Building complex DP algorithms using composition

Privacy & Fairness in Data Science CompSci 590.01 Fall 2018

Outline

- Recap
 - Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
 - Utilizing Parallel Composition
 - Postprocessing & Inference
 - Strategy Selection
 - Data dependent noise

Differential Privacy

For every pair of inputs that differ in one row

[Dwork ICALP 2006]

For every output ...

U

Adversary should not be able to distinguish between any D₁ and D₂ based on any O

$$\forall \Omega \in \text{range}(A), \ln \left(\frac{\Pr[A(D_1) \in \Omega]}{\Pr[A(D_2) \in \Omega]} \right) \leq \varepsilon, \quad \varepsilon > 0$$

Laplace mechanism

Laplace Mechanism

Theorems:

$$E\left(\left(\tilde{q}(D) - q(D)\right)^{2}\right) = 2\left(\frac{S(q)}{\varepsilon}\right)^{2}$$

Error is data independent Depends on q and ε , but not on D

$$Pr\left[|\tilde{q}(D) - q(D)| \ge \frac{S(q)}{\varepsilon} \ln\left(\frac{1}{\delta}\right)\right] \le \delta$$

Outline

- Recap
 - Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
 - Utilizing Parallel Composition
 - Postprocessing & Inference
 - Strategy Selection
 - Data dependent noise

Sequential Composition

Private Database

• If M_1 , M_2 , ..., M_k are algorithms that access a private database D such that each M_i satisfies ε_i -differential privacy,

then the combination of their outputs satisfies ϵ -differential privacy with

$$\varepsilon = \varepsilon_1 + \dots + \varepsilon_k$$

Parallel Composition

Private Database

• If M_1 , M_2 , ..., M_k are algorithms that access are algorithms that access disjoint databases D_1 , D_2 , ..., D_k such that each M_i satisfies ε_i -differential privacy,

then the combination of their outputs satisfies ε -differential privacy with

$$\varepsilon = \max(\varepsilon_1, \dots, \varepsilon_k)$$

Postprocessing

• If M is an ε -differentially private algorithm, any additional post-processing $A \circ M$ also satisfies ε -differential privacy.

Transformations & Stability

- σ_V : Stability of the transformation
 - Maximum number of rows in V that can change due to changing a single row in D

Transformations & Stability

- Executing an ε -differentially private algorithm M on a transformation of a database V(D) satisfies $\varepsilon \cdot \sigma_V$ -differential privacy.
- σ_V : Stability of the transformation
 - Maximum number of rows in V that can change due to changing a single row in D

Transformations & Stability

• V_1 : For each row (x1, x2, x3) \rightarrow (x1, x2+x3)

V₂: Each row in D is a tweet (id, {words}). For each row in D, generate k rows with first k words {(id, word₁), ..., (id, word_k)}

Stability =
$$k$$

• V_3 : Sample each row with probability p.

Stability = 1 ... but can prove $2p\varepsilon$ -differential privacy*

^{*}Adam Smith, <u>Differential Privacy and Secrecy of the Sample</u>

Outline

- Recap
 - Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
 - Utilizing Parallel Composition
 - Postprocessing & Inference
 - Strategy Selection
 - Data dependent noise

Problem

Sex	Height	Weight
M	6'2"	210
F	5′3″	190
F	5′9″	160
M	5′3″	180
M	6′7″	250

Queries:

- # Males with BMI < 25
- # Males
- # Females with BMI < 25
- # Females

- Design an ε -differentially private algorithm that can answer all these questions.
- What is the total error?

Algorithm 1

Return:

- # Males with BMI $< 25 + \text{Lap}(4/\epsilon)$
- # Males + Lap $(4/\epsilon)$
- # Females with BMI < 25 + Lap $(4/\epsilon)$
- # Females + Lap $(4/\epsilon)$

Privacy

- BMI can be computed by transforming each row $(s, h, w) \rightarrow (s, bmi)$. This is stability 1.
- Sensitivity of count = 1. So each query is answered using a $\varepsilon/4$ -DP algorithm.

• By sequential composition, we get ε -DP.

