UNCLASSIFIED

AD 298 783

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

CATALOGED BY ASIM.
AS AD NO. 258888

Study of Target Penetration
Prediction by High Speed and
Ultra High Speed Ballistic Impact
Fifth Quarterly Report

(1July 1962 - 30 September 1962)

APGC Technical Documentary Report No. APGC-TDR-63-16

MARCH 1963 • OAR Project 9860

DEPUTY FOR AEROSPACE SYSTEMS TEST

AIR PROVING GROUND CENTER

AIR FORCE SYSTEMS COMMAND . UNITED STATES AIR FORCE

EGLIN AIR FORCE BASE, FLORIDA

(Prepared under Contract No. AF 08(635)-2155 by Hayes International Corporation, Research Section, Birmingham, Ala.)

Qualified requesters may obtain copies from ASTIA. Orders will be expedited if placed through the librarian or other person designated to request documents from ASTIA.

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

FOREWORD

This report was prepared under Air Force Contract Number AF 08(635)-2155, "Study of Target Penetration Prediction By High Speed and Ultra High Speed Ballistic Impact." Work was administered under the direction of APGC (PGWRT), Eglin Air Force Base, Florida, with Mr. A. G. Bilek as Project Engineer.

Catalog cards may be found in the back of this document.

ABSTRACT

The main effort during this report period has been directed toward "cleaning up" the empirical data used in the statistical analyses. An analysis of 1,034 shots divided into 768 "high" velocity shots and 266 "low" velocity shots shows that about 90% of the variation in penetration depth may be explained by a simple power law formula utilizing four or five independent variables including a target strength parameter.

PUBLICATION REVIEW

This technical documentary report has been reviewed and is approved.

MORRILL E. MARSTON

Colonel, USAF

Deputy for Aerospace Systems Test

TABLE OF CONTENTS

	Page
ABSTRACT	iii
LIST OF SYMBOLS	v .
INTRODUCTION	1
EMPIRICAL MODEL	1
BIBLIOGRAPHY	11

LIST OF SYMBOLS

C	- dilatational wave velocity
$D_{\mathbf{p}}$	- projectile diameter
e	- tensile elongation
н	- Brinell hardness
K	- bulk modulus
P _c	 crater depth measured from original target surface
S	- shear strength
V	- volume
V	- impact velocity
p	- mass density
	SUBSCRIPTS
c	- crater
p	- projectile

- target

INTRODUCTION

The purpose of this study is to gather and assemble existing data on ballistic impact and on material failure, especially at high impact velocities or large loading - to establish the relative importance of such factors as projectile velocity, mass, projectile-target strengths, ductilities, densities, compressibilities, etc., and to use this information to deduce the mathematical relationships of critical factors as the target structure responds to impact and is penetrated.

Existing experimental data relative to ballistic impact at high velocities are being analyzed on a statistical basis through the use of a digital computer. The general form of the statistical approach was outlined in the First Quarterly Report. A preliminary analysis of the correlation between depth of penetration and ten independent variables was reported in the Second Quarterly Report² and discussed more fully in the Third Quarterly Report³. In the Fourth Quarterly Report⁴, 1,275 experimental shots were divided into two groups, according to whether the impact velocity lay below or above the bulk wave velocity in the target material. Separate analyses of the two groups showed interesting relationships with existing theoretical and experimental equations.

In addition, the general areas of ballistic impact and material failure are being investigated in order to develop relationships which may be tested against existing experimental data. Some general aspects of target behavior under ballistic impact were discussed in the Second Quarterly Report, and some justification was given for the use of static or quasi-static material parameters in the initial statistical analysis. Initial attempts to formulate a theoretical model for the purpose of testing accumulated experimental data were outlined in the Third Quarterly Report. In the Fourth Quarterly Report, a semi-rational penetration expression was developed which suggests that the nonrecoverable target compression and shear strain energies may account for most of the projectile kinetic energy.

