第五章 储存设备

第六章 换热设备

第七章 塔设备

第八章 反应设备

过程设备设计(下)

第七章 塔设备

第一节 概述 第二节 填料塔 第三节 板式塔 第四节 塔设备的附件 第五节 ➡ 塔的强度设计 第六节 塔设备的振动

7.5 塔的强度设计

本章重点

本章计算重点

教学重点:

塔的强度设计。

教学难点:

塔的强度设计。

本章计算 难点

7.5 塔的强度设计

对于安装在室外,靠裙座底部的地脚螺栓固定在混凝土基础上的塔设备:

介质压力

各种重量

管道推力

偏心载荷

风载荷

地震载荷

包括塔体、塔内件、介质、保温层、操作平台、 扶梯等附件的重量

承受载荷

7.5 塔的强度设计

过程设备设计

三种工况下轴向强度及稳定性校核的基本步骤:

- 按设计条件,初步确定塔的厚度和其他尺寸。
- □ 计算塔设备危险截面的载荷,包括重量、风载荷、地震 载荷和偏心载荷等。
- □ 危险截面的轴向强度和稳定性校核。
- □ 设计计算裙座、基础环板、地脚螺栓等。

7.5.1 塔的固有周期

在动载荷(风载荷、地震载荷)作用下, 塔设备各截面变形及内力与塔的自由振 动周期(或频率)及振型有关。

在进行塔设备载荷计算及强度校核之前, 必须首先计算固有(或自振)周期。

固有周期的求解思路

塔设备——具有多个自由度体系 ——具有多个固有频率(或周期)。

基本固有频率(基本频率)——最低的频率ω₁。

第二,第三,……频率——从低到高依次为 ω_2 , ω_3 ,……等。

基本固有周期(基本周期)—— 与基本频率相对应的周期。

一、等直径、等壁厚塔的固有周期

1.力学模型

顶端自由、底部固定、质量沿高度 均匀分布的 悬臂梁

图7-74 计算模型

2.挠度曲线方程(动载荷)

梁在动载荷作用下发生弯曲振动, 挠度曲线随时间变化,为

$$y = y(x,t)$$

3.挠度曲线方程(静载荷)

设塔为理想弹性体、振幅很小、无阻尼、塔高与塔直径之 比较大(大于5),由材料力学中弯曲理论知,在分布惯性 力q作用下的挠曲线微分方程为: 振动微分方程

$$EI\frac{\partial^4 y}{\partial x^4} = q$$

(7-1)

式中 E-塔体材料在设计温度下的弹性模量,Pa;

I—塔截面的形心轴惯性矩, $I = \frac{\pi}{64} (D_0^4 - D_i^4) \approx \frac{\pi}{8} D_i^3 \delta_e$,

 D_i 一塔的内直径 $, m_i$

 D_0 一塔的外直径,m;

 δe —塔壁的有效厚度m.

根据牛顿第二定律,梁上的分布惯性力q为

$$q = -m\frac{\partial^2 y}{\partial t^2} \tag{7-2}$$

式中 m-塔单位高度上的质量,kg/m。 将式(7-2)代入式(7-1)得

$$\frac{\partial^4 y}{\partial x^4} + \frac{m}{EI} \frac{\partial^2 y}{\partial t^2} = 0$$

(7-3)

根据塔的振动特性,令上式的解为

通解

$$y(x,t) = Y(x)\sin(\omega t + \varphi)$$

式中ω—塔的固有圆频率, rad/s;

t—时间, s;

Y(x)—塔振动时在x处的最大位移,m。

将y(x,t)代入振动方程式(7-3)得

$$\frac{d^4Y(x)}{dx^4} - k^4Y(x) = 0$$

式中 k-系数,

$$k = \sqrt[4]{\frac{m\omega^2}{EI}}$$

式 (7-4) 边界条件:

塔底固定端,

$$Y(x)|_{x=0}=0$$

塔顶自由端,

$$\frac{d^2Y(x)}{dx^2}\big|_{x=H} = 0$$

(7-4)

件求解K

求解此方程得塔设备前三个振型时的k值分别为:

$$k_1 = \frac{1.875}{H}$$

$$k_2 = \frac{4.694}{H}$$

$$k_3 = \frac{7.855}{H}$$

4. 前三个振型时的固有周期

由系数 k 值的表达式以及圆频率 ω 和周期 T 间的关系

$$T = \frac{2\pi}{\omega}$$

,得塔在前三个振型时的固有周期分别为

$$T_1 = 1.79 \sqrt{\frac{mH^4}{EI}}$$

$$T_2 = 0.285 \sqrt{\frac{mH^4}{EI}}$$

$$T_3 = 0.102 \sqrt{\frac{mH^4}{EI}}$$

求得固有周期

(7-5)

