

PHÂN TÍCH KẾT QUẢ KHÍ MÁU ĐỘNG MẠCH

TS. BS. Lê Khắc Bảo Đại học Y Dược TPHCM – BV Nhân Dân Gia Định Phòng khám Hô hấp Phổi Việt

CA LÂM SÀNG

- BN nữ 84 tuổi
 - Nhập viện vì sốt, tiểu gắt, lơ mơ, thở kém
 - Chẩn đoán: Suy hô hấp Choáng NT tiểu –
 Suy thận cấp / ĐTĐ NMCT cũ THA
- Diễn tiến
 - N₁₋₃: nằm ICU thở máy, KS Tienam + Cipro
 - N₄₋₅: tốt hơn, rút NKQ → khoa ngoại niệu
 - N₅: bệnh nhân đang khỏe tự nhiên khó thở lại
 - Mời hội chẩn khoa hô hấp

CA LÂM SÀNG

- Lâm sàng:
 - Tỉnh táo, vẻ bứt rứt
 - M: 120; HA: 15/9 cmHg; NT: 24; T: 37°C
 - SpO₂ = 88% với O₂ 3 lít/ phút qua sonde mũi
- KMĐM:
 - $_{\circ}$ pH = 7,39 ; PaCO₂= 33 ; HCO₃= 21
 - $_{\circ}$ PaO₂= 58; SaO₂= 87%; Hb = 7,3 g/dL
- Điện giải đồ máu:
 - Na = 133; K = 4,4; Cl = 102; RA = 16

- 1. Kết quả KMĐM chính xác, tin cậy?
- 2. Đánh giá oxy hóa máu:
 - Có rối loạn oxy hóa máu ?
 - Mức độ nặng ? Nguyên nhân ?
- 3. Đánh giá cân bằng toan kiềm:
 - Có rối loạn cân bằng toan kiềm ?
 - Thể loại ? Nguyên nhân ?

- 1. Kết quả KMĐM chính xác, tin cậy?
 - Kiểm tra tương thích bên trong
 - Kiếm tra tương thích bên ngoài
- 2. Đánh giá oxy hóa máu:
- 3. Đánh giá cân bằng toan kiềm:

- 1. Kết quả KMĐM chính xác, tin cậy?
 - Kiểm tra tương thích bên trong
 - Đánh giá chuyển hóa gián tiếp
 - Qui luật số 8
 - Phương trình Henderson Hasselbalch cải biên
 - Kiểm tra tương thích bên ngoài

ĐÁNH GIÁ CHUYỂN HÓA GIÁN TIẾP

- Bất kỳ sự thay đổi pH nào phải có nguồn gốc là hô hấp hoặc chuyển hóa.
- Các bước tính toán:
 - Tính pH dự kiến từ trị số PaCO₂
 - So sánh pH thực với pH dự kiến
 - Thực > Dự kiến 0,03 → kèm kiềm chuyển hóa → HCO₃ ↑
 - Thực < Dự kiến 0,03 → kèm toan chuyển hóa → HCO₃ ↓
 - Nếu thay đổi HCO₃ ngược hướng -> Sai sót kỹ thuật

ƯỚC ĐOÁN THAY ĐỔI PH, HCO₃ THEOTHAY ĐỔI PaCO₂

Thay đổi PaCO ₂ cấp	Thay đổi tương ứng		
tính so với ban đầu	рН	HCO ₃	
↑ 10 mmHg	↓ 0,05	↑1 mmol/L	
↓ 10 mmHg	↑ o,1	↓ 2 mmol/L	

Thay đổi PaCO ₂ mạn	Thay đổi tương ứng		
tính so với ban đầu	рН	HCO ₃	
↑ 10 mmHg	↓ 0,03	↑ 3,5 mmol/L	
↓ 10 mmHg	10,03	↓ 5 mmol/L	

QUI LUẬT SỐ 8

- HCO₃ có thể được tiên đoán dựa trên trị số pH và PaCO₂.
- □ HCO₃ do được HCO₃ dự đoán > 4 mmol/ L
 → Sai số kỹ thuật

ƯỚC ĐOÁN HCO₃ THEO PaCO₂ & pH

HCO ₃ ⁻ dự đoán = PaCO ₂ x Hệ số theo pH		
рН	hệ số tương ứng	
7,6	8/8	
7,5	6/8	
7,4	5/8	
7,3	4/8	
7,2	2,5/8	
7,1	2/8	

PHƯƠNG TRÌNH ANDERSON HASSELBALCH CẢI BIÊN

- Trị số H+ có thể tính toán được khi biết 2 trị số PaCO₂ và HCO₃-
- Phương trình tính toán:

$$[H^+] = \frac{24 \times PaCO_2}{[HCO_3^-]}$$

pH thay đổi trong khoảng 7,2 – 7,5 có tương
 quan đường thẳng giữa pH và H+

TƯƠNG QUAN GIỮA pH & [H+]

