SBML Model Report

Model name: "Shrestha2010-_HyperCalcemia_PTHresponse"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Rajiv P Shrestha² at November 15th 2010 at 2:42 p. m. and last time modified at October nineth 2014 at 4:16 p. m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	3
events	0	constraints	0
reactions	0	function definitions	0
global parameters	21	unit definitions	0
rules	9	initial assignments	0

Model Notes

This a model from the article:

A mathematical model of parathyroid hormone response to acute changes in plasma ionized calcium concentration in humans.

¹EMBL-EBI, viji@ebi.ac.uk

²Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, USA, rshresth@engin.umass.edu

Shrestha RP, Hollot CV, Chipkin SR, Schmitt CP, Chait Y. Math Biosci. 2010 Jul;226(1):46-57. 20406649,

Abstract:

A complex bio-mechanism, commonly referred to as calcium homeostasis, regulates plasma ionized calcium (Ca(2+)) concentration in the human body within a narrow range which is crucial for maintaining normal physiology and metabolism. Taking a step towards creating a complete mathematical model of calcium homeostasis, we focus on the short-term dynamics of calcium homeostasis and consider the response of the parathyroid glands to acute changes in plasma Ca(2+) concentration. We review available models, discuss their limitations, then present a two-pool, linear, time-varying model to describe the dynamics of this calcium homeostasis subsystem, the Ca-PTH axis. We propose that plasma PTH concentration and plasma Ca(2+) concentration bear an asymmetric reverse sigmoid relation. The parameters of our model are successfully estimated based on clinical data corresponding to three healthy subjects that have undergone induced hypocalcemic clamp tests. In the first validation of this kind, with parameters estimated separately for each subject we test the model's ability to predict the same subject's induced hypercalcemic clamp test responses. Our results demonstrate that a two-pool, linear, time-varying model with an asymmetric reverse sigmoid relation characterizes the short-term dynamics of the Ca-PTH axis.

The model corresponds to hypercalcemic clamp test explained in the paper and parameter values used in the model are that of "subject 1,.. In order to obtain the plots corresponding to "subject 2,, and "subject 3,, the following parameters to be changed: lambda_1, lambda_2, m1, m2, R, beta, x1_n, x2_min, x2_min, x2_max, t0, Ca0, Ca1 and alpha.

parameter	Subject 1	Subject 2	Subject 3
lambda_1	0.0125	0.0122	0.0269
lambda_2	0.5595	0.4642	0.4935
m1	112.5200	150.0000	90.8570
m2	15.0000	15.0000	15.0000
R	1.2162	1.1627	1.1889
beta	10e+06	10e+06	10e+06
$x1_n$	490.7800	452.8200	298.8200
$x2_n$	6.6290	9.5894	5.4600
x2_min	0.6697	1.4813	0.8287
x2_max	14.0430	17.8710	15.1990
Ca0	1.2200	1.2513	1.2480
Ca1	0.2624	0.2267	0.2132
t0	575	575	575
alpha	0.0569	0.0563	0.0421

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2010 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L,

Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains two compartments.

Table 3: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
PTG_pool Plasma_pool	PTG_pool Plasma_pool		3 3	1 1	litre litre	1	

3.1 Compartment PTG_pool

This is a three dimensional compartment with a constant size of one litre.

Name PTG_pool

SBO:0000290 physical compartment

3.2 Compartment Plasma_pool

This is a three dimensional compartment with a constant size of one litre.

Name Plasma_pool

SBO:0000290 physical compartment

4 Species

This model contains three species. Section 7 provides further details and the derived rates of change of each species.

Table 4: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
x1 x2	PTH_in_PTG PTH_in_Plasma	PTG_pool Plasma_pool	$\text{mol} \cdot l^{-1}$ $\text{mol} \cdot l^{-1}$		
Ca	Ca_in_Plasma	Plasma_pool	$\text{mol} \cdot l^{-1}$		

5 Parameters

This model contains 21 global parameters.