式中 H-塔高,m。

5. 前三个振型

图7-75 塔设备振型

二、不等直径或不等厚度塔设备的固有周期

→ 问题:不等直径或不等厚度的塔,质量及刚度沿塔高不均匀 分布,不能用类似(7-3)的振动方程求解。

解决办法:

工程上将这种塔视为由多个塔节组成,将每个塔节化为质量集中于其重心的质点,并采用质量折算法计算第一振型的固有周期。

直径和厚度相等的圆柱壳、改变直径用的圆锥壳可视为塔节。

质量折算法

质量折算法:将一个多自由度体系,用一个折算的集中质量代替,将一个多自由度体系简化成一个单自由度体系,如图7-76所示。

确定集中质量原则: 使两个相互折算体系在振动时产生的

最大动能相等

图7-76(a)中,设塔节数为n,塔体振动时最大动能为各质点最大动能之和,即

$$T_{\text{max}} = \frac{1}{2} \sum_{i=1}^{n} m_i (v_i)_{\text{max}}^2 = \frac{1}{2} \sum_{i=1}^{n} m_i \omega^2 Y_i$$
 (7-6)

式中 T_{max} —多质点体系振动时的最大动能,J;

- $\frac{m_i}{m_i}$ —第i段塔节的质量,kg;
- $(v_i)_{\text{max}}$ —第i段塔节重心的最大速度,m/s;
- Y_i —第i段塔节重心的最大位移,即振幅,m。

同理,设单自由度体系的折算质量为m_a,则振动时产生的最大动能为

$$T_{\text{max}}^* = \frac{1}{2} m_a Y_a^2 \omega_a^2$$

式中 T_{max}^* —折算后单自由度体系的动能,J;

 $\frac{m_a}{m_a}$ —折算成单自由度体系后的质量,kg;

 ω_a —折算成单自由度体系后的振动圆频率,rad/s;

 Y_a 一折算成单自由度体系后质点的最大位移(振幅),m。

$$\Rightarrow T_{\text{max}} = T_{\text{max}}^*$$

$$\frac{1}{2} \sum_{i=1}^{n} m_i Y_i^2 \omega^2 = \frac{1}{2} m_a Y_a^2 \omega_a^2$$

(/-/)

$$\omega = \omega_a$$

(将多自由度体系折算成等价的单自由度体系,振动圆频率相同)

$$Y_n = Y_a$$

(塔顶的最大位移即振幅相等)。

研究表明,多自由度体系的第一振型曲线可近似为 拋物线,且最大位移 Y_i 和 Y_a 之间有如下关系

$$Y_i \approx Y_a \left(\frac{h_i}{H}\right)^{\frac{3}{2}} \tag{7-8}$$

将上式代入式(7-7)得

$$m_a = \sum_{i=1}^n m_i \left(\frac{h_i}{H}\right)^3 \tag{7-9}$$

对于单自由度体系,其固有周期的计算公式为

$$T = 2\pi \sqrt{m_a \delta}$$

式中 δ -顶端作用单位力时所产生的位移,m/N。

由材料力学可知,顶端作用单位力时,变截面梁在顶端 的位移为

$$\delta = \frac{1}{3} \left(\sum_{i=1}^{n} \frac{H_i^3}{E_i I_i} - \sum_{i=2}^{n} \frac{H_i^3}{E_{i-1} I_{i-1}} \right)$$
 (7-11)

将式(7-9)和式(7-11)代入(7-10),得不等直径或不等厚度塔设备第一振型的固有周期为

$$T_{1} = 2\pi \sqrt{\frac{1}{3} \sum_{i=1}^{n} m_{i} \left(\frac{h_{i}}{H}\right)^{3} \left(\sum_{i=1}^{n} \frac{H_{i}^{3}}{E_{i} I_{i}} - \sum_{i=2}^{n} \frac{H_{i}^{3}}{E_{i-1} I_{i-1}}\right)}$$
(7-12)

式中 H_i -第i段塔节底部截面至塔顶的距离 $, m_i$

 E_i —第i段塔节材料在设计温度下的弹性模量,Pa;

 I_i —第i段塔节形心轴的惯性矩, m^4 ;

