How to estimate error

Estimate errors

Absolute error

$$|y_{ref} - y_{app}|$$

Relative Error

$$|\frac{y_{ref} - y_{app}}{y_{ref}}|$$

Relative Error and Significant Digit

• The number of y_{app} is said to approximate y_{ref} to k significant digits if k is the largest non-negative integer for which

$$\frac{|y_{ref} - y_{app}|}{y_{ref}} < \frac{1}{0.1} \times 10^{-k} < 10 \times 10^{-k}$$

- $y_{ref} = 0.123456789123456789$
- 3 significant digit: $y_{app} = 0.123$

$$\left| \frac{y_{ref} - y_{app}}{y_{ref}} \right| = \left| \frac{0.000456789123456789}{0.123456789123456789} \right|$$
$$= 0.0037 < 10^{-2} = 10 \times 10^{-3}$$

• 6 significant digit $y_{app} = 0.123456$

$$\left| \frac{y_{ref} - y_{app}}{y_{ref}} \right| = \left| \frac{0.000000789123456789}{0.123456789123456789} \right|$$
$$= 6.4 \times 10^{-6} < 10 \times 10^{-6}$$

Accuracy(準確度) & Precision(精確

度)

假如答案已知: My_exp() V.S. Exp()

```
N = 3, My_{exp} = 2.66666666666666666665e+000, Exp = 2.7182818284590455e+000
N = 4, My_{exp} = 2.7083333333333330e+000, Exp = 2.7182818284590455e+000
N = 5, My_{exp} = 2.71666666666666666668 + 000, Exp = 2.7182818284590455e + 000
N = 6, My exp = 2.71805555555555554e+000, Exp = 2.7182818284590455e+000
N = 7, My_{exp} = 2.7182539682539684e+000, Exp = 2.7182818284590455e+000
N = 8, My_{exp} = 2.7182787698412700e+000, Exp = 2.7182818284590455e+000
N = 9, My_{exp} = 2.7182815255731922e+000, Exp = 2.7182818284590455e+000
N = 10, My_{exp} = 2.7182818011463845e+000, Exp = 2.7182818284590455e+000
N = 11, My_{exp} = 2.7182818261984929e+000, Exp = 2.7182818284590455e+000
N = 12, My_{exp} = 2.7182818282861687e+000, Exp = 2.7182818284590455e+000
N = 13, My_{exp} = 2.7182818284467594e+000, Exp = 2.7182818284590455e+000
N = 14, My_{exp} = 2.7182818284582302e+000, Exp = 2.7182818284590455e+000
N = 15, My exp = 2.7182818284589949e+000, Exp = 2.7182818284590455e+000
```

假如答案未知: 只有近似值

- 假設運算次數越多, 近似值會越一致。
- Set *y_{ref}*: 前一個近似值 *y_{app}*: 目前的近似值

```
N = 1, My_{exp} = 2.0000000000000000e+000,
N = 2, My_{exp} = 2.5000000000000000e+000,
N = 3, My_{exp} = 2.66666666666666665e+000,
N = 4, My_{exp} = 2.7083333333333330e+000,
N = 5, My_{exp} = 2.71666666666666668e+000,
N = 6, My exp = 2.718055555555554e+000,
N = 7, My_{exp} = 2.7182539682539684e+000,
N = 8, My_{exp} = 2.7182787698412700e+000,
N = 9, My_{exp} = 2.7182815255731922e+000,
N = 10, My_{exp} = 2.7182818011463845e+000,
N = 11, My_{exp} = 2.7182818261984929e+000,
N = 12, My_{exp} = 2.7182818282861687e+000,
N = 13, My_{exp} = 2.7182818284467594e+000,
N = 14, My_{exp} = 2.7182818284582302e+000,
N = 15, My_{exp} = 2.7182818284589949e+000,
```

Numerical Differentiation

Goal:

Calculate Derivatives of all order at any point of any given function

BCCP: B.A. Stickler et al. Chap. 2

Computational Physics: R. Landau et. al. Chap. 6

Displacement, Velocity & Acceleration

- Displacement
- $\Delta x = x_2 x_1$ = $x(t_i + \Delta t) - x(t_i)$
- Instantaneous Velocity

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

Instantaneous Acceleration

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

7.4. Potential Energy Curves

Frictionless roller-coaster track

How fast must a car be coasting at point *A* if it's to reach point *D*?

