Simple Optimization Method to Determine Best Management Practices to Reduce Phosphorus Loading in Echo Reservoir, Utah

Omar Alminagorta, Ph.D Candidate CEE 6410- Sept 2012

Outline

- Problem Description
- ✓ Objective
- ✓ General Information Echo Reservoir
 - Sources P Loading
 - Best Management Practices (BM)
- ✓ Methodology
 - Optimization Model
- Exercise Application

Background/Problem Description

- Excessive nutrients impair many U.S. water bodies
- Phosphorus and nitrogen nutrients
 - stimulate algae growth
 - reduce dissolved oxygen
 - negatively impact aquatic habitat and water supplies

Background/Area of Study

Background/Water Pollution Control

- For point sources use Best Available Technologies (BATs)
- The identification, selection, and location of Best Management Practices (BMPs) is a concern for nonpoint source management.

Objective

Develop a simple optimization tool that identifies:

- the cost effective mix of BMPs
- to achieve the required phosphorus load reduction targets for non-point phosphorus sources in a watershed.

Sources of Phosphorus loading

- Direct Runoff from Animal Feeding Operations
- Land Applied Manure
- Public Land Grazing
- Private Land Grazing
- Septic Systems
- Diffuse Runoff

Cost information for BMPs

(Horsburgh et al. estimates for Bear River Watershed 2009)

ВМР	Metric Units	P Reduction (kg/unit)	Cost (\$/kg)
Land retirement	Km²	185	7368
Grazing land protection	Km²	22	238
Stream fencing	Km	24	1373
Stream bank stabilization	Km	208	15
Cover crops	Km ²	44	675
Grass filter strips	Km ²	143	412
Animal waste facility	system	27107	730
Conservation tillage	Km ²	20	337
Agricultural nutrient management	Km²	44	168
Sprinkler irrigation	Km²	2914	128

Best Management Practices (BMPs)

- 1. Land retirement
- 2. Grazing land protection
- 3. Stream fencing
- 4. Stream bank stabilization
- 5. Cover crops

Best Management Practices (cont.)

- 6. Grass filter strips
- 7. Animal waste facility
- 8. Conservation tillage
- 9. Agricultural nutrient management

10. Sprinkler irrigation

Assignment of BMPs to Non-Point Sources

Source	Description	Applicable BMPs
Direct run off from AFOs	Animal wastes containing phosphorus from watershed animal feeding operations (AFOs) directly runoff into nearby water bodies.	None
Land applied manure	Animal waste applied on agricultural land as a fertilizer is incorporated into the soil and subsequently washed into a nearby water body.	Grass filter strips, Conservation tillage, Manage agricultural nutrients.
Public land grazing	Animals grazed on public lands leave waste containing phosphorus that is subsequently washed into a nearby water body.	Protect grazing land, Fence streams, Grass filter strips.
Private land grazing	Animals grazed on private lands leave waste containing phosphorus that is subsequently washed into a nearby water body.	Protect grazing land, Fence streams, Grass filter strips.
Septic Systems	Domestic leak wastewater into nearby waterways when septic tanks are installed incorrectly or are too close to a waterway.	None
Diffuse	Phosphorus loading that arises from fertilizers,	Retire land, Stabilize stream banks,
Runoff	pesticides, trails, roads, dispersed camping sites	Cover crops, Grass filter strips,
	and erosion from up slopes areas.	Conservation tillage, Manage
		agricultural nutrients, Sprinkler
		irrigation.

Echo Reservoir TMDL (Clean Water Act) (Adams et al., 2006)

Waterbody ID	UT-L-16020101-001		
Location	Summit County, Utah		
Pollutants of Concern	Dissolved Oxygen, Total Phosphorus		
Loading Assessment	 More than 50% of water column < 4 mg/l dissolved oxygen in Echo Reservoir above Dam Percent of in-lake total phosphorus concentrations exceeding 0.025 mg/l ranging from 25% - 100% 		
Water Quality Targets/Endpoints	 Target Load of 19,800 kg/yr total phosphorus from all tributary sources to Echo Reservoir. A shift away from blue-green algal dominance. TSI values for Total Phosphorus. Chlorophyll A. and Secchi depth not to exceed 50. 		
Implementation Strategy	•Reduce Point source loads through application of BATs. •Implement Nonpoint Source BMPs		

Allocation of Total Watershed Loads

(showing non-point sources only)

