

Parsing techniques for graph analysis

Ekaterina Verbitskaja

JetBrains Research, Programming Languages and Tools Lab Saint Petersburg University

Oktober 22, 2017

Language-constrained paths filtering

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar
- G = (V, E, L) directed graph, $E \subseteq V \times L \times V$, $L \subseteq \Sigma$
- $p = (v_0, I_0, v_1), \cdots, (v_{n-1}, I_{n-1}, v_n)$ path in G
- $\omega(p) = \omega((v_0, l_0, v_1), \cdots, (v_{n-1}, l_{n-1}, v_n)) = l_0 l_1 \cdots l_{n-1}$
- $R = \{p | \exists N_i \in N(\omega(p) \in L(\mathbb{G}, N_i))\}$
- Other possible variants

Language-constrained paths filtering: more formal

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar
- G = (V, E, L) directed graph, $E \subseteq V \times L \times V$, $L \subseteq \Sigma$
- $p = (v_0, l_0, v_1), \cdots, (v_{n-1}, l_{n-1}, v_n)$ path in G
- $\omega(p) = \omega((v_0, l_0, v_1), \cdots, (v_{n-1}, l_{n-1}, v_n)) = l_0 l_1 \cdots l_{n-1}$
- $R = \{p | \exists N_i \in N(\omega(p) \in L(\mathbb{G}, N_i))\}$
- Other possible variants

Applications

- Graph analysis
 - Graph database querying
 - ► Network graph analysis

L

- Code analysis
 - Static analysis CFL(linear conjunctive) reachability: alias analysis, points-to analysis, etc
 - Dynamically generated strings analysis
 - Multiple input parsing
- ..

Open Problems etc

- Effective algorithm creation
- Result representation for debugging, futer processing
- GPGPU utilization

Bar-Hillel theorem

- Context-free languages are closed under intersection with regular languages
- Parsing algorithms are constructive proof of Bar-Hille theorem for one simple case ...
-so, it can be generalized for arbitrary regular language processing

Example

Figure: An example: the map of School (input graph M)

 $0: S \rightarrow a S b$ $1: S \rightarrow Middle$ $2: Middle \rightarrow a b$

Figure: An example: grammar G_1 for language $L = \{a^nb^n; n \ge 1\}$ with additional marker for the middle of a path

Example

Figure: An example: the map of School (input graph M)

Our solutions

- Relaxed parsing of dynamically generated SQL-queries.
 - ▶ Based on RNGLR parsing algorithm (Izmailova, Afroozeh)
- Context-free path querying with structural representation of result.
 - Based on GLL parsing algorithm (Izmailova, Afroozeh)
- Combinators for context-free path querying
 - Based on Meerkat (Izmailova, Afroozeh)
- Context-free path querying by matrix multiplication
 - Inspired by Valiant and Okhotin

Future work

- Other grammars and language classes intersection
 - ► Context-free grammars intersection
 - Mark-Jan Nederhof, "The language intersection problem for non-recursive context-free grammars"
 - Approximated intersection of regular and conjunctive/boolean languages
- Mechanization in Coq
 - ▶ Bar-Hillel theorem
 - GLL-based algorithms
- New areas for application

Information

- Ekaterina Verbitskaia: kajigor@gmail.com
- Semyon Grigorev: semen grigorev@jetbrains.com
- YaccConstructor: https://github.com/YaccConstructor