EMPIRICAL MODEL

Both the "high" and the "low" velocity sets of data which were used in the previous progress report to evaluate the $k_{\hat{i}}$ in equations of the form

$$P_{c/V_p}^{V_3} = k_0 v^{k_1} / t^{k_2} / p^{k_3}$$

have been "cleaned up" according to the method previously outlined. The equation

$$P_{c/D_p} = 8.43 \times 10^{-3} V_p = 8.43 \times 10^{-3} V_p = 8_t V_p C_t$$

which was taken from Table III of the previous progress report, was used to calculate the depth of penetration for each of the "low" velocity shots. The calculated penetration depth was compared with the measured penetration depth and a per cent error was calculated. All shots with an error greater than 50% were then scrutinized in an effort to spot recording or computer errors. In addition, the small number of shots in which the temperature of the target or the impact angle were other than ambient and 90°, respectively, were eliminated.

After "cleaning", a total of 1,034 shots remained, of which 768 are classified as "low" velocity and 266 are classified as "high" velocity. Since it is possible to prove almost any result by the indiscriminate omission of conflicting data, the elimination of data must be analyzed quite seriously. A careful breakdown of all data eliminated and plots of the new distributions of target materials as a function of impact velocity will be given in the next progress report. However, the final results of four runs on each of the new "high" and "low" velocity sets are shown in Tables 1 - 8.

The multiple correlation coefficients in Tables 1 - 8 show that using four independent variables (ie: v, p, S_t , and p_t) it is possible to explain 92% of the variation in penetration depth using the low velocity data and 87% of the variation in penetration depth using the high velocity data.

The general conclusions made in the previous progress report apply to Tables 1 - 8 with the major exceptions that penetrations show a high velocity dependence on \nearrow_p closer to 2/3 than 1/3 and that the role of \nearrow_t appears more well defined. A more complete discussion of results will be postponed until the next report.

Future work will be pointed toward the use of the "cleaned up" data to check the equations developed under the present contract and to test other theories and empirical equations.

Table I. "Low" Velocity Data Evaluation of the Coefficients kj in the Equation

 $P_{c/v'_{p}}^{\prime /3} = k_{o} v p_{p}^{k_{1}} p_{t}^{k_{2}} p_{t}^{k_{3}} p_{t}^{k_{4}}$

Multiple Correlation Coefficient	.934	.925	.925	.925	006*	,725
k ₇	. 335					
, k	036	600*				
r S	900*-	.036	960.			
х 4	326	350	345	350		
r S	437	455	450	457	379	
k .	1.01	.977	.978	.979	.915	.825
, k ₁	.879	.897	.897	. 893	.840	.626
٠, 0	.0118	.125	.140	.172	.189	.025

Table 2. "Low" Velocity Data Evaluation of the Coefficients ki in the Equation

	Multiple Correlation Coefficient	.913	668*	868*	.893	.830	.725
	k 7	.415					
k4 k5 k6 k7	, k	.557	.373				
4 k e t J	k S	.192	.259	.257			
, k3	х 4	-1.18	983	611	677		
k ₁ k ₂	, k	-2.27	-1.87	-1.19	-1.34	736	
اا د د	k 2	1.03	.954	976.	• 988	.866	.825
pc/v/3	k ₁	.816	.823	.829	.790	• 708	.626
	پر ە	3.41	82.5	92.3	1008	14.9	.025

Table 3. "Low" Velocity Data Evaluation of the Coefficients k1 in the Equation

	Multiple Correlation Coefficient	.932	.924	.923	.923	968.	.725
	k ₇	.325					
	ж 6	• 004	.058				
	, S	060*-	057	047			
	* 4	370	400	371	365		
	k 3	443	465	435	426	348	
	ĸ 2	1.00	926.	.978	.975	606•	. 825
.	k ₁	.869	.887	. 883	.887	.832	.626
	پد د	• 0002	.005	.013	.010	.019	.025

Table 4. "Low" Velocity Data Evaluation of the Coefficients $\mathbf{k_1}$ in the Equation

