1 Functors

Definition 1.1 (Full). A functor $F : \mathcal{C} \to \mathcal{D}$ is called full, if for any $a, b \in \mathcal{C}$, the mapping on morphism $F : \mathcal{C}(a,b) \to \mathcal{D}(Fa,Fb)$ is surjective.

Definition 1.2 (Faithful). A functor $F: \mathcal{C} \to \mathcal{D}$ is called faithful, if for any $a, b \in \mathcal{C}$, the mapping on morphism $F: \mathcal{C}(a, b) \to \mathcal{D}(Fa, Fb)$ is injective.

Definition 1.3 (Essentially Full). A functor $F: \mathcal{C} \to \mathcal{D}$ is called Essentially full, if for any $a \in \mathcal{C}$, the mapping on object $F: \mathcal{C} \to \mathcal{D}$ is surjective.

Theorem 1.1. Suppose $F: \mathcal{C} \to \mathcal{D}$ a functor, and $f: a \to b$ a morphism in \mathcal{C} . Then f is an isomorphism iff Ff is an isomorphism.

Proof. (\Rightarrow) We claim $F(f^{-1}): Fb \to Fa$ is an inverse, we can see that $F(f^{-1} \circ f) = F(id_a) = id_{Fa}$ and $F(f \circ f^{-1}) = F(id_b) = id_{Fb}$.

 (\Leftarrow) Suppose Fg is the inverse of Ff, and we can retrieve g from Fg cause F is full faithful. Then $F(g \circ f) = Fg \circ Ff = id_{Fa} = F(id_a)$ therefore $g \circ f = id_a$ since F is full faithful, similar to $F(f \circ g)$, so f is indeed an isomorphism.

Corollary 1.1. Suppose $F: \mathcal{C} \to \mathcal{D}$ is full and faithful, show that F is injective on object.

Proof. Trivial by previous theorem.

Note that a commuting diagram applied to a functor is still commutes, due to the functoriality:

Definition 1.4 (Natural Transform). Suppose $F, G : \mathcal{C} \to \mathcal{D}$ are functors, then $\alpha : F \Rightarrow G$ is called a natural transform from F to G, if:

• For any $x \in \mathcal{C}$, $\alpha_x : Fx \to Gx$ a morphism in \mathcal{D} .

• Furthermore, for any morphism $f: x \to y$ in C, the following square commutes:

$$Fx \xrightarrow{Ff} Fy$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$Gx \xrightarrow{Gf} Gy$$

The one of composition of two natural transforms is vertical composition:

which is indeed a natural transform cause:

the outer diagram commutes.

There is another way to compose two natural transforms, the horizontal composition:

$$\mathcal{C} \xrightarrow{F'} \mathcal{D} \xrightarrow{G'} \mathcal{E}$$

We would expect that there is a natural transform $\beta \cdot \alpha : G \circ F \Rightarrow G' \circ F'$, but how? Firstly, we have the following diagram commutes cause α is a

natural transform:

$$Fx \xrightarrow{Ff} Fy$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$F'x \xrightarrow{F'f} F'y$$

Then we apply it to the functor G.

$$G(Fx) \xrightarrow{G(Ff)} G(Fy)$$

$$\downarrow \qquad \qquad \downarrow$$

$$G(\alpha_x) \qquad \qquad \downarrow$$

$$G(G^y) \qquad \downarrow$$

$$G(F'x) \xrightarrow{G(F'f)} G(F'y)$$

It is similar to what we want, beside the bottom arrow, it is time to use β .

$$G(Fx) \xrightarrow{G(Ff)} G(Fy)$$

$$\downarrow \qquad \qquad \downarrow$$

$$G(\alpha_x) \qquad \qquad \downarrow$$

$$G(F'x) \xrightarrow{G(F'f)} G(F'y)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$G'(F'x) \xrightarrow{G'(F'f)} G'(F'y)$$

And the $\beta_{F'-} \circ G(\alpha_-)$ is the definition of $\beta \cdot \alpha$.

Also, if one of the natural transform is the identity transform, say $id_G \cdot \alpha$, then it can be denoted by $G \cdot \alpha$. Notice that $G \cdot \alpha$ has type $G \circ F \Rightarrow G \circ F'$, which "modifies" only one side.

You can see that the horizontal composition is much different from vertical composition, the former one is much like a product of morphism (if you treat \circ as some kind of product):

$$\alpha: F \Rightarrow F'$$
$$\beta: G \Rightarrow G'$$
$$\beta \cdot \alpha: F \circ G \Rightarrow F' \circ G'$$

While the later one is much like a composition of morphism:

$$\alpha: F \Rightarrow G$$
$$\beta: G \Rightarrow H$$
$$\beta \circ \alpha: F \Rightarrow H$$

It looks like we can write horizontal composition in vertical composition of two horizontal compositions:

In symbol, it is $G(\alpha_{-})$ (the former one) and $\beta_{F'-}$ (the later one), and finally $\beta_{F'-} \circ G(\alpha_{-})$, which is exactly the horizontal composition $\beta \cdot \alpha$. Similarly, we might suppose there is another definition of horizontal composition: $G'(\alpha_{-}) \circ \beta_{F-}$ which is the vertical composition of:

The corresponding diagram would be: apply the naturality diagram of α to G', then put β above it.