

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	<u>Информатик</u>	а и системы управления				
КАФЕДРА	Программное обеспечени	е ЭВМ и информационные	технологии			
РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЕ						
КВЫПУ	СКНОИ КВАЛИО	РИКАЦИОННО	РИ РАБОТЕ			
	НА Т	EMY:				
<u> Колориза</u>	ция черно-белы:	х изображений	и на основе			
искусстве	<u>нных нейронных</u>	сетей				
	7-81 <u>Б</u> (Группа)	(Подпись, дата)	<u> Карпухин А.С.</u> (И.О.Фамилия)			
		A. Ucaeb (03.06.20)	,			
Руководитель ВК	P	(Подпись, дата)	<u>Исаев А.Л.</u> (И.О.Фамилия)			
Консультант						
		(Подпись, дата)	(И.О.Фамилия)			
Консультант		(Подпись, дата)	(И.О.Фамилия)			
Нормоконтролер						
1 1		(Подпись, дата)	(И.О.Фамилия)			

РЕФЕРАТ

Расчетно-пояснительная записка содержит 85 стр., 4 ч., 41 рис., 2 табл., 22 источн., 1 прил.

Цель работы – разработка метода колоризации черно-белых изображений на основе искусственных нейронных сетей.

Задачи, решаемые в работе:

- анализ и сравнение существующих архитектур искусственных нейронных сетей, а также существующих методов колоризации на их основе;
- выбор модели нейронной сети для разработки на ее основе метода решения поставленной задачи;
- разработка архитектуры искусственной нейронной сети на основе выбранной модели с учетом особенностей решаемой задачи;
- разработка и тестирование программного обеспечения, реализующего предложенную архитектуру;
- исследование применимости разработанного метода.

Область применения разрабатываемого метода — колоризация и реставрация старых черно-белых фотографий, художественных и документальных фильмов.

В первой части работы приводится описание существующих типов нейронных сетей, применимых обработки искусственных К задачам изображений, а также обзор существующих нейросетевых методов колоризации. Во второй части проводится проектирование архитектуры искусственной нейронной сети для колоризации черно-белых изображений. Третья часть разработанного описывает детали реализации метода и тестирование программного обеспечения. Четвертая часть посвящена реализованного исследованию применимости реализованного метода.

Поставленная в работе цель была достигнута: был разработан и реализован метод колоризации черно-белых изображений на основе искусственных нейронных сетей, проведено исследование применимости метода и предложены пути дальнейшего развития.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	6
1 Аналитический раздел	9
1.1 Введение в предметную область	9
1.1.1 Искусственные нейронные сети	9
1.1.2 Машинное обучение	10
1.2 Обзор и анализ существующих архитектур нейронных сетей	12
1.2.1 Многослойный персептрон	12
1.2.2 Когнитрон	15
1.2.2.1 Архитектура нейронной сети	15
1.2.2.2 Обучение	17
1.2.3 Неокогнитрон	18
1.2.3.1 Архитектура нейронной сети	18
1.2.3.2 Обучение	20
1.2.4 Сверточная нейронная сеть	20
1.2.4.1 Операция свертки	21
1.2.4.2 Субдискретизация	24
1.2.4.3 Обучение	25
1.2.5 Выбор архитектуры нейронной сети	27
1.3 Обзор и анализ существующих решений	30
1.3.1 Let there be Color!	30
1.3.2 Colorful Image Colorization	32
1.3.3 Residual encoder	33
1.3.4 Анализ существующих решений	33

	1.4 Формализованная постановка задачи	. 34
	Вывод по разделу	. 35
2	Конструкторский раздел	. 36
	2.1 Представление входных и выходных данных	. 36
	2.2 Декомпозиция задачи	. 37
	2.3 Архитектура нейронной сети	. 37
	2.3.1 Архитектура кодировщика	. 38
	2.3.1.1 Сверточные слои	. 39
	2.3.1.2 Функция активации нейронов	. 40
	2.3.1.3 Слои субдискретизации	. 43
	2.3.2 Архитектура декодера	. 44
	2.3.2.1 Слои обратной свертки	. 44
	2.3.2.2 Сверточные слои	. 45
	2.3.2.3 Функция активации нейронов	. 45
	2.4 Разработанная модель нейронной сети	. 46
	2.5 Восстановление исходного изображения	. 50
	2.6 Обучение нейронной сети	. 52
	2.6.1 Начальная инициализация параметров	. 52
	2.6.2 Алгоритм оптимизации	. 53
	2.6.3 Пакетная нормализация	. 55
	2.7 Структура программного обеспечения	. 56
	2.7.1 Компонент «Сверточная нейронная сеть»	. 57
	2.7.2 Компонент «Слой нейронной сети»	. 58
	2.7.3 Компонент «Обучаемый слой»	. 60

	Вывод по разделу	61
3	Технологический раздел	62
	3.1 Средства реализации программного обеспечения	62
	3.2 Компиляция программы	62
	3.3 Модульное тестирование программного обеспечения	63
	3.4 Тестирование на наличие утечек памяти	64
	3.5 Формат входных и выходных данных	64
	3.6 Описание пользовательского интерфейса	65
	Вывод по разделу	68
4	Экспериментальный раздел	69
	4.1 Постановка эксперимента	69
	4.2 Исследование обучения нейронной сети	70
	4.3 Исследование метода восстановление разрешения	71
	4.4 Исследование времени работы нейронной сети	72
	4.5 Исследование качества колоризации изображений	73
	Вывод по разделу	79
3	АКЛЮЧЕНИЕ	81
C	ПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	82
П	РИЛОЖЕНИЕ А	84