Μοντέλα Αξιοπιστίας και Επιβίωσης Σειρά 3

Κοντοθανάση Σωτήρια

AM: 09120080

Εάν

$$T_x \sim Lognormal \rightarrow \varepsilon \sim Normal$$

$$ln(T_x) = \mu_0 + \beta' x + \sigma_{\varepsilon} \sim N(\mu_0 + \beta' x, \sigma_{\varepsilon}^2)$$

 $\varepsilon \sim N(0,1)$

$$S_{T_x}(t) = S_{\varepsilon}(\varepsilon) = S_{\varepsilon} \left[\frac{lnt - \mu_0 - \beta'x}{\sigma} \right] = 1 - \Phi \left(\frac{lnt - \mu_0 - \beta'x}{\sigma} \right)$$

και

$$f_{T_x}(t) = -\frac{dS_{T_x}(t)}{dt} = \frac{1}{\sigma t} f_{\varepsilon}(\varepsilon) = \frac{1}{\sigma t} f_{\varepsilon} \left(\frac{\ln t - \mu_0 - \beta' x}{\sigma} \right) = \frac{1}{\sigma t} \frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{\ln t - \mu_0 - \beta' x}{\sigma} \right\}$$

$$\sim Lognormal(\mu_0 + \beta' x, \sigma^2)$$

Λογαριθμοποιημένη συνάρτηση πιθανοφάνειας για το μοντέλο παλινδρόμησης:

$$L = \prod_{i=1}^{n} f(t_{i}, x_{i})^{\delta_{i}} \left(S(t_{i}, x_{i}) \right)^{1-\delta_{i}}$$

$$L = \prod_{i=1}^{n} \left(\frac{1}{\sigma t} \right)^{\delta_{i}} \left(f_{\varepsilon}(\varepsilon) \right)^{\delta_{i}} \left(S_{\varepsilon}(\varepsilon) \right)^{1-\delta_{i}}$$

$$L = \prod_{i=1}^{n} \left(\frac{1}{\sigma t} \right)^{\delta_{i}} \left(\frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{\ln t - \mu_{0} - \beta' x}{\sigma} \right\} \right)^{\delta_{i}} \left(1 - \phi \left(\frac{\ln t - \mu_{0} - \beta' x}{\sigma} \right) \right)^{1-\delta_{i}}$$

$$L = \prod_{i=1}^{n} \left(\frac{1}{\sigma t} \right)^{\delta_{i}} \left(\frac{1}{\sqrt{2\pi}} \right)^{\delta_{i}} \left(\exp\left\{ -\frac{\ln t - \mu_{0} - \beta' x}{\sigma} \right\} \right)^{\delta_{i}} \left(1 - \phi \left(\frac{\ln t - \mu_{0} - \beta' x}{\sigma} \right) \right)^{1-\delta_{i}}$$

$$\begin{split} \ln(L) &= \ln \left(\prod_{i=1}^{n} \left(\frac{1}{\sigma t} \right)^{\delta_{i}} \left(\frac{1}{\sqrt{2\pi}} \right)^{\delta_{i}} \left(\exp\left\{ -\frac{\ln t - \mu_{0} - \beta' x}{\sigma} \right\} \right)^{\delta_{i}} \left(1 - \Phi\left(\frac{\ln t - \mu_{0} - \beta' x}{\sigma} \right) \right)^{1 - \delta_{i}} \right) \\ \ln(L) &= \sum_{i=0}^{n} \ln \left(\left(\frac{1}{\sigma t} \right)^{\delta_{i}} \left(\frac{1}{\sqrt{2\pi}} \right)^{\delta_{i}} \left(\exp\left\{ -\frac{\ln t - \mu_{0} - \beta' x}{\sigma} \right\} \right)^{\delta_{i}} \left(1 - \Phi\left(\frac{\ln t - \mu_{0} - \beta' x}{\sigma} \right) \right)^{1 - \delta_{i}} \right) \\ \ln(L) &= \sum_{i=0}^{n} \ln \left(\frac{1}{\sigma t} \right)^{\delta_{i}} + \ln \left(\frac{1}{\sqrt{2\pi}} \right)^{\delta_{i}} \\ &+ \ln \left(\exp\left\{ -\frac{\ln t - \mu_{0} - \beta' x}{\sigma} \right\} \right)^{\delta_{i}} + \ln \left(1 - \Phi\left(\frac{\ln t - \mu_{0} - \beta' x}{\sigma} \right) \right)^{1 - \delta_{i}} \\ \ln(L) &= \sum_{i=0}^{n} \delta_{i} \ln \left(\frac{1}{\sigma t} \right) + \delta_{i} \ln \left(\frac{1}{\sqrt{2\pi}} \right) \\ &+ \delta_{i} \left(-\frac{\ln t - \mu_{0} - \beta' x}{\sigma} \right) + (1 - \delta_{i}) \ln \left(1 - \Phi\left(\frac{\ln t - \mu_{0} - \beta' x}{\sigma} \right) \right) \end{split}$$

(II) Το αρχείο «lung-cancer.txt» περιλαμβάνει τα ακόλουθα δεδομένα:
time = επιβίωση σε ημέρες

status = αποκομμένη (=0) ή μη (=1) παρατήρηση.

και συμμεταβλητές

age: Ηλικία σε έτη

treatment: Τύπος θεραπείας, τύπος 1=0, τύπος 2=1

cell.type:

1=squamous (πλακώδη κύτταρα), 2=small cell (μικρά κύτταρα), 3=adeno (αδενοκαρκίνωμα) 4=large (μεγάλα κύτταρα)

karno.score: Αξιολόγηση επιδόσεων του ασθενή (κακή=0 έως καλή=100)

months: Μήνες από τη διάγνωση της ασθένειας

prior.therapy: Θεραπεία που προηγήθηκε, όχι=0, ναι=1

> library(survival)

> cdat<-read.table("C:\\Users\\Admin\\Desktop\\80 ΕΞΑΜΗΜΟ\\ΜΟΝΤΕΛΑ ΑΞΙΟΠΙΣΤΙΑΣ ΚΑΙ ΕΠΙΒΙΩΣΣ\\σειρα 3\\lung-cancer.txt",header=TRUE)

> attach(cdat)

> cdat

	Jaac				_	_			
	treatment	cell.type					_	<pre>prior.therapy</pre>	id
1	1	1	72	1	60	7	69	0	1
2	1	1	411	1	70	5	64	1	2
3	1	1	228	1	60	3	38	0	3
4	1	1	126	1	60	9	63	1	4
5	1	1	118	1	70	11	65	1	5
6	1	1	10	1	20	5	49	0	6
7	1	1	82	1	40	10	69	1	7
8	1	1	110	1	80	29	68	0	8
9	1	1	314	1	50	18	43	0	9
10	1	1	100	0	70	6	70	0	10
11	1	1	42	1	60	4	81	0	11
12	1	1	8	1	40	58	63	1	12
13	1	1	144	1	30	4	63	0	13
14	1	1	25	0	80	9	52	1	14
15	1	1	11	1	70	11	48	1	15
16	1	2	30	1	60	3	61	0	16
17	1	2	384	1	60	9	42	0	17
18	1	2	4	1	40	2	35	0	18
19	1	2	54	1	80	4	63	1	19
20	1	2	13	1	60	4	56	0	20
21	1	2	123	0	40	3	55	0	21
22	1	2	97	0	60	5	67	0	22
23	1	2	153	1	60	14	63	1	23
24	1	2	59	1	30	2	65	0	24
25	1	2	117	1	80	3	46	0	25
26	1	2	16	1	30	4	53	1	26
27	1	2	151	1	50	12	69	0	27
28	1	2	22	1	60	4	68	0	28
29	1	2	56	1	80	12	43	1	29
30	1	2	21	1	40	2	55	1	30
31	1	2	18	1	20	15	42	0	31

