

Allstate Kaggle Competition

Cristina Andronescu | Oamar Gianan | James Lee | Alex Rohr | Joseph van Bemmelen

Competition Background

How severe is an insurance claim?

Allstate is currently developing automated methods of predicting the cost, and hence severity, of claims. In this recruitment challenge, Kagglers are invited to show off their creativity and flex their technical chops by creating an algorithm which accurately predicts claims severity. Aspiring competitors will demonstrate insight into better ways to predict claims severity for the chance to be part of Allstate's efforts to ensure a worry-free customer experience.

Training data: 188,318 rows and 132 columns of unlabeled data

Test data: 125,546 rows and 131 columns of unlabeled data

Overview

- Exploring the data
- Preprocessing
- Supervised methods
 - Linear model
 - Ridge
 - Lasso
 - Random Forest
 - o GBM
- Non-supervised methods
 - o PCA
- Ensembling

Training data: 188,318 rows and 132 columns of unlabeled data

- 72 binary categorical variables (2 levels)
- 43 non-binary categorical variables (3 to 326 levels)
- 14 continuous variables
- Continuous dependent variable "loss"

Test data: 125,546 rows and 131 columns of unlabeled data

Some of the variables have additional levels in the test set!

dim(train)
str(train)
summary(train)
sapply(train, sd)

id cat1	cat2 c	at3 cat4	cat5 cat6	cat7	cat8
Min. : 1	A:141550 A:1067	'21 A:177993 A	A:128395 A:123737	A:131693 A	:183744 A:177274
1st Qu.:147748	B: 46768 B: 815	97 B: 10325 B	B: 59923 B: 64581	B: 56625 B	: 4574 B: 11044
Median :294540					
Mean :294136					
3rd Qu.:440681					
Max. :587633					
cat110	cat111	cat112	cat113 ca	at114	cat115
CL :25305	A :128395 E	:25148 BM	1 :26191 A	:131693 K	:43866
EG : 24654	C : 32401 A	NH :18639 AE	:22030 C	: 16793 0	:26813
CS : 24592	E : 14682 A	NS :17669 L	:13058 E	: 16475 J	:23895
EB :21396	G : 7039	:16222 AX	(:12661 J	: 8199 N	:22438
CO :17495	I : 3578 A	VF : 9368 Y	:11374 F	: 7905 P	:21538
BT :16365	K : 1353 /	N : 9138 K	: 7738 N	: 2455 L	:16125
(Other):58511	(Other): 870 (Other):92134 (C	other):95266 (Other	·): 4798 (01	ther):33643
cat116	cont1	cont2	cont3	cont4	cont5
HK : 21061	Min. :0.000016	Min. :0.00114			1769 Min. :0.2811
DJ : 20244	1st Qu.:0.346090		•		•
CK : 10162	Median :0.475784	Median :0.55578	32 Median :0.527991	Median :0.4	4529 Median :0.4223
DP : 9202	Mean :0.493861	Mean :0.50718	88 Mean :0.498918	Mean :0.4	4918 Mean :0.4874
GS : 8736	3rd Qu.:0.623912	3rd Qu.:0.68176	3rd Qu.:0.634224	₁ 3rd Qu.:0.0	3521 3rd Qu.:0.6433
CR : 6862	Max. :0.984975	Max. :0.86265	4 Max. :0.944251	Max. :0.9	9543 Max. :0.9837
(Other):112051					
cont6	cont7	cont8	cont9	cont10	cont11
Min. :0.01268		Min. :0.2369		Min. :0.0000	Min. :0.03532
1st Qu.:0.33610		1st Qu.:0.3128	•	lst Qu.:0.3646	•
Median :0.44094		Median :0.4411		Median :0.4612	
Mean :0.49094		Mean :0.4864		Mean :0.4981	
3rd Qu.:0.65502		3rd Qu.:0.6236	•	3rd Qu.:0.6146	•
Max. :0.99716	Max. :1.0000	Max. :0.9802	Max. :0.99540 N	Max. :0.9950	Max. :0.99874
cont12	cont13	cont14	loss		
Min. :0.03623					
1st Qu.:0.31166		-			
Median :0.46229					
Mean :0.49315					
3rd Qu.:0.67576			•		
Max. :0.99848	Max. :0.988494	Max. :0.8448	8 Max. :121012.25	5	

Because of the many levels within the categorical variables, we will preprocess the data and create dummy columns for each level with values of 0 or 1.

