Refined Understanding: Spectrum, Coupling and ℓ^p -distance

Xiaoyu Chen

1 Preliminaries

Let *P* be a time reversible Markov chain defined on the state space Ω with its stationary distribution π .

Definition 1.1. *For any* $f,g \in \mathbb{R}^{\Omega}$ *, let:*

$$\langle f, g \rangle_{\pi} \triangleq \sum_{x \in \Omega} \pi(x) f(x) g(x)$$

Definition 1.2 (ℓ_p -norm). *For any* $f : \Omega \to \mathbb{R}$ *, we have:*

$$\|f\|_{\pi,p} \triangleq \left\{ \begin{array}{ll} (\sum_{x \in \Omega} \pi(x) |f(x)|^p)^{1/p} & 1 \leq p < \infty \\ \max_x |f(x)| & o.w. \end{array} \right.$$

Fact 1.1. *For any* $f : \Omega \to \mathbb{R}$ *we have*

$$||f||_{\pi,1} \le ||f||_{\pi,2} \le \cdots \le ||f||_{\pi,\infty}$$

Proof. Recall that we have Jenson's Inequality for concave function *g*, such that

$$\mathbb{E}[g(x)] \le g(\mathbb{E}[x])$$

Then for any p < r, note that $x \mapsto x^{\frac{p}{r}}$ is a concave function, we have

$$\|f\|_{\pi,p} = (\mathbb{E}_{x \sim \pi}[|f(x)|^p])^{1/p} = (\mathbb{E}_{x \sim \pi}[(|f(x)|^r)^{\frac{p}{r}}])^{1/p} \leq ((\mathbb{E}_{x \sim \pi}[|f(x)|^r])^{\frac{p}{r}})^{1/p} = (\mathbb{E}_{x \sim \pi}[|f(x)|^r])^{1/r} = \|f\|_{\pi,r}$$

Fact 1.2. For $c \ge 0$, we have $||c \cdot f||_{\pi,p} = c ||f||_{\pi,p}$

Definition 1.3 (self-adjoint operator). We say P is a self-adjoint operator over $\langle \cdot, \cdot \rangle_{\pi}$ if for $\forall f, g : \Omega \to \mathbb{R}$, we have $\langle f, Pg \rangle_{\pi} = \langle Pf, g \rangle_{\pi}$.

Definition 1.4.

$$D \triangleq \operatorname{diag}(\pi)$$

Definition 1.5. For any $x \in \Omega$ we have its indicator function $\delta_x : \Omega \to \{0,1\}$ defined as:

$$\delta_x(y) \triangleq \left\{ \begin{array}{ll} 1 & y = x \\ 0 & y \neq x \end{array} \right.$$

Definition 1.6. $q_t \in \mathbb{R}^{\Omega \times \Omega}$ is a matrix that is widely used in measure the distance between the current distribution with the stationary distribution, which is defined as $q_t \triangleq P^t D^{-1}$ and thus:

$$q_t(x,y) = \frac{P^t(x,y)}{\pi(y)}$$

Moreover, let $q_t^x \triangleq q_t(x, \cdot)$ be the x-th row of q_t .

2 Spectral Decomposition

Fact 2.1. *P* is a self-adjoint operator of $\langle \cdot, \cdot \rangle_{\pi}$ iff *P* is time reversible.

Proof. \Rightarrow : If *P* is a self-adjoint operator of $\langle \cdot, \cdot \rangle_{\pi}$, then for any $x, y \in \Omega$, we have

$$\langle \delta_x, P \delta_y \rangle_{\pi} = \langle P \delta_x, \delta_y \rangle_{\pi} = \langle \delta_y, P \delta_x \rangle_{\pi}$$

. So, we have $\pi(x)P(x,y) = \pi(y)P(y,x)$.

←: Could be verified by simple calculation.

Theorem 2.1. *P* is a self-adjoint operator of $\langle \cdot, \cdot \rangle_{\pi}$ iff *P* has eigenbasis $\{f_i\}_{i=1}^{|\Omega|}$ on the inner product space $(\mathbb{R}^{\Omega}, \langle \cdot, \cdot \rangle_{\pi})$. *Proof.* \Rightarrow : Since $\pi(x)P(x,y) = \pi(y)P(y,x)$, we have $\pi^{1/2}(x)P(x,y)\pi^{-1/2}(y) = \pi^{1/2}P(y,x)\pi^{-1/2}(x)$. And it turns out that if $D \triangleq \operatorname{diag}(\pi)$ then:

$$D^{1/2}PD^{-1/2}$$
 is a symmetric matrix

So, $D^{1/2}PD^{-1/2}$ have eigenbasis $\{g_i\}_{i=1}^{|\Omega|}$ over $(\mathbb{R}^{\Omega}, \langle \cdot, \cdot \rangle)$. And it is suffice to show that $\{D^{-1/2}g_i\}_{i=1}^{|\Omega|}$ are eigenfunctions of P and they are orthogonal according to $\langle \cdot, \cdot \rangle_{\pi}$. Just note that