32	1	2	139	1	80	2	64	0	32
33	1	2	20	1	30	5	65	0	33
34	1	2	31	1	75	3	65	0	34
35		2	52	1	70	2	55	0	35
	1								
36	1	2	287	1	60	25	66	1	36
37	1	2	18	1	30	4	60	0	37
38	1	2	51	1	60	1	67	0	38
39	1	2	122	1	80	28	53	0	39
40	1	2	27	1	60	8	62	0	40
41	1	2	54	1	70	1	67	0	41
42	1	2	7	1	50	7	72	0	42
43	1	2	63	1	50	11	48	0	43
44	1	2	392	1	40	4	68	0	44
45	1	2	10	1	40	23	67	1	45
46	1	3	8	1	20	19	61	1	46
47	1	3	92	1	70	10	60	0	47
48	1	3	35	1	40	6	62	0	48
49		3	117			2		-	
	1			1	80		38	0	49
50	1	3	132	1	80	5	50	0	50
51	1	3	12	1	50	4	63	1	51
52	1	3	162	1	80	5	64	0	52
53	1	3	3	1	30	3	43	0	53
54	1	3	95	1	80	4	34	0	54
55	1	4	177	1	50	16	66	1	55
56			162		80	5	62	0	56
	1	4		1					
57	1	4	216	1	50	15	52	0	57
58	1	4	553	1	70	2	47	0	58
59	1	4	278	1	60	12	63	0	59
60	1	4	12	1	40	12	68	1	60
61	1	4	260	1	80	5	45	0	61
62	1	4	200	1	80	12	41	1	62
63	1	4	156	1	70	2	66	0	63
	1			0					64
64		4	182		90	2	62	0	
65	1	4	143	1	90	8	60	0	65
66	1	4	105	1	80	11	66	0	66
67	1	4	103	1	80	5	38	0	67
68	1	4	250	1	70	8	53	1	68
69	1	4	100	1	60	13	37	1	69
70	2	1	999	1	90	12	54	1	70
71	2	1	112	1	80	6	60	0	71
72	2	1	87	0	80	3	48		
								0	72
73	2	1	231	0	50	8	52	1	73
74	2	1	242	1	50	1	70	0	74
75	2	1	991	1	70	7	50	1	75
76	2	1	111	1	70	3	62	0	76
77	2	1	1	1	20	21	65	1	77
78	2	1	587	1	60	3	58	0	78
79	2	1	389	1	90	2	62	0	79
80	2	1	33	1	30	6	64	0	80
81	2	1	25	1	20	36	63	0	81
82	2	1	357	1	70	13	58	0	82
83	2	1	467	1	90	2	64	0	83
84	2	1	201	1	80	28	52	1	84
85	2	1	1	1	50	7	35	0	85
86	2	1	30	1	70	11	63	0	86
87	2	1	44	1	60	13	70	1	87
88	2	1				2		0	88
00	۷	Т	283	1	90	۷	51	U	00

89	2	1	15	1	50	13	40	1	89
90	2	2	25	1	30	2	69	0	90
91	2	2	103	0	70	22	36	1	91
92	2	2	21	1	20	4	71	0	92
93	2	2	13	1	30	2	62	0	93
								-	
94	2	2	87	1	60	2	60	0	94
95	2	2	2	1	40	36	44	1	95
96	2	2	20	1	30	9	54	1	96
97	2	2	7	1	20	11	66	0	97
98	2	2	24	1	60	8	49	0	98
99	2	2	99	1	70	3	72	0	99
100	2	2	8	1	80	2	68	0	100
101	2	2	99	1	85	4	62	0	101
								-	
102	2	2	61	1	70	2	71		102
103	2	2	25	1	70	2	70	0	103
104	2	2	95	1	70	1	61	0	104
105	2	2	80	1	50	17	71	0	105
106	2	2	51	1	30	87	59	1	106
107	2	2	29	1	40	8	67	0	107
108	2	3	24	1	40	2	60	0	108
109	2	3	18	1	40	5	69	1	109
		3				3		_	
110	2		83	0	99		57		110
111	2	3	31	1	80	3	39		111
112	2	3	51	1	60	5	62	0	112
113	2	3	90	1	60	22	50	1	113
114	2	3	52	1	60	3	43	0	114
115	2	3	73	1	60	3	70	0	115
116	2	3	8	1	50	5	66	0	116
117	2	3	36	1	70	8	61		117
118	2	3	48				81		
				1	10	4			118
119	2	3	7	1	40	4	58		119
120	2	3	140	1	70	3	63		120
121	2	3	186	1	90	3	60	0	121
122	2	3	84	1	80	4	62	1	122
123	2	3	19	1	50	10	42	0	123
124	2	3	45	1	40	3	69	0	124
125	2	3	80	1	40	4	63		125
126	2	4	52	1	60	4	45		126
127	2	4	164	1	70	15	68		127
128	2	4	19	1	30	4	39		128
129	2	4	53	1	60	12	66		129
130	2	4	15	1	30	5	63	0	130
131	2	4	43	1	60	11	49	1	131
132	2	4	340	1	80	10	64	1	132
133	2	4	133	1	75	1	65		133
134	2	4	111	1	60	5	64		134
135	2	4	231	1	70	18	67		135
136	2		378		80				
		4		1		4	65		136
137	2	4	49	1	30	3	37	0	137
>									
>									

- > #Kaplan Meier
- > outp<-survfit(Surv(time,status)~cell.type)</pre>
- > summary(outp)

Call: survfit(formula = Surv(time, status) ~ cell.type)

cell.type=1

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
1	35	2	0.943	0.0392		0.8690	-11	1.000
8	33	1	0.914	0.0473		0.8261		1.000
10	32	1	0.886	0.0538		0.7863		0.998
11	31	1	0.857	0.0591		0.7487		0.981
15	30	1	0.829	0.0637		0.7127		0.963
25	29	1	0.800	0.0676		0.6779		0.944
30	27	1	0.770	0.0713		0.6426		0.924
33	26	1	0.741	0.0745		0.6083		0.902
42	25	1	0.711	0.0772		0.5749		0.880
44	24	1	0.681	0.0794		0.5423		0.856
72	23	1	0.652	0.0813		0.5105		0.832
82	22	1	0.622	0.0828		0.4793		0.808
110	19	1	0.589	0.0847		0.4448		0.781
111	18	1	0.557	0.0861		0.4112		0.754
112	17	1	0.524	0.0870		0.3784		0.726
118	16	1	0.491	0.0875		0.3464		0.697
126	15	1	0.458	0.0876		0.3152		0.667
144	14	1	0.426	0.0873		0.2849		0.636
201	13	1	0.393	0.0865		0.2553		0.605
228	12	1	0.360	0.0852		0.2265		0.573
242	10	1	0.324	0.0840		0.1951		0.539
283	9	1	0.288	0.0820		0.1650		0.503
314	8	1	0.252	0.0793		0.1362		0.467
357	7	1	0.216	0.0757		0.1088		0.429
389	6	1	0.180	0.0711		0.0831		0.391
411	5	1	0.144	0.0654		0.0592		0.351
467	4	1	0.108	0.0581		0.0377		0.310
587	3	1	0.072	0.0487		0.0192		0.271
991	2	1	0.036	0.0352		0.0053		0.245
999	1	1	0.000	NaN		NA		NA

cell.type=2

			· clbc z			
time	n.risk	n.event	survival	std.err	lower 95% CI	upper 95% CI
2	48	1	0.9792	0.0206	0.93958	1.000
4	47	1	0.9583	0.0288	0.90344	1.000
7	46	2	0.9167	0.0399	0.84172	0.998
8	44	1	0.8958	0.0441	0.81345	0.987
10	43	1	0.8750	0.0477	0.78627	0.974
13	42	2	0.8333	0.0538	0.73430	0.946
16	40	1	0.8125	0.0563	0.70926	0.931
18	39	2	0.7708	0.0607	0.66065	0.899
20	37	2	0.7292	0.0641	0.61369	0.866
21	35	2	0.6875	0.0669	0.56812	0.832
22	33	1	0.6667	0.0680	0.54580	0.814
24	32	1	0.6458	0.0690	0.52377	0.796
25	31	2	0.6042	0.0706	0.48052	0.760
27	29	1	0.5833	0.0712	0.45928	0.741
29	28	1	0.5625	0.0716	0.43830	0.722
30	27	1	0.5417	0.0719	0.41756	0.703
31	26	1	0.5208	0.0721	0.39706	0.683