对于圆柱形塔节,

$$I_i \approx \frac{\pi}{8} D_i^3 \cdot \delta_{ei}$$
, m⁴;

对于圆锥形塔节,

$$I_{i} = \frac{\pi D_{ie}^{2} D_{if}^{2} \delta_{ei}}{4(D_{ie} + D_{if})}$$
, m⁴;

 D_{ie} 一圆锥形塔节大端内直径, m_{i}

 D_{if} —圆锥形塔节小端内直径, m_{i}

 δ_{ei} —第i 段塔节的有效厚度,m。

若第i段塔节形状为圆柱形,则 $D_{ie} = D_{if} = D_{i}$

$$D_{ie} = D_{if} = D_i$$

7.5.2 塔的载荷分析

一、质量载荷

-塔体、裙座质量; m_{01} - 塔内件如塔盘或填料的质量; m_{02}^{-} -保温材料的质量; m_{03} -操作平台及扶梯的质量; m_{04} -操作时物料的质量; m_{05} -塔附件如人孔、接管、法兰等质量; m_a--水压试验时充水的质量; -偏心载荷。

塔设备在正常操作时的质量

$$m_0 = m_{01} + m_{02} + m_{03} + m_{04} + m_{05} + m_a + m_e$$
 (7-13)

塔设备在水压试验时的最大质量

$$m_{\text{max}} = m_{01} + m_{02} + m_{03} + m_{04} + m_w + m_a + m_e$$

(7-14)

塔设备在停工检修时的最小质量

$$m_{\min} = m_{01} + 0.2m_{02} + m_{03} + m_{04} + m_a + m_e$$

(7-15)

二、偏心载荷

定义: 塔体上悬挂的再沸器、冷凝器等附属设备或其它附件 所引起的载荷。

载荷产生的弯矩为:

$$M_e = m_e ge$$

(7-16)

式中 g 一重力加速度, m/s^2 ;

e 一偏心距,即偏心质量中心至塔设备中心线间的距离,m;

 $\frac{M_e}{M_e}$ —偏心弯矩, $N m_e$

三、风载荷

1.影响:

- (1) 使塔体产生应力和变形; 使塔体产生顺风向的振动(纵向振动); 使塔体产生垂直于风向的诱导振动(横向振动)。
- (2) 过大的塔体应力会导致塔体的强度及稳定失效。
- (3) 太大的塔体挠度会造成塔盘上流体分布不均,分 离效率下降。

2.风载荷的构成:

一种随机载荷。 对于顺风向风力,认为由两部分组成:

- (1) 平均风力(稳定风力),对结构的作用相当于静力的作用。 平均风力是风载荷的静力部分,其值等于风压和塔设备迎风面积的乘积。
- (2) 脉动风力(阵风脉动),对结构的作用是动力的作用。 脉动风力是非周期性的随机作用力,它是风载

荷的动力部分,会引起塔设备的振动。 计算时,折算成静载荷,即在静力基础上考虑 与动力有关的折算系数,称风振系数。

3.风力计算

塔设备中第 i 计算段所受的水平风力可由下式计算

$$P_i = K_1 K_{2i} f_i q_0 l_i D_{ei}$$

(7-17)

式中

-塔设备中第i段的水平风力, N_{i}

一体型系数;

 K_{2i} — 塔设备中第i 计算段的风振系数;

一风压高度变化系数;

 q_0

一各地区的基本风压, N/m^2 ;

一塔设备各计算段的计算高度(见图7-74), m_i

一塔设备中第i段迎风面的有效直径, m_i

 \mathbf{a} .基本风压 q_0

基本风压 q_0 由相应地区的基本风速 v_0 通过下式确定

$$q_0 = \frac{1}{2} \rho v_0^2$$

(7-18)

式中

 q_0

一基本风压, N/m^2

一空气密度,随当地的高度和湿度而异, kg/m^3 ;

一基本风速,随地区、季节及离地面的高度而变化, m/s。

我国设计规范规定:

空气密度 ρ ----- 根据一个大气压下、10℃ 时干空气密度计算,即 ρ =1.25 kg/m^3 ;

