Московский государственный университет имени М. В. Ломоносова факультет вычислительной математики и кибернетики кафедра алгоритмических языков

Дипломная работа

НЕКОТОРЫЕ АЛГОРИТМЫ НА ОСНОВЕ ГРАФОВЫХ ПРЕДСТАВЛЕНИЙ БЕСКОНТЕКСТНЫХ ЯЗЫКОВ

Выполнил: студент 524 группы Сарафанов Андрей Михайлович

Научный руководитель: ст. преп., к.ф.-м.н. Вылиток Алексей Александрович

Содержание

1	Введение	3
2	Постановка задачи	4
3	Обзор имеющихся решений	5
4	Понятие L-графов (как лучше назвать?)	6
	4.1 Определение L-графа	
	4.2 Понятие ядра L-графа	6
	4.3 Понятие памяти L-графа	6
5	Построение ДКА-кандидата	7
	5.1 Построение всех (w,d)-остовных памятей L-графа	7
	5.2 Построение графа (w,d)-остовных памятей L-графа	7
	5.3 Построение графа-кандидата	8
6	Проверка эквивалентности исходного L-графа и построенного ДКА	9
	6.1 Алгоритм проверки эквивалентности ДКА и L-графа	9
7	Заключение	10
8	Литература	11

Введение

Формальным языком называется множество цепочек конечной длины, состоящих из элементов некоторого непустого множества Σ . В этом случае говорят, что язык построен над алфавитом Σ . Цепочку нулевой длины обозначают символом ϵ . В теории формальных языков классической считается классификация формальных языков, основанная на т.н. иерархии Хомского, предложенной американским лингвистом Ноамом Хомским. Согласно ей, формальные языки делятся на 4 класса:

- 0. Рекурсивно перечислимые (неограниченные)
- 1. Контекстно-зависимые
- 2. Контекстно-свободные (бесконтекстные)
- 3. Регулярные

Стоит также отдельно отметить выделяемые в классе 2 подклассы детерминированых и недетерминированных контекстно-свободных языков.

Существует множество способов описания формальных грамматик, из них наиболее распространенными являются формальные грамматики и абстрактные вычислительные устройства, такие как машина Тьюринга, магазинные автоматы, конечные автоматы (скопировал у Касимовой).

Формальные грамматики применяются для описания формальных языков всех классов и представляют из себя четверки вида (N, Σ, P, S) , где

- ullet N конечное множество нетерминальных символов,
- Σ конечное множество терминальных символов,
- P конечное множество правил вывода вида $Left \to Right, Left \in (N \cup \Sigma)^+, Right \in (N \cup \Sigma)^*,$
- $S \in N$ начальный символ.

Постановка задачи

Обзор имеющихся решений

Понятие L-графов (как лучше назвать?)

4.1 Определение L-графа

Определение 1. Пусть $\Sigma_{(}$ и $\Sigma_{)}$ — непересекающиеся алфавиты, и существует биективное отображение $\phi: \Sigma_{(} \to \Sigma_{)}$. Тогда назовём непустое множество $P \subseteq \Sigma_{(} \times \Sigma_{)}$ *D-множеством*.

Определение 2. Пуст P - D-множество. Тогда назовём язык L_P , порождаемый грамматикой $S \to \Lambda | aSbS, (a,b) \in P$, D-языком (над D-множеством P).

Определение 3. Пусть $\Delta = \Sigma_{(} \cup \Sigma_{)}$. Определим отображение $\mu : \Delta^{*} \to \Delta^{*}$. Пусть $\omega \in \Delta^{*}$. Рассмотрим множество $W' = \{(\omega_{1}, \omega_{2}) | \omega_{1}, \omega_{2} \in \Delta^{*}, (a, b) \in P, \omega = \omega_{1} ab \omega_{2}\}$. Если W' пусто, то $\mu(\omega) = \omega$, иначе среди всех $\mu(\omega) = \mu(\omega_{1}\omega_{2})$, где $|\omega_{1}|$ минимальна по всем парам $(\omega_{1}, \omega_{2}) \in W'$. Назовём μ стирающим отображением.

Определение 4. *L-графом* назовём восьмёрку $G = (V, E, \Sigma, \Sigma), \Sigma_{(}, P, S, F),$ где

- V множество вершин, $S \in V$ начальная вершина, $F \subseteq V$ множество заключительных вершин;
- Σ алфавит входных символов, $\Sigma_{(}$ и $\Sigma_{)}$ непересекающиеся алфавиты, P-D-множество над $\Sigma_{(}$ и $\Sigma_{)}$;
- множество E описывает дуги и их символьные пометки: $E \subseteq \{(v_1, v_2, \alpha, \beta) | v_1, v_2 \in V, \alpha \in \Sigma \cup \{\epsilon\}, \beta \in \Sigma_{(} \cup \Sigma_{)}\}.$

4.2 Понятие ядра L-графа

4.3 Понятие памяти L-графа

Определение 5. Основные понятие, такие как *Sentences*, *sCore*, введем как у Касимовой.

