LOGICAL DESIGN OF IOT

Logical Design of IoT

- IoT Functional Blocks
- IoT Communication Models
- IoT Communication APIs

IoT Functional Blocks Functional Blocks of IoT User Interface Control Application View Data Analyze Data Confidentiality Services Integrity Management Security Availability Communication Authentication Sensing Monitoring Device Actuation Control Functions

IoT Communication Models

- Request-Response Model
- Publish-Subscribe Model
- Push-Pull Model
- Exclusive Pair Model

Publisher Queues Consumer - 1 Sends messages to topics Messages Pushed to Queues Queues Consumer - 2

IoT Communication APIs

- REST-based Communication APIs
- WebSocket-based Communication APIs
- REpresentational State Transfer (REST) is a set of architectural principles by which we can design web services and web APIs that focus on a system's resources and how resource states are addressed and transferred
- REST APIs follow request-response model
- REST architectural constraints apply to components, connectors, and data elements within a system

REST-based Communication APIs

- REST architectural constraints are:
 - Client-Server
 - Stateless
 - Cacheable
 - Layered System
 - Uniform Interface
 - Code on Demand
- A RESTful web service is a web API implemented using HyperText Transfer Protocol (HTTP) and REST principles
- RESTful web service is a collection of resources which are represented by URIs
- Clients send requests to these URIs using HTTP methods like GET, POST, PUT, DELETE

Communication with REST APIs

WebSocket-based Communication APIs

- Allows full-duplex communication between clients and servers
- Follows exclusive pair communication model
- WebSocket-based communication is stateful
- No need to establish connection for each request
- Suitable for IoT applications that need low latency

