

Image formation

Image formation studies the forward process of producing images and videos.

- · Image formation encompasses the radiometric and geometric processes by which 2D images of 3D objects are formed. To produce a real image, the nature of the visual sensors (i.e. CCD and CMOS cameras), should be studied.
- · Imaging process is a mapping of an object to an image plane.
- · With digital images, the image formation process also includes analog to digital conversion, sampling
- · Human color vision (Perception): In the case of computer vision the light incident on the sensor comprises the image. In the case of visual perception, the human eye has a color dependent response to light which is the spectral sensitivity of human vision.

Content

- Image formation
 - Human vision
 - Image formation
- Acquisition and digitization: Digital camera
 - Imaging sensor
 - 2D signal and sampling
- Color:
 - Primary color, additive/ subtractive color, color spaces
- Digital image representation and formats

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOG

The Eye

- The human eye is a camera
 - Iris colored annulus with radial muscles
 - **Pupil** the hole (aperture) whose size is controlled by the iris
 - What's the sensor?

- photoreceptor cells (rods and cones) in the retina

Slide by Steve Seitz

Two types of light-sensitive receptors

Cones

cone-shaped less sensitive operate in high light color vision

Rods

rod-shaped highly sensitive operate at night gray-scale vision

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOG

Physiology of Color Vision

© Stephen E. Palmer, 2002

Rod / Cone sensitivity

Tetrachromatism

- · Most birds, and many other animals, have cones for ultraviolet light.
- · Some humans seem to have four cones (12% of females).

James Havs

Image formation

Adapted from S. Seitz

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY =

Photometric image formation

- · Illumination source: Sun, light ...
- Photometric measurement:
 - Perceptual brightness of visible electromagnetic energy of light.
- · Optical system (lenses):
 - An object (scene) may be illuminated by the light from an emitting source.
 - The light incident on the object is reflected in a manner dependent on the surface properties of the object
 - An illuminated object will scatter light toward a lens and the lens will collect and focus the light to create the image
- Imaging sensor: CCD (charge-coupled device) or CMOS sensors cameras provide the 2D sensed signal.
- Digital camera: 2D sensed signal is pass to analog-to-digital converter (sampling), it create the digital image

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

What is light?

- Light: The visible portion of the electromagnetic (EM) spectrum.
- Light occurs between wavelengths of approximately 400 and 700 nanometers.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Photometric image formation

- Modeling the image formation process: 3D geometric features in the world are projected into 2D features in an image.
- A simplified model of photometric image formation is illustrated.
- The scene is illuminated by a single source.
- The scene reflects radiation towards the camera.
- The camera senses it via CCD/ CMOS

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Acquisition and digitization: Digital camera

Digital camera: Image sensing and processing pipeline

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Adapted from S. Seitz

Sensor array: an example

Digital camera

- · Image acquisition:
 - Optical system, aperture (capture), shutter
 - Imaging sensor: CCD/ CMOS sensor camera consists of a array of photodiodes. Each cell in the is light-sensitive diode that converts photons to electrons.
 - 2D sensed signal of image, video
- · Digitization (ADC): Sampling and Quantization
 - Sampling the 2D sensed signal create the samples or pixels
 - Quantizing the sample values as the integer values of pixels
- Processing (DSP- Digital Signal Processing):
 - Cameras perform a variety of digital signal processing operations to *enhance* the image before *compressing* and *storing* the pixel values in standard format file.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Real scene -> digital Image

Digitization = Sampling (lấy mẫu) + Quantization (Lượng tử hóa)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Sampling and quantization

- **Sample** the 2D space on a regular grid
- Quantize each sample (round to nearest integer)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Digital image

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Sampling and quantization

- Sample the 2D space on a regular grid
- **Quantize** each sample (round to nearest integer)

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Spatial resolution (sampling)

Gray-level resolution (Quantization)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Color coordinate system

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Color spaces

- Color spaces; different types of color modes
- Color represented by vector of components
- Red, Green, Blue (RGB)
- Hue, Saturation, Value (HSV)
- Luminance, chrominance (YUV, LUV)
- XYZ
- Color convert: RGB YUV

Y = 0.299R + 0.587G + 0.114B
U = 0.493 (B - Y); V = 0.877 (R - Y)

$$\begin{bmatrix} Y \\ C_R \end{bmatrix} = \begin{bmatrix} 0.257 & 0.504 & 0.098 \\ 0.439 & -0.368 & -0.071 \\ 0.439 & 0.439 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} + \begin{bmatrix} 16 \\ 128 \\ 128 \end{bmatrix}$$
EDUCORDATING BANG COLUMN OF THE RESIDUE OF 291 0.439

Color: Additive/Subtractive primary color Colors:

- Primary color: Red, Green, Blue (RGB)
- Additive colors:
 - Combination of RGB can be mixed to produce Cyan, Magenta, Yellow (CMY) &White.

combination

of RGB

- Additive color reproduction system:
 - · Combination of RGB to reproduce a colored light.
- Subtractive colors CMY can be mixed to produce RBG & black
 - Subtractive color reproduction system: A white light sequentially passes through cyan, magenta, yellow filters to reproduce a colored light.

