#### Réseaux de neurones

#### IFT 725

#### Réseaux de neurones multicouches

Par

Pierre-Marc Jodoin

### Séparation linéaire

(2D et 2 classes)



$$y_{\vec{w}}(\vec{x}) = w_0 + w_1 x_1 + w_2 x_2$$

$$= w_0 + \vec{w}^T \vec{x}$$

$$= \vec{w}^{T} \vec{x}'$$

$$y_{\vec{w}}(\vec{x}) = \vec{w}^{\mathrm{T}} \vec{x}$$

Par simplicité

2 grands advantages. Une fois l'entraînement terminé,

- 1. Plus besoin de données d'entraînement
- 2. Classification est très rapide (produit scalaire entre 2 vecteurs)









Perceptron Multiclasse

Exemple

$$(1.1, -2.0)$$

$$y_{W,0}(\vec{x}) = \begin{bmatrix} -2 & -3.6 & 0.5 \\ -4 & 2.4 & 4.1 \\ -6 & 4 & -4.9 \end{bmatrix} \begin{bmatrix} 1 \\ 1.1 \\ -2 \end{bmatrix} = \begin{bmatrix} -6.9 \\ -9.6 \\ 8.2 \end{bmatrix}$$
Classe 0
Classe 1

Recording to the control of the contr



### Perceptron Multiclasse

Fonction de coût (Perceptron loss - One-VS-One)

$$E_{D}(W) = \sum_{\vec{x}_{n} \in M} \left( \overrightarrow{W}_{j}^{T} \vec{x}_{n} - \overrightarrow{W}_{t_{n}}^{T} \vec{x}_{n} \right)$$

$$E_{\vec{x}_{n}}$$

$$\nabla_{W_{j}} E_{\bar{x}_{n}} = \vec{x}_{n}$$

$$\nabla_{W_{i_{n}}} E_{\bar{x}_{n}} = -\vec{x}_{n}$$

$$\nabla_{W_{i}} E_{\bar{x}_{n}} = 0 \quad \forall i \neq j \text{ et } t_{n}$$

### Perceptron Multiclasse

Descente de gradient stochastique (version naïve, batch\_size = 1)

```
Initialiser W k=0, i=0 DO k=k+1 FOR n = 1 to N j = \arg\max \mathbf{W}^T \vec{x}_n IF j \neq t_i THEN /* donnée mal classée*/ \vec{w}_j = \vec{w}_j - \eta \vec{x}_n \vec{w}_{l_n} = \vec{w}_{l_n} + \eta \vec{x}_n
```

UNTIL toutes les données sont bien classées.

### Perceptron Multiclasse

Exemple d'entraînement ( $\eta = 1$ )

$$\vec{x}_n = (0.4, -1), t_n = 0$$

$$y_W(\vec{x}) = \begin{bmatrix} -2 & 3.6 & 0.5 \\ -4 & 2.4 & 4.1 \\ -6 & 4 & -4.9 \end{bmatrix} \begin{bmatrix} 1 \\ 0.4 \\ -1 \end{bmatrix} = \begin{bmatrix} -1.6 \\ -7.1 \end{bmatrix}$$
 Classe 0 Classe 1 Classe 2

FAUX!

11

#### Perceptron Multiclasse

Exemple d'entraînement ( $\eta = I$ )

$$\vec{x}_n = (0.4, -1.0), t_n = 0$$

$$\vec{w}_0 \leftarrow \vec{w}_0 + \vec{x}_n$$
 
$$\begin{bmatrix} -2.0 \\ 3.6 \\ 0.5 \end{bmatrix} + \begin{bmatrix} 1 \\ 0.4 \\ -1 \end{bmatrix} = \begin{bmatrix} -1.0 \\ 4.0 \\ -0.5 \end{bmatrix}$$

$$\vec{w}_2 \leftarrow \vec{w}_2 - \vec{x}_n$$
 
$$\begin{bmatrix} -6.0 \\ 4.0 \\ -4.9 \end{bmatrix} - \begin{bmatrix} 1 \\ 0.4 \\ -1 \end{bmatrix} = \begin{bmatrix} -7.0 \\ 3.6 \\ -3.9 \end{bmatrix}$$

### Hinge Multiclasse

Fonction de coût (Hinge loss ou SVM loss - One vs all)



Somme sur l'ensemble des données

Score de la bonne classe

Score d'une mauvaise classe

#### Hinge Multiclasse

Fonction de coût (Hinge loss ou SVM loss - One vs all)

$$E_{D}(\mathbf{W}) = \sum_{n=1}^{N} \underbrace{\sum_{j} \max(0, 1 + \vec{W}_{j}^{\mathrm{T}} \vec{x}_{n} - \vec{W}_{t_{n}}^{\mathrm{T}} \vec{x}_{n})}_{E_{\vec{X}_{n}}}$$

$$\nabla_{W_{t_n}} E_{\vec{x_n}} = \begin{cases} -\vec{x}_n & \text{si } \vec{W}_{t_n}^{\mathsf{T}} \vec{x}_n < \vec{W}_j^{\mathsf{T}} \vec{x}_n + 1 \\ 0 & \text{sinon} \end{cases}$$

$$\nabla_{W_j} E_{\vec{x}_n} = \begin{cases} \vec{x}_n & \text{si } \vec{W}_{t_n}^{\mathsf{T}} \vec{x}_n < \vec{W}_j^{\mathsf{T}} \vec{x}_n + 1 \text{ et } j \neq t_n \\ 0 & \text{sinon} \end{cases}$$

### Hinge Multiclasse

```
Descente de gradient stochastique (version naïve, batch_size = 1)
```

```
Initialiser W k=0, i=0 DO k=k+1 FOR n = 1 to N IF \vec{W}_{l_n}^{\mathsf{T}}\vec{x}_n < \vec{W}_j^{\mathsf{T}}\vec{x}_n + 1 THEN \vec{w}_{l_n} = \vec{w}_{l_n} + \eta \vec{x}_n FOR j=1 to NB CLASSES THEN IF \vec{W}_{l_n}^{\mathsf{T}}\vec{x}_n < \vec{W}_j^{\mathsf{T}}\vec{x}_n + 1 AND j \neq t_n THEN \vec{w}_j = \vec{w}_j - \eta \vec{p}_n
```

UNTIL toutes les données sont bien classées.

