Helen Xu

1 Cyclotron Rd, B59-4024J
Berkeley, CA 94704

\$\partial +1 \ (914) \ 462 \ 7260

\to \ hjxu@lbl.gov

\text{\te}\text{\texi\texi{\text{\text{\texi}\text{\te

Research Overview

I study theoretically and practically efficient parallel algorithms because now that Moore's law has ended, efficient algorithms are a principal way to gain performance for new applications. In particular, I have recently investigated sparse graph and matrix problems because of their ubiquity and susceptibility to mathematical analysis.

Current Position

Feb 2022 - Grace Hopper Postdoctoral Scholar in Computing Sciences, Lawrence Berkeley

Present National Laboratory. Host: Dr. Aydın Buluç.

Education

Feb 2022 Ph.D. in Computer Science, Massachusetts Institute of Technology.

Thesis: The Locality-First Strategy for Developing Efficient Multicore Algorithms.

Advisor: Prof. Charles E. Leiserson.

May 2016 B.S. with Honors in Computer Science, Stony Brook University.

Thesis: Write-optimized Skip Lists. Advisor: Prof. Michael A. Bender.

Awards: Ranked first in the 2016 graduating class of over 100 students and received the

Undergraduate Teaching Assistant Award (top 1% of TAs in the CS department).

Awards

- 2022 **Grace Hopper Fellowship in Computing Sciences** for two years of postdoctoral study at Berkeley Lab.
- 2022 **Argonne Training Program for Extreme-Scale Computing (ATPESC),** a fully-funded two-week course on high-performance computing (awarded to about 80 researchers).
- 2021 Finalist for Best Student Presentation at ACDA 2021.
- 2020 **Rising Stars Workshop** held virtually at UC Berkeley.
- 2020 **Chateubriand Fellowship** for Spring 2020 at ENS Lyon.
- 2016 **National Physical Science Consortium (NPSC) Graduate Fellowship,** awarded for six years of graduate study.
- 2016 **Undergraduate Teaching Assistant Award,** awarded to around 1% of TAs in the department of Computer Science at Stony Brook University.
- 2015 **NSF Research Experience for Undergraduates Supplement,** awarded for one year of undergraduate research.
- 2013-2016 **Christian Mata Scholarship for Excellence in Computer Science,** awarded to the top ranked computer science student in every year at Stony Brook University.

Publications

Published 14 peer-reviewed conference papers (10 full papers and 4 short papers) in top venues for algorithms and systems including SIGMOD, PODS, SPAA, and IPDPS.

Conference Publications

- VLDB '23 BP-tree: Overcoming the Point-Range Tradeoff for In-Memory Key-Value Stores. Helen Xu, Amanda Li, Brian Wheatman, Manoj Marneni, and Prashant Pandey. In the International Conference on Very Large Data Bases (VLDB), 2023.
- ALENEX '23 Optimizing Search Layouts in Packed Memory Arrays. Brian Wheatman, Randal Burns, Aydın Buluç, and **Helen Xu**. In SIAM Symposium on Algorithm Engineering and Experiments (ALENEX), 2023.
 - ESA '22 When Are Cache-Oblivious Algorithms Cache Adaptive? A Case Study of Matrix Multiplication and Sorting. Arghya Bhattacharya, **Helen Xu**, Abiyaz Chowdhury, Rathish Das, Rezaul A. Chowdhury, Rob Johnson, Rishab Nithyanand, Michael A. Bender. In European Symposium on Algorithms (ESA), 2022.
 - ACDA '21 Multidimensional Included and Excluded Sums. Helen Xu, Sean Fraser, and Charles E. Leiserson. In SIAM Conference on Applied and Computational Discrete Algorithms (ACDA), 2021.
- SIGMOD '21 Terrace: A Hierarchical Graph Container for Skewed Dynamic Graphs. Prashant Pandey, Brian Wheatman, **Helen Xu**, and Aydın Buluç. In ACM SIGMOD International Conference on Management of Data (SIGMOD), 2021.
- ALENEX '21 A Parallel Packed Memory Array to Store Dynamic Graphs. Brian Wheatman and **Helen Xu**. In SIAM Symposium on Algorithm Engineering and Experiments (ALENEX), 2021.
 - APOCS '21 Beyond Worst-case Analysis of Multicore Caching Strategies. (in alphabetical order) Shahin Kamali and **Helen Xu**. In SIAM Symposium on Algorithmic Principles of Computer Systems (APOCS), 2021.
 - SPAA '20 Closing the Gap Between Cache-Oblivious and Cache-Adaptive Analysis. (in alphabetical order) Michael A. Bender, Rezaul A. Chowdhury, Rathish Das, Rob Johnson, William Kuszmaul, Andrea Lincoln, Quanquan C. Liu, Jayson Lynch, and **Helen Xu**. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2020.
 - SPAA '18 Cache-Adaptive Exploration: Experimental Results and Scan-Hiding for Adaptivity. (in alphabetical order) Andrea Lincoln, Quanquan C. Liu, Jayson Lynch, and **Helen Xu**. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2018.
 - IPDPS '18 A Fill Estimation Algorithm for Sparse Matrices and Tensors in Blocked Formats.

