

2022 SPE EUROPE ENERGY GEOHACKATHON

8. Advanced Python with ML

Kapetis, Dimos Falcone, Federico

ABOUT US.

Dimos Kapetis

Bio

Data Scientist Senior Manager with 15 years of advanced analytics experience with focus on Machine Learning, Natural Language Processing, predictive modelling projects.

In his current role, he is responsible for developing and running of Artificial Intelligence solutions perform data analysis and evaluate the Machine Learning application. He is co-author of 50 scientific peer-reviewed scientific publications in data analysis.

Federico Falcone

Education

Data scientist manager in Accenture. He has a Master of Science degree in Computer Science and Engineering.

In his current role, he is involved as a lead for Artificial intelligence projects to design, develop and support clients with state-of-the-art solutions for their business. He has a strong knowledge of computer vision, natural language processing and advanced analytics machine learning topics.

Contacts

dimos.kapetis@accenture.com

dimos-kapetis

Contacts

federico.falcone@accenture.com

fedefalco92

<u>federicofalcone92</u>

Accenture Applied Intelligence

Capabilities in Italy AI CODE

Natural Language Processing

Computer Vision

TimeSeries -\/\-

Agent-based Systems & Robotics

Graph ML 🔑

Predictive Customer Analytics

Synthetic Data

Simulation & Operations Research

Speech & Audio Processing

Reinforcement Learning

Recommender Systems

People

70+

Data Scientists, Data Engineers, Solution Architects, FE & BE Developers, PMs.

Accenture Applied Intelligence has capabilities to **combine** state-ofthe-art Machine Learning models with the expertise of the **delivery** E2E application, using cloud agnostic and open-source technologies. Additionally, we work on advisor activities and on awareness and culture of ML.

Expertise in different domains and Industries: energy, utilities, telco, financial services, health, retail.

Technology Partners 20+ From cloud providers to software integration partners.

50+

Agenda

- 1 Machine Learning Introduction
- 2 Machine Learning Design Life Cycle
- 3 Prepare a ML Model with Python
- 4 Enterprise tips for python projects solution

1

Machine Learning Introduction

Hype Cycle for Data Science and Machine Learning

Hype Cycle for Data Science and Machine Learning, 2022

Plateau will be reached: ○ <2 yrs. ○ 2-5 yrs. ● 5-10 yrs. ▲ >10 yrs. ⊗ Obsolete before plateau

Gartner

Artificial Intelligence Fields From Al to Deep Learning

Artificial Intelligence (AI) is a collective term for various technologies that enables machines to imitate human behavior, e.g. by rules, decision trees or machine learning algorithms.

Machine Learning (ML) is a part of AI and includes a variety of statistical methods. Historical data are used to train machines to deal with input values.

Deep Learning (DL) is assigned to machine learning and uses, among other things, multilayer neural networks to solve complex problems with the help of large amounts of data.

MAIN TYPES OF LEARNING

Machine Learning

Supervised and unsupervised Learning

In **Supervised learning**, an AI system is presented with **data** which is **labeled**, which means that each **data tagged** with the **correct label**.

The goal is to **approximate** the **mapping function** so well that when you have **new input data** (x) that you can **predict the output variables** (Y) for that data.

CLASSIFICATION

A classification problem is when the output variable is a category, such as "red" or "blue" or "disease" and "no disease".

REGRESSION

A regression problem is when the output variable is a real value, such as "dollars" or "weight".

In **unsupervised learning**, an AI system is presented with **unlabeled**, **uncategorized data** and the system's algorithms act on the data without prior training.

The **output** is dependent upon the **coded algorithms**. Subjecting a system to unsupervised learning is one way of testing AI.

CLUSTERING

A clustering problem is where you want to discover the inherent groupings in the data, such as grouping customers by purchasing behavior.

ASSOCIATION

An association rule learning problem is where you want to discover rules that describe large portions of your data, such as people that buy X also tend to buy Y.

Machine Learning Most common (supervised) algorithms

Model Type	Name	Description	Pros	Cons
Linear	Linear Regression	Find the "best fit" through all the data points. The forecast is composed of continuous numbers	Easy to understand: it is easy to see clearly which are the main drivers of the model	Model too simple to capture complex relationships between variables
Tree-based	Random Forest	Composed of a set of rules based on the characteristics of the data, it forms a tree that tries to combine all possible results to the prediction.	Provides a high-quality result. The model is fast to train but may not converge	The Model can be very large and difficult to interpret
	Gradient Boosting	Unlike Random Forest form set of rules in the form of a set of weak predictive models (error based)	Very high performance in computational terms	Difficult to interpet
Neural Networks	Neural Networks (Deep Learning)	"Interconnected neurons" that pass messages to each other at different levels of depth	Can handle extremely complex tasks - e.g.,image recognition	Very slow to train, because they often have a complex architecture. Model not easy to interpret

2

Machine Learning Design Life Cycle

ML Development

If you goal is to use ML you need to define:

- 1. Happens during the ML Model
- **2.** What happens before
- **3.** Everything that happened next

In Accenture we apply this methodology to achieve business and product goals, to help new Data Scientist to apply to real world problem.