51 52 54 56 59 61 63 80 87 95 99 117 122 139 151 153 287	25 23 22 20 19 18 17 16 15 14 12 9 8 6 5 4 3	2 1 2 1 1 1 1 1 2 1 1 1 1 1	0.4792 0.4583 0.4167 0.3958 0.3750 0.3542 0.3333 0.3125 0.2917 0.2708 0.2257 0.2006 0.1755 0.1463 0.1170 0.0878 0.0585	0.0721 0.0719 0.0712 0.0706 0.0699 0.0680 0.0669 0.0656 0.0641 0.0609 0.0591 0.0567 0.0543 0.0507 0.0457	0.35678 0.33699 0.29814 0.27908 0.26027 0.24171 0.22342 0.20541 0.18768 0.17026 0.13302 0.11267 0.09316 0.07066 0.05005 0.03163 0.01600	0.644 0.623 0.582 0.561 0.540 0.519 0.497 0.475 0.453 0.431 0.383 0.357 0.331 0.303 0.274 0.244 0.214	
384 392	2	1	0.0293	0.0283 NaN	0.00438 NA	0.195 NA	
032	_	_	0.0000	210121		-1	
	1.		.type=3	-+-1	1 OF 0 OT	0F0 GT	
3	11.11SK 27	n.event	0.9630	0.0363	lower 95% CI 0.89430	1.000	
7	26	1	0.9259	0.0503	0.83223	1.000	
8	25	2	0.8519	0.0684	0.72786	0.997	
12	23	1	0.8148	0.0748	0.68071	0.975	
18	22	1	0.7778	0.0800	0.63576	0.952	
19	21	1	0.7407	0.0843	0.59259	0.926	
24	20	1	0.7037	0.0879	0.55093	0.899	
31	19	1	0.6667	0.0907	0.51059	0.870	
35	18	1	0.6296	0.0929	0.47146	0.841	
36	17	1	0.5926	0.0946	0.43344	0.810	
45	16	1	0.5556	0.0956	0.39647	0.778	
48	15	1	0.5185	0.0962	0.36050	0.746	
51 52	14 13	1 1	0.4815 0.4444	0.0962 0.0956	0.32552 0.29152	0.712 0.678	
73	12	1	0.4444	0.0936	0.25850	0.642	
80	11	1	0.3704	0.0940	0.22649	0.606	
84	9	1	0.3292	0.0913	0.19121	0.567	
90	8	1	0.2881	0.0887	0.15759	0.527	
92	7	1	0.2469	0.0850	0.12575	0.485	
95	6	1	0.2058	0.0802	0.09587	0.442	
117	5	1	0.1646	0.0740	0.06824	0.397	
132	4	1	0.1235	0.0659	0.04335	0.352	
140	3	1	0.0823		0.02204	0.307	
162	2	1	0.0412	0.0401	0.00608	0.279	
186	1	1	0.0000	NaN	NA	NA	
		cell	.type=4				
time	n.risk			std.err	lower 95% CI	upper 95% CI	
12	27	1	0.9630	0.0363	0.89430	1.000	
15	26	1	0.9259	0.0504	0.83223	1.000	
19	25	1	0.8889	0.0605	0.77791	1.000	
43	24	1	0.8519		0.72786	0.997	
49	23	1	0.8148	0.0748	0.68071	0.975	
52	22	1	0.7778	0.0800	0.63576	0.952	
53	21	1	0.7407	0.0843	0.59259	0.926	

1 0 0	0.0		0 5005	0 0000	0 55000	0 000
100	20	1	0.7037	0.0879	0.55093	0.899
103	19	1	0.6667	0.0907	0.51059	0.870
105	18	1	0.6296	0.0929	0.47146	0.841
111	17	1	0.5926	0.0946	0.43344	0.810
133	16	1	0.5556	0.0956	0.39647	0.778
143	15	1	0.5185	0.0962	0.36050	0.746
156	14	1	0.4815	0.0962	0.32552	0.712
162	13	1	0.4444	0.0956	0.29152	0.678
164	12	1	0.4074	0.0946	0.25850	0.642
177	11	1	0.3704	0.0929	0.22649	0.606
200	9	1	0.3292	0.0913	0.19121	0.567
216	8	1	0.2881	0.0887	0.15759	0.527
231	7	1	0.2469	0.0850	0.12575	0.485
250	6	1	0.2058	0.0802	0.09587	0.442
260	5	1	0.1646	0.0740	0.06824	0.397
278	4	1	0.1235	0.0659	0.04335	0.352
340	3	1	0.0823	0.0553	0.02204	0.307
378	2	1	0.0412	0.0401	0.00608	0.279
553	1	1	0.0000	NaN	NA	NA

Kaplan-Meier-estimate $\hat{S}(t)$

Παρατηρώ ότι η ομάδα με cell type 1 έχει το μεγαλύτερο χρόνο Επιβίωσης από όλες τις υπόλοιπες ομάδες. Η ομάδα με τον μικρότερο χρόνο επιβίωσης είναι η ομάδα με Cell type 3, καθώς τα σκαλακια της K-M πέφτουν πάρα πολύ γρήγορα προς τα κάτω. Ακολουθεί η ομάδα με Cell type 2 με τα αμέσως επόμενα χειροτερα αποτέλεσμα όσον αφορά την επιβίωση και ωστερα η ομάδα με cel type 4.

A) Για τη συμμεταβλητή cell.type, εφαρμόστε τους ελέγχους log-rank και Wilcoxon, καθώς και γραφικές παραστάσεις της Kaplan-Meier. (PART 1)

Log -rank

```
> out1<-survdiff(Surv(time, status) ~ cell.type)</pre>
> out1
Call:
survdiff(formula = Surv(time, status) ~ cell.type)
             N Observed Expected (O-E)^2/E (O-E)^2/V
cell.type=1 35
                     31
                            47.7
                                      5.82
                                                10.53
                                      7.37
cell.type=2 48
                     45
                            30.1
                                                10.20
cell.type=3 27
                     26
                            15.7
                                      6.77
                                                 8.19
cell.type=4 27
                     26
                            34.5
                                      2.12
                                                 3.02
Chisq= 25.4 on 3 degrees of freedom, p= 1e-05
```

Wilcoxon

```
> out2<-survdiff(Surv(time, status) ~ cell.type, rho=1)</pre>
> out2
Call:
survdiff(formula = Surv(time, status) ~ cell.type, rho = 1)
            N Observed Expected (O-E)^2/E (O-E)^2/V
cell.type=1 35 13.39
                           20.2
                                     2.27
                                               5.05
cell.type=2 48
                 28.43
                           19.0
                                     4.67
                                               9.33
cell.type=3 27
                 16.07
                           10.8
                                     2.56
                                               4.23
cell.type=4 27
                 9.56
                           17.5
                                     3.59
                                               7.57
Chisq= 19.7 on 3 degrees of freedom, p=2e-04
```

Το Log-rank τεστ δείχνει ότι υπάρχει σημαντική διαφορά στις κατανομές επιβίωσης μεταξύ των τεσσάρων τύπων κυττάρων (p=1e-05). Η πολύ χαμηλή τιμή p σημαίνει ότι απορρίπτουμε την μηδενική υπόθεση (ότι δεν υπάρχει διαφορά μεταξύ των ομάδων) με υψηλή στατιστική σημαντικότητα.

Το Wilcoxon τεστ, επίσης, δείχνει ότι υπάρχει σημαντική διαφορά στις κατανομές επιβίωσης μεταξύ των τεσσάρων τύπων κυττάρων (p=2e-04). Και σε αυτή την περίπτωση, η χαμηλή τιμή p σημαίνει ότι απορρίπτουμε τη μηδενική υπόθεση με υψηλή στατιστική σημαντικότητα.