In order to reduce the number of new columns, we will limit the dummy columns to categories that comprise at least 5% of the variable.

Additionally, we joined the raw train and test dataset to account for the levels that appear in the test.csv dataset, but not in the train.csv dataset.

Log transform was applied on the response column.

```
library(caret)
library(mlbench)
library(Hmisc)
library(doMC)
registerDoMC(cores = 6)
##Reading the dataset
all.train <- read.csv("train.csv", row.names # table(cat.train$cat100)
= "id")
all.test <- read.csv("test.csv", row.names = test <- sapply(cat.train, combine.levels)</pre>
"id")
#make new train to combine into single model #cbind binary and reduced categorical levels
to split later into train/test
all.train2 = all.train
all.train2$loss = NULL
all.test2 = rbind(all.test, all.train2)
##Converting categories to numeric
#this is done by first splitting the binary
level, multi-level, and
#continuous variables
bin.train <- all.test2[,1:72]</pre>
```

```
cat.train <- all.test2[,73:116]</pre>
cont.train <- all.test2[,117:130]</pre>
##Combine levels
#combining multiple levels using
combine.levels
#minimum 5%
#unique(bin.train$cat7)
# unique(combine.levels(cat.train$cat100))
test <- as.data.frame(test)</pre>
comb.train <- cbind(bin.train, test)</pre>
##Dummify all factor variables
dmy <- dummyVars(" ~ .", data = comb.train,</pre>
fullRank=T)
test <- as.data.frame(predict(dmy, newdata =</pre>
comb.train))
dim(test)
###writing to file
```

```
#write.csv(test, "comb dum train.csv")
##Combine dummified with cont vars
all.cd.train <- cbind(test, cont.train)</pre>
dim(all.cd.train)
#split dataset into new train and new test
with combine
new.all.cd.test = all.cd.train[1:125546,]
new.all.cd.train =
all.cd.train[125547:313864,]
#log transformation
#all.cd.train$loss <- log(all.cd.train$loss</pre>
+ 200)
#add log loss values to train set
new.all.cd.train$loss = log(all.train$loss
+200)
```

```
> str(new.all.cd.train, list.len = 1000)
                                    $ cat33.B
                                             $ cat69.B
                                                                                 $ cat34.B
                                                 00000000000...
                                                                        $ cat70.B
                                                                                     00000000000...
> str(new.all.cd.train, list.len = 1000)
                                    $ cat35.B
                                             : num 000000000
                                                                        $ cat71.B
'data.frame':
             188318 obs. of 219 variables:
                                    $ cat36.B
                                             : num 0010001011...
                                                                        $ cat72.B
                                                                                 : num 0000110010 ...
$ cat1.B
         : num 0001000000...
                                    $ cat37.B
                                                                        : num 0000000000...
$ cat2.B
         : num 1111110111...
                                    $ cat38.B
                                             : num 000000011...
                                                                        $ cat3.B
         : num 000000010...
                                    $ cat39.B
                                             : num 000000001...
                                                                        $ cat75.OTHER : num 1 0 0 0 0 0 0 0 0 0 ...
$ cat4.B
         : num 1001100110 ...
                                    $ cat40.B
                                             : num 0000000001...
                                                                        $ cat76.OTHER : num 0 0 0 0 0 0 0 0 0 0 ...
$ cat5.B
         : num 0010001011...
                                    $ cat41.B
                                                                        $ cat6.B
         : num 0000000001...
                                    $ cat42.B
                                             : num 0000000001...
                                                                        $ cat7.B
         : num 0000000000...
                                    $ cat43.B
                                                                        $ cat79.D
$ cat8.B
         : num 0000000000...
                                    $ cat44.B
                                             : num 0000000000...
                                                                        $ cat79.OTHER: num 00000000000...
$ cat9.B
         : num 1111110111 ...
                                    $ cat45.B
                                             : num 0000000000...
                                                                        $ cat80.D
                                                                                 : num 1101001000...
$ cat10.B
         : num 0110100010...
                                    $ cat46.B
                                             : num 0000000000...
                                                                        $ cat11.B
         : num 1010000010...
                                    $ cat47.B
                                             : num 0000000000...
                                                                        $ cat81.D
                                                                                 : num 111111100...
$ cat12.B
                                    $ cat48.B
                                             : num 0000000000...
                                                                        : num 0010100010 ...
$ cat13.B
         : num 001000010...
                                    $ cat49.B
                                             : num 1010111011...
$ cat14.B
                                    $ cat50.B
                                                                        $ cat82.OTHER : num
                                                                                     0001000000...
$ cat15.B
                                    $ cat51.B
                                             : num 0000000000...
                                                                        $ cat83.B
                                                                                 : num 0 1 0 1 1 1 0 1 1 1 ...
$ cat16.B
                                    $ cat52.B
                                                                        $ cat83.OTHER : num
                                                                                     1010001000...
         : num 000000010
                                             : num 000000001...
$ cat17.B
         $ cat53.B
                                             : num 0000000000...
                                                                        $ cat84.C
                                                                                 : num 1111111111...
