Type theory

 Con_{-} $: \mathbb{N} \to \mathsf{Set}$

 $: \mathbb{N} \to \mathsf{Con}_i \to \mathsf{Set}$ Ty_ $: \mathsf{Con}_i \to \mathsf{Con}_i \to \mathsf{Set}$ Sub

 $: (\Gamma : \mathsf{Con}_i) \to \mathsf{Ty}_i \Gamma \to \mathsf{Set}$ Tm

Substitution calculus

: Con₀

 $: (\Gamma : \mathsf{Con}_i) \to \mathsf{Ty}_i \, \Gamma \to \mathsf{Con}_{i \sqcup i}$

-[-] $: \mathsf{Ty}_i \, \Delta \to \mathsf{Sub} \, \Gamma \, \Delta \to \mathsf{Ty}_i \, \Gamma$

id : Sub Γ Γ

- o -: $\mathsf{Sub}\,\Theta\,\Delta\to\mathsf{Sub}\,\Gamma\,\Theta\to\mathsf{Sub}\,\Gamma\,\Delta$

 $: \mathsf{Sub}\,\Gamma$.

 $: (\sigma : \mathsf{Sub}\,\Gamma\,\Delta) \to \mathsf{Tm}\,\Gamma\,(A[\sigma]) \to$

 $\operatorname{\mathsf{Sub}}\Gamma(\Delta \triangleright A)$

: $\operatorname{\mathsf{Sub}}\Gamma(\Delta \triangleright A) \to \operatorname{\mathsf{Sub}}\Gamma\Delta$ π_1

 $: (\sigma : \mathsf{Sub}\,\Gamma\,(\Delta \triangleright A)) \to \mathsf{Tm}\,\Gamma\,(A[\pi_1\,\sigma])$ π_2

-[-]: $\operatorname{\mathsf{Tm}} \Delta A \to (\sigma : \operatorname{\mathsf{Sub}} \Gamma \Delta) \to \operatorname{\mathsf{Tm}} \Gamma (A[\sigma])$

[id] $: A[\mathsf{id}] = A$

 $: A[\sigma \circ \delta] = A[\sigma][\delta]$ [0]

 $: (\sigma \circ \delta) \circ \nu = \sigma \circ (\delta \circ \nu)$ ass

idl : $id \circ \sigma = \sigma$

idr $: \sigma \circ \mathsf{id} = \sigma$

 $: (\sigma : \mathsf{Sub}\,\Gamma \cdot) = \epsilon$ $\cdot \eta$

 $\triangleright \beta_1$ $: \pi_1(\sigma,t) = \sigma$ $\triangleright \beta_2$ $:\pi_2(\sigma,t)=t$

 $: (\pi_1 \, \sigma, \pi_2 \, \sigma) = \sigma$ $\triangleright \eta$

 $: (\sigma, t) \circ \delta = (\sigma \circ \delta, t[\delta])$, 0

Function space

Π $: (A : \mathsf{Ty}_i \Gamma) \to \mathsf{Ty}_i (\Gamma \triangleright A) \to \mathsf{Ty}_{i \vdash i} \Gamma$

: $\mathsf{Tm} (\Gamma \triangleright A) B \to \mathsf{Tm} \Gamma (\Pi A B)$ lam

: $\mathsf{Tm}\,\Gamma(\Pi\,A\,B) \to \mathsf{Tm}\,(\Gamma \triangleright A)\,B$ app

 $\Pi\beta$: app (lam t) = t

: lam(app t) = t $\Pi \eta$

 Π $: (\Pi A B)[\sigma] = \Pi (A[\sigma]) (B[\sigma^{\uparrow}])$

: $(\operatorname{lam} t)[\sigma] = \operatorname{lam} (t[\sigma^{\uparrow}])$ lam∏

Sigma

 $: (A : \mathsf{Ty}_i \, \Gamma) \to \mathsf{Ty}_i \, (\Gamma \triangleright A) \to \mathsf{Ty}_{i \vdash i} \, \Gamma$ Σ

 $: (u : \mathsf{Tm}\,\Gamma\,A) \to \mathsf{Tm}\,\Gamma\,(B[\langle u \rangle]) \to$ -, -

 $\mathsf{Tm}\,\Gamma\,(\Sigma\,A\,B)$

: $\mathsf{Tm}\,\Gamma\,(\Sigma\,A\,B)\to \mathsf{Tm}\,\Gamma\,A$ $proj_1$

 $: (t : \mathsf{Tm}\,\Gamma\,(\Sigma\,A\,B)) \to \mathsf{Tm}\,\Gamma\,(B[\langle \mathsf{proj}_1\,u\rangle])$ proj₂

 $\Sigma \beta_1$: $proj_1(u, v) = u$

: $\operatorname{proj}_{2}(u, v) = v$ $\Sigma \beta_2$

 $\Sigma \eta$ $: (\mathsf{proj}_1 t, \mathsf{proj}_2 t) = t$

 $\Sigma[]$ $: (\Sigma A B)[\sigma] = \Sigma (A[\sigma]) (B[\sigma^{\uparrow}])$

 $: (u,v)[\sigma] = (u[\sigma],v[\sigma])$, []

