TD Nº 4 : ÉTUDES DE FONCTIONS LA FONCTION EXPONENTIELLE

Exercice 1

Partie A

On a tracé ci-dessous, dans un même repère orthonormal d'origine O, les courbes représentatives des fonctions f et g définies sur $\mathbb R$ par :

$$f(x) = x - e^x$$
 et $g(x) = (1 - x)e^x$

- 1. Attribuer à chaque fonction sa courbe représentative, en justifiant la réponse.
- 2. Calculer la limite de f(x) x quand x tend vers $-\infty$. En déduire alors que la courbe représentative de la fonction f admet une asymptote oblique et en donner une équation.

Partie B: étude de la fonction g.

- 1. Calculer les limites de la fonction g en $-\infty$ et en $+\infty$.
- 2. Déterminer la fonction dérivée q' de la fonction q puis établir le tableau de variations de la fonction q.
- 3. Indiquer si la fonction g admet des extremums sur \mathbb{R} .

Partie C: Intersection des courbes représentatives de fet g

On considère la fonction h définie sur \mathbb{R} par : h(x) = f(x) - g(x).

- 1. Vérifier que pour tout réel x: h'(x) = 1 g(x) où h' désigne la fonction dérivée de la fonction h.
- 2. En utilisant l'étude de la fonction g, déterminer pour tout x réel le signe de h'(x). Donner alors le tableau de variations de la fonction h.

- 3. Justifier que l'équation h(x) = 0 admet une unique solution α dans l'intervalle]1 ; 2[. À l'aide de la calculatrice, donner un encadrement de α d'amplitude 10^{-1} .
- 4. Déduire de la question précédente que les deux courbes admettent un unique point d'intersection sur l'intervalle]1 ; 2[.

Partie I

On considère la fonction g définie sur l'ensemble $\mathbb R$ des nombres réels par :

$$q(x) = x - 1 + e^{2x}$$
.

On note C_g la courbe représentative de la fonction g dans un repère orthogonal $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$ du plan. On prend comme unité graphique 2 cm sur l'axe des abscisses et 1 cm sur l'axe des ordonnées.

- 1. Soit \mathcal{D} la droite d'équation y = x 1.
 - a) Étudier les positions relatives de \mathcal{D} et \mathcal{C}_q .
- 2. Soit g' la fonction dérivée de g.
 - a) Calculer, pour tout x réel, g'(x) et montrer que la fonction g est strictement croissante sur \mathbb{R} .
 - b) Dresser le tableau de variations de q.
- 3. Calculer g(0) puis justifier l'affirmation suivante : « si x < 0, alors g(x) < 0; si x > 0, alors g(x) > 0».
- 4. Construire dans le repère $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$ la droite \mathcal{D} et la courbe \mathcal{C}_g .

Partie II

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = (x-1)^2 + e^{2x}$$
.

- 1. Soit f' la fonction dérivée de f. Démontrer que, pour tout x réel, f'(x) = 2g(x).
- 2. En utilisant la partie I, dresser le tableau de variation de la fonction f;
- 3. En déduire la valeur de x pour laquelle la fonction f admet un minimum et déterminer ce minimum.

Partie III - Application à un problème de distance minimale

On considère la fonction h définie sur \mathbb{R} par :

$$h(x) = e^x$$
.

On donne la courbe représentative C_h de la fonction h dans un repère orthonormal d'origine Ω . On a également représenté le point P de coordonnées (1; 0).

On rappelle que, dans un repère orthonormal, le carré de la distance entre les points $A(x_A, y_A)$ et $B(x_B, y_B)$ est donné par : $AB^2 = (x_B - x_A)^2 + (y_B - y_A)^2$.

- 1. a) Placer, dans le repère les points $A(-1; e^{-1})$ et B(1; e)
 - b) Calculer PA² et PB².
- 2. On considère, pour un réel x, le point M de \mathcal{C}_h d'abscisse x, c'est-à-dire le point M (x; e^x).
 - a) Montrer que $PM^2 = f(x)$, où f est la fonction étudiée dans la partie II.
 - b) En déduire les coordonnées du point de la courbe \mathcal{C}_h le plus proche du point P.

Dans tout le problème, le plan est muni d'un repère orthonormal $(O, \overrightarrow{i}, \overrightarrow{j})$.

La courbe \mathcal{C} est la représentation graphique d'une fonction f définie et dérivable sur l'ensemble \mathbb{R} des nombres réels.

La courbe \mathcal{C} coupe l'axe des abscisses en O et au point A de coordonnées $\left(\frac{3}{2}; 0\right)$.

On admet que les tangentes à la courbe \mathcal{C} aux points d'abscisses $\frac{1}{2}$ et 3 sont parallèles à l'axe des abscisses. La droite Δ est tangente à la courbe \mathcal{C} au point O et passe par le point B de coordonnées (-1; 3).

Partie I Exploitation graphique de la courbe ${\cal C}$

- 1. Résoudre graphiquement l'équation f(x)=0 sur l'intervalle $\left[-\frac{1}{2}\;;\;\frac{7}{2}\right]$.
- 2. Donner le signe de f(x) sur l'intervalle $\left[-\frac{1}{2}; \frac{7}{2}\right]$.
- 3. Donner les valeurs $f'\left(\frac{1}{2}\right)$ et f'(3).
- 4. Donner une équation de la tangente Δ . En déduire f'(0).
- 5. Résoudre graphiquement l'inéquation f'(x) > 0 sur l'intervalle $\left[-\frac{1}{2} ; \frac{7}{2} \right]$.

