

Linguagens de Programação (Ciência da Computação)

Professora: M. Sc. Luciana De Nardin luciana@pucpcaldas.br

Plano de ensino

Ementa

- Evolução das linguagens de programação
- Conceitos de linguagens de programação
- Paradigmas de programação: imperativo, funcional, lógico e orientado a objetos
- Sistemas de tipos
- Conceitos e princípios da programação orientada a objetos
- Exemplos práticos e estudos de caso em linguagens dos diversos paradigmas

- Contextualizar linguagens de programação e sua evolução histórica
- Conhecer os conceitos fundamentais das linguagens de programação
- Conhecer os principais paradigmas de programação (imperativas, declarativas, funcionais e orientadas a objetos)
- Experimentar o uso de diversos tipos de linguagens de programação na resolução de diferentes tipos de problemas
- Investigar os principais aspectos envolvidos no projeto de linguagens de programação

- Unidade I Introdução
 - 1.1 Objetivos
 - 1.2 Definição de linguagem de programação
 - 1.3 Breve histórico das linguagens
- Unidade II Especificação de linguagens de programação
 - 2.1 Sintaxe
 - 2.2 Semântica

- Unidade III Tradução de linguagens de programação
 - 3.1 Interpretação
 - 3.2 Compilação
- Unidade IV Características do projeto de linguagens de programação
 - 4.1 Propriedades fundamentais
 - 4.2 Paradigmas

- Unidade V Paradigmas de linguagens de programação
 - 5.1 Paradigma imperativo
 - 5.1.1 Estruturas de controle
 - 5.1.2 Tipos de dados
 - 5.1.3 Procedimentos e funções
 - 5.1.4 Linguagens C e Pascal

- 5.2 Paradigma lógico
 - 5.2.1 Características da programação lógica
 - 5.2.2 Axiomas e regras de inferência
 - 5.2.3 Estrutura de dados
 - 5.2.4 Fluxo de controle e cortes
 - 5.2.5 Linguagem Prolog

- 5.3 Paradigma funcional
 - 5.3.1 Características da programação funcional
 - 5.3.2 Funções e aplicações
 - 5.3.3 Recursividade
 - 5.3.4 Linguagem Lisp

- 5.4 Paradigma orientado a objetos
 - 5.4.1 Características da programação orientada a objetos
 - 5.4.2 Conceitos de orientação a objetos
 - 5.4.3 Linguagem Java

Sistema de avaliação

- Três avaliações teóricas individuais (60 pontos)
- Listas de exercícios e atividades em aula <u>individuais ou em grupo</u>
 (40 pontos)

Reavaliação <u>individual</u> (100 pontos)

Bibliografia básica

- BRATKO, Ivan. Prolog: programming for artificial intelligence. Harlow:
 Addison Wesley, 1990
- DEITEL, Paul J.; Deitel, Harvey M. Java: como programar 8^a edição
- PRATT, Terrence. Programming Languages: design and implementation.
- SEBESTA, R. Conceitos de Linguagens de Programação. Porto Alegre: Bookman, 2003. 5.ed.
- TANIMOTO, Steven L. The elements of artificial intelligence using common lisp. 2nd ed. New York: Computer Science Press, 1995

1 Unidade I

Roteiro

- Objetivos
- Definição de linguagens de programação
- Histórico das linguagens

- Por que estudar os paradigmas das linguagens de programação?
 - Programação é fundamental para computação
 - Aumento da capacidade de expressar ideias
 - Difícil pessoas expressarem estruturas que n\u00e3o conseguem descrever → programadores, idem!!!
 - Maior embasamento para escolha de linguagens apropriadas
 - Uso contínuo da linguagem que mais domina, mesmo que inadequada

- Por que estudar os paradigmas das linguagens de programação?
 - Capacidade aumentada para aprender novas linguagens
 - Computação >> evolução contínua!!
 - Aprender é mais fácil para quem conhece os conceitos gerais de LP's
 - Entender melhor a importância da implementação
 - Usar a linguagem inteligentemente!

- Quais os domínios de programação (áreas de atuação)?
 - Aplicações científicas (início da déc. 40)
 - Estruturas de dados simples (FORTRAN >> FORmula TRANslator)
 - Aplicações comerciais (déc. 50)
 - 1960: COBOL (até hoje...)
 - Produção de relatórios e armazenamento de dados
 - Consolidação de aplicações (planilhas, folhas de pagamento, etc.)

- Quais os domínios de programação (áreas de atuação)?
 - Inteligência artificial (déc. 60)
 - 1^a linguagem: LISP (1959)
 - Mais utilizada: PROLOG
 - Programação de sistemas (déc. 60)
 - SO's
 - Eficiência na execução
 - Mais utilizada: C (Unix foi escrito em C)

- Como avaliar uma linguagem de programação?
 - Legibilidade
 - Facilidade com que um programa pode ser lido
 - Simplicidade (não muita Assembly) >> legibilidade
 - Multiplicidade de operadores (c++ ou c=c+1 ou c+=1)
 - Sobrecarga de operadores
 - Ortogonalidade
 - Declaração de controle >> top down (sem goto's)

- Como avaliar uma linguagem de programação?
 - Capacidade de escrita
 - Facilidade de usar a linguagem em um domínio específico
 - Confiabilidade
 - Confiável se executa de acordo com suas especificações sob quaisquer circunstâncias
 - Checagem de tipos >> compatibilidade

Java e Pascal 📛

- Como avaliar uma linguagem de programação?
 - Custo
 - Custo de treinamento, escritabilidade, compilação, execução, implementação, confiabilidade e manutenção
 - Outros critérios

Portabilidade, generalização, boa definição, boas ferramentas, etc.

- Influências sobre o projeto da linguagem
 - Arquitetura do computador
 - Máquinas de Von Neumann >> linguagens imperativas

- Influências sobre o projeto da linguagem
 - Variáveis >> células de memória
 - Atribuições >> operações
 - Sequenciamento

- Métodos de implementação
 - Compilação: programa fonte é convertido para o nível de máquina para ser executado

- Métodos de implementação
 - Interpretação: cada instrução é decodificada e executada imediatamente
 - Simula máquina virtual
 - Debugging mais simples
 - Mais custoso (10 a 100 vezes + lenta que a compilação)

- Métodos de implementação
 - Híbrida

- Métodos de implementação
 - Implementação híbrida
 - Compilador transforma o fonte em bytecodes
 - Bytecodes são instruções compreendidas pela JVM
 - A JVM é um interpretador que transforma as instruções em linguagem de máquina
 - "Write once, run anywhere"
 - Vantagem >> portabilidade!!!

Ambientes de programação

- Enfim, os paradigmas...
 - Imperativo
 - Lógico
 - Funcional
 - Orientado a objetos

- Enfim, os paradigmas...
 - Imperativo
 - Imperare: comandar
 - Comandos atualizam variáveis armazenadas na memória
 - Domínio: aplicações comerciais, SO's, etc.
 - Exemplos: C, Pascal, ADA, Fortran, Lua, Cobol....

- Enfim, os paradigmas...
 - Lógico
 - Implementa uma relação ao invés de um mapeamento
 - Domínio: Sistemas especialistas (IA)
 - Exemplos: PROLOG

- Enfim, os paradigmas...
 - Funcional
 - Baseia-se em princípios matemáticos >> funções
 - Iterativo (imperativo) vs. recursividade
 - Domínio: matemática, IA, etc.
 - Exemplos: LISP, ML, Schema, Haskell....

- Enfim, os paradigmas...
 - Orientado a objetos
 - Baseia-se no conceito de classes
 - Atributos + métodos = classes
 - Domínio: todos
 - Exemplos: JAVA, C++, Simula 67....

Definição de linguagens de programação

O que é uma linguagem de programação?

"Qualquer notação para a descrição de algoritmos e estruturas de dados, embora, usualmente é requerido que uma linguagem de programação seja implementada em um computador".

Pratt, Terrence

38