Με βάση αυτή τη συμμεταβλητή εξετάστε γραφικά αν στα δεδομένα ταιριάζει ένα μοντέλο παλινδρόμησης της επιταχυνόμενης διάρκειας ζωής (AL) ή ένα μοντέλο της αναλογικής διακινδύνευσης (PH) (με ταυτόχρονο έλεγχο για την κατανομή Weibull).(PART 2)

```
> ###Kaplan-Meier for 1st group
> group1<- Surv(time[cell.type=="1"],status[cell.type=="1"])</pre>
> outp1<-survfit(group1~1, type="kaplan-meier", data=cdat)</pre>
> #Extract values when status=1
> Utime1<- outp1$time[outp1$n.event==1]</pre>
> SKM1<-outp1$surv[outp1$n.event==1]</pre>
> ###Kaplan-Meier for 2nd group
> group2<- Surv(time[cell.type=="2"],status[cell.type=="2"])</pre>
> outp2<-survfit(group2~1, type="kaplan-meier", data=cdat)</pre>
> #Extract values when status=2
> Utime2<- outp2$time[outp2$n.event==1]</pre>
> SKM2<-outp2$surv[outp2$n.event==1]</pre>
> ###Kaplan-Meier for 3rd group
> group3<- Surv(time[cell.type=="3"],status[cell.type=="3"])</pre>
> outp3<-survfit(group3~1, type="kaplan-meier", data=cdat)</pre>
> #Extract values when status=3
> Utime3<- outp3$time[outp3$n.event==1]</pre>
> SKM3<-outp3$surv[outp3$n.event==1]</pre>
> ###Kaplan-Meier for 4th group
> group4<- Surv(time[cell.type=="4"],status[cell.type=="4"])</pre>
> outp4<-survfit(group4~1, type="kaplan-meier", data=cdat)</pre>
> #Extract values when status=4
> Utime4<- outp4$time[outp4$n.event==1]</pre>
> SKM4<-outp4$surv[outp4$n.event==1]</pre>
```

Ύστερα αφαιρώ τις τελευταίες παρατηρήσεις από τα διανύσματα Utime1,2,3,4 και SKM1,2,3,4 ιατι η K-M μου δίνει μηδενικές τιμές.

```
Utime1 <- head(Utime1, -1)
SKM1 <- head(SKM1, -1)
> # Remove the last element from Utime1 and SKM1
> Utime1 <- head(Utime1, -1)
> SKM1 <- head(SKM1, -1)
>
> # Remove the last element from Utime2 and SKM2
> Utime2 <- head(Utime2, -1)
> SKM2 <- head(SKM2, -1)
>
> # Remove the last element from Utime3 and SKM3
> Utime3 <- head(Utime3, -1)
> SKM3 <- head(SKM3, -1)
> # Remove the last element from Utime4 and SKM4
> Utime4 <- head(Utime4, -1)
> SKM4 <- head(SKM4, -1)</pre>
```

># Remove the last element from Utime1 and SKM1

Κάνω την γραφική παράστασή για το PH μοντέλο.

```
> #PH assumption plot
> plot(log(Utime1),log(-log(SKM1)) , main=expression(paste("PH assumption")),
xlab="ln t",
+ ylab="ln-(ln S(t))", col="blue",pch=19)
> abline(lm(log(-log(SKM1))~ log(Utime1)), col="blue")
>
> points(log(Utime2),log(-log(SKM2)),col="red",pch=19)
> abline(lm(log(-log(SKM2))~ log(Utime2)), col="red")
>
> points(log(Utime3),log(-log(SKM3)),col="purple",pch=19)
> abline(lm(log(-log(SKM3))~ log(Utime3)), col="purple")
>
> points(log(Utime4),log(-log(SKM4)),col="green",pch=19)
> abline(lm(log(-log(SKM4))~ log(Utime4)), col="green")
> legend("bottomright", c("Cell Type 1", "Cell Type 2","Cell Type 3", "Cell
Type 4"), col=c("blue","red","purple","green"),
+ lty=1:4)
>
```

PH assumption

Στην γραφική παράσταση του μοντέλου αναλογικής διακινδύνευσης παρατηρούμε ότι οι ευθείες για το Cell type 2 και Cell type 3 σχεδόν ταυτίζονται. Επιπλέον είναι παράλληλες με την ευθεία των δεδομένων για το cell type 4. Θα μπορούσαμε να πούμε ότι το μοντέλο δηλ PH ταιριάζει στα δεδομένα μας, αν δεν υπήρχε η ευθεία του cell type 1 η οποία δεν είναι παράλληλη με καμία από τις υπόλοιπες και τέμνει τις 2 από αυτές

Κάνω την γραφική παράστασή για το ΑL μοντέλο.

```
> #Examine the AL assumption
> plot(log(Utime1), SKM1 , main=expression(paste("AL assumption")), xlab="ln t",
+ ylab="S(t)", col="blue",pch=19,lty = 1:4)
> points(log(Utime2), SKM2,col="red",pch=19)
> points(log(Utime3), SKM3,col="purple",pch=19)
> points(log(Utime4), SKM4,col="green",pch=19)
> lines(log(Utime4), SKM1, col="blue")
> lines(log(Utime2), SKM2, col="red")
> lines(log(Utime3), SKM3, col="purple")
> lines(log(Utime4), SKM4, col="green")
> legend("bottomleft", c("Cell Type 1", "Cell Type 2", "Cell Type 3", "Cell Type 4"), col=c("blue", "red", "purple", "green"),
+ lty=1:4)
```

AL assumption

Στο παραπάνω γράφημα δεν είναι φανερή κάποια μετατόπιση της γραφικής μου παραστάσης καθώς αλλάζει το Cell type, αντιθέτως βλέπω οι τέσσερις γραφικές παραστάσεις να τέμνονται μεταξύ τους ανά ζευγάρια των 2, το Cell type 1 με το Cell type 4 και το Cell type 3 με το Cell type 2.

Δεν μπορώ να βγάλω συμπέρασμα ποιο μοντέλο ταίριαζει καλύτερα στα δεδομένα μου ανάμεσα στο μοντέλο αναλογικής διακινδυνευσης PH και το μοντέλο επιταχυνόμενης διάρκειας ζωής AL.

i. Να προσαρμοστεί ένα μοντέλο παλινδρόμησης της κατανομής Weibull (Χρησιμοποιήστε ελέγχους Wald, ελέγχους του λόγου των πιθανοφανειών, το κριτήριο AIC, καθώς και την Backward τεχνική με βήματα).

```
> mod <- survreg(Surv(time, status) ~ treatment + factor(cell.type) + karno.score +
months + age + prior.therapy + id, data=cdat, dist="weibull")
> mod
Call:
survreg(formula = Surv(time, status) ~ treatment + factor(cell.type) +
    karno.score + months + age + prior.therapy + id, data = cdat,
    dist = "weibull")
Coefficients:
                            treatment factor(cell.type)2 factor(cell.type)3
       (Intercept)
      2.7297135997
                         0.4988076251
                                           -0.5935622077
                                                               -0.7025378039
factor (cell.type) 4
                          karno.score
                                                  months
                                                                         age
      0.1754697094
                         0.0301815145
                                            0.0006327761
                                                               0.0080822852
    prior.therapy
                        -0.0106056098
    -0.0714614633
Scale= 0.9313627
Loglik(model) = -715.2
                        Loglik(intercept only) = -748.1
        Chisq= 65.7 on 9 degrees of freedom, p= 1.05e-10
n = 137
> summary (mod)
Call:
survreg(formula = Surv(time, status) ~ treatment + factor(cell.type) +
    karno.score + months + age + prior.therapy + id, data = cdat,
    dist = "weibull")
                       Value Std. Error
                                            Z
                               1.183843 2.31
                                                0.021
(Intercept)
                    2.729714
treatment
                    0.498808
                               0.942628 0.53
                                                 0.597
                               0.388777 -1.53
                                                 0.127
factor(cell.type)2 -0.593562
                               0.605776 -1.16
factor(cell.type)3 -0.702538
                                                 0.246
factor(cell.type)4 0.175470
                               0.773491 0.23
                                                 0.821
                               0.004833 6.25 4.2e-10
karno.score
                    0.030182
months
                    0.000633
                               0.008473 0.07
                                                 0.940
                    0.008082
                               0.008929 0.91
                                                 0.365
age
                               0.216062 -0.33
                   -0.071461
                                                 0.741
prior.therapy
                   -0.010606
                               0.013481 - 0.79
                                                 0.431
id
Log(scale)
                   -0.071107
                               0.066322 - 1.07
                                                0.284
Scale= 0.931
Weibull distribution
                        Loglik(intercept only) = -748.1
Loglik(model) = -715.2
        Chisq= 65.7 on 9 degrees of freedom, p= 1.1e-10
Number of Newton-Raphson Iterations: 6
n = 137
```

```
> step(mod, direction="backward", test="Chisq")
Start: AIC=1452.48
Surv(time, status) ~ treatment + factor(cell.type) + karno.score +
   months + age + prior.therapy + id
                 Df
                        AIC
                             LRT Pr(>Chi)
                   1 1450.5 0.006 0.940217
- months
                 1 1450.6 0.109 0.741457
prior.therapy
                  1 1450.8 0.281 0.595799
treatment
                   1 1451.1 0.624 0.429731
- id
- age
                  1 1451.3 0.804 0.369760
                    1452.5
<none>
- factor(cell.type) 3 1461.9 15.420 0.001491 **
- karno.score 1 1485.7 35.216 2.951e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Step: AIC=1450.48
Surv(time, status) ~ treatment + factor(cell.type) + karno.score +
   age + prior.therapy + id
                 Df
                       AIC
                             LRT Pr(>Chi)
                 1 1448.6 0.111 0.73940
prior.therapy
- treatment
                  1 1448.8 0.276 0.59950
                  1 1449.1 0.621 0.43066
- id
- age
                  1 1449.3 0.802 0.37056
                    1450.5
<none>
- factor(cell.type) 3 1460.0 15.464 0.00146 **
                 1 1484.5 36.025 1.948e-09 ***
- karno.score
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Step: AIC=1448.6
Surv(time, status) ~ treatment + factor(cell.type) + karno.score +
   age + id
                        AIC
                             LRT Pr(>Chi)
                 Df
treatment
                   1 1446.8 0.238 0.625736
                  1 1447.2 0.577 0.447524
- id
                   1 1447.4 0.831 0.361980
- age
<none>
                    1448.6
- factor(cell.type) 3 1458.0 15.443 0.001475 **
- karno.score 1 1482.5 35.945 2.029e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Step: AIC=1446.83
Surv(time, status) ~ factor(cell.type) + karno.score + age +
   id
                  Df
                        AIC
                              LRT Pr(>Chi)
                   1 1445.5 0.680 0.4095907
- age
- id
                   1 1446.8 1.953 0.1622731
                     1446.8
<none>
- factor(cell.type) 3 1458.3 17.500 0.0005575 ***
- karno.score 1 1481.0 36.115 1.86e-09 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
       AIC=1445.51
Step:
Surv(time, status) ~ factor(cell.type) + karno.score + id
                   Df
                          AIC
                                 LRT Pr(>Chi)
- id
                     1 1445.0
                               1.517 0.2181465
                       1445.5
<none>
- factor(cell.type)
                     3 1456.4 16.913 0.0007365 ***
                     1 1479.3 35.765 2.226e-09 ***
- karno.score
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Step:
       AIC=1445.03
Surv(time, status) ~ factor(cell.type) + karno.score
                   Df
                          AIC
                                 LRT Pr(>Chi)
                       1445.0
<none>
- factor(cell.type)
                     3 1458.1 19.042 0.0002679 ***
                     1 1478.3 35.285 2.848e-09 ***
- karno.score
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Call:
survreg(formula = Surv(time, status) ~ factor(cell.type) + karno.score,
    data = cdat, dist = "weibull")
Coefficients:
       (Intercept)
                   factor(cell.type)2
                                        factor(cell.type)3 factor(cell.type)4
karno.score
        3.48063259
                           -0.70815457
                                                -1.10848938
                                                                     -0.32200154
0.02917581
Scale= 0.9378158
Loglik(model) = -716.5 Loglik(intercept only) = -748.1
        Chisq= 63.15 on 4 degrees of freedom, p= 6.3e-13
n = 137
>
>
```

