

R61509V

260k-color, 240RGB x 432-dot graphics liquid crystal controller driver for Amorphous-Silicon TFT Panel

REJxxxxxxx-xxxx Rev.0.11 April 25, 2008

Description	. 6
Features	. 7
Power Supply Specifications	. 8
Differences Between R61509 and R61509V	. 9
Block Diagram	. 10
Block Function 1. System Interface	1112131313131313
Pin Function	. 14
Pad Arrangement	. 19
Pad coordinate	. 21
Bump Arrangement	. 36
Connection Example	. 37
GRAM Address Map	. 38
Instruction	. 40

Outline	40
Instruction Data Format	40
Index (IR)	41
Display control	41
Device code read (R000h)	41
Driver Output Control (R001h)	41
LCD Drive Wave Control (R002h)	42
Entry Mode (R003h)	42
Display Control 1 (R007h)	45
Display Control 2 (R008h)	46
Display Control 3 (R009h)	48
8 Color Control (R00Bh)	49
External Display Interface Control 1 (R00Ch)	50
External Display Interface Control 2 (R00Fh)	52
Panel Interface Control 1 (R010h)	53
Panel Interface Control 2 (R011h)	55
Panel Interface Control 3 (R012h)	56
Panel Interface Control 4 (R013h)	58
Panel Interface Control 5 (R014h)	59
Panel Interface Control 6 (R020h)	60
Panel Interface Control 7 (R021h)	62
Panel Interface Control 8 (R022h)	63
Panel Interface Control 9 (R023h)	65
Frame Marker Control (R090h)	66
Power Control	67
Power Control 1 (R100h)	67
Power Control 2 (R101h)	69
Power Control3 (R102h)	73
Power Control 4 (R103h)	74
RAM Access	75
RAM Address Set (Horizontal Address) (R200h) RAM Address Set (Vertical Address) (R201h)	75
GRAM Data Write (R202h)	76
GRAM Data Read (R202h)	77
NVM Data Read / NVM Data Write (R280h)	78
Window Address Control	81
Window Horizontal RAM Address Start (R210h), Window Horizontal RAM Address End (R211h)	81
Window Vertical RAM Address Start (R212h), Window Vertical RAM Address End (R213h)	81
y Control	82
γ Control 1 ~ 14 (R300h to R309h)	82
Base Image Display Control	84
Base Image Number of Line (R400h)	84
Base Image Display Control (R401h)	84
Base Image Vertical Scroll Control (R404h)	84
Partial Display Control	88
Partial Image 1: Display Position (R500h), RAM Address 1 (Start Line Address) (R501h), RAM Address	s 1 (End Line Add
(R502h)	
Pin Control	89
Test Register (Software Reset) (R600h)	89

NVM Control	.90
NVM Access Control 1 (R6F0h), NVM Access Control 2 (R6F1h), NVM Access Control 3 (R6F2h)	.90
Instruction List	92
Reset Function	93
Basic Mode Operation of the R61509V	95
Interface and Data Format	96
System Interface	99
80-System 18-bit Bus Interface	.100
80-System 16-bit Bus Interface	. 101
80-System 9-bit Bus Interface	. 104
Data Transfer Synchronization in 9-bit Bus Interface Operation	. 105
80-System 8-bit Bus Interface	.106
Serial Interface	.109
VSYNC Interface	112
Notes to VSYNC Interface Operation	
Notes to VSTAC Interface Operation	.114
FMARK Interface	116
FMP Setting Example	. 120
RGB Interface	121
RGB Interface	.121
Polarities of VSYNCX, HSYNCX, ENABLE, and DOTCLK Signals	.122
Setting Example of Display Control Clock in RGB Interface Operation	. 123
RGB Interface Timing	.124
16-/18-Bit RGB Interface Timing	. 124
RAM access via system interface in RGB interface operation	. 125
16-Bit RGB Interface	. 126
18-bit RGB Interface	.127
Notes to RGB Interface Operation	. 128
RAM Address and Display Position on the Panel	129
Instruction Setting Example	
nsinetion seeing Example	.132
Window Address Function	134
Scan Mode Setting	135
8-Color Display Mode	136
Frame-Frequency Adjustment Function	137
Relationship between Liquid Crystal Drive Duty and Frame Frequency	

R61509V	Target Spec
Partial Display Function	139
Liquid Crystal Panel Interface Timing	140
Internal Clock Operation	
RGB Interface Operation	
γ Correction Function	142
γ Correction Function	
y Correction Function	
γCorrection Registers	
Reference level adjustment registers	
Interpolation Registers	
Frame Memory Data and the Grayscale Voltage	
Down Cumuly Computing Circuit	140
Power Supply Generating Circuit	
Power Supply Circuit Connection Example 1 (VCII = VCIOUT)	
Power Supply Circuit Connection Example 2 (VCII = VCI Direct Input)	130
Specifications of Power-supply Circuit External Elements	151
Voltage Setting Pattern Diagram	152
Liquid Crystal Application Voltage Waveform and Electrical Potential	
VCOMH and VREG1OUT Voltage Adjustment Sequence	154
NVM Control	155
NVM Load (Register Resetting) Sequence	
NVM Unite Sequence	
NVM Erase Sequence	
•	
Power Supply Setting Sequence	139
Notes to Power Supply ON Sequence	161
Instruction Setting Sequence and Refresh Sequence	162
Display ON/OFF Sequences and Refresh Sequence	
Shutdown Mode Sequences	163
Partial Display Setting	166
Absolute Maximum Ratings	167
Electrical Characteristics	168
DC Characteristics	168
Step-up Circuit Characteristics	170
Internal Reference Voltage: Condition	170
Power Supply Voltage Range	171
Output Voltage Range	171
AC Characteristics	172

Clock Characteristics	172
80-system 18-/16-/9-/8-bit Bus interface Timing Characteristics	172
Clock Synchronous Serial Interface Timing Characteristics	173
RGB Interface Timing Characteristics	173
LCD Driver Output Characteristics	174
Reset Timing Characteristics	174
Notes to Electrical Characteristics	
Test Circuits	
Timing Characteristics	177
80-system Bus Interface	177
Clock Synchronous Serial Interface	
Reset Operation	
LCD Delegation and LVCOM October Champion and Champion	

Description

The R61509V is a single-chip liquid crystal controller driver LSI for a-Si TFT panel, incorporating RAM for a maximum 240 RGB x 432 dot graphics display, gate driver, source driver and power supply circuits. For efficient data transfer, the R61509V supports high-speed interface via 8-/9-/16-/18-bit ports as system interface to the microcomputer. As moving picture interface, the R61509V also supports RGB interface (VSYNCX, HSYNCX, DOTCLK, ENABLE and DB17-0).

The power supply circuit incorporates step-up circuit and voltage follower circuit to generate TFT liquid crystal panel drive voltages.

The R61509V's power management functions such as 8-color display and shut down and so on make this LSI an ideal driver for the medium or small sized portable products with color display systems such as digital cellular phones or small PDAs, where long battery life is a major concern.

Features

• A single-chip controller driver incorporating a gate circuit and a power supply circuit for a maximum 240RGB x 432dots graphics display on amorphous TFT panel in 262k colors

- System interface
 - High-speed interfaces via 8-, 9-, 16-, 18-bit parallel ports
 - Clock synchronous serial interface
- Moving picture display interface
 - 16-/18-bit RGB interface (VSYNCX, HSYNCX, DOTCLK, ENABLE, DB17-0)
 - VSYNC interface (System interface + VSYNCX)
 - FMARK interface (System interface + FMARK)
- Window address function to specify a rectangular area in the internal RAM to write data
- Write data within a rectangular area in the internal RAM via moving picture interface
 - Reduce data transfer by specifying the area in the RAM to rewrite data
 - Enable displaying the data in the still picture RAM area with a moving picture simultaneously
- Abundant color display and drawing functions
 - Programmable for 262k-color display
 - Partial display function
- Low -power consumption architecture (allowing direct input of interface I/O power supply)
 - Shut down function
 - 8-color display function

Input power supply voltages: IOVCC (interface I/O power supply)

VCC (logic regulator power supply)

VCI (liquid crystal analog circuit power supply)

- Incorporates a liquid crystal drive power supply circuit
 - Source driver liquid crystal drive/VCOM power supply: DDVDH

VCL

Gate drive power supply: VGH

VGL

VCOM drive (VCOM power supply): VCOMH

VCOML

- Liquid crystal power supply startup sequencer
- TFT storage capacitance: Cst only (common VCOM formula)
- 233,280-byte internal RAM
- Internal 720-channel source driver and 432-channel gate driver
- Single-chip solution for COG module with the arrangement of gate circuits on both sides of the glass substrate
- Internal NVM

User identification code: 8 bits

VCOM level adjustment: 7 bits x 2. Rewriting is available up to 5 times

Power Supply Specifications

Table 1

No.	Item		R61509V
1	TFT data lines		720 output
2	TFT gate lines		432 output
3	TFT display st	orage capacitance	Cst only (Common VCOM formula)
4	Liquid crystal	S1~S720	V0 ~ V63 grayscales
	drive output	G1~G432	VGH-VGL
		VCOM	Change VCOMH-VCOML amplitude with electronic volume
		NVM	Change VCOMH with either electronic volume or from VCOMR
5	Input voltage	IOVCC	1.65V ~ 3.3V
		(interface voltage)	Power supply to IM0_ID, IM1-2, RESETX, DB17-0, RDX, SDI, SDO, WR_SCL, RS, CSX, VSYNCX, HSYNCX, DOTCLK, ENABLE, FMARK
			Connect to VCC and VCI on the FPC when the electrical potentials are the same.
		VCC	2.5V ~ 3.3V
		(logic regulator power supply)	Connect to IOVCC and VCI on the FPC when the electrical potentials are the same.
		VCI	2.5V ~ 3.3V
		(liquid crystal drive power supply voltage)	Connect to IOVCC and VCC on the FPC when the electrical potentials are the same.
6	Liquid crystal	DDVDH	4.5 ~ 6.0V (VCI1 x 2)
	drive	VGH	10 ~ 18.0 V (VCI1 x 5, 6)
	voltages	VGL	-4.5 ~ -13.5V (VCI1 x –3, -4, -5)
		VGH-VGL	max. 28V
		VCL	-1.9 ~ -3.0V (VCI1 x -1)
		VCI-VCL	max. 6V

See "DC characteristics" in Chapter "Electrical Characteristics" for voltage spec.

Difference Between R61509 and R61509V

2008.04.18

Difference Be	ference Between R61509 and R61509V							
Index	Command	Code	Function	R61509	R61509V			
(Pin)	System Interface	IM2-0=011, TRI=1, DFM=0	8bit 3 transfer (2bit-8bit-8bit)	Supported	Deleted			
R000h	Device Code Read	· · · · · · · · · · · · · · · · · · ·		1509H	B509H			
R002h	LCD Drive Waveform Control	NW[1-0]> NW bit is deleted.		1, 2, 3 or 4 line inversion	1 line inversion			
R003h	Entry Mode	HWM	High Speed RAM Write	Supported	Deleted			
	·		Sets data format when writing 16bit					
		EPF[1-0]	data in 18bit format.	Supported	Deleted			
R006h	Outline Sharpening Control	EGMODE, AVST[2:0], ADST[2:0]DTHU[1:0], DTHL[1:0]	Outline Sharpening Function	Supported	Deleted			
R007h	Display Control 1	PTDE[1-0]>PTDE0	Controls partial image 1 and 2.	Partial image 1 and 2	Partial image 1			
1.007			John ore parties image : and I	, and an anager , and I	Deleted. (Because the sequence is changed. See "Power Supply			
		VON	Starts VCOM output	Manual setting	Setting Sequence" for detail.			
	 	7011	Ctarts (Com Catpat	Mariaar occurig	Deleted. (Because the sequence is changed. See "Power Supply			
		GON	Sets gate output to OFF level.	Manual setting	Setting Sequence" for detail.			
	 	doll	Octo gato output to OTT TOVOI.	Marida Socials	Deleted. (Because the sequence is changed. See "Power Supply			
		DTE	Starts gate scan	Manual setting	Setting Sequence" for detail.			
		DIL	Starts gate scarr	Manual Setting	Deleted. (Because the sequence is changed. See "Power Supply			
		D[1-0]	Starts/halts display operation	Manual setting	Setting Sequence" for detail.			
R008h	Display Control 2	FP[3-0]	Defines front porch	2-14 lines (in units of 1 line)	3-128 lines (in units of 1 line)			
Room	Display Control 2	BP[3-0]	Defines back porch	2-14 lines (in units of 1 line)	3-128 lines (in units of 1 line)			
R009h	Display Control 3	PTG[1-0]> Deleted.	Sets gate scan mode	Normal scan / interval scan	Normal scan only (Interval scan is not available)			
וופטטא	Display Control 3	PTG[1-0]> Deleted. ISC[3:0]		3, 5, 7, 9, 11, 13 or 15 frames				
			Sets gate scan cycle		Deleted V0-V63			
R00Bh	Low Power Control	PTS[2-0]>PTS VEM[0]> VEM[1-0]	Sets source output level	V0-V31 VCOMH to VCOML only	VCOML to VCOMH / VCOMH to VCOML (See description)			
RUUBN	Low Power Control	VEM[U]> VEM[I-U]	Execute VCOM equalize. Selects 6bit 3 transfer via RGB	VOUMH to VOUML only	VOUME to VOUMH / VOUMH to VOUME (See description)			
Doool		DWEL OF LO						
R00Ch	External Display Interface Control	RIM[1-0]=10	interface	Supported	Deleted			
R012h	Panel Interface Control 3	VEQWI[1-0]>VEQWI[2-0]	Defines VCOM equalize period.	0, 1, 2 or 3 clock period	0, 1, 2, 3, 4, 5, 6 or 7 clock period			
R020h	Panel Interface Control 4	RTNE[6-0]>RTNE[5-0]	Defines number of clock per line.	16-127 clocks	16 - 63 clocks			
R021h	Panel Interface Control 5	NOWE[3-0]>NOWE[2-0]	Defines gate non overlap period.	0 – 15 clocks	0 – 7 clocks			
		SDTE[3-0]>SDTE[2-0]	Defines source output delay period.	0 - 15 clocks	0 - 7 clocks			
			Defines data format for sub display					
R092h	MDDI Sub-display Control	SIM[1:0]> Deleted.	interface operation.	Supported	Deleted			
			Adjusts bias current in source		Deleted. (Because the sequence is changed. See "Power Supply			
R100h	Power Control 1	SAP[1-0]	amplifier.	Supported	Setting Sequence" for detail.)			
					Deleted. (Because the sequence is changed. See "Power Supply			
		SAP> SOAPON	Enables source amplifier	Supported	Setting Sequence" for detail.)			
		BT[2-0]	Defines step-up factor	DDVDH: x2, VCL:x-1, VGH: x6, x7, VGL: x-3, x-4, x-5	DDVDH: x2, VCL: x-1, VGH: x5, x6, VGL: x-3, x-4, x-5			
					Deleted. (Because the sequence is changed. See "Power Supply			
		APE> Deleted.	Enables power supply circuit	Supported	Setting Sequence" for detail.)			
		SLP> Deleted.	Selects sleep mode.	Supported	Deleted			
R101h	Power Control 2	DC1[2-0]	Defines step-up factor for DCDC1.	Not synchronized with internal clock (Default)	Synchronized with internal clock (Default)			
		DC2[2-0]	Defines step-up factor for DCDC2.	Not synchronized with internal clock (Default)	Synchronized with internal clock (Default)			
R102h	Power Control 3	VRH[3-0]	Sets a factor to generate	4bit (VRH [3:0])	5bit (VRH [4:0]). Enables minute setting.			
			Defines reference level to generate					
		VRG1R> Deleted.	VREG10UT	Selects external or internal reference voltage.	Internal reference voltage only			
R103h	Power Control 4	VCOMG	Defines VCOM amplitude	VCOML can be set at GND level	Deleted			
					Deleted. (Because the sequence is changed. See "Power Supply			
R110h	Power Control 6	PSE	Enables power supply sequencer	Supported	Setting Sequence" for detail.)			
					Deleted. (Because the sequence is changed. See "Power Supply			
R112h	Power Control 7	TBT[1-0]	Used in power supply sequencer	Supported	Setting Sequence" for detail.)			
R280h	NVM Data Read / NVM Data Write	UID[3:0]	User code	UID[3:0]	VCM[6-0] UID[7-0]			
R281h	VCOM High Voltage 1	VCM1[4-0]	Defines VCOMH 1level	VCM1[4-0]	NVM specification changed. VCM bit is moved to R280h.			
					Deleted. (Because the R61509V supports both NVM write and erase			
R282h	VCOM High Voltage 2	VCMSEL, VCM2[4-0]	Defines VCOMH 2level	VCMSEL VCM2	functions).			
R300h-R309h	Gamma Control	Gamma Control	Gamma control method changed.	84 bit	100 bit (New gamma correction method)			
R400h	Base Image Number of Line	NL0[5-0]	Specifies LCD drive line.	16 - 432 line (in units of 8 lines)	240 - 432 lines (in units of 8 lines)			
		Eu	Defines source output level in non-lit		,			
R401h	Base Image Display Control	NDL0	display area	V31-V0	V63-V0			
			Inverts grayscale level in the display					
		REV0	area	V31-V0	V63-V0			
R503h-R505h	Partial Image Control	PTDP1[8-0] PTSA1[8-0] PTEA1[8-0]> Deleted.	Settings for partial image 2.	Partial image 1 and 2	Partial image 1 only			
R600h	Software Reset	SRST> TRSR	Software Reset	Software Reset	Only secret test registers are initialized.			
R606h	i80-I/F Endian Control	TCREV[1] , TCREV[0]	Selects the order of receiving data.	Supported	Deleted			
See each register's d		101/27[1], 101/27[0]		Capportod	2010000			

See each register's description for detail.

Block Diagram

Figure 1

Block Function

1. System Interface

The R61509V supports 80-system high-speed interface via 8-, 9-, 16-, 18-bit parallel ports and a clock synchronous serial interface. The interface is selected by setting the IM2-0 pins.

The R61509V has 16-bit index register (IR), 18-bit write-data register (WDR), and 18-bit read-data register (RDR). The IR is the register to store index information from control register and internal GRAM. The WDR is the register to temporarily store write data to control register and internal GRAM. The RDR is the register to temporarily store the read data from the GRAM. The write data from the host processor to the internal GRAM is first written to the WDR and then automatically written to the internal GRAM by internal operation. The data is read via RDR from the internal GRAM. Therefore, invalid data is sent to the data bus when the R61509V performs the first read operation from the internal GRAM. Valid data is read out when the R61509V performs the second and subsequent read operation.

The R61509V allows writing instructions consecutively by executing the instruction in the same cycle when it is written (0 instruction cycle).

Table 2 Register Selection (80-System 8-/9-/16-/18-Bit Parallel Interface)

WRX	RDX	RS	Function
0	1	0	Write index to IR
1	0	0	Setting disabled
0	1	1	Write to control register or internal GRAM via WDR
1	0	1	Read from internal GRAM and register via RDR

Table 3 Register Selection (Clock Synchronous Serial Interface)

Start byte		
R/W	RS	Function
0	0	Write index to IR
1	0	Setting disabled
0	1	Write to control register or internal GRAM via WDR
1	1	Read from internal GRAM and register via RDR

Table 4

IM2	IM1	IM0	System interface	DB pins	RAM write data	Instruction write transfer
0	0	0	80-system 18-bit interface	DB17-0	Single transfer (18 bits)	Single transfer (16 bits)
0	0	1	80-system 9-bit interface	DB17-9	2-transfer (1 st : 9 bits, 2 nd : 9 bits)	2-transfer (1 st : 8 bits, 2 nd : 8 bits)
0	1	0	80-system 16-bit interface	DB17-10, DB8-1	Single transfer (16 bits) 2-transfer (1 st . 2 bits, 2 nd : 16 bits) 2-transfer (1 st : 16 bits, 2 nd : 2 bits)	Single transfer (16 bits)
0	1	1	80-system 8-bit interface	DB17-10	2-transfer (1 st : 8 bits, 2 nd : 8 bits) 3-transfer (1 st : 6 bits, 2 nd : 6 bits, 3 rd : 6 bits)	2-transfer (1 st : 8 bits, 2 nd : 8 bits)
1	0	*	Clock synchronous serial interface	- (SDI, SDO)	2-transfer (1 st : 8 bits, 2 nd : 8 bits)	2-transfer (1 st : 8 bits, 2 nd : 8 bits)
1	1	0	Setting disabled	=	-	-
1	1	1	Setting disabled	=	- -	-

2. External Display Interface (RGB, VSYNC interfaces)

The R61509V supports RGB and VSYNC interfaces as the external interface to display moving picture.

When the RGB interface is selected, the display operation is synchronized with externally supplied synchronous signals (VSYNCX, HSYNCX, and DOTCLK). In RGB interface operation, data (DB17-0) is written in synchronization with these signals when the polarity of enable signal (ENABLE) allows write operation in order to prevent flicker when updating display data.

In VSYNC interface operation, the display operation is synchronized with the internal clock except frame synchronization, which synchronizes the display operation with the VSYNCX signal. The display data is written to the internal GRAM via system interface. When writing data via VSYNC interface, there are constraints in speed and method in writing data to the internal RAM. For details, see Section "VSYNC Interface".

The R61509V allows switching interface by instruction according to the display image (still and/or moving picture). This allows data to be transferred only when the data is updated hence less power consumption during moving picture display.

3. Address Counter (AC)

The address counter (AC) gives an address to the internal GRAM. When the index of a register is written to the IR, the address information is sent from the IR to the AC. After data is written to GRAM, the address in the AC is automatically updated plus or minus 1. The window address function enables writing data only within the rectangular area specified in the GRAM.

4. Graphics RAM (GRAM)

GRAM stands for graphics RAM, which can store bit-pattern data of 233,280 (240RGB x 432 (dots) x 18(bits)) bytes at maximum, using 18 bits per pixel.

5. Grayscale Voltage Generating Circuit

The grayscale voltage generating circuit generates liquid crystal drive voltages according to the grayscale data in the γ -correction registers to enable 262k-color display. For details, see the γ -Correction Register section.

6. Liquid Crystal Drive Power Supply Circuit

The liquid crystal drive power supply circuit generates DDVDH, VGH, VGL and VCOM levels to drive liquid crystal.

7. Timing Generator

The timing generator generates a timing signal for the operation of internal circuits such as the internal GRAM. The timing signal for display operations such as RAM read and the timing signal for internal operations such as RAM access from the host processor are generated separately in order to avoid mutual interference.

8. Oscillator (OSC)

The R61509V generates the RC oscillation clock internally. Using an external oscillation resistor is not possible. The oscillation frequency is set to 678 kHz before shipment (for details, see Electrical Characteristics). Use the frame frequency adjustment function to change the number of display lines and the frame frequency. While the R61509V is shut down, RC oscillation halts so that reduce power consumption is reduced.

9. Liquid crystal driver Circuit

The liquid crystal driver circuit of the R61509V consists of a 720-output source driver (S1 \sim S720) and a 432-output gate driver (G1 \sim G432). The display pattern data is latched when all of 240RGB data are inputted. The latched data control the source driver and output drive waveforms. The gate driver for scanning gate lines outputs either VGH or VGL level. The shift direction of 720-bit source output from the source driver can be changed by setting the SS bit and the shift direction of gate output from the gate driver can be changed by setting the GS bit. The scan mode by the gate driver can be changed by setting the SM bit.

10. Internal Logic Power Supply Regulator

The internal logic power supply regulator generates internal logic power supply VDD.

Pin Function

Table 5 External Power Supply

Signal	I/O	Connect to	Function	When not used
VCC	I	Power supply	Power supply for Internal VDD regulator. VCC≧IOVCC	_
IOVCC	ĺ	Power supply	Power supply for interface pins.	_
GND	I	Power supply	GND level for internal logic and interface pins. GND=0V.	_
VCI	1	Power supply	Power supply for liquid crystal power supply analog circuit.	_
VCILVL	I	Reference power supply	Connect to an external power supply at the same level as VCI the power supply for liquid crystal power supply analog circuit. In case of COG, connect to VCI on the FPC to prevent noise.	_
AGND	I	Power supply	Analog GND (for logic regulator and liquid crystal power supply). AGND = 0V. In case of COG, connect to GND on the FPC to prevent noise.	_
VPP1	1	Power supply	Power supply for internal NVM. See section "NVM Control" for input voltages during write and erase operation using VPP1-VPP3A pins.	Open or AGND
VPP3A	1	Power supply		Open or AGND

Note 1: VCC, GND and AGND pins are allocated several different places on the chip. Make sure to connect all of them to power following "Connection Example".

Table 6 Bus Interface (Amplitude: IOVCC~GND)

Signal	I/O	Connect to	Function		When not used
CSX	I	Host processor	Chip selection signal. (Amplitude: IOVCC Low: The R61509V is selected and acce High: The R61509V is not selected and r	IOVCC	
RS	I	Host processor	Register selection signal. (Amplitude: IOVCC-GND) Low: Index register is selected. High: Control register is selected.		IOVCC
WRX_SCL	I	Host processor	Write strobe signal when 80-system bus interface is selected. Data are written when Low level. Synchronous clock signal when clock synchronous serial interface is selected. (Amplitude: IOVCC-GND)		IOVCC
RDX	I	Host processor	Read strobe signal when 80-system bus Data are read when Low level. (Amplitud	IOVCC	
SDI	I	Host processor	Serial data input pin when clock synchronous serial interface is selected. Data are inputted on the rising edge of SCL signal. (Amplitude: IOVCC-GND)		GND /IOVCC
SDO	0	Host processor	Serial data output pin when clock synchronous serial interface is selected. Data are outputted on the falling edge of SCL signal. (Amplitude: IOVCC-GND)		Open

DB[17:0]	I/O	Host processor	opera	18-bit parallel bi-directional data bus for 80-system interface operation (Amplitude: IOVCC-GND). 8-bit I/F: DB17-DB10 are used. 9-bit I/F: DB17-DB9 are used. 16-bit I/F: DB17-DB10 and DB8-1 are used. 18-bit I/F: DB17-DB0 are used. 18-bit parallel bi-directional data bus for RGB interface operation (Amplitude: IOVCC-GND). 16-bit I/F: DB17-DB13 and DB11-1 are used. 18-bit I/F: DB17-DB0 are used.				GND / IOVCC	
ENABLE	I	Host processor	Lov Hig The p	Data enable signal for RGB interface operation. Low: accessible (selected) High: Not accessible (Not selected) The polarity of ENABLE signal can be inverted by setting the EPL bit. (Amplitude: IOVCC-GND).					GND / IOVCC
VSYNCX	I	Host processor		Frame synchronous signal. Low active. (Amplitude: IOVCC-GND).				GND / IOVCC	
HSYNCX	I	Host processor	Line s	Line synchronous signal, Low active. (Amplitude: IOVCC-GND)				GND / IOVCC	
DOTCLK	1	Host processor		Dot clock signal. Data is input on the rising edge of DOTCLK. (Amplitude: IOVCC-GND)				GND / IOVCC	
FMARK	0	Host processor			•	se. (Amplitude: IOVCC when writing data to th	,	ιM.	Open
IM2-1, IM0_ID	1	GND / IOVCC	0 0 0 0 1 1 1 Not	0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1	//O	System Interface. (Ampliinary System Interface 80-system 18-bit interface 80-system 9-bit interface 80-system 16-bit interface 80-system 8-bit interface Clock synchronous serial interface Setting inhibited Setting inhibited Colors in one-transfer colors in two-transfer	DB pins in use DB17-0 DB17-9 DB17-10, 8-1 DB17-10 — — — operation.	Colors 262,144 262,144 262,144 (Note 1) 262,144 (Note 2) 65536 —	
RESETX	1	Host processor or external RC circuit	Reset sure t	t pin. Th	ne F	R61509V is reset when a power on reset after CC-GND)	RESETX is I		_

PROTECT	I	Host processor	Reset protect pin. The R61509V enters a reset protect status by fixing PROTECT to GND level disabling hardware reset. With this, erroneous operations caused by noise are prevented. Low: Hardware reset is disabled (Reset protect status) High: Hardware reset is enabled. (Normal status)	IOVCC
---------	---	-------------------	--	-------

Table 7 Internal Power Supply Circuit

Signal	I/O	Connect to	Function	When not used
VDD	0	Stabilizing capacitor	Output from internal logic regulator. Connect to a stabilizing capacitor.	_
VCI1	0	Stabilizing capacitor	Reference voltage for step-up circuit 1. Make sure that DDVDH, VGH and VGL output voltages do no go exceed the ratings.	_
DDVDH	0	Stabilizing capacitor	Power supply for the source driver liquid crystal drive unit and VCOM drive. Connect to a stabilizing capacitor.	_
VGH	0	Stabilizing capacitor	Power supply for the gate driver liquid crystal drive unit. Connect to a stabilizing capacitor.	_
VGL	0	Stabilizing capacitor	Power supply for the gate driver liquid crystal drive unit. Connect to a stabilizing capacitor.	_
VCL	0	Stabilizing capacitor	Power supply for VCOML drive.	_
C11P, C11M, C12P, C12M	I/O	Step-up capacitor	Make sure to connect capacitors for internal step-up circuit 1.	
C13P, C13M, C21P, C21M, C22P, C22M	I/O	Step-up capacitor	Make sure to connect capacitors for internal step-up circuit 2.	_

Table 8 LCD drive

Signal	I/O	Connect to	Function	When not in use
VREG10UT	0	Stabilizing capacitor	Output voltage generated from the reference voltage VCIR. The factor is determined by instruction (VRH bits).	
			VREG10UT is used for (1) source driver grayscale reference voltage VREG10UT, (2) VCOMH level reference voltage, and (3) VCOM amplitude reference voltage. Connect to a stabilizing capacitor. $ VREG10UT = 4.0V \sim (DDVDH - 0.5)V $	_
VCOM	0	TFT panel common electrode	Power supply to the TFT panel's common electrode. VCOM alternates between VCOMH and VCOML. The alternating cycle is set by internal register. Also, the VCOM output can be started and halted by register setting.	_
VCOMH	0	Stabilizing capacitor	The High level of VCOM amplitude. The output level can be adjusted by either external resistor (VCOMR) or electronic volume.	_
VCOML	0	Stabilizing capacitor	The Low level of VCOM amplitude. The output level can be adjusted by instruction (VDV bits). VCOML = (VCL+0.5) $V \sim 0V$	_
VCOMR	I	Variable resistor or open	Connect a variable resistor when adjusting the VCOMH level between VREG10UT and GND.	Open
VGS	I	GND	Reference level for the grayscale voltage generating circuit.	_
S1~S720	0	LCD	Liquid crystal application voltages.	Open
G1~G432	0	LCD	Gate line output signals.	
			VGH: The gate line is selected. VGL: The gate line is not selected.	Open

Table 9 Others (test, dummy pins)

Signal	I/O	Connect to	Function	When not in use
VTEST	0	Open	Test pin. Leave open.	Open
VREFC	I	GND	Test pin. Make sure to fix to the GND level.	-
VREFD	0	Open	Test pin. Leave open.	Open
VREF	0	Open	Test pin. Leave open.	Open
VDDTEST	ı	GND	Test pin. Make sure to fix to the GND level.	-
VMON	0	Open	Test pin. Leave open.	Open
VCIR	0	Open	Test pin. Leave open.	Open
GNDDUM1- 10, AGNDDUM1 -5, VCCDUM, IOVCCDUM 1-2	0	-	Pins to fix the electrical potentials of unused interface and test pins.	Open
DUMMYR 1-4	-	-	DUMMYR1 and DUMMYR4, DUMMYR2 and DUMMYR3 are short-circuited within the chip for COG contact resistance measurement.	Open
VGLDMY 1-4	0	Unused gate line	Output VGL level. Use when fixing unused gate line of the panel.	Open
DUMMYA	_	Open	Dummy pad. Leave open.	OPEN
DUMMYB	_	Open	Dummy pad. Leave open.	OPEN
DUMMYC		Open	Dummy pad. Leave open.	OPEN
TESTO1-15	0	_	Dummy pad. Leave open.	OPEN
TEST 1-5	I	GND	Test pin. Connect to GND.	GND
TS0-8	0	Open	Test pin. Leave open.	OPEN
VPP3B	I	AGND	Test pin. Connect to AGND.	_
TSC	I	GND	Test pin. Connect to GND.	GND

Patents of dummy pin, which is used to fix to VCC or GND are granted.