Au TP1, implanter la version naïve + la version vectorisée sans boucles for

### Régression logistique multiclasse





### Régression logistique multiclasse

Fonction de coût est une **entropie croisée** (cross entropy loss)

$$E_D(\mathbf{W}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_{W_k}(\vec{x}_n)$$

$$\nabla E_D(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \vec{x}_n \left( y_W(\vec{x}_n) - t_{kn} \right)$$

## Tous les détails du gradient de l'entropie croisée :

info.usherbrooke.ca/pmjodoin/cours/ift603/softmax grad.html

Au tp1: implanter une **version naïve** avec des boucles for et une **version vectorisée** SANS bouble for.





### Optimisation

#### Descente de gradient

$$\mathbf{w}^{[k+1]} = \mathbf{w}^{[k]} - \boldsymbol{\eta}^{[k]} \nabla E$$
 Gradient de la function de coût Taux d'apprentissage ou "learning rate".

#### Descente de gradient stochastique

Initialiser  $\mathbf{w}$  k=0 FAIRE k=k+1 FOR n = 1 to N  $\mathbf{w} = \mathbf{w} - \eta^{[k]} \nabla E(\vec{x}_n)$ 

JUSQU'À ce que toutes les données soient bien classées ou k==MAX\_ITER

#### Optimisation par Batch

Initialiser **w** k=0 FAIRE k=k+1

$$\mathbf{w} = \mathbf{w} - \eta^{[k]} \sum_{i} \nabla E(\vec{x}_i)$$

JUSQU'À ce que toutes les données sont bien classées ou k==MAX ITER

Parfois  $\eta^{[k]} = cst/k$ 

# Maintenant, rendons le réseau **profond**

Maintenant, rendons le réseau





### 

#### 2D, 2Classes, Réseau à 1 couche cachée



NOTE: à la sortie de la première couche, on a 3 réels calculés ainsi

$$\sigma \left( \begin{bmatrix} w_{0,0}^{[0]} & w_{0,1}^{[0]} & w_{0,2}^{[0]} \\ w_{1,0}^{[0]} & w_{1,1}^{[0]} & w_{1,2}^{[0]} \\ w_{2,0}^{[0]} & w_{2,1}^{[0]} & w_{2,2}^{[0]} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ 1 \end{bmatrix} \right)$$

#### 2D, 2Classes, Réseau à 1 couche cachée



NOTE: représentation plus simple de la sortie de la 1ère couche (3 réels)

$$\sigma(W^{[0]}\vec{x})$$

#### 2D, 2Classes, Réseau à 1 couche cachée

Si on veut effectuer une classification 2 classes via une régression logistique (donc une fonction coût par « entropie croisée ») on doit ajouter un neurone de sortie.







### 2D, 2Classes, Réseau à 1 couche cachée

Couche Couche d'entrée cachée de sortie



Plus on augmente le nombre de neurones dans la couche cachée, plus on augmente la capacité du système.

Ce réseau a 5x3+1x6=21 paramètres

33

#### **NOTE Importante**

Le but de la première couche est de **projeter les données d'entrée** (ici  $\vec{x} \in R^2$ ) vers un espace dimensionnel plus grand (ici  $\sigma(W^{(0)}\vec{x}) \in R^5$ ) là où les **classes sont linéairement séparables**.

Car il ne faut pas oublier que la <u>couche de sortie</u> est une <u>régression logistique linéaire</u>.

Par conséquent, au lieu de fixer nous même la fonction de base, on laisse le réseau l'apprendre.









Ou peut facilement augmenter la dimensionnalité des données d'entrée. Cela n'a pour effet que **d'augmenter le nombre de colonnes dans**  $W^{[0]}$ 

Ce réseau a 5x(k+1)+1x6 paramètres

3





En ajoutant une couche cachée, on ajoute une multiplication matricielle

Ce réseau a 5x(k+1)+6x3 + 1x4 paramètres













Augmenter la capacité d'un réseau peut entraîner du **sur-apprentissage** 











#### Simulation

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

### Comment faire une prédiction?

Ex.: faire transiter un signal de **l'entrée à la sortie** d'un réseau à **3 couches cachées** 

#### Comment optimiser les paramètres?

**0**- Partant de

$$W = \arg\min_{W} E_{D}(W) + \lambda R(W)$$

Trouver une function de régularisation. En général

$$R(W) = ||W||_1$$
 ou  $||W||_2$ 

#### Comment optimiser les paramètres?

1- Trouver une loss  $E_D(W)$  comme par exemple Hinge loss Entropie croisée (cross entropy)



N'oubliez pas d'ajuster la <u>sortie du réseau</u> en fonction de la <u>loss</u> que vous aurez choisi.

cross entropy => Softmax

#### Comment optimiser les paramètres?

2- Calculer le gradient de la loss par rapport à chaque paramètre

$$\frac{\partial \left(E_{\scriptscriptstyle D}\left(W\right) + \lambda R\left(W\right)\right)}{\partial w_{a,b}^{[c]}}$$

et lancer un algorithme de <u>descente de gradient</u> pour mettre à jour les paramètres.

