DIAGNÓSTICO DE MOTORES

Projeto Integrador V

Integrantes

Augusto Pinho Hamilton Alves Nicolas yudji Marcelo Luvizutto Joao Freire

Sumário

STAKEHOLDERS

Br Ware Equipamentos Eletrônicos

A empresa Br Ware, fundada em 08/08/2019 e com razão social **Br Ware Equipamentos Eletronicos LTDA**, está localizada na cidade São Paulo do estado São Paulo. Sua atividade principal é comércio varejista especializado de equipamentos e suprimentos de informática.

Visão Geral do Projeto

Este projeto aborda o diagnóstico de motores de bombas d'água, utilizando tecnologias de **IoT** e análise de dados. A solução propõe sensores de vibração conectados via **ESP32** para coleta contínua de dados, analisados em tempo real e por meio do **RMS** fazer diagnóstico referente ao motor. Permitindo assim, detecção de falhas iminentes, como desalinhamentos ou desgastes mecânicos.

Planejamento

1. Sprint

2. Sprint

3. Sprint

4. Sprint

5. Sprint

Definir Requisito

Benchmarkiting com projetos

Adquirir Componentes

Armazenamento dos Dados

Testes

Elaborar Escopo Estudos relacionados vibrações, integração, implementação

Montar circutos e sensores

Vizualização de Dados Fazer Documentação

Cronograma

Definir sensores de componentes

Integração dos Componestes

Preparar o Software

Protótipo

Diagrama de Arquitetura

Hardware ESP32

Arduino ESP32 com Dev Module

Para processamento e envio de dados, nós utilizamos uma placa dev module com fonte de **3,3 V** conectada ao **ESP 32** rodando **Arduino e C** e enviando os dados via **Wi-Fi 802.11 b/g/n.** A fonte permite que a placa funcione de forma independente, e é bem versátil já que possui diversos conectores para mais de um modulo.

Hardware MPU-6050

Períferico MPU-6050

Nós usamos o sensor MPU-6050 para a captação dos dados, ele é um acelerômetro e acelerômetro. O acelerômetro mede a aceleração linear (movimento ou inclinação) ao longo dos três eixos (x,y,z) enquanto o giroscópio detecta a rotação angular, que permite analisara a velo

Desenvolvimento

Conclusão | Vídeo

Conclusão

Este projeto demonstra como o uso de sensores de vibração conectados via ESP32 e análise em tempo real pode solucionar o diagnóstico de motores de bombas d'água. A solução permite identificar falhas mecânicas iminentes, reduzindo custos, evitando paradas inesperadas e aumentando a vida útil dos equipamentos. Com isso, promovemos maior eficiência, confiabilidade e sustentabilidade na gestão de sistemas de bombeamento.