PATENT ISSUED:

United States Patent No. 6,924,868 United States Patent No. 6,323,930 Japanese Patent No. 3,980,066 Korean Patent No. 401,270 Taiwanese Patent No. 175,413

Chip size: 19.03mm x 0.76mm
Chip thickness: 280µm (typ)
Pad coordinates: Pad center
Coordinate origin: Chip center

• Au bump size

1. 50µm x 90µm (I/O side: No.1-262)

2. 15µm x 100µm (LCD output side: No.263-1434)

• Au bump pitch: See pad coordinate

●Au bump height:12µm

Alignment mark

Table 10

Alignment marks		X-axis	Y-axis
Type A	(1-a)	-9381.0	-251.0
Турс А	(1-b)	9381.0	-251.0

Figure 2

pad No	pad name	Χ	Υ
1	DUMMYR1	-9135.0	-269.0
2	DUMMYR2	-9065.0	-269.0
3	AGNDDUM1	-8995.0	-269.0
4	VPP3B	-8925.0	-269.0
5	VPP3B	-8855.0	-269.0
6	VPP3B	-8785.0	-269.0
7	VPP3B	-8715.0	-269.0
8	AGNDDUM2	-8645.0	-269.0
9	VPP3A	-8575.0	-269.0
10	VPP3A	-8505.0	-269.0
11	VPP1	-8435.0	-269.0
12	VPP1	-8365.0	-269.0
	VPP1	-8295.0	-269.0
14	VPP1	-8225.0	-269.0
15	VPP1	-8155.0	-269.0
	VPP1	-8085.0	-269.0
	VPP1	-8015.0	-269.0
	GNDDUM1	-7945.0	-269.0
	VDDTEST	-7875.0	-269.0
	VREFC	-7805.0	-269.0
	VREFD	-7735.0	-269.0
	VREF	-7665.0	-269.0
	VCCDUM1	-7595.0	-269.0
	DUMMYA	-7525.0	-269.0
	DUMMYA	-7455.0	-269.0
	DUMMYA	-7385.0	-269.0
	DUMMYA	-7315.0	-269.0
	DUMMYA	-7245.0	-269.0
	GNDDUM2	-7175.0	-269.0
	AGND	-7105.0	-269.0
	AGND	-7035.0	-269.0
	AGND	-6965.0	-269.0
	AGND	-6895.0	-269.0
	AGND	-6825.0	-269.0
	AGND	-6755.0	-269.0
	GND	-6685.0	-269.0
	GND	-6615.0	
38	GND	-6545.0	-269.0
39		-6475.0	-269.0
40		-6405.0	-269.0
41	VCC	-6335.0	-269.0
42		-6265.0	-269.0
	VCC	-6195.0	-269.0
	VCC	-6125.0	-269.0
	VCC	-6055.0	-269.0
	VCC	-5985.0	-269.0
47		-5915.0	-269.0
48		-5845.0	-269.0
49	TS7	-5775.0	-269.0
50	TS6	-5705.0	-269.0

		2000.04	.21 revu.1
pad No	pad name	Χ	Υ
51	TS5	-5635.0	-269.0
52	TS4	-5565.0	-269.0
53	TS3	-5495.0	-269.0
54	TS2	-5425.0	-269.0
55	TS1	-5355.0	-269.0
56	TS0	-5285.0	-269.0
57	TEST5	-5215.0	-269.0
58	TEST4	-5145.0	-269.0
59	TEST3	-5075.0	-269.0
60	TEST2	-5005.0	-269.0
61	TEST1	-4935.0	-269.0
62	GNDDUM3	-4865.0	-269.0
63	TSC	-4795.0	-269.0
64	IM2	-4725.0	-269.0
65	IM1	-4655.0	-269.0
66	IM0 ID	-4585.0	-269.0
67	IOVCCDUM1	-4515.0	-269.0
68	PROTECT	-4445.0	-269.0
69	RESETX	-4375.0	-269.0
70	GNDDUM4	-4305.0	-269.0
71	DUMMYB	-4235.0	-269.0
72	DUMMYB	-4165.0	-269.0
73	VSYNCX	-4095.0	-269.0
	HSYNCX	-4025.0	-269.0
	IOVCCDUM2	-3955.0	-269.0
	ENABLE	-3885.0	-269.0
77	DOTCLK	-3815.0	-269.0
78	DB17	-3745.0	-269.0
79	DB16	-3675.0	-269.0
80	GNDDUM5	-3605.0	-269.0
81	DB15	-3535.0	-269.0
82	DB14	-3465.0	-269.0
83	DB13	-3395.0	-269.0
84	DB12	-3325.0	-269.0
85	GNDDUM6	-3255.0	-269.0
86	DB11	-3185.0	-269.0
87	DB10	-3115.0	-269.0
	DB9	-3045.0	-269.0
89	IOVCC	-2975.0	-269.0
	IOVCC	-2905.0	-269.0
91	IOVCC	-2835.0	-269.0
92	IOVCC	-2765.0	-269.0
	IOVCC	-2695.0	-269.0
	IOVCC	-2625.0	-269.0
95	DB8	-2555.0	-269.0
96	GNDDUM7	-2485.0	-269.0
97	DB7	-2415.0	-269.0
98	DB6	-2345.0	-269.0
	DB5	-2275.0	-269.0
100	DB4	-2205.0	-269.0

		· •	
pad No	pad name	Χ	Υ
101	GNDDUM8	-2135.0	-269.0
102	DB3	-2065.0	-269.0
103	DB2	-1995.0	-269.0
104	DB1	-1925.0	-269.0
105	DB0	-1855.0	-269.0
	GNDDUM9	-1785.0	-269.0
107	CSX	-1715.0	
108	RS	-1645.0	
109	WRX SCL	-1575.0	
110	RDX	-1505.0	
111	GNDDUM10	-1435.0	-269.0
112	FMARK	-1365.0	-269.0
	SDI	-1295.0	-269.0
	SDO	-1225.0	-269.0
	VDD	-1155.0	-269.0
	VDD	-1085.0	-269.0
	VDD	-1015.0	-269.0
	VDD	-945.0	-269.0
	VDD	-875.0	-269.0
	VDD	-805.0	-269.0
	VDD	-735.0	-269.0
	VDD	-665.0	-269.0
	VDD	-595.0	-269.0
	VMON	-525.0	-269.0
	VCOM	-455.0	-269.0
	VCOM	-385.0	-269.0
	VCOM	-315.0	-269.0
	VCOM	-245.0	-269.0
	VCOM	-175.0	-269.0
	VCOM	-105.0	-269.0
	VCOM	-35.0	-269.0
	VCOM	35.0	-269.0
	VCOMH	105.0	
	VCOMH	175.0	
	VCOMH	245.0	
	VCOMH	315.0	-269.0
	VCOMH	385.0	
138		455.0	-269.0
	VCOML	525.0	-269.0
	VCOML	595.0	-269.0
141	VCOML	665.0	-269.0
142	VCOML	735.0	-269.0
143		805.0	-269.0
144		875.0	-269.0
145		945.0	-269.0
146		1015.0	-269.0
147	GND	1085.0	-269.0
148		1155.0	-269.0
149	GND	1225.0	-269.0
150	GND	1295.0	-269.0

		2008.04	
pad No	pad name	Χ	Υ
	GND	1365.0	-269.0
152	GND	1435.0	-269.0
153	GND	1505.0	-269.0
154	VGS	1575.0	-269.0
155	AGND	1645.0	-269.0
156	AGND	1715.0	-269.0
157	AGND	1785.0	-269.0
158	AGND	1855.0	-269.0
159	AGND	1925.0	-269.0
160	AGND	1995.0	-269.0
161	AGND	2065.0	-269.0
162	AGND	2135.0	-269.0
163	AGND	2205.0	-269.0
164	VTEST	2275.0	-269.0
165	VCIR	2345.0	-269.0
166	VREG1OUT	2415.0	-269.0
167	VCOMR	2485.0	-269.0
168	C11M	2555.0	-269.0
169		2625.0	-269.0
170	C11M	2695.0	-269.0
171	C11M	2765.0	-269.0
172	C11M	2835.0	-269.0
173	C11P	2905.0	-269.0
174	C11P	2975.0	-269.0
175	C11P	3045.0	-269.0
176	C11P	3115.0	-269.0
177	C11P	3185.0	-269.0
178	C12M	3255.0	-269.0
179	C12M	3325.0	-269.0
180	C12M	3395.0	-269.0
181	C12M	3465.0	-269.0
182	C12M	3535.0	-269.0
183	C12P	3605.0	-269.0
184	C12P	3675.0	-269.0
185	C12P	3745.0	-269.0
186		3815.0	-269.0
187	C12P	3885.0	-269.0
	DDVDH	3955.0	-269.0
	DDVDH	4025.0	-269.0
	DDVDH	4095.0	-269.0
	DDVDH	4165.0	-269.0
	DDVDH	4235.0	-269.0
	DDVDH	4305.0	-269.0
	DDVDH	4375.0	-269.0
	DDVDH	4445.0	-269.0
	DDVDH	4515.0	-269.0
	VCI1	4585.0	-269.0
	VCI1	4655.0	-269.0
	VCI1	4725.0	-269.0
200	VCI1	4795.0	-269.0
		00.0	_00.0

	T i da Goordinat	o (Oille.	P*****
pad No	pad name	Χ	Υ
201	VCI	4865.0	-269.0
202	VCI	4935.0	-269.0
203	VCI	5005.0	-269.0
204	VCI	5075.0	-269.0
205	VCI	5145.0	-269.0
206	VCI	5215.0	-269.0
207	VCILVL	5285.0	-269.0
208	DUMMYC	5355.0	-269.0
209	DUMMYC	5425.0	-269.0
210	DUMMYC	5495.0	-269.0
211	DUMMYC	5565.0	
212	DUMMYC	5635.0	-269.0
213	GND	5705.0	
214	GND	5775.0	
215	GND	5845.0	
	GND	5915.0	
	GND	5985.0	
	AGND	6055.0	
	AGND	6125.0	
	AGND	6195.0	
	AGND	6265.0	
	AGND	6335.0	-269.0
	VGL	6405.0	-269.0
	VGL	6475.0	-269.0
	VGL	6545.0	-269.0
	VGL	6615.0	-269.0
	VGL	6685.0	-269.0
	VGL	6755.0	-269.0
	VGL	6825.0	-269.0
	VGL	6895.0	-269.0
	VGL	6965.0	-269.0
	AGNDDUM3	7035.0	-269.0
	AGNDDUM4	7105.0	-269.0
	VGH	7175.0	-269.0
	VGH	7245.0	-269.0
	VGH	7315.0	-269.0
	VGH	7385.0	
	VGH	7455.0	-269.0
	VGH	7525.0	-269.0
	AGNDDUM5	7595.0	-269.0
	VCL	7665.0	-269.0
	VCL	7735.0	-269.0
	VCL	7805.0	-269.0
244	C13M	7875.0	-269.0
	C13M	7945.0	-269.0
246	C13M	8015.0	-269.0
	C13P	8085.0	-269.0
248	C13P	8155.0	-269.0
	C13P	8225.0	-269.0
250	C21M	8295.0	-269.0

		2000.04	.211000.1
pad No	pad name	Х	Υ
251	C21M	8365.0	-269.0
252	C21M	8435.0	-269.0
253	C21P	8505.0	-269.0
254	C21P	8575.0	-269.0
255	C21P	8645.0	-269.0
256	C22M	8715.0	-269.0
257	C22M	8785.0	-269.0
258	C22M	8855.0	-269.0
259	C22P	8925.0	-269.0
260	C22P	8995.0	-269.0
261	C22P	9065.0	-269.0
262	TESTO1	9135.0	-269.0
263	TESTO2	9397.5	157.0
264	TESTO3	9382.5	276.0
265	TESTO4	9367.5	157.0
	VGLDMY1	9352.5	276.0
267		9337.5	157.0
268		9322.5	276.0
269		9307.5	157.0
270		9292.5	276.0
	G10	9277.5	157.0
	G12	9262.5	276.0
	G14	9247.5	157.0
	G16	9232.5	276.0
	G18	9217.5	157.0
	G20	9202.5	276.0
	G22	9187.5	157.0
	G24	9172.5	276.0
	G26	9157.5	157.0
	G28	9142.5	276.0
	G30	9127.5	157.0
	G32	9112.5	276.0
	G34	9097.5	157.0
	G36	9082.5	276.0
	G38	9067.5	157.0
	G40	9052.5	276.0
	G42	9037.5	157.0
	G44	9022.5	276.0
289		9007.5	157.0
290		8992.5	276.0
291	G50	8977.5	157.0
292		8962.5	276.0
	G54	8947.5	157.0
	G56	8932.5	276.0
	G58	8917.5	157.0
	G60	8902.5	276.0
	G62	8887.5	157.0
	G64	8872.5	276.0
	G66	8857.5	157.0
300	G68	8842.5	276.0
300		30.2.0	0.0

110.000	T i da Goordinat	- (•
pad No	pad name	Χ	Υ
301	G70	8827.5	157.0
302	G72	8812.5	276.0
303	G74	8797.5	157.0
304	G76	8782.5	276.0
305	G78	8767.5	157.0
306	G80	8752.5	276.0
307	G82	8737.5	157.0
308	G84	8722.5	276.0
309	G86	8707.5	157.0
310	G88	8692.5	276.0
311	G90	8677.5	157.0
312	G92	8662.5	276.0
313	G94	8647.5	157.0
314	G96	8632.5	276.0
315	G98	8617.5	157.0
316	G100	8602.5	276.0
317	G102	8587.5	157.0
318	G104	8572.5	276.0
319	G106	8557.5	157.0
320	G108	8542.5	276.0
321	G110	8527.5	157.0
322		8512.5	276.0
323	G114	8497.5	157.0
324	G116	8482.5	276.0
325	G118	8467.5	157.0
326	G120	8452.5	276.0
327	G122	8437.5	157.0
328	G124	8422.5	276.0
329	G126	8407.5	157.0
330	G128	8392.5	276.0
331	G130	8377.5	157.0
332	G132	8362.5	276.0
333	G134	8347.5	157.0
334	G136	8332.5	276.0
335	G138	8317.5	157.0
336	G140	8302.5	276.0
337	G142	8287.5	157.0
	G144	8272.5	276.0
	G146	8257.5	157.0
	G148	8242.5	276.0
341	G150	8227.5	157.0
342	G152	8212.5	276.0
343	G154	8197.5	157.0
344	G156	8182.5	276.0
345	G158	8167.5	157.0
346	G160	8152.5	276.0
347	G162	8137.5	157.0
348	G164	8122.5	276.0
349	G166	8107.5	157.0
350	G168	8092.5	276.0
336 337 338 339 340 341 342 343 344 345 346 347 348	G140 G142 G144 G146 G148 G150 G152 G154 G156 G158 G160 G162 G164 G166	8302.5 8287.5 8272.5 8257.5 8242.5 8227.5 8212.5 8197.5 8167.5 8152.5 8137.5 8122.5	276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0 157.0 276.0

pad No	pad name	Χ	Υ
351	G170	8077.5	157.0
352	G172	8062.5	276.0
353	G174	8047.5	157.0
354	G176	8032.5	276.0
355	G178	8017.5	157.0
356	G180	8002.5	276.0
357	G182	7987.5	157.0
358	G184	7972.5	276.0
359	G186	7957.5	157.0
360	G188	7942.5	276.0
361	G190	7927.5	157.0
362	G192	7912.5	276.0
363	G194	7897.5	157.0
364	G196	7882.5	276.0
365	G198	7867.5	157.0
366	G200	7852.5	276.0
367	G202	7837.5	157.0
368	G204	7822.5	276.0
369	G206	7807.5	157.0
370	G208	7792.5	276.0
371	G210	7777.5	157.0
372	G212	7762.5	276.0
373	G214	7747.5	157.0
374	G216	7732.5	276.0
375	G218	7717.5	157.0
376	G220	7702.5	276.0
377	G222	7687.5	157.0
378	G224	7672.5	276.0
379	G226	7657.5	157.0
380	G228	7642.5	276.0
381	G230	7627.5	157.0
382	G232	7612.5	276.0
383	G234	7597.5	157.0
384	G236	7582.5	276.0
385	G238	7567.5	157.0
386	G240	7552.5	276.0
387	G242	7537.5	157.0
388	G244	7522.5	276.0
389	G246	7507.5	157.0
390	G248	7492.5	276.0
391	G250	7477.5	157.0
392	G252	7462.5	276.0
393	G254	7447.5	157.0
394	G256	7432.5	276.0
395	G258	7417.5	157.0
396	G260	7402.5	276.0
397	G262	7387.5	157.0
398	G264	7372.5	276.0
399	G266	7357.5	157.0
400	G268	7342.5	276.0
_			_

		<u> </u>	<u> </u>
pad No	pad name	Х	Y
401	G270	7327.5	157.0
402	G272	7312.5	276.0
403	G274	7297.5	157.0
404	G276	7282.5	276.0
	G278	7267.5	157.0
	G280	7252.5	276.0
	G282	7237.5	157.0
	G284	7222.5	276.0
	G286	7207.5	157.0
	G288	7192.5	276.0
411		7177.5	157.0
412	G292	7162.5	276.0
413		7147.5	157.0
414		7132.5	276.0
415		7117.5	157.0
416		7102.5	276.0
417		7087.5	157.0
418		7072.5	276.0
419		7057.5	157.0
420		7042.5	276.0
421	G310	7027.5	157.0
422		7012.5	276.0
423		6997.5	157.0
424	G316	6982.5	276.0
425	G318	6967.5	157.0
426	G320	6952.5	276.0
427	G322	6937.5	157.0
428	G324	6922.5	276.0
429		6907.5	157.0
430		6892.5	276.0
431	G330	6877.5	157.0
432		6862.5	276.0
	G334	6847.5	157.0
	G336	6832.5	276.0
	G338	6817.5	157.0
	G340	6802.5	276.0
	G342	6787.5	157.0
437		6772.5	276.0
439		6757.5	157.0
440		6742.5	276.0
441	G350	6727.5	157.0
441	G352	6712.5	
442	G354	6697.5	276.0 157.0
443		6682.5	157.0 276.0
444			276.0 157.0
445		6667.5 6652.5	
	G360		276.0 157.0
447	G362	6637.5	157.0
448	G364	6622.5	276.0 157.0
449	G366	6607.5	157.0
450	G368	6592.5	276.0

			.211600.1
pad No	pad name	X	Υ
451	G370	6577.5	157.0
	G372	6562.5	276.0
	G374	6547.5	157.0
	G376	6532.5	276.0
455	G378	6517.5	157.0
456	G380	6502.5	276.0
457	G382	6487.5	157.0
458	G384	6472.5	276.0
459	G386	6457.5	157.0
460	G388	6442.5	276.0
461	G390	6427.5	157.0
	G392	6412.5	276.0
	G394	6397.5	157.0
	G396	6382.5	276.0
	G398	6367.5	157.0
466	G400	6352.5	276.0
	G402	6337.5	157.0
	G404	6322.5	276.0
	G406	6307.5	157.0
	G408	6292.5	276.0
	G410	6277.5	157.0
	G412	6262.5	276.0
	G414	6247.5	157.0
	G416	6232.5	276.0
	G418	6217.5	157.0
	G420	6202.5	276.0
	G422	6187.5	157.0
	G424	6172.5	276.0
	G426	6157.5	157.0
	G428	6142.5	276.0
481		6127.5	157.0
	G432	6112.5	276.0
	VGLDMY2	6097.5	157.0
	TESTO5	5887.5	157.0
	S720	5872.5	276.0
	S719	5857.5	157.0
	S718	5842.5	276.0
	S717	5827.5	157.0
489		5812.5	276.0
490		5797.5	157.0
491	S714	5782.5	276.0
492	S713	5767.5	157.0
493		5752.5	276.0
	S711	5737.5	157.0
	S710	5722.5	276.0
	S709	5707.5	157.0
	S708	5692.5	276.0
	S707	5677.5	157.0
	S706	5662.5	276.0
500	S705	5647.5	157.0

		• • •	F
pad No	pad name	Х	Υ
501	S704	5632.5	276.0
502	S703	5617.5	157.0
503	S702	5602.5	276.0
504	S701	5587.5	157.0
505		5572.5	276.0
506		5557.5	157.0
507		5542.5	276.0
	S697	5527.5	157.0
	S696	5512.5	276.0
	S695	5497.5	157.0
511		5482.5	276.0
512		5467.5	157.0
513		5452.5	276.0
514		5437.5	157.0
515	S690	5422.5	276.0
516		5407.5	157.0
517	S688	5392.5	276.0
518		5377.5	157.0
519		5362.5	276.0
520		5347.5	157.0
521	S684	5332.5	276.0
522	S683	5317.5	157.0
523	S682	5302.5	276.0
524	S681	5287.5	157.0
525	S680	5272.5	276.0
526	S679	5257.5	157.0
527	S678	5242.5	276.0
528	S677	5227.5	157.0
529		5212.5	276.0
530		5197.5	157.0
531	S674	5182.5	276.0
532		5167.5	157.0
533		5152.5	276.0
	S671	5137.5	157.0
	S670	5122.5	276.0
536		5107.5	157.0
	S668	5092.5	276.0
538		5077.5	157.0
539		5062.5	276.0
540		5047.5	
540 541	S664	+	157.0 276.0
542	S663	5032.5 5017.5	276.0
542		5002.5	157.0
543	S662		276.0
	S661	4987.5 4972.5	157.0
545 546	S660 S659		276.0
546		4957.5	157.0
547	S658	4942.5	276.0
548	S657	4927.5	157.0
549	S656	4912.5	276.0
550	S655	4897.5	157.0

		2000.01	.211600.1
pad No	pad name	X	Y
551	S654	4882.5	276.0
552	S653	4867.5	157.0
553	S652	4852.5	276.0
554	S651	4837.5	157.0
555	S650	4822.5	276.0
556	S649	4807.5	157.0
557	S648	4792.5	276.0
558	S647	4777.5	157.0
559	S646	4762.5	276.0
560	S645	4747.5	157.0
561	S644	4732.5	276.0
562	S643	4717.5	157.0
563	S642	4702.5	276.0
564	S641	4687.5	157.0
565	S640	4672.5	276.0
566	S639	4657.5	157.0
567	S638	4642.5	276.0
568	S637	4627.5	157.0
569	S636	4612.5	276.0
570	S635	4597.5	157.0
571	S634	4582.5	276.0
572	S633	4567.5	157.0
573	S632	4552.5	276.0
574	S631	4537.5	157.0
575	S630	4522.5	276.0
576	S629	4507.5	157.0
577	S628	4492.5	276.0
578	S627	4477.5	157.0
579	S626	4462.5	276.0
580	S625	4447.5	157.0
581	S624	4432.5	276.0
582	S623	4417.5	157.0
583	S622	4402.5	276.0
584	S621	4387.5	157.0
585	S620	4372.5	276.0
586	S619	4357.5	157.0
587	S618	4342.5	276.0
588	S617	4327.5	157.0
589	S616	4312.5	276.0
590	S615	4297.5	157.0
591	S614	4282.5	276.0
592	S613	4267.5	157.0
593	S612	4252.5	276.0
594	S611	4237.5	157.0
595	S610	4222.5	276.0
596	S609	4207.5	157.0
597	S608	4192.5	276.0
598	S607	4177.5	157.0
599	S606	4162.5	276.0
600	S605	4147.5	157.0
-			

		- ,	<u> </u>
pad No	pad name	Х	Y
601	S604	4132.5	276.0
602	S603	4117.5	157.0
603	S602	4102.5	276.0
604	S601	4087.5	157.0
605	S600	4072.5	276.0
606		4057.5	157.0
607		4042.5	276.0
	S597	4027.5	157.0
609	S596	4012.5	276.0
	S595	3997.5	157.0
611		3982.5	276.0
612		3967.5	157.0
613		3952.5	276.0
614		3937.5	157.0
615	S590	3922.5	276.0
616		3907.5	157.0
617	S588	3892.5	276.0
618		3877.5	157.0
619		3862.5	276.0
620		3847.5	157.0
621	S584	3832.5	276.0
622	S583	3817.5	157.0
623	S582	3802.5	276.0
624	S581	3787.5	157.0
625	S580	3772.5	276.0
626	S579	3757.5	157.0
627	S578	3742.5	276.0
628	S577	3727.5	157.0
629		3712.5	276.0
630		3697.5	157.0
631	S574	3682.5	276.0
632		3667.5	157.0
633		3652.5	276.0
	S571	3637.5	157.0
	S570	3622.5	276.0
636		3607.5	157.0
	S568	3592.5	276.0
638		3577.5	157.0
639		3562.5	276.0
640		3547.5	157.0
641	S564	3532.5	276.0
642	S563		
643	S562	3517.5 3502.5	157.0 276.0
644	S561	3487.5	157.0
645		3472.5	
646	S560 S559	3472.5	276.0 157.0
	S558	3457.5	157.0
647		1	276.0 157.0
648	S557	3427.5 3412.5	157.0
649	S556		276.0
650	S555	3397.5	157.0

pad No	pad name	Χ	Υ
651	S554	3382.5	276.0
652	S553	3367.5	157.0
653	S552	3352.5	276.0
654	S551	3337.5	157.0
655	S550	3322.5	276.0
656	S549	3307.5	157.0
657	S548	3292.5	276.0
658	S547	3277.5	157.0
659	S546	3262.5	276.0
660	S545	3247.5	157.0
661	S544	3232.5	276.0
662	S543	3217.5	157.0
663	S542	3202.5	276.0
664	S541	3187.5	157.0
665	S540	3172.5	276.0
	S539	3157.5	157.0
667	S538	3142.5	276.0
	S537	3127.5	157.0
	S536	3112.5	276.0
	S535	3097.5	157.0
	S534	3082.5	276.0
		3067.5	157.0
	S532	3052.5	276.0
	S531	3037.5	157.0
	S530	3022.5	276.0
	S529	3007.5	157.0
677	S528	2992.5	276.0
678	S527	2977.5	157.0
		2962.5	276.0
680	S525	2947.5	157.0
681	S524	2932.5	276.0
682	S523	2917.5	157.0
		2902.5	276.0
	S521	2887.5	157.0
	S520	2872.5	276.0
	S519	2857.5	157.0
687	S518	2842.5	276.0
	S517	2827.5	157.0
	S516	2812.5	276.0
	S515	2797.5	157.0
	S514	2782.5	276.0
692	S513	2767.5	157.0
693	S512	2752.5	276.0
	S511	2737.5	157.0
		2722.5	276.0
696	S509	2707.5	157.0
697	S508	2692.5	276.0
698	S507	2677.5	157.0
	S506	2662.5	276.0
700	S505	2647.5	157.0
		, u	

		•	<u> </u>
pad No	pad name	Х	Y
701	S504	2632.5	276.0
702	S503	2617.5	157.0
703	S502	2602.5	276.0
704	S501	2587.5	157.0
	S500	2572.5	276.0
	S499	2557.5	157.0
707		2542.5	276.0
	S497	2527.5	157.0
	S496	2512.5	276.0
	S495	2497.5	157.0
711		2482.5	276.0
712	S493	2467.5	157.0
	S492	2452.5	276.0
714		2437.5	157.0
715		2422.5	276.0
716		2407.5	157.0
717		2392.5	276.0
718		2377.5	157.0
719		2362.5	276.0
720		2347.5	157.0
721	S484	2332.5	276.0
722	S483	2317.5	157.0
723	S482	2302.5	276.0
724	S481	2287.5	157.0
725	S480	2272.5	276.0
726	S479	2257.5	157.0
727	S478	2242.5	276.0
728	S477	2227.5	157.0
729		2212.5	276.0
730		2197.5	157.0
731	S474	2182.5	276.0
732		2167.5	157.0
733		2152.5	276.0
	S471	2137.5	157.0
	S470	2122.5	276.0
736		2107.5	157.0
	S468	2092.5	276.0
738		2077.5	157.0
739		2062.5	276.0
740		2002.5	157.0
740	S464	2032.5	276.0
741	S463	2017.5	157.0
742	S462	2002.5	276.0
743	S461	1987.5	157.0
745	S460	1972.5	276.0
745	S459	1972.5	157.0
740	S458	1942.5	276.0
747	S457	1942.5	157.0
748	S456	1912.5	276.0
749	S455	1897.5	157.0
7 50	UTUU	0.1801	137.0

pad No	pad name	Χ	Υ
751	S454	1882.5	276.0
752	S453	1867.5	157.0
753	S452	1852.5	276.0
754	S451	1837.5	157.0
755	S450	1822.5	276.0
756	S449	1807.5	157.0
757	S448	1792.5	276.0
758	S447	1777.5	157.0
759	S446	1762.5	276.0
760	S445	1747.5	157.0
761	S444	1732.5	276.0
762	S443	1717.5	157.0
763	S442	1702.5	276.0
764	S441	1687.5	157.0
765	S440	1672.5	276.0
766	S439	1657.5	157.0
767	S438	1642.5	276.0
768	S437	1627.5	157.0
769	S436	1612.5	276.0
770	S435	1597.5	157.0
771	S434	1582.5	276.0
772	S433	1567.5	157.0
773	S432	1552.5	276.0
774	S431	1537.5	157.0
775	S430	1522.5	276.0
776	S429	1507.5	157.0
777	S428	1492.5	276.0
778	S427	1477.5	157.0
779	S426	1462.5	276.0
780	S425	1447.5	157.0
781	S424	1432.5	276.0
782	S423	1417.5	157.0
783	S422	1402.5	276.0
784	S421	1387.5	157.0
785	S420	1372.5	276.0
786	S419	1357.5	157.0
787	S418	1342.5	276.0
788	S417	1327.5	157.0
789	S416	1312.5	276.0
790	S415	1297.5	157.0
791	S414	1282.5	276.0
792	S413	1267.5	157.0
793	S412	1252.5	276.0
794	S411	1237.5	157.0
795	S410	1222.5	276.0
796	S409	1207.5	157.0
797	S408	1192.5	276.0
798	S407	1177.5	157.0
799	S406	1162.5	276.0
800	S405	1147.5	157.0

			<u> </u>
pad No	pad name	Х	Y
801	S404	1132.5	276.0
802	S403	1117.5	157.0
803	S402	1102.5	276.0
804	S401	1087.5	157.0
805		1072.5	276.0
806		1057.5	157.0
807		1042.5	276.0
	S397	1027.5	157.0
	S396	1012.5	276.0
	S395	997.5	157.0
811		982.5	276.0
812		967.5	157.0
813		952.5	276.0
814		937.5	157.0
815	S390	922.5	276.0
816		907.5	157.0
817	S388	892.5	276.0
818		877.5	157.0
819		862.5	276.0
820		847.5	157.0
821	S384	832.5	276.0
822	S383	817.5	157.0
823	S382	802.5	276.0
824	S381	787.5	157.0
825	S380	772.5	276.0
826	S379	757.5	157.0
827	S378	742.5	276.0
828	S377	727.5	157.0
829	S376	712.5	276.0
830		697.5	157.0
831	S374	682.5	276.0
832		667.5	157.0
833		652.5	276.0
834		637.5	157.0
	S370	622.5	276.0
836		607.5	157.0
	S368	592.5	276.0
838		577.5	157.0
839		562.5	276.0
840	_	547.5	157.0
841	S364	532.5	276.0
842		517.5	
843		502.5	157.0 276.0
844		487.5	157.0
845	TESTO6		
	TESTO6	472.5 457.5	276.0 157.0
846 847	TESTO7	457.5	
	TESTO9		276.0
848 849	TESTO9	427.5 -427.5	157.0 276.0
	TESTO11	- 4 27.5	157.0
850	IESTUTI	-442.5	157.0

pad No	pad name	Χ	Υ
851	TESTO12	-457.5	276.0
852	TESTO13	-472.5	157.0
853	S360	-487.5	276.0
854	S359	-502.5	157.0
855	S358	-517.5	276.0
856	S357	-532.5	157.0
857	S356	-547.5	276.0
858	S355	-562.5	157.0
859	S354	-577.5	276.0
860	S353	-592.5	157.0
861	S352	-607.5	276.0
862	S351	-622.5	157.0
863	S350	-637.5	276.0
864	S349	-652.5	157.0
865	S348	-667.5	276.0
866	S347	-682.5	157.0
867	S346	-697.5	276.0
868	S345	-712.5	157.0
869	S344	-727.5	276.0
870	S343	-742.5	157.0
871	S342	-757.5	276.0
872		-772.5	157.0
873	S340	-787.5	276.0
	S339	-802.5	157.0
	S338	-817.5	276.0
	S337	-832.5	157.0
877	S336	-847.5	276.0
878	S335	-862.5	157.0
879	S334	-877.5	276.0
880	S333	-892.5	157.0
881	S332	-907.5	276.0
882	S331	-922.5	157.0
883	S330	-937.5	276.0
884	S329	-952.5	157.0
885	S328	-967.5	276.0
886	S327	-982.5	157.0
887	S326	-997.5	276.0
	S325	-1012.5	157.0
	S324	-1027.5	276.0
890	S323	-1042.5	157.0
	S322	-1057.5	276.0
892	S321	-1072.5	157.0
893	S320	-1087.5	276.0
		-1102.5	157.0
895		-1117.5	276.0
896	S317	-1132.5	157.0
897	S316	-1147.5	276.0
898	S315	-1162.5	157.0
		-1177.5	276.0
900	S313	-1192.5	157.0
		-	

			<u> </u>
pad No	pad name	Х	Υ
901	S312	-1207.5	276.0
902	S311	-1222.5	157.0
903	S310	-1237.5	276.0
904	S309	-1252.5	157.0
905		-1267.5	276.0
906		-1282.5	157.0
907		-1297.5	276.0
	S305	-1312.5	157.0
	S304	-1327.5	276.0
910		-1342.5	157.0
911		-1357.5	276.0
912		-1372.5	157.0
913		-1387.5	276.0
914		-1402.5	157.0
915	S298	-1417.5	276.0
916		-1432.5	157.0
917	S296	-1447.5	276.0
918	S295	-1462.5	157.0
919		-1477.5	276.0
920		-1492.5	157.0
921	S292	-1507.5	276.0
922	S291	-1522.5	157.0
923	S290	-1537.5	276.0
924	S289	-1552.5	157.0
925	S288	-1567.5	276.0
926	S287	-1582.5	157.0
927	S286	-1597.5	276.0
928	S285	-1612.5	157.0
929	S284	-1627.5	276.0
930		-1642.5	157.0
931	S282	-1657.5	276.0
931		-1672.5	157.0
933			276.0
	S279	-1687.5	
		-1702.5	157.0
936	S278 S277	-1717.5 -1732.5	276.0 157.0
	S276	-1732.5	276.0
938		-1762.5	157.0
939		-1777.5	276.0
940		-1792.5	157.0
941	S272	-1807.5	276.0
942	S271	-1822.5	157.0
943	S270	-1837.5	276.0
944	S269	-1852.5	157.0
945	S268	-1867.5	276.0
946	S267	-1882.5	157.0
947	S266	-1897.5	276.0
948	S265	-1912.5	157.0
949	S264	-1927.5	276.0
950	S263	-1942.5	157.0

		2000.01	.211600.1
pad No	pad name	Χ	Υ
951	S262	-1957.5	276.0
952	S261	-1972.5	157.0
953	S260	-1987.5	276.0
954	S259	-2002.5	157.0
955	S258	-2017.5	276.0
956	S257	-2032.5	157.0
957	S256	-2047.5	276.0
958	S255	-2062.5	157.0
959	S254	-2077.5	276.0
960	S253	-2092.5	157.0
961	S252	-2107.5	276.0
962	S251	-2122.5	157.0
963	S250	-2137.5	276.0
964	S249	-2152.5	157.0
965	S248	-2167.5	276.0
966	S247	-2182.5	157.0
967	S246	-2197.5	276.0
968	S245	-2212.5	157.0
	S244	-2227.5	276.0
	S243	-2242.5	157.0
	S242	-2257.5	276.0
	S241	-2272.5	157.0
	S240	-2287.5	276.0
	S239	-2302.5	157.0
	S238	-2317.5	276.0
	S237	-2332.5	157.0
977		-2347.5	276.0
978		-2362.5	157.0
979		-2377.5	276.0
980		-2392.5	157.0
981	S232	-2407.5	276.0
982	S231	-2422.5	157.0
983		-2437.5	276.0
984		-2452.5	157.0
985		-2467.5	276.0
	S227	-2482.5	157.0
	S226	-2497.5	276.0
988		-2512.5	157.0
989		-2527.5	276.0
990	S223	-2542.5	157.0
991	S222	-2557.5	276.0
992	S221	-2572.5	157.0
993		-2587.5	276.0
994		-2602.5	157.0
	S218	-2617.5	276.0
	S217	-2632.5	157.0
	S216	-2647.5	276.0
	S215	-2662.5	157.0
	S214	-2677.5	276.0
	S213	-2692.5	157.0
1000	0-10	2002.0	101.0