Non Point Sources	Existing Total Watershed Load (kg/yr)	Watershed Load Allocation per TMDL (kg/yr)	Percent Reduction (%)			
	Creek					
AFOs	248	25	90			
Land applied manure	961	192	80			
Public land grazing	0	0	0			
Private land grazing	3,535	3,182	10			
Septic systems	24	24	0			
Diffuse runoff	6,539	5,624	14			
	Weber River b	elow Wanship				
AFOs	66	7	90			
Land applied manure	942	188	80			
Public land grazing	0	0	0			
Private land grazing	1,550	1,395	10			
Septic systems	135	135	0			
Diffuse runoff	5,493	4,944	10			
	Weber River above Wanship					
AFOs	1,181	118	90			
Land applied manure	3,560	712	80			
Public land grazing	196	196	0			
Private land grazing	3,718	3,346	10			
Septic systems	221	221	0			
Diffuse runoff	13,517	12,165	10			
Total Non Point	41,886	32,474	22.5			

Land use at Echo
Watershed
(Adams et al., 2006)

Methodology

TMDL Water Quality Study

(Adams and Whitehead, 2006)

- Sub-watershed areas (w)
- Phosphorus sources (s)
- Required load reductions (p_{ws})
- Available land area and stream length to do BMPs (b_{aw})

BMP Study

(Horsburgh et al, 2009)

- 10 available BMPs (i)
- Removal efficiencies (e_i)
- Unit costs (u_i)

Linear Optimization Program

- BMPs to implement (B_{iws})
- Total implementation cost (Z)
- Load reduction (P_{iws})

Optimization Components

Objective Function: represents the goal of the problem in terms of decision variables

Max=Sum(aX-bX²)

Decision Variables: factors that decision making can control

Constraints: restrictions on decision variables

$$X_1, X_2, X_3$$

$$X_1 + X_2 + X_3 < Rt$$

 $X_1 < Cap1$

Optimization Model

Decide BMP implementation levels (B_{iws}) to

Minimize costs

$$min \sum_{iws} (u_i \times P_{iws})$$

Such that

- (i) Define phosphorus removed,
- (ii) Phosphorus reduction targets achieved,
- (iii) Available resources to implement BMPs,
- (iv) Non-negative variable values
- (v) Global reduction target

$$P_{iws} = e_i \times B_{iws}; \forall i, s, w$$

$$\sum_{i} (c_{is} \times P_{iws}) \geq p_{ws}; \forall w, s$$

$$\sum_{s} \sum_{i} (c_{is} B_{iws}) \leq b_{w}; \forall w$$

$$P_{iws} \geq 0; \forall i, w, s ; B_{iws} \geq 0; \forall i, w, s$$

$$\sum_{i} \sum_{w} (c_{is} \times P_{iws}) \geq \sum_{w} p_{ws}; \forall s$$

			Private	D:00				
Results		land grazing	Diffuse runoff	Land applied	l manure	$\sum (c_{is} \times P_{iws})$	$\geq p_{ws}; \forall w, s$	
		(kg/yr)	(kg/yr)	(kg/yr)		i		
Scen.	Sub- watershed ^a	Required reduction (kg/yr)	Protect grazing land	Stabilize stream banks	Conservation tillage	Manage Ag. nutrients	Total reduction (kg/yr)	Total cost (\$1000)
	Chalk	2,038	354	915	87	682	2,038	242
Each sub-	creek WBW	1,458	155	549		754	1,458	172
watershed	WAW	4,572	372	1,352		2,848	4,572	587
	Total	8,067	880	2,816	87	4,283	8,067	1,000
	Chalk creek		880	2,816		682	4,379	367
C1 - 1 - 1	WBW		$\sum \sum$	$(c_{i,j} \times P_{i,j,j})$	$\geq \sum p_{ws}; \forall s$	942	942	158
Global	WAW		i w	(is iws)	W W	2,747	2,747	460
	Total	8,067	880	2,816		4,370	8,067	985

Sensitivity Analysis

ВМР	Cost(\$/kg)			Efficiency - Phosphorus Reduction(kg/unit)		
DIVIP	LOWER	CURRENT	UPPER	LOWER	CURRENT	UPPER
Protect grazing land	0	238	412	0	22	38
Stabilize stream banks	0	15	128	0	208	1,726
Conservation tillage	168	337	412	10	20	25
Manage Ag. nutrients	0	168	337	0	44	88

Conclusion

- A simple linear optimization tool that identifies cost-effective BMPs was developed.
- This optimization tool offers a simple way to test the feasibility of a proposed TMDL allocation
- The tool also suggests how loads can be spatially redistributed
- Relaxing the sub-watershed reduction targets suggests a cheaper set of BMPs.

Exercise: Find the cost effective mix of BMPs to achieve phosphorus reduction targets

Go to the follow website and download the exercise spreadsheet

Omar Alminagorta PhD Candidate Civil and Environmental Engineering -USU o.alminagorta@aggiemail.usu.edu

