Taila #5
Alejandra Lelo de Larrea Ibarra 124433

1. Definan un grafo matemático con vérticos d'AIB, CIDET Tal oce 105 conjuntos d'AIB4 d'Et sean separados por el conjunto d'CIDE.

Nodos = d A, B, C, D, Ef Boides = dd A, B+, dd, C+, dB, C+, dC, D+, dC, E+ f

2. Definau un grafo matemático con véticos d'AiBic, D, El tal que los Conjuntos d'AiBs d'SES sean separados por el conjunto d'ci per o no por el conjunto d'c, of

HO hay sulladi. Dado one ICI C ICIDI CV, Si ICI separa al conjunto d'AIBY all conjunto d'EI, entonces ICIDI Tambleti los separa.

Se hecestratia un sexto nodo F para poder conectar los conjuntos d'AIBY d'EI "SIN pasar" por dc.04.43c1.

3. Escriban los elementos del grafo probabilístico saturado de una tabla al contingen aas de 5 dimensiones, donde 4 dimension Tune 2 Categorías (le modelo log-luneas saturado 25)

vallables: X1, X2, X3, X4, X5 Con Xi ∈ Xi=(exi(1), exi(z))
veπces: {1, 2, ₹, 4, 54

bordes: } 11,24,31,34, 11,44, 11,54, 12,34, 12,44, 12,54, 13,44, 13,54, 14,54}

ραιού 1: P(χι, χ2, χ3, χ4, χ5) = Φι2 Φι3 Φι4 Φι5 Φ23 (χ2, χ3) Φ2μ (χ2, χ4) Φ2, 5 (χ2, χ5) Φ3μ (χ3, χ4)
Φ3,5 (χ3, χ5) Φ4,5 (χ4, χ5)

cuyo grato correspondiente es:

of con modero loguneal dado por

$$= \alpha^{5} + \alpha_{\ell(1,2)}^{1,2} + \alpha_{\ell(1,3)}^{1,3} + \alpha_{\ell(1,4)}^{1,4} + \alpha_{\ell(1,5)}^{1,5} + \alpha_{\ell(1,5)}^{2,3} + \alpha_{\ell(1,5)}^{2,1} + \alpha_{\ell(2,5)}^{2,5} + \alpha_{\ell(3,4)}^{2,5} + \alpha_{\ell(3,5)}^{3,5} + \alpha_{\ell(4,5)}^{4,5}$$

Opcioù 2:

P(X1, X2, X3, X4, X5) = \$\Pi_{123}(X1, X2, X3)\$\Pi_{1,4}(X1, X4)\$\Pi_{25}(X2, X5)\$\Pi_{3,4,5}(X3, X4, X5)\$\Pi_{16}(X1, X5)\$\Pi_{24}(X1, X4)\$ anyo grafo correspondiente es

t con modero loglineal dado por log(0v)=log(p(xv))=log(p(x,=l1), x2=e(2), x5=e(3), x4=e(4), x5=e(5)) = a0 + a14 a15 + a25 + a21 + a21 + a123 +

4. Escriban los elementos del grafo probabilistico maependiente de una tabla de contingencias de 5 aimensiones donde 9 dimensión There 2 categorias.

variables: {x1, x2, x3, x4, x54 con Xi € *i 36x111, ex, (2)}

Bordes = 0

€ = P(X1, X2, X3, X4, X5) = Q1(X1) Q2(X2) \$\phi_3(X3) \Pu(X4)

con grapo asociado

or con made to boglineal

10g(0v) = ate(1) + ate(2) + ate(3) + ate(4) + ate(5)

= log(P(X1=e(1), X2=e(2), X3=e(3), X4=e(4), X5e(5)))

s. Respecto a los modelos loguneales, controles pulla el ejerripio de los reptiles, (tabla de contingencia) las probabilidades muestrales del modelo independiente contra las probabilidades muestrales. le identificaeu si las probabilidades muestrales pleden explaraise como el producto de las probabilidades maiginales de las ties dimensiones.

la tabla de contingencias es:

X3 = " < = 4.75" X4	$p(x_1 = "anoli") = \frac{86435+32+11}{409} = \frac{164}{409} = 0.4009780$
$\frac{x_1}{x_1} = \frac{x_2}{2} = \frac{x_1}{2} = \frac{x_2}{2} = \frac{x_1}{2} = \frac{x_2}{2} = $	$P(x_1 = "dist") = \frac{73+70+61+41}{409} = \frac{345}{409} = 0.5990220$
$X_3 = ">4.75"$ $\times 1$ $\times 2$ $\times 3$ $\times 3$ $\times 4$ $\times 4$ $\times 1$ $\times 1$ $\times 2$ $\times 2$ $\times 2$ $\times 3$ $\times 3$ $\times 1$ $\times 1$ $\times 1$ $\times 2$ $\times 2$ $\times 3$ $\times 1$	$p(X_2 = " < =4") = 86 + 43 + 32 + 61 = 252 = 0.6161369$
dist 61 41	$P(x_2=34") = 35+70+11+41 = 157 = 0.3838631$
	P(X3 = "< = 4.75") = 80+35+33+70 = 264 = 0.6454768
	$p(X_3 = ")4.75"] = 32+11+61+41 = 145 = 0.3545232$

Comparaciones:

XI	Xz	Y3	P(X1, X7, X3)	P(X1=X1)P(X2=X2)P(X3=X3)	
anoli	<=4 <=4	€ 4.45	1	(04009780) (06161369) (0.6454768) = 01594	240
anou.	>4	≤ 4.75	35 = 0.0855	(04009780) (06161369) (03545232) = 0-0875 (04009780) (03838631) (0.6454768) = 0-0993	
anou	>4	54.75	409	(04009780)(0.3838631)(0.3545232) = 0.0545	
dist	2=4	€4.75	73 409 = 0-1784	(0-5990220)(0-6161369)(0-6454768)=0.2382	
dis	<=4	>4.15	409 = 01491	(0.599020)(0.6161369)(0.3545232) = 0.13084	
dist.	>4	54.75	₹0. 409	(0.509020)(0.3838631)(0.6454768) = 0.1484	
dist.	>4	> 4.75	41 = 0 1002	(0.5990220)(03838631)(03545232) - 0.0815	
				inappendencia.	(2)

6. Para el grafo 93 del ejempro VISTO en clase, identificien si 1x14 es condicionalmente independiente de 1x3, x54 dado 1x24

Si Ov = DA, s × DB, s entonos (ALB) \$5

Soci $\phi_1 = \phi_{12}(x_1, x_2) \phi_{2,3,4}(x_2, x_3, x_4) \phi_{4,5}(x_4, x_5) \phi_{3,5}(x_3, x_5)$ Malginalitando sobre x_4 , tenemos $\phi_1 = \tilde{\phi}_{12}(\tilde{\chi}_1, x_2) \tilde{\phi}_{2,3}(x_2, x_3) \tilde{\phi}_{3,5}(x_3, x_5)$

DAS

dB, s

: (7 x181 d x3, x58) | d x28 cuando maiginalitamos solove x4.

7. Para el Mismo grafo 93, identificaen si 2 x1/2/es condicionalmente maepenaiente de 3 x51 dado 3x3, xu1.

Sea Ov = \$12 (x1, x2) \$234 (x2, x3, x4) \$405 (x4, x5) \$3,5 (x3, x5)

DAIS

Si OV = DA, S X & B, S en TONCES (ALB) IS

OB,5

= (1x1, x24 L 1x5+) | 1 x4, x5+,