Machine Learning Regression Assignment-Regression Algorithm Insurance charges prediction

Best R2-Score value RANDOM FOREST REGRESSION

R2-Score Vaule =(mae,sqrt)= (0.8639)

All the machine learning regression algoritham to comparatively random forest regression best prediction of Insurance charges prediction

1. Multiple linear Regression

R2-Score = 0.7894790349867009

2.SUPPORT VECTOR MACHINE REGRESSION

R2-Score Value = (POLY,C=0.1,AUTO) =(0.8629)

3. DECISION TREE REGRESSION

R2-Score Value = (Friedmans, sqrt, random) =(0.7771)

4. RANDOM FOREST REGRESSION

R2-Score Vaule =(mae,sqrt)= (0.8639)

Tabulasation and all steps of prediction stages

1. Find out the 3 - Stage of Problem Identification

Stage1- Machine Learning

Stage2- supervised Learning

Stage3- Regression

2.Name the project

Insurance charges prediction

- 3.Tell basic info about the dataset (Total number of rows, columns)
 - 1. Total number of rows

1338 rows

- 2. Total number of columns 6 Columns
 - 1. age 2. Sex 3. Bmi 4. Children 5. Smoker 6. Charges

		age	sex	bmi	children	smoker	charges
	0	19	female	27.900	0	yes	16884.92400
	1	18	male	33.770	1	no	1725.55230
	2	28	male	33.000	3	no	4449.46200
	3	33	male	22.705	0	no	21984.47061
	4	32	male	28.880	0	no	3866.85520
1	1333	50	male	30.970	3	no	10600.54830
1	1334	18	female	31.920	0	no	2205.98080

	age	sex	bmi	children	smoker	charges
1335	18	female	36.850	0	no	1629.83350
1336	21	female	25.800	0	no	2007.94500
1337	61	female	29.070	0	yes	29141.36030

1338 rows x 6 columns

4.use to categorical to numerical coverted

dataset=pd.get_dummies(dataset)

dataset

age	bmi	children	charges	sex_female	sex_male	smoker_no	smoker_yes	
0	19	27.900	0	16884.92400	1	0	0	1
1	18	33.770	1	1725.55230	0	1	1	0
2	28	33.000	3	4449.46200	0	1	1	0
3	33	22.705	0	21984.47061	0	1	1	0
4	32	28.880	0	3866.85520	0	1	1	0
1333	50	30.970	3	10600.54830	0	1	1	0
1334	18	31.920	0	2205.98080	1	0	1	0
1335	18	36.850	0	1629.83350	1	0	1	0

age	bmi	children	charges	sex_female	sex_male	smoker_no	smoker_yes	
1336	21	25.800	0	2007.94500	1	0	1	0
1337	61	29.070	0	29141.36030	1	0	0	1

1338 rows x 8 columns

5.Input/output split the dataset

Input split

age	bmi	children	sex_female	sex_male	smoker_no	smoker_yes	
0	19	27.900	0	1	0	0	1
1	18	33.770	1	0	1	1	0
2	28	33.000	3	0	1	1	0
3	33	22.705	0	0	1	1	0
4	32	28.880	0	0	1	1	0
1333	50	30.970	3	0	1	1	0
1334	18	31.920	0	1	0	1	0
1335	18	36.850	0	1	0	1	0
1336	21	25.800	0	1	0	1	0
1337	61	29.070	0	1	0	0	1

1338 rows x 7 columns

Output Split

charges

0	16884.92400
1	1725.55230
2	4449.46200
3	21984.47061
4	3866.85520
1333	10600.54830
1334	2205.98080
1335	1629.83350
1336	2007.94500
1337	29141.36030

1338 rows x 1 columns

6.Train-set and test-set split

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(independent,dependent,test_size =0.30,random_state=0)

Machine Learning Regression Assignment-Regression Algorithm Insurance charges prediction TABULATION

1.Multiple linear Regression R2-Score = 0.7894790349867009

2. SUPPORT VECTOR MACHINE REGRESSION

The Decision Tree Regression best

R2-Score Value = (POLY,C=0.1,AUTO) =(0.8629)

Below the table using a all parameter Kernel, C and Gamma use R2-Score Value

S.NO	KERNEL	С	GAMMA	R2-SCORE
1	linear	0.01	auto	-0.0797
2	linear	10	Scale	-0.0016
3	linear	100	Scale	0.5432
4	linear	1000	scale	0.6340
5	linear	2000	scale	0.6893
6	linear	10	auto	-0.0016
7	linear	100	auto	0.5432
8	linear	2000	auto	0.6893
9	poly	0.01	scale	-0.0893
10	poly	10	scale	-0.0931
11	poly	100	scale	-0.0997
<mark>12</mark>	<mark>poly</mark>	<mark>0.1</mark>	<mark>auto</mark>	0.8629
13	poly	0.01	auto	0.8377
14	rbf	2000	auto	-0.1077
15	rbf	2000	scale	0.00028
16	sigmoid	2000	auto	-5.616
17	sigmoid	0.01	auto	0.0897
18	sigmoid	0.01	scale	-5.6164
19	Linear(standard)	2000	scale	0.7440

The Decision Tree Regression best

R2-Score Value = (POLY,C=0.1,AUTO) =(0.8629)

3. DECISION TREE REGRESSION

The Decision Tree Regression best

R2-Score Value = (Friedmans, sqrt, random) =(0.7771)

Below the table using a all parameter Criterion, Max_Features and Splitter use R2-Score Value

S.NO	CRITERION	MAX_FEATURES	SPLITTER	R2-SCORE
1	mse	auto	best	0.7050
2	mse	auto	random	0.7120
3	mse	sqrt	best	0.6936
4	mse	sqrt	random	0.6833
5	mse	log2	best	0.6917
6	mse	log2	random	0.6651
7	mae	auto	best	0.6851
8	mae	auto	random	0.7643
9	mae	sqrt	best	0.7113
10	mae	sqrt	random	0.7607
11	mae	log2	best	0.7127
12	mae	log2	random	0.6650
13	Friedman_mse	auto	best	0.6982
14	Friedman_mse	auto	random	0.7151
15	Friedman_mse	sqrt	best	0.7142
<mark>16</mark>	Friedman_mse	<mark>sqrt</mark>	random	0.7771
17	Friedman_mse	Log2	best	0.6805
18	Friedman_mse	Log2	random	0.6287

The Decision Tree Regression best

R2-Score Vaule = (Friedmans, sqrt, random) = (0.7771)

4. RANDOM FOREST REGRESSION

1.The Decision Tree Regression best R2-Score Vaule = (mae,sqrt)= (0.8639)

2.And Also, The Decision Tree Regression best

R2-Score Vaule = max_depth=(0.8668)

S.NO	CRITERION	MAX_FEATURES	R2-SCORE
1	mse	sqrt	0.8405
2	mse	log2	0.8452
<mark>3</mark>	<mark>mae</mark>	<mark>sqrt</mark>	0.8639
4	mae	log2	0.8539
5	friedman_mse	sqrt	0.8594
6	friedman_mse	log2	0.8499

R2-SCORE

0.7009

1)n_estimators=100	0.8561
2)max_depth=1	0.6699
3)max_depth=2	0.8668
4)min_impurity_decrease=0	0.8299
5)bootstrap=True	0.8428

6)bootstrap=False