CMSC 130 - Logic Design and Digital Computer Circuits

Handout # 5: DESIGN OF COMBINATIONAL CIRCUITS

Fundamental Components of Digital Systems

- 1.) Combinatorial Logic Blocks (Functions)
- 2.) State Elements (Memory)
- 3.) Interconnect (wires)

Combinatorial Circuit - consists of logic gates whose outputs at a time are determined from the present combination of inputs without regards to the previous inputs.

each input/output is a single bit.
$$Y = F(X_1, X_2, ..., X_{n-1})$$
 where x,y are $\{0,1\}$

Truth Table Representation:

a3	a2	a1	a0	b3	b2	b1	b0	r3	r2	r1	r0	С
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	0	0	1	0	0
0	0	1	0	0	0	1	0	0	1	0	0	0
0	0	1	1	0	0	1	1	0	1	1	0	0
0	0	1	0	0	0	1	0	0	1	0	0	0
0	0	1	0	0	0	1	1	0	1	0	1	0
0	0	0	0	1	1	1	1	1	1	1	1	0
0	0	0	1	1	1	1	1	0	0	0	0	1

-> 256 rows! In general, 2ⁿ rows for n inputs.

Add a_0 and b_0 as follows:

1

а	b	sum	\mathbf{C}_{out}	
0	0	0	0	$sum = a XOR b$ $c_{out} = a AND b$
1	_	1	0	= ab

0

Add a_0 and b_0 as follows: carry to $\ \ next$ column

Cin	\mathbf{a}_{i}	b_{i}	sumi	Cout	
0 0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1 0	0 1 1 0 1 0 0	0 0 0 1 0 1 1	$sum_i = a_i XOR b_i XOR$ C_{in} $c_{out} = a_i b_i + a_i c_{in} + b_i c_{in}$

Full Adder Cell

The 4-bit adder :

Example: BCD-to-Excess3 code converter

Truth Table

	В	CD		XS-3				
Α	В	С	D	W	X	Υ	Z	
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
1	0	0	1	1	1	0	0	
1	0	1	0	Х	Χ	Χ	Χ	
1	1	1	1	Х	Χ	Χ	Χ	

Functions for the BCD-to-XS3 Converter:

z=d' y=cd+c'd' x=b'c+b'd+bc'd' w=a+bc+bd

Note: The functions are algebraically manipulated for the purpose of using common gates for two or more outputs.

Logic Diagram of the BCD-to-XS3 Converter:

