Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat*BAREM DE EVALUARE ȘI DE NOTARE

Test 8

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(\log_2 63 - \log_2 7) \cdot \frac{1}{\log_2 3} = \log_2 \frac{63}{7} \cdot \frac{1}{\log_2 3} =$	2p
	$= \log_2 3^2 \cdot \frac{1}{\log_2 3} = 2\log_2 3 \cdot \frac{1}{\log_2 3} = 2$	3 p
2.	$\Delta = m^2 + 4m$, deci ecuația nu are soluții reale $\Leftrightarrow m^2 + 4m < 0$	3 p
	$m \in (-4,0)$	2 p
3.	$3^{x^2-20} = 3^{-4} \Leftrightarrow x^2 = 16$	3p
	x = -4 sau $x = 4$	2 p
4.	Mulțimea numerelor naturale de o cifră are 10 elemente, deci sunt 10 cazuri posibile	2p
	$n! \le n(n-1) \Rightarrow n=2$ sau $n=3$, deci sunt 2 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{2}{10} = \frac{1}{5}$	1p
5.	$\overrightarrow{AB} = 4\overrightarrow{i} + 4\overrightarrow{j}$ și $\overrightarrow{OC} = a\overrightarrow{i} + b\overrightarrow{j}$, unde $C(a,b)$, deci $a\overrightarrow{i} + b\overrightarrow{j} = 4\overrightarrow{i} + 4\overrightarrow{j}$	3p
	a = 4, b = 4	2 p
6.	Cum triunghiul este dreptunghic, $2a+1>a-1$ și $2a+1>2a \Rightarrow (2a+1)^2=(2a)^2+(a-1)^2$, deci	2p
	$a^2 - 6a = 0$	
	Cum a este număr real, $a > 1$, obținem $a = 6$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(e) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & e & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(e)) = \begin{vmatrix} 1 & 0 & 1 \\ 0 & e & 0 \\ 0 & 0 & 1 \end{vmatrix} = $ $= e + 0 + 0 - 0 - 0 - 0 = e$	2p 3p
b)	$A(a) \cdot A(a) = \begin{pmatrix} 1 & 0 & 2\ln a \\ 0 & a^2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(a) \cdot A(a)) = a^2, \text{ pentru orice } a \in (0, +\infty)$	3p
	$\det\left(A\left(a^{2}\right)\right) = \begin{vmatrix} 1 & 0 & \ln a^{2} \\ 0 & a^{2} & 0 \\ 0 & 0 & 1 \end{vmatrix} = a^{2} = \det\left(A\left(a\right) \cdot A\left(a\right)\right), \text{ pentru orice } a \in \left(0, +\infty\right)$	2 p

