МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

Лабораторная работа 2

по дисциплине

«Методы машинного обучения» по теме «Изучение библиотек обработки данных»

ИСПОЛНИТЕЛЬ:	Чечнев А.А.
группа ИУ5- 23М	подпись
	""2020 г.
ПРЕПОДАВАТЕЛЬ:	Гапанюк Ю. Е.
	"_"2020 г.
Москва – 2020	

Лабораторная работа 2

Изучение библиотек обработки данных.

Цель лабораторной работы: изучение библиотек обработки данных Pandas и PandaSQL.

Требования к отчету:

Отчет по лабораторной работе должен содержать:

- титульный лист;
- описание задания;
- текст программы;
- экранные формы с примерами выполнения программы.
- Задание:

Часть 1.

Выполните первое демонстрационное задание "demo assignment" под названием "Exploratory data analysis with Pandas" со страницы курса https://mlcourse.ai/assignments (https://mlcourse.ai/assignments)

Условие задания -

https://nbviewer.jupyter.org/github/Yorko/mlcourse_open/blob/master/jupyter_english/assignments_demo/assignments_flush_cache=true

(https://nbviewer.jupyter.org/github/Yorko/mlcourse_open/blob/master/jupyter_english/assignments_demo/assignr flush_cache=true)

Официальный датасет находится здесь, но данные и заголовки хранятся отдельно, что неудобно для анализа - https://archive.ics.uci.edu/ml/datasets/Adult (<a href="https

Поэтому готовый набор данных для лабораторной работы удобнее скачать здесь - https://raw.githubusercontent.com/Yorko/mlcourse.ai/master/data/adult.data.csv (удобнее всего нажать на данной ссылке правую кнопку мыши и выбрать в контекстном меню пункт "сохранить ссылку", будет предложено сохранить файл в формате CSV)

Пример решения задания - https://www.kaggle.com/kashnitsky/a1-demo-pandas-and-uci-adult-dataset-solution)

Часть 2.

Выполните следующие запросы с использованием двух различных библиотек - Pandas и PandaSQL:

- один произвольный запрос на соединение двух наборов данных
- один произвольный запрос на группировку набора данных с использованием функций агрегирования
- Сравните время выполнения каждого запроса в Pandas и PandaSQL.

В качестве примеров можно использовать следующие статьи:

https://www.shanelynn.ie/summarising-aggregation-and-grouping-data-in-python-pandas/)
https://www.shanelynn.ie/summarising-aggregation-and-grouping-data-in-python-pandas/)
https://www.shanelynn.ie/merge-join-dataframes-python-pandas-index-1/) (в разделе "Ехатрle data" данной статьи содержится рекомендуемый

набор данных для проведения экспериментов). Пример сравнения Pandas и PandaSQL - https://github.com/miptgirl/udacity_engagement_analysis/blob/master/pandasql_example.ipynb) (https://github.com/miptgirl/udacity_engagement_analysis/blob/master/pandasql_example.ipynb)

mlcourse.ai (https://mlcourse.ai) - Open Machine Learning Course

Author: Yury Kashnitsky (https://www.linkedin.com/in/festline/). Translated and edited by Sergey Isaev (https://www.linkedin.com/in/isvforall/), Artem Trunov (https://www.linkedin.com/in/datamove/), Anastasia Manokhina (https://www.linkedin.com/in/anastasiamanokhina/), and Yuanyuan Pao (https://www.linkedin.com/in/yuanyuanpao/). All content is distributed under the Creative Commons CC BY-NC-SA 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/) license.

Assignment #1 (demo)

Exploratory data analysis with Pandas

Same assignment as a <u>Kaggle Kernel (https://www.kaggle.com/kashnitsky/a1-demo-pandas-and-uci-adult-dataset)</u> + <u>solution (https://www.kaggle.com/kashnitsky/a1-demo-pandas-and-uci-adult-dataset-solution)</u>.

In this task you should use Pandas to answer a few questions about the <u>Adult</u> (https://archive.ics.uci.edu/ml/datasets/Adult) dataset. (You don't have to download the data – it's already in the repository). Choose the answers in the web-form (https://docs.google.com/forms/d/1uY7Mpl2trKx6FLWZte0uVh3ULV4Cm tDud0VDFGCOKg).

Unique values of all features (for more information, please see the links above):

- age : continuous.
- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.
- fnlwgt : continuous.
- education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
- education-num: continuous.
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouseabsent, Married-AF-spouse.
- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
- relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
- race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
- · sex: Female, Male.
- capital-gain: continuous.

