Examen FINAL de Física 22 de juny de 2017

Model A

Qüestions: 40% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) En el circuit de la figura, sabent que la càrrega del condensador en estat estacionari és de 100 nC, quant val la seva capacitat?
 - a) 40 pF.
 - b) 80 nF.
 - c) 16 μ F.
 - d) 140 nF.

- T2) Un transistor PMOS d'enriquiment caracteritzat per $V_T = -1$ V i $\beta = 120 \ \mu\text{A}/\text{V}^2$, té el terminal de la font connectat a 5 V ($V_S = 5$ V) i la porta connectada al terra ($V_G = 0$ V). En quina regió treballa i quina intensitat hi circula quan el potencial al drenador és $V_D = 0.5$ V?
 - a) Ruptura, 1 A.

b) Saturació, 0.96 mA.

c) Tall, 0 A.

- d) Òhmica, 2.16 mA.
- T3) En el circuit de la figura, la intensitat que circula per \overline{Z} va retardada en 90° respecte a la intensitat de la branca R-L-C. Els valors eficaços d' I_1 i I_2 són iguals. Sabent que $\omega = 100\,\pi\,\mathrm{rad/s},\,R = 2000\,\Omega,\,C = 1\cdot10^{-6}\,\mathrm{F}$ i $L = 0.085\,\mathrm{H}$, podem assegurar que el valor de la impedància \overline{Z} val:
 - a) $\overline{Z} = 1000 i \, 3156 \, \Omega$.
 - b) $\overline{Z} = 3156 + j \, 2000 \, \Omega$.
 - c) $\overline{Z} = 3156 j \, 2000 \, \Omega$.
 - d) $\overline{Z} = 1000 + j \, 3156 \, \Omega$.

- **T4)** Si el camp magnètic d'una ona electromagnètica plana, harmònica i linealment polaritzada és $B(z,t) = (B_0 \mathbf{i}) \sin(kz + \omega t)$, el camp elèctric és
 - a) $E(z,t) = -(E_0 \mathbf{j}) \sin(kz + \omega t)$.
 - b) $E(z,t) = -(E_0\mathbf{k})\sin(kz + \omega t)$.
 - c) $E(z,t) = (E_0 \mathbf{j}) \sin(kz + \omega t)$.
 - d) $E(z,t) = (E_0 \mathbf{k}) \sin(kz + \omega t)$.

- **T5)** Una emissora de ràdio emet uniformement en totes direccions ones electromagnètiques harmòniques polaritzades. Si a una distància d de l'emissora l'amplitud del camp elèctric és $E_0(d) = 6$ V/m, podem afirmar que
 - a) A una distància d/2 valdrà $E_0(d/2) = 1.5$ V/m.
 - b) A una distància 2d valdrà $E_0(2d) = 1.5 \text{ V/m}.$
 - c) A una distància 2d valdrà $E_0(2d) = 3$ V/m.
 - d) A una distància d/2 valdrà $E_0(d/2) = 3$ V/m.
- **T6)** Un feix de llum que es propaga per l'aire (amb índex de refracció n=1) incideix sobre la superfície d'un medi no conductor amb un angle de 30° respecte de la normal. Part de l'ona incident es refracta i el raig refractat forma una angle de 20° respecte de la normal. La velocitat de propagació de la llum en el medi no conductor és
 - a) $2.05 \cdot 10^8$ m/s.
 - b) $2.46 \cdot 10^8$ m/s.
 - c) $3.05 \cdot 10^8$ m/s.
 - d) $1.46 \cdot 10^8$ m/s.
- T7) Un feix de llum polaritzada que es propaga en la direcció de l'eix de les x, incideix sobre una làmina polaritzadora perpendicular a l'eix de les x. Si el vector amplitud del camp elèctric incident és $E_0 = (12 \text{ V/m})\mathbf{j}$ i l'eix de transmissió (també anomenat de polarització) de la làmina forma un angle de 60° amb l'eix de les y, quina és l'amplitud del camp elèctric que surt de la làmina?
 - a) 6 V/m.
 - b) 3 V/m.
 - c) 9 V/m.
 - d) 10.4 V/m.
- **T8)** Un làser emet un feix infraroig amb una longitud d'ona en el buit de 780 nm. Si emet amb una potència mitjana de 5 mW, el valor més aproximat del nombre de fotons que hi ha en un segment del feix de llargada 1 mm és (h = $6.626 \cdot 10^{-34}$ Js; c = $3 \cdot 10^8$ m/s)
 - a) $65 \cdot 10^9$.
 - b) $65 \cdot 10^6$.
 - c) $65 \cdot 10^3$.
 - d) No tenim prou dades per saber-ho.