		- •	F- •
pad No	pad name	Χ	Υ
1001	S212	-2707.5	276.0
1002	S211	-2722.5	157.0
1003	S210	-2737.5	276.0
	S209	-2752.5	157.0
1005	S208	-2767.5	276.0
1006	S207	-2782.5	157.0
	S206	-2797.5	276.0
	S205	-2812.5	157.0
	S204	-2827.5	276.0
	S203	-2842.5	157.0
	S202	-2857.5	276.0
	S201	-2872.5	157.0
	S200	-2887.5	276.0
	S199	-2902.5	157.0
	S198	-2917.5	276.0
1016		-2932.5	157.0
1017		-2947.5	276.0
1018		-2962.5	157.0
1019		-2977.5	276.0
1020		-2992.5	157.0
1021	S192	-3007.5	276.0
1022		-3022.5	157.0
1023		-3037.5	276.0
1023		-3057.5	157.0
1025		-3067.5	276.0
1026		-3082.5	157.0
1027		-3097.5	276.0
1028		-3112.5	157.0
1029		-3127.5	276.0
1030		-3142.5	157.0
1031	S182	-3157.5	276.0
1031		-3172.5	157.0
	S180	-3187.5	276.0
	S179	-3202.5	157.0
	S178	-3217.5	276.0
	S177	-3232.5	157.0
	S176	-3232.5	276.0
1037		-3247.5	157.0
1038		-3277.5	276.0
1039		-3292.5	157.0
1040	S173	-3292.5	276.0
1041			
1042		-3322.5	157.0
1043	S170 S169	-3337.5	276.0
1044		-3352.5	157.0
1045	S168 S167	-3367.5 -3382.5	276.0
		-3382.5	157.0
1047	S166		276.0
1048	S165	-3412.5	157.0
1049		-3427.5	276.0
1050	S163	-3442.5	157.0

pad No pad name X Y 1051 S162 -3457.5 276.0 1052 S161 -3472.5 157.0 1053 S160 -3487.5 276.0 1054 S159 -3502.5 157.0 1055 S158 -3517.5 276.0 1056 S157 -3532.5 157.0 1057 S156 -3547.5 276.0 1058 S155 -3562.5 157.0 1059 S154 -3577.5 276.0 1060 S153 -3592.5 157.0 1061 S152 -3607.5 276.0 1062 S151 -3622.5 157.0 1063 S150 -3637.5 276.0 1064 S149 -3652.5 157.0 1065 S148 -3667.5 276.0 1066 S147 -3682.5 157.0 1067 S146 -3697.5 276.0 1068 S145 -3712.5 157.0 1070 S143 -3742.5 157.0 1071 S142 -3757.5 276.0 1072 S141 -3772.5 </th
1052 S161 -3472.5 157.0 1053 S160 -3487.5 276.0 1054 S159 -3502.5 157.0 1055 S158 -3517.5 276.0 1056 S157 -3532.5 157.0 1057 S156 -3547.5 276.0 1058 S155 -3562.5 157.0 1059 S154 -3577.5 276.0 1060 S153 -3592.5 157.0 1061 S152 -3607.5 276.0 1062 S151 -3622.5 157.0 1063 S150 -3637.5 276.0 1064 S149 -3652.5 157.0 1065 S148 -3667.5 276.0 1066 S147 -3682.5 157.0 1067 S146 -3697.5 276.0 1068 S145 -3712.5 157.0 1070 S143 -3742.5 157.0 1071 S14
1053 \$160 -3487.5 276.0 1054 \$159 -3502.5 157.0 1055 \$158 -3517.5 276.0 1056 \$157 -3532.5 157.0 1057 \$156 -3547.5 276.0 1058 \$155 -3562.5 157.0 1059 \$154 -3577.5 276.0 1060 \$153 -3592.5 157.0 1061 \$152 -3607.5 276.0 1062 \$151 -3622.5 157.0 1063 \$150 -3637.5 276.0 1064 \$149 -3652.5 157.0 1065 \$148 -3667.5 276.0 1066 \$147 -3682.5 157.0 1067 \$146 -3697.5 276.0 1068 \$145 -3712.5 157.0 1070 \$143 -3727.5 276.0 1071 \$142 -3757.5 276.0 1072 \$14
1054 \$159 -3502.5 157.0 1055 \$158 -3517.5 276.0 1056 \$157 -3532.5 157.0 1057 \$156 -3547.5 276.0 1058 \$155 -3562.5 157.0 1059 \$154 -3577.5 276.0 1060 \$153 -3592.5 157.0 1061 \$152 -3607.5 276.0 1062 \$151 -3622.5 157.0 1063 \$150 -3637.5 276.0 1064 \$149 -3652.5 157.0 1065 \$148 -3667.5 276.0 1066 \$147 -3682.5 157.0 1067 \$146 -3697.5 276.0 1068 \$145 -3712.5 157.0 1070 \$143 -3742.5 157.0 1070 \$143 -3727.5 276.0 1071 \$142 -3757.5 276.0 1072 \$14
1055 S158 -3517.5 276.0 1056 S157 -3532.5 157.0 1057 S156 -3547.5 276.0 1058 S155 -3562.5 157.0 1059 S154 -3577.5 276.0 1060 S153 -3592.5 157.0 1061 S152 -3607.5 276.0 1062 S151 -3622.5 157.0 1063 S150 -3637.5 276.0 1064 S149 -3652.5 157.0 1065 S148 -3667.5 276.0 1066 S147 -3682.5 157.0 1067 S146 -3697.5 276.0 1068 S145 -3712.5 157.0 1070 S143 -3742.5 157.0 1071 S142 -3757.5 276.0 1072 S141 -3772.5 157.0 1073 S140 -3787.5 276.0 1074 S13
1056 S157 -3532.5 157.0 1057 S156 -3547.5 276.0 1058 S155 -3562.5 157.0 1059 S154 -3577.5 276.0 1060 S153 -3592.5 157.0 1061 S152 -3607.5 276.0 1062 S151 -3622.5 157.0 1063 S150 -3637.5 276.0 1064 S149 -3652.5 157.0 1065 S148 -3667.5 276.0 1066 S147 -3682.5 157.0 1067 S146 -3697.5 276.0 1068 S145 -3712.5 157.0 1069 S144 -3727.5 276.0 1070 S143 -3742.5 157.0 1071 S142 -3757.5 276.0 1072 S141 -3772.5 157.0 1073 S140 -3787.5 276.0 1074 S13
1057 S156 -3547.5 276.0 1058 S155 -3562.5 157.0 1059 S154 -3577.5 276.0 1060 S153 -3592.5 157.0 1061 S152 -3607.5 276.0 1062 S151 -3622.5 157.0 1063 S150 -3637.5 276.0 1064 S149 -3652.5 157.0 1065 S148 -3667.5 276.0 1066 S147 -3682.5 157.0 1067 S146 -3697.5 276.0 1068 S145 -3712.5 157.0 1069 S144 -3727.5 276.0 1070 S143 -3742.5 157.0 1071 S142 -3757.5 276.0 1072 S141 -3772.5 157.0 1073 S140 -3787.5 276.0 1074 S139 -3802.5 157.0 1075 S138 -3817.5 276.0 1076 S137 -3832.5 157.0 1077 S136 -3847.5 276.0 1079 S134 -3877.5 <
1058 S155 -3562.5 157.0 1059 S154 -3577.5 276.0 1060 S153 -3592.5 157.0 1061 S152 -3607.5 276.0 1062 S151 -3622.5 157.0 1063 S150 -3637.5 276.0 1064 S149 -3652.5 157.0 1065 S148 -3667.5 276.0 1066 S147 -3682.5 157.0 1067 S146 -3697.5 276.0 1068 S145 -3712.5 157.0 1070 S143 -3727.5 276.0 1071 S142 -3757.5 276.0 1072 S141 -3772.5 157.0 1073 S140 -3787.5 276.0 1074 S139 -3802.5 157.0 1075 S138 -3817.5 276.0 1075 S138 -3817.5 276.0 1078 S137 -3832.5 157.0 1078 S134 -3877.5 276.0 1079 S134 -3877.5 276.0 1080 S133 -3892.5 <
1059 S154 -3577.5 276.0 1060 S153 -3592.5 157.0 1061 S152 -3607.5 276.0 1062 S151 -3622.5 157.0 1063 S150 -3637.5 276.0 1064 S149 -3652.5 157.0 1065 S148 -3667.5 276.0 1066 S147 -3682.5 157.0 1067 S146 -3697.5 276.0 1068 S145 -3712.5 157.0 1069 S144 -3727.5 276.0 1070 S143 -3742.5 157.0 1071 S142 -3757.5 276.0 1072 S141 -3772.5 157.0 1073 S140 -3787.5 276.0 1074 S139 -3802.5 157.0 1075 S138 -3817.5 276.0 1076 S137 -3832.5 157.0 1077 S136 -3847.5 276.0 1078 S134 -3877.5
1060 S153 -3592.5 157.0 1061 S152 -3607.5 276.0 1062 S151 -3622.5 157.0 1063 S150 -3637.5 276.0 1064 S149 -3652.5 157.0 1065 S148 -3667.5 276.0 1066 S147 -3682.5 157.0 1067 S146 -3697.5 276.0 1068 S145 -3712.5 157.0 1069 S144 -3727.5 276.0 1070 S143 -3742.5 157.0 1071 S142 -3757.5 276.0 1072 S141 -3772.5 157.0 1073 S140 -3787.5 276.0 1074 S139 -3802.5 157.0 1075 S138 -3817.5 276.0 1076 S137 -3832.5 157.0 1077 S136 -3847.5 276.0 1078 S13
1061 S152 -3607.5 276.0 1062 S151 -3622.5 157.0 1063 S150 -3637.5 276.0 1064 S149 -3652.5 157.0 1065 S148 -3667.5 276.0 1066 S147 -3682.5 157.0 1067 S146 -3697.5 276.0 1068 S145 -3712.5 157.0 1069 S144 -3727.5 276.0 1070 S143 -3742.5 157.0 1071 S142 -3757.5 276.0 1072 S141 -3772.5 157.0 1073 S140 -3787.5 276.0 1074 S139 -3802.5 157.0 1075 S138 -3817.5 276.0 1076 S137 -3832.5 157.0 1078 S135 -3847.5 276.0 1079 S134 -3877.5 276.0 1080 S13
1062 S151 -3622.5 157.0 1063 S150 -3637.5 276.0 1064 S149 -3652.5 157.0 1065 S148 -3667.5 276.0 1066 S147 -3682.5 157.0 1067 S146 -3697.5 276.0 1068 S145 -3712.5 157.0 1069 S144 -3727.5 276.0 1070 S143 -3742.5 157.0 1071 S142 -3757.5 276.0 1072 S141 -3772.5 157.0 1073 S140 -3787.5 276.0 1074 S139 -3802.5 157.0 1075 S138 -3817.5 276.0 1076 S137 -3832.5 157.0 1077 S136 -3847.5 276.0 1078 S135 -3862.5 157.0 1079 S134 -3877.5 276.0 1080 S133 -3892.5 157.0 1081 S132 -3907.5
1063 \$150 -3637.5 276.0 1064 \$149 -3652.5 157.0 1065 \$148 -3667.5 276.0 1066 \$147 -3682.5 157.0 1067 \$146 -3697.5 276.0 1068 \$145 -3712.5 157.0 1069 \$144 -3727.5 276.0 1070 \$143 -3742.5 157.0 1071 \$142 -3757.5 276.0 1072 \$141 -3772.5 157.0 1073 \$140 -3787.5 276.0 1074 \$139 -3802.5 157.0 1075 \$138 -3817.5 276.0 1076 \$137 -3832.5 157.0 1077 \$136 -3847.5 276.0 1078 \$135 -3862.5 157.0 1079 \$134 -3877.5 276.0 1080 \$133 -3892.5 157.0 1081 \$132 -3907.5 276.0 1082 \$131 -3922.5
1064 \$149 -3652.5 157.0 1065 \$148 -3667.5 276.0 1066 \$147 -3682.5 157.0 1067 \$146 -3697.5 276.0 1068 \$145 -3712.5 157.0 1069 \$144 -3727.5 276.0 1070 \$143 -3742.5 157.0 1071 \$142 -3757.5 276.0 1072 \$141 -3772.5 157.0 1073 \$140 -3787.5 276.0 1074 \$139 -3802.5 157.0 1075 \$138 -3817.5 276.0 1076 \$137 -3832.5 157.0 1077 \$136 -3847.5 276.0 1078 \$135 -3862.5 157.0 1079 \$134 -3877.5 276.0 1079 \$134 -3877.5 276.0 1081 \$132 -3907.5 276.0 1082 \$131 -3922.5 157.0 1083 \$130 -3937.5
1065 \$148 -3667.5 \$276.0 1066 \$147 -3682.5 \$157.0 1067 \$146 -3697.5 \$276.0 1068 \$145 -3712.5 \$157.0 1069 \$144 -3727.5 \$276.0 1070 \$143 -3742.5 \$157.0 1071 \$142 -3757.5 \$276.0 1072 \$141 -3772.5 \$157.0 1073 \$140 -3787.5 \$276.0 1074 \$139 -3802.5 \$157.0 1075 \$138 -3817.5 \$276.0 1076 \$137 -3832.5 \$157.0 1077 \$136 -3847.5 \$276.0 1078 \$135 -3862.5 \$157.0 1079 \$134 -3877.5 \$276.0 1080 \$133 -3892.5 \$157.0 1081 \$132 -3907.5 \$276.0 1082 \$131 -3922.5 \$157.0 1083 \$130 -3937.5 \$276.0 1084 \$129 <td< td=""></td<>
1066 \$147 -3682.5 157.0 1067 \$146 -3697.5 276.0 1068 \$145 -3712.5 157.0 1069 \$144 -3727.5 276.0 1070 \$143 -3742.5 157.0 1071 \$142 -3757.5 276.0 1072 \$141 -3772.5 157.0 1073 \$140 -3787.5 276.0 1074 \$139 -3802.5 157.0 1075 \$138 -3817.5 276.0 1076 \$137 -3832.5 157.0 1077 \$136 -3847.5 276.0 1078 \$135 -3862.5 157.0 1079 \$134 -3877.5 276.0 1080 \$133 -3892.5 157.0 1081 \$132 -3907.5 276.0 1082 \$131 -3922.5 157.0 1083 \$130 -3937.5 276.0 1084 \$12
1067 \$146 -3697.5 \$276.0 1068 \$145 -3712.5 157.0 1069 \$144 -3727.5 276.0 1070 \$143 -3742.5 157.0 1071 \$142 -3757.5 276.0 1072 \$141 -3772.5 157.0 1073 \$140 -3787.5 276.0 1074 \$139 -3802.5 157.0 1075 \$138 -3817.5 276.0 1076 \$137 -3832.5 157.0 1077 \$136 -3847.5 276.0 1078 \$135 -3862.5 157.0 1079 \$134 -3877.5 276.0 1080 \$133 -3892.5 157.0 1081 \$132 -3907.5 276.0 1082 \$131 -3922.5 157.0 1083 \$130 -3937.5 276.0 1084 \$129 -3952.5 157.0 1085 \$1
1068 S145 -3712.5 157.0 1069 S144 -3727.5 276.0 1070 S143 -3742.5 157.0 1071 S142 -3757.5 276.0 1072 S141 -3772.5 157.0 1073 S140 -3787.5 276.0 1074 S139 -3802.5 157.0 1075 S138 -3817.5 276.0 1076 S137 -3832.5 157.0 1077 S136 -3847.5 276.0 1078 S135 -3862.5 157.0 1079 S134 -3877.5 276.0 1080 S133 -3892.5 157.0 1081 S132 -3907.5 276.0 1082 S131 -3922.5 157.0 1083 S130 -3937.5 276.0 1084 S129 -3952.5 157.0 1085 S128 -3967.5 276.0 1086 S127 -3982.5 157.0 1087 S126 -3997.5 276.0 1088 S125 -4012.5 157.0 1089 S124 -4027.5 276.0 1091 S122 -4057.5 276.0
1069 S144 -3727.5 276.0 1070 S143 -3742.5 157.0 1071 S142 -3757.5 276.0 1072 S141 -3772.5 157.0 1073 S140 -3787.5 276.0 1074 S139 -3802.5 157.0 1075 S138 -3817.5 276.0 1076 S137 -3832.5 157.0 1077 S136 -3847.5 276.0 1079 S134 -3877.5 276.0 1080 S133 -3892.5 157.0 1081 S132 -3907.5 276.0 1082 S131 -3922.5 157.0 1083 S130 -3937.5 276.0 1084 S129 -3952.5 157.0 1085 S128 -3967.5 276.0 1086 S127 -3982.5 157.0 1087 S126 -3997.5 276.0 1088 S125 -4012.5 157.0 1089 S124 -4027.5 276.0 1091 S122 -4057.5 276.0
1070 \$143 -3742.5 157.0 1071 \$142 -3757.5 276.0 1072 \$141 -3772.5 157.0 1073 \$140 -3787.5 276.0 1074 \$139 -3802.5 157.0 1075 \$138 -3817.5 276.0 1076 \$137 -3832.5 157.0 1077 \$136 -3847.5 276.0 1078 \$135 -3862.5 157.0 1079 \$134 -3877.5 276.0 1080 \$133 -3892.5 157.0 1081 \$132 -3907.5 276.0 1082 \$131 -3922.5 157.0 1083 \$130 -3937.5 276.0 1084 \$129 -3952.5 157.0 1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1088 \$126 -3997.5 276.0 1089 \$12
1071 \$142 -3757.5 276.0 1072 \$141 -3772.5 157.0 1073 \$140 -3787.5 276.0 1074 \$139 -3802.5 157.0 1075 \$138 -3817.5 276.0 1076 \$137 -3832.5 157.0 1077 \$136 -3847.5 276.0 1078 \$135 -3862.5 157.0 1079 \$134 -3877.5 276.0 1080 \$133 -3892.5 157.0 1081 \$132 -3907.5 276.0 1082 \$131 -3922.5 157.0 1083 \$130 -3937.5 276.0 1084 \$129 -3952.5 157.0 1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1087 \$126 -3997.5 276.0 1088 \$125 -4012.5 157.0 1089 \$124 -4027.5 276.0 1090 \$123 -4042.5
1072 \$141 -3772.5 157.0 1073 \$140 -3787.5 276.0 1074 \$139 -3802.5 157.0 1075 \$138 -3817.5 276.0 1076 \$137 -3832.5 157.0 1077 \$136 -3847.5 276.0 1078 \$135 -3862.5 157.0 1079 \$134 -3877.5 276.0 1080 \$133 -3892.5 157.0 1081 \$132 -3907.5 276.0 1082 \$131 -3922.5 157.0 1083 \$130 -3937.5 276.0 1084 \$129 -3952.5 157.0 1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1087 \$126 -3997.5 276.0 1088 \$125 -4012.5 157.0 1089 \$124 -4027.5 276.0 1090 \$123 -4042.5 157.0 1091 \$122 -4057.5
1073 \$140 -3787.5 276.0 1074 \$139 -3802.5 157.0 1075 \$138 -3817.5 276.0 1076 \$137 -3832.5 157.0 1077 \$136 -3847.5 276.0 1078 \$135 -3862.5 157.0 1079 \$134 -3877.5 276.0 1080 \$133 -3892.5 157.0 1081 \$132 -3907.5 276.0 1082 \$131 -3922.5 157.0 1083 \$130 -3937.5 276.0 1084 \$129 -3952.5 157.0 1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1087 \$126 -3997.5 276.0 1088 \$125 -4012.5 157.0 1089 \$124 -4027.5 276.0 1090 \$123 -4042.5 157.0 1091 \$122 -4057.5 276.0
1074 \$139 -3802.5 157.0 1075 \$138 -3817.5 276.0 1076 \$137 -3832.5 157.0 1077 \$136 -3847.5 276.0 1078 \$135 -3862.5 157.0 1079 \$134 -3877.5 276.0 1080 \$133 -3892.5 157.0 1081 \$132 -3907.5 276.0 1082 \$131 -3922.5 157.0 1083 \$130 -3937.5 276.0 1084 \$129 -3952.5 157.0 1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1087 \$126 -3997.5 276.0 1088 \$125 -4012.5 157.0 1089 \$124 -4027.5 276.0 1090 \$123 -4042.5 157.0 1091 \$122 -4057.5 276.0
1075 \$138 -3817.5 276.0 1076 \$137 -3832.5 157.0 1077 \$136 -3847.5 276.0 1078 \$135 -3862.5 157.0 1079 \$134 -3877.5 276.0 1080 \$133 -3892.5 157.0 1081 \$132 -3907.5 276.0 1082 \$131 -3922.5 157.0 1083 \$130 -3937.5 276.0 1084 \$129 -3952.5 157.0 1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1087 \$126 -3997.5 276.0 1088 \$125 -4012.5 157.0 1089 \$124 -4027.5 276.0 1090 \$123 -4042.5 157.0 1091 \$122 -4057.5 276.0
1076 \$137 -3832.5 157.0 1077 \$136 -3847.5 276.0 1078 \$135 -3862.5 157.0 1079 \$134 -3877.5 276.0 1080 \$133 -3892.5 157.0 1081 \$132 -3907.5 276.0 1082 \$131 -3922.5 157.0 1083 \$130 -3937.5 276.0 1084 \$129 -3952.5 157.0 1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1087 \$126 -3997.5 276.0 1088 \$125 -4012.5 157.0 1089 \$124 -4027.5 276.0 1090 \$123 -4042.5 157.0 1091 \$122 -4057.5 276.0
1077 \$136 -3847.5 276.0 1078 \$135 -3862.5 157.0 1079 \$134 -3877.5 276.0 1080 \$133 -3892.5 157.0 1081 \$132 -3907.5 276.0 1082 \$131 -3922.5 157.0 1083 \$130 -3937.5 276.0 1084 \$129 -3952.5 157.0 1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1087 \$126 -3997.5 276.0 1088 \$125 -4012.5 157.0 1089 \$124 -4027.5 276.0 1090 \$123 -4042.5 157.0 1091 \$122 -4057.5 276.0
1078 \$135 -3862.5 157.0 1079 \$134 -3877.5 276.0 1080 \$133 -3892.5 157.0 1081 \$132 -3907.5 276.0 1082 \$131 -3922.5 157.0 1083 \$130 -3937.5 276.0 1084 \$129 -3952.5 157.0 1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1087 \$126 -3997.5 276.0 1088 \$125 -4012.5 157.0 1089 \$124 -4027.5 276.0 1090 \$123 -4042.5 157.0 1091 \$122 -4057.5 276.0
1079 \$134 -3877.5 276.0 1080 \$133 -3892.5 157.0 1081 \$132 -3907.5 276.0 1082 \$131 -3922.5 157.0 1083 \$130 -3937.5 276.0 1084 \$129 -3952.5 157.0 1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1087 \$126 -3997.5 276.0 1088 \$125 -4012.5 157.0 1089 \$124 -4027.5 276.0 1090 \$123 -4042.5 157.0 1091 \$122 -4057.5 276.0
1080 \$133 -3892.5 157.0 1081 \$132 -3907.5 276.0 1082 \$131 -3922.5 157.0 1083 \$130 -3937.5 276.0 1084 \$129 -3952.5 157.0 1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1087 \$126 -3997.5 276.0 1088 \$125 -4012.5 157.0 1089 \$124 -4027.5 276.0 1090 \$123 -4042.5 157.0 1091 \$122 -4057.5 276.0
1081 \$132 -3907.5 276.0 1082 \$131 -3922.5 157.0 1083 \$130 -3937.5 276.0 1084 \$129 -3952.5 157.0 1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1087 \$126 -3997.5 276.0 1088 \$125 -4012.5 157.0 1089 \$124 -4027.5 276.0 1090 \$123 -4042.5 157.0 1091 \$122 -4057.5 276.0
1082 \$131 -3922.5 157.0 1083 \$130 -3937.5 276.0 1084 \$129 -3952.5 157.0 1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1087 \$126 -3997.5 276.0 1088 \$125 -4012.5 157.0 1089 \$124 -4027.5 276.0 1090 \$123 -4042.5 157.0 1091 \$122 -4057.5 276.0
1083 \$130 -3937.5 276.0 1084 \$129 -3952.5 157.0 1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1087 \$126 -3997.5 276.0 1088 \$125 -4012.5 157.0 1089 \$124 -4027.5 276.0 1090 \$123 -4042.5 157.0 1091 \$122 -4057.5 276.0
1084 \$129 -3952.5 157.0 1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1087 \$126 -3997.5 276.0 1088 \$125 -4012.5 157.0 1089 \$124 -4027.5 276.0 1090 \$123 -4042.5 157.0 1091 \$122 -4057.5 276.0
1085 \$128 -3967.5 276.0 1086 \$127 -3982.5 157.0 1087 \$126 -3997.5 276.0 1088 \$125 -4012.5 157.0 1089 \$124 -4027.5 276.0 1090 \$123 -4042.5 157.0 1091 \$122 -4057.5 276.0
1086 S127 -3982.5 157.0 1087 S126 -3997.5 276.0 1088 S125 -4012.5 157.0 1089 S124 -4027.5 276.0 1090 S123 -4042.5 157.0 1091 S122 -4057.5 276.0
1087 S126 -3997.5 276.0 1088 S125 -4012.5 157.0 1089 S124 -4027.5 276.0 1090 S123 -4042.5 157.0 1091 S122 -4057.5 276.0
1088 S125 -4012.5 157.0 1089 S124 -4027.5 276.0 1090 S123 -4042.5 157.0 1091 S122 -4057.5 276.0
1089 \$124 -4027.5 276.0 1090 \$123 -4042.5 157.0 1091 \$122 -4057.5 276.0
1090 S123 -4042.5 157.0 1091 S122 -4057.5 276.0
1090 S123 -4042.5 157.0 1091 S122 -4057.5 276.0
1092 S121 -4072.5 157.0
1093 S120 -4087.5 276.0
1094 S119 -4102.5 157.0
1095 S118 -4117.5 276.0
1096 S117 -4132.5 157.0
1097 S116 -4147.5 276.0
1098 S115 -4162.5 157.0
1099 S114 -4177.5 276.0
1099 S114 -4177.5 276.0

		- (P*****
pad No	pad name	Х	Y
1101	S112	-4207.5	276.0
1102	S111	-4222.5	157.0
1103	S110	-4237.5	276.0
	S109	-4252.5	157.0
	S108	-4267.5	276.0
	S107	-4282.5	157.0
	S106	-4297.5	276.0
	S105	-4312.5	157.0
	S104	-4327.5	276.0
	S103	-4342.5	157.0
	S102	-4357.5	276.0
	S101	-4372.5	157.0
	S100	-4387.5	276.0
1114		-4402.5	157.0
1115		-4417.5	276.0
1116		-4432.5	157.0
1117		-4447.5	276.0
1118		-4462.5	157.0
1119		-4477.5	276.0
1120		-4492.5	157.0
1121	S92	-4507.5	276.0
1122		- 4 507.5	157.0
1123		-4537.5	276.0
1123		- 4 557.5	157.0
1125		- 4 552.5	276.0
1126		-4582.5	157.0
1127		- 4 502.5	276.0
1128		-4612.5	157.0
1129		-4627.5	276.0
1130		-4642.5	157.0
1131	S82	-4657.5	276.0
1132		-4672.5	157.0
		-4672.5 -4687.5	276.0
1133			
1134		-4702.5	157.0
1135		-4717.5	276.0
1136		-4732.5	157.0
1137		-4747.5	
1138		-4762.5	157.0
1139		-4777.5	276.0
1140		-4792.5	157.0
1141	S72	-4807.5	276.0
1142		-4822.5	157.0
1143	S70	-4837.5	276.0
1144	S69	-4852.5	157.0
1145		-4867.5	276.0
1146	S67	-4882.5	157.0
1147	S66	-4897.5	276.0
1148	S65	-4912.5	157.0
1149	S64	-4927.5	276.0
1150	S63	-4942.5	157.0

pad No pad name X Y 1151 S62 -4957.5 276.0 1152 S61 -4972.5 157.0 1153 S60 -4987.5 276.0 1154 S59 -5002.5 157.0 1155 S58 -5017.5 276.0 1157 S56 -5047.5 276.0 1158 S55 -5062.5 157.0 1160 S53 -5092.5 157.0 1161 S52 -5107.5 276.0 1162 S51 -5122.5 157.0 1163 S50 -5137.5 276.0 1164 S49 -5152.5 157.0 1165 S48 -5167.5 276.0 1166 S47 -5182.5 157.0 1167 S46 -5197.5 276.0 1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -52			2000.01	.211600.1
1152 S61 -4972.5 157.0 1153 S60 -4987.5 276.0 1154 S59 -5002.5 157.0 1155 S58 -5017.5 276.0 1156 S57 -5032.5 157.0 1157 S56 -5047.5 276.0 1158 S55 -5062.5 157.0 1159 S54 -5077.5 276.0 1160 S53 -5092.5 157.0 1161 S52 -5107.5 276.0 1162 S51 -5122.5 157.0 1163 S50 -5137.5 276.0 1164 S49 -5152.5 157.0 1165 S48 -5167.5 276.0 1167 S46 -5197.5 276.0 1168 S47 -5182.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42	pad No	pad name	Х	Υ
1153 S60 -4987.5 276.0 1154 S59 -5002.5 157.0 1155 S58 -5017.5 276.0 1156 S57 -5032.5 157.0 1157 S56 -5047.5 276.0 1158 S55 -5062.5 157.0 1159 S54 -5077.5 276.0 1160 S53 -5092.5 157.0 1161 S52 -5107.5 276.0 1162 S51 -5122.5 157.0 1163 S50 -5137.5 276.0 1164 S49 -5152.5 157.0 1165 S48 -5167.5 276.0 1166 S47 -5182.5 157.0 1167 S46 -5197.5 276.0 1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1177 S41			-4957.5	276.0
1154 S59 -5002.5 157.0 1155 S58 -5017.5 276.0 1156 S57 -5032.5 157.0 1157 S56 -5047.5 276.0 1158 S55 -5062.5 157.0 1159 S54 -5077.5 276.0 1160 S53 -5092.5 157.0 1161 S52 -5107.5 276.0 1162 S51 -5122.5 157.0 1163 S50 -5137.5 276.0 1164 S49 -5152.5 157.0 1165 S48 -5167.5 276.0 1166 S47 -5182.5 157.0 1167 S46 -5197.5 276.0 1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1171 S42 -5257.5 276.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 <td>1152</td> <td>S61</td> <td>-4972.5</td> <td>157.0</td>	1152	S61	-4972.5	157.0
1155 S58 -5017.5 276.0 1156 S57 -5032.5 157.0 1157 S56 -5047.5 276.0 1158 S55 -5062.5 157.0 1169 S54 -5077.5 276.0 1160 S53 -5092.5 157.0 1161 S52 -5107.5 276.0 1162 S51 -5122.5 157.0 1163 S50 -5137.5 276.0 1164 S49 -5152.5 157.0 1165 S48 -5167.5 276.0 1166 S47 -5182.5 157.0 1167 S46 -5197.5 276.0 1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1172 S41 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 1177 S36 -5347.5 276.0 <td>1153</td> <td>S60</td> <td>-4987.5</td> <td>276.0</td>	1153	S60	-4987.5	276.0
1156 S57 -5032.5 157.0 1157 S56 -5047.5 276.0 1158 S55 -5062.5 157.0 1159 S54 -5077.5 276.0 1160 S53 -5092.5 157.0 1161 S52 -5107.5 276.0 1162 S51 -5122.5 157.0 1163 S50 -5137.5 276.0 1164 S49 -5152.5 157.0 1165 S48 -5167.5 276.0 1166 S47 -5182.5 157.0 1167 S46 -5197.5 276.0 1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1171 S42 -5257.5 276.0 1171 S30 -5302.5 157.0 1176 S37	1154	S59	-5002.5	157.0
1157 S56 -5047.5 276.0 1158 S55 -5062.5 157.0 1159 S54 -5077.5 276.0 1160 S53 -5092.5 157.0 1161 S52 -5107.5 276.0 1162 S51 -5122.5 157.0 1163 S50 -5137.5 276.0 1164 S49 -5152.5 157.0 1165 S48 -5167.5 276.0 1166 S47 -5182.5 157.0 1167 S46 -5197.5 276.0 1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1172 S41 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 1177 S36 -5347.5 276.0 1178 S35 -5362.5 157.0 1179 S34 -5377.5 276.0 <td>1155</td> <td>S58</td> <td>-5017.5</td> <td>276.0</td>	1155	S58	-5017.5	276.0
1158 S55 -5062.5 157.0 1159 S54 -5077.5 276.0 1160 S53 -5092.5 157.0 1161 S52 -5107.5 276.0 1162 S51 -5122.5 157.0 1163 S50 -5137.5 276.0 1164 S49 -5152.5 157.0 1165 S48 -5167.5 276.0 1166 S47 -5182.5 157.0 1168 S45 -5197.5 276.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1171 S42 -5257.5 276.0 1172 S41 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 1176 S37 -5332.5 157.0 1178 S35 -5302.5 157.0 1178 S36 -5347.5 276.0 1179 S34 -537.5 276.0	1156	S57	-5032.5	157.0
1159 S54 -5077.5 276.0 1160 S53 -5092.5 157.0 1161 S52 -5107.5 276.0 1162 S51 -5122.5 157.0 1163 S50 -5137.5 276.0 1164 S49 -5152.5 157.0 1165 S48 -5167.5 276.0 1166 S47 -5182.5 157.0 1167 S46 -5197.5 276.0 1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1171 S42 -5257.5 276.0 1171 S42 -5257.5 276.0 1172 S41 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38	1157	S56	-5047.5	276.0
1160 S53 -5092.5 157.0 1161 S52 -5107.5 276.0 1162 S51 -5122.5 157.0 1163 S50 -5137.5 276.0 1164 S49 -5152.5 157.0 1165 S48 -5167.5 276.0 1166 S47 -5182.5 157.0 1167 S46 -5197.5 276.0 1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1171 S42 -5257.5 276.0 1171 S41 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 1176 S37 -5332.5 157.0 1179 S34	1158	S55	-5062.5	157.0
1161 S52 -5107.5 276.0 1162 S51 -5122.5 157.0 1163 S50 -5137.5 276.0 1164 S49 -5152.5 157.0 1165 S48 -5167.5 276.0 1166 S47 -5182.5 157.0 1167 S46 -5197.5 276.0 1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1172 S41 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 1176 S37 -5332.5 157.0 1177 S36 -5347.5 276.0 1179 S34 -5377.5 276.0 1179 S34		S54	-5077.5	276.0
1162 S51 -5122.5 157.0 1163 S50 -5137.5 276.0 1164 S49 -5152.5 157.0 1165 S48 -5167.5 276.0 1166 S47 -5182.5 157.0 1167 S46 -5197.5 276.0 1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1171 S42 -5257.5 276.0 1171 S42 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 1176 S37 -5332.5 157.0 1177 S36 -5347.5 276.0 1179 S34 -5377.5 276.0 1180 S33		S53	-5092.5	157.0
1163 S50 -5137.5 276.0 1164 S49 -5152.5 157.0 1165 S48 -5167.5 276.0 1166 S47 -5182.5 157.0 1167 S46 -5197.5 276.0 1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1172 S41 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 1176 S37 -5332.5 157.0 1177 S36 -5347.5 276.0 1178 S35 -5362.5 157.0 1179 S34 -5377.5 276.0 1180 S33 -5392.5 157.0 1181 S32	1161	S52	-5107.5	276.0
1164 S49 -5152.5 157.0 1165 S48 -5167.5 276.0 1166 S47 -5182.5 157.0 1167 S46 -5197.5 276.0 1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1172 S41 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 1176 S37 -5332.5 157.0 1177 S36 -5347.5 276.0 1178 S35 -5362.5 157.0 1179 S34 -5377.5 276.0 1180 S33 -5392.5 157.0 1181 S32 -5407.5 276.0 1182 S31 -5422.5 157.0 1183 S30 -5437.5 276.0	1162		-5122.5	
1165 S48 -5167.5 276.0 1166 S47 -5182.5 157.0 1167 S46 -5197.5 276.0 1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1172 S41 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 1176 S37 -5332.5 157.0 1177 S36 -5347.5 276.0 1178 S35 -5362.5 157.0 1179 S34 -5377.5 276.0 1180 S33 -5392.5 157.0 1181 S32 -5407.5 276.0 1182 S31 -5422.5 157.0 1183 S30	1163	S50	-5137.5	276.0
1166 S47 -5182.5 157.0 1167 S46 -5197.5 276.0 1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1172 S41 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 1176 S37 -5332.5 157.0 1177 S36 -5347.5 276.0 1178 S35 -5362.5 157.0 1179 S34 -5377.5 276.0 1180 S33 -5392.5 157.0 1181 S32 -5407.5 276.0 1182 S31 -5422.5 157.0 1183 S30 -5437.5 276.0 1184 S29	1164	S49	-5152.5	157.0
1167 S46 -5197.5 276.0 1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1172 S41 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 1176 S37 -5332.5 157.0 1177 S36 -5347.5 276.0 1178 S35 -5362.5 157.0 1179 S34 -5377.5 276.0 1180 S33 -5392.5 157.0 1181 S32 -5407.5 276.0 1182 S31 -5422.5 157.0 1183 S30 -5437.5 276.0 1184 S29 -5452.5 157.0 1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0	1165	S48	-5167.5	276.0
1168 S45 -5212.5 157.0 1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1172 S41 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 1176 S37 -5332.5 157.0 1177 S36 -5347.5 276.0 1178 S35 -5362.5 157.0 1179 S34 -5377.5 276.0 1180 S33 -5392.5 157.0 1181 S32 -5407.5 276.0 1182 S31 -5422.5 157.0 1183 S30 -5437.5 276.0 1184 S29 -5452.5 157.0 1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0	1166	S47	-5182.5	157.0
1169 S44 -5227.5 276.0 1170 S43 -5242.5 157.0 1171 S42 -5257.5 276.0 1172 S41 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 1176 S37 -5332.5 157.0 1177 S36 -5347.5 276.0 1178 S35 -5362.5 157.0 1179 S34 -5377.5 276.0 1180 S33 -5392.5 157.0 1181 S32 -5407.5 276.0 1182 S31 -5422.5 157.0 1183 S30 -5437.5 276.0 1184 S29 -5452.5 157.0 1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0	1167	S46	-5197.5	276.0
1170 \$43 -5242.5 157.0 1171 \$42 -5257.5 276.0 1172 \$41 -5272.5 157.0 1173 \$40 -5287.5 276.0 1174 \$39 -5302.5 157.0 1175 \$38 -5317.5 276.0 1176 \$37 -5332.5 157.0 1177 \$36 -5347.5 276.0 1178 \$35 -5362.5 157.0 1179 \$34 -5377.5 276.0 1180 \$33 -5392.5 157.0 1181 \$32 -5407.5 276.0 1182 \$31 -5422.5 157.0 1183 \$30 -5437.5 276.0 1184 \$29 -5452.5 157.0 1185 \$28 -5467.5 276.0 1186 \$27 -5482.5 157.0 1188 \$25 -5512.5 157.0 1189 \$24 -5527.5 276.0 1190 \$23 -5542.5 157.0			-5212.5	157.0
1171 S42 -5257.5 276.0 1172 S41 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 1176 S37 -5332.5 157.0 1177 S36 -5347.5 276.0 1178 S35 -5362.5 157.0 1179 S34 -5377.5 276.0 1180 S33 -5392.5 157.0 1181 S32 -5407.5 276.0 1182 S31 -5422.5 157.0 1183 S30 -5437.5 276.0 1184 S29 -5452.5 157.0 1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0	1169	S44	-5227.5	276.0
1172 S41 -5272.5 157.0 1173 S40 -5287.5 276.0 1174 S39 -5302.5 157.0 1175 S38 -5317.5 276.0 1176 S37 -5332.5 157.0 1177 S36 -5347.5 276.0 1178 S35 -5362.5 157.0 1179 S34 -5377.5 276.0 1180 S33 -5392.5 157.0 1181 S32 -5407.5 276.0 1182 S31 -5422.5 157.0 1183 S30 -5437.5 276.0 1184 S29 -5452.5 157.0 1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0	1170	S43	-5242.5	157.0
1173 \$40 -5287.5 276.0 1174 \$39 -5302.5 157.0 1175 \$38 -5317.5 276.0 1176 \$37 -5332.5 157.0 1177 \$36 -5347.5 276.0 1178 \$35 -5362.5 157.0 1179 \$34 -5377.5 276.0 1180 \$33 -5392.5 157.0 1181 \$32 -5407.5 276.0 1182 \$31 -5422.5 157.0 1183 \$30 -5437.5 276.0 1184 \$29 -5452.5 157.0 1185 \$28 -5467.5 276.0 1186 \$27 -5482.5 157.0 1187 \$26 -5497.5 276.0 1188 \$25 -5512.5 157.0 1189 \$24 -5527.5 276.0 1190 \$23 -5542.5 157.0 1191 \$22 -5557.5 276.0 1192 \$21 -5572.5 157.0	1171	S42	-5257.5	276.0
1174 \$39 -5302.5 157.0 1175 \$38 -5317.5 276.0 1176 \$37 -5332.5 157.0 1177 \$36 -5347.5 276.0 1178 \$35 -5362.5 157.0 1179 \$34 -5377.5 276.0 1180 \$33 -5392.5 157.0 1181 \$32 -5407.5 276.0 1182 \$31 -5422.5 157.0 1183 \$30 -5437.5 276.0 1184 \$29 -5452.5 157.0 1185 \$28 -5467.5 276.0 1186 \$27 -5482.5 157.0 1187 \$26 -5497.5 276.0 1188 \$25 -5512.5 157.0 1189 \$24 -5527.5 276.0 1190 \$23 -5542.5 157.0 1191 \$22 -5557.5 276.0 1192 \$21 -5572.5 157.0 1193 \$20 -5587.5 276.0	1172	S41	-5272.5	157.0
1175 S38 -5317.5 276.0 1176 S37 -5332.5 157.0 1177 S36 -5347.5 276.0 1178 S35 -5362.5 157.0 1179 S34 -5377.5 276.0 1180 S33 -5392.5 157.0 1181 S32 -5407.5 276.0 1182 S31 -5422.5 157.0 1183 S30 -5437.5 276.0 1184 S29 -5452.5 157.0 1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0 1189 S24 -5527.5 276.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0	1173	S40	-5287.5	276.0
1176 S37 -5332.5 157.0 1177 S36 -5347.5 276.0 1178 S35 -5362.5 157.0 1179 S34 -5377.5 276.0 1180 S33 -5392.5 157.0 1181 S32 -5407.5 276.0 1182 S31 -5422.5 157.0 1183 S30 -5437.5 276.0 1184 S29 -5452.5 157.0 1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0 1189 S24 -5527.5 276.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0	1174	S39	-5302.5	157.0
1177 S36 -5347.5 276.0 1178 S35 -5362.5 157.0 1179 S34 -5377.5 276.0 1180 S33 -5392.5 157.0 1181 S32 -5407.5 276.0 1182 S31 -5422.5 157.0 1183 S30 -5437.5 276.0 1184 S29 -5452.5 157.0 1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0 1189 S24 -5527.5 276.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0	1175	S38	-5317.5	276.0
1178 S35 -5362.5 157.0 1179 S34 -5377.5 276.0 1180 S33 -5392.5 157.0 1181 S32 -5407.5 276.0 1182 S31 -5422.5 157.0 1183 S30 -5437.5 276.0 1184 S29 -5452.5 157.0 1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0 1189 S24 -5527.5 276.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0	1176	S37	-5332.5	157.0
1179 S34 -5377.5 276.0 1180 S33 -5392.5 157.0 1181 S32 -5407.5 276.0 1182 S31 -5422.5 157.0 1183 S30 -5437.5 276.0 1184 S29 -5452.5 157.0 1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0 1189 S24 -5527.5 276.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0	1177	S36	-5347.5	276.0
1180 S33 -5392.5 157.0 1181 S32 -5407.5 276.0 1182 S31 -5422.5 157.0 1183 S30 -5437.5 276.0 1184 S29 -5452.5 157.0 1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0 1189 S24 -5527.5 276.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0	1178		-5362.5	157.0
1181 S32 -5407.5 276.0 1182 S31 -5422.5 157.0 1183 S30 -5437.5 276.0 1184 S29 -5452.5 157.0 1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0 1189 S24 -5527.5 276.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0	1179		-5377.5	276.0
1182 S31 -5422.5 157.0 1183 S30 -5437.5 276.0 1184 S29 -5452.5 157.0 1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0 1189 S24 -5527.5 276.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0	1180	S33	-5392.5	157.0
1183 S30 -5437.5 276.0 1184 S29 -5452.5 157.0 1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0 1189 S24 -5527.5 276.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0	1181	S32	-5407.5	276.0
1184 S29 -5452.5 157.0 1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0 1189 S24 -5527.5 276.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0	1182	S31	-5422.5	157.0
1185 S28 -5467.5 276.0 1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0 1189 S24 -5527.5 276.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0	1183	S30		276.0
1186 S27 -5482.5 157.0 1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0 1189 S24 -5527.5 276.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0	1184	S29	-5452.5	157.0
1187 S26 -5497.5 276.0 1188 S25 -5512.5 157.0 1189 S24 -5527.5 276.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0	1185	S28		276.0
1188 S25 -5512.5 157.0 1189 S24 -5527.5 276.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0			-5482.5	157.0
1189 S24 -5527.5 276.0 1190 S23 -5542.5 157.0 1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0	1187	S26	-5497.5	276.0
1190 \$\text{S23}\$ -5542.5 157.0 1191 \$\text{S22}\$ -5557.5 276.0 1192 \$\text{S21}\$ -5572.5 157.0 1193 \$\text{S20}\$ -5587.5 276.0 1194 \$\text{S19}\$ -5602.5 157.0 1195 \$\text{S18}\$ -5617.5 276.0 1196 \$\text{S17}\$ -5632.5 157.0 1197 \$\text{S16}\$ -5647.5 276.0 1198 \$\text{S15}\$ -5662.5 157.0 1199 \$\text{S14}\$ -5677.5 276.0	1188	S25	-5512.5	
1191 S22 -5557.5 276.0 1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0	1189	S24	-5527.5	276.0
1192 S21 -5572.5 157.0 1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0	1190		-5542.5	157.0
1193 S20 -5587.5 276.0 1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0	1191	S22	-5557.5	276.0
1194 S19 -5602.5 157.0 1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0	1192		-5572.5	
1195 S18 -5617.5 276.0 1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0		S20		276.0
1196 S17 -5632.5 157.0 1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0			-5602.5	157.0
1197 S16 -5647.5 276.0 1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0	1195	S18	-5617.5	276.0
1198 S15 -5662.5 157.0 1199 S14 -5677.5 276.0	1196	S17	-5632.5	157.0
1199 S14 -5677.5 276.0	1197	S16	-5647.5	276.0
	1198	S15	-5662.5	157.0
1200 S13 -5692.5 157.0			-5677.5	
	1200	S13	-5692.5	157.0

