

Encoding 编码

• Encoding 编码

• Encoding describes the process of assigning representations to information

• Choosing an appropriate and efficient encoding is a real engineering challenge

• Impacts design at many levels

• Mechanism (devices, # of components used)

• Efficiency (bits used)

• Reliability (noise)

• Security (encryption)

100084

· 数制:表示数量的规则
· 码制:表示事物的规则

wang_hong@tsinghua.edu.cn 清章大学

・数制:
①每一位的构成
②从低位向高位的进位规则

我们常用到的:
十进制,二进制,八进制,十六进制

二进制数的补码:

- ・ 最高位为符号位(**0**为正,**1**为负)
- 正数的补码和它的原码相同
- · 负数的补码 = 数值位逐位求反 +

$$+5 = (0 \ 0101)$$

 $-5 = (1 \ 1011)$

两个补码表示的二进制数相加时的符号位讨论 例:用二进制<mark>补码运算</mark>求出 注意编码的 取值范围 $13+10 \cdot 13-10 \cdot -13+10 \cdot -13-10$ +13 0 01101 +13 0 01101 +10 0 01010 -10 1 10110 +3 0 00011 + 23 0 10111 -13 1 10011 -13 1 10011 -10 1 10110 +10 0 01010 -3 1 11101 -23 1 01001 结论: 将两个加数的符号位和来自最高位数字位的进位相

・码制

加、结果就是和的符号

用不同数码表示不同事物时遵循的规则例如:学号,身份证号,车牌号。。。

- 目前,数字电路中都采用二进制
- ・表示数量时称二进制
- ・表示事物时称二值逻辑

wang_hong@tsinghua.edu.cn 🎁 筆火堂

Fixed-length encodings 等长编码

If all choices are equally likely (or we have no reason to expect otherwise), then a fixed-length code is often used. Such a code will use at least enough bits to represent the information content.

ex. Decimal digits 10 = {0,1,2,3,4,5,6,7,8,9} 4-bit BCD (binary code decimal)

$$log_2(10) = 3.322 < 4bits$$

ex. ~86 English characters = {A-Z (26), a-z (26), 0-9 (10), punctuation (11), math (9), financial (4)} 7-bit ASCII (American Standard Code for Information Interchange)

$$log_2(86) = 6.426 < 7bits$$

变长编码, 哈夫曼编码, 解码

格雷码

每一位的状态变化都按一定的顺序循环。

编码顺序依次变化,按表中顺序变化时,相邻代码只有一位 改变状态。

编码顺 序	二进制	格雷码	编码顺序	二进制码	格雷码
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

wanq_hong@tsinghua.edu.cn

浅蓑大堂

Representing information with voltage

Representation of each point (x, y) on a Picture:

0 volts: BLACK 1 volts: WHITE 0.37 volts: 37% Gray

etc.

Representation of a picture: Scan points in some prescribed raster order... generate voltage waveform