Criterion: $E_A \ge U_C$

$$\frac{1}{2}m v_A^2 + m g h_A \ge m g h_C$$

$$v_A \geq \sqrt{2g(h_C - h_A)}$$

turning points

potenti al barrier potenti al well

Dipole Potential

An electric dipole consists of point charges $\pm q$ a distance 2a apart.

Find the potential at an arbitrary point *P*, and approximate for the casewhere the distance to *P* is large compared with the charge separation.

$$V(P) = k \frac{q}{r_1} + k \frac{(-q)}{r_2} = kq \left(\frac{1}{r_1} - \frac{1}{r_2}\right) = kq \frac{r_2 - r_1}{r_2 r_1}$$

$$p = 2qa = dipole moment$$

Dipole Field

An electric dipole consists of point charges $\pm q$ a distance 2a apart.

Find the potential at an arbitrary point *P*, and approximate for the casewhere the distance to *P* is large compared with the charge separation.

$$V(P) = k \frac{q}{r_1} + k \frac{(-q)}{r_2} = kq \left(\frac{1}{r_1} - \frac{1}{r_2}\right) = kq \frac{r_2 - r_1}{r_2 r_1}$$

$$\vec{E}(\vec{r}) = -\frac{d}{d\vec{r}} V(\vec{r}) = -\nabla V(\vec{r})$$

$$E_x = -\frac{d}{dx} V(\vec{r})$$

$$E_z = -\frac{d}{dy} V(\vec{r})$$

$$E_z = -\frac{d}{dz} V(\vec{r})$$

Problems to be solved

- Try to find the derivatives of a given function
 - Find f'(0.12345),

where
$$f(x) = Log(\sqrt{\sin(e^{-(x^2-2x+\frac{1}{e^x+e^{-x}})})} / (e^x + e^{-x^2})$$

• Try to find the derivatives from a dataset

Numerical Differentiation

- Find the derivatives of any function @ any point
 - Forward / Backward Difference
 - Central Difference
- Optimize the solution
- Higher order derivative

Differentiation

Definition of derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• Using Taylor Expansion on f(x+h)

$$f(x+h) = f(x) + \frac{h}{1!}f'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f^{(3)}(x) + \dots$$

Differentiation

Series of the derivative

$$f'(x) = \frac{f(x+h) - f(x)}{h} - (\frac{h}{2!}f''(x) + \frac{h^2}{3!}f^{(3)}(x) + \dots)$$

Approximation of a derivative

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$$

Differentiation

Forward Difference

• Use secant slope to approximate the slope of a tangent line.

• The error is of the order of h

• Smaller step MIGHT give better result.

Numerical Methods to calculate derivatives

- Forward Method/Backward Method/Central Difference
- N-pt Method
- Higher order Derivative
- Optimized Step Size

Backward Method

Definition of derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x) - f(x-h)}{h}$$

• The Taylor series for f(x-h)

$$f(x-h) = f(x) - \frac{h}{1!}f'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f^{(3)}(x) + \dots$$

Backward Method

Series of the derivative

$$f'(x) = \frac{f(x) - f(x - h)}{h} + \frac{h}{2!}f''(x) - \frac{h^2}{3!}f^{(3)}(x) + \dots$$

Approximation of a derivative

$$f'(x) = \frac{f(x) - f(x-h)}{h} + O(h)$$

Backward Difference

- Similar to Forward Difference, a secant slope is used to approximate the slope of a tangent line.
- Small step could lead to a better approximation
- The error is of the order of h

