.70), at Δ_0 = 0.70% $\approx 8 \, \zeta'$ for the same type of powder with 7 perforations, i.e., the difference becomes equalized. Burning at this constant value of Δ_0 = 0.70 would have occurred under more uniform conditions.

In addition, due to the movement of the shell through the bore, the space behind it increases continuously, and the loading density in this variable volume continues to decrease during the entire burning process ($\Delta = \frac{\omega}{W_0 + s \zeta}$). This results in a continuous variation of the ζ ": ζ ' ratio, whereby this ratio increases when Δ is reduced, which serves to increase the intensity of gas formation Γ and increases the progressive burning as the shell moves through the bore.

Thus in attempting to reach a conclusion regarding the burning of powder in a gun, we cannot consider its burning in a bomb at one constant loading density as being representative and assume that the obtained Γ, \forall curve characterizes the intensity of gas formation in a gun. Such a conclusion would be incorrect. The burning of powder must be considered in its relation to the conditions of loading and burning taken as a whole.

Therefore, in order to calculate the intensity of gas formation when burning powder in a gun, it is first necessary to determine the T, ψ curves at constant but different values of Δ by means of bomb tests, and to determine the effect of Δ on the characteristic change of intensity of gas formation. Then, taking into account the initial loading density ω_0 in a gun, it is necessary to extrapolate the experimental T, φ curves obtained in a bomb at smaller values of Δ for the given loading density ω_0 . Thereafter, bearing in mind that the loading density in a gun decreases continuously from ω_0 to $\omega_0 = \frac{\omega}{|\psi|}$ (where $\frac{1}{K}$ is the distance traversed by the shell at the modes of burning of the powders, it is necessary to go over, as ψ increases, from the T, φ curve at $1 + \omega_0$ to the T φ curves corresponding to successively smaller constant densities of loading.

As a result, the $\mathbb{T}_1 \neq \text{ curve of the intensity of gas formation for a variable loading density will differ from each <math>\mathbb{T}_1 \neq \text{ curve obtained}$ at constant values of \mathbb{Z} . As shown in fig. 71 by a solid curve, it can be even more progressive, the progressivity being the higher the greater the initial density of loading.

At low initial loading density \mathcal{L}_{j} , the change in the regressive characteristic of the T, τ curves obtained at constant Δ will be insignificant, and in such a case the burning may be regressive also at a variable value of Δ (fig. 72).

The effect of the value of \mathcal{L}_0 on progressive burning will serve as an explanation of the following very interesting fact observed in the firing of guns with Eisnemsky's powders: in one gun a charge

consisting of Kisnemsky's powder with 36 perforations at a high loading density gave better results than strip powder (p_{max} was lower at the same value of v_{A}), whereas another gun at a small value of $\Delta_{\hat{0}}$ loaded with the same powder gave poorer results (the same v_{A} velocity at a considerably higher pressure p_{max}).

This fact can be explained only by means of the theory of nonuniform burning.

Fig. 71 - Intensity of Gas Formation in a Gun at a High Value of Δ_0 .

1) \triangle - variable; 2) \triangle_0 - large.

The higher the loading density, the more uniform will be the conditions of burning inside the perforations and at the outside surface, and the more closely will actual burning approach the geometric law.

Fig. 72 - Intensity of Gas Formation in a Gun at a Small Value of Δ_0 .

245

Fig. 72 - (Cont'd.)

1) Δ - variable; 2) Δ_0 - small.

Only by considering the process of burning in conjunction with all the factors influencing its characteristics, can we arrive at a correct conclusion, on the basis of the theory of nonuniform burning, regarding the true burning of a powder charge in the bore of a gun when the latter is fired. The theory of nonuniform burning had disclosed the fundamental laws governing the burning of powders with narrow perforations and had made it possible to explain the reasons for the unsatisfactory progressive burning of Kisnemsky's powders.

CHAPTER 4 - THE USE OF INTEGRAL CURVES

1. THE PRESSURE IMPULSE OF POWDER GASES AS THE BURNING CHARACTERISTIC OF POWDER

Using the pressure curve obtained from a bomb test, the corresponding values of Ψ can be found from the values of the successively increasing values of p; the test characteristic of progressivity - the function $\Gamma = \frac{1}{p} \frac{d\Psi}{dt} \text{ with relation to t and } \Psi \text{ can then be calculated, as well as the successively increasing values of } 0 t$

The obtained data is used for constructing \hat{l} , ψ and \hat{l} pdt, ψ graphs. We shall introduce the designation $I = \int_0^t p dt$.

The value of the T function as an analytic function of the powder burning process was discussed in detail earlier: its form depends on the dimensions and shape of the powder, on the characteristics and burning conditions of the powder, and takes into consideration the ignition characteristics and the heterogeneity of the powder composition — both chemical (flegmatization) and physical (porosity).

246

The integral curve I, ψ is likewise a characteristic of the burning of powder, whose form changes depending upon the abovementioned factors.

Actually, the tangent of the angle formed by a line tangent to curve I, ψ is the inverse of $\tilde{}$ (fig. 73):

$$\tan t^2 - \frac{dI}{d\Psi} - \frac{pdt}{d\Psi} - \frac{1}{2}$$

or

Γ - cotan β.

Inasmuch as the value of $\bar{}$ increases when the burning of the powder is progressive, angle β will become smaller and the concave side of the $\int_0^t p dt$, ψ curve will be directed towards the ψ -axis; when burning is regressive, the convex side of the I, ψ curve will be directed towards the ψ -axis. Therefore, the I, ψ curve obtained from the bomb test pressure curve can also serve as a characteristic of progressivity under actual conditions of burning.

We are presenting below schematic diagrams of Γ , ψ and Γ , ψ curves obtained with a weak and strong igniter (figs. 74 and 75). The slower the full ignition, the longer will be the portion of the curve corresponding to gradual pressure increase, and the more rapidly will the area under the I curve increase at small variations of ψ . The inflexion of the I, ψ curve at point a corresponds to the apex of "ballooning" on the Γ , ψ curve (point a').

The nature of ignition considerably affects the form of the initial portions of the I, ψ curve (up to ψ = 0.15-0.20).

Therefore, in order to obtain results corresponding to actual firing conditions, the igniter pressure $\boldsymbol{p}_{\boldsymbol{B}}$ for use in bomb tests must be the same as that used in firing of a gun with the same powder.

Fig. 73 - Relation Between 1, ψ and ¬, ψ Curves.

Fig. 74 - I, ψ and Γ , ψ Curves Obtained with a Weak Igniter.

Fig. 75 - I, w and TwCurves Obtained with a Strong Igniter.

Fig. 76 - Relative Pressure Impulse I/I_{K} as a Function of Ψ .

It is known from pyrostatics that $I_K = \frac{e_1}{u_1}$ and $I = \frac{e}{u_1} = \frac{e_1}{u_1} = \frac{e}{e_1} = \frac{e}{u_1}$ = $I_{\mathbf{Z}}$; hence I is proportional to z, and the I, ψ curve is analogous to the z, w curve. The z, w curves were presented in the section of general pyrostatics; hence the theoretical I, ψ or $\frac{e_1}{...}$ z curves will have the form (when the coordinate axes change places) shown in fig. 76

Curve 1 in this figure corresponds to the change of pressure impulse of tubular powder, 2 - of strip powder, 3 - of a cube at the same value of $I_K = \frac{e_1}{u_1}$.

The thicker the powder at a given burning rate u_1 , the higher will be the integral curve I, ψ on the diagram; the higher the burning rate at a given thickness, the lower will be the location of the I, ψ curve.

2. THE USE OF
$$\int_0^t$$
 pdt for determining the Burning rate u_1 .

The burning rate at p = 1, 1.e., u1, is determined by formula

$$u_1 = \frac{e_1}{t_K} = \frac{e_1}{\sqrt{-1}},$$

$$\int_0^{pdt} \int_0^{pdt} pdt$$

where e_1 is one half the thickness of the burning web, $\int_0^1 pdt = I_K$ is the complete integral determined from bomb tests.

Fig. 77 - The Application of Spdt for Determining ul for Regressive Powders.

This formula would apply if ignition were instantaneous and the thickness of the powder were uniform throughout and equal to an

1

is not uniform. In addition to elements of an average thickness, there are present also thinner and thicker elements, and the complete integral \int_0^1 pdt determined in bomb tests corresponds to the burning of an element of maximum thickness, which thickness is usually unknown. Actual powder measurements permit determining only the approximate average thickness of the webs of the grains composing the charge. Hence, in order to determine u_1 , the value of $\int pdt$ used in the denominator must correspond to the mean powder thickness e_1 cp $\{e_1\}$ average.

In order to determine $\int pdt = I_1$ corresponding to the average thickness e_{1} cp, a diagram must be constructed of the variation of I as a function of ψ . For strip and tubular powders the $\int pdt$, ψ curve usually undergoes a sharp deflection upwards after $\psi \approx 0.90$; this corresponds to the end burning process of the thicker elements. Hence, in order to determine I_1 cp corresponding to the burning of the mean thickness, the second half of the I, ψ curve must be extended or prolonged using an accurate French curve, when ψ changes within the limits of 0.5-0.9, until this extension along the basic direction of the curve intercepts the ordinate at $\psi = 1$ (fig. 77).

The ordinate thus obtained will be smaller than the full integral V=1 pdt = I_K , and will correspond to the average thickness $e_{1 \text{ cp}}$.

$$u_1 = \frac{e_1 cp}{I_1 cp}.$$

Inasmuch as in the case of weak igniters a considerable variation will be obtained in the individual curves during the ignition process

250

(up to $\psi\approx 0.10$), then, in order to obtain a more reliable result as regards the basic region of burning conforming to the law, the following method is suggested for determining u_1 .

Using the geometric law as the basis, with the shape of the powder and dimensions ratio known, the Σ , λ characteristics are computed for short tubes, strips or plates, or Σ , λ , μ for a slab or cube. Using formula

and assuming that $\psi=0.10$ and 0.90, the corresponding values $z_{0.10}$ and $z_{0.90}$ are computed, and the thicknesses $e_{0.10}=e_1z_{0.10}$ and $e_{0.90}=e_1z_{0.9}$ and the burning rate in this region are determined by means of formula

$$u_1 = \frac{e_{0.9} - e_{0.1}}{0.90}$$

where $\int\limits_{0.10}^{0.90} pdt$ is obtained directly from the I, ψ diagram (fig. 78).

Fig. 78 - Determining u₁ at Weak Igniter Pressure.

Fig. 79 - Determining u₁ for Powders of Progressive Shapes.

251

In the case of progressive powder grains, if the grain dimensions are known, it is necessary to calculate $\Psi_{\mathbf{S}}$ at the instant of decomposition (using the assumption that the burning of the grain is progressive), obtain from the $\int pdt$, Ψ diagram the value of $I_{\mathbf{S}} = \int_{0}^{\mathbf{S}} pdt$ (fig. 79), and, assuming that the mean web thickness already burned at the time is \mathbf{e}_{1} \mathbf{c}_{p} , determine the value of \mathbf{u}_{1} by formula:

$$u_1 = \frac{e_1 cp}{\int_0^{\mathbf{y}} p dt} = \frac{e_1 cp}{1_s}.$$

Inasmuch as in actual practice burning inside the perforations and at the outside surface (in powders with narrow perforations) proceeds at different rates, the determination of rate u_1 is conditional and depends on Δ , and can give only comparative results for a given loading density.

3. INTEGRAL CURVES AS CRITERIA FOR THE VERIFICATION OF THE BURNING RATE LAW

Using the burning rate law $u=u_1p$ as a basis, it was shown above that the full pressure impulse $\int\limits_0^{t_K}pdt=\frac{e_1}{u_1}\text{ does not depend on the loading density.}$

It can be easily shown that in the case of different burning rate laws u=ap+b or $u=Ap^{\gamma}$, where $\gamma<1$, the magnitude of $\int\limits_0^K pdt$ must increase with the increase of the loading density.

Indeed, if $u = \frac{de}{dt} = ap + b$, then

de = apdt + bdt;

$$e_1 = \int_0^{t_K} pdt + bt_K;$$

$$\int_{0}^{t_{K}} pdt = \frac{e_{1}}{a} - \frac{b}{a} t_{K};$$

but the full time of burning t_K decreases with increase of Δ (it depends on Δ). Hence, if the law is u=ap+b, $\int_0^K pdt$ will be the greater, the higher the loading density, i.e., it depends on Δ .

The same can be said for the law $u = Ap^{y}$:

$$u = \frac{de}{dt} = Ap^{\nu};$$

$$de = Ap^{\nu} dt \frac{p^{1-\nu}}{p^{1-\nu}} = \frac{A}{p^{1-\nu}} pdt.$$

When integrating, the average value of p^{1-y} is taken out of the integral:

$$e = \frac{A}{(p^{1-\nu})_{cp}} \int_{0}^{t} pdt \text{ and } e_1 = \frac{A}{(p^{1-\nu})_{cp}} \int_{0}^{tK} pdt,$$

whence

$$\int_{0}^{t} pdt = \frac{e_1}{A} (p^{1-\nu})_{cp}^{cp}.$$
 (The subscript cp stands for "average.")

But as the loading density is increased, $(p^{1-\nu})$ increases also, because the maximum and mean pressure become greater. Hence, for the law $u=Ap^{\nu}$, where $\nu<1$, $\int\limits_{0}^{t_{K}}pdt$ will be the greater, the higher the

If the full pressure impulse during the burning of powder does not depend on the loading density, this condition can prevail only in the case of the burning rate law $u=u_1p$.

If, however, the impulse becomes greater as the loading density increases, this condition can apply only to the burning rate law $u=Ap^{\mathcal{V}}$, where $\mathcal{V}<1$ or u=ap+b.

The above criterion can also be formulated as follows:

If upon increasing the loading density the integral curves $\int pdt$ as a function of ψ coincide with each other, the burning rate law $u=u_1p$ (where p is of the first degree or $\nu=1$) is valid.

If upon increasing the loading density the integral curves $\int pdt$ as a function of ψ proceed from the origin of the coordinates as a diverging cluster, the higher - the greater the value of Δ , then the law $u = Ap^{\mu}$, where $\nu < 1$, or the law u = ap + b is valid.

254

THE USE OF INTEGRAL CURVES FOR VERIFYING THE BURNING RATE LAW

The Application of Diagrams to Powders of Simple Shapes.

In order to establish the burning rate law, we had conducted tests in 1924-25 with powders of simple shapes (strip, short tubes) in order to obtain the phenomenon in a purer form and eliminate the effect of

We had chosen for our first tests strip powder "CR" (2e $_{
m l} \approx 1$ mm), which has an exceptionally regular shape and is most uniform in thickness and in cross section. Plates were selected of the most uniform thicknesses and were tested in a bomb at a loading density of Δ = 0.159, 0.209 and 0.259 using a strong igniter $p_B \approx 120 \text{ kg/cm}^2$.

These plates were burned in simultaneous tests at a constant loading density of $\Delta=0.209$ in order to obtain a picture of the scattering of the integral curves under identical test conditions. The results of both test series are presented in the diagrams of fig. 80a and b.

The I, ψ curves at different values of \triangle lie just as closely to one another as do the curves at the same value of Δ ; the difference between the values of \(\) pdt at different \(\Delta \) lies within the allowable test limits. No divergence of the integral curves (cluster) is observed

Therefore, it may be considered proved that for strip powder of properly chosen thickness the value of . Spdt for the given value of ψ does not depend on the loading density Δ , this condition being true only for the burning rate law u = ulp. Hence it may be considered STAT

proved that for pyroxylin strip powder the burning rate is proportional to pressure to the first power.

Thereafter, the following was established on the basis of many tests with powders of the most diversified compositions and with webs of different thicknesses.

l) Powders in the form of simple regressive shapes - strip, rod, short tube with a relatively wide perforation - burn in such a manner that at Δ varying from 0.12 to 0.25, $\int_0^{\Psi} pdt$ does not depend on the loading density and the integral 1, Ψ curves proceed in the form of a coinciding cluster (figs. 81 and 82).

This coincidence is most complete for powders of uniform thickness and when using a strong igniter ($p_B = 100-150 \text{ kg/cm}^2$), which insures almost instantaneous ignition in a bomb.

Tubular powders containing a solid solvent (trotyl + pyroxylin) produce Γ, ψ curves which are free of "ballooning" and integral I, ψ curves in the form of straight lines from $\psi = 0$ to $\psi \approx 0.90-0.95$ (see fig. 81).

Fig. 80 - Integral Curves.

a) at different values of Δ ; b) at the same value of Δ ; l) different values of Δ ; 2) same value of

Tubular powders with volatile solvents (pyroxylin and poorly volatile nitroglycerin) always produce "ballooning" on the 7,4 curves, which gradually disappears in the first third of the burning process. However, the mutual disposition of the integral I,4 curves does not change - they proceed in the form of a coinciding cluster and have a certain amount of curvature in the first third of the process (fig. 82).

Thus, also these tests with pyroxylin powders and powders with a solid solvent in the form of short tubes had shown that when they are burned in a bomb at loading densities of 0.15-0.25, the burning rate law u = ulp is valid.

Similar data was obtained with large plates prepared by cutting up powder blocks with a solid solvent employed in certain types of rocket shells.

2) The same powders of simple shapes without narrow perforations burn at low loading densities ($\triangle < 0.10$) in a manner where the full pressure impulse $\int\limits_{0}^{t_{K}} pdt = 1_{K} \text{ decreases with the decrease of } \Delta;$ this behavior in the case of the u = u₁p law corresponds to the increase of the burning rate u₁ as \triangle decreases. $\psi=0.75$

Figures 83a and 83b show the nature of the variation of $\psi=0.05$ for "Cff" powder (2e₁ = 1 mm) and the corresponding variation of the value of u₁ from 0.120 mm/sec : kg/cm² at $\Delta=0.02$ to 0.077 mm/sec : kg/cm² at $\Delta=0.12$. At $\Delta>0.12$ I_K and u₁ retain their values.

257

The same condition, but with a more drastic change of $I_{\bar{K}}$ when Δ is decreased, is observed in A.I. Kokhanov's tests with powders 2.4 mm thick. I_{K} = const within Δ = 0.12-0.22, at Δ = 0.02 the value of l_{K} decreases almost 4-fold (fig. 84).

Fig. 81 - Spdt, and T, W Curves for Tubular Powder with Solid Solvent.

a) Tubular powder with solid solvent.

Such a decrease of \int pdt at low loading densities is observed only with powder thicknesses exceeding 0.7-1.0 mm.

3) In the case of thin pyroxylin powders in the form of small plates (hunting rifle powders "GLUKHAR," "VOLK" and others), the value of $I_{\overline{K}}$ remains practically unchanged when the loading density is varied from 0.157 to 0.02.

258

Therefore, in the case of pyroxylin powders of simple shapes, the variation of the $\int\limits_0^{t_K}$ pdt integral with change of Δ , or its constancy, depends not on the nature of the powder mass, but, rather, on the burning characteristic of the powder.

Thick powders at high values of \triangle and thin ones at both high and low values of \triangle give a constant $\int_{K}^{K} pdt$. In the case of thick powders at small values of \triangle (<0.10), $\int_{0}^{L} pdt$ decreases with decrease of \triangle , which corresponds to an increase of the burning rate u_1 when the $u=u_1p$ law applies.

Fig. 82 - Spdt, Ψ and Γ, Ψ Curves for Tubular Powder with Volatile Solvent.

STAT

) Tubular powder with volatile solvent.

How can the above results be explained?

It is most reasonable and most simple to make the assumption [5]7that in the case of slow burning thick powders at low pressures, the burning layers, notwithstanding their poor heat conductivity, will become heated under the influence of the surrounding gases and high temperature. Due to this increase of temperature at the outer powder layer, the burning reaction, similarly to any other chemical reaction, proceeds the faster, the lower the loading density and gas pressure; the lower the rate (u) of displacement of the burning layer towards the center of the grain, the deeper will be the penetration of heat through the layer and the higher will be the temperature of the latter.

Fig. 83a - The Dependence of Spdt on A.

Fig. 83b - The Dependence of u

1) u m'sec.

This explanation is qualitatively confirmed by the modern "heat" theory of powder burning developed by Prof. Ya.B. Zeldovich.

A mathematical approach to this phenomenon will show that the divergence of the integral curves I, ψ at different values of Δ can be formally expressed by the burning rate law $u = Ap^{\vee}$, where $\vee \leq 1$.

260

STAT

Fig. 84 - $\int pdt$ as a Function of Δ , According to Tests Conducted by Kokhanov.

Our tests with plates with a solid solvent have shown that for Δ >0.10 at a pressure of p > 1000 kg/cm² it may be assumed that for

 $u = u_1 p$.

 $\Delta\!<\!0.10$ and pressure up to 800-1000 kg ${
m cm}^2$ the nature of the variation of Spdt, 4 is such that the following law will apply

$$u - Ap^{V}$$
,

where A = 0.240 and V = 0.83.

Tests conducted by Prof. Yu.A. Pobedonostsev at very low pressures give a relation of the form u = ap + b;

$$u = 0.063p + 3$$
,

where u is expressed in mm/sec and p in kg/cm^2 . Prof. Ya.M. Shapiro gives the relation $u = Ap^{y}$ for the same test

 $u = 0.37 \cdot p^{0.7}$.

261

STAT

The values of u are practically the same when computed by means of these formulas for p $\geq 25\text{--}300~kg/cm^2$.

Therefore, for simple shaped pyroxylin powders with a solid solvent, the following burning rate law holds true at $\Delta > 0.10$ and pressures above 800 kg/cm²: $u = u_1 p$.

For these same powders at pressures < 800 kg cm², the appropriate burning rate law is $u = Ap^{\nu}$, where $\nu < 1$.

When the pressure p varies from 300 to 800 kg ${\rm cm}^2$, the value of Y itself apparently changes also and approaches unity.

Thus the burning rate law is not the same for different conditions of burning; its form changes with change of pressure.

B. Applying the Diagrams to Powders with Narrow Perforations

In the case of progressive pyroxylin powders with many narrow perforations the integral curves I, Ψ proceed in the form of a diverging cluster because of the nonuniform conditions of burning in the narrow perforations and at the outside surface, the disposition of the curves being the higher the greater the value of Δ . Starting with $\Psi \approx 0.60$ -0.65, the I, Ψ curves become practically parallel (figs. 85 and 86).

4

STAT

Fig. 85 - Spdt, w and T, w Curves for 7/7 powder.

On the basis of the above criterion for the burning rate law, the divergence of the integral curves cluster leads to the following

 $u = Ap^{V}$,

where V<1.

Tests involving a large number of powder specimens (over 100 specimens) consisting of powders with 7 perforations and Walsh's grades 7/7, 9/7, 12/7 and 15/7 give the value of \forall = 0.83 \approx 5/6 for our domestic pyroxylin powders with 7 perforations.

263

Once again we arrive at an apparent contradiction: for pyroxylin powders of plain shapes (plate and short tube), the burning rate law at $\Delta > 0.12$ is expressed by the formula

$$u = u_1 p$$
.

For the same pyroxylin powders with narrow perforations at the same values of $\Delta \geq 0.12$ the burning rate law is expressed by the formula

$$u - Ap^{\nu}$$
,

because the integral I,ψ curves proceed in the form of a diverging cluster and are disposed on the diagram the higher, the higher is the loading density.

Fig. 86 - $\int pdt$, ψ and $\tilde{}$, ψ Curves for 9/7 powder. This apparent contradiction can be easily explained on the

This apparent contradiction can be dec

basis of the theory of nonuniform burning. It was shown above that location of the Γ , ψ curves is the lower, the higher the loading density, but Γ is the cotangent of the angle made by the I, ψ curves with the ψ - axis; hence, as Γ decreases with the increase of Δ , the slope angle of the integral curves increases and they continue to ascend higher and higher in the form of a diverging cluster.

Thus, in the case of the burning rate law $u=u_1p$ corresponding to the nature of the powder and the conditions of loading $(\Delta>0.12)$, the integral curves nevertheless proceed as a diverging cluster because of the nonuniform burning of perforated powders at different values of Δ . Again, formally this divergence of the integral J curves with change of Δ can be expressed by the burning rate law $u=Ap^{\nu}$,

where $\vee < 1$.

The burning rate law for colloidal powders is expressed by the formula

 $u - u_1 p$.

For powders with a solid solvent u_1 is a constant; for ordinary pyroxylin powders and also for nitroglycerin ones u_1 is a variable in the first third of the burning process; it depends on the nature of the powder and the conditions of burning.

Notwithstanding the fact that u_1 is a variable, the integral pdt, ψ curves have the form of a converging cluster at different

2	6	5

Deviation from this law in the form of diverging $\{pdt, \psi \text{ curves} \}$ for powders of simple shapes at small values of Δ is explained by the change of the burning rate u_1 due to the heating of powder layers when burning is gradual.

An analogous divergence of the integral curves for progressive powders at large values of Δ and the apparent deviation from the $u=u_1p$ law is due to the nonuniform pressure distribution in the perforations and at the outside surface of the powder which depends on Δ

This apparent deviation from the $u=u_1p$ law can be expressed in a purely formal manner by means of formula $u=A_1p^V$, but the law governing the displacement of the burning surface towards the center of the grain for each element of the powder surface remains the same: $u=u_1p$, where p may be different at various elements of the surface, and u_1 may vary from layer to layer and will depend on the temperature of the layer near the burning surface. For powders with 7 perforations $v \approx 0.80\text{-}0.83$, and the A coefficient depends on the nature of the powder (contains nitrogen and volatiles).

Conclusions

The pyrostatic relations and the method of determining the various characteristics, as outlined above, make it possible to obtain a full analysis of the ballistic characteristics of powder and of the true law of combustion from tests in a manometric bomb.

The ballistic characteristics - energy f and covolume α - are determined from bomb tests at two or three loading densities by performing 3 to 5 tests at each value of Δ .

STAT

A correction for heat transfer is introduced into the test data $(p_{m1},\ p_{m2},\ f,\ a)$ and the corrected values of f_0 and a_0 are determined.

The burning rate, u_1 , at a pressure p=1 is determined from the analysis of the integral curve $\int_0^t pdt, \psi:$

$$u_1 = \frac{e_1 cp}{I_1}.$$

The true powder burning law is characterized by the test curve of the intensity of gas formation $=\frac{1}{p}\frac{d\psi}{dt}$ as a function of ψ and t and by the curve of pressure impulse variation $=\int_0^t pdt$ as a function of the burned portion of the charge ψ .

The burning rate law is determined from the convergence or divergence of the cluster of the integral I, ψ curves.

The T, y curve acts as the analyzer of the processes occurring during burning of powder and permits the evaluation of the various factors involved which could not be disclosed by any other methods (the process of gradual ignition, changes in the burning rate, effects of flegmatization, etc.).

In order to evaluate the burning of powder in the bore of a barrel when the gun is fired, tests must be conducted in a bomb at <u>different</u> but constant loading densities, and a determination made of the effect of loading density on the change in the progressivity of burning. A conclusion can be reached regarding the burning of powder in the gun's bore at a variable volume from the comparison and the analysis of the obtained data.

This entire method of investigation can be called the method of ballistic analysis of powders.

267

K

Inasmuch as this method permits determining the changes in the powder composition and in its dimensions under test conditions, it may be found very useful at powder manufacturing plants, particularly in the development of test specimens; when performing bomb tests and comparing the results with regular standard powder specimens it would permit establishing the deviation of the test specimen from standard samples and predicting its actual behavior in firing.

The following formula will serve as an example of the direct application to firing practice of the results of ballistic analysis obtained under laboratory conditions. It permits determining the relative weight of a test specimen from comparative bomb tests of two powder specimens - a standard and test specimen.

Designating the characteristics:

of the standard specimen - ω' , f', I_K' ; and of the test specimen - ω'' , f'', I_K'' ;

$$\frac{\omega^{''}}{\omega^{'}} = \frac{\frac{\underline{f} \cdot \overline{I}_{K}^{'}}{\underline{f}^{''} \overline{I}_{K}^{''}}}{1 + \frac{\underline{\Delta}^{'}}{\underline{\delta}} \left(\frac{\underline{f} \cdot \overline{I}_{K}^{''}}{\underline{I}_{K}^{''}} - 1 \right)} \quad ,$$

where Δ ' is the loading density of the standard specimen in a gun.

In order to avoid the errors usually obtained in taking the complete integral $I_{\rm K}$ until the end of burning, it is preferable to take the values of 0.75 pdt for I' and I"; by disregarding the

initial section up to ψ = 0.05, the variation in ignition obtained with the use of relatively weak igniters $(p_B \sim 50~kg/cm^2)$ will be eliminated.

The above formula permits determining without firing the approximate weight of a test powder specimen developing the same maximum gas pressure and muzzle velocity as a standard specimen.

4

1 470 M

SECTION IV - THE PHYSICAL ONCEPTS OF PYRODYNAMICS

CHAPTER 1 - THE PHENOMENON OF A SHOT AND ITS BASIC RELATIONS

Pyrodynamics is the study of the phenomena occurring in the bore of a gun when the latter is fired, and a means for establishing the relation existing between the loading conditions and the various physical and chemical processes and mechanical phenomena occurring thereby.

The mutual relationship and intendependence of the various elements and factors involved are clearly manifested in the phenomenon of a shot. For example, the movement of a shell depends on gas pressure, whereas the pressure itself depends on both the burning of powder and the initial air space back of the shell, the latter in turn depending on the speed of the shell.

The phenomenon of a shot may be considered to consist of the following periods.

1. PRELIMINARY PERIOD

The action of a negligible external impulse - such as the percussion of a firing pin or heating by an electric current - ighthe composition of a percussion cap, and the resulting flame in turn ignites the igniter mixture in the primer cup (usually in the form of a tablet of black powder). The gases produced by the igniter and the incandescent particles of its combustion products enter the powder chamber through a special opening, and the resulting high temperature and pressure ($p_{\rm B}=20\text{--}50~{\rm kg/cm^2}$) cause the ignition of the powder charge.

270

When ignited, the powder burns at first in a constant volume until the gas pressure becomes sufficiently high to overcome the resistance of the rotating band and force it into the rifling grooves.

This period of a shot may be considered as being purely pyrostatic in character, because the powder burns in a constant volume (space).

Inasmuch as the rifling is provided with a forcing cone at its start, the rotating band enters the grooves gradually, and upon attaining the full depth of the thread its resistance undergoes a sudden drop and the shell proceeds through the bore with the band already fully notched.

The force Π_0 necessary for notching the band to the full depth of the grooves taken with relation to the cross-sectional unit area of the bore s, i.e., Π_0/s , is called the "pressure necessary to overcome the inertia of the projectile" and is designated as $p_0=\Pi_0/s \ kg/cm^2\,.$

pressure p_0 may vary from 250 to 500 kg/cm² depending on the design of the rotating band and the rifling in the bore.

This period of a shot, when the powder gases commence to move the projectile and overcome the increasing resistance of the band until the latter is notched to the full depth of the grooves and traverses a specified distance, may be called the "forcing period" or the period of notching of the band. During this period the projectile traverses a distance equal to that measured from the initial position of the rear edge of the rotating band to the point at which the rifling grooves attain their full depth.

271

This period is considerably more complex than the pyrostatic period and is more difficult to analyze. Inasmuch as the initial chamber dimensions undergo a very small change during this displacement of the projectile, both periods are usually combined into a single preliminary period for the sake of simplicity, by assuming that the wedging of the band into the rifling occurs instantaneously and that the movement of the projectile commences as soon as the gas pressure equals the pressure $\mathbf{p}_{\mathbf{Q}}$ (i.e., the pressure to overcome the inertia of the projectile).

This period is called the "preliminary period", the pressure varies from 1 to $p_{\rm B}$ and then to $p_{\rm Q}$ and the change occurs during the period $t_{\rm Q}$.

In fig. 1 this period is depicted by the curve segment ab and the time t_0 ; in fig. 2, the element corresponding to it is the segment o-p₀ on the ordinate.

Methods are now available for the solution of the problem of interior ballistics which take into consideration the gradual breaking in of the rotating band into the rifling of the bore. These methods will be considered later.

2. FIRST PERIOD

The preliminary period is followed by the basic or first period of a shot, by the period of burning of powder and gas formation in a variable space, during which the powder gases impart a velocity to the projectile and thus perform the work at the expense of the energy confined in them and overcome a series of resistances.

272

A STATE OF THE STA

This period, measured from the start of the projectile's movement until the end of powder burning in the bore, when the inflow of fresh gases stops, is the most complicated period: on the one hand the process of burning and the continuous inflow of gases increase the pressure inside the bore, whereas on the other hand the continuous acceleration of the projectile and the resulting increase of the initial "air space" tend to reduce this pressure.

At the start of the basic period, when the velocity of the projectile is still not very high, the quantity of gases increases at a greater rate than the volume of the initial air space, and the pressure increases until it reaches a maximum value p_m . However, the pressure increase and hence the increased acceleration of the projectile cause a rapid increase of the air space (volume) back of the projectile, so that notwithstanding the continued burning of the powder and the inflow of fresh gases, the pressure begins to drop until it attains a value p_K at the end of burning; at the same time the velocity of the projectile increases from zero to v_K . The powder gases perform most of their work during this basic period.

The maximum gas pressure is also developed during this period this constitutes one of the fundamental ballistic characteristics of the powder and the gun in firing.

The maximum pressure serves as the basic data for establishing the wall thickness of the gun barrel and the projectile, whereas a knowledge of the associated maximum acceleration of the projectile is necessary for designing the inertia parts of time fuzes and firing devices.

273

3. SECOND PERIOD

The inflow of fresh gases stops at the end of burning of the powder, but inasmuch as the remaining gases still possess a very high reserve of energy, they continue to expand without an inflow of energy while the projectile completes its remaining path in the bore (up to the muzzle face), and thus continue to perform work and increase the velocity and kinetic energy of the projectile. This period constitutes a physical process in which a definite quantity of highly compressed and heated gases undergo expansion. Inasmuch as the velocity of the projectile is already high at the end of burning and continues to increase further, the projectile traverses the remaining portion of its path very rapidly. The ensuing heat losses through the walls of the gun barrel may be therefore disregarded and the entire period may be considered as "the period of adiabatic expansion of the gases." It is called the second period and terminates at the instant the base of the projectile passes the muzzle face of the gun barrel. The pressure drops from $\mathbf{p}_{\mathbf{K}}$ to $\mathbf{p}_{\mathbf{0}}$, whereas the velocity of the projectile increases from $v_{\vec{R}}$ to $v_{\vec{L}}$ (see figs. 1 and 2).

Both periods occur during a very short period of time - varying from 0.001 to 0.060 second, depending on the length and caliber of the gun barrel.

If we introduce the designations:

- s cross-sectional area of bore;
- p gas pressure inside the bore at a given instant;
- \mathcal{L} distance traversed by projectile;
- m mass of projectile;
- v velocity of projectile,

274

then, according to the general theory of mechanics, to wit, that "the increment of work done by a force equals the increment of kinetic energy," we will have(*):

$$psdl - d\left(\frac{m^2}{2}\right).$$

Integrating, we get:

$$s \int_{0}^{\ell} p d\ell - \frac{mv^2}{2} ,$$

whence

$$v = \sqrt{\frac{2s}{m}} \int_{0}^{\ell} p d\ell$$
.

The expression of pdl represents the area confined between the abscissal and the pressure curve; and inassuch as it continuously increases, the velocity v will also undergo a continuous increase, whereby the nature of the increase of v will depend on the characteristic of the pressure curve. Inassuch as the pressure, after reaching a maximum, undergoes a continuous drop, the area increase becomes smaller and smaller, and the velocity increment of the projectile gradually decreases at the end of its travel through the bore, i.e., the v, & curve becomes flatter.

(*) ps - the product of pressure by the area equals the force applied to the entire area of the projectile's base.

According to the equation of the projectile's motion

$$ps = \frac{dv}{dt},$$

the pressure curve drawn to a specific scale gives the curve of the projectile's accelerations:

$$\frac{dv}{dt} = \frac{s}{m} p,$$

where dw/dt is the tangent of the angle of inclination of the curve representing the velocity of the projectile as a function of time.

Inasmuch as the pressure continues to increase until it reaches its maximum, the velocity curve v, t proceeds with an increasing angle of inclination with its convex side directed downward. A point of inflexion is obtained at the point of maximum pressure, and thereafter, as the pressure decreases, the v, t curve continues with its convex side directed upwards:

$$v = \frac{s}{m} \int_{t_0}^{t} p dt$$
.

4. THIRD PERIOD

After the projectile leaves the barrel, the gases flowing behind it with a high velocity continue to exert a pressure on the base of the projectile for a certain distance $L_{\rm n}$, and thus continue to accelerate the projectile. This period of a shot is called the third period or the "after-effect period of the gases." The projectile acquires its maximum velocity $v_{\rm max}$ at the end of this third period $\tilde{s}_{\rm TAT}$

following which its velocity begins to decrease under the action of air resistance.

In addition to this after-effect action on the projectile, the gases exert pressure also on the gun barrel; the latter action plays an important part in the design of the gun mount, and the fuzes. The duration of the after-effect of the gases on the gun mount is considerably longer than on the projectile.

In addition to the basic processes mentioned above, there is also a series of auxiliary processes affecting the phenomenon of a shot.

Thus, for example, the movement of the projectile through the bore is accompanied by a non-uniform displacement of the gases in the initial air space and also by the recoil of the barrel. The projectile acquires a rotary or spinning motion in addition to the forward straightline motion. Some of the gases escape through the clearance between the rotating band and the rifling of the bore, thus overtaking the projectile without first performing useful work; a portion of the heat energy is spent on heating of the barrel walls (losses due to heat transfer).

The following basic processes and relationships can therefore be established on the basis of the shot phenomenon discussed above.

1) The source of energy is derived from the expanding gases formed during the burning of the powder, and hence the laws of gas formation constitute the basic relationships expressing the process of burning of powder. The following laws apply to the science of pyrostatics:

277

STAT

Ą

a) gas formation governed by the burned thickness of the powd

$$\psi = \mathsf{X} \, \mathsf{z} \, (1 \, + \, \lambda \, \mathsf{z} \, + \, \mu \mathsf{z}^{\, 2}) \, ,$$

or

$$\psi = \mathbb{X}_1 z (1 + \lambda_1 z),$$

where

$$z = \frac{e}{e_1}$$
 and $\psi = \frac{A_{cf}}{A_1}$;

b) burning rate

$$u = u_1p;$$

c) rate of gas formation

$$\frac{d\psi}{dt} = \frac{s_1}{s_1} \frac{s}{s_1} u_1 p = \frac{a}{l_K} \frac{s}{s_1} p.$$

The following relations are used in the case of the physical law of burning: $\psi=f(1)$ or $I=F(\psi)$, and also $d\psi/dt=\Gamma p$.

2) The games formed during the burning of powder contain a large supply of heat energy; a portion of this energy is transformed into work when the gun is fired, which work is utilized mainly to impart kinetic energy to the projectile, the charge and the barrel and partly to overcome parasitic resistances. A portion of the heat is absorbed by the walls of the gun barrel. A major part of the

STAT

7

energy is not used up however, and is ejected from the bore in the

Inasmuch as a shot is accompanied by transformation of energy, the first law of thermodynamics, i.e., the law of conservation of energy, gives the second basic relationship.

It is written thus:

$$Q = U + A\Sigma L$$

where Q - quantity of heat supplied to the system from the exterior:

U - internal energy of powder gases;

ΣL - total amount of exterior work done by gases, including the work required to overcome parasitic resistances;

 $\frac{1}{2}$ = E - mechanical equivalent, equal to 4270 kg · dm/cal.

A This fundamental relationship is transformed in pyrodynamics into the so-called fundamental equation of pyrodynamics (see below).

3) The next fundamental relationship is the equation depicting the translation of the projectile.

It can be written two ways:

a) the first form of the equation of motion (Newton's law)

$$ps = \frac{dv}{dt} ;$$

b) the second form of the equation of motion

$$sp = \pi v \frac{dv}{dt}$$

where s - cross-sectional area of the bore;

279

p - gas pressure;

m = q/g - mass of projectile;

v - velocity of projectile;

L - path traversed by projectile.

Other theorems and relationships of mechanics will be introduced later in the text in addition to the three fundamental relationships specified above.

4) Inasmuch as the charge-projectile-barrel system is brought into motion when a shot is fired by the action of the internal forces, i.e., by the pressure exerted by the powder gases, the following theorem of mechanics can be applied to it in the case of free recoil: "If a system is subjected to the action of internal forces, the displacement of its separate parts is such that the sum of the quantities of motion (the sum of moments) equals zero:"

$$mv + \mu U + MV = 0$$
,

where M and V - mass and velocity of the recoiling parts;

 $\boldsymbol{\mu}$ and \boldsymbol{U} - mass and velocity of charge.

This gives the relation between the velocity of the projectile and the velocity of the recoiling parts.

5) The equation of rotary motion of the projectile is obtained from the theorem: "The moment of a couple equals the moment of inertia multiplied by the angular acceleration":

$$rW - J\frac{d\Omega}{dt}$$

where r - distance measured from the axis of the projectile to the center of the driving edge;

N - turning force;

J - moment of inertia of projectile relative to the axis of rotation;

 Ω - angular velocity;

 $\frac{d\Omega}{dt}$ - angular acceleration.

CHAPTER 2 - ENERGY EQUILIBRIUM WHEN A SHOT IS FIRED

When a shot is fired, a considerable portion of the energy developed by the powder gases is spent on performing work and is converted into kinetic energy of motion of the projectile. Furthermore, a part of the energy is expended on the performance of other work of lesser magnitude which must be taken into consideration, to obtain a full analysis of the equilibrium of energy when a shot is fired.

Say, a portion ψ of a charge ω is burned at the instant t, at which time a projectile whose weight is q has traversed a distance $\mathcal L$ with a velocity v; the temperature of the burning powder is T_1 . Inasmuch as the gases had performed work at the given instant and had cooled off, we shall designate their mean temperature by T, where $T \leq T_1$.

Qwy cal of heat are evolved during the burning of wy kg of powder, which quantity of heat is equivalent to work \ni Qwy, where \ni = 4270 kg · dm/cal - the mechanical heat equivalent.

If we designate the mean heat capacity at constant volume for temperature T_1 by c_{ij} , Q = $c_{ij}T_1$ and

z₁ - ∋c_{ψ1}τ₁ωγkg · dm. 281

HEIN

Actually, this quantity of gas, having accomplished the work of moving the projectile and a series of other secondary items of work at the instant t, cools down only to a certain temperature $T < T_{\hat{1}}$ and hence continues to retain a supply of unexpended energy equal to

where $c_{\overline{w}}$ is the mean heat capacity for temperature T.

Hence the energy expended at the instant t on the performance of external work will be expressed by the difference

Upon performing elementary transformation, we get:

$$\begin{split} & E_1 - E = \ni \omega \psi \left[\left(A + b \frac{T_1}{2} \right) \quad T_1 = \left(A + b \frac{T}{2} \right) T \right] \quad = \ni \omega \psi \left[A \left(T_1 - T \right) \right. \\ & + \left. \frac{b}{2} \left(T_1^2 - T^2 \right) \right] \quad = \ni \omega \psi \left(T_1 - T \right) \quad \left(A + b \frac{T_1 + T}{2} \right) \quad = \ni \quad \int_{T_1}^{T} c_{\psi} \left(T_1 - T \right) \omega \psi, \end{split}$$

where $\int_{T_1}^{T} c_W = A + \frac{T_1 + T_2}{2}$ is the true heat capacity corresponding to the mean temperature in the interval between T_1 and T.

When a shot is fired, the gas temperature varies from T_1 to T_2 , corresponding to the instant the projectile passes the face of the muzzle. The temperature interval is the one that is of practical value to interior ballistics.

2

Since the b coefficient is small, the change of $\int_{T_1}^{T} c_w$ is small and its average value can be considered to be constant for the entire process of the projectile's motion along the bore, i.e.,

$$\int_{T_1}^{T_R} c_{W} = A + b \frac{T_1 + T_R}{2};$$

we shall designate it by c_w^+ for short.

The graph in fig. 87 shows the variation of $c_{\overline{W}}$ with temperature.

$$Q_{1} = \left(A + b \frac{T_{1}}{2}\right) T_{1};$$

$$Q = \left(A + b \frac{T_{1} + \hat{I}}{2}\right) (T_{1} - T);$$

the heat capacity $c_{\overline{w}}$ and the quantity of heat Q relate to a unit of gas by weight.

This graph shows that the heat quantity Q corresponding to a specific temperature difference is greater at high temperatures approaching T_1 , than at low temperatures, because of the increased heat capacity.

According to the first law of thermodynamics, the energy balance when a shot is fired can be written as follows:

$$\frac{1}{2}c_{\Psi}^{\dagger}(T_1 - T)\omega\psi = \Sigma E_1$$

where 3- mechanical heat equivalent (427 kg-m/kcal)

IE: total amount of work done by the gases when a shot is fired, including the work secessary to overcome parasitic resistances.

Fig. 87 - The Dependence of Heat Capacity of Gas on Temperature.

When a shot is fired, the energy confined in the gases is expended on the performance of the following forms of work:

- 1) Energy $\rm E_1$ for the translation of the projectile, measured by the magnitude of the kinetic energy $\rm mv^2/2$, is the basic form of energy expended during the movement of the projectile through the bore of the gun.
 - 2) Energy \mathbf{E}_2 is expended on the rotary motion of the projectile.
- 3) Energy \mathbf{E}_3 is expended to overcome the frictional resistance between the rotating band of the projectile and the walls of the bore (bore + rifling grooves), and also for overcoming the friction between the walls of the projectile and the lands (of the rifling).
- 4) Energy $\mathbf{E_4}$ is expended on the displacement of the gases of the charge itself and of the unburned portion of powder.
- 5) Energy $\rm B_5$ is expended on the displacement of the recoiling parts and is measured by their kinetic energy MV²/2.
- 6) Energy \mathbf{E}_6 is used to force the rotating band of the projectile into the rifling grooves.

140	 	B. 557.55.	
		284	

- 7) Energy \mathbf{E}_7 is expended for heating the walls of the barrel, shell case and shell when the gun is fired energy lost on heat transfer.
- 8) Energy \mathbf{E}_8 is confined in the gases escaping through the clearances between the rotating band and the walls of the barrel.
- 9) Energy \mathbf{E}_9 is expended on overcoming the air resistance and on the displacement of the air column present in the bore ahead of the projectile.

Of the above nine forms of expended energy, the first five must be accounted for directly, \mathbf{E}_6 is accounted for directly or indirectly; \mathbf{E}_7 is a form of heat energy which cannot be easily determined, and is accounted for indirectly for lack of a sufficiently satisfactory theory and test data to permit determining the heat lost to the walls of the barrel. The quantity of gas escaping through the clearances formed between the rotating band and the walls of the bore cannot be computed and has a random value; therefore, energy \mathbf{E}_8 corresponding to it is not taken into consideration. This applies also to energy \mathbf{E}_9 which is small in comparison with the other energy values.

The secondary work items will be discussed later. We shall note here (without offering proof) that E_2 , E_3 , E_4 , E_5 are proportional to the main form of the work done by the powder gases, i.e., $E_1 = mv^2/2$. Hence, if each of these four forms of work is represented in the form

$$E_1 - k_1 \frac{av^2}{2},$$

STAT

285

where k - proportionality factors, determined by means of formulas which will be presented later, then the total amount of expended energy accounted for directly can be expressed in the form:

$$\sum_{1}^{5} E_{1} - \sum_{1}^{5} k_{1} \frac{mv^{2}}{2} - \frac{mv^{2}}{2} (1 + k_{2} + k_{3} + k_{4} + k_{5}).$$

The sum of the coefficients in this expression is denoted by $\boldsymbol{\phi}$:

$$\varphi = 1 + k_2 + k_3 + k_4 + k_5$$

The Coefficient takes into account the secondary work items, and its numerical value for conventional type weapons varies between 1.05 and 1.20 depending on the loading conditions, and may exceed these values.

Thus, assuming that the expended values of energies E_6 and E_7 will be accounted for indirectly, the equation of energy balance during a shot will have the following form:

$$\frac{1}{2} c_W T_1 w \psi - \frac{1}{2} c_W T w \psi = \frac{\phi_W v^2}{2}$$
.

This equation shows that the difference between two thermal conditions of the powder gases has become converted into a sum of external work items, where all the secondary work items are taken care of by the coefficient $\varphi > 1$. If this coefficient referred only to the mass m, rather than to the entire kinetic energy $mv^2/2$, we could assume that the work is performed by the gases for the purpose of imparting translation with the same velocity v to a heavier projectile of mass φ m.

286

Thus, by introducing the coefficient φ , the actual motion of the projectile with the secondary work done by the gases taken into consideration, is replaced by a condition involving only the translation with the same velocity of a heavier projectile having a fictitious mass $\varphi_m(*)$. The energy expended thereby remains the same. Coefficient φ is called the "fictitious mass coefficient."

The introduction of this fictitious magnitude helps to simplify without the introduction of an appreciable error calculations involving complex formulas.

It would be more correct to call of the "secondary work coefficient," because this value depicts the relationship between the main and secondary work items (where the main work is taken to be equal to unity).

Derivation of the Fundamental Equation of Pyrodynamics

The energy balance equation depicts the relationship between the burned portion of the charge \(\psi\), velocity of the projectile v, and the temperature of the gases formed at the given instant in the initial air space. Neither the length of travel \(\mathbb{L}\) of the projectile, nor the gas pressure p enters this equation. Nevertheless the basic problem of pyrodynamics is that of finding the relation between the distance \(\mathbb{L}\) traversed by the projectile, its velocity v and pressure

(*) The concept of a fictitious mass was introduced by Prof. N.A. Zabudsky, "DAVLENIYE POROKHOVYKH GAZOV PUSHKI" (Pressure Developed by Powder in the Bore of 1894.	for V a	the f KANALE 3-inch	irst time 3-DM Cannon),
--	---------------	---------------------------	-------------------------------

STAT

287

p exerted by the gases on the projectile and the walls of the bore. Therefore the energy balance equation must be transformed in such a manner that it would depict the connection between the above-mentioned values p, v and L.

We know from thermodynamics that

$$c_p - c_w - AR - \frac{R}{2}$$

whence

$$\frac{\partial}{\partial c_{p} - c_{\psi}} = \frac{R}{c_{p} - c_{\psi}} = \frac{R}{c_{p} - c_{\psi}} = \frac{R}{k - 1},$$

where R - gas constant;

 $c_p/c_w = k$ - heat capacities ratio (adiabatic index).

We shall introduce for the sake of simplicity the denotation k - 1 = 0; then:

$$\frac{1}{2}c_{\Psi} = \frac{R}{0}$$

$$\theta = \frac{c_p - c_w}{c_w} = \frac{A_2 + bT - A_1 - bT}{A_1 + bT} = \frac{A_2 - A_1}{A_1 + bT}.$$

0 is a gradually decreasing function of temperature. When the gas temperature varies from T_1 to T_2 , the mean value θ' will

correspond to the mean temperature $T_{\rm cp}=\frac{T_1+T_R}{2}$ and the corresponding value of c_W^+ :

$$\theta' = \frac{A_2 - A_1}{A_1 + b \frac{T_{1+}T}{2}} = \frac{1}{A + BT_{CP}}.$$

Then

$$\frac{1}{2}c_{\Psi}' - \frac{R}{\theta'}$$
.

Substituting this expression in the energy balance equation, we will get:

$$\frac{R}{\theta} T_1 \omega \psi - \frac{R}{\theta} T \omega \psi = \frac{f \pi v^2}{2}.$$

In order to exclude from this equation the variable T, we shall replace the expression $RT\omega\psi$, using as the basis the equation depicting the condition of the gas powders at the given instant, corresponding to the burned portion of the charge ψ :

$$pW = RT\omega\psi, \tag{51}$$

where Ψ is the free space in the initial air space (back of the projectile) at the given instant:

$$\mathbf{w} = \mathbf{w}_0 + \mathbf{s} \mathbf{L} - \alpha \mathbf{w} \mathbf{v} - \frac{\omega}{\sigma} (1 - \mathbf{v}) = \mathbf{w}_{\mathbf{v}} + \mathbf{s} \mathbf{L};$$

STAT

289

here Wy - free space in the powder chamber at the instant the portion of the charge w is burned in it;

s - cross-sectional area of the barrel;

s. - added volume when the projectile had traversed the distance ℓ .

When using equation (51), it should be borne in mind that it applies to specific quantities of gas in a stationary condition, whereas we make the assumption that this equation is valid also for the conditions of a continuous gas formation and continuously changing gas pressure and the space occupied by them. Bearing in mind that

$$RT_1 - f$$
,

we get:

$$\frac{1}{\theta} \omega \psi = \frac{p(\Psi \psi + sk)}{\theta} = \frac{\varphi_{\mathbf{n}} \mathbf{v}^2}{2} . \tag{52}$$

This is the fundamental equation of pyrodynamics depicting the relationship between ψ , p, v and ℓ . Actually, it is the equation of energy transformation by the equation of energy balance.

The left part of the equation depicts the change of internal energy $\omega \, \psi \,$ kg of the powder gases when their temperature is lowered from T_1^0 to T^0 , if the assumed mean values of heat capacity are c_{ψ}^{\prime} and θ '. The right part of the equation represents the total external work done by the powder games at the given instant due to the change of their thermal condition.

All the terms of the equation are expressed in units of work (kg \cdot dm). This equation is called at times the "equivalence equation." The value of θ is usually transposed to the right side, and the equation is solved for the second term:

290

$$p(\Psi\psi + s\ell) = f\omega\psi - \frac{\theta}{2}\psi_m v^2$$

or, replacing We by $s\ell_{\psi}$, we will have:

$$ps(l_{\Psi} + l) = t\omega\Psi - \frac{\theta}{2} \Psi n V^{2}. \tag{53}$$

This equation is also known as the Resal equation, first developed by the author in 1864. Hereafter we shall consider the value of $\boldsymbol{\theta}$ in the balance equation and in the fundamental equation as a value corresponding to the mean value of $\Gamma_{\rm CP} = \frac{T_1 + T_{\rm R}}{2}$, but without its

prime index. The subject equation contains the following variables characterizing the elements of burning of powder and of the projectile's motion: the burned portion of the charge ψ , the gas pressure p, the length of projectile's travel $\boldsymbol{\ell}$, and its velocity \boldsymbol{v} .

The length L_{ψ} of the free space in the chamber at a given instant is a function of ψ . Actually, ψ is the independent variable, because the pressure imparting motion to the charge-projectile-barrel system is obtained only as a result of the burning of the powder and of gas formation. Nevertheless, all the variables are interconnected and affect one another. In order to establish the relation between four variables, additional equations must be had.

These additional equations are represented in one form or another by the aforementioned relations for the burning law and by the equation of motion of the first and second forms.

If pressure p is determined from equation (52), we will have: 291

$$p = \frac{-\frac{\theta}{2}qmc^2}{wq + sf}$$

In pyrostatics we had the following expression for depicting pressure at a given instant:

$$p = \frac{f \omega \Psi}{\Psi \psi}.$$

Inasmuch as in the numerator of the first formula a value is substracted from fw ψ proportional to the work $\frac{\phi_m v^2}{2}$, and in the denominator the volume of the bore corresponding to the distance ℓ traversed by the projectile is added to the free space of the chamber, it becomes entirely clear that at the "same loading conditions" the pressure in the barrel, while the projectile is in motion and while the work is performed by the gases, will be smaller than when the powder is burned at constant volume.

CHAPTER 3 - INVESTIGATION OF THE FUNDAMENTAL RELATIONS

1. THE BASIC ENERGY CHARACTERISTICS

The energy equilibrium equation is valid with regard to both the first and the second period when the charge is already fully burned, when $\psi=1$ and when the gases expand adiabatically. In such a case only the two variables T and ν enter into the equation.

$$\frac{f\omega}{\theta} = \frac{RT\omega}{\theta} = \frac{quv^2}{2}.$$

Inasauch as f - RT1,

292

$$\frac{\varphi_{\rm m}v^2}{2} = \frac{f\omega}{\Theta} \left(1 - \frac{T}{T_1} \right) . \tag{54}$$

The left side of the equation represents the total exterior work done by the powder gases when a shot is fired; it increases with the decrease of temperature T and would have attained a maximum value, were it possible to cool the powder gases at firing to T=0, - a condition impossible in actual practice because it would correspond to an efficiency equal to unity.

Nevertheless, if we assume in equation (54) T=0, we will get

$$\frac{\varphi_{\text{mv}}^2}{2} = \frac{1\omega}{\theta} , \qquad (55)$$

i.e., the maximum amount of work performed by ω kg of powder gases if all the energy confined in them were utilized, i.e., if the gases were cooled to absolute zero.

 $\frac{f\omega}{6}$ may be called the "full supply of energy" confined in ω kg of powder, and the velocity of the projectile $v_{\rm np}$ (= $v_{\rm limit}$) corresponding to the full utilization of energy - the limiting or maximum projectile velocity.

The full supply of energy of one kg of powder gas will be expressed by the formula

$$II - \frac{f}{\theta}.$$

This value is called at times the powder "potential." Although

293

the above limiting expression for II has a theoretical meaning only, because in practice the gases cannot be cooled to absolute zero when a shot is fired, nevertheless it shows that the working capacity of powder gases can be increased either by increasing the force (energy) $f = \frac{P_a v_1}{273} T_1, \text{ or by decreasing the value of } v_2 = \frac{c_p}{c_w} - 1.$

The energy of the powder can be increased by increasing the specific volume of the powder gases \mathbf{w}_1 (under normal conditions), or by elevating the burning temperature of the powder T_1 .

As was shown above, θ depends on the composition and temperature of the gases: it decreases in value with increase of temperature and increases when the latter is decreased.

Hence a powder with a higher burning temperature will possess a greater supply of work not only because of energy f, but also because of the smaller value of θ .

Inasmuch as the gas temperature drops from T_1 to T_2 when a shot is fired (which corresponds to the projectile's passing through the muzzle face), the value of θ changes. However, this change is quite small and is usually considered to be a constant equal to the mean value of the given temperature interval. The value of θ can be found from the following formula:

$$\theta = \frac{c_{p-c_{\Psi}}}{c_{\Psi}} = \frac{A_{1-A_{2}}}{A_{2}+B_{1}T} = \frac{1}{A+BT},$$

where

$$A = \frac{A_2}{A_1 - A_2}$$
 and $B = \frac{B_1}{A_1 - A_2}$.

The average value of θ can be found by means of the following formula:

A:

$$\frac{1}{\Theta} = \frac{1}{(T - T_1)} \int_{T_1}^{T} \frac{dT}{A + BT} = \frac{A_1 - A_2}{T - T_1} \int_{T_1}^{T} \frac{dT}{A_2 + B_1 T} = \frac{2.303(A_1 - A_2) \log \frac{A_2 + B_1 T_1}{A_2 + B_1 T}}{B_1(T_1 - T)}$$

The variation of $\bar{\theta}$ for pyroxylin powder with temperature is given in table 20 [17].

Table 20

				т			
T	1	0.90	0.80	0.70	0.60	0.50	0.10
T1						1350	270
Lok	2700	2430	2160	1890	1620	1350	
		 		0.202 0.208	0.215	0.252	
ē	0.185	0.190	0.196	0.202			<u> </u>
1	1	l .	1				

Inasmuch as $\frac{T_A}{T_1}$ is usually ≈ 0.70 , θ approaches the value of 0.2. In most methods used for solving the fundamental problem of pyrodynamics the value of $\tilde{\theta}$ is considered to be equal to 0.2. Theoretically it would have been correct to use different values of θ for the first and second periods: a smaller value for the first period while the gases have undergone little cooling, and a higher walue for the second period at which time the gases had undergone a greater amount of cooling.

It should be noted that the values of the coefficients A_1 , B, A2 wary considerably with different authors, and this discrepancy

295

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

may affect the value of T_1 as well as the value of θ . Purthermore, the heat capacity values are expressed by more complex relationships than a linear one.

According to the latest data, these relationships deviate from a linear one in the low temperature range; in the range of 3000° to $1500-2000^{\circ}$ the relationship $C_{\rm w}$, tapproaches a linear one even according to these data(*).

Solving equation (55) with respect to $v_{\exists\,p}$, we shall find an expression for the so-called "maximum or limiting projectile velocity":

$$\mathbf{v}_{\Gamma,p} = \sqrt{\frac{2}{\varphi}} \frac{\mathbf{f}}{\theta} \frac{\mathbf{w}}{\mathbf{n}} = \sqrt{\frac{2\mathbf{g}}{\varphi}} \frac{\mathbf{f}}{\theta} \frac{\mathbf{w}}{\mathbf{q}}. \tag{56}$$

As was mentioned above, the maximum velocity of the projectile corresponds to the full utilization of the energy and an efficiency equal to unity. Although this value cannot be attained in practice, it enters as a factor into the formulas for the projectile velocity v of both the first and the second periods, and the true projectile velocity usually increases with increase of $v_{\Pi p}$. An analysis of formula (56) will show that the increase of $v_{\Pi p}$ depends on the supply of powder energy f/θ and on the relative weight of the charge w/q with respect to the weight of the projectile q: it decreases with the increase of \P . Although the concept of maximum velocity can be obtained by assuming that T=0 in the energy equilibrium equation,

(*) A.M. Litvin, "TEKHNICHESKAYA TERMODINAMIKA" (Technical Thermodynamics), 1947.

nevertheless, in order to apply the value of $v_{\Pi p}$ to actual practice, the value of θ must be taken as an average value in the temperature range of T_1 , ..., $T_{\underline{q}}$ rather than in the T_1 , ..., 0 range, because in computing the true projectile velocity which is proportional to $v_{\Pi p}$, the gas temperature in the first and second periods does not drop below $T_{\underline{q}}$. Thus the concept of maximum velocity is a conditional one, and it would be more appropriate to call it the "practical value of the maximum (or limiting) velocity."

Later on, when attempting to determine the dependence of φ on w/q, it will be shown that the maximum velocity $v_{\Pi p}$ tends towards a definite value, rather than towards infinity, even when the ratio of w/q is increased indefinitely.

The term "efficiency" signifies the ratio of the useful work done by the powder gases to the full supply of energy stored in a given powder charge.

The useful work performed by ω kg of gas is measured by the kinetic energy acquired by the projectile at the instant its base passes the muzzle face $\frac{mv_A^2}{2}$, where v_A is the muzzle velocity of the projectile).

Denoting the efficiency by $r_{\overline{A}}$, we get:

$$r_{\underline{g}} = \frac{\frac{nv_{\underline{g}}^2}{2}}{\frac{f w}{\theta}} = \frac{\theta nv_{\underline{g}}^2}{2f w}$$

In the case of ordinary weapons the value of $r_{\widetilde{A}}$ varies between 0.20 and 0.33.

297

Certain authors incorporate into the efficiency expression the coefficient of the fictitious mass ϕ which takes into account the auxiliary work items. Thus

$$r_{\underline{x}} = \frac{\varphi_{\underline{x}} v_{\underline{x}}^2/2}{f \omega/\theta} = \frac{v_{\underline{x}}^2}{v_{\underline{x}}^2}.$$

Comparing it with formula (54), we will see that

$$r_{\mathbf{R}}' = \frac{r_1 - r}{r_1} = 1 - \frac{r}{r_1}$$

But $\frac{T_1-T}{T_1}$ is "the coefficient of the Carnot cycle performed by an ideal gas"(*), and would have represented the actual efficiency of the cycle in the absence of auxiliary or secondary work done by the gases and in the absence of parasitic resistances which the gases must overcome. Therefore, in order to correctly depict the efficiency of the powder in a weapon, φ should not be included in the efficiency expression.

The r_R^* value is of great importance in the theory of ballistics developed in the USSR, because it takes into account the totality of the work done by the powder gases in the weapon.

In some textbooks the full amount of work is expressed by

(*) O.D. Khvolson, "KURS FIZIKI" (A Course in Physics), Vol. II, p. 451, 1919.

STAT

298

the magnitude II - EQ. But EQ \neq f/9 because Q is the quantity of heat determined experimentally in a calorimetric bomb when the gas of the burned powder is cooled from the burning temperature down to $t=15^{\circ}C$ (or 288°K). The magnitude $\frac{f}{\theta}$ is the work the gases would be capable of doing if cooled from the burning temperature of the powder T1 to 0° rather than to 288°K.

Hence the relation between EO and $\frac{f}{\theta}$ will be expressed by the formula:

$$FQ = \frac{1}{9} \left(1 - \frac{288}{T_1}\right),$$

i.e., EQ is about 10% smaller than $\frac{f}{\theta}$, because $\Gamma_1 = 2700 - 2800^{\circ} \text{K}$.

This condition must be taken into account when determining the efficiency. If the value of the latter is given, it is of importance to know whether same is taken with respect to $\frac{f\omega}{\theta}$ (in which case it will be smaller) or with respect to FQ (in which case the efficiency will be greater).

"The coefficient expressing the utilization of a unit of charge by weight" is expressed by the muzzle energy of the projectile per unit weight of charge ω:

$$\gamma \omega = \frac{mv_R^2}{2\omega} - k_R + dm/k_R.$$

This value for specific gun systems approaches a constant, and depends mainly on the relative length of the gun, the powder thickness and the point at which it is burned (burning location).

For short-barreled, medium-caliber guns, $\eta_{\omega} = 1,200,000-1,400,000$ kg · dm/kg or 120-140 ton · m/kg; for small arms, ηω= 100-110 ton · m/kg

For fully charged howitzers \(\mu = 150-160 \) ton \(\cdot \ni/kg \); \(\mu \) decreased with the decrease of the charge. As the muzzle velocity of high-power artillery units is increased, the relative weight of the charge \(\mu/q \) must increase also and with it the relative work necessary for displacing the charge itself (gases and powder); as a result, the relative useful work done in such guns becomes decreased and the value of \(\mu \) drops to 90 ton \(\cdot \ni/kg \) and lower.

The value of γ_ω can be used for the approximate computation of the weight of charge ω necessary for imparting a given muzzle velocity v_a to a projectile of a given weight (mass) q:

$$\omega = \frac{EV^2R}{2}$$
 : γ_{ω}

مر and $r_{\mathbf{g}}$ are linked by the simple relation:

$$r_{\mathbf{X}} = \gamma_{\mathbf{w}} : \frac{\mathbf{f}}{\theta}$$

In certain applications of interior ballistics of great importance is the ratio between the mean pressure p_{CP} at a given point of the projectile's travel and the maximum pressure p_m in the bore of the barrel ($\gamma = \frac{p_{CP}}{p_m}$).

The average pressure during the period of time it takes the projectile to move from L=0 to $L=L_{\underline{R}}$ is

$$\eta_{A} = \frac{P_{CP_{A}}}{P_{A}}$$

STAT

300

Fig. 88

Left: mean pressure when shot is fired. Right: mean pressure as the characteristic of progressive burning of powder.

The mean pressure at a given point of the projectile's travel is that pressure which develops the same amount of work as a variable pressure, starting from \mathbf{p}_0 , passing through the maximum point and then decreasing in value.

Since the work done by the gases is depicted by the area is $\int_0^L p d\ell$ we can find $p_{\rm cp}$ from the condition

$$\operatorname{sp}_{\operatorname{Cp}} \mathbf{l} - \operatorname{s} \int_{0}^{\mathbf{l}} \operatorname{pd} \mathbf{l}.$$

In other words $p_{\rm CP}$ is the height of a rectangle whose area, when the base is k, equals the area bounded by the pressure curve.

This is clarified by fig. 88,a; it also shows that as the length of bore travel ℓ is increased, $p_{\rm CP}$ decreases and has a minimum value when the projectile traverses the distance $\ell_{\rm R}$, i.e., at the instant the projectile leaves the gun barrel.

If after passing point p_m (fig. 88,b) one pressure curve 1 proceeds above the other curve 2, this condition indicates that the mean pressure and the ratio $\frac{P_{CP}}{P_m}$ for the first curve are likewise greater than for the second curve.

And inasmuch as curve 1 points at more progressive burning than curve 2, the coefficient $\eta_{\underline{A}}$ also serves to depict the progressivity of burning: the greater the value of $\eta_{\underline{A}}$, the more progressive is the burning of the powder in the bore of the barrel.

Inasmuch as the characteristic η_{A} of the progressivity of burning must be known under certain conditions of firing, and only p_{m} and v_{A} can be determined by test when s, ℓ_{A} , q and ω are known, whereas the change of pressure p with reference to ℓ is often unknown, p_{CP} and then γ_{A} are computed on the basis of the following considerations.

It is known that the work done by gases along the path Ag equals

$$\frac{\Psi = V_K^2}{2} = s \int_0^k p dl;$$

on the other hand,

Therefore

$$sp_{cp.A}l_{\underline{x}} - \frac{\psi_{\underline{x}}v_{\underline{n}}^2}{2}$$

whence

302

$$p_{cp.R} = \frac{\varphi_{m}v_{R}^{2}}{2sl_{R}}$$

and

$$\eta_{\underline{x}} = \frac{p_{\text{cp.}1}}{p_{\text{m}}} = \frac{\phi_{\text{m}} v_{\underline{x}}^2}{2 s \frac{I_{\underline{x}} p_{\text{m}}}{2 p_{\text{m}}}} = \frac{\phi_{\text{m}} v_{\underline{x}}^2}{2 w_{\underline{x}} p_{\text{m}}}.$$

Inasmuch as the denominator in the expression for $\eta_{\underline{A}}$ includes the swept volume of the bore $w_{\underline{A}}$, $\eta_{\underline{A}}$ is often called the "unilization coefficient of the swept volume of the bore."

Thus, in order to determine $\gamma_{\underline{A}}$ when a gun is fired, it is sufficient to know: the muzzle velocity of the projectile $v_{\underline{A}}$, the maximum gas pressure $p_{\underline{m}}$, the weight of the projectile, the cross-sectional area of the bore s, and the full length of travel of the projectile $l_{\underline{A}}$ through the bore of the gun.

For cannons, the value of $\eta_{\vec{R}}\,varies$ within the limits of 0.40 and 0.65.

The $\gamma_{\bf k}$ ratio can also be interpreted in a different manner. If we divide each term of the equation by ${\bf s} \ell_{\bf n} \, {\bf p}_{\bf k}$,

$$\gamma_{\underline{x}} = \frac{\varphi_{\underline{x}} v_{\underline{x}}^2}{2\pi \ell_{\underline{x}} p_{\underline{m}}} = \frac{\pi \int_{0}^{\ell_{\underline{x}}} p d\ell}{\pi p_{\underline{m}} \ell_{\underline{n}}} = \frac{\int_{0}^{\ell_{\underline{x}}} p d\ell}{p_{\underline{m}} \ell_{\underline{x}}},$$

where the right part represents the ratio of the area bounded by the true pressure curve and the x-axis along the path $\ell_{\rm R}$ to the area of a rectangle of height $p_{\rm m}$ and base $\ell_{\rm R}$. This ratio will thus show the

303 STA

portion of the actual work done by the gases compared with the work done under ideal conditions if the pressure along the entire path $\ell_{\rm R}$ were equal to the maximum pressure $\rm p_m$ (fig. 89). For this reason $\gamma_{\rm R}$ is often called the "coefficient of area closure on the indicator p, $\ell_{\rm R}$ diagram."

The following characteristic can be introduced into the characteristic depicting the utilization of the entire barrel space; including the powder chamber space;

$$R_{\mathbf{X}} = \frac{\varphi_{\mathbf{m}} \mathbf{v}_{\mathbf{X}}^{2}}{2s(\ell_{\mathbf{U}} + \ell_{\mathbf{X}}) \mathbf{p}_{\mathbf{n}}} = \frac{\varphi_{\mathbf{m}} \mathbf{v}_{\mathbf{X}}^{2}}{2w_{\mathbf{KH}} \mathbf{p}_{\mathbf{n}}},$$

which may be called the "coefficient of ballistic utilization of the entire bore space."

304

It can be easily seen that

$$R_{\mathbf{X}} = \gamma_{\mathbf{X}} \frac{\mathbf{w}_{\mathbf{X}}}{\mathbf{w}_{\mathbf{KH}}} = \gamma_{\mathbf{X}} \frac{\mathbf{f}_{\mathbf{X}}}{\mathbf{f}_{\mathbf{0}} + \mathbf{f}_{\mathbf{X}}} \leq \gamma_{\mathbf{X}}.$$

Fig. 89 - Utilization of the Swept Volume of the Bore.

Fig. 90 - Utilization of the Entire Bore Space.

Graphically R_{m R} determines the ratio between the area bounded by the true pressure curve and the area of a rectangle of height p_m and base L_0 + L_R or W₀ + W_{m R} (fig. 90).

2. THE DEPENDENCE OF PRESSURE CHANGE OF POWDER GASES IN THE GUN BARREL ON THE CONDITIONS OF LOADING

Using the pressure formula from the fundamental equation of pyrodynamics (53)

$$p = \frac{f \frac{\omega}{s} \psi - \frac{\theta}{2} \frac{\psi m}{s} v^2}{i_{\psi} + \ell},$$

let us investigate the change of pressure with relation to time and the path traversed by the projectile. To do so, we shall find the derivatives

$$\frac{dp}{dt}$$
 and $\frac{dp}{dt} - \frac{dpdt}{dtdt} - \frac{1}{v} \frac{dp}{dt}$.

Differentiating p with respect to t, we get

$$\frac{\mathrm{d}p}{\mathrm{d}t} = \frac{1}{(\ell\psi + \ell)} \left[\frac{f\omega\mathrm{d}\psi}{\mathrm{sd}t} - \frac{\theta\psi\mathrm{m}}{\mathrm{s}} \, v \, \frac{\mathrm{d}v}{\mathrm{d}t} - p \left(\frac{\mathrm{d}\ell\psi}{\mathrm{d}t} + \frac{\mathrm{d}\ell}{\mathrm{d}t} \right) \, \right] \, .$$

Bearing in mind that

$$\frac{d\phi}{dt} = \frac{s_1}{\Lambda_1} \frac{s}{s_1} u_1 p = \frac{x}{I_K} \phi_P = \Gamma p;$$

$$\frac{\varphi \mathbf{n}}{\mathbf{n}} \frac{\mathbf{d} \mathbf{v}}{\mathbf{d} \mathbf{t}} = \mathbf{p};$$

$$\frac{d\hat{L}}{dt} = v;$$

$$\frac{d\hat{L}_{V}}{dt} = \frac{d(\hat{L}_{\Delta} - a\psi)}{dt} = -a \frac{d\psi}{dt} = -a \frac{\psi}{I_{K}} \delta p = -afp =$$

$$= -\frac{\omega}{s} \frac{\psi}{I_{K}} \frac{\sigma}{\delta_{1}} p;$$
where $a = \frac{\omega}{s} \left(a - \frac{1}{d} \right) = \frac{\omega}{s} \frac{1}{\delta_{1}},$

and substituting them in the dp/dt formula, we get

$$\frac{dp}{dt} = \frac{p}{(\mathcal{L}_{\psi} + \mathcal{L})} \left[\frac{f\omega}{s} \frac{\kappa}{1_{K}} \sigma - \theta v - \left(v - a \frac{\kappa}{1_{K}} \sigma p \right) \right] = \frac{p}{(\mathcal{L}_{\psi} + \mathcal{L})} \left[\frac{f\omega}{s} \frac{\kappa}{e_{1}} \sigma u_{1} \left(1 + \frac{1}{\sigma_{1}} \frac{p}{f} \right) - v(1 + \theta) \right].$$
(57)

This formula shows that the nature of pressure increase as a function of time depends on a large number of factors of varying influence.

At the start of motion when the rotating band is forced into the rifling grooves $p=p_0$, L=0, v=0, $L_{\psi}=L_{\psi_0}$, and formula (57) takes on the form:

$$\left(\frac{dp}{dt}\right)_{0} = p_{0} \frac{f\omega}{sR_{\psi_{0}}} \frac{x60}{I_{K}} \left(1 + \frac{1}{\delta_{1}} \frac{p_{0}}{f}\right) = p_{0} \frac{f\omega}{sL_{\psi_{0}}} \frac{x}{e_{1}} u_{1} \delta_{0} \left(1 + \frac{1}{\delta_{1}} \frac{p_{0}}{f}\right) =$$

$$= p_{0} \frac{f\omega \Gamma_{0}}{sI_{\psi_{0}}} \left(1 + \frac{1}{\delta_{1}} \frac{p_{0}}{f}\right).$$
 (58)

Therefore the rate of pressure increase at the start of motion is proportional to the wedging pressure p_0 , the powder energy f, the weight of the charge ω , the exposed area of the powder $\frac{S_1}{\Lambda_1} = \frac{\varkappa}{e_1}$, the rate of powder burning at p=1, i.e., u_1 , and inversely proportional to the free space of the powder chamber $s L_{\psi_0}$ at the instant wedging occurs. Inasmuch as the exposed area of the powder is inversely proportional to the thickness of the powder, $\left(\frac{dp}{dt}\right)_0$ is likewise inversely proportional to the powder thickness e_1 . The first term in parentheses in formula (57) also depends on these magnitudes, which term expresses the intensity of energy developed by the powder gases.

If we replace $\frac{\mathbf{x}}{\mathbf{v}_1}\mathbf{u}_1\mathbf{d}_0$ by $\frac{\mathbf{S}_1}{\mathbf{\Lambda}_1}\mathbf{u}_1\mathbf{d}_0 = \mathbf{\Gamma}_0$, we will obtain the additional condition where $\left(\frac{\mathbf{d}\mathbf{p}}{\mathbf{d}\mathbf{t}}\right)_0^0$ is proportional to \mathbf{r}_0 for $\mathbf{v} = \mathbf{v}_0$; and since we had seen in our analysis of the physical law of burning that the outer layers of pyroxylin powders have an accelerated rate of burning (flevelops ballooning), the pressure increase in this case will also be more intense than in the case of uniform burning \mathbf{u}_1 assumed in the theoretical law.

Hence, all other conditions being equal, the pressure curve p, t in the case of the physical law of burning must proceed in the diagram above the corresponding p, t curve representing the theoretical law.

Formula (57) gives the tangent of the angle of inclination of the pressure curve as a function of time. At the start of motion the tangent of the angle has a specific limiting value depending on certain loading conditions (fig. 91,a); it becomes zero only when $p_0 = 0$. In this case the pressure curve as a function of time is tangent to the x-axis (fig. 91,b). This condition is not encountered in actual practice.

307

The nature of pressure increase as a function of path λ is expressed by the following formula:

$$\frac{\mathrm{d}p}{\mathrm{d}t} = \frac{1}{v} \frac{\mathrm{d}p}{\mathrm{d}t} = \frac{p}{(\ell_V + \ell_J)} \left[\frac{f\omega}{s} \frac{k}{l_K} \frac{\sigma}{v} \left(1 + \frac{p}{f\sigma_1} \right) - (1 + \theta) \right]. \tag{59}$$

Fig. 91

Left: p, t curve at $p_0 > 0$; right: p, t curve at $p_0 = 0$.

At the start of motion $p=p_0, \ell=0, v=0, \omega=\ell_0, \ell_{\psi}=\ell_{\psi_0},$ and inasmuch as the first term in parenthesis is reduced to infinity,

$$\left(\frac{dp}{d\ell}\right)_0$$
 - ∞ .

Therefore, the ordinate is tangent to the p, \hat{i} curve at the start of motion (fig. 92).

Fig. 92 - p, L curve; the p-axis is tangent to

308

In order to obtain maximum pressure, $\frac{dp}{dt}$ or $\frac{dp}{dt}$ must be reduced to zero. Hence the condition at which p_m is obtained has the form:

$$f = \frac{\omega}{s} \frac{x}{1_K} \epsilon_m \left(1 + \frac{1}{J_1} \frac{P_m}{f}\right) - v_m(1 + \theta) = 0,$$

where the m index indicates that the given magnitude corresponds to $p_{\underline{m}}$ or

$$f = \frac{\omega}{s} \Gamma_m \left(1 + \frac{1}{s_1} \frac{p_m}{f}\right) = (1 + \theta) v_m,$$

where

$$\Gamma_{m} = \frac{\varkappa}{1_{K}} \delta_{m} = \frac{s_{1}}{\Lambda_{1}} u_{1} \delta_{m}.$$

If the requirements are such that the pressure must remain constant for a certain period of time after attaining a maximum value, a condition is obtained which must be satisfied by a change in surface area 6 or by a change in the burning rate u1:

$$f \omega \frac{\varkappa}{e_1} du_1 \left(1 + \frac{1}{J_1} \frac{p_m}{f}\right) = (1 + \theta) vs.$$

This condition can be formulated as follows.

In order to maintain the maximum pressure constant for a certain portion of the projectile's path in the bore, it is necessary that the surface area d of the powder or the burning rate u_1 change in proportion to the projectile velocity v, or that the energy imparted

by the powder games at $p=1(f\omega\Gamma)$ be proportional to the rate of volume change in the bore when the projectile is in motion

$$\left(\mathbf{s}\mathbf{v} - \frac{\mathbf{s}\mathbf{d}\mathbf{l}}{\mathbf{d}\mathbf{t}} - \frac{\mathbf{d}\mathbf{W}}{\mathbf{d}\mathbf{t}}\right) .$$

The pressure decreases after passing point p_m , the expression in parenthesis becomes negative, $\frac{dp}{dt} < 0$.

For the end of burning at $\psi = 1$, we get

$$\left(\frac{\mathrm{d}p}{\mathrm{d}t}\right)_{K} = \frac{p_{K}}{\ell_{1} + \ell_{K}} \left[\frac{f \omega}{s} \frac{g}{1_{K}} G_{K} \left[1 + \left(\alpha - \frac{1}{c^{*}}\right)^{p_{K}} \right] - (1 + \theta) v_{K} \right]. \tag{*}$$

Upon entering the second period the pressure equation takes on the form

$$p = \frac{f\omega}{s} \frac{1 - v^2/v^2}{f_1 + f_2}.$$

Differentiating, we get:

$$\frac{dp}{dt} = -(1 + \theta) \frac{v + p}{\ell_1 + \ell}; \quad \frac{dp}{d\ell} = -(1 + \theta) \frac{p}{\ell_1 + \ell}$$

for the start of the second period

Comparing this expression with (*), we note that at the instant of transition from the first period to the second, the derivatives dp/dt and dp/dL undergo a drastic change (a jump), the pressure curve 310 STAT

suffers a break, and the absolute value of the angle of inclination increases because of the disappearance of the first term in braces in expression(*).

Thereafter the angle of inclination of the p, t and p, L curves becomes smaller, because p decreases and L_1 +L increases; at the instant of the projectile's departure from the bore:

$$\left(\frac{dp}{dt}\right)_{\underline{n}} = -(1 + \theta) \frac{p_{\underline{n}} v_{\underline{n}}}{\ell_1 + \ell_{\underline{n}}}; \quad \left(\frac{dp}{dt}\right)_{\underline{n}} = -(1 + \theta) \frac{p_{\underline{n}}}{\ell_1 + \ell_{\underline{n}}};$$

3. THE EFFECT OF DIMENSIONS AND SHAPE OF POWDER ON THE GAS PRESSURE AND PROJECTILE VELOCITY CURVES

An analysis of formulas (57) and (59) will show that the pressure increase with respect to time and as a function of the path traversed by the projectile in the bore mainly depends on the term in brackets $f\omega\Gamma = f\omega \frac{\pi}{e_1}u_1\epsilon \text{ which, for a given powder energy f, depends on the product } \omega\Gamma,\Gamma \text{ being the intensity of gas formation at p = 1.}$

By changing the shape and dimensions of the powder, the magnitude $\frac{26}{e_1} = \frac{51}{\Lambda_1} d$, which we shall denote by Σ , can be varied at will within wide limits.

The dependence of the change of $\mathcal K$ and $\mathcal S$ on the change of the powder grain shape is known from pyrostatics. The change of the pressure curve p, $\mathcal L$ and of the projectile velocity curve v, $\mathcal L$ with respect to the following can be illustrated by means of an example:

STAT

311

- 1) change of powder shape at the same powder thickness and the same
- 2) change of powder thickness at the same powder shape (&= const, charge w, and 6 varies according to the same law) and at ω = const.
- 1. The effect of the grain shape when the thickness remains the same. We shall assume for the sake of simplicity that e_1 = 1, in which case $\Sigma = 26$. At the start of burning at z = 0, $\phi = 1$ and Σ_0 = κ . The change of Σ corresponds to the change of δ . At the end of burning at z = 1

By taking general formulas for five regressive poster shapes and using numerical data, we obtain table 21.

and using near			Tabl	rT			
				I - NOK	10 -x	حلا	EK -KOK
	Shape of powder	<u>r</u> 0 -x	б к	1 - 9	1.003	0.994	0.997
1	Tube	1 + 9	$\frac{1}{1+3}$		1.06	0.89	0.943
2	Strip	1 + 2 + 5	$\frac{(1-\alpha)(1-\beta)}{1+\alpha+\beta}$	-(1-a)(1-b)	1.00		0.010
		1 + 28	$\frac{(1-\beta)^2}{2}$	(1 - 5)2	1.20	0.675	0.810
3	plate	1	1 + 28	0	~2.0	0	0
4	Slab	2 + B	0	0	3	o	0
5	Cube	3	0				

Upon plotting a graph of the change of Σ with respect to z, we will obtain the diagram shown in fig. 93.

312

Fig. 93 - Change of Σ , z with Change of Powder Shape when ω and e_1 = const.

1) tube; 2) strip; 3) square plate; 4) rod; 5) cube.

The Σ , z diagram shows how the rate of gas formation changes when we cut up the same strip into square plates, then into strips and finally into cubes (see fig. 23).

The calculated action of these differently shaped powders (2, 4, 5) of the same thickness in the bore of a gun using the same charge ω by weight gives a diagram showing the changes of gas pressure as a function of the path traversed by the projectile in the bore (fig. 94).

These curves show that the strip generates a normal pressure $p_m=2380~kg/cm^2~and~a~muzzle~velocity~v_{\tilde{L}}=590~m/sec,~whereby~the~adiabatic~curve~of~the~second~period~attains~the~greatest~height~and~the~muzzle~pressure~is~maximum.$

Rod 4, whose exposed area is almost twice as great at the same powder thickness, generates almost double the pressure - p_m = 4600 kg/cm² and a considerably higher velocity $v_{\rm g}$ = 656 m/sec because of the large area of the p, λ curve depicting the work done by the gases. The adiabatic curve of the second period drops sharply at

313

the end of burning and in descending intersects the curve of the first period of strip powder and lies below the adiabatic curve of the strip powder.

The point of maximum pressure moves towards the point of the start of motion, as does the point representing the end of burning.

 $\gamma_K = \frac{l_K}{l_A} = 0.34$ for the strip, 0.18 for the rod, 0.128 for the cube. Inasmuch as the exposed area of the cube is three times as great, the cube generates a pressure of $p_E = 6200 \text{ kg/cm}^2$ and a velocity $v_A = 681 \text{ m/sec}$ because of its still greater area. Spdf than that of the rod (slab). The adiabatic curve of the second period lies still lower and gives the lowest Euzzle pressure.

Thus, using the same powder thickness e_1 and the same charge by weight, we find that of the three powder shapes compared above the lowest pressure and the smallest velocity are produced by strip powder. The rod (slab) increases the pressure by almost 100%, whereas the velocity v_A increases only by 11%; the cube increases p_m almost 2.6 times and the velocity by 15.5%. In this case the regressive shape produces the maximum v_A , but at a pressure which is almost three times the normally allowable pressure. Hence, if the requirement, as is the case in actual practice, calls for the same pressure p_m with powders of different shapes, the area of the pdl curves obtained with powders of greater regressivity will be smaller than the area obtained with strip powder, and the velocity v_A will be smaller. This represents the advantage of strip powder as the more regressive type.

For purposes of comparison, p, ℓ and v, ℓ curves are presented in the diagrams for the case (o), in which the powder is fully burned

314

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

in the chamber before the projectile starts moving. This is the case of "instantaneous powder burning" in which the dimensions of the powder are infinitely small. This would obtain in practice when using dry powder-like pyroxylin.

In such a case the pressure curve starts from the maximum point, which pressure (11,700 kg/cm²) is calculated according to the Noble formula. Thereafter the p, ℓ curve is entirely adiabatic in character, and the curves corresponding to various powder shapes arrange themselves in a proper manner (according to the established law) with respect to same. The obtained velocity v_A was found to be equal to 690 m/sec - i.e., the greatest, but the pressure $p_{m,0}$ was almost 5 times as great as p_m when strippowder was used $(p_{m,2} = 2380 \text{ kg/cm²})$.

Fig. 94 - The Effect of the Grain Shape on the Pressure Curve Inside the Bore.

- 1) instantaneous burning (0); 2) cube (5); 3) slab (4); 4) strip (2); ordinate: g/cm^2 .
- 2. The effect of web thickness on grains of the same shape. Grain shape strip; thickness: $2e_1 = 1.5$, 2.0 and 2.5 mm.

$$\Sigma_{-} \stackrel{\mathcal{K}}{=_{1}} \circ ; \quad \Sigma_{0} = \stackrel{\mathcal{K}}{=_{1}} = \frac{1.06}{e_{1}};$$

Table 22 - Magnitude

	• • • • • • • • • • • • • • • • • • • •			
Thickness of Strip 2e ₁	$\Sigma_0 = \frac{1.06}{e_1}$	$\Sigma_{K} = \frac{0.943}{e_1}$	p _m , kg/cm ²	v _A m/sec
1.5	1.414	1.256	3540	632
2.0	1.000	0.943	2040	575
2.5	0.848	0.744	1450	486
			<u> </u>	<u> </u>

The (Σ , z) diagram in fig. 95 shows that thinner powder generates a greater quantity of gas in a unit of time than thicker powder. The gas supply during burning can be regulated by changing the thickness of the powder.

.

100 Marie 100 Ma

Fig. 95 - The Dependence of the Intensity of Gas Formation on the Powder Thickness.

Pig. 9b - The Effect of Powder Thickness on p, L Curves in a Gun.

The calculated results of the action produced by these same powders in a gun using the same charge can be seen in the diagram of fig. 96; it shows that thin powder 1 generates a p_m which is 68% greater than normal pressure, whereas thicker powder 3 generates a pressure p_m which is 31% lower than normal pressure 2.

The muzzle velocities v are 632, 575 and 488 m/sec, respectively, where in the last case the thick powder does not succeed in getting

fully burned inside the gun barrel, and hence the energy of a portion of the charge is not utilized at all.

The two examples cited above show the importance of the shape and dimensions of powder when firing a gun, and how the inflow of gases can be regulated and the desired rate of pressure change can be obtained by varying the thickness of the powder in combination with its shape.

If the requirement is such that p must not exceed a given value, the most regressive powder will be most suitable for the purpose, namely, tubular powders of the various shapes considered here, which approach the closest a powder with a constant burning area. It is possible however to obtain a progressive powder shape whose surface area increases with burning, and thus improve the efficiency of the weapon.

CHAPTER 4 - FORCES DEVELOPED IN A GUN WHILE THE PROJECTILE IS MOVING ACROSS THE RIFLING

1. THE RIPLED BORE. BASIC DESIGN DATA.

The bore of a gun barrel is rifled for the purpose of imparting a spinning motion to the projectile. The angle a formed by the grooves with the generatrix may be constant (rifling with a uniform twist) or variable, with the angle of twist increasing towards the muzzle (rifling with an increasing twist). The stability of the projectile's flight at a given velocity depends on the angle of twist a. The projectile's spinning motion is imparted by the pressure of the driving edges of the lands, which, in the case of a right-handed thread (clockwise rotation), is provided by the right-hand edge of the lands (fig. 97, a and b). These edges, upon excountering the rotating band of the

318

projectile, develop a resistance N, which force is applied to the center of the protruding band and forces the projectile to rotate clockwise. A similar but a directly counteracting force N' is imparted by the projectile on the driving edge of the thread. Due to the elastic properties of the walls of the bore and the rotating band, radial forces Φ and frictional forces $\Psi\Phi$ originate on the contacting surfaces (see fig. 98).

Fig. 97 - Rifling in a Gun Barrel
1) barrel; 2) projectile.

Fig. 98 - Forces Acting in the Rifling Grooves. In addition to the twist angle α , the grooves are characterized by the land width α , the width α at the bottom of the groove, depth of grooves t_H and length (height) of driving band α . The force

319

N is distributed over the area $b_0^{\ t}_H$: cos α , but inasmuch as at $\alpha=8^\circ$, cos $\alpha=0.99 \gg 1$, the area $b_0^{\ t}_H$ is used for computing the stress in the groove and the rotating band. In artillery pieces the value of t_H is usually taken as $t_H \approx (0.01-0.02) d$, where d is the caliber of the bore or the diameter between the lands; $b_0 \approx 0.15 d$.

For small-caliber weapons $t_{H} = (0.02-0.04)d$.

When the projectile moves through the bore, the gases exert a pressure on the base of the projectile as well as the ridges of the rotating band formed when the latter is forced into the grooves. Therefore the cross-sectional area s of the bore is greater than $\pi d^2/4$ and is calculated approximately by the formula $s = (0.80\text{-}0.83)d^2$ or by means of the more exact formula

$$s = \frac{\pi}{4} \left(\frac{a}{a+b} d^2 + \frac{b}{a+b} d^{'2} - \frac{\pi}{4} \left(\frac{ad^2 + bd^{'2}}{a+b} \right) \right)$$

$$-\frac{\pi}{4}d^2\left[\frac{a+b\cdot\frac{d'}{d}}{a+b}\right]$$

The latter is obtained if we subdivide the whole area into pairs of sectors of diameters d and d' resting respectively upon arcs a and b. Of the two sectors subtended by the given angle, the sector resting on the land of the rifling occupies the portion $\frac{a}{a+b}$, and the one resting on the bottom of the thread occupies the portion $\frac{b}{a+b}$.

If we equate this area s to the area of an equidimensional circ the diameter of the latter \mathbf{d}_1 will represent the true caliber of the bore. It may be assumed that the force N spinning the projectile about

its axis has a lever-arm $d_1^{}$. For artillery pieces $d^{*}\approx 1.02;~d_1^{}\approx 1.01d;$

$$d_1 = \sqrt{\frac{ad^2 + bd^2}{a + b}}$$

The required number of grooves in is usually determined from the formula

$$n = (3-3.5)d_{cm} \text{ or } n = 2d_{cm} + 8$$

rounded off to a multiple of four (n = 4 for small arms), in order to be able to cut the bore simultaneously with four cutters.

In addition to the angle of inclination 7, the rifling is also characterized by the lead of the thread h, i.e., by the length of the generating line equivalent to a full turn of the thread (fig. 99):

The $\frac{h}{d}$ ratio is called the rifling twist or the lead of the rifling in calibers:

$$\frac{h}{d} = \frac{\pi}{\tan \alpha}$$
.

h/d is usually given in round numbers (20, 25, 30...60) and the angle of inclination α is determined from them:

$$\alpha = \arctan \frac{\pi d}{h}$$
.

321

Table 23

	50	40	35	30	25	20
	303516"	4°30 '	5007'5"	5 °58 '7"	7 ⁰ 09 ' 45"	8 ⁰ 56 '

Rifling Equation. When the cylinder of the bore with an increasing rifling twist is developed on a plane, the rifling appears as a parabola (fig. 100), whose origin and angle of inclination $\alpha = 0$ lie below the actual thread on the extension of the thread curve.

The equation for this parabola is:

$$x^2 - ky$$
 or $y - \frac{x^2}{k}$,

$$\tan a = \frac{dy}{dx} = \frac{2x}{k}$$
; $\frac{d \tan a}{dx} = \frac{2}{k} = \text{const}$,

i.e., the change of the angle of inclination versus the distance \boldsymbol{x} remains constant.

Fig. 99 - Uniform Twist Rifling Diagram

Fig. 100 - Increasing Twist Rifling

Since the angles of inclination α_1 and α_2 at the beginning and end of the rifled portion of the bore are known, the constant k can be determined. Indeed:

$$\tan \alpha_1 = \frac{2c}{k}; \quad \tan \alpha_2 = \frac{2(c + L_{Hp})}{k},$$
 (60)

whence

$$k = \frac{2L_{\text{Hp}}}{\tan \alpha_2 - \tan \alpha_1}, \tag{61}$$

and hence

$$\frac{d \tan \alpha}{dx} = \frac{\tan \alpha_2 - \tan \alpha_1}{L_{Hp}} = const.$$

The last expression enters into the formula expressing the pressure exerted on the driving edge.

Bearing in mind that $x=c+\hat{L}_0$, where \hat{L}_0 is the path traversed by the rotating band in the bore, and finding from (60) that

$$c = \frac{k}{2} \tan \alpha_1 = \frac{\tan \alpha_1}{(\tan \alpha_2 - \tan \alpha_1)} L_{Hp},$$

we will obtain the relation tan $\tau = \frac{2}{k}$ x from the path ℓ_0 in the form

$$\tan \alpha = \frac{2(c + \frac{\ell_0}{n})}{k} = \tan \alpha_1 + (\tan \alpha_2 - \tan \alpha_1) \frac{\ell_0}{l_{\text{mp}}}.$$
 (62)

STAT

 l_n varies from zero to $l_n = l_A - a$, where a is the distance between the base of the projectile and the forward edge of the rotating band.

We are presenting below the characteristic of several guns with relation to the weight of the recoiling parts \mathbf{Q}_0 , the weight of the

323

projectile q, the weight of the charge ω and the type of rifling used(*) (Table 24).

2. THE RESISTANCE ENCOUNTERED BY THE ROTATING BAND WHEN PORCED INTO THE RIPLING GROOVES; PRESSURE TO OVERCOME THE INERTIA OF THE PROJECTILE.

When the projectile is properly seated, the forcing cone of the band must bear against the chamber cone and partly enter the tapered end of the rifling (fig. 101); this prevents the escape of the gases from the chamber. As the gas pressure increases, the band takes the grooves and fully enters the latter when the rear edge of the band a approaches the end of the groove taper (point b). The rotating band resistance is maximum at this point. The force II 0 acting on the cross-sectional area of the bore s, i.e., $\frac{110}{s} = p_0 \, \text{kg/cm}^2$, necessary to drive the band for its full length, is called the "pressure to overcome the inertia of the projectile."

Fig. 101 - Rotating Band Entering the Rifling Grooves

- 1) connecting taper; 2) rotating band; 3) rifling.
- (*) For rifling with an increasing twist, $\frac{h}{d}$ is given for the angle of inclination at the nuzzle face of the bore.

Upon entering the grooves to its full length, the copper band does not undergo further deformation, and the projectile continues to move with the ridges fully formed on its rotating band, following which the pressure undergoes a sudden drop.

Fig. 102 - Change of Resistance as the Rotating Band is Forced into the Grooves.

a) kg/cm²; b) path of projectile.

The resistance of the walls and grooves of the bore against the rotating band as the projectile moves through the barrel is determined by forcing the projectile through the bore by means of a mechanical or hydraulic press. This method was used by M.F. Rozenberg at the former Obukhov Plant in 1898 and by A.G. Maturin at the former Putilov Plant in 1899. However, this slow, static cold broaching operation usually produces high resistances between the rotating band and the bore due to the presence of the N. ν N, $\dot{\phi}$ and $\nu\dot{\phi}$ forces.

The diagram in fig. 102 shows the change in pressure p=11/s when forcing the band into the grooves and moving the projectile through a 76-mm gun 1902 issue. This diagram was obtained in tests conducted by (KOSARTOP) in 1925. It shows that the pressure developed in the 76-mm gun 1902 issue by the gradual forcing of the band into the grooves increases from 150 to 250 kg/cm², and abruptly drops to 70

325

 kg/cm^2 after the band is fully wedged in the grooves, following which it slowly decreases to 30 kg/cm^2 at the muzzle face of the gun.

Under actual firing conditions, the walls of the barrel near the rotating band undergo elastic deformation under gas pressure p, whereby the walls are displaced or stretched from position a to position a' (fig. 103); this deformation is transmitted for a certain distance forward and weakens the action of forces $\dot{\varphi}$ and $\dot{\varphi}\dot{\varphi}$.

Fig. 103 - The Action of Pressure p in Displacing the Rotating Band of the Projectile

The second secon

326

				Table 24 - G		Width 1			
Lypu	Weight of recoiling	Weight of projectile	Weight of charge	Muzzle energy $E_{1} = \frac{mv_{A}^{2}}{2} ton-m$	r d	Angle of twist	Depth of groove,	of land	01 b6 03
gun	parts							3.05	
76-mm	287	6.20	0.365	45.85	25	709.45"	0.76	3.05	
mountain gun 1909 issue 76-mm	570	6.20	1.080	146.10	25	709'45"	0.76	2.10	•
1902/30 issue 107-mm	1300	17.18	2.79	393.20	25	709'45"	1.0	3.0	
1910/30 18846 152-88	1650	43.56	7.56	952.40	20	3054'2' 8055'3	7" 1.5	3.0	°
1910/34 issue		40	2.13	311.90	20	3°42'0 8°55'3	1.25	3.	.81
howitz 1909/3 1ssue	0	21.76	1.1	147.10	2	0 3 ⁰ 42. 8 ⁰ 56.		3	.04
122- bowits 1910/	10 5/0	21.76				327			

	· · · · · · · · · · · · · · · · · · ·	Table 24 -	Gun Char	acteristic	1				b
ight of bjectile	Weight of charge	zvΔ.		of	Depth of groove,	width of land	of bottom of groove	Number of grooves	Length of rifled part LHp in
E						-			mp.
.20	0.365	45.85	25	709.45"	0.76	3.05	6.91	24	1060
.20	1.080	146.10	25	709 '45"	0.76	2.10	5.38	32	2663
7.18	2.79	393.20	25	709'45"	1.0	3.0	7.47	32	3419
3.56	7.56	952.40	20	3º54'25" 8º55'37"	1.5	3.0	6.97	48	3591
40	2.125	311.90	20	3°42'00" 8°55'37"	1.25	3.81	9.47	36	1809
11.76	1.170	147.10	20	3 ⁰ 42'00" 8 ⁰ 56'	1.015	3.04	7.60	36	1260

This was substantiated by the KOSARTOP tests. The pressure necessary for the translation of the projectile was determined by firing a shortened 76-mm cannon. By using reduced charges and by selecting such charges whereby a half of the number of projectiles fired would be ejected from the bore and the other remain in it, it was determined that a pressure of 150 kg/cm² was not sufficient to drive the band into the grooves and would only produce a hardly perceptible imprint of the grooves on the forward portion of the rotating band. At a pressure of 225 to 275 kg cm² some of the projectiles remained in the bore and a number of them was ejected from the bore and dropped near the gun. Thus only a small additional pressure was sufficient to eject the projectile from the bore; the action of forces \$\display\$ and \$Y\display\$ was negligible. In consequence, we shall disregard these forces in our future analysis.

Thus the pressure p_0 necessary to overcome the inertia of the projectile is equal in the given case to 250 kg/cm². This value may vary considerably depending on the rifling and band design. In compiling his tables, Prof. N.F. brozdov used the value of $p_0 = 300$ kg/cm²; certain authors use $p_0 = 400$ kg/cr² in their calculations.

Krantz uses different values for p_0 varying from 270 kg/cm² for a 76-mm cannon to 550 kg/cm² for rifles, in which the grooves are relatively deep and the entire bullet rather than just the rotating band is forced to make the rifling.

Special tests conducted by Asst. Prof. P.N. Shkvornikov indicate a pressure of p_0 = 300-400 kg/cm² for rifles.

This pressure \mathbf{p}_0 will change if the diameter of the band \mathbf{d}_0 or

its profile is changed.

The value of po usually specified for medium-caliber guns is

$$p_0 = 250-350 \text{ kg/cm}^2$$
.

Gabeau offers the following expression for determining $p_{i,j}$:

$$p_0 = 4VU \frac{H}{d} \cos x + 1 + \sin x \frac{\sin x + V \cos \alpha}{\cos x - V \sin x},$$

where U - Elastic limit of the rotating copper band, attained by the band while being forced into the grooves;

H(b₀) - diameter of rotating band (reduced);

d' - caliber - reduced;

1 - angle of twist;

V - coefficient of friction.

U is determined from the expression

$$U = 3000 \left(\frac{\Sigma}{100}\right)^{-0.6} + 550,$$

where

$$\frac{\Sigma}{100} = 0.1 + 1.1 \frac{d_0 - d_1}{d_1 - d_{CH}};$$

 $\mathbf{D}_{\mathbf{0}}$ - maximum diameter of rotating band,

 $\boldsymbol{d}_{\mbox{\footnotesize{CH}}}$ - diameter of projectile body at the rotating band.

If we disregard the resistance present after the band is fully driven into the grooves, the motion of the projectile may be assumed to start at the instant the pressure attains the value \mathbf{p}_0 produced by the partial burning of the charge Ψ_0 .

329

In order to obtain pressure ρ_0 at constant volume, it is necessary that a portion of charge ψ_0 determined from the following general pyrostatics equation be burned:

$$\Psi_0 = \frac{\frac{1}{\Delta} - \frac{1}{\delta}}{\frac{t}{P_0} + \frac{1}{\delta}}.$$

Inus the pressure to overcome the inertia of the projectile is indirectly accounted for by the magnitude ψ_0 of the portion of the charge burned by the time the projectile starts moving and by the corresponding relative part of the burned thickness z_0 . The initial value $\begin{pmatrix} dp \\ dt \end{pmatrix}_0$ also depends on the value of p_0 , the higher the value of p_0 , the greater $\begin{pmatrix} dp \\ dt \end{pmatrix}_0$, the steeper the p, t curve at the start of the projectile's motion, and the higher the maximum pressure p_p .

3. FORCES DEVELOPED AT THE DRIVING EDGES WHEN THE PROJECTILE IS IN MOTION

The angle formed by the bore axis and the direction of the rifling grooves creates reaction forces between the driving edges of the rifling and the rotating band as the projectile moves through the bore. These forces N at each groove are directed perpendicularly to the surfaces of contact and create friction forces \mathcal{V}_1N along the driving edge in a direction opposite to that of the projectile's motion.

These forces and their components (acting in the direction of the bore axis and a plane perpendicular to it) impart a spinning motion to the projectile and develop forces which counteract the translation of the projectile (force R).

In order to determine the reaction force N of the groove and the

braking force R, let us imagine the bore surface developed in plane xy, with the x-axis parallel to the bore axis (fig. 104). Curve 00 depicts a groove with an increasing twist. Point A corresponds to the center of the driving edge, where $\frac{ps}{n}$, N and YS represent the forces acting on each driving edge, and n is the number of grooves.

We shall disregard the radial force $\dot{\varphi}$ and the force of friction $\dot{\nu}\dot{\varphi}$. Let us resolve forces N and $\dot{\nu}N$ into their components along the x and y axes:

$$N'' = N \sin \alpha; N' = N \cos \alpha.$$

VN' - VN cos a; VN" - VN sin 3.

According to the law of mechanics, we will have the following equation of motion:

- 1) The sum of the projections of forces along the x-axis equals $\frac{d^2x}{dt^2}$,
- $\frac{d\Omega}{dt^2}$ 2) The sum of the moments of rotating forces equals 1 $\frac{d\Omega}{dt^2}$ = $\frac{d\Omega}{dt}$.

where I is the moment of inertia of the projectile about the longitudinal axis;

 Ω is the angular velocity of the projectile.

The moment of inertia of a projectile of mass m is

$$I - \Sigma \Delta m_1 \cdot r_1^2 - \int r^2 dm,$$

where Δm - an element of the mass, located a distance r_i from the axis of rotation, can be represented as:

331

STA

here ρ is the radius of gyration, which is determined as follows.

Fig. 104 - Forces Acting in the aifling Grooves.

If the entire mass of the body rotated about the axis were concentrated in an infinitely thin cylindrical layer at a distance ρ from the axis, and the value of ρ is so chosen that the moment of inertia $m \rho^2$ is equal to the true moment of inertia I, then this distance from the axis of rotation would represent the radius of gyration.

Let us write the equation of rotary motion for the projectile;

$$urN(\cos \tau - V \sin \tau) = 1 \frac{d\Omega}{d\tau}.$$
 (63)

Inasmuch as

$$\Omega = \frac{v \tan \alpha}{r}$$

$$\frac{d\Omega}{dt} = \frac{1}{r} \left(\tan \alpha \frac{dv}{dt} + v \frac{\tan \alpha}{dx} \frac{dx}{dt} \right) = \frac{1}{r} \left(\tan \alpha \frac{dv}{dt} + v^2 \frac{d \tan \alpha}{dx} \right);$$

for rifling with an increasing twist

$$\frac{d \tan \alpha}{dx} = \frac{\tan \alpha_2 - \tan \alpha_1}{L_{n_p}} = k_\alpha = const$$

and for rifling with a uniform twist

$$k_{\alpha} = 0$$
.

Upon substituting the expression for 1 and $\frac{d\mathbf{R}}{dt}$ in formula (e3) and determining the value of S, we will get:

$$N = \frac{1}{n} \left(\frac{\ell}{r} \right)^2 = \frac{\left(\tan \alpha \pi \frac{dv}{dt} + k_{\alpha} \pi v^2 \right)}{\cos \alpha - y \sin \alpha}.$$
 (64)

In order to determine the value of $n = \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t}$ in parenthesis, we shall write the equation of translation:

$$P_{CH}s = nN(sin a + v cos a) = r \frac{dv}{dt}, \qquad (65)$$

where p_{CH}^{-1} is the gas pressure acting on the base of the projectile;

$$nN(\sin \alpha + \nu \cos \alpha) = R$$

is the resisting force due to the reaction of n driving edges.

$$p_{CH^S} - R = p_{CH^S} \left(1 - \frac{R}{p_{CH^S}}\right) = E \frac{dv}{dt},$$

The value of $\frac{R}{P_{CH}^{s}}$ is small compared with unity, and

333

$$\frac{1}{1 - \frac{R}{p_{CH}s}} \approx 1 + \frac{R}{p_{CH}s} = \varphi_1,$$

where Ψ_1 is a value slightly exceeding unity; this value will be determined with greater accuracy later on.

Therefore,

$$\frac{dv}{dt} = \frac{{}^{p}CH^{S}}{{}^{q}_{1}}.$$

Substituting this expression in formula (64), we get:

$$N = \frac{1}{n} \left(\frac{f}{r} \right)^2 \frac{\tan \alpha \sup_{CH} + \varphi_1 k_{\alpha} m v^2}{\varphi_1 (\cos \alpha - \nu \sin \alpha)}.$$

The expression in the denominator closely approaches unity:

$$\varphi_1(\cos \alpha - \nu \sin \alpha) \approx 1.$$

We thus get the final expression for the reaction N of the groove if the rifling has an increasing twist:

$$N = \frac{1}{n} \left(\frac{\rho}{r}\right)^{2} (\tan \alpha \operatorname{sp}_{CH} + \varphi_{1}^{k} \alpha^{k} v^{2}). \tag{66}$$

For grooves having a uniform twist $k_{\alpha} = 0$ and the force is

$$N = \frac{1}{n} \left(\frac{\rho}{r}\right)^2 \tan \alpha \, sp_{CH}. \tag{67}$$

The value of $\left(\frac{\rho}{r}\right)^2$ = λ depends on the type of the projectile and varies between 0.48 for a bullet and 0.68 for a thin-walled high-

explosive percussion shell.

For example:

		\ r /
for	a circular solid cylinder	0.50
tor	a solid bullet	~ 0.48
for	armor-piercing thick-walled shells	~ U.5o
for	thin-walled percussion shells	0.64-0.68.

(1)²

In order to compute the stress in the band metal, the force N must be referred to the contact area between the irriving edges of the rifling and the band, i.e., to $\mathbf{b}_0\mathbf{t}_H$, where \mathbf{t}_H is the depth of the rifling and \mathbf{b}_0 is the width of the rotating band.

Formula (e7) shows that for rifling with a constant twist the pressure exerted by the band of the projectile on the driving edge of the rifling and, inversely, the pressure exerted by the driving edge on the band while the projectile is in motion, varies in proportion to the pressure exerted by the gases on the base of the projectile. Therefore, curve 1 representing the change of force N as a function of Lis similar to the pressure curve (fig. 105), and the band of the projectile and the driving edge are subjected to a maximum stress at the instant the pressure and the velocity of the projectile are at a maximum.

Fig. 105 - Effect Produced by Rifling on the Pressure N

335

Formula (66) indicates that by decreasing the initial groove angle α_1 , the first term in parenthesis for the instant at which ρ_m is developed can be considerably decreased. Inasmuch as the velocity of the projectile at this instant is still small (as is the doubled kinetic energy of the projectile, $\mu\nu^2$), then at the instant of maximum developed pressure the value of N obtained according to formula (66) (in the case of an increasing twist) may be smaller than that obtained by formula (67) (for rifling with a uniform twist).

As the pressure continues to decrease, the tan a increases, as does the second term $k_{\alpha}^{\ \ \ \ \ \ }$. Hence, in the case of an increasing twist, the pressure acting on the driving edge varies more uniformly than in the case of rifling with a uniform twist. The force N may be varied considerably by changing the angles a_1 and a_2 .

The curves in fig. 105 show the change of force N as a function of the path of the projectile for rifling grooves with a = const and for two riflings with a variable 1:

1)
$$\alpha = 10^{\circ} = \text{const};$$

2) $\alpha = 5^{\circ}, \alpha_2 = 10^{\circ};$
3) $\alpha_1 = 2^{\circ}, \alpha_2 = 10^{\circ}.$

If the rifling equation is known, the dependence of tan a on the path of the projectile L can be determined according to formula (62) as a means for calculating the change of N:

tan
$$\alpha$$
 = tan α_1 + (tan α_2 - tan α_1) $\frac{l_0}{l_{\text{Hp}}}$ = tan α_1 + $k_{\alpha}l_{0}$;

and curves p, L and v, L can then be plotted and the values of a, p and m v for the same values of m k substituted in formula (66). By substituting expression (62) in equation (66), we will get:

$$N = \frac{\lambda}{n} (\tan \alpha_1 sp + k_{\alpha} \ell_n sp + k_{\alpha} mv^2) = \frac{\lambda}{n} \tan \alpha_1 sp + \frac{\lambda}{n} k_{\alpha} (\ell_{sp} + mv^2).$$

The first term represents that pressure N_{α_1} which would obtain in a rifling with a uniform twist whose angle $\alpha=\alpha_1$. This change is similar to the change of the pressure curve p, £, i.e., it first increases and then decreases. The second term depends on £, p and v, whereby, £, p and v increase until the pressure attains a maximum value, following which ℓ and v continue to increase and p decreases. This formula makes it possible to analyze the influence of each variable p, v and ℓ on the pressure exerted on the driving edge.

The resistance offered by the rifling against the translatory motion of the projectile is

$$R = nN(\sin \alpha + \nu \cos \alpha) = nN \cos \alpha(\tan \alpha + \nu). \tag{68}$$

For rifling with a uniform twist (assuming cos $\tau \approx 1$):

$$R = \left(\frac{\rho}{r}\right)^2 (\tan^2 \alpha + \nu \tan \alpha) \operatorname{sp}_{CH}, \tag{69}$$

i.e., R is proportional to the gas pressure on the base of the projectile.

The magnitude q_1 introduced above, which takes into account the braking effect of the rifling grooves on the motion of the projectile, is also constant when the rifling twist is uniform:

$$\varphi_1 = 1 + \frac{R}{8P_{CH}} = 1 + \left(\frac{\rho}{r}\right)^2 (\tan^2 \alpha + \nu \tan \alpha).$$

337

STAT

The equation of translatory motion of the projectile can be written as follows:

$$sp_{CH} - \varphi_{l} = \frac{dv}{dt}$$
.

Since $\varphi_1 > 1$, the resistance offered by the rifling is the same as if the mass of the projectile were increased. In the expression $\varphi_1 = 1 + \lambda \tan^2 \alpha + \lambda \gamma$ tan α the value of the coefficient $\lambda \tan^2 \gamma$ varies between 0.0025 $\left(\frac{1}{4}\Re\right)$ for a small pitch with a rifling pitch n=45 calibers and 0.025 (2.5%) for a very steep pitch (h = 15 calibers).

For a medium angle of twist $\alpha = 6.7^{\circ}$ $\lambda \tan^2 \alpha \approx 0.01$ (14).

The value of the coefficient $\lambda \, \mathcal{V}$ tan 1 depends on both the angle α and the coefficient of friction $\mathcal V$ which is usually taken between 0.16 and 0.20; on the average $\lambda \mathcal V$ tan $\alpha \approx 0.01$ (1%).

Investigations made during the past few years have shown that ν decreases as the velocity of the projectile increases; at $v\approx 200$ m/sec $\nu\approx 0.10$, and at v=1000 m/sec $\nu\approx 0.05$.

 $oldsymbol{q}_1$ is usually taken to be equal to $oldsymbol{q}_1$ = 1.02.

For rifling with an increasing twist

$$R = \frac{\lambda}{n} (\tan \alpha \operatorname{sp}_{CH} + \varphi_1 k_{\alpha} \operatorname{mv}^2) (\tan \alpha + \nu),$$

and the magnitude

$$\varphi_1 = 1 + \frac{R}{sp_{CH}}$$

will no longer be a constant value.

4. THE WORK DONE IN OVERCOMING THE RESISTANCE R OFFERED BY THE RIFLING GROOVES.

In order to overcome the resistance R, the powder gases must do a certain amount of work.

For rifling with a uniform twist:

$$R = nN \cos \alpha(\tan x + \nu) = \lambda(\tan^2 x + \nu \tan x) s_{PQH}$$

The work done in overcoming this resistance is

$$\int_{0}^{t} Rd\mathbf{\ell} = \lambda (\tan^{2} \alpha + V \tan \beta) s \int_{0}^{t} \rho_{CH} d\mathbf{\ell},$$

but

$$s \int_{CH} p_{CH} dt - \frac{\pi y^2}{2}.$$

Therefore,

$$\int_{-\infty}^{R} \operatorname{Rd} \ell - \lambda \tan^2 \pi \frac{\pi v^2}{2} + \lambda V \tan \pi \frac{\pi v^2}{2}.$$

It can be shown that the first term represents the work done in imparting a spinning motion \mathbf{E}_2 to the projectile, and the second term represents the work done in overcoming friction \mathbf{E}_2 .

term represents the work done in overcoming friction E_3 .

Both types of work are proportional to $\frac{mv^2}{2} = E_1$ (to the work done in imparting translation to the projectile) and can be written as:

$$E_2 = \lambda \tan^2 x \frac{mv^2}{2} = k_2 \frac{mv^2}{2}$$
,

where $k_2 = \lambda \tan^2 \beta$;

$$E_3 = -\lambda \nu \tan^{-1} x \frac{mv^2}{2} = k_3 \frac{mv^2}{2}$$

where $k_{3} = \lambda \nu \tan^{-1}$.

Comparing it with the expression for $\phi_{i,j}$ we fine that

$$\varphi_1 = 1 + k_2 + k_3.$$

For rifling with an increasing twist:

 $R = nN(\sin \tau + \nu\cos \tau) = \lambda(\tan \tau \sin_{CH} + 4 \gamma \kappa_3 \pi v^2)(\sin \tau + \nu\cos \tau) =$ - $\lambda \cos i(\tan i s \nu_{CH} + \varphi_1 k_1 n v^2)$ (tan $i + \nu$).

Substituting therein the expressions

and

$$\tan^2 \sigma = \tan^2 \sigma_1 \left[1 + 2n_{\alpha} \frac{\ell}{L_{\eta p}} + n_{\alpha}^2 \left(\frac{\ell}{L_{\eta p}} \right)^2 \right]$$

where

$$n_{\alpha} = \left(\frac{\tan^{-\alpha}2}{\tan^{-\alpha}1} - 1\right),$$

we will get an expression for R as a function of the projectile's path $m{\ell}$ and its velocity v, and using the numerical value of $\int_{-\infty}^{1} Rd\ell$ we can

determine the work done in overcoming the resistance offered by a rifling with an increasing twist.

CHAPTER 5 - DERIVATION OF FORMULAS FOR DETERMINING THE SECONDARY TYPES OF WORK INVOLVED

1. WORK DONE IN SPINNING THE PROJECTILE

The work done in imparting a spinning motion to the projectile is expressed by the formula

$$E_2 - \frac{1\Omega^2}{2},$$

where I = moment of inertia of the projectile about the axis of rotation $(I = m g^2).$

n - angular speed of rotation.

It was shown above that all four items of work under consideration are proportional to the basic work $\rm E_1=\frac{mv^2}{2}$, and the expression for E2 can be reduced to the form:

$$E_2 - k_2 \frac{mv^2}{2},$$

from which we can determine the value of k_2 . We shall substitute the linear speed v for the angular speed of the projectile Ω :

$$\Omega = \frac{v \tan \alpha}{r};$$

$$E_2 = \frac{a\rho^2 v^2 \tan^2 \alpha}{2r^2} = \left(\frac{\rho}{r}\right)^2 \tan^2 \alpha \frac{av^2}{2} = k_2 \frac{av^2}{2},$$

where

$$k_2 - \left(\frac{\rho}{r}\right)^2 \tan^2 \alpha$$
.

The coefficient k_2 indicates the portion of the total work done in spinning the projectile. This magnitude depends on the design or type of the projectile $\left(\frac{\rho}{r}\right)^2$ and on the rifling of the bore - the angle of twist τ .

2. THE WORK DONE IN OVERCOMING THE FRICTION IN THE RIFLING GROOVES

The component of the force of friction on the driving edge resisting the projectile's motion is expressed by:

The work done in overcoming this resistance is

$$E_3 = \begin{cases} I & \text{avn cos } a \frac{dL}{\cos a}, \\ 0 & \text{otherwise} \end{cases}$$

because the path traversed along the rifling is cos i.

Substituting here the expression for N:

$$E_3 = \left(\frac{\rho}{r}\right)^{-2} v \tan \pi s \int_0^t p_{CH} dt = \left(\frac{\rho}{r}\right)^2 v \tan \pi \frac{\pi v^2}{2}$$

we thus get

$$k_3 = \left(\frac{\rho}{r}\right)^2 v^t \tan \alpha$$

i.e., the expression derived earlier.

The numerical values of \mathbf{k}_2 and \mathbf{k}_3 were likewise discussed earlier in the text.

3. THE WORK DONE IN DISPLACING THE CHARGE

In displacing the projectile through the bore, the powder gases move together with it, whereby the unburned portion of the charge may move likewise under the action of non-uniform pressures developed in the bore. A portion of the developed energy is thus spent on the displacement of certain portions of the charge and on imparting kinetic energy to them, which must be taken into consideration.

Inasmuch as no accurate data is available on the distribution of the gas mass and the unburked portion of the charge in the initial air space, certain allowances must be resorted to when these factors are taken into account.

It is known that when a shot is fired wave motions may occur when the gases impinging on the base of the projectile rebound and encounter other gases flowing towards them, thus creating a localized pressure rise. Furthermore, in entering the narrower bore from the chamber, the gas stream becomes smaller in cross section, and this may also make it more difficult to express the law of motion in the form of analytic functions. As a result, it is necessary to resort to certain simplified expressions and allowances when determining the work done in the displacement of the gases.

This problem is presented as follows: an expression must be obtained for the kinetic energy of the portions of the charge moving with a variable speed, and an expression for linking this with the kinetic energy of the projectile.

In solving this problem, we shall make the following allowances:

	*	1 1 d 1	the norder	chamber	hes	the	5220	area.
1)	The bore,	including	the boader	Cuamber,	11 2 2	CITE	8446	area,

equal to the cross-sectional area s.

- 2) At each position occupied by the projectile, the mass of the charge is distributed evenly throughout the entire space between the base of the projectile and the base of the bore.
- 3) The elements of the charge have a translatory motion only, and the velocities between its layers increase from zero at the base of the chamber to v at the base of the projectile, according to the linear law.
- 4) The velocities of the particles at a given cross section are the same, and no fraction exists between the particles of the charge and the walls of the bore.

The diagram in fig. 106 clarifies the above.

We shall designate:

v = velocity of the projectile,

 $v_{\omega} = \text{velocity of a charge element in a given layer};$ $\mu = \omega' g = \text{mass of charge};$

A - distance between chamber base and base of projectile.

At the instant the projectile had traversed a distance ℓ , \Re is constant; it varies with time, whereas we are considering the condition of the charge masses in the initial air space at various distances x from the base of the chamber at every instant.

We shall separate an elementary layer of cross section s and height dx and designate its mass by d μ . The layer moves with a velocity v_{ω} ; its elementary kinetic energy will be expressed thus:

$$dE_4 = \frac{d\mu v_{\omega}^2}{2}.$$

In order to obtain an expression for the full kinetic energy, this expression must be integrated for ℓ between zero and n. We will then find the kinetic energy of the charge, whose elements move in the initial air space according to a given law.

We have from the condition of uniform mass distribution:

$$\frac{d\mu}{dx} = \frac{dx}{R} \text{ or } d\mu = \frac{\mu}{R} dx.$$

Fig. 106 - Distribution of Velocities of the Gas Layers Back of the Projectile

a) chamber base; b) projectile base.

From the condition that the velocity v_{ω} changes according to the linear law and from similar triangles:

$$v_{\omega}: v - x : \Pi$$
,

whence

$$v_{\omega} = \frac{v}{\Omega} x$$

Upon substituting, we get:

$$dE_4 = \frac{v^2}{n^2} \frac{x^2}{2} + \frac{\mu}{n} dx = \frac{\mu v^2}{2n^3} x^2 dx.$$

Integrating between the limits of zero and I, we get:

$$E_4 = \int_{0}^{\pi} \frac{v_{\omega}^2 d\mu}{2} = \int_{0}^{\pi} \frac{\mu v^2}{2\pi^3} x^2 dx$$

оr

$$E_4 = \frac{u^2}{2n^3} \int_{0}^{\pi} x^2 dx - \frac{uv^2n^3}{2n^3 \cdot 3} - \frac{1}{3} \frac{uv^2}{2} - \frac{1}{3} \frac{u}{n} \frac{u}{n^2} \frac{uv^2}{2};$$

because

$$\frac{\mu}{E} = \frac{\omega}{a}$$

then

$$E_4 = \frac{1}{3} \frac{\omega}{q} \frac{\pi v^2}{2} = \kappa_4 E_1$$

Hence, in consequence of the allowances made, the work done in moving the games and the charge is proportional to the basic work E_1 . The coefficient $k_4=\frac{1}{3}\frac{\omega}{q}$ varies considerably depending on the relative weight of the charge $\frac{\omega}{q}$. In low-power guns and howitzers $\frac{\omega}{q} \approx 0.10 \div 0.15$, in high-power guns it is about $0.30 \div 0.40$. Consequently,

$$k_4 = \frac{1}{3} \frac{\omega}{q} = 0.03 \div 0.13.$$

This coefficient was obtained under specific assumptions regarding

346

STAT

the distribution of masses and velocities. In actuality this phenomenon is much more complex and permits certain silowances. For example, F.F. Lender, in assuming that the greater portion of the charge is concentrated nearer the chamber base and hence has a smaller velocity, obtained a coefficient $b_4 = \frac{1}{6}$, other authorities assume b equal to 1/4 or 3/11.

4. THE EFFECT OF WIDENING THE CHAMBER ON THE WORK DONE IN DISPLACING THE GASES

The motion of gases in the presence of a widehed chamber represents a complex problem in gas dynamics which has not been solved to this day. We shall resort to a simpler and less accurate relation which takes into account the effect of a widehed chamber on the $\mathbf{k_4}$ coefficient.

The following allowances must be made in deriving this relation.

space, but only that part of the mass is in motion whose cross-sectional area s equals the cross-sectional area of the bore. The outer layers adjoining the chamber walls do not participate in this movement. As usual, the interval gas friction and the friction between the gases and the walls of the bore are disregarded.

Fig. 107 - Motion of Gases in the Presence of a Widened Chamber.

2) The velocity of the gas layers participating in the motion

varies linearly from zero at the base of the chamber to that of the velocity of the projectile at its base.

By using this purely mechanical representation which does not take into account the gas dynamics relating to the compression of the gas stream, we obtain the diagram shown in fig. 107.

The weight of the gases ω' participating in this motion relative to the over-all weight of the charge was expressed by the following formula:

$$\frac{\omega}{\omega} = \frac{s(\ell_{KM} + \ell)}{w_0 + s\ell} = \frac{\ell_{KM} + \ell}{\ell_0 + \ell} = \frac{r_1 + \frac{1}{x}}{r_1 + 1},$$

where $x = \frac{20}{I_{KM}}$ is the coefficient of expansion (widening) of the chamber and $\Delta = \frac{1}{I_0}$.

$$\omega' = \omega \frac{\Lambda + \frac{1}{\chi}}{\Lambda + 1}.$$

The formula for k_4 derived above is applicable to this gas BRSS:

$$\mathbf{k}_{4}^{*} = \frac{1}{3} \frac{\omega}{\mathbf{q}} = \frac{1}{3} \frac{\Lambda + \frac{1}{\chi}}{\Lambda + 1} \frac{\omega}{\mathbf{q}} = \mathbf{b} \frac{\omega}{\mathbf{q}}$$

when $\chi=1$, $k_4=\frac{1}{3}\frac{\omega}{q}$, $b=\frac{1}{3}$. As A changes with the movement of the projectile, the coefficient b varies from b = $\frac{1}{3}\frac{1}{1}$ at the start of motion when $\Lambda = 0$ and tends towards b = $\frac{1}{3} \frac{\omega}{q}$ as Λ increases.

Because Λ varies, when integrating the equation of interior

ballistics, the value of b must be taken as the average value between 0 and $\Lambda_{\underline{n}}$:

$$b_{cp} = \frac{1}{3} \left(\frac{\Lambda + \frac{1}{\chi}}{\Lambda + 1} \right)_{cp} = \frac{1}{3} \frac{1}{\Lambda} \int_{0}^{\Lambda} \frac{\Lambda + \frac{1}{\chi}}{\Lambda + 1} d\Lambda = \frac{1}{3} \left[1 - \left(1 - \frac{1}{\chi} \right) + 2.303 \frac{\log \left(\Lambda + \frac{1}{\chi} \right)}{\Lambda} \right].$$

A table is compiled for the values of b_{CP} (i.e., $b_{average}$) at two limits \triangle and X, at X=1 b = $\frac{1}{3}$ (Table 25).

			Tab	le 25			
X	0.0	1.0	2.0	3.0	5.0	7.0	10.0
1.1	0.309	0.312	0.316	0.319	0.322	0.324	0.326
1.5	0.246	0.25ნ	0.272	0.282	0.293	0.300	0.306
2.0	0.203	0.218	0.242	0.256	0.273	0.284	0.293
3.0	0.159	0.179	0.211	0.230	0.253	0.267	0.280
4.0	0.137	0.160	0.180	0.280	0.244	0.259	0.273

According to this table the coefficient b increases when Λ increases and X decreases and tends towards $\frac{1}{3}$ as the limit.

5. WORK DONE IN DISPLACING THE RECOILING PARTS

If we designate the weight and mass of the recoiling parts by \mathbf{Q}_0 and \mathbf{M}_1 , respectively, and the velocity by \mathbf{V}_1 , the work done in moving the recoiling parts will be expressed in the form:

$$E_5 - \frac{MV^2}{2} - \frac{Q_0V^2}{2g}$$
.

The mass M is known, whereas the velocity of recoil V can be found from the theorem of conservation of momentum of the system barrel-charge-projectile which is subjected to the action of internal forces.

However, it is first necessary to find an expression for the absolute velocity of the projectile $\mathbf{v}_{\mathbf{a}}$ (with respect to the ground) and for the average velocity of the charge $\mathbf{v}_{\mathbf{u}}$ portions of which never behind the projectile and behind the barrel itself.

Fig. 108 - Diagram of the Distribution of Gas Velocities when the Barrel is Recoiled

1) chamber base, 2) projectile base.

In order to determine the average absolute velocity v'_ω of the charge, we shall assume, as before, that the mass of the charge is distributed uniformly in the initial air space at each given instant and that the velocity v'_ω changes linearly from V at the base of the chamber to v_a at the base of the projectile, whereby

$$v_{a} = v - V$$
,

where v is the relative velocity of the projectile in the bore of the gun barrel (fig. 108).

If the velocity of the elements of the charge varies linearly, the

350

STAT

average velocity will be expressed as the half sum of the end velocities, i.e.,

$$v_{\omega cp} = \frac{-V + V_{a}}{2} = \frac{-V + V - V}{2} = \frac{v}{2} - V.$$

In constructing the equation of momentum and by assuming that the velocities in the direction of the projectile's motion are positive and those in the opposite direction are negative, we will get:

$$-MV + \mu V'_{\omega} cp + mV_{a} = 0$$
,

or, replacing $v_{|\omega|}^{'}$ and $v_{|\alpha|}^{'}$ by their values in terms of the relative velocity v of the projectile, we have:

$$-MV + \mu \left(\frac{v}{2} - V\right) + m (v - V) = 0$$

whence

$$V = \frac{m + \frac{\mu}{2}}{M + m + \mu} v.$$

Substituting the value of V in the expression for E₅, we get: $E_5 = \frac{MV^2}{2} = \frac{M}{2} \frac{\left(M + \frac{1}{2}\mu\right)^2}{\left(M + m + \mu\right)^2} v^2 = \frac{Mm^2}{2M^2} \frac{\left(1 + \frac{1}{2}\frac{\mu}{m}\right)^2}{\left(1 + \frac{m}{M} + \frac{\mu}{M}\right)^2} v^2 = \frac{m}{M} \frac{\left(1 + \frac{1}{2}\frac{\mu}{m}\right)^2}{\left(1 + \frac{m}{M} + \frac{\mu}{M}\right)^2} \frac{mv^2}{2}.$

Replacing the masses by their weights, we get
$$E_5 = \frac{q}{Q_0} = \frac{\left(1 + \frac{1}{2} \frac{\omega}{q}\right)^2}{\left(1 + \frac{q}{Q_0} + \frac{\omega}{q}\right)^2} \cdot \frac{mv^2}{2}.$$

The factor at $\frac{mv^2}{2}$ is the coefficient k_5 :

$$k_{5} = \frac{q}{\frac{q}{q_{0}}} = \frac{\left(1 + \frac{1}{2} - \frac{\omega}{q}\right)^{2}}{\left(1 + \frac{q}{q_{0}} + \frac{\omega}{q_{0}}\right)^{2}}.$$

The factor $\mathbf{k}_{\hat{\mathbf{b}}}$ depends in the main on the ratio between the weight of the projectile q and the weight of the recoiling parts $Q_{\hat{\Omega}}$; the second factor incorporates only a small change in this ratio. An approximate expression can be used in actual practice. Inasmuch as $\frac{q}{q_0} + \frac{\omega}{q_0}$ as well as $\frac{1}{4} \left(\frac{\omega}{q}\right)^2$ are small and approximately equal to each other,

$$\mathbf{k}_5 \approx \frac{\mathbf{q}}{\mathbf{Q}_0} \left(1 + \frac{\omega}{\mathbf{q}} \right).$$

If we express v in terms of the absolute velocity of the ω cp projectile $v_{\underline{a}}$, we will get:

$$-MV + \mu \left(\frac{v_{\underline{a}} - V}{2} \right) + mv_{\underline{a}} = 0,$$

whence

$$V = \frac{m + \frac{1}{2} \mu}{M + \frac{1}{2} \mu} v_{a} = \frac{q \left(1 + \frac{1}{2} \frac{\omega}{q}\right)}{Q_{0} \left(1 + \frac{1}{2} \frac{\omega}{Q_{0}}\right)} v_{a}.$$

The coefficient \mathbf{k}_5 characterizing the relative work of recoil is higher for howitzers than for cannon, because for the same caliber and projectile weight the weight of the recoiling parts \mathbf{Q}_0 is considerably smaller on howitzers than on cannon of the same caliber.

6. SUMMATION OF THE AUXILIARY WORK DONE

Upon investigating the auxiliary work items involved and determining a general expression for each in the form

$$E_1 - k_1 \frac{mv^2}{2} - k_1 E_1$$

an expression can be compiled for expressing the total work done in the energy equilibrium equation:

$$\frac{f \omega}{\Theta} \psi - \frac{ps(\theta_{\psi} + \ell)}{\Theta} = E_1 + E_2 + E_3 + E_4 + E_5 = \Sigma E_1,$$

whereby

$$\Sigma E_1 = E_1(1 + k_2 + k_3 + k_4 + k_5).$$

The sum in parenthesis is usually denoted by \boldsymbol{Q} :

$$\Psi = 1 + k_2 + k_3 + k_4 + k_5$$

or

$$\varphi = 1 + \left(\frac{\rho}{r}\right)^2 \tan^2 \alpha + \left(\frac{\rho}{r}\right)^2 \gamma_1 \tan \alpha + \frac{1}{3} \frac{\omega}{q} + \frac{q}{q_0} \left(1 + \frac{\omega}{q}\right).$$

Thus the total exterior work done by the gases when a shot is fired

$$\Sigma E_1 = \frac{\varphi m v^2}{2},$$

where φ is a coefficient representing the auxiliary or secondary work done.

Upon determining φ , when performing the necessary transformations for the solution of the fundamental problem of pyrodynamics, the sum of the work $\mathbf{E}_1 \dots \mathbf{E}_5$ in the right side of the equation may be omitted and replaced by the coefficient $\frac{\varphi_m \mathbf{v}^2}{2}$. φ is the coefficient representing the secondary or auxiliary work items involved. It increases in the main with the increase of the relative weight of the charge ω/q .

In such cases where design data on the gun rifling are not available, arphi is calculated by means of simplified formulas.

For example, Prof. V.E. Slukhotsky offers the following general expression for $\boldsymbol{\phi}$:

$$\varphi - \kappa + \frac{1}{3} \frac{\omega}{q}$$

by introducing into K the sum of .11 the k_1 's except k_4 , which is separately expressed by $\frac{1}{3} \frac{\omega}{q}$. The value of K varies with the type of gun:

The difference in the value of the K coefficient for cannon and howitzers is mainly obtained because of the work done by the recoil $(k_5$ coefficient):

Sugot, offers the following expression for ϕ :

$$\varphi = 1.05 \cdot \left(1 + \frac{1}{4} \frac{\omega}{q}\right) .$$

CHAPTER 6 - SUPPLEMENTARY PROBLEMS

1. RELATION BETWEEN THE PRESSURES EXERTED ON THE BASE OF THE BORE AND THE BASE OF THE PROJECTILE

When the projectile moves under the action of the powder gases, the pressure in the initial air space is not uniform because the gases are in motion and move with varying rates of speed.

In order to determine the pressure exerted on the base of the shell and the base of the bore, let us consider two sections of the initial air space: at base of the bore and the base of the shell, and construct an equation of motion of the masses located to one side (to the right) of these sections.

Then the projectile of mass $\ensuremath{\pi_{\rm under}}$ the action of force $\ensuremath{p_{\rm CH}}\ensuremath{s}$ will be subjected to an acceleration j, and the equation of motion for the section at the base of the projectile, with the resisting forces taken into account, will be written as follows:

The gas pressure $p_{\begin{subarray}{c}AH\end{subarray}}$ at the base of the shell will impart an accelerated motion not only to the shell, but also to the entire gas mass to the right of this section, between the base of the bore and the base of the projectile. Therefore the equation of motion at this section will be written thus:

$$p_{\Pi^{\pm}} = \varphi_1^{\pm}j + \mu j_3,$$

where μ - mass of gases generated by the charge (including the still unburned portion of the powder);

 \mathbf{j}_3 - mean acceleration of the charge moving with a varying velocity from one layer to another.

Dividing these equations term by term, we get:

$$p_{\Omega H} = p_{CH} \left(1 + \frac{\mu J_3}{\Psi, m J} \right) = p_{CH} \left(1 + \frac{j_3^{\omega}}{3 \Psi_1^{-1} q} \right) .$$

The ratio between the accelerations developed by the charge and the projectile is governed by the hypothesis applied with regard to the distribution of the mass of the charge in the initial air space and by the law of the change of accelerations at the various sections of the space.

If the law governing the gas velocity change is linear, the ratio $j_3/j_3 = \xi$ equals 0.5 and this magnitude, usually called the Piober coefficient, is the one used in most textbooks on the subject.

The fundamental formulas developed by P.W. Shkwornikov follow. Using the designations:

relative velocity of projectile;

 v_a - absolute velocity of projectile;

V - velocity of recoiling parts;

q - weight of projectile;

 Q_0 - weight of recoiling parts;

 ϕ_1 and ϕ_2 - coefficients representing the resistances encountered by the projectile in moving through the gun bore and by the recoiling parts.

Introducing the designation

$$1 = \frac{\varphi_1 Q + \frac{1}{2} \omega}{\varphi_2 Q_0 + \frac{1}{2} \omega};$$

then

$$V - iv_a - \frac{1}{1+i}v$$

and

$$v_{A} = \frac{1}{1+i}v.$$

The relation between $\textbf{p}_{\mbox{\sc gH}}$ and $\textbf{p}_{\mbox{\sc CH}}(\mbox{\sc *})$ will be expressed by the formula:

(*) p_{AH}^{-} - pressure at base of bore; p_{CH}^{-} - pressure at base of projectile

$$p_{RH} = p_{CH} \left[1 + 0.5 \frac{\omega}{\psi_1 q} (1 - 1) \right]$$

The maximum pressure develops not at the base of the bore but, rather, at a distance $x_m = \frac{1}{1+1} y_n$ at the section where the absolute velocity of the powder gases is $v_m = 0$.

In deriving the fundamental equation of pyrodynamics and assuming that pw = RTωψ, the pressure p was understood to represent a certain mean pressure which is identical at all points in the initial air space; it is assumed thereby that the powder burns under precisely such a pressure. The relation between p, p_{CH} and p_{RH} is given in the following form:

$$p = p_{CH} \left[1 + \frac{1}{3} \frac{\omega}{\varphi_1 q} \left(1 - \frac{1}{2} \right) \right]$$

$$p = p_{AH} \frac{1 + \frac{1}{3} \frac{\omega}{\varphi_1 q} \left(1 - \frac{1}{2} \right)}{1 + \frac{1}{2} \frac{\omega}{\varphi_1 q} (1 - 1)}$$

For a recoilless barrel i = 0 and the formulas are simplified:

$$p = p_{CH} \left(1 + \frac{1}{3} \frac{\omega}{\Psi_1 q}\right).$$

Multiplying both parts of this equation by ψ_1 , we get:

$$\varphi_1^{p} = p_{CH} \left(\varphi_1 + \frac{1}{3} \frac{\omega}{q} \right) = p_{CH}^{(1 + k_2 + k_3 + k_4)}.$$

Hence, if we disregard the work done in recoiling the barrel,

$$\varphi_1 p \approx \Psi^p_{CH} \quad \text{or} \quad \frac{p_{CH}}{\Psi_1} = \frac{p}{\Psi}.$$

In such a case the equation of the projectile's motion

sp_{CH} -
$$\varphi_1^m \frac{dv}{dt}$$

will be equal to the equation of the projectile's motion

$$sp = \varphi = \frac{dv}{dt},$$

where p - mean gas pressure;

 ϕ - a coefficient which takes into account all the auxiliary or secondary work done.

This constitutes a very important deduction, because it permits to consider p and \$\epsilon\$ to be identical values in both the fundamental equations of pyrodynamics

ps(
$$i_{\psi} + \hat{k}$$
) -fwy - $\frac{\varphi \rho \pi v^2}{2}$

and in the equation of the projectile's motion

$$ps = \sqrt{m} \frac{dv}{dt} \quad \text{or} \quad ps = \sqrt{m}v \frac{dv}{dt}$$

whereby v is the relative velocity of the projectile (relative to the bore), which is computed in solving the problem of interior ballistics.

For cannon and howitzers φ_1 = 1.02, for small arms using ordinary

bullets ϕ_1 = 1.05, for armor-piercing bullets ϕ_1 = 1.07. The coefficient i depending on the distribution of the moving

mass in the system barrel-charge-projectile, may be considered to be 359

equal to:

i = 0.0015 for rifles and machine guns.

1 = 0.0030 for antitank guns

1 - 0.020 for cannon

i = 0.035 for howitzers

This data was arrived at from the analysis of the results obtained by P.N. Shkvornikov for some of our (Russian) artillery systems and small arms.

2. HEAT LOST TO THE BARREL WALLS THROUGH HEA: TRANSFER

When considering the heat lost to the walls of the barrel when a gun is fired, we shall take into account the heat transfer resulting from the direct contact of the hot gases with the cold walls of the gun barrel; we shall not consider the heating of the walls due to mechanical reasons (energy of translation of projectile, friction by the rotating band, and deformation of barrel).

The data entering these calculations were presented in Part I of this book. The basic allowance used is the same as that assumed in computing the heat transferred to the walls of a manometric bomb, namely, that the heat loss is proportional to the number of impacts made by the molecules against the wall of the bomb, which in turn depends on Σ , p and t, i.e., on $\Sigma \cap \Delta$ the surface area of the bore.

However, whereas the area S_g remains constant in a bomb, Σ varies from the chamber area Σ_0 to area $\Sigma_{\rm KH}$ of the entire barrel surface. The chamber area is constantly subjected to the action of the gases and thus takes up a portion of the heat energy, whereas the area of the rifled portion of the bore participates in the cooling of

the gases only while the projectile is in motion and thus gradually tends to increase the initial air space. The nearer the rifled portion to the muzzle, the shorter will be the period during which it will be subjected to the action of the gases, and the less heat will it take up when a shot is fired.

After the projectile's departure, the heat transfer to the walls continues along the entire area of the bore at a constantly decreasing pressure, but inashuch as this heat transfer no longer affects the actual shot (reduced pressure and velocity), we shall not consider it for the time being.

In order to take into account the effect of heat transfer when a shot is fired, it is first necessary to determine by means of bomb tests the time \mathbf{t}_K it takes for the powder to burn at Δ = 0.20, and also the coefficient \mathbf{C}_k % from the Murraur C curve.

Fig. 109 - Heat-Transfer Diagram According to Miuraur

If the powder were burned in the chamber at constant initial charge density Δ_0 , the correction for heat transfer would be determined by the following formula:

$$\left(\frac{\Delta T_{4}}{T}\right)_{0} = \frac{c_{M}}{7.774} \frac{\Sigma_{0}}{\overline{w}_{0}} \frac{1}{\Delta_{0}},$$

where Σ_0 is the chamber surface area and $\frac{\Sigma_0}{w_0} = \frac{4}{D} + \frac{1}{Z_{\rm KM}}$; is the length, and D is the mean diameter of the chamber.

If the powder had burned all the time throughout the entire bore space at a loading density of $\mathbb{I}_{KH} = \frac{\omega}{w_0 + s k_{\perp}} = \frac{\omega}{w_{KH}}$, the loss would be expressed by the formula;

$$\frac{\Delta T_{\rm tk}}{T} = \frac{C_{\rm M}}{7.774} \frac{T_{\rm KH}}{T_{\rm KH}} \frac{1}{\Delta_{\rm KH}},\tag{70}$$

where Γ_{KH} is the surface area of the whole bore.

Actually, the loss suffered when a shot is fired is confined between these two values, and in order to account for same when the pressure and the cooling surface of the bore change simultaneously, these changes whose increments are proportional to the path traversed by the projectile must be known as a function of time.

With the p, t and Σ , t or $\mathcal L$, t curves at his disposal, Muiraur suggested the following method for determining losses due to heat

The p, t (I) and $\frac{\Sigma}{\Sigma_{KH}}$, t(II) curves are plotted on the same diagram (fig. 109); point C' represents the end of burning of the powder

The area of the pressure curve $Op_0^p_m^p_K^{C'O}$ corresponds to I_K^- = $\int_{-\infty}^{\infty} pdt$ obtained from bomb tests; the area C'p_Kp_KC" = I_{II} corresponds

to the additional cooling which would obtain in the second period after the end of burning of the powder just before the projectile leaves the barrel.

If the surface area were constant, the right side of the equation would have to be multiplied by the area ratio in order to take the heat transfer into account:

$$\frac{o_{P_{0}P_{m}P_{A}}c^{**o}}{o_{P_{0}P_{m}P_{K}}c^{**o}} = \frac{\mathbf{1}_{K} + \mathbf{1}_{1:L}}{\mathbf{1}_{K}} > 1.$$

But since the area varies from the relative value $\frac{\Sigma_0}{\Sigma_{KH}}$ to 1 = $\frac{\Sigma_{KH}}{\Sigma_{KH}}$ according to the law expressed by curve II, a correction must be introduced into formula (70) by multiplying the ordinates of curve I by the ordinates of curve II; the obtained products are given in the form of curve III.

The ratio of the area $OABp_{\overline{A}}C"O = \int \frac{\overline{\Sigma}}{\Sigma KH} pdt$ to I_K will then show the part of the losses computed by means of formula (70) that must be taken in order to determine the loss obtained due to the simultaneous change of the area and the pressure. Miuraur had found that this ratio must be equal to 0.43 ± 0.46 .

Thus the loss due to heat transfer and the relative drop in temperature due to this loss will be expressed by the following formula:

$$\frac{\Delta T_{K}}{T} = \frac{C_{M}}{7.774} \frac{\Sigma_{KH}}{\pi_{KH}} \frac{1}{\Delta_{A}} \frac{1}{I_{K}} \int_{0}^{t} \frac{\Sigma_{KH}}{\Sigma_{KH}} pdt.$$
 (71)

The losses computed in this manner for various weapons amount to

1% in the case of a 152-mm cannon and to about 15% for a rifle.

Therefore cooling through the walls when a shot is fired varies within very wide limits and amounts to from 1 to 15% of the total heat energy; thus whereas an error of 1% could be disregarded, no such allowance can be made in the case of a 15% error, and the latter error must therefore be accounted for.

The method used by Miuraur for determining losses incurred during a shot requires the availability of pressure and distance or path curves as a function of time, which data are usually obtained by means of numerical integration or from AH. A (ANII) or TAY (GAU) tables.

The author had shown that the heat lost to the walls of the barrel can be calculated also in the absence of the p and $\hat{\mathcal{L}}$ curves as a function of time.

Bearing in mind that $w_{KH}\Delta_{KH}=w_0\Delta_0=\omega$, pdt = dl, the above formula can be rewritten thus:

$$\frac{\Delta T}{T} \left(\mathbf{S} - \frac{C_{\mathbf{K}}}{7.774} \frac{\Sigma_{\mathbf{KH}}}{\omega} \right)^{\frac{1}{2}} \frac{\Sigma_{\mathbf{d}I}}{\Sigma_{\mathbf{KH}}^{1}K} - \frac{C_{\mathbf{M}}}{7.774} \frac{\Sigma_{\mathbf{U}}}{\omega} \int_{0}^{1} \frac{\Sigma}{\Sigma_{\mathbf{U}}} \frac{d\mathbf{I}}{\mathbf{I}_{\mathbf{K}}}. \quad (72)$$

But from the equation of motion

whence

$$\mathrm{d} \mathbf{I} = \frac{\phi_{\mathbf{B}}}{\mathbf{s}} \mathrm{d} \mathbf{v}, \quad \mathbf{I}_{\mathbf{K}} = \frac{\phi_{\mathbf{B}}}{\mathbf{s}} \mathbf{v}_{\mathbf{K}}^* = \frac{\phi_{\mathbf{B}}}{\mathbf{s}} (\mathbf{v}_0^* + \mathbf{v}_{\mathbf{K}}^*),$$

where v_0^* is the velocity the projectile would have attained if it had started to move as if there were no rifling at the instant a

portion of the charge ψ_0 is burned, corresponding to the true pressure:

$$\mathbf{v}_{0}^{\prime} = \frac{\mathbf{s}}{\mathbf{\varphi}_{\mathbf{m}}} \mathbf{1}_{0} = \frac{\mathbf{s}}{\mathbf{\varphi}_{\mathbf{m}}} \int_{0}^{\mathbf{\varphi}_{0}} \mathbf{p} dt.$$

This value serves as a means for determining the heat lost in the chamber due to transfer before the projectile starts moving. The ratio $\frac{dI}{I_K}$ can be replaced by the ratio

$$\frac{dv}{v_K^+} = \frac{dv}{v_0^+ + v_K^-}.$$

 $\sum_{\rm KH}$ represents the total surface area of the chamber \sum_{ij} and of the rifled portion of the bore $\pi d^{\rm H}f_{\rm H}$, where $d^{\rm H}$ is the reduced diameter of the circle having the same perimeter as the perimeter of the cross section of the bore including the rifling bores. If the number of grooves is n, and their depth is $t_{\rm H}$,

$$\pi d^{n} = \pi (d + t_{H}) + 2nt_{H} = \pi d + \frac{t_{H}}{d} + \frac{2n}{\pi}$$

Inasmuch as in the barrels of artillery pieces, $t_{\rm H}$ = 0.01-0.02a,

$$d'' = d/[1 + (0.01...0.02)(1 + 0.64n)]^{-1}$$

when n - 28.

$$d'' = d/1 + (0.01...0.02)18.9/7 = d/1.19...1.38/7 = d/1 + \alpha_1/7$$

The numerals in parenthesis show that the increase of the cooling surface due to the presence of rifling is very great and becomes greater with the increase of n and $t_{\rm n}/d$.

365

STAT

Inasmuch as the mean diameter of the powder chamber 18

$$p = d\sqrt{x}$$

where $x = \frac{l_0}{l_{KM}}$ is the widening coefficient of the chamber greater than unity,

$$\Sigma_0 = \pi d \sqrt{\chi} \ell_{\rm KM} + 2 \frac{\pi}{4} d^{-2} = \pi d \ell_{\rm KM} \left[\sqrt{\chi} + \frac{1}{2} \frac{d}{\ell_{\rm KM}} \left[7 + \epsilon_1 \right]^{\gamma} \right].$$

Assuming for the sake of simplicity that

$$I_{KM} \left[\sqrt{2} + \frac{1}{2} \frac{d}{I_{KM}} / 1 + i_1 / 7 \right] \approx \xi_0 / 1 + i_1 / 7,$$

where $l_0 = \frac{w_0}{s}$ is the reduced length of the chamber, we obtain expressions for the areas of the bore at the start, at the end and at an intermediate instant;

$$\begin{split} & \sum_{0} - \pi d(1 + \alpha_{1}) \, f_{0}; \\ & \sum_{KH} - \pi d(1 + \alpha_{1}) \, (f_{0} + f_{1}); \\ & \sum_{0} - \pi d(1 + \alpha_{1}) \, (f_{0} + f_{1}); \\ & \frac{\sum_{0} - \frac{f_{0} + f_{1}}{f_{0}} - 1 + \frac{f_{0}}{f_{0}}; \, \frac{\sum_{KH} - \frac{f_{0} + f_{1}}{f_{0} + f_{1}}. \end{split}$$

Replacing $\frac{dI}{I_K}$ and $\frac{\Sigma}{\Sigma_0}$ is formula (72) by their corresponding expressions, we get a relationship for the heat transfer occurring while the projectile moves through the bore in the form:

STAT

$$\frac{c_{\mathbf{M}}}{7.774} \frac{\Sigma_{\mathbf{0}}}{\omega} \int_{0}^{1} \frac{\Sigma}{\Sigma_{\mathbf{0}}} \frac{d\mathbf{I}}{\mathbf{I}_{\mathbf{K}}} - \frac{c_{\mathbf{M}}}{7.774} \frac{\Sigma_{\mathbf{0}}}{\omega} \int_{0}^{\mathbf{V}} \frac{(\mathbf{\ell}_{\mathbf{0}} + \mathbf{\ell}) d\mathbf{v}}{\mathbf{\ell}_{\mathbf{0}}(\mathbf{v}_{\mathbf{0}}^{\prime} + \mathbf{v}_{\mathbf{K}})}$$
(73)

fo this must be added the heat losses in the chamber during the preliminary period, determined by the analogous formula

$$\frac{c_{M}}{7.774} \frac{\Sigma_{0}}{\omega} \frac{I_{0}}{I_{K}} = \frac{c_{M}}{7.774} \frac{\Sigma_{0}}{\omega} \frac{\mathbf{l}_{0}^{V_{0}^{+}}}{\mathbf{l}_{0}^{(V_{0}^{+} + V_{K}^{+})}}.$$
 (74)

Adding formulas (73) and (74), we get an expression for the gas temperature drop occurring while the projectile is in motion due to heat lost to the walls: $v_{\rm g}$

$$\frac{\left(\Delta T\right)}{T} = \frac{c_{M}}{7.774} = \frac{\sum_{0}^{\infty} \frac{L_{0}(v_{0}^{+} + v) + \int_{0}^{\infty} l dv}{\sigma(v_{0}^{+} + v_{K})} = \frac{c_{M}}{7.774} = \frac{\sum_{0}^{\infty} \gamma_{0}}{\omega} \gamma_{0}.$$
(75)

Prior to the start of motion, v=0, and expression (75) is transformed into (70). Prior to the end of travel in the bore, $v=v_{\underline{x}}$, so that:

$$\left(\frac{\Delta T}{T}\right)_{R} = \frac{c_{M}}{7.774} \frac{\Sigma_{0}}{\omega} \frac{\ell_{0}(v_{0}^{\prime} + v_{R}^{\prime}) + \int_{0}^{v_{R}^{\prime}} \ell dv}{\ell_{0}(v_{0}^{\prime} + v_{K}^{\prime})} - \frac{c_{M}}{7.774} \frac{\Sigma_{0}}{\omega} \eta_{R}.$$
 (76)

A curve depicting the velocities of the projectile as a function of the traversed path $\mathcal L$ is adequate for the purpose of calculating this loss.

The ℓ , v diagram in fig. 110 constructed by the author indicates

that γ_{R} represents a ratio of the areas

 $\chi = \frac{\text{area aoefhda}}{\text{area abcd}};$

the rectangle aghd characterizes the loss incurred in the chamber, the area of the curvilinear figure oefg represents the loss in the rifled portion of the barrel, and the rectangle aokd represents the loss in the preliminary period.

By analogy, the coefficient γ characterizes the heat transfer at a given time.

when computing the cross-hatched area in fig. 110, v is the independent variable and L is the dependent one. But the situation will not change if we were to turn the graph around in such a way as to obtain an ordinary curve of velocities v as a function of the path L. In such a case we would have a v, L graph (fig. 111) instead of an L, v graph, wherein the cross-hatched area lies above the v, L curve. The numerical values of γ and γ will remain the same, but due to the change of the coordinates the expression for the area in the numerator will be different:

$$\gamma = \frac{\ell_{0}(v_{0}^{+} + v) + v\ell - \int_{0}^{\ell} v_{\alpha}\ell}{\ell_{0}(v_{0}^{+} + v_{K})};$$

$$\frac{\ell_{0}(v_{0}^{+} + v_{M}^{+}) + v_{M}\ell_{M} - \int_{0}^{\ell_{M}} v_{\alpha}\ell}{\ell_{0}(v_{0}^{+} + v_{K})}.$$

The relation between v and $\hat{\mathcal{L}}$ can be found in the ANII or GAU tables by means of the ratio

$$\frac{1}{L_0}$$
 - \dots

Fig. 110 - Diagram for Computing the Heat Transfer in Terms of £, v Coordinates

Fig. 111 - Diagram for Computing the Heat Transfer in Terms of v, L Coordinates

Dividing the numerator and denominator of γ by \mathcal{L}_0 , disregarding the value of \mathbf{v}_0^{\prime} in the numerator, and bearing in mind that

$$v_0^1 + v_K - \frac{a_1^2}{4\pi} - v_1^2$$

I

we get

$$\gamma = \frac{v(1 + \Delta) - \int_{0}^{\lambda} v d\lambda}{v_{1}} = (1 + \Delta) \frac{v}{v_{1}} - \int_{0}^{\lambda} \frac{v}{v_{1}} d\lambda;$$

$$\frac{v}{v_1} = \frac{v_{table} - \sqrt{\frac{\omega}{q}} \phi_m}{s1_K} = v_{table} - \sqrt{\frac{\omega \phi^2 m^2}{a_K s^2 1_K^2}} = v_{table} - \sqrt{\frac{f \omega \phi m}{s^2 1_K^2 f_K}} = v_{table} - \sqrt{$$

$$-\sqrt{\frac{1}{B}} \frac{v_{tables}}{\sqrt{1g}}.$$

On the basis of the constants assumed in the ANII tables 95,000 kg-m/kg; K = 9.81 m/sec²; φ = 1.05; \sqrt{fg} = 955 and $\frac{v}{v_1}$ = $\frac{v_{table}}{955\sqrt{B}}$.

Therefore

$$\gamma = \frac{1}{955 \sqrt{B}} \left[(1 + \Lambda) v_{table} - \int_{0}^{\Lambda} v_{table} d\Lambda \right] ;$$

$$\int_{A} = \frac{1}{955 \sqrt{B}} \left[(1 + \Lambda) v_{table} - \int_{J}^{\Lambda_{A}} v_{table} dA \right] .$$

Incorporating these expressions in formulas (75) and (76), we will find the heat transfer losses incurred when a shot is fired from the ANII tables.

It should be noted that when calculating $\frac{\Sigma_0}{\omega} = \frac{\Sigma_0}{w_0 \Delta_0}$, the Σ_0 and w_0 must be expressed in cm² and cm³.

Results of Calculations. Calculations for a 76-mm cannon of 1902 issue measuring 30 calibers in length show that for a normal charge $\left(\frac{\Delta T}{T}\right)$ % ≈ 1.8 ; when the charge is reduced the loss increases somewhat and amounts to 2.2%. Upon increasing the length of the barrel to 50 calibers the loss incurred with a normal charge equals 2.5%, and is 3.1% for a reduced charge.

If expression (76) is presented in the form

$$\left(\frac{\Delta T}{T}\right)_{R} = K_{T} \gamma_{R},$$

where

$$\kappa_{\Gamma} = \frac{C_{M}}{7.774} \frac{\Sigma_{0}}{W_{0}} \frac{1}{\Delta}$$

we shall have the following data (Table 26) for a 76-mm cannon of 1900 issue, using Cf strip powder ($2c_1 = 1.03$ mm) (based on N.A. Zabudsky's tests) and $C_M = 4.63$, when varying the charge.

	·	Table 26		,
ω Δ K _T	1.041 0.613 0.553	0.892 0.525 0.646	0.725 0.426 0.795	0.558 0.328 1.034
$\begin{cases} \frac{\lambda T}{T} \\ \frac{\Delta T}{T} \end{cases} $	1.36 3.01 0.75	1.51 2.83 0.98	1.75 2.54 1.39	2.24 2.11 2.32
$\left(\begin{array}{cc} T \\ \overline{T} \end{array}\right)$	1.67	1.83	2.00	2.18
4 + 4°	7.79	9.98	14.23	25.05

This table shows that when the charge is decreased, the heat transfer loss increases from 1.7 to 2.2%. When the barrel length is increased to 50 calibers, the percentage value increases correspondingly to 2.3 and 3.1. When the charge is decreased the drop in temperature at the end of burning becomes greater due to the increased cooling surface area, because the end of purning is transposed towards the muzzle (see like ℓ + ℓ ₀).

line $\frac{1}{K} + \frac{1}{0}$.

Calculations for systems of different calibers have shown that when the caliber is increased the heat transfer losses decrease because of the reduced value of $\frac{7}{80}$, and notwithstanding the increase of CM which increases slowly in the case of thick powders, $\frac{1}{10}$ fluctuates between the limits of 2.25 and 3.75. The heat loss in a rifle amounts to 10% and must be accounted for by reducing correspondingly the powder energy $f = RT_1$, i.e., as if the burning temperature of the powder were reduced. For guns varying from 37 to 75 mm in caliber, the energy f determined in bomb without corrections for heat transfer may be considered acceptable, because the heat losses obtained in such guns and in bombs are about the same (2-3%).

STAT

SECTION V - PHENOMENA ASSOCIATED WITH GAS DISCHARGE

GENERAL COMMENTS

The fundamental equations of internal ballistics permit the solution of the problem dealing with the motion of the projectile up to the instant at which the base of the shell traverses the muzzle face of the barrel.

However, the action of the gases continues or persists even after the projectile's departure from the bore. Both the projectile and the barrel experience for a certain period of time the so-called "after-effect" of the powder gases in the form of continued gas pressure exerted on both the projectile and the barrel. While it is possible to approximately determine the theoretical relation between the pressures acting on the base of the bore and the base of the projectile while the latter is travelling through the bore, this relationship will be entirely different after the projectile has left the bore. That portion of the gas which, upon leaving the bore, continues to exert a pressure on the projectile for a certain period of time, will be subjected to conditions differing sharply from the conditions to which the gases still remaining in the barrel are subjected.

The gases remaining in the barrel continue in their motion along the axis of the bore from the base of the barrel to its muzzle face, and upon leaving the bore commence to disperse somewhat from their basic direction of motion. The resulting reaction imparts additional acceleration to the recoiling barrel and the maximum speed of recoil obtains after the projectile's departure from the barrel. Almost the entire mass of gases generated by the charge participates in the reaction on the barrel. After the projectile's departure, only

0 (5064

STAT

the central portion of the gases which had retained its axial motion along the bore continues to react on the base of the barrel; the greater portion of the gas either temporarily overtakes the projectile or is dissipated laterally in the form of a gas cloud. Inasmuch as the density of the gas discharge rapidly drops as the gases expand, the gases lose speed very rapidly and fall behind the projectile.

Nevertheless, the projectile's speed will continue to increase somewhat even while the gases are lagging behind it. During this period the fuze mechanisms are triggered and go into action. A study of the projectile's motion after its departure from the bore constitutes one of the problems of internal ballistics.

The period of gas after-action, or the third period, which is a direct continuation of the shot phenomenon accompanied by gas discharge from the gun barrel, constitutes a problem involving the derivation of special fundamental relations for its solution. This, in turn, requires a knowledge of the fundamental laws of gas discharge.

General relations of gas dynamics are also required for the solution of special problems arising from the complex structure of artillery weapons and with the appearance of new systems, in which the gases are discharged from ports of various types.

Such systems may include:

- Automatic weapons in which the gases are discharged from the bore before the projectile's departure, or guns with muzzle attachments.
- 2) Weapons with separate powder chambers with gas discharge through a single or multiple nozzles (weapons operating on the principle of gas dynamics or hydrodynamics).

1

- 3) Recoilless guns in which the gases are discharged through an opening in the breechblock.
- 4) Muzzle brakes, in which the gases are discharged through passageways laterally, and by exerting pressure on the walls of these passageways brake the recoil and reduce the recoiling speed.
- 5) Mine throwers, in which a portion of the gases overtakes the mine while it is moving through the bore; special mine throwers with a remotely controlled valve, in which a portion of the gases is discharged through the valve and does not participate in the action exerted on the mine; furthermore, mine throwers are provided with means for discharging the gas from the inner chamber, containing the tail cartridge and the main charge, into a chamber containing additional charge.
 - 6) Special manometric bombs with nozzles used for studying the powder burning phenomenon by means of gas discharge through a nozzle.
 - 7) Rocket chambers.

In all the systems mentioned above, the gas is discharged through ports of warying shapes and sizes under high pressure. In order to establish the proper relations, taking into account all of these phenomena and their peculiarities, use must be made of the general formulas relating to gas discharge. Therefore, all the derived relations constitute first approximations only and require further refinement on the basis of test data obtained during firing of weapons.

CHAPTER 1 - GENERAL INFORMATION ON GAS DYNAMICS

1. RATE OF GAS DISCHARGE

Using the designations:

U, W, W - gas velocities projected on the coordinate axes;

37	5
----	---

X, Y, Z = projections of external volume forces on the same axes; $\rho' \ = \ density \ of \ a \ unit \ mass \ of \ gas;$ p = pressure,

then the fundamental Euler's equation of hydrodynamics with respect to the x-axis will read as follows:

$$\frac{dU}{dt} = \frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} + W \frac{\partial U}{\partial z} - X - \frac{1}{\xi'} \frac{\partial p}{\partial x}$$
 (77)

and will be analogous in character with respect to the other axes.

We shall consider the gas discharge as a single-dimensional motion in the direction of the x-axis, due to pressure difference, in the absence of external forces (X = 0):

$$\frac{dU}{dt} = \frac{\partial U}{\partial t} \cdot U \frac{\partial U}{\partial x} = -\frac{1}{\rho} \frac{\partial \rho}{\partial x}.$$
 (78)

The values of p and U for a stabilized motion do not depend on t and are functions of x only. In this case $\frac{\partial U}{\partial t} = 0$:

$$U = \frac{dU}{dx} = -\frac{1}{\rho'} \frac{dp}{dx}$$

or

$$-\frac{dp}{p'} - udv - d \frac{v^2}{2}.$$

Replacing the mass density ρ^* by gravimetric density ρ and bearing in mind that $\rho=1/\nu$, where w is the specific volume of gas, we get:

$$-wdp - d \frac{u^2}{2g}.$$
 (79)

If we designate the pressure, specific volume and velocity in the vessel from which the gases are discharged by $\mathbf{p_1}$, $\mathbf{w_1}$, $\mathbf{U_1}$, respectively, then, upon integrating expression (79), we will get

In order to integrate the left side of equation (80), the dependence of w on p for the process taking place in the gas must be known. We shall consider the polytropic process, of which the adiabatic process constitutes a particular case:

$$p_{\mathbf{x}^{\mathbf{k}}} = p_{1}^{\mathbf{x}^{\mathbf{k}}_{1}} = \text{const},$$

whe nce

$$w = \frac{1}{f} = w_1 \frac{p_1^{1/k}}{p^{1/k}}.$$

Substituting this expression in equation (80) and integrating,

we get:

$$w_1 p_1^{1/k} \int_{p_1}^{p} \frac{dp}{p^{1/k}} - \frac{v^2 - v_1^2}{2g};$$

$$\frac{1/k}{w_1 p_1} \frac{k}{k-1} (p_1^{k-1/k} - p^{k-1/k}) - \frac{k}{k-1} p_1 w_1 \left[1 - \left(\frac{p}{p_1} \right)^{-k-1/k} \right] - \frac{v^2 - v_1^2}{2g},$$

whence

This is Saint-Venant's formula.

If we assume that $U_1 = 0$ when the discharge is from a very large vessel, we shall get an expression for the velocity of the gas discharged into space with a pressure p from the vessel under pressure Pl.

$$U = \sqrt{\frac{2gk}{k-1}p_1^{-k}} \frac{1}{1-\frac{p}{p_1}} \frac{k-1}{k}$$
 (82)

The maximum velocity will obtain when the discharge is into vacuum, when p = 0; we will have:

$$\mathbf{u}_{\max} = \sqrt{\frac{2gk}{k-1}} \; \mathbf{p}_1 \mathbf{v}_1.$$

however, we know from physics that $\sqrt{gkp_1w_1} = \sqrt{gkRT_1} = C_1$ is the speed of sound in gas, corresponding to the given condition p_1 and \mathbf{w}_1 or \mathbf{T}_1 of the gases present in the vessel from which the gases 378

STAT

are discharged. Hence,

$$U_{max} = \sqrt{\frac{2}{k-1}} C_1.$$

Fig. 112 - Dependence of Velocity of Gas Discharge on $p_\ell p_1$. Substituting this expression in equation (82), we get:

$$U = U_{max} \sqrt{1 - \left(\frac{p}{p_1}\right)^{-k-1/k}} = C_1 \sqrt{\frac{2}{k-1}} \left[1 - \left(\frac{p}{p_1}\right)^{-k-1/k}\right].$$

The dependence of the velocity of discharge on pressure p or the ratio p_i, p_1 is depicted in fig. 112. When p=0, $U=U_{max}$. As the back pressure p increases, U decreases and has a point of inflexion $(U_{CT.}, X_{CT.})$; and when $p_i, p_1=1$ it becomes zero, i.e., the discharge ceases.

We shall discuss the values $x_{cr.}$ and $U_{cr.}$ later in the text.

2. THE GRAVIMETRIC CONSUMPTION OF GASES G PER SECOND

If the stream of gases discharged under a high pressure has a velocity U, density $\rho=1/w$ and a cross-sectional area s, the gas consumption per second will be:

· ·

$$G_{\text{sec}} = \sup_{p} = \sup_{k \in \mathbb{N}} \sqrt{\frac{2gk}{k-1}p_1w_1} \left[1 - \left(\frac{p}{p_1}\right)^{-k-1/k}\right]. \tag{83}$$

Since for a polytropic process

$$f = \frac{1}{\Psi} = \frac{1}{\Psi_1} \cdot \left(\frac{p}{p_1}\right)^{1/k}$$

then, substituting this expression in the formula for determining the expenditure per second, we get:

e per second, we get:
$$G_{\text{sec}} = s \frac{1}{w_1} \left(\frac{p}{p_1} \right)^{1-k} \frac{2gk}{k-1} p_1 w_1 - \frac{p}{p_1} \frac{k-1}{k} = \frac{2gk}{k-1} \frac{p}{p_1} \sqrt{\frac{p}{p_1}} \sqrt{\frac{p}{p_1}}} \sqrt{\frac{p}{p_1}} \sqrt{\frac{p}{p_1}} \sqrt{\frac{p}{p_1}} \sqrt{\frac{p}{p_1}}} \sqrt{\frac{p}{p_1}} \sqrt{\frac{p}{p_1}} \sqrt{\frac{p}{p_1}} \sqrt{\frac{p}{p_1}} \sqrt{\frac{p}{p_1}}} \sqrt{\frac{p}{p_1}} \sqrt{\frac{p}{p_1}} \sqrt{\frac{p}{p_1}} \sqrt{\frac{p}{p_1}}} \sqrt{\frac{p}{p_1}} \sqrt{\frac{p}{p_1}} \sqrt{\frac{p}{p_1}} \sqrt{\frac{p}{p_1}}} \sqrt{\frac{p}{p_1}} \sqrt{\frac{p}$$

(Tseiner's formula).

ner's formula). Designating the p, p₁ ratio by x and the constant $\begin{pmatrix} \frac{2gk}{k-1} & \frac{p_1}{k-1} \\ \frac{p_1}{k-1} & \frac{p_2}{k-1} \end{pmatrix}$ by a₁, we find:

$$G_{sec} = a_1 s = \sqrt{x} = \frac{k+1/k}{x} = a_1 sf(x)$$
.

When the motion is steady, the consumption per second is constant; therefore,

$$sf(x) = s \sqrt{\frac{2/k}{x} \frac{k+1/k}{-x}} = \frac{G_{sec}}{a_1} = const$$

and

$$= \frac{\text{const}}{f(\mathbf{x})}$$

i.e., the cross section of the stream varies inversely with the change f(x) depending on p, p,

 $\frac{P_{CT.}}{P_1} = x_{CT.} = \left(\frac{2}{k+1}\right)$; therefore, the cross-sectional area s Investigations show that f(x) has a maximum when the value will be minimum at this value. The pressure ratio p_{cr} , p_{l} at which the cross section of the stream is minimum and the flow through a unit cross-sectional area is maximum is called the critical pressure ratio. and the cross section is called the critical cross section.

The value $x_{cr.}$ depends on the polytropic index, though to a small degree only. The following table gives the values of $\mathbf{x}_{\text{CT}_{\perp}}$ with relation to k (Table 27).

1612000	Tabl	e 27			
	1.41	1.30	1.25	1.20	1.10
$x_{cr.} - \left(\frac{2}{k+1}\right)^{k/k-1}$	0.527	0.546	0.555	υ.565	0.585
(k + 1)		2	k, k-l	ormula (82	2) for

Substituting the value $x_{cr.} = \left(\frac{2}{k+1}\right)^{-k, k-1}$ in formula (82) for the discharge velocity, we get the following expression for the "critical" gas velocity:

$$v_{cr.} = \sqrt{\frac{2gk}{k+1}p_1v_1} = \sqrt{\frac{2}{k+1}c_1}.$$

This value approaches the speed of sound in a gas located in a vessel, from which the discharge takes place, and whose equation of

state is determined by the values p_1 and w_1 .

Since from the adiabatic equation $p_1 w_1 = p_{cr.wcr.} \frac{k+1}{2}$, the expression for critical velocity will take on the form:

i.e., the critical velocity at the minimal cross section at the point of critical pressure equals the velocity of sound, corresponding to the state of gas at this critical pressure. This velocity is shown in fig. 112 in the form of segment $U_{\rm Cr}$ at $x_{\rm Cr}$.

Having determined the critical pressure and velocity of the gases, we shall now find the consumption through the smallest cross section (which we shall designate by $\mathbf{s}_{\mathbf{n}}$). To do this, we substitute in the right side of formula (84) the value

$$\frac{p_{cr.}}{p_1} = x_{cr.} = \frac{2}{\sqrt{k+1}} \cdot \frac{k, k-1}{}$$

$$G_{\text{Bec}} = s_{m}(x_{cr.})^{1/k} \sqrt{\frac{2gk}{k-1}} \frac{p_{1}}{w_{1}} \left[1 - \frac{k-1/k}{cr.} \right] =$$

$$= s_{m} \left(\frac{2}{k+1} \right)^{-1/k-1} \sqrt{\frac{2gk}{k+1}} \frac{p_{1}}{v_{1}} = K_{0} s_{m} \sqrt{\frac{p_{1}}{v_{1}}}.$$

Here the coefficient $K_0 = \sqrt{\frac{2gk}{k+1}} \left(\frac{2}{k+1}\right)^{1/k-1}$ is a constant which, depending on the exponent k, varies within small limits in accordance with Table 28 (g = 98.1 dm/sec²).

382

STAT

,ŧ

Ta	ble 28			1
k	1.25	1.20	1.15	1.10
$\sqrt{\frac{2gk}{k+1}} \left(\frac{2}{k+1}\right)^{1/k-1} - k_0$	6.518	6.424	6.325	6.224

For the vessel in which the powder is burned, the expression for G_{sec} can be presented differently, by multiplying and dividing the expression under the root by p_1 . Replacing, approximately, $p_1^{w_1} = BT_1$ by f, we get

$$G_{\text{sec}} = \frac{\kappa_0}{\sqrt{1}} s_m p_1 - A s_m p_1'$$
(85)

- where $A = \frac{k_0}{\sqrt{f}}$ is a constant depending on the nature of the gases and their temperature, inasmuch as k is a function of the temperature;
 - may be assumed to be an orifice with rounded edges or the minimum cross section in the Laval nozzle;
 - p_{1} is the pressure at which the gases are discharged from the vessel.

Coefficient A, characterizing the consumption of gas at s=1 and $p_1=1$ is measured in (\sec^{-1}) and varies with f and k.

The coefficient A was first introduced by V.M. Trofimov who assumed A = 0.007 for pyroxylin powders and A = 0.006 for nitroglycerine powder.

Actually, when gas is discharged from a vessel, even in the case where powder is burned in the vessel, the temperature T inside the

vessel will be lower than T_1 , and the value $p_1w_1=RT$, where $T < T_1$. Hence, it would be more correct to state:

$$\mathbf{G_{sec}} = \frac{\mathbf{K_0}}{\sqrt{\mathbf{p_1}\mathbf{w_1}}} \ \mathbf{s_m} \mathbf{p_1} = \frac{\mathbf{K_0}}{\sqrt{\mathbf{R}T}} \ \mathbf{s_m} \mathbf{p_1} = \frac{\mathbf{K_0}}{\sqrt{\mathbf{f}} \sqrt{\tau}} \mathbf{s_m} \mathbf{p_1} = \frac{\mathbf{A}}{\sqrt{\tau}} \mathbf{s_m} \mathbf{p_1},$$

where τ = T/T₁ (see below).

		Table 2	9	
	<u>k</u>	1.1	1.2	1.3
-	1 000 000	0.00622	0.00642	υ.υ0661
	1,000,000 900,000	0.00656	0.00677	U.00697
	850,000	0.00675	0.00695	0.00717
	•	o.0 069 5	0.00718	υ.00739
	800,000			

3. FULL GAS CONSUMPTION

The full gas consumption Y over a period t can be obtained from the expression

$$Y = \int_{0}^{t} G_{sec} dt$$
.

We proved earlier that

$$G_{sec} - As_m p_1$$
,

where p_1 - pressure in the vessel from which gas is discharged; s_m - cross-sectional area of opening or orifice through which the gas flows.

If we apply this formula to a bomb with a nozzle, in which

pressure p is developed when the powder is burned, then

$$G_{sec} - As_{m}p$$

where p = f(t),

$$\begin{array}{ccc}
 & \tau \\
 & \gamma - As_{\underline{m}} & pdt - As_{\underline{m}} 1, \\
 & 0
 \end{array}$$

but $I = \frac{e}{u_1}$.

During the entire period that the powder is burned $\int_{0}^{1} pdt = I_{K}$, and hence the full consumption during the entire period of powder burning will be

$$Y_K = As_m I_K = As_m \frac{e_1}{u_1}$$

When the cross section s_m of the nozzle, the nature of the powder gases and their temperature (A = f(k, f)), the thickness of the powder and its rate of burning are known, this formula enables us to compute in advance the consumption of powder by weight during the period the powder is burned in the chamber or in a bomb with a nozzle. This formula has been satisfactorily confirmed in bomb tests, in which the start of burning of cylindrical grains with very narrow perforations - 1 to 3 mm in diameter, at pressures $p_m = 2000-2500$ kg/cm² has been investigated.

4. THE DEPENDENCE OF GAS PRESSURE ON THE CROSS SECTION OF THE STREAM(*)

If the gases are discharged through a tapered diverging nozzle, the pressure in the direction of flow will decrease, whereas the velocity of discharge will increase. The pressure magnitudes at various sections can be found from the equation of continuity, because $G_{\rm Cr.} = G_{\rm X}$, where $G_{\rm X}$ is the flow through section $s_{\rm X}$. The equation of continuity will be written in the form:

$$\frac{\mathbf{s_{m}^{U}_{cr.}}}{\mathbf{v_{cr.}}} - \frac{\mathbf{s_{x}^{U}_{x}}}{\mathbf{v_{x}}},$$

bu t

$$\frac{\mathbf{s_m U_{cr.}}}{\mathbf{v_{cr.}}} - \mathbf{s_m K_0} \ \sqrt{\frac{p_1}{\mathbf{v_1}}} - \mathbf{s_m} \left(\frac{2}{k+1}\right)^{1-k-1} \ \sqrt{\frac{2gk}{k+1}} \frac{p_1}{\mathbf{v_1}},$$

and according to formula (84)

$$\frac{\mathbf{s}_{\mathbf{x}}\mathbf{U}_{\mathbf{x}}}{\mathbf{w}_{\mathbf{x}}} = \mathbf{s}_{\mathbf{x}} \quad \left\langle \frac{2\mathbf{g}\mathbf{k}}{\mathbf{k}-1} \frac{\mathbf{p}_{1}}{\mathbf{w}_{1}} \right\rangle \times \frac{\mathbf{2}_{1}\mathbf{k}}{\mathbf{1}_{1}} \left(1 - \mathbf{x}\right).$$

Equating the right sides of these equations and assuming that k = const from one section to another, and reducing by $\sqrt{2gk} \frac{p_1}{w_1}$, we get:

	and hook	hv	Prof.
(0)	The derivation and numerical data are taken from the book	,	
	The derivation and numerical data are taken in the lattice of the derivation and sumerical data are taken in the lattice of the derivative		
PYTO	dynamics, 32 multi-		

$$s_{x}^{1/k} \sqrt{\frac{1-x^{k-1/k}}{k-1}} - s_{m} \left(\frac{2}{k+1}\right)^{1/k-1} \sqrt{\frac{1}{k+1}},$$

whence

$$\frac{8x}{8m} = \left(\frac{2}{k+1}\right)^{\frac{1}{k}} \frac{k-1}{\frac{1}{k+1}} \frac{\frac{k-1}{k+1}}{\frac{1}{k} \frac{k-1}{k-1} \frac{k}{k}}.$$
 (86)

This equality gives the dependence of the relative pressure x in the region back of the minimum cross section on the relative cross section of the nozzle $\mathbf{s}_{\mathbf{X}}^{-}\mathbf{s}_{\mathbf{m}}^{-}$. Upon assigning values of x for various values of k, a table can be compiled for the values of $\mathbf{s}_{\mathbf{X}}^{-}\mathbf{s}_{\mathbf{m}}^{-}$, according to which an inverse problem can be solved: i.e., the value of the ratio $\mathbf{x} = \mathbf{p}_{-}\mathbf{p}_{1}^{-}$ (Table 30) can be found from the ratio of the cross section of the flow at a given point to its minimal cross section.

Table 30 - Values of $s_{\chi'} s_{gg}$ for Various x and k

									+
. *		1, 2	1/3	1/4	1/5	1,/6	1, 10	1/15	1, 20
		1.018	1.180	1.373	1.569	1.762	2.500	3.364	4.180
1.1	,	1.010	1.143	1.309	1.477	2.640	2.260	2.967	3.625
1.2		1.007	1.128	1	1.438	1.590	2.162	2.802	3.405
1.25	1		1.115	1	1.404	1.545	2.075	2.670	3.214
1.3	1	1.005		1	1.346	1.470	1.931	2.440	2.900
1.4	1	1.002	1.093	1.216	1 2.0.0				_

Example. Determine how much the cross section of the stream must be increased in order to obtain a 10-fold pressure decrease (at k=1.25). At k=1.25 and x=1/10, we get $s_{\rm X}/s_{\rm m}=2.162$.

5. EXPRESSION FOR DETERMINING THE REACTION PRESSURE DEVELOPED DURING GAS DISCHARGE THROUGH AN OPENING IN THE WALL OF THE VESSEL (TRACTIVE FORCE)

Let us assume (fig. 113) that a gas in a closed vessel is under pressure p. To each element of the surface s there is applied a force sp or $s(p-p_{_{\bf R}})$, where $p_{_{\bf R}}$ is atmospheric pressure. The velocity of the gas inside the vessel is $U_{_{\bf I}}=0$. The velocity of opened, the gases will be discharged through it, and the vessel will be subjected to a reacting force composed of the following components:

Fig. 113 - Diagram of Gas Discharge and the Reaction Pressure

- l) The force $R^*=s(p-p_{\underline{a}})\approx sp,$ acting in all directions before the orifice is opened, and reacting in a direction opposite to the flow of the gases when a portion of the wall of area s disappears.
- 2) The force R", originating in consequence of the gas discharge through orifice s under the action of internal forces and determined on the basis of the mechanics theory concerned with momentum and force impulse.

The elementary mass dm discharged through area s during time dt acquires a velocity U and an increment of momentum dmU; it creates a force impulse R"dt in the reverse direction:

$$R^{-}dt - dmU - \frac{f}{g} sUdtU - \frac{G_{sec}}{g}dtU,$$

whence

$$R'' = \frac{G_{sec}}{g}U$$
.

The full reaction pressure or the tractive force originating upon the discharge of gas through opening s will be expressed by the formula:

$$R = R' + R'' = \frac{G_{sec}}{g} U + sp.$$

It is assumed thereby that the gas velocity inside the vessel is $\mathbf{U}_1 = 0$ and that hence no change in gas momentum takes place in a vessel of a sufficiently large capacity.

If we apply this formula to the discharge opening of a diverging tapered nozzle of cross section $s_{\underline{a}}$, whereby $p=p_{\underline{a}}$ and U=U', then

$$R = \frac{G_{\text{sec}}}{g} u_{\mathbf{a}} + s_{\mathbf{a}} p_{\mathbf{a}}.$$

Replacing G_{sec} , U_{a} , s_{a} and p_{a} by values relating to the minimum cross section s_{m} and internal pressure p_{l} , we get, on the basis of formulas (82) and (86)(*):

(*) I.P. Grave, "PIRODINAMIKA" (Pyrodynamics), Part III.

$$R = \frac{G_{\text{mec}} \cdot U_{\text{a}}}{g} + p_{\text{a}} s_{\text{a}} =$$

$$= \frac{s_m}{g} \sqrt{gk} \left(\frac{2}{k+1} \right)^{k+1/k-1} \sqrt{\frac{p_1}{w_1}} \cdot \sqrt{\frac{2gk}{k-1}} \sqrt{\frac{p_1w_1}{p_1w_1}} - 1 - \left(\frac{p_n}{p_1} \right)^{k-1/k} +$$

$$+ \frac{p_{a}}{p_{1}} p_{1} = \frac{s_{a}}{s_{m}} s_{m} = s_{m} \left[k \left(\frac{2}{k+1} \right)^{k} \frac{k-1}{\sqrt{\frac{k+1}{k-1}}} p_{1} \sqrt{1 - x_{a}^{k-1/k}} + \frac{x_{a} p_{1} \left(\frac{2}{k+1} \right)^{1-k-1} \sqrt{\frac{k-1}{k+1}}}{\sqrt{\frac{k+1}{k+1}}} \right] = \frac{1/k}{x_{a}} + \frac{1/k}{x_{a}} = \frac{1/k}{x_{a}} = \frac{1}{x_{a}}$$

$$= kx_{m} \sqrt{\frac{k+1}{k-1}} \sqrt{1-x_{n}^{k-1/k}} \left[1 + \frac{x_{n}^{k-1/k}}{2k} \frac{x_{n}^{k-1/k}}{1-x_{n}^{k-1/k}}\right]^{p_{1}s_{m}}.$$
 (87)

Only the k, x_a , p_1 and s_m values enter this expression. It may be thus concluded that the value of R is proportional to pressure p_1 inside the vessel and the area of smallest cross section s_m ; it depends on the exponent k and is determined by the degree of divergence of the nozzle which, in turn, depends on the ratio s_a/s_m . Formula (87) can be presented in an abbreviated form:

390

СТАТ

assuming that

$$\zeta = k \left(\frac{2}{k+1}\right)^{k/k-1} \sqrt{\frac{k+1}{k-1}} \sqrt{1 - x_a^{k-1/k}} \left[1 + \frac{\frac{k-1}{2k}}{2k} \frac{x_a^{k-1/k}}{1 - x_a^{k-1/k}} \right].$$
(88)

The coefficient & for a given nozzle depends on k only; it depends on the nature of the powder only to the extent that it determines the value of k; it does not depend on the charging density, nor on the value of R.

Langevin calls this coefficient the propulsive action coefficient.

In the absence of a nozzle, and if only an opening were present in the wall, then, at

$$x_k = x_k = \left(\frac{2}{k+1}\right)^{k/k-1}$$

we would obtain

$$\zeta_0 = k \left(\frac{2}{k+1}\right)^{k/k-1} \left(1 + \frac{k-1}{2k} \frac{\frac{2}{k+1}}{\frac{k-1}{k+1}}\right) =$$

$$= (k+1) \left(\frac{2}{k+1}\right)^{k/k-1} = (k+1)x_m. \tag{89}$$

If the mossle were infinitely large and permitted infinite divergence, and if the outside pressure were disregarded (in other words, if the discharge were into vacuum), then:

$$\zeta_{\max} = k \sqrt{\frac{k+1}{k-1}} \left(\frac{2}{k+1}\right)^{k/k-1} = k \sqrt{\frac{k+1}{k-1}} x_{n}.$$

The following table gives the dependence of coefficient ζ on the ratio between the discharge opening diameter $d_{\bf a}$ and the diameter of minimum cross section (Table 31).

		T	ble 31			
da	1	2	3	4	5	6
ζ	1.24	1.62	1.72	1.80	1.86	1.89
	1	4	9	16	25	36
s <u>.</u>						

It can be seen from the table that as the outfit diameter of the nozzle increases, the reaction pressure increases rapidly at first and then slower and slower, approaching asymptotically the value ζ_{\max} . In rocket shells it is customary to take $\frac{d_n}{d_m} \gg 3$ in order not be make the shell unnecessarily heavy. The coefficient ζ changes very little with the change of k.

6. FUNDAMENTAL FORMULAS

Thus, as a result of applying the laws of gas dynamics, the following relations have been established.

Gas discharge velocity:

$$u = \sqrt{\frac{2\pi k}{k-1}p_1w_1\left[1-\left(\frac{p}{p_1}\right)^{\frac{k}{2}-1/k}\right]}$$

where $p_{\underline{1}}$ and $w_{\underline{1}}$ are the pressure and unit volume of gases in the season from which the discharge takes place.

Gas consumption through cross section s_{m} per second:

$$G_{sec} = As_m p_1$$
,

where A - a coefficient depending on the nature of the powder (f and k = 1 + 0);

 $\Lambda \approx 0.007$ for pyroxylin powders;

 $A \approx 0.0065$ for nitroglycerine powders.

The gas consumption in time t is

$$Y = \int_{0}^{t} G_{\text{sec}} dt - As_{m} \int_{0}^{t} p_{1} dt.$$

If the gases are formed in the vessel in consequence of powder burning, then

$$\int_{0}^{t} pdt = \frac{e}{u_{1}}; \quad Y = As_{m} \frac{e}{u_{1}};$$

the full gas consumption during the powder burning period is

$$Y_K - As_m \frac{e_1}{u_1}$$

The reaction force of the discharged gases is

$$R = \frac{G_{\text{sec}}}{g} U + sp_1 = \zeta s_m p_1,$$

where ζ is given in the above table and is practically independent of the coefficient k=1+9. Thus the basic values $G_{\tt sec}$, Y and R are very simple functions of ballistic elements and of the gas pressure

characteristics p in the vessel and of the pressure impulse at a given instant:

$$\begin{array}{c}
t \\
pdt - 1 - \frac{e}{u_1}
\end{array}$$

and at the end of burning

$$I_{K} = \int_{0}^{t_{K}} pdt = \frac{e_{1}}{u_{1}}.$$

In some cases the movement of gas inside the vessel from which it is discharged cannot be disregarded, as, for example, in the case of gases discharged from the bore of a gun, wherein the gas velocity varies linearly from zero at the base of the chamber to $U_{\rm A}$ at the face of the muzzle. In such a case an additional term will be added to the two components of the reaction pressure (force) depicting the change of gas momentum in the bore of the barrel:

$$R = \frac{G_{sec}}{g} U + sp_1 + \frac{dI}{dt}.$$

When the gas velocity changes linearly:

$$\frac{dI}{dt} = \mu \frac{U}{2} = \frac{\omega}{g} \frac{V_{Ag}}{2}.$$

CHAPTER 2 - THE APPLICATION OF BASIC FORMULAS OF GAS DISCHARGE

1. GAS DISCHARGE FROM A VESSEL OF SPECIFIC VOLUME

Say, a volume W_{ij} contains ω kg of gas. The initial state of the gas is characterized by the values p_1 , T_1 , $w_1 = \frac{w_0}{\omega}$. It is necessary to determine the law governing the pressure and temperature drop as a function of time. As in the case of the general theory of discharge, we shall consider the process an adiabatic one. Then

$$\left(\frac{p}{p_1}\right)^{-1} = \frac{v_1}{v}$$

but

$$w_1 = \frac{w_0}{\omega}, w = \frac{w_0}{\omega - \int_0^t G_{sec} dt}$$

Therefore,

$$\frac{p}{p_1} = \frac{\omega - \int_0^t G_{\text{sec}} dt}{\omega} = 1 - \frac{0}{\omega},$$
 (90)

whereby

$$G_{\text{sec}} = sK_0 \sqrt{\frac{p}{w}}$$

Inasmuch as

$$\frac{\frac{p}{w} - p_1}{\frac{p}{p_1}} \frac{1}{\frac{1}{w_1}} \left(\frac{p}{p_1}\right)^{1/k} - \frac{p_1}{w_1} \left(\frac{p}{p_1}\right)^{k+1/k},$$
395

STAT

$$\mathsf{G}_{\texttt{sec}} = \mathsf{sK}_0 \, \sqrt{\frac{\mathsf{p}_1}{\mathsf{q}_1}} \, \left(\frac{\mathsf{p}}{\mathsf{p}_1}\right)^{-k+1/2k}.$$

Differentiating expression (90), we get:

$$\frac{1}{k} \frac{p^{1-k/k}}{p_1^{1/k}} dp = -\frac{g_{\text{sec}}}{\omega} dt = -\frac{sK_0}{\omega} \left(\frac{p_1}{w_1} \left(\frac{p}{p_1} \right) \right)^{k+1/2k} dt.$$

Separating the variables and integrating:

$$\left(\frac{p}{p_1}\right)^{1-k^2k} \left(\frac{p_1}{p}\right)^{-k+1/2k} \frac{dp}{p_1} = -\frac{ksK_0}{\omega} \sqrt{\frac{p_1}{w_1}} dt = -bdt,$$

where

$$b = \frac{k\pi K_0}{\omega} \sqrt{\frac{p_1}{w_1}}; x = -bdt; \int_{1}^{x} \frac{1-3k/2k}{dx} = -bt$$

or

$$\frac{2k}{k-1}\left[1-\frac{1}{\frac{k-1}{2k}}\right]=-\frac{ksK_0}{\omega}\sqrt{\frac{p_1}{w_1}}t=-bt.$$

This enables us to find the duration of discharge when the pressure drops from the initial value $p_{\underline{1}}$ to the given value p.

$$t = \frac{1}{B^{1}} \left[\frac{1}{k-1/2k} - 1 \right],$$

where

$$B^{+} = \frac{k-1}{2} s_{m} \frac{k_{0}}{\omega} \sqrt{\frac{p_{1}}{\omega_{1}}} \text{ and } k_{0} = \sqrt{\frac{2gk}{k+1}} \left(\frac{2}{k+1}\right)^{1/k-1}.$$

This relationship is valid until the ratio between the outside and inside pressures becomes equal to the critical value. When the discharge is into the atmosphere

$$x_{cr.} = \frac{p_a}{p_{cr.}}, p_{cr.} = \frac{p_a}{x_{cr.}} \approx 1.8 \text{ kg cm}^2.$$

The full time of discharge is

$$t_{\eta} = \frac{1}{B'} = \frac{1}{\frac{k-1}{2k}} = 1$$
 (91)

These formulas show that the length of discharge up to a given pressure is inversely proportional to the cross section of the nozzle s_m . Solving the formula with respect to $p = p_1 x$, we get the relative pressure change as a function of time:

397

$$p = \frac{p_1}{2k/k-1}.$$
 (92)

STAT

If the values of t are given, p can be calculated and a p,t curve can be constructed. The larger the cross section of the opening and the greater the value of p_1 , the more rapid will be the relative pressure drop within the vessel. Inassuch as

$$w = w_1 = \left(\frac{p_1}{p}\right)^{1-k}$$
 and $\frac{T}{T_1} = \left(\frac{w_1}{w}\right)^{k-1}$,

$$\mathbf{w} = \mathbf{w}_{1}(1 + \mathbf{B}^{\dagger}\mathbf{t}) \tag{93}$$

and

$$T = \frac{T_1}{(1 + B^T)^2}. (94)$$

A comparison of formulas (94) and (92) shows that the gas temperature drop inside the vessel occurs much slower than the pressure drop.

2. GAS DISCHARGE FROM THE BORE OF A GUN AFTER THE PROJECTILE LEAVES THE GUN

Applying the relations obtained above to the gases discharged from the barrel bore after the projectile leaves the latter, we will have the following: prior to the start of discharge the barrel will contain ω kg of gas, so that the specific gas volume within the entire volume of the bore Ψ_0 + sl_A will be

$$\Psi_{A} = \frac{\Psi_{0} + \mathfrak{sl}_{A}}{\omega} = \frac{\Psi_{KH}}{\omega} = \frac{\Lambda_{A} + 1}{\Delta}. (*)$$

(*) Subscripts Д and KH stand for "muzzle" and "bore," respectively.

The pressure at the atart of discharge equals the muzzle pressure p_{Δ} , the gas temperature is T_{Δ} , the cross-sectional area of the flow equals the cross-sectional area of the bore s.

Designating by B' the constant parameter

$$B' = \frac{k-1}{2}K_0 \sqrt{\frac{p_A}{w_A}} \frac{s}{w} = \frac{k-1}{2}K_0 \frac{s}{w} \sqrt{\frac{p_A\Delta}{\Delta_A + 1}}$$

for pressure, gas temperature and the time of gas discharge, we will obtain the following expressions:

$$p = \frac{p_{A}}{2k, k-1};$$

$$(1 + B't)$$

$$T = \frac{T_A}{(1 + B't)^2};$$

$$t = \frac{1}{B'} \left[\left(\frac{p_A}{p} \right)^{-k-1/2k} - 1 \right].$$

All of these relations are valid while x > $x_{cr.}$ = 0.565-0.545, i.e., up to a pressure of $p_{cr.}$ = $\frac{p_a}{x_{cr.}} \approx 1.8 \text{ kg/cm}^2$. The total duration of the after-action (or after-effect) of gases on the gun mount is determined by the following formula:

the following locality:
$$t_{\text{N}} = \frac{1}{B'} \left[\left(\frac{p_{\text{A}}}{1.8} \right)^{k-1/2k} - 1 \right].$$

Example. Given a 76-nm gun, s = 0.4693 dm², Λ_A = 9.0, ω = 1.080 kg,

 $\Delta = 0.70$, $p_A = 600 \text{ kg/cm}^2$, k = 1.2, $K_0 = 6.424$.

B' =
$$\frac{0.2}{2}$$
 6.424 $\frac{0.4693}{1.080}$ $\sqrt{\frac{60000 \cdot 0.70}{10}}$ = 0.2793 · 64.8 = 18.10;

$$\frac{p_A}{1.8} = \frac{600}{1.8} = 333.3;$$
 $\log \left(\frac{p_A}{1.8}\right) = 2.523;$ $\frac{k-1}{2k} = \frac{1}{12};$

$$\frac{1}{12} \log \left(\frac{p_A}{1.8} \right) = 0.2103; \quad \left(\frac{p_A}{1.8} \right)^{1/12} = 1.623; \quad t_B = \frac{0.623}{18.10} = \frac{0.623}{18.10}$$

- 0.03443 sec.

The discharge time until the pressure is $2 \ensuremath{\text{U}}$ atm

$$t_{20} = \frac{1}{18.10} \left[\left(\frac{600}{20} \right)^{1/12} - 1 \right] = \frac{0.327}{18.10} = 0.01807 \text{ sec.}$$

i.e., the time is almost one-half the full period of discharge down to $p_1 = 1.8$.

1 If
$$T_{A} = 0.70 \cdot T_{1} = 0.70 \cdot 2800 = 1960^{\circ}K$$
, then

$$T_{fi} = \frac{1960}{(1 + 18.1t_{fi})^2} = \frac{1960}{(1 + 0.623)^2} = \frac{1960}{2.635} = 744^{\circ}k = 471^{\circ}C.$$

3. THE AFTER-ACTION OF GASES ON THE GUN MOUNT

The relations introduced in Section 2 enable us to investigate the after-action of gases on the recoiling parts after the projectile leaves the gun, and, in particular, to determine the highest velocity

400

STAT

of recoil, necessary for the design of the gun mount.

Fig. 114 - Velocity of Recoil During the Period of After-Action.

The reaction force R, arising as a result of gas discharging from the bore of the gun, imparts an added impulse to the recoiling parts and increases the velocity of recoil.

The action of the gases ceases at the end of their discharge, at which time the recoiling parts attain their maximum velocity $V_{\rm max}$.

The curves in fig. 114 depict the gas pressure p_{AH} on the base of the bore and the velocity of the recoiling parts V. V_{A} corresponds to the instant the projectile leaves the bore, V_{max} corresponds to the period of after-action, t_A is the time of recoil prior to the projectile's departure from the bore, t_A is the period of gas after-action.

If the recoil is free, the relation between the velocity of recoil v and the velocity of the projectile (absolute) $v_{\rm m}$ is expressed by the formula:

$$\mathbf{v} = \frac{\mathbf{q} + \frac{1}{2} \mathbf{\omega}}{\mathbf{q}_0 + \frac{1}{2} \mathbf{\omega}} \mathbf{v_a} \approx \frac{\mathbf{q} + \frac{1}{2} \mathbf{\omega}}{\mathbf{q}_0} \mathbf{v_a},$$

because $\frac{1}{2}\omega$ is small compared with Q_0 .

Prior to the instant the projectile leaves the bore

$$v_{A} = \frac{q + \frac{1}{2} \omega}{q_{0}} v_{A,a},$$

where $v_{A,a}$ is the absolute velocity of the projectile at the instant it leaves the gun. The recoil velocity increment $\triangle V$ = $V_{\underline{max}}$ - $V_{\underline{j},\underline{j}}$ is obtained as a result of the action produced by the reaction force impulse developed during gas discharge:

$$\frac{q_0}{g} \quad V_{max} = \frac{q_0}{g} \quad V_{a} = \int_0^{t_n} Rdt. \tag{95}$$

When the recoil is subjected to a braking effect

$$\frac{Q_0}{g} V_{max} - \frac{Q_0}{g} V_A = \int_0^{t_n} Rdt - \int_0^{t_n} Fdt,$$

where F is the resultant of the forces braking the recoil.

The problem dealing with the force R under conditions of powder gas discharge from the barrel bore has been considered in considerable detail in a series of special texts.

We shall assume some of the simplest allowances, to wit: 1) the cross section s of the barrel bore is the critical one; 2) the velocity of the gas at the instant the projectile is ejected from the gum equals the velocity of the projectile $v_{A,B}$; 3) we take into account the change of momentum wag of the games when the mean rate of motion drops from $V_A = \frac{V_A}{2}$ at the start of discharge to zero

(U = 0) at the end of the period of after-action. In such a case it may be assumed that

$$\int_{0}^{t_{n}} Rdt = \int_{0}^{s} \int_{0}^{t_{n}} pdt + \frac{\omega}{s} \int_{\frac{v_{n,n}}{2}}^{u=0} du = \int_{0}^{s} \int_{0}^{t_{n}} pdt - \frac{\omega}{s} \frac{v_{n,n}}{2};$$

$$\zeta_0 = (k + 1)x_{cr}$$
: $\zeta_0 = 1.22 - 1.24$.

p is the mean gas pressure in the bore of the barrel.

The dependence of p on t is expressed by the formula:

$$p = \frac{p_A}{2k/k-1}$$
, where $B' = \frac{k-1}{2} K_0 = \sqrt{\frac{p_{A,\Delta}}{\Lambda_{A,+1}}}$.

Then

$$\int_{0}^{t_{n}} Rdt = \int_{0}^{\infty} p_{A} \int_{0}^{t_{n}} \frac{dt}{(1 + B't)} = \frac{\omega}{g} \frac{\sqrt[4]{A \cdot A}}{2}.$$

grating, we get:

$$\int_{0}^{t_{R}} Rdt = \frac{\zeta_{0} sp_{A}}{B'} \int_{0}^{t_{R}} \frac{B'dt}{(1+B't)} - \frac{\omega}{g} \frac{\sqrt[4]{A} \cdot a}{2} =$$

$$= \frac{\zeta_{0} s p_{A}}{B!} \frac{k-1}{k+1} \left[1 - \frac{1}{(1+B!t_{B})} \right] - \frac{\omega}{g} \frac{v_{A+B}}{2}.$$

Substituting the value of B', reducing, and bearing in mind that the expression in square brackets can be assumed to be equal to unity (0.995), we get

$$\int_{0}^{t_{n}} Rdt = \frac{\zeta_{0}^{2\omega p_{A}}}{K_{0}(k+1)} \setminus \frac{\overline{\Lambda_{A}+1}}{p_{A}\Delta} = \frac{\omega}{g} \frac{v_{A,a}}{2}.$$

Introducing here the values

troducing here the values
$$\zeta_0 = (k+1) \left(\frac{2}{k+1}\right)^{k/k-1} \text{ and } k_0 = \left(\frac{2}{k+1}\right)^{(1/2)(k+1/(k-1))} \sqrt{gk},$$

and multiplying the numerator and denominator of the first term by

bearing in mind that
$$p_{A} \sqrt{\frac{\Lambda_{A} + 1}{p_{A} \Delta}} = \sqrt{p_{A} \frac{u_{KH}}{\omega}} = \sqrt{p_{A} u_{A}} \text{ and } \sqrt{g_{K} p_{A} u_{A}} = c_{A},$$

where cA is the speed of sound in a gas under conditions corresponding

he start of discharge, we get:

$$\int_{0}^{t_{R}} \frac{2\omega(k+1)\left(\frac{2}{k+1}\right)^{k/k-1}c_{A}}{kg\left(\frac{3}{k+1}\right)^{1/2)(k+1/k-1)}(k+1)} - \frac{\omega}{g} \frac{v_{A,a}}{2} = 0$$

$$=\frac{2}{k}\left(\frac{2}{k+1}\right)^{1/2}\frac{\omega}{g}c_{A}-\frac{\omega}{g}\frac{v_{A,a}}{2}.$$

Inserting the obtained expression in formula (95), we get:

$$\frac{Q_0}{g} V_{max} = \frac{Q_0}{g} V_A + \frac{2}{k} \left(\frac{2}{k+1} \right)^{1/2} \frac{\omega}{g} c_A - \frac{\omega}{g} \frac{V_{A+a}}{2}.$$

Inasmuch as

$$v_{max} = \frac{q + 0.5\omega}{Q_0} v_{A,a} + \frac{2}{k} \left(\frac{2}{k+1} \right)^{1/2} \frac{\omega}{Q_0} c_A - \frac{\omega}{Q_0} \frac{v_{A,a}}{2}.$$

Presenting V_{max} in the form

$$v_{\text{max}} = \frac{q + \beta \omega}{q_0} v_A = \frac{q}{q_0} \left(1 + \beta \frac{\omega}{q} \right) v_A,$$

-- ret:

$$V_{\text{max}} = \frac{q}{q_0} \left[1 + \frac{\omega}{q} \left[\frac{2}{E} \left(\frac{2}{E+1} \right)^{1/2} \frac{c_A}{v_A} \right] \right] v_A$$

where the coefficient $\beta = \frac{2}{E} \left(\frac{2}{k+1}\right)^{1/2} \frac{c_A}{v_A}$ is called the coefficient of gas after-action on the gun mount and depends in the main on the value c_A/v_A . Since c_A varies within sarrow limits, the predominating 405

STA

effect on β is produced by the initial (muzzle) velocity of the projectile.

At k = 1.2 we get:

where

$$c_A = \sqrt{gkp_A w_A} = 10.85 \sqrt{\frac{p_A(\Lambda_A + 1)}{\Delta}};$$

at k = 1.25

$$\beta = 1.51 \frac{c_A}{v_A}; c_A = 11.06 \sqrt{\frac{p_A(\Lambda_A + 1)}{\Delta}}.$$

These formulas tie in the coefficient β with the charging conditions and with the design data. In addition to this theoretical formula, there are also empirical formulas for the β coefficient, for example:

$$\beta_1 = \frac{1400}{v_{A} = /sec} + 0.15 \text{ or } \beta_2 = 1300/v_{A}.$$

All of these formulas point at the predominating effect of the projectile velocity at the instant of its ejection from the gun.

Example. A 76-mm cannon, $p_A = 600 \text{ kg/cm}^2 = 60,000 \text{ kg/dm}^2$; $A_A + 1 = 10.0$; $\Delta = 0.70$; $v_A = 6800 \text{ dm/sec}$.

$$\beta = 1.59 \cdot 10.85 \sqrt{\frac{60000 \cdot 10}{0.70}} \frac{1}{6500} = 17.26 \frac{926}{6800} = 2.35.$$

STAT

Using the empirical formulas, we get:

$$\beta_1 = \frac{1400}{680} + 0.15 = 2.21; \quad \beta_2 = \frac{1300}{680} = 1.912.$$

It can be seen that the numbers obtained by means of the empirical formulas are smaller than those obtained by the theoretical one.

At a high speed $v_A = 1000 \text{ m/sec}$, $A_A + 1 = 5.0$, $\Delta = 0.72$, $p_A = 0.72$

= $120,000 \text{ kg/dm}^2$ we get:

$$\beta = 17.26$$
 $\sqrt{\frac{120000 \cdot 5}{0.72}} \frac{1}{10000} = 17.26 \frac{913}{10000} = 1.575;$

$$\beta_1 = \frac{1400}{1000} + 0.15 = 1.40 + 0.15 = 1.55; \quad \beta_2 = \frac{1300}{1000} = 1.30.$$

•

The value of β_1 closely approaches that of β . If in the first case $Q_0=80q$, then at $\omega/q=0.16$

$$v_{\text{max}} = \frac{1}{80} (1 + 2.35 \cdot 0.16) \cdot 680 - \frac{1.376}{80} 680 = 11.7 \text{ m/sec};$$

in the second case $Q_0 = 150q$; $\omega/q = 0.50$ and

$$V_{\text{max}} = \frac{1000}{150} (1 + 1.575 \cdot 0.50) = 11.92 \text{ m/sec.}$$

4. THE AFTER-ACTION OF GASES ON A PROJECTILE

The action of games on the projectile after it leaves the barrel is as follows. The velocity of the games discharged in the wake of the projectile exceeds that of the projectile, and the games

surround and overtake the latter, so that the projectile actually moves for a certain period of time within a mobile medium. At the same time the gases continue to exert a pressure on the base of the projectile, thus increasing its velocity even after the projectile has left the bore.

Thus the maximum velocity is not the muzzle velocity, but the velocity at some point a short distance ahead of the gun muzzle face. Nevertheless all the known methods of computation in internal ballistics permit to conclude the computations at the muzzle face. The muzzle velocity \mathbf{v}_0 obtained on the basis of test data is computed by reducing the velocity \mathbf{v}_c recorded by the chronograph to that of the muzzle face, under the assumption that the velocity beyond the muzzle face is continuously decreased by the action of air resistance.

Fig. 115 - Projectile Velocity in the After-Action Period

I) frame-target; II) frame-target.

Figure 115 characterizes the relation between the velocities of the projectile at different points of its trajectory.

The projectile leaves the number face with an absolute velocity $v_{n,n}$ which increases to v_{max} during the period of after-action,

following which it decreases because of air resistance. Using a chronograph and two frame-targets, $\mathbf{v}_{\mathbf{c}}$ (the average velocity between frame-targets I and II) is determined. Then, using formula

1

where

$$\Delta v_{c} = \frac{iqX_{c}}{d^{2}\Delta D(v)},$$

we can compute the so-called "initial" velocity of the projectile, whereby the effect of the after-action of the gas powders is not taken into consideration, and the correction Δv_C is computed using the normal resistance law. In consequence we get the following relations:

$$\mathbf{v_0} > \mathbf{v_{max}} > \mathbf{v_{A,a}};$$
 $\mathbf{v_A} = \mathbf{v_{A,a}} + \mathbf{v_A} > \mathbf{v_{A,a}};$ $\mathbf{v_A} \approx \mathbf{v_0}.$

Therefore, it may be assumed in practice that the relative muzzle velocity \mathbf{v}_{A} , calculated in solving the problem of internal ballistics, is approximately equal to the "initial" velocity \mathbf{v}_{O} of the projectile determined by test by means of a chronograph.

The law governing the change of velocity and pressure in a stream of discharged gases, as well as the law governing the change of the stream's shape when the projectile is situated in the stream, lend themselves to experimental analysis only with great difficulty.

409

STAT

Gas dynamics offers only an approximate relationship for determining the gas velocity in the absence of solids distorting the stream, which relationship does not take into account the external pressure.

In view of the absence of reliable theoretical relations for determining the velocity increment of the projectile, we are presenting here certain test data on gas after-action. Spark photography and ultra high-speed photography make it possible to study the phenomena occurring during the motion of the projectile after it has left the barrel and during the discharge of the gases from the bore.

