Calculation of momentum velocity on collision of two masses

Friedemann Zintel

April 9, 2017

In order to calculate the momentum between two colliding masses it is necessary to determine the partial velocity vector of a moving mass in direction to the second mass. Let's assume a mass m_1 moves with velocity \vec{v} and would hit mass m_2 . For simplicity m_2 remains stationary and the shapes of both masses are spherical. Even when the direction of \vec{v} does not point directly to m_2 , it behaves as if m_1 hits m_2 with a (partial) velocity v_{m_2} which points to the direction of m_2 . The calculation holds for any dimension.

Figure 1: collision

We need to calculate $\vec{v_{m_2}}$. We define $\vec{d} = \vec{m_2} - \vec{m_1}$, where $\vec{m_1}$ and $\vec{m_2}$ are the positional vectors for m_1 resp. m_2 . We require that the masses have a positive expansion $(r_1 > 0, r_2 > 0)$, thus $\vec{d} \neq \vec{0}$ (collision takes place if $|\vec{d}| = r_1 + r_2$). Let \vec{s} be a (the) vector with $\vec{v_{m_2}} = \vec{v} + \vec{s}$. Then \vec{s} must be orthogonal to $\vec{v_{m_2}}$ and thus to \vec{d} . That is because $\vec{v_{m_2}}$ is a partial vector of \vec{v} and points in the same direction as \vec{d} which resides on the momentum line. See figure 1.

Be $\lambda \in \mathbb{R}$, then the following equations hold:

$$\vec{v_{m_2}} = \vec{v} + \vec{s} = \lambda \vec{d} \tag{1}$$

$$\vec{s} \cdot \vec{d} = 0 \tag{2}$$

This can easily be solved:

$$(1),(2) = > (\lambda \vec{d} - \vec{v})\vec{d} = 0 \tag{3}$$

$$\langle = \rangle \lambda \vec{d}^2 - \vec{v} \vec{d} = 0 \tag{4}$$

$$\langle = \rangle \lambda = \frac{\vec{v}\vec{d}}{\vec{d}^2}$$
 (5)

As a result we get:

$$\vec{v_{m_2}} = \frac{\vec{v}\vec{d}}{\vec{d}^2}\vec{d}$$