PDelta-2

Title

P-Delta effect analyses for three planar columns.

Description

Perform P-Delta effect analyses for 3 different columns cases (Pure Sway, No Sway and No Shear) .

Compute the maximum displacements, shear forces and internal moments for each case.

Structural geometry and analysis model

Model

Analysis Type

2-D, P-Delta effect analysis

Unit System

in, lbf

Dimension

Length L = 100.0 in

Relative displacement tolerance 0.001

Element

Beam element

Material

Modulus of elasticity $E = 29.0 \times 10^6 \text{ psi}$

Section Property

Area $A = 1.0 \text{ in}^2$ Moment of inertia $I_{yy} = 1/12 \text{ in}^4$

Boundary Condition

Nodes 1, 4 and 7 ; Constrain all DOFs.

Node 3 ; Constrain Ry. Node 6 ; Constrain Dx.

Analysis Case

Pure Sway; An axial force, P_1 =1191.5 lbf is applied to the node 3 in the -Z direction,and a lateral force, P_2 =100.0 lbf is applied to the node 3 in the X direction.

No Sway ; An axial load, $P_3=2431.5$ lbf is applied to the node 6 in the -Z direction and a bending moment about Y axis, 100.0 lbf-in is applied at the node 6.

No Shear ; An axial force, $P_4 = 298.0$ lbf is applied at the node 9 in the -Z direction and a bending moment about Y axis, 100.0 lbf-in is applied to the node 9.

Maximum number of iteration for the P-Delta effect analyses = 5

Results

Displacements

	Node	Load	DX (in)	DY (in)	DZ (in)	RX ([rad])	RY ([rad])	RZ ([rad])
•	1	CASE1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	2	CASE1	3.409781	0.000000	-0.002054	0.000000	0.104485	0.000000
	3	CASE1	6.819561	0.000000	-0.004109	0.000000	0.000000	0.000000
	4	CASE1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	5	CASE1	-0.026859	0.000000	-0.004192	0.000000	-0.000477	0.000000
	6	CASE1	0.000000	0.000000	-0.008384	0.000000	0.001679	0.000000
	7	CASE1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
	8	CASE1	0.113437	0.000000	-0.000514	0.000000	0.004420	0.000000
	9	CASE1	0.419673	0.000000	-0.001028	0.000000	0.007513	0.000000

Member Forces

Elem	Load	Part	Axial (lbf)	Shear-y (lbf)	Shear-z (lbf)	Torsion (lbf·in)	Moment-y (lbf·in)	Moment-z (lbf·in)
1	CASE1	i	-1191.50	0.00	100.00	0.00	9062.75	0.00
1	CASE1	1/4	-1191.50	0.00	100.00	0.00	6797.07	0.00
1	CASE1	2/4	-1191.50	0.00	100.00	0.00	4531.38	0.00
1	CASE1	3/4	-1191.50	0.00	100.00	0.00	2265.69	0.00
1	CASE1	j	-1191.50	0.00	100.00	0.00	0.00	0.00
2	CASE1	i	-1191.50	0.00	100.00	0.00	0.00	0.00
2	CASE1	1/4	-1191.50	0.00	100.00	0.00	-2265.69	0.00
2	CASE1	2/4	-1191.50	0.00	100.00	0.00	-4531.38	0.00
2	CASE1	3/4	-1191.50	0.00	100.00	0.00	-6797.07	0.00
2	CASE1	j	-1191.50	0.00	100.00	0.00	-9062.75	0.00
3	CASE1	i	-2431.50	0.00	-2.01	0.00	-101.18	0.00
3	CASE1	1/4	-2431.50	0.00	-2.01	0.00	-59.71	0.00
3	CASE1	2/4	-2431.50	0.00	-2.01	0.00	-18.23	0.0
3	CASE1	3/4	-2431.50	0.00	-2.01	0.00	23.24	0.00
3	CASE1	j	-2431.50	0.00	-2.01	0.00	64.72	0.00
4	CASE1	i	-2431.50	0.00	-2.01	0.00	64.72	0.00
4	CASE1	1/4	-2431.50	0.00	-2.01	0.00	73.54	0.0
4	CASE1	2/4	-2431.50	0.00	-2.01	0.00	82.36	0.0
4	CASE1	3/4	-2431.50	0.00	-2.01	0.00	91.18	0.0
4	CASE1	j	-2431.50	0.00	-2.01	0.00	100.00	0.00
5	CASE1	i	-298.00	0.00	0.00	0.00	225.06	0.00
5	CASE1	1/4	-298.00	0.00	0.00	0.00	216.61	0.0
5	CASE1	2/4	-298.00	0.00	0.00	0.00	208.16	0.0
5	CASE1	3/4	-298.00	0.00	0.00	0.00	199.71	0.00
5	CASE1	j	-298.00	0.00	0.00	0.00	191.26	0.0
6	CASE1	i	-298.00	0.00	0.00	0.00	191.26	0.00
6	CASE1	1/4	-298.00	0.00	0.00	0.00	168.44	0.00
6	CASE1	2/4	-298.00	0.00	0.00	0.00	145.63	0.00
6	CASE1	3/4	-298.00	0.00	0.00	0.00	122.81	0.00
6	CASE1	j	-298.00	0.00	0.00	0.00	100.00	0.00

Comparison of Results

Unit: in, lbf-in, rad

Case	Result	Theoretical	SAP2000	MIDAS/Civil	
	Lateral displacement	6.849	6.823	6.820	
Pure Sway	at the top	0.049	0.823		
	End moment	9084.0	9064.9	9062.8	
	Rotational	0.00170	0.00168	0.00168	
N. C	displacement at the top	0.00170	0.00108		
No Sway	End moment	-102.0	-101.2	-101.2	
	End shear	-2.02	-2.01	-2.01	
	Lateral displacement	0.420	0.420	0.420	
	at the top	0.420	0.420	0.420	
No Shear	Rotational	0.00752	0.00751	0.00751	
	displacement at the top	0.00752	0.00751		
	End moment	225.2	225.0	225.1	

References

Livesley, R. K., and Chandler, D. B., "Stability Functions for Structural Frameworks", Manchester University Press, UK, 1956.

"SAP90, A Series of Computer Programs for the Finite Element Analysis of Structures, Structural Analysis Verification Manual", Computer and Structures, Inc., 1992, Example 26.