Most flows are unstable...

Nonlinearities: bifurcations and amplitude equations

Agenda

- The gravitational pendulum : a poor watch
 First use of Multiple scale weakly nonlinear approach
- A simple example of bifurcation
 First use of Multiple scale weakly nonlinear approach
- 3. Classical bifurcations

4. Hopf bifurcation and Stuart-Landau equation

Period of a gravitational pendulum

Period of a gravitational pendulum

 $mR\theta = -mgsin(\theta)$

Governing equations

$$\theta = -\omega_0^2 \sin(\theta)$$

 $\omega_0^2 {=} g/R$ Pendulum frequency

Small perturbations

$$\theta = \epsilon \theta'$$

Linearized equations

$$\theta' = -\omega_0^2 \theta'$$

Governing equations

$$\theta = -\omega_0^2 \sin(\theta)$$

$$\omega_0^2$$
=g/R Pendulum frequency

Small perturbations

$$\theta = \epsilon \theta'$$

Linearized equations

$$\theta' = -\omega_0^2 \theta'$$

Period seems independant of amplitude.
Can this be true? Effect of nonlinearity on period?

$$\begin{split} \theta &= \theta_0 + \epsilon \theta_1 + \epsilon^2 \theta_2 + \epsilon^3 \theta_3 + \dots \\ T &= \epsilon^2 t & \frac{\partial}{\partial t} = \frac{\partial}{\partial T} = \mathbf{0} \\ \theta_{\mathrm{i}}(\mathbf{t}, \mathrm{T}) & \end{split}$$

$$\theta = -\omega_0^2 \sin(\theta)$$

Order ε⁰

$$\dot{\theta}_0 = 0 \Rightarrow \theta_0 = 0$$

$$\begin{split} \theta &= \theta_0 + \epsilon \theta_1 + \epsilon^2 \theta_2 + \epsilon^3 \theta_3 + \dots \\ T &= \epsilon^2 t & \frac{\partial}{\partial t} = \frac{\partial}{\partial T} = \mathbf{0} \\ \theta_{\mathrm{i}}(\mathbf{t}, \mathrm{T}) & \end{split}$$

 $\theta = -\omega_0^2 \sin(\theta)$

Order ε^0

Order ε¹

$$\theta_0 = 0 \Rightarrow \theta_0 = 0$$

$$\theta_1 = -\omega_0^2 \theta_1$$
 \Rightarrow $\theta_1 = A(T)\cos(\omega_0 t + \phi(T))$

$$\begin{split} \theta &= \theta_0 + \epsilon \theta_1 + \epsilon^2 \theta_2 + \epsilon^3 \theta_3 + \dots \\ T &= \epsilon^2 t & \frac{\partial}{\partial t} = \frac{1}{2} \frac{\partial}{\partial$$

$$\theta = -\omega_0^2 \sin(\theta)$$

Order
$$\varepsilon^0$$

Order ε^1
Order ε^2

$$\theta_0 = 0 \Rightarrow \theta_0 = 0$$

$$\theta_1 = -\omega_0^2 \theta_1 \Rightarrow \theta_1 = A(T)\cos(\omega_0 t + \phi(T))$$

$$\theta_2 = -\omega_0^2 \theta_2 \Rightarrow \theta_2 = B(T)\cos(\omega_0 t + \phi(T))$$

$$\begin{split} \theta &= \theta_0 + \epsilon \theta_1 + \epsilon^2 \theta_2 + \epsilon^3 \theta_3 + \dots \\ T &= \epsilon^2 t & \frac{\partial}{\partial t} = \frac{1}{2} \frac{\partial}{\partial$$

$$\theta = -\omega_0^2 \sin(\theta)$$

Order
$$\varepsilon^0$$

Order ε¹

Order ε^2

Order ε³

$$\dot{\theta}_0 = 0 \Rightarrow \theta_0 = 0$$

$$\theta_1 = -\omega_0^2 \theta_1 \quad \Rightarrow \quad \theta_1 = A(T)\cos(\omega_0 t + \phi(T))$$