We shall not attempt to enumerate here all the tests of this type and limit our discussion to the firing of small arms and howitzers. When a shot is fired, the air present in the bore is ejected causing a spherical impact wave at the face of the muzzle. Next there appears a small quantity of gas escaping through the clearances between the walls of the bore and the surface of the bullet or projectile, following which there appears the bullet or projectile itself.

Next in order is the discharge of powder gases causing a shock wave upon encountering the outside air, which is responsible for the report of the gun.

The powder gases surround the bullet or projectile and tend to move forward with a velocity considerably exceeding the velocity of the bullet.

Air resistance and friction cause the powder gases to rapidly lose their velocity. A certain distance away from the muzzle face (about 35 cm) the bullet begins to overtake the gases, and the ballistic or bow wave usually accompanying the flight of the projectile

originates at this instant. The photographs in figs. 116, 117, 118 and 119(*) taken by D.F. Chernyshev show that in addition to the ballistic wave around the bullet, a large number of similar waves accompanies the unburned flying particles of powder ejected from the bore.

When the projectile velocity exceeds the speed of sound, the ballistic wave gradually emerges from the spherical sound wave in the form of a cone (see figs. 116, 117, 118 and 119). This is accompanied by clearly defined masses of condensed gas accompanied by eddies and by the appearance of stationary waves when the powder gases are discharged. The latter phenomenon is explained by the following: As the pressure drops gradually, the gases in receding from the muzzle face cause local increases of pressure (pressure jumps), the pressure becoming maximum at the points where the gases become condensed. As the gases are discharged, the position of the first maximum changes - it is gradually displaced toward the muzzle face. The occurrence of such masses of condensed gas is mainly explained by the gradually increasing effect of air resistance.

As the pressure changes, the gas velocity increases at first, mainly at the center of the stream, where the gas is not affected by outside friction; however, at the points of condensation and increased pressure, the gas velocity again undergoes a considerable decrease.

from the	original	text.	Editor.
ſ	rom the	rom the original	rom the original text.

According to observations made by Kampe-de Ferier in firing a 30 mm cannon having a muzzle velocity of about 720 m/sec, approximately 0.0015 sec before the shell leaves the bore, poorly continues gases begin to appear from the bore and disperse with a solverty of about 300 m sec. Directly after the shell leaves the core face, a lateral gas discharge occurs through an annular contained between the walls of the bore and the base of the projectile core a velocity of about 2000 m sec. Then, as soon as the base of me projectile recedes from the muzzle face, the expanded gases of seed forward with a velocity of the order of 1400 m, sec, and secured as this velocity greatly exceeds the velocity of the projectile face, the entire gas mass catches up with and overtakes the recetile, and completely surrounds it.

The velocity of the forward layers of the gas mass begins to

The velocity of the projectile continues to approach the value of 720 m sec, and at t=9.007 sec it emerges from the gas mass and is relieved of its influence, its distance from the muzzle face being 5 m at that instant.

The gas cloud explodes about 0.019-0.028 sec later, at which time the velocity of the forward layers of the gas increases from 120 to 180 m/sec.

Tests were conducted by Okosi in Japan in 1913 to determine the change in the velocity of a rifle bullet. A special chronograph was

412

used in these tests permitting the use of several targets simultaneously.

It was found that in 10 cases out of 14 (71%) the velocity was maximum; in the remaining cases (29%) a minimum was observed followed by a maximum, where the maximum velocity exceeded the muzzle velocity in all cases. Okosi concluded that for the Japanese rifle of 1898 issue the maximum velocity is obtained at a distance of about 1.5 m from the muzzle face, and that the increment constitutes only about 0.8% on the average. At a distance of 5 m, the velocity again drops to that of the muzzle velocity.

Tests were conducted by N.M. Platonov for the purpose of determining the period of gas after-action on the base of the projectiles in howitzers with relation to the distance traversed. Curves were obtained showing the change in projectile velocity and the pressure acting on the projectile's base (fig. 120a and b) during the period of after-action. The curves were obtained by means of slow-motion photography.

Figure 121 represents a curve of the pressure exerted on the base of the projectile for a reduced change, obtained from the analysis of the v, X curve.

A comparison of the v, X curves obtained with a full and reduced charge (fig. 120a) disclosed that the length of the period of afteraction is approximately doubled in changing from a reduced to a full charge. Curve $p_{\rm CH}$, x (fig. 121) shows that the pressure exerted by the powder gas on the base of the projectile during the period of after-action rapidly decreases as the distance traversed by the projectile increases.

It should be noted here that in line with the positive results cited here, tests conducted by other investigators employing different methods have produced opposite results. It may be concluded therefore that the subject problem is still in the stage of experimental study and that most of the attention should be directed towards the development of new methods for the study of bullet motion during the period of after-action and for the establishment or determination of errors peculiar to the different methods used.

Fig. 120 - Change of Projectile Velocity During the Period of After-Action

a) v, m/sec; b) full charge; c) reduced charge. CHAPTER 3 - BURNING OF POWDER IN AN INCOMPLETELY CLOSED SPACE

1. PRESSURE EXERTED BY GASES WHEN DISCHARGED THROUGH A NOZZLE

The process considered here applies in practice to the following:

1) When powder is burned in a special manometric bomb with nozzle, for the purpose of investigating the burning under conditions simulating powder burning in a gun - where the pressure rises and drops;

a) kg, cm2; b) reduced charge.

- 2) In a separate combustion chamber of a gas-actuated gun;
- 3) In the chamber of a rocket shell.

In all of the above cases the gas inflow due to the burning of powder is simultaneously accompanied by the discharge of a portion of the gas through a nozzle. Therefore, the pressure during the burning process may drop as well as increase. Under these conditions the process will vary, depending on the pressure maintained in the chamber: the lower the gas pressure in the chamber, the easier it is to keep it constant. We shall first consider the case of high pressures, for which the burning rate law u = u₁p is valid.

Let us compile a formula for determining pressure in constant volume $W_{\hat{Q}}$ at a given instant under the condition that a portion of the gas is discharged through an opening (nozzle).

We shall designate the quantity of gas discharged at a given instant (in kg) by Y and the ratio $\frac{Y}{\omega} = \gamma$.

We had derived above the formula for gas discharge in time t:

$$Y = \int_{0}^{t} G_{sec} dt$$

where $G_{\rm SeC}=Asp_1$; the pressure in the space from which the gas is discharged equals p_1 and the cross section of the nozzle is s; A is the discharge coefficient.

The pressure p₁ is not constant when burning occurs in a bomb with a nozzle; it changes continuously and hence the discharge process will not be a stable one. In order to evaluate the process, let us assume as a first approximation that the relation derived for a stabilized discharge process also applies to our case, wherein p

STAT

varies constantly with respect to time. Then, denoting by p the current gas pressure in a chamber with a nozzle and by s_m the cross section of the nozzle, we get:

$$G_{sec} = As_{m}p;$$

$$Y = As_{m} \int_{0}^{t} pdt = As_{m}I$$

and at the end of powder burning

We arrive at the conclusion that the gas discharge during burning of the powder is proportional to the pressure increase impulse at the given instant, and at the end of burning - to the full impulse

$$I_{K} = \frac{\bullet_{1}}{u_{1}}$$
.

Inasmuch as the impulse I_K depends only on thickness 2e₁ and the rate of burning u_1 , the gas discharge does not depend on the shape of the powder and its burning progressivity. It may be assumed for sufficiently small cross sections s_m and $\tau = \frac{T}{T_1} \approx 1.$ (*) In such a case the expression depicting the pressure at a given instant will be:

(*) The relations taking into account the lowering of gas temperature in the presence of large openings are analyzed in special texts.

$$p = \frac{f(\omega \psi - \Psi)}{\Psi_0 - \alpha(\omega \psi - \Psi) - \frac{\omega}{\delta}(1 - \psi)} = \frac{f\omega(\psi - \Psi)}{\Psi_0 - \frac{\omega}{\delta}(1 - \psi) - \alpha\omega(\psi - \Psi)}.$$

$$=\frac{f\Delta(\Psi-Y)}{1-\frac{\Delta}{\delta}(1-\Psi)-\alpha\Delta(\Psi-Y)}.$$
 (96)

At the end of burning, we will have:

$$\psi_{\overline{K}}=1,\ \, \gamma_{\overline{K}}=\frac{\gamma_{\overline{K}}}{\omega}=As_{\overline{m}}\,\frac{I_{\overline{K}}}{\omega};$$

$$p_{\underline{K}} = \frac{f\omega(1-\overline{\gamma}_{\underline{K}})}{\overline{\eta}_{\underline{0}} - \alpha\omega(1-\overline{\gamma}_{\underline{K}})} = \frac{f\Delta(1-\overline{\gamma}_{\underline{K}})}{1-\alpha\Delta(1-\overline{\gamma}_{\underline{K}})}.$$
(97)

Using the designation $\Delta(1-\eta_{\ K})=\Delta_{\ K},$ the formula will be transformed into the usual Noble formula:

$$p_{\underline{K}} = \frac{f \Delta_{\underline{K}}}{1 - \alpha \Delta_{\underline{K}}}, \tag{98}$$

where $\Delta_{\overline{K}}$ is that charging density at which the maximum pressure $p_{\overline{M}} = p_{\overline{K}}$ would obtain in a closed space.

The simple rule for calculating the powder charge or the density of the charge producing the required pressure p_K at the end of burning follows from the above. Using Noble's formula, the values are found of Δ_K or ω_K at which the pressure $p_M = p_K$ would obtain in a closed space:

$$\Delta_{\frac{K}{K}} = \frac{p_{K}}{f + \alpha p_{K}} \quad \text{or} \quad \omega_{\frac{K}{K}} = \frac{\psi_{0} p_{K}}{f + \alpha p_{K}}.$$

417

STAT

Then, using formula

$$Y_{K} = As_{m}I_{K} = As_{m} \frac{e_{1}}{u_{1}}$$

the weight is determined of the gases discharged through a nozzle of cross section s_m during the period that the powder is burned with impulse I_K . The sum of ω_K + Y_K will give the full charge which, when burned in a bomb with nozzle s_m , will produce pressure pg.

$$\boldsymbol{\omega}_1 = \boldsymbol{\omega}_K + \boldsymbol{Y}_K; \quad \boldsymbol{\Delta}_1 = \frac{\boldsymbol{\omega}_1}{\boldsymbol{w}_0}.$$

The value of $I_K = \int_0^\infty pdt$ can be found beforehand from a test in a closed bomb, inasmuch as the magnitude of the pressure impulse for powders of simple shapes does not depend on Δ and should not depend on whether the pressure increases according to the law applicable to a closed bomb, or decreases more slowly, or even drops in consequence of the discharge of a portion of the gas through the nozzle. Indeed, if we designate the pressure in a closed bomb by P, and that in a bomb with a nozzle by p, and the times τ and t, respectively, then upon burning powder of the same thickness in a closed space, de = u_1 Pd τ . When powder of the same thickness is burned in a chamber with an opening, de = u_1 Pd τ . Because as a result of partial gas discharge p < P, the time interval necessary for the burning of the same thickness de at the smaller pressure p will be correspondingly longer, and the total time will therefore be

PdT - pdt,

and hence

$$\int_{0}^{1} p_{d\tau} = \int_{0}^{1} p_{dt} = I_{K}.$$

Therefore, in order to determine the gas flow through the nozzle during the time the powder is burned, use can be made of the impulse $I_K = \int\limits_0^1 \ \text{PdT calculated from a test in a closed space (a manometric bomb)}.$

Once the values of I_K and Y_K are known and the value of $I=\int pdt$ is obtained from the pressure curve, the value of γ can be found for

is obtained from the pressure curve, the value of γ can be found for any given instant and the corresponding value of ψ then determined.

$$\gamma = \gamma \omega = \gamma_K \frac{1}{1_K}$$
 or $\gamma = \gamma_K \frac{1}{1_K}$.

Solving formula (96) with respect to w, we get:

$$\psi = \frac{p\left(\frac{1}{\Delta} - \frac{1}{\delta}\right) + \gamma(f + \alpha p)}{f + p\left(\alpha - \frac{1}{\delta}\right)} = \frac{\frac{1}{\Delta} - \frac{1}{\delta}}{\frac{f}{p} + \alpha - \frac{1}{\delta}} + \frac{f + \alpha p}{f + \left(\alpha - \frac{1}{\delta}\right)p} ? .$$

The first term of this equation represents the usual expression for the portion ψ of the charge at which, in a closed space at the same charging density Δ as in a chamber with a nozzle, the obtained

pressure is p; the second term takes into account the influence of the discharged gases.

The magnitude γ_K is precisely the one characterizing the relative intensity of gas flow, or the relative gas discharge during burning of the powder; it is the greater, the greater s_m and l_K and the smaller the charge ω_r , but always $\gamma_K < 1$.

2. PRESSURE CURVE OBTAINED IN A MOZZLED CHAMBER WHEN THE DISCHARGE OPENING IS SMALL

We shall consider, as in the case of general pyrostatics, the case of a powder with a constant burning area $(K=1,\ \lambda=0,\ \Theta=1)$. The instantaneous pressure is expressed by the formula:

$$p = \frac{f\omega(\psi - \psi)}{\psi_0 - \frac{\omega}{8}(1 - \psi) - \alpha\omega(\psi - \psi)} = \frac{f\omega(\psi - \psi)}{\psi_0 + \alpha\omega\psi}.$$

The denominator in the right side shows that if a portion of the gas ($\psi\gamma$) is discharged, the free space during burning will be greater and hence undergo a smaller change than W_{ψ} - the free space obtained during burning in a closed space. Hence, as in the case of general pyrostatics, the mean value of the free space can be used to determine the general character of the phenomenon. Assuming that $\psi_{WV} = \frac{1}{2}$

and $\gamma_{av} = \frac{\gamma_K}{2} = \frac{As_m I_K}{2\omega}$, we get the following expression for the average value of the free space in the chamber:

$$\Psi_{av.} = \Psi_{vav.} + \alpha \omega_{av.} = \Psi_0 - \alpha'\omega + \frac{\alpha}{2} \omega_{X}.$$

The pressure formula will take on the form:

$$p = \frac{f\omega}{\Psi_{aV}} (\Psi - Y).$$

Differentiating with respect to t and bearing in mind that for a powder with a constant burning area or for a strip $\aleph e_{av} = 1$ and

$$\frac{d\psi}{dt} = \frac{u_1}{e_1} p = \frac{p}{I_K}, \quad \frac{d\eta}{dt} = \frac{As_m p}{\omega},$$

we will get:

$$\frac{dp}{dt} = \frac{f\omega}{\Psi_{av.}} \left(\frac{1}{I_K} - \frac{A}{\omega} s_m \right) p = \frac{f\omega}{\Psi_{av.} I_K} \left(1 - \frac{A s_m I_K}{\omega} \right) p =$$

$$\frac{f\omega}{\Psi_{a.V.}I_{K}}(1-\gamma_{K}).$$

Denoting the constant

$$\frac{f\omega}{\Psi_{\mathbf{R}\Psi}, I_{\mathbf{K}}} (1 - \gamma_{\mathbf{K}}) = \frac{1}{\tau_{1}},$$

separating the variables and integrating the obtained equations we get:

$$\ln \frac{p}{p_B} = \frac{t}{\tau_1}$$

.,

or

$$p = p_B^{e^{t/\tau_1}}$$

Fig. 122 - Pressure Increase Curves when Burning Powder in a Bomb with a Nozzle.

We have obtained the same formula as when burning powder in a constant closed space, although the constant τ_1 corresponds to the burning of charge $\omega(1-\gamma_K)<\omega$ rather than charge ω , and hence the process of pressure increase is slower, i.e., the same as it would have been in a closed space at $\Delta_K = \frac{\omega(1-\gamma_K)}{w_0}$ which is smaller than the actual $\Delta = \frac{\omega}{w_0}$.

The full time of burning under these conditions is determined by the formula:

$$t_{K} = 2.303 \ \tau_{1} \log \frac{p_{K}}{p_{B}}$$

It should be noted that also the pressure p_B of the igniter under conditions of partial gas discharge will not be equal to the rated pressure under conditions of a closed space; a correction must be made for the gas discharge.

The curves in fig. 122 show the pressure increase: 1 - when the powder is burned in a closed space; 2 - when the same charge is burned with a portion of the gas discharged through a nozzle.

Both curves are theoretical ones under the assumption that burning proceeds according to the geometric law. It has been shown however that the true characteristic of pressure increase differs from the theoretical by the fact that the pressure curve is bent at the end and that it approaches the horizontal tangentially rather than at an angle.

Therefore, when powder is burned in a chamber with a nozzle, curve 2 will likewise be distorted.

The problem dealing with the effect of the charging conditions and of the burning of powder on the law governing the pressure increase when a portion of the gas is discharged through a nozzle, can be solved graphically in its first approximation.

Indeed, the input of gases per second as a result of powder burning at high pressures is expressed by the well-known formula:

$$\omega \frac{d\psi}{dt} = \omega \frac{S_1}{\Lambda_1} \frac{S}{S_1} u_1 p \quad kg/sec = \omega \Gamma_p;$$

and the gas discharge (output) per second is expressed by the following formula:

$$G_{\text{sec}} = \frac{dY}{dt} = \omega \frac{d\gamma}{dt} = As_{\text{m}}p.$$

If the input exceeds the output, the pressure in the chamber will rise; if the procedure is reversed, the pressure will drop.

If the input equals the output, the pressure must be maximum or remain constant. Hence the pressure change depends on the ratios $d\omega/dt$ and $d\eta/dt$. A simple relationship is obtained between the charging conditions and the powder burning characteristics, permitting a direct answer to the problems dealing with the nature of the pressure curve and with the condition of obtaining the maximum pressure before the end of burning.

Everything depends on the ratios:

$$\omega \Gamma = \omega \frac{s_1}{\Lambda_1} \frac{s}{s_1} u_1$$
 and Λs_m ,

where $As_{\underline{m}}$, characterizing the flow conditions, is a constant, and $\omega\Gamma$ is usually a variable and becomes constant only for powders with a constant burning area. Therefore, these values can be made equal and the pressure p_{max} can be obtained only at a certain instant. Thereafter the pressure will begin to drop or rise because S/S_1 usually varies in one direction only.

We thus get a simple graphic solution for the problem. If it is required to find out whether the end of burning will obtain after the maximum \boldsymbol{p}_{max} is reached and the value of $\boldsymbol{\psi}_m$ to which the maximum pressure will correspond, the answers will be obtained by constructing a curve for the given powder depicting the progressivity of burning $\omega\Gamma$ as a function of ψ_1 and a straight line as' must be then drawn parallel to the abscissa at a distance As_m from it (fig. 123). If

the entire line as' lies below line 1-1, the gas input during the entire burning process exceeds the gas discharge through the nozzle, the pressure curve rises continuously, and the maximum pressure coincides with the end of burning. The angle of inclination of the curve $\left(\frac{dp}{dt}\right)_{K}$ will be maximum at the end of burning (curve 1-1 in fig. 124). If line as' starts below the $\omega\Gamma$ curve (see fig. 123) and then intersects it at point b and continues above it, it means that the pressure will first increase, pass the maximum at point b(γ_{m}) where the gas input equals the gas discharge, and will then drop, because the gas discharge As per second will exceed the gas input $\omega\Gamma$.

A pressure curve 2-2 (fig. 124) is thus obtained with a smooth inflection at point p_m and a descending portion showing a pressure drop between p_m and p_K .

In fig. 123 curve $\Gamma_{\rm T}$ (3-3) lies below the line as'. This indicates that the discharge will always exceed the input, that the pressure will continuously decrease (curve 3-3 in fig. 124), and that the powder may burn slowly and may even tend to die out.

The Courves in fig. 123 represent strip powders of varying thicknesses: 1-1 for thin strip, 2-2 for strips of average thickness, and 3-3 for thick powder. Hence, with the same powder shape, by varying the thickness of the strip and leaving the charge and cross-sectional area of the nozzle unchanged, we can obtain all three forms of the pressure (increase) curve.

Contrariwise, for the same powder of given dimensions, by varying the nozzle opening s_m or the weight of the charge ω , the position of line as' or ω can be changed and with it the characteristic of

the curve depicting the pressure increase in a chamber with a nozzle. Therefore, a chamber with a nozzle, if provided with means for recording the rise and drop of pressure, makes it possible to test powders at considerably greater charging densities and under conditions approaching those of powder burned in a weapon; i.e., not only under conditions of pressure rise, but also under conditions of pressure drop.

All of the above conclusions and the possibility of obtaining maximum pressure before the end of burning are based on the analysis of theoretical curves of progressivity \(\Gamma \) calculated according to the geometric law. Actually, of course, the test curves Γ , ψ differ in character, i.e., they differ in regard to regressive powders by their beginning and end portions, whereas in regard to progressive powders they differ along their entire zero-to-unity interval. Typical diagrams for strip (or tubular) powder (fig. 125) and for powders with many perforations (fig. 126) are presented below.

Fig. 123 - Gas Input and Discharge Characteristic Curves.

Fig. 124 - Curves Depicting Pressure Variation in a Bomb with a Nozzle.

A comparison of the $\omega\Gamma_{\mbox{\scriptsize OB}}$ and an' diagrams characterizing the 426

STAT

size of the nozzle indicates the important difference between experimental and theoretical curves Γ, ψ which must be reflected on the nature of the pressure curves p, t obtained in the presence of a nozzle on the chamber.

Inasmuch as the test curves \(\tau_{,} \psi \) show a sharp drop at the end of burning and tend toward zero, they must be intersected by the line as'; the maximum must occur before the end of burning, whereas the end of burning will occur on the descending branch of the pressure curve.

The ascending portions of the Γ , ψ curves at the start of burning point at a gradual ignition at ignitor pressures of 20-40 kg cm², and if the Γ , ω curve lies a considerable distance below the corresponding straight line aa', ignition cannot take place and the powder will be extinguished because of lowered pressure. Such examples were obtained in testing cylindrical grains for ignition. When a pyroxyline igniter was used capable of developing a pressure of about 50 kg/cm², it was often found that after it was burned its gases would exit through the nozzle without igniting the powder charge. A subsequent examination of the powder grains would show that the latter were partly burned and became extinguished when the pressure dropped. Actual calculations for one such case show that

$$A = \frac{8}{\omega} = 0.007 = \frac{0.07}{0.005} = 0.098 \text{ cm}^2 \text{ kg} \cdot \text{sec},$$

and for this $\frac{7}{7}$ powder the theoretical $\Gamma_0 = 20 \cdot 0.0075 = 0.150$ cm²/kg · sec.

Fig. 125 - Relation Between Gas Input and Discharge per Second when Burning Strip Powder in Accordance with the Physical Combustion Law.

Fig. 126 - Relation Between Gas Input and Discharge per Second when Burning Powder with Many Perforations in Accordance with the Physical Combustion Law.

If the ignition were instantaneous, the powder would not have been extinguished because $\Gamma_{T,0} > A = \frac{s_m}{\omega}(*)$. But inasmuch as ignition is not instantaneous, and the initial Γ can actually equal 0.040-0.050 and then increase to 0.200, the value of Γ at the start of ignition is actually smaller than $A = \frac{s_m}{\omega}$, the discharge through the nozzle exceeds the gas input, and the powder does not ignite.

(*) Subscript T.O. stands for "theoretical, initial." Editor.

3. DERIVATION OF MAXIMUM PRESSURE FORMULA

According to the physical law of burning, all powders without exception, when burned in a chamber with a nozzle, due to the sharp surface area decrease at the end of burning, must develop maximum pressure before the end of burning, and hence a maximum $\frac{\mathrm{d}p}{\mathrm{d}t}=0$ must occur on the pressure curve without fail. We shall derive the condition for obtaining maximum pressure and a formula for p_{m} , from the fundamental equation of pressure in a semi-closed space.

We had presented above the general pressure formula:

$$p = \frac{f\Delta(\psi - \gamma)}{1 - \frac{\Delta}{\delta}(1 - \psi) - \alpha \Delta(\psi - \gamma)} = \frac{a}{\delta}.$$

In order to determine the conditions for obtaining $p_{\underline{n}}$, we differentiate p with respect to t, bearing in mind that

$$\frac{d\psi}{dt} = \Gamma_p \text{ and } \frac{d\gamma}{dt} = \Lambda \frac{s_m}{\omega} p.$$

We get:
$$p = \frac{f\Delta\left(\frac{d\psi}{dt} - \frac{d\gamma}{dt}\right)}{b} - p = \frac{\left[-\alpha\Delta\left(\frac{d\psi}{dt} - \frac{d\gamma}{dt}\right) + \frac{\Delta}{\delta}\frac{d\psi}{dt}\right]}{b} = \frac{1}{2}$$

STAT

$$= \left\{ \frac{f\Delta\left(\Gamma - A \frac{a_{m}}{\omega}\right) - p\left[\frac{\Delta}{8}\Gamma - \alpha\Delta\Gamma + \alpha\Delta A \frac{a_{m}}{\omega}\right]}{b} \right\} p.$$

Equating the derivative to zero, we obtain the condition necessary for obtaining $p_{\mathbf{m}}$:

$$f\Delta\left(\Gamma_{m} - A \frac{s_{m}}{\omega}\right) - p_{m}\left[\alpha \Delta A \frac{s_{m}}{\omega} - \Delta \Gamma_{m}\left(\alpha - \frac{1}{\delta}\right)\right] = 0.$$

Eliminating Δ and dividing by f, we reduce similar terms:

$$\Gamma_{m} \left[1 + \left(\alpha - \frac{1}{8} \right) \frac{p_{m}}{f} \right] = A \frac{n_{m}}{\omega} \left(1 + \alpha \frac{p_{m}}{f} \right),$$

whence

$$\omega \Gamma = As_n',$$
 (N)

where

$$n' = \frac{1 + \alpha \frac{p_m}{f}}{1 + \left(\alpha - \frac{1}{\delta}\right) \frac{p_m}{f}} > 1.$$

At f = 900,000, $\alpha = 1$; the value of n' depends on pressure p_m and can be computed in advance:

In the first approximation for rockets, where $p_m \leqslant 250$ atm, n'=1; for chambers with nozzles n'=1.10.

Thus, in order to obtain p_m , it is necessary that the inflow of gas per second at p=1, i.e., $\omega\Gamma$, satisfy the condition (N), i.e., that it exceed somewhat the discharge of gas per second reduced to p=1.

$$\int_{\mathbf{m}} = \frac{\mathbf{As}_{\mathbf{m}}}{\omega} \mathbf{n}' \quad \text{or} \quad \omega \Gamma_{\mathbf{m}} > \mathbf{As}_{\mathbf{m}}.$$

Having obtained from bomb tests or by means of theoretical calculations curves of ω and Γ as a function of I, and also the straight lines $\frac{As_m}{\omega}$ n' for various charges ω_i , the problem of determining p_m can be solved as follows.

Passing the straight line A $\frac{s_m}{\omega_1}$ n' for a given weight of charge through curve Γ , I in fig. 127, we find the point of intersection a_1 , and dropping a vertical from this point we determine I_m on the abscissa and the value ψ_{m1} on curve ψ . With A_{m1} and I_{m1} known, we compute the relative gas discharge at the instant p_m is obtained:

$$\gamma_{mi} = A \frac{a_m}{\omega_i} I_{mi}$$

Fig. 127 - Graph for Determining p During Gas Discharge. Substituting the obtained values of ψ_m and η_m in the pressure formula, we find:

$$p_{\underline{m}} = \frac{f\Delta(\psi_{\underline{m}} - \gamma_{\underline{m}})}{1 - \frac{\Delta}{\delta}(1 - \psi_{\underline{m}}) - \alpha\Delta(\psi_{\underline{m}} - \gamma_{\underline{m}})},$$

where

$$\gamma_m = \gamma : \omega = \frac{As_m I}{\omega}.$$

It is known that the gas inflow $\psi = \int_0^{\infty} \int dI$ is expressed by the area bounded by the $\int_0^{\infty} \int_0^{\infty} dI$ curve and the abscissa I, and the gas discharge $\partial_0^{\infty} = \int_0^{\infty} I$ by the area of a triangle of altitude A_{∞}^{∞} and base I. The difference between these areas, cross-hatched in fig. 127, gives the gas residue in the chamber. The greater the charge ω_1 , the lower will be the straight line A_{∞}^{∞} , the greater will be the cross-hatched area $\psi_{\rm H} = \gamma_{\rm H}$, the later will the maximum pressure occur, and the greater will be the maximum pressure.

It is of interest to note that the condition for obtaining maximum pressure obviously does not depend on the volume of the chamber and the charging density, but, rather, on the ratio between the oppositely reacting intensities of gas inflow $\omega_{\rm m}$ and gas discharge $As_{\rm m}$, similarly to the condition in a gun wherein the maximum obtainable pressure depends on the ratio between the intensity of gas inflow ω and the rate of increase of the volume of the bore

The obtained derivations are valid for high pressures (above 1000 kg/cm^2) or for rapidly burned fine powders, when the burning rate law $u = u_1 p$ holds true.

At low pressures (up to 250 kg/cm²) and for very thick powders the burning rate law $u=u_1p$ no longer applies, as was shown in the chapter dealing with the burning rate law, and the relationships become somewhat different.

At small pressures and relatively slow burning of the powder, the mass of the latter succeeds in becoming heated to a considerable degree; the more so, the slower the process of burning. Therefore the rate of burning \mathbf{u}_1 reduced to $\mathbf{p}=1$ increases at low pressures, and begins to decrease as the pressure increases.

Inasmuch as the true change of u_1 with heating and the degree to which the powder mass becomes heated at different rates of burning have not yet been determined experimentally, formally this phenomenon of burning reduced to p=1, which is more intense at small pressures and less intense at high pressures, can be expressed by the burning

rate law:

$$u = u'p$$
,

where $u_1^* > u_1^*$, whereby

$$u_1 = \frac{u_1'}{p^{1-\nu}}.$$

In such a case the rate of gas inflow $\omega \frac{d \Upsilon}{dt}$ will be expressed by the formula:

$$\omega = \frac{d\psi}{dt} = \omega \frac{s_1}{\Lambda_1} \frac{s}{s_1} u_1' p^{\nu} = \delta s u_1' p^{\nu},$$

and the intensity of discharge will be expressed by the previous relation

$$G_{\text{sec}} = \frac{dY}{dt} = As_{\text{m}}p.$$

As was shown by Prof. Ya. M. Shapiro, this diversity of the exponents in the laws governing the input and discharge of the gases leads to a very interesting property of self-regulation and levelingoff of the $p_{\underline{n}}$ value, manifested during the burning of thick powders in bombs with nozzles at low pressures (10 to 200 kg/cm 2).

Indeed, if we were to depict the imput and discharge of games in fig. 128, the first process would be represented by a parabolic curve and the second process by a straight line passing through the origin of the coordinates, whose tangent equals $\mathbb{A} \frac{s_n}{\omega}$ and can be chosen at will.

Say, at point a the input and discharge of the gases become equalized and the pressure remains constant. Should the pressure be increased (to the right of point a), the intensity of gas discharge will become greater compared with the gas input and the pressure will drop, i.e., the process will reverse itself towards point a, maintaining $\mathbf{p_m}$ = const.

In exactly the same way, when the pressure drops (to the left of point a), the gas inflow process will be more intense, and this will cause the pressure to increase and to tend towards $p_{\underline{m}} = const.$

Therefore, at low pressures, when the burning rate law is $u=u_1^*p^\vee$, the process of maintaining the gas pressure at a specific level will be of the self-regulating kind; it will be more stable compared with the process of pressure change when powder is burned at high pressures of the order of 1000-2000 kg/cm².

This tendency towards leveling off of the pressure can be noted by comparing diagrams Γ , I and $A\frac{s_m}{\omega}$, I under different burning rate laws. It has been established by actual tests that at high pressures, at $\Delta > 0.10$ -0.12, the integral curves I as a function of ψ do not depend on Δ and coincide at different charging densities. At small charging densities and low pressures the integral curves assume lower positions, which are the lower, the smaller the charging density.

Correspondingly, the Γ , ψ and Γ , ψ curves also coincide at high charging densities; at low charging densities the Γ , ψ curves are disposed the higher, the smaller the value of Δ ; curves Γ , Γ , at the start, are likewise disposed higher and are then intersected by

 Γ , I curves at higher values of Δ , because the total area $\int_{0}^{\infty} \Gamma dI = 1 = const.$

Fig. 128 - Diagram Depicting the Rate of Input and Discharge of Gases. For high densities we will have the former graph (see fig. 127), where Γ , I and Ψ , I are the same for different Δ (from 0.12 to 0.25). We shall construct an additional graph (fig. 129) for low charging densities taking into account the change of Γ and I obtained with the change of the charging density. Let $\Delta_1 < \Delta_2 < \Delta_3$; let us see what happens when the gas inflow with velocity Γ occurs simultaneously with a gas discharge at the rate of $\frac{As_m}{\omega}$ per second.

Fig. 129 - Rate of Gas Inflow and Discharge at Small Values of Δ . The smaller the value of Δ , the smaller will be the pressure developed by burning powder in a constant closed space, and the

higher will be the disposition of the Γ , I curve on the graph. When the input Γ_m balances the discharge $A\frac{s_m}{\omega}n'$ at point ag,

the straight line $\frac{As_m}{\omega}$ n' will lie above Γ_3 and the pressure will begin to drop; however, at a lower pressure, use must be made of curve Γ_2 lying above Γ_3 , and point a_2 can be intercepted at the same pressure. The same will occur in region a_2 - a_1 , whereby $\gamma_3 < \gamma_2 < \gamma_1$ - the burned portion of the charge grows, whereas the pressure remains constant, because the gas inflow equals the gas discharge. This will not occur at all at high jressures, at which curve Γ , I is the same even after it intercepts point a_1 , point a_2 or point a_3 . The Γ , I curve will be disposed below line $\frac{As_m}{\omega}$ n', and the pressure will continue to drop only.

K.E. TSIOLKOVSKY'S FORMULA

A rocket is propelled by the reaction force produced by the gases discharged from it. The Great Fatherland War has given us many examples of rocket application both in our country and in the countries of our allies and enemies. These may be exemplified by our famous 'Katushas' or by the German multi-barreled rocket (mine) throwers.

We shall present here the derivation of the famous Tsiolkovsky formula for determining the velocity of a rocket on the basis of the relations presented above.

We shall designate by Q the total weight of the rocket, the charge included, by $\omega-$ the weight of the powder charge, and by q - the weight of the rocket less the charge, so that Q = q + ω .

497

STAT

The total weight of the rocket will vary in flight from Q to q. Say, the weight of the games discharged at a given time is $Y_{\rm kg}$. The equation of quantity of motion (momentum) will be:

$$\frac{Q-Y}{g}$$
 dv - Rdt - $\int s_m p dt - \int s_m dI$,

but

eliminating smdI, we get:

$$\frac{Q-Y}{A}dV = \frac{\zeta}{A}dY;$$

$$dv = \frac{\zeta g}{A} \frac{dY}{Q-Y} = -\frac{\zeta g}{A} \frac{d(Q-Y)}{Q-Y};$$

$$v = \frac{\zeta g}{A} \ln \frac{G}{Q-Y} = \frac{2.303 \zeta g}{A} \log \frac{Q}{Q-Y}.$$

The greatest velocity will obtain after all the gas is discharged from the combustion chamber, i.e., $Y_{max} = \omega$:

$$Y_{max} = \frac{2.303 \zeta g}{A} \log \frac{Q}{Q - \omega} \approx 32300 \log \frac{Q}{Q - \omega} dn/sec.$$

This is Tsiolkovsky's formula derived without taking air resistance into consideration.

The values of ζ depending on the degree of expansion of the nozzle were presented above. The table given below gives these values with respect to the ratio between the discharge diameter d_{a} of the nozzle and its smallest cross section d_{m} (Table 32).

Table 32							
d _m	1	2	2.5	3	4		
ζ	1.24	1.61	1.675	1.73	1.80		

Therefore, at $d_{\rm g}/d_{\rm m}=2$ the gain in the reaction force produced compared with a straight nozzle is 30%. When $d_{\rm g}/d_{\rm m}$ is increased to 3 and 4, the added increase in the reaction force amounts to only 7 and 4%, respectively.

Inasauch as the enlargement of the discharge cross section of the nozzle is associated with increase of length and weight, which add to the weight of the rocket without offering any appreciable advantage, the value of $d_{\rm B}/d_{\rm B}$ is actual practice is taken within the limits of 2-2.5.

CHAPTER 4 - A BRIEF DISCUSSION OF THE TEEORY OF THE MUZZLE BRAKE

1. GENERAL CONSIDERATIONS

A mussle brake is a device attached to the mussle of the barrel. Its purpose is to deflect a portion of the discharged gases in the direction of the barrel recoil and thus reduce the velocity of recoil and the load imposed on the gun mount.

A portion of the gas entering the muzzle brake moves in the direction (behind) the projectile through the center opening of the brake, and the other portion of gas is discharged through side openings of the brake in the direction of recoil.

The deflection of the gases to the sides reduces the quantity of gas passing through the center opening of the brake behind the projectile, and this serves to reduce the maximum velocity of recoil. The reaction produced by a portion of the gases discharged through the side openings creates a force counteracting the power of recoil and also retards the latter.

Thus the main purpose of a muzzle brake is to reduce the energy of the recoiling parts.

Introducing the designations:

Vmax - maximum velocity of free recoil without muzzle brake;

Y - velocity of free recoil at the end of gas after-action in the presence of a muzzle brake,

then the efficiency of the muzzle brake may be called the "relative reduction of the kinetic energy of the recoiling masses," i.e.,

$$\gamma' = \frac{v_{\max}^2 - v_{\mathrm{T}}^2}{v_{\max}^2}.$$

The corresponding relative reduction of the maximum velocity of recoil can be denoted thus:

$$\mathbf{r} = \frac{\mathbf{v}_{\text{max}} - \mathbf{v}_{\text{T}}}{\mathbf{v}_{\text{max}}},$$

whereby

$$\gamma' = r(2 - r)$$
.

STAT

If the difference between the weights of the recoiling parts in the presence of the muzzle brake (Q_T) and in the absence of the latter (Q_T) is taken into account:

latter (Q₀) is taken into account:
$$\frac{v_{max}^2 - \frac{Q_T}{Q_0} \ v_T^2}{\gamma' - \frac{v_{max}^2}{v_{max}^2}}.$$

The simplest types of muzzle brakes are the "active brakes," whose action is based on the impact of gases escaping in the wake of the projectile against a surface fastened in front of the barrel (fig. 130).

Fig. 130 - Diagram of an Active Brake.

Fig. 131 - Diagram of a Reaction Brake.

In reaction brakes the gases are discharged through curved passageways. The change of momentum along the bore axis will be equal to the reaction impulse of the stream against the deflecting brake surface (fig. 131).

2. GAS REACTION PRESSURE ON THE WALLS OF A CURVED BORE OF A MUZZLE BRAKE(*)

Let us not consider the flow of gas through a curved bore (fig. 132)

(*) D.A. Ventsel, "VNUTRENNIATA BALLISTIKA" (Internal Ballistics)

whose entrance cross section is F_1 and exit cross section is F_2 . The passageways are inclined at an angle a_1 with respect to the bore axis at the entrance opening and at an angle a_2 at the exit opening.

We shall apply the equation of the change of momentum to the volume of gas bounded by the curved walls of the bore and the two sections \mathbb{F}_1 and \mathbb{F}_2 normal to it.

The mass of gas entering the bore through section F_1 during the time interval dt is $\frac{G}{g}$ dt, whose component of the momentum along the axis of the gun barrel equals

$$\frac{G_T}{g}$$
 $v_1 \cos \alpha_1 dt$.

The same gas mass $\frac{G}{T}$ dt will exit through section F_2 , and will have a component of the momentum along the same axis equal to

$$\frac{G_T}{g} v_2 \cos a_2 dt$$
.

The increment of the projection of the momentum of the given volume on the x-axis equals the elementary impulse of time dt along the x-axis of the total pressure exerted by the bore on the gas and the pressures in the sections normal to it.

Inasmuch as the component of the pressure exerted by the bore on the gas along the x-axis equals the component of the gas reaction $\mathbf{R}_{\mathbf{T}}$ on the bore with its sign reversed, we can write

 $\frac{G_{T}}{g}(U_{2}\cos\alpha_{2}-U_{1}\cos\alpha_{1})dt = -R_{Tx}dt + F_{1}p_{1}\cos\alpha_{1}dt - F_{2}p_{2}\cos\alpha_{2}dt,$

whence, bearing in mind that $\alpha_2 > \frac{\pi}{2}$ and $\cos \alpha_2 < 0$,

$$R_{Tx} = \frac{G_{T}}{g} (U_{2} | \cos \alpha_{2} | + U_{1} \cos \alpha_{1}) + F_{2}p_{2} | \cos \alpha_{2} | + F_{1}p_{1} \cos \alpha_{1}.$$
(99)

Fig. 132 - Diagram of Forces Acting in the Bore of the Muzzle Brake.

It follows that the component of the gas reaction on the bore along the x-axis is positive; it counteracts the recoil.

If the brake has several bores or passages inclined at the same angles α_1 and α_2 , the expression for the reaction of the whole brake will remain exactly the same, where the designations \mathbf{R}_{Tx} , \mathbf{G}_{T} , \mathbf{F}_{1} , \mathbf{F}_{2} relate to the sum of the areas of all the passages in the brake.

3. TOTAL REACTION R ON THE GUN BY GASES DISCHARGED THROUGH THE MUZZLE BRAKE

A gun equipped with a mussle brake is subjected to the following forces acting along its axis during gas discharge.

1) The component along the x-axis of the reaction of gases discharged through the forward end of the brake (muzzle opening of the

barrel)

$$R_{x} = -(k + 1) \left(\frac{2}{k+1}\right)^{k/k-1} sp = \zeta sp.$$

2) The component along the x-axis of the reaction of gases flowing into the muzzle brake through section \mathbf{F}_1

$$\mathbf{R}_{\mathbf{T}\mathbf{x}} = -\frac{\mathbf{G}_{\mathbf{T}}}{\mathbf{g}} \ \mathbf{U}_{1} \ \cos \ \alpha_{1} - \mathbf{F}_{1}\mathbf{p}_{1} \ \cos \ \alpha_{1} - -\left(\frac{\mathbf{G}_{\mathbf{T}}}{\mathbf{g}} \ \mathbf{U}_{1} + \mathbf{F}_{1}\mathbf{p}_{1}\right) \cos \ \alpha_{1}.$$

3) The component along the x-axis of the gas reaction on the passageways of the muzzle brake (formula 99)

$$\mathbf{R}_{\mathbf{Tx}} = \frac{\mathbf{G}_{\mathbf{T}}}{\mathbf{g}} (\mathbf{U}_{\mathbf{2}} \middle| \cos \alpha_{\mathbf{2}} \middle| + \mathbf{U}_{\mathbf{1}} \cos \alpha_{\mathbf{1}}) + \mathbf{F}_{\mathbf{2}} \mathbf{p}_{\mathbf{2}} \middle| \cos \alpha_{\mathbf{2}} \middle| + \mathbf{F}_{\mathbf{1}} \mathbf{p}_{\mathbf{1}} \cos \alpha_{\mathbf{1}}.$$

We shall assume that the gas begins to flow simultaneously through all the openings after the base of the projectile has passed through the muzzle face. The component of the total reaction along the x-axis will be

$$R_{\Sigma_{X}} = -\zeta sp + \left(\frac{G_{\underline{T}}}{s} \cdot v_{\underline{T}} + F_{\underline{T}}p_{\underline{T}}\right) |\cos \alpha_{\underline{T}}|.$$

The first term is greater than the second, and the minus sign in front of the first term indicates that the total gas reaction on the gun acts in a direction opposite to that of the x-axis (opposite to the direction of the projectile's motion). The closer angle a_2 approaches π , the greater the values of a_2 and a_3 and a_4 and a_5 and a_6 and a_7 and a_8 and the greater the

reaction force of the brake.

Obviously, the entry angle α_1 to the passageways in the brake does not enter into the expression for the total reaction $R_\Sigma.$

In computing the amount $G_{\overline{1}}$ and the velocity $U_{\overline{2}}$ of the discharge from the passageways, we shall use the assumption that the pressure $p_{\overline{1}}$ at the entrance to the brake passageways is critical with relation to the mean pressure in the bore of the gun at a given instant:

$$p_1 = x_{cr}, p = \left(\frac{2}{k+1}\right)^{k/k-1} p;$$

the incoming gas velocity \mathbf{U}_{1} may be disregarded.

By expanding in succession the values in R_{Σ} , Prof. D.A. Ventsel reduced this expression to the following general form:

$$R_{\Gamma} = \alpha_{\Sigma} \langle sp,$$

where

$$\alpha_{\Sigma} = 1 - \frac{1}{k+1} \left[\Psi \chi \frac{2k}{\sqrt{k^2 - 1}} \left(\frac{2}{k+1} \right)^{1/k-1} \sqrt{1 - \left(\frac{p_2}{p_1} \right)^{k-1/k}} + \frac{y_2 p_2}{y_1 p_1} \right] \frac{y_2}{s} \left| \cos \alpha_2 \right|.$$

 χ - a coefficient depending on the curvature of the passageways $(X = 0.75-1.0 \text{ at } \alpha_1 < 30^{\circ});$

 Ψ - a coefficient depending on the entrance angles α_1 and α_2 in terms of expression $\frac{\alpha_1 + x - \alpha_2}{2}$; its value is given in a table.

Table 33						
F ₂	P2					
$\overline{\mathbf{r}_1}$	p ₁					
1.01	0.5					
1.06	0.4					
1.46	0.2					
2.25 3.61	0.05					
11.8	0.01					

The ratio of the pressures at the entrance and exit of the brake bore p_2/p_1 depends on the ratio F_2/F_1 and is determined from Table 33.

a ₁ + x - a ₂	15°	20°	25°	30°	40°	50°	60°	700
							0.940	0.950

4. THE FULL IMPULSE OF THE TOTAL GAS REACTION

Similarly to a gun without a muzzle brake, we will have the following during the period of after-action between the gases and the brake:

$$\frac{Q_0}{g}(V_T - V_A) = \int_0^t R_E dt - \frac{\omega}{g} \frac{V_{A,a}}{2} = I_E - \frac{\omega}{g} \frac{V_{A,a}}{2},$$

whence

$$V_T = V_A + \frac{g}{Q_0} I_{\Sigma} - \frac{\omega}{Q_0} \frac{V_{A,a}}{2}$$

where

$$R_{\Sigma} = \alpha_{\Sigma}^{\zeta} sp.$$

The pressure drop p as a function of time will be the same as in the usual case (in the absence of a muzzle brake), with the exception that the coefficient B' is replaced by the greater coefficient B_{Σ} , because the gases are discharged not only through the front opening of the brake, but also through the side passages:

$$p = \frac{p_{A}}{2k, k-1},$$

$$(1 + B_{\Sigma}t)$$

Apele

$$B_{\Sigma} = B' \left[1 + \chi \frac{P_1}{s} \left(\frac{2}{k+1} \right)^{(1/2)(k+1/(k-1))} \right].$$

The period of after-action in the presence of a muzzle brake

$$t_{RE} = \frac{1}{B_{\Sigma}} \left[\left(\frac{2}{k+1} \right)^{1/2} \left(\frac{p_A}{p_B} \right)^{k-1/2k} - 1 \right].$$

Assuming $R_{\Sigma} = \alpha_{\Sigma} \xi$ sp, substituting this expression for the impulse I_{Σ} and integrating, we get:

$$I_{\Sigma} = \alpha_{\Sigma}^{\xi \cdot \mathbf{s} p_{A}} \int_{0}^{t_{n}} \frac{dt}{(1 + B_{\Sigma}^{t})} =$$

$$= \alpha_{\Sigma}(k-1) \left(\frac{2}{k+1} \right)^{k_{i}} k^{-1} \frac{sp_{A}}{B_{\Sigma}} \left[1 - \frac{1}{(1+B_{\Sigma}^{t})}^{k+1, k-1} \right],$$

$$\xi = (k + 1) \left(\frac{2}{k + 1}\right)^{k, k - 1};$$

$$B_{\Sigma} = B \cdot \left[1 + \chi \frac{P_{1}}{s} \left(\frac{2}{k + 1}\right)^{(1/2)(k + 1, k - 1)}\right];$$

$$B' = \frac{k-1}{2} \left(\frac{2}{k+1} \right)^{(1/2)(k+1/k-1)} \frac{\sqrt{gkp_A v_A}}{l_0 + l_A}.$$

The function in brackets is close to unity.

Upon substituting $I_{\Gamma} = \frac{\omega}{g} \frac{v_{A,B}}{2}$ and $v_{A} = \frac{q + 0.5\omega}{q_0}$ in the expression or v_{Γ} , we get the final expression:

$$v_{T} = \frac{q}{Q_{0}} \left(1 + \frac{1}{2} \frac{\omega}{q} \right) v_{A} + \alpha_{E} \frac{2}{k} \left(\frac{2}{k+1} \right)^{1/2} \frac{\omega}{Q_{0}} c_{A} - \frac{1}{k} \left(\frac{2}{k+1} \right)^{1/2} \frac{\omega}{Q_{0}} c_{A}$$

$$-\frac{\omega}{Q_0}\frac{v_{A,B}}{2}-\frac{q}{Q_0}\left(1+\beta_{\Sigma}\frac{\omega}{q}\right)v_{A},$$

where

$$\beta_{\Sigma} = \alpha_{\Sigma} \frac{2}{k} \left(\frac{2}{k+1} \right)^{1/2} \frac{c_{A}}{v_{A}}.$$

At k - 1.2

$$\beta_{\Sigma} = 1.589 \alpha_{\Sigma} \frac{c_{A}}{\Psi_{A}} \text{ and } c_{A} = 10,85 \sqrt{\frac{p_{A}(1 + h_{A})}{\Delta}}$$

Here p is in kg/cm^2 , the velocity is in m/\sec , Δ is in kg/dm^3 .

Using the above formula, we can calculate the velocity $\Psi_{\overline{1}}$ at the end of the period of gas after-action on the barrel and determine the efficiency of the brake:

efficiency of the brace.

$$\frac{V_{\max}^2 - V_{\widehat{I}}^2}{V_{\max}^2} = 1 - \frac{\left(1 + B_{\widehat{L}} \frac{\omega}{q}\right)^2}{1 + \beta \frac{\omega}{q}}.$$

The efficiency of modern muzzle brakes may be of the order of 40-50% and even 70 and 80% in exceptional cases.

Example. Calculate the efficiency of a muzzle brake. Say, the characteristics of the given gun are as follows:

$$\Delta = 0.72$$
; $\frac{\omega}{q} = 0.453$; $\Lambda_A = 4.63$; $v_A = 1000 \text{ m/sec}$; $p_A = 983 \text{ kg/cm}^2$

(subscript A represents muzzle-Translator).

In the absence of a muzzle brake (at k = 1.2)

$$\beta = 1.59 \frac{c_A}{v_A} = \frac{1.59}{v_A} \sqrt{gkp_A} \frac{\Lambda_A + 1}{\Delta} = \frac{1.59}{1000} \sqrt{117.7 \cdot 983 \cdot \frac{5.63}{0.72}} =$$

$$-1.59 \frac{950}{1000} - 1.510.$$

$$1 + \beta = \frac{\omega}{a} = 1 + 1.510 \cdot 0.453 = 1.684$$

In the presence of a muzzle brake

$$\beta_{\Sigma} = 1.59\alpha_{\Sigma} \frac{c_{A}}{v_{A}} = \alpha_{\Sigma}\beta;$$

$$\alpha_{\Sigma} = 1 - \frac{1}{k+1} \left[\Psi \chi \frac{2k}{\sqrt{k^2-1}} \left(\frac{2}{k+1} \right)^{1/k-1} \sqrt{1 - \left(\frac{p_2}{p_1} \right)^{k-1/k}} + \right]$$

$$+\frac{r_2}{r_1}\cdot\frac{p_2}{p_1}\left[\frac{r_1}{s}\cos\alpha_2\right].$$

Say, the characteristics of the brake are as follows:

$$\alpha_1 = 30^{\circ};$$
 $\alpha_2 = 120^{\circ};$ $\frac{r_2}{s} = 1.5;$ $\frac{r_2}{r_1} = 1.01;$ $\frac{\alpha_1 + \pi - \alpha_2}{2} = 45^{\circ}.$

According to Table 33, $p_2/p_1 = 0.5$; $\psi = 0.905$; we shall assume that $\chi = 1$; $|\cos 120^{\circ}| = 0.50$.

For
$$k = 1.2 \frac{k-1}{k} = \frac{1}{6}$$
; $\frac{2k}{\sqrt{k^2-1}} \left(\frac{2}{k+1}\right)^{1/k-1} = 2.25$;

$$\left(\frac{p_2}{p_1}\right)^{k-1/k} = 0.5^{1/6} = 0.891.$$

$$a_{\Sigma} = 1 - \frac{1}{2.2} / 0.905 + 1 + 2.25 / (1 - 0.891 + 1.01 + 0.50 / 1.5 + 0.5 = 0.50 / 1.5 + 0.5 = 0.50 / 1.5 + 0.5 = 0.50 / 1.5 +$$

$$-1 - \frac{1}{2.2} \begin{bmatrix} -0.672 + 0.505 \end{bmatrix} - 0.75 - 1 - 0.40 - 0.60$$

$$\beta_{\Sigma} = 0.60 \cdot 1.510 = 0.906$$

$$1 + \beta_{\Sigma} \frac{\omega}{q} = 1 + 0.906 \cdot 0.453 = 1.410$$

$$\gamma = 1 - \left(\frac{1 + \beta_{\Sigma} \frac{\omega}{q}}{1 + \beta \frac{\omega}{q}}\right)^{2} = 1 - \left(\frac{1.410}{1.684}\right)^{2} = 1 - 0.702 = 0.298.$$

Thus the given brake will absorb about 30% of the energy of free recoil.

STAT

Pade Denied

2 mid growy

PRACTICE OF SOLVING PROBLE MS INTERNAL BALLISTICS

(T H E O R E T I C A L A N D A P P L I E D P Y R O D Y N A M I C S)

INTRODUCTION

On the basis of the widespread study of the phenomena and processes occurring during a discharge, internal ballistics must establish the laws relating the conditions of loading to the quantities depending upon them - called ballistic elements of discharge—and must furnish the method of solving a large number of problems encountered in practice.

The establishment of such laws, providing the means for regulating a discharge, constitutes the general problem of internal ballistics.

The conditions of loading include the following: the dimensions of the powder chamber and those of the bore of the barrel, the weight of the latter, the arrangement of the rifling in the bore, the weight and arrangement of the projectile, the pressure necessary to overcome the inertia of the projectile, the weight of the charge, the make of powder, the physico-chemical and ballistic characteristics of the powder, the characteristics of the expansion of gases.

The ballistic elements of a discharge include the path of the projectile ℓ , its velocity v, the pressure of the powder gases p, their temperature T, all values varying with time, and also the quantity of gas $\omega \psi$ formed at a given time.

In solving the above general problem of internal ballistics, ne may distinguish two fundamental and most important problems of arrodynamics, and a series of special problems.

STAT

The first fundamental problem consists in determining by calculation the change in gas pressure and the velocity of the projectile in the barrel as a function of the path of the projectile and of time, for given loading conditions. Together with the curves p, l-v, l-p, t-v, t two most important loading characteristics of the gun are determined: the maximum gas pressure p_m in the bore, and the muzzle velocity v_A of the projectile, i.e., the velocity of the projectile at the instant it leaves the barrel of the gun. This problem may be called the direct problem of pyrodynamics.

For given conditions of loading it has a single solution - a single pressure curve with maximum p_m , a single velocity curve for the projectile, and a muzzle velocity $v_{\rm A}$.

By varying the conditions of loading, it is possible to analyze the effect of these conditions on the variation of the gas pressure and projectile velocity curves, i.e., it is possible to solve a series of special problems related to the solution of the direct problem.

The second fundamental problem of pyrodynamics is the problem of the ballistic design of the gun; it consists in determining the design data of the barrel and conditions of loading necessary to impart some definite initial (muzzle) velocity to a projectile of a given caliber and weight. This velocity is determined from the tactical and technical requirements imposed upon the gun to be constructed.

In solving such a problem, the maximum gas pressure is usually given.

The design data and conditions of loading insuring that a

453

projectile of a given caliber and weight will attain the desired velocity, are obtained from the solution of the above problem. Once the conditions of loading are given, gas pressure and projectile velocity curves are drawn as a function of path and time, i.e., the direct problem of internal ballistics is solved for the selected type of gun and charge.

The obtained curve p, l is used by the engineers to calculate the strength of the gun barrel and projectile shell, while the curve p, t is used to design the carriage, the time fuzes and the igniters. At the same time, the necessary thickness and shape of the powder which must be prepared at the factory, are given.

Thus the further planning of the entire system of artillery and of the necessary ammunition depends to a considerable extent upon the feasibility and rationality of the selected form of the ballistic solution.

This is why the problem of the ballistic design of guns is the principal applied problem of interior ballistics.

The problem of ballistic design is broader than the first problem; it includes the latter as a final step and is in reality an inverse problem of interior ballistics. It admits of numerous solutions, numerous combinations of gun design data and loading conditions under which a projectile of a given caliber and weight will attain the required muzzle velocity.

Because of the indeterminate character of the solution, there arises the need of developing a definite method for obtaining the necessary answer in the shortest possible time, and for selecting from among this multiplicity of solutions the most efficient and desirable solution, satisfying the tactical and technical requirements

imposed upon the gun to be designed.

In this connection, special problems arise with regard to finding the most desirable solution, and for obtaining a gun of maximum power and minimum length or volume, the most suitable projectile, and the most desirable loading conditions.

The solution of these special problems permits in turn to pose the problem of the development of a general theory and method of ballistic design which would take into account the most desirable solutions and tactical and technical requirements.

Besides the indicated fundamental problems of internal ballistics, there is also a series of special and secondary problems introduced below.

For a given bore and a given projectile weight, calculate the weight ω of the projectile insuring a given muzzle velocity v_{A} , and the thickness $2e_{\hat{1}}$ of powder giving the required maximum pressure p_{A} .

Because of the complexity of the phenomenon of discharge, not all of its details can be taken into account, even approximately; some of these details must be neglected and can not be introduced into the mathematical equations expressing the relations between the separate processes occurring during a discharge.

For this reason, the equations of internal ballistics give only approximate values of p, v, l, ψ , and t. But since in practice these equations must give results agreeing with experimental data, it is necessary, in order to insure this agreement, that the problem be solved by selecting certain constant characteristics. When these are substituted into the equations, they give values of $\mathbf{p}_{\mathbf{m}}$ and $\mathbf{v}_{\mathbf{A}}$

for the gases and the projectile, respectively, which values correspond to the results of firing tests.

The very manner in which the problem is posed indicates that the processes taking place during a discharge are not yet all known and analyzed. For this reason one of the main problems of internal ballistics, that must be eventually solved, is the exact determination of constants, those of the gun powder in particular, as derived from its physical and chemical properties. The determination of the powder constants involves a more exact method of pressure determination by experimental means, because all the ballistic characteristics (f, a, u, u) are determined from the latter.

In addition to the problems enumerated above, one should note the problem of determining the variation in the maximum gas pressure and in the initial projectile velocity under specific changes in loading conditions, as well as a series of other problems.

The fundamental elements of a discharge - l, v, p, T, ψ and t - are interrelated by a series of equations expressing the fundamental processes taking place during a discharge, i.e.: the burning of the gun powder and the formation of gases, the transformation of the thermal energy of the gases into the kinetic energy of the system projectile - charge - barrel, and the movements of parts of this system.

The methods of solution of theoretical pyrodynamics must make it possible to compute and establish the dependence of gas pressure and of the velocity of the projectile on the path and the time it takes the projectile to move through the gun barrel, i.e., to solve the fundamental direct problem of internal ballistics.

The methods of solving problems in pyrodynamics may be divided into analytical, numerical, empirical and tabular methods.

The empirical methods were of definite advantage, so long as the theoretical concepts of internal ballistics had not been sufficiently developed.

They were based on some relatively simple empirical equations expressing in a simplified form the experimentally obtained interrelations of the elements of a discharge. Tables were used along with these equations, which tables offered the means for computing very rapidly the elements of the curves depicting gas pressure and projectile velocity.

The empirical methods were derived from the analysis of experimental data obtained in firing weapons under different conditions, with the characteristics and constants entering into these expressions determined from the conditions of the experiment.

The disadvantage of these methods (formulas and tables) consists in the fact that they fail to take into account certain very important factors and conditions of loading, and that such methods may be applied only under the conditions and within the limits established for the given case.

The number of empirical equations and tables is very large; prior to the development of analytical solutions, they were of primary value because of their simplicity. But the appearance of exact theoretical solutions, taking into account with sufficient completeness the influence of most of the conditions of loading and singularities of the processes occurring during a discharge, made it possible to solve all the fundamental problems of pyrodynamics by means of exact analytical relations. As a result, many empirical

equations and tables have lost their significance and are now used only in certain auxiliary cases.

The analytical methods are based on a series of assumptions characterizing the conditions of powder burning and the motions of the gases, projectile and gun; these assumptions are based chiefly on experimental or theoretical data expressing the physical side of the process of discharge.

For this reason, analytical methods of solution give a more profound understanding of the real nature of the phenomenon than empirical methods, and approach more closely the essence of the processes taking place during a discharge.

In the analytical method the problem is reduced to the solution and integration of differential equations of different types. This solution can be obtained with greater accuracy (in which case the resulting equations become more complex), or approximately (which results in simpler relations).

Solutions may be given for the more complex cases obtained in practice, and also for simplified, admittedly schematic cases, in which case the analysis of the relationships is simplified.

Solutions may be based on the geometric and physical laws of powder burning.

Tables of auxiliary values or functions, necessary to calculate certain intermediate values, are prepared in order to expedite and simplify the computations involved in the solution of problems.

Numerical methods of integrating a system of differential equations are used along with the analytical methods. The integration is usually performed by the method of finite differences or by expansion in Taylor's series. These methods are resorted to in

especially difficult cases, when the value of one or several parameters varies throughout the process of discharge and their variation does not permit to solve the problem analytically in finite form. This happens, for example, when the cross section of a barrel bore varies (tapered bore), or when the parameter θ varies throughout the discharge accompanied by a varying gas temperature or by a change of the coefficient ϕ depicting to secondary work done in the process, etc.

On the basis of analytical or numerical solutions, it is possible to set up numerical tables of the fundamental elements (p, v, l, t) for different loading conditions and some general constants. These tables enable one to plot very rapidly the necessary curves p, l and v, l or p, t and v, t with a minimum number of calculations. In so doing, the process of solving the direct problem is greatly simplified and expedited. These tables are usually set up for certain average values of the constants (characteristics and shape of the powder), although in practice one may encounter a series of regressions from these average values. In that case it is necessary to introduce appropriate corrections into the results obtained.

Thus the ballistic tables for the solution of direct problems of pyrodynamics are in reality analytical equations reduced to numerical values in a series of concrete loading conditions.

However, the ballistic tables enable one to solve a series of problems which cannot be solved directly by means of analytical equations.

The basic difference between tabular values and analytical equations is the following: because of their complexity, the analytical equations do not give a direct relationship between

459

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

pressure or velocity and path length, for example; these variables are usually related through some auxiliary variable.

In tables, on the contrary, the basic elements of discharge are interrelated directly: the pressure, the projectile velocity, and the time of its travel through the barrel are given in function of the path traversed by the projectile; this simplifies considerably the analysis and permits the development of a special method for solving problems which cannot be solved by analytical means.

The development of the theory of ballistic design became possible only with the introduction of tables for the solution of internal ballistic problems.

For this reason the first tables prepared in our country by Prof. N.F. Drozdov on the basis of his exact solution given in 1910, are of great importance. These very tables simplified and expedited the calculations involved in the ballistic design of weapons, and gave the engineers a reliable means of solving rapidly inverse problems in pyrodynamics.

They also served as an example for a series of more detailed tables compiled subsequently.

SECTION SIX - ANALYTICAL METHODS OF SOLUTION OF THE DIRECT PROBLEM OF INTERNAL BALLISTICS.

BASIC ASSUMPTIONS

When we examined the phenomenon of a discharge, we had pointed out its extreme complexity and the fact that some of the factors influencing the results were still insufficiently known. For this reason, when solving theoretically the fundamental equation and deriving the relations between the physico-chemical and mechanical phenomena in a discharge, it is necessary to take recourse to certain simplifications and schemes.

The basic assumptions are as follows:

- 1) The burning of powder obeys the geometrical law of combustion.
- 2) The powder burns under an average pressure p.
- 3) The composition of the products of combustion does not change during burning, nor during the adiabatic expansion of the gases (f and a are constant) after the powder is burned.
 - 4) The rate of burning is proportional to the pressure:

u - u₁p.

- 5) The auxiliary work done is proportional to the principal work of the forward motion of the projectile, and is represented by the coefficient ϕ .
- 6) The projectile starts moving when the pressure developed in the chamber by the partial burning of the charge equals \mathbf{p}_0 , i.e., when the pressure is sufficient to force the driving hand completely into the rifling of the bore; the gradual forcing of the band and the increasing resistance encountered by it are not taken into account.

STAT

- 7) The work done in forcing the driving band is not accounted for separately, nor the increasing velocity of the projectile during the gradual forcing of the band.
- 8) The expansion of the barrel during the discharge, the gases escaping through the clearance between the driving band and the walls of the gun, and the air resistance are disregarded.
- 9) The cooling of the gases through heat transfer to the walls of the barrel is not accounted for directly, and may be taken into account indirectly (for example, by decreasing the force $f = RT_1$ or increasing $\theta = 1$ (A + BT_{av.}).
- 10) The motion of the projectile is considered only until it passes the muzzle face.
- 11) The quantity $\theta=(c_p/c_w)$ 1 is taken at its average value, constant throughout the discharge.

The assumptions enumerated above make our representation of a discharge more schematic, and deviate the phenomenon to a greater or lesser degree from reality. For this reason the relations obtained in the solution will express the physico-mechanical nature of the discharge only with a certain degree of approximation. Thus the values of the fundamental elements (maximum gas pressure p_m, initial or muzzle velocity v_A of the projectile) obtained from these equations may not coincide with the values obtained experimentally. Nevertheless, in order to solve practical problems, it is necessary to obtain analytical data which would agree with experiment. For this reason (keeping in mind the complexity of the discharge phenomenon, the incomplete knowledge of its elements, and the disagreement between our basic assumptions and reality) it is necessary to introduce coefficients of "agreement with experiment" into the constants obtained.

Such a method is widely used in various scientific laws (hydrodynamics, aerodynamics, etc.) dealing with complex phenomena, whose details cannot be fully analyzed.

Eventually, as our knowledge is further developed, we will find it possible to render some of the assumptions with greater accuracy and take into account some of the conditions not yet understood.

As new experimental data is accumulated and new methods are applied, the deductions arrived at may be modified and even replaced by others of a more complete and exact nature.

In solving the fundamental equation of pyrodynamics, one should strive to obtain the maximum possible mathematical accuracy. However, in that case some of the expressions become excessively cumbersome, so that even exact formulas will fail to represent the true phenomena of a discharge; and for this reason certain simplifications may be used with advantage in the process of solution.

A comparison of these simplified solutions with the exact ones may show the extent of mathematical error involved with the use of the same constants and conditions.

With an appropriate selection of constants, the somewhat simplified solutions may also yield results approaching experimental data as closely as those obtained by the use of more exact equations.

CHAPTER 1 - SOLUTION OF THE FUNDAMENTAL PROBLEM WHEN THE PRESSURE TO OVERCOME THE PROJECTILE IMENTIA IS KNOWN, AND WHEN BURNING PROCEEDS ACCORDING TO THE GEOMETRIC LAW.

As we have shown above, the fundamental equation of pyrodynamics includes a large number of constants characterizing the projectile, charge and powder which determine the conditions of loading, and the four variables, ψ , v, l and p, which are called the elements of a shot.

In order to establish the relation between the elements of a shot, new equations are added to the fundamental equation, which are the equations of powder burning and projectile motion; this leads to the appearance of a new variable, the time t, and to the appearance of quantity z when burning proceeds according to the geometrical law.

We obtain as a result the following system of equations:

The fundamental equation of pyrodynamics:

$$pB(i_{\psi} + i) = f\omega\psi - \frac{\theta}{2}\varphi mv^{2}.$$
 (1)

The rate of powder burning:

$$u = \frac{de}{dt} = u_1 p. \tag{2}$$

The law of generation (inflow) of gases:

$$\Psi = \chi z(1 + \lambda z) = \kappa z + \kappa \lambda z^{2}. \tag{3}$$

The law of motion of the projectile:

$$p = \varphi = \frac{dv}{dt}$$
 (4)

or

$$pa = \varphi = \frac{dv}{dt}.$$
 (5)

The totality of these equations affords the solution of the fundamental mathematical problem: of determining the curves p, l

and v, ℓ and also p, t and v, t and of finding in particular the maximum gas pressure p_m and the muzzle velocity v_n of the projectile.

We first solve the problem for regressive powder shapes, using the two-term formulas (X > 1, λ < 0, μ = 0) and the assumptions enumerated above.

We shall solve the problem for all the periods of a shot in succession.

1. PRELIMINARY PERIOD

When establishing the relations for this period, we shall assume the simplest form of the phenomenon: the instantaneous forcing of the projectile band into the rifling.

Fundamental assumption. If the force necessary to overcome the resistance encountered by the driving band of the projectile in completely penetrating the rifling is Π_0 , and the cross section of the bore is s, the quantity $p_0 = \Pi_0$'s will be called "the pressure to overcome the inertia of the projectile" or the forcing pressure. We shall assume that the projectile is set in motion at the instant the gas pressure attains the value p_0 .

Up to that moment the burning of the powder takes place in a constant volume. For this reason the preliminary period may be called <u>pyrostatic</u> and one may apply the already known equations of pyrostatics.

In this period, besides the forcing pressure p_0 , we will be interested in the portion of the charge ψ_0 burned at the instant the projectile is set in motion, in the relative thickness of the powder $g_0 = g_0/g_1$, and in the relative surface area of the powder $g_0/g_1 = g_0/g_1$.

These quantities, characterizing the end of the preliminary period, are simultaneously the initial values of the first period.

Let us introduce the fundamental equations for the preliminary period.

The igniter is burned first and the pressure developed in the chamber is $\mathbf{p_R}$, which may be computed by the following formula:

$$p_{\mathbf{B}} = \frac{f_{\mathbf{B}}\omega_{\mathbf{B}}}{\Psi_{\mathbf{0}} - \frac{\omega}{\lambda} - \alpha_{\mathbf{B}}\omega_{\mathbf{B}}},$$
 (6)

where W_0 is the volume of the chamber; ω , δ is the volume of the charge proper; and f_B , α_B , ω_B are, respectively, the force, covolume, and weight of the igniter. Under the usual conditions of ignition, $\alpha_B\omega_B$ may be neglected.

The charge proper will ignite when the pressure reaches \boldsymbol{p}_B ; at this instant the pressure is determined by the general equation of pyrostatics, which takes into account the effect of the igniter. At the instant the driving band is forced in the rifling, a certain portion of the charge ψ_0 will have burned, and:

$$p_0 = p_B + \frac{f \omega \psi_0}{\Psi_0 - \frac{\omega}{\delta} - \frac{\omega}{\delta_1} \psi_0}, \qquad (7)$$

where

$$\frac{1}{\delta_1} = \alpha - \frac{1}{\delta}.$$

Inasmuch as the forcing pressure p_0 is known(*), we can determine

(*) p_0 varies between 250 and 400 kg/cm² for shells and between 300-500 kg/cm² for bullets when the entire side surface is forced into the rifling of the bore.

466

what part ψ_0 of the charge will have been burned at the instant the projectile is set in motion. Solving equation (7) for ψ_0 , we obtain:

$$\psi_{0} = \frac{(p_{0} - p_{B}) \left(\frac{1}{\Delta} - \frac{1}{\delta}\right)}{f + (p_{0} - p_{B}) \left(\alpha - \frac{1}{\delta}\right)} = \frac{\frac{1}{\Delta} - \frac{1}{\delta}}{\frac{f}{p_{0} - p_{B}} + \frac{1}{\delta_{1}}}.$$
 (8)

If we may neglect the pressure of the igniter, because \mathbf{p}_0 is known only approximately, while \mathbf{p}_B is small; we will obtain a simpler expression for computation:

$$\Psi_0 = \frac{\frac{1}{\Delta} - \frac{1}{8}}{\frac{f}{P_0} + \alpha - \frac{1}{8}}.$$
 (9)

The quantity ψ_0 mainly depends on Δ and varies, in general, between 0.02 and 0.10.

If the amount ψ_0 of the burned portion of the powder is known, and the law of powder burning is in the form:

$$\psi = x z(1 + \lambda z) = x z + x \lambda z^2$$

we can determine the relative thickness $z_0 = e_0/e_1$ of the powder burned at the start of motion, and the relative surface area e_0 . We find e_0 from the following formula:

$$\epsilon_0 - \sqrt{1 + 4 \frac{\lambda}{\kappa} \psi_0}$$

and z_0 , from the equation $s_0 = 1 + 2\lambda z_0$:

$$\mathbf{z}_0 = \frac{\mathbf{G}_0 - 1}{2\lambda} = \frac{(\mathbf{G}_0 - 1)(\mathbf{G}_0 + 1)}{2\lambda(\mathbf{G}_0 + 1)} = \frac{\mathbf{G}_0^2 - 1}{2\lambda(\mathbf{G}_0 + 1)} = \frac{2\psi_0}{(\mathbf{G}_0 + 1)^{\mathsf{M}}}.$$

Since usually $G_0 \approx 1$, the following approximation is correct:

$$z_0 \approx \frac{\psi_0}{x}$$
.

Besides these characteristics, we will also require the value $\ell_{\Psi 0}$ - the length of the free space in the chamber at the start of motion. This reduced value is determined from one of the following expressions:

$$\ell_{\psi_0} = \frac{\mathbf{w}_{\psi_0}}{\mathbf{s}} = \frac{1}{\mathbf{s}} \left(\mathbf{w}_0 - \frac{\omega}{\delta} - \frac{\omega_{\psi_0}}{\delta_1} \right) = -\ell_0 \left(1 - \frac{\Delta}{\delta} - \frac{\Delta}{\delta_1} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta} - \frac{\Delta}{\delta_1} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_1} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_1} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_1} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_1} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_1} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_1} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_1} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_0} \left(1 - \frac{\Delta}{\delta_0} - \frac{\Delta}{\delta_0} \psi_0 \right) = -\frac{1}{\delta_$$

$$- l_0 \Delta \left(\frac{1}{\Delta} - \frac{1}{\delta} - \frac{\Psi_0}{\delta_1} \right),$$

where

$$l_0 \Delta = \frac{w_0}{s} \frac{\omega}{w_0} = \frac{\omega}{s}.$$

2. FIRST PERIOD

In deriving the fundamental relationships for the first period, Prof. N.F. Drozdov was the first to propose the introduction of a new independent variable, $x = z - z_0$ (the relative thickness of

the powder burned after the projectile is set in motion).

At the instant the projectile is set in motion $z=z_0$ and x=0; at the ending of burning $z_K=1$ and $x_K=1-z_0$.

Thus the limits of variation of the new argument are known in advance. Let us express all four fundamental elements, ψ , v, l, and p, as a function of this argument.

1. Relation $\psi = f_1(x)$. Substituting $z = z_0 + x$ in the formula $\psi = xz + x\lambda z^2$, we obtain:

$$\Psi = \kappa z_0 + \kappa \lambda z_0^2 + \kappa (1 + 2\lambda z_0) x + \kappa \lambda x^2,$$

bu t

$$x z_0 + x \lambda z_0^2 - \psi_0$$
; 1 + $2\lambda z_0 - G_0$.

Introducing, according to Drozdov, the additional designation $\Re G_0 = k_1$, we obtain the desired relation:

$$\psi = \psi_0 + k_1 x + \varkappa \lambda x^2$$
. (10)

2. Relation $v = f_2(x)$. The velocity v enters into the equation of motion:

$$sp - q = \frac{dv}{dt}.$$

In order to eliminate p and t, we add the law governing the rate of burning:

Multiplying these equations term by term and simplifying, we obtain:

$$dv = \frac{s}{\varphi n} \frac{de}{e_1} = \frac{se_1}{\varphi nu_1} dz = \frac{sI_K}{\varphi n} dz.$$

Integrating from 0 to v and from z_0 to z:

$$v = \frac{sI_{\underline{K}}}{\varphi_{\underline{M}}}(z - z_0) = \frac{sI_{\underline{K}}}{\varphi_{\underline{M}}}x. \tag{11}$$

Prior to the end of burning

$$v_{\underline{K}} = \frac{sI_{\underline{K}}}{\phi n} (1 - z_0) = \frac{g}{\phi} \frac{I_{\underline{K}}}{q:n} (1 - z_0).$$
 (12)

Consequently, the velocity of the projectile at the end of burning can be computed in advance, if the impulse of the powder pressure $I_K=e_1/u_1$ and the cross-sectional loading of the projectile are known.

Inassuch as the quantities ϕ and $1-z_0$ vary relatively little, the velocity of the projectile at the end of burning of the powder depends in the main on the ratio of the impulse I_K to the cross-sectional load q/s on the projectile, and during burning, the velocity of the projectile varies in proportion to x.

Equation (12) permits to compute v_K , but it does not tell us the point on the path the projectile at which the powder is burned, whether the speed v_K is properly chosen for the given gun, or whether the powder is fully burned before the projectile leaves the gun. For this reason, this equation alone is insufficient, and it is

necessary to find also the equation for the path traversed by the projectile at the end of burning.

Equation (12) is plotted in fig. 133; it shows the curve v, (and gives the value of $v_{\vec{k}}$, but it does not show the position of the projectile at the end of burning.

Fig. 133 - Path of the Projectile at the End of Powder Burning.

3. Relation $l = f_3(x)$. In order to determine the path of the projectile, two equations must be used: the fundamental equation of pyrodynamics and the equation of motion of the projectile in the form of elementary work:

$$ps(l_{\psi} + l) = f\omega\psi - \frac{\theta}{2}\varphi nv^{2} = f\omega\left(\psi - \frac{v^{2}}{v_{\Pi p}^{2}}\right);$$

ped! - q mydy,

where $v_{\text{fip}}^2 = 2f\omega/\varphi \approx . (*)$

We eliminate p by dividing the second equation by the first:

(*) The Russian subscripts Π p denote: path traversed inside a barrel. Editor.

471

$$\frac{dl}{l_{\psi}+l} = \frac{\psi \pi}{f \omega} \frac{v dv}{\psi - \frac{v^2}{v_{\eta p}^2}}.$$

Since v and ψ are functions of x according to equations (10) and (11), the right-hand side of this differential equation may be represented as a function of x.

Designating this function by $dF(\mathbf{x})$ and substituting for \mathbf{v} and ψ their expressions in \mathbf{x} we obtain:

$$dF(x) = \frac{\varphi_{m}}{f_{m}} \frac{\frac{s^{2}1_{K}^{2}}{\varphi^{2}m^{2}}xdx}{\psi_{0} + k_{1}x + x\lambda x^{2} - \frac{s^{2}1_{K}^{2}\varphi_{m}\theta}{\varphi^{2}m^{2}2f\omega}^{2}} - \frac{s^{2}}{\varphi^{2}m^{2}2f\omega}^{2}$$

$$-\frac{s^2 I_K^2}{f \omega \phi \pi} \frac{x dx}{\psi_0 + k_1 x - \left(\frac{s^2 I_K^2}{f \omega \phi \pi} \frac{\theta}{2} - s \lambda\right) x^2}.$$

The same group $s^2 I_K^2/f\omega\phi n$ of constants and characteristics appears in the numerator and the denominator. As suggested by Prof. N.F. Drosdov, it is represented by B and is called "the parameter of the loading conditions" (Prof. N.F. Drosdov's parameter):

472

$$B = \frac{s^2 I_K^2}{f_{\omega \phi m}} = \frac{s^2 e_1^2}{u_1^2 f_{\omega \phi m}}.$$

The influence of this parameter will be established later. Let us designate (also according to Drozdov):

$$\frac{\mathbf{B}\,\boldsymbol{\Theta}}{2} - \mathbf{x}\,\lambda = \mathbf{B}_1.$$

Then

$$\frac{dl}{l_{\psi} + l} = \frac{Bxdx}{\psi_0 + k_1 x - B_1 x^2}.$$
 (13)

The expression obtained is the fundamental differential equation for the path of the projectile as a function of x. It is solved differently by various authors.

If we place outside the parenthesis $-B_1$ in the denominator of the right side of the equation (as suggested by Drozdov) in order to obtain a polynomial in descending powers of x, with the coefficient of x^2 equal to 1, we obtain:

$$\frac{dl}{l_{\psi} + l} = -\frac{B}{B_1} \frac{xdx}{x^2 - \frac{k_1}{B_1} x - \frac{\psi_0}{B_1}} = -\frac{B}{B_1} \frac{xdx}{\xi_1(x)},$$
 (13')

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

where:

$$\xi_1(x) = x^2 - \frac{k_1}{B_1}x - \frac{\Psi_0}{B_1}$$

Prof. N.F. Drozdov was the first to solve this equation exactly, in 1903, by reducing it to the form of a linear equation of the first order:

$$\frac{dl}{dx} + \frac{B}{B_1} \frac{x}{\xi_1(x)} l = -\frac{B}{B_1} \frac{x}{\xi_1(x)} l_{\psi}$$

or

$$\frac{dl}{dx} + P_{x}l - Q_{x},$$

where P_{X} and Q_{X} are functions of x.

The full solution of this equation is presented later.

A simpler, but approximate solution is obtained if we assume $l_{\Psi} = l_{\Psi \, {\rm av}} = {\rm const.}$

It will be presented later with the designation of the parameters, with some of the auxiliary functions derived according to Prof.

Drozdov.

474

During burning of the powder at the start of the projectile's motion, l_{Ψ} varies within the limits of l_{Ψ_0} and l_1 :

$$l_{\Psi_0} > l_{\Psi} > l_{1'}$$

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

where

$$l_{\psi} = l_{0} \left[1 - \frac{\Delta}{\delta} - \Delta \left(\alpha - \frac{1}{\delta} \right) \psi \right]$$

The rate of change of l_{Ψ} increases with Δ .

Assuming that $l_{\psi} = l_{\psi}$ and integrating equation (13) we have:

$$\int_{0}^{t} \frac{dl}{\frac{l}{1+1}+1} = -\frac{B}{B_1} \int_{0}^{x} \frac{x dx}{\xi_1(x)}.$$

The integral of the right-hand side is obtained by decomposing the integrand into the simplest fractions; it is a logarithmic function of x which we shall temporarily designate by $\ln Z_{\chi}$. The left-hand side is integrated also:

$$\ln\left(1+\frac{l}{l_{x,x,y}}\right) = -\frac{B}{B_1} \ln Z_x,$$

whence:

$$l = l_{\psi_{av}} (z_{x}^{-\frac{B}{B_{1}}} - 1). \tag{14}$$

Thus the expression for the path ℓ as a function of x is more complex than the expressions for ψ and v.

Substituting into it $x_{\underline{K}} = 1 - x_0$, we can find the path $l_{\underline{K}}$ at

the end of powder burning. Comparing it with the full path $\ell_{\rm R}$ traversed by the projectile within the bore, it is possible to determine whether the thickness of the powder and the velocity $v_{\rm K}$ of the projectile are correctly chosen for the given gun.

In computing $l_{\psi_{av}}$ we may use in the equation $l_{\psi_{av}}$ =

=
$$l_0 \left[1 - \frac{\Delta}{5} - \Delta \left(\alpha - \frac{1}{5} \right) \psi_{av} \right]$$
 the expression $\psi_{av} = \frac{\psi_0 + \psi}{2}$.

The investigations of Prof. G.V. Oppokov in his book "O TOCHNOSTI NEKOTORYKH ANALITICHESKIKH SPOSOBOV RESHENIYA OSNOVNOI ZADACHI VNUTRENNEI BALLISTIKI DLIA PERVOGO PERIODA" (Concerning the Accuracy of Certain Analytical Methods of Solving the Fundamental Problem of Internal Ballistics for the First Period), 1932^{-2} have shown the following. When the loading density is $\Delta = 0.5-0.7$, formula (14) is very accurate for evaluating p_m and v_m , is not taken to have the same value for all the values x from 0 to 1 - z_0 , and if a different value of l_m is taken for every value of x, assuming either of the following values for l_m in the formula: $v_m v_m = (\psi - \psi_0) \cdot 2$ (Oppokov) or $v_m v_m = (\psi_0 + \psi) \cdot 2$ (Serebryakov).

Inasmuch as x is directly proportional to v _equation (11)_7, equation (14) gives in fact the direct relation between the path l and the projectile velocity v.

The expression for $\mathbf{Z}_{\mathbf{x}}$ presented below shows that this relation is expressed by a rather complex function.

4. Relation $p = f_4(x)$. The pressure p is found from the fundamental equation of pyrodynamics:

476

$$p = \frac{f\omega}{s} \frac{\psi - \frac{v^2}{v_{np}^2}}{l_{\psi} + l}.$$

If the quantities ψ , ν , and ℓ are replaced in the right-hand side by their expressions in function of x, then

$$p = \frac{f\omega}{s} = \frac{\psi_0 + k_1 x - B_1 x^2}{l_{\psi} + l_{\psi} av} = \frac{B}{B_1} = \frac{f\omega}{s} = \frac{f\omega}{s} = \frac{\frac{B\Theta}{2} x^2}{l_{\psi} + l_{\phi}}.$$
 (15)

where \mathcal{L}_{ψ} can be represented as a function of x as well.

Inasmuch as ψ , v, and l are already determined, it is no longer necessary in computing p to use equation (15) which is expressed in terms of x, and the numerical values of ψ , v, l_{ψ} , and l can be substituted in the preceding equation.

Consequently, the proposed problem concerning the solution of the fundamental equation of pyrodynamics has been resolved, and the relation between the elements has been found.

Substituting the value of $x_{\underline{K}} = 1 - x_{\underline{0}}$ in the above equations, we

477

find all the elements $\mathbf{v_K}$, $\mathbf{p_K}$, and l_K corresponding to the instant the burning of the powder ends $(\Psi=1)$. These values will be the initial values in the second period.

Note. The expression for the projectile velocity may be replaced by the following:

$$v^{2} \frac{s^{2} I_{K}^{2}}{\varphi^{2} \underline{n}^{2}} x^{2} - \frac{s^{2} I_{K}^{2} \theta}{2 f_{\omega} \gamma \underline{m}} \frac{2 f_{\omega}}{\gamma \underline{m} \theta} x^{2} - \frac{B \theta}{2} v_{\Pi p}^{2} x^{2},$$

whence,

$$v = v_{\cap p} \sqrt{\frac{B \bullet}{2} x}$$

This expression brings out the effect of the limiting velocity of the projectile and that of the parameter of loading conditions, B. Since in most guns B varies within narrow limits, it follows that the velocity mainly depends upon the potential $f \cdot \theta$ of the powder and upon the relative weight ω q of the charge.

Determination of the function $Z_x = e^0$. In order to evaluate the integral

$$\int_{0}^{x} \frac{x dx}{\xi_{1}(x)} = \int_{0}^{x} \frac{x dx}{x^{2} - \frac{k_{1}}{B_{1}}x - \frac{\psi_{0}}{B_{1}}}$$

we decompose the integrand into the simplest fractions, finding the roots of equation $\xi_1(x)=0$ and introducing the designation:

$$b = \sqrt{1 + 4 \frac{B_1 \psi_0}{k_1^2}} - \sqrt{1 + 4 \frac{b}{V}} > 1;$$

$$x - \frac{k_1}{2B_1} \cdot \sqrt{\frac{k_1^2}{4B_1^2} + \frac{\psi_0}{B_1}} - \frac{k_1}{2B_1} \left(1 \cdot \sqrt{1 + 4 \frac{B_1 \psi_0}{k_1^2}}\right) - \frac{k_1}{2B_1} (1 \cdot b);$$

$$x_1 - \frac{k_1}{2B_1} (1 + b), \quad x_2 - \frac{k_1}{2B_1} (1 - b) < 0;$$
(16)

 $\xi_1(x) = (x - x_1)(x - x_2).$

Let us write an equation to determine the numerators of the simplest fractions:

$$\frac{x}{\xi_1(x)} = \frac{A_1}{x - x_1} + \frac{A_2}{x - x_2};$$

Equating on both sides the coefficients of identical powers of x, we find:

$$A_1(x - x_2) + A_2(x - x_1) - x;$$

 $A_1 + A_2 - 1; -A_1x_2 - A_2x_1 - 0,$

whence,

$$A_1 = -\frac{x_1}{x_2 - x_1}, \quad A_2 = \frac{x_2}{x_2 - x_1},$$

but:

$$x_2 - x_1 = -\frac{k_1}{B_1} b,$$

and, consequently:

$$A_1 = \frac{b+1}{2b}, \quad A_2 = \frac{b-1}{2b},$$

$$\int_{0}^{x} \frac{x dx}{\xi_{1}(x)} = \frac{b+1}{2b} \int_{0}^{x} \frac{dx}{x-x_{1}} + \frac{b-1}{2b} \int_{0}^{x} \frac{dx}{x-x_{2}} =$$

$$- \ln \left(\frac{x - x_1}{-x_1} \right) = \left(\frac{x - x_2}{-x_2} \right) = \ln \left(1 - \frac{x}{x_1} \right) = \ln \left(1 - \frac{x}{x_2} \right)$$

$$z = \left(1 - \frac{x}{x_1}\right)^{\frac{b+1}{2b}} \left(1 - \frac{x}{x_2}\right)^{\frac{b+1}{2b}}.$$
 (17)

are expressed by equations (16).

Substituting here these values of
$$x_1$$
 and x_2 , we get:
$$z_x = \left(1 - \frac{2}{b+1} \frac{B_1}{k_1} x\right)^{\frac{b+1}{2b}} \left(1 + \frac{2}{b-1} \frac{B_1}{k_1} x\right)^{\frac{b-1}{2b}}.$$

Inasmuch as the quantity b = $\sqrt{1+4B_1\psi_0/k_1^2}$ = $\sqrt{1+4\gamma}$ is itself a function of the parameter $\gamma=B_1\psi_0/k_1^2$, the function Z_x actually depends only upon two quantities: the constant $\gamma=B_1\psi_0/k_1^2$ and the variable $\beta=B_1x,k_1$.

From these data it is possible to set up a table. Since the equation of the path contains the expression $Z_{\mathbf{x}}^{-B,\;B}\mathbf{1}$, the tables are set up for log $Z_{\mathbf{x}}^{-1}$ to make their use more convenient.

The quantities entered (introduced) are γ and β .

It is not difficult to show by another method that $\int_{0}^{x} \frac{x dx}{x^2 - \frac{k_1}{B_1}x - \frac{\psi_0}{B_1} }$

- $\ln Z_x$ is a function of $\gamma = B_1 \psi_0 k_1^2$ and $\beta = B_1 x k_1$, if the numerator and denominator of the integrand are multiplied by B_1^2 , k_1^2 . Then,

$$\ln z_{x} = \int_{0}^{x} \frac{\frac{B_{1}}{k_{1}} \times d \frac{B_{1}}{k_{1}} \times}{\left(\frac{B_{1}}{k_{1}} \times\right)^{2} - \frac{B_{1}}{k_{1}} \times - \frac{B_{1}\psi_{0}}{k_{1}^{2}}} = \int_{0}^{\mu} \frac{\beta d\mu}{\mu^{2} - \beta - \gamma}.$$

This expression actually shows that $\ln\,Z_\chi$ is a function of γ and β .

The table of the logarithms of the function (log $\mathbf{Z}_{\mathbf{X}}^{-1}$) is presented below (Table 1).

					Table :	l - Tatle	of Logarit	hms of the	Function	log Z ⁻¹ (· r)	,
B	0	0.0005	0.001	0.002	0.004	0.006	0,008	0.010	0.020	0.040	0.060	0.08
0	0	2	. 0	0	0	: 0	0	9	9	0	0	0
0.020	0,0068	0.0080	0.0075	0.0067	0.0057	0.0049	0.0044	0.0039	0.0023	2.0017	0.0011	0.00
0.040	0.0177	0.0168	0.0161	0.0150	0.0134	0.0123	0.0014	0.0106	0.0079	0.2054	0.0041	0.00
0.060	0.0269	0.0258	0.0210	0.0238	0.0219	0.0204	0.0192	0.0181	0.0144	0.0103	0.0081	0.00
0.080	0.0362	0.0351	0.0342	0.0329	0.0307	0.0290	0.0275	0.0262	0.0215	0.0161	0.0130	0.01
0.100	0.0458	0.0446	0.0436	0.0422	0.0398	0.0379	0.0362	0.0347	ി.0292	0.0225	0.0185	0.01
3.120	0.0555	0.0543	0.0533	0.0517	0.0491	0.0471	0.0452	0.0435	0.0373	0.0294	0.0246	0.00
0.140	0.0655	0.0542	0.0632	0.0614	0.0588	0.0565	0.0545	0.0527	0.0458	ാ .0368	0.0311	0.02
0.160	0.0757	0.0744	0.0734	0.0716	0.0687	0.0663	0.0641	0.0622	0.0546	0.0446	0.0380	0.03
0.180	0.0862	0.0848	0.0838	0.0819	0.0789	0.0763	0.0740	0.0720	0.0637	0.0528	0.0453	0.0
0.200	0.0969	0.0955	0.0944	0.0924	0.0893	0.0867	0.0042	0.0820	0.0732	0.0613	0.0530	0.04
0.220	0.1079	0.1065	0,1053	0.1034	0.1001	0.0972	0.0947	0.0924	ം.0830	0.0702	0.0611	0.0
0.240	0.1192	0.1177	0.1166	0.1145	0.1111	0.1081	0.1055	0.1031	0.0932	0.0794	0.0695	0.00
0.260	0.1308	0.1293	0.1281	0.1260	0.1224	0.1194	0.1166	0.1141	0.1037	0.0889	0.0783	0.0
0.280	0.1427	0.1411	0.1399	0.1378	0.1341	0.1309	0.1280	0.1254	0.1145	0.0988	0.0874	0.0
0.300	0.1549	0.1533	0.1521	0.1499	0.1461	0.1428	0.1398	0.1271	0.1256	0.1090	0.0969	0.00
0.320	0.1675	0.1659	0.1646	0.1624	0.1485	0.1551	0.1420	0.1491	0.1371	0.1196	0.1067	0.0
0.340	0.1805	0.1783	7.1775	0.1752	0.1712	0.1677	0.1645	0.1615	2.1490	0.1306	0.1169	0.1
0.360	0.1938	0.1922	0.1908	0.1884	0.1843	0.1807	0.1774	0.1743	0.1613	0.1419	0.1275	0.1
0.380	0.2076	0.2059	0.2046	0.2021	0.1979	2.1941	2.1907	2.1875	0.1740	0.1536	0.1385	0.1
0.400	0.2219	0.2201	0.2188	0.2163	0.2119	0.2180	0.2045	0.2012	0.1871	0.1659	0.1499	0.1
0.420	0.2366	0.2348	0.2335	0.2310	0.2264	0.2224	0.2187	0.2154	0.2007	0.1786	0.1617	0.1
0.440	0.2518	0.2500	0.2486	0.2461	0.2414	0.2373	0.2335	0.2301	0.2148	0.1917	0.1739	0.1
0.460	0.2676	0.2658	2.2643	0.2617	0.2569	0.2527	0.2488	0.2453	0.2294	0.2052	0.1866	0.1
0.480	0.2840	0.2822	0.2806	0.2779	0.2730	0.2687	0.2647	0.2610	0.2446	0.2193	0.1998	0.1
0.500	0.3010	0.2992	0.2976	0.2948	0.2898	0.2853	7.2812	0.2773	0.2604	0.2340	0.2136	0.1
0.520	0.3187	0.3169	0.3153	0.3124	o .3073	0.3026	0.2984	0.2943	0.2768	0.2493	0,2279	0.2
0.540	0.3372	0.3353	0.3337	0.3307	0.3255	0.3207	0.3163	0.3121	o.2939	0.2653	0.2428	0.2
0.560	0.3565	0.3545	0.3529	0.3498	0.3445	0.3396	0.3350	0.3307	0.3117	0.2819	0.2583	0.2
0.580	0.3767	0.3747	0.3730	0.3699	0.3614	0.3593	0.3545	0.3501	0.3304	0.2992	0.2745	
0.600	0.3979	0.3959	0.3941	2.3909	0.3852	0.3799	0.3750	0.3704	0.3500	0.3174	0.2915	
10.000	3.5777	******	0.5741	,,,,,,,	3.70 %	3.7177	1 200.00	1	1			"

Table 1 - Table of Logarithms of the Function log z^{-1} (;, f)												
1	0.002	0.004	0.006	0.008	0.010	0.020	0.040	0.060	0.080	0.100	0.1-0	0.200
	0	9	0	2	0)	0	0	0	0	0	ņ
7 5	0.0067	0.0057	0.0049	0.0044	0.0039	0.0023	ാ.നാ	0.0011	ാ.നാന	0.0008	o.0006	0.0004
sí	0.0150	0.0134	0.0123	0.0014	0.0106	0.0079	0.0054	0.0041	1,0033	0.0028	0.0020	2,0015
50	0.0238	0.0219	0.0204	0.0192	0.0181	0.0144	0.0103	0.0081	0.0067	0.0057	0.0042	0.0033
2	0.0329	0.0307	0.0290	0.0275	0.0262	0.0215	0.0161	0.0130	0.0109	0.0094	0.0070	າ. ' X ່
50 12 36	0.0422	0.0398	0.0379	0.0362	0.0347	0292	0.0225	0.0185	0.0157	0.0137	0.0104	∩.∴084
33	0.0517	0.0491	0.0471	0.0452	0.0435	0.0373	0.0294	0.0246	0.0211	0.0185	0.0142	0.0116
32	0.0615	0.0588	0.0565	0.0545	0.0527	0.0458	o.0368	0.0311	0.0269	0.0238	0.0185	0.0152
K	0.0716	0.0687	0.0663	0.0641	0.0622	0.0546	0.0446	0.0380	0.0332	0.0295	0.0232	0.0191
18	0.0819	0.0789	0.0763	0.0740	0.0720	0.0637	0.0528	0.0453	0.0399	0.0356	0.0283	0.0234
13 12 14 18 14	0.0925	0.0893	0.0867	0.0042	0.0820	0.0732	0.0613	0.0530	0.0469	0.0421	0.0337	0.0281
i 3	0.1034	0.1001	0.0972	0.0947	0.0924	ು.0830	0.0702	0.0611	0.0543	0.0490	0.0395	0.0381
6 11 19 11	0.1145	0.1111	0.1081	0.1055	0.1031	0.0932	0.0794	0.0695	0.0621	0.0562	0.0456	≎.0384
n l	0.1260	0.1224	0.1194	0.1166	0.1141	0.1037	0.0889	0.0783	0.0702	0.0638	0.0520	0.0440
9	0.1378	0.1341	0.1309	0.1280	0.1254	0.1145	0.0988	0.0874	0.0787	0.2717	0.2588	0.0499
1	0.1499	0.1461	0.1428	0.1398	0.1371	0.1256	0.1090	0.0969	0.0875	0.0799	0.0659	0.0561
6 6 8	0.1624	0.1585	0.1551	0.1520	0.1491	0.1371	0.1196	0.1067	0.0967	0.0885	0.0733	0.0626
5	0.1752	0.1712	0.1677	0.1645	0.1615	2.1497	0.1306	0.1169	0.1062	0.3974	0.0810	0.067
8	0.1884	0.1843	0.1807	0.1774	0.1743	0.1613	0.1419	0.1275	0.1161	0.1067	0.0890	0.07
6	0.2021	0.1979	0.1941	0.1907	2.1875	0.1740	0.1536	0.1385	0.1263	0.1163	2.0974	0.0840
в	0.2163	0.2119	0.2080	0.2045	0.2012	0.1871	0.1659	0.1499	0.1370	0.1264	0.1062	0.0917
5	0.2310	0.2264	0.2224	0.2187	0.2154	0.2007	0.1786	0.1617	0.1481	0.1369	0.1153	0.0998
5 6 3 6 6	0.2461	0.2414	0.2373	0.2335	0.2301	0.2148	0.1917	0.1739	0.1596	0.1478	0.1247	0.1082
3	0.2617	0.2569	0.2527	0.2488	0.2453	0.2294	0.2052	0.1866	0.1715	2.1589	0.1345	0.1169
6	0.2779	0.2730	0.2687	0.2647	0.2610	0.2446	0.2193	0.1998	0.1839	0.1705	0.1447	0.1260
6	0.2948	0.2898	0.2853	0.2812	0.2773	0.2604	0.2340	0.2136	0.1968	0.1827	0.1554	0.1354
3	0.3124	0.3073	0.3026	0.2984	0.2943	0.2768	0.2493	0,2279	0.2102	0.1954	0.1665	0.1452
3 7 9 0	0.3307	0.3255	0.3207	0.3163	0.3121	ე .2939	0.2653	0.2428	0.2242	0.2086	0.1780	0.1555
9	0.3498	0.3445	0.3396	0.3350	0.3307	0.3117	0.2819	0.2583	0.2388	0.2223	0.1900	0.1662
ام	9.3699	0.3614	0.3593	0.3545	0.3501	0.3304	0.2992	0.2745	0.2540	0.2366	0.2025	0.1773
1	0.3909	0.3852	0.3799	0.3750	0.3704	0.3500	0.3174	0.2915	0.2699	0.2516	0,2156	0.1889
-		- 1,50,50		1		ĺ	1				1 - 7 - 7	1

Procedure for Using the Table.

For every problem we will have one value for the entry parameter $\gamma = B_1 \psi_0/k_1^2 \text{ and a series of values } \beta = B_1 x/k_1, \text{ where x varies}$ between 0 and 1 - z_0 .

When determining $\log Z_{\mathbf{x}}^{-1}$, write down the values from the columns containing the nearest smaller and larger tabular values of γ , so that the value of γ obtained from the solution would fall between them. The coefficient of interpolation will be the same along all the horizontal rows. For this reason, it is more convenient to interpolate first along the horizontal rows between which are contained the values of β selected in the problem, and then to interpolate along the columns (vertically) using the corresponding interpolation coefficients β .

In order to reduce the number of vertical interpolations (except such cases when $\log Z_X^{-1}$ is used for computing the values F_m and F_K), it is more convenient to assign tabular values of ; for the intermediate values of x and to perform only the horizontal interpolation for y, and then determine x by means of equation $x = k_1\beta$, B_1 .

3. DETERMINATION OF THE MAXIMUM PRESSURE GENERATED BY THE POWDER GASES

The maximum gas pressure p_m in the barrel is the most important ballistic characteristic of a gun. Its value depends on the chosen conditions of loading, and the obtainment of the desired value of p_m serves as a criterion or control for the proper selection of the weight of the charge, the thickness of the powder, and other loading conditions.

For this reason, it is sometimes important to be able to compute the pressure $p_{\rm m}$ for the given loading conditions, without constructing

the entire p, l pressure curve. In order to achieve this, it is necessary to derive first a formula for determining the value of $\mathbf{x}_{\mathbf{m}}$ for which the gas pressure is maximum.

In this case the derivative $dp/d\ell$ or dp/dt must be equated to zero. The expression for the derivative was derived earlier by differentiating the expression for p from the fundamental equation of pyrodynamics.

$$\frac{dp}{dl} = \frac{p}{l_{\psi} + l} \left\{ \frac{f\omega}{s} \cdot \frac{\kappa}{l_{K}} \cdot \frac{\sigma}{v} \left[1 + \left(\alpha - \frac{1}{\delta} \right) \frac{p}{f} \right] - \left(1 + \Theta \right) \right\}.$$

Equating the expression in braces to zero, and substituting for v and g their expressions in terms of x:

$$v = \frac{sI_K}{\varphi_R} x, \quad G = 1 + 2\lambda z = G_0 + 2\lambda x.$$

we obtain the possibility of determining $x_{\underline{m}}$ for which the pressure

484

$$\frac{\mathbf{f}_{\omega}}{\mathbf{s}} \frac{\mathbf{g}}{\mathbf{I}_{\mathbf{g}}} \frac{(\mathbf{G}_{0} + 2\lambda \mathbf{x}_{\mathbf{m}})\mathbf{v}\mathbf{m}}{\mathbf{s}\mathbf{I}_{\mathbf{g}}\mathbf{x}_{\mathbf{m}}} \left[1 + \left(\alpha - \frac{1}{\delta}\right) \frac{\mathbf{p}_{\mathbf{m}}}{\mathbf{f}} \right] - (1 + \theta) = 0$$

or

$$\frac{\mathsf{X} \, \mathfrak{S}_{0} \; + \; 2 \mathsf{x} \lambda \mathsf{x}_{m}}{\mathsf{B} \mathsf{x}_{m}} \; \left[\; 1 \; + \left(\alpha \; - \; \frac{1}{\delta} \right) \frac{\mathsf{p}_{m}}{\mathsf{f}} \; \right] \; - \; 1 \; + \; \theta \; .$$

$$x_{m} = \frac{k_{1}}{\frac{B(1+\theta)}{1+\left(\alpha-\frac{1}{\varepsilon}\right)^{\frac{p_{m}}{f}}}} - 2\kappa\lambda$$
 (18)

If the powder has a constant burning area $\Delta=0,~\mathbf{k}_1=\mathbf{X}\tilde{\boldsymbol{\varepsilon}}_0=1$ and

$$x_{m} = \frac{1 + \left(\alpha - \frac{1}{\delta}\right) \frac{p_{m}}{f}}{B(1 + \theta)}.$$
 (19)

It is seen from these equations that in order to determine $\mathbf{x}_{\mathbf{m}}$ it is necessary to know $\mathbf{p}_{\mathbf{m}}$, but inasmuch as we do not know it, we must find the real value of $\mathbf{x}_{\mathbf{m}}$ by the method of successive approximations. First we assume a reference value $\mathbf{p}_{\mathbf{m}}^{(0)}$, substitute it in equation (18) or (19), and compute the value of $\mathbf{x}_{\mathbf{m}}'$, following which we substitute the latter successively into all the fundamental equations

$$v = \frac{\pi I_{K}}{\varphi \pi} x; \ \psi = \psi_{0} + k_{1}x + \kappa \lambda x^{2}; \ l = l_{\psi} \frac{B}{av}. (z_{K} - 1);$$

$$p = \frac{f \omega}{s} \frac{\psi - \frac{v^2}{v_{np}^2}}{l_{\psi} + l},$$

and find the values of v_m^i , l_m^i , ψ_m^i , p_m^i . If p_m^i coincides with $p_m^{(0)}$, it is indeed the true maximum pressure. However, if $p_m \neq p_m^{(0)}$, then p_m^* must again be substituted in (18) or (19) and a new x_m^* obtained; then the whole process is repeated and a new $p_{\underline{m}}^{\prime\prime}$ is obtained. If x_m^* is chosen correctly, $p_m^{"}$ should not differ from $p_m^{'}$ by more than $10-20 \text{ kg}, \text{cm}^2$ (the accuracy of a slide rule).

It must be remembered that equations (18) and (19) are used for calculating x_m and can not be employed for calculating p_m .

When carrying out the approximations, the following should be kept in mind: the relation p, x is represented by a curve shown in fig. 134, which varies slowly in the neighborhood of the maximum

The true value of $\mathbf{x}_{\underline{\mathbf{m}}}$ is not known, and we find by means of equations (18) and (19) or 'a certain approximate value, which, even upon substituting the value $p_0 = 300 \text{ kg/cm}^2$ for p_m in (19) will give a value of \mathbf{x}_{m}^{*} differing from the real value by not more than 10%. The value of $p_{\underline{m}}^{*}$ will then be sufficiently close to the true value of $\boldsymbol{p}_{\underline{m}},$ and at the next approximation $\boldsymbol{x}_{\underline{m}}^{\perp}$ will practically coincide with x_m .

Whatever the quantity of $p_m^{(0)}$ assigned in the first approximation, whether smaller or larger than the real value of $p_{\underline{m}}$, the values of p_m^{τ} and $p_m^{\tau\tau}$ will be smaller in both cases than the real p_m . In the subsequent approximations the pressure values must increase, tending toward the real p_m , i.e., $p_m^+ < p_m^+ < p_m^{++} \longrightarrow p_{m-real}^+,$ regardless of the value of $x_m^{(0)}$. Lecturer Belenky proved analytically that in successive approximations the quantity $\mathbf{x}_{\underline{m}}^*$ is monotonic increasing, tending toward $\mathbf{x}_{\underline{m}}$ as the limit, while $\mathbf{x}_{\underline{m}}^*$ is monotonic decreasing and tends toward the same limit $\mathbf{x}_{\underline{m}}$.

Fig. 134 - Determination of x_m and p_m (graph p, x). This law must be used for controlling the accuracy of the calculations.

Since the pressure varies slowly in the neighborhood of the maximum, the p_m^* obtained following the substitution of these values of x_m^* in the working equations will be very close to the real p_m , and the second approximation will be adequate to obtain a value of p_m^* sufficiently close to the real value.

Having found x_m , we substitute it into (11) for v, (10) for ψ , (14) for l, and (15) for p_m , and obtain the elements of the projectile's motion, i.e., v_m , ψ_m , l_m , and p_m at the instant of greatest pressure.

Expression (18) gives the analytical expression for x_m at which the gas pressure becomes maximum. Can this equation always be used to determine the maximum pressure?

In most cases when the chosen loading conditions are normal, this formula will give the right answer. But there are cases when

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

it may yield a value $\mathbf{x}_{\mathbf{m}}$ devoid of physical meaning. This occurs when:

 $x_m > x_K$;

 $x_{\rm K}=1-z_0$ corresponds to the instant when the burning of the powder terminates, the instant when the inflow of gases ends. For this reason this formula will give realistic results while $x_{\rm m}$ is smaller than or at most is equal to $x_{\rm K}(x_{\rm m} < x_{\rm K})$.

When $x_m < x_K$, we have a normal case: the maximum pressure is reached before the end of burning. When $x_m = x_K$, the maximum pressure is reached at the end of burning. Finally, when $x_m > x_K$, we have the case of the so-called "unreal" maximum, i.e., a purely analytical case. In reality, when $x_m > x_K$, the powder, burning according to a definite law, stops burning on the upward branch of the pressure curve, the flow of gases stops, following which the pressure begins to drop, in spite of the fact that the analytic maximum had not yet been reached. In fact, the maximum pressure in this case will be the pressure p_K at the end of burning.

Fig. 135 - Pressure Curve with Normal Maximum.

Fig. 136 - The Maximum Pressure Coincides with the End of Burning.

A large value of x_{m} may be obtained when the parameter of the loading

conditions, $B=s^2e_1^2/u_1^2f\omega_{\Psi}m$ is small; this happens when the powder is thin.

Fig. 137 - Unreal Maximum, $x_m > x_K$.

Such cases occur in practice when the firing is performed with thin powders for special purposes.

The appearance of the pressure curve in these three cases is shown in figs. 135, 136, 137.

At the end of the first period, we have:

$$\begin{aligned} \psi_{\mathbf{K}} &= 1; \quad l_{\psi_{\mathbf{K}}} &= l_1 - l_0 (1 - \alpha \Delta); \\ &= -\frac{B}{B_1} \\ \mathbf{x}_{\mathbf{K}} &= 1 - \mathbf{z}_0; \quad l_{\mathbf{K}} - l_{\mathbf{av} \cdot \mathbf{K}} (\mathbf{z}_{\mathbf{xK}} - 1); \end{aligned}$$

$$\mathbf{v}_{\mathbf{K}} = \frac{\mathbf{s}\mathbf{I}_{\mathbf{K}}}{\mathbf{\varphi}\mathbf{s}} \ \mathbf{x}_{\mathbf{K}}; \mathbf{p}_{\mathbf{K}} = \frac{\mathbf{f} \cup \left(1 - \frac{\mathbf{B} \cdot \mathbf{e}}{2} \ \mathbf{x}_{\mathbf{K}}^{2}\right)}{\mathbf{s}(l_{1} + l_{\mathbf{K}})}.$$

The same values will characterize the start of the second period - the period of adiabatic expansion of the gases.

489

4. SECOND PERIOD

The second period, starting at the end of burning of the charge and ending when the base of the projectile passes the muzzle face of the gun, constitutes a process of adiabatic expansion of the gases.

This period is considerably simpler than the first, because the whole process is reduced to the expansion of gases without the addition of energy and without heat losses.

In the second period $\psi=1$, the number of variables is reduced, the independent variable is usually taken to be the path l of the projectile, and equations expressing the pressure p and the velocity v as a function of l are derived.

The beginning of the second period is characterized by the following data obtained at the end of the first period:

$$\psi = 1; \ v = v_K; \ l = l_K; \ p = p_K; \ l_{\psi} = l_1; \ r = r_K.$$

The fundamental equation of the second period is:

$$ps(l_1 + l) = f_{\omega} - \frac{\theta}{2} \varphi m v^2 = f_{\omega} \left(1 - \frac{v^2}{v_{\eta_p}^2}\right).$$
 (20)

where

Since the gas temperature is lower in the second period than in the first, θ should be made larger in the second period, but most authors take an average value of θ common to both periods.

A. Derivation of the Expression for Pressure in the Second Period

$$_{-p} - f_{1}(t)_{-7}$$
.

The equation for pressure is derived from the adiabatic equation:

$$p^{\mathsf{T}} = p_{\mathsf{K}}^{\mathsf{T}} \mathbf{K} \qquad (21)$$

where $p_{\vec{k}}$ and p are the gas pressures at the beginning of the second period and at a given moment, respectively;

 $\boldsymbol{W}_{\widetilde{\boldsymbol{K}}}$ and \boldsymbol{W} are the free volumes of the initial air space at the same instants.

From equation (21), we have:

$$p = p_{K} \left(\frac{w_{K}}{w} \right)^{1+\theta}.$$

Expanding the quantities $\mathbf{W}_{\mathbf{K}}$ and $\mathbf{W}_{\mathbf{r}}$, we obtain:

$$W_{K} - W_{0} - \alpha \omega + s l_{K} - s (l_{1} + l_{K});$$

$$W - W_{0} - \alpha \omega + s l - s (l_{1} + l).$$

Substituting these values in the equation of p, we find:

$$p = p_{\mathbf{K}} \left(\frac{l_1 + l_{\mathbf{K}}}{l_1 + l} \right)^{1 + 0}.$$
 (22)

STAT

491

At the muzzle face, we will have:

$$p_{A} = p_{K} \left(\frac{l_{1} + l_{K}}{l_{1} + l_{A}} \right)^{1+\Theta}.$$

B. Derivation of the Expression for Velocity in the Second Period, v = f₂(()

Let us write the fundamental equation of pyrodynamics for any moment and for the beginning of the second period:

$$ps(l_1 + l) - f = \left(1 - \frac{v^2}{v_{np}^2}\right);$$

$$p_{\mathbf{K}}\mathbf{s}(l_1 + l_{\mathbf{K}}) - \mathbf{f}\omega \left(1 - \frac{\mathbf{v}_{\mathbf{K}}^2}{\mathbf{v}_{\mathbf{\eta}_{\mathbf{p}}}^2}\right).$$

Dividing one equation by the other, term by term, and replacing the ratio $p_{\ell}\,p_{\vec{k}}$ from (22), we obtain:

$$\left(\frac{l_1 + l_{K}}{l_1 + l} \right)^{\Phi} = \frac{1 - \frac{v^2}{v_{n_p}^2}}{1 - \frac{v_{K}^2}{v_{n_p}^2}},$$

whence

$$v = v_{\Pi_p} \sqrt{1 - \left(\frac{l_1 + l_K}{l_1 + l}\right)^{\Theta} \left(1 - \frac{v_K^2}{v_{\Pi_p}^2}\right)}$$
 (23)

492

If we replace $v_{\underline{K}}$ by its expression $v_{\underline{K}} = \frac{sI_{\underline{K}}}{\varphi_{\underline{M}}}(1 - z_0)$,

$$\frac{v_{K}^{2}}{v_{\Pi_{p}}^{2}} = \frac{s^{2}I_{K}^{2}(1-z_{0})^{2}}{\varphi^{2}m^{2}} \frac{\varphi_{B}m}{2f\omega} = B \frac{\theta}{2}(1-z_{0})^{2},$$

and then

$$v = v_{np} / 1 - \left(\frac{l_1 + l_K}{l_1 + l}\right)^{\Theta} \left[1 - \frac{B\Theta}{2}(1 - z_0)^2\right].$$
 (24)

When $l = l_{\Delta}$, we obtain an expression for the muzzle velocity v_{Δ} :

$$\mathbf{v}_{A} = \sqrt{\frac{2\mathbf{g}}{\varphi} \cdot \frac{\mathbf{f}}{\Theta} \cdot \frac{\omega}{\mathbf{q}} \left\{ 1 - \left(\frac{l_{1} + l_{K}}{l_{1} + l_{A}} \right)^{\Theta} \left[1 - \frac{\mathbf{B}\Theta}{2} (1 - z_{0})^{2} \right] \right\}}.$$
(25)

This equation is of great importance for investigating the most desirable solutions when designing guns.

Equations (22) and (23) or (24) give the expressions for the gas pressure in the bore of the gun and for the projectile velocity in the second period as a function of the projectile path l.

Thus, on the basis of the assumptions made, the equations derived above express the relation between the conditions of loading and the ballistic elements of a gun discharge in both the first and the second periods. They enable one, for given loading conditions,

to compute the projectile velocity and the gas pressure at different points of the projectile's motion in the bore of the gun, and to determine the maximum pressure, the muzzle pressure, and the initial (muzzle) velocity of the projectile.

Curves of p and v as a function of ℓ will usually have the form shown in fig. 138.

Fig. 138 - Normal p, [and v, | Curves.

1) Period I; 2) period II.

C. Equations for Calculating the Temperature of Powder Gases.

Having solved the fundamental equation of pyrodynamics and established the relation between the basic elements $(p, v, \{ , and \psi))$ and the new independent variable x, and, consequently, also the relationship between these elements, an equation can be written for determining the temperature of the powder gases at any given instant, and, in particular, at the instant the projectile leaves the bore of the gur barrel.

The temperature of the gases flowing in the path of the projectile determines whether the discharge will be accompanied by a flash, or will be flashless, because according to the present concepts the flash accompanying a shot is a process involving the burning of

494

inflammable hydrogen and carbon oxide gases making up about 50% of the entire gas mixture.

If the temperature of these gases is very high, the gases will burst into flames when mixed with the oxygen in air, and produce a flash accompanying the shot.

In order to obtain the desired equation, let us make use of the energy balance equation in which Ec $_{_{W}}$ is replaced by R θ :

$$\frac{RT_1 \circ \psi}{\bullet} - \frac{RT \circ \psi}{\bullet} = \frac{\psi m v^2}{2}.$$

Since RT₁ - f,

$$\frac{\mathbf{f} \mathbf{w} \mathbf{v}}{\mathbf{e}} \left(1 - \frac{\mathbf{T}}{\mathbf{T}_1} \right) = \frac{\mathbf{v} \mathbf{w} \mathbf{v}^2}{2},$$

or

$$\frac{T}{T_1} = 1 - \frac{\Psi m\theta}{2f\omega} \frac{v^2}{\Psi} = 1 - \frac{1}{\Psi} \frac{v^2}{v_{np}^2}.$$
 (26)

Knowing v and ψ from the first period, let us find $T/T^{}_{1}$ and then T_{\star}

Inasmuch as

$$v = \frac{sI_K}{\varphi_m} \times \cdots$$

$$\psi = \psi_0 + k_1 x + \varkappa \lambda x^2,$$

then, bearing in mind that:

$$B = \frac{s^2 I_K^2}{f_{\text{Upm}}},$$

we get

$$\frac{T}{T_1} = 1 - \frac{B\Theta}{2} \frac{x^2}{\psi} = 1 - \frac{B\Theta}{2} \frac{x^2}{(\psi_0 + k_1 x + \kappa \lambda x^2)}.$$

This equation shows that the variation in the temperature of the gases depends upon the conditions of loading (parameter B) and upon the shape of the grain (coefficients \varkappa and λ).

At the end of burning $(\psi = 1)$ we will have:

$$\frac{T_{K}}{T_{1}} = 1 - \frac{B\theta}{2} (1 - z_{0})^{2} = 1 - \varphi r_{K}. \tag{27}$$

In the second period ψ = 1 and we obtain from equation (26):

$$\frac{T}{T_1} = 1 - \frac{\varphi_m \theta}{2f\omega} v^2 = 1 - \frac{v^2}{v_{\eta_p}^2}, \qquad (28)$$

where

$$v_{\rm fip}^2 - \frac{2f\omega}{\psi \Theta n}$$

At the instant the projectile leaves the barrel

$$\frac{T_{A}}{T_{1}} = 1 - \frac{v_{A}^{2}}{v_{\Pi_{p}}^{2}} = 1 - \varphi r_{A}.$$

This value $T_{\text{A}}/T_{\hat{1}}$ varies in artillery pieces between 0.65 and 0.75. Comparing the value v from equation (28) with the values 1 T $_{1}$ and $T_{\vec{k}}/T_1$ from equations (27) and (28), we obtain other expressions

for T/T;

$$\begin{split} \frac{T}{T_{1}} &= \left(\frac{l_{1} + l_{K}}{l_{1} + l}\right)^{\Theta} \left[1 - \frac{B\Theta}{2}(1 - z_{0})^{2}\right] = \frac{T_{K}}{T_{1}} \left(\frac{l_{1} + l_{K}}{l_{1} + l}\right)^{\Theta}; \\ \frac{T_{A}}{T_{1}} &= \left[1 - \frac{B\Theta}{2}(1 - z_{0})^{2}\right] \left(\frac{l_{1} + l_{K}}{l_{1} + l_{A}}\right)^{\Theta} = \frac{T_{K}}{T_{1}} \left(\frac{l_{1} + l_{K}}{l_{1} + l_{A}}\right)^{\Theta}; \\ T_{A} &= T_{1}\left[1 - \frac{B\Theta}{2}(1 - z_{0})^{2}\right] \left(\frac{l_{1} + l_{K}}{l_{1} + l_{A}}\right)^{\Theta}. \end{split}$$

This equation proves that the temperature of the gases at the instant the base of the projectile passes the muzzle face depends

- 1) the temperature T_1 of the burning powder;
- 2) the temperature of the gases at the end of burning:

$$T_{K} = T_{1} \left[1 - \frac{B\theta}{2} (1 - z_{0})^{2} \right],$$

497

At the instant the projectile leaves the barrel

$$\frac{T_{A}}{T_{1}} = 1 - \frac{v_{A}^{2}}{v_{\Pi_{p}}^{2}} = 1 - \varphi r_{A}.$$

This value T_{A}/T_{1} varies in artillery pieces between 0.65 and 0.75.

Comparing the value v from equation (28) with the values 1 T $_{\hat{L}}$ and T $_{\hat{K}}/T_{\hat{L}}$ from equations (27) and (28), we obtain other expressions for T/T $_{\hat{L}}$:

$$\begin{split} \frac{T}{T_{1}} &= \left(\frac{l_{1} + l_{K}}{l_{1} + l}\right)^{\Theta} \left[1 - \frac{B\Theta}{2}(1 - z_{0})^{2}\right] = \frac{T_{K}}{T_{1}} \left(\frac{l_{1} + l_{K}}{l_{1} + l}\right)^{\Theta}; \\ \frac{T_{A}}{T_{1}} &= \left[1 - \frac{B\Theta}{2}(1 - z_{0})^{2}\right] \left(\frac{l_{1} + l_{K}}{l_{1} + l_{A}}\right)^{\Theta} = \frac{T_{K}}{T_{1}} \left(\frac{l_{1} + l_{K}}{l_{1} + l_{A}}\right)^{\Theta}; \\ T_{A} &= T_{1} \left[1 - \frac{B\Theta}{2}(1 - z_{0})^{2}\right] \left(\frac{l_{1} + l_{K}}{l_{1} + l_{A}}\right)^{\Theta}. \end{split}$$

This equation proves that the temperature of the gases at the instant the base of the projectile passes the muzzle face depends on:

- 1) the temperature T_1 of the burning powder;
- 2) the temperature of the gases at the end of burning:

$$\tau_{K} = \tau_{1} \left[1 - \frac{80}{2} (1 - \tau_{0})^{2} \right],$$

this temperature decreases as B increases;

3) the ratio of free volumes $(l_1 + l_K)/(l_1 + l_A)$, which depends upon the path traversed by the projectile at the end of burning and decreases as l_K increases.

D. Equations for Calculating the Time of Motion of the Projectile.

The time t does not appear directly in the solution of the fundamental problem of pyrodynamics; one may compute and draw the curves of the gas pressure p and the projectile velocity v as a function of the projectile path l, and by this means solve the fundamental problem of internal ballistics, yielding the design data of the gun (volume of powder chamber, length of projectile path).

But in order to fully clarify the phenomena taking place during a shot, it is also necessary to know the variation of the basic elements (p, v, l) as a function of the time t, particularly. because some of the existing devices permit determining the path l. the velocity v, and the gas pressure p as a function of the time t (velocimeter, piezoelectric manometer). Moreover, it is the pressures curves as a function of time which must be known when solving problems relating to the theory of gun mounts fuzes and firing devices.

The time of motion of the projectile in the barrel can be obtained most simply if the curve of the velocity v as a function of the path / is available, and by using the following equation of mechanics:

v = dl , 498

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-

whence:

$$dt = \frac{dl}{v}$$
.

If, having the curve \mathbf{v}_i , we plot the curve $\frac{1}{N}$, l , then by taking the integral:

$$\int_{0}^{1} \frac{1}{\mathbf{v}} dt.$$

We could determine the time of motion of the projectile along the given path l. But inasmuch as at the lower limit, when l=0, v=0, and the integrand 1 v becomes infinite (1 v=1 0 = ∞), it is impossible to perform the integration. Therefore, the time t is divided into two parts, t' and t'':

$$t = t' + t'',$$
 (29)

where the first time interval t' - from the start of motion up to a point representing a small length of the path /' - is calculated approximately, and the second interval t'', from / to / along the path - is calculated by means of quadratic formulas:

$$t'' = \int_{1}^{1} \frac{1}{v} dl.$$

The first time interval t' is found from the equation:

$$t' = \frac{l'}{v'_{av}},$$

where, in the first approximation:

$$v'_{av} = \frac{0 + v'}{2} = \frac{v'}{2}$$

and \mathbf{v}' is the velocity of the projectile at time \mathbf{t}' and the path distance $\{'\}$ consequently:

$$\mathbf{t}^{+} = \frac{2t^{+}}{\mathbf{v}^{+}};$$

the smaller the distance f^{\pm} , the greater will be the accuracy of determining t.

Substituting t' and t'' into (105), we obtain the equation giving the time of motion of the projectile in the bore in the form:

$$\tau = \frac{2l!}{v!} \cdot \int_{0}^{l} \frac{1}{v} dl. \tag{30}$$

Inasmuch as the first interval of time for traversing the path [', as determined by (30), is very approximate, Prof. E.L. Bravin proposed a more exact expression for computing the average velocity of the projectile along the segment ot'. He assumed the acceleration, rather than the velocity, to be linear along this segment (fig. 139):

$$\frac{dv}{dt} - \frac{s}{\varphi m} p - \frac{s^{\Omega}}{\varphi m} (p_0 + kt),$$

where $k = (p' - p_0)/t'$ is the angular coefficient of the straight line STAT

 p_0 , p'; α is a factor, smaller than unity, determined from the condition that the areas bounded by the curve p, t and the straight line p_1p_2 replacing it along the segment ot' are equal. When determining v'_{av} in terms of v', the coefficient α is reduced.

$$dv = \frac{s\alpha}{\phi m} \left(p_0 + \frac{p' - p_0}{t'} t \right) dt.$$

Fig. 139 - Curve p, t Along the Initial Path Segment (According to Bravin).

After integration, we obtain:

$$\mathbf{v} = \frac{\mathbf{s}}{\mathbf{q} \mathbf{m}} \mathbf{1} \left(\mathbf{p}_0 \mathbf{t} + \frac{\mathbf{p}' - \mathbf{p}_0}{\mathbf{t}'} \frac{\mathbf{t}^2}{2} \right).$$

Assuming that $t=t^{\prime}$, we find v^{\prime} , the velocity of the projectile at the time t^{\prime} :

$$\mathbf{v}^+ = \frac{\mathbf{s}}{\phi \mathbf{m}} \alpha \left(\mathbf{p}_0 \mathbf{t}^+ + \frac{\mathbf{p}^+ - \mathbf{p}_0}{2} \mathbf{t}^+ \right) = \frac{\mathbf{s}}{\phi \mathbf{m}} \alpha \left(\frac{\mathbf{p}_0 + \mathbf{p}^+}{2} \right) \mathbf{t}^+.$$

The average value of the projectile velocity along this segment is found from the following equation:

$$v'_{av} = \frac{1}{t'} \int_{0}^{t'} v dt = \frac{1}{t'} \frac{s\alpha}{\varphi_m} \int_{0}^{t'} \left(p_0 t + \frac{p' - p_0}{2t'} t^2 \right) dt =$$

$$= \frac{s\alpha}{\phi m} \frac{1}{t} \left(\frac{p_0 t'^2}{2} + \frac{p' - p_0}{6} t'^2 \right) = \frac{s\alpha}{\phi m} \frac{2p_0 - p'}{6} t'$$

or, replacing $\frac{su}{\phi\,m}\,\,t^+$ from the preceding equation by $v^+,$ we obtain:

$$\mathbf{v_{a}^{+}v_{-}} = \frac{2\mathbf{p_{0}^{-} + p^{+}}}{\mathbf{p_{0}^{-} + p^{+}}} = \frac{\mathbf{v}^{+}}{3}$$

The final expression for t' will be in the form

$$t' = \frac{l'}{v_{av}} = \frac{3l'}{v'} \frac{p_0 + p'}{2p_0 + p'}.$$
 (31)

This is the equation proposed by Prof. E.L. Bravin 3.

Comparing it with the previous expression for t', we note that the time t obtained by the first expression is shorter, and the difference between them increases as the length of the segment [' and the pressure p' increase. At the limit, when p' is reduced to $\mathbf{p_0}$, the two expressions for t' become equal:

$$t' = \frac{3l}{v'} \frac{2p_0}{3p_0} = \frac{2l}{v'}$$

If the relation p, t along the first segment is expressed by a second-degree equation, the resulting equation will be more exact:

$$t_2' = \frac{4l}{v'} \cdot \frac{2p_0 + p'}{5p_0 + p'}.$$

Prof. Bravin also introduced equations for computing the time in segments measuring 0 to $t_m,\ t_m$ to t_K , and t_K to $t_{\underline{A}}$:

$$t_{m} = \frac{3t_{m}}{v_{m}} \frac{p_{U} \cdot p_{m}}{2p_{U} \cdot p_{m}};$$
(a)

$$t_{k} - t_{m} - \frac{3(l_{K} - l_{m})(p_{m} + p_{K})}{v_{m}(p_{m} + 2p_{K}) - v_{K}(2p_{m} + p_{K})}$$
: (b)

$$t_{a} - t_{k} = \frac{3(l_{A} - l_{K})(p_{K} \cdot p_{A})}{v_{K}(p_{K} \cdot 2p_{A}) - v_{A}(2p_{K} \cdot p_{A})}.$$
 (c)

In order to compute t in the first period, the graph $\frac{1}{p}$, x can be used also.

Indeed, $x = z - z_0$;

$$\frac{dx}{dt} = \frac{dz}{dt} = \frac{1}{e_1} \frac{de}{dt} = \frac{u_1^p}{e_1} = \frac{p}{I_K};$$

whence

$$dt = I_{K} \frac{dx}{p};$$

503

$$t = 1_{\mathbf{K}} \int_{0}^{\mathbf{x}} \frac{d\mathbf{x}}{\mathbf{p}}, \tag{32}$$

The function under the integral sign does not become infinite when $p_0 > 0$.

When calculating the total time of the shot, it is necessary to consider not only the time of motion of the projectile, but also the burning time of the powder in the preliminary period before the start of this motion, which is computed by the following formula:

$$t_0 = 2.303 \ \tau_0 \log \frac{p_0}{p_B}$$

where $\frac{1}{\tau_0} = \frac{f\Delta}{1 - \Delta \delta} \frac{\kappa}{1_K}$, $I_K = e_1 u_1$, and P_B is the pressure of the

The time lapse between the instant the firing pin strikes the percussion cap and the end of burning of the igniter is usually not taken into account.

5. SAMPLE CALCULATION OF THE GAS PRESSURE CURVE AND OF THE PROJECTILE VELOCITY BY THE $\frac{1}{2}$ WETHOD

The following data are given:

.

Barrel: 76 mm gun, 1936 model Cross-sectional area of the bore, including the rifling grooves, s, in ${\rm d} {\bf m}^2. \ldots 0.4692$ in dm.... Projectile:

504

Forcing pressure, p₀, in kg cm²......300 Charge: Powder constants: Powder energy (force) f, in kg·dm kg.....950,000 Burning rate, u_1 , of the powder when p = 1, in x - 1.06 μλ= -0.06 FUNDAMENTAL EQUATIONS

A. Preliminary Period

$$\psi_{0} = \frac{\frac{1}{\Delta} - \frac{1}{\delta}}{\frac{f}{p_{0}} + \alpha - \frac{1}{\delta}}; \quad \epsilon_{0} = \sqrt{1 + 4 \frac{\lambda}{r}} \psi_{0}; \quad z_{0} = \frac{2\psi_{0}}{\kappa (\epsilon_{0} + 1)} \approx \frac{\psi_{0}}{\kappa}.$$

B. First Period

$$\mathbf{v} = \frac{\mathbf{s}^{\intercal}\mathbf{g}}{\phi}\mathbf{x}; \quad \psi = \psi_0 + \mathbf{k}_1\mathbf{x} + \kappa\lambda\mathbf{x}^2;$$

505

$$l = l_{\psi_{\underline{a}\underline{v}}} (Z_{\underline{x}} - 1); p = \frac{f\omega}{\underline{s}} \frac{\psi - \frac{\underline{B}\underline{\Theta}}{2} \underline{x}^2}{l_{\psi} + l};$$

$$k_1 = x \, 6_0; \quad B = \frac{s^2 \, r^2}{f \, \omega \phi m};$$

$$B = \frac{B\Theta}{2} + \lambda; \qquad l_{\psi} = l_{\Delta} - a_{\psi};$$

$$l_{\Psi_{\mathbf{a}\mathbf{v}}} = l_{\Delta} - \omega_{\mathbf{a}\mathbf{v}}; \quad \mathbf{a} = \frac{l_{0}\Delta}{\delta_{1}} = \frac{\omega}{\mathbf{s}\delta_{1}} = \frac{\omega}{\mathbf{s}} \left(\omega - \frac{1}{\varepsilon} \right);$$

$$l_{\Delta} = l_{0} \Delta \left(\frac{1}{\Delta} - \frac{1}{\delta} \right) = \frac{\omega}{s} \left(\frac{1}{\Delta} - \frac{1}{\delta} \right).$$

 $\mathbf{Z}_{\mathbf{X}}$ is determined from the double-entry table:

$$\gamma = \frac{B_1 \Psi_0}{k_1^2}$$
 and : $= \frac{B_1}{k_1} x$;

$$x_{m} = \frac{k_{1}}{\frac{B(1+\theta)}{1+\frac{p_{m}}{f\delta_{1}}} - 2 \star \lambda}.$$

C. Second Period

The second secon

50

$$p = p_{\mathbf{k}} \left(\frac{t_1 + t_{\mathbf{K}}}{t_1 + t} \right)^{1 + \theta};$$

$$\begin{aligned} t_1 &= t_0 \Delta \left(\frac{1}{\Delta} - \alpha \right) = t_0 (1 - \alpha \Delta); \\ v &= v_{np} \sqrt{1 - \left(\frac{t_1 + t_K}{t_1 + t} \right)^{\frac{1}{2}} \left(1 - \frac{v_K^2}{v_{n_p}^2} \right)} \end{aligned}$$

or

$$\mathbf{v} = \mathbf{v}_{\mathsf{n}\,\mathsf{p}} \sqrt{1 - \left(\frac{l_1 + l_K}{l_1 + l}\right)^{\Theta}} \left[-1 - \frac{\mathsf{B}\Theta}{2} (1 - \mathbf{z}_0)^{\frac{2}{3}} \right];$$

$$v_{\eta p} = \sqrt{\frac{2g}{\varphi}} \frac{f}{\theta} \frac{\omega}{q}.$$

The calculation of the constants is effected first from the given data:

$$\Delta = 0.7128$$
;

$$\Psi_0 = \frac{\frac{1}{\Delta} - \frac{1}{\delta}}{\frac{f}{P_0} + \alpha - \frac{1}{\delta}} = \frac{\frac{1}{0.7128} - \frac{1}{1.6}}{\frac{950000}{30000} + 0.98 - 0.625} = 0.024293$$

 $G_0 = \sqrt{1 + 4 \frac{\lambda}{\kappa} \psi_0} = \sqrt{1 + \frac{4(-0.0566)0.02429}{1.06}} = 0.9972;$

$$z_0 = \frac{2\psi_0}{\kappa(G_0 + 1)} = 0.02294;$$

$$x_{K} = 1 - z_{0} = 1 - 0.02294 = 0.97706;$$

$$k_1 = \text{MG}_0 = 1.06 \cdot 0.9972 = 1.057;$$

$$I_K = \frac{e_1}{u_1} = \frac{0.00678}{0.0000074} = 916.2;$$

$$\varphi = 1.03 + \frac{1}{3} \frac{\omega}{q} = 1.03 + \frac{1}{3} \cdot \frac{1.08}{6.2} = 1.088;$$

$$\frac{^{8}I_{K}}{^{\varphi m}} = \frac{0.4692 \cdot 916.2 \cdot 98.1}{1.088 \cdot 6.2} = 6253;$$

$$l_0 = \frac{\mathbf{W}_0}{\mathbf{s}} = \frac{1.515}{0.4692} = 3.228;$$

$$B = \frac{s^2 I_K^2}{f_{\text{Lym}}} = \frac{0.4692^2 \cdot 916.2^2 \cdot 98.1}{950000 \cdot 1.08 \cdot 1.088 \cdot 6.2} = 2.617;$$

$$B_1 = \frac{Be}{2} - \kappa\lambda = \frac{2.617^{\circ}0.2}{2} + 0.06 = 0.3217; \frac{B}{B_1} = 8.134;$$

$$a = \frac{l_0 \Delta}{\delta_1} = 3.228^{\circ} 0.7128^{\circ} 0.355 = 0.8168;$$

$$l_{\Delta} = l_{0} \Delta \left(\frac{1}{\Delta} - \frac{1}{\delta} \right) = 3.222 \cdot 0.7128 \left(\frac{1}{0.7128} - \frac{1}{1.6} \right) = 1.790;$$

$$\gamma = \frac{B_1 \Psi_0}{k_1^2} = \frac{0.3217 \cdot 0.02429}{1.057^2} = 0.006995;$$

$$x_{m} = \frac{k_{1}}{\frac{B(1 + \theta)}{1 + \frac{P_{m}}{f \delta_{1}}}} = \frac{1.057}{\frac{2.617 \cdot 1.2}{1 + \frac{232000}{950000}}} = 0.3512;$$

$$\frac{\mathbf{x}_{m \text{ 2nd approx.}}}{2 \cdot 617 \cdot 1.2} = 0.3517$$

$$\frac{2.617 \cdot 1.2}{1 \cdot \frac{236000}{950000}} \cdot 0.355$$

Fig. 140 - Curves p, 1 and v, 1 According to Prof. Drozdov and by the 1 Method.

- 1) v, in m sec; 2) p, in kg cm²; 3) curves p(l) and v(l); 4) Drozdov's method; 5) l method; Yav.
- 6) 1 , in dm.

510

nitial Formulas	No.	Operations		Max. Pressure	2nd Approx.	
1 - 0.3043	1	x	0.1972	0.3512	0.3517	0.52
sI	2	$: - \frac{B_1}{k_1} x$	0.060	0.1069	0.1070	0.16
$y = \frac{\text{sI}_{K}}{\varphi} = 6253x$	3	v, in dm sec	1233	2196	2199	3295
	4	'k, x	0.2084	0.3712	0.3717	0.55
1 - 1.057	5	(+){*\x ²	-0.0023	-0.007 4	-0.0074	-0.01
$\kappa \lambda = -0.06$; 6	40	0.0243	0.0243	0.0243	0.02
ψ = ψ ₀ + k ₁ x +	7	Ψ	0.2304	0.3881	0.3886	0.56
+ μλx ²	8	4 * 40	0.2547	0.4124	0.4129	0.58
r ₀ = 0.0243	9	₹av.	0.1273	0.2062	0.2064	0.29
$\Psi_{av.} = \frac{\Psi + \Psi_0}{2}$	10	(-) [t _Δ	1.790	1.790	1.790	1.79
l _{ψav.} - l _Δ - a _{ψav.} -	11	æΨav.	0.140	0.168	0.168	0.24
- 1.79 - 0.186 _{Ψaν.}	12	ly - lc	1.650	1.622	1.622	1.5
	13	(-) [1Δ	1.790	1.790	1.790	1.7
	14	1 a 4	0.188	0.317	0.317	0.4

Tal	ble of the Ballisti	C Elements (ψ	v, /, and p)	for the Fir	st Period		
No.	Operations		Max. Pressure	2nd Approx.			End of Burning
1	x	0.1972	0.3512	0.3517	0.5270	0.723	0.9771
2	$\beta = \frac{B_1}{k_1} x$	0.060	0.1069	0.1070	0.160	0.220	0.29
3	v, in dm sec	1233	2196	2199	3295	4521	6110
4	$\begin{pmatrix} \mathbf{k_1} & \mathbf{x} \end{pmatrix}$	0.2084	0.3712	0.3717	0.5570	0.7642	1.033
5	(+) ⟨×λ _x ²	-0.0023	-0.0074	-0.0074	-0.0167	-0.0314	-0.0573
6	۲0	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243
7	Ψ	0.2304	0.3881	0.3886	0.5646	0 7571	1.000
8	4 + 40	0.2547	0.4124	0.4129	0.5889	0 7814	1.0243
9	Ψav.	0.1273	0.2062	0.2064	0.2944	0.3907	0.512
10	(-) [1 _{\Delta}	1.790	1.790	1.790	1.790	1.790	1.790
11	а ψ а v .	0.140	0.168	0.168	0.240	0.319	0.418
12	lyav lc	1.650	1.622	1.622	1.550	1.471	1.372
13	(-) \ 1 <u>\(\)</u>	1.790	1.790	1.790	1.790	1.790	1.790
4	(ж ψ	0.188	0.317	0.317	0.461	0.618	0.317
<u> </u>			-			_	

κλ= -0.06	6	70	0.0243	0.0243	0.0243	0.024
			0.2304	0.3881	0.3886	0.564
$\psi = \psi_0 + k_1 x +$	7	4	0.2547	0.4124	0.4129	0.588
+ κλx ²	8	4 + 40	0.1273	0.2062	0.2064	0.294
$\Psi_0 = 0.0243$	9	Ψav.	0.12.0			
$\Psi_{av.} = \frac{\Psi + \Psi_0}{2}$	10	(-) [1 _Δ	1.790	1.790	1.790	1.790
$l_{\text{wav.}} = l_{\Delta} - a_{\text{wav.}}$	11	aΨav.	0.140	0.168	0.168	0.24
- 1.79 - 0.186 _{Ψaν} .	12	1, - 1 _c	1.650	1.622	1.622	1.55
		1.0	. 700	1.790	1.790	1.79
	13	(-)	1.790	0.317	0.317	0.46
	14	laψ	1.602	1.473	1.473	1.32
- 14 - 14 - a4	15	- ' +	AND THE RESERVE AND THE PROPERTY OF THE PROPER		0.04024	0.00
colog Z from table	16	colog Z	0.0198	0.0402		0.5
γ = 0.006995	17	$\frac{B}{B_1}$ colog Z	0.1610	0.3270	0.3273	0.5
$\frac{B}{B_1} = 8.134$		· _ <u>B</u>	1.449	2.123	2.124	3.3
B1	18	<u>x</u>	0.7408	1.822	1.823	3.7
l Py	19	$\begin{array}{c c} l = l_{YCP} \\ -\frac{B}{B_1} \\ \cdot (Z_x - 1) \end{array}$		1.473	1.473	1.3
		-	The second secon	3.295	3.296	5.0
	21	1+ 1	2.343	0.3881	0 3886	0.
$\frac{f\omega}{8} = 2,187,000$	22	$ \left(-\right) \left\{ \frac{\mathbf{B}\mathbf{\theta}}{\mathbf{x}^2} \right\} $	0.2304		0.0324	0.
	23	$(-)\left\{\frac{1}{2} x^2\right\}$	0.0102	0.0323	0.332	
ψ- <u>Be</u> χ ²	24	B 9 _2	0.2202	0.3558	0.3562	2 0.
$p = \frac{f\omega}{s} \frac{2}{(\omega + 1)}$	25	$\psi - \frac{B\Theta}{2} x^2$ p, in kg/cm ²	2054	2360	2362	2

	* *	0.2084	0.3712	0.3717	0.5570	0.7642	1.033
5	$\binom{k_1}{4}$	-0.0023	-0.0074	-0.0074	-0.0167	-0.0314	-0.0573
6	40	0.0243	0.0243	0.0243	0.0243	0.0243	0.0243
7		0.2304	0.3881	0.3886	0.5646	0.7571	1.000
8	Ψ Ψ	0.2547	0.4124	0.4129	0.5889	0 7814	1.0243
9	Ψ + Ψ ₀ Ψ av .	0.1273	0.2062	0.2064	0.2944	0.3907	0.512
10	(-) [1 _Δ	1.790	1.790	1.790	1.790	1.790	1.790
11	a _{\psi_av} .	0.140	0.168	0.168	0.240	0.319	0.418
12	ι _{ψαν.} - ι _c	1.650	1.622	1.622	1.550	1.471	1.372
13	(-) 14	1.790	1.790	1.790	1.790	1.790	1.790
14	a ψ	0.188	0.317	0.317	0.461	0.618	0.317
15	ι	1.602	1.473	1.473	1.329	1.172	0.973
16	colog Z	0.0198	0.0402	0.04024	0.06521	0.09596	0.1397
16	$\frac{B}{B_1}$ colog Z	0.1610	0.3270	0.3273	0.5304	0.7805	1.1369
18	$\frac{B_1}{Z_x} - \frac{B}{B_1}$	1.449	2.123	2.124	3.391	6.033	13.69
19	l = lycp.	0.7408	1.822	1.823	3.706	7.403	17.411
20	$(\mathbf{z}_{\mathbf{x}} - \frac{\mathbf{g}_{\mathbf{y}}}{\mathbf{g}_{\mathbf{y}}} - 1)$	1.602	1.473	1.473	1.329	1.172	0.973
-	1 + 1	2.343	3.295	3.296	5.035	8.575	18.384
21	1+1	0.2304	0.3881	0 3886	0.5646	0.7571	1.000
23	$(-) \begin{cases} \frac{B \bullet}{2} x^2 \end{cases}$	0.0102	0.0323	0.0324	0.0727	0.1368	0.2498
24	$\psi - \frac{B \bullet}{2} x^2$	0.2202	0.3558	0.3562	0.4919	0.6203	0.7502
25	p, in kg/cm ²	2054	2360	2362	2136	1580	892

STAT

)

COMPUTATIONS FOR THE SECOND PERIOD

Calculation of the constants of the second period:

$$v_{\text{flp}}^2 = \frac{2 \cdot 950000 \cdot 1.08 \cdot 98.1}{1.088 \cdot 0.2 \cdot 6.2} = 149,300,000;$$
 $\frac{v_{\text{K}}^2}{v_{\text{flp}}^2} = 0.250;$

$$C - 1 - \frac{v_K^2}{v_{n_p}^2} - 1 - 0.250 - 0.750.$$

From the first period, $l_1 + l_K = 18.384$.

$$p_{K} = 892 \text{ kg/cm}^{2}$$
.

Table of the Elements of the Second Period

Initial Formulas	No.	Operations			Muzzle Face
$p - p_{K} \left(\frac{l_{1} + l_{K}}{l_{1} + l} \right)^{1+\theta} -$	1) <i>i</i>	22.60	27.44	33.91
$-892\left(\frac{18.384}{0.973+1}\right)^{1.2}$	2	$\left\{\begin{array}{c} (+) \\ \vdots \\ t_1 \end{array}\right\}$	0.973	0.973	0.973
(0.373 11)	3	1+ 1	23.573	28.413	34.883
	4	$\frac{l_1 + l_K}{l_1 + l} = \gamma$	0.7799	0.6471	0.5270
		'1	1.8920	T.8110	1.7218
	5	log y	-0.1080	-0.1890	-0.2782
$\frac{1}{\sqrt{\frac{v^2}{v^2}}}$	Ì		-0.1296	-0.2268	-0.3338
$\left \mathbf{v} - \mathbf{v}_{np} \right / 1 - \eta^{0.2} \left(1 - \frac{\mathbf{v}_{\mathbf{K}}^2}{\mathbf{v}_{np}^2} \right) - $	6	1.2 log 7	I.8704	T.7732	T.6662

The second secon

	Tab	le (Cont'd.)		Τ	
Initial Formulas	No.	Operations			Muzzle Face
/	7	71.2	0.7420	0.5932	0.4636
$-12,220\sqrt{1-0.750\eta^{0.2}}$	8	p - p _K ^{1.2}	662	529	414
	4.00		-0.0216	-0.0378	-0.0556
	. 9	0.2 log γ	T.9784	1.9622	T.9444
	10	η 0.2	0.9515	0.9166	0.8798
	- 11	0.750 y ^{0.2}	0.7136	0.6874	0.6598
	12	1-0.750 y 0.2	0.2864	0.3126	0.3402
	13	v in dm sec	6530	6822	7117

The results of these calculations are shown in fig. 140 on p. 510 in the form of $p(\{\})$ and $v(\{\})$ curves.

CHAPTER 2 - PROF. N.F. DROZDOV'S EXACT METHOD-1-7

(Written by Prof. G.V. Oppokov)

The assumption

$$l_{\Psi} - l_{\Psi_{\mathbf{a}\mathbf{v}}}$$

made in the preceding chapter gives an approximate solution. Yet the differential equation of the projectile path in the first period

$$\frac{dl}{dx} = \frac{Bx(l_{\psi} + l)}{\psi - \frac{B\theta}{2}x^2}$$
(33)

can be integrated exactly.

Prof. N.F. Drozdov's great contribution to the field of internal ballistics lies in the very fact that he was the first to solve this equation exactly, without any additional assumptions or simplifications, as had been done before him by all the other authors without exception.

Namely, if we introduce for convenience the following designation:

$$M = \frac{Bx}{\psi - \frac{B\theta}{2}x^2}, \qquad (34)$$

equation (33) takes on the form:

$$\frac{dl}{dx} - Ml - Ml_{\psi}. \tag{35}$$

When this differential equation of the first order is integrated, the following relationship obtains:

lowing relationship obtains
$$x$$

$$\int_{0}^{x} Mdx = \int_{0}^{x} Mdx$$

$$\begin{cases}
1 = e & \int_{0}^{1} \psi \cdot e & Mdx
\end{cases}$$
(36)

The integral-exponent of e in the right-hand side of equation (36) is (see pp. 478-481) equal, as before, to:

$$\int_{0}^{x} M dx = \frac{B}{B_{1}} \int_{0}^{\beta} \frac{\beta d\beta}{\gamma + \beta - \beta^{2}} = \ln Z$$
 (37)

The main integral is:

The main integral is:

$$x$$

$$-\int_{0}^{x} M dx$$
 x

$$y = \int_{0}^{1} l_{\psi} e$$

Mdx = $\int_{0}^{x} l_{\psi} d(-e)$

Mdx

Noting this peculiarity, the author integrates by parts:

$$Y = \begin{vmatrix} x & x & x & -\int_{0}^{x} M dx \\ -l_{\psi} e & 0 & x & -\int_{0}^{x} M dx \\ 0 & 0 & 0 \end{vmatrix}$$

515

or, __see equation (37)_7:

$$Y = -l_{\psi}Z + l_{\psi_0} + \int_{|\psi_0|} \frac{B}{B_1} dl_{\psi}.$$

Bu t

$$\psi = \psi_0 + k_1 x + \kappa \lambda x^2$$
; $l_{\psi} = l_{\Delta} - a\psi$.

where
$$a = \frac{\omega}{s} \left(\alpha - \frac{1}{\delta} \right)$$
.

$$dl_{\psi} = -ak_1 dx - 2a \times \lambda \times dx,$$

whence

$$\frac{B}{\overline{B}_{1}} = x + \frac{B}{\overline{B}_{1}} = x + \frac{B}{\overline{B}_{1}} = x + \frac{B}{\overline{B}_{1}}$$

$$\frac{A}{\overline{B}_{1}} = -1 + \frac{A}{\overline{A}_{1}} = x + \frac{A}{\overline{$$

It is now possible to proceed in two ways: eliminate from the equation either the first or the second integral in the right-hand side. The author selected the second course.

Namely, it follows from (34) and (37) that:

$$\int_{0}^{x} \frac{Bxdx}{\psi_{0} + k_{1}x - B_{1}x^{2}} - \frac{B}{B_{1}} \ln z$$

or

$$\int_{0}^{\infty} \frac{x dx}{x^2 - \frac{k_1}{B_1}x - \frac{\psi_0}{B_1}} = \ln z,$$

whence

$$\frac{x dx}{x^2 - \frac{k_1}{B_1} x - \frac{\psi_0}{B_1}} = \frac{dZ}{Z},$$

and, consequently

$$xdx = \left(x^2 - \frac{k_1}{B_1}x - \frac{\psi_0}{B_1}\right)\frac{dZ}{Z}.$$

The desired integral is equal to:

$$\int_{0}^{x} \frac{\frac{B}{B_{1}}}{z} x dx - \int_{1}^{z} \frac{\frac{B}{B_{1}} - 1}{z} \left(x^{2} - \frac{k_{1}}{B_{1}}x - \frac{v_{0}}{B_{1}}\right) dz -$$

$$- \frac{B_1}{B} \int_{1}^{x} \left(x^2 - \frac{k_1}{B_1} x - \frac{\psi_0}{B_1} \right) dZ.$$

Integrating by parts:

$$\int_{0}^{x} \frac{\frac{B}{B_{1}}}{z} x dx = \frac{B_{1}}{B} \left(x^{2} - \frac{k_{1}}{B} x - \frac{\psi_{0}}{B_{1}} \right) z^{\frac{B}{B_{1}}} + \frac{B_{1}}{B} \frac{\psi_{0}}{B_{1}} - \frac{\psi_{0}}{B_{1}}$$

$$-\frac{2B_1}{B} \int_{0}^{x} \frac{\frac{B}{B_1}}{z x dx} \cdot \frac{k_1}{B} \int_{0}^{x} \frac{\frac{B}{B_1}}{z dx},$$

because when x = 0, we will have:

$$\begin{array}{c}
\frac{B}{B_1} \\
z - e^0 - 1.
\end{array}$$

We will find the desired integral from equation (38):

$$\int_{0}^{x} \frac{\frac{B}{B_{1}}}{z} x dx - \frac{1}{B+2B_{1}} (B_{1}x^{2} - k_{1}x - \psi_{0})z^{\frac{B}{B_{1}}} +$$

$$+ \frac{\Psi_0}{B + 2B_1} + \frac{k_1}{B + 2B_1} \int_{0}^{x} \frac{\frac{B}{B_1}}{z} dx.$$

Now the obtained value of the integral must be substituted into (38), noting that:

$$x^2 - \frac{k_1}{B_1} x - \frac{\psi_0}{B_1} - \frac{1}{B_1} \left(\psi - \frac{Be}{2} x^2 \right)$$

and using Prof. N.F. Drozdov's designations:

$$a_1 = -\frac{2x\lambda}{B+2B_1};$$
 $b_1 = \frac{1}{\ell_0}(\ell_{\Psi_0} + aa_1\Psi_0);$ $c_1 = \frac{ak_1}{\ell_0}(1-a_1).$ (39)

Then finally we have:

$$Y = -l_{\psi} z - aa_{1} \left(\psi - \frac{B\theta}{2} x^{2} \right) z + l_{0} (b_{1} - c_{1}) \int_{0}^{x} z^{B_{1}} dx . \tag{37}$$

Let us introduce the value of the integral from (37) and the value of the integral found immediately above:

$$\begin{array}{ccc}
x & -\int_{0}^{x} M dx \\
Y & = \int_{0}^{x} l_{\psi} e & M dx
\end{array}$$

into (36):

Upon expanding the expression in brackets and replacing

$$a = \frac{\omega}{s\delta_1}; \quad l_{\psi} = l_{\Delta} - \frac{\omega_{\psi}}{s\delta_1},$$

after the transfer of l_{ψ} to the left-hand side, we obtain:

$$\begin{aligned} l + l_{\Delta} &= \frac{\omega_{\psi}}{s\delta_{1}} = -\frac{\omega}{s\delta_{1}} a_{1} \left(\psi - \frac{B\theta}{2} x^{2} \right) + \\ &+ l_{0} \left(b_{1} - c_{1} \right) \int_{0}^{x} \frac{B}{B_{1}} &- \frac{B}{B_{1}} \\ &+ l_{0} \left(b_{1} - c_{1} \right) \int_{0}^{x} z dx \right) Z \end{aligned}$$

Dividing both sides by t_0 and noting that:

$$\frac{\omega}{\mathbf{s}\delta_1}\colon\ \boldsymbol{l}_0=\frac{\omega}{\P_0\delta_1}=\frac{\Delta}{\delta_1},$$

we obtain Drozdov's well-known equation:

$$\frac{1}{t_0} + \frac{l_{\Delta}}{t_0} - \frac{\psi \Delta}{\delta_1} = -\frac{a_1 \Delta}{\delta_1} \left(\psi - \frac{B \Theta}{2} x^2 \right) + \frac{x}{\delta_1} - \frac{B}{B_1} - \frac{B}{B_1} + (b_1 - c_1) \left(\frac{z}{\delta_1} - \frac{B}{\delta_1} \right)$$
(40)

In this equation we have:

520

STAT

1/0

$$\int_{0}^{x} \frac{\frac{B}{B_{1}}}{z} dx - \frac{k_{1}}{B_{1}} \int_{0}^{\beta} \frac{\frac{B}{B_{1}}}{z} d\beta.$$

The table for the last integral with three entries, β , γ , and B/B_1 , was prepared by Prof. D.A. Venttsel and is reproduced in the appendix.

Table 2 - Computational Formulas Used in Drozdov's Exact

$$\begin{aligned} \varphi &= K + \frac{1}{3} \frac{\omega}{q}; & \frac{\varphi m}{s}; & I_K - \frac{e_1}{u_1}; & v_{K,0} - I_K; & \frac{\varphi m}{s}; \\ \\ \frac{\omega}{s}; & f \frac{\omega}{s}; & l_\Delta - \frac{\omega}{s} \cdot \frac{1}{\delta_2}; & a - \frac{\omega}{s} \cdot \frac{1}{\delta_1}; \\ \\ l_{\psi_0} - l_\Delta - a_{\psi_0}; & \frac{\Delta}{\delta_1}; & f\Delta; & l_0 - \frac{w_0}{s}; & \frac{l_\Delta}{l_0}. \end{aligned}$$

$$B = I_{\mathbf{g}}^{2}; \qquad \left(f \frac{\omega}{s} \cdot \frac{\varphi_{\mathbf{m}}}{s} \right); \qquad B_{1} = \frac{B\theta}{2} - x\lambda;$$

$$\frac{B}{B_{1}}; \qquad C = \frac{B_{1}}{k_{1}}; \qquad \gamma = \frac{C\psi_{0}}{k_{1}}.$$

$$a_1 = -\frac{2\kappa\lambda}{B+2B_1};$$
 $b_1 = \frac{1}{\ell_0}(\ell_{\psi_0} + a_{\alpha}a_1\psi_0);$

$$\frac{c_1 k_1}{B_1} = \frac{a k_1 (1 - a_1)}{f_0 c}; \qquad a_1 = \frac{\Delta}{\delta_1}.$$

521

$$\beta = Cx; \quad v = v_{K,0}x; \quad \psi = \psi_0 + k_1 x + k \lambda x^2;$$

$$\frac{1}{I_0} + \frac{I_\Delta}{I_0} - \psi \frac{\Delta}{\delta_1} = -a_1 \frac{\Delta}{\delta_1} \left(\psi - \frac{B\Theta}{2} x^2 \right) + \left(b_1 - \frac{c_1 K_1}{B_1} \int_0^B \frac{B}{I_0} - \frac{B}{B_1} \right) z$$

$$p = f\Delta \left(\psi - \frac{B\Theta}{2} x^2 \right) : \left(\frac{l}{l_0} + \frac{i_{\Delta}}{l_0} - \psi \frac{\Delta}{\delta_1} \right).$$

The equation given by Drozdov for the maximum pressure is:

$$x_{m} = \frac{k_{1}}{B + 2B_{1}} + h,$$

where

$$h = \frac{c_1}{B + 2B_1} = \frac{\psi_m - \frac{B\Theta}{2} x_m^2}{(b_1 - c_1) \left(\frac{x}{2} \frac{B_1}{x} dx \right) Z_x} \text{ and } x_m = \frac{k_1}{B + 2B_1}.$$

h is a function of B and Δ for which a special table has been compiled and is presented below. This equation enables one to avoid

approximations.

522

ΔΤΩ

				Tat	ole 3 - Ap	pproximate	· Values	of the Fu	nction n	
В 🛆	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.2 2.4 2.8	0.025 020 017 014 012 010 009 008 007 006 006 005 004	0.031 025 021 018 015 0.013 012 010 009 008 007 006 006 005 004	0.037 031 026 022 019 016 014 012 011 010 009 008 007	0.044 037 031 027 023 020 017 015 013 012 011 010 008	0.052 014 037 032 027 024 021 018 016 014 013 011 010	0.062 052 044 038 032 028 025 022 019 017 016 013 011 009	0.075 062 052 045 038 034 030 026 023 020 019 016 013 011	0.090 074 062 053 046 010 035 031 027 024 022 018 015 013	0.108 089 073 063 054 047 041 036 032 029 026 021 018 015 013	0.123 106 088 075 064 055 048 042 037 033 030 024 021 018 015
3.0	0025	0035	0045	0055	0065	0075	009	010	011	0125

STAT

523

Table 3 - Approximate Values of the Func	tion	n
--	------	---

031 037 014 052 062 074 089 106 125 1 026 031 037 044 052 062 073 088 104 1 022 027 032 038 045 053 063 075 088 1 019 023 027 032 038 046 054 064 075 0 016 020 024 028 034 010 047 055 065 0 014 017 021 025 030 035 041 048 056 0 012 015 018 022 026 031 036 042 049 0 011 013 016 019 023 027 032 037 043 0 010 012 014 017 020 024 029 033 039 0	7 0.208				1	0.55	0.50	0.45	0.40	0.35	0.30
031 037 014 052 062 074 089 106 125 1 026 031 037 044 052 062 073 088 104 1 022 027 032 038 045 053 063 075 088 1 019 023 027 032 038 046 054 064 075 0 016 020 024 028 034 010 047 055 065 0 014 017 021 025 030 035 041 048 056 0 012 015 018 022 026 031 036 042 049 0 011 013 016 019 023 027 032 037 043 0 010 012 014 017 020 024 029 033 039 0		0.177	0 151	0 123	0.108	0.090	0.075	0.062	0.052	0.044	0.037
026 031 037 044 052 062 073 088 104 1 022 027 032 038 045 053 063 075 088 1 019 023 027 032 038 046 054 064 075 0 016 020 024 028 034 010 047 055 065 0 014 017 021 025 030 035 041 048 056 0 012 015 018 022 026 031 036 042 049 0 011 013 016 019 023 027 032 037 043 0 010 012 014 017 020 024 029 033 039 0 009 011 013 016 019 022 026 030 035 0 <	7 173	147									
022 027 032 038 045 053 063 075 088 1 019 023 027 032 038 046 054 064 075 0 016 020 024 028 034 010 047 055 065 0 014 017 021 025 030 035 041 048 056 0 012 015 018 022 026 031 036 042 049 0 011 013 016 019 023 027 032 037 043 0 010 012 014 017 020 024 029 033 039 0 009 011 013 016 019 022 026 030 035 0		122									
019 023 027 032 038 046 054 064 075 0 016 020 024 028 034 010 047 055 065 0 014 017 021 025 030 035 041 048 056 0 012 015 018 022 026 031 036 042 049 0 011 013 016 019 023 027 032 037 043 0 010 012 014 017 020 024 029 033 039 0 009 011 013 016 019 022 026 030 035 0		103									
016 020 024 028 034 010 047 055 065 0 014 017 021 025 030 035 041 048 056 0 012 015 018 022 026 031 036 042 049 0 011 013 016 019 023 027 032 037 043 0 010 012 014 017 020 024 029 033 039 0 009 011 013 016 019 022 026 030 035 0		088									
014 017 021 025 030 035 041 048 056 00 012 015 018 022 026 031 036 042 049 0 011 013 016 019 023 027 032 037 043 0 010 012 014 017 020 024 029 033 039 0 009 011 013 016 019 022 026 030 035 0		076									
012 015 018 022 026 031 036 042 049 0 011 013 016 019 023 027 032 037 043 0 010 012 014 017 020 024 029 033 039 0 009 011 013 016 019 022 026 030 035 0		066									
011 013 016 019 023 027 032 037 043 0 010 012 014 017 020 024 029 033 039 0 009 011 013 016 019 022 026 030 035 0		057									
010 012 014 017 020 024 029 033 039 0 009 011 013 016 019 022 026 030 035 0		050									
009 011 013 016 019 022 026 030 035 0		045									
1 000 000 000		040									
1 999 188		032									
] 997 998 988 988 988 988 988 988 988 988 988 988 988 988 988 988 988 988		027									
1 1 1 1 1		022									
1 000 000 000 000		019									
0045 0055 0065 0075 009 010 011 0125 014 0	55 0175	0155	014	0125	011	010	009	0075	0065	0055	0045

523

The equations of the preceding table should be applied to the first period; the equations for the preliminary and second periods remain unchanged (Table 3).

6. EXAMPLE OF CALCULATING THE GAS PRESSURE CURVE AND THE PROJECTILE VELOCITY BY PROF. N.F. DROZDOV'S METHOD

The following data are given:

e	IOTIONIUS -
	Barrel: 76 mm gun, model 1936
	Chamber capacity, W ₀ , in dm
	Cross-sectional area of the bore, including rifling, s, in dm ² 0.4692
	Path traversed by projectile inside the bore, land,
	Projectile
	6.2
	Forcing pressure, p ₀ , in kg cm ²
	Charge
	Weight of charge, ω, in kg
	Powder constants
	Powder energy (force), f, in kg'dm kg950000
	Covolume, a, in dm ³ kg
	Powder density, δ, in kg dm ³
	Powder density, 8, in kg dm
	Burning rate of powder, u ₁ , when p = 1, in
	dm/sec: kg/dm ² 0.0000074
	Dimensions of strip (thickness 2e mm)

_ ×λ = 0.06

x = 1.06

BASIC COMPUTATIONAL FORMULAS

A. Preliminary Period

$$\Psi_{0} = \frac{\frac{1}{\Delta} - \frac{1}{\delta}}{\frac{f}{p_{0}} + \alpha - \frac{1}{\delta}}; \quad G_{0} = \sqrt{1 + 4 \frac{\lambda}{\kappa} \Psi_{0}}; \quad z_{0} = \frac{2\psi_{0}}{\kappa(G_{0} + 1)}.$$

B. First Period

$$v = \frac{s_1 \kappa}{\varphi_m} x; \quad \psi = \psi_0 + \kappa_1 x + \kappa \lambda x^2;$$

$$x = \frac{\kappa}{B_1}$$

$$\psi = \frac{B \bullet}{2} x^{2}$$

$$p = f \Delta \frac{}{\Lambda_{\psi} + \Lambda},$$
(*)

where

$$B = \frac{s^2 I^2}{f_{\text{torp}}}; \quad B_1 = \frac{B\Theta}{2} - x\lambda;$$

$$k_1 - x \in _0; \quad a_1 = \frac{2x\lambda}{2 + 2B};$$

$$b_1 = \frac{l_{\Delta}}{l_0} - \frac{\Delta}{\delta_1} \psi_0(1 + a_1); \quad c_1 = \frac{k_1}{\delta_1} \Delta(1 - a_1);$$

$$\frac{1}{\delta_1} = \alpha - \frac{1}{\delta}; \quad \frac{l_{\Delta}}{l_0} = 1 - \frac{\Delta}{\delta};$$

$$\Lambda_{\psi} = \frac{l_{\psi}}{l_{0}} = 1 - \frac{\Delta}{\delta} - \frac{\Delta}{\delta_{1}} \psi;$$

$$l_0 = \frac{\mathbf{W_0}}{\mathbf{s}}; \quad \Lambda = \frac{l}{l_0}.$$

z and $\int_{0}^{\beta} \frac{B_{1}B_{1}}{z}$ dp are determined from tables with the two entries:

$$\gamma = \frac{B_1 \Psi_0}{k_1^2}$$
 ; $\beta = \frac{B_1}{k_1} x$;

$$x_m = \frac{k_1}{B + 2B_1} + h,$$

where

$$h = \frac{c_1}{B + 2B_1} = \frac{\psi_m - \frac{B\theta}{2} x_m^2}{(b_1 - c_1 \int_0^x z^{\frac{B}{B_1}} dx) z^{-\frac{B}{B_1}}}$$

C. Second Period

$$\mathbf{v} = \mathbf{v}_{\mathbf{K}} \left(\frac{\Lambda_{1} + \Lambda_{\mathbf{K}}}{\Lambda_{1} + \Lambda} \right)^{1+\theta};$$

$$\mathbf{v} = \mathbf{v}_{\mathbf{N}p} \sqrt{1 - \left(\frac{\Lambda_{1} + \Lambda_{\mathbf{K}}}{\Lambda_{1} + \Lambda} \right)^{\theta} \left(1 - \frac{\mathbf{v}_{\mathbf{K}}^{2}}{\mathbf{v}_{\mathbf{N}p}^{2}} \right)},$$

where

$$v_{np} = \sqrt{\frac{2g}{\varphi} \cdot \frac{f}{\bullet} \cdot \frac{\omega}{q}}$$

or

$$\mathbf{v} = \mathbf{v}_{\mathsf{fip}} \sqrt{1 - \left(\frac{\Lambda_1 + \Lambda_K}{\Lambda_1 + \Lambda}\right)^{\mathbf{e}} \left[1 - \frac{B\mathbf{e}}{2} (1 - z_0)^2\right]};$$

$$\Lambda_1 = \frac{l_{\Delta}}{l_0} = \frac{\Delta}{\delta_1} = 1 = \alpha \Delta.$$

The computation of the constants is effected first from the known data:

527

$$\Delta = \frac{\omega}{W_0} = \frac{1.08}{1.515} = 0.7128;$$

$$\psi_0 = \frac{\frac{1}{\Delta} - \frac{1}{8}}{\frac{f}{p_0} + \alpha - \frac{1}{8}} = \frac{\frac{1}{0.7128} - \frac{1}{1.6}}{\frac{950000}{30000} + 0.98 - 0.625} = 0.02429;$$

$$\theta_0 = \sqrt{1 + 4 \frac{\lambda}{\kappa} \psi_0} = \sqrt{1 + \frac{4(-0.0566)0.02429}{1.06}} = 0.9972$$

$$z_0 = \frac{2\psi_0}{\psi(e_0 + 1)} = \frac{2 \cdot 0.02429}{1.06 \cdot 1.9972} = 0.02294;$$

$$x_K = 1 - z_0 = 1-0.02294 = 0.97706;$$

$$k_1 - \kappa \epsilon_0 - 1.06 \cdot 0.9972 - 1.057;$$

$$I_{K} = \frac{e_{1}}{u_{1}} = \frac{0.00678}{0.0000074} = 916.2;$$

$$\varphi = 1.03 + \frac{1}{3} \frac{\omega}{q} = 1.03 + \frac{1}{3} \frac{1.08}{6.2} = 1.088;$$

$$\frac{\mathbf{sI}_{K}}{\varphi = -\frac{0.4692 \cdot 916.2 \cdot 98.1}{1.088 \cdot 6.2} - 6253;$$

$$l_0 = \frac{W_0}{8} = \frac{1.515}{0.4692} = 3.228 \text{ dm};$$

528

$$\frac{l_{\Delta}}{l_0} = 1 - \frac{\Delta}{\delta} = 1 - \frac{0.7128}{1.6} = 0.5545;$$

$$\Lambda_{A} = \frac{l_{A}}{l_{0}} = \frac{33.91}{3.228} = 10.51;$$

$$B = \frac{s^2 I_K^2}{f = \varphi_M} = \frac{0.4692^2 \cdot 916.2^2 \cdot 98.1}{950000 \cdot 1.08 \cdot 1.088 \cdot 6.2} = 2.617;$$

$$B_1 = \frac{B\theta}{2} - \kappa\lambda = \frac{2.617 \cdot 0.2}{2} + 0.06 = 0.3217;$$

$$B + 2B_1 = 2.617 + 2.0.3217 = 3.2604$$
;

$$a_1 = \frac{2 \times \lambda}{B + 2B_1} = \frac{2 \cdot (-0.06)}{2.617 + 2 \cdot 0.3217} = -0.0368.$$

$$b_1 = \frac{t_\Delta}{t_0} - \frac{\Delta_{t_0}}{\delta_1} (1 + a_1) = 0.5545 - 0.7128 \cdot 0.02429 \cdot 0.355 \cdot 0.9632 = 0.5486;$$

$$c_1 = \frac{k_1}{\delta_1} \Delta(1 + a_1) = 1.057 \cdot 0.355 \cdot 0.7128 \cdot 0.9632 = 0.2576;$$

$$\frac{c_1k_1}{B_1} = \frac{0.2576 \cdot 1.057}{0.3217} = 0.8464;$$

$$\hat{y} = \frac{B_1 \psi_0}{k^2} = \frac{0.3217 \cdot 0.02429}{1.057^2} = 0.006995;$$

$$\frac{B}{B_1} = \frac{2.617}{0.3217} = 8.134;$$

 $f \cdot \Delta = 950,000 \cdot 0.7128 = 677,200.$

Computing x

$$x_{m} = \frac{k_{1}}{B + 2B_{1}} + h, \tag{*}$$

where

$$h = \frac{c_1}{B + 2B_1} \frac{\phi_m - \frac{B\Theta}{2} x_m^2}{(b_1 - c_1 \int_0^x z^{\frac{B}{B_1}} dx)Z^{-\frac{B}{B_1}}}.$$

Interpolation → Ç_Y = 0.4975

Y	0.006	0.006995	0.008
0.08	0.0290	0.02826	0.0275
0.09865		0.03646	
0.100	0.0379	0.03706	0.0362

$$\log z^{-1} = 0.03646$$

$$\int_{0}^{\infty} \frac{\frac{B}{B_1}}{z} dz \text{ when } \frac{B}{B_1} = 8.0$$

7	0.006	0.006995	0.008
0.08	0.064	0.0645	0.065
0.09865		0.0747	
0.100	0.075	0.0755	0.076

 $\int_{C}^{\beta} \frac{B}{B_1}$

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

10	0.0243	
$\Psi_{m} = k_{1}x_{m} + \kappa\lambda x_{m}^{2} + \Psi_{0}$	0.3607	
(-) _{Be} x ²	0.0275	
v _m − 2 x ² x ²	0.3332	
$\frac{c_1}{B+2B_1}\cdot(\psi_m-\frac{B\theta}{2}x_m^2)$	0.02633	
$\beta = \frac{B_1}{k_1} x_m$	0.09865	
colog Z	0.03646	
B colog Z	0.2966	
z ^{- 8} 1 8	1.98	
$\int_{0}^{\mu} z^{\frac{B}{1}} d\beta$	0.07438	
b ₁ β B	0.5486	
$ \begin{pmatrix} \mathbf{c}_1 & \mathbf{\beta} & \mathbf{B}_1 \\ \mathbf{c}_1 \mathbf{k}_1 & \mathbf{\beta} & \mathbf{z}_1 \\ \mathbf{k}_1 & \mathbf{k}_2 \end{pmatrix} $	0.0629	
$b_1 - c_1 \frac{k_1}{B_1} \int_0^B z^{B_1} d\beta$	0.4857	_
$\begin{pmatrix} b_1 - c_1 & \frac{k_1}{B_1} & \int_0^{\beta} & \frac{B}{B_1} \\ & & z & d\beta \end{pmatrix} z^{-\frac{B}{B_1}}$	0.9617	-4

$$\log z^{-1} = 0.03646$$

$$\int_{0}^{\beta} \frac{\frac{B}{B_{1}}}{z \, d\beta \text{ when } \frac{B}{B_{1}} = 8.0$$

0.006	0.006995	0.008
0.064	0.0645	0.065
	0.0747	
0.075	0.0755	0.076
	0.064	0.064 0.0645

$$\int_{0}^{z} \frac{B_{1}}{z} dr \text{ when } \frac{B}{B_{1}} = 9.0$$

			1
r ·	0.006	0.006995	0.008
0.08	0.062	0.0625	0.063
0.09865		0.0723	
0.100	0.072	0.0730	0.074

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

Continued

Opera	tions	
	$\frac{c_1}{B+2B_1}.$	
	$\psi_{\mathbf{n}} = \frac{\mathbf{Be}}{2} \mathbf{x}_{\mathbf{n}}^2$	0.0274
	$(b_1 - c_1 \frac{k_1}{B_1}) \int_0^\beta \frac{\frac{B}{B_1}}{z} \frac{\frac{B}{B_1}}{B_1}$	
	$\frac{\mathtt{k}_1}{\mathtt{B}+2\mathtt{B}_1}$	0.3242
-	× _n	0.3516

$$\int_{0}^{\beta} \frac{\frac{B}{B_1}}{z^{-d\beta}} \text{ when } \frac{B}{B_1} = 8.134$$

B B 1	8.0	8.134	9.0
$ \begin{array}{c c} \hline \beta & \frac{B}{B_1} \\ \downarrow & z & d\beta \end{array} $	0.07 4 7	0.07438	0.0723

Knowing the value of x_{m} from equation (*) (p. 530), one may find the value of the maximum pressure ρ_{m}

532

...

Table for Computing the Ballistic Elements for the First Period (Calculated on a 50-cm Slide-Rule)

No.	Operations		For Maxim	um Pressure		End of Burning
		0.1972	0.3516	0.527	0.723	0.9771
1 2		0.060	0.1070	0.160	0.220	0.297
3	v in dm/sec	1233	2198	3295	4521	6110
	k ₁ x	0.2084	0.3716	0.5570	0.7642	1.033
5	(+) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-0.0023	-0.0074	-0.0167	-0.0314	-0.0573
6	70	0.0243	0.0243	0.0243	0.0243	0.0243
7		0.2304	0.3885	0.5646	0.7571	1.00
8	$(-) \begin{cases} \frac{\mathbf{B}\mathbf{\theta}}{2} \times^2 \end{cases}$	0.0102	0.0323	0.0727	0.1368	0.2498
9		0.2202	0.3562	0.4919	0.6203	0.7502
10	$a_1 = \frac{\Delta}{\Lambda} \left(\psi - \frac{B\theta}{2} \right) \times \frac{\Delta}{\Lambda}$	-0.0020	-0.0033	-0.0046	-0.0058	-0.0070
	1 2 3 4 5 6 7 8 8	1	1	No. operations 1	No. Operations 1	No. Operations 1

111 10	7
	art p

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

itial	No.	Operations	For M	Maximum Press	sure		End of Burning
ormulas olog Z from	11	colog Z	0.0198	0.04024	0.06521	0.09596	0.1397
3 - 8.134	12	B colog Z	0.1610	0.3273	0.5304	0.7805	1.1363
B B ₁ Z dβ from	13	$\frac{B}{Z}$	1.449	2.124	3.391	6.033	13.69
ble on page 32(*)	14	$ \begin{cases} \beta & \frac{B}{B_1} \\ z & dt \end{cases} $	0.05137	0.07829	0.09833	0.1120	0.1209
. 0 004004	15	о́ (b ₁ в	0.5486	0.5486	0.5486	0.5486	0 5486
0.006995	16	$ \left(- \right) \left\{ \begin{array}{cc} 0 & 0 \\ \frac{c^{1}k^{1}}{B^{1}} & \int\limits_{i}^{0} \frac{B}{B^{1}} \\ 0 & 0 \end{array} \right. $	0.0435	0.0663	0.0832	0.0948	0.102
	17	$b_1 - \frac{c_1 k_1}{B_1} \int_0^{t_1} \frac{B_1}{z} dt$	0.5051	0.4823	0.4654	0.4538	0.4463
	18	$\left(\begin{array}{ccc} \mathbf{b}_1 & = \frac{\mathbf{c}_1 \mathbf{k}_1}{\mathbf{B}_1} & \vdots & \frac{\mathbf{B}}{\mathbf{B}_1} \\ \mathbf{z} & \mathbf{z} & \mathbf{d} \vdots \end{array}\right)^{-\frac{B}{B_1}}$	0.7319	1.0244	1.5782	2.7378	6.109
A = 0.0500	19	$\Lambda_{\psi}^{+} \Delta = (10) + (18)$	0.7299	1.0211	1.5736	2.7320	6.102
Δ = 0.2530	20	$\int \frac{l_{\Delta}}{l_0} = 1 - \frac{\Delta}{\delta}$	0.5545	0.5545	0.5545	0.5545	0.554
'w- To -		$\begin{pmatrix} -1 \\ \frac{\Delta}{\delta_1} \Psi \end{pmatrix}$	0.0583	0.0983	0.1428	0.1935	0.253

Z dß from	13	z = 81	1.449	2.124	3.391	6.033	13.69
able on page 62(*)	14	$ \beta \frac{B}{B_1} \\ \int z d\beta $	0.05137	0.07829	0.09833	0.1120	0.1209
- 0.006995	15		0.5486	0.5486	0.5486	0.5486	0 5486
	16	$ (-) \begin{cases} b_1 & \beta & \frac{B}{B_1} \\ \frac{c_1 k_1}{B_1} & \int Z & d\beta \end{cases} $	0.0435	0.0663	0.0832	0.0948	0.1023
	17	$b_1 = \frac{c_1 k_1}{B_1} \int_0^\beta \frac{B_1}{z^{B_1}} d\beta$	0.5051	0.4823	0.4654	0.4538	0.4463
	18	$\left[\begin{array}{ccc} \left(\begin{array}{ccc} \mathbf{b}_1 & -\frac{\mathbf{c}_1 \mathbf{k}_1}{B_1} & \int \limits_{0}^{B} \frac{\mathbf{B}_1}{z} \mathrm{d} \mathrm{d} \mathrm{d} \mathrm{d} \\ \end{array} \right)^{-\frac{B}{B_1}} \right]$	0.7319	1.0244	1.5782	2.7378	6.1098
Δ 0.0520	19	$A_{\psi}^{+} A = (10) + (18)$	0.7299	1.0211	1.5736	2.7320	6.1028
$\frac{\Delta}{\delta_1} = 0.2530$ $\Lambda_{\Psi} = \frac{l_{\Delta}}{l_0} = -\frac{l_{\Delta}}{l_0}$	20		0.5545	0.5545	0.5545	0.5545	0.5545
- Δ/4	21	(-) \\ \frac{\Delta}{\delta_1} \psi	0.0583	0.0983	0.1428	0.1935	0.2530
•		۸	0.4962	0.4562	0.4117	0.3630	0.3015
	22	$V = (V^{+} \vee V)^{-} \vee V^{+}$	0.2337	0.5649	1.1619	2.3690	5.8013
l ₀ - 3.228	24	Ι - ΛΙ ₀	0.7544	1.828	3.751	7.647	18.73
$\psi = \frac{B\theta}{2}x^2$ $\frac{1}{\Lambda_{\psi^+}} \frac{1}{\Lambda}$	25	p, kg/cm ²	2043	2362	2116	1538	832.6

(*) This denotes the page number in the original manuscript. This possible (*) This possible (*) This possible (*) This possible (*) This denotes the page number in the original manuscript.

COMPUTING THE SECOND PERIOD

Computation of the constants of the second period:

$$\sqrt{\frac{2gf\omega}{\varphi \theta q}} = \sqrt{\frac{2 \cdot 98 \cdot 1 \cdot 950000 \cdot 1 \cdot 08}{1 \cdot 088 \cdot 0 \cdot 2 \cdot 6 \cdot 2}} = 12,220 \text{ dm/sec};$$

$$\left[1 - \frac{B\theta}{2} (1 - z_0)^2\right] = 0.7502;$$

From the first period Λ_1 + Λ_K = 6.1028, p_K = 832.6 kg. cm².

534

0.7.4.7

nitial Formulas	No.	ing the Elements of Operations			Muzzle Face
$- p_{K} \left(\frac{\Lambda_{1} + \Lambda_{K}}{\Lambda_{1} + \Lambda} \right)^{1+\theta} -$	1	Λ	7	8.5	10.51
$= \frac{\Lambda_1 + \Lambda}{0.3015 + \Lambda}$ $= 832.6 \left(\frac{6.1028}{0.3015 + \Lambda} \right)^{1.2}$	2	(+) { \(\Lambda_1 \)	0.3015	0.3015	0.3015
$-832.6 \left(\frac{0.3015 + A}{} \right)$	3	Λ ₁ + Λ	7.3015	8.8015	10.810
		$\Lambda_1 + \Lambda_K$	0.8358	0.6933	0.5645
	4	$\gamma = \frac{\Lambda_1 + \Lambda_K}{\Lambda_1 + \Lambda}$	1.9221	ī.8409	ī.7517
	5	log y	-0.0779	-0.1591	0.2483
		(-0.09348	-0.1909	-0.2979
	6	1.2 log y	1.9065	1.8091	1.702
	7	η 1.2	0.8063	0.6443	0.5036
	8	$p - p_{K} \gamma^{1.2}$	671	536	419
	p.m.	7	-0.01558	-0.03182	0.04966
v = v _{Up} ×	9	0.2 log η	1.9844	1.9682	1.9503
$\sqrt{1 - \gamma^{0.2} \left[1 - \frac{B\theta}{2} (1 - z_0)^2 \right]}$	10	η 0.2	0.9647	0.9294	0.8919
= $12,220\sqrt{1-0.7502\eta^{0.5}}$		$0.7502\eta^{0.2}$	0.7237	0.6972	0.6691
= $12,220\sqrt{1-0.7502}$	12	$1-0.7502\eta^{0.2}$	0.2763	0.3028	0.3309
		v, dm/sec	6424	6723	7030
	13 14	l. dm	22.60	27.44	33.91

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

535

The results of the calculations are presented graphically in fig. 140.

ADDITIONAL NOTES FOR THE SOLUTION OF THE PROBLEM OF INTERNAL BALLISTICS BY PROF. DROZDOV'S METHOD

In the equation for the path derived by Prof. Drozdov:

In the equation for the path derived by Prof. Broads
$$x \frac{B}{B_1} - \frac{B}{B_1}$$

$$\Lambda_{\psi} + \Lambda = a_1 \frac{\Delta}{\delta_1} \left(\psi - \frac{B\Theta}{2} x^2 \right) + (b_1 - c_1) \int_{0}^{\infty} \frac{z \, dx}{z} dx$$

the function Z_x and the quantity $\int_{-z}^{x} \frac{B_1}{z} \frac{B_1}{dx} = \frac{k_1}{B_1} \int_{-z}^{b} \frac{B_2B_1}{z}$ in the tables from the entries:

$$\gamma = \frac{B_1 \Psi_0}{k_1^2}$$
 and $\beta = \frac{B_1}{k_1} x$.

For the sake of convenience all the calculations of log z^{-1} , $\beta = B/B_1 \over Z d\beta$ are performed on another form for all values of x, i.e., for all combinations of β and γ .

 $\beta = 0.006995; \beta = 0.060; \beta_m = 0.1070; \beta = 0.160; \beta = 0.220;$

 $\beta_{K}=0.2973.$ $\beta \quad B/B_{1}$ The values of log Z^{-1} and of $\int \ Z \quad d\beta$ are written for every combination of γ and β , as shown in the form. Then the interpolation factors ζ_{γ} and ζ_{p} are determined from the following equations:

STAT

ľ

$$\zeta_{\gamma} = \frac{\gamma - \gamma_n}{\gamma_{n+1} - \gamma_n}$$
 for horizontal interpolation;

$$\zeta_{\beta} = \frac{\beta - \beta_n}{\beta_{n+1} - \beta_n}$$
 for vertical interpolation.

Example. Find log Z^{-1} , if it is known that $\gamma = 0.006995$; $\beta = 0.2973$. These values of γ and β are not found in the table of the logarithms of function Z-1, and we take the nearest values, i.e.:

$$\gamma = 0.006$$
 and $\gamma = 0.008$;
 $\beta = 0.28$ and $\beta = 0.300$,

and we find the values of $\log Z^{-1}$ for these combinations. We then calculate $\zeta_{\mathfrak{p}}$ and ζ_{β}

ς_β = 0.865

B T	0.006	0.006995	0.008
0.28	0.1309	0.1295	0.1280
0.2973		0.1397	
0.300	0.1428	0.1413	0.1398

$$\zeta_{\beta} = \frac{0.006995 - 0.006}{0.008 - 0.006} = \frac{0.4975}{0.300 - 0.28} = 0.865$$

We find:

$$\log z_{(1)}^{-1} = 0.1309 - 0.4975(0.1309 - 0.1280) = 0.1295;$$

$$\log z_{(2)}^{-1} = 0.1428 - 0.4975(0.1428 - 0.1398) = 0.1413.$$

Finally we obtain:

$$\log Z^{-1} = 0.1295 + 0.865 (0.1413 - 0.1295) = 0.1397.$$

100	→ ₹ _γ -	0.4975	.0195	· (0.0204-0.0192) = 0.0198
1		0.4975		P
- T	0.006			E = 0.4975
100		0.006995	0.008	$\xi_{ij} = \frac{0.1070 - 0.100}{0.120 - 0.100} = 0.350$
	0.0379	0.03706	0.0362	$\log Z_{(1)}^{-1} = 0.0379 - 0.4975$
1070	-	0.04024	-	· (0.0379-0.0362) = 0.03706
	0.0471	0.04616	0.0452	$\log Z_{(2)}^{-1} = 0.0471 - 0.4975$
		landaria de la companya de la compan	1	(0.0471-0.0452) = 0.04616
				$\log z^{-1} = 0.03706 + 0.350$
				· (0.04616-0.03706) - 0.0409
	→ f 4 -	0.4975		
Y	0.006	0.006995	0,008	
160	0.0663	0.06521	0.0641	$\log z^{-1} = 0.06521$
		Annual of the second se	L	
	→ £ 2 -	0.4975		
T	0.006	0.006995	0.008	
220	0.0972	0.09596	0.0947	$\log z^{-1} = 0.09596$
		≛ <u></u>	-	· •
	→ £4.	• 0.4975		,
Y	0,006	0.006995	0.008	
28	0.1309	0.1295	0.1280	$\log z^{-1} = 0.1397$
		·		
2973	-	0.1397	-	
	120 Y 160 Y	120 0.0471 → ξ _γ - γ 0.006 160 0.0663 → ξ _γ - γ 0.006 220 0.0972 → ξ _γ -	120 0.0471 0.04616	120 0.0471 0.04616 0.0452

DETERMINATION OF $\int\limits_{0}^{\mathfrak{P}}\frac{B/B_{1}}{z}d\beta \text{ FROM THE TABLES}$ (APPENDIX 3)

(APPENDIX 3) $\begin{array}{c} x \\ z \\ \end{array} \\ \text{Prof. N.F. Drozdov recommends to calculate the quantity} \\ \begin{array}{c} z \\ z \\ \end{array} \\ \begin{array}{c} z \\ \end{array} \\ \text{dx} \\ \begin{array}{c} z \\ \end{array} \\ \text{by the trapezoid rule.} \\ \text{In order to simplify the calculations,} \\ \begin{array}{c} z \\ \end{array} \\ \text{dx} \\ \end{array} \\ \text{may be found from the tables of the function:} \\ \end{array}$

$$\int_{0}^{\beta} \frac{\frac{B}{B_{1}}}{z^{-d\beta}}.$$

where

$$\beta = \frac{B_1}{k_1} x,$$

whence

$$x = \frac{\beta k_1}{B_1}$$

Consequently

$$\int_{0}^{x} \frac{\frac{B}{B_{1}}}{z^{dx}} dx - \frac{k_{1}}{B_{1}} \int_{0}^{\beta} \frac{\frac{B}{B_{1}}}{z^{d\beta}}.$$

The tables of the function $\int_{0}^{\beta} \frac{B/B_{1}}{z} d\beta \text{ are computed for } B/B_{1} =$

- 5, 6, 7, 8, 9 and 10.

In our problem the ratio $B_1 = 8.134$, i.e., it is intermediate between B/B_1 = 8.0 and B/B_1 = 9.0. This requires an additional interpolation. Therefore the determination of $\begin{pmatrix} B & B_1^{-1} \\ Z & dp \end{pmatrix}$ when $B / B_1 = 0$ = 8.134 is reduced to the calculation of $\int_{-\infty}^{\infty} \frac{B^{-B}}{z^{-B}} dz^{B}$ from the tables, first when B B_1 = 8.0, then when B B_1 = 9.0. Interpolating these values of the integrals along B B, we finally obtain $Z^{B-B}l_{d}$; for

B B₁ = 8.134 and the given values of β .

It should be remembered when performing these calculations that the interpolation of the intermediate integrals must be performed by the same procedure as that of the function $\log Z^{-1}$.

B	B B T T T T T T T T	nen <mark>B</mark> ■	8. 0				ERMINING \int_{0}^{B} when $\frac{B}{B_1}$	B/B ₁ Z d= FR = 9.0	ом тне т	EXPLIES $\int_{0}^{p} \frac{B}{B_{1}} ds$	when $\frac{B}{B_1}$	≅ 8
	→ 5γ	- 0 .497 5				· ¢	Y = 0.4975	· ·		→ \$ E	<u>e</u> = 0.134	
	Ţ.	0.006	0.006995	800,0			0.006	0.006995	800.0	$\frac{B}{B_1}$	8.0	8.13
	β 0.060	0.051	0.0515	0.052		0.060	0.050	0.0505	0.057	0.060	0.0515	0.05
ζ _β = 0.350	ο.100 ο.1070 ο.120	0.006 0.006 0.075	— Т	0.008 0.076 0.085	ς _μ = 0.350	0.100 0.1070 0.120	0.006	0.00 69 95 0.073 0.07597 0.0815	0.008	e B/B ₁	$\frac{B}{B_1} = 0.13$	8,13
	→ 5 _g = 0.4975				i		5 _Y = 0.49	775		$\zeta_{B} = 0.134$ $\overline{B_{1}}$		
	8	0,006	0.006995	0.006		r r	0.006	0.006995	0,008	B B1	8.0	8.13
	0.160	0.098	0 .099	0,100		0.160	0.0930	0.0940	0.095	0.160	0.099	0.09
	→ 5 _y = 0.4975					→ 5 ₁ = 0.4975				→ ς _B = 0.134		
	β	0,006	0,006995	0.008		B	0.006	0.006995	0.008	3 B	8.0	8.1
	0.220	0.112	0.1130	0.114		0.220	0.104	0.1055	0.107	0.220	0,113	0.1

	ang akun mengan mengan kengan mengan kengan mengan kengan mengan kengan mengan kengan kengan kengan kengan ken								a		
	,ζ [*] =	0.4975		ζ _γ = 0.4975				$\zeta_{\frac{B}{B_1}} = 0.134$			
	r ·	0.00699	0,008		r	0.006	0.006995	0.008	B	8.0	8.13
	0.160 0	0.099	0.100		0.160	0.09 30	0.0940	o .09 5	0.160	0.099	0.0
and the state of t	, ς ^λ =	0.4975				ς _γ = 5.4	9 75			ς _Β = ο.	.134
	p o	0.0069	0.008		r	0.006	0.006995	0.008	, B ₁	8.0	8.13
	0.220 0	0.112	0.114		n.220	ാ.104	0.1055	0.107	0.220	0.113	0.11
	→ς ₈ •	0.4975		→ Ç _y = 0.4975				$\longrightarrow \zeta_{\underline{B}} = 0.134$			
	<u> </u>	0.0069		1	g r	0.006	0.006995	0.008	$\frac{B}{B_1}$	R.O	8.134
ζ _β = 0.865	0.2973	0.1205 0.1222 0.121 0.1225	0.122	ζ = 0.865	0.28 0.2973 0.300	0.110	0.1115 0.1124 0.1125	0.113	0.2973	0.1222	0.120
The right problem	1				<u> </u>			L		<u> </u>	<u> </u>
radio et arjadenado y razas											
- Items							542				

						·			
							-	= 0.07829 when: = = 0.1070	:
	ζ _γ = 0.	497 5		→ς 1	$\frac{8}{1} = 0.134$	4			
0.008	y 0.006	0.006995	0.008	В	8.0	8.134	3.0	28.13/dp	
0.100	0.160 0.0930	0.0940	o .09 5	0.160	0.099	0.09833	0.0940	0 = 0.09833 whenβ	
	→ ς _γ = ο.	49 75		→ \$	B = 0.13	4		= 0.160	
0.008	B 0.006	0.006995	800.0	B B 1	8.0	8.134	٥.0	 ∫ z ^{8.134} dβ ■	
0.114	0.220 0.104	0.1055	0.107	0.220	0,113	0.1120	0.10%	0 = 0.1120 when	
	→ ς _γ = ο,	497 5		→ 5	$\frac{B}{B_1} = 0.1$	34		- 0,220	
-	β 0.000	0.006995	0.008	3 B1	4 . 0	8.134	9.0	c z8.134	
ξ = 0.865	0.28 0.110 0.2973 0.300 0.11	0.1124	0.113	0.2973	0.1222	0,1209	0.1424		
P	D.500 0.11	542						= 0.1209 vh	

CHAPTER 3 - SOLUTION OF THE PROBLEMS OF INTERIOR BALLISTICS FOR THE SIMPLEST CASES

1. SOLUTION OF THE PROBLEM FOR THE CASE OF INSTANTANEOUS BURNING OF THE POWDER

The colloidal powders now used burn gradually, in parallel layers, and when the web thickness is properly selected, permit the regulation of the flow of gases during burning, so that the maximum pressure in the bore p_{m} would not exceed a given value (usually of the order of 2500-3500 kg $\rm cm^2$).

The case of the instantaneous burning of the charge is anamalous and generally does not occur in practice. It can be achieved in practice only under special conditions, such as, for example, when burning a charge of dry pyroxylin in powder form, or of fine porous powder loaded very densely.

In that case, if the loading density were normal ($\Delta=0.50\text{-}0.75$), the pressure prior to the projectile's displacement would reach a maximum value of the order of several tens of thousands of atmospheres (20,000 to 40,000 kg·cm²). The present ultimate strength of gun barrels is such that the walls of the barrel would burst when subjected to such pressures.

Nevertheless, the case of the instantaneous burning of a charge is very interesting; its examination has an important meaning when compared with gradual burning of powder because in so doing the importance of slow burning and of the shape and dimensions of the powder grains become evident. Moreover, the pressure curve p, [in the case of instantaneous burning becomes a sort of a "guide" for the curves depicting slow burning. These p, [curves arrange themselves with a certain regularity with respect to the instantaneous

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

burning curves.

The analytical solution of the problem is very simple in the case of instantaneous burning, because one of the four variables entering into the fundamental equation of pyrodynamics is transformed into a constant $(\psi=1)$.

Let the gun and the loading conditions be characterized as follows:

The chamber capacity is W_0 , the cross sectional area of the bore, including the rifling is s. the path of the projectile is l_{Δ} , the weight of the charge is ω , and the weight of the projectile is q. The energy of the powder is f, and ω is the covolume; the adiabatic index is $k=1+\Theta$, and the secondary work done is taken into account by the coefficient $\phi=a+b-\frac{\omega}{q}$.

When $\psi = 1$, the fundamental equation of pyrodynamics is:

$$ps(l_1 + l) - f\omega - \frac{\theta}{2} \phi m v^2; \qquad (41)$$

the equation of the projectile motion is:

$$psdl = \varphi m v dv, \tag{42}$$

where $l_1 = (W_0 - \alpha \omega)/s$ is the reduced length of the chamber at the end of burning.

When the powder in the chamber is burned instantaneously the maximum pressure is determined by means of the well known formula:

$$p_1 = \frac{f\Delta}{1 - \alpha\Delta} = \frac{f\omega}{W_0 - \alpha\omega} = \frac{f\omega}{s l_1}$$
 (43)

The projectile will be set in motion when the following initial conditions obtain:

$$(-0; v-0; p-p_1)$$

Eliminating pressure p from equations (41) and (42), we obtain ${\bf v}$ as a function of .:

$$\frac{\mathrm{d}l}{l_1 + l} = \frac{\varphi_{\mathrm{m}} v^2}{f_{\mathrm{w}} - \frac{\theta}{2} \varphi_{\mathrm{m}} v^2} = -\frac{1}{\theta} \frac{\mathrm{d} \frac{\theta \varphi_{\mathrm{m}} v^2}{2}}{f_{\mathrm{w}} - \frac{\theta}{2} \varphi_{\mathrm{m}} v^2}.$$

We shall integrate this differential equation with the variables separable: $\qquad \qquad -\frac{1}{2}$

$$\frac{l_1 + l}{l_1} = \left(\frac{f\omega - \frac{\theta \varphi m v^2}{2}}{f\omega}\right) = \left(1 - \frac{v^2}{v_{np}^2}\right)^{-\frac{1}{\theta}}, \tag{44}$$

whence

$$\mathbf{v}^2 - \mathbf{v}_{\mathsf{np}}^2 \left[1 - \left(\frac{l_1}{l_1 + l} \right)^{\boldsymbol{\theta}} \right],$$

where $v_{\Pi p}^{2}$ = 2gfw/ $\phi\theta q$ is the limiting velocity of the projectile:

$$\mathbf{v} = \mathbf{v}_{\mathsf{np}} \sqrt{1 - \left(\frac{l_1}{l_1 + l}\right)^{\boldsymbol{\theta}}}.$$
 (45)

This formula expresses the velocity ${\bf v}$ of the projectile as a function of its path l; the velocity increases when ${\mathbb R}$ increases.

In order to determine the dependence of p on l from (44) we determine:

$$f\omega - \frac{\theta}{2}\phi mv^2 - f\omega \left(\frac{t_1}{t_1 + t}\right)\theta$$

and include it into (41):

$$ps(l_1 + l) = f\omega\left(\frac{l_1}{l_1 + l}\right)^{\Theta}.$$

Whence

$$p = \frac{t \omega}{s l_1} \left(\frac{l_1}{l_1 + l} \right)^{1 + \theta} = p_1 \left(\frac{l_1}{l_1 + l} \right)^{1 + \theta}. \tag{46}$$

Bu t

$$\frac{l_1}{l_1 + l} = \frac{w_1}{w_1 + sl} = \frac{w_0 - \alpha\omega}{w_0 - \alpha\omega + sl}$$

is the ratio between the free volumes in the initial air space measured at the start of motion and at the given instant. Consequently, formula (46) is the equation of the adiabatic curve starting with the motion of the projectile under the pressure $p_1 = f\Delta/(1-\alpha\Delta)$.

The change in temperature of the gases doing the work is expressed by the following relationship for the adiabatic process:

$$\frac{\mathbf{T}}{\mathbf{T}_1} = \left(\frac{t_1}{t_1 + t}\right)^{\Theta} +$$

Consequently,

$$\mathbf{v} = \mathbf{v}_{\mathsf{n}_{\mathsf{p}}} \sqrt{1 - \frac{\mathsf{T}}{\mathsf{T}_{\mathsf{1}}}}. \tag{47}$$

If we divide the numerator and denominator in parentheses in formulas (45) and (47) by \mathbb{T}_1 , and designate \mathbb{T}_1 by y, we will get:

$$v = v_{np} \sqrt{1 - \frac{1}{(1 + y)^{\theta}}};$$
 (48)

$$p = p_1 \frac{1}{(1+y)^{1+\theta}}.$$
 (49)

The quantity y is the ratio of the relative projectile path to the reduced length of the free volume in the chamber at the end of burning, and is called the "number of free volumes of gas

expansion."

Equations (48) and (49) show that under the given loading conditions $(q, \omega, f, \alpha, \Psi_0, s)$ the pressure p and the velocity v depend only upon the number y of free volumes of expansion. The greater y, the higher is the projectile velocity and the smaller the pressure; the greater the reduced length i_1 of the free space in the chamber, the greater will be the gas pressure for a given projectile path. Consequently, the drop in pressure as a function of the projectile path will be slower in a large chamber than in a small one.

It can be proved that the velocity of the projectile computed by means of formula (48) for the case of instantaneous burning will be always greater than the true velocity for the case of slow burning, under the same charging conditions.

Indeed, the maximum work done by a powder charge ω of energy f in setting a projectile of mass m in motion, is determined by the expression $f\omega$ 0. This maximum work will be the same for both modes of burning (instantaneous and gradual) and is expressed by the areas under the curves sp as a function of f, when f varies between 0 and infinity. Consequently, in both cases the areas will be equal to:

$$\mathbf{s} \quad \int_{0}^{\infty} \mathbf{p} d\mathbf{l} = \frac{\mathbf{f} \omega}{\mathbf{\theta}}.$$

In the case of instantaneous burning the curve p, [starts from the maximum pressure p_1 , then varies according to the adiabatic law, decreasing continuously (fig. 141, curve I). When burning is gradual, the curve II of the pressure p, [rises

gradually from p_0 , losing a portion of area A; and inasmuch as the total area under the curve p, l in the second case, limited by $l = \infty$, must be the same as the first, curve II must necessarily cross curve I during burning of the powder when the pressure drops, and then continues to rise. The excess area B between the curves, when $l = \infty$ is the limit, must be equal to A. But inasmuch as the actual bore has a finite projectile path l_{α} , the portion of the area B on this finite length is always smaller than A, and consequently, for a given path length, the work done by the gases and the velocity of the projectile will be always smaller in the case of gradual burning than in the case of instantaneous burning.

Fig. 141 - Curves p, l and v, l Depicting the Instantaneous Burning of Powder.

The actual initial (muzzle) velocity of a projectile of a medium-caliber gun, measured experimentally, represents 80-90% of the velocity computed by formula (45).

Inasmuch as the work represented by the area under the curve p, [is larger in the case of instantaneous burning than in gradual burning, especially at the start of the motion, the corresponding velocity curve rises more steeply at first. Thereafter, because of

the addition of the area B, the velocity increase becomes greater in the case of gradual burning, and curve II gradually begins to approach curve I (see fig. 141), tending at $l=\infty$ to the common limit $v_{\rm fip}=\sqrt{2f\omega_{\rm m}}$.

 SOLUTION OF THE PROBLEM FOR A POWDER WITH A CONSTANT BURNING AREA, WHEN THE FORCING PRESSURE IS ABSENT.

The solution of the problem of internal ballistics for degressive powders in the presence of forcing pressure results in equations which do not give an immediate relation between v, p, and /, and, therefore, exclude the possibility of an analytical examination of the basic relations. In order to obtain this possibility, it is necessary to introduce certain simplifications into the initial data, namely:

1) Consider a powder having a constant burning area

$$\gamma = 1; \quad \lambda = 0; \quad \Psi = \gamma.$$

2) Consider the forcing pressure to be negligible; assume that the projectile is set in motion when the pressure equals the pressure of the igniter gases, and that the burning of the charge begins when the projectile is set in motion:

$$p_0 - p_B$$
: $\psi_0 - 0$.

3) Assume that $\alpha = 1/\delta$.

When these assumptions are made, the solution of the fundamental system of equations is greatly simplified.

The first assumption corresponds to the burning of long tubular

STAT

powder; the second corresponds to projectiles with pre-cut bands; the third assumption simplifies the solution and permits determining the qualitative effect of the loading conditions.

Under the assumptions made, the preliminary period does not exist. The motion of the projectile begins under the following conditions:

$$p_0 - p_B$$
: $\psi_0 - 0$: $z_0 - 0$: (-0) : $v - 0$.

Inasmuch as $\alpha = 1 \delta$,

$$l_{\Delta} = l_{+} = l_{1} = l_{0}(1 - \alpha \Delta)$$
.

The law governing burning of powder, $\psi = f(z)$ will be expressed by the formula:

$$\psi = z = x. \tag{50}$$

and ψ may be taken as the independent variable. Then the equation of the projectile velocity will take on the form:

$$\mathbf{v} = \frac{\mathbf{s}\mathbf{I}_{\mathbf{K}}}{\mathbf{\varphi}\mathbf{m}}\mathbf{\psi}.\tag{51}$$

The fundamental equation of pyrodynamics is:

$$ps(l_1 + l) = f\omega \psi - \frac{\theta}{2} \phi m v^2 = f\omega \left(\psi - \frac{B\theta}{2} \psi^2 \right).$$

The equation of the elementary work done is:

$$psdt = \varphi_m v dv = \frac{s^2 I_{\underline{K}}^2}{\varphi_m} \psi d\psi;$$

the differential equation of the projectile path will be:

$$\frac{\mathrm{d}!}{!_1 + !} = \frac{\mathrm{Bd}\psi}{1 - \frac{\mathrm{B}\theta}{2}\psi} = -\frac{2}{\theta} = \frac{-\frac{\mathrm{B}\theta}{2}\mathrm{d}\psi}{1 - \frac{\mathrm{B}\theta}{2}\psi}.$$

Integrating, we get:

$$1 \cdot \frac{1}{t_1} - \left(1 - \frac{\mathbf{B}\boldsymbol{\theta}}{2}\boldsymbol{\Upsilon}\right)^{-\frac{2}{\boldsymbol{\theta}}}.$$
 (52)

whence,

$$\left(1 - i_1 \left[\frac{1}{\left(1 - \frac{B\theta}{2} + \right)^{\frac{2}{\theta}}} - 1 \right]. \tag{53}$$

Designating, as in the case of instantaneous burning,

$$\frac{l}{l_1} - y,$$

we obtain from equation (52):

$$\Psi = \frac{2}{B\theta} \left[1 - \frac{1}{(1+y)^{\frac{\theta}{2}}} \right], \tag{54}$$

and inasmuch as

$$v = \frac{\mathbf{s} \mathbf{I}_{\mathbf{K}}}{\varphi_{\mathbf{m}}} \psi,$$

$$\mathbf{v} = \frac{2f\omega}{\mathbf{H}\mathbf{s}\mathbf{I}_{\mathbf{K}}} \left[1 - \frac{1}{(1 - \mathbf{y})^{\frac{\mathbf{\theta}}{2}}} \right]. \tag{55}$$

These equations give the direct dependence of v and ψ on the path of the projectile l, or $y=\frac{1}{2}l_1$.

Let us write the pressure equation, taking into account the igniter pressure:

$$\mathbf{p}_{\mathbf{B}} = \frac{\mathbf{f}_{\mathbf{B}^{\omega}\mathbf{B}}}{\mathbf{w}_{\mathbf{0}} - \frac{\omega}{\delta}} \approx \frac{\mathbf{f}_{\mathbf{B}^{\omega}\mathbf{B}}}{\mathbf{w}_{\mathbf{0}} - \alpha \omega} = \frac{\mathbf{f}_{\mathbf{B}^{\Delta}\mathbf{B}}}{\mathbf{s}\,t_{1}};$$

$$p = \frac{f_B \omega_B + f \omega_\Psi - \frac{\theta}{2} \varphi_{m} v^2}{s(l_1 + l_2)}.$$
 (56)

Let us designate the relative energy of the igniter gases by:

$$\frac{f_B u_B}{f u} - \chi_B.$$

Carrying $f \omega$ outside the parentheses in (56) and replacing v according to (52), we obtain:

$$p = \frac{f = \left[\chi_{B} + \psi \left(1 - \frac{B\theta}{2} \psi \right) \right]}{s!_{1}(1 + y)} = p_{1} - \frac{\chi_{B}}{1 + y} + p_{1} - \frac{\psi}{(1 + y)},$$
(57)

where $p_1 = f\omega \cdot sl_1 = f\Delta \cdot (1 - \omega \Delta)$ is the maximum pressure developed by the burning of the entire charge within the space of the chamber when the density of the loading is Δ :

$$1 - \frac{\mathbf{B}\mathbf{\theta}}{2} \Psi = \frac{1}{(1+y)^{\frac{\mathbf{\theta}}{2}}}$$
 on the basis of equation (52).

Substituting ψ by its expression in (54), we obtain the pressure p as a function of the path of the projectile:

$$p = p_1 \frac{\chi_B}{1+y} + p_1 \frac{2}{B\theta} \left[1 - \frac{1}{(1+y)^{\frac{2}{2}}} \right] \frac{1}{(1+y)^{\frac{1+\frac{2}{2}}{2}}}.$$
 (58)

The quantity

$$p_1 \frac{x_B}{1+y} = \frac{f_{B^{\omega}B}}{sl_1(1+y)} = \frac{p_{B,0}}{1+y} = p_B$$

represents the pressure developed by the igniter gases in the variable space of the bore. At the start of motion y = 0, p_B = p_B,0; as the projectile moves forward and y increases, p_B decreases (1 + y) times, and may be neglected when compared with the pressure developed by the

gases of the powder charge.

At the beginning of motion, y = 0, the second term is equal to zero (equation 58); $p = p_{B,0}$. As the projectile moves and y increases, the factor in the brackets increases, while the factor $(1+\theta/2)$ decreases.