$$w_{a,b}^{[c]} = w_{a,b}^{[c]} - \eta \frac{\partial \left( E_D(W) + \lambda R(W) \right)}{\partial w_{a,b}^{[c]}}$$

### Comment optimiser les paramètres?

$$\frac{\partial \left(E_{\scriptscriptstyle D}\left(W\right) + \lambda R\left(W\right)\right)}{\partial w_{a,b}^{[c]}} \Rightarrow \text{calcul\'e à } \underline{\text{l'aide d'une r\'etropropagation}}$$



On résoud le problème de la disparition du gradient à l'aide d'autres fonctions d'activations

#### Fonction d'activation



$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Ramène les valeurs entre 0 et 1
- Historiquement populaire

#### 3 Problèmes:

• Un neurone saturé a pour effet de « tuer » les gradients

### Fonction d'activation



$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Ramène les valeurs entre 0 et 1
- Historiquement populaire

#### 3 Problèmes:

- Un neurone saturé a pour effet de « tuer » les gradients
- Sortie d'une sigmoïde n'est pas centrée à zéro.

Qu'arrive-t-il lorsque le vecteur d'entrée  $\vec{h}$  d'un neurone est toujours positif?



Le gradient par rapport à  $\vec{w}$  est ... Positif? Négatif?

### Fonction d'activation



$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- Ramène les valeurs entre 0 et 1
- Historiquement populaire

#### 3 Problèmes:

- Un neurone saturé a pour effet de « tuer » les gradients
- Sortie d'une sigmoïde n'est pas centrée à zéro.
- exp() est **coûteux** lorsque le nombre de neurones est élevé.

#### Fonction d'activation



- Ramène les valeurs entre -1 et 1
- Sortie centrée à zéro 🕲
- **Disparition du gradient** lorsque la fonction sature 😵

[LeCun et al., 1991]

Fonction d'activation

$$ReLU(x) = max(0,x)$$
• Aucune saturation ©
• Super rapide ©
• Converge plus rapide que sigmoïde/tanh (5 à  $10x$ ) ©
• Sortie non centrée à zéro  $\otimes$ 
• Un inconvénient : qu'arrive-t-il au gradient lorsque  $x < 0$ ?  $\otimes$ 







### En pratique

- Par défaut, le gens utilisent ReLU.
- Essayez Leaky ReLU / PReLU / ELU
- Essayez tanh mais n'attendez-vous pas à grand chose
- Ne pas utiliser de sigmoïde sauf à la sortie d'un réseau 2 classes.

### Les bonnes pratiques

### Optimisation

#### Descente de gradient

#### Descente de gradient stochastique

Initialiser 
$$\mathbf{w}$$
 k=0 FAIRE k=k+1 FOR n = 1 to N  $\mathbf{w} = \mathbf{w} - \eta^{[k]} \nabla E(\vec{x}_n)$  JUSQU'À ce que toutes les données soient bien classées ou k== MAX ITER

#### Optimisation par Batch

Initialiser 
$$\mathbf{w}$$
  
k=0  
FAIRE k=k+1 
$$\mathbf{w} = \mathbf{w} - \eta^{[k]} \sum \nabla E(\vec{x}_i)$$

JUSQU'À ce que toutes les données soient bien classées ou k==MAX\_ITER

Parfois 
$$\eta^{[k]} = cst/k$$

### Optimisation

#### Descente de gradient

$$\mathbf{w}^{[k+1]} = \mathbf{w}^{[k]} - \eta^{[k]} \nabla E$$
Gradient de la function de coût

Taux d'apprentissage ou "learning rate".

#### Optimisation par mini-batch

FAIRE n=0 à N par sauts de *MBS* /\*Mini-batch size\*/

$$\mathbf{w} = \mathbf{w} - \boldsymbol{\eta}^{[k]} \sum_{i=n}^{n+MBS} \nabla E(\vec{x}_i)$$

JUSQU'À ce que toutes les données soient bien classées ou k==MAX\_ITER

#### } Itération

### Optimisation

#### Descente de gradient

#### Optimisation par mini-batch

Initialiser **w** k=0

FAIRE k=k+1

FAIRE n=0 à N par sauts de *MBS /\*Mini-batch size\*/* 
$$\mathbf{w} = \mathbf{w} - \eta^{[k]} \sum_{i=n}^{n+MBS} \nabla E \left(\vec{x}_i\right)$$

JUSQU'À ce que toutes les données sont bien classées ou k==MAX\_ITER

Epoch

Mini-batch = **vectorisation** de la propagation avant et de la rétro-propagation



#### Solution

Il est plus efficace d'effectuer UNE multiplication matricielle que PLUSIEURS matrice-vecteur (exemple de la 2° étape, batch de 3)

$$W_{1}X = \begin{pmatrix} w_{11} & w_{12} & w_{13} & w_{14} \\ w_{21} & w_{22} & w_{23} & w_{24} \\ w_{31} & w_{32} & w_{33} & w_{34} \\ w_{41} & w_{42} & w_{43} & w_{44} \\ w_{51} & w_{52} & w_{53} & w_{54} \end{pmatrix} \begin{bmatrix} a & d & h \\ b & e & i \\ c & f & j \\ d & g & k \end{bmatrix} = \begin{bmatrix} u_{1} & v_{1} & z_{1} \\ u_{2} & v_{2} & z_{2} \\ u_{3} & v_{3} & z_{3} \\ u_{4} & v_{4} & z_{4} \\ u_{5} & v_{5} & z_{5} \end{bmatrix}$$

