Zadanie laboratoryjne 2

Zaprojektować i zaimplementować aplikację (w dowolnym języku), która:

- 1) wczytuje z pliku zewnętrznego kod źródłowy programu, napisanego w języku C;
- 2) wyznacza i wyświetla wartości parametrów i miar Halsteada wczytanego kodu, a w tym:
 - a) liczbę unikalnych operatorów;
 - b) liczbę unikalnych operandów;
 - c) łączną liczbę operatorów;
 - d) łączną liczbę operandów;
 - e) słownik, długość, objętość, trudność programu oraz wymagany nakład pracy i przewidywaną liczbę błędów.

Przyjąć, że:

zbiór operatorów tworzą: operatory arytmetyczne, operatory logiczne
(w tym operatory relacyjne), operator przypisania (podstawienia) wartości, operatory inkrementacji i dekrementacji;
zbiór operandów tworzą stałe (nazwane i nienazwane) oraz zmienne, występujące w wyrażeniach z udziałem ww. operatorów;
w przypadku, gdy analizowany program zawiera wywołania funkcji wartości jego parametrów są sumą odpowiednich parametrów dla wszystkich funkcji.

Przetestować napisaną aplikację na co najmniej trzech przykładowych programach, zawartych w folderze *PrzykładoweProgramy*.

Podstawy teoretyczne

- Halstead wyróżnia następujące miary złożoności programu:
- □ słownik programu:

$$I=\eta_1+\eta_2\;,$$

□ długość programu:

$$L=L_1+L_2,$$

objętość programu:

$$V = L \log_2(\eta_1 + \eta_2),$$

□ trudność programu:

$$T = \frac{\eta_1 L_2}{2 \eta_2} ,$$

wymagany nakład pracy:

$$E = VT$$

przewidywana liczba błędów:

$$N = \frac{V}{3000} \approx \frac{E^{2/3}}{3000},$$

gdzie:

- $\eta_{\scriptscriptstyle 1}$ liczba różnych operatorów w programie
- η_2 liczba różnych operandów w programie
- L₁ łączna liczba operatorów w programie
- L₂ łączna liczba operatorów w programie