基本风速 v_0 ---- 采用离地面高度10m,30年一遇,10分钟内平均最大风速。查图。

b. 高度变化系数 f_i

■ 风速或风压随离地面的高度而变化。

lacksquare 风速沿高度变化呈指数规律,风压等于基本风压 q_0 与高度变化系数 f_i 的乘积。

lacksquare 风压高度变化系数 f_i 值随地面的粗糙度类别而不同,见表7-5。

7.5 塔的强度设计

表7-5 风压高度变化系数 f_i

距地面高度	地面粗糙度类别			
$\mathbf{H_{it}}$	A	В	С	D
5	1.17	1.00	0.74	0.62
10	1.38	1.00	0.74	0.62
15	1.52	1.14	074	0.62
20	1.63	1.25	0.84	0.62
30	1.80	1.42	1.00	0.62
40	1.92	1.56	1.13	0.73
50	2.03	1.67	1.25	0.84
60	2.12	1.77	1.35	0.93
70	2.20	1.86	1.45	1.02
80	2.27	1.95	1.54	1.11
90	2.34	2.02	1.62	1.19
100	2.40	2.09	1.70	1.27
150	2.64	2.38	2.03	1.61
200	2.83	2.61	2.30	1.92

- ◎ B 类指田野、乡村、丛林、丘陵及房屋比较稀疏的乡镇和城市郊区。
- C 类指具有密集建筑群的城市郊区。
- ◎ D 类指有密集建筑群且房屋较高的的城市郊区.

c. 风压

塔高度<10m: 按一段计算,以设备顶端的风压作为

整个塔设备的均布风压;

塔高度>10m:分段计算,每10m分为一计算段,余

下的最后一段高度取其实际高度,

如图7-74所示。

其中任意计算段风压为:

$$q_i = f_i q_0$$

(7-19)

式中 q_i 一第i 段的风压, N/m^2 。

7.5 塔的强度设计 过程设备设计

 \mathbf{d} . 体型系数 K_1

在同样风速条件下,风压在不同体型结构表面分布不相同。

细长圆柱形塔体结构,体型系数 $K_1=0.7$

7.5 塔的强度设计 过程设备设计

e. 风振系数 K_{2i}

风振系数^K_{2i}: 是考虑风载荷的脉动性质和塔体的动力特性的折算系数。

塔的振动会影响风力的大小。 当塔设备越高时,基本周期越大,塔体摇晃越甚, 则反弹时在同样的风压下引起更大的风力。 塔高H≤20m的塔设备,取 K_{2i} =1.70。

塔高H>20m时, K_{2i} 按下式计算

$$K_{2i} = 1 + \frac{\xi v_i \phi_{zi}}{f_i}$$

(7-20)

式中 5

一脉动增大系数,其值按表7-6确定;

 V_i

-第i段的脉动影响系数,由表7-7确定;

 φ_{7i} 一第i段的振型系数,由表7-8查得。

f. 塔设备迎风面的有效直径Dei

塔设备迎风面有效直径Dei: 该段所有受风构件迎风面宽度总和。

当笼式扶梯与塔顶管线布置成180°时

$$D_{ei} = D_{oi} + 2\delta_{si} + K_3 + K_4 + d_0 + 2\delta_{pi}$$
(7-21)

当笼式扶梯与塔顶管线布置成90°时,

Dei取下列两式中的较大值。

$$D_{ei} = D_{oi} + 2\delta_{si} + K_3 + K_4$$
$$D_{ei} = D_{oi} + 2\delta_{si} + K_4 + d_0 + 2\delta_{pi}$$

(7-22)

中

一塔设备各计算段的外径, m_i

- 一塔设备各计算段保温层的厚度,m;
- —塔顶管线外径, m_i
- 一管线保温层的厚度, m_{f}
- —笼式扶梯的当量宽度,当无确定数据时,可取

$$K_3 = 0.40 m$$
;

 K_4 —操作平台的当量宽度,m; $K_A = \frac{2\sum A}{K_A}$

$$K_4 = \frac{2\sum A}{h_0}$$

一第i段内操作平台构件的投影面积(不计 空挡的投影面积), m²;

- 一操作平台所在计算段的高度, m。

4.风弯矩计算

将塔设备沿高度分为若干段,则水平风力在任意截面处的 风弯矩为(图7-74所示),

$$M_{W}^{I-I} = p_{i} \frac{l_{i}}{2} + p_{i+1} \left(l_{i} + \frac{l_{i+1}}{2} \right) + p_{i+2} \left(l_{i} + l_{i+1} + \frac{l_{i+2}}{2} \right)$$

$$+\cdots\cdots+p_n\left(l_i+l_{i+1}+l_{i+2}+\cdots\cdots+\frac{l_n}{2}\right)$$

(7-23)

