ECON 899A - Problem Set 6

Alex von Hafften*

10/20/2021

I compute standard Hopenhayn and Rogerson (1993) model as well as this model with TV1 shocks following the description laid out in the problem set.

For $c_f = 10$, the table shows my results:

	Standard	TV1 alpha = 1	TV1 alpha = 2
price_level	0.74	0.69	0.72
$mass_incumbants$	6.66	6.74	6.04
$mass_entrants$	2.64	4.22	3.51
$mass_exits$	1.66	2.81	2.31
$aggregate_labor$	179.83	188.89	182.62
labor_incumbants	142.63	139.51	136.65
labor_entrants	37.21	49.38	45.97
$frac_labor_entrants$	0.21	0.26	0.25

Explanation \dots

^{*}This problem set is for ECON 899A Computational Economics taught by Dean Corbae with assistance from Philip Coyle at UW-Madison. I worked on this problem set with a study group of Michael Nattinger, Sarah Bass, and Xinxin Hu.

Explanation \dots

Increasing $c_f = 15, \ldots$

	Standard	TV1 alpha = 1	TV1 alpha = 2
alpha	-1.00	1.00	2.00
price_level	0.89	0.86	0.88
$mass_incumbants$	0.94	1.91	1.34
$mass_entrants$	3.77	3.29	3.45
$mass_exits$	0.63	1.44	1.12
$aggregate_labor$	173.58	182.90	177.85
labor_incumbants	84.79	111.73	99.33
labor_entrants	88.79	71.16	78.52
frac_labor_entrants	0.51	0.39	0.44

Explanation \dots

Explanation ...

Appendix - Static Labor Demand

$$\pi(s;p) = \max_{n \ge 0} psn^{\theta} - n - pc_f$$

FOC [n]:

$$\theta psn^{\theta-1} = 1 \implies n^* = (ps\theta)^{\frac{1}{1-\theta}}$$

Appendix - Static Labor Supply

The HH problem:

$$\max_{C,N^s} \ln(C) - AN^s \text{ s.t. } pC \le N^s + \Pi$$

$$\implies \max_{N^s} \ln \left(\frac{N^s + \Pi}{p} \right) - AN^s$$

FOC $[N^s]$:

$$\frac{p}{N^s + \Pi} \frac{1}{p} = A \implies N^s = \frac{1}{A} - \Pi$$

$$\implies C = \frac{(\frac{1}{A} - \Pi) + \Pi}{p} = \frac{1}{Ap}$$

Appendix - Steady State Firm Distribution

In this appendix, I find $\mu^* = \begin{pmatrix} \mu^*(s_1) \\ \vdots \\ \mu^*(s_5) \end{pmatrix}$ explicitly in term of exit decision rules X, transition function F, and stationary distribution ν . From the problem set,

$$\mu^*(s') = \sum_s [1 - X(s)] F(s, s') \mu^*(s) + M \sum_s [1 - X(s)] F(s, s') \nu(s)$$

Stacking the five equations on top of each:

$$\begin{pmatrix} \mu^*(s_1) \\ \vdots \\ \mu^*(s_5) \end{pmatrix} = \begin{pmatrix} \sum_s [1 - X(s)] F(s, s_1) \mu^*(s) \\ \vdots \\ \sum_s [1 - X(s)] F(s, s_5) \mu^*(s) \end{pmatrix} + M \begin{pmatrix} \sum_s [1 - X(s)] F(s, s_1) \nu(s) \\ \vdots \\ \sum_s [1 - X(s)] F(s, s_5) \nu(s) \end{pmatrix}$$

$$\implies \begin{pmatrix} \mu^*(s_1) \\ \vdots \\ \mu^*(s_5) \end{pmatrix} = \begin{pmatrix} [1 - X(s_1)] F(s_1, s_1) & \dots & [1 - X(s_5)] F(s_5, s_1) \\ \vdots \\ [1 - X(s_1)] F(s_1, s_5) & \dots & [1 - X(s_5)] F(s_5, s_5) \end{pmatrix} \begin{pmatrix} \mu^*(s_1) \\ \vdots \\ \mu^*(s_5) \end{pmatrix}$$

$$+ M \begin{pmatrix} [1 - X(s_1)] F(s_1, s_1) & \dots & [1 - X(s_5)] F(s_5, s_1) \\ \vdots \\ [1 - X(s_1)] F(s_1, s_5) & \dots & [1 - X(s_5)] F(s_5, s_5) \end{pmatrix} \begin{pmatrix} \nu(s_1) \\ \vdots \\ \nu(s_5) \end{pmatrix}$$

$$\implies \mu^* = Z\mu^* + MZ\nu$$

$$\implies \mu^* = M(I - Z)^{-1} Z\nu$$

where

$$Z = \begin{pmatrix} [1 - X(s_1)]F(s_1, s_1) & \dots & [1 - X(s_5)]F(s_5, s_1) \\ \vdots & & \vdots & & \vdots \\ [1 - X(s_1)]F(s_1, s_5) & \dots & [1 - X(s_5)]F(s_5, s_5) \end{pmatrix} = \begin{pmatrix} [1 - X(s_1)] & \dots & [1 - X(s_1)] \\ \vdots & & \vdots & & \vdots \\ [1 - X(s_5)] & \dots & [1 - X(s_5)] \end{pmatrix}' \cdot \times F'$$