HKUST

MATH1013 Calculus IB

Mock Final Examination (Fall 2024)	Name:	
1 Dec 2024 (Updated)	Student ID:	
Time limit: 3 hours	Lecture Section:	

Directions:

- This is a closed book examination. Calculator of any kind is NOT allowed in this examination.
- DO NOT open the exam until instructed to do so.
- Turn off all phones and pagers, and remove headphones. All electronic devices should be kept in a bag away from your body.
- Write your name, ID number, and Lecture Section in the space provided above.
- When instructed to open the exam, please check that you have 13 pages of questions including the cover page. This document is updated, with amendments highlighted in red.
- Answer all questions. Show an appropriate amount of work for each short or long problem. If you do not show enough work, you will get only partial credit.
- Cheating is a serious violation of the HKUST Academic Code. This is only a mock exam, with no benefit of cheating here: by cheating, you are not lying to anyone but yourself.
- For answer checking/ marking/ feedback of this mock paper set, please either email me via theskillfulnoob2002@gmail.com or Whatsapp/ Signal via (+852) 9035 4789.

Please read the following statement and sign your signature:

I have neither given nor received any unauthorized aid during this examination. The answers submitted are my own work.

I understand that sanctions will be imposed, if I am found to have violated the University's regulations governing academic integrity.

Student's Signature:

Question No.	Points	Out of
Q. 1-15		45
Q. 16		7
Q. 17		8
Q. 18		9
Q. 19		13
Q.20		18
Total Points		100

Part I: Multiple Choice Questions (45 Points)

Answer all of the following multiple choice questions.

- Mark your answers clearly in the Multiple Choice Boxes below.
- Mark only one answer for each MC question. Multiple answers will be treated as incorrect answer.

Question	1	2	3	4	5	6	7	8
Answer								
Question	9	10	11	12	13	14	15	Total
Answer								

Internal References

- \bullet Watered down versions of Questions 2-6, 8, 10 and 14 are featured in other streams (1003/ 1012) of this mock paper set.
- 1. The function $f(x) = \cos^{-1}(e^{2x} \frac{1}{2})$ is one-to-one and hence has an inverse function. Find the domain of the inverse function of f.
- A. $[0, \frac{\pi}{3})$ B. $(0, \frac{\pi}{3}]$ C. $[0, \frac{2\pi}{3})$ D. $[0, \frac{2\pi}{3}]$ E. $(0, \frac{2\pi}{3}]$

- 2. Find the limit $\lim_{h\to 3} \frac{\sqrt{1+h}-2}{|h-3|}$ if it exists.
 - A. Does not exist
- B. -4
- C. 4 D. $-\frac{1}{4}$. E. $\frac{1}{4}$.

3. How many vertical asymptotes does the following function have?

$$y = \frac{x^2 - 2x + 1}{(x^2 - x)(x^2 - 5x - 6)(x^2 + 4)}$$

- A. 1
- B. 2
- C. 3
- D. 4
- E. 5

4. Find the one-sided limit $\lim_{x\to 1^+} f(3f(x)-5)$, with the graph of f given:

- A. Does not exist
- B. 0
- C. 1
- D. 2.
- E. -2

- 5. Let f(x) be a function differentiable everywhere over $x \in \mathbb{R}$ such that f(2) = 4 and f'(2) = 8. Find the limit $\lim_{h \to 0} \frac{(2+h)f(2+h) 2f(2+h+h^2)}{h}$. A. 4 B. 8 C. 12 D. 16 E. 24
 - A. 4

6. A function f is defined on the interval (-e, e). It is known that

$$f(x) = \begin{cases} 4e^x + mx - 4 & \text{if } -e < x \le 0\\ \ln(\ln(x+e)) & \text{if } 0 < x < e \end{cases}$$

If f is differentiable, find the value of constant m.

- A. $\frac{1}{e} 2$ B. -2 C. -4 D. $\frac{1}{e} 4$ E. $\frac{1}{e} + 4$

7. Two functions f, g with continuous derivatives are given. Some function values of these functions are shown in the following table:

x	f(x)	f'(x)	g(x)	g'(x)
1	4	-1	0	1
2	-1	4	1	3
3	2	0	3	2
4	0	2	6	4

It is also given that g is one-to-one function. Find $\frac{d}{dx}\left(f\circ g^{-1}(x)\right)\Big|_{x=1}$.

