CSC165 Mathematical Expression and Reasoning for Computer Science

Module 10

Proof by Cases

Proof by Cases

- Prove $\forall x \in D: (P(x) \lor Q(x)) \to R(x)$
- Split your argument into differences cases
- Prove the conclusion for each case
- Sometimes the different cases are implicit
- What makes a valid proof?
 - If the union of the cases is covering all possibilities

© Abdallah Farraj, University of Toronto

3

Proof Structure

```
• Prove \forall x \in D: (P(x) \lor Q(x)) \to R(x)
• Generic proof:
Let x \in D.
                                        # x is a typical element of domain D
  Assume P(x) \vee Q(x).
                                        # assume antecedent true
          Case 1: Assume P(x).
                                        # case 1: assume P(x) to be true
                                        # find the chain
            Then R(x).
                                        # conclude R(x) is true
          Case 2: Assume Q(x).
                                        # case 2: assume Q(x) to be true
                                        # find the chain
            Then R(x).
                                        # conclude R(x) is true
                                        # conclude R(x) is true for both (all) cases
          Then R(x).
  Then (P(x) \lor Q(x)) \to R(x).
                                        # since (P(x) \lor Q(x)) and in both (all) cases we concluded R(x)
Therefore, \forall x \in D: (P(x) \vee Q(x)) \rightarrow R(x). # introduce universal quantifier
```

© Abdallah Farraj, University of Toronto

- Prove $\forall x \in \mathbb{R}: ((x \le 0) \lor (x \ge 1)) \to (x^2 \ge x)$
- Consider two cases for x:
 - $x \leq 0$
 - $x \ge 1$
- For each case, prove that $x^2 \ge x$

© Abdallah Farraj, University of Toronto

.

Proof: $\forall x \in \mathbb{R}: ((x \le 0) \lor (x \ge 1)) \to (x^2 \ge x)$

```
Let x \in \mathbb{R}.
                                              # x is a typical element of domain \mathbb{R}
   Assume (x \le 0) \lor (x \ge 1).
                                              # two cases that cover all possibilities
         Case 1: Assume x \leq 0.
                                              # case 1: x \leq 0
            Then x^2 \ge 0.
                                                       # find the chain
            Then x^2 \ge x.
                                                       # conclusion is true for this case
         Case 2: Assume x \ge 1.
                                                       # case 2: x \ge 1
            Then x. x \ge x.
                                                       # find the chain
            Then x^2 \ge x.
                                                       # conclusion is true for this case
         Then x^2 \ge x.
                                                       # conclusion is true for both (all) cases
   Then (x \le 0) \lor (x \ge 1) \to x^2 \ge x. # implication is satisfied
Therefore, \forall x \in \mathbb{R}: ((x \le 0) \lor (x \ge 1)) \to (x^2 \ge x). # introduce universal quantifier
```

© Abdallah Farraj, University of Toronto

- Prove $\forall n \in \mathbb{N}$: $n^2 + n$ is even
- Thoughts:
 - $n^2 + n = n(n+1)$
 - n and (n+1) are consecutive numbers
 - If one of them is an odd number, then the other is an even number
- Consider two cases for n:
 - n is even, then (n + 1) is odd. Prove n(n + 1) is even
 - n is odd, then (n + 1) is even. Prove n(n + 1) is even

© Abdallah Farraj, University of Toronto

-

Proof: $\forall n \in \mathbb{N}: n^2 + n$ is even

```
Let n \in \mathbb{N}.
                                                            # n is a typical element of domain D
                                                            # two cases that cover all possibilities
  Then (n is even) V(n is odd).
  Case 1: Assume n is even.
                                                            # case 1: even number
         Then \exists j \in \mathbb{N}: n = 2j.
                                                            # definition of even number
         Let j_0 \in \mathbb{N} such that n = 2j_0.
         Then n^2 + n = (2j_0)^2 + 2j_0 = 2(2j_0^2 + j_0).
                                                                                # find the chain
         Let k_0 = 2j_0^2 + j_0.
         Then k_0 \in \mathbb{N}.
         Then n^2 + n = 2k_0.
                                      # definition of even number
         Then \exists k \in \mathbb{N}: n^2 + n = 2k.
                                                 # definition of even number
          Then n^2 + n is even.
                                                            # conclusion is true for this case
                                                  # continue on next page
```