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY -

_

Color spaces: RGB Default color space

B = 1

(R=0,G=0)

R = 1(G=0,B=0)

- Any color = r*R + g*G + b*B
- Strongly correlated channels
- Non-perceptual

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY Image from: http://en.wikipedia.org/wiki/File:RGB_color_solid_cube.png

HSV (Hue – Saturation- Value)

- The Hue-Saturation-Value (HSV) color space is use for segmentation and recognition
 - Non-linear conversion
 - Visual representation of colors
- We identify for a pixel:
 - The pixel *intensity* (value)
 - The pixel color (hue + saturation)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOG

· RGB does not have this seperation

· Perceptually meaningful dimensions:

Nonlinear color spaces: HSV

- Hue, Saturation (chroma)
- Value (Intensity)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

HSV (Hue – Saturation- Value)

- Hue (H) is coded as an angle between 0 and 360
- · Saturation (S) is coded as a radius between 0 and 1
 - -S = 0 : gray
 - -S = 1: pure color
- Value (V) = MAX (Red, Green, Blue)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

HSV (Hue - Saturation- Value)

- · If we know the color of the object we are looking for, can model it using a hue interval
- Take care, because it is an angle (periodic value)
 - Hue < 60° means nothing
 - Is 350° smaller or bigger than 60°?
 - Define an interval: 350° < Hue < 60° (for example)
- This interval is valid if Saturation > threshold (otherwise gray level)
- This is independent of Value, which is more sensible to light conditions

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Lab color space

Lab color space

- The Lab system (sometimes L*a*b*) is based on a study from human vision
 - independant from all technologies
 - presenting colors as seen by the human eyes
- Colors are defined using 3 values
 - L is the luminance, going from 0% (black) to 100% (white)
 - a* represents an axis going from green (negative value,
 - -127) to red (positive value, +127)
 - b* represents an axis going from blue (negative value, -127) to yellow (positive value, +127)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Color space vs. illumination conditions

 collected 10 images of the cube under varying illumination conditions

· separately cropped every color to get 6 datasets for the 6

• Compute the density plot: Check the distribution of a particular color say, blue or yellow in different color spaces. The density plot or the 2D Histogram gives an idea about the variations in values for a given color

Source: Vikas Gupta, Learn OpenCV

Color space vs. illumination conditions

• Similar illumination: very compact

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Color space vs. illumination conditions

Color space vs. illumination conditions

· Similar illumination: very compact

Fig.: Density Plot showing the variation of values in color channels for 2 similar bright images of yellow color

Source: Vikas Gupta, Learn OpenCV

SOICT

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

34

Color space vs. illumination conditions

_

Color space vs illumination conditions

- Different illumination:
 - RGB space: the variation in the value of channels is very hight
 - HSV: compact in H. Only H contains information about the absolute color → a choix
 - YCrCb, LAB: compact in CrCb and in AB
 - · Higher level of compactness is in LAB
 - Convert to other color spaces (OpenCV):
 - cvtColor(bgr, ycb, COLOR_BGR2YCrCb);
 - cvtColor(bgr, hsv, COLOR_BGR2HSV);
 - cvtColor(bgr, lab, COLOR_BGR2Lab);

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Digital images representation

- · Sample the 2D space on a regular grid is pixel
- Quantize each sample (round to nearest integer)
- · Image data is represented as a matrix of integer values.

Image representation Continuous Images as functions

- Monochromatic Image: A continuous brightness function of a number of variables f, from R² to R:
 - $\circ f(x, y)$ gives the intensity at position (x, y)
 - Realistically, we expect the image only to be defined over a rectangle, with a finite range
- A color image include 3 brightness functions of 3 color pasted together (3 color component signals). We can write this as a "vector-valued" function: r(x,y)

$$f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Definition: Digital images

- Digital image functions f represented as matrices X(i,j).
- Image data is represented by a rectangular array of integers
- An integer represents the brightness or darkness of the monochromatic image at that point (pixel). Limited brightness integer values (8 bit) = gray levels = values 0 to 255
- **Definition: Digital image is a matrix X(i,j)** of pixels, N:number of rows, M: number of columns, Q: integer brightness values (levels) of pixels f(0,0) f(0,1) ... f(0,M-1)

$$f(1,0)$$
 $f(1,1)$... $f(1,M-1)$

4.0

Digital gray image

- Example: Matrix X(i,j) of pixels of a gray level image
- · Image data: 2D array X(i,i) of integer brightness value uint8 of pixels at coordinates (i,j).

Columns

	i-1, j	
i, j-1	i, j	i, j+1
	i+1, j	

i-1, j-1	i-1, j	i-1, j+1
i, j-1	i, j	i, j+1
i+1,j-1	i+1, j	i+1,j+1

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOG

Digital image format

- Parameters for digital image formats:
 - Digital image resolution: (height x width) in pixels
 - Quantization (bits per pixel):

Gray level image: 8 bits/ pixel RGB color image: 24 bits/ pixel Binary image: 1 bit/ pixel

- Digital Image Storage: file stored in two parts: Header; Data
- Common image file formats:
 - · GIF (Graphic Interchange Format) -
 - · PNG (Portable Network Graphics)
 - · JPEG (Joint Photographic Experts Group)
 - TIFF (Tagged Image File Format)
 - · PGM (Portable Gray Map)
 - · FITS (Flexible Image Transport System)

RGB color images in Matlab

- Images represented as a matrix X(i,j)
- Suppose we have a NxM RGB image called "Im"
 - Im(1,1,1) = top-left pixel value in R-channel
 - Im(y, x, b) = y pixels down, x pixels to right in the b^{th} channel
 - Im(N, M, 3) = bottom-right pixel in B-channel
- imread(filename) returns a uint8 image (values 0 to 255)
 - Convert to double format (values 0 to 1) with im2double

Digital video format

- Parameters for digital video formats
 - Digital image resolution (height x width) in pixels
 - Quantization (bits per pixel)
 - Frame rate (frames per second)
- Standard video file formats
 - AVI, M-JPEG,
 - H26X (ITU T:H.261, H.263, H.263, H264)
 - MPEG-1, MPEG-2, MPEG-4 Part 10 / H264 AVC, mp4...

