Massless Particles at Null Infinity

Raju Mandal

Supervisor: Prof. Shamik Banerjee

Institute of Physics, Bhubaneswar

January 25, 2022

References:

- S. Banerjee, "Null Infinity and Unitary Representation of The Poincare Group." arXiv:1801.10171[hep-th]
- S. Banerjee, "Symmetries of free massless particles and soft theorems" arXiv:1804.06646v1[hep-th]

Other references:

- Oblak, "From the Lorentz Group to the Celestial Sphere" arXiv:1508.00920v3[math-ph]
- Pasterski, Shao, "A Conformal Basis for Flat Space Amplitude" arXiv:1705.01027v1[hep-th]
- Donnay, Puhm and Strominger, "Conformally Soft Photons and Gravitons" arXiv:1810.05219v2[hep-th]
- S. Weinberg, "Quantum Theory of Fields. Vol1: Foundations"
- Maggiore, "A Modern Introduction to Quantum Field Theory."

Outline:

- Review of Lorentz Group > idea of covering group
- Discussion on Little Group
- Construction of New Basis known as "Conformal Basis" or "Mellin Basis" Pasterski, Shao
- Unitary Representation of Poincare Group via "Method of Induced Representation"
 Wigner
- Quantum Field Theory at Null Infinity
- Some applications: Supertranslation, spacetime relalization etc.

Lorentz Group in (2+1) Dimensions

$SL(2,\mathbb{R})$ is the Double Cover of SO(2,1)

Consider,
$$P = \begin{pmatrix} P^0 \\ P^1 \\ P^2 \end{pmatrix} \longrightarrow P = \begin{pmatrix} P^0 - P^2 & P^1 \\ P^1 & P^0 + P^2 \end{pmatrix}$$

$$\det P = -P^2 = -[-(P^0)^2 + (P^1)^2 + (P^2)^2]$$

- $\eta = \text{diag } (-1, 1, 1)$
- Let $\mathbb V$ be a 3 dimensional vector space of 2×2 real symmetric matrices.
- we can choose a basis : $\{e_0, e_1, e_2\} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$
- since $P \in \mathbb{V} \Longrightarrow P = P^0 e_0 + P^1 e_1 + P^2 e_2$

Lorentz Group in (2+1) Dimensions

• $\underline{SL(2,\mathbb{R})}$ Group: a group of 2×2 real matrices with Det +1. Group element $\Lambda\in SL(2,\mathbb{R})$ has the structure

$$\Lambda = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with $(ad - bc) = 1$; where $a, b, c, d \in \mathbb{R}$

- We can take the representation of $SL(2,\mathbb{R})$ on the vector space $\mathbb{V}.$
- $R(\Lambda)P = \Lambda P \Lambda^T = P'$
- $-\Lambda$ also gives same P'
- Det $P = \text{Det } P' \text{ since Det } \Lambda = +1$
- \bullet components, $P'^{\mu}=R(\Lambda)^{\mu}{}_{\nu}P^{\nu}$, $\mu,\nu=0,1,2$
- $^+$ $^ ^+$ $^-$ induces LT of P vector
- $SO(2,1)^{\uparrow} \cong SL(2,\mathbb{R})/\mathbb{Z}_2$

Action on Null Momenta

- Define, $z = \frac{P^1}{P^0 + P^2}$, where $[-(P^0)^2 + (P^1)^2 + (P^2)^2] = 0$
- under $P \longrightarrow P' = \Lambda P \Lambda^T$; $z \longrightarrow z' = \Lambda z = \frac{az+b}{cz+d}$
- variable z parametrizes the null momenta directions
- to see this, let's take the set of all null vectors of the form $k^\mu=(E,0,E)\longrightarrow z=0$
- make a rotation in 1-2 plane to get the most general form of null vector

$$k^{\mu} \longrightarrow k'^{\mu} = (E, Esin\theta, Ecos\theta)$$

- $z \longrightarrow z' = tan \frac{\theta}{2}$
- z depends only on the direction θ of the null ray.