- (eigenfunciton) $D^{1/2}PD^{-1/2}g_i = \lambda_i g_i \Rightarrow pD^{-1/2}g_i = \lambda_i D^{-1/2}g_i$.
- (orghognoal) for $i \neq j$, $\langle D^{-1/2}g_i, D^{-1/2}g_j \rangle_{\pi} = \langle g_i, g_j \rangle = 0$

(**⇐:** Omit, may be added in the future.)

Theorem 2.2. If P has eigenbasis $\{f_i\}_{i=1}^{|\Omega|}$ on the inner product space $(\mathbb{R}^{\Omega}, \langle \cdot, \cdot \rangle_{\pi})$, then $P = \sum_{i=1}^{|\Omega|} \lambda_i f_i f_i^T D$

Proof. Its suffice to prove that $P(x,y) = \sum_{i=1}^{|\Omega|} \lambda_i f_i(x) f_i(y) \pi(y)$. Note that $P\delta_y(x) = P(x,y)$. And we have $\delta_y = \sum_{i=1}^{|\Omega|} \langle f_i, \delta_y \rangle_\pi f_i = \sum_{i=1}^{|\Omega|} \pi(y) f_i(y) f_i$. So, $P\delta_y = \sum_{i=1}^{|\Omega|} \lambda_i \pi(y) f_i(y) f_i$. So we have

$$P(x,y) = P\delta_y(x) = \sum_{i=1}^{|\Omega|} \lambda_i f_i(x) f_i(y) \pi(y)$$

Colorllary 2.1. If P has eigenbasis $\{f_i\}_{i=1}^{|\Omega|}$ on the inner product space $(\mathbb{R}^{\Omega}, \langle \cdot, \cdot \rangle_{\pi})$, then $P^t = \sum_{i=1}^{|\Omega|} \lambda_i^t f_i f_i^T D$ and thus $q_t = P^t D^{-1} = \sum_{i=1}^{|\Omega|} \lambda_i^t f_i f_i^T$.

3 Distances

Definition 3.1.

$$d(t) \triangleq \max_{x \in \Omega} \| P^t(x, \cdot) - \pi \|_{TV}$$

Definition 3.2 (ℓ^p -distances).

$$d^{(p)}(t) \triangleq \max_{x \in \Omega} \| q_t^x - 1 \|_{\pi, p}$$

Colorllary 3.1 (from Fact 1.1). $2d(t) = d^{(1)}(t) \le d^{(2)}(t) \le \cdots \le d^{(\infty)}(t)$

Fact 3.1.
$$d^{(\infty)}(2t) = \left[d^{(2)}(t)\right]^2 = \max_{x \in \Omega} q_{2t}(x, x) - 1 = \max_{x \in \Omega} \langle q_t^x - 1, q_t^x - 1 \rangle_{\pi}$$

Proof. Background: $\langle q_t^x, q_t^y \rangle_{\pi} = \sum_{z \in \Omega} \pi(z) \frac{P^t(x,z)}{\pi(z)} \frac{P^t(y,z)}{\pi(z)} = \sum_{z \in \Omega} \frac{P^t(x,z)P^t(z,y)}{\pi(y)} = \frac{P^{2t}(x,y)}{\pi(y)} = q_{2t}(x,y)$ And thus we have $\langle q_t^x - 1, q_t^y - 1 \rangle_{\pi} = q_{2t}(x,y) - 1$.

 $(d^{(\infty)}(2t) = \max_{x \in \Omega} |q_{2t}(x,x) - 1|)$: By Cauchy-Schwarz Inequality, we have

$$\langle q_t^x - 1, q_t^y - 1 \rangle_{\pi} \le \sqrt{\langle q_t^x - 1, q_t^x - 1 \rangle_{\pi} \langle q_t^y - 1, q_t^y - 1 \rangle_{\pi}} \le \max_{\theta \in (x, y)} \langle q_t^\theta - 1, q_t^\theta - 1 \rangle_{\pi}$$

