

FCC RF EXPOSURE REPORT

FCC ID: TVE-120757

Project No. : 1909C046

Equipment: PCIEV1.0-FRT01 WLAN 802.11AC 3x3 PCIE Module

Brand Name : FORTINET **Test Model** : P25037-01

Series Model : N/A

Applicant: Fortinet, Inc.

Address : 899 Kifer Road, Sunnyvale, CA 94086 USA

Manufacturer : Fortinet, Inc.

Address : 899 Kifer Road, Sunnyvale, CA 94086 USA

Date of Receipt : Sep. 11, 2019

Date of Test : Sep. 12, 2019 ~ Nov. 07, 2019

Issued Date : Dec. 13, 2019

Report Version : R00

Test Sample : Engineering Sample No.: DG2019091147

Standard(s) : FCC Guidelines for Human Exposure IEEE C95.1 & FCC Part 2.1091

FCC Title 47 Part 2.1091, OET Bulletin 65 Supplement C

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

Prepared by : Chay Cai

Approved by: Ethan Ma

IAC-MRA ACCREDITED

Certificate #5123.02

Add: No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

Tel: +86-769-8318-3000 Web: www.newbtl.com

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue	Dec. 13, 2019

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Table for Filed Antenna

For 2.4G:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Tenda °	W1800R	Dipole	SMA Male Reverse	4.16
2	Tenda °	W1800R	Dipole	SMA Male Reverse	4.16
3	Tenda °	W1800R	Dipole	SMA Male Reverse	4.16

Note: This EUT supports CDD, and all antennas have the same gain,

(1) For Non Beamforming function, Directional gain=G_{ANT}+Array Gain,

For output power measurements, Array Gain=0 ($N_{ANT} \le 4$), so the Directional gain=4.16. For power spectral density measurements, Array Gain=10log(N_{ANT}/N_{SS}) dB, so the Directional gain=4.16+10log(3/1)=8.93. So, the power density limit is 8-8.93+6=5.07.

(2)For Beamforming function, Beamforming gain: 4.5dB, so the Directional gain=4.16+4.5=8.66, Then, the output Power limit is 30-8.66+6=27.34.

For 5G:

For UNII-1:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Tenda °	W1800R	Dipole	SMA Male Reverse	3.06
2	Tenda °	W1800R	Dipole	SMA Male Reverse	3.06
3	Tenda °	W1800R	Dipole	SMA Male Reverse	3.06

Note: This EUT supports CDD, and all antennas have the same gain,

(1) For Non Beamforming function, Directional gain=G_{ANT}+Array Gain, For output power measurements, Array Gain=0 (N_{ANT}≤4), so, Directional gain=3.06 For power spectral density measurements, Array Gain=10log(N_{ANT}/N_{SS}) dB Directional gain=3.06+10log(3/1)=7.83. So, the UNII-1 power density limit is 17-7.83+6=15.17

(2) For Beamforming function, Beamforming gain: 4.5dB, so the Directional gain=3.06+4.5=7.56, Then, the UNII-1 output Power limit is 30-7.56+6=28.44.

For UNII-3:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	Tenda °	W1800R	Dipole	SMA Male Reverse	3.58
2	Tenda °	W1800R	Dipole	SMA Male Reverse	3.58
3	Tenda °	W1800R	Dipole	SMA Male Reverse	3.58

Note: This EUT supports CDD, and all antennas have the same gain,

(1) For Non Beamforming function, Directional gain=G_{ANT}+Array Gain, For output power measurements, Array Gain=0 (N_{ANT}≤4), so, Directional gain=3.58 For power spectral density measurements, Array Gain=10log(N_{ANT}/N_{SS}) dB Directional gain=3.58+10log(3/1)=8.35. So, the UNII-3 power density limit is 30-8.35+6=27.65.

(2) For Beamforming function, Beamforming gain: 4.5dB, so the Directional gain=3.58+4.5=8.08, Then, the UNII-3 output Power limit is 30-8.08+6=27.92

The worst case for 3TX as follow:

For 2.4G:

For Non Beamforming:

i oi iton beannonning.	
Operating Mode TX Mode	3ТХ
IEEE 802.11b	V (Ant. 1+Ant. 2+Ant. 3)
IEEE 802.11g	V (Ant. 1+Ant. 2+Ant. 3)
IEEE 802.11n(HT20)	V (Ant. 1+Ant. 2+Ant. 3)
IEEE 802.11n(HT40)	V (Ant. 1+Ant. 2+Ant. 3)

For Beamforming:

Operating Mode TX Mode	3TX
IEEE 802.11n(HT20)	V (Ant. 1+Ant. 2+Ant. 3)
IEEE 802.11n(HT40)	V (Ant. 1+Ant. 2+Ant. 3)

For 5G:

For Non Beamforming:

For Non Beamforning.	
Operating Mode	3TX
TX Mode	•
IEEE 802.11a	V (Ant. 1+Ant. 2+Ant. 3)
IEEE 802.11n (HT20)	V (Ant. 1+Ant. 2+Ant. 3)
IEEE 802.11n (HT40)	V (Ant. 1+Ant. 2+Ant. 3)
IEEE 802.11ac(VHT20)	V (Ant. 1+Ant. 2+Ant. 3)
IEEE 802.11ac(VHT40)	V (Ant. 1+Ant. 2+Ant. 3)
IEEE 802.11ac(VHT80)	V (Ant. 1+Ant. 2+Ant. 3)

For Beamforming:

i oi boaimeimig.	
Operating Mode TX Mode	3TX
IEEE 802.11n (HT20)	V (Ant. 1+Ant. 2+Ant. 3)
IEEE 802.11n (HT40)	V (Ant. 1+Ant. 2+Ant. 3)
IEEE 802.11ac(VHT20)	V (Ant. 1+Ant. 2+Ant. 3)
IEEE 802.11ac(VHT40)	V (Ant. 1+Ant. 2+Ant. 3)
IEEE 802.11ac(VHT80)	V (Ant. 1+Ant. 2+Ant. 3)

2. TEST RESULTS

For 2.4GHz_Non Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
4.16	2.6062	29.67	926.8298	0.30770	1	Complies

For 2.4GHz_With Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
8.66	7.3451	26.33	429.5364	0.40191	1	Complies

For 5GHz UNII-1_Non Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
3.06	2.0230	26.58	454.9881	0.11725	1	Complies

For 5GHz UNII-1_Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
7.56	5.7016	26.39	435.5119	0.31632	1	Complies

For 5GHz UNII-3_Non Beamforming:

	ctional (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Test Result
3.	58	2.2803	29.24	839.4600	0.24385	1	Complies

For 5GHz UNII-3_Beamforming:

Directional Gain (dBi)	Directional Gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm²)	Test Result
80.8	6.4269	27.11	514.0437	0.42085	1	Complies

For the max simultaneous transmission MPE:

Power Density (S) (mW/cm²)	Power Density (S) (mW/cm ²)	Total	Limit of Power Density (S)	Test Result
2.4GHz	5GHz		(mW/cm ²)	
0.40191	0.42085	0.82276	1	Complies

Note: The calculated distance is 25 cm.

End of Test Report