

11. Übung zur Vorlesung Algorithmen auf Graphen ${\small \textbf{Musterl\"{o}sungen}}$

Aufgabe 1: Ein möglicher passender Graph wäre dieser (die Knoten s und v sind bereits entsprechend benannt):

Die k- und p-Werte entwickeln sich dabei nach und nach wie folgt:

	k[s]/p[s]	k[v]/p[v]	k[a]/p[a]	k[b]/p[b]	k[c]/p[c]
Start	0 / -	∞ / $-$	∞ / $-$	∞ / $-$	∞ / $-$
s wird ausgewählt	0 / -	10 / s	∞ / $-$	1/s	∞ / $-$
\boldsymbol{b} wird ausgewählt	0 / -	8 / b	∞ / $-$	1/s	2 / b
\boldsymbol{c} wird ausgewählt	0 / -	6 / c	3 / c	1 / s	2 / b
\boldsymbol{a} wird ausgewählt	0 / -	4 / a	3 / c	1 / s	2 / b
\boldsymbol{v} wird ausgewählt	0 / –	4 / a	3 / c	1/s	2 / b

Der Wert k[v] verbessert sich also wie gefordet genau viermal.

Aufgabe 2: Der Algorithmus von Moore-Bellman-Ford erzielt die folgenden Ergebnisse:

a) Die k-Werte entwickeln sich mit den einzelnen Iterationen wie folgt:

	s	a	b	c	d	e
Start 1. Iteration 2. Iteration	0	∞	∞	∞	∞	∞
1. Iteration	0	5	∞	∞	1	∞
2. Iteration	0	3	8	14	1	12
3. Iteration	0	3	6	12	1	10

Die zugehörigen p-Werte lauten:

	s	a	b	c	d	e
Start	_	_	_	_	_	_
1. Iteration	_	S	_	_	S	_
2. Iteration	_	d	а	е	S	b
3. Iteration	_	d	а	е	S	b

Nach der dritten Iteration treten keine Änderungen mehr auf.

- b) Die nach der zweiten Iteration ermittelten p-Werte repräsentieren die folgenden Pfade:
 - von s nach a: $s \rightarrow d \rightarrow a$.
 - von s nach b: $s \rightarrow d \rightarrow a \rightarrow b$.
 - von s nach c: $s \to d \to a \to b \to e \to c$.
 - von s nach d: $s \rightarrow d$.
 - von s nach e: $s \rightarrow d \rightarrow a \rightarrow b \rightarrow e$.
- c) Die Längen der genannten Pfade sind (von oben nach unten) 3, 6, 12, 1, und 10. Man sieht, dass die Längen der Pfade nach b, c und e (noch) nicht stimmen.