Nomenclatura de compostos orgânicos

Notas de aula do Módulo 4 da discplina QUI022 (Química Orgânica), ministrada na Universidade Federal de Itajubá (UNIFEI) pelo professor Lucas Raposo Carvalho, no 2° semestre de 2024.

Lucas Raposo Carvalho

Atualizado pela última vez em: 23 de setembro de 2024

Referências principais

- 1. SOLOMONS, T. W. G.; FRYHLE, C. B.; SNYDER, S. A. (2018). Química Orgânica (12ª ed.). LTC;
- 2. BRUICE, P. Y. Organic Chemistry (8 a ed.). Pearson India.

Conteúdo

Aula 8	(10/09/2024) – Nomenclatura	1
1.1	Motivação	1
1.2	Nomenclatura de alcanos	2
1.3	Nomenclatura IUPAC (sistemática)	7
1.4	Nomenclatura de cicloalcanos	10

***** Aula 8 (10/09/2024)

1.1 Motivação

A nomenclatura de compostos orgânicos é um tópico que, do ponto de vista didático, já foi crucial. Atualmente, *softwares* são capazes de fornecer a nomenclatura IUPAC – do inglês, *International Union of Pure and Applied Chemistry* – de qualquer composto química que possua uma estrutura representável nas suas interfaces.

Dentre tais programas, ressalta-se o ChemDraw, um *software* de licencia proprietária da empresa Revvity, e o KingDraw, um *software* gratuito. Ambos

possuem, dentre as inúmeras qualidades, a habilidade de fornecer nomes IUPAC de compostos orgânicos de acordo com a estrutura química.

Todavia, saber nomear um composto químico a partir de sua estrutura e saber montar a estrutura de um composto a partir de seu nome são habilidades que são úteis. Caso se saiba a estrutura de um composto a partir de seu nome, pode-se ter uma noção da reatividade de tal composto imediamente. Sendo assim, alguns conceitos centrais de nomenclatura serão passados nessa aula, para que a base do assunto seja passada.

1.2 Nomenclatura de alcanos

Os alcanos possuem fórmula geral C_nH_{2n+2} e sempre possuem o sufixo **ano**. A parte variável do nome será o prefixo, que varia de acordo com o número de carbonos totais do composto. A **Tabela 1**, **Página 3**, traz a nomenclatura de alcanos de acordo o número de átomos de carbono e algumas propriedades físicas, como temperatura de ebulição, de fusão e densidade.

Tabela 1: Nomes de alcanos de acordo com o número de carbono, suas respectivas fórmulas moleculares e condensadas, temperaturas de ebulição (

Número de carbonos	Fórmula molecular	Nome	Fórmula condensada	$T_{eb}/^{\circ}C$	T_{f} C	$ ho/{ m gmL}^{-1}$
1	CH ₄	Metano	CH ₄	-167,7	-182,5	
2	C_2H_6	Etano	$\mathrm{CH}_3\mathrm{CH}_3$	9′88-	-183,3	
3	C_3H_8	Propano	$\mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_3$	-42,1	-187,7	
4	C_4H_{10}	Butano	$\mathrm{CH}_3(\mathrm{CH}_2)_2\mathrm{CH}_3$	-0,5	-138,3	
r.	$C_{5H_{12}}$	Pentano	$CH_3(CH_2)_3CH_3$	36,1	-129,8	0,5572
9	C_6H_{14}	Hexano	$\mathrm{CH}_3(\mathrm{CH}_2)_4\mathrm{CH}_3$	2′89	-92,3	0,6603
	$\mathrm{C_7H_{16}}$	Heptano	$CH_3(CH_2)_5CH_3$	98,4	9′06-	0,6837
8	C_8H_{18}	Octano	$\mathrm{CH}_3(\mathrm{CH}_2)_6\mathrm{CH}_3$	127,7	-56,8	0,7026
6	$\mathrm{C}_9\mathrm{H}_{20}$	Nonano	$CH_3(CH_2)_7CH_3$	150,8	-53,5	0,7177
10	$\mathrm{C}_{10}\mathrm{H}_{22}$	Decano	$\mathrm{CH}_3(\mathrm{CH}_2)_8\mathrm{CH}_3$	174,0	-29,7	0,7299
11	$C_{11}H_{24}$	Undecano	$CH_3(CH_2)_9CH_3$	195,8	-25,6	0,7402
12	$C_{12}H_{26}$	Dodecano	$\mathrm{CH}_3(\mathrm{CH}_2)_{10}\mathrm{CH}_3$	216,3	9'6-	0,7487
13	$C_{13}H_{28}$	Tridecano	$\mathrm{CH}_3(\mathrm{CH}_2)_{11}\mathrm{CH}_3$	235,4	-5,5	0,7546
•••	•••		•••			•••
20	$\mathrm{C}_{20}\mathrm{H}_{42}$	Eicosano	$\mathrm{CH}_3(\mathrm{CH}_2)_{18}\mathrm{CH}_3$	343,0	36,8	0,7886
21	$C_{21}H_{44}$	Heneicosano	$\mathrm{CH}_3(\mathrm{CH}_2)_{19}\mathrm{CH}_3$	356,5	40,5	0,7917
			•••	•••		•••
30	$C_{30}H_{62}$	Triacontano	$\mathrm{CH}_3(\mathrm{CH}_2)_{28}\mathrm{CH}_3$	449,7	829	0,8097