Thus,
$$d^{(\infty)}(2t) = \max_{x,y \in \Omega} q_{2t}(x,y) - 1 = \max_{x,y \in \Omega} \langle q_t^x - 1, q_t^y - 1 \rangle_{\pi} = \max_{x \in \Omega} \langle q_t^x - 1, q_t^x - 1 \rangle_{\pi}$$

$$\left(\left[d^{(2)}(t) \right]^2 = \max_{x \in \Omega} |q_{2t}(x,x) - 1| \right) : [d^{(2)}(t)]^2 = \max_{x \in \Omega} ||q_t^x - 1||_{\pi,2}^2 = \max_{x \in \Omega} \langle q_t^x - 1, q_t^x - 1 \rangle_{\pi} \qquad \Box$$

Fact 3.2 (submultiplicative). $d^{(p)}(s+t) \leq d^{(p)}(s)d^{(p)}(t)$

4 The Relationship Between Distances and Spectrum

Fact 4.1. *Since* $\lambda_1 = 1$ *and* $f_1 = 1$ *, we have:*

$$d^{(p)}(t) = \max_{x \in \Omega} \| q_t^x - \mathbb{1}^T \|_{\pi,p} = \max_{x \in \Omega} \| \sum_{i=1}^{|\Omega|} \lambda_i^t f_i(x) f_i^T - \mathbb{1}^T \|_{\pi,p} = \max_{x \in \Omega} \| \sum_{i=2}^{|\Omega|} \lambda_i^t f_i(x) f_i^T \|_{\pi,p}$$

Definition 4.1. Let $\lambda_{\star} \triangleq \{|\lambda| : \lambda \text{ is an eigenvalue of } P \text{ but } \lambda \neq 1\}$. **absolute spectral gap** is defined as $\gamma_{\star} \triangleq 1 - \lambda_{\star}$. If we sort all the eigenvalues in the order $1 = \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{|\Omega|} \geq -1$. **spectral gap** is defined as $\gamma \triangleq 1 - \gamma_2$. Moreover, the **relaxation time** is defined as $\frac{1}{\gamma_{\star}}$

Fact 4.2. $d^{(p)}(t) \le \lambda_{\star}^{t-1} d^{(p)}(1)$

$$\textit{Proof.} \ \ d^{(p)}(t) = \max\nolimits_{x \in \Omega} \| \sum\nolimits_{i=2}^{|\Omega|} \lambda_i^t f_i(x) f_i^T \|_{\pi,p} \leq \lambda_{\star}^{t-1} \max\nolimits_{x \in \Omega} \| \sum\nolimits_{i=2}^{|\Omega|} \lambda_i^t f_i(x) f_i^T \|_{\pi,p} = \lambda_{\star}^{t-1} d^{(p)}(1) \\ \qquad \qquad \Box$$

Fact 4.3. $\lambda_{\star}^{t} \leq d^{(1)}(t)$

Proof. Let f be any eigenfunctions of P that satisfies $f \perp_{\pi} \mathbb{1}$, and λ be its corresponding eigenvalue and thus we have $\langle f, \mathbb{1} \rangle_{\pi} = \mathbb{E}[f] = 0$ Then for $\forall x \in \Omega$:

$$|\lambda^t f(x)| = |P^t f(x)| = |\sum_{y \in \Omega} P(x,y) f(y)| = |\sum_{y \in \Omega} P(x,y) f(y) - \pi(y) f(y)| \leq \|f\|_\infty \ d^{(1)}(t)$$

Let $x_{\star} \triangleq \operatorname{argmax}_{x} |f(x)|$, then we have

$$|\lambda^t||f(x_\star)| \leq |f(x_\star)|d^{(1)}(t) \Rightarrow |\lambda|^t \leq d^{(1)}(t) \Rightarrow \lambda_\star^t \leq d^{(1)}(t)$$

Theorem 4.1. $\lim_{t\to\infty}\left[d^{(p)}(t)\right]^{1/t}=\lambda_{\star}$

Proof.

$$\begin{split} \lambda_{\star}^{t} &\leq d^{(p)}(t) \leq \lambda_{\star}^{t-1} d^{(p)}(1) \\ \lambda_{\star} &\leq d^{(p)}(t)^{1/t} \leq \lambda_{\star}^{\frac{t-1}{t}} d^{(p)}(1)^{1/t} \\ \lim_{t \to \infty} \lambda_{\star} &\leq \lim_{t \to \infty} d^{(p)}(t)^{1/t} \leq \lim_{t \to \infty} \lambda_{\star}^{\frac{t-1}{t}} \cdot \lim_{t \to \infty} d^{(p)}(1)^{1/t} \\ \lambda_{\star} &\leq \lim_{t \to \infty} d^{(p)}(t)^{1/t} \leq \lambda_{\star} \end{split}$$

5 The Relationship Between Coupling and Spectrum

TODO: [M. F. Chen (98)] and its extension.