Proactive Dynamic DCOPs

Khoi Hoang

Ferdinando Fioretto

Ping Hou

Makoto Yokoo

William Yeoh

Roie Zivan

Proactive Dynamic DCOPs

Khoi Hoang

Ferdinando Fioretto

Ping Hou

Makoto Yokoo

William Yeoh

Roie Zivan

- Electric Vehicle Charging Schedule Problem
- Distributed Constraint Optimization Problems (DCOPs)
- Proactive Dynamic DCOPs
- Algorithms
- Experimental results
- Conclusion

Electric Vehicle Charging Schedule Problem

- Each house has a charging station for its vehicles
- Each schedule contains a set of charging times
- Each vehicle has an fixed starting time
- Neighboring houses are connected via transmission lines
- Each transmission line has thermal capacity which limits total amount of energy on the line at a time
- Each house has:
 - Background load
 - Maximal energy usage limit at a time

Electric Vehicle Charging Schedule Problem (cont.)

- Each pair of neighboring vehicles has different preferred charging times
- The goal is to find *best* schedules for all vehicles

Vehicle A	Vehicle B	Utility
0	0	0
0	1	3
•••	•••	•••
23	23	2

Vehicle C	Vehicle A	Utility
0	0	2
0	1	10
23	23	5

Vehicle B	Vehicle C	Utility
0	0	1
0	1	7
•••	•••	•••
23	23	0

Why distributed approach?

Knowledge about neighbors only (privacy concern)

Take advantage of parallelism

Remove single point of failure

- Electric Vehicle Charging Schedule Problem
- Distributed Constraint Optimization Problems (DCOPs)
- Proactive Dynamic DCOPs
- Algorithms
- Experimental results
- Conclusion

Distributed Constraint Optimization

Problems^[1]

- DCOP is a tuple $\langle A, X, D, F, \alpha \rangle$
- $A = \{a_i\}_{i=1}^p$ is a set of agents
- $X = \{x_i\}_{i=1}^n$ is a set of variables
- $D = \{D_x\}_{x \in X}$ is a set of finite domains
- $F = \{f_i\}_{i=1}^m$ is a set of utility functions, where: $f_i : \times_{x \in X^{f_i}} D_x \rightarrow ^{\circ +} \cup \{\bot\}$

- $x^* = \arg \max_x F(x)$ is the optimal solution
- α is a mapping function

Dynamic DCOPs^[2]

- DCOPs only model static problems
- In real-world applications, agents often act in dynamic environments
- Stochastic events are composed of:
 - Increase/decrease in utilities (e.g. changes in preferred time)
 - Addition/removal of variables (e.g. add more vehicle)
 - Change in values of variables (e.g. some charging times are no longer valid)

Vehicle A	Vehicle B	Utility
0	0	0
0	1	3
23	23	2

Dynamic DCOPs (cont.)

- Dynamic DCOPs is a sequence of static DCOPs $\langle p_1,p_2,\mathsf{K},p_n\rangle$ where each followed DCOP changes based on stochastic events:
 - Increase or decrease in value of cost functions
 - Addition or removal of variables
 - Changes in values of variables
- The goal is to find utility-maximal solution for each DCOP in the sequence
- No harder than solving each DCOP separately

Proactive Dynamic DCOPs

- Dynamic DCOPs does not consider future changes
- Proactive Dynamic DCOPs:
 - Take advantage of future changes
 - Find a solution requires little or no change despite future changes
 - Consider changes of solution after time steps as switching cost
- Fix the solution after a finite time step

Vehicle A	Vehicle B	Utility
0	0	0
0	1	3
	•••	
23	23	2

Dynamic Distributed Electric Vehicle Charging Schedule Problem

- Each vehicle has a flexible starting time
- Each vehicle has initial probabilities and transition function for its starting time
- Changes in the charging schedule incur costs

Vehicle A	Vehicle B	Utility
0	0	0
0	1	3
•••	•••	
23	23	2

- Electric Vehicle Charging Schedule Problem
- Distributed Constraint Optimization Problems (DCOPs)
- Proactive Dynamic DCOPs
- Algorithms
- Experimental results
- Conclusion

