In [24]:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

In [25]:

import warnings
warnings.filterwarnings('ignore')

In [26]:

data = pd.read_csv("AQD_2019.csv")

In [28]:

data.head()

Out[28]:

	AQS_ID	LATITUDE	LONGITUDE	COUNTY	STATE	CBSA	PEOPLE_OF_COLOR_FRACTION
0	01-003- 0010	30.497478	-87.880258	Baldwin	Alabama	Daphne- Fairhope- Foley, AL	0.13
1	01-003- 0010	30.497478	-87.880258	Baldwin	Alabama	Daphne- Fairhope- Foley, AL	0.13
2	01-003- 0010	30.497478	-87.880258	Baldwin	Alabama	Daphne- Fairhope- Foley, AL	0.13
3	01-003- 0010	30.497478	-87.880258	Baldwin	Alabama	Daphne- Fairhope- Foley, AL	0.13
4	01-003- 0010	30.497478	-87.880258	Baldwin	Alabama	Daphne- Fairhope- Foley, AL	0.13
5 r	ows × 22	columns					
4							•

In [29]:

data.tail()

Out[29]:

	AQS_ID	LATITUDE	LONGITUDE	COUNTY	STATE	CBSA	PEOPLE_OF_COLOR_FRACTI
129465	72-021- 0010	18.420089	-66.150615	Bayamon	Puerto Rico	San Juan- Carolina- Caguas, PR	N
129466	72-021- 0010	18.420089	-66.150615	Bayamon	Puerto Rico	San Juan- Carolina- Caguas, PR	N
129467	72-021- 0010	18.420089	-66.150615	Bayamon	Puerto Rico	San Juan- Carolina- Caguas, PR	N
129468	72-021- 0010	18.420089	-66.150615	Bayamon	Puerto Rico	San Juan- Carolina- Caguas, PR	N
129469	72-021- 0010	18.420089	-66.150615	Bayamon	Puerto Rico	San Juan- Carolina- Caguas, PR	N
5 rows × 22 columns							
4							>

In [30]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 129470 entries, 0 to 129469

Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	AQS_ID	129470 non-null	object
1	LATITUDE	129470 non-null	float64
2	LONGITUDE	129470 non-null	float64
3	COUNTY	129470 non-null	object
4	STATE	129470 non-null	object
5	CBSA	117210 non-null	object
6	PEOPLE_OF_COLOR_FRACTION	129393 non-null	float64
7	LOW_INCOME_FRACTION	129393 non-null	float64
8	LINGUISTICALLY_ISOLATED_FRACTION	129393 non-null	float64
9	LESS_THAN_HS_ED_FRACTION	129393 non-null	float64
10	DATE	129470 non-null	object
11	TEMPERATURE_CELSIUS	72703 non-null	float64
12	RELATIVE_HUMIDITY	50670 non-null	float64
13	WIND_SPEED_METERS_PER_SECOND	58576 non-null	float64
14	WIND_DIRECTION	59484 non-null	float64
15	PM25_UG_PER_CUBIC_METER	129470 non-null	float64
16	OZONE_PPM	129470 non-null	float64
17	NO2_PPB	61395 non-null	float64
18	CO_PPM	39749 non-null	float64
19	SO2_PPB	47337 non-null	float64
20	LEAD_UG_PER_CUBIC_METER	659 non-null	float64
21	BENZENE_PPBC	3307 non-null	float64
	6.		

dtypes: float64(17), object(5)

memory usage: 21.7+ MB

H In [31]:

data.describe()

Out[31]:

	LATITUDE	LONGITUDE	PEOPLE_OF_COLOR_FRACTION	LOW_INCOME_FRACTION	L
count	129470.000000	129470.000000	129393.000000	129393.000000	
mean	38.533022	-96.298816	0.383927	0.375089	
std	4.837426	17.693938	0.303357	0.215389	
min	18.420089	-158.088613	0.000000	0.000000	
25%	35.320105	-112.095767	0.110000	0.210000	
50%	39.138773	-93.512534	0.320000	0.350000	
75%	41.530011	-80.341962	0.660000	0.540000	
max	64.845690	-66.150615	1.000000	0.990000	
4					•