рН	[H+] nEq/L
7,80	16
7,70	20
7,60	25
7,55	28
7,50	32
7,45	35
7,40	40
7,35	45
7,30	50
7,25	56
7,20	63
7,15	71
7,10	79
7,00	100
6,90	126
6,80	159

- 1. Kết quả KMĐM chính xác, tin cậy?
 - Kiểm tra tương thích bên trong
 - Kiểm tra tương thích bên ngoài
 - Bệnh cảnh lâm sàng đối lập kết quả KMĐM
 - HCO₃ động mạch HCO₃ tĩnh mạch > 5 mmol/L
 - SpO₂ \neq SaO₂
 - $PaO_2 > 500 \text{ x FiO}_2$

CA LÂM SÀNG

- Lâm sàng:
 - Tỉnh táo, vẻ bứt rứt
 - M: 120; HA: 15/9 cmHg; NT: 24; T: 37°C
 - SpO₂ = 88% với O₂ 3 lít/ phút qua sonde mũi
- KMDM:
 - o pH = 7,39; PaCO₂= 33; $HCO_{\underline{3}}$ = 21
 - \circ PaO₂= 58; <u>SaO₂= 87%</u>; Hb = 7,3 g/dL
- Điện giải đồ máu:
 - Na = 133; K = 4,4; Cl = 102; RA = 16

Tương thích bên trong tốt

- Chuyển hóa gián tiếp:
 - pH thực = 7.39 thấp hơn pH dự kiến (7.47 cấp; 7.42 mạn) và HCO₃ giảm (21 mmHg)
- Qui luật số 8:
 - $_{☉}$ HCO₃ dự kiến = 33 x 5/8 = 20.6 mmHg, chênh với HCO₃ thực (21 mmHg) < 4 mmHg
- Anderson Hasselbalch cải biên
 - [H+] dự đoán = 24 x 33 ÷ 21 = 38, không
 chênh so với [H+] ở mức pH = 7.39 ~ 39

Tương thích bên ngoài tốt

- □ Bệnh cảnh lâm sàng choáng NT, ↓ PaO₂ phù hợp kiềm hô hấp + toan chuyển hóa
- □ HCO₃ động mạch RA tĩnh mạch ≤ 5
- □ $SpO_2 = 88\%$ tương đương $SaO_2 = 87\%$
- \square PaO₂ = 58 mmHg < 5 x 32 = 160 mmHg
- → Kết quả KMĐM chính xác và tin cậy

- 1. Kết quả KMĐM chính xác, tin cậy?
- 2. Đánh giá oxy hóa máu:
 - Có rối loạn oxy hóa máu ?
 - Mức độ nặng ? Nguyên nhân ?
- 3. Đánh giá cân bằng toan kiềm:
 - Có rối loạn cân bằng toan kiềm ?
 - Thể loại ? Nguyên nhân ?

BA THÀNH PHẦN TRONG ĐÁNH GIÁ OXY HÓA MÁU ĐỘNG MẠCH

□ Hb

- ≥ 8 g/dL→ tải đủ O₂ cho mô / tim mạch bình thường
- $_{\circ}$ ≥ 10 g/dL \rightarrow tải đủ O_{2} / tim mạch bệnh lý

□ SaO₂

- Cùng với Hb quyết định lượng O₂ tải đến mô
- Chỉ dùng đến khi SaO₂ được đo trực tiếp

□ PaO₂

- Là trị số thường dùng nhất vì đo trực tiếp
- Phân tích PaO₂ tùy thuộc BN có thở oxy hay không

ĐỊNH NGHĨA THÔNG SỐ

- $P_{(A-a)}O_2 = P_AO_2 PaO_2$
 - $_{\circ}$ P_AO₂ = (FiO₂ x [P_B PH₂O]) (PaCO₂ /R)
 - \circ R = thương số hô hấp = 0,8
 - \circ P_(A-a)O₂ bình thường = 2,5 + 0,21 x tuổi
 - \circ < 25 (FiO₂ = 21%); < 150 (FiO₂ = 100%)
- Chỉ số oxygen hóa máu:
 - PaO₂/ FiO₂

 - 。 ↓ nhẹ: 300 400; vừa 250 300 ; nặng < 250

TRẢ LỜI KẾT QUẢ PaO₂

PaO ₂	FiO ₂ = 21%	FiO ₂ > 21 %
> 100 mmHg (*)	Sai số kỹ thuật	↓ oxy máu điều chỉnh quá mức
80 – 100 mmHg	Bình thường	↓ oxy máu đã
60 – 80 mmHg	Giảm oxy máu nhẹ	được điều chỉnh
40 – 60 mmHg	Giảm oxy máu vừa	↓ oxy máu không
< 40 mmHg	Giảm oxy máu nặng	được điều chỉnh