Proactive Dynamic DCOPs

- A Proactive Dynamic DCOP (PD-DCOP) is a tuple $\left\langle A, X, D, F, T, \gamma, h, c, p_Y^0, \alpha \right\rangle$
- $A = \{a_i\}_{i=1}^p$ is a set of agents
- $X = \{x_i\}_{i=1}^n$ is a set of variables
 - $Y \subseteq X$ is a set of random variables
- $D = \{D_x\}_{x \in X}$ is a set of finite domains
 - $\Omega = {\{\Omega_y\}_{y \in Y}} \subseteq D$ is a set of event spaces for random events
- $F = \{f_i\}_{i=1}^m$ is a set of utility functions
- $h \in \bullet$ is a finite horizon

Vehicle A	Vehicle B	Utility
0	0	0
0	1	3
23	23	2

- A Proactive Dynamic DCOP (PD-DCOP) is a tuple $\left\langle A, X, D, F, T, \gamma, h, c, p_Y^0, \alpha \right\rangle$
- $T = \{T_y\}_{y \in Y}$ is set of transition functions

•
$$T_{y}: \Omega_{y} \times \Omega_{y} \rightarrow [0,1] \subseteq \circ$$
 for $y \in Y$

- $c \in °$ is a switching cost
- $\gamma \in [0,1)$ is a discount factor
- $p_Y^0 = \{p_y^0\}_{y \in Y}$ is a set of initial probability distributions
- α is a mapping function

Vehicle A	Vehicle B	Utility
0	0	0
0	1	3
•••		
23	23	2

• A Proactive Dynamic DCOP (PD-DCOP) is a tuple $\langle A, X, D, F, T, \gamma, h, c, p_Y^0, \alpha \rangle$

Vehicle A	Vehicle B	Utility
0	0	0
0	1	3
		•••
23	23	2

The goal is to find a sequence of h+1 assignments:

(1) Objective functions

(2) Sum of utility functions over first h time steps

$$-\sum_{t=0}^{h-1} \gamma^t \left[c \cdot \Delta(\mathbf{x}^t, \mathbf{x}^{t+1}) \right]$$

(3) Switching cost

$$+\,\tilde{\mathcal{F}}_{\!x}(\mathbf{x}^h)+\tilde{\mathcal{F}}_{\!y}(\mathbf{x}^h)$$

(4) Long-term utility at last time step

• A Proactive Dynamic DCOP (PD-DCOP) is a tuple $\langle A, X, D, F, T, \gamma, h, c, p_Y^0, \alpha \rangle$

$$\mathcal{F}_x^t(\mathbf{x}) = \sum_{f_i \in \mathbf{F} \setminus \mathbf{F}_Y} f_i(\mathbf{x}_i)$$

$$\mathcal{F}_{y}^{t}(\mathbf{x}) = \sum_{f_{i} \in \mathbf{F}_{Y}} \sum_{\omega \in \Omega_{y_{i}}} f_{i}(\mathbf{x}_{i}|_{y_{i}=\omega}) \cdot p_{y_{i}}^{t}(\omega)$$

(7) Probability of random variable taking a value

Vehicle A	Vehicle B	Utility
0	0	0
0	1	3
•••	•••	•••
23	23	2

• A Proactive Dynamic DCOP (PD-DCOP) is a tuple $\langle A, X, D, F, T, \gamma, h, c, p_Y^0, \alpha \rangle$

$$\tilde{\mathcal{F}}_x(\mathbf{x}) = \frac{\gamma^h}{1 - \gamma} \mathcal{F}_x^h(\mathbf{x})$$

$$\tilde{\mathcal{F}}_{y}(\mathbf{x}) = \sum_{f_{i} \in \mathbf{F}_{\mathbf{Y}}} \sum_{\omega \in \Omega_{y_{i}}} \tilde{f}_{i}(\mathbf{x}_{i}|_{y_{i}=\omega}) \cdot p_{y_{i}}^{h}(\omega)$$

$$\tilde{f}_i(\mathbf{x}_i|_{y_i=\omega}) = \gamma^h \cdot f_i(\mathbf{x}_i|_{y_i=\omega})
+ \gamma \sum_{\omega' \in \Omega_{y_i}} T_{y_i}(\omega, \omega') \cdot \tilde{f}_i(\mathbf{x}_i|_{y_i=\omega'})$$

