Quiz 4 - Computational Physics I

					0	
NAME: Alan	Palma Tlove	.7	rigi - Jaofali u L	SCORE:	70/	
	2 December 2024 nts (4 questions)		5 minutes duation: LAB		/20	
Please provide	concise answer	s to the follo	wing items:		Excellent 1	
Provide a c	Fourier transferences definition of cour answer with the	of the Fourier			ificance for physics.	
- Fourier t	ronsfolm is col	mathematic	al tool the	at allows as	to pass from	
					is a chually the	
recipioca	I space of 1	eal space	or also	ialled u-	space. Then, it	
	possible retu	in to rea	I space by	the inverse	e F.T., summing?	_
- The sign	officince in p	hysics who	is from the	foct that	many measureme	nts
(l.g. a	osmological), a	e signals	hat usual	ly are nois	sed. Therefore, i	Λ
IF space	e is easy id	entity fleo	veryes on	1 amplitud	that help us	
to dea	n noise da	d then letu	in to real	space a de	and signal.	
	F	$[f(x)] = \int_{2}^{\infty}$	1 5 4 (k)	e - 12TT M dx		
Explain the	Wavelet transfer process of waveleye use Fourier transfer	et decompositi	on for a 1D sign	nal.		
- Wavelet d	ewm position	confists in	applying	window tun	ctions to our	
original	signal that r	nay be no	n-stationali	geso that	we select a speci	fic
range in.	time or posi-	tion. Then	with F.T	we cua o	btoin a frequency	
01 01 121	ge of frequen	cies within	this int	E IVOT	There is som Let tunction - ordopts to signal, maker ssible multip	that our mg po
- We use	wavelet trans	forms when	the signal	is nogestati	longly and we	
want to	o know the	tiequency +	ime-evolut	ion since &	Ke wavelent trans	furn
allow 4	5 to pass +10	m non-51	wholey significant	ynal to a	local stationary	
signal,	The usual	F.T. 15 U	sed when u	ic are not	intlesting in time	
	1. Ful examp					

3. (5 points) Fourier filters

Explain the difference between a low-pass filter and a high-pass filter in Fourier analysis. List the main steps you would take to detect edges in images using a Fourier analysis in python.

- Low-pass filter takes away the high frequencies of a signal while high-

Detetts edges:

1) Perform a 20-fourier transform on the 20-image, and shift it to put low frequencies out the center.

2) Cleate a musk (binony) to avoid low the with a hole in the center.

3) Apply the mask in the 20-transformed array by multiplying both.

4) Unshift the 20-transformed array and pertorm an 20-inverse F.T.

s) Check the result and adjust the mask it it is needed.

4. (5 points) Noise filtering

Imagine you are given a 2D grayscale image with background noise. Design and sketch the python workflow that you would follow to remove the noise using a Fourier-based algorithm in python.

conth.

Note: the amplitudes of the image refers to the magnitude of it, remember that they are complex numbers so it should compared with, np. abs (img - 20 - F - shifted)

Map the decored amplitudes positions to our image in IF, the low oner should be Zero. - img-zp_F-dean