Analisando os compostos, percebe-se que, a partir do metano, os alcanos subsequentes diferem-se dos anterior por uma unidade CH₂, denominada **metileno** ou **unidade metilênica**¹. Além disso, as fórmulas estruturais do metano, etano e propano possuem um elemento em comum, conforme mostrado na **Figura 1**.

$$CH_4$$
 H_3C $-CH_3$ H_2 H_3C C CH_3 Metano Etano Propano

Figura 1: Fórmulas estruturais do metano, etano e propano.

Para os três compostos, não há como serem descritos por outras estruturas com conectividade atômicas respeitando a regra do octeto. Todavia, a partir de alcanos com quatro átomos de carbono, o fenômeno da **isomeria** ganha importância.

Isômeros - Definição IUPAC

Uma de muitas espécies diferentes (ou entidades moleculares) que possuem a mesma composição atômica (fórmula molecular) mas que diferem em fórmulas de linha ou estereoquímicas e, então, possuem propriedades físicas e/ou químicas (ISOMER..., 2019).

Isômeros constitucionais - Definição IUPAC

Isomeria entre estruturas que diferem em constituição e que são descritas por diferentes fórmulas de linha – *e.g.* CH₃OCH₃ e CH₃CH₂OH (CONSTITUTIONAL..., 2019).

Constituição - Definição IUPAC

A descrição da identidade e conectividade (e correspondente multiplicaidades de ligação) dos átomos em uma entidade molecular (omitindo qualquer distinção oriunda de seu arranjo espacial) (CONSTITU-TION..., 2019).

Sendo assim, a partir de quatro átomos de carbono, as conectividades dos átomos podem ser distintas para a mesma fórmula molecular, resultando em **isômeros constitucionais** (Figura 2).

 $^{^{1}}$ Embora o metano tenha fórmula condensada CH₄ e o etano CH₃CH₃, ou seja, não havendo um grupo CH₂ de diferença, deve-se analisar as fórmulas moleculares CH₄ e C₂H₆, dando origem à diferença de uma unidade CH₂.

Figura 2: Os cinco tipos de isomeria constitucional -i.e., função, cadeia, posição, tautomeria e composição ou metameria - e exemplos representativos.

Alguns aspectos particulares dos cinco tipos de isomeria constitucional incluem:

- 1. Dois compostos são denominados isômeros de **função** quando suas funções orgânicas são alteradas, mantendo-se a fórmula molecular;
- 2. Isômeros de **cadeia** são compostos com a mesma fórmula molecular, porém com diferentes tipos de cadeia -e.g., linear, ramificada e cíclica;
- 3. Isômeros de **posição** são aqueles cuja posição de um substituinte carbônico ou heteroatômico é a única diferença entre os compostos;
- A tautomeria é um caso particular da isomeria de função, pois ambos os isômeros coexistem em equilíbrio. Outro exemplo clássico de tautomeria é aquele envolvendo iminas e enaminas;
- 5. A **compensação** ou **metameria** também é um caso particular da isomeria de posição, na qual a posição de um heteroátomo é alterada na cadeia carbônica. Tal isomeria é muito presente em éteres, aminas secundárias ou terciárias, sulfetos e fosfinas.

Os isômeros constitucionais do butano e do pentano são apresentados na **Figura 3**².

²Vale ressaltar que, de acordo com a Base II do Anexo I do Acordo Ortográfico da Língua Portuguesa de 1990 (BRASÍLIA: SENADO FEDERAL, 2014), os termos "hexano"/"hexil" e "heptano"/"heptil" perdem a letra H quando são aglutinadas a outras palavras, se tornando "exano"/"exil" e "eptano"/"eptil", respectivamente. A letra H pode ser mantida caso a conexão entre as palavras seja feita por um hífen, como no caso de neo-hexil ou neo-heptil.

