2.3. Метод RGMM парних порівнянь

Методи оптимізації парних порівнянь

<u>Задача 1</u>

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} (d_{ij} - w_i / w_j)^2$$

при обмеженнях

$$\sum_{i=1}^{n} w_i = 1$$

$$W_i > 0$$
 $i = 1, ..., n$

Задача 2

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} (d_{ij} w_j - w_i)^2$$

при обмеженнях

$$\sum_{i=1}^{n} w_i = 1$$

$$w_i > 0 \qquad i = 1, ..., n$$

Задача 3

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} (d_{ij} w_j - w_i)^2 \qquad \min \sum_{i=1}^{n} \sum_{j=1}^{n} (\ln d_{ij} - \ln w_i + \ln w_j)^2$$

при обмеженнях

$$\prod_{i=1}^{n} w_i = 1$$

$$w_i > 0$$
 $i = 1, ..., n$

методи найменших квадратів

метод логарифмічних найменших квадратів

Метод RGMM (row geometric mean method)парних порівнянь

Твердження. Розв'язок задачі 3

$$v_i = \sqrt{\prod_{j=1}^n d_{ij}}$$

ненормовані ваги

$$w_{i} = \frac{\sqrt[n]{\prod_{j=1}^{n} d_{ij}}}{\sum_{i=1}^{n} \sqrt[n]{\prod_{j=1}^{n} d_{ij}}}$$

Метод RGMM

$$m(D,C) = \left[\sum_{i=1}^{n} \sum_{j>i}^{n} (\ln d_{ij} - \ln c_{ij})^2\right]^{1/2}$$
 - метрика в просторі МПП пхп

Твердження. D – МПП, C – узгоджена МПП:
$$c_{ij} = \frac{v_i}{v_j}$$
, $v_i = \left(\prod_{j=1}^n d_{ij}\right)^{1/n}$ i = 1,..., n

Тоді m(D,C) - мінімальне значення.

Метод RGMM

Доведення.
$$\sum_{i=1}^{n} \sum_{j>i}^{n} (\ln d_{ij} - (\ln v_i - \ln v_j))^2 \rightarrow \min(1)$$
 при умовах
$$\prod_{j=1}^{n} v_j = 1$$
 (2)
$$v_i > 0 \qquad i = 1, ..., n$$

$$y_{ij} = \ln d_{ij} \qquad b_i = \ln v_i \qquad i, j = 1, 2, ..., n$$

$$S = \sum_{i=1}^{n} \sum_{j=1}^{n} (y_{ij} - (b_i - b_j))^2$$
(3)

за умови
$$\sum_{i=1}^{n} b_i = 0$$
 (4) $y_{ji} = -y_{ij}$ $y_{ii} = 0$

Метод RGMM

$$\frac{\partial S}{\partial b_k} = 0 \qquad k = 1, 2, \dots, n \qquad S = \sum_{i=1}^n \sum_{j=1}^n (y_{ij} - (b_i - b_j))^2$$

$$\frac{\partial S}{\partial b_k} = -2\sum_{j=1}^n (y_{kj} - b_k + b_j) + 2\sum_{i=1}^n (y_{ik} - b_i + b_k) = -4\sum_{j=1}^n (y_{kj} - b_k + b_j) = 0$$

$$\left(\sum_{j=1}^n y_{kj} - nb_k + \sum_{j=1}^n b_j\right) = 0$$

$$\sum_{j=1}^n y_{kj} - nb_k = 0$$

$$b_k = \frac{\sum_{j=1}^{j} y_{kj}}{n} \qquad \ln w_k = \frac{\sum_{j=1}^{j} \ln d_{kj}}{n}$$

Доведено.

Методи EM i RGMM

Вправи

- **1.** Якщо мультиплікативна МПП D узгоджена, тоді ваги, розраховані за RGMM і EM, співпадають.
- **2.** Для будь-якої мультиплікативної МПП 3х3 ваги, розраховані за RGMM і ЕМ, співпадають.

Геометричний індекс узгодженості

Метод RGMM

$$v_i = \sqrt{\prod_{j=1}^n d_{ij}}$$

ненормовані ваги

$$W_i = \frac{V_i}{\sum_{k=1}^n V_k}$$

нормовані ваги

$$s^{2} = \frac{S}{d.f} = \frac{2\sum_{i=1}^{n} \sum_{j>i}^{n} \left(\ln d_{ij} - \ln \frac{v_{i}}{v_{j}}\right)^{2}}{(n-1)(n-2)}$$

$$d.f = \frac{n(n-1)}{2} - (n-1) = \frac{(n-1)(n-2)}{2}$$

$$GCI = \frac{2}{(n-1)(n-2)} \sum_{i=1}^{n} \sum_{j>i}^{n} \ln^{2} e_{ij}$$

геометричний індекс узгодженості

$$e_{ij} = d_{ij}v_j/v_i$$

Порогові значення GCI

Порогові значення GCI		
n=3	n=4	n≥5
0.1573	0.3526	0.370

2.4. Метод AN парних порівнянь

Метод AN парних порівнянь

$$D = \{d_{ij} \mid i,j=1,...,n\}$$
 - мультипл.МПП, заповнена експертом

$$S_j = \sum_{i=1}^n d_{ij}$$

Метод AN:
$$v_i = 1/s_i$$

$$\widetilde{D} = \{\widetilde{d}_{ij} \mid i, j = 1, \dots, n\}$$

$$\widetilde{d}_{ij} = \frac{d_{ij}}{S_j}$$

Метод AN парних порівнянь

<u>Твердження.</u> МПП $\,D\,$ узгоджена т.т.т.к.

