Теорема Малера о компактности

Определитель решётки

Решётка

Множество Λ линейных комбинаций набора из n линейно-независимых векторов b (базиса решётки) \mathbb{R}^n с целыми коэффициентами.

Целочисленная решётка Y

Базис – базис e единичных векторов в \mathbb{R}^n .

Определитель решётки

Пусть Λ — решётка с базисом b. $d(\Lambda)=|det(B)|$, где столбцы B — векторы b в базисе e. Таким образом, $\Lambda=BY$.

Определелитель решётки: корректность

Определитель решётки не зависит от выбора базиса

Пусть a и b — базисы Λ . Тогда $\Lambda = AY = BY$, $Y = A^{-1}BY$, $A^{-1}B$ — матрица перехода из базиса A в базис B. Она обратима и целочисленна, так как отображает векторы с целыми координатами в e в векторы с целыми координатами в e, значит, её определитель обратим и цел, значит, $|det(A^{-1}B)| = 1$.

Утверждение 1

Пусть Λ — решётка. Тогда существует набор векторов a^1,\dots,a^n в Λ таких, что a^1 — вектор наименьшей ненулевой длины, а начиная с i=2 $a^i\in Dist_i\cap K_i$, где $Dist_i$ — множество векторов решётки на минимальном ненулевом расстоянии от $L_i=< a^1,\dots,a^{i-1}>$, а K_i — множество векторов, проекции которых на L_i попадают в множество P_i линейных комбинаций a^1,\dots,a^{i-1} с коэффициентами $\leq \frac{1}{2}$ по модулю.

Если n=1, утверждение верно. Пусть оно верно для n=i-1. Множество P_i содержит по крайней мере нулевой вектор, а множество $Dist_i$ не пусто. Выберем произвольный вектор из $Dist_i$ и вычтем из него вектор решётки, ближайший к его проекции на L_i . Получим вектор, проецирующийся в вектор, достаточно близко от нулевого и лежащий на том же расстоянии от L_i , его можно взять в качестве a^i и провести индуктивный переход.

Утверждение 2

 $a=a^1,\ldots,a^n$ — базис Λ .

a — базис в \mathbb{R}^n . Пусть $x'\in\Lambda$ и $x'=\sum_i \alpha_i a^i$, где $\alpha_i\in\mathbb{R}^n=\mathbb{Z}^n$. Сдвинем этот вектор по решётке в вектор x' так, чтобы все коэффициенты стали меньше единицы. Тогда $dist(x,L_n)=\alpha_i\cdot dist(a^n,L_n)=0$ по конструкции a, то есть $\alpha_n=0$. Аналогично $\alpha_i=0$ для любого i. Следовательно, a — базис решётки.

Лемма

 $rac{\prod_{i=1}^{n}\left|a^{i}
ight|}{d(\Lambda)}\leq C$, где C зависит только от n.

Лемма

$$rac{\prod_{i=1}^{n}\left|a^{i}
ight|}{d(\Lambda)}\leq C$$
, где C зависит только от $n.$

Пусть $d_1=\left|a^1\right|$, $d_i=dist(a^i,L_i)$. Тогда $d(\Lambda)=\prod_i d_i$ как объём параллелотопа, натянутого на a.

Лемма

$$rac{\prod_{i=1}^{n}\left|a^{i}
ight|}{d(\Lambda)}\leq C$$
, где C зависит только от $n.$

Пусть $d_1=\left|a^1\right|$, $d_i=dist(a^i,L_i)$. Тогда $d(\Lambda)=\prod_i d_i$ как объём параллелотопа, натянутого на a.

По построению $a \left| a^i \right| \leq \frac{1}{2} \sum_{k=1}^{i-1} \left| a^k \right| + d_i$ (1).

Лемма

$$rac{\prod_{i=1}^{n}\left|a^{i}
ight|}{d(\Lambda)}\leq C$$
, где C зависит только от $n.$

Пусть $d_1=\left|a^1\right|$, $d_i=dist(a^i,L_i)$. Тогда $d(\Lambda)=\prod_i d_i$ как объём параллелотопа, натянутого на a.

По построению $a \left| a^i \right| \leq \frac{1}{2} \sum_{k=1}^{i-1} \left| a^k \right| + d_i$ (1).

Для любого вектора $p\in P_{i+1}\ dist(p,L_i)\leq \frac{d_i}{2}$. Тогда $dist(a^{i+1},L_i)\leq \frac{d_i}{2}+d_{i+1}$, но $dist(a^{i+1},L_i)\geq d_i$. Отсюда $2d_{i+1}\geq d_i$ (2).

Лемма

$$rac{\prod_{i=1}^{n}\left|a^{i}
ight|}{d(\Lambda)}\leq C$$
, где C зависит только от $n.$

Пусть $d_1=\left|a^1\right|$, $d_i=dist(a^i,L_i)$. Тогда $d(\Lambda)=\prod_i d_i$ как объём параллелотопа, натянутого на a.

По построению $a \left| a^i \right| \leq \frac{1}{2} \sum_{k=1}^{i-1} \left| a^k \right| + d_i$ (1).

Для любого вектора $p\in P_{i+1}\ dist(p,L_i)\leq \frac{d_i}{2}$. Тогда $dist(a^{i+1},L_i)\leq \frac{d_i}{2}+d_{i+1}$, но $dist(a^{i+1},L_i)\geq d_i$. Отсюда $2d_{i+1}\geq d_i$ (2).

Утверждение 3

$$\left|a^i
ight| \leq rac{1}{2} \sum_{k=1}^{i-1} \left|a^k
ight| + d_i \leq \xi_i d_i$$
, где $\xi_1 = 1$, $\xi_i = 3\xi_{i-1} - 1$.

Это верно для i=1. Пусть теперь это верно для всех индексов до i включительно. Тогда

$$\frac{1}{2} \sum_{k=1}^{i} \left| a^{k} \right| + d_{i+1} \leq_{(1)} \frac{3}{2} \left(\frac{1}{2} \sum_{k=1}^{i-1} \left| a^{k} \right| + d_{i} \right) + d_{i+1} - d_{i} \leq \left(\frac{3}{2} \xi_{1} - 1 \right) d_{i} + d_{i+1} \leq_{(2)} \left(3\xi_{i} - 1 \right) d_{i+1} = \xi_{i+1} d_{i+1}.$$

Множества решёток. Определения

Ограниченное множество решёток

Множество $\mathcal L$ решёток называется ограниченным, если существует радиус $\rho>0$ такой, что внутренность шара радиуса ρ пересекается с каждой $\Lambda\in\mathcal L$ только по нулевому вектору, и число $\sigma>0$ такое, что $\forall \Lambda\in\mathcal L$ $d(\Lambda)\leq\sigma$.

Сходящаяся последовательность

Пусть $\{\Lambda_1,\Lambda_2,\ldots\}$ — последовательность решёток. Она сходится к решётке Λ , если для любого базиса a с матрицей столбцов A существует набор базисов a_i Λ_i , матрицы которых сходятся к A по норме максимума модуля.

Сходимости в каком-то базисе достаточно

 $A_r o A \Rightarrow A_r U o A U$, где U — матрица замены базиса.

Теорема Малера о компактности

Ограниченная (с константами ρ , σ) последовательность решёток имеет сходящуюся подпоследовательность

Применим лемму для каждой решётки Λ_r в последовательности: $ho^n \leq \prod_{i=1}^n \left|a_r^i\right| \leq Cd(\Lambda) \leq \sigma$, где a_r — базис Λ_r . В частности, $\left|a_r^i\right| \leq C\sigma \rho^{-n+1}$ для любого вектора a_r^i базиса a_r .

Следовательно, последовательности векторов a_r^i для всех i ограничены и имеют сходящиеся (по максимуму модуля координат) подпоследовательности, можно выбрать набор индексов r_k такой, что подпоследовательность будет сходиться для всех i. Тогда $\{A_{r_k}\}$ сходится.

Следствие. Критерий компактности Малера

Пространство унимодулярных решёток

 X_n — пространство решёток с определителем 1.

 $X_n \cong SL(n,\mathbb{R})/SL(n,\mathbb{Z})$

Критерий компактности

Множество решёток $\{\Lambda_r \in X_n\}$ не содержит сходящейся подпоследовательности тогда и только тогда, когда есть последовательность векторов $\{v_r\}$ этих решёток такая, что $|v_r| \to 0$.

В качестве примера, в котором теорема встречается в таком виде, лекция Линденштраусса ссылкой