Homework #2

BME 599: Advanced Topics in MRI

Due 10/26/23 at 11:59PM 😊

Submission Instructions: Please submit a report and associated source code to the class Github page at https://github.com/orgs/UMICH-BME-AdvMRI. Please include all figures, and indicate which file was used to generate each figure in the report.

PROBLEM 1: Extended phase graphs. Shown below is a sequence diagram of a fast spin echo (FSE) with its first 8 refocusing pulses within one repetition time (TR). Each RF pulse is designated as a delta function, so you do not need worry about the slice profile. Refocusing pulses are spaced 5*ms* apart (echo spacing).

- a. Please write a function using EPG to simulate spin echo train echo amplitudes for a sequence with 90°_{x} excitation, followed by refocusing pulses of $[\alpha+(90-\alpha/2)]_{y}$, α_{y} , α_{y} , ... for 64 echoes for T1 = [200:100:1500] ms, and T2 = [50:30:300] ms
 - i. Simulate echo amplitudes with α = 180°, and plot amplitudes with five different T1 and T2 combinations
 - ii. Simulate echo amplitudes with α = 120°, and plot amplitudes with five different T1 and T2 combinations
 - iii. Simulate echo amplitudes with α = 60°, and plot amplitudes with five different T1 and T2 combinations
- b. Plot 4 contour plots signals vs T1 and T2 for the 6^{th} , 16^{th} , 32nd, and 48^{th} echoes using various α
- c. Discuss the contrast you get with different flip angles.

- **PROBLEM 2: Single and Multiple Spin Echo Sequences.** In this problem, you will simulate spin-echo images with single and multiple echoes.
 - **a. Single-echo spin echo.** The file *brain_maps.mat* on Canvas contains simulated T1, T2, and M0 maps from an axial slice in the brain. You will use these tissue property maps to simulate a single-echo spin echo sequence to create three images: T_1 -weighted, T_2 -weighted, and proton density weighted. Use a 90°_x excitation followed by a 180°_y refocusing pulse. You can choose to use either a Bloch equation simulation or extended phase graphs. For each contrast weighting, choose an appropriate TR and TE (justify your reasoning!), simulate the spin dynamics, and display the image.
 - **b. Fast spin echo.** Now let's speed things by sampling multiple echoes after each excitation. Use an FSE sequence with TR = 3 seconds, echo spacing (ESP) = 5 ms, and echo train length (ETL) = 32. Assume a 90°_{x} excitation followed by multiple 180°_{y} refocusing pulses.
 - i. First, let's investigate the signal behavior for a few T1 and T2 combinations. Simulate 5 TRs of the sequence. For the last TR, plot the transverse magnetization as a function of the echo time for the following (T1,T2) combinations: (1000,50), (1000,100), (2000,50), and (2000,100) ms.
 - ii. Using the brain T1, T2, and M0 maps, simulate an FSE sequence to create an image, as in Part A. With FSE sequences, the k-space filling order affects the contrast weighting. Choose a k-space filling order to obtain an image with an effective echo time (TE_{eff}) of 80 ms. Display the image. Also draw a diagram showing the k-space filling order and explain how you chose this filling order. What would be the total acquisition time for this scan? How does this compare to the acquisition time for a single-echo spin echo scan with equivalent image contrast?
 - iii. Now simulate FSE images with effective echo times of 40 ms and 120 ms. *Display* each image. Also draw a diagram for each case showing the k-space filling order.
 - iv. Simulate images with TE_{eff} = 80 ms and different ETL of 16, 32, 64, and 128. *Display the FSE images with different echo train lengths. Also display a single-echo spin echo image with TE*=80 ms for comparison. What happens to the image as the ETL becomes longer? Why does this occur?
 - **c. BONUS:** You should have seen that the image quality becomes worse at very high ETL. Can you think of a strategy to improve image quality even with very long ETL? Test out your strategy by simulating an image with same FSE scan parameters as above with ETL=128.