QMM ASSIGMENT 3

Abhinay Chiranjeeth Marneni

2022-10-19

Loading packages

```
library("lpSolve")
library("tinytex")
```

1. Formulate and solve the Transportation Problem with R Make a table by using information provided.

```
## PlantA 22 14 30 600 100
## PlantB 16 20 24 625 120
## Demand 80 60 70 - -
```

Primal Model The Objective Function of Minimize the Transportation cost

$$Z = 622C_{11} + 614C_{12} + 630C_{13} + 0C_{14} + 641C_{21} + 645C_{22} + 649C_{23} + 0C_{24}$$

The Constraints for Primal model Subject to

Supply Constraints
$$C_{11} + C_{12} + C_{13} + C_{14} \le 100$$

$$C_{21} + C_{22} + C_{23} + C_{24} \le 120$$
Demand Constraints
$$C_{11} + C_{21} \ge 80$$

$$C_{12} + C_{22} \ge 60$$

$$C_{13} + C_{23} \ge 70$$

$$C_{14} + C_{24} \ge 10$$

```
Non – Negativity Constraints C_{ij} \ge 0 Where i = 1,2 and j = 1,2,3,4
```

demand Constraints is not equal to supply variables # To solve Primal with R

```
# Matrix for the given objective function
trans.cost \leftarrow matrix(c(622,614,630,0,
                 641,645,649,0), ncol=4, byrow=T) # Matrix for the given objective function
trans.cost
        [,1] [,2] [,3] [,4]
## [1,] 622
             614
                   630
## [2,]
              645
         641
                   649
colnames(trans.cost) <- c("Warehouse1", "Warehouse2", "Warehouse3", "Dummy")</pre>
rownames(trans.cost) <- c("PlantA", "PlantB")</pre>
trans.cost
##
          Warehouse1 Warehouse2 Warehouse3 Dummy
## PlantA
                 622
                             614
                                        630
## PlantB
                 641
                                        649
                                                 0
                             645
#Identify the row signs, row right hand side values, column sign and column right hand side values
row.signs <- rep("<=",2)
row.rhs <- c(100, 120)
col.signs <- rep(">=",4)
col.rhs \leftarrow c(80,60,70,10)
lptrans.cost <- lp.transport(trans.cost, "min", row.signs, row.rhs, col.signs, col.rhs) #the linear problem
# the objective value for linear problem transport function
 lptrans.cost$objval # the solution of primal
## [1] 132790
                                 Where WH_1 = Warehouse 1
                                     WH_2 = Warehouse 2
                                     WH_3 = Warehouse 3
                                    Where PL_1 = PlantA
                                        PL_2 = plantB
```

#To Get the constraints value
lptrans.cost\$solution

```
## [,1] [,2] [,3] [,4]
## [1,] 0 60 40 0
## [2,] 80 0 30 10
```

##The shipping cost from each plant to the warehouse of each wholesaler along with the monthly demand from each wholesaler are also indicated in the table

2. Formulate the dual model of the above transportation problem

##the primal model to minimize the transportation cost the dual model of maximize the value added(Z)

Maximize
$$Z = 80WH_1 + 60WH_2 + 70WH_3 - 100PL_1 - 120PL_2$$

Subject to the payment constraints

Total Payments Constraints

$$WH_1 - PL_1 \ge 622$$

$$WH_2 - PL_1 \ge 614$$

$$WH_3 - PL_1 \ge 630$$

$$WH_1 - PL_2 \ge 641$$

$$WH_2 - PL_2 \ge 645$$

$$WH_3 - PL_2 \ge 649$$

$$WH_i > 0, PL_i > 0$$

3. Economic Interpretation for above Constraints we can written as

$$WH_1 \le 622 + PL_1$$

$$WH_2 \le 614 + PL_1$$

$$WH_3 \le 630 + PL_1$$

$$WH_1 \le 641 + PL_2$$

$$WH_2 \le 645 + PL_2$$

$$WH_3 \le 649 + PL_2$$

Here Warehouse 1 recieved payment , which consider as marginal revenue

To Maximization the Profit MR has to equal to MC , $\mathrm{MR}=\mathrm{MC}$

We must lower plant expenses in order to get to the Marginal Revenue (MR)

We must expend more supply production in order to get to the Marginal Revenue (MR)