08/894,356

PCT/JF96/00348

27.03.96

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

22/8 401

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

1996年 1月30日

REC'D 2 7 MAR 1996 WIPO PCT

出 顧 番 号 Application Number:

平成 8年特許願第046534号

出 願 人 Applicant (s):

サントリー株式会社

1996年 7月19日

特許庁長官 Commissioner, Patent Office 荒サ 寿 準 順

特平 8-046534

【書類名】 特許顯

【整理番号】 P96-0003

【提出日】 平成 8年 1月30日

【あて先】 特許庁長官 清川 佑二 殿

【国際特許分類】 C12N 15/52

【発明の名称】 アシル基転移酵素をコードする遺伝子

【請求項の数】 16

【発明者】

【住所又は居所】 大阪府三島郡島本町若山台1丁目1番1号 サントリー

株式会社 基礎研究所内

【氏名】 芦刈 俊彦

【発明者】

【住所又は居所】 大阪府三島郡島本町若山台1丁目1番1号 サントリー

株式会社 基礎研究所内

【氏名】 田中 良和

【発明者】

【住所又は居所】 大阪府三島郡島本町若山台1丁目1番1号 サントリー

株式会社 基礎研究所内

【氏名】 藤原 裕之

【発明者】

【住所又は居所】 大阪府三島郡島本町若山台1丁目1番1号 サントリー

株式会社 生物医学研究所内

【氏名】 中尾 正宏

【発明者】

【住所又は居所】 大阪府三島郡島本町若山台1丁目1番1号 サントリー

株式会社 基礎研究所内

【氏名】 福井 祐子

【発明者】

【住所又は居所】 大阪府三島郡島本町若山台1丁目1番1号 サントリー

特平 8-046534

株式会社 基礎研究所内

【氏名】

※倉 圭子

【発明者】

大阪府三島郡島本町若山台1丁目1番1号 サントリー 【住所又は居所】

株式会社 基礎研究所内

【氏名】

水谷 正子

【発明者】

【住所又は居所】 大阪府三島郡島本町若山台1丁目1番1号 サントリー

株式会社 基礎研究所内

【氏名】

久住 高章

【特許出願人】

【識別番号】

000001904

【郵便番号】

530

【住所又は居所】 大阪府大阪市北区堂島浜2丁目1番40号

【氏名又は名称】 サントリー株式会社

【代表者】

鳥井 信一郎

【電話番号】

06-346-1131

【先の出願に基づく優先権主張】

【出願番号】

平成 7年特許願第 67159号

【出願日】

平成 7年 2月17日

【先の出願に基づく優先権主張】

【出願番号】

平成 7年特許願第196915号

【出願日】

平成 7年 6月29日

1

【提出物件の目録】

【物件名】

明細書

【物件名】

要約書

【書類名】 明細書

【発明の名称】 アシル基転移活性を有する蛋白質をコードする遺伝子 【特許請求の範囲】

【請求項1】 芳香族アシル基転移活性を有する蛋白質をコードする遺伝子

【請求項2】 配列番号1において塩基配列番号21~1412の塩基配列を有する請求項1記載の遺伝子。

【請求項3】 配列番号2において塩基配列番号35~1471の塩基配列を有する請求項1記載の遺伝子。

【請求項4】 配列番号3において塩基配列番号67~1410の塩基配列を有する請求項1記載の遺伝子。

【請求項5】 配列番号4において塩基配列番号3~1340の塩基配列を 有する請求項1記載の遺伝子。

【請求項6】 配列番号5において塩基配列番号3~1364の塩基配列を 有する請求項1記載の遺伝子。

【請求項7】 請求項1ないし6のいずれか1項に記載の遺伝子よってコードされるアミノ酸配列を有し、芳香族アシル基転移酵素活性を有する蛋白質。

【請求項8】 植物体の粗酵素抽出液をシバクロンブルー3GAを固定した 樹脂を用いたアフィニティークロマトグラフィー処理により得られる芳香族アシ ル基転移活性を有する蛋白質。

【請求項9】 植物体の粗酵素抽出液をシバクロンブルー3GAを固定した 樹脂を用いたアフィニティークロマトグラフィー処理による芳香族アシル基転移 活性を有する蛋白質の単離方法。

【請求項10】 芳香族アシル基転移活性を有する蛋白質の製造方法において、請求項1ないし6のいずれか1項に記載の遺伝子を含んでなる発現ベクターにより形質転換された宿主を培養し、該培養物から前記蛋白質を採取することを特徴とする方法。

【請求項11】 植物体内における色素のアシル化方法において、芳香族アシル基転移活性を有する蛋白質をコードする遺伝子を、導入する植物において適

当な発現ベクターに組み込み、当該植物に導入後、当該植物体内において目的色素のアシル化を行うことを特徴とする方法。

【請求項12】 色素がアントシアニンである請求項11記載の植物体内における色素のアシル化方法。

【請求項13】 植物体内における色素の安定化方法において、芳香族アシル基転移活性を有する蛋白質をコードする遺伝子を、導入する植物において適当な発現ベクターに組み込み、当該植物に導入後、当該植物体内において目的色素のアシル化反応が行われることにより当該色素が安定化されることを特徴とする方法。

【請求項14】 色素がアントシアニンである請求項13記載の植物体内に おける色素の安定化方法。

【請求項15】 植物の花色調節方法において、芳香族アシル基転移活性を 有する蛋白質をコードする遺伝子を、導入する植物において適当な発現ベクター に組み込み、当該植物に導入後、当該植物体内において目的色素のアシル化反応 によって当該色素が安定化されることにより植物の花色を目的の花色に調節する ことを特徴とする方法。

【請求項16】 色素がアントシアニンである請求項15記載の植物の花色 調節方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、植物由来の芳香族アシル基転移活性を有する蛋白質をコードする遺伝子及びその利用に関するものである。更に詳しくは、リンドウ(Gentianatriflora var. japonica)、ペチュニア(Petunia hybrida)、シソ(Perilla ocimoides)及びサイネリア(Senecio cruentus)由来の芳香族アシル基転移活性を有する蛋白質をコードする遺伝子及びその利用に関するものである。

[0002]

【従来の技術】

花産業は新規かつ種々の品種を開発することに努力している。新規な品種の育成のための有効な方法の一つとして花の色を変えることがあり、古典的な育種方法を用いて、ほとんどの商業的品種について広範囲な色を作出することに成功している。しかしながら、この方法では種ごとで遺伝子プールが制限されていることから、単一の種が広範囲の種類の着色品種を有することは稀である。

[0003]

花の色は主として2つのタイプの色素、即ちフラボノイド及びカロチノイドに基づき、フラボノイドは黄色から赤ないし青色の範囲に寄与し、カロチノイドはオレンジ又は黄色の色調に寄与する。花色に主たる寄与をするフラボノイド分子はシアニジン、デルフィニジン、ペチュニジン、ペオニジン、マルビジン及びペラルゴニジンの配糖体であるアントシアンであり、異なるアントシアンが顕著な花の色の変化をもたらす。さらに花の色は無色のフラボノイドの補助発色、金属錯体形成、グリコシル化、アシル化、メチル化及び液胞のpHにより影響される(Forkmann, Plant Breeding106:1,1991)。
[0004]

アシル化されたアントシアンは、サイネリア(Senecio cruentus)由来のシネラリン(Goto et al., Tetrahedron 25:6021, 1984)、ツユクサ(Commelinacommunis)由来のアオバニン(Goto and Kondo, Angew. Chem. Int. Ed. Engl. 30:17, 1991)及びオヤマリンドウ(Gentiana Makinoi)由来のゲンチオデルフィン(Yoshida et al., Tctrahedron 48:4313, 1992)を始め、自然界からの数多くの分離例が報告されている(タイマツバナ: Kondo et al., Tetrahedron 26:5879, 1985;シソ、パンジー: Goto et al., Tetrahedron 27:2413, 1987;シマフムラサキツユクサ: Idaka et al., Tetrahedron 28:1901, 1987;ヤマノイモ: Shoyama et al., Phytochemistry 29:2999, 1990;アカキヤベツ、キキヨウ、ロベリア、ラークスパー、チョウマメ: Goto and Kondo, An

gew. Chem. Int. Ed. Engl. 30:17, 1991;ニンジン:Glabgen et al., Phytochemistry31:1593, 1992;アサガオ:Lu et al., Pytochemistry32;659, 1992; キランソウ、トウバナ、オドリコソウ、ラベンダー、イヌハッカ、オオキセワタ、プレクトランサス、ウツボグサ、ヒゴロモソウ、ネジリイモ:Saito and Harborne, Phytochemistry31:3009, 1992;オオオニバス:Strack et al., Phytochemistry31:989, 1992;カンパニュラ:Brandt et al., 33:209, 1993)。

[0005]

これらのアントシアンを含むフラボノイドを修飾するアシル基は構造的に2種類に分けられる。一つはハイドロキシ桂皮酸を中心とする芳香族アシル基であり、もう一つはマロニル基のような脂肪族アシル基である。これらのアシル基転移反応のうち、グルコースを介して芳香族アシル基、好ましくはクマル酸やコーヒー酸が結合したアントシアンはその吸収極大が長波長側に移動することがアサガオ(Pharbitis nil)のアントシアン系色素を用いた実験により観察された(Dangleet al. Phytochemistry34:1119,1993)。

[0006]

さらに、サイネリア(Senecio cruentus)由来のシネラリンは1個の脂肪族アシル基と3個の芳香族アシル基を有するが、シネラリンからの芳香族アシル基の解離により、中性の水溶液中で色素の安定性が低下することが報告されている

(Goto et al., Tetrahedron25: 6021, 1984)。また、リンドウ(Gentianamakinoi)に由来するゲンチオデルフィンはその分子内に存在する2つの芳香族アシル基により、サンドイッチ型の分子内スタッキングが起こり、水溶液中で色素が安定化されることが報告されている(Yoshida et al., Tetrahedron48:4313, 1992)。さらに、吉田らは、リンドウのアントシアニンにはアントシ

アニンの5位のグルコースと3、位のグルコースのそれぞれにアシル基が結合していることを明らかにした(Tetrahedron48, 4313, 1992)。また、シソ(Perilla ocimoides)の葉のアントシアニンはシアニジン3, 5-ジグルコシドの3位のグルコースにクマール酸が結合したシソニンであることも報告されている(TetrahedronLetters 27, 2413-2416, 1978)。

[0007]

しかしながら、これらの研究は有機化学的側面から天然色素の構造学的研究に おいてなされており、アシル基を転移する酵素を単離するなどの生化学的側面か らの研究はなされていない。

[0008]

また、植物におけるアントシアン系色素へのアシル基転移酵素のうち、脂肪族アシルであるマロニル基転移酵素についてはパセリの培養細胞(Matern et al., Arch. Biochem. Biophys. 208:233, 1981; Matern et al., Arch. Biochem. Biophys. 226:206, 1983; Matern et al., Eur. J. Biochem. 133:439, 1983)やCicer arientiumの実生(Koster et al., Arch. Biochem. Biophys. 234:513, 1984)からのものを始めとして多くの報告が為されている。

[0009]

また、芳香族アシル基転移反応は1980年にナデシコ科の植物である<u>Silene</u> (Kamsteeg et al., Biochem. Physiol. Pflanzen175:403, 1980) で初めて示され、<u>Matthiola</u> の可溶化酵素画分にも同様の芳香族アシル基転移酵素活性が見い出されている (Teusch et al., Phytochemistry26:991, 1986)。

[0010]

しかしながら、これらの報告では酵素活性の存在を示したのみに留まっており

、対応する酵素蛋白質を特定したり、その一次構造やさらにはそれをコードする 遺伝子についてはなんら知見が得られていない。それ以外の芳香族アシル基転移 酵素についても蛋白質や遺伝子の一次構造を明らかにした報告はなく、さらにこ のアントシアン系色素のアシル化反応を花色幅の拡大に積極的に利用して花を育 種した例や、アシル化を用いてアントシアンの安定化をはかった報告もない。

[0011]

[0012]

【発明が解決しようとする課題】

本発明は、植物由来の芳香族アシル基転移活性を有する蛋白質をコードする遺伝子及びその利用に関するものである。即ち、当該利用に関しては、植物において、フラボノイド、好ましくはアントシアンへのアシル基転移反応を制御する方法が挙げられ、それにより単一種が広範囲の花色を発現する可能性を提供する。特に、芳香族アシル基の転移により、アントシアンの吸収極大が長波長側に移動することから、既存の花色に青味を持たす場合に有効であると考えられる。

[0013]

これらの技術を実現化させるためには芳香族アシル基転移反応をつかさどる酵素を明らかにし、その酵素をコードする c D N A を分離する必要がある。更に、一つのアシル基転移酵素の c D N A から遺伝子の相同性を利用して他のアシル基転移酵素遺伝子の分離が可能となる。また、アシル化によりアントシアンの安定性が増すことから、安定なアントシアン色素の生産も可能となる。

[0014]

【課題を解決するための手段】

本発明者らは、リンドウの花弁からアシル基転移酵素を精製し、その一次構造を決定した。更には、遺伝子組換え技術を用いてリンドウ、ペチユニア、シソ及びサイネリアのアシル基転移酵素のcDNAを単離し、構造遺伝子の塩基配列を決定した。即ち、本発明はリンドウ、ペチュニア、サイネリアの花弁及びシソの葉に存在するアシル基転移酵素をコードしているDNA配列を提供するものである。また、本発明に係る酵素を用いてアントシアン系色素をアシル化することにより花色を変化させることができ、アントシアンの安定性を増すことができる。

[0015]

アシル基転移酵素をコードする遺伝子は例えば次のようにして得ることが出来る。即ち、まず、リンドウの花弁よりアシル基転移酵素を精製する。従来、本発明が成される以前に、芳香族アシル基転移酵素の精製に成功した例はなく、本発明者らは各種のクロマトグラフィー法、特にシバクロンブルー3GA(CibacronBlue3GA)を固定した樹脂(例えば、ブルーセファロース(登録商標)樹脂等)を用いたアフィニティークロマトグラフィー法を行うことにより初めて当該酵素の精製に成功した。

次に、常法に従ってアシル基転移酵素の部分アミノ酸配列を解明し、それらの アミノ酸配列に対応する合成ヌクレオチドを作製する。

[0016]

一方、同じリンドウの花弁よりpoly A+RNAを抽出し、常法により、 2本鎖 c DNAを合成し、更に c DNAライブラリーを作製する。前述の2本鎖 c DNAを鋳型にし、前述の合成DNAと c DNAを合成する際に使用した合成 DNAプライマーを用い、PCR法により、アシル基転移酵素遺伝子に特異的な DNA断片を取得する。次に、このDNA断片をプローブにして、前述のcDN Aライブラリーをスクリーニングし、陽性クローンを得る。そして、このクローンから回収されるプラスミドDNAを分離し、DNA塩基配列を決定する。更に 精製したアシル基転移酵素の分析により得られたアミノ酸配列とDNA塩基配列 から推定したアシル基転移酵素のアミノ酸配列とを比較することにより、陽性クローンが求めるcDNAクローンであることを確認する。

[0017]

また、このクローンを大勝菌及び酵母での遺伝子発現系を用いて発現させ、酵素活性を測定することにより、得られた遺伝子がアシル基転移酵素をコードしていることを確認し、アシル基転移酵素遺伝子の翻訳領域を明らかにすることにより本発明に係るアシル基転移酵素をコードする遺伝子が得られ、更に、当該遺伝子を発現させることにより遺伝子産物である目的のアシル基転移酵素蛋白を得ることができる。

[0018]

また、本発明者らは、ペチュニア品種サフィニアパープル(サントリー(株)) の花色が通常の赤紫から紫に変化した変異株(VM)を見いだし、アントシアニ ンの構造決定を、例えば吉田らの文献(Yoshida et al., Tet rahedron48;4313,1992)に記載の方法に従って行った。

[0019]

なお、本明細書においてはリンドウ、ペチュニア、シソ及びサイネリア由来のアシル基転移酵素について述べているが、当該酵素の精製法をそのまま又は一部を改変して、他の植物のアシル基転移酵素を精製し、当該酵素に係るアミノ酸配列を決定することにより、当該酵素をコードする遺伝子をクローニングすることができる。更に、本発明に係るリンドウ由来のアシル基転移酵素のcDNAをプローブとして用いることにより、リンドウから別のアシル基転移酵素のcDNA)ペチュニアから別のアシル基転移酵素のcDNAを得ることができた。従って、アシル基転移酵素の遺伝子の一部または全部を用いると、他のアシル基転移酵素遺伝子を得ることができる。また、これらのアミノ酸配列を比較したところ、保

存されているアミノ酸配列があった。この領域を用いて、シソ及びサイネリア由来のアシル基転移酵素のcDNAを得ることに成功したが同様の手法を用いることにより、他の植物に応用し、類似のアシル基転移酵素のcDNA又は染色体DNAクローンを得ることが可能である。

[0020]

また、本明細書において示したように、リンドウ、ペチュニア、シソ及びサイネリア由来のアシル基転移酵素を精製し、常法に従って当該酵素に対する抗体を得ることにより、その抗体と反応する蛋白質を作るcDNA又は染色体DNAをクローニングすることができる。従って、本発明はリンドウ、ペチュニア、シソ及びサイネリア由来のアシル基転移酵素の遺伝子のみに限定されるものではなく、広く芳香族アシル基転移酵素に関するものである。

[0021]

また、本明細書においてはアントシアンを含むフラボノイドのアシル基転移反応において、アシル基の供与体としてpークマロイルーCoA又はカフェオイルーCoA等のCoAエステルを挙げたが、pークマロイル、フェルロイル又はシナポイルー1ーOーグルコースといったハイドロキシシンナモイルー1ーOーグルコースも芳香族アシル基の供与体としての利用が可能であるので(Glassgenand Seitz, Plantal86:582, 1992)、本発明に係る酵素を用いた利用が可能である。

[0022]

【実施例】

以下に本発明を実施例に基づいて詳細に説明する。実験の手順は特に記述しない限りSambrookらのMolecular Cloning (Cold Spring Harbor Laboratory Press, 1989) に従った。

実施例1 植物からのアシル基転移酵素の検索

(1)基質の調製

デルフィニジン3, 5-ジグルコシドおよびシアニジン3, 5-ジグルコシドはバーベナ(Vcrbena hybrida)の一品種であるタピアンバイオ

レット(サントリー(株)より購入可能)の花弁からそれぞれのジアセチル体を抽出し、脱アセチル化することにより取得した。タピアンバイオレットの花弁(348g)を液体窒素とともにホモジナイザーで摩砕し、50%(v/v)アセトニトリル、0.2%トリフルオロ酢酸(TFA)溶液1.5Lに浸して3日間放置した。

[0023]

濾紙上にケイソウ土(#100)を敷き詰めて吸引ろ過し、ロータリーエバポレーターで約半分量に濃縮して、HP-20(ファルマシア社)にて、ゲル濾過を行った。800mlの蒸留水で洗浄後、50%アセトニトリル、0.1%TFA 800mlで色素画分を溶出した。エバポレーターで濃縮後、凍結乾燥して、粗色素(7.3g)を得た。

[0024]

タピアンの主色素はデルフィニジン及びシアニジンの3,5ージアセチルグルコシドであるため、以下の脱アセチル化操作を行った。粗色素1gをメタノール・50mlに溶解し、窒素ガスを15分間通気して溶存酸素を除いた後、氷冷した

[0025]

一方で、1N水酸化ナトリウム50mlから同様に溶存酸素を除き、氷冷下で 先の色素溶液に撹拌しながら滴下し、更に30分間撹拌して加水分解反応をさせ た。6N塩酸1mlを加えて反応を停止させ、蒸留水5mlを加えてエバポレー ターで約半量に濃縮し、終濃度10%になるようにメタノールを加えて2mlず つSep Pac C18カラム(ウォーターズ アソシエーション社)にアプ ライし、、蒸留水5mlで洗浄した後、30%アセトニトリル、0.6%TFA 2mlで溶出させた。

[0026]

溶出液をすべて集めてエバポレーターで濃縮し、HPLCによる分取を行った

DEVELOSIL ODS-10/20 (50×300mm;野村化学 (株)))カラムを用い、120分間でTFAが0.1%から0.3%、アセトニトリル が10%から30%の直線濃度勾配によって溶出させた。毎分32m1の流速で0.5分毎に分取し、各画分の色素画分の吸収スペクトルを測定して、デルフィニジン3,5-ジグルコシドおよびシアニジン3,5-ジグルコシドを分離してそれぞれを濃縮、凍結乾燥した(デルフィニジン3,5-ジグルコシド 75mg、シアニジン3,5-ジグルコシド 50mg)。各々を1.5mg/m1になるように0.5%TFAに溶解して、使用するまで-80℃に保存した。

[0027]

もう一方の基質であるヒドロキシシンナモイルーCoAの合成は以下の方法で行った。最初に、文献(Stockigt and Zenk, Z. Naturforsch. 30:352, 1975)に従ってカフェ酸(ナカライテスク社)とNーヒドロキシスクシンイミド(メルク(Merck)社)よりエステルを合成した。このエステル0. 5mmolを2mlのアセトンに溶解し、一方でコエンザイムA(CoA: KOHJIN)0.1mmolと炭酸水素ナトリウム1mmolとを20mlの水に溶解して、これに先のエステル溶液を1滴ずつ加えた。

[0028]

撹拌しながら窒素ガスの下で室温で一晩反応させた後、ロータリーエバポレーターで濃縮し、遠心(27000×g、10分)によって不溶物を除いて、HPLCで目的の生成物を分取した。DEVELOSIL ODS-10/20(50×300mm;野村化学(株))カラムを用い、0.1%TFA存在下でアセトニトリルが40分間で18%から36%の直線濃度勾配によって溶出させた。毎分32m1の流速で0.8分毎に分取し、各画分の吸光スペクトル(200~400nm)を調べて344~348nmに極大吸収を持つ画分をカフェオイルCoA画分として集めた。それらをロータリーエバポレーターで濃縮した後、同じカラムで再び分離した。

[0029]

但し、アセトニトリル18%、TFA0.1%の等濃度クロマトグラフィーで 分離を行い、同様に吸光スペクトルを調べて、目的の化合物を含む画分をロータ リーエバポレーターで濃縮し、凍結乾燥した。この方法で35μmolの生成物 が得られた。また、上記の方法中カフェ酸のかわりにクマル酸を用いることによりp-クマロイル-CoAが合成でき2mg/mlになるように蒸留水に溶解して、使用するまで-80℃に保存した。

[0030]

(2)粗酵素液の抽出方法

酵素を抽出する植物組織(花弁や食用部分等)3gを液体窒素で凍結させて乳鉢上で磨砕した。10m1の抽出用緩衝液(100mMリン酸緩衝液(pH7.5)、10mMアスコルビン酸ナトリウム、14mM2-メルカプトエタノール)を加えて更に磨砕し、ガーゼ3層で濾過した。DOWEX(1-X2、100-200mesh;室町化学工業(株))3gを添加して10分間撹拌した後に吸引ろ過によって樹脂を除去し、遠心分離(27000×g、20分)によって植物体残査を除いた。70%飽和硫安で塩析を行い、タンパク質を沈殿させた。沈殿を1m1の溶解用緩衝液(20mMリン酸緩衝液(pH7.5)、14mM2-メルカプトエタノール)に懸濁し、遠心分離(27000×g、5分)によって不溶物を除去した後、溶解用緩衝液で平衡化させたSephadex G-25カラム(NAP-10;ファルマシア社)を用いて脱塩した溶液を粗酵素液として用いた。

[0031]

(3)酵素活性の測定方法

100mM リン酸緩衝液(pH8.5)、デルフィニジン3,5ージグルコシド 24nmol、カフェオイルーCoA 21.5nmol、及び酵素液20μlを含む反応液50μlを30℃で10分間反応させた。13.8%(v/v)酢酸を含むアセトニトリル50μlを加えて反応を停止させ、遠心分離(18000×g、5分)によって不溶物を除いた後、高速液体クロマトグラフィー(HPLC)で分析した。分析はC18逆相カラム(YMCーPack ODSーA、6.0×150mm;ワイエムシィ社)を用い、21.6%アセトニトリル、0.1%トリフルオロ酢酸を毎分1mlの流速で流し、反応液20μlを分析した。化合物の検出には三次元クロマトグラフィーシステム(CLASSーLC10;(株)島津製作所)を使用し、生成物は、基質にはない330nm付近に

極大吸収をもつこと、及び可視部の吸収極大値が519nmから525nmへと約6nm長波長側に移動していることから、アシル基(カフェ酸)が結合し、デルフィニジン3ーグルコシル5ーカフェオイルグルコシドが生成していることを確認した。

[0032]

520nmの波長で検出し、基質(デルフィニジン3,5ージグルコシド)と 生成物(デルフィニジン3ーグルコシル5ーカフェオイルグルコシド)とのピーク面積の和に対する生成物のピーク面積の比を求め、生成物のモル数を計算して 酵素活性(kat)とした。このHPLC分析における各化合物の展開時間は次 の通りである。カフェオイルーCoA:6.3分、デルフィニジン3,5ージグルコシド:3.3分、デルフィニジン3ーグルコシル5ーカフェオイルグルコシド:5.3分。

[0033]

但し、この反応条件下においては反応液中のデルフィニジン3,5-ジグルコシドがアシル基転移酵素により、カフェ酸で修飾されることにより、反応液の色が濃青色から赤紫色に変化するため、簡便な方法として、マイクロタイタープレート中にて反応を行い、色の変化によって酵素活性を調べることができる。

なお、反応後のプレートを室温で長期間(1日~1週間)放置すると、アシル化されていないデルフィニジン3,5ージグルコシドは無色化するのに対して、酵素の働きによってアシル化されたデルフィニジン3,5ージグルコシドでは赤紫色が残ることから、デルフィニジン3,5ージグルコシドがアシル化されることによって中性からアルカリ性の水溶液中での安定化が認められた。同様にシアニジン3,5ージグルコシドを基質とした場合も反応液の色が赤紫色から濃青色に変化し、色素が安定化することから、簡易的酵素アッセイ方法での酵素活性の検出が可能である。

[0034]

一方、カフェオイルーCoAのかわりにp-クマロイルーCoAを基質とした 場合もアシル化による色の変化及びアントシアニンの安定化が認められるが、色 調の変化の度合いはカフェオイルーCoAの場合に比べ少ない。 [0035]

(4) アシル基転移酵素の検索

各種の植物(リンドウ、アイリス、デルフィウム、ストック、トルコキキョウ、ナデシコ、スイーピー、ラークスパー、パンジー(以上、花弁)、赤キャベツ、赤タマネギ、金時ニジン、西洋ニンジン、ムラサキイモ(以上、食用部分)及びナス(果実上皮部分))から上記の方法によって粗酵素液を抽出し、酵素活性を測定したところ、トルコキキョ、ナデシコ及び、リンドウに各々0.63、0.0012及び21.8nkat/mg蛋白質のアシル基転移活性が認められた。抽出タンパク質当たりのアシル基転移酵素活性が最も高いリンドウを酵素精製の材料として用いることにした。

なお、タンパク質濃度の定量にはBio-Rad Protein Assa y (Bio-Rad社)を用いた。

[0036]

実施例2 リンドウ由来のアシル基転移酵素の精製

(1)酵素の精製

エゾリンドウ(Gentiana triflora var. japonica on triflora tri

[0037]

粉砕液をガーゼ4層で搾ったのち、さらに遠心分離(11000×g、30分) して細胞残査を除去した。40%飽和硫安で塩析を行い、不溶物を除去した後に 70%飽和硫安で再び塩析を行った。沈殿を250mlの溶解用緩衝液(20m Mトリス塩酸(pH7.0)、10mM p-APMSF、1mM DTT)に 懸濁し、遠心分離によって不溶物を除去した後、同緩衝液で平衡化させたSephadex G-25(95×110mm;ファルマシア社)のカラムを用いて脱塩した。蛋白質を含む画分を集め(860ml)、以下のクロマトグラフィーに供した。

なお、Q-Sepharose Fast Flow、HiTrap Blue 及びPhenyl Superoseの各クロマトグラフィーは室温でFPLCシステム(ファルマシア社)を用いて行った。

[0038]

まず、溶解用緩衝液で平衡化させたQ-Sepharose Fast Flow (26×100mm; ファルマシア社)にアプライし、同じ緩衝液で十分に洗浄した後、塩化ナトリウム濃度を60分間で0Mから0.4Mに変化させる直線勾配により溶出させた(8ml/min)。酵素活性のある画分を集めた(130ml)後、アフィニティクロマトグラフィーを行った。溶解用緩衝液で平衡化させたHiTrap Blue(5ml、1、6×25mm;ファルマシア社)を3本直列に繋いだカラムにアプライし、同緩衝液で十分に洗浄した後、1M塩化ナトリウムを含む同緩衝液で溶出させた。活性画分を70%飽和の硫安で塩析し、蛋白質の沈殿を得た。

[0039]

この沈殿物を1 m 1 の溶解用緩衝液に懸濁して遠心分離によって不溶物を除いた後、溶解用緩衝液で平衡化させた $Sephacry1 S-200(25 \times 1150 mm; ファルマシア社)にアプライした。毎分0.2 m 1 の流速で、約3 m 1 ずつ分取し、再び活性画分を集めて(<math>27 m 1$)、1 Mになるように硫安を加えた。十分に撹拌した後、遠心分離($39000 \times g$ 、10分)により不溶物を除去し、1 M硫安を含む溶解用緩衝液で平衡化させた2 m 1 M Superose 2 m 1 M Superose 2

[0040]

毎分0.5mlの流速で、十分に洗浄した後、硫安濃度を60分間で1Mから0 Mに直線的に下げることにより蛋白質を流出させた。0.5mlずつ分取した各 画分の酵素活性を測定し、SDS-ポリアクリルアミドゲル電気泳動(10%ア クリルアミドゲル;第一化学(株))で分析した結果、ほぼ単一の蛋白質として分子量約50,000のバンドが認められ、且つこの蛋白量と活性との相関が認められることから、この蛋白質が目的のアシル基転移酵素であると断定した。 更に単一標品を得るために活性を持つ画分(12ml)を逆相HPLCにより精製した。

[0041]

カラムはDEVELOSIL 300C4-HG-5(4.6×250mm; 野村化学(株))を用い、毎分1mlの流速で、トリフルオロ酢酸0.1%存在下、30分でアセトニトリル濃度を40.5%から56.7%の直線濃度勾配で変化させることにより溶出させた。280nmの吸収をモニターしながら1mlずつ分画し、さらに各画分をSDS-ポリアクリルアミドゲル電気泳動で分析して分子量約50,000の蛋白質を含む画分を集めた。このHPLC操作を30回繰り返し、スピードバック(サバント社)で濃縮することにより約0.2mgの単一蛋白質標品を得ることができた。

[0042]

(2)精製蛋白質の分析

500pmolの精製標品をアミノ酸シークエンサー(PSQ-1; (株) 島津 製作所)に供したところ、エドマン分解の第一段目で200pmolのグルタミン酸、更に第二段でも90pmolのグルタミン酸が検出されたが、三段目以降 は判読不能であったため、本酵素のN末端は何らかの形でブロックされていると 考えられた。

[0043]

しかしながら、N末端がグルタミン酸である場合にはピログルタミル基が生じ、エドマン分解によるシークエンスでは上述のような結果を示すことが知られていることから本酵素のN末端はグルタミン酸である可能性が高い。

[0044]

残りの沈殿を80μ1の45mMトリス塩酸(pH8.5)、3.6M尿素、0.09%SDSを含む溶液に溶解し、リシルエンドペプチダーゼ(Lysyl Endopeptidase: <u>Achromobactor</u> <u>lyticus</u>由

来;和光純薬工業(株)) 16pmolを加えて、37℃で6時間反応させた。 反応液をそのままDEVELOSIL 300C4-HG-5カラムで分離した

[0045]

分離条件は、0.1%トリフルオロ酢酸のもと、70分でアセトニトリル濃度が0%から80%の直線濃度勾配、毎分0.7mlの流速で、210nmの吸収をモニターしながら吸収のピーク画分のみを分取した。得られた13本のピーク画分のうち、アセトニトリル濃度が32%から40%の時点で溶出されたピーク画分の3本を、スピードバックによる濃縮後、さらにODSカラム(DEVELOSIL 3000DS-HG-5;野村化学(株))を用い、先と同じ条件で分離及び精製を行った。

[0046]

各ピーク画分をスピードバックで濃縮・乾固させ、40%アセトニトリル30 μ1に溶解させ、アミノ酸シークエンサーに供した。その結果6本のペプチドの アミノ酸配列を判読することができた。以下に、各々のペプチドのアミノ酸配列 を示す(アミノ末端からカルボキシル末端の方向に示す)。

[0047]

アミノ酸配列(AT73);

【化1】

Arg-Phe-Leu-Gly-Ile-Thr-Gly-Ser-Pro-Lys

[0048]

アミノ酸配列(AT72);

【化2】

Ile-His-Met-Asp-Ala-Phe-Ala-Lys

[0049]

アミノ酸配列 (AT741-1);

【化3】

Gly-Val-Glu-Ile-Gly-Val-Ser-Leu-Pro-Lys

[0050]

アミノ酸配列 (AT741-2);

【化4】

Ala-Ser-Leu-Ser-Leu-Thr-Leu-Lys

[0051]

アミノ酸配列(AT9);

【化5】

His-Tyr-Val-Pro-Leu-Ser-Gly-Asn-Leu-Leu-Met-Pro-Ile-Lys

[0052]

アミノ酸配列(AT83);

【化6】

Val-Arg-Ala-Thr-Tyr-Val-Leu-Ser-Leu-Ala-Glu-Ile-Gln-Lys

[0053]

<u>実施例3</u> リ<u>ンドウ由来のアシル基転移酵素のcDNAクローニング(1)</u>

(1)cDNAライブラリーの作製

市販されているリンドウ(Gentiana trifiora var. janonica)から花弁を集め、液体窒素中で乳鉢で磨砕した。この磨砕物から、グアニジンチオシアネート/塩化セシウムを用いる方法によりRNAを得、オリゴテックス(日本ロッシュ)を用い、製造者が推奨する方法にて、polyA+RNAを得た。グアニジンチオシアネート/塩化セシウムを用いる方法は、R. McGookin, Robert J. Slaterらの、Methods inMolecular Biology vol2, (Humana PressInc. 1984)に詳細に示されている方法に従った。

[0054]

得られたpoly A+RNAを鋳型とし、ZAP-cDNA合成キット(ストラタジーン杜製)を用いて2本鎖cDNAを合成し、フアージベクタールZAPIIへのクローニングを行った。更に、同社のGigapackII Gold Packaging Extractキットを用いて、当該キットに記載された方法でcDNAライブラリーを作製した。

[0055]

(2) 合成DNAプライマーの設計

実施例2で得られた部分アミノ酸配列のうち、

[0056]

【化7】

Ile-His-Met-Asp-Ala-Phe-Ala-Lys

で示される配列は、リジルエンドペプチダーゼの特異性を考えると、

[0057]

【化8】

Lys-Ile-His-Met-Asp-Ala-Phe-Ala-Lys

であると考えられる。この配列の中の

[0058]

アミノ酸配列;

【化9】

Lys-Ile-His-Met-Asp-Ala-Phe-Ala

で示される部分を用いて、以下のオリゴヌクレオチドを合成した。

[0059]

ヌクレオチドの配列(オリゴ1);

【化10】

5'-AARATMCAHATGGAYGCITTYGC-3'

[0060]

但し、特に記載のないかぎり、核酸の配列はIUPAC-IBU準拠の核酸コード表に従って一文字で表記する。即ち、A:アデニン、C:シトシン、G:グアニン、T:チミン、Y:C又はT、R:A又はG、M:A又はC、H:A又はC又はT、及びIはイノシンを示す。

また、先に述べた c DNAライブラリー作製時に使用したプライマーをもとに以下の他のオリゴヌクレオチドも合成した。

[0061]

ヌクレオチドの配列(オリゴ2);

【化11】

5'-CTCGAGTTTTTTTTTTTTTTT-3'

[0062]

(3) アシル基転移酵素遺伝子断片のクローニング

リンドウの花弁のRNAに由来する2本鎖 c DNA約0. 1μgを鋳型にオリゴ1とオリゴ2をプライマーとして、PCR反応を行った。反応はポリメラーゼチェイン反応キットGene Amp (宝酒造(株))を用いて、95℃1分、45℃1分、72℃2分を1サイクルとし、35サイクル行い、得られた反応物を1%アガロース電気泳動したところ、約400bpの特異的なDNA断片が観察された。このDNA断片を回収し、その10ngをDIGーヌクレオチド混合液 (ベーリンガー社)と合成ヌクレオチドIとIIを用いて、前述のPCR反応を25サイクル行い、DIGで標識したDNA断片を得た。

[0063]

(4) アシル基転移酵素の c D N A のクローニング

上記のようにして得られた λ ファージライブラリーを大腸菌 X L 1 - B 1 u e 株 (ストラタジーン社) に感染させ、1 プレート当りプラーク 5 万個を含む 5 枚 のプレート (直径 13.5 cm)をスクリーニングした。

[0064]

ファージをフィルター(Hybond N+、アマーシャム社)に吸着させ、製造者の推奨する方法で処理した後、このフィルターをハイブリダイゼーションバッファー(5×SSC、50%ホルムアミド、50mM リン酸ナトリウムバッファー(pH7.0)、7%SDS、2%Blocking reagent(ベーリンガー社)、0.1%ラウロイルサルコシン、80mg/mlサケ精子DNA)中で42℃で1時間保持した。DIG標識した前述のDNA断片をハイブリダイゼーション液中に加え、さらに16時間のインキュベーションを行った。

[0065]

洗浄液(0.2×SSC、0.1%SDS)でフィルターを洗浄し、アルカリホスファターゼで標識されたDIG特異的な抗体による酵素免疫測定法(ベーリンガー・マンハイム株式会社)により5ーブロモ4ークロロ3ーインドリルリン

酸とニトロブルーテトラゾリウム塩の発色反応によって検出した。検出方法は製造者による使用説明書に従った。

[0066]

この結果、数十個の陽性クローンが得られ、うち20クローンをストラタジーン社の推奨する方法で、cDNAをプラスミドpBluescript SK上に回収した。アガロースゲル電気泳動でcDNAの挿入を調べたところ、全てのクローンにおいて各種サイズのcDNAの挿入が認められ、そのうち最長のものは1.7kbであった。それらのうちから適当に9クローン選び制限酵素による解析を行ったところ、サイズは異なるが全てのクローンで同様の制限酵素パターンを示した。

[0067]

(5) 塩基配列の決定

得られたクローンからプラスミドを抽出し、ABI373A・DNA シークエンサー (パーキンエルマー社)を用い、同社の推奨する蛍光試薬によるダイデオキシ シークエンス法で、前述の9クローンのうち全長を含むと考えられる6つのクローン (pGAT2、pGAT3、pGAT4、pGAT7、pGAT8及びpGAT11)についてcDNAの5'側の塩基配列を決定した。

[0068]

その結果、これらのクローンは互いに同じ塩基配列を持っており、cDNAの長さが異なるものと考えられた。これらのクローンのうちpGAT4の全塩基配列を決定した。塩基配列の決定は、Kilo-Sequence用 Deletion Kit (宝酒造(株))を用いて、一連の欠失クローンを得た後、各々のクローン用いて上述の方法により行った。

[0069]

(6)塩基配列とアミノ酸配列の比較

pGAT4に挿入されたcDNAは1703塩基でありその中に1410塩基(終止コドンを含む)からなるオープンリーディングフレーム(ORF)が見い出 された。この配列を配列表・配列番号1に示す。実施例2で明らかになったアシ ル基転移酵素の部分アミノ酸配列の全てがORF中のアミノ配列として存在する ことから、クローニングされた c D N A は、リンドウ由来のアシル基転移酵素遺伝子であると結論した。開始コドンについては、アミノ末端の解析からグルタミン酸がアミノ末端の残基であると推測されたので、 c D N A の塩基配列の上で、5'側から最初のA T G が開始コドンであると推察した。

[0070]

一方、pGAT8に係るcDNAは、5'側がpGAT4よりも7塩基短いため、完全長のcDNAではないと考えられた。

[0071]

