Probabilidade

Jeann Rocha

March 2024

1 Lista de Exercícios

Exercício 1.1. Vamos inicialmente demonstrar que dado $n \in \mathbb{N}$, temos

$$\sum_{k=0}^{n} \left(-1\right)^k \binom{n}{k} = 0 \tag{1}$$

Para isto, utilizaremos a fórmula de Stifel, que afirma que

$$egin{pmatrix} n \ k \end{pmatrix} + egin{pmatrix} n \ k+1 \end{pmatrix} = egin{pmatrix} n+1 \ k+1 \end{pmatrix}, orall k, n \in \mathbb{N}$$

Ora, (1) é obviamente verdade para n=0 ou n=1. Agora, seja $m\in\mathbb{N}$ tal que (1) seja verdade para n=k. Então

$$\sum_{k=0}^{n+1} (-1)^k \binom{n+1}{k} = \sum_{k=0}^{n+1} (-1)^k \left[\binom{n}{k-1} + \binom{n}{k} \right]$$
$$= \sum_{k=0}^{n+1} (-1)^k \binom{n}{k-1} + \sum_{k=0}^{n+1} (-1)^k \binom{n}{k}$$
$$= \binom{n}{-1} + (-1)^{n+1} \binom{n}{n+1} = 0$$

Portanto, por indução, está demonstrado e, uma vez que $\sum\limits_{k=0}^n \binom{n}{k} = 2^n$ (Teorema das Linhas), segue da fórmula (1), que se n é ímpar (digamos n=2j+1), então temos que $\sum\limits_{k=0}^j \binom{n}{2k+1} = \sum\limits_{k=0}^j \binom{n}{2k} = \frac{2^n}{2} = 2^{n-1} = 2^{2j}$ e, se n é par (digamos n=2j), então temos que $\sum\limits_{k=0}^j \binom{n}{2k} = \sum\limits_{k=0}^j \binom{n-1}{2k+1} = \frac{2^n}{2} = 2^{n-1} = 2^{2j-1}$.

Desse modo, em 3 lançamentos, o número total de caras é ímpar se, e somente se, for 1 ou

3. Logo, dado que ocorreram 3 lançamentos, temos

$$\begin{split} P(\mathsf{n}^{\underline{\mathsf{o}}} \; \mathsf{caras} \; \mathsf{ser} \; \mathsf{impar}) &= P((\mathsf{n}^{\underline{\mathsf{o}}} \; \mathsf{caras} = 1) \cup (\mathsf{n}^{\underline{\mathsf{o}}} \; \mathsf{caras} = 3)) \\ &= P(\mathsf{n}^{\underline{\mathsf{o}}} \; \mathsf{caras} = 1) + P(\mathsf{n}^{\underline{\mathsf{o}}} \; \mathsf{caras} = 3) \\ &= \frac{3}{2^3} + \frac{1}{2^3} = \frac{4}{8} = \frac{1}{2} \end{split}$$

Pelo mesmo raciocínio, em 4 lançamentos, temos

$$\begin{split} P(\mathsf{n}^{\underline{\mathsf{o}}} \; \mathsf{caras} \; \mathsf{ser} \; \mathsf{impar}) &= P((\mathsf{n}^{\underline{\mathsf{o}}} \; \mathsf{caras} = 1) \cup (\mathsf{n}^{\underline{\mathsf{o}}} \; \mathsf{caras} = 3)) \\ &= P(\mathsf{n}^{\underline{\mathsf{o}}} \; \mathsf{caras} = 1) + P(\mathsf{n}^{\underline{\mathsf{o}}} \; \mathsf{caras} = 3) \\ &= \frac{4}{2^4} + \frac{4}{2^4} = \frac{8}{16} = \frac{1}{2} \end{split}$$

Em 5 lançamentos, temos

$$\begin{split} P(\mathbf{n}^{\mathbf{Q}} \; \mathsf{caras} \; \mathsf{ser} \; \mathsf{impar}) &= P((\mathbf{n}^{\mathbf{Q}} \; \mathsf{caras} = 1) \cup (\mathbf{n}^{\mathbf{Q}} \; \mathsf{caras} = 3) \cup (\mathbf{n}^{\mathbf{Q}} \; \mathsf{caras} = 5)) \\ &= P(\mathbf{n}^{\mathbf{Q}} \; \mathsf{caras} = 1) + P(\mathbf{n}^{\mathbf{Q}} \; \mathsf{caras} = 3) + P(\mathbf{n}^{\mathbf{Q}} \; \mathsf{caras} = 5) \\ &= \frac{5}{2^5} + \frac{10}{2^5} + \frac{1}{2^5} = \frac{16}{32} = \frac{1}{2} \end{split}$$

