Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3110</u>	К работе допущен	Студент_	Балтабаев Дамир
<u>Темиржанович</u>			
Преподаватель	Коробков Максим Петр	оович	
Отчет принят			

Рабочий протокол и отчет по лабораторной работе №1 (дистант)

Измерение магнитного поля Земли с помощью тангенс - гальванометра

Дата и время измерений: 04.05.2021, 21:17

- 1. Цель работы.
 - Измерение магнитного поля Земли.
- 2. Задачи, решаемые при выполнении работы.

Расчет магнитного поля катушки.

Построение графика зависимости магнитного поля от угла поворота.

Расчет погрешности углового коэффициента.

3. Объект исследования.

Виртуальная установка: тангенс – гальванометр, амперметр.

4. Метод экспериментального исследования.

Многократные прямые измерения.

5. Рабочие формулы и исходные данные.

$$\langle I_i
angle = rac{I_i^+ + I_i^-}{2} \ B_c = rac{\mu_0 In}{2R}$$

$$B_c = rac{\mu_0 In}{2R}$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Амперметр	Виртуальный счетчик	[0; 100](A)	0,001(A)

7. Схема установки.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов)

N	$oldsymbol{arphi}_{ m i}$	I _i +, мА	I _i -, мА	$\langle I_i \rangle$, MA	$\operatorname{tg}(\varphi_{\mathrm{i}})$	Вс, мкТл
1	10	50	50	50	0,17633	5,8904862254808600000
2	20	111	109	110	0,36397	12,9590696960579000000
3	30	179	172	175,5	0,57735	20,6756066514378000000
4	40	263	259	261	0,8391	30,7483380970101000000
5	50	357	357	357	1,19175	42,0580716499334000000
6	60	556	556	556	1,73205	65,5022068273472000000
7	70	833	833	833	2,74748	98,1355005165112000000

Примеры расчетов (для многочисленных расчетов показан пример при $\varphi = 10$):

$$\begin{split} <&I_i>=\frac{(Ii++Ii-)}{2}=50\text{ мA}\\ tg(\phi_i)=tg(10)=0,&17633\\ B_c=\frac{\mu_0 In}{2R}=\frac{1,&2566*10^{\wedge}(-6)*50*15}{2*160*10^{\wedge}(6)}=5,&8904862254808600000\text{ мкТл} \end{split}$$

9. Результаты косвенных измерений

Xi	Уi	$x_i * y_i$	x_i^2	α
0,1763	5,8904862	1,03865	0,0310912	
0,364	12,95907	4,71672	0,1324743	
0,5774	20,675607	11,9371	0,3333333	
0,8391	30,748338	25,8009	0,7040882	36,196
1,1918	42,058072	50,1229	1,4202766	
1,7321	65,502207	113,453	3	
2,7475	98,135501	269,625	7,5486322	

Примеры расчетов (для многочисленных расчетов показан пример при х1 и у1):

$$\begin{split} &x_i^*y_i = 0,1763 * 5,8904862 = 1,03865 \\ &x_i^2 = 0,1763 * 0,1763 = 0,0310912 \\ &\alpha = \frac{\sum_{i=1}^N x_i * y_i}{\sum_{i=1}^N x_i ^2} = 36,196 \end{split}$$

10. График

11. Расчет погрешностей

$(y_i-\alpha^*x_i)$	$(y_i-\alpha^*x_i)^2$
-0,4918	0,24187062
-0,2151	0,04627264
-0,222	0,049296011
0,37649	0,141742039
-1,0784	1,162858849
2,80931	7,892198661
-1,3115	1,720142169

σ	Δα	δ
0,37739315	0,7547863	0,02

Примеры расчетов:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{7} (y_i - \alpha x_i)^2}{(7-1)\sum_{i=1}^{7} (x_i)^2}} = 0,37739315$$

$$\Delta \alpha = t_{\alpha, N} * 0.37739315 = 2 * 0.37739315 = 0.7547863$$

$$\delta = \frac{\Delta_{\alpha}}{\alpha} * 100\% = 2\%$$

12. Окончательные результаты

$$\delta = 2\%$$

$$\alpha = 36,196 \pm 0,7547863$$
 мкТл

13. Вывод

В процессе выполнения данной лабораторной работы мною были сняты значения сил тока и вычислены значения магнитного поля катушки. Были исследованы значения сил тока при изменении направления тока в цепи на противоположное, вследствие чего можем убедиться, что значения схожи. Мною был построен график зависимости магнитного поля катушки от тангенса угла поворота, был вычислен с помощью метода наименьших квадратов угловой коэффициент, являющийся значением магнитного поля Земли. Была вычислена погрешность найденного углового коэффициента, ее можно объяснить неточностями при снятии измерений.