(*) $PaO_2 > 5 FiO_2 \rightarrow sai số kỹ thuật$

CƠ CHẾ GIẨM PaO₂

Nguyên nhân	Pa∩	PaCO ₂	$P_{(A-a)}O_2$	
inguyen man	PaO ₂	$\Gamma a \cup O_2$		100% FiO ₂
Thông khí phế nang ↓	\	↑	Т	Τ
Bất xứng V/Q ↑	\	⊥, ↑ hay ↓	↑	Τ
Shunt tuyệt đối ↑	\	⊥ hay ↓	↑	\uparrow
Oxy tĩnh mạch trộn ↓	\	\	↑	\perp
Khuếch tán qua màng ↓	Nghỉ ngơi: ⊥	Nghỉ ngơi: ⊥	Nghỉ ngơi ⊥	
Trillian qua mang V	Vận động: ↓	Vận động: ↓	Vận động ↑	

- Bình thường P_(A-a)O₂ ↑3 mmHg/10 tuổi ↑ thêm kể từ 30 tuổi
- $P_{(A-a)}O_2 < 25$ mmHg (FiO₂ = 21%); <150mmHg (FiO₂=100%)

TIẾP CẬN CHẨN ĐOÁN CƠ CHẾ GIẢM OXY MÁU

NGUYÊN NHÂN GÂY BẤT XỬNG V/Q

- Bất xứng V/Q do tổn thương thông khí:
 - Đường thở: COPD, Hen, Viêm tiểu phế quản tắc nghẽn
 - Mô kẽ : IPF, Sarcoidosis
 - Phế nang: Phù phổi, Suy tim, Viêm phổi.v.v.
- Bất xứng V/Q do tổn thương tưới máu:
 - Thuyên tắc huyết khối, thuyên tắc mỡ

NGUYÊN NHÂN GÂY SHUNT

- Shunt do phế nang lấp đầy hoặc xẹp:
 - o Phế nang bị lấp đầy:
 - · Tim mạch: Suy tim trái, Phù phổi, Bệnh van hai lá
 - · Phổi: ARDS, Viêm phổi, Viêm phổi tăng tế bào ái toan
 - Phế nang: xuất huyết, dập, ứ đọng protein
 - · Hít sặc, ngạt nước, tắc đường hô hấp trên
 - o Phế nang bị xẹp:
 - · Bất động, sau phẫu thuật
- Shunt do mạch máu đi tắt:
 - Tại phổi: Dị dạng động tĩnh mạch phổi

CA LÂM SÀNG

- Lâm sàng:
 - Tỉnh táo, vẻ bứt rứt
 - M: 120; HA: 15/9 cmHg; NT: 24; T: 37°C
 - SpO₂ = 88% với O₂ 3 lít/ phút qua sonde mũi
- KMĐM:
 - $_{\circ}$ pH = 7,39 ; PaCO₂= 33 ; HCO₃= 21
 - $_{\circ}$ PaO₂= 58; SaO₂= 87%; Hb = 7,3 g/dL
- Điện giải đồ máu:
 - Na = 133; K = 4,4; Cl = 102; RA = 16

Mức độ giảm oxy máu

- □ PaO₂ = 58 < 60 mmHg → giảm oxy máu chưa được điều chỉnh</p>
- □ PaO_2 / FiO_2 = 58/ 0.32 = 181 < 250 → giảm oxy máu mức độ nặng
- □ Thở oxy 3 lít/ phút, SpO₂ 88% → đáp ứng một phần oxy liệu pháp → cơ chế do V/Q bất xứng, giảm oxy máu tĩnh mạch trộn, chưa loại trừ shunt phối hợp

Cơ chế giảm oxy

- $P(A-a)O_2 = 0.32 \times (760 47) 33/0.8 = 187 > 150$
- □ Thở oxy 3 lít/ phút, SpO₂ 88% → đáp ứng một phần oxy liệu pháp
- → Cơ chế do V/Q bất xứng, ↓ oxy máu tĩnh mạch trộn, chưa loại trừ shunt phối hợp
 - o PaCO₂ giảm nguyên phát → V/Q bất xứng không do ↓
 V mà do ↓ Q
 - Suy tuần hoàn là nguyên nhân thường gặp gây giảm oxy máu tĩnh mạch trộn

Kết quả cận lâm sàng

- Siêu âm tim:
 - Giảm động vách liên thất vùng mỏm
 - Hở 2 lá 3.5 4/4; Hở 3 lá 1.5/4
 - PAPS = 23 mmHg; EF = 71%
- X quang: bóng tim lớn, TDMP hai bên
- → Chức năng tim mạch bảo tồn → cơ chế giảm oxy máu tĩnh mạch trộn có thể không phải là cơ chế giảm oxy máu trên ca này