$$\theta_2 = -\omega_0^2 \theta_2$$
 \Rightarrow $\theta_2 = B(T)\cos(\omega_0 t + \psi(T))$

$$\theta_3 = -\omega_0^2 \theta_3 - 2\theta_1 + \theta_1^3/6$$

Non-resonance condition

Order ε³

$$\theta_3 = -\omega_0^2 \theta_3 - 2\theta_1' + \omega_0^2 \theta_1^3 / 6$$

$$θ_1^3 = -\dot{A}(T)ω_0 \sin(ω_0 t + φ(T)) + ω_0 A(T)\dot{φ}(T)\cos(ω_0 t + φ(T))$$

$$\cos^3(ω_0 t + φ(T)) = 3/4 \cos(ω_0 t + φ(T)) + 1/4\cos(3ω_0 t + φ(T))$$

$$θ_1^3 = A^3(T)\cos^3(ω_0 t + φ(T))$$

Non-resonance condition

$$\theta_3 = -\omega_0^2 \theta_3 - 2\theta_1' + \omega_0^2 \theta_1^3/6$$

$$\begin{aligned} \theta_{1}^{3} &= -\dot{A}(T)\omega_{0}\sin(\omega_{0}t + \phi(T)) + \omega_{0}A(T)\dot{\phi}(T)\cos(\omega_{0}t + \phi(T)) \\ &\cos^{3}(\omega_{0}t + \phi(T)) = 3/4\cos(\omega_{0}t + \phi(T)) + 1/4\cos(3\omega_{0}t + \phi(T)) \\ \theta_{1}^{3} &= A^{3}(T)\cos^{3}(\omega_{0}t + \phi(T)) \end{aligned}$$

Attention! What happens if you force a linear system at its natural frequency?

Example:
$$\theta_3 - \omega_0^2 \theta_3 = \cos(\omega_0 t)$$

The particular solution is $\theta_{3f} = t \sin(\omega_0 t) / \omega_0$ It grows linearly in time and diverges! This should be avoided

Non-resonance condition

$$\theta_3 = -\omega_0^2 \theta_3 - 2\theta_1' + \omega_0^2 \theta_1^3 / 6$$

$$\begin{aligned} \theta_{1}^{3} &= -\dot{A}(T)\omega_{0}\sin(\omega_{0}t + \phi(T)) + \omega_{0}A(T)\dot{\phi}(T)\cos(\omega_{0}t + \phi(T)) \\ &\cos^{3}(\omega_{0}t + \phi(T)) = 3/4\cos(\omega_{0}t + \phi(T)) + 1/4\cos(3\omega_{0}t + \phi(T)) \\ \theta_{1}^{3} &= A^{3}(T)\cos^{3}(\omega_{0}t + \phi(T)) \end{aligned}$$

Attention! What happens if you force a linear system at its natural frequency?

Example:
$$\theta_3 - \omega_0^2 \theta_3 = \cos(\omega_0 t)$$

The particular solution is $\theta_{3f} = t\sin(\omega_0 t) / \omega_0$ It grows linearly in time and diverges! This should be avoided

Therefore the resonant RHS should be zero $A'(T)\omega_0\sin(\omega_0t+\phi(T))-\omega_0A(T)\dot{\phi}(T)\cos(\omega_0t+\phi(T))+\omega_0^2A^3(T)\cos(\omega_0t+\phi(T))/16=0$

Therefore the resonant RHS should be zero $A'(T)\omega_0\sin(\omega_0t+\phi(T))-\omega_0A(T)\phi'(T)\cos(\omega_0t+\phi(T))+\omega_0^2A'(T)\cos(\omega_0t+\phi(T))/16=0$

