Lagrangian density	
$-\frac{1}{3}t_{1}\;\omega_{i}^{\alpha\prime}\;\omega_{\kappa\alpha}^{\;\;\kappa}+\frac{2}{3}t_{3}\;\omega_{i}^{\alpha\prime}\;\omega_{\kappa\alpha}^{\;\;\kappa}-t_{1}\;\omega_{i}^{\;\kappa\lambda}\;\omega_{\kappa\lambda}^{\;\;\prime}+r_{1}\partial_{i}\omega_{\kappa\lambda}^{\;\kappa\lambda}\;\partial_{\lambda}^{\;\;\alpha}-$	
$\frac{2}{3} r_1 \partial^\beta \omega^{\theta \alpha}_{ \alpha}{}_{\beta}^{ \alpha} - \frac{2}{3} r_1 \partial_\theta \omega_{\alpha\beta}^{ \beta} \partial_\kappa \omega^{\alpha\beta\theta} + \frac{2}{3} r_1 \partial_\theta \omega_{\alpha\beta}^{ \beta} \partial_\kappa \omega^{\theta\alpha\beta} +$	
$r_1\partial_{lpha}\omega_{\lambda}^{\ \ lpha}\partial_{\kappa}\omega^{ heta\kappa\lambda}$ - $r_1\partial_{ heta}\omega_{\lambda}^{\ \ lpha}\partial_{\kappa}\omega^{ heta\kappa\lambda}$ + $r_1\partial_{lpha}\omega_{\lambda}^{\ \ lpha}\partial_{\kappa}\omega^{\kappa\lambda heta}$ -	
$2r_1\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta}{}_{-\frac{1}{2}}t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\ \theta}{}_{-\frac{1}{2}}t_1\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\ \theta}{}_{-}$	
$\frac{1}{2}t_1\partial^{\alpha}f^{\lambda}_{}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{3}t_1\ \omega_{\kappa\alpha}^{}\partial^{\kappa}f'_{}{}_{}{}_{}^2 \beta_{\kappa\alpha}^{\alpha}\partial^{\kappa}f'_{}{}_{} + \frac{1}{3}t_1\ \omega_{\kappa\lambda}^{\lambda}\partial^{\kappa}f'_{}{}_{}{}_{}$	
$\frac{2}{3}t_3\;\omega_{\kappa\lambda}^{\lambda}\;\partial^{\kappa}f'_{}+\frac{2}{3}t_1\partial^{\alpha}f_{\alpha}\;\partial^{\kappa}f'_{}-\frac{4}{3}t_3\partial^{\alpha}f_{\alpha}\;\partial^{\kappa}f'_{}-\frac{1}{3}t_1\partial_{\kappa}f^{}_{}\partial^{\kappa}f'_{}+$	
$\frac{2}{3}t_{3}\partial_{k}f^{\lambda}_{\ \ \lambda}\partial^{\kappa}f'_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }+2t_{1}\omega_{\alpha}^{\ \ \ \ \alpha}\partial^{\kappa}f'_{\ \ \ \ \ \ \ \ }+\frac{2}{3}t_{3}\omega_{\alpha}^{\ \ \ \ \alpha}\partial^{\kappa}f'_{\ \ \kappa}-$	
$\frac{1}{3}t_1\;\omega_{_{I}\lambda}^{\lambda}\;\partial^{\kappa}f_{_{\kappa}}^{\prime}+\frac{2}{3}t_3\;\omega_{_{I}\lambda}^{\lambda}\;\partial^{\kappa}f_{_{\kappa}}^{\prime}+\frac{1}{2}t_1\;\partial^{\alpha}f_{_{\kappa}}^{\lambda}\;\partial^{\kappa}f_{_{\kappa}}^{\prime}+\frac{1}{2}t_1\;\partial_{\kappa}f_{_{\alpha}}^{\lambda}\partial^{\kappa}f_{_{\alpha}}^{\lambda}+$	
$\frac{1}{2}t_1\partial_{\kappa}f^{\lambda}_{}\partial^{\kappa}f_{\lambda}^{}-\frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa}+\frac{2}{3}t_3\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa}+$	
$rac{2}{3} r_1 \partial_{\kappa} \omega^{lphaeta heta} \partial^{\kappa} \omega_{lphaeta heta} - rac{2}{3} r_1 \partial_{\kappa} \omega^{eta lpha eta} \partial^{\kappa} \omega_{lphaeta heta} + rac{2}{3} r_1 \partial^{eta} \omega_{ lpha}^{ lpha} \partial_{\lambda} \omega_{lpha eta}^{ \prime} -$	
$rac{8}{3} r_1 \partial^{eta} \omega_{\lambda}{}^{\lambda lpha} \partial_{\lambda} \omega_{lpha eta}{}^{\prime} - r_1 \partial_{lpha} \omega_{\lambda}{}^{lpha} \partial^{\lambda} \omega^{eta \kappa}{}^{$	
,	

