Verificación de programas II: Teorema del Invariante

Román Gorojovsky

Algoritmos y Estructuras de Datos

4 de septiembre de 2024

Plan del día

Plan del día

- Precondición más débil de ciclos
- Teorema del Invariante
- Teorema de Terminación
- Un ejercicio de un parcial

Precondición más débil

Precondición más débil – Idea informal

Es la P que permite que el programa ${\bf S}$ funcione correctamente, pero restringiendo lo menos posible.

Principio de diseño

Ser cuidadoso con los resultados que se emiten y generoso con los parámetros que se reciben.

Axiomas

Definiciones (copiadas de la teórica)

- Axioma 1: $wp(\mathbf{x} := \mathbf{E}, Q) \equiv def(E) \wedge_L Q_E^x$
- Axioma 2: $wp(\mathsf{skip}, Q) \equiv Q$
- Axioma 3: $wp(S1; S2, Q) \equiv wp(S1, wp(S2, Q))$
- Axioma 4: Si S = if B then S1 else S2 endif, entonces

$$wp(\mathbf{S}, Q) \equiv def(B) \wedge_L \left((B \wedge wp(\mathbf{S1}, Q)) \vee (\neg B \wedge wp(\mathbf{S2}, Q)) \right)$$

¿Qué hacemos con los ciclos?

¿Cómo calculo la WP de este programa?

```
\begin{aligned} &\operatorname{proc\ sumar}(\operatorname{in}\ s:seq\langle\mathbb{Z}\rangle):\mathbb{Z}\\ &\operatorname{while}\ (\ \mathrm{i}\ <\ \mathrm{s}\,.\,\operatorname{size}\ (\ ))\ \ \operatorname{do}\\ &\operatorname{res}\ :=\ \operatorname{res}\ +\ \operatorname{s}\left[\ \mathrm{i}\ \right];\\ &\mathrm{i}\ :=\ \mathrm{i}\ +\ 1\\ &\operatorname{endwhile}\\ &Q\equiv \{res=\sum_{i=0}^{|s|-1}s[i]\} \end{aligned}
```

- A ojo $\longrightarrow WP = \{res = 0 \land i = 0\}$
- Formalmente no existe un Axioma 5, termina siendo una fórmula infinita (detalles en la teórica)
- Sólo voy a poder probar que la tripla $\{P\}$ S $\{Q\}$ es válida

Invariante de un ciclo

Dado un ciclo de la forma

```
while (B) do

$1;

$2;

// ...
```

El **Invariante** del ciclo es

- Un predicado *I* que se cumple:
 - Antes de "entrar" en el ciclo, es decir, antes de cada iteración
 - Al terminar cada iteración (si se cumplía B)

Teorema del Invariante

Teorema del invariante

Si existe un predicado I tal que ...

- $\mathbf{0} P_c \Rightarrow \mathbf{I}$
- **2** $\{I \land B\}$ S $\{I\}$

entonces el ciclo **while(B)** {**S**} es *parcialmente correcto* respecto de la especificación (P_c, Q_c) .

Más tarde vemos qué falta para que sea totalmente correcto

```
\begin{array}{l} \operatorname{proc\ sumar}(\operatorname{in}\,s:seq\langle\mathbb{Z}\rangle):\mathbb{Z}\\ \\ \operatorname{res\ }:=\ 0\\ \\ \operatorname{while\ }(\ \mathsf{i}\ <\ \mathsf{s}\,.\,\mathsf{size}\,())\ \operatorname{do}\\ \\ \operatorname{res\ }:=\ \operatorname{res\ }+\ \mathsf{s}\,[\ \mathsf{i}\ ];\\ \\ \operatorname{i\ }:=\ \operatorname{i\ }+\ 1\\ \\ \operatorname{endwhile} \end{array}
```