Karno.score: Ο παράγοντας karno.score είναι πολύ σημαντικός (p < 0.001), με θετικό συντελεστή, υποδεικνύοντας ότι υψηλότερο σκορ Karnofsky σχετίζεται με καλύτερη επιβίωση.

Factor(cell.type):

Οι διαφορετικοί τύποι κυττάρων (cell.type) είναι επίσης σημαντικοί (p < 0.001).

Συγκεκριμένα, οι τύποι κυττάρων 2, 3 και 4 έχουν αρνητικούς συντελεστές, υποδεικνύοντας χαμηλότερη επιβίωση σε σχέση με τον τύπο 1 (αναφορά).

Τιμές AIC: Το τελικό μοντέλο έχει χαμηλότερη τιμή AIC (1445.03), υποδεικνύοντας καλύτερη προσαρμογή σε σχέση με το αρχικό μοντέλο.

Σημαντικότητα Μοντέλου: Το συνολικό μοντέλο είναι σημαντικό με πολύ χαμηλή τιμή p (6.3e-13), υποδεικνύοντας ότι οι επιλεγμένοι παράγοντες έχουν σημαντική επίδραση στην επιβίωση.

```
> #FINAL MODEL
> modfinal <- survreg(Surv(time, status) ~ factor(cell.type) + karno.score,
data=cdat, dist="weibull")
> modfinal
Call:
survreg(formula = Surv(time, status) ~ factor(cell.type) + karno.score,
   data = cdat, dist = "weibull")
Coefficients:
      (Intercept) factor(cell.type)2 factor(cell.type)3 factor(cell.type)4
karno.score
                        -0.70815457
                                             -1.10848938
       3.48063259
                                                                  -0.32200154
0.02917581
Scale= 0.9378158
Loglik(model) = -716.5
                      Loglik(intercept only) = -748.1
       Chisq= 63.15 on 4 degrees of freedom, p= 6.3e-13
n = 137
> summary (modfinal)
Call:
survreg(formula = Surv(time, status) ~ factor(cell.type) + karno.score,
   data = cdat, dist = "weibull")
                     Value Std. Error
                                      Z
(Intercept)
                   3.48063 0.34048 10.22 < 2e-16
                            0.22609 -3.13 0.0017
factor(cell.type)2 -0.70815
factor(cell.type)3 -1.10849 0.25269 -4.39 1.2e-05
factor(cell.type)4 -0.32200 0.25002 -1.29 0.1978
                 karno.score
Log(scale)
Scale= 0.938
Weibull distribution
Loglik(model) = -716.5 Loglik(intercept only) = -748.1
       Chisq= 63.15 on 4 degrees of freedom, p= 6.3e-13
Number of Newton-Raphson Iterations: 5
n = 137
```

ii. Κατασκευάστε 0.95-διαστήματα εμπιστοσύνης για τους συντελεστές των συμμεταβλητών του τελικού μοντέλου και να δώσετε ερμηνείες.

> confint.default(modfinal)

```
2.5 % 97.5 % (Intercept) 2.81330376 4.14796142 factor(cell.type)2 -1.15128713 -0.26502201 factor(cell.type)3 -1.60374377 -0.61323499 factor(cell.type)4 -0.81202533 0.16802225 karno.score 0.02011407 0.03823756
```

Ερμηνεία

(Intercept): Το διάστημα δεν περιέχει το 0, επομένως ο συντελεστής είναι στατιστικά σημαντικός. factor(cell.type)2: Το διάστημα δεν περιέχει το 0, επομένως ο συντελεστής είναι στατιστικά σημαντικός. factor(cell.type)3: Το διάστημα δεν περιέχει το 0, επομένως ο συντελεστής είναι στατιστικά σημαντικός. factor(cell.type)4: Το διάστημα περιέχει το 0, επομένως ο συντελεστής δεν είναι στατιστικά σημαντικός. karno.score: Το διάστημα δεν περιέχει το 0, επομένως ο συντελεστής είναι στατιστικά σημαντικός.

> exp(confint.default(modfinal))

```
2.5 % 97.5 % (Intercept) 16.6648842 63.3048168 factor(cell.type)2 0.3162295 0.7671891 factor(cell.type)3 0.2011421 0.5415960 factor(cell.type)4 0.4439580 1.1829629 karno.score 1.0203177 1.0389780
```

Ερμηνεία

(Intercept): Το διάστημα δεν περιέχει το 1, επομένως ο εκθετικός συντελεστής είναι στατιστικά σημαντικός. factor(cell.type)2: Το διάστημα δεν περιέχει το 1, επομένως ο εκθετικός συντελεστής είναι στατιστικά σημαντικός. factor(cell.type)3: Το διάστημα δεν περιέχει το 1, επομένως ο εκθετικός συντελεστής είναι στατιστικά σημαντικός. factor(cell.type)4: Το διάστημα περιέχει το 1, επομένως ο εκθετικός συντελεστής δεν είναι στατιστικά σημαντικός. karno.score: Το διάστημα δεν περιέχει το 1, επομένως ο εκθετικός συντελεστής είναι στατιστικά σημαντικός.

