Modelling Count Variables with R Dublin R

Overview

- 1. Introduction to Modelling Count Variables
- 2. Poisson Regression
- 3. Negative Binomial Regression
- 4. Zero-Inflated Models and Vuong Tests
- 5. Zero Truncation

Introduction

- This presentation is about regression methods in which the dependent variable takes count (nonnegative integer) values.
- ► The dependent variable is usually the number of times an event occurs in a certain period of time.

- ► Linear regression is used to model and predict continuous measurement variables.
- Poisson regression is used to model and predict discrete count variables.

Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. A Poisson regression model is sometimes known as a log-linear model, especially when used to model contingency tables.

Overview

Some examples of **event counts** are:

- number of claims per year on a particular car owners insurance policy,
- number of workdays missed due to sickness of a dependent in a one-year period,
- number of papers published per year by a researcher.

Modelling Count Variables

Poisson Distribution

- ► The number of persons killed by mule or horse kicks in the Prussian army per year.
- Ladislaus Bortkiewicz collected data from 20 volumes of Preussischen Statistik.
- These data were collected on 10 corps of the Prussian army in the late 1800s over the course of 20 years, giving a total of 200 observations of one corps for a one year period.
- ▶ The unit period of observation is thus one year.

Poisson Distribution: Prussian Cavalary

- ▶ The total deaths from horse kicks were 122, and the average number of deaths per year per corps was thus 122/200 = 0.61.
- ▶ In any given year, we expect to observe, well, not exactly 0.61 deaths in one corps
- Here, then, is the classic Poisson situation: a rare event, whose average rate is small, with observations made over many small intervals of time.

Generating Random Numbers

```
> X <- rpois(200,lambda=0.61)</pre>
> X
[1] 1 2 0 1 0 3 0 0 1 0 0 4 0 0 0 1 0 1 0 2
[21] 00022000100001000120
[41] 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 3 1
[141] 0 0 0 0 1 2 0 1 0 1 0 0 0 0 0 0
             0 0 0 1 0 0 0 0 0 1
[181] 0 0 2 0 2 0 0 1 0 0 3 1 0 0 0 1
>
> mean(X); var(X)
[1] 0.53
[1] 0.5317588
```

Poisson Distribution Assumptions

- Poisson Regression is main technique used to model count variables.
- Assumption underlying Poisson Distribution :
 Mean and Variance are equal

$$\mathrm{E}(X)=\mathrm{Var}(X)$$

Allow for a margin of error of about 5%.
 Simulation Studies can be used to determine the validity of this assumption. (see Next Slide)

Simulation Studies

```
> X=rpois(1000,lambda=1);mean(X);var(X)
[1] 1.001
[1] 1.028027
> X=rpois(5000,lambda=0.5);mean(X);var(X)
[1] 0.5074
[1] 0.5232499
> X=rpois(2500,lambda=0.7);mean(X);var(X)
[1] 0.7248
[1] 0.7317577
> X=rpois(500,lambda=3);mean(X);var(X)
[1] 3.076
[1] 2.851928
```

Simulation Studies

```
> Ratio = numeric()
> M = 10000
>
> for ( i in 1:M){
     X=rpois(2500,lambda=5);
       Ratio[i] = var(X)/mean(X)
>
> quantile(Ratio, c(0.025,0.975))
     2.5% 97.5%
0.9452617 1.0563994
```

Problem Areas

Over-Dispersion: Important Poisson Distributon assumption does not hold

Zero-Inflation: More "Zeros" would occure than in conventional Poisson Process (This is actually "overdispersion" also, but we will treat them separately).

Zero-Truncation: Process does not allow for a "Zero" outcome.

Over-Dispersion

- Overdispersion is the presence of greater variability in a data set than would be expected based on a given simple statistical model.
- Poisson Distribution:

Zero-Inflation

- One common cause of over-dispersion is excess zeros, which in turn are generated by an additional data generating process.
- In this situation, zero-inflated model should be considered.
- If the data generating process does not allow for any 0s (such as the number of days spent in the hospital), then a zero-truncated model may be more appropriate.

Over-Dispersion

- When there seems to be an issue of dispersion, we should first check if our model is appropriately specified, such as omitted variables and functional forms.
- For example, if we omitted the predictor variable prog in the example above, our model would seem to have a problem with over-dispersion.
- ▶ In other words, a misspecified model could present a symptom like an over-dispersion problem.

- Assuming that the model is correctly specified, the assumption that the conditional variance is equal to the conditional mean should be checked.
- There are several tests including the likelihood ratio test of over-dispersion parameter alpha by running the same model using negative binomial distribution.