Our team breaks down this into 6 steps:

- Frame the problem
- Data Collection
- Evalute Baseline
- Features
- Perform ML Analysis
- Iterate

Problem Definition – What problem are we trying solve?

Business Problem

Data - What data do you have?

Evaluate – How could work?

Evaluate Baseline:

Build a first possible model to act as a baseline for feature model and future work (e.g. use simple regression model to predict the future values, or energy consumption)

Dataset Partition (Train/test/validation)

The golden standard is to split the data into 3 sets:

- a. Training (model building)
- b. Evaluation (hyper parameter of the model)
- c. Test set (not used for training or tuning)

Data Partition Type

- a. Random
- b. Sequential (used for time series)
- c. Stratified

Features – What features of data best align with model metrics?

Feature engineering is how we take domain specific knowledge, and encode it into a format that our model can leverage effectively. Considered as one most **important phase** of AI model development

DATA FEATURE MODEL A A Feature and Model has small iteration Life cycle vs Data

FEATURE ENGINEERING

- Transform features (e.g. one-hot encoding)
- Scale features (e.g. min-max scaling, Z-score)
- Build new (may impact semantic meaning)

Model - what model best suits the problem and data?

Create a Predictive Model

• Use feature from previous step

Factors that govern choice of model:

- Features
- Data Volume
- Interpretability

Model - what model best suits the problem and data?

Create a Predictive Model

Use feature from previous step

Factors that govern choice of model:

- Features
- Data Volume
- Interpretability

Model Tuning Types

A- Hyperparameter tuning like learning rate and regularization parameter

B- Model architecture settings

- Feature interactions for linear model
- Number of leave/trees for tree based
- Number, type and width of layers for neural network

Iterate- how can you iterate and improve upon the previous steps

- This step involves all the previous steps.
- Your **goal** should be minimising the time between offline experiments (experiment phase) and online experiments (production)

Poor performance on training data means:

- -Model hasn't **learned properly**. Try a different model, improve the existing one, collect more data, collect better data.
- -Model doesn't **generalise well**. Your model may be overfitting the training data. Use a simpler model or collect more data.

3

Prepare a Machine Learning Model with Python

Demo on Energy Efficiency on buildings

Demo hands-on Energy efficiency on buildings

CONTEXT

Energy efficiency on buildings is a trend topic that people pay more attention in the last year, due to energy crisis.

The possibility to **predict** the **heating** and **cooling load** by the usage of **building information** could open many **scenarios of application**: for instance, cost-optimization problems of building renovation could consider which buildings get more advantages in term of energy saving.

DATASET: Energy efficiency

- Original Dataset: https://archive.ics.uci.edu/ml/datasets/Energy+efficiency
- Kaggle Dataset: https://www.kaggle.com/datasets/winternguyen/energy-efficiency-on-buildings

TOOLS

- Google Colab (suggested): it does not require any additional installation (https://colab.research.google.com)
- Jupyter Lab: it requires installation

COMPOSITION

Input Variables

- Relative Compactness
- Surface Area m²
- Wall Area m²
- Roof Area m²
- Overall Height m
- Orientation 2:North, 3:East, 4:South, 5:West
- Glazing Area 0%, 10%, 25%, 40% (of floor area)
- Glazing Area Distribution (Variance) 1:Uniform, 2:North, 3:East, 4:South,
 5:West

Target Variables

- Heating Load kWh/m²
- Cooling Load kWh/m²

TASK

Regression: predict the heating and cooling load with a ML model, giving the input and target variables.

Demo hands-on **Steps and objective**

OBJECTIVE

During the lab session, we will focus on the classical **steps** to **build** and **train** ML model, with a focus on **EDA** (**Exploratory Data Analysis**). Then, we demonstrate how to **use** the **model** in **real** context.

We also include and discuss about some useful **libraries** that can help and accelerate your development work.

4

Enterprise tips for Python solutions

From dev to production

MACHINE LEARNING

LIFECYCLE IDEA PIPELINE SHAPE **PRE PUBLISH LAUNCH** At Project Initiation When Model Testing is complete Before going Live ML Canvas Submit QA Form **DATA DRIVEN DESIGN** Collaborative partnership PRE PUBLISH between data engineers and **LAUNCH** data scientists to deliver datasets in preparation for modelling. DRIVEN DESIGN DATA **OPS PRODUCTIONISE MONITOR** RETRAIN / RECALIBRATE Soft gates Hard gates **DEVELOP PRODUCTIONISE MONITOR** Iterative model and feature Hardening and testing of Monitor and manage the performance of data pipelines and models production models over time, identifying development in agile sprints, cycling between model training, scoring, for deployment into live any that need to be re-trained or retesting, and re-training. environments. calibrated.

MACHINE LEARNING CONCEPTUAL ML ARCHITECTURE

A data scientist's model without any integration in **production context** is not useful.

A ML model should be considered as a software and all steps of a software engineering development should be applied: therefore, a ML application is based on the conjunction of code, data and models.

The operations behind ML applications are defined as **MLOps**.

Romanian Section

Copenhagen Section

www.spehackathon-eu.com

#DatafyingEnergy

