

LFSphereNet: Real Time Spherical Light Field Reconstruction from a Single Omnidirectional Image

Manu Gond, Emin Zerman, Sebastian Knorr, Mårten Sjöström

The 20th ACM SIGGRAPH European Conference on Visual Media Production, London, 2023

Internet

Image source: Mid Sweden University - https://www.miun.se/kontakt/press/nyhetsarkiv/2022-10/battre-arbetsmiljo-och-lagre-kostnader-med-fjarrstyrda-virkeslastare/

Motivation

- Omnidirectional content improves telepresence applications
 - Full 360 Field of View (FoV)
 - Provides 3 Degrees of Freedom (DoF)
 - Easy to use 360 cameras

Fig 1: An omnidirectional Camera

Limitations

No physical Movement

(No 3DoF+ or 6DoF)

Causes discomfort or nausea

Multicamera setup requires higher bandwidth

Fig 2: VR based crane operation from inside the truck cabin¹

¹BRUNNSTRÖM, Kjell, et al. Quality of experience of hand controller latency in a virtual reality simulator. In: *Human Vision and Electronic Imaging 2019.*

LFSphereNet

Generation of a Spherical Light Field

Limitations No physical Multicamera setup Causes discomfort Movement requires or nausea higher bandwidth (No 3DoF+ or 6DoF) One camera setup Allows 3DoF+ More natural requires viewing less bandwidth

¹BRUNNSTRÖM, Kjell, et al. Quality of experience of hand controller latency in a virtual reality simulator. In: *Human Vision and Electronic Imaging 2019.*

Recent Studies

- Planar Light Field (LF) Reconstruction
 - Single/Sparse Input to NxN LF
 - Near Real Time
 - Tradeoff between spatio-angular resolution
 - Limited FoV
- Spherical LF Reconstruction
 - Has a FoV of 360°
 - No method for single ODI to dense LF
- Spherical View Synthesis Methods Exist

Fig 3: Stanford Multi-Camera Array²

Related Work: PanoSynthVR

- Uses Multi Plane Representation
 - Warp Padding Near Edges
 - Multi Cylinder Image (MCI)

Fig 4: Single ODI

Fig 5: Multi Plane Image Representation³

PanoSynthVR: Waidhofer, J., Gadgil, R., Dickson, A., Zollmann, S. and Ventura, J., 2022 PanoSynthVR: Toward Light-weight 360-Degree View Synthesis from a Single Panoramic Input. In *2022 IEEE (ISMAR)* (pp. 584-592)

³Tucker, R. and Snavely, N., 2020. Single-view view synthesis with multiplane images. In *Proceedings of the IEEE/CVF* (pp. 551-560).

Related Work: PanoSynthVR

PanoSynthVR: Waidhofer, J., Gadgil, R., Dickson, A., Zollmann, S. and Ventura, J., 2022 PanoSynthVR: Toward Light-weight 360-Degree View Synthesis from a Single Panoramic Input. In 2022 IEEE (ISMAR) (pp. 584-592)

Related Work: PanoSynthVR

- Limitations
 - Building the layers takes time
 - Uses Google's MPI Network Backbone
 - Generated ODIs have wrong Geometry

Ground Truth

PanoSynthVR

PanoSynthVR: Waidhofer, J., Gadgil, R., Dickson, A., Zollmann, S. and Ventura, J., 2022 PanoSynthVR: Toward Light-weight 360-Degree View Synthesis from a Single Panoramic Input. In *2022 IEEE (ISMAR)* (pp. 584-592)

Generating a Spherical Light Field

- Given $L_{ERP}(\mathbf{x},0)$
 - central image of NxN spherical LF

- Reconstruct $L_{ERP}(\mathbf{x}, \mathbf{u})$ where
 - x: spatial coordinates (x, y)
 - **u**: angular coordinates (*u*, *v*)
- Equirectangular (ERP) images have distortion
 - Limits usage of convolution kernels

Fig 6: Visualization of Distortions in ERP Image

LFSphereNet – Pre-Processing and Reconstruction

- Cubemap (CMP) Conversion
 - Minimize distortions in the image
- Reconstruction in CMP
 - Single Cube Face input at a time
- Positional Encoding
 - Using single channel map holding positional information (θ, Φ)

LFSphereNet – Post Processing and Refinement

• Reconstructed LF in CMP can be converted back to ERP $\hat{L}_{ERP(\mathbf{X}, \mathbf{u})}$

• The $\hat{L}_{ERP(\mathbf{X}, \mathbf{u})}$ will have minor discontinuity near borders

 The Mask M defines width of region which needs refinement

Data Collection

Created two datasets:

- Synthetic Data
 - Using Blender
 - 5 Different open-source scenes
 - 1024x2048x7x7 resolution

- Captured data
 - Using a moving station
 - Captured with Insta 360X3
- 6 different real-world scenes
- 1024x2048x1x7 resolution

Fig: Some examples from Synthetic Data

Fig: Some examples of Real Data captured using moving station as shown in left.

Quantitative Results

- Outperforms SOTA in
 - SSIM, MS-SSIM, PSNR

- Lowest Inference Time
 - For 1024x2048x7x7 LF
 - On 1080Ti

Metric	360ViewSynth	PanoSynthVR	LFSphereNet
MAE	0.0922	0.0265	0.0125
DISTS	0.1215	0.0531	0.0880
LPIPS	0.1935	0.0670	0.0825
PSNR	32.89	34.76	37.45 ~7% improv
SSIM	0.6495	0.7878	0.9121 ~16% impre
MS-SSIM	0.7690	0.8687	0.9691
FSIMC	0.8443	0.9148	0.9573
VIFP	0.3710	0.4978	0.8035
Runtime	12.4845	2.7077	0.0606 44x speed

Best Values in Bold. Runtime is in seconds

360ViewSynth PanoSynthVR LFSphereNet **Qualitative Results** Error Мар Tested on real-world scene Error Map Excerpt Error map around the leaves shows clear difference LFSphereNet has the **RGB**

Excerpt

Rendering Demo

- Inference time is 0.06 secs
 - For 1024x2048x7x7 LF

- We only need max of 3 cube faces at any given time
 - Therefore faster inference
 - Demo on RTX 2070 Super at 60 FPS

Conclusion

- LFSphereNet
 - Achieves 3DoF+ and 6DoF
 - Enables Real-Time Applications to Use LF
- Spherical LF Dataset
 - Can Be Used to Train Different Reconstruction Methods
 - Perform Subjective Tests on LF Rendering

Dataset, supplementary materials can be found in our paper.

Refinement Network

Spherical Light Field in ERP Format

Manu Gond

Mid Sweden University Technical University of Berlin

manu.gond@miun.se

plenoptima

plenoptic imaging