実施例4 大腸菌における遺伝子の発現

(1)発現プラスミドの構築

大腸菌でのアシル基転移酵素遺伝子の発現には、大腸菌の発現ベクターである P Trc99A(ファルマシア社)を用いた。この p Trc99Aはイソプロピルーβ-D-チオガラクトピラノシド(IPTG)で誘導可能な大腸菌の trcプロモーターを含み、その下流に目的遺伝子を挿入することにより、大腸菌での遺伝子発現が可能になる。

[0072]

また、制限酵素NcoI部位が開始コドンであるATG配列を利用して導入されており、NcoI部位で組換えることにより、目的遺伝子の開始コドンからの直接発現が可能である。

[0073]

pGAT4を当該ベクター内に存在する制限酵素部位EcoRIとKpnIで消化して得られる約1.8kb(7)DNA断片(配列表・配列番号1記載の塩基配列を全て含む)を前述のpTrc99A(7)EcoRI、KpnI部位に組換えることにより、pGAT101を構築した。

[0074]

アシル基転移酵素の開始コドン近傍にNcoI部位の導入を行うために、開始 コドン近傍、及びアシル基転移酵素遺伝子内部(開始コドンから300塩基目付 近)に対応する以下の2種類のオリゴヌクレオチドを合成した。

[0075]

オリゴヌクレオチド (GAT-NcoI);

【化12】

5'-TTCACCATGGAGCAAATCCAAATGGT-3'

[0076]

オリゴヌクレオチド (GAT-Scal);

【化13】

5' -CG AGTCGCCCTCATCAC-3'

[0077]

10ngのpGAT4を鋳型とし、上記のオリゴヌクレオチドをプライマーとしてPCR反応を行った。反応はポリメラーゼチェイン反応キットGene Amp (宝酒造(株))を用いて、95℃1分、56℃1分、72℃2分を1サイクルとし、15サイクル行い、得られた反応物を1%アガロース電気泳動したところ、約300bpの特異的なDNA断片が観察された。このDNA断片を回収し、制限酵素NcoIとAatIで切断後、pGAT101をNcoIとAatIで切断して得られる約6kbの断片と連結することにより、pGAT102を構築した。PCR法により増幅した部分の塩基配列はpGAT102構築後にpGAT4と同じであることを確認した。

[0078]

(2) アシル基転移酵素遺伝子の大腸菌での発現

p G A T 1 O 2 で大腸菌 M M 2 9 4 (sup E 4 4 h s d R e n d A l p r o thi) (Me s e l s o n a n d Y u a n, N a t u r e, 2 1 7, 1 1 1 0 -, 1 9 6 8) を形質転換した。なお、ここで形質転換される宿主は、形質転換用の宿主として利用可能な大腸菌であれば特に特定されるものではなく、遺伝子組換えに一般に用いられ、当業者が容易に入手できるその他の株 (例えば、J M 1 O 9 や D H 5 等)を利用することができる。また、大腸菌の形質転換方法は H a n a h a n の方法。に従った (J. Mo 1. B i o 1. , 1 6 6, 5 5 7 -, 1 9 8 3)。形質転換された大腸菌をアンピシリン(5 0 μ g / m 1)を含む 2 m 1 (7) L B 培地 (トリプトン 1 0 g、酵母エキス 5 g、塩化ナトリウム 1 0 gを 1 リッターの蒸留水に溶かし、水酸化ナトリウム

でpHを7.2に調整する)に植菌し、37℃で一晩培養した。

[0079]

この培養液1m1を10m1 (7) M9培地 (リン酸一水素ナトリウム 0.6%、リン酸二水素カリウム 0.3%、塩化ナトリウム 0.5%、塩化アンモニウム 0.1%、グルコース 0.5%、硫酸マグネシウム 1mM、ビタミンB14μg/m1、pH7.2)にカザミノ酸0.5%とアンピシリン50μg/m1を加えた培地に接種し、37℃で3時間培養後、0.5M(7) IPTGを40μ1添加(終濃度2mM)し、更に5時間培養を続けた。集菌後、30mM塩化ナトリウムを含む30mMトリス塩酸バッファー (pH7.5)で洗浄し、洗浄菌体を同じバッファー1m1に懸濁した。1mgリゾチーム、0.25M EDTAを25m1加えて30分間0℃に放置した後、凍結・融解を3回繰り返して菌体を破壊した。

[0080]

これを15000rpm、30分間遠心をして得た上清を粗酵素液とし、実施例1 (3)で示した酵素活性測定法により酵素活性を測定した。マイクロタイタープレート法により、pGAT102を導入した大腸菌ではアシル基転移反応が確認されたので、HPLCによる分析を行った。

[0081]

その結果、pGAT102を導入した大腸菌では24nmolのデルフィニジン3,5-ジグルコシドと21.5nmolのカフェオイルーCoAから18.3nmolのデルフイニジン3-グルコシル5-カフェオイルグルコシドの生成が認められた。

この結果と、リンドウのアントシアニンにおいては5位と3'位のグルコースにアシル基が結合しているという既知の事実と併せて考えると、pGAT4がコードするアシル基転移酵素はアントシアニジン3,5ージグルコシドの5位のグルコースにアシル基を転移する反応を触媒することが判った。

また、大腸菌で生産されたアシル基転移酵素によりアシル化されたデルフィニジン3,5-ジグルコシドも、リンドウから精製して得られたアシル基転移酵素によりアシル化されたものと同様に室温で長期間放置しても安定な発色を示した

[0082]

実施例5 酵母における遺伝子の発現

(1)酵母の発現ベクター

酵母の発現ベクターp Y G A 2 2 6 9 (A s h i k a r i e t a l . 、 A p p l . Microbiol . Biotechnol . 3 0 , 5 1 5 - 5 2 0 , 1 9 8 9 、特開昭 6 2 - 1 5 8 4 8 1 参照)を E c o R I と B g l I I で消化して得られる約 8 k b (7) D N A 断片と、M l 3 m p l 8 (例えば、宝酒造(株))を E c o R I と B g l I I で消化して得られる約 0 . 6 k b の D N A 断片を連結して得られるプラスミドを p Y G A 2 2 m を S a l I で消化したのちに得られる約 8 k b (7) D N A 断片を自己連結(セルフライゲーション)してプラスミド p Y E 2 2 m を構築した。

[0083]

(2) アシル基転移酵素遺伝子の酵母での発現

pGAT4又はpGAT8を当該各ベクター内に存在する制限酵素部位EcoRIとKpnIで消化して得られる約1. 8kb(7)DNA断片とpYE22mを同じくEcoRIとKpnIで消化して得られる約8kb(7)DNA断片を連結して酵母発現プラスミドpYGAT4とpYGAT8を各々構築した。pYGAT4は第1番目のメチオニンからの翻訳を行うが、pYGAT8では分離したcDNAの5'側の一部が欠けているため、アシル基転移酵素の翻訳開始メチオニン(配列表・配列番号1におけるアミノ酸配列番号;-1)ではなく、次のメチオニン(配列表・配列番号1におけるアミノ酸配列番号;5)からの翻訳が行われる。

[0084]

これらの酵母発現プラスミドでは、アシル基転移酵素をコードしている c D N A は酵母の構成的なプロモーターのひとつであるグリセロアルデヒドー 3 リン酸脱水素酵素のプロモーターの下流に連結されており、同プロモーターにより転写が制御されている。

[0085]

特平 8-046534

伊藤らの方法(Ito et al. J. Bacteriol., 153, 163-168, 1983) を用いpYGAT4及びpYGAT8で、酵母Saccharomyces cerevisiae G1315 (Ashikarietal.、Appl. Microbiol. Biotechnol. 30, 515-520, 1989) を形質転換した。形質転換された酵母はトリプトファンの合成能の回復により選択した。

なお、ここで形質転換に用いる酵母の宿主は特に限定されるものではなく、TRPI遺伝子が不完全なためにトリプトファンの要求性を示す株であれば何れのものでも用いることができる(例えば、イースト・ジェネティク・ストック・センターより購入可能(Yeast Genetic Stock Center;Berkeley、CA、USA;カタログ第7版(1991年)第36頁)

[0086]

得られた形質転換株を10m1(7)1%カザミノ酸(Difco社)を含むバークホルダー培地(Burkholder, Amer. J. Bot. 30, 206-210)にて、30で40時間振盪培養した。併せて、対照実験のために、トリプトファンの合成能を自然に回復した酵母も同様に培養した。

[0087]

これらを集菌後、同量の菌体破砕用バッファー(30mM トリス塩酸pH7.5、30mM 塩化ナトリウム)で洗浄し、さらに1mlの同じバッファーにサスペンドし、1.5mlのエッペンドルフチューブに移した。遠心分離後、上清を除き0.4mlの同じバッファーで沈殿菌体を再度サスペンドし、400mgのグラスビーズ(Glass Beads 425-600microns Acid-Wash、シグマ社)を加えて激しく振盪することにより、酵母菌体を破砕した。

[0088]

遠心分離後の上清を粗酵素液とし実施例1(3)で示した酵素活性測定法により酵素活性を測定した。マイクロタイタープレート法により、pYGAT4及びpYGAT8を導入した酵母は何れもアシル基転移反応が確認されたので、HP

LCによる分析を行った。なお、対照に用いた酵母ではアシル基転移活性は認められなかった。

[0089]

その結果、pYGAT4及びpYGAT8を導入した酵母では24nmolの デルフィニジン3,5ージグルコシドと21.5nmolのカフェオイルーCo Aから各々16.6nmolと20.9nmolのデルフィニジン3ーグルコシ ル5ーカフェオイルグルコシドの生成が認められた。pYGAT4とpYGAT 8から生産される蛋白質はそのアミノ末端が異なるが、ともにアシル基転移酵素 活性を保持していた。

また酵母で生産されたアシル基転移酵素によりアシル化されたデルフィニジン 3,5-ジグルコシドも、リンドウから精製して得られたアシル基転移酵素によ りアシル化されたものと同様に室温で長期間放置しても安定な発色を示した。

[0090]

実施例6 リンドウ由来のアシル基転移酵素のcDNAクローニング (2) 実施例3 (6)に記載のpGAT4、即ち配列表・配列番号1記載のDNAを有するpGAT4を、制限酵素EcoRIとNdeIで消化して得られるDNA断片のうち、アシル基転移酵素の翻訳領域を含むDNA断片2つをまとめて回収し、前述の方法でDIG標識した。これをプローブとして実施例3 (4)に記載したリンドウの花弁のcDNAライブラリーのファージを吸着させたフイルター(Hybond N+、アマーシャム社)を、製造者(アマーシャム社)が推奨する方法でフィルターに結合した色素及びDIG標識を除去して再生した後、低濃度ホルムアミドハイブリダイゼーションバッファー(5×SSC、30%ホルムアミド、50mM Tris-HC1、pH7.5、1%SDS)中で42度で16時間ハイブリダイズした。

[0091]

洗浄液(5×SSC、0.1%SDS)中で50度で洗浄し、実施例3(4)に記載したように発色させた。数十のクローンが発色したが、発色したクローンのうちで、実施例3(4)では発色しなかったクローンを12個得た。これらのクローンのcDNAの塩基配列を先に述べたような方法で、5,側から決定した

ところ、11クローンはpGAT4の塩基配列と一致したが、1クローンは一致しなかった。これをpGAT106とした。

[0092]

pGAT106の全塩基配列を先に述べたようにして決定した。pGAT106に挿入されたcDNAは1622塩基でありその中に1440塩基(終止コドンを含む)からなるORFが見い出された。これを配列表・配列番号2に示す。配列番号2が含むORFについて、pGAT4がコードするアミノ酸配列と全領域にわたって、相同性を調べた。そのホモロジーは、38%であった。

[0093]

pGAT106のコードするアミノ酸配列は、アシル基転移酵素であるpGAT4のコードしている酵素と相同であるため、同様な酵素活性、つまりアントシアニンにアシル基転移を触媒する活性を持っていると推測される。リンドウのアントシアニンは、5位と3'位のグルコースにアシル基が結合しているので、pGAT106がアントシアニンの3'位のグルコースにアシル基を転移する酵素反応を触媒することを示唆する。また、この結果はアシル基転移酵素は、アシル基を転移するアントシアニンの糖の位置は異なっていても、アミノ酸配列及びそれをコードしている塩基配列は相同であることを示している。

先に述べたようにアシル基を有するアントシアニンは多数存在し、これら化合物のアシル基の数や位置は多様性に富み、アシル基の転移反応を触媒する酵素も多数あることが推測されるが、それらの酵素のアミノ酸配列は、ここで得られた pGAT4及びpGAT106のアミノ酸配列と相同性がみられることは容易に類推でき、これに基づき、他のアシル基転移酵素遺伝子を得ることができる。

[0094]

<u>実施例7</u> ペチュニアのアントシアニン

ペチュニア(Petunia hvbrida)品種サフィニアパープル(サントリー (株))の花色が通常の赤紫から紫に変異した変異株(VM)のアントシアニンをその花弁を液体窒素中で粉砕し、50%アセトニトリル、0.1%T FA水溶液で抽出した。濾過後、濾液をODS、ODPの逆相カラムクロマトグラフィーで分離、精製した。そのうちの一つの化合物の構造をFABMS、 1 H

NMR、 $^{1\ 3}$ CNMRを用いて、詳細に解析したところ、新規なアントシアニンを見いだした。

その構造を以下に示す。

[0095]

【化14】

[0096]

即ち、この構造は $3-0-(6-0-(4-0-(4-0-(6-0-カフェオイル-\beta-D-グルコピラノシル)-クマロイル)-\alpha-L-ラムノシル)-\beta$ $-D-グルコピラノシル)-5-0-\beta-D-グルコピラノシルーマルビジンであり、アシル基が<math>2$ つ結合したアントシアニンであった。

[0097]

また、3-0-(6-0-(4-0-(4-0-(6-0-クマロイル-β-D-0)-0)-0)ークマロイル) $-\alpha-L-ラムノシル$) $-\beta-D-0$ ルコピラノシル) $-5-0-\beta-D-0$ ルコピラノシルーマルビジン、 $3-0-(6-0-(4-0-(4-0-(6-0-\lambda)-1)-1)-0)$ ルカフェオイル) $-\alpha-L-ラムノシ$ ル) $-\beta-D-0$ ルコピラノシル) $-\beta-D-0$ ルコピラノシル) $-\beta-D-0$ ルコピラノシル) $-\beta-D-0$ ルコピラノシルーマルビジン、 $-\alpha-(6-0-(4-0-(4-0-(6-0-0-0)-1)-1)-0)$ ル) $-\alpha-L-ラムノシ$ ル) $-\beta-D-0$ ルコピラノシル) $-\beta-D-0$ ルコピラノシル) $-\beta-D-0$ ルコピラノシル) $-\beta-D-0$ ルコピラノシル) $-\beta-D-0$ ルコピラノシル) $-\beta-D-0$ ルコピラノシル) $-\beta-D-0$ 0ルコピラノシル) $-\beta-D-0$ 0ルコピラノシルーマルビジンも検出された。このアントシアニンは、VMの花

弁のみならず、フルコンブルー(サカタのタネ(株))、Old Glory Blue (Ball Seeds)などの濃い紫色の花弁にも存在していることがわかった。即ち、アシル基を2つ持つアントシアニンはペチュニアの濃い紫色に寄与していると思われる。

[0098]

従って、ペチュニア由来のアントシアニンに関するアシル基転移酵素には、アントシアニンの3位のルチノシドにクマル酸又はカフェ酸を転移する反応を触媒する酵素と、モノアシルマルビジンにグルコースを介してクマル酸又はカフェ酸を転移する反応を触媒する酵素の2種類があることを示唆する。

[0099]

実施例8 ペチュニア由来のアシル基転移酵素の c D N A クローニング

実施例3 (6) に記載のpGAT4、即ち配列表・配列番号1記載のDNAを有するpGAT4のcDNA部分を、前述の方法でDIG標識し、ペチュニア(Petunia hvbrida)品種オールドグローリーブルーの花弁のcDNAライブラリー(Nature, 366,276-279,1993)をプラークハイブリダイゼーションの手法により、スクリーニングした。ハイブリダイゼーションと洗浄は、実施例6と同様の条件で行った。

[0100]

約20万クローンをスクリーニングし、弱くハイブリダイズするクローンを1つ得た。このクローンをpPAT5とした。塩基配列を決定したところ、pPAT5には複数のDNAが挿入されていた。すなわち、プラスミドのリバースプライマー側に、pGAT4およびpGAT106のコードする蛋白質のC末端の配列に似た配列が存在した。そこで、この配列をもとに、

[0101]

ヌクレオチド配列;

【化15】

5' -AACAGCTATGACCATG-3'

を合成し、このオリゴヌクレオチドをRPプライマーとした。

[0102]

pPAT5のcDNAの完全長を取得するために、RPプライマー、オリゴ2プライマー各100ng、XhoIで消化した $pPAT5\cdot10$ ngを最終体積 $50\mu1$ で、PCR反応を行った。反応は、<math>95C1分、55C1分、72C1分を1サイクルとし、20サイクル行った。得られた約600bp(7)DNA断片をアガロース電気泳動後、ジーンクリーンで精製した。この断片をSmaIで酵素消化した後、約400bpのDNA断片を同様に精製した。このDNA断片を前述のDIGで標識した。

[0103]

この標識したDNA断片を用いて、前述のペチュニアの花弁cDNAライブラリーをプラークハイブリダイゼーションの手法を用いて、スクリーニングした。ハイブリダイゼーション後の洗浄は、0.2 X S S C、65℃、1時間とした。得られたクローンから回収したプラスミドの塩基配列を決定したところ、p P A T 4 8 が、p P A T 5 と同じ配列を含むことがわかった。これを配列表・配列番号3に示す。この配列は、p G A T 4 と p G A T 1 0 6 に対して、アミノ酸配列レベルで、それぞれ20%、16%のホモロジーがあった。

[0104]

実施例9 シソ由来の粗酵素液の抽出

シソ(Perilla ocimoides)・品種赤チリメンの植物体から、赤い若い葉を採集し、実施例1(2)に記載の方法に従って、粗酵素液の抽出を行った。最終濃度50mMリン酸カリウム(pH8.5)、0.48mMデルフィニジン3,5ージグルコシド、0.43mMカフェオイルーCoAと20 μ 1の酵素液を含む50 μ 1の混合物を30 Γ で10分間反応させた。反応液に13.8%の酢酸を含む50 μ 1のアセトニトリルを加えて反応を停止した。1500回転で5分間遠心した後、上清のうちの10 μ 1を以下の条件でHPLCにて解析した。

[0105]

カラムはYMC-Pack ODS-A(6.0X15cm)を用い、0.1%トリフルオロ酢酸、21.6%アセトニトリルの溶媒で、流速1m1/分の条件でサンプルを分離した。検出は、520nmで行った。この条件で未反応のデ

ルフイニジン3, 5-ジグルコシドは、3分で、デルフィニジン3, 5-ジグルコシドの3位にカフェ酸が転移したものは、4.7分に溶出され、この化合物の吸収極大値は、531nmであった。

[0106]

基質として、デルフィニジン3ーグルコシドを用いた場合も、カフェ酸による修飾が見られた。また、アシル基の供与体として、クマロイルーCoAを用いても、クマール基の転移が見られた。シソは天然にはアントシアニンとしてデルフィニジングルコシドは含まないが、シソのアシル基転移酵素はデルフィニジン3ーグルコシドをデルフィニジン3,5ージグルコシドをアシル基受容体として、クマロイルーCoAをアシル基供与体として利用できることがわかった。

[0107]

実施例10 シソ由来のアシル基転移酵素の精製

シソアシル基転移酵素の精製は、実施例 2 (1)に準じて行った。 3 k g のシソの葉を、液体窒素で凍結させ、凍結したままホモジナイザーで、粉砕した。粉末状になったものに 101 の抽出緩衝液(100 mMリン酸ナトリウム、 p H 6 . 8、10 mMアスコルビン酸ナトリウム、 5 mMジチオスレオトール、 10μ M p -A PM S F、 5 %(w /v)ポリクラール S B -100)中で、再び、ホモジナイザーで磨砕した。これを 4 層に重ねたガーゼで濾過後、遠心分離(8 000 回転、 4 度、 30 分)を行った。上静に 40 %飽和になるように硫酸アンモニウムを加えて、溶解後、同じ条件で遠心分離を行う。上清に 70 %飽和になるように硫酸アンモニウムを加え、溶解後、同じ条件で遠心分離を行う。沈殿を最小量の脱塩緩衝液(ビストリス塩酸、 p H 6 . 3、 1 mMジチオスレイトール、 10μ M p -A PM S F、 10 % グリセロール)に溶解した後、同じ緩衝液で平衡化したセファデックスG -25 メディウム(ファルマシア社、 9.5 X 45 c m)で脱塩した。

[0108]

脱塩したサンプルをQ-セファロースファーストフロー26/10を用いたイオン交換クロマトグラフィーを行った。脱塩緩衝液をもとにした塩化ナトリウムの0から0.5Mの直線濃度勾配を8m1/分の流速で1時間かけて行った。活

性画分は、食塩濃度 0. 15から 0. 3 M付近で溶出された。この活性画分を、脱塩緩衝液で平衡化したHiTrapBlue(5 m 1)を 4 本直列に接続したカラムに吸着させた。同じ緩衝液でカラムを良く洗浄した後、脱塩緩衝液をもとにした 0 から 1 Mの塩化ナトリウムの直線濃度勾配(2 時間、流速 5 m 1 / 分)で溶出した。活性画分は塩化ナトリウム濃度 0. 8 から 0. 9 Mで溶出した。この画分を次にヒドロキシアパタイトカラム(セラミックタイプ 1 1 4 0 m m;バイオラド社)でクロマトグラフィーを行った。緩衝液 A (5 0 m M リン酸ナトリウム、pH6. 8、1 m M ジチオスレイトール、10μ M p-APMSF)10%グリセロール)で、サンプルをかけたカラムをよく洗浄し、緩衝液 A から緩衝液 B (4 0 0 m M リン酸ナトリウム、pH6. 8、1 m M ジチオスレイトール、10μ M p-APMSF、10%グリセロール)への直線濃度勾配(1時間、流速 2. 5 m 1 / 分)で酵素を溶出したところ、約 0. 2 M リン酸ナトリウムで溶出した。

この活性画分を用いて酵素の生化学的性質を調べた。

[0109]

粗酵素標品を用いた場合と同様に、アシル基の受容体としては、シアニジン3ーグルコシド、シアニジン3,5ージグルコシド、デルフィニジン3ーグルコシドのいずれを用いることができた。アシル基の供与体としては、クマロイルーCoAでも、カフェオイルーCoAでも用いることができた。また、SDSポリアクリルアミド電気泳動から、分子量は約5000であった。等電点は、Mono-Pカラム(ファルマシア社)を用いて、5.3と決定した。

[0110]

実施例11 シソ由来のアシル基転移酵素の c D N A クローニング

実施例3、実施例6及び実施例8でクローニングしたpGAT4、pGAT1 06、pPAT48の構造を比較すると、

[0111]

アミノ酸配列;

【化16】

As p-Phe-Gly-Trp-Gly-Lys

が保存されていることがわかった。従って、この構造は、アシル基転移酵素において保存されていることが予想される。そこで、この配列をもとに、

[0112]

ヌクレオチド配列:

【化17】

5'-GA(TC)TT(TC)GGITGGGGIAA-3'

を合成し、このオリゴヌクレオチドをATCプライマーとした。

[0113]

シソの若い葉からRNAを実施例3に記載の方法で抽出し、同じく、ZAPーcDNA合成キット(ストラタジーン杜製)を用い、cDNAライブラリーを作製した。この際にできた2本鎖のcDNA約50ngを鋳型にして、ATCプライマーとオリゴ2プライマーを各100ng用い、最終体積50μ1にて、PCRキット(宝酒造(株)製)を用いて、PCR反応を行った。反応は、95℃1分、50℃1分、72℃1分を1サイクルとし、25サイクル行った。得られた約400bp(7)DNA断片を回収し、TAクローニングキット(Invitrogen社)を用いて、ベクターにクローニングした。得られたクローンの塩基配列を決定したところ、pSAT104としたクローンがpGAT4に対して高いホモロジーを示した。

[0114]

ただし、この際デオキシヌクレオチド溶液として、DIG標識ヌクレオチド溶液 (ベーリンガー社製) を 4 μ 1 用いた。反応終了後、 5 μ 1 の 3 M 酢酸ナトリ

ウムと100μ1のエタノールを加え、エタノール沈殿を行い、以後の実験に用いた。

[0115]

このpSAT104由来の標識DNAを用いて、シソの葉のcDNAライブラリーをプラークハイブリダイゼーションの手法でスクリーニングした。洗浄は、1XSSC、65℃で1時間行った。ハイブリダイズしたクローンの塩基配列を決定したところ、pSAT206、pSAT207、pSAT208、pSAT209、pSAT210などのクローンがpSAT104の塩基配列を含んでいることがわかった。これらのクローンがpSAT104の塩基配列を含んでいることがわかった。これらのクローンの5'側の塩基配列をpGAT4と比較したところ、どのクローンもpGAT4よりアミノ末端が短く開始コドンも見られなかった。また、pSAT206とpSAT208、pSAT209とpSAT210は、5'側の塩基配列は同一であった。pSAT207は、pSAT206より6残基、pSAT209はpSAT206より5残基短かった。

[0116]

ベクターpBluescript SK-上で、これらのcDNAは、ベクターのLacZ遺伝子と融合できる形となっている。上のクローンの内、pSAT206、pSAT208、pSAT207は、LacZのコードしている大腸菌のβガラクトシダーゼと融合蛋白として発現できる形になっているが、pSAT209とpSAT210は、フレームがずれているので融合蛋白質とはならない。pSAT206、pSAT207、pSAT209、pSAT210を大腸菌で発現させ、デルフィニジン3,5ージグルコシドとカフェオイルーCoAを用いて、3位のグルコースへのアシル基転移酵素活性を測定した。発現の誘導などの方法は、実施例4に記載の方法に従った。

[0117]

pSAT209、pSAT210を含む大腸菌は、アシル基転移酵素活性を全く示さなかったが、pSAT206を含む大腸菌は、デルフィニジン3,5-ジグルコシドの48%をアシル化する酵素活性を示し、pSAT207を含む大腸菌は同じく24%をアシル化する酵素活性を示した。このことから、得られたpSAT206、pSAT207などは、シソのアントシアニンの3位のグルコー

スにアシル基を転移する酵素活性を持つ遺伝子をクローニングできたことが証明できた。

[0118]

これらのクローンの内、pSAT208のcDNA由来の塩基配列を決定した

これを配列表・配列番号4に示す。その塩基配列から推定されるアミノ酸配列は、pGAT4、pGAT106、pPAT48に対して、37%、29%、15%のホモロジーを示した。先に述べたようにこの配列は、完全長のcDNAではないが、LacZとの融合遺伝子などとして、適当な開始コドンを与えることで、活性のある酵素を発現できる。

また、このように本発明で明らかになったアシル基転移酵素のアミノ酸配列を 比較することにより、保存されている領域が明らかになった。この領域のアミノ 酸配列をもとにすれば、アントシアニンの他の位置の糖を修飾するアシル基転移 酵素をクローニングすることができる。

[0119]

実施例12 サイネリア由来のアシル基転移酵素のcDNAクローニング サイネリア (Senecio cruentus) 品種ジュピターブルー (サカタノタネ) の花弁から実施例3に記載の方法でRNAを抽出し、さらにPolyA+RNAを精製した。ZAP-cDNA合成キット (ストラタジーン社製)を用いて、cDNAライブラリーを作製した。

[0120]

この際にできた2本鎖のcDNA約5Ongを鋳型にして、ATCプライマーとオリゴ2プライマーを各1OOng用い、最終体積 $5O\mu$ 1にて、宝のPCRキットを用いて、PCR反応を行った。反応は、95C1分、50C1分、72C1分を1サイクルとし、25サイクル行った。得られた約4OObp (7) DNA断片を回収し、TAクローニングキット(Invitrogen社)を用いて、ベクターにクローニングした。得られたクローンの塩基配列を決定したところ、DJAT4としたクローンがDCAT4に対して高いホモロジーを示した。【O121】

次にサイネリアの花弁 c DN A ライブラリーを p J A T 4 でスクリーニングした。いくつかのクローンが得られたが、それらの c DN A の 5 ' 端側の塩基配列から類推したアミノ酸配列は、 p G A T 4 のコードしている蛋白質の配列と比較してみると、サイネリアのクローンの c DN A はいずれも完全長ではなかった。そのうち、 p C A T 8 としたクローンの c DN A の前塩基配列を決定した。これを配列表・配列番号 5 に示す。その塩基配列から推定されるアミノ酸配列は、 p G A T 4、 p G A T 1 0 6、 p P A T 4 8、 p S A T 2 0 8 に対してそれぞれ28%、35%、16%、37%のホモロジーを示した。

[0122]

【発明の効果】

以上のように、本発明においてはリンドウ由来の芳香族アシル基転移酵素の精製、当該酵素のcDNAのクローニング及び当該cDNAの塩基配列の決定を行った。また、大腸菌と酵母での活性発現を行うことにより、分離したcDNAが芳香族アシル基転移酵素をコードするものであることを確認した。

従って、本発明に係る c D N A を適当な植物発現ベクターに接続し、植物に導入することにより、アシル化反応を植物の花色調節に利用することが可能となった。

また、本酵素活性を利用することにより、植物の中であるいは試験管内でアントシアンの構造を改変し、より安定なアントシアンを提供することができる。

[0123]

【配列表】

配列番号 (SEQIDNO):1

配列の長さ (SEQUENCELENGTH):1703

配列の型 (SEQUENCE TYPE) :核酸 (nucleic acid)

鎖の数 (STRANDEDNESS):二本鎖 (double)

トポロジー (TOPOLOGY):直鎖状 (Iinear)

配列の種類 (MOLECULETYPE): cDNA to mRNA

ハイポセティカル配列 (HYPOTHETICAL SEQUENCE):No

8 - 046534

アンチセンス (ANTI-SENSE):No 起源 (ORIGINAL SOURCE)

生物名(ORGANISM):リンドウ(Gentiana triflor a var. japonica) 組織の種類(TISSUE TYPE):花 弁 (petal)

直接の起源 (IMMEDIATE SOURCE)

ライブラリー名(LIBRARY): cDNA library

クローン名(CLONE):pGAT4

30

配列 (SEQUENCE DESCRIPTION)

TCATT ATG GAG CAA ATC CAA ATG GTG AAG GTT CTT GAA AAA TGC 44 Met Glu Gln Ile Gln Met Val Lys Val Leu Glu Lys Cys

> 10 **-1** 1

CAA GTT ACA CCA CCA TCT GAC ACA ACA GAT GTC GAG TTA TCG CTA 89 Gln Val Thr Pro Pro Ser Asp Thr Thr Asp Val Glu Leu Ser Leu

> 25 20 15

CCG GTA ACA TTC TTC GAT ATC CCC TGG TTG CAC TTG AAT AAG ATG 134 Pro Val Thr Phe Phe Asp Ile Pro Trp Leu His Leu Asn Lys Met 40 35

TCC	CTT	CTG	TTT	TAC	GAC	TTT	CCG	TAC	CC A	AG A	ACA	CAT	TTC	179
Ser	Leu	Leu	Phe	Туr	Asp	Ph e	Pro	Ty r	Pro	Arg	Th r	His	Phe	-
	45					50			-		55			
GAC	ACT	GTT	ATC	CCT	AAT	CTT	AAG	GCC	TCT	TTG	TCT	CTC	ACT	224
Asp	Thr	Va l	Ιle	Pro	Asn	Leu	Lys	Ala	Ser	Leu	Ser	Leu	Th r	
	60					65				-	70			
AAA	CAC	TAC	GTT	CCG	CTT	AG C	GG A	AAT	TTG	TTG	ATG	CCG	ATC	269
Lys	His	Туг	Val	Pro	Leu	Se r	Gly	Asn	Leu	Leu	Met	Pro	Ile	
	75					80					, 85			
TCG	GGC	GAA	ATG	CCG	AAG	TTT	CAG	TAC	TCC	CGT	GAT	GAG	GGC	314
Ser	Gly	Glu	Met	Pro	Lys	Phe	Gln	Туr	Ser	Arg	Asp	Glu	Gly	
	90					95					100			
TC G	AT A	ACT	TTG	AT C	GTT	GC G	GAG	TCT	GAC	CAG	GAT	TTT	GAC	359
Ser	Ile	Th r	Leu	Ile	Va l	Ala	Glu	Ser	Asp	Gln	Asp	Phe	Asp	
	105	-				110					115			
CTT	AAA	GGT	CAT	CAA	CTG	GT A	GAT	TCC	AAT	GAT	TTG	CAT	GGC	404
Leu	Lys	Gly	His	Gln	Leu	Va l	Asp	Ser	Asn	Asp	Leu	His	Gly	
	120	•				125					130)		
ттт	TAT	GTT	ATG	CCA	CGG	GTT	AT _. A	AGG	ACC	ATG	CAA	GAC	TAT	449
Phe	Туг	Val	Met	Pro	Arg	Val	Ile	Arg	Thr	Met	Gln	Asp	Туг	
	135		•			140)				145	5		
GTG	ATC	cco	стс	GT A	GCC	GTO	CAA	GTA	ACC	GTI	TTI	CC?	C AAC	494
Val	Ile	Pro	Leu	Val	Ala	Val	Glr	val	Thi	r Val	Phe	Pro	o Asn	
	150)				155	5				160)		
r GG (ATA	A GC (GTG	GCT	ст ст	ACC	G GC	A CAT	CA1	r tc <i>i</i>	A AT	r GC	A GAT	539
g Gly	7 Ile	e Ala	a Val	Ala	ı Lei	1 Th	r Ala	a His	s His	s Sei	r Ile	e Ala	a Asp	•
	165	5				170)				179	5		
	GAC Asp AAA Lys TCG Ser TCG Ser CTT Leu TTT Phe	Ser Leu 45 GAC ACT Asp Thr 60 AAA CAC Lys His 75 TCG GGC Ser Gly 90 TCG ATA Ser Ile 105 CTT AAA Leu Lys 120 TTT TAT Phe Tyr 135 GTG ATC Val Ile 150 GGC ATA	Ser Leu Leu 45 GAC ACT GTT Asp Thr Val 60 AAA CAC TAC Lys His Tyr 75 TCG GGC GAA Ser Gly Glu 90 TCG ATA ACT Ser Ile Thr 105 CTT AAA GGT Leu Lys Gly 120 TTT TAT GTT Phe Tyr Val 135 GTG ATC CCC Val Ile Pro 150 GGC ATA GCC	Ser Leu Leu Phe 45 GAC ACT GTT ATC Asp Thr Val Ile 60 AAA CAC TAC GTT Lys His Tyr Val 75 TCG GGC GAA ATG Ser Gly Glu Met 90 TCG ATA ACT TTG Ser Ile Thr Leu 105 CTT AAA GGT CAT Leu Lys Gly His 120 TTT TAT GTT ATG Phe Tyr Val Met 135 GTG ATC CCG CTC Val Ile Pro Leu 150 GGC ATA GCC GTG GGC ATA GCC GTG	Ser Leu Leu Phe Tyr 45 GAC ACT GTT ATC CCT Asp Thr Val IIe Pro 60 AAA CAC TAC GTT CCG Lys His Tyr Val Pro 75 TCG GGC GAA ATG CCG Ser Gly Glu Met Pro 90 TCG ATA ACT TTG ATC Ser IIe Thr Leu IIe 105 CTT AAA GGT CAT CAA Leu Lys Gly His Gln 120 TTT TAT GTT ATG CCA Phe Tyr Val Met Pro 135 GTG ATC CCG CTC GTA Val IIe Pro Leu Val 150 GGC ATA GCC GTG GCT GIY IIe Ala Val Ala	Ser Leu Leu Phe Tyr Asp 45 GAC ACT GTT ATC CCT AAT Asp Thr Val Ile Pro Asn 60 AAA CAC TAC GTT CCG CTT Lys His Tyr Val Pro Leu 75 TCG GGC GAA ATG CCG AAG Ser Gly Glu Met Pro Lys 90 TCG ATA ACT TTG ATC GTT Ser Ile Thr Leu Ile Val 105 CTT AAA GGT CAT CAA CTG Leu Lys Gly His Gln Leu 120 TTT TAT GTT ATG CCA CGG Phe Tyr Val Met Pro Arg 135 GTG ATC CCG CTC GTA GCC Val Ile Pro Leu Val Ala 150 GGC ATA GCC GTG GCT CTC GGC ATA GCC GTG GCT CTC GGIY Ile Ala Val Ala Leu	Ser Leu Leu Phe Tyr Asp Phe 45 50 GAC ACT GTT ATC CCT AAT CTT Asp Thr Val IIe Pro Asn Leu 60 65 AAA CAC TAC GTT CCG CTT AGC Lys His Tyr Val Pro Leu Ser 75 80 TCG GGC GAA ATG CCG AAG TTT Ser Gly Glu Met Pro Lys Phe 90 95 TCG ATA ACT TTG ATC GTT GCG Ser IIe Thr Leu IIe Val Ala 105 110 CTT AAA GGT CAT CAA CTG GTA Leu Lys Gly His Gln Leu Val 120 125 TTT TAT GTT ATG CCA CGG GTT Phe Tyr Val Met Pro Arg Val 135 140 GTG ATC CCG CTC GTA GCC GTG Val IIe Pro Leu Val Ala Val 150 155 GGC ATA GCC GTG GCT CTG ACG GIY IIe Ala Val Ala Leu Tha	Ser Leu Leu Phe Tyr Asp Phe Pro 45 GAC ACT GTT ATC CCT AAT CTT AAG Asp Thr Val Ile Pro Asn Leu Lys 60 GAAA CAC TAC GTT CCG CTT AGC GGA Lys His Tyr Val Pro Leu Ser Gly 75 RO TCG GGC GAA ATG CCG AAG TTT CAG Ser Gly Glu Met Pro Lys Phe Gln 90 95 TCG ATA ACT TTG ATC GTT GCG GAG Ser Ile Thr Leu Ile Val Ala Glu 105 110 CTT AAA GGT CAT CAA CTG GTA GAT Leu Lys Gly His Gln Leu Val Asp 120 125 TTT TAT GTT ATG CCA CGG GTT ATA Phe Tyr Val Met Pro Arg Val Ile 135 GTG ATC CCG CTC GTA GCC GTG CAA Val Ile Pro Leu Val Ala Val Glr 150 GGC ATA GCC GTG GCT CTG ACG GCA GGIY Ile Ala Val Ala Leu Thr Ala	Ser Leu Leu Phe Tyr Asp Phe Pro Tyr 45 GAC ACT GTT ATC CCT AAT CTT AAG GCC Asp Thr Val Ile Pro Asn Leu Lys Ala 60 65 AAA CAC TAC GTT CCG CTT AGC GGA AAT Lys His Tyr Val Pro Leu Ser Gly Asn 75 80 TCG GGC GAA ATG CCG AAG TTT CAG TAC Ser Gly Glu Met Pro Lys Phe Gln Tyr 90 95 TCG ATA ACT TTG ATC GTT GCG GAG TCT Ser Ile Thr Leu Ile Val Ala Glu Ser 105 110 CTT AAA GGT CAT CAA CTG GTA GAT TCC Leu Lys Gly His Gln Leu Val Asp Ser 120 125 TTT TAT GTT ATG CCA CGG GTT ATA AGG Phe Tyr Val Met Pro Arg Val Ile Arg 135 140 GTG ATC CCG CTC GTA GCC GTG CAA GTA Val Ile Pro Leu Val Ala Val Gln Val 150 155 GGC ATA GCC GTG GCT CTG ACG GCA CAT GGIy Ile Ala Val Ala Leu Thr Ala His	Ser Leu Leu Phe Tyr Asp Phe Pro Tyr Pro 45 50 GAC ACT GTT ATC CCT AAT CTT AAG GCC TCT Asp Thr Val Ile Pro Asn Leu Lys Ala Ser 60 65 AAA CAC TAC GTT CCG CTT AGC GGA AAT TTG Lys His Tyr Val Pro Leu Ser Gly Asn Leu 75 80 TCG GGC GAA ATG CCG AAG TTT CAG TAC TCC Ser Gly Glu Met Pro Lys Phe Gln Tyr Ser 90 95 TCG ATA ACT TTG ATC GTT GCG GAG TCT GAC Ser Ile Thr Leu Ile Val Ala Glu Ser Asp 105 110 CTT AAA GGT CAT CAA CTG GTA GAT TCC AAT Leu Lys Gly His Gln Leu Val Asp Ser Asn 120 125 TTT TAT GTT ATG CCA CGG GTT ATA AGG ACC Phe Tyr Val Met Pro Arg Val Ile Arg Thr 135 140 GTG ATC CCG CTC GTA GCC GTG CAA GTA ACC Val Ile Pro Leu Val Ala Val Gln Val Thr 150 155 GGC ATA GCC GTG GCT CTG ACG GCA CAT CAG GIy Ile Ala Val Ala Leu Thr Ala His His	Ser Leu Leu Phe Tyr Asp Phe Pro Tyr Pro Arg 45 50 GAC ACT GTT ATC CCT AAT CTT AAG GCC TCT TTG Asp Thr Val Ile Pro Asn Leu Lys Ala Ser Leu 60 65 AAA CAC TAC GTT CCG CTT AGC GGA AAT TTG TTG Lys His Tyr Val Pro Leu Ser Gly Asn Leu Leu 75 80 TCG GGC GAA ATG CCG AAG TTT CAG TAC TCC CGT Ser Gly Glu Met Pro Lys Phe Gln Tyr Ser Arg 90 95 TCG ATA ACT TTG ATC GTT GCG GAG TCT GAC CAG Ser Ile Thr Leu Ile Val Ala Glu Ser Asp Gln 105 110 CTT AAA GGT CAT CAA CTG GTA GAT TCC AAT GAT Leu Lys Gly His Gln Leu Val Asp Ser Asn Asp 120 125 TTT TAT GTT ATG CCA CGG GTT ATA AGG ACC ATG Phe Tyr Val Met Pro Arg Val Ile Arg Thr Met 135 140 GTG ATC CCG CTC GTA GCC GTG CAA GTA ACC GTT Val Ile Pro Leu Val Ala Val Gln Val Thr Val 150 155 GGC ATA GCC GTG GCT CTG ACG GCA CAT CAT TCA GGly Ile Ala Val Ala Leu Thr Ala His His Ser	Ser Leu Leu Phe Tyr Asp Phe Pro Tyr Pro Arg Thr 45 50 55 GAC ACT GTT ATC CCT AAT CTT AAG GCC TCT TTG TCT Asp Thr Val IIe Pro Asn Leu Lys Ala Ser Leu Ser 60 65 70 AAA CAC TAC GTT CCG CTT AGC GGA AAT TTG TTG ATG Lys His Tyr Val Pro Leu Ser Gly Asn Leu Leu Met 75 80 85 TCG GGC GAA ATG CCG AAG TTT CAG TAC TCC CGT GAT Ser Gly Glu Met Pro Lys Phe Gln Tyr Ser Arg Asp 90 95 100 TCG ATA ACT TTG ATC GTT GCG GAG TCT GAC CAG GAT Ser IIe Thr Leu IIe Val Ala Glu Ser Asp Gln Asp 105 110 115 CTT AAA GGT CAT CAA CTG GTA GAT TCC AAT GAT TTG Leu Lys Gly His Gln Leu Val Asp Ser Asn Asp Leu 120 125 130 TTT TAT GTT ATG CCA CGG GTT ATA AGG ACC ATG CAA Phe Tyr Val Met Pro Arg Val IIe Arg Thr Met Gln 135 140 145 GTG ATC CCG CTC GTA GCC GTG CAA GTA ACC GTT TTG 150 155 160 160 155 160 160 155 160 160 155 160 160 155 160 160 155 160 160 155 160 160 155 160 160 155 160 160 155 160 160 155 160 160 155 160 160 155 160 160 155 160 160 155 160 160 150 150 150 160 150 150 160 150 150 160 150 150 160 150 150 160 150 150 160 150 150 160 150 150 160 150 150 160 150 150 160 150 150 160 150 150 160 150 150 160 150 150 160 150 150 160 150 150 160 150 150 160 150 150 160 150 150 1	Ser Leu Leu Phe Tyr Asp Phe Pro Tyr Pro Arg Thr His 45 50 55 GAC ACT GTT ATC CCT AAT CTT AAG GCC TCT TTG TCT CTC Asp Thr Val Ile Pro Asn Leu Lys Ala Ser Leu Ser Leu 60 65 70 AAA CAC TAC GTT CCG CTT AGC GGA AAT TTG TTG ATG CCG Lys His Tyr Val Pro Leu Ser Gly Asn Leu Leu Met Pro 75 80 85 TCG GGC GAA ATG CCG AAG TTT CAG TAC TCC CGT GAT GAG Ser Gly Glu Met Pro Lys Phe Gln Tyr Ser Arg Asp Glu 90 95 100 TCG ATA ACT TTG ATC GTT GCG GAG TCT GAC CAG GAT TTT Ser Ile Thr Leu Ile Val Ala Glu Ser Asp Gln Asp Phe 105 110 115 CTT AAA GGT CAT CAA CTG GTA GAT TCC AAT GAT TTG CAT Leu Lys Gly His Gln Leu Val Asp Ser Asn Asp Leu His 120 125 130 TTT TAT GTT ATG CCA CGG GTT ATA AGG ACC ATG CAA GAC Phe Tyr Val Met Pro Arg Val Ile Arg Thr Met Gln Asp 135 140 145 GTG ATC CCG CTC GTA GCC GTG CAA GTA ACC GTT TTT CCT 150 150 155 160 GGC ATA GCC GTG GCT CTG ACG GCA CAT CAT TCA ATT GCC 151 151 155 160 GGC ATA GCC GTG GCT CTG ACG GCA CAT CAT TCA ATT GCC 151 151 155 160 GGC ATA GCC GTG GCT CTG ACG GCA CAT CAT TCA ATT GCC 151 151 155 160	GAC ACT GTT ATC CCT AAT CTT AAG GCC TCT TTG TCT CTC ACT Asp Thr Val Ile Pro Asn Leu Lys Ala Ser Leu Ser Leu Thr 60 65 70 AAA CAC TAC GTT CCG CTT AGC GGA AAT TTG TTG ATG CCG ATC Lys His Tyr Val Pro Leu Ser Gly Asn Leu Leu Met Pro Ile 75 80 85 TCG GGC GAA ATG CCG AAG TTT CAG TAC TCC CGT GAT GAG GGC Ser Gly Glu Met Pro Lys Phe Gln Tyr Ser Arg Asp Glu Gly 90 95 100 TCG ATA ACT TTG ATC GTT GCG GAG TCT GAC CAG GAT TTT GAC Ser Ile Thr Leu Ile Val Ala Glu Ser Asp Gln Asp Phe Asp 105 110 115 CTT AAA GGT CAT CAA CTG GTA GAT TCC AAT GAT TTG CAT GGC Leu Lys Gly His Gln Leu Val Asp Ser Asn Asp Leu His Gly 120 125 130 TTT TAT GTT ATG CCA CGG GTT ATA AGG ACC ATG CAA GAC TAT Phe Tyr Val Met Pro Arg Val Ile Arg Thr Met Gln Asp Tyr 135 140 145 GTG ATC CCG CTC GTA GCC GTG CAA GTA ACC GTT TTT CCT AAC Val Ile Pro Leu Val Ala Val Gln Val Thr Val Phe Pro Asn 150 155 160 GGC ATA GCC GTG GCT CTG ACG GCA CAT CAT TCA ATT GCA GAT GGIy Ile Ala Val Ala Leu Thr Ala His His Ser Ile Ala Asp