Proof: $\forall n \in \mathbb{N}: n^2 + n$ is even

```
# continue from previous page
  Case 2: Assume n is odd.
                                                           # case 2: odd number
         Then \exists j \in \mathbb{N}: n = 2j + 1.
                                                           # definition of odd number
         Let j_1 \in \mathbb{N} such that n = 2j_1 + 1.
         Then n^2 + n = (2j_1 + 1)^2 + 2j_1 + 1 = 2(2j_1 + 1)(j_1 + 1).
                                                                                 # find the chain
         Let k_1 = (2j_1 + 1)(j_1 + 1).
         Then k_1 \in \mathbb{N}.
          Then n^2 + n = 2k_1.
         Then \exists k \in \mathbb{N}: n^2 + n = 2k. # definition of even number
         Then n^2 + n is even.
                                                           # conclusion is true for this case
   Then n^2 + n is even.
                                                           # conclusion is true for both (all) cases
Therefore, \forall n \in \mathbb{N}: n^2 + n is even.
                                                           # introduce universal quantifier
```

© Abdallah Farraj, University of Toronto

Examples

 $\hbox{@}$ Abdallah Farraj, University of Toronto

Remainder

- If a and d are integers, with d nonzero, it can be proven that there exist unique integers q and r, such that a = qd + r and $0 \le r < |d|$
- *q* is called the quotient
- r is called the remainder: r = a qd
- Let r(a, d) denote the remainder after division of a by d
- Examples:

а	d	a = qd + r	r(a,d)
43	5	43 = 8(5) + 3	3
43	-5	43 = (-8)(-5) + 3	3
-43	5	-43 = (-9)(5) + 2	2
-43	-5	-43 = 9(-5) + 2	2

© Abdallah Farraj, University of Toronto

11

Example

- Prove $\forall n \in \mathbb{N}$: $\left[\text{remainder of } \frac{n^2}{4} \text{ is either 0 or 1} \right]$
- Prove $\forall n \in \mathbb{N}$: $[r(n^2, 4) \text{ is either 0 or 1}]$

n	n^2	$n^2 = 4q + r$	$r(n^2, 4)$	$r(n^2,4)=0?$	$r(n^2,4)=1?$	$r(n^2, 4) = 0$ or $r(n^2, 4) = 1$	Observation
0	0	0 = 4(0) + 0	0	T	F	Т	n is even
1	1	1 = 4(0) + 1	1	F	Т	Т	n is odd
2	4	4 = 4(1) + 0	0	T	F	Т	n is even
3	9	9 = 4(2) + 1	1	F	Т	Т	n is odd
4	16	16 = 4(4) + 0	0	T	F	Т	n is even
5	25	25 = 4(6) + 1	1	F	Т	Т	n is odd

© Abdallah Farraj, University of Toronto

Prove: $\forall n \in \mathbb{N}$: $[r(n^2, 4) \text{ is 0 or 1}]$

- Observations:
 - When *n* is even, $r(n^2, 4) = 0$
 - When *n* is odd, $r(n^2, 4) = 1$
- What are the cases here?
 - *n* is even
 - *n* is odd
 - $\forall n \in \mathbb{N}$: $(n \text{ is even}) \vee (n \text{ is odd})$

© Abdallah Farraj, University of Toronto

13

14

Proof: $\forall n \in \mathbb{N}$: $[r(n^2, 4) \text{ is 0 or 1}]$

```
\# n is a typical element of domain D
Let n \in \mathbb{N}.
   Then (n is even) V(n is odd).
                                                                   # two cases that cover all possibilities
   Case 1: Assume n is even.
                                                                   # case 1: even number
           Then \exists j \in \mathbb{N}: n = 2j.
                                                                   # definition of even number
           Let j_0 \in \mathbb{N} such that n = 2j_0.
          Then n^2 = (2j_0)^2 = 4j_0^2.
                                                                   # find the chain
          Then \frac{n^2}{4} = j_0^2.
Then r(n^2, 4) = 0.
                                                                   # find the chain
                                                                    # conclusion is true for this case
   Case 2: Assume n is odd.
                                                                   # case 2: odd number
           Then \exists i \in \mathbb{N}: n = 2i + 1.
                                                                   # definition of odd number
           Let j_0 \in \mathbb{N} such that n = 2j_0 + 1.
          Then n^2 = (2j_0 + 1)^2 = 4j_0^2 + 4j_0 + 1.
                                                                   # find the chain
          Then \frac{n^2}{4} = j_0^2 + j_0 + \frac{1}{4}.
Then r(n^2, 4) = 1.
                                                                   # find the chain
                                                                   # conclusion is true for this case
   Then r(n^2, 4) is 0 or 1.
                                                                   # conclusion is true for both (all) cases
Therefore, \forall n \in \mathbb{N}: r(n^2, 4) is 0 or 1. \bigcirc Abdallah Farraj, University introduce universal quantifier
```