iii. Επιπλέον να γίνουν οι γραφικές παραστάσεις των υπολοίπων Cox-Snell και να δωθούν ερμηνείες και συμπεράσματα.

```
> standres<- (log(time)-modfinal$linear.predictors)/modfinal$scale
  csres<-exp(standres)</pre>
  [1] 0.361386656 1.696418492 1.235287846 0.656334773 0.448370640 0.152839228 0.773428226 0.304800355
  [9] 2.371865598 0.375827748 0.203407718 0.064666231 1.924397472 0.062790947 0.035712368 0.302336337
 [17] 4.582649845 0.065709376 0.303716182 0.123945572 2.535874737 1.056658111 1.717820392 1.581356468
 [25] 0.692668725 0.393295656 2.312038500 0.217200212 0.315725368 0.385069065 0.608659177 0.832369656
 [33] 0.498947702 0.196340087 0.398200144 3.359563115 0.445926693 0.532377592 0.724276875 0.270208366
 [41] 0.414551640 0.087431905 0.910302871 8.727436550 0.174563633 0.392853784 1.121263050 1.017394206
 [49] 1.061493199 1.207199395 0.238048946 1.501818866 0.101136186 0.850073800 1.814438206 0.649234731
 [57] 2.243659632 3.281545356 2.151315100 0.140462746 1.075185781 0.812802177 0.851207076 0.538517327
 [65] 0.416408503 0.408873173 0.400573981 1.407445021 0.723128896 2.347532633 0.310713187 0.237348811
 [73] 1.709749332 1.796699576 4.336203731 0.420065559 0.013119803 3.386134001 0.858687486 0.399962661
 [81] 0.406032936 1.459832814 1.043434186 0.579666731 0.005159352 0.104097260 0.213752130 0.611660887
 [89] 0.092612617 0.632981333 0.825310965 0.717397799 0.315183250 0.940911582 0.031378833 0.498947702
 [97] 0.222332041 0.238316697 0.791179382 0.039643782 0.496145326 0.472089969 0.182367769 0.757139142
[105] 1.174396420 1.353791807 0.543265639 0.680405033 0.500661737 0.407579320 0.257540339 0.815852042
[113] 1.494995795 0.832920890 1.195891184 0.154489450 0.412290036 3.623182270 0.182882555 1.754438898
[121] 1.274920473 0.745535883 0.388572236 1.330058765 2.456501652 0.360070833 0.897831058 0.312951736
[129] 0.367459094 0.243224734 0.294022368 1.431245973 0.614629777 0.808246718 1.293681011 1.602426658
[137] 0.859412326
> Cox.Snell<- csres [status == 1]</pre>
  library(EnvStats)
      qqPlot(Cox.Snell,
                                 distribution="exp",
                                                                                        list(rate=1),
                                                               param.list
add.line=TRUE, pch=19)
```

Exponential Q-Q Plot for Cox.Snell

Γ) Στα ίδια δεδομένα

i. Να προσαρμοστεί το μοντέλο του Cox (χρησιμοποιήστε πάλι ελέγχους Wald, του λόγου των πιθανοφανειών, το κριτήριο AIC και την Backward τεχνική με βήματα).

Ελέγχους Wald

```
> mod2<- coxph(Surv(time, status)~treatment +factor(cell.type)+karno.score +
months + age + prior.therapy + id,ties=c("breslow"))
> mod2
Call:
coxph(formula = Surv(time, status) ~ treatment + factor(cell.type) +
   karno.score + months + age + prior.therapy + id, ties = c("breslow"))
                       coef exp(coef)
                                       se(coef)
                                                    Z
                                                             р
treatment
                  -0.586327  0.556367  1.020826  -0.574
                                                         0.566
factor(cell.type)2 0.575239 1.777556 0.426576 1.349
                                                         0.177
factor(cell.type)3 0.665193 1.944867 0.669090 0.994
                                                         0.320
factor(cell.type)4 -0.289940 0.748309 0.837381 -0.346
                                                         0.729
                  -0.032719 0.967810 0.005482 -5.969 2.39e-09
karno.score
months
                  -0.001508 0.998493 0.009234 -0.163
                                                         0.870
age
                  -0.010762 0.989295 0.009632 -1.117
                                                         0.264
                   0.106091 1.111923
                                       0.235727 0.450
                                                         0.653
prior.therapy
                   0.012759 1.012841 0.014573 0.876
                                                         0.381
Likelihood ratio test=62.17 on 9 df, p=5.099e-10
n= 137, number of events= 128
```

> summary (mod2) Call: coxph(formula = Surv(time, status) ~ treatment + factor(cell.type) + karno.score + months + age + prior.therapy + id, ties = c("breslow")) n= 137, number of events= 128 coef exp(coef) se(coef) z Pr(>|z|) treatment -0.586327 0.556367 1.020826 -0.574 0.566 factor(cell.type)2 0.575239 1.777556 0.426576 1.349 0.177 factor(cell.type)3 0.665193 1.944867 0.669090 0.994 0.320 factor(cell.type)4 -0.289940 0.748309 0.837381 -0.346 0.729 -0.032719 0.967810 0.005482 -5.969 2.39e-09 *** karno.score -0.001508 0.998493 0.009234 -0.163 months 0.870 -0.010762 0.989295 0.009632 -1.117 age 0.264 prior.therapy 0.106091 1.111923 0.235727 0.450 0.653 0.012759 1.012841 0.014573 0.876 0.381 id Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 exp(coef) exp(-coef) lower .95 upper .95 0.07524 treatment 0.5564 1.7974 4.1142 0.5626 0.77041 4.1013 factor (cell.type) 2 1.7776 0.52403 factor(cell.type)3 1.9449 0.5142 7.2181 factor(cell.type) 4 1.3363 0.7483 0.14498 3.8624 karno.score 0.9678 1.0333 0.95747 0.9783 0.9985 1.0015 0.98058 1.0167 months 0.9893 1.0108 0.97079 1.0081 age 0.8993 0.70052 prior.therapy 1.1119 1.7649 id 1.0128 0.9873 0.98432 1.0422 Concordance= 0.741 (se = 0.021) Likelihood ratio test = 62.17 on 9 df, p=5e-10

= 62.84 on 9 df, p=4e-10

Score (logrank) test = 67.44 on 9 df, p=5e-11

>

Wald test

Backward τεχνική με βήματα

```
> mod3<-step(mod2, direction="backward", test="Chisq")</pre>
Start: AIC=967.59
Surv(time, status) ~ treatment + factor(cell.type) + karno.score +
   months + age + prior.therapy + id
                 Df
                       AIC
                            LRT Pr(>Chi)
                  1 965.62 0.027 0.869176
- months
                 1 965.79 0.201 0.654211
prior.therapy
                 1 965.92 0.329 0.566235
treatment
                 1 966.36 0.765 0.381794
- id
- age
                  1 966.82 1.221 0.269075
                     967.59
<none>
- factor(cell.type) 3 976.15 14.560 0.002234 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Step: AIC=965.62
Surv(time, status) ~ treatment + factor(cell.type) + karno.score +
   age + prior.therapy + id
                 Df AIC LRT Pr(>Chi)
                 1 963.80 0.176 0.674794
prior.therapy
                 1 963.93 0.308 0.578820
treatment
                 1 964.36 0.738 0.390337
- id
                  1 964.82 1.194 0.274447
- age
<none>
                   965.62
- factor(cell.type) 3 974.17 14.547 0.002247 **
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Step: AIC=963.8
Surv(time, status) ~ treatment + factor(cell.type) + karno.score +
   age + id
                 Df AIC LRT Pr(>Chi)
                  1 962.06 0.261 0.609495
treatment
                  1 962.48 0.679 0.409876
- id
                          1.230 0.267327
                  1 963.03
- age
                   963.80
<none>
- factor(cell.type) 3 972.20 14.407 0.002401 **
                  1 997.47 35.671 2.337e-09 ***
- karno.score
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Step: AIC=962.06
Surv(time, status) ~ factor(cell.type) + karno.score + age +
   id
                             LRT Pr(>Chi)
                 Df
                      AIC
                  1 961.12 1.059 0.303425
- age
<none>
                    962.06
- id
                  1 962.58 2.521 0.112365
- factor(cell.type) 3 971.75 15.692 0.001311 **
```

```
- karno.score 1 995.79 35.735 2.26e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Step: AIC=961.12
Surv(time, status) ~ factor(cell.type) + karno.score + id
                 Df AIC
                             LRT Pr(>Chi)
- id
                   1 961.00 1.880 0.170317
<none>
                    961.12
- factor(cell.type) 3 970.10 14.982 0.001832 **
- karno.score 1 993.91 34.796 3.662e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Step: AIC=961
Surv(time, status) ~ factor(cell.type) + karno.score
                 Df AIC LRT Pr(>Chi)
<none>
                     961.00
- factor(cell.type) 3 972.14 17.145 0.00066 ***
                  1 993.20 34.200 4.973e-09 ***
- karno.score
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

ii. Να κατασκευαστούν 0.95-διαστήματα εμπιστοσύνης για τους συντελεστές των συμμεταβλητών του τελικού μοντέλου και να δώσετε ερμηνείες.

Και άρα το τελικό μοντέλο με όλες τις μεταβλητές που είναι στατιστικά σημαντικές είναι το παρακάτω :