(8)	Long-term utility w/o
	random variables

(9)	Long-term utility with
	random variables

(10)

Long-term expected utility (Bellman equation)

Vehicle A	Vehicle B	Utility
0	0	0
0	1	3
•••		
23	23	2

- Electric Vehicle Charging Schedule Problem
- Distributed Constraint Optimization Problems (DCOPs)
- Proactive Dynamic DCOPs
- Algorithms
- Experimental results
- Conclusion

PD-DCOPs algorithms

- Exact algorithm:
 - ➤ Collapse h+1 DCOPs into a single DCOP
 - > Use any off-the-shelf exact DCOP algorithm
- Approximation algorithm:
 - > Start with initial assignments: random or heuristics
 - > Use local search approach
 - > Reuse information and heuristic building pseudo-tree

Exact algorithm

t=0	x1	x2	Utility
	0	0	u11
	0	1	u12
	1	0	u13
	1	1	u14

t=1	x1	x2	Utility
	0	0	u21
	0	1	U22
	1	0	u23
	1	1	u24

t=2	x1	x2	Utility
	0	0	u31
	0	1	u32
	1	0	u33
	1	1	u34

Collapsed table	x1	x2	Aggregated utility	
	0,0,0	0,0,0	u11 + u21 + u31	
	0,0,0	0,0,1	u11 + u21 + u32	
	1,1,1	1,1,1	u14 + u24 + u34	

Exact algorithm (cont.)

Collapsed table	x1	x2	Aggregated utility	
	0,0,0	0,0,0	u11 + u21 + u31	
	0,0,0	0,0,1	u11 + u21 + u32	
	1,1,1	1,1,1	u14 + u24 + u34	

 After collapsing all the utility tables, we can use any off-the-shelf DCOP algorithms

Approximation algorithm

- Each variable pick a series of its assignments for every time step:
 - Pick values randomly
 - Solve regular DCOP at every time step
- Then use any local-search algorithm to solve PD-DCOPs

- Electric Vehicle Charging Schedule Problem
- Distributed Constraint Optimization Problems (DCOPs)
- Proactive Dynamic DCOPs
- Algorithms
- Experimental results
- Conclusion

Experimental results

$ \mathbf{A} $	C-DPOP		LS-SDPOP			LS-RAND	
	time (ms)	ρ	time (ms)		ρ	time (ms)	ρ
2	223	1.001	197.5	(207.7)	1.003	203.7	1.019
4	489	1.000	255.7	(307.3)	1.009	273.4	1.037
6	5547	1.000	382.3	(456.3)	1.011	385.9	1.045
8			739.2	(838.1)	1.001	556.0	1.034
12	_		4821.6	(7091.1)	1.003	1092.9	1.031
16	_		264897	(595245)	1.033	2203.0	1.015

Table 1: Experimental Results Varying Number of Agents

Experimental results (cont.)

Experimental Results Varying Number of Agents

- Electric Vehicle Charging Schedule Problem
- Distributed Constraint Optimization Problems (DCOPs)
- Proactive Dynamic DCOPs
- Algorithms
- Experimental results
- Conclusion

Conclusions

- DCOPs can model some distributed constraint problems
- DCOPs can only static problems, it cannot deal with stochastic events
- Dynamic DCOPs can model series of DCOPs with changes
- PD-DCOP can deal with:
 - Changes in random variables' values
 - > Take advantage of information (initial probabilities, transition functions)
 - > Decision variables incur switching costs
- Exact algorithms and approximation algorithms

References

- [1] Yeoh, W., and Yokoo, M. 2012. Distributed problem solving. *AI Magazine* 33(3):53–65.
- [2] Lass, R.; Sultanik, E.; and Regli, W. 2008. Dynamic distributed constraint reasoning. *In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)*, 1466–1469.

Thank you