Utility

Error:

$$\sum E\left(\left(\tilde{q}(D)-q(D)\right)^2\right)$$

Total Error:

$$2\left(\frac{4}{\varepsilon}\right)^2 \times 4 = \frac{128}{\varepsilon^2}$$

Algorithm 2

Compute:

- $\widetilde{q_1}$ = # Males with BMI < 25 + Lap(1/ ε)
- $\widetilde{q_2} = \#$ Males with BMI > 25 + Lap $(1/\epsilon)$
- $\widetilde{q_3}$ = # Females with BMI < 25 + Lap(1/ ε)
- $\widetilde{q_4}$ = # Females with BMI > 25 + Lap(1/ ε)

Return

• $\widetilde{q_1}$, $\widetilde{q_1}$ + $\widetilde{q_2}$, $\widetilde{q_3}$, $\widetilde{q_3}$ + $\widetilde{q_4}$

Privacy

- Sensitivity of count = 1. So each query is answered using a ε -DP algorithm.
- q_1, q_2, q_3, q_4 are counts on disjoint portions of the database. Thus by *parallel composition* releasing $\widetilde{q}_1, \widetilde{q}_2, \widetilde{q}_3, \widetilde{q}_4$ satisfies ε -DP.
- By the *postprocessing theorem*, releasing $\widetilde{q_1}$, $\widetilde{q_1} + \widetilde{q_2}$, $\widetilde{q_3}$, $\widetilde{q_3} + \widetilde{q_4}$ also satisfies ε -DP.

Utility

Error:

$$\sum E\left(\left(\tilde{q}(D)-q(D)\right)^2\right)$$

Total Error:

$$2\left(\frac{1}{\varepsilon}\right)^{2} + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^{2} + 2\left(\frac{1}{\varepsilon}\right)^{2} + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^{2} = \frac{12}{\varepsilon^{2}}$$

$$\widetilde{q_1}$$

$$\widetilde{q_1} + \widetilde{q_2}$$

$$\widetilde{q_3}$$

$$\widetilde{q_3} + \widetilde{q_4}$$

Utility

Tighter privacy analysis gives better accuracy for the same level of privacy

Total Error:

$$2\left(\frac{1}{\varepsilon}\right)^{2} + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^{2} + 2\left(\frac{1}{\varepsilon}\right)^{2} + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^{2} = \frac{12}{\varepsilon^{2}}$$

$$\widetilde{q_1}$$

$$\widetilde{q_1} + \widetilde{q_2}$$

$$\widetilde{q_3}$$

$$\widetilde{q_3} + \widetilde{q_4}$$

Generalized Sensitivity

• Let $f: \mathcal{D} \to \mathbb{R}^d$ be a function that outputs a vector of d real numbers. The sensitivity of f is given by:

$$S(f) = \max_{D,D': |D\Delta D'|=1} ||f(D) - f(D')||_1$$

where
$$\|\mathbf{x} - \mathbf{y}\|_1 = \sum_i |x_i - y_i|$$

Generalized Sensitivity

- $q_1 = \#$ Males with BMI < 25
- $q_2 = \#$ Males with BMI > 25
- q = # Males with BMI
- Let f_1 be a function that answers both q_1 , q_2
- Let f_2 be a function that answers both q_1 , q
- Sensitivity of $f_1 = 1$
- Sensitivity of $f_2 = 2$
- An alternate privacy proof for Alg 2 is to show that the generalized sensitivity of $\widetilde{q_1}$, $\widetilde{q_2}$, $\widetilde{q_3}$, $\widetilde{q_4}$ is 1.

Outline

- Recap
 - Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
 - Utilizing Parallel Composition
 - Postprocessing & Inference
 - Strategy Selection
 - Data dependent noise

Improving utility of Alg 2

Compute:

- $\widetilde{q_1}$ = # Males with BMI < 25 + Lap(1/ ε)
- $\widetilde{q_2} = \#$ Males with BMI > 25 + Lap $(1/\epsilon)$

Return

•
$$\widetilde{q_1}$$
, $\widetilde{q_1}$ + $\widetilde{q_2}$

We know
$$q_1 \le q_1 + q_2$$
, but $P[\widetilde{q_1} > \widetilde{q_1} + \widetilde{q_2}] > 0$

Constrained Inference

Constrained Inference

- $q_1, q_2, ..., q_k$ be a set of queries
- $\widetilde{q_1}$, $\widetilde{q_2}$, ..., $\widetilde{q_k}$ be the noisy answers
- Constraint $C(q_1, q_2, ..., q_k) = 1$ holds on true answers (for all typical databases), but does not hold on noisy answers.
- Goal: Find $\overline{q_1}$, $\overline{q_2}$, ..., $\overline{q_k}$ that are:
 - Close to $\widetilde{q_1}$, $\widetilde{q_2}$, ..., $\widetilde{q_k}$
 - Satisfy the constraint $C(\overline{q_1}, \overline{q_2}, ..., \overline{q_k})$