In [32]: ▶

```
data.isnull().sum()
```

Out[32]:

AQS_ID	0
LATITUDE	0
LONGITUDE	0
COUNTY	0
STATE	0
CBSA	12260
PEOPLE_OF_COLOR_FRACTION	77
LOW_INCOME_FRACTION	77
LINGUISTICALLY_ISOLATED_FRACTION	77
LESS_THAN_HS_ED_FRACTION	77
DATE	0
TEMPERATURE_CELSIUS	56767
RELATIVE_HUMIDITY	78800
WIND_SPEED_METERS_PER_SECOND	70894
WIND_DIRECTION	69986
PM25_UG_PER_CUBIC_METER	0
OZONE_PPM	0
NO2_PPB	68075
CO_PPM	89721
SO2_PPB	82133
LEAD_UG_PER_CUBIC_METER	128811
BENZENE_PPBC	126163
dtype: int64	

In [33]: ▶

data.shape

Out[33]:

(129470, 22)

In [34]:

```
data1 = pd.DataFrame(data.isna().sum().sort_values(ascending=False))
data1['null']=data1.index
data1['count']=data1.iloc[:,:-1]
data1.reset_index(drop=True, inplace=True)
data1 = data1.drop(data1.columns[[0]],axis = 1)
plt.title('Null Distribution Column-Wise')
ax = sns.barplot(y='null',x='count',data=data1.head(14))
```



```
In [35]:
plt.figure(figsize=(24,12))
```

```
plt.figure(figsize=(24,12))
sns.scatterplot(x="PM25_UG_PER_CUBIC_METER",y="STATE",data=data)
```

Out[35]:

<matplotlib.axes._subplots.AxesSubplot at 0xd43751dfa0>


```
In [36]:
```

```
plt.figure(figsize=(12,6))
groupby=pd.DataFrame(data.groupby(['STATE']).sum())
#.plot(kind='pie', autopct='%1.0f%%',y='PEOPLE_OF_COLOR_FRACTION')
groupby['State']=groupby.index
groupby.reset_index(drop=True, inplace=True)
groupby = groupby.drop(groupby.columns[[0]],axis = 1)
groupby.head(5)
```

Out[36]:

LONGITUDE PEOPLE_OF_COLOR_FRACTION LOW_INCOME_FRACTION LINGUISTICALLY_ISOLA

0	-9.378111e+04	709.69	584.83	
1	-4.284095e+04	118.90	92.80	
2	-4.026421e+05	2265.89	2053.45	
3	-5.487731e+04	421.26	386.75	
4	-2.889200e+06	13461.82	9855.79	
4				>

<Figure size 864x432 with 0 Axes>

```
In [37]:
```

```
shapes = groupby[['PM25_UG_PER_CUBIC_METER','State']].sort_values(by='PM25_UG_PER_CUBIC_
shapes['PM25_UG_PER_CUBIC_METER'].head(10).unique()
shapes = groupby[['PM25_UG_PER_CUBIC_METER','State']].sort_values(by='PM25_UG_PER_CUBIC_
shapes['State'].head(10).unique()
```

Out[37]:

In [38]: ▶

In [39]: ▶

In [40]: ▶

In [41]: ▶

```
plt.figure(figsize=(20,6))
ax = sns.boxplot(x='STATE',y='PEOPLE_OF_COLOR_FRACTION',data=data)
plt.xticks(rotation=90)
ax.set_title("People of colour fraction ")
```

Out[41]:

Text(0.5, 1.0, 'People of colour fraction ')

In [42]:

```
plt.figure(figsize=(20,6))
ax = sns.boxplot(x='STATE',y='LOW_INCOME_FRACTION',data=data)
plt.xticks(rotation=90)
ax.set_title("Low Income Fraction Distribution in various States")
```

Out[42]:

Text(0.5, 1.0, 'Low Income Fraction Distribution in various States')


```
In [43]:
```

```
plt.figure(figsize=(20,6))
ax = sns.boxplot(x='STATE',y='RELATIVE_HUMIDITY',data=data)
plt.xticks(rotation=90)
ax.set_title("Relative Humidity Distribution in various States ")
```

