Cheatsheet CS210

XOR TRUTH TABLE

Logic Gates

AND =D- A·B NAND =D- A-B

OR ⇒ A+8

NOT -D- A XOR ⇒D→ A⊕B

Definitions

specific bit Recognizes Decoders patteins

chooses among various Multiplexors inputs

Example of a decoder $D_1 = \vec{A} \cdot A_0$ - D, = A, A. - D3 = A, A0 Α, Dz 0 0

Multiplexer (Mux)

→ A mux has 2" data inputs, n select lines, and

one of the data inputs to The select bits are to "choose" flow through to the autput

→ Fetch

Fetch

Execute

Instruction

Operands

Operation

Decode Instruction

Evaluate Address

STANDARD SYMBOL FOR 2-bit signal Indicates a

(from memory)

D

E A

0P

EX

Instruction Processing

Fetch

- 1) loads next instruction from memory store at address in PC and places into Register (IR)
- 2) PC is increment to point to next instruction

Decode

- 1) Identifies the opcode
- 2) Depending on identifies other operands from remaining opcode,

Evaluate Address - For operations that require memory access, compute address for access

Fetch Operands - Obtain source operands needed to perform operation

Execute - Perform the operation, using source operands

Store - Write results to destination (register or memory)

Subroutines → Lives in user space -> Performs well defined task → Invoked by another program -> Returns control to main program De Morgan's Law OR FORM $\overline{AB} = \overline{A} + \overline{B}$ $\overline{A + B} = \overline{A} \overline{B}$ AND FORM Assembly Syntax

Finite State Machine (control unit)

On each machine cycle FSM changes control signals for next phase of instruction processing. Like ...

- What component drives the bus
- → Which registers are write enabled
- → Which operation should the ALU perform

Global Bus

Set of wires that allow various components to transfer 16 bit data to other components.

One or more components may read data from the bus on any cycle