Devoir Surveillé, 5 mars 2008

Durée 1h30. Documents interdits.

On rappelle que si a et b sont deux entiers de longueurs $\leq l$ (c'est-à-dire vérifiant $|a|, |b| < 2^l$), la complexité binaire des opérations suivantes est en $\tilde{O}(l)$: $a \pm b$, $a \times b$, division euclidienne de a par b, algorithme d'Euclide (étendu ou non) appliqué à a et b.

Exercice 1 – [INVERSION MODULAIRE VIA FERMAT]

Soient p un nombre premier et a un entier vérifiant 0 < a < p.

- 1) Montrer comment calculer l'inverse de a modulo p en se servant du petit théorème de Fermat. On rappelle que ce dernier s'énonce : $a^{p-1} \equiv 1 \mod p$.
- 2) Rédiger l'algorithme correspondant. On fera bien sûr appel à l'exponentiation binaire.
- 3) Estimer, en fonction de p, la complexité algébrique (nombre d'opérations dans \mathbb{Z}) et la complexité binaire de cet algorithme.
- 4) Rappeler comment se servir de l'algorithme d'Euclide étendu pour résoudre le même problème d'inversion.
- 5) Comparer les complexités binaires des deux procédés d'inversion.

Exercice 2 - [NEWTON LINÉAIRE]

Soient $\varphi \in \mathbb{Z}[X]$ et p un nombre premier. Soient également s et $g \in \mathbb{Z}$ vérifiant

- (i) $\varphi(g) \equiv 0 \mod p^k$, pour un entier $k \geqslant 1$ donné
- (ii) $s\varphi'(g) \equiv 1 \mod p$.

On définit h par $h \equiv g - s\varphi(g) \mod p^{k+1}$.

- 1) Montrer que $\varphi(h) \equiv 0 \mod p^{k+1}$, $h \equiv g \mod p^k$ et $s\varphi'(h) \equiv 1 \mod p$.
- 2) En déduire un algorithme qui, à partir de s et $g \in \mathbb{Z}$ vérifiant
 - (a) $\varphi(g) \equiv 0 \mod p$
 - (b) $s\varphi'(g) \equiv 1 \mod p$,

permet de trouver $h \in \mathbb{Z}$ vérifiant

- (1) $\varphi(h) \equiv 0 \mod p^l$
- (2) $h \equiv g \mod p$,

où $l \geqslant 1$ est un entier donné.

- 3) Soient P un polynôme de $\mathbb{Z}[X]$ de degré m et $a \in \mathbb{Z}$. Estimer la complexité algébrique (nombre d'opérations dans \mathbb{Z}) de l'évaluation de P en a en fonction de m.
- 4) Soit n le degré de φ . Estimer la complexité algébrique (nombre d'opérations dans \mathbb{Z}) de l'algorithme décrit en 2) en fonction de l et n.

Exercice 3 - [LEMME CHINOIS]

On cherche $f \in \mathbb{F}_5[X]$ vérifiant

$$(S) \begin{cases} f \equiv 1 & \mod x + 1 \\ xf \equiv x + 1 & \mod x^2 + 1 \\ (x^2 - 1)f \equiv x + 1 & \mod x^3 + 1. \end{cases}$$

- 1) Transformer (S) en un système équivalent ne comportant que des congruences de la forme $f \equiv \nu \mod \mu$ avec $\nu, \mu \in \mathbb{F}_5[X]$.
- 2) Montrer que les μ précédemment obtenus sont premiers entre eux deux à deux.
- 3) Montrer que (S) admet une unique solution g de degré < 5 et décrire l'ensemble de toutes les solutions f de (S).
- 4) Calculer g.