VCS

VCS Flow

There are two ways to simulate design using VCS:

- Two-step Flow
- Three-step Flow

Two-step Flow

The two-step flow is supported only for Verilog HDL and SystemVerilog designs. Simulating a design using two-step flow involves two basic steps:

- Compilation
- Simulation

Compilation

Compiling is the first step to simulate your design. In this phase, VCS builds the instance hierarchy and generates a binary executable simv. This binary executable is later used for simulation.

```
1 vcs [compile options] verilog_files
```

Commonly used options:

Options	Specification		
-v filename	Enables you to specify a Verilog library file.		
-full64	Enables compilation and simulation in 64-bit mode.		
-v95	Specifies not recognizing Verilog 2001 keywords.		
+v2k	Support IEEE Std 1364-2001 Verilog.		
-sverilog	Enables SystemVerilog constructs specified in the IEEE Standard of SystemVerilog, IEEE Std 1800-2009.		
-file or -f	Specifies a file containing a list of files and compile-time options.		
-R	Runs the executable file immediately after VCS links it together.		
-l filename	Specifies a file where VCS records compilation messages.		
+define+macro=value+	Defines a text macro in your source code to a value or character string. (`ifdef)		
timescale=1ns/1ns	Specifies the time scale (time_unit/time_precision).		
debug_access+all	Specifies the debug region.		
-o filename	Specifies the binary executable filename.		

Simulation

During compilation, VCS generates a binary executable, simv. You can use simv to run the simulation.

```
1 ./simv
2
3 # records simulation messages
4 ./simv -l sim.log
5
6 # or your specified executable filename
7 ./***.simv
8
9 # use gui mode
10 ./simv -gui
```

Three-step Flow

Simulating a design using three-step flow involves three basic steps:

- Analysis
- Elaboration
- Simulation

VCS uses these three steps to compile any design irrespective of the HDL, HVL, and other supported technologies used.

Analysis

Analysis is the first step to simulate your design. In this phase, you analyze your VHDL, Verilog, SystemVerilog, and OpenVera files using vhdlan or vlogan accordingly.

• Analyzing VHDL files:

```
1 vhdlan [vhdlan_options] file1.vhd file2.vhd
```

• Analyzing Verilog or SystemVerilog files:

```
vlogan [vlogan_options] file1.v file2.v
vlogan [vlogan_options] file1.sv file2.sv
```

Before you analyze your design using vhdlan or vlogan, ensure that the library mappings are defined in the synopsys_sim.setup file, and that the specified physical library for the logical library exists.

vhdlan options:

Options	Specification		
-full64	Analyzes the design for 64-bit simulation.		
-work library	Maps a design library name to the logical library name WORK that receives the output of vhdlan.		
-vhdl87	Enables to analyze non-portable VHDL code that contains object names that are now VHDL-93 reserved words by default.		
-vhdl02	Enables to analyze the VHDL 2002 protected type.		

Options	Specification
-vhdl08	Enables to analyze the VHDL 2008 constructs.
-f filename	Specifies a file that contains a list of source files.
-1 filename	Specifies a log file where VCS records the analyzer messages.
-timescale=1ns/1ns	Specifies the time scale (time_unit/time_precision).

Elaboration

Elaborating is the second step to simulate your design. In this phase, using the intermediate files generated during analysis, VCS builds the instance hierarchy and generates a binary executable simv. This binary executable is later used for simulation.

```
1 vcs [elab_options] [libname.]design_unit
```

• libname: The library name where you analyzed your top module, entity, or the configuration.

Simulation

During compilation, VCS generates a binary executable, simv. You can use simv to run the simulation.

Example

```
1 vcs -full64 +v2k -debug_access+all -timescale=1ns/1ns
   tb_counter.v Counter.v -1 com.log
 2
 3
   vcs -full64 +v2k -debug_access+all -timescale=1ns/1ns
   tb_counter.v Counter.v -1 com.log -R
   vcs -full64 +v2k -debug_access+all -timescale=1ns/1ns
 5
   tb_counter.v Counter.v -1 com.log -o tb_cnt.simv
 6
   vcs -full64 +v2k -debug_access+all -timescale=1ns/1ns
 7
   -f ./filelist.f -l com.log -o tb_cnt.simv
 8
9
10
   ./simv
11
12
   ./simv -l sim.log
13
14
   ./simv -gui
```

```
mkdir -p work
 2
 3
   vhdlan -full64 -vhdl08 tb_counter.vhd Counter.vhd
   vhdlan -full64 -vhdl08 tb_counter.vhd Counter.vhd -
   work work
 6
7
   vcs -full64 -debug_all tb_counter
 8
   vcs -full64 -debug_all tb_counter -l com.log
 9
10
11
   ./simv
12
13
   ./simv -l sim.log
14
15
   ./simv -gui
```