$$\tilde{d}_{ij} = \tilde{d}_{i1}$$
 $\forall i, j$

Доведення. D узгоджена \Rightarrow $d_{ij} = d_{i1}d_{1j}$ $\forall i,j$

$$\Rightarrow \sum_{i} d_{ij} = \sum_{i} d_{i1} d_{1j} \Leftrightarrow S_{j} = S_{1} d_{1j}$$

$$\widetilde{d}_{ij} = \frac{d_{ij}}{S_j} = \frac{d_{i1}d_{1j}}{S_j} = \frac{d_{i1}}{S_1} = \widetilde{d}_{i1}$$

Метод AN парних порівнянь: доведення твердження

Доведення (в зворотний бік

$$p_k = s_k^{-1}$$

 ${\mathcal W}$ - будь-який з стовпчиків \widetilde{D}

$$\Rightarrow w_i = \frac{d_{ij}}{S_j} = d_{ij} p_j \qquad w_i = p_i$$

$$\Rightarrow$$
 $d_{ij} = \frac{p_i}{p_j}$ \Rightarrow $d_{ik}d_{kj} = \frac{p_i}{p_k} \frac{p_k}{p_j} = \frac{p_i}{p_j} = d_{ij}$ Доведено

Гармонічне відношення узгодженості *HCR*

Гармонічна середня

$$s = \left\{ s_j \mid j \in [1; n] \right\}$$

$$HM(s) = \frac{n}{\sum_{j=1}^{n} S_j^{-1}}$$

$$\sum_{j=1}^{n} S_j^{-1} \le 1 \quad \iff \quad HM(S) \ge n$$

Гармонічний індекс узгодженості

$$HCI(n) = \frac{(HM(s)-n)(n+1)}{n(n-1)}$$

Гармонічне відношення узгодженості

$$HCR(n) = \frac{HCI(n)}{HRCI(n)}$$

Нерівність Йенсена

1) Якщо
$$\sum_{i=1}^{n} p_{i} \leq 1$$
 φ - випукла на $[0;\infty)$ $\varphi(0) = 0$ $\sum_{i=1}^{n} p_{i} \varphi(x_{i}) \leq \varphi\left(\sum_{i=1}^{n} p_{i} x_{i}\right)$ $\forall x_{i} > 0$

- 2) Якщо $\sum_{i=1}^{n} p_{i} < 1$ φ строго зростаюча випукла функція $\varphi(0) = 0$ $\implies \mathbf{Z}_{i} > 0$ $\sum_{i=1}^{n} p_{i} \varphi(x_{i}) = \varphi\left(\sum_{i=1}^{n} p_{i} x_{i}\right)$
- 3) Якщо $\sum_{i=1}^{n} p_{i} = 1$ $p_{i} > 0$ φ строго зростаюча випукла функція $\sum_{i=1}^{n} p_{i} \varphi(x_{i}) = \varphi\left(\sum_{i=1}^{n} p_{i} x_{i}\right)$ \Longrightarrow $\forall x_{i}$ рівні між собою

Метод AN парних порівнянь

Твердження.
$$\sum_{j=1}^{n} S_{j}^{-1} \le 1$$
. Рівність т.т.т.к. МПП узгоджена.

<u>Доведення.</u> за індукцією по n

$$n = 1$$
 $s_1 = 1$

Припустимо, що має місце для n

Довести, що

$$R = \sum_{j} (s_{j} + b_{j}^{-1})^{-1} + (1 + \sum_{i} b_{i})^{-1} \le 1$$

$$= \begin{pmatrix} & b_1 \\ A_n & \vdots \\ & b_n \\ \hline 1/b_1 \cdots 1/b_n & 1 \end{pmatrix}$$

Метод AN парних порівнянь доведення твердження

$$p_j = s_j^{-1} \qquad x_j = b_j / p_j$$

$$R = \sum_{j} p_{j} \frac{x_{j}}{1 + x_{j}} + \frac{1}{1 + \sum_{i} p_{i} x_{i}}$$

$$\sum_{j} p_{j} \frac{x_{j}}{1 + x_{j}} \le \frac{\sum_{i} p_{i} x_{i}}{1 + \sum_{i} p_{i} x_{i}} \qquad \forall x_{i} > 0$$

$$\varphi(x) = x/(1+x)$$

задовольняє

нерівності Йенсена

при
$$\sum_{j} p_{j} \le 1$$

Гармонічне відношення узгодженості *HCR*

Порогові значения НСК

n	порогове <i>CR</i>
3	0.05
4	0.08
≥5	0.1

2.5. Метод "лінія" парних порівнянь

Метод "лінія" парних порівнянь

1. Експерт вибирає еталонну альтернативу $a_e \in A$ і порівнює з нею всі інші альтернативи $a_i \in A, \ i \neq e$

$$D_e = \{d_{ie} \ | \ i=1,...,n, \ i
eq e \}$$
 - величини переваг $\ \mathcal{Q}_i$ над $\ \mathcal{Q}_e$

2.
$$a_e \rightarrow v_e$$

- hehopmobal Baru

3.
$$v_i = \varphi(v_e, d_{ie})$$
 $i \neq e$ монотонна функція

$$v_i = v_e arphi_{mult}(d_{ie}) \quad arphi_{mult}(1)$$
 = 1 - мультиплікативні порівняння $v_i = v_e + arphi_{ad}(d_{ie}) \quad arphi_{ad}(0)$ = 0 - адитивні порівняння

4. Нормування
$$w_i = v_i / \sum_{i=1}^{n} v_i$$