SBML Model Report

Model name: "Keizer1996_Ryanodinereceptor_adaptation"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 3 format. This model was created by the following two authors: Harish Dharuri¹ and Lukas Endler² at October first 2008 at 5:41 p. m. and last time modified at April sixth 2014 at 9:39 p. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	4
events	0	constraints	0
reactions	3	function definitions	0
global parameters	1	unit definitions	5
rules	1	initial assignments	0

Model Notes

The model reproduces the time profile of Open probability of the ryanodine receptor as shown in Fig 2A and 2B of the paper. The model was successfully tested on MathSBML and Jarnac.

¹California Institute of Technology, hdharuri@cds.caltech.edu

²EMBL-EBI, lukas@ebi.ac.uk

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of nine unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit per_microM4sec

Name microM-4sec-1

Definition $\mu mol^{-4} \cdot s^{-1} \cdot l^4$

2.2 Unit per_microM3sec

Name microM-3sec-1

Definition $\mu mol^{-3} \cdot s^{-1} \cdot l^3$

2.3 Unit per_second

Name per_second

Definition s^{-1}

2.4 Unit microM

Name microM

Definition μ mol·l⁻¹

2.5 Unit substance

Name normalized substance

Definition dimensionless

2.6 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.7 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.8 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.9 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
compartment			3	1	litre	$ \overline{\mathbf{A}} $	

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

4 Species

This model contains four species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Pc1		compartment	dimensionless		
Po2 Po1	Po1	compartment	dimensionless dimensionless		
Pc2	Pc2	${\tt compartment}\\ {\tt compartment}$	dimensionless		

5 Parameter

This model contains one global parameter.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Open- _probability			0.0	dimensionless	В

6 Rule

This is an overview of one rule.

6.1 Rule Open_probability

Rule Open_probability is an assignment rule for parameter Open_probability:

$$Open_probability = Po1 + Po2$$
 (1)

Derived unit dimensionless

6

7 Reactions

This model contains three reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

Nº	Id	Name	Reaction Equation	SBO
1	Closed_state_1		$Po1 \stackrel{\underline{Po1}}{=} Pc1$	
2	Open_state_2		$Po1 \xrightarrow{Po1} Po2$	
3	Closed_State_2	Closed State 2	$Po1 \stackrel{\underline{Po1}}{\longleftarrow} Pc2$	

7.1 Reaction Closed_state_1

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Po1 \stackrel{\underline{Po1}}{\rightleftharpoons} Pc1 \tag{2}$$

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
Po1	Po1	

Modifier

Table 7: Properties of each modifier.

Id	Name	SBO
Po1	Po1	

Product

Table 8: Properties of each product.

Id	Name	SBO
Pc1		

Kinetic Law

Derived unit $\,\mathrm{s}^{-1}$

$$v_1 = \text{ka_minus} \cdot \text{Pol} - \text{ka_plus} \cdot \text{Ca}^n \cdot \text{Pcl}$$
 (3)

Table 9: Properties of each parameter.

		*			
Id	Name	SBO	Value	Unit	Constant
ka_minus			28.8		
ka_plus			1500.0	$\mu \text{mol}^{-4} \cdot \text{s}^{-1} \cdot \text{l}^4$	\square
Ca			0.9	μ mol·l ⁻¹	\square

Id	Name	SBO	Value	Unit	Constant
n			4.0	dimensionless	

7.2 Reaction Open_state_2

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$Po1 \stackrel{\underline{Po1}}{\rightleftharpoons} Po2 \tag{4}$$

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
Po1	Po1	

Modifier

Table 11: Properties of each modifier.

Id	Name	SBO
Po1	Po1	

Product

Table 12: Properties of each product.

Id	Name	SBO
Po2		

Kinetic Law

Derived unit $\,\mathrm{s}^{-1}$

$$v_2 = \text{kb_plus} \cdot \text{Ca}^{\text{m}} \cdot \text{Po1} - \text{kb_minus} \cdot \text{Po2}$$
 (5)

Table 13: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
kb_plus				$\mu mol^{-3} \cdot s^{-1} \cdot l^3$	$lue{2}$
Ca			0.9	μ mol·l ⁻¹	
m				dimensionless	
${\tt kb_minus}$			385.9	s^{-1}	\checkmark

7.3 Reaction Closed_State_2

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name Closed State 2

Reaction equation

$$Po1 \stackrel{\underline{Po1}}{\rightleftharpoons} Pc2 \tag{6}$$

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
Po1	Po1	

Modifier

Table 15: Properties of each modifier.

Id	Name	SBO
Po1	Po1	

Product

Table 16: Properties of each product.

Id	Name	SBO
Pc2	Pc2	

Kinetic Law

Derived unit s^{-1}

$$v_3 = \text{kc_plus} \cdot \text{Pol} - \text{kc_minus} \cdot \text{Pc2}$$
 (7)

Table 17: Properties of each parameter.

Id	Name	SBO Value Un	it Constant
kc_plus	kc_plus	1.75 s ⁻¹	
kc_minus	kc_minus	0.10 s ⁻¹	

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

8.1 Species Pc1

Initial amount 0.963 dimensionless

This species takes part in one reaction (as a product in Closed_state_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Pc1} = v_1 \tag{8}$$

8.2 Species Po2

Initial amount 0 dimensionless

This species takes part in one reaction (as a product in Open_state_2).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{Po2} = |v_2| \tag{9}$$

8.3 Species Po1

Name Po1

Initial amount 0 dimensionless

This species takes part in six reactions (as a reactant in Closed_state_1, Open_state_2, Closed_State_2 and as a modifier in Closed_state_1, Open_state_2, Closed_State_2).

$$\frac{d}{dt} Po1 = -|v_1| - |v_2| - |v_3| \tag{10}$$

8.4 Species Pc2

Name Pc2

Initial amount 0.037 dimensionless

This species takes part in one reaction (as a product in Closed_State_2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Pc2} = |v_3| \tag{11}$$

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

 $[^]d$ EML Research gGmbH, Heidelberg, Germany