Standard Rotation and Boost Matrices

•
$$SL(2,\mathbb{R})$$

$$R_{12}(\theta) = -\frac{1}{2} \begin{pmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2} \\ -\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$$

$$B_1(\eta) = {}^+_{-} \begin{pmatrix} \cosh(\frac{\eta}{2}) & -\sinh(\frac{\eta}{2}) \\ -\sinh(\frac{\eta}{2}) & \cosh(\frac{\eta}{2}) \end{pmatrix}$$

$$B_2(\zeta) = ^+_- \begin{pmatrix} e^{\frac{\zeta}{2}} & 0\\ 0 & e^{-\frac{\zeta}{2}} \end{pmatrix}$$

$$R_{12}(\theta)^{\mu}{}_{\nu} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\theta & \sin\theta\\ 0 & -\sin\theta & \cos\theta \end{pmatrix}$$

$$B_1(\eta) = ^+_- \begin{pmatrix} \cosh(\frac{\eta}{2}) & -\sinh(\frac{\eta}{2}) \\ -\sinh(\frac{\eta}{2}) & \cosh(\frac{\eta}{2}) \end{pmatrix} \quad \Lambda_1(\eta)^\mu{}_\nu = \begin{pmatrix} \cosh\eta & -\sinh\eta & 0 \\ -\sinh\eta & \cosh\eta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Lambda_2(\zeta)^{\mu}{}_{\nu} = \begin{pmatrix} \cosh\eta & 0 & -\sinh\eta \\ 0 & 1 & 0 \\ -\sinh\eta & 0 & \cosh\eta \end{pmatrix}$$

Generators and Lie Algebra

• We can easily find the geretaros J_0, K_1 and K_2 . For example,

$$J_0 = -i\frac{d}{d\theta}R_{12}(\theta)|_{\theta=0}$$

• Lie Algebra

$$[J_0, K_1] = iK_2,$$
 $[J_0, K_2] = -iK_1,$ $[K_1, K_2] = -J_0$

Little Group of A Null Momentum Direction

- Little group is a subgroup of the Lorentz group under which a a three vector remains invariant here in (2+1) dimension.
- but here we will consider the little group of null direction instead.
- take a null vector $n^{\mu} = (1,0,1)$
- to find the little group , $\omega^{\mu\nu}n_{\nu}=0$

$$\Rightarrow \omega^{\mu\nu} = -i\alpha \begin{pmatrix} 0 & -i & 0 \\ i & 0 & i \\ 0 & -i & 0 \end{pmatrix} = -i\alpha A^{\mu\nu}, where \ \Lambda = e^{-i\alpha A}$$

$$(A)^{\mu}{}_{\nu} = \begin{pmatrix} 0 & -i & 0 \\ -i & 0 & i \\ 0 & -i & 0 \end{pmatrix} = -(J_0)^{\mu}{}_{\nu} - (K_1)^{\mu}{}_{\nu}$$

Little Group of A Null Momentum Direction

- the little group, D(z=0) of the ref null direction $\{(E,0,E),E>0|z=0\}$ is generated by two elements A and K_2
- where, $[K_2, A] = iA$
- Little group of the general null direction $\{k^\mu=(E,Esin\theta,Ecos\theta),E>0|z=tan\tfrac{\theta}{2}\}\text{, is given by }D(z)=R(z)D(z=0)R(z)^{-1}$

Hilbert Space Representation

- massless single particle quantum state is represented by $|p\rangle$ with $p^2=0$
- standard normalization of momentum states is given by, $\langle p_1|p_2\rangle=(2\pi)^22|\overrightarrow{p_1}|\delta^2(\overrightarrow{p_1}-\overrightarrow{p_2})$
- Unitary representation of arb. Lorentz transformation Λ in Hilbert Space is $U(\Lambda)$ and it acts on this state as, $U(\Lambda) \left| p \right\rangle = \left| \Lambda p \right\rangle$
- for example, if Λ is boost along 2 direction,then $U(\Lambda) \, |E,0,E\rangle = |e^{-\eta}E,0,e^{-\eta}E\rangle \text{, with rapidity } \eta \text{ defined as } tanh\eta = v$
- state $|p\rangle$ is annihilated by the little group generator $A \implies A \, |E,0,E\rangle = 0, E>0$

Change of Basis and Normalization

•
$$|\Delta, z = 0\rangle = \frac{1}{(2\pi)^{\frac{3}{2}}} \int_0^\infty dE \ E^{\Delta - 1} |E, 0, E\rangle ; \quad \Delta \in \mathbb{C}$$

•
$$U(B_2(\eta)) |\Delta, z = 0\rangle = \frac{1}{(2\pi)^{\frac{3}{2}}} \int_0^\infty dE \ E^{\Delta - 1} |e^{-\eta}E, 0, e^{-\eta}E\rangle$$

= $e^{\eta \Delta} |\Delta, z = 0\rangle$

• Define,
$$|\Delta,z\rangle:=\frac{1}{(1+z^2)^\Delta}U(R(z))\,|\Delta,z=0\rangle$$

$$=N_\Delta(z)U(R(z))\,|\Delta,z=0\rangle$$

•
$$|\Delta,z\rangle = \frac{1}{(2\pi)^{\frac{3}{2}}} \frac{1}{(1+z^2)^{\Delta}} \int_0^{\infty} dE \ E^{\Delta-1} \ |E,Esin\theta,Ecos\theta\rangle$$