÷	Multiple Correlation Coefficient .934	.925	.925	.918	006*	.725
	k ₇					
k ₁ k ₂ (Se) _t 3 k ₄ k ₅ k ₆ k ₇	^k 6 036	.010				
k4 k5	k ₅ 443	419	414			
Se), k3	. 326	350	345	287		
2 d c	k3 437	455	450	365	317	
°د د	k ₂ 1.01	.977	.978	.955	906*	.825
Pc/v/3 =	k ₁ .879	.897	.897	.919	.874	.626
	k o .012	125	140	.020	030	.025

Table B. "High" Velocity Data Evaluation of the Coefficients k₁ in the Equation

	Multiple Correlation Coefficient	.877	.877	.875	.874	.817	.644
	k ₇	014					
5 Cp K7	, ,	.117	.117				
e t 5 K	κ Ω	123	122	103			
k_1 k_2 k_3 k_4 k_5 k_6 k_7	74	489	489	431	426		
k1	k 3	362	362	300	275	235	
اا د د	*	•675	.675	.670	.673	.546	.612
Pc/v/3	¥ T	.474	.472	.468	.449	.658	.268
	۲°	.328	.290	1.12	.772	.108	.565

"High" Vælocity Data Evaluation of the Coefficients $\mathbf{k_{i}}$ in the Equation Table 6.

	Multiple Correlation Coefficient	.851	.851	.845	.841	.738	.644
,	k ₇	.013					
6 k	k6	.404	.405				
b ct 3 t et k5 k6 k7	, R	.157	.156	.137			
k3	A A	993	£66*-	597	623		
2 k 2	k 3	-1.43	-1.43	729	821	494	
ko < k ₁	k 2	.721	.720	689•	989•	.534	.612
Pc/v" =	k_1	.364	.364	.371	.383	.580	.268
	٥.	35.2	39.8	61.4	190	2.58	.565

"High" Velocity Data Evaluation of the Coefficients ki in the Equation Table 7.

	Multiple Correlation Coefficient	.875	.875	.872	.871	*806	.644
	×	019					
5 k7	X ^k	.167	.166				
v_1 k_2 k_3 k_4 k_5 k_6 k_7 v_2 v_3 v_4 v_4 v_5 v_6 v_7	, S	097	960*-	071			
k3 k4	^д	558	558	463	458		
1	k 3	365	364	278	262	215	
	k 2	.632	•684	•675	.677	.543	.612
${}^{P}c/v_{p}^{l}$ = k_{o}	k ₁	. 464	. 463	. 456	. 443	.656	.268
	ňo	.017	.014	.169	.146	.025	.565

Table 8. "High" Velocity Data Evaluation of the Coefficients $\mathbf{k_{I}}$ in the Equation

	Multiple Correlation Coefficient	.877	.877	.875	.865	808	.644
2	k 7	.014					
بر _ه ه	, k	.117	.117				
k ₄ k ₅	Å.	.239	.240	.197			
/ _p (Se) _t / _t et Kt c _p	, 4	489	489	431	426		
, k ₂ (S	r e	362	362	300	340	288	
k ₀ < k ₁	22	.674	.675	.670	.663	.537	.612
Pc/v ^{1/3} =	, k	.473	.473	•468	.486	.687	.268
	ەد	•328	.291	1.12	2.81	.326	.565

BIBLIOGRAPHY

- Hayes International Corp., "Study of Target Penetration By High Speed and Ultra High Speed Ballistic Impact - First Quarterly Report", October 31, 1961.
- 2. Hayes International Corp., "Study of Target Penetration Prediction By High Speed and Ultra High Speed Ballistic Impact Second Quarterly Report", <u>APGC-TDR-62-11</u>, Feb. 1962.
- 3. Hayes International Corp., "Study of Target Penetration Prediction By High Speed and Ultra High Speed Ballistic Impact Third Quarterly Report", April 1962.
- 4. Hayes International Corp., "Study of Target Penetration Prediction By High Speed and Ultra High Speed Ballistic Impact Fourth Quarterly Report", July 1962.