$ cat18.B
         $ cat54.B
                                             : num 0000000000...
                                                                        $ cat84.OTHER : num
                                                                                     00000000000...
$ cat19.B
                                    $ cat55.B
                                                                        : num 0000000000...
                                             : num 0000000000...
$ cat20.B
         $ cat56.B
                                                                        $ cat86.D
$ cat21.B
         $ cat57.B
                                             : num 0000000000...
                                                                        $ cat22.B
         $ cat58.B
                                                                        $ cat87.D
$ cat23.B
         : num 1001100110 ...
                                    $ cat59.B
                                                                        $ cat87.OTHER : num 0000100101 ...
$ cat24.B
                                    $ cat60.B
$ cat25.B
         $ cat61.B
                                             $ cat88.OTHER : num 0 0 0 0 0 0 0 0 0 0 ...
$ cat26.B
         : num 0000000000...
                                    $ cat62.B
                                             : num 0000000000
                                                                        $ cat27.B
         $ cat63.B
                                             : num 0000000000...
                                                                        $ cat90.B
                                                                                 : num 000000010...
$ cat28.B
         : num 000000100...
                                    $ cat64.B
                                             : num 0000000000...
                                                                        $ cat29.B
         $ cat65.B
                                             : num 0000000000...
                                                                        $ cat91.B
                                                                                 : num 0000100001...
$ cat30.B
                                    $ cat66.B
                                                                        $ cat91.G
         : num 0000000000...
                                             : num 0000000000...
                                                                                 : num 0000000000...
$ cat31.B
         $ cat67.B
                                             : num 0000000000...
                                                                        $ cat32.B
         : num 000000100...
                                    $ cat68.B
                                             : num 0000000000...
                                                                        $ cat92.H
                                                                                 : num 0000100001...
```

```
$ cat104.F
                                               : num 0000000000...
                                                                            $ cat111.OTHER: num 0000000100...
$ cat93.D
         : num 1111111011...
                                      $ cat104.G
                                               : num 0000000000...
                                                                            $ cat112.AS
                                                                                     : num 1000010000...
$ cat104.H
                                               : num 000000010...
                                                                            $ cat112.E
                                                                                     : num 0000000000...
$ cat94.C
         : num 000000010...
                                      $ cat104.I
                                               : num 1000000000...
                                                                            $ cat112.J
                                                                                     : num 0000001000...
$ cat94.D
         : num 0111011000 ...
                                      $ cat104.K
                                               : num 000000101...
                                                                            $ cat112.OTHER: num 0 1 1 1 1 0 0 0 1 1 ...
$ cat113.AX : num 0000000010...
$ cat95.D
         : num 0000111000 ...
                                      $ cat105.E
                                               : num 1101111000...
                                                                            $ cat113.BM
                                                                                     : num 0100100000...
$ cat95.E
         : num 0000000000...
                                      $ cat105.F
                                               : num 0010000110...
                                                                            $ cat113.L
                                                                                     : num 0000000000...
$ cat105.G
                                               : num 0000000000...
                                                                            $ cat105.H
                                               : num 0000000001...
                                                                            $ cat113.Y
                                                                                     : num 000000100...
$ cat97.C
         : num 0000011010...
                                      $ cat114.C
                                                                                     : num 0000000000...
$ cat97.E
         : num 0111100000...
                                      $ cat106.F
                                               : num 000000100...
                                                                            $ cat114.E
                                                                                     : num 0000000000...
$ cat97.G
         : num 0000000000...
                                      $ cat106.G
                                               : num 1000000011...
                                                                            $ cat114.OTHER: num 0000000001...
$ cat106.H
                                               : num 0010011000...
                                                                            $ cat115.K
                                                                                     : num 0000111000...
$ cat98.C
         : num 1000000101...
                                      $ cat106.I
                                               : num 0 1 0 1 0 0 0 0 0 0 ...
                                                                            $ cat115.L
                                                                                     : num 0000000000...
$ cat98.D
         : num 0101000010...