The maximum pressure \boldsymbol{p}_{m} will occur at some value $\boldsymbol{y}_{m}.$ Let us designate:

$$F(y) = \left[1 - \frac{1}{(1+y)^{\frac{\theta}{2}}} \frac{1}{(1+y)^{1+\frac{\theta}{2}}} - (1+y)^{-\left(1+\frac{\theta}{2}\right)} - (1+y)^{-(1+\theta)}\right].$$

Differentiating F(y) with respect to y, and equating the derivative to zero, we find:

$$1 + y_m = \left(\frac{1+\theta}{1+\frac{\theta}{2}}\right)^{\frac{2}{\theta}} = F_1(\theta) = \text{const.}$$
 (59)

when
$$\theta = 0.2$$
; $F_1(\theta) = 2.387$ whence,

$$l_{\mathbf{n}} = l_{1} / \mathbf{F}_{1}(\mathbf{\theta}) - 1 / \mathbf{F}_{0}(1 - \alpha \Delta) / \mathbf{F}_{1}(\mathbf{\theta}) - 1 .$$
 (60)

Substituting (59) in (58), (54) and (55), we obtain the expressions for all the elements of motion at the instant $p = p_{max}$:

$$p_{m} = \frac{p_{1}}{B} - \frac{2}{\theta} \left[\frac{\theta}{2(1+\theta)} \right] \left(\frac{1+\frac{\theta}{2}}{1+\theta} \right)^{\frac{2+\theta}{\theta}} =$$

$$=\frac{p_1}{B} \frac{1}{1+e} \left(\frac{1+\frac{e}{2}}{1+e}\right)^{\frac{2+e}{e}} = \frac{p_1}{B} F_2(e). \tag{61}$$

When $\theta = 0.20$, $F_2(\theta) = 0.3200$.

$$\psi_{\mathbf{m}} = \frac{1}{B(1+\theta)}; \tag{62}$$

$$v_{m} = \frac{f\omega}{sI_{K}} \frac{1}{1+\theta}.$$
 (63)

Equations (60), (61), (62) and (63) give the direct relationship between the elements of motion and several characteristics and parameters at the instant of maximum pressure. Thus the path $l_{\rm m}$ is directly proportional to the reduced length of the chamber l_0 and to $1-\alpha\Delta$. When Δ increases, $l_{\rm m}$ decreases. The pressure $p_{\rm m}$ is directly proportional to the pressure p_1 of instantaneous burning, determined by Nobel's equation; $p_{\rm m}$ is inversely proportional to Prof. Drozdov's parameter B. $\psi_{\rm m}$ is also inversely proportional to the parameter B.

When $\theta = 0.2$:

$$p_m = 0.320 \frac{p_1}{B}, \frac{l_m}{l_0} = \Lambda_m = 1.387(1 - \alpha \Delta).$$

556

The equations are very simple and accessible to analysis.

At the end of burning, $\psi = 1$.

$$v_{\underline{K}} = \frac{sI_{\underline{K}}}{\varphi_{\underline{m}}}; \tag{64}$$

$$1 + y_{K} = \frac{1}{\left(1 - \frac{B\Theta}{2}\right)^{\frac{2}{\Theta}}}$$
 (65)

$$p_{K} = \frac{p_{1}}{(1 + y_{K})^{1 + \frac{\theta}{2}}} - p_{1} \left(1 - \frac{B\theta}{2}\right)^{\frac{2 + \theta}{\theta}}.$$
 (66)

In the second period we find the following relationships:

$$p = p_{\mathbf{K}} \left(\frac{l_1 + l_{\mathbf{K}}}{l_1 + l} \right)^{1 + \Theta} = p_{\mathbf{K}} \left(\frac{1 + y_{\mathbf{K}}}{1 + y} \right)^{1 + \Theta}.$$

Substituting for p_{K} and 1 + y_{K} their expressions from (65) and (66), we find:

$$p = \frac{p_1}{\left(1 - \frac{B\theta}{2}\right)} \frac{1}{(1 + y)^{1+\theta}}.$$
 (67)

This is the equation of an adiabatic curve with initial ordinate $p_1/(1-\frac{B\theta}{2})$; the latter increases with B, i.e., with the thickness

of the powder.

From the general equation for the projectile velocity, we have:

$$v - v_{n_p} \sqrt{1 - \left(\frac{1 + y_K}{1 + y}\right)^{\Theta} \left(1 - \frac{BA}{2}\right)} - v_{n_p} \sqrt{1 - \left(\frac{1}{1 - \frac{BB}{2}}\right) \frac{1}{(1 + y)^{\Theta}}}$$
 (68)

The Temperature of Powder Gases.

In the case of instantaneous burning we had:

$$\frac{T}{T_1} = \left(\frac{l_1}{l_1 + l}\right)^{\theta} = \frac{1}{(1 + y)^{\theta}}.$$
 (69)

When burning is gradual:

$$\frac{T}{T_1} = 1 - \frac{1}{\Psi} \frac{v^2}{v_{np}^2} = 1 - \frac{v}{\Psi} \frac{v}{v_{np}^2}.$$

Substituting the values of ψ , v from (51) and (55) and $v_{\Pi p}^2$ = $2f\omega/\phi\theta m$, we get:

$$\frac{T}{T_1} = 1 - \frac{sI_K}{\varphi m} \frac{\varphi \theta_m}{2f\omega} \frac{2f\omega}{\theta sI_K} \left[1 - \frac{1}{(1+y)^{\frac{2}{2}}} \right]$$

558

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

or

$$\frac{T}{T_1} = \frac{1}{(1+y)^{\frac{\theta}{2}}}.$$
 (70)

A comparison of (69) with (70) will show that in the expression for relative gas temperature for gradual burning of a powder with a constant area, the value of the exponent is one-half of that of instantaneous burning. Consequently, the temperature drop in the case of gradual burning proceeds almost at half the rate of instantaneous burning, because the work done in traversing a given path is considerably smaller.

The expression for the temperature T T $_{1}$ may be written as a function of ψ only:

$$\frac{T}{T_1} = 1 - \frac{v_{K}^2 \psi^2}{\psi v_{\Pi_p}^2} = 1 - \frac{v_{K}^2}{v_{\Pi_p}^2} \psi = 1 - \frac{Be}{2} \psi, \tag{71}$$

i.e., the temperature of the gases inside the barrel during burning of powder with constant area is a linear decreasing function of $\psi\,.$

At the end of burning $(\psi = 1)$

$$\frac{T_{K}}{T_{1}}=1-\frac{B\Theta}{2}.$$

The thicker the powder, the larger is B, and the lower is the temperature $\boldsymbol{T}_{\underline{\boldsymbol{K}}}.$

In the second period, from expression (68):

Sanitized Conv Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

$$\frac{T}{T_1} - 1 - \frac{v^2}{v_{np}^2} - \frac{1}{1 - \frac{B\theta}{2}} \frac{1}{(1 + y)^{\theta}}$$
 (72)

or

$$\frac{T}{T_1} = \left(1 - \frac{B\theta}{2}\right) \left(\frac{1 + y_K}{1 + y}\right)^{\Theta} = \frac{T_K}{T_1} \cdot \frac{T}{T_K}.$$
 (73)

These relatively simple equations enable one to perform an analysis of the variation of the elements of a shot (p, v, ψ, T) as a function of y - the relative path of the projectile - and to establish a series of relations and properties of the variation curves of these elements.

CHAPTER 4 - ANALYSIS OF THE BASIC RELATIONS FOR THE SIMPLEST CASE

$$\left(x-1, \psi_0 - 0, \alpha - \frac{1}{\delta}\right)$$

1. ANALYSIS OF THE FUNDAMENTAL CURVES p, v, T, \u03c4.

An analysis of the equations obtained, and of the curves represented by them, shows that they represent certain simple combinations of two types of curves (fig. 142):

- a) Two polytropic curves with exponents $k = 1 + \theta$ and $k' = 1 + \theta/2$, starting from the point (1, 0), first dropping steeply and then more gradually;
- b) Two curves analogous to the polytropic curves but with exponents smaller than unity (k - l = θ and k' - l = $\theta/2$) also starting from point (1, 0) and descending much more slowly with the convex side directed downward.

561

Fig. 142 - Basic Types of Curves for the Simplest Case. Indeed, in the case of instantaneous burning:

$$\frac{T}{T_1} = \frac{1}{(1+y)^{0}};$$
 (69)

in the case of gradual burning:

$$\frac{T}{T_1} = \frac{1}{(1+y)^{\frac{\theta}{2}}}$$
 (70)

$$\psi = \frac{2}{B\Theta} \left[1 - \frac{1}{(1+y)^{\frac{\Theta}{2}}} \right] = \frac{2}{B\Theta} \left[1 - \frac{T}{T_1} \right] : \tag{54'}$$

$$\frac{\mathbf{v}}{\mathbf{v}_{\mathsf{np}}} = \sqrt{\frac{\mathsf{Be}}{2}} \ \psi = \sqrt{\frac{2}{\mathsf{Be}}} \left[1 - \frac{1}{(1+y)^{\frac{\mathsf{e}}{2}}} \right] =$$

$$-\sqrt{\frac{2}{B\theta}}\left[1-\frac{T}{T_1}\right]; (55')$$

$$\frac{p}{p_1} = \frac{\psi}{(1+y)^{1+\frac{\theta}{2}}};$$
 (57')

$$\frac{p_{K}}{p_{1}} = \frac{1}{(1 + y_{K})^{1 + \frac{\theta}{2}}}.$$
 (66')

In the second period:

$$\frac{p}{p_1} = \frac{1}{\left(1 - \frac{B\theta}{2}\right)} \frac{1}{(1 + y)^{1+\theta}};$$
(67')

$$\frac{T}{T_1} = \frac{1}{1 - \frac{Be}{2}} \frac{1}{(1 + y)^6};$$
 (72)

$$\frac{\mathbf{v}}{\mathbf{v}_{\mathsf{np}}} = \sqrt{1 - \frac{\mathsf{T}}{\mathsf{T}_1}}.$$

Each of these equations contains one of the polytropics indicated above in the form of a variable component.

The curves $\frac{T}{T_1}$, y for instantaneous and gradual burning are expressed directly in the first period by curves with exponents θ and $\theta/2$, according to equations (69) and (70).

The ordinates of the curves $\psi(54')$ and v (55') are obtained from the ordinates of the curves $\Delta T/T_1 = 1 - T/T_1$ (fig. 142), measured from the horizontal 1-1, multiplied by the coefficients 2/B0 and 2f ω /Ig0s respectively, and laid off upwards along the abscissa from the origin

of coordinates to $y_{\overline{K}}$ which corresponds to the end of burning (fig. 143). The curves ψ , y and $\frac{v}{v_{\Pi p}}$, y are inverted with respect to the curves $\frac{\Delta T}{T_1}$, y.

The ordinates of the relative pressure curve (57') are obtained by multiplying the ordinates of the ψ curve (54') by those of the auxiliary polytropic curve y=1,(1+y). This same polytropic curve is the geometrical locus of the pressure p_{K}/p_{1} at the end of burning, expressed as a function of y (66).

Fig. 143 - Curves wand v/vnp in the First Period.

It is seen from equation (66) that when B (powder thickness) increases, p_{K} decreases, while y_{K} increases _according to 65)_7.

The curves of the second period elements start to the right of the abscissa y_K ; the curve T/T_1 represents the curve $T/T_1 = 1/(1 + y)^8$ of instantaneous burning, multiplied by the quantity 1/(1 - Be/2) > 1, which means that the gradual burning curve is higher than the instantaneous burning curve, the difference in height increasing with the parameter B, i.e., the difference being greater for thicker powders.

From equation (60) it is seen that the maximum pressure is independent of the parameter B, of the thickness of the powder, and

564

of the weight of the projectile. For a given Δ , the length $l_{\underline{n}}$ is proportional to the length $l_{\underline{0}}$ of the chamber; when Δ increases the maximum is shifted toward the start of motion.

The real maximum pressure [equation (61)]7 is proportional to the maximum pressure in the case of instantaneous burning, $p_1 = f\Delta/(1-\alpha\Delta)$, and is inversely proportional to the parameter B, or to the powder density squared. When the energy of the powder, entering in the expressions for the pressure p_1 and the denominator B, is changed, the maximum pressure varies proportionally to the energy of the powder squared, and to the weight of the projectile, because

$$B = \frac{s^2 I_{K}^2 g}{f_{WMQ}},$$

and

$$p_m = \frac{p_1}{B} F_2(\theta) = F_2(\theta) \frac{f \Delta}{1 - \alpha \Delta} \frac{f \omega_{\Psi} m}{s^2 I_K^2}$$

When B increases, $\psi_{\underline{m}}$ and $v_{\underline{m}}$ decrease also f equations (62) and (63)f.

The adiabatic pressure curve in the case of instantaneous burning, 1+0 $p/p_1 = 1/(1+y)$, acts as "guide" for the adiabatic curves of the second period when the powder burns gradually. The ordinates of these curves are obtained by multiplying the ordinates of the first curve by $1/(1-B\theta/2) > 1$ equation (67). The thicker the powder, the larger is B, the larger is this value, and the higher will the adiabatic curve of the second period lie above the

565

adiabatic curve of instantaneous burning. The ratio of the ordinates of these adiabatics for the same value of y (or !) is constant and equal to $1/(1-B\theta/2)$ = const.

In the case of instantaneous burning and in the second period, the projectile velocity is proportional to the square root of the temperature drop, rather than to the first power of this factor, as is the case for the first period.

For a given charging density and during the burning of the powder, the projectile velocity in a given section does not depend upon the weight of the projectile. Indeed, from equation (55)

$$v = \frac{2f\omega}{I_{K}\theta s} \left[1 - \frac{1}{(1+y)^{\frac{\theta}{2}}} \right]$$

it is seen that for a given value of $y = \frac{1}{2} \{ (1 - \alpha \Delta) \}$ and for one and the same powder (f, α, I_K) the projectile velocity is independent of the weight q of the projectile. The same may be said of the temperature of the gases $\sqrt{-}$ according to formula $(70)_{-}$.

If, all other conditions being equal, we vary only q which enters into parameter B, the pressure p and ψ from equations (54) and (56) and the maximum pressure p_m and ψ_m increases in proportion with q, while the location of the maximum and of the value v_m does not change.

Consequently, the velocity curves coincide point by point when superimposed on each other(*), and only when the projectile

(*) The result obtained (when $\alpha=1/\delta$) can be confirmed by comparing it with the GAU tables (ordnance tables), compiled for $p_0=300$, $\alpha=1$, and $\kappa=1.06$.

566

is heavier will the velocity $v_{\underline{K}}$ from equation (64)_7 be attained earlier.

Fig. 144 - Ballistic Curves for the Simplest Case.

The fact that the velocity of the projectile does not vary with its weight may be used to verify the complete burning of the powder in the gun. If a gun using the same charge and type of powder is used to fire two projectiles of different weights and the velocity remains unchanged, it is proof that the combustion of the powder was incomplete in both cases.

Figure 144 illustrates the basic curves of the elements of a shot $(\psi, \ \forall, \ T, \ p)$ as a function of [or y for the cases of instantaneous and gradual burning of the powder.

All the curves on the graph are marked with the number of the equation they represent.

There are two basic points on the ordinate axis, one is at -1,

567

is heavier will the velocity $v_{\underline{K}}$ [from equation (64)]7 be attained earlier.

Fig. 144 - Ballistic Curves for the Simplest Case.

The fact that the velocity of the projectile does not vary with its weight may be used to verify the complete burning of the powder in the gun. If a gun using the same charge and type of powder is used to fire two projectiles of different weights and the velocity remains unchanged, it is proof that the combustion of the powder was incomplete in both cases.

Figure 144 illustrates the basic curves of the elements of a shot $(\psi, \ \forall, \ T, \ p)$ as a function of [or y for the cases of instantaneous and gradual burning of the powder.

All the curves on the graph are marked with the number of the equation they represent.

There are two basic points on the ordinate axis, one is at -1,

567

and the other at- $1/(1 - B\theta/2)$.

The two pressure polytropic curves with exponents k and k', and the two "polytropics" of temperature, with exponents θ for instantaneous burning (69), and $\theta/2$ for gradual burning (70) issue from the first point; the ordinate at y=-1 is a common asymptote for all of these curves.

The curves p/p_1 (67') and T/T_1 (72) for the second period, issue from the second point, whose ordinate is 1 (1 - B0 2). These curves are real only to the right of the ordinates $p_{\vec{k}}/p_1$ and $T_{\vec{k}}/T_1 = 1 - B0/2$ with abscissa $y_{\vec{k}}$.

Both of these curves lie above the corresponding curves for instantaneous burning, the ratio between the two sets being constant and equal to 1/(1-89/2)>1. The horizontal line whose ordinate equals unity is the origin for the curves $p/p_1(1)$ and T/T_1 (69) and (70), the terminal point for ψ and v/v_K (54'), and is an asymptote for $v_1v_{\Pi p}$ for both instantaneous and gradual burning of powder.

The curves ψ , y and $\frac{v}{v\,\Pi_D}$, y in the first period are similar to the curve $\Delta T/T$ which is measured from the horizontal along the ordinate equal to unity.

The curve p/p_1 for gradual burning is obtained by multiplying the ordinates of curve $\psi(54')$ and of the adiabatic curve 2 with the exponent $k'=1+\theta/2$.

2. THE CONDITIONS FOR MAINTAINING THE MAXIMUM PRESSURE CONSTANT.

This question is very important in the ballistic design of guns, because the condition generally imposed is that $p_{\rm m}$ must not exceed a certain given value. For this reason the designer must

know how to vary the loading conditions in order to keep the maximum pressure constant.

The relations derived above permit one to establish the analytical conditions under which the maximum pressure p_m will remain constant when the weight of the charge or its density are varied in a given gun.

Indeed,

$$p_{m} = \frac{p_{1}}{B} F_{2}(\theta) = \frac{f\Delta}{1 - \alpha\Delta} \frac{F_{2}(\theta) f\omega qq}{s^{2} I_{K}^{2} g}.$$
 (61')

For a given type of powder (f, α, u_1) and a given projectile weight q, p_m can be changed by varying either Δ or $I_K = e_1/u_1$. If Δ is increased simultaneously with $2e_1$ or I_K , p_m can be kept constant. The condition of the constancy of the pressure is obtained in the form:

$$p_{m} = \frac{F_{2}(\theta)}{B} \frac{f\Delta}{1 - \alpha\Delta} = const.$$

Let us group together the constants:

$$B\left(\frac{1}{\Delta} - \alpha\right) = \frac{f}{p_m} F_2(\theta) = const.$$

Designating:

$$\frac{f}{p_m} \mathbf{F}_2(\theta) = \mathbf{a}_m \approx \text{const},$$

569

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

we obtain the condition for maintaining p_m constant:

$$B\left(\frac{1}{\Delta} - \alpha\right) = a_{\underline{m}} = const. \tag{74}$$

In the case when $\alpha\neq 1/\delta$, when $\psi_{\hat{0}}=0$ and $\kappa=1$, the condition $p_{\perp}=const.$ has an analogous form:

$$B\left(\frac{1}{\Delta} - \frac{1}{3}\right) = const.$$

Knowing a_m and given Δ , one may find the quantity B insuring the obtainment of the given p_m , and, knowing B, one may find the corresponding value of $2e_1$ or I_K .

Condition (74) shows that in order to keep p_m constant when Δ is increased, it is necessary to increase the thickness $2e_1$ of the powder in order to offset the decrease of B obtained from increasing the weight ω of the charge together with the increase of Δ .

From the condition (74) of the constancy of the maximum pressure for a given gun, projectile and powder of definite physicochemical properties (f, α , δ , u_1), a direct relation may be established between the weight ω of the charge, the thickness $2e_1$ of the powder or its pressure impulse I_K , and the reduced length of the free space in the chamber at the end of burning:

$$l_1 = l_0(1 - \alpha \Delta) = \frac{w_0}{\pi}(1 - \alpha \Delta) = \frac{w_1}{\pi}.$$

570

Indeed, substituting the value of B in (74) and replacing \triangle in the denominator by ω/Ψ , we obtain:

$$\frac{s^2 I_{KW_0}^{2W_0(1-\alpha\Delta)}}{f_{\omega\phi m\omega}} = \frac{s^2 I_{KW_1}^{2}}{f_{\omega^2 \phi m}} = a_m.$$

Transposing all the constants to the right side, and designating them by K_m , we obtain:

$$\frac{I_{K_1}^{2W}}{I_{M_2}^{2}} = \frac{a_{m}f\phi_{m}}{s^{2}} = \frac{f^{2}F_{2}(\theta)\phi_{m}}{p_{m}s^{2}} = K_{m}. \tag{75}$$

Computing first $K_{\underline{m}}$ from the loading conditions by the following equation:

$$K_m = \frac{F_2(\theta) f^2 \phi m}{p_m s^2}$$

and calculating the value ω of the charge necessary to insure a given initial (muzzle) velocity v_A , we can determine the full pressure impulse $I_{K} = e_1/u_1$

$$I_{K} = \frac{\sqrt{K_{R}\omega}}{\sqrt{\pi_{0} - \alpha\omega}}.$$
 (76)

This equation shows that in order that the pressure in a given gun remain constant when the weight of the charge is increased, the full pressure impulse I_{K} or the thickness $2e_{1}$ of the powder must be increased at a somewhat higher rate than the weight of the charge.

Let us apply equation (76) to calculate the powder thickness
for a 76 mm gun, 1902 model.

The conditions of loading are:

$$W_0 = 1.654$$
; $s = 0.4693$; $\omega = 0.930$; $q = 6.5$; $f = 9 \cdot 10^5$, $\alpha = 1$; $u_1 = 7.5 \cdot 10^{-6}$; $\varphi = 1.08$; $\theta = 0.2$; $p_m = 2320 \cdot 10^2$.

$$\sqrt{K_{m}} = \sqrt{\frac{F_{2}(\theta) f^{2}_{\phi m}}{s^{2}p_{m}}} = \sqrt{\frac{0.32 \cdot 9^{2} \cdot 10^{10} \cdot 1.08 \cdot 0.0663}{0.4693^{2} \cdot 2.32 \cdot 10^{5}}} =$$

$$-\sqrt{36.4\cdot10^4}$$
 - 603;

$$I_{K} = \frac{e_{1}}{u_{1}} = \frac{\sqrt{K_{m}\omega}}{\sqrt{W_{0} - \alpha\omega}} = \frac{603 \cdot 0.930}{\sqrt{1.654 - 0.930}} = \frac{603 \cdot 0.930}{0.85} = 660 \text{ kg·sec.dm}^{2};$$

$$2e_1 = 2u_1^{-1}K = 2 \cdot 7.5 \cdot 10^{-6} \cdot 660 = 0.0099 \text{ dm} = 0.99 \text{ mm} \approx 1 \text{ mm}(\bullet).$$

572

We have obtained the thickness of strip or tubular powder of grade SP which was used in this gun, and developed a velocity $v_{\rm A}$ -

(*) This thickness of tubular powder corresponds to the grade 7/7, while the thickness of 1.28 mm corresponds to grade 9/7.

= 588 m/sec when the charge ω was 0.930 kg.

The same gun may be fired with a charge $\omega=1.08$ kg and a velocity of $v_0=620$ m/sec can be obtained at the same p_m .

Find from equation (75) the thickness of the powder in this case.

Inasmuch as $\sqrt{K_m}$ remains the same as in the first case,

$$I_{K2} = \frac{603 \cdot 1.08}{\sqrt{1.654 - 1.08}} = \frac{603 \cdot 1.08}{0.757} = 860,$$

the thickness of tubular powder for the same \mathbf{u}_1 will be

$$2e_1 = 2 \cdot 7 \cdot 5 \cdot 10^{-6} \cdot 860 = 0.0129 \text{ dm} = 1.29 \text{ mm},$$

and this is the thickness of our previous powder ${\rm C}_{42}.$ The ratio

$$\frac{I_{K2}}{I_{K1}} = \frac{860}{660} = 1.3 \approx \frac{9}{7}.$$

Calculations show that the equations derived from approximate relations yield results which are close to experimental data, and may be used to calculate the variation in the powder thickness concomitant with variations in the charge, if the maximum pressure is kept the same.

3. THE POSITION OF MAXIMUM PRESSURE p_m IN THE BORE OF THE GUN, OR THE PATH (TRAVERSED BY THE PROJECTILE AT THE INSTANT OF MAXIMUM PRESSURE.

$$l_{\mathbf{m}} = l_{1} / \mathbb{F}_{1}(\mathbf{\theta}) = 1 / \mathbb{F}_{1}(\mathbf{\theta}) = 1 / \mathbb{F}_{1}(\mathbf{\theta}) = 1 / \mathbb{F}_{1}(\mathbf{\theta})$$
 (77)

For a given loading density in a gun employing a given type of powder, the maximum pressure p_m is developed at the same distance from the starting point of the projectile (i_m = const.). regardless of the powder thickness and the projectile weight. That is, the path traversed by the projectile up to the instant of maximum pressure does not depend on the powder thickness $2e_1$ nor on the weight q of the projectile.

In a given gun (W_0, s, l_0) using a given type of powder (f, α, u_1, θ) the position (l_m) of maximum pressure depends only on the density of the charge. The larger Δ , the smaller will be $(1 - \alpha \Delta)$ and the nearer to the starting point of motion will be $p_m(*)$.

Equation (77) shows that under the condition of constancy of the maximum pressure p_m , when Δ is increased with the simultaneous increase of B and of the powder thickness $2e_1$, the maximum p_m shifts toward the origin of the projectile motion. Because the parameter B increases thereby, then, on the basis of formula (62):

(*) This conclusion is also confirmed by the GAU tables for the case of $p_0=300~kg/cm^2,~\kappa=1.06,$ and $\alpha\neq1/\delta.$

$$\psi_{\mathbf{m}} = \frac{1}{B(1+\theta)}$$

the portion of the charge burned at the instant of maximum pressure decreases.

4. END OF BURNING AND PATH $\binom{1}{K}$ TRAVERSED BY PROJECTILE IN THE BORE OF THE GUN.

The location of the projectile at the end of burning is determined by equation (65), while the corresponding pressure $p_{\vec{K}}$ is found from equation (66).

From (65) we get:

$$l_{\mathbf{K}} = l_{\mathbf{O}}(1 - \alpha \Delta) \left[\frac{1}{\left(1 - \frac{\mathbf{B} \Theta}{2}\right)^{\frac{2}{\Theta}}} - 1 \right].$$

The equation shows that for a given loading density Δ , the quantity $I_{\mathbb{K}}$ increases with the increase of parameter B, i.e., mainly with the increase in powder thickness. When the weight of the projectile is diminished while Δ remains the same, the path traversed by the projectile at the end of burning is shifted toward the muzzle face.

Equation (66) shows that for a given loading density the values of $p_{\underline{K}}$ at the end of burning, when B is varied (i.e., when the powder thickness and the projectile weight are varied) lie on the curve p, y whose equation is:

$$p_{K} = p_{1} \frac{1}{(1 + y_{K})^{1 + \frac{\theta}{2}}}.$$
 (66)

This curve is of the same type as the adiabatic curve for instantaneous burning whose exponent is however $1+\theta/2$. This curve is known as the pressure curve of completely burned powder.

The above statements are clarified by the graph of fig. 145.

The curves a, 6, 6 and 1 depict the pressure variation during the burning of powders of different thicknesses when Δ is the same.

Fig. 145 - Pressure Curves for Different Powder Thicknesses.

a = thick powder; 6 = normal powder; 6 = thin powder; 1 = very thin powder.

2... Δ - curve p_{K} , y_{K} ; 1... o - curve p, y for instantaneous burning.

Curve 1 -
$$\frac{p}{p_1}$$
 - $\frac{1}{(1+y)^{1,2}}$; Curve 2 - $\frac{p_K}{p_1}$ - $\frac{1}{(1+y_K)^{1,1}}$.

They are disposed in such a way that their maxima are on the same ordinate at a distance y_m from the origin. The end of burning occurs at a distance which is governed by the powder thickness, the distance being the greater the thicker the powder $(y_{Ka} > y_{K6} > y_{K6})$; the pressure values at the end of burning increase as the powder thickness decreases $(p_{Ka} < p_{K6} < p_{K6})$. The points corresponding to the end of burning lie on curve 2-2 calculated from equation (66) _when $\theta = 0.2$, $1 + \theta/2 = 1.1$ _7.

Curve 1-1 corresponds to the adiabatic variation of the pressure at instantaneous powder burning $(1+\theta=1.2)$.

The disposition of curves 1-1 and 2. shows that the pressure curves for gradual burning (a, 6, a, 2) intersect the curve 1-1 depicting instantaneous burning. The second period curves for the cases a, 4, a, and 2, which are not represented on the diagram, are all disposed below the curve 2-2 and above the curve 1-1.

At the same time, since for the given powder $p_1/(1-B\theta/2)$ - const., the nature of the pressure change p in the second period depends upon the variation of the variable factor 1/(1+y), the latter varying as in the case of instantaneous burning, i.e., along the adiabatic curve with initial pressure

$$p_1' = p_1 \frac{1}{\left(1 - \frac{B\theta}{2}\right)} > p_1.$$

When the powder thickness is decreased, B and p decrease also, and inasmuch as the adiabatic curves with the same exponent 1 + 0 do not cross, the adiabatics in the second period are disposed the lower, the thinner the powder, i.e., inversely to the disposition of the pressure curves in the first period.

If we compare the expressions for pressure in the second period and at instantaneous burning, keeping the value of y the same, we will get the following:

In the case of gradual burning in the second period

$$p'' = p_1 = \frac{1}{\left(1 - \frac{B\theta}{2}\right)} = \frac{1}{(1 + y)^{1+\theta}};$$

in the case of instantaneous burning

$$p' = p_1 \frac{1}{(1+y)^{1+\theta}}$$

or

$$\frac{p''}{p'} = \frac{1}{1 - \frac{B\theta}{2}} = const,$$

i.e., when the loading density is the same, the ratio of the pressure in the second period to the pressure at instantaneous burning remains constant for any path length of the projectile (greater than $l_{\mathbf{g}}$). This

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

ratio decreases when B decreases and the projectile weight increases.

The graphs and equations presented above for the simplest case $(\varkappa=1,\,\psi_0=0,\,\alpha=1/\delta)$ permit one to estimate directly the appearance and the form of the basic relations between the ballistic elements of a shot. They depict the location and magnitude of maximum pressure, its dependence on the loading conditions $(\Delta,\,B)$ the position of the projectile at the end of burning and the gas pressure developed thereby, the condition of maintaining the maximum pressure constant when the weight of the charge and the powder thickness are varied, and the independence of the curve y,l in the first period of the weight of the projectile.

Such simple relations are not obtained for the more complex cases $(\varkappa \neq 1, \ \psi_0 \neq 0, \ \alpha \neq 1/\delta)$. In such a case it becomes necessary to analyze the effect of the individual elements by computing a series of variations or by using the data found in ballistic tables.

CHAPTER 5 - A SURVEY OF CERTAIN OTHER METHODS OF SOLUTION

(Written by Prof. G.V. Oppokov)

1. A VARIATION OF PROF. G.V. OPPOKOV'S SOLUTION
In order to integrate equation (13), Chapter 1, (p. 473):

$$\frac{dl}{l_{+} + l} = \frac{Bxdx}{v_{0} + k_{1}x - B_{1}x^{2}}$$
 (78)

it is convenient to apply the usual method of classical mathematical analysis - the method of substitution, namely, of temporarily introducing into the process a new variable, ζ , so that:

$$l = 5 + a \frac{B\theta}{2} x^2 - l_{\Delta}, \tag{79}$$

where a is the difference between the lengths of the free volumes of the chamber at the start and end of burning:

$$\mathbf{a} - l_{\Delta} - l_{1} = \frac{\omega}{\mathbf{s}} \left(\alpha - \frac{1}{\delta} \right). \tag{80}$$

When this substitution of variables is effected in the new equation, it will become presently apparent that "the last term" does not contain in the denominator the difference:

$$\psi_0 + k_1 x - B_1 x^2$$
.

This obviates the need for mathematical transformations in the course of integration for the purpose of replacing the obtained

CHAPTER 5 - A SURVEY OF CERTAIN OTHER METHODS OF SOLUTION

(Written by Prof. G.V. Oppokov)

1. A VARIATION OF PROF. G.V. OPPOKOV'S SOLUTION
In order to integrate equation (13), Chapter 1, (p. 473):

$$\frac{dl}{l_{\gamma} + l} = \frac{Bxdx}{\psi_0 + k_1 x - B_1 x^2}$$
 (78)

it is convenient to apply the usual method of classical mathematical analysis - the method of substitution, namely, of temporarily introducing into the process a new variable, ζ , so that:

$$l = 5 + a \frac{B\theta}{2} x^2 - l_{\Delta},$$
 (79)

where a is the difference between the lengths of the free volumes of the chamber at the start and end of burning:

$$a - l_{\Delta} - l_{1} = \frac{\omega}{s} \left(\alpha - \frac{1}{s} \right). \tag{80}$$

When this substitution of variables is effected in the new equation, it will become presently apparent that "the last term" does not contain in the denominator the difference:

$$\psi_0 + k_1 x - B_1 x^2$$
.

This obviates the need for mathematical transformations in the course of integration for the purpose of replacing the obtained

integral by other, more simple ones.

Indeed, it follows from equation (79) that:

$$\frac{dl}{dx} = \frac{d\zeta}{dx} + B\theta ax,$$

because l_{Δ} is a constant in every concrete case. Moreover:

$$l_{\psi} + 1 = l_{\Delta} = a\psi + 1 = l_{\Delta} = a(\psi_{0} + k_{1}x + \kappa)x^{2} + i$$

Substituting in the above the value of [from (79):

$$l_{\psi} + l = 5 + a \frac{B\theta}{2} x^2 - a(\psi_0 + k_1 x + \kappa \lambda x^2)$$

or

$$l_{\psi} + l = \zeta - a(\psi_0 + k_1 x - B_1 x^2).$$

We shall substitute into the differential equation (78) the obtained values of dl/dx and ($l_{\psi} + l$):

$$\frac{d\zeta}{dx} + Beax = \frac{Bx}{\psi_0 + k_1 x - B_1 x^2} / \zeta - a(\psi_0 + k_1 x - B_1 x^2) / \zeta.$$

We now remove the brackets and effect the necessary simplifications:

$$\frac{d\zeta}{dx} + B\theta ax = \frac{Bx}{\psi_0 + k_1 x - B_1 x^2} \zeta - Bax.$$

Grouping the terms:

$$\frac{d\zeta}{dx} = \frac{Bx}{\psi_0 + k_1 x - B_1 x^2} \zeta = -Ba(1 + \theta)x.$$

The common integral of this linear differential equation of the first order including the last term can be represented in the following form:

$$\int \frac{Bxdx}{\psi_0 + k_1 x - B_1 x^2} - \int \frac{Bxdx}{\psi_0 + k_1 x - B_1 x^2}$$

$$\int C_1 - Ba(1 + \theta) \int e^{-c} xdx^{-c}, \quad (81)$$

where e is the base of natural logarithms, and C_1 is still an arbitrary constant.

We must introduce into the analysis Prof. Drozdov's function:

$$\int \frac{Bxdx}{\psi_0 + k_1 x - B_1 x^2} - \frac{B}{B_1}$$

Then the partial integral of the last equation with respect to the derivative $d\zeta/dx$ will be:

We shall now return to the desired path (of the projectile, and after substituting the obtained value of ζ , get:

$$-\frac{B}{B_1}$$

$$(-Z) = C_1 - Ba(1 + \theta) \int Z \times dx = \frac{B\theta}{2} \times 2 - C_1$$

Let us determine now the constant C_1 from the initial conditions, at which:

We have from the latter equation for the path of the projectile:

$$0 - 1(C_1 + 0) + 0 - l_{\Delta}$$

whence

$$C_1 - l_{\Delta}$$

Thus the desired path of the projectile is defined by the following expression:

$$l = z^{-\frac{B}{B_1}} \angle l_{\Delta} - aB(1 + \theta) \int_{0}^{x} \frac{\frac{B}{B_1}}{z} x dx_{-} + a \frac{B\theta}{2} x^{2} - l_{\Delta}.$$
 (82)

2. PARTICULARS OF PROF. I.P. GRAVE'S SOLUTION

This method of solution was developed by Prof. I.P. Grave in order to perfect Bianchi's method, which was the first variant (in time) of the $\frac{1}{4}$ method. In Bianchi's original equations the effect of the variation of $\frac{1}{4}$ is discounted and in integrating he considers the quantity $\frac{1}{4}$ as a certain incompletely determined constant. Bianchi divides the curve p, $\frac{1}{4}$ into three segments, for which instead of $\frac{1}{4}$ he takes $\frac{1}{4}$, $\frac{1}{4} = \frac{1}{2}$ and $\frac{1}{4}$, respectively, which corresponds to the following conditions:

$$\psi = 0; \quad \psi = 0.5; \quad \psi = 1.$$

But in this case the curves p, [and v, [are not smooth; they have angular points corresponding to the beginning of the second and third segments.

In order to take into account the effect of the variation of l_{ψ} and obtain smooth p, l and v, l curves, Prof. I.P. Grave, in integrating the equation for the path of the projectile, considers l_{ψ} as a variable, defined by the average value of its derivative with respect to l. This average value of the derivative must be negative, because l_{ψ} decreases during the burning of the powder. Consequently:

whence, after integration, we obtain:

$$l_{\psi} = l_{\psi_0} - kl. \tag{83}$$

584

At the end of burning (when $\psi = 1$), we obtain from the above

$$t_1 = l_{\Psi_0} = kl_{K'}$$

from which the constant k is determined:

$$k = \frac{l_{\Psi_0} - l_1}{l_K} = \frac{l_{\Psi_0} - l_1}{l_1} : \frac{l_K}{l_1}.$$
 (84)

If we substitute the value of l_{ψ} obtained from equation (83) into the differential equation (78) for the projectile path, we will get:

$$\frac{dl}{dx} = \frac{Bx(l_{+0} - k! + l)}{\psi - \frac{B\theta}{2}x^2},$$

whence, after separating the variables, we have:

$$\frac{dl}{l_{y_0}^{-+(1-k)l}} = \frac{Bxdx}{y - \frac{B\theta}{2}x^2}.$$

Integrating this equation:

$$\frac{1}{1-k} \ln \frac{l_{\psi_0} + (1-k)!}{l_{\psi_0}} = \int_{0}^{x} \frac{Bxdx}{\psi - \frac{B\theta}{2}x^2}$$

and, consequently, the following must obtain:

$$(1 - k) l - l_{\psi_0} z^{-(1-k)\frac{B}{B_1}} - l_{\psi_0}.$$

Using a second time equation (83), we obtain the following equation from the above:

$$\begin{array}{ccc} & & & -(1-k)\frac{B}{B_1} \\ l = l_{\psi_0} z & & -l_{\psi}. \end{array}$$
 (85)

A certain difficulty arises from the fact that in order to apply equation (85) it is necessary to know the constant k, for which, in turn, it is necessary to know $l_{\mathbf{K}}$, $l_{\mathbf{1}}$ —see equation (84)—; but the path $l_{\mathbf{K}}$ of the projectile at the end of the period is unknown beforehand.

In order to overcome this difficulty, a nomograph is given _see I.P. Grave, "VNUTRENNYAYA BALLISTIKA" (Internal Ballistics), Pyrodynamics, No. 1, p. 58_7 which enables one to determine the ratio $l_{\rm K}/l_{\rm l}$ if

$$\frac{l_{\psi_0}}{l_1}$$
 and $\frac{\Phi(x_K)}{H_{HA}} = \frac{B}{B_1} \ln Z_K^{-1} = 2.303 \frac{B}{B_1} \log Z_K^{-1}$.

are known.

Having found from the conditions of loading:

CHAPTER VI - SOLUTION OF THE FUNDAMENTAL PROBLEM OF INTERNAL BALLISTICS ON THE BASIS OF THE PHYSICAL LAW OF BURNING

(M. Ye. Serebriakov's Method)

As was shown in Part I of this text, the actual burning of powders deviates from the geometric law under the influence of a number of factors. An analysis obtained by the aid of the progressivity curves [, \psi and [, t has shown that certain anomalies actually occur even during the burning of powders of simple shapes: non-instantaneous ignition, accelerated burning of the outside layers (ballooning), etc. The burning law cannot be established at all on the basis of the geometric law for adulterated and porous powders used in pistol cartridges.

The actual burning law can be established only by burning powder in a test bomb at different loading densities and by obtaining pressuretime curves reflecting all the deviations and peculiarities of a given sample.

The variation in the intensity of gas formation Γ and I as a function of ψ and t can be established from the obtained p, t curve.

Both graphs Γ , ψ and $\int_{\Gamma} pdt$, ψ in conjunction with the fundamental p, t curve obtained from the bomb test enable us to solve the fundamental problem of pyrodynamics, i.e., to compute the gas-pressure and projectile velocity variation curves under conditions of actual burning of powder in the bore of a gun.

These graphs also enable us to establish the individual behavior of powder lots of different grades occasionally differing considerably

$$\frac{l_{\psi_0}}{l_1}$$
 and 2.303 $\frac{B}{B_1}$ log Z_K^{-1} ,

we can determine $\binom{1}{K}\binom{1}{1}$ from this graph; this will enable us to calculate k from equation (84).

If it is necessary to find k more accurately, the obtained value of k may be rendered more exact by successive approximations. The value \mathbf{k}_1 found from the graph is substituted into (85), \mathbf{k}_{12}^{-1} is found in the second approximation, and a new value \mathbf{k}_2 is then determined from (84) representing a second approximation, and so on, until two consecutive values of \mathbf{i}_K \mathbf{l}_1 coinciding with the required degree of accuracy are obtained.

as to their properties, which behavior could not be disclosed by any method other than by bomb tests.

There have been actual cases where powder lots of the same grade and the same manufacturer having identical chemical composition and dimensions produced a difference of 6-8% in the charging weights when fired at the same values of v_A and p_{max} .

Bomb tests had shown that the burning rate u_1 of these powders varied as much as 15-20%. This variation could not have been disclosed by any other means except the bomb test.

The fundamental problem of internal ballistics for adulterated or porous powders can be solved in exactly the same manner only on the basis of the experimental (physical) law of burning.

We are presenting below the method of solving the fundamental problem on the basis of the physical law of burning, when the burning rate law is $u = u_1 p$, which corresponds to the coincidence of the curves $1, \psi$ or $\int pdt$, ψ at various loading densities.

The basic assumption made here is that both in a bomb at different loading densities Δ and in a weapon with a variable space in the case of a continuously decreasing loading density, the value of \int pdt is a single-valued function of ψ only, and does not depend on the loading density. This condition, which has been proved by bomb tests at different loading densities, is being extrapolated in the given case for considerably higher values of Δ in a weapon.

1. DERIVATION OF BASIC RELATIONSHIPS AS APPLIED TO THE PHYSICAL LAW OF BURNING.

The solution is based on applying the pressure curve obtained from bomb tests to the computation of curves depicting the gas pressure and velocity of the projectile in a weapon.

589

As the projectile moves through the bore and the initial air space becomes larger, the pressure will depend on the current value of the loading density $\Delta = \omega / (1 + s)$

We shall introduce the following designations:

 Δ_{1} - loading density of powder in test bomb;

 Δ_0 - initial loading density in weapon.

P and T - gas pressure and time corresponding to the given value of ψ at constant loading density Δ_1 , at which the bomb test was conducted and at which the curve P, T was

p and t - gas pressure and time corresponding to the same value of γ when Δ is variable, which condition applies to a given disposition of the projectile in the bore of

We shall designate the corresponding integral values as follows:

a) In bomb

$$\begin{cases}
p_{d\tau} = I \\
0 \\
0
\end{cases}$$

$$\begin{cases}
p_{d\tau} = I_{0} \\
0
\end{cases}$$

$$\begin{cases}
p_{d\tau} = I_{K}
\end{cases}$$

STAT

I is obtained from a table or graph as a function of ψ or τ , on the basis of bomb tests.

Inasmuch as the pressure impulse does not depend on $\boldsymbol{\Delta},$ we will have the equalities

$$\int_{0}^{\Psi} pdt - \int_{0}^{\Psi} Pd\tau \text{ or } i = I$$
 (86)

and, correspondingly,

$$I_0 - i_0$$
; $I_K - i_K$.

Differentiating (86), we get:

$$pdt = Pd\tau$$
. (87)

Here $d\tau$ - an elementary time lapse during which the portion of change ψ burned up to a given instant under pressure P will receive the increment $d\psi$ when the powder is burned in a constant volume at a loading density Δ_1 ;

dt - time lapse during which the same portion ψ of the burned powder will receive the same increment dψ when the powder is burned in the gun barrel at pressure p at loading density Δ determined by the current disposition of the projectile in the bore of the barrel:

$$\Delta = \frac{\omega}{\Psi_0 + sl}.$$

We shall consider henceforth the value of ψ as the independent variable.

2. DETERMINING THE PROJECTILE VELOCITY AS THE FUNCTION OF ψ

On the basis of the impulse theorem

Integrating from the start of motion:

$$\varphi = \mathbf{v} - \mathbf{s} \int_{\mathbf{v}_0}^{\mathbf{v}} pdt - \mathbf{s}(\mathbf{i} - \mathbf{i}_0).$$

where ψ_0 is the portion of the charge burned in the gun at the start of motion:

$$\Psi_0 = \frac{\frac{1}{\Delta_0} - \frac{1}{\delta}}{\frac{f}{p_0} + \alpha - \frac{1}{\delta}}.$$

Determining v:

$$\mathbf{v} = \frac{\mathbf{s}}{\mathbf{\phi} \mathbf{n}} (\mathbf{i} - \mathbf{i}_0) \tag{88}$$

or on the basis (86)

$$v = \frac{s}{\varphi m} \int_{\Psi_0}^{\Psi} p_{d\tau} = \frac{s}{\varphi m} (I - I_0).$$
 (89)

STAT

The values of I and I for ψ and ψ are known from the bomb test, s/ ψ m is known from the gun data. Thus the velocity of the projectile is determined from equation (89) as the function of ψ .

At the end of burning when $\psi = 1$

$$v_{K} = \frac{\Delta u}{\Delta u} (I_{K} - I_{0}). \tag{90}$$

In contrast to the analogous formula in the case of the geometric law of burning, the value of I_{K} corresponds not to the average thickness of the powder but to the maximum thickness, which may considerably exceed the average thickness of powders having a variable thickness. A diagram of the pressure impulse of tabular powder usually obtained in bomb tests is offered in fig. 146.

The value of the impulse $l_1 = e_1$ av. u_1 corresponds to the burning of powder of average thickness; the value of $I_{K} > I_{1}$ corresponds to the burning of the thickest element of the charge.

Fig. 146 - Pressure Impulse of Tubular Powder

Therefore also $v_{\vec{K}}$ in the case of actual powder burning assumes a considerably greater value than in the case of the geometric law, but in that case the projectile will also traverse a considerably longer path at the end of powder burning, so that:

1 K > (Geometric law of burning) 1 K (Physical law of burning) 593

3. DETERMINING THE PATH OF THE PROJECTILE AS A FUNCTION OF ψ In the method outlined the relation between ℓ and ψ is established by means of the auxiliary function L, ψ determined from the same bomb test at a loading density $\Delta_{\hat{l}}$, by the additional analysis of the test curve P, τ . And if the value of the pressure impulse l, ψ does not depend on the choice of $\Delta_{\hat{1}}$, then the function L, ψ depends

on the value of $\Delta_{\hat{l}}$ chosen at the test. As we shall see later, the function L has the dimensionality of the path and a definite physical meaning.

We will have from equation (88):

$$dl = vdt = \frac{s}{\varphi m}(1 - 1_0)dt,$$

Upon integrating, the path of the projectile will be determined where $(i - i_0)$ is a function of ψ . by the formula

$$l = \frac{5}{\sqrt{2}} \int_{\gamma_0}^{\gamma_0} (1 - 1_0)^{dt}. \tag{91}$$

Here the element dt corresponds to the element $d\psi$ when the powder is burned under conditions of variable volume (space) and depends on the value of pressure p at any given instant which is still unknown.

We can obtain an expression from the bomb test analogous to expression (91):

594

$$L_{\psi_0}^{\psi} = \frac{s}{\varphi_m} \int_{\psi_0}^{\psi} (1 - I_0) d\tau = \frac{s}{\varphi_m} \int_{\psi_0}^{\psi} P d\tau d\tau = \frac{s}{\varphi_m} \cdot G.$$
 (92)

The value of L - function of ψ - is obtained by the second integration of curve $\int_{0}^{\pi} Pdt$ with respect to τ and by multiplying same by the coefficient s ψ .

If ℓ is the path traversed by the projectile at the instant the portion ψ of the charge is burned, then L is the path the projectile would have traversed if the pressure behind it developed according to the same law as in a bomb with a constant loading density Δ_1 , at the instant the same portion of the charge ψ is burned.

L has a definite physical meaning. For example, it is obtained in practice in a bomb of considerable capacity with a free piston. Thus in a bomb of capacity $W_0 = 300 \text{ cm}^3$ the piston displacement (with the piston usually having a cross-sectional area of $s = 1 \text{ cm}^2$) is about 3 cm. The change in volume amounts to only 1%, and hence the piston is displaced by a pressure which increases in almost a constant volume.

The value of L as a function ψ is found from the bomb test using the procedure given in the table below.

It is necessary to establish the relation between ξ and L, and hence between ξ and $\psi,$ because L is function of $\psi.$

Differentiating equations (91) and (92) and taking their ratio and reducing, we get:

CAMB! -- J-

595

$$dl = DL \frac{dt}{dt}.$$
 (93)

From equation (87)

The second second

$$\frac{dt}{d\tau} = \frac{P}{P},$$

whereas the ratio P_{\cdot} p_{\cdot} is replaced by the ratio of the free volumes on the basis of the equation of state:

$$P = \frac{RT_1 \omega_1 \Psi}{(\Psi_{\Psi})} = \frac{f \Delta_1 \Psi}{1 - \frac{\Delta_1}{\delta} - \Delta_1 \left(\alpha - \frac{1}{\delta}\right) \Psi} = \frac{\frac{1}{\Delta_1} - \frac{1}{\delta} - \left(\alpha - \frac{1}{\delta}\right) \Psi}{\frac{1}{\Delta_1} - \frac{1}{\delta} - \left(\alpha - \frac{1}{\delta}\right) \Psi}$$

The expression in the denominator represents the free specific gas volume at loading density Δ_1 .

An analogous expression will obtain also in the formula for p.

We shall replace them with average values, because the last term
is small in comparison with the first two, and, moreover, the ratios
of the free volumes will enter them all.

of the free volumes will enter them all.

of the free volumes will enter them all.

$$\mathbf{w}_{\mathbf{av}} = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{1}{2} \Delta_1 \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{2} \Delta_1 \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{2} \Delta_1 \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{2} \Delta_1 \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{2} \Delta_1 \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{\Delta_1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{\Delta_1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{\Delta_1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{\Delta_1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[1 - \frac{\Delta_1}{8} - \Delta_1 \left(\alpha - \frac{\Delta_1}{8} \right) \mathbf{v}_{\mathbf{av}} \right] = \mathbf{w}_0 \left[\mathbf{v}_{\mathbf{a$$

$$= \Psi_0^{(1 - \alpha' \Delta_1)},$$

where
$$a' = \frac{a + \frac{1}{8}}{2}$$
.

We shall introduce the designations:

$$\frac{1}{8} + \left(\alpha - \frac{1}{8}\right) + \frac{1}{2} - \frac{1}{2}\left(\frac{1}{8} + \alpha^2 - \alpha^2\right)$$

$$\frac{1}{\Delta_1} = x^* - a_1; \quad \frac{1}{\Delta_0} = x^* - a_0.$$

Then

$$P = \frac{f_{\Psi}}{a_1};$$

$$p = \frac{RT\omega\psi}{\Psi_{av} + sl} = \frac{f\Delta_0\psi}{1 - u \cdot \Delta_0 + \frac{l}{l_0}} = \frac{f\psi}{T_1} = \frac{f\psi}{l_0\Delta_0} = \frac{T}{T_1} = \frac{f\psi}{T_1} = \frac{T}{T_1} = \frac{f\psi}{T_1} = \frac{T}{T_1} = \frac{f\psi}{T_1} = \frac{f\psi}$$

$$=\frac{f\psi}{a_0\left(1+\frac{l}{l_0a_0\Delta_0}\right)}\frac{T}{T_1},$$

bu t

$$t_0^{a_0^{\Delta_0}} - t_0^{(1 - \alpha^* \Delta_0)} - t_{\Psi_{av}} - t_c$$

For a gradually burned powder

$$\frac{T}{T_1} = \left(\frac{\mathbf{W}_0 - \alpha'\omega}{\mathbf{W}_0 - \alpha'\omega + st}\right)^{\frac{\Theta}{2}} = \frac{\frac{\mathbf{a}_0}{\mathbf{a}_0}}{\frac{\mathbf{a}_0}{\mathbf{a}_0} + \frac{t}{t_0 \Delta_0}}$$

$$-\frac{1}{\left(1 \cdot \frac{1}{l_c}\right)^2}$$

The ratio P p, following substitution of the proper expressions and simplification, will take on the form:

$$\frac{p}{p} - \frac{a_0}{a_1} \left(1 \cdot \frac{t}{l_c} \right)^{1 \cdot \frac{\theta}{2}}.$$
 (95)

Upon incorporating this expression in (94) and then in (93), we get:

$$dt = dL \frac{a_0}{a_1} \left(1 + \frac{1}{l_c} \right)^{k'}, \text{ where } k' = 1 + \frac{\theta}{2}.$$

Dividing the variables and integrating:

$$\int_{0}^{l} \frac{dl}{\left(1 + \frac{l}{l_c}\right)^{k'}} - \frac{a_0}{a_1} \int_{\gamma_0}^{\gamma} dL.$$

1

Designating 1 + l l_c = x, we get in the left side \bullet

$$\frac{1}{\left(1 + \frac{1}{\ell_c}\right)^{\frac{1}{k}}} = \frac{2}{e} \ell_c \left(1 - \frac{1}{\frac{e}{x^2}}\right);$$

and in the right side

$$\frac{a_0}{a_1}$$
 L,

We then obtain:

$$1 - \frac{1}{\frac{e}{2}} - \frac{e}{2} \frac{a_0}{a_1 \cdot c} L_0^* - B \cdot L_0^*.$$
 (96)

where

$$B' = \frac{\bullet}{2} \frac{a_0}{a_1!_c} = \frac{\bullet}{2} \frac{\frac{1}{\Delta_0} - \alpha'}{\frac{1}{\Delta_1} - \alpha'} \frac{1}{t_0(1 - \alpha'\Delta_0)} = \frac{\bullet}{2} \frac{1}{\Delta_0!_0} \frac{1}{\frac{1}{\Delta_1} - \alpha'}.$$

bu t

$$\Delta_0 t_0 = \frac{\omega}{8},$$

and

$$B' = \frac{e}{2} \frac{B}{\omega} \frac{1}{\frac{1}{\Delta_1} - \alpha'}.$$
 (97)

, -

Solving (96) for [, we get:

$$1 - 1_{c} \left[\frac{1}{(1 - B^{1}L_{q_{0}}^{\Psi})^{\frac{2}{\Theta}}} - 1 \right].$$
 (98)

As in the solution of the problem of internal ballistics by the average l_{ψ} method, the value l_{c} - average for the entire burning process - can be replaced in this formula by the current value l_{ψ} by means of the usual formula:

$$l_{\Psi_{\mathbf{a}\mathbf{V}}} = l_0 \left[1 - \frac{\Delta}{\delta} - \Delta \left(\alpha - \frac{1}{\delta} \right) \frac{\Psi_0 + \Psi}{2} \right], \tag{99}$$

and then

$$l = l_{\Psi_{B\Psi}} \left[\frac{1}{(1 - B) L_{\Psi_0}^{\Psi})^{\frac{2}{\Theta}}} - 1 \right]$$
 (100)

, .

Formula (100) gives the path 1 as a function of ψ by means of the auxiliary function $L_{\psi_0}^{\psi}$, determined in bomb tests at loading density $\Delta = \Delta_1$, which function reflects (depicts) the true burning

Comparing this formula with the analogous formula used in the method fo solution in which $l_{\psi}=l_{\psi}$, we will note that in place of Prof. Drozdov's function $Z_X^{-B-B_1}$ formula (100) contains the function $(1-B^*L_{\psi_0}^{\psi})$. For the case where $x=1, \quad \lambda=0$,

$$\frac{B}{B_1} - \frac{2}{\Theta}$$
.

Therefore the expression in parentheses $(1-B^*L^{\psi}_{U})$ has replaced in this solution the function L_{χ} in the case of the geometric law of burning.

Formulas (89) and (100) enable us to calculate and plot the projectile velocity curve as a function of path \hat{l} .

Pressure p is found from the fundamental equation of pyrodynamics:

$$p = \frac{f \omega_{\psi} - \frac{e}{2} \varphi \pi v^2}{s(l_{\psi} \cdot l)}.$$
 (101)

STAT

wherein the variable quantities as the ψ functions are already known.

To determine the maximum pressure p_m and the corresponding value ψ_m , we differentiate the equation (101) with respect to t:

$$\frac{dp}{dt} = \frac{p}{l_{\psi} + l} \left\{ \frac{f\omega}{s} \Gamma \left[1 + \left(\alpha - \frac{1}{\delta} \right) \frac{p}{f} \right] - (1 + \Theta)v \right\},$$

whereby $v = S \varphi m(I - I_0)$ (89) and Γ are given in the table as a function of ψ .

Equating the expression in braces to zero and replacing v by its expression in (89), we get:

$$\frac{\mathbf{f} \omega}{\mathbf{s}} \Gamma_{\mathbf{m}} \left[1 + \mathbf{I} - \frac{1}{3} - \frac{\mathbf{p}_{\mathbf{m}}}{\mathbf{f}} \right] - (1 + \mathbf{\Theta}) \frac{\mathbf{s}}{\mathbf{\phi} \mathbf{m}} (\mathbf{I}_{\mathbf{m}} - \mathbf{I}_{\mathbf{0}}) - 0,$$

•

whence

$$I_{\underline{m}} - I_{\underline{0}} = \frac{f \omega_{\underline{q}\underline{m}}}{s^{2}(1 + \Theta)} \left[1 + \left(\alpha - \frac{1}{\delta} \right) \frac{p_{\underline{m}}}{f} \right] \cdot \Gamma_{\underline{m}}. \tag{102}$$

Denoting the factor of $\Gamma_{\mathbf{m}}$ by D, we get:

$$I_m - I_0 - D \cdot \Gamma_m$$

The value of ψ_m is found as the point of intersection of curves $I = I_0 \text{ and } D \cdot \Gamma \text{ as a function of } \psi.$ The point of intersection gives the values of $(I_m - I_0), \psi_m$ and

L .

The diagram in fig. 147 clarifies the above.

It is not difficult to see that if $I_m = I_0$ and I_m are replaced by theoretical expressions in terms of z and x on the basis of

the geometric law, we will obtain the usual relationship for x . At the end of burning when ψ = 1, we will have:

$$v_{K} = \frac{s}{\varphi_{m}} (I_{K} - I_{0});$$

$$l_{K} = l_{c} \left[\frac{1}{(1 - B \cdot L \cdot \frac{2}{v_{0}})^{\frac{2}{6}}} - 1 \right];$$

$$p_{K} = \frac{f - \frac{v_{K}^{2}}{v_{np}^{2}}}{\frac{1}{1 - \frac{1}{K}}}.$$

The usual formulas apply to the second period:

$$p = p_{\mathbf{K}} \left(\frac{t_1 - t_{\mathbf{K}}}{t_1 - t} \right)^{1 - \Theta} : \tag{103}$$

$$\mathbf{v} = \mathbf{v}_{\mathsf{n}_{\mathsf{p}}} \sqrt{1 - \left(\frac{t_{1} + t_{\mathsf{k}}}{t_{1} + t}\right)^{\mathsf{\Theta}} \left(1 - \frac{\mathbf{v}_{\mathsf{k}}^{2}}{\mathbf{v}_{\mathsf{n}_{\mathsf{p}}}^{2}}\right)}. \tag{104}$$

Fig. 147 - Determining ψ_m for Maximum Pressure.

4. GRAPHICAL CLARIFICATION OF THE METHOD OF SOLUTION

In order to solve the problem on the basis of the physical law of burning, it is first necessary to perform the ballistic analysis of the given powder. To do so, bomb tests are conducted at two loading densities Δ_1 and Δ_2 , the ballistic characteristics propellent force of powder f and covolume 1 - are determined, and also the test characteristic of the intensity of gas formation Γ, ψ and the impulse of pressure increase \(\int \text{PdT} = I \text{ (fig. 148)}.

Knowing the loading conditions of the weapon, we determine

of $I_0 = \int_0^{\psi_0} p_{d\tau}$, and upon subtracting this value of I_0 from all the

values of I, obtain the dependence of I - I_0 on ψ and $\bar{\iota}$ (fig. 149). Integrating numerically the curve $I=I_0$, I with respect to I, we find the integral $\int_{0}^{\psi} (1 - I_0) d\tau$ as a function of ψ .

Introducing the designation:

$$G_{\psi_0}^{\psi} = \int_{\psi_0}^{\psi} \int Pdid\tau = \int_{\psi_0}^{\psi} (1 - I_0)d\tau.$$

Multiplying I - I $_0$ and $G_{\Psi_0}^{\bullet}$ by s ϕm , we get

$$\mathbf{v} = \frac{\mathbf{s}}{\varphi_{\mathbf{m}}} \left(1 - 1_{\mathbf{0}} \right); \tag{89}$$

$$L_{\Psi_0}^{\Psi} = \frac{\mathbf{s}}{\varphi_{\mathbf{m}}} G_{\Psi_0}^{\Psi} = \frac{\mathbf{s}}{\varphi_{\mathbf{m}}} \int_{\Psi_0}^{\Psi} (\mathbf{I} - \mathbf{I}_0) d\mathbf{t}. \tag{92}$$

v does not depend on $\Delta(\Delta_1^-)$ or $\Delta_2^-)$ and is a function of ψ only for all the loading densities. The function $L_{\psi_0}^{\psi}$, being a function of ψ , depends at the same time on Δ , because the time element dt during which a definite portion of charge $d\psi$ is burned decreases with the increase of Δ .

Indeed, from the equality

$$\Gamma = \frac{d\psi}{Pd\tau}$$

it follows that

$$d\tau = \frac{d\psi}{\Gamma P}$$

where

$$P = \frac{f\Delta_1 \Psi}{1 - \frac{\Delta_1}{\delta} - \Delta_1 \left(\alpha - \frac{1}{\delta}\right) \Psi} \approx \frac{f\Delta_1 \Psi}{1 - \alpha^* \Delta}$$

and hence dt varies inversely with the change of $\boldsymbol{\Delta}_1$.

For this reason the curves $G_{q_0}^{\psi}$ and $L_{q_0}^{\psi}$ as a function of ψ will also be disposed the lower—the greater Δ_1 when testing the powder in a bomb (see fig. 149).

Fig. 148 - Basic Curves Γ,ψ and Ι, ψ.

Fig. 149 - Auxiliary Curves for Determining the Elements of a Shot.

50X1-HUM

The arrangement of a table for analyzing bomb tests as a means of obtaining all the auxiliary functions is presented below; this table serves to clarify the graphs in figs. 148 and 149.

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

Procedure for Analyzing a Bomb Test at Loading Density Δ_1 as a Means of Obtaining the Basic Functions

$$G = \int_{\Psi_0}^{\Psi} (I - I_0) d\tau = \int_{\Psi_0}^{\Psi} \int_{\Psi_0}^{\Psi} P d\tau d\tau \quad \text{and} \quad L_{\Psi_0}^{\Psi} = \frac{B}{\phi m} G_{\Psi_0}^{\Psi}.$$

 $\psi_{\widetilde{U}}$ - from the preliminary period;

 I_0 - according to curve I, ψ .

I	p	+	1 - \(\text{Pd} \)	I - I ₀	I _{av.} - I ₀	$(I - I_0)_{av} \Delta \tau - \Delta G$	$G_{\gamma_0}^{\dagger}$ = $\Sigma(1 - I_0)\Delta\tau$	L
0 τ _B	5-7 P _B		1 ¹ - 1 ₀	- 0	-	- (1 ¹¹ - 1 ₀)Δτ	- 0	0
τ ^I	pI pII	Ψ ^I - Ψ ₀	111	111 - 10	I _{av.} - I ₀	$(I_{av}^{III} - I_0)\Delta^{\tau}$	G _{III}	r _{III}
111	PIII	ψΙΙΙ		1111 - 1 ₀			GIV : :	
τ _K	P _m		I K	I _K - I ₀	607	: -	GK - GAO	r - r.

50X1-HUN

Mild Section -

We shall construct, according to equations (89) and (92) for the same values of ψ , a curve showing the dependence of v on L when $\Delta = \Delta_1 = \text{fig. } 150$, curve v, $L(\Delta_1) = \text{.}$ If the test were analyzed for $\Delta_2 > \Delta_1$, the relationship v, $L(\Delta_2)$ would obtain, which relationship curve has a larger slope angle and in which the shorter path of the projectile: $L_K(\Delta_2) < L_K(\Delta_1)$ corresponds to the end of powder burning. Both curves have a smaller curvature than the true v, curve of the velocities of the projectile in the bore.

If we were to extrapolate the function $L_{(0)}^{\mathbf{v}}$ for the initial loading density $\Delta_{(0)}$ in the gun, we would have obtained curve \mathbf{v} , $L(\Delta_{(0)})$ (150), which at the start of motion has a common point of tangency with the true \mathbf{v} , l curve. The latter is obtained when Δ decreases continuously, and as \mathbf{q} and \mathbf{v} increase curve \mathbf{v} , l (heavy dotted line) gradually goes over from curve \mathbf{v} , $L(\Delta_{(0)})$ to curves corresponding to ever smaller Δ , which family of curves includes also curves \mathbf{v} , $L(\Delta_{(2)})$ and \mathbf{v} , $L(\Delta_{(1)})$.

This transition is the one given by the fundamental formula (100):

$$I = \left(\frac{2}{\Psi_{av}} - \left(1 - B^{T} L_{0}^{\Psi} \right) \right)^{-\frac{2}{\theta}} - 1^{-\frac{1}{\theta}}$$

together with formula (89):

$$v = \frac{s}{\varphi n} (I - I_0).$$

The difference between the method of solving the fundamental problem outlined above and other such methods lies in the fact that

fundament

of the B

projecti

in

p. ; ob

in deriving the dependence of l on ψ , use is made not of the fundamental equation of pyrodynamics, but, rather, of the equation of the state of powder gases for different positions of the projectile in the bore of the barrel.

In solving this problem use is made of the gas pressure curve P, τ obtained from bomb tests, which expresses the true burning law with all the deviations from the geometric law.

An analogous result can be obtained only by the numerical integration of Taylor's series or from finite differences.

Fig. 150 - Relation Between Auxiliary Curves v, L and Actual Curve v, !.

The method outlined here permits the solution of the problem also in the case of the geometric law, by assuming the following theoretical relationship for Γ , ψ :

$$\Gamma = \frac{\kappa \sigma}{I_K} = \frac{\kappa}{I_K} \sqrt{1 + 4 \frac{\lambda}{\kappa}} \psi = \frac{1}{I_K} \sqrt{\kappa^2 + 4\kappa \lambda_\Psi}.$$

Therefore, this method is a more general one than the methods based on the geometric law of burning. (*)

(*) For a more detailed explanation see: Serebriakov, M.Ye. "FIZICHESKY ZAKON GORENIA VO VNUTRENNEY BALLISTIKE" (The Physical Law of Burning in Internal Ballistics). "OBORONGIZ" (State Publishers of Defense Literature), 1940.

THE CONTRACTOR

5. ANALYSIS OF THE OBTAINED CURVES p, l AND v, l.

Analysis of curves p, | and v, | obtained on the basis of the physical law of burning indicates that:

Fig. 151 - Curves p, / and v, / Obtained on the Basis of the Physical and Geometric Laws of Burning.

- Φ.). l. physical law of burning.
- 1.3.1. geometric law of burning.
- 1) Due to ballooning accelerated burning of outer layers the maximum pressure is attained earlier, and the pressure curve is disposed higher at the start than in the case of the geometric law;
- 2) The beginning and the first half of the velocity curve v, cobtained on the basis of the physical law, are disposed above the corresponding v, curve in the case of the geometric law of burning; the curves merge at the end;
- 3) The same value of p_{max} is obtained at a smaller propellant force of powder than in the case of the geometric law;
 - 4) Due to after-burning of the thicker elements of the charge,

the end of burning is transposed nearer the muzzle face, and the velocity $v_{\tilde{K}}$ exceeds the theoretical value for the average powder

5) Due to the gradual decrease of the intensity of gas formation thickness; Γ , ψ at the end of burning, the transition of the pressure curve from the first period to the second proceeds without a jump and forms no turning points on the curve, as it does in the case of the geometric law.

The graph in fig. 151 clarifies the above.

SECTION SEVEN-NUMERICAL METHODS OF SOLUTION

USE OF NUMERICAL ANALYSIS IN INTERNAL BALLISTICS

Various variable quantities possessing definite physical significance usually take part in processes which occur in nature or are considered in technology. In this connection, numerical variations of one or more quantities are accompanied by or associated with variations of other variables. Thus there always exists a definite functional relation between the variable quantities under consideration. This functional relation may be expressed by means of three methods, such as tabulations, diagrams, and formulas. In the vast majority of processes, especially those encountered in technology, this relation is expressed by the aid of tables or diagrams obtained directly from experiment or from observation of the process, whereas the formulas appear only after subsequent analysis of the results obtained, and then only in the case of the simplest processes. It is thus apparent that the most natural means of expressing a functional relation between variable quantities representing in their totality the process under investigation is a tabulation; this is especially true when such a process is being utilized directly for technological purposes, in which case a formula or even a diagram will not serve the purpose, and only numerical values of the variable quantity considered to be of primary importance on the basis of practical considerations must be had.

Numerical analysis must thus serve as a means for studying and making practical utilization of the functional relations between the

612

variable quantities involved.

Ordinary differential equations may be approximately integrated by means of any of the known methods of which there are a great many. These methods include the following:

- 1) Expansion in a Taylor's series in powers of the argument.
- 2) Integration by the method of successive approximations.
- 3) Expansion in a series in powers of small parameters entering into the equation.
- 4) Expansion in a series in powers of the initial values of the unknown function and its derivatives.
- 5) Method of successive approximations applied to equations for vibrational motion.
 - 6) Methods of Euler, E.L. Bravin, and others.
 - 7) Method of numerical integration.

The first six methods do not require the use of finite differences: all variants of the method of numerical integration are based on the use of such differences.

The principal variants of the method of numerical integration are discussed in the book by Academician A.N. Krylov, "Lectures on Approximate Computations". $\begin{bmatrix} -4 \end{bmatrix}$

Fundamental information on the theory of finite differences and on the technical features of their application to the engineering of artillery may be found in the book by Professor G.V. Oppokov, "Numerical Analysis Applied to the Science of Artillery". __5_

Internal ballistics is an applied science possessing a perfectly definite technical content (the study of the motion of a projectile in the bore of a gun and of the laws of burning of powder)

and a perfectly well-defined technical objective: the creation of means for plotting the curve of the speed of the projectile in the bore and for plotting the curve of the pressure of the powder gases in the bore as functions of the path of the projectile and of time.

These curves can be plotted after obtaining suitable tabulations giving the functional relation between the various variable quantities participating in the phenomenon of a shot. The necessary tabulations are obtained by analyzing primary experimental data and those formulas which, in their simplest form, express the relation existing between the initial variable quantities.

The use of numerical analysis constitutes the subject treated in this section of the book. The essence of numerical analysis, its specific features and its principal operations will also be considered here in the proper degree.

CHAPTER 1 - NUMERICAL INTEGRATION BY FINITE DIFFERENCES

(Written by Professor G.V. Oppokov)

1. APPLICATION OF NUMERICAL INTEGRATION TO THE DETERMINATION OF FUNCTIONS

1) Concept of Tabular Functions

That variable function whose numerical values can be chosen arbitrarily is usually designated as the argument or as the independent variable quantity. The remaining variable quantities taking part in the process under consideration are then designated as functions.

Let us assume that a certain independent variable quantity takes on a series of particular values:

$$x_0$$
, x_1 , x_2 ,..., x_i ,..., x_n ,

which are separated from one another by invariable equal intervals, so that:

$$\mathbf{x}_1 - \mathbf{x}_0 - \mathbf{x}_2 - \mathbf{x}_1 - \dots - \mathbf{x}_{i+1} - \mathbf{x}_i - \dots - \mathbf{x}_n - \mathbf{x}_{n-1} - \mathbf{h}$$

This interval is called the step of the argument and is designated by h.

In addition to the step h, the limits of the region \boldsymbol{x}_0 and \boldsymbol{x}_n must be stated in the form of finite numerical values.

Cases in which the step h is variable, or in which the variable x assumes infinitely large values in the region under consideration from \mathbf{x}_0 to \mathbf{x}_n , including the limits of the region themselves, are not considered at all.

Furthermore, let some other variable quantity y also assume a series of particular values:

$$y_0$$
, y_1 , y_2 , ..., y_i , ..., y_n .

each of these particular values corresponding to one of the particular values of the argument x, so that it is always true that:

$$y_i = f(x_i),$$

where:

$$i = 0, 1, 2, \ldots, n - 1, n.$$

615

It follows that the functional relation between the variables y and x is established in the form of a tabulation.

An example of such a relation is presented in Table 4.

		Table	e 4 -	Press	sure C	urve	as a	Funct	ion of	Time	• t.			
t·10 ³ sec	0	4	8	12	16	18		21	22		23.5	24	24.5	25
kg	21	23	26	32	48	63	88	105	128	175	223	274	330	394
cm ²								<u> </u>						
t·10 ³ sec	25.5	26	26.5	27.0	27.5	28	28.5	25	29.5	0	30.5	30.75	31	-
1	466	546		1	857	1	1137	1312	1516	1743	1983	2097	2175	-
p <u>kg</u> cm ²			<u> </u>	! !	1	l			l	1	l	<u> </u>	i	. L

This table is the result of analysis of experimental data obtained by burning in a bomb a weighed sample of strip powder grade SP (1 x 18 x 40 mm) at Δ = 0.201. The values of t were chosen when evaluating the experimental data, so that t is the argument; the values of pressure p were taken from the experimental curve for the chosen values of t. Consequently, the pressure of the powder gases is a function of the time t.

Use has been made in Table 4 of the so-called vertical notation, which we shall adopt henceforth. In this notation the particular values of each of the variable quantities are invariably placed in one row, while each column contains one particular value of each of these variables. This notation is found to be most convenient for the various operations to which the functions stated by the tabulation are subjected.

2) Finite Differences of Various Orders.

Once a function has been given in table form, it is not difficult to find the so-called finite differences of this function or, more

to find the so-called in	in te directione	
	616	STAT

simply, its table of differences, these differences being of various orders. Thus, for a portion of Table 4. we obtain the following table of differences.

		Tabl	e_4-a		,	r 1	
t · 10 ³	23	23.5	24	24.5	25	25.5	
р	175	223	274	330	394	466	
Δp	48	51	56	64	72	-	
Λ^2 p	3	5	8	8	: -	-	1
$\Delta^{3}p$	2	3	U			: -	

Thus on the basis of the table of particular function values it is possible to compute the following differences:

$$\Delta p_0 = p_1 - p_0 = 223 - 175 = 48$$
 $\Delta p_1 = p_2 - p_1 = 274 - 223 = 51$
 $\Delta p_2 = p_3 - p_2 = 330 - 274 = 56$

These differences are called differences of the first order or. more briefly, as the first differences.

From the first differences, the following new differences can be easily found:

$$\Delta^2 p_0 = \Delta p_1 - \Delta p_0 = 51 - 48 = 3$$
 $\Delta^2 p_1 = \Delta p_2 - \Delta p_1 = 56 - 51 = 5$
 $\Delta^2 p_2 = \Delta p_3 - \Delta p_2 = 64 - 56 = 8$

These new differences are now called differences of the second order, or second differences.

From the second differences it is also possible to compute in a similar manner the third differences:

$$\Delta^{3}_{p_{0}} - \Delta^{2}_{p_{1}} - \Delta^{2}_{p_{0}} - 5 - 3 - 2$$

$$\Delta^{3}_{p_{1}} - \Delta^{2}_{p_{2}} - \Delta^{2}_{p_{1}} - 8 - 5 - 3$$

$$\Delta^{3}_{p_{2}} - \Delta^{2}_{p_{3}} - \Delta^{2}_{p_{2}} - 8 - 8 - 0$$

followed by the fourth differences, etc. Generally, by definition, the \mathbf{k}^{th} difference equals:

$$\Delta^{k} y_{1} = \Delta^{k-1} y_{1+1} - \Delta^{k-1} y_{1}$$

Rule. In formulating a table of differences, the number at the left must be subtracted from the number at the right in the same row, and the result recorded in the next lower row under the number at the left.

It is useful to point out that in following this rule the differences with the same subscript (the function itself also being considered as a zero order difference) are automatically recorded in one and the same column.

	Т	able 4	-b.		
х	× _o	x 1	× ₂	*3	×4
у	y _O	у ₁	у ₂	у ₃	у4
Δу	Δy _O	Δy ₁	Δy ₂	Δ y ₃	-
Δ^2 y	$\Delta^2 y_0$	$\Delta^2 y_1$	$\Delta^2 y_2$	-	-
Δ ³ y	$\Delta^3 \mathbf{y}_0$	Δ ³ y ₁	-	-	- "
				1	

In the table of differences, in the column for 1 = 0, for example, are found differences such as:

$$p_0 = 175, \quad \Delta p_0 = 48,$$

 $\Delta^2 p_0 = 3, \quad \Delta^3 p_0 = 2$

etc.

3) Certain Properties of Finite Differences.

1. All differences of any order can be expressed only in terms of particular functions of the function itself.

By definition of the first differences:

$$\Delta y_0 = y_1 - y_0$$
, $\Delta y_1 = y_2 - y_1$, $\Delta y_2 = y_3 - y_2$.

Then, by definition of the second differences:

$$\Delta^{2}y_{0} - \Delta y_{1} - \Delta y_{0} - (y_{2} - y_{1}) - (y_{1} - y_{0}) - y_{2} - 2y_{1} + y_{0};$$

$$\Delta^{2}y_{1} - \Delta y_{2} - \Delta y_{1} - (y_{3} - y_{2}) - (y_{2} - y_{1}) - y_{3} - 2y_{2} + y_{1}$$

STAT

etc. Generally:

$$\Delta^2 y_i = y_{i+2} - 2y_{i+1} + y_i$$

The same procedure can also be applied to differences of higher orders.

2. A constant number can be taken outside the difference symbol of any order and, conversely, can be brought inside this difference symbol.

Let:

$$y = c \cdot f(x)$$
.

where c is a constant number. On the basis of the definition of differences, we have:

$$\Delta y = c \cdot f(x + h) - c \cdot f(x) = c \cdot [f(x + h) - f(x)]^{-1} = c \cdot \Delta f(x).$$

lhus,

$$\Delta \stackrel{?}{=} c \cdot f(x) \stackrel{?}{=} c \cdot \Delta f(x)$$
.

By rewriting this relation from right to left, we obtain:

$$c\Delta f(x) = \Delta / cf(x) / 7$$
.

This is a mathematical formulation of the second part of the assertion under consideration.

3. For an entire function of the kth degree:

$$y = A_0(x - x_i)^k + A_1(x - x_i)^{k-1} + \dots + A_{k-1}(x - x_i) + A_k;$$

the kth differences are identical.

Let us confine ourselves to the case $\phi f(k = 2)$, so that:

$$y = A_0(x - x_1)^2 + A_1(x - x_1) + A_2.$$

Taking:

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{h}_i$$

$$x_{i+2} - x_i + 2h$$
.

$$x_{i+3} = x_i + 3h$$
.

we obtain from the formula for the entire function:

$$y_1 - A_2$$
:
 $A_1 - A_0 h^2 + A_1 h + A_2$.

$$\Delta y_{1} - y_{1+1} - y_{1} - A_{0}h^{2} + A_{1}h$$

$$y_{1+1} - A_0 h^2 + A_1 h + A_2$$

$$\Delta y_{i+1} - y_{i+2} - y_{i+1} - 3A_0h^2 + A_1h;$$

$$y_{1+2} = 4A_0h^2 + 2A_1h + A_2;$$

$$\Delta y_{1+2} - y_{1+3} - y_{1+2} - 5A_0h^2 + A_1h$$
:

$$y_{i+3} = 9A_0h^2 + 3A_1h + A_2$$
:

and finally:

$$\Delta^2 y_i - \Delta y_{i+1} - \Delta y_i - 2A_0 h^2;$$

$$\Delta^2 y_{i+1} - \Delta y_{i+2} - \Delta y_{i+1} - 2A_0 h^2$$
.

The differences $\Delta^2 y_i$ and $\Delta^2 y_{i+1}$ are found to be identical (because A_0 and h are constant numbers), which is what we set out to prove.

4) Determination of Coefficients of an Entire Function.

Let us undertake the task of expressing the coefficients of an entire function in terms of differences of this function. To do this for the case of k = 2, we shall make use of the following relations:

$$y_1 - A_2$$
; $\Delta y_1 - A_0 h^2 + A_1 h$; $\Delta^2 y_1 - 2A_0 h^2$.

Substituting the value of $\boldsymbol{A}_{\boldsymbol{Q}}$ from the last relation, namely:

$$A_0 = \frac{\Delta^2 y_1}{2h^2}.$$

into the equation for Δy_1 , we find:

$$\Delta y_i = \frac{1}{2} \Delta^2 y_i - A_1 h.$$

whence

$$A_1 = \frac{1}{2h} (2\Delta y_1 - \Delta^2 y_1).$$

Thus, finally:

$$A_0 = \frac{\Delta^2 y_1}{2h^2};$$
 $A_1 = \frac{2\Delta y_1 - \Delta^2 y_1}{2h^2};$ $A_2 = y_1$

STAT

The coefficients for an entire third degree function can be found in a similar manner:

$$A_0 = \frac{\Delta^3 y_1}{6h^3};$$
 $A_1 = \frac{\Delta^2 y_1 - \Delta^3 y_1}{2h^2};$

$$A_2 = \frac{6\Delta y_1 - 3\Delta^2 y_1 + 2\Delta^3 y_1}{6h}$$
: $A_3 = y_1$.

These coefficients will be needed subsequently for deriving the formula of the interpolation function. It is of interest to note the fact that the coefficients of the entire function are here expressed in terms of differences with the same subscript i.

The same method may be used to determine these coefficients in terms of differences with different subscripts. Thus, for example, by taking t_i , t_{i-1} , t_{i-2} , t_{i-3} (instead of t_i , t_{i+1} , t_{i-2} , t_{i+3}), we shall find the following relations:

$$A_0 = \frac{\Delta^3 y_{1-3}}{6h^3}$$
: $A_1 = \frac{\Delta^2 y_{1-2} + \Delta^3 y_{1-3}}{2h^2}$:

$$A_2 = \frac{6\Delta y_{i-1} + 3\Delta^2 y_{i-2} + 2\Delta^3 y_{i-3}}{6h};$$
 $A_3 = y_i$.

These relations, which the reader himself will be able to derive directly by using the same method, will find an application in the derivation of working formulas for the numerical integration of equations.

5) The Practical Value of Differences.

STAT

Differences are employed for the following purposes:

a) Determination of intermediate values of a function.

- b) Computation of intermediate values of the argument.
- c) Factual determination of derivatives of various orders of a function.
 - d) Determination of definite integrals.
 - e) Numerical integration of ordinary differential equations.

The universal character of these differences used in the operations enumerated above is reflected in the fact that it is perfectly immaterial whether the function has been stated in the form of a tabulation, a diagram, or a formula.

It has already been established that the k^{th} difference of an entire function of the k^{th} degree is constant. It is not difficult to show that, conversely, if the differences of the k^{th} order of a certain function are constant, the latter is an entire function of the k^{th} degree.

This proposition constitutes the cornerstone of the utilization of differences in all of the operations indicated above, for the following reason. If the formulation of the table of differences of a certain function shows that the k^{th} differences are almost constant, we have the right to replace our function by an entire function of the k^{th} degree and then subject the latter function to all the necessary operations.

It is this entire function which is designated as the interpolation function. A general expression for it must be derived. When k=3, we have:

$$y = A_0(x - x_1)^3 + A_1(x - x_1)^2 + A_2(x - x_1) + A_3.$$

STAT

Let us introduce such a variable & that:

$$x = x_i + \xi h$$

where h is the step. Then:

$$\xi = \frac{x - x_1}{h}.$$

The quantity & is called the coefficient of interpolation.

Using the coefficient of interpolation and the general relations for the coefficients ${\bf A}_0$, ${\bf A}_1$, ${\bf A}_2$, ${\bf A}_3$ of the entire function as derived in Subsection 4, we shall rewrite the formula for the interpolation function as follows:

$$y = \frac{\Delta^3 y_1}{6} \xi^3 + \frac{\Delta^2 y_1 - \Delta^3 y_1}{2} \xi^2 + \frac{6\Delta y_1 - 3\Delta^2 y_1 + 2\Delta^3 y_1}{6} \xi + y_1$$

or, finally, after regrouping the terms:

$$y - y_1 + \xi \cdot \Delta y_1 - \frac{1}{2}\xi(1 - \xi)\Delta^2 y_1 + \frac{1}{6}\xi(1 - \xi)(2 - \xi)\Delta^3 y_1.$$
 (105)

The interpolation function is thus found to be expressed in terms of differences of the given function up to and including those of the third order, with all these differences having one and the same subscript.

In replacing any function (regardless of the manner in which it sa stated) by this interpolation function, it is categorically

imperative to direct attention, on the basis of the table of differences of the given function, to the character of the variation of these differences; it is necessary, and triply necessary, that the kth differences be nearly constant.

Obviously this condition will be satisfied the better the smaller the absolute values of the differences of any order.

Rule. In order to reduce the differences of any order, the step must be reduced.

This rule results from the following relation:

$$\Delta^{k}y = y^{(k)} + h^{k} + h^{k} + \xi = h^{k}(y^{(k)} + \xi),$$

where $y^{(k)}$ is the k^{th} -order derivative of x, and £ is an infinitely small quantity of the highest order. The relation itself, which is derived at the proper stage of the differential computation, represents a generalization of the better-known relation between the increment of a function and its differential:

$$\Delta y = dy + h\xi$$

or:

$$\Delta y = y'h + h \in -h(y' + \epsilon)$$
.

Thus, as the step is halved, the first differences decrease approximately by a factor of two, the second differences decrease by a factor of four, and the third differences decrease by a factor of eight.

626

6) Determination of Intermediate Values of a Given Function.

To determine the intermediate values of a given function, regardless of how it is stated, it is necessary to formulate a table of differences of this function and, having made certain that the second differences are constant or are very small in comparison with the particular values of the function itself, replace it by an entire function of the second degree, i.e., by an interpolation function (105):

$$y - y_i + \xi + \Delta y_i - \frac{1}{2} \xi (1 - \xi) \Delta^2 y_i.$$
 (106)

where y designates the tabular value of the given function corresponding to the next smaller value of the argument nearest to that value of x for which the intermediate value of the function is sought.

Knowing the intermediate value of x for which the intermediate value of the given function is sought, and having obtained from the table of differences of this function the nearest value of x_i , we can determine the value of the coefficient of interpolation ξ and the unknown value of y by means of formula (106).

Example 1. Given the following table of pressure impulses:

Table 4-c								
t · 10 ³	20	21	22					
I	71.0	80.6	92.1					

where the impulses are expressed in $kg \cdot dm^{-2} \cdot sec$, determine the pressure impulse for t = 0.020556.

Solution. Let us formulate the table of differences:

Table 4-d.									
t·103	20	21	22						
I AI A ² I	71.0 9.6 1.9	80.6 11.5	92.1						

Let us find the coefficient of interpolation:

$$\xi = \frac{t - t_1}{h} = \frac{0.020556 - 0.020}{0.001} = 0.556.$$

The desired intermediate value of the function is:

$$I = I_1 + \xi + \Delta I_1 = \frac{1}{2}\xi(1 - \xi)\Lambda^2 I_1 = 71.0 + 0.556 + 9.6 = \frac{1}{2}0.556(1 - 0.556)1.9,$$

since

$$\xi = 0.556$$
; $I_i = 71.0$; $\Delta I_i = 9.6$ and $\Delta^2 I_i = 1.9$

We finally obtain:

$$I = 71.0 \cdot 5.33 - 0.25 \approx 76 \text{ kg} \cdot \text{dm}^{-2} \cdot \text{sec}$$

7) Computation of Intermediate Values of the Argument.

Cases are sometimes encountered in practice of a contrary nature in which an intermediate value y of the function is given and it is required to find the coefficient of interpolation ξ and the intermediate value of the argument x. Such an operation is sometimes called an

628

inverse interpolation.

Then, discarding the last term in formula (106), we obtain as a first approximation:

$$\xi_1 = \frac{y - y_1}{\Delta y_1}.$$

As a second approximation, we find for ξ from the same formula (106):

$$\xi = \frac{y - y_1}{\Delta y_1 - \frac{1}{2}(1 - \xi)\Delta^2 y_1}$$

Let us assume in the right-hand side of the above expression $\xi=\xi_1$, then in the second approximation:

$$\xi_2 = \frac{y - y_1}{\Delta y_1 - \frac{1}{2}(1 - \xi_1)\Delta^2 y_1}$$

where $\boldsymbol{\xi}_1$ is already known from the first approximation.

Sometimes the following expression is used as the third approximation:

$$\xi_3 = \frac{y - y_1}{\Delta y_1 - \frac{1}{2}(1 - \xi_2)\Delta^2 y_1 + \frac{1}{6}(1 - \xi_2)(2 - \xi_2)\Delta^3 y_1}$$

This formula can be easily obtained from the general expression for the interpolation function (105) by placing ξ outside the parentheses, determining ξ , and substituting in the right-hand side $\xi = \xi_2$ known from the second approximation.

The desired value of x will be:

$$x = x_1 + \xi_2^h$$
 or $x = x_1 + \xi_3^h$.

Example 2. We have the following table for the relative portion ψ of the charge:

	Table	4-e.	
$\left[t\cdot 10^3\right]$	20	21	22
Ψ	0.034	0.042	0.054

It is desired to find the value of t corresponding to the inflow of gases ψ = 0.038.

Solution. Let us formulate the following table of differences:

	Table	4-f.	
t · 103	20	21	22
Ψ ΔΨ Δ ² Ψ	0.034 0.008 0.004	0.042 0.012 -	υ.υ 54 - -

We obtain as a first approximation:

$$\xi_1 = \frac{\psi - \psi_1}{\Delta \psi_1} = \frac{0.038 - 0.034}{0.008} = \frac{1}{2}.$$

We find as a second approximation:

630

$$\xi_{2} = \frac{\psi - \psi_{1}}{\Delta \psi_{1} - \frac{1}{2}(1 - \xi_{1})\Delta^{2}\psi_{1}} = \frac{0.038 - 0.034}{0.008 - \frac{1}{2} \cdot \frac{1}{2}0.004} = \frac{4}{7} = 0.556.$$

The desired value of the argument is:

$$t - t_i + \xi_2 h = 0.020 + 0.556(0.024 - 0.023) = 0.020556.$$

8) Numerical Differentiation of Functions.

For this operation it is necessary, first of all, to formulate a table of differences of the given function and to make absolutely certain that the differences of the third order are nearly constant. This fact makes it possible to replace the given function (regardless of the manner in which it is stated) by the interpolation function (105):

$$y - y_i + \xi + \Delta y_i - \frac{1}{2} \xi (1 - \xi) \Delta^2 y_i + \frac{1}{6} \xi (1 - \xi) (2 - \xi) \Delta^3 y_i$$

From this we find the desired derivative:

$$\frac{dy}{dx} = \frac{d\xi}{dx} \Delta y_{1} + \frac{1}{2} \left(2\xi \frac{d\xi}{dx} - \frac{d\xi}{dx} \right) \Delta^{2} y_{1} + \frac{1}{6} \left(2 \frac{d\xi}{dx} - 6\xi \frac{d\xi}{dx} + 3\xi^{2} \frac{d\xi}{dx} \right) \Delta^{3} y_{1},$$

keeping in mind that the differences y_i , Δy_i , $\Delta^2 y_i$, and $\Delta^3 y_i$ are certain constant numbers.

We place the derivative $\frac{d\xi}{dx}$ outside the parentheses:

$$\frac{dy}{dx} = \frac{d\xi}{dx} \left[\Delta y_i + \frac{1}{2} (2\xi - 1) \Delta^2 y_i + \frac{1}{6} (2 - 6\xi + 3\xi^2) \Delta^3 y_i \right];$$

But

$$\xi = \frac{x - x_i}{h};$$

$$\frac{d\xi}{dx} = \frac{1}{h}.$$

Therefore, finally:

$$\frac{dy}{dx} = \frac{1}{h} \left[\Delta y_i \cdot \left(\xi - \frac{1}{2} \right) \Delta^2 y_i \cdot \left(\frac{1}{2} \xi^2 - \xi - \frac{1}{3} \right) \Delta^3 y_i \right].$$

Such is the general working formula for numerical differentiation by means of differences of the given function. It permits finding the value of the derivative at any value of the independent variable x (i.e., at any ξ). This formula assumes its simplest form at $\xi = 0$:

$$\frac{dy}{dx} - \frac{1}{h} \left[\Delta y_i - \frac{1}{2} \Delta^2 y_i + \frac{1}{3} \Delta^3 y_i \right] .$$

This relation permits determining the derivative only for those values of the argument which appear in the table of differences of the given function (i.e., for $\xi = 0$), by applying the subscript i successively to each column of this table.

If the step h is not a prime number (for example, $\frac{557}{738}$), the constant h may be introduced under the sign of the difference of any desired order. Therefore, upon introducing into the process the auxiliary function:

$$\Phi = \frac{1}{h}y,$$

we obtain

$$\Delta \Phi_{_{1}} = \frac{1}{h} \Delta y_{_{1}}; \quad \Delta^{2} \Phi_{_{1}} = \frac{1}{h} \Delta^{2} y_{_{1}}; \quad \Delta^{3} \Phi_{_{1}} = \frac{1}{h} \Delta^{3} y_{_{1}},$$

and the working formula for numerical differentiation acquires its final form:

$$\left(\frac{dy}{dx}\right)_1 - \Delta \Phi_1 - \frac{1}{2} \Delta^2 \Phi_1 + \frac{1}{3} \Delta^3 \Phi_1.$$

Example 3. We have the following table for ψ , the relative portion of the charge:

Table 4-g.									
t.10 ³	21	21.5	22.0	22.5					
ψ·10 ³		47	54	64					

It is desired to find the rate of gas formation $\frac{d\psi}{dt}$ at the instant t = 0.0210.

Solution. Let us formulate the following table of differences:

633

Table 4-h.									
t·10 ³	21	21.5	22.0	22.5					
ψ·10 ³	42	47	54	64					
ΔΨ · 103	5	7	10						
Δ 2ψ· 103	2	3							
Δ34.103	1								
	1	1	1	1					

Since the given values are $t_i \cdot 10^3$ = 21 and $\psi_i \cdot 10^3$ = 42, it follows that:

$$\Delta(\psi_1 \cdot 10^3) = 5; \ \Delta^2(\psi_1 \cdot 10^3) = 2; \ \Delta^3(\psi_1 \cdot 10^3) = 1.$$

The first of the working formulas for the derivative $\frac{dy}{dx}$ will make it possible to determine the rate of gas formation (h = $0.5 \cdot 10^3$):

$$\frac{d(\psi \cdot 10^3)}{dt} = \frac{1}{h} \left[\Delta(\psi_1 \cdot 10^3) - \frac{1}{2} \Delta^2(\psi_1 \cdot 10^3) - \frac{1}{3} \Delta^3(\psi_1 \cdot 10^3) \right].$$

from which:

$$\left(\frac{d\psi}{dt}\right)_{t=0.021} = \frac{5-1}{0.5} = 8 \frac{1}{sec}$$

9) Computation of Definite Integrals.

Fig. 152 - Determination of $\int_{a}^{b} y dx$ as a function of x from the curve y = f(x).

If it is necessary to find any definite integral:

$$Y = \int_{a}^{b} y dx.$$

where the limits of integration a and b are finite, this operation is equivalent to computing the shaded area shown in fig. 152, which is limited at the top by a curve representing the function whose integral is to be found. To compute this area Y, the usual method is applied first: the interval of integration (b - a) must be divided into n equal portions, lines normal to the O-x axis are then erected at the points of division, and the unknown area is divided into elementary areas:

$$\Delta Y_0$$
, ΔY_1 ,..., ΔY_i ,..., ΔY_{n-1} .

The problem is then reduced to the determination of these elementary areas. For this purpose it is sufficient to replace the portion of the curve $f(x_i)$ corresponding to the elementary area STAT

 ΔY_{i} by a cubic parabola, keeping in mind that:

$$\Delta Y_{i} = \int_{x_{i}}^{x_{i+1}} y dx.$$

This replacement is accomplished by means of the interpolation function:

$$y = y_1 + \xi \cdot \Delta y_1 = \frac{1}{2} \xi (1 - \xi) \Delta^2 y_1 + \frac{1}{6} \xi (1 - \xi) (2 - \xi) \Delta^3 y_1,$$

where

$$x = x_1 + \xi h$$

so that:

$$dx = hd\xi; \quad \xi_{i} = 0; \quad \xi_{i+1} = 1.$$

Consequently, after replacing the variables, we have:

$$\Delta Y_{i} = h \int_{0}^{1} \left[y_{i} + \xi \cdot \Delta y_{i} - \frac{1}{2} \xi (1 - \xi) \Delta^{2} y_{i} + \frac{1}{6} \xi (1 - \xi) (2 - \xi) \Delta^{3} y_{i} \right] d\xi.$$

We integrate the right-hand side of this relation keeping in mind the fact that y_i , Δy_i , $\Delta^2 y_i$ and $\Delta^3 y_i$, being particular values of the corresponding differences, are constant numbers:

$$\Delta Y_{1} = h \left| y_{1}^{\xi} + \frac{1}{2} \xi^{2} \cdot \Delta y_{1} - \frac{1}{2} \left(\frac{\xi^{2}}{2} - \frac{\xi^{3}}{3} \right) \Delta^{2} y_{1} + \frac{1}{6} \left(\xi^{2} - \xi^{3} + \frac{\xi^{4}}{4} \right) \Delta^{3} y_{1} \right|,$$

from which, after substituting the extreme values of ξ , we obtain:

$$\Delta Y_1 = h \left(y_1 + \frac{1}{2} \Delta y_1 - \frac{1}{12} \Delta^2 y_1 + \frac{1}{24} \Delta^3 y_1 \right).$$

This is the working formula employed in finding a definite integral by the method of numerical integration.

To determine the unknown integral, it remains necessary to summate gradually and successively the individual elementary areas:

$$\begin{aligned} \mathbf{Y}_1 &= \mathbf{Y}_0 + \Delta \mathbf{Y}_0; & \mathbf{Y}_1 &= \mathbf{Y}_{1-1} + \Delta \mathbf{Y}_{1-1}; \\ \\ \mathbf{Y}_2 &= \mathbf{Y}_1 + \Delta \mathbf{Y}_1; & \cdots \\ & \cdots \\ & & \mathbf{Y}_n &= \mathbf{Y}_{n-1} + \Delta \mathbf{Y}_{n-1}. \end{aligned}$$

Example 4. We have the following table for a function to be integrated:

Table 4-1.							
t·10 ³	8	12	16	20			
p, kg·cm ⁻²	26	32	48	88			

It is desired to find the elementary area ΔI_{i} , the subscript i being applied to the first column.

Solution. Let us formulate the following table of differences:

T	ble 4-	<u>j.</u>			1
t·103	8	12	16	20	STAT
р	26 6	32 16	48	88	SIAI
1	637	;	•	•	

Table 4	-j (Cont	'd.)	
Δ ² p	10	24	-	-
Δ ³ p	14	-	-	-
1			L	L

Since:

$$h = 4 \cdot 10^{-3}$$
; $y_i = 26$; $\Delta y_i = 6$; $\Delta^2 y_i = 10$; $\Delta^3 y_i = 14$,

the elementary area under consideration will be:

$$\Delta Y_{1} = h \left(y_{1} + \frac{1}{2} \Delta y_{1} - \frac{1}{12} \Delta^{2} y_{1} + \frac{1}{24} \Delta^{3} y_{1} \right) =$$

$$= 4 \cdot 10^{-3} \left(26 + 3 - \frac{10}{12} + \frac{14}{24} \right) \approx 4 \cdot 10^{-3} (26 + 3 - 1 + 1) \approx$$

$$\approx 4 \cdot 10^{-3} \cdot 29 \approx 0.116 \text{ kg} \cdot \sec \cdot \csc^{-2} \approx 11.6 \text{ kg} \cdot \sec \cdot d^{-2}.$$

10) Determination of Pressure Impulse from a Pressure-Bomb Test.

As is already known from the preceding course in internal ballistics, the pressure impulse is expressed by the following relation:

It is clear that in order to determine it from a bomb test yielding directly the (p, t) curve, it is necessary to compute a definite integral, for which the pressure of the powder gases p is the function being integrated and the time t is the independent

638

variable. This can be accomplished of course by means of one of the usual methods of quadratures. However, it is usually necessary to have a curve for the pressure impulse as a function of the gas inflow ψ ; in other words, in addition to the pressure impulse I_{K} at the end of the burning of the powder, it also becomes necessary to find a series of intermediate values for this quantity, which will correspond to intermediate values of the gas inflow. This problem is solved most simply by the method of numerical integration.

Example 5. Given the pressure curve (μ , t) represented by Table 4, find the correlation (I, ψ) by means of the table correlating ψ with t.

		Tab	le 4-1	- E	cperi	nenta	l lab	le of	Чав	a Fu	nct 101	n of 1	t .	,
	t · 10 ³	o	4	8	12	16	18	20	21	22	23	23.5	24	24.5
	ψ· 10 ³	0	2	3	6	14	22	34	42	54	79	101	127	155
1	t · 10 ³	25	25.5	26 .0	26.5	27.0	27.5	28.0	28.5	29.0	29.5	30.0	30.5	31.0
	ψ·10 ³	186	221	260	304	354	409	470	53 9	619	711	813	919	1000
İ	, 20	- 30												

Solution. We perform all computations on the working form in Table 5, without considering third differences, and designating:

$$\Sigma = y + \frac{1}{2}\Delta y - \frac{1}{12}\Delta^2 y = p + \frac{1}{2}\Delta p - \frac{1}{12}\Delta^2 p$$
:

from which it follows that:

$$\Delta I_i = \Delta Y_i = h \left(y_i + \frac{1}{2} \Delta y_i - \frac{1}{12} \Delta^2 y_i \right) = h \cdot \Sigma.$$

639

		**************************************	TO STATE TO ASSESSED TO															
							Table	5 – Com	putation	of Pre	essure l	impulse	ı.					
1	t-10 ³	0	4	8	12	16	20			22	20	21	22	23	24	23	23.5	24
2	p Ap	21 2	23	26 6	32 16	48 40	88	48 6 15 2		128	88 17	105 23	128 47	175 99	274	175 48	223 51	274 56
4	Δ ² p	1	3	10	24	<u> -</u>	-	10 1	5 -		6	24	52	-	-	3	5	8
5	p	21	23	26	32	-	-	48 6	3 -	-	88	105	128	-	-	175	223	274
6	$\frac{1}{2}\Lambda p$	1	2	3	8	-	-	8 1	2 -	-	8	12	24	-	-	24	26	28
7	$-\frac{1}{12}\Delta^2$	P O	0	-1	-2	-	-	-1 -	1 -	-	0	-2	-4	-	-	0	0	-1
8	Σ	22	25	28	38	-	-	55 7.	4 -	-	96	115	148	-	-	199	249	301
9 10	$\Delta I = h$	Σ 8.8 0	10.0	11.2 18.8	15.2 30.0	45.2	-	11.0 45.2	4.8 - 6.2 71.0	o -	9.6 71.0	11.5	14.8 2.1	106.9	-	10.0 106.9	12.4 116.9	15.0 129.3
Co	tinued			т	,	1	,		7		,	· · · · · ·		r			,	M
1	t·10 ³	24.5	25	25.5	26	26.5	27	27.5	28	28.5	29	29.5	30	30.5	31	30.5	30.75	31
2	р Д р	330 64	394 72	466 80	546 90	636 103	739 118	857 133	990 147	1137 175	1312 204	1516 227	1743 240	1983 192	2175	1983 114	2097 78	2175
4	Δ ² p	8	8	10	13	15	15	14	28	29	23	13	-18	-	-	-36	-	-
5	р	330	394	466	546	636	739	857	990	1137	1312	1516	1743	-	-	1983	2097	-
6	1 ∆p	32	36	40	45	52	59	66	74	88	102	114	120	-	-	57	39	-
7	$-\frac{1}{12}\Delta^2p$	-1	-1	-1	-1	-1	-1	-1	-3	-2	-2	-1	4	-	-	3	(3)	-
8	Σ	361	429	505	590	687	797	922	1062	1223	1412	1629	1867	-	-	2043	2139	-
9	ΔΙ = hΣ	18.0	21.4	25,2	29.5	34.4	39.8	46.1	53.1	61.2	70.6	81.4	93.4		-	51.1	53.5	- e23 0

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

	Arm: Taken	***************************************																
gr.		ora i ma m a ndania	50 7.69H (A.)															
						•	rable :	5 – Com	utation	of Pre	ssure Is	pulse	ı.					
ī	t-10 ³	0	4	8	12	16	20	16 18	3 20	22	20	21	22	23	24	23	23.5	24
2 3	р Д р	21 2	23	26 6	32 16	48 40	88	48 63 15 23		128	88 17	105 23	128 47	175 99	274	175 48	223 51	274 56
4	Δ ² p	1	3	10	24	-	-	10 1	5 -	<u> </u>	6	24	52	-	-	3	5	سار
5	$\frac{p}{\frac{1}{2}}\Delta p$	21	23	26	32 8	-	-	48 61 8 11		-	88 8	105 12	128 24	-	-	175 24	223 26	274 28
7	$-\frac{1}{12}\Delta^2$		0	-1	-2	-	-	-1 -		-	0	-2	-4	-	-	o	0	- 1
8	Σ	22	25	28	38	-	-	55 7.	4 -	-	96	115	148	-	-	199	249	301
9	ΔI = h	Σ 8.8 0	10.0	11.2	15.2 30.0	45.2		11.0 L	4.8 - 6.2 71.	o -	9.6 71.0	11.5 80.6	14.8 72.1	- 106.9	- -	10.0 106.9	12.4 116.9	15.0 129.3
Cor	tinued			J				· · · · · · · · · · · · · · · · · · ·			·	,	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	·	1		~
1	t·103	24.5	25	25.5	26	26.5	27	27.5	28	28.5	29	29.5	30	30.5	31	30.5	30.75	31
2	р Д р	330 64	394 72	466 80	546 90	636 103	739 118	857 133	990 147	1137 175	1312 204	1516 227	1743 240	1983 192	2175	1983 114	2097 78	2175
4	Δ ² p	8	8	10	13	15	15	14	28	29	23	13	-18	-	<u> -</u>	-36	-	-
5	p 1 An	330 32	394 36	466 40	546 45	636 52	739 59	857	990 74	1137	1312	1516	1743	-	-	1983 57	2097 39	-
7	$-\frac{1}{12}\Delta^{2}p$		-1	-1	-1	-1	-1	-1	4	-3	-2	-1	4	-	-	3	(3)	-
	+	361	129	505	590	687	797	922	1062	1223	1412	1629	1867	-	•	2043	2139	-
9	ΔI = hΣ I	18.0 144.3	21.4 162.3	25.2 183.7	29.5 208.9	34.4 238.4	39.8 272.8	46.1 312.6	53.1 358.7	61.2 411.8	70.6 473.0	81.4 543.6	93.4 625.0	0 718.	4 -	51.1 718.4	53.5 769.5	823.0
											4				1	-		

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

1	420	-	4	Sanitiz	zed Copy A	approved for	or Kelea	se 2010/10	/29 : CIA-RE	P81-U104	SKUU1100	J4UUU1-0	22	23	24	23	23.5	24
2	P Δp	21 2	23	26 6	32 16	48	88	48 6 15 2		128	88 17	105 23	128 47	175 99	274	175 48	223 51	274 56
4	Δ ² p	1	3	10	24	-	-	10 1	5 -	_	6	24	52	-	-	3	5	
5	P	21	23	26	32	-	-	48 6	3 -	•	88	105	128	-	-	175	223	274
6	1 ∆p	1	2	3	8	-	-	8 1	2 -	-	8	12	24	-	-	24	26	28
7	$-\frac{1}{12}\Delta^2$	p O	0	-1	-2	-	-	-1 -	1 -	-	0	-2	-4	-	-	0	0	- 1
8	Σ	22	25	28	38	-	-	55 7	4 -	-	96	115	148	-	-	199	249	301
9 10	VI # PZ	8.8	10.0	11.2	15.2 30.0	45.2	-		4.8 - 6.2 71.	- 1	9.6 71.0	11.5 80.6	14.8 92.1	_ 106.9		10.0 106.9	12.4 116.9	15.0 129.
Con	tinued										•						,	
1	t·103	24.5	25	25.5	26	26.5	27	27.5	28	28.5	29	29.5	30	30.5	31	30.5	30.75	31
2 3	р Д р	330 64	394 72	466 80	546 90	636 103	739 118	857 133	990 147	1137 175	1312 204	1516 227	17 43 240	1983 192	2175	1983 114	2097 78	2175
4	Δ ² p	8	8	10	13	15	15	14	28	29	23	13	-18	-	-	-36	-	-
5	р	330	394	466	546	636	739	857	990	1137	1312	1516	1743	-	-	1983	2097	-
6	1 ∆p	32	36	40	45	52	59	66	74	88	102	114	120	-	-	57	39	-
7	- 1/12 Δ ² p	-1	-1	-1	-1	-1	-1	-1	-2	-2	-2	-1	4	-	-	3	(3)	_
	Σ	361	429	505	590	687	797	922	1062	1223	14,12	1629	1867	-	-	2043	2139	-
8										1	1	i	1	1	1	11	1	1

The computations in Table 5 are conducted in rows, proceeding from left to right in each row and downward from one row to the next, in the following manner.

- 1) The first row is filled with values of the argument, $t \cdot 10^3$.
- 2) The numbers for the pressure are taken from Table 4 (page 616).
- 3) From each number in the second row there is subtracted the preceding number in the same row, and the result is written under the left-hand number of this pair:

4) The numbers in the fourth row are obtained in the same manner as in the preceding row:

$$3 - 2 - 1$$
; $6 - 3 - 3$; etc.

- 5) The numbers of the second row are repeated.
- 6) The numbers in the third row are halved.

- 7) The numbers in the fourth row we divided by 12 and written with the opposite sign.
 - 8) The numbers in the three preceding rows are added.
- 9) The numbers in the eighth row are multiplied by the step h, the decimal point being correctly placed (cf. Example 4) to convert $kg \cdot sec \cdot cm^{-2}$ into $kg \cdot sec \cdot dm^{-2}$.
- 10) To obtain the next succeeding value of I_i , it is necessary to add to the preceding value of I_{i-1} the corresponding increment ΔI_{i-1} :

$$I_{i} - I_{i-1} + \Delta I_{i-1}$$

or, in other words, it is necessary to add the two numbers in the ninth and tenth rows of the preceding column:

THE RESERVE OF THE PARTY OF THE

By taking the values for the gas inflow ψ and the pressure impulse 1 corresponding to the same instants t, it is easy to obtain the desired correlation between I and ψ (cf. Table 6).

	logire	d cor	relat	ion b	Se face		•		T-01	,				
tne o	iearr.			- 4 4 0 1	o beti	veen I	and	Y 101		7	T			
7	Table	6 - 9	Corre	2110	7				107	117	129	144	162	
		1	1			71	81	32			100	155	186	۱
0	9	19	30			24	42	54	79	101	121	133		1
	2	3	6	14	22	37			L		 		1	1
U	-	_				-		T	625	718	770	823	1	۱
	1	1	073	313	359	412	473	544				1.000	.1	۱
184	209	238	213	1020	1	-20	614	711	813	919	967	1000	<u> </u>	1
	000	304	354	409	470	539	1013	<u> </u>			the			ļ
221	260	100.				ently	for	the 80	oluti	on or	CHC			
	0 0 184	Table 0 9 0 2	Table 6 - 0 0 9 19 0 2 3 184 209 238	Table 6 - Correl 0 9 19 30 0 2 3 6 184 209 238 273	Table 6 - Correlation 0 9 19 30 45 0 2 3 6 14 184 209 238 273 313	Table 6 - Correlation Section 0 9 19 30 45 56 0 2 3 6 14 22 184 209 238 273 313 359 184 209 470 470	Table 6 - Correlation Section 0 9 19 30 45 56 71 0 2 3 6 14 22 34 184 209 238 273 313 359 412	0 9 19 30 45 56 71 81 0 2 3 6 14 22 34 42 184 209 238 273 313 359 412 473	Table 6 - Correlation Section 0 9 19 30 45 56 71 81 92 0 2 3 6 14 22 34 42 54 184 209 238 273 313 359 412 473 544 184 209 238 273 313 359 412 473 544	Table 6 - Correlation 30 0 9 19 30 45 56 71 81 92 107 0 2 3 6 14 22 34 42 54 79 184 209 238 273 313 359 412 473 544 625 184 209 238 273 313 359 619 711 813	Table 6 - Correlation Section 0 9 19 30 45 56 71 81 92 107 117 0 2 3 6 14 22 34 42 54 79 101 184 209 238 273 313 359 412 473 544 625 718 184 209 238 273 313 359 412 473 544 625 718 184 209 238 273 313 359 619 711 813 919	Table 6 - Correlation Section 0 9 19 30 45 56 71 81 92 107 117 129 0 2 3 6 14 22 34 42 54 79 101 127 184 209 238 273 313 359 412 473 544 625 718 770 184 209 238 273 313 359 619 711 813 919 967	Table 6 - Correlation Section 0 9 19 30 45 56 71 81 92 107 117 129 144 0 9 19 30 45 56 71 81 92 107 117 129 144 0 2 3 6 14 22 34 42 54 79 101 127 155 184 209 238 273 313 359 412 473 544 625 718 770 823 184 209 238 354 409 470 539 619 711 813 919 967 1000	Table 6 - Correlation Section 71 81 92 107 117 129 144 162 0 9 19 30 45 56 71 81 92 107 117 129 144 162 0 2 3 6 14 22 34 42 54 79 101 127 155 186 184 209 238 273 313 359 412 473 544 625 718 770 823 184 209 238 273 313 359 619 711 813 919 967 1000

Table 6 will be needed subsequently for the solution of the principal problem of internal ballistics (determination of the curves for the speed of the projectile and for the pressure of the powder gases as a function of the path of the projectile). This solution must be prepared by a discussion of the necessary theory, which will be undertaken in the next section.

2. NUMERICAL INTEGRATION OF DIFFERENTIAL EQUATIONS

11) Numerical Integration of First-Order Equation We have such an equation in its general form:

$$F(y, y', x) = 0.$$

It is composed of the following elements: the independent variable x, the unknown function y, and its first derivative y'. It is necessary, first of all, to determine this derivative from the general equation:

$$y' = f(y, x).$$

It is this equation which is solved by the method of numerical integration, regardless of the form of the function which constitutes its right-hand side. In practice, what is usually found is not the total integral of the last equation (in which case, of course, numerical integration cannot be employed), but, rather, a partial integral, in consequence of which it is necessary to indicate the "initial conditions", i.e., the values of \mathbf{y}_0 and \mathbf{x}_0 . In addition, the value of $\mathbf{x}_{\mathbf{n}}$ at the end of the finite region of integration must also be known. Under these conditions the desired function will be:

$$y = \int_{x_0}^{x_n} y' dx$$

or

$$y = \int_{x_0}^{x_n} f(y, x) dx.$$

The problem is consequently reduced to the finding of a definite integral whose characteristic feature is such that the part of the function to be integrated is played by the derivative of the function. $\underset{\mbox{\scriptsize STAT}}{\text{\scriptsize FLAT}}$ It would seem that, as on the previous occasion involving the finding of a definite integral, it might be possible to perform computations by rows and to make use of a working formula containing differences of an auxiliary function with the same subscript i. In actual practice, however, this procedure cannot be adopted. As a matter of fact, the last formula shows that the function to be integrated includes the original function itself, and we thus obtain a "vicious circle:" in order to determine the particular value y_1 of the function, we must know the particular value φ_1 , and in order to determine this particular value of the auxiliary function:

$$\Phi_i = f(y_i, x_i)h$$

we must have the value of y_i which is a constituent of the auxiliary function.

It is now clear that in performing numerical integration of the equations it is not possible to perform computations by rows, it being necessary instead to proceed gradually, step by step, performing the required computations downward along each column and to the right from one column to the next.

Let us further assume that the values ϕ_{i-3} , ϕ_{i-2} , ϕ_{i-1} and ϕ_i of the auxiliary function have already been found. With their aid it is possible to compute the following differences.

644

		Table	6-a.			1
	4	+ ₁₋₃	Ф ₁₋₂	Φ ₁₋₁	• 1	
	ΔΦ	ΔΦ ₁₋₃	ΔΦ ₁₋₂	∆ \$ i −1		
1	Δ ² Φ	Δ ² Φ ₁₋₃	Δ ² Φ ₁₋₂		-	
	$\Delta^{3}\Phi$	Δ ³ Φ ₁₋₃				
				<u> </u>	ــــــــــــــــــــــــــــــــــــــ	١

The above table shows that in order to determine Δy_1 , it is not possible to make use of the following formula for determining definite integrals:

$$\Delta y_1 = \Phi_1 + \frac{1}{2} \Delta \Phi_1 - \frac{1}{12} \Delta^2 \Phi_1 + \frac{1}{24} \Delta^3 \Phi_1$$

because the differences $\Delta \Phi_1$, $\Delta^2 \Phi_1$ and $\Delta^3 \Phi_1$ are not yet contained in the table. Consequently, it becomes necessary to derive an additional formula containing the differences:

$$\Delta \phi_{i-1}$$
, $\Delta^2 \phi_{i-2}$, $\Delta^3 \phi_{i-3}$,

already contained in the table.

For this purpose, as on the previous occasion, we shall replace the function to be integrated, y' = f(y, x), by the following interpolation function:

$$y' = A_0(x - x_1)^3 + A_1(x - x_1)^2 + A_2(x - x_1) + A_3$$

and then:

STAT

$$= \left| \frac{1}{4} A_0 (x - x_1)^4 + \frac{1}{3} A_1 (x - x_1)^3 + \frac{1}{2} A_2 (x - x_1)^2 + A_3 (x - x_1) \right|_{x_1}^{x_{1+1}},$$

whence

$$\Delta y_1 = \frac{1}{4} A_0 h^4 + \frac{1}{3} A_1 h^3 + \frac{1}{2} A_2 h^2 + A_3 h$$

because

$$x_{i+1} - x_i - h.$$

In contrast with the preceding case, we shall substitute here the following values for the coefficients:

$$A_{0} = \frac{\Delta^{3}y_{1-3}^{+}}{6h^{3}}; \qquad A_{1} = \frac{\Delta^{2}y_{1-2}^{+} + \Delta^{3}y_{1-3}^{+}}{2h^{2}};$$

$$A_{2} = \frac{6\Delta y_{1-1}^{+} + 3\Delta^{2}y_{1-1}^{+} + 2\Delta^{3}y_{1-3}^{+}}{6h}; \qquad A_{3} = y_{1}^{+},$$

which are expressed in terms of differences of the function y under the integral sign provided with the required subscripts.

Following obvious transformations, we obtain:

$$\Delta y_i = h(y_i' + \frac{1}{2}\Delta y_{i-1}' + \frac{5}{12}\Delta^2 y_{i-2}' + \frac{3}{8}\Delta^3 y_{i-3}')$$

It is usually convenient to make use of the following auxiliary function:

the derivative y' being computed in accordance with the given equation:

$$y' - f(x, y)$$
.

Then:

$$\mathbf{h} \mathbf{y}_{i}^{*} = \boldsymbol{\Phi}_{i}; \quad \mathbf{h} \Delta \mathbf{y}_{i-1}^{*} = \Delta \boldsymbol{\Phi}_{i-1}; \qquad \mathbf{h} \Delta^{2} \mathbf{y}_{i-2}^{*} = \Delta^{2} \boldsymbol{\Phi}_{i-2}; \qquad \mathbf{h} \Delta^{3} \mathbf{y}_{i-3}^{*} = \Delta^{3} \boldsymbol{\Phi}_{i-3},$$

and the working formula for the numerical integration of ordinary differential equations of the first order will assume the following form:

$$\Delta y_i = \Phi_i + \frac{1}{2} \Delta \Phi_{i-1} + \frac{5}{12} \Delta^2 \Phi_{i-2} + \frac{3}{8} \Delta^3 \Phi_{i-3}$$

This formula now includes differences of the auxiliary function ϕ provided with precisely those subscripts which are required in accordance with the table of difference presented above.

It will be seen from the same table that in order to determine Δy_1 , it becomes necessary to take differences from different columns, which, of course, is inconvenient. For this reason it is desirable

647

STAT

to modify the system of writing the differences in such a manner as to have in the same column differences with different subscripts, namely:

Table 6-b.											
Φ	Ф ₁₋₃	Ф _{і-2}	Ф ₁₋₁	Ф _i							
ΔΦ		$\Delta \Phi_{1-3}$	ΔΦ ₁₋₂	$\Delta\Phi_{i-1}$							
Δ ² Φ			$\Delta^2 \Phi_{i-3}$	Δ ² Φ ₁₋₂							
Δ ³ φ				$\Delta^3 \Phi_{1-3}$							
	ΔΦ Δ ² Φ	Φ Φ ₁₋₃ ΔΦ Δ ² Φ	$\begin{array}{c cccc} \bullet & \bullet_{1-3} & \bullet_{1-2} \\ \hline \Delta \Phi & & \Delta \Phi_{1-3} \\ \Delta^2 \Phi & & & \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							

In such a procedure each column will contain those differences which are necessary for the application of the new working formula for numerical integration.

Rule for writing new differences. From the right-hand number in a row there is subtracted the left-hand number in the same row, but the result is written under the right-hand number.

Finally, from the last table of differences there follows the most disagreeable characteristic feature of the numerical integration of equations: in order to determine Δy_1 , it is necessary to know the differences:

$$\Delta \Phi_{i-1}$$
, $\Delta^2 \Phi_{i-2}$, $\Delta^3 \Phi_{i-3}$

i.e., to have the following particular values of the function:

$$\phi_{i-1}$$
, ϕ_{i-2} , ϕ_{i-3} .

These will become known in the course of the process; but at the start of the integration only one particular value of this function

648

namely Φ_0 , is known from the originally stated equation for y'. In order to find

 Φ_{-1} , Φ_{-2} , Φ_{-3}

the most commonly used is the method of successive approximations.

The essence of this method resides in the fact that, at the start of the computations, there is adopted a gradual and stepwise advance, each new approximation permitting one additional step, in which those differences that have already appeared earlier are utilized.

There exist several variants of this method, one of which, the most exact one, can be best studied by the aid of a concrete example.

Example 6. Solve by the method of numerical integration the equation:

over the interval 0; 0.5, with a step of h = 0.1, if y = 1 when x = 0.

Solution. All the computations are presented in Table 7.

STAT

649

namely Φ_0 , is known from the originally stated equation for y'. In order to find

$$\Phi_{-1}$$
, Φ_{-2} , Φ_{-3}

the most commonly used is the method of successive approximations.

The essence of this method resides in the fact that, at the start of the computations, there is adopted a gradual and stepwise advance, each new approximation permitting one additional step, in which those differences that have already appeared earlier are utilized. There exist several variants of this method, one of which, the most exact one, can be best studied by the aid of a concrete example.

Example 6. Solve by the method of numerical integration the equation:

over the interval 0; 0.5, with a step of h = 0.1, if y = 1 when x = 0.

Solution. All the computations are presented in Table 7.

649

STAT

namely $\Phi_0^{},\;$ is known from the originally stated equation for y'. In order to find

$$\Phi_{-1}$$
, Φ_{-2} , Φ_{-3}

the most commonly used is the method of successive approximations.

The essence of this method resides in the fact that, at the start of the computations, there is adopted a gradual and stepwise advance, each new approximation permitting one additional step, in which those differences that have already appeared earlier are utilized. There exist several variants of this method, one of which, the most exact one, can be best studied by the aid of a concrete example.

Example 6. Solve by the method of numerical integration the equation:

over the interval 0; 0.5, with a step of h = 0.1, if y = 1 when x = 0.

Solution. All the computations are presented in Table 7.

649

makin 7 - Integration of Equation y' = x - 1		~	Integration	of	Equation	٣¹	-	x	-	y.
--	--	---	-------------	----	----------	----	---	---	---	----

Action Cont.			appa	First cocinețion		Secon approxima	d tion ————	Thir	d approxi	mation			
	13 3	'	1,000	0.900	0 1.000								
	2 Ay =	Σ	1	- 1	-0.090	1		-0.090 1.000	1			1.0000	- 1
]	1 3 4	³ &							-	-		0 0003	+
1	12											o	
ľ	2 4	1						-8	-8	-7		-6	
	1	Н	-0,1000		-0.1000 100	95		104	95	86		103	
7	-	+		+	0.1000	-0.0810		-0.1000	-0.0810	-0.0637		-0.1000	1
6	1							(-1)	(-1)	(-1)	-1	(-1)	
5	l	-	(200)	1 ~~	(-18)	(-18)	-18	(-15)	(-16)	-17	-18	(- 15)	
4	Φ = hy	F	-0.1000	200	(208)	190	172	(206)	190	173	155	(-206)	
_		╁		-0.0800	-0.1000	-0,0810	-0.0638	-0.1000	-0.0810	-0.0637	-0.0482	-0.1000	-
3	y'	†-	1.0000	-0.8000		-0.8100	-0.6385		-0.80 9 6	0.6373	-0.4815		
2	-y	-:	1.0000	-0.9000		-0.9100	-0.8385		-0.9096	-0.8373	-0.7815		
4	x		0	0.1	0	0.1	0.2	U	0.1				
		_						0	0.1	0.2	0.3	0	9

650

Table 7 - Integration of Equation $y^1 = x - y$.

Marketon and the	Second Third approximation								Horma	d compute	tions		
	-0.0900 1.0000			-0.0904 1.0000	1	1	1 .	-0.0903 1.0000	1	į.	1		0.7129
								0	0	0	0	0	
				- e	3–	-7		-6	-7	3-	-7	-6	
	100	95		104	95	86		103	95	86	78	71	
ł	-0.1000	-0.0810		-0.1000	-0.0810	-0.0637		-0.1000	-0.0810	-0.0638	-0.0482	-0.0340	
ŀ	(-10)	(=207	1	(-1)	(-1)	(-1)	-1	(-1)	(-1)	(1)	1	0	
	(208)	(-18)	-18	(-15)	(-16)	-17	-18	(-15)	(-16)	-18	-16	-14	
ŀ	-0.1000 (208)	-0.0810 190	-0.0638 172	(206)	190	173	155	(-206)	190	172	156	142	
H			0.0420	-0.1000	-0.0810	-0.0637	-0.0482	-0.1000	-0.0810	-0.0638	-0.0482	-0.0340	
		-0.8100	-0.6385		-0.8096	0,6373	-0.4815		-0.8097	0.6375	-0.4815	-0.3400	•
		-0.9100	-0.8385		-0.9096	-0.8373	-0.7815		0.9097	0.8375	-0.7815	-0.7400	
	0	0.1	0.2	0	0.1	0.2	0.3	0	0.1	0.2	0.3	0.4	0.5
									0.1	0.2	0.3	0.4	٥.

STAT

- 2) $-y_1 = -0.9000$ in accordance with the thirteenth row.
- 3) $y_1' = -0.8000$; in accordance with the given equation for y' we add the numbers in the first and second rows of this column (above).
- 4) Φ_1 = -0.0800; the number in the third row is multiplied by the step h = 0.1.

Thus a number appears in the fifth row; $\Delta\Phi_0$ = 200, for which we subtract from the number (-0.0800) in the fourth row above the number (-1.0000) at the left in the same row, omitting the zeros at the left for greater convenience.

Wedge of First Approximation.

It consists merely of a single number $\Delta \Phi_{-1}$ and is surrounded by a heavy line. To obtain it, we postulate that

$$\Delta \Phi_{-1} - \Delta \Phi_{0} = 200.$$

Second Approximation

First Column.

13) Leading row: $\Phi_0 = 1; 1) x_0 = 0.$

The second and third rows are not filled, as this is no longer necessary (cf. first column of first approximation). Then:

- 4) Φ_0 = -0.1000, as in the same row of the first approximation. Omitting the fifth, sixth, and seventh rows, we write:
- 8) Φ_0 = -0.1000; the number in the fourth row is repeated.

8) $\Phi_0 = -0.1000$; the has 9) $\frac{1}{2}\Delta\Phi_{-1} = 100$; we tal	ke the difference $\Delta \phi$ from the wedge	,
of the first approximation. The tenth and eleventh ro	ws are not filled for lack of necess:	aı
data.	652	Α1
	_	

12) $\Delta y_0 = -0.0900$; we add the numbers in the eighth and ninth rows above.

The second column of this approximation is formed in an analogous manner, with the only difference that numbers appear in the first and second rows (cf. the number in the thirteenth row of this column) and in the fifth row, for which we subtract from the number (-0.0810) in the fourth row the number (-0.1000) in the same row, but on the left. The number in the leading row is obtained by adding the numbers in the twelfth and thirteenth rows of the preceding column.

The third column is distinguished from second in that a number (-17) appears in the sixth row, for which we subtract from the number 173 in the fifth row the number 190 at the left, and another number (-8) appears in the tenth row, for which the number in the sixth row is multiplied by $\frac{5}{12} = \frac{10}{24}$.

Filling in the Wedge of the Second Approximation.

In the sixth line we repeat twice the number (-18), noting that:

$$\Delta^2 \Phi_{-2} = \Delta^2 \Phi_{-1} = \Delta^2 \Phi_0 = -18.$$

The number 208 in the fifth row of the first column of the second approximation will appear in accordance with the definition of the second differences:

$$\Delta^2 \Phi_{-1} = \Delta \Phi_0 = \Delta \Phi_{-1}$$

from which:

653

$$\Delta \Phi_{-1} = \Delta \Phi_{-0} - \Delta^2 \Phi_1 = 190 - (-18) = 208.$$

Third Approximation.

In the first column, after the thirteenth and first rows are filled, the places in the second, third, fifth, sixth, and seventh rows are left blank. Then:

- 8) The number in the fourth row is repeated.
- 9) $\frac{1}{2}\Delta \Phi_{-1}$ = 104; the number 208 in the wedge of the second approximation is halved.
- 10) $\frac{5}{12}\Delta^2\phi_{-2}$ = -8; the number (-18) in the wedge of the second approximation is multiplied by $\frac{10}{24}$.

The eleventh row is omitted. Thereupon:

12) The numbers in the eighth, ninth, and tenth rows above are added:

$$-0.1000 + 0.0104 - 0.0008 - -0.0904$$
.

In the second column, after the thirteenth, first, second, third, fourth and fifth rows are filled, the sixth and seventh rows are omitted. Then:

- 8) The number in the fourth row is repeated.
- 9) $\frac{1}{2} \Delta \Phi_0 = 95$; the number in the fifth row of this column is halved.
- 10) $\frac{5}{12}\Delta^2\Phi_{-2} = -8$; the number (-18) in the second column of the preceding wedge is multiplied by $\frac{10}{24}$.

The eleventh row is likewise omitted. Thereupon:

654

12) The numbers in the eighth, ninth, and tenth rows above are added.

In the third column, only the thirteenth, first, second, third, fourth, fifth and sixth rows are filled. There appears for the first time a number in the seventh row:

Filling in the Wedge of the Third Approximation.

We make:

$$\Delta^{3}_{\Phi_{-3}} - \Delta^{3}_{\Phi_{-2}} - \Delta^{3}_{\Phi_{-1}} - \Delta^{3}_{\Phi_{0}} = -1.$$

The number (-16) in the sixth row of the second column of the wedge will appear from the definition of the third differences:

$$\Delta^2 \Phi_{-1} = \Delta^2 \Phi_0 = \Delta^3 \Phi_{-1} = -17 - (-1) = -16$$
.

In an analogous manner, the blanks in the rows of the first column of the wedge will be filled as follows:

$$\Delta^{2}_{\Phi_{-2}} - \Delta^{2}_{\Phi_{-1}} - \Delta^{3}_{\Phi_{-2}} - -16 - (-1) = -15;$$

$$\Delta^{2}_{\Phi_{-1}} = \Delta_{\Phi_{0}} = \Delta^{2}_{\Phi_{-1}} = 190 - (-16) = 206.$$

For convenience of computation, the numbers of this wedge are transferred to their places in the columns of the subsequent normal computations. The approximations are considered to be completed because of the closeness of the results of the third and second $$_{\mbox{\scriptsize STAT}}$$ 655

approximations, respectively.

Normal Computations.

First Column.

13) As before, $y_0 = 1.0000$; 2) $x_0 = 0$. The second and third rows need not be filled. The numbers in the fifth, sixth, and seventh rows are already in place. Thereupon:

- 8) Φ_0 = -0.1000; the number in the fourth row is repeated.
- 9) $\frac{1}{2}\Delta\Phi_{-1}$ = 103; the number 206 in the fifth row is halved.
- 10) $\frac{5}{12}\Delta^2\Phi_{-2}$ = -6; the number (-15) in the sixth row is multiplied by $\frac{10}{24}$.
- 11) $\frac{3}{8}\Delta^2 \Phi_{-3} = 0$; the number (-1) in the seventh row is multiplied by $\frac{3}{8}$.
- 12) $\Delta y_0 = -0.0903$; the numbers in the eighth, ninth, tenth, and eleventh rows are added.

The subsequent columns are filled in exactly the same manner.

Attention is once again directed to the order of computation in each column of normal computations.

a) First of all, the leading thirteenth row is filled by adding the numbers in the twelfth and thirteenth rows of the preceding column, because

$$\Delta y_i = y_{i-1} + \Delta y_{i-1}$$

b) Thereupon, the spaces in each column are filled from top to bottom without omissions.

12) Use of Numerical Integration of the First-Order Equation with Argument v.

The method of numerical integration must be applied to the solution of the following equation:

$$\frac{\mathrm{d}l}{\mathrm{d}\mathbf{v}} = \frac{1}{\mathbf{v}_{\mathrm{np}}^{2}} \frac{2\mathbf{v}}{\mathbf{v} - \frac{\mathbf{v}^{2}}{\mathbf{v}_{\mathrm{np}}^{2}}} (l_{\psi} + l),$$

where:

$$l_{\Psi} = l_{\Delta} - l_{\alpha}\Psi$$

In the physical law of powder burning the correlation between ψ and v is given by a table, whereas in the geometric law:

$$\psi = \psi_0 + \frac{x + \frac{y + \frac{y}{2}}{s^2 I_k^2} v^2}{s^2 I_k^2} v^2.$$

Since it is also necessary as a rule to find the pressure curve, it is preferable to make use of the following equation:

$$\varphi = v \frac{dv}{dl} - ps,$$

whence

$$\frac{dl}{dv} = \frac{v}{s} \frac{v}{p},$$

STAT

657

where

$$p = \frac{f\omega}{s} \frac{\psi - \frac{v^2}{v_{np}^2}}{l_{\psi} + l}.$$

It is not difficult to see that the auxiliary function 4 is found in the given case from the following relations:

and in the given case from
$$\frac{\psi - \frac{v^2}{v_{np}^2}}{|\psi - U_{np}|}; \qquad \psi - \frac{\psi mh}{s} \frac{v}{p}. \tag{*}$$

As for the working formula of numerical integration, it has the usual form:

$$\Delta l_i = \Phi_i + \frac{1}{2} \Delta \Phi_{i-1} + \frac{5}{12} \Delta^2 \Phi_{i-2} + \frac{3}{8} \Delta^3 \Phi_{i-3}$$

The purpose of the preliminary computations is to determine all the constants:

ants:
1)
$$\frac{\omega}{s}$$
; 2) $\frac{q_m}{s} = \frac{q_{\varphi}}{gs}$; 3) $v_{\eta_p}^2 = 2 \frac{f}{Q} \frac{\omega}{s} : \frac{q_m}{s}$;

4)
$$l_{\Delta} = \frac{\omega}{s} \left(\frac{1}{\Delta} - \frac{1}{\delta} \right);$$
 5) $l_{\alpha} = \frac{\omega}{s} \left(\alpha - \frac{1}{\delta} \right);$

6)
$$\Psi_0 = \frac{\frac{1}{\Delta} - \frac{1}{\delta}}{\frac{f}{p_0} + \alpha - \frac{1}{\delta}}; \quad 7) \quad \frac{f\omega}{s}.$$

STAT

To determine the step of integration h, the speed of the projectile ν_{K} at the end of powder burning must be known, and then:

$$h = \frac{v_K}{n}$$

where n - the number of sections - is taken in the range of 10-40, depending upon the density of loading (as this density increases, the number n must also be increased).

While determining | and p, the same working form may be used to find the time of motion of the projectile in accordance with the following relation:

$$\frac{dt}{dv} = \frac{qm}{s} \frac{1}{p},$$

in the form of a definite integral.

Example 7. Determine the projectile velocity and gas pressure curves for a 76 mm gun, given the following conditions: $W_0 = 1.654$; S = 0.4693; $I_A = 18.44$; Q = 6.5; $P_0 = 30,000$; $P_0 = 900,000$; $P_0 = 1$; $P_0 = 1.654$; $P_0 = 1.6$; $P_0 =$

To start with, we find: $\log \frac{\omega}{s} = 0.2970$; $\log \frac{\phi_m}{s} = \overline{1.1709}$; $\log v_{np}^2 = \log \left(\frac{2g}{\varphi} \frac{f}{\theta} \frac{\omega}{q}\right) = 8.0803$;

$$l_{\Delta} = l_{0} \left(1 - \frac{\Delta}{\delta} \right) = 2.284; \log l_{a} = \overline{1.8710}; \psi_{0} = 0.038; \log \frac{f\omega}{8} = 6.2512.$$

STAT

From the value ψ_0 found we compute the value of t_0 by inverse interpolation with the aid of the data in Table 2 (cf. Example 2, Subsection 7)

For this value of t_0 we determine the initial impulse I_0 by direct interpolation with the aid of Table 4 (cf. Example 1, Subsection 6):

$$I_0 = 76 \text{ kg·sec·dm}^{-2}$$

We find the velocity of the projectile at the end of burning of the powder, keeping in mind that I $_{
m K}$ = 823 (cf. Table 5):

$$v_K = \frac{s}{\varphi m} (I_K - I_0) = 5040 \text{ dm} \cdot \text{sec}^{-1}$$

Bt choosing n=20 as the number of sections, we obtain the step as being:

$$h = \frac{v_K}{20} = 252 \text{ dm} \cdot \text{sec}^{-1}$$

so that

$$\log\left(\frac{\varphi_{\mathbf{B}}}{g}h\right) = 1.5723; \quad \log\left(\frac{\varphi_{\mathbf{B}}}{g}h\cdot 10^{5}\right) = 6.5723.$$

On the basis of Table 5, we plot the $(\psi,\ I)$ curve to the following scale: for ψ , 1 mm = 0.001; for I, 1 mm = 1 kg·sec·dm⁻².

STAT

660

We read on it the values of the gas inflow $\boldsymbol{\psi}$ corresponding to equal intervals

$$\frac{823 - 76}{20} - 37.35 \text{ kg·sec·dm}^{-2}$$

for the pressure impulse, or, what is the same thing, to equal intervals $h=252~\mathrm{dm\cdot sec}^{-1}$ for the velocity of the projectile.

These values of ψ are given subsequently in the working form used for performing the computations (in the fifth row).

STAT

STAT

			d and		Form for Comp	outations wit	th Argument	<u>v.</u>
Γ	1	v	oll	252	0	252	504	7
t	2	2 log v		4.8028			5.4048	5.7
	3	-log v ²		9.9197			9.9197	9.9
t	4	$\log \frac{v^2}{v_{\text{np}}^2}$		4.7225			3.3245	3.6
+	5	Ψ	0.038	0.092			0.166	0.2
	6	- v ² v ² np		-0.001			-0.002	-0.0
1	7	$\Psi - \frac{\mathbf{v}^2}{\mathbf{v}_{np}^2}$		0.091			0.164	0.2
f	8	log la	1.8710	1.8710			1.8710	1.8
	9	log Ψ	2.5793	2.9638			1.2201	1.3
t	10	log lαψ	2.4503	2.8348			1.0911	1.:
ł	11	ι _Δ	2.284	2.284			2.284	2.1
	12	-l _a +	-0.028	-0.068			-0.123	-0.
+	13	l _ψ	2.256	2.216		2.216	2.161	2.
	14	1	0.000	0.000		0.964	0.262	0.
t	15	l ₄₊ 1	2.256	2.216		2.280	2.423	2.
1	16	امع ت	6.2512	6.2512		6.2512	6.2512	6.
	17	$\left(\log\psi - \frac{v^2}{v_{\pi p}^2}\right)$	2.5793	2.9590		2.9590	1.2148	1.
	18	- log ((+ ()	1.6466	1.6544		1.6421	1.6257	1.
	19	log p	4.4771	4.8646		4.8523	5.0817	5.
	20	р	300	732		711	1207	\vdash
	21	log(h		1.5723		1.5723	1.5723	1
ζ]2	log v		2.4014		2.401	2.7024	2
	23	-log p		5. 1354		5.1477	6.9183	6
	4	log +		1.1091		1.121	1.1930	1
1	25	•	0	0.129	0.000	0.132	0.156	0
	26	ΔΦ	(120)	129		132	24	
	27	Δ ² •	(129)				-108	
	28	Δ3+						上

			Form for Comp	outations wi	ı	į.	1008	1260
	0	252	0	2 5 2	504	756	1008	
\vdash		4.8028			5.4048	5.7570	6.0068	6.2008
		9.9197			9.9197	9.9197	9.9197	9.9197
\vdash		4.7225			3.3245	3.6767	3.9265	2.1205
\vdash		0.092			0.166	0.227	0.284	0.339
	0.038	-0.001			-0.002	-0.005	-0.009	-0.013
-	A salas	0.091		And the state of t	0.164	0.222	0.275	0.326
+		1.8710			1.8710	1.8710	1.8710	1.8710
	1.8710				1.2201	1.3560	1.4533	1.5302
+	2.5793	2.9638			1.0911	1.2270	1.3243	1.4012
+	2.4503	2.284		To the control of the	2.284	2.284	2.284	2.284
İ	2.284	-0.068		,	-0.123	-0.169	0.211	0.252
+	2.256	2.216		2.216	2.161	2.115	2.073	2.032
				0.064	0.262	0.385	0.573	0.789
\dashv	0.000	0.000		2.280	2.423	2.500	2.646	2.821
\dashv	6.2512	6.2512		6.2512	6.2512	6.2512	6.2512	6.2512
	2.5793	2.9590		2.9590	1.2148	1.3464	1.4393	1.5132
	1.6466	1.6544		1.6421	1.6257	1.6021	1.5774	1.5496
	4.4771	4.8646		4.8523	5.0817	5.1997	5.2679	5.3150
		732		711	1207	1586	1853	2065
_	300	1.5723		1.5723	1.5723	1.5723	1.5723	1.5723
		2.4014		2.401	2.7024	2.8785	1.0034	3.1004
		1		5.1477	6.9183	6.8003	6.7321	6.6850
		5.1354		1.121	1.1930	1.2511	1.3078	1.3577
		1.1091	0.000	0.132	0.156	0.178	0.203	0.228
	0	0.129	0.000	132	24	22	25	25
	(129)	129			-108	-2	3	d

				1	er en en en en en en en en en en en en en	1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
1	20	P	300	732	 	711	1207	
[21	$\log\left(\frac{\varphi_m}{s}h\right)$		1.5723		1.5723	1.5723	
	2	log v		2.4014		2.401	2.7024	
.1	23	-log p		5.1354		5.1477	6.9183	1
Т	34	log 4		1.1091		1.1214	1.1930	11
	5	•	o	0.129	0.000	0.132	0.156	
	26	ΔΦ	(100)	129		132	24	
7	27	$\Delta^2 \Phi$	(129)				-108	
	28	Δ3+						
1	29	ф	o		0.000	0.132	0.156	0
	30	1 A &			64	66	12	
	31	$\begin{bmatrix} \frac{5}{12} & \Delta^2 \Phi \end{bmatrix}$					-45	_
	32	12 3/8 Δ ³ Φ						
			0	The second secon				
	33	Δ1 = Σ			0.064	0.198	0.123	0.
	34	1	00	, 0	0.000	0.064	0.262	0.
	35	log 4m h·105			6.5723	6.5723	6.5723	6.
	36	-log p			5.5229	5.1477	6.9183	6.
	37	log F		•	2.0952	1.7200	1.4906	1.
	38	F			124	52	31	
	39	ΔF		1 1	-72	-21	-7	-4
	40	∆ ² F			51	14	3	
	41	Δ ³ F			-37			
	42	P			124	52	31	
	43	$\frac{1}{2}\Delta F$			-36	-10	-4	-2
	44	1 1 0			-4	-1		
	45	1 -			-2			
	46	Δt·10 ⁵ -Σ			82	41	27	
	47	t·10 ⁵			o	82	123	
37								

4		-						
300	732		711	1207	1586	1853	2065	1
	1.5723		1.5723	1.5723	1.5723	1.5723	1.5723	7
	2.4014		2.401	2.7024	2.8785	. 0034	3.1004	-
	5.1354		5.1477	6.9183	6.8003	6.7321	6.6850	1
n)	1.1091		1.121	1.1930	1.2511	-1.3078	1.3577	7
. 0	0.129	0.000	0.132	0.156	0.178	0.203	0.228	7
	129		132	24	22	25	25	
				-108	-2	3	0	
								4
		0.000	0.132	0.156	0.178	0.203	0.228	
		64	66	12	11	12	12	
-				-45	-1	1	0	
À								Aller Sales
		0.064	0.198	0.123	0.188	0.216	0.240	and the field of the
<u> </u>	0	0.000	0.064	0.262	0.385	0.573	0.789	1000
· · · · · · · · · · · · · · · · · · ·		6.5723	6.5723	6.5723	6.5723	6.5723	6.5723	Total Section
96		5.5229	5.1477	6.9183	6.8003	6.7321	6.6850	W. Almondo
		2.0952	1.7200	1.4906	1.3726	1.3044	1.2573	
-		124	52	31	24	20	18	1
		-72	-21	-7	-4	-2	-1	
×		51	14	`3				
		-37						
		124	52	31	24	20	18	
		-36	-10	-4	-2	-1	0	
		-4	-1					ĺ
		-2						
		82	41	27	22	19	18	
	L	0	82	123	150	172	191	

The working form can be broken down into three main sections. The upper section contains lines 1-24 and is reserved for computations necessary for determining the logarithm of the auxiliary function in accordance with the relations (*). Consequently, the pressure of the powder gases is also found at the same time. The values for the gas inflow in line 5 are first read from the (ψ, I) curve in the case of the physical law of burning of the powder or computed in accordance with the corresponding formula in the case of the geometric law of burning.

The upper section is the most involved part of the work and makes the use of four-place logarithms obligatory.

In the middle section, which consists of lines 25-34, are performed computations necessary for the use of the working formula for the numerical integration of a first-order equation:

$$\Delta l_{i} = \dot{\Phi}_{i} + \frac{1}{2} \Delta \dot{\Phi}_{i-1} + \frac{5}{12} \Delta^{2} \dot{\Phi}_{i-2} + \frac{3}{8} \Delta^{3} \dot{\Phi}_{i-3}$$

and for finding the path of the projectile: $l_i = l_{i-1} + \Delta l_{i-1}$

Finally, the lower section, consisting of lines 35-47, is reserved for finding the time of motion of the projectile in the bore in the form of a definite integral, using the following working formula:

$$\Delta t_i = F_i + \frac{1}{2} \Delta F_i - \frac{1}{12} \Delta^2 F_i + \frac{1}{24} \Delta^3 F_i$$

This section is best filled after completion of the numerical integration of the equation for the path of the projectile:

663

$$\frac{\mathrm{d}l}{\mathrm{d}\mathbf{v}} = \begin{pmatrix} \underline{\mathbf{v}} & \mathbf{n} \\ \mathbf{s} & \mathbf{h} \end{pmatrix} = \frac{\mathbf{v}}{\mathbf{p}},$$

i.e., after the two sections above it are filled.

It is useful to point out some of the characteristic features of the computations.

- a) The path of the projectile is determined with an accuracy of 0.001 dm; the time t, within 0.00001 seconds.
- b) To facilitate computations, only one approximation is made, and only one wedge is filled out (cf. line 26, first column of the working form).
- c) At first, the differences of the auxiliary function up to and including the second order are introduced.
- d) The third differences of this function are utilized only after $p_{\underline{m}}$ is passed.
- e) The second difference of the function Φ appears only in the second column of the normal computations.
- f) The rows which are not filled are: lines 2, 3, 4, 6, 7, 21, 22, 23, 24, 27, 28, 30, 31, 32, and 35-47 in the first column, lines 27-33 and 35-47 in the second column of the approximation, lines 2-24, 26, 27, 28, 31, and 32 of the first column of normal computations, and, finally, lines 2-12, 27, 28, 31, and 32 of the second column of normal computations.
- g) Line 34 is the leading row and is filled first in each column.

 For a more definite conception of the character of the work involved when filling in the two upper sections of the working form it would be desirable to describe in detail the computations performed for

664

one of the columns, for example, for the column of normal computations with v = 504.

34) The numbers in lines 33 and 34 of the preceding column are added:

$$l = 0.198 + 0.064 = 0.262.$$

since:

$$t_i = t_{i-1} + \Delta t_{i-1};$$

1) We add the integration step h:

2) The number in the preceding row, v = 504, gives:

$$2 \log v = 5.4048;$$

3) The complement of the logarithm of $v_{\Pi p}^2$ is taken:

$$-\log v_{np} = \overline{9.9197};$$

4) The logarithms in lines 2 and 3 are added:

$$g \frac{v^2}{v_{np}^2} = 5.4048 + \overline{9.9197} = \overline{3.3245};$$

5) The value of ψ is taken from the $(\psi,\ I\)$ curve:

$$\psi = 0.166;$$

665

STAT

6) The logarithm in line 4 is used to find the number within 0.001:

$$\frac{v^2}{v_{n_p}^2} - 0.002;$$

7) The number in line 6 is subtracted from the number in line 5:

$$\psi = \frac{v^2}{v^2_{np}} = 0.166 - 0.002 = 0.164;$$

8) The logarithm of l_{α} has been found by freliminary computations:

$$\log t_{\alpha} = 1.8710;$$

9) The number in line 5 gives the logarithm:

$$\log \Psi = \frac{1.2201}{1.2201}$$

10) The logarithms in lines 8 and 9 above are added:

log
$$l_{\alpha} \psi = \overline{1}.8710 + \overline{1}.2201 - \overline{1}.0911;$$

11) The reduced length l_{Δ} has been found by preliminary computations:

$$l_{\Delta} = 2.284;$$

12) The logarithm in line 10 is used to find the number within 0.001:

666

CTA:

OT 4.7

 $l_{\alpha} \Psi = 0.123;$

13) The number in line 12 is subtracted from the number in line 11:

$$l_{\psi} - l_{\Delta} = l_{\alpha} \psi = 2.284 = 0.123 = 2.161;$$

14) The number in the leading row, line 34, is taken:

1 - 0.262,

15) The numbers in lines 13 and 14 are added:

16) This logarithm has been obtained by preliminary computations:

$$\log \frac{f\omega}{s} = 6.2512;$$

17) The logarithm of the number in line 7 is found:

$$\log\left(\psi - \frac{v^2}{v_{\rm fip}^2}\right) = \overline{1}.2148;$$

18) The complement of the logarithm of the number in line 15 is taken:

$$-\log(l_{\psi} + 1) = -\log 2.423 = \overline{1}.6257;$$

667

STAT

19) The logarithms in lines 16, 17, and 18 are added:

 $\log p = 6.2512 + \overline{1.2148} + \overline{1.6257} = 5.0817;$

20) The logarithm in line 19 is used to find the pressure at v = 504:

$$p = 1207 \text{ kg} \cdot \text{cm}^{-2}$$

21) This logarithm has been obtained by preliminary computations:

$$\log\left(\frac{\Psi m}{s} h\right) = 1.5723;$$

22) From the number in line 1 we have:

$$log v = 2.7024$$

23) The complement of the logarithm in line 19 is taken:

$$-\log p = -5.0817 = \overline{6}.9183$$

24) The logarithms in lines 21, 22, and 23 are added:

$$\log \Phi = 1.5723 + 2.7024 + 6.9183 = 1.1930.$$

We now proceed to the next, middle, section.

25) The logarithm in line 24 is used to obtain the number with an accuracy of 0.001:

$$\Phi_2 = 0.156;$$

668

STAT

26) From the number 0.156 in this column we subtract the number 0.132 in the same row of the preceding column (keeping in mind the rule governing the notation of differences):

$$\Delta \Phi_1 = 0.156 - 0.132 = 0.024.$$

and the notation is facilitated by omitting the zeros.

27) From the number 24 in this column we subtract the number 132 in the same row of the preceding column:

$$\Delta^2 \Phi_0 = 24 - 132 = -108;$$

29) The number in line 25 is repeated:

$$\Phi_2 = 0.156;$$

30) The number in line 26 is halved:

$$\frac{1}{2}\Delta\Phi_1 - 12;$$

31) The number in line 27 is multiplied by $\frac{10}{24}$ (i.e., it is multiplied by ten and the result divided by 24):

$$\frac{5}{12} \Delta^2 \Phi_0 = \frac{5}{12} (-108) = -45;$$

33) The numbers in lines 29, 30, and 31 are added:

669

STAT

$$\Delta l_2 - \Phi_2 + \frac{1}{2} \Delta \Phi_1 + \frac{5}{12} \Delta^2 \Phi_0 - 0.123.$$

It is now possible to take the next step, i.e., proceed to the next column with ν = 756, starting the computations therein, as always, from the leading row, line 34.

At the muzzle, we have: $v_A = 583 \text{ m/sec}$; $p_A = 625 \text{ kg/cm}^2$.

13) Numerical Integration of the Second-Order Differential Equation.

In the general case, a differential equation of the second order contains the following components: the independent variable x, the function y itself, the first derivative y' of the function y with respect to x, and the second derivative y" of the same function with respect to x. Consequently, this equation can be represented in the following form:

$$F(x, y, y', y'') = 0;$$

where the symbol F represents an elementary function or a combination of such elementary functions.

Numerical integration makes it possible to solve this equation in any form, provided only that the given equation permits the determination of the second derivative as an explicit function of all the remaining variable quantities:

$$y'' = f(x, y, y').$$

$$\Delta y_{i}^{"} = h \left(y_{i}^{"} + \frac{1}{2} \Delta y_{i-1}^{"} + \frac{5}{12} \Delta^{2} y_{i-2}^{"} + \frac{3}{8} \Delta^{3} y_{i-3}^{"} \right)$$

or

$$\Delta y_{i}^{*} = \Phi_{i} + \frac{1}{2} \Delta \Phi_{i-1} + \frac{5}{12} \Delta^{2} \Phi_{i-2} + \frac{3}{8} \Delta^{3} \Phi_{i-3}$$

where use is made of the following new auxiliary function:

$$\Phi = hy$$
,

expressed in terms of the second derivative of the desired function. It is not necessary to derive the fundamental formula for Δy_1^{\dagger} by means of y" and differences of this second derivative, inasmuch as this formula is already obtained from the previously derived

$$\Delta y_{i} = h \left(y_{i}' + \frac{1}{2} \Delta y_{i-1}' + \frac{5}{12} \Delta^{2} y_{i-2}' + \frac{3}{8} \Delta^{3} y_{i-3}' \right)$$

by simply replacing y_i by y_i' and y_i' by y_i'' .

On the other hand it is necessary to derive a working formula for the increment Δy of the function itself in terms of differences of the second derivative rather than of the first. Such a formula should simplify the work, because in computing by it will be possible to make use of the already available differences of the auxiliary function Φ , and it will not be necessary to find the differences of still another auxiliary function:

STAT

671

For this purpose, we shall utilize the equality

$$\Delta y_i - \int_{x_i}^{x_{i+1}} y' dx.$$

But in all cases

$$y' - y'_1 + \Delta y' - y'_1 + \int_{x_1}^{x} y^{-dx}.$$

Let us replace here the derivative y" by the following interpolation function:

$$y'' = A_0(x - x_1)^3 + A_1(x - x_1)^2 + A_2(x - x_1) + A_3$$

and then

$$y' = y_1' + \int_{x_1}^{x} \int_{x_1}^{x_1} A_0(x - x_1)^3 + A_1(x - x_1)^2 + A_2(x - x_1) + A_3 = \int_{x_1}^{x} dx =$$

$$= y_1' + \frac{1}{4} A_0(x - x_1)^4 + \frac{1}{3} A_1(x - x_1)^3 + \frac{1}{2} A_2(x - x_1)^2 + A_3(x - x_1),$$

so that, consequently

$$\Delta y_{1} = \int_{x_{1}}^{x_{1}+1} \left[y_{1}^{*} + \frac{1}{4} A_{0}(x - x_{1})^{4} + \frac{1}{3} A_{1}(x - x_{1})^{3} + \right]$$

672

$$+ \frac{1}{2} A_2(x - x_i)^2 + A_3(x - x_i) dx - y_i'(x - x_i) + \frac{1}{20} A_0(x - x_i)^5 +$$

$$+ \frac{1}{12} \Lambda_1 (x - x_i)^4 + \frac{1}{6} \Lambda_2 (x - x_i)^3 + \frac{1}{2} \Lambda_3 (x - x_i)^2 \Big|_{x_i}^{x_{i+1}},$$

whence

$$\Delta y_1 = h \left[y_1' + \frac{1}{20} A_0 h^4 + \frac{1}{12} A_1 h^3 + \frac{1}{6} A_2 h^2 + \frac{1}{2} A_3 h \right]$$

because

$$x_{i+1} - x_i = h.$$

We shall substitute into the last expression the following values for the coefficients:

$$A_0 = \frac{\Delta^3 y_{1-3}^n}{6h^3};$$
 $A_1 = \frac{\Delta^2 y_{1-2}^n + \Delta^3 y_{1-3}^n}{2h^2};$

$$A_2 = \frac{6\Delta y_{1-1}^2 + 3\Delta^2 y_{1-2}^{"} + 2\Delta^3 y_{1-3}^{"}}{6h}; A_3 = y_1^{"},$$

because the part of the function is here played by the derivative y", which has been replaced by the interpolation function.

After obvious transformations this substitution gives:

$$\Delta y_{i} = h \left[y_{i}' + h \left(\frac{1}{2} y_{i}'' + \frac{1}{6} \Delta y_{i-1}'' + \frac{1}{8} \Delta^{2} y_{i-2}'' + \frac{19}{180} \Delta^{3} y_{i-3}'' \right) \right]$$

or

$$\Delta y_{i} = h \left[y_{i}' + h \left(\frac{1}{2} y_{i}'' + \frac{1}{6} \Delta y_{i-1}'' + \frac{1}{8} \Delta^{2} y_{i-2}'' + \frac{1}{10} \Delta^{3} y_{i-3}'' \right) \right],$$

if, instead of the inconvenient number $\frac{19}{180}$ we take the closely approching it number:

$$\frac{18}{180} - \frac{1}{10}$$

It remains necessary to make use once again of the auxiliary function:

$$\Phi = hy$$
",

and then, finally, in the numerical integration of the secondorder differential equation, we shall have to deal with working formulas of the following type:

$$\Delta y_{i}' = \Phi_{i} + \frac{1}{2} \Delta \Phi_{i-1} + \frac{5}{12} \Delta^{2} \Phi_{i-2} + \frac{3}{8} \Delta^{3} \Phi_{i-3};$$

$$\Delta y_{i} = h \left(y_{i}' + \frac{1}{2} \Phi_{i} + \frac{1}{6} \Delta \Phi_{i-1} + \frac{1}{8} \Phi_{i-2} + \frac{1}{10} \Delta^{3} \Phi_{i-3} \right).$$

To simplify the computations, it is better, however, to conduct the numerical integration with so small a step h as would enable us $$\sf STAT$$

to do without third differences.

At the start of the numerical integration, as before, most frequent use is made of the method of successive approximations.

The number of rows in the lower part of the form will increase (in comparison with the number of rows in the lower part of the form for the integration of the first-order equation) by at least seven rows, because in addition to the ten rows:

$$\Phi$$
, $\Delta\Phi$, $\Delta^2\Phi$, $\Delta^3\Phi$, Φ , $\frac{1}{2}\Delta\Phi$, $\frac{5}{12}\Delta^2\Phi$, $\frac{3}{8}\Delta^3\Phi$, Σ , $\Delta y' = h\Sigma$, y' ,

corresponding to the lower part of the form for the numerical integration of the first-order equation, there will also appear the following additional rows:

$$\frac{1}{2} \Phi, \frac{1}{6} \Delta \Phi, \frac{1}{8} \Delta^2 \Phi, \frac{1}{10} \Delta^3 \Phi, \Sigma_1, \Delta y = h \Sigma_1, y.$$

In the method under consideration, the computations themselves are in no way different from similar computations for the solution of the first-order equation, so that the need for citing a special example is obviated.

14) Use of Numerical Integration of Second-Order Equations with Argument t.

In this process the leading part is played by the equation for the forward motion of the projectile:

$$\varphi = \frac{dv}{dt} - sp,$$

from which it follows that

675

because

$$\frac{d\mathbf{v}}{dt} - \mathbf{v}_{t}' - \left(\frac{dl}{dt}\right)_{t}' - \mathbf{i}_{t}'',$$

if the phenomenon of recoil is not considered in the explicit form.

Equation (107) is subject to numerical integration by means of the following relations:

$$p = \frac{f\omega}{B} \frac{\frac{2}{\psi - \frac{V^2}{V_{np}^2}}}{l_{\psi} + l} \text{ and } l_{\psi} = l_{\Delta} - l_{\omega}^{\psi},$$

which have already been employed earlier. The auxiliary function ϕ is equal in this case to:

$$\Phi = hl_t'' = \frac{sh}{\phi m} p.$$

where the step h is already a certain time interval of the motion of the projectile in the bore. This step is chosen in advance.

The working formulas for the numerical integration will be:

$$\Delta v_{i} = \Phi_{i} + \frac{1}{2} \Delta \Phi_{i-1} + \frac{5}{12} \Delta^{2} \Phi_{i-2} + \frac{3}{8} \Delta^{3} \Phi_{i-3};$$

$$\Delta l_i - h \left(v_i + \frac{1}{2} \Phi_i + \frac{1}{6} \Delta \Phi_{i-1} + \frac{1}{8} \Delta^2 \Phi_{i-2} + \frac{1}{10} \Delta^3 \Phi_{i-3} \right),$$

because the function y to be determined represents in this case the relative path / of the projectile in the bore, and its derivative y' STAT is the velocity of the projectile v.

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

The preliminary computations are reduced to the determination of constants:

1)
$$\log \frac{\omega}{s}$$
; 2) $\log \frac{\Psi_B}{s}$; 3) $\log v_{\eta_p}^2$; 4) l_{Λ} ; 5) $\log l_{\alpha}$; 6) ψ_0 ;

7)
$$\log \frac{f\omega}{s}$$
,

as in the case of numerical integration of a first-order equation.

The values of I_0 , I_K and v_K are found in an analogous manner. The gas inflow ψ is read off the (I,ψ) curve, but, in contrast with the preceding case, it is necessary here to find for each point, during the process of integration itself:

$$I - I_0 + \frac{\varphi_m}{s} v,$$

because the integration gives values of the velocity v which are separated from one another by unequal intervals. Once the value of the pressure impulse is had, we can obtain the required value of ψ from the I, ψ curve. Consequently, this curve cannot be utilized in advance, but it must be available in the course of the entire work of numerical integration.

In the case of the geometric law of burning, the I, ψ curve is replaced by the following relation:

$$\psi = \psi_0 + \frac{\times s_0 \varphi_m}{s I_K} v + \frac{\times \lambda \varphi^2 m^2}{s^2 I_K^2} v^2.$$

STAT

STAT

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

Fig. 153 - Velocity, Path, and Pressure Curves.

- Time; 2) pressure curve; 3) velocity curve;
 path curve.

Figure 153 contains curves for p, v, and ! as functions of time t, obtained by numerical integration with respect to the argument t.

678

STAT

50X1-HUM

÷ -			•			Computat	i.on Form w	with Argu	ment t.	
s [1	t.10 ⁵	0	25	0	25	50	0	25	50
ſ	2	log opm		1.1709		1.1709	1.1709			1.17
١	3	log v		1.7076		1.7404	2.0755			2.08
Ī	4	log φm/s v		0.8785		0.9113	1.2464			1.25
Ì	5	Ym v		8		8	18			18
	6	I ₀		76		76	76			
ŀ	7	I	76	84		84	9 4			
	8	2 log v		3.4152	1	3.4808	4.1510			,
	9	- log v ²		9.9197		9.9197	9.9197			
		$\log \frac{v^2}{v_{np}^2}$		5.3349		5.4005	4.0707			
	11	4		0.045		0.045	0.057			
	12	$-\frac{v^2}{v_{n_p}^2}$		0.000		0.000	0.006			
	13	$\begin{array}{c} & & & \\ & & \\ & -\frac{v^2}{v_{np}^2} \\ & & \\ & & +-\frac{v^2}{v_{np}^2} \end{array}$	0.038	0.045		0.045	0.057			
	14	log la	1.8710	1.8710		1.8710	1.87:0			
	15	log ψ	2.5793	2.6532		2.6532	2.7559			
Ì	16	log l _α ψ	2.4503	2.5242		2.5242	2.6269			
	17	1 _Δ	2.284	2.284		2.284	2.284			
	18	-l _α Ψ	-0.028	-0.033		-0.033	₩.042			1
	19	T _{\psi}	2.256	2.251		2.251	2.242			
	20	1	0	0.006		0.007	0.029	#		4
		1 ₄ +1	2.256	2.257		2.258	2.271	1		
		log fu	6.2512	6.251		6.2512	6.2512			
ور من	23	log(w- v²)			1		1 .	11		I

		Computa	on Form	with Argu	ment t.				Ι
25	0	25	50	0	25	50	75	100	125
1.1709		1.1709	1.1709			1.1709	1.1709	. 1.1709	1.1709
1.7076		1.7404	2.0755			2.0864	2.3160	2.5211	2.7152
0.8785		0.9113	1.2464			1.2575	1.4869	1.6920	1.8861
8		8	18			18	31	49	77
76		76	76				76	76	76
84		84	94				107	125	153
3.4152		3.4808	4.1510				4.6320	5.0422	5.4304
9.9197		9.9197	9.9197				9.9197	9.9197	9.9197
5.3349		5.4005	4.0707				4.5517	4.9619	3.3501
0.045		0.045	0.057				0.079	0.119	0.172
0.000		0.000	0.000				0.000	-0.001	-0.002
0.45		G.045	0.057				0.079	0.118	0.170
8710		1.8710	1.8710				1.8710	1.8710	1.8710
.6532		2.6532	2.7559				2.8976	1.0755	1.2355
2.5242		2.5242	2.6269				2.7686	2.9465	1.1065
2.284		2.284	2.284				2.284	2.284	2.284
-0.033		- v.033	ių.042				-0.059	-0.088	-0.128
2.251		2.251	2.242				2.225	2.195	2.156
0.006		0.007	0.029				0.069	0.135	0.239
2.257		2.258	2.271				2.294	2.330	2.395
6.251		6.2512	6.2512				6.2512	6.4012	6.2512

						0.007	0.029			
- 24		and the second s	Compression of the contract of	U. UU6			2.271			
2	1	1+1	2.256	2.257		2.258			•	
2	2	1w	6.2512	6.251		6.2512	6.2512			
l	3	$\log\left(\psi - \frac{v^2}{v^2_{\eta_p}}\right)$	2.5793	2.6532		2.6532	2.7559			
١.	24	- log € ₄ + ()	1.6466	1.646		1,6463	1.6438			\vdash
+	25	log p	4.4771	4.5508		4.5509	4.6509			
	26	$\log\left(\frac{sh}{\varphi m}\right)$	3.2270	3.2270		3.2370	3.2270			-
ì	27	log Φ	1.7041	1.7778		1.7779	1.8779		0.5.5	
1		p kg·cm ⁻²	300	355	300	355	448	300	355	+
	28	ф	51	60	51	60	76	51	60	
	29	ΔΦ		9	(2)	9	16	(2)	9	
	30	$\Delta^2\Phi$	(9)		(7)	(7)	7	(7)	(7)	
	31	Δ ³ Φ								+
	32	φ	51		51	60		51	60	
	33				4	4		1	4	
	34	$\frac{1}{2}\Delta\Phi$						2	2	
	35	$\frac{5}{12}\Delta^2\Phi$								
	36	3 _∆ 3 _♦								\dashv
	37	Δν - Σ	51		55	64		54	66	\dashv
	38	$ \begin{array}{c c} 0 & \frac{1}{2} & \bullet \\ 0 & \frac{1}{6} & \bullet \\ 1 & 2 \end{array} $		51	0	0 55		0	54	
	39				26			26	30	
	40				2	2		0	2	
	41							1	1	
	42	Σ_1	26		28	87		27	87	
	-		0.006	+	0.007	0.0022		0.007	0.022	2
	43	$\Delta l = h\Sigma_1$		0.000	0.000		0.029	0.000	0.007	7
	44	1	0.000	0.006	1 0.000					

ç

Sport of the second			E0:038	- Acres Marine and Park	a may be included any and a con-	Secretarional constant and the second section of the second section second section sec	0.009	0.135	0.359	- 13
		2.258	2.271				2.294	2.330	2.395	
		6.2512	6.2512		•		6.2512	6. 12	6.2512	
		2.6532	2.7559				2.8976	1.0719	1.2304	
		1,6463	1.6438		÷,		1.6394	1.0026	1.6209	
В		4.5509	4.6509				4.7882	4.9557	5.1025	
0		3.2370	3.2270				3.2270	3.2270	3.2270	
8		1.7779	1.8779				2.0150	2.1827	2.3295	
	300	355	448	300	355	448	614	902	1266	
	51	60	76	51	60	76	104	1 52	214	
	(2)	9	16	(2)	9	16	28	48	62	
	(7)	(7)	7	(7)	(7)	7	12	20	14	
							5	8	-6	
	51	60		51	60	76	104	152	214	
	4	4	ľ	1	4	8	14	24	31	
				2	2	3	5	8	6	
							2	3	-2	
	55	64		54	66	87	125	187	249	
	0	55	119	0	54	120	207	332	519	ı
	26	30		26	30	38	52	76	107	
	2	2		0	2	3	5	8	10	
	_			1	1	1	2	2	2	
	28	87		27	87	162	266	418	638	
	0.007	0.0022	 	0.007	0.022	0.040	0.066	0.104	0.159	
	0.000	0.007	0.029	0.000	0.007	0.029	0.069	0.135	0.239	

STAT

O

T

CHAPTER 2. SOLUTION BY EXPANSION IN TAYLOR'S SERIES

Integration of equations of internal ballistics describing the relations existing between the fundamental elements of a shot leads to rather complex integrals, which can be solved only by means of quadratures with any desired degree of accuracy (Professor Drozdov's solution). In this connection, in order to make integration possible, some of the variable parameters in the fundamental equations (θ, u_1, p_0) , etc.) are usually assumed to be constant.

The method of numerical integration makes it possible to solve a system of differential equations not only without simplifying the functions entering same, but even by assigning variable values to those quantities which are usually assumed to be constant. This makes it possible to solve the problem on the basis of any desired hypotheses concerning the character of burning of the powder, the law of resistance to motion, the design of the bore, etc.

In solving the problem by the method of numerical integration, it is necessary to proceed successively from one value of the argument to another by the addition of its finite differences, starting at the very beginning. For this reason, for example, it is not possible to determine in advance the values of p_m or the values of the variables v, l and p corresponding to the end of burning of the powder, it being necessary, instead, to compute successively, point by point, the elements of the curves of pressure p, the path of the projectile l, its velocity v, etc. This constitutes the disadvantage of this method. Moreover, the method of numerical integration gives the relation between the individual variables only in the form of numerical tables, rather than in the form of analytical formulas.

680

STAT

STAT

nitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

In spite of these disadvantages, the method of numerical integration may serve as a means for indirect verification of the degree of accuracy obtained by the aid of the various approximate analytical methods available.

In this connection, when developing new theoretical problems, numerical integration may be utilized for determining the errors involved in the transition from exact equations and relations to others that are less exact but more convenient from the analytical point of view. Numerical integration may be employed with equal success both in the case of the geometric law of burning and in the case of the more complex physical law of burning; it may also be applied to barrels having a bore of variable cross section.

In the USSR the method of numerical integration was first applied to the solution of ballistic problems by V.M. Trofimov in 1918. This method has been developed in great detail by G.V. Oppokov, who employed the method of finite differences (1931-1938) discussed above.

In 1932 P.V. Melentyev proposed to apply the method of expansion in Taylor's series for the numerical solution of equations in ballistics, and this method, after being subjected to certain modifications, has been found to be sufficiently convenient.

Investigation of the fundamental relations expressing the conditions accompanying a shot shows that all the principal elements $(l, v, \psi, \text{ and } p)$ can be expressed in one form or another as functions of the path l and of its derivatives with respect to time up to the third order inclusive.

STAT

As a matter of fact, taking the fundamental system of equations expressing the relationship between the elements of a shot, we obtain the following.

 The fundamental equation of pyrodynamics or the equation of transformation of energy:

$$ps(!_{\psi} + !) = f\omega\psi - \frac{\theta}{2} \varphi m v^2.$$

2) The equations expressing the law of burning of the powder:

$$\Psi = \kappa z (1 + \lambda z);$$

$$\frac{de}{dt} - u - u_1 p;$$

$$\frac{d\psi}{dt} = \frac{s_1}{\Lambda_1} \epsilon u_1 p = \frac{\kappa}{e_1} \epsilon u_1 p.$$

3) The equation of motion:

$$ps = \varphi_m \frac{dv}{dt} - \varphi_m \frac{d^2l}{dt^2} - \varphi_m l_t'',$$

where

$$v = \frac{dl}{dt} - l_t,$$

v being related to z by the following equation:

$$v = \frac{sI_K}{\varphi_B} (z - z_0),$$

STAT

682

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

whence

$$z = z_0 + \frac{\varphi_m}{sI_K} v.$$

All the variables entering into the fundamental system of equations can be expressed in terms of the path l and of its derivatives, since $\mathbf{v} = \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix}, \ \mathbf{z} = \mathbf{z}_0 + \frac{\varphi \mathbf{m}}{\mathbf{s} \mathbf{I}_K} \begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix}, \ \psi$ being a function of \mathbf{z} will also be expressed as a function of $\begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix}$, the pressure is proportional to $\begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix}$, and the derivative $\frac{d\mathbf{p}}{d\mathbf{t}}$ is proportional to $\begin{bmatrix} \mathbf{t} \\ \mathbf{t} \end{bmatrix}$. Consequently, if the time t of travel of the projectile through the bore is taken as the independent variable, and the path of the projectile l is taken as the function to be expanded in a series, it becomes possible to employ Taylor's series for finding the value of the path l_{n+1} and of its derivatives for the neighboring segment corresponding to the time $\mathbf{t}_{n+1} = \mathbf{t}_n + \Delta \mathbf{t} = \mathbf{t}_n + \mathbf{h}$, provided that the values of the path l_n and of its derivatives for the preceding instant \mathbf{t}_n are known. It is thus possible to find all the elements of burning of the powder and of the motion of the projectile during a shot, i.e., \mathbf{z} , ψ , \mathbf{v} , \mathbf{v} , \mathbf{t} , and \mathbf{t} .

Let it be assumed that for a certain instant of time t_n the path l_n and its derivatives with respect to time l_n' , l_n'' , l_n''' , ... are known; if a sufficiently small increment of time $\Delta t = h$ is assumed and consideration is limited to derivatives up to and including the third order, then, in accordance with Taylor's formula, we shall have for $t_{n+1} = t_n + h$:

683

$$l_{n+1} - l_n + h l_n' + \frac{h^2}{2} l_n'' + \frac{h^3}{2 \cdot 3} l_n'''.$$
 (108)

Differentiating with respect to t and rejecting the terms containing $\binom{IV}{n}$, i.e., considering that $\binom{n}{n}$ is constant over the given interval Δt and equals its mean value, we obtain:

$$l_{n+1}^{+} - l_{n}^{+} + h l_{n}^{n} + \frac{h^{2}}{2} l_{n}^{m};$$

$$l_{n+1}^{*} = l_{n}^{*} + h l_{n-av}^{**} - l_{n}^{*} + h \frac{l_{n}^{**} + l_{n+1}^{**}}{2},$$

where $\frac{\binom{n}{n}+\binom{n}{n+1}}{2}$ is the mean value of the third derivative in the interval under consideration (Fig. 154). From the last equation we obtain the following value for $\binom{n}{n+1}: \ \binom{n}{n+1} = \frac{2}{h} \ \binom{n}{n+1} = \frac{2}{h} \ \binom{n}{n} = \binom{n}{n}$.

Fig. 154 - Diagram for $l_t^{"}$ and $l_t^{"}$.

As has been shown by P.V. Melentyev, it is more convenient to compute not the derivatives themselves, but, rather, the quantities proportional to them, namely: hi', h^2 [" and $\frac{h^3}{2}$ ["'. Therefore, by multiplying l_{n+1}^* by h and l_{n+1}^{m+1} by $\frac{h^3}{2}$, we will obtain the following equations:

684

$$h \left(\frac{1}{n+1} - h \left(\frac{1}{n} + h^2 \left(\frac{n}{n} + \frac{h^3}{2} \left(\frac{n}{n} \right) \right) \right) \right)$$
 (109)

$$\frac{h^3}{2} \left\{ \prod_{n+1}^{n'} - h^2 \right\}_{n+1}^{n} - h^2 \left\{ \prod_{n}^{n'} - \frac{h^3}{2} \right\}_{n}^{n'}. \tag{110}$$

Comparing these two equations with the initial equation (108), it will be seen that l enters everywhere without a coefficient, l' enters with the coefficient h, l" enters with the coefficient h^2 , and l" enters with the coefficient $\frac{h}{2}$. This considerably accelerates the subsequent computations.

The expression for the second derivative $\{ {}^{"}_{t}$ will be:

$$l_t^{"} = \frac{s}{\omega s} p$$

or, multiplying by h2:

$$h^2 \mid_{t}^{n} - h^2 \frac{s}{\varphi_{B}} p.$$
 (111)

By combining the resulting values for the path { and its derivatives with the equations of the fundamental system, we obtain the totality of formulas necessary for the solution in the following form and sequence, which corresponds to the order of their application, the constants encountered being designated below as follows:

$$\frac{\varphi_{\mathbf{m}}}{\mathbf{s}\mathbf{I}_{\mathbf{K}}} - \mathbf{k}_{1}, \quad \frac{\mathbf{f}\omega}{\mathbf{s}} - \mathbf{k}_{2}, \quad \frac{\mathbf{0}\varphi_{\mathbf{m}}}{2\mathbf{f}\omega} - \frac{1}{\mathbf{v}^{2}\eta_{\mathbf{p}}} - \mathbf{k}_{3}, \quad \frac{\mathbf{s}}{\varphi_{\mathbf{m}}} - \mathbf{k}_{4}, \quad \frac{\omega}{\mathbf{s}}\left(\alpha - \frac{1}{\delta}\right) - \mathbf{a}.$$

$$h l'_{n+1} = h l'_n + h^2 l''_n + \frac{h^3}{2} l'''_n;$$
 (1)

$$v_{n+1} = \frac{h \binom{l}{n+1}}{h}; \tag{II}$$

$$z_{n+1} = z_0 + \frac{\varphi_m}{s_{1_K}} v_{n+1} - z_0 + k_1 v_{n+1};$$
 (111)

$$\psi_{n+1} = x z_{n+1} + x \lambda z_{n+1}^2;$$
 (IV)

$$l_{n+1} = l_n + h l_n' + \frac{1}{2} h^2 l_n'' + \frac{1}{3} \frac{h^3}{2} l_n''';$$
 (v)

System I
$$p_{n+1} = \frac{f_{\omega}}{s} \frac{\psi_{n+1} - \frac{v_{n+1}^2}{v_{np}^2}}{l_{\psi_{n+1}} + l_{n+1}} = k_2 \frac{\psi_{n+1} - k_3 v_{n+1}^2}{l_{\Delta} - a\psi_{n+1} + l_{n+1}};$$
 (VI)

$$h^{2} |_{n+1}^{n} - h^{2} \frac{s}{\varphi_{m}} |_{n+1} - h^{2} k_{4} |_{n+1}^{p};$$
 (VII)

$$\frac{h^3}{2} \binom{m}{n+1} - h^2 \binom{m}{n+1} - h^2 \binom{m}{n} - \frac{h^3}{2} \binom{m}{n} .$$
 (VIII)

The subscript (n+1) designates those values of the derivatives at the end of the given interval of time which, in the process of computation, are transferred from the column being computed into the corresponding rows of the right-hand neighboring column; however, the transferred values now bear the index n because they characterize the initial value of the given quantity in the next column.

686

In order to perform the computation by means of this totality of formulas, the values of 1 and of its derivatives at the start of the projectile's motion, i.e., at the instant t = 0, must be known. Since at the start of motion the path 1 and the speed v are equal to zero, we obtain:

$$(l)_0 = 0$$
, $(l')_0 = (v)_0 = 0$, $(l'')_0 = k_4 p_0$, $h^2(l'')_0 = h^2 k_4 p_0$

where \mathbf{p}_0 is the forcing pressure usually specified beforehand. As regards the third derivative $(l''')_0$, we shall first find an expression for it at the present instant in the form of l'''.

To determine $\{"'', we differentiate the equation <math>l_{t}^{"} = k_{\underline{4}}p$ with respect to t:

$${l_{t}^{""}} - k_{4}p_{t}^{"}$$

But the quantity $p_{\,\boldsymbol{t}}^{\,\prime}$ has already been derived:

$$p_{t}' = \frac{p}{l_{\psi} + l} \left[\frac{f_{\omega}}{s} \frac{\kappa_{\delta}}{I_{K}} \left(1 + \frac{p}{f \delta_{1}} \right) - v(1 + \theta) \right],$$

for the start of motion when l=0, v=0, $p=p_0$, and $\psi=\psi_0$; we will therefore obtain: $(p_t^i)_0 = \frac{p_0}{l_{\psi_0}} \frac{f\omega}{s} \frac{\kappa \epsilon_0}{l_K} \left(1 + \frac{p_0}{f \delta_1}\right) = k_2 \frac{\kappa \epsilon_0}{l_K} \left(1 + \frac{\kappa \epsilon_0}{s}\right)$

$$+ \frac{\mathbf{p_0}}{\mathbf{rs_1}} \right) \frac{\mathbf{p_0}}{l_{\psi_0}}.$$

The quantity $\left(1 + \frac{p_0}{f \delta_1}\right) = \frac{l_{\Delta}}{l_{\psi_0}}$, and this expression is therefore

STAT

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

sometimes given in the following form:

$$(p_t')_0 = k_2 \frac{\kappa_{\sigma_0}}{\kappa_{\sigma_0}} \frac{l_{\Delta}}{l_{\Phi_0}^2} p_0.$$

Consequently, the value of the third derivative for the initial instant is likewise known:

$$\frac{h^3}{2} \begin{bmatrix} \cdots & -\frac{h^3}{2} k_4(p_t')_0 - \frac{h^3}{2} k_4 k_2 \frac{\kappa_0}{1_K} \frac{l_{\Delta}}{l_{\Psi_0}^2} p_0, \end{bmatrix}$$

and it is possible to begin the successive solution of System (I) first for the first column corresponding to the interval of time $\Delta t = h$, then for the second column, etc., thus obtaining a successive series of values for l, v, z, ψ and p as functions of t.

The quantity $h=\Delta t$ must be so chosen as to obtain 10-15 columns for the period of burning of the powder, which will give a corresponding number of points for each of the quantities p, v, l, and ψ .

Since the time of burning is fundamentally determined by the thickness of the powder, the interval of time $h=\Delta t$ may be taken approximately according to the formula:

$$h \approx 0.001 e_1$$
,

where $e_1 = \frac{1}{2}$ the thickness of the powder in millimeters, h being rounded off to one or two significant figures (to 5 in the second significant figure). For example, if $2e_1 = 1.28$ mm:

h = 0.001 (0.64) = 0.00064 = 0.0006 or 0.00065

Since v_A and l_A are known at least approximately in advance, it is possible, after computing the average time of motion of the projectile t $\frac{2l_A}{av}$, to take for the value of the time step (increment) $\Delta t = h \approx \frac{av}{15}$, rounded off to two significant figures.

Sequence of Computation. All the constants are computed first:

$$x, \lambda, x \lambda, \Lambda, \psi_0 = \frac{\frac{1}{\Delta} - \frac{1}{\delta}}{\frac{f}{p_0} + \alpha - \frac{1}{\delta}} = \frac{\frac{1}{\Delta} - \frac{1}{\delta}}{\frac{f}{p_0} + \frac{1}{\delta_1}}; \quad \theta_0 = \sqrt{1 + 4 \frac{\lambda}{\kappa} \psi_0};$$

$$z_0 = \frac{2\psi_0}{z\left(\sigma_0 + 1\right)}; \quad I_K = \frac{e_1}{u_1}; \quad l_0 = \frac{w_0}{s}; \quad l_\Delta = \frac{1}{s}\left(w_0 - \frac{\omega}{\delta}\right) = l_0\left(1 - \frac{\Delta}{\delta}\right);$$

$$a = \frac{\omega}{8} \left(\alpha - \frac{1}{8} \right) - \frac{\omega}{8 \delta_1}; \quad l_{\psi_0} = l_{\Delta} \quad -a \psi_0; \; \phi = \frac{\phi q}{98.1}; \quad h \approx 0.001 \; e_1;$$

$$\mathbf{k}_{1} = \frac{\phi_{m}}{\mathbf{s} \mathbf{I}_{K}}; \quad \mathbf{k}_{2} = \frac{f \omega}{\mathbf{s}}; \quad \mathbf{k}_{3} = \frac{0 \phi_{m}}{2 f \omega} = \frac{1}{v_{\mathrm{np}}^{2}} \text{ (small quantity)}; \quad \mathbf{k}_{4} = \frac{\mathbf{s}}{\phi_{m}};$$

The sequence of computation is not affected regardless of whether the computation is performed for a degressive or a progressive powder.

In computing the segment after the decomposition of the progressive powder, it is necessary to substitute for the usual formula the following previously derived formula:

$$\Psi = \Psi_s + \aleph_z(z-1)_1 + \lambda_2(z-1)_2 - \Psi_s + \aleph_2(z-1) + \aleph_2\lambda_2(z-1),$$

where z varies from 1 to 1 + $\frac{\rho}{e_1}$, and κ_2 and λ_2 are characteristics of the powder form after decomposition.

A form for conducting such computations is presented on pages 691-692.

STAT

690

0.0297

0.0605

0.0641

0.0002

0.0639

0.0002

0.1196

0.1268

0.0009

0.1259

0.0016

0.0297 0.0297 In all columns.

Computation Formulas

h - 0.0008

 $h^2 / 0 - 0.0958$

- 0.0364

 $z_{n+1} - z_0 + k_1 v_{n+1}$ $k_1 - 0.0001864$

 $\psi_{n+1} = x z_{n+1} + x \lambda z_{n+1}^2$

× = 1.06

×λ- -0.06

7

8

9

10

11

12

 \mathbf{z}_{n+1}

 $\mathbf{z} \lambda \mathbf{z}_{n+1}^2$

 $\boldsymbol{\psi}_{n+1}$

 $k_3 v_{n+1}^2$

 xz_{n+1}

	Sanitiz	zed Copy Approved for Release 2010/10	0/29 : CIA-RDP8	31-01043R0011	100040001-0	0
" = 0.0958 0		h (_{n+1}	V13030			Into line 16 of next column.
$\frac{\binom{n}{0} - 0.0364}{\binom{n}{1} - \frac{\binom{n}{n+1}}{\binom{n}{n}}}$	5	$v_{n+1} = \frac{h \binom{n}{n+1}}{h}$	165.3	482		
$z + k_1 v_{n+1}$	6 7	*1*n+1 + z ₀	0.0308	0.0899	0.0297	In all columns.
- 0.0001864	8	z _{n+1}	0.0605		-	
$+1 - x z_{n+1} + x \lambda z_{n+1}^{2}$ x = 1.06	10	$ \begin{array}{c c} xz_{n+1} \\ + \\ x\lambda z_{n+1}^2 \end{array} $	0.0041			
хх0.06	11	and the second s	0.0639	0.1259		
	12		0.0002			
k ₃ = 0.087030 k ₂ = 2,850,000	13	$k_2(\psi_{n+1} - k_3 v_{n+1}^2)$				
		- A _{n+1}	691			

STAT

or National

			No.			7
		T	able 7-c	(Cont'd.)		
		n	0	1	2	3
Computation Formulas		Column No.	1	2	3	Remarks
		Time $t_{n+1} = (n + 1)h$	0.0008	0.0016	0.0024	
	15	(1 _n	0	0.0600	0.3088	From line 19 of preceding column
$= k_2 \frac{\psi_{n+1} - k_3 v_{n+1}^2}{l_{\Delta} - a \psi_{n+1} + l_{n+1}}$	16	h!	0	0.1322	0.3856	From line 4 of preceding column.
$l_{n+1} - l_n + h l'_n + \frac{1}{2}h^2 l''_n + \frac{1}{3}h^3 l'''_n$	17	$+ \begin{cases} \frac{1}{2} h^2 l_n^{\alpha} \end{cases}$	0.0479	0.0964	0.1773	$\frac{1}{2} \text{ (of line 2 of the given column)}$
$(l)_0 - 0; hl'_0 - 0$	18	$\left(\begin{array}{cc} \frac{1}{3} & \frac{h^3}{2} \\ \end{array}\right)'''$	0.0121	0.0202	0.0337	$\frac{1}{3}$ (of line 3 of the given column)
	19	1 _{n+1}	0.0600	0.3088	0.9054	Into line 15 of next column
	20	+ l _Δ	3.016	3.016	3.016	In all columns
$a = \frac{\omega}{8} \left(\alpha - \frac{1}{8} \right) = 1.065$	21	l _{n+1} + l _Δ	3.076	3.325		
	22	- αψ _{n+1}	0.068	0.134		
	23	B _{n+1} - / _{n+1} + / _Δ -	3.008	3.191		
		- aψ _{n+1}				
	24	$P_{n+1} = \frac{A_{n+1}}{B_{n+1}} kg/cm^2$	604	1100		
$h^2 i_{n+1}^n - k_4 h^2 p_{n+1}$	25	h ² ["n+1	0.1928	0.3546	-	Into lines 2 and 26 of next column
		. 2	0.0059	0 1028	-0.3546	From line 25 of preceding

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

	L	3 2 n	0.0121	0.0202	0.0337	$\frac{1}{3}$ (of line 3 of the given
	19	'n+1	0.0600	0.3088	0.9054	Into line 15 of next
$a = \frac{\omega}{8} \left(\alpha - \frac{1}{8} \right) = 1.065$	20		3.016	3.016	3.016	In all columns
8 (8) - 1.065	21	$l_{n+1} + l_{\Delta}$	3.076	3.325		
	22	$\mathbf{a}\psi_{\mathbf{n}+1}$	0.068	0.134		
	23	$B_{n+1} - I_{n+1} + I_{\Delta} -$	3.008	3.191		
		- aψ _{n+1}				
	24	$P_{n+1} = \frac{A_{n+1}}{B_{n+1}} kg/cm^2$	604	1100		
$h^2 l_{n+1}^n - k_4 h^2 p_{n+1}$	25	h ² /"n+1	0.1928	0.3546	-	Into lines 2 and 26 of next column
$k_4h^2 = 0.0531192$	26	-h ² l " n	-0.0958	-0.1928	-0.3546	From line 25 of preceding column
$\frac{h^{3}}{2}l_{n+1}^{"'} - h^{2}l_{n+1}^{"} - h^{2}l_{n}^{"}$ $- h^{2}l_{n}^{"} - \frac{h^{3}}{2}l_{n}^{"'}$	27	- \frac{h^3}{2} \left _n'''	-0.0364	-0.0606	-0.1012	From line 28 of preceding column
	28	h ³ / ₂ /""	0.0606	0.1012		Into lines 3 and 27 of next column

Formulas for the second period:

$$v = v_{np} \sqrt{1 - \left(\frac{l_1 + l_K}{l_1 + l}\right)^{\theta} (1 - k_3 v_K^2)}; \quad p = p_K \left(\frac{l_1 + l_K}{l_1 + l}\right)^{1+\theta}$$

when $l = l_A$ $v = v_A$ $p = p_A$.

 \mathbf{p}_{K} and $\boldsymbol{\ell}_{K}$ are determined from first period when ψ - 1.

The extreme left column contains the "computation formulas" and constants of System (I); in the next column to the right these formulas are broken down into individual operations, which are followed in the computations.

To start with, the first column (No. 1) corresponding to the time interval 0 to h is filled in first. In this column the subscript n relates to the start of the interval, and the subscript n+1 relates to its end; for this column n=0 and n+1=1.

For the next (second) column, n = 1, n+1 = 2, etc. For the first column, computation of the constants gives us at n=0 { n=0(the path at the start of the motion), which we write on line 15; $h_{n}^{\prime \prime} = 0$ (the velocity at the start of the motion) is written on lines 1 and 16; $h^2 \left(\frac{1}{n} - h^2 \right) = 0.0958$ is written on lines 2 and 26; $\frac{1}{2}l_0^{"'}$ is written on lines 3 and 27. Line 17 is filled with $\frac{1}{2}(h^2l_0^{"})$, and line 18 with $\frac{1}{3}(\frac{h^3}{2}l_0^{"'})$. Thus, all the quantities with the subscript n = 0 are inserted in the first column. We now subject them to the necessary operations. The sum of the first three rows gives the fourth $h_{n+1}^{*} = h_{0+1}^{*}$, which is immediately transferred to lines 1 and 16 of the neighboring column wherein, provided with the subscript n, it characterizes the value of this quantity at the start of the next interval; we then determine $v_{n+1}^{}$, $z_{n+1}^{}$, $\psi_{n+1}^{}$, and $A_{n+1}^{}$. By adding the four rows from line 15 through line 18, we obtain in line 19 l_{n+1} - the path of the projectile at the end of the given interval of time - and this quantity, provided with the subscript n, is transferred to line 15 of the neighboring column. After determining $\frac{A_{n+1}}{B_{n+1}}$ and multiplying it by k_4h^2 , we obtain $h^2\binom{n}{n+1}$, which we write on line 25 of the first column and on lines 26 and 2 of the

next column, where this quantity acquires the subscript n, as does also $\frac{1}{2}(h^2\binom{n}{n+1})$, which is written in line 17 of the next column. After performing the operations indicated in the form with lines 25, 26, and 27, we obtain in line 28 of the first column $\frac{3}{2}\binom{n}{n+1}$, which we immediately transfer to lines 3 and 27 of the next column, while $\frac{1}{3}(\frac{1}{2}\binom{3}{n+1})$ is written in line 18 of the same column.

Thus, all operations with the quantities bearing the subscript n in the second column are already prepared, and the second column is then treated in the same manner as was the first.

Constants such as \mathbf{z}_0 in line 7 and l_{Δ} in line 20 are inserted in the series of columns in advance.

By applying the same rules to the neighboring second column, we shall gradually, step by step, obtain values for v. z, ψ , l, and p as functions of t = (n+1)h, and this is continued to the end of burning or to the instant of emergence of the projectile from the bore, it being necessary to use $\psi = 1$ after the end of burning.

In performing the computations it is necessary to exercise extreme care not to commit any errors, because an error in one of the preceding columns will distort the results obtained in the succeeding columns.

It is best to follow up the computation of the data in each column by plotting them on graph paper as a function of t. In so doing an error in the given column will cause a deviation from the regular disposition of the points derived from the preceding columns, and such an error can be detected and corrected.

As a criterion of accuracy, it is also useful to plot on the diagram the third derivative (or $\frac{1}{2}$ ["" in the last row), which

should first increase, then pass through a maximum, then become zero ($p_t^i=0$) at the instant p_m is attained, and thereupon acquire a negative value, fluctuating slightly in either direction.

The instant of time cut off on the diagram at $p_t'=0$ or $\frac{h^3}{2}\{\cdots=0$ corresponds to the instant of maximum pressure, and all elements for it are best taken from the diagram.

The time t_K corresponding to the end of burning of the powder is determined from the diagram on the basis of the ψ , t curve at $\psi=1$; thereupon, the elements corresponding to the end of burning of the powder for this time are found by interpolation. If, without changing the segments $\Delta t=h$, the second period is computed as a direct continuation of the first, assuming $\psi=1$ and $\psi=1$ throughout, the third derivative $\psi=1$ usually begins to fluctuate, sometimes entering the region of positive values, which contradicts the physical nature of the process of pressure change.

For this reason, once the elements of the end of burning t_K , v_K , l_K , and p_K have been obtained from the computation of the first period, the procedure is continued by adopting the same step Δt = h with t_K as the starting point by first computing the values of the path and of its derivatives for the start of the second period in accordance with the following formulas:

$$l_{(0)} = l_{K}; \quad hl'_{(0)} = hv_{K}; \quad h^{2}l''_{(0)} = h^{2}\frac{s}{\varphi_{K}}p_{K} = h^{2}k_{4}p_{K};$$

$$\frac{h^{3}}{2}!_{(0)}^{"'} = -\frac{h^{3}}{2} \frac{g}{qn} \frac{(1+\theta)v_{K}p_{K}}{(l_{1}+l_{K})} = -\frac{h^{3}}{2} k_{4}(1+\theta) \frac{v_{K}p_{K}}{l_{1}+l_{K}};$$

STAT

whereupon they are written in the initial column for computating the data of the second period and subjected to the same operations as in the first period, with the sole exceptions that $\psi=1$ is assumed in line 11 and that lines 6-10 are omitted.

The computation is continued in this manner until $l_{n+1} > l_A$. If $l_{n+1} = l_A$, the remaining elements v_A and p_A are obtained automatically in the same column for the subscript n+1; if $l_{n+1} > l_A$, the computations in this column must be carried as far as line 24, with lines 6-10 omitted, whereupon the value of l_A is used to obtain t_A by interpolation in the last column for the purpose of subsequently obtaining the elements p_A and v_A .

Instead of expanding in a series after obtaining the elements corresponding to the end of burning of the powder, it is possible to compute $\mathbf{v}_{\mathbf{A}}$ and $\mathbf{p}_{\mathbf{A}}$ by means of the usual second-period formulas, but without determining the time t.

The solution by expansion in a series is applicable to both the geometric and the physical law of burning of powder. In the latter case:

$$v = \frac{s}{\varphi_{m}} \int_{\psi_{0}}^{\psi} pdt = \frac{s}{\varphi_{m}} (I - I_{0}),$$

from which we have the following expression for I:

$$I = I_0 + \frac{2\pi}{s} v$$

and the correlation between ψ and z is replaced by the graphical dependence of I upon ψ , which is found from the bomb test.

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

The equation for $(p_t^i)_0$ is replaced by the following expression:

$$(p_t')_0 - k_2 \Gamma_0 \frac{l_\Delta}{l_{\psi_0}^2} p_0$$

and:

$$\frac{h^3}{2} \{ \cdots = \frac{h^3}{2} \ k_4 k_2 \Gamma_0 \ \frac{l_{\Delta}}{l_{\Psi_0}^2} \ p_0,$$

where Γ_0 is the value of the experimental function Γ corresponding to the quantity $\psi=\psi_0$.

In the case of ballooning powders, Γ_0 is greater than in the case of the geometric law of burning, and therefore the values of both the first derivative p_t^* and of p itself will increase more rapidly, and the maximum pressure will occur earlier. If the propellant force of the powder is the same, the maximum pressure will be greater in the case of the physical law of burning with ballooning than in the case of the geometric law of burning.

STAT

SECTION EIGHT - EMPIRICAL METHODS OF SOLUTION

Even with a certain schematization in the assumptions made, the analytical solution of problems in internal ballistics leads to rather complex correlations, which require time-consuming and complicated computations to obtain pressure and velocity curves. For this reason, many investigators have approached the solution of problems in internal ballistics either on the basis of simple algebraic correlations with coefficients determined by reference to experimental data or on the basis of very simple tables or formulas resulting from the treatment of experimental data obtained in firing tests.

Such simple formulas and tables, which leave out of account the great complexity of the phenomenon of the shot, and which coordinate their data with experiment with the aid of certain coefficients, form the basis of empirical methods of solution.

We shall briefly consider some of the most widely known formulas and tables employed in practice.

CHAPTER 1 - MONOMIAL AND DIFFERENTIAL FORMULAS

1. MONOMIAL EMPIRICAL FORMULAS

Monomial formulas usually express the dependence of the initial velocity of the projectile and the maximum gas pressure upon various loading conditions. Like other empirical formulas, they were widely employed prior to the development of exact analytical methods and of tables derived on the basis of these methods.

Such formulas include the monomial formulas of N. A. Zabudsky, which are derived in his works "On the Pressure of Smokeless-Powder Gases in Gunbarrels" 77 and "On the Pressure of Powder Gases in the Bore of the Three-Inch Gun and on the Remaining Velocity" 87

STAT

on the basis of treatment of a large number of firing tests. These formulas are:

$$v_0 = H_1 = \frac{\omega^{\frac{3}{4}}}{\frac{1}{d_{km}^2} \int_0^{\frac{1}{4}} q^{\frac{5}{16}}}$$
; $p_m = K_1 = \frac{\omega^2 q^{\frac{3}{4}}}{\frac{d_{km}^2}{d_{km}^2}}$

for the 3-inch, 4.2-inch, and 6-inch guns, and:

$$v_0 = H \frac{\Delta^{\frac{1}{4}} \Delta^{\frac{1}{2}}}{\frac{1}{(2e_1)^{\frac{3}{4}}}} : p_m = K \frac{\frac{9}{10} \frac{9}{10} \frac{4}{5}}{\frac{7}{5}}$$

for the 1902 model 3-inch gun.

Here, \mathbf{H}_1 , \mathbf{H} , \mathbf{K}_1 , and \mathbf{K} are numerical coefficients, which are determined from the results of firing tests under known loading conditions.

Taking into account the influence of the increase in pressure P_m upon the change in the exponents, N. A. Zabudsky proposed that, at high pressures (2200 atm and higher at that time), the exponents of q and f_0 be taken as unity instead of $\frac{4}{5}$ and $\frac{9}{10}$:

$$p_{\text{max}} = K = \frac{\frac{9}{5}}{\omega q} \quad \text{or} \quad p_{\text{max}} = K = \frac{\frac{4}{5}}{\frac{7}{5}} \qquad (2e_1)^{\frac{7}{5}}$$

Closely related to monomial formulas are differential formulas. By taking the logarithm of a monomial formula and differentiating it term by term, it is possible to obtain a dependence of the relative change in initial velocity and of the maximum gas pressure upon the Change in loading conditions.

For example:

$$\frac{dv_0}{v_0} = a_1 \frac{d\omega}{\omega} - a_2 \frac{dq}{q} - a_3 \frac{dl_0}{l_0} + \dots$$

2. EMPIRICAL DIFFERENTIAL FORMULAS OF IKOPZ

Wide acceptance and practical use have been accorded in this country to the formulas of the Test Commission of the Okhta Powder Works (IKOPZ), which were derived empirically on the basis of a large number of firing tests conducted during the development and adoption into service of smokeless powders between 1895 and 1910.

G. P. Kisnemsky and N. A. Zabudsky took an important part in these tests.

The IKOPZ differential formulas, which are also known as correction formulas, give the dependence of the relative change in maximum pressure and initial velocity upon changes in the weight of the charge, the thickness of the powder, the volume of the chamber, the weight of the projectile, and the volatile content and temperature of the powder in the following form:

$$\frac{\Delta p_{m}}{p_{m}} = 2 \frac{\Delta \omega}{\omega} - \frac{4}{3} \frac{\Delta e_{1}}{e_{1}} - \frac{4}{3} \frac{\Delta w_{0}}{w_{0}} + \frac{3}{4} \frac{\Delta q}{q} - 0.15 (\Delta H\%) + 0.0036 (\Delta t^{0});$$

$$\frac{\Delta v_0}{v_0} = \frac{3}{4} \frac{\Delta \omega}{\omega} - \frac{1}{3} \frac{\Delta e_1}{e_1} - \frac{1}{3} \frac{\Delta w_0}{w_0} - \frac{2}{5} \frac{\Delta q}{q} - 0.04 \ (\Delta H\%) + 0.0011 (\Delta t^0).$$

If any one of the loading conditions does not change, its change is equal to zero, and the corresponding term in the right-hand part drops out; if only one factor changes, the right-hand part contains only one term, which characterizes the influence of this facto \tilde{s}_{TAT} alone.

Coefficients in excess of unity show that the relative change in pressure is greater than the change in the given factor; coefficients smaller than unity show that the pressure or the velocity vary less than the given factor.

A plus sign indicates that the pressure and the velocity change in the same direction, i.e., increase or decrease as the factor increases or decreases; a minus sign indicates that $\mathbf{p}_{\mathbf{m}}$ and $\mathbf{v}_{\mathbf{p}}$ change in the direction opposite to the direction of the change in the given factor.

Inspection of the formulas shows that changes in all factors affect the change in pressure much more than the change in the velocity of the projectile.

The formulas presented above find widespread practical use in the selection of the charge and thickness, in applying corrections for the volume of the crusher gage, and in firing at a powder temperature other than 15° C, which is considered to be normal, and to which the results of firing must be reduced in determining the initial velocity, since the firing tables are computed at $t = 15^{\circ}$ C.

Example 1. In firing a 1902 model 76-mm gun with an inserted crushe gage and at a powder temperature of $+12^{\circ}$ C, the following results were obtained: $p_{m} = 2380 \text{ kg/cm}^{2}$ and $v_{A} = 593 \text{ m/sec}$. To determine p_{m} and v_{A} at $t = +15^{\circ}$ C, without an inserted crusher gage, with normal loading, if the volume of the chamber is $w_{0} = 1654 \text{ cm}^{3}$ and the volume of the crusher gage is $w_{CT} = 35 \text{ cm}^{3}$.

We shall consider $W_{\rm cr.} = \Delta W_0$; consequently, the firing was conducted with a chamber volume $W_0' = W_0 - \Delta W_0 = 1654 - 35 = 1619 \text{ cm}^3$ and at $t = +12^{\circ}\text{C}$.

Reduction to the normal chamber volume requires the following STAT correction:

$$\Delta W_0 = +35 \text{ ar} \cdot \frac{\Delta W_0}{W_0} = \frac{35}{1619} = 0.022 = 2.$$
), $\frac{4.9}{9} = 15 - 12 = +3^{\circ}$.

We introduce the following corrections:

$$\frac{\Delta p_{m}}{p_{m}} = -\frac{4}{3} \quad 0.022 + 0.0036 \cdot 3 = -0.029 + 0.011 = -0.018 = -1.8\%;$$

 $\frac{\Delta v_0}{v_0^*} = -\frac{1}{3} \ 0.022 + 0.001i \cdot 3 = -0.007 + 0.003 = -0.004 = -0.4\%.$ Since all the coefficients are approximate, the corrections are also computed with a precision of only two significant figures.

Introduction of the corrections gives:

$$\Delta p_{m} = -0.018$$
 · 2380 = -43; $p_{m} = 2380 - 43 = 2337$.

or, rounded off to the nearest 5 kg

$$p_m = 2335 \text{ kg/cm}^2$$
.

$$\Delta v_0 = -0.004 \cdot 593 = -2.4 \text{ m/sec}; v_0 = 593 - 2.4 = 590.6 \text{ m/sec}.$$

The formulas presented above make it possible to solve not only direct, but also inverse problems, for example: by what amounts is it necessary to change the thickness of the powder and the weight of the charge in order that the pressure be changed by so many per cent and the initial velocity by so much; or by how many per cent is it necessary to change the volatile content of the powder in order that the pressure and velocity be changed by the required amounts if the weight of the charge is changed in a certain manner.

Example 2. In firing a 1910 model 107-mm gun, a regulation charge containing 2.050 kg of new powder gave a (regulation) $p_m = 232$ kg/cm² and a velocity $v_0 = 570.5$ m/sec instead of $v_0 = 579$ m/sec, whi was required in accordance with the technical conditions. The question is whether the charge can be corrected by changing the volatile containd, since both the pressure and the velocity will change as a result of this, how should the charge be changed so as to retain the same

pressure?

Consequently, the problem is to determine $\frac{\Delta\omega}{\omega}$ and $\Delta H\%$ under such conditions that $\frac{\Delta P_m}{P_m} = 0$ and $\frac{\Delta v_0}{v_0} = \frac{3.5}{570.5} = 0.015 = 1.5\%$.

We formulate two equations:

$$\frac{\Delta P_{m}}{P_{m}} = 2 \frac{\Delta \omega}{\omega} = 0.15 \text{ (ΔH%)}, \quad \frac{\Delta v_{0}}{v_{0}} = \frac{3}{4} \frac{\Delta \omega}{\omega} = 0.04 \text{ (ΔH%)}.$$

By substituting the values $\frac{\Delta P_m}{p} = 0$ and $\frac{\Delta v_0}{v_0} = 0.015 = 1.5\%$, con-

verting 0.15 and 0.04 into percentages (i.e., 15 and 4), and designating $\frac{\Delta\omega}{\omega}$ = x and $\Delta H\%$ = y, we obtain:

$$0 = 2x - 15y$$
; $1.5 = \frac{3^2}{4}x - 4y$.

Upon solving this system, we find

$$x = \frac{15}{2} y;$$

$$1.5 = \frac{3}{4} \frac{15}{2} y - 4y = \left(\frac{45}{8} - 4\right) y = \frac{13}{8} y;$$

$$y = \frac{3}{2} \frac{8}{13} - \frac{12}{13} \approx 0.9\%; \quad x = \frac{12}{13} \frac{15}{2} - \frac{90}{13} \approx 7\%.$$

Consequently, the volatile content ΔH must be increased by 0.9%, and the charge must be increased by 7%.

Example 3. By how many per cent is it necessary to change the thickness of the powder and the weight of the charge in order that the pressure remain unchanged and the velocity may be increased by 2%?

$$\frac{\Delta p_{m}}{p_{m}} = 0 = 2 \frac{\Delta \omega}{\omega} - \frac{4}{3} \frac{\Delta e_{1}}{e_{1}} \text{ or } 0 = 2x - \frac{4}{3}y;$$

$$\frac{\Delta v_0}{v_0} = 2\% = \frac{3}{4} \frac{\Delta \omega}{\omega} = \frac{1}{3} \frac{\Delta e_1}{e_1}, \quad 2 = \frac{3}{4} x = \frac{1}{3} y;$$

$$x = \frac{2}{3} y; \quad 2 = \frac{3}{4} \frac{2}{3} y = \frac{1}{3} y = \frac{1}{6} y;$$

$$y = 12\%; \quad x = \frac{2}{3} 12 = 8\%.$$

Consequently, to satisfy the imposed requirements, the thickness of the powder must be increased by 12%, and the charge must be increased ъу 8%.

The expression x =(2/3)y or $\Delta\omega\omega$ =(2/3) $\Delta e_1^{-1}e_1^{-1}$) obtained from the first equation shows that, in order that the pressure remain unchanged, the thickness of the powder and the charge must be changed in such a manner that:

$$\frac{\Delta\omega}{\omega} = \frac{2}{3} \frac{\Delta e_1}{e_1}.$$

As is seen from the examples presented above, empirical differential formulas make it possible to solve very rapidly and simply many of the problems that are continually encountered in firing-ground or powder-works practice. It is only necessary to keep in mind that these formulas were originally derived for medium-power guns (v \rightleftharpoons 400-600 m/sec), and that, in individual cases, the coefficients may deviate in either direction from the average values given in the formulas. Nevertheless, these formulas are entirely suitable for estimates and tentative computations.

As has been shown by N. A. Zabudsky, the values of some coefficients of $\boldsymbol{p}_{\underline{\boldsymbol{m}}}$ and $\boldsymbol{v}_{\underline{\boldsymbol{0}}}$ increase with increasing pressure.

The same is noted in the French literature, where the coefficient

change as the density of loading increases. For example, in the formulas

$$\frac{\Delta p_{m}}{p_{m}} = m_{\omega} \frac{\Delta \omega}{\omega} \text{ and } \frac{\Delta v_{0}}{v_{0}} = \mathcal{L}_{\omega} \frac{\Delta \omega}{\omega},$$

the coefficients

$$m_{\omega} = \frac{1}{1 - 0.9\Delta}$$
 and $\ell_{\omega} \sim \log 10\Delta$,

i.e., it is thereby taken into account that both the pressure and the velocity change more sharply with increasing \triangle . At \triangle = 0.55, $m_{\omega} \approx 2$, and A_{ω} = 0.74 $\approx \frac{3}{4}$, i.e., the values of the coefficients coincide with the values of the coefficients of the Test Commission of the Okhta Powder Works.

3. CORRECTION FORMULAS AND TABLES OF PROFESSOR V.E. SLUKHOTSKY

The influence of the density of loading and of the relative length of the gun upon the coefficients of differential formulas has been considered in greater detail by V. E. Slukhotsky 9.7.

The correction formulas may be represented in the following form as functions of the parameters X:

$$\frac{\Delta p_m}{p_m} = m_x \, \frac{\Delta X}{X} \, \text{and} \, \frac{\Delta v_A}{v_A} = \int_X \frac{\Delta X}{X} \, ,$$

where m_{χ} and l_{χ} are numerical coefficients, as in the IKOPZ formulas.

There are presented below excerpts from the tables of V. E. Slukhotsky. The coefficients m_{χ} are presented for the maximum pressure p_{m} within the limits of 2000-4500 kg/cm² and for values of Δ in the range of 0.50-0.80 kg/dm³.

	m I K				m <i>W</i>			m f				
Δ P _m	0.5	0.6	0.7	0.8	υ.5	0.6	0.7	0.8	0.5	0.6	0.7	0.8
2000 2500 3000 3500 4000 4500	1.50 1.50 1.45	1.50	1.40 1.46 1.50	1.24 1.33 1.40 1.44 1.46	2.14 2.22 2.30	2.49 2.59	2.43 2.56	2.38 2.57 2.74 2.90 3.05 3.19	1.81 1.78 1.73	1.78	1.76 1.78 1.78	1.64 1.67 1.69 1.70 1.71
	m _q		m _w 0			۶,	o					
2000 2500 3000 3500 4000 4500	0.69 0.72 0.72 0.70 0.66 0.59	0.73 0.78 0.80 0.80 0.79 0.76	0.76 0.81 0.84 0.86 0.87	0.86	1.36 1.48 1.57 1.63 1.66 1.68	1.58	1.52 1.67 1.78 1.86 1.92 1.96	1.74 1.86 1.96 2.03	^ _A _4 0.34	6 0.23	8 0.16	10 0.14

The correction coefficients $\mathbf{m}_{\mathbf{X}}$ and $\mathcal{L}_{\mathbf{X}}$ are given for the cases of corrections of the following quantities: $\mathbf{I}_{\mathbf{K}}$ - pressure impulse of powder gases for the period of burning of the powder; ω - weight of the charge; \mathbf{f} - propellant force of the powder; \mathbf{q} - weight of the projectile; and \mathbf{W}_0 - volume of the chamber.