Mais geralmente, para 2n lançamento(s), com n = 1, 2, ..., temos

$$\begin{split} P(\mathbf{n}^{\underline{o}} \text{ caras ser impar}) &= P((\mathbf{n}^{\underline{o}} \text{ caras} = 1) \cup (\mathbf{n}^{\underline{o}} \text{ caras} = 3) \cup ... \cup (\mathbf{n}^{\underline{o}} \text{ caras} = 2n)) \\ &= P(\mathbf{n}^{\underline{o}} \text{ caras} = 1) + P(\mathbf{n}^{\underline{o}} \text{ caras} = 3) + ... + P(\mathbf{n}^{\underline{o}} \text{ caras} = 2n) \\ &= \frac{\binom{2n}{1}}{2^{2n}} + \frac{\binom{2n}{3}}{2^{2n}} + ... + \frac{\binom{2n}{2n}}{2^{2n}} = \frac{\sum\limits_{i=1}^{n} \binom{2n}{2i}}{2^{2n}} = \frac{2^{2n-1}}{2^{2n}} = \frac{1}{2} \end{split}$$

De modo análogo, para 2n+1 lançamento(s), com n=0,1,2,..., temos uma expressão similar dada por

$$\frac{\sum\limits_{i=0}^{n} \binom{2n}{2i+1}}{2^{2n+1}} = \frac{2^{2n}}{2^{2n+1}} = \frac{1}{2}$$

Portanto, concluímos que a probabilidade de um número ímpar de caras em qualquer número de lançamentos é $\frac{1}{2}$.

Exercício 1.2. Temos $\binom{2n}{n}$ formas de escolher as pessoas que receberão o sorvete do sabor A e, para cada uma destas, as pessoas que receberão o sorvete do sabor B estarão determinadas (serão as restantes). Supondo que as a pessoas que preferem o sorvete do sabor A receberam sorvetes desse sabor e, analogamente, as b pessoas que preferem o sorvete do sabor B receberam sorvetes desse sabor, restarão 2n-a-b pessoas, n-a sorvetes do sabor A e n-b sorvetes do sabor B. Uma vez escolhidas as n-a pessoas

das 2n-a-b que receberão os sorvetes do sabor A restantes, as pessoas que receberão o sorvete do sabor B estarão determinadas. Logo, o número de modos de organizar os 2n-a-b sorvetes (n-a do tipo A e n-b do tipo B) para as 2n-a-b pessoas restantes é $\binom{2n-a-b}{n-a}$. Portanto, a probabilidade de que a preferência de todas as pessoas seja respeitada é $\frac{\binom{2n-a-b}{n-a}}{\binom{2n}{n}}$.

Exercício 1.3. Seja $A = \bigcup_{n=1}^{\infty} A_n$ e considere $A_0 = \emptyset$. Note que os conjuntos $B_1, B_2, ...$ dados por $B_n = A_n - \bigcup_{i=0}^{n-1} A_i$ são dois a dois disjuntos e tais que $\bigcup_{n=1}^{\infty} B_n = A$. Então,

$$P\left(igcup_{n=0}^{\infty}A_n
ight)=P\left(igcup_{n=0}^{\infty}B_n
ight)=\sum_{n=0}^{\infty}P(B_n)=\sum_{n=0}^{\infty}P\left(A_n-igcup_{i=0}^{n-1}A_i
ight)\leq\sum_{n=0}^{\infty}P(A_n).$$

Exercício 1.4. Como $A \cup B \subset \Omega, \forall A, B \subset \Omega$, temos

$$P(A)+P(B)-P(A\cap B)=P(A\cup B)\leq P(\Omega)=1\Rightarrow P(A)+P(B)-1\leq P(A\cap B)$$

Além disso, $P(A \cap B) \leq P(B)$ já que $A \cap B \subset B$, e está provado.

Em particular, temos que se $A_1,A_2,...$ e $B_1,B_2,...$ são eventos aleatórios do mesmo espaço de probabilidade tais que $P(A_n) \to 1$ e $P(B_n) \to \text{quando } n \to +\infty$, então como vale que $P(A_n) + P(B_n) - 1 \le P(A_n \cap B_n) \le P(B_n)$ e $P(A_n) + P(B_n) - 1 \to 1 + p - 1 = p$ e $P(B_n) \to p$, quando $n \to +\infty$, pelo Teorema do Sanduíche, segue que $P(A_n \cap B_n) \to p$.