Cognoms i Nom:

Codi:

Examen FINAL de Física 22 de juny de 2017

Model B

Qüestions: 40% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** Si el camp magnètic d'una ona electromagnètica plana, harmònica i linealment polaritzada és $B(z,t) = (B_0 \mathbf{i}) \sin(kz + \omega t)$, el camp elèctric és
 - a) $E(z,t) = -(E_0 \mathbf{j}) \sin(kz + \omega t)$.
 - b) $E(z,t) = (E_0 \mathbf{k}) \sin(kz + \omega t)$.
 - c) $E(z,t) = (E_0 \mathbf{j}) \sin(kz + \omega t)$.
 - d) $E(z,t) = -(E_0 \mathbf{k}) \sin(kz + \omega t)$.
- T2) Un feix de llum que es propaga per l'aire (amb índex de refracció n=1) incideix sobre la superfície d'un medi no conductor amb un angle de 30° respecte de la normal. Part de l'ona incident es refracta i el raig refractat forma una angle de 20° respecte de la normal. La velocitat de propagació de la llum en el medi no conductor és
 - a) $1.46 \cdot 10^8$ m/s.
 - b) $2.05 \cdot 10^8$ m/s.
 - c) $3.05 \cdot 10^8$ m/s.
 - d) $2.46 \cdot 10^8$ m/s.
- T3) Un transistor PMOS d'enriquiment caracteritzat per $V_T = -1$ V i $\beta = 120 \ \mu\text{A}/\text{V}^2$, té el terminal de la font connectat a 5 V ($V_S = 5$ V) i la porta connectada al terra ($V_G = 0$ V). En quina regió treballa i quina intensitat hi circula quan el potencial al drenador és $V_D = 0.5$ V?
 - a) Òhmica, 2.16 mA.

b) Saturació, 0.96 mA.

c) Tall, 0 A.

- d) Ruptura, 1 A.
- T4) Una emissora de ràdio emet uniformement en totes direccions ones electromagnètiques harmòniques polaritzades. Si a una distància d de l'emissora l'amplitud del camp elèctric és $E_0(d) = 6$ V/m, podem afirmar que
 - a) A una distància d/2 valdrà $E_0(d/2) = 1.5$ V/m.
 - b) A una distància 2d valdrà $E_0(2d) = 3$ V/m.
 - c) A una distància 2d valdrà $E_0(2d) = 1.5$ V/m.
 - d) A una distància d/2 valdrà $E_0(d/2)=3$ V/m.

- **T5)** Un làser emet un feix infraroig amb una longitud d'ona en el buit de 780 nm. Si emet amb una potència mitjana de 5 mW, el valor més aproximat del nombre de fotons que hi ha en un segment del feix de llargada 1 mm és (h = $6.626 \cdot 10^{-34}$ Js; c = $3 \cdot 10^8$ m/s)
 - a) $65 \cdot 10^9$.
 - b) No tenim prou dades per saber-ho.
 - c) $65 \cdot 10^3$.
 - d) $65 \cdot 10^6$.
- **T6)** En el circuit de la figura, sabent que la càrrega del condensador en estat estacionari és de 100 nC, quant val la seva capacitat?
 - a) 16 μ F.
 - b) 140 nF.
 - c) 40 pF.
 - d) 80 nF.

- T7) Un feix de llum polaritzada que es propaga en la direcció de l'eix de les x, incideix sobre una làmina polaritzadora perpendicular a l'eix de les x. Si el vector amplitud del camp elèctric incident és $E_0 = (12 \text{ V/m})\mathbf{j}$ i l'eix de transmissió (també anomenat de polarització) de la làmina forma un angle de 60° amb l'eix de les y, quina és l'amplitud del camp elèctric que surt de la làmina?
 - a) 6 V/m.
 - b) 10.4 V/m.
 - c) 9 V/m.
 - d) 3 V/m.
- T8) En el circuit de la figura, la intensitat que circula per \overline{Z} va retardada en 90° respecte a la intensitat de la branca R-L-C. Els valors eficaços d' I_1 i I_2 són iguals. Sabent que $\omega=100\,\pi\,\mathrm{rad/s},\,R=2000\,\Omega,\,C=1\cdot10^{-6}\,\mathrm{F}$ i $L=0.085\,\mathrm{H}$, podem assegurar que el valor de la impedància \overline{Z} val:
 - a) $\overline{Z} = 3156 + j \, 2000 \, \Omega$.
 - b) $\overline{Z} = 1000 + j \, 3156 \, \Omega$.
 - c) $\overline{Z} = 3156 j \, 2000 \, \Omega$.
 - d) $\overline{Z} = 1000 j \, 3156 \, \Omega$.

