Package 'mxnorm'

May 1, 2023

Title Apply Normalization Methods to Multiplexed Images

Version 1.0.3

Description Implements methods to normalize multiplexed imaging data, including statistical metrics and visualizations to quantify technical variation in this data type. Reference for methods listed here: Harris, C., Wrobel, J., & Vandekar, S. (2022). mxnorm: An R Package to Normalize Multiplexed Imaging Data. Journal of Open Source Software, 7(71), 4180, <doi:10.21105/joss.04180>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Depends R (>= 3.5.0)

Suggests knitr, janitor (>= 2.1.0), testthat (>= 3.0.0), rmarkdown, markdown, covr

Config/testthat/edition 3

Imports magrittr, dplyr, rlang, fda, stats, data.table, reticulate, caret, e1071, ggplot2, tidyr, uwot, lme4, stringr, KernSmooth, kSamples, psych, fossil, glue, methods

VignetteBuilder knitr

NeedsCompilation no

Author Coleman Harris [aut, cre] (https://orcid.org/0000-0002-6325-0694)

Maintainer Coleman Harris <coleman.r.harris@vanderbilt.edu>

Repository CRAN

Date/Publication 2023-05-01 17:10:02 UTC

2 mx_dataset

R topics documented:

mx_d	ataset Generates mx_dataset	
Index		12
	summary.mx_dataset	П
	run_var_proportions	
	run_reduce_umap	
	run_otsu_discordance	
	print.summary.mx_dataset	
	plot_mx_umap	
	plot_mx_proportions	6
	plot_mx_discordance	5
	plot_mx_density	4
	mx_sample	4
	mx_normalize	3
	mx_dataset	

Description

Takes in data from data.frame of cell-level multiplexed data to create a mx_dataset S3 object.

Usage

```
mx_dataset(data, slide_id, image_id, marker_cols, metadata_cols = NULL)
```

Arguments

data	multiplexed data to normalize. Data assumed to be a data.frame with cell-level data.
slide_id	String slide identifier of input data. This must be a column in the data data.frame.
image_id	String image identifier of input data. This must be a column in the data data.frame.
marker_cols	vector of column name(s) in data corresponding to marker values.
metadata_cols	other identifiers of the input data (default=NULL). This must be a vector of column name(s) in the data data.frame.

Value

data.frame object in the mx_dataset format with attribute for input type

```
mx_data = mx_dataset(mxnorm::mx_sample, "slide_id", "image_id",
    c("marker1_vals","marker2_vals","marker3_vals"),
    c("metadata1_vals"))
```

mx_normalize 3

	-	
mχ	normal	170

Normalizes multiplexed data

Description

Normalizes some given image input according to the method specified

Usage

```
mx_normalize(
  mx_data,
  transform = "None",
  method = "None",
  method_override = NULL,
  method_override_name = NULL,
  ...
)
```

Arguments

Value

Multiplexed data normalized according to the method specified, in the mx_dataset format. Normalized data will be included a new table with normalized values and attributes describing the transformation.

```
mx_data = mx_dataset(mxnorm::mx_sample, "slide_id", "image_id",
    c("marker1_vals","marker2_vals","marker3_vals"),
    c("metadata1_vals"))
mx_data = mx_normalize(mx_data, transform="log10",method="None")
```

4 plot_mx_density

mx_sample

Sample multiplexed dataset for mxnorm.

Description

A simulated multiplexed dataset containing: 4 slides, with 3 images each, and 3 markers, and 1 metadata column.

Usage

```
mx_sample
```

Format

A data frame with 3000 rows and 6 variables:

```
slide_id slide identifier
image_id image identifier
marker1_vals simulated marker 1 values
marker2_vals simulated marker 2 values
marker3_vals simulated marker 3 values
metadata1_vals simulated metadata 1 values ...
```

plot_mx_density	Visualize slide	marker	density	before/after	normalization	by marker	and

Description

Visualize marker density before/after normalization by marker and slide

Usage

```
plot_mx_density(mx_data)
```

Arguments

mx data

mx_dataset object that been used with run_otsu_discordance() to compute Otsu discordance scores (necessary for the density rug plot). Note that the table attribute must be set when running run_otsu_discordance().