		- •	F- •
pad No	pad name	Χ	Y
1201	S12	-5707.5	276.0
1202	S11	-5722.5	157.0
1203	S10	-5737.5	276.0
1204	S9	-5752.5	157.0
1205		-5767.5	276.0
1206		-5782.5	157.0
1207		-5797.5	276.0
1208		-5812.5	157.0
1209		-5827.5	276.0
1210		-5842.5	157.0
1211		-5857.5	276.0
1212		-5872.5	157.0
1213		-5887.5	276.0
1214		-6097.5	276.0
1215		-6112.5	157.0
1216		-6127.5	276.0
1217		-6142.5	157.0
1218		-6157.5	276.0
	G423	-6172.5	157.0
1220		-6187.5	276.0
1221	G419	-6202.5	157.0
1222		-6217.5	276.0
1223		-6232.5	157.0
1224		-6247.5	276.0
1225		-6262.5	157.0
1226		-6277.5	276.0
1227		-6292.5	157.0
1228		-6307.5	276.0
1229		-6322.5	157.0
	G401	-6337.5	276.0
1231	G399	-6352.5	157.0
1232		-6367.5	276.0
	G395	-6382.5	157.0
	G393	-6397.5	276.0
	G391	-6412.5	157.0
	G389	-6427.5	276.0
	G387	-6442.5	157.0
1237		-6457.5	276.0
1239		-6472.5	157.0
1239		-6487.5	
1240	G379		276.0 157.0
1241		-6502.5	157.0
1242		-6517.5 -6532.5	276.0
1243	G375	-6547.5	157.0
		-6562.5	276.0
1245			157.0
1246		-6577.5	276.0
1247	G367	-6592.5	157.0
1248	G365	-6607.5	276.0
1249		-6622.5	157.0
1250	G361	-6637.5	276.0

		2000.01	.211600.1
pad No	pad name	Χ	Υ
1251	G359	-6652.5	157.0
1252	G357	-6667.5	276.0
1253	G355	-6682.5	157.0
1254	G353	-6697.5	276.0
1255	G351	-6712.5	157.0
1256	G349	-6727.5	276.0
1257	G347	-6742.5	157.0
1258	G345	-6757.5	276.0
1259	G343	-6772.5	157.0
1260	G341	-6787.5	276.0
1261	G339	-6802.5	157.0
1262	G337	-6817.5	276.0
1263	G335	-6832.5	157.0
1264	G333	-6847.5	276.0
1265	G331	-6862.5	157.0
1266	G329	-6877.5	276.0
1267	G327	-6892.5	157.0
1268	G325	-6907.5	276.0
1269	G323	-6922.5	157.0
	G321	-6937.5	276.0
	G319	-6952.5	157.0
1272	G317	-6967.5	276.0
1273	G315	-6982.5	157.0
	G313	-6997.5	276.0
	G311	-7012.5	157.0
		-7027.5	276.0
1277	G307	-7042.5	157.0
1278	G305	-7057.5	276.0
1279	G303	-7072.5	157.0
1280	G301	-7087.5	276.0
1281	G299	-7102.5	157.0
1282	G297	-7117.5	276.0
1283	G295	-7132.5	157.0
	G293	-7147.5	276.0
1285	G291	-7162.5	157.0
1286	G289	-7177.5	276.0
	G287	-7192.5	157.0
1288	G285	-7207.5	276.0
1289	G283	-7222.5	157.0
1290	G281	-7237.5	276.0
1291	G279	-7252.5	157.0
1292	G277	-7267.5	276.0
1293	G275	-7282.5	157.0
1294	G273	-7297.5	276.0
1295	G271	-7312.5	157.0
	G269	-7327.5	276.0
1297		-7342.5	157.0
	G265	-7357.5	276.0
	G263	-7372.5	157.0
1300	G261	-7387.5	276.0
	-	, •	

		- •	<u> </u>
pad No	pad name	Χ	Y
1301	G259	-7402.5	157.0
1302	G257	-7417.5	276.0
1303	G255	-7432.5	157.0
1304	G253	-7447.5	276.0
	G251	-7462.5	157.0
	G249	-7477.5	276.0
	G247	-7492.5	157.0
	G245	-7507.5	276.0
	G243	-7522.5	157.0
	G241	-7537.5	276.0
	G239	-7552.5	157.0
	G237	-7567.5	276.0
1313		-7582.5	157.0
1314		-7597.5	276.0
	G231	-7612.5	157.0
1316	1	-7627.5	276.0
1317	1	-7642.5	157.0
	G225	-7657.5	276.0
	G223	-7672.5	157.0
1320		-7687.5	276.0
1321		-7702.5	157.0
1322	1	-7717.5	276.0
1323		-7732.5	157.0
1324		-7747.5	276.0
1325		-7762.5	157.0
1326		-7777.5	276.0
1327	G207	-7792.5	157.0
1328	G205	-7807.5	276.0
1329		-7822.5	157.0
1330	1	-7837.5	276.0
1331		-7852.5	157.0
	G197	-7867.5	276.0
	G195	-7882.5	157.0
	G193	-7897.5	276.0
	G191	-7912.5	157.0
	G189	-7912.5	276.0
	G187	-7942.5	
1338		-7957.5	276.0
1339		-7972.5	157.0
1340		-7987.5	
1341	G179	-7967.5 -8002.5	276.0 157.0
1341	G177		157.0
1342	G175	-8017.5	276.0 157.0
1343		-8032.5	157.0
		-8047.5 -8062.5	276.0 157.0
1345	_		157.0
1346	G169	-8077.5	276.0
1347	G167	-8092.5	157.0
1348	G165	-8107.5	276.0
1349	G163	-8122.5	157.0
1350	G161	-8137.5	276.0

			.211600.1
pad No	pad name	Χ	Υ
1351	G159	-8152.5	157.0
1352	G157	-8167.5	276.0
1353	G155	-8182.5	157.0
1354	G153	-8197.5	276.0
1355	G151	-8212.5	157.0
1356	G149	-8227.5	276.0
1357	G147	-8242.5	157.0
1358	G145	-8257.5	276.0
1359	G143	-8272.5	157.0
1360	G141	-8287.5	276.0
1361	G139	-8302.5	157.0
1362	G137	-8317.5	276.0
1363	G135	-8332.5	157.0
1364	G133	-8347.5	276.0
1365	G131	-8362.5	157.0
1366	G129	-8377.5	276.0
1367	G127	-8392.5	157.0
1368	G125	-8407.5	276.0
1369	G123	-8422.5	157.0
1370	G121	-8437.5	276.0
1371	G119	-8452.5	157.0
1372	G117	-8467.5	276.0
1373	G115	-8482.5	157.0
	G113	-8497.5	276.0
	G111	-8512.5	157.0
1376	G109	-8527.5	276.0
1377		-8542.5	157.0
1378	G105	-8557.5	276.0
1379	G103	-8572.5	157.0
1380	G101	-8587.5	276.0
1381	G99	-8602.5	157.0
1382	G97	-8617.5	276.0
1383	G95	-8632.5	157.0
1384	G93	-8647.5	276.0
1385	G91	-8662.5	157.0
1386		-8677.5	276.0
1387	G87	-8692.5	157.0
1388		-8707.5	276.0
1389	G83	-8722.5	157.0
1390	G81	-8737.5	276.0
1391	G79	-8752.5	157.0
1392	G77	-8767.5	276.0
1393	G75	-8782.5	157.0
1394		-8797.5	276.0
1395	G71	-8812.5	157.0
1396		-8827.5	276.0
1397		-8842.5	157.0
1398		-8857.5	276.0
1399		-8872.5	157.0
1400	G61	-8887.5	276.0

2008.04.21 rev0.1

R61509V Pad Coordinate (Unit: μm)

110100	V I ad Occidinate	5 (5 1111 c .	μ,
pad No	pad name	Χ	Υ
1401	G59	-8902.5	157.0
1402	G57	-8917.5	276.0
1403	G55	-8932.5	157.0
1404	G53	-8947.5	276.0
1405	G51	-8962.5	157.0
1406	G49	-8977.5	276.0
1407	G47	-8992.5	157.0
1408	G45	-9007.5	276.0
1409	G43	-9022.5	157.0
1410	G41	-9037.5	276.0
1411	G39	-9052.5	157.0
1412	G37	-9067.5	276.0
1413	G35	-9082.5	157.0
1414	G33	-9097.5	276.0
1415	G31	-9112.5	157.0
1416	G29	-9127.5	276.0
1417	G27	-9142.5	157.0
1418	G25	-9157.5	276.0
1419	G23	-9172.5	157.0
1420	G21	-9187.5	276.0
1421	G19	-9202.5	157.0
1422	G17	-9217.5	276.0
1423	G15	-9232.5	157.0
1424	G13	-9247.5	276.0
1425	G11	-9262.5	157.0
1426	G9	-9277.5	276.0
1427	G7	-9292.5	157.0
1428	G5	-9307.5	276.0
1429	G3	-9322.5	157.0
1430	G1	-9337.5	276.0
1431	VGLDMY4	-9352.5	157.0
1432	TESTO15	-9367.5	276.0
1433	DUMMYR3	-9382.5	157.0
1434	DUMMYR4	-9397.5	276.0

Alignment mark	Х	Υ
1-a	-9381.0	-251.0
1-b	9381.0	-251.0

Rev0.1 2008.04.21

Pad No66 IMO/ID→IMO_ID (rename)
Pad No69 RESET→RESETX (rename)
Pad No73 VSYNC→VSYNCX (rename)
Pad No74 HSYNC→HSYNCX (rename)
Pad No107 CS→CSX (rename)
Pad No109 WR/SCL→WRX_SCL (rename)
Pad No110 RD→RDX (rename)

Bump Arrangement

Figure 3

Rev0.1.2008.02.14 Made for PR
Rev0.1.2008.02.19 VPP32—>VPP31
Rev0.2.2008.02.25 Ped names changed
Rev0.3.2008.03.14 Instruction changed.
Rev0.3.2008.03.14 Instruction changed.
Rev0.4.2008.04.27 Rev1.27 Rev1.27 Rev0.4.2008.04.27 Rev1.27 Rev1.27 Rev0.4.2008.04.27 Rev1.27 Rev1.27 Rev0.4.2008.04.27 Rev1.27 Rev1.27

GRAM Address Map

Table 11 GRAM address and display position on the panel (SS=0, BGR=0)

	1				Π	Т	I		Ť	Т	1	T		_		`	_	<u> </u>	۲.	, 	_			١.		0 0
S/G	pin	S1	S2	S3	S4	S5	98	S7	88 S	80	S.10	S11	S12	• •		•	8209	S710 S711	S712	S713	S714	S715	S716	S717	S718	S719 S720
GS=0	GS=1	W	D[17:	:0]	٧	VD[17	':0]	W	D[17:0]		WD	[17:	0]			•	W	D[17:0]	W	/D[17:	:0]	٧	VD[17	:0]	WI	D[17:0]
G1	G432	h	0000	0		h0000)1	h	00002		h0	0003	3			•	h(000EC	h	000E	D	ŀ	1000E	E	h(000EF
G2	G431	h	0010	0		h0010)1	h	00102		h0	0103	3				h(001EC	h	001E	D	ŀ	1001E	E	h(001EF
G3	G430	h	0020	0		h0020)1	h	00202		h0	0203	3			•	h(002EC	h	002E	D	ŀ	1002E	Ε	h(002EF
G4	G429	h	0030	0		h0030)1	h	00302		h0	0303	3	• •		•	h(003EC	h	003E	D	ŀ	1003E	Έ	h(003EF
G5	G428	h	0040	0		h0040)1	h	00402		h0	0403	3	• •		•	h(004EC	h	004E	D	ŀ	1004E	Έ	h(004EF
G6	G427	h	0050	0		h0050)1	h	00502		h0	0503	3			•	h(005EC	h	005E	D	ŀ	1005E	E	h(005EF
G7	G426	h	0060	0		h0060)1	h	00602		h0	0603	3			•	h(006EC	h	006E	D	ŀ	1006E	E	h(006EF
G8	G425	h	0070	0		h0070)1	h	00702		h0	0703	3			•	h(007EC	h	007E	D	ŀ	1007E	E	h(007EF
G9	G424	h	0800	0		h0080)1	h	00802		h0	0803	3			•	h(008EC	h	008E	D	ŀ	1008E	E	h(008EF
G10	G423	h	0090	0		h0090)1	h	00902		h0	0903	3			•	h(009EC	h	009E	D	ŀ	1009E	E	h(009EF
G11	G422	h(0A00	0	١	h00A0)1	h(00A02		h0	0A0	3	• •		•	h(DOAEC	h	00AE	D	r	100AE	E	hC	00AEF
G12	G421	h(00B0	0	١	h00B0)1	h(00B02		h0	0B0	3			•	h(DOBEC	h	00BE	D	r	100BE	E	hC	00BEF
G13	G420	h(00C0	0	ı	h00C0	01	h(00C02		h0	0C0	3			•	h(OOCEC	h	00CE	D	r	100CE	E	hC	00CEF
G14	G419	h(00D0	0	ı	h00D0	01	h(00D02		h0	0D0	3			•	h(00DEC	h	00DE	D	r	100DE	E	hC	00DEF
G15	G418	h(00E0	0	١	h00E0)1	h(00E02		h0	0E0	3			•	h(DOEEC	h	00EE	D	h	100EE	E	hC	00EEF
G16	G417	h(00F0	0		h00F0)1	h	00F02		h0	0F03	3			•	h(OOFEC	h	00FE	D	ŀ	100FE	E	hC	0FEF
G17	G416	h	0100	0		h0100)1	h	01002		h0	1003	3			•	h(010EC	h	010E	D	ŀ	1010E	E	h()10EF
G18	G415	h	0110	0		h0110)1	h	01102		h0	1103	3			•	h(011EC	h	011E	D	ŀ	1011E	Ε	h()11EF
G19	G414	h	0120	0		h0120)1	h	01202		h0	1203	3			•	h(012EC	h	012E	D	ŀ	1012E	E	h()12EF
G20	G413	h	0130	0		h0130)1	h	01302		h0	1303	3			•	h(013EC	h	013E	D	ŀ	1013E	Ε	h()13EF
:	:		:			:			:			:						:		:			:			:
:	:		:			:			:			:						:		:			:			:
G417	G16	h'	1A00	0	ı	h1A00	01	h'	1A002		h1	A003	3			•	h1	1A0EC	h	1A0E	D	r	1A0E	E	h1	A0EF
G418	G15	h'	1A10	0	I	h1A10)1	h'	1A102		h1	A103	3			•	h1	1A1EC	h	1A1E	D	h	11A1E	E	h1	A1EF
G419	G14	h'	1A20	0	١	h1A20)1	h'	1A202		h1	A203	3			•	h1	1A2EC	h	1A2E	D	h	11A2E	E	h1	A2EF
G420	G13	h'	1A30	0	I	h1A30)1	h'	1A302		h1	A303	3			•	h1	1A3EC	h	1A3E	D	h	11A3E	E	h1	A3EF
G421	G12	h'	1A40	0	١	h1A40)1	h'	1A402		h1	A403	3	• •	• •	•	h1	1A4EC	h	1A4E	D	r	11A4E	E	h1	A4EF
G422	G11	h'	1A50	0	١	h1A50)1	h'	1A502		h1	A503	3	• •		•	h1	1A5EC	h	1A5E	D	r	145E	E	h1	A5EF
G423	G10	h'	1A60	0	١	h1A60)1	h'	1A602		h1	A603	3	• •	• •	•	h1	1A6EC	h	1A6E	D	r	1A6E	E	h1	A6EF
G424	G9	h'	1A70	0	I	h1A70)1	h'	1A702		h1	A703	3	• •		•	h1	1A7EC	h	1A7E	D	r	1A7E	E	h1	A7EF
G425	G8	h'	1A80	0	١	h1A80)1	h'	1A802		h1	A80	3	• •	• •	•	h1	1A8EC	h	1A8E	D	r	11A8E	E	h1	A8EF
G426	G7	h'	1A90	0	١	h1A90)1	h'	1A902		h1	A903	3			•	h1	1A9EC	h	1A9E	D	r	1A9E	E	h1	A9EF
G427	G6	h′	1AA0	00	ŀ	h1AA(01	h′	1AA02		h1	AA0	3			•	h1	IAAEC	h	1AAE	D	h	1AAE	EE	h1	AAEF
G428	G5	h′	1AB0	00	ı	h1AB(01	h′	1AB02		h1	AB0	3	• •	• •	•	h1	IABEC	h	1ABE	D	h	1ABE	ΞE	h1	ABEF
G429	G4	h1	1AC0	00	ŀ	n1AC(01	h1	IAC02		h1/	AC0	3			•	h1	IACEC	h	1ACE	D	h	1ACE	E	h1	ACEF
G430	G3	h1	1AD0	00	ŀ	n1AD(01	h1	IAD02		h1/	AD0	3	• •	• •	•	h1	IADEC	h	1ADE	D	h	1ADE	ΞE	h1	ADEF
G431	G2	h′	1AE0	00	ı	h1AE(01	h′	1AE02		h1	AE0	3	• •	• •	•	h1	IAEEC	h	1AEE	D	h	1AEE	ΞE	h1	AEEF
G432	G1	h′	1AF0	0	ı	h1AF(01	h′	1AF02		h1	AF0	3			•	h1	IAFEC	h	1AFE	D	r	1AFE	E	h1	AFEF

Table 12 GRAM address and display position on the panel (SS = 1, BGR = 1)

Tabi	E 12	GNAM a	uui ess aii	u uispiay	position o	m the pai		i, buk –	1)	
S/G	pin	S720 S719 S718	S717 S716 S715	S714 S713 S712	S711 S710 S709		S12 S11 S10	S9 S8 S7	S6 S5 S4	S3 S2 S1
GS=0	GS=1	WD[17:0]	WD[17:0]	WD[17:0]	WD[17:0]		WD[17:0]	WD[17:0]	WD[17:0]	WD[17:0]
G1	G432	h00000	h00001	h00002	h00003		h000EC	h000ED	h000EE	h000EF
G2	G431	h00100	h00101	h00102	h00103		h001EC	h001ED	h001EE	h001EF
G3	G430	h00200	h00201	h00202	h00203		h002EC	h002ED	h002EE	h002EF
G4	G429	h00300	h00301	h00302	h00303		h003EC	h003ED	h003EE	h003EF
G5	G428	h00400	h00401	h00402	h00403		h004EC	h004ED	h004EE	h004EF
G6	G427	h00500	h00501	h00502	h00503		h005EC	h005ED	h005EE	h005EF
G7	G426	h00600	h00601	h00602	h00603		h006EC	h006ED	h006EE	h006EF
G8	G425	h00700	h00701	h00702	h00703		h007EC	h007ED	h007EE	h007EF
G9	G424	h00800	h00801	h00802	h00803		h008EC	h008ED	h008EE	h008EF
G10	G423	h00900	h00901	h00902	h00903		h009EC	h009ED	h009EE	h009EF
G11	G422	h00A00	h00A01	h00A02	h00A03		h00AEC	h00AED	h00AEE	h00AEF
G12	G421	h00B00	h00B01	h00B02	h00B03		h00BEC	h00BED	h00BEE	h00BEF
G13	G420	h00C00	h00C01	h00C02	h00C03		h00CEC	h00CED	h00CEE	h00CEF
G14	G419	h00D00	h00D01	h00D02	h00D03		h00DEC	h00DED	h00DEE	h00DEF
G15	G418	h00E00	h00E01	h00E02	h00E03		h00EEC	h00EED	h00EEE	h00EEF
G16	G417	h00F00	h00F01	h00F02	h00F03		h00FEC	h00FED	h00FEE	h00FEF
G17	G416	h01000	h01001	h01002	h01003		h010EC	h010ED	h010EE	h010EF
G18	G415	h01100	h01101	h01102	h01103		h011EC	h011ED	h011EE	h011EF
G19	G414	h01200	h01201	h01202	h01203		h012EC	h012ED	h012EE	h012EF
G20	G413	h01300	h01301	h01302	h01303		h013EC	h013ED	h013EE	h013EF
:	:	:	:	:	:		:	:	:	:
:	:	:	:	:	:		:	:	:	:
G417	G16	h1A000	h1A001	h1A002	h1A003		h1A0EC	h1A0ED	h1A0EE	h1A0EF
G418	G15	h1A100	h1A101	h1A102	h1A103		h1A1EC	h1A1ED	h1A1EE	h1A1EF
G419	G14	h1A200	h1A201	h1A202	h1A203		h1A2EC	h1A2ED	h1A2EE	h1A2EF
G420	G13	h1A300	h1A301	h1A302	h1A303		h1A3EC	h1A3ED	h1A3EE	h1A3EF
G421	G12	h1A400	h1A401	h1A402	h1A403		h1A4EC	h1A4ED	h1A4EE	h1A4EF
G422	G11	h1A500	h1A501	h1A502	h1A503		h1A5EC	h1A5ED	h1A5EE	h1A5EF
G423	G10	h1A600	h1A601	h1A602	h1A603		h1A6EC	h1A6ED	h1A6EE	h1A6EF
G424	G9	h1A700	h1A701	h1A702	h1A703		h1A7EC	h1A7ED	h1A7EE	h1A7EF
G425	G8	h1A800	h1A801	h1A802	h1A803		h1A8EC	h1A8ED	h1A8EE	h1A8EF
G426	G7	h1A900	h1A901	h1A902	h1A903		h1A9EC	h1A9ED	h1A9EE	h1A9EF
G427	G6	h1AA00	h1AA01	h1AA02	h1AA03		h1AAEC	h1AAED	h1AAEE	h1AAEF
G428	G5	h1AB00	h1AB01	h1AB02	h1AB03		h1ABEC	h1ABED	h1ABEE	h1ABEF
G429	G4	h1AC00	h1AC01	h1AC02	h1AC03		h1ACEC	h1ACED	h1ACEE	h1ACEF
G430	G3	h1AD00	h1AD01	h1AD02	h1AD03		h1ADEC	h1ADED	h1ADEE	h1ADEF
G431	G2	h1AE00	h1AE01	h1AE02	h1AE03		h1AEEC	h1AEED	h1AEEE	h1AEEF
G432	G1	h1AF00	h1AF01	h1AF02	h1AF03		h1AFEC	h1AFED	h1AFEE	h1AFEF

Instruction

Outline

The R61509V adopts 18-bit bus architecture in order to interface to high-performance microcomputer in high speed. The R61509V starts internal processing after storing control information (18, 16, 9, 8, 1 bit(s)), sent from the microcomputer, in the instruction register (IR) and the data register (DR). Since the internal operation of the R61509V is controlled by the signals sent from the microcomputer, the register selection signal (RS), the read/write signal (R/W), and the internal 16-bit data bus signals (IB15 \sim IB0) are called instructions. The following are the kinds of instruction of the R61509V.

- 1. Specify index
- 2. Display control
- 3. Power management control
- 4. Set internal GRAM addresssss
- 5. Transfer data to and from the internal GRAM
- 6. Window address control
- 7. γ-correction
- 8. Panel Display Control

Normally, the data write instructions (5) are used the most frequently. The internal GRAM address is updated automatically as data is written to the internal GRAM, which, in combination with the window address function, contributes to minimizing data transfer and thereby lessens the load on the microcomputer. The R61509V writes instructions consecutively by executing the instruction within the cycle when it is written (instruction execution time: 0 cycle).

Instruction Data Format

As the following figure shows, the data bus used to transfer 16 instruction bits (IB[15:0]) is different according to the data format of a selected interface. Make sure to transfer the instruction bits according to the format of the selected interface.

The bits to which no instruction is assigned must be set to either "0" or "1" according to the following register tables. When changing only one instruction bit setting, the setting values in other bits in the register must be written.

Index (IR)

R/	W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
V	V	0	0	0	0	0	0	ID [10]	ID [9]	ID [8]	ID [7]	ID [6]	ID [5]	ID [4]	ID [3]	ID [2]	ID [1]	ID [0]

The index register specifies the indexes of control register or RAM control to be accessed. It is prohibited to access registers and instruction bits to which no index register is assigned.

Display control

Device code read (R000h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R	1	1	0	1	1	0	1	0	1	0	0	0	0	1	0	0	1

The device code "B509"H is read out when this register is read forcibly.

Driver Output Control (R001h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	0	0	0	0	SM	0	SS	0	0	0	0	0	0	0	0
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SS: Sets the shift direction of output from the source driver.

When SS = "0", the source driver output shift from S1 to S720.

When SS = "1", the source driver output shift from S720 to S1.

The combination of SS and BGR settings determines the RGB assignment to the source driver pins S1 \sim S720.

When SS = "0" and BGR = "0", RGB dots are assigned one to one from S1 to S720.

When SS = "1" and BGR = "1", RGB dots are assigned one to one from S720 to S1.

When changing the SS and BGR bits, RAM data must be rewritten.

SM: Controls the scan mode in combination with GS setting. See "Scan mode setting".

LCD Drive Wave Control (R002h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	0	0	0	0	0	0	ВС	0	0	0	0	0	0	0	0
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

BC: Selects the liquid crystal drive waveform VCOM.

BC = 0: frame inversion waveform is selected.

BC = 1: line inversion waveform is selected.

Entry Mode (R003h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	TRI	DF M	0	BGR	0	0	0	0	OR G	0	ID [1]	ID [0]	AM	0	0	0
Default	value	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0

The entry mode registers include instruction bits for setting how to write data from the microcomputer to the internal GRAM of the R61509V.

AM: Sets either horizontal or vertical direction in updating the address counter automatically as the R61509V writes data to the internal GRAM.

AM = "0", sets the horizontal direction.

AM = "1", sets the vertical direction.

When specifying window address area, the data is written only within the area in the direction determined by ID and AM bits.

ID[1:0]: Either increments (+1) or decrements (-1) the address counter (AC) automatically as the data is written to the GRAM. The ID[0] bit sets either increment or decrement in horizontal direction (updates the address AD[7:0]). The ID[1] bit sets either increment or decrement in vertical direction (updates the address AD[8:16]). The AM bit sets either horizontal or vertical direction in updating RAM address counter automatically when writing data to the internal RAM.

ORG: Moves the origin address according to the ID setting when a window address area is described. This function is enabled when executing burst data transfer within the window address area.

ORG = 0: The origin address is not moved. In this case, specify the address to start write operation according to the GRAM address map within the window address area.

ORG = 1: The origin address "h00000" is moved according to the ID[1:0] setting.

Notes: 1. When ORG = 1, the origin address can be set only at "h00000".

2. In RAM read operation, make sure to set ORG = 0.

BGR: Reverses the order from RGB to BGR in writing 18-bit pixel data in the GRAM.

BGR = 0: Write data in the order of RGB to the GRAM.

BGR = 1: Reverse the order from RGB to BGR in writing data to the GRAM.

DFM: In combination with the TRI setting, DFM sets the format to develop 16-/8-bit data to 18-bit data when using either 16- or 8-bit bus interface. Make sure to set DFM = 0 when not transferring data via 16-bit or 8-bit interface. Set DFM in accordance with selected interface and image data format in RAM write operation.

DFM=0: 18bpp (R:G:B = 6:6:6), DFM=1: 16bpp (R:G:B = 5:6:5)

TRI: Selects the format to transfer data bits via 16-bit or 8-bit interface.

In 8-bit interface operation,

TRI = 0: 16-bit RAM data is transferred in two transfers.

TRI = 1: 18-bit RAM data is transferred in three transfers.

In 16-bit bus interface operation,

TRI = 0: 16-bit RAM data is transferred in one transfer.

TRI = 1: 18-bit RAM data is transferred in two transfers.

Make sure TRI = 0 when not transferring data via 16- or 8-bit interface. Also, set TRI = 0 during read operation.

Note: When writing data within the window address area with ORG = 0, any address within the window address area can be set as the starting point of data write operation.

Automatic Address Update (ORG = 1, AM, ID)

Notes: 1. When ORG = 1, the address to start data write operation within the window address area is set at either corner of the window address area (the positions of the "S" in the circle in the above figure).

2. When ORG = 1, make sure to set the address "h00000" in the RAM address set register. Setting other addresses is prohibited.

Figure 4 Automatic Address Update

Display Control 1 (R007h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	0	0	PTD E	0	0	0	BAS EE	0	0	0	0	0	0	0	0
Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

BASEE: Base image display enable bit.

BASEE = 0: No base image is displayed. The R61509V drives the LCD at non-lit display level or displays partial images.

BASEE = 1: A base image is displayed.

PTDE: Partial display 1 enable bit.

PTDE=0: Partial display is turned off. Only a base image is displayed on the panel.

PTDE=1: Partial image is displayed. Set BASEE = 0 to turn off the base image.

Display Control 2 (R008h)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
ĺ	R/W	1	FP	FP	FP	FP	FP	FP	FP	FP	BP							
	K/W	1	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
	Def	ault	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0

FP[7:0]: Sets the number of lines for front porch period (a blank period made after the end of display).

BP[7:0]: Sets the number of lines for back porch period (a blank period made before the beginning of display).

In external display interface operation, a back porch (BP) period starts on the falling edge of the VSYNCX signal and the display operation starts after the back porch period. After the front porch period, a blank period continues until next VSYNCX input is detected.

Table 13

FP [7:0] BP [7:0]	Number of front porch line	Number of back porch line
8'h00	Setting inhibited	Setting inhibited
8'h01	Setting inhibited	Setting inhibited
8'h02	Setting inhibited	2 lines
8'h03	3 lines	3 lines
8'h04	4 lines	4 lines
8'h05	5 lines	5 lines
8'h06	6 lines	6 lines
8'h07	7 lines	7 lines
8'h08	8 lines	8 lines
8'h09	9 lines	9 lines
8'h0A	10 lines	10 lines
8'h0B	11 lines	11 lines
8'h0C	12 lines	12 lines
8'h0D	13 lines	13 lines
8'h0E	14 lines	14 lines
8'h0F	15 lines	15 lines
:	:	:
8'h7F	127 lines	127 lines
8'h80	128 lines	128 lines
8'h81	Setting inhibited	Setting inhibited
:	:	:
8'hFF	Setting inhibited	Setting inhibited

Figure 5 Front and Back Porch Periods

Note on Setting BP and FP:

Set the BP and FP bits as follows in the following operation modes, respectively.

Table 14

$BP \geq 2 lines \qquad FP \geq 3 lines$	FP + BP ≤ 256 lines
--	---------------------

Display Control 3 (R009h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	0	0	0	PTV	PTS	0	0	0	0	0	0	0	0	0	0
Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

PTS: Sets the source output level to drive non-display area. PTS also selects operation of grayscale amplifier and step-up clock frequency.

Table 15

PTS	Source output in n	non-lit display area (Note)	Grayscale amplifier	Non-lit display area Step-up clock frequency
	Positive polarity	Negative polarity	in operation	
0	V63	V0	V0 to V63	Register setting (DC0, DC1)
1	V63	V0	V0, V63	Register setting (DC0) x 1/2

Note: The power efficiency improved by halting grayscale amplifiers and slowing down the step-up clock frequency can be obtained in non-display drive period.

PTV: Sets the VCOM output in non-lit display area. When PTV=1, frame inversion in non-lit display area is selected.

Table 16

PTV	VCOM operation in non-lit display drive period
0	BC setting
1	Frame inversion

8 Color Control (R00Bh)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W/R	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	COL
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

COL: When COL = 1, the R61509V enters the eight-color display mode. RAM data rewrite operation is not required when setting the eight-color display mode. Set the 8-color mode instruction according to the 8-color mode sequence.

The electrical potential of liquid crystal drive in 8-color display mode is V0/V63. Selecting frame inversion is recommended to reduce power consumption.

Table 17

COL	Display Color
1'h0	262,144 colors
1'h 1	8 colors

External Display Interface Control 1 (R00Ch)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	ENC [2]	ENC [1]	ENC [0]	0	0	0	RM	0	0	DM [1]	DM [0]	0	0	0	RIM
Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

RIM: Sets the interface format when RGB interface is selected by RM and DM bits. Set RIM bit before starting display operation via the external display interface. Do not change the setting while the R61509V performs display operation.

