Gramáticas

U.D. omputación

Gramáticas Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

entre AFs y Gramáticas Regulares

Gramáticas Incontextuales

Gramáticas.

U.D. Computación

DSIC - UPV

2017-18

Índice

Gramáticas

U.D. omputació:

Gramática: Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales

- Gramáticas Formales
- Equivalencia entre AFs i Gramáticas Regulares
- Gramáticas Incontextuales

Gramáticas Formales

Gramáticas

U.D. Computaciór

Gramáticas Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas ncontextuales

Definición intuitiva

Una gramática es una forma finita de describir un lenguaje

$$G = (N, \Sigma, P, S)$$

- Se parte de un axioma S
- \blacksquare El objetivo es obtener palabras (elementos de Σ^*) de un lenguaje L
- Empleando reglas de reescritura (producciones, elementos de *P*)
- Con la ayuda de símbolos auxiliares (elementos de N)

Gramáticas Formales

Gramáticas

U.D. Computación

Gramáticas Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales

Definición Formal

$$G = (N, \Sigma, P, S)$$

- N es un conjunto finito de elementos llamados no terminales.
- Σ es un *alfabeto*
 - $N \cap \Sigma = \emptyset$, $N \cup \Sigma = V$ (conjunto de símbolos)
- \blacksquare $P \subset V^*NV^* \times V^*$
 - Denotaremos $(\alpha, \beta) \in P$ mediante $\alpha \to \beta$
 - Si $\alpha \to \beta_1 \dots \alpha \to \beta_n$ escribimos $\alpha \to \beta_1 |\beta_2| \dots |\beta_n|$
- S ∈ N

Gramáticas

Gramáticas

U.D. omputaciór

Gramáticas Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales

Ejemplo

La gramática

$$G = (\{S\}, \{a, b\}, S \rightarrow aSb|\lambda, S)$$

- Define el lenguaje $L = \{a^n b^n : n \ge 0\}$
- Las palabras se generan partiendo de S y aplicando las reglas de producción
- Generación de aabb (por ejemplo):
 - \blacksquare $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aa\lambda bb = aabb$

Lenguaje generado por una gramática G

Gramáticas

U.D. Computaciór

Gramáticas Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales Dados $\alpha', \beta' \in V^*$, decimos que α' deriva directamente en β' ($\alpha' \Rightarrow_G \beta'$) en G si:

- $\blacksquare \alpha' = \gamma \alpha \delta.$
- $\blacksquare \beta' = \gamma \beta \delta.$
- $\alpha \rightarrow \beta \in P$

Ejemplo: en la gramática anterior $aSb \Rightarrow aaSbb$

Decimos que α deriva en β ($\alpha \overset{*}{\underset{G}{\rightleftharpoons}} \beta$) en G si existe una cadena de cero o más derivaciones directas que convierten α en β .

Ejemplo: en la gramática anterior $aSb \stackrel{*}{\Rightarrow} aabb$.

Lenguaje generado por una gramática G

Gramáticas

U.D. Computació

Gramáticas Formales.

Tipos de gramáticas: l Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales $\alpha \in V^*$ es una forma sentencial si $S \overset{*}{\underset{G}{\Rightarrow}} \alpha$. Si $\alpha \in \Sigma^*$ se dice que α es una palabra generada por G.

Lenguaje generado por G

$$L(G) = \{x \in \Sigma^* : S \stackrel{*}{\underset{G}{\Rightarrow}} x\}$$

Gramáticas

U.D. Computaciór

Gramática Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales Imponiendo restricciones a las reglas de producción se obtienen los siguientes tipos de gramáticas:

■ Tipo 3, LINEALES POR LA DERECHA (IZQUIERDA): Sus reglas son de la forma $A \rightarrow aB(A \rightarrow Ba)$ con $A \in N$, $a \in \Sigma \cup \lambda$, $B \in N \cup \lambda$.

Gramáticas

U.D. Computaciór

Gramática Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuale: Imponiendo restricciones a las reglas de producción se obtienen los siguientes tipos de gramáticas:

- Tipo 3, LINEALES POR LA DERECHA (IZQUIERDA): Sus reglas son de la forma $A \to aB(A \to Ba)$ con $A \in N$, $a \in \Sigma \cup \lambda$, $B \in N \cup \lambda$.
- Tipo 2, INCONTEXTUALES o INDEP. DE CONTEXTO: Sus reglas son de la forma $A \rightarrow \alpha$ con $A \in N$, $\alpha \in V^*$.