Value

ggplot2 object with density plot

plot_mx_discordance 5

Examples

```
mx_data = mx_dataset(mxnorm::mx_sample, "slide_id", "image_id",
    c("marker1_vals", "marker2_vals", "marker3_vals"),
    c("metadata1_vals"))
mx_data = mx_normalize(mx_data, transform="log10", method="None")
## using `threshold_override` here in case users haven't installed `scikit-image`
mx_data = run_otsu_discordance(mx_data, table="normalized",
threshold_override = function(thold_data){quantile(thold_data, 0.5)})
plot_mx_density(mx_data)
```

plot_mx_discordance

Visualize Otsu discordance scores by marker and slide

Description

Visualize Otsu discordance scores by marker and slide

Usage

```
plot_mx_discordance(mx_data)
```

Arguments

mx_data

mx_dataset object that been used with run_otsu_discordance() to compute Otsu discordance scores. Note that the table attribute must be set when running run_otsu_discordance().

Value

ggplot2 object with Otsu discordance scores plot

```
mx_data = mx_dataset(mxnorm::mx_sample, "slide_id", "image_id",
    c("marker1_vals", "marker2_vals", "marker3_vals"),
    c("metadata1_vals"))
mx_data = mx_normalize(mx_data, transform="log10", method="None")
## using `threshold_override` here in case users haven't installed `scikit-image`
mx_data = run_otsu_discordance(mx_data, table="normalized",
threshold_override = function(thold_data){quantile(thold_data, 0.5)})
plot_mx_discordance(mx_data)
```

plot_mx_umap

plot_mx_proportions

Visualize variance proportions by marker and table

Description

Visualize variance proportions by marker and table

Usage

```
plot_mx_proportions(mx_data)
```

Arguments

mx_data

mx_dataset object that been used with run_var_proportions() to run random effects modeling. Note that the table attribute must be set when running run_var_proportions().

Value

ggplot2 object with proportions plot

Examples

```
mx_data = mx_dataset(mxnorm::mx_sample, "slide_id", "image_id",
    c("marker1_vals","marker2_vals","marker3_vals"),
    c("metadata1_vals"))
mx_data = mx_normalize(mx_data, transform="log10",method="None")
mx_data = run_var_proportions(mx_data, table="both")
plot_mx_proportions(mx_data)
```

plot_mx_umap

Visualize UMAP dimension reduction algorithm

Description

Visualize UMAP dimension reduction algorithm

Usage

```
plot_mx_umap(mx_data, metadata_col = NULL)
```

Arguments

UMAP dimensions for the dataset. Note that the table attribute must be set

when running run_reduce_umap().

metadata_col column denoted in the run_reduce_umap() to change the scale_color attribute

of the ggplot (default=NULL)

Value

```
ggplot2 object with density plot
```

Examples

```
mx_data = mx_dataset(mxnorm::mx_sample, "slide_id", "image_id",
    c("marker1_vals","marker2_vals","marker3_vals"),
    c("metadata1_vals"))
mx_data = mx_normalize(mx_data, transform="log10",method="None")
mx_data = run_reduce_umap(mx_data, table="normalized",
    c("marker1_vals","marker2_vals","marker3_vals"))
plot_mx_umap(mx_data)
```

```
print.summary.mx_dataset
```

Extension of print S3 method to print summary.mx_dataset objects

Description

Extension of print S3 method to print summary.mx_dataset objects

Usage

```
## S3 method for class 'summary.mx_dataset'
print(x, ...)
```

Arguments

```
x summary.mx_dataset object to summarize
... option for additional params given S3 logic
```

```
mx_data = mx_dataset(mxnorm::mx_sample, "slide_id", "image_id",
    c("marker1_vals","marker2_vals","marker3_vals"),
    c("metadata1_vals"))
print(summary(mx_data))
```

8 run_otsu_discordance

run_otsu_discordance

Calculate Otsu discordance scores using specified threshold for an mx_dataset object.

Description

The Otsu discordance analysis quantifies slide-to-slide agreement by summarizing the distance between slide-level Otsu thresholds and the global Otsu threshold for a given marker in a single metric.