Out[43]:

Text(0.5, 1.0, 'Relative Humidity Distribution in various States ')

In [44]: ▶

```
plt.figure(figsize=(18,8))
data1 = data[['WIND_SPEED_METERS_PER_SECOND','STATE']].sort_values(by='WIND_SPEED_METERS
plt.xticks(rotation=90)
sns.barplot(x='STATE',y='WIND_SPEED_METERS_PER_SECOND',data=data1)
plt.show()
```


In [45]: ▶

```
dfa=groupby.sort_values(by=['PEOPLE_OF_COLOR_FRACTION'], ascending=False)
plt.figure(figsize=(12,6))
plt.xticks(rotation=90)
sns.barplot(x='State',y='PEOPLE_OF_COLOR_FRACTION',data=dfa)
plt.xlabel('STATES')
plt.ylabel('PEOPLE of Colour')
plt.title('Distribution of people with different skintones across States')
plt.show()
```


In [46]: ▶

```
dfa=groupby.sort_values(by=['LOW_INCOME_FRACTION'], ascending=False)
plt.figure(figsize=(12,8))
sns.barplot(x='State',y='LOW_INCOME_FRACTION',data=dfa)
plt.xticks(rotation=90)
plt.xlabel('COUNT')
plt.ylabel('PEOPLE of Colour')
plt.title('States having the highest LOW_INCOME_FRACTION')
plt.show()
```


In [47]:

plt.figure(figsize=(18,10))
sns.scatterplot(x="PEOPLE_OF_COLOR_FRACTION",y="STATE",data=data,hue='LOW_INCOME_FRACTION")

Out[47]:

<matplotlib.axes._subplots.AxesSubplot at 0xd43b7aa460>

In [48]: ▶

```
dfa=groupby.sort_values(by=['TEMPERATURE_CELSIUS'], ascending=False)
plt.figure(figsize=(12,8))
sns.barplot(x='State',y='TEMPERATURE_CELSIUS',data=dfa)
plt.xticks(rotation=90)
plt.xlabel('States-->')
plt.ylabel('Humidity Count')
plt.title('States with the highest Relative humidity')
plt.show()
```


In [49]: ▶

```
dfa=groupby.sort_values(by=['LOW_INCOME_FRACTION'], ascending=False)
plt.figure(figsize=(12,8))
sns.barplot(x='State',y='LOW_INCOME_FRACTION',data=dfa)
plt.xticks(rotation=90)
plt.xlabel('COUNT')
plt.ylabel('PEOPLE of Colour')
plt.title('States with the hottest Temperatures')
plt.show()
```


In [50]: ▶

```
plt.figure(figsize=(12,12))
dataplot = sns.heatmap(data.corr(), cmap="YlGnBu", annot=True)
plt.show()
```



```
In [58]:
                                                                                         M
data1 = data.dropna()
In [59]:
                                                                                         H
data1.shape
Out[59]:
(110, 22)
In [60]:
                                                                                         H
data2 = data1[['RELATIVE_HUMIDITY', 'WIND_SPEED_METERS_PER_SECOND',
                'WIND_DIRECTION','OZONE_PPM','NO2_PPB','CO_PPM','SO2_PPB',
               'LEAD_UG_PER_CUBIC_METER',
                'BENZENE_PPBC']]
In [62]:
x = data2.drop(['OZONE_PPM'], axis = 1)
In [63]:
y = data2.0ZONE_PPM
In [64]:
                                                                                         M
x.shape
Out[64]:
(110, 8)
In [65]:
                                                                                         M
y.shape
Out[65]:
(110,)
In [66]:
                                                                                         M
from sklearn.linear model import LinearRegression
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size = 0.2)
```

```
In [67]:

model= LinearRegression()
model.fit(X_train, y_train)

Out[67]:
LinearRegression()

In [71]:

y_pred = model.predict(X_test)

In [72]:

print("Training Accuracy :", model.score(X_train, y_train))
print("Testing Accuracy :", model.score(X_test, y_test))
```

Training Accuracy: 0.5888597175737917 Testing Accuracy: 0.5309685152061103