Partie II étude de la fonction f

La fonction f est définie sur l'ensemble $\mathbb R$ des nombres réels par

$$f(x) = (2x^2 - 3x) e^{-x}$$
.

- 1. Justifier que pour tout nombre réel x, $f(x) = \frac{2x^2}{e^x} \frac{3x}{e^x}$.
- 2. On appelle f' la fonction dérivée de la fonction f. Calculer, pour tout nombre réel x, f'(x) puis montrer que $f'(x) = (-2x^2 + 7x 3) e^{-x}$.
- 3. étudier le signe de f'(x). En déduire les variations de la fonction f sur l'ensemble $\mathbb R$ des nombres réels.

3

4. Déterminer une équation de la tangente à la courbe \mathcal{C} au point A d'abscisse $\frac{3}{2}$.

Soit f la fonction définie, pour tout nombre réel x, par :

$$f(x) = e^{2x} - 5e^x + 4.$$

On note \mathcal{C} sa courbe représentative dans le plan muni d'un repère orthogonal $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$ (unités graphiques : 4 cm pour une unité sur l'axe des abscisses et 1 cm pour une unité sur l'axe des ordonnées).

- 1. a) Montrer que pour tout nombre réel $x: f(x) = e^x (e^x 5) + 4$.
- 2. a) Soit f' la fonction dérivée de la fonction f. Pour tout nombre réel x, calculer f'(x). Montrer que pour tout nombre réel x, $f'(x) = e^x (2e^x 5)$.
 - b) Résoudre dans l'ensemble $\mathbb R$ des nombres réels l'équation $2e^x-5=0$. Résoudre ensuite dans $\mathbb R$ l'inéquation $2e^x-5>0$.
 - c) En déduire les variations de la fonction f. Indiquer la valeur exacte de $f\left(\ln\frac{1}{2}\right)$.
- 3. Montrer que l'équation f(x) = 0 a une unique solution sur l'intervalle [1; 2]. Donner une valeur approchée à 10^{-2} près de cette solution.
- 4. a) Montrer que le point O appartient à la courbe \mathcal{C} .
 - b) Déterminer le coefficient directeur de la tangente Δ à la courbe \mathcal{C} au point O.
- 5. Tracer dans le repère $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$ l'asymptote D la droite Δ et, sur l'intervalle [-2, 5; 2], la courbe C.

On note f la fonction dfinie sur l'ensemble $\mathbb R$ des nombres rels par :

$$f(x) = \frac{1}{2}x - \frac{1}{4} + e^{-2x}.$$

On dsigne par \mathcal{C} sa courbe reprsentative dans un repre orthogonal $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$, d'units 4 cm en abscisses et 10 cm en ordonnes.

- 1. tude des variations de la fonction f
 - a) Dterminer l'expression de la drive f' de la fonction fá
 - b) Rsoudre l'inquation $e^{-2x} \leqslant \frac{1}{4}$ et en dduire le tableau des variations de la fonction f.
 - c) D
terminer l'quation de la tangente $\mathcal T$ la courbe $\mathcal C$ en son point d'abscisse 0.
 - d) Montrer que l'quation $f(x) = \frac{1}{2}$ possde une unique solution sur l'intervalle [1; 2]. Justifier avec preision et donner un encadrement d'amplitude 10^{-2} de cette solution.
- 2. Tracer, dans le repre $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$, les droites \mathcal{D} et \mathcal{T} , puis tracer la courbe \mathcal{C}

On considre la fonction dfinie sur l'ensemble $\mathbb R$ des nombres rels par

$$f(x) = e^{-2x} + 4e^{-x} + 6x + 1.$$

On note \mathcal{C} la courbe reprsentative de la fonction f dans un repre orthogonal $\left(\mathbf{O}, \overrightarrow{i}, \overrightarrow{j}\right)$ d'units graphiques 4 cm sur l'axe des abscisses et 1 cm sur l'axe des ordonnes.

Partie A

- 1. Dmontrer que $f(x) = e^{-x} (e^{-x} + 4 + 6xe^{x} + e^{x})$.
- 2. On note h la fonction dfinie sur l'ensemble \mathbb{R} des nombres rels par h(x) = f(x) (6x + 1). Diterminer le signe de h(x) pour tout nombre rel x et en dduire les positions relatives de la courbe \mathcal{C} et de la droite \mathcal{D} d'quation y = 6x + 1.

Partie B: tude des variations de la fonction f

1. D'montrer que la fonction drive f' de f est dfinie pour tout nombre rel x par :

$$f'(x) = -2(e^{-x} + 3)(e^{-x} - 1).$$

- 2. R
soudre dans l'ensemble $\mathbb R$ des nombres rels, l'inquation $\mathrm{e}^{-x}-1\geqslant 0$; en d
duire le signe de f'(x) sur $\mathbb R$.
- 3. Dresser le tableau de variations de la fonction f.
- 4. Construire la droite \mathcal{D} puis la courbe \mathcal{C} dans le repre $\left(O, \overrightarrow{\imath}, \overrightarrow{\jmath}\right)$.