1. Tee laskelma, jolle annetaan k,b,m ja c, ja joka etsii suorien y=kx+b ja y=mx+c leikkauspisteen ratkaisemalla yhtälöparin

$$\begin{cases} y = kx + b \\ y = mx + c \end{cases}$$

ja piirtää allaolevan näköisen kuvan.

2. Tee laskelma, jolle annetaan x_1, y_1, x_2, y_2 ja x_0 , ja joka laskee y_0 :n lineaarisesti interpoloiden

ja piirtää allaolevan näköisen kuvan

3. Tee lineaarista interpoloinnista 2D-versio eli

$$x_1, x_2, y_1, y_2, z_{11}, z_{12}, z_{21}, z_{22}, x_0, y_0 \rightarrow z_0$$

tekemällä kolme lineaarista 1D-interpolointia kuten allaolevissa kuvissa (eli laske ensin z_1 ja z_2 , ja niiden avulla z_0).

$$x_1 = 2, x_2 = 6, y_1 = 1, y_2 = 7$$

 $z_{11} = 3.6, z_{12} = 1.9, z_{21} = 2.3, z_{22} = 1.4$
 $x_0 = 2.9, y_0 = 3.2$
 $\rightarrow z_1 = 3.2, z_2 = 2.1, z_0 = 2.8$

4. (Tasaisesti kiihtyvä liike) Tee laskelma, jolle annetaan ajanhetket t_1 ja t_2 ja niitä vastaavat kuljetut matkat s_1 ja s_2 , ja joka laskee alkunopeuden v_0 ja kiihtyvyyden a, ja piirtää kuljetun matkan

$$s = v_0 t + \frac{1}{2}at^2$$

kuvaajan vaikkapa välillä $t = 0 \dots t_2 + 2$.

ohje: ratkaise v_0 ja a yhtälöparista

$$\begin{cases} s_1 = v_0 t_1 + \frac{1}{2} a t_1^2 \\ s_2 = v_0 t_2 + \frac{1}{2} a t_2^2 \end{cases}$$

5. (Heittoliike) Tee laskelma, jolle annetaan kappaleen lähtökorkeus h, lähtönopeus v_0 ja lähtökulma α , ja joka laskee sen vaakasuoran lentomatkan ja huippukorkeuden ja piirtää allaolevan näköisen kuvan lentoradasta

$$y = ax^2 + bx + h$$

$$a = -\frac{g}{2(v_0 \cos(\alpha))^2}, \quad b = \tan(\alpha), \quad g = 9.81$$

$$h = 2, v_0 = 10, \alpha = 50^{\circ}$$

6. (Heittoliike) Tee laskelma, jolle annetaan maalin koordinaatit L ja H ja lähtökulma α , ja joka laskee lähtönopeuden v_0 niin, että (pisteestä [0,0] heitetty) kappale osuu maaliin, eli ratkaisee v_0 :n yhtälöstä

$$H = aL^2 + bL$$
, $a = -\frac{g}{2(v_0 \cos(\alpha))^2}$, $b = \tan(\alpha)$

ja piirtää allaolevan näköisen kuvan kappaleen lentoradasta

$$y = ax^2 + bx, \ x = 0 \dots L$$

Huom: lähtökulman α on oltava suurempi kuin

$$\min \alpha = \tan^{-1}(H/L)$$

7. Tee laskelma, jolle annetaan Px, Py, A, B ja C, ja joka etsii pisteestä P = [Px, Py] paraabelille $y = Ax^2 + Bx + C$ piirrettyjen tangenttien kulmakertoimet ja piirtää allaolevan näköisen kuvan.

ohje: tangentti = suora, joka leikkaa paraabelin yhdessä pisteessä; määrää k niin, että pisteen P kautta kulkevalla suoralla y = k(x - Px) + Py ja paraabelilla $y = Ax^2 + Bx + C$ on vain yksi leikkauspiste

8. Tee laskelma, joka etsii annettujen pisteiden $[x_1, y_1]$, $[x_2, y_2]$ ja $[x_3, y_3]$ kautta kulkevan ympyrän keskipisteen koordinaatit x_0 ja y_0 ja säteen r ratkaisemalla yhtälöryhmän

$$\begin{cases} (x_1 - x_0)^2 + (y_1 - y_0)^2 = r^2 \\ (x_2 - x_0)^2 + (y_2 - y_0)^2 = r^2 \\ (x_3 - x_0)^2 + (y_3 - y_0)^2 = r^2 \end{cases}$$

ja piirtää allaolevan näköisen kuvan.

ohje: vähennä kolmas yhtälö kahdesta ensimmäisestä \rightarrow yhtälöpari keskipisteen koordinaateille x_0, y_0

9. Tee laskelma, jolle annetaan F niin, että ellipsin polttopisteet ovat $F_1 = [-F, 0], F_2 = [F, 0],$ ja ellipsin pisteen P koordinaatit Px, Py, ja joka laskee ellipsin puoliakseleiden pituudet a ja b, ja piirtää allaolevan näköisen kuvan.

ohje:
$$PF_1 + PF_2 = 2a, F = \sqrt{a^2 - b^2}$$

 ${\bf 10.}$ Tee laskelma, jolle annetaan a,b ja $t_0,$ ja joka piirtää allaolevan näköisen kuvan hyperbelistä

$$\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = 1$$

sen pisteestä $x_0 = a \cosh(t_0), y_0 = b \sinh(t_0)$ heijastuvasta säteestä ja tangentista, jonka kulmakerroin

$$k = -\frac{x_0 y_0}{a^2 - x_0^2}$$