Figura 3: Fórmulas estruturais do butano, isobutano, pentano, isopentano e neopentano, com exemplos dos substituintes neo e iso.

Além dos substituintes iso e neo, existem outros dois que são muito utilizados em nomenclaturas comuns, sec e terc³ (**Figura 4**).

$$C_{4}H_{9} \qquad C_{4}H_{9} \qquad \text{Carbono}$$

$$C_{4}H_{9} \qquad C_{4}H_{9} \qquad \text{primário}$$

$$C_{4}H_{9} \qquad Carbono$$

Figura 4: Fórmulas estruturais dos substituintes butil, isobutil, *sec*-butil e *terc*-butil.

Os substituintes *sec* e *terc* são muito utilizados para nomenclaturas comuns e seus significados são mais diretos que os prefixos iso e neo. Todavia, a complexidade dos produtos pode prejudicar o uso de tais prefixos comuns.

³É importante mencionar que, ao contrário dos prefixos "iso" e "neo", os substituintes "sec" e "terc" são escritos em itálico quando a palavra é digitada. Quando manuscrito, o prefixo é sublinhado. Além disso, muitos materiais em inglês mostram o prefixo "tert" ao invés de "terc", o que faz sentido dada a palavra tertiary ao invés de terciário. Sendo assim, o substituinte em português é terc e, em inglês, tert. Por fim, os prefixos sec e terc são separados do nome por um hífen e não são capitalizados, enquanto os prefixos iso e neo são aglutinados e capitalizados.

A função principal da nomenclatura de compostos é fornecer uma identificação **inequívoca** da molécula. Em outras palavras, um composto químicos deve ter apenas um nome. Analogamente, um nome deve se referir a um único composto. Sendo assim, a forma mais eficiente de se garantir que tais relações sejam aplicadas é pelo uso da **nomenclatura sistemática** ou **nomenclatura IUPAC**.

1.3 Nomenclatura IUPAC (sistemática)

Para se determinar a nomenclatura IUPAC de um alcano, alguns passos devem ser seguidos:

Identificação da cadeia principal (Figura 5): A cadeia carbônica principal de um alcano é aquela com o maior número de átomos de carbonos consecutivos. A cadeia principal é responsável pelo último nome do composto.

Figura 5: Escolhas de cadeias carbônicas principais para alguns exemplos de alcanos.

2. Identificação e enumeração dos substituintes (Figura 6): Os substituintes são grupos ligados à cadeia principal. O nome sistemático de um alcano possui substituintes que vêm antes da cadeia principal acompanhado do número que indica sua posição nela. A enumeração deve ser feita de modo que os substituintes possuam a menor enumeração possível. O número de um substituinte é separado de seu nome por um hífen, –. Não há espaço entre os nomes dos substituintes e o nome da cadeia principal.

Figura 6: Nomes de alcanos com substituintes na cadeia principal. O nome fornecido ao composto do exemplo 3 é semi-sistemático pois o nome isopropil foi utilizado e tal nome é o usual.

3. **Múltiplos substituintes iguais** (**Figura 7**): Quando a cadeia principal de um alcano possui múltiplos substituintes iguais -e.g., dois grupos

metil – deve-se usar os prefixos "di", "tri" e "tetra", por exemplo, para nomeá-los. Além disso, as posições de substituintes iguais são escritas no mesmo substituinte e são separadas por vírgula⁴.

O nome 4-etil-3,8,8-trimetildecano possui preferência ao 7-etil-3,3,8-trimetildecano, pois o substituinte citado primeiro no nome possui a menor posição.

Figura 7: Nomes de alcanos com múltiplos substituintes iguais. A preferência de nomenclatura do 4-etil-3,8,8-trimetildecano é baseada na regra C-13.1 da IUPAC, que determina a senioridade de cadeias.

- 4. Cadeias principais de mesma extensão (Figura 8): Quando um alcano possui duas possibilidades de cadeias principais com o mesmo número de átomos de carbono, a que tem preferência é aquela com o maior número de substituintes.
- 5. Nomes sistemáticos de substituintes (Figura 8): Embora os nomes secbutil e terc-butil sejam aceitáveis, é preferível que tais substituintes sejam denominados pela sua nomenclatura sistemática. Essa é obtida pela determinação da cadeia principal do substituinte e determinando as posições dos substituintes que contenha. Os nomes sistemáticos de substituintes são colocados entre parênteses para diferenciar substituintes diretamente ligados à cadeia principal daqueles ligados aos próprios substituintes.

⁴É importante destacar que os prefixos di, tri, tetra, *sec* e *terc* não são considerados para se determinar a ordem alfabética de substituintes. Em contrapartida, os substituintes iso e neo são considerados. Por exemplo, dentre os substituintes *sec*-butil e etil, o butil é primeiro na ordem alfabética. Porém, a comparação dos substituintes isobutil e etil preconiza que o etil é primeiro na ordem alfabética.

Ex. 2:

A cadeia principal **B** possui quatro substituintes e a A, três. O substituinte "isopropil" foi nomeado como (1-metiletil) e o "isobutil" foi nomeado com (2--metilprop-1-il). É importante mencionar que, no caso do isobutil, a posição na qual a porção "propil" se liga à cadeia principal é especificada, para evitar ambiguidades.

Figura 8: Nomes de alcanos com possibilidades diferentes de cadeias principais baseadas em números de átomos de carbono iguais com números de substituintes diferentes. Além disso, mostra a mudança de nomenclatura do substituintes isopropil para (1-metiletil) e isobutil para (2-metilprop-1-il).

1.4 Nomenclatura de cicloalcanos

A nomenclatura de cicloalcanos possui elementos muitos similares a de alcanos alicíclicos. Primeiramente, enquanto os alcanos de três, quatro e cinco carbonos mais simples são denominados propano, butano e pentano, respectivamente, seus análogos cíclicos são o ciclopropano, ciclobutano e ciclopentano⁵. Sendo assim, o prefixo **ciclo** é adicionado ao nome original (Figura 9).

Figura 9: Nomes de cicloalcanos de três, quatro, cinco e seis átomos de carbono, mostrando o prefixo "ciclo" adicionado ao nome.

Outro ponto de destaque envolve a presença de cicloalcanos em cadeias carbônicas alicílicas. Nesse caso, deve-se comparar o número de átomos de

⁵Deve-se atentar que é impossível obter um alcano cíclico com menos do que três átomos de carbono.

carbono na cadeia alicílica com a cadeia cíclica. Caso o número de carbonos no ciclo seja maior, o último nome do composto será referente a ele. Caso contrário, será referente à parte alicíclica (**Figura 10**).

Cadeia alicíclica: 5 carbonos Cadeia cíclica: 4 carbonos Cadeia cíclica: 5 carbonos

Nome IUPAC: Ciclobutilpentano Nome IUPAC: Etilciclopentano

Figura 10: Nomes de compostos com uma parte alicíclica e uma cíclica, determinando qual das duas dará o último nome ao composto com base no número de átomos de carbono.

Quando o cicloalcano possui apenas dois substituintes ligados ao anel, a ordem que irão aparecer na nomenclatura será alfabética. Além disso, o menor locante – i.e., posição de menor número – será atribuído, **necessariamente**, ao substituinte que aparecer primeiro na nomenclatura (**Figura 11**).

Figura 11: Nomes comuns e sistemáticos (IUPAC) de cicloalcanos com dois substituintes, mostrando como a alteração na ordem dos substituintes impacta na alteração de enumeração.

Quando há dois ou mais substituintes, a regra de enumeração é a mesma da aplicada para compostos alicíclicos -i.e., a enumeração é aquela que resulta nos menores locantes possíveis.

Referências

BRASÍLIA: SENADO FEDERAL, Coordenação de Edições Técnicas. **Acordo Ortográfico da Língua Portuguesa: atos internacionais e normas correlatas**. 2. ed. [S.l.: s.n.], 2014. P. 100. ISBN 978-85-7018-538-9. Disponível em: https://doi.org/10.100/journal.com/

//www2.senado.leg.br/bdsf/bitstream/handle/id/508145/000997415.pdf>. Citado na p. 5.

CONSTITUTION. IUPAC Compendium of Chemical Terminology, 2019.

DOI: 10.1351/goldbook.C01282. Disponível em:

https://doi.org/10.1351/goldbook.C01282. Citado na p. 4.

CONSTITUTIONAL isomer. **IUPAC Compendium of Chemical Terminology**, 2019. DOI: 10.1351/goldbook.C01285. Disponível em: https://doi.org/10.1351/goldbook.C01285. Citado na p. 4.

ISOMER. **IUPAC Compendium of Chemical Terminology**, 2019. DOI:

10.1351/goldbook.I03289. Disponível em:

https://doi.org/10.1351/goldbook.I03289. Citado na p. 4.