- Prove $\forall n \in \mathbb{N}$: if n is not divisible by 5, the remainder of $\frac{n^2}{5}$ is 1 or 4
- Thoughts:
 - n is not divisible by 5: n is not a multiple of 5
 - n is a multiple of 5: $\exists j \in \mathbb{N}: n = 5j$
 - n is not a multiple of 5: $\forall j \in \mathbb{N}: n \neq 5j$
 - $\forall n \in \mathbb{N}: [(\forall j \in \mathbb{N}: n \neq 5j) \rightarrow (r(n^2, 5) \text{ is 1 or 4})]$
 - n is divisible by 5: remainder of $\frac{n}{5} = 0$
 - n is not divisible by 5: remainder of $\frac{8}{5} \neq 0$
 - $\forall n \in \mathbb{N}: [(r(n,5) \neq 0) \rightarrow (r(n^2,5) \text{ is 1 or 4})]$
 - $\forall n \in \mathbb{N}: [(r(n,5) \neq 0) \rightarrow ((r(n^2,5) = 1) \lor (r(n^2,5) = 4))]$

© Abdallah Farraj, University of Toronto

15

Prove: $\forall n \in \mathbb{N}: [(r(n,5) \neq 0) \rightarrow ((r(n^2,5) = 1) \lor (r(n^2,5) = 4))]$

n	<i>r</i> (<i>n</i> , 5)	$r(n,5) \neq 0$?	n^2	$r(n^2, 5)$	$r(n^2,5)=1?$	$r(n^2,5)=4?$	$r(n^2,5) = 1 \text{ or } 4?$	Significance
0	0	F	0	0	F	F	F	Irrelevant
1	1	T	1	1	Т	F	T	Okay
2	2	Т	4	4	F	Т	Т	Okay
3	3	T	9	4	F	Т	Т	Okay
4	4	T	16	1	Т	F	Т	Okay
5	0	F	25	0	F	F	F	Irrelevant
6	1	Т	36	1	Т	F	Т	Okay
7	2	Т	49	4	F	Т	Т	Okay
8	3	Т	64	4	F	Т	Т	Okay
9	4	Т	81	1	T	F	Т	Okay
10	0	F	100	0	F	F	F	Irrelevant

© Abdallah Farraj, University of Toronto

Prove: $\forall n \in \mathbb{N}: [(r(n,5) \neq 0) \rightarrow ((r(n^2,5) = 1) \lor (r(n^2,5) = 4))]$

• Observations:

$$(r(n,5) \neq 0) \rightarrow ((r(n,5) = 1) \lor (r(n,5) = 2) \lor (r(n,5) = 3) \lor (r(n,5) = 4))$$

- Four cases to consider:
 - $r(n,5) = 1: \exists j \in \mathbb{N}: n = 5j + 1$
 - $r(n,5) = 2: \exists j \in \mathbb{N}: n = 5j + 2$
 - $r(n,5) = 3: \exists j \in \mathbb{N}: n = 5j + 3$
 - r(n,5) = 4: $\exists j \in \mathbb{N}$: n = 5j + 4

© Abdallah Farraj, University of Toronto

17

Proof: $\forall n \in \mathbb{N}: \left[(r(n,5) \neq 0) \rightarrow \left((r(n^2,5) = 1) \lor (r(n^2,5) = 4) \right) \right]$