INITIAL DISTRIBUTION

- 2 Wpns Sys Eval Gp
- 1 Hq USAF (AFTAC)
- 1 Hq USAF (AFCIN-3K2)
- 2 Hq USAF (ADRDC)
- 1 Hq USAF (AFRAE-E) L/C Hicks, TTCP
- 1 Hq USAF (AFTST-EL/CS) Maj. Myers
- 1 Hq USAF (AFRST-PM/ME) Maj. Geiseman
- 1 AFSC (SCRWA)
- 1 AFSC (SCTA) Mr. Robert Fiek
- 2 BSD (AFSC) Col. Brassfield
- 1 ASD (ASAPRL)
- 1 ASD (ASRMDS) Mr. Philip Parmley
- 1 ASD (ASRNGW) Roman Szpur
- 3 ASD (ASAD-Lib)
- 1 TAC (TPL-RQD-M)
- 2 SSD
- 2 AFSWC (Tech Info Div)
- 1 AFCRL (CRQST-2)
- 1 AFOSR
- 1 AFO (SRHP)- Dr. J.F. Masi
- 3 AFOSR (SRHP) Dr. M. M. Slawsky
- l AFOSR (Dr. A.G. Horney)
- 1 White Sands Missile Range (ORDBS-OM-W)
- 1 OOAMA (OOYD)
- l NASA, Wash D.C.
- l NASA, Langley Rsch Ctr W.H. Kinard
- 2 NASA, Langley Rsch Ctr (Tech Lib)
- 1 NASA, Langley Rsch Ctr Mr. John Stack
- 4 NASA, Ames Rsch Ctr (Tech Lib)
- 1 Marshall Space Flight Center (M-AERO-TS) W.D. Mruphree
- 1 Marshall Space Flight Center Dr. William Johnson
- 1 Advanced Rsch Projects Agency Dr. Charles Bates
- 1 Dir of Defense Rsch & Engr (Tech Lib)
- 2 Dir of Defense Rsch & Engr Dr. R.M. Yates
- 2 ARO (Scientific Info Br)
- 1 Armour Rsch Foundation Mr. G. H. Strohmeier
- 1 Uni of Chicago (Library)
- 2 The Franklin Institute of the State of Pennsylvania (Tech Lib)
- 1 California Institute of Technology Dr. W.H. Pickering
- 2 John Hopkins University, Applied Rsch Lab
- 1 OAR (RROSA) Maj. E. J. Davis
- 1 OAR (RROSA) Maj, George Stalk

INITIAL DISTRIBUTION (Continued)

- 3 Lewis Rsch Ctr
- l Dir, Project RAND
- 3 Army Materiel Command, Research Directorate (MCR)
- 2 Picatinny Arsenal (OR DBB-TK)
- 1 Aberdeen Proving Ground R. J. Eichelberger
- 1 Aberdeen Proving Ground J. Kineke
- 1 Aberdeen Proving Ground F. E. Allison
- 1 Aberdeen Proving Ground (Tech Lib)
- l Redstone Scientific Info Ctr
- 1 Frankford Arsenal (Lib)
- 1 Frankford (Pitman-Dunn Lab)
- 2 Springfield Armory (R & D Div)
- Watervliet Arsenal (OR DBR-R)
- 2 Watertown Arsenal
- l Rock Island Arsenal
- 1 Engr Rsch & Div Labs (Tech Support Br)
- 1 USCAC Chester I. Peterson
- 2 USA Rsch Ofc Dr. A. S. Galbraith
- 4 Bu of Nav Wpns (R-12)
- 4 Bu of Nav Wpns (RM)
- 1 U.S. Naval Rsch Lab Mr. W. W. Atkins
- 2 U.S. Naval Ord Test Stn
- 2 U.S. Naval Ord Test Stn (Tech Lib)
- 2 U.S. Naval Ord Lab (Tech Lib)
- 2 U.S. Naval Wpns Lab (Tech Lib)
- 30 ASTIA (TIPCR)