四、地震载荷

地震发生时,地面运动是一种复杂的空间运动, 可分解为三个平动分量和三个转动分量。

鉴于转动分量的实例数据很少,地震载荷计算时 一般不予考虑。

地面水平方向(横向)的运动会使设备产生水平 方向的振动,危害较大。

垂直方向(纵向)的危害较横向振动要小,只有 当地震烈度为8度或9度地区的塔设备才考虑纵向 振动的影响。 7.5 塔的强度设计

(1) 地震力计算

a. 水平地震力:

地震时地面运动对于设备的作用力。

底部刚性固定在基础上的塔设备, 简化成单质点弹性体系,如图7-78 所示。地震力即为该设备质量相对 于地面运动时的惯性力,为——

图7-78 单质点体系的地震力

$$F = \alpha m_P g$$

(7-24)

式中 **g** 一重力加速度,m/s2;

 m_P —集中于单质点的质量,kg;

一地震影响系数,根据场地土特性周期及 塔自振周期由图7-79确定。

过程设备设计

图7-79 地 震影响系数 α值

式中

 T_{g}

——特征周期,按场地土的类型及震区类型,由表**7-9**

确定;

 α_{max}

——地震影响系数的最大值,如表7-10所示。

Y

——衰减指数,根据塔的阻尼比按(7-26)确定;

 η_2

—阻尼调整系数,按式(7-27)计算。

 η_1

-直线下降段下降斜率的调整系数,按式(7-29)计算。

特性周期Tg: 规准化的反应谱曲线开始下降点所对应的周期值

远震、近震、地方震

远震震中距大于1000公里;近震震中距在100-1000公里范围内;地方震震中距在100公里以内。 地震的范围

设计地震分组:

这主要是为了反映潜在<u>震源</u>远近的影响。一般而言,潜在<u>震源</u>远,地震时传来的<u>地震波</u>长周期分量比较显著。为了反映这一影响,对各城镇在规定<u>抗震设防烈度</u>、抗震设计地震动加速度值的同时,还给出了<u>设计地震分组</u>。

表7-9 场地土的特性周期Tg

场地土类型	设计地震分组			
·%/•	第一组	第二组	第三组	
Ιο	0.20	0.25	0.30	
I ₁	0.25	0.30	0.35	
II	0.35	0.40	0.45	
III	0.45	0.55	0.65	
IV	0.65	0.75	0.90	

Ⅰ类场地土:坚硬场地土,Ⅱ类场地土:中硬场地土,

Ⅲ类场地土:中软场地土,Ⅳ类场地土:软弱场地土。

表7-10 地震影响系数α的最大值

设防烈度	7	8	9
$lpha_{ m max}$	0.08 (0.12)	0.16(0.24)	0.32

注: 括号中数值分别用于GB50011-2001规定的设计基本加速度为0.15g和0.3g的地区。

例如,1976年<u>唐山地震</u>,震级为7.8级,震中烈度为十一度; 受<u>唐山地震</u>的影响,天津市地震烈度为八度,北京市烈度 为<u>六度</u>,再远到石家庄、太原等就只有四至五度了。 关于《抗震规范中》设计基本地震加速度与《中国地震动参数区划图》的地震动峰值加速度值的区别?设计基本地震加速度,指的是建设部1992年7月3日颁发的建标【1992】419号《关于统一抗震设计规范地面运动加速度设计取值的通知》规定的加速度值,其规定如下:设计基本地震加速度值:50年设计基准期超越概率10%的地震加速度设计取值,其中取值7度0.10g,8度0.20g,9度0.40g

这里的设计基本地震加速度的取值与《中国地震动参数区划图》所规定的"地震动峰值加速度"相当,只是在0.10g和0.20g之间有一个0.15g,0.20g与0.40g之间有一个0.30g的区域,这两个区分别同7度和8度地区相当,而《<u>地震动参数区划图》提供了二类场地上</u>,50年超越概率为10%的地震动参数。

7.5 塔的强度设计

过程设备设计

$$\gamma = 0.9 + \frac{0.05 - \xi}{0.5 + \xi}$$

(7-26)

式中 ξ ——塔的阻尼比。

$$\eta_2 = 1 + \frac{0.05 - \xi}{0.08 + 1.6\xi}$$

(7-27)

$$\eta_1 = 0.02 + \frac{0.05 - \xi}{4 + 32\xi}$$

(7-29)