Table 18

RIM		Color	
0	18-bt RGB interface (1 transfer/pixel)	DB17-0	262,144
1	16-bit RGB interface (1 transfer / pixel)	DB17-13, 11-1	65536

Notes: 1: Instruction bits are set via system interface.

2: Transfer the RGB dot data one by one in synchronization with DOTCLK.

DM[1:0]: The DM[1:0] setting allows switching between internal clock operation mode and external display interface operation mode. However, switching between the RGB interface operation and the VSYNCX interface operation is prohibited.

Table 19 Display Interface

DM[1:0]	Display Interface
2'h0	Internal clock operations
2'h1	RGB interface
2'h2	VSYNC interface
2'h3	Setting inhibited

RM: Selects the interface for RAM access operation. RAM access is possible only via the interface selected by the RM bit. Set RM = 1 when writing display data via RGB interface. When RM = 0, it is possible to write data via system interface while performing display operation via RGB interface.

Table 20 RAM Access Interface

RM		RAM Access Interface							
0	System interface/VSYNC interface								
1	RGB interface	* Transfer instruction commands via clock synchronous serial interface.							

ENC[2:0]: Sets the RAM write cycle via RGB interface.

Table 21

ENC[2:0]	RAM Write Cycle (frame periods)
3'h0	1 frame
3'h1	2 frames
3'h2	3 frames
3'h3	4 frames
3'h4	5 frames
3'h5	6 frames
3'h6	7 frames
3'h7	8 frames

External Display Interface Control 2 (R00Fh)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	0	0	0	0	0	0	0	0	0	0	VSPL	HSPL	0	EPL	DPL
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

DPL: Sets the signal polarity of DOTCLK pin.

DPL = 0: input data on the rising edge of DOTCLK DPL = 1: input data on the falling edge of DOTCLK

EPL: Sets the signal polarity of ENABLE pin.

EPL = 0: writes data DB17-0 when ENABLE = "0" and disables data write operation when ENABLE = "1".

EPL = 1: writes data DB17-0 when ENABLE = "1" and disables data write operation when ENABLE = "0".

HSPL: Sets the signal polarity of HSYNCX pin.

HSPL = 0: low active HSPL = 1: high active

VSPL: Sets the signal polarity of VSYNCX pin.

VSPL = 0: low active VSPL = 1: high active

Panel Interface Control 1 (R010h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	0	0	0	0	0	DIV I [1]	DIV I [0]	0	0	0	RTNI [4]	RTNI [3]	RTNI [2]	RTNI [1]	RTNI [0]
Defa	ault	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1

RTNI[4:0]: Sets 1H (line) period. This setting is valid when the R61509V's display operation is synchronized with internal clock signal.

Table 22 Clocks per Line (Internal Clock Operation)

RTNI[4:0]	Clocks per Line	RTNI[4:0]	Clocks per Line
5'h00-5'h0F	Setting inhibited	5'h18	24 clocks
5'h10	16 clocks	5'h19	25 clocks
5'h11	17 clocks	5'h1A	26 clocks
5'h12	18 clocks	5'h1B	27 clocks
5'h13	19 clocks	5'h1C	28 clocks
5'h14	20 clocks	5'h1D	29 clocks
5'h15	21 clocks	5'h1E	30 clocks
5'h16	22 clocks	5'h1F	31 clocks
5'h17	23 clocks		

Note: In Power Supply Instruction Setting, Deep Standby Exit Sequence and Sleep Mode Exit Sequence, RTNI bit must be set at the "Initial instruction setting" state. See "Power Supply Setting Sequence" and "Instruction Setting Sequence and Refresh Sequence".

DIVI[1:0]: Sets the division ratio of the internal clock frequency. The R61509V's internal operation is synchronized with the frequency divided internal clock, which is set according to the division ratio determined by DIVI[1:0] setting. The frame frequency can be changed by setting RTNI and DIVI bits. When changing the number of lines to drive the LCD panel, adjust the frame frequency too. For details, see Frame-Frequency Adjustment Function.

In RGB interface operation, the DIVI[1:0] setting has no effect.

Table 23 Division Ratio (Internal Operation)

DIVI[1:0]	Division Ratio	Internal Operation Clock Unit
2'h0	1/1	1 x OSC
2'h1	1/2	2 x OSC
2'h2	1/4	4 x OSC
2'h3	1/8	8 x OSC

Note: In Power Supply Instruction Setting, Deep Standby Exit Sequence and Sleep Mode Exit Sequence, RTNI bit must be set at the "Initial instruction setting" state. See "Power Supply Setting Sequence" and "Instruction Setting Sequence and Refresh Sequence".

Target Spec R61509V

Frame Frequency Calculation

fosc Frame frequency = - [Hz] Clocks per line x division ratio x (line + BP + FP)

fose: RC oscillation frequency Line: Number of lines to drive the LCD (NL bits) Division ratio: DIVI

Clocks per line: RTNI

Panel Interface Control 2 (R011h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	0	0	0	0	NOW I[2]	NOW I[1]	NOW I[0]	0	0	0	0	0	SDTI [2]	SDTI [1]	SDTI [0]
Det	fault	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1

NOWI[2:0]: Sets the non-overlap period of adjacent gate outputs. The setting is enabled when the R61509V's display operation is synchronized with internal clock signals.

Table 24

NOWI[2:0]	Non-overlap period	NOWI[2:0]	Non-overlap period
3'h0	0 (internal clock *see note)	3'h4	4 (internal clock *see note)
3'h1	1	3'h5	5
3'h2	2	3'h6	6
3'h3	3	3'h7	7

Note: The internal clock is the frequency divided clock, which is set by DIVI[[1:0] bits.

SDTI[2:0]: Sets the source output delay period from the reference point. For the relationships between gate interface signals, see Liquid Crystal Panel Interface Timing.

Table 25

SDTI[2:0]	Source output delay period
3'h0	0 clocks
3'h1	1 clock
3'h2	2 clocks
3'h3	3 clocks
3'h4	4 clocks
3'h5	5 clocks
3'h6	6 clocks
3'h7	7 clocks

Notes: 1. The number of clocks in the table setting is measured from the reference point.

- 2. 1 clock = (internal oscillation clock (OSC1) period) x (division ratio)
- 3. The reference point is the falling edge of gate output.

Panel Interface Control 3 (R012h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	0	0	0	0	VEQ WI[2]	VEQ WI[1]	VEQ WI[0]	0	0	0	0	0	SEQ WI[2]	SEQ WI[1]	SEQ WI[0]
Defaul	t value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

VEQWI[2:0]: Sets VCOM equalize period. The VCOM equalize operation is executed from VCOM alternating point defined by MCPI [2:0] for the period defined by VEQWI [2:0]. This function is disabled when RGB interface is selected.

Table 26

VEQWI [2:0]		VCOM Equalize period
3'h0	0 clocks	
3'h1	1 clock	
3'h2	2 clocks	
3'h3	3 clocks	
3'h4	4 clocks	
3'h5	5 clocks	
3'h6	6 clocks	
3'h7	7 clocks	

Note: The clock is the frequency divided clock, which is set by DIVI[[1:0] bits.

Figure 6

SEQWI[2:0]: Sets source equalize period. SEQWI setting is enabled only when the R61509V executes display operation in synchronization with internal clock.

Table 27

SEQWI[2:0]	Source Equalize Period
3'h0	0 clocks
3'h1	1 clock
3'h2	2 clocks
3'h3	3 clocks
3'h4	4 clocks
3'h5	5 clocks
3'h6	6 clocks
3'h7	7 clocks

Note: The clock is the frequency divided clock, which is set by DIVI[[1:0] bits.

Panel Interface Control 4 (R013h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	MC PI[2]	MC PI [1]	MC PI [0]
Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

MCPI: Defines VCOM alternating timing. This bit is enabled when displaying in synchronization with internal clock. MCP cannot be used in RGB interface operation.

Table 28

MCPI [2:0]	VCOM alternating timing
3'h0	Setting inhibited
3'h1	1 clock
3'h2	2 clocks
3'h3	3 clocks
3'h4	4 clocks
3'h5	5 clocks
3'h6	6 clocks
3'h7	7 clocks

Note: The clock is the frequency divided clock, which is set by DIVI [1:0] bits.

Panel Interface Control 5 (R014h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
											PC	PC	PC		PC	PC	PC
R/W	1	0	0	0	0	0	0	0	0	0	DIV	DIV	DIV	0	DIV	DIV	DIV
10/ 11	1	U	U	U	U	U	U	U	0	U	Н	Н	Н	U	L	L	L
											[2]	[1]	[0]		[2]	[1]	[0]
Def	àult	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1

PCDIVH[2:0], PCDIVL[2:0]: When DM=1 and RGB I/F is selected, display operation is executed using DOTCLKD. PCDIVH and PCDIVL define division ratio of DOTCLK to generate DOTCLKD.

PCDIVH is used to define number of DOTCLK in High period in units of one clock.

PCDIVL is used to define number of DOTCLK in Low period in units of one clock.

Make sure that PCDIVL=PCDIVH or PCDIVH-1.

Write PCDIVH and PCDIVL values so that DOTCLKD frequency is the closest to internal oscillation clock frequency 678KHz.

For details, see "Setting Example of Display Control Clock in RGB Interface Operation".

Table 29

PCDIVH[2:0]	Number of DOTCLK in High period
3'h0	Setting inhibited
3'h1	1 clock
3'h2	2 clocks
3'h3	3 clocks
3'h4	4 clocks
3'h5	5 clocks
3'h6	6 clocks
3'h7	7 clocks

Table 30

PCDIVL[2:0]	Number of DOTCLK in Low period						
3'h0	Setting inhibited						
3'h1	1 clock						
3'h2	2 clocks						
3'h3	3 clocks						
3'h4	4 clocks						
3'h5	5 clocks						
3'h6	6 clocks						
3'h7	7 clocks						

Panel Interface Control 6 (R020h)

F	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
Т	R/W	1	0	0	0	0	0	0	DIV	DIV	0	01	RTN	RTN	RTN	RTN	RTN	RTN
г	(VV	1	U	U	U	U	U	U	E[1]	E[0]	U	ΟJ	E[5]	E[4]	E[3]	E[2]	E[1]	E[0]
Default		0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	

DIVE[1:0]: Sets the division ratio of DOTCLK. The R61509V's internal operation is synchronized with the frequency-divided DOTCLK, the frequency of which is divided by the division ratio set by DIVE[1:0]. This setting is enabled while the R61509V's display operation is synchronized with RGB interface signals.

Table 31 Division Ratio of DOTCLK (RGB interface operation)

DIVE[1:0]		Division ratio
011.0	4/4	
2'h0	1/1	
2'h1	1/2	
2'h2	1/4	
2'h3	1/8	_

Note: Clock frequency for internal operation = DOTCLK / ((DIVE x (PCDIVL + PCDIVH)). For details, see R014h.

RTNE[5:0]: Sets RTNE in combination with PCDIVH and PCDIVL to decide the number of DOTCLK in 1H (1 line) period according to the following formula. RTNE is enabled when RGB interface is selected.

DOTCLKD x RTNE (Number of clock) ≤ DOTCLK in 1H period.

Table 32 DOTCLKD in 1H period (RGB interface operation)

		•	-
RTNE[5:0]	Clocks per line period (1H)	RTNE[5:0]	Clocks per line period (1H)
6'h00	Setting inhibited	6'h20	32 clocks
6'h01	Setting inhibited	6'h21	33 clocks
6'h02	Setting inhibited	6'h22	34 clocks
6'h03	Setting inhibited	6'h23	35 clocks
6'h04	Setting inhibited	6'h24	36 clocks
6'h05	Setting inhibited	6'h25	37 clocks
6'h06	Setting inhibited	6'h26	38 clocks
6'h07	Setting inhibited	6'h27	39 clocks
6'h08	Setting inhibited	6'h28	40 clocks
6'h09	Setting inhibited	6'h29	41 clocks
6'h0A	Setting inhibited	6'h2A	42 clocks
6'h0B	Setting inhibited	6'h2B	43 clocks
6'h0C	Setting inhibited	6'h2C	44 clocks
6'h0D	Setting inhibited	6'h2D	45 clocks
6'h0E	Setting inhibited	6'h2E	46 clocks
6'h0F	Setting inhibited	6'h2F	47 clocks
6'h10	16 clocks	6'h30	48 clocks
6'h11	17 clocks	6'h31	49 clocks
6'h12	18 clocks	6'h32	50 clocks
6'h13	19 clocks	6'h33	51 clocks
6'h14	20 clocks	6'h34	52 clocks
6'h15	21 clocks	6'h35	53 clocks
6'h16	22 clocks	6'h36	54 clocks
6'h17	23 clocks	6'h37	55 clocks
6'h18	24 clocks	6'h38	56 clocks
6'h19	25 clocks	6'h39	57 clocks
6'h1A	26 clocks	6'h3A	58 clocks
6'h1B	27 clocks	6'h3B	59 clocks
6'h1C	28 clocks	6'h3C	60 clocks
6'h1D	29 clocks	6'h3D	61 clocks
6'h1E	30 clocks	6'h3E	62 clocks
6'h1F	31 clocks	6'h3F	63 clocks

Panel Interface Control 7 (R021h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	0	0	0	0	NOW E[2]	NOW E[1]	NOW E[0]	0	0	0	0	0	SDTE [2]	SDTE [1]	SDTE [0]
Default		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1

NOWE[2:0]: Sets the non-overlap period of adjacent gate outputs. NOWE is enabled when RGB interface is selected.

Table 33

NOWE[2	NOWE[2:0] Non-overlap period												
3'h0	0 clocks												
3'h1	1 clock												
3'h2	2 clocks												
3'h3	3 clocks												
3'h4	4 clocks												
3'h5	5 clocks												
3'h6	6 clocks												
3'h7	7 clocks												

Note: 1 clock = (number of data transfer/pixel) x DIVE (division ratio) x (PCDIVL + PCDIVH) [DOTCLK]

SDTE[2:0]: Sets the source output delay period from the reference point when the R61509V's display operation is synchronized with DOTCLK (DM = 2'h1). For the relationships between signals, see Liquid Crystal Panel Interface Timing.

Table 34

SDTE[2:0]	Source output delay period
3'h0	0 clocks
3'h1	1 clock
3'h2	2 clocks
3'h3	3 clocks
3'h4	4 clocks
3'h5	5 clocks
3'h6	6 clocks
3'h7	7 clocks

Notes: 1. The number of clocks in the table setting is measured from the reference point.

- 2. 1 clock = DOTCLKD (when pixel data is transferred in one- transfer)
- 3. The reference point is falling edge of gate control signals.

Panel Interface Control 8 (R022h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	0	0	0	0	VEQ WE	VEQ WE	VEQ WE	0	0	0	0	0	SEQ WE	SEQ WE	SEQ WE
							[2]	[1]	[0]						[2]	[1]	[0]
Default		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

VEQWE[2:0]: Sets low power VCOM drive period. The setting is enabled when RGB interface is selected.

Table 35

VEQWE[2:0]	Source output delay period	VEQWE[2:0]	Source output delay period
3'h0	0 clocks (*see Notes)	3'h4	4 clocks
3'h1	1 clock	3'h5	5 clocks
3'h2	2 clocks	3'h6	6 clocks
3'h3	3 clocks	3'h7	7 clocks

Notes: 1. 1 clock = (Number of data transfer/pixel) x DIVE (division ratio) x (PCDIVL + PCDIVH)) [DOTCLK]

2. The number of clocks is measured from the reference point. The reference point is the alternating position of VCOM, which is set by SDTE bits.

Figure 7

SEQWE[2:0]: Sets source equalize period. SEQWE setting is enabled when the R61509V executes display operation via RGB interface.

Table 36

SEQWE[2:0]	Source Equalize Period
3'h0	0 clocks
3'h1	1 clock
3'h2	2 clocks
3'h3	3 clocks
3'h4	4 clocks
3'h5	5 clocks
3'h6	6 clocks
3'h7	7 clocks

Note: 1 clock = (number of data transfer/pixel) x DIVE(Division ratio) x (PCDIVL + PCDIVH)) [DOTCLK]

Panel Interface Control 9 (R023h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	MC PE [2]	MC PE [1]	MC PE [0]
Default		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

MCPE [2:0]: Specifies VCOM alternating point. MCPE is enabled when RGB interface is selected.

Table 37

MCPE [2:0]	VCOM alternating point
3'h0	Setting inhibited
3'h1	1 clock
3'h2	2 clocks
3'h3	3 clocks
3'h4	4 clocks
3'h5	5 clocks
3'h6	6 clocks
3'h7	7 clocks

Note: 1 clock = (number of data transfer/pixel) x DIVE(Division ratio) x (PCDIVL + PCDIVH)) [DOTCLK]

Frame Marker Control (R090h)

R	/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
D	/ X //	1	FM	FMI	FMI	FMI	0	0	0	FMP								
R/W	/ VV	1	KM	[2]	[1]	[0]	U	U	U	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
Default		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

FMI[2:0]: Sets FMARK output interval by FMI register setting according to the update period of display data and transfer rate. Set FMKM = 1 if FMARK signal is output from FMARK pin. See "FMARK Interface" for detail.

Table 38

FMI[2]	FMI[1]	FMI[0]	Output interval
0	0	0	1 frame
0	0	1	2 frames
0	1	1	4 frames
1	0	1	6 frames
Other sett	ings		Setting inhibited

FMP[8:0]: Sets the output position of frame synchronous signal (frame marker). A pulse (FMARK) is output by starting from back porch during a 1H period when FMP[8:0] = 9'h000 (high active, amplitude: IOVCC1-GND). FMP[8:0] is used as a trigger signal for write operation in synchronization with frame.

Setting range: $9'h000 \le FMP \le BP + NL + FP$

For details, see "FMARK Interface".

Table 39

FMP[8:0]	FMARK output position
9'h000	0
9'h001	1
9'h002	2
:	
9'h1BE	446
9'h1BF	447
9'h1C0 ~ 9'h1FF	Setting inhibited

Power Control

Power Control 1 (R100h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	0	0	0	0	BT	BT	BT	0	0	AP	AP	0	DST	0	0
IX/ W	1	0	U	U	U	, 0	[2]	[1]	[0]	U		[1]	[0]	0	В	0	
Def	ault	0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0

DSTB: When DSTB = 1, the R61509V enters the shut down mode. In shut down mode, the internal logic power supply is turned off to reduce power consumption. The GRAM data and instruction setting are not maintained when the R61509V is in the shut down mode. Set the instruction again after the shut down mode is exited. GND level is outputted to the panel in the shut down mode.

AP[1:0]: Adjusts the constant current in the operational amplifier circuit in the LCD power supply circuit. The larger constant current, the better the drivability of the LCD, but it also increases the current consumption. Adjust the constant current taking the trade-off between the display quality and the current consumption into account. In no-display period, set AP[1:0]=2'h0 to halt operational amplifiers and stepup circuits to reduce power consumption.

Table 40 Constant Current in Operational Amplifiers

AP[1:0]	Electricity in LCD drive power supply amplifiers
2'h0	Operational amplifiers and step-up circuits halt
2'h1	0.5
2'h2	0.75
2'h3	1

Note: The values in the table represent the ratios of currents in respective settings to the current when AP[1:0]=2'h3.

BT[2:0]: Sets the factor used in the step-up circuits. Select the optimal step-up factor for the operating voltage. To reduce power consumption, set a smaller factor.

Table 41 Step-Up Factor for Step-Up Circuits

BT[2:0]	DDVDH	VCL	VGH	VGL					
3'h0	Setting in	Setting inhibited							
3'h1				-(VCI1+DDVDH x 2)					
3111			DD\/DLL0	[x -5]					
3'h2	VCI1 x2	-VCI1	DDVDH x 3	-(DDVDH x 2)					
3112	[x 2]	[x -1]	[x 6]	[x -4]					
3'h3			[x 0]	-(VCI1+DDVDH)					
3113				[x -3]					
3'h4	Setting in	hibited							
3'h5				-(VCI1+DDVDH x 2)					
3113			\(\O\d\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	[x -5]					
3'h6	VCI1 x2	-VCI1	VCI1+DDVDH x 2	-(DDVDH x 2)					
	[x 2]	[x -1]	[x 5]	[x -4]					
3'h7			[]	-(VCI1+DDVDH)					
3117				[x -3]					

Notes: 1. The factors in the brackets show the step-up factors from VCI1.

^{2.} Make sure DDVDH=max.6.0V, VGH=max.18.0V, VGL=max -13.5V, VGH-VGL=max. 28.0V, and VCL=max -3.0V.

Power Control 2 (R101h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	0	0	0	0	DC1 [2]	DC1 [1]	DC1 [0]	0	DC0 [2]	DC0 [1]	DC0 [0]	0	VC [2]	VC [1]	VC [0]
Def	ault	0	0	0	0	0	0	1	0	0	1	0	0	0	1	1	1

DC1 [2:0]: Sets step-up clock frequency for Step-up Circuit 2. The step-up clock is in synchronization with internal clock.

Table 42 Step-up Frequency (Step-up Circuit 1)

DC1[2:0]	Step-up Circuit 2				
DC 1[2.0]	Step-up frequency (fDCDC2)				
3'h0	Step-up Circuit 2 halts				
3'h1	Setting inhibited				
3'h2	Line frequency / 4				
3'h3	Line frequency / 8				
3'h4	Line frequency / 16				
3'h5	Setting inhibited				
3'h6	Setting inhibited				
3'h7	Setting inhibited				

 $[Step-up \ clock \ frequency \ for \ Step-up \ Circuit \ 2]$ $Step-up \ clock \ frequency \ (f_{DCDC2}) = \frac{Line \ frequency}{2^{(N)}} [Hz]$ $Internal \ clock \ frequency \ f_{OSC}$ $= \frac{Internal \ clock \ per \ line \ x \ Division \ ratio \ x \ 2^{(N)}}{Number \ of \ clock \ per \ line \ x \ Division \ ratio \ x \ 2^{(N)}}$ $fosc \qquad : \quad Internal \ clock \ frequency$ $Number \ of \ clock \ per \ line \ : \ RTN*[4:0] \ (RTNI \ or \ RTNE)$ $Division \ ratio \qquad : \ DIV*[1:0] \ (DIVI \ or \ DIVE)$ $N \qquad : \ DC1 \ [2:0]$

DC0 [2:0]: Sets step-up clock frequency for Step-up Circuit 1. The step-up clock is in synchronization with internal clock.

Table 43 Step-up Frequency (Step-up Circuit 2)

DC0[3:0]	Step-up Circuit 1					
DC0[2:0]	Step-up frequency (fDCDC1)					
3'h0	Step-up circuit 1 halts					
3'h1	Setting inhibited					
3'h2	Setting inhibited					
3'h3	Setting inhibited					
3'h4	FOSC / 8					
3'h5	FOSC / 16					
3'h6	FOSC / 32					
3'h7	Setting inhibited					

Note 1: Make sure that fDCDC1 ≥ fDCDC2.

Note 2: Set DC0 and RTN* so that ((DCDC1 step-up frequency) ≤ (Line frequency). If not, step-up operation may not be completed satisfactory.

The step-up frequencies synchronize with display operation. Clock count is reset at the beginning of 1H period.

VC[2:0]: Sets VCI voltage level.

VC[2:0]	VCI1 voltage (Reference voltage for step-up operation)
3'h0	Setting inhibited
3'h1	0.94 x VCILVL
3'h2	0.89 x VCILVL
3'h3	Setting inhibited
3'h4	Setting inhibited
3'h5	0.76 x VCILVL
3'h6	Setting inhibited
3'h7	1.00 x VCILVL

■DC0x Value and DCDC1 Step-up Clock Signal Waveform Example

DCDC1 performs charge operation and boost operation with the step-up clock generated from the timing generator.

The DCDC1 step-up clock frequency is adjusted by setting the division ratio of the reference clock frequency with DC0x register.

(To prevent flickering, the DCDC1 step-up clock signal is synchronized with the reference point of display operation in unit of lines.)

Note: Set DC0x and RTNx so that (DCDC1 step-up clock frequency) ≧ (line clock frequency)

If the above restriction is not followed, the duty cycle during the boost period is less than 50%. As a result, the step-up circuit may not operate normally.

■DC1x Value and DCDC2 Step-up Clock Signal Waveform Example

DCDC2 performs charge operation and boost operation with the step-up clock generated from the timing generator.

The DCDC2 step-up clock frequency is adjusted by setting the division ratio of the reference clock frequency with DC1x register.

(To prevent flicker, the DCDC2 step-up clock signal is synchronized with the head of BP period in unit of lines.)

Power Control3 (R102h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	VRH [4]	VRH [3]	VRH [2]	VRH [1]	VRH [0]	0	0	VCM R	1	0	PSON	PON	0	0	0	0
		R/W	R/W	R/W	R/W	R/W			R/W	R/W		W	W				
Def	ault	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0

Note: True values of PSON and PON are not read when instruction read is executed.

PON, PSON: Turn power supply ON. PON and PSON must be written to power supply ON and start the internal power supply operation. Follow power supply sequencer to set PON and PSON bits.

VCMR: Selects either external resistance (VCOMR pin) or internal electronic volume (VCM[4:0]) to set the electrical potential of VCOMH. The internal electronic volume is set by VCM bits

Table 44

VCMR0[0]	VCOMH Electrical Potential setting								
0	VCOMR (externally supplied)								
1	Internal electronic volume								

VRH[3:0]: Sets the factor to generate VREG1OUT.

Table 45

VRH[4:0]	VREG10UT
5'h00	Halt (Hiz)
5'h01-5'h0F	Setting inhibited
5'h10	VCIR x 1.600
5'h11	VCIR x 1.625
5'h12	VCIR x 1.650
5'h13	VCIR x 1.675
5'h14	VCIR x 1.700
5'h15	VCIR x 1.725
5'h16	VCIR x 1.750
5'h17	VCIR x 1.775
5'h18	VCIR x 1.800
5'h19	VCIR x 1.825
5'h1A	VCIR x 1.850
5'h1B	VCIR x 1.875
5'h1C	VCIR x 1.900
5'h1D	VCIR x 1.925
5'h1E	VCIR x 1.950
5'h1F	VCIR x 1.975

Note: Write VC and VRH bits so that VREG1OUT \leq DDVDH-0.5V.

Power Control 4 (R103h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0	
R/W	1	0	0	0	VDV [4]	VDV [3]	VDV [2]	VDV [1]	VDV [0]	0	0	0	0	0	0	0	0	
Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

VDV[4:0]: Selects the factor of VREG1OUT to set the amplitude of VCOM alternating voltage from 0.70 to 1.32.

Table 46

VDV[4:0]	VCOM amplitude
5'h0	VREG1OUT x 0.70
5'h1	VREG1OUT x 0.72
5'h2	VREG1OUT x 0.74
5'h3	VREG1OUT x 0.76
5'h4	VREG1OUT x 0.78
5'h5	VREG1OUT x 0.80
5'h6	VREG1OUT x 0.82
5'h7	VREG1OUT x 0.84
5'h8	VREG1OUT x 0.86
5'h9	VREG1OUT x 0.88
5'hA	VREG1OUT x 0.90
5'hB	VREG1OUT x 0.92
5'hC	VREG1OUT x 0.94
5'hD	VREG1OUT x 0.96
5'hE	VREG1OUT x 0.98
5'hF	VREG1OUT x 1.00

VCOM amplitude
VREG1OUT x 1.02
VREG1OUT x 1.04
VREG1OUT x 1.06
VREG1OUT x 1.08
VREG1OUT x 1.10
VREG1OUT x 1.12
VREG1OUT x 1.14
VREG1OUT x 1.16
VREG1OUT x 1.18
VREG1OUT x 1.20
VREG1OUT x 1.22
VREG1OUT x 1.24
VREG1OUT x 1.26
VREG1OUT x 1.28
VREG1OUT x 1.30
VREG1OUT x 1.32

Note 1: Set VDV[4:0] so that VCOM amplitude becomes 6.0V or less.

Note 2: Set VCOML (VCOMH-VCOM amplitude) \leq 0V.

RAM Access

RAM Address Set (Horizontal Address) (R200h) RAM Address Set (Vertical Address) (R201h)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R	R/W	1	0	0	0	0	0	0	0	0	AD	AD	AD	AD	AD	AD	AD	AD
200	N/W	1	U	U	U	U	U	U	0	U	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
	Def	àult	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R	R/W	1	0	0	0	0	0	0	0	AD	AD	AD						
201	IV/ VV	1	U	U	U	U	U	U	U	[16]	[15]	[14]	[13]	[12]	[11]	[10]	[9]	[8]
	Def	àult	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

AD[16:0]: Sets a GRAM address in the AC (Address Counter) which is automatically updated according to the combination of AM, ID[1:0] settings as the R61509V writes data to the internal GRAM. Data can be written consecutively without resetting the address in the AC. The address is not automatically updated after reading data from the internal GRAM.

Note 1: In RGB interface operation (RM = "1"), the address AD16-0 is set in the address counter every frame on the falling edge of VSYNCX.

Note 2: In internal clock operation and VSYNC interface operation (RM = "0"), the address AD16-0 is set when executing the instruction.

Table 47 GRAM Address setting range

AD[16:0]	GRAM Data Setting
17'h00000 – 17'h000EF	Bitmap data on the first line
17'h00100 - 17'h001EF	Bitmap data on the second line
17'h00200 - 17'h002EF	Bitmap data on the third line
17'h00300 - 17'h003EF	Bitmap data on the fourth line
17'h00400 - 17'h004EF	Bitmap data on the fifth line
:	:
17'h1AC00 – 17'h1ACEF	Bitmap data on the 429 th line
17'h1AD00 – 17'h1ADEF	Bitmap data on the 430 th line
17'h1AE00 – 17'h1AEEF	Bitmap data on the 431st line
17'h1AF00 – 17'h1AFEF	Bitmap data on the 432 nd line

GRAM Data Write (R202h)

R/W	RS	
W	1	RAM write data WD[17:0] is transferred via different data bus in different interface operation.
RC inter	GB face	RAM write data WD[17:0] is transferred via different data bus in different interface operation.

WD[17:0]: The R61509V develops data into 18 bits internally in write operation. The format to develop data into 18 bits is different in different interface operation.

The GRAM data represents the grayscale level. The R61509V automatically updates the address according to AM and ID[1:0] settings as it writes data in the GRAM. The DFM bit sets the format to develop 16-bit data into the 18-bit data in 16-bit or 8-bit interface operation.

Note: When writing data in the GRAM via system interface while using the RGB interface, make sure that write operations via two interfaces that do not conflict one another.

GRAM Data Read (R202h)

R/W	RS	
R	1	RAM read data RD[17:0] is transferred via different data bus in different interface operation.

RD[17:0]: 18-bit data read from the GRAM. RAM read data RD[17:0] is transferred via different data bus in different interface operation.

When the R61509V reads data from the GRAM to the microcomputer, the first word read immediately after RAM address set is not outputted. Therefore, data on the data bus is invalid. Valid data is sent to the data bus when the R61509V reads out the second and subsequent words.

When either 8-bit or 16-bit interface is selected, the LSBs of R and B dot data are not read out.

Note: This register is disabled in RGB interface operation

Figure 8 GRAM Read Sequence

NVM Data Read / NVM Data Write (R280h)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R 280h	R/W	1	1	VC M [6]	VC M [5]	VC M [4]	VC M [3]	VC M [2]	VC M [1]	VC M [0]	UID [7]	UID [6]	UID [5]	UID [4]	UID [3]	UID [2]	UID [1]	UID [0]
	Def	ault	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

UID[3:0]: Used to temporarily store NVM data such as used identification code.

The write data is loaded to NVM data write register (NVDAT [7:0]) and then is written to NVM.

NVM data is loaded to UID[7:0] when power on reset, when shutdown mode is exited or when CALB=1 is written. When NVM data write is not executed, UID[7:0] = 8'hFF (Default).

VCM[6:0]: Used to control VCOMH.

To use NVM data to adjust VCOMH, specify the VCOMH level using VCM [6:0], write the same value to the NVM data write register NVDAT [14:8] (R6F1h) and then write the data to NVM.

NVM data is loaded to VCM[6:0] when power on reset, when shutdown mode is exited or when CALB=1 is written. When NVM data write is not executed, VCM[6:0]= 7'h7F (Default).

Table 48

Table 40	
VCM [6:0]	VCOMH voltage
7'h00	VREG10UT x 0.492
7'h01	VREG10UT x 0.496
7'h02	VREG10UT x 0.500
7'h03	VREG10UT x 0.504
7'h04	VREG10UT x 0.508
7'h05	VREG10UT x 0.512
7'h06	VREG10UT x 0.516
7'h07	VREG10UT x 0.520
7'h08	VREG10UT x 0.524
7'h09	VREG10UT x 0.528
7'h0A	VREG10UT x 0.532
7'h0B	VREG10UT x 0.536
7'h0C	VREG1OUT x 0.540
7'h0D	VREG10UT x 0.544
7'h0E	VREG1OUT x 0.548
7'h0F	VREG10UT x 0.552
7'h10	VREG10UT x 0.556
7'h11	VREG10UT x 0.560
7'h12	VREG10UT x 0.564
7'h13	VREG10UT x 0.568
7'h14	VREG10UT x 0.572
7'h15	VREG10UT x 0.576
7'h16	VREG10UT x 0.580
7'h17	VREG1OUT x 0.584
7'h18	VREG1OUT x 0.588
7'h19	VREG1OUT x 0.592
7'h1A	VREG1OUT x 0.596
7'h1B	VREG1OUT x 0.600
7'h1C	VREG10UT x 0.604
7'h1D	VREG10UT x 0.608
7'h1E	VREG10UT x 0.612
7'h1F	VREG10UT x 0.616
7'h20	VREG10UT x 0.620
7'h21	VREG10UT x 0.624
7'h22	VREG10UT x 0.628
7'h23	VREG10UT x 0.632
7'h24	VREG10UT x 0.636
7'h25	VREG10UT x 0.640
7'h26	VREG1OUT x 0.644
7'h27	VREG1OUT x 0.648
7'h28	VREG1OUT x 0.652
7'h29	VREG1OUT x 0.656
7'h2A	VREG1OUT x 0.660
7'h2B	VREG1OUT x 0.664
7'h2C	VREG1OUT x 0.668
7'h2D	VREG10UT x 0.672
7'h2E	VREG10UT x 0.676
7'h2F	VREG1OUT x 0.680
7'h30	VREG1OUT x 0.684
7'h31	VREG1OUT x 0.688
7'h32	VREG10UT x 0.692
7'h33	VREG1OUT x 0.696
7'h34	VREG1OUT x 0.700
7'h35	VREG1OUT x 0.704
7'h36	VREG1OUT x 0.708
7'h37	VREG10UT x 0.712

VCM [6:0]	VCOMH voltage
	VREG10UT x 0.748
7'h40 7'h41	VREG1001 x 0.746 VREG10UT x 0.752
7'h42	VREG10UT x 0.756
7'h43	VREG1OUT x 0.760
7'h44	VREG1OUT x 0.764
7'h45	VREG10UT x 0.768
7'h46	VREG10UT x 0.772
7'h47	VREG1OUT x 0.776
7'h48	VREG10UT x 0.780
7'h49	VREG1OUT x 0.784
7'h4A	VREG10UT x 0.788
7'h4B	VREG1OUT x 0.792
7'h4C	VREG1OUT x 0.796
7'h4D	VREG1OUT x 0.800
7'h4E	VREG10UT x 0.804
7'h4F	VREG10UT x 0.808
7'h50	VREG10UT x 0.812
7'h51	VREG10UT x 0.816
7'h52	VREG10UT x 0.820
7'h53	VREG10UT x 0.824
7'h54	VREG1OUT x 0.828
7'h55	VREG1OUT x 0.832
7'h56	VREG1OUT x 0.836
7'h57	VREG1OUT x 0.840
7'h58	VREG10UT x 0.844
7'h59	VREG1OUT x 0.848
7'h5A	VREG10UT x 0.852
7'h5B	VREG10UT x 0.856
7'h5C	VREG1OUT x 0.860
7'h5D	VREG10UT x 0.864
7'h5E	VREG10UT x 0.868
7'h5F	VREG10UT x 0.872
7'h60	VREG1OUT x 0.876
7'h61	VREG10UT x 0.880
7'h62	VREG10UT x 0.884
7'h63	VREG10UT x 0.888
7'h64	VREG10UT x 0.892
7'h65	VREG1OUT x 0.896
7'h66	VREG1OUT x 0.900
7'h67	VREG1OUT x 0.904
7'h68	VREG10UT x 0.908
7'h69	VREG10UT x 0.912
7'h6A	VREG10UT x 0.916
7'h6B	VREG1OUT x 0.920
7'h6C	VREG10UT x 0.924
7'h6D	VREG10UT x 0.928
7'h6E	VREG10UT x 0.932
7'h6F	VREG10UT x 0.936
7'h70	VREG1001 x 0.930 VREG10UT x 0.940
7 1170 7'h71	VREG1001 x 0.940 VREG10UT x 0.944
7'h72	VREG1001 x 0.944 VREG10UT x 0.948
7'h73	VREG10UT x 0.952
7'h74	VREG1OUT x 0.956
7'h75	VREG1OUT x 0.960
7'h76	VREG10UT x 0.964
7'h77	VREG10UT x 0.968

	7'h38	VREG1OUT x 0.716
	7'h39	VREG1OUT x 0.720
	7'h3A	VREG10UT x 0.724
	7'h3B	VREG1OUT x 0.728
	7'h3C	VREG1OUT x 0.732
	7'h3D	VREG1OUT x 0.736
	7'h3E	VREG1OUT x 0.740
ĺ	7'h3F	VREG1OUT x 0.744

7'h78	VREG1OUT x 0.972
7'h79	VREG1OUT x 0.976
7'h7A	VREG1OUT x 0.980
7'h7B	VREG1OUT x 0.984
7'h7C	VREG1OUT x 0.988
7'h7D	VREG10UT x 0.992
7'h7E	VREG1OUT x 0.996
7'h7F	VREG10UT x 1.000

Notes: 1. Make sure the VCOMH level is between 3.0V to (DDVDH-0.5)V.