Examen FINAL de Física 22 de juny de 2017

Problema 1 (20% de l'examen)

Considereu el circuit de la figura, tot suposant que està en estat estacionari. Calculeu:

- a) Totes les intensitats que hi circulen.
- b) L'equivalent Thévenin entre A i B.
- c) La càrrega i energia que assoliria un condensador de capacitat $10\,\mu\mathrm{F}$ connectat entre A i B i en estat estacionari.
- d) La potència que dissiparia una resistència de 5 Ω connectada entre A i B.

Problema 2 (20% de l'examen)

Considereu una resistència $R=40~\Omega$ en sèrie amb un condensador $C=50~\mu\mathrm{F}$ com els de la figura.

- a) Si el condensador està inicialment descarregat, i entre els terminals A i B connectem una fem $\epsilon=10$ V, quant temps trigarà a carregar-se un 50% de la càrrega final?
- b) Si entre A i B connectem un generador de corrent altern que proporciona una tensió instantània $V(t)=(150\ {\rm V})\cos(1000t)$, quina intensitat instantània circularà pel circuit?
- c) Quin element cal connectar en paral·lel perquè el factor de potència del circuit anterior sigui la unitat?
- d) En el circuit de l'apartat (b), per a quina freqüència del generador l'amplitud de la tensió al condensador serà igual a 75 V?

Problema 3 (20% de l'examen)

Sigui el circuit de la figura. Les característiques del transistor NMOS són: $V_T=0.7~\rm V$ i $\beta=100~\frac{\mu A}{V}$. Trobeu la intensitat de drenador, la tensió de sortida i la zona de treball si:

- a) $V_{in} = 5 \text{ V}.$
- b) $V_{in} = 12 \text{ V}.$

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	b	С
T2)	b	b
T3)	b	b
T4)	c	b
T5)	c	c
T6)	a	d
T7)	a	a
T8)	c	a

Resolució del Model A

- T1) Sabent que en estat estacionari no passa corrent pel condensador i que podem simplificar el circuit substituint les dues resistències de 10 Ω (en paral·lel) per una de 5 Ω , trobem que el corrent que passa pel circuit és de I = 5/20 = 0.25 A, de manera que la diferència de potencial a extrems del condensador és de $\Delta V = 0.25$ \times 5 = 1.25 V. En definitiva, la capacitat del condensador és: $C = Q/\Delta V = 80$ nF.
- **T2)** A partir de les dades es troba que $V_{GS}=-5$ V i que $V_{GT}=-4$ V. D'altra banda, $V_{DS}=-4.5$ V, per la qual cosa el transistor està en saturació ($V_{GT}>V_{DS}$). Sabem que $I_D=\frac{\beta}{2}V_{GT}^2=0.96$ mA.
- T3) La impedància de la branca R-L-C val R+j $(L\omega-\frac{1}{C\omega})=2000-j$ 3156 Ω . Això és: $Z_{RLC}=3736\,\Omega$, $\varphi=-57.6^\circ$ i per tant la intensitat va avançada 57.6° respecte al potencial. Com que les dues intensitats eficaces són iguals, $Z_2=Z_{RLC}=3736\,\Omega$, i sabent que la intensitat I_2 va retardada en 90° respecte a I_1 , sabem que $\varphi_2=-57.6^\circ+90^\circ=32.3^\circ$ Així doncs, $\overline{Z}=3736|32.3^\circ\Omega=3156+j$ 2000 Ω .
- T4) L'ona es propaga en la direcció de l'eix de les z perquè la variable que indica la posició és la z, i ho fa en el sentit negatiu perquè ω va precedit d'un +, és a dir, $\mathbf{v} = -c\mathbf{k}$. I el vector amplitud del camp magnètic és $\mathbf{B}_0 = B_0\mathbf{i}$. Aleshores, tenint en compte l'esquema de l'esquerra, la direcció i sentit del vector l'amplitud del camp elèctric \mathbf{E}_0 és la que indica el dit polze de la ma dreta quan es giren els altres quatre dits des de $\mathbf{B}_0 = B_0\mathbf{i}$ cap a $\mathbf{v} = -c\mathbf{k}$, és a dir, el sentit positiu de l'eix de les y com s'indica a la figura esquerra i, per tant, $\mathbf{E}_0 = E_0\mathbf{j}$.