 Peter Ahrens, **Helen Xu**, and Nicholas Schiefer. In IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2018.
 - PODS '17 Write-Optimized Skip Lists. (in alphabetical order) Michael A. Bender, Martin Farach-Colton, Rob Johnson, Simon Mauras, Tyler Mayer, Cynthia Phillips, and **Helen Xu**. In ACM Symposium on Principles of Database Systems (PODS), 2017.

Peer-Reviewed Short Publications

DCC '23 Poster: Optimizing Compression Schemes for Parallel Sparse Tensor Algebra. **Helen Xu**, Tao B. Schardl, Michael Pellauer, and Joel S. Emer. In Data Compression Conference (DCC), 2023.

- HPEC '20 Work-Efficient Parallel Algorithms for Accurate Floating-Point Prefix Sums. Sean Fraser, **Helen Xu**, and Charles E. Leiserson. In IEEE High Performance Extreme Computing Conference (HPEC), 2020.
- SPAA '20 Brief Announcement: Multicore Paging Algorithms Cannot Be Competitive. (in alphabetical order) Shahin Kamali and **Helen Xu**. In ACM Symposium on Parallelism in Algorithms and Architectures (HPEC), 2020.
- ICONS '19 Dynamic Programming with Spiking Neural Computing. (in alphabetical order) James Aimone, Ojas Parekh, Cynthia Phillips, Ali Pinar, William Severa, and **Helen Xu**. In International Conference on Neuromorphic Systems (ICONS), 2019.
- HPEC '18 Packed Compressed Sparse Row: A Dynamic Graph Representation. Brian Wheatman and **Helen Xu**. In IEEE High Performance Extreme Computing Conference (HPEC), 2018.

Under Review

A Compressed Packed Memory Array with Fast Parallel Batch Updates. Brian Wheatman, Randal Burns, Aydın Buluç, and **Helen Xu**.

Research Experience

- Feb 2022 PASSION Laboratory Lawrence Berkeley National Laboratory, Berkeley, CA.
 - present Developing algorithms and data structures for sparse graph and tensor applications. Mentor: Dr. Aydın Buluç.
- Sep 2016 Supertech Group Massachusetts Institute of Technology, Cambridge, MA.
- Feb 2022 Designed, analyzed, and implemented parallel and cache-friendly algorithms for shared-memory multicores.

Mentor: Prof. Charles E. Leiserson.

Summer 2020 Architecture Research Group NVIDIA Research, Westford, MA.

Created and evaluated compressed data structures for sparse tensor computations.

Mentor: Dr. Michael Pellauer.

Spring 2020 Resource Optimization: Models, Algorithms, and Scheduling Group *ENS Lyon*, Lyon, France.

Studied algorithms for multi-resource job scheduling with theoretical guarantees.

Mentors: Professors Loris Marchal, Frederic Vivien, and Anne Benoit.

- Summer 2019 **Systems and Networking Group** *Microsoft Research*, Cambridge, UK.

 Developed and implemented algorithms for novel parallel machine learning accelerators.

 Mentor: Dr. Nuno Lopes.
- Summer 2016 **Discrete Mathematics and Optimization Group** Sandia National Laboratories, Albuquerque, NM.

Simplified and refined randomized I/O-efficient data structures.