UNE multiplication matricielle



#### Solution

Il est plus efficace d'effectuer UNE multiplication matricielle que PLUSIEURS produits scalaires (exemple de la  $6^{\rm e}$  étape, batch de 3)

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ b & e & h \\ c & f & i \end{bmatrix} = \begin{bmatrix} w_1 a + w_2 b + w_3 c \\ w_1 d + w_2 e + w_3 f \\ w_1 g + w_2 h + w_3 i \end{bmatrix} = Y$$



# Vectorisation de la propagation avant

En résumé, lorsqu'on propage une « batch » de données

| Au niveau<br>neuronal | Multi. Vecteur-Matrice | $\vec{W}^T X = [w_1$ | $w_2$ | $w_3 \begin{cases} a & d & g \\ b & e & h \\ c & f & i \end{cases}$ |
|-----------------------|------------------------|----------------------|-------|---------------------------------------------------------------------|
|-----------------------|------------------------|----------------------|-------|---------------------------------------------------------------------|

Au niveau de la couche Matrice-Matrice 
$$WX = \begin{bmatrix} w_{11} & w_{12} & w_{13} & w_{14} \\ w_{21} & w_{22} & w_{23} & w_{24} \\ w_{31} & w_{32} & w_{33} & w_{34} \\ w_{41} & w_{42} & w_{43} & w_{44} \\ w_{51} & w_{52} & w_{53} & w_{54} \end{bmatrix} \begin{bmatrix} a & d & h \\ b & e & i \\ c & f & j \\ d & g & k \end{bmatrix}$$



Vectoriser la rétropropagation

#### Vectoriser la rétropropagation

Exemple simple pour 1 neurone et une batch de 3 données

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ b & e & h \\ c & f & i \end{bmatrix} = \begin{pmatrix} w_1 a + w_2 b + w_3 c \\ w_1 d + w_2 e + w_3 f \\ w_1 g + w_2 h + w_3 i \end{pmatrix}^T$$

$$\vec{w}^T \qquad X \qquad Y$$

En supposant qu'on connaît le gradient pour les 3 éléments de Y provenant de la sortie du réseau, comment faire pour propager le gradient vers  $\vec{w}^T$ ?

### Vectoriser la rétropropagation

Exemple simple pour 1 neurone et une batch de 3 données

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ b & e & h \\ c & f & i \end{bmatrix} = \begin{pmatrix} w_1 a + w_2 b + w_3 c \\ w_1 d + w_2 e + w_3 f \\ w_1 g + w_2 h + w_3 i \end{pmatrix}^T$$

$$\vec{w}^T \qquad X \qquad Y$$

Rappelons que l'objectif est de faire une descente de gradient, i.e.

$$w_1 \leftarrow w_1 - \eta \frac{\partial E}{w_1}$$
  $w_2 \leftarrow w_2 - \eta \frac{\partial E}{\partial w_2}$   $w_3 \leftarrow w_3 - \eta \frac{\partial E}{\partial w_3}$ 

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ b & e & h \\ c & f & i \end{bmatrix} = \begin{pmatrix} w_1 a + w_2 b + w_3 c \\ w_1 d + w_2 e + w_3 f \\ w_1 g + w_2 h + w_3 i \end{pmatrix}^T$$

$$\vec{W}^T \qquad X \qquad Y$$

Concentrons-nous sur  $W_1$ 

$$w_{1} \leftarrow w_{1} - \eta \frac{\partial E}{w_{1}}$$

$$w_{1} \leftarrow w_{1} - \eta \frac{\partial E}{\partial Y}^{T} \frac{\partial Y}{\partial w_{1}} \qquad \text{(par propriété de la dérivée en chaîne)}$$

$$w_{1} \leftarrow w_{1} - \eta \left[ \frac{\partial E_{1}}{\partial Y} \quad \frac{\partial E_{2}}{\partial Y} \quad \frac{\partial E_{3}}{\partial Y} \right] \begin{bmatrix} a \\ d \\ g \end{bmatrix} \qquad \text{(provient de la rétro-propagation)}$$

$$w_{1} \leftarrow w_{1} - \eta \left( \frac{\partial E_{1}}{\partial Y} a + \frac{\partial E_{2}}{\partial Y} b + \frac{\partial E_{3}}{\partial Y} c \right)$$

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ b & e & h \\ c & f & i \end{bmatrix} = \begin{pmatrix} w_1 a + w_2 b + w_3 c \\ w_1 d + w_2 e + w_3 f \\ w_1 g + w_2 h + w_3 i \end{pmatrix}^T$$

$$\vec{W}^T \qquad X \qquad Y$$

Concentrons-nous sur  $W_1$ 

$$w_{1} \leftarrow w_{1} - \eta \frac{\partial E}{w_{1}}$$

$$w_{1} \leftarrow w_{1} - \eta \frac{\partial E}{\partial Y}^{T} \frac{\partial Y}{\partial w_{1}} \qquad \text{(par propriété de la dérivée en chaîne)}$$

$$w_{1} \leftarrow w_{1} - \eta \left[ \frac{\partial E_{1}}{\partial Y} \quad \frac{\partial E_{2}}{\partial Y} \quad \frac{\partial E_{3}}{\partial Y} \right] \begin{bmatrix} a \\ d \\ g \end{bmatrix} \qquad \text{(Puisqu'on a une batch de éléments, on a 3 prédiction et donc 3 gradients)}$$

$$w_{1} \leftarrow w_{1} - \eta \left( \frac{\partial E_{1}}{\partial Y} a + \frac{\partial E_{2}}{\partial Y} b + \frac{\partial E_{3}}{\partial Y} c \right)$$