2. The above setting is enabled when internal electronic volume is selected for setting the VCOMH level.

Window Address Control

Window Horizontal RAM Address Start (R210h), Window Horizontal RAM Address End (R211h)

Window Vertical RAM Address Start (R212h), Window Vertical RAM Address End (R213h)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R 210	R/W	1	0	0	0	0	0	0	0	0	HSA [7]	HSA [6]	HSA [5]	HSA [4]	HSA [3]	HSA [2]	HSA [1]	HSA [0]
	Def	fault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 211	R/W	1	0	0	0	0	0	0	0	0	HEA [7]	HEA [6]	HEA [5]	HEA [4]	HEA [3]	HEA [2]	HEA [1]	HEA [0]
	Def	ault	0	0	0	0	0	0	0	0	1	1	1	0	1	1	1	1
R 212	R/W	1	0	0	0	0	0	0	0	VSA [8]	VSA [7]	VSA [6]	VSA [5]	VSA [4]	VSA [3]	VSA [2]	VSA [1]	VSA [0]
	Def	fault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 213	R/W	1	0	0	0	0	0	0	0	VEA [8]	VEA [7]	VEA [6]	VEA [5]	VEA [4]	VEA [3]	VEA [2]	VEA [1]	VEA [0]
	Def	ault	0	0	0	0	0	0	0	1	1	0	1	0	1	1	1	1

HSA[7:0], HEA[7:0]: HSA[7:0] and HEA[7:0] specify the start and end addresses of the window address area in horizontal direction, respectively. See <u>GRAM Address Map</u>. HSA[7:0] and HEA[7:0] specify the horizontal range to write data. Set HSA[7:0] and HEA[7:0] before starting RAM write operation. In setting, make sure that $8^{\circ}h00 \le HSA < HEA \le 8^{\circ}hEF$.

VSA[8:0], VEA[8:0]: VSA[8:0] and VEA[8:0] specify the start and end addresses of the window address area in vertical direction, respectively. See <u>GRAM Address Map.</u> VSA[8:0] and VEA[8:0] specify the vertical range to write data. Set VSA[8:0] and VEA[8:0] before starting RAM write operation. In setting, make sure that $9'h000 \le VSA < VEA \le 9'h1AF$.

Figure 9 GRAM Address Map and Window Address Area

γ Control

γ Control 1 ~ 14 (R300h to R309h)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB 6	IB5	IB4	IB3	IB2	IB1	IB0
R 300	W	1	0	0	0	PR0 P01 [4]	PR0 P01 [3]	PR0 P01 [2]	PR0 P01 [1]	PR0 P01 [0]	0	0	0	PR0P 00[4]	PR0P 00[3]	PR0P 00[2]	PR0 P00 [1]	PR0 P00 [0]
	Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 301	W	1	PR0 P04 [3]	PR0 P04 [2]	PR0 P04 [1]	PR0 P04 [0]	PR0 P03 [3]	PR0 P03 [2]	PR0 P03 [1]	PR0 P03 [0]	0	0	0	PR0P 02[4]	PR0P 02[3]	PR0P 02[2]	PR0 P02 [1]	PR0 P02 [0]
	Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 302	W	1	0	0	0	PR0 P06 [4]	PR0 P06 [3]	PR0 P06 [2]	PR0 P06 [1]	PR0 P06 [0]	0	0	0	0	PR0P 05[3]	PR0P 05[2]	PR0 P05 [1]	PR0 P05 [0]
	Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 303	W	1	0	0	0	PR0 P08 [4]	PR0 P08 [3]	PR0 P08 [2]	PR0 P08 [1]	PR0 P08 [0]	0	0	0	PR0P 07[4]	PR0P 07[3]	PR0P 07[2]	PR0 P07 [1]	PR0 P07 [0]
	Def	àult	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 304	W	1	0	0	PI0 P3 [1]	PI0 P3 [0]	0	0	PI0 P2 [1]	PI0 P2 [0]	0	0	PI0 P1 [1]	PI0 P1 [0]	0	0	PI0 P0 [1]	PI0 P0 [0]
	Def	àult	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 305	W	1	0	0	0	PR0 N01 [4]	PR0 N01 [3]	PR0 N01 [2]	PR0 N01 [1]	PR0 N01 [0]	0	0	0	PR0 N00 [4]	PR0 N00 [3]	PR0 N00 [2]	PR0 N00 [1]	PR0 N00 [0]
	Def	àult	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 306	W	1	PR0 N04 [3]	PR0 N04 [2]	PR0 N04 [1]	PR0 N04 [0]	PR0 N03 [3]	PR0 N03 [2]	PR0 N03 [1]	PR0 N03 [0]	0	0	0	PR0 N02 [4]	PR0 N02 [3]	PR0 N02 [2]	PR0 N02 [1]	PR0 N02 [0]
	Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 307	W	1	0	0	0	PR0 N06 [4]	PR0 N06 [3]	PR0 N06 [2]	PR0 N06 [1]	PR0 N06 [0]	0	0	0	0	PR0 N05 [3]	PR0 N05 [2]	PR0 N05 [1]	PR0 N05 [0]
	Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 308	W	1	0	0	0	PR0 N08 [4]	PR0 N08 [3]	PR0 N08 [2]	PR0 N08 [1]	PR0 N08 [0]	0	0	0	PR0 N07 [4]	PR0 N07 [3]	PR0 N07 [2]	PR0 N07 [1]	PR0 N07 [0]
	Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 309	W	1	0	0	PI0 N3 [1]	PI0 N3 [0]	0	0	PI0 N2 [1]	PI0 N2 [0]	0	0	PI0 N1 [1]	PI0 N 1 [0]	0	0	PI0 N0 [1]	PI0 N0 [0]
	Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PR0P00[4:0]	Adjusts reference level for positive polarity output R0
PR0N00[4:0]	Adjusts reference level for negative polarity output R0
PR0P01[4:0]	Adjusts reference level for positive polarity output R1
PR0N01[4:0]	Adjusts reference level for negative polarity output R1
PR0P02[4:0]	Adjusts reference level for positive polarity output R2
PR0N02[4:0]	Adjusts reference level for negative polarity output R2
PR0P03[3:0]	Adjusts reference level for positive polarity output R3
PR0N03[3:0]	Adjusts reference level for negative polarity output R3
PR0P04[3:0]	Adjusts reference level for positive polarity output R4
PR0N04[3:0]	Adjusts reference level for negative polarity output R4
PR0P05[3:0]	Adjusts reference level for positive polarity output R5
PR0N05[3:0]	Adjusts reference level for negative polarity output R5
PR0P06[4:0]	Adjusts reference level for positive polarity output R6
PR0N06[4:0]	Adjusts reference level for negative polarity output R6
PR0P07[4:0]	Adjusts reference level for positive polarity output R7
PR0N07[4:0]	Adjusts reference level for negative polarity output R7
PR0P08[4:0]	Adjusts reference level for positive polarity output R8
PR0N08[4:0]	Adjusts reference level for negative polarity output R8
PI0P0~1[1:0]	Adjusts interpolation level for positive polarity output (V2~V7)
PI0N0~1[1:0]	Adjusts interpolation level for negative polarity output (V2~V7)
PI0P2~3[1:0]	Adjusts interpolation level for positive polarity output (V56~V61)
PI0N2~3[1:0]	Adjusts interpolation level for negative polarity output (V56~V61)

Base Image Display Control

Base Image Number of Line (R400h)

Base Image Display Control (R401h)

Base Image Vertical Scroll Control (R404h)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R 400	R/W	1	GS	NL [5]	NL [4]	NL [3]	NL [2]	NL [1]	NL [0]	0	0	SCN [5]	SCN [4]	SCN [3]	SCN [2]	SCN [1]	SCN [0]	0
	Defa	ault	0	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0
R 401	R/W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	NDL	VLE	REV
	Defa	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 404	R/W	1	0	0	0	0	0	0	0	VL [8]	VL [7]	VL [6]	VL [5]	VL [4]	VL [3]	VL [2]	VL [1]	VL [0]
	Defa	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

GS: Sets the direction of scan by the gate driver in the range determined by SCN and NL bits. The gate scan direction determined by setting GS = 0 is reversed by setting GS = 1. Set GS bit in combination with SM bits.

NL[5:0]: Sets the number of lines to drive the LCD at an interval of 8 lines. The GRAM address mapping is not affected by the number of lines set by NL[5:0]. The number of lines must be the same or more than the number of lines necessary for the size of the liquid crystal panel.

SCN[5:0]: Specifies the gate line where the gate driver starts scan.

NDL: Sets the source output level in non-lit display area. Settings are different depending on panel type (i.e. normally black or normally white).

Table 49

NDL	Non-lit display area					
	Positive	Negative				
0	V63	V0				
1	V0	V63				

Note: NDL setting is enabled in non-lit display area in partial display operation.

VLE: Vertical scroll display enable bit. When VLE = 1, the R61509V starts displaying the base image from the line (of the physical display) determined by VL[8:0] bits. VL[8:0] sets the amount of scrolling, which is the number of lines to shift the start line of the display from the first line of the physical display. Note that the partial image display position is not affected by the base image scrolling.

The vertical scrolling is disabled in external display interface operation. In this case, make sure to set VLE = "0".

Table 50

VLE	Base image
0	Fixed
1	Scrolling enabled

REV: Grayscale level of a image is inverted when REV = 1. This enables the R61509V to display the same image from the same set of data both on normally black and white panels.

Table 51

REV	GRAM Data	Source Output Level in Display Area							
KLV	GRAW Data	Positive Polarity	Negative Polarity						
	18'h00000	V63	V0						
0	:	:	:						
	18'h3FFFFF	V0	V63						
	18'h00000	V0	V63						
1	:	:	:						
	18'h3FFFFF	V63	V0						

Note: Source output of non-lit display area is set by NDL bit during partial display mode.

VL[8:0]: Sets the amount of scrolling of the base image. The base image is scrolled in vertical direction and displayed from the line which is determined by VL.

Table 52

VL [8:0]	Line per scrolling
9'h000	0 lines
9'h001	1 line
9'h002	2 lines
:	:
:	:
9'h1A0	431 lines
9'h1B0	432 lines
9'h1FF	Setting inhibited

Table 53

NL [5:0]	Number of drive line
6'h00	Setting inhibited
6'h01	16 lines
6'h02	24 lines
6'h03	32 lines
6'h04	40 lines
6'h05	48 lines
6'h06	56 lines
6'h07	64 lines
6'h08	72 lines
6'h09	80 lines
6'h0A	88 lines
6'h0B	96 lines
6'h0C	104 lines
6'h0D	112 lines
6'h0E	120 lines
6'h0F	128 lines
6'h10	136 lines
6'h11	144 lines
6'h12	152 lines
6'h13	160 lines
6'h14	168 lines
6'h15	176 lines
6'h16	184 lines
6'h17	192 lines
6'h18	200 lines
6'h19	208 lines
6'h1A	216 lines
6'h1B	224 lines

NL [5:0]	Number of drive line
6'h1C	232 lines
6'h1D	240 lines
6'h1E	248 lines
6'h1F	256 lines
6'h20	264 lines
6'h21	272 lines
6'h22	280 lines
6'h23	288 lines
6'h24	296 lines
6'h25	304 lines
6'h26	312 lines
6'h27	320 lines
6'h28	328 lines
6'h29	336 lines
6'h2A	344 lines
6'h2B	352 lines
6'h2C	360 lines
6'h2D	368 lines
6'h2E	376 lines
6'h2F	384 lines
6'h30	392 lines
6'h31	400 lines
6'h32	408 lines
6'h33	416 lines
6'h34	424 lines
6'h35	432 lines
6'h36-6'h3F	Setting inhibited

Table 54

	Gate scan start position			
SCN[5:0]	SM=0		SM=1	
	GS=0	GS=1	GS=0	GS=1
6'h00	G1	G(N)	G1	G(2N-432)
6'h01	G9	G(N+8)	G17	G(2N-416)
6'h02	G17	G(N+16)	G33	G(2N-400)
6'h03	G25	G(N+24)	G49	G(2N-384)
6'h04	G33	G(N+32)	G65	G(2N-368)
6'h05	G41	G(N+40)	G81	G(2N-352)
6'h06	G49	G(N+49)	G97	G(2N-336)
6'h07	G57	G(N+56)	G113	G(2N-320)
6'h08	G65	G(N+64)	G129	G(2N-304)
6'h09	G73	G(N+72)	G145	G(2N-288)
6'h0A	G81	G(N+80)	G161	G(2N-272)
6'h0B	G89	G(N+88)	G177	G(2N-256)
6'h0C	G97	G(N+96)	G193	G(2N-240)
6'h0D	G105	G(N+104)	G209	G(2N-224)
6'h0E	G113	G(N+112)	G225	G(2N-208)
6'h0F	G121	G(N+120)	G241	G(2N-192)
6'h10	G129	G(N+128)	G257	G(2N-176)
6'h11	G137	G(N+136)	G273	G(2N-160)
6'h12	G145	G(N+144)	G289	G(2N-144)
6'h13	G153	G(N+152)	G305	G(2N-128)
6'h14	G161	G(N+160)	G321	G(2N-112)
6'h15	G169	G(N+168)	G337	G(2N-96)
6'h16	G177	G(N+176)	G353	G(2N-80)
6'h17	G185	G(N+184)	G369	G(2N-64)
6'h18	G193	G(N+192)	G385	G(2N-48)
6'h19	G201	G(N+200)	G401	G(2N-32)
6'h1A	G209	G(N+208)	G417	G(2N-16)
6'h1B	G217	G(N+216)	G2	G(2N-431)
6'h1C	G225	G(N+224)	G18	G(2N-415)
6'h1D	G233		G34	
6'h1E	G241	G(N+232)	G50	G(2N-399)
6'h1F	G241 G249	G(N+240)	G66	G(2N-383)
6'h20	G257	G(N+248)	G82	G(2N-367)
		G(N+256)		G(2N-351)
6'h21	G265	G(N+264)	G98	G(2N-335)
6'h22	G273	G(N+272)	G114	G(2N-319)
6'h23	G281	G(N+280)	G130	G(2N-303)
6'h24	G289	G(N+288)	G146	G(2N-287)
6'h25	G297	G(N+296)	G162	G(2N-271)
6'h26	G305	G(N+304)	G178	G(2N-255)
6'h27	G313	G(N+312)	G194	G(2N-239)
6'h28	G321	G(N+320)	G210	G(2N-223)
6'h29	G329	G(N+328)	G226	G(2N-207)
6'h2A	G337	G(N+337)	G242	G(2N-191)
6'h2B	G345	G(N+344)	G258	G(2N-175)
6'h2C	G353	G(N+352)	G274	G(2N-159)
6'h2D	G361	G(N+360)	G290	G(2N-143)
6'h2E	G369	G(N+368)	G306	G(2N-127)
6'h2F	G377	G(N+376)	G322	G(2N-111)
6'h30	G385	G(N+384)	G338	G(2N-95)
6'h31	G393	G(N+392)	G354	G(2N-79)
6'h32	G401	G(N+400)	G370	G(2N-63)
6'h33	G409	G(N+408)	G386	G(2N-47)
6'h34	G417	G(N+416)	G402	G(2N-31)
6'h35-6'h3F	Setting inhibited	Setting inhibited	Setting inhibited	Setting inhibited

Note: "N" is the number of line decided by NL [5:0] bit.

Make sure that (Gate scan start position + NL = Gate scan end position) does not exceed 432 lines.

Partial Display Control

Partial Image 1: Display Position (R500h), RAM Address 1 (Start Line Address) (R501h), RAM Address 1 (End Line Address) (R502h)

_	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R 500h	R/W	1	0	0	0	0	0	0	0	PTD P [8]	PTD P [7]	PTD P [6]	PTD P [5]	PTD P [4]	PTD P [3]	PTD P [2]	PTD P[1]	PTD P [0]
	Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 501h	R/W	1	0	0	0	0	0	0	0	PTS A [8]	PTS A [7]	PTS A [6]	PTS A [5]	PTS A [4]	PTS A [3]	PTS A [2]	PTS A[1]	PTS A [0]
	Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 502h	R/W	1	0	0	0	0	0	0	0	PTE A [8]	PTE A 0[7]	PTE A [6]	PTE A [5]	PTE A [4]	PTE A [3]	PTE A [2]	PTE A [1]	PTE A [0]
	Def	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PTDP[8:0]: Sets the display position of partial image 1.

If PTDP0 = "9'h000", the partial image 1 is displayed from the first line of the base image.

PTSA[8:0] and PTEA[8:0]: Sets the start line and end line addresses of the RAM area, respectively for the partial image 1. In setting, make sure that $PTSA \le PTEA$.

Pin Control

Test Register (Software Reset) (R600h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R/W	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	TRSR
Defau	lt value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

TRSR: When TRSR = 1, test registers are initialized. When TRSR = 0, initialization of test registers halts.

Figure 10

NVM Control

NVM Access Control 1 (R6F0h), NVM Access Control 2 (R6F1h), NVM Access Control 3 (R6F2h)

_	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R 6F0h	R/W	1	0	0	0	0	0	0	0	0	TE	CAL B	EOP [1]	EOP [0]	0	0	0	0
	Defa	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 6F1h	R/W	1	NV DAT [15]	NV DAT [14]	NV DAT [13]	NV DAT [12]	NV DAT [11]	NV DAT [10]	NV DAT [9]	NV DAT [8]	NV DAT [7]	NV DAT [6]	NV DAT [5]	NV DAT [4]]	NV DAT [3]	NV DAT [2]]	NV DAT [1]	NV DAT [0]
	Defa	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R 6F2h	R/W	1	0	0	0	0	0	0	0	0	0	0	0	0	NVV RF	0	0	0
	Defa	ault	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

EOP [1:0]: Writes data on R280h to NVM or halts the write operation.

Table 55

EOP[1:0]	NVM control
2'h0	Halt
2'h1	Write
2'h2	Setting disabled
2'h3	Erase

CALB: When CALB=1, all data in NVM is read out and written to internal registers. When finished, CALB is set to 0.

TE: Enables internal NVM control bit (EOP). Follow the NVM control sequence when setting TE.

NVDAT[15:0]: To write data to NVM, write the data on NVDAT (R6F1h) first, and then start write operation using EOP bit.

- NVM data written to NVDAT[14:8] are loaded to R280h VCM [6:0] when power on reset is executed or CALB=1.
- NVM data written to NVDAT[7:0] are loaded to R280h UID [7:0] when power on reset is executed or CALB=1.

See "NVM Control" for details of write operation and required settings.

Figure 11

NVVRF: Enables erase verify. This bit is used only in the NVM erase sequence. See "NVM Erase Sequence" for details.

●R615	09V Insti	ruction List				Rev 0	.50 20														
Major Upper Index	category	Middle category	Index	Minor category Command	IB15	IB14	IB13		Code IB11	IB10	IB9	IB8	IB7	IB6	IB5	Lower IB4	Code IB3	IB2	IB1	IB0	Note
-	Index		-	Index	0	0	0	0	0	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3	ID2	ID21	ID0	-
0**	Display Control	00*	000h	Device Code Read	ALMID1[7] (1)	ALMID1[6] (0)	ALMID1[5] (1)	ALMID1[4] (1)	ALMID1[3] (0)	ALMID1[2] (1)	ALMID1[1] (0)	ALMID1[0] (1)	ALMID0[7] (0)	ALMID0[6] (0)	ALMID0[5] (0)	ALMID0[4] (0)	ALMID0[3] (1)	ALMID0[2] (0)	ALMID0[1] (0)	ALMID0[0] (1)	Device Code "B509h"
		Display Control in general	001h	Driver Output Control	0	0	0	0	0	SM (0)	0	SS (0)	0	0	0	0	0	0	0	0	-
			002h	LCD Drive Waveform Control	0	0	0	0	0	0	0	BC (0)	0	0	0	0	0	0	0	0	-
			003h	Entry Mode	TRI (0)	DFM (0)	0	BGR (0)	0	0	0	0	ORG (0)	0	ID[1] (1)	ID[0] (1)	AM (0)	0	0	0	-
			004h 005h	Setting inhibited Setting inhibited	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
			006h 007h	Setting inhibited Display Control 1	0	0	0	0 PTDE	0	0	0	0 BASEE	0	0	0	0	0	0	0	0	-
			008h	Display Control 2	FP[7]	FP[6]	FP[5]	(0) FP[4]	FP[3]	FP[2]	FP[1]	(0) FP[0]	BP[7]	BP[6]	BP[5]	BP[4]	BP[3]	BP[2]	BP[1]	BP[0]	_
			009h	Display Control 3	(0)	(0)	(0)	(0)	(1) PTV	(0) PTS	(0)	(0)	(0)	(0)	(0)	(0)	(1)	(0)	(0)	(0)	_
			00Ah	Setting inhibited	0	0	0	0	(0)	(0)	0	0	0	0	0	0	0	0	0	0	_
			00Bh	8 Color Control	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	COL (0)	-
			00Ch	External Display Interface Control 1	0	ENC[2] (0)	ENC[1] (0)	ENC[0] (0)	0	0	0	RM (0)	0	0	DM[1] (0)	DM[0] (0)	0	0	0	RIM (0)	-
			00D-00Eh 00Fh	Setting inhibited External Display Interface Control	0	0	0	0	0	0	0	0	0	0	0	0 VSPL	0 HSPL	0	0 EPL	0 DPL	_
		01*	010h	2 Panel Interface Control 1	0	0	0	0	0	0	DIVI[1]	DIVI[0]	0	0	0	(0) RTNI[4]	(0) RTNI[3]	RTNI[2]	(0) RTNI[1]	(0) RTNI[0]	_
		Panel Interface	011h	Panel Interface Control 2	0	0	0	0	0	NOWI[2]	(0) NOWI[1]	(0) NOWI[0]	0	0	0	(1)	(1)	(0) SDTI[2]	(0) SDTI[1]	(1) SDTI[0]	_
		(Internal Clock)				<u> </u>	 	<u> </u>		(0) VEQWI[2]	(0) VEQWI[1]	(1) VEQWI[0]		<u> </u>				(0) SEQWI[2]	(0) SEQWI[1]	(1) SEQWI[0]	_
			012h	Panel Interface Control 4	0	0	0	0	0	(0)	(0)	(0)	0	0	0	0	0	(0) MCPI[2]	(0) MCPI[1]	(0) MCPI[0]	
			013h	Panel Interface Control 5	0	0	0	0	0	0	0	0	0	PCDIVH[2]	PCDIVH[1]	PCDIVH[0]	0	(0) PCDIVL[2]	(0) PCDIVL[1]	(1) PCDIVL[0]	
			014h 014-01Fh	Panel Interface Control 5 Setting inhibited	0	0	0	0	0	0	0	0	0	(1)	(0)	(1) 0	0	(1) 0	(0)	(1) 0	-
		02*	020h	Panel Interface Control 6	0	0	0	0	0	0	DIVE[1] (0)	DIVE[0] (0)	0	0	0	RTNE[4] (1)	RTNE[3] (1)	RTNE[2] (0)	RTNE[1] (0)	RTNE[0] (1)	-
		Panel Interface (External Clock)	021h	Panel Interface Control 7	0	0	0	0	0	NOWE[2] (0)	NOWE[1] (0)	NOWE[0] (1)	0	0	0	0	0	SDTE[2] (0)	SDTE[1] (0)	SDTE[0] (1)	-
			022h	Panel Interface Control 8	0	0	0	0	0	VEQWE[2] (0)	VEQWE[1] (0)	VEQWE[0] (0)	0	0	0	0	0	SEQWE[2] (0)	SEQWE[1] (0)	SEQWE[0] (0)	-
			023h	Panel Interface Control 9	0	0	0	0	0	0	0	0	0	0	0	0	0	MCPE[2] (0)	MCPE[1] (0)	MCPE[0] (1)	
			024h-08Fh	Setting inhibited	0 FMKM	0 FMI[2]	0 FMI[1]	0 FMI[0]	0	0	0	0 FMP[8]	0 FMP[7]	0 FMP[6]	0 FMP[5]	0 FMP[4]	0 FMP[3]	0 FMP[2]	0 FMP[1]	0 FMP[0]	
		09∗ Frame Marker Contro	090h I 091-0FFh	Frame Marker Control Setting inhibited	(0)	(0)	(0)	(0)	0	0	0	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0) 0	-
1**	Power Control	Traine marker control	100h	Power Control 1	0	0	0	0	0	BT[2] (0)	BT[1] (1)	BT[0]	0	0	AP[1] (1)	AP[0] (1)	0	DSTB (0)	0	0	-
			101h	Power Control 2	0	0	0	0	0	DC1[2] (0)	DC1[1] (1)	DC1[0] (0)	0	DC0[2] (1)	DC0[1] (0)	DC0[0] (0)	0	VC[2] (1)	VC[1] (1)	VC[0] (1)	-
			102h	Power Control 3	VRH[4] (0)	VRH[3] (0)	VRH[2] (0)	VRH[1] (0)	VRH[0] (0)	0	0	VCMR (1)	1	0	PSON (0)	PON (0)	0	0	0	0	-
			103h	Power Control 4	0	0	0	VDV[4] (0)	VDV[3] (0)	VDV[2] (0)	VDV[1] (0)	VDV[0] (0)	0	0	0	0	0	0	0	0	-
			104-1FFh	Setting inhibited RAM Address Set	0	0	0	0	0	0	0	0	0 AD[7]	0 AD[6]	0 AD[5]	0 AD[4]	0 AD[3]	0 AD[2]	0 AD[1]	0 AD[0]	-
2**	RAM Access	20*	200h	(Horizontal Address) RAM Address Set	0	0	0	0	0	0	0	0 AD[16]	(0) AD[15]	(0) AD[14]	(0) AD[13]	(0) AD[12]	(0) AD[11]	(0) AD[10]	(0) AD[9]	(0) AD[8]	-
		RAM Read/Write	201h	(Vertical Address) GRAM Data Write/GRAM Data	0	0	0	0	0	0	0	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	_
			202h 203-20Fh	Read Setting inhibited	0	0	0	RAM write	data WD[17:	0] / RAM re	ad data RD	.17:0] is tran	o 0	0	bus in differe	ent interface	operation.	0	0	0	-
		21*	210h	Window Horizontal RAM Address Start	0	0	0	0	0	0	0	0	HSA[7] (0)	HSA[6] (0)	HSA[5] (0)	HSA[4] (0)	HSA[3] (0)	HSA[2] (0)	HSA[1] (0)	HSA[0] (0)	-
		Window Address	211h	Window Horizontal RAM Address End	0	0	0	0	0	0	0	0	HEA[7] (1)	HEA[6] (1)	HEA[5] (1)	HEA[4] (0)	HEA[3] (1)	HEA[2] (1)	HEA[1] (1)	HEA[0] (1)	-
			212h	Window Vertical RAM Address Start	0	0	0	0	0	0	0	VSA[8] (0)	VSA[7] (0)	VSA[6] (0)	VSA[5] (0)	VSA[4] (0)	VSA[3] (0)	VSA[2] (0)	VSA[1] (0)	VSA[0] (0)	-
			213h	Window Vertical RAM Address End	0	0	0	0	0	0	0	VEA[8] (1)	VEA[7] (1)	VEA[6] (0)	VEA[5] (1)	VEA[4] (0)	VEA[3] (1)	VEA[2] (1)	VEA[1] (1)	VEA[0] (1)	-
		20.	214-27Fh	Setting inhibited		VCM[6]	VCM[5]	VCM[4]	VCM[3]	VCM[2]	VCM[1]	VCM[0]	UID[7]	UID[6]	UID[5]	UID[4]	UID[3]	UID[2]	UID[1]	UID[0]	-
		28*	280h 281-2FFh	NVM Data Read / NVM Data Write Setting inhibited	0	(1)	(1)	(1)	(1)		(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	(1)	-
3**	Gamma Control	30*	300h	Gamma Control (1)	0	0	0	PR0P01[4] (0)	PR0P01[3] (0)	PR0P01[2] (0)	PR0P01[1] (0)	PR0P01[0] (0)	0	0	0	PR0P00[4] (0)	PR0P00[3] (0)	PR0P00[2] (0)	PR0P00[1] (0)	PR0P00[0] (0)	-
		Gamma Control	301h	Gamma Control (2)	PR0P04[3] (0)	PR0P04[2] (0)	PR0P04[1] (0)	PR0P04[0] (0)	PR0P03[3] (0)	PR0P03[2] (0)	PR0P03[1] (0)	PR0P03[0] (0)	0	0	0	PR0P02[4] (0)	PR0P02[3] (0)	PR0P02[2] (0)	PR0P02[1] (0)	PR0P02[0] (0)	-
			302h	Gamma Control (3)	0	0	0	PR0P06[4] (0)	PR0P06[3] (0)	PR0P06[2] (0)	PR0P06[1] (0)	PR0P06[0] (0)	0	0	0	0	PR0P05[3] (0)	PR0P05[2] (0)	PR0P05[1] (0)	PR0P05[0] (0)	-
			303h	Gamma Control (4)	0	0	0	PR0P08[4] (0)	PR0P08[3] (0)	PR0P08[2] (0)	PR0P08[1] (0)	PR0P08[0] (0)	0	0	0	PR0P07[4] (0)	PR0P07[3] (0)	PR0P07[2] (0)	PR0P07[1] (0)		-
			304h	Gamma Control (5)	0	0	PI0P3[1] (0)	PI0P3[0] (0)	0	0	PI0P2[1] (0)	PI0P2[0] (0)	0	0	PI0P1[1] (0)	PI0P1[0] (0)	0	0	PI0P0[1] (0)	PI0P0[0] (0)	-
			305h	Gamma Control (6)	0	0	0	PR0N01[4] (0)	PR0N01[3] (0)	PR0N01[2] (0)	PR0N01[1] (0)	PR0N01[0] (0)	0	0	0	PR0N00[4] (0)	PR0N00[3] (0)	PR0N00[2] (0)	PR0N00[1] (0)	PR0N00[0] (0)	-
			306h	Gamma Control (7)	PR0N04[3] (0)	PR0N04[2] (0)	PR0N04[1] (0)	PR0N04[0] (0)		PR0N03[2] (0)		PR0N03[0] (0)	0	0	0	PR0N02[4] (0)	PR0N02[3] (0)	PR0N02[2] (0)		PR0N02[0] (0)	-
			307h	Gamma Control (8)	0	0	0	PR0N06[4] (0)		PR0N06[2] (0)	PR0N06[1] (0)	PR0N06[0] (0)	0	0	0	0	PR0N05[3] (0)	PR0N05[2] (0)		PR0N05[0] (0)	-
			308h	Gamma Control (9)	0	0	0	PR0N08[4] (0)		PR0N08[2] (0)	PR0N08[1] (0)	PR0N08[0] (0)	0	0	0	PR0N07[4] (0)	PR0N07[3] (0)	PR0N07[2] (0)			-
			309h	Gamma Control (10)	0	0	PI0N3[1] (0)	PI0N3[0] (0)	0	0	PI0N2[1] (0)	PI0N2[0] (0)	0	0	PI0N1[1] (0)	PI0N1[0] (0)	0	0	PI0N0[1] (0)	PI0N0[0] (0)	-
		D: 1 0 1	30Ah-3FFh		GS	NL[5]	NL[4]	NL[3]	NL[2]	NL[1]	NL[0]			SCN[5]	SCN[4]	SCN[3]	SCN[2]	SCN[1]	SCN[0]		-
4**	Base Image	Display Control	400h	Base Image Number of Line	(0)	(1)	(1)	(0)	(1)	(0)	(1)	0	0	(0)	(0)	(0)	(0)	(0) NDL	(0) VLE	0 REV	-
			401h 402h-403h	Base Image Display Control Setting inhibited	0	0	0	0	0	0	0	0	0	0	0	0	0	(0) 0	(0) 0	(0) 0	-
			404h	Base Image Vertical Scroll Control	0	0	0	0	0	0	0	VL[8] (0)	VL[7] (0)	VL[6] (0)	VL[5] (0)	VL[4] (0)	VL[3] (0)	VL[2] (0)	VL[1] (0)	VL[0] (0)	-
		<u> </u>	405-4FFh	Setting inhibited	0	0	0	0	0	0	0	0 PTDP[8]	0 PTDP[7]	0 PTDP[6]	0 PTDP[5]	0 PTDP[4]	0 PTDP[3]	0 PTDP[2]	0 PTDP[1]	0 PTDP[0]	-
5**	Partial Di	splay Control	500h	Partial Image 1: Display Position RAM Address 1 (Start Line	0	0	0	0	0	0	0	(0) PTSA[8]	(0) PTSA[7]	(0) PTSA[6]	(0) PTSA[5]	(0) PTSA[4]	(0) PTSA[3]	(0) PTSA[2]	(0) PTSA[1]	(0) PTSA[0]	-
			501h	Address)	0	0	0	0	0	0	0	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	-
			502h 503h-5FFh	RAM Address 2 (End Line Address)	0	0	0	0	0	0	0	PTEA[8] (0)	PTEA[7] (0)	PTEA[6] (0)	PTEA[5] (0)	PTEA[4] (0)	PTEA[3] (0)	PTEA[2] (0)	PTEA[1] (0)	PTEA[0] (0) 0	-
6**	Pin Control	60*	600h	Setting inhibited Test Register (Software Reset)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	TRSR (0)	-
			601-6EFh	Setting inhibited	0	0	0	0	0	0	0	0	0 TE	0 CALB	0 EOP[1]	0 EOP[0]	0	0	0	0	-
		6F*	6F0h	NVM Access Control 1	0 NVDAT[15]	0 NVDAT[14	0 NVDAT[13]	0 NVDAT[12]	0 NVDAT[11]	0 NVDAT[10]	0 NVDAT[9]	0 NVDAT[8]	(0)	(0) NVDAT[6]	(0)	(0)	0 NVDAT[3]	0 NVDAT[2]	0 NVDAT[1]	0 NVDAT[0]	-
			6F1h	NVM Access Control 2	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0) NVVRF	(0)	(0)	(0)	-
			6F2h	NVM Access Control 3	0	. 0		. 0	. 0		. 0	. 0	. 0	. 0	. 0						

Note 1: Values in parentheses () are default values. Note 2: Do not access instructions that are not shown in the above table.

Reset Function

The R61509V is initialized by the RESETX input. During reset period, the R61509V is in a busy state and instruction from the microcomputer and GRAM access are not accepted. The R61509V's internal power supply circuit unit is initialized also by the RESETX input. The RESET period must be secured for at least 1ms. In case of power-on reset, wait until the RC oscillation frequency stabilizes (for 1 ms). During this period, GRAM access and initial instruction setting are prohibited.

1. Initial state of instruction bits (default)

See the instruction list. The default value is shown in the parenthesis of each instruction bit cell.

2. RAM Data initialization

The RAM data is not automatically initialized by the RESETX input. It must be initialized by software in display-off period (D1-0 = "00").

3. Output pin initial state * see Note

```
LCD driver S1~S720
1.
                                                      : GND
              G1~G432
                                                      : VGL (= GND)
2.
    VCOM
                                                      : Halt (GND output)
3.
    VCOMH
                                                      : VCI
4.
    VCOML
                                                      : Halt (GND output)
5.
    VREGIOUT
                                                      : VGS
6.
    VCIOUT
                                                      : Hi-z
7.
  DDVDH
                                                      : VCI
8.
    VGH
                                                      : DDVDH (VCI clamp)
9.
    VGL
                                                      : GND
10. VCL
                                                      : GND
11. FMARK
                                                      : Halt (GND output )
12. Oscillator
                                                      : Oscillate
                                       : High level (IOVCC1) when IM2-0 = "10*" (serial interface)
13. SDO
                                       : Hi-z when IM2-0 \neq "10*" (other than serial interface)
```

4. Initial state of input/output pins* see Note

1.	C11P	: Hi-z
2.	C11M	: Hi-z
3.	C12P	: Hi-z
4.	C12M	: Hi-z
5.	C13P	: VCI1 (= Hi-z)
6.	C13M	: GND
7.	C21P	: DDVDH (= VCI)
8.	C21M	: GND
9.	C22P	: DDVDH (= VCI)
10.	C22M	: GND
11.	VDD	: VDD

Note: The above-mentioned initial states of output and input pins are those of when the R61509V's power supply circuit is connected as in Connection Example.