- A. 4
- B. $\frac{4}{3}$
- C. 0
- E. -1

8. Define $h(x) = x^{2e^{3x}}$ for x > 0. Find $\frac{h'(x)}{h(x)}$.

A.
$$\frac{2e^{3x}}{x}$$

B.
$$e^{3x} \left(\frac{2}{x} + 6 \ln x \right)$$

C.
$$\frac{6e^{3x}}{x}$$

A.
$$\frac{2e^{3x}}{x}$$
 B. $e^{3x} \left(\frac{2}{x} + 6 \ln x\right)$ C. $\frac{6e^{3x}}{x}$ D. $e^{3x} \left(\frac{6}{x} + 18 \ln x\right)$ E. $18e^{3x} \ln x$

9. To find an approximate root of the equation $x^3 - 1 + 3\cos x = 0$ by Newton's Method, the iteration formula is:

A.
$$x_{n+1} = x_n - \frac{x_n^3 + 1 + 3\cos x_n}{3x_n^2 - 3\sin x_n}$$

B.
$$x_{n+1} = x_n - \frac{x_n^3 - 1 + 3\cos x_n}{3x_n^2 + 3\sin x_n}$$

C.
$$x_{n+1} = x_n - \frac{x_n^3 - 1 + 3\cos x_n}{3x_n^2}$$

D.
$$x_{n+1} = x_n - \frac{x_n^3 - 1 + 3\cos x_n}{3x_n^2 - 3\sin x_n}$$

E.
$$x_{n+1} = x_n + \frac{x_n^3 - 1 + 3\cos x_n}{3x_n^2 - 3\sin x_n}$$

10. An open-top box is to be made from a square cardboard of side 6 inches by removing a square from each of its corner and folding up the flaps on each side. Find the maximum volume of the box in cubic inches.

A. 8

B. 16

C. 24

D. 32

E. 48

11. Suppose g(x) is differentiable over \mathbb{R} such that $g'(x) = (x-3)^{2023}$. Which of the following must be true?

A. g(x) attains a minimum at x = 3

B. g(x) has an inflection point at x=3

C. xg(x) attains a minimum at x=3

D. q(3) = 0

E. None of the above

12. Which of the following is an antiderivative of $\frac{1}{1 + \cos x}$ $(-\pi < x < \pi)$?

 $\text{A. } -\frac{\sin x}{1+\cos x} + C \quad \text{B. } \frac{\cos x}{1+\cos x} + C \quad \text{C. } \frac{\sin x}{1+\cos x} + C \quad \text{D. } -\frac{\cos x}{1+\cos x} + C \quad \text{E. } \frac{\sin x \cos x}{1+\cos x} + C$

13. Suppose a continuous function f satisfies the equation

$$\int_{0}^{x} f(t)dt + \int_{0}^{x^{3}} tf(t)dt = x^{4}$$

Find the value of f(1).

- C. 2
- D. 4
- E. 8

14. Evaluate the integral $\int_0^1 \frac{1+2e^{3x}}{1+e^{3x}} dx$ with a suitable substitution.

A.
$$1 + \frac{1}{3} \ln \left(\frac{1 + e^3}{2} \right)$$

- A. $1 + \frac{1}{3} \ln \left(\frac{1+e^3}{2} \right)$ B. $1 + \frac{1}{3} \ln \left(1 + e^3 \right)$ C. $\frac{1}{3} \ln \left(\frac{1+e^3}{2} \right)$ D. $1 + \frac{1}{3} \ln \left(\frac{2}{1+e^3} \right)$ E. $1 + \ln(1+e^3)$

15. Given the graph of the function y = f(x) as shown below, find $\int_0^8 |f'(x)| dx$.

- A. -5
- B. 5
- C. 9
- D. 14
- E. 19

Part II: Long Questions (55 Points)

Answer each of the following 5 long questions. Unless otherwise specified, numerical answers should be either exact or correct to 2 decimal places.

16. (7 pts) Suppose the limit
$$\lim_{x\to 0} \frac{\sin^2 x + Ax^2}{x^4}$$
 exists and is equal to L . Find the value of [4pts]

(b)
$$L$$
. [3pts]

(Hint: Consider using L'Hospital's rule for more than once.)