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ b & e & h \\ c & f & i \end{bmatrix} = \begin{bmatrix} w_1 a + w_2 b + w_3 c \\ w_1 d + w_2 e + w_3 f \\ w_1 g + w_2 h + w_3 i \end{bmatrix}^T$$

$$\vec{W}^T \qquad X \qquad Y$$

Donc en résumé ...

$$w_1 \leftarrow w_1 - \eta \left[ \frac{\partial E_1}{\partial Y} \quad \frac{\partial E_2}{\partial Y} \quad \frac{\partial E_3}{\partial Y} \right] \begin{bmatrix} a \\ d \\ g \end{bmatrix}$$

$$\begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix} = \begin{pmatrix} w_1 a + w_2 b + w_3 c \\ w_1 d + w_2 e + w_3 f \\ w_1 g + w_2 h + w_3 i \end{pmatrix}^T$$

$$\vec{W}^T \qquad X \qquad Y$$

Et pour tous les poids

$$w_{1} \leftarrow w_{1} - \eta \left[ \frac{\partial E_{1}}{\partial Y} \quad \frac{\partial E_{2}}{\partial Y} \quad \frac{\partial E_{3}}{\partial Y} \right] \begin{bmatrix} a \\ d \\ g \end{bmatrix}$$

$$w_{2} \leftarrow w_{2} - \eta \left[ \frac{\partial E_{1}}{\partial Y} \quad \frac{\partial E_{2}}{\partial Y} \quad \frac{\partial E_{3}}{\partial Y} \right] \begin{bmatrix} b \\ e \\ h \end{bmatrix}$$

$$w_{3} \leftarrow w_{3} - \eta \left[ \frac{\partial E_{1}}{\partial Y} \quad \frac{\partial E_{2}}{\partial Y} \quad \frac{\partial E_{3}}{\partial Y} \right] \begin{bmatrix} c \\ f \\ i \end{bmatrix}$$

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ b & e & h \\ c & f & i \end{bmatrix} = \begin{pmatrix} w_1 a + w_2 b + w_3 c \\ w_1 d + w_2 e + w_3 f \\ w_1 g + w_2 h + w_3 i \end{pmatrix}^T$$

$$\vec{W}^T \qquad X \qquad Y$$
Et pour tous les poids
$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}^T \leftarrow \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}^T - \eta \begin{bmatrix} \frac{\partial E_1}{\partial Y} & \frac{\partial E_2}{\partial Y} & \frac{\partial E_3}{\partial Y} \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$\vec{W}^T \leftarrow \vec{W}^T - \eta \begin{bmatrix} \frac{\partial E_1}{\partial Y} & \frac{\partial E_2}{\partial Y} & \frac{\partial E_3}{\partial Y} \end{bmatrix} \begin{bmatrix} \frac{\partial Y_1}{\partial w_1} & \frac{\partial Y_1}{\partial w_2} & \frac{\partial Y_1}{\partial w_3} & \frac{\partial Y_2}{\partial w_3} \\ \frac{\partial Y_2}{\partial Y} & \frac{\partial Y_1}{\partial w_1} & \frac{\partial Y_1}{\partial w_2} & \frac{\partial Y_2}{\partial W_3} & \frac{\partial Y_3}{\partial w_3} \end{bmatrix}$$

$$\vec{W}^T \leftarrow \vec{W}^T - \eta \frac{\partial \vec{E}^T}{\partial Y} \frac{\partial Y}{\partial \vec{W}}$$
Matrice jacobienne

$$W \leftarrow W^{T} - \eta \begin{bmatrix} \frac{w_{11}}{w_{21}} & \frac{w_{12}}{w_{22}} & \frac{w_{13}}{w_{24}} & \frac{w_{14}}{b e i} \\ \frac{w_{21}}{v_{31}} & \frac{w_{22}}{w_{32}} & \frac{w_{24}}{w_{33}} & \frac{w_{14}}{d g k} \end{bmatrix} \begin{bmatrix} a d h \\ b e i \\ c f j \\ d g k \end{bmatrix} = \begin{bmatrix} u_{1} v_{1} z_{1} \\ u_{2} v_{2} z_{2} \\ u_{3} v_{3} z_{3} \\ u_{4} v_{4} z_{4} \\ u_{5} v_{5} z_{5} \end{bmatrix}$$

$$W \quad X \quad Y$$

$$W \quad X \quad Y$$

$$M^{2} \text{ Même chose pour 1 couche 5x4 et une } \frac{batch \text{ de 3 données}}{\frac{\partial E_{1}}{\partial Y_{1}}} \frac{\partial E_{2}}{\partial Y_{2}} \frac{\partial E_{3}}{\partial Y_{1}} \\ \frac{\partial E_{1}}{\partial Y_{2}} \frac{\partial E_{2}}{\partial Y_{2}} \frac{\partial E_{3}}{\partial Y_{2}} \\ \frac{\partial E_{1}}{\partial Y_{3}} \frac{\partial E_{2}}{\partial Y_{3}} \frac{\partial E_{3}}{\partial Y_{3}} \\ \frac{\partial E_{1}}{\partial Y_{4}} \frac{\partial E_{2}}{\partial Y_{4}} \frac{\partial E_{3}}{\partial Y_{4}} \\ \frac{\partial E_{1}}{\partial Y_{5}} \frac{\partial E_{2}}{\partial Y_{5}} \frac{\partial E_{3}}{\partial Y_{5}} \end{bmatrix}$$

$$W \leftarrow W^{T} \leftarrow W^{T} - \eta \frac{\partial E^{T}}{\partial Y} \frac{\partial Y}{\partial W}$$