GÇT	AAA	AGT	TTT	GT A	AT G	TTC	ATC	AAT	GCT	TGG	GCC	TAT	ATT	AAC	584
Ala	Lys	Ser	Phe	Va l	Met	Phe	Ile	Asn	Ala	Trp	Ala	Ty r	IÌ e	Asn	
		180					185					190			
AAA	TTT	GGG	AAA	GAC	GCG	GAC	TTG	TTG	TCC	GCG	AAT	CTT	CTT	CCA	629
Lys	Phe	Gly	Lys	Asp	Ala	Asp	Leu	Leu	Ser	Ala	Asn	Leu	Leu	Pro	
	•	195					200					205			
TCT	TTC	GAT	AG A	TC G	AT A	AT C	AA A	GAT	CTG	TAT	GGC	CT A	GAG	GA A	674
Ser	Phe	Asp	Arg	Se r	Ile	Ile	Lys	Asp	Leu	Ty r	Gly	Leu	Glu	Glu	
		210					215					220			
ACA	TTT	TGG	AAC	GA A	AT G	CAA	GAT	GTT	CTT	GAA	ATG	TTC	TCT	AG A	719
Thr	Ph e	Trp	Asn	Glu	Met	Gln	Asp	Va I	Leu	Glu	Met	Phe	Ser	Arg	
		225					230					235			
TTT	GG A	AGC	AAA	ccc	CCT	CGĀ	TTC	AAC	AAG	GTA	CGA	GCT	ACA	TAT	764
Phe	Gly	Ser	Lys	Pro	Pro	Arg	Phe	Asn	Lys	Va l	Arg	Ala	Thr	Tyr	
		240					245					250			
						ATC									809
Va I	Leu	Ser	Leu	Ala	Glu	Ile	Gln	Lys	Leu	Lys	Asn	Lys	Val	Le u	
		255					260			•		26.5			
														AC A	854
Asn	Leu	Arg	Gly	Ser	Glu	Pro	Ţhr	He	Arg	Va l	Th r			Thr	
		270					275					280			
														GAT	899
Me t	Th r	Cys	Gly	Tyr	· Va I	Trp	Thr	Cys	Met	Va I	Lys	Ser	Lys	Asp	
		285					290			•		295			
														GAG	944
Asp	Val	Va l	Ser	Glu	Glu	Ser	Ser	Asn	Asp	Glu	ı Asn			Glu	
		300)				305					310			

TAC	TTC	AGT	TTT.	ACA	GCG	GAT	TGC	CG A	GG A	CTT	CTG	ACG	CCC	CCG	989
Туr	Phe	Ser	Phe	Thr	A'l a	Asp	Cys	Arg	Gly	Leu	Leu	Thr	Pro	Pro	
		315					320				•	325			
TGT	CCG	CCT	AAC	TAC	TTT	GGC	AAC	TGT	CTT	GCG	TCA	TGC	GTT	GCA	1034
Cys	Pro	Pro	Asn	Туr	Ph e	Gly	Asn	Cys	Leu	Ala	Ser	Cys	Va l	Ala	
		330					335					340			
AAA	GCA	ACA	CAT	AAA	GAG	TT A	GTT	GGG	GAT	AAA	GGG	CTT	CTT	GTT	1079
Lys	Ala	Thr	His	Lys	Glu	Leu	Va l	Gly	Asp	Lys	Gly	Leu	Leu	Va l	
		345					350					355			
GCA	GTT	GCA	GCT	ATT	GG [·] A	GAA	GCC	ATT	GA A	AAG	AGG.	TTG	CAC	AAC	1124
Ala	Va l	Ala	Ala	ΙΙe	Gly	Glu	Ala	ΙΙe	Glu	Lys	Arg	Leu	His	Asn	
		360					365					370			•
GAA	AAA	GGC	GTT	CTT	GC A	GAT	GC A	AAA	ACT	TGG	TTA	TCG	GAA	TCT	1169
Glu	Lys	Gly	Va l	Leu	Ala	Asp	Ala	Lys	Th r	Trp	Leu	Ser	Glu	Ser	
		375					380					385			
AAT	GG A	ATC	сст	TC A	AA A	AGA	TTT	СТС	GGG	ATT	ACC	GG A	TC G	CCT	1214
Asn	Gly	Ile	Pro	Ser	Lys	Arg	Phe	Leu	Gly	Ιle	Thr	Gly	Ser	Pro	
		390					395					400			
AAG	TTC	GAT	TCG	TAT	GGT	GTA	GAT	TTT	GG A	TGG	GGA	AA G	ССТ	GC A	12,59
Lys	Ph e	Asp	Ser	Туr	Gly	Val	Asp	Phe	Gly	Trp	Gly	Lys	Pro	Ala	
		405				*	410					415			
AAA	TTT	GAC	ATT	ACC	TCT	GTT	GAT	TAT	GCA	GAA	TTG	ATT	TAT	GTG	1304
Lys	Phe	Asp	Ile	Thr	Ser	Val	Asp	Туг	Ala	Glu	ı Leu	Ile	Туг	Va l	
		420					425					430			
ATT	CAG	тсс	AGG	GAT	TTI	GAA	AAA	GG1	GTG	GAC	TTA 5	GGA	GT A	TCA	1349
Ιlε	Gln	Ser	Arg	Asp	Phe	Glu	Lys	Gls	Val	Glu	ı Ile	Gly	Va!	Ser	
		435					440					445			

TTG CCT AAG ATT CAT ATG GAT GCA TTT GCA AAA ATC TTT GAA GAA 1394	
Leu Pro Lys Ile His Met Asp Ala Phe Ala Lys Ile Phe Glu Glu	
450 455 460	
GGC TTT TGC TCT TTG TCA TAGTCTCTTT AATAGAACCA TATTTGCTGC	1442
Gly Phe Cys Ser Leu Ser	
465 468	
AATAAAGTAC CAAGTCCTTT AGTAACACTA CACCAAACCC TACTTTCGAG GCGGGAACAC	1502
CACAACGAGG TTCAATCACT AGAAGGTTGT ACTTCATAAA TTCCAGAGGT CGAATATACA	1562
CCGTTGTCCT CTGAAAAGTT GAACCTCACA CCTGACATGG TGTTACGATA GGTATTGTAT	1622
AATGCCATTA TATACTTCCA TAAAGTATCC TATGCAATAG AGAACATGTT ATGTGTTAAA	1682
AA AAA AAA AA AA AAA AAA AA	1703
[0124]	
配列番号 (SEQIDNO): 2	
配列の長さ (SEQUENCE LENGTH):1622	
配列の型 (SEQUENCE TYPE):核酸 (nucleic acid)	
鎖の数(STRANDEDNESS):二本鎖(double)	
トポロジー (TOPOLOGY) : 直鎖状 (Iinear)	
配列の種類 (MOLECULETYPE): cDNA to mRNA	
ハイポセティカル配列 (HYPOTHETICAL SEQUENCE): No	
アンチセンス (ANTI-SENSE):No	
起源 (ORIGINAL SOURCE)	
生物名 (ORGANISM) :リンドウ (Gentianatriflora	
var. japonica) 組織の種類(TISSUE TYPE):花弁	
(petal)	
直接の起源 (IMMEDIATE SOURCE)	
ライブラリー名 (LIBRARY): cDNA library	
クローン名(CLONE):pGAT106	
配列 (SEQUENCE DESCRIPTION)	

												m ma		
CATI	`GA A	AT CCA	ATT A	IA TC	TGAT	TTAT	TAA	G AT	'G GC	A GG	A AA	TTC	C GAU	5 52
								Мe	t Al	a Gl	y As	n Se	r Glu	1
									1				5	
ATC	AAA	GTT	CTT	GAG	AAA	TGC	CGT	GTT	GCG	CCA	CCA	CCG	GAC	97
Ιle	Lys	Va l	Leu	Glu	Lys	Cys	Arg	Va 1	Ala	Pro	Pro	Pro	Asp	
		10					15					20		•
GTC	GCC	GA G	TTT	AC A	GTC	CCA	CTG	TCG	TTT	TTC	GAC	AT G	CGA	142
Va l	Ala	Glu	Phe	Thr	Val	Pro	Leu	Ser	Phe	Phe	Asp	Me t	Arg	
		25					30					35		
TT G	AT C	тст	GAT	GCA	GAA	CAC	CAT	CTG	CAT	TTC	TAC	AG A	TTC	187
Leu	Ile	Ser	Asp	Ala	Glu	His	His	Leu	His	Phe	Ty r	Arg	Phe	
		40					45					50		
CAT	сст	TGT	ccc	AAC	TCT	AAA	TTT	ATC	ATT	TC A	тсс	ATT	AAA	232
His	Pro	Cys	Pro	Asn	Ser	Lys	Ph e	Ile	I i e	Ser	Ser	Ile	Lys	
		55					60					65		
тсс	СТТ	тсс	СТТ	GTT	стс	AAA	CAC	TTT	CTT	CCG	TTA	GCC	GGG	277
		70					75					80		
TTG	ATT	TGG	CCG	GT A	GAT	тсс	TCÇ	GAT	AG A	ATG	CCG	GAG	TTG	322
							90					95		
TAC	AAG		GGG	GAC	TCC	GTT	тст	TT A	AC A	ATT	GC A	GAA	TCG	367
.,.	2,0	•												
ልጥር	CAT			тат	CTC	GCC			CAT	CAG	AG G		тст	412
aic t	лэр			- , .			120				3	125		
	ATC Ile GTC Val TTG Leu CAT His TCC Ser TTG Leu TAC Tyr	ATC AAA Ile Lys GTC GCC Val Ala TTG ATC Leu Ile CAT CCT His Pro TCC CTT Ser Leu TTG ATT Leu Ile TAC AAG Tyr Lys	ATC AAA GTT Ile Lys Val 10 GTC GCC GAG Val Ala Glu 25 TTG ATC TCT Leu Ile Ser 40 CAT CCT TGT His Pro Cys 55 TCC CTT TCC Ser Leu Ser 70 TTG ATT TGG Leu Ile Trp 85 TAC AAG AAA Tyr Lys Lys 100 ATG GAT TTT Met Asp Phe	ATC AAA GTT CTT Ile Lys Val Leu 10 GTC GCC GAG TTT Val Ala Glu Phe 25 TTG ATC TCT GAT Leu Ile Ser Asp 40 CAT CCT TGT CCC His Pro Cys Pro 55 TCC CTT TCC CTT Ser Leu Ser Leu 70 TTG ATT TGG CCG Leu Ile Trp Pro 85 TAC AAG AAA GGG Tyr Lys Lys Gly 100 ATG GAT TTT GAT	ATC AAA GTT CTT GAG Ile Lys Val Leu Glu 10 GTC GCC GAG TTT ACA Val Ala Glu Phe Thr 25 TTG ATC TCT GAT GCA Leu Ile Ser Asp Ala 40 CAT CCT TGT CCC AAC His Pro Cys Pro Asn 55 TCC CTT TCC CTT GTT Ser Leu Ser Leu Val 70 TTG ATT TGG CCG GTA Leu Ile Trp Pro Val 85 TAC AAG AAA GGG GAC Tyr Lys Lys Gly Asp 100 ATG GAT TTT GAT TAT Met Asp Phe Asp Tyr	ATC AAA GTT CTT GAG AAA Ile Lys Val Leu Glu Lys	ATC AAA GTT CTT GAG AAA TGC Ile Lys Val Leu Glu Lys Cys 10 GTC GCC GAG TTT ACA GTC CCA Val Ala Glu Phe Thr Val Pro 25 TTG ATC TCT GAT GCA GAA CAC Leu Ile Ser Asp Ala Glu His 40 CAT CCT TGT CCC AAC TCT AAA His Pro Cys Pro Asn Ser Lys 55 TCC CTT TCC CTT GTT CTC AAA Ser Leu Ser Leu Val Leu Lys 70 TTG ATT TGG CCG GTA GAT TCC Leu Ile Trp Pro Val Asp Ser 85 TAC AAG AAA GGG GAC TCC GTT Tyr Lys Lys Gly Asp Ser Val 100 ATG GAT TTT GAT TAT CTC GCC Met Asp Phe Asp Tyr Leu Ala	ATC AAA GTT CTT GAG AAA TGC CGT Ile Lys Val Leu Glu Lys Cys Arg	ATC AAA GTT CTT GAG AAA TGC CGT GTT Ile Lys Val Leu Glu Lys Cys Arg Val 10 15 GTC GCC GAG TTT ACA GTC CCA CTG TCG Val Ala Glu Phe Thr Val Pro Leu Ser 25 30 TTG ATC TCT GAT GCA GAA CAC CAT CTG Leu Ile Ser Asp Ala Glu His His Leu 40 45 CAT CCT TGT CCC AAC TCT AAA TTT ATC His Pro Cys Pro Asn Ser Lys Phe Ile 55 60 TCC CTT TCC CTT GTT CTC AAA CAC TTT Ser Leu Ser Leu Val Leu Lys His Phe 70 75 TTG ATT TGG CCG GTA GAT TCC TCC GAT Leu Ile Trp Pro Val Asp Ser Ser Asp 85 90 TAC AAG AAA GGG GAC TCC GTT TCT TTA Tyr Lys Lys Gly Asp Ser Val Ser Leu 100 105 ATG GAT TTT GAT TAT CTC GCC GGA GAT Met Asp Phe Asp Tyr Leu Ala Gly Asp	Met Al	Met Ala GI	Met Ala Gly As	Met Ala Gly Asn Second	ATC AAA GTT CTT GAG AAA TGC CGT GTT GCG CCA CCA CCG GAC Ile Lys Val Leu Glu Lys Cys Arg Val Ala Pro Pro Pro Asp 10

TAT AAA TTC	AAC_GAT	TTG ATT	CCG CAG	CTG CCA	GAA CCG	ATT GTA	457
Tyr Lys Phe	Asn Asp	Leu Ile	Pro Gln	Leu Pro	Glu Pro	Ile Val	
•	130		135			140	
ACC TCC GGC	GAC GAA	GTA TTA	CCA CTT	TTT GCT	TTA CAG	GTG ACG	502
Thr Ser Gly	Asp Glu	Val Leu	Pro Leu	Phe Ala	Leu Gln	Val Thr	
	145		150			155	
GTG TTC TCC	AAC ACC	GGT ATA	TGC ATT	GGA CGC	AAT CTT	CAT CAA	547
Val Phe Ser	Asn Thr	Gly Ile	Cys Ile	Gly Arg	Asn Leu	His Gln	
	160		165			170	
GTT CTT GGT	GAT GCC	AGT TCT	TTT CTG	CAT TTT	AAT AAA	TTA TGG	592
Val Leu Gly	Asp Ala	Ser Ser	Phe Leu	His Phe	Asn Lys	Leu Trp	
	175		180	•		185	
GTT TTG GTT	GAC AAA	TCC AAT	GGA GAT	TCA TTA	AAG TTC	CTT CCA	637
Val Leu Val	Asp Lys	Ser Asn	Gly Asp	Ser Leu	Lys Phe	Leu Pro	
	190	-	195	;		200	
CTT TCT TCT	CTA CCT	ATG TAC	GAC AG	TCT GTG	GTG CAA	GAT CCA	682
Leu Ser Ser	Leu Pro	Met Tyr	Asp Arg	Ser Val	Val Gin	Asp Pro	
	205		. 210)		215	
TTT CAT ATT	CGT CGA	AAA ATC	TAC AAT	GAA AGA	AAA CTG	CTC AAA	727
Phe His Ile	Arg Arg	Lys Leu	Tyr Ası	n Glu Arg	Lys Leu	Leu Lys	
	220		223	5 ·		230	
TCT CAG GGC	C ACA CCT	ACT GTT	CTA AA	r cca gca	ATT TCT	AAA GAT	772
Ser Gln Gly	Thr Pro	Thr Val	Leu Ası	n Pro Ala	lle Ser	Lys Asp	
	235		24			24 5	
GAA GTT CG	A GCC ACC	TTC ATC	CTA CA	C CCT ATT	GAT ATC	ATG AAG	817
Glu Val Arg	g Ala Thi	Phe Ile	Leu Hi	s Pro Ile	Asp Ile	Met Lys	
	250		25	5		260	

1	CTC	A A G	AAA	TTC	AT T	TC G	TCA	AAA	AAT	CGC	AAC	TTA	AC C	GGT	AGT	862
]	Leu	Lys	Lys	Phe	Ile	Ser	Ser	Lys	Asn	Arg	Asn	Leu	Th r	Gly	Ser	
			-	265					270					275		
	AGT	AÁT	TAT	AAT	CTG	TC A	ACT	TTC	ACG	GTG	ACA	TCT	GCA	CTG	ATC	907
,	Ser	Asn	Ty r	Asn	Leu	Ser	Th r	Phe	Thr	Va l	Th r	Ser	Ala	Leu	Ιle	
				280					285				•	290		
	TGG	AC A	TGC	TTG	TCG	AA A	TCA	TTA	GAC	ACC	GTC	GTA	AGA	GAG	AA G	952
	Trp	Th r	Cys	Leu	Ser	Lys	Ser	Leu	Asp	Th r	Va I	Val	Arg	Glu	Lys	
				295					300					305		
	GT G	GA A	GAG	GAT	AAA	CAT	GC A	GCA	AAC	TTA	TGT	GCT	TTC	ATC	AAC	997
	Va l	Glu	Glu	Asp	Lys	His	Ala	Ala	Asn	Leu	Cys	Ala	Phe	Ile	Asn	
				310				•	315					320		v
	TGC	CG A	CAA	CGT	TTT	GCT	CCG	CCG	ATA	CCT	CAA	AAT	TAC	TTT	GG A	1042
	Cys	Arg	Gln	Arg	Ph e	Ala	Pro	Pro	Ile	Pro	Gln	Asn	Ty r	Phe	G1 y	
				325					330					335		
	AAT	TG C	AT A	GTG	CCT	TGT	AT G	GT G	GG A	TCG	ACT	CAT	GA G	CAA	CTT	1087
	Asn	Cy s	Ile	Va 1	Pro	Cys	Met	Va l	Gly	Ser	Th r	His	G1 u	Gln	Leu	
				340					345					350		
	GT A	GG A	AAT	GAA	GGG	TTG	TCG	GT A	GCT	GCA	ACC	GCC	ATC	GG A	GAT	1132
	Va l	Gly	Asn	Glu	Gly	Leu	Ser	Val	Ala	Ala	Thr	Ala	Ile	Gly	Asp	
				355					360					365		
	GCT	AT C	CAT	AAG	AGG	TT A	CAT	GAC	TAC	GA A	GG A	ATT	CTG	AGA	GG A	1177
	Ala	Ile	His	Ly s	Arg	Leu	His	Asp	Tyr	Glu	Gly	Ile	Leu	Arg	Gly	
				370	ı				375					380		
													•		TCG	1222
	Asp	Trp	Ile	Ser	Pro	Pro	Arg	Ser	Thr	Ser	Ala	Ala	Pro		Ser	
				385	;				390	ł				395	i	

ACG CTC ATT TAT GTC GTT GGA TCC GCA CAA CGC AAT GTG CAT GAT 1267	
Thr Leu Ile Tyr Val Val Gly Ser Ala Gln Arg Asn Val His Asp	
400 405 410	
TTT GAT GCA GAT TTT GGT TGG GGA AAG CTT GAA AAG CAT GAA TCT 1312	
Phe Asp Ala Asp Phe Gly Trp Gly Lys Leu Glu Lys His Glu Ser	
415 420 425	
GTT TCA ACT AAT CCT TCG GCA ACA CTA ATT TTG ATC TCT CGG TCC 1357	
Val Ser Thr Asp Pro Ser Ala Thr Leu Ile Leu Ile Ser Arg Ser	
430 435 440	
AGA AGA TTT AAA GGA GCA CTT GAG CTT GGC ATT TCT TTG CCT AAG 1402	;
Arg Arg Phe Lys Gly Ala Leu Glu Leu Gly Ile Ser Leu Pro Lys	•
445 450 455	
AAT AGG ATG GAC GCA TTT GCC ACC ATT TTT ACG AAT TTC ATC AAT 1447	,
Asn Arg Met Asp Ala Phe Ala Thr Ile Phe Thr Asn Phe Ile Asn	
460 465 470	
AGT CTC CAT GTG AGG AGC CCT TTG TAAGAAAAAA GTGGTATCAA 1491	l·
Ser Leu His Val Arg Ser Pro Leu	
475 479	
TGTATAAAAA AGACAGACAA GTTATGATGC AACAAATGTT TTAGGAGATT ACAAATCCAT	1551
GGGAAGATGT ATCAAACTCA TCTCTCTATA TATATATATT CAATTGTTTT AAAAAAAAAA	1611
AAAAAAA A	1622
[0125]	
配列番号 (SEQID NO):3	
配列の長さ (SEQUENCE LENGTH):1605	
配列の型 (SEQUENCE TYPE):核酸 (nucleic acid)	
鎖の数(STRANDEDNESS):二本鎖(double)	
トポロジー (TOPOLOGY) : 直鎖状 (linear)	
配列の種類 (MOLECULE TYPE): cDNA to mRNA	

ハイポセ	テイオ	カル配列	(HYP	OTHE	ETICA	L SE	QUENCE) : No)
アンチセ	ンス	(ANT	I - S E	NSE)	: N o			
起源(O	RIC	GINA	L SO	URCE	Ε)			
生物名	(OF	RGAN	ISM)	: ペチニ	ユニア (P	e t u n	ia hybrida	a
)組織	の種類	頁(T I	SSUE	ΤΥF	PE):花	弁 (pe	tal)	
直接の起	源(]	I MM E	DIAT	E SC	URCE)		
ライブ	゚゙ヺリ-	-名(L	IBRA	RY):	c DNA	l i b	rary	
クロー	ン名	(CLO	NE):	рРАЛ	748			
配列(S	EQU	JENC	E DE	SCRI	PTIO	N)		
TGTC	G ACG A	A ATCCA	TTTCA TT	TCCTCTT	C TTTCTT	GTTT TTC	TAATTTC GTCATCATTG	60
TATT	CC AT	G GCA G	GT GAA C	TA GCA	AAA CAA	GAA GTT	ACA AAA GTG AAA	108
	Ме	t Ala G	ly Glu V	/al Ala	Lys Gln	Glu Val	Thr Lys Val Lys	
		1		5	•	10		
GTC	CTG A	AA AAA	ACA AAC	GTG AA	A CCA CAT	AAA CCA	CTA GGA AAA	153
Val	Leu L	ys Lys	Thr Asn	Val Ly	s Pro His	Lys Pro	Leu Gly Lys	
15			20			25		
AAA	GAG T	GT CAA	TTG GTA	ACA TT	r GAT CTT	CCT TAC	CTA GCT TTC	198
•							Leu Ala Phe	
30			35			40		
	TAC A	AC CAA	AAA TTT	CTC AT	C TAT AAA	GGT GCT	GAA AAC TTT	243
							Glu Asn Phe	
45			50			55		
		ACC GTG		ልፐፕ ልል	A GAT GGA		C TTA GTA TTG	28 8
							a Leu Val Leu	
	GIU I	ınr val			a váh or)	70		
60			65			10		

GTG	GAT	TTC	TAT	CAA	CT A	GCT	GG G	AAA	CTT	GG A	AAA	GAT	GA A	GAA		333
Va l	Asp	Ph e	Tyr	Gln	Leu	Ala	Gly	Lys	Leu	Gly	Lys	Asp	Glu	Glu		
75					80				÷	85						
GGG	GT T	TTC	AG G	GT G	GA A	TAC	GAC	GAT	GAC	ATG	GAT	GGT	GT A	GAG	•	378
Gly	V a l	Ph e	Arg	Va I	Glu	Туr	Asp	Asp	Asp	Met	Asp	Gly	Va I	Glu		
90					95					.100				•		
GT G	AC A	GTG	GCT	GTT	GCA	GAA	GAG	ATA	GA A	GTT	GCA	GAT	CTT	ACT		423
Va l	Th r	Va l	Ala	Va l	Ala	Gļu	Glu	Ile	Glu	Val	Ala	Asp	Leu	Thr		
105					110					115						•
GAT	GA A	GAA	GGC	AC C	ACC	AAA	TTC	CAG	GAC	TTG	ATT	CCT	TGT	AAT		468
Asp	G1 u	Glu	Gly	Th r	Thr	Lys	Phe	Gln	Asp	Leu	Ile	Pro	Cys	Asn		
120					125					130						٠
AAA	AT C	TTG	AAT	TT G	GAA	GGG	CTT	CAT	CGC	CCT	CTT	CTA	GCT	GT G		513
Lys	Ile	Leu	Asn	Leu	Glu	Gly	Leu	His	Arg	Pro	Leu	Leu	Ala	Va l		
135					140		,			145			٠	•		
CAG	стс	ACC	AAG	CT C	AAG	GAC	GGG	стс	AC C	ATG	GG A	TTA	GC A	TTT		558
Gln	Leu	Th r	Lys	Leu	Lys	Asp	Gly	Leu	Th r	Met	Gly	Leu	Ala	Ph e		
150					155					160						
AAC	CAT	GCT	G T G	CTG	GAT	GGT	ACT	TCG	ACG	TGG	CAC	TTT	AT G	AC C		603
Asn	His	Ala	Val	Leu	Asp	Gly	Thr	Ser	Th r	Trp	His	Phe	Met	Th r	v.	
165					170					175						
TC G	TGG	TCC	GAG	стт	TGC	TGT	GGG	TCC	ACC	TCA	ATT	тст	GTC	CCA		648
Ser	Trp	Ser	Glu	Leu	Суs	Cys	Gly	Ser	Thr	Ser	Ile	Ser	Va l	Pro		
180					185					190	•					
CC A	TTC	СТТ	GAA	CGA	ACC	AAG	GCT	CGI	AAC	ACT	CGA	GTC	AAC	CTC		693
Pro	Ph e	Leu	ı Glu	Arg	Thr	Lys	Ala	Arg	Asn	Thr	Arg	Val	Lys	Leu		
195					200	i				205	;					

AAC CTC TCT CAA CCA	TCA GAT GCA CCC GAA	CAT GCT AAG TCA GCA	738
•		ı His Ala Lys Ser Ala	
210	215	220	
ACC AAC GGT GAT GTC	CCG GCC AAC GTA GAC	C CCA CCT CTT CGC GAA	783
Thr Asn Gly Asp Val	Pro Ala Asn Val Asp	Pro Pro Leu Arg Glu	
225	230	235	
AGA GTA TTC AAG TTC	TCC GAG TTA GCA ATT	GAC AAA ATC AAG TCA	828
Arg Val Phe Lys Phe	Ser Glu Leu Ala IIe	e Asp Lys Ile Lys Ser	
240	245	250	
ACA GTC AAT GCC AAC	TCA GGA GAG ACG CCA	A TTC TCC ACA TTC CAA	873
Thr Val Asn Ala Asn	Ser Gly Glu Thr Pro	o Phe Ser Thr Phe Gln	
255	260	265	
TCA CTC TCC GCA CAC	GTG TGG CTA GCC GTC	C ACA CGT GCG CGC CAA	918
Ser Leu Ser Ala His	Val Trp Leu Ala Val	l Thr Arg Ala Arg Gln	
270	275	280	
CTC AAG CCC GAG GAC	TAC ACT GTG TAC ACT	T GTG TTT GCT GAT TGC	963
Leu Lys Pro Glu Asp	Tyr Thr Val Tyr Thi	r Val Phe Ala Asp Cys	
285	290	295	
AGG AAA AGG GTT GAT	CCT CCA ATG CCA GAR	A AGT TAC TTC GGC AAC 1	8000
Arg Lys Arg Val Asp	Pro Pro Met Pro Glu	u Ser Tyr Phe Gly Asn	
300	305	310	
CTA ATT CAG GCA ATT	TTC ACA GTG ACC GCC	G GCA GGT TTG TTA CTA	1053
Leu Ile Gin Ala Ile	Phe Thr Val Thr Al:	a Ala Gly Leu Leu Leu	
315	320	325	
GCA AGC CCG ATC GAG	TTC GCT GGT GGG AT	G ATA CAA CAA GCG ATC	1098
Ala Ser Pro Ile Glu	Phe Ala Gly Gly Me	t Ile Gln Gln Ala Ile	
330	335	340	

GTG AAG CAT GAC GCT AAG GCC ATT GAT	GAA AGA AAC AAG GAG TGG 1143
Val Lys His Asp Ala Lys Ala Ile Asp	Glu Arg Asn Lys Glu Trp
345 350	355
GAG AGC AAC CCG AAG ATC TTT CAG TAC	AAA GAT GCT GGA GTG AAC 1188
Glu Ser Asn Pro Lys Ile Phe Gln Tyr	Lys Asp Ala Gly Val Asn
360 365	370
TGT GTT GCT GTT GGA AGT TCG CCA AGG	TTC AAG GTT TAC GAC GTG 1233
Cys Val Ala Val Gly Ser Ser Pro Arg	Phe Lys Val Tyr Asp Val
375 380	385
GAT TTT GGA TGG GGA AAG CCA GAG AGT	GTG AGG AGT GGT TCG AAC 1278
Asp Phe Gly Trp Gly Lys Pro Glu Ser	Val Arg Ser Gly Ser Asn
390 395	400
AAT AGG TTT GAT GGA ATG GTG TAT TTG	TAC CAA GGC AAA AAT GGA 1323
Asn Arg Phe Asp Gly Met Val Tyr Leu	Tyr Gln Gly Lys Asn Gly
405 410	415
GGA AGA AGC ATT GAT GTG GAG ATT AGT	TTG GAA GCA AAT GCT ATG 1368
Gly Arg Ser Ile Asp Val Glu Ile Ser	Leu Glu Ala Asn Ala Met
420 425	430
GAG AGG TTG GAG AAA GAT AAA GAG TTC	CTC ATG GAA ACT GCT 1410
Glu Arg Leu Glu Lys Asp Lys Glu Phe	Leu Met Glu Thr Ala
435 440	445 448
TAATTTGCTT AGCTTGGACT CAACTGGCTA CA	CTTTATTT ATGAGCTGCT ATGACTCACA 1470
TGCATGTATG TTTATTTTTT TTGGAGGGGT TC	TTTCCTTT TATTGTTTTC TATGTTTTTT 1530
CTTTCTTGTA CGTTATGAAG AGAAACCGAG TA	TAAAGGAA TAATGTTTTC AGTTATTAAA 1590
AAAAAAAA AAAAA	1605

[0126]

配列番号 (SEQID NO): 4

配列の長さ (SEQUENCE LENGTH):1479	
配列の型 (SEQUENCE TYPE):核酸 (nucleic acid)	
鎖の数(STRANDEDNESS):二本鎖(double)	
トポロジー(TOPOLOGY):直鎖状(linear)	
配列の種類 (MOLECULE TYPE): cDNA to mRNA	
ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No	
アンチセンス(ANTI-SENSE):No	
起源 (ORIGINAL SOURCE)	
生物名(ORGANISM):シソ(Perilla ocimoides)	
組織の種類(TISSUE TYPE) :葉(leaf)	
直接の起源(IMMEDIATESOURCE)	
ライブラリー名 (LIBRARY): cDNA library	
クローン名(CLONE):pSAT208	
配列 (SEQUENCE DESCRIPTION)	
CC GTG ATC GAA ACG TGT AGA GTT GGG CCG CCG CCG GAC TCG GTG	44
Val Ile Glu Thr Cys Arg Val Gly Pro Pro Pro Asp Ser Val	
1 5 10	
GCG GAG CAA TCG GTG CCG CTC ACA TTC TTC GAC ATG ACG TGG CTG	89
Ala Glu Gln Ser Val Pro Leu Thr Phe Phe Asp Met Thr Trp Leu	
15 20 25	
CAT TTT CAT CCC ATG CTT CAG CTC CTC TTC TAC GAA TTC CCT TGT	134
His Phe His Pro Met Leu Gln Leu Leu Phe Tyr Glu Phe Pro Cys	
30 35 40	
TCC AAG CAA CAT TTT TCA GAA TCC ATC GTT CCA AAA CTC AAA CAA	179
Ser Lys Gln His Phe Ser Glu Ser Ile Val Pro Lys Leu Lys Gln	
45 50 55	

