# Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Gianluca Panici 1666962

DEPARTMENT OF COMPUTER, CONTROL, AND MANAGEMENT ENGINEERING ANTONIO RUBERTI



## **Light-SERNet: What is it?**

Suitable for low power devices



Light-SERNet is a **lightweight fully convolutional neural network** for **speech emotion recognition**.

characteristics.



## **Light-SERNet: Architecture**



#### **Architecture: Input Pipeline**



- Normalization of the audio signal
- Mel Frequency Cepstral Coefficients (MFCC) are calculated

INPUT: audio signal



The audio signal is split into 64 ms frames with 16 ms overlaps

The MFCCs of each frame are calculated using an inverse discrete cosine transform



A 1024-point Fast Fourier Transform (**FFT**) is applied to each frame



## **Architecture: Body Part I**



Information is routed in three parallel paths in which for each dimension of the multi-dimensional signal a receptive field is calculated

Three different **kernel sizes** for features extraction:

- 3 x 3 for spectral-temporal dependencies
- 9 x 1 for spectral dependencies
  - 1 x 11 for temporal dependencies

## **Architecture: Body Part I**

The advantage of using this technique over having only one path with the same receptive field size is to reduce the number of parameters and the computational cost of this part of the model

15 0.0 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 Time(sec) Three different **kernel sizes** for features extraction:

3 x 3 for spectral-temporal dependencies

9 x 1 for spectral dependencies

1 x 11 for temporal dependencies

#### **Architecture: Body Part II**



#### **Architecture: Head**



**Dropout Layer**: to reduce **overfitting** 

Softmax Activation Function: reduces computational complexity and the number of parameters

OUTPUT: Class (emotion)





### **Light-SERNet: Architecture Recap**



#### **Light-SERNet: Dataset**

**EMO-DB** is a German-language dataset, recorded by ten professional actors and actresses (five men and five women). The dataset includes 535 emotional utterances in **7 classes**: **anger** (23.7%), **natural** (14.7%), **sadness** (11.5%), **fear** (12.9%), **disgust** (8.6%), **happiness** (13.2%) and **boredom** (15.1%).

ANGER NATURAL SADNESS FEAR

DISGUST HAPPINESS BOREDOM

## **Light-SERNet: Dataset**

|      | 7-17-1-17                                                                          |                                                                           |
|------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| code | text (german)                                                                      | try of an english translation                                             |
| a01  | Der Lappen liegt auf dem Eisschrank.                                               | The tablecloth is lying on the frigde.                                    |
| a02  | Das will sie am Mittwoch abgeben.                                                  | She will hand it in on Wednesday.                                         |
| a04  | Heute abend könnte ich es ihm sagen.                                               | Tonight I could tell him.                                                 |
| a05  | Das schwarze Stück Papier befindet sich da oben neben dem Holzstück.               | The black sheet of paper is located up there besides the piece of timber. |
| a07  | In sieben Stunden wird es soweit sein.                                             | In seven hours it will be.                                                |
| b01  | Was sind denn das für Tüten, die da unter dem Tisch stehen?                        | What about the bags standing there under the table?                       |
| b02  | Sie haben es gerade hochgetragen und jetzt gehen sie wieder runter.                | They just carried it upstairs and now they are going down again.          |
| b03  | An den Wochenenden bin ich jetzt immer nach Hause gefahren und habe Agnes besucht. | Currently at the weekends I always went home and saw Agnes.               |
| b09  | Ich will das eben wegbringen und dann mit Karl was trinken<br>gehen.               | l will just discard this and then go for a drink with<br>Karl.            |
| b10  | Die wird auf dem Platz sein, wo wir sie immer hinlegen.                            | It will be in the place where we always store it.                         |



#### **Training and Results Comparison**



## **Training** Give the proper INPUT to start the training train.py -dn -In dataset name cost function -V -id verbose for input durations training bar -it -at

audio type

type of input

## **Training**

2

#### **Dataset Segmentation**

Modeling the input to obtain same sized and normalized audio files, i.e. files with a fixed length and with the same level for the entire duration



3

#### Start the effective training

**K-FOLD** cross validation with K = 10

During the train the best weights are saved

Models with different degrees of precision are generated

Float32
Float16
int8

**Comparison of Obtained Results** 



|               | EMO-DB |       |            |                        |       |            |
|---------------|--------|-------|------------|------------------------|-------|------------|
|               | F-Loss |       |            | CE Loss                |       |            |
|               | UA     | WA    | <b>F</b> 1 | $\mathbf{U}\mathbf{A}$ | WA    | <b>F</b> 1 |
| Study results | 92.88  | 93.08 | 93.05      | 94.15                  | 94.21 | 94.16      |
| My results    | 94.94  | 95.14 | 95.10      | 94.89                  | 95.33 | 95.27      |

Consistent results with the study came out from my experiments.

#### **Comparison of Obtained Results**



|               | EMO-DB |       |       |         |       |       |
|---------------|--------|-------|-------|---------|-------|-------|
|               | F-Loss |       |       | CE Loss |       |       |
|               | UA     | WA    | F1    | UA      | WA    | F1    |
| Study results | 92.88  | 93.08 | 93.05 | 94.15   | 94.21 | 94.16 |
| My results    | 94.94  | 95.14 | 95.10 | 94.89   | 95.33 | 95.27 |

In my work the **UA** is higher with the F-Loss. However the gap is so minimal that can be negligible.

#### **Inference Tests**

Model trained with Cross Entropy and saved with Float32 as precision inference\_tests Used audio files NOT from dataset, audio Audio from recorded by me EMO-DB dataset Phrase from <external> <dataset> dataset, audio recorded by me <rec>

#### **Inference Tests**

Eile Marse

All the files belonging to the dataset were correctly classified

Inconsistencies in some files recorded by me

WHY?

- Not professional actresses
- Not professional microphone

Classified

background noise

| File Name                  | Origin   | Correct Class    | Classified as |
|----------------------------|----------|------------------|---------------|
| sadness_external.wav       | external | SADNESS          | BOREDOM       |
| $sadness\_external\_2.wav$ | external | SADNESS          | BOREDOM       |
| happiness_external.wav     | external | <b>HAPPINESS</b> | HAPPINESS     |
| $anger_external.wav$       | external | ANGER            | ANGER         |
| disgust_rec.wav            | recorded | DISGUST          | DISGUST       |
| boredom_rec.wav            | recorded | BOREDOM          | BOREDOM       |
| anger_rec.wav              | recorded | ANGER            | HAPPINESS     |
|                            |          |                  |               |

#### **Conclusions**

More and more applications nowadays take advantage of vocal input commands given by the user and to distinguish the emotion of the speaker can completely change the response of the vocal assistant.

Psychological and behavioural studies could be integrated into this processes at marketing level: when an human feels more comfortable when interacting with a machine, the user's satisfaction with using the product increases and so all the involved parts in the interaction get advantage. Users are happy and the company sells more products.

What can be improved is the use of datasets that involve speakers speaking naturally and not actors recorded with professional instruments.

#### References

- Arya Aftab et al. "Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition". In: arXiv preprint arXiv:2110.03435 (2021)
- GitHub: PanK0/LIGHT-SERNET. URL:

https://github.com/PanKO/LIGHT-SERNET