```
> #Τελικό μοντέλο
> mod4<- coxph(Surv(time,status)~factor(cell.type)+karno.score ,</pre>
ties=c("breslow"))
> mod4
Call:
coxph(formula = Surv(time, status) ~ factor(cell.type) + karno.score,
    ties = c("breslow"))
                       coef exp(coef) se(coef)
                                                             p
factor(cell.type)2 0.712148 2.038365 0.252740 2.818 0.00484
factor(cell.type)3 1.150801 3.160725 0.292861 3.930 8.51e-05
factor(cell.type)4 0.325143 1.384228
                                       0.276694 1.175 0.23996
karno.score
                  -0.030904 0.969569 0.005179 -5.968 2.41e-09
Likelihood ratio test=58.77 on 4 df, p=5.257e-12
n= 137, number of events= 128
>
> summary (mod4)
Call:
coxph(formula = Surv(time, status) ~ factor(cell.type) + karno.score,
   ties = c("breslow"))
 n= 137, number of events= 128
                       coef exp(coef) se(coef)
                                                    z Pr(>|z|)
factor(cell.type)2 0.712148 2.038365 0.252740 2.818 0.00484 **
                                       0.292861 3.930 8.51e-05 ***
factor(cell.type)3 1.150801 3.160725
factor(cell.type)4 0.325143 1.384228 0.276694 1.175 0.23996
karno.score
                  -0.030904 0.969569 0.005179 -5.968 2.41e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                  exp(coef) exp(-coef) lower .95 upper .95
factor(cell.type)2
                     2.0384
                                0.4906
                                          1.2421
                                                    3.3451
factor(cell.type)3
                     3.1607
                                0.3164
                                          1.7803
                                                    5.6114
                                0.7224
                                          0.8048
                                                    2.3808
factor (cell.type) 4
                     1.3842
                     0.9696
                                1.0314
                                          0.9598
                                                    0.9795
karno.score
Concordance= 0.734 (se = 0.023)
                                        p=5e-12
Likelihood ratio test= 58.77 on 4 df,
                    = 60.58 on 4 df,
Wald test
                                        p=2e-12
Score (logrank) test = 63.22 on 4 df, p=6e-13
```

iii. Να εξεταστεί αν το τελικό μοντέλο πληρεί τις προϋποθέσεις της αναλογικότητας της διακινδύνευσης - μέσω στατιστικών ελέγχων, καθώς και με τη χρήση υπολοίπων Schoenfeld, δηλαδή να εξεταστεί αν οι συντελεστές των μεταβλητών δε σχετίζονται με το χρόνο (αν βj(t)=βj) και στο τέλος πάλι ερμηνείες και συμπεράσματα. (έχω συσχέτισή με τον χρόνο η όχι).

> sresid<-resid(mod4,type="scaledsch")</pre>

> sresid

	siesiu	6	6 1 / 11 1 14	•
-		factor(cell.type)3		karno.score
1	-5.75917314	-5.475703976		-0.1262046601
1	-4.95950337	-5.396808093		-0.0232229975
2	2.85938123	-0.116328756		-0.0318569016
3	-0.15571326	5.418001240	0.695423805	-0.0902209659
4	2.86249026	-0.023916027		-0.0333567359
7	3.15490716	-0.011744712	0.093029913	0.0009409872
7	2.35523739	-0.090640595		-0.1020406754
7	0.11492135	5.537274206		-0.0574120299
8	-5.23843946	-5.394832398		-0.0619366555
8	-0.36863223	5.530808307		-0.1279612345
8	4.00413653	0.113282527	-0.433407826	0.1020278870
8	0.43103755	5.609704190		-0.0249795719
10	-5.84421041	-5.256574708		-0.1339474367
10	2.86525240	0.198942961		-0.0386373359
11	-4.56418450	-5.218905451	-4.949732979	0.0362845462
12	0.29141893	5.689588108		-0.0295591625
12	-0.74997226	-0.432703551		-0.0843607786
13	3.31046605	0.198775795	-0.109463620	0.0282992025
13	2.51079628	0.119879912		-0.0746824601
15	-5.07614171	-5.258477744		-0.0330890155
15	-0.98116908	-0.428830071		-0.1195879897
16	2.51268863	0.035673473		-0.0763219265
18	2.28343568	-0.013728396		-0.1115901183
18	2.54999227	0.012570231		-0.0772628975
18	0.04311964	5.614186405		-0.0669614729
19	0.38152670	5.693127159		-0.0370417826
19	-0.92642108	-0.455463127		-0.1261706196
20	2.58972736	0.127763631		-0.0832847907
20	2.58972736	0.127763631		-0.0832847907
21	2.94731408	0.104462617		-0.0514971359
21	2.41420090	0.051865361		-0.1201515776 0.0136665063
22	3.58154561	0.099212396	0.071955013 0.069370265	0.013665063
24 24	3.61083877 0.30429638	0.088476912 5.611197203	0.680420033	-0.0785587201
25	-5.61339787	-5.294528175	-3.836788369	-0.1508217402
25	2.82950835	0.134690867		-0.1508217402
25	3.89573471	0.134690867	-0.100929183	0.0474700232
25 27	3.58142015	0.239865377	-0.100929183	0.0474700232
29	3.08096319	-0.029320500	0.340561572	-0.0580965684
30	3.66517654	-0.029320300	-0.015996460	0.0099712727
30	-4.24461650	-5.378802667	-4.822527594	0.0099712727
31	4.07880706	-0.004136789	-0.309597422	0.0176428345
31	1.43865614	5.584330070	-0.144660966	
33	-5.26428865	-5.489590441		0.0552893677 -0.1174068998
35	0.31476272	5.414474635		-0.1174088998
36	1.09997292	5.414474635	-0.037288017	0.0193725861
36 42	-4.56383862	-5.290320753	-0.037288017 -4.746382120	-0.0168500427
43	0.03082201	-0.448882534	5.021123707	-0.0346055389

44	-4.60329159	-5.345280096	-4.736965944 -0.0167937551
45	0.23232406	5.538574539	0.469607600 -0.0827275704
48	-0.58615518	5.631682635	1.010606707 -0.1877407583
49	-0.97064135	0.081016043	5.646482183 -0.1568068911
51	3.33244983	0.652080133	0.081397610 -0.0126800566
51	2.53278006	0.573184250	0.616733584 -0.1156617192
51	0.55902062	6.227397679	0.335556728 -0.0367058529
52	3.71672951	0.778055450	-0.088462609 0.0181920962
52	0.67674370	6.327074369	0.344141834 -0.0401609210
52	-0.09809090	0.231081337	5.261532575 -0.0606353162
53	-0.06969046	0.357553693	5.316145041 -0.0606087081
54	4.00215149	0.921152238	-0.151426797 0.0521836552
54	3.73559490	0.894853611	0.027018528 0.0178564343
56	4.07553782	0.915423815	-0.160170297 0.0536646467
	2.77640587		
59		0.781575704	0.727200729 -0.1171253418
61	3.94423895	0.868596221	0.033209499 0.0159395588
63	3.45801148	0.811905210	0.385865275 -0.0520353567
72	-4.37583414	-4.574090053	-4.418986342 -0.0449482658
73	0.97589079	6.346543814	0.415522966 -0.0424597177
80	3.49142684	0.915597488	0.342777986 -0.0531407271
80	0.45144104	6.464616406	0.775382430 -0.1114937442
82	-4.88082805	-4.165277209	-4.076156421 -0.1202246561
84	1.48136336	6.866796046	-0.010401130 0.0190533014
87	3.73745300	1.356093989	0.085449707 -0.0245509162
90	1.00971036	6.902161326	0.298557589 -0.0480921035
92	1.28842803	7.163512377	0.119025759 -0.0144673463
95	1.57281020	7.375797125	-0.065795206 0.0203682935
95	4.07968283	1.774180951	-0.141509000 0.0100668689
99	4.26349916	1.956966687	-0.169479960 0.0123913358
99	4.66333405	1.996414629	-0.437147947 0.0638821671
100	0.58282981	1.439727869	5.158867829 -0.0641489786
103	1.06264926	1.447050427	4.846658425 0.0040129419
105	1.15310587	1.469345801	4.889015271 0.0054979452
110	-3.46969369	-3.409080388	-4.855908291 0.0237788666
111	-3.77278346	-3.475214806	-4.722725380 -0.0100706374
111	0.58874576	1.380731495	5.255355614 -0.0622423908
112	-3.56436077	-3.500579193	-4.848824297 0.0237851798
117	4.57294703	1.859877054	-0.267973538 0.0509401158
117	1.79951782	7.435194600	-0.013814419 0.0269143196
118	-3.76159361	-3.365114457	-4.739469416 -0.0066923332
122	4.62213581	2.004369920	-0.356821522 0.0546108077
126	-3.79001040	-3.376711559	-4.640440394 -0.0427128971
132	2.05529236	7.562881864	-0.215156220 0.0283334244
133	1.19493099	1.681702095	4.772248453 -0.0071985722
139	4.88540840	2.225352749	-0.406217506 0.0549039660
140	1.94520678	7.800064585	0.008899847 -0.0013973528
143	1.76906884	2.110327452	4.552579730 0.0483520790
144	-4.44491857	-2.917509594	-4.122635328 -0.1387590335
151	3.94315965	2.284473938	-0.128622410 -0.0501703832
153	4.44719024	2.394095621	-0.340418714 -0.0172592147
156	1.37851705	1.970632020	4.614724475 -0.0266539373
162	2.43941155	8.116918512	-0.355563954 0.0282720677
162	1.66457695	2.020925481	4.561826787 0.0077976725
164	1.51121707	2.382467927	4.802283633 -0.0225110719
177	1.00408441	2.369916452	5.304741768 -0.0908926325
186	2.89005274	8.676021106	0.080384605 0.0644357290
200	1.94745248	2.895077498	5.165118313 0.0139587716
200	1.34/43240	2.0330//430	3.103110313 0.013930//16