                                      $ cat106.J
                                               : num 0000000000...
                                                                            $ cat115.M
                                                                                     : num 0000000000...
$ cat115.N
                                                                                     : num 0000000000...
$ cat99.P
         : num 0000111000 ...
                                      $ cat107.F
                                               : num 0010011000...
                                                                            $ cat115.0
                                                                                     : num 1101000001...
$ cat99.R
         : num 0000000000...
                                      $ cat107.G
                                               : num 0000100000...
                                                                            $ cat99.T
         : num 1101000111...
                                      $ cat107.H
                                               : num 0000000000...
                                                                            $ cat115.P
                                                                                     : num 000000100...
$ cat100.F
         : num 0000100001...
                                      $ cat107.I
                                               : num 000000100...
                                                                            $ cat116.DJ
                                                                                     : num 0001011000...
$ cat100.G
         : num 0000000000...
                                      $ cat107.1
                                               : num 1000000001...
                                                                            $ cat116.HK
                                                                                     : num 0000000000...
$ cat100.H
         : num 000000100...
                                      $ cat107.K
                                               : num 0101000000...
                                                                            $ cat100.I
         : num 0001000000...
                                      $ cat107.OTHER: num    0    0    0    0    0    0    1    0    ...
                                                                            $ cont1
                                                                                     : num 0.726 0.331 0.262 0.322 0.273 ...
$ cat100.J
         : num 0000011000...
                                      $ cat108.D
                                               : num 0000000000...
                                                                            $ cont2
                                                                                     : num 0.246 0.737 0.358 0.556 0.16 ...
$ cat100.K
         : num 0000000000...
                                      $ cat108.F
                                               : num 0000000000...
                                                                            $ cont3
                                                                                     : num 0.188 0.593 0.484 0.528 0.528 ...
$ cat100.L
         : num 0110000000...
                                      $ cat108.G
                                               : num 1000000101...
                                                                            $ cont4
                                                                                     : num 0.79 0.614 0.237 0.374 0.473 ...
$ cat100.OTHER: num 1 0 0 0 0 0 0 1 0 ...
                                      $ cat108.K
                                               : num 0101000010...
                                                                            $ cont5
                                                                                     : num 0.31 0.886 0.397 0.422 0.704 ...
$ cat101.C
         : num 000000100...
                                      $ cont6
                                                                                     : num 0.718 0.439 0.29 0.441 0.178 ...
$ cat101.D
         : num 0001010001...
                                      $ cat109.BI
                                              $ cont7
                                                                                     : num 0.335 0.437 0.316 0.391 0.247 ...
$ cat101.F
         : num 0100000000...
                                      $ cont8
                                                                                     : num 0.303 0.601 0.273 0.318 0.246 ...
$ cat101.G
         : num 10000000000...
                                      $ cat110.CL
                                               : num 0000000000...
                                                                            $ cont9
                                                                                     : num 0.671 0.351 0.261 0.321 0.221 ...
$ cat101.OTHER: num 0 0 1 0 1 0 0 0 1 0 ...
                                      $ cat110.CO
                                               : num 0000000000...
                                                                            $ cont10
                                                                                     : num 0.835 0.439 0.324 0.445 0.212 ...
$ cat110.CS
                                               : num 0001010000...
                                                                            $ cont11
                                                                                     : num 0.57 0.338 0.381 0.328 0.205 ...
$ cat103.B
         : num 0010000000...
                                      $ cat110.EB
                                               : num 000000100...
                                                                            $ cont12
                                                                                     : num 0.595 0.366 0.373 0.322 0.202 ...
$ cat103.C
                                      $ cat110.EG
                                               : num 0000000000...
         : num 0000001010 ...
                                                                            $ cont13
                                                                                     : num 0.822 0.611 0.196 0.605 0.246 ...
$ cat103.OTHER: num    0    0    0    0    0    0    1    ...
                                      $ cont14
                                                                                     : num 0.715 0.304 0.774 0.603 0.433 ...
$ cat104.E
        : num    0    1    1    1    1    1    0    0    0    ...
                                      $ cat111.C : num 1 0 0 1 1 0 0 0 1 0 ...
                                                                            $ loss
                                                                                     : num 7.79 7.3 8.07 7.04 7.99 ...
```