Generalized Linear Models

The glm() function

- ▶ In statistics, the problem of modelling count variables is an example of generalized linear modelling.
- ► Generalized linear models are fit using the glm() function.
- ▶ The form of the glm function is

```
glm( modelformula,
     family=familytype(link=linkfunction),
     data=dataname)
```

Generalized Linear Models

Family	Default Link Function		
binomial	(link = "logit")		
gaussian	(link = "identity")		
Gamma	(link = "inverse")		
inverse.gaussian	$(link = "1/mu^2")$		
poisson	(link = "log")		
quasibinomial	(link = "logit")		
quasipoisson	(link = "log")		

Generalized Linear Models

Texts on GLMs

- ▶ Dobson, A. J. (1990) An Introduction to Generalized Linear Models. (*London: Chapman and Hall.*)
- Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.
- McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. (London: Chapman and Hall.)
- Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer.

pscl: Political Science Computational Laboratory

Author(s): Simon Jackman et al (Stanford University)

URL: http://pscl.stanford.edu/

Description

Bayesian analysis of item-response theory (IRT) models, roll call analysis; computing highest density regions; maximum likelihood estimation of zero-inflated and hurdle models for count data; goodness-of-fit measures for GLMs; data sets used in writing and teaching at the Political Science Computational Laboratory; seats-votes curves.

glm2: Fitting Generalized Linear Models

Author(s): Ian Marschner

Fits generalized linear models using the same model specification as glm in the stats package, but with a modified default fitting method that provides greater stability for models that may fail to converge using glm

VGAM: Vector Generalized Linear and Additive Models

Author(s): Thomas W. Yee (t.yee@auckland.ac.nz)

URL: http://www.stat.auckland.ac.nz/ \sim yee/VGAM

Vector generalized linear and additive models, and associated models (Reduced-Rank VGLMs, Quadratic RR-VGLMs, Reduced-Rank VGAMs).

This package fits many models and distribution by maximum likelihood estimation (MLE) or penalized MLE. Also fits constrained ordination models in ecology.

MA4128 - Review Questions

- (i) Describe Event Counts / Count Variables.
- (ii) Poisson Distribution : Assumption of Parameter Equality what is it? how to check?
- (iii) State the three cases where assumption does not hold

You are not required to know anything about R implementation.

PART 2: Poisson Regression

- Poisson regression is used to model count variables.
- Poisson regression has a number of extensions useful for count models.

Conventional OLS regression

- Count outcome variables are sometimes log-transformed and analyzed using OLS regression.
- Many issues arise with this approach, including loss of data due to undefined values generated by taking the log of zero (which is undefined) and biased estimates.

If $\mathbf{x} \in \mathbb{R}^n$ is a vector of independent variables, then the model takes the form

The Crabs Data Set

The crabs data set is derived from Agresti (2007, Table 3.2, pp.76-77). It gives 4 variables for each of 173 female horseshoe crabs.

- Satellites number of male partners in addition to the female's primary partner
- ▶ Width width of the female in centimeters
- Dark a binary factor indicating whether the female has dark coloring (yes or no)
- ► **GoodSpine** a binary factor indicating whether the female has good spine condition (yes or no)

Let the first variable be a response variable, with the other three as predictors.

The data is containted in the R package glm2

```
require(glm2)
data(crabs)
head(crabs)
summary(crabs[,1:4])
```

>	head(crabs)					
	Satellites	Width	Dark	${\tt GoodSpine}$	Rep1	Rep2
1	8	28.3	no	no	2	2
2	0	22.5	yes	no	4	5
3	9	26.0	no	yes	5	6
4	0	24.8	yes	no	6	6
5	4	26.0	yes	no	6	8

```
> summary(crabs[,1:4])
Satellites
          Width
                          Dark GoodSpine
Min. : 0.000
              Min. :21.0 no:107 no:121
1st Qu.: 0.000
              1st Qu.:24.9 yes: 66 yes: 52
Median : 2.000
              Median: 26.1
Mean : 2.919
              Mean :26.3
3rd Qu.: 5.000
              3rd Qu.:27.7
Max. :15.000
              Max. :33.5
```

- ► Fit a Poisson regression model with the number of Satellites as the outcome and the width of the female as the covariate.
- What is the multiplicative change in the expected number of crabs for each additional centimeter of width?

```
crabs.pois <- glm2(Satellites ~ Width,
data=crabs, family="poisson")
summary(crabs.pois)
exp(0.164)</pre>
```

```
> summary(crabs.pois)
Call:
glm2(formula = Satellites ~ Width,
family = "poisson", data = crabs)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
Width 0.16405
                  0.01997 8.216 < 2e-16 ***
```


