David Imbert and Sean McNamara

Institute of Physics, Rennes (UMR UR1/CNRS 6251) University of Rennes 1

5-7 December 2011

- Introduction
- Questions
- Computational schemes
- Mumerical experiments
- Conclusions

- Introduction
 - Granular media & acoustics
 - Modelling
- 2 Governing equations
 - Strong form
 - Weak form
 - Fictitious domain formulation
- Computational schemes
 - Spatial discretization
 - Time discretization
- 4 Numerical experiments
 - Test with 1 grain
 - Test with 2 grains
- Conclusions

Granular media

Conglomeration of macroscopic discrete particles called grains

• OOO OOOOOO Granular media & acoustics

Granular media

Introduction

- Conglomeration of macroscopic discrete particles called grains
- Energy loss whenever grains interact due to friction

- Conglomeration of macroscopic discrete particles called grains
- Energy loss whenever grains interact due to friction
- Characteristics of solids, liquids or gas depending on the average energy per grain

Granular media & acoustics

Introduction

- - Conglomeration of macroscopic discrete particles called grains
 - Energy loss whenever grains interact due to friction
 - Characteristics of solids, liquids or gas depending on the average energy per grain
 - Ubiquitous in nature and industry

Granular media & acoustics

Introduction

- - Conglomeration of macroscopic discrete particles called grains
 - Energy loss whenever grains interact due to friction
 - Characteristics of solids, liquids or gas depending on the average energy per grain
 - Ubiquitous in nature and industry

Granular media & acoustics

Introduction

- Conglomeration of macroscopic discrete particles called grains
- Energy loss whenever grains interact due to friction
- Characteristics of solids, liquids or gas depending on the average energy per grain
- Ubiquitous in nature and industry

Acoustics in granular media

 Medium undergoes structural rearrangements a long time before being completely stabilized.

Acoustics in granular media

- Medium undergoes structural rearrangements a long time before being completely stabilized.
- These events generate acoustic wave sources which can propagate:
 - through the granular medium skeleton when it's a dry one
 - both in skeleton and matrix when the granular medium is submerged

Granular media & acoustics

• Louder acoustic signals can be recorded: avalanche precursors

<u>Acoustics</u> in destabilized granular media

- Louder acoustic signals can be recorded: avalanche precursors
- Experimental acoustic measurements have already be done within the framework of the StablnGraM ANR project (STAbility loss In GRAnular Media).

• Molecular Dynamics algorithm [PS05] is often used to simulate movements of interacting particles.

- Molecular Dynamics algorithm [PS05] is often used to simulate movements of interacting particles.
- Main characteristics:

- Molecular Dynamics algorithm [PS05] is often used to simulate movements of interacting particles.
- Main characteristics:
 - incompressible 2D rigid spheres characterized by:
 - their center position, velocity and acceleration
 - their radius

- Molecular Dynamics algorithm [PS05] is often used to simulate movements of interacting particles.
- Main characteristics:
 - incompressible 2D rigid spheres characterized by:
 - their center position, velocity and acceleration
 - their radius
 - interaction forces are defined according to models:
 - o normal force: linear, viscoelastic models...
 - tangential force: Haff & Werner's, Cundall & Strack's models...

- Molecular Dynamics algorithm [PS05] is often used to simulate movements of interacting particles.
- Main characteristics:
 - incompressible 2D rigid spheres characterized by:
 - their center position, velocity and acceleration
 - their radius
 - interaction forces are defined according to models:
 - o normal force: linear, viscoelastic models...
 - tangential force: Haff & Werner's, Cundall & Strack's models...
 - numerically solve mechanics equations for point particles

- Molecular Dynamics algorithm [PS05] is often used to simulate movements of interacting particles.
- Main characteristics:
 - incompressible 2D rigid spheres characterized by:
 - their center position, velocity and acceleration
 - their radius
 - interaction forces are defined according to models:
 - o normal force: linear, viscoelastic models...
 - tangential force: Haff & Werner's, Cundall & Strack's models...
 - numerically solve mechanics equations for point particles
 - N-body algorithm which manages a list of particles