5 When a RESETX input is entered into the R61509V while it is in shutdown mode, the R61509V starts up the inside logic regulator and makes a transition to the initial state. During this period, the state of the interface pins may become unstable. For this reason, do not enter a RESETX input in shutdown mode.

6 When transferring instruction in either two or three transfers via 8-/9-/16-bit interface, make sure to execute data transfer synchronization after reset operation.

Basic Mode Operation of the R61509V

The basic operation modes of the R61509V are shown in the following diagram. When making a transition from one mode to another, refer to instruction setting sequence.

Figure 12

Interface and Data Format

The R61509V supports system interface for making instruction and other settings, and external display interface for displaying a moving picture. The R61509V can select the optimum interface for the display (moving or still picture) in order to transfer data efficiently.

As external display interface, the R61509V supports RGB interface and VSYNC interface, which enables data rewrite operation without flickering the moving picture on display.

In RGB interface operation, the display operation is executed in synchronization with synchronous signals VSYNCX, HSYNCX, and DOTCLK. In synchronization with these signals, the R61509V writes display data according to data enable signal (ENABLE) via RGB data signal bus (DB17-0). The display data is stored in the R61509V's GRAM so that data is transferred only when rewriting the frames of moving picture and the data transfer required for moving picture display can be minimized. The window address function specifies the RAM area to write data for moving picture display, which enables displaying a moving picture and RAM data in other than the moving picture area simultaneously. To access the R61509V's internal RAM in high speed with low power consumption, use high-speed write function (HWM = 1) in RGB or VSYNC interface operation.

In VSYNC interface operation, the internal display operation is synchronized with the frame synchronization signal (VSYNCX). The VSYNC interface enables a moving picture display via system interface by writing the data to the GRAM at faster than the minimum calculated speed in synchronization with the falling edge of VSYNCX. In this case, there are restrictions in setting the frequency and the method to write data to the internal RAM.

The R61509V operates in either one of the following four modes according to the state of the display. The operation mode is set in the external display interface control register (R0Ch). When switching from one mode to another, make sure to follow the relevant sequence in setting instruction bits.

Table 56 Operation Modes

Operation Mode	RAM Access Setting (RM)	Display Operation Mode (DM)
Internal clock operation (displaying still pictures)	System interface (RM = 0)	Internal clock operation (DM1-0 = 00)
RGB interface (1) (displaying moving pictures)	RGB interface (RM = 1)	RGB interface (DM1-0 = 01)
RGB interface (2) (rewriting still pictures while displaying moving pictures)	System interface (RM = 0)	RGB interface (DM1-0 = 01)
VSYNC interface (displaying moving pictures)	System interface (RM = 0)	VSYNC interface (DM1-0 = 10)

Notes: 1. Instructions are set only via system interface.

- 2. When RGB interface is used, instructions should be transferred via clock synchronous serial interface.
- 3. RGB and VSYNC interfaces cannot be used simultaneously.
- 4. Do not make changes to the RGB interface operation setting (RIM1-0) while RGB interface is in operation.
- 5. See the "External Display Interface" section for the sequences when switching from one mode to another.

Figure 13

Internal clock operation

The display operation is synchronized with signals generated from internal oscillator's clock (OSC) in this mode. All input via external display interface is disabled in this operation. The internal RAM can be accessed only via system interface.

RGB interface operation (1)

The display operation is synchronized with frame synchronous signal (VSYNCX), line synchronous signal (HSYNCX), and dot clock signal (DOTCLK) in RGB interface operation. These signals must be supplied during the display operation via RGB interface.

The R61509V transfers display data in units of pixels via DB17-0 pins. The display data is stored in the internal RAM. The combined use of window address function can minimize the total number of data transfer for moving picture display by transferring only the data to be written in the moving picture RAM area when it is written and enables the R61509V to display a moving picture and the data in other than the moving picture RAM area simultaneously.

The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated inside the R61509V by counting the number of clocks of line synchronous signal (HSYNCX) from the falling edge of the frame synchronous signal (VSYNCX). Make sure to transfer pixel data via DB17-0 pins in accordance with the setting of these periods.

RGB interface operation (2)

This mode enables the R61509V to rewrite RAM data via system interface while using RGB interface for display operation. To rewrite RAM data via system interface, make sure that display data is not transferred via RGB interface (ENABLE = high). To return to the RGB interface operation, change the ENABLE setting first. Then set an address in the RAM address set register and R22h in the index register.

VSYNC interface operation

The internal display operation is synchronized with the frame synchronous signal (VSYNCX) in this mode. This mode enables the R61509V to display a moving picture via system interface by writing data in the internal RAM at faster than the calculated minimum speed via system interface from the falling edge of frame synchronous (VSYNCX). In this case, there are restrictions in speed and method of writing RAM data. For details, see the "VSYNC Interface" section.

As external input, only VSYNCX signal input is valid in this mode. Other input via external display interface becomes disabled.

The front porch (FP), back porch (BP), and the display (NL) periods are automatically calculated from the frame synchronous signal (VSYNCX) inside the R61509V according to the instruction settings for these periods.

FMARK interface operation

In the FMARK interface operation, data is written to internal RAM via system interface synchronizing with the frame mark signal (FMARK), realizing tearing-less moving picture while using conventional system interface. In this case, there are restrictions in speed and method of writing RAM data. See "FMARK interface" for detail.

System Interface

The following are the kinds of system interfaces available with the R61509V. The interface operation is selected by setting the IM2/1/0 pins. The system interface is used for instruction setting and RAM access.

Table 57 IM Bit Settings and System Interface

IM2	IM1	IMO	Interfacing Mode with Host Processor	DB Pins	Colors
0	0	0	80-system 18-bit interface	DB17-0	262,144
0	0	1	80-system 9-bit interface	DB17-9	262,144
0	1	0	80-system 16-bit interface	DB17-10, DB8-1	262,144 *see Note1
0	1	1	80-system 8-bit interface	DB17-10	262,144 *see Note2
1	0	*	Clock synchronous serial interface	=	65,536
1	1	0	Setting inhibited	-	-
1	1	1	Setting inhibited	-	-

Notes: 1. 65,536 colors in 16-bit single transfer mode.

^{2. 262,144} colors is 8-bit 3-transfer mode. 65,536 colors in 8-bit 2-transfer mode.

80-System 18-bit Bus Interface

Figure 14 18-bit Interface

Figure 15 18-bit Interface Data Format (Instruction Write / Device Code Read / Instruction Read)

Figure 16 18-bit Interface Data Format (RAM Data Write / RAM Data Read)

80-System 16-bit Bus Interface

Figure 17 16-bit Interface

Figure 18 16-bit Interface Data Format (Instruction Write / Device Code Read / Instruction Read)

Figure 19 16-bit Interface Data Format (RAM Data Write)

Figure 20 16-bit Interface Data Format (RAM Data Read)

Data Transfer Synchronization in 16-bit Bus Interface Operation

The R61509V supports data transfer synchronization function to reset the counters for upper 16-/2-bit and lower 2-/16-bit transfers in 16-bit 2-transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 000H instruction is written four times consecutively to reset the upper and lower counters in order to restart the data transfer from upper 2/16 bits. The data transfer synchronization, when executed periodically, can help the display system recover from runaway.

Make sure to execute data transfer synchronization after reset operation before transferring instruction.

Figure 21 16-bit Data Transfer Synchronization

80-System 9-bit Bus Interface

When transferring 16-bit instruction, it is divided into upper and lower 8 bits, and the upper 8 bits are transferred first (the LSB is not used). The RAM write data is also divided into upper and lower 9 bits, and the upper 9 bits are transferred first. The unused DB pins must be fixed at either IOVCC or IOGND level. When transferring the index register setting, make sure to write upper byte (8 bits).

Figure 22 9-bit Interface

Figure 23 9-bit Interface Data Format (Instruction Write / Device Code Read / Instruction Read)

Figure 24 9-bit Interface Data Format (RAM Data Write/ RAM Data Read)

Data Transfer Synchronization in 9-bit Bus Interface Operation

The R61509V supports data transfer synchronization function to reset the counters for upper and lower 9-bit transfers in 9-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower counters in order to restart the data transfer from upper 9 bits. The data transfer synchronization, when executed periodically, can help the display system recover from runaway.

Make sure to execute data transfer synchronization after reset operation before transferring instruction.

Figure 25 9-bit Data Transfer Synchronization

80-System 8-bit Bus Interface

When transferring 16-bit instruction, it is divided into upper and lower 8 bits, and the upper 8 bits are transferred first. The RAM write data is also divided into upper and lower 8 bits, and the upper 8 bits are transferred first. The RAM write data is expanded into 18 bits internally as shown below. The unused DB pins must be fixed at either IOVCC1 or GND level. When transferring the index register setting, make sure to write upper byte (8 bits).

Figure 26 8-bit Interface

Figure 27 8-bit Interface Data Format (Instruction Write / Device Code Read / Instruction Read)

Note: RAM data cannot be read in the 3-transfer mode.

Figure 28 8-bit Interface Data Format (RAM Data Write)

Figure 29 8-bit Interface Data Format (RAM Data Read)

Data Transfer Synchronization in 8-bit Bus Interface operation

The R61509V supports data transfer synchronization function to reset the counters for upper and lower 8-bit transfers in 8-bit bus transfer mode. When a mismatch occurs in upper and lower data transfers due to noise and so on, the 00H instruction is written four times consecutively to reset the upper and lower counters in order to restart the data transfer from upper 8 bits. The data transfer synchronization, when executed periodically, can help the display system recover from runaway.

Make sure to execute data transfer synchronization after reset operation before transferring instruction.

Figure 30 8-bit Data Transfer Synchronization

Serial Interface

The serial interface is selected by setting the IM2/1 pins to the IOVCC/GND levels, respectively. The data is transferred via chip select line (CS), serial transfer clock line (SCL), serial data input line (SDI), and serial data output line (SDO). In serial interface operation, the IM0_ID pin functions as the ID pin, and the DB17-0 pins, not used in this mode, must be fixed at either IOVCC or GND level.

The R61509V recognizes the start of data transfer on the falling edge of CSX input and starts transferring the start byte. It recognizes the end of data transfer on the rising edge of CSX input. The R61509V is selected when the 6-bit chip address in the start byte transferred from the transmission unit and the 6-bit device identification code assigned to the R61509V are compared and both 6-bit data match. Then, the R61509V starts taking in subsequent data. The least significant bit of the device identification code is determined by setting the ID pin. Send "01110" to the five upper bits of the device identification code. Two different chip addresses must be assigned to the R61509V because the seventh bit of the start byte is register select bit (RS). When RS = 0, index register write operation is executed. When RS = 1, either instruction write operation or RAM read/write operation is executed. The eighth bit of the start byte is R/W bit, which selects either read or write operation. The R61509V receives data when the R/W = 0, and transfers data when the R/W = 1.

When writing data to the GRAM via serial interface, the data is written to the GRAM after it is transferred in two bytes. The R61509V writes data to the GRAM in units of 18 bits by adding the same bits as the MSBs to the LSB of R and B dot data.

After receiving the start byte, the R61509V starts transferring or receiving data in units of bytes. The R61509V transfers data from the MSB. The R61509V's instruction consists of 16 bits and it is executed inside the R61509V after it is transferred in two bytes (16 bits: DB15-0) from the MSB. The R61509V expands RAM write data into 18 bits when writing them to the internal GRAM. The first byte received by the R61509V following the start byte is recognized as the upper eight bits of instruction and the second byte is recognized as the lower 8 bits of instruction.

When reading data from the GRAM, valid data is not transferred to the data bus until first five bytes of data are read from the GRAM following the start byte. The R61509V sends valid data to the data bus when it reads the sixth and subsequent byte data.

Table 58 Start Byte Format

Transferred Bits	S	1	2	3	4	5	6	7	8
Start byte format	Transfer start	Device ID code		- RS	R/W				
		0	1	1	1	0	ID	- 133	IVVV

Note: The ID bit is determined by setting the IM0_ID pin.

Table 59 Functions of RS, R/W Bits

RS	R/W	Function
0	0	Set index register
0	1	Setting inhibited
1	0	Write instruction or RAM data
1	1	Read instruction or RAM data

Figure 31 Serial Interface Data Format

Figure 32 Data Transfer in Serial Interface

VSYNC Interface

The R61509V supports VSYNC interface, which enables displaying a moving picture via system interface by synchronizing the display operation with the VSYNCX signal. VSYNC interface can realize moving picture display with minimum modification to the conventional system operation.

Figure 33 VSYNC Interface

The VSYNC interface is selected by setting DM1-0 = 10 and RM = 0. In VSYNC interface operation, the internal display operation is synchronized with the VSYNCX signal. By writing data to the internal RAM at faster than the calculated minimum speed (internal display operation speed + margin), it becomes possible to rewrite the moving picture data without flickering the display and display a moving picture via system interface.

The display operation is performed in synchronization with the internal clock signal generated from the internal oscillator and the VSYNCX signal. The display data is written in the internal RAM so that the R61509V rewrites the data only within the moving picture area and minimize the number of data transfer required for moving picture display.

Figure 34 Moving Picture Data Transfers via VSYNC Interface

The VSYNC interface has the minimum for RAM data write speed and internal clock frequency, which must be more than the values calculated from the following formulas, respectively.

```
Internal clock frequency (fosc) [Hz]
= FrameFrequency × (DisplayLines(NL) + FrontPorch(FP) + BackPorch(BP)) × 23(clocks) × variance
```

$$RAMWriteSpeed(min.)[Hz] > \frac{240 \times DisplayLines(NL)}{(BackPorch(BP) + DisplayLines(NL) - margins) \times 23(clocks) \times \frac{1}{fosc}}$$

Note: When RAM write operation is not started right after the falling edge of VSYNCX, the time from the falling edge of VSYNCX until the start of RAM write operation must also be taken into account.

An example of calculating minimum RAM writing speed and internal clock frequency in VSYNC interface operation is as follows.

[Example]

Panel size $240 \text{ RGB} \times 432 \text{ lines} \text{ (NL} = 6'\text{h}35: 432 \text{ lines)}$

Total number of lines (NL) 432 lines

Back/front porch 14/2 lines (BP = 4h'E, FP = 4'h2)

Frame frequency 60 Hz Internal clock frequency 678 kHz

Internal clock frequency (fosc) [Hz] = $678 \text{ kHz} \times 1.07 / 1.0 = 726 \text{ kHz}$

Notes: 1. When setting the internal clock frequency, possible causes of fluctuation must also be taken into consideration. In this example, the internal clock frequency allows for a margin of $\pm 7\%$ for variances and guarantee that display operation is completed within one VSYNCX cycle.

2. This example includes variances attributed to LSI fabrication process and room temperature. Other possible causes of variances, such as differences in voltage change are not considered in this example. It is necessary to include a margin for these factors.

```
Minimum speed for RAM writing [Hz] > 240 \times 432 / \{((14 + 432 - 2) \text{ lines} \times 23 \text{ clocks}) \times 1/726 \text{ kHz}\} = 7.4 \text{ MHz}
```

Notes: 1. In this example, it is assumed that the R61509V starts writing data in the internal RAM on the falling edge of VSYNCX.

2. There must be at least a margin of 2 lines between the line to which the R61509V has just written data and the line where display operation on the LCD is performed.

In this example, the RAM write operation at a speed of 7.4 MHz or more, which starts on the falling edge of VSYNCX, guarantees the completion of data write operation in a certain line address before the R61509V starts the display operation of the data written in that line and can write moving picture data without causing flicker on the display.

Figure 35 Write/Display Operation Timing via VSYNC Interface

Notes to VSYNC Interface Operation

- 1. The above example of calculation gives a theoretical value. Possible causes of variances of internal oscillator should be taken into consideration. Make enough margins in setting RAM write speed for VSYNC interface operation.
- 2. The above example shows the values when writing over the full screen. Extra margin will be created if the moving picture display area is smaller than that.

Figure 36 RAM Write Speed Margins

3. The front porch period continues from the end of one frame period to the next VSYNCX input.

- 4. The instructions to switch from internal clock operation (DM1-0 = 00) to VSYNC interface operation modes and vice versa are enabled from the next frame period.
- 5. The partial display and vertical scroll functions are not available in VSYNC interface operation.
- 6. In VSYNC interface operation, set AM = 0 to transfer display data correctly.

Figure 37 Sequences to Switch between VSYNC and Internal Clock Operation Modes

FMARK Interface

In the FMARK interface operation, data is written to internal RAM via system interface synchronizing with the frame mark signal (FMARK), realizing tearing less video image while using conventional system interface. FMARK output position is set in units of line using FMP bit. Set the bit considering data transfer speed.

Figure 38 FMARK Interface

In this operation, moving picture display is enabled via system interface by writing data at higher than the internal display operation frequency to a certain degree, which guarantees rewriting the moving picture RAM area without causing flicker on the display.

The data is written in the internal RAM. Therefore, when moving picture is displayed, data is written only to the moving picture display area without using RGB or VSYNC interface, minimizing number of data transfer required for moving picture display.

Figure 39 Moving Picture Data Transfers via FMARK Function

When transferring data in synchronization with FMARK signal, minimum RAM data write speed and internal clock frequency must be taken into consideration. They must be more than the values calculated from the following equations.

```
\label{lock frequency foscy [Hz]} Internal clock frequency \times (DisplayLines(NL) + FrontPorch(FP) + BackPorch(BP)) \times 23(clocks) \times variance
```

$$RAMWriteSp\ eed\ (min.)[\ Hz\] > \frac{240 \times DisplayLin\ es(\ NL\)}{(FrontPorch\ (FP\) + BackPorch\ (BP\) + DisplayLin\ es(\ NL\) - m\ arg\ ins\) \times 16(\ clocks\) \times \frac{I}{fosc}}$$

Note: When RAM write operation is not started immediately following the rising edge of FMARK, the time from the rising edge of FMARK until the start of RAM write operation must also be taken into account.

Examples of calculating minimum RAM data write speed and internal clock frequency is as follows.

[Example]

Panel size $240 \text{ RGB} \times 432 \text{ lines} \text{ (NL} = 6'\text{h}35: 432 \text{ lines)}$

Total number of lines (NL) 432 lines

Back/front porch 14/2 lines (BP = 4h'E, FP = 4'h2)

Frame marker position (FMP) Display end line: 432^{nd} line (FMP = 9'h1BF)

Frame frequency 60 Hz Internal oscillation frequency 678kHz

Internal oscillation frequency (fosc) [Hz] = $678kHz \times 1.07 / 1.0 = 726 \text{ kHz}$ (variance is taken into account)

Notes: 1.When setting the internal clock frequency, possible causes of fluctuation must also be taken into consideration. In this example, the internal clock frequency allows for a margin of $\pm 7\%$ for variances and guarantee that display operation is completed within one FMARK cycle.

2. This example includes variances attributed to LSI fabrication process and room temperature. Other possible causes of variances, such as differences in external resistors and voltage change are not considered in this example. It is necessary to include a margin for these factors.

```
Minimum speed for RAM writing [Hz] > 240 \times 320 / \{((2+14+320-2) \text{ lines} \times 16 \text{ clocks}) \times 1/726 \text{ kHz}\} = 7.4 \text{ MHz}
```

- Notes: 1. In this example, it is assumed that the R61509V starts writing data in the internal RAM on the rising edge of FMARK.
 - 2. There must be at least a margin of 2 lines between the line to which the R61509V has just written data and the line where display operation on the LCD is performed.
 - 3. The FMARK signal output position is set to the line specified by FMP[8:0] bits.

In this example, RAM write operation at a speed of 7.4MHz or more, when starting on the rising edge of FMARK, guarantees the completion of data write operation in a certain line address before the R61509V

starts the display operation of the data written in that line and can write moving picture data without causing flicker on the display.

Figure 40

Note to display operation synchronous data transfer using FMARK signal

The above example of calculation gives a theoretical value. Possible causes of variances of internal oscillator should be taken into consideration. Make enough margin in setting RAM write speed for this operation.

FMP bit setting

The microcomputer detects FMARK signal outputted at the position defined by FMP bit. The R61509V outputs an FMARK pulse when the R61509V is driving the line specified by FMP bits. The FMARK signal can be used as a trigger signal to write display data in synchronization with display operation by detecting the address where data is read out for display operation.

The FMARK output interval is set by FMI bits. Set FMI bits in accordance with display data rewrite cycle and data transfer rate.

Table 60

FMP[8:0]	FMARK output position
9'h000	0
9'h001	1 st line
9'h002	2 nd line
:	
9'h1BD	445 th line
9'h1BE	446 th line
9'h1BF	447 th line
9'h1C0 ~ 1FF	Setting disabled

Table 61

FMI[2]	FMI[1]	FMI[0]	FMARK Output interval
0	0	0	One frame period
0	0	1	2 frame periods
0	1	1	4 frame periods
1	0	1	6 frame periods
Other setting			Setting disabled

FMP Setting Example

Figure 41

RGB Interface

The R61509V supports the RGB interface. The interface format is set by RM[1:0] bits. The internal RAM is accessible via RGB interface.

Table 62 RGB interface

RIM	RGB Interface	DB Pin
0	18-bit RGB interface	DB17-0
1	16-bit RGB interface	DB17-13, DB11-1

Note: Using multiple interface at a time is prohibited.

RGB Interface

The display operation via RGB interface is synchronized with VSYNCX, HSYNCX, and DOTCLK. The data can be written only within the specified area with low power consumption by using window address function. In RGB interface operation, front and back porch periods must be made before and after the display period. When RGB interface is used, instructions should be transferred via clock synchronous serial interface. RGB and 80-system bus interfaces cannot be used simultaneously.

Figure 42 Display Operation via RGB Interface

Polarities of VSYNCX, HSYNCX, ENABLE, and DOTCLK Signals

The polarities of VSYNCX, HSYNCX, ENABLE, and DOTCLK signals can be changed by setting the DPL, EPL, HSPL, and VSPL bits, respectively for convenience of system configuration.

Figure 43

Table 63

Parameters	Symbols	Min.	Тур.	Max.	Step	Unit
Horizontal Synchronization	Hsync	2	10	16	1	DOTCLKCYC
Horizontal Back Porch	HBP	2	20	24	1	DOTCLKCYC
Horizontal Address	HAdr	_	240	_	1	DOTCLKCYC
Horizontal Front Porch	HFP	2	10	16	1	DOTCLKCYC
Vertical Synchronization	Vsync	1	2	4	1	Line
Vertical Back Porch	VBP	1	2	_	1	Line
Vertical Address	VAdr	_	432	_	1	Line
Vertical Front Porch	VFP	3	4	_	1	Line

Note: The values of typ. are based on the following conditions; the panel resolution is QVGA (240×432), the clock frequency is 7.39MHz, and the frame frequency is about 60Hz.)

Vsync + VBP = BP. VFP = FP. Vadr = NL.

(Number of clocks per 1H) \geq (Number of RTN clocks) \times (1/1 div.) \times (PCDIVL + PCDIVH)

The setting example is shown in the following page.

Setting Example of Display Control Clock in RGB Interface Operation

Register

The display operation via DPI is performed in synchronization with the internal clock (PCLKD) that is generated by dividing PCLK frequency.

 $PCDIVH[3:0]: When \ PCLKD \ is \ High, \ the \ number \ of \ clocks \ is \ set \ in \ unit \ of \ 1 \ clock.$

PCDIVL[3:0]: When PCLKD is Low, the number of clocks is set in unit of 1 clock.

PCDIVH and PCDIVL (division ratio setting registers) should be set so that the difference between PCLKD frequency and the internal oscillation clock (678kHz) is minimized.

Set PCDIVL to PCDIVH or PCDIVH – 1.

Make sure (number of PCLK frequency) ≥ (number of RTN clocks) * (division ratio of DIV) * (PCDIVH + PCDIVL)

Setting example (frame frequency: 60Hz)

Internal clock: Internal oscillation clock = 678kHz

1/1 Div. = (DIVE[2:0] = 2'b0)

HFP = 10 clocks

FP = 8'h8, BP = 8'h8, NL = 6B (432 lines)

→ 59.35Hz

PCLK: Hsync = 10 clocks

HBP = 20 clocks

HFP = 10 clocks

60Hz × (8+432+8) lines (10+20+240+10) clocks = 7.53MHz

PCLK frequency = 7.53MHz

7.53MHz/678kHz = 11.11 (Set PCDIVH and PCDIVL so that PCLK frequency is divided into 11.)

7.53/11 = 685kHz

685kHz / 25 clocks / 448 lines = 61.2Hz

PCDIVH = 4'h6

PCDIVL = 4'h5

Figure 44

RGB Interface Timing

The timing relationship of signals in RGB interface operation is as follows.

16-/18-Bit RGB Interface Timing

Figure 45

Note: VLW: VSYNCX Low period

HLW: HSYNCX Low period DTST: data transfer setup time

Moving Picture Display via RGB Interface

The R61509V supports RGB interface for moving picture display and incorporates RAM for storing display data, which provides the following advantages in displaying a moving picture.

- 1. The window address function enables transferring data only within the moving picture area
- 2. It becomes possible to transfer only the data written over the moving picture area
- 3. By reducing data transfer, it can contribute to lowering the power consumption of the whole system
- 4. The data in still picture area (icons etc.) can be written over via system interface while displaying a moving picture via RGB interface

RAM access via system interface in RGB interface operation

The R61509V allows RAM access via system interface in RGB interface operation. In RGB interface operation, data is written to the internal RAM in synchronization with DOTCLK while ENABLE is "Low". When writing data to the RAM via system interface, set ENABLE "High" to stop writing data via RGB interface. Then set RM = "0" to enable RAM access via system interface. When reverting to the RGB interface operation, wait for the read/write bus cycle time. Then, set RM = "1" and the index register to R22h to start accessing RAM via RGB interface. If there is a conflict between RAM accesses via two interfaces, there is no guarantee that the data is written in the RAM.

The following is an example of rewriting still picture data via system interface while displaying a moving picture via RGB interface.

Figure 46 Updating the Still Picture Area while Displaying Moving Picture

16-Bit RGB Interface

The 16-bit RGB interface is selected by setting RIM = 1. The display operation is synchronized with VSYNCX, HSYNCX, and DOTCLK signals. The display data is transferred to the internal RAM in synchronization with the display operation via 16-bit ports while data enable signal (ENABLE) allows RAM access via RGB interface.

Instruction bits can be transferred only via system interface.

Figure 47 Example of 16-Bit RGB Interface and Data Format

18-bit RGB Interface

The 18-bit RGB interface is selected by setting RIM = 0. The display operation is synchronized with VSYNCX, HSYNCX, and DOTCLK signals. The display data is transferred to the internal RAM in synchronization with the display operation via 18-bit ports (DB17-0) while data enable signal (ENABLE) allows RAM access via RGB interface.

Instruction bits can be transferred only via system interface.

Figure 48 Example of 18-Bit RGB Interface and Data Format

Notes to RGB Interface Operation

1. The following functions are not available in RGB interface operation.

Table 64 Functions Not Available in RGB Interface operation

Function	RGB Interface	Internal Display Operation
Partial display	Not available	Available
Scroll function	Not available	Available

- 2. The VSYNCX, HSYNCX, and DOTCLK signals must be supplied during display period.
- 3. The reference clock to generate liquid crystal panel controlling signals in RGB interface operation is DOTCLK, not the internal clock generated from the internal oscillator.
- 4. When switching between the internal operation mode and the external display interface operation mode, follow the sequences below in setting instruction.
- 5. In RGB interface operation, front porch period continues after the end of frame period until next VSYNCX input is detected.
- 6. RGB and 80-system bus interfaces cannot be used simultaneously.
- In RGB interface operation, RAM address AD16-0 is set in the address counter every frame on the falling edge of VSYNCX.

Figure 49 RGB and Internal Clock Operation Mode Switching Sequences

RAM Address and Display Position on the Panel

The R61509V has memory to store display data of 240RGB x 432 lines. The R61509V incorporates a circuit to control partial display, which allows switching driving method between full-screen display mode and partial display mode.

The R61509V makes display arrangement setting and panel driving position control setting separately and specifies RAM area for each image displayed on the panel.

The following is the sequence of setting full-screen and partial display.

- 1. Set (PTSA, PTEA) to specify the RAM area for each partial image
- 2. Set the display position of each partial image on the base image by setting PTDP.
- 3. Set NL to specify the number of lines to drive the liquid crystal panel to display the base image
- 4. After display ON, set display enable bits (BASEE, PTDE) to display respective images

Normal display	BASEE = 1, PTDE = 0
Partial display	BASEE = 0, $PTDE = 1$

5. Changes BASEE, PTDE settings when turning on and off the full and partial displays 1/2.

In driving the liquid crystal panel, the clock signal for gate line scan is supplied consecutively via interface in accordance with the number of lines to drive the liquid crystal panel (NL setting).

When switching the display position in horizontal direction, set SS bit when writing RAM data.

Table 65

	Display ENABLE	Numbers of lines	RAM area
Base image	BASEE	NL	(VSA, VEA)

Note: The base image is displayed from the first line of the screen.

Table 66

	Display ENABLE	Display position	RAM area
Partial image	PTDE	PTDP	(PTSA, PTEA)

Figure 50 RAM Address, Display Position and Drive Position

Restrictions in Setting Display Control Instruction

There are restrictions in coordinates setting for display data, display position and partial display.

Screen setting

In setting the number of lines to drive the liquid crystal panel, make sure that the total number of lines is 432 lines or less ($NL \le 432$ lines).

Base image display

The base image is displayed from the first line of the screen: Base image display start position = 1st line

The following figure shows the relationship among the RAM address, display position, and the lines driven for the display.

Figure 51 Display RAM Address and Panel Display Position

Note: This figure shows the relationship between RAM line address and the display position on the panel. In the R61509V's internal operation, the data is written in the RAM area specified by the window address setting.

Instruction Setting Example

The followings are examples of settings for 240(RGB) x 432(lines) panel.

1. Full screen display (no partial display)

The following is an example of settings for full screen display.

Table 67

Base image display instruction			
BASEE	1		
NL[5:0] 6'h35			
PTDE	0		

Figure 52 Full Screen Display (no Partial)

2. Partial only

The following is an example of settings for displaying partial image 1 only and turning off the base image. The partial image 1 is displayed at the position specified by PTDP0 bit.

Table 68

Base image display instruction		
BASEE	0	
NL[5:0]	6'h35	

partial image 1 display instruction			
PTDE	1		
PTSA[8:0]	9'h000		
PTEA[8:0]	9'h00F		
PTDP[8:0]	9'h080		

Figure 53 Partial Display

Window Address Function

The window address function enables writing display data consecutively in a rectangular area (a window address area) made in the internal RAM. The window address area is described by the horizontal address register (start: HSA7-0, end: HEA7-0 bits) and the vertical address register (start: VSA8-0, end: VEA8-0 bits). The AM and ID bits set the transition direction of RAM address (either increment or decrement, horizontal or vertical, respectively). Setting these bits enables the R61509V to write data including image data consecutively without taking the data wrap position into account.

The window address area must be made within the GRAM address map area. Also, the AD16-0 bits (RAM address set register) must be set to an address within the window address area.

```
[Window address area setting range]  (Horizontal \ direction) \qquad 8'h00 \le HSA \le HEA \le 8'hEF   (Vertical \ direction) \qquad 9'h000 \le VSA \le VEA \le 9'h1AF  [RAM Address setting range]  (RAM \ address) \qquad HSA \le AD7-0 \le HEA   VSA \le AD16-8 \le VEA
```


Figure 54 Automatic Address Update within a Window Address Area

Scan Mode Setting

The R61509V can set the gate pin assignment and the scan direction in the following 4 different ways by setting SM and GS bits to realize various connections between the R61509V and the LCD panel.

Figure 55

8-Color Display Mode

The R61509V has a function to display in eight colors. In this display mode, only V0 and V63 are used and power supplies to other grayscales (V1 to V62) are turned off to reduce power consumption.

In 8-color display mode, the γ -adjustment registers R300 to R309 are disabled and the power supplies to V1 to V62 are halted. The R61509V does not require GRAM data rewrite for 8-color display by writing the MSB to the rest in each dot data to display in 8 colors.

Figure 56 8-Color Display Mode

Frame-Frequency Adjustment Function

The R61509V supports a function to adjust frame frequency. The frame frequency for driving liquid crystal can be adjusted by setting the DIVI, RTNI bits without changing the oscillation frequency.

By changing the DIVI and RTNI settings, the R61509V can operate at high frame frequency when displaying a moving picture, which requires the R61509V to rewrite data in high speed, and it can operate at low frame frequency when displaying a still picture.

Relationship between Liquid Crystal Drive Duty and Frame Frequency

The following equation represent the relationship between liquid crystal drive duty and frame frequency. The frame frequency can be changed by setting the 1H period adjustment bit (RTNI) and the operation clock frequency division ratio setting bit (DIVI).

Equation for calculating frame frequency

$$FrameFrequency = \frac{fosc}{Number of Clocks \, / \, line \, \times \, DivisionRatio \, \times \, (Line \, + \, FP \, + \, BP)} [Hz]$$

fosc: RC oscillation frequency

Number of clocks per line: RTNI bit

Division ratio: DIVI bit

Line: number of lines to drive the LCD panel (NL bit)

Number of lines for front porch: FP Number of lines for back porch: BP

Example of Calculation: when maximum frame frequency = 60 Hz

fosc: 678 kHz

Number of lines: 432 lines

1H period: 25 clock cycles (RTNI [4:0] = "11001")

Division ratio of operating clock: 1/1

Front porch: 2 lines Back porch: 14 lines

$$f_{FLM} = 678 \text{ (kHz)} / 25 \text{ (clocks)} \times 1/1 \times (432+2+14) \text{ (lines)} = 60.5 \text{ (Hz)}$$

Under the above conditions, the frame frequency can be changed according to the table shown below.

Table 69 Frame Frequency Setting (NL = 432 lines, BP = 14 lines, FP = 2 lines, fosc = 678 kHz)

RTNI[4:0]	DIVI = 2'h0	DIVI = 2'h1	
5'h00 - 5'h0F	-	-	
5'h10	95 Hz	47 Hz	
5'h11	89 Hz	45 Hz	
5'h12	84 Hz	42 Hz	
5'h13	80 Hz	40 Hz	
5'h14	76 Hz	38 Hz	
5'h15	72 Hz	36 Hz	
5'h16	69 Hz	34 Hz	
5'h17	66 Hz	33 Hz	
5'h18	63 Hz	32 Hz	
5'h19	61 Hz	30 Hz	
5'h1A	58 Hz	29 Hz	
5'h1B	56 Hz	28 Hz	
5'h1C	54 Hz	27 Hz	
5'h1D	52 Hz	26 Hz	
5'h1E	50 Hz	25 Hz	
5'h1F	49 Hz	24 Hz	

Partial Display Function

The partial display function allows the R61509V to drive lines selectively to display partial images by setting partial display control registers. The lines not used for displaying partial images are driven at non-lit display level to reduce power consumption.

The power efficiency can be enhanced in combination with 8-color display mode. Check the display quality when using low power consumption functions.

Figure 57 Partial Display

Note: See the RAM Address and Display Position on the Panel for details on the relationship between the display positions of partial images and respective RAM area setting.

Liquid Crystal Panel Interface Timing

The relationships between RGB interface signals and liquid crystal panel control signals in internal operation and RGB interface operations are as follows.

Internal Clock Operation

Figure 58

RGB Interface Operation

Figure 59

γ Correction Function

γ Correction Function

The R61509V supports γ -correction function to make the optimal colors according to the characteristics of the panel. The R61509V has registers for positive and negative polarities.

γ Correction Circuit

The following figure shows the γ -correction circuit. According to the settings of variable resistors R0 to R8, the voltage level, the difference between VREG10UT and VGS, is evenly divided into 8 grayscale reference voltages (V0, V1, V8, V20, V43, V55, V62, and V63). Other 56-grayscale voltages are generated by setting the level at a certain interval between the reference voltages. For grayscale voltage, see "Grayscale Voltage Calculation Formula".

Figure 60

γ Correction Registers

The γ -correction registers include 42 bits for each of R, G, and B dots and 8-bit interpolation adjustment registers.