Code for Crabs Data Plot

```
plot(crabs$Width, crabs$Satellites,
  pch=16, col="darkred")
  points(crabs$Width, crabs.pois$fitted.values,
  col="green", lwd=3)
```

Other Examples of Poisson regression

- ► The number of awards earned by students at a secondary or high school.
- Predictors of the number of awards earned include the type of program in which the student was enrolled (e.g., vocational, general or academic) and the score on their final exam in math.

Description of the data

- For the purpose of illustration, we have simulated a data set for the last example.
- The data set is called poisreg.csv
- In this example, num_awards is the outcome variable and indicates the number of awards earned by students at a high school in a year.

Predictor Variables

- math is a continuous predictor variable and represents students' scores on their math final exam,
- prog is a categorical predictor variable with three levels indicating the type of program in which the students were enrolled.
- prog is coded as 1 = "General", 2 = "Academic" and 3 = "Vocational".

```
id
                num_awards
                                                 math
                                    prog
           Min. :0.00
                         General
                                  : 45
                                        Min. :33.0
           1st Qu.:0.00 Academic :105
                                         1st Qu.:45.0
          Median: 0.00 Vocational: 50
                                        Median:52.0
4
          Mean :0.63
                                         Mean :52.6
5
           3rd Qu.:1.00
                                         3rd Qu.:59.0
6
           Max. :6.00
                                         Max. :75.0
  (Other):194
```


Figure:

- ► Each variable has 200 valid observations and their distributions seem quite reasonable.
- ► The mean and variance of our outcome variable are more or less the same.
- Our model assumes that these values, conditioned on the predictor variables, will be equal (or at least roughly so).

Poisson regression

- ► At this point, we are ready to perform our Poisson regression model analysis using the glm() function.
- We fit the model and save it in the object model1 and get a summary of the model.

```
model1 <- glm(num_awards ~ prog + math,
family="poisson", data=poisreg)
summary(model1)</pre>
```

```
Call:
glm(formula = num_awards ~ prog + math,
     family = "poisson",
     data = poisreg)
Deviance Residuals:
Min 1Q Median 3Q
                            Max
-2.204 -0.844 -0.511 0.256 2.680
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
                     0.6585
(Intercept)
            -5.2471
                            -7.97 1.6e-15 ***
progAcademic
            1.0839
                     0.3583
                            3.03 0.0025 **
progVocational
            math
            0.0702
                     0.0106
                            6.62
                                 3.6e-11 ***
```

0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' Signif. codes:

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 287.67 on 199 degrees of freedom Residual deviance: 189.45 on 196 degrees of freedom ATC: 373.5

Number of Fisher Scoring iterations: 6

Regression Coefficients

- ▶ Intercept $\beta_0 = -5.2471$
- progAcademic $\beta_1 = 1.0839$
- progVocational $\beta_2 = 0.3698$
- math $\beta_3 = 0.0702$

Exercise

Predict number of awards for Vocational Student with a maths mark of 70.

$$\hat{Y} = e^{-5.2471} \times e^{1.0839 \times 0} \times e^{0.3698 \times 1} \times e^{0.0702 \times 70} = e^{0.0367} = 1.0373$$

MA4128 Review

(i) Based on R output, be able to carry out calculations similar to that in previous slide.

- The output begins with echoing the function call. Then the information on deviance residuals is displayed.
- Deviance residuals are approximately normally distributed if the model is specified correctly.
- Here it shows a little bit of skeweness since median is not quite zero.

- ► The Poisson regression coefficients for each of the variables along with the standard errors, z-scores, p-values and 95% confidence intervals for the coefficients.
- The coefficient for math is 0.07.
- ► This means that the expected log count for a one-unit increase in math is 0.07.

Signif. codes:

```
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.2471
                        0.6585
                                -7.97 1.6e-15 ***
progAcademic 1.0839 0.3583
                                3.03
                                      0.0025 **
progVocational
              0.3698 0.4411
                                0.84
                                      0.4018
math
              0.0702
                        0.0106
                                6.62
                                      3.6e-11 ***
```

0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 '

- ► The indicator variable progAcademic compares between prog = Academic and prog = "General", the expected log count for prog = Academic increases by about 1.1.
- ► The indicator variable **prog.Vocational** is the expected difference in log count (≈ 0.37) between **prog** = "Vocational" and the reference group (**prog** = "General").

