

Capítulo 2 Fundamentos Cinemáticos

Grados de libertad (DOF) o Movilidad

► GDL: Número de parámetros independientes (mediciones) necesarios para definir de forma exclusiva la posición de un sistema en el espacio en cualquier instante de tiempo.

- Cuerpo rígido en el plano tiene 3 DOF: x,y,θ
- Cuerpo rígido en el espacio tiene 6 DOF (3 translación & 3 rotación)

Determinación del grado de libertad o movilidad

Para mecanismos simples, calcular DOF es simple

Determinando los GDL

La ecuación de Gruebler para mecanismos planos

M=3L-2J-3G

donde

M = grado de libertad o movilidad

L = número de eslabones

J = número de juntas de 1 GDL (medias articulaciones cuentan como 0.5)

G = número de enlaces a tierra = 1

$$M = 3(L-1)-2J$$

Ejemplo

Nota:
No hay juntas
rodantes y
deslizantes
(semijuntas)
en este
eslabonamiento

$$L = 8$$
, $J = 10$
 $GDL = 1$

Eslabonamiento con juntas completas y múltiples

Ejemplo

Movimiento intermitente

- Serie de movimientos y detenciones
- ► Tiempo de espera: sin movimiento de salida con movimiento de entrada
- Ejemplos: mecanismo de Ginebra, mecanismo lineal de Ginebra, rueda y trinquete

Mecanismo de Ginebra

Mecanismo de Ginebra lineal

Rueda y trinquete

https://www.youtube.com/watch?v=eijyLC4ZzQk&feature=related

Mecanismo de cuatro barras

- Dos barras tienen -1 grados de libertad (estructura de precarga)
- Tres barras tienen 0 grados de libertad (estructura)
- Cuatro barras tienen 1 grado de libertad
- El eslabonamiento de cuatro barras es el mecanismo articulado por clavija más simple posible para un solo grado de libertad de movimiento controlado

Nomenclatura de 4 barras

- Eslabón tierra
- Eslabones pivotados a tierra:
 - Manivela
 - Balancin
- Acoplador

¿Dónde verías los mecanismos de 4 barras?

Cizalla de chapa (taller mecánico)

Mecanismo de puerta (laboratorio ACMV)

Retroexcavadora

Freno de una silla de ruedas

Sofá plegable

Ejemplo

Inversiones

- Creado al adjuntar diferentes enlaces a tierra
- Comportamiento diferente para diferentes inversiones.

La condición de grashof

El eslabonamiento de cuatro barras es el mecanismo articulado más simple posible para movimiento controlado con grado de libertad simple

La condición de grashof

- La condición de Grashof predice el comportamiento del enlace basado solo en la longitud de los enlaces
 - S=longitud del eslabón más corto
 - L=longitud del eslabón más largo
 - P,Q=longitud de los 2 eslabones restantes
- Si S+L ≤ P+Q el eslabón es <u>Grashof</u>: al menos un eslabón es capaz de hacer una revolución completa
- De lo contrario, el eslabón no es Grashof: ningún eslabón es capaz de hacer una revolución completa

Para el caso de la clase I, S+L<P+Q

- Manivela balancin si cualquiera de los enlaces adyacentes al más corto está conectado a tierra
- Doble manivela si el enlace más corto está conectado a tierra
- Doble balancing de Grashof si el enlace opuesto al más corto está conectado a tierra

Para el caso de la clase I, S+L<P+Q

- Doble manivela si el enlace más corto está conectado a tierra
- Doble balancing de Grashof si el enlace opuesto al más corto está conectado a tierra

Para el caso de la clase II, S+L>P+Q

- Todas las inversiones serán balancines triples.
- Ningún eslabón puede rotar completamente

Para S+L=P+Q (Caso especial de Grashof)

- ► Todas las inversiones serán bielas o balancines
- ► El eslabón puede formar paralelogramo o antiparalelograma
- A menudo se usa para mantener el acoplador paralelo (máquina de dibujo)

Para S+L=P+Q (Caso especial de Grashof)

- ► Todas las inversiones serán bielas o balancines
- ► El eslabón puede formar paralelogramo o antiparalelograma
- A menudo se usa para mantener el acoplador paralelo (máquina de dibujo)

Forma de doble Paralelogramo

Deltoide o decorneta

Problemas con Grashof especial

- Todas las inversiones tienen puntos de cambio dos veces por revolución de la manivela de entrada cuando todos los eslabones se vuelven colineales
- El comportamiento en los puntos de cambio es indeterminado.