# Vectorisation de la rétro-propagation

En résumé, lorsqu'on rétro-propage le gradient d'une batch

| Au niveau | Multi. Vecteur-Matrice | $\vec{W}^T \leftarrow \vec{W}^T - \eta \frac{\partial \vec{E}}{\partial Y}^T \frac{\partial Y}{\partial \vec{W}}$ |
|-----------|------------------------|-------------------------------------------------------------------------------------------------------------------|
| neuronal  |                        | $\vec{W}^T \leftarrow \vec{W}^T - \eta \frac{\partial \vec{E}}{\partial Y}^T X$                                   |

# Pour plus de détails:

 $https://medium.com/datathings/vectorized-implementation-of-back-propagation-1011884df84 \ https://peterroelants.github.io/posts/neural-network-implementation-part04/$ 



Comment initialiser un réseau de neurones?



# Initialisation

**Première idée**: faibles valeurs aléatoires (Gaussienne  $\mu = 0$ ,  $\sigma = 0.01$ )

W\_i=0.01\*np.random.randn(H\_i,H\_im1)

Fonctionne bien pour de petits réseaux mais pas pour des réseaux profonds.



E.g. réseau à 10 couches avec 500 neurones par couche et des tanh comme fonctions d'activation.





















Les « sanity checks » ou vérifications diligentes

## Sanity checks

1. Toujours s'assurer qu'une initialization aléatoire donne une **perte** (*loss*) maximale

Exemple: pour le cas 10 classes, une régularisation à 0 et une entropie croisée.

$$E_D(\mathbf{W}) = -\frac{1}{N} \sum_{n=1}^{N} \sum_{k=1}^{K} t_{kn} \ln y_{W,k}(\vec{x}_n)$$

Si l'initialisation est aléatoire, alors la probabilité sera en moyenne égale pour chaque classe

$$E_D(W) = -\frac{1}{N} \sum_{n=1}^{N} \ln \frac{1}{10}$$
$$= \ln(10)$$
$$= 2.30$$

## Sanity checks

1. Toujours s'assurer qu'une initialization aléatoire donne une perte (*loss*) maximale

Exemple : pour le cas *10 classes*, une **régularisation à 0** et une *entropie croisée*.

# 

Crédit http://cs231n.stanford.edu







### Sanity checks

4. Toujours vérifier la validité d'un gradient

Comme on l'a vu, calculer un gradient est sujet à erreur. Il faut donc toujours s'assurer que nos gradients sont bons au fur et à mesure qu'on écrit notre code. En voici la meilleure façon

Rappel

Approximation numérique de la dérivée

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

## Sanity checks

3. Toujours vérifier la validité d'un gradient

On peut facilement calculer un gradient à l'aide d'une approximation numérique.

Rappel

Approximation numérique du gradient

$$\nabla E(W) \approx \frac{E(W+H) - E(W)}{H}$$

En calculant

$$\frac{\partial E(W)}{\partial w_i} \approx \frac{E(w_i + h) - E(w_i)}{h} \quad \forall i$$

# Vérification du gradient

W+h

(exemple)

W



| $W_{00} = 0.34$ | $W_{00} = 0.34 \text{+0.0001}$ | -2.5=(1.25322-1.25347)/0.0001 |
|-----------------|--------------------------------|-------------------------------|

$$\begin{aligned} W_{01} &= -1.11 & W_{01} &= -1.11 \\ W_{02} &= 0.78 & W_{02} &= 0.78 \end{aligned}$$

$$W_{20} = -3.1$$
  $W_{20} = -3.1$   $W_{21} = -1.5$ ,  $W_{21} = -1.5$ ,

$$W_{22} = 0.33$$
  $W_{22} = 0.33$ 

#### Vérification du gradient

 $W_{\rm 02} = 0.78$ 

(exemple)

 $W_{\rm 02} = 0.78$ 



#### W W+h gradient W

$$W_{00} = 0.34$$
  $W_{00} = 0.34$  -2.5

$$\mathbf{W}_{01} = -1.11 \qquad \quad \mathbf{W}_{01} = -1.11 + \textbf{0.0001} \qquad \quad \textbf{0.6=(1.25353-125347)/0.0001}$$

$$W_{20} = -3.1$$
  $W_{20} = -3.1$ 

$$W_{21} = -1.5,$$
  $W_{21} = -1.5,$ 

$$W_{22} = 0.33$$
  $W_{22} = 0.33$ 

E(W)=1.25347 E(W+h)=1.25353

# Vérification du gradient (exemple)



| W                | W+h                             | gradient W                  |
|------------------|---------------------------------|-----------------------------|
| $W_{00} = 0.34$  | $W_{00} = 0.34$                 | -2.5                        |
| $W_{01} = -1.11$ | $W_{01} = -1.11$                | 0.6                         |
| $W_{02} = 0.78$  | $W_{02} = 0.78 \text{ +0.0001}$ | 0.0=(1.25347-125347)/0.0001 |
|                  |                                 |                             |
| $W_{20} = -3.1$  | $W_{20} = -3.1$                 |                             |
| $W_{21} = -1.5,$ | $W_{21} = -1.5,$                |                             |
| $W_{22} = 0.33$  | $W_{22} = 0.33$                 |                             |
|                  |                                 |                             |

E(W)=1.25347 E(W+h)=1.25347

# Vérification du gradient (exemple)



| W                | W+h              | gradient W |
|------------------|------------------|------------|
| $W_{00} = 0.34$  | $W_{00} = 0.34$  | -2.5       |
| $W_{01} = -1.11$ | $W_{01} = -1.11$ | 0.6        |
| $W_{02} = 0.78$  | $W_{02} = 0.78$  | 0.0        |
|                  |                  | •••        |
| $W_{20} = -3.1$  | $W_{20} = -3.1$  | 1.1        |
| $W_{21} = -1.5,$ | $W_{21} = -1.5,$ | 1.3        |
| $W_{22} = 0.33$  | $W_{22} = 0.33$  | -2.1       |

E(W)=1.25347



Autres bonnes pratique

**Dropout** 

# Dropout

Forcer à zéro certains neurones de façon aléatoire à chaque itération





Srivastava et al. "Dropout: a simple way to prevent neural networks from overfitting", JMLR 2014

# Dropout

Idée : s'assurer que <u>chaque neurone apprend pas lui-même</u> en brisant au hasard des chemins.