TC T	стс	TCT	AAA	ACT	CTC	AT A	CAC	TTC	TTC	CCT	CTC	TCA	TGC	AAT		224
Se r	Leu	Ser	Lys	Thr	Leu	Ιie	His	Phe	Phe	Pro	Leu	Ser	Cys	Asn		
60					65					70						
TT A	AT C	TAC	CCT	TCA	TCC	CCG	GAG	AAA	ATG	CCG	GAG	TTT	CG G	TAT		269
Leu	Ile	Туr	Pro	Ser	Ser	Pro	G1 u	Lys	Met	Pro	Glu	Phe	Arg	Ty r		
.75					80					85					•	
CTA	TCC	GGG	GAC	TÇ G	GTT	TCT	TTC	ACC	ATC	GC A	GAA	TCT	AG C	GAC		314
Leu	Ser	Gly	Asp	Ser	Va l	Ser	Phe	Thr	Ile	Ala	Glu	Ser	Se r	Asp	•	
90					95					100						
GAC	TTC	GAT.	GAT	CTC	GTC	GGA	AAT	CGT	CC A	GAA	TCT	ccc	GTT	AG G		359
Asp	Ph e	Asp	Asp	Leu	Va l	Gly	Asn	Arg	Pro	Glu	Ser	Pro	Va l	Arg		
105					110					115						
стс	TAC	AAC	TTT	GTC	CCT	AAA	TT G	CCG	ccc	ATT	GTC	GAA	GA A	TCC		404
Leu	Туг	Asn	Phe	Va l	Pro	Lys	Leu	Pro	Pro	Ιlе	Va l	Ġlu	Glu	Ser		
120			•		125					130						
GAT	AG A	AAA	стс	TTC	CA A	GTT	TTC	GCC	GTG	CAG	GTG	ACT	CTT	TTC		449
Asp	Arg	Lys	Leu	Phe	Gln	.Va l	Phe	Ala	Va l	Gln	Va l	Thr	Leu	Phe		
135					140		•			145						
CCA	GGC	CG A	GGC	GTC	GGT	ATT	GG A	AT A	GCA	AC G	CAT	CAC	AC C	GTT		494
Pro	Gly	Arg	Gly	Va l	Gly	Ile	Gly	Ιle	Ala	Th r	His	His	Th r	Val		
150					155					160						
AGC	GAC	GCC	ĊCG	TCG	TTT	стс	GCG	TTT	AT A	AC G	GCT	TGG	TCT	TC A		539
Ser	Asp	Ala	Pro	Ser	Phe	Leu	Ala	Phe	Ιlе	Th r	Ala	Trp	Ser	Ser		
165					170			·		175						
ATG	AG C	AAA	CAC	AT T	GA A	AAT	GAA	GAT	GA A	GAT	GAA	GAA	TTT	AAA		584
Met	Ser	Lys	His	Ile	Glu	Asn	Ģlu	Asp	Glu	Asp	Glu	Glu	Phe	Lys		
180					185		٠			190					•	•

TCT	TTG	CCA	GTT	TŢC	GAT	AG A	TCC	GTC	ATA	AAA	TAT	CCG	ACG	AAA		629
Ser	Leu	Pro	Va I	Phe	Asp	Arg	Ser	Va l	Ile	Lys	Tyr	Pro	Thr	Lys	•	
195					200					205						
TTT	GAC	TCC	AŤT	TAT	TGG	AG A	AAC	GCG	CTA	AAA	TTT	CCT	TTG	CAA		674
Phe	Asp	Ser	Ile	Tyr	Trp	Arg	Asn	Ala	Leu	Lys	Phe	Pro	Leu	Gln		·
210					215					220						
тст	CGT	CAT	ccc	TCA	TTA	CCG	AC G	GAC	CGC	AT T	CGA	ACC	ACG	TTC		719
Ser	Arg	His	Pro	Ser	Leu	Pro	Th r	Asp	Arg	Ile	Arg	Thr	Thr	Phe		
225					230					235						
GTI	TTC	ACC	CAA	TCC	AA Ā	ATT	AA G	AAA	TTG	AAG	GGT	TGG	ATT	CAG		764
Va l	Phe	Thr	Gln	Ser	Ly s	Ile	Lys	Lys	Leu	Lys	Gly	Trp	Ile	Gln		
240)				245					25 0						
TCC	AGA	GTT	CC A	AGT	TT A	GTC	CAT	стс	TC A	TCT	TTT	GT A	GCG	ATT		809
Sei	Arg	Va l	Pro	Ser	Leu	Va l	His	Leu	Ser	Ser	Phe	Va l	Ala	Ile		
25 5	5				260					265						
GCA	A GCT	TAT	AT G	TGG	GCT	GGC	AT A	ACG	AAA	TCA	TTC	AC A	GCA	GAT		854
Ala	a Ala	Туг	Met	Trp	Ala	Gly	Ile	Th r	Lys	Ser	Phe	Thr	Ala	Asp		
27)				275					280						
GA	A GAC	CAA	GAC	AAC	GAG	GAT	GC A	TTT	TTC	TTG	ATT	CCG	GTC	GAT		899
Gl	u Asp	Gln	Asp	Asn	Glu	Asp	Ala	Phe	Phe	Leu	Ile	.Pro	Va I	Asp		
28	5				290	ı				295						
CT	A AG	CCA	CG A	A TT A	GAT	CCG	cco	GTT	сст	GAĄ	AAT	TAC	TTC	GGG	·	944
Le	u Arg	g Pro	Arg	g Leu	ı Asp	Pro	Pro	Val	Pro	Glu	Asn	Туг	Phe	Gly		
30	0				305					310						
AA	C TG(TT A	A TC	G TAC	GCC	CTO	ccc	G AGA	ATG	CGG	CGG	CGA	GAG	CTG		989
As	n Cys	s Let	ı Se	r Tyı	Ala	Lev	Pro	Arg	Me t	Arg	Arg	g Arg	Glu	ı Leu		
31	5				320)				325	;					

GT G	GG A	GAG	AAA	GGG	GTG	TTT	CTG	GCA	GCT	GAG	GTA	ATC	GCG	GCG		1034	
Val	Gly	Glu	Lys	Gly	Va I	Phe	Leu	Ala	Ala	Glu	Va I	Ιle	Ala	Ala			
330					335					340							
GA G	AT A	AAA	AAA	AG G	ATC	AAC	GAC	AAG	AG A	ATA	ATT	GAA	ACG	GTG		1079	
Glu	Ile	Lys	Lys	Arg	Ile	Asn	Asp	Lys	Arg	Ile	Leu	Glu	Thr	Va I			
345					350					355							
GAG	A A A	TGG	TCG	CCG	GAG	ATT	CGT	AAA	GCG	TTG	CAG	AAA	TCA	TAT		1124	
Glu	Lys	Trp	Ser	Pro	Glu	Il.e	Arg	Ly s	Ala	Leu	Gln	Lys	Ser	Ty r			
360					365					370							
TTT	TCG	GTG	GC A	GGA	TC G	AGC	AAG	CT A	GAT	CTT	TAC	GGT	GCA	GAT		1169	
Phe	Ser	Va l	Ala	Gly	Ser	Se r	Ly s	Leu	Asp	Leu	Туr	Gly	Ala	Asp	•		
375					380					385							
TTT	GG A	TGG	GGG	AAG	GCG	AG A	AAG	CAA	GA A	ATA	TTG	TCG	ATT	GAT		1214	
Phe	Gly	Trp	Gly	Lys	Ala	Arg	Lys	Gln	G1 u	Ile	Leu	Ser	Ile	Asp			
390					395					400							
GG G	GA G	AAA	TAT	GC A	AT G	ACR	CTT	TGT	. AA A	GCC	AGG	GAT	TTC	GA A	ı	1259	
Gly	Glu	Lys	Туr	Ala	Me t	Th r	Leu	Cys	Lys	Ala	Arg	Asp	Phe	Glu	I		
405					410					415							
GG A	GG A	TTG	GAG	GTT	TGC	TT G	TCT	TTG	CCT	AAG	GAC	AAA	ATG	GAT	•	1304	
Gly	Gly	Leu	Glu	Va 1	Суs	Leu	Ser	Leu	Pro	Lys	Asp	Lys	Met	Asp	•		
420					425					430							
GCT	TTT	GCT	GCT	TAT	TTT	TC A	CTG	GG A	ATT	AAT	GGT	TAA	TAAA	TGT	AT GTA AT	AA T	1360
Ala	Ph e	Ala	Ala	Туr	Ph e	Se r	Leu	Gly	Πle	Asn	Gly						
435					440						446	•					
ACT	AATA	TTA	TA TT	GTAA	CA A	TTAA	TTAA	G TG	TTG A	GTAA	CGT	GA AG	AAT	AATC	CCTATT		1420
AT A	TATT	TAT	GATT	TGGT	TC A	A ATA	AAGT	G TA	AAG C	СТСТ	TGA.	AA AA	AAA	AA AA	A A A A A		1479
[0	1 2	7]															

配列番号 (SEQIDNO):5

8 - 046534特平

配列の長さ(SEQUENCE LENGTH):1508 配列の型(SEQUENCE TYPE):核酸(nucleic acid) 鎖の数(STRANDEDNESS) :二本鎖(double) トポロジー(TOPOLOGY):直鎖状(linear) 配列の種類(MOLECULE TYPE):cDNA to mRNA ハイポセテイカル配列(HYPOTHETICAL SEQUENCE):No アンチセンス (ANTI-SENSE):No 起源(ORIGINAL SOURCE) 生物名(ORGANISM):サイネリア(Senecio cruentu 組織の種類(TISSUETYPE):花弁(petal) 直接の起源 (IMMEDIATE SOURCE) ライブラリー名(LIBRARY):cDNA library クローン名(CLONE):pCAT8 配列 (SEQUENCE DESCRIPTION) TG AAC ATT CTC GAA CAT GCC CGA ATA TCG GCC CCC TCG GGC ACC 44 Asn Ile Leu Glu His Ala Arg Ile Ser Ala Pro Ser Gly Thr 10 1 ATC GGC CAT CGC TCG TTA TCT CTT ACT TTC TTC GAC ATT ACT TGG 89 Ile Gly His Arg Ser Leu Ser Leu Thr Phe Phe Asp Ile Thr Trp 25 20 15 134 CTA CTC TTC CCT CCG GTC CAC CAT CTT TTC TTC TAT GAC TTT CCA Leu Leu Phe Pro Pro Val His His Leu Phe Phe Tyr Asp Phe Pro 35 40 30 CAT TCT AAA TCC CAT TTC ATG GAC ACT ATT GTT CCC AGG CTA AAA 179 His Ser Lys Ser His Phe Met Asp Thr Ile Val Pro Arg Leu Lys 55 50

45

CAA	тст	TTA	TCG	GŢC	ACT	CTT	CAA	CAT	TTT	TTC	CCG	TTT	GCT	AGT	224
Gln	Ser	Leu	Ser	Va I	Thr	Leu	Gln	His	Phe	Ph e	Pro	Phe	Ala	Ser	
60	·				65					70					
AAT	TT G	ATT	GTA	TTT	CCT	AAC	ACT	GAT	GGT	TCG	GGT	TTT	AAT	AAA	269
Asn	Leu	Ile	Va l	Phe	Pro	Asn	Thr	Asp	Gly	Ser	Gly	Phe	Asn	Lys	
75					80					85					
A,A A	CCA	GAA	ATA	AAA	CAC	GTT	GAA	GGT	GAT	TCT	GTT	GTG	GTT	ACT	314
Lys	Pro	Glu	Ile	Lys	His	Va 1	Glu	Gly	Asp	Ser	Val	Val	Val	Thr	
90			•		95					100					
TTT	GC A	GAA	TGT	TGT	CTT	GAC	TTT	AAT	AAT	TTG	ACA	GGA	AAT	CAT	359
Phe	Ala	Glu	Cys	Cys	Leu	Asp	Phe	Asn	Asn	Leu	Thr	Gly	Asn	His	
105					110					115					
CCT	CG A	AAA	TGT	GAA	AAC	TTT	TAT	CCA	CTT	GT A	CCT	TCA	TTG	GG A	404
Pro	Arg	Lys	Cys	Glu	Asn	Ph e	Туr	Pro	Leu	Va l	Pro	Ser	Leu	Gly	
120					125					130					
AAT	GC A	ATC	AAA	TT A	TGT	GAT	TGC	GTC	AC G	GTC	CCA	CTT	TTT	TCA	449
Asn	Ala	Ile	Lys	Leu	Cys	Asp	Cys	Va l	Th.r	Va l	Pro	Leu	Phe	Ser	
135					140					145					
CTT	CAA	GTG	ACG	TTT	TTT	CCG	GGC	TCG	GGT	AT A	TCA	CTA	GGA	AT G	494
Leu	Gln	Va l	Thr	Phe	Phe	Pro	Gly	Ser	Gly	Ile	Ser	Leu	Gly	Met	
150				•	155					160					
AC G	AAT	CAT	CAT	AGC	CTT	GGT	GAC	GCT	AGC	ACG	CGG	TTC	AAC	TTT	539
Thr	Asn	His	His	Ser	Leu	Gly	Asp	Ala	Ser	Th r	Arg	Phe	Asn	Phe	
165					170					175	;				
TTG	AAA	GGG	TG G	ACT	TCG	ATT	ATT	CAA	TCT	GGT	GT A	GAT	CGG	TCT	584
Leu	Lys	Gly	Trp	Thr	Ser	Ile	Ile	Gln	Ser	Gly	Val	Asp	Arg	Ser	
180					185					190)				

,	TTT	A TT	AC G	AA A	GG A	TCT	CCA	CCG	GTT	TTT	GAT	AG A	TTG	ATT	AAC		629
	Phe	Leu	Thr	Lys	Gly	Se r	Pro	Pro	Va l	Phe	Asp	Arg	Leu	Ile	Asn		
	195					200					205						
	ATC	CCA	CAT	TT A	GAT	GAA	AAT	AAG	TTG	AG A	CAT	ACA	AG G	CTC	GA A		674
	Ile	Pro	His	Leu	Asp	Glu	Asn	Lys	Leu	Arg	His	Thr	Arg	Leu	Glu		
	210					215					220						
	AGT	TTT	TAT	AA A	CCT	TC G	AGC	стт	GTT	GGT	ccc	ACT	GAT	AAA	GTT		719
	Ser	Phe	Туr	Ly s	Pro	Ser	Ser	Leu	Va l	Gly	Pro	Th r	Asp	Lys	Va I		
	225					230					235						
	CGG	TC A	ACG	TTT	GT G	TTG	ACC	CGA	ACT	AAT	ATC	AAT	CTA	CTA	AAG		764
	Arg	Ser	Thr	Ph e	Va l	Leu	Thr	Arg	Thr	Asn	Ιle	Asn	Leu	Leu	Lys		
	240					245					250						
	AAA	AAĢ	GTC	TT A	ACC	CAA	GTG	CCA	AAC	TTG	GAG	TAC	ATG	TCA	TCT		809
	Lys	Lys	Va l	Leu	Th r	Gln	Va l	Pro	Asn	Leu	Glu	Туг	Met	Se r	Ser		
	255					260		•			265						
	TTT	AC G	GT A	AC T	TGT	GGT	TAT	ATA	TGG	AGT	TGC	ATA	GCG	AAA	TC A		854
	Ph e	Thr	Va l	Th r	Cys	Gly	Туг	Ile	Trp	Ser	Cys	Ile	Ala	Lys	Ser		
	270					275					280						
	CTC	GT A	AA A	AT A	GG A	GAA	AG A	AA G	GGC	GAA	GAC	GAG	TT A	GAA	CAG		899
	Leu	Va I	Lys	Ile	Gly	Glu	Arg	Lys	Gly	Glu	Asp	Glu	Leu	Glu	Gln		
	285					290					295						
	TTC	AT A	AT C	AC C	ATT	GAT	TGT	CGA	TCT	CGT	CTT	GAT	CCA	CCA	ATT		944
	Phe	Ile	Ile	Th r	Ile	Asp	Cys	Arg	Ser	Arg	Leu	Asp	Pro	Pro	Ile		
	300					305					310					-	
	ccc	AC A	GCC	TAC	TTT	GGT	AAC	TGT	GGT	GC A	CCA	TGT	GTC	CCG	ACC		989
	Pro	Thr	Ala	Tyr	Phe	Gly	Asn	Суs	Gly	Ala	Pro	Cys	Va l	Pro	Th r		•
	315					320					325						

TT A	AA A	AAT	GTC	GTT	TTG	ACT	AGC	GAA	AAT	GGG	TAT	GCA	CTT	GGT	1034
Leu	Ly s	Asn	Va l	Va l	Leu	Th r	Ser	Glu	Asn	Gly	Ty r	Ala	Leu	Gly	
330					335					340					
GCT	AAA	GT A	ATT	GG A	GAG	тст	AT A	TGC	AAA	AT G	ATA	TAT	AAT	AA G	1079
Ala	Lys	Va I	Ile	Gly	Glu	Ser	Ιlе	Cys	Lys	Me t	Ιlе	Туr	Asn	Lys	
345					350					355	•				
GAC	GG A	ATC	TT G	AAA	GAT	GCC	GCG	AG A	TG G	CAT	GAA	CCT	TTC	AT G	1124
Asp	Gly	Ιlе	Leu	Lys	Asp	Ala	Ala	Arg	Trp	His	Glu	Pro	Phe	Met	
360					365					370					
ATC	CC G	GCT	AGG	AAG	ATT	GGT	GTT	GCT	GGT	AC A	CCT	AAG	CTC	AAC	1169
Ile	Pro	Ala	Arg	Lys	Ιlе	Gly	Va l	Ala	Gly	Thr	Pro	Lys	Leu	Asn	
375					380		•			385					
TTG	TAC	GAC	TTT	GAT	TTT	GGG	TGG	GGG	AAG	CCG	AT A	AAG	TAT	GAG	1214
Leu	Туr	Asp	Phe	Asp	Phe	Gly	Trp	Gły	Lys	Pro	Il e	Lys	Туr	Glu	
390		-			395					400					
AC T	GTT	TCA	ATA	GAC	TAT	AAT	AC G	TCG	ATT	TCT	AT A	AAT	GCA	AGC	1259
Th r	Va l	Se r	Ile	Asp	Туr	Asn	Thr	Ser	Ιle	Ser	Ιle	Asn	Ala	Ser	
405	•				410					415					
AAA	ACA	TC A	GC A	CAA	GAT	CTT	GA A	ATT	GG A	TTG	AGT	CTA	CCG	AG T	1304
Lys	Thr	Ser	Ala	Gln	Asp	Leu	Glu	Ile	Gly	Leu	Ser	Leu	Pro	Ser	
420					425					430					
ATG	CAA	AT G	GAG	GCG	TTT	TCT	AG C	AT C	TTT	GAT	GA A	GG A	TT A	GAG	1349
Met	Gln	Met	Glu	Ala	Ph e	Ser	Se r	Ile	Phe	Asp	Glu	Gly	Leu	Glu	
435					440			•		445	ı				
AGT	CAA	GTT	TCA	TTG	TAG	ATCA	TCG	тссс	CTTT	TT					1384
Ser	Gln	Va l	Ser	Leu											
450				454											

GT GTG CAT CA	AGTTTCTGTC	GTTTTTATGA	GTTGCCACTG	TTCTATTCTT	TAAGTATACC	144
TT TCG ACT AT	GTTTTGAAGA	TGCAACGATA	TAAAATGAAA	AAAAAAA	AAAAAAAA	150
A A A A						150

【書類名】 要約書

【要約】

【課題】 芳香族アシル基転移酵素をコードする遺伝子及びその利用を提供する

【解決手段】 リンドウ(Gcntianatriflora var.jap onica)の花弁からアシル基転移酵素を精製してそのアミノ酸配列の一次構造を決定し、当該アミノ酸配列の情報に基づき、遺伝子組換え技術を用いてリンドウ由来のアシル基転移酵素に係るcDNAを単離した後、構造遺伝子の塩基配列を決定することにより目的のアシル基転移酵素をコードする遺伝子を得た。更に、遺伝子組換え技術を用いて別のリンドウ、ペチュニア、シソ及びサイネリア由来のアシル基転移酵素をコードする遺伝子を提供する。

【効果】 本発明に係るアシル基転移酵素をコードする遺伝子を用いてアントシアン系色素をアシル化することにより花色を変化させることができ、アントシアンの安定性を増すことができる。

【選択図】 なし

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

申請人

【識別番号】

000001904

【住所又は居所】

大阪府大阪市北区堂島浜2丁目1番40号

【氏名又は名称】

サントリー株式会社

出願人履歴情報

識別番号

[000001904]

1. 変更年月日 1990年 8月13日

[変更理由] 新規登録

住 所 大阪府大阪市北区堂島浜2丁目1番40号

氏 名 サントリー株式会社

HIS PAGE BLANK (USPTO)

BEST AVAILABLE COFY

PCT

世界知的所有権機関

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

A1

(11) 国際公開番号

WO96/25500

C12N 15/54, 9/10, 1/21, 5/00, A01H 5/00

(43) 国際公開日

1996年8月22日(22.08.96)

(21) 国際出願番号

PCT/IP96/00348

(22) 国際出願日

1996年2月16日(16.02.96)

(30) 優先権データ

特願平7/67159

1995年2月17日(17.02.95)

JР

特願平7/196915

1995年6月29日(29.06.95)

JР

特願平8/46534

1996年1月30日(30.01.96)

JP

(71) 出願人 (米国を除くすべての指定国について)

サントリー株式会社(SUNTORY LIMITED)[JP/JP] 〒530 大阪府大阪市北区堂島浜2丁目1番40号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

岁刈俊彦(ASHIKARI, Toshihiko)[JP/JP]

〒569 大阪府高槻市高見台11番26号 Osaka, (JP)

田中良和(TANAKA, Yoshikazu)[JP/JP]

〒520-02 滋賀県大津市仰木の里2丁目7番4号 Shiga, (JP)

藤原裕之(FUJTWARA, Hiroyuki)[JP/JP]

〒572 大阪府寝屋川市梅が丘1丁目8番2-203号 Osaka, (JP)

中尾正宏(NAKAO, Masahiro)[JP/JP]

〒617 京都府長岡京市竹の台1番地B1棟102号 Kyoto, (JP)

福井祐子(FUKUI, Yuuko)[JP/JP]

〒618 大阪府三島郡島本町水無瀬2丁目8番2号907 Osaka, (JP)

米倉圭子(YONEKURA, Keiko)[JP/JP]

〒569 大阪府高槻市北柳川町15番13号209 Osaka, (JP)

水谷正子(MIZUTANI, Masako)[JP/JP]

〒615 京都府京都市西京区桂艮町18番21号 Kyoto, (JP)

久住高章(KUSUMI, Takaaki)[JP/JP]

〒564 大阪府吹田市山手町2丁目12番21号402 Osaka, (JP)

(74) 代理人

弁理士 石田 敬,外(ISHIDA, Takashi et al.)

〒105 東京都港区虎ノ門三丁目5番1号 虎ノ門37森ビル

青和特許法律事務所 Tokyo, (JP)

(81) 指定国

AU, CA, JP, KR, NZ, SG, US, 欧州特許(AT, BE, CH, DE, DK,

ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

添付公開書類

国際調査報告書

(54) Title: GENES CODING FOR PROTEINS HAVING ACYL TRANSFER ACTIVITY

(54) 発明の名称 アシル基転移活性を有する蛋白質をコードする遺伝子

(57) Abstract

Proteins having an aromatic-acyltransferase activity; a gene system coding for the same; a process for producing the proteins using the gene system; and uses of the genes and the proteins. The genes and the proteins acylate plant pigments such as anthocyanin to thereby cause color tone changes, thus providing plants, particularly flowers, having colors that have not been inherent therein.

芳香族アシル基転移酵素活性を有する蛋白質、これをコードする遺伝子系、及びこの遺伝子系を用いる該蛋白質の製造方法、並びに該遺伝子及び蛋白質の用途を提供する。この遺伝子及び酵素蛋白質は、植物のアントシアニン等の色素をアシル化することにより色調を変化せしめ、従来その植物が有しなかった色を有する植物、特に花を提供する。

情報としての用途のみ PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

WO 96/25500 PCT/JP96/00348

明 細 書

アシル基転移活性を有する蛋白質をコードする遺伝子

発明の属する技術分野

本発明は、芳香族アシル基転移活性を有する蛋白質をコードする遺伝子及びその利用に関するものである。更に詳しくは、リンドウ(Gentiana triflora var. japonica)、ペチュニア(Petunia hybrida)、シソ(Perilla ocimoides)及びサイネリア(Sene cio cruentus)由来の芳香族アシル基転移活性を有する蛋白質をコードする遺伝子及びその利用に関するものである。

背景技術

花産業は新規かつ種々の品種を開発することに努力している。新規な品種の育成のための有効な方法の一つとして花の色を変えることがあり、古典的な育種方法を用いて、ほとんどの商業的品種について広範囲な色を作出することに成功している。しかしながら、この方法では種ごとで遺伝子プールが制限されていることから、単一の種が広範囲の種類の着色品種を有することは稀である。

花の色は主として2つのタイプの色素、即ちフラボノイド及びカロチノイドに基づき、フラボノイドは黄色から赤ないし青色の範囲に寄与し、カロチノイドはオレンジ又は黄色の色調に寄与する。花色に主たる寄与をするフラボノイド分子はシアニジン、デルフィニジン、ペチュニジン、ペオニジン、マルビジン及びペラルゴニジンの配糖体であるアントシアンであり、異なるアントシアンが顕著な花の色の変化をもたらす。さらに花の色は無色のフラボノイドの補助発色、金属錯体形成、グリコシル化、アシル化、メチル化及び液

胞のpHにより影響される(Forkmann, Plant Breeding 106:1, 1991)。

アシル化されたアントシアンは、サイネリア(Senecio cruent us) 由来のシネラリン(Goto et al., Tetrahedron 25: 6021, 198 4)、ツユクサ (Commelina communis) 由来のアオバニン (Goto and Kondo, Angew. Chem. Int. Ed. Engl. 30: 17, 1991) 及びオ ヤマリンドウ(Gentiana Makinoi)由来のゲンチオデルフィン(Yoshida et al., Tetrahedron 48:4313, 1992) を始め、自然界か らの数多くの分離例が報告されている(タイマツバナ: Kondo et a 1., Tetrahedron 26: 5879, 1985; シソ、パンジー: Goto et al., Tetrahedron 27: 2413, 1987; シマフムラサキツユクサ: Idaka et al., Tetrahedron 28: 1901, 1987; ヤマノイモ: Shoyama et a 1., Phytochemistry 29: 2999, 1990; アカキャベツ、キキョウ、 ロベリア、ラークスパー、チョウマメ: Goto and Kondo, Angew. C hem. Int. Ed. Engl. 30: 17, 1991; ニンジン: Glabgen et al., Phytochemistry 31: 1593, 1992; アサガオ: Lu et al., Phytoch emistry 32; 659, 1992; Saito et al., Phytochemistry 40: 1283, 1995; キランソウ、トウバナ、オドリコソウ、ラベンダー、イヌハ ッカ、オオキセワタ、プレクトランサス、ウツボグサ、ヒゴロモソ ウ、ネジリイモ: Saito and Harborne, Phytochemistry 31: 3009, 1992; オオオニバス: Strack et al., Phytochemistry 31: 989, 1992; カンパニュラ : Brandt et al., 33: 209, 1993; リンド ウ: Hosokawa et al., Phytochemistry 40: 941, 1995; ヒヤシン ス: Hosokawa et al., Phytochemistry 40: 567, 1995;)。

これらのアントシアンを含むフラボノイドを修飾するアシル基は 構造的に2種類に分けられる。一つはハイドロキシ桂皮酸を中心と する芳香族アシル基であり、もう一つはマロニル基のような脂肪族 WO 96/25500 PCT/JP96/00348

アシル基である。これらのアシル基転移反応のうち、グルコースを介して芳香族アシル基、好ましくはクマル酸やコーヒー酸が結合したアントシアンはその吸収極大が長波長側に移動することがアサガオ(Pharbitis nil)のアントシアン系色素を用いた実験により観察された(Dangle et al. Phytochemistry 34 : 1119, 1993)。

さらに、サイネリア(Senecio cruentus)由来のシネラリンは 1個の脂肪族アシル基と3個の芳香族アシル基を有するが、シネラ リンからの芳香族アシル基の解離により、中性の水溶液中で色素の 安定性が低下することが報告されている(Goto et al., Tetrahedr on 25 : 6021, 1984) 。また、リンドウ (Gentiana makinoi) に由来するゲンチオデルフィンはその分子内に存在する2つの芳香 族アシル基により、サンドイッチ型の分子内スタッキングが起こり 、水溶液中で色素が安定化されることが報告されている(Yoshida et al., Tetrahedron 48:4313, 1992)。さらに、吉田らは、リン ドウのアントシアニンにはアントシアニンの 5 位のグルコースと 3 '位のグルコースのそれぞれにアシル基が結合していることを明ら かにした(Tetrahedron 48,4313,1992)。また、シソ(Perilla ocimoides) の葉のアントシアニンはシアニジン 3 , 5 - ジグルコ シドの 3 位のグルコースにクマール酸が結合したシソニンであるこ とも報告されている(Tetrahedron Letters 27, 2413-2416, 1978) 。

しかしながら、これらの研究は有機化学的側面から天然色素の構造学的研究においてなされており、アシル基を転移する酵素を単離するなどの生化学的側面からの研究はなされていない。

また、植物におけるアントシアン系色素へのアシル基転移酵素の うち、脂肪族アシルであるマロニル基転移酵素についてはパセリの 培養細胞 (Matern et al., Arch. Biochem. Biophys. 208: 233, 1 WO 96/25500 PCT/JP96/00348

981; Matern et al., Arch. Biochem. Biophys. 226: 206, 1983; Matern et al., Eur. J. Biochem. 133: 439, 1983) やCicer arientium の実生 (Koster et al., Arch. Biochem. Biophys. 234: 513, 1984) からのものを始めとして多くの報告が為されている。

また、芳香族アシル基転移反応は1980年にナデシコ科の植物であるSilene (Kamsteeg et al., Biochem. Physiol. Pflanzen 175: 403, 1980) で初めて示され、Matthiola の可溶化酵素画分にも同様の芳香族アシル基転移酵素活性が見い出されている(Teusch et al., Phytochemistry 26: 991, 1986)。

しかしながら、これらの報告では酵素活性の存在を示したのみに留まっており、対応する酵素蛋白質を特定したり、その一次構造やさらにはそれをコードする遺伝子についてはなんら知見が得られていない。それ以外の芳香族アシル基転移酵素についても蛋白質や遺伝子の一次構造を明らかにした報告はなく、さらにこのアントシアン系色素のアシル化反応を花色幅の拡大に積極的に利用して花を育種した例や、アシル化を用いてアントシアンの安定化をはかった報告もない。

一方、ペチュニア($\underline{Petunia}$ $\underline{hybrida}$)のアントシアニンの生合成経路はよく研究されており(Wiering, H. and de Vlaming, P. Inheritance and biochemistry of pigments. Petunia, P49-65, (1984)、Griesbach, R. J., asen, S. and Leonhardt, B. A., Phytochemistry, 30, 1729-1731, 1991)、アシル基を含むアントシアニンが存在することが知られている。ペチュニアのアントシアニンのアシル基はクマル酸あるいはカフェ酸が知られており、アントシアニンの 3 位のルチノシドに一分子のクマル酸又はカフェ酸が結合していて、化学構造はアントシアニジンがマルビジンの場合、それぞれ3-0-(6-0-(4-0-クマロイル)- α -D-グルコピラノシル)-5-0- β -D-グルコピラノ

シル-マルビジン、3-0-(6-0-(4-0-カフェオイル)-α-D-グルコピラノシル)-5-0-β-D-グルコピラノシルーマルビジンであるとされていた。しかし、アシル基を2つ持つアントシアニンについての報告例はなかった。

発明の開示

本発明は、芳香族アシル基転移活性を有する蛋白質をコードする遺伝子及びその利用に関するものである。即ち、当該利用に関しては、植物において、フラボノイド、好ましくはアントシアンへのアシル基転移反応を制御する方法が挙げられ、それにより単一種が広範囲の花色を発現する可能性を提供する。特に、芳香族アシル基の転移により、アントシアンの吸収極大が長波長側に移動することから、既存の花色に青味を持たす場合に有効であると考えられる。

これらの技術を実現化させるためには芳香族アシル基転移反応をつかさどる酵素を明らかにし、その酵素をコードする c D N A を分離する必要がある。更に、一つのアシル基転移酵素の c D N A から遺伝子の相同性を利用して他のアシル基転移酵素遺伝子の分離が可能となる。また、アシル化によりアントシアンの安定性が増すことから、安定なアントシアン色素の生産も可能となる。

本発明者らは、リンドウの花弁からアシル基転移酵素を精製し、その一次構造を決定した。更には、遺伝子組換え技術を用いてリンドウ、ペチュニア、シソ及びサイネリアのアシル基転移酵素の c D N A を単離し、構造遺伝子の塩基配列を決定した。即ち、本発明はリンドウ、ペチュニア、サイネリアの花弁及びシソの葉に存在するアシル基転移酵素をコードしている D N A 配列を提供するものである。また、本発明に係る酵素を用いてアントシアン系色素をアシル化することにより花色を変化させることができ、アントシアンの安

5

定性を増すことができる。

具体的な記載

アシル基転移酵素をコードする遺伝子は例えば次のようにして得ることが出来る。即ち、まず、リンドウの花弁よりアシル基転移酵素を精製する。従来、本発明が成される以前に、芳香族アシル基転移酵素の精製に成功した例はなく、本発明者らは各種のクロマトグラフィー法、特にシバクロンブルー3GA(Cibacron Blue 3GA)を固定した樹脂(例えば、ブルーセファロース(登録商標)樹脂等)を用いたアフィニティークロマトグラフィー法を行うことにより初めて当該酵素の精製に成功した。

次に、常法に従ってアシル基転移酵素の部分アミノ酸配列を解明 し、それらのアミノ酸配列に対応する合成ヌクレオチドを作製する 。

一方、同じリンドウの花弁よりpoly A+RNAを抽出し、常法により、2本鎖cDNAを合成し、更にcDNAライブラリーを作製する。前述の2本鎖cDNAを鋳型にし、前述の合成DNA とcDNAを合成する際に使用した合成DNAプライマーを用い、PCR法により、アシル基転移酵素遺伝子に特異的なDNA断片を取得する。次に、このDNA断片をプローブにして、前述のcDNAライブラリーをスクリーニングし、陽性クローンを得る。そして、このクローンから回収されるプラスミドDNAを分離し、DNA塩基配列を決定する。更に精製したアシル基転移酵素の分析により、陽性クローンが求め酵素のアミノ酸配列とを比較することにより、陽性クローンが求めるcDNAクローンであることを確認する。

また、本発明者らは、ペチュニア品種サフィニアパープル(サン

トリー(株))の花色が通常の赤紫から紫に変化した変異株(VM)を見いだし、アントシアニンの構造決定を、例えば吉田らの文献(Yoshida et al., Tetrahedron 48;4313,1992)に記載の方法に従って行った。

本発明の DNAとしては、例えば配列番号:1~6のいずれかに記載するアミノ酸配列をコードするものが挙げられる。しかしながら、複数個のアミノ酸の付加、除去及び/又は他のアミノ酸による置換により修飾されたアミノ酸配列を有する蛋白質も、もとの蛋白質と同様の酵素活性を維持することが知られている。従って本発明は、配列番号:1~6のいずれかに記載のアミノ酸配列に対して1個又は複数個のアミノ酸の付加、除去及び/又は他のアミノ酸により置換されている修飾されたアミノ酸配列を有し、なお、芳香族アシル基転移活性を維持している蛋白質をコードする遺伝子も本発明に属する。

本発明はまた、配列番号:1~6のいずれかに記載の塩基配列又はその部分、例えばコンセンサス領域の6個以上のアミノ酸をコードする部分に対して、例えば2ないし5×SSC,50℃の条件下でハイブリダイズし、且つ芳香族アシル基転移活性を有する蛋白質をコードする遺伝子に関する。なお、最適なハイブリダイゼーション温度は低くするのが好ましく、例えばアミノ酸6個をコードする塩基配列(18塩基)の場合は、50℃以下の温度が好ましい。本発明はさらに、配列番号:1~6のいずれかに記載のアミノ酸配列に対して15%以上、好ましくは25%以上、例えば30%以上の相同性を有するアミノ酸配列を有し、且つ芳香族アシル基転移活性を有する蛋白質をコードする遺伝子に関する。

生来の塩基配列を有する DNAは、実施例に具体的に記載するよう

に、例えばcDNAライブラリーのスクリーニングにより得られる。

また、修飾されたアミノ酸配列を有する酵素をコードする DNAは、生来の塩基配列を有する DNAを基礎にして、常用の部位特定変異誘発や PCR法を用いて合成することができる。例えば、修飾を導入したい部位を含む DNA断片を、上記により得られたcDNA又はゲノミック DNAの制限酵素消化により得、これを鋳型にして、所望の変異を導入したプライマーを用いて部位特定変異誘発又は PCR法を実施し、所望の修飾を導入した DNA断片を得、これを、目的とする酵素の他の部分をコードする DNAに連結すればよい。

あるいはまた、短縮されたアミノ酸配列を有する酵素をコードする DNAを得るには、例えば目的とするアミノ酸配列より長いアミノ酸配列、例えば全長アミノ酸配列をコードする DNAを、所望の制限酵素により切断し、得られた DNA断片が目的とするアミノ酸配列の全体をコードしていない場合には、不足部分を合成 DNAを連結することにより補えばよい。

また、このクローンを大腸菌及び酵母での遺伝子発現系を用いて発現させ、酵素活性を測定することにより、得られた遺伝子がアシル基転移酵素をコードしていることを確認し、アシル基転移酵素遺伝子の翻訳領域を明らかにすることにより本発明に係るアシル基転移酵素をコードする遺伝子が得られ、更に、当該遺伝子を発現させることにより遺伝子産物である目的のアシル基転移酵素蛋白を得ることができる。

あるいはまた、配列番号 1 ~ 6 のいずれかに記載のアミノ酸配列に対する抗体を用いても、前記蛋白を得ることができる。

従って本発明はまた、前記の DNAを含んでなる組換えベクター、特に発現ベクター、及び該ベクターにより形質転換された宿主に関する。宿主としては、原核生物又は真核生物を用いることができる

。原核生物としては、細菌、例えばエシェリヒア(<u>Escherichia</u>) 属に属する細菌、例えば大腸菌(<u>Escherichia</u> <u>coli</u>)、バシルス (<u>Bacillus</u>)属微生物、例えばバシルス・ズブチリス(<u>Bacillus</u> <u>subtilis</u>)、等常用の宿主を用いることができる。

真核性宿主としては、下等真核生物、例えば真核性微生物、例えば真菌である酵母又は糸状菌が使用できる。酵母としては、例えばサッカロミセス(Saccharomyces)属微生物、例えばサッカロミセス・セレビシエ(Saccharomyces cerevisiae)等が挙げられ、また糸状菌としてはアスペルギルス(Aspergillus)属微生物、例えばアスペルギルス・オリゼ(Aspergillus oryzae)、アスペルギルス・カー(Aspergillus niger)、ペニシリウム(Penicillium)属微生物等が挙げられる。さらに、動物細胞又は植物細胞が使用でき、動物細胞としては、マウス、ハムスター、サル、ヒト等の細胞系が使用される。さらに、昆虫細胞、例えばカイコの細胞、又はカイコの成虫それ自体も宿主として使用される。

本発明の発現ベクターは、それらを導入すべき宿主の種類に依存して発現制御領域、例えばプロモーター及びターミネーター、複製起点等を含有する。細菌用発現ベクターのプロモーターとしては、常用のプロモーター、例えばtrc プロモーター、tac プロモーター、例えばでプロモーターとしては、例えばグリセロアルデヒド3リン酸デヒドロゲナーゼプロモーターの、PH05プロモーター等が使用され、糸状菌用プロモーターとしては例えばアミラーゼ、trp C等が使用される。また、動物細胞宿主用プロモーターとしてはウイルス性プロモーター、例えばSV40アーリープロモーター、SV40レートプロモーター等が使用される。

発現ベクターの作製は、制限酵素、リガーゼ等を用いて常法に従って行うことができる。また、発現ベクターによる宿主の形質転換

も、常法に従って行うことができる。

前記蛋白質の製造方法においては、前記の発現ベクターにより形質転換された宿主を培養、栽培又は飼育し、培養物等から常法に従って、例えば、濾過、遠心分離、細胞の破砕、ゲル濾過クロマトグラフィー、イオン交換クロマトグラフィー等により目的とする蛋白質を回収、精製することができる。

また、本明細書において示したように、リンドウ、ペチュニア、シソ及びサイネリア由来のアシル基転移酵素を精製し、常法に従って当該酵素に対する抗体を得ることにより、その抗体と反応する蛋白質を作るcDNA又は染色体DNAをクローニングすることができる。従って、本発明はリンドウ、ペチュニア、シソ及びサイネリ

ア由来のアシル基転移酵素の遺伝子のみに限定されるものではなく 、広く芳香族アシル基転移酵素に関するものである。

さらに本発明は、アシル基転移酵素の遺伝子を導入することにより、色が調節された植物もしくはその子孫又はそれらの組織に関するものであり、その形態は切花であってもよい。