```
-4.499909626 0.0330510100
201
           -2.64627747
                             -1.938656226
216
            1.11327817
                               2.801347284
                                                  5.736130242 -0.0864638675
228
           -3.21725594
                             -1.927062193
                                                 -3.823846559 -0.0385852016
231
            1.50947285
                              2.849956284
                                                  5.620046734 -0.0224307538
           -3.89592705
                              -2.212395930
                                                 -3.835492855 -0.0755741466
242
250
            0.94602208
                               2.489442186
                                                  5.319001161 -0.0278590133
260
            1.22532607
                               2.588703962
                                                  5.412748069 0.0066341720
278
            0.71360379
                               2.596043093
                                                  5.981706411 -0.0604555614
283
           -3.11469023
                             -2.086166176
                                                 -3.879133568 0.0578936239
287
            4.16804560
                               3.158394911
                                                  1.181078571 -0.0162525124
                                                 -3.144650392 -0.0751143463
314
           -3.77455971
                             -1.980190257
            1.17266960
                              2.645621447
                                                  5.748034573 0.0052878497
340
                             -2.169768857
                                                 -3.535215426 -0.0089394623
357
           -3.69327432
378
            0.91357101
                              2.521848764
                                                  5.833785768 0.0089781190
384
            3.94304469
                              3.087421165
                                                  1.410842110 -0.0123401480
                                                 -3.490788951 0.0684620722
389
           -2.65458095
                             -1.769633346
                                                  1.842135966 -0.0716388443
392
            4.02365703
                              3.358381242
411
           -0.42411148
                             -0.013117745
                                                 -1.979559422 -0.0313414168
                                                 -2.814177635 0.0372223411
467
           -0.12652659
                             -0.201782145
553
            3.86296320
                               4.457746696
                                                  6.947506148 -0.0407081701
587
            0.47170033
                              1.127078640
                                                  0.486109525 -0.0618688522
                              1.132380822
                                                  0.450132380 -0.0549479907
991
            0.52544197
999
                              1.150801357
                                                  0.325142648 -0.0309039304
            0.71214811
>
> vv<-cox.zph(mod4,transform='identity', terms=FALSE)
> vv
                   chisq df
                                   p
factor(cell.type)2 5.82 1 0.01580
factor(cell.type)3 10.08 1 0.00150
factor(cell.type) 4 5.45 1 0.01959
                   7.00 1 0.00814
karno.score
GLOBAL
                   20.67 4 0.00037
> plot(vv,var=1)
```

>

> par(mfrow=c(2,2))

> plot(vv)


```
Να κατασκευαστεί μια καμπύλη ROC για δύο διαφορετικούς χρόνους της επιλογής σας.
> mod4$linear.predictor
  [1] -0.04421292 -0.35325223 -0.04421292 -0.04421292
  [5] -0.35325223 1.19194429 0.57386569 -0.66229153
      0.26482638 - 0.35325223 - 0.04421292 0.57386569
  [9]
      0.88290499 -0.66229153 -0.35325223 0.66793518
 [13]
      0.66793518 1.28601379 0.04985657 0.66793518
 [17]
 [21]
      1.28601379 0.66793518 0.66793518 1.59505310
      0.04985657 1.59505310 0.97697449 0.66793518
 [25]
 [29] 0.04985657 1.28601379 1.90409240 0.04985657
      1.59505310 0.20437623 0.35889588 0.66793518
 [33]
      1.59505310 0.66793518 0.04985657 0.66793518
 [37]
 [41]
      0.35889588 0.97697449 0.97697449 1.28601379
      1.28601379 2.34274565 0.79754913 1.72466704
 [45]
 [49] 0.48850983 0.48850983 1.41562774 0.48850983
      2.03370635  0.48850983  0.58996903  -0.33714888
 [53]
 [57]
      0.58996903 -0.02810958 0.28092973 0.89900833
 [61] -0.33714888 -0.33714888 -0.02810958 -0.64618819
 [65] -0.64618819 -0.33714888 -0.33714888 -0.02810958
 [69] 0.28092973 -0.97133084 -0.66229153 -0.66229153
 [73] 0.26482638 0.26482638 -0.35325223 -0.35325223
 [77]
      1.19194429 -0.04421292 -0.97133084 0.88290499
 [81] 1.19194429 -0.35325223 -0.97133084 -0.66229153
 [85]
      0.26482638 - 0.35325223 - 0.04421292 - 0.97133084
 [89] 0.26482638 1.59505310 0.35889588 1.90409240
 [93] 1.59505310 0.66793518 1.28601379 1.59505310
 [97] 1.90409240 0.66793518 0.35889588 0.04985657
[101] -0.10466308  0.35889588  0.35889588  0.35889588
[105] 0.97697449 1.59505310 1.28601379 1.72466704
[109] 1.72466704 -0.09866485 0.48850983 1.10658843
[113] 1.10658843 1.10658843 1.10658843 1.41562774
[117] 0.79754913 2.65178496 1.72466704 0.79754913
[121] 0.17947052 0.48850983 1.41562774 1.72466704
[125] 1.72466704 0.28092973 -0.02810958 1.20804764
[129] 0.28092973 1.20804764
                              0.28092973 -0.33714888
[133] -0.18262923  0.28092973 -0.02810958 -0.33714888
[137] 1.20804764
>
> library(risksetROC)
Loading required package: MASS
Attaching package: 'MASS'
The following object is masked from 'package:EnvStats':
   boxcox
> eta<-mod4$linear.predictor
>
> ROC10=risksetROC(Stime= time, status=status, marker=eta, predict.time=60,
method="Cox", main="ROC Curve", lty=2, col="red", ylab="True Positive",
xlab="False Positive")
>
> ROC50=risksetROC(Stime= time, status=status,marker=eta, predict.time=80,
```

method="Cox", plot=FALSE)

```
> lines(ROC50$FP,ROC50$TP, lty=3,col="darkblue")
> legend(.6,.25,lty=c(2,3),col=c("red","darkblue"),
+ legend=c("t=60","t=80"), bty="n")
>
```

ROC Curve

