Short Notes

A static charge produces only electric field. A moving charge produces both electric field and magnetic field. A current carrying conductor produces only magnetic field.

Magnetic Field Produced by a Current (Biot-Savart Law)

The magnetic induction dB produced by an element dl carrying a current I at a distance r is given by:

$$dB = \frac{\mu_0 \mu_r}{4\pi} \frac{I \, dl \sin \theta}{r^2} \Rightarrow \vec{dB} = \frac{\mu_o \mu_r}{4\pi} \frac{I(d\vec{l} \times \vec{r})}{r^3}$$

Here, the quantity Idl is called as current element.

 μ = permeability of the medium = $\mu_0\mu_r$

 μ_0 = permeability of free space

 μ_r = relative permeability of the medium (Dimensionless quantity)

Unit of μ_0 and μ is N A⁻² or H m⁻¹; $\mu_0 = 4\pi \times 10^{-7}$ H m⁻¹

Magnetic Induction Due to a Straight Current Conductor

(i) Magnetic induction due to a finite wire.

$$B = \frac{\mu_0 I}{4\pi R} (\cos \theta_1 + \cos \theta_2) = \frac{\mu_0 I}{4\pi R} (\sin \alpha_1 + \sin \alpha_2)$$

(ii) Magnetic induction due to a infinitely long wire

$$B = \frac{\mu_0 I}{2\pi R} \otimes (\alpha_1 = 90^\circ; \alpha_2 = 90^\circ)$$

(iii) Magnetic induction due to semi infinite straight conductor

$$B = \frac{\mu_0 I}{4\pi R} \otimes (\alpha_1 = 0^\circ; \alpha_2 = 90^\circ)$$

Moving Charges and Magnetism

Magnetic Field Due to a Flat Circular Coil Carrying a Current

(i) At its centre: $B = \frac{\mu_0 NI}{2R} \odot$

N = total number of turns in the coil

I = current in the coil

R = Radius of the coil

It is maximum at the centre, $B_C = \frac{\mu_0 NI}{2R}$

(iii) Magnetic field due to flat circular are:

$$B = \frac{\mu_0 I \theta}{4 - R}$$

Magnetic Field Due to Infinite Long Solid Cylindrical Conductor of Radius R

$$\Rightarrow \text{ For } r \ge R : B = \frac{\mu_0 I}{2\pi r}$$

$$For r < R : B = \frac{\mu_0 Ir}{2\pi R^2}$$

Magnetic Induction Due to a Solenoid

 $B = \mu_0 nI$, where n is number of turns per meter and I is current. Direction is along the axis.

Magnetic Induction Due to Toroid

$$B = \mu_0 nI$$

Where
$$n = \frac{N}{2\pi R}$$

R is radius of toroid

N is total turns and $R \gg r$

Magnetic Induction Due to Current Carrying Sheet

$$B = \frac{1}{2} \mu_0 \lambda(\lambda = \text{Linear current density (A/m)})$$

Ampere's Circuital Law

 $\oint \vec{B} \cdot d\vec{l} = \mu_0 \Sigma I$ where ΣI = algebraic sum of all the enclosed

Motion of a Charge In Uniform Magnetic Field

- (a) When \vec{v} is || to \vec{B} : Motion will be in a straight line and $\vec{F} = 0$
- (b) When \vec{v} is \perp to \vec{B} : Motion will be in circular path with radius $R = \frac{mv}{aB}$ and angular velocity $\omega = \frac{qB}{m}$ and F = qvB.
- (c) When \vec{v} is at angle θ to \vec{B} : Motion will be helical with radius $R = \frac{mv\sin\theta}{aB}$ and pitch $P_H = \frac{2\pi mv\cos\theta}{aB}$ and $F = qvB\sin\theta$.

Lorentz Force

An electric charge 'q' moving with a velocity \vec{v} through a magnetic field of magnetic induction \overrightarrow{B} experiences a force \overrightarrow{F} , given by $\overrightarrow{F} = q \overrightarrow{v}_{\times} \overrightarrow{B}$. There fore, if the charge moves in a space where both electric and magnetic fields are superposed.

 \overrightarrow{F} = net electromagnetic force on the charge = $\overrightarrow{qE} + \overrightarrow{qv} \times \overrightarrow{B}$ This force is called the Lorentz Force

Motion of Charge in Combined Electric Field and **Magnetic Field**

- When $\vec{v} \parallel \vec{B}$ and $\vec{v} \parallel \vec{E}$, motion will be uniformly accelerated in line as $F_{\text{magnetic}} = 0$ and $F_{\text{electrostatic}} = qE$ So the particle will be either speeding up or speeding down
- When $\vec{v} \parallel \vec{B}$ and $\vec{v} \perp \vec{E}$, motion will be uniformly accelerated
- in a parabolic path • When $\vec{v} \perp \vec{B}$ and $\vec{v} \perp \vec{E}$, the particle will move undeflected
- and undeviated with same uniform speed if $v = \frac{E}{B}$ (This is called as velocity selector condition)

Magnetic Force on a Straight Current Carrying Wire

$$\vec{F} = I (\vec{L} \times \vec{B})$$

I = current in the straight conductor

L =length of the conductor in the direction of the current in it

B = magnetic induction (Uniform throughout the length of conductor)

Note: In general force is $\overrightarrow{F} = \int I(d\overrightarrow{l} \times \overrightarrow{B})$

Magnetic Interaction Force Between Two Parallel Long Straight Currents

The interaction force between 2 parallel long straight wires is:

- (i) Repulsive if the currents are anti-parallel.
- (ii) Attractive if the currents are parallel. This force per unit length on either conductor is given by $F = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{r}.$

Where r = perpendicular distance between the parallel conductors

Magnetic Torque on a Closed Current Circuit

When a plane closed current circuit of 'N' turns and of area 'A' per turn carrying a current I is placed in uniform magnetic field, it experience a zero net force, but experience a torque given by

$$\overrightarrow{\tau} = NI \xrightarrow{A \times B} \overrightarrow{B} = \overrightarrow{M} \times \overrightarrow{B} = BINA \sin\theta$$

where \overrightarrow{A} = area vector outward from the face of the circuit where the current is anticlockwise, \vec{B} = magnetic induction of the uniform magnetic field and

 \overrightarrow{M} = magnetic moment of the current circuit = NIA

Force on a Random Shaped Conductor in a **Uniform Magnetic Field**

- Magnetic force on a closed loop in a uniform \vec{B} is zero
- * Force experienced by a wire of any shape is equivalent to force on a wire joining points A and B in a uniform magnetic field.

Magnetic Moment of A Rotating Charge

If a charge q is rotating at an angular velocity ω , its equivalent current is given as $I = \frac{q\omega}{2\pi}$ and its magnetic moment is $M = I\pi R^2$ $=\frac{1}{2}q\omega R^2$.

