

Dept. of Information Technology and Electrical Engineering

$\ddot{\mathrm{U}}\mathrm{bungsstunde}$ 5

Themenüberblick

• Verallgemeinerte Funktionen:

Funktionale

 δ -Funktion und ihre Eigenschaften

Ableitung verallgemeinerter Funktionen

Aufgaben für diese Woche

 $\underline{46}$, 47, $\underline{48}$, $\underline{49}$, $\underline{50}$, $\underline{51}$, 52, 53, $\underline{54}$, $\underline{55}$

Die <u>fettgedruckten</u> Übungen empfehle ich, weil sie wesentlich zu eurem Verständnis der Theorie beitragen und/oder sehr prüfungsrelevant sind.

Verallgemeinerte Funktionen

Dieses Kapitel ist nicht wirklich prüfungsrelevant. Es dient mehr zur theoretischen Herleitung und eurem Verständnis der Deltafunktion.

Funktional

Ein Funktional ist eine Funktion, deren Definitionsmenge eine Teilmenge eines linearen Raumes X ist und deren Zielmenge aus Skalaren besteht.

Mittelwertsatz der Integration: $\exists \xi \in [a,b]$, sodass $\ell_x(\varphi) = \int_a^b \varphi(t)x(t)dt = x(\xi) \int_a^b \varphi(t)dt$

Herkömmlicher Funktionenbegriff als Spezialfall

Deltafolge

Eine Deltafolge $\delta_n(t)$ hat folgende Eigenschaften:

1.
$$\delta_n(t)$$
 $\begin{cases} \geq 0, & \forall t \in I_n = [a_n, b_n] \\ = 0, & \forall t \notin I_n \end{cases}$

2. Die Intervalle I_n bilden eine Intervallverschachtelung für $t_0 \in \mathbb{R}$, d.h. die Intervalle, auf denen $\delta_n(t) \geq 0$ werden immer schmäler: $a_1 \leq a_2 \leq \cdots \leq t_0 \leq \cdots \leq b_2 \leq b_1$

und
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = t_0$$

3. Normierung: $\forall n$ gilt $\int_{-\infty}^{\infty} \delta_n(t) dt = \int_{a_n}^{b_n} \delta_n(t) dt = 1$

Graphisch sehen Punkte 1.-3. wie folgt aus:

Eine mögliche Deltafolge wäre zum Beispiel:

Wir nehmen nun den Grenzwert für $n \to \infty$ und erhalten die **Dirac-Delta** "Funktion":

$$\delta_{t_0}(t) := \lim_{n \to \infty} \delta_n(t) \begin{cases} \to \infty, & t = t_0 \\ = 0, & t \neq t_0 \end{cases} = \delta(t - t_0)$$

Die Dirac-Delta Funktion ist im herkömmlichen Sinn keine echte Funktion. Ihre Eigenschaften sind, dass sie Breite 0, Höhe $\to \infty$ und Fläche 1 hat.

Die Deltafunktion

Wir betrachten die Funktion:

$$\delta(t,\varepsilon) = \begin{cases} \frac{1}{2\varepsilon} & |t| \le \varepsilon \\ 0, & \text{sonst} \end{cases}$$

Dann
$$\ell_x(\delta(t,\varepsilon)) = \int_{-\infty}^{\infty} x(t)\delta(t,\varepsilon)dt = x(\xi)\int_{-\varepsilon}^{\varepsilon} \delta(t,\varepsilon)dt = x(\xi)$$

Wir lassen $\varepsilon \to 0$, dann $\xi \to 0$ und somit $\lim_{\varepsilon \to 0} \ell_x(\delta(t,\varepsilon)) = x(0)$. Man schreibt $\delta(t) = \lim_{\varepsilon \to 0} \delta(t,\varepsilon)$

$$\implies \delta(t)x(t) = \delta(t)x(0), \quad \text{dann} \quad \int_{-\infty}^{\infty} x(t)\delta(t)\mathrm{d}t = \int_{-\infty}^{\infty} x(0)\delta(t)\mathrm{d}t = x(0)\int_{-\infty}^{\infty} \delta(t)\mathrm{d}t = x(0)$$

Eigenschaften der δ -Funktion

Die folgenden Eigenschaften sind sehr wichtig für die Aufgaben in SST1. Am wichtigsten sind die 3. und 5. Eigenschaft. Diese muss man in jeder Prüfung mehrfach anwenden.

1. Symmetrie:

$$\delta(t) = \delta(-t)$$

$$\delta(t - t_0) = \delta(t_0 - t)$$

2. Multiplikation mit einer Funktion:

$$x(t)\delta(t) = x(0)\delta(t)$$

$$x(t)\delta(t - t_0) = x(t_0)\delta(t - t_0)$$

3. Siebeigenschaft:

$$\int_{-\infty}^{\infty} \delta(t)x(t)dt = x(0)$$
$$\int_{-\infty}^{\infty} \delta(t - t_0)x(t)dt = x(t_0)$$

4. Verschiebung/Skalierung des Parameters:

$$\delta(at+b) = \frac{1}{|a|}\delta\left(t + \frac{b}{a}\right)$$

5. Die $\delta-$ Funktion ist das Einselement der Faltung:

$$(x * \delta)(t) = \int_{-\infty}^{\infty} x(t - \tau)\delta(\tau)d\tau = x(t)$$
$$(x * \delta(\cdot - t_0))(t) = x(t - t_0)$$

6. Einheitssprungfunktion:

$$\int_{-\infty}^{t} \delta(\tau) d\tau = \sigma(t)$$

Ableitung von verallgemeinerten Funktionen

Mit D bezeichnen wir den Ableitungsoperator, x'(t) beschreibt die konventionelle Definition der Ableitung einer stetigen, differenzierbaren Funktion, wie wir es aus Analysis 1 kennen, und t_0 ist eine Sprungstelle von x(t).

$$(Dx)(t) = x'(t) + (x(t_0^+) - x(t_0^-))\delta(t - t_0)$$

Bemerkung

Die Impulsantwort ist definiert als $h(t) = (H\delta)(t)$ und die Sprungantwort als $a(t) = (H\sigma)(t)$.

Da
$$\frac{\mathrm{d}\sigma(t)}{\mathrm{d}t} = \delta(t)$$
 haben wir $\frac{\mathrm{d}a(t)}{\mathrm{d}t} = h(t)$

Aufgabe 50

Welche der folgenden verallgemeinerten Funktionen sind identisch?

a)
$$2t^2\delta(t-1)$$

c)
$$2e^{t-1}\delta(1-t)$$

b)
$$(t+2)\delta(t-1)$$

d)
$$(t+2)^2\delta(3t-3)$$

Aufgabe 51

Berechnen Sie die Ableitungen der folgenden Signale bzw. verallgemeinerter Funkionen:

a)
$$x(t) = |t|$$

c)