Usage

```
run_otsu_discordance(
  mx_data,
  table,
  threshold_override = NULL,
  plot_out = FALSE,
  ...
)
```

Arguments

mx_data mx_dataset object used to compute Otsu discordance scores

table dataset in mx_data used to compute metrics. Options include: c("raw","normalized","both"),

e.g. a y-axis parameter.

threshold_override

optional user-defined function or alternate thresholding algorithm adaptable from Python skimage module filters (Note: not all algorithms in filters adapted). Options include supplying a function or any of the following: c("isodata", "li", "mean", "otsu", "triangle", "yen"). More detail available here: https://scikitimage.org/docs/dev/api/skimage.filters.html. If using a user-defined function,

it must include a thold_data parameter.

plot_out boolean to generate Otsu discordance plots (default=FALSE)

... optional additional arguments for Otsu discordance functions

Value

mx_dataset object with analysis results of Otsu discordance in otsu_data table

References

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66.

run_reduce_umap 9

Examples

```
mx_data = mx_dataset(mxnorm::mx_sample, "slide_id", "image_id",
    c("marker1_vals", "marker2_vals", "marker3_vals"),
    c("metadata1_vals"))
mx_data = mx_normalize(mx_data, transform="log10", method="None")
## using `threshold_override` here in case users haven't installed `scikit-image`
mx_data = run_otsu_discordance(mx_data, table="normalized",
threshold_override = function(thold_data){quantile(thold_data, 0.5)})
```

run_reduce_umap

Run UMAP dimension reduction algorithm on an mx_dataset object.

Description

Run UMAP dimension reduction algorithm on an mx_dataset object.

Usage

```
run_reduce_umap(
  mx_data,
  table,
  marker_list,
  downsample_pct = 1,
  metadata_cols = NULL
)
```

Arguments

Value

mx_dataset object with analysis results of UMAP dimension results in umap_data table

10 run_var_proportions

Examples

```
mx_data = mx_dataset(mxnorm::mx_sample, "slide_id", "image_id",
    c("marker1_vals","marker2_vals","marker3_vals"),
    c("metadata1_vals"))
mx_data = mx_normalize(mx_data, transform="log10",method="None")
mx_data = run_reduce_umap(mx_data, table="normalized",
    c("marker1_vals","marker2_vals","marker3_vals"))
```

run_var_proportions

Run random effects modeling on mx_dataset object to determine proportions of variance at the slide level

Description

Run random effects modeling on $mx_{dataset}$ object to determine proportions of variance at the slide level

Usage

```
run_var_proportions(
  mx_data,
  table,
  metadata_cols = NULL,
  formula_override = NULL,
  save_models = FALSE,
  ...
)
```

Arguments

optional additional arguments for lme4::lmer() modeling

Value

mx_dataset object with modeling results in var_data table

summary.mx_dataset 11

Examples

```
mx_data = mx_dataset(mxnorm::mx_sample, "slide_id", "image_id",
    c("marker1_vals","marker2_vals","marker3_vals"),
    c("metadata1_vals"))
mx_data = mx_normalize(mx_data, transform="log10",method="None")
mx_data = run_var_proportions(mx_data, table="both")
```

summary.mx_dataset

Extension of summary S3 method to summarize mx_dataset objects

Description

Extension of summary S3 method to summarize mx_dataset objects

Usage

```
## S3 method for class 'mx_dataset'
summary(object, ...)
```

Arguments

```
object mx_dataset object to summarize
... option for additional params given S3 logic
```

Value

```
summary.mx_dataset object
```

```
mx_data = mx_dataset(mxnorm::mx_sample, "slide_id", "image_id",
    c("marker1_vals","marker2_vals","marker3_vals"),
    c("metadata1_vals"))
summary(mx_data)
```

Index

```
* datasets
mx_sample, 4

mx_dataset, 2
mx_normalize, 3
mx_sample, 4

plot_mx_density, 4
plot_mx_discordance, 5
plot_mx_proportions, 6
plot_mx_umap, 6
print.summary.mx_dataset, 7

run_otsu_discordance, 8
run_reduce_umap, 9
run_var_proportions, 10

summary.mx_dataset, 11
```