

Vytěžování dat – přednáška 9 Umělé neuronové sítě v data miningu

Osnova přednášky

Úvod do neuronových sítí

- Biologická inspirace
- Historie
- Perceptron
- Minsky-Pappert omyl
- Vícevrstvý perceptron
- Příklady neuronových sítí MLP, GMDH, RBFN, SOM
- Neuronové sítě a data mining
 - Použití neuronových sítí k řešení reálných problémů
 - Konkrétní příklady vytěžování dat pomocí NS

Úvod do neuronových sítí

Biologický neuron

http://neuron.felk.cvut.cz/courseware/data/chapter/36nan026/s01index.html

Co jsou to ty neuronové sítě?

- Umělé informační systémy, které jsou principiálně schopny napodobovat funkce nervových soustav a mozků živých organizmů podstatně dokonalejším způsobem, než to činí dosavadní, tzv. konvenční výpočetní technika.
- Pozor! Od umělých neuronových sítí k mozku je ale ještě strašně daleko…

Umělá neuronová síť

- Distribuované, paralelní zpracování dat
- Vzájemně propojené výkonné prvky (neurony)
- Každý výkonný prvek transformuje vstupní data na výstupní podle jisté přenosové funkce.
- Přitom se též může uplatnit obsah jeho lokální paměti.
- Signál se šíří sítí tak, že výstupy neuronů jsou přivedeny na vstupy dalších neuronů.

Pracovní fáze umělé neuronové sítě

- Umělá neuronová síť pracuje v zásadě ve dvou fázích - adaptivní a aktivní.
- V adaptivní fázi se síť **učí** (learning phase),
- v aktivní vykonává naučenou činnost, vybavuje (evaluation phase).
- Paměť sítě reprezentují hodnoty synaptických vah na jednotlivých vstupech neuronů.

Učení a jeho typy

- Při učení s učitelem se umělá neuronová síť učí srovnáváním aktuálního výstupu s výstupem požadovaným a přestavováním synaptických vah tak, aby se propříště snížil rozdíl mezi skutečným a žádaným výstupem. Metodika snižování rozdílu je určena učicím algoritmem.
- Do učení bez učitele není zapojen žádný vnější arbitr a celé učení je založeno pouze na informacích, které samotná síť během celého procesu učení získala.

Možná se dostane i na Hebbovské učení, posilované učení, atd.

Učení umělé neuronové sítě

- Minule kompetiční učení (bez učitele)
- Dnes učení s učitelem:

Historie

1899 - 1969

1923 - 1969

Warren McCulloch, Walter Pitts

McCulloch-Pittsův neuron (1943)

$$y = S(\sum_{i=1}^{N} w_i x_i + \Theta)$$

- y je výstup neboli aktivita neuronu,
- x_i je i-tý vstup neuronu, vstupů je celkem N,
- w_i představuje hodnotu *i*-té synaptické váhy,
- S je (nelineární) přenosovou funkcí neuronu a
- ⊕ představuje prahovou hodnotu (vlastně posunutí).
- Výraz v závorce je vnitřní potenciál.

Rosenblattův perceptron (1957)

Frank Rosenblatt -

tvůrce prvního neuropočítače Mark I, 1960

- Vymyslel pro MP-neuron algoritmus učení
- Nazývá neuron perceptronem (pattern recognizer)
- Použil ho pro klasifikaci písmen

Rosenblattova perceptronová síť

Neurony v Rosenblattově síti

neuron v perceptronové vrstvě

neuron v démonické vrstvě

0101 0101 0101 0101 0101 0101

Rosenblatt - učicí algoritmus

- Váhy se nastaví náhodně.
- Je-li výstup správný, váhy se nemění.
- Má-li být výstup roven 1, ale je 0/-1, inkrementuj váhy na aktivních vstupech.
- Má-li být výstup roven 0/-1, ale je 1, dekrementuj váhy na aktivních vstupech.
- Vstupy jsou přitom aktivní tehdy, když je jejich hodnota nad prahem, tedy nenulová. Velikost změny vah (inkrementace nebo dekrementace) závisí na konkrétně zvolené ze tří možných variant:
 - Při inkrementaci i dekrementaci se aplikují pevné přírůstky.
 - Přírůstky se mění v závislosti na velikosti chyby. Je výhodné, jsou-li při větší chybě větší a naopak. Takto dosažené zrychlení konvergence však může mít za následek nestabilitu učení.
 - Proměnné a pevné přírůstky se kombinují v závislosti na velikosti chyby.