- Molecular Dynamics algorithm [PS05] is often used to simulate movements of interacting particles.
- Main characteristics:
 - incompressible 2D rigid spheres characterized by:
 - their center position, velocity and acceleration
 - their radius
 - interaction forces are defined according to models:
 - o normal force: linear, viscoelastic models...
 - tangential force: Haff & Werner's, Cundall & Strack's models...
 - numerically solve mechanics equations for point particles
 - N-body algorithm which manages a list of particles
 - works fine in vacuum or gas

- Molecular Dynamics algorithm [PS05] is often used to simulate movements of interacting particles.
- Main characteristics:
 - incompressible 2D rigid spheres characterized by:
 - their center position, velocity and acceleration
 - their radius
 - interaction forces are defined according to models:
 - normal force: linear, viscoelastic models...
 - tangential force: Haff & Werner's, Cundall & Strack's models...
 - numerically solve mechanics equations for point particles
 - N-body algorithm which manages a list of particles
 - works fine in vacuum or gas
- Problem: if the matrix is a liquid, sound waves don't only propagate through the packing skeleton, but also through the liquid which is not taken in account by MD

Section contents

- - Granular media & acoustics
 - Modelling
- Governing equations
 - Strong form
 - Weak form
 - Fictitious domain formulation
- - Spatial discretization
 - Time discretization
- - Test with 1 grain
 - Test with 2 grains

$$P = \bigcup_{i=1}^{N} P_i$$

Strong form

$$\begin{cases} \rho_f \frac{\partial \vec{u}}{\partial t} + \nabla p = \vec{0} \\ \frac{1}{\rho_f c_f^2} \frac{\partial p}{\partial t} + \nabla . \vec{u} = 0 \\ \vec{u} . \vec{n}_i = \vec{U}_i . \vec{n}_i \end{cases}$$

in
$$\Omega \setminus \overline{P(t)}$$
 (1)

$$\frac{1}{\rho_f c_f^2} \frac{\partial p}{\partial t} + \nabla \cdot \vec{u} = 0$$

in
$$\Omega \setminus \overline{P(t)}$$
 (2)

$$\vec{u}.\vec{n}_i = \vec{U}_i.\vec{n}_i$$

on
$$\partial P_i(t)$$
 (3)

perfectly matched layers on Γ

[BG05, GPHJ99]

$$\begin{cases}
m_{g_i} \frac{d\vec{U_i}}{dt} = \vec{W_i} + \vec{B_i} + \vec{H_i} + \vec{F_i} \\
I_{g_i} \frac{d\omega_i}{dt} = T_i
\end{cases} \tag{4}$$

$$I_{g_i} \frac{\mathrm{d}\omega_i}{\mathrm{d}t} = T_i \tag{5}$$

Newton's second law

$$\begin{cases}
m_{g_i} \frac{d\vec{U_i}}{dt} = \vec{W_i} + \vec{B_i} + \vec{H_i} + \vec{F_i} \\
I_{g_i} \frac{d\omega_i}{d\omega_i} = T_i
\end{cases} \tag{4}$$

$$I_{g_i} \frac{\mathrm{d}\omega_i}{\mathrm{d}t} = T_i \tag{5}$$

Forces acting on each particle

- weight: $\vec{W}_i = \rho_a V_{a_i} \vec{g}$
- buoyancy: $\vec{B_i} = -\rho_f V_{q_i} \vec{q}$
- ullet hydrodynamic force: $ec{H_i} = -\int_{\partial P_i(t)} p\, ec{n_i}\, \mathrm{d}ec{n_i}$
- interaction force: $\vec{F_i} = \sum_{j=i}^{N} (\vec{F_{n_{i,j}}} + \vec{F_{t_{i,j}}})$ or spring force: $\vec{F}_i = -k(y - y_0)$

$$\begin{cases} \frac{\mathrm{d}\vec{X}_i}{\mathrm{d}t} = \vec{U}_i \\ \frac{\mathrm{d}\theta_i}{\mathrm{d}t} = \omega_i \end{cases} \tag{6}$$

$$\frac{\mathrm{d}\theta_i}{\mathrm{d}t} = \omega_i \tag{7}$$

Strong form

Kinematic equations & initial conditions

$$\begin{cases} \frac{d\vec{X}_i}{dt} = \vec{U}_i \\ \frac{d\theta_i}{dt} = \omega_i \end{cases} \tag{6}$$

$$\frac{\mathrm{d}\theta_i}{\mathrm{d}t} = \omega_i \tag{7}$$

Initial conditions:

$$\begin{array}{ll} \vec{u}|_{t=0} = \vec{u_0} & p|_{t=0} = p_0 \\ \vec{U_i}|_{t=0} = \vec{U_{i,0}} & \omega_i|_{t=0} = \omega_{i,0} \\ \vec{X_i}|_{t=0} = \vec{X_{i,0}} & \theta_i|_{t=0} = \theta_{i,0} \end{array}$$