© Abdallah Farraj, University of Toronto

```
Let n \in \mathbb{N}.
                                                                          # n is a typical element of domain D
   Assume r(n, 5) \neq 0.
                                                                          # assume antecedent
      Then (r(n,5) = 1) \lor (r(n,5) = 2) \lor (r(n,5) = 3) \lor (r(n,5) = 4). # four cases
      Case 1: Assume r(n, 5) = 1.
                                                                          # case 1
         Then \exists j \in \mathbb{N}: n = 5j + 1.
                                                                          # definition
         Let j_0 \in \mathbb{N} such that n = 5j_0 + 1.
         Then n^2 = 25j_0^2 + 10j_0 + 1.
                                                                          # find the chain
         Then \frac{n^2}{5} = 5j_0^2 + 2j_0 + \frac{1}{5}.
                                                                          # find the chain
         Then r(n^2, 5) = 1.
                                                                                         # conclusion is true for this case
      Case 2: Assume r(n, 5) = 2.
                                                                          # case 2
         Then \exists j \in \mathbb{N}: n = 5j + 2.
                                                                          # definition
         Let j_0 \in \mathbb{N} such that n = 5j_0 + 2.
         Then n^2 = 25j_0^2 + 20j_0 + 4.
                                                                          # find the chain
         Then \frac{n^2}{5} = 5j_0^2 + 4j_0 + \frac{4}{5}.
                                                                          # find the chain
         Then r(n^2, 5) = 4.
                                                                                         # conclusion is true for this case
                                                                                         # continue on next page
```

Proof: $\forall n \in \mathbb{N}: [(r(n,5) \neq 0) \rightarrow ((r(n^2,5) = 1) \lor (r(n^2,5) = 4))]$

```
# continue from previous page
   Case 3: Assume r(n, 5) = 3.
      Then \exists j \in \mathbb{N}: n = 5j + 3.
                                                                        # definition
      Let j_0 \in \mathbb{N} such that n = 5j_0 + 3.
      Then n^2 = 25j_0^2 + 30j_0 + 9.
                                                                        # find the chain
      Then \frac{n^2}{\epsilon} = 5j_0^2 + 6j_0 + 1 + \frac{4}{5}.
                                                                        # find the chain
     Then r(n^2, 5) = 4.
                                                                                       # conclusion is true for this case
   Case 4: Assume r(n, 5) = 4.
                                                                        # case 4
      Then \exists j \in \mathbb{N}: n = 5j + 4.
                                                                        # definition
      Let j_0 \in \mathbb{N} such that n = 5j_0 + 4.
      Then n^2 = 25j_0^2 + 40j_0 + 16.
                                                                                       # find the chain
      Then \frac{n^2}{5} = 5j_0^2 + 8j_0 + 3 + \frac{1}{5}.
                                                                        # find the chain
      Then r(n^2, 5) = 1.
                                                                                       # conclusion is true for this case
   Then (r(n^2, 5) = 1) \lor (r(n^2, 5) = 4).
                                                                                       # conclusion is true for all cases
Then (r(n,5) \neq 0) \rightarrow ((r(n^2,5) = 1) \lor (r(n^2,5) = 4)). # implication is satisfied
```

Therefore, $\forall n \in \mathbb{N}: \left[(r(n,5) \neq 0) \rightarrow \left((r(n^2,5) = 1) \lor (r(n^2,5) = 4) \right) \right]$. # introduce universal quantifier

© Abdallah Farraj, University of Toronto

Absolute Value

• The absolute value of a real number x is the non-negative value of x without regard to its sign

•
$$|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$$

- Examples:
 - |2| = 2
 - |-2| = 2
 - |0| = 0

•
$$|x - y| = \begin{cases} (x - y), & \text{if } (x - y) \ge 0 \\ -(x - y), & \text{if } (x - y) < 0 \end{cases}$$

• $|x - y| = \begin{cases} x - y, & \text{if } x \ge y \\ y - x, & \text{if } x < y \end{cases}$

•
$$|x - y| = \begin{cases} x - y, & \text{if } x \ge y \\ y - x, & \text{if } x < y \end{cases}$$

© Abdallah Farraj, University of Toronto

- Prove $\forall x \in \mathbb{R}$: $[x \leq |x|]$
- Thoughts:

 - $|x| = \begin{cases} -x, & \text{if } x < 0 \\ x, & \text{if } x \ge 0 \end{cases}$ $(x < 0) \rightarrow (|x| = -x > x) \rightarrow (x < |x|) \rightarrow (x \le |x|)$
 - $(x \ge 0) \rightarrow (|x| = x) \rightarrow (x \le |x|)$
- What are the cases?
 - $\forall x \in \mathbb{R}$: $(x < 0) \lor (0 \le x)$
 - Consider two cases that cover all the possibilities of $x \in \mathbb{R}$
 - For each case, we need to prove that $x \leq |x|$

© Abdallah Farraj, University of Toronto

Proof: $\forall x \in \mathbb{R}$: $[x \leq |x|]$

```
# x is a typical element of domain D
Let x \in \mathbb{R}.
   Then (x < 0) \lor (0 \le x). # two cases that cover all possibilities
   Case 1: Assume x < 0.
                            # case 1
      Then x < |x|.
                                 # find the chain
                                 # conclusion is true for this case
      Then x \leq |x|.
   Case 2: Assume 0 \le x. # case 2:
      Then x = |x|.
                                # find the chain
      Then x \leq |x|.
                                 # conclusion is true for this case
   Then x \leq |x|.
                                  # conclusion is true for all cases
Therefore, \forall x \in \mathbb{R}: [x \leq |x|].
                                        # introduce universal quantifier
```

- Prove $\forall x \in \mathbb{R}: [-5 \le |x+2| |x-3| \le 5]$
- Thoughts:

 - houghts: $|x+2| = \begin{cases} -(x+2), & \text{if } (x+2) < 0 \\ x+2, & \text{if } (x+2) \ge 0 \end{cases}$ $|x+2| = \begin{cases} -(x+2), & \text{if } (x+2) \ge 0 \\ x+2, & \text{if } x < -2 \end{cases}$ $|x+2| = \begin{cases} -(x+2), & \text{if } x < -2 \\ x+2, & \text{if } x \ge -2 \end{cases}$ $|x-3| = \begin{cases} -(x-3), & \text{if } (x-3) < 0 \\ x-3, & \text{if } (x-3) \ge 0 \end{cases}$ $|x-3| = \begin{cases} -(x-3), & \text{if } (x-3) \ge 0 \\ x-3, & \text{if } x < 3 \\ x-3, & \text{if } x \ge 3 \end{cases}$ $|x+2| |x-3| = \begin{cases} (x+2) (-(x-3)), & \text{if } x < -2 \\ (x+2) (x-3), & \text{if } x \ge 3 \end{cases}$ $|x+2| |x-3| = \begin{cases} -(x-3), & \text{if } x \ge 3 \end{cases}$ $|x+2| |x-3| = \begin{cases} -(x-3), & \text{if } x \ge 3 \end{cases}$ $|x+2| |x-3| = \begin{cases} -(x-3), & \text{if } x \ge 3 \end{cases}$

© Abdallah Farraj, University of Toronto

Prove: $\forall x \in \mathbb{R}: [-5 \le |x+2| - |x-3| \le 5]$

•
$$|x+2| - |x-3| = \begin{cases} -5, & \text{if } x < -2\\ 2x - 1, & \text{if } -2 \le x < 3\\ 5, & \text{if } x \ge 3 \end{cases}$$

- What are the cases?
 - $\forall x \in \mathbb{R}$: $(x < -2) \lor (-2 \le x < 3) \lor (x \ge 3)$
 - Consider three cases that cover all the possibilities of $x \in \mathbb{R}$
 - For each case, we need to prove that $-5 \le |x+2| |x-3| \le 5$
 - That is: prove $(-5 \le |x+2| |x-3|) \land (|x+2| |x-3| \le 5)$

Proof: $\forall x \in \mathbb{R}$: $[-5 \le |x + 2| - |x - 3| \le 5]$

```
Let x \in \mathbb{R}.
                                                       \# x is a typical element of domain D
  Then (x < -2) \lor (-2 \le x < 3) \lor (x \ge 3).
                                                       # three cases that cover all possibilities
  Case 1: Assume x < -2.
                                                       # case 1
     Then |x + 2| - |x - 3| = -5.
                                                       # find the chain
     Then -5 \le |x+2| - |x-3|.
                                                       # find the chain
     Then -5 \le |x+2| - |x-3| \le 5.
                                                       # conclusion is true for this case
  Case 2: Assume -2 \le x < 3.
                                                       # case 2
     Then |x + 2| - |x - 3| = 2x - 1.
                                                       # find the chain
     Also -4 \le 2x < 6.
                                                       # find the chain
     Then -5 \le 2x - 1 < 5.
                                                       # find the chain
     Then -5 \le |x+2| - |x-3| < 5.
                                                       # find the chain
     Then -5 \le |x+2| - |x-3| \le 5.
                                                       # conclusion is true for this case
                                                       # continue on next page
  ....
                                       © Abdallah Farraj, University of Toronto
```

