

Metoda nejmenších čtverců

doc. Ing. Petr Blaha, PhD.

16. prosince 2017

Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193

Lineární regrese

Motivace

Formulace problému

Vektorový zápis

Maticový zápis

Příklady

FIR systém

Metoda nejmenších

čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Lineární regrese

Lineární regrese

Motivace

Formulace problému

Vektorový zápis

Maticový zápis

Příklady

FIR systém

Metoda nejmenších

čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

<u>Řád odhadu</u>

Lineární regrese

Motivace

Formulace problému

Vektorový zápis

Maticový zápis

Příklady

FIR systém

Metoda nejmenších

čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Lineární regrese

Motivace

Formulace problému Vektorový zápis

Maticový zápis

Příklady

FIR systém

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Lineární regrese

Motivace

Formulace problému

Vektorový zápis

Maticový zápis

Příklady

FIR systém

Metoda nejmenších

čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Lineární regrese

Motivace

Formulace problému

Vektorový zápis

Maticový zápis

Příklady

FIR systém

Metoda nejmenších

čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Formulace problému

Lineární regrese

Motivace

Formulace problému

Vektorový zápis Maticový zápis

Příklady

FIR systém

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Jedná se o aproximaci daných hodnot polynomem prvního řádu (přímkou) Speciální případ je funkční závislost

$$y(x) = ax + b$$

Obecný případ je funkce

$$y(x) = f(x, a_1, a_2, \dots, a_n) = a_1 f_1(x) + a_2 f_2(x) + \dots + a_n f_n(x)$$

Cílem lineární regrese je získat odhad koeficientů a, b (případně a_1 až a_n).

Místo proměnné x se často používá

t - vyjadřuje čas

k - celé číslo (například pořadí vzorků)

Vektorový zápis

Lineární regrese

Motivace

Formulace problému

Vektorový zápis

Maticový zápis

Příklady

FIR systém

Metoda nejmenších

čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Lineární regrese se dá zapsat ve tvaru násobení dvou vektorů

$$y(k) = \varphi^T(k)\theta$$

kde

y(k) - je měřitelná veličina

p(k) – je sloupcový n-řádkový vektor známých veličin (regresní proměnné)

 θ - je sloupcový n-řádkový vektor neznámých parametrů.

Maticový zápis

Lineární regrese

Motivace

Formulace problému

Vektorový zápis

Maticový zápis

Příklady

FIR systém

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Uvažujme N měření a n neznámých parametrů.

$$Y = \Phi \theta$$

kde

 $Y=(y(1)\cdot\cdot\cdot y(N))^T$ - je sloupcový vektor měřitelných veličin

 $\Phi = (\varphi(1) \cdots \varphi(N))^T$ - je matice o N-řádcích a n sloupcích (regresní proměnné)

 θ - je sloupcový n-řádkový vektor neznámých parametrů.

Příklady

Lineární regrese

Motivace

Formulace problému

Vektorový zápis

Maticový zápis

Příklady

FIR systém

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Polynomická regrese

$$y(x) = a_n x^n + a_{n-1} x^{n-1} + a_1 x^1 + a_0$$

kde

$$\varphi(x)^T = \begin{pmatrix} x^n & x^{n-1} & \cdots & x & 1 \end{pmatrix}$$

$$\theta^T = \begin{pmatrix} a_n & a_{n-1} & \cdots & a_1 & a_0 \end{pmatrix}$$

Exponenciální funkce

$$y(x) = be^{ax}$$

lze logaritmováním převést na

$$ln y(x) = ln b + ax$$

Modelování a identifikace

FIR systém

Lineární regrese

Motivace

Formulace problému

Vektorový zápis

Maticový zápis

Příklady

FIR systém

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Odezva systému FIR

$$y(k) = g_0 u(k) + g_1 u(k-1) + \cdots + g_n u(k-n)$$

kde

$$\varphi(x)^T = \begin{pmatrix} u(k) & u(k-1) & \cdots & u(k-n) \end{pmatrix}$$

$$\theta^T = \begin{pmatrix} g_0 & g_1 & \cdots & g_n \end{pmatrix}$$

Lineární regrese

Metoda nejmenších čtverců

Popis Zajímavé matematické vzorečky

Odvození

Kritérium

Jiné vyjádření

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Metoda nejmenších čtverců

Popis

Lineární regrese

Metoda nejmenších čtverců

Popis

Zajímavé matematické vzorečky

Odvození

Kritérium

Jiné vyjádření

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Chyba odhadu $\varepsilon(k) = y(k) - \varphi^T(k)\theta$.