7.5 塔的强度设计

式(7-24)中 αg 可以理解为质点的绝对加速度。

实际上,塔设备是一 多质点的弹性体系, 如图7-80。

图**7-80** 多质点体系

- 对于多质点体系,具有多个振型。
- 根据振型迭加原理,可将多质点体系的计算转换成多个单质点体系相叠加。
- 对于实际塔设备水平地震力的计算,可在前述单质点体系计算的基础上,为考虑振型对绝对加速度及地震力的影响,引入振型参考系数

$$\eta_k = \frac{Y_k \sum_{i=1}^n m_i Y_i}{\sum_{i=1}^n m_i Y_i^2}$$

(7-30)

塔设备的第一振型曲线可以近似为式(7-8))所表示 的抛物线。将式(7-8))代入 的表达式,

可得相应于第一振型的振型参与系数

$$\eta_{k1} = \frac{h_k^{1.5} \sum_{i=1}^n m_i h_i^{1.5}}{\sum_{i=1}^n m_i h_i^3}$$

$$Y_i \approx Y_a \left(\frac{h_i}{H}\right)^{\frac{3}{2}}$$

(7-31)

因而,第 k 段塔节重心处(k质点处)产生的相当于第一振型(基本振型)的水平地震力为:

$$F_{k1} = \alpha_1 \eta_{k1} m_k g$$

(7-32)

式中 α_1 一对应于塔器基本固有周期 T_1 的地震影响系数 α 值;

 $\frac{h_k}{h_k}$ —第k 段塔节的集中质量 m_k 离地面的距离, m_i

 $\frac{m_k}{m_k}$ —第k 段塔节的集中质量(见图7-80),kg;

过程设备设计

b.垂直地震力

在设防烈度为8度或9 度的地区,考虑垂直 地震力的作用。

一个多质点体系见图 7-81,在地面的垂直 运动作用下,塔设备 底部截面上的垂直地

图7-81 多质点体系的垂直地震力

7.5 塔的强度设计

 m_0

$$F_V^{0-0}=lpha_{V\max}m_{eq}g$$
 (7-33) 式中 $lpha_{V\max}$ —垂直地震影响系数的最大值,取 $lpha_{V\max}=0.65$ $lpha_{\max}$; m_{eq} —塔设备的当量质量,取

 $m_{eq} = 0.75 \ m_{\odot}$, kg;

一塔设备操作时的质量, kg。

62

塔任意质点i分配到的垂直地震力为

$$F_V^{i-i} = \frac{m_i h_i}{\sum_{k=1}^n m_k h_k} F_V^{0-0} (i = 1, 2, 3, \dots, n)$$

$$F_V^{I-I} = \sum_{k=i}^n F_{Vi}$$
 $(i = 1, 2,n)$

(7-34)

(2) 地震弯矩

在水平地震力的作用下,塔设备的任意计算截面I-I处,基本振型的地震弯矩为

$$M_{E1}^{I-I} = \sum_{K=1}^{n} F_{K1}(h_k - h)$$

式中 M_{E1}^{I-I} —任意截面I-I处基本振型的地震弯矩,N m a

等直径、等壁厚的塔,质量沿塔高是均匀分布的。

如图7-74所示。在距离地面高度为x 处,取微元dx,则质量为mdx,其振型参考系数为

$$\eta_{k1} = \frac{h_k^{1.5} \int_0^H mh^{1.5} dh}{\int_0^H mh^3 dh} = 1.6 \frac{h_k^{1.5}}{H^{1.5}}$$

则水平地震力 dF_{kl} 为

$$dF_{k1} = \alpha_1 m_k g \left(1.6 \frac{h_k^{1.5}}{H^{1.5}} \right) = 1.6 \frac{\alpha_1 mg}{H^{1.5}} x^{1.5} dx$$

设任意计算截面I-I距地面的高度为h(见图7-80),基本振型在I-I截面处产生的地震弯矩为

$$M_{E1}^{I-I} = \int_{h}^{H} (x-h)dF_{k1} = \int_{h}^{H} 1.6 \frac{\alpha_{1} mg}{H^{1.5}} x^{1.5} (x-h)dx$$
$$= \frac{8\alpha_{1} mg}{175H^{1.5}} (10H^{3.5} - 14hH^{2.5} + 4h^{3.5})$$

(7-36)

当 *h*=0时,即塔设备底部截面0-0处,由基本振型 产生的地震弯矩为

$$M_{E1}^{0-0} = \frac{16}{35} \alpha_1 mgH^2$$

(7-37)