APGC

- 9 PGAPI
- 3 PGEH
- 2 PGWR
- 20 PGWRT
- 2 PGW
- 2 ASQR

I. Hypervelocity projectiles 2. Penetration 3. Ballistics 4. Digital computers 5. Impact shock II. OAR Project 9860 II. Contract AF 086535-2155 III. Hayes international Gorp. Research Sec Birmingham, Ala. IV. Quarterly Progress Rpt No. 5 V. In ASTIA collection	1. Hypervelocity projectiles 3. Penetration 3. Ballistics 4. Digital computers 5. Impact shock 1. OAR Project 9860 11. Contract AF 08(635)-2155 111. Hayes international Corp. Research Sec Birmingham. Ala. 1V. Quarterly Progress Rpt No. 5 V. In ASTIA collection	
Air Proving Ground Center, Eglin Air Force Base, Florida Rpt No. APGC-TDR-63-16. STUDY OF TARGET PENETRATION PREDICTION BY HIGH SPEED AND ULTRA HIGH SPEED BALLISTIC IMPACT: Fifth Quarterly Report, March 1963, 13p, incl. tables, 4 refs The main effort during this report period has been directed toward "cleaning up", the empirical data used in the statistical analyses. An analysis of 1,034 shots divided into 768 "high" velocity shots and 266 "low" velocity shots shows that about 90% of the variation in penetra- tion depth may be explained by a simple power law formula utilizing four or five independent variables including a target strength parameter.	Air Proving Ground Center, Eglin Air Force Base, Florida Rpt No. APGC-TDR-63-16. STUDY OF TARGET PERETRATION PREDICTION BY HIGH SPEED AND ULTRA HIGH SPEED BALLISTIC IMPACT. Fifth Quarterly Report, March 1963, 13p. incl. tables, 4 refs Unclassified Report The main effort during this report period has been directed toward "cleaning up" the empirical data used in the statistical analyses. An analysis of 1,034 shots divided into 768 "nigh" velocity shots and 266 tion depth may be explained by a simple power law formula utilizing four or five independent variables including a target strength parameter.	
1. Hypervelocity projectiles 2. Penetration 3. Rallistics 4. Digital computers 5. Impact shock 1. OAR Project 98.00 11. Contract AF 08(6.35)-2155 III. Haves International Corp. Research Sce Birmingham, Ala. 1V. Quarterly Progress Rpt No. 5 V. In ASTIA collection	1. Hypervelocity projectiles 2. Penetration 3. Ballistics 4. Digital computers 5. Impact shock 1. OAR Project 9860 11. Contract AF 08(653)-2155 111. Hayes International Corp. Research Sec. Bitrningham, Ala. 1V. Quarterly Progress Rpt No. 5 V. In ASTIA collection	
Air Proving Ground Center, Eglin Air Force Base, Florida Rpt No. APGC-TDR-63-16, STUDY OF TARGET PENETRATION PREDICTION BY HIGH SPEED AND ULTRA HIGH SPEED BALLISTIC IMPACT. Fifth Quarterly Report, March 1963, 13p, incl. tables, 4 refs Unclassified Report The main effort during this report period has been directed toward analysis of 1,034 abots divided into 768 "High" velocity shots and 266 "Yow" velocity shots shows that about 90% of the variation in penetra- tion depth may be explained by a simple power law formula utilizing four or five independent variables including a target strength parameter.	Air Proving Ground Center, Eglin Air Force Base, Florida PREDICTION BY HIGH SPEED AND ULTRA HIGH SPEED BALLISTIC IMPACT. Fifth Quarterly Report, March 1963, 13p. incl. tables, 4 refs Impact. Fifth Quarterly Report, March 1963, 13p. incl. tables, 4 refs Incleaning up' the empirical data used in the statistical analyses of 1,03 a forts divided into 768 "high" velocity shots and 266 "incleaning up' the superioral data used in the statistical analyses. An analysis of 1,03 a forts divided into 768 "high" velocity shots and 266 tion depth may be explained by a simple power law formula utilizing four or five independent variables including a target strength parameter.	