- ► The output above indicates that the incident rate for prog = "Academic" is 2.96 times the incident rate for the reference group (prog = "General").
- ► Likewise, the incident rate for prog = "Vocational" is 1.45 times the incident rate for the reference group holding the other variables at constant.

► The percent change in the incident rate of num_awards is by 7% for every unit increase in math.

Deviance

- In statistics, deviance is a quality of fit statistic for a model that is often used for statistical hypothesis testing.
- It is a generalization of the idea of using the sum of squares of residuals in ordinary least squares to cases where model-fitting is achieved by maximum likelihood.

- The information on deviance is also provided.
- We can use the residual deviance to perform a goodness of fit test for the overall model.

- ► The residual deviance is the difference between the deviance of the current model and the maximum deviance of the ideal model where the predicted values are identical to the observed.
- Therefore, if the residual difference is small enough, the goodness of fit test will not be significant, indicating that the model fits the data.

- If the test had been statistically significant, it would indicate that the data do not fit the model well.
- We could try to determine if there are omitted predictor variables, if our linearity assumption holds and/or if there is an issue of over-dispersion.

Comparing Candidate Models

- We can also test the overall effect of prog by comparing the deviance of the full model with the deviance of the model excluding prog.
- The two degree-of-freedom chi-square test indicates that prog, taken together, is a statistically significant predictor of num_awards.

Comparing Models

```
# update m1 model dropping prog
m2 <- update(m1, . ~ . - prog)</pre>
```

test model differences with chi square test
anova(m2, m1, test="Chisq")

```
Analysis of Deviance Table
```

```
Model 1: num_awards ~ math

Model 2: num_awards ~ prog + math

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1     198     204

2     196     189     2     14.6     0.00069 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
```

Incident Rate Ratios

- Sometimes, we might want to present the regression results as incident rate ratios (IRRs) and their standard errors, together with the confidence interval.
- To compute the standard error for the incident rate ratios, we will use the **Delta method** (Numerical Computation Method).
- ➤ To this end, we make use the function deltamethod implemented in R package msm.

Incident Rates

Incidence rate is the occurrence of an event over person-time, for example person-years.

$$Incidence Rate = \frac{events}{Person Time}$$

Note: the same time intervals must be used for both incidence rates.

Incident Rate Ratios

A **rate ratio** (sometimes called an incidence density ratio) in epidemiology, is a relative difference measure used to compare the incidence rates of events occurring at any given point in time.

Incidence Rate Ratio
$$= \frac{\text{Incidence Rate 1}}{\text{Incidence Rate 2}}$$

Delta Method

```
s \leftarrow deltamethod(list(~exp(x1), ~exp(x2), ~exp(x3),
      \sim \exp(x4), coef(m1), cov.m1)
#exponentiate old estimates dropping the p values
rexp.est \leftarrow exp(r.est[, -3])
# replace SEs with estimates
# for exponentiated coefficients
rexp.est[, "Robust SE"] <- s
```

```
rexp.est

Estimate Robust SE LL UL

(Intercept) 0.005263 0.00340 0.001484 0.01867

progAcademic 2.956065 0.94904 1.575551 5.54620

progVocational 1.447458 0.57959 0.660335 3.17284

math 1.072672 0.01119 1.050955 1.09484
```

- Sometimes, we might want to look at the expected marginal means.
- For example, what are the expected counts for each program type holding math score at its overall mean?
- ➤ To answer this question, we can make use of the predict function.
- First off, we will make a small data set to apply the predict function to it.

```
(s1 <- data.frame(math = mean(p$math),</pre>
 prog = factor(1:3, levels = 1:3,
 labels = levels(p$prog))))
   math
               prog
1 52.65 General
2 52.65 Academic
3 52.65 Vocational
```

```
predict(m1, s1, type="response", se.fit=TRUE)
 $fit
 0.2114 0.6249 0.3060
 $se.fit
 0.07050 0.08628 0.08834
 $residual.scale
 [1] 1
```

- ▶ In the output above, we see that the predicted number of events for level 1 of prog is about 0.21, holding math at its mean.
- ► The predicted number of events for level 2 of prog is higher at 0.62, and the predicted number of events for level 3 of prog is about .31.
- ▶ The ratios of these predicted counts $(\frac{0.625}{0.211} = 2.96, \frac{0.306}{0.211} = 1.45)$ match what we saw looking at the IRR.

₹ 990