Kết quả cận lâm sàng

- Doppler mạch máu chi dưới:
 - Theo dõi viêm tắc ĐM chày trước (T)
 - Xơ vữa dạng vôi hóa dọc thành ĐM chi dưới
- CT scan:
 - Huyết khối lòng nhánh ĐM phổi thùy trên trái
 - Tổn thương xơ vôi S₂ và S₈ bên phải
 - TDMP hai bên lượng ít
- → V/Q bất xứng, trong đó ↓ Q là cơ chế gây giảm oxy máu trên ca này, đáp ứng kém oxy hơn cơ chế ↓ V như trong COPD, Hen

Kết quả cận lâm sàng

- Sinh hóa máu:
 - Creatinine: 167 mmol/L [1,9 mg%]
 - Uree: 8,4 mmol/L [50 mg%]
 - ĐH: 6,5 mmol/L [117 mg%]
 - BNP: 8876 pg/ml
 - Tro-I: 0,034; Lactat máu 2,6 (0,5 2,2 mmol/L)
 - Procalcitonin: 0,624 ng/ml (< 0,05)

- 1. Kết quả KMĐM chính xác, tin cậy?
- 2. Đánh giá oxy hóa máu:
 - Có rối loạn oxy hóa máu ?
 - Mức độ nặng ? Nguyên nhân ?
- 3. Đánh giá cân bằng toan kiềm:
 - Có rối loạn cân bằng toan kiềm ?
 - o Thể loại ? Nguyên nhân ?

BƯỚC 1: TOAN HAY KIỀM MÁU

- □ pH < 7,35 → Toan máu
- □ pH > 7,45 → Kiềm máu

BƯỚC 2: RỐI LOẠN NGUYÊN PHÁT

nll 4795 \	PaCO ₂ > 45 → Toan hô hấp HCO ₃ < 22 → Toan chuyển hóa
ρη < 7,35 7	HCO ₃ < 22 → Toan chuyển hóa
nU > 7.45 ->	PaCO₂ < 35 → Kiềm hô hấp
ρη > 7,45 7	PaCO ₂ < 35 → Kiềm hô hấp HCO ₃ > 26 → Kiềm chuyển hóa

BƯỚC 3: BÙ TRỪ ĐỦ HAY KHÔNG

Thay đổi tiên phát PaCO ₂		Thay đổi thứ phát	
		рН	HCO ₃
Cấp	↑ 10 mmHg	↓ 0,05	↑1 mmol/L
Cấp	↓ 10 mmHg	↑ 0,1	↓ 2 mmol/L
Mạn	↑ 10 mmHg	↓ 0,03	↑ 3,5 mmol/L
	↓ 10 mmHg	1 0,03	↓ 5 mmol/L
Thay đổi tiên phát HCO ₃		Thay đổi thứ phát	
		рН	PaCO ₂
↑ 1 mmol/L		1 0,015	↑ 0,7 mmHg
↓ 1 mmol/L		↓ 0,015	↓ 1,2 mmHg

BƯỚC 4: KHOẢNG TRỐNG ANION

- \square Σ anion (ion âm) = Σ cation (ion dương)
 - $_{\circ}$ Σ anion = anion [đo được + không đo được]
 - $_{\circ}$ Σ cation = cation [đo được + không đo được]
- Anion gap (AG)
 - Hiệu của anion không đo được cation không
 đo được = cation đo được anion đo được
- Công thức tính AG
 - ∘ AG $_{MAU}$ = Na⁺ [Cl⁻ + HCO₃⁻]; \bot : 10 ± 2 mEq/L
 - AG $_{NT}$ = Na⁺ + K ⁺ Cl⁻; \bot ≥ 0 mEq/L

BƯỚC 5: KHOẢNG TRỐNG DELTA

- □ ↑ AG → ↓ HCO₃⁻ tương ứng để duy trì được cân bằng nội môi về điện tích
- Delta gap (DG)
 - Khác biệt giữa thay đổi AG và HCO₃-
 - DG = \triangle AG \triangle HCO₃⁻
- Kết quả:
 - o DG = 0 → toan chuyển hóa AG ↑ đơn thuần
 - DG > 0 → kèm kiềm chuyển hóa
 - 。 DG < 0 → kèm toan chuyển hóa AG ⊥

CA LÂM SÀNG

- Lâm sàng:
 - Tỉnh táo, vẻ bứt rứt
 - M: 120; HA: 15/9 cmHg; NT: 24; T: 37°C
 - SpO₂ = 88% với O₂ 3 lít/ phút qua sonde mũi
- KMĐM:
 - o pH = 7,39; $PaCO_2 = 33$; $HCO_3 = 21$
 - $_{\circ}$ PaO₂= 58; SaO₂= 87%; Hb = 7,3 g/dL
- Điện giải đồ máu:
 - Na = 133; K = 4,4; Cl = 102; RA = 16