	
1 Hypervelocity projectiles 2. Penetration 3. Ballistics 4. Digital computers 5. Impact shock 1. OAR Project 9860 III. Contract AF 08(635)-2155 III. Hayes International Corp. Research See Birmingham, Ala. IV. Quarterly Progress Rpt No. 5 V. In ASTIA collection	1. Hypervelocity projectiles 2. Penetration 3. Ballistics 4. Digital computers 5. Impact shock 1. OAR Project 9860 11. Contract AF 08(635)-2155 111. Hayes International Corp. Research See Birmingham, Ala. 1V. Quarterly Progress Rpt No. 5 V. In ASTIA collection
Air Proving Ground Center, Eglin Air Force Base, Florida RPR No. APGC. TDR. 63-16. STUDY OF TARGET PENETRATION PREDICTION BY HIGH SPEED AND ULTRA HIGH SPEED BALLISTIC IMPACT. Fith Quarterly Report, March 1963, 13p, incl. tables, 4 refs Unclassified Report The main effort during this report period has been directed toward "cleaning of", the empirical data used in the staintical analyses. An analysis of, 1,03 shots shots divided into 768 "nigh" velocity shots and 266 "low" velocity shots shows that about 90% of the variation in penetration depth may be explained by a simple power law formula utilizing four or five independent variables including a target strength parameter.	Air Proving Ground Center, Egiin Air Force Base, Florida Rpt No. APGC-TDR-63-16. STUDY OF TARGET PENETRATION PREDICTION BY HIGH SPEED AND ULTRA HIGH SPEED BALLISTIC IMPACT. Fifth Quarterly Report, March 1963, 13p. incl. tables, 4 refs Unclassified Report The main effort during this report period has been directed toward "cleaning up" the empirical data used in the statistical analyses. An analysis of 1, 034 shors divided into 768 "high" velocity shots and 266 "low" velocity shors shows that about 90% of the variation in penetration depth may be explained by a simple power law formula utilizing four or five independent variables including a target strength parameter.
1. Hypervelocity projectiles 2. Penetration 3. Ballistics 4. Digital computers 5. Impact short 1. OAR Project 98c0 11. Contract AF 08(635)-2155 11I. Reves International Corp. Research Sec 1 Birmingham, Ala. 1V. Quarterly Progress Rpt No. 5 V. In ASTIA collection	I. Hypervelocity projectiles 2. Penetration 3. Ballistics 4. Digital computers 5. Impact shock II. Contract AF 08(635)-2155 III. Hayes International Corp. Research Sec. Revent Sec. Research Sec. Rarmingham, Ala. IV. Quarterly Progress Rpt No. 5 V. In ASTIA collection
Air Proving Ground Center, Eglin Air Force Base, Florida Rpt No. APGC-TDR-63-16. STUDY OF TARGET PENETRATION PREDICTION BY HIGH SPEED AND ULTRA HIGH SPEED BALLISTIC IMPACT. Fifth Quarterly Report, March 1963, 13p. incl. tables, 4 refs Unclassified Report The main effort during this report period has been directed toward "cleaning up" the empirical data used in the statistical analyses. An analysis of 1,034 shots divided into 768 "nigh" velocity shots and 266 "low" velocity shots shows that about 90% of the variation in penetra- tion depth may be explained by a simple power law formula utilizing four or five independent variables including a target strength parameter.	Air Proving Ground Center, Eglin Air Force Base, Florida Rpt No. APGCT PDR-63-16. STUDY OF TARGET PENETRALION PREDICTION BY HIGH SPEED AND ULTRA HIGH SPEED BALLISTIC IMPACT. Fifth Quarterly Report, March 1963, 19p. incl. tables, 4 refs Unclassified Report The main effort during this report period has been directed toward "cleaning up" the empirical data used in the statistical analyses. An analysis of 1,034 shots divided into 768 "nigh" velocity shots and 266 "low" velocity shots shows that about 90% of the variation in penetra- tion depth may be explained by a simple power law formula utilizing four or five independent variables including a target strength parameter.