Peterson Wagner Kava de Carvalho

Ordenação por ranks

input	10	5	20	2	8
			I		
rank	3	1	4	0	2
result	2	5	8	10	20

10 5 20 2 8

5 20 2 8

5 20 2 8

10 +1

5 20 2 8

10 +1

10 5 20 2 8

10 +1

5

20 +1

2

10 5 20 2 8

10 +1

5

20 +1

2

10 5 20 2 8

10 +1 +1

5

20 +1

2

10 5 20 2 8

10 +1 +1

5

20 +1

2

10 5 20 2 8

10 +1 +1 +1

5

20 +1

2

1 0 5 20 2 8

10 +1 +1 +1

5

20 +1

2

10 +1 +1 +1

5

20 +1

2

10 +1 +1 +1

5

20 +1 +1

2

10 +1 +1 +1

5

20 +1 +1

2

1 0 5 20 2 8

10 5	20	2	8
------	----	---	---

10 5 20	2	8
----------------	---	---

10	5	20	2	8

10 5 **20** 2 8

10 5 20 2 8

10	5	20	2	8
----	---	----	---	---

10	5	20	2	8

10	5	20	2	8

10 5 20 2 8

Código sequencial

Código paralelo

```
void enumeration parallel (long unsigned int *array, long unsigned int *rank, int n thrds, int N)
             omp parallel shared(array, rank) num_threads(n_thrds)
        unsigned long int *partial rank = calloc (N, sizeof(unsigned long int));
         for (int i = 0; i < N-1; ++i)
             #pragma omp for
             for (int j = i+1; j < N; ++j)
    if (array[i] >= array[j])
                     partial rank[i]++;
                      partial rank[i]++;
           ragma omp critical
             for (int i = 0; i < N; ++i)
                 rank[i] += partial rank[i];
```

PRAM

	P(n)	T(n)
CREW	O(n²)	O(log n)
CRCW	O(n²)	O(1)

Tempo sequencial: O(n²)

Amdahl

$$S(p) = \frac{1}{\beta + \frac{1 - \beta}{p}} = S(p) = \frac{1}{0.01 + \frac{0.99}{p}} \qquad S(8) = \frac{1}{0.01 + \frac{0.99}{8}} \approx 7.47$$

$$S(2) = \frac{1}{0.01 + \frac{0.99}{2}} \approx 1.98 \qquad S(16) = \frac{1}{0.01 + \frac{0.99}{16}} \approx 13.91$$

$$S(4) = \frac{1}{0.01 + \frac{0.99}{2}} \approx 3.88 \qquad S(\infty) = \frac{1}{0.01 + \frac{0.99}{2}} \approx \frac{1}{0.01} \approx 100$$

Gustafson-Barsis

$$S(p) = \alpha + p \times (1 - \alpha)$$

$$S(p) = 0.01 + p \times (0.99)$$

$$S(4) = 0.01 + 4 \times (0.99) \approx 3.97$$

Overhead

Speedup

Speedup

Eficiência

Eficiencia