- Find the numerical derivative of exp(x)
 at x = 1
- Take h = 0.1, 0.01 and 0.001
- exp(1) = 2.71828
- Derivative

$$f'(1) = \frac{d}{dx} e^x \Big|_{x=1} = e^1$$

h	exp(x-h)	exp(x)		Forward Difference		Backward Difference	Error (Backward)
0.1	2.45960	2.71828	3.00417	2.85884	0.14056	2.58679	0.13149
0.01	2.69123	2.71828	2.74560	2.73192	0.01364	2.70474	0.01355
0.001	2.71556	2.71828	2.72100	2.71964	0.00136	2.71692	0.00136

- Check the absolute error
 - The error is somewhat proportional to step size h

Example: Forward Difference

• How about the derivative at other values

Example: Absolute Error of Forward Difference

Example: Absolute Error of Forward Difference

Forward/backward Difference

Forward Difference

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{h}{2!}f''(x) - \frac{h^2}{3!}f^{(3)}(x) - \dots$$

Backward Difference

$$f'(x) = \frac{f(x) - f(x - h)}{h} + \frac{h}{2!}f''(x) - \frac{h^2}{3!}f^{(3)}(x) + \dots$$

Brief Review

- What we know about numerical differentiation
- A function is known and well defined on every point
 - E.g. f(x-2h), f(x-h), f(x), f(x+h), f(x+2h), ...
- What we don't know are the derivatives
 - f'(x-2h), f'(x-h), f'(x), f'(x+h),....

Goal of numerica differentiation

- Use the function value f(x-2h), f(x-h), f(x), f(x+h), f(x+h)
- And their linear combination to approximate the derivatives
 - E.g. f'(x) = a*f(x-h)+b*f(x);or f'(x) = m*f(x-2h)+n*f(x-h)+k*f(x)+l*f(x-h)...

Central Difference

 How about taking an average of the two differential form?

$$2f'(x) = \frac{f(x+h) - f(x-h)}{h} - \frac{2h^2}{3!}f^{(3)}(x) - \dots$$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

- Find the numerical derivative of exp(x) at x = 1
- Take h = 0.1, 0.01 and 0.001

						Error		Error
					Forward	(Forward)	Central	(Central)
h		exp(x-h)	exp(x)	exp(x+h)	Difference	~h	Difference	~h ²
	0.1	2.459603	2.718282	3.004166	2.858842	0.140560	2.722815	0.004533
	0.01	2.691234	2.718282	2.745601	2.731919	0.013637	2.718327	0.000045
	0.001	2.715565	2.718282	2.721001	2.719641	0.001360	2.718282	0.000000

Central Difference

- Increase precision by an order
- Can be used for estimation of derivative of every points not at the boundary

Optimize h for derivatives

To get a better derivative

Forward Difference

$$f'(x) = \frac{f(x+h) - f(x)}{h} + O(h)$$

Central Difference

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

Small Step Size

• Small h could minimize error?

• Estimate $d/dx \sin x$ at x = 0.9 with h = 1e-3, 1e-5, 1e-7, 1e-9

h	Cos(0.9)	Central Difference	Error
1.00E-03	0.621609968271	0.621609864669	1.03602E-07
1.00E-05	0.621609968271	0.621609968254	1.63314E-11
1.00E-07	0.621609968271	0.621609967943	3.27194E-10
1.00E-09	0.621609968271	0.621609985707	1.74364E-08

Effect of Round-Off error

• $\varepsilon(x)$ is the round off error of the machine number x from true x

The two numbers for central difference

$$f(x+h) = \hat{f}(x+h) + \varepsilon(x+h)$$

$$f(x-h) = \hat{f}(x-h) + \varepsilon(x-h)$$

For Central Difference

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{6} f^{(3)}(\xi(x))$$

$$= \frac{\hat{f}(x+h) - \hat{f}(x-h)}{2h} + \frac{\varepsilon(x+h) - \varepsilon(x-h)}{2h} - \frac{h^2}{6} f^{(3)}(\xi(x))$$

$$= \hat{f}'(x+h) + ERROR$$

The combination of approximation error and round-off error

$$f'(x) - \hat{f}'(x) = \frac{\varepsilon(x+h) - \varepsilon(x-h)}{2h} - \frac{h^2}{6}f^{(3)}(\xi(x))$$