Reference level adjustment registers

Table 70 Reference level adjustment registers

	Gamma Control			
Resistor	Positive polarity	Negative polarity		
R0	PR0P00[4:0]	PR0N00[4:0]		
R1	PR0P01[4:0]	PR0N01[4:0]		
R2	PR0P02[4:0]	PR0N02[4:0]		
R3	PR0P03[3:0]	PR0N03[3:0]		
R4	PR0P04[3:0]	PR0N04[3:0]		
R5	PR0P05[3:0]	PR0N05[3:0]		
R6	PR0P06[4:0]	PR0N06[4:0]		
R7	PR0P07[4:0]	PR0N07[4:0]		
R8	PR0P08[4:0]	PR0N08[4:0]		

Table 71 Reference Level Adjustment Registers and Resistors

Resistor	Register		Resistance	Resistor	Register		Resistance
	Name	Value	Resistance	Resisioi	Name	Valie	Resistance
R0	PR0*00[4:0]	5'h00	0R	R5	PR0*05[3:0]	4'h0	4R
		5'h01	1R			4'h1	5R
		5'h02	2R			4'h2	6R
		5'h1F	31R			4'hF	19R
R1 PR0*0		5'h00	1R		PR0*06[4:0]	5'h00	2R
		5'h01	2R			5'h01	3R
	PR0*01[4:0]	5'h02	3R	R6		5'h02	4R
		5'h1F	32R			5'h1F	33R
R2		5'h00	2R		PR0*07[4:0]	5'h00	1R
	PR0*02[4:0]	5'h01	3R	R7		5'h01	2R
		5'h02	4R			5'h02	3R
		5'h1F	33R			5'h1F	32R
R3	PR0*03[3:0]	4'h0	4R	R8	PR0*08[4:0]	5'h00	2R
		4'h1	5R			5'h01	3R
		4'h2	6R			5'h02	4R
		4'hF	19R			5'h1F	33R
R4	PR0*04[3:0]	4'h0	8R			•	
		4'h1	9R				
		4'h2	10R				
		4'hF	23R				

Note: * indicates P / N.

Interpolation Registers

Table 72 Interpolation Registers

Interpolation adjustment	Gamma Control				
	Positive polarity	Negative polarity			
V2~V7	PI0P0[1:0]	PI0N0[1:0]			
	PI0P1[1:0]	PI0N1[1:0]			
V56~V61	PI0P2[1:0]	PI0N2[1:0]			
	PI0P3[1:0]	PI0N3[1:0]			

Table 73 Interpolation factor for V2 to V7

(See "Grayscale Voltage Calculation Formula" for IPV* level)

PI0*0[1:0]	PI0*1[1:0]	IPV2	IPV3	IPV4	IPV5	IPV6	IPV7
	2'h0	81%	67%	52%	39%	26%	13%
2'h0	2'h1	78%	61%	43%	33%	22%	11%
2110	2'h2	73%	52%	31%	23%	15%	8%
	2'h3	72%	50%	28%	21%	14%	7%
	2'h0	80%	68%	56%	42%	28%	14%
2'h1	2'h1	76%	62%	48%	36%	24%	12%
2111	2'h2	70%	52%	35%	26%	17%	9%
	2'h3	69%	50%	31%	23%	16%	8%
	2'h0	78%	70%	61%	46%	30%	15%
2'h2	2'h1	74%	63%	53%	39%	26%	13%
2112	2'h2	66%	53%	39%	29%	20%	10%
	2'h3	64%	50%	36%	27%	18%	9%
	2'h0	78%	70%	63%	47%	31%	16%
2'h3	2'h1	73%	64%	54%	41%	27%	14%
2113	2'h2	65%	53%	41%	31%	20%	10%
	2'h3	63%	50%	37%	28%	19%	9%

Table 74 Interpolation Factor for V56 to V61

PI0*3[1:0]	PI0*2[1:0]	IPV56	IPV57	IPV58	IPV59	IPV60	IPV61
	2'h0	87%	74%	61%	48%	33%	19%
2'h0	2'h1	89%	78%	67%	57%	39%	22%
2110	2'h2	92%	85%	77%	69%	48%	27%
	2'h3	93%	86%	79%	72%	50%	28%
	2'h0	86%	72%	58%	44%	32%	20%
2'h1	2'h1	88%	76%	64%	52%	38%	24%
2111	2'h2	91%	83%	74%	65%	48%	30%
	2'h3	92%	84%	77%	69%	50%	31%
	2'h0	85%	70%	54%	39%	30%	22%
2'h2	2'h1	87%	74%	61%	47%	37%	26%
2112	2'h2	90%	80%	71%	61%	47%	34%
	2'h3	91%	82%	73%	64%	50%	36%
	2'h0	84%	69%	53%	38%	30%	22%
2'h3	2'h1	86%	73%	59%	46%	36%	27%
2113	2'h2	90%	80%	69%	59%	47%	35%
	2'h3	91%	81%	72%	63%	50%	37%

Note: * indicates P/N.

Target Spec R61509V

Table 75 Grayscale Voltage Calculation Formula

Grayscale voltage	Formula	Grayscale voltage	Formula
V0	$\Delta V \times \Sigma (R1 \sim R8)/SUMR$	V32	V43 + (V20 - V43) x 11/23
V1	$\Delta V \times \Sigma (R2 \sim R8)/SUMR$	V33	V43 + (V20 - V43) x 10/23
V2	V8 + (V1 - V8) x IPV2	V34	V43 + (V20 - V43) x 9/23
V3	V8 + (V1 - V8) x IPV3	V35	V43 + (V20 - V43) x 8/23
V4	V8 + (V1 - V8) x IPV4	V36	V43 + (V20 - V43) x 7/23
V5	V8 + (V1 - V8) x IPV5	V37	V43 + (V20 - V43) x 6/23
V6	V8 + (V1 - V8) x IPV6	V38	V43 + (V20 - V43) x 5/23
V7	V8 + (V1 - V8) x IPV7	V39	V43 + (V20 - V43) x 4/23
V8	Δ V x Σ (R3 \sim R8)/SUMR	V40	V43 + (V20 - V43) x 3/23
V9	V20 + (V8 - V20) x 11/12	V41	V43 + (V20 - V43) x 2/23
V10	V20 + (V8 - V20) x 10/12	V42	V43 + (V20 - V43) x 1/23
V11	V20 + (V8 - V20) x 9/12	V43	$\Delta V \times \Sigma (R5 \sim R8) / SUMR$
V12	V20 + (V8 - V20) x 8/12	V44	V55 + (V43 - V55) x 11/12
V13	V20 + (V8 - V20) x 7/12	V45	V55 + (V43 - V55) x 10/12
V14	V20 + (V8 - V20) x 6/12	V46	V55 + (V43 - V55) x 9/12
V15	V20 + (V8 - V20) x 5/12	V47	V55 + (V43 - V55) x 8/12
V16	V20 + (V8 - V20) x 4/12	V48	V55 + (V43 - V55) x 7/12
V17	V20 + (V8 - V20) x 3/12	V49	V55 + (V43 - V55) x 6/12
V18	V20 + (V8 - V20) x 2/12	V50	V55 + (V43 - V55) x 5/12
V19	V20 + (V8 - V20) x 1/12	V51	V55 + (V43 - V55) x 4/12
V20	$\Delta V \times \Sigma (R4 \sim R8)/SUMR$	V52	V55 + (V43 - V55) x 3/12
V21	V43 + (V20 - V43) x 22/23	V53	V55 + (V43 - V55) x 2/12
V22	V43 + (V20 - V43) x 21/23	V54	V55 + (V43 - V55) x 1/12
V23	V43 + (V20 - V43) x 20/23	V55	$\Delta V \times \Sigma (R6 \sim R8)/SUMR$
V24	V43 + (V20 - V43) x 19/23	V56	V62 + (V55 - V62) x IPV56
V25	V43 + (V20 - V43) x 18/23	V57	V62 + (V55 - V62) x IPV57
V26	V43 + (V20 - V43) x 17/23	V58	V62 + (V55 - V62) x IPV58
V27	V43 + (V20 - V43) x 16/23	V59	V62 + (V55 - V62) x IPV59
V28	V43 + (V20 - V43) x 15/23	V60	V62 + (V55 - V62) x IPV60
V29	V43 + (V20 - V43) x 14/23	V61	V62 + (V55 - V62) x IPV61
V30	V43 + (V20 - V43) x 13/23	V62	$\Delta V \times (R7 + R8)/SUMR$
V31	V43 + (V20 - V43) x 12/23	V63	ΔV x R8/SUMR

Note: Make sure that

 $\Delta V = VREG1OUT - VGS$ SUMR = Σ (R0 \sim R8) \geq 70R. V63 \geq 0.2V

Frame Memory Data and the Grayscale Voltage

Table 76

	Grayscale Voltage			1	Grayscale Voltage				
Frame memory data	REV = 1 REV = 0		Frame memory data	RE\	/ = 1	REV = 0			
data	Positive polarity	Negative polarity	Positive polarity	Negative polarity	uata	Positive polarity	Negative polarity	Positive polarity	Negative polarity
6'h00	V0	V63	V63	V0	6'h20	V32	V31	V31	V32
6'h01	V1	V62	V62	V1	6'h21	V33	V30	V30	V33
6'h02	V2	V61	V61	V2	6'h22	V34	V29	V29	V34
6'h03	V3	V60	V60	V3	6'h23	V35	V28	V28	V35
6'h04	V4	V59	V59	V4	6'h24	V36	V27	V27	V36
6'h05	V5	V58	V58	V5	6'h25	V37	V26	V26	V37
6'h06	V6	V57	V57	V6	6'h26	V38	V25	V25	V38
6'h07	V7	V56	V56	V7	6'h27	V39	V24	V24	V39
6'h08	V8	V55	V55	V8	6'h28	V40	V23	V23	V40
6'h09	V9	V54	V54	V9	6'h29	V41	V22	V22	V41
6'h0A	V10	V53	V53	V10	6'h2A	V42	V21	V21	V42
6'h0B	V11	V52	V52	V11	6'h2B	V43	V20	V20	V43
6'h0C	V12	V51	V51	V12	6'h2C	V44	V19	V19	V44
6'h0D	V13	V50	V50	V13	6'h2D	V45	V18	V18	V45
6'h0E	V14	V49	V49	V14	6'h2E	V46	V17	V17	V46
6'h0F	V15	V48	V48	V15	6'h2F	V47	V16	V16	V47
6'h10	V16	V47	V47	V16	6'h30	V48	V15	V15	V48
6'h11	V17	V46	V46	V17	6'h31	V49	V14	V14	V49
6'h12	V18	V45	V45	V18	6'h32	V50	V13	V13	V50
6'h13	V19	V44	V44	V19	6'h33	V51	V12	V12	V51
6'h14	V20	V43	V43	V20	6'h34	V52	V11	V11	V52
6'h15	V21	V42	V42	V21	6'h35	V53	V10	V10	V53
6'h16	V22	V41	V41	V22	6'h36	V54	V9	V9	V54
6'h17	V23	V40	V40	V23	6'h37	V55	V8	V8	V55
6'h18	V24	V39	V39	V24	6'h38	V56	V7	V7	V56
6'h19	V25	V38	V38	V25	6'h39	V57	V6	V6	V57
6'h1A	V26	V37	V37	V26	6'h3A	V58	V5	V5	V58
6'h1B	V27	V36	V36	V27	6'h3B	V59	V4	V4	V59
6'h1C	V28	V35	V35	V28	6'h3C	V60	V3	V3	V60
6'h1D	V29	V34	V34	V29	6'h3D	V61	V2	V2	V61
6'h1E	V30	V33	V33	V30	6'h3E	V62	V1	V1	V62
6'h1F	V31	V32	V32	V31	6'h3F	V63	V0	V0	V63

Power Supply Generating Circuit

The following figures show the configurations of liquid crystal drive voltage generating circuit of the R61509V.

Power Supply Circuit Connection Example 1 (VCI1 = VCIOUT)

In the following example, the VCI1 level can be adjusted.

Figure 61

Notes: 1. The wiring resistances between the schottky diode and GND/VGL must be 5Ω or less.

2. The wiring resistances between the schottky diode and DDVDH/VGH must be 5Ω or less.

Power Supply Circuit Connection Example 2 (VCI1 = VCI Direct Input)

In the following example, the electrical potential VCI is directly applied to VCI1. In this case, the VCIOUT level cannot be adjusted internally but step-up operation becomes more effective. Make sure that $VCI \le 3.0V$.

Figure 62

Notes: 1. The wiring resistances between the schottky diode and GND/VGL must be 5Ω or less.

- 2. The wiring resistances between the schottky diode and DDVDH/VGH must be 5Ω or less.
- 3. When directly applying the VCI level to VCI1, set VC = 3'h7. Capacitor connection to VCIOUT is not necessary.

Specifications of Power-supply Circuit External Elements

The specifications of external elements connected to the power-supply circuit of the R61509V are as follows.

Table 77 Capacitor

Capacitance	Voltage proof	Pin Connection
1μF (B characteristics)	6 V	(1) VREG1OUT, (3) VCI1, (4) C11P, C11M, (5) C12P, C12M, (7) C13P, C13M, (14) VCL, (16) VCOMH, (17) VCOML
	10 V	(6) DDVDH, (8) C21P, C21M, (9) C22P, C22M
	25 V	(10) VGH, (12) VGL

Table 78 Schottky Diode

Specification		Pin Connection
VF < 0.38 V/20 mA@25 °C, VR ≥ 25 V	(13) GND-VGL,	
(Recommended diode: HS*226)	(11) DDVDH–VGH,	

Table 79 Variable Resistor

	Specification		Pin Connection
> 200 kΩ		(2) VCOMR	

Table 80 Internal Logic Power Supply

Capacitance	Voltage proof (recommended)	Pin Connection
1μF (B characteristics)	3V	(15) VDD

Voltage Setting Pattern Diagram

The following are the diagrams of voltage generation in the R61509V and the TFT display application voltage waveforms and electrical potential relationship.

Figure 63

- Notes: 1. The DDVDH, VGH, VGL, and VCL output voltages will become lower than their theoretical levels (ideal voltages) due to current consumption at each output level. Make sure that output voltage level in operation maintains the following relationships: (DDVDH − VREG1OUT) > 0.5V, (VCOML − VCL) > 0.5V. Also make sure VGH-VGL ≤ 28V, VCI-VCL ≤ 6V. When the alternating cycle of VCOM is high (e.g. polarity inverts every line cycle), current consumption will increase. In this case, check the voltage before use.
 - 2. In operation, setting voltages within the respective voltage ranges is recommended.

Liquid Crystal Application Voltage Waveform and Electrical Potential

Figure 64

VCOMH and VREG1OUT Voltage Adjustment Sequence

When adjusting the VCOMH voltage by setting VCM[6:0] (R280h, internal VCOMH level adjustment circuit), follow the sequence below.

The R61509V can retain permanently the VREG1OUT and VCOMH level adjustment setting values in NVM.

To write data to NVM, see "NVM Control" and NVM Write Sequence".

Figure 65

NVM Control

The R61509V incorporates 16-bit NVM for user's use.

- 7 bits are for VCOM adjustment (VCM register value is stored).
- 8 bits are for UID.
- 1 bit is for a dummy bit.

To write, read and erase data from/to the NVM, follow the sequences below. Data on the NVM is loaded to internal registers automatically when the sequences are performed.

- Power On reset
- Exit shutdown mode

Data stored in the NVM is retained permanently even if power supply is turned off.

Table 81

Operation mode	Power supply voltage (TBD)		Time (TBD)	Remarks	Temperature (TBD)
Write	VPP1	9.2V±0.3V	Write period:	-	+20°C~+30C°
	VPP3A	Open or AGND	150ms±50ms		
Erase	VPP1	9.2V±0.3V	Erase period: 10ms±1ms x n time(s) (N ≤ 30, total	Verify erase operation at intervals of 10ms+1ms.	+20°C~+30C°
	VPP3A	-9.2V±0.3V	≤ 300ms)	Tomo_mis.	
Except	VPP1	Open or AGND	-	-	-40°C~+85C°
Write/Erase	VPP3A	Open or AGND			

Note: NVM data rewrite (erase-write) operation should be performed up to 5 times per address.

NVM Load (Register Resetting) Sequence

Data on the NVM is loaded either automatically or by setting a command.

During the following sequence, the data written to the NVM is automatically loaded to the internal register.

Figure 66 NVM Load (Register Resetting) Sequence

NVM Write Sequence

Defined 16 bit data is written to the selected address. When "0" is written to these bits, the bits are set to "0". If the data is erased from the bit, the bit is returned to "1". The bit to which data is not written should be set to "1".

Figure 67 NVM Write Sequence

NVM Erase Sequence

The data written to the selected 16 bits is erased all together. The bits from which data is erased are set to "1". To erase data from NVM, make sure VGL < VPP3A, and follow the sequence below after power supply ON sequence.

Figure 68 NVM Erase Sequence

Power Supply Setting Sequence

The following are the sequences for setting power supply ON/OFF instructions. Set power supply ON/OFF instructions according to the following sequences in Display ON/OFF, Sleep set/exit sequences.

Figure 69

Figure 70

Notes to Power Supply ON Sequence

When voltages do not rise in the order of VCC, IOVCC and then VCI and have to change the order, please follow the following note.

Note

Internal operation of the R61509V is unstable until VCC rises. If IOVCC rose before VCC rises, the R61509V may be in "output" status. In this case, do not send or receive any data before power supply is completed.

Changing order of voltage input will not cause troubles such as latchup or destruction of the LSI.

Instruction Setting Sequence and Refresh Sequence

Display ON/OFF Sequences and Refresh Sequence

In setting instruction in the R61509V, follow the sequences below. To reduce malfunction caused by noise, execute refresh sequence 1 regularly. To exit shutdown mode, execute refresh sequence 2.

Figure 71

Shutdown Mode Sequences

Figure 72

Figure 73

Figure 74

8-Color Mode Setting

Figure 75

Partial Display Setting

Figure 76

Absolute Maximum Ratings

Table 82

Items	Symbol	Unit	Value	Note
Power supply voltage 1	VCC, IOVCC	V	-0.3 ~ +4.6	1, 2
Power supply voltage 2	VCI – AGND	V	-0.3 ~ +4.6	1, 3
Power supply voltage 3	DDVDH – AGND	V	-0.3 ~ +6.5	1, 4
Power supply voltage 4	AGND – VCL	V	-0.3 ~ +4.6	1
Power supply voltage 5	DDVDH – VCL	V	-0.3 ~ +9.0	1, 5
Power supply voltage 7	AGND- VGL	V	-0.3 ~ +13.0	1, 6
Power supply voltage 8	VGH – VGL	V	-0.3 ~ +30.0	1
Power supply voltage 9	VCI – VGL	V	-0.3 ~ +6.5	1, 7
Power supply voltage 10	VPP1	V	-0.3 ~ +10.0	1
Power supply voltage 11	VPP3A	V	-0.3 ~ +0.3	1
Input voltage	Vt	V	-0.3 ~ IOVCC + 0.3	1
Operation temperature	Topr	$^{\circ}$ C	-40 ~ +85	1, 8
Storage temperature	Tstg	$^{\circ}$ C	-55 ~ +110	1

Notes: 1. If used beyond the absolute maximum ratings, the LSI may be permanently damaged. It is strongly recommended to use the LSI under the condition within the electrical characteristics in normal operation. If exposed to the condition not within the electrical characteristics, it may affect the reliability of the device.

- 2. Make sure VCC≥GND, and IOVCC≥GND.
- 3. Make sure VCI≥AGND.
- 4. Make sure DDVDH ≥ AGND.
- 5. Make sure DDVDH≥VCL.
- 6. Make sure AGND≥VGL.
- 7. Make sure VCI≥VGL.
- 8. The DC/AC characteristics of the die and wafer products are guaranteed at 85° C.

Electrical Characteristics

DC Characteristics

(VCC= 2.50V~3.30V, VCI=2.50V~3.30V, IOVCC=1.65V~3.30V, Ta= -40°C~+85°C *See note 1)

Table 83

Items	Symbol	Unit	Test condition	Min.	Тур.	Max.	Notes
Input high-level voltage	V_{IH}	V	IOVCC=1.65V~3.30V	$0.80 \times$ IOVCC	-	IOVCC	2, 3
Input low-level voltage	V _{IL}	V	IOVCC=1.65V~3.30V	-0.3	=	0.20× IOVCC	2, 3
Output high voltage 1 (DB0-17,FMARK)	V _{OH1}	٧	IOVCC=1.65V~3.30V, IOH=-0.1mA	0.8× IOVCC	-	-	2
Output low voltage 1 (DB0-17,FMARK)	V_{OL1}	V	IOVCC=1.65V~3.30V, IOL=0.1mA	_	_	0.20× IOVCC	2
I/O leakage current	I _{LI1}	μA	Vin=0~IOVCC	-1	-	1	4
Current consumption ((IOVCC-IOGND)+ (VCC-GND)) Normal operation mode (262,144 color display)	I _{OP1}	μА	fosc=678kHz (432-line drive), I80-IF, IOVCC=VCC=3.00V, fFLM=60Hz, Ta=25°C, RAM data: 18'h000000, See other as well.	-	600	TBD	5, 6
Current consumption ((IOVCC-IOGND)+ (VCC-GND)) 8-color, 64-line partial display on sub display	I _{op2}	μА	fosc=678kHz (64-line partial display), IOVCC=VCC=3.00V, fFLM=40Hz, Ta=25°C, RAM data: 18h'000000, see other as well.	-	300	-	5, 6
Current consumption ((IOVCC-IOGND)+ (VCC-GND)) Shutdown mode	I _{shut1}	μΑ	IOVCC=VCC=3.00V, I80-IF, Ta=25°C	-	0.1	1.0	5, 6
Current consumption ((IOVCC-IOGND)+ (VCC-GND)) RAM access mode 1	I _{RAM1}	mA	IOVCC=2.40V, VCC=3.00V, tCYCW=110ns, Ta=25°C, I80-8bit-I/F, TRIREG=1'h1, Consecutive RAM access during display operation, BC0=0, FP=5, BP=8, γ register; 0(default), COL=0	-	3.0	_	5
LCD power supply current (VCI-GND) 262,144-color display	lci1	mA	IOVCC=1.8V, VCC=VCI=2.8V, 432-line drive, fFLM=60Hz, Ta=25°C, Frame memory data: 18'h00000, REV=0, BC0=0, FP[7:0]=8'h8, BP[7:0]=8'h8, VC[2:0]=3'h1, BT[2:0]=3'h2, VRH[4:0]=5'h11, AP[1:0]=2'h3, DC0[2:0]=3'h3, DC1[2:0]=3'h4, PR*P00=PR*N00=5'h00, PR*P01=PR*N01=5'h02, PR*P02=PR*N02=5'h04, PR*P03=PR*N03=4'h8, PR*P04=PR*N04=4'hF, PR*P05=PR*N05=4'h8, PR*P05=PR*N05=5'h04, PR*P07=PR*N05=5'h04, PR*P07=PR*N05=5'h04, PR*P07=PR*N05=5'h04, PR*P07=PR*N05=5'h04, PR*P07=PR*N05=5'h04, PR*P07=PR*N05=5'h04, PR*P07=PR*N07=5'h02, PR*P08=PR*N08=5'h04, PR*P08=PR*N08=5'h04, PR*P09=PR*N05=5'h04,	_	3.5	TBD	6

LCD power supply current (VCI-GND) 8-color, 64-line partial display		lci2	mA	IOVCC=1.8V, VCC=VCI=2.8V, 64-line partial, FLM=40Hz, Ta=25°C, Frame memory data: 18'h00000, REV=0, BCO=0, FP[7:0]=8'h8, BP[7:0]=8'h8, VC[2:0]=3'h1, BT[2:0]=3'h2, VRH[4:0]=5'h18, VCM[6:0]=7'h7F, VDV[4:0]=5'h11, AP[1:0]=2'h3, DC0[2:0]=3'h3, DC1[2:0]=3'h4, PR*P00=PR*N00=5'h00, PR*P01=PR*N01=5'h02, PR*P02=PR*N02=5'h04, PR*P03=PR*N03=4'h8, PR*P04=PR*N04=4'hF, PR*P05=PR*N05=4'h8, PR*P05=PR*N05=5'h04, PR*P07=PR*N07=5'h02, PR*P08=PR*N05=5'h04, PR*P08=PR*N08=5'h04, PR*P08=DR*P1*P1=PIR*P2=PIR*P3=2'h0 PIR*N0=PIR*N1=PIR*N2=PIR*N3=2'h0 (*: 0, 1, 2) No load on the panel.	_	0.8	TBD	5, 6	
NVM current	\\/sito	VPP1- AGND	I _{VPP1W}	mA	VPP1=9.2V	_	=	30.0	6
consumption	Write	VPP3A- AGND	I _{VPP3AW}	mA	VPP3A=GND (Write period)	_	=	1.0	6
NVM current	Fraec	VPP1- AGND	I _{VPP1E}	mA	VPP1=9.2V — VPP3A=-9.2V	_	-	1.0	6
consumption Erase		VPP3A- AGND	I _{VPP3AE}	mA	(Erase period)	_	-	1.0	6
Output voltage dispe	ersion		ΔVΟ	mV	-	_	5	_	7
Average output varia	ance		ΔVΔ	mV	=	-35	-	35	8

Step-up Circuit Characteristics

Table 84

Ite	em	Unit	Test condition	Min.	Тур.	Max.	Note
Step-up output voltage	DDVDH	V	IOVCC=VCC=VCl=2.80[V], fosc=678[kHz], Ta=25°C, VC=3'h1, AP=3'h3, BT=3'h2, DC0=3'h4 (div. 1/8), DC1=3'h2 (div. 1/4), COL=0, D=2'h0, C11=C12=C13=C21=C22=1[uF]/B characteristics, DDVDH=VGH=VGL=VCL=1[uF]/B characteristics, Iload1=-3 [mA], No load on the panel.	4.8	5.1	-	-
	VGH	V	IOVCC=VCC=VCI=2.80[V], fosc=678[kHz], Ta=25°C, VC=3'h1, AP=3'h3, BT=3'h2, DC0=3'h4 (div. 1/8), DC1=3'h2 (div. 1/4), COL=0, D=2'h0, C11=C12=C13=C21=C22=1[uF]/B characteristics, DDVDH=VGH=VGL=VCL=1[uF]/B characteristics, Iload2=-100[uA], No load on the panel.	14.4	15.1	-	-
	VGL	V	IOVCC=VCC=VCI=2.80[V], fosc=678[kHz], Ta=25°C, VC=3'h1, AP=3'h3, BT=3'h2, DC0=3'h4 (div. 1/8), DC1=3'h2 (div. 1/4), COL=0, D=2'h0, C1=C12=C13=C21=C22=1[uF]/B characteristics, DDVDH=VGH=VGL=VCL=1[uF]/B characteristics, Iload3=+100[uA], No load on the panel.	-	-10.0	-9.6	-
	VCLV	V	IOVCC=VCC=VCI=2.80[V], fosc=678[kHz], Ta=25°C, VC=3°h1, AP=3°h3, BT=3°h2, DC0=3°h4 (div. 1/8), DC1=3°h2 (div. 1/4), COL=0, D=2°h0, C11=C12=C13=C21=C22=1[uF]/B characteristics, DDVDH=VGH=VGL=VCL=1[uF]/B characteristics, lload4=+200[uA], No load on the panel.	-	-2.55	-2.4	-

Internal Reference Voltage: Condition

(VCC= 2.50V~3.30V, Ta= -40°C~+85°C)

Table 85

Item	Symbol	Unit	Min.	Тур.	Max.	Note
Internal reference voltage	VCIR	V	-	2.50	-	12

Power Supply Voltage Range

(Ta= -40°C~+85°C, GND=AGND=0V)

Table 86

Item	Symbol	Unit	Min.	Тур.	Max.	Condition
Power Supply Voltage	IOVCC	V	1.65	1.80/2.80	3.30	-
Power Supply Voltage	VCC	٧	2.50	2.80	3.30	-
Power Supply Voltage	VCI	٧	2.50	2.80	3.30	-
Power Supply Voltage	VPP1	V	8.9	9.2	9.5	Write
Fower Supply Voltage		V	8.9	9.2	9.5	Erase
Power Supply Voltage	VPP3A	٧	-0.3	0.0	+0.3	Write
		V	-9.5	-9.2	-8.9	Erase

Output Voltage Range

(Ta= -40°C~+85°C, GND=AGND=0V)

Table 87

Item	Symbol	Unit	Min.	Тур.	Max.	Condition
Grayscale, VCOM reference	VREG10 UT	V	-	-	DDVDH-0.5	-
Source driver		V	GND+0.2	-	VREG10UT	-
VCOMH output	VCOMH	V	-	-	VREG10UT	-
VCOML output	VCOML	V	VCL+0.5	-	-	-
VCOM amplitude		V	-	-	6.0	-
Step-up output	DDVDH	V	4.5	-	6.0	-
Step-up output	VGH	V	10.0	-	18.0	-
Step-up output	VGL	V	-13.5	-	-4.5	-
Step-up output	VCL	V	-3.0	=	-1.9	=
VCI-VCL		V	-	-	6.0	=
VGH-VGL		V	-	-	28.0	=

AC Characteristics

(VCC= 2.50V~3.30V, IOVCC=1.65V~3.30V, Ta= -40°C~+85°C *See note 1)

Clock Characteristics

Table 88

Item	Symbol	Unit	Test condition	Min.	Тур.	Max.	Note
Oscillation clock	fosc	kHz	VCC=IOVCC=3.0V	631	678	725	9

80-system 18-/16-/9-/8-bit Bus interface Timing Characteristics

(1-/2-/3-transfer, IOVCC=1.65V~3.30V) TBD

Table 89

	Items	Symbol	Unit	Test condition	Min.	Тур.	Max.
Bus cycle time	Write	tcycw	ns	Figure A	75 (TBD)	_	_
	Read	tcycr	ns	Figure A	450 (TBD)	_	_
Write low- level po	ulse width	PWLW	ns	Figure A	30 (TBD)	_	_
Read low-level pu	lse width	PWLR	ns	Figure A	170 (TBD)	_	_
Write high-level p	ulse width	PWHW	ns	Figure A	25 (TBD)	_	_
Read high-level p	PWHR	ns	Figure A	250 (TBD)	_	_	
Write/ Read rise/f	Write/ Read rise/fall time		ns	Figure A	_	_	15
Setup time	Write (RS to CSX, WRX)	- tas	ns	Figure A	0 (TBD)	_	_
	Read (RS to CSX, RDX)	- IAS	ns	Figure A	10 (TBD)	_	_
Address hold time)	tah	ns	Figure A	2 (TBD)	_	_
Write data setup t	ime	tosw	ns	Figure A	25 (TBD)	_	_
Write data hold time		tн	ns	Figure A	10 (TBD)	_	_
Read data delay t	ime	todr	ns	Figure A	_	_	150
Read data hold tir	ne	tohr	ns	Figure A	5 (TBD)	_	_

Clock Synchronous Serial Interface Timing Characteristics

(IOVCC=1.65V~3.30V) TBD

Table 90

Iter	n	Symbol	Unit	Test condition	Min.	Тур.	Max.
Serial clock cycle	Write (receive)	tscyc	ns	Figure B	100 (TBD)	_	20,000
time	Read (transmit)	tscyc	ns	Figure B	350 (TBD)	_	20,000
Serial clock	Write (receive)	tsсн	ns	Figure B	40 (TBD)	_	_
high-level width	Read (transmit)	tsсн	ns	Figure B	150 (TBD)	_	_
Serial clock low-level width	Write (receive)	tscl	ns	Figure B	40 (TBD)	_	_
	Read (transmit)	tscl	ns	Figure B	150 (TBD)	_	_
Serial clock rise/fall	time	tscr, tscf	ns	Figure B	_	_	15 (TBD)
Chip select setup tin	ne	tcsu	ns	Figure B	20 (TBD)	_	_
Chip select hold time	е	tсн	ns	Figure B	60 (TBD)	_	_
Serial input data set	up time	tsısu	ns	Figure B	30 (TBD)	_	_
Serial input data hold time		tsıн	ns	Figure B	30 (TBD)	_	_
Serial output data delay time		tsod	ns	Figure B	_	_	130 (TBD)
Serial output data de	elay time	tsон	ns	Figure B	5 (TBD)	_	_

RGB Interface Timing Characteristics

(18-/16-bit RGB interface, IOVCC=1.65V~3.30V) TBD

Table 91

Item	Symbol	Unit	Test condition	Min.	Тур.	Max.
VSYNC/HSYNC setup time	tSYNCS	clock	Figure D	0.5 (TBD)	_	1.5
ENABLE setup time	tENS	ns	Figure D	10 (TBD)	_	_
ENABLE hold time	tENH	ns	Figure D	20 (TBD)	_	_
DOTCLK low-level pulse width	PWDL	ns	Figure D	40 (TBD)	_	_
DOTCLK high-level pulse width	PWDH	ns	Figure D	40 (TBD)	_	_
DOTCLK cycle time	tCYCD	ns	Figure D	100 (TBD)	_	_
Data setup time	tPDS	ns	Figure D	10 (TBD)	_	_
Data hold time	tPDH	ns	Figure D	40 (TBD)	_	_
DOTCLK, VSYNCX and HSYNCX rise/fall time	trgbr, trgbf	ns	Figure D	_	_	15

LCD Driver Output Characteristics

Table 92

Item	Symbol	Unit	Test condition	Min.	Тур.	Max.	Note
			VCC=IOVCC =2.80V, VC[2:0]=3'h7 VRH[4:0]=5'h1F, fosc=678kHz (432-line drive), Ta=25°C,				
			PR*P00=PR*N00=5'h00, PR*P01=PR*N01=5'h02,				10
			PR*P02=PR*N02=5'h04, PR*P03=PR*N03=4'h8,		25 (TBD)		
			PR*P04=PR*N04=4'hF, PR*P05=PR*N05=4'h8,				
Source driver output delay time	tdds	μs	PR*P06=PR*N06=5'h04, PR*P07=PR*N07=5'h02,	_		_	
, ,			PR*P08=PR*N08=5'h04,				
			PIR*P0= PIR*P1= PIR*P2= PIR*P3=2'h0				
			PIR*N0= PIR*N1= PIR*N2= PIR*N3=2'h0				
			Same change from the same grayscale at all time-division source output pins.				
			Time to reach the target voltage $\pm 35 \text{mV}$ from VCOM polarity inversion timing.				
			R=10kohm, C=30pF				
			VCC=IOVCC=2.80V, VC[2:0]=3'h7, VRH[4:0] =5'h1F, fosc=678kHz (432-line drive), Ta=25°C,				
			PR*P00=PR*N00=5'h00, PR*P01=PR*N01=5'h02,				
			PR*P02=PR*N02=5'h04, PR*P03=PR*N03=4'h8,				
VCOM output			PR*P04=PR*N04=4'hF, PR*P05=PR*N05=4'h8,				
delay time	tddv	μs	PR*P06=PR*N06=5'h04, PR*P07=PR*N07=5'h02,	_	25 (TBD)	_	11
			PR*P08=PR*N08=5'h04,				
			PIR*P0= PIR*P1= PIR*P2= PIR*P3=2'h0				
			PIR*N0= PIR*N1= PIR*N2= PIR*N3=2'h0				
			Time to reach \pm 35mV when shifting between source $V0\Leftrightarrow V63$ in the worst case of scenario.				
			R=100ohm, C=10nF				

Reset Timing Characteristics

Table 93 (IOVCC=1.65V∼3.30V)

Item	Symbol	Unit	Test condition	Min.	Тур.	Max.
Reset "Low" level width	tres	ms	Figure C	1	_	_
Reset rise time	trRES	μs	Figure C	_	_	10

Notes to Electrical Characteristics

Note 1. The DC/AC electrical characteristics of bare die and wafer products are guaranteed at 85°C.

Note 2. The following figures illustrate the configurations of input, I/O, and output pins.

Figure 77

Note 3: Test 1, 2 and 3 pins must be grounded. The VDDTEST and VREFC must be fixed to AGND. The IM0_ID pin must be fixed to IOVCC or be grounded.

- Note 4: This excludes the current in the output drive MOS.
- Note 5: This excludes the current in the input/output lines. Make sure that the input level is fixed because through current will increase in the input circuit when the CMOS input level takes a middle range level. The current consumption is unaffected by whether the CSX pin is high or low while not accessing via interface pins.
- Note 7: The output voltage deviation is the difference in the voltages from adjacent source pins for the same display area. This value is shown for reference.
- Note 8: The average output voltage dispersion is the variance source-output voltage of different chips of the same product. The average source output voltage is measured for each chip with same display area.
- Note 9: This applies to internal oscillators when using an internal RC oscillator.
- Note 10: The liquid crystal driver output delay time depends on the load on the liquid crystal panel. Adjust the frame frequency and the cycle per line by checking the quality of display on the actual panel in use.

Test Circuits

Figure 78

Timing Characteristics

80-system Bus Interface

Figure A 80-system Bus Interface

Clock Synchronous Serial Interface

Figure B Clock Synchronous Serial Interface Timing

Reset Operation

Figure C Reset Timing

RGB Interface

Figure D RGB Interface Timing

LCD Driver and VCOM Output Characteristics

Figure E LCD Driver and VCOM Output Timing

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property or any arranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, ou should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations and procedures required by such laws and regulations.

 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this disclosed by Reneass such as that disclosed through our website. http://www.reneas.com/
 please confirm the lates to product information with a Reneas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Reneass such as the disclosed through our website. http://www.reneas.com/
 please confirm the lates relying on the information included in this document.

 5. Reneass has used reasonable care in compling the information included in this document.

 6. When using or otherwise relying on the information included in this document.

 6. When using or otherwise relying on the i

RENESAS SALES OFFICES

http://www.renesas.com

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

0.4000 B	D 1 . 11 T
© 2008 Renesas Technology Corn. All rights reserved	Printed in Japan

Revision Record

Rev.	Date	Page No.	Contents of Modification	Drawn by	Approved by
0.11	2008/04/25	First issue			_