Metoda nejmenších čtverců vychází z minimalizace ztrátové funkce

$$J(\theta) = \frac{1}{2} \sum_{k=1}^{N} \varepsilon^2(k) = \frac{1}{2} \varepsilon^T \varepsilon \quad \text{ kde } \varepsilon^T = (\varepsilon(1), \varepsilon(2), \cdots, \varepsilon(N))$$

Jiný zápis ztrátové funkce

$$J(\theta) = \frac{1}{2} \sum_{k=1}^{N} [y(k) - \varphi^{T}(k)\theta]^{2} = \frac{1}{2} (Y - \Phi\theta)^{T} (Y - \Phi\theta)$$

člen $\varphi^T(k)\theta$ odpovídá odhadu výstupu.

Zajímavé matematické vzorečky

Lineární regrese

Metoda nejmenších čtverců

Popis

Zajímavé matematické vzorečky

Odvození

Kritérium

Jiné vyjádření

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Pro vektor x a matici A platí následující vzorečky

$$egin{aligned} rac{d}{dx}(m{A}m{x}) &= m{A}^T \ rac{d}{dx}(m{x}^Tm{A}) &= m{A} \ rac{d}{dx}(m{x}^Tm{x}) &= 2m{x} \end{aligned}$$

$$\frac{d}{dx}(\boldsymbol{x}^T\boldsymbol{x}) = 2\boldsymbol{x}$$

$$\frac{d}{dx}(\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}) = \boldsymbol{A} \boldsymbol{x} + \boldsymbol{A}^T \boldsymbol{x}$$

$$rac{d}{dx}(oldsymbol{x}^Toldsymbol{A}oldsymbol{x}) = 2oldsymbol{A}oldsymbol{x}$$

 $\frac{d}{dx}(\mathbf{x}^T \mathbf{A} \mathbf{x}) = 2\mathbf{A} \mathbf{x}$ pro symetrickou matici $\mathbf{A} = \mathbf{A}^T$

Třeba se budou hodit pro odvození metody nejmenších čtverců.

Odvození

Lineární regrese

Metoda nejmenších čtverců

Popis Zajímavé matematické vzorečky

Odvození

Kritérium

Jiné vyjádření

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Minimum získáme položením první derivace ztrátové funkce podle vektoru parametrů rovnou nule.

$$\begin{aligned} \mathbf{0} &= \frac{dJ(\theta)}{d\theta} = \frac{1}{2} \frac{d}{d\theta} [(Y - \Phi \theta)^T (Y - \Phi \theta)] = \\ &= \frac{1}{2} \frac{d}{d\theta} (Y^T Y - \theta^T \Phi^T Y - Y^T \Phi \theta + \theta^T \Phi^T \Phi \theta) = \\ &= \frac{1}{2} (-\Phi^T Y - \Phi^T Y + \Phi^T \Phi \theta + \Phi^T \Phi \theta) = -\Phi^T Y + \Phi^T \Phi \theta \end{aligned}$$

odkud získáváme

$$\theta = (\Phi^T \Phi)^{-1} \Phi^T Y \tag{1}$$

matice $\Phi^T\Phi$ nesmí být singulární (vetšinou je pozitivně definitní)