- capital-loss: continuous.
- hours-per-week : continuous.
- native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.
- salary: >50K,<=50K

In [1]:

```
import numpy as np
import pandas as pd
pd.set_option('display.max.columns', 100)
# to draw pictures in jupyter notebook
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
df = pd.read_csv('data/adult.data', sep=', ')
df.head()
```

C:\Users\als\Anaconda3\lib\site-packages\ipykernel_launcher.py:1: ParserWarn
ing: Falling back to the 'python' engine because the 'c' engine does not sup
port regex separators (separators > 1 char and different from '\s+' are inte
rpreted as regex); you can avoid this warning by specifying engine='python'.
 """Entry point for launching an IPython kernel.

Out[2]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Fe
4										•

1. How many men and women (sex feature) are represented in this dataset?

```
In [3]:
df.sex.value_counts()
Out[3]:
Male
           21790
Female
          10771
Name: sex, dtype: int64
2. What is the average age (age feature) of women?
In [4]:
df[df.sex == 'Female'].age.mean()
Out[4]:
36.85823043357163
3. What is the percentage of German citizens (native-country feature)?
In [5]:
df['native-country'].value_counts(normalize=True)['Germany']*100
Out[5]:
0.42074874850281013
*4-5. What are the mean and standard deviation of age for those who earn more than 50K per year (salary*
feature) and those who earn less than 50K per year? **
In [6]:
df.salary.value_counts()
Out[6]:
<=50K
          24720
          7841
>50K
Name: salary, dtype: int64
In [7]:
df.groupby(by='salary').agg({'age':['mean','std']})
Out[7]:
        age
        mean
                 std
 salary
 <=50K 36.783738 14.020088
  >50K 44.249841 10.519028
```

6. Is it true that people who earn more than 50K have at least high school education? (education – Bachelors. Prof-school. Assoc-acdm. Assoc-voc. Masters or Doctorate feature)

In [8]:

```
df[df.salary=='>50K'].education.value_counts()
```

Out[8]:

Bachelors	2221
HS-grad	1675
Some-college	1387
Masters	959
Prof-school	423
Assoc-voc	361
Doctorate	306
Assoc-acdm	265
10th	62
11th	60
7th-8th	40
12th	33
9th	27
5th-6th	16
1st-4th	6

Name: education, dtype: int64

No

7. Display age statistics for each race (*race* feature) and each gender (*sex* feature). Use *groupby()* and *describe()*. Find the maximum age of men of *Amer-Indian-Eskimo* race.

In [9]:

```
df.groupby(by=['race', 'sex']).age.describe()
```

Out[9]:

		count	mean	std	min	25%	50%	75%	max
race	sex								
Amer-Indian-Eskimo	Female	119.0	37.117647	13.114991	17.0	27.0	36.0	46.00	80.0
	Male	192.0	37.208333	12.049563	17.0	28.0	35.0	45.00	82.0
Asian-Pac-Islander	Female	346.0	35.089595	12.300845	17.0	25.0	33.0	43.75	75.0
	Male	693.0	39.073593	12.883944	18.0	29.0	37.0	46.00	90.0
Black	Female	1555.0	37.854019	12.637197	17.0	28.0	37.0	46.00	90.0
	Male	1569.0	37.682600	12.882612	17.0	27.0	36.0	46.00	90.0
Other	Female	109.0	31.678899	11.631599	17.0	23.0	29.0	39.00	74.0
	Male	162.0	34.654321	11.355531	17.0	26.0	32.0	42.00	77.0
White	Female	8642.0	36.811618	14.329093	17.0	25.0	35.0	46.00	90.0
	Male	19174.0	39.652498	13.436029	17.0	29.0	38.0	49.00	90.0

```
In [10]:
```

82.0

```
df1 = df.groupby(by=['race', 'sex']).age.describe()
df1.loc['Amer-Indian-Eskimo', 'Male']['max']
Out[10]:
```

8. Among whom is the proportion of those who earn a lot (>50K) greater: married or single men (*marital-status* feature)? Consider as married those who have a *marital-status* starting with *Married* (Married-civ-spouse, Married-spouse-absent or Married-AF-spouse), the rest are considered bachelors.

```
In [11]:
```

```
df[df.salary=='>50K'].groupby(by='marital-status').age.count()
```

Out[11]:

marital-status Divorced 463 Married-AF-spouse 10 Married-civ-spouse 6692 Married-spouse-absent 34 491 Never-married Separated 66 85 Widowed Name: age, dtype: int64

answer = among married

9. What is the maximum number of hours a person works per week (*hours-per-week* feature)? How many people work such a number of hours, and what is the percentage of those who earn a lot (>50K) among them?

```
In [12]:
```

```
#df.sort_values(by='hours-per-week', ascending=False)
mx = df['hours-per-week'].max()
mx
```