TOAN CHUYỂN HÓA

Cơ chế bệnh sinh

↑ tạo H+: anion gap ↑

Không ↑ tạo H+: anion gap ⊥

Nhiễm acid lactic, ceton acid, ly giải cơ vân

Ngộ độc acid salicylic, ethylene glycol, ethanol, methanol,

Nuôi ăn tĩnh mạch, truyền NaCl, uống NH₄Cl ↑ mất HCO₃ -

Mất qua tiêu hóa:

tiêu chảy; viêm tụy; dò mật- tiêu hóa; mở hổng tràng ra da

Mất qua đường tiết niệu: RTA₂, lợi tiểu ống gần

Giảm độ lọc cầu thận: Suy thận mạn; Suy thận cấp

J thải H⁺

Do giảm bài tiết H⁺ tại ống thận: RTA₁; RTA₄

PHÂN LOẠI TOAN CHUYỂN HÓA

- Toan chuyển hóa tăng AG
 - Toan ceton acid (ĐTĐ, đói, ngộ độc rượu)
 - Toan acid lactic (↓ oxy mô: choáng, thuốc)
 - Ngộ độc (ethylene glycol, ethanol, methanol, aspirin)
- Toan chuyển hóa AG bình thường
 - Mất HCO₃⁻ qua tiêu hóa
 - Mất HCO₃⁻ qua thận: toan hóa ống thận
 - Giảm thải H⁺ qua thận: Toan acid uremic (suy thận)

PHÂN LOẠI TOAN CHUYỂN HÓA ANION GAP MÁU BÌNH THƯỜNG

- Toan chuyển hóa không do thận (do tiêu hóa):

 - Thận tăng thải NH₄+ vào nước tiểu dưới dạng NH₄CL
 → Cl NT tăng → AG NT âm tính
 - \circ AG _{NT} = [Na⁺ + K⁺] − Cl⁻ < − 20 \rightarrow − 50 mEq/L
 - Meo nhớ: "neGUTive" urinary anion gap
- Toan chuyển hóa do thận (toan hóa ống thận)
 - Thận không tăng thải NH₄+ → Cl⁻_{NT} bình thường → AG _{NT} ≥ 0 mEq/L

TOAN HÓA ỐNG THẬN GẦN (RTA₂)

Cơ chế:

- Óng gần tổn thương → HCO₃⁻ không được hấp thu
 tại ống gần sẽ đi đến ống xa và ống góp
- Ông xa toàn vẹn → ↑ tái hấp thu HCO₃⁻ bằng cách ↑ tiết H⁺ & K⁺; Ông góp toàn vẹn → ↑ hấp thu nước bằng cách tăng tiết H⁺, K+ dưới tác dụng Aldosteron

Hậu quả:

- HCO₃ giảm ít vì tái hấp thu nhiều (12 20 meq/L)
- pH nước tiểu kiềm hay toan tùy theo lượng HCO₃⁻
 được hấp thu ít hay nhiều
- Giảm K+ máu do mất K+ qua nước tiểu

TOAN HÓA ỐNG THẬN XA (RTA₁)

Cơ chế:

- Ông góp toàn vẹn → tăng tái hấp thu nước bằng cách tăng tiết H+, K+ dưới tác dụng của aldosteron

□ Hậu quả:

- HCO₃ máu giảm nặng vì tái hấp thu ít (< 10 meq/L)
- pH nước tiểu kiềm vì HCO₃ mất ra ngoài (> 5,3)
- 。Giảm K+ máu

TOAN HÓA ỐNG GÓP (RTA₄)

Cơ chế:

- Óng góp tổn thương -> không hấp thu được nước
 bằng cách tăng tiết K+ dưới tác dụng của aldosteron
- Gồm có toan hóa ống góp do nồng độ aldosteron máu giảm hoặc tế bào ống góp đề kháng aldosteron

Hậu quả:

- HCO3 máu giảm ít vì mất ít (> 15 meq/L)
- pH nước tiểu toan vì HCO₃- không bị mất (<5,3)
- o Tăng K⁺ máu

TIÊU CHÍ CHẨN ĐOÁN

CÁC NGUYÊN NHÂN GÂY TOAN HÓA ỐNG THẬN

RTA ₂	RTA ₁	RTA ₄
Đa u tủy vô căn Thoái biến dạng bột Giảm Canxi máu Thiếu vitamin D	H/chứng Sjogren vô căn, có tính gia đình Tăng tiểu calci Viêm thấp khớp Bệnh hồng cầu liềm Lupus đỏ hệ thống	Đái tháo đường Viêm thận mô kẽ Suy thượng thận Tắc đường niệu
Lợi tiểu ống gần Ngộ độc kim loại nặng: Pb, Hg	Amphotericin B	UCMC, NSAIDS, Heparin, Lợi tiểu giữ K+

