

## TEMA 4: ESPACIOS PROYECTIVOS

**Problema 1.** Da un ejemplo de referencia proyectiva en  $\mathbb{P}^2_{\mathbb{R}}$  y comprueba que las coordenadas homogéneas no se conservan al reordenar los puntos de la referencia, dando un ejemplo explícito de ello.

**Problema 2.** Muestra que los puntos  $P_0 = [1:0:1]$ ,  $P_1 = [0:1:2]$ ,  $P_2 = [1:-1:0]$ ,  $P_3 = [3:-2:0]$  forman una referencia proyectiva en  $\mathbb{P}^2_{\mathbb{R}}$ ,  $\mathcal{R} = \{P_0, P_1, P_2; P_3\}$ , con  $P_3$  como punto unidad. Calcula una base asociada.

**Problema 3.** Estudia si los puntos  $P_0 = [0:1:0:1]$ ,  $P_1 = [2:-1:-1:0]$ ,  $P_2 = [0:1:-1:2]$ ,  $P_3 = [0:-1:0:2]$ ,  $P_4 = [2:2:-4:3]$  forman una referencia proyectiva  $\mathcal{R} = \{P_0, P_1, P_2, P_3; P_4\}$  en  $\mathbb{P}^3_{\mathbb{R}}$ , con  $P_4$  como punto unidad. Calcula una base asociada.

**Problema 4.** Prueba que si dos subespacios proyectivos verifican  $X_1 \subseteq X_2$  con dim  $X_1 = \dim X_2$ , entonces  $X_1 = X_2$ .

**Problema 5.** Prueba que un hiperplano  $H \subset \mathbb{P}(V)$  y un punto  $P \notin H$  generan todo el espacio proyectivo:

$$\{P\} + H = V(\{P\}, H) = \mathbb{P}(V).$$

**Problema 6.** Sea el punto  $P = [1:-2:3] \in \mathbb{P}^2_{\mathbb{R}}$  y sea la recta  $L \subset \mathbb{P}^2_{\mathbb{R}}$  generada por los puntos [-1:-1:2] y [3:0:-1]. Calcula ecuaciones implícitas de la suma P+L.

**Problema 7.** Se consideran en el plano proyectivo  $\mathbb{P}^2_{\mathbb{R}}$  los puntos P = [1:0:1], Q = [-1:1:0] y R = [1:-2:3] y las rectas  $L = V\{P,Q\}$  y  $M = V\{P,R\}$ . Calcula su suma L + M y su intersección  $L \cap M$ , obteniendo ecuaciones implícitas de ambas.

**Problema 8.** Obtén la intersección de la recta  $L \subset \mathbb{P}^2_{\mathbb{R}}$  generada por P = [1:0:-1] y Q = [2:1:0] y la recta M de ecuación implícita  $M: \{x_0 - 3x_1 + x_2 = 0\}$ .

**Problema 9.** Obtén unas ecuaciones implícitas y paramétricas del subespacio proyectivo obtenido al intersecar los planos  $B, C \subset \mathbb{P}^3_{\mathbb{R}}$  de ecuaciones

$$B: \{x_0 - x_1 + x_2 - x_3 = 0\}, \text{ y } C: \{2x_0 + x_2 - 2x_2 = 0\}.$$

**Problema 10.** Calcula la ecuación de la recta que pasa por los siguientes pares de puntos de  $\mathbb{P}^2_{\mathbb{C}}$ :

- a) [-1:1:1] y [1:3:2i].
- b) [1:-1:i] y [i:1:-1].
- c) [1:1:2i] y [1-2:2i].

**Problema 11.** Calcula la suma de la recta  $L \subset \mathbb{P}^3_{\mathbb{R}}$  de ecuaciones

$$L: \left\{ \begin{array}{cccc} x_0 & -2x_1 & +2x_2 & & = & 0 \\ x_0 & +x_1 & & -x_3 & = & 0 \end{array} \right.$$

con la recta M generada por los puntos [1:0:-1:-1] y [-1:1:2:2]. Estudia si se cortan las rectas.

**Problema 12.** Considera la referencia cartesiana en  $\mathbb{A}^2_{\mathbb{R}}$ 

$$\mathcal{R}_c = \{(1,2); \{(-1,1),(1,1)\}\}$$

donde  $\mathcal{B} = \{(-1,1), (1,1)\}$  es una base de  $\mathbb{R}^2$ .

- a) Calcula su completación proyectiva.
- b) Relaciona las coordenadas cartesianas del punto  $Q = [-2, -1] \in \mathbb{A}^2_{\mathbb{R}}$  con sus coordenadas homogéneas en la completación proyectiva.

**Problema 13.** Considera el plano  $B: \{x_1 - 2x_2 + 3x_3 = 2\} \subset \mathbb{A}^3_{\mathbb{R}}.$ 

- a) Calcula su completación proyectiva  $\overline{B}$  obteniendo unas ecuaciones implícitas respecto de la referencia proyectiva estándar (completación proyectiva de la referencia cartesiana estándar en  $\mathbb{A}^3_{\mathbb{R}}$ ).
- b) Obtén sus puntos del infinito.

**Problema 14.** Considera las rectas en  $\mathbb{P}^2_{\mathbb{R}}$ 

$$L: \{x_0 + x_1 - 3x_2 = 0\},\$$

$$M: \{2x_0 + x_1 - 3x_2 = 0\}.$$

- a) Calcula el punto donde intersecan.
- b) Deshomogeneiza las ecuaciones para obtener las variedades afines asociadas  $L \cap \mathbb{A}^2_{\mathbb{R}}$  y  $M \cap \mathbb{A}^2_{\mathbb{R}}$ .
- c) Comprueba que las variedades afines son paralelas, precisamente porque L y M se cortan en un punto del infinito.

**Problema 15.** Sea el plano  $B: \{2x_1 + x_2 - x_3 = -2\} \subset \mathbb{A}^3_{\mathbb{R}}.$ 

- a) Calcula todos los planos afines paralelos a él.
- b) Obtén la completación proyectiva para cada uno de ellos y observa el patrón de sus ecuaciones implícitas en coordenadas homogéneas.

**Problema 16.** Describe la completación proyectiva del espacio vectorial de las matrices  $2 \times 2$  con coeficientes reales,  $M \in \mathcal{M}_{2\times 2}(\mathbb{R})$  (visto como espacio afín con su estructura afín estándar) y del subespacio de matrices de traza igual a 3

$$B = \{ M \in \mathcal{M}_{2 \times 2}(\mathbb{R}) : \operatorname{tr}(M) = 3 \},$$

dando ecuaciones homogéneas de B.

**Problema 17.** Describe la completación proyectiva del espacio vectorial de los polinomios con coeficientes reales de grado menor o igual que 3,  $\mathcal{P}_3[X]$  (visto como espacio afín con su estructura afín estándar), y del subespacio afín

$$C = \{p(X) \in \mathcal{P}_3[X] : p(1) = 3\},\$$

dando ecuaciones homogéneas de  $\overline{C}$ .