# Generative Adversarial Networks

Supervisor: Abdul QAYYUM

Presenters: Cheng CHEN, Muhammad Arsalan KHAWAJA, Mahmoud Badran.

# Contents

- ☐ Introduction
- □ GAN's Exploration
- Demonstration / Implementation
- Conclusion
- Summary

# Introduction



# Introduction: basic principles



### Introduction: types

- Deep Convolutional GANs (DCGANs)
- ☐ Conditional GANs (cGANs)
- StackGAN
- InfoGANs
- Wasserstein GANs(WGAN)
- Disco GANS
- 🖵 etc...



# Introduction: applications

Predicting the next frame in a video:



Increasing Resolution of an image:



Text-to-Image Generation



Image to Image Translation:

# Lets Explore GAN's

#### Generative Model

- How to make it generate different samples each time it is run?
  - o input to model is noise
- Generative model as a neural network
  - $\circ$  computes  $x = G(z|\theta)$
  - differentiable
  - does not have to be invertible
  - $\circ$  z typically has very high dimensionality (higher than x)



#### Discriminative Model

- Think of it as a critic
  - A good critic can tell real from fake
- Discriminative model is a neural net
- It is differentiable
- It computes D(x), with value 1 if real, 0 if fake



# Training Methodology: Basic Concept

- G tries to fool D
- D tries not to be fooled
- Models are trained simultaneously
- As G gets better, D has a more challenging task
- As D gets better, G has a more challenging task
- Ultimately, we don't care about the D
- Its role is to force G to work harder



#### Loss Function

- GAN can have two loss functions: one for generator training and one for discriminator training.
- In the paper that introduced GANs, the generator tries to minimize the function while the discriminator tries to maximize it, thats why the loss function is called **Minimax**

#### Loss Function for Discriminator

- Loss function for D
  - maximize the likelihood that model says 'real' to samples from the world and 'fake' to generated samples

$$\mathcal{L}_D = -\frac{1}{2} \mathbb{E}_{x \sim \text{world}} \ln D(x) - \frac{1}{2} \mathbb{E}_z \ln (1 - D(G(z)))$$

#### Loss Function for Generator

- What should the loss function be for G?
- $\mathcal{L}_{G} = -\mathcal{L}_{D}$
- But because first term doesn't matter for G

$$\mathcal{L}_D = \frac{1}{2} \mathbb{E}_z \ln \left( 1 - D(G(z)) \right)$$

# Training

Because a GAN contains two separately trained networks, its training algorithm must address two complications:

- GANs must juggle two different kinds of training (generator and discriminator).
- GAN convergence is hard to identify.

# Alternating Training

GAN training proceeds in alternating periods:

- The discriminator trains for one or more epochs.
- The generator trains for one or more epochs.
- Repeat steps 1 and 2 to continue to train the generator and discriminator networks.

# Demonstration / Implementation of GAN

# G Architecture

| Layer (type)                 | Output | Shape        | Param # |
|------------------------------|--------|--------------|---------|
| dense (Dense)                | (None, | 6272)        | 633472  |
| leaky_re_lu (LeakyReLU)      | (None, | 6272)        | 0       |
| reshape (Reshape)            | (None, | 7, 7, 128)   | 0       |
| conv2d_transpose (Conv2DTran | (None, | 14, 14, 128) | 262272  |
| leaky_re_lu_1 (LeakyReLU)    | (None, | 14, 14, 128) | 0       |
| conv2d_transpose_1 (Conv2DTr | (None, | 28, 28, 128) | 262272  |
| leaky_re_lu_2 (LeakyReLU)    | (None, | 28, 28, 128) | 0       |
| conv2d (Conv2D)              | (None, | 28, 28, 1)   | 6273    |

Total params: 1,164,289 Trainable params: 1,164,289 Non-trainable params: 0

# D Architecture

| Model: "sequential"                                                         |                    |         |
|-----------------------------------------------------------------------------|--------------------|---------|
| Layer (type)                                                                | Output Shape       | Param # |
| conv2d (Conv2D)                                                             | (None, 14, 14, 64) | 640     |
| leaky_re_lu (LeakyReLU)                                                     | (None, 14, 14, 64) | 0       |
| dropout (Dropout)                                                           | (None, 14, 14, 64) | 0       |
| conv2d_1 (Conv2D)                                                           | (None, 7, 7, 64)   | 36928   |
| leaky_re_lu_1 (LeakyReLU)                                                   | (None, 7, 7, 64)   | 0       |
| dropout_1 (Dropout)                                                         | (None, 7, 7, 64)   | 0       |
| flatten (Flatten)                                                           | (None, 3136)       | 0       |
| dense (Dense)                                                               | (None, 1)          | 3137    |
| Total params: 40,705<br>Trainable params: 40,705<br>Non-trainable params: 0 |                    |         |

# Loss



# Generated images (MNIST)





#### Conclusion

- Mode collapse: the generator produces limited varieties of samples,
- ☐ Diminished gradient: the discriminator gets too successful that the gradients vanish and the generator learns nothing,
- Non-convergence: the model parameters oscillate, destabilize and never converge,

#### Conclusion

- ☐ Unbalance between the generator and discriminator causes overfitting.
- ☐ Highly sensitive to hyperparameters.

# Executive Summary of GAN's



Thank you~