Kritérium

Lineární regrese

Metoda nejmenších čtverců

Popis Zajímavé matematické vzorečky

Odvození

Kritérium

Jiné vyjádření

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Kritérium lze přepsat ve tvaru

$$J(\theta) = \frac{1}{2}[\theta - (\Phi^T \Phi)^{-1} \Phi^T Y]^T (\Phi^T \Phi)[\theta - (\Phi^T \Phi)^{-1} \Phi^T Y] + \frac{1}{2}[Y^T Y - Y^T \Phi (\Phi^T \Phi)^{-1} \Phi^T Y]$$

$$+ \frac{1}{2}[Y^T Y - Y^T \Phi (\Phi^T \Phi)^{-1} \Phi^T Y]$$
 nezávisí na θ

Jiné vyjádření

Lineární regrese

Metoda nejmenších čtverců

Popis Zajímavé matematické vzorečky

Odvození

Kritérium

Jiné vyjádření

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Vzorec (1) lze zapsat v ekvivalentním tvaru

$$\theta = \left[\sum_{i=1}^{N} \varphi(i)\varphi^{T}(i)\right]^{-1} \left[\sum_{i=1}^{N} \varphi(i)y(i)\right]$$

- odvození je podobné jako v předchozím případě
- v některých případech je tento tvar výhodnější (matice Φ velkých rozměrů)
- používá se pro odvození rekurzivního algoritmu
- ani jeden ze vzorců není vhodný pro přímý výpočet

Lineární regrese

Metoda nejmenších čtverců

Příklad

Zadání

Parciální derivace

Výsledné rovnice

Maticový zápis

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Příklad

Zadání

Lineární regrese

Metoda nejmenších čtverců

Příklad

Zadání

Parciální derivace Výsledné rovnice Maticový zápis

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Odvoď te vzorec pro aproximaci naměřených dat polynomem druhého řádu metodou nejmenších čtverců

$$y(x) = a_0 + a_1 x + a_2 x^2$$

Ztrátová funkce je

$$J(a_0, a_1, a_2) = \frac{1}{2} \sum_{i=1}^{N} (y_i - a_0 - a_1 x_i - a_2 x_i^2)^2$$

Budeme hledat místo, kde je gradient ztrátové funkce roven nule.

$$\operatorname{grad} J(a_0, a_1, a_2) = 0 \qquad \rightarrow \qquad \frac{\partial J}{\partial a_0} = \frac{\partial J}{\partial a_1} = \frac{\partial J}{\partial a_2} = 0$$

Parciální derivace

Lineární regrese

Metoda nejmenších čtverců

Příklad

Zadání

Parciální derivace

Výsledné rovnice Maticový zápis

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Vyčíslíme parciální derivace

$$\frac{\partial J}{\partial a_0} = -\sum_{i=1}^{N} (y_i - a_0 - a_1 x_i - a_2 x_i^2) = 0$$

$$\frac{\partial J}{\partial a_1} = -\sum_{i=1}^{N} (y_i - a_0 - a_1 x_i - a_2 x_i^2) x_i = 0$$

$$\frac{\partial J}{\partial a_2} = -\sum_{i=1}^{N} (y_i - a_0 - a_1 x_i - a_2 x_i^2) x_i^2 = 0$$

Výsledné rovnice

Lineární regrese

Metoda nejmenších čtverců

Příklad

Zadání

Parciální derivace

Výsledné rovnice

Maticový zápis

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Rozepsáním předchozích rovnic dostaneme

$$\sum_{i=1}^{N} y_i = a_0 N + a_1 \sum_{i=1}^{N} x_i + a_2 \sum_{i=1}^{N} x_i^2$$

$$\sum_{i=1}^{N} x_i y_i = a_0 \sum_{i=1}^{N} x_i + a_1 \sum_{i=1}^{N} x_i^2 + a_2 \sum_{i=1}^{N} x_i^3$$

$$\sum_{i=1}^{N} x_i^2 y_i = a_0 \sum_{i=1}^{N} x_i^2 + a_1 \sum_{i=1}^{N} x_i^3 + a_2 \sum_{i=1}^{N} x_i^4$$

Maticový zápis

Lineární regrese

Metoda nejmenších čtverců

Příklad

Zadání

Parciální derivace

Výsledné rovnice

Maticový zápis

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Maticový zápis předchozích rovnic je

$$\begin{pmatrix}
N & \sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 \\
\sum_{i=1}^{N} x_i & \sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 \\
\sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} x_i^4 \\
\sum_{i=1}^{N} x_i^2 & \sum_{i=1}^{N} x_i^3 & \sum_{i=1}^{N} x_i^4
\end{pmatrix}
\begin{pmatrix}
a_0 \\
a_1 \\
a_2
\end{pmatrix} = \begin{pmatrix}
\sum_{i=1}^{N} y_i \\
\sum_{i=1}^{N} x_i y_i \\
\sum_{i=1}^{N} x_i y_i
\end{pmatrix}$$

Získáváme soustavu tří rovnic pro tři neznámé, kterou řešíme standardním způsobem.

