

Zamek elektromagnetyczny

PROJEKT ZALICZENIOWY – NARZĘDZIA PROGRAMISTYCZNE – INFORMATYKA STOSOWANA 2017/2018 – GRUPA 7

SULECKI PRZEMYSŁAW, JAKUBCZYK FILIP, IDRYJAN PAWEŁ, WIZE PAWEŁ

SPIS TREŚCI

Wprowadzenie
Schemat działania systemu komputerowego
Wykorzystane elementy fizyczne
Schemat podłączenia elementów
MFRC522
Brzęczyk Piezoelektryczny
System operacyjny oraz oprogramowanie
System operacyjny
Repozytorium projektu
Drzewo zawartości repozytorium
Instalacja oprogramowania z repozytorium
Panel administracyjny
Logowanie5
Po zalogowaniu6
Filtrowanie6
Dodawanie
Usuwanie
Tryb responsywny8
Wnioski i spostrzeżenia8

WPROWADZENIE

Niniejszy projekt jest projektem zaliczeniowym z przedmiotu Narzędzia programistyczne, kierunku Informatyki Stosowanej 2017/18 na Uniwersytecie Technologiczno-Przyrodniczym w Bydgoszczy. Projekt dotyczy zamka elektromagnetycznego skonstruowanego na platformie Raspberry Pi 3B v1.2 w połączeniu z modułem RFID MF RC522.

Link do projektu na stronie GitHub: https://github.com/przsul/zamekutp/

SCHEMAT DZIAŁANIA SYSTEMU KOMPUTEROWEGO

WYKORZYSTANE ELEMENTY FIZYCZNE

- Płytka prototypowa Raspberry Pi 3B v1.2
- Moduł RFID MF RC522
- Brzęczyk piezoelektryczny
- Przewody łączące piny GPIO z resztą modułów
- Zasilacz 5V
- Kabel Ethernetowy RJ-45
- Karta MicroSD

SCHEMAT PODŁĄCZENIA ELEMENTÓW

MFRC522

- SDA PIN 24
- SCK PIN 23
- MOSI PIN 19
- MISO PIN 21
- GND PIN 6
- RST PIN 22
- 5V PIN 2

BRZĘCZYK PIEZOELEKTRYCZNY

- PLUS PIN 13
- MINUS (GND) PIN 9

SYSTEM OPERACYJNY ORAZ OPROGRAMOWANIE

SYSTEM OPERACYJNY

Rekomendowanym systemem, który przez naszą grupę był wykorzystywany i testowany jest: RASPBIAN. Link do obrazu systemu oraz instrukcji instalacji znajduje się pod tym linkiem: https://www.raspberrypi.org/downloads/raspbian/

REPOZYTORIUM PROJEKTU

Pliki potrzebne do uruchomienia systemu znajdują się w repozytorium GitHub'a pod linkiem: https://github.com/przsul/zamekutp/

DRZEWO ZAWARTOŚCI REPOZYTORIUM

Na szaro zaznaczono katalogi


```
- test multi.py
       - test-nRF.py
    - zamekutp.sql - domyślna baza danych dla osób upoważnionych
MFRC522 - zawiera pliki obsługujące sprawdzanie użytkownika w bazie oraz obsługujące brzęczyk

    Buzzer.py - obsługuje brzęczyk

   - MFRC522.py
 - Read.py - obsługuję MFRC522 i sprawdzanie w bazie
· public – zawiera pliki panelu administracyjnego zarządzającego bazą danych
  — addData.php - dodaje użytkownika do bazy
   - authConfig.php - plik konfiguracyjny (ustawia hasła do MySQL, Panelu)

    css - zawiera pliki kaskadowych arkuszy stylów

     └─ style.css - domyślny plik CSS
   - deleteData.php - usuwa użytkownika z bazy
  - getData.php - zwraca użytkowników z bazy w formacie JSON
   - index.php - panel administracyjny
   - js - zawiera pliki JavaScript
     └─ script.js - domyślny plik JS
README.md - plik Markdown zawierający podstawowe informacje o projekcie
```

INSTALACJA OPROGRAMOWANIA Z REPOZYTORIUM

Oprogramowanie należy instalować z uprawnieniami administratora.