Combined spaces

Combined velocity space

$$\mathbb{U} = \{ (\vec{u}, \vec{U}, \omega) | \vec{u} \in \left[L^2(\Omega \setminus \overline{P(t)}) \right]^2, \ \vec{U} \in \mathbb{R}^2, \ \omega \in \mathbb{R}$$

$$\vec{u}.\vec{n} = \vec{U}.\vec{n} \text{ on } \partial P(t) \}$$
(8)

Combined variation space

$$\mathbb{V} = \{ (\vec{v}, \vec{V}, \xi) | \vec{v} \in \left[L^2(\Omega \setminus \overline{P(t)}) \right]^2, \ \vec{V} \in \mathbb{R}^2, \ \xi \in \mathbb{R}$$

$$\vec{v}.\vec{n} = \vec{V}.\vec{n} \text{ on } \partial P(t) \}$$

$$(9)$$

Combined equation of motion

Principle [GPHJ99]

Combine:

- wave equation in the fluid
- Newton's second law for grains

Combined equation of motion

Principle [GPHJ99]

Combine:

- wave equation in the fluid
- Newton's second law for grains

by performing the symbolic operation:

$$\int_{\Omega \setminus \overline{P(t)}} (1) \cdot \vec{v} \, d\vec{x} + (4) \cdot \vec{V} + (5) \, \xi = 0$$

$$\rho_f \frac{\partial \vec{u}}{\partial t} + \nabla p = 0 \tag{1}$$

$$m_g \frac{\mathrm{d}\vec{U}}{\mathrm{d}t} - (\rho_g - \rho_f) V_g \vec{g} + \int_{\partial P(t)} p \, \vec{n} \, \mathrm{d}\ell - \vec{F} = 0$$
 (4)

$$I_g \frac{\mathrm{d}\omega}{\mathrm{d}t} - T = 0 \tag{5}$$

D. Imbert & S. McNamara(IPR) FreeFEM++ Workshop 14

Basic idea [GPP94]

- Extend the problem from $\Omega \setminus \overline{P(t)}$ to all of Ω in two steps:
 - ① obtain an analogous combined equation of motion for P(t) using a rigid body motion constraint: $\vec{u} = \vec{U}$ in P(t)
 - ② add it to equation in $\Omega \setminus \overline{P(t)}$ to get the combined equation of motion for all Ω

Basic idea [GPP94]

- Extend the problem from $\Omega \setminus \overline{P(t)}$ to all of Ω in two steps:
 - lacktriangle obtain an analogous combined equation of motion for P(t) using a rigid body motion constraint: $\vec{u} = \vec{U}$ in P(t)
 - ② add it to equation in $\Omega \setminus P(t)$ to get the combined equation of motion for all Ω
- Force the solution to satisfy conditions on $\partial P(t)$ and inside P(t)
 - remove the constraints from the combined velocity space (8)
 - enforce them as a side constraint using Lagrange multipliers

Basic idea [GPP94]

- Extend the problem from $\Omega \setminus \overline{P(t)}$ to all of Ω in two steps:
 - lacktriangle obtain an analogous combined equation of motion for P(t) using a rigid body motion constraint: $\vec{u} = \vec{U}$ in P(t)
 - ② add it to equation in $\Omega \setminus P(t)$ to get the combined equation of motion for all Ω
- Force the solution to satisfy conditions on $\partial P(t)$ and inside P(t)
 - remove the constraints from the combined velocity space (8)
 - enforce them as a side constraint using Lagrange multipliers

Basic idea [GPP94]