Построение ДКА-кандидата

5.1 Построение всех (w,d)-остовных памятей L-графа

Определение 6. Будем говорить, что в маршруте T фигурирует память $m=(v,\gamma)$, если T можно представить в виде $T=T_1T_2$, где $end(T_1)=v,\mu(T)=\gamma$. Обозначим это соотношение как HasMemory(T,m). Если в этом определении $T_2=\epsilon$, то будем говорить, что namsmb T pasha m (Mem(T)=m). Или Mem два раза лучше не использовать?

Определение 7. Множеством (w,d)-остовных памятей L-графа G будем называть множество $Mem(G,w,d)=\{(v,\gamma)|\exists T\in sCore(G,w,d): HasMemory(T,(v,\gamma))\}.$ а

Тут должен быть алгоритм построения этого множества, но простой обход в глубину/ширину, естественно, не подходит. Наличие хотя бы одного цикла приведет к зацикливанию.

5.2 Построение графа (w,d)-остовных памятей L-графа

Определение 8. Графом (w,d)-остовных памятей L-графа $G(V,E',\Sigma,\Sigma_(,\Sigma_),P,S,F)$ назовём пятёрку $MemGraph(G,w,d)=(M,F,S,E,\Sigma)$, где

- M = Mem(G, w, d) множество вершин графа, $S \in M$ начальная вершина, $F \subseteq V$ множество заключительных вершин;
- Σ алфавит входных символов;
- множество E описывает дуги и их символьные пометки: $E\subseteq \{(m_1,m_2,\alpha)|m_1,m_2\in M,\alpha\in\Sigma\cup\{\epsilon\}\}.$

В роли вершин графа выступает множество (w,d)-остовных памятей L-графа G. Опишем алгоритм создания множества E. Для каждой вершины $m_1=(v_1,\gamma_1)\in M$ рассмотрим поочередно все дуги из E' вида (v_1,v_2,α,β) . Для каждой вершины $m_2=(v_2,\gamma_2)\in M$, такой что $\mu(\gamma_1\beta)=\gamma_2$ добавим в E дугу (m_1,m_2,α) . Получилось криво, к тому же не ясно ещё, так ли стоит этот граф определять. Альтернативный вариант - добавлять дугу (m_1,m_2,α) , если $\exists T\in sCore(G,w,d), T=T_1T_2T_3, mem(T_1)=m_1, mem(T_1T_2)=m_2, \omega(T_1T_2)=\omega(T_1)\beta$

5.3 Построение графа-кандидата

На основе $M_1=MemGraph(G,1,1)$ и $M_2=MemGraph(G,2,2)$ построим граф недетерминированного конечного автомата Cand(G). Обозначим $ToRemove(G)=\{m|m\in M_2, m\not\in M_1\}$. Определим отображение $Reduction: ToRemove(G)\to M_1$.

Проверка эквивалентности исходного L-графа и построенного ДКА

6.1 Алгоритм проверки эквивалентности ДКА и Lграфа

Заключение

В рамках данной дипломной работы исследовалась проблема регулярности бесконтекстных языков, представленных в виде L-графов.

Предложено условие регулярности детерминированных L-графов: предложены алгоритм построения по детерминированному L-графу (?детерминированного?) конечного автомата, который будет эквивалентен исходному L-графу, только если тот регулярен, и алгоритм проверки эквивалентности детерминированного L-графа и (?детерминированного?) конечного автомата.

Также выделен подкласс детерминированных L-графов, на котором указанное условие регулярности является критерием.

Литература

- 1. Ахо А. Ульман Дж. Теория синтаксического анализа, перевода и компиляции. Синтаксический анализ. М.: Мир, 1986. Т. 1.
- 2. E Stearns Richard. A regularity test for pushdown machines // Information and control. 1967. T. 11, № 3. C. 323–340.
- 3. Shankar Priti Adiga B. S. A Graph-Based Regularity Test for Deterministic Context-free Languages // Theor. Comput. Sci. 1991. T. 88, № 1. C. 117–125.
- 4. Л.И. Станевичене. К теории бесконтекстных языков. М.: МГУ им. М.В. Ломоносова, 2000.
- 5. Vylitok A. Gomozov A. Stanevichene L. The power of printing ink // V-я международная конференция. Информатика. Образование. Экология и здоровье человека. Издательство Астраханского государственного педагогическиого университета Астрахань, 2000. С. 270–270.
- 6. G Valiant Leslie. Regularity and related problems for deterministic pushdown automata // Journal of the ACM. 1975. T. 22.