Since the values of the coefficients $f_{\rm x}$ depend not only upon $p_{\rm m}$ and Δ , but also upon the quantity $\Lambda_A = \frac{f_{\rm x}}{4} f_{0}$, tables for various Λ_A have been formulated for determining the values of the coefficient $f_{\rm x}$. In the tables presented below, the values of 4, 6, 8, and 10 have been taken for Λ_A . For each value of Λ_A , there is given its own table of values of $f_{\rm x}$ as a function of $f_{\rm m}$ and $f_{\rm x}$ 2000-4500 kg/cm², $f_{\rm x}$ = 0.5, 0.6, 0.7, and 0.8).

Sanitized Conv Approved for Release 2010/10/29	· CIA-RDP81-01043R001100040001-0

Λ	_		4				6				8				10)	
	Δ P _B	0.5	0.6	0.7	0.8	0.5	0.6	0.7	0.8	0.5	0.6	0.7	0.8	0.5	0.6	0.7	0.8
Q.K	2000 2500 3000 3500 4000 4500	0.38 0.24 0.17 0.12 0.09 0.07	0.55 0.39 0.28 0.20 0.15 0.12	0.53 0.41 0.31 0.23 0.18	0.50 0.43 0.33 0.26	0.30 0.18 0.12 0.09 0.07 0.05	0.45 0.29 0.21 0.15 0.11 0.09	0.49 0.44 0.32 0.23 0.17 0.13	0.48 0.46 0.35 0.25 0.18	0.25 0.16 0.10 0.07 0.06 0.05	0.38 0.26 0.17 0.12 0.09 0.08	0.46 0.37 0.27 0.19 0.14 0.11	0.46 0.39 0.29 0.21 0.15	0.22 0.14 0.09 0.07 0.05 0.04	0.33 0.22 0.15 0.11 0.08 0.07	0.46 0.32 0.23 0.17 0.13 0.10	0./5 0 0.26 0.19 0.14
ىداد	2000 2500 3000 3500 4000 4500	0.86 0.76 0.68 0.63 0.60 0.58	0.97 0. 86 0.77 0.70 0.65 0.62	0.97 0.86 0.77 0.73 0.67	0.84	0.76 0.68 0.63 0.59 0.56 0.54	0.87 0.77 0.69 0.63 0.59 0.56	0.95 0.86 0.75 0.68 0.63 0.59	0.92 0.82 0.73 0.66 0.62	0.73 0.66 0.61 0.58 0.55 0.53	0.83 0.73 0.66 0.61 0.58 0.55	0.92 0.81 0.71 0.65 0.60 0.57	0.88 0.77 0.62 0.62 0.58	0.72 0.65 0.60 0.56 0.54 0.52	0.80 0.71 0.65 0.60 0.56 0.54	0.89 0.77 0.69 0.63 0.58 0.55	0.93 0.84 0.74 0.67 0.61 0.57
l _e	2000 2500 3000 3500 4000 4500	0.69 0.63 0.59 0.57 0.55 0.54	0.77 0.69 0.64 0.60 0.58 0.56	0.6	0.72	0.66 0.61 0.57 0.55 0.54 0.53	0.72 0.66 0.61 0.58 0.56 0.55	0.73 0.71 0.66 0.62 0.59 0.57	0.72 0.71 0.66 0.62 0.59	0.63 0.59 0.56 0.54 0.53 0.52	0.69 0.64 0.60 0.57 0.55 0.54	0.72 0.69 0.64 0.60 0.57 0.56	0.71 0.68 0.64 0.60 0.57	0.62 0.57 0.54 0.53 0.52 0.52	0.67 0.62 0.57 0.55 0.54 0.53	0.72 0.66 0.61 0.58 0.56 0.55	0.69 0.5 0.60 0. 0. 0.57
1q	2000 2500 3000 3500 4000 4500	0.28 0.34 0.38 0.41 0.43 0.44	0.18 0.29 0.33 0.37 0.39	0.2	8 0.22 3 0.28 6 0.32		0.26 0.32 0.36 0.39 0.41 0.43	0.19 0.27 0.32 0.35 0.38 0.40	0.22 0.27 0.32 0.35	0.42 0.44 0.45	0.29 0.34 0.38 0.41 0.43 0.44	0.21 0.29 0.34 0.37 0.40 0.42	0.23 0.29 0.33 0.37 0.40	0.36 0.40 0.43 0.44 0.45 0.46	0.31 0.36 0.39 0.41 0.43 0.44	0.26 0.31 0.35 0.38 0.40 0.42	0.34

707

50X1-HUM

4. IDEA OF FORMULAS AND TABLES OF KISNEMSKY

While working in the Test Commission of the Okhta Powder Works and investigating the question of the applicability of the tables of Heidenreich to our guns and powders, G. P. Kisnemsky arrived at the necessity of substantially changing these tables and formulated his own tables on the basis of tests of our powders and guns.

Since, as a rule, no account is taken in empirical formulas of the influence of the weight of the charge and of the thickness of the powder, he proposed several formulas to eliminate this disadvantage.

For example, to establish the efficiency of the charge in the gun, Kisnemsky proposed the following formula:

$$v_0 = h \left(\omega - \omega_0\right)^{\frac{1}{2}}$$

where h is a proportionality factor determined by the system of the gun, and ω_0 is that part of the charge whose energy is consumed in the production of harmful work during the shot.

To determine this part of the charge, Kisnemsky gave two formulas, which took into account the influence of the thickness and propellant force of the powder and of some other data relating to the design of the gun and the loading conditions:

$$\omega_0 = 0.001 (s f_A q)^{\frac{1}{2}} (2e_1)^{\frac{1}{3}}$$

or

$$\omega_0 = \omega - (W_0 + s \ell_A) \frac{p_A}{f + \alpha p_A} .$$

CHAPTER 2 - EMPIRICAL FORMULAS AND TABLES

1. IDEA OF FORMULAS OF LEDUC.

STAT

The emprical formulas of Leduc (1903) were employed for rapid computation of pressure and velocity curves and were utilized for the

708

solution of various problems in internal ballistics. The advantage of these tables consisted in their simplicity. At present, however, in view of the availability of tables formulated on the basis of more exact analytical formulas, the empirical formulas of Leduc, like the tables of Heidenreich, have lost their importance and possess some interest merely from the point of view of the method on which they are based.

On the basis of a study of extensive experimental and computational data, Leduc assumed for the velocity of the projectile a hyperbolic correlation of the following type:

$$v = \frac{a \lambda}{b + \ell}$$

where a and b are constants, which depend upon the loading conditions.

It follows from this formula that, as 2 approaches infinity, v approaches a, and the constant a expresses the limiting velocity of the projectile. As a matter of fact:

$$v_{np} = \left(\frac{a \, \ell}{b + \ell}\right)_{\ell = \infty} = \left(\frac{a}{\frac{b}{\ell} + 1}\right)_{\ell = \infty} = a.$$

The constant a has the dimension of velocity, and the constant b has the dimension of length.

To establish the dependence of pressure upon the path of the projectile, use is made of the usual equation of motion of the projectile in the following form:

$$ps = \varphi = v \frac{dv}{dl};$$

By substituting therein the expression for the velocity of the projectile and for its derivative with respect to the path, $dv/d\hat{k} = ab/(b+f)^2$, we obtain the following formula for the pressure as a

function of the path:

$$p = \frac{q_{\text{ma}}^2 b}{s} \frac{l}{(b+l)^3}.$$

To find the maximum pressure p_m and the path ℓ_m traversed by the projectile prior to that instant, we equate to zero the derivative of the pressure with respect to the path traversed by the projectile:

$$\frac{dp}{d\ell} = \frac{m}{s} a^2 b \frac{(b+\ell)^3 - 3\ell(b+\ell)^2}{(b+\ell)^6} = \frac{m}{s} a^2 b \frac{b-2\ell}{(b+\ell)^4};$$

$$\frac{dp}{d\ell} = 0 \text{ at } b = 2 \int_{m} \left(\int_{m} -\frac{b}{2} \right) dt$$

Upon substituting this value for $f_{\mathbf{m}}$ into the equation, we obtain:

$$p_{m} = \frac{4}{27} \frac{q^{ma}^2}{sb} .$$

We obtain the velocity of the projectile in the instant of maximum pressure from the equation at $f_m = b$, 2:

$$v_{m} = \frac{a l_{m}}{b + l_{m}} = \frac{a \frac{b}{2}}{b + \frac{b}{2}} = \frac{a}{3}.$$

Consequently, the constant a (or the limiting velocity) equals three times the velocity of the projectile in the instant of maximum pressure (a = $3v_m$).

To find the correlation between the path and time, we start out on the basis of the fact that:

$$dt = \frac{df}{v} = \frac{b + f}{af} df.$$

Integration within the limits from t_1 to t and from f to f gives:

$$t = t_1 + \frac{1}{a} (b \ln \frac{1}{k_1} + \frac{1}{k} - \frac{1}{k_1}),$$
 STAT

710

Taking $\mathcal{X}_1 = \mathcal{X}_m$ and consequently t = t, and moreover assuming that the projectile moves along this segment with a constant acceleration equal to the arithmetic mean between the initial acceleration (which equals zero) and the final acceleration (which equals $4/27 \cdot a^2/b$), we can write $\mathcal{X}_m = b/2 = (1/2)(2/27)(a^2/b)(t^2/m)$ from which $t_1 = t_m = \sqrt{27/2}(b/a)$.

By substituting this value for t_1 into the equation for t, and taking into account that $\mathcal{A}_1 = \mathcal{A}_m = b, 2$, we find the time necessary for the projectile to traverse the path $\mathcal A$ through the bore:

$$t - \sqrt{\frac{27}{2}} \frac{b}{a} + \frac{1}{a} \left[b \ln \frac{2\ell}{b} + \ell - \frac{b}{2} \right] - \frac{b}{a} \left[\left(\sqrt{\frac{27}{2}} - \frac{1}{2} \right) + \frac{\ell}{b} + \ell n \left(\frac{2\ell}{b} \right) \right].$$

Completion of the above operations and transformation of the result in terms of decimal logarithms finally gives us:

$$t = \frac{b}{a} \left[3.174 + \frac{f}{b} + 2.303 \log \frac{2 J}{b} \right]$$

To utilize the formulas of Leduc, it is necessary to know the constants a and b. If the values of $v_{\mathcal{A}}$ and p_{m} are known from experiment or have been computed on the basis of exact formulas, the constants a and b are defined by the following system of equations:

$$v_{R} = \frac{a l_{R}}{b + l_{R}};$$

$$p_{m} = \frac{4}{27} \frac{q_{m}}{s} \frac{a^{2}}{b} ,$$

STAT

from which:

$$a = \frac{27p_m s \frac{f_R}{g_R}}{8\varphi m v_R} \left(1 \pm \sqrt{1 - \frac{16\varphi m v_R^2}{27p_m s \frac{f_R}{g_R}}} \right).$$

In this formula, only the minus sign need be retained before the expression under the radical, since the plus sign gives for 1 a value beyond the limits of the bore.

By designating $\eta_A = p_{av}$, $p_m = \varphi m v_A^2 2 p_m s_A$ and introducing this expression into the equation for a, we obtain:

$$a = \frac{27}{16\eta_A} \left(1 - \sqrt{1 - \frac{32}{27} \eta_A} \right) v_A$$

Knowing a, we find the quantity b from the following equation:

$$b = \left(\frac{a}{v_A} - 1\right) I_A$$
.

The formulas of Leduc have the disadvantage that, in order to utilize them and to determine the constants a and b, it is necessary to know in advance $p_{\underline{m}}$ and $v_{\underline{n}}$; this reduces their value considerably. For this reason, Leduc made the attempt to predetermine the constants a and b in advance in conformity with the conditions of loading and the characteristic properties of the powder employed.

The formulas for a and b have the following form:

$$a = \alpha \left(\frac{\omega}{q}\right)^{\frac{1}{2}} \Delta^{\frac{1}{12}}; \qquad (112)$$

$$b = \beta \left(\frac{w_0}{d}\right)^{\frac{3}{8}} \left(1 - \frac{3}{4}\Delta\right) . \tag{113}$$

The quantities α and β characterize the powder; the quantity α characterizes the potential of the powder, depends principally upon the nature, and fluctuates within narrow limits; on the other hand,

the quantity β characterizes the rate of burning of the powder, depends principally upon the thickness of the powder grain, and may fluctuate within rather wide limits (2-65).

In the case of pyroxylin powders, the value of α may be assumed to be equal to 2080 kg \cdot m \cdot sec, and consequently:

$$a = 2080 \left(\frac{\omega}{q}\right) \frac{1}{2} \Delta^{\frac{1}{12}}.$$

Knowing a, the value of b can be determined from:

$$b = \left(\frac{a}{v_A} - 1\right) l_A,$$

and, in case of necessity, the quantity p may be found from Equation (113).

The author has conducted a treatment of the results of firing tests and powder tests in a pressure bomb for the purpose of determining the dependence of the coeffic ent # upon the thickness of the powder or upon the pressure impulse. The following relations were established.

For powders with one perforation:

ar M

$$\psi = 0.95$$
 $\beta = 2.15$
 $\int_{\psi = 0.05}^{\phi = 0.95}$

For powders with seven performations:

$$\beta = 4.25 \int_{0.05}^{0.85} pdt,$$

where the integrals \int pdt were obtained by treatment of bomb tests.

In addition, the author has proposed the following simplified STAT relations for a and b:

71	3

a = 0.16
$$\sqrt{\frac{2gf \omega}{q}}$$
; b = $2 l_0 \Delta$ (*).

2. IDEA OF TABLES OF HEIDENREICH

The tables of Heidenreich (1900) were formulated on the basis of a treatment of a large number of velocimetric recoil curves obtained by firing various guns under a variety of loading conditions.

They consist of two separate tables.

Table 8 presents values which make it possible to determine the elements of a shot for the instant of maximum pressure and for the instant of passage of the projectile through the muzzle face (p_m and $\{p_n\}$).

Table 8

	$\Sigma(\eta) = \frac{\ell_{\rm m}}{\ell_{\rm A}}$	$\Pi(\eta) = \frac{\nu_A}{p_{av}}.$	$\phi(\eta) = \frac{v_m}{v_A}$	$\Theta(\eta) = \frac{t_m}{t_{av}}.$	$T(\eta) = \frac{t_A}{t_{av}}$
0	U	-	-	U	-
0.05	0.0046	-	-	0.033	-
0.10	0.0104	0.200	0.288	0.069	0.646
1	0.0177	0.240	0.306	0.:08	0.695
0.15	0.0262	0.274	0.322	0.150	0.744
0.20	0.0360	0.306	0.337	0.196	0.792
0.25		0.338	0.352	0.246	0.842
0.30	0.0471	0.368	0.367	0.300	0.893
0.35	0.0597		0.383	0.358	0.946
0.40	0.0740	0.400	ļ		1.000
0.45	0.0903	0.432	0.399	0.420	

^(*) For a more detailed description of the application of Leduc's formulas to various cases encountered in practice, cf. M. E. Serebryakov, G. V. Oppokov, and K. K. Greten, "VNUTRENNYAYA BALLISTIKA" (Internal Ballistics), 1939, pp. 333-341.

Table 8 (Cont'd.)

$\gamma = \frac{P_{av}}{p_{m}}$	$\Sigma(\eta) = \frac{l_m}{l_q}$	$\Pi(\eta) = \frac{p_A}{p_{av}}$	Φ(η) = ^{ν_m} _{ν_A}	$\Theta(\gamma) = \frac{t_m}{t_{av}}.$	$T(\eta) = \frac{t_R}{t_{av}}$
0.50	0.1090	0.465	0.416	0.487	1.056
0.55	0.132	0.501	0.435	0.560	1.116
0.60	0.160	0.541	0.457	0.642	1.180
0.65	0.192	0.585	0.482	0.734	1.249
0.70	0.231	0.635	0.511	υ .835	1.322
0.75	0.283	0.697	U.546	U.958	1.406
0.80	0.360	0.779	0.592	1.115	1.507
0.825	0.422	0.838	0.636	1.225	1.575
0.85	0.605	1,000	0.747	1.485	1.715
0.825	0.855	1.181	0.908	1.735	1.815
0.80	0.980	1.254	0.987	1.835	1.845
0.79	1.000	1.266	1.000	1.850	1.850

In using Table 8, the initial quantity is $\gamma = p$, where p av. m av.

is defined by the following formula:

$$p_{av.} = \frac{q \left(1 + \frac{1}{2} \frac{\omega}{q}\right) v_{\alpha}^{2}}{2 gs \ell_{\alpha}},$$

where $(1 + (1/2)\omega/q)$ is a coefficient which takes into account the work required to move the projectile.

Table 8 presents the following functions of γ_1 :

$$\sum (\gamma_l) = \frac{l_m}{l_A}; \quad \bar{\Phi}(\gamma_l) = \frac{v_m}{v_A}; \quad \Theta(\gamma_l) = \frac{t_m}{t_{av}}, \quad \Pi(\gamma_l) = \frac{p_A}{p_{av}}; \quad T(\gamma_l) = \frac{t_A}{t},$$

where $t_{av.} = 2 f_{A}/v_{A}$ is the time of motion of the projectile through

71:

the bore with the average velocity $v_{A} + 0/2 = v_{A}/2$.

Once the numerical value of:

$$\gamma_{A} = \frac{\varphi\left(1 + \frac{1}{2}\frac{\omega}{q}\right) v_{A}^{2}}{2gs l_{D}^{p_{m}}}$$

for a given gun is known, it is found in the first column, and the values for all the remaining functions are written out as indicated in the same line.

With L_A , P_{av} , v_A , and t_{av} known, these numbers are used to find the quantities L_m , v_m , t_m , p_A , and t_A , i.e., the elements of the shot for the instant of p_m and v_A .

In order to use the tables, it is necessary first to know $p_{\underline{m}}$ and $v_{\underline{q}}$, as well as q, s, $f_{\underline{q}}$, and ω q, which also constitutes a disadvantage of these tables.

Table 9 presents data for finding intermediate values for the pressure, velocity, and time as a function of the relative path of the projectile $A = \ell / \ell_{\rm m}$.

Table 9 contains numerical values of the following functions:

$$H(\lambda) = \chi$$
; $\Psi(\lambda) = \frac{p}{p_m}$; $\Omega(\lambda) = \frac{v}{v_m}$ and $Z(\lambda) = \frac{t}{t_m}$,

which represent curves for the pressure, velocity, and time of motion of the projectile as functions of the path ℓ/ℓ_m .

For $\lambda = 1$ ($l = l_m$, $p = p_m$), the values of the last three functions equal unity, and this line corresponds to the pressure maximum on the pressure curve. The lines above this line give values for p, v, and t on the ascending branch of the pressure curve; the lines below this line give values for these quantities on the descending branch of the curve.

In this connection, the limit of descent in Table 9 is the line

for which $\lambda - l_{\underline{\mu}}/l_{\underline{m}}$ or $\gamma - \gamma_{\underline{\mu}}$.

Table 9

	_			
λ- <u>-</u> <u> </u>	H(X) - 7	Ψ (γ) - ^р _ш	$\Omega(\lambda) = \frac{v}{v_m}$	$Z(\lambda) - \frac{t}{t_m}$
0.25	0.445	0.690	0.375	0.689
0.50	0.615	0.890	0.624	0.830
0.75	0.723	0.970	0.828	0.924
1.00	0.790	1.000	1.000	1.000
1.25	0.833	0.966	1.145	1.063
1.50	0.848	0.893	1.268	1.119
1.75	0.849	0.828	1.372	1.170
2.00	0.843	0.769	1.460	1.218
2.5	0.818	0.668	1.609	1.306
3.0	0.786	0.590	1.726	1.387
3.5	0.753	0.527	1.824	1.463
4.0	0.721	0.475	1.909	1.536
4.5	0.691	0.433	1.981	1.606
5.0	0.663	0.397	2.046	1.672
6	0.614	0.340	2.158	1.801
7	0.572	0.297	2.250	1.923
8	0.536	0.263	2.328	2.042
9	0.504	0.236	2.395	2.156
10	0.476	0.214	2.453	2.267
11	0.451	0.195	2.504	2.376
12	0.429	0.179	2.551	2.483
13	0.409	0.166	2.592	2.588
14	0.391	0.154	2.630	2.692
15	0.375	0.144	2.665	2.79 ^{§TAT}

Table 9 (cont'd.,									
$\lambda = \frac{\ell}{\ell_m}$	H(ኢ) - ካ	$\Psi(Y) = \frac{b^{m}}{p}$	$\Omega(\lambda) = \frac{v}{v_m}$	$Z(\lambda) = \frac{t}{t_{m}}$					
16	0.360	0.135	2.698	2.895					
17	0.347	0.127	2.730	2.994					
18	0.335	0.120	2.760	2.092					
19	0.323	0.114	2.787	3.189					
	0.312	0.108	2.812	3.286					
20	0.270	0.086	2.921	3.758					
25		0.071	3.004	4.214					
30	0.238	0.060	3.070	4.659					
35	0.213	0.052	3.132	5.095					
40	0.194		3.220	5.946					
50	0.164	0.041		7.995					
75	0.120	0.027	3.373						
100	0.096	0.020	3.480	9.966					

By copying from the tables the values of the relative quantities p/p_m , f/g_m , v/v_m , and t, t, and multiplying them by p_m , f_m , v_m , and t, respectively, we obtain the current values for p, f, p, and p, with the aid of which we can plot curves for p(f), p(f), and p(f).

Example of Computation of Pressure and Velocity Curves
The following conditions are given:

Caliber d = 76.2 mm;

Weight of projectile q = 6.5 kg;

Weight of charge $\omega = 0.905 \text{ kg}$;

Cross-sectional area of bore $s = 0.4693 \text{ dm}^2$;

Muzzle velocity v_A = 5880 dm/sec;

Maximum pressure $p_m = 2320 \text{ kg/cm}^2$;

Length of path of projectile $L_R = 18.44$ dm.

We find p_{nv} (g = 98.1 dm/sec):

$$P_{av.} = \frac{q \left(1 + \frac{1}{2} \frac{\omega}{q}\right) v_{R}^{2}}{2 \operatorname{gs} \ell_{R}} = \frac{6.5 \left(1 + \frac{1}{2} \frac{0.905}{6.5}\right) 5880}{298.1 \cdot 0.4693 \cdot 18.44} = 134500 \, \operatorname{kg/dm^{2}} = 1345 \, \operatorname{kg/cm^{2}}$$

We compute $\gamma = p_{av}/p_m = 1345/2320 = 0.58$. From Table 8, interpolating for $\gamma = p_{av}/p_m = 0.58$, we find:

Table 10

ንኒ	$\sum (\gamma) = \frac{\ell m}{\ell_{cl}}$	$\phi(\gamma) = \frac{v_m}{v_{\mu}}$	$\Theta(\eta) = \frac{t_m}{t_{av}}$
0.55	0.132	0.435	0.56 0
0.58	0.149	0.448	0.609
0.60	0.160	0.457	0.642

Having the values of $\Sigma(\eta)$, $\Phi(\eta)$, and $\Theta(\eta)$, we compute \mathcal{L}_m , v_m , and t_m :

$$\mathcal{L}_{\mathbf{m}} = \mathcal{L}_{\mathbf{p}} \Sigma(\eta) = 18.44 \cdot 0.149 = 2.75 \text{ dm};$$

$$v_{m} = v_{A} \Phi(\gamma) = 588 \cdot 0.448 = 264 \text{ m/sec}$$
:

$$t_{av.} = \frac{2f_R}{v_R} = \frac{2 \cdot 18.44}{5880} = 0.00628 \text{ sec}$$
:

$$t_{\mathbf{m}} - t_{\mathbf{av}} \theta(\gamma) = 0.00628 \cdot 0.609 = 0.00382 \text{ sec.}$$

Having these values, we compute p, v, and t with the aid of the following formulas:

$$p = p_m \Psi(\lambda); \quad v = v_m \Omega(\lambda); \quad t = t_m Z(\lambda).$$

The value of λ for the muzzle face is:

$$\frac{\ell_R}{\ell_m} = \frac{18.44}{2.75} = 6.71.$$

STAT

719

We find from Table 9:

 $\Psi(\lambda); \Omega(\lambda); Z(\lambda).$

In conformity with this table, we compute the current values of $\mathcal L$, p, v, and t.

Table 11

L, dm	p, kg cm ²	v, m.sec	t, sec.
0.688	160υ	99	0.00263
1.375	2060	164	0.00317
2.06	2250	218	0.00353
2.75	2320	263	0.00382
3.44	2240	301	0.00406
4.12	2070	334	0.00427
4.82	1920	361	0.00447
5.50	1785	384	0.00465
,6.87	1550	423	0.00498
8.25	1370	454	0.00530
9.62	1220	480	0.00559
11.00	1100	502	0.00587
12.37	1005	521	0.00613
13.75	920	538	0.00638
16.50	790	568	0.00687
18.44	715	588	0.00722
	i	5	1

The results of the computation are plotted in figs. 155 and 156 (the computations were performed with the aid of a slide rule). $_{\rm STAT}$

Fig. 155 p(t) and v(t) Curves.

Fig. 156 $p(\hat{x})$ and $v(\hat{x})$ Curves.

STAT

SECTION NINE - TABULAR METHODS OF SOLUTION OF PROBLEMS IN INTERNAL BALLISTICS

CHAPTER 1 - IMPORTANCE OF TABULAR METHODS OF SOLUTION IN ARTILLERY PRACTICE

In adopting the analytical method for the solution of the principal problem of pyrodynamics, i.e., for the determination of the gaspressure curve in the bore and of the velocity of the projectile as a function of its path, it is necessary to perform a large number of computations, which require a considerable expenditure of time. Moreover, the analytical formulas do not make it possible to solve inverse problems connected with the design of the system or with determining the thickness of the powder. For this reason, in solving such problems, it has been necessary to go through a large number of variants of the direct problem and then to choose from among them by interpolation the variant suitable for the case under consideration. This introduced extraordinary complications into the solution of problems connected with the design of guns and the selection of powders, making it necessary to resort to tables and simple formulas of empirical origin which do not take into account all the circumstances surrounding the phenomenon of the shot. For example, the formulas of Leduc do not take cognizance of the weight of the charge and the thickness of the powder, just as the thickness of the powder also fails to be reflected in the tables of Heidenreich.

Neither the tables nor the formulas mentioned above make it possible to determine the position of the end of burning of the powder and to find out whether or not it burns entirely in the barrel. While this may not be essential for computing the strength of the barrel or for designing the gun carriage, it is of decisive importance in choosing the thickness of the powder to assure attainment of the necessiSTAT

ballistic data.

For this reason, when, in 1910, Professor N. F. Drozdov formulated his tables for determining the maximum pressure p_m and theinitial velocity $\mathbf{v}_{\mathcal{A}}$, involving the coincidental determination of the position of the end of burning of the powder $(\mathcal{I}_{\mathbf{K}}/\mathcal{X}_0)$, this simplified considerably the solution of the direct problem of internal ballistics and permitted the rapid and simple solution of a number of inverse problems relating to the ballistic design of the barrel, such as determination of the length of path of the projectile necessary to assure attainment of the required initial (muzzle) velocity at a given density of loading and under the conditions of complete combustion of the powder in the bore $(I_K < I_A)$, determination of the thickness of powder necessary to assure the attainment of a predetermined maximum pressure, solution of diverse variants involving changes in the weight of the charge and in the thickness of the powder at the same maximum pressure to determine the most advantageous conditions of loading, etc.

The tables formulated by Professor Drozdov played an important part in perfecting and accelerating the solution of the problem of ballistic design and received widespread recognition. For convenience in use, they were later interpolated for smaller variations in the arguments entering into them. In 1933, they were perfected and expanded by the author himself. They also served as a model for the compilation in 1933 of the "Tables of the Chair of Internal Ballistics" for powders with a constant burning area.

A further development and continuation of the tables of Professor N. F. Drozdov is represented by the "ANII Tables," published in 1933, which make it possible, under given conditions of loading, to determine not only p_m , f_K , f_m , and f_M , but also all curves for the gas pressure, the velocity of the projectile, and the time of motic $\widetilde{STA}\widetilde{T}\mathbf{S}$

functions of the path of the projectile. These tables made it possible still further to accelerate the solution of a number of problems connected with the field of ballistic design.

Following the introduction of the tables of Professor N. F. Drozdov, and then of the ANII Tables, into artillery practice, the empirical tables of Heidenreich lost all of their importance.

In 1942, with the ANII Tables as a model, there were compiled under the editorship of V. E. Slukhotsky and S. I. Ermolaev detailed "GAU Tables," which were published in three parts, with the subsequent addition of a special Part 4 for the ballistic computation of guns.

They are more convenient and do not contain the errors present in the ANII Tables.

Part 4 of the tables (TBC) is especially convenient for ballistic computations.

In the present chapter, we shall discuss tables which represent numerical values of the principal elements p, v, £, and t, obtained on the basis of formulas for the analytical solution of the direct problem for a large number of variants of loading conditions. Such tables make it possible, almost without computations, to find all elements of a shot, such as the gas pressure and the velocity of the projectile as functions of the path of the projectile and as functions of time, there being determined among others the elements for maximum pressure, for the end of burning of the powder, and for the muzzle face.

Some such (abbreviated) tables give directly only certain individual elements of the shot, including the maximum pressure, its position, and the position of the end of burning of the powder, making it necessary to conduct additional relatively simple computations for the calculation of the muzzle velocity.

Contrary to the practice adopted by some authors, tabular methods cannot be interpreted to include those analytical methods for the solution of the direct problem comprising tables of various functions of internal ballistics, such as, for example, the D and ε functions of Professor Oppokov, the $\int_0^\infty Z_x^{B/B} \mathrm{ld}\beta$ function of Sviridov, etc., which play an auxiliary part in the solution of the direct problem and in the computation of the elements of the shot.

PROCEDURE FOR FORMULATION OF TABLES (*)

In formulating tables on the basis of analytical methods, there is conducted a large number of computations leading to the solution of the direct problem of internal ballistics for various conditions of loading, which are chosen within definite limits.

To render the tables adaptable to guns of any desired caliber, the initial equations are reduced to such a form that they contain relative quantities wherever possible. For example, instead of weights of charges ω , which vary within very wide limits, use is made of densities of loading Δ , which vary but little for definite types of guns; instead of absolute paths of the projectile, there are determined the relative quantities $\Lambda = 1/1_0$, where $1/1_0 = 1/1_0$ may be considered either as the relative path of the projectile or as the number of volumes of expansion of the gases, $\Lambda = 1/1_0 = 1/1_0$, which, in our artillery systems, varies only within circumscribed limits.

Instead of the absolute pressures p, there are sometimes determined the ratios of the pressure to the propellant force of the powder, p/f or p/p₁, where $p_1 = f\Delta/1 - \alpha\Delta$.

Moreover, the constants which characterize the conditions of

(*)Cf. Professor D. A. Ventsel, "VNUTRENNYAYA BALLISTIKA" (Internal Ballistics) $\sqrt{10}$

loading are grouped together in the form of dimensionless parameters independent of the caliber of the gun. Such parameters include, for example:

$$B = \frac{s^2 I_K}{f \omega \omega_m}$$

(in the method of Professor Drozdov)

or

$$H = \frac{2 f \omega \varphi m}{s^2 I_K^2} = \frac{2}{B}$$

(in the method of Bianchi-Grave)

or

$$C - \frac{\theta}{H} - \frac{B\theta}{2}$$

(in the same method at z = 1)

To make it possible to construct the tables, it is necessary to establish the number of variables and parameters entering into the system of equations of internal ballistics. For this purpose, we shall consider the principal formulas for the elements of the shot $(p, v, 1, and \Psi)$.

For the first period, in the case of a powder of degressive form, we have:

$$- \frac{1}{2} \lambda - \frac{1}{2} \cdot \frac{1}{8} + \alpha - \frac{1}{8} \cdot \frac{1}{8} \cdot \frac{1}{1} \cdot \frac{1}{8} \cdot \frac{1}{1}

$$v = v_{\eta_p} \sqrt{\frac{B\theta}{2}} x = \sqrt{\frac{\omega}{\phi^q}} \sqrt{fgBx};$$

or

$$\mathbf{v}\sqrt{\frac{q\cdot\mathbf{q}}{\omega}} - \sqrt{\mathbf{fgB}} \mathbf{x};$$
$$\mathbf{\Lambda} - \frac{\ell}{\ell_0}:$$

$$\Lambda_{\psi} = 1 - \frac{\Delta}{\delta} - \Delta \left(\alpha - \frac{1}{\delta}\right) \psi;$$

$$\psi - \frac{B\Theta}{2} x^{2}$$

$$p - f\Delta \frac{\Delta}{\Delta \psi + \Delta};$$

$$\Lambda - \Lambda \psi_{av} \cdot (z_{x}^{-\overline{B}_{1}} - 1),$$

where

$$B_1 = \frac{B\Theta}{2} - x\lambda,$$

 B_1 entering into the quantities $\gamma = B_1 \psi_0 / k_1^2$ and $r = B_2 / k_1$, in accordance with which the function $\log Z_2^{-1}$ is determined.

The chamber volume \mathbb{W}_0 and the cross-sectional area of the chamber s enter only into the expression $\Lambda = \frac{1}{2} \int_0^\infty \mathrm{d} y$ by way of the quantity $\int_0^\infty \mathrm{d} y$. The weight of the charge and the weight of the projectile enter in the form of the ratio ω/q into the formula for the velocity \mathbb{V} ; the coefficient $\varphi = a + b \omega/q$ depends upon the same ratio.

Consideration of the quantities p, $\mathbf{v}\sqrt{\frac{qq}{\omega}}$, and $\Lambda=\frac{1}{2}$ shows them to represent functions of the argument \mathbf{x} and of the following eight parameters:

f, α , and ξ , which characterize the nature of the powder;

 $\Theta = c_p/c_w - 1$, which characterizes the composition of the gases and the conditions of their expansion in the bore of the gun;

X, which characterizes the form of the powder;

p₀, which characterizes the arrangement of the belt of the projectile and of the grooves in the bore;

B and A, which characterize the conditions of loading.

The values of the same variables p, v $\sqrt{\varphi \, q/\omega}$, and Λ at the pressure maximum and at the end of burning of the powder depend upon the same eight parameters.

In the second period, p and $v \sqrt{q q/\omega}$ are defined by the following expressions:

$$p = p_{K} \left(\frac{\Lambda_{K} + 1 - u\Delta}{\Lambda + 1 - \alpha\Delta} \right)^{1 + \Theta},$$

where

$$p_{K} - 1\Delta \frac{1 - \frac{B\Theta}{2}(1 - z_{0})^{2}}{\Lambda_{1} + \Lambda_{v}}$$
 and $\Lambda_{1} - 1 - \alpha\Delta$.

and

$$\left(\mathbf{v} \cdot \sqrt{\frac{\mathbf{q}\,\mathbf{q}}{\omega}}\right)^{2} - \frac{2\mathbf{g}\,\mathbf{f}}{\mathbf{\theta}} \left\{1 - \left(\frac{\Lambda_{\mathbf{K}} + 1 - \alpha\,\Delta}{\Lambda + 1 - \alpha\,\Delta}\right)^{\mathbf{\theta}} \left[1 - \frac{\mathbf{B}\mathbf{\theta}}{2} \left(1 - \mathbf{z}_{0}\right)^{2}\right]\right\}$$

where the argument is Λ ; the remaining constants and the parameters B and Δ are the same as in the first period.

The large number of constants and parameters makes it necessary, in formulating the tables, to assume that some of the constants, which vary within definite limits, such as f, α , δ , χ , p_0 , etc., are constant average values, which narrows down the field of applicability of the tables. Some authors choose the alternative of introducing more complex variables and parameters, which makes it possible to reduce the number of entries in the tables, but also complicates the use of the latter.

If f, α , 8, χ , θ , and p_0 are assumed to be constant, the quantities p, Λ , and $v\sqrt{q\,q/\omega}$ will be functions of only the two parameters STAT

 Δ and B, and it becomes possible to formulate tables with only the two entries Δ and B.

Let us designate the quantity $v \sqrt{q q/\omega}$ as v_{tab} . After determining v_{tab} from the tables, the actual velocity of the projectile v is found by multiplying v_{tab} by the factor v_{tab} which is known for the predetermined loading conditions:

$$v = v_{tab}$$
, n,

where $C = a + b \omega/q$.

The time of motion is expressed by the following integral:

$$t - \int_{0}^{g} \frac{dg}{v}.$$

If, in this integral, \downarrow is expressed in terms of Λ and v in terms of v, we obtain for the time of motion the following expression:

$$t = \left(\sqrt{\frac{qq}{\omega}} \right) \frac{\Lambda}{v_{tab.}},$$

in which the integral $\int_{0}^{\Delta} d\Lambda v_{tab}$ is likewise a function of the same

 Δ , B, and Λ . The tables give the following quantity:

$$t_{tab.} = \frac{10^6}{\text{M}_0} \sqrt{\frac{\omega}{\varphi \, q}} t.$$

It should be pointed out that v_{tab} . is given in the tables in m/sec⁻¹, while \mathcal{I}_0 in the formula for the time is expressed in dm.

The transition from tabular values for conditional time, tab. tab. to actual time values is carried out in accordance with the follow-

ing formula:

$$t = l_0 dm \sqrt{\frac{qq}{\omega}} 10^{-6} t_{tab}$$
.

In formulating the tables, there are first established the limits of variation of the parameters Δ and B which may be encountered in practice, together with the intervals of variation of these parameters that are convenient for interpolation of intermediate values. For example, Δ is taken between the limits of 0.20 and 0.80 or 0.10 and 0.90, and B is taken between 1 and 3 or 0 and 4.

The intervals for Δ are best chosen to be equal to 0.04, in order that later, by interpolating half-way and then half-way again, there may be obtained variations in the tabular data for the values of \triangle at intervals of 0.01. The intervals for B may be taken to be 0.4, in order that two half-way interpolations may give tabular data for the values of B at intervals of 0.1.

We thus obtain two series of values for the principal parameters:

$$\triangle = 0.20$$
; 0.24; 0.28; ... 0.72; 0.76; 0.80.

B = 1.0; 1.4; 1.8; 2.2; 2.6; 3.0.

Thereupon, with one of the values of \triangle (for example 0.20) as a basis, there is carried out for all the values of B written out above a complete computation of the solution of the problem of internal ballistics, involving the determination of p, v_{tab} , Δ , and ψ , both for the maximum-pressure values and for the end of burning of the powder, and in some tables also for a series of intermediate points in the first and second periods until a definite value of Λ is obtained.

This is then repeated for all the chosen values of Δ .

Upon completion of the computations, the values of the quantities which must be entered into the tables (for example p_m , l_m/l_0 , l_m/l_0) are plotted on a large scale on cross-sectional paper, and curves showing the variations of these quantities, for example of p_m as a function of Δ at given values of B, are constructed. Thereupon, for the same values of Δ , there are constructed curves showing the variation of p_m as a function of B; these two systems of curves make it possible to carry out interpolations for intermediate values of Δ and B, and thus to formulate a full table of variations of p_m as a function of Δ at intervals of 0.01 and as a function of B at intervals of 0.1 or 0.05. Analogous curves are also constructed for the other quantities (l_m/l_0 , l_m/l_0 , etc.) as well, and interpolations are carried out in a similar manner.

The data obtained after interpolation are entered into tables, which make it possible to solve both direct problems on the determination of p_m , p_K , k_m , k_K , and v_A and inverse problems connected with the ballistic computation of guns.

CHAPTER 2 - TABLES FOR DETERMINING PRINCIPAL ELEMENTS OF SHOT

$$(p_m, \mathcal{L}_m, \mathcal{L}_K, v_A)$$

1. TABLES OF PROFESSOR N. F. DROZDOV

The tables were compiled for strip-type powders possessing the following form characteristics: x = 1.06 and $x\lambda = -0.06$.

In the tables, the following characteristics were assumed to be constant.

Propellant force of powder f = 950,000 kg-dm/kg.

Covolume $\alpha = 0.98 \text{ dm}^3/\text{kg}$.

Density of powder \$ = 1.6 kg/dm³.

Coefficient $\varphi = 1.05$.

Forcing pressure $p_0 = 300 \text{ kg/cm}^2$.

Adiabatic index $k = 1 + \mathbf{G} = 1.2$ or $\Theta = 0.2$. Acceleration due to gravity $g = 98.1 \text{ dm/sec}^2$. $\alpha = 1/s = 1/s_1 = 0.355 = 1/2.82.$

The initially developed tables were brief and consisted of three tables: a basic table B and auxiliary tables A and C. They were subsequently modified and rendered more convenient and universal.

The basic data entered into the tables (cf. Tables I, II, III, and IV in the Appendix) are the density of loading Δ and the parameter of the loading conditions B:

$$B = \frac{s^2 e_1^2}{u_1^2} \frac{1}{f \omega q m} = \frac{s^2 I^2}{f \omega q m}.$$

The upper horizontal row contains quantities \$\Delta\$ from 0.07 to 0.80 at intervals of 0.01; the left-hand vertical column contains quantities B from 0.7 to 3.0 at intervals of 0.05.

The numbers in Table I give values for the maximum pressure $p_{\underline{m}}$. The numbers in Table II give the ratio $\mathcal{L}_{K}/\mathcal{L}_{0}$, where \mathcal{L}_{K} is the path of the projectile at the end of burning and \mathcal{L}_0 is the adjusted

The numbers in Table III give the ratio $l_{\rm m}/l_0$, where $l_{\rm m}$ is the length of the chamber. path of the projectile in the instant of attainment of maximum pressure.

The numbers in Table IV give values of the quantity $\log \sqrt{1}$ -- Be/2 $(1-z_0)^2$ _7, which enters into the expression for the velocity of the projectile in the second period.

The muzzle velocity is computed with the aid of the usual formula:

$$v_{A} = \sqrt{\frac{2g}{\varphi}} \frac{f}{\theta} \frac{\omega}{q} \left\{ 1 - \eta \frac{\theta}{1} \left[1 - \frac{B\theta}{2} \left(1 - z_{0} \right)^{2} \right] \right\}, \tag{114}$$

STAT

where

$$\eta_{1} = \frac{\int_{\frac{K}{40} + 1 - \alpha\Delta}}{\int_{0}^{4} + 1 - \alpha\Delta}$$

represents the ratio of free volumes of the initial air space in the instant of the end of burning and in the instant of emergence of the projectile.

Under given loading conditions, it is necessary for computing V_A to find the value of l_K/l_0 from Table II and the quantity $\log 1 - B6/2 (1 - z_0)^2$ from Table IV, and then to substitute these into formula (114).

If there are first substituted into formula (i14) the assumed values for the constants 2fg and $\phi\theta$, that formula will be written as

$$v_{g} = 29,790 \sqrt{1 - \frac{0.2}{1} \left[-\frac{B\theta}{2} (1 - z_{0})^{2} \right]} \sqrt{\frac{\omega}{q}}$$
. (115)

On the basis of the predetermined values for Δ and B (for example $\Delta = 0.60$ and B = 2.0), there is found the maximum pressure $(p_m = 2,255)$ kg/cm²). At the same B = 2, Table II is used to find the value $\frac{1}{K} \hat{\lambda}_0 = \frac{1}{2} \frac$

Substitution of these values for $f_{\rm K}/f_0$ and $\log [1-B\theta/2 (1-z_0)^2/T]$ into formula (115) makes it possible to compute the muzzle velocity of the projectile.

Inspection of Table I indicates that, at a given density of loading Δ , p_m decreases and $\int_{K} \mathcal{L}_0$ increases with increasing B. In a given gun, there may vary in the quantity $B = (s^2e_1^2/u_1^2)(1/f\omega\phi n)$ the following principal items: the thickness of the powder $2e_1$, the weight of lowing each, and the mass of the projectile m; f, φ , and s are constant the charge ω , and the mass of the projectile m; f, φ , and s are constant and u_1 does not experience a strong enough variation.

733

If the density of loading \triangle remains constant in a given gun while B increases, this is due principally to an increase in the thickness of the powder $2e_1$. The table shows that, as the thickness $2e_1$ increases, the pressure p_m decreases, the end of burning moves closer to the muzzle, and incomplete combustion may result from a large increase in B:

$$\frac{\mathcal{A}_{\mathbf{K}}}{\mathcal{A}_{\mathbf{0}}} > \frac{\mathcal{A}_{\mathbf{A}}}{\mathcal{A}_{\mathbf{0}}} \quad .$$

Analysis of Table I shows that, in a given gun, it is possible to obtain one and the same pressure p_m at different Δ by varying B at the same time. Identical pressures p_m are arranged in the table along slanting lines from the upper left to the lower right; for example, the pressure $p_m = 2,400 \text{ kg/cm}^2$ is obtained at the following combinations of Δ and B, $\mathcal{L}_K/\mathcal{L}_0$ varying at the same time.

Table 12 $p_m = 2400 \text{ kg/cm}^2$.

Δ	0.40	0.50	0.60	0.70
В	1.00	~1.39	1.87	2.40
fo	0.85	1.43	2.54	4.55

If \triangle increases as a result of an increase in the weight of the projectile (and not as a result of a decrease in the chamber volume W_0), an increase in ω should reduce B; for this reason, to maintain the same p_m , it is necessary to increase the thickness of the powder STAT

 $2e_1$ in such a manner as to have its change not only compensate for the influence of the increase in ω , but also augment B to the values indicated in Table 12. Since the thickness of the powder increases, while p_m remains the same, the end of burning moves closer and closer to the muzzle (l_K/l_0) increases from 0.85 to 4.55). As the charge increases up to a certain limit, the initial velocity of the projectile v_R will likewise increase; as the charge increases further, the velocity will cease increasing because of the incomplete combustion of the powder.

If \triangle increases as a result of a decrease in the volume of the chamber while the weight of the charge remains unchanged (large base of projectile), the same p_m can be maintained by changing B as is indicated in the table, but the thickness of the powder will change less than in the first case, since, in this connection, it is not necessary to compensate for the increase in the weight of the charge ω .

Vithout any change in the thickness of the powder and in the other conditions of loading, the parameter B will simultaneously change in the reverse ratio $(B_2:B_1=\omega_1:\omega_2)$. For this reason, under otherwise identical conditions, the pressures corresponding to the change in the charge will be arranged along lines running from the lower left toward the upper right.

For example, if, at B = 2 and Δ = 0.50, p_m = 1750, then, at Δ = 0.40, B = 2.4 and p_m = 1180; at Δ = 0.60, B = 1.67 and p_m = 2670.

Comparison of the results indicates that, as \triangle changes from 0.40 to 0.50, i.e., by 25%, the pressure changes by $(1750 - 1180)/(1180) \cdot 100 = 48\%$ (almost twice as much); and as \triangle changes from 0.50 to 0.60, i.e., by 20%, the pressure changes by $(2670 - 1750)/(1750) \cdot 100 = 52.5\%$ (more than 2.5 times as much).

Consequently, as the density of loading increases, the same relative increase in the charge is associated with a larger and larger increase in pressure. For this reason, in selecting a charge in practice, its weight must be increased very cautiously if the density of loading is high.

A. Application of Tables to Solution of Various Problems

With the aid of the tables, it is possible to solve very rapidly a number of problems possessing great practical importance.

a) Determination of thickness of powder to assure attainment of predetermined maximum pressure p_m . If the data for the gun \mathbb{W}_0 , s, and \mathbb{I}_R , and for the weights of the charge ω and of the projectile q are known, and if p_m is predetermined, then, to determine the thickness of powder to assure attainment of the predetermined pressure, there is first computed $\Delta = \omega/\mathbb{W}_0$; this Δ is used to enter the corresponding column in Table I; and the predetermined pressure is found in this column. In accordance with the value of p_m , the quantity B is found in the same row of the left-hand column, and the thickness $2e_1$ is found with the aid of the following formula:

$$2e_1 = \frac{2u_1}{s} \sqrt{Bf\omega qm} dm.$$

Using the same value of Δ and the value of B found from Table I, Table II is used to find $\mathcal{L}_{\mathbb{K}}/\mathcal{L}_0$ and $\mathcal{L}_{\mathbb{K}}$, and the latter is compared with $\mathcal{L}_{\mathbb{K}}$ to determine whether all of the powder burns $(\mathcal{L}_{\mathbb{K}} < \mathcal{L}_{\mathbb{K}})$ or does not burn $(\mathcal{L}_{\mathbb{K}} > \mathcal{L}_{\mathbb{K}})$ in the bore. The procedure adopted for the solution may be represented by the following scheme.

STAT

736

Table I Table II

Table I Table II

$$\Delta = 0.60 \\
B + p_m B \rightarrow \frac{1}{k_0} + 1_k \leq \frac{1}{k_0}$$

$$2e_1 = \frac{2u_1}{s} \sqrt{Bf\omega qm}$$
Table II

$$\Delta = 0.60 \\
B = 1.90 \leftarrow p_m = 2365$$

$$2e_1 = \frac{2u_1}{s} \sqrt{1.90 \cdot 95 \cdot 10^4 \cdot \omega \cdot 1.05 \cdot m}$$

The quantity \mathbf{u}_1 may be determined either with the aid of the following pyrostatic formula:

$$u_1 = \frac{0.175(N - 6.36)10^{-8}}{0.04(220^{\circ} - t_n^{\circ}) + 3h + h'}$$

or with the aid of the tabulation presented below, which gives an approximate dependence upon the thickness of the powder (which is connected with the varying volatile content) for pyroxylin powders.

Table 13

Ord		Phlegmatized powders								
20	0.1	0.5	1.0	2.0	3.0	4.0	BT/0.3	0.7		
2e ₁ , mm	90	80	75	70	65	62	72	70		
$u_1 \cdot 10^{7 \text{dm}} \cdot \frac{\text{kg}}{\text{dm}^2}$			<u> </u>		<u> </u>	1				

It is also possible to use the following approximate empirical formula, which gives the dependence of $\mathbf{u}_{\hat{\mathbf{l}}}$ upon the total volatile content:

b) Determination of length of path of projectile to assure attainment of required initial velocity under predetermined loading

STAT ...

conditions. Given are the gun caliber d, the bore cross section s (including the grooves), the volume of the chamber \mathbf{W}_0 , the weight of the projectile q, the weight of the charge ω , and the required initial velocity of the projectile \mathbf{v}_{R} ; let the magnitude of the maximum pressure \mathbf{p}_{R} likewise be predetermined. It is necessary to find the length of the path of the projectile \mathcal{L}_{R} .

To start with, $\Delta = \omega/W_0$ is computed; in the column of Table I corresponding to this Δ , we find the predetermined p_m , whereupon we use the latter to determine B. At these values for Δ and B, we find $\mathcal{A}_{\mathbf{K}}/\mathcal{A}_0$ from Table II, $\log \frac{\pi}{2} + 8\theta/2 (1 - z_0)^2 \frac{\pi}{2}$ from Table IV.

From formula (115) for the velocity in the second period, we find.

$$\mathcal{L}_{A} = \mathcal{L}_{0} \left\{ \left(\frac{\hat{I}_{K}}{\hat{I}_{0}} + 1 - \alpha \Delta \right) - \frac{\left[1 - \frac{B\Theta}{2} (1 - z_{0})^{2} \right]^{\frac{1}{\Theta}}}{\left(1 - \frac{v_{A}^{2}}{v_{\Pi_{p}}^{2}} \right)^{\frac{1}{\Theta}}} - (1 - \alpha \Delta) \right\} . (116)$$

All quantities entering into the right-hand side of formula (116) are known.

Formula (116) makes it possible to determine that path of the projectile along the bore which will assure the attainment of the predetermined initial velocity under the given pressure p_m ; the thickness of the powder will be determined in accordance with the scheme of the first problem.

Analysis of the tables of Professor N. F. Drozdov and the above exemplary problems that can be solved with their aid show their importance for the practice of artillery and their convenience and flexibility for ballistic design and for the choice of powder, whereas

empirical tables express merely the general character of the variation of pressure and velocity as functions of the path and time without making it possible to draw any conclusions about the powder.

A certain disadvantage of the tables resides in the fact that they were formulated for strip-type powder possessing the definite characteristics $\mathbf{X} = 1.06$ and $\mathbf{X}\lambda = 0.06$, and for a constant propellant force of the powder $\mathbf{f} = 950,000$ kg · dm/kg. Practice has shown, however, that, under conditions of equal charges, a powder with seven perforations gives results in firing that are practically identical with the results obtained with strip-type powder if the thicknesses of the powders are related as follows:

$$2e_1$$
 strip-type = $\frac{10}{7}$ $2e_1$ with 7 perforations or $2e_1$ with 7 perforations = $\frac{7}{10}$ $2e_1$ strip-type

In using the tables of Professor Drozdov for computing the action of a powder with seven perforations, its wall thickness must be multiplied by 10/7, whereupon the entire problem is solved as in the case of strip-type powder.

It is true, of course, that the end of burning of this powder and the $\mathcal{A}_{\mathbb{K}}/\mathcal{A}_0$ obtained from the tables will not correspond to the actual values for a powder with seven perforations having decomposition products of greater thickness $(p=0.532~e_1)$; but, as has been shown by firing tests from a gun equipped with lateral crusher gages, the pressure curves of standard powders – strip-type and with seven perforations – coincide almost completely.

If the full thickness $e_1 + \rho$ of the grain with seven perforations is computed in relation to an equivalent strip-type powder:

(
$$e_1$$
 with 7 perforations $= \frac{7}{10} e_1$ strip-type),

then:

$$(e_1 + \rho)_{\text{with 7 perforations}} = 1.532 e_1 \text{ with 7 perforations}$$

= 1.532 $\frac{7}{10}$ e₁ strip-type = 1.07 e₁ strip-type .

Consequently, the full thickness of the powder with seven perforations together with the thickness of the decomposition products is somewhat greater than the thickness of the equivalent strip-type powder, and for this reason its end of burning will be found to be somewhat farther than in the case of strip-type powder, and the $\frac{1}{K} \times 0$ determined from the tables will be somewhat smaller than the true value. As concerns the utilization of the tables at a propellant force of the powder $f \neq 950,000$, to determine the pressure p_m it is possible, taking from the tables p_m at a given B, to multiply it by the ratio $f_1/950,000$, where f_1 is the new propellant force of the powder. On the other hand, to determine the velocity v_A , the value obtained by computation must be multiplied by $\sqrt{\frac{f_1}{950,000}}$.

These values will be approximate, since the paths $\int_{\mathbb{R}}$ and $\int_{\mathbb{R}}$ will also change simultaneously with $p_{\mathbb{R}}$ and $v_{\mathbb{Q}}$; but, for purposes of taking into account the order of the corrections of the values of $p_{\mathbb{R}}$ and $v_{\mathbb{Q}}$, they may be employed as a first approximation and in the presence of a force not too different from the normal value of 950,000 kg · dm/kg = 95 t · m/kg.

At $q \neq 1.05$, it is possible also to apply a correction to the value of v_{A} in accordance with the following formula:

$$v_A = v_{A \atop 1.05} \sqrt{\frac{1.05}{9}}$$
.

At a given B, the quantity p_m is clearly independent of φ .

2. TABLES OF CHAIR OF INTERNAL BALLISTICS

In 1933, on the initiative of Professor I. P. Grave, the Chair of Internal Ballistics of the Dzerzhinskii Artillery Academy compiled tables for any values of f and arphi and for a powder with a constant burning area, which is closely approached by long tubular powder.

The tables were computed on the basis of the analytical formulas of Bianchi, as modified by Professor Grave.

The following constants were assumed in the tables:

The following constants across
$$\theta = 0.2$$
, $\rho_0/f = 0.035$.
 $\alpha = 0.98$, $\delta = 1.6$, $\kappa = 1$, $\kappa = 1$, $\kappa = 0$, $\kappa = 0.2$, $\kappa = 0.2$, $\kappa = 0.035$.

The basic quantities used were the density of loading Δ and the parameter of the loading conditions H = $2f\omega_{\phi m}/s^2I_K^2$ = 2/B or the reciprocal quantity C = θ/H . It is not difficult to see that, at θ = 0.2, C = 0.1 B.

In the tables, the left-hand column contains the quantity C, which varies uniformly from 0.10 to 0.40 at intervals of 0.01, and the next column contains the corresponding quantity H = 0.2/C, which varies nonuniformly from 2.0 to 0.5. The loading densities in the upper horizontal row wary from 0.10 to 0.90 at intervals of 0.01.

On each page of the tables, for six loading densities and for all values of C from 0.10 to 0.40, there are written the corresponding values of the ratios $p_{\underline{m}}/f$, $p_{\underline{k}}/f$, $\hat{x}_{\underline{m}}/\hat{x}_{0}$, and $\hat{x}_{\underline{k}}/\hat{x}_{0}$ and of the two auxiliary quantities D and B, which enter into the formula for the muzzle velocity of the projectile:

ty of the projectile:

$$D = 1 - q r_{K} = 1 - C(1 - \psi_{0})^{2}, \quad B = \left(1 - \alpha \Delta + \frac{A_{K}}{R_{0}}\right)^{0},$$

STAT

where

$$v_{A} = \sqrt{\frac{2f\omega}{\varphi\Theta m}} \left[1 - \frac{BD}{\left(1 - \alpha\Delta + \frac{f_{A}}{f_{0}}\right)^{2}}\right]. \quad (117)$$

It is not difficult to see that this formula coincides with the previously derived formula for the velocity in the second period and with the formula presented in the initial table of Professor Drozdov, since, for a powder with a constant burning area, $1 - C(1 - \psi_0)^2 = 1 - B9/2(1 - z_0)^2$, and:

$$\frac{B}{\left(1 - \alpha \Delta + \frac{f_n}{f_0}\right)^{\Theta}} - \gamma_1^{\Theta} .$$

The quantity $oldsymbol{arphi}$ enters into the parameter H or C.

Having found for a given set of Δ and C the values of p_m/f and p_K/f and knowing the propellant force of the powder f, we obtain the values for p_m and p_K ; and having found f_m/f_0 and f_K/f_0 and knowing $f_0 = f_0/f_0$, we find f_m/f_0 and f_K/f_0 and $f_$

We thus find the nodal points of the pressure curve: the maximum pressure p_m and its position in the bore, i.e., the path of the projectile \mathcal{A}_m , as well as the pressure p_k at the instant of complete combustion of the powder and the corresponding path of the projectile \mathcal{A}_k ; thereupon, having found B and D from the tables by means of formula (117), we determine with the aid of a simple computation the value of the muzzle velocity $\mathbf{v}_{\mathbf{Q}}$.

If, in the presence of the identical constants, values for p_{m} and v_{R} are computed from the tables of Professor Drozdov and from the tables of the Chair, the tables of the Chair are found to give lower STAT

values for p_m and v_A .

For example, for f = 950,000, q = 1.05, $\Delta = 0.60$, B = 2.0, C = 0.2, and $\mathcal{L}_g/\mathcal{L}_0$ = 5, we obtain on the basis of the tables of Professor Drozdov:

$$p_{m} = 2255 \text{ kg/cm}^2, \frac{\sqrt{m}}{\sqrt{0}} = 0.630; \frac{\sqrt{K}}{\sqrt{0}} = 2.96;$$

$$\sqrt{1 - \frac{\theta}{1} \left[1 - \frac{B\theta}{2} (1 - z_0)^2 \right]} = 0.510;$$

whereas the tables of the Chair, in the presence of the same constants and loading conditions, give:

and loading conditions, give:

$$\frac{p_{m}}{f} = 0.2155; p_{m} = 2045; \frac{l_{m}}{l_{0}} = 0.6942; \frac{l_{K}}{l_{0}} = 3.156; B = 1.29; D = 0.8142,$$

$$\frac{1 - \frac{BD}{l_{0}}}{\left(1 - \alpha \Delta + \frac{l_{A}}{l_{0}}\right)^{6}} = 0.500.$$

Since $v_{np} = \sqrt{2f\omega/\varphi\Theta m}$ is identical under identical conditions, it follows that the numbers 0.510 and 0.500 are proportional to the muzzle velocities computed in accordance with the tables of Professor Drozdov and of the Chair, respectively.

Using the tables of Professor Drozdov, $p_{\underline{m}}$ was found to be 10% (2255/2045 - 1.10) higher, and the velocity $v_{\rm g}$, 2% (510/500 - 1.02) higher, than using the tables of the Chair.

The formula for x_:

$$x_{m} = \frac{xd_{0}}{\frac{B(1+\theta)}{\left(1+\frac{p_{m}}{ff_{1}}\right)} - 2x\lambda}$$

shows that, as \geq increases, x_m , ψ_m , and consequently also p_m all

increase, it being shown by the computations that, under otherwise identical conditions, the maximum pressure is almost proportional to the magnitude of the form characteristic X, which, according to Professor Drozdov, equals 1.06, while, in the tables of the Chair, X = 1 for a powder with a constant burning area.

For this reason, 6% of the 10% difference in pressure must have been obtained at the expense of χ ; as concerns the remaining 4% difference, it is explained by the modification introduced by Professor I. P. Grave to integrate the differential equation connecting the path ℓ and κ . This approximate supplementary modification leads to an increased value for the path ℓ and to a lower pressure as compared with ℓ and ℓ obtained by the exact method of Professor Drozdov.

But if a comparison is made of the results of computations of the velocity \mathbf{v}_A under the identical maximum pressure $\mathbf{p}_{\mathbf{m}}$ and under the identical loading conditions Δ , \mathbf{w}_0 , and \mathbf{i}_A , then the tables of the Chair give values for \mathbf{v}_A that are somewhat higher than the \mathbf{v}_A obtained in accordance with the tables of Professor Drozdov; in this connection, the quantity \mathbf{l}_K - the path of the projectile at the end of burning of the powder - is smaller than is obtained with the aid of the tables of Professor Drozdov.

The fundamental disadvantage of the tables of the Chair resides in the fact that, if the propellant force of the powder changes, the forcing pressure p_0 changes simultaneously and proportionally, since, in the tables, $p_0/f = const. = 0.035$.

In any case, it should be pointed out that even the most exact method, and especially any tables formulated on the basis of such a method at definite values for the constants, cannot yield perfect agreement with experimental data obtained by firing different guns.

This is due to the fact that the relations employed to account for the phenomena accompanying the shot, as well as all methods of solution, are to one or another degree approximate with respect to the actual phenomenon of the shot.

This circumstance demands preliminary computations for the selection of some constants, with the aid of which the computed data are obtained close to or coincident with the experimentally observed results of firing tests $(p_m, v_A, and f_m)$; and each method demands the selection of its own constants, which must give the best agreement with the results of firing tests.

For example, to obtain the data for p_m and v_g , the geometric law of burning demands certain constants, while the physical law of burning demands other constants.

As concerns the application of the tables of the Chair of Internal Ballistics to the investigation of the influence of various loading conditions, as well as to the solution of a series of direct and inverse problems, all the statements made above relating to the use of the tables of Professor Drozdov remains in force for the tables of the Chair as well.

For example, to determine the thickness of the powder to assure attainment of a predetermined pressure p_m provided the propellant force of the powder f is known, it is necessary first to find p_m/f , whereupon, using the table, the predetermined value of p_m/f is found at the corresponding Δ , C or H are taken accordingly in this row, and finally the thickness of the powder $2e_1$ is determined in accordance with the following formulas:

$$2e_{1} = \frac{2u_{1}}{s} \sqrt{10Cf\omega \varphi = \frac{2u_{1}}{s}} \sqrt{\frac{2f\omega \varphi }{H}} . STAT$$

The following scheme is employed in using the tables:

$$(H) - C - \frac{p_{m}}{f}$$

$$2e_{1} - \frac{2u_{1}}{s} \sqrt{10Cf\omega qm}$$

Once the thickness of the powder with a constant burning area (tubular powder) has been found, the wall thickness of a grain with seven perforations can be determined by multiplying $2e_1$ by the coefficient 0.75, the reverse transition involving multiplication by 4/3.

STAT

STAT

CHAPTER 3 - DETAILED TABLES FOR CONSTRUCTION OF PRESSURE AND VELOCITY CURVES

1. ANII Tables (1933).

The tables of Professor N. F. Drozdov and of the Chair of Internal Ballistics make it possible to find the maximum pressure p_m , its location t_m , the pressure p_K at the end of burning, and its location t_K . But in order to determine the initial (muzzle) velocity of the projectile, it is necessary to perform additional computations, since this velocity depends upon the length of the bore. The tables also do not give intermediate values for p, v, and 1, and they do not take into account the time of motion of the projectile through the bore of the gun.

The ANII Tables (1933) represented a further step forward and considerably facilitated the conduct of the ballistic computation of guns.

They were formulated on the basis of the same constants as those used by Professor Drozdov, and the computations leading to them were based on his formulas; they were computed by the method of numerical integration. For a given density of loading Δ and a given parameter B, using a strip-type powder with the characteristics X=1.06 and $X\lambda=-0.06$, they make it possible to find curves for the gas pressure, the velocity of the projectile, and the time of motion as functions of the path of the projectile through the bore, thus permitting the complete solution of the fundamental problems of internal ballistics, both direct and inverse.

The arrangement of the tables is apparent from the scheme presented on page 748. They are formulated for loading densities ranging from 0.05 to 0.95; one page is reserved for each \triangle at interval at

2.0	300	1317	1782	First Period Period			: :			330
				Veloci	ties					
B	0.1	0.2	0.3		14	15	, K	v _K	`m	V _m
0.	0 16:	3936	1 542 4 504 8 254	Period Tabular Velocities Pirst Period	2019	2046 2035	0.448 0.525 0.593	813 0		793 821 834
-				Ti	m e					
В	Λ 0.	, 1 0.	2 0.3	3	14	15	Λ,	^t ĸ	Λ	t m
0	.8	60 9	2 110 5 111 8 120 	7 Period Tabular Times First Period	923	973 993	0.525	:	0.628	

*Position of Pressure Maximum
**Position of End of Burning of Powder

 $\begin{array}{c} \psi_0 = 0.03173 \\ z_0 = 0.03009 \end{array}$

of 0.01; the basic numbers are the parameter B and the relative length of path of the projectile $\Lambda = t/t_0$, where t_0 is the corrected length of the chamber (in these tables, as in the tables of Professor Drozdov, it is designated as t_1). The parameter B varies from 0.7 to 3, and at Δ greater than 0.80 it varies from 1.2 to 4; Λ varies from 0 to 15 at unequal intervals, which at first are smaller (0.1) and subsequently increase (to 1).

The velocities and times are given in the tables in arbitrary units, and in order to obtain the actual velocity of the projectile the tabular velocity values v_{tab} must be multiplied by $\sqrt{\omega/q}$. To obtain the actual time of motion of the projectile, the tabular t must be multiplied by $1_0 - \sqrt{q/\omega} \cdot 10^{-6}$ if 1_0 is expressed in decimeters:

$$t - t_{tab} t_0 \sqrt{\frac{q}{\omega}} \cdot 10^{-6}; \quad v - v_{tab} \sqrt{\frac{\omega}{q}}.$$

In each of the three tables, there are recorded on the right-hand side the exact values of the quantities corresponding to the maximum pressure and to the end of burning; i.e., p_K , p_m , v_K , v_m , t_K , and t_m are given for $\Lambda_m = \mathcal{I}_m/\mathcal{I}_0$ and for $\Lambda_K = \mathcal{I}_K/\mathcal{I}_0$.

The heavy broken line marks those intervals between neighboring values of Λ between which the end of burning of the powder is located.

To the left and downward from this broken line are located the values of p, w, and t corresponding to the first period of the shot; those corresponding to the second period are located to the right and upward from the broken line.

As B increases, and consequently as the thickness of the powder at a given Δ increases, the end of burning shifts closer and closer to the muzzle face.

The exact value of $l_K/l_0 = \Lambda_K$ is contained in the fourth column from the right. If $\Lambda_K < \Lambda_A = l_A/l_0$, this signifies that the burning of the powder is complete; if $\Lambda_K > \Lambda_A$, it means that the powder does not burn completely in the bore.

The thin vertical lines in the range of $\Lambda=0.1$ -0.7 show that the maximum pressure p_m is located in this region (in the particular interval marked by the thin vertical line).

At the bottom of each page, there are presented the values of ψ_0 and z_0 corresponding to the instant of initial pressure at the given Δ .

A detailed description of the use of the tables is presented in the tables themselves.

Example and procedure for computation. Given a 76-mm 1902 model

$$W_0 = 1.654 \text{ dm}^3$$
; s = 0.4693 dm²; $l_A = 18.44$; q = 6.5 kg;

$$\omega = 0.900 \text{ kg}$$
; $2e_1 = 1 \text{ mm} = 0.04 \text{ dm}$; $u_1 = 0.0000075 \frac{\text{dm}}{\text{sec}}$: $\frac{\text{kg}}{\text{dm}^2}$

Computation of constants:

$$\Delta = \frac{\omega}{W_0} = \frac{0.900}{1.654} = 0.543; \ 1_0 = \frac{W_0}{s} = \frac{1.654}{0.4693} = 3.53 \ dm;$$

$$\Lambda_{A} = \frac{\tau_{A}}{\tau_{0}} = \frac{18.44}{3.55} = 5.20; \ I_{K} = \frac{e_{1}}{u_{1}} = \frac{0.005}{0.0000075} = 667 \frac{\text{kg} \cdot \text{sec}}{\text{dm}^{2}}$$

$$B = \frac{s^2 I_K^2}{f \omega q \pi} = \frac{0.4693^2 \cdot 667^2 \cdot 98.1}{95 \cdot 10^4 \cdot 0.90 \cdot 1.05 \cdot 6.5} = 1.645 \approx 1.65; \quad \varphi = 1.03 + \frac{1}{3} \cdot \frac{0.900}{6.5} = 1.076;$$

$$\int \frac{1.05\omega}{1.076q} = \sqrt{\frac{0.900 \cdot 1.05}{6.5 \cdot 1.076}} = 0.368;$$
 STAT

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

Table 14 $\triangle = 0.54$

В	Λ	0.2	0.4	0.682 A - - 0.679 0.676	1.0	1.808 A _K = -1.929 2.050	5.0	Λ _Д - 5.20	5.5
p , 2	B - 1.60	1774	2228	2368	2296	1878	672		606
kg/cm ²	B - 1.65	1735	2176	- ^p 2310	2240	1770	675	р - 650 Д	609
	B - 1.70	1696	2124	2253	2184	1661	679		612
	B - 1.6	288	475	676	849	1115	1 589		1624
v _{tab} .	B = 1.65	285	469	664	838	1147	1 579	1593	1615
Lab.	B = 1.70	282	463	653	828	1179	1569		1605
v _{tab.} V	<u>ω</u> 1.05 q γ	105	172	243	307	422	577	v _A - 587 m/s	ec
	B = 1.6	112	166	213	255	336	565		596
t _{tab} .	B - 1.65	113	168	215	258	350	571	583	601
tab.	B = 1.70	114	169	216	260	365	577		607
1	05ω υ	0.00108	0.00162	0.00206	0.00248	0.00335	0.00549	0.00560 sec	
1 - 1 ₀ A		0.705	1.41	2.39	3.53	6.80	17.65	18.44 - l _p	STAT

$$t_0 \sqrt{\frac{qq}{1.05\omega}}_{10-6} = 3.53 \frac{10^{-6}}{0.368} = 0.0000096.$$

All computations are summarized in Table 14, with special consideration of the necessity of interpolating for B between 1.6 and 1.7.

The curves for p and v may be constructed either as functions of the path $\boldsymbol{\zeta}$ or as functions of the time t.

All problems which were solved with aid of the tables of Professor N. F. Drozdov are solved in exactly the same manner with the aid of the ANII Tables. By using these tables, it is possible to determine considerably more rapidly the muzzie velocity $\mathbf{v}_{\mathcal{A}}$ and the length of the path necessary in planning to obtain the required muzzle velocity.

To solve this last problem at a given Δ , the quantity p_m is used to find B and then the thickness of the powder $2e_1$. Knowing the predetermined value of v_A , v_{Atab} . $v_A = v_A \sqrt{\omega/q \ 1.05/\varphi}$ is found, and the table of velocities is used at the value of B found to seek the column containing the value of v_{Atab} . By ascending the column, Λ_A and then V_A are determined.

Schematically, this procedure for the solution will be represent-

The ANII Tables are likewise subject to the rule for conversion from the thickness of the strip-type powder, for which they are computed, to the thickness of a grain with seven perforations:

 $2e_1$ with 7 perforations = 0.7 · $2e_1$ strip-type

Defects of ANII Tables. In the ANII Tables, the time of passage by the projectile of the first segment from 0 to Λ = 0.1 is computed incorrectly; these values are nearly twice as small as the values computed in accordance with the more exact formulas proposed by Professor E. L. Bravin/11/7, who noticed this error. This error distorts the first segment of the curves for the pressure, velocity, and path as functions of time and shifts all curves toward the origin by an amount equal to the magnitude of the error.

Professor Bravin proposed a formula to permit computation to a great degree of exactness the first element of time during the passage of the path Λ = 0.1, provided that there are given curves for the pressure and velocity as functions of the path, which is exactly what is available in the ANII Tables.

Having an initial pressure $p_0 = 300 \text{ kg/cm}^2$, the pressure p', and the velocity v' (the latter two corresponding to the path $\Lambda' = 0.1$), it is possible to compute the time interval t' in accordance with the following formula:

$$t' = \frac{31!}{v'} \frac{p_0 + p'}{2p_0 + p}$$
.

By subtracting from t' the quantity t'_{Λ} in the ANII Tables corresponding to the same path $\Lambda' = 0.1$, there is found the constant correction $\Delta t' = t' - t'_{\Lambda}$, which must be added to each time value found STAT

in the given row of the ANII Tables. Professor Bravin derived tables of corrections Δt to be applied to the ANII Tables for various Δ and B.

Aside from this error inherent in the computations, the ANII
Tables suffer from poorly performed interpolation and contain many
misprints. For this reason, in using them, it is recommended either
to construct curves, which will make it possible, by the departure
of points, immediately to detect errors and misprints, or else to pay
close attention to the consistent character of the variation of the
quantity being determined with the aid of the tables (p, v_{tab}, t_{ab}).

In spite of these defects, the ANII Tables represent a good aid in the solution of the most diverse, both direct and inverse, problems in internal ballistics and in the ballistic design of guns.

Some additional applications of tables of the type of the ANII Tables are cited in the chapter on the ballistic design of guns.

2. GAU Tables (1942)

There have now been published the more convenient and exact GAU Tables of 1942, which are formulated on the same general principle as the ANII Tables, but with a different arrangement of the fundamental parameters and elements of the shot. Moreover, the range of variation of the parameter B has been considerably expanded in the GAU Tables (from zero to 4.0).

The GAU Tables were formulated under the direction of Professor V. E. Slukhotsky and S. I. Ermolaev $\sqrt{12}$.

They consist of four parts. The first part comprises the tables of pressures, the second the tables of nominal velocities v_{tab} .

- $\sqrt{\varphi q / \omega}$, and the third the tables of nominal times $t_{STAT} = \frac{1}{STAT} = \frac{1}{2}$

754	

 $\sqrt{\omega/qq}$. With the aid of these tables, it is possible to conduct all ballistic computations of a gun in designing an artillery system. However, for convenience in computation, the three parts mentioned above are supplemented by a fourth, which comprises special tables for ballistic computation (TBR).

The tables of pressures, velocities, and times are characterized by the density of loading, whose values are given from 0.05 to 0.95 kg/dm^3 at 0.01 kg/dm³ intervals.

The basic numbers in the tables of pressures, velocities, and times are the quantities:

$$B = \frac{s^2 t_K^2}{f \omega q m}$$

and the relative path of the projectile:

$$\Lambda - \frac{t}{t_0} .$$

The values of Λ in each table are varied in the range of 0-20 at varying intervals. In each of the three tables, there are also contained exact values for the quantities Am, AK, Pm, PK, Tm, TK, Tm, and t_{TK} , which correspond to the instant of attainment of maximum powder-gas pressure in the barrel and to the instant of the end of burning of the powder. The pressures are given in kg/cm2.

The tables of pressures have the following form (cf. scheme). In the tables of the first part, there are presented the true values for the pressures corresponding to the predetermined values of Δ , B, and Λ . By taking in the tables Λ from 0.1 to $\Lambda_{\mathcal{A}} = \frac{1}{2} \chi/2_0$ for the given gun, we shall obtain the corresponding values for the pressure in kg/cm^2 and shall be able to plot by points the p- Λ or p-? curve,

755	

since l - toA.

Pressures (kg/cm^2) , $\Delta = 0,...$

		Caburo		 	
А	0.1	0.2	0.3	 	4.0
0.1					
0.2					
•					
1.0					
1.5					
19					
20					
Λĸ					
P _K					
A _m					
P _m	1				

The one or two thin horizontal lines in the tables show that the maximum pressure is located in the given interval of Λ ; the heavy "stairway" indicates the boundary between the first and second periods

The tables of nominal velocities v_{tab} in the second part and of nominal times t_{tab} in the third part are arranged in exactly tab.

756	
1:81	

manner as the tables in the first part, except that, in the last line and in the third line from the bottom, there are presented, respectively, v_m and v_K in the second part and t_m and t_K in the third part.

The actual velocities of the projectile are defined by the following expression:

$$v = v_{tab}$$
, $\sqrt{\frac{\omega}{\varphi q}}$.

The actual times are defined by the following formula:

$$t = t_{tab. 0} \sqrt{\frac{qq}{\omega}} \cdot 10^{-6}$$
,

where t_0 is in decimeters.

The tables are formulated on the basis of the following data:

Propellant force of powder

 $f = 950,000 \text{ kg} \cdot \frac{\text{dm}}{\text{kg}}$

 $\alpha = 1.00 \, dm^3/kg$

Covolume

 $S = 1.6 \text{ kg/dm}^3$

Specific gravity of powder

Initial pressure

 $p_0 = 300 \text{ kg/cm}^2$

In addition, the following assumptions were made in formulating the tables: $\Theta = 0.2$, x = 1.06, $x\lambda = -0.06$. The velocities and times of motion of the projectile through the bore were computed on the condition that $\varphi = 1$.

The results obtained by the computations should be summarized in the form of a "Table of Principal Elements of Shot from Gun" at the following data:

following data:

$$d = 107 \text{ mm}$$
; $W_0 = 4,600 \text{ dm}^3$; $s = 0.9165 \text{ dm}^2$; $l_g = 34.20 \text{ dm}$; $q = 17.0 \text{ kg}$
 $\omega = 3.0 \text{ kg}$; $p_m = 2500 \text{ kg/cm}^2$; $\frac{\omega}{q} = 0.1765$; $\varphi = 1.05 + \frac{1}{3} \frac{\omega}{q} = 1.109$;

757

$$1_0 = \frac{w_0}{s} = 5.019 \text{ dm}; \Lambda_{A} = \frac{t_A}{t_0} = 6.814; \Delta = 0.65 \text{ (rounded off to 0.01)};$$

$$n_v = \sqrt{\frac{\omega}{qq}} = 0.399; n_t = l_0 \sqrt{\frac{qq}{\omega}} 10^{-6} = 12.56 \cdot 10^{-6}.$$

Summary of Results Obtained

Λ	0	0.2	0.4	A _m - 0.623	1.0	2.0	Λ - 3.19	5.0	$\Lambda_{\mathcal{A}}$ = 6.814
Z dm	0	1.00	2.01	3.13	5.02	10.04	16.01	25.10	34.20
p kg/cm ²	300	2008	2415	2500	2361	1827	1392	850	602
v _{tab} .	0	294	472	623	816	1136	1568	1 56 5	1686
v = n _v v _{tab} .	0	117	188	249	325	453	546	624	673
t _{tab} .	0	204	2 58	299	351	4 52	546	667	779
t _{sec} · 10 ³	0	2.57	3.24	3.76	4.41	5.68	6.86	8.38	9.79

CHAPTER 4 - TABLES BASED ON GENERALIZED FORMULAS WITH REDUCED NUMBER OF PARAMETERS AND WITH RELATIVE VARIABLES

1. FORMULAS AND TABLES OF PROFESSOR B.N. OKUNEV.

Toward the end of the thirties, there were published several investigations in which groupings of parameters and relative variables were introduced for the purpose of reducing the large number of parameters and characteristic constants, as well as for the purpose of avoiding absolute values for the principal elements of the shot.

Such investigations include those by the Soviet workers Professor N.F. Drozdov_16_7, Professor B.N. Okunev_13_7, M.S. Gorokhov and A.I.Sviridov_14_7, and Professor G.V. Oppokov_15_7.

As an example, we shall consider the method of Professor Okunev,

in which there introduced the relative variables $p_T = p/p_1$, where $p_T = \frac{f\Delta}{1 - \alpha\Delta}$; $v = \frac{v}{v\eta_p}$; $\tau = t/T$, where $T = \frac{qq}{gs} \frac{v\eta_p}{p_1}$; $X = \frac{A}{1 - \alpha\Delta} = \frac{1 - \frac{A}{2}}{1

Professor Okunev' quantity Λ_{Δ} is the reciprocal of the quantity δ , which was introduced by us in pyrostatics for the computation of $\psi:\Lambda_{\Lambda}=1\delta$.

$$x = \frac{\Lambda}{1 - \alpha \Delta} = \frac{1}{\ell_1}$$

Let us divide by $1-\alpha\Delta$ the numerator and denominator of the formula for pressure:

$$p = f\Delta \frac{\psi - \frac{B\Theta}{2} x^2}{\Lambda_{\psi} + \Lambda} ,$$

where

By transferring $p_{\hat{1}}$ to the left, and keeping in mind that

$$\mathbf{x}_{\psi} = \frac{\Lambda_{\psi}}{1 - \alpha \Delta} = \frac{1 - \frac{\Delta}{\delta}}{1 - \alpha \Delta} - \left(\frac{1 - \frac{\Delta}{\delta}}{1 - \alpha \Delta} - 1\right)\psi - \Lambda_{\Delta}^{-} (\Lambda_{\Delta} - 1)\psi ,$$

where

$$\Lambda_{\Delta} = \frac{1 - \frac{\Delta}{\delta}}{1 - \alpha \Delta}.$$

we obtain the tabular pressure:

$$p_{tab.} = \frac{\psi - \frac{B\theta}{2} x^2}{x_{\psi} + x} , \qquad \text{STAT}$$

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

where

$$p_{tab.} = \frac{p}{p_1}$$
.

After dividing both sides of the differential equation:

$$\frac{dL}{dx} + \frac{B}{B_1} \frac{x}{\xi(x)} L = -\frac{\Delta}{\delta} (\alpha \delta - 1) (k_1 - 2x\lambda x)$$

by $1 - \alpha \Delta$, we obtain the following equation:

$$\frac{\mathrm{d}(X_{\psi} + X)}{\mathrm{d}x} + \frac{B}{B_1} \frac{x}{\xi(x)} (X_{\psi} + X) = -(\Lambda_{\Delta} - 1)(k_1 - 2x\lambda x).$$

Consideration of the expressions derived above shows that the quantity \mathbf{p}_{T} and the quantity \mathbf{X} are in the first period functions of the argument \mathbf{x} and not of eight parameters, as previously, but of only five:

$$\theta$$
 , x , z_0 , Λ_{Δ} , B .

In the second period:

$$\frac{p}{p_K} = \left(\frac{1 - \alpha\Delta + \Lambda_K}{1 - \alpha\Delta + \Lambda}\right)^{1 + \Theta} = \left(\frac{1 + X_K}{1 + X}\right)^{1 + \Theta}.$$

The values of p_{tab} and X at the pressure maximum and at the end of burning depend upon the same five parameters. It should, however, be noted that, instead of p_0 , the parameters include z_0 . At a predetermined z_0 , different p_0 will be obtained at different values of x, $\Lambda_{\Delta'}$, and B, so that, in formulating the tables, it is not possible to base them on definite z_0 , it being instead necessary to accept z_0 as one of the variables, whose variation, it is true, is encompassed within a narrow range. If, furthermore, the form of

STASTAT

the powder, i.e., x, and the ratio of heat capacities $1+\theta$ are predetermined, the values of P_{tab} and X at the pressure maximum and at the end of burning can be summarized in the form of tables with three entries: Λ_{Δ} , B, and Z_0 . In this connection, the remaining quantities which have not received definite values are the propellant force of the powder f, the covolume of the powder f, and the density of the powder f. Unfortunately, it is impossible to vary the propellant force of the powder within wide limits. Since the quantity f and f and the density of the powder f and the powder f and the propellant powder f and f are presented to the powder f and the density of the powder f and f are presented to the powder f and f are presented to the propellant powder f and f are presented to the powder f and f are presented to the powder f and f are presented to the powder f and f are presented to the presented to the powder f and f are presented to the p

This principle was used by Professor B.N. Okunev in the formulation of his tables 13.7. In the first table, the values for $P_{tab.}$, X, $\nu = v/v_{\Pi p}$, and $\tau = t/T$ are given as functions of Λ_{Δ} , $R = \sqrt{2/B\theta}$, and Z_0 in the supporting points of the pressure curve. In the expressions for ν and τ , $v_{\Pi p}$ is the limiting velocity, and T = qq/gs $v_{\Pi p}/p_1$. In the second table, $P_{tab.}$, X, and τ are given as functions of the parameters Λ_{Δ} , R, and Z_0 and of the argument ν . This table makes it possible to construct curves for the pressures and velocities as functions of paths and times.

In respect to these tables, there remains in force what was said above. In varying f, it is necessary to vary $1 + \theta$, but this quantity, in the tables of Professor B.N. Okunev, has the definite value $1 + \theta = 1.20$; for this reason, the tables relate to a definite value of the propellant force of powder f corresponding to this value.

It should also be pointed out that the necessity of placing tabular pressures in the tables creates great complications in all those cases when it is necessary to solve problems under the condition of maintaining $\mathbf{p}_{\mathbf{m}}$ constant, as is usually the case in ballistic design.

761

2. METHOD OF PROFESSOR N.F. DROZDOV/16_7

In his work, Professor N.F. Drozdov chose as the relative variable the ratio of the current pressure to the initial pressure: Π = p/p. Likewise, taking the parameter of Professor Okunev, Λ_{Δ} = $\frac{1-\frac{1}{6}}{1-\alpha\Delta}$ Professor Drozdov replaces it by $\xi=1-1/\Lambda_{\Delta}=1-\partial$ and introduces two additional parameters:

$$R = \frac{\left(p_0 - \alpha - \frac{1}{\delta}\right)}{f} = \frac{p_0}{f\delta_1} \text{ and } R_1 = \frac{R}{1 + R} = \frac{1}{\frac{f\delta_1}{p_0} + 1}$$

which are functions of f, α , δ , and p_0 .

For the normal tabular values of these constants:

$$R = 0.01121; R_1 = 0.01108.$$

Transforming his equations for a powder with a constant burning area, Professor Drozdov reduces the relative maximum pressure and the pressure at the end of burning, as well as the velocity of the projectile in the first period, to the following expressions, where:

$$\gamma - B_1 \psi_0 / k_1^2, \ \beta - B_1 x / k_1;$$

$$B_1 - \frac{B\Theta}{2} - x \lambda; \ \text{at} \ x - 1 \frac{B}{B_1} - \frac{2}{\Theta};$$

$$\beta_m - \frac{1}{\frac{B}{B_1} + 2} (1 + \eta_m R) - \frac{\Theta}{2(1 + \Theta)} (1 + \eta_m R);$$

$$\Pi_{m} = \frac{p_{m}}{p_{0}} = \frac{y + \beta_{m} - \beta_{m}^{2} z_{m}^{\frac{B}{B}}}{1 - R \frac{s_{m}}{y}},$$

STAT

762

where s' = $\int_{0}^{\beta} \frac{B}{Z^{\overline{B}}} d\beta$ is found from the tables in the Appendix (Ap-

pendix IV) for B/B_1 from 6 to 10.

These expressions are convenient for investigating the question of the influence of variations in powder characteristics and of various parameters generally upon the value of the maximum pressure, as well as for solving the problem of the transition from one set of powder characteristics to another.

For the end of burning:

The velocity of the projectile in the first period:

$$v = \beta \sqrt{\frac{B}{B_1} \frac{R_1}{R} \frac{p_0 s \ell_0 \left(1 - \frac{\Delta}{\delta}\right)}{r \varphi m}}$$

where

$$R_1/R = 1/1 + R = 1/1 + p_0/f\delta_1$$
.

In the second period:

$$\Pi_{A} = \frac{P_{A}}{P_{0}} - \Pi_{K} \left(\frac{\Lambda_{K} + 1 - \alpha \Delta}{\Lambda_{A} + 1 - \alpha \Delta} \right)^{1} \stackrel{+\Theta}{\longrightarrow} \Pi = \Pi_{K} \eta_{1}^{1} \stackrel{+\Theta}{\longrightarrow} ;$$

$$v_A^2 = v_{0p}^2 / 1 - \eta_1^6 K_7$$

where

$$K = \left[1 - \frac{B\Theta}{2} (1 - z_0)^2 \right].$$

On the basis of the relations obtained, Professor N.F. Drozdov solved a number of problems relating to the influence of the parameters entering into the equation for the maximum pressure upon the magnitude of this pressure, utilizing for this purpose a large number of new tables formulated by him and appended to his above-men-

Thus, he determined the influence of the following factors upon tioned work. the variation of the maximum pressure p_m : variation of the initial pressure p_0 , variation of the propellant force of the powder f, the quantity Θ , the powder density δ , the covolume α , and the transition from a powder with one set of form characteristics to a powder with another set of characteristics.

For certain partial loading conditions, his computations led to the following results.

a) Influence of Initial Pressure p_0 upon Value of p_n .

				
Po	Δp ₀	P _m	Δp	STAT
200		2364	.50	
	100	2522	158	
300	150	2522	240	
450	1	2762	:	

764

STAT STAT

From this, it is possible to derive the relation:

$$\Delta p_m \approx 1.64 p$$
.

i.e., the difference between maximum pressures is greater than the difference between initial pressures.

The difference increases with diminishing p_0 .

P ₀	∆p ₀	P _m	Δp _m	k _p
450	150	2762	240	1.60
300	100	2522	158	1.58
200	92	2364	180	1.96
108 54	54	2184	146	2.70

b) Influence of Variation of α .

a	Δα	p _m	Δp	
0.98	0.08	2767	-104	
0.90	0.08	2663	-104	

As the covolume α diminishes by 0.01, the pressure $p_{\underline{m}}$ decreases by 13 $kg/c\pi^2$.

c) Influence of Variation of δ .

8	۵۶	P _m	Δp	1 8	$\Delta\left(\frac{1}{\delta}\right)$
1.60 1.56	-0.04	2522 2546	+24	0.625 0.640	+0.015

STAT

STAT

As the specific volume of the powder increases by 0.01, the pressure p_m increases by 16 $kg/cm^2\,.$

Consequently, similar variations in α and 1/6 result in nearly the same change in the quantity P_m

X 1.00 1.02 1.045 1.06 pm 2377 2425 2481 2500

 $p_{\underline{m}}$ increases almost proportionally to the quantity :

The state of the s

$$\frac{\Delta p_m}{p_m} \approx \frac{\Delta x}{x} \ . \label{eq:deltapm}$$

e) Influence of 8.

θ	P _m	ΔPm	k=1+0	
0.25 0.20 0.16	3366 3487 3601	121	1.25	$\frac{\Delta p_{m}}{p_{m}} \approx -1 \cdot 1 \frac{\Delta k}{k} .$

f) Influence of f.

B - const.

f.T·m	Δ1	P _m	Δp	$\frac{l_{K}^{2}}{f} = const.$
104.5 95 79.2	-9.5 -15.8	2724 2522 2194	-202 -328	$\frac{\Delta p_m}{p_m} \approx 0.8 \frac{\Delta f}{f}$

766

STAT STAT

L _K - const.	
-------------------------	--

f T·m	ÌΔ	p _m	Δp _m	
104.5 95 86.3	-9.5 -8.7	2997 2522 2148	-475 -374	$\frac{\Delta p_{m}}{p_{m}} \approx 1.75 \frac{\Delta f}{f}$

Subsequently, these new tables of Professor N.F. Drozdov were utilized in certain investigations connected with the consideration of variations in the initial pressure.

3. FORMULAS AND TABLES OF M.S. GOROKHOV AND L.I. SVIRIDOV_14_7

By utilizing the parameters and variables f and f of the method of N.F. Drozdov, and by introducing a new parameter D_1 , it becomes possible to transform the formula for the path of the projectile to the following form:

$$\theta = \frac{1}{b_{\alpha}} + 1 = N(b,\beta) - 1 = D_1 L(b,\beta,n) - 7 + \rho,$$

where

$$7_{A} = 7_{0} \quad 1 - \frac{\Delta}{\delta} \quad ; \quad D_{1} = D \frac{n(1 + \Theta)}{2 + n} \quad ; \quad D = \frac{\alpha - \frac{1}{\delta}}{\frac{1}{\Delta} - \frac{1}{\delta}} \frac{k_{1}^{2}}{B_{1}} \quad ;$$

$$k_{1}^{2} = x^{2} - 4x\lambda\phi_{0}; \quad B_{1} = x\lambda + B\frac{\Theta}{2}; \quad n = \frac{B}{B_{1}} \quad ;$$

$$\begin{split} & \text{N}(7, \ \beta, \ n) = z^{-n}(r, \beta); \\ & \text{L}(r, \ \beta, \ n) = r + \int\limits_{0}^{\beta} \frac{d\beta}{\text{N}(r, \beta, n)} = \frac{r + \beta - \beta^{2}}{\text{N}(r, \beta, n)}; \ \rho = \frac{\theta}{2} \text{ Dn}\beta^{2}. \end{split}$$

STAT STAT For the function $\log Z^{-1}$ (γ , β), detailed four-place tables relating it to γ and to β have been set up. For the function L (γ , β , n), tables relating it to β , γ , and n have been set up; in this connection, the parameters and variables vary within the following ranges:

$$0.00\leqslant r\leqslant 0.13;\ 0.00\leqslant \beta\leqslant 0.70;\ 3\leqslant n\leqslant 14.$$

The velocity of the projectile in the period of burning is determined with the aid of the usual formula.

The formula for the pressure can be transformed to the following form:

$$\Pi = \frac{\alpha - \frac{1}{\delta}}{1} p = \frac{D\xi(\gamma, B)}{\Theta - \rho - D\xi(\delta, \beta)} ,$$

where

$$\xi(\gamma, \beta) - \gamma + \beta - \beta^2$$
.

To determine the maximum pressure, it is necessary to determine the p_m corresponding to it with the aid of the following formula:

$$\beta_{m} - \frac{1}{2+n} = D_{1} \left\{ \left(\gamma + \int_{0}^{\beta_{m}} \frac{\alpha\beta}{N(\gamma,\beta,n)} \right) \left(\beta_{m} - \frac{1}{2+n} \right) + \frac{\gamma + \beta_{m} - \beta_{m}^{2}}{(2+n)N(\gamma,\beta,n)} \right\}.$$

Detailed three-place tables have been set up for $\beta_{\rm m}=1/2+{\rm n.}$ With the aid of the tables mentioned above, the fundamental problem of internal ballistics is solved for any values of the constants α , δ , f, θ , p_0 , and x present as definite values in the tables of N.F. Drozdov and of the GAU Artillery Committee.

The above-mentioned formulas and tables were first published in the work by M. Gorokhov on "Internal Ballistics" in 1943 [17].

Analogous formulas and tables (at the predetermined value θ = 0.2) were obtained by Gorokhov and Sviridov in 1939 [14, 17].

STAT STA Generalized formulas, accompanied by the use of tables, make it possible to solve problems in cases involving deviations from the usually accepted values for the constants $(\alpha, \xi, f, p_0, \Theta, and \times)$, as well as in the case of a combined charge consisting of any desired number of grades of powders and in the case of its being necessary to take into account the afterburning of decomposition residues from the burning of powders of the progressive form.

In this connection, in the course of the first phase, when all the powders burn simultaneously, the formulas remain the same as those presented above; but in the course of the second and subsequent phases, the formulas become somewhat more complex.

CHAPTER 5 - FUNDAMENTALS OF THEORY OF SIMILITUDE

1. THEORETICAL PRINCIPLES.

Ballistically similar guns are those in which the gas-pressure curves (p-1) and the projectile-velocity curves (v-1) are geometrically similar, i.e., can be made to coincide merely by changing the scale alone.

Algebraically, the condition of similitude may be expressed by the equations F_1 $(p, ?) = F_2$ $(a_1 p, a_2 l)$ for pressure curves and Φ_1 $(v, ?) = \Phi_2$ $(\beta_1 v, \beta_2 l)$ for velocity curves, where a and p are coefficients of the change in scale leading to coincidence of the p-l and the v-? curves.

The theory of similitude in internal ballistics was developed in the Soviet Union by Professor I. P. Grave 187; the field was further developed by Professor B.N. Okunev 197, who contributed generalized relations.

Conclusions based on the theory of similitude can find applica-

tion in the transition from guns of one caliber to those of another; they can also be applied to the ballistic design of new systems by making it possible to utilize data for already existing guns on the assumption that the conditions of the shot remain unchanged regardless of the size of the caliber of the gun, an assumption scarcely justified by actual facts.

Investigation shows that the p-7 and v-7 curves at different densities of loading can be similar only if $\alpha = 1/6$, which is not actually the case. For this reason, the case of different Δ is not considered, and only the case of Δ = const. is utilized.

The fundamental equations in the theory of similitude are the following equations of internal ballistics reduced in terms of relative variables for the formulation of ballistic tables:

$$\frac{P}{I} - \Delta \frac{\psi - \frac{B\theta}{2} x}{\Lambda_{\psi} + \Lambda} ;$$

$$\Lambda - \Lambda_{\Psi_{av}} (z_{x}^{-\frac{B}{B}}_{1} - 1);$$

$$v \sqrt{\frac{qq}{\omega}} - v_{tab.} - \sqrt{fgB} x;$$

$$\psi - \psi_0 + xd_0 x + x\lambda x^2;$$

STAT

$$\psi_0 = \frac{\frac{1}{\Delta} - \frac{1}{\delta}}{\frac{f}{B_1} + \alpha - \frac{1}{\delta}}$$
;

STAT

$$z_0 = \frac{2\psi_0}{\chi(\phi_0 + 1)} \approx \frac{\psi_0}{\chi} ;$$

$$\Lambda_{\psi} = 1 - \frac{\Delta}{8} - \Delta \left(\alpha - \frac{1}{3}\right) \psi;$$

$$B_{1} = \frac{B\Theta}{2} - \chi \lambda;$$

$$B = \frac{s^{2} I_{K}^{2} g}{f \omega_{f} qq}.$$

In order that the p-7 and v-7 curves in two guns be similar at the same Δ , it is necessary that the values of p, v, and Λ for one and the same value of x be the same. For this condition to be fulfilled, the following conditions must in turn be satisfied.

- 1) The nature of the powder (f, α , δ , Θ) must be the same.
- 2) The form of the powder (X, λ) must be the same.
- 3) p_0/f or ψ_0 must be the same.
- 4) The parameter of the loading conditions B must be the same.

Only under these conditions will $B_1, \psi_0, \psi, \Lambda_{\psi}, \Lambda_{\psi av}$, v_{tab} , v_{tab}

 $\left(\sqrt{\varphi q/\omega} \text{ is a scale factor}\right)$, $y = B_1 \psi_0/k_1^2$, $p = B_1 x/k_1$, $\log Z_x^{-1}$, Λ , and p also be the same, and consequently the curves for the pressure, p- Λ , and for the velocity, v- Λ , will coincide in all points, i.e., p-Z and v-Z will be similar for the entire first period.

For the end of burning $(\psi=1)$, we shall have the same values for v_{K} , p_{K} , Λ_{K} , and Λ_{1} .

For the second period:

$$p = p_{K} \left(\frac{\Delta_{K} + 1 - \alpha \Delta}{\Lambda + 1 - \alpha \Delta} \right)^{1 + \theta};$$

$$\left(= \sqrt{\frac{2q}{\omega}} \right)^{2} = v_{tab.}^{2} = \frac{2gf}{\Theta} \left\{ 1 - \left(\frac{\Delta_{K} + 1 - \alpha \Delta}{\Lambda + 1 - \alpha \Delta} \right)^{\Theta} \left[1 - \frac{B\Theta}{2} \left(1 - z_{0} \right)^{2} \right] \right\}.$$

Here, the independent variable is $\Lambda > \Lambda_K$, and, since all remaining parameters in the two guns are the same, the p- Λ and $v_{\mathrm{tab.}}$ - Λ curves will also coincide, i.e., will be similar, in the second period as well.

In this connection, it is possible to draw the conclusion that, as a matter of fact, all our ballistic tables, beginning with the tables of Professor Drozdov and ending with the most complete GAU tables, are an expression and practical application of the theory of similitude. Indeed, at a given loading density Δ and at a given value of B, the quantity p_m and the p- Λ curve, as well as the $v_{tab.}$ - Λ curve, depend neither upon the caliber of the gun nor upon its absolute dimensions, but only upon the ratio of Λ_m to Λ , while v_{tab} , depends upon $\Lambda_{\mathbf{A}}$. The factors $\sqrt{\omega/arphi_{\mathbf{q}}}$ take into account the influence of the ratio ω/q and are scale factors used to reduce different v- Λ curves to one and the same common v tab. - Acurve.

The parameter of the loading conditions B = $s^2 I_{K}^2 g/f \omega \phi q$ is dimensionless. For the analysis of the influence of various conditions of loading upon its magnitude, and, through it, upon the pressure and welocity curves, it is more convenient to write it differently:

$$B = \frac{n_g^2 g}{f} \frac{\left(\frac{I}{d}\right)^2}{\omega \varphi c_q^2}.$$

From an equality of the parameter B for two guns of different caliber, it follows that, in making the transition from one caliber to the other, with the weight of the projectile and ω/q remaining unchanged, the ratio $I_{K}/d:c_{q}$ or $I_{K}:q/d^{2}$ must also remain constant. Consequently, it is possible to draw the following conclusion.

772

For similar guns of different calibers firing projectiles of the same weight, and with p_m - const., the pressure impulse I_{K} must be inversely proportional to the square of the caliber of the guns.

2. SOME THEOREMS OF THEORY OF SIMILITUDE.

Definitions. 1. Geometrically similar barrels are barrels in which the linear dimensions of the parts of the bore are proportional to the calibers, the cross sections of the bore are proportional to the squares of the calibers, and the chamber and bore volumes are proportional to the cubes of the calibers.

2. Similarly charged guns are guns in which the weights of the projectiles and of the charges are proportional to the cubes of the calibers.

Theorem 1, In geometrically similar and similarly charged guns, similar p-7 and v-2 curves can be obtained only if the powder thicknesses or the impulses $I_{\overline{K}}$ are proportional to the calibers of the bores.

From the condition of equality of the parameters B' and B", we have:

$$\frac{\left(\frac{\mathbf{I}''_{\mathbf{K}}}{\mathbf{d}'}\right)^{2}}{\frac{\omega'}{\mathbf{q}'} \cdot \mathbf{q}' \cdot \mathbf{c}'^{2}_{\mathbf{q}}} = \frac{\left(\frac{\mathbf{I}''_{\mathbf{K}}}{\mathbf{d}''}\right)^{2}}{\frac{\omega''}{\mathbf{q}''} \cdot \mathbf{q}'' \cdot \mathbf{c}''^{2}_{\mathbf{q}}}$$

or

$$\left(\begin{array}{cc} \frac{\mathbf{I}_{K}^{"}}{\mathbf{d}^{"}} \end{array}\right)^{2} : \left(\begin{array}{cc} \frac{\mathbf{I}_{K}^{"}}{\mathbf{d}^{"}} \end{array}\right)^{2} - \frac{\omega^{"}}{\omega^{"}} \frac{\mathbf{q}^{"}}{\mathbf{q}^{"}} \frac{\mathbf{q}^{"}}{\mathbf{q}^{"}} \frac{\mathbf{c}_{\mathbf{q}}^{"2}}{\mathbf{c}_{\mathbf{q}}^{"2}} \quad , \qquad \text{STAT}$$

773

but the condition of similarly charged guns gives us:

$$c_{q}^{"} = c_{q}^{'}; \frac{\omega^{"}}{\omega^{'}} = \frac{d^{"}3}{d^{"}3}; \frac{q'}{q''} = \frac{d^{"}3}{d^{"}3} \frac{\omega^{"}}{\omega^{'}} \frac{q'}{q''} = 1.$$

Since

$$\omega$$
 " - ω ' $\left(\frac{d''}{d'}\right)^3$; $q'' - q' \left(\frac{d''}{d'}\right)^3$,

it follows that

$$\frac{\omega''}{q''} = \frac{\omega'}{q'}$$
 and $\frac{\varphi''}{\varphi'} = 1$.

Consequently

$$\frac{\mathbf{I}_{\mathbf{K}}^{"}}{\mathbf{d}^{"}} - \frac{\mathbf{I}_{\mathbf{K}}^{"}}{\mathbf{d}^{"}},$$

and the theorem is proved.

Theorem 2. In similar and similarly charged guns, equal relative paths A will be associated with equal pressure and projectile velocities.

The equality of pressures follows from the ballistic similarity of curves at the same Δ and equal B, and since, for similarly charged guns:

$$\frac{\omega'}{\varphi'q'} = \frac{\omega''}{\varphi''q''}$$
 and $v'_{tab.} = v''_{tab.}$,

it is also true that

Theorem 3. In using one and the same gun for firing projectiles of different weights while maintaining the charge and the maximustar pressure constant, the velocities of the projectiles are inversely

774

proportional to the square root of the ratio of the products of the projectile weights multiplied by the corresponding coefficient φ . As a matter of fact, under the predetermined conditions, at given Δ and B and Λ , v_{tab}^{\prime} . v_{tab}^{\prime} . v_{tab}^{\prime} .

$$v_{A}^{"}: \sqrt{\frac{\omega}{\varphi^{"}q^{"}}} - v_{A}^{"}: \sqrt{\frac{\omega}{\varphi^{"}q^{"}}}$$
,

from which

$$\frac{v_{A}^{"}}{v_{A}^{"}} = \sqrt{\frac{q^{"}}{\varphi^{"}} \frac{q^{"}}{q^{"}}} .$$

In order to maintain p_m = const., we obtain from the condition B' = B"

$$\frac{I''^2}{\varphi'q'} = \frac{I''^2}{\varphi''q''}$$

or

$$\frac{I_{K}^{"}}{I_{K}^{"}} = \sqrt{\frac{\varphi^{"}q^{"}}{\varphi^{"}q^{"}}} : I_{K}^{"}v_{A}^{"} = I_{K}^{"}v_{A}^{"},$$

i.e., the impulses I_K must be directly proportional to the square roo of the product of the projectile weights multiplied by the corresponding coefficients φ .

In limiting consideration to these most important among the theorems of similitude and refraining from a discussion of the other numerous theorems, it is possible merely to point out that, as a rul when a transition is made from a gun of one caliber to one of anothe STAT a change in the thickness of the powder is accompanied by a certain change in its nature, as well as in the initial pressure and in the

	of the theory
heat loss. This makes it necessary to consider the theorems of the theorems o	of giving
This makes it necessary to consider the theorems of similitude in internal ballistics as being capable merely approximate conclusions and relations.	
merely approximate conclude	
	,
	STAT
	STAT
776	

General Remarks

The ballistic design of guns represents one of the most important departments concluding the theoretical course in applied interior ballistics, in which there is solved the principal problem of the latter, namely to determine the design data of the bore and the loading conditions at which a projectile of given caliber and weight, while being fired from a gun, acquires a definite predetermined initial velocity. In this connection, the maximum pressure of the gases evolved during the burning of the powder must not exceed a definite value p_m , which is usually stated in advance.

The design data of the bore comprise the following: the chamber volume W_0 ; the cross section s of the bore, including the rifling grooves; the length of the path of the projectile along the bore l_D ; the length of the chamber l_{KM} , with proper allowance for its enlargement X relative to the section of the barrel; the number of volumes of expansion of the gases $A_D = \frac{l_D}{l_0} = \frac{W_D}{W_0}$ or the relative path of the projectile through the bore; the length of the bore L_{KH} ; the length of the barrel together with the breechblock L_{CT} ; and the volume of the bore $W_{KH} = W_0 + sl_D = s(l_0 + l_D)$.

The loading conditions comprise the following: the relative weight of the charge ω/q at a predetermined definite nature of the powder (f, α , δ , θ); the loading density Δ ; the shape and principal dimensions of the powder grains (type of powder); and $I_K = e_1/u_1$.

For the variant selected in the design, there is conducted a computation of the variation of the pressure of the powder gases

and of the increase in the velocity of the projectile during the shot as functions of the path and of time. These data, plotted on diagrams in the form of p-1 and v-1 curves, as well as in the form of p-t and v-t curves, constitute the basic material for further computations by designers of the artillery system and ammunition.

The ballistic design of a gun provides the basic starting data for designing the extremely complex assembly represented by the modern artillery system together with the assortment of ammunition pertaining thereto.

On the basis of the data obtained in the ballistic design, the designer of the artillery system computes the barrel of the gun, the thickness of its walls, the fretting of the layers, the breechblock and the rifling grooves; these data also aid him in developing the design of the gun mount and of the recoil mechanism, which accumulates the energy of the recoil and returns the barrel of the gun to its original position after the shot.

Using the same ballistic-design data, the designer of the ammunition computes the body of the projectile and the rotating band, determines the stress in the explosive within the projectile, and computes the cartridge body and the percussion-cap mechanism, as well as the mechanisms of the firing devices and time fuzes.

On the basis of the shape and dimensions of the powder established in the design, the powder engineer computes the dies through which it is necessary to compact the powder mass of a given nature and determines the technological process required to produce the necessary dimensions and shape of the powder when the latter is finished in its final form.

Consequently, the design of the principal assemblies of an

artillery system and of the ammunition pertaining thereto depends in considerable measure upon how rationally the ballistic design of the bore has been developed. The rational design of the bore, however, depends upon the thoroughness of the study and knowledge of the general relations which connect the elements of the shot (gas pressure, velocity and path of the projectile) and its characteristic features with the design data of the barrel and the loading conditions.

In contrast with the "direct" problem of interior ballistics (computation of the gas-pressure and projectile-velocity curves), which yields only one single solution for a predetermined barrel design and given loading conditions, the problem of ballistic design, even for a predetermined pressure $\mathbf{p}_{\mathbf{m}}$, admits of a multiplicity of solutions for the barrel design and for the loading conditions, which assure attainment of the predetermined initial velocity by a projectile of given weight and caliber.

In connection with such an indeterminately large number of variants of the solution of the problem, there arises the question of introducing a definite procedure for the computation of variants satisfying a given assignment and selecting a criterion for their evaluation.

A rational computing procedure must yield a solution of the problem within the shortest possible time and with a minimum number of variants.

For the theoretical justification of such a procedure, use must be made of the general relations of interior ballistics, which interconnect the design data of the bore, and of the loading conditions at definite values of the maximum gas pressure $\mathbf{p}_{\mathbf{m}}$ and of the initial velocity of the projectile.

Once these relations have been established, it becomes possible

779

to outline the course of computation of the variants and to select for their evaluation one or another ballistic criterion, which characterizes the gun from the point of view of the rational nature of the solution.

But the ballistic criteria alone are not sufficient; it is necessary to take into account additional criteria, which are given in the tactical and technical requirements imposed upon the given gun when the assignment for the development of the design is issued.

On the basis of an analysis and a tactical evaluation of one or another tactical employment of artillery (destruction of live targets, attack upon tanks or aircraft, demolition of fortifications and obstacles, attack upon staffs and concentrations of enemy troops at great distances, etc.), there is issued an assignment to develop one or another system, for example an antiaircraft gun with a definite height of destruction of the target, or a heavy howitzer for the demolition of concrete fortifications, or else an antitank gun capable of piercing armor of definite thickness at a predetermined distance.

Knowing the action of the projectile at the target, and taking account of the ratio of the weight of the explosive to the weight of the projectile as a whole, the weight and caliber of the projectile are designated ($\omega_{\rm BB}$ q = 0.10-0.20 for demolition shells, 0.02-0.05 for armor-piercing projectiles). Thereupon, using the formulas and tables of interior ballistics, there is computed the initial velocity of the projectile required in order that a projectile possessing definite caliber, weight, and shape give the necessary range, or else, for a predetermined range, have the impact velocity needed

780

to pierce armor of predetermined thickness.

In this connection, there are sometimes imposed additional requirements, for example that the gun have as small a weight as possible, or even a weight predetermined in advance, both in the traveling position and in the firing position, or else that the length of the gun be less than so many calibers, or else that an already existing shell case or gun mount be utilized.

The totality of all the above-mentioned requirements constitutes the so-called tactical and technical specifications imposed upon the gun being designed during the issuance of the assignment.

The additional conditions included in the tactical and technical specifications exert an influence upon the choice of the ballistic solution and sometimes makes it necessary to arrive at a design that is not completely rational from the ballistic point of view. For example, the 1927 model 76 mm regiment artillery gun has an excessively large chamber volume, combined with too small a number of expansion volumes and a cartridge of large weight and over-all dimensions. The 1909 model 76 mm mountain gun gives the same velocity of the projectile at the same gas pressure with a considerably smaller chamber volume, weight of the charge, and weight of the entire cartridge, and with the same bore volume. There is no doubt that the last-mentioned gun is much better designed from the ballistic point of view than the regiment artillery gun.

But the introduction of the regiment artillery gun of the abovementioned design was dictated by considerations that were no longer

*)To compute the velocity needed to pierce armor, use is made of the formula of Jacob and de Marre, $v_C=k/(d^0.75B^{0.7})/(q^0.5\cos\alpha)/$, where k is the coefficient of strength of the armor (k = 2200-2400).

ballistic in character.

The art of the designer called upon to develop a ballistic design consists in considerable measure in arriving at a design that is rational from the point of view of interior ballistics while taking into account all the tactical and technical specifications.

A rational procedure for ballistic design must provide the shortest route to finding a solution satisfying all the requirements imposed by making a deliberate choice of each of the designated variants. In this connection, it is necessary to know in advance the direction and character of variation of the principal parameters and criteria which determine the expediency of the given variant; the computation must merely clarify the quantitative relations.

The principal relations which determine the connection between the design data of the bore of the gun and the loading conditions are obtained by solving the inverse problem for a predetermined caliber of the gun, weight of the projectile, and initial velocity of the projectile, and for a chosen maximum pressure.

The establishment of these general relations constitutes the subject matter of the chapter entitled "Theoretical Principles of Ballistic Design of Guns."

In establishing the general relations needed for ballistic design, it becomes necessary to resort to certain auxiliary functions and tables, which are obtained by additional treatment of the basic tables of Professor N.F. Drozdov, as well as of the ANII and GAU tables with "normal" values of the constants assumed therein.

These tables can also be utilized (and this is widely done in practice) for powders possessing a shape different from that of

782

strip-type powders, with a propellant force of the powder that is not equal to 950,000 kg·dm/kg, and even for combination charges consisting of two types of powder.

Since the method of Professor Drozdov is based on the usual assumptions accepted in solving the principal problem of pyrodynamics, the same assumptions are also accepted in their entirety in the theoretical solution associated with the ballistic design (geometric law of burning, law of rate of burning u = u1p, average gas pressure in the initial air space, etc.).

There are available at the present time many investigations relating to the theory of ballistic design. Mention should be made of the work of the following authors in our country.

From 1910 through 1948, Professor N.F. Drozdov has illuminated a series of questions connected with ballistic design and has initiated the fundamental direction for the work of the Russian school with respect to the gun of maximum power as a gun capable school with respect to the Bull of the projectile $\left(\frac{m v_D^2}{2}\right)$ max. in a of ensuring the maximum velocity of the projectile $\left(\frac{m v_D^2}{2}\right)$ max. gun of given length at a predetermined maximum pressure. The French school had defined the gun of maximum power as a gun with $I_{-\alpha-2}$ French school had deliable $\frac{\varphi m v_D^2}{2}$ the maximum total work $\frac{\varphi m v_D^2}{2}$ max.

N.F. Drozdov have received widespread acceptance and application in design offices.

Professor I.P. Grave, in his course of pyrodynamics (1934-1937), gave the most complete investigation of the fundamental relations, stated the theory of ballistic design as developed by various authors, and presented a series of his own studies in this field.

Professor V.E. Slukhotsky, who has devoted his attention to

783

problems of ballistic design since 1934, was the first to apply to ballistic design a consideration of the accuracy life of the barrel. Under his direction, there were compiled both the general 1942 GAU tables in three issues and the special issue of tables for ballistic computation (TBR), which are very convenient for practical use.

In 1939, Professor B.N. Okunev presented an analysis of the influence of certain parameters upon the "productivity" of an artillery system, compiled a number of tables, and outlined the general principles governing the choice of a ballistic solution.

In work performed in 1939-1946, Professor D.A. Ventsel presented the theory of ballistic design as applicable principally to small arms, in addition to which he also compiled special tables for various constants.

From 1940 through 1945, M.S. Gorokhov published a series of investigations supplemented by a large number of auxiliary tables and diagrams, which make it possible to establish general relations.

The author of the present book established in 1940 the concept of economic loading conditions, developed the theory of "the gun of minimum volume," which possesses considerably more advantageous characteristics than the earlier "gun of maximum power" advocated by the French school, and, on the basis of general relations, worked out a procedure of ballistic design with the use of a "directive diagram" for the choice of variants.

As a result of all these investigations by our scientists, the principles of ballistic design have in our country attained a high theoretical level and have been coordinated with tactical and technical requirements.

CHAPTER 1 - BASIC DATA

1. BALLISTIC CHARACTERISTICS OF GUNS.

In connection with the indefinitely large number of possible solutions in ballistic design, there arises the question of the choice of criteria for the evaluation of design variants obtained by computation.

Every gun is characterized by a definite system of ballistic characteristics, which can be broken up into three groups.

- a) Design characteristics of the bore of the gun.
- b) Characteristics or the loading conditions.
- c) Energy characteristics of the shot.

Some of the characteristics, which have the most essential importance, may be selected as criteria for the evaluation of variants, in which connection it is also necessary to take into account the tactical and technical specifications imposed during the issuance of the assignment.

There is presented below an enumeration of the principal and most important ballistic characteristics of a gun.

A. Design Characteristics of Gun.

1. The chamber volume is characterized by its ratio to the weight of the projectile, Ψ_0/q , which determines the magnitude of the initial velocity of the projectile. Depending upon the velocity Ψ_0 , the quantity Ψ_0/q is varied within wide limits - from 0.1 to 2.0.

The chamber volume is sometimes characterized by the ratio $\Psi_0/{\rm d}^3$, which also varies within wide limits (1.6-33.0 according to V.E. Slukhotsky).

2. The length of the barrel and length of the bore in terms of calibers, L_{CT}/d and L_{KH}/d . These quantities increase as the velocity

785

of the projectile and the coefficient of the weight of the projectile $c_q = q/d^3$ increase and may reach 150 and more calibers for $v_D = 1500$ m/sec.

- - 4. The characteristic of the depth of the rifling grooves n_s is determined from the formula $s=n_sd^2$, where n_s is about 0.80 at $t_n=0.01d$ and $n_s=0.83$ at $t_n=0.02d$.
 - 5. The coefficient of widening of the chamber $X = I_0 I_{KM} > 1$ (sometimes called the bottle-shape coefficient) influences the total length of the bore.

In artillery systems, χ varies from 1.05 to 3 (according to V.E.Slukhotsky); in small arms and antitank rifles, it reaches 4 and more.

B. Characteristics of Loading Conditions.

6. The <u>loading density</u> $\Delta = \omega/W_0$ varies within very wide limits, as follows:

In small arms	0.80-0.95
In powerful artillery systems	0.65-0.78
In ordinary guns	0.55-0.70
In howitzers with full charges	0.45-0.60

786

In howitzers with reduced

0.10-0.35

In mortars

0.03-0.12

The loading density usually increases with increasing $\boldsymbol{p}_{\boldsymbol{m}}$

- 7. The <u>relative weight of the projectile</u> ω q, which is what and vD. principally determines the velocity of the projectile and the work of displacement of the gases of the charge itself, varies within very wide limits - from 0.01 to 1.5.
- 8. The coefficient of the weight of the projectile $c_q = q d^3$ is one of the $i\pi$ -portant characteristics determining the velocity of the projectile in a given gun.

For a predetermined velocity of the projectile, the quantities l_0 d, l_D d, L_{KH} d, and l_K d are directly proportional to c_{ij} ; the smaller c_q the smaller are the overall dimensions of the gun, and the finer is the powder required to maintain the predetermined p_{max} .

 $c_q = 16-18 \text{ kg}, dm^3$ For armor-piercing shells of ordinary type $c_q = 12-16 \text{ kg/dm}^3$ For demolition shells $c_q = 6-10 \text{ kg}, dm^3$ For subcaliber armor-piercing projectiles with cores

For coil projectiles with special

 $c_q = about 6-7 kg/dm^3$ armor-piercing cores c_q = about 20-22 kg/dm³

For light bullets $c_q = about 25-30 kg/dm^3$ For heavy and armor-piercing bullets with special cores

9. The relative pressure impulse of the powder (expressed in calibers) $I_{\overline{K}}/d$ serves as a characteristic of the correspondence of the thickness of the powder to the caliber, as well as of the power

of the gun.

787

For a velocity v_D = 350-700 m/sec, I_K/d = 500-1000.

If the length of the barrel is increased with the caliber unchanged, I /d increases; for example, in a rifle at v_D = 870 m/sec, I_{K}/d = about 3000; in very powerful modern antitank rifles, I_{K}/d reaches the magnitude of 5000, where $I_{\mbox{\scriptsize K}}$ is expressed in $\mbox{kg}/\mbox{dm}^2\cdot\mbox{sec}$ and d in dm.

10. The <u>loading parameter</u> B = $s^2 I_{K}^2 g$, fwqq combines all three preceding parameters (ω $_{\rm q}$, $c_{\rm q}$, and $I_{\rm K}$ $_{\rm d}$) and represents the principal characteristic determining the magnitude of the maximum pressure $\mathbf{p}_{\mathbf{m}}$ and the position of the projectile at the end of burning of the powder AK.

The smaller B the higher is $\boldsymbol{p}_{\boldsymbol{m}}$ and the smaller is $\boldsymbol{\Lambda}_{\boldsymbol{K}};$ and, on the contrary, as B increases, the magnitude of $\textbf{p}_{\underline{\textbf{m}}}$ decreases and $\boldsymbol{\Lambda}_{\underline{\textbf{K}}}$ increases.

For normal loading conditions, independently of the magnitude of Δ and $\boldsymbol{p}_{m},\;$ the average value of the quantity B is 1.9-2.0.

The parameter B is dimensionless, and for an analysis of the influence of the individual factors composing it, it is conveniently represented in the following form, which is based not on the absolute values, but on the relative values of the individual characteristics of the loading condition

$$B = \frac{n_{\mathbf{g}}^{2} d_{\mathbf{K}}^{4} I_{\mathbf{K}}^{2} g}{f \frac{\omega}{q} \varphi q^{2}} = \frac{g n_{\mathbf{g}}^{2} \left(\frac{I_{\mathbf{K}}}{d}\right)^{2}}{f \frac{\omega}{q} \varphi \left(\frac{q}{d^{3}}\right)^{2}} = \frac{g n_{\mathbf{g}}^{2}}{f} \frac{\left(\frac{I_{\mathbf{K}}}{d}\right)^{2}}{\frac{\omega}{q} \varphi c_{\mathbf{q}}^{2}},$$

where $\varphi = a + b \omega/q$ is a function of ω/q .

Consequently, the parameter B, with the propellant force of the powder constant, depends upon ω/q , $c_q = q/d^3$, and $I_{\overline{K}}/d$, the ratio $\mathbf{I}_{\mathbf{K}}/\mathbf{d}$ being a means for changing the maximum pressure $\mathbf{p}_{\mathbf{m}}$ and the position of the projectile at the end of burning of the powder without

788

considerably changing the velocity of the projectile; as for the quantities ω/q and c_q , they influence principally the initial velocity of the projectile, and their influence upon p_m may be compensated for by a corresponding change in I_K/d .

C. Energy Characteristics.

11. The coefficient of power $C_{\xi} = E_D/d^3 = c_q v_D^2/2g$ is the determining quantity for choosing in the design the initial elements P_m , X, Δ , and W_0/d^3 (from the table of V.E. Slukhotsky or from the diagram of Schneider). As a rule, C_{ξ} varies in the range of 100-1700 tm dm^3 .

12. The coefficient of utilization of unit charge weight:

$$\gamma_{\omega} = \frac{\varepsilon_{D}}{\omega} = \frac{q v_{D}^{2}}{2g \omega} = \frac{v_{D}^{2}}{2g} : \frac{\omega}{4} \frac{tm}{kg}.$$

is as follows (in tm kg).

For medium-power guns $\gamma_{\omega} = 120-140$ For very high projectile speeds $\gamma_{\omega} = 80-90$ For rifles and antitank rifles $\gamma_{\omega} = 100-110$ For howitzers with full charges $\gamma_{\omega} = 140-160$

13. The efficiency of the powder charge:

$$r_D = \frac{E_D \theta}{f \omega} = \gamma_\omega \frac{\theta}{f}$$

is proportional to the coefficient γ_ω and varies in the range of 0.20-0.30.

14. The characteristic of the position of the projectile at the end of burning of the powder:

$$\gamma_K = \frac{t_K}{t_D} - \frac{\Lambda_K}{\Lambda_D} \ .$$

789

is as follows:

For guns

For howitzers with full charges

15. The characteristic of utilization of the working volume of the chamber, or the characteristic of filling of the indicator diagram, is:

$$\gamma_D^{} = \frac{p_{CH}^{}}{p_m^{}} = \frac{\phi E_D^{}}{w_D^{} p_m^{}} = \frac{\phi q v_D^2^{}}{2 \, g w_D^{} p_m^{}} \; , \label{eq:gamma_D}$$

where $\mathbf{W}_{\mathbf{D}} = \mathbf{st}_{\mathbf{D}} = \mathbf{W}_{\mathbf{0}}^{\mathbf{\Lambda}}_{\mathbf{D}}$.

As $\Lambda_{D}^{}$ increases from 3 to 10, $\gamma_{D}^{}$ usually decreases from 0.70 to 0.40.

16. The characteristic of utilization of the total volume of the bore is:

$$R_{D} = \frac{\varphi E_{D}}{\mathbf{W}_{\mathbf{KH}} P_{\mathbf{m}}} = \frac{\varphi q \mathbf{v}_{D}^{2}}{2g \mathbf{W}_{\mathbf{KH}} P_{\mathbf{m}}}$$

where:

$$w_{KH} = w_0(1 + \Lambda_D) = s(l_0 + l_D);$$

$$R_{D} = \gamma_{D} \frac{\Lambda_{D}}{\Lambda_{D} + 1}$$

17. The characteristic of the accuracy life of the barrel N. In our country, one of the most widespread formulas for taking into account the accuracy life of the bore of guns is the formula of Professor V.E. Slukhotsky, which includes in itself a series of ballistic characteristics of the gun.

In firing single shots, the expression for N has the following form:

790

$$N = k_1 k_2 k_3 \rho \frac{p_0^2 - d^2}{0.0022 p_0 \frac{d}{\epsilon} 10^{-3} + 0.002 t_1} \cdot \frac{\Lambda_D^{+1}}{\omega_{D}^2 - \Lambda_D} \left(\frac{v_1}{v_D}\right)^2 + \left(\frac{v_2}{v_D}\right)^2 - 7$$
(118)

where \mathbf{k}_1 is a coefficient depending upon the caliber of the gun;

 \mathbf{k}_2 is a coefficient varying with the rifling twist;

 \mathbf{k}_3 is a coefficient varying with the depth of rifling;

 $\mathbf{D}_{\mathbf{0}}$ is the outer maximum diameter of the rotating band of the

t is the thickness of the surface layer of the bore; projectile;

 \mathbf{t}_1 is the temperature of burning of the powder in $^{\mathrm{O}}\mathrm{C}$:

$$t_1^0 - T_1^0 - 273$$
;

 ρ is the resilience of the metal of the tube:

 v_1 is the average gas velocity in the throat of the chamber during the motion of the projectile through the bore;

 $\mathbf{v_2}$ is the average gas velocity in the throat of the chamber during the period of the aftereffect of the gases;

 p_0 is the initial pressure.

In computing the magnitude of N in accordance with Formula (118), the quantities d and D_0 must be taken in mm, p_0 in kg/cm²,

The coefficient k_1 , expressed as a function of caliber, is v_D in m/sec. given in the following tabulation:

1 ven z.						
	50	100	150	200	250	300
d, mm					1.96	1.93
k1 · 10-6	15.80	7.10	3.40	2.00	1.55	1

791

Professor Slukhotsky recommends that the coefficients \mathbf{k}_2 and \mathbf{k}_3 be taken as:

$$k_2 = 1$$
 and $k_3 = 1$

The quantity d \in 10^{-3} is taken, on the average, as 1.28 for artillery guns and as 1.40 for small arms.

The ratio $\mathbf{v}_2^{}$ $\mathbf{v}_D^{}$ is usually small in comparison with $\boldsymbol{\Lambda}_D^{}(\mathbf{v}_1^{}$ $\mathbf{v}_D^{})^2$ and may be neglected.

The ratio v_1/v_D is determined with the aid of a special table as a function of Λ_D and X_H , where $X_H = l_0 \lambda_H$ and $\lambda_H = l_{KM} + 0.75d$ is the distance from the bottom to the throat of the chamber:

$$\chi_{H} = \frac{1}{\frac{1}{x} + \frac{0.75d}{l_0}}$$

Table 15 - Table of Values of v₁ v_D.

X _H	3	4	5	6	7	8	9	10
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.6 3.0	0.270 0.237 0.213 0.196 0.183 0.171 0.161 0.152 0.144 0.131 0.120	0.256 0.222 0.197 0.180 0.166 0.154 0.144 0.135 0.128 0.116	0.243 0.209 0.184 0.167 0.153 0.141 0.131 0.123 0.116 0.105	0.233 0.199 0.174 0.157 0.143 0.131 0.122 0.114 0.107 0.097 0.088	0.223 0.189 0.165 0.149 0.135 0.124 0.115 0.107 0.100 0.091 0.083	0.215 0.180 0.157 0.141 0.128 0.116 0.109 0.101 0.095 0.086 0.078	0.211 0.174 0.150 0.134 0.121 0.111 0.103 0.096 0.090 0.081	0.208 0.168 0.143 0.128 0.115 0.105 0.098 0.092 0.086 0.077 0.070

In accordance with Formula (118), it is possible to determine the actual number N of shots, which characterizes the accuracy life. In a comparative evaluation of variants, it is possible to use

792

the following abbreviated conditional expression:

$$N_{ych} \leftarrow K \frac{\Lambda_D + 1}{\omega \Lambda_D \left(\frac{v_1}{v_D}\right)^2}.$$

$$(ych \leftarrow conditional)$$

The product $\Lambda_D(v_1,v_D)^2$ varies within narrow limits, for which reason N_{ycn} in most cases increases with increasing Λ_D and with diminishing weight of the charge ω .

2. COLLECTION AND TREATMENT OF PRELIMINARY DATA.

On the basis of the tactical and technical specifications imposed in the assignment for already chosen values of the caliber d, the weight of the projectile $\, \, q \,$, and the initial velocity $\, v_D^{} \,$, it is necessary to collect preliminary data relating to the characteristics of guns approaching the gun being designed in type and in their loading and firing conditions.

For these "related," already existing artillery systems, it is necessary to find the following characteristics, which are in part available as such and must in part be determined by supplementary computations: d, Ψ_0 , s, ℓ_{KM} , ℓ_D , L_{HP} , L_{KH} , d, L_{CT} d, q, the type of projectile, $c_q = q \ d^3$, the nature of the powder $(f, \alpha, \delta, \theta)$, its shape and dimensions, the weight of the charge ω , $I_K = e_1$, u_1 , p_m , and v_D .

All these characteristics may be obtained in various handbooks, firing tables, service manuals, descriptions and drawings of charges and projectiles, and drawings of the chamber and barrel.

In firing tables and other sources, there is usually given not the length of path of the projectile along the bore, but the length of the rifled part $L_{\rm HP}$, which is smaller than $\ell_{\rm D}$. The difference

depends upon the arrangement of the base of the projectile, which is to be found precisely in the drawings of the projectiles. As an approximation, it may be considered that $l_{\rm D} = L_{\rm HP} + (0.5-1.0){\rm d},~0.5{\rm d}$ relating to old flat-bottomed shells, and 1.0d relating to contemporary modernized projectiles.

On the basis of the data obtained, the following characteristics must be computed:

$$\Delta, \frac{\omega}{q}, \frac{I_{K}}{d}, \gamma_{\omega} = \frac{E_{D}}{\omega} = \frac{v_{D}^{2}}{2g} : \frac{\omega}{q} : C_{\varepsilon} = \frac{E_{D}}{d^{3}} = c_{q} \frac{v_{D}^{2}}{2g},$$

$$\gamma_{D} = \frac{p_{av}}{p_{m}} = \frac{\varphi_{m}v_{D}^{2}}{2s l_{D}p_{m}} = \frac{\varphi_{l} \omega_{\Delta}}{\Lambda_{D}p_{m}} :$$

$$\mathbf{r}_{\mathrm{D}} = \frac{\mathbf{E}_{\mathrm{D}} \boldsymbol{\Theta}}{\mathbf{f} \boldsymbol{\omega}} = \gamma_{\mathrm{\omega}} \frac{\boldsymbol{\Theta}}{\mathbf{f}} \; ; \; \mathbf{r}' = \varphi \mathbf{r}_{\mathrm{D}} \; ; \; \mathbf{R}_{\mathrm{D}} = \frac{\varphi \mathbf{m} \mathbf{v}_{\mathrm{D}}^2}{2 \mathbf{s} (l_{\mathrm{O}} + l_{\mathrm{D}}) p_{\mathrm{m}}} = \gamma_{\mathrm{D}} \frac{\Lambda_{\mathrm{D}}}{\Lambda_{\mathrm{D}} + 1} \; . \label{eq:r_D}$$

After collecting all these data, they must be summarized and treated in such a manner as to utilize the data obtained by experimental means to coordinate the results of computation with experiment (determination in accordance with selected tables of coefficients) and to designate the basic data for use in the computations associated with the particular assignment in hand.

3. CHOICE OF BALLISTIC CRITERIA FOR EVALUATION OF VARIANTS.

Among the characteristics mentioned above, c_q and C_{ξ} are known from the conditions of the assignment; the remaining characteristics are determined during the computation of the variants. The following characteristics are most essential:

$$\Lambda_{\rm D} = \frac{\Psi_{\rm D}}{\Psi_{\rm 0}} = \frac{\ell_{\rm D}}{\ell_{\rm 0}} \ , \ \frac{L_{\rm KH}}{\rm d} \ {\rm or} \ \frac{\Psi_{\rm KH}}{\rm q} = \frac{\Psi_{\rm 0}}{\rm q} (\Lambda_{\rm D} + 1) \, , \quad \frac{\omega}{\rm q} \ , \ \gamma_{\rm K} = \frac{\Lambda_{\rm K}}{\Lambda_{\rm D}} \ , \label{eq:lambda}$$

794

$$\eta_D = \frac{p_{av.}}{p_m}$$
, $\eta_\omega = \frac{E_D}{\omega}$ and N_{ycs} or N.

In evaluating variants, it is usually attempted to select those with the largest possible γ_D , R_D , and γ_ω ; with γ_K in the range of 0.60-0.70, which corresponds to the economical utilization of the charge; with the smallest possible value of ω q; and with a large charge; which increases N_{yCA} .

But, as η_D and R_D increase, the coefficient η_ω decreases; and, in order to reconcile these oppositely varying characteristics, it becomes necessary to select some intermediate relative solution.

In connection with this, mention should be made of attempts to provide a criterion combining the influence of these two conflicting

criteria.

For example, Professor B.N. Okunev (1939) proposed to use as a characteristic of advantage of a variant the following quantity:

where:

$$r' = \frac{\varphi q v_D^2 \theta}{2gf\omega} = \frac{\varphi \theta}{f} \gamma_\omega.$$

This quantity, independently of the chosen pressure p_m , has a maximum at the ratio $v = v_D/v_{np} = 0.52$. For small arms, Professor Okunev recommends taking v > 0.52 (0.55-0.56), for guns of great power v < 0.52 (0.48-0.50).

professor I.P. Grave, in developing the idea of Professor Okunev, gave the following expression:

795

$$H' = \frac{m + n}{r'^m j_D^n}$$

without, however, indicating a method and criterion for the choice of the exponents m and n. Professor M.E. Serebryakov, in developing this proposal, accepted as a measure of advantage the following quantity:

$$H'' = \frac{1 + r}{R_D r_D^{\gamma}},$$

in which connection he did give a procedure for computing the quantity y and showed that, depending upon the type of system, the exponent y varies from 0 to 1.5.

The exponent γ or the quantity H" depend in some measure upon the type of guns and in a certain measure reflect the influence of the tactical and technical specifications.

Professor V.E. Slukhotsky, while investigating a series of systems which had given good results in service, accepted for evaluating individual variants of a ballistic solution the criterion Z, as defined by the following expression:

This criterion takes into account not only ballistic, but also design and economic requirements, such as are necessarily imposed upon the system being designed. The design factors include the length of the barrel; the economic factors include the accuracy life N_{yCA} and the utilization of the charge γ_{ω} .

As a characteristic of utilization of the length of the body of the gun, use is made of a quantity that is analogous to the

796

quantity RD:

$$q_L = \frac{qv_D^2}{L_{CT}}$$

Professor Slukhotsky believes the most advantageous variant to be that in which the quantity Z is largest.

As is seen, the problem of establishing such combined criteria is in the stage of development and accumulation of experimental data.

In the selection of basic variants in ballistic design, use was made until quite recently (1940) of special diagrams or tables of relative gun characteristics. Among the most widely used diagrams, there was, for example, that shown in Fig. 133, which represents the result of treatment by Engineer N.A. Upornikov of the system of artillery equipment designed by the Schneider works.

Fig. 157 - Diagram of Basic Ballistic Characteristics.

- 1) Coefficient of power; 2) maximum pressure; 3) power; 4) pressure; 5) of chamber; 6) charge; 7) coefficient of volume of charge chamber and weight of charge;

Fig. 157 (cont'd.)

8) mortars; 9) howitzers; 10) field guns; 11) naval guns; 12) super guns.

The basic quantity in the diagram is the coefficient of power $C_{\xi} = \frac{E_D}{d^3} \frac{tm}{dm^3}$. In accordance with this quantity, there are found the total length of the barrel (expressed in calibers), L_{CT}/d , as well as the relative chamber volume $c_{\psi_0} = \psi_0 d^3$, the relative weight of the charge $c_{\omega} = \omega_0 d^3$, and the maximum pressure p_m . Knowing c_{ψ_0} and c_{ω} , it is easy to find the loading density $\Delta = c_{\omega}/c_{\psi_0} = \omega_0 \psi_0$. To effect the transition from the relative chamber volume and the relative weight of the charge to the absolute values, it is necessary to multiply c_{ψ_0} and c_{ω} by the cube of the caliber in decimeters. The coefficient of utilization of the charge can be found from the ratio $C_{\xi}/c_{\omega} = \gamma_{\omega}$.

An advantage of the diagram is the independence of its data from the caliber of the system.

As guiding material, use was also made of the table compiled in 1934 by V.E. Slukhotsky 207 on the basis of a treatment of data relating to the most successful among our own and foreign systems. At the present time, this table has been revised by its author on a more modern basis.

Both in the table of V.E. Slukhotsky and in the Schneider diagram, the basic quantity is the coefficient of power of the system; values for the quantities γ_ω , p_m , Δ , χ , and L_{CT}/d are given as functions of the quantity $C_\epsilon = E_D/d^3$.

The table of V.E. Slukhotsky, as revised in accordance with the most recent data, is presented below:

798

C _E	ໄພ tm/kg	p _m crusher gage	∆ kg⁄dm³	$x = \frac{t_0}{t_{KM}}$	L _{CT}
100	124	1700	0.50	1.02	14
200	120	1950	υ.55	1.09	23
300	117	2200	υ .5 9	1.18	31
400	114	2400	0.62	1.28	38
500	112	2600	0.64	1.39	44
600	110	2800	0.66	1.50	51
700	108	2950	0.67	1.61	57
800	107	3100	0.68	1.73	64
900	106	3250	0.69	1.85	71
1000	105	3350	0.69	1.98	78
1100	104	3450	0.70	2.11	85
1200	104	3550	0.71	2.25	91
1300	103	3650	0.71	2.40	98
1400	103	3750	0.72	2.57	105
1500	102	3900	0.73	2.75	112
1600	102	4000	0.74	2.95	119
	1			1	

STAT

799

CHAPTER 2 - THEORETICAL PRINCIPLES OF BALLISTIC DESIGN

1. MOST ADVANTAGEOUS AND MOST ECONOMICAL LOADING DENSITIES IN GUN AT GIVEN MAXIMUM PRESSURE $\boxed{\ \ 21\ \ \ \ \ }$

In a given gun with a definite volumetric expansion ratio $\Lambda_D = l_D / l_0$, let the maximum gas pressure p_m be predetermined. It is necessary to follow the variation in the initial velocity of the projectile v_D required to maintain the pressure p_m constant during the simultaneous variation in the weight of the charge and in the thickness of the powder.

At the same time, it is also necessary to follow the variations in the coefficients of utilization of the unit weight of the charge $\eta_{\omega} = \mathbf{E}_{D} \omega \text{ and of utilization of the working space of the bore:}$

$$\eta_D = \frac{p_{av.}}{p_m} = \frac{\varphi_{mv}^2}{2st_D p_m}$$

The minimum loading density at which a predetermined maximum pressure $\mathbf{p}_{\mathbf{m}}$ is obtained in a given gun will be present in the case of instantaneous burning of the powder in the chamber space before the projectile begins moving.

In this case, we apply the following formula:

$$p_{m} = \frac{f\Delta_{1}}{1 - \alpha\Delta_{1}} ,$$

from which:

$$\Delta_1 = \frac{p_m}{f + \alpha p_m} = \frac{1}{\frac{f}{p_m} + \alpha} \text{ and } \omega_1 = w_0 \Delta_1 = \frac{w_0}{\frac{f}{p_m} + \alpha}.$$

Now, in order to meet the condition \boldsymbol{p}_{m} = const., we shall increase the charge while simultaneously increasing the parameter

 $B = s^2 I_K^2 / f \omega \phi m$ in conformity with the following previously established relation:

$$B = \frac{a_m \Delta}{1 - \alpha \Delta},$$

where:

$$a_m = \frac{iF_2(\Theta)}{p_m} \left(-\frac{0.32f}{p_m} \text{ at } \Theta = 0.2 \right)$$
.

In this case, the pressure impulse of the powder $I_K = e_1 u_1$ will be expressed by the following formula:

$$1_{K} = \frac{\sqrt{K_{m}} \omega}{\sqrt{W_{0} - \alpha \omega}},$$

where:

$$K_{m} = \frac{f^{2}F_{2}(\theta)\phi^{m}}{p_{m}s^{2}} = \frac{a_{m}f\phi^{m}}{s^{2}} .$$

Note: The impulse increases with increasing ω ; consequently, the thickness of the charge e_1 increases.

In the presence of such a simultaneous variation in the weight of the charge (or loading density) and in the thickness of the powder, we shall obtain curves for the pressure as a function of the path of the projectile on which the pressure maximum, while remaining unchanged in magnitude, will, in conformity with the expression $I_{\mathbf{m}} = I_0(1-\alpha\Delta) \int \mathbf{F}_1(\Theta) - 1_{-}\mathbf{I}$, shift with increasing Δ toward the starting point of the motion, whereas the end of burning of the powder will shift toward the muzzle face. In this connection, we shall have a loading density Δ_i at which the end of burning will occur precisely at the muzzle face.

As Δ and $I_{\overline{K}}$ grow further, there will be obtained incomplete

801

burning of the powder and a decrease in v_{D} .

Experiments and computations show that the initial velocity of the projectile \mathbf{v}_{D} accompanying such an increase in Δ from Δ_{1} to Δ_1 will first grow, then pass through a maximum at a certain $\Delta_{\mathbf{m}} \leq \Delta_{\mathbf{i}}$, and then slightly decrease; at $\Delta - \Delta_{\mathbf{i}}$:

$$v_{D1} < v_{Dm}$$
.

Consequently, for a powder of a given shape and nature, there exists a $\Delta = \Delta_m$ at which, with the pressure p_m predetermined, the initial velocity of the projectile will have a maximum value. This loading density Δ - Δ will be designated by us as the most advantageous loading density.

The difference between $\boldsymbol{v}_{D1}^{}$ and $\boldsymbol{v}_{Dm}^{}$ is generally small (0.5-2.0%), and, in the previous investigations conducted by the French school, it was assumed as an approximation that the maximum velocity is obtained when the burning of the powder is completed precisely at the muzzle face.

As a matter of actual fact, this is not so; the relation between \mathbf{v}_{D} and Δ in a given gun at a predetermined \mathbf{p}_{m} is apparent from the curve in Fig. 158.

Fig. 158 - Relation between v_D and Δ in Given Gun at p_m - const.

802

The v_D - Δ curve has its maximum at:

$$\triangle - \triangle_{\mathbf{m}}$$
:

v_{Di} v_{Dm},

and, consequently, there exists to the left from $\Delta_{\mathbf{m}}$ a loading density $\Delta_{E} < \Delta_{m} < \Delta_{i}$ at which $v_{DE} = v_{Di}$.

Since the loading density Δ_{E} is considerably smaller than Δ_{i} (by 5-15%), we shall designate this loading density as the economical loading density.

At this loading density, the burning of the powder is completed sooner than at Δ_{m} or at Δ_{i} .

There is presented below a tabulation of some ballistic elements at various \triangle for \triangle for \triangle = 6.0 and P_m = 2500 kg/cm².

6 Leme		Table	16			
$\Delta = \frac{i_{K}}{i_{D}}$ v_{D} $v_{D} = \frac{\epsilon_{D}}{\omega}$ $v_{D} = \frac{p_{av}}{\omega}$	Δ ₁ 0.21 0 425 178 0.277	Δ ₂ 0.55 0.30 613 130 0.582	Δ _E 0.65 0.55 644 121 0.643	Δ _m 0.70 0.72 648 114 0.650	Δ ₁ 0.75 1.00 644 105 0.643	
P _m				the the B	id of the	

The results of computations carried out with the aid of the ANII tables have confirmed the above theoretical conclusion relating to the existence of Δ_m , Δ_E , and Δ_i .

In this connection, the coefficient of utilization of the unit

803

weight of the charge \(\gamma_{\infty} \) is found to attain its maximum (178) for instantaneous burning, in spite of the low velocity of the projectile, and to decrease continuously to 105 at the maximum Δ - Δ_1 .

The coefficient $\P_D = p_{av}/p_m$, on the other hand, increases rapidly at first, reaches its maximum at Δ - $\Delta_{\rm m}$, and thereupon slowly decreases. This decrease also continues to occur as Δ and the thickness of the powder further increase in the presence of incomplete burning of the powder.

The optimum utilization of the bore of the gun is obtained either at Δ - $\Delta_{\rm m}$ or, neglecting the small difference in velocities, at $\Delta = \Delta_E$, which gives a higher coefficient of utilization \mathcal{H}_{ω} (121 instead of 114 at $\Delta = \Delta_m$).

We thus obtain the following relations:

In practice, the economical loading density may be considered to be most advantageous.

These relations are generally applicable to various $\boldsymbol{p}_{\boldsymbol{m}}$ and $\boldsymbol{\Delta}$, as well as to guns with various volumetric expansion ratios \wedge_{D} . The values of $\Delta_{\mathbf{m}}$, $\Delta_{\mathbf{E}}$, and $\Delta_{\mathbf{q}}$ are functions of the gun character-

804

istic $\boldsymbol{\Lambda}_{D}$ and of the magnitude of \boldsymbol{p}_{m} at a given shape of the powder.

There are presented below tabulations of values of Δ_1 , Δ_E , and B_E as functions of p_m and A_D ; these have been obtained by treatment of the ANII tables at the following powder characteristics: $\chi=1.06$; $\chi\lambda=-0.06$; $\phi=1.05$; f=950,000 kg·dm/kg; $\alpha=0.98$ dm³/kg; $\delta=1.6$ kg/dm³; $\theta=0.20$; and for $p_0=300$ kg/cm² (standard constants adopted by Professor Drozdov in his tables).

Tables 17 and 18 show that Δ_{1} and Δ_{E} increase as p_{m} and Δ_{D} increase. In conformity with theoretical conclusions, the increase in Δ_{E} is accompanied by an increase in the parameter B_{E} , as is apparent from Table 19.

Table 20 shows that the quantity $p_{{\bf av}}$, p_{m} decreases with increasing ρ_{m} , and with increasing p_{m}

For economical Δ , $\gamma_K = t_K t_D$ at first decreases with increasing Λ_D , but then approaches a constant quantity.

Table 17 - Values of Δ_{1} (Burning of Powder at Muzzle Face). 20

λ _D P _m	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
2 3 4 5 6 7 8 9	0.634	0.554 0.588 0.625 0.652 0.672 0.686	0.588 0.631 0.668 0.695 0.715 0.730	0.619 0.672 0.709 0.733 0.753	0.655 0.709 0.745 0.767 0.788 0.803	0.741 0.776 0.798 0.819 0.836	0.721 0.771 0.805 0.827 0.848 0.864	0.751 0.798 0.832 0.854 0.874 0.889	0.777 0.823 0.851 0.878 0.898 0.900	0.802 0.846 0.879 0.900 0.900 0.900

Table 18 - Economical Loading Densities $\Delta_{\rm E}$. $_721_7$

λ _D p _m	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
2 3 4 5 6 7 8 9	0.41 0.46 0.50 0.52 0.54 0.55 0.56 0.58	0.44 0.51 0.54 0.57 0.59 0.60 0.61 0.63 0.65	0.48 0.55 0.59 0.61 0.63 0.64 0.66 0.68	0.52 0.58 0.63 0.65 0.67 0.68 0.70 0.72	0.55 0.62 0.66 0.69 0.70 0.72 0.73 0.75	0.58 0.65 0.70 0.72 0.73 0.75 0.76 0.79 0.80	0.62 0.68 0.73 0.75 0.76 0.78 0.79 0.81 0.83	0.65 0.71 0.75 0.78 0.79 0.80 0.82 0.84 0.86	0.68 0.74 0.78 0.80 0.81 0.83 0.84 0.86	0.71 0.76 0.80 0.82 0.84 0.86 0.87 0.88
<u>م</u>	0.160	0. 1745	01885	0.2025	0.216	0.2285	0.241	0.253	0.265	0.276
△ _H	0.492	0.532	υ. 5 68	U.600	0.631	0.660	0.687	0.711	0.736	0.762

Table 19 - Values of Parameter $B_{E} for Economical Loading Conditions.$

A _D	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600
2 3 4 5 6 7 8 9	.1.45 1.74 1.94 2.07 2.20 2.28 2.34 2.47 2.58	1.47 1.76 1.96 2.10 2.22 2.30 2.36 2.50 2.61	1.48 1.78 2.00 2.12 2.24 2.30 2.40 2.54 2.68	1.49 1.80 2.03 2.19 2.24 2.31 2.42 2.57 2.70	1.50 1.83 2.05 2.15 2.24 2.33 2.44 2.60 2.72	1.51 1.84 2.06 2.17 2.25 2.35 2.46 2.62 2.74	1.56 1.85 2.07 2.19 2.26 2.37 2.48 2.64 2.80	1.60 1.87 2.08 2.21 2.30 2.39 2.52 2.66 2.82	1.64 1.89 2.10 2.24 2.32 2.48 2.55 2.69 2.83	1.68 1.90 2.10 2.27 2.41 2.56 2.83 2.71 2.85

806	

Table 20 - Characteristics \P_K and \P_D for Economical Loading Conditions $\underline{\hspace{0.1in}}^{-}21\underline{\hspace{0.1in}}^{-}$

	^ _D	2	3	4	5	6	7	8	9	10
For all $\eta_{K} = \frac{l_{K}}{l_{D}}$	pressures	0.82	0.75	0.70	0.66	0.63	0.60	0.57	0.59	0.63
	At p _m -1800	0.85	0.80	0.75	0.70	0.65	υ. 6 0	0.55	0.52	0.50
p _m	At p _m =3600	0.79	0.73	0.66	0.60	0.55	0.50	0.45	0.42	0.40

2. FUNDAMENTAL RELATIONS AND DIAGRAMS FOR BORE DESIGN DATA.

It has been shown in the investigation of the most advantageous and economical loading density that the optimum utilization of the volume of the bore and of the powder charge is obtained under the condition of complete burning of the powder in the bore $(t_{\rm K}/t_{\rm D}=0.5\text{-}0.7)$.

For this reason, the basic formula for deriving the fundamental relations interconnecting the design data for the bore and the loading conditions is the formula for the velocity of the projectile in the second period, in the instant of emergence of the projectile from the bore, where \mathbf{v}_{D} is predetermined, and the volume and length of the bore and the length of the path of the projectile are to be found:

$$v_D^2 - v_{np}^2 \left\{ 1 - \left(\frac{\Lambda_{K} + 1 - \alpha \Delta}{\Lambda_{D} + 1 - \alpha \Delta} \right)^{\theta} \left[1 - \frac{B\Theta}{2} (1 - z_0)^2 \right] \right\},$$
 (119)

STAT

where:

$$\mathbf{v_{np}^{2}} - \frac{2gt\omega}{q \Theta_{\mathbf{q}}} ; \Lambda_{\mathbf{K}} - \frac{t_{\mathbf{K}}}{t_{\mathbf{0}}} ; \Lambda_{\mathbf{D}} - \frac{t_{\mathbf{D}}}{t_{\mathbf{0}}} ; \Lambda_{\mathbf{D}} + 1 - \frac{t_{\mathbf{D}} + t_{\mathbf{0}}}{t_{\mathbf{0}}} - \frac{\mathbf{w}_{\mathbf{KH}}}{\mathbf{w_{\mathbf{0}}}}$$

It will be desirable to represent equation (119) in the following form:

$$rathermann = (ΛD + 1 - αΔ)(1 - r')^{\frac{1}{θ}} = (ΛK + 1 - αΔ)(1 - r'K)^{\frac{1}{θ}},$$

where:

$$\frac{v_D^2}{v_{np}^2} = \varphi r_D = r'; \quad \frac{v_K^2}{v_{np}} = \frac{B\Theta}{2} (1 - z_0)^2 = r_K'.$$

Let us adopt the following designation:

$$(\Lambda_{\mathbf{K}} + 1 - \alpha \Delta) \left[1 - \frac{\mathbf{B} \Theta}{2} (1 - z_0)^2 \right]^{\frac{1}{\Theta}} = \mathbf{K}.$$

By solving the basic equation with respect to \bigwedge_D + 1 = l_D / l_0 + + 1 = m_{KH} / m_0 and transferring m_0 to the right-hand side, we obtain:

$$\mathbf{W}_{\mathbf{KH}} - \mathbf{W}_{0} \left[\frac{\mathbf{K}}{(1 - \mathbf{r}')^{\frac{\Theta}{\Theta}}} + \alpha \Delta \right]$$
 (120)

for the entire volume of the bore, and:

$$t_{D} - t_{0} \left[\frac{K}{(1 - r')^{\frac{1}{6}}} + \alpha \Delta - 1 \right]$$
 (121)

for the total length of the path of the projectile through the

hore. As is known from the tables of Professor Drozdov, at a predetermined value for p_m and at a chosen loading density Δ , the quantities \wedge_K and B entering into the expression for K, and consequently also K itself, depend only upon p_m and Δ :

$$K = f(p_m, \Delta)$$
.

At predetermined values for Δ and $v_D^{}$, the quantity r' is a function of ω/q only, since:

808

$$r' = \frac{\varphi q v_D^2 \Theta}{2g \omega f} = \frac{a + b \frac{\omega}{q}}{\frac{\omega}{q}} \frac{\Theta}{f} \frac{v_D^2}{2g}.$$

At a predetermined value for $v_D^{}$, the product $\frac{\Theta}{f} \frac{v_D}{2g}$ - const. -

At the tabular values $f = 950,000, \theta = 0.2, g = 98.1 \text{ dm/sec}^2$:

$$k_v = \frac{\theta}{f} \frac{v_D^2}{2g} = \frac{v_D^2 \left(\frac{dm}{Sec}\right)}{932 \cdot 10^6} ;$$

It is possible to compute this quantity in advance, and therefore ${\bf r}^+$ is a function of ω/q only:

$$\mathbf{r}' = \mathbf{k}_{\mathbf{v}} \frac{\mathbf{a} + \mathbf{b} \frac{\omega}{\mathbf{q}}}{\frac{\omega}{\mathbf{q}}} = \mathbf{f}_{2} \left(\frac{\omega}{\mathbf{q}}\right).$$

The volume of the chamber is $W_0 = \omega/\Delta$.

Subsequently, for convenience in graphical representations, we shall introduce the relative quantities $\mathbf{W}_{KH}/\mathbf{q}$ and \mathbf{W}_0/\mathbf{q} ; then:

$$\frac{\mathbf{w}_0}{\mathbf{q}} = \frac{1}{\Delta} \frac{\omega}{\mathbf{q}} = \mathbf{f}_3 \left(\frac{\omega}{\mathbf{q}} , \Delta \right) ,$$

i.e., the chamber volume is a function of only two variables, namely Δ and ω/q .

In that case, the ratio of the entire volume of the bore \mathbf{w}_{KH} to the weight of the projectile q, which is expressed by the formula:

$$\frac{\Psi_{KH}}{q} = \frac{\Psi_0}{q} \left[\frac{K(p_m \cdot \Delta)}{\frac{1}{\Theta}} + \alpha \Delta \right], \qquad (122)$$

will, at predetermined d, q, v_D , and p_m , also be a function of only two variables, namely Δ and ω/q .

In place of the quantities $W_{\mbox{KH}}/q$ and $W_{\mbox{O}}/q$, it is possible to introduce into equation (122) the relative lengths of the entire bore and chamber in calibers.

If the corrected length of the volume of the bore is designated as $t_0 + t_D = L_{KH}$, where $sL_{KH}' = W_{KH}$, then:

$$\frac{L_{KH}}{d} = \frac{1}{d} \left[\frac{K(p_m, \Delta)}{(1 - r')^{\frac{1}{\Theta}}} + \alpha \Delta \right], \tag{123}$$

$$\frac{l_0}{d} = \frac{w_0}{sd} = \frac{1}{n_g} \frac{w_0}{d} = \frac{1}{n_g} \frac{w_0}{d} = \frac{c_q}{d^3} = \frac{c_q}{n_s} \frac{1}{\Delta} \frac{\omega}{q} \text{ being a function of } \Delta \text{ and } \omega/q.$$

The actual length of the bore is $L_{KH} = l_{KM} + l_{D} = l_{O}/\chi + l_{D}$. Upon designating $n' = 1 - 1/x = 1 - l_{KM}/l_0 = 8_0/l_0$, we obtain:

$$L_{KH} = \frac{t_0}{x} + t_D = t_0 + t_D - \left(t_0 - \frac{t_0}{x}\right) - L_{KH} - t_0 n'.$$

By substituting for L_{KH}^{\prime} its expression in (123), we obtain:

$$\frac{L_{KH}}{d} = \frac{t_0}{d} \left[\frac{K(p_m, \Delta)}{(1 - r')^{\frac{1}{\Theta}}} \right]; \qquad (124)$$

and furthermore:

The State of the S

$$\frac{t_{D}}{d} = \frac{t_{0}}{d} \left[\frac{K(p_{m}, \Delta)}{(1 - r')^{\frac{1}{\theta}}} + \alpha \Delta - 1 \right].$$
 (125)

Intercomparison among all the formulas presented above leads to the conclusion that, at predetermined d, q, v_D , and p_m (which is in fact, what is usually predetermined in ballistic design), the design data for

ķ

the bore, i.e., the volume of the entire bore and of its working part, the chamber volume, the lengths corresponding to these volumes, and the actual length of the bore with proper allowance for the widening of the chamber, are functions of only the two variable loading conditions Δ and ω/q .

Consequently, each of the above-mentioned design quantities can be expressed in a three-dimensional coordinate system by a surface in the following coordinates:

$$z, \triangle, \frac{\omega}{q} \ ,$$
 where Z may be $\frac{w_{KH}}{q}$, $\frac{w_D}{q}$, $\frac{w_D}{q}$, $\frac{sL_{KH}}{q}$, or $\frac{L_{KH}}{d}$, $\frac{l}{d}$, $\frac{l}{d}$, and $\frac{L_{KH}}{d}$.

(Fig. 159).

Investigation shows that, at predetermined v_D and p_m , these surfaces (except for the surface representing chamber volumes) have the form of unsymmetrical "hammocks" with their convex sides turned downward. The lowest point of the "hammock" corresponds to the minimum of the quantity under consideration, and, for each of them - W_{KH} , W_D , and L_{KH} - there exists its own pair of values of Δ and ω/q at which these quantities have their minimum value

and \(("Hammock" and "Slope").
811

This existence of a minimum for all the fundamental design elements of the bore, such as the volume of the entire bore \mathbb{V}_{KH} , its total length L_{KH} , the path of the projectile through the bore \mathbb{V}_{D} , or the working volume of the bore $\mathbb{V}_{D} = \mathbb{S}^{l}_{D}$, has substantial significance in the development of a rational procedure for ballistic design.

The form of the surface $W_0/q = (1/\Delta)\omega/q$) will be determined with the greatest ease; upon being intersected by $\Delta = {\rm const.}$ planes, it gives as functions of ω/q straight lines, which intersect the Δ axis; upon being intersected by $\omega/q = {\rm const.}$ planes, it gives equilateral hyperbolas $W_0/q\Delta = {\rm const.}$, which are located the higher the greater is ω/q .

Consequently, this surface has the form of an asymmetric hyperbolic slope passing through the \triangle axis, the slope having a greater gradient at small \triangle than at large \triangle .

The form of the W_{KH} and W₀ surfaces is represented in Fig. 159, where \triangle and ω/q are plotted along the coordinate axes, and W_{KH} and W₀ are plotted along the Z axis.

The loading density varies from Δ_1 , which corresponds to the given p_m as the charge burns instantaneously, to Δ_i , which corresponds to the burning of the powder at the muzzle face.

The points A and B on the Δ - ω/q plane correspond to loading density Δ_1 and the charges $\omega/q=0.6$ and 1.2; the points D and C correspond to the loading density Δ_1 and the same charges.

The points a, b, c, d define the surface corresponding to the chamber volumes whose magnitudes are expressed by the ordinates As, Bb, Cc, and Dd. The lines bc and ad are equilateral hyperbolas; the lines ab and dc are straight lines passing through the △ axis.

The ordinates Aa', Bb', Cc', and Dd' express the magnitudes of the volumes of the bore of the gun at combinations of \triangle and ω/q corresponding to the points A, B, C, and D. The figure makes it apparent that Aa'> Bb'> Dd'> Cc'> Mm'. The ordinate Mm' gives the minimum volume of the bore, and the point M on the \triangle - ω/q plane defines the values of \triangle and ω/q at which this "gun with the minimum bore volume," or briefly "minimum-volume gun," is obtained.

The ordinate Mm defines the chamber volume of the gun with the minimum bore volume.

a) Case W_0 - const.

If an intersecting plane ZOAH is passed through the point A and the Z axis, its intersection with the chamber-volume surface will give the straight line ah, where Aa = Hh. On the W_{KH} surface, there corresponds to this straight line of equal chamber volumes the line a'h' of decreasing bore volumes.

By proceeding along the line AH on the ω q- Δ plane, we maintain the tangent of its angle of slope $(\omega/q)(1/\Delta) = W_0$, q constant; consequently, the straight lines OAH and OIK issuing from the origin of the coordinate system represent lines of equal chamber volume on the $\omega/q - \Delta$ plane; in this connection, the greater the angle of slope of the straight line the larger is the volume of the chamber (Aa = Hh > Ii).

The diagram shows that, if the design is subject to the condition that the chamber volume have a definite magnitude (W_0 = const.), this condition will be satisfied by different bore volumes (lines a'h' and i'k') and different ω/q and Δ , from among which it is possible to select those that are most suitable. In

this connection, ω/q varies in direct proportion to the loading density Δ .

Fig. 160 - W_{KH} and W_{0} as Functions of ω/q and Δ for W_{KH} - const.

b) Case WKH = const. (Fig. 160).

Upon intersecting the surface of the "hammock" by a plane parallel to the ω/q - Δ plane, i.e., $\Psi_{\overline{KH}}$ - const., we obtain a line of intersection in the form of the oval a'h'b'g'. Consequently, the condition W_{KH} = const. can be satisfied by various combinations of Δ and ω/q ; in this connection, except for the maximum and minimum values of ω/q and Δ , which define the extreme walues of the boundaries of the owal (points a'b' and h'g'), two values for Δ correspond to every value of ω/q , and two values for ω/q correspond to every value of Δ . In conformity with this, the chamber volume also has two values - a greater and a smaller value - for every case.

The projection AHBG of the oval a'h'b'g' upon the $\omega/{
m q}$ - Δ plane will also be an oval. On the hyperbolic-slope surface

814

expressing the chamber volumes, its intersection with the cylinder Aa'Hh'Bb'Gg' gives the line ahbg, which possesses a complex curvature in space. If tangents are drawn from the origin of the coordinate system to the projection of the oval on the ω/q - \triangle plane, the line OR will give the maximum value for the chamber volume Rr at the given \mathbf{w}_{KH} , and the line OS will give the minimum value for the chamber volume Ss at the same bore volume $W_{\mbox{KH}}$.

Thus, equal bore volumes are represented on the ω q - \triangle plane by concentric ovals, whose center is the point $\mathbf{M}_{\mathbf{U}}$, which corresponds to the minimum bore volume at predetermined q, $v_{\overline{D}}$, and $p_{\overline{m}}$. The greater the bore volume the farther from the center \mathbf{M}_0 does the corresponding oval lie.

3. DETERMINATION OF LOADING CONDITIONS \triangle AND $\omega_{\rm c}$ q to attain "minimum-volume gun"

A. Determination of Loading Density Δ_{\min} to Attain Minimum Bore Volume (at Constant Value of ω/q or r').

In the general case, the expression for $\mathbf{W}_{\mathbf{KH}}/\mathbf{q}$ has the following form:

g form:
$$\frac{\mathbf{w}_{KH}}{\mathbf{q}} = \frac{\omega}{\mathbf{q}} \frac{1}{\Delta} \begin{bmatrix} (\Lambda_K + 1 - \alpha \Delta) \left[1 - \frac{B\theta}{2} (1 - z_0)^2 \right] & \frac{1}{\theta} \\ (1 - r')^{\frac{1}{\theta}} \end{bmatrix} + \alpha \Delta \right]. \quad (126)$$

The quantities $\Lambda_{\underline{K}}$ and B are not expressible analytically as functions of Δ , for which reason the partial differentiation of expression (126) to determine the minimum $\Psi_{
m KH}/{
m q}$ is not possible.

To investigate the form of the surface, it is necessary, after first assigning a constant value to ω/q , to vary Δ , i.e., to intersect our surface by planes parallel to the Z-∆ plane,

and to determine the form of the curves obtained in each section as a function of Δ . Thereupon, after successively assigning definite values to Δ , it is necessary to vary ω/\mathbf{q} and also to determine the form of the curves obtained in each given section as a function of ω/q .

An analytical solution at ω/q = const. is obtained only for the simplest case ψ_0 = 0, with a powder possessing a constant burning area.

In this case (from the formula for the velocity in the second period):

$$\frac{\Psi_{KH}}{q} = \frac{\omega}{q} \frac{1}{\Delta} \left[\frac{1 - \alpha\Delta}{1 - \frac{1}{\theta}} \frac{1}{(1 - r')^{\frac{1}{\theta}}} + \alpha\Delta \right]; \qquad (127)$$

Under the condition of constancy of the pressure $p_{\underline{m}}$, the quantity B is connected with Δ by the following equation:

$$B = \frac{a_m \Delta}{1 - \alpha \Delta} = \frac{a_m}{\frac{1}{\Delta} - \alpha} , \qquad (128)$$

where:

$$a_{m} = \frac{F_{2}(\theta)f}{P_{m}}$$

and, at $\theta = 0.2$, $F_2(\theta) = 0.320$.

By introducing $1/\Delta$ into the expression within the brackets, by replacing B by its expression (128), by introducing a new variable $y = 1/\Delta - \alpha$, and by designating $a_{\underline{m}}\theta/2 = a''$, we obtain:

$$\frac{\mathbf{w}_{\mathbf{KH}}}{\mathbf{q}} = \frac{\omega}{\mathbf{q}} \left[\frac{\mathbf{y}}{(1 - \mathbf{r}')^{\frac{1}{\Theta}} \left(1 - \frac{\mathbf{a}''}{\mathbf{y}} \right)^{\frac{1}{\Theta}}} + \alpha \right] = \frac{\mathbf{w}_{\mathbf{KH}}}{\mathbf{s}_{16}}$$

$$= \frac{\omega}{q} \frac{1}{(1-r')^{\frac{1}{\Theta}}} \left[\frac{y}{\left(1-\frac{a''}{y}\right)^{\frac{1}{\Theta}}} + \alpha(1-r')^{\frac{1}{\Theta}} \right].$$

Keeping in mind that r' is independent of Δ and y, differentiating the expressions within the brackets with respect to y, and equating the derivative to zero, we have:

$$1 - \frac{1}{\Theta} \frac{\mathbf{a}^{"}}{\overline{\mathbf{y}_{H}}} \frac{1}{\left(1 - \frac{\mathbf{a}^{"}}{\overline{\mathbf{y}_{H}}}\right)} = 0,$$

from which:

$$\mathbf{y}_{\mathrm{H}} = \frac{1}{\Delta_{\mathrm{H}}} - \alpha = \frac{1 + \Theta}{\Theta} \mathbf{a}^{\mathrm{u}} = \frac{1 + \Theta}{2} \mathbf{a}_{\mathrm{m}} = \frac{1 + \Theta}{2} \mathbf{F}_{2}(\Theta) \frac{\mathbf{f}}{\mathbf{p}_{\mathrm{m}}}$$
 (129)

and:

$$\Delta_{H} = \frac{1}{\alpha + \frac{1 + \Theta}{2} F_{2}(\Theta) \frac{f}{p_{-}}}$$

Let us designate:

$$\frac{\frac{2+\Theta}{2}}{2} \, \mathbb{F}_2(\Theta) = \frac{1}{2} \left(\frac{2+\Theta}{2+2\Theta} \right)^{\Theta} = \mathbb{F}_3(\Theta) \,;$$

at $\Theta = 0.2$, $F_3(\Theta) = 0.192$, and:

$$\Delta_{\rm H} = \frac{1}{\alpha + F_3(\Theta) \frac{f}{p_{\rm m}}} \frac{1}{\alpha + 0.192 \frac{f}{p_{\rm m}}}$$
.

The formula shows that, as $p_{\underline{m}}$ increases, an increase also

817

occurs in the loading density Δ_H at which the minimum bore volume is obtained. It does not depend upon the quantity ω/q ; consequently, at any desired value of $\omega/q=$ const., there exists a minimum bore volume, and it is always obtained at one and the same loading density Δ_H , which depends only upon the maximum gas pressure p_m .

We shall designate this loading density Δ_{H} as the most advantageous loading density.

The values of $\Delta_{\rm H}$ applicable to our tables for the case $\psi_0 \neq 0$ were given approximately by Professor N.F. Drozdov_16_7 in 1940 and were then rendered more exact by the work of M.S. Gorokhov,_17_7 who gave a detailed table of values of $\Delta_{\rm H}$ for various $p_{\rm m}$ in the range of 2000-4000 kg/cm² for X = 1.06 and 1.00.

Excerpts from this table are presented below:

p _m	2000	2400	2800	3200	3600	4000	
	0.53	0.60	0.66	0.71	0.76	0.81	For X = 1.06

In the case of X=1.0, $\Delta_{\rm H}$ increases by approximately 0.02 in comparison with the values shown in the above tabulation.

For the numbers in the first table at $\chi=1.06$, we have succeeded in deriving the following approximate empirical relation:

$$\Delta_{\rm H} = \sqrt{\frac{p_{\rm m} - 300}{5700}} ,$$

where p_m is given in kg/cm^2 .

If expression (129) is substituted in the following formula for B:

$$B = \frac{a_m}{\frac{1}{\Delta} - a}$$

we shall obtain:

$$B_{H} = \frac{2}{1+\Theta} = \text{const.}$$

Consequently, the minimum bore volume at any value of p_m and at the value of Δ_H corresponding thereto is always obtained at one and the same constant value of the parameter of loading B.

For the case of ψ_0 = 0, at Θ = 0.2, $B_{\rm H}$ = 1.667.

In accordance with the data of M.S. Gorokhov, for the tables of Professor Drozdov, at $p_0 = 300 \text{ kg/cm}^2$, B_H also has a constant value:

$$B_{\rm H} \approx 1.91 - 1.93$$

B. Determination of Most Advantageous Weight of Charge to Attain Minimum Bore Volume (at Δ - const.).

If, in equation (126), \triangle is assigned different constant values, (i.e., if the W_{KH}/q $-\Delta-\omega/q$ surface is intersected by planes parallel to the W_{KH}/q $-\omega/q$ plane), it becomes possible to determine the conditions and values of ω/q at which, in these cases the minimum bore volume is obtained. In this case, in equation (126), not only \triangle will be constant, but, for a selected value of p_m , the following function:

$$\mathbf{K} = (\wedge_{\mathbf{K}} + 1 - \alpha \Delta) \left[1 - \frac{\mathbf{B}\theta}{2} (1 - \mathbf{z}_0)^2 \right]^{\frac{1}{\theta}} = \mathbf{f}(\mathbf{p}_{\mathbf{m}}, \Delta).$$

will likewise be constant.

Let us introduce in the place of ω/q a new variable r' (cf. p. 808):

$$r' = k_{v} \frac{a + b \frac{\omega}{q}}{\frac{\omega}{q}} ,$$

where $k_v = v_D^2 \Theta/2gf$; from this:

$$\frac{\omega}{q} = \frac{ak_{\mathbf{v}}}{\mathbf{r'} - bk_{\mathbf{v}}}.$$

Expression (126) will be transformed to the following form:

$$\frac{\mathbf{W}_{KH}}{\mathbf{q}} = \frac{1}{\Delta} \frac{\mathbf{a} \mathbf{k}_{\mathbf{v}}}{(\mathbf{r}' - \mathbf{b} \mathbf{k}_{\mathbf{v}})} \left[\frac{\mathbf{K}}{\frac{1}{\Theta}} + \alpha \Delta \right]. \tag{126'}$$

By differentiating this expression with respect to r', we obtain the condition for minimum $\mathbf{W}_{\mathbf{KH}}$ q in the following form:

$$\frac{1}{\frac{1}{\theta}} - \frac{1}{\theta} \frac{\mathbf{r'} - \mathbf{bk_v}}{\frac{1}{\theta} + 1} + \frac{\alpha \Delta}{\mathbf{K}} = 0$$

$$(1 - \mathbf{r'}) \frac{1}{\theta} + 1$$

or:

$$\frac{1}{\theta} \frac{\mathbf{r'} - \mathbf{bk_{V}}}{\frac{1}{\theta} + 1} - \frac{1}{(1 - \mathbf{r'})} \frac{1}{\overline{\theta}} - \frac{\alpha \Delta}{\mathbf{K}} - \mathbf{f}(\mathbf{p_{m}}, \Delta). \tag{127}$$

At Θ - const., the left-hand side of the above equation is a function of r' and of the predetermined velocity v_D , which enters into $k_V = v_D^2 \Theta/2gf$; the right-hand side $\alpha \Delta/K$ is a function of p_m and Δ ; it is known in advance. By selecting values of r', it is possible to satisfy equation (127) and to find the value r_0^* at which W_{KH}/q will have its minimum.

If the minimum bore length $L_{\overline{KH}}$ or the minimum total path of the projectile through the bore t_D are sought, then, by differentiating expressions (124) and (125), which have the same structure as expression (122), we shall obtain the following conditions

for the minima.

For the minimum bore length LKH:

$$\frac{1}{\Theta} \frac{\mathbf{r'} - \mathbf{bky}}{(1 - \mathbf{r'}) \stackrel{1}{\Theta} + 1} - \frac{1}{(1 - \mathbf{r'}) \stackrel{1}{\Theta}} = \frac{\alpha \Delta - \mathbf{n'}}{K}; \tag{128}$$

and for the minimum length of path:

$$\frac{1}{\Theta} \frac{\mathbf{r'} - \mathbf{bk_v}}{\frac{1}{\Theta} + 1} - \frac{1}{\frac{1}{\Theta}} - \frac{\alpha \Delta - 1}{K}.$$
 (129)

Comparing all these three conditions, we see that their left-hand sides are the same, the differences residing only in their right-hand sides; the right-hand side of equation (127) has the greatest value, in (128) it is smaller, and in (129) it is negative (since $\alpha\Delta < 1$). In the first case, r_0' will be greatest, in the last case least; as to the quantities $\omega/q = ak_V/r_0' - bk_V$, they vary in the opposite direction. The significance of these relations will be clarified later.

For determining r_0' to satisfy this equation, N.A. Krinitsky designed a nomogram which makes it possible to use the quantities $\alpha\Delta/K$ and $x'=1-bk_y$ to find r_0' (Fig. 161).

The nomogram consists of two uniform scales - a left-hand scale of values of $x' = 1 - bk_y = 1 - b\frac{\Theta}{f}\frac{v_D^2}{2g}$ from 0.90 to 1.00 and

a right-hand scale of values of $\alpha\Delta/K$ (or $\alpha\Delta-n'/K$ or $\alpha\Delta-1/K$) - and a nonuniform curvilinear scale of values of r' in the middle.

Upon connecting with a straightedge the value of x' corresponding to the given velocity of the projectile and the value of

821

 $\alpha\Delta/K$ corresponding to the chosen values of Δ and p_m (found in the table of the function $\alpha\Delta/K$ from the basic numbers for Δ and p_m , cf., p. 824), we read off at the point of intersection of the straightedge with the r' scale the value r_0' which satisfies the condition of minimum volume or length of the bore.

To determine the minimum bore volume, the value of $\alpha\Delta/K$ is taken on the right-hand scale. To determine the minimum length of the bore in the presence of an expansion (widening) of the chamber,

Fig. 161 - Nomogram for Determining Optimum $r_0'(Efficiency)$.

1) Values of r' at $\Theta = 0.181$; 2) key.

there is taken on the right-hand scale the quantity $(\alpha \Delta - n)/K$, where n' = 1 - (1/K). To determine the minimum length of the path of the projectile l_D , the quantity $(\alpha \Delta - 1)/K < 0$ is taken on the

right-hand scale.

The nomogram shows that, in conformity with these three cases of determining the minima at a predetermined v_D , the point on the right-hand scale moves downward, the value of r' decreases accordingly (the straight line rotates around a predetermined point x'), and consequently the values of ω/q and w_0/q increase, since $\omega/q = a/r' - b$ and $w_0/q = (\omega/q)(1/\Delta)$, where $\Delta = \text{const.}$

Thus, the gun with the minimum bore length $L_{\rm KH}$, and to an even greater degree the gun with the minimum length of path $l_{\rm D}$, are obtained with a larger chamber volume and a larger weight of the charge in comparison with the minimum-volume gun.

Therefore, the gun with the minimum bore volume which ensures the attainment of a predetermined initial velocity of the projectile v_D at a chosen pressure p_m has a smaller chamber volume and a smaller weight of the charge than the gun with the minimum bore length or with the minimum length of the path of the projectile, while having nearly the same actual bore length; for this reason, it may be designated as "optimum."

With the aid of the nomogram designed by Engineer Krinitsky, it is possible to follow the influence of other factors as well as upon the design data and the loading conditions.

For example, as the maximum pressure p_{μ} for a predetermined value of v_D is increased, the quantity $c\Delta/K$ increases, the point on the right-hand scale moves upward, and the quantity r' increases, but this reduces the weight of the charge and the chamber volume.

If Δ and p_m are maintained constant (the point $\alpha\Delta/K$ is fixed), then, as the velocity of the projectile changes (increases), x'

Table of $\alpha \alpha / K$ (from GAU Tables) ($\alpha = 1$).

P _m	1600	1800	2000	2200	2400	2600	2800	3000	3200	3600	4000	4400	4800	5200	5600	6000	P _m Δ
	0.342					0.150	0 172	0. 194	0.400	0.626	0.6/9	0.57/	0.596	0.617	0.635	0.653	0.40
0.40	0.342	0.376	0.404	0.424	0.442	0.458	0.4/3	0.400	0.500	0.525	0.570	0.597	0.622	0.645	0.666	0.682	0.42
0.42																	0.44
0.44																	0.46
0.46																	0.48
0.48																	0.50
0.50																	0.52
0.52																	0.54
0.54																	0.56
0.56																	0.58
0.58																	0.60
0.60				10 101	A 230	1/1 600	10 633	1/1 K7/	10 714	311. 72.11	10.75	10.00	10.464	10.717	10 4 7 7 1	しまるしたノ	0.62
0.62	0.269		10 .00	100	10 527	10 600	10 627	10 682	10 727	10.747	10.858	10.410	10.477	10.995	11.047	11.000	0.64
0.64		10 220	10 200	10 160	10 622	IN SER	വര	10. 687	10.711	10.012	10.070	10.734	10.700	11.00	11.007	110101	0.66
0.66	-	000	0 202	10 186	N 526	IN ERE	Ir: 638	10 691	10.736	10.823	10.896	10.458	11.010	11.003	1.100	11.147	0.68
0.68	-	0.297	0.361	0.430	0.520	0.579	0.637	0.691	0.739	0.832	0.412	0.980	1.043	1.095	1.145	1.186	0.70
0.70	-	0.282	0.302	0.440	0.313	0.516	0.632	0.689	738	0.838	0.426	1.001	1.068	1.127	1.180	1.228	0.72
0.72	-	-	0.339	0.420	0.490	0.500	0.602	0.687	0 735	0.8/2	0.938	1.021	1.091	1.156	1.212	1.269	0.74
0.74	-	-	0.317	0.402	0.475	0.550	0.605	0.67/	0.730	0.844	0.946	1.036	1.113	1.184	1.245	1.300	0.76
0.76	-	-	-	0.3//	0.439	0.551	0.605	0.657	0.722	0.842	0.451	1.047	1.130	11.208	1.280	1.344	0.78
0.78	-	-	-	1	0.433	0.312	0.567	0.6/1	0.711	0.839	0.453	1.054	1.144	1.231	1.308	1.380	0.80
0.80	-	-	-	-	0.210	0.450	0.5/2	0.614	0.696	0.834	0.952	1.057	1.153	1.250	1.332	1.409	0.82
0.82	-	-	-	-	0.501	0 /33	0.3/5	0.592	0.673	0.823	0.949	1.058	1.161	1.262	1.354	1.441	0.84
0.84	-	-	-	-	_	0.402	0.786	0.565	0.644	0.803	0.942	1.057	1.166	1.269	1.374	1.464	0.86
0.86	-	-	-	-	-	-	0.750	0.533	0.612	0.773	0.930	1.054	1.169	1.276	1.382	1.482	0.88
0.88	-	-	-	-	-	-	6 /1/	0 /98	0.580	0.739	0.408	1.046	1.172	1.281	1.390	1.495	0.90
0 .90	-	-	-	-	-	-	0.414	0.763	0.545	0.702	0.871	1.03	1,171	1.290	1.395	1.503	0.92
0.92	-	-	-	-	-	-		0.40								1.511	0.94
0. 94	-	-	-	-	-	-	-	1 -	-							1.526	0.95
0.95	-	-	-	-	-	-	-	-	-	0.00	10.007	:	1	.,,,,,,,	1	1	

Table of Values of Function
$$a_2 = \frac{1}{1 + \frac{1}{\theta}}$$
; $\theta = 0.2$.

	r' Thousandths													
r' Hundredths	0	1	2	3	4	5	6	7	8	9				
0.17	2.538	2.553	2.569	584	2.600	2.615	2.031	2,648	2.665	2.681				
0.18	2.698	2.715	.731	2.748	2.764	2.780	2.797	2.814	2.832	2.850				
0.19	2.607	2.885	2.903	921	2.939	2.958	2.976	995	3.014	3.033				
0.20	3.052	3.071	3.090	3.109	3.128	3.148	3.169	3.168	3.209	3.230				
0.21	3.251	3.271	3.291	3.312	3.333	3.354	3.375	3.397	3.419	3.441				
0.22	3.463	3.485	3,508	3.531	3.554	3.577	3.600	3.623	3.646	3.670				
0.23	3.694	3.718	3.742	3.766	3 .7 90	3.615	3.841	3.867	3.893	3.919				
0.24	3.945	3.971	3.998	4.025	4.052	4.079	4.105	131	4.158	4.185				
0.25	4.212	4.240	4.268	4.297	4.326	4.355	4.365	4.415	4.446	4.477				
0.26	4.508	4.538	4.568	4.598	4.630	4.661	4.693	4.746	4.759	4.792				
0.27	4.825	4.859	4.893	4.927	4.961	4.995	5.030	5.065	5.100	5.135				
0.28	5.170	5.206	5.242	5.278	5.315	5.352	5.389	5.426	5.464	5.502				
0.29	5.540	5.580	5.620	5.660	5.700	5.741	5.784	5.827	5.870	5.913				
0.30	5.957	5.998	6.040	6.082	6.124	6.166	6.212	6.258	6.304	6.350				
0.31	6.397	6.443	6.489	6.536	6.583	6.63C	6.679	6.729	6.779	6.829				
0.32	6.879	6.930	6.981	7.033	7.085	7.137	7.190	7.243	7.296	7.351				
0.33	7.404	7.461	7.518	7.575	7.633	7.691	7.750	7.809	7.869	7.929				
0.34	7.989	8.051	8.113	8.175	8.237	8.299	8.363	8.427	8.491	8.555				
0.35	8.620	€.686	8.753	8.820	8.887	8.954	9.025	9.096	9.167	9.239				
										1				

decreases, the point on the left-hand scale moves upward, the quantity r' increases and the quantities ω/q and W_0/q decrease, the volumetric expansion ratio Λ_D increases, and the gun is set up with a smaller relative chamber volume.

Knowing $\mathbf{r_0}$, we determine the relative charge ω_0/\mathbf{q} at which, in the presence of a given Δ , a bore of minimum volume is obtained, with the aid of the following formula:

$$\frac{\omega_0}{q} = \frac{ak_v}{r_0^* - bk_v} = \frac{a}{\frac{r_0^*}{k_w} - b}.$$

Thus, the values of r_0' and $\omega_{0'}$ q at which the minimum bore volume is obtained depend upon the quantity:

$$\triangle \left[\frac{\alpha \Delta}{K} - f(p_{\mathbf{m}}, \Delta) \right]$$

and, for each value of Δ , $\mathbf{r_0'}$ and $\boldsymbol{\omega_0}/\mathbf{q}$ will have their own values.

The values of $\alpha\Delta/K$ as a function of Δ and p_m are presented in a separate table, which shows that, as Δ increases at a given p_m , $\alpha\Delta/K$ at first increases until it reaches a maximum value, and then begins decreasing again. The maximum $\alpha\Delta/K$ defines that most advantageous loading density Δ_H at which the minimum bore volume is obtained.

Fig. 162. - Relation between Function αΔ/K and Loading Density.

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

Curves for $\alpha \Delta / K$ as functions of Δ at various p_m are presented in Fig. 162.

Thus, on the basis of investigations of the general relations of interior ballistics, there have been established other general relations connecting the design elements of the bore of the gun with the loading conditions at a predetermined caliber, weight of the projectile, its initial velocity, and maximum gas pressure, and there has been derived a procedure for determining the loading conditions at which a gun with the minimum bore volume, or the optimum gun, is obtained.

The diagrams presented for purposes of illustration show that a given velocity \mathbf{v}_{D} at a chosen maximum pressure \mathbf{p}_{m} can be obtained in the presence of the most diverse combinations of design data and loading conditions – with shorter or longer barrels, large or small chamber volumes, and large or small loading densities and charge weights.

CHAPTER 3 - APPLICATION OF DERIVED RELATIONS TO PRACTICAL DESIGN

1. DIRECTIVE DIAGRAM, ITS CONSTRUCTION AND INVESTIGATION.

To guide the expedient choice of variants in ballistic design, there is presented below a combined diagram of the design characteristics and some ballistic characteristics of a gun, which makes it possible to take into account some of the tactical and technical specifications imposed upon the gun as well. This diagram is designated as a "directive diagram," since it gives directives and instructions concerning the direction that must be followed in choosing variants satisfying the specifications imposed.

In constructing the diagram, use has been made of the diagrams of the variations of W_{KH} q and W_0 /q as functions of Δ and ω /q ("hammock" and "slope") presented above, which give the fundamental design characteristics of the gun. At predetermined q, v_D , and p_m , the directive diagram represents a projection upon the $\Delta = \omega$ /q plane of the sections of the W_{KH} /q and W_0 /q surfaces formed by planes parallel to the $\Delta = \omega$ /q plane, which give in the section lines of equal W_{KH} /q and W_0 /q. There is obtained, v_D manner of speaking, a topographic map of the W_{KH} /q and W_0 /q surfaces on the $\Delta = \omega$ /q plane (Fig. 163).

- 1. The fundamental point of the diagram, its "center," is the point M_0 with the coordinates Δ_H (most advantageous loading density) and ω_0/q (optimum relative charge), which represents the minimum-volume gun at predetermined q, v_D , and p_m , and which corresponds to the lowest point of the "hammock" $W_{KH}/q = f(\omega/q, \Delta)$.
 - 2. There are circumscribed around the point \mathbf{M}_0 oval-shaped

curves of equal bore volumes W'_{KH}/q , W'''_{KH}/q , W''''_{KH}/q , known as the bore isochores, which are obtained as projections of intersections of the "hammock" by planes W_{KH}/q = const. running parallel to the

Fig. 163 - Directive Diagram for Choice of Variants.

The larger the bore volume the farther is the corresponding bore isochore from the point M_0 :

$$M_{KH}^{0} < M_{L}^{KH} < M_{L}^{KH} < M_{LL}^{KH}$$

The point M_0 may be imagined to lie in the center of a hollow, whose sides rise from the center M_0 toward the periphery.

3. The straight lines drawn from the origin of the coordinate system and continued until they intersect the ordinate at $\Delta = 1$, on which is written the scale of values of W_0/q , represent lines of equal chamber volumes W_0/q , since $W_0/q = (\omega/q)(1/\Delta) = \tan \alpha$. The larger the angle of slope a the larger is the chamber volume.

These lines represent projections of lines of intersection

of the surface of chamber volumes $W_0/q = f_1(\omega/q, \Delta)$ in the form of a hyperbolic slope by planes parallel to the $\omega/q - \Delta$ plane at various distances from the latter (cf. Fig. 159 above).

The straight line passing through the point \mathbf{M}_0 represents the chamber volume for the minimum-volume gun $\mathbf{W}_{OH}/\mathbf{q}$.

The straight lines of equal W_0/q tangent at the left and right to the oval with a given bore volume W_{KH}/q give the maximum and minimum values for the chamber volume at the given bore volume. Definite pairs of values for ω/q and Δ correspond to them.

- 4. Knowing the values of W_{KH}/q and W_0/q for every point of the $\omega/q \Delta$ plane, it is possible to determine the corresponding values for the volumetric expansion ratio Λ_D ($\Lambda_D = (W_{KH} W_0)/W_0 = W_D/W_0$), the most important design characteristic of the bore of the gun. By plotting lines of equal Λ_D on the same diagram, we obtain a family of "iso- Λ_D " curves in the form of dotted lines with values of Λ_D marked on them (from 2.5 to 8.0). The greater Λ_D the farther to the right and the lower is the curve of equal Λ_D located.
- 5. In addition to these purely design characteristics, there has also been plotted on the diagram a family of curves of equal quantities $\gamma_{\rm K} = l_{\rm K}/l_{\rm D}$, which characterize the position of the end of burning of the powder as a function of $\omega/{\rm q}$ and Δ . On each of them is marked the corresponding value of $\gamma_{\rm K}$ from 0.3 to 1.0. *)

The line $\gamma_K=1.0$ corresponds to the position of the projectile precisely at the muzzle face at the end of burning of the powder.

+) The data h	ave been obtain	ed by treatment	of tables	containe	d in
the work by	M.S. Gorokhov,	"BALLISTICHESKI	RASCHET (ORUDIYA" '	.Rø I –
listic Compu	tation of Guns,	" 1941.			

830

6. The loading parameter B at a given value of p_m is an increasing univalent monotonic function of Δ ; at $\Delta = \Delta_1$..., B = 0; at $\Delta = \Delta_H$, B_H = 1.91-1.93.

The $B-\Delta$ curve is also contained in the diagram.

7. Since a very important factor in ballistic computations is the accuracy-life characteristic of a gun of design under given loading conditions, the formula of V.E. Slukhotsky for the characteristic of the number of shots N_{yCA} was used to compute lines of equal values of N. These equal accuracy-life lines have also been plotted on the directive diagram; they are arranged in the form of straight lines nearly parallel to the Δ axis. The larger the quantities N_{yCA} - the number of shots which the system is capable of withstanding - the lower is the corresponding straight line located: $N_3 > N_2 > N_1$.

Consequently, in order to improve the accuracy life, it is more advantageous from the point of view of the design to take, as far as possible, small ω , q, large Δ , and small chambers.

- 8. The heavy dashed-dotted line E-E in the diagram corresponds to the economical loading conditions; it passes from the upper left toward the lower right part of the diagram and intersects the $\Delta=-\Delta_{\rm H}$ ordinate somewhat below the point ${\rm M}_0$.
- At pressures $p_m < 3200 \text{ kg/cm}^2$, the economical loading conditions $(\Delta_F \text{ and } \omega_R/q)$ give good results in ballistic design.
- $(\Delta_{\overline{B}} \text{ and } \omega_{\overline{B}}/q) \text{ give good results in ballistic design.}$ $9. \text{ The characteristic } \gamma_{\omega} = \frac{qv_D^2}{2g\omega} = \frac{v_D^2}{2g} : \frac{\omega}{q} \text{ is reciprocal to the }$ $\text{quantity } \omega/q \text{ plotted along the ordinate axis. As } \omega/q \text{ decreases}$ $\text{at a predetermined value of } v_0, \ \gamma_{\omega} \text{ increases. The lines of equal}$ $\gamma_{\omega} \text{ are straight lines running parallel to the } \Delta \text{ axis. At a predetermined } v_D, \text{ the } \gamma_{\omega} \text{ scale can be plotted parallel to the } \omega/q$

scale in the opposite direction.

10. An understanding of the variation of one of the fundamental ballistic characteristics, $\gamma_D = p_{av}/p_m = \frac{qv_D^2}{2g\overline{\psi}_D p_m}$, or better $\gamma_D^* = \frac{qv_D^2}{2g\overline{\psi}_D p_m}$ (without φ) can be obtained by proceeding along one of

the straight lines of equal V_0/q .

At the points of its intersection with the oval of equal volumes $\mathbf{W}_{KH}/\mathbf{q}$, we have equal \mathbf{W}_D/\mathbf{q} and equal values of \mathbf{V}_D . The point on this line located on the perpendicular line dropped from the point \mathbf{W}_0 will be closest to the point \mathbf{W}_0 and will correspond to the minimum bore volume $\mathbf{W}_{KH}/\mathbf{q}$; at equal \mathbf{W}_0/\mathbf{q} , it will also correspond to the minimum working volume \mathbf{W}_D/\mathbf{q} and consequently to the maximum value of \mathbf{V}_D .

It can be stated that, in the zone below and to the right of the line OM_0 , the closer the point under consideration to the point M_0 the smaller is $W_{\overline{KH}}/q$, the larger W_0/q , and the larger the ratio of the muzzle energy to p_m and to the working volume of the bore.

2. APPLICATION OF DIRECTIVE DIAGRAM.

After clarifying the values and character of variations of all design characteristics of the bore of the gun, of the loading conditions, and of the conditions of the shot, it is possible to limit the zone of practical design on the directive diagram and to outline the general procedure for the selection of variants in order to obtain a solution with a minimum number of variants.

In the first place, there is eliminated from the region of

practical design the area to the right and upward from the $\gamma_K=0.80$ line, since so large a magnitude of γ_K does not guarantee the actual combustion of the powder.

In the second place, there is eliminated the zone to the left and upward from the straight line OM_0 , since this is a zone of excessively large chamber volumes and small Λ_D .

There remains for practical design a zone in the form of a sector downward from the point M_0 , it being preferable, if conditions permit, to use the right-hand part of this sector at $\Delta > \Delta_H$. Such loading densities are in practice attainable at pressures of 2500-3200 kg/cm², to which correspond the most advantageous $\Delta_H = 0.62$ -0.71. It is very difficult to attain $\Delta > 0.75$ with existing tubular powders, so that $\Delta = 0.75$ is as yet the limiting possible loading density. Grained powders with seven channels and fine powders for small arms make it possible to raise Δ to 0.80 and even to 0.90.

At very high pressures p_m () 3500 kg cm²), the most advantageous Δ_H increases to above 0.75, but it is in practice unattainable for powders possessing a tubular shape, and, in selecting variants, it becomes necessary to move to the portion of the sector on the left of Δ_H , to small loading densities for the given p_m , which leads to increased chamber volumes, reduced parameters B, and an earlier burning of the powder; γ_K may be smaller than 0.40. It is in this same zone that the solution for howitzers should be sought, in order to obtain $\gamma_K \approx 0.25$ -0.30 with a full charge; this will make it possible to obtain complete burning of the powder with reduced charges as well.

3. SEQUENCE OF COMPUTATIONS

A. Preliminary Choice of Basic Quantities.

On the basis of the relations established above among the design data for the bore of the gun, the loading conditions, and the energy characteristics of the shot, it is possible to outline the following sequence of ballistic computations.

- a) the coefficient of the weight of the projectile $c_q = q/d^3$ kg/dm³;
- b) the coefficient of the power of the projectile $C_{\epsilon} = E_D/d^3 = -\frac{qv_D^2}{2gd^3} = c_q \frac{v_D^2}{2g} \frac{tm}{dm^3}$.
- 2. From the quantity C_{ξ} , there is chosen in Table 21 the maximum gas pressure p_{m} , rounded off to the nearest 100 kg/cm² in the upward direction, as well as the coefficient of widening of the chamber X.

Table 21 - Table for Selection of p_m and χ .

C _E	100	200	300	400	500	600	700	800	1000	1200	1400	1600
P _m	1840	2120	2300	2450	2600	2750	2875	3000	3200	3350	3500	3600
×	1.04	1.09	1.14	1.20	1.26	1.33	1.40	1.49	1.70	1.97	2.35	2.91

The experience of the Great Patriotic War has shown the existence of a tendency toward increasing the pressure $p_{\underline{m}}$ at a given coefficient $C_{\underline{e}}$.

For example, at C_{ξ} = 1600, p_{m} = 3900-4000. It is true that such high pressures cause difficulties with the extraction of shell cases and with obturation.

3. From the magnitude of the maximum pressure p_m , there is selected with the aid of the formula $\Delta_H = \sqrt{\frac{p_m-300}{5700}}$ the most advantageous loading density Δ_H , at which, for the given charge ω/q and pressure p_m , the required velocity of the projectile v_D is obtained with the minimum volume of the bore of the gun.

B. Determination of Data for Minimum-Volume Gun.

4. For every pair of values of v_D and p_m , there exists at the loading density Δ_H an optimum value ω_0/q at which the bore volume has its minimum value (minimum minimorum).

The optimum weight of the charge ω_0/q is a function of p_m , v_D , Δ_H , and the coefficient b in the formula $\phi=a+b(\omega/q)$. To find it in a preliminary way on the basis of the nomogram of N. A. Krinitsky from the basic quantities $\alpha\Delta/K=f(p_m,\Delta)$ (given in the table under the two headings p_m and Δ) and $x'=1-bk_v$, where:

$$k_v = \frac{9}{f} \frac{v_D^2}{2g} = \frac{v_D^2}{932 \cdot 10^6} \left[v_D - \frac{dm}{sec} \right]$$
,

there is found the complete coefficient of efficiency r^\prime = $\phi\,r_{D^{\bullet}}$. Thereupon, there is found:

$$\frac{\omega_0}{q} = \frac{a}{\frac{r_0^i}{k_v} - b},$$

and then:

$$\frac{\mathbf{W}_0}{\mathbf{q}} = \frac{\omega_0}{\mathbf{q}} \frac{1}{\Delta}; \ \mathbf{W}_0 = \frac{\mathbf{W}_0}{\mathbf{q}} \ \mathbf{q} \ \text{and} \ l_0 = \frac{\mathbf{W}_0}{\mathbf{s}} \ .$$

STAT

After determining the auxiliary quantities:

$$K = \alpha \Delta : \frac{\alpha \Delta}{K} \text{ and } a_2 = \frac{1}{Q}$$

$$(1 - r')$$

(taken from the table in the preceding Chapter), there is found the value of:

$$\Lambda_{D} + 1 - Ka_{2} + \alpha \Delta$$

followed by:

$$\mathbf{w}_{\mathrm{D}} = \mathbf{w}_{\mathrm{O}} \wedge_{\mathrm{D}}; \ t_{\mathrm{D}} = t_{\mathrm{O}} \wedge_{\mathrm{D}}; \ \mathbf{w}_{\mathrm{KH}} = \mathbf{w}_{\mathrm{O}} (\wedge_{\mathrm{D}} + 1).$$

From p_m and Δ_1 using the tables of Professor N.F. Drozdov or the GAU Tables, Issue No. IV, B_H and Λ_K are found; thereupon it is possible to determine:

$$\gamma_{K} = \frac{\Lambda_{K}}{\Lambda_{D}}; \frac{I_{K}}{d} = \sqrt{\frac{f}{g}} \frac{c_{q}}{n_{g}} \sqrt{B\phi \frac{\omega}{q}} \text{ and } I_{K} = \frac{I_{K}}{d} d;$$

$$\left[\text{at f = 950,000} \, \frac{\text{kg}^* \, \text{dm}}{\text{kg}} ; \text{g = 98.1;} \sqrt{\frac{\text{f}}{\text{g}}} = 98.4 \right].$$

In this manner, there are found the data for the minimum-volume gun with the aid of analytical formulas and tables set up for the case of standard constants (constants of GAU Tables of 1943).

This gun is represented by the point \mathbf{M}_0 on the directive diagram.

4a. If the special tables and nomogram for the determination of r_0^* do not happen to be accessible, but the GAU Tables, Part IV (TBR) are at hand, then, for computing the characteristics of the

836

minimum-volume gun, it is possible to make use of another method of approximation, since it is known that, as has been shown by computations, the quantity γ_{ω} for the optimum gun is a function of C_{ξ} , as defined by the following tabulation:

Cę	100-1000	1200	1400	1600
	85	84	83	82

After $\gamma \omega_0$ is derived from the above, there is found:

$$\frac{\omega_0}{q} = \frac{v_D^2}{2g} \frac{1}{\gamma_{\omega_0}} .$$

Making use of the special form for ballistic computation, there is performed in the first column of the second page of the form a computation of the data for the gun having the minimum bore volume with predetermined d, q, v_D , and p_m . This is done with the aid of the 1943 GAU Tables, Part IV.

5. On the basis of the predetermined Δ_H , p_m , and γ_{ω_0} , the following quantities are found in the sequence indicated in the form.

Ballistic Computation of Barrel

(Determination of Loading Conditions and of Fundamental Dimensions of Bore from GAU Tables)

Type of system being designed . . . Supplementary conditions . . .

Caliber d = . . mm

Weight of projectile q = . . . kg

Muzzle velocity v_D - . . m/sec

Muzzle velocity v_D . . . dm^2 Cross-sectional area of bore $s = n_g d^2 = \dots dm^2$

Coefficient of weight of projectile $c_q = q/d^3 = \dots$ kg/dm³

Muzzle energy $E_D = q \frac{v_D^2}{2g} = \dots$ tm

Coefficient of power $C_E = c_q \frac{v_D^2}{2g} = \dots$ tm/dm³

Coefficient of chamber widening $X = \frac{l_0}{l_{KM}} = \dots$ Coefficient of allowance for secondary work $\phi = a + b(\omega/q) \begin{cases} a = \dots \\ b = \dots \end{cases}$ $n_S \approx \begin{cases} 0.80 - 0.82 \text{ for artillery guns} \\ 0.82 \text{ for small arms}; \frac{v_D^2}{2g} = \dots$

Form for Ballistic Design

	$\frac{4c_q}{2} = \frac{v_D^2}{2g}$	Minimum- Volume Gun	I	11		Variants	Minimum- Volume Gun	1	11
	p _m				11	ω - <u>3</u> · q			
	Δ				12	$\mathbf{w}_0 - \frac{\omega}{\Delta}$			
	უ(ω				13	$t_0 - \frac{\mathbf{w}_0}{\mathbf{s}}$			
1	$\frac{\omega}{q} = \frac{v_D^2}{2g} \frac{1}{\gamma_\omega}$				14	$l_{\rm D} - l_{\rm O} \cdot \lambda_{\rm D}$			
2	b 3q				15	$l_{KM} - \frac{l_0}{\chi}$			
3	a				16	L _{KH} = l _{KM} +l _D			
4	φ = a + b	يا			17	L _{KH}		ļ	-
		q		-	18	L _{CT}	· · · · · · · · · · · · · · · · · · ·		
5	$n_{\mathbf{v}} = \sqrt{\frac{\omega}{q \varphi}}$				19	/			†
6	$v_{mD} = \frac{v_D}{n_v}$							+	-
_				+	20	I _K			
7	В	-	+	+	21	IK			_
8	, , K	-		+	22	2e1-1K.5n1			
8	λ _D	-		-	23	7/10 · 2e ₁			
10	$\gamma_{K} - \frac{\lambda_{K}}{\lambda_{D}}$				24	$\frac{p_{mv}}{p_m} = \frac{\gamma_{\omega} \varphi \Delta}{\lambda_D p_m}$			

Data for Construction of Pressure and Velocity
Curves from GAU Tables

[2	1-10x	р	v _{tab} .	v	t _{tab} .	t	
r	_							-
1							<u> </u>	J

1)
$$\frac{\omega_0}{a} = \frac{v_D^2}{2g}$$
: γ_{ω_0} ; 2) $b = \frac{\omega}{q}$; 3) $a = 1.03$;

4)
$$\varphi = a + b = 0$$
; 5) $n_v = \sqrt{\frac{\omega}{\varphi q}}$; 6) $v_{tab.} D = \frac{v_D}{n}$.

Thereupon, with the aid of the GAU Tables, Part IV (or of the ANII Tables, for which $n_{\psi} = \sqrt{\frac{\omega}{q} \frac{1.05}{\varphi}}$), there are found:

7) B; 8)
$$\Lambda_{\bar{K}}$$
; 9) $\Lambda_{\bar{D}}$;

and these data are used to determine:

10)
$$\eta_{K} = \frac{\Lambda_{K}}{\Lambda_{D}}$$
; 11) $\omega = \frac{\omega}{q} q$; 12) $\Psi_{0} = \frac{\omega}{\Delta}$; 13) $l_{0} = \frac{\Psi_{0}}{s}$;

14)
$$l_{D} = l_{0}\Lambda_{D}$$
; 15) $l_{KM} = \frac{l_{0}}{X}$; 16) $L_{KH} = l_{KM} + l$; 17) $\frac{L_{KH}}{d}$;

18)
$$\frac{L_{CT}}{d} = \frac{L_{KH}}{d} + 1.5 - 2.0; 19) \sqrt{B\phi \frac{\omega}{q}}; 20) \frac{I_K}{d} = \frac{98.4}{n_g} c_q \sqrt{B\phi \frac{\omega}{q}};$$

$$21) \ \ I_{K} = \frac{I_{K}}{d} \ d; \ 22) \ \ 2e_{1} = \ I_{K} \cdot 2u_{1}; \ 23) \ \gamma_{D} = \frac{p_{av}}{p_{m}} = \frac{\phi \gamma_{lo} \Delta}{\Lambda_{D} \cdot p_{m}}$$

840

24) L'_{KH} - l₀ + l_D.

This computation is performed in the first column of the form, and its fundamental data are entered in the first row of the summary of results on the third page of the same form.

It is in this manner that there are determined the design data, loading conditions, and fundamental characteristics of a gun with the minimum bore volume at predetermined d, q, v_D , and p_m .

6. The minimum-volume gun is actually the optimum gun for velocities of the order of 1500 m, sec and higher, when, in consequence of the very large dimensions of the gun, the minimum volume and length of the bore constitute decisive and fundamental criteria in the choice of variants.

In this case, the solution is found at once, without supplementary variants, and is the only acceptable solution, even though the gun obtained has a relatively large volume chamber ($\Lambda_D = 3.0-3.5$), a relatively large charge weight ω q, and a small coefficient of utilization of the charge $\gamma_{\omega}(82-85 \text{ tm kg})$.

For projectile velocities lower than 1500 m/sec, of the order of 600-1200 m/sec, the minimum-volume gun is not to be recommended and represents merely a point of departure for other variants by setting a lower limit upon the bore volume.

C. Design at Usual Projectile Velocities.

To judge in what direction and how the loading conditions and design data of the bore must be changed in order to obtain a solution satisfying the requirements with a minimum number of variants, it is necessary to make use of the "directive diagram."

To obtain practically convenient solutions at v_D = 600-1200

m/sec, it is necessary to depart from the minimum-volume gun in the direction of reducing the weight of the charge and the chamber volume, the entire volume and length of the bore being somewhat increased, and the utilization of the unit weight of the charge γ_{ω} increasing at the same time.

If, in this connection, there is retained for the first variant the same loading density $\Delta = \Delta_H$, this corresponds on the directive diagram to a descent from the center of the diagram (the point \mathbf{M}_0). For the purpose of reducing the number of variants while reducing ω q, the following formulas can be recommended:

$$\frac{\omega'}{q} = \frac{\omega_0}{q} \left(\frac{1}{4} + \frac{3}{4} + \frac{v_D}{1500} \right) \text{ or } \frac{\omega}{q} \left(0.4 + 0.6 + \frac{v_D}{1500} \right),$$

where $\mathbf{v}_{\widehat{\mathbf{D}}}$ is stated in \mathbf{m}/\mathbf{sec} .

From this:

$$\frac{\Psi_0'}{q} = \frac{\omega'}{q} \frac{1}{\Delta_H}.$$

If p_m and Δ_H are maintained constant, B and Λ_K likewise remain constant; and since Λ_D increases as ω/q decreases, $\eta_K = \Lambda_K/\Lambda_D$ declines, and the characteristics of utilization of the bore volume of the gun p_{av} . p_m and R_D decline at the same time.

Let this value ω'/q be represented in the diagram (Fig. 163) by the point N, through which passes the isochore W''_{KH}/q .

For the chosen value $\omega'/q=$ const., the resulting gun has a minimum volume, since, as they move along the horizontal while ω/q is maintained constant, the points will move farther from M_0 , and the bore volume will increase.

Consequently, in this case, $\Delta_{\mbox{\scriptsize H}}$ is most advantageous not generally, but only as long as the weight of the charge is maintained constant, and this Δ_{H} is in this case advantageous only in a conditional manner.

For this reason, in order to improve the utilization of the bore volume and to transfer the end of burning to the muzzle face, which will also somewhat increase the muzzle pressure, the loading density should be increased if the gravisetric density of the powder permits this (in practice, if $\Delta_{\rm H}$ \leqslant 0.70).

Depending upon the tactical and technical specifications imposed, and in their absence on the basis of the requirement to give a rational ballistic solution, it is possible, in choosing further variants, to proceed from the point N in the following three directions (Fig. 163a).

Fig. 163a.

1. While maintaining the new chamber volume constant at W_0'/q , by moving from the point N to the right and upward along the line ON as far as the point n located on the perpendicular dropped from the point \mathbf{M}_0 upon the straight line ON, and consequently by approaching the center M_0 , to obtain the minimum-volume gun at the given chamber volume.

In this connection, it follows from the condition $W_0/q = (\omega/q)$ (1/ Δ) = const. that the weights of the charges vary proportionately to the loading densities:

$$\omega_2 : \omega' - \Delta_2 : \Delta_H;$$

To reduce the number of variants, it is permissible to take:

 $(\Lambda_D^*$ corresponding to the charge $\omega^*,\,q$ at $\Delta=\Delta_H^*$ in the point N).

In the point n, the maximum value is attained for p_{av} , p_{av} at the given volume chamber, η_K increases to 0.65-0.75, and Λ_D decreases slightly, since Ψ_{KH} decreases at Ψ_0 = const.

The resulting variant will undoubtedly be more rational than the variant corresponding to the point N, since, at the same chamber volume and at a smaller bore volume, it exhibits better energy characteristics η_D and η_K .

2. While maintaining the bore volume constant at N_{KH} , it is possible, by moving from the point N to the right along the line $W_{KH}^{**}/q = \text{const.}$, by increasing Δ , and by increasing ω/q somewhat less, to obtain a gun with the given bore volume and with a minimum chamber volume (point n"), since, at the point n", the angle of slope of the straight line On" will be minimal (On" is tangent to the curve $W_{KH}^{**}/q = \text{const.}$). In this connection, Δ_{n}^{**} will be somewhat greater than Δ_{n} .

In this case (in comparison with the point N), Λ_D will increase because of the diminution of the chamber volume, η_K and B will increase, and the value of η_D will increase somewhat (but less than in the first case).

3. While maintaining the weight of the charge constant at ω'/q , it is possible to proceed along the horizontal to the right from the point N, thus increasing Δ , moving away from the center M_0 , and thereby increasing W_{KH} and reducing the chamber volume, which increases Λ_D and raises the accuracy life.

At the maximum practically permissible loading density $\Delta = \Delta_n$. (point n'), there will be obtained a gun with the minimum chamber volume at the given weight of the charge.

For each of these three cases, the most advantageous loading density will exceed Δ_H , and, generally speaking, it will depend not only upon p_m , but also upon Λ_D . At the same time, the parameter B will also exceed $B_H \approx 1.91\text{--}1.95$.

All loading densities and all charge weights corresponding to the three cases discussed above will be located very close to the line E-E, which characterizes the combinations of Δ and ω q capable of satisfying economical loading conditions.

For this reason, by choosing in the above-presented table of Δ_E for a predetermined p_m increasing magnitudes of Λ_D and the corresponding Δ_E , it is possible to obtain all three cases just discussed by a shorter route, without resorting to the preliminary transition to the point N at the same loading density Δ_H .

All these computations are performed in the subsequent columns of the same form for ballistic design, using the GAU Tables, Part IV (TBR), 1943, with a certain change in the order of operations.