c)	$A(a) + A(b) = \begin{pmatrix} 2 & 0 & \ln(ab) \\ 0 & a+b & 0 \\ 0 & 0 & 2 \end{pmatrix}, A(a) \cdot A(b) = \begin{pmatrix} 1 & 0 & \ln(ab) \\ 0 & ab & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ pentru orice } a, b \in (0, +\infty)$	3p
	$\begin{pmatrix} 2 & 0 & \ln(ab) \\ 0 & a+b & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 2\ln(ab) \\ 0 & 2ab & 0 \\ 0 & 0 & 2 \end{pmatrix} \Leftrightarrow ab=1 \text{ si } a+b=2 \text{ , de unde obţinem } a=1 \text{ si } b=1$	2p
2.a)	$\sqrt{2} \circ 1 = 3 \cdot \sqrt{2} \cdot 1 - 3\sqrt{2} \left(\sqrt{2} + 1\right) + 6 + \sqrt{2} =$	2p
	$=3\sqrt{2}-6-3\sqrt{2}+6+\sqrt{2}=\sqrt{2}$	3 p
b)	$x \circ y = 3xy - 3\sqrt{2}x - 3\sqrt{2}y + 6 + \sqrt{2} =$	2p
	$=3x\left(y-\sqrt{2}\right)-3\sqrt{2}\left(y-\sqrt{2}\right)+\sqrt{2}=3\left(x-\sqrt{2}\right)\left(y-\sqrt{2}\right)+\sqrt{2}, \text{ pentru orice numere reale } x \text{ și } y$	3 p
c)	$x \circ \sqrt{2} = \sqrt{2}$, $\sqrt{2} \circ y = \sqrt{2}$, unde x și y sunt numere reale	2p
	$\frac{\sqrt{4}}{\sqrt{1}} \circ \frac{\sqrt{5}}{\sqrt{2}} \circ \frac{\sqrt{6}}{\sqrt{3}} \circ \dots \circ \frac{\sqrt{2020}}{\sqrt{2017}} = \left(\left(\frac{\sqrt{4}}{\sqrt{1}} \circ \frac{\sqrt{5}}{\sqrt{2}} \right) \circ \sqrt{2} \right) \circ \frac{\sqrt{7}}{\sqrt{4}} \circ \dots \circ \frac{\sqrt{2020}}{\sqrt{2017}} = \sqrt{2} \circ \left(\frac{\sqrt{7}}{\sqrt{4}} \circ \dots \circ \frac{\sqrt{2020}}{\sqrt{2017}} \right) = \sqrt{2}$	3 p

SUBIECTUL al III-lea (30 de puncte)

	· · · · · · · · · · · · · · · · · · ·	
1.a)	$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} (2^x + 3^x - 4) = 1, \lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} \frac{x^2 - x + 1}{x^2} = 1 \text{si} f(1) = 1, \text{deci}$ $\lim_{x \to 1} f(x) = f(1), \text{ de unde obținem că } f \text{ este continuă în } x = 1$	3 p
	Cum f este continuă pe $(-\infty,1)$ și pe $(1,+\infty)$, obținem că f este continuă pe $\mathbb R$	2p
b)	$x \in (-\infty, 1) \Rightarrow f(x) = 2^x + 3^x - 4$, deci $f'(x) = 2^x \ln 2 + 3^x \ln 3$	3p
	$f'(x) > 0$, pentru orice $x \in (-\infty,1)$, deci funcția f este crescătoare pe $(-\infty,1)$	2p
c)	f este crescătoare pe $(-\infty,1)$ și continuă în $x=1$, deci $f(x) \le f(1)$ și, cum $f(1)=1$, obținem $f(x) \le 1$, pentru orice $x \in (-\infty,1)$	2p
	$x \in (1,+\infty) \Rightarrow f'(x) = \frac{x-2}{x^3}$, deci $f'(x) < 0$, pentru orice $x \in (1,2)$ și $f'(x) > 0$, pentru orice $x \in (2,+\infty)$ și, cum f este continuă, $f(1) = 1$ și $\lim_{x \to +\infty} f(x) = 1$, obținem $f(x) \le 1$, pentru orice $x \in [1,+\infty)$	3 p
2.a)	$\int_{0}^{1} (x+1)(x+3) f(x) dx = \int_{0}^{1} (2x+4) dx = (x^{2}+4x) \Big _{0}^{1} = $ $= 1+4-0=5$	3p 2p
b)	$\int_{0}^{2} f(x)dx = \int_{0}^{2} \frac{2x+4}{x^2+4x+3} dx = \ln(x^2+4x+3) \Big _{0}^{2} = \ln 15 - \ln 3 = \ln 5$	2p 3p
c)	$F'(x) = f(x), \ x \in (-1, +\infty), \ \text{deci} \ F''(x) = \frac{-2(x^2 + 4x + 5)}{(x^2 + 4x + 3)^2}, \ x \in (-1, +\infty)$	3p
	$F''(x) < 0$, pentru orice $x \in (-1, +\infty)$, deci orice primitivă F a funcției f este concavă	2p