- Extend the problem from $\Omega \setminus \overline{P(t)}$ to all of Ω in two steps:
 - \bullet obtain an analogous combined equation of motion for P(t) using a rigid body motion constraint: $\vec{u} = \vec{U}$ in P(t)
 - ② add it to equation in $\Omega \setminus P(t)$ to get the combined equation of motion for all Ω
- Force the solution to satisfy conditions on $\partial P(t)$ and inside P(t)
 - remove the constraints from the combined velocity space (8)
 - enforce them as a side constraint using Lagrange multipliers

In order to keep:

- ullet physical variables in all Ω
- Lagrange multipliers variables in P(t)

Section contents

- Introduction
 - Granular media & acoustics
 - Modelling
- 2 Governing equations
 - Strong form
 - Weak form
 - Fictitious domain formulation
- Computational schemes
 - Spatial discretization
 - Time discretization
- 4 Numerical experiments
 - Test with 1 grain
 - Test with 2 grains
- Conclusions

Spatial discretization Meshes

Introduction

• 2 domains of definition : Ω (static) and P(t) (time-dependent)

Figure: Domain

Figure: \mathscr{T}_{Ω_h} Figure: \mathscr{T}_{P_h}

Meshes

Introduction

- 2 domains of definition : Ω (static) and P(t) (time-dependent)
- $\bullet \Rightarrow 2$ meshes:
 - a regular grid \mathscr{T}_{Ω_h} for rectangular domain Ω
 - an unstructured grid \mathscr{T}_{P_h} for the grains

Figure: Domain

Figure: \mathscr{T}_{Ω_h} Figure: \mathscr{T}_{P_h}

Meshes

- 2 domains of definition : Ω (static) and P(t) (time-dependent)
- $\bullet \Rightarrow 2$ meshes:
 - a regular grid \mathcal{T}_{Ω_h} for rectangular domain Ω
 - an unstructured grid \mathcal{T}_{P_h} for the grains
- mesh sizes are related by a condition : $h_P = \kappa h_\Omega$ with $1 < \kappa < 2$ which come from results on problems involving Lagrange multipliers [Bab73] (best results are obtained with $\kappa \approx 1.3$)

Figure: Domain

Figure: \mathcal{T}_{Ω_h} Figure: \mathcal{T}_{P_h}

Finite dimensional spaces

Spatial discretization

Choice of approximation functions for each space :

$$\mathbb{Q}_h = \{ q_h \in H^1(\Omega), \ q_h|_K \in \underline{P_1} \ \forall K \in \underline{\mathscr{T}_{\Omega_h}} \}$$
 (10)

$$\mathbb{W}_h = \{ \vec{v}_h \in \left[L^2(\Omega) \right]^2, \ \vec{v}_h|_K \in \frac{RT_0}{} \ \forall K \in \mathcal{T}_{\Omega_h} \}$$
 (11)

$$\Lambda_h = \{ \vec{\mu}_h \in \left[L^2(\Omega) \right]^2, \ \vec{\mu}_h|_K \in \mathbf{RT_0} \ \forall K \in \mathbf{\mathscr{T}_{P_h}} \}$$
 (12)

Figure: Lagrangian element P_1 [Hec]

| □ ▶ ◀률 ▶ ◀불 ▶ ◀불 ▶ 골|= 쒼익

- ullet Solution functions $ec{U}$ and test functions $ec{V}$ are part of \mathbb{R}^2
- A priori FreeFEM++ can't handle those

Spatial discretization

Extra mesh for point-particles variables

- Solution functions \vec{U} and test functions \vec{V} are part of \mathbb{R}^2
- A priori FreeFEM++ can't handle those

Trick

- Use a 3rd grid $\mathcal{T}_{P_{d_L}}$ with only 1 triangle including the grain (triangle's incircle)
- Choice a P_0 constant Lagrangian finite element
- Then correct the area with the factor $\frac{\pi}{\sqrt{27}}$

Figure: \mathscr{T}_{P_d}

Time discretization

- Time-discretization using Finite Differences Method
- Final system is complete but too difficult to solve directly

Operator splitting

- Time-discretization using Finite Differences Method
- Final system is complete but too difficult to solve directly

Idea

Decouple operators that propagate wave and move the grains from the operators that enforce conditions in P(t).

Marchuk's fractional step [Mar90]

Section contents

- Introduction
 - Granular media & acoustics
 - Modelling
- 2 Governing equations
 - Strong form
 - Weak form
 - Fictitious domain formulation
- Computational schemes
 - Spatial discretization
 - Time discretization
- 4 Numerical experiments
 - Test with 1 grain
 - Test with 2 grains
- Conclusions

Test with 1 grain 1 grain

Introduction

• Fixed to a spring with a stiffness k

- Fixed to a spring with a stiffness k
- Moved forward from its equilibrium position

Parameters

Medias:

c_f	$1,500{\rm m/s}$
c_g	$5,300{\rm m/s}$
ρ_f	$1.0{\rm g}/{\rm cm}^3$
$ ho_g$	$2.4\mathrm{g/cm^3}$

Domains size:

Ω	$5 \times 5 \mathrm{cm}$	
r	$2\mathrm{mm}$	

Forces:

\vec{g}	$0\mathrm{m/s^2}$
\vec{F}	$-k(y - y_0)$

Spring eigenfrequency:

$$f_{0_{res}} = 0.2 \,\mathrm{MHz}$$

Discretization:

$N_x \times N_y$	136×136
N_t	346
Δx	$0,37\mathrm{mm}$
Δt	$43\mathrm{ns}$

Introduction

Acoustic pressure field: 1 grain

ullet Both fixed to their own spring with the stiffness k

2 grains

- Both fixed to their own spring with the stiffness k
- The bottom one is moved forward from its equilibrium position

2 grains

- Both fixed to their own spring with the stiffness k
- The bottom one is moved forward from its equilibrium position
- The top one is at its equilibrium position

2 grains

- Both fixed to their own spring with the stiffness k
- The bottom one is moved forward from its equilibrium position
- The top one is at its equilibrium position
- Parameters are unchanged

Introduction

Acoustic pressure field: 2 grains

Mechanical energy of each grain

Figure: Bottom grain

Figure: Top grain

Test with 2 grains

- Introduction
 - Granular media & acoustics
 - Modelling
- 2 Governing equations
 - Strong form
 - Weak form
 - Fictitious domain formulation
- Computational schemes
 - Spatial discretization
 - Time discretization
- 4 Numerical experiments
 - Test with 1 grain
 - Test with 2 grains
- Conclusions

Conclusions & Outlook

- Conclusions
 - Molecular Dynamic's philosophy preserved (infinite velocity inside the grain, elasticity in interaction forces)
 - Good geometry representation of the grains
 - Perfectly Matched Layer version done

Conclusions & Outlook

Conclusions

- Molecular Dynamic's philosophy preserved (infinite velocity inside the grain, elasticity in interaction forces)
- Good geometry representation of the grains
- Perfectly Matched Layer version done

Outlook

- Stability analysis of the scheme
- Contact forces
- Granular packing modelling
- Simulate acoustic emission of a destabilized granular medium
- Parallel version

References

I. Rahuska

The Finite Element Method with Lagrange multipliers.

Numerische Mathematik. 20:179–192. 1973.

V. A. Bokil and R. Glowinski.

An operator splitting scheme with a distributed Lagrange multiplier based fictitious domain method for wave propagation problems.

Journal of Computational Physics, 205:242-268, May 2005.

R. Glowinski, T.-W. Pan, T. I. Hesla, and D. D. Joseph.

A distributed Lagrange multiplier/fictitious domain method for particulate flows.

International Journal of Multiphase Flow, 25(5):755-794, August 1999.

R. Glowinski, T.-W. Pan, and J. Periaux.

A fictitious domain method for Dirichlet problem and applications.

F. Hecht.

FreeFFM++.

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, third edition.

Computer Methods in Applied Mechanics and Engineering, 111(3-4):283 - 303, 1994.

G. I. Marchuk.

Splitting and alternating direction methods.

In P.G. Ciarlet and J.L. Lions, editors, Finite Difference Methods (Part I) - Solution of Equations in R (Part 1), volume 1 of Handbook of Numerical Analysis, pages 197 – 462. Elsevier, 1990.

T. Pöschel and T. Schwager.

Computational granular dynamics: models and algorithms. Springer-Verlag, 2005.