T5) L'amplitud del camp elèctric disminueix inversament proporcional a la distància al focus emissor, i la relació entre les amplituds dels camps elèctrics a dues distàncies

diferents és $r_2E_0(r_2)=r_1E_0(r_1)$. Per tant, $E_0(2d)=dE_0(d)/(2d)=E_0(d)/2=3$ V/m.

- **T6)** $n_1 \sin \phi_1 = n_2 \sin \phi_2 \Rightarrow \sin 30^\circ = n_2 \sin 20^\circ \Rightarrow n_2 = 1.4619.$ Per tant, $v_2 = c/n_2 = 3 \cdot 10^8/1.4619 = 2.05 \cdot 10^8 \text{ m/s}$
- T7) Quan un feix de llum polaritzada d'intensitat mitjana $I = E_0^2/(2c\mu_0)$ incideix sobre una làmina polaritzadora amb l'eix de transmissió que forma un angle ϕ respecta la direcció de polarització del camp elèctric, la llei de Malus estableix que la intensitat del feix que surt és $I' = I(\cos\phi)^2$ perquè la l'amplitud del camp elèctric que surt és

$$E'_0 = E_0 \cos \phi = (12 \text{V/m}) \cos 60^\circ = 6 \text{V/m}.$$

T8) L'energia total continguda en un segment de longitud L és $\Delta U = P\Delta t$, on Δt és el temps que triga la llum en recórrer una longitud L, és a dir $\Delta t = L/c$ i $\Delta U = PL/c$. Per tant, tenint en compte que l'energia d'un fotó és $hf = hc/\lambda$, el nombre de fotons és $N = \Delta U/(hf) = \Delta U\lambda/(hc) = PL\lambda/(hc^2) = 65359$ fotons $\approx 65 \cdot 10^3$.

Resolució dels Problemes

Problema 1

- a) Hem de considerar que pels dos condensadors en estat estacionari no hi passa corrent, per la qual cosa $I_6 = I_7 = I_8 = 0$. D'altra banda, els únics nusos que romanen són A i B, per la qual cosa: $I_4 = I_1$, $I_5 = I_2$ i $I_3 = I_1 I_2$. Segons la regla de Kirchhoff de les malles:
 - 1. La malla superior satisfà: $15 = 12I_1 + 3(I_1 I_2)$
 - 2. La malla inferior satisfà: $12 = 3I_2 3(I_1 I_2)$

De les dues equacions podem deduir que: $I_1=14/9=1.55~\mathrm{A},~I_2=2.77~\mathrm{A}$ i $I_3=-1.22~\mathrm{A}.$

b) De l'apartat anterior: $V_{Th.} = V_A - V_B = -3I_3 = 3.66 \text{ V}$. Si curtcircuitem els generadors, la resistència equivalent entre A i B resulta ser (obviant les resistències connectades als condensadors):

$$R_{Th.} = \left(\frac{1}{12} + \frac{1}{3} + \frac{1}{3}\right)^{-1} = 1.33 \ \Omega.$$

c) De forma directa, i fent servir l'equivalent Thévenin, tenim que: $Q = C(V_A - V_B) = 36.6 \ \mu\text{C}$.

De forma similar, $U = \frac{1}{2}Q(V_A - V_B) = 67 \mu J.$

d) Altre cop farem ús del circuit equivalent, tenint en compte que la resistència total serà de $R_{Th.} + R$. Sabem que:

$$P = RI^2 = R\left(\frac{V_{Th.}}{R_{Th.} + R}\right)^2 = 1.67 W.$$

Problema 2

a) Quan un circuit RC sèrie es connecta a una fem ϵ , el procés de càrrega del condensador al llarg del temps queda descrit per la funció

$$q(t) = C\epsilon[1 - \exp(-t/\tau)]$$

on $\tau = RC$ és la constant del circuit (que en aquest cas val $\tau = 2$ ms) i $C\epsilon$ és la càrrega final. Per tant, quan la càrrega és el 50%, de la final s'ha de complir

