Série 21

1. Déterminer, dans les trois cas suivants, l'aire du domaine situé entre l'axe Ox et l'arc de courbe défini par $\gamma = \{(x,y) \in \mathbb{R}^2 \mid y = f(x), y \geq 0\}$.

a)
$$f(x) = 6x - x^2 - 8$$
, b) $f(x) = e^{-|x|} - \frac{1}{2}$, c) $f(x) = (2 - x) \cdot \ln(x)$.

2. Dans le plan muni d'un système d'axes Oxy, on considère l'arc de courbe Γ défini par

$$\Gamma: \quad y = \cos\left(\sqrt{x}\right), \qquad 0 \le x \le \pi^2.$$

Calculer l'aire géométrique du domaine fini limité par la courbe Γ , l'axe Ox, l'axe Oy et la droite verticale d'équation $x=\pi^2$.

3. Calculer l'aire du domaine fini limité par les courbes d'équation

$$y = x^2 + 2x + 3$$
 et $y = 2x + 4$.

4. Calculer l'aire des domaines finis compris entre les courbes définies par les équations suivantes :

a)
$$y = \frac{1}{2}\sqrt{\pi x}$$
 et $y = Arcsin(\frac{x}{\pi})$.

Intégrer d'abord par rapport à x, puis par rapport à y.

Indication : ces deux courbes se coupent en x = 0 et $x = \pi$.

b)
$$y^2 + 2y - x = 0$$
 et $y - x + 2 = 0$.

c)
$$(y-3)^2 = x-1$$
 et $(y-3)^2 = 4(x-4)$.

d)
$$y = \frac{1}{2}x^2$$
, $y = x^2$ et $y = 2x$.

5. Dans le plan, on considère les deux courbes Γ_1 et Γ_2 suivantes :

$$\Gamma_1: y = \sqrt{3(1-x)}, \quad x \le 1$$
 et $\Gamma_2: y+1 = \frac{4}{9}(x-1)^2$.

Calculer l'aire du domaine fini contenu dans le demi-plan $y \ge 0$ et limité par les deux arcs Γ_1 et Γ_2 .

Indication: les deux courbes Γ_1 et Γ_2 se coupent en x=-2.

6. On considère l'ellipse définie par les équations paramétriques

$$\begin{cases} x(t) = a \cos(t) \\ y(t) = b \sin(t) \end{cases} \quad a, b \in \mathbb{R}_+^*.$$

Montrer que l'aire du domaine limité par cette ellipse vaut $\pi a b$.

7. Dans le plan Oxy, on considère la demi-ellipse Γ définie par

$$\Gamma: \left\{ \begin{array}{l} x(t) = 2 \cos(t) \\ y(t) = \sin(t) \end{array} \right. \quad t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right].$$

On considère le domaine fini D limité par la courbe Γ , la droite horizontale d'équation $y=-\frac{1}{2}$ et la droite verticale d'équation x=1, $\left(x\geq 1 \text{ et } y\geq -\frac{1}{2}\right)$. Calculer l'aire du domaine D.

Réponses de la série 21

1. a)
$$A = \int_{2}^{4} (6x - x^{2} - 8) dx = \frac{4}{3}$$
,
b) $B = 2 \int_{0}^{\ln 2} \left(e^{-x} - \frac{1}{2}\right) dx = 1 - \ln 2$,
c) $C = \int_{1}^{2} (2 - x) \ln x dx = \ln 4 - \frac{5}{4}$.

- **2.** $A = 2\pi$.
- 3. L'aire du domaine vaut $\frac{4}{3}$.

4. a)
$$A = \int_0^{\pi} \left[\frac{1}{2} \sqrt{\pi x} - \text{Arcsin}(\frac{x}{\pi}) \right] dx = \int_0^{\frac{\pi}{2}} \left[\pi \sin y - \frac{4y^2}{\pi} \right] dy = \pi - \frac{\pi^2}{6}$$
.
b) $B = \frac{9}{2}$. c) $C = 8$. d) $D = 4$.

5. A = 4.

6.
$$\frac{A}{4} = \int_{\frac{\pi}{2}}^{0} y(t) \cdot \dot{x}(t) dt = \frac{\pi ab}{4}$$
.

7.
$$A = \int_{-\frac{\pi}{6}}^{\frac{\pi}{3}} \left[2 \cos t - 1 \right] \cos t \ dt = \frac{\pi - 1}{2}$$
.