CS422 Robotics and Automation Assignment 1

Maynooth University, Siyuan Zhan PhD

Due 30th Sept. Late submissions will not be accepted

Read Textbook Chapter 2 and answer the following questions:

1. Use Grübler's formula to verify that the Stewart mechanism (Fig. 1) indeed has six degrees of freedom (10pts)

Figure 1: The Stewart mechanism is a six-degree-of-freedom fully parallel manipulator.

- 2. A vector P^A is rotated about \hat{Z}_A by θ degrees and is subsequently rotated about \hat{X}_A by ϕ degrees. Give the rotation matrix that accomplishes these rotations in the given order (5 pts).
- 3. A frame $\{B\}$ is located initially coincident with a frame $\{A\}$. We rotate $\{B\}$ about \hat{Z}_B by θ degrees, and then we rotate the resulting frame about \hat{X}_B by θ degrees. Give the rotation matrix that will change the descriptions of vectors from P^B to P^A (5pts)
- 4. Referring to Fig. 2

https://www.chegg.com/homework-help/questions-and-answers/1-given-equation-ap-borg-bc-get-value-bc-2-set-act-bct-cat-abt-value-matrix-form-get-rever-q58042240

Figure 2: Frames at the corners of a wedge

- (a) give the value of H_B^A
- (b) give the value of H_C^A
- (c) give the value of H_C^B
- (d) give the value of ${\cal H}^C_A$
- (e) give the value of ${\cal H}_A^B$ (10pts)

5. Given

$$H_B^A = \begin{bmatrix} 0.25 & 0.43 & 0.86 & 5.0 \\ 0.87 & -0.50 & 0.00 & -4.0 \\ 0.43 & 0.75 & -0.50 & 3.0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

find H_A^B (5pts)