	3	$\omega_{1}^{#1} + ^{\alpha\beta} k^2 r_1 - ^{\frac{t_1}{2}}$		$f_{1+}^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{#1} + \alpha$	$f_{1}^{#2} + \alpha$
	$a_{1}^{\#1}$	$r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1}{}_{\alpha\beta} \ \omega_{1}^{\#2}{}_{\alpha\beta} \ f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
1	$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
	$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{6}(t_1 + 4t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}k(t_1-$
1					· t ₃)			2 t ₃)
0	$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}k(t_1-2t_3)\left -\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)\right $
	$f_{1^-}^{\#1}$)	0	0)	0	0	$+t_3$ 0
) 1	$\frac{1}{\alpha}$				0 \frac{1}{3}			
	$f_{1^-}^{\#2} \alpha$	0	0	0	$\frac{1}{3}$ \bar{l} k $(t_1 - 2t_3)$	$\frac{1}{3}$ i $\sqrt{2}$ k ($t_1 + t_3$)	0	$\frac{2}{3} k^2 (t_1 + t_3)$

$\sigma_{2^{-}}^{\#1}{}_{lphaeta angle}$	0	0	$\frac{2}{2k^2r_1+t_1}$	
$\tau_2^{\#1}_{+}\alpha\beta$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	u f f
	$\sigma_{2^+}^{\#1} + ^{\alpha\beta}$	$\tau_2^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$	f
	02#	τ ₂ [#] :	$\sigma_{2}^{\#1}$	μ

 $\frac{1}{(1+2k^2)^2t_3}$

 $\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$

 $\tau_{0}^{\#2}$

 $-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$

 $\frac{2k^2}{(1+2k^2)^2t_3}$

0

0

			$\omega_{0}^{\#_{1}}$	$f_{0+}^{\#1}$	$f_{0+}^{\#2}$	$\omega_{0}^{#1}$
0		$\omega_{0}^{\#1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
<u>.</u>		$f_{0}^{#1}\dagger$	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$+^{\alpha eta \chi}$		$f_{0}^{#2}$ †	0	0	0	0
$\sigma_{2}^{\#1}$		$\omega_{0}^{\sharp 1}$ †	0	0	0	-t ₁
ı	#1	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$	1 #	_	3

	0		0	-t ₁			3	f	
	#	l	1	3	3	3	2	16	
Source constraints	SO(3) irreps	$\tau_0^{#2} == 0$	$\tau_{0+}^{\#1} - 2\bar{l}k\sigma_{0+}^{\#1} == 0$	$t_1^{\#2}{}^{\alpha} + 2ik \ \sigma_1^{\#2}{}^{\alpha} = 0$	$t_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}^{\#1}^{\alpha\beta} - 2ik \sigma_{2+}^{\#1}^{\#1}^{\alpha\beta} = 0$	Total #:	

 $\omega_{2^{-}}^{\#1} \alpha eta \chi$

 $f_{2}^{\#1}\alpha\beta$

0

0

	Massive particle			
? $J^P = 2^{-/}$	Pole residue:	$-\frac{1}{r_1} >$		
2	Polarisations:	5		
k^{μ}	Square mass:	$-\frac{t_1}{2r_1} >$		
?	Spin:	2		
·	Parity:	Odd		

Unitarity conditions $r_1 < 0 \&\& t_1 > 0$

(No massless particles)