D. Particular Design Cases.

I. Given d, q, v_D , and the chamber volume w_0^* is assigned.

845

- 1. After computing C_{ξ} , Table 21 on p. 834 is used to choose p_{m} and X; Δ_{H} is found, and one of the methods indicated above is used to compute the gun with the minimum bore volume (point M_{0}); there is obtained a definite value W_{0H} at the (optimum) charge ω_{0}/q (the first column of the form is filled in).
- 2. Since, at Δ = const. = Δ_H , the weight of the charge is proportional to the chamber volume, it is changed in such a manner as to obtain at once the predetermined chamber volume W_0 :

$$\frac{\omega'}{q} = \frac{\omega_0}{q} = \frac{W'}{W_{OH}};$$

whereupon the ballistic computation of the assigned variant is carried through to the end, and the second column of the form is filled in.

filled in. On the basis of the resulting values of Λ_D^+ and γ_K^+ , it is determined whether it is possible to stop at once at this variant, or whether it is necessary to proceed to Δ_E at the same Ψ_0^+ (to the point n).

In the latter case, with the aid of the formula $\Delta_2 = \Delta_H + 0.01$ Λ_D^* or of Table 18, Δ_E is designated on the basis of P_m and Δ_D^* (Δ_E and Δ_2 will be close to each other), and the computation of the second variant is performed at this Δ . There will be obtained a gun having a shorter length than in the first variant.

If this barrel length is for some reasons unsatisfactory, the pressure $p_{\underline{m}}$ should be changed, and the computation of all three variants should be repeated for the new pressure.

An increase in pressure will increase Δ_H and, with the same chamber volume $\Psi_0',$ will reduce Λ_D and shorten the barrel.

II. Given d, q, v_D , and the length of the bore in calibers $L_{KH}/d = (l_{KH} + l_D)/d$ is assigned.

Preliminarily, on the basis of the coefficient $C_{\xi} = c_q \frac{v_B^2}{2g}$, with the aid of Table 21, p_m and χ are determined, there is assigned for the minimum-volume gun:

$$\Lambda_{\rm DH} = 3.0 + 0.04 \frac{C_{\xi} - 100}{100}$$

(empirical formula), and the adjusted bore length $L_{KH}^{\prime}={}^{\prime}_{0}+{}^{\prime}_{D}$, the total bore volume $W_{KH}=sL_{KH}^{\prime}$, and $W_{KH}=q$ are found for the assigned bore length L_{KH} :

$$L_{KH} = L_{KH} \frac{\Lambda_{DH} \cdot 1}{\Lambda_{DH} \cdot \frac{1}{x}} .$$

For the chosen value of p_m , there is found $\Delta_H = \sqrt{\frac{p_m - 300}{5700}}$,

whereupon the minimum-volume gun and its volume \mathbf{w}_{KH} are computed.

If the resulting volume W_{KH} exceeds the assigned W_{KH}^{\dagger} , then it is impossible at the chosen pressure p_m to obtain a gun of the assigned volume and length, and it will be necessary to increase the pressure p_m (by 200-300 kg/cm²) and again compute for the new pressure its own minimum-volume gun.

In increasing the pressure for the computation of \mathbf{w}_{KH} , it is possible to use as a guide the following approximate formula:

$$p_m \cdot w_{KH} \approx const.$$

If this new volume of the minimum-volume gun is smaller than the assigned volume, it is possible to proceed with the computation

of variants ensuring the attainment of a gun of the assigned length.

For this purpose, it is simplest of all to bracket the assigned bore length by choosing for the pressure p_m two values Λ_D^* and Λ_D^* , and to take the two corresponding values Δ_E^* and Δ_E^* from the table of Δ_E^* .

From the GAU Table IV (or from the ANII Tables), on the basis of the assigned Δ , p_m , and Λ_D , v_{TD}^* and v_{TD}^{**} are found.

With the aid of the formulas:

$$\frac{3}{q} = \frac{a}{\frac{v^2}{TD} - b}$$

(for the GAU Tables, where $\phi_{\mbox{\scriptsize tab.}}$ = 1) and:

$$\frac{\omega}{q} = \frac{a}{1.05 \frac{v_{TD}^2}{v_D^2} - b}$$

(for the ANII Tables, where $\phi_{\tt tab.}$ = 1.05), ω^{\prime}/q and $\omega^{\prime\prime}/q$ are determined; there are found:

$$\frac{\mathbf{W}_0'}{\mathbf{q}} = \frac{\omega'}{\mathbf{q}} \frac{1}{\Delta'} \text{ and } \frac{\mathbf{W}_0''}{\mathbf{q}} = \frac{\omega''}{\mathbf{q}} \frac{1}{\Delta''},$$

followed by:

$$\begin{split} \mathbf{w}_{KH}^{*} &= \mathbf{w}_{0} (\Lambda_{D}^{*} + 1) \; ; \; \mathbf{w}_{KH}^{*} &= \mathbf{w}_{0} (\Lambda_{D}^{*} + 1) \; ; \\ (\mathbf{L}_{KH}^{*})^{*} &= \frac{\mathbf{w}_{KH}^{*}}{\mathbf{s}} \; ; \; (\mathbf{L}_{KH}^{*})^{**} &= \frac{\mathbf{w}_{KH}^{*}}{\mathbf{s}} \; ; \end{split}$$

and finally by:

$$(\Gamma^{KH})$$
, = (Γ^{KH}) , $\frac{V^{L}_{D} + \frac{1}{\chi}}{V^{L}_{D} + 1}$; $(\Gamma^{KH})_{...} = (\Gamma^{KH}_{KH})_{...} \frac{V^{L}_{D} + \frac{1}{\chi}}{V^{L}_{D} + 1}$.

Following this, the resulting values of L_{KH} are compared with the assigned length. If the latter is comprised between those found, the required values of Δ_E and Λ_D will be found by interpolation, and one more supplementary computation will be needed for verification.

If the assigned value of L_{KH} is either larger or smaller than the two values obtained, the required values of Δ_E and Λ_D will be found by extrapolation, and one supplementary variant will be needed for a check.

The variant obtained in either case ensures the assigned bore length at the minimum chamber volume.

If, together with the assignment of the bore length, there is imposed the supplementary requirement to obtain the smallest possible charge even if the chamber volume is somewhat increased, then, after establishing the bracket, both variants should be taken at $\Delta = \Delta_H$ and at different ω_1/q and ω_2/q (descending downward from the point M_0), and the results obtained should be used to apply corrections to ω/q for the final variant.

Example. To design an 85 mm antimircraft gun having a bore length of about 60 calibers; q=9.2 kg; $v_D=900$ m/sec; $c_q=15.0$; $c_{\xi}=618$ tm/dm³; $\chi=1.35$; $p_m=2800$ kg/cm²; $\Delta_H=0.66$. By the simplified method:

$$v_{\rm H}^2 = 85 \text{ tm/kg} \frac{v_{\rm D}^2}{2g} = 41.2 \cdot 10^4 \text{ dm}.$$

The computation is conducted with the aid of a 25 cm or 50 cm slide rule.

Two variants are computed in parallel: a minimum-volume gun at $\Delta_{\rm H}$ = 0.66, and a gun at the same Δ and with a charge diminished by means of the following formula:

$$\frac{\omega'}{q} = \frac{\omega_{H}}{q} \left(\frac{1}{4} + \frac{3}{4} \frac{v_{D}}{1500} \right) = \frac{\omega_{H}}{q} \left(\frac{1}{4} + \frac{3}{4} \frac{900}{1500} \right) = 0.70 \frac{\omega_{H}}{q}$$

For the first variant, there are taken for C_ξ = 618 by the simplified method:

$$\gamma_{\omega_{H}} = 85 \text{ tm/kg};$$

$$\gamma_{\omega} = 85;$$

$$\frac{\omega_{H}}{q} = \frac{v_{D}^{2}}{2g}; \gamma_{\omega_{H}} = \frac{41.2}{85} = 0.485;$$

$$\varphi = 1.03 + \frac{1}{3} \frac{\omega}{q} = 1.03 + \frac{1}{3} 0.485 = 1.192;$$

$$n = \sqrt{\frac{\omega}{q}} \frac{1}{\varphi} = \sqrt{\frac{0.485}{1.192}} = 0.638;$$

$$v_{tab.D} = \frac{v_{D}}{n} = \frac{900}{0.638} = 1411;$$

$$\gamma_{\omega} = 121;$$

$$\frac{\omega'}{q} = 0.70 \cdot 0.485 = 0.3395;$$

$$\varphi' = 1.03 + \frac{1}{3} 0.3395 = 1.143;$$

$$n' = 0.545;$$

$$v'_{tab.D} = \frac{900}{0.545} = 1652.$$

From the GAU Tables, Part IV, at Δ = 0.66 and P_m = 2800,

there are found:

$$\Lambda_{K} = 2.498;$$

$$\Lambda_{\rm D} = 3.104;$$

$$\gamma_{K} = \frac{\Lambda_{K}}{\Lambda_{D}} = 0.805;$$

$$\omega = \frac{\omega}{q} q = 0.485 \cdot 9.2 = 4.46;$$

$$\Psi_{0} = \frac{\omega}{\Delta} = \frac{4.46}{0.66} = 6.76;$$

$$t_0 = \frac{w_0}{s} = \frac{6.76}{0.59} = 11.46 \text{ dm};$$

$$l_{\rm D} = l_{\rm O} A_{\rm D} = 11.46 \cdot 3.104 = 35.55;$$

$$l_{KM} = \frac{l_0}{\chi} = \frac{11.46}{1.35} = 8.49;$$

$$L_{KH} = l_{KM} + l_{D} = 44.04;$$

$$\frac{L_{KH}}{d} = \frac{44.04}{0.85} = 51.8;$$

$$\frac{L_{CT}}{d} = 51.8 + 1.7 = 53.5;$$

$$\frac{P_{av.}}{P_m} = \frac{\varphi \gamma_{\omega \Delta}}{\Lambda_D P_m} = 0.77;$$

$$\Lambda_{K} = 2.498;$$

$$\Lambda_{\rm D} = 5.49;$$

$$\gamma_{K} = 0.455;$$

$$\omega' = 0.3395 + 9.2 = 3.123;$$

$$\psi'_{0} = \frac{3.123}{0.66} = 4.732;$$

$$l'_{0} = \frac{4.732}{0.59} = 8.02 \text{ dm};$$

$$l'_{D} = 8.02 + 5.49 = 44.0;$$

$$l'_{KH} = \frac{8.02}{1.35} = 5.94;$$

$$L'_{KH} = 49.94;$$

$$\frac{L'_{KH}}{d} = 58.75;$$

$$\frac{L'_{CT}}{d} = 58.75 + 1.75 = 60.5;$$

$$\frac{P_{av}}{P_{m}} = 0.595;$$

$$P_{D} = 760.$$

Comparison between the first and second variants shows that the minimum-volume gun has a very large chamber volume and charge weight, a small $\Lambda_{\rm D}$, and a delayed burning of the powder ($\eta_{\rm K}$ = 0.805), but that the resulting barrel length is considerably shorter than that assigned; $p_{\rm av.}/p_{\rm m}$ = 0.77 is very high.

In the second variant, the chamber volume and charge are 30% smaller, $\Lambda_{\rm D}$ has increased to 5.5, the end of burning of the powder occurs early ($\eta_{\rm K}$ = 0.455), but the barrel length has increased by 7 calibers (in consequence of a strong increase in the length of the path of the projectile $l_{\rm D}$ and of a certain decrease in the chamber length) and has come close to that required (60.5 instead

of 60).

 $p_{av}/p_m = 0.595$ is considerably lower than in the first variant, and, in conformity with this, the muzzle pressure is $p_m = 760$ instead of 1440 in the first variant, i.e., is smaller by a factor of nearly two.

Now, while maintaining the chamber volume constant (proceeding along the line ON in Fig. 163), \triangle and ω/q are proportionally increased, there being taken to reduce the number of variants:

$$\Delta_{\rm E} = \Delta_{\rm H} + \frac{\Lambda_{\rm D}}{100} = 0.66 + \frac{5.5}{100} = 0.715 \text{ and } \frac{\omega_{\rm E}}{\omega_{\rm H}} = \frac{\Delta_{\rm E}}{\Delta_{\rm H}}$$

Taking $\Delta_{E} = 0.71$ and $\Delta_{E}' = 0.72$, and performing the computation as in the first two variants, there are obtained:

N	Δ	3 व	В	Λ		₩0						7∖∾
3	0.71	0.365	2.216	5.37	0.625	4.732	43.05	49.0	59.4	0.615	860	113
3,	0.72	0.370	2.277	5.33	0.675	4.732	42.74	48.7	59.0	0.620	870	111.5
	i	i	l	!	1					<u> </u>		

The data for the two variants nearly ccircide; in comparison with the second variant, the length of the barrel has become shortened by 1.0-1.5 calibers, the muzzle pressure has increased by 100 ${\rm kg/cm^2}$, the end of burning has shifted toward the muzzle face, and the value of η_{K} is good, being about 0.65.

Both these variants may be considered as being ballistically acceptable and as satisfying the imposed requirement to obtain a barrel length equivalent to about 60 calibers.

For the chosen variant (No. 3), the thickness of the powder is computed as follows:

STAT

$$\frac{I_{K}}{d} = \sqrt{\frac{f}{g}} \frac{c_{q}}{n_{g}} \sqrt{B\phi \frac{\omega}{q}} = 98.4 \frac{c_{q}}{n_{g}} \sqrt{B\phi \frac{\omega}{q}};$$

$$\frac{98.4 \cdot c_{q}}{n_{g}} = \frac{98.4 \cdot 15}{0.815} = 1810;$$

$$\sqrt{\frac{\omega}{q}} = \sqrt{2.216 \cdot 1.152 \cdot 0.365} = 0.964;$$

$$\frac{I_{K}}{d} = 1810 \cdot 0.964 = 1745; I_{K} = 1745 \cdot 0.85 = 1483;$$

$$2e_{1strip} = 2u_1 \cdot I_K = 2.0.0575.1483 = 0.0222 dm = 2.22 mm.$$

From the table correlating u_1 with the thickness of pyroxylin powder, a powder thickness of about 2 mm is associated with u_1 = 0.0000073.

Upon introducing the correction, there is obtained:

$$2e_{1strip} = 2.22 \frac{73}{75} = 2.16 \text{ mm}; type \frac{22}{1}$$

For a powder with seven channels:

$$2e_1 = 0.7 \cdot 2e_{1strip} = 0.7 \cdot 2.16 = 1.51 mm; type $\frac{15}{7}$$$

Ballistic computation with the aid of the above procedure has required the computation of four variants.

Instead of first proceeding from the point M_0 downward to the point N while reducing ω/q and W_0 by 30% at the same Δ_H , and then ascending upward and to the right along the line ON while maintaining W_0 = const. and increasing Δ and ω/q , it is possible, immediately following the computation of the data for the minimum-volume gun, to change over to the economic loading densities Δ_E , taking them from the table of Δ_E and selecting Λ_D for them.

In the table of Δ_E , for a pressure $p_m=2800$ at $\Delta_H=0.66$, the value $\Delta_E=0.72$ is associated with $\Lambda_D=5.0$, while $\Delta=0.73$ is associated with $\Lambda_D=6.0$.

The course of the computation in this case differs somewhat from that presented above.

The following values are assigned:

$$p_m = 2800 \text{ and}$$
 $\Delta = 0.72, \Lambda_D = 5.0;$
 $\Delta = 0.73, \Lambda_D = 6.0.$

From the GAU Tables, Part IV (TBR), the following values are found:

Γ		^	$\Lambda_{\mathbf{D}}$	В	^K	٦ _K	v _{tab.D}	
1	Variants			2.277	3.596	0.719	1565	
ļ	11'	0.72		2.341	3.86	0.643	1625	
	111'	0.73	10.0		J	٠		

 ω/q is found in accordance with the following formula:

$$\frac{\omega}{q} = \frac{1.03}{\left(\frac{v_{tab.D}}{v_D}\right)^2 - b} = \frac{1.03}{\left(\frac{v_{tab.}}{900}\right)^2 - \frac{1}{3}}.$$

The remaining data are found as in the first computation.

	The I	emaining	data a	116 20-							1
_						LCT	~્યુ•	Pav.	$\mathbf{p}_{\mathbf{D}}$	ΛD	
1	ariants	310	W _O	¹ D	-		107.5	0.640	950	5.0	
t	11'	Q 0.3835	4.900	41.5	47.65	57.8	117	0.584	795	6.0	1
1	111'	0.352	4.435	45.1	50.66	61.3					1

855

In Variant II', the resulting barrel length is smaller than that required (57.8 d); in III', it is somewhat greater (61.3 d).

It is possible to interpolate these two variants to their mean and to obtain:

$$\Delta_{\rm K} = 0.725;$$
 $\Lambda_{\rm D} = 5.5;$ $\gamma_{\rm K} = 0.68;$ $B = 2.309;$ $\frac{\omega}{\rm q} = 0.368;$ $W_0 = 4.67;$ $t_{\rm D} = 43.3;$ $L_{\rm KH} = 49.15;$ $\frac{L_{\rm CT}}{\rm d} = 59.5;$ $\gamma_{\rm C} = 112.3;$ $\frac{p_{\rm a.v.}}{p_{\rm m}} = 0.612;$ $p_{\rm D} = 870.$

The results of this computation coincide almost completely with the results of Computation No. 3', in which a different route was adopted, but almost the same point of the directive diagram was reached. The computation fully satisfies both the ballistic criteria $(7_K, 7_D, 7_{\omega})$ and the requirement for a definite barrel length. The type of powder is obviously the same as in the preceding case.

The entire computation has been performed in three variants.

All computations are performed and recorded in a form for the ballistic computation of the barrel, which contains a series of columns and headings for the operations and quantities.

For the finally selected variant, the GAU Tables (Parts I, II, and III) are used to solve the direct problem; i.e., the values of p, v, and t are found as functions of Λ or l, and these data are used to construct p-l, v-l, p-t, and v-t curves for utilization in computing and designing the barrel, gun mount, tubes, and fuzes.

STAT

CHAPTER 4 - SUPPLEMENTARY INFORMATION

1. INFLUENCE OF VARIATION OF PRESSURE $\mathbf{p}_{\mathbf{m}}$ UPON BORE DESIGN DATA AND LOADING CONDITIONS.

It is known that, in a given gun, in the presence of the same charge, the gas pressure p, the area under the curve $\int_{\mathbf{R}}^{-} pdt$, and at the same time the velocity of the projectile increases as the thickness of the powder decreases, since:

$$\mathbf{v}_{\mathbf{D}} = \sqrt{\frac{2\mathbf{s}}{\varphi \mathbf{m}}} \int_{0}^{\mathbf{D}} \mathbf{p} d\mathbf{t} .$$

Consequently, in inverting the problem, the same area $\int pdl$,

which ensures the attainment of the predetermined velocity $\mathbf{v}_{\mathrm{D}}^{}$, can be obtained with a shorter length of path of the projectile $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ increasing the pressure $p_{\underline{m}}$ while maintaining the chamber volume and weight of the charge unchanged.

Consequently, an increase in pressure with a given chamber volume and a given weight of the charge must reduce the length of path of the projectile l = 0 and the length of the entire bore $L_{
m KH}$.

Together with an increase in the pressure $p_{\underline{m}}$, the following loading densities grow correspondingly:

 Δ_1 for the instantaneous burning of the charge;

 $\Delta_{_{\mbox{\scriptsize H}}}$ - the most advantageous loading density;

 Δ_E - the economical loading density;

 Δ_{1} for the burning of the powder at the muzzle face.

The diagram expressing the dependence of W and W upon \triangle at $\omega = const$, at a predetermined v_D , and at $p_m^{"} > p_m^{'}$ will have the form

represented in fig. 164.

Fig. 164. Dependence of W_{KH} and W_{O} Upon Δ at Various P_{m} .

1) An increase in the pressure p_m while Δ , ω , and w_0 are maintained constant (loading density Δ_H^i , transition from the point c^i to the point b^i) reduces the length of the bore to a lesser degree than if Δ_H^i were increased simultaneously in conformity with the increase in pressure (transition from the point c^i to the point

This is explained by the fact that the increased $\Delta_H^{\prime\prime\prime}$ is the most advantageous for the new pressure $p_B^{\prime\prime\prime}$, ensuring a bore of minimum length; on the other hand, the previous $\Delta_H^{\prime\prime}$ is no longer the most advantageous for the new pressure, and the length of the bore is greater.

- greater. 2) As the pressure increases, apart from the total decrease in the length of the bore, the quantity $\Lambda_{\rm D}$ also decreases, i.e., the relative chamber volume increases.
- 3) The characteristic $\eta_K = \frac{1}{K}/\frac{1}{D}$ decreases considerably at $\Delta = \text{const}$ as p_m is varied; but, as Δ increases in conformity with the increased pressure p_m^m , γ_K undergoes almost no change.

858

4) The product $p_{\underline{m}} \cdot \overline{w}_{KH, H}$ is close to being a constant.

Consequently, it may be considered that, as p_m increases in the presence of the same weight of the charge ω , the volume and length of the bore are inversely proportional to the pressure p_m .

This formula can be utilized for exploratory computations in ballistic design:

$$\psi_{KH}^{"} = \psi_{KH}^{'} \frac{p_{m}^{'}}{p_{m}^{"}} \quad \text{or} \quad L_{KH}^{"} \approx L_{KH}^{'} \frac{p_{m}^{'}}{p_{m}^{"}},$$

In this connection:

$$t_o'' - t_o' \frac{\Delta'}{\Delta''}$$

- If, in computing the minimum-volume gun, its length is obtained greater than the predetermined length, an increase in pressure constitutes the only means available to satisfy the imposed condition.
 - 2. EFFECT OF DIFFERENT POWDERS ON THE LOADING CONDITIONS AND GUN DESIGN DATA BASED ON BALLISTICS.

Besides pyroxylin powders, use is also made of more powerful nitroglycerol powders, which contain 20-40% of nitroglycerol. By having a higher burning temperature, these powders considerably shorten the accuracy life of the barrel. The search for means to increase the accuracy life of guns has also led to the use of so-called "cold" powders, which have a lower burning temperature and a smaller propellant force; these include, for example, nitroguanidine powders.

Since our tables are set up for definite powder characteristics, which correspond to pyroxylin powders, there arises the question of how a variation in the nature of the powder will be reflected in the

design data of the gun and in the loading conditions at given values of d, q, v_D , and p_m , a situation encountered in ballistic design.

The nature of a powder is characterized by the following factors: f - the propellant force of the powder; α - the covolume of the powder gases; u_1 - the rate of burning of the powder at p = -1 kg/cm^2 ; the adiabatic index k = 1 + θ , which depends upon the composition of the gases and upon their temperature in the bore.

It is known from courses in interior ballistics and from the study of powders that, for pyroxylin powders, f = 85-95 tm/kg, $\alpha =$ = about 1 dm³/kg, and $\theta = 0.20$; for nitroglycerol powders, f and u_1 increase, and the covolume α and the index θ decrease, as the nitroglycerol content increases; in nitroguanidine powders, on the contrary, f and u_1 decrease, and the quantities α and θ increase.

In this connection, although the rate of burning u_1 changes with variations in the nature of the powder, it enters into the fundamental equations and relations not as a separate entity, but as a component of the pressure impulse I_K , which depends both upon u_1 and upon the thickness of the powder $2e_1$ ($I_K = \frac{e_1}{u_1}$). For this reason, in the subsequent discussion, the quantity u_1 will not be considered separately, but the impulse will be included among the characteristics of the loading conditions which are determined in ballistic computations.

Since, in ballistic design, the variant which serves as the point of departure is the minimum-volume gun (the center of the directive diagram), it is convenient in investigating the influence of variations in the nature of the powder to compare the design data and loading conditions for minimum-volume guns at predetermined \mathbf{v}_{D} and \mathbf{p}_{m} .

There are presented below some of the results of such investigations conducted by M.E. Serebryakov 227 and N.A. Krinitskii.

The computations were conducted for the following characteristics, which correspond to powders of different natures.

which	Collega				
	Powder	f tm	a dm ³	θ	<u>f</u> %
No.			1.10	0.220	91
1	Nitroguanidine		1.00	0.200	100
2	Pyroxylin	95	1		110.5
3	Medium-power nitroglycerol	105	0.905	0.181	
1	1		0.825	0.165	121
4	High-power nitroglycerol	115	1		ted by its number; t
1				. 4001008	ted by Its number,

Subsequently, each powder will be designated by its number; the data for pyroxylin are accepted as the reference unit = 100%.

The data for minimum-volume guns were determined by the general procedure involving the use of the nomogram of Krinitskii for the simplified case $(\psi_0 = 0, \ \aleph = 1, \ \alpha = 1/\delta)$.

In the summary table below, the fundamental ballistic characteristics of minimum-volume guns are given as percentages for powders of various natures.

				
	Table 22		3 4	
	Powder 1	2		
Characteristics	No.		ntage 12	
Character	80.	100	122	46 03
of powder	1 2 8	3 100 \	101.6	103.7 80.6
Propellant force of powder Burning temperature T1 Burning parameter BH	3	97 100	89.2	81.3
Burning temperater BH Loading parameter BH Most advantageous loading	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.2 \ 100	90.1 88.2	78.4 117.4
\womat =	ω ₀ /q	14.1 \ 100	108.3	92.0 88.6
	tio Ap 8	91.8 \ 100 104.7 \ 100	93.3 101.5	98.9
Optimum relative Chamber volume ** Chamber volume ** Volumetric expansion ra Volumetric expansion ra Volume ** Length of path of projection rates and relative r	ctile [D 10	107 100 99.5 100	105.8	109.8
Pole Adding AER	1x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100.6 100	207.4	112.4
onth at 100 le		93.4 100	110.7	122.7
	. 2016 \ 14 .53	90.8	98.1	155
1 01° 01°	35 15 16	102	126	104.7
Coefficient of the unit charge	17 - 18 and		00 \ 37.8	12.6
CS	Percentago de 1/27		100 90.5	
	13		in the table	Spoas the
		and the second	10.	
		Together and the second of the	a the paramete	T BH increase

depaity and the parameter BH increases (lines 3

efficiency, Fig. and the optimum charge word vary

96

	Tab	Le 22				4
	Powder No.	1	2			
Characteristics	1	1		Percent	. a 8 c	121
Charac	No.	1		111	0.5	146
	\		100)	22	103
	1	83	100) ;	0.10	100
of powder i	2	1 -	10	υ \ <u>*</u> `	,	103.7
opellant force of powder f	\ 3	98.3		\ ,	02.2	80.6
		97	10	00 / *	89.2	81.3
oading parameter BH	1 4	1 -	1.6	00	90.1	
pading parameter by ost advantageous loading	5	111.	1	00	38.2	78.4
ensity AH	1 6	110.		00	108.3	117.4
ensity AH Optimum efficiency r Optimum relative charge of q Optimum relative charge of q	1 -	114	. 1	100	95.2	92.0
	1	ູ 91		100		88.0
Optimum volume Wo Chamber volume Wo Volumetric expansion ratio A. Volumetric expansion ratio A.	- i	<u>.</u> 104	1.7	100	93.3	101
Chamber expansion	ID .	10	7	100	101.5	98.9
Volumetry path of project	1	0 9	9.5		99. 6	8.eu1
Chamber volume trice expansion ratio at volumetric expansion ratio at volume trice and projectile Length of path of projectile		11	0.0	100	105.8	
Bore wolume WKH	1	12	4.8	100		112.4
	1	13	\		107.4	1
	1	Į.	93.4	100	_	122.7
TK = VK/VD = 1K, D		14		100	110.7	∖ ფი.4
(K		1	90.8	1 -	98.1	155
Muzzle pressure () Suzzle pressure () Coefficient of utilization Coefficient of utilization	01	15	102	100	126	1 -
Coefficient of utility of charge weight Tw		16	_	100	1	104.7
unit charge		17	79	100	102.9	1 12.6
Coefficient W at emerge	nce	1	97.5	1 -	37.1	a \
Coefficient φ Gas temperature at emerge	10-	18	209	100	90.	\ 82.
Gas temperature To of projectile To or projectile To Paressure To Pare	g . / F 18	19	1	100	90.	
1		1 20	110			
Accuracy life Nyca		120 _			anle	shows the
1/2				d 10 '	the the	

Investigation of the data presented in the table shows the

1) The optimum loading density and the parameter BH increase slightly as the propellant force of the powder increases (lines 3 following facts.

2) The optimum efficiency r_0^* and the optimum charge ω_0/q vary

862

inversely proportionally to the propellant force of the powder

- 3) The coefficient of utilization of the unit weight of th charge Two varies directly proportionally to the propellant force
- 4) The volumetric expansion ratio $\Lambda_{\widetilde{D}}$ varies almost proport ally to the propellant force of the powder (in somewhat lesser de
- 5) The chamber volume varies in the opposite direction to the propellant force of the powder, but in somewhat greater degree (li 7).
- 6) The length of path of the projectile $^{\prime}_{
 m D}$ also varies in the opposite direction to the propellant force of the powder, but in lesser degree (line 9).
- 7) The total volume of the bore varies in the opposite direct and in somewhat greater degree than $t_{
 m D}$, but in lesser degree than th propellant force of the powder (line 10).
- The path of the projectile at the end of burning $\frac{1}{K}$ and t full pressure impulse I are practically independent of the nature of the powder (lines 11 and 12), but the thickness of powders with a greater propellant force will grow in conformity with the increase in u_1 , since $e_1 = I_K \cdot u_1$.
- 9) The characteristic of the end of burning of the powder γ_{K} -= $l_{
 m K}/$ $l_{
 m D}$ varies inversely proportionally to the variation in $l_{
 m D}$, sinc
- 10) The muzzle pressure increases somewhat more slowly than the propellant force of the powder (line 14).

863

inversely proportionally to the propellant force of the powder (lines 5 and 6).

- 3) The coefficient of utilization of the unit weight of the charge γ_ω varies directly proportionally to the propellant force of the powder (line 15).
- 4) The volumetric expansion ratio $\Lambda_{\overline{D}}$ varies almost proportionally to the propellant force of the powder (in somewhat lesser degree) (line 8).
- 5) The chamber volume varies in the opposite direction to the propellant force of the powder, but in somewhat greater degree (line 7).
- 6) The length of path of the projectile $\[l_D\]$ also varies in the opposite direction to the propellant force of the powder, but in lesser degree (line 9).
- 7) The total volume of the bore varies in the opposite direction and in somewhat greater degree than $t_{\rm D}$, but in lesser degree than the propellant force of the powder (line 10).
- b) The path of the projectile at the end of burning I_{K} and the full pressure impulse I_{K} are practically independent of the nature of the powder (lines 11 and 12), but the thickness of powders with a greater propellant force will grow in conformity with the increase in u_{1} , since $e_{1} = I_{K} \cdot u_{1}$.
- 9) The characteristic of the end of burning of the powder $\gamma_K = l_K/l_D$ varies inversely proportionally to the variation in l_D , since l_K is approximately constant (line 13).
- 10) The muzzle pressure increases somewhat more slowly than the propellant force of the powder (line 14).

863	

- 11) The muzzle gas temperature increases very sharply with an increase in the propellant force of the powder (line 17).
- 12) The average pressure increases very slowly with increasing propellant force of the powder (being nearly proportional to the loading density $\Delta_{\rm H}$) (line 18).
- 13) The characteristic of the accuracy life of the bore varies extremely sharply (line 19); the change from pyroxylin powder to No. 4 nitroglycerol powder is accompanied by an eightfold drop in N_{yCA} , in spite of the more advantageous design data and loading conditions; the change to nitroguanidine powders is accompanied by a greater than twofold rise in N_{yCA} .

All these conclusions present a perfectly clear picture of the variation in the fundamental design data, energy characteristics, and loading conditions for the minimum-volume gun accompanying a variation in the nature of the powder.

As has already been shown in the theoretical fundamentals of ballistic design, the minimum-volume gun can be recommended for practical realization only at very high projectile velocities (1500 m/sec).

At lower projectile velocities, a departure from the minimum-volume gun in the direction of a smaller charge and chamber volume (on the directive diagram, downward and to the right from the point $\mathbf{H}_{\mathbf{0}}$) is indicated.

There arises the question whether such a departure will not alter the relations established in Table 22, and whether the relative character of the resulting relations will be maintained for such guns possessing other than a minimum volume.

864

g	other	than	minimum	volume.	
				STAT	-

The investigation presented in the same chapter shows that the relations indicated in Table 22 are maintained with small changes even if the minimum-volume gun is not used as the starting variant.

Thus, if the nature of the powder differs from that assumed in the GAU Tables, it is possible, once a gun has been designed in accordance with these tables, to introduce changes into the results of the computation by making use of the data in Table 22 in the present chapter, whereupon the results may be checked by the use of analytical formulas, of the method of Professor Drozdov, or of the method of the average 1...

3. RELATION BETWEEN WEIGHT OF BARREL AND ITS DESIGN ELEMENTS
AT PREDETERMINED PROJECTILE VELOCITY AND AT GIVEN MAXIMUM
DRESSIRE D.

In some cases, the weight of the barrel may be one of the criteria in the selection of one or another variant.

For this reason, along with the knowledge of the variation in the design elements and loading conditions at predetermined v_D and p_p , it is also desirable to know the variation in the weight of the barrel Q_{mp} .

One and the same v_D at the same p_E can be obtained both from a short barrel with a relatively large chamber (minimum-volume gun) at Λ_D = about 3 and from a long barrel with a small chamber (Λ_D = about 10). In this connection, the muzzle pressure, which determines the barrel-wall thickness at the muzzle face, will in the first case equal about one-half the maximum pressure (p_D/p_E = about 0.5), while in the second case p_D/p_E = about 0.15-0.20 (fig. 165).

865

Fig. 165 - Pressure Curves in Guns with Various $\Lambda_{D}^{}$ at Predetermined $\nu_{D}^{}$ and $\rho_{m}^{},$

In the first case, we have a long cylindrical part and a short conical part with thick walls at the muzzle face; in the second case, we have a considerably shorter cylindrical part with a long cone and a thin wall at the muzzle face.

It is necessary to clarify in an exploratory manner how the weight of the barrel will wary with variations in the characteristic $\Lambda_{\, D}.$

A longitudinal section through the barrel is represented schematically in fig. 166.

Fig. 166 - Scheme of Longitudinal Section of Barrel.

The gun has the following characteristics:
Outer diameter of cylindrical breech D.
Outer diameter of muzzle end of barrel d₂.
Caliber of gun d.

Average chamber diameter d_{KM} .

Length of breech ring | KA3

Chamber length $t_{KM} = t_0/x$.

Path of projectile at instant of maximum pressure $\binom{n}{m}$. Reserve in cylindrical part for possible shift of maximum pressure toward muzzle face $\binom{n}{m}$ about 0.6 $\binom{n}{m}$ $\overset{n}{=}$ $\binom{n}{m}$.

Length of conical part of barrel 1".

$$t'' - t_D - (t_m + t') \approx t_D - 1.2 t_0$$

If the density of steel is designated as δ' (δ' = 7.85 kg/dm³), the weight of the barrel will be expressed by the following formula:

$$\begin{aligned} \mathbf{Q}_{\text{CT}} &= \delta' \left\{ \frac{\pi}{4} \; \mathbf{D}^2 (\mathbf{1}_{\text{KA3}} + \mathbf{1}_{\text{KM}} + \mathbf{1}_{\text{m}} + \mathbf{1}') \; + \; \frac{1}{3} \; \frac{\pi}{4} (\mathbf{D}^2 \; + \\ & + \; \mathbf{D} \mathbf{d}_2 \; + \; \mathbf{d}_2^2) \; \; \mathbf{1}^- - \frac{\pi}{4} \; \mathbf{d}^2 (\mathbf{1}_0 \; + \mathbf{1}_D) \right\} \; , \end{aligned}$$

where the first term in parentheses is the volume of the solid cylindrical part of diameter D, the second is the volume of the truncated cone of diameters D and d₂ and length [", and the third is the volume of the entire bore.

We separate from the above expression the weight of the breech ring $Q_{KA3} = (\pi/4)D^2 l_{KA3} \delta'$, and, by designating A = D/d and $a_2 = d_2/d$, taking l_0 out of the parentheses, and dividing both sides of the equation by d^3 in order to represent the weight of the

barrel in relative units, we obtain:

$$\frac{Q_{CT}}{d^3} = \frac{Q_{KA3}}{d^3} + \delta^1 \frac{x}{4} \frac{t_0}{d} \left\{ \left(\frac{1}{x} + 1 \right) A^2 + \frac{1}{3} (A^2 + A a_2 + a_2^2) (A_D - 1) - (1 + A_D) \right\}.$$

After dividing this by $c_q = q/d^3$, we have:

$$\frac{Q_{CT}}{q} = \frac{Q_{KA3}}{q} + \delta \cdot \frac{W_0}{q} \left\{ \left(\frac{1}{\chi} + 1 \right) A^2 + \frac{1}{3} \left[1 + \frac{a_2}{A} + \frac{a_2}{A} + \left(\frac{a_2}{A} \right)^2 \right] A^2 (\Lambda_D - 1) - (1 + \Lambda_D) \right\}.$$
(127)

The quantity $A=\frac{D}{d}$ is a function of the maximum pressure p_m ; the quantity $a_2=\frac{d_2}{d}$ is a function of the muzzle pressure p_D , which is itself a function of p_m and Λ_D ; the values of PD/p_m , a_2/A , and A are tabulated below as functions of p_m and Λ_D .

Table of Values for
$$A = \frac{D}{d} = f(p_m)$$

P-	1800	2200	2600	3000	3600
1	1.68	2.00	2.56	3.79	5.10

Table of Values for $\frac{p_D}{p_D} = f(p_m, \Lambda_D)$

Under Economical Loading Conditions

P _m ^D	3	4	6	8	10
2600	0.545 0.521	0.445 0.430 0.405	0.323 0.305 0.390 0.271 0.250	0.237 0.220 0.207	0.208 0.198 0.185 0.172 0.154

Table of Values for $\frac{a_2}{A} = \frac{d_2}{D} =$

p Λ_D	3	4	6	8	10
1800 2200 2600 3000 3600	0.690	0.738 0.650 0.539 0.368 0.285	0.600 0.477 0.328	0.570 0.465 0.312	0.301

868

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

The dependences of A and a₂ upon the pressure have been taken from Table 2 in the "Handbook on Design of Gun Barrels and Breechblocks" by E.K. Larman, the mechanical-strength safety factor used being 1.33, and the elastic limit being assumed to be 6_e = 6000 kg/cm². Consequently:

 $\frac{p_1}{e_p} = \frac{1.33}{6000} p = \frac{p}{4500} kg/cm^2.$

Since the length of the breech ring $l_{\rm KA3}\!pprox\!1.5d$, it follows that:

$$Q_{KA3} = \frac{\pi}{4} D^2 \cdot 1.5 d\delta';$$

$$\frac{Q_{KA3}}{d^3} = 7.85 \frac{\pi}{4} A^2 1.5 \approx 10 A^2.$$

In Formula (127), the relative weight of the barrel is expressed in terms of the ballistic characteristics of the bore Ψ_0/q , Λ_D , and X, and of the quantities A and a_2/A , which also depend upon the ballistic characteristics p_m , Λ_D , and p_D . The formula is useful for exploratory computations.

Computations performed with the aid of this formula have shown that, at predetermined v_D and p_m , the weight of the barrel as a function of Λ_D varies along a curve possessing a minimum at $\Lambda_D \approx 5-6$ (Fig. 167).

Consequently, if there has been imposed the requirement to obtain a minimum-weight barrel, it is necessary to take $\Lambda_D \approx 5.6$.

Fig. 167 - Weight of Barrel as a Function of $\Lambda_{\stackrel{.}{D}}$ at Predetermined $v_{\stackrel{.}{D}}$ and $p_{\stackrel{.}{m}}.$

4. APPLICATION OF VARIOUS BALLISTIC TABLES.

Ballistic computations may be carried out with the aid of any desired available tables, including the tables of Professor Drozdov for strip-type powder ($\aleph=1.06$) with "normal" constants, the 1933 ANII Tables with the same constants, the 1943 GAU Tables with somewhat rodified constants ($\alpha=1,\ \varphi=1$), the 1933 tables of the Chair of Interior Ballistics for powders with a constant burning area ($\aleph=1,\ \lambda=0$) and for any desired values of f and φ , and the tables of M.S. Gorokhov $\sqrt{-17}$ for $\aleph=1.06$ and for $\aleph=1.00$ with the remaining constants "normal."

Maximum convenience for ballistic computations attaches to the GAU Tables, Part IV (TBR), and to the tables of M.S. Gorokhov.

Prior to the start of the computation, it is necessary to select for any table a coefficient of agreement between the computations and experiments, for which purpose it is, in turn, necessary to process the results of firing tests from artillery systems already accepted

STAT

the results of firing tests from account of the second of

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

for armament and approaching in type the system being designed.

Computations for ten of our systems firing with small relative charges ($\omega/q<0.20$) have shown $\sqrt{21}$ 7 that good agreement with experimental \mathbf{v}_D and \mathbf{p}_m in computations with the aid of the ANII Tables is obtained at $\varphi=1.05$, whereas, when a correction is applied to make $\varphi=1.03+\frac{1}{3}\frac{\omega}{q}>1.05$ at a predetermined pressure \mathbf{p}_m , the initial velocities obtained fall short of the experimental velocities by approximately 35.

Consequently, in spite of the fact that the ANII Tables are compiled for strip-type powder ($\aleph=1.06$), whereas the systems accepted for armament fire either with tubular powders ($\aleph=1$) or with powders possessing seven perforations ($\aleph\approx0.7$), both of which burn more progressively than strip-type powder, nevertheless the adoption at $\omega/q \leqslant 0.20$ of the value 1.05 for ϕ - a value smaller than the actual value - compensates somewhat for the more degressive character of burning of strip-type powders and gives computed results for v_D that are very close to the results of firing tests conducted with tubular or strip-type powders.

Note: If, in conducting computations with the aid of the ANII Tables at the same $\omega/q \leqslant 0.20$, ϕ is taken in accordance with the theoretical formula $\phi = a + \frac{1}{3} \frac{\omega}{q}$, where a = 1.03 - 1.06 depending upon the type of gun (according to Slukhotskii), but v_D is determined by means of the formula $v_D = v_{tab}$. $\sqrt{\frac{\omega}{q}} \frac{1.05}{\phi}$, then, if the computed values for v_D coincide with the experimental values, the pressure p_m determined from the tables is obtained 10% higher than the experimental p_m .

871

The application of a correction to ϕ should be adopted at high values of $\omega/q>0.20$, when $\phi=1.05$ will differ too much from $\phi=a+\frac{1}{3}\frac{\omega}{q}$. Nevertheless, the above-mentioned lack of consistency in the character of burning of powders, which requires some compensation by the reduction of ϕ , will manifest itself at large ω/q as well, and this will make it necessary to reduce the coefficient b=1/3. For example, some designers take the formula $\phi=1.05(1+\frac{1}{4}\frac{\omega}{q})$, which, at large ω/q , gives a smaller value than $\phi=1.03+\frac{1}{3}\frac{\omega}{q}$.

As for the quantity ϕ , it exerts a rather considerable effect upon the computed design data of the bore (as ϕ decreases, the length of path and the length of the bore also decrease).

Comparison among the tables of Professor Drozdov, the tables of Gorokhov, the ANII Tables, and the GAU Tables indicates that, at predetermined Δ and p_m , different values are obtained for B and Λ_K , as follows:

B
$$<$$
 B $<$ B $<$ B $<$ B $<$ Drozdov ANII Gorokhov GAU \wedge_K $<$ \wedge_K $<$ \wedge_K $<$ \wedge_K Drozdov Gorokhov GAU ANII

and this, at a predetermined v_D and at identical ϕ or b, leads to different values for the length of path l_D and the length of the bore L_{KH} , the difference increasing with increasing v_D ; the smallest values for l_D and L_{KH} are obtained in working with the tables of Professor Drozdov, and the largest with the ANII tables, the difference being small (about 2%) for v_D = 1000 m/sec and as large as 7-8% for v_D = 1500 m/sec.

At identical \triangle and B, the GAU Tables give higher values for P_m than the tables of Professor Drozdov, the difference increasing with the increase in \triangle . Thus, for \triangle = 0.50, at identical B, $P_{mGAU} = P_{mDr} = \text{about } 2\%$; for \triangle = 0.60 the difference is 2.5-3.0%; for \triangle = 0.70 it is 4-5%; and for \triangle = 0.80 it is 5-6%. Such a discrepancy cannot be explained by the fact that the covolume in the GAU Tables is α = 1 instead of 0.98 as in the tables of Professor Drozdov.

In the ANII tables the pressures $p_{_{\rm I\!R}}$ approach the values given by Drozdov; in Gorokhov's tables these values are 1-2% smaller than the $p_{_{\rm I\!R}}$ values given in the GAU tables.

From the tables of Gorokhov compiled for different \aleph (1.06 and 1.00), it is possible to draw the conclusion that, as \aleph varies from 1.06 to 1.00 at predetermined Δ and B, the pressure p_m decreases by 4-6%, the change in p_m being the greater the larger B and Δ .

In any case, tables compiled even on the basis of a mathematically exact method, for constants of definite values, cannot in all cases give complete agreement with experimental data, since the theoretical solution does not take into account all details of the phenomenon of the shot, and every mathematically exact method based on definite assumptions is merely an approximation with respect to the actual phenomenon, which is much more complex than the scheme adopted in the assumptions.

It is for this reason that, for every method of solution and for every table, it is necessary to select its own coefficient of agreement, which will give the best coincidence with experiment. In using one of the tables enumerated above for a ballistic computation, it is necessary, on the basis of experimental data for

c.	Τ.	۸т
ૅ	1/	٩1

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

"related" guns under firing conditions close to those provided for by the design, to determine the coefficient of agreement of the given table with experiment and to utilize this coefficient in the design.

In the case of pyroxylin powders, agreement with experiment is attained best of all by the selection of the coefficient b in the formula $\varphi = a + b = 0$.

It has already been indicated above that, at identical φ and b, for predetermined p_m and v_D = 1500 m, sec, the ANII Tables give a length of path of the projectile l_D that is 7-8% greater than that obtained with the fundamental tables of Professor Drozdov.

Identical values of l_D can be obtained with the aid of either set of tables by selecting different values for the coefficient ϕ or b.

For example, if, on the basis of the tables of Professor Drozdov, the values obtained for b are 1.3 in one case and 1/5 in another, the corresponding values for b obtained from the ANII Tables will be 1/4 and 1/6, respectively.

This circumstance confirms the necessity of selecting the coefficient b for the purpose of ensuring agreement between each type of tables and experiment; it also indicates the errors in the procedure of compiling the ANII Tables at high velocities.

There is presented below a procedure for determining ϕ and b on the basis of firing tests with the aid of various tables.

5. DETERMINATION OF COEFFICIENT b FROM TABLES

The quantity a in the coefficient $\varphi = a + b - \frac{\omega}{q}$ is usually assumed to be 1.03 for high-power guns, 1.04-1.05 for guns of moderate power, 1.05-1.06 for howitzers, and 1.10 for smallarms; the quantity b is subject to determination on the basis of the results of firing tests.

For a given gun, let there be known (*):

$$w_0$$
, s, l_D , q, ω , p_m and v_{Dop} ;

In addition, there are determined:

$$\Delta = \frac{\omega}{w_0}$$
, $l_0 = \frac{w_0}{s}$ and $\Lambda_D = \frac{l_D}{l_0}$.

The table for the given Δ having been selected, B is found from Δ and from p_m , and, in the table of velocities, at the same Δ , B and Λ_D are used to determine $v_{tab. D}$ and $v_{D calc.} = v_{tab. D} \sqrt{\frac{\omega}{q}}$. Since v_D op v_{tab} D $\sqrt{\frac{\omega}{\varphi_{op}}}$ (from the GAU Tables) and $v_{Dop} = v_{tab}$ D $\sqrt{\frac{\omega}{q}} \frac{1.05}{\varphi}$

(from the ANII Tables), it follows that, in working with the

GAU Tables
$$(\phi = 1)$$
: ANII Tables $(\phi = 1.05)$:

$$\varphi_{\text{op}} = \left(\frac{v_{\text{D calc.}}}{v_{\text{D op}}}\right)^{2}; \qquad \qquad \varphi_{\text{op}} = 1.05 \left(\frac{v_{\text{D calc.}}}{v_{\text{D op}}}\right)^{2};$$

$$b_{\text{op}} = \frac{\varphi_{\text{op}} - a}{\frac{\omega}{q}}; \qquad \qquad b_{\text{op}} = \frac{\varphi_{\text{op}} - a}{\frac{\omega}{q}}.$$

875

^(*) The subscript op of the last value stands for "determined." translator.

To determine the coefficient b in using the tables of Professor Drozdov and the tables of the Chair of Interior Ballistics, it is necessary, first of all, on the basis of the quantities Δ and p_m , to determine B (or C), and then to determine

$$\Lambda_{K} = \frac{l_{K}}{l_{0}}$$
 and $\eta_{K} = \frac{\Lambda_{K}}{\Lambda_{D}}$.

If $\eta_K < 1$ (the burning of the powder is complete), v_D^2 calc. is computed as follows from the tables of Professor Drozdov (ϕ = 1.05);

$$\mathbf{v}_{D}^{2} \text{ calc.} = \frac{2\mathbf{g}}{1.05} \frac{\mathbf{f}}{\mathbf{e}} \frac{\omega}{\mathbf{q}} \left\{ 1 - \frac{(\Lambda_{K} + 1 - \alpha\Delta)^{\frac{2}{9}}}{(\Lambda_{D} + 1 - \alpha\Delta)^{\frac{2}{9}}} \left[1 - \frac{\mathbf{B}^{\frac{2}{9}}}{2} (1 - z_{0})^{2} \right] \right\} = 29,790^{2}.$$

$$\vdots \frac{\omega}{2} \left\{ 1 - \frac{\mathbf{K}^{\frac{2}{9}}}{2} \right\} = \frac{1}{2} \cdot \frac{(\Lambda_{K} + 1 - \alpha\Delta)^{\frac{2}{9}}}{2} \left[1 - \frac{\mathbf{B}^{\frac{2}{9}}}{2} (1 - z_{0})^{2} \right] \right\} = 29,790^{2}.$$

$$\left. \begin{array}{l} \cdot \frac{\omega}{q} \left\{ 1 - \frac{\kappa^{\varphi}}{(\Lambda_{D} + 1 - \alpha\Delta)^{\varphi}} \right\}; \; \phi_{op} = 1.05 \left(\frac{v_{D \; calc}}{v_{D \; op}} \right)^{2}; \; b_{op} = \frac{\phi - \alpha}{\frac{\omega}{q}}. \end{array} \right.$$

According to the tables compiled by the Department of Interior Ballistics ($\phi=1$), for any f and $\theta=0.2$:

$$v_{D \text{ calc.}}^2 = \frac{2gf}{\theta} \frac{\omega}{q} \left[1 - \frac{BD}{(\Lambda_D + 1 - \alpha\Lambda)\theta} \right],$$

where B and D are found from the table on the basis of the same values for $p_{\underline{m}}$, Δ , and C.

$$\varphi_{\rm op} = \frac{v_{\rm D}^2 \, {\rm calc.}}{v_{\rm D}^2 \, {\rm op}}; \quad b_{\rm op} = \frac{\varphi - a}{\omega/q}.$$

The tables of M.S. Gorokhov are in part constructed in the same manner as the tables of Professor Drozdov, in that the quantities B and Λ_{K} are given directly as functions of Δ and p_m (Appendix III). In addition, there exist special tables for determining the most

STAT

an addition, there exist special tables for determining

advantageous solutions at various p in the case of maximum $\phi E_D^{}$ ($\Delta_H^{}$, $\mathbf{r}', \frac{\mathbf{W}_{\mathbf{KH}}}{\omega}, \Lambda_{\mathbf{D}} + 1, \text{ etc.}$

If $\gamma_{K} > 1$ (the burning of the powder is incomplete), it is impossible to employ the formula for v_{D}^{2} calc. and to compute it with the aid of the tables of Professor Drozdov and of the Department of Interior Ballistics, and it becomes necessary to use only the ANII or GAU Tables in conjunction with the formulas presented above.

INFLUENCE OF VARIATION OF ϕ AND b UPON RESULTS OF COMPUTATIONS OF DESIGN DATA ($\Lambda_D,\ ^I_D)$.

From the fundamental equation, we have

From the fundamental equation, we have:
$$\Lambda_{D} + 1 - \alpha \Delta = \frac{(\Lambda_{K} + 1 - \alpha \Delta) \left[1 - \frac{R\theta}{2} (1 - z_{0})^{2}\right]^{1/\theta}}{(1 - r')^{1/\theta}} = \frac{K}{(1 - r')^{1/\theta}} = \frac{K}{(1 - r')^{1/\theta}}$$
(128)

At predetermined Δ and p_m , the quantity K = const; at a given $\frac{\omega}{q}$, r_{D} = const. We differentiate equation (128) with respect to ϕ , whereupon we multiply and divide the right-hand side by ϕ :

$$d\Lambda_{D} = \frac{K}{\Theta} \frac{r'}{\frac{1}{\Theta+1}} \frac{d\varphi}{\varphi}.$$
 (129)

Upon dividing (129) by (128), we obtain:

$$\frac{d\Lambda_{D}}{\Lambda_{D} + 1 - \alpha\Delta} = \frac{1}{9} \frac{r'}{(1 - r')} \frac{d\varphi}{\varphi}, \tag{130}$$

where, as r' varies in the range of 0.200-0.333 and θ = 0.2, the

877

quantity $\frac{1}{\theta} \frac{r'}{1-r'}$ (the coefficient of $\frac{d\phi}{\phi}$) varies in the range of 1.25-2.50.

1.25-2.50. It is seen from formula (130) that Λ_D increases and decreases with ϕ , this relative variation of Λ_D being greater than the relative variation of ϕ .

From the formula presented above:

$$b = \frac{\varphi - a}{\frac{\omega}{q}};$$

it follows that:

$$db = \frac{d\varphi}{\omega} \text{ and } \frac{db}{b} = \frac{d\varphi}{\varphi - a}.$$
 (131)

Since the difference ϕ - a is usually small, the relative variation of b is considerably greater than the variation of ϕ ,

and the quantity $\varphi = \left(\frac{v_{D, calc.}}{v_{(i), op}}\right)^2$. Consequently, the divergence in

the velocities v_D calc. Obtained by computation with the aid of various tables necessitates a change in b_{op} required to give the same values of v_D .

It follows from Formula (131) that:

$$\frac{d\varphi}{\varphi} = \frac{\varphi - a}{\varphi} \frac{db}{b}$$
 (132)

Upon substituting (132) into (130), we obtain a direct connection

878

between the variation of Λ_{D} and the variation of b:

$$\frac{d\Lambda_D}{\Lambda_D + 1 - \alpha\Delta} = \frac{1}{\theta} \frac{r'}{1 - r'} \frac{\varphi - a}{b} \frac{db}{\varphi} = \frac{1}{\theta} \frac{r'}{1 - r'} \frac{\omega}{\varphi} \frac{db}{\varphi}$$

Upon substituting r' = $\frac{\varphi k_V}{Q}$, where $k_V = \frac{e}{f} \frac{v_D^2}{2g}$, we obtain:

$$\frac{dA_{D}}{A_{D} + 1 - \alpha\Delta} = \frac{k_{V}}{6} \frac{db}{1 - r'} = \frac{v_{D}^{2}}{2gf} \frac{db}{(1 - r')}.$$

Consequently, the influence of the difference in the quantity be increases with an increase in the initial velocity of the projectile \mathbf{v}_{D} , confirming the results obtained in performing computations with the aid of the ANII Tables and the tables of Professor Drozdov.

The relations presented above confirm the necessity of exact selection of the value for the coefficient b on the basis of the results of firing tests from an existing "related" gun which is close in its data to the gun being designed. This is especially important in the case of high initial velocities.

Only in such a case is it possible to expect that the results of the design will agree well with practice.

879

PART THREE - SOLUTION OF PROBLEMS OF INTERNAL BALLISTICS IN COMPLICATED CASES

S E C T I O N E L E V E N - C O M P L I C A T E D C A S E S CHAPTER 1 - SOLUTION FOR CASE OF COMBINED CHARGES

1. GENERAL INFORMATION.

In practice, use is made in many cases of charges consisting of a mixture of two samples of powders, one being usually thinner and the other thicker; in this connection, the powders may differ in the shape of their grain - being degressive or progressive - and in their nature - having different propellant forces f and rates of burning \mathbf{u}_1 .

Such composite or combined charges are employed principally in firing from howitzers to obtain different projectile velocities depending upon combat conditions, for the purpose of destroying targets at all ranges under a definite sufficiently large angle of fall.

Furthermore, combined charges are employed on the firing ground in testing artillery and ammunition equipment whenever it is necessary to select a combination of maximum gas pressure p_m and projectile velocity v_D which it is impossible to obtain with a charge composed of a single type of powder. For example, let it be assumed that "regulation" values for p_m and v_D have been obtained with a definite charge of a given type of powder, but that it is necessary to test the barrel or ammunition at a 10-15% higher pressure p_m and at the same velocity v_D , or else that it is necessary at the regulation pressure p_m to obtain a higher pro-

11083064

STAT

1

jectile velocity \mathbf{v}_{D} for the purpose of testing the action of the gun carriage at a higher recoil velocity. In this case, the problem can be solved by the use of a combined charge, by replacing a part of the regulation charge either with a thinner powder while reducing the total weight of the charge or with a thicker powder while increasing the total weight.

As a rule, on the basis of the tactical and technical requirements, there are predetermined a maximum initial velocity $v_{\rm Do}$ for the full charge (designated as No. 0) and a corresponding velocity $v_{\rm Dn}$ for the minimum charge (charge No. n).

The ballistic computation of the barrel for the full charge at predetermined d, q, and \mathbf{v}_{DO} is performed in the usual manner, with certain modifications which take into account the burning characteristics of the powder under declining pressures as the charge weights are reduced. The number of velocities and the number of charges are designated on the basis of the firing conditions, depending upon the predetermined angles of fall of the projectile and the values set for the overlapping of ranges. The number n is set at 5-10 and even higher.

The maximum pressure for the full charge (No. 0) p_{mO} is designated in the usual manner on the basis of the quantity C_{ξ} ; the maximum pressure for the minimum charge p_{mn} is determined from the cocking conditions of the firing device $(p_{mn} \geqslant 500-700 \text{ kg/cm}^2)$.

The corresponding loading densities are found to be in the ranges of Δ_0 = 0.40-0.60, Δ_n = 0.10-0.15. After a scale of initial velocities \mathbf{v}_{Do} , \mathbf{v}_{D1} , \mathbf{v}_{D2} , ... \mathbf{v}_{Dn} has been arrived at

on the basis of the solution of the problem of exterior ballistics with proper consideration of the overlapping ranges with adjacent charges, internal ballistics must give the magnitudes of the charges necessary to ensure attainment of the predetermined scale of velocities and the weight ratios of the thin and thick powders composing each of these charges, under the condition that the pressures p_{mi} do not exceed the limits imposed upon them.

In order to solve this problem, it is necessary first to give the procedure for solving the problem of pyrodynamics in the case of a combined charge.

This subject is left completely untouched in the treatises and textbooks of foreign authors, but has been elaborated in detail by many of our own authors $\sqrt{-1}$, 2, 4-6.

2. CHARACTERISTICS OF COMBINED CHARGE.

Let a charge ω_{kg} consist of ω_{kg}' of thin powder and ω_{kg}'' of thick powder: $\omega=\omega'+\omega''$. The relative weight of each powder will be designated as follows:

$$\frac{\omega'}{\omega} = \alpha', \quad \frac{\omega''}{\omega} = \alpha'';$$

$$\alpha' + \alpha'' = 1, \quad \alpha'' = 1 - \alpha'.$$

Let it be assumed that these powders possess the following characteristics:

СТДТ

Thin	ω,	α,	2e '	u' ì	$\frac{e_1'}{u_1'}$	- I '	æ',	ג'	ſ,
Thick	ω "	a"	2e" 1	u" 1	$\frac{\mathbf{e}_{1}^{"}}{\mathbf{u}_{1}^{"}}$.	- 1" K	ж" <i>,</i>	א"	f"

The propellant force of the powder in the composite charge is, in the first approximation, computed in accordance with the usual mixing formula:

$$f = \alpha'f' + \alpha''f''. \tag{1}$$

In solving the problem in greater detail, it is necessary to take into consideration the magnitude of f for each instant as a function of the composition of the gases formed prior to that instant:

$$f = \alpha'f'\psi' + \alpha''f''\psi''. \tag{1'}$$

Since, as a rule, in the case of combined charges, use is made of pyroxylin powders, whose propellant forces f' and f" are close to each other, formula (1) can be employed with a sufficient degree of precision. During the burning of a mixture of powders under pressure conditions common to both of them, we shall have:

$$de' = u_1'pdt; de'' = u_1''pdt.$$

Since, under the common pressure conditions p=f(t), the quantity $\int_{-\infty}^{t} pdt$ will have one and the same value for both powders,

883

the integration of these expressions will give the following equations:

$$\frac{\mathbf{e'}}{\mathbf{u'}} = \frac{\mathbf{e''}}{\mathbf{u''}} = \int_{0}^{t} p dt.$$

where e' is one-haif of the thickness of the layer of thin powder burnt prior to a given instant, and e" is the same for the thick powder.

Since the quantity $1 = \int_0^t pdt$ is common to both powders, it is precisely this quantity that is most conveniently taken as the independent variable in solving problems of internal ballistics for a composite charge. This gives a general solution both for the geometric law of burning and for the physical law of burning.

Prior to a certain instant, let there be burned a fraction ψ' of the thin powder and a fraction ψ'' of the thick powder. In weight units, there will burn $\omega'\psi'$ of the former type and $\omega''\psi''_{kg}$ of the latter type; the sum of these weights $\omega'\psi' + \omega''\psi''$ will constitute a certain fraction ψ of the total weight of the mixture ω :

$$\psi = \frac{\omega'\psi' + \omega''\psi''}{\omega} = \alpha'\psi' + \alpha''\psi''. \tag{2}$$

The problem involved in determining the characteristics of the combined charge consists in establishing the form coefficients, Γ , and I_K for the mixture on the basis of the known form coefficients, Γ , and I_K for each of the two types of powders of which the mixture

is composed.

Let us introduce into the general expression for $\boldsymbol{\psi}$:

$$\psi = \kappa z + \kappa \lambda z^2$$

the new independent variable I = \int_{0}^{t} pdt to replace z. Upon designating:

$$\frac{1}{I_K} = z$$
; $\frac{R}{I_K} = K$ and $\frac{\lambda}{I_K} = J$,

there is obtained:

$$\psi = \frac{\kappa}{I_K} I + \frac{\kappa}{I_K} \frac{\lambda}{I_K} I^2 - \kappa I + \kappa n I^2.$$
(3)

Application of this formula to each of the components of the charge gives:

$$\psi' \rightarrow K'I + K'\Lambda'I^2; \qquad (3')$$

$$Ψ$$
" = K"I + K" J "I², (3")

where:

$$\kappa^+ = \frac{\varkappa^+}{r_K^+} \ ; \quad \pi^+ = \frac{\lambda^+}{r_K^+} \ ; \quad \kappa^- = \frac{\varkappa^-}{r_K^-} \ ; \quad \pi^- = \frac{\lambda^-}{r_K^-} \ .$$

Upon now substituting expressions (3), (3'), and (3") into (2), we have:

$$KI + K \Pi I^2 = \alpha' (K'I + K' \Pi'I^2) + \alpha'' (K''I + K'' \Pi''I^2)$$

By equating in this identity the coefficients of the same powers of I, we obtain the following expressions for the

885

characteristics K, K Π , and Π :

$$K = \alpha'K' + \alpha''K''; \qquad (4)$$

$$\mathbf{K} \mathbf{\Pi} = \alpha' \mathbf{K}' \mathbf{\Pi}' + \alpha'' \mathbf{K}'' \mathbf{\Pi}''; \tag{5}$$

$$J - \frac{KJ}{K}$$
.

Consequently, the quantities f, ψ , K, and K Π for the combined charge are obtained from the corresponding characteristics of the individual components in accordance with the ordinary rule of mixtures.

By differentiating equation (2) with respect to I, and keeping in mind that dI = pdt, we obtain:

$$\frac{d\psi}{dI} = \alpha' \cdot \frac{d\psi'}{dI} + \alpha'' \cdot \frac{d\psi''}{dI},$$

but:

$$\frac{d\psi}{dI} = \frac{d\psi}{pdt} = \Gamma.$$

Consequently:

$$\Gamma = \alpha'\Gamma' + \alpha''\Gamma''. \tag{6}$$

In the coordinate axes $\psi-I$, the quantity Γ is the tangent of the slope of the $\psi-I$ curve with respect to the I axis. Let us designate it as γ . Then:

tan
$$\gamma = \alpha'$$
 tan $\gamma' + \alpha''$ tan α'' . (6')

886

Formula (6) is applicable both to the geometric and to the physical law of burning. In the former case, we shall have:

$$L_{\cdot} = \frac{I_{\cdot}^{K}}{K_{\cdot}} e_{\cdot}; \quad L_{\cdot \cdot} = \frac{I_{\cdot \cdot}^{K}}{K_{\cdot \cdot}} e_{\cdot \cdot}$$

and for the mixture:

$$\Gamma = \frac{\mathbf{x}}{\mathbf{I}_{\mathbf{K}}} \mathbf{G} = \alpha' \frac{\mathbf{x}'}{\mathbf{I}_{\mathbf{K}}'} \mathbf{G}' + \alpha'' \frac{\mathbf{x}''}{\mathbf{I}_{\mathbf{K}}''} \mathbf{G}''. \tag{7}$$

For the start of burning, G' = G'' = G = 1. For powders with the same grain shape, $\varkappa' = \varkappa''$. Thus, equation (7) will assume the following form:

$$\frac{\mathbf{I}^{\mathbf{K}}}{\mathbf{x}} = \alpha_1 \cdot \frac{\mathbf{I}_1^{\mathbf{K}}}{\mathbf{x}_1} + \alpha_1 \cdot \frac{\mathbf{I}_n^{\mathbf{K}}}{\mathbf{x}_n} +$$

This equation connects two unknown quantities \aleph and I for \aleph the mixture with the corresponding quantities for the components.

One of these - \times - may be assigned arbitrarily: \times - \times - \times "; then, by cancelling out, we obtain a correlation expressing the nominal average impulse of the mixture of two powders in the following form:

$$\frac{1}{I_K} = \frac{\alpha'}{I_K'} + \frac{\alpha''}{I_K''} ,$$

from which:

$$I_{K} = \frac{I_{K}^{*}I_{K}^{*}}{\alpha'I_{L}^{*} + \alpha''I_{K}^{*}}$$

or:

$$I_{K} = \frac{I_{K}^{'}}{\alpha' + \alpha''z_{K}^{'}} = \frac{I_{K}^{''}}{\frac{\alpha'}{z_{K}^{'}} + \alpha''}, \qquad (8)$$

where $z' = \frac{I'_K}{I''_K} < 1$ is the relative impulse of the thin powder .

Since $\alpha' + \alpha'' = 1$, it follows that:

$$I_{K}^{*} \leq I_{K}^{*} \leq I_{K}^{*}$$
.

Equation (8) shows that, in finding the nominal impulse of the mixture I_K by the rule of mixtures, what is added together are not I_K^* and $I_K^{"}$, but the reciprocal quantities $1/I_K^*$ and $1/I_K^{"}$.

As has been shown by investigations, the formula:

$$I_{K} = \alpha^{\dagger} I_{K}^{\dagger} + \alpha^{"} I_{K}^{"}, \qquad (9)$$

employed at one time gives values that are too high in comparison with $I_{\underline{K}}$ as computed in accordance with formula (8).

In using formula (9) for the computation, the quantity α' is obtained larger, which, in firing, may lead to too high a pressure in comparison with that required.

(*)	z v.	(according	to Drozdov),	and $z_{k}^{*} - \beta_{1}$	(according	to Grave).
(+)	Zw - J1	(according	to Divide to,			

3. GRAPHICAL REPRESENTATION OF CORRELATION ψ -1.

The progressive burning characteristic Γ depicted in ψ -I coordinates represents a tangent of angle γ formed by the slope of curve ψ -I and the I-axis. For powders whose burning surface area is constant, tan $\gamma=1/I_K=const.$

In the case of combined charges:

or:

$$\tan \gamma = \alpha' \tan \gamma' + \alpha'' \tan \gamma''$$
,

where ψ , Γ , and $\tan \gamma$ are expressed as functions of I. Since:

$$\tan \gamma' = \frac{1}{I_K^*}$$
, $\tan \gamma'' = \frac{1}{I_K^*}$ and $\tan \gamma = \frac{1}{I_K}$,

we obtain equation (8):

$$\frac{1}{I_K} = \frac{\alpha'}{I_K'} + \frac{\alpha''}{I_K''}, \qquad (8)$$

where $I_{\overline{K}}$ is subject to graphical determination.

On the basis of the formulas presented above, there is obtained a simple graphical construction of the law of variation of ψ and Γ as functions of I, both during the burning of the mixture and during the completion of the burning of the remaining thicker powder after the burning of the thinner powder is complete.

for simplicity, there is presented in the diagram the solution for powders with a constant burning area, it being assumed that $\alpha'=0.4$ and $\alpha''=0.6$.

Fig. 168 - Scheme of Burning of Combined Charge.

completion of burning of thick powder;
 mixture.

In fig. 168, the straight line 1 expresses the law of variation ψ' -1 for a thin powder with the impulse I_K^* , while the straight line 2 expresses the law of variation of ψ'' -1 for a thick powder (I_K^*) .

In this connection:

$$\tan \gamma' = \frac{1}{I_K^*} \; ; \quad \tan \gamma'' = \frac{1}{I_K^{\prime\prime}} \; ; \quad \tan \gamma = \frac{1}{I_K} \; .$$

To construct the law of variation of ψ for a mixture of powders, the diagram is divided along its height into two parts - a lower part α' (00') and an upper part α'' (0'0"):

From the point 0' at the height α ', there is drawn the straight line 0'B', which is parallel to the abscissa.

Along the ordinate aA, which corresponds to the impulse I'_K , the segment $aA' = \alpha'$; the straight line OA' gives the values of $\alpha' \psi'$ (the values of the ordinates of the straight line OA multiplied by α'). In the upper part of the diagram, there is drawn from the point O' the straight line O'B; its ordinates, measured from the line O'B', give the values of the second component $\alpha'' \psi''$.

In accordance with the formula $\psi=\alpha'\psi'+\alpha''\psi''$, there are added together the corresponding ordinates of the straight lines OA' and O'B; there is obtained the resultant line OC, which expresses the law of variation of ψ as a function of I for the combined charge as long as the two powders burn together.

From the similar triangles OCa and ODd on the one hand and O'CA' and OBB' on the other hand, we obtain:

$$\tan \gamma = \frac{Dd}{Od} = \frac{1}{I_K} = \frac{aC}{Oa} ,$$

but:

$$\frac{aC}{Oa} = \frac{aA^{+} + A^{+}C}{Oa} = \frac{\alpha^{+}}{I_{K}^{+}} + \frac{\alpha^{+}}{I_{K}^{+}} ,$$

since:

$$\frac{{\tt A}^{\, '}{\tt C}}{{\tt O}{\tt R}} = \frac{{\tt A}^{\, '}{\tt C}}{{\tt O}^{\, '}{\tt A}^{\, '}} = \frac{{\tt B}^{\, '}{\tt B}}{{\tt O}^{\, '}{\tt B}^{\, '}} = \frac{\alpha^{\, ''}}{I_{\, K}^{\, ''}} \ .$$

891

Consequently, we obtain formula (8) by graphical means:

$$\tan \gamma - \frac{1}{I_K} - \frac{\alpha'}{I_K^2} + \frac{\alpha''}{I_K^2}. \tag{8}$$

Toward the end of burning of the thin powder (I_{K}^{+}), there will have burned the following part of the total charge:

$$\psi_{K}^{+} = aA^{+} + A^{+}C = aA^{+} + BB^{+} \frac{I_{K}^{+}}{I_{K}^{+}} = \alpha^{+} + \alpha^{+} \frac{I_{K}^{+}}{I_{K}^{+}} = \frac{I_{K}^$$

from which $\psi_K^*/I_K^*=1/I_K^*;$ in the diagram, this is represented by the ratio:

$$\frac{aC}{Oa} = \frac{Dd}{I_K} = \frac{1}{I_K}$$

Consequently, the nominal impulse of the mixture I_{K} will be obtained by continuing the line OC until it intersects the straight line ψ = 1; the corresponding abscissa Od gives the impulse I_{K} for the mixture.

A break occurs at the point C along the line ψ -I, and thenceforth the law of completion of burning of the thick powder and of the variation of ψ is expressed by the line CB and by the equation:

$$\psi = \alpha' + \alpha''\psi''$$

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

Fig. 169 - Variation of Intensive Gas Formation from Combined Charge.
1) Γ of mixture.

Figure 169 shows the construction of the \(\Gamma\)-I diagram for the mixture of the same powders with a constant burning area.

 Γ' is characterized by the ordinates of the straight line O'A'; Γ'' is characterized by the straight line O'B"; in this connection $\int\limits_0^{I_K} \Gamma dI = 1$ must be fulfilled as an identity, and

since, in the case under consideration, Γ = const, there will prevail for each powder separately $\Gamma'I_K'=1$ and $\Gamma''I_K''=1$. In conformity with the formula:

$$\Gamma = \alpha'\Gamma' + \alpha''\Gamma'' \tag{6}$$

We first multiply the ordinates Γ " by α ", obtaining the straight line bb'b" (α " Γ "); to its ordinates, for the abscissas from zero to I', we add the quantities ba = b'a' (α ' Γ '). The ordinates of the line aa' give the characteristic Γ for the combined charge:

893

In the instant of complete burning of the thin powder with the impulse I_K' , the characteristic Γ changes suddenly (from a' to b'), thereupon assuming the form of the straight line b'b" (α " Γ "), which expresses the intensity of gas formation in the process of completion of burning of the thicker powder with the impulse I_K'' alone.

It is not difficult to show that the shaded area, which expresses the intensity of burning of the combined charge, equals unity, just as in the case of single charges.

As a matter of fact:

(This formula is illegible on the original photostat. Editor.)

since $\Gamma'I'_{\kappa} = \Gamma"I''_{\kappa} = 1$.

Now, knowing the correlations Γ -I and ψ -I, it is possible to establish the diagram for the correlation Γ - ψ and to apply the resulting data on Γ , ψ , and I for the combined charge to the solution of the problem of internal ballistics.

In solving the problem for the case of the geometric law of burning, it is necessary to know the form characteristics K and K in accordance with formulas (4) and (5) and to apply them in the same manner as in solving the problem for a charge consisting of a single type of powder until the thin powder and the corresponding part of the thick powder have burned.

Following this, the law of gas formation changes, the intensity of gas formation diminishes, and, in solving the problem of pyrodynamics, it becomes necessary to take into account the change in the initial conditions for this phase of burning of

the composite charge.

A detailed theoretical solution of this problem is given in the theoretical part on pyrodynamics.

In the case of the geometric law of burning, the dependence of ψ for the mixture is usually expressed in terms of z'' - the relative thickness of the thicker powder. For powders with the form characteristics of the grain x', λ' and x'', λ'' , we have:

$$\psi^{\scriptscriptstyle +} = \varkappa^{\scriptscriptstyle +} z^{\scriptscriptstyle +} + \varkappa^{\scriptscriptstyle +} \lambda^{\scriptscriptstyle +} z^{\scriptscriptstyle +2}; \quad \psi^{\scriptscriptstyle +} = \varkappa^{\scriptscriptstyle +} z^{\scriptscriptstyle +} + \varkappa^{\scriptscriptstyle +} \lambda^{\scriptscriptstyle +} z^{\scriptscriptstyle +2},$$

where:

$$z' = \frac{e'}{e'_1} = \frac{I'}{1'_K}$$
; $z'' = \frac{e''}{e''_1} = \frac{I''}{K}$.

Inasmuch as, for both powders, in a given instant, I' = I" = I and $J_K^* \! < \! I_K^*$, it follows that $z^* \! > \! z^*$.

Substituting the quantities z' and z'' into the formulas for ψ' and ψ'' , we obtain:

$$\psi^{\scriptscriptstyle \text{\tiny T}} = \frac{\varkappa^{\scriptscriptstyle \text{\tiny T}}}{I_K^{\scriptscriptstyle \text{\tiny T}}} \ \mathbf{I} + \frac{\varkappa^{\scriptscriptstyle \text{\tiny T}}}{I_K^{\scriptscriptstyle \text{\tiny T}}} \ \frac{\lambda^{\scriptscriptstyle \text{\tiny T}}}{I_K^{\scriptscriptstyle \text{\tiny T}}} \ \mathbf{I}^2; \ \psi^{\scriptscriptstyle \text{\tiny T}} = \frac{\varkappa^{\scriptscriptstyle \text{\tiny T}}}{I_K^{\scriptscriptstyle \text{\tiny T}}} \ \mathbf{I} + \frac{\varkappa^{\scriptscriptstyle \text{\tiny T}}}{I_K^{\scriptscriptstyle \text{\tiny T}}} \ \frac{\lambda^{\scriptscriptstyle \text{\tiny T}}}{I_K^{\scriptscriptstyle \text{\tiny T}}} \ \mathbf{I}^2.$$

By expressing the dependence of ψ' in terms of $z^n,$ multiplying and dividing by $I_K^n,$ and designating $I_K^{\prime}/I_K^n=z_K^{\prime},$ we obtain:

$$\psi^+ = \frac{\varkappa^+}{z_K^+} \frac{1}{1_K^+} + \frac{\varkappa^-}{z_K^+} \frac{\lambda^+}{z_K^+} \frac{1}{1_K^+} = \frac{\varkappa^+}{z_K^+} z^- + \frac{\varkappa^+}{z_K^+} \frac{\lambda^+}{z_K^+} z^-,$$

but:

Representation of ψ as a function of z" gives:

$$\psi = \varkappa_{\text{CM}} z'' + \varkappa_{\text{CM}} \lambda_{\text{CM}} z''^2 = \alpha' \cdot \frac{\varkappa'}{z_{K}'} z'' + \alpha' \cdot \frac{\varkappa'}{z_{K}'} \frac{\lambda'}{z_{K}'} z''^2 + \alpha''\varkappa''z'' + \alpha''\varkappa''\lambda'' \cdot z''^2.$$

We equate the coefficients of the same powers of z":

$$\varkappa_{\text{CM}} = \varkappa' \frac{\alpha'}{z_{K}^{+}} + \alpha'' \varkappa''; \quad \varkappa_{\text{CM}}^{-\lambda} = \varkappa' \lambda' \cdot \frac{\alpha'}{z_{K}^{+2}} + \alpha'' \varkappa'' \lambda''.$$

Thus, there has been obtained an expression for ψ mixture in the usual form, as a function of $z^{\prime\prime}$ - the relative thickness of the burnt layer of the thicker powder.

Since the quantity $\psi_0^{}$ is computed with the aid of the usual formula:

$$\Psi_{0} = \frac{\frac{1}{\Delta} - \frac{1}{\delta}}{\frac{f_{1}}{p_{0}} + \alpha - \frac{1}{\delta}},$$

where $f_i = \alpha'f' + \alpha''f''$ is the propellant force of the powder in the combined charge, it follows that:

$$\mathbf{z}_0^{"} = \frac{\mathbf{z}_{\psi_0}}{\kappa_{\text{CM}}(1+\mathfrak{S}_0)} \approx \frac{\psi_0}{\kappa_{\text{CM}}} = \frac{\psi_0}{\kappa \left(\frac{\alpha^{'}}{\mathbf{z}_{K}^{'}} + \alpha^{"}\right)} ,$$

since $6 \approx 1$.

Since $z_{K}^{1} < 1$, it follows that:

$$\frac{\alpha'}{\mathbf{z}'_{\mathbf{K}}} + \alpha'' > \alpha' + \alpha'' = 1$$

and z_0^{α} is smaller than z_0 for a single charge at the same value of ψ_0 .

The formulas derived above apply as long as both powders are burning, i.e., until the instant when:

$$z'' - z_K' - \frac{\Gamma_K'}{\Gamma_K'}$$
; $z' - 1$ and $\psi' - 1$.

In that instant:

$$\psi_{K}$$
, - α' + $\alpha''\psi_{K}''$, ,

where $\psi_{K'}^{"} = \kappa z' + \kappa \lambda z'^2$ is the part of the charge of thick powder which has burned by the time the burning of the thin powder is complete.

4. ANALYTICAL SOLUTION OF PROBLEM (Written by Professor G. V. Oppokov).

We shall here consider in detail only the simplest case, when the charge consists of powders of two types, both of which are degressive in form and possess the same physico-chemical nature. It is already known that the total interval of burning of the charge must in this case be divided into two phases; by the end of the first phase, all of the thin powder and a part of the thick powder have burned, and the burning of the thick powder is completed in

897

the course of the second phase.

For the first phase, in the presence of a binomial relation for the law of gas formation, we have:

$$\psi = \varkappa z'' + \varkappa \lambda z''^2$$
.

Consequently, the formulas for the single charge retain their significance, as long as the following particulars are observed.

1) The form characteristics \varkappa and $\varkappa\lambda$ are determined with the aid of the following formulas:

$$\varkappa = \frac{\varkappa'}{z_K^+} \alpha' + \varkappa''\alpha'' \quad \text{and} \quad \varkappa\lambda = \frac{\varkappa' \lambda'}{z^{+2}} \alpha' + \varkappa''\lambda''\alpha'',$$

where:

$$\mathbf{z}_{\mathbf{K}}^{+} = \frac{\mathbf{I}_{\mathbf{K}}^{+}}{\mathbf{I}_{\mathbf{K}}^{+}} \; , \quad \mathbf{a}^{+} = \frac{\omega^{+}}{\omega} \; , \quad \mathbf{a}^{-} = \frac{\omega^{-}}{\omega} \; . \label{eq:zk}$$

2) The quantities z_0 and I_K must be replaced by $z_0^{\prime\prime}$ and $I_K^{\prime\prime}$ for the thick powder, where:

$$z_0^{"} = \frac{\psi_0}{\varkappa} = \frac{\psi_0}{\varkappa''\left(\frac{\alpha'}{z'_K} + \alpha''\right)}$$
.

3) The argument:

$$x - z'' - z_0''; \quad x_K' - z_K'' - z_0'' - z_K' - z_0''$$

4) At the end of the first phase, we shall have:

$$z_{K'}^{"} - \frac{e_1^{'}}{e_1^{"}}; \quad x_{K'}^{} - z_{K'}^{"} - z_0^{"}; \quad v_{K}^{'} - v_{K,0}^{} x_{K'}^{},$$

where:

$$v_{K,0} = \frac{SI_K^n}{\varphi_B}$$

In the second phase, the differential equation:

$$\frac{\mathrm{d}l}{\mathrm{d}x} = \frac{\mathrm{Bx}(l\psi + l)}{\psi - \frac{\mathrm{B}\theta}{2} x^2} \tag{10}$$

is retained, as is the formula for the velocity of the projectile:

and the law of gas formation has the following form:

$$\psi = \frac{\omega'}{\omega} + \frac{\omega''}{\omega} \times "z"(1 + \lambda"z").$$

By substituting here the quantity:

and designating:

$$\begin{split} \psi_{0,2} &= \frac{\omega'}{\omega} + \left(\!\frac{\omega''}{\omega} \varkappa''\right) z_0'' + \left(\!\frac{\omega''}{\omega} \varkappa'' \lambda''\right) z_0''^2; \\ k_{1,2} &= \frac{\omega''}{\omega} \varkappa'' + 2 \left(\!\frac{\omega''}{\omega} \varkappa'' \lambda''\right) z_0'' = \end{split}$$

$$= \frac{\omega''}{\omega} \, \aleph''(1 + 2\lambda''z_0'') = \frac{\omega''}{\omega} \, \aleph''6_0'',$$

we shall obtain for the second phase:

$$\psi = \psi_{0,2} + k_{1,2}x + \left(\frac{\omega''}{\omega} * ''\lambda''\right)x^2.$$

Thus, the law of gas formation has a form analogous to the form of the law of gas formation for the first phase:

$$\psi = \psi_0 + k_1 x + k \lambda x^2.$$

It follows from this that, for the second phase, instead of B and C, use must be made of the quantities B_2 and C_2 , where:

$$B_2 = \frac{B\theta}{2} - \left(\frac{\omega^{"}}{\omega} \times "\lambda"\right); \quad C_2 = \frac{B_2}{k_{1,2}},$$

and then the tabular parameters will be:

$$\beta = C_2 x$$
; $\gamma = \frac{C_2 \psi_{0,2}}{k_{1,2}}$.

Furthermore, in integrating the equation:

$$\frac{dl}{dx} = \frac{Bx(l_{\psi} + l)}{\psi_{0,2} + k_{1,2}x - B_2x^2}$$
 (11)

it must be taken into consideration that, at the start of the second phase, the path $\{$ is equal to the path $\{$ _{K,l} $\}$ of the projectile at the end of the first phase, and the initial value of β equals:

$$\beta_{0,2} = C_{2}x_{K,1}$$

STAT

900

Consequently, approximate integration of equation (11) gives:

$$\ln \frac{l_{\psi_{av}} + l_{K,1}}{l_{\psi_{av}} + l_{K,1}} - \int_{x_{K,1}}^{x} \frac{Bxdx}{\psi_{0,2} + k_{1,2}x - B_{2}x^{2}} - \frac{B}{B_{2}} \int_{\beta_{0,2}}^{\beta} \frac{\beta d\beta}{\gamma + \beta - \beta^{2}},$$
(12)

where, as in the first phase:

but, in contrast with that phase:

$$\psi_{av} = \frac{\psi_{K,1} + \psi}{2},$$

in which connection $\psi_{K,l}$, the relative fraction of the burnt part of the total charge, is equal at the start of the second phase to:

$$\psi_{K,1} = \star z_{K,1}^n + \star \lambda z_{K,1}^n = \psi_0 + k_1 x_{K,1} + \star \lambda x_{K,1}^2.$$

In determining the integral of the right-hand side of equation (11), it is possible to make use of the same table for $\log z^{-1}$, while keeping in mind, however, that:

$$\log e \int_{\beta_{0,2}}^{\beta} \frac{\beta d\beta}{\gamma + \beta - \beta^{2}} = \log e \int_{0}^{\beta} \frac{\beta d\beta}{\gamma + \beta - \beta^{2}} = \log e \int_{0}^{\beta_{0,2}} \frac{\beta d\beta}{\gamma + \beta - \beta^{2}} =$$

 $-\log(z^{-1}z_{0,2})$,

where:

$$\beta$$
 $1 \text{ og } z^{-1} = \log e$

$$\int_{0}^{\beta} \frac{\beta d\beta}{\gamma + \beta - \beta^{2}}; \quad \log z_{0,2}^{-1} = \log e$$

$$\int_{0}^{\beta_{0,2}} \frac{\beta d\beta}{\gamma + \beta - \beta^{2}}.$$

Thus:

$$\ln - \frac{!_{\Psi_{aV}} + !_{\chi_{1}}}{!_{\Psi_{aV}} + !_{\chi_{1}}} - \ln (z^{-B/B_{2}} z_{0,2}^{B/B_{2}}),$$

from which there is finally obtained the desired general relation for the path of the projectile in the second phase:

$$1 - (t_{\Psi_{av}} + t_{K,1}) z_{0,2}^{B/B_2} z^{-B/B_2} - t_{\Psi_{av}}$$

Therefore, in comparison with the first phase, the coefficient $l\psi_{av}$ applied to $z^{-B_{\ell}\,B_1}$ is replaced by the following product:

$$(l_{\psi_{av}} + l_{K,1})^{B/B_2},$$

where $z_{0,2}^{B/B_2}$ is a constant quantity for all points in the second phase, which is determined from the table for log z^{-1} on the basis of data for γ and $\beta_{0,2}$.

Note: At y > 0.2, it is possible to make use of the following formula:

$$\log z^{-1} = \frac{1}{2} \frac{1}{\sqrt{1+4\gamma}} \log \frac{1+\frac{\beta}{2\gamma} (\sqrt{1+4\gamma}+1)}{1-\frac{\beta}{2\gamma} (\sqrt{1+4\gamma}-1)} - \frac{1}{2} \log \left[1+\frac{\beta}{\gamma} (1-\beta)\right].$$

Example 1. To find the principal ballistic elements for the 1909 model, 152-mm field howitzer with a full charge composed of thin Γ_6 powder and thick Γ_6 powder under the following conditions:

in
$$t_6$$
 powder $u_1 = 0.98$; $\delta = 1.6$; $\theta = 0.18$; $u_1 = 7.1 \cdot 10^{-6}$; $\omega' = 0.6015$; $0.675 \cdot 14 \cdot 100 \text{ (mm)}$; $\omega''' = 1.228$; $1.055 \cdot 20 \cdot 100 \text{ (mm)}$; $u_1 = 1.868$; $u_2 = 4.04$; $u_3 = 1.868$; $u_4 = 4.04$; $u_5 = 1.868$; $u_6 = 4.04$; $u_6 = 1.868$; $u_6 = 4.04$; $u_6 = 1.868$; $u_6 = 4.04$; $u_6 = 1.868$; $u_6 = 4.04$; $u_6 = 1.868$; $u_6 = 4.04$; $u_6 = 1.868$; $u_6 = 4.04$; $u_6 = 1.868$; $u_6 = 4.04$; $u_6 = 1.868$;

Solution. The computations are broken up into separate stages.

I. Preliminary Period.

1. Preliminary Period.

1)
$$x' = 1 + \alpha' + \beta' - \frac{1}{2} \alpha' \beta' = 1.0548$$
; $x' \lambda' = -0.0548$;

2)
$$\mathbf{R}'' = 1 + \alpha'' + \beta'' - \frac{\lambda}{2} \alpha''\beta'' = 1.063$$
; $\mathbf{R}''\lambda'' = -0.0630$;

3)
$$\frac{\omega'}{\omega} = \frac{\omega'}{\omega' + \omega''} = 0.3287;$$

4)
$$\frac{\omega''}{\omega} = 0.6713;$$

5)
$$z_{K,1}^{"} = \frac{2e_1'}{2e_1''} = 0.6398;$$

6)
$$X = \frac{\omega'}{\omega} \frac{X'}{z'_{K,1}} + \frac{\omega''}{\omega} X'' = 0.5419 + 0.7136 = 1.2555;$$

8)
$$\frac{1}{\delta_2} = \frac{\Psi_0}{\omega} - \frac{1}{\delta} = 1.583;$$

903

9)
$$\frac{1}{\delta_1} - \alpha - \frac{1}{\delta} - 0.355;$$

10)
$$\psi_0 = \frac{1}{\delta_2} : \left(\frac{f}{p_0} + \frac{1}{\delta_1} \right) = 0.0508;$$

11)
$$k_1 = \sqrt{x^2 + 4\kappa\lambda\psi_0} = 1.248;$$

12)
$$z_0^{"} = \frac{2\psi_0}{x + k_1} = 0.0405$$
; $x_{K,1} = z_{K,1}^{"} = z_0^{"} = 0.5993$;

$$x_{K,2} - 1 - z_0^n - 0.9595.$$

II. Preliminary Computations for First Phase of First Period.

1)
$$\varphi = 1.06 + \frac{1}{3} \frac{\omega}{q} = 1.075;$$

2)
$$\frac{\varphi_m}{s} = 0.2402;$$

3)
$$I_{K}^{"} - \frac{e_{1}^{"}}{u_{1}} - 742.9;$$

4)
$$v_{K,0} = I_K^n: \frac{\varphi_m}{s} = 3092;$$

5)
$$\frac{\omega}{s}$$
 - 0.9800;

6)
$$f = 906,300$$
;

7)
$$t_{\Delta} = \frac{\omega}{s} \frac{1}{\delta_2} = 1.552;$$

8)
$$a = \frac{\omega}{s} \frac{1}{\delta_1} = 0.3478$$
.

III. Tabular Constants for First Phase of First Period.

1)
$$B = I_K^{-2}$$
; $\left(f = \frac{\omega}{8} \frac{\phi m}{8}\right) = 2.534$;

2)
$$B_1 = \frac{B\theta}{2} = \kappa \lambda = 0.3144$$
 (cf. No. 7 in Stage I);

3)
$$\frac{B}{B_1} = 8.061;$$

4)
$$C = \frac{B_1}{k_1} = 0.2520;$$

5)
$$\gamma = \frac{C\psi_0}{k_1} = 0.01024$$
.

IV. Ballistic Elements of Shot at End of First Phase of First Period.

1)
$$\beta_{K,1} = C (1 - z_0^n) = Cx_{K,1} = 0.1510;$$

2)
$$v_{K,1} = v_{K,0}x_{K,1} = 185.3 \text{ m/sec};$$

3)
$$\psi_{K,1} = \psi_0 + k_1 x_{K,1} + \kappa \lambda x_{K,1}^2 = 0.7676$$
;

4)
$$\psi_{av} = \frac{\psi_{K,1} + \psi_0}{2} = 0.4092;$$

5)
$$l_{\psi_{av}} = l_{\Delta} - a\psi_{av} = 1.410;$$

6)
$$\log z_{K,1}^{-1} = 0.0577$$
 (from table of $\log z^{-1}$);

7)
$$l_{K,1} = l_{\psi_{av}} z_{K,1}^{-B/B_1} - l_{\psi_{av}} = 2.704 \text{ dm};$$

8)
$$l_{\Psi_{K,1}} - l_{\Delta} - a_{\Psi_{K,1}} - 1.285 \text{ dm};$$

9)
$$p_{K,1} = f = \frac{\psi_{K,1} - \frac{B\theta}{2} x_{K,1}^2}{l_{\psi_{K,1}} + l_{K,1}} = 1558 \text{ kg/cm}^2$$

V. Ballistic Elements of Shot at p_m .

We anticipate $p_m = 1700 \text{ kg}, \text{cm}^2$. In the first approximation, we find:

$$x_{m,1} = \frac{k_1}{\frac{B(1+\theta)}{1+\frac{p_m}{f\delta_1}}} = 0.4187.$$

1)
$$\beta_{m,1} = Cx_{m,1} = 0.1054;$$

2)
$$v_{m,1} = v_{K,0}^{X_{m,1}} = 129.5 \text{ m/sec};$$

3)
$$\psi_{m,1} - \psi_0 + k_1 x_{m,1} + \kappa \lambda x_{m,1}^2 - 0.5572;$$

4)
$$\psi_{av} = \frac{\psi_{a,1} + \psi_0}{2} = 0.3045;$$

5)
$$l_{\psi_{av}} = l_{\Delta} - a\psi_{av} = 1.446;$$

6)
$$\log z_{m,1}^{-1} = 0.0369;$$

7)
$$t_{m,1} = t_{\psi_{av}} z_{m,1}^{-B/B_1} - t_{\psi_{av}} = 1.423;$$

8)
$$l_{\psi m, 1} = l_{\Delta} - a\psi = 1.358 \text{ dm};$$

9)
$$p_{m,1} = f \frac{\omega}{s} \frac{\psi_{m,1} - \frac{B\theta}{2} x_{m,1}^2}{\ell_{\psi m,1} + \ell_{m,1}} = 1689 \text{ kg/cm}^2$$

There is no sense in making further approximations, since, generally speaking, there is allowed a $\pm 50~{\rm kg/cm^2}$ discrepancy between the initial and computed p_{m} . In accordance with literature data, the maximum pressure obtained in firing tests is 1650-1700 kg/cm².

VI. Preliminary Computations for Second Phase of First Period.

VI. Preliminary Computations for Second 1.2.2.

1)
$$\psi_{0,2} = \frac{\omega'}{\omega} + \left(\frac{\omega''}{\omega} \times ''\right) z_0'' + \left(\frac{\omega''}{\omega} \times '' \times ''\right) z_0''^2 = 0.3576 \text{ (cf. Nos. 6)}$$

and 7 in Stage I);

(in Stage I);
2)
$$k_{1,2} = \frac{\omega''}{\omega} \times '' + 2 \left(\frac{\omega''}{\omega} \times '' \lambda'' \right) z_0'' = 0.7102.$$

VII. Tabular Constants for Se and Phase of Pirst period.

1)
$$B_2 = \frac{B\theta}{2} = \frac{\omega''}{\omega} \times "\lambda" = 0.2704;$$

2)
$$\frac{B}{B_2} = 9.374$$
;

3)
$$C_2 = \frac{B_2}{k_{1,2}} = 0.3807$$
;

4)
$$\gamma = \frac{c_2 \psi_{0,2}}{k_{1,2}} = 0.1916;$$

5)
$$\beta_{0,2} = C_{2}x_{K,1} = 0.2281;$$

6)
$$\log z_{0,2}^{-1} = 0.0364$$
 (knowing γ and $\beta_{0,2}$)

7)
$$z_{0,2}^{B_2} = 0.4558$$
.

VIII. Ballistic Elements at End of Burning of Powder.

1)
$$\beta_{K,2} = C_2 x_{K,2} = 0.3653;$$

2)
$$v_{K,2} = v_{K,0}x_{K,0} = 296.7 \text{ m/sec};$$

3)
$$\psi_{K,2} = \psi_2 + k_{1,2} x_{K,2} + \left(\frac{\omega''}{\omega} \times '' \lambda''\right) x_{K,2}^2 = 1;$$

4)
$$\psi_{av}$$
 = $\frac{\psi_{K,2} + \psi_{K,1}}{2}$ = 0.8838;

5)
$$l_{\psi_{av}} = l_{\Delta} - a\psi_{av} = 1.245 \text{ dm};$$

6)
$$\log z_{K,2}^{-1} = 0.0807;$$

7)
$$\binom{B}{K,2} = \binom{1}{\psi_{av}} + \binom{B}{K,1} \binom{B}{Z_{0,2}} \binom{B}{Z_{K,2}} - \binom{B}{\psi_{av}} = 9.04 \text{ dm};$$

8)
$$l_{\psi K,2} = l_{\Delta} - a\psi_{K,2} = 1.203 \text{ dm};$$

9)
$$p_{K,2} = \frac{f\omega}{s} \frac{\Psi_{K,2} - \frac{B\theta}{2} x_{K,2}^2}{(\Psi_{K,2} + (K,2))} = 699 \text{ kg/cm}^2.$$

The resulting values:

$$\psi_{K,2} - \frac{B\theta}{2} x_{K,2}^2 - 1 - \frac{v_K^2}{v_{\eta_p}^2} = 0.7901;$$

$$l_{\Psi_{K,2}} = l_1 = 1.203; \log p_{K,2} \text{ and } -\log(l_1 + l_{K,2})$$

will be needed for the next stage.

IX. Ballistic Elements of Shot at Muzzle.

As assigned, $l_p = 14.58$.

1)
$$v_{\text{hp}}^2 = \frac{2}{\theta} \left(f \frac{\omega}{s} \right) : \left(\frac{\varphi_{\text{m}}}{s} \right) = 4.193 \cdot 10^7;$$

2)
$$\eta_D = \frac{l_1 + l_D}{l_1 + l_{K,2}} = 1.539;$$

3)
$$p_D = p_{K,2} \gamma_D^{-1-\theta} = 420 \text{ kg/cm}^2;$$

4)
$$v_D = v_{n_D} \sqrt{1 - \left(1 - \frac{v_K^2}{v_{n_D}^2}\right) \eta_D^{-0.2}} = 335.9 \text{ m/sec.}$$

The tabular muzzle velocity is v_D = 335.3 m/sec.

5. Use of GAU Tables for the Case of Combined Charges.

The GAU Tables, ANII Tables, and tables of Professor Drozdov are set up for a charge consisting of a single type of powder, which is characterized by the strip-type grain shape $(\aleph=1.06)$, the strip thickness $2e_1$, and the burning rate u_1 or full impulse $I_{\underline{\kappa}}=e_1/u_1$.

The magnitude of the impulse I_K enters into the loading parame $B=\frac{s^2I_K^2}{f\omega\phi n}$, which is a basic quantity in the tables together with quantity Δ . The relations found above for I_K of the mixture

quantity Δ . The relations found above for I_K of the mixture the other characteristics make it possible approximately, by

CTAT

will be needed for the next stage.

IX. Ballistic Elements of Shot at Muzzle.

As assigned, $l_{\rm p} = 14.58$.

1)
$$v_{np}^2 = \frac{2}{\theta} \left(f \frac{\omega}{s} \right) : \left(\frac{\varphi_m}{s} \right) = 4.193 \cdot 10^7;$$

2)
$$\eta_D = \frac{l_1 + l_D}{l_1 + l_{K,2}} = 1.539;$$

3)
$$p_D = p_{K,2} \gamma_D^{-1-\theta} = 420 \text{ kg/cm}^2$$
;

4)
$$v_D = v_{np} \sqrt{1 - \left(1 - \frac{v_K^2}{v_{np}^2}\right) \eta_D^{-0.2}} = 335.9 \text{ m/sec.}$$

The tabular muzzle velocity is $v_{\bar{D}}$ = 335.3 m/sec.

5. Use of GAU Tables for the Case of Combined Charges.

The GAU Tables, ANII Tables, and tables of Professor Drozdov are set up for a charge consisting of a single type of powder, which is characterized by the strip-type grain shape ($\aleph=1.06$), the strip thickness $2e_1$, and the burning rate u_1 or full impulse $I_{\aleph}=e_1/u_1$.

The magnitude of the impulse I_K enters into the loading parameter $B=\frac{s^2I_K^2}{f\omega\phi m}$, which is a basic quantity in the tables together with the quantity Δ . The relations found above for I_K of the mixture and for the other characteristics make it possible approximately, but with

an accuracy sufficient for practical purposes, to utilize the GAU and other table for the solution of problems in interior ballistics in the case of combined charges.

If the powders composing the charge have the same strip shape, then, knowing I_K^* and $I_K^{"}$, as well as ω , ω , and ω , the nominal pressure impulse of the mixture of powders I_K is found with the aid of formula (8), substituted into the expression for B, and used in solving the problem in the same manner as in the case of a single powder.

If the powders have different grain shapes, for example degressive (strip or grain of the 4/1 or 7/1 type) and progressive with seven perforations (7/7, 9/7, 12/7, etc.), then, for the degressive powders, $\aleph = 1.06$ is assumed, and, instead of powders with seven perforations, there is taken the equivalent strip-type powder with the following strip thickness:

$$2e_{1}$$
 = $\frac{10}{7}$ $2e_{1}$ perfor.

and the impulse $I_K^{"} = e_1^{"}/u_1^{"}$ is determined for it.

For strip-type as well as for 4/1 and 7/1 powders, the thickness of the powder is not altered, and I_K^* is determined in the usual manner: $I_K^* = e_1^*/u_1^*$.

These values for the impulses I_K^* and I_K^* are thereupon substituted into formula (8), I_K^* for the combined charge is found from the known values of α^* and α^* , and, this quantity having been used to compute the parameter B, the problem is thenceforth solved in the usual manner, as in the case of a single powder.

Thus the solution applicable to a combined charge contains only one additional operation for determining the pulse \mathbf{I}_{K} of the mixture according to formula (8).

The results of computations on the basis of the tables, performed parallel with computations by the analytical methods of Professor Drozdov and Professor Grave, show an almost perfect agreement in the quantities $\mathbf{p_m}$ and $\mathbf{v_D}$. But the tabular method with the use of the impulse $\mathbf{I_K}$ of the mixture and the parameter B corresponding thereto does not make it possible to determine the actual position of the projectile at the end of burning of the entire charge, which corresponds to the end of burning of the thick powder with the impulse $\mathbf{I_K^*}$.

The quantity I_{K} for the mixture is merely a nominal quantity suitable to characterize the rate of gas formation as long as both powders are burning together (as far as the point C in fig. 168). The actual end of burning can be determined from the velocity curve v-1 or $v-\lambda$, if there is marked thereon the ordinate v_{K}^{u} corresponding to the end of burning of the thick powder, which is determined for the formula:

$$v_{K}^{"} = \frac{s1_{K}^{"}}{\varphi_{M}} (1 - z_{0}), \qquad (13)$$

where:

$$z_0 \approx \frac{\psi_0}{\kappa}$$
, and $\psi_0 = \frac{\frac{1}{\Delta} - \frac{1}{\delta}}{\frac{f}{P_0} + \alpha - \frac{1}{\delta}}$

From the $v-\{$ diagram, on the basis of the quantity v_K^u , we can determine the magnitude of the path $\{\frac{u}{K},$ i.e., the position of the

end of burning of the total charge, which is important for establishing the completeness of burning of the powder with a given charge.

In exactly the same manner, with the aid of the formula:

$$v_{K}^{"} = \frac{s1_{K}^{"}}{\varphi_{M}} (1 - z_{0}),$$

it is possible to determine from the v-1 diagram the position of the projectile at the end of burning of the thin powder l.

To determine the percentage content of the thin and thick powders in the mixture for a gun with predetermined design characteristics (W_0, s, Λ_D) at a predetermined Δ , the quantity p_m is used to establish the parameter B from the GAU Tables, Issue No. I, whereupon there is found the impulse of the mixture:

$$I_{K} = \frac{1}{8} \sqrt{B I \omega \varphi m}$$
.

Knowing the impulses I_K^* and I_K^* of the powders composing the mixture and the total weight of the charge $\omega=\mathbb{W}_0$. Δ , it is possible to find the quantity α' from formula (8), assuming that $\alpha''=1-\alpha'$.

we obtain:

$$\alpha' = \frac{\frac{I_{K}}{I_{K}^{*}} - 1}{\frac{I_{K}^{*}}{I_{K}} - 1}$$
 (14)

and then:

The state of the s

 $\omega' = \omega \alpha'$; $\omega'' = (1 - \alpha')\omega$.

In the treatment of results of firing tests from guns, there is usually observed a diminution of the coefficient of utilization of the unit weight of the charge γ_{ω} as the weight of the charge ω_{i} q increases, since, at large ω_{i} q, a larger fraction of the external work is comsumed in moving the gases of the charge and a smaller part remains for the useful work of moving the projectile.

In the treatment of results of firing tests from howitzers with combined charges, there is usually observed a different law of variation of the coefficient γ_{ω} . In some howitzers, in the presence of the minimum charge, $\gamma_{\omega n}$ has its minimum value and increases as the weight of the charge increases; in others, as the weight of the charge increases with the increase in the relative weight of the thick powder, the coefficient γ_{ω} at first diminishes, passes through a minimum in the presence of one of the intermediate charges, and then increases again, it usually being the case that, with the full charge, $\gamma_{\omega 0}$ is larger than $\gamma_{\omega n}$ of the basic minimum charge.

In this connection, as a rule, the velocity $v_{\rm Di}$ varies in accordance with a linear law as a function of the weight of the charge (fig. 170), instead of being convex upward.

913

Fig. 170 - Variation in v_D and γ_ω in Firing with Combined Charge.

6. PARTICULARS OF BALLISTIC DESIGN OF HOWITZERS AND COMPUTATION OF CHARGES.

The ballistic computation of a howitzer is conducted for the maximum initial velocity v_D , which corresponds to the full charge at the maximum pressure p_{mo} . In this connection, the following data are found: the weight of the full charge No. $0-\omega_0$; the fundamental design characteristics of the bore $-w_0$, Δ_D , $L_{KH}=l_{KM}+l_D$, $w_{KH}=w_0(\Delta_D+1)$; and the nominal impulse of the powder mixture for the charge No. $0-I_{KO}$ — which is determined from the parameter B_0 . The propellant force of the powder in the charge No. 0 is assumed to be 90-93 tm/kg, unless more accurate data relating to f_0 for a "related" gun are available.

In this connection, contrary to the design of guns firing with one charge and with one initial projectile velocity, for which it is desirable to obtain γ_K in the range of 0.60-0.65, γ_K for a howitzer with a full charge must be considerably lower (0.25-0.30), in order that the same thick powder be given enough time to burn in the presence of diminished charges and reduced pressures, which

914

involves the transfer of the end of burning toward the muzzle face.

For this reason, in utilizing the directive diagram, after determining the minimum-volume gun (point M_0) and reducing the weight of the charge (point N), it is necessary to proceed in the direction of reducing Δ and η_K and increasing Λ_D , i.e., to take variants in the lower left sector from the point M_0 . In this connection, the characteristic $\eta_D = p_{av}/p_m$ is obtained smaller than in the case of guns (0.40-0.50).

For the designed gun, using the minimum charge No. n, the predetermined velocity $v_{D,n}$ and the pressure $p_{m,n}$, which is predetermined by the cocking conditions of the firing device, are used to assign $\Delta_n=0.10$ -0.15 and to determine ω_n , B_n , and I_K^+ the pressure impulse for the thin powder alone. On the basis of treatment of data for existing howitzers, the propellant force of the powder f' is obtained equal to 80-82 tm/kg.

The computation will in this case follow the course outlines below. Δ_n having been assigned, there are found:

$$\omega_{n} = w_{0} \cdot \Delta_{n}, \varphi_{n} = (1.05-1.06) + \frac{1}{3} \frac{\omega}{q};$$

$$n_{f} = \sqrt{\frac{\omega}{\varphi_{q}} \frac{f}{95}}; \quad v_{T,D} = \frac{v_{D,n}}{n_{f}}.$$

At the given Δ_n , from A_D and $v_{T,D}$, there are found B_n and:

$$I_{K}^{+} = \frac{1}{a} \sqrt{B_{n} f_{n} \omega_{n} \varphi_{n}^{m}};$$

From Δ and B, there are determined the pressure p_{m-tab} . and:

$$p_{mf} = p_{m \text{ tab.}} \frac{f}{95}$$
.

If p_{mf} is smaller than the required p_m , Δ is changed and the computation is repeated until the necessary magnitude is selected for $p_{m,n}$.

The impulse I_K^+ determined in the final variant will characterize the thin powder composing the basic charge ω_n in the remaining combined charges.

Knowing the weights of the full and minimum charges ω_0 and ω_n , we can find α_0^* for the charge No. 0:

$$\alpha_0' = \frac{\omega_0}{\omega_0}$$
; $\alpha_0'' = 1 - \alpha_0'$.

Knowing I_{K} for the full charge, which is composed of a mixture of a thin powder with a known impulse I_{K}^{*} and a thick powder with an unknown impulse I_{K}^{*} , we determine the latter or the basis of equation (8):

$$\frac{1}{I_{K,0}} = \frac{\alpha_0'}{I_K'} + \frac{\alpha_0''}{I_K''} ,$$

from which:

$$I_{K}^{"} = \frac{\alpha_{0}^{"}}{\frac{1}{I_{K,0}} - \frac{\alpha_{0}^{'}}{I_{K}^{'}}} - I_{K,0} \frac{\alpha_{0}^{"}}{1 - \alpha_{0}^{'} \frac{I_{K,0}}{I_{K}^{'}}}.$$

The values of I_{K}^{*} and I_{K}^{**} will subsequently be the same for all intermediate charges.

For the thick powder, f'' is found from the quantities f_0 and f' for the full minimum charges:

from which:

$$f'' = \frac{\alpha_0''}{10^{-1} \cdot \alpha_0'}$$

Usually, f" is close to 95 tm/kg.

Knowing $v_{D,o}$, $v_{D,n}$, $v_{D,n}$, $v_{D,n}$, and the scale of velocities, we designate the weights of the intermediate charges on the basis of the linear relation between v_D and ω :

$$\omega_{1} = \omega_{n} + \frac{\omega_{0} - \omega_{n}}{v_{D,0} - v_{D,1}} (v_{D,1} - v_{D,n}).$$

Knowing ω_i , we determine:

$$\Delta_{1} = \Psi_{0}\omega_{1}; \quad \alpha_{1}^{*} = \frac{\omega_{n}}{\omega_{1}} \; ; \quad \alpha_{1}^{*} = 1 - \alpha_{1}^{*};$$

$$f_{i} = f'\alpha_{i}' + f''\alpha_{i}'',$$

The subsequent procedure is as above: $n_{fi} = \sqrt{\frac{\omega_i}{q} \frac{1}{\varphi_i} \frac{f_i}{95}}$ and $v_{tab.D} =$ = $v_{D,i}^{-1}/n_{f,i}$ are computed, and Δ_i, Λ_D , and $v_{tab.D}$ are used to determine B_i , whereupon Δ_i and B_i are used to determine p_m tab. and p_{mf} = $= p_{m \text{ tab.}} \frac{1}{95} .$

CHAPTER 2 - SOLUTION WITH CONSIDERATION OF GRADUAL CUTTING OF ROTATING BAND INTO RIFLING GROOVES OF BARREL

(Professor G. V. Oppokov)

For a consideration of the gradual cutting of the rotating band into the rifling grooves of the barrel, the preliminary period must be divided into two phases: the initial phase and the phase of acceleration of the projectile, at the start of which the pressure of the powder gases attains a magnitude sufficient for the onset of the cutting-in process.

For the initial phase of the preliminary period, it is possible to employ the usual formulas applicable to the preliminary period after replacing therein the quantities:

$$p_0, \psi_0, k_1$$
 and z_0

by the quantities:

In the acceleration phase, it will be necessary to deal with an equation of the motion of the projectile of the following type:

$$\varphi_m \frac{dv}{dt} = (p - \Pi)s$$
,

where Π is the force of resistance of the rotating band to the cutting-in process, related to the unit cross-sectional area s:

$$p = \frac{t\omega\psi - \Theta A}{8(l_{\psi} + l)}$$

 $p=\frac{f\omega\psi-\Theta A}{8\left([\frac{1}{\psi}+l\right)}\;,$ it being necessary to represent the total work A of the powder gases in the following form:

$$A = \frac{\varphi_{MV}^2}{2} + A_{\eta}.$$

The law governing the force Π and the corresponding work Λ_Π should be established by experimental means.

918

Finally, the gas inflow ψ will be found in accordance with the

law of gas formation:

$$\frac{d\psi}{dt} = \frac{p}{I_K} \sqrt{\kappa^2 + 4\kappa\lambda\psi},$$

if use is made of the geometric law of burning.

In summary, numerical integration must be applied to a system of equations of the following type:

$$\frac{d\psi}{dt} = \frac{p}{I_K} \sqrt{\kappa^2 + 4\kappa\lambda\psi};$$

$$\frac{dv}{dt} = (p - \Pi) : \left(\frac{\varphi m}{s}\right);$$

$$\frac{dl}{dt} = v,$$
(15)

where:

$$p = f \frac{\omega}{s} \frac{\Psi - \frac{B\Theta}{2} x^2 - \frac{\Theta}{f\omega} A_{\Pi}}{l_{\Psi} + l}$$
 (16)

This integration may be carried out in accordance with the variant presented in the books of Professor Oppokov $\sqrt{7-87}$.

In order to arrive at an analytical method of solution, it is necessary to make three simplifying assumptions for the purpose of determining the velocity of the projectile in the given phase.

1) The variation of ψ in the first equation of the system (15) is neglected:

$$\frac{d\psi}{dt} = \frac{p}{I_{K}} \sqrt{\varkappa^{2} + 4\varkappa\lambda\psi_{\Pi}} = \frac{\varkappa_{H}}{I_{K}} p; \qquad (17)$$

2) The small terms in the numerator of the fraction on the righthand side of formula (16) are neglected, and the following substitution is performed in the denominator:

$$l_{\Psi} + l = l_{\Delta} + l_{C'} \tag{18}$$

where the average length may be replaced by $\frac{\lambda}{2}$, l being considered to be constant during the integrating operation.

3) A law of the following type is accepted for the force Π :

$$\Pi = \Pi_0 + \Pi_{av.} \frac{l}{l_{Kav.}} = p_H + \Pi_{av.} \frac{l}{l_{Kav.}},$$
 (19)

where $I_{\rm Kav}$ is the path of the projectile at the end of the given phase, the force Π_0 characterizes the "sensitivity of the band", and $\Pi_{\rm av}$ characterizes its "rigidity".

As a result of the second assumption, we shall have in place of formula (16):

$$p = f \frac{\omega}{s} \frac{\Psi}{l_{\Delta} + l_{c}},$$

from which, after differentiation, we shall obtain:

$$\frac{dp}{dt} = \frac{f \frac{\omega}{8}}{l_{\Delta} + l_{c}} \cdot \frac{d\psi}{dt}$$

or, in accordance with formula (17):

$$\frac{dp}{dt} = \frac{f \frac{\omega}{s}}{\frac{l_{\Delta} + l_{C}}{l_{K}}} \cdot \frac{\varkappa_{H}}{I_{K}} p.$$

We separate the variables and designate:

$$\tau_{av} = \frac{I_K}{\kappa_H} \left(l_\Delta + l_C \right) : \left(f \frac{\omega}{s} \right).$$
(20)

We find:

$$\frac{dp}{p} = \frac{dt}{\tau_{av}} ,$$

from which:

$$p = p_{H}^{\frac{t}{\tau_{av}}}.$$
 (21)

Through the intermediacy of formulas (19) and (21), the second equation of the system (15) assumes the following form:

$$\frac{d^2!}{dt^2} = \frac{s}{\varphi_m} \left(p_H e^{\frac{t}{\tau_{av}}} - p_H - \Pi_{av}, \frac{1}{\tau_{kav}} \right), \qquad (22)$$

since:

$$\frac{dv}{dt} = \frac{d^2l}{dt^2}$$

if the phenomenon of recoil is not taken into account in its explicit form.

By integrating equation (22) in accordance with the known rules of mathematical analysis, and designating for convenience:

$$\tau^2 = \frac{\varphi_m}{s} \cdot \frac{l_{\text{Kav.}}}{\Pi_{\text{av.}}}; \quad k^2 = \frac{\tau_{\text{av.}}^2}{\tau^2}; \quad L = \frac{sp_H}{\varphi_m} \tau_{\text{av.}}^2,$$
 (23)

we shall obtain:

$$\frac{1}{L} = \frac{\frac{t}{e^{\frac{t}{T_{av.}}}}}{1 + k^{2}} - \frac{1}{k^{2}} + \frac{1}{k^{2}\sqrt{1 + k^{2}}} \cos\left(\tan^{-1}k + k \frac{t}{\tau_{av.}}\right);$$

$$\frac{\tau_{av.}v}{L} = \frac{\frac{t}{\tau_{av.}}}{1 + k^{2}} - \frac{1}{k\sqrt{1 + k^{2}}} \cdot \sin\left(\tan^{-1}k + k \frac{t}{\tau_{av.}}\right),$$
(24)

the time t being counted from the start of the given phase.

On the basis of formulas (21) and (24), there have been set up brief tables containing values for the following quantities:

$$\frac{p}{p_{H}} = e^{\frac{t}{\tau_{av}}}$$
 (Table 1) and $\frac{\tau_{av}, v}{L}$ (Table 2)

as functions of the two parameters $\frac{1}{L}$ and k^2 .

These tables are necessary for the solution of the direct problem of interior ballistics with consideration of the gradual cutting of the rotating band of the projectile into the rifling grooves of the barrel.

All formulas for performing computations in connection with the acceleration phase are summarized in Table 3 (p. 926).

The quantities:

$$\kappa$$
, $\frac{1}{\delta_2}$, $\frac{1}{\delta_1}$, ψ_H , k_H , and z_H

have already been found in the computations for the initial phase. The quantities p_H and Π_{av} must be known in advance. The argument in this phase is the path ! of the projectile. The formula for the pressure in Table 3 has been obtained from formula (16), in which there are taken:

$$A_{\Pi} = 0$$
; $\frac{B\Theta}{2} x^2 = \frac{v^2}{V_{\Pi p}^2} = \frac{\Theta \phi m}{2 f \omega} v^2$.

The formula for t in Table 3 is found from expression (21).

The theory of solution of the problem in the first period is analogous to the theory of its solution for a simple charge, except that it is necessary to take into consideration that, at the start of the first period, the projectile has the velocity $v_{\mbox{\scriptsize Kav}}$ and has already traversed the path $l_{\rm Kav}$. For this reason, in the first place, integration of the equation for velocity will give:

$$v - v_{KRV} = \frac{s}{\varphi_R} (I - I_{KRV}),$$

where:

$$I_{Kav.} = \int_{0}^{t_{H} + t_{Kav.}} pdt = I_{K}^{z} I_{Kav.}; \quad I = I_{K} \cdot z.$$

The quantity:

$$v_{K,0} = \frac{sI_K}{\varphi m}$$

may be retained, but for
$$z_0$$
 it is necessary to take:

$$z_0 = z_{Kav} - \frac{v_{Kav}}{v_{K,0}}$$
(25)

					γav. v
Table	2	_	Values	o f	av.

K							L				
$\frac{1}{L}$ k^2	0	0.1	0.2	0.3	0.4	0.5		0.7	0.8	0.9	1.0
0 0.01 0.02 0.04	0 0.09 0.13 0.22	0 0.09 0.13 0.22	0.13	0.13	0 0.09 0.13 0.22	0 0.09 0.13 0.22	0 0.09 0.13	0.13	0 0.09 0.13	0.13	0 0.09 0.13
0.06 0.08 0.10	0.29 0.35 0.41	0.29 0.35 0.41	0.29	0.28 0.34	0.28 0.34 0.40	0.28	0.22 0.28 0.34 0.40	0.28 0.34	0.22 0.28 0.34 0.40	0.28 0.34	0.21 0.28 0.34 0.39
0.15 0.20 0.25 0.30	0.56 0.68 0.79	0.68	0.67 0.79	0.67 0.79	0.55 0.67 0.78 0.89		0.55 0.66 0.77 0.88	0.54 0.65	0.53		
0.35 0.40 0.45	1.01 1.12 1.22	1.01 1.12 1.22	1.01 1.12 1.22	1.01 1.11 1.21	1.00 1.10 1.20	0.99 1.08 0.18	0.00				
0.50 0.6 0.7 0.8	1.70	1.51 1.69 1.88	1.68	1.49 1.67 1.84	1.29 1.47 1.65 1.82	1.28					
0.9 1.0 1.1 1.2	2.23	2.04 2.21 2.38 2.55	2.19	2.18 2.34	2.00 2.17						
1.3 1.4 1.5	2.73 2.89 3.05	2.71 2.87 3.03	2.69 2.85 3.00	2.67 2.83 2.98							
1.6 1.7 1.8 1.9	3.37 3.52	3.48	3.30	3.27							
2.0 2.2 2.4	4.11 4.40	4.35	4.02 4.30	3.70							
2.6 2.8 3.0 3.2	5.26	4.64 4.92 5.20 5.47	4.58 4.86 5.14 5.41						1		
3.4 3.6 3.8	5.81 6.09 6.36	5.74 6.01	5.67 5.94 6.21								
4.0 4.2 4.4 4.6	6.90 7.16	6.55 6.81 7.07 7.33	6.73 6.99								
4.8 5.0 5.2	7.69 7.96	7.59	7.49 7.74								
5.4 5.6		8.36									

Table 3 - Formulas for Computing Acceleration Phase.

$$\begin{aligned} \phi &= K + \frac{1}{3} \frac{\omega}{q}; \quad \frac{\phi_m}{s}; \quad I_K - \frac{e_1}{u_1}; \\ v_{K,0} &= I_K : \frac{\phi_m}{s}; \quad \frac{\omega}{s}; \quad f \frac{\omega}{s}; \\ l_{\Delta} &= \frac{\omega}{s} \cdot \frac{1}{32}; \quad l_{\alpha} - \frac{\omega}{s} \cdot \frac{1}{31}; \\ \tau^2 &= \frac{\phi_m}{s} \cdot \frac{I_{Kav.}}{\pi_{av.}}; \quad \tau_1 - \frac{I_K l_{\Delta}}{f \frac{\omega}{s} k_H}; \quad \frac{\tau_1}{2l_{\Delta}}; \quad \frac{sp_H}{\phi_m} . \end{aligned}$$

$$\tau_{av.} - \tau_1 + \frac{\tau_1}{2!_{\Delta}} l; \quad k^2 - \frac{\tau_{av.}^2}{\tau^2}; \quad L - \frac{sp_H}{\phi^m} \cdot \tau_{av.}^2$$

$$\Psi = \frac{l_{\Delta} + l_{\perp} + \frac{\theta}{2} \cdot \frac{\varphi m}{s} \cdot \frac{v^{2}}{p}}{f \cdot \frac{\omega}{s} \cdot \frac{1}{p} + l_{\perp}};$$

$$z = \frac{2\psi}{x + k_{av}}$$
; $t = 2.303\tau_{av}$, $\log \frac{p}{p_H}$.

Table 4 - Formulas for Computing First Period.

$$x_{Kav} = \frac{v_{Kav}}{v_{K,0}}; \quad z_0 = z_{Kav} = x_{Kav};$$

$$\psi_0 = \kappa z_0 + \kappa \lambda z_0^2; \quad k_1 = \sqrt{\kappa^2 + 4\kappa \lambda \psi_0}.$$

$$B = I_K^2 : \left(f \frac{\omega}{s} \cdot \frac{\phi_m}{s} \right); \quad B_1 = \frac{B\theta}{2} - \kappa \lambda;$$

$$\frac{B}{B_1}; \quad C = \frac{B_1}{k_1}; \quad \gamma = \frac{C\psi_0}{k_1};$$

$$B_{max} = Cx_{max}; \quad \log z_{max}^{-1}; \quad z_{Kav}^{B_1}.$$

$$\beta_{\text{Kav.}} = \frac{\beta_{1}}{\beta_{\text{Kav.}}}; \quad \log z_{\text{Kav.}}^{l_{1}}; \quad z_{\text{Kav.}}^{l_{2}}; \quad z_{\text{Kav.}}^{l_{3}};$$

$$\beta = Cx; \quad v = v_{\text{K,0}}x; \quad \psi = \psi_{0} + k_{1}x + k\lambda x^{2}; \frac{B}{B_{1}} = \frac{B}{B_{1}}$$

Example 1. To find the ballistic elements of a shot at the end of the preliminary period with consideration of the gradual cutting of the rotating band of the projectile into the rifling grooves of the barrel for the 1942 model 76 mm light division gun (ZIS-3) under the following loading conditions:

$$f = 896,000; \quad \alpha = 1; \quad \delta = 1.6; \quad \Theta = 0.2;$$

$$\omega = 1.08; \quad 2e_1 = 1.4 \text{ mm}; \quad \mathcal{R} = 1.06;$$

$$W_0 = 1.49; \quad s = 0.4692; \quad l_D = 26.88; \quad l_{Kav} = 0.33;$$

$$q = 6.2; \quad \varphi = 1; \quad p_H = 15,000; \quad \Pi_{av} = 10,000.$$

I. Initial Phase of Preliminary Period.

1)
$$\times -1.06$$
 (given); 2) $\frac{1}{\delta_2} - \frac{\Psi_0}{\omega} - \frac{1}{\delta} - 0.755$; 3) $\frac{1}{\delta_1} - \alpha - \frac{1}{\delta} - 0.375$;

$$4)\psi_{\rm H} = \frac{1}{\delta_2}: \left(\frac{f}{p_0} + \frac{1}{\delta_1}\right); \log\psi_{\rm H} = \overline{2}.0987; \ 5) \ \aleph_{\rm H} = \sqrt{\varkappa^2 + 4\varkappa\lambda\psi_{\rm H}}; \log \ \aleph_{\rm H} = 0.0248.$$

II. Preliminary Computations for Acceleration Phase.

1)
$$\varphi = K + \frac{1}{3} \frac{\omega}{q} = 1$$
 (given); 2) $\log \frac{\varphi_m}{s} = \overline{1}.1293$; 3) $I_K = 938.5$; $2e_1 = 1.4$;

4)
$$\log v_{K,0} = \log \left(I_K : \frac{\varphi m}{s} \right) = 3.8431; 5) \log \frac{\omega}{s} = 0.3620; 6) \log f \frac{\omega}{s} = 6.3143;$$

7)
$$\log l_{\Delta} = \log \frac{\omega}{s} \cdot \frac{1}{\delta_2} = 0.2399$$
; 8) $\log l_{\alpha} = \log \frac{\omega}{s} \cdot \frac{1}{\delta_1} = \overline{1}.9360$;

9)
$$\log \tau^2 = \log \left(\frac{\rho_m}{s} \cdot \frac{l_{\text{Kav.}}}{\pi_{\text{av.}}} \right) = 6.6478;10) \log \tau_1 = \log \frac{I_K^2 \Delta}{f \frac{\omega}{s} k_H} = 4.8732;$$

11)
$$\log \frac{\tau_1}{2!_{\Delta}} = 4.3323$$
; 12) $\log \left(p_H : \frac{\varphi_m}{s}\right) = 5.0468$.

III. Ballistic Elements at End of Preliminary Period.

Knowing from the assignment that $l=l_{\rm Kav.}=0.33$ dm, we obtain from the formulas in the middle section of Table 3:

1)
$$\tau_{av.} = \tau_1 + \frac{\tau_1}{2!_{\Delta}} t_{Kav.} = 0.709 \cdot 10^{-4}; 2) k^2 = \frac{\tau_{av.}^2}{\tau^2} = 0.150;$$
3) $L = \tau_{av.}^2 \left(p_H : \frac{\varphi_m}{s} \right); \log L = 2.8720; 4) \frac{t}{L} \frac{t_{Kav.}}{L} = 4.43.$

Knowing that $\frac{l}{L}$ = 4.43 and k^2 = 0.150, we use Tables 1 and 2 to obtain by double interpolation:

- 5) $\frac{p_{Kav.}}{p_H}$ = 10.78 and 6) $\frac{\tau_{av.}v_{Kav.}}{L}$ = 7.07, which makes it possible to find for the end of the preliminary period: 7) $p_{Kav.}$ = 10.82 p_H = 1617 kg/cm²; 8) $v_{Kav.}$ = $\frac{7.13L}{\tau_{av.}}$ = 64.3 m/sec.

We continue the computations in accordance with the formulas in the lower section of Table 3:

lower section of Table 3:

$$8) \Psi_{Kav.} = \frac{\frac{I_{\Delta} + I_{Kav.} + \frac{\Theta}{2} \frac{\sqrt[q]{m}}{s} \cdot \frac{v_{Kav.}^2}{v_{Kav.}}}{\int \frac{\omega}{s} \cdot \frac{1}{v_{Kav.}} + I_{\alpha}}; \log \Psi_{Kav.} = \overline{1}.1887;$$

9)
$$k_{av.} = \sqrt{\kappa^2 + 4\kappa\lambda\psi_{Kav.}} = 0.0181; 10) z_{Kav.} = \frac{2\psi_{Kav.}}{\kappa + k_{av.}} = 0.1469;$$

11)
$$t_{\text{Kav.}} = 2.303 \tau_{\text{av.}} \log \frac{p_{\text{Kav.}}}{p_{\text{H}}} = 0.001944 \text{ sec}$$
.

Without consideration of the gradual cutting-in process, there were at the end of the period:

$$t = 0$$
; $v_0 = 0$; $p_0 = 300 \text{ kg/cm}^2$

With consideration of the cutting-in process, these changed to: $l_{Kav.} = 0.33$; $v_{Kav.} = 64.3 \text{ m/sec}$; $p_{Kav.} = 1617 \text{ kg/cm}^2$

Example 2. To find the principal ballistic elements of the shot under the conditions of Example 1 and from its results.

Solution. We perform the computations with the aid of the formulas in Table 4.

IV. Preliminary Computations for First Period.

1)
$$x_{Kav.} = \frac{v_{Kav.}}{v_{K,0}} = 0.0924$$
; 2) $z_0 = z_{Kav.} = x_{Kav.} = 0.0545$;

3)
$$\psi_0 = xz_0^2 + x\lambda z_0^2 = 0.0756$$
; 4) $k_1 = \sqrt{x^2 + 4x\lambda\psi_0} = 1.0226$.

V. Tabular Constants for First Period.

1)
$$B = I_K^2 : \left(i \frac{\omega}{s} \cdot \frac{\phi m}{s} \right) = 3.171;$$
 2) $B_1 = \frac{B\Theta}{2} = x\lambda = 0.3771;$

3)
$$\log \frac{B}{B_1} = 0.9248$$
; 4) $\log C = \log \frac{B}{k_1} = \overline{1.5538}$; 5) $\gamma = \frac{C\gamma_0}{k_1} = 0.0196$;

6)
$$\beta_{\text{Kav.}} = Cx_{\text{Kav.}} = 0.0331$$
; 7) $\log Z_{\text{Kav.}}^{-1} = 0.0060$ (form table $\log Z^{-1}$, knowing γ and $\beta_{\text{Kav.}}$); $\frac{B}{B_1} = 1.9495$.

For the stages VI and VII, we employ the formulas in the lower section of Table 4 (log $x_{m,1}$ = T.4676; log x_{K} = T.9756):

$$v_{K} = 658.8 \text{ m/sec}; \quad \psi_{K} = 1; \quad l_{K} = 22.53 \text{ dm}; \quad p_{K} = 606 \text{ kg}, \text{cm}^{2}; \quad v_{m,1} = 204.5;$$

$$\psi_{m,1} = 0.3615; \quad l_{m,1} = 1.502; \quad p_{m,1} = 2345.$$

For the stage VIII, we employ the formulas of Section 4, Chapter 1, Part Two: $\log \gamma_D = 0.0555;$

$$p_D = 519 \text{ kg/cm}^2; \quad v_D = 679.5 \text{ m/sec.}$$

It is already known that, by experiment:

 $P_m = 2320 \text{ kg/cm}^2$ and $v_D = 680 \text{ m/sec}$.

929

CHAPTER 3 - SOLUTION OF PROBLEM OF INTERNAL BALLISTICS FOR MORTARS

1. General Information.

In comparison with a shot from an ordinary artillery gun, a shot from a mortar has a number of specific features. For this reason, the burning of the powder and the other processes connected with the work of the powder gases during a shot from a mortar proceed under conditions which are more complex and less known in some respects, but simpler in other respects.

The basic charge of a mortar (fig. 171) is contained in a card-board cartridge (shell case) inserted in the stabilizer tube 1 (tail of the mortar shell). The tube has four or six rows of circular openings 2, through which the powder gases formed within the shell case must flow out into the space behind the mortar shell once the cardboard has been pierced.

Fig. 171 - Sketch of Arrangement of Mortar.

During loading, the mortar shell is lowered to the bottom of

the bore, displacing the air through the clearance 3. The percussion cap of the cartridge with the basic charge strikes the firing pin 4, which is fixed in the bottom of the bore of the mortar, and ignition of the percussion cap and powder charge takes place; in this connection, the powder burns first in the closed space of the cartridge at a rather high loading density $\Delta_0 = 0.50 - 0.60$. In a certain instant, the gas pressure pierces the walls of the cardboard cartridge, and the gases of the basic charge flow through the openings 2 in the stabilizer tube in the chamber space W_0 .

Under these conditions of very rapid burning of a very thin fine powder, the maximum gas pressure inside the stabilizer tube is, as has been shown by experiments, very sensitive both with respect to the size of the tube openings and the thickness of the cartridge walls, and with respect to the most insignificant delays or advances in the piercing of the cartridge walls.

As a result of a small difference in the pressures under which the cartridge walls are pierced, there may ensue a large scattering of the magnitudes of maximum pressure in the stabilizer tube.

For this reason, it is precisely in a mortar, in greater measure than in a gun, that importance attaches to the composition, the weight of the igniting percussion cap, and the rate of burning of the powder; the greater the impulse provided by the igniter the more uniformly is the nowder ignited.

The next characteristic feature consists in the fact that the gases of the basic charge, which first burns inside the stabilizer chamber at $\Delta=0.50$ -0.60, undergo strong expansion and cooling as they flow out into the space behind the mortar shell. Since the surface of the stabilizer vanes 2 and of the bottom part of the mortar

shell is large, while the loading density of the basic charge with respect to the total chamber volume W_0 is small (Δ = about 0.01), there occurs a large loss of heat to the walls of the bore and of the mortar shell, this loss being still more accentuated by the slow motion of the mortar shell and by the long interval of time during which the gases remain in contact with the walls of the mortar.

If additional charges ω are present, the powder contained therein is ignited by the action of the gases of the basic charge, and the motion of the mortar shell proceeds under the action of the total gas pressure produced by the basic and additional charges. Owing to the presence of the clearance 3 between the mortar shell and the walls of the bore, a portion of the gases will penetrate through this clearance from the very outset of the motion of the mortar shell, and consequently their energy will not be utilized.

In gas-regulator mortars, with the gas regulator open, a considerable part of the gases also escapes through the gas regulator.

The existence of a penetration of gases through the clearance between the mortar shell and the bore and through the gas regulator constitutes the third characteristic feature of the shot from a mortar. The consumption of gases through the clearance and the gas regulator is accounted for on the basis of the general relations of gas dynamics.

As shown by slow-motion photographs, a considerable part of the gases is ejected from the bore of the mortar prior to the emergence of the mortar shell from the barrel, which is accompanied by the ejection of the principal mass of the gases. This part of the gases which is ejected through the clearance and does not participate in

communicating a velocity to the mortar shell constitutes as much as 10-15% of the total quantity of gases, whereas, in an ordinary gun, the fraction of gases ejected through the clearances between the rotating band and the grooves of the rifling is insignificant.

The fourth characteristic feature consists in the fact that the pressure to overcome the inertia of the projectile may in practice be considered as being equal to zero. In exactly the same manner, no energy has to be expended in a smooth barrel to overcome friction and to rotate the mortar shell.

Thus, the solution of the problem of internal ballistics is, on the one hand, simplified by the fact that the pressure to overcome the inertia of the projectile and a portion of the secondary work are assumed to be zero; on the other hand, the solution of the problem is complicated by the necessity of taking into account a greater heat loss and the escape of gases through the clearance and gas regulator, which requires the utilization of the fundamental relations of gas dynamics.

Since, in a shot from an ordinary mortar resting on a base plate, there occurs practically no recoil, and the relative weight of the charge $\omega_{\rm c}/q$ is very small (of the order of 0.01-0.02 with a full charge), it is possible to assume in practice that the coefficient $\phi=1$.

To retain unity in the procedure and in the designations of the parameters and functions, the solution of the fundamental problem of internal ballistics for mortars, which is developed below, is presented in the designations of Professor Drozdov for ordinary artillery guns.

2. ANALYTICAL SOLUTION OF FUNDAMENTAL PROBLEM FOR SMOOTH-BORE MORTARS.

(Simplified Method of Professor M.E. Serebryakov)

The analytical solution is based on the following assumptions:

- 1) There is no pressure to overcome the inertia of the projectile. The mortar has an annular clearance between the mortar shell and the bore.
- 2) The burning of the basic charge in the stabilizer tube is not considered.

The gases of the basic charge flowing from the stabilizer tube into the space behind the mortar shell produce in that space the pressure \mathbf{p}_0 , under which the powder of the additional charges is ignited. Thus, the basic charge acts as an igniter for the additional charges.

- 3) The ignition of the additional charges is assumed to be instantaneous and simultaneous for all grains and for all points on the surface of every grain.
- 4) The burning of the grains of the additional charges proceeds in parallel layers in conformity with the geometric law of burning and is expressed by the following known formulas:

$$\psi = xz + x\lambda z^2;$$

 $G = 1 + 2\lambda z.$

5) The rate of burning of the powder is proportional to the pressure (in the first power):

$$u = \frac{de}{dt} = u_1 p$$
,

where u_1 is the rate of burning at p = 1.

$$sp(t_{\psi}^{+} + t) = f_{0}\omega_{0} + f(\omega\psi - Y) - \frac{\theta}{2}\phi mv^{2},$$
 (26)

where:

$$I_{\psi}^{*} = \frac{1}{\delta} \left[w_{0} - \frac{\omega}{\delta} (1 - \psi) - \alpha (\omega \psi - Y) - \alpha_{0}^{\omega} 0 \right]$$

takes into account the loss of gases through the clearance's - s'.

2) The equation of motion of the mortar shell:

$$s'pdl = \gamma mvdv.$$
 (28)

$$\psi = \chi z + \chi \lambda z^2$$
 (28)

- 3) The (geometric) law of burning for lamellar fine powders and $\psi = z$ for flat disk-shaped powders.
 - 4) The formula for the velocity of the mortar shell:

$$v = \frac{s' l k}{\varphi m} z.$$
 (29)

5) The relative consumption of gases:

$$\gamma = \frac{\gamma}{Y} = \frac{\xi \cdot As_3^{1} k}{\omega} z = \gamma_{K^{Z}}, \tag{30}$$

where:

$$\gamma_{K} = \frac{\zeta \cdot As_{3}I_{K}}{\omega} = \frac{\zeta \cdot As_{3}}{\omega} \frac{e_{1}}{u_{1}}.$$
(31)

 ζ' < 1 is a coefficient which takes into account the shape of the opening through which the gases flow out; and γ_{K} is the relative consumption of gases at the end of burning of the powder.

The following designations are introduced:

$$B' = \frac{s^{2} I_{K}^{2}}{f \omega \varphi_{M}} = \left(\frac{s'}{s}\right)^{2} \frac{s^{2} I_{K}^{2}}{f \omega \varphi_{M}} = \left(\frac{s'}{s}\right)^{2} B;$$

 $\chi_0 = \frac{f_0 \omega_0}{f \omega}$ is the relative energy of the basic charge.

By replacing in equation (26) the quantities ψ , v, and Y (or γ) by their expressions (28), (29) and (30) in terms of z, we obtain the fundamental equation of pyrodynamics in the following form:

the fundamental equation of pyrodymax
$$sp(l_{\psi}^{+} + l) = f\omega \left[\chi_{0} + \kappa z + \kappa \lambda z^{2} - \gamma_{K}z - \frac{B'\theta}{2}z^{2}\right] = f\omega \left[\chi_{0} + (\kappa - \gamma_{K})z - \frac{B'\theta}{2}z^{2}\right]. \tag{32}$$

From equation (27), we have:

we have:

$$s'p dl = \frac{s^{2}1^{2}}{\varphi_{m}} z dz.$$
(33)

Upon dividing (33) by (32) term by term, we obtain:

$$\frac{s}{s} \cdot \frac{d!}{t'_{\psi} + 1} = B' \cdot \frac{zdz}{\chi_0 + k'_1 z - B'_1 z^2} = -\frac{B'}{B'_1} \cdot \frac{zdz}{z^2 - \frac{k'_1}{B'_1} z - \frac{\chi_0}{B'_1}} = \frac{B'}{B'_1} \cdot d \cdot \ln z,$$

where:

$$k_1' = \kappa - \eta_K;$$
 $B_1' = \frac{B'\theta}{2} - \kappa \lambda;$ $A_S = \frac{S}{S'} \frac{B'}{B_1'}.$

Z is a known function developed by Professor N.F. Drozdov. We

If $z_m \leqslant 1$, we have a real pressure maximum; if $z_m > 1$, the maximum is unreal, and in this case the highest actual pressure will be the pressure at the end of burning p_K :

$$p_{K} = \frac{f\omega}{5} \frac{1 + \chi_{0} - \eta_{K} - \frac{B'\theta}{2}}{l'_{1} + l_{K}},$$

where:

$$l_1' = l_0 \left[1 - \alpha \Delta \left(1 - \gamma_K \right) \right]$$
 and $\Delta_K = \frac{\omega}{w_0} \left(1 - \gamma_K \right) = \Delta \left(1 - \gamma_K \right)$.

The remaining elements at the end of the first period will be:

$$v_{K} = \frac{s'I_{K}}{\varphi_{M}}; \quad l_{K} = \lfloor \frac{1}{4} av \rfloor (Z_{K}^{-A_{S}} - 1),$$

in which connection:

$$\beta_{\mathbf{K}} = \frac{B_{\mathbf{1}}'}{k_{\mathbf{1}}'}$$

For solving the problem in the second period, we have the following system of equations:

$$sp(\{'_1 + \}) = f_0 \omega_0 + f \omega (1 - \eta_{K^2}) - \frac{\theta}{2} \phi_{mv}^2,$$
 (37)

$$s'pdl = \phi mvdv,$$
 (33)

where:

$$z' = \frac{1}{I_K} = \frac{\int_0^t pdt}{\int_0^{K} pdt} = \frac{v}{v_K},$$

943

z' being here already greater than unity.

The quantity $\gamma_{K}z'$ takes into account the escape of gases through the clearance, which continues in the second period as well. As in the first period, the complete escape is proportional to the pressure impulse of the gases, which, in turn, is proportional to the velocity of the projectile.

Equation (37) can be rewritten in the following manner:

$$sp(l_1'+l) = f\omega \left[\chi_0 + 1 - \frac{\eta_K}{v_K} v - \frac{v^2}{v_{n_p}^2}\right],$$
 (38)

where:

$$\eta_{\underline{K}} = \frac{\zeta' \Lambda s_3 I_{\underline{K}}}{\omega}; \quad v_{\underline{K}} = \frac{s' I_{\underline{K}}}{\varphi_{\underline{m}}};$$

$$v_{np}^2 = \frac{2i\omega}{\varphi\theta m};$$

$$\frac{\gamma_K}{v_K} = \frac{\zeta' \Lambda s_3 I_K}{\omega} \frac{\phi_m}{s' I_K} = \zeta' \Lambda \frac{\phi}{g} \frac{q}{\omega} \frac{s}{s'} = \gamma_K'.$$

We divide (33) by (38):

$$\frac{dl}{l_1' + l} = \frac{s}{s}, \frac{dm}{t\omega} = \frac{\Delta dm}{1 + \Delta^0 - \Delta^{K}_{K} - \frac{\Delta^0}{\Delta^0}} = \frac{s}{s}, \frac{d}{\theta} = \frac{\Delta^0}{\Delta^0 + \Delta^0} + \frac{\Delta^0}{\Delta^0} + \frac{\Delta$$

or:
$$\frac{dl}{l_1' + l} = -\frac{s}{s'} \frac{2}{\theta} \frac{vdv}{v^2 + \eta_2 v - \eta_3},$$
 (39)

where

$$\gamma_2 - \gamma_K^i v_{n_p}^2 - 2\zeta' A \frac{s}{\theta} \frac{s_3}{s'} - \frac{\gamma_K}{\frac{v_K}{v_{n_p}^2}} - v_{n_p} \frac{\gamma_K}{\frac{v_K}{v_{n_p}}} - \frac{\gamma_K}{v_K} v_{n_p}^2;$$

$$\eta_3 = (1 + \chi_0) v_{\text{fip}}^2 = (1 + \chi_0) \frac{2f\omega}{\varphi_{\text{dm}}} = v_{\text{fip}}^2$$

Integration of equation (39) gives:

$$\int_{1}^{1} \frac{dl}{l_{1}^{'} + l} = -\frac{s}{s} \frac{2}{e} \int_{\mathbf{v}_{K}} \frac{vdv}{v^{2} + \gamma_{2}v - \gamma_{3}};$$
(40)

$$\int_{-1}^{1} \frac{dl}{\binom{l+1}{1}+l} = \ln \frac{\binom{l+1}{1}+l}{\binom{l+1}{1}+l}.$$
 (41)

We find the integral of the right-hand side by first resolving the function under the integral sign into the simplest fractions in accordance with the method proposed by Professor Drozdov.

we find the roots of the equation $v^2 + \gamma_2 v - \gamma_3 = \xi'(v) = 0$:

$$v = -\frac{\eta_3}{2} \left(1 \pm \sqrt{1 + 4 \frac{\eta}{\eta_2^2}} \right) = -\frac{\eta_3}{2} (1 \pm b),$$

$$\frac{\eta_2}{2} = \frac{f}{\theta} \frac{s_3}{s'} \zeta' A; \quad b = \sqrt{1 + 4 \frac{\eta_3}{\eta_2^2}} = \sqrt{1 + 4\gamma};$$

$$\gamma = \frac{\gamma_3}{\gamma_2^2} = \frac{(1 + \chi_0) v_{np}^2}{\gamma_1^2 (u_{np}^2)^2} = \frac{1 + \chi_0}{v_{np}^2 \gamma_K^2}, \text{ where } \gamma_K = \frac{\gamma_K}{v_K};$$

$$\gamma = \frac{(1+\chi_0)}{\gamma_K} \left(\frac{\mathbf{v}_K^2}{\mathbf{v}_{\Pi_\mathbf{p}}^2} \right) = \frac{(1+\chi_0)}{\gamma_K} \cdot \frac{\mathbf{B}^{*\theta}}{2};$$

$$v_1 = -\frac{\eta_2}{2} (1 + b);$$
 $v_2 = -\frac{\eta_2}{2} (1 - b) = \frac{\eta_2}{2} (b - 1);$ $\eta_K = \frac{\xi' As_{clearance} I_K}{\omega};$

$$v_2 - v_1 - \eta_2 b;$$
 $\frac{v}{\xi'(v)} - \frac{\lambda_1}{v - v_1} + \frac{\lambda_2}{v - v_2};$

$$A_1 = \frac{b+1}{2b}; A_2 = \frac{b-1}{2b};$$

$$\int_{V_{K}} \frac{v dv}{\xi'(v)} = \frac{b+1}{2b} \int_{V_{K}} \frac{dv}{v-v_{1}} + \frac{b-1}{2b} \int_{V_{K}} \frac{dv}{v-v_{2}} = \ln \left(\frac{v-v_{1}}{v_{K}-v_{1}} \right)^{\frac{b+1}{2b}}.$$

$$\cdot \left(\frac{v - v_2}{v_K - v_2} \right)^{\frac{b-1}{2b}} = \ln \frac{z'}{z'_{v_K}}.$$
 (42)

Upon substituting the expressions (41) and (42) into (40), we

obtain:

a:
$$\left(\frac{\binom{1}{1}-\binom{1}{K}}{\binom{1}{1}-\binom{1}{K}}\right)^{\frac{3}{5}\frac{6}{2}} - \left(\frac{\binom{1}{1}+\binom{1}{K}}{\binom{1}{1}+\binom{1}{K}}\right)^{\frac{3}{5}\frac{6}{2}} - \left(\frac{v-v_1}{v_K-v_1}\right)^{\frac{b+1}{2b}} \left(\frac{v-v_2}{v_K-v_2}\right)^{\frac{b-1}{2b}} - \frac{z_v'}{z_{v_K}'}$$

or, finally, we have:

$$\left(\frac{\begin{vmatrix} \mathbf{l}_{1}^{'} + \mathbf{l}_{K}^{'} \\ \mathbf{l}_{1}^{'} + \mathbf{l}^{'} \end{vmatrix}}{\mathbf{l}_{1}^{'} + \mathbf{l}^{'}}\right)^{\frac{\mathbf{s}^{'}}{\mathbf{s}}} \bullet - \left(\frac{\mathbf{v} - \mathbf{v}_{1}^{'}}{\mathbf{v}_{K} - \mathbf{v}_{1}^{'}}\right)^{\frac{\mathbf{b} + 1}{\mathbf{b}}} \left(\frac{\mathbf{v} - \mathbf{v}_{2}^{'}}{\mathbf{v}_{K} - \mathbf{v}_{2}^{'}}\right)^{\frac{\mathbf{b} - 1}{\mathbf{b}}};$$

$$\left(\mathbf{l} - \mathbf{l}_{1}^{'}\right) \left(\mathbf{l} + \frac{\mathbf{l}_{K}^{'}}{\mathbf{l}_{1}^{'}}\right) \left(\frac{\mathbf{z}^{'}}{\mathbf{v}_{K}^{'}}\right)^{-\frac{\mathbf{s}}{\mathbf{s}^{'}}} \cdot \frac{\mathbf{2}}{\mathbf{s}^{'}} - 1\right].$$

In accordance with this equation, taking definite values for \forall > $\forall_{\underline{K}}$, we find first the values for the left-hand side, and then the corresponding values for the path of the projectile (; upon constructing a diagram, we find by interpolation or graphically the value \mathbf{v}_{D} corresponding to the value i_{D} , whereupon, for control purposes, we check the computation once more at $v = v_D$.

The pressure is determined with the aid of the following formula:

$$p = \frac{t\omega}{s} \left(\frac{1 + \chi_0 - \frac{\eta_g}{\eta_g} v - \frac{v^2}{v^2 \eta_g}}{l_1' + l} \right).$$

Results of Computations

Basic data for 82-mm mortar; dimensions in the kg-dm-sec

system:

 ξ_1 is a coefficient which takes into account the shape of the escape opening; its value 0.666 has been taken (rom the preliminary investigation of Greten; $\varphi = 1$.

Computation of Constants

$$\chi_0 = 0.1192;$$
 $\eta_K = 0.04923;$ $\eta_K = 0.5923;$ $\eta_K = 0.02452;$ $\eta_K = 0.02452;$ $\eta_K = 0.02452;$ $\eta_K = 0.02483.$

The elements of the shot are $l_{\rm m} = l_{\rm K} = 0.700$ dm; $p_{\rm K} = p_{\rm m} =$

= 398 kg/cm²; p_D = 48 kg/cm²; v_D = 205.5 m/sec.

At the same constants and $\theta=0.20$: $p_{K}=p_{m}=392$, $v_{D}=201.0$. In the absence of an escape of gases through the clearance: θ =

= 0.20, $l_{\rm m} = l_{\rm K} = 0.678$ dm, $p_{\rm K} = p_{\rm m} = 435$ kg/cm², $p_{\rm D} = 50$ kg/cm², $v_D = 211.5 \text{ m/sec.}$

The results of the computations are found to be close to the experimental data ($p_m = 380-390$ and $v_D = 202-205$).

948

The best agreement between the results of the computations and the experimental data would be obtained at $\theta = 0.18$.

The results of computations presented above show that the above-derived analytical formulas make it possible to compute with good accuracy the ballistic elements of a shot from a mortar $(p_K, p_m, l_K, l_m, v_K, v_m, p_D, v_D)$ and to construct curves for the pressures of the powder gases and for the velocity of the projectile as functions of its path.

In case only the basic charge ω_0 is present and the additional charges ω are absent, the problem is solved as for the case of the instantaneous burning of the charge, the heat loss being accounted for by considering the reduction in the propellant force of the powder f, as determined in a special apparatus.

3. EXAMPLE OF SOLUTION OF FUNDAMENTAL PROBLEM OF INTERNAL BALLISTICS FOR SMOOTH-BORE MORTARS (SIMPLIFIED METHOD).

Basic Data for 82-mm Mortar

Basic Data 10.	
3	0.720
Chamber volume Wo, dm3	0.5277
Cross-sectional area of mortar bore s, dm ²	0.0082
Cross-sectional area of clearance sclearance, dm ²	
Coefficient characterizing shape and arrangement of	0.666
clearance, t	υ.006
Escape coefficient A	10.20
Length of path of mortar shell through bore 1D, dm	3.4
Weight of mortar shell q, kg	0.0366
Weight of charge w, kg	0.0072
Weight of basic charge ω ₀ , kg	1.0
Coefficient of consideration of secondary work φ	1120·10 ³
Propellant force of powder f, kg·dm kg	

Propellant force of powder of basic charge f , kg.dm	679,000
	0.85
Covolume a, dm ³ /kg	1.64
Density of powder 8, kg/dm ³ Impulse of pressure increase at end of burning I _K	55
Form characteristics of powder: $\aleph = 1.255$ $\aleph = -0.255$	
Polytrope index k # - 1	1.15 0.15

Basic Formulas for Computation

A. First Period.

$$z - \frac{1}{I_K} - \frac{e}{e_1}$$

$$\chi_0 = \frac{f_0 \omega_0}{f \omega}$$

relative energy of basic charge;

cross-sectional area of mortar shell at bourrelet;

$$v = \frac{s' I_K}{\varphi n} z$$

velocity of mortar shell;

$$\psi = xz + x\lambda z^2;$$

$$[-[_{\Psi a \Psi}^{+}, (z^{-A_{B}} - 1)]]$$

expression for path of mortar shell;

$$p = \frac{f \omega}{s} \frac{\chi_0 + k_1' z - B_1' z^2}{\frac{1}{\psi} + \frac{1}{2}}$$
 expression for gas pressure;

 $\log z^{-1}$ is determined from the table of Professor N.F. Drozdov on the basis of the basic quantities:

$$\gamma = \frac{B_1^{'} \chi_0}{k_1^{'2}}; \quad \beta = \frac{B_1^{'}}{k_1^{'}} z,$$

where:

$$B' = \left(\frac{s'}{s}\right)^2 \cdot \frac{s^2 I_K^2}{f \omega \phi_m} - \left(\frac{s'}{s}\right)^2 \cdot B;$$

$$B_1' = \frac{B'\theta}{2} - \lambda \lambda;$$

$$A_5 = \frac{s}{s'} \cdot \frac{B'}{B_1'};$$

where $\gamma_{K} = \frac{Y_{K}}{\omega}$, and $Y_{K} = \zeta'^{AS}_{Clearance}$. I_{K} is the quantity of gases escaping through the clearance;

$$l_{\Psi a \Psi}^{\dagger} = l_{\Psi}^{\dagger};$$

$$\begin{split} \ell_{\psi}^{+} &= \frac{1}{s} \left[\begin{array}{ccc} \mathbf{w}_{0} &- \frac{\omega}{\delta} (1 - \psi) &- \alpha (\omega \psi - \Psi) &- \alpha_{0} \omega_{0} \end{array} \right] \;; \\ \ell_{0} &= \frac{\mathbf{w}_{0}}{s}; \quad \Lambda_{D} &= \frac{\ell_{D}}{\ell_{0}}; \end{split}$$

$$\mathbf{z}_{\mathbf{m}} = \frac{\mathbf{z}_{\mathbf{m}} - \eta_{\mathbf{K}} \left(\frac{1 + \frac{\alpha p_{\mathbf{m}}}{f}}{1 + \frac{p_{\mathbf{m}}}{f \delta_{1}}} \right)}{\frac{B'\left(\frac{\mathbf{s}}{\mathbf{s}'} + \theta\right)}{1 + \frac{p_{\mathbf{m}}}{f \delta_{1}}} - 2\kappa\lambda$$

where:

$$\frac{1}{\delta_1} - \alpha - \frac{1}{\delta}.$$

If $z_{\underline{m}} \leq 1$, we have a real pressure maximum; if $z_{\underline{m}} > 1$, the maximum is unreal, and in this case the highest actual pressure will be the pressure at the end of burning pk.

B. Second Period.

$$v_{\Pi p}^2 = \frac{2 f \omega}{\varphi \theta m};$$

$$\eta_{K} = \frac{\eta_{K}}{v_{K}}, \text{ where } v_{K} = \frac{s' 1_{K}}{\phi n};$$

$$\eta_3 = (1 + \chi_0) \ v_{np}^2; \ \gamma = \frac{\eta_3}{\eta_2^2}; \ b = \sqrt{1 + 4\gamma};$$

$$v_1 = -\frac{\eta_2}{2}(1+b); \quad v_2 = \frac{\eta_2}{2}(b-1);$$

$$\left(\frac{\begin{bmatrix} \frac{1}{1} + \frac{1}{K} \\ \frac{1}{1} + \frac{1}{K} \end{bmatrix}}{\begin{bmatrix} \frac{1}{1} + \frac{1}{K} \end{bmatrix}} \stackrel{\underline{\mathbf{s}}}{=} \left(\frac{\mathbf{v} - \mathbf{v}_1}{\mathbf{v}_K - \mathbf{v}_1}\right) \stackrel{\underline{\mathbf{b}} + \underline{\mathbf{1}}}{=} \left(\frac{\mathbf{v} - \mathbf{v}_2}{\mathbf{v}_K - \mathbf{v}_2}\right) \stackrel{\underline{\mathbf{b}} - \underline{\mathbf{1}}}{=} \right). \tag{a}$$

On the basis of this equation, taking definite values for $v > v_K$, we find first the values for the left-hand side, and then the corresponding values for the path of the projectile : Upon constructing a diagram, we find by interpolation or graphically the value of v_D corresponding to the value of l_D , and, for control purposes, check the computations once more at $v = v_D$.

Or else, replacing in formula (a), v_1 and v_2 by their expressions, i.e., $v_1 = -\frac{\eta_2}{2}$ (1 + b) and $v_2 = \frac{\eta_2}{2}$ (b - 1), we find with the aid of the following formula:

$$l = (l_1' + l_K) \left\{ \left[\frac{v_K + \frac{\eta_2}{2} (b+1)}{v + \frac{\eta_2}{2} (b+1)} \right] \frac{b+1}{b} \right.$$

$$\cdot \left[\frac{v_{K} - \frac{\gamma_{2}}{2} (b - 1)}{v - \frac{\gamma_{2}}{2} (b - 1)} \right]^{\frac{b-1}{b}} \frac{\frac{s}{s} \cdot \frac{1}{\theta}}{\frac{s}{s} \cdot \frac{1}{\theta}} - i_{1}^{*}.$$

Computation of constants (with a 50-cm slide rule):

$$\chi_0 = \frac{f_0 \omega_0}{f \omega} = \frac{679,000 \cdot 0.0072}{1120 \cdot 10^3 \cdot 0.0366} = 0.1192;$$

$$\frac{s'I_K}{\varphi_m} = \frac{0.5195 \cdot 55 \cdot 98.1}{3.4} = 824.5;$$

$$\frac{\omega f}{s} = \frac{0.0366 \cdot 1120 \cdot 10^3}{0.5277} = 77,680;$$

B' =
$$\left(\frac{s'}{s}\right)^2 \cdot \frac{s^2 I_K^2}{f_{\omega \phi m}} = \left(\frac{0.5195}{0.5277}\right)^2 \frac{0.5277^2 \cdot 55^2 \cdot 98.1}{1120 \cdot 10^3 \cdot 0.0366 \cdot 3.4} = 0.5747;$$

$$B_1' = \frac{B'\theta}{2} - \kappa\lambda = \frac{0.5747 \cdot 0.15}{2} - (-0.255) = 0.2952;$$

$$A_{s} = \frac{s}{s'} \cdot \frac{B'}{B'_{1}} = \frac{0.5277}{0.5195} \cdot \frac{0.5747}{0.2952} = 1.016 \cdot 1.947 = 1.978;$$

 $Y_{K} = \zeta' \cdot A \cdot s_{clearance} \cdot I_{K} = 0.666 \cdot 0.0060 \cdot 0.0082 \cdot 55 = 0.00003277 \cdot 55 = 0.001802;$

$$\gamma_{K} = \frac{\gamma_{K}}{\omega} = \frac{0.001802}{0.0366} = 0.04923;$$

$$k_1 = \kappa - \gamma_K = 1.255 - 0.04923 = 1.2058;$$

$$\frac{B_1}{k_1} = \frac{0.2952}{1.2058} = 0.2448; \quad \frac{1}{\delta_1} = \alpha - \frac{1}{\delta} = 0.85 - \frac{1}{1 \cdot 64} = 0.2402;$$

$$\chi = \frac{B_1^{'} \cdot \chi_0}{k_1^{'2}} = \frac{0.2952 \cdot 0.1192}{1.2058^2} = 0.02419; \quad \frac{\omega}{\delta} = \frac{0.0366}{1 \cdot 64} = 0.02232;$$

$$l_0 = \frac{W_0}{s} = \frac{0.720}{0.5277} = 1.364; \quad \Lambda_D = \frac{l_D}{l_0} = 7.49; \quad \Delta = \frac{\omega}{W_0} = \frac{0.0366}{0.72} = 0.0508;$$

$$\mathbf{z}_{\mathbf{m}} = \frac{\left(1 + \frac{\alpha p_{\mathbf{m}}}{f}\right)}{\left(1 + \frac{p_{\mathbf{m}}}{f\delta_{1}}\right)} = \frac{1.255 - 0.04923 \left(\frac{1 + \frac{0.85.40,000}{1,120,000}}{\frac{40000}{1,120,000} \cdot 0.2402}\right)}{1 + \frac{10.000}{1,120,000}} = \frac{1.0257}{1.0257}$$

$$\frac{B'\left(\frac{s}{s'}+\theta\right)}{1+\frac{p_m}{f\delta_1}} - 2\kappa\lambda \qquad \frac{0.5747\left(\frac{0.5277}{0.5195}+0.15\right)}{1+\frac{40,000}{1,120,000}\cdot 0.2402}$$

 $z_{_{\rm I\! I\! I}}>$ 1, the maximum is "unreal," and the maximum pressure will in this case be the pressure $p_{_{\rm I\! I\! I}}$ at the end of burning of the powder.

Form for Computation of Ballistic Elements (ψ , v,1, and p) for First Period (Computation with 50-cm Slide Rule).

No.	Operations		l			P. 4 . 4 L
1		1	ĺ			End of burning
	Z	0.3	0.5	0.7	0.9	1.0
2	v, dm/sec	247.3	412.2	577.2	742.0	824.5
3	$\beta = \frac{B_1'}{k_1'} z$	0.07344	0.1224	0.1714	0.2203	0.2448
4 5	(+) χz (+) χλz ²	0.3765 -0.0229	0.6275 -0.0637	0.8785 -0.1249	1.1295 -0.2066	1.255 -0.255
6	ψ= xz + xλ z²			0.7536 0.2464	0.9229 0.0771	1.900
8	1 - I _K ·z	16.5	27.5	38.5	49.5	55.0
9	Y = 5'A·sclearance'I	0.0 ₃ 54	0.0390	0.02126	0.0 ₂ 162	0.02180
10	(-) {ωψ Υ	0.0129 0.0005	1	1	0.0338 0.0016	0.0366 0.0018
12	ωψ - Υ	0.0124	0.0197	0.0263	0.0322	0.0348
13	α(ω4 - γ)	0.0105	0.0167	0.0223	0.0274	0.0296
14	$(+)\left\{\frac{\omega}{8} (1-\Psi)\right\}$	0.0144	0.0097	0.0055	0.0017	0
15	a ₀ ω ₀	0.0061	0.0061	0.0061	0.0061	0.0061
16	at	0.0310	0.0325	0.0339	0.0352	0.0357
17	w ₀ - A	0.6890	0.6875	0.6861	0.6848	0.6843
18	t'_\psi = \frac{\psi_0 - a}{a}	1.306	1.303	1.300	1.298	1.297
	3 4 5 6 7 8 9 10 11 12 13 14 15 16	3 $\beta = \frac{B_1}{k_1}z$ 4 (+) $\begin{cases} \times z \\ \times \lambda z^2 \end{cases}$ 6 $\psi = \times z + \times \lambda z^2$ 7 $1 - \psi$ 8 $1 - I_K \cdot z$ 9 $Y = \zeta^* A \cdot s_{clearance}^{-1}$ 10 (-) $\begin{cases} \omega \psi \\ \gamma \end{cases}$ 12 $\omega \psi - Y$ 13 $\begin{cases} \alpha(\omega + - \gamma) \\ \frac{\omega}{\delta} (1 - \psi) \\ \alpha_0 \omega_0 \end{cases}$ 16 α	3 $\beta = \frac{B_1}{k_1^2} z$ 0.07344 4 (+) $\begin{cases} \aleph z & 0.3765 \\ 5 & (+) \end{cases} \begin{cases} \aleph z & 0.3765 \\ -0.0229 \end{cases}$ 6 $\psi = \aleph z + \aleph \lambda z^2$ 0.3536 7 1 - ψ 0.6464 8 1 - $I_K \cdot z$ 16.5 9 $Y = 5^* \land \cdot s_{clearance} \cdot I$ 0.0354 10 (-) $\begin{cases} \omega \psi & 0.0129 \\ Y & 0.0005 \end{cases}$ 12 $\omega \psi - Y$ 0.0124 13 $\begin{cases} \alpha(\omega_4 - Y) & 0.0105 \\ \alpha(\omega_4 - Y) & 0.0105 \end{cases}$ 14 (+) $\begin{cases} \omega (\omega_4 - Y) & 0.0105 \\ \alpha(\omega_4 - Y) & 0.0105 \end{cases}$ 15 $\alpha(\omega_4 - Y) & 0.0105 \end{cases}$ 16 $\alpha(\omega_4 - Y) & 0.0105 \end{cases}$ 17 $w_0 - a$ 0.6890	3 $\beta = \frac{B_1}{k_1} z$ 0.07344 0.1224 4 (+) $\begin{cases} wz & 0.3765 & 0.6275 \\ -0.0229 & -0.0637 \end{cases}$ 6 $\psi = wz + w\lambda z^2$ 0.3536 0.5638 7 1 - ψ 0.6464 0.4362 8 1 - $I_K \cdot z$ 16.5 27.5 9 $Y = \zeta \cdot \lambda \cdot z_{clearance} \cdot I$ 0.0354 0.0390 10 (-) $\begin{cases} \omega \psi & 0.0129 & 0.0206 \\ \gamma & 0.0005 & 0.0009 \end{cases}$ 12 $\omega \psi - Y$ 0.0124 0.0197 13 $\begin{cases} \omega \psi - Y & 0.0124 & 0.0197 \\ 0.0005 & 0.0005 & 0.0167 \end{cases}$ 14 (+) $\begin{cases} \omega (\omega + \gamma) & 0.0105 & 0.0167 \\ \omega (\omega - \gamma) & 0.0105 & 0.0167 \\ 0.0061 & 0.0061 & 0.0061 \end{cases}$ 16 a 0.0310 0.0325	3 $\beta = \frac{B_1}{k_1} z$ 0.07344 0.1224 0.1714 4 (+) $\begin{cases} \times z \\ \times \lambda z^2 \end{cases}$ 0.3765 0.6275 0.8785 -0.0229 -0.0637 -0.1249 6 $\psi = \times z + \times \lambda z^2$ 0.3536 0.5638 0.7536 7 1 - ψ 0.6464 0.4362 0.2464 8 1 - $I_K \cdot z$ 16.5 27.5 38.5 9 $Y = \zeta \cdot \Lambda \cdot z_{clearance} \cdot I$ 0.0354 0.0390 0.02126 10 (-) $\begin{cases} \omega \psi \\ Y \end{cases}$ 0.0129 0.0206 0.0276 0.0005 0.0009 0.0013 12 $\omega \psi - Y$ 0.0124 0.0197 0.0263 13 $\begin{cases} \omega \psi - Y \end{cases}$ 0.0124 0.0197 0.0263 14 (+) $\begin{cases} \omega (\omega \psi - Y) \end{cases}$ 0.0105 0.0167 0.0223 15 $\alpha_0 \omega_0$ 0.0061 0.0061 0.0061 16 a 0.0310 0.0325 0.0339 17 $w_0 - z$ 0.6890 0.6875 0.6861	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

		Sanit	ized Co	py Approved for Release 2010/10)/29 : CIA-RDP	81-01043R001	100040001-0		
Mate 12	And the state of t	12	ωψ		0.0201				0.0296
a ₀ = a	- 0.85;	13		α(ωψ - Y)	0.0105	0.0167	0.0223	0.0274	0.0290
을 - 0.	l l	14	(+)	블 (1-4)	0.0144	0.0097	0.0055	0.0017	0
١٠	'	15		α ₀ ω ₀	0.0061	0.0061	0.0061	0.0061	0.0061
0		16		a	0.0310	0.0325	0.0339	0.0352	0.0357
1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	$\begin{bmatrix} w_0 - \frac{\omega}{\delta} \cdot (1 - \psi) - \\ - \gamma) - \alpha \omega_0 \end{bmatrix}$	17	w o	- 1	U.689U	0.6875	0.6861	0.6848	0.6843
a - a(ľ	18	ŧψ	- W _O - a	1.306	1.303	1.300	1.298	1.297
	from table on page 290 (of the origi- nal - Editor)	19	10	g Z ⁻¹			0.05759	U . U8U47	
		-	+-	1 7-1	0.03586	0.0724	0.1139	0.1592	0.1835
γ- 0	,02419	1	1	log Z-1		1.181	1.300	1.443	1.526
As -	1.978	\vdash	Z-		0.1123	11.202	0.390	0.5750	0.6822
		22	(+)	$\begin{cases} l - l'_{\psi} \\ (z^{-\lambda_{\mathbf{S}}} - 1) \end{cases}$	1.306	1.303	1.300	1.298	1.297
		2		114	1.418	1.5388	1.690	1.873	1.979
	$\frac{l\omega}{s} \frac{\chi_0 + k_1^2 z - k_1^2 z^2}{l_{\Psi}^2 + l}$	2 2	+	$+t'_{\psi}$ $+t'_{\chi_0}$	0.1192 0.3617	0.1192	0.1192		1
	s	2		$\frac{\left(\begin{array}{ccc} \mathbf{x}_{1}^{2} \\ \mathbf{z}_{1}^{2} \end{array}\right) \left(\begin{array}{ccc} \mathbf{x}_{0} + \mathbf{k}_{1}^{2} \\ \mathbf{B}_{1}^{2} \mathbf{z}^{2} \end{array}\right)}{\left(\begin{array}{ccc} \mathbf{x}_{1} \\ \mathbf{z}_{1} \end{array}\right)}$	0.4809	1	1		
fω	77,680	L	_	$\frac{\zeta_0 + k_1^{\prime} z - B_1^{\prime} z^2}{\zeta_0 + k_1^{\prime} z - B_1^{\prime} z^2}$	0.454	3 0.648	0.8186	0.9653	1.0298
8	11,000	- 1	- 1	p, kg/cm ²	249.0	327.0	376.0	400.0	404.2

Computation of Second Period

Computation of Constants for the Second Period

$$v_{\eta_p}^2 = \frac{2f\omega}{\varphi_{\theta m}} = \frac{2 \cdot 1,120,000 \cdot 0.0366 \cdot 98.1}{0.15 \cdot 3.4} = 15,770,000;$$

$$\gamma_{K}^{'} - \frac{\gamma_{K}}{v_{K}} - \frac{0.04923}{824 \cdot 5} - 0.0_{4}5971;$$

$$\gamma_2 - \gamma_K^+ \cdot v_{n_p}^2 - \sigma.\sigma_4^{5971 \cdot 1577 \cdot 1\sigma^4} - 941.6;$$

$$\gamma_3 = (1 + \chi_0) v_{0p}^2 = 1.1192 \cdot 1577 \cdot 10^4 = 17,650,000;$$

$$\sqrt[7]{\frac{7}{3}} = \frac{17,650,000}{941.6^2} = 19.91;$$

$$b = \sqrt{1 + 4\gamma} = \sqrt{1 + 4 \cdot 19.91} = 8.978;$$

$$v_1 = -\frac{7}{2}(1 + b) = \frac{-941.6}{2}(1 + 8.978) = -4698;$$

$$v_2 = \frac{7}{2}$$
 (b - 1) = $\frac{941.6}{2}$ · 7.978 = 3756;

$$\frac{b+1}{b} = \frac{9.978}{8.978} = 1.111;$$

$$\frac{b-1}{b} = \frac{7.978}{8.978} = 0.8886;$$

$$\frac{s}{s'} \frac{1}{\theta} = \frac{0.5277}{0.5195} \cdot \frac{1}{0.15} = 6.770;$$

$$\frac{7_{K}}{v_{K}} = \frac{0.04923}{824.5} = 0.00005971.$$

Form for Computation of Elements for Second Period

Basic formulas	No.	Operations				Muzzle fa	ce
$\left(\frac{l_1' + l_K}{l_1' + l}\right)^{\frac{g'}{g}} = -$	1	(-) { v v,	12 00 - 4 698	1500 -4698	1800 -4698	2052 -4698	
$-\left(\frac{\mathbf{v}-\mathbf{v}_1}{\mathbf{v}_{\mathbf{K}}-\mathbf{v}_1}\right)^{\frac{\mathbf{b}+1}{\mathbf{b}}}.$	2	(1					
$\left(\frac{\mathbf{v}-\mathbf{v_2}}{\mathbf{v_K}-\mathbf{v_2}}\right)^{\frac{b-1}{b}}$							
$v_1 = -\frac{72}{2}(1 + b) = -4698$	3	v - v ₁	5898	6198	6498	675 u	
	4 5	(-) \begin{cases} \mathbf{v}_K \\ \mathbf{v}_1 \end{cases}	824.5 -4698	824.5 -4698	824.5 -4698	824.5 -4698	
$v_{K} = \frac{s'I_{K}}{\varphi_{B}} = 824.5$	6	v _K - v ₁	5522.5	5522.5	5522.5	5522.5	1
	7	$\frac{\mathbf{v} - \mathbf{v_1}}{\mathbf{v_K} - \mathbf{v_1}} \cdots$	1.068	1.122	1.176	1.222	
	8	$\log \frac{\mathbf{v} - \mathbf{v}_1}{\mathbf{v}_{\mathbf{k}} - \mathbf{v}_1} \dots$	0.0285	0.0500	0.0704	0.0871	
	9	$\frac{p+1}{p}\log \frac{a^{k}-a^{1}}{n}\cdots$	0.03166	0.05555	0.07821	0.0968	
$\frac{b+1}{b} = 1.111$	10	$\left(\frac{v-v_1}{v_K-v_1}\right)^{\frac{b+1}{b}}$	1.076	1.137	1.198	1.249	

(cont'd)

		(cont'd)				
Basic formulas	No	. Operations				Muzz]
$v_2 = \frac{7}{2} (b - 1) = 3756$	11	(-) { v v ₂	1200 +3756	1500 3756	1800 3756	2052 3756
	13	v - v ₂	-2556	-2256	- 1956	-1704
	14 15	$(-)$ $\begin{cases} \mathbf{v_K} \\ \mathbf{v_2} \end{cases}$	824.5 3756	824.5 3756	824.5 3756	824.5 3756
	16	v _K - v ₂	-2931.5	-2931.5	-2931.5	-2931
$\frac{b-1}{b} = 0.8886$	1	K 2	0.8719			U.581
	18	$\log \frac{v - v_2}{v_K - v_2}$	1.9404	1.8862	1.8242	1.764
		$v_K - v_2$	-0.0596	-0.1138	-0.1758	-0.23
	19	$\frac{b-1}{b}\log\frac{v-v_2}{v_K-v_2}$	0.05296 1.9470	-0.1011 	-0.1526 8438	-0.209 1. 79 06
$\frac{8}{7}, \frac{1}{9} = 6.77$		$\left(\begin{array}{c} v - v_2 \\ v_k - v_2 \end{array}\right) \stackrel{b-1}{b}$!		
	21	$\Gamma = \left(\frac{v - v_2}{v_K - v_2}\right)^{b+1}_{b}$	0.9524	0.9008	0.8361	0.7712
	22	log	1.9788	.9546	1.9223	. 8872

(cont'd)

- 1%

	No.	Operations				Muzzle face
Basic formulas $p = \frac{f\omega}{s} \frac{1 + \chi_0 - \frac{\eta_K}{v_K} v - \frac{v^2}{v_{Rp}^2}}{l_1' + l}$	23	$\frac{\mathbf{s}}{\mathbf{s}'} \frac{1}{\theta} \log \Gamma \dots$	-0.1435 1.8565	0.3073 1.6927	-0.5260 1.4740	-0.763 1.236
1 - 1.297	24	<u>ε</u> <u>1</u>	0.7186	0.4928	0.2979	0.1724
l' ₁ + l _K = 1.297 + 0.682 =	25		1.979	1.979	1.979	1.979
1.979	26	[1; + 1 _K	2.754	4.016	6.643	11.47
$\chi_0 = 0.1192$	27	$\begin{pmatrix} - \\ - \\ \end{pmatrix} \begin{pmatrix} \frac{\mathbf{s}}{\mathbf{s}} & \frac{1}{\mathbf{\theta}} \\ \mathbf{l}_{1} & \cdots \end{pmatrix}$	1.297	1.297	1.297	1.29
$\frac{\eta_{K}}{v_{K}} = 0.0_{4}5971$	2:	8 1	1.457 2.754	2.719 4.016	5.346 6.643	10.1
AK = 0.04221	3	$\begin{array}{c c} 1 & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$	1.1192	1.1192	0.107	
	-	$\begin{array}{c c} 31 & K \\ 32 & 1 + \chi_0 - \frac{\eta}{2} \end{array}$	K.v 1.0476	1.0296	1.011	7 0.9
$\frac{1\omega}{5} = 77, 680$		$33\begin{vmatrix} (-) \\ \frac{\mathbf{v}^2}{2} \cdots \\ \mathbf{v}_{fip} \end{vmatrix}$	0.0913		0.205	55 0.2
		$ \begin{array}{c c} 34 & 1 + \chi_0 - \frac{\gamma_K}{v_K} \\ & - \frac{v^2}{v_{\eta_p}^2} \end{array} $	0.956	3 0.886	9 0.80	62 0.1
		35 p, kg/cm ²	27	70 17	2 94	.0

The results of the computation are presented in fig. 172.

Fig. 172 - p-1 and v-/ Curves for Mortar.

1) kg/cm²; 2) p-1 and v-1 curves for 82-mm mortar; 3) m/sec.

Fig. 172-a - p-[and v-[Curves for Mortar with Various Charges.

1) kg/cm²; 2) m/sec; 3) designations; 4) charge nos.

Fundamental Ballistic Data for Mortars.

^C q	6.8	6.17	6.53	9.25	
C _E	3.13	12.6	34.1	33.1	
Δ	0.028	0.061	0.151	0.140	
P _m	300	450	850	1000	
ω/q	0.0053	0.0129	0.0387	0.0281	
w ₀⁄ d ³	1.29	1.31	1.67	1.87	
$\frac{\sqrt[3]{\omega}}{L_{KH}^{+} \cdot d}$	10.3	11.2	11.45	11.05	~ con
$\eta_{\rm D} = \frac{p_{\rm av.}}{p_{\rm m}}$	0.195	0.286	0.530	0.457	
₩ _o /q	0.190	0.212	0.256	0.202	
1 ₀ /d	1.64	1.66	2.13	2.37	
Δ' (*)	0.67	0.56	0.64	0.64	
Λ _D	4.15	7.50	4.53	3.87	

(*) $\Delta_0^{'}$ is the loading density of the basic charge in relation to the chamber of the tail cartridge.

SECTION TWELVE-GUNS WITH CONICAL BORE

INTRODUCTION

Guns with a conical bore had been proposed as experimental models as far back as the 1870's. After the First World War, the German engineer Herlich conducted firing tests from a rifle with a conical bore. In these tests, there was obtained an initial bullet velocity that was considerably higher than the usual velocity, as a result of which the armor-piercing effect was sharply increased.

In the course of the Second World War, use was made in the German army of conical guns of various calibers, which were employed principally as antitank artillery. The following guns were used: an antitank gun with a 28-mm entrance caliber and a 20-mm exit caliber (28/20), giving a projectile velocity of 1400 m/sec; a 42/28 antitank gun of the same type; and a 75/55 cylindrical-conical gun (v_D' = about 1250 m/sec), whose barrel consisted of a 75-mm rifled cylindrical tube of the usual type, followed by a smooth conical part with the diameters 75/55, and a Smooth cylindrical end piece of 55-mm caliber. The projectile had two skirt bands: a thinner directing band in front and a thicker rotating band in the rear. A section through the armor-piercing projectile for the 75/55 gun is shown in fig. 173.

Firing from a conical barrel is in principle analogous to firing from an ordinary gun with a subcaliber projectile. For this reason, we shall discuss at the outset the possibility of increasing the velocity of the projectile by reducing its weight through a transition to a subcaliber model.

963

Fig. 173 - Armor-Piercing Projectile for 75/55 Conical Gun.

In recent years, and especially during the Great Patriotic War, attempts have been made to increase the armor-piercing ability of the projectile by increasing its velocity through a reduction in its weight.

Let us determine to what extent the velocity of a projectile in a given gun will change at a predetermined maximum pressure p_m if the weight of the projectile q is changed.

For an ordinary projectile, let us designate its weight as q_1' , its initial velocity as v_D' , the pressure impulse of the powder as I_K' , and the thickness of the powder as $2e_1' = I_K' \cdot 2u_1'$. Let the new weight of the projectile be q'' < q'; the problem is to determine the changed velocity v_D'' .

We have the simplest case by accepting the conditions that $p_{\underline{n}}$ and Δ (or ω) remain unchanged.

From the formula for the second period, we have:

$$\frac{\varphi q v_{D}^{2} \theta}{2gf\omega} = 1 - \frac{(\Lambda_{L} + 1 - \alpha \Delta)^{\theta}}{(\Lambda_{D} + 1 - \alpha \Delta)^{\theta}} \left[1 - \frac{B\theta}{2} (1 - z_{0})^{2} \right] = 1 - \frac{K^{\theta}}{(\Lambda_{D} + 1 - \alpha \Delta)^{\theta}}; \quad (43)$$

where:

$$K = (\Lambda_{K} + 1 - \alpha \Delta) \left[1 - \frac{B\theta}{2} (1 - z_{0})^{2} \right]^{\frac{1}{\theta}}.$$

Under the condition of constancy of the values for p_m , Δ , and ω , we have B and Λ_K = const, K = const; for this reason, the left-hand side of the expression (43) also remains unchanged (r_D^+ = const).

Consequently, discarding the constant quantities, we obtain the following correlation:

fon:

$$\varphi q v_D^2 = \left(a + b \frac{\omega}{q} \right) q v_D^2 = const, \tag{44}$$

from which:

$$\left(\frac{\mathbf{v}_{\mathrm{D}}^{"}}{\mathbf{v}_{\mathrm{D}}^{'}}\right)^{2} = \frac{\mathbf{q}'\mathbf{q}'}{\mathbf{p}''\mathbf{q}''} = \frac{\mathbf{q}'}{\mathbf{q}''} \frac{\mathbf{a} + \mathbf{b} \frac{\omega}{\mathbf{q}'}}{\mathbf{a} + \mathbf{b} \frac{\omega}{\mathbf{q}''}}.$$
(45)

The condition (44) at ω = const is equivalent to the condition:

$$\frac{\varphi q v_D^2}{2g\omega} = \varphi \gamma_\omega = \text{const},$$

and, since the quantity $\phi = a + b \stackrel{\triangle}{=} increases$ as the weight of the projectile decreases, it follows that, under the imposed conditions of maintaining p_m , Δ , and ω constant, the coefficient of utilization of the charge γ_ω will be somewhat lower with the lighter projectile than with the ordinary projectile.

Thus:

$$v_D'' - v_D' \sqrt{\frac{q'}{q''} \frac{\varphi'}{\varphi''}};$$
 (46)

From the condition B = const, we obtain the following additional condition:

$$\frac{I_{K}^{2}}{\varphi_{q}} = const$$
 (47)

or:

$$I_{K}^{"} - I_{K}^{'} \sqrt{\frac{\varphi^{"}}{\varphi^{'}} \frac{q^{"}}{q^{'}}}$$

It follows from (46) and (47) that:

$$I_{K}^{"} v_{D}^{"} - I_{K}^{'} v_{D}^{'} - const.$$

The formula makes it possible to select the weight of projectile q" necessary to obtain in the given gun the required initial velocity v.

How will V change as the light-weight projectile is adopted? $_{max}$

$$v_{max} = \frac{q}{Q_{CT}} \frac{1 + \beta \frac{\omega}{q}}{1.15} v_{D},$$

where:

$$\beta \approx \frac{C_1}{v_D} = \frac{\text{const}}{v_D};$$

 β being the coefficient of secondary action of the gases. We change the weight of the projectile, retaining $\omega=const.$

$$\frac{\mathbf{v}_{\mathbf{D}}^{"}}{\mathbf{v}_{\mathbf{D}}^{"}} = \sqrt{\frac{\mathbf{q}^{"}}{\mathbf{q}^{"}}} \frac{\varphi^{"}}{\varphi^{"}}; \quad \beta \stackrel{\omega}{\mathbf{q}} = \frac{c_{\mathbf{1}}^{\omega}}{\mathbf{q}\mathbf{v}_{\mathbf{D}}};$$

$$\frac{v_{\text{max}}^{"}}{v_{\text{max}}^{"}} = \frac{q^{"}}{q^{"}} \frac{1 + \frac{c_{1}^{"}}{v_{D}^{"}q^{"}}}{1 + \frac{c_{1}^{"}}{v_{D}^{"}q^{"}}} \frac{v_{D}^{"}}{v_{D}^{"}} = \frac{q^{"}v_{D}^{"} + c_{1}^{"}\omega}{q^{"}v_{D}^{"} + c_{1}^{"}\omega} = \frac{v_{D}^{"}v_{D}^{"} + c_{1}^{"}\omega}{q^{"}v_{D}^{"} + c_{1}^{"}\omega}$$

$$= \frac{q'v_D'\sqrt{\frac{q'}{\phi''}\frac{q''}{q'}} + c_D''}{q'v_D' + c_D''} = \frac{\sqrt{\frac{q'}{\phi''}\frac{q'}{q'}} + \beta'\frac{\omega}{q'}}{1 + \beta'\frac{\omega}{q'}}.$$

Since:

it follows that:

Consequently, in adopting a light-weight type projectile while retaining the same weight of the charge, in spite of the increase in the velocity of the projectile, the maximum recoil velocity decreases, so that the load on the gun mount also decreases.

Thus, the obtaining of increased projectile velocities by reducing the weight of the projectile is a fully justified and practically realizable measure.

Let a projectile with a weight coefficient $c_q'=15.0$ have $v_D'=1000$ m/sec at $\omega/q=0.45$. If $\varphi=1.03+\frac{1}{3}\frac{\omega}{q}$, $\varphi'=1.18$.

We adopt a light-weight projectile with a weight coefficient $c_q''=7.5=\frac{1}{2}c_q'$. Then $\omega/q''=0.90$, $\phi''=1.03+\frac{1}{3}\cdot0.90=1.33$.

$$v_{D}^{"}$$
 = 1000 $\sqrt{\frac{1.18}{1.33} \cdot \frac{15.0}{7.5}}$ = 1000·1.33 = 1330 m/sec.

If ηω = 130, then:

$$7\ddot{\omega} = 130 \frac{1.18}{1.33} = 115.3 \text{ tm/kg};$$

$$I_{K}^{"} - I_{K}^{"} \frac{1}{1.33} - 0.752.$$

Thus, if the weight of the projectile is halved, the velocity in the case under consideration increases by 33%, and the thickness of the powder decreases by 25% (the same p_m and Δ being retained).

Let us consider the condition on the basis of which it is possible to determine the weight of the projectile necessary to obtain a predetermined $\mathbf{v}_D^{"}$ in firing from a given gun.

From the condition (45), we have:

$$\left(\frac{\psi_D^{"}}{\psi_D^{'}}\right)^2 = \frac{a + b \frac{\omega}{q!}}{a + b \frac{\omega}{q"}} \frac{q'}{q"} = \frac{aq' + b\omega}{aq" + b\omega}.$$

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

From this, we obtain:

$$q'' = \frac{q'}{a} \left[\varphi' \left(\frac{v'_D}{v''_D} \right)^2 - b \frac{\omega}{q'} \right]. \tag{48}$$

CHAPTER 1 - FUNDAMENTAL CHARACTERISTICS AND BALLISTIC PROPERTIES OF BARREL WITH CONICAL BORE

In order to slowly lose velocity in flight, a projectile must be "heavy," i.e., must have the greatest possible weight coefficient c_q = q/d^3 or transverse load q/s. In order to attain a predetermined initial velocity in the bore after as short a path as possible, a projectile must be "light," i.e., must have the smallest possible weight coefficient c_q .

These two mutually contradictory requirements make it possible to reconcile barrels with a conical or cylindrical-conical bore.

Let d_0 be the entrance caliber of the conical bore and d_D its exit caliber, where $d_D \in d_0$. In such a bore, the projectile, by having with respect to the entrance caliber a small coefficient $c_{q_0} = q/d_0^3$ and always retaining it smaller than $c_{q_D} = q/d_D^3$ until it is ejected from the bore, will acquire a predetermined velocity v_D after a considerably shorter path than a projectile of the same weight in a cylindrical bore with a caliber d_D equal to the exit caliber of the conical bore; but, as this projectile is ejected, it will already have a large weight coefficient $c_{q_D} = q/d_D^3$ with respect to the exit caliber d_D and will be advantageous for flight in the air.

The solution of the problem of the clarification of the fundamental ballistic properties of a conical bore must be sought in a comparison of cylindrical guns of different calibers firing a projectile possessing a given weight, and this problem is easily solved by theoretical means.

As a matter of fact, it is known from the general relations encountered in ballistic design that, at identical Δ , ω/q , p_m , and v_D , the lengths of the bore L_{KH} and of the chamber l_0 , expressed in calibers, and the thicknesses of the powder in relation to the caliber are proportional to the projectile-weight coefficients c_q , and the absolute

values of the same quantities are proportional to the values for q/s (transverse load).

The fundamental relations of internal ballistics for cylindrical bores give: $W = \begin{bmatrix} K(p, \Delta) \end{bmatrix}$

$$\frac{\mathbf{w}_{\mathbf{KH}}}{\mathbf{q}} = \frac{\mathbf{w}_{\mathbf{0}}}{\mathbf{q}} \left\{ \frac{\mathbf{K}(\mathbf{p}_{\mathbf{m}}, \Delta)}{(1 - \mathbf{r}')^{\frac{1}{\Theta}}} + \alpha \Delta \right\}$$

or:

$$\frac{L'_{KH}}{d} = \frac{l_0}{d} \left\{ \frac{K(p_m, \Delta)}{(1 - r')^{\frac{1}{\theta}}} + \alpha \Delta \right\}.$$

The expression enclosed in brackets equals $\Lambda_D + 1$;

$$\frac{l_0}{d} = \frac{w_0}{sd} = \frac{w_0}{n_g d^3} = \frac{\omega}{q} \frac{1}{n_g \Delta} \frac{q}{d^3} = \frac{\omega}{q} \frac{c_q}{n_g \Delta}.$$

At predetermined p_m , v_D , ω/q and Δ , the expression in the brackets is a constant quantity, and l_0/d is proportional to c_q ; consequently, both $\frac{L'_{KB}}{d} = \frac{l_0}{d} \left\{ \Lambda_D + 1 \right\}$ and $\frac{l_D}{d} = \frac{l_0}{d} \left\{ \Lambda_D \right\}$ are also proportional to the quantity c_q .

Since:

$$\frac{I_{K}}{d} = \sqrt{\frac{f}{g}} \frac{c_{q}}{n_{B}} \sqrt{B\phi \frac{\omega}{q'}},$$

it follows that, at predetermined p_m and Δ , the quantity B=const, and at a predetermined ω/q , the quantity ϕ is also constant. Consequently, the relative pressure impulse is likewise proportional to the weight

The larger the caliber of a gun at a given weight of the projectile, coefficient cq. the smaller is $I_{\underline{K}}/d$ and the thinner is the powder necessary to ensure attainment of the same maximum pressure $p_{\underline{m}}$ in the presence of the same

It further follows from this that the absolute values of l_0 , l_D , charge.

 $L_{
m KH}^{\prime}$, and $L_{
m K}$ are directly proportional to the transverse load q/s. The relation between $c_{\mathbf{q}}$ and \mathbf{q}/\mathbf{s} for the entrance and exit calibers

will be expressed as follows:

$$c_{q_0} = c_{q_0} \left(\frac{d_D}{d_0}\right)^3; \quad \frac{q}{s_0} = \frac{q}{s_D} \left(\frac{d_D}{d_0}\right)^2.$$

Since usually $d_0/d_0 = 1.35-1.40$, it follows that:

Since usually
$$d_0/d_0$$

$$\left(\frac{d_0}{d_0}\right)^3 = (1.40...1.35)^3 = 2.75...2.46; \left(\frac{d_0}{d_0}\right)^3 = 0.363-0.407;$$

$$\left(\frac{d_0}{d_0}\right)^2 = 1.96...1.82; \left(\frac{d_0}{d_0}\right)^2 = 0.51-0.55.$$

Consequently, at $d_0/d_D = 1.4$, a projectile of a given weight will attain a predetermined velocity \mathbf{v}_{D} in a cylindrical gun of caliber \mathbf{d}_{O} after traversing a path nearly twice as short as in a similar cylindrical

At a given chamber volume, both the bore volumes and the quantities gun of caliber dD. Λ_D will be identical. At a given p_m , the p-A and v-A curves will coincide.

If now, while retaining the weight of the projectile, the chamber and bore volumes, and consequently also $\Lambda_D=W_D/W_0$ constant, a gradual transition is made in cylindrical guns from the larger to the smaller caliber, the lengths of the chambers and bores, as well as the weight coefficients c_q , will gradually increase. Since, in this connection, Δ , q, ω/q , p_m , and v_D remain the same, it follows that, for such cylindrical guns, the v-A or v-W curves coincide not only for c_q and c_q , but also for all intermediate calibers and c_q .

This is a fundamental property of ballistically similar guns of different calibers, which makes it possible to explain the properties of the v-[and p-[curves for a conical barrel.

As a matter of fact, in a conical barrel of the same volume, with the same chamber volume, and with the same value for $\Lambda_D = \Psi_D/\Psi_0$, there is accomplished a continuous transition from a cylindrical barrel with the initial entrance caliber d_0 and $c_{q_0} = \frac{q}{d_0^2}$ to a cylindrical barrel

with the exit caliber d_D and $c_{q_D} = q/d_D^3$. Since there has already been established the identity of the curves for the velocity of the projectile as a function of $\Lambda = \Psi/\Psi_0$ for all cylindrical barrels with gradually diminishing calibers, it is possible to conclude that, at a given weight of the projectile, the velocity curve $\psi-\Lambda$ for the conical bore at the same Δ , ω/q , φ , and $p_{\underline{u}}$ will coincide with the same curves for all

cylindrical barrels of various calibers, but having the same volume.

This is one of the fundamental assumptions made by us with regard to the ballistic properties of a conical bore. At the same volume of the bore and of its working part, its length is smaller than the length of a cylindrical bore of caliber \mathbf{d}_{D} and greater than the length of a

similar bore of caliber $d_{\hat{0}}$. This is clear from the sketch presented in fig. 174.

Fig. 174 - Sketch of Conical and Cylindrical Bores.

As will be shown subsequently, the pressure curve in the conical bore as a function of relative volume, will not coincide with the pressure curves for the same bores having a cylindrical shape; after reaching the maximum, this curve will be disposed higher than the p-A curve for cylindrical bores, and the end of burning at the same maximum pressure will occur earlier in the conical bore than in the cylindrical one:

$$\Lambda_{K_{con}} < \Lambda_{K_{cyl}}$$

1. DESIGNATIONS AND GEOMETRIC CHARACTERISTICS OF CONICAL BORE.

Entrance caliber..... Exit caliber..... Angle of conicity..... Length of path of projectile.. Total length of cone.....

Total volume of cone to apex.. Volume of working part of cone. $\frac{l_D}{h_K} = l_D \cdot \frac{d_0}{d_0 - d_D} = \frac{d_0}{2} \cot \beta$

WCOR.

STAT

do

Total bore volume including chamber.... $w_{KH} = w_0 + w_D$ Total relative volume of conical bore... $\Lambda_D = \frac{w_D}{w_0}$

Fig. 175 - Geometric Data of Conical Bore.

Let us introduce the relative diameter $y=d/d_0$. All remaining characteristics are expressed very simply as functions of this quantity:

$$y = \frac{d}{d_0} = \frac{h_K - l}{h_K} = 1 - \frac{l}{h_K}$$

From this:

$$l = h_{K}(1 - y); \quad l_{D} = h_{K}(1 - y_{D});$$

$$\frac{s}{s_0} - \left(\frac{d}{d_0}\right)^2 - y^2; \quad \frac{s_{av.}}{s_0} - \frac{1 + y + y^2}{3} \approx y;$$

$$W = s_0 \left(\frac{1 + y + y^2}{3} \right) l = \frac{s_0 h_K}{3} (1 + y + y^2) (1 - y) =$$

$$=\frac{s_0^h k}{3}(1-y^3)=\Psi_{con.}(1-y^3);$$

$$\Lambda_{D} = \frac{w_{D}}{w_{0}} = \frac{s_{0}h_{K}}{3s_{0}l_{0}}(1 - y_{D}^{3}) = \frac{h_{K}}{3l_{0}}(1 - y_{D}^{3}).$$

Since we shall subsequently adopt $\Lambda=w/w_0$ as the independent variable, we find as a function of the latter:

$$y = \sqrt[3]{1 - \frac{w}{w_{\text{con.}}}} = \sqrt[3]{1 - \frac{\Lambda}{\Lambda_{\text{con.}}}},$$

where A con. - W con. / W 0.

The remaining quantities, as previously, are expressed in terms of y: $1 + y + y^2$

$$l = h_K(1 - y); s = s_0^{y^2}; s_{av} = s_0^{\frac{1}{3}} + \frac{y + y^2}{3}.$$

The system of equations for the conical bore differs in no way externally from the equations for the cylindrical bore, only the value for the cross-sectional area s entering into the equations is variable, and this complicates the solution of the problem.

For an exact solution, it becomes necessary to resort to the method of numerical integration or resolution into a series.

However, the coincidence of the projectile-velocity curves as a function of A for the conical and cylindrical bores makes it possible approximately, but with a sufficient degree of precision, to solve the problem for the conical barrel in the final form by introducing an average value for s (which is possible in the presence of a slight conicity).

In this connection, we take for comparison a cylindrical barrel with a caliber equal to the entrance caliber \mathbf{d}_0 and with the same system characteristics:

$$W_0$$
, W_D , q , $\frac{\omega}{q}$, Δ , φ , I_K , f , α , δ , θ and p_0 .

Let us write down the system of fundamental relations:

spdt = φ mdv..................(1) Equation of motion;

de - u₁pdt (2) Law of burning rate; $p(W_{\psi} + W) = f\omega\psi - \frac{\theta}{2}\phi wv^2$.. (3) Equation of transformation of energy.

Solving (3) with respect to p, and introducing Λ and Λ_{ψ} , we obtain:

ith respect to p, and
$$\psi - \frac{v^2}{v^2} \qquad \psi - \frac{v^2}{v^2_{\Pi p}}$$

$$p = f\omega \frac{v_{\Pi p}}{w_{\psi} + w} = f\Delta \frac{v_{\Pi p}}{\Lambda_{\psi} + \Lambda},$$
(49)

where:

$$\Lambda_{\psi} = 1 - \frac{\Delta}{\delta} - \left(\alpha - \frac{1}{\delta}\right) \Delta \psi;$$

$$\frac{s}{s_0} = \left(1 - \frac{w}{w_{\text{con.}}}\right)^{\frac{2}{3}} = \left(1 - \frac{\Lambda}{\Lambda_{\text{con.}}}\right)^{\frac{2}{3}}$$

is the dependence of the cross-sectional area upon the relative bore volume;

$$W_{\text{con.}} = \frac{s_0 h_K}{3} = \frac{s_0}{3} \frac{d_0}{2} \cot \beta.$$

$$\psi = \psi_0 + \kappa \epsilon_0^x + \kappa \lambda^x^2$$
 (*)

is the law of inflow of the gases.

From (1) and (2), as usual, we obtain:

sde = $u_1\phi mdv$;

$$dv = \frac{s}{\varphi m} \frac{e_1}{u_1} dz = \frac{sI_K}{\varphi m} dx.$$
 (50)

In contrast with the cylindrical barrel, in this case s is a variable which is not directly connected with either x or v; but the property, assumed above, of the coincidence of the $v=f(\Lambda)$ curves for the cylindrical and conical barrels at equal p_m , W_0 , and Λ_D makes it possible to establish s as a function of v for the conical bore with the aid of the $v=f(\Lambda)$ curve obtained for the cylindrical barrel.

By introducing into equation (50) the quantity for the entrance cross section \mathbf{s}_0 , integrating, and taking \mathbf{s}/\mathbf{s}_0 on the right-hand side outside the integral sign in the form of an average value, we obtain:

$$v = \frac{s_0^T K}{\varphi_m} \frac{s_{av}}{s_0} x. \tag{51}$$

For the cylindrical barrel with the same cross section \mathbf{s}_0 , we have the usual relation (in which all elements are marked by '):

$$\mathbf{v}' = \frac{\mathbf{s}_0 \mathbf{I}_K}{\varphi \mathbf{n}} \mathbf{x}',$$

 ϕ and $I_{\underline{K}}$ being the same as in the preceding equation. Since for a given value of Λ :

it follows that:

or:

$$x = \frac{x'}{\frac{s_{av.}}{s_0}} > x'.$$
 (52)

978

It is seen from this that, at one and the same value of v for the conical and cylindrical bores, and at the same values of I_K and ϕ , the relative thickness of the burnt powder x for the conical barrel is greater than the corresponding quantity x' for the cylindrical barrel: x > x'. Consequently, on the basis of formula (49), there follow the relations stated below.

(a) For a conical barrel with a variable cross section from s_0 to s_D :

$$p = f\Delta \frac{v^2}{\sqrt{v_{np}^2}};$$

(b) For cylindrical bores with a cross section s_0 = const or $s_D = const: \qquad \qquad \psi' - \frac{{v^*}^2}{v_{np}^2} = \frac{1}{\Lambda_{\psi'}} + \frac{1}{\Lambda_{\psi'}}.$

Since, from (52), x > x'; from (*), $\psi > \psi'$ and $\Lambda_{\psi} < \Lambda_{\psi}'$; and v = v' and $\Lambda = \Lambda'$; it follows that p > p'.

We obtain the following fundamental conclusion, which characterizes the ballistic properties of the conical barrel: under identical loading conditions $(W_0, \omega/q, \Delta, I_K)$, and in the presence of identical values for the working volume W and the projectile velocity v, the burnt part of the charge ψ and the gas pressure are greater in the conical barrel than in the cylindrical bore with the cross section s_0 . The difference is the greater the greater the conicity of the bore.

Fig. 176 - p-W Pressure Curves for Conical Bore.

Consequently, under loading conditions identical with those in a cylindrical barrel with the same W_0 , W_D , and S_0 , the gas-pressure curve in a conical barrel, expressed as a function of W, has a more progressive character than in the cylindrical barrel; and since the average pressure in the former is greater than in the latter, the end of burning of the powder will occur in the former sooner, at a smaller Λ_K , than in the latter.

2. RELATION OF POWDER THICKNESSES IN CONICAL AND CYLINDRICAL BORES UNDER EQUAL MAXIMUM PRESSURES.

It has been shown that, at identical entrance calibers d_0 , under identical loading conditions $(\Delta,\,\omega/q,\,W_0)$, and at identical magnitudes of the pressure impulse I_K , the gas pressure in a conical bore exceeds that in a cylindrical bore because of an increase in the burnt part of the charge $\Psi=\Psi_0+\kappa$. And since the ballistic properties of the barrels must be compared at the identical maximum pressure p_m , it follows that, without altering the other loading conditions, it is possible to obtain identical pressures in both bores as a result of a change in the impulse I_K .

980

Let us determine the relation between the pressure impulses (or powder thicknesses) for a conical barrel with the calibers \mathbf{d}_0 and \mathbf{d}_D and for cylindrical barrels with the same calibers.

For cylindrical barrels of different calibers, at a given weight of the projectile and at given p_m and Δ , $B_0 = B_D$, from which:

$$\mathbf{s}^{0}\mathbf{I}^{KO} - \mathbf{s}^{D} \cdot \mathbf{I}^{KD}$$

The greater the caliber the smaller I_{K} .

$$\frac{I_{K0}}{I_{KD}} = \frac{s_{D}}{s_{0}} = y^{2}; \quad I_{KD} = I_{K0} \frac{s_{0}}{s_{D}} = \frac{I_{K0}}{y_{D}^{2}}.$$

To start with, we shall find the relation between $I_{\underline{K}}$ for the conical barrel and $I_{\overline{K0}}$ for the cylindrical barrel of caliber $d_{\overline{0}}$. Let us determine how the quantities x and ψ vary as a function of v in the conical and cylindrical barrels if the caliber is d_0 .

For Cylindrical Barrel

$$x_i = \frac{e^0 I^{K0}}{\Delta m} A$$

$$x = \frac{e^{\hat{0}} I^{K}}{\Phi_{W}} \frac{e^{0}}{A} > x,$$

In this connection, as v increases and s_{av}/s_0 decreases, the difference x - x' grows uninterruptedly.

In fig. 177, x' and x are shown as functions of v. x' - v is the straight line o'bx'; x - w is the curve o'ax with the same tangent o'bx' at the start of motion of the projectile at v = 0.

Fig. 177 - Diagram of Variation of x in Conical and Ordinary Bores.

For a given value of v_m at identical values of \bigwedge_m , $x_m > x_m^i$, $\psi_m > \psi_m^i$, $p_m > p_m^i$. In order to obtain $p_m = p_m^i$, it is necessary, by changing the pressure impulse, to lower the curve o'ax, equating the intensities of gas formation for the cylindrical and conical bores over the segment from 0 to v_m^i .

Let us consider a powder with a constant burning area:

$$\psi = \psi_0 + x$$

It is not difficult to see that the tangent of the angle of slope of the lines characterizes the intensity of gas formation. As a matter of fact:

$$\frac{dx}{dy} = \frac{d\psi}{dy} = \frac{d\psi}{dt} \frac{dt}{dy},$$

but:

Consequently:

where:

$$\Gamma = \frac{1}{\kappa} \in .$$

For this reason, for a powder with a constant area of burning $\Gamma = 1/I_K$, $dx/dv = \phi m/sI_K$; for a conical barrel, s decreases and dx/dv increases. We impose the requirement that the average value of dx/dv along the segment from zero to v_m' be equal to $\frac{dx'}{dv} = \frac{\phi m}{s_0 I_{KO}}$ for the cylindrical barrel. Then:

$$\frac{\varphi_{m}}{\binom{(m)}{s_{m_{k}}} \cdot I_{K}} = \frac{\varphi_{m}}{s_{0}I_{K0}} \text{ and } I_{K} = I_{K0} \cdot \frac{s_{0}}{\binom{(m)}{s_{n_{k}}}},$$

where $s_{av}^{(m)}$ is the average value for the cross section of the conical bore from the start of motion to the attainment of v_m^i , i.e., to the attainment of p_{max}^i . Since Λ_m^i is known on the basis of the course of the $v^i - \Lambda^i$ curve for the cylindrical barrel, it is possible to determine:

$$\frac{s_{\text{av.}}^{(m)}}{s_0} \approx y^{(m)} - \sqrt[3]{1 - \frac{\Lambda_m}{\Lambda_{\text{con.}}}}.$$

Thus:

$$I_K = I_{KO} : y^{(m)} = I_{KD} \frac{s_D}{s_0} \frac{s_0}{s_{MV}}$$

For A con. - about 6.0:

$$\Lambda_{m}^{'} \approx 0.6, y^{(m)} - 0.97;$$

For
$$\frac{d_0}{d_D} = 1.4$$
:

$$\frac{\mathbf{s}_0}{\mathbf{s}_D}$$
 = 1.96; \mathbf{I}_K = $\mathbf{I}_{K0} \frac{1}{0.97} \approx 1.03 \, \mathbf{I}_{K0}$; \mathbf{I}_K = 1.03 $\frac{1}{1.96} \mathbf{I}_{K0}$ = 0.527 \mathbf{I}_{KD} ;

For Acon. - 10:

Consequently, in order to obtain an identical maximum pressure p_m , the thickness of the powder in the conical barrel ($d_0/d_D=1.4$) must be a little greater (by 3%) than the thickness of the powder for the cylindrical barrel of caliber d_0 , which is equal to the entrance caliber of the conical bore.

It must be considerably thinner (by nearly 50%) than the thickness of the powder for the cylindrical barrel of caliber d_D (at the same W_0 , Δ , and ω/q):

$$I_{KO} < I_{K} \ll I_{KD}$$

For this reason, it is erroneous to compare, as is sometimes done, a conical barrel and a cylindrical barrel of caliber \mathbf{d}_D with the same powder thickness selected for this cylindrical barrel; in this case, the maximum pressure in the conical barrel will be obtained several times lower than in the cylindrical barrel, and the powder will not even burn to the end.

3. RELATION OF LENGTHS OF BARRELS WITH CONICAL AND CYLINDRICAL BORES.

Since the projectile is ejected from the conical bore while having a caliber \mathbf{d}_D at a normal $\mathbf{c}_{\mathbf{q}D}$, which ensures its attaining the predetermined range and speed of encounter with an obstacle, the ballistic

characteristics of the conical barrel should be compared with those for a cylindrical barrel having a caliber $d_{\overline{D}}$, which is equal to the exit caliber of the conical bore.

At the same W_0 , Δ , ω/q , p_m , and v_D , the working volumes of the bores WD will also be equal.

Let us determine the relation between the lengths of the path l_{D} in the conical bore and $l_{\mathrm{D}}^{\mathrm{(D)}}$ in the cylindrical bore of caliber $\mathbf{d}_{\mathbf{D}}$.

From the condition of equality of working volumes \mathbf{W}_{D} , we have:

$$w_D = s_D l_D^{(D)} = s_0 \frac{1 + y_D + y_D^2}{3} l_D$$

or:

$$l_{D} = l_{D}^{(D)} = \frac{s_{D}}{s_{0}} = \frac{3}{1 + y_{D} + y_{D}^{2}} = l_{D}^{(D)} = \frac{3y_{D}^{2}}{1 + y_{D} + y_{D}^{2}}.$$

The relative diminution in the length of the conical bore is: $\frac{\delta l_D}{l_D^{(D)}} = \frac{l_D^{(D)} - l_D}{l_D^{(D)}} = \frac{1 + y_D - 2y_D^2}{1 + y_D + y_D^2}.$

$$\frac{\delta l_{\rm D}}{l_{\rm D}^{\rm (D)}} = \frac{l_{\rm D}^{\rm (D)} - l_{\rm D}}{l_{\rm D}^{\rm (D)}} = \frac{1 + y_{\rm D} - 2y_{\rm D}^2}{1 + y_{\rm D} + y_{\rm D}^2}$$

At the ratio $\frac{d_0}{d_0} = \frac{28}{20} = 1.4$:

$$y_D = 0.715; y_D^2 = 0.511;$$

$$\frac{\delta l_{\rm D}}{l_{\rm D}^{\rm (D)}} = \frac{1.715 - 1.022}{1.715 + 0.511} = 0.311, \text{ or } 31.1\%.$$

At
$$\frac{d_0}{d_D} = \frac{75}{55} = 1.362$$
:

$$y_D = 0.734; y_D^2 = 0.539;$$

$$\frac{\delta l_{\rm D}}{l_{\rm D}^{\rm (D)}} = \frac{1.734 - 1.078}{1.734 + 0.539} = \frac{0.656}{2.273} = 0.2885, \text{ or } 28.9\%.$$

With respect to the length of the conical barrel, the difference in length will give the following lengthening:

$$\frac{\delta l_{D}}{l_{D}^{(K)}} = \frac{\binom{(D)}{D} - l_{D}}{l_{D}^{(K)}} = \frac{\binom{(D)}{D}}{l_{D}^{(K)}} = 1 - \frac{1 + y_{D} - 2y_{D}^{2}}{3y_{D}^{2}}.$$

For 28/20:

$$\frac{\delta l_D}{l_D} = \frac{0.693}{3 \cdot 0.511} = 0.452$$
, or 45.2%;

for 75/55:

$$\frac{\delta l_{\rm D}}{l_{\rm D}} = \frac{0.656}{3 \cdot 0.539} = 0.405, \text{ or } 40.5\%$$

Conclusion. At the same chamber and bore volumes W_0 , W_D , and W_{KH} , and under the same loading conditions $(q, \omega, \Delta, \omega/q)$, a conical barrel d_0/d_D as compared with a cylindrical barrel of a caliber d_D equal to the exit caliber of the conical barrel, must give at existing ratios d_0/d_D = 1.4 the same initial velocity w_D and the same maximum pressure with a length of path of the projectile reduced by about 30% and with a powder

thickness reduced in the following ratio:

$$\left(\frac{d_{D}}{d_{O}}\right)^{2} - \frac{s_{D}}{s_{O}}.$$

The reduction in length constitutes the principal advantage of a conical barrel in comparison with a cylindrical barrel at equal exit calibers. This advantage possesses particular importance at high initial velocities of the projectile, when an excessively great length (about 150 d) is obtained for the cylindrical barrel, which makes the gun inconvenient for combat use and for transport. Moreover, great length combined with a small diameter results in sagging of the barrel and vibration during firing.