以上计算是按塔设备基本振型(第一振型)的结果。

当H/D>15或塔设备高度大于等于20m时,还必须考虑高振型的影响。

这时应根据前三个振型,即第一、二、三振型,分别计算其水平地震力及地震弯矩。然后根据振型组合的方法确定作用于*K* 质点处的最大地震力及地震弯矩。

一种简化的近似算法是按第一振型的计算结果估算 地震弯矩,即

$$M_E^{I-I} = 1.25 M_{E1}^{I-I}$$

(7-38)

五、最大弯矩

- 确定最大弯矩时,偏保守地设为风弯矩、地震弯矩和偏心 弯矩同时出现,且出现在塔设备的同一方向。
- 但考虑到最大风速和最高地震级别同时出现的可能性很小, 在正常或停工检修时,取计算截面处的最大弯矩为

$$M_{\text{max}} = \begin{cases} M_W + M_e \\ M_E + 0.25M_W + M_e \end{cases}$$

(7-39)

取其中较大值

在水压试验时,由于试验日期可以选择且持续时间较短, 取最大弯矩为

$$M_{\text{max}} = 0.3M_W + M_e$$

7.5.3 筒体的强度及稳定性校核

◆根据操作压力(内压或真空)计算塔体厚度之后,对正常操作、停工检修及压力试验等工况,分别计算各工况下相应压力、重量和垂直地震力、最大弯矩引起的简体轴向应力,再确定最大拉伸应力和最大压缩应力,并进行强度和稳定性校核。

如不满足要求,则须调整塔体厚度,重新进行应力校核。

过程设备设计

一、筒体轴向应力

(1) 内压或外压在筒体中引起的轴向应力 σ_1

$$\sigma_1 = \frac{PD_i}{4\delta_{ei}}$$

(7-40)

式中-P设计压力,取绝对值,Pa。

(2) 重力及垂直地震力在筒壁中产生的轴向压应力 σ_2

$$\sigma_{2} = -\frac{9.8m_{0}^{I-I} \pm F_{V}^{I-I}}{\pi D_{i} \delta_{ei}} \tag{7-41}$$

式中 m_0^{I-I} 一任意截面I-I以上塔设备承受的质量,kg;

 $\frac{F_V^{I-I}}{I}$ —垂直地震力,仅在最大弯矩为地震弯矩参与组合时计入此项,N。

(3) 最大弯矩在筒体中引起的轴向应力 σ_3

$$\sigma_3^{I-I} = \frac{M_{\text{max}}^{I-I}}{W_I}$$

(7-42)

式中 M_{max}^{I-I} —计算截面I-I处的最大弯矩,由式(7-39) 确定,Nm;

 $W_{_I}$

一计算截面I-I处的抗弯截面模量,

$$W_I = \frac{\pi}{4} D_i^2 \delta_{ei}$$
 , m^3 .

二、轴向应力校核条件

- 最大弯矩在筒体中引起的轴向应力沿环向是不断变化的。
- 与沿环向均布的轴向应力相比,这种应力对塔强度或稳定失效的危害要小一些。
- 在塔体应力校核时,对许用拉伸应力和压缩应力引入载荷组合系数K,并取K=1.2。

(1) 正常操作和停工检修工况:

$$\sigma$$
总的轴向应力 = σ_1 内、外压 + σ_2 重力、垂直地震力

+ σ_{Mmax} 最大弯矩引起的轴向应力

$$= \frac{PD_{i}}{4\delta_{ei}} + \left(-\frac{9.8m_{0}^{I-I} \pm F_{V}^{I-I}}{\pi D_{i}\delta_{ei}}\right) + \frac{M_{\max}^{I-I}}{W_{I}}$$

迎风侧最大拉伸应力: σ 总的轴向应力 \leq

1.2 $[\sigma]^t \phi$

背风侧最大压缩应力: σ总的轴向应力

其中B为许用轴向压缩应力。 $[\sigma]'$ 和B的确定参见本书第4章。

过程设备设计

(2) 压力试验工况:

轴向拉伸应力用

其中, σ_s 为简体材料屈服点。

轴向压缩应力用 σ 总的轴向应力 \leq \min KB

或按《钢制塔式容器》JB4710—92写为:

轴向拉伸应力校核:

对内压塔:

$$\sigma_1 - \sigma_2 + \sigma \stackrel{I-I}{\underset{3 \text{ Mmax}}{}} \leq 1.2 \left[\sigma\right]^t \phi$$