\$ cat111.E

: num 0000000000...

Variable Correlation To Loss

	variable	cor		variable	cor
80	cat80.D	-0.4881326832	130	cat100.L	0.1481612062
78	cat79.D	0.4260899524	192	cat114.E	-0.1481490690
136	cat101.OTHER	0.3453149606	102	cat91.OTHER	0.1335827252
11	cat12.B	0.3412501993	27	cat28.B	0.1316297212
9	cat10.B	0.3028827760	39	cat40.B	0.1300847358
82	cat81.D	-0.2913617979	4	cat5.B	0.1296647006
1	cat2.B	0.2648029266	3	cat4.B	0.1241861659
93	cat87.D	0.2642634448	37	cat38.B	0.1233270431
8	cat9.B	0.2518229180	83	cat81.OTHER	0.1198687729
10	cat11.B	0.2423092410	128	cat100.J	-0.1155922480
71	cat72.B	0.2420830526	85	cat82.OTHER	-0.1141594350
12	cat13.B	0.2362243575	24	cat25.B	0.1131868534
56	cat57.B	0.2306959711	205	cont2	0.1086686454
127	cat100.I	-0.2276397230	75	cat76.OTHER	0.1021539383
6	cat7.B	0.2136900721	23	cat24.B	0.1010686024
97	cat89.OTHER	0.2136900721	40	cat41.B	0.0959454097
2	cat3.B	0.1983373842	7	cat8.B	0.0949661670
94	cat87.OTHER	0.1965621859	137	cat102.OTHER	0.0949661670
15	cat16.B	0.1956941440	13	cat14.B	0.0941906280
98	cat90.B	0.1867979769	126	cat100.H	0.0909553429
22	cat23.B	0.1820766881	210	cont7	0.0869832821
72	cat73.OTHER	-0.1818555804	206	cont3	0.0846076161
35	cat36.B	0.1771345930	28	cat29.B	0.0838642608
5	cat6.B	-0.1654783556	131	cat100.OTHER	0.0828205770
125	cat100.G	0.1612349228	44	cat45.B	0.0801435868
140	$\verb cat103.OTHER $	0.1598830127	84	cat82.B	0.0794583657
49	cat50.B	-0.1597130689	43	cat44.B	0.0793613996
181	$\verb cat111.OTHER $	0.1528579695	214	cont11	0.0740673047
191	cat114.C	-0.1500996867	215	cont12	0.0735169506

(sorted by absolute value, top 20) cat80.Dcat79.Dcat101.OTHERcat12.Bcat10.Bcat81.Dcat2.Bcat87.Dcat9.Bcat11.Bcat72.Bcat13.Bcat57.Bcat100.1cat89.OTHERcat7.Bcat3.Bcat87.OTHER-

-0.3

cat16.Bcat90.B-

-0.6

Correlation of Each Column To Loss

0.0

Correlation

0.3

0.6

. .