4. CONSIDERATION OF SECONDARY WORK IN CONICAL BORE.

The comparison between the ballistic characteristics of the conical and cylindrical bores presented above was conducted on the assumption that the coefficient ϕ , which takes into account the secondary work, is identical in the two cases. As a matter of actual fact, the gun with a conical bore has a number of features which reflect themselves in the magnitude and character of the secondary work.

The principal features include the following:

- (a) The motion of the charge gases and of the as yet unburnt part of the charge takes place in a bore with a cross section which continuously decreases in the direction of motion of the projectile.
- (b) There occurs a continuous deformation of the rotating bands of the projectile, which causes an equally continuous increase in the resistance forces until the projectile passes through the minimum cross

thickness reduced in the following ratio:

$$\left(\frac{d_{D}}{d_{0}}\right)^{2}-\frac{s_{D}}{s_{0}}$$

The reduction in length constitutes the principal advantage of a conical barrel in comparison with a cylindrical barrel at equal exit calibers. This advantage possesses particular importance at high initial velocities of the projectile, when an excessively great length (about 150 d) is obtained for the cylindrical barrel, which makes the gun inconvenient for combat use and for transport. Moreover, great length combined with a small diameter results in sagging of the barrel and vibration during firing.

4. CONSIDERATION OF SECONDARY WORK IN CONICAL BORE.

The comparison between the ballistic characteristics of the conical and cylindrical bores presented above was conducted on the assumption that the coefficient φ , which takes into account the secondary work, is identical in the two cases. As a matter of actual fact, the gun with a conical bore has a number of features which reflect themselves in the magnitude and character of the secondary work.

The principal features include the following:

- (a) The motion of the charge gases and of the as yet unburnt part of the charge takes place in a bore with a cross section which continuously decreases in the direction of motion of the projectile.
- (b) There occurs a continuous deformation of the rotating bands of the projectile, which causes an equally continuous increase in the resistance forces until the projectile passes through the minimum cross

section of the bore.

For the coefficient of secondary work φ , we shall adopt the following general expression: $\varphi=a_K^-+b_K^-\frac{\omega}{q}$. The first feature must be reflected in the coefficient b_K^- , which may be of considerable importance at high projectile velocities and at large $\frac{\omega}{q}$, at which, in fact, it is alone advantageous to employ conical barrels.

The second feature must be reflected in the magnitude of the term a_K , which takes into account the resistance forces developed during the deformation of the bands, these forces increasing continuously and retarding the motion of the projectile in considerably greater measure than is the case in a cylindrical bore. Simultaneously with this, there occurs an increase in the part of the work expended in the conical barrel to overcome friction over the ever-increasing area of contact between the bands of the projectile and the bore.

While in small-arms, where the entire lateral surface of the bullet cuts itself into the rifling grooves, a = 1.10 instead of 1.03 for artillery guns, $\mathbf{a}_{\mathbf{K}}$ in the conical barrel must be still greater.

For a cylindrical barrel without chamber widening:

$$b = \frac{1}{3}$$
.

For a cylindrical barrel with a chamber widening $\chi = l_{0}/l_{\rm KM}$:

$$b = \frac{1}{3} \frac{\Lambda + \frac{1}{\chi}}{\Lambda + 1},$$

where $\Lambda=\frac{l}{l_0}$ is the current value of the volumetric expansion ratio. As the projectile moves, b varies from $b_0=\frac{1}{3}\frac{1}{\chi}$ at the start of the

motion at $\Lambda=0$ to $b_D=\frac{1}{3}\frac{\Lambda_D+\frac{1}{X}}{\Lambda_D+1}$, where $b_D>b>b_0$, and approaches 1/3 as Λ_D increases.

In deriving the formula for b_{K} with consideration of chamber widening, the following assumptions have been made, which extend to the motion of the gases in the bore of the conical barrel.

The gas velocity in various cross sections varies in accordance with a linear law from the chamber bottom to the bottom of the projectile; the mass of the gases is uniformly distributed in the space, but what takes part in the motion is not the entire gas mass but only that which has a cross section a equal to the current cross section of the conical bore or to the cross section of the cylindrical bore. The internal friction of the gases and their friction against the walls of the bore are neglected.

Let the chamber of the conical bore have a widening characterized by the quantity $\chi = l_0/l_{\rm KM}$, and let the conical bore itself be characterized by the ratio of diameters $d_D/d_0 = y_D$ for the muzzle face and $d/d_0 = y$ for the current position of the projectile after the latter has traversed the path l.

The relative weight ω_{DB} of the gases taking part in the motion (upon the displacement of which the work $b_{\overline{k}} \frac{\omega}{q}$ is expended), stated as a fraction of the total weight of the charge ω , is expressed by the following formula:

$$\frac{\omega_{\rm DB}}{\omega} = \frac{s(l_{\rm KM} + l)}{w_0 + w} = \frac{\frac{sl_{\rm KM}}{s_0 l_0} + \frac{s_{\rm av.}}{s_0} \frac{l}{l_0} \frac{s}{s_{\rm av.}}}{1 + \Lambda} = \frac{\frac{s}{s_0} \frac{1}{\chi} + \frac{s}{s_{\rm av.}} \frac{w}{w_0}}{1 + \Lambda}$$

motion at $\Lambda = 0$ to $b_D = \frac{1}{3} \frac{\Lambda_D + \frac{1}{X}}{\Lambda_D + 1}$, where $b_D > b > b_Q$, and approaches 1/3 as Λ_D increases.

In deriving the formula for b_{K} with consideration of chamber widening, the following assumptions have been made, which extend to the motion of the gases in the bore of the conical barrel.

The gas velocity in various cross sections varies in accordance with a linear law from the chamber bottom to the bottom of the projectile; the mass of the gases is uniformly distributed in the space, but what takes part in the motion is not the entire gas mass but only that which has a cross section a equal to the current cross section of the conical bore or to the cross section of the cylindrical bore. The internal friction of the gases and their friction against the walls of the bore are neglected.

Let the chamber of the conical bore have a widening characterized by the quantity $\chi = l_0 l_{\rm KM}$, and let the conical bore itself be characterized by the ratio of diameters $d_D d_0 = y_D$ for the muzzle face and $d/d_0 = y$ for the current position of the projectile after the latter has traversed the path l.

The relative weight ω_{DB} of the gases taking part in the motion (upon the displacement of which the work $b_K = 0$ is expended), stated as a fraction of the total weight of the charge ω , is expressed by the following formula:

$$\frac{\omega_{DB}}{\omega} = \frac{s(l_{KM} + l)}{w_0 + w} = \frac{\frac{sl_{KM}}{s_0 l_0} + \frac{s_{av.}}{s_0} \frac{l}{l_0} \frac{s}{s_{av.}}}{1 + \Lambda} = \frac{\frac{s}{s_0} \frac{1}{\lambda} + \frac{s}{s_{av.}} \frac{w}{w_0}}{1 + \Lambda}$$

$$=\frac{\mathbf{s}}{\mathbf{s}_0}\left(\frac{1}{\chi}+\frac{\mathbf{s}_0}{\mathbf{s}_{av}}\Lambda\right)$$

where Λ = W/W₀. Since:

$$\frac{s}{s_0} - y^2; \frac{s_{av.}}{s_0} - \frac{1 + y + y^2}{3} \approx y,$$

it follows that:

$$\omega_{DB} = \omega_y^2 \frac{\frac{1}{X} + \frac{\Lambda}{y}}{1 + \Lambda} = \omega_y \frac{\Lambda + \frac{y}{X}}{\Lambda + 1}.$$

The work expended upon the displacement of the cylindrical column of gas with the cross section s and weight $\omega_{\mbox{\footnotesize{DB}}}$ is represented in the over-all balance by the component:

$$\frac{1}{3} \frac{\omega_{DB}}{q} = \frac{1}{3} \frac{\omega}{q} \frac{\omega_{DB}}{\omega}.$$

Replacement of ω_{DB} by the expression for it gives: $b_K = \frac{1}{3} \ y \ \frac{\chi}{\Lambda + 1}.$

$$b_K = \frac{1}{3} y \frac{\Lambda + \frac{y}{x}}{\Lambda + 1}$$

For the cylindrical bore, y = 1, and we obtain the previously

derived formula:

$$h = \frac{1}{3} \frac{\lambda}{\lambda + 1};$$

Since for the conical bore y \langle 1, it follows that $b_{K}^{-} \langle$ b.

Thus, the work expended upon the displacement of the parts of the charge is smaller in a conical bore than in a cylindrical bore under conditions of identical values for X, ω and Λ , the difference between the two continuously increasing as the projectile moves forward (since, as Λ increases, y in the expression for b_{K} decreases).

Examination of the expression for b_K shows that, at $\chi=1$, $\Lambda=0$, y=1, $b_{K0}=1$ 3, and that, as Λ increases and y decreases, the quantity b_K decreases.

At $\chi>1$, the quantity b_{K0} starts out with $b_{K0}=\frac{1}{3}\,\frac{1}{\chi}$, then, as. A increases, it grows at first, passes through a maximum, and thereupon continuously decreases.

In this connection, the maximum b_K is obtained the later the larger χ , and the decrease in b_K proceeds the more rapidly the greater the conicity and the smaller $\Lambda_{\rm con.}$ — $\pi_{\rm con.}$ —

$\chi = 1.8$; $\Lambda_{con.} = 6.0$										
		0.2	0.4	0.6	υ.8	1	2	3	4	-
		0.05	0.219	υ.228	0.235	0.238	0.241	0.227	0.203	١
b K	0.185	0.205	0.219	3.223	0.216	0.220	0.231	0.232	0.230	1
by	0.185	0.195	0.203	0.210	0.216	0.220	• • • • • • • • • • • • • • • • • • •		L	

Diagrams of curves for $b_{K_{{\bf a}{\bf v}}}$ and $b_{{\bf a}{\bf v}}$ at various χ for conical and cylindrical bores are presented in fig. 178.

Fig. 178 - Variation of Coefficient b in Conical and Cylindrical Bores.

The guidance of a projectile with two skirt bands through a conical bore differs considerably from the guidance of an ordinary projectile with a copper rotating band through a cylindrical bore. In the latter, the resistance increases sharply as the band cuts itself into the rifling grooves. After the band has cut itself in to the full depth of the rifling grooves, the resistance drops sharply, and thereupon, to overcome the friction in the rifling grooves, there is consumed about 1% of the energy expended to communicate a forward motion to the projectile (k_3 = about 0.01). In this connection, the friction due to the radial force Φ is usually neglected.

During the motion of a projectile with two guiding bands through a conical bore, the cutting of the bands into the rifling grooves and the compression of progressively thicker parts of the bands must increase

the force required for their deformation.

Moreover, as a result of the diminution of the diameter and the bending of the bands toward the surface of the projectile, as well as because of the continuous increase in the surface of contact between the bands and the bore, the frictional force between the bands and the surface of the bore must progressively increase. This force must increase still more under the action of the gas pressure, which presses the rear band toward the surface of the bore, thus likewise increasing the frictional force.

There is presented below the procedure for taking into account the retarding forces in the conical bore.

Fig. 179 - Longitudinal Section through 28,20 Armor-Piercing Projectile.

The arrangement of the rear obturating ring of the projectile for the German 28,20 gun is apparent from the sketch in fig. 179.

The part ab is the thinnest cylindrical part; the part bce is a conical part, which makes a smooth transition to the cylindrical part of the body; the inside part is turned to correspond to a certain curve.

The forward band has no appreciable cylindrical part. Both bands, in their longitudinal section, resemble bodies of equal bending strength, being wide at the base of and narrowing down toward the end a. The

diameter d_0' is somewhat greater than the land diameter of the gun $(d_0' = about 28.3, d_0 = 28.0)$. The diameter of the body of the projectile, $d_1 = about 19$ mm, is smaller than $d_D = 20$ mm, in order to give a clearance for the compression of the forward band:

$$b_0 = 3 \text{ mm}; \ b_1 \approx 9 \text{ mm}.$$

The angle of inclination of the generatrix of the cone ecb with respect to the axis of the projectile is α = about 30° . At the start of the motion, the projectile, while pressing apart the rolled-up part of the cartridge with its forward band, moves through the 35-mm long smooth cylindrical part of the bore, and only then cuts itself into the rifled conical part. The gases act upon the inner cavity of the rear band and press it toward the surface of the bore along the cylindrical part ab, whose surface at the start of the motion is:

As they cut themselves into the conical part of the bore, both bands are compressed and elongated toward the rear. After ejection of the projectile, the rear band has the appearance represented in fig. 180; its outer surface shows traces of the rifling grooves.

Fig. 180 - Rear Band after Compression.

2

The deformation of the outer surface of the rear band and the law governing the change in the surface of contact can be determined with the aid of the simplified scheme represented in figs. 181 and 182.

Fig. 181 - Scheme of Compression of Rear Band.

Fig. 182 - Scheme of Deformation of Rear Band.

The fundamental assumption made as a result of measuring the bands before and after the shot is that the length of the generatrix of the band always remains the same, i.e.:

$$t_{\rm n}$$
 - ecba - ecb'a'.

The deformation of the surface of contact consists in the transformation of the initial cylindrical surface of diameter \mathbf{d}_0 into a cylindrical surface of diameter \mathbf{d} . The slight conicity is neglected, and the surface of contact is considered to be cylindrical:

$$S_n = \pi d(a'b' + b'c).$$

But:

b'c = bc =
$$\frac{d_0' - d}{2 \sin \alpha} \approx \frac{d_0 - d}{2 \sin \alpha}$$

since the difference between the diameters d_0 and d_0' does not exceed 1%.

Making use of the previously derived designation $y=d/d_0$, and taking into account that $s_0=\frac{\pi}{4}~d_0^2$, we have:

$$S_{n} = \pi d_{0} y \left(b_{0} + \frac{d_{0} - d}{2 \sin \alpha} \right) = \frac{\pi d_{0}^{2}}{4} y \left[\frac{4b_{0}}{d_{0}} + \frac{2(1 - y)}{\sin \alpha} \right] =$$

$$-s_0y^2\left[\left(\frac{4b_0}{d_0}\cdot\frac{2}{\sin\alpha}\right)\frac{1}{y}-\frac{2}{\sin\alpha}\right]-$$

$$- s \left[\left(\frac{4b_0}{d_0} + \frac{2}{\sin \alpha} \right) \frac{1}{y} - \frac{2}{\sin \alpha} \right],$$

where $s = s_0^2 y^2$ is the current value for the cross section of the conical bore.

Consequently, the bracketed expression represents the ratio of the surface of the band pressed against the surface of the conical bore to the cross section of this bore. Since y diminishes all the time, $S_{\rm h}$ /s continuously increases.

As the projectile moves through the conical bore, there will be developed the following frictional force:

$$R_T = \xi v_1 s_n P_{CH}$$

where $\xi < 1$, since, as a result of the rigidity of the metal, the pressure p is incompletely transmitted to the frictional surface. Moreover, the pressure p acts upon a surface which is smaller than S_{Π} , especially at the end of compression of the band (cf. scheme in fig. 182, where the pressure is not transmitted to the segment ec').

The work required to overcome this force is:

$$\int_{0}^{t} \mathbf{R}_{\mathbf{T}} dl = \xi v_{1} \int_{0}^{t} \mathbf{S}_{\mathbf{\Pi}} \mathbf{P}_{\mathbf{CH}} dl.$$

Replacing S_{η} in accordance with the formula presented above, we obtain:

$$\int_{0}^{t} R_{T} dt = \xi v_{1} \int_{0}^{t} \left[\left(4 \frac{b_{0}}{d_{0}} + \frac{2}{\sin \alpha} \right) \frac{1}{y} - \frac{2}{\sin \alpha} \right] p_{CH} \cdot s dt ;$$

but sd1 - dW, and $\int p_{CH}^{dW} = about \frac{mv^2}{2}$.

Upon taking the bracketed expression outside the integral sign in the form of an average value, we obtain:

$$\int_{0}^{1} R_{T} dl = \xi v_{1} \left[\left(4 \frac{b_{0}}{d_{0}} + \frac{2}{\sin \alpha} \right) \left(\frac{1}{y} \right)_{av.} - \frac{2}{\sin \alpha} \right] \frac{mv^{2}}{2}.$$

Consequently, the relative work expended to overcome friction is:

$$k_3'' - \xi v_1 \left[\left(4 \frac{b_0}{d_0} + \frac{2}{\sin \alpha} \right) \left(\frac{1}{y} \right) av. - \frac{2}{\sin \alpha} \right].$$

Since y = $\sqrt[3]{1 - \frac{\Lambda}{\Lambda_{\text{con.}}}}$, it follows that:

$$\frac{1}{y_{av.}} = \frac{1}{\Lambda/\Lambda_{con.}} \int_{0}^{\Lambda} \left(1 - \frac{\Lambda}{\Lambda_{con.}}\right)^{-\frac{1}{3}} d\frac{\Lambda}{\Lambda_{con.}}.$$

Upon introducing a new variable t = $1 - \frac{\Lambda}{\Lambda_{con}}$, we obtain after certain transformations:

$$\left(\frac{1}{y}\right)_{av} = \frac{3}{2} \frac{1 - y^2}{\Lambda/\Lambda_{con}}.$$

At $b_0/d_0 = 0.1$, $\alpha = 30^{\circ}$, $\xi = 1$, $v_1 = 0.10$, we obtain the following table of values of $(1, y)_{av}$ and $k_3^{"}$ (Table 5).

			Table	5				- 0
$\lceil_{\Lambda}\rceil$	o	0.10	0.20	0.30	0.40	0.50	υ.60	0.70
$\frac{\Lambda}{\Lambda_{\text{con}}}$			1.037	1.059	1.082	1.110	1.143	1.183
$\left(\frac{1}{y}\right)_{av}$	1		-		0.0762	2 0.0884 0.1028	0.1204	
k"3	0.040	0.9445	0.0563	0.0658			<u> </u>	1

The numbers presented in the table show that the coefficient $k_3^{"}$, in varying from 0.04 to 0.12, considerably exceeds in value the coefficient k_3 in the cylindrical barrel $(k_3 - about 0.01)$.

But, in the expression for k_3 , no account is taken of the work expended upon the deformation of the bands and upon overcoming the resisting forces developing on the surface of contact between the bands and the bore.

To obtain more accurate data on the forces and energies expended during the drawing of a projectile through a conical bore, there were conducted in 1943-1945 tests on pressing projectiles for the $28/20~\mathrm{gun}$ through dies of various conicities, the purpose being subsequently to compute the forces and energies required to press similar projectiles

through the barrel of the 28/20 gun.

In order to segregate the influence of each band, the forward band was reduced in diameter (on a lathe) on one set of projectiles, so that only the rear band remained in operation, while the rear band was reduced on another set of projectiles, so that only the forward band remained in operation; a third set of projectiles was pressed through with both bands intact.

The dies, 28 mm and 20 mm in diameter, differed in length and in their angles of conicity β (tan β = 0.040, 0.025, and 0.020).

The pressing through the dies was performed statically in an Amsler press with the aid of a rod which transmitted the pressure from the press to the bottom of the projectile.

The tests revealed the following relations:

1) In the presence of only one band - either the forward or the rear band - the force diagrams have the appearance represented in fig. 183, where (1) is the projectile with the forward band and (2) is the projectile with the rear band:

$$\Pi_{\text{max 2}} \approx 2\Pi_{\text{max 1}}$$

Since the rear band is considerably thicker and more massive than the forward band, its entire force curve lies higher than the curve for the forward band.

Fig. 183 - Scheme of Forces in Compressing Individual Bands. Ordinate: Π , kg.

2) In the presence of both bands, one of which is displaced with respect to the other by a certain distance, the force diagram has the appearance represented in fig. 184.

Fig. 184 - Summation of Forces in Compressing Both Bands.

The initial segment of the curve corresponds to the compression of only the forward band (while the rear band is still moving through the cylindrical part of the die); at the point a, the force Π_2 begins to be added to the force Π_1 , and the Π_{1+2} curve is obtained by adding together the ordinates of the curves for Π_1 and Π_2 , which are shifted with respect to each other by the distance \mathbf{a}_1 between the bands.

The results of the pressing tests are summarized in Table 6.

1000

Table 6

Die no.	tan B	Length of conical part, mm	$ \int_{\text{max bands}} \text{for both } \int_{\text{max 2}} \text{for rear band} $		n _{max 1} for forward band	A ₂ , kg·dm
1	0.040	160	3500	2620	1350	1480/100
2	0.025	160	3250	2350	1180	1980/133
3	0.020	200	3100	2250	1100	2520/170

In all three cases, the committy exerts a slight effect upon the magnitude of $\Pi_{\rm max}$; as the committy changes by a factor of two (from the first to the third case), $\Pi_{\rm max}$ changes by only 400 kg for both bands (equivalent to 11.5%) and by only 250 kg for the forward band (equivalent to 12.3%).

3) The area of the $\int_0^t \Pi dt$ diagram, where l_M is the length of the conical segment of the die, defines the magnitude of the work expended upon pressing the projectile through the die (fig. 185).

Fig. 185 - Forces as Functions of Angle of Slope of Cone.

The work is substantially dependent upon the path traversed by the projectile. It is least in the shortest die, so that:

1001

$$\int\limits_{0}^{l(1)} \int\limits_{0}^{l(2)} \int\limits_{0}^{l(3)} \int\limits_{0}^{(3)} $

To take into account the work necessary to press the projectile through the conical bore of the gun itself, the force diagram for the die, $\Pi_{\rm M} = f_{\rm M}(l)$, must be transformed into a force diagram applicable to the operation of pressing through the barrel, $\Pi_{\rm C} = f_{\rm C}(l)$.

5. DERIVATION OF FORMULA FOR RECOMPUTATION OF PRESSING FORCES FROM DIE TO BARREL (*)

Fig. 186 - Scheme of Forces During Passage of Projectile.

As the projectile is pressed through a die or a barrel, it is acted upon by the following forces (Fig. 186):

- 1) The force of the press Π , which is directed along the axis of the projectile.
- 2) The reaction force N' perpendicular to the conical surface, which is uniformly distributed over the variable surface of contact of the forward band.
 - 3) The analogous force N on the rear band.
 - 4) The frictional force $\vee_1 N$ on the forward band.
- (*) Derivation performed by Engineer Shpigelburd.

1002

5) The frictional force $\vee_1 N$ " on the rear band.

Upon resolving the reaction forces N and \vee N into their components parallel and perpendicular to the axis of the bore and of the projectile, we find that the projectile is acted upon in the axial direction by the following three forces:

$$\Pi$$
, $(N' + N'')\sin \beta$, $(N' + N'')v_1 \cos \beta$;

and that the following two forces act in the radial direction:

$$(N' + N'')\cos \beta$$
, $(N' + N'') \vee_{1} \sin \beta$.

For the static pressing of the projectile through the die, the equilibrium conditions for the forces in the axial direction will give the following equation (designating N + N = N): (53)

$$\Pi = N(\sin \beta + \sqrt{1 \cos \beta}). \tag{53}$$

The radial forces compressing each band:

radial forces compressing
$$\Phi' = N''(\cos \beta - \sqrt{1 \sin \beta})$$

 $\Phi' = N''(\cos \beta - \sqrt{1 \sin \beta})$

cause the bands to undergo plastic deformation.

In transferring the pressing-force diagram from the die to the barrel, we make the assumption that identical radial forces act in Similar cross sections of the die and of the barrel which correspond to one and the same diameter.

In such a case, for similar cross sections of the barrel and of the die, we can write the following equation of radial forces (the subscript "M" indicating the die, and the subscript "c" indicating the barrel):

1003

STAT

$$N_{\underline{M}}(\cos \beta_{\underline{M}} - V_{\underline{1}\underline{M}} \sin \beta_{\underline{M}}) = N_{\underline{C}}(\cos \beta_{\underline{C}} - V_{\underline{1}\underline{C}} \sin \beta_{\underline{C}}).$$
 (54)

On the basis of formula (53), we have:

$$\Pi_{\underline{M}} = N_{\underline{M}} (\sin \beta_{\underline{M}} + \nu_{\underline{M}} \cos \beta_{\underline{M}}); \Pi_{\underline{C}} = N_{\underline{C}} (\sin \beta_{\underline{C}} + \nu_{\underline{C}} \cos \beta_{\underline{C}}),$$

from which:

$$\frac{\Pi_{c}}{\Pi_{\underline{M}}} = \frac{N_{c}}{N_{\underline{M}}} \frac{\sin \beta_{c} + \nu_{c} \cos \beta_{c}}{\sin \beta_{\underline{M}} + \nu_{\underline{M}} \cos \beta_{\underline{M}}}.$$

Upon replacing the ratio $N_{\text{C}}/N_{\text{K}}$ as indicated in expression (54), we obtain:

$$\Pi_{c} = \Pi_{\underline{M}} \frac{\cos \beta_{\underline{M}} - \nu_{\underline{M}} \sin \beta_{\underline{M}}}{\cos \beta_{\underline{C}} - \nu_{\underline{C}} \sin \beta_{\underline{C}}} \frac{\sin \beta_{\underline{C}} + \nu_{\underline{C}} \cos \beta_{\underline{C}}}{\sin \beta_{\underline{M}} + \nu_{\underline{M}} \cos \beta_{\underline{M}}} =$$

$$= \Pi_{\underline{M}} \frac{\tan \beta_{\underline{M}}}{\tan \beta_{\underline{C}}} \frac{\cot \beta_{\underline{M}} - \nu_{\underline{M}}}{\cot \beta_{\underline{C}} - \nu_{\underline{C}}} \frac{\tan \beta_{\underline{C}} + \nu_{\underline{C}}}{\tan \beta_{\underline{M}} + \nu_{\underline{M}}}.$$
 (55)

Since:

cot
$$\beta_{\underline{M}} \gg \nu_{\underline{M}}$$
 and cot $\beta_{\underline{C}} \gg \nu_{\underline{C}}$,

then, assuming:

$$\frac{\tan \beta \cot \beta_{\mathbf{M}} - \vee_{\mathbf{M}}}{\tan \beta_{\mathbf{C}} \cot \beta_{\mathbf{C}} - \vee_{\mathbf{C}}} - 1,$$

We can reduce formula (55) to the following simpler form:

$$\Pi_{c} = \Pi_{M} \frac{\tan \beta_{c} + v_{c}}{\tan \beta_{M} + v_{M}}.$$
(56)

Applying formula (56) to two dies of different conicities, assuming $v_{\underline{\mathbf{M}}}$ to be the same, and knowing Π_1 and Π_2 from the pressing diagram obtained with the aid of the press, there was obtained $\vee_{\underline{M}}$ = - 0.16, which corresponds to the data accepted in technology. This demonstrates the correctness of the initial assumptions.

Formula (56) serves for recomputation of the forces required to press the projectile through the barrel.

Since the bore of the 28/20 gun consists of segments of different conicities, it follows that, in those places where the conicity changes, the rear band of the projectile will be on one segment, and its forward band will be on the other. For this reason, it is necessary to use formula (56) in such a manner as to transform from the die to the barrel the Π - l diagrams for each band separately, whereupon the diagrams are added together.

During rapid motion of the projectile through the bore, the coefficient of friction decreases in conformity with the following formula:

$$v = v_0 \frac{1 + a_1 v}{1 + a_2 v}$$

where $a_1 < a_2$.

In accordance with the data of M.M. Shlyaposhnikov, \vee_0 = 0.27, $a_1 = 0.0213$, $a_2 = 0.133$. In accordance with the data of Robinson $\frac{737}{2}$, v is close to 0.05 at v > 200 m/sec.

Assuming v_c to have an average value (0.1 or less), we can use formula (56) to obtain the forces involved in pressing the projectile through the barrel.

For the 28/20 gun, which comprises three segments of different conicities, there is obtained at $v_{av.} = 0.10$ the $\Pi = f([)$ force

diagram represented in fig. 187.

Fig. 187 - Resistance to Drawing through 28, 20 Barrel.

 cylindrical bore; 2) conical bore of 28/20 antitank gun; 3) profile of 28/20 antitank gun bore.

As is seen from the results of the computation, this value is considerably greater than the work required to overcome friction in a cylindrical barrel, where \mathbf{k}_3 = about 0.01, or approximately 1%.

The coefficient $\phi_{\vec{K}}$ for the conical barrel can thus be represented in the following form:

$$\varphi_{K} = a_{K} + b_{K} \frac{\omega}{\sigma}$$

where:

$$a_{K} = 1 + k_{2} + k_{3}' + k_{3}'' + k_{3}^{(K)} + k_{5}.$$

Here, k₂ is the relative work consumed in rotating the projectile, k₂ is about 0.01;

diagram represented in fig. 187.

Fig. 187 - Refistance to Drawing through 28,20 Barrel.

cylindrical bore; 2) conical bore of 28/20 antitank gun; 3) profile of 28/20 antitank gun bore.

Computation of the work involved in static pressing through the bore at $v_{\rm c}=0.10$ gave the value of A = 1320 kg·m, which constitutes about 10% of the muzzle energy of the projectile. At existing conicities, $\int \!\!\! \int \!\!\! \mathrm{d}t \, \mathrm{depends}$ in considerably greater measure upon the coefficient of friction v than upon tan β .

As is seen from the results of the computation, this value is considerably greater than the work required to overcome friction in a cylindrical barrel, where k_3 = about 0.01, or approximately 1%.

The coefficient $\phi_{\vec{k}}$ for the conical barrel can thus be represented in the following form:

$$\varphi_{\underline{K}} = a_{\underline{K}} + b_{\underline{K}} \frac{q}{\omega},$$

where:

$$a_{K} = 1 + k_{2} + k_{3}' + k_{3}'' + k_{3}^{(K)} + k_{5}.$$

Here, k₂ is the relative work consumed in rotating the projectile, k₂ is about 0.01;

1006

- is the relative work consumed in overcoming friction on the driving edges of the two bands, k_3^2 = about 0.02;
- (K)
 is the relative work consumed in overcoming the resistance forces due to the friction of the bands against the surface of the bore and by the deformation

of the bands,
$$k_3^{(K)} = \frac{0}{\frac{mv^2}{2}}, k_3^{(K)} \approx 0.10$$
;

- is the relative work consumed in overcoming the additional friction caused by the pressing of the rear band against the surface of the bore under the action of the gas pressure, $k_3^{\prime\prime}=0.04-0.08;$ $k_c\approx0.01$
- is the relative work consumed by the recoil, $\frac{k_5 \approx 0.01}{\sum k_1 = 0.18-0.22}.$

Thus:

$$a_{K_{av}}$$
 - 1.20; b_{K} - $\frac{1}{3}$ y $\frac{\Lambda + \frac{y}{\chi}}{\Lambda + 1} \approx 0.22$.

For Cylindrical Bore:

For Conical Bore:

For charge
$$\frac{\omega}{q} = 1$$

$$\varphi = 1.03 + \frac{1}{3} \frac{\omega}{q} = 1.363.$$
 $\varphi_{K} = 1.20 + 0.222 \frac{\omega}{q} = 1.422;$

For charge
$$\frac{\omega}{q} = 1.5$$

$$\varphi = 1.03 + \frac{1}{3} \frac{3}{2} = 1.53.$$
 $\varphi_{K} = 1.20 + 0.333 = 1.533;$

1007

For charge
$$\frac{\omega}{q} = 2.0$$

$$\varphi = 1.03 + \frac{2}{3} = 1.70.$$
 $\varphi_{K} = 1.20 + 0.444 = 1.644.$

Consequently, for the charge $\omega/q=1.5$ (which corresponds to $v_D=0$ about 1500 m/sec), the identical coefficients ϕ and ϕ_K are obtained for the cylindrical and conical bores, even though the components a and b = 0 differ:

$$a_{K} > a$$
, $b_{K} < b$.

At smaller relative charges ω , q, the coefficient ϕ_K for the conical barrel is greater than ϕ for the cylindrical barrel. At $\frac{\omega}{q} > 1.5$, at projectile velocities $v_D > 1500$ m, sec, $\phi_K < \phi$, and the conical bore is found to be more advantageous, since, at a large relative charge, the decrease in the coefficient $b_K = 100$ is more pronounced.

At very high initial projectile velocities, higher than 1500 m/sec, the barrel with the conical bore is more advantageous not only because it considerably reduces the length of the bore, but also because it reduces the quantity of work consumed in moving the gases in the narrowing bore $\left(\text{term } b_K \frac{\omega}{q}\right)$.

If the values for the coefficients $k_3^{\prime\prime}$ and $k_3^{(K)}$ are not averaged and the problem is solved for variable magnitudes of the resistance forces, the following system of equations is obtained:

1) Equation of motion:

$$\mathbf{sp}_{CH} - \xi \mathbf{v}_1 \mathbf{s}_n \mathbf{p}_{CH} - \mathbf{n} = \mathbf{q}_1 \mathbf{m} \frac{\mathbf{dv}}{\mathbf{dt}}. \tag{a}$$

STAT,

2) Equation of work or equation of transformation of energy:

$$p(W_{\psi} + W) = f\omega\psi - \frac{\theta}{2} \varphi_2 w^2 - \theta \int_0^l Ndl - \xi \int_0^l v_1 s_{\prod} pdl.$$
 (b)

3) Law of burning rate:

$$u = u_1 p.$$
 (c)

4) Law of gas formation:

$$\psi = \kappa z + \kappa \lambda z^2. \tag{d}$$

5) Relation between $p_{\mbox{CH}}$ and p (average):

$$p = p_{CH} \left[1 + \frac{1}{3} \frac{y}{\varphi_1} \frac{\Lambda + \frac{y}{\chi}}{\Lambda + 1} \right]. \tag{e}$$

The coefficient φ_1 takes into account the work of the resistance forces on the driving edges of the rifling grooves and the work consumed in rotating the projectile. It is possible to assume that φ_1 = about 1.02. The coefficient φ_2 takes into account all the usual forms of work, except for the work accounted for separately by the last two terms in equation (b):

$$\phi_2 = 1 + k_2 + k_3' + k_4 + k_5 \approx 1.03 + b_K \frac{\omega}{q}$$

where:

$$b_{K} = \frac{1}{3} y \frac{\Lambda + \frac{y}{\chi}}{\Lambda + 1}, y = \frac{d}{d_{0}}, \chi = \frac{l_{0}}{l_{KM}}.$$

The system represented by these equations is solved by the method of resolution into a Taylor's series, accompanied by the use of a series of diagrams expressing the dependence of Π , $\int \Pi dl$, S_{Π} , b_{K} and ϕ_{2} upon W or Λ and the relation between v_{1} and the velocity of the projectile.

For verifying the correctness of the relations derived above by taking into account the various forms of secondary work, it is expedient to utilize the above system of equations (a-e) at very small charges, using a very rapid-burning powder.

In this case, which is close to the case of instantaneous burning of the powder, equations (c) and (d) are eliminated, the coefficient φ_2 is close to being constant because of the smallness of ω/q , and the retarding forces $R = \frac{\pi}{2} \sqrt{\frac{S}{100}} p_{CH}$ and π acquire predominant importance and can more easily be taken into account.

If equation (a) is written in the following form:

$$\mathbf{sp}_{CH}\left[1-\xi\nu_{1}\,\frac{s_{n}}{s}-\frac{n}{sp_{CH}}\right]=\phi_{1}^{m}\,\frac{dv}{dt},$$

it becomes possible to select values of Δ and p_{CH} at which the bracketed expression will be very small, and may in a certain instant even become less than zero; the projectile will be retarded to such an extent that it will stop without emerging from the bore.

CHAPTER 2 - METHOD OF SOLUTION OF PROBLEM OF INTERIOR BALLISTICS

The fundamental assumptions are the same as in solving the problem for the usual cylindrical barrel: instantaneous ignition, geometric law of burning of the powder, law of rate of burning $u = u_1 p$, instantaneous cutting of the band into the rifling grooves at the pressure p_0 to overcome the inertia of the projectile; unchanging gas composition during expansion.

The fundamental distinction is the variable cross section of the bore.

Fundamental Relations

Equation of motion:

$$\varphi m \frac{dv}{dt} - sp \tag{57}$$

Law of rate of burning:

$$u = \frac{de}{dt} = u_1 p \tag{58}$$

Equation of elementary work:

$$\varphi m v d v = p s d l = p d W$$
 (59)

Equation of transformation of energy:

$$p(\Psi_{\psi} + \Psi) = f\omega\psi - \frac{\theta}{2} \phi m v^2$$

where:

$$\mathbf{w}_{\Psi} - \mathbf{w}_{0} \left[1 - \frac{\Delta}{\delta} - \Delta \left(\alpha - \frac{1}{\delta} \right) \Psi \right]$$
 (60)

is the free volume of the chamber in the instant when the fraction of the charge ψ has burned.

From (57) and (58), we have, as usual: sde = $u_1 \phi m dv$, or:

+) $\varphi = a_{\overline{K}} + b_{\overline{K}} \frac{\omega}{q}$ in accordance with the formulas in the preceding chapter.

83064

$$dv = \frac{s}{\varphi_m} \frac{e_1}{u_1} dz - \frac{sI_K}{\varphi_m} dx, \qquad (61)$$

where:

$$x = z - z_0 = \frac{e}{e_1} - \frac{e_0}{e_1};$$

x is the relative thickness of the powder burnt since the start of motion of the projectile; e_0 is the thickness of the powder burnt in the instant of the start of motion; z_0 is the relative powder thickness; and ψ_0 is the fraction of the charge burnt prior to the same instant of time.

We introduce into equation (61) the relative quantity $\frac{s}{s_0}$:

$$dv = \frac{s_0 I_K}{\varphi_m} = \frac{s}{s_0} dx.$$
 (62)

The fundamental difficulty in solving the system of equations for the conical barrel consists in the fact that the connection between $\frac{s}{s_0}$ and v or x is not known in advance; it will be established later.

This makes it impossible to integrate equation (61).

We propose taking this connection from the solution of the problem for the cylindrical barrel, where we obtain a connection between v and w or:

$$V = \frac{A^0}{A}$$

From the fundamental assumption that, under identical loading conditions for the conical and cylindrical barrels, the v- Λ curves for both coincide, we obtain the relation between $\frac{s}{s_0}$ and W or Λ . Since the quantity Λ will subsequently be the argument, the ratio $\frac{s}{s_0}$ will be known in accordance with it, and the equation can be

integrated.

By integrating it, we obtain:

$$\mathbf{v} = \frac{\mathbf{s}_0 \mathbf{I}_K}{\mathbf{\varphi}_m} \int_0^{\mathbf{x}} \frac{\mathbf{s}}{\mathbf{s}_0} d\mathbf{x}.$$

Taking $\frac{s}{s_0}$ outside the integral sign in the form of the average value of $\frac{sav.}{s_0}$ from 1 to $\frac{s}{s_0}$, corresponding to the relative volume Λ and the velocity v in the cylindrical barrel, we have:

$$v = \frac{s_0^T K}{\phi m} \frac{s_{av}}{s_0} x, \qquad (63)$$

and, since we have accepted the condition that $\mathbf{v} = \mathbf{v}_{\mathbf{u}}$, it follows that:

$$\frac{\mathbf{s}_0\mathbf{I}_K}{\varphi_m}\frac{\mathbf{s}_{av}}{\mathbf{s}_0}\mathbf{x} - \frac{\mathbf{s}_0\mathbf{I}_K}{\varphi_m}\mathbf{x}_u,$$

from which:

$$x = \frac{x_{u}}{\frac{s_{av}}{s_{0}}} > x_{u}. \tag{64}$$

From equations (59) and (60), we obtain the following relation between W and Λ and X:

$$\frac{dW}{W_{\psi} + W} = \frac{d\Lambda}{\Lambda_{\psi} + \Lambda} = \frac{1}{f\omega} \frac{\varphi w v dv}{\psi - \frac{v^2}{2}},$$
(65)

where $\psi = f(z)$ is expressed by the following binomial formula:

$$\psi = \kappa z + \kappa \lambda z^2 = \psi_0 + \kappa \sigma_0 x + \kappa \lambda x^2$$
.

Upon substituting into the right-hand side of equation (65) the values for dv in accordance with equation (61) and for v in accordance with equation (63), and upon introducing the designation:

___3

$$B_0 = \frac{s_0^2 I_K^2}{f \omega q_m},$$

we obtain:
$$\frac{d\Lambda}{\Lambda_{\psi} + \Lambda} = \frac{B_0 \frac{s_{av}}{s_0} \frac{s}{s_0} x dx}{\psi_0 + \kappa s_0 x - \left[B_0 \left(\frac{s_{av}}{s_0}\right)^2 \frac{\Theta}{2} - \kappa \lambda\right] x^2} = \frac{B_0 \frac{s_{av}}{s_0} \frac{s}{s_0} x dx}{\psi_0 + k_1 x - B_{1s} x^2}$$
(66)

where:

$$B_{1s} - \frac{B_0 \theta}{2} \left(\frac{s_{av}}{s_0} \right)^2 - x \lambda.$$

The analogous equation for a cylindrical barrel of caliber $\mathbf{d}_{\mathbf{Q}}$ has the following form:

$$\frac{d\Lambda}{\Lambda_{\psi} + \Lambda} = \frac{B_0 x_u^{dx} u}{\Psi_0 + k_1 x_u^{-1} B_1 x_u^{2}},$$
(67)

where:

$$B_1 = \frac{B_0 \Theta}{2} - \kappa \lambda,$$

and B_0 is the same as above:

$$B_0 = \frac{s_0^2 I_K^2}{f \omega \phi B} \ .$$

Comparison of expressions (66) and (67) shows that the parameters B_0 and B_1 , which are constant for the cylindrical barrel, become in equation (66) for the conical barrel variable and dependent upon the variation in the cross section of the barrel.

Eut the product $\frac{s_{av}}{s_0}$ $\frac{s}{s_0}$ in the numerator of formula (66) is a function of A and can be transferred to the left-hand side during integration, while the last term in the denominator is relatively small in comparison with the sum of the first two, and the variable

quantity $\left(\frac{s_{av}}{s_0}\right)^2$ therein may be assumed to equal an average value, either one and the same for the entire interval of integration or different depending upon the quantity x.

In this case, equation (66) can be integrated, and the relation between Λ and x can be obtained in its final form.

On the basis of the above discussion:

$$\frac{s}{s_0} - y^2$$
; $\frac{s_{av}}{s_0} \approx y$; $\frac{s_{av}}{s_0} \frac{s}{s_0} - y^3 - 1 - \frac{\Lambda}{\Lambda_{con}} - f(\Lambda)$.

Separating the variables, we obtain:

$$\frac{d\Lambda}{(\Lambda_{\psi} + \Lambda) \left(1 - \frac{\Lambda}{\Lambda_{con.}}\right)} = \frac{B_0 x dx}{\Psi_0 + k_1 x - B_{1s} x^2} = -\frac{B_0}{B_{1s}} \frac{x dx}{x^2 - \frac{k_1}{B_{1s}} x - \frac{\Psi_0}{B_{1s}}}.$$

The right-hand side of equation (68) shows no external differences from the right-hand side of a similar equation for the cylindrical barrel and represents a differential of the function of Professor N. F. Drozdov (in which connection, during integration, B_{1s} must be taken as an average value \overline{B}_{1s} over the given interval of integration):

$$-\frac{B_{0}}{\overline{B}_{1s}}\int_{0}^{x}\frac{xdx}{x^{2}-\frac{k_{1}}{\overline{B}_{1s}}-\frac{\Psi_{0}}{\overline{B}_{1s}}}-1nZ_{x}^{-\frac{B_{0}}{\overline{B}_{1s}}},$$

This function is found from the basic quantities:

$$\gamma = \frac{\overline{B}_{18} \Psi_0}{k_1^2}, \quad \beta = \frac{\overline{B}_{18}}{k_1} x,$$

the magnitude of \overline{B}_{18} either varied in moving from one value of x to another or else being retained constant for the entire first period.

The left-hand side of equation (68) is likewise capable of integration at $\Lambda_{\psi} = \Lambda_{\psi av}$, in which connection $\Lambda_{\psi av}$ may likewise be taken either constant for all values of ψ , or else, which is better, its own value is taken each time for each value of $\psi = \psi_0 + k_1x + \Re\lambda x$ used (as is commonly done to obtain a more exact solution at an average l_{ψ}). We resolve the function under the integral on the left-hand side of equation (68) into the simplest

fractions:
$$\frac{1}{(\Lambda_{\forall av.} + \Lambda) \left(1 - \frac{\Lambda}{\Lambda_{con.}}\right)} = \frac{\Lambda_{con.}}{(\Lambda_{\forall av.} + \Lambda) (\Lambda_{con.} - \Lambda)} = \frac{a}{\Lambda_{\forall av.} + \Lambda} + \frac{b}{\Lambda_{con.} - \Lambda};$$

$$\Lambda_{con.} = a\Lambda_{con.} - a\Lambda + b\Lambda_{\forall av.} + b\Lambda.$$

To determine a and b, we have two equations:

$$a\Lambda_{con.}$$
 + $b\Lambda_{vav.}$ $-\Lambda_{con.}$ and $a - b - 0$,

from which:

$$a = b$$
 and $a + b \frac{\Lambda_{\Psi a V.}}{\Lambda_{CON.}} = 1;$

$$a = b = \frac{\Lambda_{CON.}}{\Lambda_{\Psi a V.} + \Lambda_{CON.}} = \frac{1}{1 + \Lambda_{CON.}}.$$

Consequently:

$$\frac{\Lambda_{\text{con.}}^{\text{don.}} d\Lambda}{(\Lambda_{\text{wav.}} + \Lambda)(\Lambda_{\text{con.}} - \Lambda)} = \frac{\Lambda_{\text{con.}}}{\Lambda_{\text{con.}} + \Lambda_{\text{wav.}}} \left[\frac{d\Lambda}{\Lambda_{\text{wav.}} + \Lambda} - \frac{-d\Lambda}{\Lambda_{\text{con.}} - \Lambda} \right] =$$

$$= \frac{\Lambda_{\text{con.}}}{\Lambda_{\text{con.}} + \Lambda_{\text{wav.}}} d\ln \frac{\Lambda_{\text{wav.}} + \Lambda}{\Lambda_{\text{con.}} - \Lambda}.$$

By integrating equation (68) between the limits from zero to Λ and from zero to x, we obtain:

or, introducing the designation:

$$\frac{B_0}{B_{1s}} \left(1 + \frac{\Lambda_{\Psi a V}}{\Lambda_{con}} \right) = \Lambda_K,$$

$$\frac{1 + \frac{\Lambda}{\Lambda_{\Psi a V}}}{1 - \frac{\Lambda}{\Lambda_{con}}} = Z_X^{-\Lambda_K}.$$
(70)

By solving equation (69) with respect to Λ , we obtain:

$$\Lambda - \Lambda_{\Psi_{av}} \cdot \frac{z_{x}^{-A_{K}-1}}{\frac{1}{1 + \frac{\Lambda_{\Psi_{av}}}{\Lambda_{con}}} z_{x}^{-A_{K}}}.$$
 (71)

For the cylindrical barrel, we had:

cal barrel, we had:

$$\Lambda_{\mathbf{u}} = \Lambda_{\mathbf{vav}} \cdot \left(\mathbf{z}_{\mathbf{x}} \frac{\mathbf{B}_{0}}{\mathbf{B}_{1}} - 1 \right), \tag{72}$$

where:

$$B_1 = \frac{B\theta}{2} = \varkappa \lambda.$$

The numerator of formula (71) for the conical barrel has the same form, with the sole difference that the exponent $\frac{B_0}{B_1}$ is replaced

by the exponent:

$$A_{K} = \frac{B_{0}}{B_{1s}} \left(1 + \frac{\Lambda_{\psi_{RV}}}{\Lambda_{con}} \right),$$

1017

where:

$$\overline{B}_{1s} = \frac{B\Theta}{2} \left(\frac{s_{av}}{s_0} \right)^2 - \kappa \lambda.$$

is not constant, but varies depending upon the variation in the cross section of the bore. Moreover, there is present a denominator greater than unity, which increases as the powder burns during the motion of the projectile through the conical barrel.

Thus, formula (70) reflects the influence of the variable cross section of the bore and of those specific features which make their appearance as the projectile moves through the conical barrel.

The formula for the pressure will have the following form:

$$p = f\Delta \frac{\Psi - \frac{v^2}{v_{\Pi p}^2}}{\Lambda_{\Psi}^{+} \Lambda} = f\Delta \frac{\Psi_0 + k_1 x - B_{1g} x^2}{\Lambda_{\Psi}^{+} \Lambda}, \qquad (73)$$

i.e., its structure does not differ from that of the formula for the cylindrical barrel. Since, for definite values of x or ψ , the velocity $\mathbf{v} < \mathbf{v}_{\mathbf{U}}, \Lambda < \Lambda_{\mathbf{U}}$ for the conical barrel, the pressure in the conical bore exceeds that in the cylindrical barrel $(\mathbf{p} > \mathbf{p}_{\mathbf{U}})$.

Formula (73) can be written in the following form:

$$p = f\Delta \frac{\Psi - \frac{B_0 \Theta}{2} \left(\frac{s_{av}}{s_0}\right)^2 x^2}{\Lambda_{\psi} + \Lambda}$$
 (74)

By differentiating it with respect to x and equating the derivative to zero, we obtain a formula for x_m at which the gas pressure reaches its maximum.

Without presenting a detailed derivation, we shall write down the formula in its final form:

$$\frac{\mathbf{x}_{m} - \frac{\mathbf{k}_{1}}{\mathbf{B}_{0} \left(\frac{\mathbf{s}_{av}}{\mathbf{s}_{0}}\right)_{m}^{2} \left[\left(\frac{\mathbf{s}_{av}}{\mathbf{s}_{0}}\right)_{m} + \boldsymbol{\Theta}\right]}{1 + \frac{\mathbf{p}_{m}}{\mathbf{f}} \left(\mathbf{a} - \frac{1}{\delta}\right)} - 2 \times \lambda$$

At s= const., this formula becomes transformed into the usual formula for the cylindrical bore.

The appearance of the $p-\Lambda$ and $v-\Lambda$ curves is represented in Fig. 188.

Fig. 188 - p - Λ and v - Λ Curves in Conical and Cylindrical Bores.

1) p - A Curve in gun with cylindrical bore
2) p - A Curve in gan with conical bore

In the method described above, there was accepted and utilized the proposition that the $v-\Lambda$ curves in the conical and cylindrical barrels coincide. In this connection, the quantity $x=z-z_0$ was taken as the argument. But if the quantity Λ is taken as the argument, the same formulas can be used as a basis to give a different order of computation of the elements of the curves, which has been proposed by I. M. Belenky. Knowing and assigning the quantity

and the corresponding values of $\frac{s}{s_0}$ and $\frac{s_{av}}{s_0}$, and assuming in the first approximation for the computation of $\Lambda_{\psi a \psi}$, the value $\psi = 1$ and $\Psi_{av} = \frac{\Psi_0 + 1}{2}$, it is possible to compute the function:

$$\log z_{x}^{-1} = \frac{1}{\Lambda_{K}} \log \frac{1 + \frac{\Lambda}{\Lambda_{\Psi_{RV}}}}{1 - \frac{\Lambda}{\Lambda_{con}}}, \qquad (75)$$

where:

$$A_{K} = \frac{B_{0}}{B_{1s}} \left(1 + \frac{\Lambda_{\text{vav.}}}{\Lambda_{\text{con.}}} \right) \text{ and } \overline{B}_{1s} = \frac{B_{0} \Theta}{2} \left(\frac{s_{\text{av.}}}{s_{0}} \right)^{2} - \kappa \lambda.$$

Thereupon, from the table of the function $\log Z_x^{-1}$ and the quantity $\gamma = \frac{B_{1S}}{k_1^2} \psi_0$, there are found the values of $\beta = \frac{B_{1S}}{k_1} x$, from which $x = \frac{k_1}{B_{1=0}}$.

Since $A_{\Psi_{\mathbf{2V}}}$ enters into the first part of formula (75), while ψ is not known in advance, it becomes necessary in the initial computations to accept an average value of $\psi = \frac{1}{2}$, which is correct only for the end of burning of the powder and introduces an error in determining the elements of the intermediate points of the first period. For these points, the pressure is obtained higher than is actually the case. It is necessary to proceed for these points by the method of successive approximations, the number of approximations being reducible to two if we assume $\psi=\left(\frac{\Lambda}{\Lambda_K}\right)^{2/3}$, where $\Lambda_K=\frac{\Psi_K}{\Psi_0}$ is the relative volume of the bore in the instant of the end of burning of the powder, and $\Lambda = \frac{\Psi}{\Psi_0}$ is the current value of the relative volume.

The character of the variation of Λ_{ψ} and $\Lambda_{\psi a \psi}$ and their influence upon the magnitude of the pressure are apparent from the diagram in Fig. 189.

Fig. 189 - Dependence of Λ_{ψ} upon Λ in Conical Bore.

1) at; 2) period.

The actual values of $\Lambda_{\rm wav}$ vary as a function of Λ along a certain curve ab; acceptance of $\psi_0=\frac{1}{2}$ for all points of the first period gives a straight line parallel to the abscissa.

The formulas for the second period have the usual form:

$$\mathbf{p} = \mathbf{p}_{K} \left(\frac{\mathbf{w}_{1} + \mathbf{w}_{K}}{\mathbf{w}_{1} + \mathbf{w}} \right)^{1+\Theta} = \mathbf{p}_{K} \left(\frac{1 - \alpha\Delta + \Lambda_{K}}{1 - \alpha\Delta + \Lambda} \right)^{1+\Theta} \ ,$$

where:

$$w_1 = w_0(1 - \alpha \Delta)$$
 and $\Lambda > \Lambda_K$.

$$\mathbf{v} = \mathbf{v}_{\mathsf{n}_{\mathbf{p}}} \sqrt{1 - \left(\frac{1 - \alpha\Delta + \Lambda_{\mathbf{K}}}{1 - \alpha\Delta + \Lambda_{\mathbf{D}}}\right)^{\mathbf{0}} \left(1 - \frac{\mathbf{v}_{\mathbf{K}}^{2}}{\mathbf{v}_{\mathsf{n}_{\mathbf{p}}}^{2}}\right)},$$

where:

$$\mathbf{v_{fip}} = \sqrt{\frac{2gf\omega}{\phi_{K}\Theta q}} \quad \text{and} \quad \mathbf{v_{K}} = \frac{\mathbf{s_{0}}\mathbf{I_{K}}}{\phi_{K}^{m}} \, \frac{\mathbf{s_{K}} \, \, \mathbf{av}}{\mathbf{s_{0}}} \cdot (1 \, - \, \mathbf{z_{0}}) \, .$$

CHAPTER 3 - BALLISTIC DESIGN OF CONICAL BARREL

Since conical guns will be employed only for the purpose of attaining very high initial projectile velocities under conditions

when ordinary guns have an excessive length, we shall find in our design a conical barrel which corresponds to a cylindrical barrel with the minimum bore volume. For this reason, such a design will be based on the procedure and auxiliary tables presented in the division entitled "Ballistic Design of Guns".

On the basis of tactical and technical requirements, let there be predetermined the exit caliber d_{D} , the weight of the projectile q, and the initial projectile velocity v_D for the conical barrely Additionally, we determine $c_{qD} = \frac{q}{d_D^3}$; $\frac{v_D}{2g}$; and $C_{\xi} = c_{qD} \frac{v_D^2}{2g}$. Since

 $c_{f qD}$ for armor-piercing projectiles may fluctuate in the range of 16-18, while the limit for the minimum $c_{ extbf{q0}}^{ extbf{based}}$ based on the entrance caliber equals 6.0-7.0, the possible values for the ratios of the entrance to the exit caliber lie within rather narrow limits, namely:

e exit caliber lie within rather narrow line
$$\beta = \frac{d_0}{d_0} = \sqrt[3]{\frac{c_0}{c_{q0}}} = \sqrt[3]{\frac{16}{7} \cdot \cdot \cdot \frac{18}{6}} = 1.32 \cdot \cdot \cdot \cdot 1.44.$$

In German guns, the accepted ratios are β = 1.4 for the 28/20 gun and β = 1.363 for the 75/55 gun.

The ratio:
$$\beta = \sqrt[3]{\frac{16}{6}} = \sqrt[3]{\frac{18 \cdot 67}{7}} = 1.385$$

After selecting the entrance caliber d_0 in such a manner as to may be recommended. obtain $c_{\mathbf{q}0}$ = about 6.0, we find the fundamental characteristics of the minimum-volume cylindrical gun at $c_q = 6.0$ and at the chosen values of

$$\gamma_{\rm D} \text{ and } p_{\rm m}$$
:

$$\gamma_{\rm w_0} = 85 - 82 \text{ tm/kg}; \quad \frac{\omega_0}{q}; \quad \varphi_{\rm K} = a_{\rm K} + b_{\rm K} \frac{\omega}{q}, \text{ where } a_{\rm K} \approx 1.20;$$

$$_{b} = 0.222; \quad v_{tab.D} = \frac{v_{D}}{n}; \quad n = \sqrt{\frac{\omega_{0}}{\varphi_{K}q}};$$

From the GAU Tables, we find:

From the GAU Tables, we find:

$$B, \Lambda_{K}, \Lambda_{D}, \gamma_{K} = \frac{\Lambda_{K}}{\Lambda_{D}}; \frac{l_{0}}{d}; W_{0}, \frac{L_{KH}'}{d_{0}} = \frac{l_{0}}{d} \cdot (\Lambda_{D} + 1); \frac{l_{D}}{d_{0}} = \frac{l_{0}}{d} \cdot \Lambda_{D}.$$

Here, $d = d_0$ equals the entrance caliber of the conical gun. On the basis of these data, we determine the chamber volume $\Psi_0 = s_0 l_0$, where $s_0 = n_g d_0$. The working volume of the bore is $W_D = S_0 l_D$, and this volume will be equal to the volume of the cone. Knowing the volume of the truncated cone $W_{\overline{D}}$ and the ratio of its diameters $y_D = \frac{d_D}{d_0}$, we use the formula $W_D = W_{con.}(1 - y_D^3)$ to find the volume of the entire cone to its apex:

$$\mathbf{w}_{\text{con.}} = \frac{\mathbf{w}_{\text{D}}}{1 - \mathbf{y}_{\text{D}}^3}.$$

Since for the truncated cone:

w_D =
$$\mathbf{s}_{av}$$
. $l_D = \mathbf{s}_0 \frac{1 + y_D + y_D^2}{3} l_D$,

it follows that the length of the path of the projectile through the conical bore is:

bore is:

$$l_{\rm D} = \frac{3W_{\rm D}}{s_0(1 + y_{\rm D} + y_{\rm D}^2)}$$
 and $\tan \beta = \frac{d_0 - d_{\rm D}}{2l_{\rm D}}$.

After designating:

$$\chi = \frac{l_0}{l_{KM}}$$

1023

$$\frac{l_0}{\chi} = l_{KM} \quad \text{and} \quad L_{KR} = l_{KM} + l_D$$

STA

and finally the total length of the barrel:

(2d0 being reserved for the breechblock).

Having assigned $\Lambda_{\rm m}$ = 0.6 and found $W_{\rm m}$ = 0.6 $W_{\rm 0}$, we determine:

$$y_m = \sqrt[3]{1 - \frac{w_T}{w_{con.}}}$$
 and $\frac{\overline{s}_{av.m}}{s_0} = \frac{1 + y_m}{2}$.

We find $\frac{I_K}{d_0} = \frac{I_{K,U}}{d} = \frac{s_0}{s_{av.\ m}}$ or the pressure impulse $I_K = I_{K,U} = \frac{s_0}{s_{av.\ m}}$ which ensures attainment of the predetermined pressure p_m . As is shown by theory, the end of burning will be transferred closer to the start of motion of the projectile, and $\gamma_K = \frac{w_K}{w_D}$ in the conical barrel will be smaller than $\gamma_{KU} = \frac{w_K}{w_D} = \frac{I_{KU}}{I_{DU}}$ in the cylindrical barrel.

To compute the pressure and velocity curves for the conical barrel, we first compute and construct the v-W or $v-\Lambda$ curve for the cylindrical barrel found. This is done most simply with the aid of the ANII or 1942 GAU Tables.

On the basis of the values for v obtained in this manner, we compute the values of $x_{ij} = \frac{v}{v_0}$, where $v_0 = \frac{s_0 I}{\varphi m}$ is the velocity of the projectile at the end of burning of the powder in the absence of any pressure to overcome the inertia of the projectile.

From the values of W corresponding to the values of v taken from the curve for the cylindrical barsel, we successively find the values of: $y = \sqrt[3]{1 - \frac{W}{W_{COR}}},$

where:

$$w_{con.} = \frac{w_D}{1 - y_D^3}; \frac{u_{av.}}{v_0} = \frac{1 + y + y^2}{3} \approx y$$

By dividing the values of x_{ij} by $\frac{s_{av}}{s_{ij}}$, we find for the same v and w the values of $x = \frac{x_{ij}}{s_{av}/s_{ij}}$ for the conical barrel.

The quantity $x_K = 1 - z_0$ will indicate the volume w_K and the velocity v_K in the conical barrel at the end of burning of the powder. On the basis of the resulting values of x, we find:

For the end of the first period, $\psi_{\vec{K}}$ = 1.

$$p_{K} = f = \frac{1 - \frac{v^{2}}{v_{n_{D}}^{2}}}{w_{1} + w_{K}} = f \Delta \frac{1 - \frac{v_{K}^{2}}{v_{n_{D}}^{2}}}{1 - \alpha \Delta + \Lambda_{K}}.$$

We find the muzzle velocity and muzzle pressure with the aid of

the following formulas:
$$\mathbf{v}_{D}^{2} = \mathbf{v}_{\Pi p}^{2} \left[1 - \left(1 - \frac{\mathbf{v}_{K}^{2}}{\mathbf{v}_{\Pi p}^{2}} \right) \left(\frac{1 - \alpha \Delta + \Lambda_{K}}{1 - \alpha \Delta + \Lambda_{D}} \right)^{\theta} \right];$$

$$\mathbf{p}_{D} = \mathbf{p}_{K} \left(\frac{1 - \alpha \Delta + \Lambda_{K}}{1 - \alpha \Delta + \Lambda_{D}} \right)^{1 + \theta}$$

$$\mathbf{v}_{\Pi p}^{2} = \frac{2\mathbf{g}}{\mathbf{q}} \frac{\mathbf{f}}{\mathbf{e}} \frac{\omega}{\mathbf{q}}$$

We determine the coefficient of utilization of the unit weight of the charge:

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

$$\eta_{\omega} = \frac{m v_{D}^{2}}{2\omega} = \frac{v_{D}^{2}}{2g} : \frac{\omega}{q} .$$

The velocity is obtained very close to the predetermined velocity for the cylindrical bore at the same volumes \mathbf{W}_D and \mathbf{W}_0 and under the same loading conditions except for \mathbf{I}_K .

On the basis of the computed results obtained, there is, whenever necessary, applied a correction in order to obtain the required initial projectile velocity at the predetermined pressure $\boldsymbol{p}_{m}.$

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

Figs. 116 - 119 - Spark Photographs of Bullet in Flight.

1027

STAT

APPENDIX 1: TABLES FOR DETERMINING BURNT PART OF CHARGE Y DURING BURNING OF POWDER IN CONSTANT VOLUME (BOMB)

(Compiled by M. E. Serebryakov)

On the basis of the general formula of pyrostatics, the part of the charge ψ burnt prior to any given moment can be computed with the aid of the following formula:

$$\Psi = \frac{p - p_{B}}{p_{m} - p_{B}} (1 - \delta) - \delta$$

where:

$$\partial = \frac{1 - \frac{1}{\Delta}}{1 - \frac{\Delta}{\delta}}.$$

In these formulas, the following designations are used.

- $\boldsymbol{\Delta}$ -is the loading density in the experiment.
- δ is the density (specific gravity) of the powder.
- 2 is the covolume of the powder gases.
- $\boldsymbol{p}_{\boldsymbol{m}}$ is the maximum pressure in the given experiment.
- $\boldsymbol{p}_{\boldsymbol{B}}$ is the pressure due to the igniter gases.
- $_{\rm p}$ is the pressure in a certain intermediate instant, which waries in the range of $\rm p_{\rm B}^{-p}_{\rm m}^{-s}$

Thus, the quantity ψ is a function of two parameters.

- 1) The parameter ∂ , which is constant for the given experiment.
 - 2) The variable ratio $\frac{p-p_B}{p_m-p_B}$, which varies from 0 to 1.

At a close to 1, δ close to 1.6, and Δ varying from 0.25 to 0, the quantity ∂ , which depends upon the three quantities α , δ , and Δ ,

1028

PENDIX 1: TABLES FOR DETERMINING BURNT PART OF CHARGE \(\psi\) DURING BURNING OF POWDER IN CONSTANT VOLUME (BOME) APPENDIX 1:

(Compiled by M. E. Serebryakov)

On the basis of the general formula of pyrostatics, the part of the charge ψ burnt prior to any given moment can be computed with the and of the following formula:

$$\psi = \frac{p_{m} - p_{B}}{p_{m} - p_{B}} (1 - \delta) - \delta$$

where:

$$\partial = \frac{1 - \alpha \Delta}{1 - \frac{\Delta}{\delta}}.$$

In these formulas, the following designations are used.

- $\boldsymbol{\Delta}$ is the loading density in the experiment.
- δ is the density (specific gravity) of the powder.
- α is the covolume of the powder gases.
- $\boldsymbol{p}_{\boldsymbol{m}}$ is the maximum pressure in the given experiment.
- $\boldsymbol{p}_{\boldsymbol{B}}$ is the pressure due to the igniter gases.
- p is the pressure in a certain intermediate instant, which waries in the range of pB-pm.

Thus, the quantity ψ is a function of two parameters.

- 1) The parameter ∂ , which is constant for the given experiment.
 - 2) The variable ratio $\frac{p-p_B}{p_m-p_B}$, which varies from 0 to 1.

At α close to 1, δ close to 1.6, and Δ varying from 0.25 to 0, the quantity δ , which depends upon the three quantities α , δ , and Δ ,

1028

varies in the range of 0.86-1.00.

The tables are compiled for every value of 7 from 0.86 to 0.97 at intervals of 0.01, as related to the ratio $\frac{p-p_B}{p_m-p_B}$ varied from 0 to 1 at intervals of 0.001.

The arrangement of the tables is analogous to the arrangement of four-place logarithms.

USE OF TABLES

To start with, the experimental data are used to compute the basic quantity & in accordance with the following formula:

$$\frac{3-\frac{1-\frac{\Delta}{2}}{5}}{1-\frac{\Delta}{5}}.$$

If the quantities α and δ are not known in advance, it may be approximately assumed that δ = 1.6 and τ = 1 for pyroxylin powders and 0.8 for nitroglycerol powders.

Having computed the basic quantity ϑ , we find the corresponding table of ψ as a function of the ratio $\dfrac{p-p_B}{p_m-p_B}$, which, for brevity has been designated as r in the tables:

$$\frac{p - p_B}{p_m - p_B} - z.$$

Having found in the left-hand column of the page the first two digits of the quantity \wp (tenths and hundredths), and taking from the upper row of the table the number corresponding to the thousandths of β (from θ to 9), we find the quantity ψ for the first three digits of $\boldsymbol{\beta}$ at the intersection of this column with the row corresponding to the first two digits of :.

The change in ψ corresponding to the fourth digit of ${\mathfrak p}$ after the decimal point is found by interpolating values for $\boldsymbol{\psi}$ between the

1029

quantity found above and the neighboring quantity on the right.

Having obtained columns for the values of the time t and pressure p by treatment of the experimental p-t curve, and knowing the pressure \mathbf{p}_{B} developed by the igniter and the maximum pressure \mathbf{p}_{m} , we compute for every value of p a column of values of:

$$: - \frac{p - p_B}{p_m - p_B} ,$$

where $\boldsymbol{p}_{m}=\boldsymbol{p}_{B}$ will be a constant for the given experiment.

Having computed the ratio ϑ for the given experiment, we immediately find in the corresponding table the column of values of ψ , whereupon we can set up a column for the values of $\Delta\psi$ and a column for the values of the ratio $\frac{\Delta\psi}{\Delta t}$, which expresses the rate of gas formation from the given powder under the given conditions, which enters into the expression for the experimental characteristic of the progressivity of burning:

$$\Gamma = \frac{1}{p} \frac{\Delta \Psi}{\Delta t}.$$

Example. Let there be known from preliminary experiments the quantities α = 0.97 and δ = 1.58, as well as the loading density in the given experiment Δ = 0.20. In this connection, there have been obtained p_B = 40 kg/cm², p_m = 2170 kg/cm².

Let us determine the basic quantity 3:

$$\partial = \frac{1 - \alpha \Delta}{1 - \frac{\Delta}{\delta}} = \frac{1 - 0.97 \cdot 0.20}{1 - \frac{0.20}{1.58}} = \frac{1 - 0.194}{1 - 0.1266} = \frac{0.806}{0.8734} = 0.9235.$$

We shall make use of the table corresponding to the nearest basic quantity ∂ in the tables, i.e. $\partial = 0.92$ (p.1044).

Let the values for the pressure in any desired instants of time be:

$$p_1 = 204$$
 and $p_2 = 1380$.

We find the values:

To determine the value ψ_1 , we find in the left-hand column of the table for δ = 0.92 the ratio 0.07; in the upper row we find the number 7; and at the intersection of these horizontal and vertical lines we find the number 0.0834. Consequently, ψ_1 = 0.0834.

To determine ψ_2 corresponding to Γ_2 = 0.6292, we find the numbers 0.62 in the left-hand column and the number 9 in the upper row. The intersection of these will give the number 0.6483, which corresponds to the value of Γ = 0.629. The next larger value, Γ = 0.630, is associated with Ψ = 0.6493. The difference between this and the first value equals 0.0010; it corresponds to 10 units of the forth digit of Γ ; two units would correspond to $\Delta \psi$ = 0.0002.

Thus, we shall have:

Since, as a rule, the differences $\Delta\psi$ between two neighboring columns differ very little from 10, the entire interpolation is easily carried out mentally.

APPENDIX 1
TABLES COMPILED BY PROF. SEREBRIAKOV

ð- 0.86

								000	0.007	0.008	0.009
	1	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.00	
B	\										
<u></u>	-4						0.000	0.0071	0.0083	0.0095	0.0107
١	00	0.000	0.0012	0.0024			176	188	200	212	223
	01	0.0118	130	142	153	165 280	292	303	315	326	338
1	2	234	246	257	269	395	407	418	430	441	453
1	3	349	361	372	384	510	522	533	545	556	568
1	4	464	476	487	499 614	625	1	648	660	671	683
10.	. 05	579	591	602	614	023		1		-05	797
1				717	729	740	751	762	774	785 900	1 1
0.	.06	0694	706 820		843	854			889		1023
1	7	0808	1 ===		956	967	978			1	11
- 1	8	0922			1	1078			1		1
1.	9	1034				1191	1202	1213	1224	1230	
0	. 10	1146	113,	1	1			1325	1336	1348	1359
1 -		1258	1269	1280							
10	.11	1370	1		1403				1		1583
1	12 13	1482		3 1504							1694
- 1	14	1594		5 1616			- 1				1804
- 1	15	170		5 1727	1 1738	3 1749	170	, ,		1	
	10	1				185	187	188	1892		
10).16	181				- 1			2002		
Ι,	17	192									
1	18	203				- 1 = : :			9 2220		
- 1	19					- 1			7 232	8 233	8 2349
	20	225	2 226	3 227	3 220	-					6 2457
- 1		l l		1 238	1 239	2 240	3 241			i	- 1 1
- 10	0.21	236		- 1	- 1		1 252			1	- 1
	22									-	
1	23					6 272					- 1
- 1	24		-			4 283	5 284	6 285	7 286	8 20.	0 2000
- 1	25	5 279	2 200	,5	- 1	1			4 297	5 298	5 2996
1		290	0 291	0 292	1 293			1			- !
- 1	0.26								-	- 1	- 1
- 1	27		' '								
ı	29			30 324			1				1 3421
- 1	3	- 1 ==-	- 1		17 335	8 330	00 33	15 550	-	ì	1
	3.	_	1	l		34	74 34	84 349	5 350		
1	0.3	1 34					- 1	- 1 :	00 36		
- 1	3										
- 1	3										
- 1	3			- 1		•• ==			14 39	24 39	35 3945
1	3		51 38	61 38	12 30				18 40	28 40	39 4049
		a 39	55 39	65 39		00	97 40			32 41	
	0.3	·	-	70 40	80 40		01 41				45 4255
	3		-	73 41			-	14 42 17 43	;		48 4358
	3			76 42		-			_ , ,		51 4461
	3	0 43		79 43	89 43	99 44	10 44	111			1
	•	~ ~		1	_	00 4	12 45	23 45	33 45		53 4563
	0.4	1 44		82 44	1 -:			,	34 46		54 4664
	1	9 45	48	84 45	94 46		A	08 47			55 4765
	and the sales	and the second	0904	9403	BATT		0532	9.5%	1 3337		

								-00	,	637		545		7		1		
	- 4 100		446.47	591	602	•	14	625	1	03.		- 1		. 1	785	1	797	
0.	05	579	1	DAT	00-		1		1	751		762	77		900	1	911	
1	- 1		1	-00	717	1 7	729	740		866		877	88		1012	1 1	023	1
10.	06	0694	1	706	831	1 1	843	854		978		989	100	٠ ı	1124	1 7	135	1
1	7 1	0808	1	820	944	1 :	956	967		1090		101	111			1 7	247	1
1	8	0922	١.	933	1056	1 1	067	1078	1	1202		1213	122	4	1235	'\ '		1
1	9	1034		1045	1168	1	180	1191	1	1202	١ .			1	40	. 1 .	1359	1
10.	.10	1146	;]	1157	1100	1			1	4	١.	1325	133		1348	, 1	1471	1
1 -			1		1280	1 1	291	1303	3	1314		1437	144	18	1460	' 1	1583	1
10	. 11	1258		1269	1392	1 -	403	141				1549	156		1572	- 1	1694	1
1	12	1370		1381	1504		515	1 52		1538		1661	16	72	168	,	1804	1
- 1	13	1482		1493	1616	1 -	627	163	8	1650		1771	17	82	179	3	100-	1
1	14	159		1605	1727		738	174	9	1760	1		1	- 1		_	1914	1
- 1	15	170		1716	112	1 '			- 1		1	1881	18	92	190		2024	
1	١		- 1		102	.	1848	185	9	1870		1991	20	02	201		2133	
١٠	. 16	181	5	1826	183	' 1	1958	196	9	1980		2100	21	11	212			
10	17	192		1936	194	٠,	2068	207	79	2090		2209		20	223	0	2241	
- 1	18	203		2046	205	• 1	2176	218		2198			1	28	233	18	2349	•
1		214		2155	216	- ۱	2284	229		2306	١,	2317				- 1		_ \
- 1	19	22		2263	227	3	2204		1		- 1	- 40 5	2	136	244	16	245	
١.	20	1	~			- 1	2392	24	оз 1	2414	4	2425	' = .	544	25	54	256	
1	. . .	236	:01	2371	238			25		2 522	2	2533		552	260	62	267	
- 1	0.21	240		2479	248		2500		19	263	o l	264		760	27	70	278	
1	22	25		2587	259		2608		27	273	8 \	2749	' ! =		28		288	9
- 1	23	26		2695	270	5	2716		35	284	6	285	7 2	868				1
- 1	24	1		2803	28	13	2824	1 20		-	1		1 -		29	85	299	6
- 1	25	27	92	2000	1	1		1 00	43	295	3	296		975		92	310	3
1		1	ا مو	2910	29	21	2932		50	306		307	• 1 -	082		99	320	9
1	0.26	1	00	3017	30	28	3039		156	316		317		188		305	33	16
l	27		07	3124		35	3146		262	327		328		294	1	111	343	21
1	28		14	3230		41	3252	1 -		337		338	9 :	3400	, 3.	• • •	1	1
	29		220	3336	1	47	3358	3	368	1 30		1	- 1	-	-	516	35	26
	30) 3:	326	3330		١		١.		34	84	349		3505	1 =	621	36	
	1	1		3442	. 34	53	3463		474			360		3610		726		36
	0.3		432	3547	٠١	558	3560		579	1		370		3715		831		41
	3:		537		' =.	663	3673		684	-	99	38	10	3820		935		45
	3		642	365	- 1 -	768	3778		789	1 = 6	03	39	14	3924	1 3	933	1	- 1
	3	4 3	747	375	' =	B72	3882	2 3	3893	, 33		1	1		. 1 .	039	40	149
		5 3	851	386	٠ ١ -	••-	1	١.		. \ 40	07	40	18	4028	9 1			52
	1	1		1 000	. 2	976	398		3997	' 1	111		21	413	- 1	1142		255
	0.3		955	396	-	080	409		410	• 1	214	1	24	423	~	1245	1 1.	358 ₁
		37 l 4	1059		٠ I	183	419		420	• 1	317		27	433	٠,	4348	i -	461
		8 4	1162	417	9 1	286	429		430	' 1 :	420	1 1	30	444	1 '	4451	1 7	
		39 4	4265	427		389	439	9	441	0 3	420				1		. .	563
		40	4368	437	ין פו	1300	1	1		_ .	52 3	. \ 4!	533	454		4553	' ! :	664
	1	٠٠ ١			٠ .	1492	450	2	451	- 1 :	624	• • • • • • • • • • • • • • • • • • • •	534	464		4654	,	765
	10.	41	4471	44	32	594	460	04	461	• 1 .	725		735	474		475	' '	866
		42	4573	45	ן דים	4695	470	05	471		826		836	484		4856	' '	967
		43	4674	46	65	4796	480	06	481		927		937	494	67	495	' '	150.
		44	477		-	4897		07	491	17 1 4	32	. -		١	Ĭ			-000
		45	4876	6 48	01		1	1		١.		ء ا ہ	038	50	48	505	_	5068
	١			1	. 1	4000	50	08 I	50	10 1	502	• 1 2	139	51		515	- 1	5169
	1-		497		88	4998	, =:	09	51	10	512	- 1 -	239	52		525	- 1	5269
	10.	46	507	g 50	89	5099	' l = -	09	52		522	- 1	339	53		535	~ \	5369
	1	47	517	9 5	89	5199	, ==	09	53		532		5439	54		545	9	5469
	١	48	527	9 52	89	5299		09	54	19	542	9 1)43 <i>3</i>	تــــــــــــــــــــــــــــــــــــــ				
	- 1	49	537		89	5399	1 34		1									
	0	. 50		- I														

9 = 0.80	9	_	ο.	86
----------	---	---	----	----

									9 -	0.8	6											
										004	0	.005	0	.006	0.0	07	ο.	800	0.0	009		
	$\overline{}$	_ (000	0.00	ı ∫ o.	002	ο.	003	υ.	.00.		1								-1		
\ E	. 1	0.0	١٠٥٥		1						 				-	E 47	اما	5557	0.5	567		
1 '	۱ ۱	·			+-				_	5517	10	. 5527	o	. 5537	0.5	646	1	5656	1 =	666		
—		٠.	478	0.548	7/0.	5497	0.	5507 5606	10.	5616	1	5626	1	5636 5734	1 -	744		5754	١ .	5862		
- 1 '	0.51	0.5	577	558	6	5596 5695	.1	5705	1	5715		5725 5823		5832	1 5	842	1	58 52 59 49	١.	5959		
1	52 53	1 :	5676	568		5793		5803		5813 5910		5920		5930	1 :	939	'	-	1	-056		
- 1	54		5774 5872	58		5891	1	5901	1	3510	1		_	6027	٠١.	3036	s \	604	- 1	6056 6153	1	
- 1	55	1	3012	1	- 1	598	a	5998	3	600		6017		612	4 (6133		614	ol.	6250		
- 1	0.56		5969			608		609		610 620		621		622	- 1	623(632)		633	6 \	6346		
1	57	1	6066 6163	' 1	72	618	2	6193 628		629		630		631 641		642		643	2	6442	1	
1	58 59		6260	62	69	627 637		638		639	4	640	4	641	1			6 52	9	6538	3	
1	60		6356		65	631	٦,		. \	649	ا د	650	0	651		651 661		662		6634		
1		1	645	9 6	161	647		648 657		658		659	6	660		671		673		6733 682		
1	0.61		654	g 6	557	656 666		667		668		669		67		680		68 69		692		
1	62		664	4 6	653 7 4 9	67		676		67°		68		68	92	690	110	03			1	
	6	4	674 683		844	68	54	686	53	90	• •	1		69	86	69	96		05	701 710		
	6	5	603	,5		60	49	69	58		68		77 71	1 70	80		90		99	720		
	0.6	6	693	· 1	939		43	70			62 56	1 -	65	5 71	74		84 78		87	729		
	6	7	702 71		127	71	37		46	1 72	50	72	59	٠ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	68 362		372	7:	381	739	91	
		58 59	72	12	7221	72	231 325		34	7:	344	1 7:	3 5 3		1	_		1 7	475	74	85	
		70 \	73	06	7315	1		1_		1 7	43		44	' 1 -	456		466 560		569		79	
		٠. ١	74	100	7409		419	1 -	428 522	1 7	533	2 7	54	* 1 -	550 644	7	654	1 -	663		65	
	0.	71 72		94	7503	٠ ١ -	513 607	1 7	616	1 7	62	٠ ا	63 72	8 7	738		747	1 -	756 849		358	
	1	73		588	7597 7691	١ -	701	7	710	' 1 -	71 81	٠ ١ -	82		831	1	840	'\'				
	1	74		582 775	7784		794	• 7	803	1		1 -	791	٠ ١ ،	7923		932	- 1	7941 8033		951 043	
	- 1	75	Ι.		-07	, \ .	788		896	9 1	790 799	, ,	80(06	3015	, -	3024 B116	-	8033 8126	8	135	
	10.	.76		868	787 796	اه	797	8 3	798 808	٠ ,	801	89 \ E	809	5 0 (8107 8199		820	8 \	8218	' 1 =	227	
	- 1	77		960	806	1	807 816	· 1	817	2	81	.	81° 82	30	8291	- 1 -	830	0	8309		310	
	1	78 79	1 8	3144	815 824	- I	825		826	4	82	73	۵.	J_	~~~	. 1	839	n	8400		409	
	1	80	1 8	3236	027	.		ا ء.	835	is	83	64		173	8382 8473		848		849	•	3500 8591	i
	١٠	.81	١,	B327	833		834 843	•• I	844			55		164 555	856		857		8583 867	- 1	8681	١
	10	82		8418	842		85		85			346	86	645	865		866		876		8771	
	1	83	١.	8509 8600	86		86		863 87			726	8	735	874	-		1		. \	8860	1
	1	84 85		8690	86	99	87	08	٠.	-	_		8	824	883		88		885 893		8948	1
	1	89	' l		07	89	87	98		07		816 904	8	913	892			31	902		9036	
	1	0.86		8780 8869		78		187		95 84		992		001	901			06	91		9123 9210	
	1	87		8957		66		75 062	90	71		080	٠ -	9088 9175	91		91	193	92	01	3210	١
	1	88 89		9045)54 140		149	9	158	۱ ۶	167			۱ ۵۵	~ 1	ا	280	92	89	929	
	1	96		9132			١.		0	245		9254		9262	92	59	9	367		76	938	
	1		١,	9219		227		236 323	9	332		9341 9429		9350 9438	94	47		455		164	956	
	. 1	0.9	2	9306	۱ -	315 403		411	9	420	1	9443 0817.		9525	1 85	34	1 8	, J73	1			_
~	Total Company			9394																		

	28		5881	5891	5901	5910	5920	5930	5939	5949	3930	
1	55	5872	299T	3091	0001	-	1			6046	6056	
			5978	5988	5998	6007	6017	6027	6036	6143	6153	
-	0.56	5969	6075	6085	6095	6104	6114	6124	6133		6250	
ı	57	6066		6182	6192	6201	6211	6221	6230	6240	6346	
	58	6163	6172	6279	6289	6298	6308	6317	6327	6336	6442	
	59	6260	6269	6375	6385	6394	6404	6413	6423	6432	0442	
	60	6356	6365	6375	6365	000.			1	1	6538	
	1 1			6471	6481	6490	6500	6510	6519	6529	6634	
	0.61	6452	6461		6577	6586	6596	6606	6615	6625		1
	62	6548	6557	6567	6673	6682	6692	6702	6711	6721	6732	1
	63	6644	6653	6663	6768	6778	6787	6797	6806	6816	6825	1
	64	6740	6749	6759	6863	6873	6882	6892	6901	6911	6920	1
	65	6835	6844	6854	6663	00.0	-		1			l
					2050	6968	6977	6986	6996	7005	7015	١
	0.66	6930	6939	6949	6958 7052	7062	7071	7080	7090	7099	7109	1
	67	7024	7033	7043		7156	7165	7174	7184	7193	7203	١
	68	7118	7127	7137	7146	7250	7259	7268	7278	7287	7297	1
	69	7212	7221	7231	7240	7344	7353	7362	7372	7381	7391	1
	70	7306	7315	7325	7334	1344	1.555	1				1
	1	l	1 1		- 400	7438	7447	7456	7466	7475	7485	1
	0.71	7400	7409	7419	7428	7532	7541	7550	7560	7569	7579	
	72	7494	7503	7513	7522		7635	7644	7654	7663	7673	
	73	7588	7597	7607	7616	7626	7728	7738	7747	7756	7765	
	74	7682	7691	7701	7710	7719	7821	7831	7840	7849	7858	1
	75	7775	7784	7794	7803	7812	1021	1001			l	1
	"						7914	7923	7932	7941	7951	1
	0.76	7868	7877	7886	7896	7905	8006	8015	8024	8033	8043	1
	77	7960	7969	7978	7988	7997	8098		8116	8126	8135	.
	78	8052	8061	8070	8080	8089			8208	8218	8227	1
	79	8144	8153	8162	8172	8181	8190	8291	8300	8309	8318	:
	80	8236	8246	8255	8264	8273	8282	0291	0300			1
	80	1 0200	-		l	1		0202	8391	8400	8409	1
	0.03	8327	8337	8346	8355	8364	8373		8482	8491	8500	
	0.81	8418	8428	8437	8446	8355	8464		8573	8582	8591	
	83	8509	8519	8528	8537	8546	8555		8663	8672		
	84	8600	8609	8618	8627	8636	8645		8753	8762		
		8690	8699	8708	8717	8726	8735	8744	0133	1 0.02		
	85	8030	0000		1	1		0000	0042	8851	8860	١.
		8780	8789	8798	8807	8816	8824		8842	8938		
	0.86	8869		8887	8895	8904	8913		8931 9019	9027		
	87	8957	1 7 2 2 2	8975	8984	8992	9001			9114		
	88	9045		9062	9071	9080	9088		9106	9201		
	89			9149	9158	9167	9175	9184	9193	9201	321	٦,
	90	9132	3140	1 - 3	1	١	1	1	0000	9289	929	۱۵
	1	1 0000	9227	9236	9245		9262			1		
	0.91	9219		9323	9332	9341	9350					
	92	9306		9411	9420	9429						
	93	9394		9492	9508		9525			1	1	- 1
	94	9482	1	9585	9594	1	9611	9620	9628	9637	964	۱ د
	95	9568	95//	9565	1 3334	1	1	1	1		.	١,
	ı	1		9671	9680	9689	969					
	6.96	9654		9757								
	97	9740			1							
	98	9826				1			9973	998	2 999	1
	99	9912		9929	3536		-	-	l –	-	1 -	
	1.00	1.000) -	-	1 -	1	1	l				
	1											

(cont'd)

ð	-	0	8	7

K 1										ļ
$1 \setminus 1$							0.5.5		0 000	0.009
B \	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
1 \										
						0.050	0.0070	0.0082	0.0093	0.0105
0.00	0.000	0.0012		0.0035		0.0058		196	207	219
0.01	0.0116	128	138	150	162	173	185 299	310	321	133
2	230	242	253	264	276	287			435	446
3	344	356	367	378	390	401	412	424		559
4	457	469	480	491	503	514	525	537	548	672
5	570	582	593	604	616	627	638	650	661	672
			1	l				202	774	785
0.06	683	695	706	717	729	740	751	763 875		897
7	796	808	819	830	841	852	864	8/5	886	1009
8	908	920	931	942	953	964	976	987	998	1121
9	0.1020	1032	1043	1054	1065	1076	1088	1099	1110	
0.10	1132	1144	1155	1166	1177	1188	1200	1211	1222	1233
1		1		ì					1224	1245
0.11	1244	1256	1267	1278	1289	1300	1312	1323	1334	1345
12	1356	1367	1378	1389	1400	1411	1422	1433	1444	
13	1466	1476		1498	1 509	1520	1531	1542	1553	1564
14	1575			1607	1618	1629	1640	1651	1662	1673
15	1684	1694		1716	1727	1738	1749	1760	1771	1782
10	100-			!			1	1		1001
0.16	1793	1803	1814	1825		1847		1869	1880	1891
17	1902			1934	1945	1956				2000
18	2011	2021		2043	2054	2065	2076			2109
19	2120			2152		2174				2217
20	2228			2260	2271	2282	2292	2303	2314	2325
20	1 2220	1 2200					1	1		
0.21	2336	2346	2357	2368	2379	2390				
22	2444				2487	2498				
23	2552					2605				
24	2659				2701	2712				
25	2766				2808	2819	2830	2848	2851	2862
25	1 2.00			1	1	1	1	1		1
0.26	2873	2883	2894	2905	2915					2969
27	2980				3022					
28	3086				3128	3139				
29	3192				3234	3245				
30	3298					3351	3361	3372	3382	3393
30	1 ""	1		1		1				3498
0.31	3404	3414	3425	3435	3446					
32	3509				3551					
	3614					3666				
33	3718		- 1			3770	3780			
34							1 3884	1 389	5 390	3916
35	302				i	1		1		
ام عو	3920	393	3947	7 395	7 3967	7 397	398			
0.36						408	1 4092			
37						418	4 419			
38										
39					- 1		9 439	9 440	9 441	9 4429
40	1 233	7 737		1 .50	-	1	1			_
10.41	444	445	0 446	0 447	0 448	449				
0.41										
42		- 1					3 470			
43				- 1	- 1		4 480			5 4835
44	474	- 1						6 491	6 492	6 4936
45	484	J 700	5 700							1

7	796	808	819	830			076	987	998	1009
8	908	920	931	942	953	964	1088	1099	1110	1121
9	0.1020	1032	1043	1054	1065	1076	1200	1211	1222	1233
0.10	1132	1144	1155	1166	1177	1188	1200			1
0		1	. 1				1312	1323	1334	1345
0.11	1244	1256	1267	1278	1289	1300	1422	1433	1444	1455
12	1356	1367	1378	1389	1400	1411		1542	1553	1564
13	1466	1476	1487	1498	1509	1520	1531	1651	1662	1673
14	1575	1585	1596	1607	1618	1629	1640		1771	1782
15	1684	1694	1705	1716	1727	1738	1749	1760	1 / / 1	1.02
13	1004	1031			1				1880	1891
0.30	1793	1803	1814	1825	1836	1847	1858	1869	1989	2000
0.16		1912	1923	1934	1945	1956	1967	1978		2109
17	1902	2021	2032	2043	2054	2065	2076	2087	2098	2217
18	2011	2130	2141	2152	2163	2174	2184	2195	2206	2325
19	2120		2249	2260	2271	2282	2292	2303	2314	2323
20	2228	2238	2243	2200			i i	1		2433
1	11	0040	2357	2368	2379	2390	2400	2411	2423	
0.21	2336	2346	2465	2476	2487	2498	2508	2519	2530	2541
22	2444	2454		2584	2594	2605	2616	2626	2637	2648
23	2 5 5 2	2562	2573	2691	2701	2712	2723	2733	2744	2755
24		2669	2680	2798	2808	2819	2830	2848	2851	2862
25	2766	2776	2787	2190	2000	1			1	1
1	1			0005	2915	2926	2937	2947	2958	2969
0.26	2873	2883	2894	2905	3023	3033	3043	3054	2064	3075
27		2990	3001	3012	3128	3139		3160	3170	3181
28	3086	3096	3107	3118	3234	3245	3255	3266	3276	3287
29		3202	3213	3224		3351		3372	3382	3393
30		3308	3319	3330	3340	3331	000		1	
		1	3		0.446	3456	3467	3477	3488	3498
0.31	3404	3414	3425	3435	3446	3561		3582	3593	3603
32		3519	3530	3540	3551	3666		3687	3697	3708
33		3624	3635	3645	3655	3770		3791	3801	3812
34		3728	3739	3749	3759	3874		3895	3905	3916
3:	-		3843	3853	3863	3017	3004			
"					1	2076	3988	3999	4009	4020
0.3	s 3926	3936	3947	3957	3967	3978		4102	4112	4123
3	• 1		4050	4061	4071	4081			4215	4226
3			4153	4164			- 1	1 : -	4317	4328
3			4256	4266					4419	4429
4			4358	4368	4378	4389	4355	1100	1	1 1
"	"						1 4501	4511	4521	4531
0.4	1 4440	4450	4460	4470			- 1		4623	4633
	- 1		4562	4572	4582					4734
	2 4542 3 4643		4663	4673						4835
	-	1 1	4764	4774	4784				1	4936
			4865	4875	4885	489	5 4906	4910	4320	
4	5 484	1000	1	1	1	1	-	5017	5027	5037
ا ما	6 494	4956	4966	4976					1 7771	1 1
0.4			5067	5077				- 1		1
	7 504	• • • • • •		1						1 1
	8 514									
	9 524		_	1 ===.		в 539	8 540	8 5418	7720	1 5.55
	50 534	შ ეეემ	1 5556	1	1	l				

(cont'd)

a = 0.87

											1	
							0.005	0.006	0.007	0.008	0.009	
B		0.000	0.001	0.002	0.003	0.004	0.005	0.000	0.00.			
								0 5507	0.5517	0.5527	0.5537	
0.	51 l	0.5447	0.5457	0.5467	0.5477	0.5487	0.5497	0.5507	5616	5626	5636	
		5546	5556	5566	5576	5586	5596	5606	5715	5725	5735	
1	52	5645	5655	5665	5675	5685	5695	5705		5823	5833	
	53	5744	5754	5764	5774	5784	5793	5803	5812	5921	5931	
	54		5852	5862	5872	5882	5891	5901	5911	3921	0001	
	55	5842	3632	0002		1		1		6019	6029	
		-040	59 50	5960	5970	5980	5989				6127	
0.		5940		6058	6068	6078	6087	6097		6117	6224	
1	57	6038	6048	6156	6166	6175	6185	6195		6214	6321	
	58	6136	6146	6253	6263	6272	6282	6292		6311	6418	
	59	6233	6243	6350	6360	6369	6379	6389	6398	6408	0410	
	60	6330	6340	6330	0500		1		1 _		6515	
- 1			6427	64 47	6457	6466	6476				6611	
0.	61	6427	6437	6544	6553	6563	6573	6582			6707	
	62	6524	6534	6640	6649	6659	6668	6678			1 1	1
	63	6620	6630	6736	6745	1	6764	6774			1	ı
i	64	6716		6832	6841	6851		6870	6879	6889	6699	١
1	65	6812	6822	6652	00.12		1				6995	١
1			2010	6928	6937	6947	6956	6966				١
0.	. 66	6908						7061				1
- 1	67	7004			1	1		7 7156				1
- 1	68	7099						2 725				1
	69	7194	1					6 734	5 7354	7364	7373	1
	70	7288	7298	1301	/31.	1					7467	1
- 1				7401	7411	7420	743	0 743		1		1
0	.71	7382						4 753				1
	72	7476						8 762				١
- 1	73	7570			1			0 771				١
- 1	74	7664			1 111			3 781	2 782	2 783	7840	ı
1	75	7757	7 7760	• • • • • • • • • • • • • • • • • • • •	,	•	-	ĺ			4 7933	
			785	786	8 787	7 788	7 789				- 1 1111	1
0	.76	785	- 1				0 798		- 1		- 1	1
- 1	77	794	- 1 - 1 - 1		- 1		2 808					١
- 1	78	803		- 1	-1 -::		4 817				- 1 :::::	- 1
1	79	812			· .		6 826	5 827	5 828	4 829	3 8302	- 1
1	80	822	0 822	5 025	"	1		1		5 838	4 8393	١
1			1 832	0 832	9 833	8 834				- 1	- 1	- [
0	.81	831	- 1 - 5 - 5 - 5				8 844			• 1 ===		- 1
	82	840	-	- 1								١
	83	849	-1 -1	- 1 : : : :			9 862				_	١
1	84	858		- 1	-1		9 871	18 872	873	0 0/1	0.54	١
	85	867	3 800	- 500	-	1			882	883	5 8844	
i		876	3 877	2 878	1 879					.0		
10	0.86	885		_	- 1	0 888						
- 1	87			_		0 897						
1	88	894		_	,	- 1						
- 1	89	903		1			58 91	67 91	76 91	213	75 52.02	
1	90	912	· - 31.	<u></u>	-	l			a = 000	73 92	82 9291	
ļ		92	922	20 922	923							
10	0.91	930								- 1	••	
1	92	930									- 1	
	93	947								- 1 - 1	1	
- 1	94	950					99 96	08 96	17 96	20 30	- 5040	
1	95	9 30	30			1			04 07	12 97	21 9730)
1		96	52 96	60 960			-				08 9817	
ì	0.96	1 11.			56 97	65 97					95 9904	
	97	1 37		ففسلنة	عم المه	52 L 08	en 98	169 98	27.0			

60	6330	6340	6350	6360	6369	6379	6389	6398	6408	6418
0.61	6427	6437	64 47	6457						1
62	6524	6534	6544	6553	6466	1			,	
63	6620	6630	6640	6649	6659					
64	6716	6726	6736	6745				1		
65	6812	6822	6832	6841	1	1		,	6793	
1		0022	0032	0041	6851	6860	6870	6879	6889	6899
0.66	6908	6918	6928	6937	6947	6956	6966	6975	6985	6995
67	7004	7014	7023	7033	7042			7071	7080	
68	7099	7109	7118	7128	7137			7166	7775	
69	7194	7204	7213	7223	7232	7242	72 51	7260	7270	
70	7288	7298	7307	7317	7326	7336	7345	7354	7364	7279
0.71	5000								7304	1373
72	7382	7392	7401	7411	7420	7430	7439	7448	7458	7467
73	7476	7486	7495	7505	7514	7524	7533	7542	7552	7561
74	7570	7580	7589	7599	7608	7618	7627	7636	7646	7655
75	7664	7673	7682	7691	7701	7710	7719	7729	7738	7747
/3	7757	7766	7775	7784	7794	7803	7812	7822	7831	7840
0.76	7850	7859	7868	7877	7007					
77	7943	7952	7961	7970	7887	7896	7905	7915	7924	7933
78	8036	8045	8054	8063	7980	7989	7998	8008	8017	8026
79	8128	8137	8146	8155	8072	8082	8091	8100	8109	8118
80	8220	8229	8238	8247	8164 8256	8174	8183	8192	8201	8210
		0020	0236	0241	0236	8265	8275	8284	8293	8302
0.81	8311	8320	8329	8338	8347	8356	8366	8375	0004	2000
82	8402	8411	8420	8429	8438	8447	8457	8466	8384 8475	8393
83	8493	8502	8511	8 52.0	8529	8538	8547	8556	8565	8484 8574
84	8583	8592	8601	8610	8619	8628	8637	8646	8655	
85	8673	8682	8691	8700	8709	8718	8727	8736	8745	8664 8754
0.86	0700	0.000						3.33	0140	8734
87	8763	8772	8781	8790	8799	8808	8817	8826	8835	8844
88	8853	8862	8871	8880	8889	8898	8907	8916	8925	8934
89	8943	8952	8961	8970	8979	8988	8997	9006	9015	9024
90	9033	9042	9051	9060	9069	9078	9087	9095	9104	9113
30	9122	9131	9140	9149	9158	9167	9176	9184	9193	9202
0.91	9211	9220	9229	9238	9247	9256	0005			
92	9300	9309	9317	9326	9335	9236	9265	9273	9282	9291
93	9388	9397	9405	9414	9423	9432	9353	9361	9370	9379
94	9476	9485	9493	9502	9511	9520	9441	9449	9458	9467
95	9564	9573	9581	9590	9599	9608	9529	9537	9546	9555
				3330	3333	3608	9617	9625	9634	9643
0.96	9652	9660	9669	9678	9686	9695	9704	9712	9721	9730
97	9739	9747	9756	9765	9773	9782	9791	9799	9808	9817
98	9826	9834	9843	9852	9860	9869	9878	9886	9895	9904
99	9913	9921	9930	9939	9947	9956	9965	9973	9982	9991
1.00	1,000	-	-	-	-	-	_	-	2002	2221
				1	1		1		_	- 1
	•									

(cont'd.)

•	Λ	00
4-	υ.	8

D. 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.0092 0.0103 0.0114 126 137 148 127 1283 127 283 294 306 317 328 327 33 359 360 373 384 396 397 508 519 530 541 553 554 576 587 598 609 620 632 643 654 655 657 587 598 609 620 632 643 654 655 657 658 659 677 788 800 811 822 833 844 856 867 878 890 912 923 934 945 956 967 978 898 0.1001 1023 1034 1045 1056 1067 1078 1089 1000 1112 1133 1144 1155 1166 1177 1188 1199 120 1221 1211 1231 1344 1155 1166 1177 1188 1199 120 1221 1211 1214 1560 1571 1582 1593 1604 1375 1385 1625 1625 1625 1626 1626 1636 1647 1587 1588 1699 1701 1712 1723 1734 1745 1756 1767 1788 199 1903 1701 1712 1723 1734 1745 1756 1767 1788 199 1903 1701 1712 1723 1734 1745 1756 1767 1788 199 1903 1701 1712 1723 1734 1745 1756 1767 1788 199 1903 1914 1952 1963 1974 1985 1990 1903 1914 1952 1963 1974 1985 1990 1900											
0.00	В	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
1 0.0114 128 250 261 272 283 294 306 317 328 283 339 350 362 373 384 396 407 418 430 441 553 44 452 463 474 485 397 508 519 530 541 553 554 556 576 587 598 609 620 632 643 654 665 665 77 788 800 811 822 833 844 856 867 878 889 0.1001 1023 1034 1045 1056 1067 1078 1089 1100 1111 0.101 1122 1133 1144 1155 1166 1177 1188 1199 1210 1221 1231 1242 1353 1464 1375 1385 1396 1407 1418 1429 1440 1314 1560 1571 1582 1593 1604 1615 1625 1636 1647 1688 176 1778 1898 176 1778 1898 176 1778 1898 1779 1771 1772 1773 1773 1774 1775 1787 1787 1787 1787 1898 1787 1787 1787 1787 1787 1787 1898 1787 17			0.0013	0. 0024	0.0035	0.0046	0.0058	υ.0U 69			
1 0.0114 1238 250 261 272 283 294 306 317 328 339 353 353 362 373 384 396 407 418 430 441 55 564 576 587 588 599 620 620 632 643 654 665 665 677 788 800 811 822 833 844 856 867 878 889 8 900 912 923 923 945 956 967 978 989 0.1000 100 1012 1034 1045 1056 1067 1078 1089 1100 1111 1010 1014 1155 1166 1177 1188 1199 1210 1221 1231 1441 1456 1571 1582 1593 1604 1615 1625 1636 1647 1658 15 1669 1680 1680 1701 1702 1703 1704 1703 1704 1705 1705 1705 181 1995 1706 1707								183	194	205	
2 227 238 230 2474 2484 2494 2418 2418									306	317	
3 339 350 362 44452 463 474 485 598 699 508 519 530 541 553 665 677 778 8800 811 282 833 844 855 867 878 889 0.1000 912 931 1045 1056 1067 1178 1189 11000 1111 11122 11133 1144 11553 1364 1375 1188 1190 1210 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 1221 <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>418</td> <td>430</td> <td>441</td>	2								418	430	441
4 452 463 474 4883 507 620 632 643 654 665 0.06 676 688 699 710 721 722 744 755 766 77 7 788 800 811 822 833 844 956 967 978 989 0.1000 9 0.1011 1023 1034 1045 1056 1067 1078 1099 1100 1111 0.10 1122 1133 1144 1155 1166 1177 1188 1199 1210 1221 1.1 1.232 1243 1254 1265 1276 1287 1298 1199 1210 1211 1.2 1.34 1.650 1571 1582 1593 1604 1615 1625 1636 1677 1681 1407 1414 1407 1414 1404 1404 1404 1404 1404 1404 <td>3</td> <td>339</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>553</td>	3	339									553
0.06	4	452	463								665
0.06 676 688 699 710 721 732 744 856 867 778 88 900 912 923 934 945 956 978 989 0.1000 1112 1103 11045 1056 1067 1078 1089 11000 11118 1199 12.101 1123 1144 1155 1166 1177 1188 1199 12.101 1221 1221 1232 1243 1254 1265 1276 1287 1298 1309 1320 1331 131 1451 1462 1473 1484 1495 1506 1506 1677 1418 1499 1418 1429 1440 1418 1429 1441 1506 1571 1581 1691 1604 1615 1625 1636 1647 1658 1549 144 1506 1771 1772 17723 17734 1745 1786 1787 1889 1900 1970 1771		564	576	587	598	609	620	632	043		
0.06		1	1	İ					255	706	777
Teal	0 06	676	688	699	710	721					
S					822	833				1	1
9 0.1011 1023 1134 1155 1166 1177 1188 1199 1210 1221 1313 1122 1133 1144 1155 1166 1177 1188 1199 1210 1221 1313 1314 1355 1364 1375 1385 1396 1407 1418 1429 1440 1313 1451 1462 1473 1484 1495 1505 1516 1527 1538 1549 1440 1560 1571 1582 1593 1604 1615 1625 1636 1647 1658 157 1582 1593 1604 1615 1625 1636 1647 1658 157 1582 1593 1604 1615 1625 1636 1647 1658 17 1887 1898 1909 1920 1930 1941 1952 1963 1974 1985 18 1995 2006 2017 2027 2038 2049 2060 2070 2081 2092 1919 2103 2114 2124 2135 2146 2156 2167 2178 2188 2199 2021 2221 2221 2221 2242 2435 2445 2456 2467 2477 2888 2499 2509 2520 202 221 2221 2242 2435 2445 2456 2467 2477 2888 2499 2509 2520 2210 2221 2231 2242 2253 2263 2574 2584 2595 2606 2616 2627 242 2638 2648 2659 2670 2680 2691 2702 2712 2723 2733 255 2744 2754 2765 2776 2786 2797 2808 2818 2829 2839 3093 3094 3094 3094 3094 3094 3094 30						945	956	967			
0.10 1122 1133 1144 1155 1166 1177 1188 1199 1210 1221 0.11 1232 1243 1254 1365 1375 1386 1396 1396 1407 1418 1429 1341 12 1342 1353 1364 1375 1385 1396 1396 1407 1418 1429 1440 13 1451 1462 1473 1484 1495 1505 1516 1527 1538 1549 14 1560 1571 1582 1593 1604 1615 1625 1636 1647 1658 15 1669 1680 1690 1701 1712 1723 1734 1745 1756 17 1887 1898 1909 1920 1930 1941 1952 1963 1974 1985 18 1995 2006 2017 2027 2038 2049 2060 2070 2081 2092 18 1995 2006 2017 2027 2038 2049 2060 2070 2081 2092 19 2103 2114 2124 2135 2146 2156 2167 2178 2188 2199 20 2210 2221 2231 2242 2253 2263 2274 2285 2295 2306 0.21 2317 2328 2338 2349 2360 2370 2381 2392 2402 2413 22 2424 2435 2445 2456 2467 2477 2488 2499 2509 2520 224 2638 2648 2659 2670 2680 2691 2702 2712 2723 2733 225 2744 2754 2765 2776 2786 2797 2808 2818 2829 2839 0.26 2850 2860 2871 2882 2892 2903 3020 3030 3041 3051 28 3062 3072 3083 3094 3104 3115 3126 3136 3147 3157 33 3483 3493 3504 3316 3325 3336 3346 3357 3367 0.31 3378 3388 3399 3409 3420 3420 3431 3451 3462 3472 335 3483 3493 3504 3314 3315 3325 3336 3346 3357 3367 0.36 3898 3908 3918 3929 3939 3950 3960 3971 3981 3992 0.37 3806 3316 3326 3387 3368 3378 3388 3399 3404 4054 4064 4075 4085 4095 40 4116 4126 4136 4147 4157 4167 4158 4188 4198 0.44 4412 4423 4433 4443 4453 4453 4465 4666 4676 4666 4676 4666 4676 4666 4676 4666 4676 4666 4676 4666 4676 4666 4676 4666 4676 4666 4676 4686 4696 4666 4676 4686 4696 4666 4676 4686 4686 4686							1067	1078	1089	1100	
0.10	_					1			1199	1210	1221
1232 1243 1254 1265 1375 1385 1396 1407 1418 1429 1440 1411 1361 1462 1473 1484 1495 1505 1516 1625 1636 1647 1658 1571 1582 1593 1604 1615 1625 1636 1647 1658 1571 1582 1593 1604 1615 1625 1636 1647 1658 1571 1582 1593 1604 1615 1625 1636 1647 1658 1767 1767 1767 1887 1889 1909 1920 1930 1941 1952 1952 1963 1974 1985 1995 1909 1920 1930 1941 1952 1963 1974 1985 1995 1992 12103 2114 2124 2135 2146 2156 2167 2178 2285 2295 2306 2271 2221 2221 2231 2242 2253 2263 2274 2285 2295 2306 2272 2285 2295 2306 2272 2285 2295 2306 2272 2285 2295 2306 2274 22712 2723 2733 2245 2355 2356 2357 2355 2355 2355 2355 2356 2357 2355 2356 2357 2355 2356 2357 2355 2356 2357 2355 2356 2357 2355 2356 2357 2355 2356 2357 2355 2356 2357 2355 2356 2357 2356 2357 2355 2355 2356 2357 2355 2356 2357 2355 2355 2355 2355 2355 2355 2356 2357 2355 2356 2357 2355 2355 2356 2357 2355 2355 2356 2357 2355 2355 2355 2355 2355 2355 2355 2355 2355	0.10	1122	1133	1144	1133	1100				İ	1
12 1342 1343 1353 1364 1375 1385 1396 1407 1418 1429 1440 1418 1429 1440 1418 1429 1440 1418 1429 1440 1418 1429 1440 1418 1429 1440 1418 1429 1440 1418 1429 1440 1418 1429 1440 1418 1429 1440 1418 1429 1440 1418 1429 1440 1418 1429 1420 1418 1429 1420 1418 1429 1420 1418 1429 1420 1418 1429 1420 1418 1429 1420 1418 1429 1420 1418 1429 1420 1418 1429 1440 1418 1429 1440 14418 1429 1440 14418 1429 1440 14418 1429 1440 14418 1429 1440 14418 1429 1440 1420 14418 1429 1440 14418 1429 1440 14418 1429 1440 14418 1429 1440 14418 1429 1440 14418 1429 1440 14418 1429 1440 14418 1429 1440 14418 1429 1440 14418 1429 1440 14418 1429 1440 14418 1429 1440 14418 14429 1440 14418 14429 1440 14418 1449 1440 14418 1449 1440 14418 14418 1449 1440 14418 1449 1440 14418 14418 1449 1440 14418 14418 1449 1440 14418 14418 1449 1440 14418 14418 1449 1440 14418 1449 1440 14418 1444 1440 14418 1444 1440 14418 1444 14418 1444 14418 1449 1440 14418 1449 1440 14418 1444 1440 14418 14418 1449 1440 14418 1449 1440 14418 1449 1440 14418 1449 1440 14418 14418 14418 14418 14418 14419 14418 14418 14418 14418 14418 14418 14418 14419 14418 1441	1	1		1054	1265	1276	1287	1298	1309	1320	1331
12	0.11					1				1429	1440
13 1451 1462 1473 1444 1493 1303 1604 1615 1625 1636 1647 1658 1776 1767 15 1669 1680 1690 1701 1712 1723 1734 1745 1756 1767 0.16 1778 1887 1898 1909 1920 1930 1941 1952 1963 1974 1985 18 1995 2006 2017 2027 2038 2049 2060 2070 2081 2092 19 2103 2114 2124 2135 2146 2156 2167 2178 2188 2199 20 2210 2221 2231 2242 2253 2263 2277 2381 2392 2402 2413 21 2317 2328 2338 2349 2360 2370 2381 2392 2402 2413 22 2424 2435 2445	12	1342			1			,			
14		1451					1 -				1 1
15			1571	1582					1 _		
0.16 1778 1789 1800 1810 1821 1832 1843 1854 1865 1876 17 1887 1898 1909 1920 1930 1941 1952 1963 1974 1985 18 1995 2006 2017 2027 2038 2049 2060 2070 2081 2092 19 2103 2114 2124 2155 2166 2167 2178 2188 2199 20 2210 2221 2231 2242 2253 2263 2274 2285 2295 2306 21 2317 2328 2348 2456 2467 2477 2488 2499 2509 2520 220 2242 2424 2435 2445 2456 2467 2477 2488 2499 2509 2520 2272 22723 2712 2723 2712 2723 2712 2723 2712 2723 2712 27				1690	1701	1712	1723	1734	1/43	1130	1,0,
1778	1	1		1		1				1005	1976
17 1887 1898 1909 1920 1930 1941 1952 2070 2081 2092 1930 1941 1952 2070 2081 2092 1992 2070 2081 2092 2070 2081 2092 2178 2188 2199 2103 2144 2124 2253 2263 2274 2285 2295 2296 2370 2381 2392 2413 2456 2467 2477 2488 2499 2509 2530 2531 2532 2453 2445 2456 2467 2477 2488 2499 2509 2520 2230 2241 2252 2253 2574 2288 2899 2903 291 2902 2712 2723 2733 2542 2552 2660 2671 2786 2797 2808 2818 2829 2839 25 2744 2754 2765 2776 2786 2797 2808 2818 2829 2935 <td>0 16</td> <td>1778</td> <td>1789</td> <td>1800</td> <td>181</td> <td>. 1821</td> <td></td> <td></td> <td>1</td> <td></td> <td></td>	0 16	1778	1789	1800	181	. 1821			1		
18 1995 2006 2017 2027 2038 2049 2060 2070 2081 2199 2103 2114 2124 2135 2146 2156 2167 2178 2188 2199 0.21 22317 2328 2338 2349 2360 2370 2381 2392 2402 2413 22 2424 2435 2445 2456 2467 2477 2488 2499 2509 2520 23 2531 2542 2555 2563 2574 2584 2595 2606 2616 2627 24 2638 2648 2659 2670 2680 2818 2829 2839 25 2744 2754 2765 2776 2786 2797 2808 2818 2829 2839 27 2956 2966 2977 2988 2998 3009 3020 3030 3041 3051 28 3168						1930					
19					1		2049	2060			
19								2167	2178	2188	
0.21 2317 2328 2338 2349 2360 2370 2381 2392 2402 2413 22 2424 2435 2445 2456 2467 2477 2488 2499 2509 2520 23 2531 2542 2552 2563 2574 2584 2595 2606 2616 2627 24 2638 2648 2659 2670 2680 2691 2702 2712 2723 2733 25 2744 2754 2765 2776 2786 2797 2808 2818 2829 2839 27 2956 2966 2977 2988 2998 3009 3020 3030 3041 3051 28 3062 3072 3083 3094 3104 3115 3126 3136 3147 3157 29 3168 3178 3189 3199 3210 3220 3231 3241 3252									228	5 2295	2306
0.21 2317 2328 2338 2349 2509 2509 2520 22 2424 2435 2445 2456 2467 2477 2488 2499 2509 2520 24 2638 2648 2659 2670 2786 2797 2808 2818 2829 2839 25 2744 2754 2765 2776 2786 2797 2808 2818 2829 2839 25 2744 2754 2765 2776 2786 2797 2808 2818 2829 2839 27 2956 2860 2871 2882 2892 2903 2914 2924 2935 2940 27 2956 2966 2977 2988 2998 3009 3020 3030 3041 3157 28 3062 3072 3083 3199 3210 33231 3241 3252 3262 30 3273	20	2210	2221	2231	2232				1	1	1 1
0.21 2317 2328 2345 2456 2467 2477 2488 2499 2509 2520 22 2424 2435 2445 2456 2574 2584 2592 2670 2712 2723 2733 24 2638 2648 2659 2670 2786 2797 2808 2818 2829 2839 0.26 2850 2860 2871 2882 2892 2903 2914 2924 2935 2940 27 2956 2966 2977 2988 2998 3009 3020 3030 3041 3157 28 3062 3072 3083 3094 3104 3115 3126 3136 3147 3157 29 3168 3178 3189 3193 3294 3304 3315 3326 3341 3557 3367 31 3378 3388 3399 3409 3420 3430 3441	ı					2260	2370	238	2392	2 2402	2413
22 2424 2435 2552 2563 2574 2584 2595 2606 2616 2627 2733 2436 2638 2648 2659 2670 2680 2691 2702 2712 2723 2733 2733 2882 2892 2903 2914 2924 2935 2839 0.26 2850 2966 2977 2988 2998 3009 3020 3030 3041 3051 27 2956 2966 2977 2988 2998 3009 3020 3030 3041 3051 28 3062 3072 3083 3094 3104 3115 3126 3136 3147 3157 29 3168 3178 3189 3199 3210 3220 3231 3241 3252 3262 30 3273 3283 3294 3304 3315 3325 3336 3347 3367 337 3366 3357 336											2520
23 2531 2542 2552 2648 2659 2670 2680 2691 2702 2712 2723 2839 0.26 2850 2860 2871 2882 2892 2903 2914 2924 2935 2940 27 2956 2966 2977 2988 2998 3009 3020 3030 3041 3157 28 3062 3072 3083 3189 3199 3210 3163 3147 3157 29 3168 3178 3189 3199 3210 3220 3231 3241 3252 3262 30 3273 3283 3294 3304 3315 3325 3336 3346 3357 3367 31 3378 3388 3399 3409 3420 3430 3441 3451 3462 3472 33 3588 3598 3608 3619 3629 3640 3650 3661	22	2424							- 1	- 1	
24 2638 2648 2659 2670 2680 2797 2808 2818 2829 2839 0.26 2850 2860 2871 2988 2892 2903 3020 3030 3041 3051 27 2956 2966 2977 2988 2998 3009 3020 3030 3041 3051 28 3062 3072 3083 3094 3104 3115 3126 3136 3147 3157 29 3168 3178 3189 3199 3210 3220 3231 3241 3252 3262 30 3273 3283 3294 3304 3315 3325 3336 3346 3357 3367 0.31 3378 3388 3399 3409 3420 3430 3441 3451 3462 3472 33 3588 3598 3604 3619 3629 3640 3650 3661 3671	23	2531	2542			- 1	- 1			- 1	
25 2744 2754 2765 2776 2786 2797 2808 2818 2823 2830 0.26 2850 2860 2871 2882 2892 2903 2914 2924 2935 3041 3051 27 2956 2966 2977 2988 2998 3009 3020 3030 3041 3051 28 3062 3072 3083 3094 3104 3115 3126 3136 3147 3157 29 3168 3178 3189 3199 3210 3220 3231 3241 3252 3262 30 3273 3283 3294 3304 3315 3325 3336 3346 3357 3367 0.31 3378 3383 3399 3409 3420 3430 3441 3451 3462 3577 32 3483 3598 3608 3619 3629 3640 3650 3661		2638	3 2648	2659					- 1		
0.26 2850 2860 2871 2882 2892 2903 2914 2924 2935 2940 27 2956 2966 2977 2988 2998 3009 3020 3030 3041 3051 28 3062 3072 3083 3094 3104 3115 3126 3136 3147 3157 29 3168 3178 3189 3199 3210 3220 3231 3241 3252 3262 30 3273 3283 3294 3304 3315 3325 3336 3341 3357 3367 31 3378 3388 3399 3409 3420 3430 3441 3451 3462 3577 33 3588 3493 3504 3514 3525 3535 3546 3556 3567 3577 33 3588 3598 3608 3619 3629 3640 3650 3661 3671				276	5 2776	2786	3 2797	7 280	8 281	202	2035
0.26 2850 2866 2871 2882 2892 3009 3020 3030 3041 3051 27 2956 2966 2977 3083 3094 3104 3115 3126 3136 3147 3157 28 3062 3072 3083 3094 3104 3115 3126 3136 3147 3157 29 3168 3178 3189 3199 3210 3220 3231 3241 3252 3262 30 3273 3283 3294 3304 3315 3325 3336 3346 3357 3367 32 3483 3493 3504 3514 3525 3535 3546 3556 3567 3577 33 3588 3598 3608 3619 3629 3640 3650 3661 3671 3785 35 3795 3806 3816 3826 3837 3847 3847 3785					1	1	ı				2040
27 2956 2966 2977 2988 2998 3009 3020 3030 3041 3057 3187 3157 3283 3094 3104 3115 3126 3136 3147 3157 3262 3291 3220 3231 3241 3252 3262 3262 3231 3241 3252 3262 3262 3231 3241 3252 3262 3262 3231 3241 3252 3262 3262 3262 3231 3241 3252 3262 3262 3262 3262 3262 3262 3336 3346 3357 3367 3367 3367 3367 3367 3367 3367 3367 3577 3682 3535 3546 3556 3567 3577 3682 3430 3441 3451 3462 3472 3483 3493 3504 3514 3525 3535 3546 3556 3567 3577 3682 3472 3472 3472 3	0.26	2850	2860	287	1 288						
28 3062 3072 3083 3094 3104 3115 3126 3147 3157 3167 3189 3199 3210 3220 3231 3241 3252 3262 3267 30 3273 3283 3294 3304 3315 3325 3336 3346 3357 3367 0.31 3378 3483 3493 3409 3420 3430 3441 3451 3462 3472 33 3588 3493 3504 3514 3525 3535 3546 3556 3567 3577 33 3588 3598 3608 3619 3629 3640 3650 3661 3671 3682 34 3692 3703 3713 3723 3734 3744 3754 3755 3755 3785 35 3795 3806 3816 3826 3837 3847 3857 3868 3878 3888 0.36				3 297	7 298	8 299				-	
29 3168 3178 3189 3199 3210 3220 3231 3241 3252 3262 30 3273 3283 3294 3304 3315 3325 3336 3346 3357 3367 0.31 3378 3388 3399 3409 3420 3430 3441 3451 3462 3472 32 3483 3493 3504 3514 3525 3535 3546 3556 3567 3577 33 3588 3598 3608 3619 3629 3640 3650 3661 3671 3682 34 3692 3703 3713 3723 3734 3744 3754 3765 3775 3785 35 3795 3806 3816 3826 3837 3847 3857 3868 3878 3888 0.36 3898 3908 3918 3929 3939 3950 3960 3971 3981						4 310	4 311			- 1	
30 3273 3283 3294 3304 3315 3325 3336 3346 3357 3367 0.31 3378 3388 3399 3409 3420 3430 3441 3451 3462 3472 32 3483 3493 3504 3514 3525 3535 3546 3556 3567 3577 3577 3585 3588 3598 3608 3619 3629 3640 3650 3661 3671 3682 3703 3713 3723 3734 3744 3754 3755 3775 3785 355 3795 3806 3816 3826 3837 3847 3857 3868 3878 3888 0.36 3898 3908 3918 3929 3939 3950 3960 3971 3981 3992 3877 3888 3888 3888 3898 3918 3929 3939 3950 3960 3971 3981 3992 3888 3988 3988 3918 3929 3939 3950 3960 3971 3981 3992 3888 3888 3888 3888 3888 3888 3888							3220	323	1 324		
0.31 3378 3388 3399 3409 3420 3430 3441 3451 3462 3472 32 3483 3493 3504 3514 3525 3535 3546 3556 3567 3577 33 3588 3598 3608 3619 3629 3640 3650 3661 3671 3682 34 3692 3703 3713 3723 3734 3744 3754 3765 3775 3785 35 3795 3806 3816 3826 3837 3847 3857 3868 3878 3888 0.36 3898 3908 3918 3929 3939 3950 3960 3971 3981 3992 37 4002 4013 4023 4033 4044 4054 4064 4075 4085 4095 38 4105 4116 4126 4136 4147 4157 4167 4178 4188								5 333	6 334	6 335	7 3367
0.31 3378 3388 3399 3409 3514 3525 3535 3546 3556 3567 3577 32 3483 3493 3504 3619 3629 3640 3650 3661 3671 3682 34 3692 3703 3713 3723 3734 3744 3754 3755 3775 3785 35 3795 3806 3816 3826 3837 3847 3857 3868 3878 3888 0.36 3898 3908 3918 3929 3939 3950 3960 3971 3981 3992 38 4105 4116 4126 4136 4147 4157 4167 4178 4188 4198 39 4208 4219 4229 4239 4249 4259 4270 4280 4290 4300 40 4310 4321 4331 4341 4351 4361 4372 4382	30	327	328.	329	- 550	- 552.	-		1		
0.31 3378 33483 3493 3504 3514 3525 3535 3546 3556 3671 3682 33 3588 3598 3608 3619 3629 3640 3650 3661 3671 3682 34 3692 3703 3713 3723 3734 3744 3754 3765 3775 3785 35 3795 3806 3816 3826 3837 3847 3857 3868 3878 3888 0.36 3898 3908 3918 3929 3939 3950 3960 3971 3981 3992 37 4002 4013 4023 4034 4044 4054 4064 4075 4085 4095 38 4105 4116 4126 4136 4147 4157 4167 4178 4188 4198 39 4208 4219 4229 4239 4249 4259 4270 4280		000	220	320	340	9 342	0 343	0 344	1 345	1 346	
32 3483 3493 3598 3608 3619 3629 3640 3650 3661 3671 3682 34 3692 3703 3713 3723 3734 3744 3754 3755 3775 3785 35 3795 3806 3816 3826 3837 3847 3857 3868 3878 3888 0.36 3898 3908 3918 3929 3939 3950 3960 3971 3981 3992 37 4002 4013 4023 4033 4044 4054 4064 4075 4085 4095 38 4105 4116 4126 4136 4147 4157 4167 4178 4188 4198 39 4208 4219 4229 4239 4249 4259 4270 4280 4392 4402 0.41 4412 4423 4433 4443 4453 4463 4474 4484							- 1				
33 3588 3598 3703 3713 3723 3734 3754 3755 3775 3785 35 3795 3806 3816 3826 3837 3847 3857 3868 3878 3888 0.36 3898 3908 3918 3929 3939 3950 3960 3971 3981 3992 37 4002 4013 4023 4034 4054 4064 4075 4085 4095 38 4105 4116 4126 4136 4147 4157 4167 4178 4188 4198 39 4208 4219 4229 4239 4249 4259 4270 4280 4290 4300 40 4310 4321 4331 4341 4351 4361 4372 4382 4392 4402 0.41 4412 4423 4433 4443 4453 4463 4474 4484 4494 4504				:						1 367	1 3682
34 3692 3703 3816 3826 3837 3847 3857 3868 3878 3888 0.36 3898 3908 3918 3929 3939 3950 3960 3971 3981 3992 37 4002 4013 4023 4044 4054 4064 4075 4085 4095 38 4105 4116 4126 4136 4147 4157 4167 4178 4188 4198 40 4219 4229 4239 4249 4259 4270 4280 4290 4300 40 4310 4321 4331 4341 4351 4361 4372 4382 4392 4402 0.41 4412 4423 4433 4443 4453 4463 4474 4484 4494 4504 42 4514 4525 4535 4545 4555 4565 4575 4585 4595 4605											
35 3795 3805 3816 3826 3637 3617 3960 3971 3981 3992 0.36 3898 3908 3918 3929 3939 3950 3960 3971 3981 3992 37 4002 4013 4023 4044 4054 4064 4075 4085 4095 38 4105 4116 4126 4136 4147 4157 4167 4178 4188 4198 39 4208 4219 4229 4239 4249 4259 4270 4280 4290 4300 40 4310 4321 4331 4341 4351 4361 4372 4382 4392 4402 0.41 4412 4423 4433 4443 4453 4463 4474 4484 4494 4504 42 4514 4525 4535 4545 4555 4565 4575 4585 4595 4605	34	369									
0.36 3898 3908 3918 4013 4023 4033 4044 4054 4064 4075 4085 4095 38 4105 4116 4126 4136 4147 4157 4167 4178 4188 4198 39 4208 4219 4229 4239 4249 4259 4270 4280 4290 4300 40 4310 4321 4331 4341 4351 4361 4372 4382 4392 4402 0.41 4412 4423 4433 4443 4453 4463 4474 4484 4494 4504 42 4514 4525 4535 4545 4555 4565 4575 4585 4595 4605 43 4615 4626 4636 4646 4656 4666 4676 4686 4696 4706 44 4716 4727 4737 4747 4757 4767 4777	35	379	5 380	6 381	B 382	6 383	/ 303	7 303	1 550	9	
0.36 3898 3908 3918 4013 4023 4033 4044 4054 4064 4075 4085 4095 38 4105 4116 4126 4136 4147 4157 4167 4178 4188 4198 39 4208 4219 4229 4239 4249 4259 4270 4280 4290 4300 40 4310 4321 4331 4341 4351 4361 4372 4382 4392 4402 0.41 4412 4423 4433 4443 4453 4463 4474 4484 4494 4504 42 4514 4525 4535 4545 4555 4565 4575 4585 4595 4605 43 4615 4626 4636 4646 4656 4666 4676 4686 4696 4706 44 4716 4727 4737 4747 4757 4767 4777	- [1	I		_		ممد ام	200	0 307	1 309	3992
37 4002 4013 4023 4033 4044 4054 4073 4088 4198 4188 4198 4198 429 4290 4300 4290 4300 4290 4300 4300 4310 4321 4331 4341 4351 4361 4372 4382 4392 4402 0.41 4412 4423 4433 4443 4453 4463 4474 4484 4494 4504 42 4514 4525 4535 4545 4555 4565 4575 4585 4595 4605 43 4615 4626 4636 4646 4656 4666 4676 4686 4696 4706 44 4716 4727 4737 4747 4757 4767 4777 4787 4797 4807 45 4817 4828 4838 4848 4858 4868 4878 4888 4898	0.36	389									
38 4105 4116 4126 4136 4147 4157 4167 4178 4188 4188 4188 4188 4187 4178 4167 4178 4188 4188 4188 4187 4167 4178 4188 4188 4189 4290 4300 4300 4290 4300 4300 4361 4372 4382 4392 4402 0.41 4412 4423 4433 4443 4453 4463 4474 4484 4494 4504 42 4514 4525 4535 4545 4555 4565 4575 4585 4595 4605 43 4615 4626 4636 4646 4656 4666 4676 4686 4696 4706 44 4716 4727 4737 4747 4757 4767 4777 4787 4797 4807 45 4817 4828 4838 4848 4858 4868 48			2 401	3 402							
39 4208 4219 4229 4239 4249 4259 4270 4280 4290 4300 40 4310 4321 4331 4341 4351 4361 4372 4382 4392 4402 0.41 4412 4423 4433 4443 4453 4463 4474 4484 4494 4504 42 4514 4525 4535 4545 4555 4565 4575 4585 4595 4605 43 4615 4626 4636 4646 4656 4666 4676 4686 4696 4706 44 4716 4727 4737 4747 4757 4767 4777 4787 4797 4807 45 4817 4828 4838 4848 4858 4868 4878 4888 4898				6 412	6 413						
40 4310 4321 4331 4341 4351 4361 4372 4382 4392 4402 0.41 4412 4423 4433 4443 4453 4463 4474 4484 4494 4504 42 4514 4525 4535 4545 4555 4565 4575 4585 4595 4605 43 4615 4626 4636 4646 4656 4666 4676 4686 4696 4706 44 4716 4727 4737 4747 4757 4767 4777 4787 4797 4807 45 4817 4828 4838 4848 4858 4868 4878 4888 4898									-		
0.41 4412 4423 4433 4443 4453 4463 4474 4484 4494 4504 4514 423 4514 4525 4535 4545 4555 4565 4575 4585 4595 4605 4615 4616 4616 4616 4616 4616 4616 461				- 1		1 435	1 436	1 437	2 438	12 439	2 4402
0.41 4412 4423 4433 4443 4456 456 456 4575 4585 4595 4605 4576 4777 4787 4787 4787 4787 4787 4787 47	1 30	1 75.	-	- -55	1	1	1	1	l		
42 4514 4525 4535 4545 4555 4565 4575 4585 4595 4605 4636 4615 4626 4636 4646 4656 4666 4676 4686 4696 4706 4727 4737 4747 4757 4767 4777 4787 4797 4807 4817 4828 4838 4848 4858 4868 4878 4888 4898 4908	0.41	441	2 442	3 443	3 444	3 445					
43 4615 4626 4636 4646 4656 4666 4676 4686 4696 4706 4707 4787 4787 4787 4787 4787 4787 4787			- 1	- 1			5 456				
43 4615 4727 4737 4757 4767 4777 4787 4797 4807 4817 4817 4828 4838 4848 4858 4868 4878 4888 4898 4908								6 467	6 468		
45 4817 4828 4838 4848 4858 4868 4878 4888 4898 4908									7 478		
45 4817 4828 4888 4888 4888 4888 4888										38 489	8 4908
4918 4928 4938 4948 4958 4968 4978 4988 4998 5008	4:	, 1 397	1 702	- 100	- -0.	-			1	ı	1
	سملت	ىمىك	9 492	A 493	8 494	8 495	8 496	8 497	78 498	88 499	8 5008

										120	441
1	3	339	350	362	373	384	396	407	418	430 541	553
I	4	452	463	474	485	397	508	519	530 643	654	665
ı	5	564	576	587	598	609	620	632	643	634	000
١				-					756	766	777
١	0.06	676	688	699	710	721	732	744	755	878	889
١	7	788	800	811	822	833	844	856	867		0.1000
١	8	900	912	923	934	945	956	967	978		1111
١	9	0.1011	1023	1034	1045	1056	1067	1078	1089	1100	
١	0.10	1122	1133	1144	1155	1166	1177	1188	1199	1210	1221
١				1			1				1001
ł	0.11	1232	1243	1254	1265	1276	1287	1298	1309	1320	1331
١	12	1342	1353	1364	1375	1385	1396	1407	1418	1429	1440
١	13	1451	1462	1473	1484	1495	1505	1516	1527	1538	1549
١	14	1560	1571	1582	1593	1604	1615	1625	1636	1647	1658
	15	1669	1680	1690	1701	1712	1723	1734	1745	1756	1767
	1	1005	1000				1	ŧ	1		
	0.16	1778	1789	1800	1810	1821	1832	1843	1854	1865	1876
	17	1887	1898	1909	1920	1930	1941	1952	1963	1974	1985
	18	1995	2006	2017	2027	2038	2049	2060	2070	2081	2092
	19	2103	2114	2124	2135	2146	2156	2167	2178	2188	2199
	20	2210	2221	2231	2242	2253	2263	2274	2285	2295	2306
	20	2210		-22		i		i			
	0.21	2317	2328	2338	2349	2360	2370	2381	2392	2402	2413
	22	2424	2435	2445	2456	2467	2477	2488	2499	2 509	2520
	23	2531	2542	2552	2563	2574	2584	2595	2606	2616	2627
	24	2638	1	2659	2670	2680	2691	2702	2712	2723	2733
	25			2765	2776	2786	2797	2808	2818	2829	2839
	23	1 2/33	2,04	2.00				1			
	0.26	2850	2860	2871	2882	2892	2903	2914	2924	2935	2940
	27			2977	2988	2998	3009	3020	3030	3041	3051
	28			3083	3094	3104	3115	3126	3136	3147	3157
	29			3189	3199	3210	3220	3231	3241	3252	3262
	30			3294	3304	3315	3325	3336	3346	3357	3367
	30	32/3	3263	3234	550.	00.00			İ		
	0.31	3378	3388	3399	3409	3420	3430	3441	3451	3462	3472
				3504	3514	3525	3535	3546	3556	3567	3577
	32			3608	3619	3629	3640	3650	3661	3671	3682
	33			3713	3723	3734	3744	3754	3765	3775	3785
	34			3816	3826	3837	3847	3857	3868	3878	3888
	35	3795	3806	3010	3020	305.	00				
	10 00	3898	3908	3918	3929	3939	3950	3960	3971	3981	3992
	0.36			4023	4033	4044	4054	4064	4075	4085	4095
	37			4126	4136	4147	4157	4167	4178	4188	
	38			4229	4239	4249	42 59	4270	4280	4290	
	39				4341	4351	4361	4372	4382	4392	
	40	4310	4321	4331	4341	4331	4301	13.2			
	10 4	1 4410	4423	4433	4443	4453	4463	4474	4484	4494	4504
	0.41				4545	4555	4565	4575	4585	4595	4605
	42			4636	4646	4656	4666	4676	4686	4696	4706
				4737	4747	4757	4767	4777	4787	4797	4807
	44				4848	4858	4868	4878	4888	4898	
	1 4	' ""'	1 7020	1000							1
	0.46	4918	4928	4938	4948	4958	4968	4978	4988	4998	
	47				5038	5058	5068	5078	5088	5098	
					5149	5159	5169	5179	5189	5199	
	48				5249	5259	5269	5279	5289	5299	
					5349	5369	5399	5379	5389	5399	5409
	0.50	, 3315	3329	3338	33.48	5000	1	1	1	l	1
						4					

(cont'd.)

9	_	0	88
0	-	ο.	0.

0.51 0.5418 0.5428 0.5438 0.5448 0.5458 0.5468 0.5478 0.5488 0.5498 0.550 552 5518 5527 5537 5547 5557 55667 5577 5587 5577 5587 55667 55667 55667 5577 5587 558	_									l	1		í
5.51		ß	0.000	0.001	0.002	0.003	0.004	υ.005	0.006	U.007	0.008	0.009	
54 5716 5725 5735 5745 5755 5765 5774 5784 5794 580 55 5814 5823 5833 5843 5853 5867 5885 5892 590 600 6019 6019 6029 6039 6049 6059 6068 6078 6088 609 586 6108 6117 6127 6137 6146 6156 6166 6175 6185 619 659 600 600 600 600 600 6300 6300 6300 6300 6300 6379 6386 629 629 622 6222 6222 6222 6222 6222 6220 6220 6203 6310 6350 6360 6379 638 632 6341 6457 6466 6476 648 662 6469 6503 6612 6612 6622 6631 6641 6651 6653 6573 658 6534 6548 6874		52	5518	5527	5537	5547	5557	5667	5577	5587	5597 5696	0.5508 5607 5706	
0.56		54	5716	5725	5735	5745						5804 5902	
Second S		57	6010	6019	6029	6039	6049	6059	6068	6078	6088	6000 6098 6195	
62 6496 6505 6515 6512 6524 6534 6544 6554 6563 6573 658 639 6699 6699 6709 6719 6728 6738 6748 6757 6767 677 655 6787 6796 6806 6816 6825 6835 6845 6854 6864 687 687 6787 6796 6806 6816 6825 6835 6845 6854 6864 687 687 677 678 678 678 6799 6988 6998 7008 7017 7027 7037 7046 7056 706 68 7075 7084 7094 7103 7113 7122 7132 7141 7151 716 69 7170 7179 7189 7198 7208 7217 7227 7236 7246 725 7274 7284 7293 7303 7312 7322 7331 7341 7351 7367 7265 7274 7284 7293 7303 7312 7322 7331 7341 7351 736 727 7265 7274 7283 7491 7501 7510 7520 7520 7529 753 744 7642 7651 7661 7670 7679 7689 7698 7708 7717 7725 7736 7745 7755 7764 7773 7783 7792 7802 7811 782 793 7932 7931 7931 7932 7811 782 7931 7932 7931 7932 7931 7848 8016 8025 8034 8044 8053 8062 8072 8081 8090 8118 8127 8137 8146 8155 8155 8154 8183 819 80 8202 8211 8220 8229 8238 8248 8257 8266 8275 828 838 8394 8403 8412 8421 8431 8440 8449 8458 83 8476 8485 8494 8503 8512 8322 8531 8540 8549 899 9021 9931 9931 9130 9138 9148 9157 9166 9175 9143 9159 9031 9131 9130 9138 9148 9157 9166 9175 9143 9159 9031 9131 9130 9138 9148 9157 9166 9175 9144 9159 903 9138 9399 9321 9331 9389 9398 9407 9416 9425 9443 9452 9453 9568 9575 9584 9593 9602 9610 9619 9628 965		59	6205	6214	6224	6234	6243	6253	6262			6292 6389	
64 6690 6699 6709 6719 6728 6738 6738 6748 6757 6767 6777 655 6787 6796 6816 6825 6835 6845 6845 6854 6864 6864 6876 6778 6787 6798 6988 6998 7008 7017 7027 7037 7046 7056 706 6876 6879 6988 6998 7008 7017 7027 7037 7046 7056 706 68 7075 7084 7094 7103 7113 7122 7132 7141 7151 716 69 7170 7179 7189 7198 7208 7217 7227 7236 7246 725 70 7265 7274 7284 7293 7303 7312 7322 7331 7341 7351 7361 7360 7369 7379 7388 7397 7407 7416 7426 7435 744 742 7483 7472 7482 7491 7501 7510 7520 7520 7529 753 73 7548 7557 7566 7576 7576 7585 7595 7604 7614 7623 763 744 7642 7651 7661 7670 7679 7689 7698 7708 7717 772 7736 7745 7755 7764 7773 7783 7792 7802 7811 782 773 7736 7745 7755 7764 7773 7783 7792 7802 7811 782 773 7783 7792 7802 7811 782 788 8016 8025 8034 8044 8053 8062 8072 8081 8090 8108 8108 8202 8211 8220 8228 8238 8248 8257 8266 8275 828 8385 8394 8403 8412 8421 8431 8440 8449 8458 8498 8202 8211 8220 8228 8238 8248 8257 8266 8275 828 848 8567 8676 8685 8694 8704 8713 8722 8731 874 888 8931 8940 8403 8412 8421 8431 8440 8449 8458 846 858 8667 8676 8685 8694 8704 8713 8722 8731 874 888 8931 8940 8038 8863 8867 8876 8886 8895 9004 9019 90112 9121 9130 9139 9148 9157 9166 9157 9185 9004 9019 90112 9121 9130 9139 9148 9157 9166 9159 9259 9310 9319 9319 9318 8940 9040 9049 9058 9067 9076 9085 9004 9019 9012 9121 9130 9139 9148 9157 9166 9159 9558 9566 9575 9584 9509 9602 9610 9619 9628 963		62	6496	6505	6515	6 52 5	6534	6544	6554	6563	6573	6486 6583 6680	
67 6979 6988 6998 7008 7017 7027 7037 7046 7056 7066 68 7075 7084 7094 7103 7113 7122 7132 7141 7151 716 69 7170 7179 7189 7189 7208 7217 7227 7236 7246 7257 70 7265 7274 7284 7293 7303 7312 7322 7331 7341 7351 70 70 7265 7274 7284 7293 7303 7312 7322 7331 7341 7351 72 7454 7463 7472 7482 7491 7501 7510 7520 7529 753 7548 7557 7567 7567 7576 7585 7595 7604 7614 7623 763 74 7642 7651 7661 7670 7679 7689 7698 7708 7717 772 75 7736 7745 7755 7764 7773 7783 7792 7802 7811 782 775 7736 7745 7755 7764 7773 7783 7792 7802 7811 782 7792 7802 7811 782 7792 7802 7811 782 7792 7802 7811 782 788 8016 8025 8034 8044 8053 8062 8072 8081 8090 810 80 8202 8211 8220 8229 8238 8248 8257 8266 8275 828 828 8248 8257 8266 8275 828 828 8248 8257 8266 8275 828 828 8248 8257 8266 8275 828 828 8248 8257 8266 8275 828 828 8248 8257 8266 8275 828 828 8248 8257 8266 8275 828 828 8248 8257 8266 8275 828 828 8248 8257 8266 8275 828 828 8248 8257 8266 8275 828 828 8248 8257 8266 8275 828 828 8248 8257 8266 8275 828 828 8248 8257 8266 8275 828 828 8248 8257 8266 8275 828 828 828 8258 8258 8258 8258 82		64	6690	6699	6709	6719	6728		6748			6777 6874	
69 7170 7179 7189 7198 7208 7217 7227 7236 7246 725 70 7265 7274 7284 7293 7303 7312 7322 7331 7341 735 0.71 7360 7369 7472 7482 7491 7501 7510 7520 7529 753 73 7548 7557 7567 7576 7585 7595 7604 7614 7623 7637 7677 7679 7689 7698 7708 7717 772 77802 7811 782 7811 782 7811 782 7811 782 7811 782 7811 782 7811 782 7811 782 7811 782 7811 782 7811 782 7802 7811 782 7802 7811 782 7802 7811 782 7802 7811 782 782 7848 7904 791 7902		67	6979	6988	6998	7008	7017	7027	7037	7046	7056 7151	6970 7066 7160	
72 7454 7463 7472 7482 7491 7501 7510 7520 7529 753 73 7548 7557 7567 7576 7585 7595 7604 7614 7623 763 74 7642 7851 7661 7670 7679 7689 7698 7708 7717 772 75 7736 7745 7755 7764 7773 7783 7792 7802 7811 782 0.76 7830 7839 7848 7858 7867 7876 7886 7895 7904 7811 782 0.76 7830 7839 7848 7858 7867 7876 886 7895 7904 791 77 7923 7932 7941 7951 7960 7969 7979 7988 7997 800 78 8016 8025 8034 8044 8053 8062 8072 8081 8090 810 79 8109 8118 8127 8137 8146 8155 8165 8174 8183 819 80 8202 8211 8220 8229 8238 8248 8257 8266 8275 826 0.81 8294 8303 8312 8321 8330 8340 8349 8358 8367 837 82 8385 8394 8403 8412 8421 8431 8440 8449 8458 846 83 8476 8485 8494 8503 8512 8522 8531 8540 8549 855 84 8567 8576 8585 8594 8603 8613 8622 8631 8640 864 85 8658 8667 8676 8685 8694 8704 8713 8722 8731 874 0.86 8740 8758 8767 8766 8785 8795 8804 8813 8822 883 88931 8940 8949 8958 8967 8977 8986 8995 9004 901 990 9112 9121 9130 9139 9148 9157 9166 9175 9184 919 0.91 9202 9211 9220 9229 9238 9247 9256 9265 9274 928 92 9292 9300 9309 9318 9327 9336 9354 9354 9363 9379 9389 9398 9407 9416 9425 9434 9443 9452 9459 9470 9478 9487 9496 9505 9514 9522 9531 9540 955 0.96 9646 9654 9663 9672 9681 9690 9688 9707 9716 9770 9716 9770 9716 9770 9716 9770 9716 9770 9716 9770 9716 9770 9716 9770 9770 9716 9770 971		69	7170	7179	7189					7331	7341	7255 7350	
74 7642 7651 7661 7670 7679 7689 7698 7708 7717 772 7783 7792 7802 7811 782 0.76 7830 7839 7848 7858 7867 7876 7886 7895 7904 791 77 7923 7932 7941 7951 7960 7969 7979 7988 7997 800 78 8016 8025 8034 8044 8053 8062 8072 8081 8090 810 80 8109 8118 8127 8137 8146 8155 8165 8174 8183 819 80 8202 8211 8220 8229 8238 8248 8257 8266 8275 828 0.81 8294 8303 8312 8321 8330 8340 8349 8458 846 83 8476 8485 8494 8503 8512		72	7454	7463	7472	7482	7491	7501	7510	7520 7614	7529 7623	7445 7539 7633	
77 7923 7932 7941 7951 7960 7969 7979 7988 7997 800 798 8016 8025 8034 8044 8053 8062 8072 8081 8090 810 8118 8127 8137 8146 8155 8165 8174 8183 819 80 8202 8211 8220 8229 8238 8248 8257 8266 8275 828 828 828 8257 8266 8275 828 828 828 8257 8266 8275 828 828 828 8257 8266 8275 828 828 828 8257 8266 8275 828 828 828 8257 8266 8275 828 828 828 8257 8266 8275 828 828 828 8257 8266 8275 828 828 828 8257 8266 8275 828 828 828 8257 8266 8275 828 828 828 8257 8266 8275 828 828 8257 8266 8275 828 828 8257 8266 8275 828 828 8257 8266 8275 828 828 8257 8266 8275 828 828 8257 8266 8275 828 828 8257 8266 8275 828 828 8257 8266 8275 828 828 8257 8266 8275 828 828 8257 8266 8275 828 828 8257 8266 8275 828 8267 838 840 849 8458 8494 8503 8512 8522 8531 8540 8549 855 8658 8667 8676 8685 8694 8704 8713 8722 8731 874 828 828 828 828 828 828 828 828 828 82		74	7642	7651				7783	7792	7802	7811	7727 7821	
80 8202 8211 8220 8238 8248 8257 8266 8275 828 0.81 8294 8303 8312 8321 8330 8340 8349 8358 8367 8378 82 8385 8394 8403 8412 8421 8431 8440 8449 8458 846 83 8476 8485 8494 8503 8512 8522 8531 8540 8549 855 84 8567 8576 8585 8594 8603 8613 8622 8631 8640 864 855 8658 8667 8676 8685 8694 8704 8713 8722 8731 874 0.86 8740 8758 8767 8776 8785 8795 8804 8813 8822 883 87 8840 8849 8858 8867 8876 8886 8895 8904 8913 8920 8931 8940 8949 9058 8967 8977 8986 8995 9004 9019 90112 9121 9130 9139 9148 9157 9166 9175 9184 919 0.91 9202 9211 9220 9229 9238 9247 9256 9265 9274 928 93 9381 9389 9398 9407 9416 9425 9434 9443 9452 946 9559 9558 9566 9575 9584 9593 9602 9610 9619 9628 963		77	7923	7932 8025	7941 8034	7951 8044	7960 8053	7969 8062	7979 8072	7988 8081	7997 8090	7914 8007 8100	
82 8385 8394 8403 8412 8421 8431 8440 8449 8458 8468 8476 8476 8485 8494 8503 8512 8522 8531 8540 8549 855 846 8567 8576 8585 8594 8603 8613 8622 8631 8640 864 8704 8713 8722 8731 874 8758 8767 8766 8685 8694 8704 8713 8722 8731 874 8758 8767 8840 8849 8858 8867 8876 8886 8895 8904 8913 8940 8949 8958 8967 8977 8986 8995 9004 9019 90112 9121 9130 9139 9148 9157 9166 9175 9184 919 919 9112 9121 9130 9139 9148 9157 9166 9175 9184 919 9184 919 9184 919 9184 9184 91		80	8202	8211	8220	8229	8238	8248	8257	8266	8275	8284	
85 8658 8667 8667 8676 8685 8694 8704 8713 8722 8731 874 0.86 8740 8758 8767 8776 8785 8795 8804 8813 8822 883 87 8840 8849 8858 8867 8876 8886 8895 8904 8913 89 9022 9031 9040 9049 9058 9067 9076 9085 9094 910 90 9112 9121 9130 9139 9148 9157 9166 9175 9184 919 0.91 9202 9211 9220 9229 9238 9247 9256 9265 9274 928 92 9292 9300 9309 9318 9327 9336 9345 9354 9363 937 93 9381 9389 9398 9407 9416 9425 9434 9443 9452 946 94 9470 9478 9487 9496 9505 9514 9522 9531 9540 955 9558 9566 9575 9584 9593 9602 9610 9619 9628 963		82 83	8385 8476	8394 8485	8403 8494	8412 8503	8421 8512	8431 8522	8440 8531	8449 8540	8458 8549	8467 8558 8649	
87 8840 8849 8858 8867 8876 8886 8895 8904 8913 892 888 8931 8940 8949 8958 8967 8977 8986 8995 9004 901 890 9112 9121 9130 9139 9148 9157 9166 9175 9184 919 919 919 919 919 919 919 919 919 91		85	86 56	8667	8676	8685	8694	8704	8713	8722	8731	8740 8831	
90 9112 9121 9130 9139 9148 9157 9166 9175 9184 919 0.91 9202 9211 9220 9229 9238 9247 9256 9265 9274 928 92 9292 9300 9309 9318 9327 9336 9345 9354 9363 937 93 9381 9389 9398 9407 9416 9425 9434 9443 9452 946 94 9470 9478 9487 9496 9505 9514 9522 9531 9540 954 95 9558 9566 9575 9584 9593 9602 9610 9619 9628 963		87 88	8840 8931	8849 8940	8858 8949	8867 8958	8876 8967	8886 8977	8895 8986	8904 8995	8913 9004	8922 9013 9103	
92 9292 9300 9309 9318 9327 9336 9345 9354 9363 937 93 9381 9389 9398 9407 9416 9425 9434 9443 9452 946 94 9470 9478 9487 9496 9505 9514 9522 9531 9540 955 95 9558 9566 9575 9584 9593 9602 9610 9619 9628 963 0.96 9646 9654 9663 9672 9681 9690 9698 9707 9716 977		90	9112	9121	9130	9139	9148	9157	9166	9175	9184	9193	۱
95 9558 9566 9575 9584 9593 9602 9610 9619 9628 963 0.96 9646 9654 9663 9672 9681 9690 9698 9707 9716 973		92 93	9292 9381	9300 9389	9309 9398	9318 9407	9327 9416	9336 9425	9345 9434	9354 9443	9363 9452	9372 9461 9549	
10.90 5040 5004 5000 5000 5000 5000 6000		95	9558	9566	9575	9584	9593	9602	9610	9619 9707	9716	9637 9725	,
									9787	9796	9805	9814	

		6117	0127	01377		0100	-0.00	~~~		
59	6205	6214	6224	6234	6243	6253	6262	6272	6282	6292
60	6302	6311	6321	6331	6340	6350	6360	6369	6379	6389
		i	i	i	l	I	ı			0.400
0.61	6399	6408	6418	6428	6437	6447	6457	6466	6476	6486
62	6496	6505	6515	6525	6534	6544	6554	6563	6573	6583
63	6593	6602	6612	6622	6631	6641	6651	6660	6670	6680
64	6690	6699	6709	6719	6728	6738	6748	6757	6767	6777
65	6787	6796	6806	6816	6825	6835	6845	6854	6864	6874
05	0.0.	0.00	-		l	- 1	l	I	I	
0.66	6883	6892	6902	6912	6921	6931	6941	6950	6960	6970
67	6979	6988	6998	7008	7017	7027	7037	7046	7056	7066
68	7075	7084	7094	7103	7113	7122	7132	7141	7151	7160
69	7170	7179	7189	7198	7208	7217	7227	7236	7246	7255
70	7265	7274	7284	7293	7303	7312	7322	7331	7341	7350
10	1205	1214					1	1	I	
0.71	7360	7369	7379	7388	7397	7407	7416	7426	7435	7445
72	7454	7463	7472	7482	7491	7501	7510	7520	7529	7539
73	7548	7557	7567	7576	7585	7595	7604	7614	7623	7633
74	7642	7651	7661	7670	7679	7689	7698	7708	7717	7727
	7736	7745	7755	7764	7773	7783	7792	7802	7811	7821
75	1136	1143	1.55				i	1		
0 70	7830	7839	7848	7858	7867	7876	7886	7895	7904	7914
0.76	7923	7932	7941	7951	7960	7969	7979	7988	7997	8007
77	8016	8025	8034	8044	8053	8062	8072	8081	80 9 0	8100
78		8118	8127	8137	8146	8155	8165	8174	8183	8193
79	8109	8211	8220	8229	8238	8248	8257	8266	8275	8284
80	8202	8211	0220	8225	0230	02.0	920.			1
	0004	8303	8312	8321	8330	8340	8349	8358	8367	8376
0.81	8294	8394	8403	8412	8421	8431	8440	8449	8458	8467
82	8385			8503	8512	8522	8531	8540	8549	8558
83	8476	8485	8494	8594	8603	8613	8622	8631	8640	8649
84	8567	8576	8585 8676	8685	8694	8704	8713	8722	8731	8740
85	86 58	8667	8010	8683	8034	0.01	0.10			1 1
1 '		0==0	8767	8776	8785	8795	8804	8813	8822	8831
0.86	8740	8758	8858	8867	8876	8886	8895	8904	8913	8922
87	8840	8849	8949	8958	8967	8977	8986	8995	9004	9013
88	8931	8940		9049	9058	9067	9076	9085	9094	9103
89	9022	9031	9040		9148	9157	9166	9175	9184	9193
90	9112	9121	9130	9139	3170	313.	3.00	02.0		1
1			9220	9229	9238	9247	9256	9265	9274	9283
0.91	9202	9211 9300	9309	9318	9327	9336	9345	9354	9363	9372
92	9292		9309	9407	9416	9425	9434	9443	9452	9461
93	9381	9389	9398	9496	9505	9514	9522	9531	9540	9549
94	9470	9478		9584	9593	9602	9610	9619	9628	9637
95	9558	9566	9575	9304	3555	1	1		l	1 1
10.00	0646	9654	9663	9672	9681	9690	9698	9707	9716	9725
0.96	9646	9743	9752	9760	9769	9778	9787	9796	9805	9814
97	9734	9832	9841	9849	9858	9867	9876	9885	9894	9903
98	9823	9832	9929	9938	9947	9956	9964	9973	9982	0.9991
99	9912	3540	3323	1 5550	1	-	l –	-	-	1 - 1
1.00	1.000	-	1 -	_	l	1	1	l	1	1 1
1	ı	1	i	l	L	l	1	<u> </u>	<u> </u>	

(cont'd)

3-0.89

											l	1
В	0.000	0.00	0.00	0.00	0.00	· · · · · ·		0.006	0.007	0.008		-
1		-		3 0.003	4 0.004	5 0.00	57 0	.0068	0.0079	0.0090	0.010	
0.00	0.000					7 1	69	180	303	314		5
0.01	0.0113		- 1	- 1			81	292	414	425	5 43	
2	22		~ 1	• 1		-	392	403 514	525	536	5 54	
3	33	- 1	~ i		1 49	-	503	625	636		7 65	8
4	44	· 1	-	1 -0	2 6	03 6	514	623		1		
5	55	8 3,	٠,	-	1		725	736	747	75	8 76	
1	66	9 68	1 69		-	• •	725 835	846		86		
0.06	78	<u>-</u> ا	1 00	2 81			945	956	1 000	97		
7	89			2 92			055	1066		108		
8 9	0.100	· · · · · · · · · · · · · · · · · · ·	1 103				165	1176		119	8 12	05
10	111		21 11	32 11	13 11	34 .	100		1		8 13	19
10	1	. \	1	1	-2 12	64 1	275	1286			• • • • • • • • • • • • • • • • • • • •	
0.11	122	20 12			_	0-1	385	1396		1	_	
12	133		TA				495	1 506	151			48
13	14	40 14	- 1	62 14 71 15			604	161				56
14	15		00	•-	U		712	172	3 173	4 17		
15	16	58 16	69 16	80 16	31	1				2 18	53 18	64
	1	1	\	00 17	99 1		1820	183		- 1	- 1	72
0.16		00		-			1928					79
17			-		15 2		2036		• 1	1 -		186
18		·			22 2	10- (2143		- 1			293
19					29 2	239	2250	226	1 22.	-	i	1
20	21	97 22	207 2		1		0057	236	7 237	78 23	00 -	399
1	ا ،	200	314 2	325 2		3.0	2357				- 1	505
0.21		,0-				452	2463	2		90 \ 26		611
22	'			537 2	J-1	558	2569 2675	1			-	717
23	, , _		632 2		· ·	664	2781	· 1		02 28	312 2	823
24				749 2	759 2	770	2.0.	.	1	1 .		
2	° 1 °	.20	1	١.	1 .	2876	2887	7 28	97 29	00 -		929
0.2	. 2	834 2		-	000	2982	2992	1	03 30		- 1	139
0.2	٠ ١ ٦	940 2	500 -			3087	309		· ·	1		244
2		045 3	,000	,000		3191	320			1 =		3348
2					1 1	3295	330	6 33	16 33	327 3	٠, ١	
3	- 1 -	254	264	3274	,				00 1 24	31 3	441	3452
1	1			3378	3389	3399	341	· 1				3556
0.3		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,		3493	3503	351	-		, ,	649	3659
	2 3	,			3597	3608	361				752	3762
	, ,	, ,			3700	3711	372	- 1			855	3865
	, ,	3005	3000		3803	3814	382	· - ·				
3	35	3772					392	27 3	937 3	330 -	3958	3968
1		3875	3886	3896	3906	3917	403		040 4		1061	4071
0.	30	3978	3989	3999	4009	4020 4122	413		143 4		4163	4173
	31	4081	4092	4102	4112	4224	42			200	4265	4377
	30 I	4183	4194	4204	4214	4326	43		347 4	357	4367	4311
	39 40	4285	4296	4306	4316	7050	1		_		4469	4479
1	- "				4418	4428	44	.	1330	1100	4570	4580
lo.	41 L	4387	4398	4408	4520	4530	45		1000	4560 4661	4671	4681
١٠.	42	4489	4500	4510	4621	4631			1001	4762	4772	4782
	43	4590	4601	4611	4722	4732		(,	4863	4873	4883
	44	4691	4702	4813	4823	4833	48	343 4	1853	7000		
	45	4792	4803	4010		1	1		4954	4964	4974	4984
žė l	1				4004	1024	1 49	44				

											879	
4.00		780	791	802	813	824	835	846	857 967	868 978	989	
7 8	1	890	901	912	923	934	945	956	1077	1088	1099	
9	١٨	1000	1011	1022	1033	1044	1055	1066	1187	1198	1209	
10	١,,	1110	1121	1132	1143	1154	1165	1176	110.		I	
10	1	1110						1000	1297	1308	1319	
0.11	1	1220	1231	1242	1253	1264	1275		1407	1418	1429	
12	- 1	1330	1341	1352	1363	1374	1385		1517	1528	1539	
13	-	1440	1451	1462	1473	1484	1495	1	1626	1637	1648	
14	- 1	1549	1560	1571	1582	1593				1745	1756	
	ı	1658	1669	1680	1691	1701	1712	1723	1734	1145	2	1
15	- 1	1000	1000	1	1	Ì	1		1842	1853	1864	Í
10.30	- 1	1766	1777	1788	1799	1809			1950	1961	1972	1
0.16	1	1874	1885	1896	1907	1917				2069	2079	1
17		1982	1993	2004	2015	2025				2175	2186	1
18			2100		2122	2132				2282	2293	1
19		2090	2207	2218	2229	2239	2250	2261	2271	2202		1
20	'	2197	2201	1 2210		1	1		0270	2388	2399	
1	1	0204	2314	2325	2335	2346			1	2494	2505	
0.21		2304	2420		2441					2600	2611	
22		2410	2526			1	2569				2717	
23		2516	2632				267			2706	2823	
24		2622	1		1	1	278	1 2791	2802	2812	2023	1
2.5	5	2728	2738	2143	1 2.00		1		1	2010	2929	. 1
	1		004	2855	2865	2876	288			2918	3034	
0.26		2834	2844		1		2 299			3024	3139	
27		2940						7 3108		3129	3244	
28		3045		· 1				2 3212		3233		
29	9	3150				1		6 3316	3327	3337	3348	, I
30	0	3254	326	3274	320.	, 555	-	i		1	1 0450	. 1
	1			8 3378	3389	339	9 341	0 342		3441	3452	
0.3	1	3358			: :	1		4 352		3545	3556	
3:	2	3462						8 362	8 3639	3649	36 59	
3	3	3566						1 373		3752	3762	
3	4	3669		. 1	· 1 - :			4 383	4 3845	3855	386	۱ د
3	5	3772	2 378	3 379	3 380.	3 302	-			1		.
		1		-	6 390	6 391	7 392	7 393	7 3948		396	
0.3	6	387			- 1	-					407	
3	7	3978			- 1 :::.		-					
3	18	408							5 4255			
3	39	418			-				7 4357	4367	437	1
4	10	428	5 429	6 430	9 431	1 .5-		į	į.		1	_
		1			8 441	8 442	8 44	38 444				
0.4	41	438			_	- 1		40 45				
4	42	448				- 1	-					
1 4	43	459	0 460			-						
	44	469					- 1		53 4863	3 4873	488	3
	45	479	2 480	3 481	3 704	30.			1	1	.	١.,١
- 1					4 492	4 49	34 49	44 49				
0.4	46	489						45 50				
	47	499			- 1			45 51				
	48	509			-			45 52				
	49	519				1 :		45 53	55 536	5 537	5 538	10
	50	529	5 53	05 53	19 33	5 33	-					
1		1		1								

	0.000	0.001	0.002	0.003	0.004	0.005	0.006	u.007	0.008	0.009
\mathcal{A}	0.000	0.000								0 5404
			l .	1	0 5424	0 5444	0.5454	0.5464	0.5474	0.5464
. 51	0.5394	0.5404	0.5414			5543	5553	5563	5573	5583
	5493			5523	5533		5652	5662	5672	5682
52	5592			5622	5632	5642		5761	5771	5781
53		5701		5721	5731	5741	5751		5869	5879
54	5691			1		5840	5849	5859	3603	00.1
55	5790	5800	3810	1 3324			1		5007	5977
	į.	1		5918	5928	5938	5947	5957	5967	
. 56	5888	5898	5908		1	6036		6055	6065	6075
57	5986	5996	6006			6134	1		6163	6173
	6084		6104	6114				1	6260	6270
58		1	1		6221	6231	6241	1	1	6367
59	6182				6318	6328	6338	6347	033.	
60	6279	6289	, 0233	1		1		l l	1	CACA
	1			6406	6415	6425	6435			6464
0.61	6376	6386	6396					6541	6551	656
62	6473		3 6493							6657
	6570			6599			1			675
63					6705					
64	6666	- 1				6810	6820	6829	0039	004.
65	6762	2 6772	2 0102	. 0.5.			1	1		004
	1	ı			6897	6906	6916	6925		
0.66	685	B 686				1			7031	704
67	1		4 6974	6983				1		713
				9 7079	9 7088		- 1			
68		-	- 1		4 7183	7193	7202			
69			- 1	- !			3 7297	7 7307	7 7316	1 '32
70	724	0 725	N 123		- 1		1	1	i	
	1	1	1	.1	3 7373	7382	7392	2 7401		
0.71	733	5 734	4 735		- 1	-	- 1			751
72			8 744	8 745			- I _	- 1		760
				2 755	1 756			-	- 1	
73		- 1			5 775	5 766			_	- 1 -
74							8 776	7 777	7 7786	5 779
7:	5 771	1 772	21 773	.0 113				i	1	i
	1	1	- 1	1		2 785	786	0 787	0 7879	9 788
0.76	3 780	14 78	14 782					- 1		2 1 798
			07 791	6 792			- 1	- 1	-	
73		• • • • • • • • • • • • • • • • • • • •	- 1		8 802				- 1	- 1
71				-		1 813				-
79				-	1		3 823	2 824	2 825	1 82
8	0 817	76 81	86 819	15 824	7 02 1	• 022	-	1	1	- 1
1	·	ł	1	1		- 021	6 832	5 883	5 834	4 83
0.8	1 820	69 82	79 828	829						7 84
	-			81 839	90 840			1		
8:	- 1		•		83 849	3 850				
8				- 1		15 859	4 860			
8							36 869	6 870	5 871	4 87
8	5 86	40 86	50 86	ספון שכ	30 00.	. 55-		1	ı	1
-	·	1	ı			9 877	78 878	88 879	7 880	6 88
0.8	6 87	32 87	42 87	51 870						
			34 88	43 88	52 886	31 887				
			26 89			53 896				
8						45 90	54 906	64 907		- 1
8	9 90		17 90				46 91	55 916	84 917	73 91
		00 91	09 91	18 91	21 31.	/~ ~~		- 1	1	1
1	-	ı	1	1			37 92	46 92	55 926	34 92
100		91 92	200 92		18 92					
0.9	-				10 93				1	
	_				01 94	10 94				
9					91 95		09 95	18 95		
9	4 94							08 96	17 96	26 96
		54 95	563 95	72 95	81 95	30 30			- 1	1
	-				1	1	1	1		16 97
1	1		1	62 96	71 96	80 96	ea l ac	98 97	07 97	10 1 20

59 6182 6192 6202 6212 6309 0.61 6376 6386 6396 6406 6203 6503 6503 6503 6503 6503 6503 6590 6599 6593 6503 6590 6599 6693 6603 6659 6695 6695 6695 6695 6695 6791 6782 6791 6782 6791 6782 6791 6964 6974 6983 6964 6974 6983 6983 6964 6974 6983 6983 6984 6974 6983 6983 6984 6974 6983 6983 6984 6974 6983 6983 6984	6221 62 6318 63 6415 64 6512 65 6609 66 6705 67 6801 68	28 6338 25 6435 22 6532 18 6628 14 6724	6347 6444 6541 6637	6260 6357 6454 6551	6367 6464
0.61 6376 6386 6396 6406 62 6473 6483 6493 6503 63 6570 6580 6590 6599 64 6666 6676 6686 6695 65 6762 6772 6782 6791 0.66 6858 6868 6878 6887 67 6954 6964 6974 6983	6415 645 6512 655 6609 66 6705 67	25 6435 22 6532 18 6628 14 6724	6444 6541 6637	6454 6551	6464
62 6473 6483 6493 6503 63 6570 6580 6590 6599 64 6666 6676 6686 6695 65 6762 6772 6782 6791 0.66 6858 6868 6878 6887 67 6954 6964 6974 6983	6512 653 6609 66 6705 67	22 6532 18 6628 14 6724	6541 6637	6551	
63 6570 6580 6590 6599 64 6666 6676 6686 6695 65 6762 6772 6782 6791 0.66 6858 6868 6878 6887 67 6954 6964 6974 6983	6512 653 6609 66 6705 67	22 6532 18 6628 14 6724	6541 6637	6551	
64 6666 6676 6686 6695 6791 0.66 6858 6868 6878 6887 6984 6954 6964 6974 6983	6609 66 6705 67	18 6628 14 6724	6637		
65 6762 6772 6782 6791 0.66 6858 6868 6878 6887 67 6954 6964 6974 6983	6705 67	14 6724			6561
0.66 6858 6868 6878 6887 67 6954 6964 6974 6983	1111			6647	6657
67 6954 6964 6974 6983	00.		6733	6743	6753
67 6954 6964 6974 6983		10 6820	6829	6839	6849
1 0001 00/4 698	6897 690	6916	6005		1
	6993 700		6925	6935	6945
68 7050 7060 7069 7079	7088 709		7021	7031	7041
69 7145 7155 7164 7174	7183 719		7117	7126	7136
70 7240 7250 7259 7269	7278 728		7212	7221	7231
0 73	12.0	1251	7307	7316	7326
0.71 7335 7344 7354 7363	7373 738	2 7392	1 2000		_
72 7429 7438 7448 7457	7467 747	- ,	7401	7411	7420
73 7523 7582 7542 7551	7561 757		7495	7505	7514
74 7617 7626 7636 7645	7755 766		7589	7599	7608
75 7711 7721 7730 7740	7749 775		7683	7693	7702
0.70	113	8 7767	7777	7786	7796
0.76 7804 7814 7823 7832	7842 785	1 7960			- 1
77 7897 7907 7916 7925	7935 794	- 1 .000	7870	7879	7888
78 7990 8000 8009 8018	8028 803	- 1000	7963	7972	7981
79 8083 8093 8102 8118	8121 813		8056	8065	8074
80 8176 8186 8195 8204	8214 822	1	8149	8158	8167
	0214 022.	3 8232	8242	8251	8280
0.81 8269 8279 8288 8297	8307 8316	0005		j	- 1
82 8362 8372 8381 8390	8400 8409		8835	8344	8353
83 8455 8465 8474 8483	8493 8502	0.10	8428	8437	8446
84 8548 8558 8567 8576	8585 8594		8521	8530	8539
80 8640 9650 0650	8677 8686	1 000.	8613	8622	8631
	0077	8696	8705	8714	8723
0.86 8732 8742 8751 8760	8769 8778	1 0700	0===		i
87 8824 8834 8843 8852	8861 8870	1 -1-00	8797	8806	8815
88 8916 8926 8935 8944	8953 8962	1 0000	8889	8898	8907
89 9008 9017 9027 9036	9045 9054	00.2	8981	8990	8999
90 1 0100 1 0100 1	9136 9146		9073	9082	9091
	3140	9199	9164	9173	9182
0.91 9191 9200 9209 9218	9228 9237	9246	00		1
92 9282 9291 9300 9310	9319 9328		9255	9264	9273
93 9373 9382 9392 9401 9	9410 9419	9428	9346	9355	9364
94 9464 9473 9482 9491 6	9500 9509	9518	9437	9446	9455
95 954 960 955	9590 9599	1	9527	9536	9545
	3399	9608	9617	9626	9635
0.96 9644 9653 9662 9671 9	9680 9689	9600	0707		- 1
97 9734 9743 9752 9761 9	770 9779	9698 9788		9716	9725
98 9823 9832 9841 9850 9	859 9868	9877		9806	9814
99 9912 9921 9930 9939 9	948 9957			9895	9904
1.00 1.000	3337	9966	9975	9984	9992
	-	-	-	-	-
		1 1	ı	i	- 1

					3 - 0.	90				
β	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
					0 0045	0.0057	0.0068	0.0079	0.0090	0.0101
0.00	0	0.0012	0.0023	0.0034		168	179	190	201	212
0.01	0.0112	123	134	145	157 267	278	289	300	311	322
2	223	234	245	256	377	388	399	410	421	432
3	333	344	355	366	487	498	509	520	531	542
4	443	454	465	476	597	608	619	630	641	652
0.05	553	564	575	586	331			1	1	
	1		205	695	706	717	728	739	750	761
0.06	663	674		804	815	826	837	848	859	870
7	772	783		913	924	935	946	957	968	979
8	881	892	1	1022	1033	1044		1066	1077	0.1088
9	990	1001		1131	1142	1153		1175	1186	1197
0.10	0.1099	1110	1121	1131	1111		1			1005
1	1	٠	1230	1240	1251	1262	1273			1305
0.11	120			1348		1370	1381			1413
12	131			1	1	1478				1521
13						1586			·	
14				1		1693		1715	1725	1736
15	164	0 1650	1661	10.2	1 .002					1 , , , , ,
l			1768	1779	1789	1800	1811			
0.16							1918			1950
17										
18							2131			
19			- 1				7 2238	3 2249	2259	2270
20	217	74 218	213.	, 2200		1			- 000	0276
	1	30 229	0 230	2312	2322	2333				
0.21			-			2439				
22										
23			- 1							
24	• 1					275	5 276	5 2770	6 2786	2131
2	21	02 211	-			1			289	2902
0.00	: 28	07 281	8 282	8 283						- 1 . 1
0.26					4 295				- 1	
2										
	- 1			1 315						-
3	- 1		- 1 1	5 325	6 326	6 327	6 328	1 329	, 330	0010
3	"			1		-	0 339	1 340	1 341	2 3422
0.3	າ 33	28 333	9 334				-			
3	- 1	32 344	345							
3		36 354	17 355							
		39 36		0 367			- 1			
		42 37	53 376	3 377	3 378	4 379	, 300	- -		
"	-	ı	- 1			7 389	390	7 391	8 392	8 3938
0.3	6 38	45 38								
		48 39				- 1				
	8 40	51 40								
	9 4	154 41				- 1				8 4348
	0 42	256 42	67 427	7 428	7 328	' 30'	.			1
	1			79 431	439	9 44	09 44			
0.4		358 43						21 45		
	2 4	460 44						22 46		
	3 4		71 45	1				23 47		
	14 4		72 46			1			33 48	43 4853
- 1	15 4	763 47	73 47	93 47		-	1	1		
			74 48	R4 48	94 49	04 49	14 49			
0.4	16 4	863 48		84 49			14 50	24 50	34 50	44 5054

0.05	553	564	575	58	6 59		98 5 08 6	09 520 19 63			2 52
0.06	663	674	685	69	5 70			1		1	
7	772	783	794					28 739			3 1
8	881	892	903					37 848			70
9	990	1001	1012	102				46 957			
0.10	0.1099	1110	1121	113							
		ł	1		-	-	,, ,,,	11/3	1186	119	1
0.11	1208	,	1230	1240	0 125	1 126	2 127	3 1284	1295	130	5
12	1316		1338	1348	3 135					141	
13	1424		1446	1456		7 147				152	
15	1532		1554	1564						152	
13	1640	1650	1661	1672	168	2 169	3 170			173	
0.16	1747	1757	1768	1779	178	1 ,00	0 .0.			1	
17	1854		1875	1886						184	
18	1961		1982	1993						195	
19	2068	2078	2089	2100						205	
20	2174	2184	2195	2206					2152	2163	
000	_	l					. 223	2249	2259	2270	,
0.21	2280		2301	2312	2322	233	3 234	4 2355	2365	2376	. 1
22	2386		2407	2418		243			2471	2442	
24	2492 2597	2503	2513	2524			5 255		2576	2587	
25	2702	2608	2618	2629	2639			2671	2681	2692	
-5	2702	2713	2723	2734	2744	275	5 276	5 2776	2786	2797	
0.26	2807	2818	2828	2839	2849	2860					1
27	2912	2923	2933	2944	2954				2891	2902	
28	3016	3027	3037	3048	3058				2996	3006	
29	3120	3131	3141	3152	3162				3100	3110	
30	3224	3235	3245	3256	3266	3276			3204 3308	3214	
0.31	2220					1	550.	3237	3308	3318	1
32	3328 3432	3339	3349	3360	3370			3401	3412	3422	
33	3536	3443 3547	3453	3464	3474	3484	3495		3516	3526	1
34	3639	3650	3 557 3660	3567	3578	3588	1		3619	3629	1
35	3742	3753	3763	3670 3773	3681	3691		1	3722	3732	1
	0.42	3733	3/63	3773	3784	3794	3804	3815	3825	3835	1
0.36	3845	3856	3866	3876	3887	3897	3907	3918	2000		ı
37	3948	3959	3969	3979	3990	4000			3928 4031	3938	1
38	4051	4062	4072	4082	4093	4103	4113	4124	4134	4041	1
39	4154	4165	4175	4185	4195	4205	4216	4226	4236	4144 4246	
40	42 56	4267	4277	4287	4297	4307	4318	4328	4338	4348	
0.41	4358	4369	4379	4389	4000	l		1		2010	
42	4460	4470	4480	4490	4399	4409	4420	4430	4440	4450	
43	4561	4571	4581	4591	4500	4511	4521	4531	4541	4551	ı
44	4662	4672	4682	4692	4601 4702	4612	4622	4632	4642	4652	ı
45	4763	4773	4783	4793	4803	4713 4813	4723	4733	4743	4753	ı
					4003	4013	4823	4833	4843	4853	
0.46	4863	4874	4884	4894	4904	4914	4924	4934	4944	4954	l
47		4974	4984	4994	5004	5014	5024	5034	5044	5054	
49	5064 5165	5075	5085	5095	5105	5115	5125	5135	5145	5155	
0.50		5175 5275	5185	5195	5205	5215	5225	5235	5245	5255	
	3203	JZ / 5	5285	5295	5305	5315	5325	5335	5345	5355	
							1	1	l		

(cont'd.) 3 = 0.90

	B	0.0	000 0	.001	0.002	0.00	3 0.0	04 0	. 005	0.00		1	T	
	0.5	0.53	65 0	5375	0 5205	-	-	-		0.006	0.00	07 0.	008	0.009
		2 54	65	5474	0.5385 5484			0.5				5 0.54	45 0	5455
				5574	5583	559:		- 1 -	514 613	5524	,	4 55	44	5554
		_		5673 5772	5683	,	3 570	. 1 -	712	5623 5722	563 573	. ,		5653
			١ .	3112	5782	5792	580		812	5821	583			5752
	0.5	_		5871	5881	5891	590	, -				- 30		5851
	5	_		5970	5980	5990		- 1 -	911 0 09	5921	5930		40	5950
	59			6068	6078	6088	609	_ 1 _	107	6019 6117	6029	,	39 6	049
	60		_ 7. 1	166 264	6176	6185	619	5 6:	205	6215	6127	. 1	-	146
		1	٠, ١	,204	6273	6283	629	3 6:	302	6312	6322			244
	0.61			361	6370	6380	639	1				05.	,, 6	341
	62			458	6467	6477	648		199	6409	6419		8 8	438
	64			555	6564	6574	6584		93	6506 6603	6516	1 002	5 6	535
	65		_ ! _	652 748	6661 6758	6671	6681	66	90	6700	6613 6710	662		632
		'''	١ "	. 40	6738	6767	6777	7 67	87	6796	6806	671	_ -	729
	0.66	683		844	6854	6863	6873				_	001	٦	825
	67 68	693		940	6950	6959	6969			6892	6908	691		921
- 1	69	702 712	_ 1 ' '	036	7046	7055	7065			6988 7084	6998 7094	700		17
	70	721		227	7142 7237	7151	7161	71		7180	7189	710	_	13
- 1		1	ı		1237	7246	7256	720	55	7275	7284	729	,	808
- 1	0.71 72	7313		22	7332	7341	7351	736		70.70			- '-	.03
- 1	73	7408 7503		17	7427	7436	7446	743		7370 7465	7379	7389	,	98
- [74	7598		07	7512	7531	7541	755		7560	7474 7569	7484	,	93
- 1	75	7693		02	7617 7712	7626 7721	7636	764		7655	7664	7579 7674		
1	0 50		1			1121	7731	774	0	7750	7759	7769		
- 1	0.76 77	7788	,	97	7807	7816	7826	783	5	7845		-	1	
1	78	7977			7902	7911	7920	792		7939	7854 7948	7864	,	
1	79	8071	80		7996 8090	8005 8099	8014	802	3	8033	8042	7958 8052	,	
1	80	8165			8184	8193	8108 8202	811	- 1	8127	8136	8146	806	
1	0.81	8259	000		1		0202	821	1	8221	8230	8240	824	
Į	82	8353	826	_ 1	8278 8372	8287	8296	830	5	8315	8324	8334	l	_
1	83	8446	845	_ 1	8465	8381	8390	8400) :	8409	8418	8428	834 843	
1	84	8539	854	8	8558	8567	8483 8576	8493 8586		8502	8511	8521	853	
1	85	8632	864	1	8651	8660	8669	8679		8595 8688	8604	8614	862	3
10	. 86	8725	873	٠ .					Ί,	000	8697	8707	871	6
1	87	8817	882			8753 8845	8762	8771		3781	8790	8799	886	.
ı	88	8909	891	: 1 -		8937	8854 8946	8863	1 -	873	8882	8891	880 8 9 0	
l	89 90	9001	901	1 9		9029	9038	8955 9047	, -		8974	8983	899	
ı	30	9093	910:	3 9	112	9121	9130	9139			9066	9075	908	4
0	.91	9185	919:	ه ا ه	204				1 "	- 10	9158	9167	9176	3
l	92	9276	9286	- -		213	9222	9231		240	249	9258	9267	.
	93	9367	9377	9			9313	9322		331 9	340	9349	9358	
	94 95	9458	9468		477 8		9495	9413 9504			431	9440	9449	
		9549	9559	9.	568 9		9586	9595			613	9531	9540)
Ο.	96	9640	9649	94	658 g	867	0000		1	•	013	9622	9631	.
	97	9730	9739	1 -	_		9676 9766	9685			703	9712	9721	
	98	9820	9829		ملمع	اخته		9775	97	784 9		9802	9811	1 -

58	6058	6068	6078	6088	6097	6107	6117	6127	6137	6244	
59	6156	6166	6176	6185	6195	6205	6215	6225	6234 6331	6341	
60	6254	6264	6273	6283	6293	6302	6312	6322	6331	0341	
		1	ı				- 400	6419	6428	6438	į
0.61	6351	6361	6370	6380	6390	6399	6409		6525	6535	ĺ
62	6448	6458	6467	6477	6487	6496	6506	6516	6622	6632	į
63	6545	6555	6564	6574	6584	6593	6603	6613	6719	6729	
64	6642	6652	6661	6671	6681	6690	6700	6710			
65	6739	6748	6758	6767	6777	6787	6796	6806	6815	6825	
		İ								2001	
0.66	6835	6844	6854	6863	6873	6883	6892	6908	6911	6921	
67	6931	6940	6950	6959	6969	6979	6988	6998	7007	7017	ı
68	7027	7036	7046	7055	7065	7075	7084	7094	7103	7113	
69	7123	7132	7142	7151	7161	7170	7180	7189	7199	7208	1
70	7218	7227	7237	7246	7256	7265	7275	7284	7294	7303	١
1	,		1			į					1
0.71	7313	7322	7332	7341	7351	7360	7370	7379	7389	7398	1
72	7408	7417	7427	7436	7446	7455	7465	7474	7484	7493	
73	7503	7514	7512	7531	7541	7550	7560	7569	7579	7588	1
74	7598	7607	7617	7626	7636	7645	7655	7664	7674	7683	
75	7693	7702	7712	7721	7731	7740	7750	7759	7769	7778	
1 13	1055	,,,,,									
0.76	7788	7797	7807	7816	7826	7835	7845	7854	7864	7873	
77	7883	7892	7902	7911	7920	7929	7939	7948	7958	7967	
78	7977	7986	7996	8005	8014	8023	8033	8042	8052	8061	١
79	8071	8080	8090	8099	8108	8117	8127	8136	8146	8155	1
80	8165	8174	8184	8193	8202	8211	8221	8230	8240	8249	1
80	0.00	02	0.200		1	l	1		:		1
0.81	8259	8268	8278	8287	8296	8305	8315	8324	8334	8343	
82	8353	8362	8372	8381	8390	8400	8409	8418	8428	8437	1
83	8446	8455	8465	8474	8483	8493	8502	8511	8521	8530	1
84	8539	8548	8558	8567	8576	8586	8595	8604	8614	8623	1
85	8632	8641	8651	8660	8669	8679	8688	8697	8707	8716	
65	1 0002					1	1	İ			ı
0.86	8725	8735	8744	8753	8762	8771	8781	8790	8799	8808	١
87	8817	8827	8836	8845	8854	8863	8873	8882	8891	8900	1
88	8909	8919	8928	8937	8946	8955	8965	8974	8983	8992	1
89	9001	9011	9020	9029	9038	9047	9057	9066	9075	9084	
90	9093	9103	9112	9121	9130	9139	9149	9158	9167	9176	١
90	1 3033	1			1	1	1	1			1
0.91	9185	9195	9204	9213	9222	9231	9240	9249	9258	9267	1
92	9276	9286	9295	9304	9313	9322	9331	9340	9349	9358	1
93	9367	9377	9386	9395	9404	9413	9422	9431	9440	9449	١
94	9458	9468	9477	9486	9495	9504	9513	9522	9531	9540	١
95	9549	9559	9568	9577	9586	9595	9604	9613	9622	9631	١
33	1 3343	1				1					١
0.96	9640	9649	9658	9667	9676	9685	9694	9703	9712	9721	١
97	9730	9739	9748	9757	9766	9775	9784	9793	9802	9811	١
98	9820	9829	9838	9847	9856	9865	9874	9883	9892	9901	١
99	9910	9919	9928	9937	9946	9955	9964	9973	9982	0.9991	١
1.00	1.000	1 3323	1 -	_	-	-	l -	-	-	-	١
1.00	1 2,000	1						_1		<u> </u>	لـ
1											

B	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
1									0.0000	0.0000
0.00	0000	lo. 0011 l	0.0022	0.0033	0.0044	0.0055	0.0066	0.0077	0.0088	0.0033
0.01	0.0110	121	132	143	154	165	175	186	197	208
0.01	219	230	241	252	263	274	284	295	306	317
		339	350	361	372	383	393	404	415	426
3	328	448	459	470	481	492	502	513	524	535
4 5	437 546	557	568	579	590	601	611	622	633	644
1	1			200	699	710	720	731	742	753
0.06	655	666	677	688		818	829	840		861
7	764	775	796	796	807		937	948		969
8	872	883	894	904	915	926		1055	1065	1076
9	980	990	0.100		1022	1033	1044			1183
0.10	0.1087	1097	1108	1119	1129	1140	1151	1162	1172	
١,,,	1194	1204	1215	1226	1236	1247	1258	1269	1279	1290
0.11		1311	1322	1333	1343	1354	1365	1376	1386	1397
12	1301			1440	1450	1461	1472	1483	1493	1504
13	1408	1418	1429		1557	1568	1579	1590	1600	1611
14	1515	1525	1 536	1547			1686	1697	1707	1718
15	1622	1632	1643	1654	1664	1675	1000			
0.10	1729	1739	1750	1761	1771	1782	1792	1803	1814	1825
0.16		1845	1856	1867	1877	1888	1898	1909		1931
17	1835		1962	1973	1983	1994	2004	2015	2026	2036
18	1941	1952			2089	2100		2121	2132	2142
19	2047	2058	2068	2079			2216	2227	2238	2248
20	2153	2163	2174	2185	2195	1		1		1 1
0.21	2259	2270	2280	2291	2301	2312	2322	2333		2354
22	2364	2375	2385	2396	2406	2417	2428	2438		2459
	2469		2490		2511	2522	2532	2543		2564
23			2595		2616	2627	2637	2648	2658	2669
24	2574				2721	2732		2753	2763	2774
25	2679	2690	2700				1	1		2877
0.26	2784	2794	2804	2815	2825		2846	2857		
27	2888		2908	2919				2961		2981
28	2992		3012	3023	3033	3044		3065		3085
	3096		3116	3127	3137	3148	3158	3169		3189
29 30	3200		3220		3241			3273	3283	3293
	3304	3314	3324	3335	3345	3355	3366	3376		3397
0.31			3427					3479		3500
32	3407		3530		3551					3603
33	3510									3706
34	3613		3633							
35	3716	3726	3736	3747	3757	3767		1	1	
0 20	3819	3830	3840	3850	3860	3870	3881			
0.36			3942					3993		
37	3921		4044						4105	
38	4023									
39	4125		4146					7 7 7 2		
40	4227	4238	4248		1					
0.41	4329	4340	4350							
42	4430		4451	4461						
43	4531		4552		2572					
44	4632		4653			4683	4693			
	4733						4794	4804	4814	4824
45	17733	1 2/22	1 31.54	1	1		1	i	1	1
		L	1	1	بمميا		بمعبيا	بمميا	1	4024

7 8 9 0.10	764 872 980 0.1087	775 883 990 1097	894 0.100 1108	904 1012 1119	915 1022 1129	926 1033 1140	1044	1162	1172	1076 1183
0.11	1194	1204	1215 1322	1226	1343	1354	1365	1483	1493	1397 1504 1611
13 14	1408 1515	1418 1525	1536	1547 1654	1557	1568 1675	1579	1697	1707	1718
15		1739	1750	1761	1771	1782 1888	1792 1898	1803	1920	1825 1931 2036
17 18	1835 1941	1845 1952	1856 1962 2068	1973 2079	1983 2089	1994	2110	2121 2227	2132 2238	2142 2248
19 20	2153	2163	2174		2195	2312	2322	2333	2343	2354 2459
0.21		2375	2385 2490	2396 2501	2406 2511	2522	2428 2532 2637	2543 2648	2553 2658	2564 2669 2774
23 24 25	2574	2584	2595	2606 2711	2721	2732	2742	2753	2867	2877
0.26		2898	2908	2919	2929	2940 3044	29 5 0 3054	2961 3065	2971 3075	2981 3085 3189
28 29	2992 3096	3002	3116	3127	3137	3148 3252	3158 3262	3273	3283	3293
	1	3314	3324			3355 3458	3366 3469	3376 3479 3582	3386 3489 3592	3500 3603
32 33	351	0 352 3 362	3 3530 3 3633	3541 3644	3551 3654	3561 3664 3767	3675 3778	3685 3788	3695 3798	3706 3809
35	371		0 3840	3850	3860	3870 3972	3881 3983	3891 3993	3901 4003	3911 4013 4115
37	392 3 402	1 393 3 403	2 3943 4 404	4 405 6 415	4 4064 6 4166	4074	4187	4197	4207 4309	4217 4319
	422	7 423	8 424		0 4370	4380	4390	4400	4410 4511	4420 4521
4	2 44 3 45	30 444 31 45	41 445 42 455 43 465	1 446 2 456 3 466	1 4471 2 4572 3 4673	4582 4683	4592 4693	4602 4703	4612 4713 4814	4622 4723 4824
	5 47	33 47	44 475		4874	488	4 489	-		4924 5024
4	7 49	34 49 34 50	44 49 45 50	54 496 55 506	34 4974 35 5075 35 5175	5 408	5 509 5 519	5 5105 5 5205	5115	5225
	0.10 0.11 12 13 14 15 0.16 17 18 19 20 0.21 22 23 24 25 0.26 27 28 29 30 0.31 32 33 34 35 0.44 44 44	0.10 0.1087 0.11 1194 12 1301 13 1408 14 1515 15 1622 0.16 1729 17 18 1941 19 2047 20 2153 0.21 2259 22 2364 23 2469 247 2574 25 2679 0.26 2784 27 2888 299 30 3200 0.31 330 32 340 331 3361 35 371 0.36 381 37 38 39 412 40 422 0.41 433 44 446 45 47 0.46 48 47 0.46 48 47 0.46 48 47 48 50	0.10 0.1087 1097 1097 1194 1204 1301 1311 1408 1418 1418 1515 1525 1632 1739 1835 1845 1941 1952 2047 2058 2163 2047 2058 2269 2270 2364 2375 2364 2469	0.10 0.1087 1097 1108 0.11 1194 1204 1215 1301 1311 1322 1408 1418 1429 1515 1536 1622 1632 1643 0.16 1729 1739 1750 1835 1845 1856 1962	0.10 0.1087 1097 1108 1119 0.11 1194 1204 1215 1226 1301 1311 1322 1333 14 1515 1525 1536 1547 15 1622 1632 1643 1654 0.16 1729 1739 1750 1761 18 1845 1856 1867 1973 19 2047 2058 2068 2079 20 2153 2163 2174 2185 0.21 2259 2270 2280 2291 23 2469 2480 2490 2501 23 2469 2480 2490 2501 24 2574 2584 2595 2606 27 2888 2898 2908 2908 30 3000 3316 3323 3323 33 3510 3520 3633 3633 3	0.10 0.1087 1097 1108 1119 1123 0.11 1194 1204 1215 1226 1236 1.11 1408 1418 1429 1440 1450 13 1408 1418 1429 1440 1450 13 1515 1525 1536 1547 1557 1622 1632 1643 1654 1664 17 1835 1845 1856 1867 1877 18 1941 1952 1962 1973 1983 19 2047 2058 2068 2079 2089 20 2153 2163 2174 2185 2195 22 2364 2375 2280 2291 2301 22 2364 2480 2490 2501 2511 24 2574 2584 2595 2396 2501 27 2888 2898 2908 3023	1.10 0.1087 1097 1108 1119 1123 1247 1311 1301 1311 1322 1333 1450 1461 1515 1525 1536 1547 1557 1568 1642 1632 1643 1654 1664 1675 1682 1682 1683 1867 1887 1885 1941 1952 1962 1973 1983 1994 1992 2047 2058 2068 2079 2089 2100 2153 2163 2174 2185 2195 2206 2312 2364 2375 2385 2396 2406 2417 2522 2364 2574 2584 2595 2501 2511 2627 2732 2700 2711 2721 2732 2732 2888 2992 3002 3012 3023 3033 3044 227 2888 2398 3002 3210 3220 3220 3220 3220 3220 3220 3231 3348 3483 34427 3383 33716 3726 3736 3747 3757 3757 3767 383 4023 4034 4044 4054 4064 4176 4471 4432 4430 4427 4238 4425 4430 4427 4430 4441 4451 4461 4451 4461 4451 4461 4474 4480 4474 4453 4463 4463 4463 4463 4463 4463 4463 4463 4463 4464 4456 4466 4476 4476 4477 4480 4474 4455 4461 4470 4470 4481 4451 4461 4451 4461 4476 4476 4476 4477 4480 4474 4455 4461 4476 4476 4476 4476 4476 4476 4477 4480 4476 4477 4480 4477 4480 4476 4477 4480 4476 4476 4476 4477 4480 4476 4476 4477 4480 4476 4477 4480 4476 4477 4480 4476 4476 4477 4480 4477 4480 4481 4451 4461 4476 4477 4480 4481 4451 4461 4476 4477 4480 4481 4451 4461 4476 4477 4480 4481 4451 4461 4476 4477 4480 4481 4476 4477 4480 4481 4476 4477 4480 4481 4476 4477 4480 4481 4476 4477 4480 4481 4480 4481	10 1087 1097 1108 1119 1123 1247 1258 1301 1311 1322 1333 1343 1354 1365 1361 1311 1322 1333 1343 1354 1365 1361 1401 1418 1429 1440 1450 1568 1579 1686 1579 1686 1654 1664 1675 1686 1675 1686 1675 1686 1867 1835 1845 1856 1867 1835 1845 1962 1973 1983 1994 2004 18 1941 1952 2068 2079 2089 2100 2110 2102 2259 2270 2280 2216 2236 2246 2247 2280 2246 2247 2280 2246 2255 2266 2267 2267 2280 2246 2276 2280 2270 2280 2291 2301 2312 2322 2469 2480 2490 2501 2511 2522 2532 2469 2480 2490 2501 2511 2522 2532 2469 2480 2490 2701 2721 2732 2742 2732 2742 2733 304 3116 3323 3333 3148 3158 3220 3200 3200 3210 3320 3316 3323 3344 3358 3350 3363 3376 3373 3343 3363 3376 3373 3344 3358 3350 3376	10	10

(cont'd.)

			· · · · · · · · · · · · · · · · · · ·			•		•		
									1	
В	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
				0.000		0.000	0.000	0.00.	0.000	0.003
0.51	0.5005									
	0.5335					0.5385				
52	5434	5444		5464	5474	5484	5494	5504	5514	552
53	5533	5543	5553	5563	5573	5583	5593	5603	5613	562
54	5632	5642	5652	5662	5672	5682	5692	5702	5712	572
55	5731	5741	5751	5761	5771	5781	5791	5801	5811	582
0.56	5830	5840	5850	5860	5870	5880	5890	5900	5910	592
57	5929	5939	5949	5959	5969	5978	5988	5998	6008	601
58	6027	6037	6047	6057	6067	6076	6086	6096	6106	611
59	6125	6135	6145	6155	6165	6174	6184	6194	6204	621
60	6223	6233	6243	6253	6263	6272	6282	6292	6302	631
	can									
0.61	6321	6331	6341	6351	6361	6370	6380	6390	6400	641
62 63	6419	6429	6439	6449	6459	6468	6478	6488	6498	650
64	6517	6527	6537	6546	6556	6566	6575	6585		660
	6614	6624	6634	6643	6653	6663	6672	6682	6692	670
65	6711	6721	6731	6740	6750	6760	6769	6779	6789	679
0.66	6808	6818	6828	6837	6847	6857	6866	6876	6886	689
67	6905	6915	6925	6934	6944	6954	6963	6973	6983	699
68	7002	7012	7022	7031	7041	7051	7060	7070	7080	709
69	7099	7109	7119	7128	7138	7147	7157	7167	7176	718
70	7195	7205	7215	7224	7234	7243	7253	7263	7272	728
.71	7291	7201		7000	2000	7000	70.10			
72	7387	7301 7397	7311	7320	7330	7339	7349	7359	7368	737
		1	7406	7416	7425	7435	7444		7463	747
73 74	7482	7492	7501	7511	7520	7530	7539		7558	756
75	7577 7672	7587 7682	7596 7691	7606 7701	7615 7710	7625 7720	7634 7729	7644 7739	7653 7748	766 775
						20	1123	1133	1140	773
76	7767	7777	7786	7796	7805	7815	7824	7834	7843	785
77	7862	7872	7881	7891	7900	7910	7919	7929	7938	794
78	7957	7967	7976	7986	7995	8005	8014	8024	8033	804
79	8052	8062	8071	8081	8090	8100	8109	8119	8128	813
80	8147	8157	8166	8176	8185	8195	8204	8214	8223	823
.81	8242	8252	8261	8271	8280	8289	8299	8308	8318	832
82	8336	8346	8355	8365	8374	8383	8393	8402	8412	842
83	8430	8440	8449	8458	8468	8477	8486	8496	8505	851
84	8523	8533	8542	8551	8561	8570	8579	8589	8598	860
85	8616	8626	8635	8644	8654	8663	8672	8682	8691	870
	8709	0710	0700	0707	07.45	0750	0505			
.86		8719 8812	8728	8737	8747	8756	8765	8775	8784	879
87	8802		8821	8830	8840	8849	8858	8868	8877	888
88	8895 8988	8905	8914	8923	8933	8942	8951	8961	8970	897
89 90	9081	8998 9091	9007 9100	9016 9109	9026 9119	9035 9128	9044 9137	9054 9147	9063 9156	907
30	5001	0001	1 2200	5105	3113	3120	323.	3141	3136	916
.91	9174	9184	9193	9202	9212	9221	9230	9240	9249	925
92	9267	9277	9296	9295	9304	9313	9323	9332	9341	935
93	9359	9369	9378	9387	9396	9405	9415	9424	9433	944
94	9451	9461	9470	9479	9488	9497	9507	9516	9525	953
95	9543	9553	9562	9571	9580	9589	9599	9608	9617	962
.96	9635	9645	9654	9663	9672	9681	9691	9700	9709	971
97	9727	9737	9746	9755	9764	9773	9782	9791	9800	980
98	9818	9828	9837	9846	9855		9873	9882	GROT	26U 000

				28281	29091	2016	2300	6096	0000	0020
58	6027	6037	6047	6057	6067	6076	6086		6106	6116 6214
59	6125	6135	6145	6155	6165	6174	6154	6194	6204	6312
60	6223	6233	6243	6253	6263	6272	6282	6292	6302	0312
00	0225	0200		- 1	i	1			6400	6410
0.61	6321	6331	6341	6351	6361	6370	6380	6390		6508
62	6419	6429	6439	6449	6459	6468	6478	6488	6498 6595	6605
63	6517	6527	6537	6546	6556	6566	6575	6585		6702
64	6614	6624	6634	6643	6653	6663	6672	6682	6692 6789	6799
65	6711	6721	6731	6740	6750	6760	6769	6779	6769	0,33
- 00	0.22	-	1	1	ļ	_		ana.	6886	6896
0.66	6808	6818	6828	6837	6847	6857	6866	6876	6983	6993
67	6905	6915	6925	6934	6944	6954	6963	6973	7080	7090
68	7002	7012	7022	7031	7041	7051	7060	7070	7176	7186
69	7099	7109	7119	7128	7138	7147	7157	7167	7272	7282
70	7195	7205	7215	7224	7234	7243	7253	7263	1212	1202
١.٠	1 .235		1	- 1	1			7050	7368	7378
0.71	7291	7301	7311	7320	7330	7339	7349	7359	7463	7473
72	7387	7397	7406	7416	7425	7435	7444	7454	7558	7568
73	7482	7492	7501	7511	7520	7530	7539	7549 7644	7053	7663
74	7577	7587	7596	7606	7615	7625	7634		7748	7758
75	7672	7682	7691	7701	7710	7720	7729	7739		
1	1	1	1	l	1			7834	7843	7853
0.76	7767	7777	7786	7796	7805	7815	7824	7929	7938	7948
77	7862	7872	7881	7891	7900	7910	7919	8024	8033	8043
78	7957	7967	7976	7986	7995	8005	8014	8119	8128	8138
79	8052	8062	8071	8081	8090	8100	8204	8214	8223	8233
80	8147	8157	8166	8176	8185	8195	8204	0217	0220	
	1		1		0.000	8289	8299	8308	8318	8327
0.81	8242	8252	8261	8271	8280	8383	8393	8402	8412	8421
82	8336	8346	8355	8365	8374		8480	8490	8505	8514
83	8430	8440	8449	8458	8468	8477	8579	8589	8598	8607
84	8523	8533	8542	8551	8561	8663	8672	8682	8691	8700
85	8616	8626	8635	8644	8654	8003	00,2	0002		
1	1				8747	8756	8765	8775	8784	8793
0.86	8709	8719	8728	8737	8840	8849	8858	8868	8877	8886
87	8802	8812	8821	8830	8933	8942	8951	8961	8970	8979
88	8895	8905	8914	8923	9026	9035	9044	9054	9063	9072
89	8988	8998	9007	9016	9119	9128	9137	9147	9156	9165
90	9081	9091	9100	9109	9119	3120	1 3.3.	""		
	1	1		0000	9212	9221	9230	9240	9249	9258
0.91	9174	9184	9193	9202 9295	9304	9313		9332	9341	9350
92	9267	9277	9296	9293	9396	9405		9424	9433	9442
93	9359	9369	9378	9387	9488			9516	9525	9534
94	9451	9461	9470	9571	9580			9608	9617	9625
95	9543	9553	9562	95/1	3380	1 3363			1	1
			0654	9663	9672	9681	9691	9700	9709	9718
0.96	9635	9645	9654	9755			1	9791	9800	9809
97	9727	9737	9746	9846				9882		9900
98	9818	9828	9837	9937		1		9973	9982	9991
99	9909			9931	3540	-	-	1 -	-	-
1.00	1.000	-	-	-	1	1	1		1	<u> </u>
					1					

(cor	ıt'	d.)
ð-	0.	92	!