CA LÂM SÀNG

- Lâm sàng:
 - Tỉnh táo, vẻ bứt rứt
 - M: 120; HA: 15/9 cmHg; NT: 24; T: 37°C
 - SpO₂ = 88% với O₂ 3 lít/ phút qua sonde mũi
- KMĐM:
 - \circ pH = 7,39; PaCO₂= 33; HCO₃= 21
 - $_{\circ}$ PaO₂= 58; SaO₂= 87%; Hb = 7,3 g/dL
- Điện giải đồ máu:
 - Na = 133; K = 4,4; Cl = 102; RA = 16

Kết quả cận lâm sàng

- Sinh hóa máu:
 - Creatinine: 167 mmol/L [1,9 mg%]
 - Uree: 8,4 mmol/L [50 mg%]
 - ĐH: 6,5 mmol/L [117 mg%]
 - BNP: 8876 pg/ml
 - Tro-I: 0,034; Lactat máu 2,6 (0,5 2,2 mmol/L)
 - Procalcitonin: 0,624 ng/ml (< 0,05)

Kết quả cận lâm sàng

- Siêu âm bụng:
 - Sởi 1/3 trên niệu quản phải và bế thận phải
 - Ú nước thận P độ 3
- → Toan chuyển hóa không tăng anion gap do toan hóa ống góp RTA₄ trong bệnh cảnh sỏi đường tiết niệu

Kết quả phân tích KMĐM cuối cùng

- Giảm oxy máu mức độ nặng chưa được điều chỉnh do V/Q bất xứng sau tắc động mạch phổi
- Kiềm hô hấp nguyên phát do giảm O2 máu do V/Q bất xứng
- Toan chuyển hóa nguyên phát không tăng anion gap do toan hóa ống góp sau sỏi đường niệu.

KIÈM HÔ HẤP

- Cơ chế: thông khí phế nang tăng do:
 - Nguyên nhân trung ương: Kích thích thần kinh trung ương, Rối loạn lo âu
 - Nguyên nhân ngoại biên: Giảm oxy máu
- Phân loại:
 - Kiềm hô hấp có P(A a) O₂ bình thường
 - Kiềm hô hấp có P(A a) O₂ tăng

NGUYÊN NHÂN TRUNG ƯƠNG

- P(A-a)O₂ bình thường
 - Thông khí cơ học quá mức
 - Tổn thương thần kinh trung ương:
 - Tăng thông khí do nguyên nhân tâm thần kinh
 - · Sốt, Đau
 - · Viêm màng não, Viêm não, U não
 - Thai kỳ
 - Cường giáp
 - Do thuốc: Salicylates, Progesterone, Catecholamines
 - Giảm oxy mô: do độ cao, thiếu máu nặng
 - Nhiễm nội độc tố

NGUYÊN NHÂN NGOẠI BIÊN

- □ P(A-a)O₂ tăng
 - Bất xứng V/Q
 - Shunt

Kiềm hô hấp trên ca này

- $P(A-a)O_2 = 181 > 150$ tăng
- □ PaO₂ giảm có đáp ứng một phần oxy
 - Ít khả năng do giảm oxy máu tĩnh mạch trộn
- → Kiềm hô hấp nguyên nhân ngoại biên (↓ PaO₂) do bất xứng V/Q, mà chủ yếu là ↓ Q do thuyên tắc động mạch phổi

KIÈM CHUYỂN HÓA

- Cơ chế gây kiềm chuyển hóa bao gồm:
 - o Hình thành kiềm chuyển hoá → HCO₃-↑
 - o Duy trì kiềm chuyển hóa → HCO₃- không thải ra được
- Cơ chế duy trì kiềm chuyển hóa:
 - Liên quan đáp ứng tại thận
 - Là điều kiện tiên quyết, khi không tiếp tục tồn tại -> kiềm chuyển hóa sẽ mất đi nhanh cho dù cơ chế hình thành kiềm chuyển hóa vẫn còn tồn tại

CƠ CHẾ DUY TRÌ KIỀM CHUYỂN HÓA

↑ HCO₃ máu

↓ giảm hấp thu tại thận HCO₃

↓ HCO₃ máu

Điều kiện để ↓ tái hấp thu HCO₃ diễn ra bình thường là cơ thể:

- Không cần ↑ tái hấp thu Na+
- □ Không cần ↑ tái hấp thu K+

Trong trường hợp hạ Na+ máu

hay K+ máu, cơ thể sẽ dùng H+

Trao đối Na⁺,K⁺ → H⁺+ HCO₃⁻ = H₂O + CO₂ → không thải được HCO₃

KIÊM CHUYỂN HÓA VÀ K+, Na+, CI-

K+ máu

- K⁺ ↓ → K⁺ nội bào ↓ → H⁺ vào nội bào → ↑ tương đối
 HCO₃ ngoại bào → tạo kiềm chuyển hóa
- K+ ↓ → hấp thu K+ từ ống xa ↑ → ↑ bài tiết H+, ↑ hấp thu HCO₃ → duy trì kiềm chuyển hóa