Therefore the resonant RHS should be zero $A'(T)\omega_0 sin(\omega_0 t + \phi(T)) - \omega_0 A(T) \dot{\phi}(T) cos(\omega_0 t + \phi(T)) + \omega_0^2 A'(T) cos(\omega_0 t + \phi(T)) / 16 = 0$

$$-\omega_0 A(T) \dot{\phi}(T) + \omega_0^2 A^3(T)/16=0$$

A'(T)\omega_0 = 0

Therefore the resonant RHS should be zero $A'(T)\omega_0 sin(\omega_0 t + \phi(T)) - \omega_0 A(T) \dot{\phi}(T) cos(\omega_0 t + \phi(T)) + \omega_0^2 A'(T) cos(\omega_0 t + \phi(T)) / 16 = 0$

$$-\omega_0 A(T) \dot{\phi}(T) + \omega_0^2 A^3(T)/16=0$$

A'(T)\omega_0 = 0

$$\phi(T) = \phi_0 \exp(\omega_0 \hat{A}(T)/8)$$

A(T)=A₀

Therefore the resonant RHS should be zero $A'(T)\omega_0sin(\omega_0t+\phi(T))-\omega_0A(T)\dot{\phi}(T)cos(\omega_0t+\phi(T))+\ \omega_0^2\ A'(T)cos(\omega_0t+\phi(T))/16=0$

$$-\omega_0 A(T) \phi'(T) + \omega_0^2 A'(T)/16=0$$

A'(T) $\omega_0 = 0$

$$\phi(T) = \phi_0 \exp(\omega_0 A^2(T)/8)$$

A(T)=A₀

The oscillation frequency depends on the amplitude

$$\omega = \omega_0 (1 + \mathring{A}(T)/16)$$
 Borda's Formula

A pendulum is not a good oscillator for a watch!

Agenda

- The gravitational pendulum : a poor watch
 First use of Multiple scale weakly nonlinear approach
- 2. A simple example of bifurcationFirst use of Multiple scale weakly nonlinear approach
- 3. Classical bifurcations

4. Hopf bifurcation and Stuart-Landau equation

$$mR\theta = -mgsin(\theta) + mRsin(\theta)ω^2cos(\theta)$$

Governing equations

$$\theta = -\omega_0^2 \sin(\theta) + \omega^2 \sin(\theta) \cos(\theta)$$

 ω_0^2 =g/R Pendulum frequency

Base flow

 $\theta = 0$

Small perturbations

$$\theta=0+\epsilon \theta'$$

Linearized equations

$$\theta' = -\omega_0^2 \theta' + \omega^2 \theta'$$

Linearized equations

$$\theta' = -\omega_0^2 \theta' + \omega^2 \theta'$$

Normal mode

$$\theta'=A \exp(st)$$

Dispersion relation

$$s^2 = \omega^2 - \omega_0^2$$

$$\omega^2 < \omega_0^2$$

$$\omega^2 > \omega_0^2$$

$$s=\pm i(\omega_0^2 - \omega^2)^{1/2}$$

STABLE

$$s = (\omega^2 - \omega_0^2)^{1/2}$$

UNSTABLE

Important concept: critical slowing

When $\omega^2 \sim \omega_0^2$, the characteristic time $\tau = 1/|s|$ diverges

Weakly nonlinear theory: multiscale expansion

Slow time scale

$$T = \epsilon^2 t$$

Close to threshold
$$\omega^2 = \omega_0^2 + \epsilon^2 \Delta$$

Asymptotic expansion
$$\theta = \theta_0 + \epsilon \theta_1 + \epsilon^2 \theta_2 + \epsilon^3 \theta_3 + \dots$$

Order 0

$$\theta' = -\omega_0^2 \theta' + \omega^2 \theta'$$

 $\theta_0 = 0$

Base state

Order 1

$$\frac{\partial^2 \theta_1}{\partial t^2} = 0$$

$$\theta_1 = A_1(T)$$

Constant 1st order perturbation

$$\theta' = -\omega_0^2 \theta' + \omega^2 \theta'$$

$$\theta_0 = 0$$

Base state

$$\frac{\partial^2 \theta_1}{\partial t^2} = 0$$

$$\theta_1 = A_1(T)$$

Constant (in t!) 1st order perturbation

Order 2

$$\frac{\partial^2 \theta_2}{\partial t^2} = 0$$

Constant (in t!) 2nd order perturbation

$$\Rightarrow$$

$$\theta_2 = A_2(T)$$

Order 3

$$\frac{\partial^2 \theta_3}{\partial t^2} = -\left(\frac{1}{2}\omega_0^2 A_1^3 - \Delta A_1\right)$$