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Motivace

Předpoklady

Odvození

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Geometrický význam

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Motivace

 ${\sf P\'redpoklady}$

Odvození

Rozbor MNČ

BLUE

Řád odhadu

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Motivace

Předpoklady

Odvození

Rozbor MNČ

BLUE

Řád odhadu

$$\Phi = (\phi_1 \cdots \phi_n)$$

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Motivace

 $P\check{r}edpoklady$

Odvození

Rozbor MNČ

BLUE

Řád odhadu

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Motivace

 $P\check{r}edpoklady$

Odvození

Rozbor MNČ

BLUE

Řád odhadu

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Motivace

 $P\check{r}edpoklady$

Odvození

Rozbor MNČ

BLUE

Řád odhadu

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Motivace

Předpoklady

Odvození

Rozbor MNČ

BLUE

Řád odhadu

Předpoklady

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Motivace

Předpoklady

Odvození

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Označme sloupcové vektory matice Φ jako $\phi_1,\ldots,\phi_n\in R^N$. Cílem je nalézt takovou lineární kombinaci vektorů ϕ_1,\ldots,ϕ_n , která nejlépe aproximuje skutečný výstup Y. Řešením je kolmá projekce vektoru Y do podprostoru tvořeného vektory ϕ_1,\ldots,ϕ_n - vektor $\hat{Y}=\sum_{i=1}^n\phi_j\theta_j$.

$$(Y - \hat{Y}) \perp \phi_i$$
 pro $i = 1, \dots, n$

proto také platí

$$\phi_i^T(Y - \hat{Y}) = 0 \qquad \text{pro} \qquad i = 1, \dots, n$$
 (2)

Odvození

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Motivace

Předpoklady

Odvození

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Dosazením odhadu \hat{Y} do (2) dostaneme

$$\phi_i^T Y = \sum_{j=1}^n \phi_i^T \phi_j \theta_j$$
 pro $i = 1, \dots, n$

V maticovém zápisu

$$\begin{pmatrix} \phi_1^T \phi_1 & \cdots & \phi_1^T \phi_n \\ \vdots & & \\ \phi_n^T \phi_1 & \cdots & \phi_n^T \phi_n \end{pmatrix} \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_n \end{pmatrix} = \begin{pmatrix} \phi_1^T Y \\ \vdots \\ \phi_n^T Y \end{pmatrix}$$

Což je vlastně dříve odvozená rovnice $\Phi^T\Phi\theta=\Phi^TY$

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

Rozbor

Bílý šum

Odvození

Barevný šum

BLUE

Řád odhadu

Poznámky k výpočtu

Rozbor metody nejmenších čtverců

Rozbor metody nejmenších čtverců

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

Rozbor

Bílý šum

Odvození

Barevný šum

BLUE

Řád odhadu

Poznámky k výpočtu

Uvažujme data, která vyhovují rovnici

$$y(k) = \varphi^{T}(k)\theta_0 + e(k)$$

kde θ_0 je vektor skutečných parametrů a e(k) je náhodná proměnná s nulovou střední hodnotou a rozptylem λ^2 . Maticový zápis

$$Y = \Phi \theta_0 + e$$
 kde $e = \begin{pmatrix} e(1) & e(2) & \cdots & e(N) \end{pmatrix}^T$

Bílý šum

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

Rozbor

Bílý šum

Odvození

Barevný šum

BLUE

Řád odhadu

Poznámky k výpočtu

Uvažujme, že e(k) je bílý šum s nulovou střední hustotou a rozptylem λ^2 . Potom platí následující vlastnosti

