Московский государственный университет имени М. В. Ломоносова механико-математический факультет кафедра Математической теории интелектуальных систем

Курсовая работа студента 1 курса магистратуры Манкаева Нарана Николаевича

Реализация алгоритма обучения с подкреплением Advantage Actor Critic с оценкой General Advantage Estimation на примере восьминогого робота.

Научный руководитель:

к.ф.-м.н.

В.С. Половников

Оглавление

1.	Введение	2
2.	Алгоритм Advantage actor critic	5
3.	Задача обучения восьминогого робота	15
4.	Заключение	21
Список	литературы	22
Прил	южение A	24
Прил	ложение Б	27

1. Введение

На сегодняшний день обучение с подкреплением (англ. Reinforcment Learning, RL) является одним из основополагающих способов машинного обучения, активно применяющийся на практике. При помощи обучения с подкреплением, или RL, были достигнуты успехи при создании искусственного интеллекта для сложных стратегических игр таких как го, сёги и шахматы [1]; RL используется в сфере финансов при создании трейдинговых ботов [2]; также RL применяется для обучения компьютеров управлением роботов как смоделированных, так и реальных, физических [3, 4].

Основной концепцией обучения с подкреплением является взаимодействие испытуемой системы (агент), находящейся в некотором состоянии $s_t \in S$, где S — множество возможных состояний, со средой в течении дискретных временных шагов $t = 0, 1, 2, 3, \dots$ Взаимодействие происходит путем совершения действия $a_t \in A(s_t)$, где $A(s_t)$ — множество действий, возможных в состоянии s_t . Это действие переводит агента из одного состояния s_t в другое s_{t+1} , при этом за совершенные действия среда выдает агенту награду $r_{t+1} \in \mathbb{R}$ [5]. Рисунок 1 иллистрирует взаимодействие агент — среда .

На каждом временном шаге агент осуществляет отображение из множества состояний на множество вероятностей выбора каждого из возможных действий. Это отображение называется *стратегией* агента и обозначается π_t , где $\pi_t(s,a)$ — вероятность того, что a_t =

a, если $s_t=s$. Главной целью агента является максимизация суммы всех вознаграждений, которую он получит в долгосрочной перспективе.

Рис. 1. Цикл взаимодействия агента со средой

Изменение стратегии агента в зависимости от имеющегося опыта происходит согласно алгоритмам обучения с подкреплением. Одним из основных алгоритмов, используемых в RL, является алгоритм Advantage actor critic (или A2C) [6]. Его преимущество содержится в сочетании двух типов алгоритмов обучения с подкреплением (на основе стратегий и на основе ценностей). Ключевыми элементами алгоритмов на основе ценностей являются функция ценности состояния $V^{\pi}(s)$ и функция ценности действия $Q^{\pi}(s,a)$ [5]. Функция ценности состосяния $V^{\pi}(s)$ называется ожидаемая выгода, по-

лученная агентом согласно стратегии π при начальном состоянии s. Функция ценности действия $Q^{\pi}(s,a)$ — это ожидаемая выгода, полученная согласно стратегии π при начальном состоянии s и осуществленном дейсвтии a. Алгоритмы на основе ценностей учатся выбирать действия, опираясь на прогнозируемое значение функций ценностей входного состояния или действия [5, 7]. Агенты, использующеие алгоритымы на основе стратегий, непосредственно изучают стратегию (распределение вероятностей действий) [5, 8].

В данной работе рассматривается восьминогий робот, построенный в симмуляционной среде Мијосо. Целью курсовой работы является обучение робота передвижению при помощи алгоритма Advantage actor critic с оценкой функции преимущества (англ. Advantage) через General Advantage Estimation [9].

2. Алгоритм Advantage actor critic

2.1. Алгоритмы обучения с подкреплением

Алгоритмы обучения с подкреплением делятся на две основные ветки: алгоритмы, имеющие доступ к модели среды и не имеющие. Под моделью среды подразумевается функция, которая предсказывает переходы между состояниями и их вознограждения.

Основным преимуществом алгоритмов, использующих модель, является то, что они позволяют агенту с помощью модели среды планировать, заранее узнавать, что произойдет с рядом возможных вариантов действий, и выбрать один из них. С помощью этого агенты могут преобразовать результаты заблаговременного планирования в усвоенную стратегию.

Но главный недостаток таких алгоритмов заключается в том, что агент может использовать модель очень прямолинейно, в результате чего он будет показывать хорошие результаты именно на этой изученной модели, но вести себя неоптимально (или даже ужасно) в реальной среде. В связи с этим в данный момент распространены алгоритмы, не задействующие модель в своем обучении. Так же это связано с их менее трудной реализацией и легкой настройкой.

Алгоритмы свободные от модели в свою очередь подразделяются на алгоритмы, основывающиеся на оптимизации стратегии (алгоритм REINFORCE [10]), и на алгоритмы, нацеленные на использо-

вании функций ценностей (Q-learning [7]). Рассматриваемый в данной работе алгоритм Advantage Actor Critic содежит в себе элементы двух этих типов алгоритмов, что дает ему преимущество при его реализации на реальных задачах.

В большей степени алгоритм A2C основывается на алгоритме REINFORCE, так как алгоритм A2C в некотором роде является его модернизированной версией. Поэтому для понимания алгоритма A2C нам необходимо и описать алгоритм REINFORCE. Рассмотрим данные алгоритмы подробнее.

2.2. Алгоритм REINFORCE

Алгоритм REINFORCE, как уже было сказано, является алгоритмом оптимизации стратегии $\pi_{\theta}(s|a)$, где θ некоторый параметр. Как и во всех алгоритмах обучения с подкреплением его главной целью является максимизировать суммарное вознаграждение $R = \sum_{t=1}^{T} r_t$, где T — шаг, на котором произошел переход в терминальное состояние. Для достижения этой цели в алгоритме REINFORCE используется метод оптимизации, называемый методом градиентного спуска [11]. Метод градиентного спуска в алгоритме REINFORCE применяется для функции

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)} [R_{\tau}] = \int p_{\theta}(\tau) R_{\tau} d\tau,$$

где τ обозначение некоторого сценария — последовательности состояний и произведенных в них действий: $\tau = (s_1, a_1, s_2, a_2, ...s_T, a_T)$; $R_{\tau} = \sum_{\tau} r(s_t, a_t)$ — сумма всех вознаграждений, полученных в ходе сценария; $p_{\theta}(\tau)$ — вероятность реализации сценария.

Вероятность реализации сценария зависит от поведения среды, которое задается вероятностями перехода между состояниями $p(s_{t+1}|s_t,a_t)$, распределением начальных состояний $p(s_1)$ и поведением агента, которое определяется его стохастической стратегией $\pi_{\theta}(a_t|s_t)$. Вероятностное распределение над сценариями, таким образом, задается как

$$p_{\theta}(\tau) = p_{\theta}(s_1, a_1, ...s_T, a_T) = p(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$$

Так как алгоритм REINFORCE является алгоритмом свободным от модели, то вероятности перехода между состояниями агенту не известны. Это затрудняет расчет $\nabla_{\theta}J(\theta)=\int \nabla_{\theta}p_{\theta}(\tau)R_{\tau}d\tau$, необходимый для применения метода градиентного спуска. Однако можно заметить, что $p_{\theta}(\tau)\nabla_{\theta}\log p_{\theta}(\tau)=p_{\theta}(\tau)\frac{\nabla_{\theta}p_{\theta}(\tau)}{p_{\theta}(\tau)}=\nabla_{\theta}p_{\theta}(\tau)$. Тогда, делая приведенную замену, формула для градиента математического ожидания суммарного выигрыша примет следующий вид

$$\nabla_{\theta} J(\theta) = \int p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) R_{\tau} d\tau = E_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log p_{\theta}(\tau) R_{\tau} \right]$$

Так как
$$p_{\theta}(\tau) = p(s_1) \prod_{t=1}^{T} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$$
, то $\log p_{\theta}(\tau)$ раз-

ложится в сумму:

$$\log p_{\theta}(\tau) = \log p(s_1) + \sum_{t=1}^{T} (\log \pi_{\theta}(a_t|s_t) + \log p(s_{t+1}|s_t, a_t))$$

В свою очередь,

$$\nabla_{\theta} \log p_{\theta}(\tau) = \underbrace{\nabla_{\theta} \log p(s_1)}_{=0} + \sum_{t=1}^{T} \left(\nabla_{\theta} \log \pi_{\theta}(a_t|s_t) + \underbrace{\nabla_{\theta} \log p(s_{t+1}|s_t, a_t)}_{=0} \right) = \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$$

Тогда, подставляя это выражение в формулу градиента $\nabla_{\theta}J(\theta)$ мы получим

$$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) R_{\tau} \right]$$

Заметим, что в получившееся выражение для $\nabla_{\theta}J(\theta)$ уже напрямую не входят значения $p(s_{t+1}|s_t,a_t)$ и $p(s_1)$, которые были нам неизвестны.

Таким образом, если у нас есть в наличии сценарий τ и соответсвующее ему значение вознаграждения R_{τ} , мы можем вычислить величину $\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})\right) R_{\tau}$. Поэтому, если у нас есть выборка из N уже известных сценариев $\tau^{i} = (s_{1}^{i}, a_{1}^{i}, ... s_{T^{i}}^{i}, a_{T^{i}}^{i})$, полученная из распределения $\tau \sim p_{\theta}(\tau)$, то мы можем посчитать приблизительное значение $\nabla_{\theta}J(\theta)$ по методу Монте-Карло [12] — вычислив выбороч-

ное среднее случайной величины:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) \right) R_{\tau^i} =$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T^i} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) \right) \left(\sum_{t=1}^{T^i} r(s_t^i, a_t^i) \right)$$

Несмещенная выборка сценариев τ из вероятностного распределения $p_{\theta}(\tau)$, в свою очередь, находится нами из взаимодействия агента со средой при фикисрованном параметре θ .

Таким образом, окончательный вид алгоритма REINFORCE будет таким:

- 1) Прогнать N сценариев τ_i со стратегией $\pi_{\theta}(a|s)$;
- 2) Вычислить

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T^{i}} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \right) \left(\sum_{t=1}^{T^{i}} r(s_{t}^{i}, a_{t}^{i}) \right);$$

- 3) Обновить параметр $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$;
- 4) Если не сошлись к экстремуму, повторить цикл.

Несмотря на свое преимущество в виде простоты реализации алгоритм REINFORCE имеет ряд недостатков таких как: низкая скорость работы из-за необходимости многократно выполнять взаимодейсвие со средой для получения выборки сценариев, при этом для обновленного параметра θ количество взаимодействий не уменьшается; большая дисперсия случайной величины $\nabla_{\theta} \log p_{\theta}(\tau) R_{\tau}$, так как для различных τ значения R_{τ} могут сильно различаться.

Но существуют некоторые модернизации алгоритма для нивелирования эффектов этих недостатков. Для того чтобы уменьшить дисперссию случайной величины $\nabla_{\theta} \log p_{\theta}(\tau) R_{\tau}$ необходимо воспользоваться так называемыми *опорными значениями b* (англ. *baseline*) [13]. Заметим, что если *b* константа относитьльно τ , то

$$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log p_{\theta}(\tau) (R_{\tau} - b) \right] = E_{\tau \sim p_{\theta}(\tau)} \left[\nabla_{\theta} \log p_{\theta}(\tau) R_{\tau} \right].$$

Но при этом дисперсия случайной величины будет зависеть от b. Поэтому регулируя опроное значение b, можно добиться уменьшения дисперссии случайной величины.

Также, можно заметить, что нет необходимости рассматривать всю траекторию сценария τ для суммы вознаграждений $r(s_t, a_t)$, так как в момент времени t от действия a_t зависит только $r(s_{t'}, a_{t'})$ для $t' \leq t$. Поэтому выражение для $\nabla_{\theta} J(\theta)$ примет следующий вид:

$$\nabla_{\theta} J(\theta) \approx E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \underbrace{\left(\sum_{t'=t}^{T} r(s_{t'}, a_{t'})\right)}_{=Q_{\tau,t}} \right],$$

где $Q_{ au,t}$ будем называть $\mathit{будущим}$ выигрышем на шаге t в сценарии $\tau.$

2.3. Алгоритм Advantage Actor Critic

Алгоритм A2C основывается на этих двух типах улучшения алгоритма REINFORCE, при этом задействуя в своем обучении функ-

ции ценности состояния $V^{\pi}(s)$ и функции ценности действия $Q^{\pi}(s, a)$. Рассмотрим выведенную формулу для $\nabla_{\theta}J(\theta)$:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) Q_{\tau_i, t}$$
.

Здесь $Q_{\tau_i,t}$ — оценка будущего выигрыша из состояния s_t^i при условии действия a_t^i , которая базируется только на одном сценарии τ_i . Это плохое приближение ожидаемого будущего выигрыша — истинным ожидаемым будущим выигрышем является значение функции ценности действия $Q^{\pi}(s, a)$, которое выражается формулой:

$$Q^{\pi}(s_t, a_t) = \sum_{t'=t}^{T} E_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_t, a_t]$$

В целях уменьшения дисперссии случайной величины в алгоритме A2C используется опорное значение b равное значению функции ценности состояния $V^{\pi}(s)$, которое выражается следующей формулой:

$$V^{\pi}(s_t) = E_{a_t \sim \pi_{\theta}(a_t|s_t)}[Q^{\pi}(s_t, a_t)] = \sum_{t'=t}^{T} E_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_t]$$

Таким образом, вместо ожидаемого будущего выигрыша $Q_{\tau_i,t}$ при оценке $\nabla_{\theta}J(\theta)$ будем использовать так называемую функцию преимущества $A^{\pi}(s_t,a_t)$ (англ. advantage):

$$A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$$

Эта функция показывает преимущество действия a_t в состоянии s_t над остальными действиями в этом состоянии. То есть, то насколько

выгоднее выбрать именно действие a_t в отличие от остальных действий.

В итоге мы имеем:

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) A^{\pi}(s_t^i, a_t^i)$$

Для того чтобы оценить значения $A^{\pi}(s_t^i, a_t^i)$ нет необходимости оценивать оба значения функции ценности состояния $V^{\pi}(s_t)$ и функции ценности действия $Q^{\pi}(s_t, a_t)$. Если воспользоваться уравнением Беллмана можно выразить функцию преимущества только через функцию ценности состояния [14].

Уравнение Беллмана:

$$Q^{\pi}(s_t, a_t) = r(s_t, a_t) + E_{s_{t+1} \sim p(s_{t+1}|s_t, a_t)}[V^{\pi}(s_{t+1})] \approx r(s_t, a_t) + V^{\pi}(s_{t+1})$$

Тогда выражение для функции преимущества примет следующий вид:

$$A^{\pi}(s_t^i, a_t^i) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t) \approx r(s_t, a_t) + V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

Теперь, для того чтобы оценить значения $A^{\pi}(s_t^i, a_t^i)$, нам нужно уметь оценивать только $V^{\pi}(s_t) = \sum_{t'=t}^T E_{\pi_{\theta}}[r(s_{t'}, a_{t'})|s_t]$. Мы можем делать это, опять же, с помощью метода Монте-Карло, но это будет работать не существенно быстрее, чем обычный алгоритм REINFORCE. Вместо этого заметим, что при фиксированных s_t и a_t выполняется:

$$V^{\pi}(s_t) = r(s_t, a_t) + V^{\pi}(s_{t+1})$$

Таким образом, если мы имеем некоторую изначальную оценку $V^{\pi}(s_t)$ для всех s, мы можем можем обновлять эту оценку аналогично алгоритму Q-learning [7]:

$$V^{\pi}(s_t) \leftarrow (1-\beta)V^{\pi}(s_t) + \beta(r(s_t, a_t) + V^{\pi}(s_{t+1}))$$

Здесь β — коэффициент обучения (англ. learning rate) для функции ценности состояния $V^{\pi}(s_t)$.

Такой пересчет мы можем производить каждый раз, когда агент получает вознаграждение за действие. Так мы получим оценку ценности текущего состояния, не зависящую от выбранного сценария развития событий τ , а значит, и оценка функции преимущества не будет зависеть от выбора конкретного сценария. Это сильно снижает дисперсию случайной величины $\nabla_{\theta} \log \pi_{\theta}(a_t^i|s_t^i)A^{\pi}(s_t^i,a_t^i)$, что делает оценку $\nabla_{\theta}J(\theta)$ достаточно точной даже в том случае, когда мы используем всего один сценарий для ее подсчета:

$$\nabla_{\theta} J(\theta) \approx \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t) A^{\pi}(s_t, a_t)$$

Оконачательный вид алгоритма Advantage actor critic будет следующим:

1) производим действие $a \sim \pi_{\theta}(a|s)$, переходим в состояние s' и получаем вознаграждение r;

2)
$$V^{\pi}(s) \leftarrow (1 - \beta)V^{\pi}(s) + \beta(r + V^{\pi}(s'));$$

3)
$$A^{\pi}(s, a) \leftarrow r + V^{\pi}(s') - V^{\pi}(s);$$

- 4) $\nabla_{\theta} J(\theta) \leftarrow \nabla_{\theta} \log \pi_{\theta}(a|s) A^{\pi}(s,a);$
- 5) $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$;
- 6) Если не сошлись к экстремуму, повторить цикл.

В алгоритме Advantage actor critic под actor'ом подразумевается компонента, которая оптимизирует стратегию $\pi_{\theta}(a|s)$. Critic, в свою очередь, подсчитывает значения функции ценности состояния $V^{\pi}(s)$. То есть actor определяет дальнейшее действие, а critic оценивает, насколько то или иное действие выгодно, основываясь на функции преимущества $A^{\pi}(s,a)$.

3. Задача обучения восьминогого робота

В данной работе рассматривается восьминогий робот, построенный в симмуляционной среде Мијосо. На рисунке 2 изображена модель робота в начальном положении в этой симмуляционной среде.

Рис. 2. Модель восьминогого робота в симмуляционной среде Мијосо

На входе агенту предоставляется множество чисел из Mujoco, необходимые для описания состояний агента: относительные позиции, углы вращения, скорости, ускорения частей тела робота, и т.д. (примерно 800 признаков). В свою очередь, на выходе нейросети будем ожидать 24 числа — углы поворота шарниров, на которых закреплены конечности.

Целью агента будет максимизировать суммарную награду за эпизод. Под эпизодом подразумевается длительное взаимодействие агента со средой, начавшееся с определенного начального состояния и завершающееся терминальным. В нашей задаче эпизод завершается, если робот упал или если прошло 3000 шагов симмуляции. При каждом шаге симмуляции агент получает награду по следующей формуле:

$$r_t = \Delta x * 1000 + 0.5$$

Т.е. целью агента будет увеличивать свою координату x и не падать до конца эпизода.

Таким образом условие задачи обучения робота будет следующим: найти функцию $\pi: \mathbb{R}^{800} \to \mathbb{R}^{24}$, для которой награда за эпизод будет наибольшей. Другими словами найти оптимальную стратегию

$$\pi^* = \arg\max_{\pi} J(\pi_{\theta}) ,$$

где
$$J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi}[R(\tau)] = \mathbb{E}_{\tau \sim \pi}\left[\sum_{t=0}^{n} r_{t}\right].$$

Решать данную задачу мы будем с помощью выше описанного алгоритма обучения с подкреплением Advantage actor critic. Алгоритм A2C задействует в своем обучение две нейросети: нейросеть актора для оптимизации стратегии $\pi_{\theta}(a|s)$ и нейросеть критика, оце-

нивающая значения функции ценности состояния $V^{\pi}(s)$.

Нейросеть критика, как уже было сказано, необходима нам для получения оценки значений функции ценности состояния $V^{\pi}(s)$. Оценка значения функции ценности состояния $V^{\pi}(s)$, в свою очередь, нам необходима для оценки функции преимущества $A^{\pi}(s,a)$ (3-й пункт в алгоритме A2C, описанном в прошлом разделе). Но в данной работе в отличии от обычного алгоритма A2C оценивать функцию преимущества $A^{\pi}(s,a)$ мы будем с помощью метода General Advantage Estimation (или просто GAE) [9], который значительно увеличивает точность этой оценки.

Для применения метода оценки функции преимущества GAE в алгоритме A2C, нам необходимо заменить старую оценку функции преимущества $A^{\pi}(s_t, a_t) = r_t + V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$ на следующую:

$$A_t^{GAE(\gamma,\lambda)} = \sum_{l=0}^{\infty} (\gamma \lambda)^l \delta_{t+1}^V ,$$

где $\delta_t^V = r_t + V^\pi(s_{t+1}) - V^\pi(s_t)$; γ и λ некоторые гиперпараметры.

После получения значений функции преимущества $A_t^{\pi}(s,a)$ мы наконец можем оптимизировать стратегию $\pi_{\theta}(a|s)$. Оптимизация стартегии $\pi_{\theta}(a|s)$ реализуется с помощью метода градиентного спуска, применяемый к функции $J(\pi_{\theta})$, так называемой функции ожидаемого суммарного вознаграждения. Для применения градиентного спус-

ка необходимо вычислить $\nabla J(\pi_{\theta})$, который в нашем случае равен:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) A^{\pi}(s_{t}, a_{t}) \right],$$

где $A^{\pi}(s_t, a_t)$ оценивается с помощью выше описанного метода GAE.

Можно заметить, что функция потерь для нейросети актора тогда будет следующей:

$$loss = -\log \pi_{\theta}(a_t|s_t)A^{\pi}(s_t, a_t)$$

Минус появился за счёт того, что мы хотим максимизировать $J(\pi_{\theta})$.

Для реализции данных шагов был написан на языке Python соответствующий комплект программ для нейросети критика и нейросети актора (Приложение А). Для обучения этих нейросетей, в свою очерель, был написан генератор данных (Приложение Б), который выдает кортежи вида:

$$(s_t, a_t, V^{\pi}(s_t), \sum_{t'=t}^T r(s_{t'}, a_{t'})).$$

(Для полного ознакомления с кодом программы перейдите по следующей ссылке: https://github.com/narmanka/A2C-GAE-8legrobot)

После запуска написанного кода и длительного обучения нейросетей была получена модель восьминогового робота, которая демонстрирует активное передвижение по оси х, что говорит об успешном обучении робота. Динамика робота представлена на рисунке 3 и 4. Также проследить за динамикой восьминогого робота можно по видеозаписям, расположенных на следующих сслыках:

Камера 1 —

https://drive.google.com/file/d/1N8eXENDS3XEbKQEv23w_JGFXBgnXZTCW/view?usp=sharing

Камера 2 —

https://drive.google.com/file/d/1dqAldfSOO-nDlCQPm9hODoxPcrluWKqT/view?usp=sharing

Замедленное движение (х0.125) -

https://drive.google.com/file/d/1coEiQTFwbj9as6F0u7No-G-FeRbswOib/view?usp=sharing

Рис. 3. Динамика восьминогого робота

Рис. 4. Динамика восьминогого робота (продолжение)

Из предложенных видеозаписей и рисунков можно заметить, что робот научился достаточно быстро передвигаться путем синхронного отталкивания от земли симметрично-парных ног, таким образом не теряя равновесие и приобретая большую скорость. При этом передняя пара ног и задняя пара ног хоть и участвуют в "прыжках"робота, но фактически являются ногами для удержания баланса. Большую часть скорости приносят две пары боковых ног.

Данное делегирование задач на определенные пары ног являются обоснованной и логичной, так как целью робота является не только быстрое передвижение, но и удержание баланса в течение этого передвижения.

4. Заключение

В ходе работы была построена модель восьминогого робота в симмуляционной среде Мијосо. Также была поставлена задача обучения робота передвижению, для решения которой был применен алгоритм Advantage actor critic с оценкой функции преимущества $A^{\pi}(s,a)$ методом GAE. Для применения алгоритма A2C и решения данной задачи был разработан комплект программ на языке Python.

При выполнении задачи алгоритм Advantage actor critic показал хоршие результаты, успешно обучив восьминогого робота передвижению. Оценка функции преимущества $A^{\pi}(s,a)$ методом GAE так же показала отличные результаты на примере нашей задачи.

Список литературы

- Silver D. et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play //Science. 2018. T. 362. №. 6419. C. 1140-1144.
- 2. Huang C. Y. Financial trading as a game: A deep reinforcement learning approach //arXiv preprint arXiv:1807.02787. 2018.
- 3. Sallab A. E. L. et al. Deep reinforcement learning framework for autonomous driving //Electronic Imaging. 2017. T. 2017. №. 19. C. 70-76.
- 4. Kuindersma S. et al. Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot //Autonomous robots. -2016. T. 40. No. 3. C. 429-455.
- 5. Sutton R. S., Barto A. G. Reinforcement learning: An introduction.MIT press, 2018.
- Mnih V. et al. Asynchronous methods for deep reinforcement learning //International conference on machine learning. – PMLR, 2016. – C. 1928-1937.
- 7. Watkins C. J. C. H., Dayan P. Q-learning //Machine learning. 1992. T. 8. №. 3-4. C. 279-292.
- Silver D. et al. Deterministic policy gradient algorithms
 //International conference on machine learning. PMLR, 2014.
 C. 387-395.

- 9. Schulman J. et al. High-dimensional continuous control using generalized advantage estimation //arXiv preprint arXiv:1506.02438. 2015.
- 10. Sutton R. S. et al. Policy gradient methods for reinforcement learning with function approximation //Advances in neural information processing systems. 2000. C. 1057-1063.
- 11. Ruder S. An overview of gradient descent optimization algorithms //arXiv preprint arXiv:1609.04747. 2016.
- 12. Metropolis N., Ulam S. The monte carlo method //Journal of the American statistical association. − 1949. − T. 44. − №. 247. − C. 335-341.
- 13. Greensmith E., Bartlett P. L., Baxter J. Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning //Journal of Machine Learning Research. − 2004. − T. 5. − №. 9.
- Baird L. Residual algorithms: Reinforcement learning with function approximation //Machine Learning Proceedings 1995. – Morgan Kaufmann, 1995. – C. 30-37.

Приложение А

Код актора

```
class ActorNetworkContinuous:
   def __init__(self):
        self.state_ph = tf.placeholder(tf.float32,
        shape=[None, observation_space])
        11 = tf.layers.dense(self.state_ph, units=100,
        activation=tf.nn.tanh)
        12 = tf.layers.dense(11, units=50,
        activation=tf.nn.tanh)
        13 = tf.layers.dense(12, units=25, activation=tf.nn.tanh)
        mu = tf.layers.dense(13, units=action_space)
        log_std = tf.get_variable(name='log_std',
        initializer=-0.5*np.ones(action_space,dtype=np.float32))
        std = tf.exp(log_std)
        self.action_op = (mu +
                         tf.random.normal(shape=tf.shape(mu)) * std)
        # Training
        self.weight_ph = tf.placeholder(shape=[None],
        dtype=tf.float32)
        self.action_ph = tf.placeholder(shape=[None, action_space],
        dtype=tf.float32)
```

```
action_logprob = gaussian_loglikelihood(self.action_ph, mu,
log_std)
self.loss = -tf.reduce_mean(action_logprob * self.weight_ph)
optimizer = tf.train.AdamOptimizer(learning_rate=
actor_learning_rate)
self.update_op = optimizer.minimize(self.loss)
```

Код критика

```
class CriticNetwork:
    def __init__(self):
        self.state_ph = tf.placeholder(tf.float32,
        shape=[None, observation_space])
        l1 = tf.layers.dense(self.state_ph, units=100,
        activation=tf.nn.tanh)
        l2 = tf.layers.dense(l1, units=50, activation=tf.nn.tanh)
        l3 = tf.layers.dense(l2, units=25, activation=tf.nn.tanh)
        output = tf.layers.dense(l3, units=1)
        self.value_op = tf.squeeze(output, axis=-1)

# Training
        self.value_ph = tf.placeholder(shape=[None], dtype=tf.float32)
        self.loss = tf.losses.mean_squared_error(self.value_ph,
        self.value_op)
```

optimizer = tf.train.AdamOptimizer(learning_rate=
critic_learning_rate)
self.update_op = optimizer.minimize(self.loss)

Приложение Б

Код генератора данных

```
def generate_batch(envs, batch_size, replay_buffer_size):
    envs_number = envs.num_envs
    observations = [[0 for i in range(observation_space)]
    for i in range(envs_number)]
    replay_buffer = np.empty((0,4), np.float32)
    rollouts = [np.empty((0, 3)) for i in range(envs_number)]
    while True:
        history = {'reward': [], 'max_action': [],
                   'mean_advantage': [], 'mean_value': []}
        replay_buffer = replay_buffer[batch_size:]
        # Main sampling cycle
        while len(replay_buffer) < replay_buffer_size:</pre>
            actions = sess.run(actor.action_op,
            feed_dict={actor.state_ph: observations})
            observations_old = observations
            observations, rewards, dones, _ = envs.step(actions *
            angle_normalization)
            observations /= angle_normalization
            history['max_action'].append(np.abs(actions).max())
```

```
time_point = np.array(list(zip(observations_old, actions,
rewards)))
for i in range(envs_number):
    rollouts[i] = np.append(rollouts[i], [time_point[i]],
    axis=0)
if dones.all():
    print('WARNING: envs are in sync!!
    This makes sampling inefficient!')
done_indexes = np.arange(envs_number)[dones]
for i in done indexes:
    rewards_trajectory = rollouts[i][:, 2].copy()
    history['reward'].append(rewards_trajectory.sum())
    advantage, values = estimate_advantage(states=
    np.array(rollouts[i][:, 0].tolist()),
    rewards=rewards_trajectory)
    history['mean_value'].append(values.mean())
    history['mean_advantage'].append(advantage.mean())
    rollouts[i][:, 2] = advantage
    discounted_reward_to_go = discount_cumsum(
    rewards_trajectory, coef=discount_factor)
    rollout = np.hstack((rollouts[i],
    replay_buffer = np.append(replay_buffer, rollout,
```