Secularity condition

- = Non-resonance condition
 - = Compatilibity condition

If not, θ_3 would grow like t^2 and ruin the ordering in the expansion

$$\theta' = -\omega_0^2 \theta' + \omega^2 \theta'$$

$$\theta_0 = 0$$

$$\frac{\partial^2 \theta_1}{\partial t^2} = 0$$

$$\theta_1 = A_1(T)$$

$$\frac{\partial^2 \theta_2}{\partial t^2} = 0$$

$$\Rightarrow$$

$$\theta_2 = A_2(T)$$

$$\frac{\partial^2 \theta_3}{\partial t^2} = -\left(\frac{1}{2}\omega_0^2 A_1^3 - \Delta A_1\right)$$

$$\Rightarrow$$

$$\Rightarrow A_1 = \sqrt{2\frac{\Delta}{\omega_0^2}}$$

$$A_1 = \sqrt{2\frac{\Delta}{\omega_0^2}}$$

$$\epsilon A_1 = \sqrt{2\left(\frac{\omega^2}{\omega_0^2} - 1\right)}$$

But recall the full nonlinear equation

$$\theta = -\omega_0^2 \sin(\theta) + \omega^2 \sin(\theta) \cos(\theta)$$

It has another 2 steady solutions

Physical interpretation (Potential)

$$m\theta = F'(\theta)$$

It has another 2 steady solutions

$$\theta_s = \arccos((\omega_0/\omega)^2)$$

Stability of these bifurcated branches?

$$\theta = -\omega_0^2 \sin(\theta) + \omega^2 \sin(\theta) \cos(\theta)$$

$$\omega_0^2 = \omega^2 \cos(\theta_s)$$

$$\theta = \theta_s + \theta'$$

$$\theta' = -\omega_0^2 \cos(\theta_s) \theta' - \omega^2 \sin^2(\theta_s) \theta' + \omega^2 \cos^2(\theta_s) \theta'$$

$$\ddot{\theta}' = -\omega^2 \cos^2(\theta_s) \ \theta' - \omega^2 \sin^2(\theta_0) \ \theta' + \omega^2 \cos^2(\theta_0) \ \theta'$$

$$\theta' = -\omega^2 \sin^2(\theta_0) \theta'$$

STABLE!

Supercritical fork bifurcation

Agenda

- The gravitational pendulum : a poor watch
 First use of Multiple scale weakly nonlinear approach
- A simple example of bifurcationFirst use of Multiple scale weakly nonlinear approach
- 3. Classical bifurcations
- 4. Hopf bifurcation and Stuart-Landau equation

Supercritical fork bifurcation

Subcritical fork bifurcation

What about nonlinearities?

Saddle Node bifurcation

Transcritical bifurcation

What about nonlinearities?

Transcritical bifurcation

Hopf bifurcation

Agenda

- The gravitational pendulum : a poor watch
 First use of Multiple scale weakly nonlinear approach
- A simple example of bifurcation
 First use of Multiple scale weakly nonlinear approach
- 3. Classical bifurcations
- 4. Hopf bifurcation and Stuart-Landau equation

Natural oscillators

http://envsci.rutgers.edu/~lintner/teaching.html

en.wikipedia.org/wiki/File:Vortex-street-1.jpg

Cylinder wake

Cylinder wake

Oscillator, intrinsic dynamics, absolutely unstable (Triantafyllou 86,

Monkewitz 88)