また、本明細書においてはアントシアンを含むフラボノイドのアシル基転移反応において、アシル基の供与体としてp-クマロイルーCoA又はカフェオイルーCoA等のCoAエステルを挙げたが、p-クマロイル、フェルロイル又はシナポイルー1-〇-グルコースといったハイドロキシシンナモイルー1-〇-グルコースも芳香族アシル基の供与体としての利用が可能であるので(Glassgen a nd Seitz,Planta 186:582,1992)、本発明に係る酵素を用いた利用が可能である。

実施例

以下に本発明を実施例に基づいて詳細に説明する。実験の手順は特に記述しない限りSambrookらのMolecular Cloning (Cold Spring Harbor Laboratory Press, 1989) に従った。

実施例1. 植物からのアシル基転移酵素の検索

(1) 基質の調製

デルフィニジン3, 5 - ジグルコシドおよびシアニジン3, 5 - ジグルコシドはバーベナ(Verbena hybrida)の一品種であるタピアンバイオレット(サントリー(株)より購入可能)の花弁からそれぞれのジアセチル体を抽出し、脱アセチル化することにより取得した。タピアンバイオレットの花弁(3 4 8 g)を液体窒素とともにホモジナイザーで摩砕し、50%(v/v)アセトニトリル、0.2%トリフルオロ酢酸(TFA)溶液1.5 Lに浸して3日間

放置した。

濾紙上にケイソウ土(#100)を敷き詰めて吸引ろ過し、ロータリーエバポレーターで約半分量に濃縮して、HP-20(ファルマシア社)にて、ゲル濾過を行った。800mlの蒸留水で洗浄後、50%アセトニトリル、0.1%TFA 800mlで色素画分を溶出した。エバポレーターで濃縮後、凍結乾燥して、粗色素(7.3g)を得た。

タピアンの主色素はデルフィニジン及びシアニジンの3,5ージアセチルグルコシドであるため、以下の脱アセチル化操作を行った。粗色素1gをメタノール50mlに溶解し、窒素ガスを15分間通気して溶存酸素を除いた後、氷冷した。

一方で、1 N水酸化ナトリウム50 m 1 から同様に溶存酸素を除き、氷冷下で先の色素溶液に撹拌しながら滴下し、更に30分間撹拌して加水分解反応をさせた。6 N塩酸1 m 1 を加えて反応を停止させ、蒸留水5 m 1 を加えてエバポレーターで約半量に濃縮し、終濃度10%になるようにメタノールを加えて2 m 1 ずつSep Pac C18カラム(ウォーターズ アソシエーション社)にアプライし、蒸留水5 m 1 で洗浄した後、30%アセトニトリル、0.6% TFA2 m 1 で溶出させた。

溶出液をすべて集めてエバポレーターで濃縮し、HPLCによる分取を行った。DEVELOSIL ODS-10/20(50×300mm;野村化学(株))カラムを用い、120分間でTFAが0.1%から0.3%、アセトニトリルが10%から30%の直線濃度勾配によって溶出させた。毎分32mlの流速で0.5分毎に分取し、各画分の色素画分の吸収スペクトルを測定して、デルフィニジン3,5-ジグルコシドを分離してそれぞれを濃縮、凍結乾燥した(デルフィニジン3

, 5 - ジグルコシド 7 5 mg、シアニジン3, 5 - ジグルコシド 5 0 mg)。各々を1. 5 mg/mlになるように0. 5 % T F A に溶解して、使用するまで-80℃に保存した。

もう一方の基質であるヒドロキシシンナモイルーCoAの合成は以下の方法で行った。最初に、文献(Stockigt and Zenk, Z. Naturforsch. 30: 352, 1975)に従ってカフェ酸(ナカライテスク社)とNーヒドロキシスクシンイミド(メルク(Merck)社)よりエステルを合成した。このエステル0.5mmolを2mlのアセトンに溶解し、一方でコエンザイムA(CoA: KOHJIN)0.1mmolと炭酸水素ナトリウム1mmolとを20mlの水に溶解して、これに先のエステル溶液を1滴ずつ加えた。

撹拌しながら窒素ガスの下で室温で一晩反応させた後、ロータリーエバポレーターで濃縮し、遠心(27000×g、10分)によって不溶物を除いて、HPLCで目的の生成物を分取した。DEVELOSIL ODS-10/20(50×300mm;野村化学(株))カラムを用い、0.1%TFA存在下でアセトニトリルが40分間で18%から36%の直線濃度勾配によって溶出させた。毎分32m1の流速で0.8分毎に分取し、各画分の吸光スペクトル(200~400nm)を調べて344~348nmに極大吸収を持つ画分をカフェオイルCoA画分として集めた。それらをロータリーエバポレーターで濃縮した後、同じカラムで再び分離した。

但し、アセトニトリル18%、TFA0.1%の等濃度クロマトグラフィーで分離を行い、同様に吸光スペクトルを調べて、目的の化合物を含む画分をロータリーエバポレーターで濃縮し、凍結乾燥した。この方法で35μmolの生成物が得られた。また、上記の方法中カフェ酸のかわりにクマル酸を用いることによりp-クマロイル-CoAが合成でき2mg/mlになるように蒸留水に溶解し

1 3

て、使用するまで−80℃に保存した。

(2)粗酵素液の抽出方法

酵素を抽出する植物組織(花弁や食用部分等)3gを液体窒素で凍結させて乳鉢上で磨砕した。10mlの抽出用緩衝液(100mMリン酸緩衝液(pH7.5)、10mMアスコルビン酸ナトリウム、14mM2-メルカプトエタノール)を加えて更に磨砕し、ガーゼ3層で濾過した。DOWEX(1-X2、100-200mesh;室町化学工業(株))3gを添加して10分間撹拌した後に吸引ろ過によって樹脂を除去し、遠心分離(27000×g、20分)によって植物体残査を除いた。70%飽和硫安で塩析を行い、タンパク質を沈殿させた。沈殿を1mlの溶解用緩衝液(20mMリン酸緩衝液(pH7.5)、14mM2-メルカプトエタノール)に懸濁し、遠心分離(27000×g、5分)によって不溶物を除去した後、溶解用緩衝液で平衡化させたSephadex G-25カラム(NAP-10;ファルマシア社)を用いて脱塩した溶液を粗酵素液として用いた。

(3)酵素活性の測定方法

100mM リン酸緩衝液(pH8.5)、デルフィニジン3、5-ジグルコシド 24nmo1、カフェオイルーCoA 21.5nmo1、及び酵素液20μ1を含む反応液50μ1を30℃で10分間反応させた。13.8%(v/v)酢酸を含むアセトニトリル50μ1を加えて反応を停止させ、遠心分離(18000×g、5分)によって不溶物を除いた後、高速液体クロマトグラフィー(HPLC)で分析した。分析はC18逆相カラム(YMCーPack ODSーA、6.0×150mm;ワイエムシィ社)を用い、21.6%アセトニトリル、0.1%トリフルオロ酢酸を毎分1m1の流速で流し、反応液20μ1を分析した。化合物の検出には

三次元クロマトグラフィーシステム(CLASS-LC10: (株) 島津製作所)を使用し、生成物は、基質にはない330nm付近に極大吸収をもつこと、及び可視部の吸収極大値が519nmから525nmへと約6nm長波長側に移動していることから、アシル基(カフェ酸)が結合し、デルフィニジン3-グルコシル5-カフェオイルグルコシドが生成していることを確認した。

520nmの波長で検出し、基質(デルフィニジン3,5ージグルコシド)と生成物(デルフィニジン3ーグルコシル5ーカフェオイルグルコシド)とのピーク面積の和に対する生成物のピーク面積の比を求め、生成物のモル数を計算して酵素活性(kat)とした。このHPLC分析における各化合物の展開時間は次の通りである。カフェオイルーCoA:6.3分、デルフィニジン3,5ージグルコシド:3.3分、デルフィニジン3ーグルコシル5ーカフェオイルグルコシド:5.3分。

但し、この反応条件下においては反応液中のデルフィニジン3,5-ジグルコシドがアシル基転移酵素により、カフェ酸で修飾されることにより、反応液の色が濃青色から赤紫色に変化するため、簡便な方法として、マイクロタイタープレート中にて反応を行い、色の変化によって酵素活性を調べることができる。

なお、反応後のプレートを室温で長期間(1日~1週間)放置すると、アシル化されていないデルフィニジン3,5ージグルコシドは無色化するのに対して、酵素の働きによってアシル化されたデルフィニジン3,5ージグルコシドがアシル化されることによって中性からアルカリ性の水溶液中での安定化が認められた。同様にシアニジン3,5ージグルコシドを基質とした場合も反応液の色が赤紫色から濃青色に変化し、色素が安定化することから、簡易的酵素ア

.

ッセイ方法での酵素活性の検出が可能である。

一方、カフェオイルーCoAのかわりにp-クマロイルーCoAを基質とした場合もアシル化による色の変化及びアントシアニンの安定化が認められるが、色調の変化の度合いはカフェオイルーCoAの場合に比べ少ない。

(4)アシル基転移酵素の検索

各種の植物(リンドウ、アイリス、デルフィニウム、ストック、トルコキキョウ、ナデシコ、スイートピー、ラークスパー、パンジー、サイネリア(以上、花弁)、赤キャベツ、赤タマネギ、金時ニンジン、西洋ニンジン、ムラサキイモ、シソ(以上、食用部分)及びナス(果実上皮部分))から上記の方法によって粗酵素液を抽出し、酵素活性を測定したところ、トルコキキョウ、ナデシコ及び、リンドウに各々0.63、0.0012及び21.8nkat/mg蛋白質のアシル基転移活性が認められた。抽出タンパク質当たりのアシル基転移酵素活性が最も高いリンドウを酵素精製の材料として用いることにした。

なお、タンパク質濃度の定量にはBio-Rad Protein Assay (Bio-Rad社)を用いた。

実施例2. リンドウ由来のアシル基転移酵素の精製

(1)酵素の精製

工業(株))、5 m M ジチオスレイトール (DTT; ナカライテスク社))とポリクラールSB-100(和光純薬工業(株))500gを加えてポリトロンで完全に粉砕した。

粉砕液をガーゼ 4 層で搾ったのち、さらに遠心分離(11000 × g、30分)して細胞残査を除去した。 40%飽和硫安で塩析を行い、不溶物を除去した後に70%飽和硫安で再び塩析を行った。 沈殿を250m1の溶解用緩衝液(20mMトリス塩酸(pH7.0)、 $10\mu M$ p-APMSF、<math>1mM DTT)に懸濁し、遠心分離によって不溶物を除去した後、同緩衝液で平衡化させたSephadex G-25(95×110mm; ファルマシア社)のカラムを用いて脱塩した。蛋白質を含む画分を集め(<math>860m1)、以下のクロマトグラフィーに供した。

なお、Q-Sepharose Fast Flow、HiTr ap Blue及びPhenyl Superoseの各クロマト グラフィーは室温でFPLCシステム(ファルマシア社)を用いて 行った。

まず、溶解用緩衝液で平衡化させたQ-Sepharose Fast Flow(26×100mm;ファルマシア社)にアプライし、同じ緩衝液で十分に洗浄した後、塩化ナトリウム濃度を60分間で0Mから0.4Mに変化させる直線勾配により溶出させた(8ml/min)。酵素活性のある画分を集めた(130ml)後、アフィニティクロマトグラフィーを行った。溶解用緩衝液で平衡化させたHiTrap Blue(5ml、16×25mm;ファルマシア社)を3本直列に繋いだカラムにアプライし、同緩衝液で十分に洗浄した後、1M塩化ナトリウムを含む同緩衝液で溶出させた。活性画分を70%飽和の硫安で塩析し、蛋白質の沈殿を得た。

この沈殿物を1mlの溶解用緩衝液に懸濁して遠心分離によって

1 7

不溶物を除いた後、溶解用緩衝液で平衡化させたSephacry 1 $S-200(25 \times 1150 mm; ファルマシア社)にアプライした。毎分0.2 m1の流速で、約3 m1ずつ分取し、再び活性 画分を集めて(27 m1)、1 Mになるように硫安を加えた。十分に撹拌した後、遠心分離(39000×g、10分)により不溶物を除去し、1 M 硫安を含む溶解用緩衝液で平衡化させた<math>Pheny$ 1 Superose $5/5(5.0 \times 50 mm; ファルマシア社)にアプライした。$

毎分0.5 m 1 の流速で、十分に洗浄した後、硫安濃度を60分間で1 Mから0 Mに直線的に下げることにより蛋白質を流出させた。0.5 m 1 ずつ分取した各画分の酵素活性を測定し、SDSーポリアクリルアミドゲル電気泳動(10% アクリルアミドゲル;第一化学(株))で分析した結果、ほぼ単一の蛋白質として分子量約50,000のバンドが認められ、且つこの蛋白量と活性との相関が認められることから、この蛋白質が目的のアシル基転移酵素であると断定した。更に単一標品を得るために活性を持つ画分(12 m 1)を逆相HPLCにより精製した。

カラムはDEVELOSIL 300C4-HG-5(4.6×250mm;野村化学(株))を用い、毎分1mlの流速で、トリフルオロ酢酸0.1%存在下、30分でアセトニトリル濃度を40.5%から56.7%の直線濃度勾配で変化させることにより溶出させた。280nmの吸収をモニターしながら1mlずつ分画し、さらに各画分をSDS-ポリアクリルアミドゲル電気泳動で分析して分子量約50,00の蛋白質を含む画分を集めた。このHPLC操作を30回繰り返し、スピードバック(サバント社)で濃縮することにより約0.2mgの単一蛋白質標品を得ることができた。

1 8

(2)精製蛋白質の分析

500pmolの精製標品をアミノ酸シークエンサー(PSQ-1; (株)島津製作所)に供したところ、エドマン分解の第一段目で200pmolのグルタミン酸、更に第二段でも90pmolのグルタミン酸が検出されたが、三段目以降は判読不能であったため、本酵素のN末端は何らかの形でブロックされていると考えられた。

しかしながら、N末端がグルタミン酸である場合にはピログルタミル基が生じ、エドマン分解によるシークエンスでは上述のような結果を示すことが知られていることから本酵素のN末端はグルタミン酸である可能性が高い。

残りの沈殿を $80\mu1$ の45mMトリス塩酸(pH8.5)、3.6M 尿素、0.09% SDSを含む溶液に溶解し、リシルエンドペプチダーゼ(LysylEndopeptidase: Achromobactor lyticus 由来;和光純薬工業(株))16pmo1を加えて、37%で6時間反応させた。反応液をそのままDEVELOSIL 300C4-HG-5カラムで分離した。

分離条件は、0.1%トリフルオロ酢酸のもと、70分でアセトニトリル濃度が0%から80%の直線濃度勾配、毎分0.7mlの流速で、210nmの吸収をモニターしながら吸収のピーク画分のみを分取した。得られた13本のピーク画分のうち、アセトニトリル濃度が32%から40%の時点で溶出されたピーク画分の3本を、スピードバックによる濃縮後、さらにODSカラム(DEVELOSIL 300ODS-HG-5;野村化学(株))を用い、先と同じ条件で分離及び精製を行った。

各ピーク画分をスピードバックで濃縮・乾固させ、40%アセトニトリル30μ1に溶解させ、アミノ酸シークエンサーに供した。 その結果6本のペプチドのアミノ酸配列を判読することができた。

以下に、各々のペプチドのアミノ酸配列を示す(アミノ末端からカルボキシル末端の方向に示す)。

アミノ酸配列(AT73); Arg-Phe-Leu-Gly-Ile-Thr-Gly-Ser-Pro-Lys(配列番号:7)

アミノ酸配列(AT72); Ile-His-Met-Asp-Ala-Phe-Ala-Lys(配列番号:8)

アミノ酸配列(AT741-1); Gly-Val-Glu-Ile-Gly-Val-Ser-Leu-Pro-Lys(配列番号:9)

アミノ酸配列(AT741-2); Ala-Ser-Leu-Ser-Leu-Thr-Leu-Lys(配列番号:10)

アミノ酸配列(AT9); His-Tyr-Val-Pro-Leu-Ser-Gly-Asn-Leu-Leu-Met-Pro-Ile-Lys(配列番号:11)

アミノ酸配列(AT83); Val-Arg-Ala-Thr-Tyr-Val-Leu-Ser-Leu-Ala-Glu-Ile-Gln-Lys(配列番号:12)

 実施例3.
 リンドウ由来のアシル基転移酵素の c D N A クローニ

 ング(1)

(1) c D N A ライブラリーの作製

市販されているリンドウ(Gentiana triflora var. janonica)から花弁を集め、液体窒素中で乳鉢で磨砕した。この磨砕物から、グアニジンチオシアネート/塩化セシウムを用いる方法によりRNAを得、オリゴテックス(日本ロッシュ)を用い、製造者が推奨する方法にて、poly A+RNAを得た。グアニジンチオシアネート/塩化セシウムを用いる方法は、R. McGookin, Robert J. Slaterらの、Methods in Molecular Biology vol 2, (Humana Press Inc. 1984) に詳細に示されている方法に従った。

得られたpoly A+RNAを鋳型とし、ZAP-cDNA合成キット(ストラタジーン社製)を用いて2本鎖cDNAを合成し

、ファージベクター A Z A P I I へのクローニングを行った。更に、同社の G i g a p a c k I I G o l d P a c k a g i n g E x t r a c t キットを用いて、当該キットに記載された方法で c D N A ライブラリーを作製した。

(2) 合成 D N A プライマーの設計

実施例 2 で得られた部分アミノ酸配列のうち、Ile-His-Met-Asp-Ala-Phe-Ala-Lys (配列番号:13)で示される配列は、リジルエンドペプチダーゼの特異性を考えると、Lys-Ile-His-Met-Asp-Ala-Phe-Ala-Lys (配列番号:14)であると考えられる。この配列の中のアミノ酸配列; Lys-Ile-His-Met-Asp-Ala-Phe-Ala (配列番号:15)で示される部分を用いて、以下のオリゴヌクレオチドを合成した。

ヌクレオチドの配列(オリゴ1);5'-AARATHCAYATGGAYGCITTYGC-3'(配列番号:16)

但し、特に記載のないかぎり、核酸の配列はIUPAC-IBU 準拠の核酸コード表に従って一文字で表記する。即ち、A:アデニン、C:シトシン、G:グアニン、T:チミン、Y:C又はT、R :A又はG、H:A又はC又はT、及びIはイノシンを示す。

また、先に述べたc DNAライブラリー作製時に使用したプライマーをもとに以下の他のオリゴヌクレオチドも合成した。

(3) アシル基転移酵素遺伝子断片のクローニング

リンドウの花弁のRNAに由来する 2 本鎖 c DNA約 0. 1 μ g を鋳型にオリゴ 1 とオリゴ 2 をプライマーとして、PCR反応を行った。反応はポリメラーゼチェイン反応キットGene Amp (宝酒造(株))を用いて、95℃ 1 分、45℃ 1 分、72℃ 2 分を

1サイクルとし、35サイクル行い、得られた反応物を1%アガロース電気泳動したところ、約400bpの特異的なDNA断片が観察された。このDNA断片を回収し、その10ngをDIG-ヌクレオチド混合液(ベーリンガー社)と合成ヌクレオチドIとIIを用いて、前述のPCR反応を25サイクル行い、DIGで標識したDNA断片を得た。

(4) アシル基転移酵素のcDNAのクローニング

上記のようにして得られた λ ファージライブラリーを大腸菌 X L 1 - B 1 u e 株 (ストラタジーン社) に感染させ、1 プレート当り プラーク 5 万個を含む 5 枚のプレート (直径 1 3 . 5 c m) をスクリーニングした。

ファージをフィルター(Hybond N+、アマーシャム社)に吸着させ、製造者の推奨する方法で処理した後、このフィルターをハイブリダイゼーションバッファー(5×SSC、50%ホルムアミド、50mM リン酸ナトリウムバッファー(pH7.0)、7%SDS、2%Blocking reagent (ベーリンガー社)、0.1%ラウロイルサルコシン、80mg/mlサケ精子DNA)中で42℃で1時間保持した。DIG標識した前述のDNA断片をハイブリダイゼーション液中に加え、さらに16時間のインキュベーションを行った。

洗浄液(0.2×SSC、0.1%SDS)でフィルターを洗浄し、アルカリホスファターゼで標識されたDIG特異的な抗体による酵素免疫測定法(ベーリンガー・マンハイム株式会社)により5ープロモ4ークロロ3ーインドリルリン酸とニトロブルーテトラゾリウム塩の発色反応によって検出した。検出方法は製造者による使用説明書に従った。

この結果、数十個の陽性クローンが得られ、うち20クローンを

ストラタジーン社の推奨する方法で、cDNAをプラスミドpBluescript SK 上に回収した。アガロースゲル電気泳動でcDNAの挿入を調べたところ、全てのクローンにおいて各種サイズのcDNAの挿入が認められ、そのうち最長のものは1.7kbであった。それらのうちから適当に9クローン選び制限酵素による解析を行ったところ、サイズは異なるが全てのクローンで同様の制限酵素パターンを示した。

(5)塩基配列の決定

得られたクローンからプラスミドを抽出し、ABI373A・DNA シークエンサー(パーキンエルマー社)を用い、同社の推奨する蛍光試薬によるダイデオキシ シークエンス法で、前述の9クローンのうち全長を含むと考えられる6つのクローン(pGAT2、pGAT3、pGAT7、pGAT8及びpGAT11)についてcDNAの5′側の塩基配列を決定した。

その結果、これらのクローンは互いに同じ塩基配列を持っており、 c D N A の長さが異なるものと考えられた。これらのクローンのうちp G A T 4 の全塩基配列を決定した。塩基配列の決定は、K i l o - S e q u e n c e 用 D e l e t i o n K i t (宝酒造 (株))を用いて、一連の欠失クローンを得た後、各々のクローンを用いて上述の方法により行った。

(6)塩基配列とアミノ酸配列の比較

PGAT4に挿入されたcDNAは1703塩基でありその中に 1410塩基(終止コドンを含む)からなるオープンリーディング フレーム(ORF)が見い出された。この配列を配列表・配列番号 1に示す。実施例2で明らかになったアシル基転移酵素の部分アミ ノ酸配列の全でがORF中のアミノ配列として存在することから、 クローニングされたcDNAは、リンドウ由来のアシル基転移酵素 遺伝子であると結論した。開始コドンについては、アミノ末端の解析からグルタミン酸がアミノ末端の残基であると推測されたので、cDNAの塩基配列の上で、5'側から最初のATGが開始コドンであると推察した。

一方、pGAT8に係るcDNAは、5′側がpGAT4よりも 7塩基短いため、完全長のcDNAではないと考えられた。

実施例 4. 大腸菌における遺伝子の発現

(1)発現プラスミドの構築

大腸菌でのアシル基転移酵素遺伝子の発現には、大腸菌の発現ベクターであるpTrc99A(ファルマシア社)を用いた。このpTrc99AはイソプロピルーβーDーチオガラクトピラノシド(IPTG)で誘導可能な大腸菌のtrcプロモーターを含み、その下流に目的遺伝子を挿入することにより、大腸菌での遺伝子発現が可能になる。

また、制限酵素 N c o I 部位が開始コドンである A T G 配列を利用して導入されており、N c o I 部位で組換えることにより、目的遺伝子の開始コドンからの直接発現が可能である。

pGAT4を当該ベクター内に存在する制限酵素部位EcoRI とKpnIで消化して得られる約1.8kbのDNA断片(配列表 ・配列番号1記載の塩基配列を全て含む)を前述のpTrc99A のEcoRI、KpnI部位に組換えることにより、pGAT10 1を構築した。

アシル基転移酵素の開始コドン近傍にNcoI部位の導入を行うために、開始コドン近傍、及びアシル基転移酵素遺伝子内部(開始コドンから300塩基目付近)に対応する以下の2種類のオリゴヌクレオチドを合成した。

オリゴヌクレオチド (GAT-NcoI);5'-TTCACCATGGAGCAA

ATCCAAATGGT-3'(配列番号:18)

オリゴヌクレオチド(GAT-ScaI); 5'-CGAGTCGCCCTCATCAC-3'(配列番号:19)

10ngのpGAT4を鋳型とし、上記のオリゴヌクレオチドをプライマーとしてPCR反応を行った。反応はポリメラーゼチェイン反応キットGene Amp(宝酒造(株))を用いて、95℃1分、56℃1分、72℃2分を1サイクルとし、15サイクル行い、得られた反応物を1%アガロース電気泳動したところ、約300bpの特異的なDNA断片が観察された。このDNA断片を回収し、制限酵素Nco1とAatIで切断後、pGAT101をNcoIとAatIで切断して得られる約6kbの断片と連結することにより、pGAT102を構築した。PCR法により増幅した部分の塩基配列はpGAT102構築後にpGAT4と同じであることを確認した。

(2) アシル基転移酵素遺伝子の大腸菌での発現

p G A T 1 0 2 で大腸菌 M M 2 9 4 (supE44 hsdR endA1 pro thin) (Meselson and Yuan, Nature, 217, 1110-, 1968)を形質転換した。なお、ここで形質転換される宿主は、形質転換用の宿主として利用可能な大腸菌であれば特に特定されるものではなく、遺伝子組換えに一般に用いられ、当業者が容易に入手できるその他の株(例えば、J M 1 0 9 や D H 5 等)を利用することができる。また、大腸菌の形質転換方法は H a n a h a n の方法に従った(J. Mol. Biol., 166, 557-, 1983)。形質転換された大腸菌をアンピシリン(5 0 μ g / m l)を含む 2 m l の L B 培地(トリプトン 1 0 g、酵母エキス 5 g、塩化ナトリウム 1 0 gを 1 リッターの蒸留水に溶かし、水酸化ナトリウムで p H を 7 . 2 に調整する)に植菌し、3 7 $\mathbb C$ で一晩培養した。

この培養液 1 m 1 を 1 0 m 1 の M 9 培地(リン酸一水素ナトリウム 0 . 6 %、リン酸二水素カリウム 0 . 3 %、塩化ナトリウム 0 . 5 %、塩化アンモニウム 0 . 1 %、グルコース 0 . 5 %、硫酸マグネシウム 1 m M、ビタミンB 1 4 μ g / m 1、 p H 7 . 2) にカザミノ酸 0 . 5 %とアンピシリン 5 0 μ g / m 1 を加えた培地に接種し、3 7 ℃で3時間培養後、0 . 5 Mの I P T G を 4 0 μ 1 添加(終濃度 2 m M)し、更に5 時間培養を続けた。集菌後、3 0 m M 塩化ナトリウムを含む 3 0 m M トリス塩酸バッファー(p H 7 . 5)で洗浄し、洗浄菌体を同じバッファー1 m 1 に懸濁した。1 m g リゾチーム、0 . 2 5 M E D T A を 2 5 μ 1 加えて 3 0 分間 0 ℃に放置した後、凍結・融解を 3 回繰り返して菌体を破壊した。

これを15000rpm、30分間遠心をして得た上清を粗酵素液とし、実施例1(3)で示した酵素活性測定法により酵素活性を測定した。マイクロタイタープレート法により、pGAT102を導入した大腸菌ではアシル基転移反応が確認されたので、HPLCによる分析を行った。

その結果、pGAT102を導入した大腸菌では24nmolのデルフィニジン3,5-ジグルコシドと21.5nmolのカフェオイル-CoAから18.3nmolのデルフィニジン3-グルコシル5-カフェオイルグルコシドの生成が認められた。

この結果と、リンドウのアントシアニンにおいては5位と3'位のグルコースにアシル基が結合しているという既知の事実と併せて考えると、pGAT4がコードするアシル基転移酵素はアントシアニジン3,5-ジグルコシドの5位のグルコースにアシル基を転移する反応を触媒することが判った。

また、大腸菌で生産されたアシル基転移酵素によりアシル化され

たデルフィニジン3,5-ジグルコシドも、リンドウから精製して得られたアシル基転移酵素によりアシル化されたものと同様に室温で長期間放置しても安定な発色を示した。

実施例 5. 酵母における遺伝子の発現

(1)酵母の発現ベクター

酵母の発現ベクターは、特開平 4 - 2 2 8 0 7 8 に記載の p Y E 2 2 m を使用した。

(2)アシル基転移酵素遺伝子の酵母での発現

PGAT4又はPGAT8を当該各ベクター内に存在する制限酵素部位EcoRIとKpnIで消化して得られる約1.8kbのDNA断片とPYE22mを同じくEcoRIとKpnIで消化して得られる約1.8kbのDNA断片を連結して酵母発現プラスミドPYGAT4とPYGAT8を各々構築した。PYGAT4は第1番目のメチオニンからの翻訳を行うが、PYGAT8では分離したcDNAの5,側の一部が欠けているため、アシル基転移酵素の翻訳開始メチオニン(配列表・配列番号1におけるアミノ酸配列番号;一1)ではなく、次のメチオニン(配列表・配列番号1におけるアミノ酸配列番号;5)からの翻訳が行われる。

これらの酵母発現プラスミドでは、アシル基転移酵素をコードしている c D N A は酵母の構成的なプロモーターのひとつであるグリセロアルデヒドー 3 リン酸脱水素酵素のプロモーターの下流に連結されており、同プロモーターにより転写が制御されている。

伊藤らの方法(Ito et al. J. Bacteriol., 153, 163-168, 1983)を用いpYGAT4及びpYGAT8で、酵母Saccharomyces ce revisiae G1315 (Ashikari et al. 、Appl. Microbiol. Biotech nol. 30, 515-520, 1989)を形質転換した。形質転換された酵母はトリプトファンの合成能の回復により選択した。

なお、ここで形質転換に用いる酵母の宿主は特に限定されるものではなく、TRP1遺伝子が不完全なためにトリプトファンの要求性を示す株であれば何れのものでも用いることができる(例えば、イースト・ジェネティク・ストック・センターより購入可能(Yeast Genetic Stock Center ; Berkeley、CA、USA;カタログ第7版(1991年)第36頁)。

得られた形質転換株を10m1の1%カザミノ酸(Difco社)を含むバークホルダー培地(Burkholder, Amer. J. Bot. 30, 20 6-210)にて、30で 40 時間振盪培養した。併せて、対照実験のために、トリプトファンの合成能を自然に回復した酵母も同様に培養した。

これらを集菌後、同量の菌体破砕用バッファー(30mM トリス塩酸 p H 7. 5、30 m M 塩化ナトリウム)で洗浄し、さらに l m l の同じバッファーにサスペンドし、1. 5 m l のエッペンドルフチューブに移した。遠心分離後、上清を除き0. 4 m l の同じバッファーで沈殿菌体を再度サスペンドし、400 m g のグラスビーズ(G l a s s Beads 425-600 microns A c i d - W a s h、シグマ社)を加えて激しく振盪することにより、酵母菌体を破砕した。

遠心分離後の上清を粗酵素液とし実施例1(3)で示した酵素活性測定法により酵素活性を測定した。マイクロタイタープレート法により、pYGAT4及びpYGAT8を導入した酵母は何れもアシル基転移反応が確認されたので、HPLCによる分析を行った。なお、対照に用いた酵母ではアシル基転移活性は認められなかった

その結果、pYGAT4及びpYGAT8を導入した酵母では2

2 8

4 n m o l のデルフィニジン3, 5 ー ジグルコシドと21, 5 n m o l のカフェオイルーC o A から各々16, 6 n m o l と20, 9 n m o l のデルフィニジン3 ー グルコシル5 ー カフェオイルグルコシドの生成が認められた。 p Y G A T 4 と p Y G A T 8 から生産される蛋白質はそのアミノ末端が異なるが、ともにアシル基転移酵素活性を保持していた。

また酵母で生産されたアシル基転移酵素によりアシル化されたデルフィニジン3,5-ジグルコシドも、リンドウから精製して得られたアシル基転移酵素によりアシル化されたものと同様に室温で長期間放置しても安定な発色を示した。

実施例 6 リンドウ由来のアシル基転移酵素の c D N A クローニ ング (2)

実施例3(6)に記載のpGAT4、即ち配列表・配列番号1記載のDNAを有するpGAT4を、制限酵素EcoRIとNdeIで消化して得られるDNA断片のうち、アシル基転移酵素の翻訳領域を含むDNA断片2つをまとめて回収し、前述の方法でDIG標識した。これをプローブとして実施例3(4)に記載したリンドウの花弁のcDNAライブラリーのファージを吸着させたフィルター(Hybond N+、アマーシャム社)を、製造者(アマーシャム社)が推奨する方法でフィルターに結合した色素及びDIG標識を除去して再生した後、低濃度ホルムアミド、50mM Tris-HC1、pH 7.5、1%SDS)中で42度で16時間ハイブリダイズした。

洗浄液(5×SSC、0.1%SDS)中で50度で洗浄し、実施例3(4)に記載したように発色させた。数十のクローンが発色したが、発色したクローンのうちで、実施例3(4)では発色しな

かったクローンを12個得た。これらのクローンの c D N A の塩基配列を先に述べたような方法で、5'側から決定したところ、11クローンはp G A T 4 の塩基配列と一致したが、1 クローンは一致しなかった。これをp G A T 1 0 6 とした。

pGAT106の全塩基配列を先に述べたようにして決定した。 pGAT106に挿入されたcDNAは1622塩基でありその中 に1440塩基(終止コドンを含む)からなるORFが見い出され た。これを配列表・配列番号2に示す。配列番号2が含むORFに ついて、pGAT4がコードするアミノ酸配列と全領域にわたって 、相同性を調べた。そのホモロジーは、38%であった。

pGAT106のコードするアミノ酸配列は、アシル基転移酵素であるpGAT4のコードしている酵素と相同であるため、同様な酵素活性、つまりアントシアニンにアシル基転移を触媒する活性を持っていると推測される。リンドウのアントシアニンは、5位と3'位のグルコースにアシル基を転移する酵素反応を触媒することを示唆する。また、この結果はアシル基転移酵素は、アシル基を転移するアントシアニンの糖の位置は異なっていても、アミノ酸配列及びそれをコードしている塩基配列は相同であることを示している。

先に述べたようにアシル基を有するアントシアニンは多数存在し、これら化合物のアシル基の数や位置は多様性に富み、アシル基の転移反応を触媒する酵素も多数あることが推測されるが、それらの酵素のアミノ酸配列は、ここで得られたpGAT4及びpGAT106のアミノ酸配列と相同性がみられることは容易に類推でき、これに基づき、他のアシル基転移酵素遺伝子を得ることができる。

実施例7.ペチュニアのアントシアニン

ペチュニア(Petunia hybrida)品種サフィニアパープル(サントリー(株))の花色が通常の赤紫から紫に変異した変異株(VM)のアントシアニンを、その花弁を液体窒素中で粉砕し、50%アセトニトリル、0.1%TFA水溶液で抽出した。濾過後、濾液をODS、ODPの逆相カラムクロマトグラフィーで分離、精製した。そのうちの一つの化合物の構造をFABMS、「H NMR、「コC NMRを用いて、詳細に解析したところ、新規なアントシアニンを見いだした。その構造を以下に示す。

即ち、この構造は3-0-(6-0-(4-0-(4-0-(6-0-カフェオイル- β-D - グルコピラノシル)-クマロイル)-α-L- ラムノシル)-β-D- グルコピラノシル)-5-0-β-D- グルコピラノシル- マルビジンであり、アシル基が 2 つ結合したアントシアニンであった。

 - グルコピラノシル)-カフェオイル)-α-L- ラムノシル)-β-D- グルコピラノシル)-5-0-β-D- グルコピラノシル- マルビジンも検出された。このアントシアニンは、 V M の花弁のみならず、フルコンブルー(サカタのタネ(株))、 Old Glory Blue(Ball Seeds)などの濃い紫色の花弁にも存在していることがわかった。 即ち、アシル基を 2 つ持つアントシアニンはペチュニアの濃い紫色に寄与していると思われる。

従って、ペチュニア由来のアントシアニンに関するアシル基転移 酵素には、アントシアニンの3位のルチノシドにクマル酸又はカフェ酸を転移する反応を触媒する酵素と、モノアシルマルビジンにグルコースを介してクマル酸又はカフェ酸を転移する反応を触媒する酵素の2種類があることを示唆する。

<u>実施例 8</u>. ペチュニア由来のアシル基転移酵素の c D N A クロー ニング

実施例3(6)に記載のpGAT4、即ち配列表・配列番号1記載のDNAを有するpGAT4のcDNA部分を、前述の方法でDIG標識し、ペチュニア(Petunia hybrida)品種オールドグローリーブルーの花弁のcDNAライブラリー(Nature, 366,276-279,1993)をプラークハイブリダイゼーションの手法により、スクリーニングした。ハイブリダイゼーションと洗浄は、実施例6と同様の条件で行った。

約20万クローンをスクリーニングし、弱くハイブリダイズするクローンを1つ得た。このクローンをpPAT5とした。塩基配列を決定したところ、pPAT5には複数のDNAが挿入されていた。すなわち、プラスミドのリバースプライマー側に、pGAT4およびpGAT106のコードする蛋白質のC末端の配列に似た配列が存在した。そこで、リバースプライマーのもとに、ヌクレオチド

配列;5'-AACAGCTATGACCATG-3'(配列番号:20)を合成し、このオリゴヌクレオチドをRPプライマーとした。

PPAT5のcDNAの完全長を取得するために、RPプライマー、オリゴ2プライマー各100ng、XhoIで消化したpPAT5・10ngを最終体積50μ1で、PCR反応を行った。反応は、95℃1分、55℃1分、72℃1分を1サイクルとし、20サイクル行った。得られた約600bpのDNA断片をアガロース電気泳動後、ジーンクリーンで精製した。この断片をSmaIで酵素消化した後、約400bpのDNA断片を同様に精製した。このDNA断片を前述のDIGで標識した。

この標識したDNA断片を用いて、前述のペチュニアの花弁cDNAライブラリーをプラークハイブリダイゼーションの手法を用いて、スクリーニングした。ハイブリダイゼーション後の洗浄は、0.2XSSC、65℃、1時間とした。得られたクローンから回収したプラスミドの塩基配列を決定したところ、pPAT48が、pPAT5と同じ配列を含むことがわかった。これを配列表・配列番号3に示す。この配列は、pGAT4とpGAT106に対して、アミノ酸配列レベルで、それぞれ20%、16%のホモロジーがあった。

実施例9.シソ由来の粗酵素液の抽出

シソ(<u>Perilla</u> <u>ocimoides</u>)・品種赤チリメンの植物体から、 赤い若い葉を採集し、実施例1(2)に記載の方法に従って、粗酵 素液の抽出を行った。最終濃度 5 0 m M リン酸カリウム(p H 8 . 5)、 0 . 4 8 m M デルフィニジン 3 , 5 - ジグルコシド、 0 . 4 3 m M カフェオイルー C o A と 2 0 μ 1 の酵素液を含む 5 0 μ 1 の 混合物を 3 0 ℃で 1 0 分間反応させた。反応液に 1 3 . 8 %の酢酸 を含む 5 0 μ 1 のアセトニトリルを加えて反応を停止した。 1 5 0

00回転で5分間遠心した後、上清のうちの10μ1を以下の条件でHPLCにて解析した。

カラムはYMC-Pack ODS-A (6.0 X 15cm) を用い、0.1%トリフルオロ酢酸、21.6%アセトニトリルの溶媒で、流速1m1/分の条件でサンプルを分離した。検出は、520nmで行った。この条件で未反応のデルフィニジン3,5-ジグルコシドは、3分で、デルフィニジン3,5-ジグルコシドの3位にカフェ酸が転移したものは、4.7分に溶出され、この化合物の吸収極大値は、531nmであった。

基質として、デルフィニジン3-グルコシドを用いた場合も、カフェ酸による修飾が見られた。また、アシル基の供与体として、クマロイル-CoAを用いても、クマール基の転移が見られた。シソは天然にはアントシアニンとしてデルフィニジングルコシドは含まないが、シソのアシル基転移酵素はデルフィニジン3-グルコシドとデルフィニジン3,5-ジグルコシドをアシル基受容体として、クマロイル-CoAをアシル基供与体として利用できることがわかった。

実施例10.シソ由来のアシル基転移酵素の精製

シソアシル基転移酵素の精製は、実施例 2 (1)に準じて行った。 3 k gのシソの葉を、液体窒素で凍結させ、凍結したままホモジナイザーで、粉砕した。粉末状になったものに 1 0 1 の抽出緩衝液(1 0 0 m M リン酸ナトリウム、 p H 6 . 8、10 m M アスコルビン酸ナトリウム、 5 m M ジチオスレオトール、 1 0 μ M p - A P M S F、 5 %(w / v)ポリクラール S B - 1 0 0)中で、再び、ホモジナイザーで磨砕した。これを 4 層に重ねたガーゼで濾過後、遠心分離(8 0 0 0 回転、 4 度、 3 0 分)を行った。上清に 4 0 %飽和になるように硫酸アンモニウムを加えて、溶解後、同じ条件で