				0.002	0.004	0.005	0.006	0.007	0.008	0.009
β	0.000	0.001	0.002	0.003	0.004	0.003	0.000			
			l			0.0055	0.0065	0.0076	0.0087	0.0098
0.00	0	0.0011		0.0033		0.0055		185	196	0.0207
0.01	0.0109	120	131	142	153	164	175			316
2	218	229	240	251	262	273	283	294	305	
3	326	337	348	359	370	381	391	402	413	424
		445	456	467	478	489	499	510	521	532
4	434			575	586	597	607	618	629	640
5	542	553	564	373	380	551		1		1
1	1		1			205	715	726	737	748
0.06	650	661	672	683	694	705		834	844	855
7	758	769	780	791	801	812	823		950	961
8	865	876	886	897	908	919	929	940		
9	971	982	992	0.1003	1014	1025	1035	1046	1056	1067
0.10	0.1077	1088	1098	1109	1120	1131	1141	1152	1162	1173
0.10	10.10.	1000	1		1		1	1	Ī	1
١,	1,,,,,	1194	1205	1216	1226	1237	1248	1258	1269	1280
0.11	1183			1322	1333	1343	1354	1364	1375	1386
12	1290	1301	1311				1460	1470	1481	1492
13	1396	1407	1417	1428	1439	1449			1587	1598
14	1502	1513	1523	1534	1545	1555	1566	1576		
15	1608	1619	1629	1640	1651	1661	1672	1682	1693	1703
-	1	1		1	1		I	1		1
0.16	1714	1725	1735	1746	1757	1767	1778	1788	1799	1810
	1820		1841	1852	1863	1873	1884	1894	1905	1916
17				1958		1979	1989	2000	2010	2021
18	1926	1937	1947				2094	2105	2115	2126
19	2031	2042						2210	1	
20	2136	2147	2157	2168	2178	2189	2199	2210		1 2202
1	i		1	l	1			1 0015	2205	2336
0.21	2241	2252	2262	2273			2304	2315		
22	2346				2388	2399	2409	2420		
23	2451					2504	2514	2525		
							2619	2629	2639	2650
24	2556							2733	2743	2754
25	2660	2670	2681	2051	1 2,02		1 2.22			1 1
	1	l		0705	2806	2816	2827	2837	2847	2858
0.26	2764							2941		
27	2868	2878								
28	2972	2982	2993	3003						
29	3076	3086	3096	3107	3117				1	1
30	3179			3210	3220	3230	3241	3251	3261	3271
30	1		1		1	1	1	1	1	
0.31	3282	3292	3302	3313	3323	3333	3344			
	3385						3447	3457		
32										3580
33	3488							1	3672	3682
34	3590									
35	3692	2 3702	3712	3723	3 3733	3743	, 1 3,33	1 2.00	1	-
1	I		1		.		.	3865	3876	3886
0.36	3794	3804	4 3814							
37	3896	3900	5 3916	5 3927	7 3937					
38				4029	4039	4049				
39						415	1 4161	417	418	
									3 428	3 4293
40	4202	361	7000	-	-		_			1
		.		3 433	3 434	3 435	3 4364	4374	4 438	4 4394
0.41										
42										
43	450	5 451							-	
44		6 461								
45			7 472	7 473	7 474	7 475	476	7 477	7 478	7 4797
"		.		1	1	1	1		_	
0.46	480	7 481	7 482	7 483	7 484	7 485	7 486	487	8 198	9 4898
1 7 1 3 9										

7	758	769	780	791	801	812	823	834	844	855
8	865	876	886	897	908	919	929	940	950	961
9	971	982		0.1003	1014	1025	1035	1046	1056	1067
0.10	0.1077	1088	1098	1109	1120	1131	1141	1152	1162	1173
0.10	0.10//	1000	1000					ľ	- 1	- 1
ا ۱۰ ا		1104	1205	1216	1226	1237	1248	1258	1269	1280
0.11	1183	1194			1333	1343	1354	1364	1375	1386
12	1290	1301	1311	1322			1460	1470	1481	1492
13	1396	1407	1417	1428	1439	1449		1576	1587	1598
14	1502	1513	1523	1534	1545	1555	1566		1693	1703
15	1608	1619	1629	1640	1651	1661	1672	1682	1093	1,03
()	1	i	i	1	1	1	_ [,,,,
0.16	1714	1725	1735	1746	1757	1767	1778	1788	1799	1810
17	1820	1831	1841	1852	1863	1873	1884	1894	1905	1916
18	1926	1937	1947	1958	1968	1979	1989	2000	2010	2021
19	2031	2042	2052	2063	2073	2084	2094	2105	2115	2126
	2136	2147	2157	2168	2178	2189	2199	2210	2220	2231
20	2130	2141	2137	2.00	22.5					
	1 000	0050	2262	2273	2283	2294	2304	2315	2325	2336
0.21	2241	2252	2262	2378	2388	2399	2409	2420	2430	2441
22	2346	2357	2367			2504	2514	2525	2535	2546
23	2451	2462	2472	2483	2493		2619	2629	2639	2650
24	2556	2566	257/	2587	2598	2608			2743	2754
25	2660	26/0	26 81	2691	2702	2712	2723	2733	2143	2154
1		1							0045	0050
0.26	2764	2774	2785	2795	2806	2816	2827	2837	2847	2858
27	2868	2878	2889	2899	2910	2920	2931	2941	2951	2962
28	2972	2982	2993	3003	3014	3024	3035	3045	3055	3066
29	3076	3086	3096	3107	3117	312/	3138	3149	3159	3169
30	3179	3189	3199	3210	3220	3230	3241	3251	3261	3271
30	31/9	3105	3133	32.10					1	
	1 0000	3292	3302	3313	3323	3333	3344	3354	3364	3374
0.31	3282			3416	3426	3436	3447	3457	3467	3477
32	3385	3395	3405			3539	3549	3559	3570	3580
33	3488	3498	3508	3519	3529	3641	3651	3661	3672	3682
34	3590	3600	3610	3621	3631			3763	3774	3784
35	3692	3702	3712	3723	3733	3743	3753	3/63	3//4	3,04
l	1	1		I	1			2005	2000	3886
0.36	3794	3804	3814	3825	3835	3845	3855	3865	3876	
37	3896	3906	3916	3927	3937	3947	3957	3967	3978	3988
38	3998	4008	4018	4029	4039	4049	4059	4069	4080	4090
39	4100	4110	4120	4131	4141	4151	4161	4171	4182	4192
40	4202	4212	4222	4232	4242	4252	4263	4273	4283	4293
1 30	3202	72.2	1	1	1		1	1		1
	4202	4313	4323	4333	4343	4353	4364	4374	4384	4394
0.41	4303		4424	4434	4444	4454	4465	4475	4485	4495
42	4404	4414				4555	4566	4576	4586	4596
43	4505	4515	4525	4535	4545	4656	4667	4677	4687	4697
44	4606	4616	4626	4636	4646			4777	4787	4797
45	4707	4717	4727	4737	4747	4751	4767	1 3	1 7/0/	1
	1	l	I	1				4000	4000	4898
0.46	4807	4817	4827	4837	4847	4857	4868	4878	4888	
47	4908	4918	4928	4938	4948	4958	4968	4978	4988	4998
48	5008	5018	5028	5038	5048	5058	5069	5079	5089	5099
	5109	5119	5129	5139	5149	5159	5169	5179	5189	5199
49		5219	5229	5239	5249	5259	5269	5279	5289	5299
0.50	5209	3219	1 3229	1 3235	1 52.55	1	1	1	1	1
1	1	i	1	L		1	1	1		

(cont'd.) d= 0.92

					1	l				
						į.				
3 \	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
		[l			f			1	
			1							
0.51	0.5309	0.5318	0.5328	0.5338	0.5348	0.5358	0.5368	0.5378	0.5388	0.5398
52	5408	5418	5428	5438	5448	5458	5468	5478	5488	5498
53	5508	5517	5527	5537	5547	5557	5567	5577	5587	5597
			5626	5636	5646	5656	5666	5676	5686	5696
54	5607	5616						5775	5785	5795
55	5706	5715	5725	5735	5745	5755	5765	3773	3763	3130
				5004	5044	5054	5864	5874	5884	5894
.56	5805	5814	5824	5834	5844	5854				5993
57	5904	5913	5923	5933	5943	5953	5963	5973	5983	
58	6003	6012	6022	6032	6042	6052	6061	6071	6081	6091
59	6101	6110	6120	6130	6140	6150	6159	6169	6179	6189
60	6199	6208	6218	6228	6238	6248	6257	6267	6277	628
		1		1						
0.61	6297	6306	6316	6326	6336	6346	6355	6365	6375	6385
62	6395	6404	6414	6424	6434	6444	6453	6463	6473	6483
63	6493	6502	6512	6522	6532	6542	6551	6561	6571	658
64	6591	6600	6610	6620	6629	6639	6649	6658	6668	6678
			6707	6717	6726	6736	6746	6755	6765	6775
65	6688	6697	6/0/	6/1/	0/20	0130	0/40	0,33	5,05	1
	6705	6:104	6804	6814	6823	6833	6843	6852	6862	6872
.66	6785	6794							6959	6969
67	6882	6891	6901	6911	6920	6930	6940	6949		
68	6979	6988	6998	7008	7017	7027	7037	7046	7056	7066
69	7076	1085	7095	7105	7114	7124	7134	7143	7153	7163
70	7173	7181	7192	7201	7211	7220	/230	7240	7249	7259
	ł				i	l	!		1	
.71	7269	7278	7288	7297	7307	/317	7326	7336	7345	735
72	7365	7374	7384	7393	7403	7413	7422	7432	7441	745
73	7461	7470	7480	7489	7499	7509	7518	7528	7537	7547
74	1557	7566	7576	/585	7595	7605	7614	7624	7633	7643
75	7653	7662	7672	7681	7691	7701	7/10	7720	7729	7739
15	1033	7002	10.2	.001			20	1	1	
0.76	7749	7758	7768	1777	7787	7797	7806	7816	7825	783
		7854	7864	7873	7883	7893	7902	7912	7921	793
77	7845							8007	8017	
78	7941	7950	7960	7969	7979	7988	7998			8020
79	8036	8045	8055	8064	8074	8083	8093	8102	8112	812
80	8131	8140	8150	8159	8169	8178	8188	8197	8207	8216
0.81	8226	8235	8245	8254	8264	8273	8283	8292	8302	831
82	8321	8330	8340	8349	8358	8367	8377	8386	8396	840
83	8415	8424	8434	8443	8452	8461	8471	8480	8490	8499
84	8509	8518	8528	8537	8546	8555	8565	8574	8584	859
85	8603	8612	8622	8631	8640	8649	8659	8668	8678	868
85	8003	3012	0022	0001	1	""		5556	1	550
04	8697	8706	8716	8725	8734	8743	8753	8762	8772	878
0.86		8800	8810	8819	8828	8837	8847	8856	8866	887
87	8791							8950	8960	
88	8885	8894	8904	8913	8922	8931	8941			8969
89	8979	8988	8998	9007	9016	9025	9035	9044	9054	906
90	9073	9082	9092	9101	9110	9119	9129	9138	9148	915
	1	1		1					1 00 00	1
0.91	9167	9176	9186	9195	9204	9213	9223	9232	9241	925
92	9260	9269	9278	9288	9297	9306	9316	9325	9334	934
93	9353	9362	9371	9381	9390	9399	9409	9418	9427	943
	9446	9455	9464	9474	9483	9492	9502	9511	9520	952
94	9539	9548	9557	9567	9576	9585	9595	9604	9613	962
95	9339	3540	555.	1	1	1	1	1	1	1
. 06	9632	9641	9650	9659	9668	9678	9687	9696	9705	971
97.96	9724	9733	9742	9751	9760	9770	9779	9788	9797	980
			2/44		, 5,00	, ,,,,	,	1 2.00	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

									-	
57	5904	5913	5923	5933	5943	5953	5963	5973	5983	5995
58	6003	6012	6022	6032	6042	6052	6061	6071	6081	6091
59	6101	6110	6120	6130	6140	6150	6159	6169	6179	6189
60	6199	6208	6218	6228	6238	6248	6251	6267	6277	6287
l I	j									
0.61	6297	6306	6316	6326	6336	6346	6355	6365	6375	6385
62	6395	6404	6414	6424	6434	6444	6453	6463	6473	6483
63	6493	6502	6512	6522	6532	6542	6551	6561	6571	6581
64	6591	6600	6610	6620	6629	6639	6649	6658	6668	6678
65	6688	6697	6707	6717	6726	6736	6746	6755	6765	6775
00	0000	0051	6,0,	6/1/	0720	0730	0740	0.55	0.00	0
0.66	6785	6794	6004	C014	6823	6833	6843	6852	6862	6872
			6804	6814					6959	6969
67	6882	6891	6901	6911	6920	6930	6940	6949		7066
68	6979	6988	6998	7008	7017	7027	7037	7046	7056	
69	7076	1085	7095	7105	7114	7124	7134	7143	7153	7163
70	7173	7181	7192	7201	7211	7220	/230	7240	7249	7259
								į l		l
0.71	7269	7278	7288	7297	/307	7317	7326	7336	7345	7355
72	/365	7374	7384	7393	7403	7413	7422	7432	7441	7451
73	7461	7470	7480	7489	7499	7509	7518	7528	7537	7547
74	1557	7566	7576	1585	7595	7605	7614	7624	7633	7643
75	7653	7662	7672	7681	7691	7701	7/10	1720	7729	7739
'	.003	7002	,0.2	.001	.051					
0.76	7749	7758	7768	7717	7787	7797	7806	7816	7825	7835
77	7845	7854	7864	7873	7883	7893	7902	7912	7921	7931
					7979		7902	8007	8017	8026
78	7941	7950	7960	7969		7988			8112	8121
79	8036	8045	8055	8064	8074	8083	8093	8102		
80	8131	8140	8150	8159	8169	8178	8188	8197	8207	8216
										001
0.81	8226	8235	8245	8254	8264	82/3	8283	8292	8302	8311
82	8321	8330	8340	8349	8358	8367	8377	8386	8396	8405
83	8415	8424	8434	8443	8452	8461	8471	8480	8490	8499
84	8509	8518	8528	8537	8546	8555	8565	8574	8584	8598
85	8603	8612	8622	8631	8640	8649	8659	8668	8678	8687
							1	1	1	1
0.86	8697	8706	8716	8725	8734	8743	8753	8762	8772	8781
87	8791	8800	8810	8819	8828	8837	8847	8856	8866	8875
88	8885	8894	8904	8913	8922	8931	8941	8950	8960	8969
89	8979	8988	8998	9007	9016	9025	9035	9044	9054	9063
	9073	9082	9092	9101	9110	9119	9129	9138	9148	9157
90	90/3	9082	9092	9101	3110	1 2113	5125	3138	1 3130	1 3131
ا م	0167	03.26	0100	0105	9204	9213	9223	9232	9241	9250
0.91	9167	9176	9186	9195						
92	9260	9269	9278	9288	9297	9306	9316	9325	9334	9343
93	9353	9362	9371	9381	9390	9399	9409	9418	9427	9436
94	9446	9455	9464	9474	9483	9492	9502	9511	9520	9529
95	9539	9548	9557	9567	9576	9585	9595	9604	9613	9622
]		l	1		1	1
0.96	9632	9641	9650	9659	9668	9678	9687	9696	9705	9714
97	9724	9733	9742	9751	9760	9770	9779	9788	9797	9806
98	9816	9825	9834	9843	9852	9862	9871	9880	9889	9898
99	9908	9917	9926	9935	9944	9954	9963	9972	9981	9991
	1.000	1 3211	3320	3333	3344	1	5555		1	1
1.00	1.000	-	_	-	_	ı -	_	-	1	1 -
1		j j				l	l	1	1	1
1	ı	1 1		1	1	1	1	_1	1	

				0.003	0.004	0.005	0.006	0.007	0.008	0.009
β \	0.000	0.001	0.002	0.003	0.004	0.000				
								0.0075	0.0086	0.0097
	_	0011	0.0022	0.0033	0.0043	0.0054		0.0073	0.0000	204
0.00	0		129	140	150	161	172	182	193	
0.01	0.0107	118		247	257	268	279	290	300	311
2	214	225	236		365	376	387	397	408	419
3	322	333	344	355		483	494	504	515	526
4	429	440	451	462	472		601	611	622	633
5	536		558	569	579	590	801	011		
3	1 550			1	1	1	202	717	728	739
0.00	643	654	665	675	686	696	707		834	844
0.06			771	781	792	802	813	823	940	950
7	749	1	877	887	898	908	919	929		1056
8	855			993	1004	1014	1025	1035	1046	
9	961		983		1110		1131	1141	1152	1162
0.10	0.1067	1078	1089	1099	1110	1		1		1
1		1	1	1	1 ,0,0	1226	1236	1247	1257	1268
0.11	1173	1184			1215			1352	1363	1373
12	1278								1469	1479
	1384			1416	1427		1		1574	1584
13					1532	1542				1689
14	1490		1 777	1		1647	1658	1668	1679	1005
15	1595	5 1605	1010	1020		1	i	1		104
	1	1		1771	1742	1752	1763	1773		
0.16	170				'		1	1878	1889	1899
17		5 1815							1994	2004
18		0 1920) 1931							2108
19		·	5 2035	2046			1 ====	1 ====		2212
				2150	2160	2171	2181	2132		
20				1	i	1			2306	2316
	1 000	3 223	3 2243	2254	2264			·	1	1 = = = 1
0.21	222			1 ===:		8 2379	2389			
22			• 1 ===.				3 2493			
23	243			.			259	7 2608		
24	253	5 254						1 2712	2722	2732
25		9 265	0 266	2670	200	200	.		i	1
	1	1	1		-	4 279	4 280	4 2815	2825	2835
0.26	3 274	2 275	3 276			- 1 - : :	- 1			3 2938
27	7 7 7		6 286			• • • • • • • • • • • • • • • • • • • •				3041
				9 297			- 1			
21					2 309			-		-
29			- 1 -::-		5 319	6 320	6 321	6 3227	1 323	, 221.
30	0 315	316	- J.	-	-	1	١	_	0 004	0 3350
1	.	326	8 327	8 328	8 329	9 330				· []
0.3	1 325			_		1 341	1 342			_ 1
3	2 336		-	- 1	- 1		3 352			
3			-	-	- 1 111					
3	4 350						- 1		8 374	8 3758
3	5 360	86 367	7 368	369	310	,, 0		1	1	
	1	1			9 380	9 381	9 383	0 384	0 385	
0.3	6 370	68 377				- 1			2 395	2 3962
	7 38					- 1	_	-		
		• • • • • • • •		3 400					-	
		-								
		• • •				17 422	27 423	37 424	11 320	. 350.
1	0 41	10 41			ı	I			R 435	8 4368
١		77 42	R8 42	8 430	08 43					
0.4						19 44				
				1						- 1
4		79 44							50 466	
1 4		79 45						40 475	50 476	50 4770
	15 46	80 46	90 47	00 3/				1	ı	
1	1	1		01 48	11 48	21 48	31 48	41 48	51 480	61 4871
1		47	01 48	01 48	11 50	70				

	961	972	983	993	1004	1014	1025	2005		3 0 0 0
0.10	0.1067	1078	1089	1099	1110	1120	1131	1035	1046	1056 1162
ı				1	1110	1120	1131	1131	1132	1102
0.11	1173	1184	1194	1205	1215	1226	1236	1247	1257	1268
12	1278	1289	1300	1310	1321	1331	1342	1352	1363	1373
13	1384	1395	1406	1416	1427	1437	1448	1458	1469	1479
14	1490	1500	1511	1521	1532	1542	1553	1563	1574	1584
15	1595	1605	1616	1626	1637	1647	1658	1668	1679	1689
1					1 200.	101.	1000	1000	10/9	1003
0.16	1700	1710	1721	1731	1742	1752	1763	1773	1784	1794
17	1805	1815	1826	1836	1847	1857	1868	1878	1889	1899
18	1910	1920	1931	1941	1952	1962	1973	1983	1994	2004
19	2015	2025	2035	2046	2056	2067	2077	2088	2098	2108
20	2119	2129	2139	2150	2160	2171	2181	2192		2212
							2101	2192	2202	2212
0.21	2223	2233	2243	2254	2264	2275	2285	2296	2306	2316
22	2327	2337	2347	2358	2368	2379	2389	2400	2306	2316 2420
23	2431	2441	2451	2462	2472	2483	2493	2504	2514	2524
24	2535	2545	2555	2566	2576	2587	2597	2608		2524 2628
25	2639	2650	2660	2670	2681	2691	2701	2712	2618	
1				20.0	2001	2031	2701	2/12	2722	2732
0.26	2742	2753	2763	2773	2784	2794	2804	2815	2025	0005
27	2845	2856	2866	2876	2887	2897	2907		2825	2835
28	2948	2959	2969	2979	2990	3000	3010	2918	2928	2938
29	3051	3062	3072	3082	3093	3103	3113	3021	3031	3041
30	3154	3165	3175	3185	3196	3206	3216	3124	3134	3144
		0100	51.5	3163	3156	3206	3216	3227	3237	3247
0.31	3257	3268	3278	3288	3299	3309	3319	2220	22.40	
32	3360	3371	3381	3391	3401	3411	3422	3330	3340	3350
33	3462	3473	3483	3493	3503	3513	3524	3432	3442	3452
34	3564	3575	3585	3595	3605	3615		3534	3544	3554
35	3666	3677	3687	3697	3707	3717	3626	3636	3646	3656
		00	3007	3057	3,0,	3/1/	3728	3738	3748	3758
0.36	3768	3779	3789	3799	3809	3819	2020	2040		
37	3870	3881	3891	3901	3911	3921	3830	3840	3850	3860
38	3972	3983	3993	4003	4013	4023	3932 4034	3942	3952	3962
39	4074	4085	4095	4105	4115	4125		4044	4054	4064
40	4176	4187	4197	4207	4217	4227	4136 4237	4146	4156	4166
1 1				120.	7211	7221	4237	4247	4257	4267
0.41	4277	4288	4298	4308	4318	4328	4338	4240	1050	
42	4378	4389	4399	4409	4419	4429		4348	4358	4368
43	4479	4489	4499	4509	4519	4529	4439 4539	4449 4549	4459	4469
44	4579	4590	4600	4610	4620	4630	4640		4559	4569
45	4680	4690	4700	4710	4720	4730	4740	4650	4660	4670
1 - 1				11.10	1,20	4/30	3/30	4750	4760	4770
0.46	4781	4791	4801	4811	4821	4831	4841	405	4001	
47	4881	4891	4901	4911	4921	4931	4941	4851	4861	4871
48	4981	4991	5001	5011	5021	5031		4951	4961	4971
49	5082	5092	5102	5112	5122	5132	5041	5051	5061	5072
50	5182	5192	5202	5212	5222	5232	5142	5152	5162	5172
				7-1-	3022	3232	5242	5252	5262	5272
		1				1				

(cont'd.) \(\partial = 0.93\)

					l						
в	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	
0.51	0.5281	0.5291	0.5301	0.5311	0.5321	0.5331	0.5341	0.5351	0.5361	0.5371	
52	5381	5391	5401	5411	5421	5431	5441	5451	5461	5471	
53	5481	5490	5500	5510	5520	5530	5540	5550	5560	5570	
54	5580	5589	5599	56 09	5619	5629	5639	5649	5659	5669	
55	5679	5688	5698	5708	5718	5728	5738	5748	5758	5768	
0.56	5778	5787	5797	5807	5817	5827	5837	5847	5857	5867	
57	5877	5886	5896	5906	5916	5926	5936	5946	5956	5966	
58	5976	5985	5995	6005	6015	6025	6035	6045	6055	6065	
59	6075	6084	6094	6104	6114	6124	6133	6143	6153	6163	
60	6173	6182	6192	6202	6212	6 222	6231	6241	6251	6261	
0.61	6271	6280	6290	6300	6310	6320	6329	6339	6349	6359	
62	6369	6378	6388	6398	6408	6418	6427	6437	6447	6457	
63	6467	6476	6486	6496	6506	6516	6525	6535	6445	6555	
64	6565	6574	6584	6594	6604	6614	6623	6633	6643	6653	
65	6663	6672	6682	6692	6702	6712	6721	6731	6741	6751	
0.66	6761	6770	6780	6790	6800	6810	6819	6829	6839	6849	
67	6859	6868	6878	6888	6897	6907	6917	6926	6936	6946	
68	6956	6965	6975	6985	6994	7004	7014	7023	7033	7043	
69	7053	7062	7072	7082	7091	7101	7111	7120	7130	7140	
70	7150	7159	7169	7179	7188	7198	7208	7217	7227	7237	
0.71	7247	7256	7266	7276	7285	7295	7305	7314	7324	7334	
72	7344	7353	7363	7373	7382	7392	7402	7411	7421	7431	
73	7441	7450	7460	7469	7479	7489	7498	7508	7517	7527	
74	7537	7546	7556	7565	7575	7585	7594	7604	7613	7623	
75	7633	7642	7652	7661	7671	7681	7690	7700	7709	7719	
0.76	7729	7738	7748	7757	7767	7777	7786	7796	7805	7815	
77	7825	7834	7844	7853	7863	7873	7882	7892	7901	7911	
78	7921	7930	7940	7949	7959	7969	7978	7988	7997	8007	
79	8017	8026	8036	8045	8055	8065	8074	8084	8093	8103	
80	8113	8122	8132	8141	8151	8161	8170	8180	8189	8199	
0.81	8209	8218	8228	8237	8247	8257	8266	8276	8285	8295	
82	8305	8314	8324	8333	8343	8352	8362	8371	8381	8390	
83	8400	8409	8419	8428	8438	8447	8457	8466	8476	8485	
84	8495	8504	8514	8523	8533	8542	8552	8561	8571	8580	1
85	8590	8599	8609	8618	8628	8637	8647	8656	8666	8675	
0.86	8685	8694	8704	8713	8723	8732	8742	8751	8761	8770	
87	8780	8789	8799	8808	8818	8827	8837	8846	8856	8865	ĺ
88	8875	8884	8894	8903	8913	8922	8932	8941	8951	8960	ĺ
89	8970	8979	8989	8998	9007	9016	9026	9035	9045	9054	ĺ
90	9064	9073	9083	9092	9101	9110	9120	9129	9139	9148	ĺ
0.91	9158	9167	9177	9186	9195	9204	9214	9223	9233	9242	
92	9252	9261	9271	9280	9289	9298	9308	9317	9327	9336	ı
93	9346	9355	9365	9374	9383	9392	9402	9411	9421	9430	ı
94	9440	9449	9459	9468	9477	9486	9496	9505	9515	9524	ı
95	9534	9543	9553	9562	9571	9580	9590	9599	9609	9618	
0.96	9628	9637	9647	9656	9665	9674	9684	9693	9702	9711	
97	9721	9730	9740	9749	9758	9767	9777	9786	9795	9804	ı
					1.0061		- 0860				-

58	5976	5985	5995	6005	6015	6025	6035	6045	5956 6055	5966 6065
59	6075	6084	6094	6104	6114	6124	6133	6143	6153	6163
60	6173	6182	6192	6202	6212	6222	6231	6241	6251	6261
0.61	6271	6280	6290	6300	6310	6320	6329	6339	6349	6359
62	6369	6378	6388	6398	6408	6418	6427	6437	6447	6457
63	6467	6476	6486	6496	6506	6516	6525	6535	6445	6555
64	6565	6574	6584	6594	6604	6614				
65	6663	6672	6682	6692	6702	6712	6623 6721	6633	6643	6653
0.66								0.01	"	0.00
	6761	6770	6780	6790	6800	6810	6819	6829	6839	6849
67	6859	6868	6878	6888	6897	6907	6917	6926	6936	6946
68	6956	6965	6975	6985	6994	7004	7014	7023	7033	7043
69	7053	7062	7072	7082	7091	7101	7111	7120	7130	7140
70	7150	7159	7169	7179	7188	7198	7208	7217	7227	7237
0.71	7247	7256	7266	7276	7285	7295	7305	7314	7324	7334
72	7344	7353	7363	7373	7382	7392	7402	7411	7421	7431
73	7441	7450	7460	7469	7479	7489	7498	7508		
74	7537	7546	7556	7565	7575	7585			7517	7527
75	7633	7642	7652	7661	7671		7594	7604	7613	7623
'	į	1042	1032	7001	7671	7681	769 U	7700	7709	7719
0.76	7729	7738	7748	7757	7767	7777	7786	7796	7805	7815
77	7825	7834	7844	7853	7863	7873	7882	7892	7901	7911
78	7921	7930	7940	7949	7959	7969	7978	7988		
79	8017	8026	8036	8045	8055	8065	8074		7997	8007
80	8113	8122	8132	8141	8151	8161	8170	8084 8180	8093 8189	8103 8199
0.00	0000							0100	0103	0133
0.81	8209	8218	8228	8237	8247	8257	8266	8276	8285	8295
82	8305	8314	8324	8333	8343	8352	8362	8371	8381	8390
83	8400	8409	8419	8428	8438	8447	8457	8466	8476	8485
84	8495	8504	8514	8523	8533	8542	8552	8561	8571	8580
85	8590	8599	8609	8618	8628	8637	8647	8656	8666	8675
0.86	8685	8694	8704	8713	8723	8732	8742	8751	8761	9770
87	8780	8789	8799	8808	8818	8827	8837			8770
88	8875	8884	8894	8903	8913	8922		8846	8856	8865
89	8970	8979	8989	8998			8932	8941	8951	8960
90	9064	9073	9083	9092	9007 9101	9016 9110	9026	9035	9045	9054
				3432	3101	3110	9120	9129	9139	9148
0.91	9158	9167	9177	9186	9195	9204	9214	9223	9233	9242
92	9252	9261	9271	9280	9289	9298	9308	9317	9327	9336
93	9346	9355	9365	9374	9383	9392	9402	9411	9421	9430
94	9440	9449	9459	9468	9477	9486	9496	9505	9515	9524
95	9534	9543	9553	9562	9571	9580	9590	9599	9609	9618
0.96	9628	9637	9647	9656	9665	9674	9684	9693	9702	9711
97	9721	9730	9740	9749	9758	9767	9777	9786	9795	9804
98	9814	9823	9833	9842	9851	9860	9869	9878	9888	
99	9907	9916	9926	9935	9944	9954	9963	9972		9897
1.00	1.000			-	3344	5554	2503	3312	9982	9991
					_	_	- 1	-	-	-

(cont'd.) 2 = 0.94

												1		1
	0.000	0.001	0.002	0.003	o.	004	0.00	5 0	.006	0.00	7 0	800.0	0.00	9
' \					+				0065	- 0-007	5 0	.0086	0.009	96
		0.0011	0.0022	0.003	2 0.0	043	0.005	1		18	il	192	20)2
0.00		0.0011	129	139	9	150	10	V 1				298		
0.01														
										49	9			
			447							60	4	615	6	23
			55 2	56	2	3/3	50	, ,		1		~0 \	1 7	31
5	1	1		1 .		70	61	19	700					36
0.06	636	647		'					805				١ ^	42
									911				' 1	47
		858				995	0.10	05	1016	1			1	51
		963	^ l			1099	11	09	1120	1 1 1	30	1141		
	0.1057	106	1 107	, 100	,0			1		12	25	1246	5 12	256
	1	1	110	3 119	93	1204								361
0.11				_						1			5 1	466
12				_			- 1						9 1	570
13		_ 1	- ,	~ 1			•					166	3 1	674
14			_		11	162	1 16	32	1042	. ``	-		_ _	
15	128	0 133		1			. 15	30	1740	i 1'	757		• 1	778
1	148	4 169	4 170				T :				861		- 1	882
		- 1	8 180				-			4 1			- 1	986 090
		_	2 191				٠.		205				1 -	193
							' 1 -		216	2 2	172	218	2 2	
			10 213	20 2	131	21.	-	-		1 -		226	25 3	2296
1 20	1	1		22 2	234	224				_			-	2399
0.21		1					7 2			-			;	2502
22		-					50 2			- 1		1		260
23				1			-					1		270
24		1		_ _		26	56 2	666	20	'' '			1	
25	26	15 26	-5		١		-	760	271	30 1	2790		1	281
1	0.7	18 22	28 27				•			1		3 29		291
	1 00			41 2						86				301
	1		34 29	1			-		1	89				312
			37 30				-		1		320	1 32	111	322
	' -,	/-· \		150	3160	31			1	1		. ~.	212	332
30	′ ′′	1			2262	32	273	3283				- 1 -		342
0.31	32			1			375					- 1 -		352
	2 3	334							1			- 1		363
	3 3		4 7 9 1			3:	579		'			- 1 -		37
	4 3				3670	30	681	3691	1 3	101	J. 1	- -	1	
3	5 3	640 3	220 3			1		2702	2 2	803	381			38
1	١.,	742 3	752 3	762	3772	1 -			- 1 -			5 3		39
	• 1 -	•	854	864		1 -			- 1		40	16 4		40
	' 1 -	033	955			١.			- 1			- ' ' '		41
			1056								42	18 4	1228	42
	2	.0.0		1167	4177	1 1			1	1			4220	43
1 4	' ו יי	1			4279	1	1288					1		44
ا ما	. 1 4		1200			' 1 '			-					4
		4349	1000						'- I			1		4
	••	4450	3344			- 1			1					4
	44 '	100-					4692	470	03 '	713	۱ "	23		١
		4652	4662	70.2		- 1	1		۱ ۵	4813	45	323	4833	4
1	1	4753	4763	4773	478	3	4793	480	1	4813 4914		24	4934	4
C	0.00 0.01 2 3 4 5 0.06 7 8 9 0.10 0.11 12 13 14 15 0.16 17 18 19 20 0.21 22 23 24 25 0.3 3 3 3 3 3 3 4	0.00 0 0.0107 2 13 319 4 255 5 531 0.06 636 7 742 8 847 9 952 0.10 0.1057 0.11 116: 12 126: 13 137: 14 147: 15 158 0.16 168 17 178 189 199 20 210 0.21 220 23 244 24 25 26 0.26 27 28 29 30 30 31 0.31 33: 32 33 34 33 34 33 0.36 37 38 39 40 0.41 42 43	0.00	0.00 0 0 0 0 0 0 0 0 0	0.000 0.0011 0.0022 0.0033 129 139 1	0.000 0.001 0.002 0.0032 0.0032 0.00 0.01 118 129 139 245 245 235 3319 330 340 345 457 552 562 0.06 636 647 658 668 772 763 773 782 847 858 869 879 952 963 974 984 984 952 1067 1078 1088 0.10 0.1057 1067 1078 1088 0.10 0.1057 1067 1078 1088 0.11 1162 1172 1183 1193 1372 1382 1393 1403 1372 1382 1393 1403 1507 151 1580 1590 1601 1611 1580 1590 1601 1611 1788 1798 1892 1902 1913 1923 192 1996 2006 2017 2027 2010 2110 2120 2131 2213 2223 2234 22512 2252 22532 2244 22512 2252 22532 2244 22512 2252 22532 2244 22512 2252 22532 2244 22512 2252 22532 2244 22512 2252 22532 22543 22615 2625 2635 2646 2675 3364 33538 3344 3354 3	0.00	0.000 0.001 0.002 0.003 0.004 0.005 118 129 139 150 16 16 16 16 177 1288 1393 1403 1413 1403 1413 1403 1413 1403 1413 1403 1413 1403 150 150 16 16 16 16 16 16 16 1	0.000	0.000	0.000	0.000	0.000	0.000

5	531	541	552	562	573	583	594	604	721	625 731
		47	658	668	679	689	700	710		836
0.06	636	647	763	773	784	794	805	815	820	942
7	742	752		879	890	900	911	921	932	
8	847	858	869		995 0		1016	1026	1037	1047
9	952	963	974	984	1099	1109	1120	1130	1141	1151
0.10	0.1057	1067	1078	1088	1099	1103		1	1	
	1	1	1			1014	1225	1235	1246	1256
0.11	1162	1172	1183	1193	1204	1214	1330	1340	1351	1361
12	1267	1277	1288	1298	1309	1319		1445	1455	1466
	1372	1382	1393	1403	1413	1424	1434	1549	1559	1570
13		1486	1497	1507	1517	1528	1538		1663	167
14	1476		1601	1611	1621	1632	1642	1653	1002	10.
15	1580	1590	1001			1	1			177
1	1		1705	1715	1725	1736	1746	1757	1767	
0.16	1684	1694		1819	1829	1840	1850	1861	1871	188
17	1788	1798	1809		1933	1944	1954	1965	1975	198
18	1892	1902	1913	1923		2048	2058	2069	2079	209
19	1996	2006	2017	2027	2037		2162	2172	2182	219
20	2100	2110	2120	2131	2141	2151	2102		ì	1
20	2.00		ŀ		1		00.16	2275	2285	229
۱۵ ۵۰	2203	2213	2223	2234	2244	2254	2265	2378	2388	239
0.21	2306	2316	2326	2337	2347	2357	2368		2491	250
22		2419	2429	2440	2450	2460	2471	2483		260
23	2409		2532	2543	2553	2563	2574	2584	2594	
24	2512	2522		2646	2656	2666	2677	2687	2697	270
25	2615	2625	2635	2040	200		1	!	i	
1				0740	2759	2769	2780	2790	2800	281
0.26	2718	2728	2738	2749	2862		2883	2893	2903	291
27	2821	2831	2841	2852		2975	2986	2996	3006	301
28	2924	2934	2944	2955	2965		3089	3099	3109	312
29	3027	3037	3047	3058	3068	3078	3191	3201	3211	
	3130	3140	3150	3160	3171	3181	3191	3201	1 322	
30	3130	1 32.0	1					3303	3313	332
	2022	3242	3252	3262	3273	3283	3293		3415	
0.31	3232		3354	3364	3375	3385	3395	3405		
32	3334	3344	3456	3466	3477	3487	3497	3507	3517	+
33	3436	3446		3568	3579	3589	3599	3609	3619	
34	3538		3558		3681	3691	3701	3711	3721	37
35	3640	3650	3660	3670	3001	1 300-		1		1
1	l l		1		2702	3793	3803	3813	3823	38
0.36	3742	3752	3762	3772	3783	3895	3905	3915		39
37	3844		3864	3874	3884		4006	4016		
38	3945		3965	3975	3985	3996	4107	4117	1	1
	4046		4066	4076	4086	4097		1		
39	4147		4167	4177	4187	4198	4208	4210	1 3220	٠, ١
40	414	1.0.	1	1	1		1	1 4216	4329	9 43
١	1 4046	4258	4268	4278	4288	4299				
0.41	4248			4279	4389	4400				- 1
42	4349			4480	4490	4501	4511	452		- 1 -
43	4450			4581	4591	4602				
44	455			1 -		4703			3 473	3 47
45		2 4662	4672	4682	1 3032	1	1	1	ı	1
1	1	1		1	4793	4803	4813	482	3 483	
0.46	475	3 4763	4773			1				4 49
47			4874			1			-	
	1		4974				- 1		- 1	
1 40		- 1		5084	5094	5104			- 1	
48		4 1 2004	1 3077	,		1	4 501	500		
48 49 50	505					520	521	522	4 523	4 3

		1	1								•
13	0.000	0.001	0.002	0.003	0.004	0.005	0.000	0.007	0.008	0.009	ŀ
		}	i		1						
									0 5224	0 5244	
0.51				0.5284					0.5334	5444	
52	5354	5364	5374	5384	5394	5404	5414	5424	5434	5544	
53	5454	5464	5474	5484	5494	5504	5514	5524	5534		1
54	5554	5564	5574	5584	5594	5604	5614	5624	5634	5644	
5.5	5653	5663	5673	5683	5693	5703	5713	5723	5733	5743	
					1			5.60	5.15.0	5842	
0.56	5752	5762	5772	5782	5792	5802	5812	5822	5832		
57	5851	5861	5871	5881	5891	5901	5911	5921	5931	5941	
58	5950	5960	5970	5980	5990	6000	6010	6020	6030	6040 6138	
59	6049	6059	6069	6079	6089	6098	6108	6118	6128		
60	6147	6157	6167	6177	6187	6196	6206	6216	6226	6236	
	1		1			1				6334	
0.61	6245	6255	e 6 2 65	6275	6285	6294	6304	6314	6324		
62	6343	6353	6363	6373	6383	6392	6402	6412	6422	6432	
63	6441	6451	6461	6471	6481	6490	6500	6510	6520	6530	
64	6539	6549	6559	6569	6579	6588	6598	6608	6618	6628	
65	6637	6647	6657	6667	6677	6686	6696	6706	6716	6726	
i i							1		6034	6004	1
0.66	6735	6745	6755	6765	6775	6784	6794	6804	6814	6824	1
67	6833	6843	6853	6863	6873	6882	6892	6902	6912	6922	
68	6931	6941	6951	6961	6971	6980	6990	7000	7010	7020	
69	7029	7039	7049	7059	7068	7078	7088	7097	7107	7117	
70	7126	7136	7146	7156	7165	7175	7185	7194	7204	7214	
1	1			-0.55		7050	1 7040	7291	7301	7311	
0.71	7223	7233	7243	7253	7262	7272	7282	7388	7398	7408	
72	7320	7330	7340	7350	7359	7369	7379 7476	7485	7495	7505	
73	7417	7427	7437	7447	7456	7460		7582	7592	7602	
74	7514	7524	7534	7544	7553	7563	7573 7670	7679	7689	7699	
75	7611	7621	7631	7641	7650	7660	7670	1019	1005	1033	
		7718	7728	7738	7747	7757	7767	7776	7786	7796	- 1
0.76	7708	7815	7825	7835	7844	7854	7864	7873	7883	7893	i
77	7805	7912		7932	7941	7951	7961	7970	7980	7990	- 1
78	7902 7999	8009			8038	8048	8058	8067	8077	8087	
79 80	8096	8106	8116	8126	8135	8145	8155	8164	8174	8184	-
80	8096	8100	6110	3120	0.50	02.10	0200	1	1		- 1
0.81	8193	8203	8212	8222	8232	8241	8251	8260	8270	8280	- 1
82	8289	8299		8318	8328	8337	8347	8356	8366	8376	- 1
83	8385	8395		8414	8424	8433	8443	8452	8362	8472	
84	8481	8491	8500	8510	8520	8529	8539	8548	8558	8568	- 1
85	8577		8596	8606	8616	8625	8635	8644	8654	8664	- [
	1		1	1		1	1	1	1	1	
0.86	8673	8683	8692	8702	8712	8721	8731	8740		8760	
87	8769	8779	8788	8798	8807	8817	8826	8836		8855	ı
88	8864	8874		8893	8902	8912				8950	- 1
89	8959	8969	8978	8988	8997	9007	9016			9045	١
90	9054	9064		9083	9092	9102	9111	9121	9130	9140	١
55	1	1		1	1		1		1		١
0.91	9150	9160	9169								
92	9245		9264	9274							-
93	9340		9359	9369							
94	9435		9454	9464							
95	9530		9549	9559	9568	9577	9587	9596	9606	9615	- 1
"	1	1						0000		0.50-	- 1
0.96	9624								1	1	
97	9718										
98	9812	9822	9831	9841	9850	9859	9869	9878	9888	9897	_

STAT

ě,

(cont'd.) d = 0.95

										1
				00	0.004	0.005	0.006	0.007	0.008	0.009
B	0.000	0.001	0.002	0.003	0.004	0.005	0.000	0.007		
					0.0043	0.0052	0.0064	0.0074	0.0085	U.0096
0.00	0	0.0011					169	180	190	0.0201
0.01	0.0106	117	127	138	148	159		285	295	306
2	211	222	232	243	253	264	274	390	400	411
3	316	327	337	348	358	369	379		505	516
4	421	432	442	453	463	474	484	495		621
5	526	537	547	558	568	579	589	600	610	02.1
3	320	33.				i	1	1		
		642	652	663	673	684	694	705	715	726
0.06	631		757	768	778	789	799	810	820	831
7	736	747			883	893	904	914	925	935
8	841	851	862	872	987	997	1008	1018	1029	1039
9	945	955	966	976	1091	1101	1112	1122	1133	1143
0.10	1049	1059	1070	1080	1091	1101	1112	1		1
						1005	1216	1226	1237	1247
0.11	1153	1163	1173	1184	1195	1205		1330	1341	1351
12	1257		1278	1288	1299	1309	1320		1445	1455
13	1361	1	1382	1392	1403	1413	1424	1434	1549	1559
14	1465		1486	1496	1507	1517	1528	1538		1662
	1569	ı	1	1600	1610	1621	1631	1641	1652	1002
15	1309	13.3	1		1	1		1		1,505
	1	1682	1693	1703	1713	1724	1734	1744	1755	1765
0.16	1672			1806	1	1827	1837	1847	1858	1868
17	1775		1					1950	1961	
18	1878			1				2053	2064	
19	1981			1	1		1		2167	2177
20	2084	2094	2105	2115	2123	1 2130			1	1 1
	1			1		2239	2249	2259	2270	2280
0.21	2187	2197								
22	2290	2300	2311							
23	2393	2403	2414	2424			1			
24	2496			2527						
25	2599			2630	2640	2650	2661	2671	2581	2031
23				1		1				2793
10.00	270	2712	2 2722	2732	2742	2752				1
0.26	280	- :			2844	2854	1 2865	2875		
27		- 1					2967	2977		
28	290							3079	3089	
29	300							3181	3191	3201
30	310	9 3120	3130	3140	3130	, 310	1	1	1	1 1
l	ı	1		.	205	3262	2 327:	3 3283	3 3293	3 3303
0.31	321						- 1			3405
32	331	3 332					-			
33	341	5 342		- 1			- 1			
34		7 352	8 353				·		- 1	
35			0 364	0 365	0 366	0 367	0 368	309	1 3.0	.
35	55-	-	1	1	1		- 1		2 380	2 3812
0 20	372	1 373	2 374	2 375	2 376				- 1	
0.36	1				3 386	3 387				
37						4 397	4 398			
38				-	_		5 408			
39		- 1					6 418	6 419	6 420	6 4216
40	412	5 413	6 414	٠ ١٠٠٠	~ -10	-	1	l	1	
	1		_	7 425	7 426	7 427	7 428	7 429	7 430	
0.41	422					* TEL		-		8 4418
42	: 432				- 1				_	
43						- 1	-		- 1	
44	` l					- 1	1		-	
45			0 465	0 466	0 467	0 468	109	7 7.0	· • · · ·	-
**	.	1	1	1	_			0 480	0 481	0 4820
0.46	473	0 474	0 475	0 476	0 477	0 478	0 479	480	73	1020
0.40	فمة ا	نفتام	ععمالم	0 1 400	0 495	40				

Sec Sept Metro			or and the second		rica (Ariala saerius)	1007 1000	694	705	715	726	-
0.06	631 736	642 747	652 757	663 768	673 778	684 789	799	810	820	831	
8	841	851	862	872	883	893	904	914	925	935	
9	945	955	966	976	987	997	1008	1018	1029	1039	
0.10	1049	1059	1070	1080	1091	1101	1112	1122	1133	1143	
0.11	1153	1163	1173	1184	1195	1205	1216	1226	1237	1247	
12	1257	1267	1278	1288	1299	1309	1320	1330	1341	1351	
13	1361	1371	1382	1392	1403	1413	1424	1434	1445	1455	
14	1465	1475	1486	1496	1507	1517	1528	1538	1549	1559	
15	1569	1579	1590	1600	1610	1621	1631	1641	1652	1662	
0.16	1672	1682	1693	1703	1713	1724	1734	1744	1755	1765	
17	1775	1785	1796	1806	1816	1827	1837	1847	1858	1868	
18	1878	1888	1899	1909	1919	1930	1940	1950	1961	1971	
19	1981	1991	2002	2012	2022	2033	2043	2053	2064	2074	
20	2084	2094	2105	2115	2125	2136	2146	2156	2167	2177	
	2001	2001	2100								
0.21	2187	2197	2208	2218	2228	2239	2249	2259	2270	2280	
22	2290	2300	2311	2321	2331	2342	2352	2362	2373	2383	i
23	2393	2403	2414	2424	2434	2445	2455	2465	2476	2486	
24	2496	2506	2517	2527	2537	2648	2558	2568	2579	2589	
25	2599	2610	2620	2630	2640	2650	2661	2671	2581	2691	
0.00	2701	2712	2722	2732	2742	2752	2763	2773	2783	2793	l
0.26 27	2803	2814	2824	2834	2844	2854	2865	2875	2885	2895	ĺ
28	2905	2916	2926	2936	2946	2956	2967	2977	2987	2997	ĺ
29	3007	3018	3028	3038	3048	3058	3069	3079	3089	3099	ĺ
30	3109	3120	3130	3140	3150	3160	3171	3181	3191	3201	ĺ
50	5105	0120	5255	02.0							
0.31	3211	3222	3232	3242	3252	3262	3273	3283	3293	3303	
32	3313	3324	3334	3344	3354	3364	3375	3384	3395	3405	
33	3415	3426	3436	3446	3456	3466	3477	3487	3497	3507	1
34	3517	3528	3538	3548	3558	3568	3579	3589	3599	3609	
35	3619	3630	3640	3650	3660	3670	3681	3691	3701	3711	l
0 36	3721	3732	3742	3752	3762	3772	3782	3792	3802	3812	١
0.36	3822	3833	3843	3853	3863	3873	3883	3893	3903	3913	ı
38	3923	3943	3944	3954	3964	3974	3984	3994	4004	4014	١
39	4024	4035	4045	4055	4065	4075	4085	4095	4105	4115	١
40	4125	4136	4146	4156	4166	4176	4186	4196	4206	4216	١
		l									١
0.41	4226	4237	4247	4257	4267	4277	4287	4297	4307	4317	١
42	4327	4338	4348	4358	4368	4378	4388	4398	4408	4418	ı
43	4428	4439	4449	4459	4469	4479	4489 4590	4499	4509 4610	4519 4620	l
44	4529	4540	4550	4560	4570	4580 4680	4690	4700	4710	4720	١
45	4630	4640	4650	4660	4670	1000	1030	1.00	1.10	1.20	
0.46	4730	4740	4750	4760	4770	4780	4790	4800	4810	4820	١
47	4830	4840	4850	4860	4870	4880	4890	4900	4910	4920	١
48	4931	4941	4951	4961	4971	4981	4991	5001	5011	5021	1
49	5031	5041	5051	5061	5071	5081	5091	5101	5111	5121	I
50	5131	5141	5151	5161	5171	5181	5191	5201	5211	5221	١
	1	1	1	1	1	1	1	1	1	1	١

STAT

(cont'd.) 8 - 0.95

D. D. D. D. D. D. D. D.	-							T .		0.005	10	.006	0.007	0.008	3 0.0	09
0.51 0.5231 0.5241 0.5251 0.5261 0.5271 0.5281 0.5291 0.5	1	B\ \ \	0.000	0.00	1 0.	.002	0.003	3 0.	.004	0.00					1 0 53	121
0.51	1	\ \		1	1					0 528	1 0	5291	U.53Ul		- !	
0.51 522 5331 5441 5351 5361 5471 5481 5491 5500 5610 5620 5630 5640 5550 5660 5670 5680 5700 5710 5719 5759 5680 5680 5680 5680 5700 5710 5719 5759 5680 5680 5680 5680 5680 5680 5680 5680 5680 5680 5680 5680 5680 5680 5680 5680 5680 5680 5888 5	L			52/	110	5251	0.526	1 0.					5401	541	* 1 - 2 -	
S22 S331 S341 S451 S451 S451 S451 S451 S451 S530 S540 S550 S550 S550 S550 S550 S560 S570 S680 S690 S690 S710 S719 S55 S530 S540 S550 S560 S570 S680 S690 S690 S710 S719 S55 S530 S540 S650 S660 S670 S680 S690 S690 S710 S719 S55 S530 S540 S650 S690	1	0.51					536	1	5371		- 1		5500		9 1 2	
53 5431 5441 5550 5560 5570 5580 5690 5700 5710 5719 5710 5	1	52		1 = :					5471							
54	1		5431		**				557U						0 57	719
55 5630 5640 5650 5744 5759 5769 5779 5789 5789 5789 5980 5818 5917 5967 5987 59	i		5530						5670	568	0	2690	3,00		1	
0.56					40	5650	300	Ì		1	- 1			580	9 5	818
0.56 5729 5739 5749 5759 5966 5976 5987		33	1		1				5769	577	9	5789				917
0.56			6726	57	39	5749						5888		1 604	,0	
Second Color				, ,	- 1	5848						5987		' 1		
S9 G026 G036 G046 G056 G155 G165 G175 G185 G195 G203 G312 G410 G324 G322 G332 G342 G352 G362 G362 G479 G489 G479 G489 G499 G508 G508 G563 G518 G528 G538 G548 G558 G5657 G557 G587 G597 G597 G587 G597 G597 G597 G687 G687 G688 G691 G697 G697 G698 G690 G				- 1		5947	595	57		1		6086	6096		,	
Signature		58		• 1			60	56					619	5 62	סן פנ	213
0.61 6224 6234 6234 6234 6234 6327 6362 6371 6381 6391 6491 6508 6362 6322 6332 6340 6450 6460 6469 6479 6489 6499 6508 6566 6656 6656 6656 6656 6656 6656		59					61	55	6165	61	12	0100		1	1	
0.61 6224 6324 6332 6342 6352 6362 6371 6381 6499 6508 6499 6308 6449 6538 6538 6548 6558 6558 6558 6558 6558 6558 655		60	612	5 6	135	0145	1	1			_ 1	c003	624	3 63		
0.61 6224 6332 6332 6342 6352 6362 6371 6381 6489 6499 6508 6606 6326 6440 6450 6450 6558 6567 6577 6685 6606 6506 650 6655 6655 6655 6606 6616 6626 6636 6636 6636 6636 6636 663		1	1	1	1		62	54	6264	62	73		1		01 6	410
62 6322 6332 6430 6440 6450 6469 6479 6687 6697 6606 6460 6518 6528 6538 6538 6548 6558 6656 6665 6665 6665 6665 666		0.61	622				1		6362	63	71		1	*		508
63 6420 6430 6548 6528 6538 6540 6558 6656 6657 6685 6685 6665 6665 6665			632	2 6	332						69		1	- 1		606
65				- 1 -								6577			3. 1	-
0.66 6714 6724 6734 6734 6734 6754 6861 6871 6881 6891 6900 6998 6870 6882 6832 6832 6940 6950 6959 6969 6979 7077 7087 7067 7077 7087 7070 7016 7016 7016 7016 7016 7016 701				0 6	528	6538				~ l		6675	668	5 60	32 1	
0.66 6714 6724 6832 6842 6842 6852 6861 6871 6881 6891 6990 6996 687 6812 6822 6930 6940 6950 6959 6959 7077 7087 7096 7096 7018 7028 7038 7048 7057 7165 7175 7185 7194 70 7106 7116 7126 7136 7146 7155 7165 7175 7185 7194 7170 7106 7116 7126 7136 7146 7155 7165 7175 7185 7194 7194 7194 7194 7194 7194 7194 7194					626	6636	66	46	602	1 30		-	1		، این	6802
0.66 6714 6812 6822 6832 6842 6852 6851 6871 6881 6891 6998 6998 6998 6998 6998 699		65	661	0 0	020		1	- 1				677	3 678		JU 1	
0.66 6714 6812 6822 6832 6842 6852 6959 6959 6979 7067 7077 7087 7096 6989 6999 7008 7018 7028 7038 7048 7057 7165 7175 7185 7194 7008 7018 7028 7038 7048 7057 7165 7175 7185 7194 7008 7018 7028 7038 7048 7057 7165 7175 7185 7194 7008 7016 7116 7126 7136 7146 7155 7165 7175 7185 7194 7009 7106 7116 7126 7136 7146 7155 7165 7175 7185 7194 7009 7106 7116 7126 7136 7146 7155 7165 7165 7175 7185 7194 7185 7195 7195 7195 7195 7195 7195 7195 719		1	1		224	6734	67	744		• I					,,,,	
67 6812 6920 6930 7038 7048 7048 7057 7067 7077 7087 7194 7195 7194 7096 7008 7018 7018 7028 7038 7048 7057 7165 7175 7185 7194 7194 7196 7106 7116 7126 7136 7146 7155 7165 7175 7175 7185 7194 7196 7106 7116 7126 7136 7146 7155 7165 7175 7185 7194 7194 7196 7106 7116 7126 7136 7146 7155 7165 7175 7185 7194 7194 7196 7106 7106 7116 7126 7136 7146 7155 7165 7175 7185 7194 7180 7180 7190 7106 7106 7126 7130 7140 7140 7140 7140 7140 7140 7140 714		0.66					- 1			-			_ \	79 69	,05	
68							- 1		695				- 1		,,,	
10	1			10 6	1					8 7			1			7194
70 7106 7116 7126 7126 7234 7244 7253 7263 7273 7283 7290 0.71 7204 7312 7322 7332 7342 7349 7459 7469 7479 7488 7390 772 7302 7312 7322 7332 7340 7449 7459 7469 7479 7488 7596 7518 7528 7538 7547 7557 7567 7577 7586 7518 7528 7538 7645 7655 7664 7674 7683 7586 7606 7616 7626 7635 7645 7655 7664 7674 7683 7586 7596 7606 7616 7626 7635 7645 7655 7664 7674 7683 7770 7790 7800 7810 7820 7829 7839 7849 7858 8068 8081 8091 8101 8110 8120 8130 8130 8139 8149 8159 8168 8081 8091 8101 8110 8120 8130 8130 8139 8149 8159 8168 8081 8255 8285 8295 8304 8314 8421 8430 8440 8450 8450 8450 8450 8450 8575 8586 8575 8585 88604 8614 8623 8633 8643 8652 8788 8863 8873 8869 8989 8990 9046 9055 9065 9074 9084 9094 9190 9199 9209 9219 9228 8931 9940 9046 9055 9065 9074 9084 9190 9199 9209 9219 9228 9334 9343 9449 9553 9362 9372 9382 9391 9401 9420 949 949 949 949 949 949 949 949 949 94					7018		- 1				155	716	2 / 1	15		
0.71 7204 7214 7224 7234 7244 7253 7263 7371 7381 7390 7480 7312 7322 7332 7340 7440 7449 7459 7469 7577 7586 7577 7400 7410 7420 7430 7440 7449 7459 7567 7567 7564 7674 7683 758 7596 7606 7616 7626 7635 7645 7655 7664 7674 7683 75 7596 7606 7616 7626 7635 7645 7655 7664 7674 7683 75 7596 7606 7616 7626 7635 7645 7655 7664 7674 7683 77 77 7790 7800 7810 7820 7829 7839 7849 7955 7965 7974 7907 7916 7926 7936 7945 7955 7965 7974 7907 7916 7926 7936 7945 7955 7965 7974 7998 8013 8023 8033 8042 8052 8062 8071 810 8120 8130 8139 8149 8159 8168 810 810 8120 8130 8139 8149 8159 8168 810 810 8120 8130 8139 8149 8159 8168 8168 8285 8382 8372 8401 8411 8421 8430 8440 8450 8459 8479 8489 8498 8498 8498 8498 8498 849	ŧ				7116	712	6 ⁷	130	١			1	_ \	72 7	283	7292
0.71 7204 7214 7224 7234 7342 7342 7349 7459 7469 7479 7488 72 7302 7410 7420 7430 7440 7449 7459 7567 7567 7577 7586 74 7498 7508 7518 7528 7538 7547 7557 7664 7674 7683 75 7596 7606 7616 7626 7635 7645 7655 7664 7674 7780 77 7796 7800 7810 7820 7829 7839 7849 7858 7858 7868 7877 77 7790 7800 7810 7916 7926 7936 7945 7955 7965 7974 78 7887 7897 7897 7907 7916 7926 7936 7945 7955 7965 7974 79 7984 8091 8101 8110 8110		1 1	, '-	1		1	1		1 72	7	253	726	3 1 -	-		
1.71			.	04	7214	722						736		• • • •		
72 7400 7410 7410 7518 7528 7538 7538 7547 7557 7567 7664 7674 7683 7528 7508 7518 7626 7635 7645 7645 7664 7674 7683 7606 7616 7626 7635 7645 7645 7655 7664 7674 7683 7606 7616 7626 7635 7645 7655 7664 7674 7683 7606 7616 7626 7635 7645 7655 7664 7674 7683 7606 7616 7626 7635 7645 7655 7664 7674 7683 7606 7616 7626 7635 7645 7655 7664 7674 7683 7606 7616 7626 7635 7645 7655 7664 7674 7683 7606 7616 7626 7635 7645 7655 7664 7674 7683 7606 7616 7626 7635 7645 7655 7664 7674 7683 7683 7683 7683 7686 7616 7626 7635 7645 7655 7664 7674 7683 7683 7676 7617 7606 7626 7635 7645 7655 7664 7674 7683 7683 7676 7617 7606 7626 7635 7645 7655 7645 7655 7645 7655 7645 7655 7645 7655 7645 7655 7645 7655 7645 7655 765			- 1	-		732				-			9 74	00 1		
73 7400 7498 7508 7518 7528 7638 7645 7655 7664 7674 7683 74 7498 7596 7606 7616 7626 7626 7635 7645 7655 7664 7674 7683 75 7596 7606 7616 7626 7626 7635 7645 7655 7664 7674 7683 75 7596 7606 7616 7626 7626 7635 7645 7655 7664 7674 7683 77 7790 7800 7810 7820 7829 7839 7849 7858 7868 87071 78 7887 7897 7907 7916 7926 7936 7945 7955 7965 7974 78 7887 7897 7994 8004 8013 8023 8033 8042 8052 8062 8071 80 8081 8091 8101 8110 8120 8130 8130 8139 8149 8159 8168 0.81 8178 8188 8198 8207 8217 8227 8236 8246 8256 8362 82 8275 8285 8295 8304 8314 8421 8430 8440 8450 8459 8459 8459 8489 8489 8508 8614 8623 8633 8643 8652 83 8372 8382 8392 8401 8411 8421 8430 8440 8450 8459 8459 8566 8575 8585 8594 8698 8614 8623 8633 8643 8652 0.86 8662 8671 8681 8690 8706 8806 8815 8825 8335 8844 8659 8950 8950 90046 9055 9065 9074 9084 9094 9103 9113 9123 9132 0.86 8662 8671 8777 8786 8796 8898 8902 8911 8921 8931 8940 9007 9017 9027 9036 8998 9004 9046 9055 9065 9074 9084 9094 9103 9113 9123 9132 0.91 9142 9151 9161 9170 9180 9190 9199 9209 9219 9228 9334 9343 9343 9343 9343 9343 93449 9459 945			- 1					430								
74 7498 7508 7606 7616 7626 7635 7645 7635 7645 7635 7645 7752 7761 7771 7780 7752 7761 7771 7780 777 7790 7800 7810 7820 7829 7839 7849 7858 7965 7974 777 7790 7800 7810 7907 7916 7926 7936 8042 8052 8062 8071 8013 8023 8033 8139 8149 8159 8168 8101 8110 8120 8130 8139 8149 8159 8168 8168 8188 8198 8207 8217 8227 8333 8343 8353 8362 8275 8285 8295 8401 8411 8421 8430 8440 8450 8459 82 8275 8285 8295 8401 8411 8421 8430 8440 8450 8459 8566 8575 8585 8594 8604 8614 8623 8633 8633 8643 8652 8876 8777 8786 8796 8806 8815 8825 8836 8854 8863 8873 8863 8873 8863 8873 8863 8876 8876		7		100				528		90 1 2				64 7	674	1003
75 7596 7606 7703 7713 7723 7732 7742 7752 7761 7771 7780 7777 7790 7800 7810 7820 7936 7945 7955 7965 7974 7787 7787 7787 7787 7787 7787 7787 7787 7787 7787 7790 7916 7926 7936 7945 7955 7965 7974 7787 7777 7787 7787 7787 7787 7787 7787 7787 7787 7787 7787 7787	in a	7				1	. 1		76	35 7	040	1 '3.	'	1	1	
0.76 7693 7703 7713 7723 7732 7742 7742 7785 7868 7867 7974 7790 7810 7810 7820 7829 7839 7849 7955 7965 7974 7877 7877 7887 7887 7994 8004 8013 8023 8033 8042 8052 8052 8062 8071 8108 8101 8110 8120 8130 8139 8149 8159 8168 8081 8091 8101 8110 8120 8130 8139 8149 8159 8168 8168 818 818 818 8207 8217 8227 8236 8246 8256 8265 8265 8265 8265 8265 8265 826	(*)			596	7606	1 '0'	. .		1	1		1	52 77	61 7	771	
0.76 7693 7700 7810 7820 7829 7839 7845 7955 7965 8071 8071 7877 7790 7916 7926 7936 8033 8042 8052 8062 8071 8071 8071 8071 8081 8081 8091 8013 8013 8139 8149 8159 8168 8168 8181 8101 8110 8120 8130 8139 8149 8159 8168 8168 8181 8101 8110 8120 8130 8139 8149 8159 8168 8168 8181 <td< td=""><th>2</th><td>1 .</td><td>- 1</td><td>1</td><td></td><td>1</td><td></td><td>7723</td><td>77</td><td></td><td></td><td></td><td>J- 1</td><td></td><td>1868</td><td></td></td<>	2	1 .	- 1	1		1		7723	77				J- 1		1868	
77 7790 7890 7890 7916 7926 7936 8042 8052 8062 8071 7887 7887 7897 7994 8004 8013 8023 8033 8139 8149 8159 8168 8081 8091 8101 8110 8120 8139 8149 8159 8168 8081 8091 8101 8110 8120 8139 8149 8159 8168 8081 8091 8101 8110 8120 8130 8139 8149 8159 8168 8081 8091 8101 8110 8120 8130 8139 8149 8159 8168 8081 8091 8101 8110 8120 8130 8139 8149 8159 8168 8081 8091 8101 8110 8120 8227 8236 8246 8256 8265 8265 8265 8265 8265 8265 826	#	10.7	6 7	693						29			••	,,,,		7974
78 7887 7897 7994 8004 8013 8023 8033 8042 8149 8159 8168 79 7984 8091 8101 8110 8120 8130 8139 8149 8159 8168 80 8081 8091 8101 8110 8120 8130 8130 8139 8149 8159 8168 0.81 8178 8285 8295 8304 8314 8324 8333 8343 8353 8362 82 8275 8382 8392 8401 8411 8421 8430 8440 8459 83 8372 8382 8392 8401 8411 8518 8527 8537 8547 8556 84 8469 8479 8489 8498 8604 8614 8623 8633 8643 8652 87 876 876 8776 8786 8796 8796 8806 8815	Sie :		٠ i -		7800						7936			950		
78 7984 7994 8004 8013 8012 8130 8139 8149 8139 8149 8139 8149 8139 8149 8139 8168 8265 8265 8265 8265 8265 8265 8267 8217 8227 8236 8246 8256 8362 8362 83440 8430 8440 8450 8353 8343 8353 8362 8450 8411 8421 8430 8440 8450 8459 8459 8498 8508 8614 8623 8633 8643 8652 84 8469 8479 8489 8498 8508 8614 8623 8633 8643 8652 85 8566 8575 8585 8594 8604 8614 8623 8633 8748 87 8758 8767 8777 8786 8796 8806 8815 8825 8835 8844 89 8950 8959 <t< td=""><th>•</th><td></td><td>· 1 -</td><td></td><td>7897</td><td>79</td><td></td><td></td><td>1</td><td></td><td></td><td>80</td><td></td><td>- T</td><td></td><td></td></t<>	•		· 1 -		7897	79			1			80		- T		
No. No.	## T		9 1 -			80			1				39 8	149	0132	3.00
80 8081 8188 8198 8207 8217 8236 8246 8256 8353 8362 8353 8363 8343 8353 8363 8353 8363 8353 8362 8459 8401 8411 8421 8430 8440 8450 8459 8459 8489 8498 8508 8518 8527 8537 8547 8556 8556 8557 8556 8557 8585 8594 8604 8614 8623 8633 8643 8652 84 8469 8479 8489 8498 8604 8614 8623 8633 8643 8652 85 8566 8575 8585 8594 8604 8796 8796 8806 8815 8825 8835 8844 87 8758 8767 8777 8786 8796 8998 9902 8911 8921 8931 8940 89 8950 8959 8969 <td< td=""><th>5 To 2</th><td></td><td>,</td><td></td><td></td><td>1</td><td>01</td><td>8110</td><td>/ 81</td><td>20</td><td></td><td>1</td><td>1</td><td>1</td><td></td><td>9265</td></td<>	5 To 2		,			1	01	8110	/ 81	20		1	1	1		9265
0.81 8178 8188 8198 8207 8217 8224 8333 8343 8353 8450 8450 84811 8421 8430 8440 8450 8450 8556 8556 8556 8557 8585 8594 8604 8614 8623 8633 8643 8652 8652 0.86 8662 8671 8786 8796 8796 8806 8815 8825 8835 8844 88 8854 8863 8873 8882 8892 8992 8911 8921 8931 8940 89 8950 8959 8969 8978 8988 8998 9007 9017 9027 9036 90 9046 9055 9065 9074 9084 9094 9103 9113 9123 9132 92 9238 9247 9257 9266 9276 9286 9295 9305 9315 9315 9324 9459 <td< td=""><th>Æ</th><td> 1</td><td>30 8</td><td>ng r</td><td>3331</td><td>1</td><td>1</td><td></td><td>١</td><td> </td><td>9997</td><td>82</td><td>36 8</td><td></td><td></td><td></td></td<>	Æ	1	30 8	ng r	3331	1	1		١		9997	82	36 8			
0.81 8178 8285 8295 8304 8411 8421 8430 8440 8450 8556 8575 8585 8594 8604 8614 8623 8633 8643 8652 8758 8566 8575 8585 8594 8604 8614 8623 8633 8643 8652 8758 8767 8777 8786 8796 8806 8815 8825 8835 8848 8858 8858 8858 8858 8858 8858 8858 8858 8858 8858 8858 8859 8859 8969 8902 8911 8921 8931 8940 8902 8911 8921 8931 8940 8902 8911 8921 8931 8940 8959 89690 89690 89690 89690 8969 8969 8969 8969 8969 8969 8969 8969 8969 896	<u> </u>	- 1	1	1	0100	81	88	8207		•••		1		343		
82 8275 8382 8392 8401 8411 8421 8527 8537 8547 8556 84 8469 8479 8489 8594 8604 8614 8623 8633 8643 8652 85 8566 8575 8585 8594 8604 8614 8623 8633 8643 8652 86 8662 8671 8681 8690 8706 8806 8815 8825 8835 8844 87 8758 8767 8777 8882 8892 8902 8911 8921 8931 8940 88 8854 8863 8873 8882 8982 8998 9007 9017 9027 9036 89 8950 8959 8969 8978 8988 8998 9007 9017 9017 9027 9017 9017 9017 9017 9017 9017 9017 9017 9017 9017 9017	3	10.1				, ,		8304		222				440	8450	
83 8372 8382 8489 8489 8594 8508 8518 8527 8633 8643 8652 84 8469 8575 8585 8594 8604 8614 8623 8633 8643 8652 85 8566 8575 8585 8681 8690 8710 8719 8729 8739 8748 87 8758 8767 8777 8786 8796 8806 8815 8825 8835 8844 88 8854 8863 8873 8882 8892 8902 8911 8921 8931 8940 89 8950 8959 8969 8978 8988 8998 9007 9017 9027 9036 89 8950 8959 9065 9074 9084 9094 9103 9113 9123 9132 90 9046 9055 9065 9074 9170 9180 9190 9199			82 8							411					8547	
84 8469 8479 8489 8594 8604 8614 8623 8633 8739 8748 85 8566 8575 8585 8594 8604 8614 8623 8729 8739 8748 0.86 8662 8671 8681 8786 8796 8806 8815 8825 8835 8844 87 8758 8863 8873 8882 8892 8902 8911 8921 8931 8940 89 8950 8959 8969 8968 8978 8988 8998 9007 9017 9027 9036 89 9046 9055 9065 9074 9084 9094 9103 9113 9123 9132 0.91 9142 9151 9161 9170 9180 9190 9199 9209 9219 9228 92 9238 9247 9257 9266 9372 9382 9391 9401	8		83 I 8							508		1				8652
85 8566 8575 8585 8584 8690 8700 8806 8815 8825 8835 8844 8758 8758 8767 8777 8786 8892 8902 8911 8921 8931 8940 8896 8898 8950 8950 9046 9055 9065 9074 9084 9094 9103 9113 9123 9132 909 9046 9055 9065 9074 9084 9094 9103 9113 9123 9132 9132 9132 9132 9132 913			00 I			- 1			' 1 🖫		8614	4 8	023 8	,555		
0.86 8662 871 8681 8786 8796 8806 8815 8825 8835 8844 8786 8796 8806 8815 8821 8931 8940 8902 8911 8921 8931 8940 8909 8909 9017 9027 9036 8909 9046 9055 9065 9074 9084 9094 9103 9113 9123 9132 9090 9046 9055 9065 9074 9084 9094 9103 9113 9123 9132 9132 9132 9132 9132 913			- 1 .		8575	5 8	282	0339	٠, ١			1	. ا م.	220	8739	8748
0.86 8662 8671 8681 8890 8796 8806 8815 8825 8833 8940 87 8758 8854 8863 8873 8882 8992 8902 8911 8921 9027 9036 88 8850 8959 8969 8978 8988 8998 9007 9017 9027 9036 89 9046 9055 9065 9074 9084 9094 9103 9113 9123 9132 0.91 9142 9151 9161 9170 9180 9190 9295 9305 9315 9324 92 9238 9247 9257 9266 9276 9286 9295 9305 9315 9324 93 9334 9343 9253 9362 9372 9382 9391 9401 9411 9420 94 9430 9439 9449 9458 9468 9477 9487 9496	2.2	1	09 '				1	000	ه ۱ ه	700	871		120			
0.86 8758 8767 8777 8786 8892 8902 8911 8921 8931 9027 9029 9219 9132 9132 0.91 9142 9151 9161 9170 9180 9190 9199 9305 9315 9324 92 9238 9247 9257 9266 9276 9382 9391 9401 9411 9420 93 9334 9343 9253 9362 9372 9382 9391 9401 9411	EE.	1		2882	867				- -							
87 8854 8863 8873 8882 8988 998 9007 9017 9027 9038 89 8950 8959 8969 8978 8988 9094 9103 9113 9123 9132 90 9046 9055 9065 9074 9084 9094 9103 9113 9123 9132 0.91 9142 9151 9161 9170 9286 9295 9305 9315 9315 9328 92 9238 9247 9257 9266 9372 9382 9391 9401 9419 9420 93 9334 9343 9253 9362 9372 9382 9391 9401 9409 9506 9506 9515 94 9430 9439 9449 9458 9468 9477 9487 9496 9506 9506 9515 95 9525 9534 9544 9553 9563 9572	2	10.	00				777		~ 1 :							
88 8950 8959 8969 8978 8988 9094 9103 9113 9123 9132 90 9046 9055 9065 9074 9084 9094 9103 9113 9123 9132 0.91 9142 9151 9161 9170 9180 9190 9295 9305 9315 9324 92 9238 9247 9257 9266 9372 9382 9391 9401 9411 9420 93 9334 9439 9449 9458 9468 9477 9487 9496 9506 9515 94 9430 9439 9449 9553 9563 9572 9582 9591 9601 9610 95 9525 9534 9544 9553 9563 9667 9677 9686 9696 9705 95 9620 9629 9639 9648 9658 9667 9677 9782 9791 9800 97 9715 9724 9734 9743 9753 9762 9772 9782 9791 9800 97 9715 9724 9734 9743 9753 9857 9867	201	1				_ ! _	873		- 1				007	9017		
89 8950 9055 9065 9074 9084 9094 9		- 1				• -		897				• 1 -		9113	9123	9132
90 9046 9055 9056 9161 9170 9180 9199 9209 9219 9228 9219 9228 9247 9257 9266 9276 9286 9295 9305 9315 9324 9253 9362 9372 9382 9391 9401 9411 9420 9382 9334 9343 9253 9362 9372 9382 9391 9406 9506 9515 93 9449 9458 9468 9477 9487 9496 9506 9515 952 9534 9544 9553 9563 9572 9582 9591 9601 9610 9610 9610 9610 9610 9620 9629 9639 9648 9658 9667 9772 9782 9791 9800 977 9715 9724 9734 9733 9753 9762 9772 9782 9791 9800 9876 9775 9774 9782 9791 9800 9876 9775 9774 9782 9791 9800 9876 9775 9774 9782 9791 9800 9876 9775 9774 9782 9791 9800 9876 9775 9774 9782 9791 9800 9876 9775 9774 9782 9791 9800 9876 9775 9774 9782 9791 9800 9876 9775 9774 9782 9791 9800		l	89			- 1 -		907	4 9	084	808	~ *				1
0.91 9142 9151 9161 9266 9276 9286 9295 9305 9315 9324 9295 9288 9295 9305 9411 9420 9288 9295 9334 9343 9253 9362 9372 9382 9391 9401 9411 9420 9391 9439 9449 9458 9468 9477 9487 9496 9506 9515 95 9525 9534 9544 9553 9563 9572 9582 9591 9601 9610 9610 9610 9610 9610 9610 96		1		9046	905	2 2	1		1	i		، ۱ ،	1100	9209	9219	
0.91 9142 9151 9266 9276 9286 9293 9391 9401 9411 9420 92 9334 9343 9253 9362 9372 9382 9391 9496 9506 9515 94 9430 9439 9449 9458 9468 9572 9582 9591 9601 9610 95 9525 9534 9544 9553 9563 9572 9582 9591 9601 9610 96 9629 9639 9648 9658 9667 9677 9686 9696 9705 97 9715 9724 9734 9743 9753 9762 9772 9782 9791 9800 98 9715 9724 9734 9743 9753 9857 9867 9876 9886 9895		1			i .	. .	ا رور	917	o I	9180		, ,			9315	
92 9238 9247 9257 9362 9372 9382 9391 9496 9506 9515 93 949 9430 9439 9449 9553 9563 9572 9582 9591 9601 9610 9506 9515 9591 9525 9534 9544 9553 9563 9572 9582 9591 9601 9610 9610 9610 9610 9610 9610 96		١	01	9142		- 1			- 1			, ,				9420
93 9334 9343 9253 9352 9468 9477 9487 9496 9500 9610 9610 95 95 95 95 95 95 95 95 95 95 95 95 95		10			924				, ,		938					
93 9430 9439 9449 9458 9563 9572 9582 9591 9601 9619 9619 9525 9534 9544 9553 9563 9572 9582 9591 9601 9619 9619 9619 9619 9619 9619 96		1				13 8			-		94	77 \	9487			1
94 9534 9544 9553 9563 9567 9677 9686 9696 9705 95 9525 9534 9544 9553 9563 9667 9677 9686 9696 9705 0.96 9620 9629 9639 9648 9658 9667 9772 9782 9791 9800 9715 9724 9734 9743 9753 9762 9772 9782 9791 9800 9715 9724 9734 9734 9753 9867 9876 9886 9895		- 1					9449		1				9582	9591	ADOT	1 3010
95 9525 9639 9648 9658 9667 9677 9686 9696 9705 0.96 9620 9629 9639 9743 9753 9762 9772 9782 9791 9800 9715 9724 9734 9734 9753 9867 9876 9886 9895		1	94				9544	95	53	A303	1 33		1			0705
0.96 9620 9629 9639 9648 9658 9607 9772 9782 9791 9800 9715 9724 9734 9743 9753 9762 9772 9886 9886 9895	21	1	95 i	9525	1 33.	- I		1	1		100	67	9677	9686		
0.96 9620 9629 9734 9743 9753 9762 9867 9876 9886 9895 9715 9724 9734 9743 9848 9857 9867 9876 9886 9895		1	1		1 000	00	9639	96	48							
9715 9724 9735 9848 9857 9857		l o	96	9620		1		97	43			~- ;			9886	9895
		10		9715	97	24	J 1 3 T	فمل	ا ود	ORAR	98	2/	20VI			

60	6125	6135	6145	6155	6165	6175	6185	6195	6205	6214
0.61	6224	6234	6244	6254	6264	6273	6283	6293	6303	6312
62	6322	6332	6342	6352	6362	6371	6381	6391	6401	6410
63	6420	6430	6440	6450	6460	6469	6479	6489	6499	6508
64	6518	6528	6538	6548	6558	6567	6577	6587	6597	6606
65	6616	6626	6636	6646	6656	6665	6675	6685	6695	6704
"	0010	0020	0030	0040	0030	0003	0073	0005	0033	0.01
0.66	6714	6724	6734	6744	6754	6763	6773	6783	6793	6802
67	6812	6822	6832	6842	6852	6861	6871	6881	6891	6900
68	6910	6920	6930	6940	6950	6959	6969	6979	6989	6998
69	7008	7018	7028	7038	7048	7057	7067	7077	7087	7096
70	7106	7116	7126	7136	7146	7155	7165	7175	7185	7194
0.71	7204	7214	7224	7234	7244	7253	7263	7273	7283	7292
72	7302	7312	7322	7332	7342	7351	7361	7371	7381	7390
73	7400	7410	7420	7430	7440	7449	7459	7469	7479	7488
74	7498	7508	7518	7528	7538	7547	7557	7567	7577	7586
75	7596	7606	7616	7626	7635	7645	7655	7664	7674	7683
0.76	7693	7703	7713	7723	7732	7742	7752	7761	7771	7780
77	7790	7800	7810	782U	7829	7839	7849	7858	7868	7877
78	7887	7897	7907	7916	7926	7936	7945	7955	7965	7974
79	7984	7994	8004	8013	8023	8033	8042	8052	8062	8071
80	8081	8091	8101	8110	8120	813u	8139	8149	8159	8168
0.81	8178	8188	8198	8207	8217	8227	8236	8246	8256	8265
82	8275	8285	8295	8304	8314	8324	8333	8343	8353	8362
83	8372	8382	8392	8401	8411	8421	8430	8440	8450	8459
84	8469	8479	8489	8498	8508	8518	8527	8537	8547	8556
85	8566	8575	8585	8594	8604	8614	8623	8633	8643	8652
03	8300	8373	8383	0334	3004	3014	8023	8033	0043	3032
0.86	8662	8671	8681	8690	8700	8710	8719	8729	8739	8748
87	8758	8767	8777	8786	8796	8806	8815	8825	8835	8844
88	8854	8863	8873	8882	8892	8902	8911	8921	8931	8940
89	8950	8959	8969	8978	8988	8998	9007	9017	9027	9036
90	9046	9055	9065	9074	9084	9094	9103	9113	9123	9132
0.91	9142	9151	9161	9170	9180	9190	9199	9209	9219	9228
92	9238	9247	9257	9266	9276	9286	9295	9305	9315	9324
93	9334	9343	9253	9362	9372	9382	9391	9401	9411	9420
94	9430	9439	9449	9458	9468	9477	9487	9496	9506	9515
95	9525	9534	9544	9553	9563	9572	9582	9591	9601	9610
0.96	9620	9629	9639	9648	9658	9667	9677	9686	9696	9705
97	9715	9724	9734	9743	9753	9762	9772	9782	9791	9800
98	9810	9819	9829	9838	9848	9857	9867	9876	9886	9895
99	9905	9914	9924	9933	9943	9952	9962	9971		0.9990
1.00	1.000	9914	9924	1	9943	9952	-	33/1	-	0.3530
1.00	1.000	ı -	-	-	ı -	ı -	_	-	-	-

(cont'd.) d= 0.96

			1			_		0.007	0.008	0.009
1 \ 1		0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.005
IB \	0.000	0.001	0.002	0						
								1		0.004
			0.000	0.0032	0.0042	0.0053	0.0063	0.0073	0.0084	0.0094
0.00	0			136	146	156	167	177	100	198
0.01	0.0104	115	125		250	260	271	281	292	302
2	208	219	229	240	354	364	375	385	396	406
3	312	323	333	344		468	479	489	500	510
4	416	427	337	448	458	572	583	593	604	614
5	520	531	541	552	562	312	303	1		1
1	1		i	1	1	675	686	696	707	717
0.00	624	634	644	655	665	675		799	810	820
0.06	727			758	768	778		903	914	924
7	830			862	872	882	893		1017	1027
8				965	975	985		1006	1120	1130
9	934		1	1068	1078	1088	1099	1109	1120	1
0.10	0.1037	104,	100.		l	1	1	1	1004	1234
	1		1161	1172	1182	1192			1224	
0.11	1140			1275	1285	1295	1306		1327	1337
12	1244	1254				1			1430	1440
13	1347	1357		1	1491			1522	1533	1543
14	1450	1460							1636	1646
15	1553	3 1563	1573	1584	1394	100.	.		1	1 1
	i	1			1,000	1707	1717	1727	1738	1748
0.16	1656	1666				1				1850
17	1758		3 1778	1788						
18							- 1			
		-		1994						
19		-		2096	2107	2117	7 2127	213.	1 2110	
20	1 200	201		l l	1			0000	2250	2260
1	0.00	8 217	8 2188	2198	2209					
0.21	216		- 1							
22		• 1	- 1			3 242				
23			_	- 1		5 252	5 253			
24				-			7 263	7 2647	7 2658	2668
25	257	6 258	6 2330	200			l l			
1	1		ا م م	B 270	8 271	9 272	9 273			
0.26	267				- 1	-		1 285		
27	7 278	0 279			-	- 1		3 295	3 296	
28					_				5 306	
29		4 299			- 1	- 1			7 316	8 3178
30		16 309	6 310	6 311	6 312	1 313	. 01-			1 1
		1	ı	_	_	8 323	8 324	8 325	8 326	
0.3	ı 318	37 319				- 1				0 3380
3			9 330							
3			0 341			_		-		
3.			2 351	2 352						
3			361	3 362	3 363	364	14 365	,	- 55.	-
1 3	- J.S.	-		1	1			55 376	5 377	5 3785
اء ء	R 369	370	04 371	4 372						- 1 - 1
0.3					5 383				-	
3					6 393					
3						37 404				- 1
3							49 41	59 416	9 417	9 4189
4	0 40	98 41	00 T.		_	1	1	1		
1		\	00 1 103	9 423	9 42	39 42	50 420			
0.4	1 41									
	2 43									
	3 44									
	4 45	00 45			::			-		B1 4691
	5 46	01 46	11 463	21 46	31 40	40	"		1	1
1	.	i			31 47	43 47	51 47	61 47	71 97	81 4791
ا ما	0 12	01 47	11 47	21 47	41 47					

0.06 7 8 9	624 727	634	644	655	665	675	68		696 799	707 810	820
7 8 9		634								010	
7 8 9	727	-0-	747	758	768	778	78 89		903	914	924
9		737	851	862	872	882	99		1006	1017	1027
	830	841	954	965	975	985		,0	1109	1120	1130
). 10 L	934	944	1057	1068	1078	1088	109	19	1100	1	
	0.1037	1047	1037	1000	1				1213	1224	1234
	1	}		1172	1182	1192	120	1	1316	1327	1337
0.11	1140	110-	1161	1275	1285	1295	130	٠ ١	1419	1430	1440
12	1244	120-1	1264	1378	1388	1398	14		1522	1533	1543
13	1347	100.	1367	1481	1491	1501	15		1625	1636	1646
14	1450	1460	1470	1584	1594	1604	16	15	1623	1000	1 1
15	1553	1563	1573	1301			1	\	1727	1738	1748
	1 1			1686	1697	1707		17		1840	1850
0.16	1656	1666	1676	1788	1799	1809		19	1829	1943	1954
17	1758	1768	1778		1902	1912		22	1932	2046	2057
18	1860	1871	1881	1891	2005	2015		25	2035	2148	2158
19	1963	1974	1984	1994	2107	2117		27	2137	2140	
20	2066	2076	2086	2096	2101		1	1		00.50	2260
20	1 2000	l l	1	0100	2209	2219		229	2239	2250	2362
0 22	2168	2178	2188	2198	2311	232		331	2341	2352	2464
0.21	2270	2280	2290	2300	2413	2423		433	2443	2454	2566
22	2372	2382	2392	2402	2515	252		535	2545	2556	1
23	2474	2484	2494	2504	2617	262	1	637	2647	2658	2000
24		2586	2596	2606	2017	1 202	1			1	2770
25	1 23.0		1		0710	272	9 2	739	2749	2760	
	2678	2688	2698	2708	2719	283		841	2851	2862	1
0.26	1	2790	280⊍	2810	2821	293	- ;	943	2953	2964	
27		2892	2902	2912	2923	303	-	045	3055	3068	1
28	' ====	2994	3004	3014	3025	313	- 1 -	1147	3157	3168	3 3178
29		3096	3106	3116	3127	313	'		1	1	
30	3086	3030		1		323		3248	3258		
	1 0007	3197	3207	3217	3228		, ,	3350	3360		
0.31		1 1	3309	3319	3330	1	• •	3451	3461	347	
32			3410	3420	3431		• •	3553	3563	3 357	3 3583
33			3512	3522	3532			3654	3664	367	4 3684
34		· 1	3613	3623	3633	3 36	**	300.			
3	5 3593	3003		1			4 =	3755	376	5 377	5 3785
- 1		3704	3714	3724	3734			3856	386	6 387	6 3886
0.3			3815	3825	383		••	3957	396		7 3987
3			3916	3926	393			4058	406	8 407	
3	8 389		4017	4027	7 403		48	4159	416		9 4189
	9 399	• 1	1	4128	8 413	8 41	49	4100	1	1	
4	10 409	9 3100	1	1	1	-		4260	427	0 42	
- 1		9 4209	4219	422			50	4360	1	0 43	
0.4		-	1		0 434		50 150	4460		70 44	
	42 430	-		443				4561	1	71 45	
	43 440		1	453			551 651	4661		71 46	81 469
	44 450				1 464	1 4	931	1001		١	1
1 4	45 460	'- -		1	1	١.	751	4761	47		81 479
1		4711	472	1 473		•• 1 :		4862		72 48	82 489
0.		, ,			2 484	.	852	4962			82 499
	47 480	- 1				-	952	506			82 509
	48 490	- 1 2			32 50	-	052	516	- 1	72 51	82 519
	49 500				32 51	42 5	152	310			
- 1	50 51	02 511	-1								

(cont'd.) 3 = 0.96

											1		1
	0.00	0.0	001 0	0.002	0.003	0.00	0.00)5	0.006	0.007	0.008	0.009	-
β	0.00	-	-		0.5232	0.524	2 0.52	52 0	. 5262	0.5272	0.5282		
0.51	0.520				5331	534	1 53	51	5361	5371	548		1
52	530		311	5321	5431	1		51	5461	5471	5580		
53	540	• 1 -	411	5421	5530	1		50	5560	5570	5680		
54	550		510	5520	5630	1		50	566 0	5670	300		
55	560	0 5	610	5620	3630		-	1			577	5789	9
	1	1	1		5729	573	9 57	49	5759	5769	1	-000	- 1
0.56	570		709	5719	5829	1		49	5859	5869			
57	579		809	5819	5928			48	5958	5968		1	
58	589		908	5918	602			47	6057	6067			
59			007	6017				46	6156	6166	011	0.20	-
60		97 6	106	6116	612	0 1		- 1			627	5 628	5
"		1	- 1		622	5 62	35 62	245	6255				1
0.61	61		205	6215	1	- 1		344	6354		-	- 1 - 10	
62			304	6314		• 1		443	6453				
6:			6403	6413	1	- 1 -		542	6552			- 1	
6.	· 1	93 (502	6512	1	- 1		640	6650	666	0 667	0 000	.
6		92	6601	6611	662	1 00	-				- 1	677	79
1 3	· ·	- 1			671	9 67	29 6	739	6749			_	
0.6	6 66		6700	6709	,	- 1		838	6848				
6		89	6799	6808				937	6946				
6			6898	690				035	704				
6	- 1	86	6996	7000				134	714	3 715	3 71	03 11	"
		85	7095	710	4 71		-			1 -		61 72	71
١.	" "				2 72	20 7	22 7	232	724			-	
0.7	1 7	183	7193	720	- 1	• •		330	733				67
		281	7291	730		1 -		428		7 744		· ·	65
		379	7389	739		_		7526				-	63
		477	7487	749		- 1	010	7624	·	3 764	43 76	53 76	63
		575	7585	759	4 76	04 /				l l		77	61
- 1 '	'			1	_	02 7	712	7722	773		•- 1 -:		59
0.	76 7	673	7683	769	_	-		7820	782	9 78		1	56
		771	7781	779				7917			- 1		54
1		869	7878		1			8015	5 802				152
		966	7976	798			103	8113	3 812	22 81	32 8.	142 81	JJE
		064	8074	808	83 80	193 6	100		1	1 .	0	20 82	249
	"	1		1		191 8	200	8210	0 82				346
lo.	81 3	162	8171		- 1		3297	830	7 83	- 1		500 -	443
١٠.	82	259	8268		• •	-00 ;	3394	840	4 84		1		540
l		3356	8365		-		3491	850	1 85		-	-	637
}	84	3453	8462		1		8588	859	8 86	08 86	17 8	627 8	
1	85	8550	8559	9 85	69 8	3,3	1		1	_	-	724 8	734
1		- 1		-	ه امم	676	8685	869		- I		-	831
lo.	86	B647	865		- 1		8782	879					928
١٠٠	87	8744	875	- 1 - 1	-		8879	888		-	300 j		025
	88	8841	885	· 1	~~ 1	967	8976	898					122
- 1	89	8938	894	' "		064	9073	908	33 90	93 9	102 8	' °	
- 1	90	9035	904	4 90	54 9	-55-			- 1		، ا م	209 6	8219
1						161	9170	918				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9310
ło	.91	9132	914	-		258	9267	927	•••		,		941
	92	9229	923			355	9364	937		- 1			951
l	93	9326	933	, ,		452	9461	947			100		960
1	94	9423	943	- 1	I	548	9558	950	67 9	577 9	587	9596	-55
1	95	9520	9 52	59 9:	539 9	7.740			1	_		9692	970
					635	9644	9654	96	00 1		,,,,,		979
1					n.a. i			~-		769 9	779		080
٥	.96	9616	962	- 1		9740	9750	97			078	0884	
o	.96 97	9616 9712 9809	972	21 9	731	9740 9836	9750 9846	97 98		865	875	9884	

							6354	6364	6374	6384	
-	6295	6304	6314	6324	6334	6344	6453	6463	6473	6483	
62 63	6394	6403	6413	6423	6433	6443	6552	6562	6572	6582	
	6493	6502	6512	6522	6532	6542		6660	6670	6680	
64	6592	6601	6611	6621	6631	6640	6650	8666	00.1		
65	6392	0001		1				6759	6769	6779	
1		6700	6709	6719	6729	6739	6749		6868	6878	
0.66	6690	6799	6808	6818	6828	6838	6848	6858	6966	6976	
67	6789		6907	6917	6927	6937	6946	6956	7065	7075	
68	6888	6898	7006	7015	7025	7035	7045	7055		7173	
69	6986	6996		7114	7124	7134	7143	7153	7163	1113	
70	7085	7095	7104	1114						7271	
1		i		7212	7222	7232	7241	7251	7261		
0.71	7183	7193	7202	7310	7320	7330	7339	7349	7359	7369	
72	7281	7291	7300		7418	7428	7437	7447	7457	7467	
73	7379	7389	7398	7408		7526	7535	7545	7555	7565	
74	7477	7487	7496	7506	7516		7633	7643	7653	7663	
75	7575	7585	7594	7604	7614	7624	1033	, , , ,	1	1	
1 ,3	1		1				7731	7741	7751	7761	
0 76	7673	7683	7692	7702	7712	7722	7829	7839	7849	7859	
0.76	7771	7781	7790	7800	7810	7820		7937	7946	7956	
77	7869	7878	7880	7898	7907	7917	7927	8034	8044	8054	
78		7976	7985	7995	8005	8015	8024		8142	8152	
79	7966	8074	8083	8093	8103	8113	8122	8132	8142	8102	
80	8064	8074	8085	000-	1	l			0020	8249	
1		1 01-1	8181	8191	8200	8210	8220	8229	8239	8346	
0.81	8162	8171	8278	8288	8297	8307	8317	8326	8336	8443	
82	8259	8268		8385	8394	8404	8414	8423	8433		
83	8356	8365	8375	8482	8491	8501	8511	8520	8530	8540	
84	8453	8462	8472	8579	8588	8598	8608	8617	8627	8637	
85	8550	8559	8569	8319	8300	"	1	1		1 1	
	1	1			8685	8695	8705	8714	8724	8734	
0.86	8647	8656	8666	8676		8792		8811	8821	8831	
87	8744	8753	8763	8773		8889		8908	8918	8928	
88	8841	8850	8860	8870		8986		9005	9015	9025	l
89	8938	8947	8957	8967			-	9102	9112	9122	Ĺ
90	9035	9044	9054	9064	9073	9083	9093	1 3232		1 1	
30	1 3000	1			1	1	9190	9199	9209	6219	
0.91	9132	9141	9151	9161		9180			9306	9316	١
	9229	9238	9248	9258		9277			9403	9413	١
92	9326	9335	9345	9355	9364				9500	9510	١
93	9423		9442	9452	9461	9471		1	9596	9606	١
94			9539	9548	9558	9567	7 9577	9587	9390	1 5000	١
95	9520	3329	1 3000		1	1	1		9692	9702	١
1 .	1	0625	9635	9644	9654	966				9798	١
0.96	9616		9731	9740			9 9769			9894	١
97	9712		9827	9836						0.9990	١
98	9809		9923	9932			1 9961	9971	9980	17.9990	١
99	9904		9923	355		1 -	l -	1 -	-	1 -	١
1.00	1,000) -	-	1 -	1	1	1	1			
1	1 .		1	1	1	1					

14. 14.

	(cont'	d.
λ	- 0.97	

								0.00		0.005	0	.006	0.0	07	0.008	0.0	09
B	To	.000	υ.00	1 0	,002	0.0	003	0.00	,							+	.02
1	\backslash	1		- 1					-	.005	2 0	UU62	0.00	73 0	.0083	0.00	96
<u> </u>	4-	-	0.001	1 0	.0021	0.0		0.004	15	15	- 1	165	. 1	76	186 289	1 -	99
0.0		0103	1	4	124	- 1	134		48	25		268	' 1	79	391		01
0.0	2 0.	206	2	17	227	١.	237 340		50	36	0	371	.	184	494	1 5	504
- 1	3	309		20	330		442		53	46		473	٠ .	586	596		506
- 1	4	411		22	437 53		545		55	56	5	57	,	,,,,			- 00
- 1	5	514	5	24	33	•		1	1		- 1	67	7	688	69		708 810
1	- 1			26	63	6	647		57	66 76		77	1	76U	80	•	912
0.		616	1 -	28	73		749		59 161		71	88	1	892	100		U15
- 1	7	718 820	1 .	330	84		851		64		74	98		995	110		117
- 1	8	922		33	94		953 1056	1 .	166	10	76	108	6 1	097		1	
lo.		1025		U35	104	5	1030	1 -		١	\	118	18	199	120		219
١٠	1		1		114	7	1158		168	11		129	, ,	301	131	-	321 424
lo	.11	112	• 1 -	137 239	12		1260		270		80	139	3 \	1404	141		526
1	12	122	J 1 .	342	13		1362	• 1 -	373 475		85	14	96	1506	15		1628
- 1	13	133 143	• 1 -	445	14		1465	' '	577	1 -	87	15	98	1608	10	1	
1	14	153		547	15	57	1567	' 1	•				\	1710	17		1730
	13		- 1		1,6	59	166	: و	679		589	17	02	1812		1	1832
lo	.16	163		649		61	177	1	1881	1 -	791 893		04	1914		24	1934
1	17	174		1751 1853	1	63	187	- 1	1883	' 1 =	995		05	2015	1 01	25	2137
1	18	184		19 54		64	197	-	1985 2087	' -	097	21	07	2117	21	21	
1	19	20	1	2056		66	207	ь	200.	-		1		2219	22	229	2239
Ì	20	"			١٠	ا هي	217	18	2188	- 1 -	198	1 ~	311	2321		331	2341
1	0.21	21		2158	1 -	168 270	228		229	· 1	300	1 =	412	2422	2	432	2442 2544
	22	22		226	1 -	371	231	B1 \	239	~ 7	2402 2503	' ' =	514	2524	• 1 =	534	2646
	23			236	- 1 =	473	24		249	٠, ١	2605		616	2626	5 2	636	20.0
	24		52	256	- 1 -	575	25	85	259	٠ ١ ٠		- 1	\	272	7 2	737	2747
	25	' "	,54		1		26	86	269		27U	' 1 5	717	282	• 1 =	838	2848
	0.26	3 26	556	266	٠ I -	676		87	279		280	9 1 3	818	292	9 2	939	2949 3050
	2	7 2	757	276	' ' '	878	28	88	289	, ,	290 301	~ 1 -	3020	303		040	3151
	2	-	B58	286 296		2979		89	300		311		3121	313	1 :	3141	3131
	2	- 1	959	307		3080	30	90	310	1	01-	1		323		3242	3252
	3	د اه	000	-	- 1	0 :	1 2	191	32	01	321	-	3222	333	,-	3344	3354
	0.3	ı l 3	161	31	• • •	3181 3283	1 -	293	33	03	331		33 24 3425	34		3445	3455
		2 3	262	32		3384	1 -	394	34		341		3526	35		3546	3556 3657
		.~ -	364	33 34		3485	3	495		05	36		3627	36	37	3647	305.
		" !	3465 3566	35		3586	, 3	596	30	1 800	-	-		1 22	38	3748	3758
	1 3	35 3	,500		1		. 1 -	697	37	107	37		3728 3828		38	3848	3858
	0.:		3667		77	3687 3788	' -	3798		808		18	3929		39	3949	3959
		37	3768		78	388	- 1 -	898		808		19	4030		140	4050	
			3868		79	398	9 3	3999		009 110		20	4130	4	140	4150	4100
			3969 4070		080	409	0 '	4100	14	770	-			۱.	241	4251	4261
	١	40	-0.0		- 1		۱	4200	14	210		220	4231 4332		342	4352	4362
ŧ	lo-	41	4170		180	419	- 1	4301	14	311		321	4432		442	4452	
	١.	42	4271		281 382	439	- 1	4402		412		422 523	453	3 4	543	4553	
	1	43	4372		482	449		4502		151 2 1613		623	463		643	465	3 - 3000
	1	44	4472 4573		583	459	3	4603	- 11	1013	1			٠١.	744	475	4 4764
	1	45	40.0					4703	١.	4713		723	473	• 1	1845	485	5 4865
ú	lo	.46	4673	'	1683	46		4804	1	4814		824	483	~ 1	4945	495	
	١	47	4774	1	4784 4885	48		490		4915		1925 5025	503	- 1	5045	505	5 5065

0. \\ 0. \\ 9. \\ 93 \\ 93 \\ 94 \\ 95 \\ 96 \\ 6 \\ 6 \\ 96

					352					100 T	dealer man room w	Marine Marine Section	and the second section of the		7 1815
	14		34 14	145 1	455	1362		373	1 13		1 290 1393	-	301	1311	1321
	15	15	36 15		557	1465 1567		475			1496		404 506	1414	1424
- 1	0.16	1		1		1 30 /	1 1:	577	15	87	1598		508	1516	1526
- 1	17	16		49 1	659	1669	1		l	- 1		1 **	308	1618	1628
- 1	18	17		51 1		1771	,	79		89	1700	1 12	710		
- 1	19	184	- 1	53 14		1873	,	381	17	91 1	802			1720	1730
- 1	20	194	- 1	54 19	-17	1974		83	18	93 1	904			1822	1832
- 1	20	204	5 20	56 20		2076		85	199	95 2	005	20	- 1	1924	1934
le	21	20.	-1 -	- 1		.076	20	87	209		107	21		2025	2035
- 1	22	214 224		8 21	68 2	2178	1 2	aa		1	-		- 1	2127	2137
- 1	23	235		0 22		280	21		219		209	22	14 2	229	
- 1	24	245	_		71 2	381	239		230		311	232			2239
- 1	25	255	- ~40	- 1	73 2	483	249		240	-	112	242	: -	331 432	2341
- 1		233	4 256	5 25		585	259		250	- ,	14	252		534	2442
U	. 26 l	2656	: 000	_	- 1		239	'5	2 60.	5 26	16	262	- , -	536	2544
- 1	27	2757		,		686	269	2		1	- 1		- -	336	2646
	28	2858	,		77 2	787	279		2707		17	272	7 2	737	0=
	29	2959	, 2000	1 -01	8 2	388	289	- 1	2808		18	282	- 1	38	2747
- 1	30	3060	1 200	,,		89	300	-	2909	,		2929	-	39	2848
- 1	- 1	5000	3070	308	0 30	90	310	- 1	3010	, 00,		3030		40	2949
0.	31	3161	3171	1 _	- 1	- 1	-10	•	3111	31:	21	3131	31		3050
- 1	32	3262	3273	1 213	- - 1	91	3201		3212	1			"	••	3151
- 1	33	3364	3374	,		93	3303		3313	,		3232		42	3252
	34	3465	3475	338	- 1 00		3404	' '	3415	332	,	3334	33		3354
- -	35	3566	3576	3485	34	95	3505		3516	342		3435	344		3455
- 1	ı		1 3376	3586	359	96	3606	, ,	617	352	- 1	3536	354	-	3556
0.3		3667	3677	2000	. 1	- 1		1 "	.017	362	7	3637	364		3657
	7	3768	3778	3687 3788	1 505		3707	1 3	718	270				١,	3037
		3868	3878	3888	1 5.5	-	3808		818	372		3738	374	8 / 3	3758
	9	3969	3979	3989	1 003		3908		919	3929		888	384		3858
1 4	0	4070	4080	4090	399		4009		020	4030		939	394	9 3	959
l				1090	410	o .	4110		120	4130		040	405		060
0.4		1170	4180	4190	1	_		1		1.130	' 4	140	4150		160
4	_ 1 '	1271	4281	4291	420	, ,	1210	42	22 U	4231	١.		1		
4:		1372	4382	4392	430		311	43	21	4332		241	4251		261
44		472	4482	4492	4402		412		22	4432		342	4352	4:	362
45	1 4	573	4583	4593	4502		512	45	23	4533		142	4452	4.	462
0.46	1.	_ [- 1	.055	4603	4	613	46	23	4633		43	4553	45	563
		673	4683	4693	4703	1.			- 1		30	43	4653	46	663
47 48		774	4784	4794	4804	, -	713	47		4734	100	44		1	- 1
49		875	4885	4895	4905		814	482		4835		45	4754		64
50	lo 2	975	4985	4995	5005		915	492		4935	49		4855		65
50	0.50	775	5085	5095	5105		015	502		5035	50		4955	49	
	l.	- 1	- 1	- 1	0103	121	115	512	5	5135	51		5055	50	
						- 1	- 1		- 1		1	-	5155	516	65
											1	- 1		I	1

(cont'd.) $\partial = 0.97$

										1
	0.000	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
' 🖊 🛘	0.000	0.001								
$-\lambda$					5015	U.5225	U.5235	0.5245	U.5255	U.5265
.51	0.5175	U.5185	0.5195	0.5205	0.5215		5335	5345	5355	5365
52	5275	5285	5295	5305	5315	5325		5445	5455	5465
	5375	5385	5395	5405	5415	5425	5435	5545	5555	5565
53		5485	5495	5505	5515	5525	5535			5664
54	5475		5594	5604	5614	5624	5634	5644	5054	3004
55	5575	5584	3354	300.		1		1		
	l			5.700	5713	5723	5733	5743	5753	5763
. 56	5674	5683	5693	5703		5822	5832	5842	5852	
57	5773	5782	5792	5802	5812	1		5942	5952	5962
58	5872	5882	5892	5902	5912	5922	1 - 1 - 1 - 1	6041	6051	6061
	5972	5981	5991	6001	6011	6021		1	6150	6160
59		6080		6100	6110	6120	6130	6140	0150	0.20
60	6071	0080	0030	1		1		1		caco
	1	1		6200	6210	6220	6230	6240		
0.61	6170	6180		1		1 777.	1	6339	6349	6359
62	6270	6279	6289	6299	6309			6438		6458
63	6369	6378	6388	6398			1	6537		6557
	6468	6477		6497	6507					
64		6576		1	6606	6616	6626	6637	0041	000.
65	6567	6576	, 0500	1		1	1	1		
	1	1		CCOE	6705	6715	6725	6735	6745	
0.66	6666	6675				1			6844	
67		6774	6784							6953
			3 6883	6893				1		
68		·	* 1		7002					
69					1	711	7121	7131	714	1101
70	7062	707	1 7007	.	.	1				-050
	1	1			7200	7210	722	7230	724	
0.71	7161	717				' I ii	- 1 11.		733	7349
72			9 7279				- 1			B 7448
			8 7378	3 738				·		
73			- 1		7 749			`		
74					759	6 760	6 761	762	103	3 1045
75	755	7 756	6 / /3/			- 1	1	1	1	
	1	1	l		5 769	5 770	5 7714	772		
0.76	765	5 766							3 783	3 7843
7		4 776	4 777			• 1	- 1	- 1		2 7942
7			3 787	3 788						0 8040
		-			1 799				- 1	
7		- 111	- 1		9 808	9 809	9 810	9 811	0 012	0100
8	0 805	υ 806	0 800	3 00.	-	1	1	1		- 0000
1	1	1		- 017	7 818	7 819	7 820	7 821		
0.8	1 814	8 815							4 832	4 8334
8	- 1		6 826	5 827		-				2 8432
	_			3 837						
8				1 847	1 848	1 849		-		
8		-			9 857	9 858	39 859	9 860	18 00	0020
8	5 854	0 855	00 000	,5 000		- 1	•	1	1	
1	1	1	1	_	7 867	7 868	87 869	7 870	6 87	
0.8	6 863	8 864	18 865				• • • • • • • • • • • • • • • • • • • •		3 88	13 8823
			15 875	5 876						12 8921
				3 886	3 887		- 1 :::	-	,_ ,	
					31 897	70 89			- 1	
8	9 893			- 1 :::		58 90°	78 908	37 909	97 91	0/ 5110
1 9	0 902	90	39 904	9 30.	,0	-	1	1	1	
1	1	1	1		رد ا د	65 91	75 918	34 919	94 92	
0.9	1 912	26 91				- 1 -			91 93	01 9310
1	-		33 92			-	- 1 :=:	-		
	-			40 93	50 93					
	, ,		1		47 94	57 94			-	
1 9	4 94				•• 1 ==	- 1	63 95	73 95	83 9 5	92 9602
0	5 95	15 95	25 95	39 93			ı	ı	1	
Ι,		1	1			e, 0e	60 96	70 96	80 96	89 9699
10.	96	12 96	22 96			1	00 00			86 9796
0.9			19 97		38 97			- 1		83 9893
	97 97				35 98	45 98	54 98			90 0000
	98 98	იგ 1 98	116 1 98	23 : 23	33 33		51 00			

							6220	6230	6240	6250	6359	
Agency agencies	~ 1 TA	618	20 6	190	6200	6210	6319	6329	6339	6349	6458	
0.61	6170	627	JU -	289	6299	6309		6428	6438	6445		
62	6270	637		388	6398	6408	6418	6527	6537	6547	6557	
63	6369			3487	6497	6507	9517		6637	6647	6657	
64	6468	641	•••		6596	6606	6616	6626	003.	1	1 i	
65	6567	65	76 6	5586	0000	- 1				6745	6755	
		1	1	_ 1	2005	6705	6715	6725	6735	6844	6854	
0.66	6666	66		6685	6695	6804	6814	6824	6834		6953	
67	6765	67	74 0	6784	6794		6913	6923	6933		7052	
	6864	68		6883	6893	6903	7012	7022	7032	7042	7151	
68		69		6982	6992	7002		7121	7131	7141	7131	
69	6963			7081	7091	7101	7111	1.22		1		
70	7062	1 10	" 1		1			7220	7230	7240	7250	
1	1	1		7180	7190	7200	7210	1			7349	
0.71	7161		70		7289	7300	7309	7319		1		
72	7260		269	7279	7388	7398	7408	7418		1		
73	7359	73	368	7378		7497	7507	7517				
74	7458		167	7377	7487	7596	7606	7615	7625	1633		
75	7557		566	7576	7586	1390		i	1		7744	
13	1		-				7705	7714	7724			
	1 700 6	. 7	665	7675	7685	7695	7804	7813	782	7833	1	
0.76		-	764	7774	7784	7794		1		2 7932		
77		- 1	863	7873	7883	7893	7903			U 8030		
78		· 1		7971	7981	7991	8001	1	1		8138	
79		- 1	962	8069	8079	8089	8099	810	, 011	Ĭ		
80) 805	טן צ	1060	8003		1	1		821	6 822	6 8236	
1	1	1	_ 1	0167	8177	8187	8197	820	• 1			
0.8	1 814		3158	8167	8275	1	8295	830	-		0.400	
8:		6 8	3256	8265		1	8393	840		1 :		l
8:			3354	8363	8373	1	8491		1 851	V	0000	ĺ
			8452	8461	8471				9 860	8 861	8 0020	
8			8550	8559	8569	8579	, 000	1		1	6 8726	
8	5 637	• •			1		868	7 869	7 870	6 871		١
- 1	. 1		8648	8657	8667		1			J3 881		1
0.8		J J	8745	8755	876			•		02 891	2 8921	1
8	7 87	- I		8853	8863	3 8872		- 1	-		0 9019	1
8	8 88	-	8843	8951		1 8970	898	•		1	9116	
1 8	9 89	- 1	8941				907	8 908	31 30	.	l l	1
9	0 90	29	9039	9049	1 330	-	1	1	16 1	94 92	9213	1
	1			1	915	5 916	5 917	5 91				١
0.9	ar 91	26	9136	9146				2 92				1
	92 92	23	9233	9243		- 1		9 93		05		١
		20	9330	9340	1		·			00	J	١
	30 17	18	9428	9437					73 95	83 95	92 3002	١
1			9525	9534	954	4 955	2 336	,5 50		1	5600	1
1	95 95	515	,,,,,	1	1		- 000	an 96	70 96		89 9699	١
1	l .		9622	963	1 964	1 965		- 1	67 97		86 9796	١
	30 -	512	9719	972		8 974		• 1 -		374 98	83 9893	1
		709		982				37		99	80 9990	1
- 1		806	9816	1	· 1		2 99	21 / 25	71 99		. -	١
l	99 9	903	9913	992	- -	_	۱ -	- 1 -	- 1	١ ١	1	١
h .	00 1.	000	-	-	! -	1	1	1	1			لــ
١٠.	· 1	- 1		1	1							

APPENDIX 2

PROF. DROZDOV'S TABLES FOR SOLVING PROBLEMS OF INTERNAL BALLISTICS

Table I - Maximum Values of Pressure pm

	Δ		1		1					0.18	0.19	0.20	
		0.07	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.10	0.15	0.2	
В		0.07	0.11	0.22							 		
										1200	1370	1439	
		505	844	900	965	1036	1100	1165	1228	1300	1320	1389	
	0.70	595	826	880	940	1006	1065	1125	1190	1255	1275	1339	
	0.75	587	809	860	915	977	1030	1090	1152	1210	1230	1289	
1	0.80	579	792	840	890	949	1000	1060	1115	1170	1185	1243	
- 1	0.85	572	775	820	870	922	975	1030	1079	1130	1100	12.0	
- 1	0.90	565	113	0						1005	1145	1199	
1	- 05	558	758	800	850	898	950	1000	1045	1095	1105	1157	
	0.95	551	741	780	830	874	925	970	1013	1025	1070	1116	
- 1	1.00	544	724	760	810	850	900	940	982	995	1035	1075	
1	1.05		708	743	790	827	875	910	951	965	1005	1048	
- 1	1.10	537	692	725	770	802	850	880	926	963	1005	12020	
	1.15	530	032	1	1	ĺ	1	1	02	940	980	1018	
- 1		523	676	710	750	784	820	855	903	915	955	990	ĺ
- 1	1.20	516	661	695	730	764	800	835	880	890	1	967	١
- 1	1.25	509	646	680	710	746	780	820	859			946	1
i	1.30		634	1	700	730	765	805	840	870	1	925	١
İ	1.35	502		I	685	715	750	790	822	845	850	320	١
- 1	1.40	495	023				1		205	830	870	906	1
ı		400	612	640	675	702	745	775	805			887	1
- 1	1.45	488		1	660	690	730	760	788	818		870	
- 1	1.50	475		1			715	745	775	788		853	1
- 1	1.55	469					700	730	762			838	١
- 1	1.60	464					690	715	749	773	, 500	000	1
- 1	1.65	107	, , , , , ,		1	1	1		725	760	785	823	1
- 1		459	570	590	620	649		705					
- 1	1.70	454				641		695			·	1	
- 1	1.75	449		- 1						1			
- 1	1.80	44					650				_	1	
1	1.85	442	- 1			617	640	665	694	1 12	, , , ,		١
	1.90	1 33"	. ".		1	1		1		710	0 735	757	
1	1.95	439	53	7 565	5 590						·		
- 1	2.00	43											١١
- 1	2.05	43							- 1	- 1 -			<i>7</i> \
1	2.10	43	- 1		57					- 1			3
- 1	2.15	42			5 56	B 584	595	615	, 04.	, , ,,			١
ı	2.15		`	1	1	l		610	630	6 66	0 68	5 709	.
ı	2.20	42	4 51							- 1		5 700	0
1	2.25	42										5 691	1
- 1	2.30	41		3 53									3
1	2.35	41						-					5
- 1	2.40	41		5 52	0 54	C 55	4 57	35	0 0.	" "		1	
- 1	2.30			1	۱	- - 4	g 56	5 58	5 60	5 62	5 64	5 66	7
- 1	2.45	41	3 49				-		- 1			0 65	9
1	2.50	41						- 1	- 1		5 63		
1	2.55	40					_		- 1		10 63		
1	2.60	40					- 1	-	-	-	5 62	4 64	0
1	2.65	40	5 4	30 49	5 51	5 52	ور ا م	٦ ٣	- -		1		
- 1		1				0 52	3 54	0 56	0 58	0 6	00 61		
	2.70	40		77 49							95 61		
1	2.75	40		74 48							90 60		
	2.80	40	- 1	71 48		00 51		-	7 56	6 5	85 60	0 61	
	2.85	39	9 4	68 47	9 4	51		عان		2 5	90 50	25 61	1
			4 ا	0 E									

														S-14-50				of Address of the Add	-	-
					φ,	-	910	01	17	87		910		51	995		035 005	107		
	1.10		537	708	1 -	43	790 770		27	850		880	1 9	926	965	1.	003	1		
	1.15	1	530	692	7	25	770	"			- 1		١.	903	940	١	980	101		
	2000	1			. \ -	10	750	7	84	820	•	855		880	915		955	99	1	
	1.20	١	523	676		95	730	7	64	800		835		859	890		930	96		
1	1.25	1	516	66		80	710		46	78		820 805		840	870	1	910	94		
ì	1.30	-	509	63	1 3	65	700		30	76		790	- 1	822	845	•	890	92	5	
١	1.35	ı	502 495	62	- 1	550	685	7	15	75	١ ٥	150	- 1			- 1	0	90		
١	1.40	- 1	493	02	-	-		١ _		74	5	775	,	805	830		870	88		
١	. 45	- 1	488	61		640	675	1 :	02 90	73		760		788	818		850 830		70	
١	1.45 1.50	- 1	481	60	1 4	630	660	1 1	579	71		745	5	775	803		815	1 -	53	
١	1.55	- 1	475	59	- 1	620	650	1 1	669	70		730		762	781		800	1	38	
	1.60	- 1	469	58	- 1	610	640		359	69	0	715	5	749	77	•	000			
	1.65		464	57	7	600	630	' `		1	1		_	735	76	ا ه	785	8	23	
	1	- 1		۱		59 0	62	٠ ا د	649		30	70		725	75		775	, 8	09	
	1.70	- 1	459		3	585	61) l	641		70	69		715	74		765		95	
	1.75	- 1	454		56	580	60	5	633		60	67		704	73	0	750	' 1 -	81	
	1.80	l	449 445	١ -	49	575	60	0	625		50	66		694	72	0	74	5 7	68	
	1.85	- 1	442		43	570	59	5	617	Ь	40	1 00	١ ١					- -	57	
	1.90	1	77-				1	. 1	610	. 6	30	65	0	684	71		73	- 1	47	
	1.95		439	5	37	565	59		603		20	64	5	674		00	71	- 1	37	
	2.00		435	, 5	32	560	58		596		10	63		664	1	30 30	70	· 1 .	727	
	2.05		433		27	555	57		590	1	00	62		654	1 -	70	69		718	
	2.10		430	٠ ١ .	22	550 545		8	584	1:	595	61	15	645		, 0		1		
	2.15		42	7 :	17	343	1			- 1		1		636	1 6	6 0	68		709	
	1		١		512	540	5	52	578	1	590		10 0 5	628	1 -	50	67		700	
	2.20		42	• 1	507	535		56	572	1	585	1 -	00	620		40	66	,	691	
	2.25		42	- 1	503	530		50	566	' 1	580 575		95	61:	1 -	35	6	, ,	683 675	
	2.30		41	- 1	499	535		45	560		570	_	90	610	6 ر	30	6	50	6/3	
	2.35		41		495	520) 5	40	554	•	310	1		1	1		1	45	667	
	2.40			_		1	. .	2 .	548	4	565	5	85	60	- 1	25	1 -	40	659	
	2.45		41	3	492	51	- 1	35 30	542		560	5	80	60	~ :	320 315	1 -	35	652	
	2.50		43	1	489	510	· 1 .	25	53		555		575	59	- 1	510	1 -	30	646	
	2.5			9	486	50	- 1	520	53		550		570	59 58	~	505	1 -	24	640	
	2.6			7	483	49	٠ ١	515	52	8	545	• •	565	30	J			1	1	
	2.6	5	4	05	480	1 35	_		1	- 1		. 1 .	560	58	10	600) 6	18	634	
	l l		١.	ا ي	477	49	0	510	52		540	- 1	555 555	1		595		12	628	
	2.7			03	474	48	5	5 05	52		533	- 1	550	1		590		06	622	
	2.7			01	471	48	12	500	51		530 521	- 1	547		66	585	- 1 :	00	616	
	2.8			99	468	47		497	51		52	• 1	544		52	580	0 3	595	011	
	2.8			98	465	47	76	494	1 3,			•		١.		e ~ :	_	590	606	
	2.9		1			١	1	492	50	80	52	2	541		58	57 57	٠ ١	580	601	
	2.9	5		97	462		73	490		06	52	0	538	3 5	55	31	٦		اا	
	3.0		1:	96	459	4	′	-250			L			-+-	-+		-			
	1						-+		1				. 69:	26 . 7	111	. 72	80 .	7425	1.7574	
			2	3453	. 554	9 .5	900	621	4 6	487	1.67	127	. 03	٠. ا					11	1
	(1 -	z ₀)	- I ··	, 400		\bot					_									

Table I

<u> </u>				T							1	1
В		0.20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	υ.28	0.29	0.30
-							1017	1900	1975	2060	2145	2230
1	0.70	1439	1520	1595	1670	1745	1817		1895	1975	2055	2140
	0.75	1389	1460	1525	1595	1670	1741	1820	1815	1890	1965	2050
1	0.80	1339	1405	1470	1535	1600	1666		1735	1805	1880	1960
1	0.85	1289	1350	1410	1475	1535	1598	1665	1660	1720	1800	1880
	0.90	1243	1295	1350	1415	1470	1534	1595	1880	1120		
	0.50	12.0	1						1600	1660	1725	1800
١	0.95	1199	1250	1305	1365	1420	1480		1540	1600	1660	1725
-	1.00	1157	1210	1265	1320	1370	1429	1490	1485	1545	1605	1665
1	1.05	1116	1170	1220	1275	1325	1383		1440	1495	1550	1610
	1.10	1075	1130	1180	1230	1280	1335	1	1395	1445	1500	1560
- 1	1.15	1048	1100	1145	1195	1245	1300	1350	1333	1		1
1	1.10	1			1		1,000	1305	1350	1400	1450	1515
- 1	1.20	1018	1065	1110	1160	1210	1260	1	1315	1365	1415	1475
- 1	1.25	990	1035	1080	1125	1175	1225	1	1280	1330	1380	1435
- 1	1.30	967	1010	1055	1095	1140			1245	1295	1345	1395
- 1	1.35	946	990	1030	1070	1110			1210	1260	1310	1355
	1.40	925	965	1005	1045	1085	1126	1170	12.0	1	1	1
- 1	- • • •		1			1,000	1097	1140	1180	1230	1275	1315
- 1	1.45	906	950	985	1020	1060	1			1200	1240	1285
- 1	1.50	887	930	965	1000	1035	1	_	1	1170	1210	1250
- 1	1.55	870	910	945	980	1010	1			1140	1180	1220
	1.60	853		925	955	988	_	_	1	1110	1150	1195
	1.65	838	870	900	930	965	100	, 1000		1		1 1
- 1		1			915	945	98	1015	1050	1085	1120	1170
	1.70	823		880	900	935				1060	1100	1150
- 1	1.75	809		865	880	915				1040	1080	1125
	1.80	795	1	850	865	900	1 .	- 1 .		1020		1105
- 1	1.85	781			850	88			975	1005	1040	1080
- 1	1.90	768	795	820	830	00.						1,000
- 1		1	7 782	810	835	870	90					1060
- 1	1.95	757			825	85	7 88					1020
1	2.00	737				84	5 87					1000
- 1	2.05	727				830						1 1
	2.10 2.15	718			1	81	5 84	0 87	900	925	933	300
1	2.13	'-'		1				5 85	5 885	910	940	965
:	2.20	709	9 730					• 1				950
- 1	2.25	700	0 722									935
- 1	2.30	69					-	_	- 1			920
- 1	2.35	68						- 1	- 1 =		875	905
- 1	2.40	67	5 693	715	735	' '3	' ''	" "			1	
			7 687	7 707	728	74	3 77	2 79				
	2.45	66						4 78				
	2.50	65						56 77				
	2.55	65					5 7	18 77				
	2.60	64	- 1					10 76	2 78	2 80	4 826	850
	2.65	"	_ ""			.	_ _	32 75	4 77	6 79	6 81	7 840
	2.70	63						32 75 26 74	- 1		- 1	
	2.75	62						20 74		-		0 820
	2.80	62					-	14 73	_		2 79	4 815
	2.85	61						06 72		- 1 -		7 810
	2.90	61	1 62	9 64	B 66	' 6	, ,	۰۰ ا ۰۰	~ · ·		1	
	1	1		4 64	2 66	0 6	78 6	98 7				
	2.95	60							4 73	4 75	5 77	6 800
	3.00	60	1 02	<u> </u>								

Sanitized Copy Approved for Release	2010/10/29 :	: CIA-RDP81-01043R001100040001-	-0

								2020	1000	1410	1413
	957	1010	1055	1095	1140	1185	1230		1330	1380	1435
1.35	946		1030	1070	1110	1157	1200	1245	1295	1345	1395
1.40	925		1005	1045	1085	1126	1170	1210	1260	1310	1355
1.40	923	303	1005	1010	1000				I	l	1
	000	950	985	1020	1060	1097	1140	1180	1230	1275	1315
1.45	906				1035	1070	1110		1200	1240	1285
1.50	887	930	965	1000				1125	1170	1210	1250
1.55	870	910	945	980	1010	1046	1085		1140	1180	1220
1.60	853	890	925	955	988	1023	1060	1100			1195
1.65	838	870	900	930	965	1000	1035	1075	1110	1150	1193
	1	1	1	i	1	1	ì	i	_		
1.70	823	850	880	915	945	980	1015	1050	1085	1120	1170
1.75	809	830	865	900	935	965	995	1030	1060	1100	1150
1.80	795	820	850	880	915	943	975	1010	1040	1080	1125
1.85	781	805	835	865	900	930	960	990	1020	1060	1105
	768	795	820	850	885	915	945	975	1005	1040	1080
1.90	100	193	020	630	665	3.0	0.0				1
		700		835	870	900	930	960	990	1020	1060
1.95	757	782	810			887	915	945	975	1005	1040
2.00	747	772	797	825	857			930	960	990	1020
2.05	737	762	787	815	845	875	900			975	1000
2.10	727	750	775	800	830	855	885	915	945		
2.15	718	740	765	790	815	840	870	900	925	955	980
		İ				l					1
2.20	709	730	750	775	80	825	855	885	910	940	965
2.25	700	722	740	765	790	815	842	870	895	920	950
2.30	691	713	730	756	779	804	829	854	879	905	935
2.35	683	703	723	747	767	793	816	840	865	890	920
	675	695	715	735	757	783	804	829	850	875	905
2.40	6/3	093	113	133	,,,,	100					
	200	607	707	728	743	772	794	816	840	865	890
2.45	667	687			737	764	786	811	831	855	880
2.50	659	680	700	719			778	800	822	845	870
2.55	6 52	672	692	712	731	756			813	835	860
2.60	646	665	685	705	725	748	770	790			850
2.65	640	658	678	698	719	740	762	782	804	826	830
				l	l	1	l _				0.40
2.70	634	652	672	691	713	732	754	776	796	817	840
2.75	628	646	666	686	706	726	747	768	788	808	830
2.80	622	640	660	680	700	720	740	760	780	800	820
2.85	616	635	654	647	694	714	733	754	772	794	815
2.90	611	629	648	667	686	706	726	746	766	787	810
2.90	911	023	070	""	000	1	1	1		1	
0.05	coc	624	642	660	678	698	718	739	760	781	805
2.95	606	620	638	656	674	694	714	734	755	776	800
3.00	601	620	638	0.30	074	034	1	1		. , •	- / -
			<u> </u>		 	+		+	 	 	\vdash
		7000	. 7799	. 7903	.8003	.8100	.8184	8260	.8330	.8391	.8446
$(1 - z_0)^2$. 7571	.7688	1. / /99	1. 1903	1.8003	1.0100	1.0107	1.0200	1.0000	1	
1	1	l .	1	i	1	l	1	1		<u> </u>	

Table I

0.30	K					T				ì	1		1
0.70	1							0.25	0.26	0 37	0.38	0.39	0.40
0.70	В		0.30	0.31	0.32	0.33	0.34	0.33	0.36	0.31	0.50		
0.70	-												2010
0.75	i	0.70	2230	2320	2415	2510 -	2605	2700	2800				
0.80							2485	2545	2655	2765			
0.85	- 1							2460	2545	2635	2725		
0.90	- 1							2355	2435	2515	2600		
0.90	- 1									2390	2470	2550	2640
1.00	- 1	0.90	1880	1933	2030	2100						1	i
1.00	- 1			1070	10.00	2005	2070	2135	2200	2270	2350	2430	
1.05	- 1									2180	2250	2320	
1.05	- 1				1						2165	2230	2300
1.15	- 1										2086	2150	2215
1.15	- 1							-			2010	2080	2145
1.26	١	1.15	1560	1610	1616	1710	1770	1030	.050				
1.25	1				116	1665	1720	1270	1830	1885	1940	2010	2060
1.25	١											1930	2000
1.30	- 1												1930
1.35										1			
1.40	- 1												
1.45	- 1	1.40	1355	1400	1445	1490	1530	1200	1020	1010			ì
1.45	1		1			1 4 5 12	1405	15.40	1580	1625	1670	1710	1750
1.55	- 1	1.45											
1.55	- 1	1.50	1285										
1.60	- 1	1.55											
1.65		1.60	1220	1260									
1.70	- 1	1.65	1195	1225	1255	1305	1340	1380	1420	1460	1300	1040	1000
1.70	- 1		İ				1005	1215	1295	1425	1465	1510	1545
1.75 1150 1145 1170 1205 1235 1275 1315 1385 1385 1445 1475 1.85 1105 1125 1145 1180 1205 1240 1280 1320 1350 1410 1445 1.95 1060 1080 1100 1130 1165 1190 1250 1290 1320 1375 1415 2.00 1040 1060 1080 1110 1145 1175 1210 1250 1290 1320 1360 1340 1390 2.00 1040 1060 1090 1125 1155 1190 1230 1260 1290 1330 2.10 1000 1020 1040 1070 1105 1135 1170 1210 1240 1270 1310 2.15 980 1000 1020 1050 1085 1115 1150 1210 1240 1270 1310 2.25 <td< th=""><th>- 1</th><th>1.70</th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	- 1	1.70		1									
1.80 1125 1145 1170 1205 1230 1280 1320 1350 1410 1445 1.90 1080 1100 1120 1150 1185 1215 1250 1290 1320 1375 1415 1.95 1060 1080 1100 1130 1165 1190 1230 1265 1300 1340 1390 2.00 1040 1060 1080 1110 1145 1175 1210 1250 1280 1320 1360 2.05 1020 1040 1060 1090 1125 1155 1190 1230 1260 1290 1330 2.10 1000 1020 1040 1070 1105 1155 1190 1230 1260 1290 1330 2.10 1000 1020 1040 1070 1105 1155 1190 1230 1260 1290 1330 2.10 965 985 1005 1035 1065 1100 1130 1160 1210 1220 1250	- 1	1.75											
1.85 1105 1125 1120 1150 1185 1215 1250 1290 1320 1375 1415 1.95 1060 1080 1100 1130 1165 1290 1230 1265 1300 1340 1390 2.00 1040 1060 1080 1110 1145 1175 1210 1250 1280 1340 1390 2.05 1020 1040 1060 1090 1125 1155 1190 1230 1260 1290 1330 2.10 1000 1020 1040 1070 1105 1135 1170 1210 1240 1270 1310 2.15 980 1000 1020 1050 1085 1115 1150 1190 1220 1250 1285 2.20 965 985 1005 1035 1065 1100 1130 1165 1200 1230 1265 2.25 950 97	- 1	1.80	1125	1145									
1.90		1.85	1105	1125									
1.95	- 1	1.90	1080	1100	1120	1150	1185	1215	1250	1290	1320	1313	1410
1.95	- 1		1	1				1100	1220	1265	1300	1340	1390
2.00	- 1	1.95											
2.05	- 1	2.00											
2.10	1	2.05	1020										
2.15 980 1000 1020 1035 1065 1110 1130 1165 1200 1230 1265 2.25 950 970 990 1020 1050 1080 1110 1140 1175 1210 1240 2.30 935 955 975 1000 1030 1060 1090 1120 1155 1190 1220 2.35 920 940 960 980 1010 1040 1070 1100 1135 1170 1200 2.40 905 925 945 965 995 1030 1050 1080 1115 1150 1200 2.45 890 910 930 950 980 1005 1030 1060 1095 1130 1160 2.50 880 900 920 940 965 990 1015 1045 1080 1110 1140 2.55 870 890 910 </th <th>- 1</th> <th>2.10</th> <th>1000</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	- 1	2.10	1000										
2.20 965 985 1003 1033 1080 1110 1140 1175 1210 1240 2.25 950 955 975 1000 1030 1060 1090 1120 1155 1190 1220 2.35 920 940 960 980 1010 1040 1070 1100 1135 1170 1200 2.40 905 925 945 965 995 1030 1050 1080 1115 1170 1200 2.45 890 910 930 950 980 1005 1030 1060 1095 1130 1160 2.50 880 900 920 940 965 990 1015 1045 1080 1110 1140 2.55 870 890 910 930 955 980 1005 1030 1065 1095 1125 2.60 860 880 900 925		2.15	980	1000	1020	1050	1085	1115	1130	1130	1220	1230	1200
2.20 965 985 1003 1033 1050 1080 1110 1175 1210 1240 2.25 935 955 975 1000 1030 1060 1090 1120 1155 1190 1220 2.35 920 940 960 980 1010 1040 1070 1100 1135 1170 1200 2.40 905 925 945 965 995 1030 1050 1080 1115 1170 1200 2.45 890 910 930 950 980 1005 1030 1060 1095 1130 1160 2.50 880 900 920 940 965 990 1015 1045 1080 1110 1140 2.55 870 890 910 930 955 980 1005 1030 1065 1095 1125 2.60 860 880 900 925	- 1				1,005	1,025	1065	1100	1130	1165	1200	1230	1265
2.25 930 975 975 1000 1030 1060 1090 1120 1155 1190 1220 2.35 920 940 960 980 1010 1040 1070 1135 1170 1200 2.40 905 925 945 965 995 1030 1050 1080 1115 1150 1180 2.45 890 910 930 950 980 1005 1030 1060 1095 1130 1160 2.50 880 900 920 940 965 990 1015 1045 1080 1110 1140 2.55 870 890 910 930 955 980 1005 1030 1065 1095 1120 2.60 860 880 900 920 945 970 995 1020 1050 1080 1110 2.70 840 860 880 900	1								1		1175	1210	1240
2.30 935 940 960 980 1010 1040 1070 1135 1170 1200 2.35 920 940 965 995 1030 1050 1080 1115 1150 1180 2.45 890 910 930 950 980 1005 1030 1060 1095 1130 1160 2.50 880 900 920 940 965 990 1015 1045 1080 1110 1140 2.55 870 890 910 930 955 980 1005 1030 1065 1095 1125 2.60 860 880 900 920 945 970 995 1020 1050 1080 1110 2.65 850 870 890 910 935 960 985 1010 1035 1065 1095 2.70 840 860 880 900 925 <t< th=""><th>- 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1155</th><th>1190</th><th>1220</th></t<>	- 1										1155	1190	1220
2.35 920 940 965 965 995 1030 1050 1080 1115 1150 1180 2.45 890 910 930 950 980 1005 1030 1060 1095 1130 1160 2.50 880 900 920 940 965 990 1015 1045 1080 1110 1140 2.55 870 890 910 930 955 980 1005 1030 1065 1095 1125 2.60 860 880 900 920 945 970 995 1020 1050 1080 1110 2.65 850 870 890 910 935 960 985 1010 1035 1065 1095 1125 2.70 840 860 880 900 925 950 975 1000 1025 1050 1080 2.75 830 850 <td< th=""><th>- 1</th><th>2.30</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	- 1	2.30											
2.40 905 925 945 965 980 1005 1030 1060 1095 1130 1160 2.50 880 900 920 940 965 990 1015 1045 1080 1110 1140 2.55 870 890 910 930 955 980 1005 1030 1065 1095 1125 2.60 860 880 900 920 945 970 995 1020 1050 1080 1110 2.65 850 870 890 910 935 960 985 1010 1035 1065 1095 2.70 840 860 880 900 925 950 975 1000 1025 1050 1080 2.75 830 850 870 890 915 940 965 990 1015 1040 1070 2.80 820 840 860 880	- 1	2.35							1		1		
2.45 890 910 930 940 965 990 1015 1045 1080 1110 1140 2.50 870 890 910 930 955 980 1005 1030 1065 1095 1125 2.60 860 880 900 920 945 970 995 1020 1050 1080 1110 2.65 850 870 890 910 935 960 985 1010 1035 1065 1095 2.70 840 860 880 900 925 950 975 1000 1025 1050 1080 2.75 830 850 870 890 915 940 965 990 1015 1040 1070 2.80 820 840 860 880 905 930 950 980 1005 1030 1060 2.85 815 830 850 870 <th>- 1</th> <th>2.40</th> <th>905</th> <th>925</th> <th>945</th> <th>965</th> <th>993</th> <th>1030</th> <th>1000</th> <th>1.000</th> <th>1</th> <th></th> <th></th>	- 1	2.40	905	925	945	965	993	1030	1000	1.000	1		
2.45 890 910 930 940 965 990 1015 1045 1080 1110 1140 2.50 870 890 910 930 955 980 1005 1030 1065 1095 1125 2.60 860 880 900 920 945 970 995 1020 1050 1080 1110 2.65 850 870 890 910 935 960 985 1010 1035 1065 1095 2.70 840 860 880 900 925 950 975 1000 1025 1050 1080 2.75 830 850 870 890 915 940 965 990 1015 1040 1070 2.80 820 840 860 880 905 930 950 980 1005 1030 1060 2.85 815 830 850 870 <th>- 1</th> <th></th> <th>١</th> <th></th> <th>1 000</th> <th>050</th> <th>980</th> <th>1005</th> <th>1030</th> <th>1060</th> <th>1095</th> <th>1130</th> <th>1160</th>	- 1		١		1 000	050	980	1005	1030	1060	1095	1130	1160
2.50 880 900 920 940 955 980 1005 1030 1065 1095 1125 2.55 860 880 900 920 945 970 995 1020 1050 1080 1110 2.65 850 870 890 910 935 960 985 1010 1035 1065 1095 2.70 840 860 880 900 925 950 975 1000 1025 1050 1080 2.75 830 850 870 890 915 940 965 990 1015 1040 1070 2.80 820 840 860 880 905 930 950 985 1020 1030 1065 2.85 815 830 850 870 895 920 945 970 995 1020 1050 2.90 810 825 845 865		2.45											
2.55 870 890 910 930 945 970 995 1020 1050 1080 1110 2.65 850 870 890 910 935 960 985 1010 1035 1065 1095 2.70 840 860 880 900 925 950 975 1000 1025 1050 1080 2.75 830 850 870 890 915 940 965 990 1015 1040 1070 2.80 820 840 860 880 905 930 950 980 1005 1030 1060 2.85 815 830 850 870 895 920 945 970 995 1020 1050 2.90 810 825 845 865 885 910 935 960 985 1010 1040 2.95 805 820 840 860	- 1												
2.60 860 880 900 920 935 960 985 1010 1035 1065 1095 2.70 840 860 880 900 925 950 975 1000 1025 1050 1080 2.75 830 850 870 890 915 940 965 990 1015 1040 1070 2.80 820 840 860 880 905 930 950 980 1005 1030 1060 2.85 815 830 850 870 895 920 945 970 995 1020 1050 2.90 810 825 845 865 885 910 935 960 985 1010 1040 2.95 805 820 840 860 880 905 930 955 980 1005 1030 2.95 805 820 840 860	- 1	2.55					1						1110
2.65 850 870 890 910 933 300 200 200 1050 1050 1080 1070 <td></td> <td>2.60</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td>		2.60							1	1			
2.70 840 860 880 900 925 950 975 1000 1025 1050 1080 2.75 830 850 870 890 915 940 965 990 1015 1040 1070 2.80 820 840 860 880 905 930 950 980 1005 1030 1060 2.85 815 830 850 870 895 920 945 970 995 1020 1050 1040 2.90 810 825 845 865 885 910 935 960 985 1010 1040 2.95 805 825 840 860 880 905 930 955 980 1005 1030 2.95 805 825 840 860 880 905 930 955 980 1005 1030 2.95 805 825 840		2.65	850) 870	890	910	935	960	7 303	1 .010	1000	1	1
2.70 840 850 850 890 915 940 965 990 1015 1040 1070 2.75 830 850 860 880 905 930 950 980 1005 1030 1060 2.80 820 840 860 880 905 920 945 970 995 1020 1050 2.90 810 825 845 865 885 910 935 960 985 1010 1040 2.95 805 820 840 860 880 905 930 955 980 1005 1030 2.95 805 820 840 860 880 905 930 955 980 1005 1030	1		1 .		000	1 000	025	950	975	1000	1025	1050	1080
2.75 830 850 870 880 870 980 915 930 950 980 1005 1030 1060 2.80 820 840 860 880 905 920 945 970 995 1020 1050 2.90 810 825 845 865 885 910 935 960 985 1010 1040 2.95 805 820 840 860 880 905 930 955 980 1005 1030 2.95 805 820 840 860 880 905 930 955 980 1005 1030 1020 1020 1020 1020 1020	1	2.70											
2.80 820 840 860 880 905 930 945 970 995 1020 1050 2.85 815 830 850 870 895 920 945 970 995 1020 1050 2.90 810 825 845 865 885 910 935 960 985 1010 1040 2.95 805 820 840 860 880 905 930 955 980 1005 1030 805 820 840 860 880 900 925 950 975 1000 1020		2.75		- 1		1							
2.85 815 830 850 870 895 920 945 970 985 1010 1040 2.90 805 825 845 865 885 910 935 960 985 1010 1040 2.95 805 820 840 860 880 905 930 955 980 1005 1030 1020 825 825 825 825 825 825 825 825 825 825											1 -		
2.90 810 825 845 865 885 910 933 960 200 1015 1030 2.95 805 820 840 860 880 905 930 955 980 1005 1030 1020		2.85	81								1	1	
2.95 805 820 840 860 880 905 930 955 980 1005 1030			810	0 825	845	865	885	910	935	, 500	, , , , ,	1	1.030
2.95 805 820 846 855 875 900 925 950 975 1000 1020			1			960	990	900	930	955	980	1005	1030
3.00 800 815 835 835 835 350 320 320 330				- 1									
		3.00	80	0 812	833	, 633	1 873	1 500					

					1072	100	1	100-				
T	1.15	1560	1610	1616	1710	1770	1830	1890	1950	2010	2080	2145
1	1 400	1517	1000		1005	1700	1220	1		1	2010	2060
İ	1.20	1515 1475	1565	1615	1665	1720	1770	1830	1885	1940	2010	2000
1	1.25		1520	1570	1620	1670	1720	1770	1825	1875	1930	
1	1.30	1435	1475	1525		1615	1670	1725	1765		1870	1930
1	1.35	1395	1435	1480	1525	1570	1620	1665	1715	1760	1810	1865
ı	1.40	1355	1400	1445	1490	1530	1580	1620	1670	1715	1760	1810
1		l i				1	1		İ		1	1
1	1.45	1315	1365	1405	1450	1485	1540	1580	1625	1670	1710	1750
ı	1.50	1285	1330	1370	1410	1450	1495	1540	1580	1620	1660	1700
l	1.55	1250	1295	1335	1375	1415	1460	1500	1540	1580	1620	1660
1	1.60	1220	1260	1300	1340	1380	1420	1460	1500	1540	1580	1620
1	1.65	1195	1225	1255	1305	1340	1380	1420	1460	1500	1545	1580
1	1.05	1130	1220	1200	1305	1340	1300	1420	1400	1300	1343	1300
1	1.70	1170	1195	1230	1270	1305	1345	1385	1425	1465	1510	1545
1					1240							
1	1.75	1150	1165	1200		1270	1310	1350	1390	1420	1480	1510
1	1.80	1125	1145	1170	1205	1235	1275			1385	1445	1475
1	1.85	1105	1125	1145	1180	1205	1240	1280	1320	1350	1410	1445
1	1.90	1080	1100	1120	1150	1185	1215	1250	1290	1320	1375	1415
		1						ĺ		İ		
1	1.95	1060	1080	1100	1130	1165	1190	1230	1265	1300		1390
1	2.00	1040	1060	1080	1110	1145	1175	1210	1250	1280	1320	1360
1	2.05	1020	1040	1060	1090	1125	1155	1190	1230	1260		1330
	2.10	1000	1020	1040	1070	1105	1135	1170	1210	1240		1310
1	2.15	980	1000	1020	1050	1085	1115	1150	1190	1220		1285
i	2.13	300	1.000	1020	1.000	1.000		1130	1130	1220	1230	1200
1	2.20	565	985	1005	1035	1065	1100	1130	1165	1200	1230	1265
	2.25	950	970	990	1020	1050	1080	1110	1140	1175	1210	
		935	955	975	1000	1030		1090				1240
į.	2.30						1060		1120	1155	1190	1220
ı	2.35	920	940	960	980	1010	1040	1070	1100	1135	1170	1200
1	2.40	905	925	945	965	995	1030	1050	1080	1115	1150	1180
l		l		_				1	l			
l	2.45	890	910	930	950	980	1005	1030	1060	1095	1130	1160
l	2.50	880	900	920	940	965	990	1015	1045	1080	1110	1140
ı	2.55	870	890	910	930	955	980	1005	1030	1065	1095	1125
1	2.60	860	880	900	920	945	970	995	1020	1050	1080	1110
1	2.65	850	870	890	910	935	960	985	1010	1035	1065	1095
l			ı			1	l	ļ	İ		1	
	2.70	840	860	880	900	925	950	975	1000	1025	1050	1080
1	2.75	830	850	870	890	915	940	965	990	1015	1040	1070
	2.80	820	840	860	880	905	930	950	980	1005	1030	1060
1	2.85	815	830	850	870	895	920	945	970	995	1020	1050
l			825									
1	2.90	810	623	845	865	885	910	935	960	985	1010	1040
l	0.05	000	000	0.0	0.00	000	001	020	055	000	1005	,,,,,
1	2.95	805	820	840	860	880	905	930	955	980	1005	1030
ı	3.00	800	815	835	855	875	900	925	950	975	1000	1020
L												
	2											
(1	$-z_0^2$.8446	.8501	8556	.8611	.8663	.8720	.8766	.8807	.8847	.8885	.8920
1	U		L	L	L	L					1	

Table I

K	Δ									1	1	1
1	1			- 1	- 1				0 47	0.48	0.49	0.50
В		0.40	0.41	0.42	0.43	0.44	0.45	0.46	0.47	0.46	0.45	0.50
B		0			i	1		1.				
 										1		
1		2010	3325	3445	3560	3675	3802	3945	4080	4225	4365	4520
1	0.70	3210			3380	3495	3610	3730	3850	3980	4110	4240
1	0.75	3060	3160	3270			3425	3535	3650	3770	3890	4020
	0.80	2915	3005	3110	3215	3320	3250	3350	3460	3570	3690	3815
1	0.85	2775	2860	2960	3050	3150			3280	3390	3510	3515
1	0.90	2640	2725	2810	2900	2990	3080	3180	3280	3350	3310	0000
1				- 1	i i		1			2020	3335	3440
1	0.95	2515	2595	2680	2765	2850	2940	3035	3130	3230		3285
ı	1.00	2400	2485	2570	2645	2730	2820	2900	2995	3085	3180	
1		2300	2380	2465	2536	2615	2700	2775	2860	2950	3030	3140
	1.05		2285	2360	2430	2500	2515	2615	2715	2815	2900	3000
- 1	1.10	2215		2275	2335	2400	2470	2545	2625	2710	2785	2880
1	1.15	2145	2205	2213	2000				1	1	1	l
					0050	2315	2380	2455	2530	2610	2680	2760
1	1.20	2060	2130	2190	2250		2300	2370	2440	2515	2585	2660
	1.25	2000	2055	2115	2175	2235			2350	2420	2490	2560
- 1	1.30	1930	1985	2045	2100	2160	2220	2285		2340	2400	2470
- 1	1.35	1865	1920	1975	2030	2090	2150	2215	2275		2320	2380
- 1	1.40	1810	1860	1910	1965	2020	2080	2145	2100	2260	2320	2500
- 1	1.10		1		1							2200
- 1	3 45	1750	1800	1850	1905	1965	2020	2075	2130	2190	2245	2300
- 1	1.45	1700	1750	1800	1850	1900	1950	2010	2065	2120	2175	2235
-	1.50			1750	1800	1850	1900	1950	2005	2060	2115	2175
	1.55	1660	1707		1755	1800	1850	1900	950 י	2000	2055	2115
1	1.60	1620	1660	1705			1805	1850	1900	1950	2000	2065
	1.65	1580	1625	1670	1715	1760	1000	1000	1			
1		1	1				1760	1805	1855	1900	1955	2015
- 1	1.70	1545	1585	1630	1670	1715	1760		1805	1855	1905	1965
- 1	1.75	1510	1550	1590	1630	1675	1720	1760			1860	1910
	1.80	1475	1515	1550	1590	1635	1680	1720	1765	1810		1870
- 1		1445	1480	1515	1555	1600	1640	1680	1725	1770	1810	
- 1	1.85	1415	1450	1485	1525	1570	1615	1655	1695	1735	1780	1830
- 1	1.90	1413	1400	1.00		1		i	l	1		
- 1		1,000	1420	1460	1500	1540	1580	1620	1665	1705	1745	1790
- 1	1.95	1390		1435	1475	1515	1550	1590	1635	1670	1710	1750
1	2.00	1360			1450	1490	1520		1605	1635	1675	1710
	2.05	1330		1405	1425	1465	1495		1570	1605	1640	1675
	2.10	1310		1380			1470		1540	1575	1610	1640
	2.15	1285	1320	1355	1400	1440	14.0	1000	1	1	1	1 1
- 1		1	1	1			1	1475	1520	1550	1580	1610
- 1	2.20	1265	1225	1330	1375	1410	1445		1495	1525	1555	1585
- 1	2.25	1240	1270	1305	1350	1385	1420				1530	1560
1	2.30	1220		1280	1325	1360	1395		1470	1500		1535
- 1		1200		1260	1300	1335	1375		1445	1475		
	2.35	1180		1240	1280	1315	1345	1380	1420	1450	1480	1510
- 1	2.40	11100	1210				1	1	1		1	1 1
- 1		1	1190	1220	1260	1295	1320	1355	1395	1425		1485
- 1	2.45	1160			1240	1275	1300		1370	1400		1460
ı	2.50	1140	1170			1255	1280		1345	1375	1405	1435
- 1	2.55	1125	1150	1185	1220		1260				1380	1410
- 1	2.60	11110		1170	1200	1235						
ı	2.65	1095	1120	1155	1185	1215	1240	, 12.0	1300	12000		
1	2.00	1	1	1	1	1	1		1280	1305	1330	1360
1	2.70	1080	1105	1140	1170							
		1070			1155	1285						
- 1	2.75	1060										
	2.80							0 1205				
1	2.85	1050			1				1215	1240	1265	1300
- 1	2.90	1040	1065	1003	1 ****		1		1		1	ı
			.	1,000	1100	1125	115	0 1175	1200	1225	1255	1290
	2.95	103										1280
	3.00	102	0 1045	1065	1090	1 ****	1 103	-	1			1
		l						+	+ ===	915	- 017	9201
		1	0000	عممعا	عدمما	1 0042	1 002	6 9105	1111			

	.00	$\frac{240}{230}$		2485 2380		65	2536	26		270		27		ALLES C		930-	3 9 to	. 3x	بنن	
1	.10	221 214	15	2285 2205		60 7 5	2430 2335		00.	251 247		24				18 1 % 1 1 1	2 . 5			
	. 15	200		2130		90	2250	23	315	238	i ()			51		er i er	24.15			
	.20	20	}	2055	1	15	2175	22	235	230		3		:44	~ 2	514	249	**	ويهر	
	.30	19	1	1985)45	2100		160	222		23		:35		(420 (340	240		170	
	1.35	18		1920	19	975	2030		190	215		7.7		227		260	232		380	
	1.40	18	10	1860) 1	910	1965	20	020	201	30 :	24	4 13	2.0			-		300	
		17	50	180	1 1	850	1905	1	965	20	20	20	475	213		5190	224		235	
	1.45 1.50		700	175	0 1	800	1850	1	900	19	50		10	206		2120	21		175	
	1.55		360	170	7 1	750	1800		850	19	uu	1 %	50	200	, ,	2060	20	55 2	115	
	1.60		320	166	0 1	705	1755		800	18	50 ¦	1 2	و از در د	195		2000 1950	20		065	
	1.65		580	162	5 1	670	171	> 1	760	18	05	1.5	1500	7.60)()	1950	2			
					١.		1			١.				18		1900	19		1015	
	1.70		545	158		1630	167		1715 1675		60		500			1855	19	u5 📙	965	
	1.75		510	15	, ,	1590 1550			1635		20		160	17	-	1810	. 18	60	910	
Ì	1.80		475	15	1	1515			1600		580 540		20	17		1770	18		1870	
	1.85		445	14	, ,	1485	1 -		1570	1 -	615		650 655		95	1735	17	80	1830	
	1.90	1 1	415	14	30	1.00	100			1.	013	1	633		- 1				1790	
	5	١,	1390	14	20	1460	150	00	1540	1	5 8 0	١,	620	16	65	1705	1		1750	
	1.95 2.00		1360			1435	147	15	1515		550		590		35	1670	1	110	1710	
1	2.05		1330		70	1405			1490) 1	520		560		505	1635	1	640	1675	
	2.10		1310	13	45	1380			1465		495		1530		570	1605	1 -	610	1640	l
1	2.15		1285	13	20	135	5 14	00	144) I	470) :	1500	1:	540	1575	' '			1
1	_,	- 1		Ì	1									١.	520	1550	, 1	580	1610	
1	2.20	1	1265		225	133			141		445		1475	1 -	495	1525		555	1585	1
1	2.25	1	124	- 1	270	130 128		25	138 136		142		1450	١.	470	1500		530	1560	1
1	2.30	- 1	1220		250	126		00	133	1	1395		1430	1 -	445	147	5 1	505	1535	
- 1	2.35	- 1	120		230	124		80	131	1	137		1405	١.,	420	145	U 1	480	1510	'\
	2.40		118	0 1	210	12.	.0 12	.00	131	3	134	2	1380	1			١.	= =	1485	.
-	2.45	- 1	116	0 1	190	122	20 12	260	129	5	132	۱۵	1355	, 1	395	142	9	1455 1430	1460	
1	2.50	- 1	114		170	120		240	127		130		1330	n]	1370		- 1	1405	143	
	2.55	- 1	112	5 1	150	111		22 U	12:		128		131	a 1 :	1345	137	- 1	1380	141	
	2.60	- 1	111	0 1	135	11		200	12:		126	0	129		1320			1355	138	5
-	2.65		109	95 3	120	11	55 1	185	12	15	124	10	127	0	1300	13-	.5		1	١
1						1 , ,	40 3	170	1,0	00					1280	130	5	1330	136	
	2.70		108		1105			155		00 85	122		125	9	1260	128	35	1310		
1	2.75		10	1	1095			140		70	12		123	-	1245		70	1295		
1	2.80		10		1085 1075	1		125		55	11		122		1230			1280		
1	2.85		10 10		1065			1110		40	11		120		121		40	1265	130	,0
	2.90	,	١ ، ١	*"	, 500				1 -		- 1	v٥	1 1 1 1	-		_	25	1255	129	90
	2.9	5	10	30	105			1100		125	11	50	11	75	120	-	25	1245	٠	
	3.0			20	104		U65	1090	1	110		35	ii	60	118	5 12	15	1270		1
			1	. 1							L		1				-	.9179	1 .92	01
	(1 - z)	12	.89	20	895	2 . 8	985 .	901	6 .9	047	.90	176	.91	05	.913	11 .91	57	.917	1.52	
	11 - 2	0'	1				_ \				1		1					L		

Table I

Δ	Ī	1	T		1	1	1	-	1	ľ	1
В	0.50	0.51	0.52	υ.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60
0.70 0.75 0.80 0.85 0.90	4520 4240 4020 3815 3615	4665 4385 4155 3945 3740	4815 4530 4290 4075 3865	4970 4680 4430 4205 3985	5125 4830 4570 4335 4105	5280 4980 4710 4470 4235	5140 4860 4615 4375	5010 4760 4515	4910 4660	5065 4805	4950
0.95	3440	3550	3665	3775	3885	4000	4135	4270	4410	4545	4680
1.00	3285	3390	3495	3595	3695	3800	3925	4055	4130	4320	4450
1.05	3140	3240	3340	3435	3525	3620	3735	3855	3980	4100	4220
1.10	3000	3090	3185	3275	3360	3450	3555	3665	3780	3890	4000
1.15	2880	2970	3055	3140	3220	3310	3400	3500	3610	3715	3820
1.20	2760	2850	2940	3030	3120	3210	3300	3390	3480	3570	3660
1.25	2660	2745	2830	2915	3000	3085	3170	3260	3345	3430	3520
1.30	2560	2645	2730	2815	2900	2985	3070	3150	3230	3310	3390
1.35	2470	2550	2630	2710	2790	2870	2950	3030	3110	3190	3270
1.40	2380	2460	2535	2615	2690	2775	2845	2925	3000	3080	3160
1.45	2300	2375	2455	2530	2610	2685	2760	2835	2910	2985	3060
1.50	2235	2310	2380	2455	2525	2595	2665	2740	2810	2885	2960
1.55	2175	2240	2310	2380	2450	2520	2590	2660	2730	2800	2870
1.60	2115	2180	2250	2315	2380	2445	2515	2580	2650	2710	2780
1.65	2065	2125	2185	2250	2315	2380	2445	2510	2575	2640	2700
1.70	2015	2070	2135	2195	2255	2315	2375	2435	2495	2555	2620
1.75	1965	2020	2080	2140	2195	2255	2315	2370	2430	2490	2550
1.80	1910	1965	2025	2080	2135	2190	2250	2300	2365	2420	2480
1.85	1870	1925	1980	2035	2090	2145	2200	2255	2310	2360	2420
1.90	1830	1885	1940	1990	2045	2100	2150	2205	2260	2310	2365
1.95	1790	1845	1900	1950	2000	2055	2105	2155	2210	2255	2310
2.00	1750	1805	1860	1910	1960	2010	2060	2110	2160	2205	2255
2.05	1710	1765	1820	1870	1920	1970	2015	2065	2115	2155	2205
2.10	1675	1730	1785	1835	1885	1930	1975	2025	2070	2110	2155
2.15	1640	1700	1755	1805	1850	1895	1935	1985	2030	2065	2105
2.20	1610	1675	1725	1770	1815	1860	1900	1945	1990	2025	2060
2.25	1585	1650	1700	1740	1785	1830	1865	1910	1955	1985	2020
2.30	1560	1625	1675	1710	1755	1800	1830	1875	1920	1950	1980
2.35	1535	1600	1650	1680	1725	1770	1800	1840	1885	1915	1945
2.40	1510	1575	1625	1655	1695	1740	1770	1810	1850	1880	1910
2.45	1485	1550	1600	1630	1665	1710	1740	1780	1820	1845	1875
2.50	1460	1525	1575	1605	1640	1680	1710	1750	1790	1815	1840
2.55	1435	1505	1550	1580	1615	1645	1680	1720	1760	1785	1810
2.60	1410	1475	1525	1555	1590	1620	1655	1690	1730	1755	1780
2.65	1385	1430	1485	1515	1565	1595	1630	1665	1700	1725	1750
2.70	1360	1420	1450	1480	1520	1550	1585	1615	1650	1680	1720
2.75	1340	1395	1425	1455	1495	1525	1555	1585	1625	1650	1695
2.80	1325	1370	1400	1430	1470	1500	1535	1560	1600	1625	1670
2.85	1310	1350	1380	1410	1445	1475	1505	1535	1575	1600	1645
2.90	1300	1330	1360	1390	1425	1455	1480	1515	1550	1575	1620
2.95 3.00	1290 1280	1320	1350 1340	1380 1370	1410 1400	1440	1470 1460 :	1500	1530	1560	1600

0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40	3440 3285 3140 3000 2880 2760 2660 2560 2470 2380	3550 3390 3240 3090 2970 2850 2745 2645 2550 2460	3665 3495 3340 3185 3055 2940 2830 2730 2630 2535	3775 3595 3435 3275 3140 3030 2915 2815 2710 2615	3120 3000 2900 2790 2690 2610	3800 3620 3450 3310 3210 3085 2985 29870 2775	4135 3925 3735 3555 3400 3370 3070 2950 2845	4055 3855 3665 3500 3390 3260 3150 3030 2925 2835	4410 4130 3980 3780 3610 3480 3345 3230 3110 3000	4320 4100 3890 37,15 3570 3430 3310 3190 3080 2985	3660 3520 3390 3390 3160 3060
1.50 1.55 1.60 1.65	2235 2175 2115 2065 2015 1965 1910	2310 2240 2180 2125 2070 2020 1965	2380 2310 2250 2185 2135 2080 2025	2455 2380 2315 2250 2195 2140 2080	2525 2450 2380 2315 2255 2195 2135	2595 2520 2445 2380 2315 2255 2190	2665 2590 2515 2445 2375 2315 2250	2740 2660 2580 2510 2435 2370 2300	2810 2730 2650 2575 2495 2430 2365	2885 2800 2710 2640 2555 2490 2420	2960 2870 2780 2700 2620 2550 2480
1.85 1.90 1.95 2.00 2.05 2.10	1870 1830 1750 1710 1675	1925 1885 1845 1805 1765 1730	1980 1940 1900 1860 1820 1785	2035 1990 1950 1910 1870 1835	2090 2045 2000 1960 1920 1885	2145 2100 2055 2010 1970 1930	2200 2150 2105 2060 2015 1975	2255 2205 2155 2110 2065 2025	2310 2260 2210 2160 2115 2070	2360 2310 2255 2205 2155 2110	2420 2365 2310 2255 2205 2155
2.15 2.20 2.25 2.30 2.35 2.40	1640 1610 1585 1560 1535 1510	1700 1675 1650 1625 1600 1575	1755 1725 1700 1675 1650 1625	1805 1770 1740 1710 1680 1655	1850 1815 1785 1755 1725 1695	1895 1860 1830 1800 1770 1740	1800 1770	1910 1875 1840 1810	1990 1955 1920 1885 1850	2065 2025 1985 1950 1915 1880	2105 2060 2020 1980 1945 1910
2.45 2.50 2.55 2.60 2.65	1485 1460 1435 1410 1385	1550 1525 1505 1475 1430	1600 1575 1550 1525 1485	1630 1605 1580 1555 1515	1665 1640 1615 1590 1565	1710 1680 1645 1620 1595	1710 1680 1655 1630	1780 1750 1720 1690 1665	1820 1790 1760 1730 1700	1845 1815 1785 1755 1725 1680	1875 1840 1810 1780 1750
2.75 2.80 2.85 2.90 2.95 3.00	1340 1325 1310 1300 1290 1280	1395 1370 1350 1330 1320 1310	1425 1400 1380 1360 1350 1340	1455 1430 1410 1390 1380 1370	1495 1470 1445 1425 1410 1400	1525 1500 1475 1455 1440 1430	1535 1505	1585 1560 1535 1515 1500 1490	1625 1600 1575 1550 1530 1520	1650 1625 1600 1575 1560 1550	1695 1670 1645 1620 1600 1580
$(1 - z_0)^2$.9201	.9222	.9243	. 9264	.9285	.9305	.9324	. 9342	.9359	.9376	. 9392

1	ii	ьl	€.	I
		p_		

~												
	$\setminus \Delta$	υ.60	0.61	0.62	0.63	0.64	0.65	0.66	0.67	0.68	U.69	0.70
В		0.00										
-	0.70					Ī						
1	0.70										1	
1	0.80			ļ								
	0.85	4950	5095		1							
	0.90	4330	0000								i	
	0.95	4680	4825	4970 4735	5120 4885	5040						
	1.00	4450 4220	4590 4355	4495	4640	4790	4945	5105				
	1.05 1.10	4000	4130	4265	4405	4550	4700	4855 4615	5015 4765	4920	5080	
- 1	1.15	3820	3940	4065	4195	4330	4470	4613	4705			-000
		3660	3770	3885	4005	4130	4260	4395	4540	4690	4845 4615	5000 4760
-	1.20 1.25	3520	3620	3725	3835	3940	4070	4195	4130	4470	4400	4530
	1.30	3390	3480	3575	3675	3780	3890	4005 3900	4005	4110	4220	4330
	1.35	3270	3375	3480	3585 3450	3690 3550	3650	3750	3850	3950	4050	4150
1	1.40	3160	3255	3350	3430	3000			0.005	3790	3885	3980
	1.45	3060	3150	3240	3330	3420	3510	3600 3470		3650	3740	3830
	1.50	2960	3045	3130	3215	3300 3200	3385 3285	3370		3540	3625	3710
	1.55	2870	2950	3030 2940	3116	3100	3180	3260		3430	3515	3600
-	1.60	2780	2860	2850	2930	3010	3090	3170	3250	3330	3410	3495
-	1.65	1 2700	2			2000	0005	3070	3150	3230	3310	3390
1	1.70	2620		2770	2845	2920 2840	2995 2915	2990	_	1	3215	3290
	1.75	2550		2690 2620	2765 2690	2760	2830	2900	2975	3050		3200
Ì	1.80	2480 2420		2550	2620	2690	2760	2830				3030
- 1	1.85 1.90	2365		2495	2560	2625	2690	2755	2820	2050	1 2500	
- 1		1	0000	2430	2495	2560	2625	2690	2755			2950
	1.95	2310		2375	2435	2495	2555	2620				2880 2810
	$\frac{2.00}{2.05}$	2205	1	2325	2385	2445					_	2745
- 1	2.10	2155	2210	2265	2325	2385				1		2680
ı	2.15	2105	2160	2215	2270	2323	2300				2560	2620
	2.20	2060	2115	2170	2225	2280						
1	2.25	2020		2120	2175							2505
- 1	2.30	1980		2080				!		5 234		
١	2.35	194		2000					υ 225 0	2300	υ 235 0	2400
İ	2.40	1 151	1 1500			0055		215	u 220	225	0 2300	
	2.45	187						1		5 220	5 2255	
	2.50	184						5 208				
	2.55	181				1950	199					
	2.60 2.65	175			1870	1910	195	5 200	0 204	3 203		
		1		1800	1840	1880	192	0 196	5 201			
	2.70	172 169					189	5 193	1			_
	2.75 2.80	167		1750	1790	1830				- 1		
	2.85	164	5 1685					- 1		- 1	•	
	2.90	162	0 1660	1700	1140	1 110					0 196	0 2000
	2.95	160	0 1640	1680		0 176					1	
	3.00	158		1660	170	0 174	0 178	102				

												1000					43 1		
1	_	_		1		1005	4	130	426	0	439	35	454	1	1690		15	4760	1
	366	ia l	3770	38	00	4005		940	40		415	95	433		1470		00	4530	
1.20	352	, T	3620	37	25	3835			389		40	05	413		4260			4330	ì
1.25			3480	35	75	3675		780			39		40	05	4110		220		1
1.30	339		3375		80	3585	3	690	37		37		38	50	3950	146	150	4150	1
1.35	32	• -			50	3450	13	550	36	50	.5 1	30	00				1		1
1.40	310	60	3255	133	30	0	1	1		1		1		0 =	3790	3:	385	3980	
1.0.10	l			1		3330	1 -	420	35	10		00	36	00	3650		740	3830	1
. 45	30	60	3150		240			300	33	85		70	35	0		1 -	625	3710	1
1.45	29		3045	31	130	3215				85	33	70		00	3540	1	515	3600	
1.50		70	2950		030	3116		3200		80		60	33	45	3430			3495	1
1.55			2860		940	3020		3100				70	32	50	3330	1 3	410	3495	
1.60		80			850	2930	1 3	3010	30	190	., ,					1	İ		
1.65	27	00	2775) ~	000		1			1			•> 1	50	3230) 3	310	3390	
	1	- 1		1 -		2845	1:	2920		95		370		065	3140		215	3290	
1.70	1 26	520	269	- 1	770	2765	1	2840	29	15		990			3050	1 -	125	3200	
	1 2	550	262		690			2760	9.	330	25	900		375		·	040	3110	1
1.75		480	255	0 2	620	2690				760	2	830		900	297	- 1		3030	
1.80		420	248		550	2620		2690		690		755	2	820	289	J 2	960	3030	
1.85			243		495	2560	, !	2625	1 4	0.500	1 -		1				_	1 00.00	.
1.90	-1^{-2}	365	243	~ <i>-</i>	-	1	Ì		1		!	690	1 0	755	282		2885	2950	
	1		1	01.	2430	249		2560		625				685	275	0 :	2815	2880	
1.95		310	237		2375	243	5	2495		555		620		625	268		2745	2810	
2.00		255	231	-	2325	238		2445		505		565			262		2685	274	5
2.05	1 2	205	226			232		2385		445		505	1	565	256	- 1	2620	2680)
2.10	1 9	155	221		2265	1		2325		380	2	2440	1 2	500	230	1			
		105		50 1	2215	227	9 1	2020	1 -		i		i				2560	262	0
2.15	١-		1	- 1		1			, i .	335	1 :	2390		445	250			256	
	١,	2060	21	15	2170	222		2280		2285	ł	2340		2395	245	, ,	2505	250	
2.20			1		2120	217	5	2230	´ `		1	2285		2340	239		2450		
2.25		2020		10	2080		io !	2180	' '	3230		2245		2295	234	15	2395	245	
2.30		1980	· •		2045		5	214		2195			1	2250	230		2350	240	0
2.35	- 1	1945	5 19		2000	- 1		2100	0	2150) [2200	' '	2230				1	
2.40	- 1	1910) 19	55	2000	-			1		-				22	50 1	2300	235	50
	- 1		1	1		5 20		205	5	2100		215		2200			2255		5
2.45	- 1	187		20	196	- 1		202		206	5	2110	U	2155	1		2215		50
	- 1	184		85	193			199		203	5	208	0	2125			2175		0.5
2.50	- 1	181	- 1	355	190	0 19		1	•	199	- 1	204	o L	2085	21			-	
2.55	1	178	~ 1	320	186		05	195		195		200		2045	1 20	90	213	٠١ ۽ ١٠	
2.60	1		~ 1	790	183	0 18	70	191	U	193	7				1	1		0 21	45
2.65	- 1	175	101	, 50		i		l	1		. 1	196	5	2010	1 20	55	210	V 1 - :	
	1			0	180	0 18	40	188		192		193		1975		20	206		
2.70	- 1	172		760	177	- 1	15		55	189				1950		90	203		80
2.75	- 1	169	. – 1	735		-	190	1		187		191	1		-	965	200	5 20	50
2.80	- 1	167		710	175	-	765			184	15	188	- 1	192	- 1	940	198		25
2.85	1	164		685	172					182	20	186	50	190	0 1:	9 41 U	1		- 1
	1	162		660	170	ו וטכ	740	1	~		1		1		-	000	196	0 20	000
2.90	- 1		- 1		1	- 1) 17	امء	180	1oc	18	40	188	~	920	194	- 1	80
	1	16	داهه	640	16		72 0			178		183	20 l	186	0 1	900	194		
2.95		15		620	16	60 1	700) 17	40	1 / 4	00		- 1		1			_	
3.00	1	1.5	00	020		1											1	_ _	-201
			-+		+						ا ہے	.94	80	. 949	2 .9	506	.95	17 .9	530
				9408	94	23 .9	43	8 .94	52	.94	66	. 34	00	1.5.10			1		
(1 - 7	(n)2	.93	92 .	7400	1.0.			1				L		1					
1.		l	1																

rable 1

1)				
	٠	٠	ı	

В	Δ	0.7	0 0).71	0.72	2 0.	73),74	0.	75	0.7	6 ().77	0.	78	79	0.8	50	
0.									The state of the state of the state of			and the second s		and the second s					
1 1	.95 .00 .05 .10 .15						and comments				The same of the sa								
1 1 1	.20 .25 .30 .35	47	000 150 530 330 150	4910 4670 4455 4260	45	10 80	4950 4710 4485	509 18-	10 .	4970 4720	4-	. } (i) . j. ;	499		14-)	5120			
	1.45 1.50 1.55	3:33	980 830 710 500 495	4080 3925 3800 3685 3580	$ \begin{array}{c c} & 40 \\ & 38 \\ & 37 \\ \end{array} $		4305 4135 4000 3875 3760	39	55	4540 4385 4240 4105 3980	4:	570 525 375 250 100	481 468 452 430 423	0 6	1960 1845 4675 4519 4365	5020 4840 466 451	5 5 4 0 4	200 010 825 660	
	1.65 1.70 1.75 1.80 1.85	3333	390 290 3200 3110	347- 336 327 318	5 3 5 3 5 3 0 3	555 440 345 255 175	3645 3525 3425 3335 3255	3 t 3 t 3 t	45 520 515 125 345	3855 3725 3615 3525 3445	3 3 5 3	970 835 (720 (630 (545	39 38 37	50 30	4220 4080 3955 3850 3755	436 422 409 397 387	0 4	1505 1365 1235 1110 3995	
	1.90 1.95 2.00 2.05 2.10		3030 2950 2880 2810 2745	301 294 287	5 3 5 3 5 2 5 2	085 015 940 865	3160 3090 3010 2930	3 3 3	245 175 090 010 940	334 327 318 310 302	0 0	3435 3365 3270 3190	34	35 60 65 285 200	3645 3560 3465 3385 3300	350 350 343	5 5 5 8 5	3885 3780 3685 3595 3510	
	2.15 2.20 2.25 2.30 2.35		2680 2620 2560 2505 2450	265 26 5 25 0 25	30 15 50 05	2800 2735 2670 2610 2555	2795 2795 2730 2665 2610 254	5 2 2 5 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1865 1800 2730 2675 2605	294 288 280 275 265	15 10 15 50	3023 2960 288- 282 275) 30 5 2 5 2	115 045 970 905 830	3213 3140 306 299 292	$ \begin{array}{c c} & 32 \\ & 31 \\ & 30 \\ \end{array} $	15 35 60 85	3425 3345 3265 3190 3115	
	2.40 2.45 2.50 2.55 2.60	- 1	2356 230 226 222	0 24 5 23 0 23 0 22		2495 2440 2395 2345 2305 2265	249 244 239 235	0 5 5 5	2545 2495 2445 2445 2405	25 24	55	268 262 257 253 247	5 2 5 2 15 2	785 700 650 665 2545	285 279 274 269 263	0 28 10 29 10 2	945 880 825 770 710	3045 2980 2920 2860 2800	
	2.65 2.70 2.75 2.80 2.83		214 214 211 208 205	15 21 10 21 30 2 50 2	190 155 125 095	2230 2195 2165 2135 2110	227 5 226 5 226 5 21	75 40 05 75	2320 2283 2245 2215 2190	23 5 22 5 22	175 140 295 260 230	246 246 23 23 23 22	05 55	2505 2465 2415 2370 2330	24	35 2 85 2 35 2	660 610 560 510 2465	2745 2690 2640 2590 2545	
	2.90		202		070 040	208	1	25	216	5 23	205 185	22 22	50 20	2300 2271	23	60 3 31	2430 > 100	2505 2170	

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

												Ŧ
1.05												-
1.10	1											
									l	1		
1.20	5000		İ									1
1.25	4750	4910	5060								1	
1.30	4530	4670	4810	4950	5090	4970	5110					
1.35	4330 4150	$\frac{4455}{4260}$	4580	4710	4840	4720	4850	4990	5140			1
1.40	4130	4200	13.0	4463	1000	1720	1.,,,,,,	4330	37.10			İ
1.45	3980	4080	4190	4305	4420	4540	4670	4810	4960	5120		į
1.50	3830	3925	4025	4135	4255	4385	4525	4680	4845	5020	5200	
1.55	3710	3800	3895	4000	4115	4240	4375	4520	4675	4840	5010	
1.60	3600	3685	3775	3875	3985	4105	4230	4365	4510	4665	4825	
1.65	3495	3580	3665	3760	3865	3980	4100	4230	4365	4510	4000	
1.70	3390	3475	3555	3645	3745	3800	3970	4.190	4220	4360	4500	
1.75	3290	3365	3440	3525	3620	3725	3835	39.0	4050	4220	4365	
1.80	3200	3275	3345	3425	3515	30.10	3720	3500	3915	4099	4235	
1.85	3110	3180	3255	3335	3425	3525	10630	3735	3850	3975	4110	
1.90	3030	3100	3176	3255	3345	3440	3545	3645	3705	3874	3995	
1.95	2950	3015	3085	3160	3240	3340	3435	3.35	: 3645	3760	3885	
2.00	2880	2945	3015	3090	3175	3270	3365	3460	3560	3000	3780	1
2.05	2510	2875	2940	3010	3090	3180	5270	3065	0465	3565	3685	
2.10	2745	2805	2865	2930	3010	3100	3190	328.	3385	3485	3595	-
2.15	2680	2740	2500	2865	2940	3025	3110	3200	3300	3400	3510	
2.20	2620	2680	2735	2795	2865	2945	1 3025	3115	3215	3315	3425	
2.25	2560	2615	2670	2730	2800	2880	2900		3440	3235	3345	
2.30	2505	2560	2610	2665	2730	28 15	2885	2970	3060	3160	3265	ĺ
2.35	2450	2505	2555	2610	2675	2750	2825	2905	2995	3085	3190	
2.40	2400	2450	2495	2545	2605	2675	2750	2839	2920	3010	3115	
2.45	2350	2400	2440	2490	2545	26.10	2-81	27-5	2500	2945	3045	
2.50	2305	2355	2395	2445	2495	2555	2625	2700	2790	2880	2980	
2.55	2260	2305	2345	2395	2445	2505	2575	2:50	2740	2825	2920	
2.60	2220	2265	2305	2355	2405	2405	2535	2605	2690	2770	2860	
2.65	2180	2225	2265	2310	2355	2410	2475	2545	2630	27.0	2800	
2.70	2145	2190	2230	2275	2320	2375	2440	2505	2585	2660	2745	1
2.75	2110	2155	2195	2240	2285	2340	2405	2465	2535	2610	2690	
2.80	2080	2125	2105	2205	2245	2295	2355	24.5	2485	2560	2640	
2.85	2050	2095	2135	2175	2215	2260	23	2370	2435	2510	2590	
2.90	2025	2070	2110	2150	2190	2230	2280	23 30	2390	2465	2545	
2.95	2000	2040	2085	2125	2165	2205	2250	2300	23+0	2430	2505	
3.00	1980	2020	2065	2105	2145	2185	2230	2275	2335	2400	2470	
	 -							-				
$(1 - z_0)^2$.9530	.9541	.9552	.9563	.9573	.9385	.9595	.9606	.9615	.9624	.9633	
											1	

rable	11 -	Condit	ion at	tne E	nd o:	Burnin	$\kappa = \frac{k}{T_0}$
			r		Ī		
0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18

Δ	,										0.20
В	0.07	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	
0.70 0.75 0.80 0.85 0.90	0.16 17 18 20 21	0.30 33 36 39 42	0.33 36 39 42 45	0.35 38 42 45 48	0.37 41 44 47 50	0.39 43 47 50 53	0.41 45 49 52 56	0.43 47 51 55 57	0.44 49 54 57 59	0.45 51 56 59 61	0.46 52 58 61 63
0.95 1.00 1.05 1.10 1.15	23 24 26 27 28	45 47 48 51 54) 50 53	(a) (b) (c) (c) (d) (d)	53 57 61 65 69	56 64 68 73	05 03 07 72	60 69 74 79	03 68 72 77 82	65 70 75 80 85	67 72 71 82 87
1.20 1.25 1.30 1.35 1.40	30 31 32 33 35	57 69 63 67	ьь 69 7 4	72 75 80	73 77 84 86 91	77 72 86 94 97	91	84 90 90 90 90 90 90 90	35 99 04	91 96 02 97 14	93 98 04 10 17
1.45 1.50 1.55 1.60	36 35 39 40 42	7.4 7.7 8.4 8.6	5. 89 97	- 25 47 - 192	95 00 .05 .1	100	1 60 g 4 4 2 4 20 0	1 14 1 20 3 3 7	1 13	20 27 34 41 48	22 34 36 46 74
1.70 1.75 1.80 1.85 1.90	44 45 47 49 51	1.05) 07 2 13 4 10	22 28	27 33 39	3 t 4 2 4 9	37	44 62 63 67	: 9 • 7 75	57 66 74 83 93	63 72 81 91 2.01
1.95 2.00 2.05 2.10 2.15	54 56 58	2 2	7 3: 2 3: 7 4:	2 40 7 5. 3 58	55 65 73	7.	5.2 96 99	2.92	2.46 1 12 2	22 32	21 31 42 54
2.20 2.25 2.30 2.35 2.40	63 63 64	3 4 5 4 7 5	2 6	0 73 6 8 3 9	3 9: 4 2.03 2 1	2 20	37	5-	3 5e 4 68 6 80	68 81 94	94 3.08
2.45 2.50 2.55 2.60 2.60) 7: 5 7 0 7	3 7 5 7	6 2.0	4 1 1 2 9 3	ь 3 ь 4	9 60 9 70 0 83) 80 9 9 2 3.0	3.00 1 4 2 8	0 18 2 31 6 46 1 61	36 1 50 5 66 2 83	53 68 68 85 4.03
2.70 2.71 2.80 2.8 2.9	5 8 0 8 5 8	3 2.0 5 6)3 3)9 4 17 5	13 6 11 7 50 8	3 3.0 3 3.0	5 4 6 5	0 4 2 6 5 7 8 9	6 7 0 8 5 4.0 0 2	2 9 8 4.1 4 3 1 5	5 18 3 38 4 58 0 79	8 41 63 8 85 9 5.05
2.9	~			58 3.0 76 -			2 4.0			$\begin{array}{c c} 0 & 15.0 \\ 0 & 2 \end{array}$	

	į							STAT	
/	57 538 54 54 17	23 34 36 46	0.13 7.25 7.1 7.1	31.	14 14 15		3 3 5	2	
				The state of the s		1			
63	\$5 94 94 1 1.02 1 97 44	1/4 J	5 (4 6 4 8 (5	20 x 20 x 20 x 20 x 20 x 20 x 20 x 20 x	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		4 000 38 58 70	5.01 24	
	82 88 93 99 1.04 11	17 23 36 36 36 47				41	31 31 31	7) :	
	79 84 90 40 01	18 19 23 31	1:	54 - 1 - 2 11 - 2 1	4				
	76 81 91 91	41, 43, 34, 36, 36,	3 (2 4 6 2 9 3 8 4 6 2 4 5 8			1 · · · · · · · · · · · · · · · · · · ·	21	
	73 73 73 74 74 74 74	1.01	3++ 3+ \$1 3++	1		7	30 30 30 40 58	72	±63
	7.3 7.7 8.4 8.6 9.1	24.00 2.1998 4070 1.1 2.8	212 217 113 314 41		97 98 - 2 - 2 - 29	20 0.4 40 7.1	52 - 1 93 - 1 0.04 - 1 10 26 - 1	38	1
	55 72 75 80 84	88 93 97 1.02 97	. 7 . 7 . 20 . 28 . 54		1 2 4 5 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.0 14	64 63 73 50 92	5.03	
	63 69 74 77	81 89 89 93 98			1.4 193 1.1 2.1 5.0	* 1 64 17 + 3 + 4 18 18	26 23 44 59 18	7 h	
	57 69 63 67 70	74 77 54 88	92 96 2.90 94 99	22 22 21 22 22	4.3	200	2.0.1 0.0 17 24	32 39	
	30 31 32 33 35	36 578 39 40 42	44 45 47 49	5/2 2/4 2/6 5/5 6/0	62 63 65 67	777	85 88 1 90 1	94	
	1.20 1.20 1.30 1.35 1.40	1.45 4.50 1.55 1.60 1.65	1.70 1.75 1.60 1.80 1.90	2.00 2.00 2.00 2.10 2.10	2.25 2.25 2.36 2.35 2.40	2.45 2.50 2.55 2.65 2.65	2.75 2.75 2.80 2.85 2.90	2.95 3.00	
	- Industrial								

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

Table 11

l	k
-	Ī.,

0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35	.20 .46 52 58 61 63 67 /2 /2 87 93 98 1.04	1	5 9 1 1.0 1 3	6		.24 55 64 68 72 77 83 89 94 1.01 07 14 21 29			1 2 3	4 9 5 5 2 7 4 1 1 8 8 2 2 5 8		3	3 9 1 -			3 1 0
1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80	23 31 38 49 5 6 7 8	3 2 3 3 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34 43 51 59 68 78	31 39 47 55 64 43 83 93 04	34 42 50 59 68 48 88 98 2.09 20	2.0	3 2 2	39 47 57 66 76 86 96 2.0)) 2	42 50 59 69 78 84 00 11 22 34	52 61 61 92 2.03 14 26 39	2.	95 06 17 30 42 56	55 65 75 86 97 2.09 20 33 46	2.	58 77 68 99 11 23 36 50 64
1.90 2.00 2.05 2.10 2.11 2.2 2.2	5 0 5 0 5 0 5 8 8	11 21 31 42 54 67 80	18 29 39 51 64 78 92 3.06	29 36 47 60 73 88 3.02	31 43 55 67 81 3.12 29	3.	3 / 49 62 75 90 05 22 39 55	3.	13 30 48 65	47 60 73 88 3.03 20 38 56 75	3.1 2 4	5 9 3 0 3 15 15	70 84 99 .16 34 52 71 92 4.14	5	3 2 0 8 8 99	46 65 83 4.06
2.3 2.4 2.5 2.2 2.2 2.2	35 3 40 45 50 55 60	.08 23 38 53 68 85 .03 21 41 63 85	21 36 52 68 84 4.01 22 42 63 86 5.10	34 49 66 83 4.00 18 40 61 84 5.08 34	61 86 9 4.1 3 5	0 7 6 4 7	73 92 .11 30 51 73 97 5.21 44 75 6.07	4 -	84 04 24 44 66 89 .13 38 66 95 5.27	4.16 37 59 83 5.06 30 57 85 6.15	5.	27 49 72 98 22 46 44 .05 36 69	37 60 85 5.12 37 62 91 6.23 56	5.	41 70 96 23 49 75 .07 40 75 .09	54 80 5.00 3 6

								20	31	£3		
							97	98	99	1.00	1.01	1
1.15	87	89	91	93	94	96	٠.				1	
1.13	0.				i		1.04	1.05	1.06	0/	O.S.	
1.20	93	95	91	99	1.01	1.02	1.04	12	1.4	15	10	
	98	1.01	1 03	1.05	01	09		20	2.1	22	23	
1.25		07	10	12	1-1	16	18	21	29	30	31 1	
1.30	1.04	13	16	19	21	24	2 ti		3 /	38	40	
1.35	10	21	24	27	29	3.1	33	34	٥.			
1.40	17	21	~ 1		ļ				45	47	49	
1 1			31	34	3.	39	42	44		55	ან '	
1.45	23	2 /	39	42	49	47	5∪	52	53	65	67	
1.50	31	34		50	54	51	59	61	ь3	15	11	
1.55	38	43	47		63	66	69	7.1	73		88	
1.60	46	51	55	59	12	76	78	81	83	86	30	
1.65	54	59	64	68	12	, ,					C143	
1	1					86	89	92	95	97	99	
1.70	63	68	73	48	52		2.00	2.03	2.06	2.09	2.11	
1.75	12	/8	83	88	92	96	11	14	1.7	20	23	
	81	87	93	98	2.02	2.07	$\frac{11}{22}$	26	30	. 33	36	
1.80		98	2.04	2.09	14	18		39	42	40	5∪	
1.85	91	2.08	15	20	26	30	34	33				
1.90	2.01	2.00			1			- 0	56	60	64	
-			29	31	3,	42	4.	52	7 U	75	79	
1.95	11	18	36	43	49	55	60	6.5		89	94	
2.00	21	29		55	62	ថង	, 3	79	84	3.04	3.10	
2.05	31	39	47	61	75	81	88	93	99	22	2 /	
2.10	42	51	60	81	90	97	3.03	3.10	3.16			
2.15	54	64	13	. 61	30					4	46	
	1	1			3.05	3.13	20	27	34	40	65	
2.20	6/	78	88	91	22	30	38	4.5	52	58	83	
2.25		92	3.02	3.12		48	56	63	/1	78		
2.30		3.06	18	29	39		. 5	84	92	99	4.06	
2.35		21	34	4.5	55	65	95	4.04	4.14	4.22	30	
2.40		36	49	6 l	73	84	3.3					
2.40	1 23	1	1		1		1 . 12	27	3,	41	54	
	38	52	66	80	92	4.04	4.16	49	60	10	. ಕಲ	
2.45		68	83	97	4.11	24		12	85	96	5.06	
2.50		84	4.00	4.16	30	44	59	. 98	5.12	5.23	34	
2.55			18	34	51	66	83		3.12	49	61	
2.60		4.01	1	57	73	89	5.06	5.22	31			
2.65	4.03	22	1 40	٥.			1		62	15	: 89	
	1	-	1	80	1 97	5.13	30	46			6.21	
2.70	ע 21	42		5.03	5.21	38	51	. 4	#1		56	
2.75		63		28	47	66	85	ნ.05	ь.23	_	92	
2.80					15	95	6.15	36	56		7.26	
2.85		5.10		55		6.27	48	69	90	7.09	1.20	
2.90	- 1		62	. 86	6.07	0.21		1			c e	
12.3	1	1				59	79	7.01	1.23			
2.9	5 32	63	90		3 /		1.14	36		₃ 80	8.01	
3.0	- 1			, 48	71	93	1 . 1 4					-
3.0	٠ ٠٬											

Table II

1	k
7	٠.,

			-								
E A	0.30	0.31	0.32	0.33	υ.34	0.35	υ.36	0.37	0.38	0.39	0.40
0.70 0.75 0.80 0.85 0.90	0.51 57 63 67 71	0.51 57 64 68 72	U.51 58 63 68 72	0.51 58 63 69 72	0.52 58 63 69 73	0,52 58 63 69 73	0.52 57 63 68 73	0.52 57 63 69 73	0,52 57 63 69 73	0.51 57 63 69 73	0.51 57 63 69 73
0.95 1.00 1.05 1.10 1.15	/6 82 88 95 1.01	76 82 88 95 1.02	82 89 96 1.03	83 89 96 1.03	83 89 97 1.04	90 98 1.04	84 90 98 1.05	91 98 1.06	78 85 92 99 1.06	78 85 92 99	78 55 92 1.00 07
1.20 1.25 1.30 1.35	09 16 23 31 40	09 17 25 33 41	10 18 26 34 43	11 18 26 35 43	11 19 27 35 45	12 20 27 37 46	12 20 28 3, 46	13 21 29 37 47	13 21 29 40 47	14 22 29 38 47	14 22 29 38 47
1.45 1.50 1.55 1.60		50 60 69 80 90	52 61 71 82 92	53 63 73 83 94	54 64 75 85 96	55 65 76 86 97	56 66 77 89 99	56 67 78 88 2.00	57 67 78 89 2.01	57 70 78 89 2.01	57 67 78 89 2.02
1.70 1.75 1.80 1.85	99 2.11 23 36	2.02 13 26 39 53	2.04 16 28 42 56	2.05 18 31 45 59	2.07 20 33 47 62	2.08 21 35 49 64	2.10 23 36 51 66	11 24 38 53 68	12 26 40 54 70	13 27 41 56 71	14 27 42 57 72
1.95 2.00 2.05 2.10	64 79 94 3.10	68 83 99 3.14 32	71 87 3.03 20 38	75 91 3.08 24 43	78 95 3.11 29 48	80 97 3.15 32 53	83 3.00 17 35 55	85 3.02 19 37 58	87 3.04 21 39 60	3.05 22 40 62	3.07 24 42 64
2.20 2.25 2.30 2.31	65 0 83 5 4.06	52 71 90 4.13 36	58 77 96 4.19 43	63 82 4.02 25 49	68 87 4.07 31 56	72 92 4.12 36 61	76 96 4.16 42 67	79 99 4.21 46 73	81 4.03 25 51 78	84 4.06 28 55 83	86 4.09 32 59 87
2.4 2.5 2.5 2.6 2.6	5 54 0 80 5 5.06 0 34	63 88 5.15 43 70	70 96 5.24 52 79	5.77 03 32 61 89	83 5.10 40 69 98	89 5.17 47 77 6.06	95 5.23 54 85 6.15	5.01 29 60 92 6.24	5.06 34 66 99 6.31	5.11 39 72 6.05 38	5.15 43 76 6.10 44
2.7 2.7 2.8 2.8 2.9	0 89 5 6.21 0 56 5 92	6.33 70 7.07	84 7.21	6.19 56 97 7.34 69	6.28 67 7.09 47 82	59	46 87 7.29 69 8.08	55 97 7.38 79 8.19	63 7.05 47 88 8.30	70 7.13 55 97 8.40	77 7.20 62 8.05 49

		7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	0.52 0.55	51 57	1 65 1 69	i
B	0.51 0.52 5	63 63 65	$\frac{69}{13}$ \ $\frac{69}{13}$ \ $\frac{73}{13}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	63 63 6	$9 \setminus \frac{68}{73} \setminus 73 \setminus 7$	18	
0.75 60 64 65	3 69 73	3 / 18 /	8 85 92	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	84 81	92 99 1 00	
0.90	83 89	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06 1.07	
$0.95 \setminus 82 \setminus 82 \setminus 88$	39 89 91 1	1.05	$\begin{array}{c c} 13 & \begin{array}{c c} 14 & 22 \\ \hline 22 & 20 \end{array}$	
$1.05 \mid 95 \mid 95 \mid 1.02 \mid 1.05$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$12 \mid \frac{12}{20} \mid 21 \mid$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 11 19	20 28 25 37	40 47 47	
1.20 09 17	18 26 35	31 46 41	51 57	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34 \ 43 \ 45	56 56	61 18 78	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53 54	65 66 78	89 2.02	
15 49 50	61 63 15	86 89 2.00	13	
1.50 58 69	82 \ 83 96	2.10	26 21 42	
1.60 77 90	92 2.07	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{40}{54}$ 56 $\frac{37}{72}$	
1.65	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35 51 53	,0	
$\frac{1.75}{1.75}$ $\frac{1.2.11}{2.23}$ $\frac{1.26}{26}$	28 45 47	64	81 3.05 3.07	
1.80 36 39	56	80 83 3.02	$\frac{3.04}{21} \setminus \frac{22}{40} \setminus \frac{42}{42}$	
, 00 1	15	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60 62	
1.95 64 65 2.00 79 99		$\frac{32}{53}$ 55	81 84 4.09	
2.05 34 3.1	$\frac{1}{4} \left(\begin{array}{c} 20 \\ 38 \end{array} \right) \left(\begin{array}{c} 43 \end{array} \right)$	12 16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2.15 27	2 52 58 63 82	87 92 4.16 4.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2.20 46	11 96 4.02	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{13}{5}$	
2.25 83 4	90 4.19 25	56 95 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c} 2.30 \\ 2.35 \\ 2.40 \end{array} \begin{array}{c c} 4.06 \\ 30 \end{array}$	36	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60 99 6.05 44	
ایما	63 96 33	40 71 85	6.24 6.31	
2.45 2.50 3.55 5.06	$5.15 \mid 5.27 \mid 61 \mid 61 \mid 61 \mid 61 \mid 61 \mid 61 \mid 61 \mid 6$	98 6.06 6.13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2.60 34	70 79	6.28 37 81	38 47 97 8.0) Э
2.65	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.19 7.29	$\begin{vmatrix} i9 \\ 8.19 \end{vmatrix} \times \begin{vmatrix} 88 \\ 8.30 \end{vmatrix} \times \begin{vmatrix} 8.40 \\ 9.0 \end{vmatrix} = \begin{vmatrix} 9.00 \\ 9.00 \end{vmatrix}$	10
$\frac{2.75}{2.75}$ 6.21	6.33 84 7.34	82 95 8.08	80 80	55
2.80 \ 92	7.40 55	8.44 0 06	9.20 9.33 9.40	
2.90 \ 1.23	99 8.15	8.30 90 3.00		
$2.95 \setminus 65$	8.19 8.38			
3.00 \ 8.01	1	_		

						7			1	Ī		. 1	Ī				
7	0.40	0.	. 1	0.42	0.43	0.	44). 4 5	ψ.	.40	u.4	7 0	.48	0.4	9 (.50	
Б		-							1		- ·-·	- 9 U	. 49		y (1.49	•
0.70	0.51	10.	51	0.54	0.50	Ο.		ນ . ວິບ ວິວິ	- 17	.ευ bu		s Ši	Ub		1	55	
0.75	57	1	٠,٠	57	56		02	52		62	t	ı i	t+ 1		į	60	
0.80	63	- 1	63 '	t-2	62		64 (65	0.5		i 7	,	. 7	1.7		ŧ,	e o	
0.85	69	١	69	6.0	0.8		72	7.4		7.		7 1	70	7	9	70	
0.90	73	1	73	72	72											_	
		1					7 h	77				7.7	70		υ	76	
0.95	78	- 1	75	75	78		84	5.4		-50	١ :	8.5	83	1	\$3	× 2	
1.00	85	1	35	85	84		91	2.1		50		ب ب	59		٠ <u>٠</u>	55	
1.05	92	1	92	92	91			97		97		90	95) t.	95	
1.10	1.00		99	99	95		98			0.4		σ::	03		-3	1.02	
1.15	0.7		.07	1.00	1.00	, -	.05		•								
1		1							į.	. 3		. 2	. 2		. 1	* ()	
1.20	1 14	. }	1.4	1.4	i.		. 4	2		20		20	1.9		151	1.55	
1.25	22		22	21	2		24	2		28		28	27		27	26	
1.30	29		29	29	2		29	3		3.7		37	3.7		36	3.5	
1.35	3:		38	38	3		38			40		46	45		45	4.	
1.40	4	1	47	47	4	7	47	4	U	* 0							
1 . 4.7	1 .						-	1 5		þе		. •	25		0.5	. 4	
1.45	5.	7 1	57	57	5		57	1 0		1.10		ee	6.5		€Ď	υĒ	
1.50	6		6.8	68			0.7		8	77		77	76		76	7 €	
1.55	7		78	78		8	78		0	٠,٠		59	59		58	55	
	l s		90	90		O	90			2.02		.52	2.01	2.	0.1	-2.00	,
1.60	2.0		.02	2.02	2.0	3	$^{2.93}$	2.0									
1.65	12.0	-							ے	1.5	Ξ.	1.5	_ :	1	. 4	1.	
1.70	1	4	14	1.4		. 5	15		5			29	25	1	29	2:	
1.75	-	7	25	25		59	29		99		4	44	4:	3	43	4	
1.80		2	42	40	; .	1-4	4.4		14	1		59	25)	58	5	-
	1 -	7	57	53	;	J 🖰	59		, <u>o</u>	7		7.4	7.	4	74	7	4
1.85		2	73	7	3	73	7.5	1	i 4 -		-1	, ,					
1.90	1 '	- 1						-	. 0	ļ. ₁₉	0	92	Q	2 .	91	á	1
1.95	١,	19	90	, 9	•	91	$_{92}$		92	3.1			3.0	9 3	.09	3.0	8
2.00	3.0	- 1	3.07	3.0			3.09	3.		3 . 1		28	2		27	2	7
1		24	25	. 2	b	27	23	i	28		Ģ.	4.9	.1	8 !	48	4	7
2.95		12	4.4		5	10	47	1	48			71		1	70	t ·	, çè
2.10		54	66			69	70	1	70	1 '	1		•	- !			
2.15	- I '	7	3.0	1	i		•	-		1 4	15	95	q	5	4.4	ŕ	3
2.20	- 1	86	88	, 9	o	92	93	i	94	4.1		4.19	4.1	1	1.18	4.1	7
2.20			4.11	1 -	4 4.	15	4.17	1	18		14	44		4	43		43
		32	3 t	1	9	41	42		43		72	72		3	72		71
2.30		59	63		7	69	70		71	5.0	- 1	5.01	5.0	- 1	5.00	5.0	90
2.35	' 1	87	90	-	3	96	99	5.	.00	19.0	,0	J	1	1		1	
2.40	'	J.			1		1		00	1 .	30	30	1 :	30	30	1	30
2.45	, 5	15	5.19	9 5.3	23 5	. 2Ե	5.21		29		57	58	1	59	60	. 1	60
1		43	4	- 1	19	52	5.		55	1	92	93		94	9.5	,	95
2.50		76	8	0	33	87	89	9	91	6.		6.31	6.		6.33		33
2.5		10	6.1		20 6	. 23	t . 2		. 27			67		69	70		71
2.60	· .	44	4		53	57	6	0	63		65	01	1	-		1	
2.6	٠		Ι΄	-	- 1		i	1		-	00	7.04	7	06	7.09) 7.	.10
	, I	77	1 4	3	88	92	9	- 1	99		02	50	1	52		4	54
2.7		. 20	7.2	-	31 17	.36	7.4		.45	1	48	98		99	5.0	- 1	.òi
2.7	~	62	1	9	76	82	- Н		91		95	95 5.44		46	1	1	5.0
2.8		.05	8.1		20 8	.26	8.3	~	.37	18.	.11	35.44 GG		9.4	59		.òə
2.8	- 1	49		57	6.4	70	7	ti l	81		>6			. '		1	
2.9	·	19 77	1	`	1			1							خد		-
1	1		1			_								_	_		

	-
2 50 0.51 0.51 0.50 0.50 56 56 56 01 01 61 00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0.90 78 78 78 84 84 83 83 89 89 89 95	
$\begin{bmatrix} 0.95 \\ 85 \end{bmatrix} \begin{bmatrix} 85 \\ 85 \\ 92 \end{bmatrix} \begin{bmatrix} 85 \\ 91 \\ 91 \end{bmatrix} \begin{bmatrix} 91 \\ 97 \\ 97 \\ 97 \end{bmatrix} \begin{bmatrix} 96 \\ 1.03 \\ 1.03 \\ 1.03 \end{bmatrix} \begin{bmatrix} 96 \\ 1.03 \\ 1.03 \end{bmatrix}$	
$\begin{bmatrix} 1.05 \\ 1.00 \end{bmatrix} \begin{bmatrix} 92 \\ 99 \\ 1.00 \end{bmatrix} \begin{bmatrix} 99 \\ 99 \\ 1.00 \end{bmatrix} \begin{bmatrix} 99 \\ 1.00 \end{bmatrix} \begin{bmatrix} 1.00 \\$	
$\begin{bmatrix} 1.15 & 07 & 1.0 \\ 1.15 & 20 & 20 \end{bmatrix}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1.35	
1.45 87 68 68 68 68 68 68 69 69 69 69 69 69 69 600	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{vmatrix} 1.75 \\ 1.80 \end{vmatrix} \begin{vmatrix} 42 \\ 42 \end{vmatrix} \begin{vmatrix} 42 \\ 57 \end{vmatrix} \begin{vmatrix} 43 \\ 08 \end{vmatrix} \begin{vmatrix} 35 \\ 73 \end{vmatrix} \begin{vmatrix} 44 \\ 44 \end{vmatrix} \begin{vmatrix} 14 \\ 74 \end{vmatrix} \begin{vmatrix} 74 \\ 01 \end{vmatrix} \begin{vmatrix} 91 \\ 91 \end{vmatrix}$	
$\begin{pmatrix} 1.85 \\ -90 \end{pmatrix}$ $\begin{pmatrix} 57 \\ 72 \end{pmatrix}$ $\begin{pmatrix} 73 \\ 73 \end{pmatrix}$ $\begin{pmatrix} 73 \\ -92 \end{pmatrix}$ $\begin{pmatrix} 92$	
89 90 3.08 3.19 3.09 25 25 45 45 45 45	
$\begin{bmatrix} 2.00 & 3.07 & 2.0 & 2.0 & 2.0 & 1.0 & 1.7 & 1.7 & 1.0 & 1.7 & 1.0 & $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
2.25 4.09 32 30 30 30 30 30 30 30 30 30 30 30 30 30	
2.35 39 90 93 90 70 70 30 70 60 60	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45 12.45	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{bmatrix} 2.65 \\ 77 \\ 83 \end{bmatrix} = \begin{bmatrix} 88 \\ 7.41 \end{bmatrix} \begin{bmatrix} 96 \\ 7.41 \end{bmatrix} \begin{bmatrix} 7.45 \\ 95 \end{bmatrix} \begin{bmatrix} 48 \\ 99 \end{bmatrix} \begin{bmatrix} 8.00 \\ 48 \end{bmatrix} \begin{bmatrix} 8.00 \\ 50 \end{bmatrix}$	
$\begin{vmatrix} 2.75 \\ 12.75 \end{vmatrix} = \begin{vmatrix} 7.20 \\ 7.20 \end{vmatrix} = \begin{vmatrix} 7.20 \\ 70 \end{vmatrix} = \begin{vmatrix} 82 \\ 8.32 \end{vmatrix} = \begin{vmatrix} 8.37 \\ 8.37 \end{vmatrix} = \begin{vmatrix} 8.41 \\ 80 \end{vmatrix} = \begin{vmatrix} 9.41 \\ 90 \end{vmatrix} = \begin{vmatrix} 9.4$	
$\begin{bmatrix} 2.80 \\ 2.85 \\ \end{bmatrix} \begin{bmatrix} 8.05 \\ 8.13 \\ 57 \\ \end{bmatrix} \begin{bmatrix} 8.20 \\ 64 \\ \end{bmatrix} \begin{bmatrix} 70 \\ 70 \\ \end{bmatrix} \begin{bmatrix} 70 \\ 61 \\ \end{bmatrix} \begin{bmatrix} 61 \\ 61 \\ \end{bmatrix} \begin{bmatrix} 9.44 \\ 9.47 \\ 9.15 \\ \end{bmatrix} \begin{bmatrix} 9.44 \\ 9.15 \\ 9.15 \\ \end{bmatrix} \begin{bmatrix} 9.14 \\ 9.15 \\ 9.15 \\ \end{bmatrix} \begin{bmatrix} 9.14 \\ 9.15 \\ 9.15 \\ \end{bmatrix} \begin{bmatrix} 9.14 \\ 9.15 \\ 9.15 \\ \end{bmatrix} \begin{bmatrix} 9.14 \\ 9.15 \\ 9.15 \\ \end{bmatrix} \begin{bmatrix} 9.14 \\ 9.15 \\ 9.15 \\ \end{bmatrix} \begin{bmatrix} 9.14 \\ 9.15 \\ 9.15 \\ \end{bmatrix} \begin{bmatrix} 9.14 \\ 9.15 \\ \end{bmatrix}$	
$\begin{bmatrix} 2.90 \\ \end{bmatrix} \begin{bmatrix} 49 \\ 9.08 \\ \end{bmatrix} \begin{bmatrix} 9.14 \\ 9.20 \\ \end{bmatrix} \begin{bmatrix} 9.26 \\ 85 \\ \end{bmatrix} \begin{bmatrix} 9.31 \\ 92 \\ \end{bmatrix} \begin{bmatrix} 9.8 \\ 10.04 \\ \end{bmatrix} \begin{bmatrix} 10.04 \\ 10.08 \\ \end{bmatrix}$	i
2.95 55 63 63	
1066	

rable II

Tk

To

						1		- 1		1	
В	0.50	0.51	0.52	0.53	0.54	0.55	0.56	6.57	0.58	0.59	0.60
0.70 0.75 0.80 0.85 0.90	0.49 55 60 66 70	0.48 54 60 66 69	0.48 54 60 65 69	0.48 54 59 65 68	0.48 53 59 65 68	9.47 53 58 64 67	0.47 53 58 64 67	0.46 52 58 63 65	0.46 52 58 63 66	0.46 51 57 62 66	0.45 51 57 62 65
0.95 1.00 1.05 1.10	76 82 88 95 1.02	74 81 87 94 1.01	74 80 87 94 1.01	73 80 86 93 1.00	72 79 85 92 99	72 78 85 92 98	71 77 84 91 98	71 77 84 90 97	70 77 83 90 97	70 76 82 89 96	70 52 89 96
1.20 1.25 1.30 1.35	10 13 26 35 45	19 17 25 34 43	09 16 24 33 43	08 15 23 32 42	1.07 14 22 31 41	1.06 13 20 30 40	1.06 13 20 29 39	0.05 12 29 29 39	1.04 12 20 28 38	1.03 11 19 28 37	1.03 10 18 27 36
1.45 1.50 1.55 1.60 1.65	54 65 76 88 2.00	54 64 75 87 2.00	53 63 74 86 99	52 62 74 86 98	51 61 73 84 97	50 61 72 84 96	49 60 71 82 94	48 59 70 81 93	47 58 69 80 92	40 57 68 79 91	45 56 66 77 89
1.70 1.75 1.80 1.85 1.90	13 28 42 58 74	27 42 57	2.12 26 41 56 72	2.11 25 39 55 72	2.10 23 38 54 70	2.09 22 37 53 69	21 35 51	2.07 20 34 50 66	2.05 18 33 48 64	2.04 17 31 46 63	2.03 16 30 45 60
1.95 2.00 2.05 2.10 2.15	91 3.08 27 47	3.08 26 47	89 3.07 26 47 67	88 3.07 25 46 66	87 3.06 24 45 65	3.04 23 43 64	3.03	3.10	3.00 19 39 60	79 98 3.17 37 59	77 96 3.15 35 57
2.20 2.25 2.30 2.35 2.40	9: 4.1 4: 7 5.0	7 4.16 3 42 1 71	4.15 41 70		4.12 39 67	35 65	4.10 7 36 5 63	4.09 35 31	84 4.08 33 59 88	82 4.06 31 57 86	80 4.04 29 55 84
2.45 2.50 2.55 2.60 2.65	3 6 9 6.3 7	0 61 5 96 3 6.34	61 96 1 6.34	61 96 6.34	61 96 1 6.33	6.3	59 6 9 2 6.3	57 5 93 1 6.29	5.20 55 91 6.28 67	53 89 6.26	87 6.23 62
2.70 2.75 2.80 2.85 2190	8.0	1 8.05 50 5	5 55 2 8.02 1 55	5 5: 2 8.03 3 5:	5 5: 3 8.03 4 5:	5 3 8.0 4 5	4 5 2 8.0 4 5	4 52 2 8.01 4 53	51 8.00 53	98 3 8.51	48 97 8.49

Sanitized Copy Approved for F	Release 2010/10/29	: CIA-RDP81-01043R00110	0040001-0

	<u>/</u>			3 72	72	7.1	77	17	76	75 82	
0.95 1.00	76 82	74 81 87	80 5	0 79 0 85	78 85 92	77 84 91	84 90 97	5.38 Geo 51.77	59 59 90	35	
$\begin{array}{cccc} 1.05 \\ 1.10 \\ 1.15 \end{array}$	95 .02	94	.01 1.	00 65		, 89 Luo, j		1.04			
1.20	10	10	16	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{13}{2}$, $\frac{20}{20}$	13 20	12 20 29		25	18	
1.25 1.30 1.35	26 35 45	25 34 43	24 33 43	32 42 43	1	29 39	39			41	,
1.40	54	54	£3	62 6	1 50 1 61 72	6.0		غرب الم دور الم	5 () 0 ()		
1.50	65 ' 76 88	64 75 87	7.4 80	80	3 13 3 84 4 90	3.3		1	2 \ v	1: 8	
1.60	2.00	2.00	99 2.12		15 T.S. 23 T.S.	.			a .	3	+ ()
$\begin{array}{c c} 1.70 \\ 1.75 \\ 1.80 \end{array}$	25 42	27 42 37	20 4.		35 3 54 9				- '	1 '	10
1.85	58 74	73		be					n Crak		77 96
1.95	91 3.03 2	, 3.08	3.07	3.07 3		13		1.			5.
$\begin{vmatrix} 2.05 \\ 2.10 \\ 2.15 \end{vmatrix}$	4	7 4		4 . € €					- 4 - 11 - 1 - 4		.04
2.20 2.25	4.1		6 4.19	93 4.15 40	(.) 2	11 4.	3.			3.	29 51 54
$\begin{vmatrix} 2.30 \\ 2.35 \end{vmatrix}$		13 4 71 7 10 9	~ ;	1.5					.2.1		.15
2.40		30 5.5	3029 51 - 61	29			. 9	9.3	91 925	55 - 25 25	.23
2.50 2.55 2.60	- 1	95 33 0-	31.	6.34 7.3	6.33 6	.32 6	1			1	7.03
2.65			11 7.13			541	0.4 0.4 5.02	201	5.00	49	48 97 5.49
$\begin{vmatrix} 2.75 \\ 2.80 \end{vmatrix}$	8	50	02 8.0° 51 5	2 ~.03	5.1	54	54 9.09	3.05	53 9.07	9.70	9.05
2.85	9	50 9		6 55	ξ9 10.20 1		0.27	62	(2 10.25	111.25	10.24
$\begin{vmatrix} 2.95 \\ 3.00 \end{vmatrix}$		19 10		4 10.25		1167					

Table II

 $\frac{l_k}{l_0}$

Δ	0.60	0.0	61 0	.62	υ.63	υ.6	54	U. 65	υ.	66	0.67	U.	68	υ.69	υ.	iu
0.70 0.75 0.80	0.45 5 5	1	50 56	50 56 61	0 . 44 49 55		44 49 54 60	U. 4-48 5-	3 1	43 48 53 58		/ 3 3 ;	42 47 52 57 60	0.41 46 51 56		41 45 50 55 59
0.85 0.90 0.95 1.00 1.05 1.10	1 8		61 64 69 75 81 88	64 69 74 80 87	63 7- 7: 8:	3 4 9 6	62 67 73 78 85 91	8	1	61 66 71 77 83 89	8		64 69 75 81 87	6: 6: 7 8 8	3 5 4	63 68 74 80 86
1.15 1.20 1.25 1.30 1.35	1.	03 1 10 18 27 36	.02 10 18 26 35	93 1.00 09 17 25	9 1.0	9	98 .07 15 22 31	1.0	05 1 13 21 30	97 .04 12 20 29	1.0	06 03 1 11 19 28	95 .02 09 17 26	1.0	8 1 6 25	93 99 .07 15 23
1.40 1.45 1.50 1.55 1.60 1.65		45 56 66 77 89	45 55 65 76 88	43 55 6- 7 8	3 4 5	12 52 62 74 86	41 51 61 72 84	2	40 49 60 71 83	38 48 59 69	8 8 9 1	36 46 57 67 79	35 45 55 66 77		33 43 53 64 75	42 51 62 73
1.70 1.75 1.80 1.85	2	.03 16 30 45 60	2.02 15 28 44 59	2		99 13 26 41 56	9' 2.1 2.4 4 5	1 2	95 09 23 38 53	2.0	21 36 51	92 .05 19 34 48	2.03 1 3 4	$\begin{bmatrix} 3 & 2 \\ 7 & 1 \end{bmatrix}$	01	98 2.12 26 42 58
1.95 2.00 2.05 2.10 2.15	3	77 96 3.15 35 57	77 95 3.14 34 55	3.	75 93 12 32 53	74 92 .11 30 51	3.0	2 00 09 3 28 49	70 88 .06 25 46	3.	23	84 .02 21 41	3.1	11	78 96 .15 36	3.1 3.5
2.20 2.25 2.30 2.35		80 4.04 29 55 84	78 4.03 2: 5: 8	2 4. 7 2	76 00 25 49 78	74 97 .23 47 75	4.	71 95 20 44 72	69 92 4.17 41 69	١	66 89 13 39 67	63 86 4.10 36 64	4.	83 06 33 61	80 1.03 30 58	4.0
2.40 2.45 2.50 2.53	5 0 5	5.15 50 87 6.23 62	6.2	7	44 80	5.07 41 77 6.15 54		04 38 74 12 50	5.01 35 71 6.08 47	6	98 .32 67 .05 44	95 5.28 64 6.02 40	5.	60 98 .36	5.22 57 94 6.32	6.
2.6 2.7 2.7 2.8	0 5 0	7.03 48 97 8.49	7.9	01 46 7 95	99 .44 93	97 7.41 91 8.42	7	94 .39 88 .38	91 7.36 8:	5 7 5 7	87 7.32 81 8.31	83 7.27 76 8.2	7 7 8	79 .23 72 .22 .76	74 7.18 66 8.17	8.

