Homework (3)

Task 1: Two-Level System

In this task, we want to analyze the two-level system presented in the lecture.

Here, we assume that both levels are not degenerate, such that we have $g_1 = g_2 = 1$.

a) Show that the population of the excited level can be at most half of the total number of atoms

$$N_2 = \frac{N}{2} = \frac{N_1 + N_2}{2}$$

b) Analyze the two limiting cases where pumping is very strong $(\rho \gg 1)$ and very weak $(\rho \ll 1)$ and explain how the population of the excited level depends on the pumping intensity.

Task 2: Three-Level Laser

a) In this problem, we want to analyze a three-level laser system.

The laser transition should be $2 \to 1$, while the pumping transition is $1 \to 3$. Find the condition on the atomic transition rates required to achieve a population inversion. Then, find the minimum threshold for the pumping rate required to create an inversion.

Task 3: Lifetime of the Hydrogen 2P State

- a) Calculate the lifetime of the |210\rangle state of hydrogen.
- **b)** Repeat for the $|21 \pm 1\rangle$ state.
- c) Calculate the natural width $\Delta E/E$ of this transition.