- Typically $\mathcal{E}(x+h) \& \mathcal{E}(x-h)$ will be bounded at a certain number E
- The final term is also bounded within x+h and x-h

Error effect on Central Difference

$$\left| f'(x) - \frac{\hat{f}(x+h) - \hat{f}(x-h)}{2h} \right| \le \frac{E}{h} + \frac{h^2}{6}M$$

Optimum h should minimize the error

$$\frac{\partial}{\partial h} \left(\frac{E}{h} + \frac{h^2}{6} M \right) = 0 \qquad \Longrightarrow h = \sqrt[3]{\frac{3E}{M}}$$

- Optimum h to estimate d/dx sin(x) around 0.9
- Upper bound of M

$$M = \max(\left| \frac{d^3}{dx^3} \sin x \right|) = \max(\left| -\cos x \right|) \Big|_{around 0.9}$$

• Estimate E: (64 bit)machine epsilon 10⁻¹⁶

$$h \approx \sqrt[3]{\frac{3E}{M}} = \sqrt[3]{\frac{3 \times 10^{-16}}{0.62}} = 7.85 \times 10^{-6}$$

Higher Order Derivative

Intuitive Method

• 2nd order Derivative is the derivative of 1st order Derivative

$$f''(x) = \lim_{h \to 0} \frac{f'(x) - f'(x - h)}{h}$$

- Find numerical result of f'(x), f'(x+h), f'(x-h), ...
- Forward/Backward/Central/n+1 pt method...

A cleaver way

$$f(x+h) = f(x) + \frac{h^1}{1!}f'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f^{(3)}(x) + \dots$$
$$f(x) = f(x)$$

$$f(x-h) = f(x) - \frac{h}{1!}f'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f^{(3)}(x) + \dots$$

$$a * f(x+h) + b * f(x) + c * f(x-h) = Kh^2 f''(x) + O(h^m)$$

A cleaver way

$$f(x+h) = f(x) + \frac{h^1}{1!}f'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f^{(3)}(x) + \dots$$
$$f(x) = f(x)$$

$$f(x-h) = f(x) - \frac{h}{1!}f'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f^{(3)}(x) + \dots$$

$$f(x+h) - 2f(x) + f(x-h) = h^2 f''(x) - \frac{2h^4}{4!} f^{(4)}(x) + \dots$$

2nd Order Derivative

• The 2nd Order Derivative Formula

$$f''(x) = \frac{1}{h^2} [f(x+h) + f(x-h) - 2f(x)] + O(h^2)$$

• The error is proportional to h²

Example

h	exp(x-2h)	exp(x-h)	exp(x)	exp(x+h)	exp(x+2h)
0.1	2.225541	2.459603	2.718282	3.004166	3.320117
0.01	2.664456	2.691234	2.718282	2.745601	2.773195
0.001	2.712851	2.715565	2.718282	2.721001	2.723724

Forward Difference

exp'(x):FD	exp'(x+h):FD	exp"(x):FD	exp''(x)
2.858842	3.159509	3.006670	2.720548
2.731919	2.759375	2.745624	2.718304
2.719641	2.722362	2.721002	2.718282

Central Difference

exp'(x-h):CD	exp'(x+h):CD	exp"(x):CD	exp"(x)
2.463704	3.009175	2.727355	2.720548
2.691279	2.745647	2.718372	2.718304
2.715565	2.721002	2.718283	2.718282

Higher Order Derivative

- You may keep differentiating a lower order derivative for a higher order one
 - Error would accumulate
- Using analytical formula to estimate the differential form
 - 2nd order: 3 points
 - 3rd order : 5 points

3rd Order: 4 points or 5 points?