Linear Model

```
library(caret)
set.seed(0)
inTrain1<- createDataPartition(v=new.all.cd.train$loss.p=0.80.list=FALSE.times=1)
training<-new.all.cd.train[inTrain1,]</pre>
testing<-new.all.cd.train[-inTrain1,]</pre>
lmFit1 <- train(loss~., data=training, method='lm')</pre>
lmFit1adj2 <- train(loss~. - cat114.0THER -cat111.0THER -cat103.0THER -cat101.0THER</pre>
                    -cat102.OTHER -cat90.OTHER -cat89.OTHER, data=training, method='lm')
lmFit1adi3 <- train(loss~. - cat114.OTHER -cat111.OTHER -cat103.OTHER -cat101.OTHER</pre>
                    -cat102.OTHER -cat90.OTHER -cat89.OTHER -cat6.B -cat8.B -cat10.B
                    -cat10.B -cat15.B -cat19.B -cat19.B -cat24.B -cat30.B -cat33.B
                    -cat43.B -cat45.B -cat46.B -cat58.B -cat60.B -cat62.B -cat64.B
                    -cat66.B -cat68.B -cat69.B -cat70.B -cat81.OTHER -cat82.B -cat82.B
                    -cat83.B -cat84.OTHER -cat86.D -cat88.D -cat88.OTHER -cat92.OTHER
                    -cat96.OTHER -cat97.C -cat97.E -cat97.OTHER -cat98.C -cat98.D
                    -cat98.OTHER -cat99.R -cat99.T -cat100.I -cat104.F -cat104.G -cat104.H
                    -cat104.K -cat104.OTHER -cat105.E -cat105.F -cat105.H -cat106.F
                    -cat106.G -cat106.J -cat107.H -cat108.F -cat108.G -cat108.G -cat109.BI
                    -cat109.OTHER -cat110.CL -cat110.CO -cat110.EG -cat110.OTHER -cat113.AX
                    -cat113.OTHER -cat115.K -cat115.L -cat115.L -cat115.M -cat115.N -cat115.N
                    -cat115.0 -cat115.OTHER -cat115.P -cont3 -cont5 -cont6 -cont13,
                    data=training, method='lm')
```

summary(lmFit1)

Includes all variables

Residual standard error: 0.5067 on 150443 degrees of freedom Multiple R-squared: 0.5215, Adjusted R-squared: 0.5208 F-statistic: 773.3 on 212 and 150443 DF, p-value: < 2.2e-16

summary(lmFit1adj2)

Excludes all variables with NA coefficients in LmFit1

Residual standard error: 0.5067 on 150443 degrees of freedom Multiple R-squared: 0.5215, Adjusted R-squared: 0.5208 F-statistic: 773.3 on 212 and 150443 DF, p-value: < 2.2e-16

summary(lmFit1adj3)

Excludes all variables not significant at least at the 90% confidence level in LmFit1

Residual standard error: 0.507 on 150513 degrees of freedom Multiple R-squared: 0.5208, Adjusted R-squared: 0.5203 F-statistic: 1152 on 142 and 150513 DF, p-value: < 2.2e-16

Linear Model

varImp(lmFit1adj3, scale = FALSE)

lm variable importance

only 20 most important variables shown (out of 142)

	Overall
cat80.D	71.46
cat53.B	51.28
cat79.D	49.50
cat81.D	40.12
cat100.G	39.95
cat100.L	38.19
cat112.J	37.95
cat2.B	32.56
cat100.H	31.89
cat101.C	29.60
cat112.OTHER	29.50
cat101.D	29.23
cat72.B	28.23
cat26.B	27.96
cat44.B	27.91
cont2	27.45
cat12.B	26.34
cat1.B	25.88
cat100.OTHER	23.22
cont7	22.37

RMSE: 0.5054915

MAE for the model (not Kaggle score): 0.397099

Ridge Model

lambda	RMSE	Rsquared
1.000000e-05	0.5071109	0.5200358
2.212216e-05	0.5075730	0.5192098
3.290345e-05	0.5069499	0.5199159
4.893901e-05	0.5072538	0.5197626
7.278954e-05	0.5072210	0.5196924
1.082637e-04	0.5071089	0.5200397
2.395027e-04	0.5067146	0.5208755
3.562248e-04	0.5075697	0.5192165
5.298317e-04	0.5069426	0.5199301
7.880463e-04	0.5072481	0.5197738
1.172102e-03	0.5071043	0.5200493
2.592944e-03	0.5070029	0.5206113
3.856620e-03	0.5067233	0.5208621
5.736153e-03	0.5075894	0.5191892
8.531679e-03	0.5069802	0.5198728
1.268961e-02	0.5071969	0.5199062
2.807216e-02	0.5075871	0.5191559
4.175319e-02	0.5076327	0.5197923
6.210169e-02	0.5078219	0.5195180
9.236709e-02	0.5096351	0.5170850
1.373824e-01	0.5108307	0.5168964
3.039195e-01	0.5205381	0.5131789
4.520354e-01	0.5334754	0.5099944
6.723358e-01	0.5577743	0.5070403
1.000000e+00	0.6006881	0.5015040

RMSE was used to select the optimal model using the smallest value.

