Exercise 1.1.2

Suppose (X, f) is a factor of (Y, g) by a semi-conjugacy $\pi: Y \to X$. (1)Show that if $y \in Y$ is a periodic point, then $\pi(y) \in X$ is periodic. (2)Give an example to show that the preimage of a periodic point does not necessarily contain a periodic point. (3)Proof + reasoning:Let's start with (2). (4)Let $y \in Y$ be periodic. (5)We can just write out the definitions and see if the correct answer follows. (6) $f(\pi(y)) = \pi(g(y)) = \pi(y).$ (7)So, (2) follows from (7). (8)Now, we want to construct a counterexample. Let's think of any semiconjugacy and iterate from there. An obvious example is a projection. (9)Let A and B be sets, and $\pi_A : A \times B \to A$ the projection. (10)For all α and β , the following diagram commutes: $A \times B \xrightarrow{\alpha \times \beta} A \times B$ $\downarrow \pi_A \qquad \qquad \downarrow \pi_A$ (11) $\xrightarrow{\alpha}$ Intuitively, by taking projections, we 'forget' about the effect of β . So, we can simply choose β such that all points in $A \times B$ are non-periodic with respect to β , while choosing α so that all points in A are periodic with respect to α . (12)Let A be any set, B = [0, 1], $\alpha = \mathrm{id}_A$ and $\beta : (x \mapsto \frac{1}{2}x)$ (13)Wait, 0 is still a periodic point in the example above. Let's modify it. (14)Let A be any set, B = (0,1], $\alpha = \mathrm{id}_A$ and $\beta : (x \mapsto \frac{1}{2}x)$ (15)Clearly, β has no periodic points, so $\alpha \times \beta$ has no periodic points, but

(16)

(17)

all points in A are periodic with respect to α .

By (16), (3) follows.