

The LNM Institute of Information Technology

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Signal System and Communication Laboratory

Session 2020-21 Experiment No. 08

1 Aim

1) To generate frequency modulated signal and demodulate it (without MATLAB inbuilt function).

2 Hardware & Software Required

- * Desktop/Laptop
- * MATLAB

3 Theory

3.1 FM Modulation

Frequency Modulation is the process of varying the frequency of the carrier signal linearly with the message signal.

Figure 1: FM modulated and demodulated waveforms

Consider a message signal defined by $s(t) = A_m \cos 2\pi f_m t$. The instantaneous frequency of the FM signal is expressed as

$$f(t) = f_c + k_f A_m \cos 2\pi f_m t$$

= $f_c + \Delta f \cos 2\pi f_m t$ (1)

where $\Delta f = k_f A_m$ is the maximum frequency deviation that occurs in the carrier frequency.

LNMIIT The UNM Institute of Information Technology

The LNM Institute of Information Technology

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Modulation index β is

$$\beta = \frac{\Delta f}{f_m} = \frac{k_f A_m}{f_m} \tag{2}$$

The quantity β is a dimensionless quantity since k_f has the units of $volt^{-1}$ $second^{-1}$. The FM signal is given by

$$s_{FM}(t) = A_c \cos[2\pi f_c t + \beta \sin 2\pi f_m t]$$
(3)

3.2 FM Demodulation Techniques

3.2.1 Coherent & Non-coherent

- A coherent detector has two inputs one for a reference signal, such as the synchronized oscillator signal, and one for the modulated signal that is to be demodulated.
- A non-coherent detector has only one input, namely, the modulated signal port.

3.2.2 Demodulator Classification

- 1. Frequency Discrimination
 - Noncoherent demodulator
 - $FM \to AM \to ED \to m(t)$
- 2. Phase Shift Discrimination
 - Noncoherent demodulator
 - $FM \to PM \to m(t)$
- 3. Phase-Locked Loop (PLL) Detector
 - Coherent demodulator
 - Superior performance; complex and expensive

4 Exercises

- 1. Generate FM waveform in time domain and frequency domain.
- 2. Generate FM demodulated waveform in time domain and frequency domain.