Tight Lower Bounds for Problems Parameterized by Rank-width

Virtual Discrete Math Colloquium IBS, February 1

Benjamin Bergougnoux University of Warsaw

Feat

Tuukka Korhonen University of Bergen Jesper Nederlof
University of Eindhoven

Graph width parameters

Recursively decompose a graph into simple cuts

Layout: recursively cut the vertex set in two

Graph width parameters

Recursively decompose a graph into simple cuts

Layout: recursively cut the vertex set in two

Graph width parameters

Recursively decompose a graph into simple cuts

Layout: recursively cut the vertex set in two

Width parameters

Simplicity of cuts is measured with a function $f: 2^{V(G)} \to \mathbb{N}$

Different notions of simplicity = different width parameters

Width parameters

Width of a decomposition $D = \max f(\text{cut})$ over the cuts of D

Width parameters

Width of a graph = min widths of its decompositions

Width of a graph class = max widths of its graphs

Rank-width [Oum, 2006]

Defined from rw(A) := the rank of the adjacency matrix between <math>A and \overline{A} over the binary field.

Module-width [Rao, 2006]

Defined from $cw^*(A) := nb$. of different rows in the adjacency matrix between A and \overline{A} .

Linearly equivalent to clique-width!

Theorem [Rao, 2006]

For all graphs G, we have $cw^*(G) \leq cw(G) \leq 2cw^*(G)$.

Module-width [Rao, 2006]

Defined from $cw^*(A) := nb$. of different rows in the adjacency matrix between A and \overline{A} .

Equivalent to rank-width!

Fact

For all cut (A, \overline{A}) , we have $rw(A) \le cw^*(A) \le 2^{rw(A)}$.

Mim-width [Vatshelle, 2012]

Defined from mim(A) := size of a maximum induced matching in the bipartite graph between A and \overline{A} .

Maximum matching width [Vatshelle, 2012]

Defined from $tw^*(A) := size$ of a maximum matching in the bipartite graph between A and \overline{A} .

Linearly equivalent to tree-width!

Theorem [Vatshelle, 2012]

For all graph G, we have $\frac{1}{3}$ tw $(G) + 1 \le \text{tw}^*(G) \le \text{tw}(G)$.

Maximum matching width [Vatshelle, 2012]

Defined from $tw^*(A) := size$ of a maximum matching in the bipartite graph between A and \overline{A} .

Theorem [Vatshelle, 2012]

For all cut (A, \overline{A}) , we have $mim(A) \leq rw(A) \leqslant tw^*(A)$.

Comparing widths

Modeling power

- Complexity of computing a good decomposition
 - O NP-hardness everywhere
 - We know efficient FPT approximation algorithms for tree-width and rank-width

Algorithmic applications

Modeling Power

Modeling Power

Computing Good Decomposition

Theorem [Oum, 2009]

Rank-width can be 3-approximated in time $8^{rw}n^4$.

Theorem [Korhonen and Fomin, 2021]

Rank-width can be **2-approximated** in time $2^{2^{O(rw)}}n^2$.

rw(A) is symmetric and submodular

$$rw(X) + rw(Y) \ge rw(X \cap Y) + rw(X \cup Y)$$

Algorithmic Meta-Theorems

Theorem [Courcelle, Makowsky, Rotics, 2000]

All problems expressible in MSO_1 are solvable in time f(cw)n given a decomposition of bounded clique-width.

• Cons:
$$f(cw) = 2^{2^{...}}$$

Algorithmic Meta-Theorems

Theorem [Courcelle, Makowsky, Rotics, 2000]

All problems expressible in MSO_1 are solvable in time f(cw)n given a decomposition of bounded clique-width.

• Cons: $f(cw) = 2^{2^{...}}$

Theorem [B., Dreier, Jaffke, 2023]

All problems expressible in **A&C DN** are solvable in time $2^{O(rw^4)}n^{O(1)}$

• k-Independent Set: $\exists X, |X| \ge k \land X \cap N(X) = \emptyset$

Algorithmic Meta-Theorems

Theorem [Courcelle, Makowsky, Rotics, 2000]

All problems expressible in MSO_1 are solvable in time f(cw)n given a decomposition of bounded clique-width.

• Cons: $f(cw) = 2^{2^{...}}$

Theorem [B., Dreier, Jaffke, 2023]

All problems expressible in A&C N are solvable in time $2^{O(rw^2)}n^{O(1)}$.

• k-Independent Set: $\exists X, |X| \ge k \land X \cap N(X) = \emptyset$

Efficient Algorithms

Theorem [Oum, 2006]

For all cut (A, \overline{A}) , we have $cw^*(A) \leq 2^{rw(A)} + 1$.

• $2^{O(cw)}n^{O(1)}$ time algo. $\Rightarrow 2^{2^{O(rw)}}n^{O(1)}$ time algo.

Efficient Algorithms

Theorem [Oum, 2006]

For all cut (A, \overline{A}) , we have $cw^*(A) \leq 2^{rw(A)} + 1$.

• $2^{O(\text{cw})} n^{O(1)}$ time algo. $\Rightarrow 2^{2^{O(\text{rw})}} n^{O(1)}$ time algo.

Theorem [Bui-Xuan, Telle and Vatshelle, 2010] **Independent Set** and **Dominating Set** can be solved in time $2^{O(rw^2)}n^{O(1)}$.

Theorem [Ganian and Hliněný 2010]

Feedback Vertex Set can be solved in time $2^{O(rw^2)}n^{O(1)}$.

Generalizations

Problems that can be solved in time $2^{O(rw^2)}n^{O(1)}$

Locally Checkable Vertex Subset (LCVS)

INDEPENDENT SET MAX. INDUCED MATCHING

DOMINATING SET PERFECT CODE

INDUCED MATCHING TOTAL DOMINATING SET

[Bui-Xuan, Telle and Vatshelle, 2013]

Locally Checkable Vertex Partitioning (LCVP)

k-Coloring Odd Cycle Transversal H-Homomorphism Perfect Matching Cut H-Covering \cdots

[Bui-Xuan, Telle and Vatshelle, 2013]

Generalizations

Problems that can be solved in time $2^{O(rw^2)}n^{O(1)}$

Locally Checkable Vertex Subset (LCVS)

INDEPENDENT SET MAX. INDUCED MATCHING

DOMINATING SET PERFECT CODE

INDUCED MATCHING TOTAL DOMINATING SET

[Bui-Xuan, Telle and Vatshelle, 2013]

Locally Checkable Vertex Partitioning (LCVP)

k-Coloring Odd Cycle Transversal H-Homomorphism Perfect Matching Cut H-Covering \cdots

[Bui-Xuan, Telle and Vatshelle, 2013]

CONNECTED, ACYCLIC LCVS
CONNECTED, ACYCLIC LCVP

CONNECTED DOMINATING SET FEEDBACK VERTEX SET

CONNECTED VERTEX COVER LONGEST INDUCED PATH

[Bergougnoux and Kante, 2019]

Generalizations

Problems that can be solved in time $2^{O(rw^2)}n^{O(1)}$

Locally Checkable Vertex Subset (LCVS)

INDEPENDENT SET MAX. INDUCED MATCHING

DOMINATING SET PERFECT CODE

INDUCED MATCHING TOTAL DOMINATING SET

[Bui-Xuan, Telle and Vatshelle, 2013]

Locally Checkable Vertex Partitioning (LCVP)

k-Coloring Odd Cycle Transversal H-Homomorphism Perfect Matching Cut H-Covering \cdots

[Bui-Xuan, Telle and Vatshelle, 2013]

A&C DN

[Bergougnoux, Dreier and Jaffke, 2023]

CONNECTED, ACYCLIC LCVS
CONNECTED, ACYCLIC LCVP

CONNECTED DOMINATING SET FEEDBACK VERTEX SET

CONNECTED VERTEX COVER LONGEST INDUCED PATH

[Bergougnoux and Kante, 2019]

Exceptions

Theorem [Belmonte and Sau, 2021]

Some problems based on **parity** can be solved in time $2^{O(rw)}n^{O(1)}$ (e.g. finding large odd induced subgraphs and odd colorings).

Theorem [B., Papadopoulos and Telle 2020]

Subset Feedback Vertex Set and Node Multiway Cut can be

solved in time $2^{O(rw^3)}n^4$.

Lower Bounds

```
ETH (weaker form) [Impagliazzo and Paturi, 2001] There is no 2^{o(n)}(n+m)^{O(1)} time algorithm for 3-CNF SAT.
```

Lower Bounds

ETH (weaker form) [Impagliazzo and Paturi, 2001]

There is no $2^{o(n)}(n+m)^{O(1)}$ time algorithm for 3-CNF SAT.

$$A \ 2^{o(|V(G)|)} n^{O(1)} \longrightarrow A \ 2^{o(n+m)} (n+m)^{O(1)} \text{ time algo. for IS}$$

$$A \ 2^{o(n+m)} (n+m)^{O(1)} \text{ time algo. for 3-CNF-SAT}$$

Lower Bounds

ETH (weaker form) [Impagliazzo and Paturi, 2001]

There is no $2^{o(n)}(n+m)^{O(1)}$ time algorithm for 3-CNF SAT.

Linear reductions [Folklore]

Under ETH, there is no $2^{o(|V(G)|)}n^{O(1)}$ time algorithm for

- Independent Set
- Dominating Set
- Maximum Induced Matching
- Feedback Vertex Set

$$\mathsf{tw}, \mathsf{cw}, \mathsf{rw} \leqslant |V(G)|$$

Corrolary

For each $k \in \{\text{tw}, \text{cw}, \text{rw}\}$, under ETH, there is no $2^{o(k)}n^{O(1)}$ time algorithm for these problems.

Our results

Theorem [B., Korhonen and Nederlof, 2022+]

Under ETH, there are no $2^{o(rw^2)}n^{O(1)}$ time algorithms for

- Independent Set
- Weighted Dominating Set
- Maximum Induced Matching
- Feedback Vertex Set

⇒ The best known algorithms for these problems are optimal under ETH.

Holds also for linear rank-width

Algorithm and lower-bound for Independent Set

Theorem [Bui-Xuan, Telle and Vatshelle, 2010] Independent Set can be solved in time $2^{O(rw^2)}n^{O(1)}$.

Theorem [Bui-Xuan, Telle and Vatshelle, 2013]

There is an algorithm for IS whose runtime is upper bounded by

- $2^{O(tw^*)}n^{O(1)}$
- $2^{O(cw^*)}n^{O(1)}$
- $2^{O(rw^2)}n^{O(1)}$
- *n*^{O(mim)}

For every node x of the layout, we compute a **small** set of partial solutions = independent sets included in A_x

For every node x of the layout, we compute a **small** set of partial solutions = independent sets included in A_x

For every node x of the layout, we compute a **small** set of partial solutions = independent sets included in A_x

For every node x of the layout, we compute a **small** set of partial solutions = independent sets included in A_x

For every node x of the layout, we compute a **small** set of partial solutions = independent sets included in A_x

1-Neighbor Equivalence

Two partial solutions $X, W \subseteq A$ are **equivalent** if

1-Neighbor Equivalence

Two partial solutions $X, W \subseteq A$ are **equivalent** if

For every pair X, W of equivalent partial solutions and $Y \subseteq \overline{A}$

 $X \cup Y$ is a solution $\iff W \cup Y$ is a solution

1-Neighbor Equivalence

Two partial solutions $X, W \subseteq A$ are **equivalent** if

For every pair X, W of **equivalent** partial solutions and $Y \subseteq \overline{A}$

 $X \cup Y$ is a solution $\iff W \cup Y$ is a solution

For every node x and each equivalence class C over A_x we compute one independent set $X \in C$ of maximum size.

Theorem [Vatshelle, 2013]

The nb. of eq. classes $|N(X) \cap \overline{A} \mid X \subseteq A\}|$ is at most

- 2^{tw*}(A)
- $2^{cw^*(A)}$
- $2^{\text{rw}(A)^2}$
- $n^{\min(A)}$

For every node x and each equivalence class C over A_x we compute one independent set $X \in C$ of maximum size.

Theorem [Bui-Xuan, Telle and Vatshelle, 2013]

The running time of this algorithm is upper bounded by

- $2^{O(tw)}n^{O(1)}$
- $2^{O(cw)}n^{O(1)}$
- $2^{O(rw^2)}n^{O(1)}$
- *n*^{O(mim)}

This is tight under ETH for each width parameter!

Lower bound

Theorem [B., Korhonen and Nederlof, 2022+] Under ETH, there are no $2^{o(rw^2)}n^{O(1)}$ time algorithms for

Independent Set.

Universal rank cuts

Universal k-rank cut

- $\bullet \ A := \{a_s \mid s \subseteq [1,k]\}$
- $B := \{b_s \mid s \subseteq [1, k]\}$
- a_s and b_t are adjacent if and only if $|s \cap t|$ is **odd**

Universal rank cuts

The universal k-rank cut has rank-width k

Theorem [Bui-Xuan, Telle and Vatshelle, 2010]

Every twin-free cut of rank *k* is an induced subgraph of the universal *k*-rank cut.

Universal rank cuts

The universal k-rank cut has rank-width k

Theorem [Bui-Xuan, Telle and Vatshelle, 2010]

Every twin-free cut of rank *k* is an induced subgraph of the universal *k*-rank cut.

Theorem [Bui-Xuan, Telle and Vatshelle, 2011]

$$|\{N(X)\cap B\mid X\subseteq A\}|=2^{\Omega(k^2)}$$

Overview

Reduction from 3-CNF SAT with k^2 variables

Lemma

Under ETH, there is no $2^{o(k^2)}(k+m)^{O(1)}$ time algorithm for 3-CNF SAT with k^2 variables

Universal 2k-rank cut

- $\bullet \ A := \{a_s \mid s \subseteq [1, 2k]\}$
- $B := \{b_s \mid s \subseteq [1, 2k]\}$
- a_s and b_t are adjacent if and only if $|s \cap t|$ is **odd**

A

B

B

$$var(\varphi) := \{v_{i,j} \mid i \in [1,k] \land j \in [k+1,2k]\}$$

with
$$k = 3$$
 $V_{1,4}$ $V_{1,5}$ $V_{1,6}$
 $V_{2,4}$ $V_{2,5}$ $V_{2,6}$
 $V_{3,4}$ $V_{3,5}$ $V_{3,6}$

Every **interpretation** $f: \text{var}(\varphi) \to \{0,1\}$ is associated with $X_f \subseteq A$

$$X_f = \{a_{s_1}, \dots, a_{s_k}\}$$

 $s_i = \{i\} \cup \{j \in [k+1, 2k] \mid f(v_{i,j}) = 1\}$

$$var(\varphi) := \{v_{i,j} \mid i \in [1,k] \land j \in [k+1,2k]\}$$

Every **interpretation** $f: \text{var}(\varphi) \to \{0,1\}$ is associated with $X_f \subseteq A$

$$X_f = \{a_{s_1}, \dots, a_{s_k}\}$$

 $s_i = \{i\} \cup \{j \in [k+1, 2k] \mid f(v_{i,j}) = 1\}$

For every $i \in [1, k]$, let $A_i = \{a_s \in A \mid s \cap [1, k] = \{i\}\}$ and let $A' = A_1 \cup \cdots \cup A_k$.

Lemma

Every maximal independent set of G[A'] is of the form X_f with f an interpretation

Lemma

For every pair of **distinct interpretations** f, g, the **neighborhoods** of X_f and X_g

- are different
- have the same size $(2^{2k} 2^k)$

Clause gadget = a triangle and some edges with a copy of A'

Clause gadget = a triangle and some edges with a copy of A'

Clause gadget = a triangle and some edges with a copy of A'

Clause gadget = a triangle and some edges with a copy of A'

Lemma

f satisfies C iff X_f can be completed with one vertex from the clause gadget

 φ is satisfiable iff there exists an independent set of weight W

- The linear rank-width of this graph is at most 2k + 4.
- This graph has $2^{O(k)}m$ vertices and can be constructed in $2^{O(k)}m$ time.

A
$$2^{o(rw^2)}n^{O(1)}$$
 \Rightarrow A $2^{o(k^2)}(n+m)^{O(1)}$ time \Rightarrow ETH is false

Theorem [B., Korhonen and Nederlof, 2022+] Under ETH, there are no $2^{o(rw^2)}n^{O(1)}$ time algorithms for **Independent Set**

Other problems

Given a graph G, we can construct G' such that $rw(G') \leq rw(G) + 1$ and the following are equivalent:

- G has an independent set of size k
- G' has an induced matching of size k
- G' has an induced forest of size 2k

Theorem [B., Korhonen and Nederlof, 2022+] Under ETH, there are no $2^{o(rw^2)}n^{O(1)}$ time algorithms for Max. Induced Matching and FVS.

Weighted Dominating Set

Theorem [B., Korhonen and Nederlof, 2022+]

Under ETH, there are no $2^{o(rw^2)}n^{O(1)}$ time algorithms for Weighted Dominating Set.

Weighted Dominating Set

Theorem [B., Korhonen and Nederlof, 2022+]

Under ETH, there are no $2^{o(rw^2)}n^{O(1)}$ time algorithms for Weighted Dominating Set.

Weighted Dominating Set

Theorem [B., Korhonen and Nederlof, 2022+]

Under ETH, there are no $2^{o(rw^2)}n^{O(1)}$ time algorithms for Weighted Dominating Set.

Boolean-width [Bui-Xuan, Telle, and Vatshelle, 2011] Defined from boolw(A) := $\log_2 |\{N(X) \cap \overline{A} \mid X \subseteq A\}|$.

Equivalent to clique-width and rank-width!

Theorem [Bui-Xuan, Telle, and Vatshelle, 2011] For all graph G, we have $\log_2 rw \leq boolw \leq O(rw^2)$.

Theorem [Bui-Xuan, Telle and Vatshelle, 2011]

For the Universal k-rank cut, we have

$$\log_2 |\{N(X) \cap B \mid X \subseteq A\}| = \Omega(k^2)$$

Boolean-width [Bui-Xuan, Telle, and Vatshelle, 2011] Defined from boolw(A) := $\log_2 |\{N(X) \cap \overline{A} \mid X \subseteq A\}|$.

Equivalent to clique-width and rank-width!

Theorem [Bui-Xuan, Telle, and Vatshelle, 2011] For all graph G, we have $\log_2 \text{rw} \leq \text{boolw} \leq O(\text{rw}^2)$.

Theorem [B., Korhonen and Nederlof, 2022+]

There are graphs with rank-width k and boolean-width $\Omega(k^2)$ for arbitrary large k.

Conclusion

Theorem [B., Korhonen and Nederlof, 2022+]

Under ETH, there are no $2^{o(rw^2)}n^{O(1)}$ time algorithms for

- Independent Set
- Weighted Dominating Set
- Maximum Induced Matching
- Feedback Vertex Set

First non-trivial ETH lower bounds for rank-width

Using $|\{N(X) \cap \overline{A} \mid X \subseteq A\}|$ leads to optimal algorithms for for several **problems** in terms of many **width parameters**: tree-width, clique-width, rank-width and mim-width!

Results on Independent Set

Best known:	Upper bound	ETH lower bound
tree-width clique-width	$2^{O(k)}n^{O(1)}$ [Folklore]	$2^{o(k)}n^{O(1)}$ [Folklore]
rank-width	$2^{O(k^2)} n^{O(1)}$ [Bui-Xuan et al., 2012]	$2^{o(k^2)}n^{O(1)}$ [Us, 2023]
mim-width	$n^{O(k)}$ [Bui-Xuan et al., 2013]	$n^{o(k/\log k)}$ [Bakkane and Jaffke, 2022+]

Results on Independent Set

Best known:	Upper bound	ETH lower bound
tree-width clique-width	$2^{O(k)}n^{O(1)}$ [Folklore]	$2^{o(k)}n^{O(1)}$ [Folklore]
rank-width	$2^{O(k^2)} n^{O(1)}$ [Bui-Xuan et al., 2012]	$2^{o(k^2)}n^{O(1)}$ [Us, 2023]
mim-width	$n^{O(k)}$ [Bui-Xuan et al., 2013]	$n^{o(k)}$ [Me, 2023+]

Open questions

What about:

- Unweighted Dominating Set? $(2^{O(rw^2)}n^{O(1)})$
- *q*-Coloring? $(2^{O(qrw^2)}n^{O(1)})$
- Chromatic Number? $(n^{2^{O(rw^2)}})$

Thank you!