Out[12]:

99

```
In [13]:
df[df['hours-per-week'] == mx].count()
Out[13]:
                 85
age
workclass
                 85
fnlwgt
                 85
education
                 85
education-num
                 85
marital-status
                 85
occupation
                 85
relationship
                 85
race
                 85
                 85
sex
capital-gain
                 85
capital-loss
                 85
hours-per-week
                 85
native-country
                 85
                 85
salary
dtype: int64
In [14]:
df[df['hours-per-week'] == mx].salary.value_counts(normalize=True)
Out[14]:
        0.705882
<=50K
        0.294118
>50K
Name: salary, dtype: float64
answer = 0.705882
10. Count the average time of work (hours-per-week) for those who earn a little and a lot (salary) for
each country (native-country). What will these be for Japan?
In [15]:
# You code here
In [16]:
df.columns
Out[16]:
'capital-gain', 'capital-loss', 'hours-per-week', 'native-country',
       'salary'],
     dtype='object')
In [17]:
df_hpw = df.groupby(by=['native-country', 'salary']).agg({'hours-per-week':'mean'})
```

In [18]: df_hpw.loc['Japan'] Out[18]: hours-per-week salary <=50K 41.000000 >50K 47.958333 In [19]: df1 = df.iloc[0:4] df2 = df.iloc[50:53]

Получим из таблицы с исходными данными топ3 людей, чей возраст меньше 40

```
In [20]:
```

```
import pandasql as ps
import pandas as pd
```

In [21]:

```
simple_query = '''
    SELECT
        age,
        workclass,
        fnlwgt,
        education
    FROM df
    WHERE age < 40
    ORDER BY age desc
    LIMIT 3

**time df_ps = ps.sqldf(simple_query, locals())
df_ps</pre>
```

Wall time: 655 ms

Out[21]:

	age	workclass	fnlwgt	education
0	39	State-gov	77516	Bachelors
1	39	Private	367260	HS-grad
2	39	Private	365739	Some-college

In [22]:

```
columns = ['age', 'workclass', 'fnlwgt', 'education']
%time df_pd = df.loc[df.age < 40, columns].sort_values(by='age', ascending=False).head(3)
df_pd</pre>
```

Wall time: 16.5 ms

Out[22]:

	age	workclass	fnlwgt	education
0	39	State-gov	77516	Bachelors
12603	39	Private	185053	HS-grad
1608	39	Private	379350	10th

In []:

In [55]:

```
def example2_pandasql(data):
    aggr_query = '''
    SELECT
        count(age) as count,
        avg(age) as mean,
        min(age) as mean
    FROM data
    GROUP BY race
    '''
    return ps.sqldf(aggr_query, locals()).set_index('age')
```

In [24]:

df.groupby(by=['race', 'sex']).age.describe()

Out[24]:

		count	mean	std	min	25%	50%	75%	max
race	sex								
Amer-Indian-Eskimo	Female	119.0	37.117647	13.114991	17.0	27.0	36.0	46.00	80.0
	Male	192.0	37.208333	12.049563	17.0	28.0	35.0	45.00	82.0
Asian-Pac-Islander	Female	346.0	35.089595	12.300845	17.0	25.0	33.0	43.75	75.0
	Male	693.0	39.073593	12.883944	18.0	29.0	37.0	46.00	90.0
Black	Female	1555.0	37.854019	12.637197	17.0	28.0	37.0	46.00	90.0
	Male	1569.0	37.682600	12.882612	17.0	27.0	36.0	46.00	90.0
Other	Female	109.0	31.678899	11.631599	17.0	23.0	29.0	39.00	74.0
	Male	162.0	34.654321	11.355531	17.0	26.0	32.0	42.00	77.0
White	Female	8642.0	36.811618	14.329093	17.0	25.0	35.0	46.00	90.0
	Male	19174.0	39.652498	13.436029	17.0	29.0	38.0	49.00	90.0

In [23]:

%time pd.concat([df1, df2])

Wall time: 4.99 ms

Out[23]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	
50	25	Private	32275	Some- college	10	Married- civ- spouse	Exec- managerial	Wife	Other	F
51	18	Private	226956	HS-grad	9	Never- married	Other- service	Own-child	White	F
52	47	Private	51835	Prof- school	15	Married- civ- spouse	Prof- specialty	Wife	White	F
4									•	•