Método del muestreo por importancia

Sean X un vector aleatorio con función de densidad nominal f_1 y $g: \mathbb{R}^d \to \mathbb{R}$ una función medible. Entonces

$$\mu = \mathbb{E}_{f_1}[g(\mathbf{X})] = \int_{\mathbb{R}^d} g(\mathbf{x}) f_1(\mathbf{x}) d\mathbf{x}$$

El método de muestreo por importancia consiste en considerar una función de densidad instrumental f_2 para X, de tal manera que f_1 sea <u>absolutamente continua</u> con respecto a f_2 (es decir, $f_2(x) \neq 0$ para todo x tal que $f_1(x) \neq 0$). Si denotamos el soporte de una función f como sop $_f = \{x \in \mathbb{R}^d \mid f(x) \neq 0\}$ y definimos $L(x) = \frac{f_1(x)}{f_2(x)}$ como la $f(x) = \frac{f_1(x)}{f_2(x)}$ como la $f(x) = \frac{f_1(x)}{f_2(x)}$ verosimilitud, se tiene que

$$\mathbb{E}_{f_2} \big[g(\boldsymbol{x}) L(\boldsymbol{x}) \big] = \int_{\mathbb{R}^d} g(\boldsymbol{x}) L(\boldsymbol{x}) f_2(\boldsymbol{x}) \, d\boldsymbol{x}$$

$$= \int_{\text{sop}_{f_2}} g(\boldsymbol{x}) L(\boldsymbol{x}) f_2(\boldsymbol{x}) \, d\boldsymbol{x}$$

$$= \int_{\text{sop}_{f_2}} g(\boldsymbol{x}) f_1(\boldsymbol{x}) \, d\boldsymbol{x}$$

$$= \int_{\text{sop}_{f_1}} g(\boldsymbol{x}) f_1(\boldsymbol{x}) \, d\boldsymbol{x} + \int_{\text{sop}_{f_2}} \sup_{f_1} g(\boldsymbol{x}) f_1(\boldsymbol{x}) \, d\boldsymbol{x}$$

$$= \int_{\text{sop}_{f_1}} g(\boldsymbol{x}) f_1(\boldsymbol{x}) \, d\boldsymbol{x} + \int_{\text{sop}_{f_2}} \sup_{f_1} g(\boldsymbol{x}) f_1(\boldsymbol{x}) \, d\boldsymbol{x}$$

$$= \int_{\mathbb{R}^d} g(\boldsymbol{x}) f_1(\boldsymbol{x}) \, d\boldsymbol{x}$$

$$= \mathbb{E}[g(\boldsymbol{x})]$$

$$= \mu$$

Se tiene entonces que el estimador

$$\hat{\mu}_{\mathsf{is},f_2,n}(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^n g(\mathbf{x}_i) L(\mathbf{x}_i)$$

donde $x_1, \dots, x_n \overset{\text{i. i. d.}}{\sim} f_2$, es un estimador insesgado de μ .

Además,

$$Var_{f_{2}}(\hat{\mu}_{is,f_{2},n}(X)) = \frac{1}{n} Var_{f_{2}}(g(X)L(X))$$

$$= \frac{1}{n} (\mathbb{E}_{f_{2}}[g(X)^{2}L(X)^{2}] - \mathbb{E}_{f_{2}}[g(X)L(X)]^{2})$$

$$= \frac{1}{n} (\int_{\mathbb{R}^{d}} g(x)^{2}L(x)^{2}f_{2}(x) dx - \mu^{2})$$

$$= \frac{1}{n} (\int_{\mathbb{R}^{d}} g(x)^{2}L(x)f_{1}(x) dx - \mu^{2})$$

$$= \frac{1}{n} (\mathbb{E}_{f_{1}}[g(X)^{2}L(X)] - \mu^{2})$$

Como $\operatorname{Var}_{f_1}(\hat{\mu}_n(X)) = \frac{1}{n} \left(\mathbb{E}_{f_1}[g(X)^2] - \mu^2 \right)$, se tiene que $\operatorname{Var}_{f_2}(\hat{\mu}_{\mathsf{is},f_2,n}(X)) < \operatorname{Var}_{f_1}(\hat{\mu}_n(X))$ si y solo si $\mathbb{E}_{f_1}[g(X)^2 L(X)] < \mathbb{E}_{f_1}[g(X)^2]$.

no puedo estimar nada si la esperanza vale 0 para que exista la esperanza

Teorema 1 Si $0 < \int_{\mathbb{R}^d} |g(x)| f_1(x) dx < +\infty$, entonces la elección de f_2 que minimiza el valor de $\operatorname{Var}_{f_2}(\hat{\mu}_{\mathsf{is},f_2,n}(X))$ es

$$f_2^*(x) = rac{|g(x)|f_1(x)}{\int_{\mathbb{R}^d} |g(x)|f_1(x)\,dx}$$
 la f_2 que tengo que elegir para obtener la mínima varianza posit

y la mínima varianza es

$$\left(\int_{\mathbb{R}^d} |g(\boldsymbol{x})| f_1(\boldsymbol{x}) \, d\boldsymbol{x}\right)^2 - \left(\int_{\mathbb{R}^d} g(\boldsymbol{x}) f_1(\boldsymbol{x}) \, d\boldsymbol{x}\right)^2$$

mi f2 se tiene que parecer al cociente, el denominador es una constante normalizadora, que luego no tiene problema

Parecerse es: que donde esa expresión tome un valor alto es donde mi densidad instrumental tiene que tomar valores

Este resultado de optimalidad es, en realidad, un resultado formal: por ejemplo, cuando g es siempre positiva o negativa se alcanzaría varianza 0, pero esta elección óptima requeriría conocer $\int_{\mathbb{R}^d} g(x) f_1(x) \, dx$, que es la integral que se quiere calcular.

No obstante, desde un punto de vista práctico el resultado sugiere probar con densidades instrumentales que sean lo más similares a $|g(x)|f_1(x)$ que sea posible. Es decir, las tuplas x que deberían generarse con mayor probabilidad (las más «importantes») deberían ser aquellas con valores altos de $g(x)|f_1(x)$. También hay que tener en cuenta que la varianza del método es menor cuanto menor sea $\mathbb{E}_{f_1}[g(X)^2L(X)]$. Esto quiere decir que, puesto que el denominador de L es f_2 , una densidad instrumental mal elegida puede dar lugar a una estimación de gran varianza, incluso infinita. Para evitarlo, los valores cercanos a cero de esta densidad instrumental deberían cancelarse con valores cercanos a cero de la función g o, en su defecto, la densidad instrumental f_2 debería acercarse a cero más lentamente que la densidad nominal f_1 .

no puedo aplicar el método en la práctica