Table 5: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k	k	0000002	9.844		
${\tt lambda_Ca}$	lambda_Ca		170.000		
$m_{-}Ca$	m_Ca		170.000		
m1	m1	0000002	112.520		
m2	m2	0000002	15.000		
beta	beta	0000002	1000000.000		
R	R	0000002	1.216		
$lambda_{-}1$	lambda_1	0000002	0.013		$\overline{\mathbf{Z}}$
$lambda_2$	lambda_2	0000002	0.560		$\overline{\mathbf{Z}}$
A	A		0.049		
В	В		$4.9 \cdot 10^{-4}$		
S	S		1.216		
Ca0	Ca0		1.220		
Ca1	Ca1		0.262		$ \overline{\mathbf{Z}} $
t0	t0		575.000		$ \overline{\mathbf{Z}} $
alpha	alpha		0.057		
$x1_n$	x1_n		490.780		
x2_n	$x2_n$		6.629		
$x2$ _min	x2_min		0.670		\square
$x2_max$	x2_max		14.043		
${\tt Ca0_baseline}$	Ca0_baseline		1.255		

6 Rules

This is an overview of nine rules.

6.1 Rule lambda_Ca

Rule $lambda_Ca$ is an assignment rule for parameter $lambda_Ca$:

$$lambda_Ca = \frac{A - B}{1 + \left(\frac{[Ca]}{S}\right)^{m_Ca}} + B \tag{1}$$

6.2 Rule m_Ca

Rule m_Ca is an assignment rule for parameter m_Ca:

$$m_{-}Ca = \frac{m1}{1 + \exp\left(beta \cdot (R - [Ca])\right)} + m2 \tag{2}$$

6.3 Rule Ca

Rule Ca is an assignment rule for species Ca:

$$Ca = \begin{cases} Ca0 & \text{if time} < t0 \\ Ca0 + Ca1 \cdot (1 - \exp(\text{alpha} \cdot (\text{time} - t0))) & \text{otherwise} \end{cases}$$
 (3)

6.4 Rule x1

Rule x1 is a rate rule for species x1:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}\mathbf{1} = \mathbf{k} - \mathrm{lambda}_{-}\mathbf{Ca} \cdot [\mathbf{x}\mathbf{1}] - \mathrm{lambda}_{-}\mathbf{1} \cdot [\mathbf{x}\mathbf{1}] \tag{4}$$

6.5 Rule x2

Rule x2 is a rate rule for species x2:

$$\frac{\mathrm{d}}{\mathrm{d}t}x2 = \mathrm{lambda_Ca} \cdot [x1] - \mathrm{lambda_2} \cdot [x2] \tag{5}$$

6.6 Rule S

Rule S is an assignment rule for parameter S:

$$S = Ca0_baseline \cdot \left(\frac{(x1_n \cdot B - lambda_2 \cdot x2_n)}{x1_n \cdot A - lambda_2 \cdot x2_n} \right)^{\frac{1}{m_Ca}}$$
 (6)

6.7 Rule k

Rule k is an assignment rule for parameter k:

$$k = lambda_2 \cdot x_2 + lambda_1 \cdot x_1$$
 (7)

6.8 Rule A

Rule A is an assignment rule for parameter A:

$$A = \frac{lambda_1 \cdot lambda_2 \cdot x2_max}{k - lambda_2 \cdot x2_max}$$
(8)

6.9 Rule B

Rule B is an assignment rule for parameter B:

$$B = \frac{lambda_1 \cdot lambda_2 \cdot x2_min}{k - lambda_2 \cdot x2_min}$$
 (9)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

7.1 Species x1

Name PTH_in_PTG

SBO:0000245 macromolecule

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule x1

One rule which determines this species' quantity.

7.2 Species x2

Name PTH_in_Plasma

SBO:0000245 macromolecule

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule x2

One rule which determines this species' quantity.

7.3 Species Ca

Name Ca_in_Plasma

SBO:0000247 simple chemical

Initial concentration $1.22 \text{ mol} \cdot l^{-1}$

Involved in rule Ca

One rule which determines this species' quantity.

A Glossary of Systems Biology Ontology Terms

SBO:0000002 quantitative systems description parameter: A numerical value that defines certain characteristics of systems or system functions. It may be part of a calculation, but its value is not determined by the form of the equation itself, and may be arbitrarily assigned

SBO:0000245 macromolecule: Molecular entity mainly built-up by the repetition of pseudo-identical units. CHEBI:3383

SBO:0000247 simple chemical: Simple, non-repetitive chemical entity

SBO:0000290 physical compartment: Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions

SMLZATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany