3D Meshes of Facial Expression

Ecole Polytechnique Fédérale de Lausanne

Introduction

- 3D Geometry Investigation
 - Properties: Expression, Ethnies
 - Deformation
- Work split into two parts
 - Clustering :
 - Is it possible to define clusters that categorize facial expressions as well as ethnicity ?
 - Deformation Transfer
 - Can facial expression (i.e. Mouth open, raised eyebrows, ...) be reproduced?

Data Acquisition / Cleaning

• Database :

- FaceWarehouse: 150 people, 47 expressions, mainly asian people
- EPFL: 120 people, mainly caucasian people
- Meshes are densely registered

Classification – Person Dependent - Faces

- Features
 - Remove user specifc neutral
- Laplacian embedding
- Classification with kNN
 - None misclassified test samples

Clustering – Person Dependent - Faces

- Features
 - Remove user specific neutral
- Laplacian's decomposition
- Clustering with K-Means
 - Selection using zero eigenvalue

Clustering – Person Independent

- Features
 - Remove average identity
 - Remove vertices with no displacement
- Laplacian's decomposition
 - Zero eigenvalues match identity and not expressions

Clustering – Person Dependent - Ethnies

Deformation Transfer

- Estimate transformation between expressions
- Graph-based approach

Deformation Field

- Estimate the deformation field only using a sparse subset of *K* target's vertices
- Deformation learning using graph-based tool :

$$\boldsymbol{d}_{i}^{*} = \arg\min \left\| \boldsymbol{M}(\boldsymbol{x}_{i}^{S} + \boldsymbol{d}_{i}) - \boldsymbol{x}_{i}^{t} \right\|_{2}^{2} + \alpha \boldsymbol{d}_{i}^{T} \boldsymbol{L} \boldsymbol{d}_{i}$$

Anchor selection:

$$\mathbf{M}_{ij} = \begin{cases} 1 & j \in C \\ 0 & otherwise \end{cases}$$

Constrained reconstruction

Estimation of local curvature using Laplacian

$$\Rightarrow Lx^t \approx Lx^s \Rightarrow No unique solution$$

Augmentation with positional constraints :

$$\begin{bmatrix} \boldsymbol{L} \\ \lambda \boldsymbol{A} \end{bmatrix} \boldsymbol{x}^t = \begin{bmatrix} \boldsymbol{\delta}^s \\ \lambda \boldsymbol{C}^t \end{bmatrix}$$
 where $C_{(0 \dots k)}^t = \boldsymbol{x}_k^t, k \in C$

Constrained Reconstruction - Anchors

Conclusion

Clustering

- Removing person specific variation helps to discriminate expressions
- Removing average identity does not helps to be person independent
- Ethnicity clustering gives good results

Deformation

- Deformation Field catch the semantic of expression but fail to give realistic solution
- Constraints of the curvature provide a more robust and realistic solution.