

# Faculté des Nouvelles Technologies de l'Information et de la Communication Département d'Electronique et Télécommunications



 $\underline{Module}$ : Electronique de puissance  $3^{\grave{e}me}$  Année licence ELN/INST

<u>Chargé par</u> : M. Bouzidi <u>Durée</u> : 1h:30min (le 07/06/2023)

# Rattrapage

| Nom et Prénom: | Note: |
|----------------|-------|
| Spécialité:    | 20    |
|                | *     |

### Exercice 1(7 pts)

Le redresseur commandé de la figure ci-contre alimente une charge  $V_m$  résistive,

$$v_{_{e}}=V_{_{m}}\sin heta$$

- 1- Préciser les intervalles de conduction.
- 2- Tracer la forme les ondes  $v_c$ ,  $v_{Th1}$ ,  $v_{Th2}$  et  $i_e$ .
- 3- Calculer la valeur moyenne de  $v_c$ .

#### Solution

- 1- Les intervalles de conduction
- $T_{h1}$  passant si :  $\theta \in \mathcal{L} \mathcal{N}_2$  II  $\mathcal{L}$

 $Th_2$  passant si :  $\theta \in \frac{3\pi}{2}$ 

 $Th_4$  passant si :  $\theta \in \mathbb{Z}$  3.  $T_4$  2.  $T_4$  ...

- 2- Traçage des formes des  $v_c$ ,  $v_{Th1}$ ,  $v_{Th2}$  et  $i_e$ .
- $\bullet \quad \theta \in [0 \ \frac{\pi}{2}], \quad v_c = 0 \quad , v_{Th1} = \frac{\mathsf{Ve}}{2}, \quad v_{Th2} = -\frac{\mathsf{Ve}}{2}, \quad i_e = 0$
- $\bullet \quad \theta \in [\frac{\pi}{2} \quad \pi], \quad \boxed{v_c = \mathbf{v_e}}, \quad \boxed{v_{Th1} = \mathbf{o}}, \quad \boxed{v_{Th2} = -\mathbf{v_e}}, \quad \boxed{i_e = \mathbf{v_e}}, \quad \boxed{i_e = \mathbf{v_e}}, \quad \boxed{v_{Th2} = -\mathbf{v_e}}, \quad \boxed{v_{Th2} = -\mathbf{v_e}},$
- $\bullet \quad \theta \in [\pi \ \frac{3\pi}{2}], \ \boxed{v_{\scriptscriptstyle c} = \mathbf{0}} \quad , \boxed{v_{\scriptscriptstyle Th1} = \begin{subarray}{c} \checkmark \\ \bullet \end{subarray}}, \boxed{v_{\scriptscriptstyle Th2} = \begin{subarray}{c} \checkmark \\ \bullet \end{subarray}}, \boxed{i_{\scriptscriptstyle e} = \begin{subarray}{c} \bullet \\ \bullet \end{subarray}}, \boxed{i_{\scriptscriptstyle e} = \begin{subarray}{c} \bullet \\ \bullet \end{subarray}}$
- $\bullet \quad \theta \in [\frac{3\pi}{2} \ 2\pi], \ \boxed{v_c = \textcolor{red}{\mathbf{V_e}}}, \boxed{v_{Th1} = \textcolor{red}{\mathbf{V_e}}}, \boxed{v_{Th2} = \textcolor{red}{\bigcirc}}, \boxed{i_e = \textcolor{red}{\mathbf{V_e}} \textcolor{red}{\mathbf{V_e}}}, \boxed{v_{Th2} = \textcolor{red}{\bigcirc}}, \boxed{v_{Th2} = \textcolor{red}{\bigcirc}$
- 3- La valeur moyenne de  $v_c$









# Faculté des Nouvelles Technologies de l'Information et de la Communication Département d'Electronique et Télécommunications



 $\underline{Module}: Electronique de puissance \ 3^{\grave{e}me}\ Année\ licence\ ELN/INST$ 

<u>Chargé par</u> : M. Bouzidi <u>Durée</u> : 1h:30min (le 07/06/2023)

## Rattrapage

### Exercice 2 (7 pts)

Le redresseur P3 à thyristors de la figure ci-contre alimente une charge fortement inductive court-circuitée par un thyristor  $Th_{rl}$ , le redresseur est alimenté par un système triphasé équilibré.

L'angle de retard à l'amorçage du redresseur est de  $\frac{2\pi}{3}$ , et pour le thyristor  $Th_{rl}$  est envoyée à  $\frac{5\pi}{3}$ .

- 1- Préciser les intervalles de conduction des thyristors et de la thyristor roue libre sur une période.
- 2- Tracer la forme des ondes  $v_c$ ,  $v_{Th1}$ , et  $v_{Thrl}$







# Faculté des Nouvelles Technologies de l'Information et de la Communication Département d'Electronique et Télécommunications

The same of the sa

 $\underline{Module}: Electronique de puissance \ 3^{\grave{e}me} \ Ann\'{e}e \ licence \ ELN/INST$ 

<u>Durée</u> : 1h:30min (le 07/06/2023)

Chargé par : M. Bouzidi

# Rattrapage

#### Exercice 3 (6 pts)

Le montage de la figure ci-dessous représente la mise en cascade de deux hacheurs série et parallèle. On suppose que la capacité du condensteur est assez suffiusante pour considérer que la tension à ses bornes soit constante. Les deux transistors sont saturés durant l'intervalle  $[0, \alpha T]$ ; T étant la période de hachage et  $\alpha$  le rapport cyclique commun des deux hacheurs.

- 1- En admettant que la conduction est continue, tracer, sur une période T, la forme de la tension  $v_L(t)$  le courant  $i_L(t)$  et le courant  $i_L(t)$ .
- 2- Expremer la tension  $V_s$  en fonction de  $\alpha$  et U.
- 3- Calculer la valeur moyenne du courant de la source  $i_e$ .



#### Solution

1- Traçage de  $v_{\scriptscriptstyle L}(t), i_{\scriptscriptstyle L}(t), i_{\scriptscriptstyle e}(t)$  .

| $v_L$ $i_L$ $v_L$ $v_L$ $v_L$ $v_S$ |                  | $\begin{bmatrix} 0 & \alpha T \end{bmatrix}$ | $\begin{bmatrix} \alpha T & T \end{bmatrix}$ | 7     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------|----------------------------------------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $v_L$            | Ll                                           | - V <sub>s</sub>                             | (9,7) |
| $i_e$ $i_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $i_L$            | L.t +Imin                                    | - Vs (t- xT) + Imax                          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $oldsymbol{i}_e$ | iL                                           | 0 (21)                                       |       |

2- la tension  $V_s$  en fonction de  $\alpha$  et U.

$$V_s = \frac{\alpha}{1-\alpha} \cdot \mathcal{U}$$



## Faculté des Nouvelles Technologies de l'Information et de la Communication Département d'Electronique et Télécommunications



 $\underline{Module}: Electronique\ de\ puissance$ 3ème Année licence ELN/INST

Chargé par : M. Bouzidi <u>Durée</u>: 1h:30min (le 07/06/2023)

# Rattrapage

