SITUATE: MACHINE LEARNING FOR IMAGE RECOGNITION

•••

By: Bryan Lee and Robin Tan
ASE 2016

Introduction

Why Image Recognition?

Why is Image Recognition Difficult?

What is Machine Learning?

An **algorithm** with the ability to learn **without** being **explicitly programmed**

Input Data — Finds Patterns — Predict (Training) (Algorithm- Learning) (Testing)

Situate: Information and Goals

Locate objects relevant to situation as quickly as possible

Situate: Overview

Dog Walking

Bounding Boxes

Object Proposals
Oracle
Intersection-over-Union

Using Context

Project Goals

Problem 1

Generalize Situate

Problem 2

Improve Box Proposals

Problem 3

Accurately Identify Object in the box

Machine Learning Methods

Support Vector Machines

Neural Networks

Situate: User Interface

Workspace handshake88 person y eft location person y ight location handshake location person y eft box person y ight box handshake box distribution distribution distribution density density density 1:1 4:1 1:4 4:1 1:4 1:1 1:4 4:1 aspect ratio aspect ratio aspect ratio (width / height) (width / height) (width / height) 1.5 land 1.5 density density density D. person_my_left handshake person my ight .001 .01 .01 .001 .01 .001 area ratio area ratio area ratio category Next image Start Step Pause

Workspace handshake88 1/1000

person y eft location

person y eft box

handshake location

person y ight location

distribution

handshake box distribution

distribution 1:4 1:1 4:1

aspect ratio

(width / height)

person y ight box

Restart Resume Step

Workspace handshake88 2/1000

person yeft location

handshake location

person y ight location

handshake box distribution density 1:4 1:1 4:1 aspect ratio (width / height)

Resume Restart

Step

Workspace handshake88 3/1000

person y eft location

handshake location

person y ight location

person y eft box distribution

handshake box distribution

distribution

1:1

aspect ratio

(width / height)

4:1

1:4

person y ight box

Resume Restart

Step

Workspace handshake88 5/1000 person yeeft: 0.62, 0.62 person yeft location person y ight location handshake location <gt iou: 0.62022> handshake; 0.36, 0.36 kanushake; 0.363, 0.36 <gt lou: 0.36369> person_y eft box person_y_ight box handshake box distribution distribution distribution density density 1:4 1:1 4:1 1:4 1:1 4:1 1:4 1:1 4:1 aspect ratio aspect ratio aspect ratio (width / height) (width / height) (width / height) number of samples density person y,ight .001 .01 .1 .001 .01 .001 .01 person_my_ieft handshake area ratio area ratio area ratio category

Restart

Resume

Step

Workspace handshake88 7/1000 person y effs 0,62, 0,62 person y ight location person y eft location handshake location <gt iou: 0.62022> handshake: 0.41, 0.41 <gt.iou: 0.41177> person_y,eft box person y ight box handshake box distribution distribution distribution handshake? 1:4 1:1 4:1 1:1 4:1 1:4 1:1 4:1 1:4 aspect ratio aspect ratio aspect ratio (width / height) (width / height) (width / height) number of samples person_my_ieft handshake .001 .01 .001 .01 .001 .01 person_my_right area ratio area ratio area ratio category

Step

Next image

Resume

Restart

Workspace 25/1000

Restart

Resume

Next image

Step

Workspace handshake88 29/1000 person y effs 0.62, 0.62 person y eft location person y ight location handshake location <gt iou: 0.62022> <gt iou handshake: 0.44, 0.44 <gt iou: 0.44158> person_y eft box person_y_ight box handshake box distribution distribution distribution density density 1:4 4:1 1:4 1:1 4:1 1:4 1:1 1:1 4:1 aspect ratio aspect ratio aspect ratio (width / height) (width / height) (width / height) 25 number of samples density person_my_ieft handshake person_my_right .001 .01 .001 01 .001 .01 area ratio area ratio area ratio category Step Next image Resume

Restart

Workspace handshake88 41/1000 person y effs 0.62, 0.62 person y eft location person y ight location handshake location <gt iou: 0.620209559 handshake: 0.44, 0.44 <gt iou: 0.44158> person_y,eft box person y ight box handshake box distribution distribution distribution density 1:4 1:1 4:1 1:4 1:1 4:1 1:4 4:1 aspect ratio aspect ratio aspect ratio (width / height) (width / height) (width / height) 35 30 - 25 - 20 - 15 - 15 - 5 - 5 .01 .001 .001 person my eft .001 .01 .01 handshake person_my_right. area ratio area ratio area ratio category

Resume

Restart

Step

[Goal 1] Situate: New Situations

Handshaking

Ping Pong

[Goal 1.5] Wall Cleaning

[Goal 2] Improve Box Proposals

Problem 1: Where to propose the box?

Box Proposals based on

Salience

Prior knowledge on object location

Goal 2

Goal 2

Problem 2: What size should the box be?

Handshaking

Ping Pong Playing

Problem 3: What object do we propose?

Handshaking

Person-left

	PL	PR	HS
Probability of object	15%	15%	70%
proposal			

Ping Pong

Table

	P1	P2	Т	N
Probability of object proposal	27%	27%	40%	6%

Testing

Collected Images

Overview: 90% Training

10%

Testing

	Handshaking	Ping Pong
Training Set:	360 Images	270 Images
Test Set:	40 Images	30 Images

Repeated 10 times

Goal 2

Results: Handshaking

Percentage Successful

	Handshake
Provisional	90%
No Provisional	85%
Prioritized Objects	99%

(Successful = all objects localized within 1000 iterations)

Results: Ping Pong

Percentage Successful

	Ping Pong
Provisional	90%
No Provisional	87%
Prioritized Objects	99%

(Successful = all objects localized within 1000 iterations)

[Goal 3] Improve Object Recognition

We used a CNN-SVM to identify the object within a box

Conclusion

New Situations

 Successfully expanded Situate to two new situations.

Handshaking

Ping Pong Playing

Improve Box Proposals

- Demonstrated Situate's improved box proposal methods.
- Improved results with prioritized object detection.

Improve Object Recognition

• Implemented object identification without relying on ground truth boxes

"Player 1!"

Acknowledgements

Thank you for listening

Do you have any questions?

Object Recognition: Brief Overview

What is Object Recognition?

Motivation

Convolutional Neural Network (CNN)

Scans Input Image for Features
(Corners, Edges, Shapes, etc.)

Inputs to a "Neural Network" (Combines information from features)

Outputs a Classification
(Person Left, Person Right, Handshake)

"Not an Object"

