1.Write a program to display the multiplication table for each number from 1 to 10.

		Table	From 1	to 10					
1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100

2. Write a program that takes 10 numbers from the user and decide for each number whether it is prime or not.

```
a number:
Enter
1.0
10 is not prime
Enter a number:
3 is a prime number
Enter a number:
7 is a prime number
Enter a number:
  is not prime
Enter a number:
  is a prime number
Enter a number:
22
22
   is not prime
Enter a number:
99 is not prime
Enter a number:
345
345 is not prime
Enter a number:
 is a prime number
Enter a number:
  is not prime
```

- 3. Program reads result of 4 basketball matches (number of goals by two teams).
- For each match, the winner team gets 3 points. In case

of tie, each team gets 1 point. The program should display the winner team.

4. Write a **C++ program** that reads a number and displays whether it is a perfect number or not. A perfect number is the one that equals the sum of its factors (except the number itself). For example: 6 is a perfect number because 6 is divisable by 1, 2 and 3 only. And the sum of those numbers is equal to 6(the number itself). (6=1+2+3).

Sample Run:

Enter a number: 28 28 is a perfect number

Sample Run 2: Enter a number: 8

8 is not perfect number

Press Y to continue: N

5. Write a C++ Program to Reverse an Integer entered by the user.

Sample Run:

Enter your numbers:

5397

Output:

Reversed number is 7935

6. An approximate value of PI can be calculated using the series given below:

$$PI = 4 \sum_{i=1}^{n} \frac{-1^{i+1}}{2i-1} = 4 * (1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7}...)$$

Write a **C++ program** to calculate the approximate value of PI using this series. The program takes an input n that determines the number of terms in the approximation of the value of PI and outputs the approximation.

Sample Run:

Enter the number of terms in the approximation of the value of PI: 9

PI= 3.25237