				,			X	61	60	59	59
1.00	70		, 00	68	6	7 67	66	65			
1.05	82			74	7:					63 68	63
1.10	89		1	19	1			16		74	68 74
1.15	95			86	85	,		82		80	80
1		1	3.3	92	91	90	89	88	87	86	86
1.20	1.03	1.02	1.00	99	98	,		1			
1.25	10		09	1.08	1.07		97	96	95	94	93
1.30	18	1	1,	16	15		1.04	1.03	1.02	1.01	99
1.35	27		25	24	22		20	11 19	09	08	1.07
1.40	36	35	34	33	31	30	29	28	17 26	16	1.5
1.45	45	45				1		20	20	25	23
1.50	56	55	43 53	42 52	41	40	38	36	35	33	32
1.55	66	65	64	62	51 61	49	48	46	45	43	42
1.60	77	76	75	74	72	60	58	57	55	53	51
1.65	89	88	87	86	84	83	69 81	67	66	64	62
1.70	0 10	1 _			•		61	79	77	75	13
1.75	2.03	2.02	2.00	99	97	95	94	92	89		
1.80	30	15	14	2.13	2.11	2.09	2.07	2.05	2.03	2.01	85 98
1.85	45	14	27 43	26	24	23	21	19	17	14	2.12
1.90	60	59	58	41 56	40	38	36	34	31	29	26
		!		36	54	53	51	48	46	44	42
1.95	7.7	77	75	74	12	70	68				
2.00	96	95	93	92	90	88	86	56 84	63	61	58
2.10	3.15 35	3.14	3.12	3.11	3.09	3.06	3.04	3.02	81	78	75
2.15	57	34 55	32	30	28	25	23	21		96 3.15	94
		33	53	51	49	46	44	41	39	36	3.12
2.20	80	78	76	74	71	414.		i	- 1		32
2.25	4.04	4.02	4.00	97	95	69 92	66	63	60	57	54
2.30	29	27	25	4.23	4.20	4.17	89	86	83	80	77
2.35	55	52	49	47	44	41	39	36			1.00
2.40	84	81	78	75	72	69	67	64	33 61	30	27
2.45	5.15	5.12	5 00	_	1		•		61	58	55
2.50	50	47	5.09		5.04	5.01	98	95	92	89	86
2.55	87	83	80	41 77	38	35	5.32	5.28	1	. 1	.18
2.60	6.23	1		. 1	74 6.12	71	6.7	64	60	57	53
2.65	62	60	57	54	50			5.02	98	94	90
2.70	- 1			•	30	47	44	40	6.36 6	.32 6	.28
2.75	7.03	7.01	99	97	94	91	87	83		_	į
2.80	48 97		7.44 7		7.39			- 1	79 7.23 7	74	68
	8.49	95 8.46	93	91	88	85	81	76	72	66	.12
2.90	9.05		8.44 8 9.00		3.38		8.31 8	- 1			.11
1 1			00	97	93	89	86	81	76	71	66
2.95	61	61	59 9	.56 9	.53	. اید		_		-	
3.00 1	0.24 1	0.23 10		-	,						. 23
LL						0.12	J. 08 110	0.04 9	99	94	89

Table II

ι	k
1	[]

Λ	 -	ı				-	-	-			0.78	0.79	υ. ε	30
В	0.70	0.71	0.	72	73	U.74	0.7	5 0).76	0.77	0.78			
0.70 0.75 0.80 0.85	0.41 45 50 52	0.40 4 5 5	5 () 5	40 44 49 54 57	0.39 44 48 53 57	0.38 43 48 52 56	4	8 2 17 51	3.37 42 46 50 54	0.37 41 45 49 53	U.36 41 44 48 52	U.35 4U 44 48 51		35 39 43 47 50
0.90 0.95 1.00 1.05 1.10 1.15	63 68 74 80 86	7	2 7 3 8 34	62 66 72 77 83	61 65 71 76 82	60 65 70 75 81		59 54 59 74 80	58 63 68 73 79	57 62 67 72 78	56 61 66 71 77	55 60 65 70 76		54 59 64 69 75
1.20 1.25 1.30 1.35 1.40	93 99 1.97 15	3 3 5	92 98 96 14	91 97 .04 12 20	90 96 1.03 11 19	88 94 1.02 09	1.	87 93 00 08 16	86 92 99 1.06 14	84 91 97 1.05 13		1.02	1.	80 87 94 00 08
1.45 1.50 1.55 1.60 1.65	3: 4: 5 6	2	30 40 50 61 72	29 39 48 59 70	28 37 47 58 68	56		24 33 43 54 64	23 31 41 52 62	22 30 39 49	28 37 40 57	3 2 3 4 4 5	6 5 5 5	24 33 43 53
1.70 1.75 1.80 1.85	2.1	5 8 2 2 2.6	83 97 10 24 40	82 95 2.08 22 37	80 93 2.06 20 34	$\begin{array}{c c} & 9 \\ 2.03 \\ 1 \end{array}$	1 3 2 7	75 88 .01 14 29	73 86 98 2.12 26	83 96 2.0	8 9 9 2.0 4 2	1 7 3 9 6 2.0	8	75 88 .01 15
1.95 2.00 2.05 2.10 2.15	3.	58 75 94 12 32	55 72 90 .09 29	51 68 86 3.06 26	48 6. 8: 3.0: 2	5 6 3 7 2 9	1 9	43 58 76 95 3.16	3.13	5 5 3 7 2 8	3 5 0 6 8 8 9 3.0	0 7 35 05 3.	1	30 45 61 78 97
2.20 2.25 2.30 2.35	4.	54 77 00 27 4	51 74 97 1.24 52	47 71 93 4.20	6 9 4.1	7 6	11 54 37 14 42	38 60 83 4.10 39	5 8 4.0	7 6	3	19 73 99	46 70 96 22	3.19 42 66 93 4.18
2.40 2.45 2.50 2.55 2.60 2.65	5.	86 18 53 90	83 5.15 48 86 6.24	5.11 45 82 6.20	5 5.0	5. 10 78	72 02 35 73 10	67 97 5.30 69 6.09	5.2	25 53	87 19 57 92	50 84	49 76 .05 43 76	43 70 98 5.35 67
2.70 2.75 2.80 2.85 2.99	7	61	64 7.07 56 8.06 60	5: 7.0: 5 8.0 5	2 7.	95	49 93 40 89 42	7.3 8.3 8.3	8 4 3	81 27 77	73 20 70	65 11 62	.15 56 .02 54 .06	6.06 46 93 7.45 8.00

	الزوائد	_	- 00	65	65	64	63	62	61	60	59
1.05	74	73	72	71	70	69	68	67	66	65	64
1.10	80	78	77	76	75	7.4	73	72	71	70	69
1.15	86	84	83	82	81	80	79	78	7.7	76	15
										į	İ
1.20	93	92	91	90	88	87	86	84	83	81	80
1.25	99	98	97	96	94	93	92	91	89	88	87
1.30	1.07	1.06	1.04	1.03	1.02	1.00	99	97	96	95	94
1.35	15	14	12	11	09	08	1.06	1.05	1.03	1.02	1.00
1.40	23	22	20	19	17	16	14	13	11	09	08
1 , 45										-	
1.45	32	30	29	28	26	24	23	22	20	18	16
1.50	42	40	39	37	35	33	31	30	28	26	24
1.55	51	50	48	47	45	43	41	39	37	35	33
1.60	62	61	59	58	56	54	52	49	4.7	45	43
1.65	73	72	70	68	66	64	62	6 U	57	55	53
1.70	85	83	82	80	1						
1.75	98				78	/5	73		68	66	63
1.75		97	95	93	91	88	86	83	81	78	75
	2.12	2.10	2.08	2.06	2.03	2.01	98	96	93	90	88
1.85	26	24	22	20	17	14	2.12	2.09	2.06	2.04	2.01
1.90	42	40	37	34	32	29	26	24	21	18	15
1.95	58	55	51	48	46	43	40	.,		20	
2.00	75	72	68	65	61	58		3 / 53	35	32	30
2.05	94	90	86	83			55		50	47	45
2.10	3.12	3.09			79	76	73	70	67	64	61
			3.06	3.02	99	95	92	88	85	82	78
2.15	32	29	26	23	3.19	3.16	3.12	3.09	3.05	3.01	97
2.20	54	51	47	44	41	38	34	30	26	22	3.19
2.25	77	/4	71	67	64	60	57	53	49	46	42
2.30	4.00	97	93	90	87	83	80	77	73	70	66
2.35	27	4.24	4.20	4.17	4.14	4.10	4.07	4.03	99	96	93
2.40	55	52	49	45	42	39	34	30	4.26	4.22	4.18
1							31	30	4.20	7.22	3.10
2.45	86	83	79	76	72	67	63	59	54	49	43
2.50	5.18	5.15	5.11	5.07	5.02	97	92	87	82	76	70
2.55	53	48	45	40	35	5.30	5.25	5.19	5.12	5.05	98
2.60	90	86	82	78	73	69	63	57	50	43	5.35
2.65	6.28	6.24	6.20	6.15	6.10	6.05	99	92	84	76	67
2.70	68	64	59	59	49	44	6.38	6.31	6.23	6.15	6.06
2.75	7.12	7.07	7.02	98	93	88	81	73	65	56	46
2.80	61	56	51	7.45	7.40	7.34	7.27	7.20	7.11	7.02	93
2.85	8.11	8.06	8.91	95	89	83	77	70	62	54	7.45
2.90	66	60	54	8.48	8.42	8.35	8.28	8.21	8.14	8.06	8.00
		l									!
2.95	9.23	9.16	9.10	9.04	98	91	86	79	73	67	62
3.00	89	84	78	72	9.65	9.58	51	9.44	9.37	9.30	9.22
<u></u>		L									1

Table III - Condition of Maximum Pressure

 $\frac{l}{l}_{0}$

					v						
Δ	0.07	0.11	0.12	0.13	0.14	0.15	U.16	0.17	U.18	U.19	0.20
В											
0.70	0.151	0.298	0.321	0.343	0.363		0.401	0.422		0.441	0.446
0.75	158	329	354	378	401	424	447	469	485 5 3 0	501 551	516 571
0.80	175	360	386	411	436	461 493	485 517	509 541	564	586	606
0.85	191	390	417	443	468 497	521		567	586	604	621
0.90	208	418	446	472	431	321	344	301	000		i
0.95	223	443	474	500	523	544	563	581	598	614	628
1.00	238	462	493	517	537	555	572	588	603	618	632
1.05	252	473	505	527	545	561	571	59 2	606	620	633 633
1.10	264	478	514	539		564	579	593	607	620 620	
1.15	280	478	514	539	548	564	579	593	607	620	032
1. 20	293	476	512	537	546	562	5//	591	604	617	629
1.20	305	474	503	525	543	559	574	588	6U1		625
1.30	317	470	497	519	538	554	569	583	596	608	619
1.35	324	463	487	509	529	547	563	577	590		612
1.40	328	456	479	500	520	538	554	569	582	. 593	603
		449	470	491	511	529	545	559	.572	583	594
1.45	329	449	462	482	501		534		561	574	586
1.50	329 327	433	454	474	492	508	524	539	553	566	
1.60	322	424	445	465	483	500	516	531	545	558	
1.65	315	416	437	457	475	492	508	523	537	550	562
1.00	1							516	530	543	555
1.70	308	408	430			485		516 508	522	535	548
1.75	302	400	424	444	462	478 470		501	515	528	541
1.80	296	393	415	435 428	453 446	463		494	508	521	534
1.85	290	386	408	7	440	457	473	488	502	515	528
1.90	284	380	102		1						
1.95	278	375	397		434	450		481	495	509 503	522 516
2.00	273	370	392	411	428	444			489 484		511
2.00 2.05	268	365	386	405	422	438			478		505
2.10 2.15	263	360	380		416	432			473		500
2.15	258	355	374	392	410	421	113	100	•		
h 20	254	350	369	387	405	422	438		468		496
2.20	249		365		400	417			463		490
2.20 2.25 2.30	245		360		395				458		486
2.35	241	336	355				1 -		453		481
2.35 2.40	238	332	350	368	385	402	418	434	449	463	1 ***
1		328	346	364	381	398	414	430	445	459	473
2.45	234								441		
2.50	228		339			1		422	437		
2.55	224						401	417	432		
2.60 2.65	221					382	398	414	429	443	457
1	1			1				410	42	439	453
2.70	219		328								
2.75	216										
2.80 2.85	213										
2.85	210 208		318					- 1			
2.90	200	230	313						į		433
	•			1 200	345	36	376	391	400	6 420	433

70.80	175	360	386	411	430	401	463	305	- 550	001	
0.85	191	330	417	443	468	493	517	541	564	586	606
0.90	208		446	472	497	521	544	567	586	604	621
	,,,	410	113				~				
0.95	223	443	474	500	523	544	563	581	598	614	628
1.00						555	5/2	588	603	618	632
	238	462	493	517	537				606	620	633
1.05	252	473		527	545	561		592			633
1.10	264	478	514	539	548	564	579	593	607	620	
1.15	280	478	514	539	548	5 64	579	593	607	620	632
1, 00					5.40	5.00	e	500	201	617	629
1.20	293	476	512	537	546	562	5/7	591	604		625
1.25	305	474	503	525	543	559	5/4	588	601	613	
1.30	317	470	497	519	538	554	569	583	596	608	619
1.35	324	463	487	509	529	547	563	577	590	60 2	612
1.40	328	456	479	500	520	538	554	569	582	593	603
										5.00	50.1
1.45	329	449	470	491	511	529	545	559	572	583	594
1.50	329	441	462	482	501	518	534	548	561	574	586
1.55	327	433	454	474		508	524	539	553	566	
1.60	322	424	445	465	483	500	516	531	545	558	570
1.65	315	416	437	457	475	492	508	523	537	550	562
	l										
1.70	308	408	430	450	468	485	501	516	530	543	555
1.75	302	400	424	444	462	478	493	508	522	535	548
1.80	296	393	415	435	453	470	486	501	515	528	541
1.85	290	386	408	428	446	463	479	494	508	521	534
1.90	284	380	402	422	440	457	473	488	502	515	528
1.95	278	375	397	417	434	450	466	481	495	509	522
2.00	273	370	392	411	428	444	460	475	489	503	516
2.05	268	365	386	405	422	438	454	469	484	498	511
2.10	263	360	380	399	416	432	448	463	478	492	505
2.15	258	355	374	392	410	427	443	458	4,3	487	500 ¦
7.13	1 230	000	J				1				- 1
2.20	254	350	369	387	405	422	438	453	468	482	496
2.25	249	346	365	383	400	417	433	448	463	477	490
30	245	341	360	378	395	412	428	443	458	472	486
2.30 2.35	241	336	355	373	390	407	423	438	453	467	481
	238	332	350	368	385	402	418		449	463	4/7
2.40	230	332	330	300	303	102					
2.45	234	328	346	364	381	398	414	430	445	459	473
2.50	231	324	342	360	377	394	410	426	441	455	469
	228	321	339	357	374	391	407	422	437	451	465
2.55	224	318	335	352	369	385	401	417	432	447	461
2.60			331	348	365	382	398	414	429	443	457
2.65	221	314	331	340	363	362	330	7.7			1
2.70	219	311	328	345	362	378	394	410	425	439	453
2.75	216	308	325	342	358	374	390	406	421	435	449
	213	304	321	338	355	371	387	403	418	432	445
2.80 2.85		301	318	335	352	368	384	399	414	428	441
	210			333	349	365	380	395	410	424	437
2.90	208	298	315	332	319	393	. 500	333	•••		
h 05	205	294	311	328	345	361	376	391	406	420	433
2.95			0.308		0.342		0.373	0.388	0.402	0.416	0.429
3.00	0.203	0.291	0.308	0.323	0.342	0.336	0.3.3	1 . 5 . 5			
1	I	l		L			<u> </u>		L		

Table III (cont'd.)

 $\frac{1}{l}_{0}$

_													
١.	. Δ			00		0.24	U.25	0.26	U.27	U.28	0.29	0.30	
1		0.20	0.21	0.22	0.23	0.24	0.23	0.20					
	\sim					i						i	
В	1												
1													l
\vdash	0.70	0.446	0.452	0 457	0.464	0.471	U.48U	0.481	0.490		0.503	0.505	
	0.70	516	523	530	537	543	548	553	557	561	565	568	ĺ
	0.75	571	579	586	592	598	603	608	613	617	621	625	1
	0.80	606	615	623	631	638	644	650	656	661	665	670	
	0.85			640	650	659	668	675	684	692	699	705	
- 1	0.90	621	630	040	000								
- 1		628	637	647	657	667	676	683	692	699	706	712	
	0.95		641	651	661	671	680	687	696	703	710	716	'
- 1	1.00	632	642	652	662	672	681	688	697	704	711	717	
	1.05	633		652	662	672	681	688	697	/03	710	/16	
	1.10	633	642		660	670	679	686	692	700	707	713	
	1.15	632	641	651	000	0.0	""			1			
1		200	620	648	657	667	676	683	689	696	702	708	
- 1	1.20	629	638		652	662	671	678	684	690	696	702	
	1.25	626	634	643	646	656	665	672	678	684	690	696	
	1.30	619	628	637		647	656	663	669	675	681	687	
1	1.35	612	621	630	638		647	654	660	666	672	678	1
!	1.40	603	612	621	629	638	041	031					,
į		1	502	612	620	629	638	645	651	657	663	669	ì
i	1.45	594	603	604	612	621	630	637	643	649	655	661	
	1.50	586	595		604	612	621	628	633	638	649	65∪	-
	1.55	578	587	596		604	613	620	1	630	636	642	1
	1.60	570		588	596	596	605	612	617	622	628	634	ĺ
- 1	1.65	562	571	580	588	330	003	012				į.	١
		1	1	600	581	589	599	605	609	615	621	627	1
i	1.70	555		573		582	592			608	614	620	1
1	1.75	548		566	574	575	585	591		601	607	613	
- 1	1.80	541	550	559	567		578			594	600	606	
- 1	1.85	534		552	560	1	5/2		1	588	594	600	ı
1	1.90	528	537	546	554	562	312	3,0	1 302				
				- 40	5.40	556	571	5 72	576	582	588	594	١
1	1.95	522		540	548 542		560		•	1	582	588	1
1	2.00	516		534			555				577	583	1
	2.05	511					550				1	578	1
	2.10	505			532					1	567	573	1
	2.15	500	510	519	527	535	545	331	1 300	002			١
						530	540	546	550	556	562	568	١
	2.20	496					1			551	557	564	١
	2.25	490					531			1			١
	2.30	486											١
	2.35	481											١
	2.40	477	486	495	503	513	323	32.	/ 000				1
		1			494	509	519	52	5 529	535	541		
	2.45	473											
	2.50	469							- 1			542	
	2.55	465										539	-
	2.60	461								1		- 1	
	2.65	457	7 466	475	483	493	30.	, 1	1				
				٠.,	479	489	499	50	5 51	517	7 52	5 533	
	2.70	453		1					- 1			530	
	2.75	449						- 1		3 51	514	8 527	
	-		454	463	47	101	15		ماحم				_

0.80	57	1	579	586	592	598	803	000	CEC	661	665	670	9.
0.85	60		615	623	631	638	644	650	656 684	692	699	705	
0.90	62		630	640	650	659	668	675	004	032		1	
	1	ĺ	1	. 1		007	676	683	692	699	706	712	
0.95	62		637	647	657	667	680	687	696	703	710	716	
1.00	63		641	651	661	672	681	688	697	704	711	717	
1.05	63		642	652	662	672	681	688	697	703	710	/16	
1.10	63		642	652 651	660	670	679	686	692	700	707	713	
1.15	63	32	641	631	000				1	1	200	708	
3 20	1	29	638	648	657	667	676	683	689	696	702	702	
1.20		26	634	643	652	662	671	678	684	690	696 690	696	
1.30		19	628	637	646	656	665	672	678	684 675	681	687	
1.35		12	621	630	638	647	656	663	669 660	666	672	678	
1.40		03	612	621	629	638	647	654	000	000			
	1					629	638	645	651	657	663	669	
1.45		94	603	612	620	621	630	637	643	649	655	661	
1.50	1 -	86	595	604 596	604	612	621	628	633	638	649	65U	
1.55		78	587 579	588	596	604	613	620	625	630	636	642 634	
1.60		70 62	571	580	588	596	605	612	617	622	628	034	
1.65	1 3	02	3/1				İ			615	621	624	
1.70	5	55	564	573	581	589	599	605	609 602	608	614	620	
1.75		48	557	566	574	582	592	598 591	595	601	607	613	
1.80	5	41	550	559	567	575	585 578	584	588	594	600	606	
1.85		34	543	552	560	568 562	5/2	578	582	588	594	600	
1.90	5	28	537	546	554	302	3.2			1		4	
	١.		531	540	548	556	5//	5/2	576	582	588	59 4 588	
11.95		522	525	534	542	550	560	566	570	576	582 577	583	1
2.00		516	520	529	537	545	555	561	565	571	572	578	
2.05		505	515	524	532	540	550	556	560	566 561	567	573	ì
2.15		500	510	519	52/	535	545	551	555	301	50.	•	
2.10	1		ı	1		5 2 ()	540	546	550	556	562	568	1
2.20		496	505	514	522	530 525	535	541	545	551	557	56 4	
2.25	.	490	500	509	517 512	521	531	537	541	547	553	560	
2.30		486	495	504 499	507	51/	527	533	537	543	549	556	
2.35		481	490 496	495	503	513	523	529	533	539	545	552	
2.40		471	430	130		1				525	541	548	İ
2.45	.	473	482	491	494	509	519	525	529	535 531	538	545	1
2.50		469	478	487	493	505	515	521	525 521	527	534	542	1
2.55		465	474	483	491	501	511	517 513	517	523	531	539	
2.60		461	470	479	487	497	507 503	509	513	520	528	536	
2.65		457	466	475	483	493	303	303	0.0				ı
-	- 1			4.1	479	489	499	505	511	517	525	533	1
2.70		453	462 458	4/1	475	485	495	501	507	513	521	530	
2.75		449	458	463	471	481	491	497	503	510	518	527 524	
2.80		441	450	459	467	471	487	493	500		515 512	521	
2.85		437	446	455	463	473	484	490	497	504	312	321	
2.90	'							487	494	501	509	518	-
2.9	5	433	442	451	459	470	481 0.478	0.484	0.491		0.506	0.515	١
3.0		429	0.438	0.447	0.456	0.467	0.418	0.101				1	
1	1		1	1					_				

Table 111

1 m

Δ	0.30	0.3	1 0.3	2 0.3	3 0.	. 34	0.35	0.3	36 o.:	37 0.	38 0.3	39 U.	40
0.70 0.75	0. 49 7 568	5	02 0.50 70 57 38 62		1	629	62	9 6	70 ' 5 2 8 6	68 5	625 6	23 6 85 6	23 83
0.80 0.85 0.90	625 670 705	6 7	75 67 11 7	19 68 15 75 23 7	33 20 28	686 /23 732		. 7 36 3	30 7 139	26 /39 /42	738 742	37	735 740 743
0.95 1.00 1.05 1.10 1.15	71 71 71 71	6 7 7 7 6 4	21 7 22 7 21 7	26 <i>i</i> 25 <i>i</i>	31 31 30 27	735 735 734 731	73	39 '	742 741 738	/44 /43 /40	744		745 744 739
1.20 1.25 1.30	70)2)6	707 701	12	23 /1 / /11 /02	121 121 115 706	1 7 7	31 25 19 10	734 /28 /22 /13	736 730 724 715 706	731 725 716 707	732 726 717 708	733 727 718 709
1.35 1.40	6		683	679 671	693 684 676	697 688 680	, (01 592 584 575	695 687 678	697 689 680	698 691 682	699 692 683	700 693 685 677
1.50 1.55 1.60 1.65	6	50 42 34	655 647 639	653 645	666 658 650	670 667 654	2	659 659	670 662	672 664	674 666 659	675 667 660 653	670 663 656
1.70 1.75 1.80 1.85	1 6	27 20 13 506	632 625 619 613 607	638 631 625 619 613	636 630 624 618	64 63 62 62	0 4 8	645 639 633 621	648 642 636 630	650 644 638 632	646 640 634	648 642 636	650 644 638
1.90 1.95 2.00		594 588 583	601 595 590	607 601 596	612 606 601	61	O	621 615 610 605	624 618 613 608	626 620 615 610	628 622 617 612	630 624 619 614 609	633 627 622 617 613
2.05 2.10 2.15		578 573 568	585 580 575	591 586 581	596 591 586	59	95 90	600 595 591	603 598 594	605 600 596	607 602 598	60 4	609 605 601
2.20 2.25 2.30 2.35		564 560 556 552	571 567 563 559	577 573 569 565	582 578 574 570	5	86 82 78 74	587 583 579	590 586 582	592 588 584	586	596 592 588 584	597 593 589
2.40 2.45 2.50 2.55		548 545 542	555 552 549	561 558 555 552	566 563 56	3	570 567 564 561	575 572 569 566			579 576 573	581 578 575	586 583 580
2.60 2.65 2.70		539 536 533	546 543 540	549 546 543	55 55 54	1	558 555 552	563 560 557	563 560	56 56	5 567 2 565	576	574 571 56
2.75 2.80		530 527 524	537 534 531	540 537	54	5 12	549 546 543	554 55	55	5 55	8 56	56	4 567

	146					4					2 0	750
#	0.95	73	5 77						ورسوا			
				702	728	732	736	739	739	738	737	735
	0.95	712	718	723 725	731	735	739	742	/42	742	741	140
	.00	716	721 722	726	731	135	739	742	744	745	744	743
	.05	717	721	125	/30	134	/38	(41	743	744	/45	745
	1.10	716	718	722	727	/31	735	738	140	741	743	744
1	1.15	/13	110	122				1				739
Ι,	1.20	708	713	718	/23	721	/31	734	136	131	/38	/33
	1.25	102	707	/12	117	121	/25	128	/30	/31	732	727
	1.30	696	/01	706	711	/15	719	722	724	725	726 717	718
	1.35	687	692	697	702	706	710	713	715	716	708	709
	1.40	678	683	688	693	697	701	104	706	707	700	. 0,9
-			1				200	COE	697	698	699	700
- 1	1.45	669	674	679	684	688	692	695 687	689	691	692	693
	1.50	661	666	6/1	6/6	680	684	678	680	682	683	685
1	1.55	650	655	661	666	670	6/5	6/0	672	674	675	677
	1.60	642	647	653	658	662	667 659	662	664	666	667	670
	1.65	634	639	645	650	654	033	002	00.			
1				C 2 0	643	647	652	655	657	659	660	663
	1.70	627	632	638 631	636	640	645	648	650	652	653	6 5 6
- 1	1.75	620	625	625	630	634	639	642	644	646	648	650
	1.80	613	619 613	619	624	628	633	636	638	6 4 0	642	644
1	1.85	606	607	613	618	622	627	630	632	634	636	638
ì	1.90	800	00.	0.10		1				1		633
	1.95	594	601	607	612	616	621	624	626	628	630	627
	2.00	588	595	601	606	610	615	618	620	622	624	622
į	2.05	583	590	596	601	605	610	613	615	617	614	617
ĺ	2.10	578	585	591	596	600	605	608	610	612	609	613
-	2.15	573	580	586	591	595	600	603	605	807	003	010
						500	595	598	600	602	604	609
	2.20	568	575	581	586	590 586	591	594	596	598	600	605
1	2.25	564	5/1	5/7	582 578	582	587	590	592	594	596	601
1	2.30	560	567	573 569	574	578	583	586	588	590	592	597
	2.35	556	563	565	570	574	579	582	584	586	588	593
	2.40	552	559	363	310	٠						
		548	555	561	566	5/0	575	578	580	582	584	589
	2.45	545	552	558	563	567	572	575	577	579	581	586 583
	2.55	542	549	555	560	564	569	572	574	576	578	580
	2.60	539	546	552	55/	561		569	571	573	575 572	577
	2.65	536	543	549	554	558	563	566	568	570	312	3,,
	2.00							563	565	567	570	574
	2.10	533	540	546	551	555	560		562	565	568	5/1
	2.75	530	537	543	548	552	557 554	560 557	560	563	566	569
	2.80	527	534	540	545	549	551	555	558	561	564	567
	2.85	524	531	537	542	546 543	549	553	556	559	562	565
	2.90	521	528	534	539	373	343					
		1	525	531	536	541	547	551	554	551	560	563
	2.95	0.515		U.528		0.539	0.545	0.549	0.552	0.555	0.558	0.561
	3.00	0.515	0.322	10.520	3.001			1				
				1		1						

Table III

l	:	2
ĩ		,

1	0.40	0.41	0.42	0.43	0.44	0.4	5 U.46	0.47	0.4	1	T
В								0.47	0.4	8 0.49	0.50
0.70	0.507	0.505	0.502		+	•	+	ļ			
0.75	565		562	560	0.500	0.495	0.492	0.490	U. 490	0.485	0.482
0.80	623		620	618				550	548		542
0.85	683	681	679	677	615 675	613		608	605		599
0.90	723	721	719	716	713	6 72 710		666	663		656
0 0-					113	710	70 7	703	700	697	692
0.95 1.00	735	732	730	727	724	722	718	715		_	
1.05	740	738	736	734	731	729	725	722	712		705
1.10	743	741	739	737	735	732		727	718 724		711
1.15	745	744	740	739	737	734		729	724	721	718
1.15	744	743	740	738	736	733	730	728	725	723 723	720
1.20	739	738	730						123	123	72 0
1.25	733	732	736 731	735	733		728	726	723	721	719
1.30	727	726	725	730 724	729	727	724	722	72 U	718	716
1.35	718	717	716	715	723	720	719	718	716	714	712
1.40	709	708	707	706	714	713	711	710	709	707	705
	I .			. 00	705	704	703	702	701	700	699
1.45	700	699	698	697	696	696	61.5		_		
1.50	693	692	691	690	689	689	695 689	694	693	692	692
1.55	685	684	683	683	682	682	682	689	688	687	686
1.60 1.65	677	677	676	676	676	676	676	682 676	681	681	680
1.03	670	670	669	669	669	669	669	663	675	675	675
1.70	663	000		1			003	003	669	669	669
1.75	656	663	663	664	664	664	664	664	664	664	
1.80	650	656 651	656	657	657	658	658	658	659	659	6 64 6 5 9
1.85	644	645	651	562	652	563	653	653	654	654	654
1.90	638	639	645 639	646	645	647	647	648	649	649	650
1		000	639	640	641	642	642	643	644	645	646
.95	633	634	634	635	636	637	638				
.00	627	628	629	630	631	632	633	639	640	641	642
.05	622	623	624	625	626	627	628	634	635	636	637
	617	618	619	620	621	622	623	629	630	631	632
.15	613	614	616	617	618	619	620	624	625	626	627
.20	609	610						321	322	623	624
.25	605	606	612	613	614	615	616	617	618	619	620
.30	601	602	608	609	610	611	612	613	614	615	616
.35	597	598	604	606	607	608	609	610	611	612	613
.40	593	594		602	603	604	605	606	607	608	609
1			330	598	600	601	602	603	604	605	606
45	589		593	595	597	598	500	cos		1	-
50	586	588	- 1	592	594	595	599 596	600	601	602	603
55 60	583		587	589	591	592	593	597 594	598	599	600
65	580		584	586	588	589	590	591	595	596	597
03	577	579	581	583	585	586	587	589	592 590	593	594
70	574	576		_				303	350	591	592
75	517			580	582	584	585	587	588	589	500
80	i			577	579	581	583	_ i	586	587	590
85	1				577	579	581		584		588 586
90	565	200	,,,,	73	575	577	579		582	593	584

									0.7	00	0754	T
0.95	73	5 73	12 73	U 72	2 2	24 7	-					
1.00	74								15 71		J9 705	
1.05	74								22 71 27 72		15 711	
1.10	74	5 74							$\begin{bmatrix} 27 & 72 \\ 29 & 72 \end{bmatrix}$,	
1.15	74							30 72				
	- 1				-	"		,0 /2	12	5 72	23 720	1
1.20	73		8 730	5 73	5 7:	33 7:	31 72	8 72	6 72	2 20		
1.25	73		2 73				7 72			- ;		
1.30	72		6 72	5 72								
1.35	71			71	5 71							
1.40	70	9 70	8 707	7 70	6 70							
	- 1	.	l		1				- 1	10	699	
1.45	70	,	1		7 69	6 69	6 69	5 69	4 693	3 69	;	
1.50	69:					9 68	9 68					
1.55	68	,				2 68	2 68				1	
1.65	67	1				6 67	6 67					
1.65	670	5 67	669	669	÷ 66	9 66	9 66					
1.70		1		1					,		003	
1.75	663 656	,						1 00.	1 - 664	1 56.	664	
1.80	650	1	1						5 659			
1.85	644		,	562					3 654			
1.90	638				4	- 1			649			
1	050	033	039	640	04	1 64	2 641	2 641	3 644	645		
1.95	633	634	634	1						:		- 1
2.00	627			635						641	642	1
2.05	622			625						636	637	- 1
2.10	617			620								į
2.15	613			617							1	į
	1		:	011	010	015	620	621	622	623	624	Ì
2.20	609		612	613	614	615	616	617	1		1	
2.25	605		608	609					1	619	620	1
2.30	601		604	606						615	616	
2.35	597		600	602	603					612	613	!
2.40	593	594	596	598	600					605	609	
0.45	1		1					, 555	004	003	606	į
2.45	589	591	593	595	597	598	599	600	601	602	603	
2.50	586	588	590	592	594			597	598	599	600	
2.55	583	585	587	589	591		593		595	596	597	
2.65	580 577	582	584	586	588		590		592	593	594	
2.63	3//	579	581	583	585	586	587	589	590	591	592	
2.70	574	576			_						552	
2.75	517	573	578	580	582	•	585	587	588	589	5 90	1
2.80	569	571	575 573	577	579		583	585	586	587	588	1
2.85	567	569	571	575	577		581	583	584	585	586	-
2.90	565	567	569	573	575	,	579		582	583	584	1
		00.	303	571	573	575	577	579	580	581	582	1
2.95	563	565	567	569	571	573						
3.00		0.563			0 560	573	57 5 0.573	577	578	579	580	
			- 1000		0.309	0.371	0.573	0.575	0.576	0.577	0.578	

ТДТР

Table III

 $\frac{l}{T_0}$

1	Δ											
	- 1	0.50	0.51	0.52	0.53	0.54	0.55	U.56	0.57	0.58	0.59	0.60
\												
18	\											
1	V											
() 7		0.400	0 400	0.477	0.474	0.421	0.470	U.464	0.460	0.457	0.453	0 449
0.7		0.482			532	528	524		516	512	508	
0.7		542	538	535	590	586	583	579	575	571	568	564
0.8		599	596	593	645	641	637	633	628	623	619	
0.8		656	653	649		674	670	665	659	654		643
υ.9	0	692	688	683	679	674	670	663	633	034	040	. 043
100		705	701	697	693	688	683	678	673	668	663	658
1.0		711	707	703	690	694	690	685	680			
			714	710	706	/02	697	692	688	683		674
1.0		718			709	705	701	697		688	684	680
1.1		720	716	713				699	696	691	688	684
1.1	3	720	716	714	710	107	703	033	0.50	051	000	
1, 0		710	-, 1 =	714	710	706	104	701	698	694	691	687
1.2		719	715	714	708	705	104	700	698	695		689
1.2		/16				103	00	697	695	693	690	687
1.3		712	709	708	706 700	698	695	692	690	688	685	682
1.3		705	703	702						683	680	
1.4	U	699	698	697	695	693	690	687	685	003	330	377
1, .	-	600	691	690	698	688	686	682	680	678	675	6/2
1.4		692				682	681	6/9	676	673	670	667
1.5		688	685	684	683			674	671	668	665	662
1.5		680	680	679	678	677	676		666	663	660	558
1.6		675	675	674	673	672	671	669	662	659	656	654
1.6	5	669	668	668	667	667	666	665	002	033	030	034
1, ,		664	663	663	662	662	661	660	658	655	653	650
1.7			658	6 5 8	658	658	657	657	655	652	650	64/
1.7		659			654	654	653	651	649	64/	645	643
1.8		654	654	654	650	650	649	648	646	644	642	640
1.8		650	650	650		645	644	643	642	640	638	636
1.9	0	646	646	646	646	043	044	043	042	040	000	000
١.,		649	642	642	642	641	640	639	638	637	635	633
1.9		642	637	637	637	636	635	634	633	632	631	630
2.0		637			632	631	631	631	630	629	628	627
2.0		632	632	632		628	628	627	626	625	624	623
2.1		627	628	629 625	628 625	624	624	624	623	622	621	620
2.1	Э	624	625	023	023	024	024	024	023	022	021	525
1		620	621	622	622	621	620	620	619	619	618	618
2.2			617	618	618	617	61/	617	616	615	1	613
2.2		616		615	615	614	613	613	612	612		610
2.3		613	614	611	612	611	610	610	609	609		601
2.3		609	610		608	607	606	606	605	605		604
2.4	U	606	607	608	008	307	300	500	003	505		304
1.	_	602	604	605	605	604	603	603	602	602	601	601
2.4		603	601	602	602	601	600	600	599	598		598
2.5		600		599	599	598	597	597	596	596		
2.5		597	598	596	598	595	594	594	593	593		592
2.6		594	595 593	594	594	593	592	592	591	591		
2.6	3	592	393	394	354	393	352	332	331	331	550	333
1 -		500	501	500	592	591	590	590	589	589	588	588
2.7		598	591	592 590	590	589	588	588	587	587		
2.1		588	589			587	586	586	585	585		
2.8		585	587	588 586	588 585	585	584	584	583	583		
2.8	15	584 582	585 583			583	582			581		
	41	- 332	للمتنا	1 109	1 203	1 203	1 302	1 502				

												700		77g	95	63	9	754
0.8	0	599	59		303	645	64	G T	637	63		628		5.4	648	64	13	
0.8		656	65	-	649	645	67	- 1	670	66	55	659	6	54	640			
0.9		692	68	8	683	6,3			1		1		6	68	663	6	58	
	- 1				697	693	68	38	683		8	673		76	671		66	
0.9	5	705	70	- 1	703	690	65	4	690		35	680 688		83	678		74	
1.0		711	70		710	706	10	02	697		32	693		88	684		80	
1.0		718	1	4	713	709	71	υ5	701		97	696		91	688	6	84	
1.		720		16	714	710	i!	U7	103	6	99	050	1					
1.	15	720	1 "	10			1	1		,	01	698	1 6	94	691		87	
		~ 10	1 9	15	714	710		06	704		00	698		95	692		89	
1.		719 716	1	13	711	708		υ5	/03		97	695		393	690		87	
	25	712	1	09	108	706		03	700 695		92	690	1 6	388 i	685		82 77	
	30	705	1 .	03	702	700		98	690		87	685	, (683	680	0		
	40	699		98	697	695	0	93	030								12	
1,	10	000			1		1.	88	686	ė	82	680		678	675		67	
١,	.45	692	2 6	91	690	698	1 -	82	681		19	676	٠,١	673	670 665		62	
	.50	688		85	684	683	1	517	676		374	671	- 1	668	660	1 .	558	-
	. 55	68		580	679	678	1	5/2	671	· •	569	666	٦	663	656	ì	54	
	.60	67		675	674	673 667	. ,	661	666	, (065	66	2	659	050	i		
	.65	66	9 9	668	668	00 /				1	- 1			655	653	. 1	650	1
		1	1		663	662	2	662	661		660	65 65		652	650	1	64/	1
1	.70	66	- 1	663	658	65		658	657	1	657	63 64		641	645		643	
	. 15	65	- 1	658	654	65		654	653	1	651	64		644	υ 4 2		640	
	.80	65	- 1	654	650	65		650	649	1	648 b	04	1	640	638	3	ს 3ხ	
	.85	65		646	646	64	6	645	644	1.	043	٠.	-			1		İ
1	90	64	10	040		1				.	€39	63	18	637	63		633	1
١.		64	12	642	642	64		641	63		634	63		632	63		630	
	1.95		37	637	637	63		636	63		631		30	629	62	1	627	1
	2.00		32	632	632	υ3		631			627	62	26	625	62		620	1
	2.10		21	628	629	62		628 624	62		624	6	23	ь22	ხ2	1	020	
	2.15		24	6 2 5	625	62	:5	027	-	1			. !	-10	61	8	618	
	2.10		- 1			62		621	62	υ	620	_	19	619 615	61	- 1	613	
- 1	2.20	6	20	621	622		18	61/	61	1	61/		10	612	61		610)
	2.25		16	617	618	1	15	614	61	3	613		12	609	1		607	
1	2.30	-	13	614	611		12	611	61		610	1 -	09	605	1 .		604	1
1	2.35		09	610	608		08	607	60	6	606		0.5		1	İ		1
1	2.40	1 6	06	607	1						ь03		02	602		ונ	601	
1				604	605	5 6	υ5	604			600		99	598		86	598	
1	2.45		603	601	1	2 6	02	601			597	1 1	96	596	1 -	95	59	
	2.50	' 1 '	597	598			99	598		1	594		593	593	- 1	92	59°	
1	2.55	1	594	595			98	595	1 -	32	592		591	591	1 5	90	29	١
	2.60	1	592	593		4 5	94	593	, ,	-		- 1	1		. -	00	58	8
	2.6	' '	-		1			59		90	590		589	589	1 -	88	58	
	2.7	ا ۱	598	59		- 1	92	59. 589	• 1 -	88	58	8	587	58	• 1	84	58	
	2.7		588	589		T .	590	58	- 1	86	58	6	585	58	- 1	82	58	
	2.8		585	58		~ 1	588 585	58	• 1	84	58		583	58 58	- 1	80	58	
	2.8		584	58		-	584	58	- 1 -	82	58	2	581	38	•			١
,	2.9		582	58	3 58	•	J 0 7	1	1				579	57		578	5	18
	1	1			1 58	20	582	58		80	58		577	0.57	- 1	576	0.5	16
	2.9	5	580	58	- 1	1	580	U.57	9 0.5	78	0.57	8 0.	311	1			L	
	3.0	0 0.	579	0.57	3 10.30						1							

 $\frac{l}{l_0}$

Δ	0.60	0.61	0.62	U.63	U.64	0.65	0.66	0.67	0.68	0.69	0.70
В											
<u> </u>				0.436	0.431	0.426	0.421	0.416	0.411	0.406	0.401
0.70	0.449	0.445		489	484	479	473	468	462	456	45∪
0.75	503	498	494	546	540	534	528	521	515	507	500
0.80	563	558	552	697	591	585	578	571	564	556	549
0.85	614	609	603	626	620	614	609	602	596	589	581
0.90	643	637	631	020	020	0				:	
	250	053	648	642	637	631	626	619	613	607	600
0.95	658	653	657	652	647	642	637	631	625	619	613
1.00	666	661	665	660	656	652	647	642	63 7	631	626
1.05	674	669	672	668	663	659	654	650	645	640	
1.10	680	676	1	672	667	663	658	654	650	645	639
1.15	684	680	676	312	301				-		
1	000	600	679	675	670	666	661	657	653	642	643
1.20	687	683	681	676	671	667	662	658	654	649	
1.25	689	685	679	1	669	665	660	656	652	648	643
1.30	687	683	674	670	665	661	656	652	648	644	639
1.35	683	678	669	665	660	656	652	648	644	640	635
1.40	677	673	003	005			1	i			60.
	670	668	664	660	656	652	648			636	631
1.45	672	1	660	1	652	648	644	640		632	628
1.50	667	1		652	1			636			624
1.55	662	1	1			641	637	633			
1.60	658		1 .			637		629	625	629	617
1.65	654	651	040	044							
	1	647	644	641	638	634	630	626			1
1.70	650	1		1	1		627	623			
1.75	647			1	1 - 1 - 1	1		620			
1.80	643			1				617	613		
1.85	640	1	1	1	1			614	610	605	602
1.90	636	634	631	1 020	020			İ			
		631	629	626	623	620	616				
1.95	633						614				
2.00	630			1		1 .	61	601			
2.05	627		•								
2.10	623						606	602	2 598	594	591
2.15	620	, 616	,								2 589
	1 615	616	614	612	610	60					_
2.20	617				1	7 60					
2.25	613		- 1			60	2 599				
2.30	610	- 1		- 1			ບ 59				
2.35	607		-) .		- 1	0 59	8 59	5 59	1 58	8 58	5 582
2.40	604	. 60.	,								2 500
	60	600	599	59	8 59			- 1			
2.45	59	-	- 1	- 1						- 1	
2.50	59		- 1		2 59					- 1	
2.55	59		- [- 1						- 1	- 1
2.60	59		-)	- 1		6 58	5 58	3 58	0 57	7 57	3/1
2.65	79]	- [1		_	.	8 57	5 57	2 569
0.00	58	8 58	7 58						-	-	_
2.70	58	~		4 58					-	- ;	
2.75	58	-	- 1	2 58					- 1		
2.80	58	2 58	1 58						- 1		
2.85	58		9 57	8 57	7 57	6 57	3 37	<u> </u>			

					·		·	,			
0.70	0 440	0.445	0.440	0.436	0.431	0.426	401	0 116	1	0.406	0.401
0.75	503	498	494	489	484	479	0.421 473	0.416	0.411 462	456	450
0.80	563	558	552	546	540	534	528	521	515	507	
0.85	614	609	603	697	591	585	578	571	564	556	549
0.90	643	637	631	626	620	614	609	602	596	589	581
1	0.10	037	031	020	020	014	003	002	350	303	301
0.95	658	653	648	642	637	631	626	619	613	607	600
1.00	666	661	657	652	647	642	637	631	625	619	613
1.05	674	669	665	660	656	652	647	642	637	631	626
1.10	680	676	672	668	663	659	654	650	645	640	634
1.15	684	680	676	672	667	663	658	654	650	645	639
1 - 1 - 2	00.	000	0.0	0.2	00.	003	030	034	030	043	000
1.20	687	683	679	675	670	666	661	657	653	642	643
1.25	689	685	681	676	671	667	662	658	654	649	644
1.30	687	683	679	674	669	665	660	656	652	648	643
1.35	683	678	674	670	665	661	656	652	648	644	639
1.40	677	673	669	665	660	656	652	648	644	640	635
						550		0.0	0.11	0.0	0.00
1.45	672	668	664	660	656	652	648	644	640	636	631
1.50	667	664	660	656	652	648	644	640	636	632	628
1.55	662	659	656	652	648	644	640	636	632	628	624
1.60	658	655	562	648	645	641	637	633	629	625	621
1.65	654	651	648	644	641	637	633	629	625	629	617
										0.20	
1.70	650	647	644	641	638	634	630	626	622	618	614
1.75	647	644	641	638	635	631	627	623	619	615	611
1.80	643	640	637	634	631	628	624	620	616	612	608
1.85	640	637	634	631	628	625	621	617	613	609	605
1.90	636	634	631	628	625	622	618	614	610	605	602
	ł				ĺ						
1.95	633	631	629	626	623	620	616	612	608	604	600
2.00	630	628	626	624	621	618	614	610	606	602	598
2.05	627	625	623	621	618	615	611	607	603	599	5 95
2.10	623	621	619	617	615	612	608	604	600	596	593
2.15	620	618	616	614	612	609	606	602	598	594	591
	l										
2.20	617	616	614	612	610	607	604	600	596	592	589
2.25	613	612	611	609	607	604	601	597	593	590	587
2.30	610	609	608	607	605	602	599	595	592	588	585
2.35	607	606	605	604	603	600	597	593	590	587	584
2.40	604	603	602	601	600	598	595	591	588	585	582
2.45	601	600	559	500	507	506	502	E 0,	500	500	504
2.45	598	597	596	598 595	597 594	596 593	593 590	589 587	586 584	583	580
2.55	595	594	593	593 592	594 591	590	588	585	584	581 579	578
2.60	592	591	590	589	588	587	585	582	579	576	576 573
2.65	590	589	588	587	586	585	583	580	577		
2.03	350	309	300	307	300	363	363	380	311	574	571
2.70	588	587	586	585	584	583	581	578	575	572	569
2.75	586	585	584	583	582	581	579	576	573	570	567
2.80	584	583	582	581	580	579	577	575	572	569	566
2.85	582	581	580	579	578	577	575	573	570	567	564
2.90	580	579	578	577	576	575	573	571	568	565	562
				- ' '							
2.95	578	577	576	575	574	573	571	569	567	564	561
3.00	0.576	0.575	0.574	0.573	0.572	0.571			0.565		0.559

Table III $\frac{l_{\rm m}}{l_{\rm O}}$

~				T								
В	Δ	0.70	0.71	0.72	υ.73	0.74	υ.75	0.76	0.77	0.78	0.79	0.80
-				201	0 206	0.380	0.374	0.368	0.362	υ .356	0.349	0.342
	0.70	0.401		υ.391 43 8	432	420	426	414	408	401	353	383
- 1	0.75	450 500	444 493	485	478	462	462	454	446	438	430	423
-	0.80	549	541	533	524	516	506	497	488	479	471	462
1	0.85 0.90	581	574	567	559	551	543	534	525	516	507	499
- 1	0.50	001							5 4 4	540	531	522
Į	0.95	600	593	586	579	572	564	557 571	548 563	555	547	540
- 1	1.00	613	606	600	593	586	578 594	587	579	572	564	556
1	1.05	626	620	614	607	600	603	596	590	582	575	567
	1.10	634	628	622	616 627	623	617	609	602	593	585	576
	1.15	639	635	631	621	023	02.					l
1		643	639	635	631	627	622	614	607	599	591	582
1	1.20	644	640	636	632	628	623	616	609	602	595	587
ŀ	1.25 1.30	643	639	635	631	627	622	616	610	604	598	591
	1.35	639	635	631	627	623		613	608	603	598	592 591
ı	1.40	635	631	627	623	619	615	609	604	600	596	391
		1	İ				611	606	601	597	593	589
- 1	1.45	631	627	623	619	615		602	598	594	590	586
	1.50	628		619	615	611		598		591	587	584
	1.55	624	620	615	611	1		1	592	589	585	582
- 1	1.60	621	617		605			1	589	586	583	580
	1.65	617	613	603	803	001					İ	
	1.70	614	610	606	602	598	594			584		578
- 1	1.75	611	1				592					576
- 1	1.73	608				593						574 572
	1.85	605	I .		594							
- 1	1.90	602		595	592	589	586	582	579	310	, 3/3	3.0
		1 .	1		500	587	584	580	577	574	571	568
	1.95	600				1	1		,			
1	2.00	598										
- 1	2.05 2.10	595 593					.)					
	2.15	591						573	570	567	564	561
- 1	2.10								568	565	5 562	559
į	2.20	589										
- 1	2.25	587										
	2.30	585					- 1		- 1		- 1	
	2.35	584										
- 1	2.40	582	579	576	3/3	' '''	/ 501					
- 1	2.45	580	577	574	57	564						
l	2.45	578				560						
١	2.55	576			568							
	2.60	573		1 568								
	2.65	57		567	7 56	5 56	2 569	55	7 55	1 33	1 34	, , ,,,,
						3 56	1 55	9 554	6 55	3 55	0 54	7 544
	2.70	569				- 1		-				
	2.75	56									7 54	
	2.80	56 56		- 1	- 1			4 55	1 54			
	2.85	56						2 54	9 54	6 54	3 54	537
	1	1 -0	1	1								

0.90		549	541	533	524	516	506	497	488	479	471	462
0.95	0.85								52.5	516	507	499
1.05 626 620 614 607 600 593 586 578 571 563 555 547 546 556 1.10 634 628 622 616 610 603 596 596 596 596 596 596 591 1.15 639 635 631 627 623 617 609 602 595 587 1.15 639 635 631 627 623 617 609 602 595 587 1.35 639 635 631 627 623 617 609 602 595 587 1.30 643 639 635 631 627 623 618 610 609 602 595 587 1.30 643 639 635 631 627 623 619 613 608 603 598 591 1.40 635 631 627 623 619 613 608 603 598 591 1.40 635 631 627 623 619 613 608 603 598 591 1.40 635 631 627 623 619 613 608 603 598 591 1.40 635 631 627 623 619 615 609 604 600 596 591 1.55 624 629 615 611 607 602 595 594 590 586 1.55 624 620 615 611 607 603 598 594 591 587 584 1.55 624 620 615 611 607 603 598 594 591 587 582 1.65 617 613 609 604 600 596 583 580 1.70 614 610 606 602 598 594 590 586 583 580 1.70 614 610 606 602 598 595 592 589 585 582 589 585 582 589 585 582 589 585 582 589 585 582 589 585 582 589 585 582 589 585 582 589 585 582 589 585 582 589 585 582 589 585 582 589 585 582 588 583 580 580 580 580 580 580 580 580 580 580	0.90	26.1	3/4	301	00.	00.			İ		1	
1.00 613 606 600 593 586 578 571 563 555 547 540 556 1.10 626 620 614 607 600 596 591 582 575 567 575 576 576 576 576 576 577 574 571 568 582 579 576 573 570 588 585 582 579 576 573 570 588 585 582 579 576 573 570 588 585 582 579 576 573 570 588 585 582 579 576 573 570 588 585 582 579 576 573 570 588 585 582 579 576 573 570 588 585 582 579 576 573 570 588 585 582 579 576 573 570 588 585 582 579 576 573 570 588 585 582 579 576 573 570 588 585 582 579 576 573 570 588 585 582 579 576 573 570 588 585 582 579 576 573 570 588 585 582 589 586 582 579 576 573 570 588 585 582 589 586 582 579 576 573 570 588 585 582 589 586 582 579 576 573 570 588 585 582 589 586 582 579 576 573 570 588 585 582 589 586 582 579 576 573 570 588 585 582 589 586 582 579 576 573 570 588 585 582 589 586 582 579 576 573 570 588 585 582 589 585 582 589 585 582 589 586 582 579 576 573 570 588 585 582 589 586 583 580 587 584 581 588 583 580 582 589 586 583 580 587 584 581 588 583 580 587 584 581 588 583 580 587 584 581 588 583 580 587 584 581 588 583 580 583 580 583 580 582 589 586 583 580 587 584 581 588 583 580 587 584 581 588 583 580 580 580 580 580 580 580 580 580 580	0.05	600	593	586	579	572	564	557	548	540		
1.05 626 628 624 617 600 594 587 579 572 564 556 561 610 603 602 593 585 575 567 568 568 575 576 573 570 568								571	563		547	
1.10 634 628 622 618 610 603 596 599 582 575 575 575 576 1.115 639 635 631 627 623 617 609 602 598 593 585 582 575 576 576 577 688 565 592 589 586 583 580 577 574 571 568 582 579 576 573 570 568 585 582 579 576 573 570 568 565 562 559 586 583 582 579 576 573 570 568 565 562 559 556 573 570 568 565 562 559 556 573 570 568 565 562 559 556 573 570 568 565 562 559 556 573 570 568 565 562 559 556 573 570 568 565 562 559 556 573 570 568 565 562 559 566 563 562 599 566 563 564 562 599 566 563 564 562 599 566 563 564 562 599 566 563 564 562 599 566 563 564 562 569 565 564 562 569 566 563 564 562 569 566 563 564 564 564 564 564 564 564 564 564 564									579	572	564	
1.15 639 635 631 627 623 617 699 602 593 5e5 576 1.20 643 640 640 636 632 628 623 616 609 602 595 587 1.30 643 639 635 631 627 623 619 613 608 603 598 591 1.40 635 631 627 623 619 615 609 604 600 596 591 1.45 631 627 623 619 615 611 606 601 597 593 589 1.50 628 624 619 615 611 607 602 598 591 1.50 628 624 619 615 611 607 602 598 591 1.60 621 617 612 608 604 600 596 591 1.70 614 610 606 602 598 592 588 585 582 1.70 608 604 600 596 593 599 586 583 580 577 1.80 608 604 600 596 593 599 586 583 580 577 1.80 608 604 600 596 593 599 586 583 580 577 1.80 608 604 600 596 593 589 586 583 580 577 1.80 608 596 593 590 587 584 581 578 1.90 593 599 587 584 581 578 575 572 569 567 2.20 589 584 581 578 575 575 576 573 570 567 564 561 558 2.20 589 584 581 578 575 575 576 573 570 567 564 561 558 2.20 589 584 581 578 575 575 555 583 585 582 589 586 583 580 587 2.70 569 567 565 563 560 558 556 553 550 547 548 545 542 579 2.70 569 567 565 563 566 568 559 550 547 548 545 542 579 576 573 570 567 564 561 588 575 572 569 567 573 570 567 564 561 588 575 572 576 573 570 567 564 561 588 575 572 576 573 570 567 564 561 588 575 572 576 573 570 567 564 561 588 575 573 570 567 564 561 588 575 573 570 567 564 561 588 575 573 570 567 564 561 588 575 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 555 552 571 568 565 562 599 586 583 580 577 574 571 568 565 562 599 586 583 580 577 574 571 568 565 562 559 556 562 579 576 573 570 567 564 561 588 555 562 560 573 570 567 564 561 588 555 562 569 567 563 561 559 567 563 561 559 567 563 561 559 567 563 561 559 567 563 561 559 567 563 561 559 567 563 561 559 567 563 561 559 567 563 561 559 567 563 561 569 567 565 560 568 560	1.03							596	590	582	575	
1.20 649 629 625 631 827 622 614 607 549 591 587 130 643 639 635 631 627 623 619 613 608 603 598 591 1.40 635 631 627 623 619 615 609 604 598 591 1.40 635 631 627 623 619 615 609 604 600 596 591 1.40 635 631 627 623 619 615 609 604 600 596 591 1.50 628 624 619 615 611 607 602 598 594 590 586 581 1.50 628 624 619 615 611 607 602 598 594 590 586 581 1.50 628 624 619 615 611 607 602 598 594 590 586 581 1.50 621 617 612 608 604 600 596 592 589 585 582 579 576 573 570 567 564 561 591 588 585 582 579 576 573 570 567 564 561 581 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 586 583 580 587 585 582 579 576 573 570 567 564 561 588 586 583 580 587 584 581 588 585 582 579 576 573 570 567 564 561 588 581 578 575 572 584 581 578 575 572 584 581 578 575 572 584 581 578 575 572 584 581 578 575 572 584 581 578 575 572 584 581 578 575 572 584 581 578 575 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 565 562 569 568 563 561 558 565 563 560 557 554 551 548 545 542 539 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 567 561 561 561 561 561 561 561 561 561 561									602	593	5a5	576
1.25	1.13	035	633	031	02.		1	1	1		1	w.f
1.25	1 20	643	620	625	631	527	622	614	607	549		
1.30							623	616	609	602		
1.35								616	610	604		
1.40							619	613	608	603		
1.45 631 627 623 619 615 611 606 601 597 593 589 1.50 628 624 619 615 611 607 602 598 594 590 586 1.60 621 617 612 608 604 600 596 592 589 584 591 587 584 1.65 617 613 609 605 601 597 593 589 585 582 585 582 580 581 580 580 580 583 580 580 581 580 581 580 586 583 580 580 580 580 580 580 580 580 580 580 584 580 587 584 580 580 587 584 580 587 584 580 587 584 580 587 584 580 587							615	609	604	600	596	591
1.45	1.40	000	00.	02.		1	į			1	į	Ì
1.50 628 624 619 615 611 607 602 598 594 591 587 586 1.60 621 617 613 609 605 601 597 593 589 586 583 580 1.70 614 607 603 598 594 591 587 578 572 589 586 583 580 577 574 571 568 565 522 589 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 567 564 561 588 585 582 579 576 573 570 568 565 562 559 556 583 581 588 585 582 579 576 573 570 568 565 562 559 566 564 562 560 588 566 563 561 559 566 563 561 559 566 564 562 560 558 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 559 566 563 561 558 565 562 559 566 563 561 563 561 568 565 562 559 566 563 561 563 561 568 565 562 559 566 563 561 568 565 562 559 566 563 561 568 565 562 569 566 563 561 568 565 562 569 566 563 561 568 565 562 569 566 563 561 568 565 562 569 566 563 561 561 561 561 561 561 561 561 561 561	1 45	631	627	623	619	615	611	606	601			
1.55 624 620 615 611 607 603 598 594 591 587 584 1.60 621 617 612 608 604 600 596 592 589 585 580 1.70 614 610 606 602 598 594 590 587 584 581 578 1.75 611 607 603 599 595 592 588 585 582 579 576 1.80 608 604 600 596 593 590 586 583 580 577 574 1.85 605 601 597 594 591 588 584 581 578 575 572 1.90 602 598 595 592 589 586 583 580 577 574 571 568 562 2.00 598 594 591						611	607	602	598			
1.60 621 617 613 609 608 604 597 593 589 585 585 580 1.70 614 610 609 608 604 597 593 589 586 583 580 1.75 611 607 603 599 595 592 588 585 582 579 576 1.80 608 604 600 596 593 590 586 583 580 577 574 1.85 605 601 597 594 591 588 584 581 578 575 572 1.90 602 598 595 592 589 586 582 579 576 573 570 1.95 600 596 593 590 587 584 580 577 574 571 568 565 2.05 593 590 589 586	1.55					607	603 :	598	59 4 :	5 9 1		
1.65 617 613 609 605 601 597 593 589 586 583 580 1.70 614 610 606 602 598 594 590 587 584 581 578 1.75 611 607 603 599 595 592 588 585 582 579 576 576 1.80 608 604 600 596 593 590 586 583 580 577 574 1.85 605 601 597 594 591 588 584 581 578 575 572 574 570 574 572 574 572 572 574 572 574 571 574 571 568 585 582 579 576 573 570 572 569 565 562 200 588 594 591 588 585 582 578						604	600	596	592	589		
1.70 614 610 606 602 598 594 590 587 584 581 578 1.75 611 607 603 599 595 592 588 585 582 579 576 1.80 608 604 600 596 593 590 586 583 580 577 574 1.85 605 601 597 594 591 588 584 581 578 575 572 574 1.90 602 598 595 592 589 586 582 579 576 573 570 1.95 600 596 593 590 587 584 580 577 574 571 568 565 572 509 587 584 580 577 574 571 568 565 562 205 593 590 587 584 581 578						601	597	593	589	586	583	580
1.75 611 607 603 599 595 592 588 585 582 579 576 1.80 608 604 600 596 593 590 586 583 580 577 574 1.85 605 601 597 594 591 588 584 581 578 575 572 1.90 602 598 595 592 589 586 582 579 576 573 570 1.95 600 598 594 591 588 585 582 579 576 573 570 1.95 600 598 594 591 588 585 582 579 576 573 570 2.00 598 594 591 588 585 582 577 574 571 568 565 562 210 593 590 587 584 581	1.05	0	0.0								i	
1.75 611 607 603 599 595 592 586 583 580 577 574 1.85 605 601 597 594 591 588 584 581 578 575 572 1.90 602 598 595 592 589 586 582 579 576 573 570 1.95 600 596 593 590 587 584 580 577 574 571 568 2.00 598 594 591 588 585 582 578 574 571 568 565 2.05 595 592 589 586 583 580 577 574 571 568 565 2.05 595 592 589 586 583 580 577 574 571 568 565 562 562 565 562 563 366 561	1.70	614	610	606	692							
1.80 608 604 600 596 593 590 588 584 581 578 575 572 1.90 602 598 595 592 589 586 582 579 576 573 570 1.95 600 596 593 590 587 584 581 577 574 571 568 2.00 598 594 591 588 585 582 578 575 572 569 565 2.05 593 590 587 584 581 577 574 571 568 565 2.10 593 590 587 584 581 577 574 571 568 565 2.15 591 588 585 582 579 576 573 570 567 564 561 2.20 589 586 583 580 577 574			607	603	599	595						
1.85 605 602 598 597 594 591 588 584 581 578 575 570 1.95 600 596 593 590 587 584 580 577 574 571 568 2.00 598 594 591 588 585 582 578 575 572 569 565 2.05 595 592 589 586 583 580 577 574 571 568 565 2.10 593 590 587 584 581 578 575 572 569 565 2.10 593 590 587 584 581 578 575 572 569 565 2.10 588 585 582 579 576 573 570 567 564 561 562 2.20 589 586 583 580 577 574			604	600	596	593						
1.90 602 598 595 592 589 586 582 579 576 573 570 1.95 600 596 593 590 587 584 580 577 574 571 568 2.05 595 592 589 586 583 580 577 574 571 568 565 2.10 593 590 587 584 581 578 575 572 569 566 563 2.10 593 590 587 584 581 578 575 572 569 566 563 2.15 591 588 585 582 579 576 573 570 567 564 561 2.20 589 586 583 580 577 574 571 568 565 562 559 556 2.25 587 584 581 578				597	594							
1.95 600 596 593 590 587 584 580 577 574 571 568 2.00 598 594 591 588 585 582 578 575 572 569 565 2.05 595 592 589 586 583 580 577 574 571 568 565 2.10 593 590 587 584 581 578 575 572 564 566 563 2.15 591 588 585 582 579 576 573 570 567 564 561 2.20 589 586 583 580 577 574 571 568 565 562 559 2.25 587 584 581 578 573 571 568 565 562 559 556 2.30 585 582 579 576 573			598	595	592	589	586	582	579	576	573	570
1.95 500 598 594 591 588 585 582 578 575 572 569 565 2.05 595 592 589 586 583 580 577 574 571 568 565 563 2.10 593 590 587 584 581 578 575 572 569 566 563 2.15 591 588 585 582 579 576 573 570 567 564 561 563 2.20 589 586 583 580 577 574 571 568 565 562 559 2.25 587 584 581 578 575 573 570 567 564 561 558 2.25 587 584 581 578 575 573 570 567 564 561 558 2.35 584 581											5.50	5.00
2.00 598 594 591 586 585 582 578 575 572 569 369 369 369 369 586 583 580 577 574 571 569 566 563 563 582 579 576 573 570 567 564 561 561 563 563 580 577 574 571 568 565 562 559 561 561 563 561 563 561 563 561 563 563 563 563 563 563 563 563 563 563 563 563 563 564 561 563 561 563 561 563 561 563 564 561 558 562 559 556 558 558 578 575 573 570 566 563 565 562 559 556 558 555 552 558 555 <th>1.95</th> <th>600</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	1.95	600										
2.05 595 592 589 586 583 580 577 575 572 569 566 563 2.15 591 588 587 584 581 578 575 572 569 564 561 2.20 589 586 583 580 577 574 571 568 565 562 559 2.25 587 584 581 578 575 573 570 567 564 561 558 2.30 585 582 579 576 573 571 568 565 562 559 556 2.35 584 581 578 575 573 570 567 564 561 558 555 2.40 582 579 576 573 570 568 565 562 559 556 2.45 580 577 574 571 568		598	594									
2.10 593 590 587 584 581 578 573 570 567 564 561 2.15 591 588 585 582 579 576 573 570 567 564 561 2.20 589 586 583 580 577 574 571 568 562 562 562 562 562 562 562 559 556 258 523 579 576 573 571 568 565 562 559 556 558 558 558 558 579 576 573 571 568 565 562 559 556 558 555 582 579 576 573 570 568 565 562 559 556 552 559 556 552 559 556 552 552 548 555 552 548 555 552 548 555 552		595	592	589								
2.20 589 586 583 580 577 574 571 568 565 562 559 2.25 587 584 581 578 575 573 570 567 564 561 558 2.30 585 582 579 576 573 571 568 565 562 559 556 2.35 584 581 578 575 572 570 567 564 561 558 555 2.40 582 579 576 573 570 568 565 562 559 556 2.40 582 579 576 573 570 568 565 562 559 556 552 2.45 580 577 574 571 568 566 563 560 557 554 551 2.55 576 573 570 568 565 563	2.10	593	590									
2.20 589 586 583 578 575 573 570 567 564 561 558 2.25 587 584 581 578 575 573 571 568 565 562 559 556 2.35 584 581 578 575 572 570 567 564 561 558 555 2.40 582 579 576 573 570 568 565 562 559 556 2.40 582 579 576 573 570 568 565 562 559 556 553 2.45 580 577 574 571 568 566 563 560 557 554 551 548 2.55 576 573 570 568 565 563 560 557 554 551 548 2.55 576 573 570 568	2.15	591	588	585	582	579	576	573	570	56 /	264	361
2.20 589 586 583 578 575 573 570 567 564 561 558 2.25 587 584 581 578 575 573 571 568 565 562 559 556 2.35 584 581 578 575 572 570 567 564 561 558 555 2.40 582 579 576 573 570 568 565 562 559 556 2.40 582 579 576 573 570 568 565 562 559 556 553 2.45 580 577 574 571 568 566 563 560 557 554 551 548 2.55 576 573 570 568 565 563 560 557 554 551 548 2.55 576 573 570 568				_				,	500	565	562	559
2.25 587 584 581 576 573 571 568 565 562 559 556 2.35 584 581 578 575 572 570 567 564 561 558 555 2.40 582 579 576 573 570 568 565 562 559 556 555 2.45 580 577 574 571 568 566 563 560 557 554 551 2.50 578 575 572 569 566 564 561 558 555 552 548 2.55 576 573 570 568 565 561 558 555 552 548 2.60 573 571 568 566 563 560 557 554 551 548 2.65 571 569 567 565 562 560 558												
2.35 584 581 578 575 572 570 568 565 562 559 556 552 2.45 580 577 574 571 568 566 563 560 557 554 551 2.50 578 575 572 569 566 564 561 558 555 552 548 2.55 576 573 570 568 565 563 560 557 554 551 548 2.60 573 571 568 565 563 560 557 554 551 548 2.60 573 571 568 566 563 561 558 555 552 549 546 2.60 573 571 568 566 563 561 558 555 552 549 546 2.65 571 569 567 565 563												
2.35 584 579 576 573 570 568 565 562 559 556 552 2.45 580 577 574 571 568 566 563 560 557 554 551 2.50 578 575 572 569 566 564 561 558 555 552 548 2.55 576 573 570 568 565 563 560 557 554 551 548 2.60 573 571 568 566 563 561 558 555 552 549 546 2.65 571 569 567 565 562 560 557 554 551 548 545 2.70 569 567 565 563 561 559 556 553 550 547 544 2.75 567 565 563 561 559												
2.45 580 577 574 571 568 566 563 560 557 554 551 2.50 578 575 572 569 566 564 561 558 555 552 548 2.55 576 573 570 568 565 563 560 557 554 551 548 2.60 573 571 568 566 563 561 558 555 552 549 546 2.65 571 569 567 565 562 560 557 554 551 548 545 2.70 569 567 565 563 561 559 556 553 550 547 544 2.75 567 565 563 561 559 557 554 551 548 545 2.80 566 564 562 560 558 556												
2.45 580 577 574 569 566 564 561 558 555 552 548 2.55 576 573 570 568 565 563 560 557 554 551 548 2.60 573 571 568 566 563 561 558 555 552 549 546 2.65 571 569 567 565 562 560 557 554 551 548 545 2.70 569 567 565 563 561 559 556 553 550 547 544 2.75 567 565 563 561 559 557 554 551 548 545 542 2.80 566 564 562 560 558 556 553 550 547 544 541 2.85 564 562 560 558 556	2.40	582	579	576	5/3	570	300	363	302	555	000	
2.45 580 577 574 569 566 564 561 558 555 552 548 2.55 576 573 570 568 565 563 560 557 554 551 548 2.60 573 571 568 566 563 561 558 555 552 549 546 2.65 571 569 567 565 562 560 557 554 551 548 545 2.70 569 567 565 563 561 559 556 553 550 547 544 2.75 567 565 563 561 559 557 554 551 548 545 542 2.80 566 564 562 560 558 556 553 550 547 544 541 2.85 564 562 560 558 556					671	5.00	566	563	560	557	554	551
2.55 576 573 570 568 565 563 560 557 554 551 548 2.60 573 571 568 566 563 561 558 555 552 549 546 2.65 571 569 567 565 562 560 557 554 551 548 545 2.70 569 567 565 563 561 559 556 553 550 547 548 545 2.75 567 565 563 561 559 557 554 551 548 545 542 2.80 566 564 562 560 558 556 553 550 547 544 541 2.85 564 562 560 558 556 554 551 548 545 542 539 2.90 562 560 558 556												548
2.55 576 573 571 568 566 563 561 558 555 552 549 546 2.65 571 569 567 565 562 560 557 554 551 548 545 2.70 569 567 565 563 561 559 556 553 550 547 544 2.75 567 565 563 561 559 557 554 551 548 545 542 2.80 566 564 562 560 558 556 553 550 547 544 541 2.85 564 562 560 558 556 554 551 548 545 542 539 2.90 562 560 558 556 554 551 548 545 540 537 2.95 561 559 557 555 553												548
2.65 571 569 567 565 562 560 557 554 551 548 545 2.70 569 567 565 563 561 559 556 553 550 547 544 2.75 567 565 563 561 559 557 554 551 548 545 542 2.80 566 564 562 560 558 556 553 550 547 544 541 2.85 564 562 560 558 556 554 551 548 545 542 539 2.90 562 560 558 556 554 551 548 545 542 539 2.95 561 559 557 555 553 551 548 545 542 539 536										552	549	546
2.70 569 567 565 563 561 559 556 553 550 547 544 2.75 567 565 563 561 559 557 554 551 548 545 542 2.80 566 564 562 560 558 556 553 550 547 544 2.85 564 562 560 558 556 554 551 548 545 542 539 2.90 562 560 558 556 554 552 549 546 543 540 537 2.95 561 559 557 555 553 551 548 545 542 539 536 2.95 561 559 557 555 553 551 548 545 542 539 536												545
2.75 567 565 563 561 559 557 554 551 548 545 542 2.80 566 564 562 560 558 556 553 550 547 544 541 2.85 564 562 560 558 556 554 551 548 545 542 539 2.90 562 560 558 556 554 551 548 545 542 539 2.95 561 559 557 555 553 551 548 545 542 539 536	2.65	3/1	363	367	303	002						
2.75 567 565 563 561 559 557 554 551 548 545 542 2.80 566 564 562 560 558 556 553 550 547 544 541 2.85 564 562 560 558 556 554 551 548 545 542 539 2.90 562 560 558 556 554 552 549 546 543 540 537 2.95 561 559 557 555 553 551 548 545 542 539 536 2.95 561 559 557 555 553 551 548 545 542 539 536	2.70	569	567	565	563	561						
2.80							557					
2.85												
2.90 562 560 558 556 554 552 549 546 543 540 537 2.95 561 559 557 555 553 551 548 545 542 539 536					558							
2.95 561 559 557 555 553 551 548 545 542 539 536						554	552	549	546	543	540	537
2.95 561 559 557 553 553 553 553 554 553 553 554	1	1				1						520
	2.95						551	548	545	542		
			0.557	0.555	0.553	0.551	0.549	0.546	0.543	0.540	0.537	0.334
		1	l	L		<u></u>			L			L

Table IV $\text{Values of log} \left[1 - \frac{B\Theta}{2} \left(1 - z_0^{-}\right)^2\right]$

1	Δ							0.12	0.14
\	<u> </u>	0.07	0.98	0.09	0.10	0.11	0.12	0.13	0.14
В		0.07	0.90						The second second second second second second second
<u> </u>					_	I.9827	T. 9816	I.9807	I.9798
1 (0.70	7.9894	T. 9872	T.9854	T.9840	9815	9802	9792	9783
	0.75	9886	9863	9844	9828	9802	9780	9778	9768
	0.80	9879	9854	9834	9817	9789	9776	9763	9754
	0.85	9871	9845	9823	9805	9777	9762	9749	9739
	0.90	9863	9836	9812	9793	3111			
1	0.50				0709	9765	9748	9735	9723
1	0.95	9855	9827	9802	9782	9751	9734	9720	9708
	1.00	9847	9817	9791	9769	9738	9721	9706	9693
1	1.05	9840	9808	9780	9757	9725	9707	9691	9683
	1.10	9832	9798	9769	9745	9712	9689	9677	9662
ı	1.15	9824	9788	9750	9733	3112			1
1	1.10	1			0.701	9699	9679	9682	9647
1	1.20	9817	9779	9738	9721	9686	9665	9647	9632
-	1.25	9809	9770	9737	9709	9673	9652	9633	9617
1	1.30	9800	9760	9726	9698	9660	9638	9618	9602
	1.35	9793	9751	9716	9686	9647	9624	9604	9526
- 1	1.40	9785	9742	9704	9674	3041			1
	1.40				0001	9633	9609	9589	9570
-	1.45	9777	9731	9693	9661	9620	9595	9574	9555
	1.50	9769	9722	9682	9648	9608	9581	9559	9 5 3 9
	1.55	9761		8672		9594	9567	9543	9528
ı	1.60	9754	9703			9581	9553	9529	9507
- 1	1.65	9745		9649	9612	3301			
- 1	1.00		1		0000	9566	9539	9513	9487
- 1	1.70	9737	9684			1	9524	9499	9481
	1.75	9730			· · · · · · · · · · · · · · · · · · ·	1	9510	9483	9461
- 1	1.80	9721	9664				1		9444
- 1	1.85	9713	9655			1	1		9427
- 1	1.90	9705	9645	9593	9550	3313		1	
- 1	2	l	1		0.530	9500	9467	9438	9412
- 1	1.95	9697	7 9635					9422	9396
- 1	2.00	9689	9626			, , , , , , , ,			9380
- 1	2.05	9680				'		9390	
	2.10	967							9347
- 1	2.15	966	5 3598	9540	9490	,			
- 1		1		952	3 947	5 943	9393		
1	2.20	965				• 1 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 9378		
- 1	2.25	964			• 111.	1	936		
- 1	2.30	964							1
- 1	2.35	963			·		6 933	4 9297	9266
- 1	2.40	962	5 9540	6 948	372			1	0040
		ı		7 946	9 941	1 936			
	2.45	961		• 111	• 1	* 1 111			· •
	2.50	960		- 1	•	·	4 928		1
	2.55	960		~ l		9 1 111	1		
	2.60			• 1		-		5 921	4 9180
	2.65		2 949	5 942	,	. 552	1	1	
		1		_	0 934	928	5 924		
	2.70	957				1 1 1 1 1 1 1 1 1 1	_		
	2.75	956			- 1				
	2.80		58 946					00 915	
	2.00				76 1 44				
	2.85	95					, -	31 913	5 9094

0.85	9871	9845	9823	9805	9789	9776	9763	9754	I
0.90	9863	9836	9812	9793	9777	9762	9749	9739	l
0.50	2003	3030					i		l
	9855	9827	9802	9782	9765	9748	9735	9723	1
0.95			9791	9769	9751	9734	9720	9708	l
1.00	9847	9817		9757	9738	9721	9706	9693	1
1.05	9840	9808	9780		9725	9707	9691	9683	I
1.10	9832	9798	9769	9745	9712	9689	9677	9662	١
1.15	9824	9788	9750	9733	9/12	2002	3011	3002	١
	1	l	İ				0.000	9647	١
1.20	9817	9779	9738	9721	9699	9679	9682		١
1.25	9809	9770	9737	9709	9686	9665	9647	9632	١
1.30	9800	9760	9726	9698	9673	9652	9633	9617	١
1.35	9793	9751	9716	9686	9660	9638	9618	9602	١
1.40	9785	9742	9704	9674	9647	9624	9604	9526	ı
			1				1		١
1.45	9777	9731	9693	9661	9633	9609	9589	9570	١
1.50	9769	9722	9682	9648	9620	9595	9574	9555	1
1.55	9761	9713	8672	9637	9608	9581	9559	9 5 3 9	Ì
1.60	9754	9703	9661	9625	9594	9567	9543	9528	-
	9745	9693	9649	9612	9581	9553	9529	9507	ı
1.65	9/43	3033	3043	3012	3001				Ì
	0707	9684	9638	9600	9566	9539	9513	9487	i
1.70	9737		9628	9588	9554	9524	9499	9481	١
1.75	9730	9674		9575	9541	9510	9483	9461	1
1.80	9721	9664	9616			9496	9468	9444	į
1.85	9713	9655	9605	9563	9527	9480	9453	9427	1
1.90	9705	9645	9593	9550	9513	9480	9433	3421	ĺ
				0.500	0500	0.467	9438	9412	1
1.95	9697	9635	9583	9539	9500	9467	9422	9396	
2.00	9689	9626	9571	9526	9486	9452		9380	i
2.05	9680	9615	9560	9513	9472	9437	9406		ı
2.10	9673	9606	9548	9501	9459	9422	9390	9364	
2.15	9665	9598	9540	9490	9448	9410	9379	9347	
Į.	1						0005	0000	
2.20	9652	9586	9523	9475	9431	9393	9365	9336	
2.25	9648	9577	9514	9463	9417	9378	9344	9314	
2.30	9641	9566	9503	9450	9404	9364	9329	9298	
2.35	9632	9556	9490	9437	9390	9349	9312	9281	
2.40	9625	9546	9480	9429	9376	9334	9297	9266	
1				į		1			
2.45	9616	9537	9469	9411	9362	9319	9278	9248	
2.50	9608	9524	9453	9398	9348	9304	9260	9236	
2.55	9600	9516	9446	9386	9334	9289	9249	9215	
2.60	9591	9507	9434	9373	5321	9274	9233	9199	
2.65	9582	9495	9420	9357	9320	9255	9214	9180	
2.63	3302	3.55	0.2						
2.70	9575	9486	9410	9349	9285	9243	9200	9163	
	9569	9476	9399	9334	9276	9228	9184	9145	
2.75	9558	9466	9387	6321	9262	9212	9168	9128	
2.80			9376	9316	9265	9200	9155	9112	
2.85	9552	9458		9294	9234	9181	9135	9094	
2.90	9542	9446	9366	3234	9234	3101	1 3133		
1			0250	9282	9221	9171	9118	9076	
2.95	9534	9433	9359						
		~ 4 ~ -	0241	1 0060	I GOOF	1 0150	1 9104	9060	
3.00	9525	9425	9341	9262	9205	9150	9104	9060	

Table IV
$$\log \left[1 - \frac{B\theta}{2} \left(1 - z_0\right)^2\right]$$

				2					
K									
В	0.15	0.16	0.17	0.18	0.19	0.20	0.25	0.30	0.35
	.,		1						
						T 0.555	T 0740	T 0725	T 0727
0.70				1.9773			T.9748 9730	9716	9706
0.75	9775	9768	9762	97 5 6 97 3 9	9751 9733	97 4 6 97 2 9	9730	9695	9686
0.80	9760	9752	97 45 97 29	9739	9717	9711	9692	9765	9665
0.85	9745 9729	9736 9720	9712	9705	9699	9693	9674	9656	9645
0.90	9129	3120	3112	3.03	0000				
0.95	9713	9711	9696	9689	9682	9675	9654	9635	9624
1.00	9697	9691	9679	9672	9664	9658	9635	9616	
1.05	9682	9672	966 3	9654	9647	9640	9616	9596	9583
1.10	9662	9655	9646	9634	9629	9621	9597	9576	9562
1.15	9650	9638	9628	9621	9611	9600	9578	9555	9541
			0011	l ocos	0504	9587	9 562	9535	9519
1.20	9639	9618	961 1 9 59 0	9608 9585	9 5 9 4 9 5 7 6	9568	9 5 6 2	9514	9490
1.25	9618	9607 9590	9590	9568	9559	9550	9519	9494	9477
1.30	9611	9573	9561	9550	9 52 1	9532	9501	9473	1
1.35 1.40	9587 9575	9557	9543	9533	9511	9513	9480	9453	9434
1.40	3373	300.	55.55						
1.45	9554	9540	9531	9515	9505	9495	9461		9412
1.50	9549	9518	9510	9498	9486	9476	9441	9410	9391
1.55	9526	9507		9472	9469	9458	9421	9390	9369
1.60	9507	9489	9479	9462	9450	9439	9401		9348
1.65	9501	9472	9458	9447	9431	9421	9381	9356	9334
			0.440	0.400	0412	9402	9361	9327	9303
1.70	9474	9455	9440	9426	9413 9395	9383	9341	9304	9281
1.75	9459	9438	9422	9389	9375	9364	9321	9282	9258
1.80	9439 9422	9402	9402	9387	9371	9345	9300	9261	
1.85	9406	9388	9369	9353	9341	9326	9279	9240	9213
1.90	3400	1 3300	5005	-			1		
1.95	9390	9370	9351	9335	9320	9306	925⊦	9218	
2.00	9373	9352	9334	9317	9305	9287	9238	9196	9168
2.05	9355	9335	9319	9297	9284	9268	9217	9173	9144
2.10	9339	9318	9397	9279	9253	9248	9196	9151	9122 9099
2.15	9322	9299	9279	9258	9244	9228	9175	9129	9099
	0004	9282	9260	9242	9225	9209	9154	9106	9075
2.20	9304	9263	9242	9223	9205	9190	9133	9074	9051
2.25	9289 9271	9246	9224	9206	9186	9170	9111	9061	9028
2.30	9253	9226	9205	9184	9167	9150	9089	9038	9006
2.40	9235	9210	9187	9166	9146	9130	9067	9015	8980
2.40	1	1	1		1	1	1		1
2.45	9218	9191	9168	9141	9126	9109	9046	8991	8956
2.50	9200	9174	9150	9127	9107	9089		8969	
2.55	9185	9156	9139	9102	9088	9069		8945 8922	
2.60	9166	9137	9110	9088	9067	9048		8898	
2.65	9147	9120	9092	9068	9047	9028	0338	0050	0000
	0,20	0100	9073	9049	9027	9007	8935	8875	8834
2.70	9130 9113	9100	9073	9029	9007			8850	
2.75	9093	9063	9034	9009	8986	8966	1	8839	
2.80	9076	9045	9016	8989	8966	8951	8868	8802	
2.85	9058	9025	8996	8968	8945	1	8845	8781	8734
2.50	1 5556	1	1						

0.90 9720 9720 9712 9705 9691 9693 9674 9656 9645 0.95 9713 9711 9696 9689 9682 9675 9661 9684 9684 9684 9684 9686 9684 9684 9684 9684 9684 9686 9684 9684 9684 9684 9684 9684 9684 9684 9684 9684 9684 9684 9684 9684 9686 9684 9684 9684 9686 9688 9682 9621 9689 9688 9621 9689 9584 9587 9568 9585 9578 9568 9589 9578 9568 9589 9578 9568 9589 9587 9578 9568 9589 9587 9578 9568 9589 9589 9519 9444 94476 9476 9476 9476 9476 9476 9476 9476 9476 9444 9476 9476 9				3123	SIZZ	9717	3111	2002	9700	200
0.95 9713 9711 9696 9689 9682 9675 9658 9658 9604 1.00 9697 9691 9679 9679 9672 9664 9658 9658 9658 9658 9658 9658 9658 9658	0.00	0700	0700					4674	96 56	9645
0.95 9713 9711 9691 9679 96879 9672 9684 9610 9583 9616 9586 9618 9618 9618 9618 9596 9682 9621 9661 9640 9618 9956 9583 9621 9611 9600 9578 9557 9561 9500 9585 9576 9587 9562 9531 9541 9597 9561 9509 9578 9568 9579 9578 9568 9559 9550 9519 9519 9490 9491 9490 9490 9491 9490 9490 9491 9490 9491 9490 9491 9490 9491 9490 9490 9410 9490 9473 9460 9400 9473 9456 9450 9451 9400 9473 9466 9450 9451 9470 9473 9460 9450 9441 9410 9491 9473 9461 9460 9458 9451 9460 <t< td=""><td>0.90</td><td>9729</td><td>9720</td><td>9712</td><td>3103</td><td>3030</td><td>00</td><td></td><td></td><td></td></t<>	0.90	9729	9720	9712	3103	3030	00			
0.95 9713 9711 9691 9679 96879 9672 9684 9610 9583 9616 9586 9618 9618 9618 9618 9596 9682 9621 9661 9640 9618 9956 9583 9621 9611 9600 9578 9557 9561 9500 9585 9576 9587 9562 9531 9541 9597 9561 9509 9578 9568 9579 9578 9568 9559 9550 9519 9519 9490 9491 9490 9490 9491 9490 9490 9491 9490 9491 9490 9491 9490 9491 9490 9490 9410 9490 9473 9460 9400 9473 9456 9450 9451 9400 9473 9466 9450 9451 9470 9473 9460 9450 9441 9410 9491 9473 9461 9460 9458 9451 9460 <t< td=""><td>1</td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td>0035</td><td>0624</td></t<>	1	1		1		1			0035	0624
1.00	0.95	9713	9711	9696	9689	9682				
1.05				9679	9672	9664	9658			
1.10 9662 9655 9646 9634 9629 9621 9597 9576 9562 1.15 9665 9638 9628 9621 9611 9600 9578 9555 9541 1.20 9639 9618 9611 9608 9594 9587 9568 9539 9514 1.25 9618 9607 9590 9585 9576 9568 9539 9514 9477 1.30 9611 9590 9578 9568 9559 9519 9494 9477 1.35 9587 9557 9543 9533 9511 9513 9480 9453 9434 1.45 9554 9540 9531 9515 9495 9461 9410 9410 1.50 9549 9518 9510 9498 9468 9477 9441 9410 9391 1.50 9549 9518 9510 9498 9468 9478 9421 9390 9369 1.60 9507 9489 9479 9462 9450 9439 9401 9360 1.60 9507 9489 9479 9462 9450 9439 9401 9366 1.60 9507 9489 9479 9462 9450 9439 9401 9366 1.60 9507 9489 9479 9462 9450 9439 9401 9366 1.61 9472 9458 9447 9431 9421 9381 9356 1.62 9507 9489 9479 9462 9470 9395 9481 9361 9367 1.63 9439 9421 9402 9387 9371 9345 9341 9304 1.64 9449 9421 9404 9389 9375 9364 9321 9282 1.85 9422 9402 9387 9371 9345 9300 9261 9235 1.80 9439 9421 9402 9387 9371 9345 9300 9261 9235 1.90 9406 9388 9369 9353 9311 9364 9327 9240 9213 1.95 9390 9370 9351 9335 9320 9364 9327 9364 9328 1.90 9406 9388 9369 9353 9341 9364 9321 9383 1.91 9406 9388 9369 9353 9341 9364 9375 9364 1.95 9390 9370 9351 9335 9320 9364 9375 9364 1.95 9390 9370 9351 9335 9320 9364 9375 9364 1.95 9390 9376 9354 9317 9305 9287 9238 9196 9168 1.95 9390 9376 9354 9377 9364 9377 9364 9377 9364 2.00 9373 9352 9334 9317 9305 9287 9349 9349 2.00 9373 9352 9334 9317 9305 9387 9341 9300 9364 2.00 9373 9365 9354 9366 9364 9364 9364 9364 2.0							9640	9616	9596	9583
1.10 9662 9655 9626 9621 9611 9600 9578 9555 9541 1.20 9639 9618 9611 9608 9594 9587 9562 9535 9519 1.25 9618 9607 9590 9585 9559 9568 9539 9514 9477 1.30 9611 9590 9578 9568 9559 9550 9519 9447 1.35 9587 9573 9561 9550 9521 9532 9501 9473 9456 1.40 9575 9557 9543 9531 9515 9505 9495 9441 9440 1.45 9554 9518 9510 9498 9486 9476 9441 9431 9391 1.50 9549 9518 9510 9498 9486 9476 9441 9431 9391 1.55 9526 9507 9492 9472 9469 9458 9491 9369 9369 1.60 9507 9489 9479 9462 9450 9439 9401 9360 9348 1.65 9501 9472 9458 9447 9431 9421 9390 9369 1.75 9459 9438 9422 9407 9395 9383 9341 9304 9321 9282 1.70 9474 9455 9440 9389 9375 9364 9321 9282 9258 1.80 9439 9421 9404 9389 9375 9364 9321 9282 9258 1.80 9439 9421 9404 9389 9375 9364 9321 9282 9258 1.80 9439 9421 9404 9389 9375 9364 9321 9282 9258 1.85 9422 9402 9402 9407 9395 9383 9341 9304 9261 9235 1.90 9309 9370 9351 9353 9301 9369 9279 9240 9213 1.95 9330 9370 9351 9353 9301 9326 9279 9240 9213 1.95 9330 9370 9351 9357 9305 9287 9288 9196 9168 2.05 9335 9335 9319 9279 9284 9288 917 9173 9144 2.05 9339 9318 9397 9279 9284 9288 917 9173 9144 2.05 9339 9318 9397 9279 9284 9288 917 9173 9144 2.20 9304 9282 9260 9242 9225 9209 9154 9106 9168 2.20 9304 9282 9260 9242 9225 9209 9154 9106 9075 2.21 9329 9279 9278 9258 9244 9228 9175 9151 9122 2.35 9253 9226 9205 9184 9167 9150 9089 9038 2.45 9218 9191 9168 9141 9126 9109 9046 8991 8956 2.45 9218 9191 9168 9141 9126 9109 9046 8991 8956 2.65 9147 9120 9092 9068 9047 9088 8908 8922 8883 2.65 9147 9120 9092 9068 9047 9088 8968 8891 8880 2.65 9147 9120 9092 9068 9047 8988 8898 8859 2.85 9078 8966 8968 8945 8894 8880 8899 8784 2.95 9039 9007 8976 8950 8924 8894 8823 8754 8709 2.95 9039 9057 8976 8950 8924 8894 8823 8754 8709 2.95 9039 9007 8976 8950 8924 8881 8800 8725 8689	1.05								9576	9562
1.15 9650 9638 9628 9621 9608 9594 9587 9562 9535 9409 1.20 9639 9618 9611 9590 9585 9576 9568 9539 9514 9490 1.30 9611 9590 9578 9568 9559 9550 9519 9494 9477 1.35 9587 9573 9561 9533 9511 9513 9480 9453 9436 1.40 9575 9557 9543 9531 9515 9513 9480 9453 9431 9412 1.50 9549 9518 9510 9498 9486 9458 9441 9431 9412 1.50 9550 9507 9489 9479 9462 9459 9458 9441 9391 9369 1.60 9507 9489 9479 9462 9459 9439 9401 9369 9348 1.60 9507 9489 9479 9462 9430 9431 9412 9331 931 9321 9353 9341 9304 9369 9348 1.70 9474 9455 9440 9438 9421<	1.10	9662	9655							9541
1.20 9639 9618 9607 9590 9585 9576 9588 9539 9511 9490 1.35 9618 9607 9590 9585 9576 9588 9539 9511 9490 9477 1.30 9611 9590 9578 9568 9559 9550 9511 9473 9456 1.35 9587 9573 9561 9559 9550 9511 9473 9456 1.35 9587 9573 9561 9533 9511 9490 9477 1.36 9587 9573 9561 9559 9550 9511 9473 9456 1.36 9587 9573 9561 9533 9511 9473 9456 1.36 9587 9557 9543 9533 9511 9513 9480 9473 9434 1.50 9549 9518 9510 9473 9480 9479 1.55 9526 9507 9492 9472 9469 9458 9421 9390 9369 1.60 9507 9489 9479 9462 9450 9439 9401 9360 9348 1.65 9501 9472 9458 9447 9431 9421 9381 9356 9334 1.65 9501 9472 9458 9447 9431 9421 9381 9356 9334 1.65 9501 9472 9458 9447 9431 9421 9381 9356 9334 1.65 9501 9472 9404 9389 9375 9364 9321 9282 9281 1.80 9439 9401 9304 9281 1.80 9439 9421 9309 9370 9369 9370 9369 9370 9369 9370 9369 9370 9369 9370 9369 9370 9369 9370 9369 9370 9369 9370 9369 9370 9369 9375 9369 9375 9369 9370 9261 9235 1.90 9406 9388 9369 9353 9311 9397 9345 9300 9261 9235 1.90 9406 9388 9369 9353 9311 9309 9261 9235 9258 9269 9379 9240 9213 9279 9240 9213 9279 9240 9213 9279 9258 9249 9279 9258 9248 9268 9217 9173 9144 9228 9269 9279 9258 9248 9268 9217 9173 9144 9228 9269 9279 9258 9248 9269 9279 9258 9249 9279 9258 9248 9169 9151 9122 9269 9279 9258 9249 9279 9258 9249 9279 9258 9249 9279 9258 9249 9279 9258 9249 9279 9258 9249 9279 9258 9249 9279 9258 9249 9279 9258 9249 9279 9258 9249 9279 9258 9269 9154 9169 9075 9099 9075 9269 9002 8965 8900 9002 8965 8900 9002 8965 8900 9002 8965 8900 9002 8965 8900 9002 8965 8900 9002 8965 8900 9004 8985 8890 9006 9002 8965 8900 9004 8985 8890 9006 9002 8965 8900 9004 8985 8890 9006 9004 8985 8890 9006 9005 8965 8905 8908 8966 8968 8945 8800 8754 8709 9007 8976 8960 8904 8904 8890 8754 8709 9007 8976 8960 8904 8904 8890 8754 8709 9007 8976 8960 8904 8904 8890 8754 8709 9007 8976 8960 8904 8904 8890 8754 8709 9007 8976 8960 8904 8904 8800 8754 8709 9007 8976 8960 8904 8904 8800 8754 8709 9007 8976 8960 8904 8904 8800 8755 8693	1.15	9650	9638	9628	9621	9611	9600	95/8	9333	30.2
1.20 9639 9618 9618 9617 9590 9585 9576 9568 9539 9514 9490 1.25 9618 9607 9590 9585 9576 9550 9519 9494 9477 9456 9550 9517 9550 9517 9550 9519 9494 9477 9456 9550 9517 9573 9561 9550 9519 9493 9434 9456 9550 9517 9575 9557 9543 9533 9511 9513 9480 9453 9434 1.40 9575 9557 9543 9533 9511 9513 9480 9453 9434 1.45 9554 9518 9510 9498 9486 9476 9441 9410 9391 1.55 9526 9507 9492 9472 9469 9458 9421 9390 9369 1.65 9501 9472 9458 9447 9450 9439 9401 9360 9348 1.65 9501 9472 9458 9447 9431 9421 931 9450 9334 1.65 9501 9472 9458 9447 9431 9421 931 9356 9334 1.70 9474 9455 9440 9426 9413 9421 931 9356 9334 1.70 9474 9455 9420 9407 9395 9383 9341 9304 9281 1.80 9439 9421 9402 9402 9387 9371 9345 9300 9261 9235 1.80 9439 9421 9402 9387 9371 9345 9300 9261 9235 1.90 9406 9388 9369 9353 9341 9326 9279 9240 9213 1.95 9339 9318 9397 9279 9253 9248 9196 9158 1.95 9339 9318 9397 9279 9253 9248 9196 9151 9122 9299 9279 9278 9279 9258 9244 9228 115 9322 9299 9279 9258 9244 9228 115 9322 9299 9279 9258 9244 9228 115 9322 9299 9279 9258 9244 9228 115 9322 9299 9279 9258 9244 9228 115 9069 9368 9369 9369 9369 9370 9371 9356 9319 9297 9258 9244 9228 115 9322 9299 9279 9258 9244 9228 115 9322 9299 9279 9258 9244 9228 115 915 9122 9299 9279 9258 9244 9228 115 915 9122 9299 9279 9258 9244 9228 115 9168 9168 9168 9170 9187 9166 9166 9130 9067 9015 8980 9068 9006 9006 9006 9006 9006 9006		000		1	1	į	i		1	
1.20		0000	0010	0611	9608	9594	9587	9562	9535	
1.25 9618 9507 9508 9568 9559 9550 9519 9494 9477 1.35 9587 9573 9561 9550 9521 9532 9501 9473 9456 1.40 9575 9557 9543 9533 9511 9513 9480 9453 9434 1.45 9554 9549 9518 9510 9498 9486 9476 9441 9410 9391 1.50 9549 9518 9510 9498 9486 9476 9441 9410 9391 1.55 9526 9507 9492 9472 9469 9458 9421 9390 9369 1.60 9507 9489 9479 9462 9450 9439 9401 9360 9348 1.65 9501 9472 9458 9447 9431 9421 9381 9356 9348 1.70 9474 9455 9440 9426 9413 9402 9361 9356 9334 1.70 9474 9455 9440 9426 9413 9402 9361 9381 9356 1.70 9439 9421 9404 9389 9375 9383 9341 9304 9281 1.80 9439 9421 9402 9387 9371 9345 9300 9261 9235 1.80 9439 9421 9402 9387 9371 9364 9321 9282 9258 1.85 9422 9402 9402 9387 9371 9326 9279 9240 9213 1.95 9390 9370 9351 9335 9331 9326 9279 9240 9213 1.95 9390 9370 9351 9335 9331 9326 9279 9240 9213 2.00 9373 9318 9397 9279 9284 9268 9217 9173 9144 2.01 9339 9318 9397 9279 9284 9268 9217 9173 9144 2.02 9304 9282 9260 9242 9223 9248 9175 9129 9099 2.15 9322 9299 9279 9258 9244 9228 9175 9129 2.20 9304 9282 9260 9242 9223 9248 9175 9129 2.21 9309 9260 9242 9223 9205 9190 9133 9074 9051 2.25 9389 9263 9242 9223 9205 9190 9133 9074 9051 2.25 9329 9299 9279 9258 9244 9228 9175 9129 2.30 9271 9246 9224 9206 9186 9170 9111 9061 9075 2.45 9218 9191 9168 9141 9126 9130 9067 9015 8980 2.45 9218 9191 9168 9141 9126 9130 9067 9015 8980 2.45 9218 9191 9168 9141 9126 9109 90448 8991 8956 2.50 9200 9174 9150 9127 9107 9089 9024 8945 8907 2.55 9185 9156 9139 9102 9088 9067 9048 8980 8992 2.55 9185 9156 9139 9102 9088 9067 9048 8980 8992 2.60 9166 9137 9110 9088 9067 9048 8980 8892 8883 2.60 9933 9063 9034 9009 8986 8966 8890 8839 8859 2.60 9130 9007 8968 8968 8966 8890 8839 8859 2.60 9093 9063 9034 9009 8986 8966 8890 8889 8859 2.60 9093 9063 9034 9009 8986 8966 8890 8839 8859 2.60 9093 9063 9034 9009 8986 8966 8890 8839 8859 2.60 9093 9063 9063 9034 9009 8986 8966 8890 8839 8859 2.60 9093 9063 9063 9034 9009 8986 8966 8890 8839 8859 2.60 9093 9063 9063 9063 9004 8986 8986 8896 8890 8859 8859 2.60 9093 9063 9063 9063 9064 8964 8823							9568	9539	9514	9490
1.30 9611 9590 9578 9588 9532 9531 9473 9456 1.35 9587 9571 9557 9557 9543 9533 9511 9513 9480 9453 9434 1.40 9575 9557 9543 9533 9511 9513 9480 9453 9434 1.50 9549 9518 9510 9498 9486 9476 9441 9410 9391 1.55 9526 9507 9492 9472 9489 9478 9486 9458 9421 9390 9369 1.65 9501 9472 9458 9447 9431 9421 9391 9366 9334 1.65 9501 9472 9458 9447 9431 9421 9356 9334 1.65 9501 9472 9458 9447 9431 9421 9351 9356 9334 1.75 9459 9438 9422 9407 9395 9383 9341 9304 9281 1.75 9459 9438 9422 9407 9395 9383 9341 9304 9281 1.86 9439 9421 9404 9389 9375 9383 9341 9304 9281 1.86 9439 9421 9404 9389 9375 9364 9321 9282 9258 1.86 9422 9402 9402 9402 9306 9279 9240 9213 1.95 9390 9360 9388 9369 9353 9341 9326 9279 9240 9213 1.95 9390 9370 9351 9353 9341 9326 9279 9240 9213 1.95 9330 9318 9397 9279 9258 9287 9288 9191 9209 9279 9258 9287 9288 9196 9168 9168 9339 9375 9383 9341 9326 9279 9240 9213 1.95 9339 9318 9397 9279 9253 9248 9196 9168 9168 9168 9225 9299 9279 9258 9248 9196 9168 9168 9225 9299 9279 9258 9244 9228 9175 9129 9099 9279 9258 9244 9228 9175 9129 9099 9279 9258 9244 9228 9175 9129 9099 9279 9258 9244 9228 9175 9129 9099 9279 9258 9244 9228 9175 9129 9099 9279 9258 9244 9228 9175 9129 9099 9279 9258 9244 9228 9175 9129 9099 9279 9258 9244 9228 9175 9129 9099 9279 9258 9260 9186 9170 9111 9061 9028 9068 9255 9184 9167 9150 9089 9038 9006 9166 9137 9110 9088 9067 9048 8991 8956 9169 9167 9110 9088 8907 9048 8980 8922 8883 9066 9166 9137 9110 9088 9047 9024 8969 8932 9055 9164 9130 9067 9048 8980 8922 8883 9066 9166 9137 9110 9088 8966 8913 8850 8859 8859 9055 9905 9009 8986 8968 8951 8868 8809 8759 9058 9055 9009 9007 8986 8913 8850 8809 8759 9058 9055 9009 9007 8986 8913 8850 8809 8759 9058 9058 9055 8996 8968 8964 8924 8881 8800 8754 8809 8754 8907 8904 8881 8800 8755 8993	1.25	9618								9477
1.35 9587 9573 9561 9550 9551 9513 9480 9433 9434 1.45 9557 9557 9533 9511 9513 9480 9431 9412 1.50 9549 9518 9510 9498 9486 9476 9441 9410 9391 1.55 9526 9507 9492 9472 9469 9458 9421 9390 9369 1.65 9507 9489 9479 9458 9421 9390 9399 9369 1.65 9507 9489 9479 9458 9421 9390 9360 9348 1.65 9501 9472 9458 9447 9431 9421 9381 9366 9334 1.70 9474 9455 9440 9426 9413 9402 9361 9327 9364 9321 9282 9258 1.80 9426 9388 9369 9351 9	1.30	9611	9590	9578	9568					
1.40 9575 9557 9543 9533 9511 9513 9480 9433 9434 1.45 9554 9549 9518 9510 9498 9486 9476 9441 9410 9391 1.50 9549 9507 9492 9472 9469 9458 9421 9300 9369 1.60 9507 9489 9479 9462 9450 9439 9401 9360 9348 1.65 9501 9472 9458 9447 9431 9401 9360 9348 1.65 9501 9472 9458 9447 9431 9421 9361 9327 9364 9334 9361 9327 9303 9348 9422 9407 9395 9383 9341 9304 9281 9281 9348 9327 9303 9341 9342 9284 9284 9284 9284 9284 9284 9284 9284 9284 9284			9573	9561	9550	9521				
1.45 9554 9540 9518 9510 9498 9486 9476 9441 9410 9391 1.50 9549 9518 9510 9498 9486 9476 9441 9410 9391 1.55 9526 9507 9489 9479 9472 9469 9458 9421 9360 9369 1.65 9507 9489 9479 9472 9469 9458 9421 9360 9369 1.65 9507 9489 9479 9472 9469 9438 9401 9360 9369 1.65 9507 9489 9479 9431 9421 9360 9364 9369 9334 1.70 9474 9455 9440 9426 9413 9402 9361 9327 9304 9281 9375 9364 9321 9282 9258 1.80 9439 9421 9402 9387 9371 9345 9334 9324 9282 9258 9286 9279 9240 9213 1.9					9533	9511	9513	9480	9453	9434
1.45 9554 9518 9518 9510 9498 9476 9489 9472 9469 9478 9481 9491 9369 9348 9472 9469 9478 9489 9472 9469 9478 9421 9369 9348 9421 9489 9472 9489 9472 9489 9472 9489 9472 9489 9472 9489 9472 9489 9472 9489 9472 9489 9472 9489 9472 9489 9472 9489 9472 9489 9472 9489 9472 9489 9472 9489 9421 9481 9421 9481 9421 9481 9421 9481 9421 9481 9421 9481 9421 9482 9487 9383 9341 9361 9327 9303 9258 9383 9341 9300 9261 9235 9384 9369 9353 9341 9326 9279 9240 9242 9240 9482 9486 9343 9341 9362 9279 9240 9240 9242	1.40	9313	9331	3343	3000				1	
1.45 9554 9518 9518 9510 9498 9476 9481 9410 9369 9371 9369 9472 9469 9478 9429 9472 9469 9478 9429 9472 9469 9478 9429 9472 9469 9478 9421 9360 9348 9361 9361 9361 9348 9421 9489 9479 9469 9479 9469 9479 9469 9479 9469 9489 9421 9401 9360 9348 9361 9334 9361 9361 9361 9361 9361 9361 9361 9373 9303 9361 9377 9303 9361 9361 9327 9303 9361 9383 9369 9375 9364 9321 9282 9258 9258 9363 9341 9300 9261 9235 9361 9330 9261 9235 9364 9321 9282 9258 9258 9240 9240 9389 9375 9341 9362 9279 9240 9213 9240 9240		1	ì			0.50.5	0.405	0.461	4431	9412
1.55 9549 9518 9510 9492 9472 9469 9478 94439 9401 9360 9369 9361 9472 9458 94439 9401 9360 9348 9421 9361	1.45	9554								
1.55 9526 9507 9489 9479 9462 9489 9401 9360 9348 1.60 9507 9489 9479 9462 9439 9401 9360 9348 1.65 9501 9472 9458 9447 9431 9421 9361 9356 9334 1.70 9474 9455 9440 9426 9413 9402 9381 9361 9327 9303 1.75 9459 9438 9422 9404 9389 9375 9383 9341 9304 9281 9282 9285 1.85 9422 9402 9487 9371 9345 9300 9261 9225 9228 9228 9228 9228 9286 9373 9373 9341 9306 9255 9218 9191 9213 9300 9261 9213 9300 9261 9213 9236 9238 9196 9188 9196 9188 9106 9255	1.50	9549	9518	9510	9498	9486				
1.60 9507 9489 9479 9462 9450 9439 9401 9360 9336 9336 9334 1.65 9501 9472 9458 9447 9431 9421 9361 9327 9303 1.70 9474 9455 9440 9389 9375 9383 9341 9304 9281 1.80 9439 9421 9404 9389 9375 9364 9321 9282 9258 1.85 9422 9402 9387 9371 9345 9300 9261 9235 1.90 9406 9388 9369 9353 9341 9326 9227 9240 9235 1.90 9406 9388 9369 9353 9341 9326 9279 9240 9235 9279 9240 9238 9371 9364 9327 9279 9284 9268 9217 9173 9168 9151 9173 9168 9151					9472	9469	9458	9421		
1.60 9501 9472 9458 9447 9431 9421 9381 9356 9334 1.70 9474 9455 9440 9426 9413 9402 9361 9327 9303 1.75 9459 9438 9422 9407 9395 9383 9341 9304 9281 1.80 9439 9421 9404 9389 9375 9364 9321 9282 9258 1.90 9406 9388 9369 9353 9371 9345 9300 9261 9235 1.95 9390 9370 9351 9335 9320 9306 9258 9218 9191 2.00 9373 9352 9334 9317 9305 9287 9238 9196 9168 2.10 9335 9335 9377 9284 9268 9217 9173 9144 2.05 9355 9318 9397 9279 9253 9248 9196 9151 9122 2.15 9329 9263 9242							9439	9401	9360	
1.65 9501 9472 9458 9447 9431 9402 9361 9327 9303 1.75 9459 9438 9422 9407 9395 9383 9341 9304 9281 1.80 9439 9421 9404 9389 9375 9364 9321 9282 9258 1.85 9422 9402 9402 9387 9371 9345 9300 9261 9235 1.90 9406 9388 9369 9353 9341 9326 9279 9240 9213 1.95 9390 9370 9351 9335 9334 9326 9287 9238 9196 9168 2.05 9373 9352 9334 9317 9305 9287 9238 9196 9168 917 9173 9144 2.10 9339 9318 9397 9279 9253 9248 9196 9151 9122 917 9173	1.60								93.56	9334
1.70 9474 9455 9440 9426 9413 9402 9361 9327 9303 1.75 9459 9438 9422 9407 9395 9383 9341 9304 9281 1.80 9439 9402 9402 9387 9371 9345 9300 9261 9235 1.90 9406 9388 9369 9353 9341 9326 9279 9240 9213 1.95 9390 9370 9351 9335 9320 9306 9255 9218 9191 2.00 9373 9352 9334 9317 9305 9287 9217 9173 9144 2.05 9355 9318 9397 9279 9253 9248 9268 9217 9173 9144 2.10 9339 9318 9397 9279 9253 9248 9166 9151 9122 2.15 9289 9263 9242 9	1.65	9501	9472	9458	9447	3431	3421	330.1		
1.70 9474 9455 9438 9422 9407 9395 9383 9341 9304 9281 1.80 9439 9421 9404 9389 9375 9364 9321 9282 9258 1.85 9422 9402 9389 9375 9364 9300 9261 9235 1.90 9406 9388 9369 9353 9341 9326 9279 9240 9213 1.95 9390 9370 9351 9335 9317 9305 9287 9238 9196 9168 2.05 9355 9335 9319 9297 9284 9268 9217 9173 9144 2.10 9339 9318 9397 9279 9258 9248 9196 9151 9122 2.15 9322 9299 9279 9258 9244 9228 9175 9129 9099 2.20 9304 9282 9260 9242 9225 9209 9154 9106 9051 9075 9099		1								0202
1.75 9459 9438 9422 9407 9395 9383 9321 9282 9258 1.80 9439 9402 9402 9387 9371 9345 9300 9261 9235 1.90 9406 9388 9369 9353 9341 9326 9279 9240 9213 1.95 9390 9370 9351 9335 9320 9306 9255 9218 9191 2.00 9373 9352 9334 9317 9305 9287 9238 9196 9168 2.05 9355 9335 9319 9297 9284 9268 9217 9173 9144 2.15 9322 9299 9279 9258 9248 9196 9151 9122 2.10 9304 9282 9260 9242 9225 9209 9175 9129 9099 2.25 9289 9263 9242 9225 9209 9	1 70	0474	9455	9440	9426	9413	9402			
1.75 1.80 9439 9421 9404 9389 9375 9364 9321 9282 9258 1.85 9422 9402 9402 9387 9371 9345 9279 9240 9235 1.90 9406 9388 9369 9353 9341 9326 9279 9240 9213 1.95 9390 9370 9351 9335 9320 9306 9255 9218 9191 2.05 9355 9335 9319 9297 9284 9268 9217 9173 9144 2.10 9339 9318 9397 9279 9253 9248 9268 9217 9173 9144 2.10 9339 9318 9397 9279 9258 9244 9228 9175 9129 9099 2.15 9322 9299 9279 9258 9244 9228 9175 9129 9099 2.20 9304 9							9383	9341	9304	
1.80 94422 9402 9402 9387 9371 9345 9300 9261 9235 1.90 9406 9388 9369 9353 9341 9326 9279 9240 9213 1.95 9390 9370 9351 9335 9320 9306 9255 9218 9196 9168 9168 9168 9168 9168 9168 9168 9168 9169 9168 9168 9169 9151 9122 9173 9144 9162 9151 9122 9173 9144 9167 9151 9122 9151								4321	9282	9 2 5 8
1.85 9406 9388 9369 9353 9341 9326 9279 9240 9213 1.95 9390 9370 9351 9335 9334 9317 9305 9287 9238 9196 2.00 9373 9355 9334 9317 9305 9287 9238 9196 9168 2.05 9355 9335 9318 9397 9279 9253 9248 9166 9151 9122 2.10 9339 9318 9397 9279 9253 9248 9166 9151 9122 2.15 9322 9299 9279 9258 9244 9228 9175 9129 9099 2.20 9304 9282 9260 9242 9225 9209 9154 9106 9075 2.25 9289 9263 9242 9223 9205 9154 9106 9075 2.30 9271 9246 9224 9206 9186 9170 9111 9061 9028 2.35 9253 9226 9205 9184 9167 9150 9089 9038 9006 2.45 9218 919 9187 <td>1.80</td> <td>9439</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9235</td>	1.80	9439								9235
1.90 9406 9388 9369 9353 9341 9326 9279 9240 9213 1.95 9390 9370 9351 9335 9317 9305 9287 9238 9196 9168 2.05 9355 9335 9319 9297 9284 9268 9217 9173 9144 2.10 9339 9318 9397 9279 9253 9248 9196 9151 9122 2.15 9322 9299 9279 9258 9244 9228 9175 9129 9099 2.20 9304 9282 9260 9242 9225 9209 9154 9106 9075 2.25 9289 9263 9242 9223 9205 9190 9133 9074 9051 2.30 9271 9246 9224 9206 9186 9170 9111 9061 9028 2.35 9253 9226 9205 9184 9167 9150 9089 9038 9006 2.40 9235 9210 9187 9166 9146 9130 9067 9015 8980 2.45 9218 9191 9168 <td>1.85</td> <td>9422</td> <td>9402</td> <td>9402</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1.85	9422	9402	9402						
1.95 9390 9370 9351 9335 9305 9287 9238 9196 9168 2.00 9373 9352 9334 9317 9305 9287 9238 9196 9168 2.05 9355 9335 9319 9297 9284 9268 9217 9173 9144 2.10 9339 9318 9397 9279 9253 9248 9196 9151 9122 2.15 9322 9299 9279 9258 9244 9228 9175 9129 9099 2.20 9304 9282 9260 9242 9225 9209 9154 9106 9075 2.25 9289 9263 9242 9223 9205 9190 9133 9074 9051 2.30 9271 9246 9224 9205 9184 9167 9150 9089 9038 9006 2.40 9235 9210 9187 9166 9146 9130 9067 9015 8980 2.50 9200			9388	9369	9353	9341	9326	9279	9240	9213
1.95 9390 9370 9351 9333 9315 9315 9315 9315 9315 9315 9315 9316 9287 9287 9287 9287 9187 9173 9144 2.05 9339 9318 9397 9279 9253 9248 9196 9151 9122 2.10 9339 9318 9397 9279 9253 9248 9196 9151 9122 2.15 9322 9299 9279 9258 9244 9228 9175 9129 9099 2.20 9304 9282 9260 9242 9225 9209 9154 9106 9075 2.25 9289 9263 9242 9223 9205 9180 9133 9074 9051 2.30 9271 9246 9224 9225 9209 9133 9074 9051 2.35 9253 9226 9205 9184 9167 9150 9089 9038 9008 2.40 9235 9210 9187 9166 9146 9130 9067 9015 8980 2.50 9200 9174 9150 9127 9107 9089	1.50	3.00	1		Į.	1		1	1	
1.95 9370 9371 9331 9317 9305 9287 9288 9196 9168 2.05 9355 9335 9319 9297 9284 9268 9217 9173 9144 2.10 9339 9318 9397 9279 9253 9248 9196 9151 9122 2.15 9322 9299 9279 9258 9244 9228 9175 9129 9099 2.20 9304 9282 9260 9242 9225 9209 9154 9106 9075 2.25 9289 9263 9242 9223 9205 9190 9133 9074 9051 2.30 9271 9246 9224 9223 9205 9186 9170 9111 9061 9028 2.35 9253 9226 9205 9184 9167 9150 9089 9038 9006 2.40 9235 9210 9187 9166 9146 9130 9067 9015 8980 2.50 9208 9174 9150 9127 9107 9089 9024 8969 8932 2.55 9185 9156 9137 <td></td> <td></td> <td>0270</td> <td>0251</td> <td>4335</td> <td>9320</td> <td>9306</td> <td>9258</td> <td>9218</td> <td></td>			0270	0251	4335	9320	9306	9258	9218	
2.00 9373 9352 9334 9317 9284 9217 9173 9144 2.05 9355 9318 9397 9279 9253 9248 9196 9151 9122 2.15 9322 9299 9279 9258 9244 9228 9175 9129 9099 2.20 9304 9282 9260 9242 9225 9209 9154 9106 9075 2.25 9289 9263 9242 9223 9205 9190 9133 9074 9051 2.30 9271 9246 9224 9206 9186 9170 9111 9061 9028 2.35 9253 9226 9205 9184 9167 9150 9089 9038 9006 2.45 9218 9191 9168 9141 9126 9130 9067 9015 8980 2.50 9208 9174 9150 9127 9107 9									4196	9168
2.05 9355 9318 9319 9277 9254 9284 9196 9151 9122 2.15 9329 9279 9258 9244 9228 9175 9129 9099 2.15 9324 9229 9274 9228 9175 9129 9099 2.20 9304 9282 9260 9242 9225 9209 9154 9106 9075 2.25 9289 9263 9242 9223 9205 9180 9133 9074 9051 2.30 9271 9246 9224 9206 9186 9170 9111 9061 9028 2.35 9253 9226 9205 9184 9167 9150 9089 9038 9006 2.45 9218 9191 9168 9141 9126 9130 9067 9015 8969 8932 2.50 9218 9156 9139 9102 9088 9064 8	2.00	9373	9352							
2.10 9339 9318 9397 9279 9258 9244 9228 9175 9129 9099 2.15 9322 9299 9279 9258 9244 9228 9175 9129 9099 2.20 9304 9282 9260 9242 9225 9209 9154 9106 9075 2.25 9289 9263 9242 9223 9205 9190 9133 9074 9051 2.30 9271 9246 9224 9206 9186 9170 9111 9061 9028 2.35 9253 9226 9205 9184 9167 9150 9089 9038 9006 2.40 9235 9210 9187 9166 9146 9130 9067 9015 8980 2.45 9218 9191 9168 9141 9126 9109 9046 8991 8956 2.50 9200 9174 9150 9		9355	9335	9319	9297					
2.10 9322 9299 9279 9258 9244 9228 9175 9129 9099 2.20 9304 9282 9260 9242 9225 9209 9154 9106 9075 2.25 9289 9263 9242 9223 9205 9190 9133 9074 9051 2.30 9271 9246 9224 9206 9186 9170 9111 9061 9028 2.35 9253 9226 9205 9184 9167 9150 9089 9038 9008 9038 9006 2.45 9218 9191 9168 9141 9126 9109 9046 8991 8980 2.50 9200 9174 9150 9127 9109 9048 8969 8932 2.55 9185 9156 9139 9102 9088 9069 9002 8945 8907 2.60 9166 9137 9110 9			9318	9397	9279	9253	9248			
2.15 9304 9282 9260 9242 9225 9209 9154 9106 9075 2.25 9289 9263 9242 9223 9205 9190 9133 9074 9051 2.30 9271 9246 9224 9206 9186 9170 9111 9061 9028 2.35 9253 9226 9205 9184 9167 9150 9089 9038 9006 2.40 9235 9210 9187 9166 9146 9130 9067 9015 8980 2.45 9218 9191 9168 9141 9126 9109 9046 8991 8956 2.50 9200 9174 9150 9127 9107 9089 9024 8969 8932 2.55 9185 9156 9139 9102 9088 9069 9024 8969 8932 2.60 9166 9137 910 9084 89						4244	9228	9175	9129	9099
2.20 9304 9282 9263 9242 9223 9295 9190 9133 9074 9051 2.25 9289 9263 9242 9206 9186 9170 9111 9061 9028 2.35 9253 9226 9205 9184 9167 9150 9089 9038 9006 2.40 9235 9210 9187 9166 9146 9130 9067 9015 8980 2.45 9218 9191 9168 9141 9126 9109 9046 8991 8956 2.50 9200 9174 9150 9127 9107 9089 9024 8969 8932 2.50 9185 9156 9139 9102 9088 9069 9002 8945 8907 2.55 9185 9156 9137 9110 9088 9067 9048 8980 8922 8883 2.60 9166 9137 9	2.15	9322	9299	3213	3230	32			1	
2.20 9304 9282 9263 9242 9223 9295 9190 9133 9074 9051 2.25 9289 9263 9242 9206 9186 9170 9111 9061 9028 2.35 9253 9226 9205 9184 9167 9150 9089 9038 9006 2.40 9235 9210 9187 9166 9146 9130 9067 9015 8980 2.45 9218 9191 9168 9141 9126 9109 9046 8991 8956 2.50 9200 9174 9150 9127 9107 9089 9024 8969 8932 2.50 9185 9156 9139 9102 9088 9069 9002 8945 8907 2.55 9185 9156 9137 9110 9088 9067 9048 8980 8922 8883 2.60 9166 9137 9	1	1	1			0005	0000	0154	9106	9075
2.25 9289 9263 9242 9223 9205 9190 9133 9074 9028 2.30 9271 9246 9224 9206 9186 9170 9111 9061 9028 2.35 9253 9226 9205 9184 9167 9150 9089 9038 9006 2.40 9235 9210 9187 9166 9146 9130 9067 9015 8980 2.45 9218 9191 9168 9141 9126 9109 9046 8991 8956 2.50 9200 9174 9150 9127 9107 9089 9024 8969 8932 2.55 9185 9156 9139 9102 9088 9069 9002 8945 8907 2.60 9166 9137 9110 9088 9067 9048 8980 8952 8883 2.65 9147 9120 9092 9068 9	2.20	9304	9282							
2.30 9271 9246 9224 9206 9186 9170 9111 9081 9028 9006 235 9253 9226 9205 9184 9167 9150 9089 9038 9006 8980 2.45 9218 9191 9168 9141 9126 9109 9044 8991 8956 2.50 9200 9174 9150 9127 9107 9089 9024 8969 8932 2.55 9185 9156 9139 9102 9088 9069 9002 8945 8907 2.60 9166 9137 9110 9088 9067 9048 8980 8922 8883 2.65 9147 9120 9092 9068 9047 9028 8958 8859 2.70 9130 9100 9073 9049 9027 9007 8935 8875 8834 2.80 9093 9063 9034 9009 <td< td=""><td></td><td>9289</td><td>9263</td><td>9242</td><td>9223</td><td>9205</td><td></td><td></td><td></td><td></td></td<>		9289	9263	9242	9223	9205				
2.35 9253 9226 9205 9184 9167 9150 9089 9038 9008 9008 9015 8980 2.40 9235 9210 9187 9166 9146 9130 9067 9015 8980 2.45 9218 9191 9168 9141 9126 9109 9046 8991 8956 2.50 9200 9174 9150 9127 9107 9089 9024 8969 8932 2.55 9185 9156 9139 9102 9088 9069 90024 8969 8932 2.60 9166 9137 9110 9088 9067 9048 8980 8922 8883 2.65 9147 9120 9092 9068 9047 9028 8958 8898 8859 2.75 9113 9082 9055 9029 9007 8986 8913 8850 8809 2.85 9076				9224	9206	9186	9170	9111		
2.35 9235 9210 9187 9166 9146 9130 9067 9015 8980 2.45 9218 9191 9168 9141 9126 9109 9046 8991 8956 2.50 9200 9174 9150 9127 9089 9024 8969 8932 2.55 9185 9156 9139 9102 9088 9069 9002 8945 8907 2.60 9166 9137 9110 9088 9067 9048 8980 8922 8883 2.65 9147 9120 9092 9068 9047 9028 8958 8898 8859 2.70 9130 9100 9073 9049 9027 9007 8935 8875 8834 2.75 9113 9082 9055 9029 9007 8986 8913 8850 8809 2.80 9093 9063 9044 9098 8966 8						9167	9150	9089	9038	9006
2.40 9235 9210 9187 9168 9141 9126 9109 9046 8991 8956 2.45 9218 9191 9168 9141 9127 9107 9089 9024 8969 8932 2.50 9200 9174 9150 9127 9107 9089 90024 8945 8907 2.55 9185 9156 9139 9102 9088 9069 9002 8945 8907 2.60 9166 9137 9110 9088 9067 9048 8980 8922 8883 2.65 9147 9120 9092 9068 9047 9028 8958 8898 8859 2.70 9130 9100 9073 9049 9027 9007 8935 8875 8834 2.75 9113 9082 9055 9029 9007 8986 8913 8850 8809 2.80 9093 9063	2.35							9067	9015	8980
2.45 9218 9191 9168 9141 9126 9109 9046 8991 8956 2.50 9200 9174 9150 9127 9107 9089 9024 8969 8932 2.55 9185 9156 9139 9102 9088 9069 9002 8945 8907 2.60 9166 9137 9110 9088 9067 9048 8980 8922 8883 2.65 9147 9120 9092 9068 9047 9028 8958 8898 8859 2.70 9130 9100 9073 9049 9027 9007 8935 8875 8834 2.75 9113 9082 9055 9029 9007 8986 8913 8850 8809 2.80 9093 9063 9034 9009 8986 8966 8890 8839 8784 2.90 9058 9025 8996 8968 8	2.40	9235	9210	9187	9166	9140	3130	300.	30.10	
2.45 9218 9191 9168 9141 9107 9089 9024 8969 8932 2.55 9185 9156 9139 9102 9088 9069 9002 8945 8907 2.60 9166 9137 9110 9088 9067 9048 8980 8922 8883 2.65 9147 9120 9092 9068 9047 9028 8958 8898 8859 2.70 9130 9100 9073 9049 9027 9007 8935 8875 8834 2.75 9113 9082 9055 9029 9007 8986 8913 8850 8809 2.80 9093 9063 9034 9009 8986 8966 8890 8839 8784 2.85 9076 9045 9016 8989 8966 8951 8868 8602 8759 2.90 9058 9025 8996 8968 8		1		l	1	i	1		0001	90.56
2.50 9200 9174 9150 9127 9107 9089 9024 8969 8932 2.55 9185 9156 9139 9102 9088 9069 9002 8945 8907 2.60 9166 9137 9110 9088 9047 9048 8980 8922 8883 2.65 9147 9120 9092 9068 9047 9028 8958 8898 8859 2.70 9130 9100 9073 9049 9027 9007 8935 8875 8834 2.75 9113 9082 9055 9029 9007 8986 8913 8850 8809 2.80 9093 9063 9034 9009 8986 8966 8890 8839 8784 2.85 9076 9045 9016 8989 8968 8951 8868 8802 8759 2.90 9058 9025 8996 8986 8	2.45	9218	9191	9168	9141	9126				
2.55 9185 9156 9139 9102 9088 9069 9002 8945 8907 2.60 9166 9137 9110 9088 9067 9048 8980 8922 8883 2.65 9147 9120 9092 9068 9047 9028 8958 8859 2.70 9130 9100 9073 9049 9027 9007 8935 8875 8834 2.75 9113 9082 9055 9029 9007 8986 8913 8850 8809 2.80 9093 9063 9034 9009 8986 8966 8890 8839 8784 2.85 9076 9045 9016 8989 8966 8951 8868 8800 8759 2.90 9058 9025 8996 8968 8924 8845 8781 8734 2.95 9039 9007 8976 8950 8924 8904 8						9107	9089	9024		
2.55 9185 9136 9137 9110 9088 9067 9048 8980 8922 8883 2.65 9147 9120 9092 9068 9047 9028 8958 8898 8859 2.70 9130 9100 9073 9049 9027 9007 8935 8875 8834 2.75 9113 9082 9055 9029 9007 8986 8913 8850 8809 2.80 9093 9063 9034 9009 8986 8966 8890 8839 8784 2.85 9076 9045 9016 8989 8966 8951 8868 8802 8759 2.90 9058 9025 8996 8968 8945 8924 8845 8781 8734 2.95 9039 9007 8976 8950 8924 8904 8823 8754 8709 2.95 9039 9007 8976 8								9002	8945	8907
2.60 9166 9137 9110 9088 9047 9028 8958 8898 8859 2.65 9147 9120 9092 9068 9047 9028 8958 8898 8859 2.70 9130 9100 9073 9049 9007 8935 8875 8834 2.75 9113 9082 9055 9029 9007 8986 8913 8850 8809 2.80 9093 9063 9034 9009 8986 8966 8890 8839 8784 2.85 9076 9045 9016 8989 8966 8951 8868 8802 8759 2.90 9058 9025 8996 8968 8945 8924 8845 8781 8734 2.95 9039 9007 8976 8950 8924 8904 8823 8754 8709 2.95 9039 9007 8976 8950 8924 8	2.55									8883
2.65 9147 9120 9092 9068 9047 9028 8938 8836 2.70 9130 9100 9073 9049 9027 9007 8935 8875 8834 2.75 9113 9082 9055 9029 9007 8986 8913 8850 8809 2.80 9093 9063 9034 9009 8986 8966 8890 8839 8784 2.85 9076 9045 9016 8989 8966 8951 8868 8802 8759 2.90 9058 9025 8996 8968 8945 8924 8845 8781 8734 2.95 9039 9007 8976 8950 8924 8904 8823 8754 8709 2.95 9039 9007 8976 8950 8924 8801 8809 8725 8693	2.60	9166								
2.70 9130 9100 9073 9049 9027 9007 8935 8875 8834 2.75 9113 9082 9055 9029 9007 8986 8913 8850 8809 2.80 9093 9063 9034 9009 8986 8966 8890 8839 8784 2.85 9076 9045 9016 8986 8951 8868 8802 8759 2.90 9058 9025 8996 8968 8945 8924 8845 8781 8734 2.95 9039 9007 8976 8950 8924 8904 8823 8754 8709 2.95 9039 9007 8976 8950 8924 8881 8800 8725 8693		9147	9120	9092	9068	9047	9028	8938	0030	3033
2.70 9130 9100 9073 9049 9071 8986 8913 8850 8809 2.75 9013 9082 9055 9029 9007 8986 8913 8850 8809 2.80 9093 9063 9034 9009 8986 8966 8890 8839 8784 2.85 9076 9045 9016 8989 8966 8951 8868 8802 8759 2.90 9058 9025 8996 8968 8945 8924 8845 8781 8734 2.95 9039 9007 8976 8950 8924 8904 8823 8754 8709 8950 8968 8904 8881 8800 8725 8693	2.00	1		1	1	1	1			
2.70 9130 9100 907 9029 9007 8986 8913 8850 8809 2.75 9113 9082 9055 9029 9007 8986 8966 8890 8839 8784 2.85 9076 9045 9016 8989 8966 8951 8868 8809 8759 2.90 9058 9025 8996 8968 8945 8924 8845 8781 8734 2.95 9039 9007 8976 8950 8924 8904 8823 8754 8709 2.95 9039 8067 8976 8980 8881 8809 8725 8693	1	0100	1 0100	9072	9049	9027	9007	8935		
2.75 9113 9082 9034 90093 9063 9034 90093 9063 9034 90093 9063 9045 9016 8986 8966 8890 8839 8784 2.85 9076 9045 9016 8989 8966 8951 8868 8802 8759 2.90 9058 9025 8996 8968 8945 8924 8845 8781 8734 2.95 9039 9007 8976 8950 8924 8904 8823 8754 8709 2.95 9039 9007 8976 8950 8924 8881 8800 8725 8693									8850	8809
2.80 9093 9063 9045 9016 8989 8966 8951 8868 8802 8759 2.85 9076 9058 9025 8996 8968 8945 8924 8845 8781 8734 2.95 9039 9007 8976 8950 8924 8904 8823 8754 8709 2.95 9039 9007 8976 8950 8924 8904 8823 8754 8709 8060 8950 8924 8904 8883 8800 8725 8693	2.75									
2.85 9076 9045 9016 8989 8966 8951 8868 8802 8739 2.90 9058 9025 8996 8968 8945 8924 8845 8781 8734 2.95 9039 9007 8976 8950 8924 8904 8823 8754 8709 8950 8924 8881 8800 8725 8693		9093	9063	9034						
2.90 9058 9025 8996 8968 8945 8924 8845 8781 8734 2.95 9039 9007 8976 8950 8924 8904 8823 8754 8709				9016	8989	8966	8951			
2.90 9058 9023 8956 8950 8924 8904 8823 8754 8709 2.95 9039 9007 8976 8950 8924 8904 8823 8754 8709 8904 8881 8800 8725 8693							8924	8845	8781	8734
2.95 9039 9007 8976 8930 8924 8881 8800 8725 8693	2.90	1 9028	9023	0550	1 0500	1 00 10	1	1	l	l
2.95 9039 9007 8976 8930 8924 8881 8800 8725 8693	1	l	1		1	1 000 1	9004	6823	8754	8709
1 2.2 2.2 2000 2057 2020 2004 2281 2809 2723	2.95	9039	9007							
3.00			8988	8957	8930	8904	8881	8800	8/23	8033
	3.00	3021	1							

Table IV
$$\log \left[1 - \frac{B\theta}{2} (1 - z_0)^2\right]$$

					L								т				
	Δ]										70	ο.	75	υ.	80
В		0.40	0.45	0	. 50	U	. 55	U	.60	0.	65						
L	>			+		_		L.		1		1.97	00	1.96	98	1.96	97
١	0.70	1.9720	1.9715	1.9	711	1.9				1.97	02	96	70		375	96	74
1	0.70	9699	9693		689	9	686		683		580		56	96	553	96	551
1	0.75	9678	1		668		663		661		558 535		33	96	330	96	328
1	0.80	9658			647		642		639				10		508	96	606
1	0.85	9636	1		625	9	620	1 6	9616	1 30	313	1			-		
1	0.90	1 3050		-		}				1	590	9:	588	9:	585	9	583
1	0.05	9615	9609) 9	603		598		594		567		565	9	562	9	560
1	0.95	9594	l		581		575		9571	1	545		542	9	539		537
1	1.00	9572			559		553	1	9549	1 .	522		519		516	9	513
1	1.05	9551			537		531		9526		499		496		492	9	490
	1.10	9530			9514	5	509	1	9504	1 9	433			-	_	1	1
1	1.15	1		1			_	1		1 0	476	1 9.	472	9	469		467
1	1.20	9 5 0 9	949		9492		9485	- 1	9480	1 -	453	1 -	449	9	446		443
١	1.25	9486			9469	1	9463	- 1	9458	1 .	430	1 -	425	9	422		419
-	1.30	946		0 9	9447		9440		9435		406	1 -	402	9	398	' 9	395
1	1.35	942		2 1	9424		9417		9411		383	-	378	9	374	9	371
- 1	1.40	941		0	9401	. '	9394	1	9393	, ,		' "		1			į
- 1	1.40	"	1	1		1		-	0005		359	9	355	9	350		348
- 1	1.45	939	8 938	7	9378		9360		9365	- 1	335	1 -	330		327		323
	1.50	937			9355	-	9347		9341	- 1	310		306		301	5	298
	1.55	935			9332	- :	9324		9318	- 1	9287	′ l :	282		9278		274
- 1	1.60	933		9	9308	_	9300		9293		9270	' 1 -	266		9262	9	258
١	1.65	931		4	9293	3	9285	>	9279			´ `		į		1	
- 1	1.05			- 1				_	924	E :	9239	4 9	233	: :	9228		9223
1	1.70	928	6 927	3	926		9252		924	_	921	- 1	208		9203		9198
- 1	1.75	926		19	923		9228			-	918	•	9183		9177		9173
- 1	1.80	924		6	921		920		919	_	916	- :	9158		9153	1 '	9147
- 1	1.85	921		2	919		917				913	- 1	9133		9126	•	9121
	1.90	919		78	916	6	915	5	914	0	313	J .					
- 1	1,30		- 1	I				.	912	2	911	4	910	7	9102		9097
- 1	1.95	917	70 91	55	914		913		909	-	908	- 1	908		9076		9071
	2.00	914	16 91	31	911		910		905		906		905	6	905	0	9045
- 1	2.05	912		06	909		908		904		903	- 1	903		902	4	9019
	2.10	909	99 90	73	906		905		902		901		900	5	899	8	8992
- 1	2.15	90'	75 90	58	904	3	902	9	902	••		_		- 1		- 1	
1	2.10	1	1	- 1		_		. 1	899	6	898	16	897	8	897		8966
- 1	2.20	90			901		900		896		896		895	2	894		8939
1	2.25	90		08	899		897		894		893		892	8	891		8912
- 1	2.30	90		84	896		895		89		890		889	9	889		8885
	2.35	89		58	894		892		889		888		887	5	886	5	8859
1	2.40	89	54 89	33	891	16	890	12	55.			1		- 1		_	
	2,	1		_		ا 👡	887	76	88	65 l	88	55	884		884		8831
	2.45	89		08	889		886		88		88		881		881		8803
	2.50	89	1	83	886		882		88		88		879		878		8776
	2.55			57	88		87		87		87	73	876		87		8746
	2.60			32	88		87		87			46	873	37	872	27	8720
	2.65	88	29 88	305	87	90	0'		1 .	- '	_			١		_	000
	1	1		ا ہے۔	07	50	87	43	87	30		18	87		86		869
	2.70			782	87			16		03	86	90	86		86		866
	2.75			753	87			88		76	86	62	86		86		863
	2.80		· - 1	727	87			61		48	86	34	86		86		860
	2.85		_	700	86			34		19		05	85	95	85	85	857
	2.90	87	700 8	674	86	52	00	. J T	1		1		1				054
	1	l		647	86	25	86	05	85	591	85	577	85	67	85	56	854
	2.95	1 80	374 8	997	1 .50												

0			1.2					,000			- 0	522	T	9519		9516		9513 9490		
	1.05		72	956		9537	1	9531		526		1499	١	9496	3	9492	1	9450		
	1.10		551	954		9514	1	9509	9	504	1	, -(./ ./	1			9469	1	9467	1	
	1.15	9	530	952			1	_	١.,	480	1 9	9476	1	947		9446		9443	1	
		1	\	949	اود	9492		9485		458	1	9453	1	944		9422		9419	-	
	1.20		509	94		9469	1	9463		435		9430		942		9398		9395	1	
	1.25		486	94		9447	1	9440		9411	1	9406	i	940		9374		9371	1	
	1.30		465	94		9424		9417		9393		9383	3	937	8	931	1		1	
	1.35		421	94		940	1	9394	1 .	335	Ì		1		۱ ء	9350	5 L	9348		
	1.40	1 9	413	"-	- 1			0260	1	9365	. 1	9359	9	935		932		9323		
1		1 .	398	93	87	937		9360	1	9341		933	5	933		930		9298		
١	1.45		9376		362	935		9347	1	9318		931		930 92		927		9274		
1	1.50		9354		342	933		9324		9293		928		92		926		925	3	
1	1.55		9333	9:	319	930		9285		9279	•	927	0	92	00		1		_ 1	
1	1.60		9312	9	304	929	13	9200	1	-				1 00	33	922	8	922		
1	1.65	- 1	5512	1		1		925	2	924	5	923			08	920		919		
1		- 1	9286		273	926		922		922	1	92			83	917	77	917		
1	1.70	Ì	9263	1 9	249	92		920		919		911			58	91	53	914	1	
١	1.75	- 1	9242	2 9	216	91		917		917	2	910			133	91:	26	912	1	
- 1	1.80	١	921		202	1		915		914	6	91	39			1		909	. 7	
- 1	$\frac{1.85}{1.90}$	1	919	4 9	9178	91	00		1				14	. 4	107	91		90:		
١	1.90	- 1		- 1		91	41	913	31	912			89	9	υ82		76	90		
	1.95	- 1	917		9155		17	910)6 ¹	909			63	9	056		50	90		
	2.00	1	914	0 1	9131	٠ ١ ٠.	92	901	BO	90			37		030		24	89		
	2.05	- 1	912	3	9106		067	90		90)12	9	005	89	98	. 83	-	
	2.10	- 1	909	, 5	9073	- 1	043	90	29	90	21	1		i		1 0	. =0	89	66	
	2.15	1	907	75	903			1		00	96	1 8	986		3978		972 9 4 5		39	
	1	- 1			903		018		06		69		960) 1	952		943 918		12	
	2.20	1	90		900	8 8	993		79		44	8	934		8928	, 1 5	891		85	
	2.25	1	90: 90		898	4 8	968	٠ ١	54		917	8	90		8899	1 2	865		359	
	2.30	١ ١	90 89		895	8 8	3942		929		891	1 8	188	U \	887	5 °	000		1	
	2.35	1		54	893		3916	5 8	902	1 0		1		- 1	884	s 8	843		831	,
	2.40	1	69	34		1		- 1 0	876	8	865		385		881	· 1	3810) 8	803	1
	1 _		90	29	890	, , , , , , , , , , , , , , , , , , ,	889	0 1	860	8	839) 1	882		879	8 8	3782	-	776	1
	2.45			04	888	02 (886	• 1 <u>-</u>	824	198	811	. 1	880		876		875		746	1
	2.50			379	88	J.	883 881	9 1	798	ı 18	784	• ;	877		873		872	7 ; 8	720	Ì
	2.55		8	855	88	J= 1	878	J	3770		375	7	874	10					3691	1
	2.60		8	829	88	05	810			١	_	. 1	87	18	870	9	869		3663	1
	2.6	,	1				875	59 8	8743		873	٠,	86	90	86		867	- 1	3633	1
	2.70	`		803		82	873		8710		870		86	62	86	52	864		8605	1
	2.7	5		778		753	879	06 3	868		867			34		24	86	1 2	8577	1
	2.8			752		727	86	80	866	- 1	864			05	85	95	85	85	0311	١
	2.8	5		3727		674	86	-	863	4	861	19	50		1	1		ec	8548	1
	2.9		1 8	370U	1 81	017		1		_ 1	859	۱ ، د	85	577		67	85	٠ ١	8519	
	1 2.3	-	1			647	86	25	860		856		8	549	185	538	85	21		
	2.9	5	1 :	8674		620	85	97	857	18	0.34	00								
	3.0		1	8647	1_															
	١																			

APPROVUIX 3

VALUES OF B AS A FUNCTION OF p_m AND Δ

(Compiled by M.S. Gorokhov)

2 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.8 1.096 1.161 1.229 1.299 1.372 1.448 1.529 1.557 1.702 1.795 1.8 1.122 1.189 1.258 1.330 1.405 1.483 1.565 1.651 1.742 1.837 1.9 1.122 1.189 1.258 1.361 1.440 1.520 1.604 1.692 1.784 1.881 1.9 1.049 1.113 1.179 1.248 1.321 1.377 1.476 1.558 1.644 1.734 1.829 1.928 2.03 1.373 1.476 1.558 1.644 1.734 1.829 1.928 2.03 1.373 1.373 1.375 1.373 1.373 1.373 1.373 1.374 1.	30 0.82	0.84
1.071 1.134 1.200 1.270 1.342 1.417 1.495 1.557 1.564 1.775 1.8 1.096 1.161 1.229 1.299 1.372 1.448 1.529 1.514 1.702 1.795 1.8 1.122 1.189 1.258 1.330 1.405 1.683 1.565 1.651 1.742 1.837 1.9 1.122 1.189 1.258 1.363 1.405 1.694 1.698 1.784 1.881 1.9		
1.022 1.085 1.150 1.217 1.288 1.367 1.401 1.598 1.644 1.734 1.829 1.928 2.12 1.049 1.113 1.179 1.248 1.321 1.397 1.476 1.598 1.644 1.734 1.827 1.927 1.921 2.011 2.121 1.121 1.122 1.212 1.222 1.3356 1.433 1.514 1.598 1.687 1.760 1.877 1.971 2.031 2.1 1.107 1.172 1.243 1.317 1.393 1.472 1.555 1.641 1.732 1.827 1.927 2.031 2.1 1.107 1.172 1.243 1.317 1.393 1.472 1.555 1.641 1.732 1.827 1.927 2.037 2.147 2.1 1.107 1.138 1.208 1.231 1.397 1.395 1.432 1.514 1.599 1.887 1.990 2.087 2.117 2.1 1.001 1.138 1.208 1.281 1.357 1.377 1.520 1.665 1.645 1.736 1.832 1.932 2.037 2.147 2.1 1.005 1.175 1.247 1.322 1.401 1.483 1.508 1.657 1.747 1.855 1.465 2.052 2.169 2.279 2.338 2.279 2.112 1.105 1.175 1.225 1.301 1.381 1.465 1.447 1.531 1.694 1.711 1.800 1.9.6 2.010 2.119 2.239 2.338 2.279 2.112 1.107 1.151 1.225 1.301 1.381 1.465 1.551 1.660 1.734 1.734 1.302 1.90. 2.002 2.116 2.209 2.390 2.518 2.12 1.001 1.381 1.208 1.301 1.381 1.301 1.901 1.701 1.870 1.979 1.901 2.002 2.116 2.201 2.352 2.478 2.611 2.121 1.195 1.225 1.201 1.381 1.465 1.551 1.660 1.734 1.739 1.901 2.002 2.116 2.231 2.352 2.478 2.621 2.1001 1.381 1.30	183 2.0901 132 2.142 185 2.197 140 2.255 1 99 2.317 1262 2.383 1330 2.455 1401 2.529 1478 2.611 1562 2.699 1652 2.794 1750	2.202 2.257 2.315 2.376 2.441 2.511 2.585 2.665 2.751

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

AFPENDIX 3

VALUES OF B AS A FUNCTION OF $P_{\underline{m}}$ AND Δ

(Compiled by M.S. Gorokhov)

	44	0.46	0.48	0.50	0.52	0.54	U .5 6	∪.58	U.60	ن .6 2	64	∂. ∞	8د. ن	J.70	7€	74	.76	73	J.80	82	0.84
857 344 544 64 64 64 64	1.020 1.064 1.113 1.225 1.435 1.435 1.522 1.74	1.0% 1.13% 3.1.2 5.1.53 5.1.62 7.1.73 3.1.66	1.041 1.079 1.168 5 1.219 6 1.39 6 1.39 8 1.54 3 1.63 8 1.73 1 1.85 2 1.98	1.11 1.15 1.24 5 1.29 9 1.35 3 1.41 3 1.54 4 1.55 4 1.54 6 1.84 9 1.35 1.22	1.087 1.107 1.1.12 1.1.12 1.1.22 5.1.27 3.1.32 1.1.32 1.1.32 1.1.32 1.1.43 4.1.50 88 1.57 99 1.65 44 1.74 99 1.84 99 1.84 99 1.84 99 1.84 99 1.84 99 1.84 99 1.84 99 1.84 99 1.84 99 1.84 99 1.84	7 1.103 5 1.138 5 1.135 5 1.21 2 1.25 2 1.25 2 1.40 7 1.46 7 1.59 7 1.67 8 1.85 54 2.96 2.24 44 2.34	1.022 1.049 1.077 1.107 1.118 1.172 3 1.248 5 1.243 3 1.55 7 1.62 7 1.62 7 1.62 4 1.70 6 2.2 6 2.3 6 2.3 1 2.5 1 2.5	1.085 1.113 1.142 1.24 1.24 1.323 8 1.368 8 1.368 1.364 1.71 1.74 5 1.88 6 1.71 2.28 1.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71	1.071 1.096 1.150 1.150 1.1210 1.240 1.243 7 1.279 2 1.401 5 1.447 5 1.557 9 1.67 9 1.	1.134 1.161 1.189 1.248 1.248 1.354 1.354 1.354 1.485 7.1.58 7.1.58 1.1.64 9.1.	1.200 1.229 1.258 1.321 1.356 1.393 1.393 1.393 1.506 1.570 1.570 1.570 1.570 2.125 2.233 1.405	1.270 1.399 1.363 1.363 1.37 1.473 1.514 1.558 1.057 1.705 1	1.342 1.37c 1.405 1.476 1.514 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.805 1.805 1.805 1.805 1.805 1.805 1.805 1.405 1.805	1.417 1.4483 11.556 1.556 1.556 1.73	1.495 1.529 1.505 1.505 1.505 1.505 1.735	1.557 1.614 1.651 1.652 1.734 1.730 1.	1.604 1.702 1.702 1.784 1.829 1.827 1.327	755 1.837 1.881 1.928 1.979 231 2127 2127 2127 2135 2435 2	1.850 1.852 1.936 1.983 2.085 2.085 2.140 2.252 2.363 2.441 8.4.478 2.450 2.450 2.450 2.450 2.450 2.450 2.450 2.450	1.990 1.994 2.041 2.090 2.142 2.197 2.255 2.337 2.4383 5.2.565 2.456 3.4.666 3.4.666 4.796	2.102 2.151 2.202 2.257 2.315 2.376

APPENDIX 4

VALUES OF Λ_{K} AS A FUNCTION OF ${\mathfrak f}_{n}$ AND ${\mathscr L}$

(Compiled by M.S. Gorokhow)

بالميدة ت	0.46	0.48	0.50	J.52	0.54	U.56	ଧ .5 ୫	د.دی	∪ . ‱	د.نډ	i.u	.uč	J.70	€.7a	C.74	J.76	್ ಆ	ంట	0.82	84
													,	1 22	1 (51	1.558	1.744	1.944	∠.133	2.376
	'			,																
						0.789	0.850	0.928	1.005	1.091	1-2/3	1.350	1.484	1.72	1.14	32	2.199	2.151	2.74	3.10
						0.660	434	115	1.103	1.201	1.310	134	50	1.745	4.905		. 4.34	2.626	3.633	3.63
						0.900	.977	1	1.160	1.200	1.365	1.715	1.00%	2034	2.027		2.7	3. 54	3.450	3.90
						0.944	1.027	1.140	1 203	/وربا 16.ر. ۱۱	1.554	1.71	3-8	1 3	بووران		. 2. 31	3.3.7	3.781	4.34
				0.833	0.910	1.046	1.144	1.251	1.372	1.500	1.65	1.327	3 . ند ع	1		825	3.13	્∋.6∠4	152	4.80
					0.450	1.040			1								1 2 -0	تعبد د ا	1, 64	34
				1.923	1.010	1.105	1.210	1.3.7	1.458	1.00	1.773	1.3	350	المحاد والم		3.30	3.83	4.407	4.114	5.4
				0.976	1.069	1.173	1.25	1.446	1.572	1.85	2.154	ر د د د د	14.500	85	آ∞.وَ	. 3.5.	25	4.718	5.747	t."
		0.857	0.9.3	1.035	11.130	1 335	1-73	1.627	1.500	1.	2.42	0.5	4.8.5	3.1/1	. 3.5-	12.	3 4.054	5.5 38	6.541	7.7€
		0 044	1.069	11.178	ા.29€	11.433	11.585	7.400											1	
				!		1						· .	5 34			اشر ا	13	7.255		
0.845	0.935	1.034	1.1.3	11.263	1.396	11.540	11.742	2.066	2.337	2.62		. 1.373	1.851			7 1. 15	e 7.00€			
903	1.001	1.109	1.228	1.477	1.0.4	1.834	2.05	12.24	5 4	4.4.2	3.34	3.75	30				<u>.</u>			
3.969	1.166	1.299	1.47	1.613	1.802	2.019	2.265	7 2 . 53	4.887	3.283	750	3 3	. 15 . (5 .16 . 8 2	ر مند مند	5 6.5 5		-			
1.135	1.200	1.417	11.584	/ /4	, X.77X		,													
			1				95	3 24	3.7.	5 4.25		3.	. l t :							
1.239	11.368	1.558	1.750	10.20	2.502	2 2 648	3.25	3.74	34	. 5.03	اپوسوا	3 6.7	5 !							
1.304	11.714	1.942	2.204	2.50	2.86	3.282	3.78	4.38	5.11	6.00	.11	9 5.518	8							
1.702	1.935	2.20	2.515	2.88	3.316	5 3.837	7 4.40	7 5.23a	5.10	ىغۇرى 10-يىر	L 5									
1.936	2.213	2.53	2.92	5 3.38	2 3.92	5 4.57	17.35	0.59.			•									
	^ E-70	ാവ വ	12 /66	4 - 051	4.75	5 5.61	6.69													
2.236	2.069	3 587	7 1.216	5 4.986	5.93	7.110)												1	
	0.845 1.903 369 1.135 1.364 1.515 1.702	0.845 0.935 .903 1.001 0.909 1.078 1.046 1.166 1.135 1.200 1.239 1.368 1.515 1.714 1.702 1.936 1.936 2.213	0.857 0.909 0.968 0.855 0.935 1.034 0.903 1.001 1.109 0.969 1.078 1.197 1.045 1.16c 1.299 1.135 1.206 1.417 1.239 1.388 1.558 1.364 1.536 1.731 1.515 1.714 1.942 1.702 1.935 2.203 1.936 2.213 2.535	0.857 0.9.3 0.909 1.002 0.968 1.009 0.968 1.009 0.969 1.078 1.197 1.328 1.040 1.100 1.299 1.47 1.135 1.206 1.417 1.584 1.364 1.536 1.731 1.952 1.515 1.714 1.942 2.20 1.702 1.935 2.203 2.512 1.936 2.213 2.539 2.985	0.833 0.876 0.857 0.9-3 0.909 1.002 1.102 0.968 1.009 1.102 1.178 0.903 1.001 1.109 1.228 1.301 0.903 1.001 1.109 1.228 1.301 1.045 1.166 1.299 1.477 1.513 1.135 1.206 1.417 1.584 1.774 1.239 1.388 1.558 1.750 1.965 1.364 1.536 1.731 1.953 2.206 1.515 1.714 1.942 2.204 2.5.5 1.702 1.935 2.203 2.515 2.886 1.936 2.213 2.539 2.925 3.383	0.833 0.910 0.876 058 0.857 0.923 1.016 0.976 1.059 1.032 1.102 1.102 1.112 0.968 1.069 1.178 1.28 0.903 1.001 1.109 1.228 1.361 1.511 0.969 1.978 1.197 1.329 1.477 1.613 1.802 1.135 1.266 1.417 1.584 1.774 1.991 1.239 1.368 1.556 1.750 1.969 2.219 1.364 1.536 1.731 1.953 2.208 2.506 1.702 1.935 2.203 2.515 2.882 3.316 1.936 2.213 2.599 2.2515 2.882 3.316 1.936 2.213 2.599 2.255 3.382 3.392	0.789 0.823 0.660 0.900 0.900 0.900 0.900 0.900 0.900 0.901 0.876 058 1.046 0.909 1.002 1.102 1.212 1.335 0.968 1.069 1.178 1.228 1.361 1.511 1.679 0.903 1.001 1.109 1.228 1.361 1.511 1.679 0.903 1.001 1.109 1.329 1.361 1.511 1.679 0.903 1.001 1.109 1.329 1.361 1.511 1.679 0.903 1.001 1.109 1.329 1.477 1.644 1.834 1.239 1.368 1.598 1.750 1.969 2.219 2.341 1.351 1.266 1.731 1.953 2.208 2.502 2.848 1.515 1.714 1.942 2.204 2.507 2.862 3.868 1.702 1.935 2.203 2.515 2.882 3.316 3.837 1.936 2.213 2.539 2.925 3.382 3.325 4.578	0.857 0.9.3 1.034 1.102 1.021 1.361 1.511 1.679 1.60 1.109 1.178 1.291 1.045 1.171 1.584 1.774 1.991 2.244 2.556 1.364 1.536 1.731 1.958 1.774 1.991 2.244 2.556 1.364 1.536 1.731 1.958 1.364 1.536 1.731 1.958 1.744 1.915 1.288 1.364 1.516 1.299 1.477 1.580 1.774 1.991 2.244 2.556 1.364 1.536 1.731 1.958 1.364 1.536 1.731 1.958 1.774 1.991 2.244 2.556 1.364 1.536 1.731 1.958 1.774 1.991 2.244 2.556 1.364 1.536 1.731 1.958 1.774 1.991 2.244 2.556 1.364 1.536 1.731 1.958 1.774 1.991 2.244 2.556 1.364 1.536 1.731 1.958 1.774 1.991 2.244 2.556 1.364 1.536 1.731 1.958 1.750 1.969 2.219 2.511 2.850 1.751 1.714 1.922 2.004 2.576 2.862 3.282 3.788 1.751 1.702 1.935 2.203 2.515 2.882 3.316 3.837 4.466 1.796 2.213 2.539 2.925 3.382 3.925 4.579 5.384	0.882 0.896 0.789 0.896 0.893 0.893 0.893 0.902 0.660 0.904 0.977 1.55 0.904 1.027 1.15 0.906 0.903 1.004 1.105 1.105 1.106 1.106 1.106 1.107 1.106 0.903 1.002 1.102 1.102 1.102 1.121 1.235 1.361 1.241 1.335 1.731 1.627 0.968 1.069 1.178 1.242 1.433 1.585 1.756 0.903 1.001 1.109 1.288 1.361 1.511 1.677 1.652 1.646 1.651 1.678 1.677 1.613 1.802 2.046 2.066 1.078 1.351 1.266 1.477 1.613 1.802 2.046 2.267 2.553 1.364 1.556 1.731 1.953 2.208 2.252 2.264 2.557 2.862 3.282 3.782 4.383 1.515 1.714 1.993 2.204 2.557 2.862 3.282 3.782 4.383 1.515 1.714 1.993 2.204 2.557 2.862 3.282 3.782 4.383 1.793 1.935 2.203 2.525 3.362 3.837 4.365 1.936 2.213 2.539 2.925 3.382 3.925 4.579 5.366 6.671 2.042	0.882 0.887 0.854 0.923 0.893 0.890 0.928 1.005 0.823 0.893 0.909 1.054 0.660 0.934 1.15 1.105 0.904 1.027 1.1c 1.23 0.833 0.910 0.993 1.084 1.183 1.293 0.876 0.958 1.046 1.144 1.251 1.377 0.909 1.002 1.135 1.136 1.249 1.375 1.515 1.772 0.968 1.099 1.178 1.228 1.335 1.373 1.527 1.500 0.968 1.099 1.178 1.228 1.335 1.73 1.527 1.500 0.968 1.099 1.178 1.228 1.335 1.73 1.527 1.500 0.968 1.099 1.178 1.228 1.335 1.235 1.755 1.555 0.969 1.078 1.197 1.584 1.774 1.912 2.242 2.526 2.564 2.375 1.239 1.368 1.558 1.750 1.969 2.219 2.312 2.327 2.553 2.867 1.351 1.364 1.536 1.731 1.953 2.208 2.502 2.648 3.256 3.744 3.326 1.239 1.368 1.558 1.750 1.969 2.219 2.511 2.851 3.25. 3.745 1.364 1.536 1.731 1.953 2.208 2.502 2.648 3.256 3.744 3.345 1.791 1.935 2.203 2.515 2.882 3.316 3.837 4.357 5.232 6.167 1.936 2.213 2.539 2.925 3.382 3.925 4.579 5.386 6.395 7.55	0.882 0.887 0.953 1.000 0.882 0.887 0.953 1.000 0.893 0.893 0.908 1.005 1.91 0.800 0.931 1.15 1.105 1.201 0.900 0.977 1.00. 1.106 1.201 0.904 1.027 1.10. 1.106 1.201 0.904 1.027 1.10. 1.106 1.201 0.904 1.027 1.10. 1.106 1.201 0.905 0.993 1.004 1.103 1.293 1.316 0.909 1.005 1.106 1.105 1.211 1.37 1.456 1.559 1.750 0.909 1.002 1.102 1.212 1.335 1.273 1.627 1.600 1.660 0.908 1.009 1.178 1.298 1.335 1.73 1.627 1.600 1.660 0.908 1.001 1.109 1.228 1.301 1.511 1.679 1.60 2.006 2.377 2.652 0.909 1.001 1.109 1.228 1.301 1.511 1.679 1.60 2.006 2.377 2.652 0.909 1.001 1.109 1.228 1.301 1.511 1.679 1.60 2.006 2.377 2.653 2.601 0.909 1.001 1.109 1.228 1.301 1.511 1.679 1.60 2.006 2.377 2.653 2.601 0.909 1.001 1.109 1.228 1.301 1.511 1.679 1.60 2.006 2.377 2.653 2.601 0.909 1.001 1.109 1.228 1.301 1.511 1.679 1.60 2.006 2.377 2.653 2.601 0.909 1.001 1.109 1.228 1.301 1.511 1.679 1.60 2.006 2.377 2.653 2.601 0.909 1.001 1.109 1.228 1.301 2.511 2.520 2.601 3.300 3.731 0.903 1.001 1.109 1.228 1.301 2.511 2.520 2.601 3.250 3.731 0.903 1.001 1.109 1.228 1.301 3.802 2.119 2.207 2.553 2.887 3.283 0.903 1.001 1.109 1.228 1.301 3.802 2.119 2.207 2.553 2.887 3.283 0.903 1.001 1.109 1.228 1.301 3.802 2.119 2.207 2.553 2.887 3.283 0.903 1.201 1.109 1.228 1.301 3.802 2.119 2.207 2.553 2.887 3.283 0.903 1.201 1.109 1.228 1.301 3.802 2.119 2.207 2.552 2.601 3.200 3.731 0.903 1.203 1.205 1.205 2.208 2.502 3.802 3.803 3.250 3.701 3.300 3.731 0.903 2.203 2.503 2.505 2.802 3.303 3.807 4.307 5.202 2.107 7.321 0.905 2.203 2.505 2.802 3.306 3.807 4.007 5.202 2.107 7.321 0.905 2.203 2.505 3.302 3.925 4.579 5.386 6.396 7.055 7.201	0.882 0.887 0.959 1.039 0.882 0.887 0.959 1.039 0.854 0.923 1.000 1.85 0.823 0.893 0.928 1.005 1.941 1.183 0.823 0.893 0.904 1.054 1.143 1.243 0.906 0.934 1.015 1.105 1.106 1.206 1.363 0.904 1.027 1.12 1.23 1.337 1.664 0.833 0.910 0.993 1.084 1.183 1.293 1.416 1.554 0.876 0.958 1.045 1.142 1.251 1.372 1.506 1.363 0.909 1.002 1.102 1.102 1.105 1.210 1.37 1.458 1.606 1.700 0.909 1.002 1.102 1.121 1.335 1.273 1.627 1.659 1.700 1.43 0.908 1.009 1.178 1.298 1.433 1.585 1.756 1.551 1.772 1.655 2.044 0.909 1.001 1.109 1.228 1.361 1.511 1.679 1.60 2.066 2.377 2.07 2.326 0.903 1.001 1.109 1.228 1.361 1.511 1.679 1.60 2.066 2.377 2.07 2.326 0.904 1.027 1.103 1.802 2.019 2.207 2.53 2.887 3.283 3.765 1.206 1.417 1.584 1.774 1.991 2.244 2.552 2.264 3.260 3.731 2.267 1.351 1.206 1.417 1.584 1.774 1.991 2.244 2.552 2.264 3.260 3.731 2.267 1.364 1.596 1.731 1.953 2.208 2.502 2.848 3.250 3.741 2.326 3.251 2.306 2.219 2.221 2.532 2.267 2.532 3.867 3.283 5.752 1.364 1.596 1.731 1.953 2.208 2.502 2.848 3.250 3.741 2.326 3.603 3.731 2.267 1.393 2.203 2.532 3.362 3.282 3.782 4.383 5.112 0.006 1.77 3.21 1.935 2.203 2.515 2.882 3.382 3.887 4.207 5.232 6.167 7.321 1.935 2.203 2.539 2.925 3.382 3.925 4.579 5.386 6.395 7.655 7.205	0.882 0.887 (0.959 1.039 1.126 0.854 0.959 1.039 1.126 0.854 0.923 1.000 1.85 1.177 0.890 [0.963 1.043 1.133 1.232 0.893 0.893 0.893 0.893 0.894 1.054 1.131 1.232 1.354 1.355 0.906 0.907 1.006 1.006 1.365 1.363 1.515 0.906 0.907 1.006 1.306 1.303 1.515 0.906 1.009 1.004 1.123 1.231 1.361 1.352 0.906 1.009 1.004 1.124 1.251 1.377 1.506 1.657 1.327 0.876 0.958 1.005 1.105 1.210 1.377 1.506 1.657 1.327 0.903 1.001 1.002 1.102 1.102 1.105 1.210 1.377 1.506 1.657 1.327 0.908 1.009 1.002 1.102 1.121 1.335 1.237 1.627 1.600 1.009 1.009 1.009 1.178 1.208 1.433 1.585 1.750 1.515 1.072 1.85. 2.054 0.968 1.009 1.178 1.208 1.433 1.585 1.750 1.515 1.072 1.85. 2.054 0.968 1.009 1.178 1.208 1.433 1.585 1.750 1.515 1.072 1.85. 2.054 0.968 1.009 1.178 1.208 1.433 1.585 1.750 1.515 1.702 1.303 2.22 0.208 1.001 1.109 1.228 1.361 1.511 1.609 1.60 2.066 2.337 2.62 0.22 0.208 1.001 1.109 1.228 1.361 1.511 1.609 1.60 2.066 2.337 2.62 0.22 2.332 2.770 1.206 1.209 1.477 1.613 1.802 2.019 2.207 2.553 2.887 3.283 3.750 1.32 1.208 1.417 1.584 1.774 1.991 2.244 2.520 2.004 3.203 3.731 1.005 1.308 1.515 1.208 1.417 1.584 1.774 1.991 2.244 2.520 2.004 3.503 3.731 1.005 1.791 1.953 2.208 2.502 2.608 3.280 3.731 1.005 1.791 1.953 2.208 2.502 2.608 3.280 3.731 1.005 1.791 1.993 2.204 2.507 2.862 3.282 3.782 4.383 5.112 6.006 1.100 2.511 1.935 2.203 2.515 2.882 3.362 3.837 4.007 5.232 6.167 7.321 1.935 2.203 2.539 2.925 3.382 3.925 4.579 3.386 6.395 7.655 1.205	0.882 0.887 0.923 1.000 1.86 1.177 1.279 0.890 [0.959 1.039] 1.126 1.228 0.890 [0.953 1.003 1.03] 1.133 1.232 1.341 0.823 0.893 0.909 1.054 1.143 1.243 1.356 1.884 0.900 0.907 1.56, 1.160 1.206 1.363 1.515 1.094 0.900 0.907 1.56, 1.160 1.206 1.363 1.515 1.565 0.904 1.007 1.160 1.206 1.363 1.515 1.565 0.904 1.007 1.160 1.206 1.363 1.515 1.500 0.904 1.007 1.160 1.206 1.363 1.515 1.004 1.105 1.106 1.206 1.377 1.406 1.504 1.771 1.508 0.904 1.007 1.160 1.207 1.160 1.504 1.771 1.508 0.909 1.008 1.009 1.178 1.244 1.375 1.515 1.572 1.555 1.054 1.414 1.556 0.909 1.008 1.102 1.102 1.212 1.335 1.356 1.572 1.555 1.178 1.35 1.565 0.968 1.009 1.178 1.248 1.433 1.585 1.756 1.55 1.772 1.555 1.178 1.365 0.968 1.009 1.178 1.248 1.433 1.585 1.756 1.55 1.178 1.373 1.585 1.773 1.515 1.007 1.509 1.509 1.509 1.772 1.555 1.555 1.756 1.555 1.756 1.555 1.756 1.555 1.756 1.555 1.756 1.555 1.756 1.377 1.358 1.208 1.417 1.504 1.509 1.208 1.209 1.208 1.208 1.208 1.208 1.208 1.209 1.208 1.209 1.208 1.209 1.208 1.209 1	0.882 0.887 (0.959 1.039 1.126 1.22 1.330 0.896 (0.959 1.039 1.126 1.22 1.330 0.896 (0.931 1.000 185 1.177 1779 1573 0.896 (0.953 1.003 1331 1.232 1.331 1000 0.823 0.893 0.893 0.893 0.893 1.005 191 1.187 164 1479 1546 1570 0.823 0.893 0893 1.005 191 1.187 164 1479 1548 1005 0.823 0.893 0893 1005 101 1.127 164 1324 1556 1584 1000 0906 0977 1164 1005 1201 1316 1324 1569 1766 0906 1027 1126 1233 1337 164 177 1764 1634 0976 1065 1045 1126 1127 1126 123 1371 1500 1554 171 1988 103 1311 1327 1328 101 1500	0.882 0.887 0.959 1.039 1.126 1.222 1.330 1.651 0.854 0.923 1.000 1.85 1.177 1.279 1.373 1.523 0.895 0.928 1.005 1.043 1.133 1.222 1.341 1.66 1.053 0.823 0.893 0.994 1.095 1.094 1.133 1.232 1.341 1.66 1.053 0.823 0.893 0.994 1.027 1.161 1.243 1.356 1.284 1.022 1.064 0.900 0.977 1.661 1.165 1.201 1.316 1.324 1.079 1.766 1.065 2.176 0.833 0.910 0.933 1.034 1.271 1.161 1.251 1.377 1.464 1.071 1.766 1.065 2.176 0.833 0.910 0.933 1.034 1.123 1.239 1.166 1.554 1.77 1.888 1.033 1.336 0.866 0.958 1.046 1.144 1.251 1.377 1.458 1.666 1.773 1.454 1.677 1.768 1.073 1.337 1.464 1.771 1.669 1.173 1.222 1.355 1.551 1.072 1.355 1.054 1.37 1.356 1.377 1.358 1.050 1.377 1.358	0.882 0.887 0.959 1.039 1.120 1.22 1.330 1.051 1.558 0.854 0.923 1.000 1.85 1.177 1.779 1.33 1.523 1.071 0.896 0.893 0.893 0.893 1.005 1.033 1.133 1.232 1.331 1.000 1.03 1.133 0.893 0.893 0.893 0.893 0.893 1.005 1.001 1.00	0.882 0.887	0.882 0.887 0.959 1.039 1.126 1.251 1.358 1.761 1.358 1.762 1.351 1.258 1.762 1.375 1.365 1.365 1.376 1.375 1.365 1.366 1.376 1.376 1.375 1.365 1.376	1.239 1.388 1.558 1.750 1.969 2.219 2.511 2.851 3.25 3.725 4.27 4.900 2.534 2.865 1.364 1.536 1.731 1.953 2.268 2.562 3.263 3.725 4.27 4.900 2.534 2.865 3.26 3.26 3.26 3.26 3.26 3.26 3.26 3.26

APPENDIA .

VALUES OF A AS A PARCELLAR OF F AND A (Compilled by M.S. Gorokhow)

													,	30	. 00.04,	<i>'</i>			
!	0.4	ο ο.	12	U.44	C.46	0.48	6.50	52	5	4 6.50		be .		·	tu4 (, e	بر ب ر	ટ ુ.7	 io:;	`~
4200 4100)											೧.ಕನ	32 e	-71: -4:	59 1 3	011 102			
4000 3900 3800										6.789	· 35		K ic. 4	63 1.0.	3 1.13	$\frac{3}{3} 1.232$	7 1.27 2 1.34	9 1.39 1 1.40	35.
3700 3600													• • •		.) 1.24	3 1.356	3 . 48.	4 1.6%	7 12.00
3500 3400										64.4				~ 4.41.	رور . ب ^ب	0 1.432 3 1.515 4 1.527	1.56/	(1 P3/	(0 00
3300 3200										eug 12046	1.00	1.18	3 37	3	1.656	. 1.715 5 1.327	1.769 1.688 2.623	9,1,959 8,2,093	2.10 2.33
3100 3000					,	247		- 423	1	1.105	1			4 :	h i ma		1		
2900 2800	1				(: •≈? / : •≒i,i4 : •⇔68 ∶	. • • • • • • • • • • • • • • • • • • •	1.035	مو د د د	1.44	1.37	1.414	17	. 15		. 6.11.	55€	< .03 -	2. 11.
2 7 00 2600			5.0	845 υ. 903 :	•435 1	34	.13		1.3 %	1.546	· · · · ·		1.1.		- • • • • •		3. " <u>*</u> *	3.511	- 1
2500 2400 2300	0.841	(622				• • • •				i. 83							3.657		1.120
. 2200	0.044	1 1 4					•			4		ân.	<i>3. •</i> •	• • • • • •			- C)	. 5.3	t
2000	1.076 1.186	1.211	1.3	15 1.	536 1. 714 1.	.556 1 .731 1 .942 2	.750 1 .453 2 .204 2	. 2 8 5. 2 7 2	ء (الجور محمود المحمد	511 - 548 :	1.55. 1.651	2005 20741	1.7.5 4.3.4			: . ±34	t.8-5	٠١.	
1800																518			
1700 1600	1.693	1.944	2.2	36 2 .	5 0 0	0.04 - 3	. 0	~			. 1	ي. و . د. ع	•	(1)					
							-	/	- / /	10									

SIA

TABLES OF FUNCTION $\int\limits_0^{T} z^{B-B} 1_{d;i}$

				$\frac{B}{B_1}$ - 5	5		• *				or and the same of	T
		0.004	0.006	0.008	0.010	υ .υ2 υ	0.040	0.060	0.080	0.100	0.150	0.200
168	149 156 7 156 1 16 1 16 3 16 3 16 4 16 5 16 6 16 7 17 8 17	148 153 157 156 166 177 177 177 177 177 177 177 177 17	0 0.020 38 69 83 95 0.106 116 125 133 140 146 151 156 160 164 3 167 5 169 5 171 173 2 175 4 178 5 186 6 186	0 0.020 38 55 70 84 97 0.108 118 127 135 142 148 154 163 167 175 175 175 186 186 186 186 186 186 186 186 186 186	17 17 17 17 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	39 56 72 87 114 125 137 144 152 166 166 161 177 178 189 189 189 198 198 198 198 19	132 143 153 162 171 5 171 2 188 2 199 1 1 19 5 20 8 20 8 20 1 21 144 21 246 21 248 21 266 21 27 20 28 20 29 20 20 22 20 3 2 2 20 04 2 2	0, 108 123 136 148 160 148 160 179 1188 22 209 2 214 2 209 2 213 2 22 2 24 2 23 2 24 2 25 2 24 2 26 2 27	212 219 225 230 3 235 7 241 1 244 4 244 6 250 8 255 10 25 13 25 44 26 8 25 14 26 8 25 12 25	243 243 253 26 26 26 7 26 27 26 27 26 27 26 27 27 27	256 261 262 4 27 28 28 1 28 4 29 9 29 13 30 74 3	1 0.020 40 59 78 97 10.115 148 164 179 193 206 218 230 241 251 253 260 5 267 3 28 5 29 4 30 28 5 29 4 30 28 5 31 8 30

TABLES OF FUNCTION ZB B1 div

B - 5

		,, <u></u>		,			0.010	0.020	0.040	0.000
7 0	0.0005	0.001	0.002	0.004	0.006			1 11	0.020	0 0.0 2 0
0.480 10 0.500 10 0.520 1 0.540 1 0.560 1	136 141 141 145 17 145 157 157 157 157 157 157 160 160 161 162 163 164 165 165 165 165 166 166 166 166 166	154 155 157 169 161 163 164 165 166 166 166 166 166 166 166 166	149 149 150 150 177 160 161 161 163 163 164 165 166 167 177 177 177 177	148 153 157 157 161 162 164 166 177 177 178 177 177 177 177 177 177 177	10: 16: 16: 16: 16: 16: 16: 16: 16: 16: 16:	0,020 38 55 56 64 67 61 118 125 142 148 148 148 158 179 179 177 177 177 177 177 177	3 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	39 56 72 87 101 114 125 4 135 4 135 4 155 16 17 17 18 18 18 18 18 18 18 18 18 18	39 57 74 90 119 132 143 153 153 155 20 17 19 20 17 19 20 20 20 20 20 20 20 20 20 20 20 20 20	19 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

SIAI

						$\frac{B}{B_1}$ - ϵ										7	200
-			1		T			- 1	.020	0.040	0.0	60	0.080	0.100	0.150	Ŭ. →	200
5	0.001	0.002	0.004	0.006	5 0	800.0	0.010		.020			÷		0	0 0.020	0	0 .020
٦				+			U	1	U	0	0.0		0.020	0.0 2 0 39	40	,	40
t			o	U	- 1	0	0.02	, \ u	.020	0.020	.,	39	39	58	59	, ,	59
- 1	0	0	0.019	0.01	٠,١	0.020 38	3	4	38	39 57		58	58	76	77	7	78
9	0.019	0.019	37		7		5		55	74		75	76	93	9 :	5	96
36	36	36	53	1 5	53	54	6		71			91	92	9.3	_		
51	51	51	67	\ €	57	68	8		85	89		• •			0.11	2 (1.113
	64	65	79	1 8	30	81		_				106	0.108	0.109	12	_	130
54	76	77	19	1				4	98	0.103	0.	120	122	124	14		146
75					91	92			0.109	116		132	135	138	15		161
	86	: 88	90	' 1		0.102	0.19	•	119	127			147	151	17		815
5.5	95	97	99		10	111	1.1		128	137		143	158	163	1 /	· ·	8.7
94		0.10	0.107	1	17	119		2.1	136	146		1.53	• • •				188
02	0.103	113	11:		23	126	1:	28					168	173			200
09	110	11		1 1	23				143	1.54		162	177	183	19		211
15	110				29	132		34	149	162		171	185	192		03	222
		12	3 12		134	137		39	154	168	ţ	178	192			12	232
20	121	12	7 13	•		141	1	43	158	173	3	184	199		7 2	21	
24	125				138	145		47	162	175		144	• 27 -	-			
27	129				142	148		51	162					2 1		1.51	24:
130	132			1	145	• • •				18	2	1,45	201	•	_H 2	36	25
133	135	, 1-	•			15	١	54	165			199	205		3 2	42	
•		, 13	1.	14	147	15		1 56	168			203	213	·′		247	26
135	137		, ,	16	149	15	5	158	170			206		'		2 52	26
137		1		48	151	15		159	172			209	. 22	1 20	•		
139			• •	49	153	15		161	174	• • •	•			a 23	. 4	2.56	2.7
140			** .	50	154	13	0			s 15	145	213	22		, -1	260	2
141		2 1	45 , ¹			15	.u	162	17	·' .)7 Э7	21:	22	**		263	23
1 4 1				51	155			163	170			21.	5 22		• • •	266	2
142	, 14		4 0 ,	52	1 56	16		164	17	•	9 M 9 M	210	$_{i_1}$ 2.	,	72	269	2
		. 4	1	52	1 56	16		164	17			21		31 2	43		
14	•	.5	40	53	157	16		165	17	9 2	Ú)	- 1		_		271	2
14	•	15	. 40	53	157	10) 1					21	8 2		4.5	273	7
14	· .		48					165	17		0.1	21			46	275	2
14	4	1		1 54	158		62	165	18	"	02	22			47		-
	. 1.		143		158	1	62	166	1 t		02	22		.35	245	276	
14		AR	142	154	158	1	62	166	1 8		202		• • •	35 2	49	277	
14	,	A.C	190	154	158	. 1	62	166	,	80	203	22	. 2.		-		
14		4 0	149 150	154	15	8	162	100	•								
1.4	15 1	46 46	150	154		· .	k.										

Market Control of the

В		
В,	-	6

B	0	0.0005	0.001	0.002	0.004	0.006	0.008	0.010	0.020	0.040	0.060	υ.0 80
							0	0	()	U	o	O
0	U	0	U	Ü	0 1	0	0.020	0.020	0.020	0.020	0.020	0.020
0.020	0.019	0.019	0.019	0.019	0.019	0.019	38	38	38	39	39	39
0.040	35	36	36	36	37	37		54	55	57	58	58
0.060	50	51	51	51	53	53	54	69	71	74	75	76
0.080	63	64	64	6.5	67	67	68		85	89	91	92
	74	75	76	77	79	80	81	82	65			
0.100	13	13				!			98	0.103	0.106	0.108
0.100	84	85	86	88	90	91	92	. 94		116	120	122
0.120	93	94	95	97	99	0.101	0.102	0.104	0.109	127	132	135
0.140		0.102	0.103	0.105	0.107	110	111	113	119	137	143	147
0.160	0.101	109	110	112	115	117	119	121	128		153	158
0.180	107		116	118	121	123	126	128	136	146	133	150
0.200	113	115	110	• • • • •							162	168
				123	126	129	132	134	143	154		177
0.220	118	120	121	123	131	134	137	139	149	162	171	
0.240	122	124	125		135	138	141	143	154	168	178	185
0.260	125	127	129	131	138	142	145	147	158	173	184	192
0.280	128	130	132	134		145	148	151	162	178	190	199
U. 300	131	133	135	137	141	140	• • • • •					
0.00						147	151	. 54	16.5	182	1:15	204
0.320	133	135	137	139	144	149	153	56	168	186	199	209
0.340	134	137	139	141	146	151	155	158	170	189	203	213
0.360	136	139	140	143	148		156	1.59		:92	206	217
0.380	137	140	141	144	149	1 53	158	16.	174	194	209	2 2
0.400	138	141	142	145	150	1 54	136	1,,,,	.,,			
0.400	100						159	162	175	196	211	224
0.420	139	142	143	146	151	1.55		163	176	197	213	2 2 0
	139	142	144	147	1.52	1.56	160		177	198	215	22
0.440	140	143	145	148	1 52	1 56	160	164	178	199	216	23
0.460	140	144	145	148	153	1 57	161	164		200	217	23
0.480		144	146	148	153	157	164	160	179		2.1	30
0.500	141	177	140								218	23
		, , , ,	146	149	154	158	162	165	179	201		23
0.520	141	144	146	149	154	158	162	រុសភ	180	2 02	219	23
0.540	141	144		149	154	158	162	166	180	202	220	
0.560	142		146	149	154	158	162	166	180	20 2	220	23
8:588	112	115	146 146	150	154	158	162	166	180	203	221	23

STAT

Company of the second

STAT

В	_	7
В		•

)	0.0005	0.001	0.002	0.004	0.006	0.008	0.010	0.020	0.040	0.060	0.080	0.100	0.150	0.200
	0	0	0	v		· · ·	0	. 0	0	0	U	. 0	: 0	o
,		0.019	0.019	0.019	0.019	0.019	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
19	0.019	36	36	36	37	37	37	38	39	39	39	39	39	40
3 5		50	51	51	52	53	53	5.5	56	57	58	58	58	59
49	49	62	63	υ ₅	66	55	67	70	72	7.4	7.5	76	77	77
01	62		74	76	77	78	79	83	87	90	9.1	93	94	95
71	72	73	14	76	1 "	10		.,,			1	ì		
				0.0	87	89	90	95	0.100	0.104	0.10	0.108	0.110	0.112
80	81	82	84	86 9 4	96	98		10.105	112	117	120	122	126	128
5.5	89	90	92	0.101	0.104	0.106	0.107	114	123	. 21	132	135	140	144
94	95	97	98	107	110	112	114	122	132	138	1.43	147	153	158
99	0.101	0.103	0.104	113	115	118	120	128	.40		1.53	157	166	171
104	106	107	109	113	113	116	1 2 17		1					1
	İ					123	125	134	.47	155	1 + 28	.67	177	183
. 15	110	111	113	117	120	123	129	.39	153	1.12	1 .70	75	187	195
111	113	114	117	121	124		132	143	1.58	16.9	177	.83	196	205
114	116	117	120	124	127	130	135	140	162	.74	183	. 90	204	214
116	118	120	122	126	130	133	135	1.49				544	211	222
118	120	122	124	128	132	135		4 4.5	• • •	• • • •	1	•		
	!	1						2	1+-9	150	.93	201	218	230
119	121	123	126	130	134	137	141	154	. 72	180	1.07	2016	224	237
.20	123	124	127	131	135	.38		155	. 74	. 88	200	210	229	243
121	124	125	128	132	136	140	143	157	.76	191	203	213	233	249
.22	124	126	129	133	137	.41	144	155	.77	193	205	216	237	254
123	125	127	130	134	138	142	140			1.50	2.7		23.	20.
		İ					145	.59	. 79	. 94	1 207	118	241	258
123	126	128	130	135	139	142			180	196	209	220	244	262
124	126		131	135	139	143	140	139 100	180	197	210	222	246	265
124	126	128	131	136	• 140	143	1 46	169	181	198	2.1	223	248	268
124	127	128	131	136	140	143	. 47		182	194	2.2	224	250	270
125	127	129	131	136	140	144	. 47		102	1 2 3		-24	2.50	1 210
	!			1					.82	بوبوء	2.3	225	251	272
125	127	129	132	136	140	144	147	101		199		$\begin{array}{c} 225 \\ 226 \end{array}$	253	274
125	127	129	132	136	140	144	147	161	182		214			274
125	127		132	136	140	144	148	161	182	200	214	227	254	
125	127	129	132	137	140	144	148		183	200		227	254	277
125	127	1		136	140	144	4.42	(462	180	200	21.	228	255	278

В		_
1960	-	-7
н.		-

		1	1	•		1	•		1	T	
y	o	0.0005	0.001	0.002	0.004	! 0.006	0.008	0.010	0.020	0.049	0.060
	 	ł -		•	•	•	Marian Maria Maria	•		-	+
0	0	0	0	0	U		()	1)	') one	0 000	9
0.020	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.020		0.020	0.020
.040	35	35	3ь	36	36	37	37	37	38	39	39
0.060	49	49	50	51	54	52	53	53	5.5	56	57
0.080	61	62	62	63	6.5	tota	66	57	70	72	7.4
100	71	72	73	7.4	76	17	7.8	79	83	87	90
.120	80	81	82	84	86	87	89	90	95	0.100	0.104
.140	88	89	90	92	94	96	98	99	± 9.105	112	117
.160	94	95	97	98	0.101	0.104	11 1190	0.107	114	123	128
.180	99	0.101	0.103	0.104	107	140	112	114	122	132	ı 3 S
.200	0.104	106	107	109	113	115	115	: 29	128	140	. 47
.220	, 108	110	111	113	117	120	. 20	. 21	:34	147	5
.240	111	113	114	117	124	. 24	: 2 .	129	.39	153	1.52
.260	114	116	117	120	124	12.	. 3	132	143	158	. 69
.280	116	118	120	122	126	.B(-	1.50	. 3	. 40.	162	. 74
.300	118	120	122	124	125	132	.3:	.38	149	.00	178
.320	119	121	123	126	.30	134		. 40	.52	169	182
.340	120	123	124	127	131	. 3.		. 4 .	4		
.360	121	124	125	128	13.	4.30	4.4	. 43	.55	174	. 88
.380	122	124	126	129	1.333		. 4 .	4 4	157	A 7 C	19.
. 400	123	125	127	130	134	.38	.41	141	158	177	193
.420	123	126	128	130	135		. 42		. 59	179	. 94
.440	124	126	128	131	135	.39	1.43	146	159	180	196
.460	124	126	128	131	. 30	.40	. 45	. 46	100	180	197
.480	124	127	128	131	136	140	1.4.	4.7	160	181	9.4
.500	125	127	129	134	.30	. 40	. 14	. 47		182	198
.520	125	127	129	132	136	411	1 14	. 4 .	a to i	182	133
. 540	125	127	129	132	136	440	1 14	. 4.7	1.51	182	199
. 560	125	127	129	132	136	14.1	144	148	101	182	200
.580	125	127	129	132	137	1.40	144	145	101	183	2(0)
.600	125	127	129	132	13+	140	. 44	. 48	162	183	200

В	_	ь
В		

			,				·	T			•	•	•	
ð	0.0005	0.001	0.002	0.004	0.006	0.008	0.010	0.020	0.040	• 0,•000	0.980	0.100	0.150	0.200
	•		•						; 0	0	12	13	0	0
0	0	0	О	0	O	0	0.7.4	0.020	0.020	0.020	0.020	0.020	0.020	0.020
0.018	0.019	0.019	0.019	0.019	0.019	0.019	0.019		39	39	39	39	39	40
34	35	35	35	36	36	37	37	38		57	57	58	58	59
48	48	48	49	50	51	52	53	54	56 72	73	7.4	7.5	76	77
59	59	60	61	62	64	6.5	6 6	6.9			594.3	91	93	95
-58	69	70	71	73	7.5	76	7.7	81	S.,	**	:•••	31	33	30
			1	•				92	1 98	0.102	104	0.106	0.109	0.111
7.6	77	78	80	82	84	8.5	8.7		10.109	1:4	1	20	124	127
83	84	85	87	89	92	93	95	0.101		12.	129	132	138	142
5.8	89	90	93	95	98	0.100	0.102	109	119	134		.43	150	
92	94	95	98	0.101	0.103	106	108	11+			. 4 =	1 .65	152	
9.5	98	99	0.102	105	108	110	113	122	. 3.4	7.42			1.02	1
, .		1							140	. 4 .		. 2	172	179
0,99	0.101	102	105		112	114	117	127	. 4			10.9	181	
102	103	105	108	111	115	117	.20	. 3 .	4 M -				. 89	199
104	105	107	110	114	117	120	123	. 23.4	1 11 1			151	195	
105	107	109	111	116	119	122	125	. 140					202	211
107	108	110	113	117	121	124	127	.35	1				2	
		1	i	į					11.5		1	. 90	208	221
108	109	111	114	118	122	126	128	1.40		173			213	227
108	110	112	115	119	123	127	129	142				. 547	217	232
109	111	113	116	120	124	127	130	143	1.53		1.540	200	221	: 237
110	112	113	116	120	124	128	131	144				200	224	241
110	112	114	116	121	125	128	132	145	10.4	, î. +		-111	al al 14	271
			ĺ					. 1.	16.5	180	19.1	2.04	226	244
110	113	114	117	121	125	129	132	40	1114		1 1 1	1,00	228	247
111	113	114	117	122	1 26	129	732		10.5		1.54	206	230	250
111	113	114	. 117	122	126	129	:33	4.40		182	. 94	207	232	252
111	113	114	117	122	, 2e	130	133	440	ititi		1.94			254
111	113	115	118	122	126	130	133	140	ino	183	. :••	208	233	234
							122	147	107	183	4.34 -	209	234	255
111	113	115	118	122	126	130	133	147	107	1.54	197	509	235	25e
	113	115	118	122	126	130	133	147	167	1.54	. 95	210	236	257
111	113	115	118	122	126	130	133		167	154	198	210	236	258
111	113	115	118	122	126	130	133	147	167		198		236	258 259
111	113	115	118	122	126	130	133	147	10.	184	1 50 50	210	231	209
111	, ,,,,	1		1										

 $\frac{B}{B_1} = 8$

									·			1	1
$\overline{}$	8				000	0.004	0.006	0.008	0.010	0.020	0.040	0.060	0.08
B		0	0.0005	0.001	0.002	0.004							0
							0	9	U	0	0	0	6.02
	0	C	0	0	0	0	0.019	0.019	0.019	0.020	0.020	0.020	
	020	0.018	0.019	0.019	0.019	0.019		37	37	38	39	39	3
		34	35	35	35	36	36	5.2	53	54	56	57	5
	.040	48	48	48	49	50	51		u6	69	72	73	7 9
	.060		59	60	61	62	64	0.5	7.7	81	85	88	9
	.080	59	69	70	71	73	7.5	7.6	, ,				
0.	.100	68	69	1 '0	1	,				92	98	0.102	10
l	i			78	80	82	84	8.5	87		0.109	114	. i 1
0.	.120	76	77	85	87	. 89	92	93	95	0.101	119	125	12
0	.140	83	84		93	1	98	0.100	-9.192	109		134	
0	.160	88	89	90		0.101	0.103	10€	108	110	127		
	.180	92	94	95		105	108	110	113	122	134	142	
	.200	96	98	99	0.102	103	100						11
1 0	.200			1			112	114	117	127	140	149	
1 0	.220	0.99	0.101	102	105	108		117	120	131	145	155	
		102	103	105	. 108	111	115	120	123	.34	149	160	
	.240	104	105	107	110	114	117	120	12.	136	152	1.4	
	.260	104	107	109	111	110	119		127	135	155	168	
	.280		108	110	1113	117	121	. 24					
O	.300	107	100	1	1					140	158	174	. 1
		1		111	1 1.4	118		126	128				
1 0	.320	108	109	_	1 115		123	127	, 29	142			
1 0	.340	108	110	1 113	110			127	4311				
1 0	.360	109	111		1 110			1.75	* B *	144			
1 0	.380	110						1.25%	132	145	104		•
	.400	110	112	114	. 1							. 180	, 1
1		1			117	121	125	129	132				
1 ,	.420	110	113	114									-
	.440	111		114	117					1.45			
	3.460	111		114			-				, kúc		
		111			.17							18	3
	3.480	1111			111	122	1.20	1.50					
1 (o.500	1 111							133	14	16	, 18	
1		1	113	115	. 112	1 123					-		4
1 0	0.520	111		•									
1 (0.540	111									•		
- 1	0.560	111		- 1				5 134			•		
	0.580	111	113		-			, 130	n 130	3 14	1 16		•
	0.600	111	11:	3 115	, , , ,								
		į	1	1					•				
		·											

Sanitized Copy Approved for Release 2010/10/29 : CIA-RDP81-01043R001100040001-0

The state of the s

<u>B</u>	_	9	
•••			

						1								. 1
8 3 5 5 5 2 8 2 6 9	0.0005	0.001	0.002	0.004	0.006	0.008	0.010	0.020	0.040	0.060	0.080	0.100	0.150	0.200
١	0.0003	0.000								υ	U	o	o	0
+			_	0	0	0	O	v	0	0.020	0.020	0.020	0.020	0.020
1	0	0	0		0.019	0.019	0.019	0.020	0.020	39	39	39	39	40
. 1	0.018	0.018	0.019	0.019	36	36	36	38	38	1	57	57	58	59
	34	34	35	35	50	51	51	54	55	56	74	74	76	77
	47	47	48	49	. 62	υ3	64	68	70	72	89	90	93	94
	57	58	59	61	72	74	75	79	84	87	89	1 30	1	1
	66	67	69	71	12	' '		1	1	1		0.105	0.108	0.110
1	•	ŀ	i			83	84	89	96	0.100	0.103	118	122	125
١.	73	74	77	79	80	90	91	98	0.100	111	115		135	139
: 1	79	80	83	85	87	95	97	0.105	114	121	126	129	147	
•	84	85	88	90	93		0.102	111	122	129	135	139	158	164
-		89	92	95	98	0.100	100	110	1.28	136	143	148	155	, 104
)	88	92	95	99	0.101	104	106	110					1	175
,	91	3-	1	1			109	120	133	142	1.011	156	167	185
		95	98	0.101	104	107		123	137	148	1.56	163	175	194
2	94	97	0.100	103	107	110	112	126	141	152	161	169	182	
	96	99	102	105	109	112	114	128	144	156	165	174	189	201
ò	97		103	107	110	113	110		140		169	178	195	208
ò	98	0.100	104	108	111	114	117	129	. 40			1		
7	99	101	104	100		1			148	1 + 1	172	181	200	
		1 .	100	109	112	115	118	131			174	184	203	219
8	0.100	102	105		113	116	119	132	149			187	206	
R	101	102	105	110		117	120	132	150	_	178	189	209	227
2 5 5 5 7 8 8 9	101		106	110		117	120	133	151	_	179	190		230
9	101	103	106			118	121	134	152	101				
9	102	103	106	110	1					168	180	191	214	233
,	1	1	1	1	114	118	121	134				192		235
0	102	103	106		1			134						237
ŏ	102		107					134					-	
10	102		107						154					
	102		107						, 154	170	1 1 1 1 1		•	
00	102			111	11:	, ,			1		. , , , , ,	1 193	220	241
90	10.	.	1	1	١		12:	2 13:	, 15.					
	102	104	107			· 1			5 15					- 1
90	102			7 111			· 1	-	5 15			- 1		-
00		- 1		7 111			´ l	-		4 170				
00		• 1	- 1	7 111			- 1			4 17	0 18	4 19	0 22	
00					1 11	5 119	9 12	_ ,	1		;	•		
00	10	2 10	-											

В	_	9	
н			

						1			0.040	0.060	0.080	0.
N T	\top		0.002	0.004	0.006	0.008	0.010	0.020	0.030	· -	10	1
s o	0.0005	0.001	0.002		 	0	U	0.020	0.020	0.020	0.020	10.
6	0	0	0.019	0.019	0.019	0.019	0.019	38	38	56	5	7 \
0.020 0.0	ס ו סי	4 34	35	35 49	50	$\begin{bmatrix} 51 \\ 2 \end{bmatrix}$		68			<u> </u>	
0.060	46 4 56 5	7 58	59	71	1 -	2 74			9			
0.100	83	7	4 7.7		5 8	7 90	j 9	$\frac{1}{7} \frac{98}{0.10}$	5 11	4 12	1 12	35
0.120	78	79 8 84 8	5 81	9	ი ^ყ	8 0.10	0 0.10		•	8 13	36 1	43 50
0.160 0.180 0.200	86		2 9	5 \ 9		14 10	7 10		3 1	37 ì	48 1	56 61
0.200	92		17 10.10	9 1	13 1	$07 \mid 11 \\ 09 \mid 11$	2 11	14 12	26 1 28 1	44	56	65
0.240	9 4 :	97 0.1		13 1	07 1	10 11		17 13		46	61	72
0.280	96 97	99	"	05	0:1	112	10 1	19 1	32	149 150	165	174 176 178
0.320	98	101	$\begin{bmatrix} 02 \\ 02 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	06	10	113	17	20 1	33		165 167	179
0.360	99 99	101	103 1		110			121	134	153 153	168	180
0.400	99	102	103		111	114	118	121	134	154 154	169 169	182
0.440	100	102	104	107	111		118	121	134	154	170	180
0.460 0.480 0.500	100	102	104	107	111	115	118	122 122	135	154 154	170 170 170	18
0.520	100	102	104	107	111	115 115	118	122	135	154 154	170	18
0.540	100	102	104	107	111	115	119	122	135	154		
0.580	100	102	104	10.			10	86				

and the second

В	_	10
в.		

0	0.0005	0.001	0.002	0.004	0.006	0.008	0.010	0.020	0.040	0.060	0.080	0.100	0.150	0.200
		 	1		0	o	0	0	0	U	0	0	. 0	0
0	0	0	0	0	0.019	0.019	0.019	0.020	0.020	0.020	0.020	0.020	0.020	0.020
.018	0.018	0.019	0.019	0.019	35	36	36	37	38	39	39	39	39	40
33	33	34	34	35	49	50	51	53	5.5	56	57	57	58	59
4.5	46	46	47	48	61	62	63	665	70	72	73	74	76	77
55	56	56	57	59	70	71	73	77	83	86	88	89	92	94
63	64	64	66	68	1 "		1	İ			Ì			
	1		1	75	77	79	81	87	94	98	0.101	0.103	0.107	110
ü9	70	71	73		83	85	87	95	0.103	0.108	113	115	121	124
74	75	76	78	81	88	90	92	0.101	111	117	123	126	133	137
78	79	80	82	85		94	97	106	117	125	131	136	144	150
81	82	84	86	89	92	98	0.100	110	122	132	139	144	154	161
83	85	87	89	92	95	90	0.100				4			
	1	i	1	1	1	0.101	103	113	127	137	145	151	163	171
8.5	87	89	91	94	98	103	105	116	131	1-11	150	157	170	180
87	89	90	92	96	0.100	103	: 107	118	134	145	154	162	176	188
88	90	91	93	98	101	105	108	120	136	148	158	166	182	194
89	91	92	94	99	102		109	121	138	150	161	179	187	200
89	91	93	95	99	103	106	109							
		1			į.		110	122	139	152	. 164	173	191	205
90	92	93	96	0.100	104	107	110	122	140	154	1000		194	210
90	92	94	96	100	104	107		123	141	155	10.7		197	214
90	92	94	96	101	105	108	111	123	142	156	105	170	199	217
90	93	94	97	101	105	108		124	142	157	169	180	201	219'
90	93	94	97	101	105	108	111	124	1 12		1			
50				1	i .			124	142	157	170	181	203	221
91	93	94	97	101	105	108	111	124	143		170		204	223
91	93	94	97	101	105	108	112	124	143		171	182		225
91	93	94	97	102	105	109	112		143		171	183	200	226
91	93	94	97	102	106	109	112	124			172		207	227
	93	94	97	102	106	109	113	124	1 143	1.35				
91	33	1		ı				1	143	159	172	183	207	22×
	93	94	97	102	106	109	112				172			228
91	93	95	97	102	106	109	112						208	229
91	93	95		102	106	109	112			1				229
91	93	95	97	102	106	109	112							
91			1	102	106	109	112	125	144	159	172	184	205	225
91	93	95	1 30	1 -3-		:	1				_1		1	i

В	_	10
н.		

8	o	0.0005	0.001	0.002	0.004	ი.006	0.008	0.010	0.020	0.040	0.060	0.080
		0	0	0	0	()	()	()	Ú	o	o	<i>(</i>)
0	0	0.018	0.019	0.019	0.019	0.019	0.019	0.019	0.020	0.020	0.020	0.020
0.020	0.018	33	34	34	35	3.5	36	36	37	38	39	39
0.040	33 45	46	46	47	48	49	50	51	53	55	56	57
0.060	45 55	56	56	57	59	61	62	63	66	70	72	73
0.080	63	64	54	66	68	70	7.1	73	77	83	86	88
	69	70	71	73	1 75	77	79	81	87	94		0.101
0.120	74	75	76	78	81	83	โรย	87	95	0.103	0.108	113
0.140	78	79	80	82	8.5	88	90	92	0.101	111	117	ì 23
0.160	81	82	84	86	89	92	94	, 97	106	117	125	131
0.180	83	85	87	89	92	95	98	0.100	110	122	132	139
		87	89	91	94	98	0.101	. 03	113	127	137	145
0.220	85	89	90	92	96	0.100	103	105	116	131	141	1.50
0.240	87	90	91	93	9.8	101	104	:07	118	134	145	1.54
0.260	88	91	92	94	99	102	100	. 05	120	136	145	1.58
0.280	89 89	91	93	95	99	103	100	109	121	138	150	161
		92	95	96	0.100	104	107	.10	122	139	152	; 16-
0.320	90	92	94	96	100	104	107	110	122	140	154	10
0.340	90	92	94	96	101	105	108	.1.	123	141	155	16
0.360	90	93	94	97	101	105	108	11.	123	.42	156	163
0.380	90	93	94	97	101	105	108	.1.	124	142	1.57	16
		93	94	97	101	105	108	11.	. 24	142	7	7
0.420	91	93	94	97	101	105	105	112	124	143	158	1.7
0.440	91	93	94	97	102	105	109	.12	124	143	. 59	
0.460	91	93	94	97	102	10.	109	.12	. 24	143	159	. 7
0.480	91	93	94	9.	102	106	109	. 12	124	143	139	17
			94	97	102	106	1115	112	124	i 43	159	
0.520	91	93	94	97	102	106	109		125			17
0.540	91	93	95	97	102	100	109					
0.560	91	93	95	94	102		109					17
0.580	91	93			102		109					7
0.600	91	93	95	1	102	100				• • •		
	1							1087				STAT

"Ballistik" (Textbook of Ballistics),

- Charbonnier, "Ballistique Interieure" (Internal Ballistics),
- ZAKONA GORENIYA
 to the Study of (Dissertation).

 Serebryakov, "VVEDENIE V IZUCHENIE FIZICHESKOGO the Physical Law of Burning of Smokeless Powders), Military-Technical Academy, 1929.
- 5) M. E. Serebryakov, "FIZICHESKII ZAKON GORENIYA VO VNUTRENNEY BALLISTIKE" (Physical Law of Burning in Internal Ballistics). (Doctoral Dissertation, 1937), Oborongiz, 1940.
- 6) Muraour, "Les lois de combustion des poudres colloidales" (Laws of Burning of Colloidal Powders). Bull. soc. chim. France,
- 7) P. N. Shkvornikov, "K VOPROSU O DVIZHENII POROKHOVYKH GAZOV Initial Air Space) Typestiva artilleriiskov akademii 44 (1945) Y ZASNAKYADNUM PRUSIKANSTYŁ (Problem of Motion of Powder Gases 1 Initial Air Space). Izvestiya artilleriiskoy akademii 44 (1945).
- 8) D. A. Frank-Kamenetsky, "TEORIYA RAVNOMERNOGO RASPROSTRA-NENIYA PLAMENI" (Theory of Uniform Flame Propagation). Zhurnal
- 9) Ya. B. Zeldovich, "TEORIYA RASPROSTRANENIYA DETONATSII V GAZAKH" i teoreticheskoy fiziki 12, No. 11-12 (1942).
- 10) A. F. Brink, "VNUTRENNYAYA BALLISTIKA" (Internal Ballistics),
- 11) I. P. Grave, "PIROSTATIKA" (Pyrostatics). Artakademiya, 1938. 12) I. P. Grave, "VYRAZHENIYA DLIA OTNOSITELNOGO KOLICHESTVA SGOREVSHEGO POROKHA V SLUCHAE RASPADA FORMY AMERIKANSKIKH POROKHOV" (Expressions for Relative Quantity of Burnt Powder in Case of Decomposition of the Shape of American Powders). Izvestiya artilleriiskoy
- 13) G. V. Oppokov, "VNUTRENNYAYA BALLISTIKA" (Internal Ballistics).
 - 14) I. P. Grave, "OPYT TEORETICHESKOGO ISSLEDOVANIYA ZAKONA

STAT

RAZVITIYA DAVLENIYA PRI GORENII POROKHA V NEIZMENYAYEMOM PROSTRANSTVE" (A Theoretical Investigation of the Law Governing the Development of Pressure During Burning of Powder in Unvarying Space). Artakademiya (lithographed), 1904.

- 15) N. F. Drozdov, "RESHENIE ZADACH VNUTRENNEY BALLISTIKI"

 (Solution of Problems in Internal Ballistics). Artakademiya (lith-
- 16) N. F. Drozdov, "TABLITSY DLIA RESHENIYA ZADACHI VNUTRENNEY BALLISTIKI" (Tables for Solving the Problem of Internal Ballistics). ographed), 1910.
- 17) M. E. Serebryakov, "FIZIKO-KHIMICHESKIE OBOSNOVANIYA RAS-CHETA IZMENENIYA TEMPERATURY POROKHOVYKH GAZOV V ORUDIYAKH I VYBORA POKAZATELYA 9" (Physico-Chemical Principles for Computing Temperature Pokazation in Dowder Gases in Guns, and the Choice of Index 9). Izves-Narkomvoenmor, 1933. POKAZATELYA Θ'' (Physico-Chemical Principles for Computing Temperature Variation in Powder Gases in Guns, and the Choice of Index Θ). Izvestiya artilleriiskoy akademii 19, 105-118.
- 18) I. P. Grave, "PIRODINAMIKA" (Pyrodynamics), No. II. Artakademiya (lithographed), 1934.

- 1) N. F. Drozdov, "RESHENIE OSNOVNOGO URAVNENIYA VNUTRENNEY BALLISTIKI" (Solution of the Fundamental Equation of Internal Ballistics). Izvestiya artilleriiskoy akademii 19-20 (1936). Same, separate edition, Artakademiya, 1936. Separate edition, Artakademiya, 1936. Separate edition, Ostoknosti Nekotorykh Analiticheskikh 2) G. V. Oppokov, "O TOCHNOSTI NEKOTORYKH ANALITICHESKIKH SPOSOBOV RESHENIYA OSNOVNOY ZADACHI VNUTRENNEY BALLISTIKI DLIA ER-VOGO PERWODA" (The Precision of Certain Analytical Methods of Solution of the Fundamental Problem of Internal Ballistics for the First Period). Byulleten NKT AU, No. 2 (1932).
- 3) E. L. Bravin, "O METODAKH RASCHETA VREMENI NA NACHALNOM UCHASTKE DVIZHENIYA SNARYADA" (Methods of Computing the Time of the Initial Lap of Motion of a Projectile). Izvestiya artilleriiskoy akademii 25 (1939).
- 4) A. N. Krylov, "LEKTSII O PRIBLIZHENNYKH VYCHISLENNYAKH"
 (Lectures on Approximate Computations). AN SSSR (USSR Academy of
- 5) G. V. Oppokov, "CHISLENNY ANALIZ PRIMENITELNO K ARTILLERIISKOY TEKHNIKE" (Numerical Analysis as Applied to Artillery Technique). Oborongiz, 1939.
- 6) M. E. Serebryakov, G. V. Oppokov, and K. K. Greten, "WNUTRENNYAYA BALLISTIKA" (Internal Ballistics). Oborongiz, 1939.
- 7) N. A. Zabudsky, "O DAVLENII GAZOV BEZDYMNOGO POROKHA V KANALE ORUDIYA" (The Pressure Developed by Smokeless-Powder Gas in a Gun Bore). Ministry of Transport, 1894.

- 16) N. F. Drozdov, "TABLITSY DLIA PESMENIYA ZADACHISMAN BALLISTIKI" (Tables for Solving the Problem of Internal Ballistics)
- 17) M. E. Serebryakov, "FIZIKO-KHIMICHESKIE OBOSNOVANIYA RAS-CHETA IZMENENIYA TEMPERATURY POROKHOVYKH GAZOV V ORUDIYAKH I VYBORA POKAZATELYA 9" (Physico-Chemical Principles for Computing Temperature Variation in Powder Gases in Guns, and the Choice of Index 9). Izves-tiya artilleriiskoy akademii 19, 105-118.
- 18) I. P. Grave, "PIRODINAMIKA" (Pyrodynamics), No. II. Artakademiya (lithographed), 1934.

- 1) N. F. Drozdov, "RESHENIE OSNOVNOGO URAVNENIYA VNUTRENNEY
 BALLISTIKI" (Solution of the Fundamental Equation of Internal Ballistics). Izvestiya artilleriiskoy akademii 19-20 (1936). Same,
 separate edition, Artakademiya, 1936.
 separate edition, Artakademiya, 1936.
 SPOSOBOV RESHENIYA OSNOVNOY ZADACHI VNUTRENNEY BALLISTIKI DLIA PERVOGO PERMODA" (The Precision of Certain Analytical Methods of Solution
 vogo PERMODA" (The Precision of Certain Analytical Fundamental Problem of Internal Ballistics for the First Period).
 Byulleten NKT AU, No. 2 (1932).
- 3) E. L. Bravin, "O METODAKH RASCHETA VREMENI NA NACHALNOM UCHASTKE DVIZHENIYA SNARYADA" (Methods of Computing the Time of the Initial Lap of Motion of a Projectile). Izvestiya artilleriiskoy akademii 25 (1939).
- 4) A. N. Krylov, "LEKTSII O PRIBLIZHENNYKH VYCHISLENNYAKH"
 (Lectures on Approximate Computations). AN SSSR (USSR Academy of
- 5) G. V. Oppokov, "CHISLENNY ANALIZ PRIMENITELNO K ARTILLERIISKOY TEKHNIKE" (Numerical Analysis as Applied to Artillery Technique).

 Oborongiz, 1939.
- 6) M. E. Serebryakov, G. V. Oppokov, and K. K. Greten, "VNUTRENNYAYA BALLISTIKA" (Internal Bailistics). Oborongiz, 1939.
- 7) N. A. Zabudsky, "O DAVLENII GAZOV BEZDYMNOGO POROKHA V KANALE ORUDIYA" (The Pressure Developed by Smokeless-Powder Gas in a Gun Bore). Ministry of Transport, 1894.

- 8) N. A. Zabudsky, "O DAVLENII POROKHOVYKH GAZOV V KANALE
 3-dm PUSHKI I SKOROSTYAKH SNARYADA" (The Pressure of powder Gas in
 the Bore of a Three-Inch Gun and Projectile Velocities). Ministry
 of Transport. 1914.
- 9) V. E. Slukhotsky, "POPRAVOCHNYE FORMULY VNUTRENNEY BALLIS-(Correction Formulas for Internal Ballistics). Voenizdat of Transport, 1914.
- 10) D. A. Venttsel, "BNUTRENNYAYA BALLISTIKA" (Internal Ballistics). Military Air Academy, 1939. NKO SSSR, 1941.
- 11) E. L. Bravin, "OB OSHIBKE, DOPUSHCHENNOY PRI RASCHETE VREMENI V 'TABLITSAKH DLIA RESHENIYA ZADACH VNUTRENNEY BALLISTIKI (The Error Allowed in Time Computation in the "Tables for Solving Problems of Internal Ballistics"). Izvestiya artilleriiskoy akademii 14 (1935).
- 12) "TABLITSY VNUTRENNEY BALLISTIKI, CHASTI I, II, III, i IV"
 les of Internal Ballistics, Parts I, II, III, and IV). Young dat
 1942-1943. 14 (1935).
- 13) B. N. Okunev, "BALLISTICHESKIE SBORNIKI DLIA RESHENIYA
 ZADACH VNUTRENNEY BALLISTIKI" (Ballistic Data for the Solution of
 Problems in Internal Ballistics). Izvestiya voenno-morskoy akademii
 RK VWF No.5 (1940). NKO, 1942-1943.
- M. S. Gorokhov and A. I. Sviridov, "OSNOVNYE VOPROSY
 "Y RALLISTIKI" (Fundamental Questions of Internal Ballice 14) M. S. Gorokhov and A. I. Sviridov, "OSNOVNYE VOPROSY VNUTRENNEY BALLISTIKI" (Fundamental Questions of Internal Ballistics).
 Trudy NII MM TGU Tomsk, Red Banner, 1940. RK VMF, No.5 (1940).
- 15) G. V. Oppokov, "OSNOVNYE PROBLEMY VNUTRENNEY BALLISTIKI" (Fundamental Problems of Internal Ballistics), Oborongiz, 1940.
- 16) N. F. Drozdov, "RESHENIE ZADACH VNUTRENNEY BALLISTIKI DLIA
 BEZDYMNOGO POROKHA TRUBCHATOY FORMY" (Solution of Problems in Internated Property of Powder). Artakademiya, 1941. (Same Ballistics for Tubular Smokeless Powder).
 Ballistics for Tubular Smokeless Powder). Izvestiya artilleriiskoy akademii 30, 1940). ADACH YNUTHENNEY BALLISTIKI DLIA
 (Solution of Problems in Internal
 jer). Artakademiya, 1941. (Same,
- 17) M. S. Gorokhov, "VNUTRENNYAYA BALLISTIKA, CHASTI I, II i III"
 (Internal Ballistics, Parts I, II, and III). TGU, 1943.
- I. P. Grave, "PIRODINAMIKA" (Pyrodynamics), No. II.
- 19) B. N. Okunev, "OBSHCHAYA TEORIYA PODOBIYA ARTILLERIISKIKH
 SISTEM" (General Theory of Similitude of Artillery Systems). MilitaryNaval Academy and Artillery Academy of Red Army, 1938-1939. Artakademiya, 1934.
 - 20) V. E. Slukhotsky, "PROIZVODITELNOST ZARYADOV" (The Effectiveness of Charges). Izvestiya artilleriiskoy akademii 18 (1934).
 - 21) M. E. Serebryakov, "K VOPROSU O BALLISTICHESKOM PROYEKTI-

M -	ь.	-			
					10
		_			

(The Error Allowed in Time Computation in the "Tables for Solving Problems of Internal Ballistics"). Izvestiya artilleriiskoy akademii 14 (1935).

- 12) "TABLITSY VNUTRENNEY BALLISTIKI, CHASTI I, II, III, i IV" (Tables of Internal Ballistics, Parts I, II, III, and IV). Voenizdat NKO, 1942-1943.
- 13) B. N. Okunev, "BALLISTICHESKIE SBORNIKI DLIA RESHENIYA ZADACH VNUTRENNEY BALLISTIKI" (Ballistic Data for the Solution of Problems in Internal Ballistics). Izvestiya voenno-morskoy akademii RK VMF, No.5 (1940).
- 14) M. S. Gorokhov and A. I. Sviridov, "OSNOVNYE VOPROSY VNUTRENNEY BALLISTIKI" (Fundamental Questions of Internal Ballistics). Trudy NII MM TGU Tomsk, Red Banner, 1940.
- 15) G. V. Oppokov, "OSNOVNYE PROBLEMY VNUTRENNEY BALLISTIKI" (Fundamental Problems of Internal Ballistics), Oborongiz, 1940.
- 16) N. F. Drozdov, "RESHENIE ZADACH VNUTRENNEY BALLISTIKI DLIA BEZDYMNOGO POROKHA TRUBCHATOY FORMY" (Solution of Problems in Internal Ballistics for Tubular Smokeless Powder). Artakademiya, 1941. (Same, Izvestiya artilleriiskoy akademii 30, 1940).
- 17) M. S. Gorokhov, "VNUTRENNYAYA BALLISTIKA, CHASTI I, II i III" (Internal Ballistics, Parts I, II, and III). TGU, 1943.
- 18) I. P. Grave, "PIRODINAMIKA" (Pyrodynamics), No. II. Artakademiya, 1934.
- 19) B. N. Okunev, "OBSHCHAYA TEORIYA PODOBIYA ARTILLERIISKIKH SISTEM" (General Theory of Similitude of Artillery Systems). Military-Naval Academy and Artillery Academy of Red Army, 1938-1939.
- 20) V. E. Slukhotsky, "PROIZVODITELNOST ZARYADOV" (The Effectiveness of Charges). Izvestiya artilleriiskoy akademii 18 (1934).
 - 21) M. E. Serebryakov, "K VOPROSU O BALLISTICHESKOM PROYEKTI-

STAT

ROVANII STVOLA" (The Problem of Ballistic Design of Barrels). Artakademiya, 1941. (Same, cf. Izvestiya artilleriiskoy akademii

22) M. E. Serebryakov, "VLIYANIE IZMENENIYA PRIRODY POROKHA NA KONSTRUKTIVNYE DANNYE ORUDIYA NAIMENSHEGO OBYEMA" (The Influence of the Nature of Powder on Dobign Data of a Gun of the Smallest Volume). Trudy NII-13, No. 8 (1946).

Part Three

- "PIRODINAMIKA" (Pyrodynamics). Artakademiya 1) 1. P. Grave, (lithographed), 1927.
- 2) N. F. Drozdov, "RESHENIE OSNOVNOGO URAVNENIYA VNUTRENNEY BALLISTIKI" (The Solution of the Fundamental Equation of Internal Ballistics). Izventiya artilleriiskoy akademii 19-20, 1936.
 - 3) Robinson, "Thermodynamics of Firegrams", 1943.
- 4) V. Ya. Slukhotsky, "METODIKA RASCHETA KOMBINIROVANNYKH ZARYADOV" (Procedure for Computing Combined Charges). ANIOP, 1944.
- 5) M. Ya. Serebryakov, "FIZICHESKII ZAKON GORENIYA VO VNUTRENNEY BALLISTIKE" (Physical Law of Burning in Internal Ballistics). Oborongiz, 1940.
- 6) G. V. Oppokov, "RESHENIE ZADACHI YNUTRENNEY BALLISTIKI DLIA KOMBINIROVANNYKH ZARYADOV" (Solution of the Problem of Internal Ballistics for Combined Charges). Izvestiya artilleriiskoy akademii,
- 7) G. V. Oppokov, "CHISLENNYI ANALIZ, PRIMENITELNO K ARTIL-LERIISKOY TEKHNIKE" (Numerical Analysis Applied to Artillery Tech-nique). Oborongiz, 1939.
- 8) G. V. Oppokov, "OSNOVNYE PROBLEMY VNUTRENNEY BALLISTIC (Fundamental Problems in Internal Ballistics). Oborongiz, 1940. "OSNOVNYE PROBLEMY VNUTRENNEY BALLISTIKI"