$$C\epsilon[1-\exp(-t/\tau)]=0.5C\epsilon$$
, equivalent a $\exp(-t/\tau))=-(0.5-1)=0.5$, i aïllant t tenim $t=-\tau\ln(0.5)=1.39$ ms

b) Si la tensió instantània és $V(t)=(150 \text{ V})\cos(1000t)$, la seva amplitud és $V_0=150 \text{ V}$ i la freqüència angular és $\omega=1000 \text{ rad/s}$. Llavors,

la capacitància del condensador val $X_C = 1/C\omega = 20 \Omega$,

la impedància total val $Z = [R^2 + X_C^2]^{1/2} = 44.72 \Omega$,

l'amplitud de la intensitat és $I_0 = V_0/Z = 3.35$ A,

i la fase que es retarda I(t) respecte V(t) és $\phi = \arctan(-X_C^2/R) = -0.464$ rad.

Per tant, la intensitat instantània és $I(t) = I_0 \cos(\omega t - \phi) = (3.35 \text{ A})\cos(1000t + 0.464)$

- c) Com que tenim un circuit capacitiu, per corregir el factor de potència cal connectar en paral·lel (entre A i B) una bobina amb una inductància $X_L = L\omega = Z^2/X_C = 100~\Omega$, que correspon a un coeficient d'autoinducció $L = X_L/\omega = 0.1~\mathrm{H}$.
- d) Per a qualsevol freqüència angular ω , $V_0=150$ V es manté constant, I_0 ha de satisfer $V_0=ZI_0=[R^2+(1/C\omega)^2]^{1/2}I_0$, i l'amplitud de la tensió al condensador ha de complir $V_{C0}=X_CI_0=I_0/(C\omega)$. Per tant, la funció transferència a borns del condensador és

$$F(\omega) = V_{C0}/V_0 = (C\omega)^{-1}/[R^2 + (C\omega)^{-2}]^{1/2} = 1/[(RC\omega)^2 + 1]^{1/2} = [(\tau\omega)^2 + 1]^{-1/2}$$

Per tal que $V_{C0} = 75$ V = $V_0/2$, s'ha de satisfer que $F(\omega) = V_{C0}/V_0 = 1/2 = [(\tau\omega)^2 + 1]^{-1/2}$

que, elevant al quadrat i invertint els dos membres, és equivalent a

 $(\tau\omega)^2 + 1 = 4$, i aïllant ω trobem que $\omega = \sqrt{3}/\tau = \sqrt{3}/(2\cdot 10^{-3}) = 866$ rad/s,

que correspon a una freqüència $f = \omega/(2\pi) = 138$ Hz.

Problema 3

a) Per la porta no passa corrent, per la qual cosa tenim que:

$$V_{in} = V_{GS}. (1)$$

En definitiva, $V_{GT}=V_{GS}-V_{T}=4.3$ V. Si suposem que el transistor treballa en saturació, tenim que $I_{D}=\frac{1}{2}\beta V_{GT}^{2}=0.925$ mA.

D'altra banda, sabem que:

$$V_{DD} = R_D I_D + V_{DS}, (2)$$

per la qual cosa: $V_{out} = V_{DS} = 8.15 V > V_{GT}$, confirmant-se la hipòtesi de partida (saturació).

b) Ara V_{in} és molt més gran. Fent ús altre cop de l'equació (1), tenim que $V_{GT} = 11.3$ V. Com que $V_{DD} = 10$ V, suposarem que està en zona òhmica.

En tal cas, es satisfà que:

$$I_D = \beta \left(V_{GT} V_{DS} - \frac{V_{DS}^2}{2} \right)$$

i l'equació (2) segueix sent vàlida, de forma que si combinem les dues equacions anteriors, ens quedarà una equació de segon grau per V_{DS} :

$$V_{DS} = 10 - 2000\beta (V_{GT}V_{DS} - \frac{V_{DS}^2}{2}).$$

Substituint pels valors, l'equació queda:

$$V_{DS}^2 - 32.6 V_{DS} + 100 = 0.$$

Aquesta equació té dues solucions:

$$V_{DS} = 29.17 \text{ V}, \quad V_{DS} = 3.43 \text{ V}.$$

Com que un NMOS en zona òhmica verifica $V_{DS} < V_{GT}$, la solució correcta és la segona. **Nota**: si suposeu que treballa en saturació arribareu a una incongruència $(V_{DS} < 0)$.

Finalment, $I_D = 3.29 \,\mathrm{mA}$.