Gramáticas

U.D. Computaciór

Gramática Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales Imponiendo restricciones a las reglas de producción se obtienen los siguientes tipos de gramáticas:

- Tipo 3, LINEALES POR LA DERECHA (IZQUIERDA): Sus reglas son de la forma $A \to aB(A \to Ba)$ con $A \in N$, $a \in \Sigma \cup \lambda$, $B \in N \cup \lambda$.
- Tipo 2, INCONTEXTUALES o INDEP. DE CONTEXTO: Sus reglas son de la forma $A \rightarrow \alpha$ con $A \in N$, $\alpha \in V^*$.
- Tipo 1, CONTEXTUALES o DEP. DE CONTEXTO: Reglas: $\gamma A \delta \rightarrow \gamma \alpha \delta$ con $A \in N$, $\gamma, \delta \in V^*$, $\alpha \in V^+$. (se excluye $S \rightarrow \lambda$ a condición de...)

Gramáticas

U.D. Computación

Gramática Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales Imponiendo restricciones a las reglas de producción se obtienen los siguientes tipos de gramáticas:

- Tipo 3, LINEALES POR LA DERECHA (IZQUIERDA): Sus reglas son de la forma $A \to aB(A \to Ba)$ con $A \in N$, $a \in \Sigma \cup \lambda$, $B \in N \cup \lambda$.
- Tipo 2, INCONTEXTUALES o INDEP. DE CONTEXTO: Sus reglas son de la forma $A \rightarrow \alpha$ con $A \in N$, $\alpha \in V^*$.
- Tipo 1, CONTEXTUALES o DEP. DE CONTEXTO: Reglas: $\gamma A \delta \rightarrow \gamma \alpha \delta$ con $A \in N$, $\gamma, \delta \in V^*$, $\alpha \in V^+$. (se excluye $S \rightarrow \lambda$ a condición de...)
- Tipo 0, SIN RESTRICCIONES:

Jerarquía de Chomsky

Gramáticas

U.D. computació

Gramática Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuale:

- Se dice que un lenguaje es de Tipo i (i = 0, 1, 2, 3) si es generable por una gramática de tipo i.
- Llamamos \mathcal{L}_i a la familia de lenguajes de tipo *i*.

Jerarquía de Chomsky

Se puede demostrar que : $\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$

Gramáticas

U.D. Computació

Gramática Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales Según el tipo de gramática que los genera, los lenguajes se denominan Regulares, Incontextuales,...

Ejemplos

■ La gramática cuyas reglas son

$$S \rightarrow aA|bA|\lambda, A \rightarrow aS|bS$$
:

- -Es regular y
- -Genera el lenguaje de todas las palabras de longitud par sobre $\{a, b\}$
- La gramática cuyas reglas son $S \rightarrow aSb|\lambda$:
 - Es Incontextual y
 - -Genera el lenguaje de todas las palabras de la forma a^nb^n sobre $\{a,b\}$

Equivalencia entre Autómatas Finitos y Gramáticas Regulares

Gramáticas

U.D. Computaciór

Gramáticas Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales Si *L* es un lenguaje regular, entonces *L* es aceptado por un autómata finito

Sea $G = (N, \Sigma, P, S)$ una gramática lineal por la derecha tal que L(G) = L. Construimos un AF λ $A = (Q, \Sigma, \delta, q_0, F)$ tal que L(A) = L(G).

$$Q = N \cup \{X\}, X \notin N, \quad q_0 = S, \quad F = \{X\}.$$

- $\forall (A_i \rightarrow a_j A_k) \in P$ se define $A_k \in \delta(A_i, a_i), A_i, A_k \in N, a_i \in \Sigma \cup \{\lambda\}.$
- $\forall (A_i \rightarrow a_j) \in P$ se define $X \in \delta(A_i, a_i), A_i \in N, a_i \in (\Sigma \cup \{\lambda\}).$
- $\blacksquare \ \forall a \in (\Sigma \cup \{\lambda\}) \text{ se define } \delta(X, a) = \emptyset.$