•
$$\langle \Delta_2, z_2 | \Delta_1, z_1 \rangle = \delta(\lambda_2 - \lambda_1) \delta(z_2 - z_1)$$
, where $\Delta_i = \frac{1}{2} + i\lambda$, $\lambda \in \mathbb{R}$

Action of Arbitrary Lorentz Transformation

- $U(\Lambda) |\Delta, z\rangle = N_{\Delta}U(\Lambda)U(R(z)) |\Delta, z = 0\rangle$ $= N_{\Delta}U(R(\Lambda z))U^{-1}(R(\Lambda z))U(\Lambda)U(R(z)) |\Delta, z = 0\rangle$ $= N_{\Delta}U(R(\Lambda z))W(\Lambda, z) |\Delta, z = 0\rangle$
- where, $W(\Lambda,z)=U^{-1}(R(\Lambda z))U(\Lambda)U(R(z))=U(R^{-1}(\Lambda z)\Lambda R(z))$
- $W(\Lambda,z) |\Delta,z=0\rangle = \frac{1}{(2\pi)^{\frac{3}{2}}} \int_0^\infty dE \ E^{\Delta-1} W(\Lambda,z) |E,0,E\rangle$
- $(R^{-1}(\Lambda z)\Lambda R(z))(1,0,1)$ = $(\frac{(cz+d)^2+(az+b)^2}{1+z^2},0,\frac{(cz+d)^2+(az+b)^2}{1+z^2})$

Action of Arbitrary Lorentz Transformation

$$\begin{array}{l} \bullet \ \, (R^{-1}(\Lambda z)\Lambda R(z))(E,0,E) = B_2(\eta)(E,0,E) \\ \qquad = (e^{-\eta}E,0,e^{-\eta}E),E>0 \\ \text{where, } e^{-\eta} = \frac{(cz+d)^2+(az+b)^2}{1+z^2} = (cz+d)^2\frac{1+(\Lambda z)^2}{1+z^2} \\ \text{and } \Lambda z = \frac{az+b}{cz+d} \end{array}$$

- $U(\Lambda) |\Delta, z\rangle$ = $N_{\Delta}U(R(\Lambda z))U^{-1}(R(\Lambda z))U(\Lambda)U(R(z)) |\Delta, z = 0\rangle$ = $\frac{1}{(cz+d)^{2\Delta}} |\Delta, \Lambda z\rangle, \quad \Lambda \in SL(2, \mathbb{R})$
- $\{|\Delta,z\rangle\}$ states with fixed Δ give the representation of Lorentz group.

$$\Rightarrow U(\Lambda_2)U(\Lambda_1) = U(\Lambda_2\Lambda_1) \\ \text{Unitarity: } \left(U(\Lambda)\left|\Delta',z'\right\rangle,U(\Lambda)\left|\Delta,z\right\rangle\right) = \left(\left|\Delta',z'\right\rangle,\left|\Delta,z\right\rangle\right)$$

⇒ "Unitary Principal Continuous Series Representation."

Representation on Wave Functions

we can write the one-partice state for massless particle as,

$$|\Psi\rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d\lambda \; dz \; |\Delta, z\rangle \langle \Delta, z | \Psi \rangle$$

• inner product between two states,

$$\langle \Phi | \Psi \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d\lambda \, dz \, \Phi^{\star}(\Delta, z) \Psi(\Delta, z)$$

• action of an arbitrary Lorentz transformation Λ on the wave function \Rightarrow

$$(U(\Lambda^{-1})\Psi)(\Delta,z)=rac{1}{(cz+d)^{2\Delta^\star}}\Psiig(\Delta,rac{az+b}{cz+d}ig)$$
, where $\Delta^\star=rac{1}{2}-i\lambda$

Lorentz Group in (3+1) Dimensions

- consider a four momentum $P^{\mu}=\begin{pmatrix}P^0\\P^1\\P^2\\P^3\end{pmatrix}$
- we can associate a hermitian matrix with this four momentum P^{μ} as,

$$P = \begin{pmatrix} P^0 - P^3 & P^1 + i P^2 \\ P^1 - i P^2 & P^0 + P^3 \end{pmatrix}, \det\! P = -P^2$$

- In (3+1) dimension $SL(2,\mathbb{C})$ is double cover of SO(3,1) and the group isomorphism is $SO(3,1)^\uparrow\cong SL(2,\mathbb{C})/\mathbb{Z}_2$
- $SL(2,\mathbb{C})$ acts on P as,

$$P \longrightarrow P' = \Lambda P \Lambda^{\dagger}, \Lambda = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 with $(ad - bc) = 1$