遠心分離を行う。上清に70%飽和になるように硫酸アンモニウムを加え、溶解後、同じ条件で遠心分離を行う。沈殿を最小量の脱塩緩衝液(ビストリス塩酸、pH6.3、1mMジチオスレイトール、10μM p-APMSF、10%グリセロール)に溶解した後、同じ緩衝液で平衡化したセファデックスG-25メディウム(ファルマシア社、9.5X45cm)で脱塩した。

脱塩したサンプルをQ-セファロースファーストフロー26/1 0 を用いたイオン交換クロマトグラフィーを行った。脱塩緩衝液を もとにした塩化ナトリウムの0から0.5Mの直線濃度勾配を8m 1/分の流速で1時間かけて行った。活性画分は、食塩濃度0.1 5 から 0 . 3 M 付近で溶出された。この活性画分を、脱塩緩衝液で 平衡化したHiTrapBlue (5 m l)を 4 本直列に接続したカラムに吸 着させた。同じ緩衝液でカラムを良く洗浄した後、脱塩緩衝液をも とにした 0 から 1 M の 塩 化 ナ ト リ ウ ム の 直 線 濃 度 勾 配 (2 時 間 、 流 速 5 m 1 / 分) で溶出した。活性画分は塩化ナトリウム濃度 0. 8 から0.9Mで溶出した。この画分を次にヒドロキシアパタイトカ ラム(セラミックタイプ11 40mm;バイオラド社)でクロマト グラフィーを行った。緩衝液A(50mMリン酸ナトリウム、pH 6. $8 \times 1 \text{ mM}$ \emptyset \mathcal{F} \mathcal{F} \mathcal{F} \mathcal{F} 10%グリセロール)で、サンプルをかけたカラムをよく洗浄し、 緩衝液 A から緩衝液 B (4 0 0 m M リン酸ナトリウム、 p H 6 . 8 、1 mM ジチオスレイトール、 $1 \text{ 0 } \mu \text{ M}$ p - A PMSF、1 0 %グリセロール)への直線濃度勾配(1時間、流速2.5ml/分) で酵素を溶出したところ、約0.2Mリン酸ナトリウムで溶出した 。この活性画分を用いて酵素の生化学的性質を調べた。

粗酵素標品を用いた場合と同様に、アシル基の受容体としては、 シアニジン3-グルコシド、シアニジン3,5-ジグルコシド、デ

ルフィニジン3 - グルコシド、デルフィニジン3, 5 - ジグルコシドのいずれを用いることができた。アシル基の供与体としては、クマロイル-CoAでも、カフェオイル-CoAでも用いることができた。また、SDSポリアクリルアミド電気泳動から、分子量は約5000であった。等電点は、Mono-Pカラム(ファルマシア社)を用いて、5.3と決定した。

実施例 1 1 . シソ由来のアシル基転移酵素の c D N A クローニン グ

実施例 3、実施例 6 及び実施例 8 でクローニングしたpGAT4、pGAT106、pPAT48の構造を比較すると、アミノ酸配列;Asp-Phe-Gly-Trp-Gly-Lys(配列番号:21) が保存されていることがわかった。従って、この構造は、アシル基転移酵素において保存されていることが予想される。そこで、この配列をもとに、ヌクレオチド配列;5'-GA(TC)TT(TC)GGITGGGGIAA-3'(配列番号:22) を合成し、このオリゴヌクレオチドをATCプライマーとした。

シソの若い葉からRNAを実施例3に記載の方法で抽出し、同じく、ZAP-cDNA合成キット(ストラタジーン社製)を用い、cDNAライブラリーを作製した。この際にできた2本鎖のcDNA約50ngを鋳型にして、ATCプライマーとオリゴ2プライマーを各100ng用い、最終体積50μ1にて、PCRキット(宝酒造(株)製)を用いて、PCR反応を行った。反応は、95℃1分、50℃1分、72℃1分を1サイクルとし、25サイクル行った。得られた約400bpのDNA断片を回収し、TAクローニングキット(Invitrogen社)を用いて、ベクターにクローニングした。得られたクローンの塩基配列を決定したところ、pSAT104としたクローンがpGAT4に対して高いホモロジーを示した。

10ngのpSAT104を鋳型にして、ATCプライマーとオ

リゴ2プライマーを各100ng用いて、最終体積50μ1にて、 PCRキット(宝酒造(株)製)を用いて、PCR反応を行った。 反応は、95℃1分、50℃1分、72℃1分を1サイクルとし、 15サイクル行った。この反応物の1μ1を用い、ATCプライマーとオリゴ2プライマーを各100ng用いて、最終体積50μ1 にて、同様にPCRキットを用いて、PCR反応を行った。

ただし、この際デオキシヌクレオチド溶液として、DIG標識ヌクレオチド溶液(ベーリンガー社製)を 4 μ 1 用いた。反応終了後、 5 μ 1 の 3 M酢酸ナトリウムと 1 0 0 μ 1 のエタノールを加え、エタノール沈殿を行い、以後の実験に用いた。

この p S A T 1 0 4 由来の標識 D N A を用いて、シソの葉の c D N A ライブラリーをプラークハイブリダイゼーションの手法でスクリーニングした。洗浄は、1 X S S C 、65℃で1時間行った。ハイブリダイズしたクローンの塩基配列を決定したところ、p S A T 2 0 6 、p S A T 2 0 8 、p S A T 2 0 9 、p S A T 2 0 8 、p S A T 2 0 9 、p S A T 2 0 6 、p S A T 2 0 9 、p S A T 2 0 8 、p S A T 2 0 9 、p S A T 2 1 0 などのクローンが p S A T 1 0 4 の塩基配列を含えんでいることがわかった。これらのクローンの 5 ′側の塩基配列を p G A T 4 と比較したところ、どのクローンも p G A T 4 よりアミノ末端が短く開始コドンも見られなかった。また、p S A T 2 0 6 とp S A T 2 0 8 、p S A T 2 0 9 と p S A T 2 1 0 は、5 ′側の塩基配列は同一であった。p S A T 2 0 7 は、p S A T 2 0 6 より 6 残基、p S A T 2 0 9 はp S A T 2 0 6 より 5 残基短かった。

ベクターpBluescript SK 上で、これらの c D N A は、ベクターの L a c Z 遺伝子と融合できる形となっている。上のクローンの内、 p S A T 2 0 6 、 p S A T 2 0 8 、 p S A T 2 0 7 は、L a c Z のコードしている大腸菌のβガラクトシダーゼと融合蛋白として発現できる形になっているが、 p S A T 2 0 9 と p S A T 2 1 0 は、

3 7

フレームがずれているので融合蛋白質とはならない。 p S A T 2 0 6、 p S A T 2 0 7、 p S A T 2 0 9、 p S A T 2 1 0を大腸菌で発現させ、デルフィニジン3, 5 ージグルコシドとカフェオイルー C o A を用いて、3位のグルコースへのアシル基転移酵素活性を測定した。発現の誘導などの方法は、実施例 4 に記載の方法に従った。

pSAT209、pSAT210を含む大腸菌は、アシル基転移酵素活性を全く示さなかったが、pSAT206を含む大腸菌は、デルフィニジン3,5ージグルコシドの48%をアシル化する酵素活性を示し、pSAT207を含む大腸菌は同じく24%をアシル化する酵素活性を示した。このことから、得られたpSAT206、pSAT207などは、シソのアントシアニンの3位のグルコースにアシル基を転移する酵素活性を持つ遺伝子をクローニングできたことが証明できた。

これらのクローンの内、pSAT208のcDNA由来の塩基配列を決定した。これを配列表・配列番号4に示す。その塩基配列から推定されるアミノ酸配列は、pGAT4、pGAT106、pPAT48に対して、37%、29%、15%のホモロジーを示した。先に述べたようにこの配列は、完全長のcDNAではないが、LacZとの融合遺伝子などとして、適当な開始コドンを与えることで、活性のある酵素を発現できる。

また、このように本発明で明らかになったアシル基転移酵素のアミノ酸配列を比較することにより、保存されている領域が明らかになった。この領域のアミノ酸配列をもとにすれば、アントシアニンの他の位置の糖を修飾するアシル基転移酵素をクローニングすることができる。

実施例12. サイネリア由来のアシル基転移酵素の c D N A クロ

ニニング

サイネリア(<u>Senecio</u> <u>cruentus</u>)品種ジュピターブルー(サカタノタネ)の花弁から実施例 3 に記載の方法でRNAを抽出し、さらにPolyA+RNAを精製した。ZAP-cDNA合成キット(ストラタジーン社製)を用いて、cDNAライブラリーを作製した。

この際にできた2本鎖のcDNA約50ngを鋳型にして、ATCプライマーとオリゴ2プライマーを各100ng用い、最終体積50μ1にて、宝のPCRキットを用いて、PCR反応を行った。反応は、95℃1分、50℃1分、72℃1分を1サイクルとし、25サイクル行った。得られた約400bpのDNA断片を回収し、TAクローニングキット(Invitrogen社)を用いて、ベクターにクローングした。得られたクローンの塩基配列を決定したところ、pJAT4としたクローンがpGAT4に対して高いホモロジーを示した。

次にサイネリアの花弁 c D N A ライブラリーを p J A T 4 でスクリーニングした。いくつかのクローンが得られたが、それらの c D N A の 5 '末端側の塩基配列から類推したアミノ酸配列は、 p G A T 4 のコードしている蛋白質の配列と比較してみると、サイネリアのクローンの c D N A はいずれも完全長ではなかった。そのうち、 p C A T 8 としたクローンの c D N A の前塩基配列を決定した。これを配列表・配列番号 5 に示す。その塩基配列から推定されるアミノ酸配列は、 p G A T 4 0 6、 p P A T 4 8、 p S A T 2 0 8 に対してそれぞれ 2 8 %、 3 5 %、 1 6 %、 3 7 %のホモロジーを示した。

実施例13. リンドウ由来のアシル基転移酵素遺伝子を含むバイナ リベクターの作製

リンドウのアシル基転移酵素遺伝子pGAT4をKpnlで完全に消 化した後、Xbalで部分消化して得られる約1.6kbのDNA断片 を回収した。このDNA断片をpUC19のKpnlとXbalの制限酵素 認識部位を用いてサブクローニングし、プラスミドpUCGAT4 を得た。 p U C G A T 4 をBglll で完全消化したのち、Saclで部分 消化し、約0.95kbのDNA断片を回収した。このDNA断片 と、pUCGAT4をXbalとBglllで消化して得られる約0.75 k b の D N A 断片と、プラスミド p 2 1 1 3 G (たとえば、Aida e t al., Acta Horticulture, 392, 219-225, 1995に記載されている)をXbalとSaclで消化して得られるDNA断片をライゲーションし て得られるプラスミドをpBEGA4とした。このプラスミドは、 バイナリーベクターであり、リンドウのアシル基転移酵素cDNA は、植物細胞内においては、エンハンサーを有するカリフラワーモ ザイクウィルス35Sプロモーターとノパリン合成酵素ターミネー ターの制御下にある。また、リンドウアシル基転移酵素cDNAの 5 、末端に、Ω配列と呼ばれる翻訳のエンハンサーを含んでいる。 この際、プロモーターやターミネーターは本記載に限定されるもの ではなく、構成的なプロモーターであっても、また、カルコン合成 酵 素 遺 伝 子 の プ ロ モ ー タ ー 等 の よ う に 花 弁 で 特 異 的 に 働 く も の で あ っても良い。

実施例14. リンドウ由来のアシル基転移酵素遺伝子の植物への導 入

pBEGA 4 をPlant Molecular Biology Manual (Kluwer Acade mic Publishers) に記載されている方法で、Agrobacterium tumefa cienceのAglO株 (Lazo et al., Bio/Technology, 9, 963-967, 1991)に導入した。一方、バラ品種ラバンデの茎頂を、MS培地にBA(6-ベンジルアミノプリン)2.25mg/l、GA3(シ

ベレリン酸) 3. 46mg/1、蔗糖30g/1、ジェランガム2 g/lを加えた固体培地で培養してEmbriogenic Callus (EC)を 得た。前述のAgl0株をLB培地で一晩振とう培養したものを2 0 μ g / m 1 のアセトシロンゴンを含む Μ S 液体培地に懸濁し、約 5×10°cells/mlの濃度に調整した。この菌液中にEC を5分間浸漬した後、滅菌濾紙で余分な液を十分に拭き取り、BA 2. 25 mg/l、GA3 0. 35 mg/l、蔗糖30g/l、 ジェランガム2g/1を加えたMS培地に移植し培養することによ り、形質転換体を得ることができる。得られたカナマイシン抵抗性 カルスから、トリゾール(ライフテックオリエンタル社)を用いて RNAを得た。このRNAを鋳型にして、pGAT4の塩基配列を もとにして合成したヌクレオチドGAT-1;5'-TGGCAACTGTCTTGC GTCATG-3'(配列番号: 23) と、ヌクレオチドGAT-2;5'-CCATG TCAGGTGTGAGGTTCAAC-3'(配列番号:24) をプライマーとして用いて 、 ア ク セ ス R T - P C R シ ス テ ム (プ ロ メ ガ 社) を 使 用 し て 、 R T-PCR反応を行った。また、同じRNAを鋳型として、バイナ リーベクター上のnptllの塩基配列にもとづいて合成したオリゴヌ クレオチドKan-1;5'-ATCGTTTCGCATGATTGAAC-3'(配列番号: 25) と、ヌクレオチドKan-2;5'-TCAGAAGAACTCGTCAAGAA-3'(配列番号:26) とを用いて、同様にRT-PCR反応を行った。反 応は、94℃30秒、60℃1分、68℃2分を1サイクルとし、 40サイクル行った。形質転換体のカルスからは、pGAT4に由 来するバンド及びnptllに由来するバンドが観察されたが、非形質 転換体のカルスからはこれらに対応するバンドは検出できなかった 。この結果は、リンドウのアシル基転移酵素遺伝子をバラに導入で きたことを示す。

また、ここに述べたバイナリーベクターの構築や植物への形質転

換は、pGAT4に含まれるリンドウのアシル基転移酵素遺伝子に限られるものではなく、他のアシル基転移酵素も、植物への導入と植物での遺伝子発現が可能である。また、植物の種として、ここでは、バラをあげたが、他の多くの植物で(たとえば、カーネーション、キク、タバコ、ペチュニア、ガーベラ、ペチュニアなど)形質転換の方法が報告されているので、公知の方法を用いれば、多くの植物種にアシル基転移酵素の導入が可能である。

実施例15. 完全長のシソ由来のアシル基転移酵素の c D N A の合成

シソアシル基転移酵素遺伝子 c D N A 、 p S A T 2 0 8 は、先に述べたように活性のある酵素はコードしているが、完全長ではなかった。そこで、リンドウのアシル基転移酵素遺伝子 p G A T 4 の塩基配列をもとに開始コドンを含む完全長 c D N A を合成した。すなわち、以下に示す D N A を合成した。また、そのコードするアミノ酸配列を併記した。最初の下線はクローニングのためのBamH I 認識配列で、次の下線は p S A T 2 0 8 に含まれる配列である。また、BamH I の認識配列の後に植物で翻訳開始コドンの直前によく見られる配列AACAを挿入してある。

5' GGGATCCAACA ATG GAG CAA ATC CAA ATG GTG GCC GTG ATC GAA ACG TGT AGA 3'
Met Glu Gln Ile Gln Met Val Ala Val Ile Glu Thr Cys Arg

(配列番号:27)

このプライマーとー 2 0 プライマー; 5'-GTAAAACGACGGCCAT -3'(配列番号: 28) とをそれぞれ 1 0 0 n g、 p S A T 2 0 8 を 1 0 n g を含む P C R 反応を最終体積 5 0 μ 1 で行った。反応は、 9 5 \mathbb{C} 1 分、 5 5 \mathbb{C} 1 分、 7 2 \mathbb{C} 2 分を 1 サイクルとし、 1 5 サイクル行った。反応後、反応液から D N A 断片を G e n e c 1 e a n (Bio101 社)を用いて製造者の推奨する方法で、回収した。回収した D N A

をBamHIとEcoRIで消化した後、アガロースゲル電気泳動し、約200bpのDNA断片を回収した。このDNA断片を、pSAT208をEcoRIで消化して得られる約3.3kbのDNA断片とライゲーションし、得られたプラスミドをpSATF208とした。このプラスミドの塩基配列をcDNAの5、末端から決定し、塩基配列を確認した。

実施例16. シソ由来のアシル基転移酵素遺伝子の酵母における発現

実施例 5 で述べた方法に従って、pSATF208を酵母で発現させ、酵素活性の測定を行った。すなわち、pYE22mをBamHIとSallで消化して得られる約8kbのDNA断片と、pSATF208をBamHIとSallで消化して得られる約1.6kbのDNA断片をライゲーションし得られたプラスミドをpYSAT208とした。

PYSAT208で酵母G1315を形質転換し、得られた形質 転換体のアシル基転移酵素活性を測定した。その結果、PYSAT 208を導入した酵母では、24nmolのデルフィニジン3,5 ージグルコシドと21.5nmolのカフェオイルーCoAから1 0nmolのデルフィニジン3ーカフェオイルグルコシド5ーグルコシドの生成が認められた。従って、PSATF208に含まれる合成した完全長cDNAは、アシル基転移酵素活性をコードすることが確認できた。

実施例17. シソ由来のアシル基転移酵素遺伝子を含むバイナリー ベクターの作製

プラスミドpEl2ΩGUSは、プラスミドp2ll3G (Aida et al., Acta Horticulture, 392, 219-225, 1995) 上のGUS遺伝子の発現ユニットがプラスミドpUCl9のHindIII とEcoRI 認

識部位に挿入されているプラスミドである。pE12ΩGUSをSaclで消化し、DNAブランティングキット(宝酒造(株))で、平滑末端化した後、Xholリンカー(東洋紡(株))とライゲーションした。得られたXholリンカーの挿入されたプラスミドをpE12ΩGUSxとした。このプラスミドをHindIIIとEcoRIで消化して得られる約2.8kbのDNA断片を、HindIIIとEcoRIで消化したたりBin19とライゲーションし、得られたプラスミドをpBEGUSxをBamHIとXholで消化して得られる11kbのDNA断片と、pSATF208をBamHIとXholで消化して得られるプラスミドをpBESA208とした。このプラスミド上で、シソのアシル基をpBESA208とした。このプラスミド上で、シソのアシル基をpBESA208とした。このプラスミド上で、シソのアシルをpBESA208とした。このプラスミド上で、シソのアシルをpBESA208とした。このプラスミド上で、シリフラローモザイクウィルスのプロモーターとノバリン合成酵素遺伝子のターミネーターの制御下にある。

実施例18. シソ由来のアシル基転移酵素遺伝子の植物への導入

pBESA208をPlant Molecular Biology Manual (Kluwer Academic Publishers)に記載されている方法で、Agrobacterium tumefacience のAglO株(Lazo et al., Bio/Technology, 9, 963-967, 1991)に導入した。AglO株の形質転換体を用いて、Plant Molecular Biology Manual (Kluwer Academic Publishers)に記載されている方法を用いて、ペチュニア フルコンレッド(サカタのタネ)、バカラレッド(サカタのタネ)、タイタンレッド(サカタのタネ)に形質転換した。なお、これらのペチュニアの花弁にはシアニジン3-グルコシドが主なアントシアニンとして含まれている。

また、先に述べた方法でバラ品種ラバンデにも形質転換を行った

実施例19. 完全長のサイネリア由来のアシル基転移酵素の c D N A の合成

サイネリア由来のアシル基転移酵素遺伝子 c D N A、 p C A T 8 は、先に述べたように完全長ではなかった。そこで、リンドウのアシル基転移酵素遺伝子 p G A T 4 の塩基配列をもとに開始コドンを含む完全長 c D N A を合成した。すなわち、以下に示す D N A を合成した。そのコードするアミノ酸配列を併記した。最初の下線はクローニングのためのBamH I 認識配列で、次の下線は p C A T 8 に含まれる配列である。

5'-GGGATCCAACA ATG GAG CAA ATC CAA ATG GTG AAC ATT CTC GAA C-3'
Met Glu Gln Ile Gln Met Val Asn Ile Leu Glu

(配列番号:29)

このプライマーとー20プライマーをそれぞれ100ng、pCAT8を10ngを含むPCR反応を最終体積50 μ 1で行った。反応は、95 $^{\circ}$ С1分、55 $^{\circ}$ С1分、72 $^{\circ}$ 2 分を1サイクルとし、15サイクル行った。反応後、反応液からDNA断片をGeneclean(Biol01社)を用いて製造者の推奨する方法で、回収した。回収したDNAをBamHI とMvalで消化した後、アガロースゲル電気泳動し、約200bpのDNA断片を回収した。このDNA断片を、pCAT8をMvalとXholで消化して得られる約1.3kbのDNA断片と、BamHI と Xhol で消化したpBluescript IISKとをライゲーションし、得られたプラスミドをpCATF8とした。このプラスミドの塩基配列を $^{\circ}$ C D N A の 5 $^{\circ}$ 末端から決定し、塩基配列を確認した

実施例20. ラベンダー由来のアシル基転移酵素をコードする c D N A の クローニング

シソ科のラベンダー (Lavandula angustifolia) の花弁由来の

標識した c D N A 断片をハイブリダイゼーション液中に加え、さらに16時間、37℃に保持し、ハイブリダイゼーションを行った。洗浄液(5×S S C、1%S D S)でフィルターを洗浄し、アルカリホスファターゼで標識されたD I G 特異的抗体による酵素免疫測定法(ベーリンガーマンハイム社)による5ーブロモ4ークロロ3ーインドリルリン酸とニトロブルーテトラゾリウム塩の発色反応によって陽性クローンを検出した。なお、検出方法は製造社による使用説明書に従った。

この結果1個の陽性クローンが得られ、このcDNAをストラタジーン社の推奨する方法でλファージをベクターとする形からプラスミドpBluescript II SK- をベクターとする形に回収した。得られたクローンからプラスミドを抽出し、これをpLAT1とした。先に述べたように、ABI373 DNA シークエンサー(パーキンエルマー社)を用い、同社の推奨する蛍光色素によるダイデオキシシークエンス法で、pLAT1のcDNAの5′末端付近の塩基配列を決定した。得られた塩基配列から導かれるアミノ酸配列は、シソやリンドウのアシル基転移酵素のアミノ酸配列と高い相同性を示し、pLAT1がラベンダーのアシル基転移酵素をコードすることが推察

された。しかし、pLAT1のコードするアミノ酸配列はシソやリ ンドウのアシル基転移酵素のアミノ酸配列と比べて短く、アシル基 転移酵素の全長をコードするには満たないと考えられた。そこでD IGで標識したpLAT1のcDNAフラグメントをプローブとし 、ラベンダーの花弁由来のcDNAライブラリーを上に述べたのと 同様の条件でスクリーニングした。プローブは、pLAT1プラス ミド約1ngを鋳型とし、下記に示すRIプライマーとオリゴ2各 5 0 0 n g 、 d N T P 標 識 混 合 液 (ベーリンガー) 8 μ] を 含 む 最 終体積 5 0 μ 1 の P C R 反応により標識した。 P C R 反応は 9 5 ℃ 1分、42℃2分、72℃3分からなるサイクルを25サイクル行 い、さらに伸長反応を完全にするため72℃に7分保持した。プラ ークハイブリダイゼーションは、ハイブリダイゼーションバッファ ー中のホルムアミド濃度は50%、フィルターの洗浄は2×SSC 、1%SDSで行った以外は上に述べたのと同様であった。得られ た陽性クローンの5、末端付近の塩基配列を前述同様にして決定し 、pLAT1よりも11bp長いクローン、pLAT21を得た。 これを配列表、配列番号6に示す。しかしpLAT21も開始メチ オニンコドンを含まず、アシル基転移酵素の全長をコードするには 満たないクローンであった。

実施例21. 完全長のラベンダー由来のアシル基転移酵素の c D N A の合成

ラベンダーのアシル基転移酵素をコードすると考えられる c D N A、 p L A T 2 1 は開始メチオニンコドンを含まないため、酵母での発現のためには c D N A の 5 、末端に開始メチオニンコドンを付加する必要がある。そこで、下記の様なプライマーを用いて、 P C R を行い、開始メチオニンコドンを p L A T 2 1 の c D N A の 5 、末端に付加したフラグメントを合成した。プライマーL A T - A T

GはpLAT21の5'末端20塩基の配列に加えて、開始メチオニンコドンと、その上流に隣接して存在するといわれている植物での遺伝子発現のための保存配列 AACA、および酵母発現ベクターへの連結に必要な制限酵素 BamHI 認識部位 GGATCC を5'上流から3'方向に含むようにデザインされている。LAT-ATG プライマー(配列番号:31)

5' AGTCGGATCCAACA ATG ACC ACC CTC CTC GAA TCC 3'

Thr Thr Leu Leu Glu Ser

PCR反応はpLAT21プラスミド約100ngを鋳型とし、LAT-ATGプライマーとオリゴ2各500ng、を含む最終体積50μ1でPCR反応を行った。反応は95℃1分、42℃2分、72℃3分からなるサイクルを10サイクル行い、さらに伸長反応を完全にするため72℃に7分保持した。得られたDNA断片をBamHIとEcoRIで切断し、約550bpのDNA断片を回収した。このDNA断片をプラスミドベクターpBluescript IISK-のBamHIとEcoRIサイトにサブクローニングし、pLATPCR11とした。前述同様にしてpLATPCR11の塩基配列を決定し、PCRによって増幅されたこのDNA断片が、pLATPCR11とした。可は場合であるでもありであることを確認した。

さらに、pLAT21のcDNA部分の全塩基配列をpGAT4のcDNAの塩基配列を決めたのと同様な方法で決定した。このcDNAがコードしていると予想されるアミノ酸配列は、pSAT208、pGAT106、pPAT48に対して、それぞれ、69%、38%、37%、37%、19%のホ

モロジーを示した。

実施例22. ラベンダー由来のアシル基転移酵素遺伝子の酵母にお ける発現

pLATPCR11からBamHIとEcoRIで切断される約550bpのDNA断片と、pLAT21からEcoRIとXholで切断して得られる約1kbのDNA断片と、酵母発現ベクターpYE22mをBamHIとSallで切断して得られる約8kbのDNA断片をライゲーションして得られるプラスミドをpYELAT21とした。先に述べたように、酵母G1315をこのプラスミドで形質転換し、アシル基転移酵素活性を測定した。

その結果、pYELAT21を導入した酵母では、24nmolのデルフィニジン3,5ージグルコシドと21.5nmolのカフェオイルーCoAから19.9nmolのデルフィニジン3ーカフェオイルグルコシド5ーグルコシドの生成が認められた。従って、pYELAT21に含まれる合成した完全長cDNAは、アシル基転移酵素活性をコードすることが確認できた。

実施例23. ラベンダーアシル基転移酵素遺伝子を含むバイナリー ベクターの作製

pLATPCR11からBamHIとEcoRIで切断される約550bpのDNA断片と、pLAT21からEcoRIとXhoIで切断して得られる約1kbのDNA断片と、pBEGUSxをBamHIとXhoIで消化して得られる約11kbのDNA断片をライゲーションして得られるプラスミドをpBELA11とした。これを先に述べた方法でAgrobacterium tumefacienceのAg10株に形質転換し、ペチュニアとバラの形質転換に供した。

実施例24. アシル基転移酵素に対する抗体の作製

ある酵素に対して、アミノ酸配列が似ている酵素の遺伝子をとる

方法の一つとして、ある酵素に対する抗体で、発現型の c D N A ライブラリーをスクリーニングする方法が上げられる。ここでは、以下のようにして、リンドウの p G A T 4 のコードするアシル基転移酵素に対する抗体を作製した。同様にして、他のアシル基転移酵素の抗体を作製することが可能である。

まず、Bulk and RediPack GST Purification Modules (pharmaci a Biotech)を用いて大腸菌でGAT4タンパク質を大量発現させ、そこから精製を行った。

(1)発現プラスミドの構築

大腸菌でのアシル基転移酵素遺伝子の発現にはpGEX-4T-1を用いた。このpGEX-4T-1を用いてグルタチオンS-ト ランスフェラーゼとの融合タンパク質をつくり、その後グルタチオ ンS-トランスフェラーゼのアフィニティカラムを用いることで効 率的な精製が行える。

pGEX-4T-1をSmalとXholで消化した後、DNAブランティングキット(宝酒造(株))を用いて平滑末端化した。得られた約4.9kbのDNA断片をアルカリホスファターゼBAP C75(宝酒造(株))を用いて脱リン酸化した。pGAT4を当該ベクター内に存在する制限酵素部位SmalとKpnlで消化して得られる約1.6kbのDNA断片を前述と同じように平滑末端化し、前述のpGEX-4T-1をSmalとXholで消化した後平滑末端化した部位に組み換えて、pGEXGAT4を構築した。EcoRlとBglllで消化してpGAT4上のcDNAとグルタチオンS-トランスフェラーゼの向きが同方向であることを確認した。

(2) アシル基転移酵素の大腸菌における発現

p G E X G A T 4 で大腸菌 J M 1 0 9 を形質転換した。大腸菌の 形質転換法はHanahan の方法に従った(J. Mol. Biol., 166, 557-,1

983)。形質転換された大腸菌をアンピシリン (100 μg/ml) 及び2%グルコースを含む2×YT培地(トリプトン16g、イー ストエキストラクト10g、塩化ナトリウム5gを1リットルの蒸 留水に溶かし、水酸化ナトリウムでpHを7.0に調製する)50 m 1 に植菌し、37℃で一晩培養した。この培養液40 m 1 を40 0 m l のアンピシリン(1 0 0 μ g / m l) 及び 2 % グルコースを 含む2×YT培地に接種し、37℃で3時間培養後、0.1MのI PTGを440μ1 (終濃度10mM) 添加し、さらに5時間培養 した。集菌後、10μMのAPMSFを含む1×PBS(塩化ナト リウム8.2g、塩化カリウム2.0g、リン酸水素ニナトリウム 1. 43g、リン酸二水素カリウム2. 45gを1リットルの蒸留 水に溶かした)100m1に懸濁した。この懸濁液を超音波破砕し た後、20%トリトンX-100を5ml(終濃度1%)添加した 。氷中で冷却しながら30分振蕩した後、12000rpmで10 分間遠心し、得られた沈殿を12m1の6MのUreaに懸濁し等 量の2×SDSサンプルバッファーを加えて90℃、5分間処理し 試料として用いた。

この試料 0.8 m 1をディスクゲル電気泳動(分離ゲル7.5% アクリルアミド、濃縮ゲル5%アクリルアミド;ATTO(株)BIOPH ORESISIIII)にて分離し、0.8 m 1 ずつ分取した。各画分をSDSーポリアクリルアミドゲル電気泳動(分離ゲル10%アクリルアミド、濃縮ゲル4.5%アクリルアミド)で分析した結果、pGAT4のコードするアシル基転移酵素とグルタチオンSートランスフェラーゼの融合蛋白質の大きさと一致する分子量約75000の蛋白質が単一の蛋白質として存在する画分があった。

この画分(3.2 ml)をCentricon 10 (amicon社)で濃縮し約 0.3 μ gの融合蛋白質を得た。この試料を用いて、BALB/C

5 1

マウスを用いて常法に従い、抗体を作製した。この抗体を用いて、 アシル基転移酵素のホモログを取得することができる。

産業上の利用可能性

以上のように、本発明においてはリンドウ由来の芳香族アシル基 転移酵素の精製、当該酵素の c D N A のクローニング及び当該 c D N A の塩基配列の決定を行った。また、大腸菌と酵母での活性発現 を行うことにより、分離した c D N A が芳香族アシル基転移酵素を コードするものであることを確認した。

従って、本発明に係る c D N A を適当な植物発現ベクターに接続し、植物に導入することにより、アシル化反応を植物の花色調節に利用することが可能となった。

また、本酵素活性を利用することにより、植物の中であるいは試験管内でアントシアンの構造を改変し、より安定なアントシアンを提供することができる。

〔配列表〕

配列番号 (SEQ ID NO):1

配列の長さ(SEQUENCE LENGTH): 1 7 0 3

配列の型(SEQUENCE TYPE):核酸 (nucleic acid)

鎖の数(STRANDEDNESS): 二本鎖 (double)

トポロジー (TOPOLOGY) : 直鎖状 (linear)

配列の種類(MOLECULE TYPE): cDNA to mRNA

ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No

アンチセンス (ANTI-SENSE) : No

起源(ORIGINAL SOURCE)

生物名 (ORGANISM) : リンドウ (Gentiana triflora var. japon

ica)

組織の種類(TISSUE TYPE):花弁(petal)

直接の起源(IMMEDIATE SOURCE)

ライブラリー名 (LIBRARY) : cDNA library

クローン名 (CLONE): pGAT4

配列 (SEQUENCE DESCRIPTION)

TCATT ATG GAG CAA ATC CAA ATG GTG AAG GTT CTT GAA AAA TGC CAA 47

Met Glu Gln Ile Gln Met Val Lys Val Leu Glu Lys Cys Gln

-1 1 5 10

GTT ACA CCA CCA TCT GAC ACA ACA GAT GTC GAG TTA TCG CTA CCG GTA 95

Val Thr Pro Pro Ser Asp Thr Thr Asp Val Glu Leu Ser Leu Pro Val

15 20 25

ACA TTC TTC GAT ATC CCC TGG TTG CAC TTG AAT AAG ATG CAG TCC CTT 143

Thr Phe Phe Asp Ile Pro Trp Leu His Leu Asn Lys Met Gln Ser Leu

30 35 40 45

CTG	TTT	TAC	GAC	TTT	CCG	TAC	CCA	AGA	ACA	CAT	TTC	TTG	GAC	ACT	GTT	191
Leu	Phe	Tyr	Asp	Phe	Pro	Tyr	Pro	Arg	Thr	His	Phe	Leu	Asp	Thr	Val	
				50					55					60		
ATC	CCT	AAT	CTT	AAG	GCC	TCT	TTG	TCT	CTC	ACT	CTA	AAA	CAC	TAC	GTT	239
lle	Pro	Asn	Leu	Lys	Ala	Ser	Leu	Ser	Leu	Thr	Leu	Lys	His	Tyr	Val	
			65					70					7 5			
CCG	CTT	AGC	GGA	AAT	TTG	TTG	ATG	CCG	ATC	AAA	TCG	GGC	GAA	ATG	CCG	287
Pro	Leu	Ser	Gly	Asn	Leu	Leu	Met	Pro	lle	Lys	Ser	Gly	Glu	Me t	Pro	
		80					85					90				
AAG	TTT	CAG	TAC	TCC	CGT	GAT	GAG	GGC	GAC	TCG	ATA	ACT	TTG	ATC	GTT	335
Lys	Phe	Gln	Tyr	Ser	Arg	Asp	Glu	Gly	Asp	Ser	He	Thr	Leu	lle	Val	
	95					100					105					
GCG	GAG	TCT	GAC	CAG	GAT	TTT	GAC	TAC	CTT	AAA	GGT	CAT	CAA	CTG	GTA	383
Ala	Glu	Ser	Asp	Gln	Asp	Phe	Asp	Tyr	Leu	Lys	Gly	His	Gln	Leu	Val	
110					115					120					125	
GAT	TCC	AAT	GAT	TTG	CAT	GGC	CTT	TTT	TAT	GTT	ATG	CCA	CGG	GTT	ATA	431
Asp	Ser	Asn	Asp	Leu	His	Gly	Leu	Phe	Tyr	Val	Met	Pro	Arg	Val	lle	
				130					135					140		
AGG	ACC	ATG	CAA	GAC	TAT	AAA	GTG	ATC	CCG	CTC	GTA	GCC	GTG	CAA	GTA	479
Arg	Thr	Met	Gln	Asp	Tyr	Lys	Val	lle	Pro	Leu	Val	Ala	Val	Gln	Val	
			145					150					155			
ACC	GTT	TTT	CCT	AAC	CGT	GGC	ATA	GCC	GTG	GCT	CTG	ACG	GCA	CAT	CAT	527
Thr	Val	Phe	Pro	Asn	Arg	Gly	lle	Ala	Val	Ala	Leu	Thr	Ala	His	His	
		160					165					170				
TCA	ATT	GCA	GAT	GCT	AAA	AGT	TTT	GTA	ATG	TTC	ATC	AAT	GCT	TGG	GCC	575
Ser	He	Ala	Asp	Ala	Lys	Ser	Phe	Val	Met	Phe	lle	Asn	Ala	Trp	Ala	
	175					180					185					

TAT	ATT	AAC	AAA	TTT	GGG	AAA	GAC	GCG	GAC	TTG	TTG	TCC	GCG	AAT	CTT	623
Tyr	lle	Asn	Lys	Phe	Gly	Lys	Asp	Ala	Asp	Leu	Leu	Ser	Ala	Asn	Leu	
190					195					200					205	
CTT	CCA	TCT	TTC	GAT	AGA	TCG	ATA	ATC	AAA	GAT	CTG	TAT	GGC	СТА	GAG	671
Leu	Pro	Ser	Phe	Asp	Arg	Ser	lle	He	Lys	Asp	Leu	Tyr	Gly	Leu	Glu	
				210					215					220		
GAA	ACA	TTT	TGG	AAC	GAA	ATG	CAA	GAT	GTT	СТТ	GAA	ATG	TTC	TCT	AGA	719
Glu	Thr	Phe	Trp	Asn	Glu	Met	Gln	Asp	Val	Leu	Glu	Met	Phe	Ser	Arg	
			225					230					235			
TTT	GGA	AGC	ÁÁÁ	CCC	CCT	CGA	ТТС	AAC	AAG	GTA	CGA	GCT	ACA	TAT	GTC	767
Phe	Gly	Ser	Lys	Pro	Pro	Arg	Phe	Asn	Lys	Val	Arg	Ala	Thr	Tyr	Val	
		240					245					250				
CTC	TCC	CTT	GCT	GAA	ATC	CAG	AAG	СТА	AAG	AAC	AAA	GTA	CTG	AAT	СТС	815
Leu	Ser	Leu	Ala	Glu	He	Gln	Lys	Leu	Lys	Asn	Lys	Val	Leu	Asn	Leu	
	255					260					265					
AGA	GGA	TCC	GAA	CCG	ACA	ATA	CGT	GTA	ACG	ACG	TTC	ACA	ATG	ACG	TGT	863
Arg	Gly	Ser	Glu	Pro	Thr	ile	Arg	Val	Thr	Thr	Phe	Thr	Met	Thr	Cys	
270					275					280					285	
GGA	TAC	GTA	TGG	ACA	TGC	ATG	GTC	AAA	TCA	AAA	GAT	GAC	GTC	GTA	TCA	911
Gly	Tyr	Val	Trp	Thr	Cys	Met	Val	Lys	Ser	Lys	Asp	Asp	Val	Val	Ser	
				290					295					300		
GAG	GAA	TCA	TCG	AAC	GAC	GAA	AAT	GAG	CTC	GAG	TAC	TTC	AGT	TTT	ACA	959
Glu	Glu	Ser	Ser	Asn	Asp	Glu	Asn	Glu	Leu	Glu	Tyr	Phe	Ser	Phe	Thr	
			305					310					315			
GCG	GAT	TGC	CGA	GGA	CTT	CTG	ACG	ССС	CCG	TGT	CCG	ССТ	AAC	TAC	TTT	1007
Ala	Asp	Cys	Arg	Gly	Leu	Leu	Thr	Pro	Pro	Cys	Pro	Pro	Asn	Tyr	Phe	
		320					325					330				