The final value used for the model was lambda = 0.0002395027.

Kaggle score of 1232

RMSE: 0.5067146

Lasso model

150656 samples 218 predictor

Pre-processing: scaled (218), centered (218)

Resampling: Cross-Validated (10 fold)

Summary of sample sizes: 135590, 135590, 135591, 135591,

Resampling results across tuning parameters:

fraction	RMSE	Rsquared
0.1	0.5724427	0.4095845
0.5	0.5094885	0.5153269
0.9	0.5072764	0.5189440

RMSE was used to select the optimal model using the smallest value.

The final value used for the model was fraction = 0.9.

RMSE for the model: 0.505312

MAE for the model (not Kaggle score) 0.3978363

GBM

- GBM was done on the pre-processed dataset.
- The following parameters were used:
 - N.trees 500
 - Interaction depth -1,3,5,7
 - Shrinkage 0.1
- An MAE of 1245.942 was achieved on a subset of the train dataset.

PCA

PCA

PC1 PC2 PC3
SS loadings 12.37 7.03 6.38
Proportion Var 0.06 0.03 0.03
Cumulative Var 0.06 0.09 0.12
Proportion Explained 0.48 0.27 0.25
Cumulative Proportion 0.48 0.75 1.00

Mean item complexity = 1.6
Test of the hypothesis that 3 components are sufficient.

The root mean square of the residuals (RMSR) is 0.06

Fit based upon off diagonal values = 0.53

Principal Component Analysis

- None of the models did well on its own.
- But choosing from the models and parameters we tried, we assembled a group of learners.
- H2O and H2O ensemble was used.

- Start with L base learners (each with its own model parameters)
 - Base learners will be trained on the "Level-zero data" to produce L number of predictions, p.
- Column bind all predictions, p.
 - These will be the new predictors for response, y.
- Specify a metalearner.
 - Metalearner will be used on the "Level-one data"

$$n\left\{ \begin{bmatrix} p_1 \end{bmatrix} \cdots \begin{bmatrix} p_L \end{bmatrix} \begin{bmatrix} y \end{bmatrix} \rightarrow n \left\{ \begin{bmatrix} & Z & \\ & Z & \end{bmatrix} \begin{bmatrix} y \end{bmatrix} \right. \qquad \text{``Level-one''} \\ \mathsf{data} \end{cases}$$

- Creating learners with parameters:
 - o h2o.glm.3 <- function(..., alpha = 1.0) h2o.glm.wrapper(..., alpha = alpha)
 - h2o.randomForest.1 <- function(..., ntrees = 300)</p>
 - h2o.gbm.3 <- function(..., ntrees = 500, max_depth = 7, seed = 1)</p>
 - h2o.deeplearning.1 < function(..., hidden = c(500,500), epochs = 50, seed = 1)
- Setup base learners and metalearner to be used on Level-zero data:
 - o learner <- c("h2o.glm.wrapper", "h2o.randomForest.1", "h2o.gbm.3", "h2o.deeplearning.wrapper", "h2o.deeplearning.1"))
 - metalearner <- "h2o.gbm.1"
- Train & test:
 - o fit <- h2o.ensemble(x = x, y = y, data = train, family = family, learner = learner, metalearner = metalearner)
 - o pred <- predict(fit = fit, newdata = test)</pre>

- H2O runs outside of R. JRE must be installed on the machine.
- Has a separate web interface to show what's going on:

 Can show model performance real-time:

Shows Job queue and REMAINING TIME!!!

Job

```
Run Time 00:10:30.786

Remaining Time 07:20:02.900

Type Model

Key DRF_model_R_1480250764558_2

Description DRF

Status RUNNING

Progress 3% Scoring the model.

Actions © Cancel Job
```

Base learners:

```
Glm:
0
            Lambda = 1e-5
    RandomForest:
            N.trees = 300
            Max_depth = 20
     Gbm.1:
            N.trees = 500
             Max depth = 5
     Gbm.2:
0
            N.trees = 300
            Max depth = 5
     Gbm.3:
0
            N.trees = 300
            Max depth = 3
     Deeplearning
             Hidden = c(20,20)
             Epochs = 10
```

- Metalearner:
 - o Gbm.1
- Kaggle score of 1125.39604