Lorentz Group in (3+1) Dimension

- In four dimesnions the space spanned by the null directions is a two-sphere. $(P^1)^2 + (P^2)^2 + (P^3)^2 = (P^0)^2 = const.$
- Define stereographic coordinate on two-sphere as, $z=rac{P^1+iP^2}{P^0+P^3}$
- Under Lorentz transformation, $z o z' = rac{P^1 + i P^2}{P^0 + P^3} = rac{az + b}{cz + d}$
- In spherical polar coordinate we can parametrize a null vector as, $P^{\mu} = \begin{pmatrix} E, & Esin\theta cos\phi, & Esin\theta sin\phi, & Ecos\theta \end{pmatrix}$
- $\bullet \Rightarrow z = tan\frac{\theta}{2}e^{i\phi}$

Little Group of a Null Momentum Direction

- consider standard null direction : $\{(E,0,0,E), E>0|Z=0\}$
- **little group** of this null direction is generated by (J_3, K_3, A, B) where $A = J_2 K_1$ and $B = -J_1 K_2$
- Commutators:

$$[A, B] = 0, [J_3, A] = iB, [J_3, B] = -iA, [J_3, K_3] = 0, [K_3, A] = iA, [K_3, B] = iB$$

New Basis

- let's define the new state as, $|\lambda,\sigma,z=0,\bar{z}=0\rangle=\frac{1}{\sqrt{8\pi^4}}\int_0^\infty dE\; E^{i\lambda}\,|E,0,0,E;\sigma\rangle,\lambda\in\mathbb{R}$ where σ is the helicity.
- std. normalization of the momentum states is, $\langle p_1, \sigma_1 | p_2, \sigma_2 \rangle = (2\pi)^3 2 |\overrightarrow{p_1}| \delta^3(\overrightarrow{p_1} \overrightarrow{p_2}) \delta_{\sigma_1, \sigma_2}$
- Now let's define, $\begin{aligned} |\lambda,\sigma,z,\bar{z}\rangle &= (\frac{1}{1+z\bar{z}})^{1+i\lambda}U(R(z,\bar{z}))\,|\lambda,\sigma,z=0,\bar{z}=0\rangle\\ &= N(z,\bar{z})U(R(z,\bar{z}))\,|\lambda,\sigma,z=0,\bar{z}=0\rangle \end{aligned}$ where, $U(R(z,\bar{z}))=e^{-i\phi J_3}e^{-i\theta J_2}e^{i\phi J_{J_3}}, z=tan\frac{\theta}{9}e^{i\phi}$
- $\langle \lambda_1, \sigma_1, z_1, \bar{z}_1 | \lambda_2, \sigma_2, z_2, \bar{z}_2 \rangle = \delta(\lambda_1 \lambda_2) \delta^2(z_1 z_2) \delta_{\sigma_1, \sigma_2}$

Action of the Lorentz Group

•
$$U(\Lambda) |\lambda, \sigma, z, \bar{z}\rangle = N(z, \bar{z})U(\Lambda)U(R(z, \bar{z})) |\lambda, \sigma, z = 0, \bar{z} = 0\rangle$$

= $N(z, \bar{z})U(R(\Lambda z, \Lambda \bar{z}))U(R^{-1}(\Lambda z, \Lambda \bar{z})\Lambda R(z, \bar{z})) |\lambda, \sigma, z = 0, \bar{z} = 0\rangle$
= $N(z, \bar{z})U(R(\Lambda z, \Lambda \bar{z}))U(W(\Lambda, z, \bar{z})) |\lambda, \sigma, z = 0, \bar{z} = 0\rangle$

- $W(\Lambda,z,\bar{z})$ belongs to the little group of the std. null ditection $\{(E,0,0,E)|z=0\}.$
- $\begin{array}{l} \bullet \ W(\Lambda,z,\bar{z}) = \begin{pmatrix} e^{\frac{\alpha}{2}} & 0 \\ 0 & e^{-\frac{\alpha}{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\beta & 1 \end{pmatrix} = D(\alpha)S(\beta) \\ \text{wehre, } e^{\alpha} = \frac{1+|z|^2}{1+|\Lambda z|^2} \frac{1}{(cz+d)^2} \end{array}$

Now we can easily check that,

$$\begin{array}{l} U(D(\alpha))=e^{\alpha L_0+\bar{\alpha}\bar{L}_0}\\ D(\alpha)z=e^{\alpha}z, \quad \text{where } L_0=\frac{iK_3-J_3}{2}, \bar{L}_0=-L_0^{\dagger} \end{array}$$

similarly,

$$U(S(\beta)) = e^{\beta L_1 + \bar{\beta}\bar{L}_1}$$

$$S(\beta)z = \frac{z}{1-\beta z}$$
, where $L_1 = \frac{iK_1 - J_1}{2} + i\frac{iK_2 - J_2}{2}$, $\bar{L}_1 = -L_1^{\dagger}$