对外压塔:

$$-\sigma_2 + \sigma_3 + \sigma_{\max}^{I-I} \leq 1.2 \left[\sigma\right]^t \phi$$

轴向压缩应力校核:

对内压塔:

$$\sigma_2 + \sigma = \frac{I-I}{3 - Mmax} \leq [\sigma] cr$$

对外压塔:

$$\sigma_1 + \sigma_2 + \sigma \xrightarrow{I-I}_{3 \text{ Mmax}} \leq [\sigma] \text{cr}$$

7.5.4 裙座的强度及稳定校核

一、裙座筒体

受到重量和各种弯矩的作用,但不承受压力。

危险截面:

裙座底部截面, 重量和弯矩在裙座底部截面处最大。

裙座上的检查孔或人孔、管线引出孔的孔中心所在 横截面处。

应力校核:

只校核危险截面的最大轴向压缩应力。

因为裙座简体不受容器内压力作用, 轴向组合拉伸应力总是小于轴向组合 压缩应力。

二、裙座基础环

裙座基础环的结构如图7-79及7-80所示,分为无筋板的结构及有筋板的结构两类。基础环的内、外直径可按下式选取

$$D_{ob} = D_{is} + (0.16 \sim 0.40)m$$

(7-43)

$$D_{ib} = D_{is} - (0.16 \sim 0.40)m$$

(7-44)

(1) 基础环应力分布

基础环上受到的力:

- □ 塔设备的重量,
- 风载荷、地震载荷及偏心 载荷引起的弯矩通过裙座筒 体作用在基础环上的力。

基础环上的应力:

图7-84 基础环的应力

在基础环与混凝土基础接触面上,重量引起均布压缩应力,弯曲引起弯曲应力,压缩应力始终大于拉伸应力,最大压缩应力为 σ_{max} ,应力分布如图7-84所示。基础环板应有足够厚度来承受这种应力。

过程设备设计

(2) 基础环厚度

a. 无筋板基础环

假想把基础环沿圆周方向拉直, 当作受到均布载荷作用的悬臂 梁,梁的长度等于b,如图7-82所示。设拉直后梁的宽度为 L,则梁所受的最大弯矩为

$$M = \frac{1}{2}b^2L\sigma_{b\max}$$

图7-82

由弯矩引起的最大弯应力位于梁根部的上下表面,其值应小于基础环材料的许用应力 $[\sigma]_b$,即

$$\sigma_b = \frac{M}{Z} = \frac{6M}{L\delta_b^2} \le [\sigma]_b$$

因此,基础环所需的厚度 δ_b 为

$$\delta_b = 1.73b \sqrt{\frac{\sigma_{b \max}}{[\sigma]_b}}$$

(7-45)

b. 有筋板基础环

两相邻筋板之间的基础环板可近似为 受均布载荷的矩形板(b×l)

有筋板的两侧边(边长为b)视为简支,与裙座简体连接的边缘(边长视为l)作为固支,基础环的外边缘(长度视为l)作为自由边。

根据平板理论,可以计算板中的最大弯矩,此时,基础环的厚度为

$$\mathcal{S}_b = \sqrt{\frac{bM_s}{[\sigma]_b}}$$

有筋板的基础环

7.5 塔的强度设计 过程设备设计

三、地脚螺栓

作用

使高的塔设备固定在混凝土基础上,以防风弯矩或 地震弯矩等使其发生倾倒。

- (1) 如图7-84所示,在重量和弯矩作用下,如果迎风侧地脚螺栓承受的应力 $\sigma_B < 0$,则表示塔设备自身稳定而不会倾倒,原则上可不设地脚螺栓,但是为了固定设备的位置,还应设置一定数量的地脚螺栓;
- (2) 如果 $\sigma_R > 0$ 则必须安装地脚螺栓并进行计算。

四、裙座与塔体连接焊缝

裙座直接焊接在塔体的底部封头上。

搭接焊缝

焊缝形式

对接焊缝

搭接焊缝是裙座焊在壳体外 侧的结构。

焊缝承受由设备重量及弯矩 产生的切应力。这种结构受 力情况较差,但安装方便, 可用于小型塔设备。

对接焊缝主要校核在弯矩及 重力作用下迎风侧焊缝的拉 应力。

思考题

- 1. 试分析塔在正常操作、停工检修和压力试验等三种工况下的载荷?
- 2. 简述塔设备设计的基本步骤。
- 3. 塔设备设计中,哪些危险截面需要校核轴向强度和稳定性?