GGC	AAC	TGT	CTT	GCG	TCA	TGC	GTT	GCA	AAA	GCA	ACA	CAT	AAA	GAG	TTA	1055
Gly	Asn	Cys	Leu	Ala	Ser	Cys	Val	Ala	Lys	Ala	Thr	His	Lys	Glu	Leu	
	335					340					345					
GTT	GGG	GAT	AAA	GGG	CTT	CTT	GTT	GCA	GTT	GCA	GCT	ATT	GGA	GAA	GCC	1103
Val	Gly	Asp	Lys	Gly	Leu	Leu	Val	Ala	Val	Ala	Ala	He	Gly	Glu	Ala	
350					355					360					365	
ATT	GAA	AAG	AGG	TTG	CAC	AAC	GAA	AAA	GGC	GTT	CTT	GCA	GAT	GCA	AAA	1151
lle	Glu	Lys	Arg	Leu	His	Asn	Glu	Lys	Gly	Val	Leu	Ala	Asp	Ala	Lys	
				370					375					380		
ACT	TGG	TTA	TCG	GAA	TCT	AAT	GGA	ATC	CCT	TCA	AAA	AGA	TTT	СТС	GGG	1199
Thr	Trp	Leu	Ser	Glu	Ser	Asn	Gly	lle	Pro	Ser	Lys	Arg	Phe	Leu	Gly	
			385					390					395			
ATT	ACC	GGA	TCG	CCT	AAG	TTC	GAT	TCG	TAT	GGT	GTA	GAT	TTT	GGA	TGG	1247
lle	Thr	Gly	Ser	Pro	Lys	Phe	Asp	Ser	Tyr	Gly	Val	Asp	Phe	Gly	Trp	
		400					405					410				
GGA	AAG	CCT	GCA	AAA	TTT	GAC	ATT	ACC	TCT	GTT	GAT	TAT	GCA	GAA	TTG	1295
Gly	Lys	Pro	Ala	Lys	Phe	Asp	lle	Thr	Ser	Val	Asp	Tyr	Ala	Glu	Leu	
	415					420					425					
ATT	TAT	GTG	ATT	CAG	TCC	AGG	GAT	TTT	GAA	AAA	GGT	GTG	GAG	ATT	GGA	1343
lle	Tyr	Val	lle	Gln	Ser	Arg	Asp	Phe	Glu	Lys	Gly	Val	Glu	lle	Gly	
430					435					440					445	
GTA	TCA	TTG	CCT	AAG	ATT	CAT	ATG	GAT	GCA	TTT	GCA	AAA	ATC	TTT	GAA	1391
Val	Ser	Leu	Pro	Lys	lle	His	Met	Asp	Ala	Phe	Ala	Lys	lle	Phe	Glu	
				450					455					460		
GAA	GGC	TTT	TGC	TCT	TTG	TCA	TAG	тстс	TTT .	AATA	GAAC	CA T	ATTT(GCTG	С	1442
Glu	Gly	Phe	Cys	Ser	Leu	Ser										
			465			468										

```
AATAAAGTAC CAAGTCCTTT AGTAACACTA CACCAAACCC TACTTTCGAG GCGGGAACAC 1502
 CACAACGAGG TTCAATCACT AGAAGGTTGT ACTTCATAAA TTCCAGAGGT CGAATATACA 1532
 CCGTTGTCCT CTGAAAAGTT GAACCTCACA CCTGACATGG TGTTACGATA GGTATTGTAT 1622
 AATGCCATTA TATACTTCCA TAAAGTATCC TATGCAATAG AGAACATGTT ATGTGTTAAA 1682
 AAAAAAAA AAAAAAAAA A
                                                       1703
配列番号 (SEQ ID NO ) : 2
配列の長さ(SEQUENCE LENGTH ): 1 6 2 2
配列の型 (SEQUENCE TYPE ) : 核酸 (nucleic acid)
鎖の数 (STRANDEDNESS) : 二本鎖 (double)
トポロジー (TOPOLOGY) : 直鎖状 (linear)
配列の種類(MOLECULE TYPE ): cDNA to mRNA
ハイポセティカル配列(HYPOTHETICAL SEQUENCE): No
アンチセンス(ANTI-SENSE): No
起源 (ORIGINAL SOURCE)
 生物名 (ORGANISM) : リンドウ (Gentiana triflora var. japon
                     ica )
 組織の種類(TISSUE TYPE): 花弁 (petal)
直接の起源(IMMEDIATE SOURCE)
  ライブラリー名(LIBRARY):cDNA library
  クローン名 (CLONE): pGAT106
配列(SEQUENCE DESCRIPTION)
GAACCATTGA ATCCAATTAA TCTGATTTAT TAAG ATG GCA GGA AAT TCC GAG
                                                        52
                               Met Ala Gly Asn Ser Glu
                                 1
                                              5
GAT ATC AAA GTT CTT GAG AAA TGC CGT GTT GCG CCA CCA CCG GAC GCC
                                                       100
Asp lie Lys Val Leu Glu Lys Cys Arg Val Ala Pro Pro Pro Asp Ala
```

15

20

10

GTC	GCC	GAG	TTT	ACA	GTC	CCA	CTG	TCG	TTT	TTC	GAC	ATG	CGA	TGG	TTG	148
Val	Ala	Glu	Phe	Thr	Val	Pro	Leu	Ser	Phe	Phe	Asp	Met	Arg	Trp	Leu	
		25					30					35				
ATC	TCT	GAT	GCA	GAA	CAC	CAT	CTG	CAT	TTC	TAC	AGA	TTC	CGC	CAT	CCT	196
Ile	Ser	Asp	Ala	Glu	His	His	Leu	His	Phe	Tyr	Arg	Phe	Arg	His	Pro	
	40					45					50					
TGT	CCC	AAC	TCT	AAA	TTT	ATC	ATT	TCA	TCC	ATT	AAA	TCG	TCC	CTT	TCC	244
Cys	Pro	Asn	Ser	Lys	Phe	lle	lle	Ser	Ser	lle	Lys	Ser	Ser	Leu	Ser	
55					60					65					70	
CTT	GTT	CTC	AAA	CAC	TTT	CTT	CCG	TTA	GCC	GGG	AAT	TTG	ATT	TGG	CCG	292
Leu	Val	Leu	Lys	His	Phe	Leu	Pro	Leu	Ala	Gly	Asn	Leu	lle	Trp	Pro	
				75					80					85		
GTA	GAT	TCC	TCC	GAT	AGA	ATG	CCG	GAG	TTG	CGT	TAC	AAG	AAA	GGG	GAC	340
Val	Asp	Ser	Ser	Asp	Arg	Met	Pro	Glu	Leu	Arg	Tyr	Lys	Lys	Gly	Asp	
			90					95					100			
TCC	GTT	TCT	TTA	ACA	ATT	GCA	GAA	TCG	AGC	ATG	GAT	TTT	GAT	TAT	CTC	388
Ser	Val	Ser	Leu	Thr	He	Ala	Glu	Ser	Ser	Met	Asp	Phe	Asp	Tyr	Leu	
		105					110					115				
GCC	GGA	GAT	CAT	CAG	AGG	GAT	TCT	TAT	AAA	TTC	AAC	GAT	TTG	ATT	CCG	436
Ala	Gly	Asp	His	Gln	Arg	Asp	Ser	Tyr	Lys	Phe	Asn	Asp	Leu	lle	Pro	
	120					125					130					
CAG	CTG	CCA	GAA	CCG	ATT	GTA	ACC	TCC	GGC	GAC	GAA	GTA	TTA	CCA	CTT	484
Gln	Leu	Pro	Glu	Pro	lle	Val	Thr	Ser	Gly	Asp	Glu	Val	Leu	Pro	Leu	
135					140					145					150	
TTT	GCT	TTA	CAG	GTG	ACG	GTG	TTC	TCC	AAC	ACC	GGT	ATA	TGC	ATT	GGA	532
Phe	Ala	Leu	Gln	Val	Thr	Val	Phe	Ser	Asn	Thr	Gly	Ile	Cys	Пе	Gly	
				155					160					165		

CG	C AA	r ct	r cat	CA/	A GTT	r cti	r GG1	CAT	GCC	C AG	г тс	r tt	г ст	G CA	т ттт	580
Ar	g Ası	ı Lei	ı His	Glr	n Val	Lei	Gly	/ Asp	Ala	ı Sei	r Sei	r Phe	e Le	u Hi	s Phe	
			170)				175	i				180	0		
AA	AAA 1	TTA	TGG	GT1	TTG	GT1	` GAC	: AAA	TCC	CAA	r GGA	A GAT	г тсл	A TT	A AAG	628
Ası	n Lys	Leu	Trp	Val	Leu	Val	Asp	Lys	Ser	Asn	Gly	, Ası	Sei	r Lei	ı Lys	
		185	i				190					195	,			
TTO	СТТ	CCA	CTT	тст	TCT	СТА	CCT	ATG	TAC	GAC	AGA	тст	GT(G GTO	CAA	676
Phe	Leu	Pro	Leu	Ser	Ser	Leu	Pro	Met	Tyr	Asp	Arg	Ser	Val	Val	Gln	
	200					205					210					
GAT	CCA	TTT	CAT	ATT	CGT	CGA	AAA	ATC	TAC	ÁAT	GAA	AGA	AAA	СТО	CTC	724
Asp	Pro	Phe	His	lle	Arg	Arg	Lys	Leu	Tyr	Asn	Glu	Arg	Lys	Leu	Leu	
215					220					225					230	
AAA	TCT	CAG	GGC	ACA	CCT	ACT	GTT	СТА	AAT	CCA	GCA	ATT	TCT	AAA	GAT	772
Lys	Ser	Gln	Gly	Thr	Pro	Thr	Val	Leu	Asn	Pro	Ala	He	Ser	Lys	Asp	
				235					240					245		
GAA	GTT	CGA	GCC	ACC	TTC	ATC	CTA	CAC	CCT	ATT	GAT	ATC	ATG	AAG	СТС	820
Glu	Val	Arg	Ala	Thr	Phe	lle	Leu	His	Pro	lle	Asp	lle	Met	Lys	Leu	
			250					255					260			
AAG	AAA	TTC	ATT	TCG	TCA	AAA	AAT	CGC	AAC	TTA	ACC	GGT	AGT	AGT	AAT	868
Lys	Lys	Phe	Пе	Ser	Ser	Lys	Asn	Arg	Asn	Leu	Thr	Gly	Ser	Ser	Asn	
		265					270					275				
TAT	AAT	CTG	TCA	ACT	TTC	ACG	GTG	ACA	TCT	GCA	CTG	ATC	TGG	ACA	TGC	916
Tyr	Asn	Leu	Ser	Thr	Phe	Thr	Val	Thr	Ser	Ala	Leu	lle	Trp	Thr	Cys	
	280					285					290					
TTG	TCG	AAA	TCA	TTA	GAC	ACC	GTC	GTA	AGA	GAG	AAG	GTG	GAA	GAG	GAT	964
Leu	Ser	Lys	Ser	Leu	Asp	Thr	Val	Val.	Arg	Glu	Lys	Val	Glu	Glu	Asp	
295					300					305					310	

AAA	CAT	GCA	GCA	AAC	TTA	TGT	GCT	TTC	ATC	AAC	TGC	CGA	CAA	CGT	TTT	1012
Lys	His	Ala	Ala	Asn	Leu	Cys	Ala	Phe	lle	Asn	Cys	Arg	Gln	Arg	Phe	
				315					320					325		
GCT	CCG	CCG	ATA	CCT	CAA	AAT	TAC	TTT	GGA	AAT	TGC	ATA	GTG	CCT	TGT	1060
Ala	Pro	Pro	lle	Pro	Gln	Asn	Tyr	Phe	Gly	Asn	Cys	lle	Val	Pro	Cys	
			330					335					340			
ATG	GTG	GGA	TCG	ACT	CAT	GAG	CAA	CTT	GTA	GGA	AAT	GAA	GGG	TTG	TCG	1108
Met	Val	Gly	Ser	Thr	His	Glu	Gln	Leu	Val	Gly	Asn	Glu	Gly	Leu	Ser	
		345					350					355				
GTA	GCT	GCA	ACC	GCC	ATC	GGA	GAT	GCT	ATC	CAT	AAG	AGG	TTA	CAT	GAC	1156
Val	Ala	Ala	Thr	Ala	lle	Gly	Asp	Ala	lle	His	Lys	Arg	Leu	His	Asp	
	360					365					370					
TAC	GAA	GGA	ATT	CTG	AGA	GGA	GAT	TGG	ATA	TCG	CCG	CCC	CGA	TCA	ACA	1204
Tyr	Glu	Gly	lle	Leu	Arg	Gly	Asp	Trp	lle	Ser	Pro	Pro	Arg	Ser	Thr	
375					380					385					390	
TCT	GCG	GCA	CCA	AGG	TCG	ACG	CTC	ATT	TAT	GTC	GTT	GGA	TCC	GCA	CAA	1252
Ser	Ala	Ala	Pro	Arg	Ser	Thr	Leu	lle	Tyr	Val	Val	Gly	Ser	Ala	Gln	
				395					400					405		
CGC	AAT	GTG	CAT	GAT	TTT	GAT	GCA	GAT	TTT	GGT	TGG	GGA	AAG	CTT	GAA	1300
Arg	Asn	Val	His	Asp	Phe	Asp	Ala	Asp	Phe	Gly	Trp	Gly	Lys	Leu	Glu	
			410					415					420			
AAG	CAT	GAA	TCT	GTT	TCA	ACT	AAT	CCT	TCG	GCA	ACA	CTA	ATT	TTG	ATC	1348
Lys	His	Glu	Ser	Val	Ser	Thr	Asp	Pro	Ser	Ala	Thr	Leu	lle	Leu	lle	
		425					430					435				
TCT	CGG	TCC	AGA	AGA	TTT	AAA	GGA	GCA	CTT	GAG	CTT	GGC	ATT	TCT	TTG	1396
Ser	Arg	Ser	Arg	Arg	Phe	Lys	Gly	Ala	Leu	Glu	Leu	Gly	lle	Ser	Leu	
	440					445					450					

CCT AAG AAT AGG ATG GAC GCA TTT GCC ACC ATT TTT ACG AAT TTC ATC 1444

Pro Lys Asn Arg Met Asp Ala Phe Ala Thr lle Phe Thr Asn Phe lle

455 460 465 470

AAT AGT CTC CAT GTG AGG AGC CCT TTG TAAGAAAAA GTGGTATCAA

1491
Asn Ser Leu His Val Arg Ser Pro Leu

475 479

配列番号 (SEQ ID NO) : 3

配列の長さ(SEQUENCE LENGTH): 1 6 0 5

配列の型(SEQUENCE TYPE):核酸(nucleic acid)

鎖の数(STRANDEDNESS):二本鎖(double)

トポロジー(TOPOLOGY):直鎖状(linear)

配列の種類(MOLECULE TYPE):cDNA to mRNA

ハイポセティカル配列(HYPOTHETICAL SEQUENCE): No

アンチセンス (ANTI-SENSE): No

起源 (ORIGINAL SOURCE)

生物名 (ORGANISM) : ペチュニア (Petunia hybrida)

組織の種類(TISSUE TYPE):花弁(petal)

直接の起源(IMMEDIATE SOURCE)

ライブラリー名 (LIBRARY) : cDNA library

クローン名 (CLONE): pPAT48

配列 (SEQUENCE DESCRIPTION)

TGTCGACGAA ATCCATTTCA TTTCCTCTTC TTTCTTGTTT TTCTAATTTC GTCATCATTG 60

FATT	CC	ATG	GCA	GGT	GAA	GTA	GCA	AAA	САА	GAA	GTT	ACA	AAA	GTG	AAA	108
		Met	Ala	Gly	Glu	Val	Ala	Lys	Gln	Glu	Val	Thr	Lys	Val	Lys	
		1				5					10					
GTC	СТС	AAA	AAA	ACA	AAC	GTG	AAA	CCA	CAT	AAA	A CCA	A CTA	GGA	AAA	AAA	156
Val	Leu	ı Lys	Lys	Thr	Asn	Val	Lys	Pro	His	Lys	s Pro) Lei	ı Gly	Lys	Lys	
15					20	ı				25	5				30	
GAG	TGT	CAA	TTO	GTA	ACA	TTT	GAT	СТТ	CCT	OAT 7	C CTA	A GCT	TTC	TAT	TAC	204
Glu	Cys	Glr	Leu	ı Val	Thr	Phe	e Asp	Leu	Pro	Туі	r Lei	Ala د	Phe	Tyr	Tyr	
				35	j				40)				45	ò	
AAC	CAA	A AAA	TTI	г стс	ATC	CAT	ΓΑΑΑ	GGT	GC1	Γ GA	A AAG	C TT1	r GAC	GAC	G ACG	252
Asn	Glr	ı Lys	Phe	e Leu	lle	Tyr	- Lys	Gly	/ Ala	Gli	u Ası	n Phe	e Asp	Glu	Thr	
			50)				55	5				60)		
GTG	GAA	A AAA	TA A	AAA 1	GAT	GGA	А СТО	GCC	TTA	A GT	A TT(G GTO	G GAT	TTC	CTAT	300
Val	Gli	ı Lys	: Ile	e Lys	Asp	Gly	/ Leu	ı Ala	ı Lei	ا Va	l Lei	u Val	l Asp	Phe	e Tyr	
		65	5				70)				75	5			
CAA	CTA	A GCT	r GG(G AAA	СТТ	r GG/	A AA	GA7	r GA	A GA	A GG	G GT	r tto	C AGO	G GTG	348
Gln	Lei	ı Ala	Gly	y Lys	Lei	Gly	y Lys	s Ası	o Gli	u Gl	u Gl	y Val	l Phe	e Arg	g Val	
	80)				85	5				9	0				
GAA	TAC	C GA	C GAT	r GAC	C ATO	G GAT	r GGT	Γ GT/	A GA	G GT	G AC	A GTO	G GCT	r GT	r GCA	396
Glu	Туп	r Ası	As ₁	p Ası	Me1	t Ası	p Gly	/ Vai	l Gl	u Va	l Th	r Va	l Ala	a Val	l Ala	
95					100)				10	5				110	
GAA	GAG	G ATA	A GA	A GTT	r GCA	A GA	г ст	r ac	r ga'	T GA	A GA	A GG	C AC	C AC	C AAA	444
Glu	Gl	u Ile	e Gli	u Val	l Ala	a Ası	p Lei	J Th	r As	p Gl	u Gl	u Gl	y Thi	r Thi	r Lys	
				115	5				12	0				12	5	
TTC	CA	G GA	C TT	G AT	r cc	r TG	T AA'	Γ ΑΑ	A AT	с тт	G AA	т тт	G GA	A GG(G CTT	492
Phe	Gl	n Ası	p Le	u Ile	e Pro	о Су	s Ası	n Lys	s II	e Le	u As	n Le	u Gla	u Gl	y Leu	
			130	0				13	5				140	0		

CAT	r cgo	CC.	r cti	r cta	A GCT	GTG	CAC	CTC	ACC	AA(CTO	CAAC	GAC	GGG	G CTC	540
His	Arg	Pro) Lei	ı Lei	ı Ala	Val	Gln	Leu	Thr	Lys	Lei	ı Lys	Asp	Gly	y Leu	
		145	5				150)				155	;			
ACC	ATG	GGA	A TTA	GCA	TTT	AAC	CAT	GCT	GTG	СТС	GAT	GGT	` ACT	TCC	G ACG	588
Thr	Met	Gly	/ Leu	Ala	Phe	Asn	His	Ala	Val	Leu	ı Asp	Gly	Thr	Ser	Thr	
	160					165					170)				
TGG	CAÇ	TTT	ATG	ACC	TCG	TGG	тсс	GAG	CTT	TGC	TGT	GGG	TCC	ACC	TCA	636
Trp	His	Phe	Met	Thr	Ser	Trp	Ser	Glu	Leu	Cys	Cys	Gly	Ser	Thr	Ser	
175					180					185					190	
ATT	TCT	GTC	CCA	CCA	TTC	CTT	GAA	CGA	ACC	AAG	GCT	CGT	AAC	ACT	CGA	684
He	Ser	Val	Pro	Pro	Phe	Leu	Glu	Arg	Thr	Lys	Ala	Arg	Asn	Thr	Arg	
				195					200					205		
GTC	AAG	CTC	AAC	CTC	TCT	CAA	CCA	TCA	GAT	GCA	CCC	GAA	CAT	GCT	AAG	732
Val	Lys	Leu	Asn	Leu	Ser	Gln	Pro	Ser	Asp	Ala	Pro	Glu	His	Ala	Lys	
			210					215					220			
TCA	GCA	ACC	AAC	GGT	GAT	GTC	CCG	GCC	AAC	GTA	GAC	CCA	CCT	CTT	CGC	780
Ser	Ala	Thr	Asn	Gly	Asp	Val	Pro	Ala	Asn	Val	Asp	Pro	Pro	Leu	Arg	
		225					230					235				
GAA	AGA	GTA	TTC	AAG	TTC	TCC	GAG	TTA	GCA	ATT	GAC	AAA	ATC	AAG	TCA	828
Glu	Arg	Val	Phe	Lys	Phe	Ser	Glu	Leu	Ala	He	Asp	Lys	He	Lys	Ser	
	240					245					250					
ACA	GTC	AAT	GCC	AAC	TCA	GGA	GAG	ACG	CCA	TTC	TCC	ACA	TTC	CAA	TCA	876
Thr	Val	Asn	Ala	Asn	Ser	Gly	Glu	Thr	Pro	Phe	Ser	Thr	Phe	Gln	Ser	
255					260					265					270	
CTC	TCC	GCA	CAC	GTG	TGG	СТА	GCC	GTC	ACA	CGT	GCG	CGC	CAA	CTC	AAG	924
Leu	Ser	Ala	His	Val	Trp	Leu	Ala	Val	Thr	Arg	Ala	Arg	Gln	Leu	Lys	
				275					280					285		

CCC	GAG	GAC	TAC	ACT	GTG	TAC	ACT	GTG	TTT	GCT	GAT	TGC	AGG	AAA	AGG	972
Pro	Glu	Asp	Tyr	Thr	Val	Tyr	Thr	Val	Phe	Ala	Asp	Cys	Arg	Lys	Arg	
			290					295					300			
GTT	GAT	CCT	CCA	ATG	CCA	GAA	AGT	TAC	TTC	GGC	AAC	CTA	ATT	CAG	GCA	1020
Val	Asp	Pro	Pro	Met	Pro	Glu	Ser	Tyr	Phe	Gly	Asn	Leu	lle	Gln	Ala	
		305					310					315				
ATT	TTC	ACA	GTG	ACC	GCG	GCA	GGT	TTG	TTA	CTA	GCA	AGC	CCG	ATC	GAG	1068
He	Phe	Thr	Val	Thr	Ala	Ala	Gly	Leu	Leu	Leu	Ala	Ser	Pro	lle	Glu	
	320		:			325					330					
TTC	GCT	GGT	GGG	ATG	ATA	CAA	CAA	GCG	ATC	GTG	AAG	CAT	GAC	GCT	AAG	1116
Phe	Ala	Gly	Gly	Met	lle	Gln	Gln	Ala	lle	Val	Lys	His	Asp	Ala	Lys	
335					340					345					350	
GCC	ATT	GAT	GAA	AGA	AAC	AAG	GAG	TGG	GAG	AGC	AAC	CCG	AAG	ATC	TTT	1164
Ala	lle	Asp	Glu	Arg	Asn	Lys	Glu	Trp	Glu	Ser	Asn	Pro	Lys	lle	Phe	
				355					360					365		
CAG	TAC	AAA	GAT	GCT	GGA	GTG	AAC	TGT	GTT	GCT	GTT	GGA	AGT	TCG	CCA	1212
Gln	Tyr	Lys	Asp	Ala	Gly	Val	Asn	Cys	Val	Ala	Val	Gly	Ser	Ser	Pro	
			370					375					380			
AGG	TTC	AAG	GTT	TAC	GAC	GTG	GAT	TTT	GGA	TGG	GGA	AAG	CCA	GAG	AGT	1260
Arg	Phe	Lys	Val	Tyr	Asp	Val	Asp	Phe	Gly	Trp	Gly	Lys	Pro	Glu	Ser	
		385					390					395				
GTG	AGG	AGT	GGT	TCG	AAC	AAT	AGG	TTT	GAT	GGA	ATG	GTG	TAT	TTG	TAC	1308
Val	Arg	Ser	Gly	Ser	Asn	Asn	Arg	Phe	Asp	Gly	Met	Val	Tyr	Leu	Tyr	
	400					405					410					
CAA	GGC	AAA	AAT	GGA	GGA	AGA	AGC	ATT	GAT	GTG	GAG	ATT	AGT	TTG	GAA	1356
Gln	Gly	Lys	Asn	Gly	Gly	Arg	Ser	He	Asp	Val	Glu	He	Ser	Leu	Glu	
415					420					425					430	

PCT/JP96/00348 WO 96/25500

```
GCA AAT GCT ATG GAG AGG TTG GAG AAA GAT AAA GAG TTC CTC ATG GAA
Ala Asn Ala Met Glu Arg Leu Glu Lys Asp Lys Glu Phe Leu Met Glu
             435
                              440
                                              445
ACT GCT TAATTTGCTT AGCTTGGACT CAACTGGCTA CACTTTATTT ATGAGCTGCT
                                                      1460
Thr Ala
ATGACTCACA TGCATGTATG TTTATTTTTT TTGGAGGGGT TCTTTCCTTT TATTGTTTTC 1520
TATGTTTTT CTTTCTTGTA CGTTATGAAG AGAAACCGAG TATAAAGGAA TAATGTTTTC 1580
AGTTATTAAA AAAAAAAAAA AAAAA
                                                      1605
配列番号 (SEQ 1D NO ) : 4
配列の長さ(SEQUENCE LENGTH ):1479
配列の型(SEQUENCE TYPE ):核酸(nucleic acid)
鎖の数(STRANDEDNESS):二本鎖(double)
トポロジー (TOPOLOGY) : 直鎖状 (linear)
配列の種類(MOLECULE TYPE ): cDNA to mRNA
ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No
アンチセンス (ANTI-SENSE) : No
起源 (ORIGINAL SOURCE)
 生物名(ORGANISM): シソ (Perilla ocimoides )
 組織の種類(TISSUE TYPE ):葉(leaf)
直接の起源(IMMEDIATE SOURCE)
  ライブラリー名(LIBRARY ): cDNA library
  クローン名 (CLONE): pSAT208
配列 (SEQUENCE DESCRIPTION)
CC GTG ATC GAA ACG TGT AGA GTT GGG CCG CCG CCG GAC TCG GTG GCG
                                                        47
  Val lie Glu Thr Cys Arg Val Gly Pro Pro Pro Asp Ser Val Ala
    1
                 5
```

10

15

GAG	CAA	TCG	GTG	CCG	CTC	ACA	TTC	TTC	GAC	ATG	ACG	TGG	CTG	CAT	TTT	95
Glu	Gln	Ser	Val	Pro	Leu	Thr	Phe	Phe	Asp	Met	Thr	Trp	Leu	His	Phe	
				20					25					30		
CAT	CCC	ATG	CTT	CAG	СТС	CTC	TTC	TAC	GAA	TTC	CCT	TGT	TCC	AAG	CAA	143
His	Pro	Met	Leu	Gln	Leu	Leu	Phe	Tyr	Glu	Phe	Pro	Cys	Ser	Lys	Gln	
			35					40					45			
CAT	TTT	TCA	GAA	TCC	ATC	GTT	CCA	AAA	CTC	AAA	CAA	TCT	CTC	TCT	AAA	191
His	Phe	Ser	Glu	Ser	lle	Val	Pro	Lys	Leu	Lys	Gln	Ser	Leu	Ser	Lys	
		50					55					60				
ACT	CTC	ATA	CAC	TTC	TTC	CCT	CTC	TCA	TGC	AAT	TTA	ATC	TAC	CCT	TCA	239
Thr	Leu	lle	His	Phe	Phe	Pro	Leu	Ser	Cys	Asn	Leu	lle	Tyr	Pro	Ser	
	65					70					75					
TCC	CCG	GAG	AAA	ATG	CCG	GAG	TTT	CGG	TAT	СТА	TCC	GGG	GAC	TCG	GTT	287
Ser	Pro	Glu	Lys	Met	Pro	Glu	Phe	Arg	Tyr	Leu	Ser	Gly	Asp	Ser	Val	
80					85					90					95	
тст	TTC	ACC	ATC	GCA	GAA	TCT	AGC	GAC	GAC	TTC	GAT	GAT	CTC	GTC	GGA	335
Ser	Phe	Thr	lle	Ala	Glu	Ser	Ser	Asp	Asp	Phe	Asp	Asp	Leu	Val	Gly	
				100					105					110		
AAT	CGT	CCA	GAA	TCT	CCC	GTT	AGG	CTC	TAC	AAC	TTT	GTC	CCT	AAA	TTG	383
Asn	Arg	Pro	Glu	Ser	Pro	Val	Arg	Leu	Tyr	Asn	Phe	Val	Pro	Lys	Leu	
			115					120					125			
CCG	CCC	ATT	GTC	GAA	GAA	TCC	GAT	AGA	AAA	CTC	TTC	CAA	GTT	TTC	GCC	431
Pro	Pro	lle	Val	Glu	Glu	Ser	Asp	Arg	Lys	Leu	Phe	Gln	Val	Phe	Ala	
		130					135					140				
GTG	CAG	GTG	ACT	CTT	TTC	CCA	GGC	CGA	GGC	GTC	GGT	ATT	GGA	ATA	GCA	479
Val	Gln	Val	Thr	Leu	Phe	Pro	Gly	Arg	Gly	Val	Gly	lle	Gly	lle	Ala	
	145					150					155					

ACG	CAT	CAC	ACC	GTT	AGC	GAC	GCC	CCG	TCG	TTT	CTC	GCG	TTT	ATA	ACG	527
Thr	His	His	Thr	Val	Ser	Asp	Ala	Pro	Ser	Phe	Leu	Ala	Phe	lle	Thr	
160					165					170					175	
GCT	TGG	TCT	TCA	ATG	AGC	AAA	CAC	ATT	GAA	AAT	GAA	GAT	GAA	GAT	GAA	575
Ala	Trp	Ser	Ser	Me t	Ser	Lys	His	lle	Glu	Asn	Glu	Asp	Glu	Asp	Glu	
				180					185					190		
GAA	TTT	AAA	TCT	TTG	CCA	GTT	TTC	GAT	AGA	TCC	GTC	ATA	AAA	TAT	CCG	623
Glu	Phe	Lys	Ser	Leu	Pro	Val	Phe	Asp	Arg	Ser	Val	lle	Lys	Tyr	Pro	
			195					200					205			
ACG	AAA	TTT	GAC	TCC	ATT	TAT	TGG	AGA	AAC	GCG	CTA	AAA	TTT	CCT	TTG	671
Thr	Lys	Phe	Asp	Ser	lle	Tyr	Trp	Arg	Asn	Ala	Leu	Lys	Phe	Pro	Leu	
		210					215					220				
CAA	TCT	CGT	CAT	CCC	TCA	TTA	CCG	ACG	GAC	CGC	ATT	CGA	ACC	ACG	TTC	719
Gln	Ser	Arg	His	Pro	Ser	Leu	Pro	Thr	Asp	Arg	Ile	Arg	Thr	Thr	Phe	
	225					230					235					
GTT	TTC	ACC	CAA	TCC	AAA	ATT	AAG	AAA	TTG	AAG	GGT	TGG	ATT	CAG	TCC	767
Val	Phe	Thr	Gln	Ser	Lys	lle	Lys	Lys	Leu	Lys	Gly	Trp	lle	Gln	Ser	
240					245					250					255	
AGA	GTT	CCA	AGT	TTA	GTC	CAT	CTC	TCA	TCT	TTT	GTA	GCG	ATT	GCA	GCT	815
Arg	Val	Pro	Ser	Leu	Val	His	Leu	Ser	Ser	Phe	Val	Ala	Пе	Ala	Ala	
				260					265					270		
TAT	ATG	TGG	GCT	GGC	ATA	ACG	AAA	TCA	TTC	ACA	GCA	GAT	GAA	GAC	CAA	863
Tyr	Met	Trp	Ala	Gly	lle	Thr	Lys	Ser	Phe	Thr	Ala	Asp	Glu	Asp	Gln	
			275					280					285			
GAC	AAC	GAG	GAT	GCA	TTT	TTC	TTG	ATT	CCG	GTC	GAT	СТА	AGG	CCA	CGA	911
Asp	Asn	Glu	Asp	Ala	Phe	Phe	Leu	He	Pro	Val	Asp	Leu	Arg	Pro	Arg	
		290					295					300				

TTA	GAT	CCG	CCG	GTT	CCT	GAA	AAT	TAC	TTC	GGG	AAC	TGC	TTA	TCG	TAC	959
Leu	Asp	Pro	Pro	Val	Pro	Glu	Asn	Tyr	Phe	Gly	Asn	Cys	Leu	Ser	Tyr	
	305					310					315					
GCG	CTG	CCG	AGA	ATG	CGG	CGG	CGA	GAG	CTG	GTG	GGA	GAG	AAA	GGG	GTG	1007
Ala	Leu	Pro	Arg	Met	Arg	Arg	Arg	Glu	Leu	Val	Gly	Glu	Lys	Gly	Val	
320					325					330					335	
TTT	CTG	GCA	GCT	GAG	GTA	ATC	GCG	GCG	GAG	ATA	AAA	AAA	AGG	ATC	AAC	1055
Phe	Leu	Ala	Ala	Glu	Val	He	Ala	Ala	Glu	lle	Lys	Lys	Arg	lle	Asn	
				340					345					350		
GAC	AAG	AGA	ATA	TTA	GAA	ACG	GTG	GAG	AAA	TGG	TCG	CCG	GAG	ATT	CGT	1103
Asp	Lys	Arg	lle	Leu	Glu	Thr	Val	Glu	Lys	Trp	Ser	Pro	Glu	lle	Arg	
			355					360					365			
AAA	GCG	TTG	CAG	AAA	TCA	TAT	TTT	TCG	GTG	GCA	GGA	TCG	AGC	AAG	CTA	1151
Lys	Ala	Leu	Gln	Lys	Ser	Tyr	Phe	Ser	Val	Ala	Gly	Ser	Ser	Lys	Leu	
		370					375					380				
GAT	CTT	TAC	GGT	GCA	GAT	TTT	GGA	TGG	GGG	AAG	GCG	AGA	AAG	CAA	GAA	1199
Asp	Leu	Tyr	Gly	Ala	Asp	Phe	Gly	Trp	Gly	Lys	Ala	Arg	Lys	Gln	Glu	
	385					390					395					
ATA	TTG	TCG	TTA	GAT	GGG	GAG	AAA	TAT	GCA	ATG	ACR	CTT	TGT	AAA	GCC	1247
lle	Leu	Ser	lle	Asp	Gly	Glu	Lys	Tyr	Ala	Met	Thr	Leu	Cys	Lys	Ala	
400					405					410					415	
AGG	GAT	TTC	GAA	GGA	GGA	TTG	GAG	GTT	TGC	TTG	TCT	TTG	CCT	AAG	GAC	1295
Arg	Asp	Phe	Glu	Gly	Gly	Leu	Glu	Val	Cys	Leu	Ser	Leu	Pro	Lys	Asp	
				420					425					430		
AAA	ATG	GAT	GCT	TTT	GCT	GCT	TAT	TTT	TCA	CTG	GGA	ATT	AAT	GGT		1340
Lys	Met	Asp	Ala	Phe	Ala	Ala	Tyr	Phe	Ser	Leu	Gly	He	Asn	Gly		
		•	435					440						446		

TAATAAATGT ATGTAATTAA ACTAATATTA TTATGTAACA ATTAATTAAG TGTTGAGTAA 1400 CGTGAAGAAT AATCCCTATT ATATATTTAT GATTTGGTTC AAATAAAGTG TAAAGCCTCT 1460 TGAAAAAAA AAAAAAAA 1479 配列番号 (SEQ ID NO) : 5 配列の長さ(SEQUENCE LENGTH): 1508 配列の型(SEQUENCE TYPE):核酸(nucleic acid) 鎖の数 (STRANDEDNESS) : 二本鎖 (double) トポロジー (TOPOLOGY) : 直鎖状 (linear) 配列の種類(MOLECULE TYPE): cDNA to mRNA ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No アンチセンス (ANTI-SENSE) : No 起源 (ORIGINAL SOURCE) 生物名 (ORGANISM) : サイネリア (Senecio cruentus) 組織の種類(TISSUE TYPE):花弁(petal) 直接の起源(IMMEDIATE SOURCE) ライブラリー名(LIBRARY): cDNA library クローン名 (CLONE): pCAT8 配列 (SEQUENCE DESCRIPTION) TG AAC ATT CTC GAA CAT GCC CGA ATA TCG GCC CCC TCG GGC ACC ATC 47 Asn lle Leu Glu His Ala Arg Ile Ser Ala Pro Ser Gly Thr Ile 1 5 10 15 GGC CAT CGC TCG TTA TCT CTT ACT TTC TTC GAC ATT ACT TGG CTA CTC 95 Gly His Arg Ser Leu Ser Leu Thr Phe Phe Asp lle Thr Trp Leu Leu 20 25 30 TTC CCT CCG GTC CAC CAT CTT TTC TTC TAT GAC TTT CCA CAT TCT AAA 143 Phe Pro Pro Val His His Leu Phe Phe Tyr Asp Phe Pro His Ser Lys 35 40 45

TCC	CAT	TTC	ATG	GAC	ACT	TTA	GTT	CCC	AGG	CTA	AAA	CAA	TCT	TTA	TCG	191
Ser	His	Phe	Met	Asp	Thr	lle	Val	Pro	Arg	Leu	Lys	Gln	Ser	Leu	Ser	
		50					55					60				
GTC	ACT	CTT	CAA	CAT	TTT	TTC	CCG	TTT	GCT	AGT	AAT	TTG	ATT	GTA	TTT	239
Val	Thr	Leu	Gln	His	Phe	Phe	Pro	Phe	Ala	Ser	Asn	Leu	He	Val	Phe	
	65					70					75					
CCT	AAC	ACT	GAT	GGT	TCG	GGT	TTT	AAT	AAA	AAA	CCA	GAA	ATA	AAA	CAC	287
Pro	Asn	Thr	Asp	Gly	Ser	Gly	Phe	Asn	Lys	Lys	Pro	Glu	lle	Lys	His	
80					85					90					95	
GTT	GAA	GGT	GAT	TCT	GTT	GTG	GTT	ACT	TTT	GCA	GAA	TGT	TGT	CTT	GAC	335
Val	Glu	Gly	Asp	Ser	Val	Val	Val	Thr	Phe	Ala	Glu	Cys	Cys	Leu	Asp	
				100					105					110		
TTT	AAT	AAT	TTG	ACA	GGA	AAT	CAT	CCT	CGA	AAA	TGT	GAA	AAC	TTT	TAT	383
Phe	Asn	Asn	Leu	Thr	Gly	Asn	His	Pro	Arg	Lys	Cys	Glu	Asn	Phe	Tyr	
			115					120					125			
CCA	CTT	GTA	CCT	TCA	TTG	GGA	AAT	GCA	ATC	AAA	TTA	TGT	GAT	TGC	GTC	431
Pro	Leu	Val	Pro	Ser	Leu	Gly	Asn	Ala	lle	Lys	Leu	Cys	Asp	Cys	Val	
		130					135					140				
ACG	GTC	CCA	CTT	TTT	TCA	CTT	CAA	GTG	ACG	TTT	TTT	CCG	GGC	TCG	GGT	479
Thr	Val	Pro	Leu	Phe	Ser	Leu	Gln	Val	Thr	Phe	Phe	Pro	Gly	Ser	Gly	
	145					150					155					
ATA	TCA	СТА	GGA	ATG	ACG	AAT	CAT	CAT	AGC	CTT	GGT	GAC	GCT	AGC	ACG	527
lle	Ser	Leu	Gly	Met	Thr	Asn	His	His	Ser	Leu	Gly	Asp	Ala	Ser	Thr	
160					165					170					175	
CGG	TTC	AAC	TTT	TTG	AAA	GGG	TGG	ACT	TCG	ATT	ATT	CAA	TCT	GGT	GTA	575
Arg	Phe	Asn	Phe	Leu	Lys	Gly	Trp	Thr	Ser	He	lle	Gln	Ser	Gly	Val	
				180					185					190		