Na+ máu

Na⁺ ↓ → hấp thu Na⁺ ↑ → ↑ bài tiết H⁺, ↑ hấp thu
 HCO₃ → duy trì kiềm chuyển hóa

□ Cl⁻ máu giảm

↑ sản xuất và hấp thu HCO₃ để giữ cân bằng điện tích

KIÈM CHUYỂN HÓA

KIÈM CHUYỂN HÓA

- Cơ chế hình thành kiềm chuyển hóa:
 - Tăng nhập HCO₃⁻
 - Tăng mất H⁺
- Cơ chế duy trì kiềm chuyển hóa:
 - Tổn thương bài tiết HCO₃- tại thận là cơ chế chính để duy trì kiểm chuyển hóa
 - Tăng tái hấp thu HCO₃⁻ do ↓ Na⁺, ↓ K⁺, ↓ Cl ⁻ máu

PHÂN LOẠI KIỀM CHUYỂN HÓA

- Kiềm chuyển hóa đáp ứng điều trị bù NaCl:
 - 。 Cl nước tiểu ≤ 25 mEq/L
 - Mất H⁺ qua dạ dày do ói hay hút dịch dạ dày
 - Dùng lợi tiểu quai/ lợi tiểu thiazide trước đó
 - o Tiêu chảy mất Cl⁻ do u tuyến nhung mao/ thuốc xổ
 - Bệnh xơ nang (Cl⁻ mồ hôi cao)
 - Kiềm chuyển hóa sau tăng CO₂

PHÂN LOẠI KIỀM CHUYỂN HÓA

- Kiềm chuyển hóa kháng điều trị bù NaCl:
 - 。 Cl nước tiểu ≥ 25 mEq/L
 - ↑ aldosteron nguyên phát: h/chứng Cushing, Liddle, lạm dụng corticoid
 - Hội chứng Bartter hay Gitelman
 - Đang dùng lợi tiểu quai/ thiazide
 - Quá tải chất kiềm ngoại sinh: truyền dịch bicarbonate,
 truyền máu có chất kháng đông citrate, dùng antacid
 - Giảm K⁺ máu nặng

Kết quả phân tích KMĐM cuối cùng

- Giảm oxy máu mức độ nặng chưa được điều chỉnh do V/Q bất xứng sau tắc động mạch phổi
- Kiềm hô hấp nguyên phát do giảm O2 máu do V/Q bất xứng
- Toan chuyển hóa nguyên phát không tăng anion gap do toan hóa ống góp sau sỏi đường niệu.

TOAN HÔ HẤP

- Tổn thương thần kinh:
 - Trung ương gây ức chế trung tâm hô hấp
 - Thần kinh cơ ngoại biên gây yếu cơ hô hấp
- □ Tổn thương phổi → ↓ thông khí phế nang:
 - Tăng kháng lực đường thở
 - o Giảm đàn hồi
 - Tăng khoảng chết

CƠ CHẾ GÂY TOAN HÔ HẤP

KÉT LUẬN

- 1) Kiểm tra tương thích bên trong và bên ngoài là việc phải làm trước phân tích kết quả KMĐM
- 2) Phần tích oxy hóa máu:
 - Nguyên nhân giảm oxy hóa máu luôn phải tìm kiếm
 - Cả Hb, SaO₂, PaO₂ chứ không chỉ mỗi PaO₂
- 3) Phân tích rối loạn cân bằng toan kiềm
 - Tương quan giữa pH, PaCO₂, HCO₃ là then chốt trong phân tích cân bằng toan kiềm
 - Bệnh cảnh lâm sàng luôn là chứng cứ quan trọng cho chẩn đoán chính xác

Một số bài tập KMĐM

Ca lâm sàng 1

- □ ♀17 tuổi, cân nặng 48 kg, có tiền căn ĐTĐ
 lệ thuộc insuline nhập vào cấp cứu
- Khám lâm sàng có nhịp thở Kussmaul và nhịp mạch không đều
 - HA 140/90 mmHg; M 118 lần/phút
 - NT: 40 lần/ phút, biên độ thở sâu

Ca lâm sàng 1 (tiếp theo)

- KMĐM với khí trời cho kết quả:
 - \circ pH = 7.05
 - $_{\circ}$ PaCO₂ = 12 mmHg
 - $_{\circ}$ PaO₂ = 108 mmHg
 - \circ HCO₃ = 5 mmol/L
- □ Yêu cầu:
 - Phân tích kết quả KMĐM
 - Cần làm thêm xét nghiệm gì nữa? Vì sao?