- $P_c \equiv \{res = 0 \land i = 0\}$
- $Q_c \equiv \{ res = \sum_{i=0}^{|s|-1} s[i] \}$
- $B \equiv \{i < |s|\}$
- $I \equiv \{0 \le i \le |s| \land res = \sum_{j=0}^{i-1} s[j]\}$

while (i < s.size()) do res := res + s[i]; i := i + 1 endwhile</pre>

•
$$P_c \equiv \{res = 0 \land i = 0\}$$

•
$$Q_c \equiv \{ res = \sum_{i=0}^{|s|-1} s[i] \}$$

•
$$B \equiv \{i < |s|\}$$

•
$$I \equiv \{0 \le i \le |s| \land res = \sum_{j=0}^{i-1} s[j]\}$$

•
$$P_c \Rightarrow 1$$

•
$$0 \le i \le |s| \equiv 0 \le 0 \le |s|$$

•
$$res = \sum_{j=0}^{i-1} s[j] \equiv 0 = \sum_{j=0}^{0-1} s[j] = 0$$
 \checkmark

```
while (i < s.size()) do
  res := res + s[i];
  i := i + 1
endwhile
```

```
• P_c \equiv \{res = 0 \land i = 0\}
• Q_c \equiv \{res = \sum_{i=0}^{|s|-1} s[i]\}
• B \equiv \{i < |s|\}
• I \equiv \{0 \le i \le |s| \land res = \sum_{i=0}^{i-1} s[j]\}
```

•
$$\{I \wedge B\}$$
 S $\{I\} \leftrightarrow \{I \wedge B\} \rightarrow WP(S, I)$

WP(S, I)

$$\equiv \operatorname{def}(s[i]) \wedge_L (-1 \leq i \leq |s| - 1 \wedge res + s[i] = \sum_{j=0}^{i} s[j])$$

$$\equiv 0 \leq i < |s| \wedge_L (-1 \leq i \leq |s| - 1 \wedge res = \sum_{j=0}^{i} s[j] - s[i])$$

$$\equiv 0 \leq i < |s| \wedge_L res = \sum_{j=0}^{i-1} s[j]$$
 (Combino los rangos y resto de la sumatoria)

•
$$\{I \land B\} \equiv \{0 \le i < |s| \land res = \sum_{j=0}^{i-1} s[j]\}$$

• $i\{I \land B\} \rightarrow WP(S, I)? \checkmark$

```
while (i < s.size()) do
  res := res + s[i];
  i := i + 1
endwhile</pre>
```

•
$$P_c \equiv \{res = 0 \land i = 0\}$$

•
$$Q_c \equiv \{ res = \sum_{i=0}^{|s|-1} s[i] \}$$

•
$$B \equiv \{i < |s|\}$$

•
$$I \equiv \{0 \le i \le |s| \land res = \sum_{j=0}^{i-1} s[j]\}$$

•
$$I \land \neg B \Rightarrow Q_C$$

•
$$I \land \neg B \equiv |\mathbf{s}| \leq \mathbf{i} \leq |\mathbf{s}| \land res = \sum_{j=0}^{i-1} s[j]$$

 $\equiv i = |\mathbf{s}| \land res = \sum_{j=0}^{i-1} s[j]$
 $\equiv res = \sum_{j=0}^{|\mathbf{s}|-1} s[j] \equiv Q_c \checkmark$

¿Qué podemos demostrar hasta ahora?

- Correctitud parcial: Probando las hipótesis que vimos hasta acá sabemos que si el ciclo termina la tripla de Hoare $\{P_c\}$ S $\{Q_c\}$ es válida
- Falta probar que el ciclo efectivamente termine
- Teorema de Terminación

Teorema de Terminación

Teorema de Terminación

Si existe una función $fv: \mathbb{V} \to \mathbb{Z}$ tal que

- **1** $\{I \wedge B \wedge f_v = v_0\}$ S $\{f_v < v_0\}$,
- $2 I \land f_v \leq 0 \rightarrow \neg B,$

entonces la ejecución del ciclo **while B do S endwhile siempre** termina.

- La función f_v se llama función variante del ciclo.
- ▼ son valores que toman las variables del programa

```
\operatorname{proc\ sumar}(\operatorname{in} s : \operatorname{seq}\langle \mathbb{Z} \rangle) : \mathbb{Z}
res := 0
i := 0
while (i < s.size()) do
    res := res + s[i];
    i := i + 1
endwhile
```

•
$$P_c \equiv \{res = 0 \land i = 0\}$$

• $Q_c \equiv \{res = \sum_{i=0}^{|s|-1} s[i]\}$

•
$$Q_c = \{res = \sum_{i=0}^{n} s[i]\}$$

• $B \equiv \{i < |s|\}$

•
$$I \equiv \{0 \le i \le |s| \land res = \sum_{i=0}^{i-1} s[i]\}$$

•
$$f_v = |s| - i$$

```
while (i < s.size()) do
  res := res + s[i];
  i := i + 1
endwhile</pre>
```

```
• P_c \equiv \{res = 0 \land i = 0\}

• Q_c \equiv \{res = \sum_{i=0}^{|s|-1} s[i]\}

• B \equiv \{i < |s|\}

• I \equiv \{0 \le i \le |s| \land res = \sum_{j=0}^{i-1} s[j]\}

• f_v = |s| - i
```

$$\begin{split} \bullet & \left\{ I \wedge B \wedge f_v = v_0 \right\} \leq \left\{ f_v < v_0 \right\} \leftrightarrow \\ & \left\{ I \wedge B \wedge f_v = v_0 \right\} \rightarrow WP(\mathbf{S}, f_v < v_0) \\ \bullet & WP(\mathbf{S}, f_v < v_0) \equiv WP(\mathbf{res} := \mathbf{res} + \mathbf{s[i]}; \ \mathbf{i} := \mathbf{i} + \mathbf{1}, |s| - i < v_0) \\ & \equiv WP(\mathbf{res} := \mathbf{res} + \mathbf{s[i]}, WP(\mathbf{i} := \mathbf{i} + \mathbf{1}, |s| - i < v_0)) \\ & \equiv WP(\mathbf{res} := \mathbf{res} + \mathbf{s[i]}, |s| - i + 1 < v_0) \equiv \operatorname{def}(s[i]) \wedge_L |s| - (i + 1) < v_0 \\ & \equiv 0 \leq i < |s| \wedge_L |s| - i - 1 < v_0 \end{split}$$

• $\{I \land B \land f_v = v_0\} \equiv \{0 \le |s| - 1 \land |s| - 1 = v_0 \land res = \sum_{i=0}^{i-1} s[i]\}$

• Puedo ignorar lo que corresponde al rango y a res• $\{I \land B \land f_v = v_0\} \rightarrow WP(\mathbf{S}, f_v < v_0) \leftrightarrow |s| - i - 1 < |s| - 1 \leftrightarrow -1 < 0 \checkmark$

•
$$P_c \equiv \{res = 0 \land i = 0\}$$

•
$$Q_c \equiv \{res = \sum_{i=0}^{|s|-1} s[i]\}$$

•
$$B \equiv \{i < |s|\}$$

•
$$I \equiv \{0 \le i \le |s| \land res = \sum_{j=0}^{i-1} s[j]\}$$

•
$$f_v = |s| - i$$

•
$$I \wedge f_n < 0 \rightarrow \neg B$$

•
$$I \wedge f_v \leq 0 \equiv 0 \leq i \leq |s| \wedge |s| - 1 \leq 0 \wedge res = \sum_{i=0}^{i-1} s[j]$$

ullet Una vez más ignoro lo que corresponde a res porque no lo necesito para esta demostración

•
$$0 \le i \le |s| \land |s| - i \le 0 \leftrightarrow i \le |s| \land |s| \le i \leftrightarrow i = |s|$$

•
$$i = |s| \rightarrow \neg (i < |s|) \rightarrow \neg B \checkmark$$

Ejercicio de parcial

E4. Correctitud del ciclo

Dado el siguiente programa con su especificación

```
P_c \equiv \{n > 0 \land n \bmod 2 = 0 \land i = 1 \land res = 1\}
While ( i <= n/2) {
    res := res * i * (n+1-i);
    i := i+1;
}
```

$$Q_c \equiv \{res = n!\}$$

Contamos con el siguiente invariante, que sabemos que es incorrecto:

$$I \equiv \{1 \leq i \leq n/2 + 1 \wedge res = \prod_{j=1}^{2(i-1)} j\}$$

- a) Señale qué axiomas del teorema del invariante no se cumplen. Justifique con palabras en forma precisa.
- b) Escriba un invariante que resulte correcto.
- c) Proponga una función variante y demuestre formalmente que es correcta.