Data Exploration using Non-Parametric Methods ¶

Objective: To perform Data Exploration using Non-Parametric Methods on the given dataset.

In this experiment, we'll follow the following steps:

- 1. Load data
- 2. Identify variables
- 3. Variable analysis
- 4. Handling missing values
- 5. Handling outliers
- 6. Feature engineering

In [5]:

```
#Import the required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Load the dataset

```
In [1]:
```

```
1 import os
2 os.getcwd()
```

Out[1]:

'C:\\Users\\jitfr\\Desktop\\ML Python Lab Experiments'

In [3]:

```
os.chdir('C:\\Users\\jitfr\\Desktop\\ML Python Lab Experiments\\DataSets')
```

In [6]:

```
test = pd.read_csv('test.csv')
train = pd.read_csv('train.csv')

df = pd.concat([train, test])
```

In [8]:

1 df.sample(10)

Out[8]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fa
91	92	0.0	3	Andreasson, Mr. Paul Edvin	male	20.0	0	0	347466	7.854
21	913	NaN	3	Olsen, Master. Artur Karl	male	9.0	0	1	C 17368	3.17(
360	1252	NaN	3	Sage, Master. William Henry	male	14.5	8	2	CA. 2343	69.55(
317	1209	NaN	2	Rogers, Mr. Reginald Harry	male	19.0	0	0	28004	10.500
359	1251	NaN	3	Lindell, Mrs. Edvard Bengtsson (Elin Gerda Per	female	30.0	1	0	349910	15.55(
681	682	1.0	1	Hassab, Mr. Hammad	male	27.0	0	0	PC 17572	76.729
212	1104	NaN	2	Deacon, Mr. Percy William	male	17.0	0	0	S.O.C. 14879	73.500
192	193	1.0	3	Andersen- Jensen, Miss. Carla Christine Nielsine	female	19.0	1	0	350046	7.85₄
373	1265	NaN	2	Harbeck, Mr. William H	male	44.0	0	0	248746	13.000
67	959	NaN	1	Moore, Mr. Clarence Bloomfield	male	47.0	0	0	113796	42.400
4										•

In [9]:

print(df.size)
print(df.shape)
print(df.ndim)

15708 (1309, 12)

In [9]:

1 df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1309 entries, 0 to 417
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	1309 non-null	int64
1	Survived	891 non-null	float64
2	Pclass	1309 non-null	int64
3	Name	1309 non-null	object
4	Sex	1309 non-null	object
5	Age	1046 non-null	float64
6	SibSp	1309 non-null	int64
7	Parch	1309 non-null	int64
8	Ticket	1309 non-null	object
9	Fare	1308 non-null	float64
10	Cabin	295 non-null	object
11	Embarked	1307 non-null	object
dtyp	es: float64(3), int64(4), obj	ect(5)

memory usage: 132.9+ KB

In [14]:

1 df.describe(include='all').T

Out[14]:

	count	unique	top	freq	mean	std	min	25%	50%	
Passengerld	1309.0	NaN	NaN	NaN	655.0	378.020061	1.0	328.0	655.0	
Survived	891.0	NaN	NaN	NaN	0.383838	0.486592	0.0	0.0	0.0	
Pclass	1309.0	NaN	NaN	NaN	2.294882	0.837836	1.0	2.0	3.0	
Name	1309	1307	Connolly, Miss. Kate	2	NaN	NaN	NaN	NaN	NaN	
Sex	1309	2	male	843	NaN	NaN	NaN	NaN	NaN	
Age	1046.0	NaN	NaN	NaN	29.881138	14.413493	0.17	21.0	28.0	
SibSp	1309.0	NaN	NaN	NaN	0.498854	1.041658	0.0	0.0	0.0	
Parch	1309.0	NaN	NaN	NaN	0.385027	0.86556	0.0	0.0	0.0	
Ticket	1309	929	CA. 2343	11	NaN	NaN	NaN	NaN	NaN	
Fare	1308.0	NaN	NaN	NaN	33.295479	51.758668	0.0	7.8958	14.4542	;
Cabin	295	186	C23 C25 C27	6	NaN	NaN	NaN	NaN	NaN	
Embarked	1307	3	S	914	NaN	NaN	NaN	NaN	NaN	
4									•	

In [17]:

- 1 #Load the data
- 2 titanic_df=pd.read_csv("https://raw.githubusercontent.com/pandas-dev/pandas/main/do
- 3 titanic_df.head()

Out[17]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
4										•

In [18]:

1 titanic_df.shape

Out[18]:

(891, 12)

In [19]:

1 titan = pd.read_csv('titan.csv')

In [20]:

1 titan.head()

Out[20]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
4										•

In [21]:

