

Machine Learning

Алгоритмы на графах

otus.ru

Меня хорошо видно && слышно?

Тема вебинара

Графы и алгоритмы на графах

Rail Suleymanov

Machine learning specialist

Правила вебинара

Активно участвуем

Off-topic обсуждаем в чате группы

Задаем вопрос в чат или голосом

Вопросы вижу в чате, могу ответить не сразу

Содержание модуля

- 1. Введение и основные понятия: определение, типы задач, практика/networkx
- 2. Получение признаков графов: Word2Vec, Node2Vec, библиотека StellarGraph
- 3. ML на графах: задачи классификации рёбер и вершин графа
- 4. Практическое занятие

Маршрут вебинара

Цели вебинара

К концу занятия вы сможете

- Оперировать основными понятиями теории графов
- Формулировать подходящие задачи с помощью теории графов
- Применять networkx для работы с графами
- 4. Вычислять центральность, искать сообщества

Теория

Определение и способ представления

Графы состоят из вершин (node, vertex) и рёбер (edge, link). Графы могут быть направленными (directed) и ненаправленными (undirected).

Графы чаще хранят в виде матрицы смежности (adjacency matrix). Для графа справа она выглядит следующим образом:

	_ A		С		E
Α	0	1	0	1	0
В	1				
С					1
D			0		1
E	0	0	1	1	0 _

Undirected Graph

Типы задач

Сети — структуры из объектов и связей между ними.
Граф — математическое представление сети.
К анализу графов можно свести множество задач, например:

- 1. Поиск сообществ в соцсетях
- 2. Моделирование мозга человека
- 3. Рекомендательные системы

Практика

Вопросы?

Рефлексия

Ключевые тезисы

- Изучили основные понятия теории графов
- Изучили алгоритмы, применяемые в работе с графами
- 3. Разобрали практические примеры

Рефлексия

С какими впечатлениями уходите с вебинара?

Как будете применять на практике то, что узнали на вебинаре?

Заполните, пожалуйста, опрос о занятии по ссылке в чате

Спасибо за внимание!

Приходите на следующие вебинары

Rail Suleymanov

Machine learning specialist