Gramáticas

U.D. mputación

Gramática: Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales

Obtención del AF equivalente a:

$$S \rightarrow A|0A|1B$$

$$A \rightarrow 0A|0$$

$$B \rightarrow 1B|1|\lambda$$

Gramáticas

U.D. omputació:

Gramáticas Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales

Obtención del AF equivalente a:

$$S \rightarrow A|0A|1B$$

$$A \rightarrow 0A|0$$

$$B \rightarrow 1B|1|\lambda$$

Equivalencia entre Autómatas Finitos y Gramáticas Regulares

Gramáticas

U.D. Computaciór

Gramática Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas ncontextuales Si L es un lenguaje aceptado por un autómata finito, entonces L es regular

Sea $A = (Q, \Sigma, \delta, q_0, F)$ un AF λ tal que L(A) = L. Construimos una gramática lineal por la derecha $G = (N, \Sigma, P, S)$ que genere L.

$$N=Q$$
, $S=q_0$.

- $\forall q' \in \delta(q, a)$, se define $(q \to aq') \in P$, $q, q' \in Q, a \in (\Sigma \cup \{\lambda\})$.
- $\blacksquare \ \forall q \in F \text{ se define } (q \to \lambda) \in P.$

Gramáticas

U.D. omputaciór

Gramática: Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales Obtención de la gramática lineal por la dch. equivalente al *AF* de la figura.

Gramáticas

U.D. Computaciór

Gramáticas Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales Obtención de la gramática lineal por la dch. equivalente al *AF* de la figura. Solución:

$$egin{aligned} q_0
ightarrow q_1 | \lambda & q_1
ightarrow aq_0 | aq_2 | q_3 \ q_2
ightarrow bq_1 | aq_2 | cq_3 | \lambda & q_3
ightarrow bq_1 | cq_3 | \lambda \end{aligned}$$

Gramáticas Incontextuales

Gramáticas

U.D. Computació

Gramática Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales Sea $G = (N, \Sigma, P, S)$ una gramática incontextual, es decir, todas sus reglas son de la forma $A \to \alpha$ con $A \in N$, $\alpha \in V^*$.

Árbol de derivación

Un árbol de derivación de la gramática G es un árbol tal que:

- Los nodos estan etiquetados por símbolos de $V \cup \{\lambda\}$, y la raiz esta etiquetada por S
- Si un nodo es interior, entonces esta etiquetado por un símbolo de *N*
- Si el nodo n esta etiquetado por A y sus sucesores, n_1, n_2, \dots, n_k estan etiquetados por X_1, X_2, \dots, X_k respectivamente, entonces $A \rightarrow X_1, X_2, \dots, X_k \in P$
- Si un nodo tiene asignada la etiqueta λ entonces es hoja y el único sucesor de su predecesor

Gramáticas

U.D. Computaciór

Gramática Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalenci: entre AFs y Gramáticas Regulares

Gramáticas Incontextuales Expresiones algebraicas sintácticamente correctas sobre las variables x, y y z:

$$S \to x \mid y \mid z \mid S + S \mid S - S \mid S * S \mid S/S \mid (S)$$

Un árbol de derivación para (x + y) * x - z

Forma Normal de Chomsky (FNC)

Gramáticas

U.D. Computació

Gramáticas Formales.

Tipos de gramáticas: la Jerarquía de Chomsky

Equivalencia entre AFs y Gramáticas Regulares

Gramáticas Incontextuales Una gramática incontextual $G = (N, \Sigma, P, S)$ está en FNC cuando todas sus reglas son de la forma:

$$A \rightarrow BC$$
 con $A, B, C \in N$
 $A \rightarrow a$ con $A \in N$, $a \in \Sigma$

FNC de la gramática

$$S \to x \mid y \mid z \mid S + S \mid S - S \mid S * S \mid S/S \mid (S)$$

$$S o x \mid y \mid z \mid SW_1 \mid SW_2 \mid SW_3 \mid SW_4 \mid X_oW_5 \ W_1 o X_+S \qquad W_2 o X_-S \qquad W_3 o X_*S \ W_4 o X_/S \qquad W_5 o SX_t \qquad X_+ o + \ X_- o - \qquad X_* o * \qquad X_/ o / \ X_o o (\qquad X_t o)$$