Globally unstable Re>47 axial velocity

Canonical example of Hopf bifurcation Bénard-von Karman street

Supercritical Hopf Bifurcation

$$Re = 26 < Re_c$$

 $Re_c \approx 47$

Threshold

Nonlinear Saturation

Saturation

Saturation...preceded by exponential growth

Linear stability analysis

Perturbation expansion

$$(u, p) = (U, P) + (u', p')$$

Stationary base flowPerturbations

Base flow equations

$$\nabla U \cdot U = -\nabla P + Re^{-1}\nabla^2 U,$$

 $\nabla \cdot U = 0$

Linearized perturbation equations

$$\partial_{t} \boldsymbol{u}' + \nabla \boldsymbol{U} \cdot \boldsymbol{u}' + \nabla \boldsymbol{u}' \cdot \boldsymbol{U} + \nabla \boldsymbol{u}' \cdot \boldsymbol{u}' = -\nabla p' + Re^{-1} \nabla^{2} \boldsymbol{u}',$$

 $\nabla \cdot \boldsymbol{u}' = 0$

Global stability analysis

$$(\boldsymbol{u}',\boldsymbol{p}')(x,y,t) = (\hat{\boldsymbol{u}},\hat{\boldsymbol{p}})(x,y)\exp[\sigma t]$$

$$\sigma = \lambda + i\omega \qquad St = \frac{\omega}{2\pi}$$
 Global mode
$$\uparrow \qquad \uparrow$$
 Growth-ratefrequency

Singular generalized eigenvalue problem
$$\sigma\hat{m{u}}+m{\nabla}\hat{m{u}}\cdotm{U}+m{\nabla}m{U}\cdot\hat{m{u}}=-m{\nabla}\hat{p}+Re^{-1}m{\nabla}^2\hat{m{u}}, \ m{\nabla}\cdot\hat{m{u}}=0,$$

Global stability analysis solvers

For a given value of Re , numerically solve

Non linear equations,

$$\nabla U \cdot U = -\nabla P + Re^{-1} \nabla^2 U,$$

(Newton method)

· Eigenvalue problem

$$\sigma \hat{\boldsymbol{u}} + \nabla \hat{\boldsymbol{u}} \cdot \boldsymbol{U} + \nabla \boldsymbol{U} \cdot \hat{\boldsymbol{u}} = -\nabla \hat{p} + Re^{-1} \nabla^2 \hat{\boldsymbol{u}},$$

(Krylov-Arnoldi method)

Spatial discretization = finite element methods

Taylor-Hood finite elements (P2,P2,P1)

 \rightarrow number of degrees of freedom~ $O(10^6)$

Dominant eigenvalue

$$\sigma = \lambda + i\omega$$

 $(\hat{m{u}},\hat{p})\exp[\sigma t]$ $\sigma=\lambda+i\omega$ Spectrum at Re = 50

Evolution as a function of the Reynolds

 $St_{c} \sim 0.11$ $Re_c \sim 47$

Jackson (1987), Zebib (1987), Ding & Kawahara (1999), Barkley (2006), Giannetti & Luchini (2003, 2007), Sipp & Lebedev (2007), Marquet, Sipp & Jacquin (2009)...

Saturation...preceded by exponential growth

Frequency correction

Frequency correction

The mean flow is neutrally (marginally) stable

Barkley (2006), Malkus (1956)

Two limitations:

A posteriori prediction: need mean flow No information on amplitude

Mean flow distortion

Transient mean flow correction

Stuart-Landau amplitude equation

$$\frac{\mathrm{d}A}{\mathrm{d}T} = \lambda \delta A - \mu A |A|^2 \,, \qquad \mathrm{d}B = \lambda \delta A - \mu A |A|^2 \,.$$

Experimental

Sreenivasan, Strykowsky & Olinger (1986) Provansal, Mathis & Boyer (1987)

Numeric

Dusek, Le Gal & Fraunié (1994)

Analytic

Sipp & Lebedev (2007)

Bifurcation theory

Stuart (1960) , Sipp & Lebedev (2007)

Departure from threshold:

$$\frac{1}{Re} - \frac{1}{Re_*} = O(\epsilon^2) \equiv \epsilon^2 \delta$$
slow time scale $T = \epsilon^2 t$