GAT	CGG	TCT	TTT	TTA	ACG	AAA	GGA	TCT	CCA	CCG	GTT	TTT	GAT	AGA	TTG	623
Asp	Arg	Ser	Phe	Leu	Thr	Lys	Gly	Ser	Pro	Pro	Val	Phe	Asp	Arg	Leu	
			195					200					205			
ATT	AAC	ATC	CCA	CAT	ATT	GAT	GAA	AAT	AAG	TTG	AGA	CAT	ACA	AGG	CTC	671
lle	Asn	lle	Pro	His	Leu	Asp	Glu	Asn	Lys	Leu	Arg	His	Thr	Arg	Leu	
		210					215					220				
GAA	AGT	TTT	TAT	AAA	CCT	TCG	AGC	CTT	GTT	GGT	CCC	ACT	GAT	AAA	GTT	719
Glu	Ser	Phe	Tyr	Lys	Pro	Ser	Ser	Leu	Val	Gly	Pro	Thr	Asp	Lys	Val	
	225					230					235					
CGG	TCA	ACG	TTT	GTG	TTG	ACC	CGA	ACT	AAT	ATC	AAT	CTA	СТА	AAG	AAA	767
Arg	Ser	Thr	Phe	Val	Leu	Thr	Arg	Thr	Asn	lle	Asn	Leu	Leu	Lys	Lys	
240					245					250					255	
AAG	GTC	TTA	ACC	CAA	GTG	CCA	AAC	TTG	GAG	TAC	ATG	TCA	TCT	TTT	ACG	815
Lys	Val	Leu	Thr	Gln	Val	Pro	Asn	Leu	Glu	Tyr	Met	Ser	Ser	Phe	Thr	
				260					265					270		
GTA	ACT	TGT	GGT	TAT	ATA	TGG	AGT	TGC	ATA	GCG	AAA	TCA	CTC	GTA	AAA	863
Val	Thr	Cys	Gly	Tyr	lle	Trp	Ser	Cys	He	Ala	Lys	Ser	Leu	Val	Lys	
			275					280					285			
ATA	GGA	GAA	AGA	AAG	GGC	GAA	GAC	GAG	TTA	GAA	CAG	TTC	ATA	ATC	ACC	911
He	Gly	Glu	Arg	Lys	Gly	Glu	Asp	Glu	Leu	Glu	Gln	Phe	lle	lle	Thr	
		290					295					300				
ATT	GAT	TGT	CGA	TCT	CGT	CTT	GAT	CCA	CCA	ATT	CCC	ACA	GCC	TAC	TTT	959
lle	Asp	Cys	Arg	Ser	Arg	Leu	Asp	Pro	Pro	He	Pro	Thr	Ala	Tyr	Phe	
	305					310					315					
GGT	AAC	TGT	GGT	GCA	CCA	TGT	GTC	CCG	ACC	TTA	AAA	AAT	GTC	GTT	TTG	1007
Gly	Asn	Cys	Gly	Ala	Pro	Cys	Val	Pro	Thr	Leu	Lys	Asn	Val	Val	Leu	
320					325					330					335	

	ACT	AGC	GAA	AAT	GGG	TAT	GCA	CTT	ĢGT	GCT	AAA	GTA	ATT	GGA	GAG	TCT	1055
	Thr	Ser	Glu	Asn	Gly	Tyr	Ala	Leu	Gly	Ala	Lys	Val	lle	Gly	Glu	Ser	
					340					345					350		
	ATA	TGC	AAA	ATG	ATA	TAT	AAT	AAG	GAC	GGA	ATC	TTG	AAA	GAT	GCC	GCG	1103
	lle	Cys	Lys	Met	lle	Tyr	Asn	Lys	Asp	Gly	lle	Leu	Lys	Asp	Ala	Ala	
				355					360					365			
	AGA	TGG	CAT	GAA	CCT	TTC	ATG	ATC	CCC	GCT	AGG	AAG	ATT	GGT	GTT	GCT	1151
	Arg	Trp	His	Glu	Pro	Phe	Met	Ile	Pro	Ala	Arg	Lys	lle	Gly	Val	Ala	
			370					375					380				
	GGT	ACA	CCT	AAG	CTC	AAC	TTG	TAC	GAC	TTT	GAT	TTT	GGG	TGG	GGG	AAG	1199
	Gly	Thr	Pro	Lys	Leu	Asn	Leu	Tyr	Asp	Phe	Asp	Phe	Gly	Trp	Gly	Lys	
		385					390					395					
	CCG	ATA	AAG	TAT	GAG	ACT	GTT	TCA	ATA	GAC	TAT	AAT	ACG	TCG	ATT	TCT	1247
	Pro	lle	Lys	Tyr	Glu	Thr	Val	Ser	lle	Asp	Tyr	Asn	Thr	Ser	lle	Ser	
	400					405					410					415	
	ATA	AAT	GCA	AGC	AAA	ACA	TCA	GCA	CAA	GAT	CTT	GAA	ATT	GGA	TTG	AGT	1295
	He	Asn	Ala	Ser	Lys	Thr	Ser	Ala	Gln	Asp	Leu	Glu	lle	Gly	Leu	Ser	
					420					425					430		
	СТА	CCG	AGT	ATG	CAA	ATG	GAG	GCG	TTT	TCT	AGC	ATC	TTT	GAT	GAA	GGA	1343
	Leu	Pro	Ser	Met	Gln	Met	Glu	Ala	Phe	Ser	Ser	He	Phe	Asp	Glu	Gly	
				435					440					445			
								TAG.	ATCA'	TCG	TCCC	CTTT'	TT G	TGTG	CATC	Ą	1394
	Leu	Glu	Ser	Gln	Val	Ser	Leu										
			450				454										
	AGT'	ТТСТ	GTC	GTTT	TATT	GA G	TTGC	CACT	G TT	СТАТ	TCTT	TAA	GTAT	ACC	TTTC	GACTAT	1454
							AAAA	TGAA	A AA	AAAA	AAAA	AAA.	AAAA	AAA .	AAAA		1508
西	已列番	号	(SEQ	I D	NO)	: 6	3										

配列の長さ(SEQUENCE LENGTH): 1521 配列の型(SEQUENCE TYPE):核酸 (nucleic acid) 鎖の数(STRANDEDNESS):二本鎖 (double) トポロジー (TOPOLOGY) : 直鎖状 (linear) 配列の種類(MOLECULE TYPE): cDNA to mRNA ハイポセティカル配列(HYPOTHETICAL SEQUENCE): No アンチセンス (ANTI-SENSE) : No 起源 (ORIGINAL SOURCE) 生物名 (ORGANISM) : ラベンダー (Lavandula angustifolia) 組織の種類(TISSUE TYPE): 花弁(petal) 直接の起源 (IMMEDIATE SOURCE) ライブラリー名(LIBRARY): cDNA library クローン名 (CLONE): pLAT21 面已列(SEQUENCE DESCRIPTION) -TG ACC ACC CTC CTC GAA TCC TCC CGA GTG GCG CCG CCT CCA GGC ACG 47 Xxx Thr Thr Leu Leu Glu Ser Ser Arg Val Ala Pro Pro Gly Thr 1 5 10 GTG GCT GAG CAG TCA CTC CCG CTC ACC TTC TTC GAC ATG ACG TGG CTG 95 Val Ala Glu Gln Ser Leu Pro Leu Thr Phe Phe Asp Met Thr Trp Leu 20 25 30 CAT TTC CAC CCC ATG CTT CAG CTT CTC TTC TAC GAA CTC CCC TGT TCC 143 His Phe His Pro Met Leu Gln Leu Leu Phe Tyr Glu Leu Pro Cys Ser 35 40 45 AAA CCC GCC TTC CTC GAA ACC GTC GTT CCG AAA CTC AAA CAA TCC TTA 191 Lys Pro Ala Phe Leu Glu Thr Val Val Pro Lys Leu Lys Gln Ser Leu 50 55 60

TCT	CTA	ACC	CTC	AAA	CAC	TTC	TTC	CCC	CTT	TCA	TGC	AAT	СТА	ATC	TAC	239
Ser	Leu	Thr	Leu	Lys	His	Phe	Phe	Pro	Leu	Ser	Cys	Asn	Leu	He	Tyr	
	65					70					75					
CCT	CTA	TCG	CCG	GAG	AAA	ATG	CCG	GAG	TTC	CGG	TAT	CAG	AAC	GGT	GAC	287
Pro	Leu	Ser	Pro	Glu	Lys	Met	Pro	Glu	Phe	Ser	Val	Ser	Phe	Thr	lle	
80					85					90					95	
TCG	GTT	TCT	TTC	ACG	ATT	ATG	GAG	TCT	GTC	GGA	GAT	CAT	CCG	CAT	TCC	335
Met	Glu	Ser	Ser	Asp	Asp	Tyr	Glu	Asp	Val	Gly	Asp	His	Pro	His	Ser	
				100					105					110		
GCT	CAT	AAA	TAC	TAC	TGC	TTT	GCC	CCT	AGC	GAC	GAT	TAT	GAA	GAT	CTC	383
Ala	His	Lys	Tyr	Tyr	Cys	Phe	Ala	Gln	Leu	Pro	Pro	He	Val	Glu	Glu	
			115					120					125			
CAG	CTG	CCG	CCG	ATA	GTC	GAG	GAA	TCT	GAT	CGG	AAA	TTG	TTT	CAA	GTT	431
Ser	Asp	Arg	Lys	Leu	Phe	Gln	Val	Pro	Leu	Arg	Tyr	Gln	Asn	Gly	Asp	
		130					135					140				
TTA	GCC	GTG	CAA	GTG	ACT	CTG	TTT	CCC	GGT	CGC	GGG	GTG	TGC	ATC	GGA	479
Leu	Ala	Val	Gln	Val	Thr	Leu	Phe	Pro	Gly	Arg	Gly	Val	Cys	lle	Gly	
	145					150					155					
ATA	ACG	ACG	CAC	CAC	ACC	GTT	AGC	GAT	GCT	CCA	TCG	TTT	GTA	GGG	TTT	527
lle	Thr	Thr	His	His	Thr	Val	Ser	Asp	Ala	Pro	Ser	Phe	Val	Gly	Phe	
160					165					170					175	
ATG	AAG	AGT	TGG	GCT	TCC	ATC	ACT	AAA	TTC	GGA	GGA	GAT	GAT	GAA	TTC	575
Me t	Lys	Ser	Trp	Ala	Ser	lle	Thr	Lys	Phe	Gly	Gly	Asp	Asp	Glu	Phe	
				180			•		185					190		
TTG	GAC	GGA	AAA	GGT	GAA	TGT	TTG	CCG	GTT	TTC	GAC	CGA	TCG	CTC	GTG	623
Leu	Asp	Gly	Lys	Gly	Glu	Cys	Leu	Pro	Val	Phe	Asp	Arg	Ser	Leu	Val	
			195					200					205			

AAT	TAT	CCG	CCT	AAA	TTG	GAC	ACA	TAT	TTA	TGG	AAC	AAC	GCG	CAG	AAA	•	671
Asn	Tyr	Pro	Pro	Lys	Leu	Asp	Thr	Tyr	Leu	Trp	Asn	Asn	Ala	Gln	Lys		
		210					215					220					
CGT	CCG	TTG	GAA	TCG	CAG	CAT	CCA	TCT	TTA	CCG	ACG	GAT	CGG	ATT	CGA		719
Arg	Pro	Leu	Glu	Ser	Gln	His	Pro	Ser	Leu	Pro	Thr	Asp	Arg	He	Arg		
	225					230					235						
GCT	ACC	TAC	CTT	TTC	ACC	CAA	TCT	GAA	ATT	AAG	AAA	TTG	AAG	GGT	TTG		767
Ala	Thr	Tyr	Leu	Phe	Thṛ	Gln	Ser	Glu	lle	Lys	Lys	Leu	Lys	Gly	Leu		
240					245					250					255		
ATT	CAG	AGA	AAA	GCC	CCA	AAT	GTÁ	GTT	AAT	CTC	TCT	TCC	TTC	GTC	GCG		815
lle	Gln	Arg	Lys	Ala	Pro	Asn	Val	Val	Asn	Leu	Ser	Ser	Phe	Val	Ala		
				260					265					270			
ATC	GCA	GCT	TAT	ATC	TGG	ACC	GGC	ATC	GCC	AAA	TCG	GTC	GGA	GAT	TAC		863
He	Ala	Ala	Tyr	lle	Trp	Thr	Gly	lle	Ala	Lys	Ser	Val	Gly	Asp	Tyr		
			275		-			280					285				
AAA	GAC	GTG	GAT	GAC	GAC	AAA	CGC	GCT	TTC	TTT	TTA	ATT	CCG	ATC	GAT		911
Lys	Asp	Val	Asp	Asp	Asp	Lys	Arg	Ala	Phe	Phe	Leu	lle	Pro	lle	Asp		
		290					295					300					
TTA	AGG	CCG	CGT	TTG	GAT	CCG	CCG	GCT	CCG	GGG	AAC	TAC	TTC	GGA	AAC		959
Leu	Arg	Pro	Arg	Leu	Asp	Pro	Pro	Ala	Pro	Gly	Asn	Tyr	Phe	Gly	Asn		
	305					310					315						
TGT	СТА	TCG	TTT	GCG	ATG	GCG	AAG	ATC	CTG	CGG	CGG	GAT	TTG	GTC	GGA	1	007
Cys	Leu	Ser	Phe	Ala	Met	Ala	Lys	lle	Leu	Arg	Arg	Asp	Leu	Val	Gly		
320					325					330					335		
GAT	GAA	GGG	GTG	TTT	CGG	GCA	GCT	GAG	GCG	ATC	GCG	GCG	GAA	ATA	GAG	1	055
Asp	Glu	Gly	Val	Phe	Arg	Ala	Ala	Glu	Ala	lle	Ala	Ala	Glu	lle	Glu		
				340					345					350			

	AAG	AGG	ACG	AGC	GAC	AAG	AAG	ATT	CTA	GAA	ACT	GTG	GAG	AAC	TGG	CCG	1103
	Lys	Arg	Thr	Ser	Asp	Lys	Lys	lle	Leu	Glu	Thr	Val	Glu	Asn	Trp	Pro	
				355					360					365			
	TCT	GAG	ATT	CGC	GAA	GCC	TTG	CAA	AAC	TGT	TAT	TTC	TCG	GTG	GCG	GGA	1151
	Ser	Glu	lle	Arg	Glu	Ala	Leu	Gln	Asn	Cys	Tyr	Phe	Ser	Val	Ala	Gly	
			370					375					380				
	TCG	AGC	AGG	CTT	GAT	CTT	TAC	GGC	GCG	GAT	TTT	GGA	TGG	GGT	AAG	GCG	1199
	Ser	Ser	Arg	Leu	Asp	Leu	Tyr	Gly	Ala	Asp	Phe	Gly	Trp	Gly	Lys	Ala	
		385					390					395					
	GTG	AAG	CAA	GAG	ATA	CTG	TCG	ATT	GAT	GGA	GAG	AAG	TTT	ACG	ATG	TCG	1247
	Val	Lys	Gln	Glu	lle	Leu	Ser	lle	Asp	Gly	Glu	Lys	Phe	Thr	Me t	Ser	
	400					405					410					415	
	TTG	TGT	AAA	CCG	AGG	GAT	GCT	GCC	GGA	GGA	TTG	GAG	GTT	GGA	TTG	TCT	1295
	Leu	Cys	Lys	Pro	Arg	Asp	Ala	Ala	Gly	Gly	Leu	Glu	Val	Gly	Leu	Ser	
					420					425					430		
	TTG	CCA	AAG	GAG	GAA	TTG	CAA	GCT	TTT	GAT	GAT	TAT	TTT	GCG	GAG	GGA	1343
	Leu	Pro	Lys	Glu	Glu	Leu	Gln	Ala	Phe	Asp	Asp	Tyr	Phe	Ala	Glu	Gly	
				435					440					445			
	ATA	AAG	GGT	TGA'	ΤΤΑΑ'	TCA '	TTTA	ATCA'	rg ta	ATTA'	TGAA	G TT	GGAT	GAAA			1392
	Ile	Lys	Gly											•			
			450														
	TCC	rctg'	TTT	CATC	тста	TT G	TTTA	AACA	A TA	ATTT'	TTTT	CCA'	TTGA	ACT '	TTTT	TGAGTC	1452
	AATA	AAAA	AAA .	AAAA.	AAAA.	AA A	AAAA	AAAT	G AA	AAAA	СТСА	GTT	ATTT	TTT '	TTTT	TTTTTT	1512
	TTT	TTTT'	TT					•									1521
İ	配列	番号	号 (SEQ	I D	NO) :	7									
Ì	配列	の∄	うる	(S	EQUE	ENCE	LE	NGTI	1)	: 1	. 0						
į	配列	の <u>₹</u>	텣 (SEQ	UEN(CE T	YPE)	: ア	ミノ	・酸	(an	nino	ас	id)		

```
トポロジー (TOPOLOGY) : 直鎖状 (linear)
配列の種類(MOLECULE TYPE): peptide
ハイポセティカル配列(HYPOTHETICAL SEQUENCE ): No
配列 (SEQUENCE DESCRIPTION)
Arg Phe Leu Gly lle Thr Gly Ser Pro Lys
             5
                           10
配列番号 (SEQ ID NO ): 8
配列の長さ (SEQUENCE LENGTH ) : 8
配列の型(SEQUENCE TYPE ):アミノ酸(amino acid)
トポロジー(TOPOLOGY):直鎖状(linear)
配列の種類 (MOLECULE TYPE ) : peptide
ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No
配列 (SEQUENCE DESCRIPTION)
Ile His Met Asp Ala Phe Ala Lys
 1
             5
配列番号 (SEQ ID NO): 9
配列の長さ (SEQUENCE LENGTH ) : 1 0
配列の型(SEQUENCE TYPE ):アミノ酸(amino acid)
トポロジー (TOPOLOGY) : 直鎖状 (linear)
配列の種類 (MOLECULE TYPE ) : peptide
ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No
配列 (SEQUENCE DESCRIPTION)
Gly Val Glu lle Gly Val Ser Leu Pro Lys
 1
             5
                           10
配列番号 (SEQ ID NO ):10
配列の長さ(SEQUENCE LENGTH ): 8
配列の型(SEQUENCE TYPE ):アミノ酸(amino acid)
```

トポロジー (TOPOLOGY) : 直鎖状 (linear) 配列の種類 (MOLECULE TYPE) : peptide ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No · 配列 (SEQUENCE DESCRIPTION) Ala Ser Leu Ser Leu Thr Leu Lys 5 配列番号 (SEQ ID NO):11 配列の長さ(SEQUENCE LENGTH): 1 4 配列の型(SEQUENCE TYPE):アミノ酸(amino acid) トポロジー (TOPOLOGY) : 直鎖状 (linear) 配列の種類 (MOLECULE TYPE) : peptide ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No 配列 (SEQUENCE DESCRIPTION) His Tyr Val Pro Leu Ser Gly Asn Leu Leu Met Pro Ile Lys 1 5 10 配列番号 (SEQ ID NO):12 配列の長さ (SEQUENCE LENGTH) : 1 4 配列の型(SEQUENCE TYPE):アミノ酸(amino acid) トポロジー (TOPOLOGY) : 直鎖状 (linear) 配列の種類(MOLECULE TYPE): peptide ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No 配列 (SEQUENCE DESCRIPTION) Val Arg Ala Thr Tyr Val Leu Ser Leu Ala Glu lle Gln Lys 1 5 10 配列番号 (SEQ ID NO):13 配列の長さ (SEQUENCE LENGTH) : 8

配列の型(SEQUENCE TYPE):アミノ酸(amino acid)

```
トポロジー(TOPOLOGY):直鎖状 (linear)
 配列の種類 (MOLECULE TYPE ) : peptide
 ハイポセティカル配列(HYPOTHETICAL SEQUENCE ):No
 配列 (SEQUENCE DESCRIPTION)
 lle His Met Asp Ala Phe Ala Lys
              5
 配列番号 (SEQ ID NO ) : 1 4
配列の長さ(SEQUENCE LENGTH ): 9
配列の型(SEQUENCE TYPE ):アミノ酸(amino acid)
 トポロジー(TOPOLOGY):直鎖状 (linear)
配列の種類(MOLECULE TYPE ): peptide
ハイポセティカル配列(HYPOTHETICAL SEQUENCE ):No
配列 (SEQUENCE DESCRIPTION)
 Lys lle His Met Asp Ala Phe Ala Lys
  1
             5
配列番号 (SEQ ID NO ) : 1 5
配列の長さ(SEQUENCE LENGTH): 8
配列の型(SEQUENCE TYPE ):アミノ酸(amino acid)
トポロジー(TOPOLOGY):直鎖状(linear)
配列の種類(MOLECULE TYPE ): peptide
ハイポセティカル配列(HYPOTHETICAL SEQUENCE ):No
配列 (SEQUENCE DESCRIPTION)
Lys lle His Met Asp Ala Phe Ala
  l
             5
配列番号 (SEQ ID NO ) : 1 6
配列の長さ(SEQUENCE LENGTH ): 23
配列の型(SEQUENCE TYPE ):核酸(nucleic acid)
```

鎖の数(STRANDEDNESS):一本鎖(single)	
トポロジー (TOPOLOGY) : 直鎖状 (linear)	
配列の種類(MOLECULE TYPE):synthetic DNA	
ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No	
配列 (SEQUENCE DESCRIPTION)	
AARATHCAYA TGGAYGCITT YGC	23
配列番号(SEQ ID NO): 1 7	
配列の長さ(SEQUENCE LENGTH): 2 3	
配列の型(SEQUENCE TYPE):核酸(nucleic acid)	
鎖の数(STRANDEDNESS):一本鎖(single)	
トポロジー (TOPOLOGY) : 直鎖状 (linear)	
配列の種類(MOLECULE TYPE):synthetic DNA	
ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No	
配列 (SEQUENCE DESCRIPTION)	
CTCGAGTTTT TTTTTTTT TTT	23
配列番号 (SEQ ID NO) : 1 8	
配列の長さ(SEQUENCE LENGTH): 2 6	
配列の型(SEQUENCE TYPE):核酸(nucleic acid)	
鎖の数(STRANDEDNESS):一本鎖(single)	
トポロジー(TOPOLOGY):直鎖状(linear)	
配列の種類(MOLECULE TYPE):synthetic DNA	
ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No	
西己 歹」(SEQUENCE DESCRIPTION)	
TTCACCATGG AGCAAATCCA AATGGT	26
配列番号 (SEQ ID NO) : 1 9	
配列の長さ(SEQUENCE LENGTH): 17	
配列の型(SEQUENCE TYPE):核酸(nucleic acid)	

WO 96/25500

鎖の数 (STRANDEDNESS) : 一本鎖 (single) トポロジー (TOPOLOGY) : 直鎖状 (linear) 配列の種類(MOLECULE TYPE): synthetic DNA ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No 配列 (SEQUENCE DESCRIPTION) 17 CGAGTCGCCC TCATCAC 配列番号 (SEQ ID NO) : 2 0 配列の長さ(SEQUENCE LENGTH): 1 6 配列の型(SEQUENCE TYPE):核酸(nucleic acid) 鎖の数(STRANDEDNESS): 一本鎖(single) トポロジー (TOPOLOGY) : 直鎖状 (linear) 配列の種類(MOLECULE TYPE): synthetic DNA ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No 配列 (SEQUENCE DESCRIPTION) 16 AACAGCTATG ACCATG 配列番号 (SEQ ID NO): 2 1 配列の長さ(SEQUENCE LENGTH): 6 配列の型 (SEQUENCE TYPE) : アミノ酸 (amino acid) トポロジー (TOPOLOGY) : 直鎖状 (linear) 配列の種類 (MOLECULE TYPE) : peptide ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No 配列 (SEQUENCE DESCRIPTION) Asp Phe Gly Trp Gly Lys 5 1 配列番号 (SEQ ID NO): 2 2 配列の長さ (SEQUENCE LENGTH) : 17

配列の型 (SEQUENCE TYPE) : 核酸 (nucleic acid)

鎖の数 (STRANDEDNESS) : 一本鎖 (single)

トポロジー (TOPOLOGY) : 直鎖状 (linear)

配列の種類(MOLECULE TYPE):synthetic DNA

ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No

配列 (SEQUENCE DESCRIPTION)

GAYTTYGGIT GGGGIAA

17

配列番号 (SEQ ID NO): 23

配列の長さ(SEQUENCE LENGTH): 2 1

配列の型(SEQUENCE TYPE):核酸(nucleic acid)

鎖の数(STRANDEDNESS): 一本鎖 (single)

トポロジー (TOPOLOGY) : 直鎖状 (linear)

配列の種類(MOLECULE TYPE):synthetic DNA

ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No

配列 (SEQUENCE DESCRIPTION)

TGGCAACTGT CTTGCGTCAT G

21

配列番号 (SEQ ID NO): 2 4

配列の長さ(SEQUENCE LENGTH): 23

配列の型 (SEQUENCE TYPE) : 核酸 (nucleic acid)

鎖の数(STRANDEDNESS):一本鎖(single)

トポロジー (TOPOLOGY) : 直鎖状 (linear)

配列の種類 (MOLECULE TYPE) : synthetic DNA

ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No

配列 (SEQUENCE DESCRIPTION)

CCATGTCAGG TGTGAGGTTC AAC

23

配列番号 (SEQ ID NO) : 2 5

配列の長さ(SEQUENCE LENGTH): 2 0

配列の型(SEQUENCE TYPE):核酸(nucleic acid)

鎖の数 (STRANDEDNESS) : 一本鎖 (single) トポロジー (TOPOLOGY) : 直鎖状 (linear) 配列の種類(MOLECULE TYPE): synthetic DNA ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No 配列 (SEQUENCE DESCRIPTION) ATCGTTTCGC ATGATTGAAC 20 配列番号 (SEQ ID NO) : 2 6 配列の長さ(SEQUENCE LENGTH): 2 0 配列の型(SEQUENCE TYPE):核酸(nucleic acid) 鎖の数 (STRANDEDNESS) : 一本鎖 (single) トポロジー(TOPOLOGY): 直鎖状 (linear) 配列の種類(MOLECULE TYPE): synthetic DNA ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No 配列 (SEQUENCE DESCRIPTION) TCAGAAGAAC TCGTCAAGAA 20 配列番号 (SEQ ID NO) : 2 7 配列の長さ(SEQUENCE LENGTH): 5 3 配列の型(SEQUENCE TYPE):核酸(nucleic acid) 鎖の数(STRANDEDNESS): 二本鎖 (double) トポロジー (TOPOLOGY) : 直鎖状 (linear) 配列の種類(MOLECULE TYPE):synthetic DNA ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No 配列(SEQUENCE DESCRIPTION) GGGATCCAAC A ATG GAG CAA ATC CAA ATG GTG GCC GTG ATC GAA ACG TGT 50 Met Glu Gln Ile Gln Met Val Ala Val Ile Glu Thr Cys 1 5

10

AGA
Arg

15

配列番号 (SEQ ID NO) : 2 8

配列の長さ(SEQUENCE LENGTH): 1 6

配列の型(SEQUENCE TYPE):核酸(nucleic acid)

鎖の数(STRANDEDNESS): 一本鎖 (single)

トポロジー (TOPOLOGY) : 直鎖状 (linear)

配列の種類(MOLECULE TYPE):synthetic DNA

ハイポセティカル配列 (HYPOTHETICAL SEQUENCE) : No

配列 (SEQUENCE DESCRIPTION)

GTAAAACGAC GGCCAT 16

配列番号 (SEQ ID NO): 29

配列の長さ (SEQUENCE LENGTH) : 45

配列の型(SEQUENCE TYPE):核酸(nucleic acid)

鎖の数(STRANDEDNESS):二本鎖(double)

トポロジー (TOPOLOGY) : 直鎖状 (linear)

配列の種類(MOLECULE TYPE):synthetic DNA

ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No

配列(SEQUENCE DESCRIPTION)

GGGATCCAAC A ATG GAG CAA ATC CAA ATG GTG AAC ATT CTC GAA C

Met Glu Gln Ile Gln Met Val Asn Ile Leu Glu

1 5 10

配列番号 (SEQ ID NO) : 3 0

配列の長さ (SEQUENCE LENGTH) : 2 1

配列の型(SEQUENCE TYPE):核酸(nucleic acid)

鎖の数(STRANDEDNESS): 一本鎖(single)

トポロジー(TOPOLOGY):直鎖状(linear)

配列の種類 (MOLECULE TYPE) : synthetic DNA

ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No

配列 (SEQUENCE DESCRIPTION)

CTCGGAGGAA TTCGGCACGA C

21

配列番号 (SEQ ID NO) : 3 1

配列の長さ(SEQUENCE LENGTH): 3 5

配列の型(SEQUENCE TYPE):核酸(nucleic acid)

鎖の数 (STRANDEDNESS) : 二本鎖 (double)

トポロジー(TOPOLOGY): 直鎖状 (linear)

配列の種類 (MOLECULE TYPE) : synthetic DNA

ハイポセティカル配列(HYPOTHETICAL SEQUENCE):No

配列 (SEQUENCE DESCRIPTION)

AGTCGGATCC AACA ATG ACC ACC CTC CTC GAA TCC

35

Thr Thr Leu Leu Glu Ser

1 5

請 求 の 範 囲

- 1. 芳香族アシル基転移活性を有する蛋白質又は該酵素活性を有する誘導体をコードする遺伝子。
- 2. 配列番号: 21に記載のアミノ酸配列をコードする塩基配列を プライマーとして用いてクローニングすることにより得られる請求 項1記載の遺伝子。
- 3. 前記プライマーが配列番号22に記載の塩基配列を有するプライマーである請求項2記載の遺伝子。
- 4. 配列番号: 1~6のいずれかに記載のアミノ酸配列、又はそれらのアミノ酸配列に対して1個又は複数個のアミノ酸の付加、除去又は他のアミノ酸による置換により修飾されているアミノ酸配列をコードする請求項1又は2に記載の遺伝子。
- 5. 配列番号: 1~6のいずれかに記載のアミノ酸配列をコードする塩基配列の一部又は全部に対して、5×SSC、50℃の条件下でハイブリダイズすることができ、且つ芳香族アシル基転移活性を有する蛋白質をコードする、請求項1又は2に記載の遺伝子。
- 6. 配列番号: 1~6のいずれかに記載のアミノ酸配列をコードする塩基配列の一部又は全部に対して、2×SSC、50℃の条件下でハイブリダイズすることができ、且つ芳香族アシル基転移活性を有する蛋白質をコードする、請求項1又は2に記載の遺伝子。
- 7. 配列番号: 1~6のいずれかに記載のアミノ酸配列に対して少なくとも15%以上の相同性を有するアミノ酸配列を有し、且つ芳香族アシル基転移活性を有する蛋白質をコードする、請求項1又は2に記載の遺伝子。
- 8. 配列番号:1~6のいずれかに記載のアミノ酸配列に対して少なくとも30%以上の相同性を有するアミノ酸配列を有し、且つ芳

香族アシル基転移活性を有する蛋白質をコードする、請求項1又は 2に記載の遺伝子。

- 9. 請求項1~8のいずれか1項に記載の遺伝子を含んで成るベクター。
 - 10. 請求項9に記載のベクターにより形質転換された宿主。
- 11. 前記宿主が微生物又は動物細胞である請求項10に記載の宿主。
- 12. 前記宿主が植物細胞又は植物体である請求項10に記載の宿主。
- 13. 請求項 1~8のいずれか1項に記載の遺伝子によりコードされる蛋白質。
- 14. 植物体の粗酵素抽出液をシバクロンブルー 3 GAを固定した樹脂を用いたアフィニティークロマトグラフィーにより処理して得られる、芳香族アシル基転移活性を有する蛋白質。
- 15. 請求項13又は14に記載の蛋白質に対する抗体と特異的に結合することができ、且つ、芳香族アシル基転移活性を有する蛋白質。
- 16. 請求項10に記載の宿主を培養し、又は成育させ、そして該宿主から、芳香族アシル基転移活性を有する蛋白質を採取することを特徴とする、該蛋白質の製造方法。
- 17. 植物体の粗酵素抽出液をシバクロンブルー3 GAを固定した樹脂を用いたアフィニティークロマトグラフィーにより処理することを特徴とする、芳香族アシル基転移活性を有する蛋白質の製造方法。
- 18. 芳香族アシル基転移活性を有する蛋白質の製造方法において、請求項13~15のいずれか1項に記載の蛋白質に対する抗体と特異的に結合することを含むことを特徴とする方法。
 - 19. 色素のアシル化方法であって、請求項13~15のいずれか1項

に記載の蛋白質を色素に作用せしめることを特徴とする方法。

20. 植物体内における色素のアシル化方法であって、請求項1~8のいずれか1項に記載の遺伝子を植物体内に導入し、該遺伝子を発現せしめ、そして生成した蛋白質により植物体内の色素をアシル化することを特徴とする方法。

- 21. 色素の安定化方法であって、請求項13~15のいずれか1項に 記載の蛋白質を作用させて色素をアシル化することを特徴とする方 法。
- 22. 植物体内における色素の安定化方法であって、請求項1~8のいずれか1項に記載の遺伝子を植物体内に導入し、該遺伝子を発現せしめ、そして生成した蛋白質により植物体内の色素をアシル化することを特徴とする方法。
- 23. 植物の花色調節方法であって、請求項1~8のいずれか1項に記載の遺伝子を植物体内に導入し、該遺伝子を発現せしめ、そして生成した蛋白質により植物体内の色素をアシル化することを特徴とする方法。
- 24. 色素がアントシアニンである請求項19~23のいずれか1項に記載の方法。
- 25. 請求項1~8のいずれか1項に記載の遺伝子が導入されており、色が調節された植物もしくはこれと同じ性質を有するその子孫 又はそれらの組織。
 - 26. 前記組織が花である、請求項25記載の植物の組織。
- 27. 請求項25記載の植物又はこれと同じ性質を有するその子孫の切花。

INTERNATIONAL SEARCH REPORT

International application No.

		PCT/JP96/00348		
A. CLA	SSIFICATION OF SUBJECT MATTER			
Int.	C16 C12N15/54, C12N9/10, C	12N1/21, C	12N5/00, AC	1H5/00
According to	o International Patent Classification (IPC) or to both na	ational classification	and IPC	
	DS SEARCHED			
	ocumentation searched (classification system followed by c			1115 /00
	Cl ⁶ Cl2N15/54, Cl2N9/10, C			
Documentati	on searched other than minimum documentation to the ext	ent that such docume	nts are included in the	: fields searched
	ONLINE, BIOSIS, WPI/WPIL, GE		practicable, search to	rms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category°	Citation of document, with indication, where app	propriate, of the rele	vant passages	Relevant to claim No.
A	Phytochemistry (Oxford) Vol F. et al. "Formation of ome feruloyloxypalmitic acid by wound-healing potato tuber	ega- v an enzyme	from	1 - 27
A	Phytochemistry (Oxford) Vol Murakoshi I. et al. "Acyltr alkaloids in lupinus-hirsut	cansferase	for lupin	1 - 27
A	Plant Physiol (BETHESDA) Volume Javelle F. et al. "Purification of putrescine hydroxycinnar from tobacco nicotiana-tabap. 1264-1269	ation and p moyl transf	roperties erase	1 - 27
А	Phytochemistry (Oxford) Vol J-J et al. "Partial purific characterization of hydroxy transferase from apple and p. 767-772	cation and ycinnamoyl	coA	1 - 27
X Furth	er documents are listed in the continuation of Box C.	See pater	nt family annex.	
"A" docum	l categories of cited documents: ent defining the general state of the art which is not considered if particular relevance	date and not in the principle o	n conflict with the appli or theory underlying the	
"E" earlier "L" docum	document but published on or after the international filing date tent which may throw doubts on priority claim(s) or which is o establish the publication date of another citation or other	considered no step when the	vel or cannot be consi document is taken alo	e claimed invention cannot be dered to involve an inventive ne e claimed invention cannot be
"O" docum	l reason (as specified) ent referring to an oral disclosure, use, exhibition or other tent published prior to the international filing date but later than	considered to combined wit being obvious	involve an inventive hone or more other such to a person skilled in	step when the document is a documents, such combination the art
the pri	ority date claimed	az document me	mber of the same pater	
	actual completion of the international search 14, 1996 (14. 05. 96)	_	1996 (21.	_
Name and	mailing address of the ISA/	Authorized officer		
Jap	anese Patent Office			

Telephone No.

Facsimile No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/00348

•	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	Phytochemistry(Oxford) 30(8) 1991 Negrel J. et al. "Tyramine hydroxycinnamoyl transferase in the roots od wheat and barley seedlings" p. 2519-2522	1 - 27
A	Phytochemistry (Oxford) Vol. 30(5) 1991 Witte L. et al. "Quinolizidine alkaloids and the enzymatic syntheses of their cinnamic and hydroxycinnamic acid esters in lupinus-angustifolius and lupinus-luteus" p. 1493-1498	1 - 27
A	Phytochemistry (Oxford) Vol. 22(11) 1983 "Agmatine coumaroyl transferase EC-2.3.1 from barley hordeum-vulgare seedlings" p. 2401-2404	1 - 27
A	Phytochemistry Vol. 19(8) 1980 Zenk M. H. et al. "Partial purification and properties ofp hydroxy cinnamoyl transferase from higher plants" p. 1625-1630	1 - 27
A	Nature Vol. 366, 1993 Edwina C. Corinish et al. "Cloning and expression fo cyto chrome P450 genes controlling flower colour" p. 276-279	1 - 27
A	JP, A, 6-500239 (Int Flower dev. pty. Ltd.), January 31, 1994 (13. 01. 94) & EP, A, 522880 & US, A, 5349125	1 - 27

国際調査報告

発明の属する分野の分類(国際特許分類(IPC))

Int. c1° C12N15/54 C12N9/10 C12N1/21 C12N5/00 A01H5/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. cl ° C12N15/54 C12N9/10 C12N1/21 C12N5/00 A01H5/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAS ONLINE, BIOSIS, WPI/WPIL, GENETYX

C.	関連すると認められる文献

し、			
引用文献の		関連する	
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号	
A	Phytochemistry(Oxford) 第35巻(6) 1994 Javelle F. et al 「Formation of omega-	1-27	
	feruloyloxypalmitic acid by an enzyme from wound-healing potato tuber discs		
	إ الله 1419-1424 و لـ إ		
A	Phytochemistry(Oxford) 第32巻(1) 1993 Murakoshi I. et al 「Acyltransferase f	1-27	
	or lupin alkaloids in lupinus-hirsutus」p.87-91		
A	Plant Physiol(BETHESDA) 第98巻(4) 1992 Javelle F. et al 「Purification and p	1-27	
	roperties of putrescine hydroxycinnamoyl transferase from tobacco nicotiana-		
	tabacm cell suspensions p. 1264-1269		
A	Phytochemistry(Oxford) 第31巻(3) 1992 Macheix J-J et al 「Partial purificatio	1-27	
	n and characterization of hydroxycinnamoyl coA transferase from apple and da		
	te fruits p. 767-772		
A	Phytochemistry(Oxford) 30(8) 1991 Negrel J. et al Tyramine hydroxycinnamoy	1-27	
**	1 transferase in the roots od wheat and barley seedlings p. 2519-2522		
	I transferage in the 10013 of wheat and barrey securings p. 2010 2022		

[x] C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」先行文献ではあるが、国際出願日以後に公表されたも
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の 1 以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの

国際調査を完了した日 14. 05. 96	国際調査報告の発送日 21.05.96
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP)	特許庁審査官(権限のある職員) 4B 9359 谷口博 印
郵便番号 1 0 0 東京都千代田区霞が関三丁目 4 番 3 号	電話番号 03-3581-1101 内線 3449

国際出願番号 PCT/JP96/00348

〕(続き).	関連すると認められる文献	
用文献の		関連する
フテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
A	Phytochemistry(Oxford) 第30巻 (5) 1991 Witte L. et al 「Quinolizidine alkaloi ds and the enzymatic syntheses of their cinnamic and hydroxycinnamic acid es ters in lupinus-angustifolius and lupinus-luteus」p. 1493-1498	1-27
A	Phytochemistry(Oxford) 第22巻(11) 1983 「Agmatine coumaroyl transferase EC-2 .3.1 from barley hordeum-vulgare seedlings」p. 2401-2404	1-27
A	Phytochemistry 第19巻 (8) 1980 Zenk M.H. et al 「Partial purification and properties of phydroxy cinnamoyl transferase from higher plants」p. 1625-1630	1-27
A	Nature 第366巻 1993 Edwina C. Corinish et al 「Cloning and expression fo cyto chrome P450 genes controlling flower colour」 p. 276-279	1-27
A	JP, A, 6-500239 (Int Flower dev. pty. LTD) 13. 1月. 1994(13. 01. 94) & EP, A, 522880, US, A, 5349125	1-27
	·	