- **Exercício 1.5.** a) $A \cap B \subset A \Rightarrow P(A \cap B) \leq P(A) = 0, 6$. Mas, supondo $A \subset B$, temos $P(A \cap B) = P(A) = 0, 6$. Além disso, pelo exercício anterior, temos que $P(A \cap B) \geq P(A) + P(B) 1 = 0, 6 + 0, 7 1 = 0, 3$, valendo a igualdade se $A \cup B = \Omega$. Logo, $0, 3 \leq P(A \cap B) \leq 0, 6$.
 - A fim de mostrar diretamente a existência dessas cotas, considere os números de 1 a 10, dos quais deve ser escolhido um deles e seja A o evento do escolhido ser 1,2,3,4,5 ou 6 e B o evento do escolhido ser 1,2,3,4,5,6 ou 7. Então, naturalmente, temse $P(A) = \frac{6}{10} = 0$, 6 e $P(B) = \frac{7}{10} = 0$, 7. Além disso, $A \subset B$ e, portanto, uma das cotas é atingida. Agora, considere o mesmo evento A e o evento B de escolher um número dentre 4,5,6,7,8,9 ou 10. Então, novamente, P(B) = 0,7 e $A \cup B = \{1,2,...,10\}$, logo, a outra cota é atingida.
 - b) $A\cap B\cap C\subset A\Rightarrow P(A\cap B\cap C)\leq P(A)=0$, 6. Mas, supondo $A\subset B\subset C$, temos $P(A\cap B\cap C)=P(A)=0$, 6. Além disso, pelo exercício anterior, temos que $P(A\cap B\cap C)\geq P(A)+P(B\cap C)-1\geq P(A)+P(B)+P(C)-2=0$, 6+0, 7+0, 8-2=0, 1, valendo a igualdade se $A\cup (B\cap C)=\Omega=B\cup C$. Logo, $0,1\leq P(A\cap B\cap C)\leq 0$, 6.

A fim de mostrar diretamente a existência dessas cotas, considere o mesmo espaço de probabilidade do item anterior, com $A=\{1,2,...,6\}, B=A\cup\{7\}$ e $C=B\cup\{8\}$. Então, tem-se P(A)=0,6, P(B)=0,7 e P(C)=0,8. Além disso,

 $A\subset B\subset C$ e, portanto, uma das cotas é atingida. Agora, considere o mesmo evento $A,B=\{4,5,...,10\}$ e $C=\{1,2,3,4,7,8,9,10\}$. Então, novamente, P(B)=0,7 e P(C)=0,8 e $A\cup (B\cap C)=\{1,2,...,10\}=B\cup C$, logo, a outra cota é atingida.

Exercício 1.6. a) Como $P([x,y])=y-x, \forall x,y\in [0,1]$, com $x\leq y$, temos

$$\lim_{n o +\infty} P([a_n,b_n]) = \lim_{n o\infty} \left(b_n-a_n
ight) = \lim_{n o\infty} b_n - \lim_{n o +\infty} a_n = b-a = P([a,b]).$$

- b) Seja $I \in \mathcal{B}_{[0,1]}$. Se $\frac{1}{2} \in I$, então, defina P(I) = 1, caso contrário, defina P(I) = 0. Claramente, vê-se que isso define uma probabilidade em $\mathcal{B}_{[0,1]}$. Agora, considere os intervalos $I_n = \left[\frac{1}{2} \frac{1}{2n}, \frac{1}{2} + (-1)^n \frac{1}{2n}\right]$. Observe que $\frac{1}{2} \frac{1}{2n} \to \frac{1}{2}$ e que $\frac{1}{2} + (-1)^n \frac{1}{2n} \to \frac{1}{2}$. Mas, $P([a_n,b_n]) = P\left(\left\{\frac{1}{2} \frac{1}{2n}\right\}\right) = 0$ se n é ímpar e $P([a_n,b_n]) = P\left(\left[\frac{1}{2} \frac{1}{2n}, \frac{1}{2} + \frac{1}{2n}\right]\right) = 1$ se n é par. Logo, $\lim_{n \to +\infty} P([a_n,b_n])$ não existe, já que $P([a_{2n},b_{2n}]) \to 1$ e $P([a_{2n-1},b_{2n-1}]) \to 0$, isto é, estas subsequências convergem para limites distintos.
- c) Se (a_n) é não-decrescente e (b_n) é não-crescente, então $[a_n,b_n]\downarrow [a,b]$, donde $P([a_n,b_n])\downarrow [a,b]$.