Particle spectrograph

Wave operator and propagator

SO(3) irreps		
· · · · · · · · · · · · · · · · · · ·	Fundamental fields	Multiplicities
$t_{0+}^{*2} = 0$	$\partial_{\beta}\partial_{\alpha}t^{\alpha\beta} == 0$	1
$\tau_{0}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$t_1^{\#2}\alpha + 2ik \ \sigma_1^{\#1}\alpha = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}t^{\beta\chi}+$	К
	$2 \left(\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{eta\chi}_{}-\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{eta}\sigma^{lphaeta\chi}+ ight.$	
	$\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }) ==\partial_{\chi}\partial^{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	
$\tau_{1}^{\#1}{}^{\alpha}=0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	ĸ
$\sigma_{1}^{\#1}\alpha == \sigma_{1}^{\#2}\alpha$	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi}_{\beta} + \partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\beta} == 0$	m
$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$t_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0 \partial_{\chi}\partial^{\alpha}t^{\beta\chi} + \partial_{\chi}\partial^{\beta}t^{\chi\alpha} + \partial_{\chi}\partial^{\chi}t^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\iota^{\chi\beta} + \partial_{\chi}\partial^{\beta}\iota^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_2^{\#1}\alpha\beta - 2ik \sigma_2^{\#1}\alpha\beta == 0$	$-2ik \ \sigma_{2}^{\#1}{}^{\alpha\beta} = 0 \ -i(4 \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau^{\chi\delta} + 2 \partial_{\delta}\partial^{\delta}\partial^{\alpha}\tau^{\chi}{}_{\chi} -$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$4\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	$6\ i\ k^{\chi}\ \partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{lpha}\sigma^{eta\deltaarepsilon}$ -	
	$6 \overline{\imath} k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6\ li\ k^{\chi}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{lpha\deltaeta} +$	
	$6\ i\ k^{\chi}\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\chi}\sigma^{eta\deltalpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} t_{\chi}^{\chi}$ -	
	$4 \mathbb{I} \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta \epsilon}_{ \delta}) == 0$	
Total constraints/gauge generators:	ye generators:	19

								l
$\tau_{1}^{\#2}$	0	0	$0 \\ \frac{12ik}{(3+4k^2)^2 t_1} \\ \frac{12i\sqrt{2}k}{(3+4k^2)^2 t_1}$		0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$		
$\tau_{1^{\bar{-}}}^{\#1}\alpha$	0	0	0 0 0		0	0	0	5
$\sigma_{1}^{\#2}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	f_{1}^{*1} f_{1}^{*2}
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$	ω_1^{*2}
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0	$\omega_{1}^{\#1}$
$\sigma_1^{\#_2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0	$\omega_{1+}^{#1}$ $\omega_{1+}^{#2}$ $\omega_{1+}^{#2}$ $\beta_{1+}^{#1}$ $\omega_{1-}^{#1}$
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	$\omega_{_1+_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}$
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} + ^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} + ^{\alpha}$	

0	0	0	<u>íkt1</u> 3	$\frac{1}{3}$ i $\sqrt{2}$ kt	0	$\frac{2k^2t_1}{3}$										
0	0	0	0	0	0	0										
			Lio			$\frac{1}{2}kt_1$						$\sigma_{0}^{\#1}$	0	0	0	$-\frac{1}{t_1}$
0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t1</u> 3	0	$i\sqrt{2}$, , #1	_ #1	_ #2	#1	$^{1}_{r} \tau_{0}^{#2}$	0	0	0	0
						- <u>1</u> 3		$\omega_{0}^{\#1}$	$f_{0^{+}}^{#1}$	Γ ₀ +	$\omega_0^{"-1}$	$\tau_0^{\#1}$	0	0	0	0
0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$i k t_1$	$\omega_0^{#1} + 6$	$k^2 \left(-r_1 + r_3 \right)$	0	0	0		$\frac{1}{6 \nu^2 (-\nu_1 + \nu_2)}$	(S)		
			7	٤ 1		$-\frac{1}{3}$	$f_{0+}^{#1}$ †	0	0	0	0	$\sigma_{0}^{\#1}$	1 2 2		0	0
$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0	$f_{0+}^{#2} \dagger$	0	0	0	0		+		+	+
							$\omega_{0}^{#_{-}1}$ †	0	0	0	-t ₁		$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$\tau_0^{\#2} +$	$\sigma_{0}^{\#1}$ †
$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0		$\sigma_{2}^{\#1}{}_{lphaeta}$	$ au_2^{\#}$	‡1 + αβ	σ_{i}	#1 2 ⁻ αβχ				<u>t1</u> 2
$k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	$\sigma_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2}{(1+2)^{2}}$	i √2 k 2 k ²) ²		0	brack H	0	0	$k^2 r_1 +$
k^2	ı						$ au_{2^{+}}^{\sharp 1} \dagger^{lphaeta}$	$2i\sqrt{2}k$		$4k^2$		0	1 6		رط	
$+^{\alpha\beta}$	$+^{\alpha\beta}$	$\dagger^{\alpha \beta}$. + _a	±α	$f_{1}^{\#1} \dagger^{lpha}$	$f_{1}^{\#2} +^{\alpha}$	¹ 2 ⁺ 1	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	(1+2	$(k^2)^2 t$	1	U		$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_1^{\#1} +^{lphaeta}$	$\omega_1^{\#2} + \alpha^{eta}$	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_1^{\#1}$	$f_{1}^{#2}$	$\sigma_2^{\sharp 1} \dagger^{lphaeta\chi}$	0		0	2 k	$\frac{2}{2}r_{1}+t_{1}$		<u>t1</u> 2	$\frac{i k t_1}{\sqrt{2}}$	0

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_1} > 0$$
Polarisations: 5
Square mass: $-\frac{t_1}{2r_1} > 0$
Spin: 2
Parity: Odd

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$