Proof: $\forall x \in \mathbb{R}$: $[-5 \le |x + 2| - |x - 3| \le 5]$

© Abdallah Farraj, University of Toronto

Practice

- $\forall x \in \mathbb{R}$: $[|x| < 4 \rightarrow ((-4 < x) \land (4 > x))]$ another way to write it is $\forall x \in \mathbb{R}$: $[|x| < 4 \rightarrow (-4 < x < 4)]$
- $\forall x \in \mathbb{R}$: $[|x| > 4 \rightarrow ((-4 > x) \lor (4 < x))]$
- $\forall x \in \mathbb{R}$: $[|x+1| < 4 \rightarrow ((-5 < x) \land (3 > x))]$ another way to write it is $\forall x \in \mathbb{R}$: $[|x+1| < 4 \rightarrow (-5 < x < 3)]$
- $\forall x \in \mathbb{R}: [|x+1| > 4 \to ((-5 > x) \lor (3 < x))]$

© Abdallah Farraj, University of Toronto

27

Maximum Value

- $\forall x, y \in \mathbb{R}$: $\max(x, y) = \begin{cases} x, & \text{if } x \ge y \\ y, & \text{if } x < y \end{cases}$
- Examples:
 - max(2,3) = 3
 - $\max(2, -3) = 2$
 - max(-2,3) = 3
 - max(-2, -3) = -2
 - max(-2, -2) = -2

© Abdallah Farraj, University of Toronto

- Prove $\forall x, y \in \mathbb{R}$: $\max(x, y) = \frac{x+y+|x-y|}{2}$
- Thoughts:
- $x \geq y$:
 - $\max(x, y) = x$
 - |x-y|=x-y
 - $\frac{x+y+|x-y|}{2} = \frac{x+y+x-y}{2} = \frac{2x}{2} = x = \max(x,y)$
- x < y:
 - $\max(x, y) = y$
 - |x y| = y x
 - $\frac{x+y+|x-y|}{2} = \frac{x+y+y-x}{2} = \frac{2y}{2} = y = \max(x,y)$

- · What are the cases?
 - $\forall x, y \in \mathbb{R}$: $(x \ge y) \lor (x < y)$
 - · Consider two cases that cover all the possibilities of $x, y \in \mathbb{R}$
 - For each case, we need to prove that $\max(x, y) = \frac{x+y+|x-y|}{2}$

© Abdallah Farraj, University of Toronto

Proof: $\forall x, y \in \mathbb{R}$: $\max(x, y) = \frac{x+y+|x-y|}{2}$

```
Let x, y \in \mathbb{R}.
```

x, y are typical elements of domain D

Then $(x \ge y) \lor (x < y)$.

two cases that cover all possibilities

Case 1: Assume $x \ge y$.

case 1

Then $\max(x, y) = x$.

find the chain

Then |x - y| = x - y.

find the chain

Then $\frac{x+y+|x-y|}{2} = \frac{x+y+x-y}{2} = \frac{2x}{2} = x$. # find the chain
Then $\max(x,y) = \frac{x+y+|x-y|}{2}$. # conclusion is

conclusion is true for this case

Case 2: Assume x < y.

case 2

Then $\max(x, y) = y$.

find the chain

find the chain

Then $\frac{x+y+|x-y|}{2} = \frac{x+y+y-x}{2} = \frac{2y}{2} = y$. # find the chain
Then $\max(x,y) = \frac{x+y+|x-y|}{2}$. # conclusion is

conclusion is true for this case

Then $\max(x, y) = \frac{x+y+|x-y|}{2}$.

conclusion is true for all cases

Therefore, $\forall x,y \in \mathbb{R}$: $\max(x,y) = \frac{x+y+|x-y|}{2}$. # introduce universal quantifier