Rosenblatt a spol.

- Velmi dobré výsledky
- Přitažlivý výzkum slibující velkou perspektivu.
- S dostatečně velkou sítí budu schopen rozpoznat cokoli!
- Na to grantové agentury slyší.
- Mnoho vědců se snaží výsledky napodobit a rozvinout.

MP-Perceptron

- MP = Marvin Minsky a Seymour Papert,
 - MIT Research Laboratory of Electronics,
 - V roce 1969 publikovali knihu:

Perceptrons

MP-perceptron

MP – algoritmus učení

Pro každý učicí vzor uprav váhy perceptronu:

$$w_i(t+1) = w_i(t) + \eta e(t)x_i(t),$$

$$e(t) = [d(t) - y(t)],$$

kde Je to chyba? Jakých hodnot nabývají d a y?

 w_i je váha itého vstupu x_i je hodnota itého vstupu

 η je koeficient učení y je výstup neuronu

d je požadovaný výstup

Geometrická interpretace neuronu

$$f(X) = W \cdot X - \theta = \sum_{i=1}^{N} w_i \cdot x_i - \theta$$
 je vnitřní potenciál neuronu

Položíme nule (ve 2D):

$$w_1 * x_1 + w_2 * x_2 - \theta = 0$$

$$x_2 = -\frac{w_1}{w_2} * x_1 + \frac{\theta}{w_2}$$

Co s tím udělá nelinearita na výstupu?

Rovnice přímky se směrnicí -w₁/w₂ a posuvem na ose x₂ rovným Θ/W_2

Jak tedy klasifikuje Rosenblattův perceptron?

Příklad: AND

- Podívejme se na reprezentaci funkce AND
- Bílý čtvereček znamená 0, černý 1
- 0 je kódovaná jako -1, jednička jako +1

$$(1+1)$$
 $(1+1)$ $(1+1)$ $(1+1)$ $(1+1)$

$$-1$$
 AND -1 = false

$$-1$$
 AND $+1$ = false

$$+1$$
 AND -1 = false

$$+1$$
 AND $+1$ = true

Příklad: AND, pokračování

Lineární řezná rovina - pro všechny kombinace vstupů je výstup buď +1, nebo -1. Hranice, kde se výstup mění se nazývá

decision boundary

Příklad: AND, pokračování

Dívejte se, jak se perceptron naučí funkci

AND:

Příklad: XOR

■ Funkce XOR je reprezentována takto:

$$-1 \text{ XOR } -1 = false$$

$$-1 \text{ XOR} + 1 = true$$

$$+1 \text{ XOR } -1 = true$$

$$+1 \text{ XOR } +1 = false$$

Příklad: XOR, pokračování

Sledujte, jak se perceptron snaží naučit XOR:

Applet perceptron

http://neuron.felk.cvut.cz/courseware/data/chapter/36nan028/s04.html

Kdy je perceptron naučen?

- Tehdy, když je pro všechny vzory učicí množiny (podmnožina množiny vstupních vzorů) splněno zadané kritérium naučenosti formulované např. tak, že
 - chyba perceptronu je menší než ...
- Jak vypočítám jeho chybu?
- Kdy mám ukončit učení?
 - chyba na validační množině začíná růst
 - stagnace po určitý počet epoch

Epocha = předložení všech vzorů trénovací množiny na vstup

ADALINE

B. Widrow, Stanfordská universita, 1960

ADALINE - Adaptive Linear Neuron

Učicí algoritmus ADALINE (tzv. delta rule)

$$w_i(t+1) = w_i(t) + \eta e(t)x_i(t),$$

$$e(t) = d(t) - s(t)$$

kde

 w_i je váha itého vstupu x_i je hodnota itého vstupu

η je koeficient učení s je vnitřní potenciál neuronu

d je požadovaný výstup

http://neuron.felk.cvut.cz/courseware/data/chapter/36nan009/example/s03Applet.html

Poznáte, v čem se liší MPperceptron a ADALINE?