```
print(titanic_df.size)
print(titanic_df.shape)
print(titanic_df.ndim)
```

10692 (891, 12) 2

In [3]:

1 titanic_df.tail()

Out[3]:

	Passengerld	Survived	Pclass	Lname	Name	Sex	Age	SibSp	Parch	Ticket
151	152	1	1	Pears	Mrs. Thomas (Edith Wearne)	female	22.0	1	0	113776
152	153	0	3	Meo	Mr. Alfonzo	male	55.5	0	0	A.5. 11206
153	154	0	3	van Billiard	Mr. Austin Blyler	male	40.5	0	2	A/5. 851
154	155	0	3	Olsen	Mr. Ole Martin	male	NaN	0	0	Fa 265302
155	156	0	1	Williams	Mr. Charles Duane	male	51.0	0	1	PC 17597
4										•

In [22]:

1 titanic_df.sample(10)

Out[22]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fa
453	454	1	1	Goldenberg, Mr. Samuel L	male	49.0	1	0	17453	89.104
705	706	0	2	Morley, Mr. Henry Samuel ("Mr Henry Marshall")	male	39.0	0	0	250655	26.000
486	487	1	1	Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)	female	35.0	1	0	19943	90.000
857	858	1	1	Daly, Mr. Peter Denis	male	51.0	0	0	113055	26.55(
39	40	1	3	Nicola- Yarred, Miss. Jamila	female	14.0	1	0	2651	11.24′
818	819	0	3	Holm, Mr. John Fredrik Alexander	male	43.0	0	0	C 7075	6.45(
294	295	0	3	Mineff, Mr. Ivan	male	24.0	0	0	349233	7.89
603	604	0	3	Torber, Mr. Ernst William	male	44.0	0	0	364511	8.05(
143	144	0	3	Burke, Mr. Jeremiah	male	19.0	0	0	365222	6.75(
415	416	0	3	Meek, Mrs. Thomas (Annie Louise Rowley)	female	NaN	0	0	343095	8.05(
4										•

Identify variable type