Mentor: Dr. Cindy Phillips

Summer 2015 **Systems and Security Research Group** *Sandia National Laboratories*, Livermore, CA.

Designed and implemented a network event tracking database using an existing write-optimized fractal tree index.

Mentor: Dr. Tom Kroeger

Teaching

Qualifications

- 2021 Kaufman Teaching Certificate Program (KTCP) Teaching and Learning Lab, Massachusetts Institute of Technology, Cambridge, MA.
 - Completed a semester-long course consisting of developing teaching skills via weekly workshops.
 - Prepared and delivered a teaching demo on algorithms to a general audience and provided peer feedback.

Experience

- 2017 2018 Teaching Assistant for Performance Engineering of Software Systems Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA.
 - Received an average overall rating of 6.2 out of 7 points.
 - Led weekly recitations (TA-led tutorial sessions) and office hours.
 - Developed the course cloud infrastructure, including the course development environment and tools suite.
 - o Coordinated with instructors to write and grade homeworks and exams.
 - Helped students with assignments on the course discussion forum.
- 2014 2015 **Teaching Assistant for Discrete Mathematics** Department of Computer Science, Stony Brook University, Stony Brook, NY.

Students Advised

Ph.D.

- 2018-present Abdullah Al Raqibul Islam, University of North Carolina at Charlotte.
 - Hosted at Berkeley Lab in Summer 2023.
- 2018-present Brian Wheatman, Johns Hopkins University.

Hosted at Berkeley Lab in Summer 2022.

2020-present Arghya Bhattacharya, Stony Brook University.

Masters theses

- Feb 2023 Amanda Li, MIT.
 - Overcoming the Point-Range Tradeoff in Key-Value Stores.
- June 2020 **Sean Fraser**, MIT.

Optimizing Parallel Prefix Sums for Scientific Computing.

June 2019 Brian Wheatman, MIT (co-advised with Tim Kaler).

Image Alignment and Dynamic Graph Analytics : Two Case Studies of How Managing Data Movement Can Make (Parallel) Code Run Fast.

June 2019 Stephanie Ren, MIT (co-advised with Tao B. Schardl).

Vector-Aware Space Cuts in Stencil Computations.

Professional Service

- 2023-present Steering Committee Member for ALENEX (2024).
- 2021-present **Program Committee Member** for PPOPP (2024), ALENEX (2022, 2023), SPAA (2022, 2023), SEA (2023), SC (Algorithms track, 2023), ESA (Track B, 2023).
- 2018-present **Paper Reviewer** for VLDB (2023), PASC (2023), BigData (2023), JPDC (2022), ICPP (2021), ACDA (2021), WADS (2021), SPAA (2021, 2020), EuroPar (2020), SOSA (2020), SODA (2018, 2019), ESA (2019, 2022).
 - 2022 Artifact Evaluation Program Committee Member for PPoPP.

2022 Availability Reviewer for SIGMOD.

2018 - 2022 Communication Lab Advisor with the MIT Electrical Engineering and Computer Science Communications Lab.

Communication Lab Page: http://mitcommlab.mit.edu/eecs/

- Reviewed over 50 papers, talks, statements, and CVs via peer coaching.
- o Created and implemented a partnership with Professor Saman Amarasinghe's research group to jointly prepare conference presentations via weekly meetings.
- o Prepared and led workshops for the NSF Graduate Research Fellowship application (2020, 2021) and the PhD research qualifying exam presentation (2019, 2021).
- Wrote articles about core technical communications topics, such as thesis proposals and paper abstracts.

2017 **Co-president** of MIT Graduate Women in Course 6 (GW6).

Webpage: http://gw6.scripts.mit.edu/

o Organized events several times per month for graduate women in the department, including professional development and social activities.

References

Prof. Charles E. Leiserson

Department of Electrical Engineering and Computational Research Division Computer Science Massachusetts Institute of Technology cel@mit.edu

Prof. Michael A. Bender

Department of Computer Science Stony Brook University bender@cs.stonybrook.edu

Dr. Aydın Buluç

Lawrence Berkeley National Laboratory abuluc@lbl.gov

Prof. Shahin Kamali

Department of Computer Science York University kamalis@yorku.ca