- ${f 1.}$ odhad $\hat{ heta}$ je neposunutý od vektoru skutečných parametrů $heta_0$
- **2.** kovarianční matice $\hat{\theta}$ je dán vzorcem

$$cov(\hat{\theta}) = \lambda^2 (\Phi^T \Phi)^{-1}$$

3. neposunutý odhad λ^2 je dán vztahem

$$\hat{\lambda^2} = 2J(\hat{\theta})/(N-n)$$

Odvození

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

Rozbor

Bílý šum

Odvození

Barevný šum

BLUE

Řád odhadu

Poznámky k výpočtu

ad 1.

$$\hat{\theta} = (\Phi^T \Phi)^{-1} \Phi^T (\Phi \theta_0 + e) = \theta_0 + (\Phi^T \Phi)^{-1} \Phi^T e$$

$$\mathbf{E}\hat{\theta} = \theta_0 + (\Phi^T \Phi)^{-1} \Phi^T \mathbf{E} e = \theta_0$$

ad 2.

$$E(\hat{\theta} - \theta_0)(\hat{\theta} - \theta_0)^T = E[(\Phi^T \Phi)^{-1} \Phi^T e][(\Phi^T \Phi)^{-1} \Phi^T e]^T =$$

$$= (\Phi^T \Phi)^{-1} \Phi^T E e e^T \Phi (\Phi^T \Phi)^{-1} =$$

$$= (\Phi^T \Phi)^{-1} \Phi^T \lambda^2 I \Phi (\Phi^T \Phi)^{-1} =$$

$$= \lambda^2 (\Phi^T \Phi)^{-1}$$

kde $EX = \sum_{i} p_i x_i$ je střední hodnota (expectation).

Barevný šum

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

Rozbor

Bílý šum

Odvození

Barevný šum

BLUE

Řád odhadu

Poznámky k výpočtu

Uvažujme, že e(k) není bílý šum, ale barevný šum, pro který platí rovnice

$$Eee^T = R$$

kde R je pozitivně definitní matice.

Odhad získaný MNČ zůstává neposunutý (odvození je podobné jako v případě bílého šumu), ale kovarianční matice se změní

$$\operatorname{cov} \hat{\theta} = E(\hat{\theta} - \theta_0)(\hat{\theta} - \theta_0)^T = (\Phi^T \Phi)^{-1} \Phi^T R \Phi (\Phi^T \Phi)^{-1}$$

Nemohu získat odhad s menší hodnotou kovarianční matice?

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

BLUE

Vlastnosti

Řád odhadu

Poznámky k výpočtu

Nejlepší lineární neposunutý odhad parametrů

BLUE

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

BLUE

Vlastnosti

Řád odhadu

Poznámky k výpočtu

Best Linear Unbiased Estimate - BLUE

Lineární odhad - lze vyjádřit jako lineární funkci měření Y.

$$\hat{\theta} = Z^T Y$$

Odhad metodou nejmenších čtverců je zvláštním případem lineárního odhadu, kdy $Z=\Phi(\Phi^T\Phi)^{-1}$ $(Z^T=(\Phi^T\Phi)^{-1}\Phi^T)$

Takový lineární odhad vyjádřený maticí Z, který dává neposunutý odhad a který minimalizuje hodnotu kovarianční matice se nazývá BLUE (někdy také **Markovův odhad**). BLUE je dán maticí

$$Z^* = R^{-1}\Phi(\Phi^T R^{-1}\Phi)^{-1} \quad (Z^{*^T} = (\Phi^T R^{-1}\Phi)^{-1}\Phi^T R^{-1})$$

(matice R je symetrická)

Vlastnosti

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

BLUE

Vlastnosti

Řád odhadu

Poznámky k výpočtu

Odhad je neposunutý, protože platí

$$\theta_0 = E\hat{\theta} = EZ^{*T}(\Phi\theta_0 + e) = Z^{*T}\Phi\theta_0$$
$$= (\Phi^T R^{-1}\Phi)^{-1}\Phi^T R^{-1}\Phi\theta_0 = I\theta_0$$

Kovarianční matice BLUE

$$cov_{Z^*}(\hat{\theta}) = (\Phi^T R^{-1} \Phi)^{-1} \Phi^T R^{-1} R R^{-1} \Phi (\Phi^T R^{-1} \Phi)^{-1} = (\Phi^T R^{-1} \Phi)^{-1}$$

$$= (\Phi^T R^{-1} \Phi)^{-1}$$

Platí vztah

$$\operatorname{cov}_{Z^*}(\hat{\theta}) = (\Phi^T R^{-1} \Phi)^{-1} \le \operatorname{cov}_{Z}(\hat{\theta})$$

