A (hopefully formalization-friendly) Proof of Fodor's Lemma

Theofanis Chatzidiamantis Christoforidis

- **1 Definition.** Let λ be a limit ordinal and $C \subseteq \lambda$ a set.
 - i. C is called **unbounded** in λ if $sup(C \cap \lambda) = \lambda$.
 - ii. C is called **closed** in λ if for every $\alpha < \lambda$, if $C \cap \alpha \neq \emptyset$, then $sup(C \cap \alpha) = \alpha$.
 - iii. C is called **club** in λ if it is closed and unbounded in λ .
- **1.1 Remark.** Equivalently, $C \subseteq \lambda$ is unbounded in λ if for all $\alpha < \lambda$, there is a $\beta \in C$ such that $\alpha < \beta$.
- **2 Definition.** Let λ be a limit ordinal and $S \subseteq \lambda$ a set. S is called **stationary** in λ if for every club set $C \subseteq \lambda$, $S \cap C \neq \emptyset$.

This may be an easier definition to work with.

Our goal is to give a self-contained (assuming the contents of Mathlib) proof of the following:

- **3 Theorem** (Fodor's Lemma). Let κ be an uncountable regular cardinal, $S \subseteq \kappa$ be a stationary set and let $f: S \to \kappa$ be an ordinal function such that $f(\alpha) < \alpha$ for all $\alpha \in S, \alpha > 0$. Then there is a stationary set $T \subset S$ and some $\theta < \kappa$ such that $f(\alpha) = \theta$ for all $\alpha \in T$.
- **4 Lemma.** The intersection of two club sets is club.

Proof. Let $C, D \subseteq \lambda$ be club in λ .

• To show $C \cap D$ is closed,

5 Definition. Let κ be a cardinal and let $(C_{\alpha})_{\alpha < \kappa}$ be a sequence of subsets of κ . The **diagonal** intersection of $(C_{\alpha})_{\alpha < \kappa}$ is defined to be

$$\Delta_{\alpha < \kappa} C_{\alpha} := \{ \beta < \kappa \mid \beta \in C_{\theta} \ \forall \theta < \beta \}$$

References

- [1] Jech, Thomas. Set Theory: The Third Millennium Edition, Springer, 2003.
- [2] Schimmerling, Ernest. A Course on Set Theory, Cambridge University Press, 2011.

1