Unit

: $\mathsf{Ty}_0 \Gamma$ T

 $:\operatorname{\mathsf{Tm}}\Gamma$ tt

 $: (t : \mathsf{Tm}\,\Gamma\,\top) = \mathsf{tt}$ $\top \eta$

 $: \top [\sigma] = \top$ T[]

tt[] : $tt[\sigma] = tt$

Empty

: $\mathsf{Ty}_0 \Gamma$

 $:\operatorname{\mathsf{Tm}}\Gamma\,\bot\to\operatorname{\mathsf{Tm}}\Gamma\, C$ exfalso

⊥[] $: \bot [\sigma] = \bot$

exfalso[] : $(exfalso t)[\sigma] = exfalso (t[\sigma])$

Coquand universes

 $: (i:\mathbb{N}) \to \mathsf{Ty}_{i+1} \Gamma$ U_-

ΕI : $\mathsf{Tm}\,\Gamma\,\mathsf{U}_i\to\mathsf{Ty}_i\,\Gamma$

: $\mathsf{Ty}_i \Gamma \to \mathsf{Tm} \Gamma \mathsf{U}_i$ С

 $: \mathsf{El}\,(\mathsf{c}\,A) = A$ Uβ

: c(Ela) = a $\mathsf{U}\eta$

U[] $: \mathsf{U}_i[\sigma] = \mathsf{U}_i$

EΙ[] $: (\mathsf{EI}\,a)[\sigma] = \mathsf{EI}\,(a[\sigma])$

Booleans

false

: Ty₀ Bool

 $: \mathsf{Tm}\,\Gamma\,\mathsf{Bool}$ true $: \mathsf{Tm}\,\Gamma\,\mathsf{Bool}$

 $: (P : \mathsf{Ty}_i (\Gamma \triangleright \mathsf{Bool})) \to \mathsf{Tm} \Gamma (P[\langle \mathsf{true} \rangle]) \to$ if

 $\operatorname{\mathsf{Tm}}\Gamma(P[\langle\operatorname{\mathsf{false}}\rangle]) \to (t:\operatorname{\mathsf{Tm}}\Gamma\operatorname{\mathsf{Bool}}) \to$

 $\mathsf{Tm}\,\Gamma\left(P[\langle t\rangle]\right)$

 $\mathsf{Bool}\beta_{\mathsf{true}}:\mathsf{if}\,P\,u\,v\,\mathsf{true}=u$

 $\mathsf{Bool}\beta_{\mathsf{false}}:\mathsf{if}\,P\,u\,v\,\mathsf{false}=v$

: $Bool[\sigma] = Bool$ Bool

: $true[\sigma] = true$ true : $false[\sigma] = false$ false[]

: (if P u v t) $[\sigma] = if (P[\sigma^{\uparrow}]) (u[\sigma]) (v[\sigma]) (t[\sigma])$ if[]

Abbreviations

wk : Sub $(\Gamma \triangleright A) \Gamma := \pi_1$ id

: $\mathsf{Tm}\,(\Gamma \triangleright A)\,(A[\mathsf{wk}]) := \pi_2\,\mathsf{id}$ VΖ

 $(t: \mathsf{Tm}\,\Gamma\,A): \mathsf{Tm}\,(\Gamma \triangleright B)\,(A[\mathsf{wk}]) := t[\mathsf{wk}]$ VS

 $\langle - \rangle$ $(t: \mathsf{Tm}\,\Gamma\,A): \mathsf{Sub}\,\Gamma\,(\Gamma\triangleright A) := (\mathsf{id},t)$

 $_{\perp}\uparrow$ $(\sigma : \mathsf{Sub}\,\Gamma\,\Delta) : \mathsf{Sub}\,(\Gamma \triangleright A[\sigma])\,(\Delta \triangleright A) :=$

 $(\sigma \circ \mathsf{wk}, \mathsf{vz})$

[id] $: t[\mathsf{id}] = t$

 $: t[\sigma \circ \delta] = t[\sigma][\delta]$

 $: (\pi_1 \sigma) \circ \delta = \pi_1 (\sigma \circ \delta)$ $\pi_1\circ$

 $: (\pi_2 \, \sigma)[\delta] = \pi_2 \, (\sigma \circ \delta)$ $\pi_2[]$

 $: (\operatorname{\mathsf{app}} t)[\sigma^{\uparrow}] = \operatorname{\mathsf{app}} (t[\sigma])$ app[]

 $- \Rightarrow - : (AB : \mathsf{Ty}_i \Gamma) \to \mathsf{Ty}_{i \mid i} \Gamma := \prod A(B[\mathsf{wk}])$

 $: (t : \mathsf{Tm}\,\Gamma\,(\Pi\,A\,B))(u : \mathsf{Tm}\,\Gamma\,A) :$ -\$-

 $\mathsf{Tm}\,\Gamma\left(B[\langle u\rangle]\right) := (\mathsf{app}\,t)[\langle u\rangle]$

 $\$\beta$: $(\operatorname{lam} t) \, \$ \, u = t[\langle u \rangle]$

: lam(t[wk] \$ vz) = t $\$\eta$

proj₁[] $: (\mathsf{proj}_1 t)[\sigma] = \mathsf{proj}_1 (t[\sigma])$

proj₂[] $: (\mathsf{proj}_2 t)[\sigma] = \mathsf{proj}_2 (t[\sigma])$

c[] $: (c A)[\sigma] = c (A[\sigma])$