## Dropout

```
p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
    """ X contains the data """

# forward pass for example 3-layer neural network

H1 = np.maximum(0, np.dot(W1, X) + b1)

U1 = np.random.rand(*H1.shape)
```

Crédit http://cs231n.stanford.edu/

## Dropout

Le problème avec *Dropout* est en prédiction (« test time »)

car dropout ajoute du bruit à la prédiction

$$pred = y_W(\vec{x}, Z)$$
masque aléatoire

dropout ajoute du bruit à la prédiction.

Exemple simple:  $\vec{x} = \begin{pmatrix} 2.2 \\ 1.3 \end{pmatrix}, t = 1$ 



#### Si on lance le modèle 10 fois, on aura 10 réponses différentes

dropout ajoute du bruit à la prédiction.

Exemple simple:  $\vec{x} = \begin{pmatrix} 2.2 \\ 1.3 \end{pmatrix}, t = 1$ 



# Solution, exécuter le modèle un grand nombre de fois et prendre la moyenne.

```
[ 0.09378555  0.76511644  0.141098 ]
[ 0.13982909  0.62885327  0.23131764]
[ 0.23658253  0.61960162  0.14381585]
[ 0.23779425  0.51357115  0.24863461]
[ 0.16005442  0.68060227  0.1593433 ]
[ 0.16303195  0.50583392  0.33113413]
[ 0.24183069  0.51319834  0.24497097]
[ 0.14521815  0.52006858  0.33471327]
[ 0.09952161  0.66276146  0.23771692]
[ 0.16172851  0.6044877  0.23378379]
```

[ 0.15933813, 0.65957005, 0.18109183]

Exécuter le modèle un grand nombre de fois et **prendre la moyenne** revient à calculer **l'espérance mathématique** 

$$pred = E_z [y_W(\vec{x}, \vec{z})] = \sum_i P(\vec{z}) y_W(\vec{x}, \vec{z})$$

Bonne nouvelle, on peut faire plus simple en approximant cette l'expérance mathématique!

#### Regardons pour un neurone

Avec une probabilité de *dropout* de 50%, en prédiction  $w_1$  et  $w_2$  seront **nuls 1 fois sur 2** 



$$E[a] = \frac{1}{4} (w_1 x_1 + w_2 x_2) + \frac{1}{4} (w_1 x_1 + 0 x_2)$$
$$+ \frac{1}{4} (0x_1 + w_2 x_2) + \frac{1}{4} (0x_1 + 0 x_2)$$
$$= \frac{1}{2} (w_1 x_1 + w_2 x_2)$$

En prédiction, on a qu'à multiplier par la prob. de *dropout*.

```
""" Vanilla Dropout: Not recommended implementation (see notes below) """
       p = 0.5 # probability of keeping a unit active. higher = less dropout
       def train_step(X):
            " X contains the data """
         # forward pass for example 3-layer neural network
         H1 = np.maximum(0, np.dot(W1, X) + b1)
         U1 = np.random.rand(*H1.shape) < p # first dropout mask
         H1 *= U1 # drop!
         H2 = np.max1mum(0, np.dot(W2, H1) + b2)
         U2 = np.random.rand(*H2.shape) < p # second dropout mask
         out = np.dot(W3, H2) + b3
         # backward pass: compute gradients... (not shown)
         # perform parameter update... (not shown)
       def predict(X):
          # ensembled forward pass
         H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
         out = np.dot(W3, H2) + b3
En prédiction, tous les neurones sont actifs
  → tout ce qu'il faut faire est de multiplier la sortie de chaque couche
    par la probabilité de dropout
                                                                        Crédit http://cs231n.stanford.edu/
```

#### **NOTE**

Au tp2, vous implanterez un **dropout inverse**. À vous de le découvrir!

# Descente de gradient version améliorée

Descente de gradient

$$\boldsymbol{W}^{[t+1]} = \boldsymbol{W}^{[t]} - \boldsymbol{\eta} \nabla \boldsymbol{E}_{\boldsymbol{W}^{[t]}} \big( \boldsymbol{D} \big)$$





# Descente de gradient : problème

Qu'arrive-t-il si la fonction de coût (loss) a une pente prononcée dans une direction et moins prononcée dans une autre direction?

# Descente de gradient : problème

Qu'arrive-t-il si la fonction de coût (loss) a une pente prononcée dans une direction et moins prononcée dans une autre direction?

Progrès très lent le long de la pente la plus faible et oscillation le long de l'autre direction.