```
In [23]:
 1 titanic_df.dtypes
Out[23]:
PassengerId
                 int64
                 int64
Survived
Pclass
                 int64
Name
                object
Sex
                object
               float64
Age
                 int64
SibSp
                 int64
Parch
Ticket
                object
Fare
               float64
Cabin
                object
Embarked
                object
dtype: object
In [25]:
   titanic_df.dtypes.nunique()
Out[25]:
3
In [7]:
   titanic_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 156 entries, 0 to 155
Data columns (total 13 columns):
#
                  Non-Null Count Dtype
     Column
 0
     PassengerId
                  156 non-null
                                   int64
                                   int64
 1
     Survived
                  156 non-null
 2
     Pclass
                  156 non-null
                                   int64
 3
     Lname
                  156 non-null
                                   object
 4
     Name
                  156 non-null
                                   object
 5
                                   object
     Sex
                  156 non-null
 6
                  126 non-null
                                   float64
     Age
 7
                  156 non-null
                                   int64
     SibSp
 8
     Parch
                  156 non-null
                                   int64
 9
                  156 non-null
                                   object
     Ticket
 10
    Fare
                  156 non-null
                                   float64
```

11

12

Cabin

Embarked

memory usage: 16.0+ KB

31 non-null

155 non-null

dtypes: float64(2), int64(5), object(6)

object

object

In [26]:

1 titanic_df.describe().T

Out[26]:

	count	mean	std	min	25%	50%	75%	max
Passengerld	891.0	446.000000	257.353842	1.00	223.5000	446.0000	668.5	891.0000
Survived	891.0	0.383838	0.486592	0.00	0.0000	0.0000	1.0	1.0000
Pclass	891.0	2.308642	0.836071	1.00	2.0000	3.0000	3.0	3.0000
Age	714.0	29.699118	14.526497	0.42	20.1250	28.0000	38.0	80.0000
SibSp	891.0	0.523008	1.102743	0.00	0.0000	0.0000	1.0	8.0000
Parch	891.0	0.381594	0.806057	0.00	0.0000	0.0000	0.0	6.0000
Fare	891.0	32.204208	49.693429	0.00	7.9104	14.4542	31.0	512.3292

Varaible Analysis: univariate, bivariate, and multivariate analysis.

- Univariate analysis is performed to find out missing and outlier values.
- Any variable may be diveded into categorical or continuous variables.
- In the case of categorical variables, we can use frequency table to understand distribution of each category.
- For continuous variables, we have to understand the central tendency and spread of the variable. It can be measured using mean, median, mode, etc. It can be visualized using box plot or histogram.

In [27]:

- 1 #Understand various summary statistics of the data
- 2 dataTypes =['object', 'float', 'int']
- 3 titanic_df.describe(include=dataTypes).T

Out[27]:

	count	unique	top	freq	mean	std	min	25%	50%	7
Passengerld	891.0	NaN	NaN	NaN	446.0	257.353842	1.0	223.5	446.0	66
Survived	891.0	NaN	NaN	NaN	0.383838	0.486592	0.0	0.0	0.0	
Pclass	891.0	NaN	NaN	NaN	2.308642	0.836071	1.0	2.0	3.0	
Name	891	891	Braund, Mr. Owen Harris	1	NaN	NaN	NaN	NaN	NaN	N
Sex	891	2	male	577	NaN	NaN	NaN	NaN	NaN	Ν
Age	714.0	NaN	NaN	NaN	29.699118	14.526497	0.42	20.125	28.0	3
SibSp	891.0	NaN	NaN	NaN	0.523008	1.102743	0.0	0.0	0.0	
Parch	891.0	NaN	NaN	NaN	0.381594	0.806057	0.0	0.0	0.0	
Ticket	891	681	347082	7	NaN	NaN	NaN	NaN	NaN	Ν
Fare	891.0	NaN	NaN	NaN	32.204208	49.693429	0.0	7.9104	14.4542	3
Cabin	204	147	B96 B98	4	NaN	NaN	NaN	NaN	NaN	N
Embarked	889	3	S	644	NaN	NaN	NaN	NaN	NaN	N
4										•

In [28]:

- 1 #Select the values in a categorical variable
- 2 titanic_df.select_dtypes(include='object').head()

Out[28]:

	Name	Sex	Ticket	Cabin	Embarked
0	Braund, Mr. Owen Harris	male	A/5 21171	NaN	S
1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	PC 17599	C85	С
2	Heikkinen, Miss. Laina	female	STON/O2. 3101282	NaN	S
3	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	113803	C123	S
4	Allen, Mr. William Henry	male	373450	NaN	S

In [36]:

```
1 titanic_df.isna().sum()/(titanic_df.shape[0])*100
```

Out[36]:

PassengerId 0.000000 Survived 0.000000 Pclass 0.000000 0.000000 Name Sex 0.000000 19.865320 Age 0.000000 SibSp 0.000000 Parch 0.000000 Ticket Fare 0.000000 Cabin 77.104377 Embarked 0.224467 dtype: float64

In [37]:

```
print(titanic_df.size)
print(titanic_df.shape)
print(titanic_df.ndim)
```

```
10692
(891, 12)
```

In [38]:

```
titanic_df.Age.hist(figsize=(10,5))
```

Out[38]:

<AxesSubplot:>

- Bivariate Analysis is used to find the relationship between two variables.
- Analysis can be performed for combination of categorical and continuous variables.
- Scatter plot is suitable for analyzing two continuous variables.

- It indicates the linear or non-linear relationship between the variables.
- Bar charts helps to understand relation between two categorical variables.

Handling Missing Values:

- Missing values in the dataset can affect model fit.
- It can lead to a biased model as the data cannot be analysed completely.
- · Behavior and relationship with other variables cannot be deduced correctly.
- · It can lead to wrong prediction or classification.
- Missing values may occur due to problems in data extraction or data collection, which can be categorized as
 - MCAR: Missing completely at random,
 - MAR: Missing at random, or
 - MNAR: Missing not at random.

Missing values can be treated by deletion, mean/mode/median imputation, KNN imputation, or using prediction models.

We can visually analyse the missing data using a library called as Missingno in Python.

Collecting missingno

Downloading missingno-0.5.1-py3-none-any.whl (8.7 kB)

Requirement already satisfied: numpy in c:\users\jitfr\anaconda3\lib\site -packages (from missingno) (1.21.5)

Requirement already satisfied: seaborn in c:\users\jitfr\anaconda3\lib\site-packages (from missingno) (0.11.2)

Requirement already satisfied: scipy in c:\users\jitfr\anaconda3\lib\site -packages (from missingno) (1.7.3)

Requirement already satisfied: matplotlib in c:\users\jitfr\anaconda3\lib \site-packages (from missingno) (3.5.1)

Requirement already satisfied: cycler>=0.10 in c:\users\jitfr\anaconda3\l ib\site-packages (from matplotlib->missingno) (0.11.0)

Requirement already satisfied: pillow>=6.2.0 in c:\users\jitfr\anaconda3 \lib\site-packages (from matplotlib->missingno) (9.0.1)

Requirement already satisfied: packaging>=20.0 in c:\users\jitfr\anaconda 3\lib\site-packages (from matplotlib->missingno) (21.3)

Requirement already satisfied: pyparsing>=2.2.1 in c:\users\jitfr\anacond a3\lib\site-packages (from matplotlib->missingno) (3.0.4)

Requirement already satisfied: python-dateutil>=2.7 in c:\users\jitfr\ana conda3\lib\site-packages (from matplotlib->missingno) (2.8.2)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\jitfr\anacon da3\lib\site-packages (from matplotlib->missingno) (1.3.2)

Requirement already satisfied: fonttools>=4.22.0 in c:\users\jitfr\anacon da3\lib\site-packages (from matplotlib->missingno) (4.25.0)

Requirement already satisfied: six>=1.5 in c:\users\jitfr\anaconda3\lib\s ite-packages (from python-dateutil>=2.7->matplotlib->missingno) (1.16.0) Requirement already satisfied: pandas>=0.23 in c:\users\jitfr\anaconda3\l

ib\site-packages (from seaborn->missingno) (1.4.2)

Requirement already satisfied: pytz>=2020.1 in c:\users\jitfr\anaconda3\l ib\site-packages (from pandas>=0.23->seaborn->missingno) (2021.3)

Installing collected packages: missingno Successfully installed missingno-0.5.1

In [39]:

- 1 import missingno as msno
- 2 msno.bar(titanic_df)

Out[39]:

<AxesSubplot:>

In [34]:

1 msno.heatmap(titanic_df)

Out[34]:

<AxesSubplot:>


```
In [4]:
    np.mean(titanic_df['Age'])
Out[4]:
28.141507936507935
In [5]:
 1 from scipy import stats
   stats.mode(titanic_df['Embarked'])
Out[5]:
ModeResult(mode=array(['S'], dtype=object), count=array([110]))
In [6]:
 1 titanic_df['Age'].fillna(29,inplace=True)
   titanic_df['Embarked'].fillna("S", inplace=True)
```

Handling Outliers

- Outliers can occur naturally in a data or due to data entry errors.
- They can drastically change the results of the data analysis and statistical modeling.
- Outliers are easily detected by visualization methods, like box-plot, histogram, and scatter plot.
- Outliers are handled like missing values by deleting observations, transforming them, binning or grouping them, treating them as a separate group, or imputing values.

memory usage: 16.0+ KB

```
In [19]:
   titanic_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 156 entries, 0 to 155
Data columns (total 13 columns):
#
    Column
                  Non-Null Count Dtype
                  -----
    -----
0
    PassengerId 156 non-null
                                  int64
1
    Survived
                                  int64
                  156 non-null
 2
    Pclass
                                  int64
                  156 non-null
 3
    Lname
                  156 non-null
                                  object
4
    Name
                  156 non-null
                                  object
 5
    Sex
                  156 non-null
                                  object
6
                  126 non-null
                                  float64
    Age
7
                                  int64
    SibSp
                  156 non-null
8
    Parch
                  156 non-null
                                  int64
9
    Ticket
                  156 non-null
                                  object
                  156 non-null
10
    Fare
                                  float64
11
    Cabin
                  31 non-null
                                  object
    Embarked
                  155 non-null
12
                                  object
dtypes: float64(2), int64(5), object(6)
```

