

Комбинирование нейронных сетей и синтаксического анализа для обработки вторичной структуры последовательностей

Полина Лунина

JetBrains Research, Programming Languages and Tools Lab Санкт-Петербургский государственный университет

14 декабря 2019г.

 Полина Лунина
 CA + HC
 14 декабря 2019г.
 1 / 13

Биоинформатика

• Задачи

- Распознавание
- Классификация
- Предсказание вторичных структур
- **.**..

Биоинформатика

- Задачи
 - Распознавание
 - Классификация
 - Предсказание вторичных структур
 - **.**..
- Формальное задание вторичной структуры

Биоинформатика

- Задачи
 - Распознавание
 - Классификация
 - Предсказание вторичных структур
 - **.**
- Формальное задание вторичной структуры
- Вероятностная оценка

Наш подход

- Задать основные элементы вторичной структуры (стемы) с помощью грамматики
- Для вероятностной оценки использовать нейронные сети

4/13

Оптимизация

Проблема: времязатратность синтаксического анализа

Решение:

- Создать нейронную сеть, обрабатывающую непосредственно цепочку РНК
- Обучение в 2 этапа
 - ▶ Обучить нейронную сеть на результате работы парсера
 - Расширить ее верхними слоями, принимающими исходную последовательность

Эксперименты

Задачи:

- Классификация тРНК эукариотов и прокариотов
- Классификация тРНК архей, бактерий, грибов и растений

Технологии:

- Платформа YaccConstructor
- Библиотека Keras и фреймворк Tensorflow

Базы данных:

- tRNADB-CE
- Genomic tRNA database

Эксперименты

- Два формата представления матриц
 - Вектора
 - Черно-белые изображения
- Обучение нейронных сетей на этих данных
- Обучение нейронных сетей, принимающих непосредственно последовательности РНК и использующих веса предыдущих моделей

Результаты

EP — эукариоты/прокариоты ABFP — археи/бактерии/растения/грибы

Classifier	EP		ABFP		
Approach	Vector-based	Image-based	Vector-based	Image-based	
Base model	94.1%	96.2%	86.7%	93.3%	
accuracy	94.170				
Extended model	97.5%	97.8%	96.2%	95.7%	
accuracy	91.570				
Samples for	20000:5000:10000 (57%:14%:29%)		8000:1000:3000 (67%:8%:25%)		
train:valid:test					

Результаты

EP — эукариоты/прокариоты ABFP — археи/бактерии/растения/грибы

Classifier	Class	Vector-based approach		Image-based approach	
	Class	precision	recall	precision	recall
EP	prokaryotic	95.8%	99.4%	96.2%	99.4%
	eukaryotic	99.4%	95.6%	99.4%	99.5%
ABFP	archaeal	91.1%	99.2%	91.6%	98.5%
	bacterial	96.6%	95.1%	95.2%	95.5%
	fungi	98.5%	94.9%	97.5%	94.3%
	plant	99.4%	95.7%	99.2%	94.7%

BIOINFORMATICS-2019

- ► Семён Григорьев, Полина Лунина. The Composition of Dense Neural Networks and Formal Grammars for Secondary Structure Analysis
- ▶ Публикация: Scopus
- ВІАТА-2019 (постерный доклад)
 - Семён Григорьев, Полина Лунина. Improved Architecture of Artificial Neural Network for Secondary Structure Analysis
 - ▶ Публикация: BMC Bioinformatics, Scopus
- CIBB-2019 (доклад)
 - ▶ Полина Лунина, Семён Григорьев. On Secondary Structure Analysis by Using Formal Grammars and Artificial Neural Networksm
 - Публикация: ожидается

Идея следующего исследования

- Парсер находит в цепочке все возможные стемы, однако не все они действительно будут входить в состав вторичной структуры
- Хотим сконструировать нейронную сеть, которая отфильтрует лишние контакты между нуклеотидами и предскажет вторичную структуру цепочки

Вторичная структура

Contact map

Результат парсера

Первые эксперименты

Задача: предсказание вторичных структур цепочек тРНК длины 90

Данные:

- RNAcentral (последовательности тРНК)
- CentroidFold (эталонные структуры)

Результаты тестирования на 11000 образцов:

- Precision = 84% (сколько из предсказанных контактов действительно являются контактами в эталоне)
- Recall = 89% (сколько из требуемых контактов было найдено)

Планы

- Предсказание вторичных структур для цепочек различных РНК любой длины
- Улучшение точности результата путем увеличения количества данных и настройки параметров нейронной сети
- Выбор оптимального источника эталонных данных
 - Лучшие результаты на бенчмарках
 - Возможность предсказания псевдоузлов