Expansion:

$$q = q_0 + \epsilon q_1 + \epsilon^2 q_2 + \epsilon^3 q_3 + \dots$$

- (q_0) base flow,
- ${f q_1}$ leading order perturbation ${m q_1} = A(T) {m \hat q_1}_A e^{{
 m i}\omega_* t} + {
 m c.c.}$
- $|\mathsf{q}_2|$ second order perturbation, no secular terms with frequency ω_*

$$\mathbf{q}_2 = \delta \hat{\mathbf{q}}_{2\delta} + |A|^2 \hat{\mathbf{q}}_{2|A|^2} + (A^2 \hat{\mathbf{q}}_{2A^2} e^{2i\omega_* t} + \text{c.c.})$$

BF diffusion

Base flow modifications

harmonics

Bifurcation theory

second order perturbation, no secular terms with frequency ω_*

$$\mathbf{q}_2 = \delta \hat{\mathbf{q}}_{2\delta} + |A|^2 \hat{\mathbf{q}}_{2|A|^2} + (A^2 \hat{\mathbf{q}}_{2A^2} e^{2i\omega_* t} + \text{c.c.})$$

BF diffusion Base flow harmonics modifications

$$(\partial_t \mathcal{L} + \mathcal{M}) \ \mathbf{q}_2 = \mathbf{F}_2^1 + |A|^2 \mathbf{F}_2^{|A|^2} + (A^2 e^{2i\omega_0 t} \mathbf{F}_2^{A^2} + \text{c.c.})$$

$$\mathbf{F}_{2}^{1} = \begin{pmatrix} -\Delta \mathbf{u}_{0} \\ 0 \end{pmatrix},$$

$$\mathbf{F}_{2}^{|A|^{2}} = \begin{pmatrix} -\nabla \mathbf{u}_{1}^{A} \cdot \overline{\mathbf{u}_{1}^{A}} - \nabla \overline{\mathbf{u}_{1}^{A}} \cdot \mathbf{u}_{1}^{A} \\ 0 \end{pmatrix},$$

$$\mathbf{F}_{2}^{|A|^{2}} = \begin{pmatrix} -\nabla \mathbf{u}_{1}^{A} \cdot \nabla \mathbf{u}_{1}^{A} \\ 0 \end{pmatrix}.$$

Resonance at third order

 q_3

Third order secular (resonant) forcing terms

$$\mathcal{B}\partial_t \boldsymbol{q}_3 + \mathcal{L}_* \boldsymbol{q}_3 = (\hat{\boldsymbol{F}}_{3r} e^{\mathrm{i}\omega_* t}) + \boldsymbol{F}_{3nr} + \mathrm{c.c.}, 0)^T.$$

$$\hat{\boldsymbol{F}}_{3r} = -\frac{\mathrm{d}A}{\mathrm{d}T} \hat{\boldsymbol{u}}_{1A} + \delta A \hat{\boldsymbol{F}}_{3A} + A|A|^2 \hat{\boldsymbol{F}}_{3A|A|^2},$$

$$\mathbf{F}_3^A = \begin{pmatrix} -\nabla \mathbf{u}_1^A \cdot \nabla \mathbf{u}_2^1 - \mathbf{u}_2^1 \cdot \nabla \mathbf{u}_1^A - \Delta \mathbf{u}_1^A \\ 0 \end{pmatrix},$$

$$\mathbf{F}_3^{A|A|^2} = \begin{pmatrix} -\nabla \mathbf{u}_1^A \cdot \nabla \mathbf{u}_2^{|A|^2} - \mathbf{u}_2^{|A|^2} \cdot \nabla \mathbf{u}_1^A \\ 0 \end{pmatrix},$$

$$\boldsymbol{F}_{3}^{\bar{A}A^{2}} = \begin{pmatrix} -\nabla \overline{\boldsymbol{u}_{1}^{A}} \cdot \nabla \boldsymbol{u}_{2}^{A^{2}} - \boldsymbol{u}_{2}^{A^{2}} \cdot \nabla \overline{\boldsymbol{u}_{1}^{A}} \\ 0 \end{pmatrix},$$

