作者: 张陈成

学号: 023071910029

K-理论笔记

交换环的 Picard 群

1 Zariski 拓扑简介

2 交换环的 Picard 群

定义 1 (投射模的秩函数). Kaplansky 定理表明局部环上的投射模自由, 其交换且有限生成之情形已在前文证明 (中山引理之推论).

今给定交换环 R, 定义投射模 P 的秩函数为

$$\operatorname{rank}_P : \operatorname{spec}(R) \to \mathbb{N}, \quad \mathfrak{p} \mapsto \operatorname{rank}_{R_{\mathfrak{p}}}(P_{\mathfrak{p}}).$$

简而言之, $\operatorname{rank}_P(\mathfrak{p})$ 是 R-模 P 在 \mathfrak{p} -局部化下 (作为自由 $R_{\mathfrak{p}}$ -模) 的秩.

命题 1 (对偶模回顾). 给定交换环 R, 定义 $X \in Ob(R-Mod)$ 的对偶模为

$$X^* := \operatorname{Hom}_{R-\operatorname{Mod}}(X, R) \in \operatorname{Ob}(R^{\operatorname{op}} - \operatorname{Mod}).$$

有以下关于对偶模的常用性质.

- 1. $\varepsilon: P \to P^{**}$ 为典范单态射.
- 2. 自由模与投射模的一种等价定义如下.
 - F 是自由 R-模,当且仅当存在指标集 I 与 $\{(x_i, f_i) \in F \times F^*\}_{i \in I}$ 使得有分解 (有限和) $x = \sum_{i \in I} f_i(x) x_i$, 且有限和 $x = \sum_{i \in I} a_i x_i$ 对一切 $x \in F$ 唯一.
 - P 是投射 R-模,当且仅当存在指标集 I 与 $\{(x_i, f_i) \in P \times P^*\}_{i \in I}$ 使得有分解 (有限和) $x = \sum_{i \in I} f_i(x) x_i$, 但有限和 $x = \sum_{i \in I} a_i x_i$ 对 $x \in P$ 不必唯一.
- 3. 有限生成投射模的对偶模同为投射 R-模. 具体地, 对任意 $P \oplus Q \simeq R^n$ 总有

$$\operatorname{Hom}_R(P,R) \oplus \operatorname{Hom}_R(Q,R) \simeq \operatorname{Hom}_R(R^n,R) \simeq (\operatorname{End}_R(R))^n \simeq R^n.$$

此时 $\varepsilon: P^{**} \simeq P$ 为同构.

定义 2 (R-模范畴的半环结构). (R-Mod, \oplus , \otimes) 为交换半环, 即,

- 1. 环中元素为 $Ob(R-Mod)/\simeq$. 为方便记号, 今后省略商关系.
- 2. (*R*-Mod, ⊕) 为交换幺半群, 其幺元为 0;

- 3. (R-Mod,⊗) 为交换幺半群, 其幺元为 R;
- 4. ⊕ 与 ⊗ 分别作为加法与乘法, 满足分配律.

注 1. 函子 $- \otimes M$ 给出范畴 R-Mod 到自身的范畴等价,当且仅当 M 是环 (R-Mod, \oplus , \times) 的乘法可逆元. 换言之,存在 N 使得 $N \otimes M \simeq R \simeq M \otimes N$.

定义 3 (可逆模 (线丛)). 取交换环 R 上有限生成模 M. 称 M 可逆, 若以下等价命题成立.

- 1. 存在 R-模 N 使得 $M \otimes N \simeq R$, 且 $M \simeq \operatorname{Hom}_R(N,R)$.
- 2. $M \otimes_R$ 为 R-模范畴到自身的等价.
- 3. M 是有限生成的秩恒为 1 的投射模.

实际上有 $\operatorname{Hom}_R(N,R) \simeq M$.

定义 4 (Picard 群). 记环 R 中 Picard 群为 Pic(R) 有限生成可逆模 $\langle M \rangle$ 构成的乘法群. 其中

- 1. $\langle M \otimes_R N \rangle = \langle M \rangle \cdot \langle N \rangle$.
- 2. $\langle \operatorname{Hom}_R(M,R) \rangle = \langle M \rangle^{-1}$.
- 3. 〈R〉 为乘法单位.
- 注 2. Pic: Ring → Ab 为 (协变) 函子. 特别地,

$$\mathrm{Pic}: \left[R \stackrel{f}{\longrightarrow} S\right] \mapsto [P \mapsto S \otimes_R P].$$