Ca lâm sàng 1 (tiếp theo)

- Sau truyền tĩnh mạch Insuline kèm
 glucose, 3 ống NaHCO₃ (50 mmol/ ống)
- HA 130/80; M: 100; NT: 22, thở bớt sâu
- KMĐM làm lại, hãy phân tích kết quả:
 - \circ pH = 7.27
 - $_{\circ}$ PaCO₂ = 25 mmHg
 - $_{\circ}$ PaO₂ = 92 mmHg
 - \circ HCO₃ = 11 mmol/L

Ca lâm sàng 2

- □ ♀ 66 tuổi, tiền căn COPD vào cấp cứu vì khó thở
- Khám lâm sàng ran ẩm ½ dưới hai phổi dâng lên
 - HA 60/30 mmHg; M 140 lần/phút, mạch chỉ
 - NT: 40 lần/ phút, biên độ thở nông

Ca lâm sàng 2 (tiếp theo)

- KMĐM với khí trời cho kết quả:
 - \circ pH = 7.10
 - $_{\circ}$ PaCO₂ = 25 mmHg
 - $_{\circ}$ PaO₂ = 40 mmHg
 - \circ HCO₃ = 8 mmol/L
- □ Yêu cầu:
 - Phân tích kết quả KMĐM
 - Cần xử trí cấp cứu cái gì? Vì sao?

Ca lâm sàng 2 (tiếp theo)

- Thở oxy 100%, tiêm lợi tiểu, dùng thuốc vận mạch, morphine
- HA 100/40; M: 140 manh NT: 25
- KMĐM làm lại, hãy phân tích kết quả:
 - \circ pH = 7.38
 - $_{\circ}$ PaCO₂ = 28 mmHg
 - $_{\circ}$ PaO₂ = 110 mmHg; FiO₂ = 100%
 - \circ HCO₃ = 16 mmol/L

Ca lâm sàng 3

- ¬ ♀17 tuổi, gù vẹo cột sống nặng, nhập viện vì viêm phổi
- Khám lâm sàng ran nố ½ dưới phối phải
 - HA 140/90 mmHg; M 118 lần/phút
 - NT: 40 lần/ phút, biên độ thở bình thường

Ca lâm sàng 3 (tiếp theo)

- KMĐM với FiO₂ = 40% cho kết quả:
 - \circ pH = 7.37
 - $_{\circ}$ PaCO₂ = 25 mmHg
 - $_{\circ}$ PaO₂ = 70 mmHg; FiO₂ = 40%
 - $_{\circ}$ HCO₃ = 14 mmol/L
- □ Yêu cầu:
 - Phân tích kết quả KMĐM
 - Cần làm thêm xét nghiệm gì nữa? Vì sao?

Ca lâm sàng 3 (tiếp theo)

- Điều trị KS, truyền dịch có G5% và NaCl 0.45%, BN không chịu ăn. Ngày 3,dù viêm phổi cải thiện, BN than mệt và khó thở
- HA 110/80; M: 100; NT: 22, thở nông
- KMĐM làm lại, hãy phân tích kết quả:
 - \circ pH = 7.53
 - $_{\circ}$ PaCO₂ = 38 mmHg
 - $_{\circ}$ PaO₂ = 62 mmHg; FiO₂ = 21%
 - $_{\circ}$ HCO₃ = 32 mmol/L

Ca lâm sàng 3 (tiếp theo)

- K+ máu 2.6 mmol/L. Truyền KCl, khó thở và mệt mỏi cải thiện
- HA 110/80; M: 100; NT: 22, thở nông
- KMĐM làm lại, hãy phân tích kết quả:
 - oph = 7.41
 - $_{\circ}$ PaCO₂ = 27 mmHg
 - $_{\circ}$ PaO₂ = 68 mmHg; FiO₂ = 21%
 - \circ HCO₃ = 16 mmol/L

Ca lâm sàng 4

- □ 3 47 tuổi đột quỵ trên đường, hồi sinh cơ bản → đặt NKQ bóp bóng với oxy liều cao, xoa bóp tim → có mạch trở lại, da hồng
- Truyền dịch G5% + 100 mmol NaHCO₃
- Khám lâm sàng
 - HA 115/90 mmHg; M 115 lần/phút
 - NT: 12 lần/ phút, biên độ thở bình thường

Ca lâm sàng 4 (tiếp theo)

- KMĐM với FiO₂ = 40% cho kết quả:
 - \circ pH = 7.51
 - $_{\circ}$ PaCO₂ = 35 mmHg
 - $_{\circ}$ PaO₂ = 62 mmHg; FiO₂ = 40%
 - $_{\circ}$ HCO₃ = 27 mmol/L
- Yêu cầu:
 - Phân tích kết quả KMĐM
 - Cần làm thêm xét nghiệm gì nữa? Vì sao?