- 17. (8 pts) A container in the form of an inverted right circular frustrum is held vertically. The height, the upper radius and the base radius of the container are $h_1 = 24$ cm, $r_1 = 50$ cm and $r_2 = 40$ cm respectively. Water is now poured into the container until it is full.
 - (a) Let h cm, A cm² and V cm³ be the depth of water, wet curved surface area and the volume of water in the frustum container. By considering similar solids or otherwise, prove that

(i)
$$V = \frac{25\pi}{432} \left[(96+h)^3 - 96^3 \right],$$

(ii)
$$A = \frac{65\pi}{144}[(96+h)^2 - 96^2],$$

[4pts]

(b) Suppose the rate of pouring is fixed at $\frac{dV}{dt} = 60\pi \text{ cm}^3 \text{ s}^{-1}$.

Describe how the rate of change of the container's wet curved surface area, $\frac{dA}{dt}$, varies during the pouring process, giving the end point values. Explain your answer.

[4pts]

- 18. (9 pts)
 - (a) Using a suitable substitution, evaluate $\int \frac{x^3}{9+x^2} dx$. [5pts]

(b) Denote $f(x) = \frac{x^3}{9+x^2}$. A student claims that the Riemann sum

$$S = \lim_{n \to \infty} \frac{4}{n} \left(\frac{1}{9n^3 + n} + \frac{8}{9n^3 + 4n} + \dots + \frac{n^3}{9n^3 + n^3} \right)$$

can be interpreted as

$$\int_0^4 f(x)dx$$

Explain whether the student is correct, by writing S in the form $\lim_{n\to\infty} \Delta x \sum f(x_i)$. If not, write down the correct integral in f(x). [4pts]

- 19. (13 pts) Let C be the curve $xy = \cos(xy)$, defined for $x, y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \setminus \{0\}$.
 - (a) Show that

$$\left(y + x\frac{dy}{dx}\right)\left(1 + \sin(xy)\right) = 0.$$

Also briefly explain why $1 + \sin(xy)$ can never be zero for the curve defined.

[4pts]

(b) Consider the equation

$$u = \cos u$$
, where $0 \le u \le \frac{\pi}{2}$ (*)

- (i) Show that (*) has exactly one root in $\left[0, \frac{\pi}{2}\right]$.
- (ii) Hence, show that there exists two tangents to C parallel to the straight line L: x+y=0.

[6pts]

(c) Suppose two tangents to

$$C: xy = \cos(xy)$$
 where $x, y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \setminus \{0\}$

at x = a < 0 and x = b > 0 are parallel to the straight line x + y = 0. It is given that for any point (x, y) lying on C, the function f : y = f(x) connecting the two variables is one-to-one. A student claims that:

Since there are two tangents to C parallel to the straight line L: x+y=0, I can conclude by using mean value theorem that there exists a value $c \in (a,b)$ such that f''(c)=0.

Explain why the student's application of MVT is incorrect.

Hint: Recall that MVT states for the function g continuous and differentiable over [a, b], there exists some $c \in (a, b)$ such that

$$g'(c) = \frac{g(b) - g(a)}{b - a}$$

[3pts]

20. (18 pts) Let Γ be the curve $y = \frac{3x^2 - 2x - k}{(x-1)^2}$, where k is a constant.

It is given that
$$\frac{3x^2 - 2x - k}{(x-1)^2} \equiv 3 + \frac{4}{x-1} - \frac{k-1}{(x-1)^2}$$
.

(a) State all asymptotes of Γ .

[2pts]

(b) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in terms of k.

[2pts]

- (c) A student claims that Γ has a minimum point for all values of k. Is the claim correct? Explain your answer.
 - If yes, find all minimum point(s) of Γ .
 - If no, find all interval(s) of k for which Γ has a minimum point.

[5pts]

- (d) It is given that the x-coordinate of the inflection point of $\Gamma: y = \frac{3x^2 2x k}{(x-1)^2}$ is 4.
 - (i). Show that k = 5.

 (Testing for inflection point is not needed.)

[2pts]

(ii). It is given that the x-intercepts of Γ are -1 and $\frac{5}{3}$. Sketch the graph of Γ for $-6 \le x \le 6$, including its intercepts, asymptotes, extreme point(s) and inflection point(s). [4pts]

(iii). Find the area bounded by Γ , the x-axis and the vertical line x=4.

[3pts]