Resonance at third order

(q₃) Third order secular (resonant) forcing terms

$$\mathcal{B}\partial_t \boldsymbol{q}_3 + \mathcal{L}_* \boldsymbol{q}_3 = (\hat{\boldsymbol{F}}_{3r} e^{\mathrm{i}\omega_* t}) + \boldsymbol{F}_{3nr} + \mathrm{c.c.}, 0)^T.$$

$$\hat{\boldsymbol{F}}_{3r} = -\frac{\mathrm{d}A}{\mathrm{d}T} \hat{\boldsymbol{u}}_{1A} + \delta A \hat{\boldsymbol{F}}_{3A} + A|A|^2 \hat{\boldsymbol{F}}_{3A|A|^2},$$

 \Rightarrow The Fredholm alternative $\hat{m{F}}_{3r}$ orthogonal to the adjoint of $\hat{m{q}}_{1A}$

$$\nabla \cdot \hat{\boldsymbol{u}}^{\dagger} = 0, \qquad \partial_t \hat{\boldsymbol{u}}^{\dagger} + \nabla \boldsymbol{U}^{\mathrm{T}} \cdot \hat{\boldsymbol{u}}^{\dagger} - \nabla \hat{\boldsymbol{u}}^{\dagger} \cdot \boldsymbol{U} + \nabla \hat{p}^{\dagger} - \mathrm{Re}^{-1} \nabla^2 \hat{\boldsymbol{u}}^{\dagger} = \boldsymbol{0},$$

Giannetti & Luchini (2003), Sipp & Lebedev (2007), Marquet, Sipp & Jacquin (2009)...

Compatibility condition yields closure and the normal form

 $\triangle A \varepsilon$ leading order determined by resonant terms at ε^3

$$\frac{\mathrm{d}A}{\mathrm{d}T} = \lambda \delta A - \mu A |A|^2,$$

$$\lambda = \int_{\Sigma} \hat{\boldsymbol{q}}_{1A}^{\dagger} \cdot \hat{\boldsymbol{F}}_{3A} \mathrm{d}x \mathrm{d}y \,,$$

$$\mu = \int_{\Sigma} \hat{\boldsymbol{q}}_{1A}^{\dagger} \cdot \hat{\boldsymbol{F}}_{3A|A|^{2}} \mathrm{d}x \mathrm{d}y \,.$$

$$\int_{\Sigma} \hat{\boldsymbol{q}}_{1A}^{\dagger} \cdot \hat{\boldsymbol{q}}_{1A} \mathrm{d}x \mathrm{d}y = 1$$

Normal form

$$\frac{\mathrm{d}A}{\mathrm{d}T} = \lambda \delta A - \mu A |A|^2,$$

$$\mu_r > 0 \Rightarrow \text{ predicts saturation } |A|^2 = \frac{\lambda_r \delta}{\mu_r}$$

 \Rightarrow nonlinear frequency correction $\delta\omega = \lambda_i\delta - \mu_i|A|^2$

Correct near threshold

Agenda

- The gravitational pendulum : a poor watch
 First use of Multiple scale weakly nonlinear approach
- A simple example of bifurcation
 First use of Multiple scale weakly nonlinear approach
- 3. Classical bifurcations

- 4. Hopf bifurcation and Stuart-Landau equation
- 5. Exercise: a nonlinearly damped fluid oscillator

Impulse response

Damping by foam

see also Sauret et al. 2015

Damping by foam

There must be something nonlinear!

Damping by foam to exacerbate nonlinear effects

Damping by foam

A nonlinearly damped oscillator

$$\pi R^2(\rho \lambda + \rho_f h)\ddot{X} + F_g = F_w + F_b + F_s + F_f$$

Wall friction

$$F_w \sim \dot{X}$$

Bulk dissipation

$$F_b \sim X$$

Free surface dissipation

$$F_s \sim \dot{X}$$

Contact line friction

$$F_f \sim \dot{X} |\dot{X}|^{-1/3}$$

$$\ddot{X} + \omega_0^2 X = -2\sigma\omega_0 \dot{X} - \alpha \dot{X} |\dot{X}|^{-1/3}$$