VisibleSim Manual

Julien Bourgeois, Benot Piranda, Thadeu Knychala Tucci, Andr
 Naz ${\rm April}\ 23,\ 2015$

Contents

1	Intr	roduction	3		
2	Installation				
3	Use	r applications in VisibleSim	3		
	3.1	Examples of applications	3		
	3.2	Implementing a new application	3		
	3.3	Running an application	3		
		3.3.1 C++ application	3		
		3.3.2 Meld application	3		
		3.3.3 Command line arguments	3		
4	Em	bedded debugger	3		
5	Loc	al clock Simulation	3		
	5.1	Programming API	3		
	5.2	Clock model	3		
		5.2.1 BlinkyBlocks	3		
		5.2.2 Systematic model for clocks	3		
		5.2.3 Experimental values	4		
	5.3	Clock simulation in DES	4		

1 Introduction

VisibleSim is a general discrete event simulator (DES) for modular robot systems.

2 Installation

3 User applications in VisibleSim

- 3.1 Examples of applications
- 3.2 Implementing a new application
- 3.3 Running an application
- 3.3.1 C++ application
- 3.3.2 Meld application
- 3.3.3 Command line arguments

4 Embedded debugger

5 Local clock Simulation

VisibleSim supports local clock simulation. We present here the programming API and the clock model. The model

5.1 Programming API

- 5.2 Clock model
- 5.2.1 BlinkyBlocks

5.2.2 Systematic model for clocks

[1] proposes a general model for oscillators:

$$x(t) = x_0 + y_0 t + \frac{1}{2} Dt^2 + \epsilon(t)$$
 (1)

where t is the simulation time (real-time), x(t) is the local time, x_0 is the time offset, y_0 is the frequency offset, D is the frequency drift and $\epsilon(t)$ is the random noise. $\epsilon(t)$ is not deterministic. [2] assume that $\epsilon(t)$ follows a Gaussian distribution $\mathcal{N}(0, \sigma^2)$.

5.2.3 Experimental values

Compensate communication delays. At most 2-hops.

Figure 1: Local clock drift (t - x(t)) and noise $(\epsilon(t))$ distribution.

Parameter	Min	Mean	Max	Standard-deviation
D	1.613992e-11	-1.179717e-11	-7.991859e-12	3.060884e-12
y_0	0.9896537	0.9922277	0.9949096	0.001851285
x_0	-5984.141	-3532.051	-785.9812	1921.629
Residual standard error	1688.103	2080.197	2423.646	294.832

Figure 2: Parameters

5.3 Clock simulation in DES

[3] explains how to enhance DES with efficient local clock simulation.

Figure 3: Parameter distributions.

References

- [1] David W Allan. Time and frequency(time-domain) characterization, estimation, and prediction of precision clocks and oscillators. *IEEE transactions on ultrasonics, ferroelectrics, and frequency control*, 34(6):647–654, 1987.
- [2] Liangping Ma, Hua Zhu, Gayathri Nallamothu, Bo Ryu, and Heidi Howard. Understanding linear regression for wireless sensor network time synchronization. In *Proceedings of the 2007 International Conference on Wireless Networks, June 25-28, 2007, Las Vegas, Nevada, USA*, pages 325–328, 2007.
- [3] Felix Ring, Anetta Nagy, Georg Gaderer, and Patrick Loschmidt. Clock synchronization simulation for wireless sensor networks. In *Sensors*, 2010 *IEEE*, pages 2022–2026. IEEE, 2010.