Least Squares Optimization

$$\min \sum (\widetilde{q_1} - \overline{q_1})^2$$

$$s.t.C(\overline{q_1},\overline{q_2},...,\overline{q_k})$$

Geometric Interpretation

Geometric Interpretation

Theorem: $\|\boldsymbol{q} - \overline{\boldsymbol{q}}\|_2 \le \|\boldsymbol{q} - \widetilde{\boldsymbol{q}}\|_2$ when the constraints form a convex space

Ordering Constraint

Isotonic Regression:

$$\min \sum (\widetilde{q_1} - \overline{q_1})^2$$

$$s.t.\overline{q_1} \leq \overline{q_1} \leq ... \leq \overline{q_k}$$

Outline

- Recap
 - Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
 - Utilizing Parallel Composition
 - Postprocessing & Inference
 - Strategy Selection
 - Data dependent noise

Problem

Sex	Height	Weight
M	6'2"	210
F	5′3″	190
F	5′9″	160
M	5′3″	180
M	6′7″	250

Queries:

- # people with height in [5'1", 6'2"]
- # people with height in [2'0", 4'0"]
- # people with height in [3'3", 7'0"]
- ..

- Design an ε -differentially private algorithm that can answer all range queries.
- What is the total error?

Problem

- Let $\{v_1, ..., v_k\}$ be the domain of an attribute
- Let $\{x_1, ..., x_k\}$ be the number of rows with values $v_1, ..., v_k$

- Range Query: $q_{ij} = x_i + x_{i+1} + ... + x_j$
- Goal: Answer all range queries

Strategy 1:

Answer all range queries using Laplace mechanism

- Sensitivity: $O(k^2)$
- Total Error: $O(k^4/\varepsilon^2)$

Strategy 2:

- Estimate each individual x_i using Laplace mechanism
- Answer: $q_{ij} = \widetilde{x}_i + \widetilde{x}_{i+1} + ... + \widetilde{x}_j$
- Error in each \widetilde{x}_i : $O(1/\varepsilon^2)$
- Error in q_{1k} : $O(k/\varepsilon^2)$
- Total Error: $O(k^3/\varepsilon^2)$

• Estimate all the counts in the tree below using Laplace mechanism

- Sensitivity: log *k*
- Every range query can be answered by summing up at most 2 log *k* nodes in the tree.

- Error in each node: $O((\log k)^2/\varepsilon^2)$
- Max error on a range query: $O((\log k)^3/\varepsilon^2)$
- Total Error: $O(k^2(\log k)^3/\varepsilon^2)$

- Error in each node: $O((\log k)^2/\varepsilon^2)$
- Max error on a range query: $O((\log k)^3/\varepsilon^2)$
- Total Error: $O(k^2(\log k)^3/\varepsilon^2)$
- Error can be further reduced using constrained inference
 - Here the constraint is that parent counts should not be smaller than child counts.

Strategy based mechanisms

- Can think of nodes in the tree as coefficients.
- Other algorithms use other transformations
 - Wavelets, Fourier coefficients
- Should be able to *losslessly* reconstruct the original data/query answers.

General Idea:

- Apply transform
- Add noise to the transformed space (based on sensitivity)
- Reconstruct original data/query answers from noisy coefficients

Outline

- Recap
 - Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
 - Utilizing Parallel Composition
 - Postprocessing & Inference
 - Strategy Selection
 - Data dependent noise

Data dependent noise mechanisms

[LHMY14] Li et al. A data- and workload-aware algorithm for range queries under differential privacy. In PVLDB, 2014.

Data dependent noise mechanisms

• Use a data dependent sensitivity measure called Smooth sensitivity.

K. Nissim, S. Raskhodnikova, A. Smith, "Smooth Sensitivity and sampling in private data analysis", STOC 2007

Summary

- Composition theorems help build complex algorithms using simple building blocks
 - Sequential composition
 - Parallel composition
 - Postprocessing
 - There are more advanced forms of composition.

Summary

- For the same privacy budget, a better designed algorithm can extract more utility
 - When possible use parallel composition
 - Inference on constraints between queries can reduce error
 - Answering a different strategy of queries can help reduce error