- Perceptron: $\Delta w_{ij} = n(d_i y_i)x_j$
- Delta rule: $\Delta w_{ij} = n(d_i s_i)x_j$

y_i -vs- s_i (výstup nebo vnitřní potenciál):

- Delta rule se může asymptoticky přiblížit k minimu chyby pro lineárně neseparabilní problémy; perceptron NE.
- Perceptron vždy konverguje k bezchybnému / klasifikátoru lineárně separabilních problémů; delta rule se to podařit nemusí!

Kdy by percepton zkonvergovat nemusel?

MADALINE (Multiple Adaptive Linear Element)

- Zpracovává binární signály,
- pracuje s bipolárním kódováním,
- jedna skrytá, jedna výstupní vrstva,
- učí se s učitelem,
- autorem je opět B.
 Widrow.

MADALINE - architektura sítě

Pozn.: učí se pouze synapse na vstupech ADALINE perceptronů.

MADALINE možnosti použití

- První neuronová síť reálně nasazená pro řešení problému z praxe.
- Použita jako adaptivní filtr pro potlačení ozvěn na telefonních linkách (dodnes se někde používá).
- Zvládne vyřešit nelineárně separabilní problém s nulovou chybou?

MADALINE

MADALINE omezení

MADALINE není použitelná na složitější problémy.

- Proč?
- Kvůli algoritmu učení ADALINE se učí nezávisle, nejsou schopny si nějakým způsobem rozdělit vstupní prostor aby společně vytvořily složitou rozhodovací hranici …

Útlum výzkumu neuronových sítí

Respektovaná kniha Minskyho-Paperta "Perceptron" (1969) uvádí, že neuronové sítě nezvládnou uspokojivě řešit lineárně neseparabilní problémy.

 Grantové agentury usoudili, že financování výzkumu neuronových sítí není perspektivní – 20 let živoření

Lineární neseparabilita -Minsky-Papertův omyl

Neuronová síť to zvládne (viz. MADALINE), ale je třeba vymyslet, jak ji to naučit!

Zajímavé Intermezzo

Funkci ANN můžeme chápat jako transformaci *T* vstupního vektoru *X*

na výstupní vektor Y

$$Y = T(X)$$

Jaké všechny transformace T může ANN realizovat?

Toto byla vědecká výzva od počátku existence discipliny.

Průlom I: diferencovatelné aktivační funkce

Průlom II: vícevrstvé sítě s dopředným šířením

MLP (MultiLayered Perceptron)

Nelineární přenosová funkce MultiLayered Perceptronu

$$S(\varphi) = \frac{1}{1 + e^{-\gamma \varphi}}$$

Co je tam to φ ?

Sigmoida zobrazená pro různé argumenty γ

Průlom III: Algoritmus učení

- K natrénování MLP sítě lze použít algoritmus zpětného šíření chyby – Back propagation of error (zkráceně Backpropagation).
- MLP síť trénovaná Backpropagation algoritmem je dodnes nejpoužívanější neuronová síť.
- Více příští přednášku ...

Další dopředné neuronové sítě

- Radial Basis Function Network
- MIA GMDH Network
- Cascade Correlation Network
- Neocognitron
- **...**

RBFN

Hidden Layer

Output Layer

N

MIA GMDH

Neurony s polynomiální přenosovou funkcí distribuční neuron výkonný prvek sítě (neuron) výstupní vrstva třetí skrytá vrstva druhá skrytá vstupní vrstva vrstva první skrytá vrstva

010

Neocognitron

Prof. Fukushima (1980)

edges

higher-order features

Feedforward NN for rapid vision

- Serre, Thomas (2007)
- Hodně podobné
- U nás GOLOKO (Brunner 1987)

Fig. 1. Sketch of the model

Serre, Thomas et al. (2007) Proc. Natl. Acad. Sci. USA 104, 6424-6429

Neuronové sítě v data miningu

Viz např. Industrial Conference on Data Mining 2007

http://www.informatik.uni-trier.de/~ley/db/conf/incdm/incdm2007.html nebo

www.cs.uml.edu/~ckrieger/user/Neural_Networks.pdf

- Klasifikace
- Predikce
- Shlukování
- Identifikace
- Filtrování
- Asociace
- **.**..