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Určení řádu odhadu Reálný případ

Poznámky k výpočtu

Určení řádu odhadu

Určení řádu odhadu

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Určení řádu odhadu

Reálný případ

Poznámky k výpočtu

V ideálním případě, kdy je měření nezašuměné a je k dispozici nekonečně mnoho hodnot existuje model \mathcal{M}^* který přesně popisuje chování systému. Další zvyšování řádu systému (vyšší počet neznámých parametrů) nevede ke zlepšování kritéria. Jako kritérium lze použít

$$R_{ee}(0) = Ee(k)e(k) = \sum_{k=1}^{N} e^{2}(k)$$

Reálný případ

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Určení řádu odhadu

Reálný případ

Poznámky k výpočtu

V praxi je situace obtížnější.

Obvykle se volí model odpovídající $R_{ee_x}(0)$ pro kterou platí

$$0.8R_{ee_x}(0) \le R_{ee_{x+1}}(0)$$

kde $R_{ee_{x+1}}(0)$ odpovídá modelu s o jedničku větším počtem parametrů.

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Poznámky k výpočtu QR rozklad matice Řešení pomocí QR rozkladu Řešení v programu Matlab

Poznámky k výpočtu

Poznámky k výpočtu

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Poznámky k výpočtu

QR rozklad matice Řešení pomocí QRrozkladu Řešení v programu Matlab Výsledné vzorce pro výpočet nejsou vhodné pro přímé použití. Problémy vznikají při výpočtu inverze matice. Používané postupy výpočtu

- Tešením rovnice $\Phi^T\Phi\theta=\Phi^TY$ jednoduché na výpočet, vysoká citlivost na zaokrouhlovací chyby
- QR metoda složitější, vyžaduje přibližně dvojnásobek matematických operací ve srovnání s předchozím postupem, vyšší odolnost na zaokrouhlovací chyby
- rekurzivní metody vypočtu budou probrány později

QR rozklad matice

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu

Poznámky k výpočtu

QR rozklad matice

Řešení pomocí QR rozkladu Řešení v programu Matlab Používá se pro řešení soustav lineárních rovnic a pro hledání vlastních čísel matice.

Matice Q je ortonormální. Její sloupce jsou navzájem kolmé. Platí $Q^TQ=I$, kde I je jednotková matice a R je horní trojúhelníková matice, pro kterou platí

$$\Phi = QR$$

Řešíme soustavu rovnic

$$\Phi\theta = QR\theta = Y$$

Vynásobíme obě strany rovnice maticí Q^T

$$Q^T \Phi \theta = Q^T Q R \theta = R \theta = Q^T Y$$

Řešení pomocí QR rozkladu

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu Poznámky k výpočtu QR rozklad matice

Řešení pomocí QR rozkladu

Řešení v programu Matlab Pokud máme k dispozici matice Q a R, je řešení soustavy rovnic $R\theta=Q^TY$ velmi jednoduché, protože R je trojúhelníková matice.

Ztrátová funkce zůstává stejná

$$(QY - Q\Phi\theta)^T (QY - Q\Phi\theta) =$$

$$= (Y - \Phi\theta)^T Q^T Q(Y - \Phi\theta) = (Y - \Phi\theta)^T (Y - \Phi\theta)$$

V Maltabu lze QR rozklad počítat pomocí příkazu

Řešení v programu Matlab

Lineární regrese

Metoda nejmenších čtverců

Příklad

Geometrický význam

Rozbor MNČ

BLUE

Řád odhadu

Poznámky k výpočtu Poznámky k výpočtu QR rozklad matice Řešení pomocí QR rozkladu

Řešení v programu Matlab Pro řešení se používá zpětné lomítko. Chování tohoto operátoru závisí na rozměru matice Φ . Pokud se jedná o obdélníkovou matici, pak se pro řešení použije QR rozklad.

$$>>$$
 theta $=$ Phi \setminus Y;