```
In [7]:
```

```
import plotly.express as px
fig = px.box(titanic_df,x='Survived',y='Age', color='Pclass')
fig.show()
```

```
In [8]:
```

```
px.box(titanic_df, y='Age')
px.box(titanic_df,x='Survived',y='Fare', color='Pclass')
```

Feature Engineering:

- Feature engineering is the process of extracting more information from existing data.
- · Feature selection also can be part of it.
- Two common techniques of feature engineering are variable transformation and variable creation.
- In variable transformation existing variable is transformed using certain functions.
- For example, a number can be replaced by its logarithmic value.
- Another technique is to create a new variable from the existing variable.
- For example, breaking the date field in the format of dd/mm/yy to date, month and year columns.

In [9]:

```
1 titanic_copy = titanic_df.copy()
```

In [10]:

```
#variable transformation
titanic_copy['Embarked'].replace({'S':0,'Q':1,'C':2}, inplace=True)
```

In [11]:

```
#Convert boolean to integer
titanic_copy['Survived']=titanic_copy['Survived'].astype(int)
```

In [12]:

```
1 titanic_copy.sample(10)
```

Out[12]:

	Passengerld	Survived	Pclass	Lname	Name	Sex	Age	SibSp	Parch	Tick
0	1	0	3	Braund	Mr. Owen Harris	male	22.0	1	0	A 2117
95	96	0	3	Shorney	Mr. Charles Joseph	male	29.0	0	0	37491
23	24	1	1	Sloper	Mr. William Thompson	male	28.0	0	0	11378
3	4	1	1	Futrelle	Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	11380
61	62	1	1	lcard	Miss. Amelie	female	38.0	0	0	11357
111	112	0	3	Zabour	Miss. Hileni	female	14.5	1	0	26€
70	71	0	2	Jenkin	Mr. Stephen Curnow	male	32.0	0	0	C., 331
30	31	0	1	Uruchurtu	Don. Manuel E	male	40.0	0	0	P 176(
11	12	1	1	Bonnell	Miss. Elizabeth	female	58.0	0	0	11378
132	133	0	3	Robins	Mrs. Alexander A (Grace Charity Laury)	female	47.0	1	0	A/ 333
4										•

- Two other data transformation techniques are
- encoding categorical variables and scaling continuous variables to normalize the data.
- This depends on the model that is used for evaluation, as some models accept categorical variables.
- Irrelevant features can decrease the accuracy of the model.
- · Feature selection can be done automatically or manually.

• A correlation matrix is used to visualize how the features are related to each other or with the target variable.

In [52]:

1 titanic_copy.corr()

Out[52]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare	E
Passengerld	1.000000	-0.192991	0.012208	0.065909	-0.136420	-0.027243	-0.027122	_
Survived	-0.192991	1.000000	-0.116340	-0.104230	-0.066943	0.039435	0.029343	
Pclass	0.012208	-0.116340	1.000000	-0.326655	0.087420	0.016491	-0.607256	
Age	0.065909	-0.104230	-0.326655	1.000000	-0.383121	-0.211423	0.019475	
SibSp	-0.136420	-0.066943	0.087420	-0.383121	1.000000	0.399040	0.271997	
Parch	-0.027243	0.039435	0.016491	-0.211423	0.399040	1.000000	0.254822	
Fare	-0.027122	0.029343	-0.607256	0.019475	0.271997	0.254822	1.000000	
Embarked	-0.064032	0.072072	-0.115187	0.037916	-0.085307	-0.087342	0.112638	
4								•

In [37]:

```
plt.figure(figsize=(10,10))
    corr = titanic_df.corr()
 2
 3
   ax = sns.heatmap(
 4
        corr,
 5
        vmin=-1, vmax=1, center=0,
 6
        cmap=sns.diverging_palette(20, 220, n=200),
 7
        square=True, annot=True
 8
 9
   ax.set_xticklabels(
10
        ax.get_xticklabels(),
11
        rotation=45,
12
        horizontalalignment='right'
13
    )
   ax.set_yticklabels(
14
        ax.get_yticklabels(),
15
16
        rotation=45,
17
18
   );
```


Ref: https://www.kaggle.com/code/krrai77/exploratory-data-analysis-and-visualization/data/

In []:

1