- 1. Aktywujemy protokół SPI: https://www.raspberrypi.org/documentation/hardware/raspberrypi/spi/README.md/
- 2. Instalujemy sterowniki dla protokołu SPI

cd /zamekutp/build/SPI-py/

python setup.py install

3. Instalujemy stos Nginx, MySQL/MariaDB, PHP

apt-get update

apt-get install -y nginx mysql-server mysql-client php7.0-fpm php7.0-mysql

- 4. Uruchamiamy usługi Nginx, MySQL/MariaDB, PHP
 - # /etc/init.d/nginx start
 - # /etc/init.d/php7.0-fpm start
 - # /etc/init.d/mysql start
- 5. Logujemy się do bazy MySQL i tworzymy bazę

CREATE DATABASE zamekutp;

6. Importujemy plik SQL z repozytorium

mysql -u pi -p zamekutp < /zamekutp/build/zamekutp.sql

7. Tworzymy nowe konto dla MySQL

CREATE USER 'pi' IDENTIFIED BY 'rasp';
GRANT USAGE ON *.* TO 'pi'@localhost IDENTIFIED BY 'rasp';
GRANT ALL privileges ON `zamekutp`.* TO 'pi'@localhost;
FLUSH PRIVILEGES;

8. Konfigurujemy plik /zamekutp/public/authConfig.php

\$username – login do MySQL \$password – hasło do MySQL \$dbname – nazwa bazy danych \$login – login do panelu administracyjnego \$pass – hasło do panelu administracyjnego

9. Kopiujemy konfigurację Nginx

cp /zamekutp/build/zamekutp.nginx /etc/nginx/sites-available/default

10. Restartujemy usługę Nginx

/etc/init.d/nginx restart

11. Instalujemy moduł RPi.GPIO

pip install -no-cache-dir rpi.gpio

12. <u>Instalujemy moduł mysql-connector</u>

pip install –no-cache-dir mysql-connector

13. Konfigurujemy plik /zamekutp/MFRC522/authConfig.py

username – login do MySQL password – hasło do MySQL db – nazwa bazy danych

14. <u>Uruchamiamy moduł obsługujący MFRC522 i brzęczyk</u>

python /zamekutp/MFRC522/Read.py

15. Dodajemy moduł obsługujący MFRC522 do Cron'a w celu automatycznego uruchomienia przy starcie systemu

crontab -e

@reboot python ~/zamekutp/MFRC522/Read.py

PANEL ADMINISTRACYJNY

LOGOWANIE

Uruchamiając panel administracyjny znajdujący się pod adresem interfejsu sieciowego Raspberry Pi, pokazuje się okienko logowania. Jest to HTTP Authentication, użytkownik jest zalogowany dopóki nie wyłączy przeglądarki internetowej.

PO ZALOGOWANIU

Kiedy zalogujemy się, ukazuje się interfejs zarządzania bazą danych. Możemy dodawać, usuwać oraz odczytywać aktualnie znajdujących się użytkowników w bazie.

FILTROWANIE

Wyszukiwarka pozwala na filtrowanie w celu znalezienia konkretnego rekordu.

DODAWANIE

Dodawanie jest wyposażone w zapobieganie dodania niekompletnego rekordu lub rekordu o takim samym UID.

USUWANIE

Usuwanie jest wykonywane poprzez naciśniecie krzyżyka obok odpowiedniego rekordu. Mechanizm wyposażony jest w alert, który chroni przed przypadkowym usunięciem rekordu z bazy danych.

TRYB RESPONSYWNY

Panel administracyjny został również przystosowany dla urządzeń mobilnych.

WNIOSKI I SPOSTRZEŻENIA

Stworzenie konkretnego projektu pozwoliło nam na zaobserwowanie tego, że wykonując konkretne cele przyczyniamy się do poszerzania wiedzy z danej technologii. Jest to wiedza oparta na doświadczeniu, więc powinna zostać w pamięci na dłużej. Poza tym, stworzyliśmy konkretny produkt, który działa i może przydać się człowiekowi w codziennym życiu. Praca w grupie rozwija umiejętności pozwalające na sprawne, skuteczne i wydajne wykonywanie celów.