Chris Wiebe Physics 3P41

The 2-state paramagnet

- Where is the 2-state model used?
- An example: 2-state paramagnet
- If you apply a magnetic field to a solid, the unpaired electrons will tend to align in that field (nuclei have very small magnetic moments too, but we'll ignore them for now).
- These electronic moments, in the absence of a field, interact only weakly with themselves in most cases (exception: ferromagnets, where the moments can align even without a field. These are the magnets in compasses and on your fridge).
- Now, these dipoles can point in any direction in a solid. For simplicity, let's assume they can only align with a field, or against a field (sometimes called the <u>Ising model</u>, see Chap. 8). So we have:

What is the multiplicity of the no. of up states (N_{\uparrow}) and the no. of down states (N_{\downarrow}) ?

The 2-state paramagnet

•
$$N = N_{\uparrow} + N_{\downarrow}$$

No of up states No. of down states

$$\Omega(N_{\uparrow}) = \binom{N}{N_{\uparrow}} = \frac{N!}{N!(N-N)!} = \frac{N!}{N!N!}$$

- The total energy of this system is defined as the total no. of up and down dipoles, so saying what the <u>macrostate</u> the system is in is the same as specifying its <u>total energy</u>.
- Eg. The lowest energy state all the spins align in a field

The 2-state paramagnet

 Since it costs energy to flip a spin, higher energy states are defined by the no. of spins pointing in the opposite direction. But it doesn't matter which spin you flip.

These 2 states have the same energy – order doesn't count

 So, knowing the multiplicity is important, and knowing the macrostate (eg. how many spins are flipped) is important.
 Macrostates typically <u>characterize</u> a system (and define properties such as the energy)

Einstein made many contributions to statistical physics

Problem (1907): In a solid, there are atoms held together by

spring-like forces:

- Each atom is a harmonic oscillator (for now, it doesn't matter which direction it vibrates in)
- Potential energy: ½ k_sx²

Spring constant

Displacement

Quantum Mechanics tells us that the levels are quantized:

Figure 2.2. In quantum mechanics, any system with a quadratic potential energy function has evenly spaced energy levels separated in energy by hf, where f is the classical oscillation frequency. An Einstein solid is a collection of N such oscillators, all with the same frequency. Planck's constant

- The energy levels are quantized in units of E = hf
- This is the picture we have for N oscillators in a solid of N atoms.
 Other examples of this: diatomic gases such as N₂ or H₂ (which each act like little oscillators)

- This system is called (as you may have guessed) an Einstein solid.
- It is easiest to think about this as a system of 1D oscillators

Let's look at a simple example: N = 3 oscillators

$$E_n = (n + 1/2) \text{ hf}$$

(n = 0, 1, 2, ...)

Let's look at the total no. of states per total energy:

Oscillator

Energy State

1	2	3 <u>T</u>	otal Ene	<u>rgy</u>	
0	0	0	0		$\Omega(0)$
1	0	0	1	1	
0	1	0	1	}	Ω(΄
0	0	1	1	J	
2	0	0	2		
0	2	0	2		
0	0	2	2		$\Omega(2$
1	1	0	2		32(2
1	0	1	2		
0	1	1	2	/	

$$\Omega(0) = 1$$

$$\Omega(1) = 3$$

$$\Omega(2) = 6$$

Oscillator

Energy State

1	2	3 <u>Total Energ</u>	
3	0	0	3
0	3	0	3
0	0	3	3
2	1	0	3
2	0	1	3
1	2	0	3
0	2	1	3
1	0	2	3
0	1	2	3
1	1	1	3

$$\Omega(3) = 10$$

Notice a pattern:

$$\Omega(3) = \frac{(3+3-1)!}{3!2!} = \frac{5!}{3 \cdot 2 \cdot 2} = 10$$

$$\Omega(2) = \frac{(2+3-1)!}{2!2!} = \frac{4!}{2 \cdot 2} = 6$$

$$\Omega(1) = \frac{(1+3-1)!}{1!2!} = \frac{3!}{2} = 3$$

$$\Omega(0) = \frac{(1+3-1)!}{1!1!} = 1$$

So, for N oscillators, with total energy q:

$$\Omega(N,q) = \binom{q+N-1}{q} = \frac{(N+q-1)!}{q!(N-1)!}$$

(Homework: Prove this!) See page 55 of text.