• We can also write the generator of the translation in z.

$$U(T(\gamma)) = e^{\gamma L_{-1} + \bar{\gamma}\bar{L}_{-1}}$$

$$T(\gamma)z = z + \gamma$$
, $L_{-1} = \frac{J_1 - iK_1}{2} - i\frac{J_2 - iK_2}{2}$, $\bar{L}_{-1} = -L_{-1}^{\dagger}$

• An important point to notice, we can write

$$L_1 = \frac{1}{2}(B - iA), \bar{L}_1 = -\frac{1}{2}(B + iA)$$
 with

$$A |\lambda, \sigma, z = 0, \bar{z} = 0\rangle = B |\lambda, \sigma, z = 0, \bar{z} = 0\rangle = 0$$

Lie ALgebra

The generators above obey the following commutation relations:

•
$$[L_m, L_n] = (m-n)L_{m+n}, [\bar{L}_m, \bar{L}_n] = (m-n)\bar{L}_{m+n},$$

 $[L_m, \bar{L}_n] = 0$

$$ullet$$
 with, $L_n^\dagger=-ar{L}_n,ar{L}_n^\dagger=-L_n,n=-1,0,1$

With all these, we can now get,

$$\begin{split} U(\Lambda) & \left| \lambda, \sigma, z, \bar{z} \right\rangle = N(z, \bar{z}) U(R(\Lambda z, \Lambda \bar{z})) U(W(\Lambda, z, \bar{z})) \left| \lambda, \sigma, 0, 0 \right\rangle \\ & = N(z, \bar{z}) U(R(\Lambda z, \Lambda \bar{z})) U(D(\alpha)) U(S(\beta)) \left| \lambda, \sigma, 0, 0 \right\rangle \\ & = N(z, \bar{z}) U(R(\Lambda z, \Lambda \bar{z})) U(D(\alpha)) \left| \lambda, \sigma, 0, 0 \right\rangle \\ & = \frac{1}{(cz+d)^{2h}} \frac{1}{(\bar{c}\bar{z}+\bar{d})^{2h}} \left| \lambda, \sigma, \Lambda z, \Lambda \bar{z} \right\rangle \end{split}$$

where,
$$h=\frac{\Delta-\sigma}{2}=\frac{1+i\lambda-\sigma}{2}, \bar{h}=\frac{\Delta+\sigma}{2}=\frac{1+i\lambda+\sigma}{2}$$

- $:: U(\Lambda) |h, \bar{h}, z, \bar{z}\rangle = \frac{1}{(cz+d)^{2h}} \frac{1}{(\bar{c}\bar{z}+\bar{d})^{2h}} |h, \bar{h}, \Lambda z, \Lambda \bar{z}\rangle$ $= \left(\frac{d\Lambda z}{dz}\right)^h \left(\frac{d\Lambda \bar{z}}{d\bar{z}}\right)^{\bar{h}} |h, \bar{h}, \Lambda z, \Lambda \bar{z}\rangle$
- Unitarity, $(U(\Lambda) | h', \bar{h'}, z', \bar{z'}\rangle, U(\Lambda) | h, \bar{h}, z, \bar{z}\rangle)$ $= (|h', \bar{h'}, z', \bar{z'}\rangle, |h, \bar{h}, z, \bar{z}\rangle)$

Action of Spacetime Translation Operators

- $P^\mu=(P^0=H,P^1,P^2,P^3)$ Under Lorentz transformation, $U(\Lambda)^{-1}P^\mu U(\Lambda)=\Lambda^\mu{}_\nu P^\nu$
- Define the time dependent state as, $\begin{array}{l} |h,\bar{h},u,z,\bar{z}\rangle=e^{iHu}\,|h,\bar{h},z,\bar{z}\rangle\\ &=(\frac{1}{1+|z|})^{1+i\lambda}e^{iHu}U(R(z,\bar{z}))\,|h,\bar{h},0,0\rangle \end{array}$
- Under Lorentz transformation,

$$\begin{array}{l} U(\Lambda)\left|h,h,u,z,\bar{z}\right\rangle = \\ \frac{1}{(cz+d)^{2h}}\frac{1}{(\bar{c}\bar{z}+\bar{d})^{2\bar{h}}}\left|h,\bar{h},\frac{u(1+z\bar{z})}{|az+b|^2+|cz+d|^2},\frac{az+b}{cz+d},\frac{\bar{a}\bar{z}+\bar{b}}{\bar{c}\bar{z}+\bar{d}}\right\rangle \end{array}$$

