Алгебра логики: введение

домашнее задание

Костылев Влад, Б01-208

18 сентября 2022 г.

 $N_{2}1$

$$\neg(x = y) \land ((y < x) \rightarrow (2z > x)) \land ((x < y) \rightarrow (x > 2z))$$

$$\Rightarrow (x \neq y) \land ((y \ge x) \lor (2z > x)) \land ((x \ge y) \lor (x > 2z))$$

$$\Leftrightarrow \begin{cases} x \neq 16; \\ x \leq 16; \\ x < 14 \implies x = 15 \end{cases}$$

$$\begin{cases} x \ge 16; \\ x > 14. \end{cases}$$

 $N^{\circ}2$

X	у	Z	$\neg y$	$x \wedge \neg y$	$\neg((x \land \neg y) \land z)$
0	0	0	1	0	1
0	0	1	1	0	1
0	1	0	0	0	1
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	0	0	1

№3

$$1 \oplus x_1 \oplus x_2 = \neg x_1 \oplus x_2 = x_1 \oplus \neg x_2 = (x_1 \leftrightarrow x_2)$$
$$(x_1 \to x_2) \land (x_2 \to x_1) = (\overline{x_1} \lor x_2) \land (\overline{x_2} \lor x_1) = (x_1 \leftrightarrow x_2) \Rightarrow u.m.\partial.$$

№4 a)
$$x \wedge (y \rightarrow z) \stackrel{?}{=} (x \wedge y) \rightarrow (x \wedge z)$$

$$x \wedge (y \to z) = x \wedge (\overline{y} \vee z) = (x \wedge \overline{y}) \vee (x \wedge z)$$

$$(x \wedge y) \to (x \wedge z) = (\overline{x \wedge y}) \vee (x \wedge z) \Rightarrow nesepho$$

b)
$$x \oplus (y \leftrightarrow z) \stackrel{?}{=} (x \oplus y) \leftrightarrow (x \oplus z)$$

$$x \oplus (y \leftrightarrow z) = x \oplus \overline{y} \oplus z$$

$$(x\oplus y) \leftrightarrow (x\oplus z) = (\overline{x\oplus y}) \oplus (x\oplus z) = (\overline{y}\oplus x) \oplus (x\oplus z) = \overline{y} \oplus z \Rightarrow \textit{неверно}$$

$$N_{2}5$$
 a) $x \to y \stackrel{?}{=} y \to x$

X	у	$x \to y$	$y \to x$
0	0	1	1
0	1	1	0
1	0	0	1
1	1	1	1

 \Rightarrow неверно

b)
$$(x \to y) \to z \stackrel{?}{=} x \to (y \to z)$$

X	у	z	$x \to y$	$(x \to y) \to z$
0	0	0	1	0
0	0	1	1	1
0	1	0	1	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

$y \rightarrow z$	$x \to (y \to z)$
1	1
1	1
0	1
1	1
1	1
1	1
0	0
1	1

 \Rightarrow неверно

№6 **a)** $f(x_1, x_2, x_3) = 001111100$

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

 $\Rightarrow x_1, x_2$ — существенные, x_3 — фиктивные,

Т.к.
$$f(0, x_2, x_3) \neq f(1, x_2, x_3)$$
 и $f(x_1, 0, x_3) \neq f(x_1, 1, x_3)$

b)
$$g(x_1, x_2, x_3) = (x_1 \to (x_1 \lor x_2)) \to x_3$$

$$(x_1 \to (x_1 \lor x_2)) \to x_3 = (\overline{x_1} \lor x_1 \lor x_2) \to x_3 = 1 \to x_3 = 0 \lor x_3 = x_3$$

 $\Rightarrow x_1, x_2 - фиктивные, x_3 - существенная$

№7 Доказать: $f(x_1,\ldots,x_n)=(x_1\vee f(0,x_2,\ldots,x_n))\wedge(\overline{x_1}\vee f(1,x_2,\ldots,x_n))$ $x_1=0\Rightarrow$

$$f(0, x_2, \dots, x_n) = (0 \lor f(0, x_2, \dots, x_n)) \land \overbrace{(1 \lor f(1, x_2, \dots, x_n))}^{1} = (0 \lor f(0, x_2, \dots, x_n)) = f(0, x_2, \dots, x_n)$$

$$X_1 = 1 \Rightarrow$$

$$f(1, x_2, \dots, x_n) = \overbrace{(1 \lor f(0, x_2, \dots, x_n))}^1 \land (0 \lor f(1, x_2, \dots, x_n)) = (0 \lor f(1, x_2, \dots, x_n)) = f(1, x_2, \dots, x_n)$$
 \Rightarrow ч.т.д.

№8 Функция истинна $\forall i \in \mathbb{N} : x_i^{\alpha_i} = 1$. Если будет хотя бы один 0, то функция будет ложна (набор одних конъюнкций) \Rightarrow т.к. x_1, x_2, \ldots, x_n - это некий фиксированный набор, то:

$$\forall i \in \mathbb{N}, i \le n : \alpha_i = \begin{cases} 1, x_i = 1; \\ 0, x_i = 0; \end{cases}$$

 \Rightarrow набор $\alpha_1, \alpha_2, \dots, \alpha_n$ фиксирован, ч.т.д.