Theoretical Quantum Optics

Problem Sheet

Lecturer: Prof. Dr. Igor Lesanovsky

Semester: Winter 23/24

Sheet: 11 **Hand-out:** 21.12.23 **Hand-in:** 11.1.24

Problem 29. Hanbury Brown-Twiss effect with fermions

One can sometimes read the statement that the Hanbury Brown-Twiss correlations are due to the bunching properties of bosons. In order to examine that claim, we calculate the correlation function $G^{(2)}$ for two fermions,

$$G^{(2)}(\mathbf{r}_1, \mathbf{r}_2, t, t) = \langle \psi | \hat{\psi}^{\dagger}(\mathbf{r}_1, t) \hat{\psi}^{\dagger}(\mathbf{r}_2, t) \hat{\psi}(\mathbf{r}_2, t) \hat{\psi}(\mathbf{r}_1, t) | \psi \rangle, \qquad (29.1)$$

where now,

$$\hat{\psi}(\mathbf{r}_1, t) = \sum_{\mathbf{k}} c_{\mathbf{k}} e^{-i\epsilon_k t + i\mathbf{k}\cdot\mathbf{r}_1},$$

$$\hat{\psi}^{\dagger}(\mathbf{r}_1, t) = \sum_{\mathbf{k}} c_{\mathbf{k}}^{\dagger} e^{i\epsilon_k t - i\mathbf{k}\cdot\mathbf{r}_1},$$

and the $c_{\mathbf{k}}, c_{\mathbf{k}}^{\dagger}$ obey the fermionic anti-commutation relations,

$$\{c_{\mathbf{k}}, c_{\mathbf{k}'}^{\dagger}\} = c_{\mathbf{k}} c_{\mathbf{k}'}^{\dagger} + c_{\mathbf{k}'}^{\dagger} c_{\mathbf{k}} = \delta_{\mathbf{k}\mathbf{k}'}, \qquad \{c_{\mathbf{k}}, c_{\mathbf{k}'}\} = \{c_{\mathbf{k}}^{\dagger}, c_{\mathbf{k}'}^{\dagger}\} = 0.$$

a. Show that for an initial state $|1_{\bf k}1_{{\bf k}'}\rangle = c^{\dagger}_{\bf k}c^{\dagger}_{{\bf k}'}|0\rangle$ that $G^{(2)}$ can be written as,

$$G^{(2)}(\mathbf{r}_1, \mathbf{r}_2, t, t) = |\psi^{(2)}(\mathbf{r}_1, t; \mathbf{r}_2, t)|^2, \tag{29.2}$$

with $\psi(\mathbf{r}_1, t; \mathbf{r}_2, t) = \langle 0 | \hat{\psi}(\mathbf{r}_2, t) \hat{\psi}(\mathbf{r}_1, t) | 1_{\mathbf{k}} 1_{\mathbf{k}'} \rangle$.

b. Calculate $G^{(2)}(\mathbf{r}_1, \mathbf{r}_2, t, t)$ explicitly and compare it to the bosonic case where,

$$G^{(2)}(\mathbf{r}_1, \mathbf{r}_2, t, t) = 2\mathcal{E}_k^4 (1 + \cos((\mathbf{k} - \mathbf{k}') \cdot (\mathbf{r}_1 - \mathbf{r}_2))).$$

Explain your findings.

Problem 30. One- and two-photon correlations with coherent states

Let $|\psi\rangle = |\alpha\rangle_{\mathbf{k}} |\alpha'\rangle_{\mathbf{k'}}$ be a two-mode coherent state of two electromagnetic modes $\mathbf{k}, \mathbf{k'}$ corresponding to plane waves with,

$$E^{(-)}(\mathbf{r},t) = \sum_{\mathbf{k}} \mathcal{E}_k a_{\mathbf{k}}^{\dagger} e^{i(\omega_k t - \mathbf{k} \cdot \mathbf{r})},$$

being the scalar electric field operator and we take $\alpha, \alpha' \in \mathbb{R}$ and $\mathbf{k} \neq \mathbf{k}'$.

a. Calculate the correlation function,

$$G^{(1)}(\mathbf{r}, \mathbf{r}, t, t) = \langle E^{(-)}(\mathbf{r}, t)E^{(+)}(\mathbf{r}, t)\rangle. \tag{30.1}$$

What happens for $|\mathbf{k}| = |\mathbf{k}'|$? Compare $G^{(1)}(\mathbf{r}, \mathbf{r}, t, t)$ to the two-photon correlation function $G^{(2)}(\mathbf{r}_1, \mathbf{r}_2, t, t) = \langle E^{(-)}(\mathbf{r}_1, t)E^{(-)}(\mathbf{r}_2, t)E^{(+)}(\mathbf{r}_2, t)E^{(+)}(\mathbf{r}_1, t) \rangle$ for a thermal state. Hint: In the lecture, it was shown that,

$$G_{\text{th}}^{(2)}(\mathbf{r}_1, \mathbf{r}_2, t, t) = 2\mathcal{E}_k^4(2\langle n \rangle^2 + \langle n \rangle^2(1 + \cos((\mathbf{k} - \mathbf{k}') \cdot (\mathbf{r}_1 - \mathbf{r}_2)))),$$

where $\langle n \rangle = \alpha^2$.

b. Calculate $G^{(2)}(\mathbf{r}_1, \mathbf{r}_2, t, t)$ for $|\mathbf{k}| = |\mathbf{k}'|$ and $\alpha = \alpha'$.

Problem 31. Schwinger representation

With the annihilation and creation operators a, b and a^{\dagger}, b^{\dagger} from two mode of the electromagnetic field, one can construct pseudo-angular momentum operators,

$$J_x = \frac{1}{2}(a^{\dagger}b + ab^{\dagger}), \qquad J_y = \frac{1}{2i}(a^{\dagger}b - ab^{\dagger}), \qquad J_z = \frac{1}{2}(a^{\dagger}a - b^{\dagger}b).$$
 (31.1)

- **a.** Show that the J_i obey the SU(2) commutation relations (i.e., $[J_j, J_k] = i\epsilon_{jkl}J_l$ with the implicit summation over l and where ϵ_{jkl} is the Levi-Civita symbol).
- **b.** Express the total angular momentum in terms of $a, a^{\dagger}, b, b^{\dagger}$. Conclusions?
- **c.** Examine the commutation and anti-commutation relations of the J_i and see if the a, a^{\dagger} , b, b^{\dagger} obey the fermionic anti-commutation relations defined above.
- **d.** What is the maximum value of J_z in the fermionic case? Show that this result implies once more the commutation relation of the J_i for the two-mode fermions.