• Under spacetime translation, $e^{-il\cdot P}\left|h,\bar{h},u,z,\bar{z}\right\rangle = \left|h,\bar{h},u+f(z,\bar{z},l),z,\bar{z}\right\rangle$ where, $f(z,\bar{z},l) = \frac{(l^0-l^3)-(l^1-il^2)z-(l^1+il^2)\bar{z}+(l^0+l^3)z\bar{z}}{1+z\bar{z}}$

Null Infinity

•
$$ds^2 = -dt^2 + dx^2 + dy^2 + dz^2$$

= $-du^2 - 2dudr + r^2(d\theta^2 + sin^2\theta d\phi^2)$
= $-du^2 - 2dudr + r^2d\Omega_2^2$ where $u = (t - r)$

• In (u, z, \bar{z}) coordinates,

$$ds^{2} = -du^{2} - 2dudr + r^{2} \frac{4dzd\bar{z}}{(1+z\bar{z})^{2}}$$

Where,
$$z = \frac{x^1 + ix^2}{r + x^3} = e^{i\phi} \tan \frac{\theta}{2}$$

 \bullet We can go to future null-infinity by taking $r \longrightarrow \infty$ at fixed (u,z,\bar{z})

$$d\tilde{s}^2 = d\Omega_2^2$$

[arXiv:1602.02653]

Null Infinity

Comments

• Poincare group action on the coordinate (u,z,\bar{z}) is,

$$\Lambda(u,z,\bar{z}) = \left(\frac{u(1+z\bar{z})}{|az+b|^2 + |cz+d|^2}, \frac{az+b}{cz+d}, \frac{\bar{a}\bar{z}+\bar{b}}{\bar{c}\bar{z}+\bar{d}}\right) \text{ and}$$

$$T(l)(u,z,\bar{z}) = (u+f(z,\bar{z},l),z,\bar{z})$$

- The action of Poincare group on the (u,z,\bar{z}) space is same as the action of the Poincare group at null-infinity in Minkowski space if we consider (u,z,\bar{z}) with the Bondi coordinates.
- In this basis, massless particles can be thought of as living at null-infinity.

Creation and Annhilation Fields

• Introduce Heisenberg-Picture creation operator, $A_{\lambda,\sigma}^{\dagger}(u,z,\bar{z})$ corresponding to the states $|\lambda,\sigma,u,z,\bar{z}\rangle$ such that,

$$\begin{split} &U(\Lambda)A_{\lambda,\sigma}^{\dagger}(u,z,\bar{z})U(\Lambda)^{-1}\\ &=\frac{1}{(cz+d)^{2h}}\frac{1}{(\bar{c}\bar{z}+\bar{d})^{2\bar{h}}}A_{\lambda,\sigma}^{\dagger}\left(\frac{u(1+z\bar{z})}{|az+b|^2+|cz+d|^2},\frac{az+b}{cz+\bar{d}},\frac{\bar{a}\bar{z}+\bar{b}}{\bar{c}\bar{z}+\bar{d}}\right)\\ &\text{and}\\ &e^{-il\cdot P}A_{\lambda,\sigma}^{\dagger}e^{il\cdot P}=A_{\lambda,\sigma}^{\dagger}(u+f(z,\bar{z},l),z,\bar{z}) \end{split}$$

Action of Lorentz group on annihilation field is similar.

Creation and Annhilation Fields and Commutators

 We can write down these creation and annhilation operators in terms of standard creation and annhilation operator as,

$$\begin{array}{l} A_{\lambda,\sigma}^{\dagger}(u,z,\bar{z})=\frac{1}{\sqrt{8\pi^4}}(\frac{1}{1+z\bar{z}})^{1+i\lambda}\int_{0}^{\infty}dEE^{i\lambda}e^{iEu}a^{\dagger}(p,\sigma)\\ \text{and}\\ A_{\lambda,\sigma}(u,z,\bar{z})=\frac{1}{\sqrt{8\pi^4}}(\frac{1}{1+z\bar{z}})^{1-i\lambda}\int_{0}^{\infty}dEE^{-i\lambda}e^{-iEu}a(p,\sigma) \end{array}$$

$$\begin{split} &\bullet \text{ The commutator is given by} \\ &[A_{\lambda,\sigma}(u,z,\bar{z}),A^{\dagger}_{\lambda,\sigma}(u',z',\bar{z}')] \\ &= \langle \lambda,\sigma,u,z,\bar{z}|\lambda',\sigma',u',z',\bar{z}'\rangle \\ &= \frac{\delta_{\sigma\sigma'}}{2\pi} \frac{\Gamma(i(\lambda'-\lambda))}{(1+z\bar{z})^{i(\lambda'-\lambda)}} \frac{\delta^2(z'-z)}{(-i(u'-u+i0_+))^{i(\lambda'-\lambda)}} \end{split}$$