# Descente de gradient + Momentum

Descente de gradient stochastique

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla E_{\vec{\mathbf{x}}_n} \left( \mathbf{w}_t \right)$$

Descente de gradient stochastique + Momentum

$$v_{t+1} = \rho v_t + \nabla E_{\vec{x}_n} (\mathbf{w}_t)$$
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta v_{t+1}$$

Provient de l'équation de la vitesse

 $\rho$  exprime la « friction », en général  $\in$  [0.5,1[





# AdaGrad (décroissance automatique de $\eta$ )

Descente de gradient stochastique

**AdaGrad** 

$$\begin{aligned} dE_t &= \nabla E_{\vec{x}_n} \left( \mathbf{w}_t \right) \\ \mathbf{w}_{t+1} &= \mathbf{w}_t - \eta \nabla E_{\vec{x}_n} \left( \mathbf{w}_t \right) \\ \mathbf{w}_{t+1} &= m_t + \left| dE_t \right| \\ \mathbf{w}_{t+1} &= \mathbf{w}_t - \frac{\eta}{m_{t+1} + \varepsilon} dE_t \end{aligned}$$

### AdaGrad (décroissance automatique de $\eta$ )

Descente de gradient stochastique

**AdaGrad** 

$$\begin{aligned} dE_t &= \nabla E_{\vec{x}_n} \left( \mathbf{w}_t \right) \\ \mathbf{w}_{t+1} &= \mathbf{w}_t - \eta \nabla E_{\vec{x}_n} \left( \mathbf{w}_t \right) \\ \mathbf{w}_{t+1} &= \mathbf{m}_t + \left| dE_t \right| \\ \mathbf{w}_{t+1} &= \mathbf{w}_t - \frac{\eta}{m_{t+1} + \varepsilon} dE_t \end{aligned}$$

 $\eta$  décroit sans cesse au fur et à mesure de l'optimisation

# AdaGrad (décroissance automatique de $\eta$ )

Qu'arrive-t-il à long terme?



$$\frac{\eta}{m_{t+1} + \varepsilon} \to 0$$

# RMSProp (AdaGrad amélioré)

AdaGrad

$$dE_{t} = \nabla E_{\vec{x}_{n}}(\mathbf{w}_{t})$$

$$dE_{t} = \nabla E_{\vec{x}_{n}}(\mathbf{w}_{t})$$

$$m_{t+1} = m_{t} + |dE_{t}|$$

$$m_{t+1} = \gamma m_{t} + (1 - \gamma)|dE_{t}|$$

$$w_{t+1} = w_{t} - \frac{\eta}{m_{t+1} + \varepsilon}dE_{t}$$

$$w_{t+1} = w_{t} - \frac{\eta}{m_{t+1} + \varepsilon}dE_{t}$$

 $\eta$  décroit lorsque le gradient est élevé  $\eta$  augmente lorsque le gradient est faible



# Adam (Combo entre Momentum et RMSProp)

#### Momentum

$$\begin{aligned} v_{t+1} &= \rho v_t + \nabla E_{\vec{x}_n} \left( \mathbf{w}_t \right) \\ \mathbf{w}_{t+1} &= \mathbf{w}_t - \eta v_{t+1} \end{aligned}$$

#### Adam

$$dE_{t} = \nabla E_{\vec{x}_{n}}(\mathbf{w}_{t})$$

$$v_{t+1} = \alpha v_{t} + (1 - \alpha) dE_{t}$$

$$m_{t+1} = \gamma m_{t} + (1 - \gamma) |dE_{t}|$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} - \frac{\eta}{m_{t+1} + \varepsilon} v_{t+1}$$

# Adam (Combo entre Momentum et RMSProp)

#### Momentum

$$v_{t+1} = \rho v_t + \nabla E_{\bar{x}_n} (\mathbf{w}_t)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta v_{t+1}$$

#### Adam

Adam
$$dE_{t} = \nabla E_{\bar{x}_{n}}(\mathbf{w}_{t})$$

$$v_{t+1} = \alpha v_{t} + (1-\alpha)dE_{t}$$

$$m_{t+1} = \gamma m_{t} + (1-\gamma)|dE_{t}|$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} - \frac{\eta}{m_{t+1} + \varepsilon} v_{t+1}$$

# Adam (Combo entre Momentum et RMSProp)

#### **RMSProp**

$$dE_{t} = \nabla E_{\bar{x}_{n}} (\mathbf{w}_{t})$$

$$m_{t+1} = \gamma m_{t} + (1 - \gamma) |dE_{t}|$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} - \frac{\eta}{m_{t+1} + \varepsilon} dE_{t}$$

#### Adam

$$dE_{t} = \nabla E_{\bar{x}_{n}}(\mathbf{w}_{t}) \quad \mathbf{RNSProp}$$

$$v_{t+1} = \alpha v_{t} + (1-\alpha)dE_{t}$$

$$m_{t+1} = \gamma m_{t} + (1-\gamma)|dE_{t}|$$

$$\mathbf{w}_{t+1} = \mathbf{w}_{t} - \frac{\eta}{m_{t+1} + \varepsilon} v_{t+1}$$

$$\begin{split} v_{t=0} &= 0 \\ m_{t=0} &= 0 \\ \text{for t=1 à num\_iterations} \\ \text{for n=0 à N} \\ dE_t &= \nabla E_{\vec{x}_n} \left( \mathbf{w}_t \right) \\ v_{t+1} &= \alpha v_t + (1-\alpha) dE_t \\ m_{t+1} &= \gamma m_t + (1-\gamma) \big| dE_t \big| \\ v_{t+1} &= \frac{v_{t+1}}{1-\beta_1^t}, m_{t+1} = \frac{m_{t+1}}{1-\beta_2^t} \end{split} \qquad \qquad \begin{array}{c} \beta_1 = 0.9, \beta_2 = 0.99 \\ \beta_1 = 0.9, \beta_2 = 0.99 \\ \end{array}$$



# Illustrations





À voir sur :

www.denizyuret.com/2015/03/alec-radfords-animations-for.html