Comments Again

- $A_{\lambda,\sigma}(u,z,\bar{z})$ and $A_{\lambda,\sigma}^{\dagger}(u,z,\bar{z})$ can be interpreted as the positive and negative frequency annihilation and creation fields living on null infinity of Minkowski space.
- we started with the coordinates (z, \bar{z}) in the momentum space but once we take the dynamics into account, (z, \bar{z}) with the time-like coordinate u transmutes into the null-infinity.
- Notice that, we did not arrive at the quantum theory on null-infinity by quantizing a classical theory on null-infinity.

Primary of $ISL(2,\mathbb{C})$

• We define a primary operator of $ISL(2,\mathbb{C})$ any Heisenberg picture operator $\phi_{h,\bar{h}}(u,z,\bar{z})$ tarnsforming as,

$$\begin{split} &U(\Lambda)\phi_{h,\bar{h}}(u,z,\bar{z})U(\Lambda)^{-1}\\ &=\frac{1}{(cz+d)^{2h}}\frac{1}{(\bar{c}\bar{z}+\bar{d})^{2h}}\phi_{h,\bar{h}}\left(\frac{u(1+z\bar{z})}{|az+b|^2+|cz+d|^2},\frac{az+b}{cz+d},\frac{\bar{a}\bar{z}+\bar{b}}{\bar{c}\bar{z}+\bar{d}}\right)\\ &\text{and} \end{split}$$

$$e^{-il\cdot P}\phi_{h,\bar{h}}(u,z,\bar{z})e^{il\cdot P} = \phi_{h,\bar{h}}(u+f(z,\bar{z},l),z,\bar{z})$$

Symmetries of Massless Particles

- Supertranslation:
- · Hamiltonian in standard momentum basis is given by,

$$H = \int d\mu(p) |\overrightarrow{p}| a^{\dagger}(p,\sigma) a(p,\sigma)$$

where, the Lorentz invariant measure is, $d^{3}\overrightarrow{d} \qquad c^{3}\overrightarrow{d} \qquad \overrightarrow{d}$

$$d\mu(p) = \frac{d^3 \overrightarrow{p}}{(2\pi)^3 2|\overrightarrow{p}_1|} \delta^3(\overrightarrow{p}_1 - \overrightarrow{p}_2)$$

ullet In terms of z a null vector p can be parametrized as ,

$$p=E(1,rac{z+ar{z}}{1+zar{z}},rac{-i(z-ar{z})}{1+zar{z}},rac{1-zar{z}}{1+zar{z}})$$
 An alternative parametrization is given as, $p=\omega(1+zar{z},z+ar{z},-i(z-ar{z}),1-zar{z})$

Supertranslation

• with this parametrization, we can write,

$$\begin{split} H &= \int d\mu(p) E a^\dagger(E,z,\bar{z},\sigma) a(E,z,\bar{z},\sigma) \\ d\mu(p) &= \frac{E^2 dE}{(2\pi)^3 2E} \frac{4d^2z}{(1+z\bar{z})^2} \text{,where } d^2z = dRe(z) dIm(z) \end{split}$$

• Let's now consider the charge defined as, $T_f = \int d\mu(p) Ef(z,\bar{z}) a^\dagger(E,z,\bar{z},\sigma) a(E,z,\bar{z},\sigma) = T_f^\dagger$ Where $f(z,\bar{z})$ is an arbitrary real smooth function on the 2-sphere.

Supertranslation

- ullet This operator T_f has the following properties,
 - (i) $[H, T_f] = 0$ \Rightarrow charges are conserved for any function f.
 - $\text{(ii)}[T_f,T_{f'}]=0 \text{ for arbitrary } f \text{ and } f'$

$$\begin{aligned} (\mathrm{iii})[T_f,a^\dagger(E,z,\bar{z},\sigma)] &= Ef(z,\bar{z})a^\dagger(E,z,\bar{z},\sigma) \text{ and} \\ [T_f,a(E,z,\bar{z},\sigma)] &= -Ef(z,\bar{z})a(E,z,\bar{z},\sigma) \end{aligned}$$

• We can see the effect of a unitary transformation $U_f=e^{-iT_f}$ on $A_{\lambda,\sigma}^{\dagger}(u,z,\bar{z})$ as

$$\begin{split} &e^{iT_f}A^{\dagger}_{\lambda,\sigma}(E,z,\bar{z},\sigma)e^{-iT_f}\\ &=\frac{1}{\sqrt{8\pi^4}}(\frac{1}{1+z\bar{z}})^{1-i\lambda}\int_0^{\infty}dEE^{i\lambda}e^{iE(u+f(z,\bar{z}))}a^{\dagger}(p,\sigma)\\ &=A^{\dagger}_{\lambda,\sigma}(u+f(z,\bar{z}),z,\bar{z}) \qquad \text{(Supertranslation)} \end{split}$$

• infinitesimal transformation, $f(z,\bar{z})\frac{\partial A_{\lambda,\sigma}}{\partial u}=i[T_f,A_{\lambda,\sigma}]$

Important points to notice

• If we take $f(z, \bar{z})$ to be of the form,

$$f(z,\bar{z},l) = \frac{(l^0 - l^3) - (l^1 - il^2)z - (l^1 + il^2)\bar{z} + (l^0 + l^3)z\bar{z}}{1 + z\bar{z}}$$

we get back global Minkowski spacetime translation.

- If we relax this condition then we get **Supertranslation** in the (u, z, \bar{z}) space.
- We can get the following result easily, $U(\Lambda)^{-1}T_fU(\Lambda)=T_{f'},\ f'(z,\bar{z})=\frac{|az+b|^2+|cz+d|^2}{1+z\bar{z}}f(\Lambda z,\Lambda\bar{z})$

Global Translation Generators

• We can write the global translation generators in terms of T_f , $P^{\mu} = \int d\mu(p) p^{\mu} a^{\dagger}(E,z,\bar{z},\sigma) a(E,z,\bar{z},\sigma)$

so we get,
$$P^0 = H = T_f, f = 1$$

$$P^1 = T_f, f = \frac{z + \bar{z}}{1 + z\bar{z}}$$

$$P^2 = T_f, f = \frac{-i(z - \bar{z})}{1 + z\bar{z}}$$

$$P^2 = T_f, f = \frac{1 - z\bar{z}}{1 + z\bar{z}}$$

we can write down the following linear combinations,

$$P^{0} + P^{3} = T_{00}, f = \frac{2z^{0}\bar{z}^{0}}{1+z\bar{z}}$$

$$P^{0} - P^{3} = T_{11}, f = \frac{2z^{1}\bar{z}^{1}}{1+z\bar{z}}$$

$$P^{1} + iP^{2} = T_{10}, f = \frac{2z^{1}\bar{z}^{0}}{1+z\bar{z}}$$

$$P^{0} - iP^{2} = T_{01}, f = \frac{2z^{0}\bar{z}^{1}}{1+z\bar{z}}$$

Commutators again

• Define supertranslation generators T_{pq} corresponds to $F_{pq}(z,\bar{z})=2z^p\bar{z}^q$, $T_{pq}=\int d\mu(p) \frac{E}{1+z\bar{z}} 2z^p\bar{z}^q a^\dagger(E,z,\bar{z},\sigma) a(E,z,\bar{z},\sigma)$

• Lorentz generators and T_{pq} satisfy the following commutation relations,

$$[L_n, T_{pq}] = (\frac{n+1}{2} - p)T_{p+n,q} \quad [\bar{L}_n, T_{pq}] = (\frac{n+1}{2} - p)T_{p,q+n}$$
$$[L_m, L_n] = (m-n)L_{m+n} \quad [\bar{L}_m, \bar{L}_n] = (m-n)\bar{L}_{m+n}$$
$$[T_{pq}, T_{p'q'}] = 0 \quad [L_m, \bar{L}_n] = 0$$

Space-time Realization

- Consider a massless scalar field in Minkowski space, $\phi(x) = \int d\mu(p) (e^{ip\cdot x} a(p) + e^{-ip\cdot x} a^{\dagger}(p))$
- unitry operator e^{iT_F} acts on this field as, $\phi_f(x) = e^{iT_f}\phi(x)e^{-iT_f} \\ = \int d\mu(p)(e^{ip\cdot x}e^{iE_pf(z,\bar{z})}a(p) + e^{-ip\cdot x}e^{-iE_pf(z,\bar{z})}a^\dagger(p))$
- If we choose $f(z,\bar{z})$ of the the form,

$$f(z,\bar{z},l) = \frac{(l^0 - l^3) - (l^1 - il^2)z - (l^1 + il^2)\bar{z} + (l^0 + l^3)z\bar{z}}{1 + z\bar{z}}$$

- then, $\phi_f(x^\mu) = \phi(x^\mu + l^\mu)$
 - So, it is a space-time translation by four-vector l^{μ} .
- But there are many functions $f(z, \bar{z})$ for which there is no such simple geometric interpretation in terms of spacetime.

Thank you for listening!!