FCC Certification Test Report (Revision 1) For

MB Martin & Company FCC ID: TDOAVICOM1

August 2005 Rev. 1: September 2005

Prepared for:

MB Martin & Company 965 Leigh Mill Road Great Falls, VA 22066

Prepared By:

Washington Laboratories, Ltd. 7560 Lindbergh Drive Gaithersburg, Maryland 20879

FCC Certification Test Report (Revision 1) For the MB Martin & Company AVIACOM1 VHF Transceiver

WLL JOB# **8843 August 2005**

Rev. 1: September 2005

Prepared by:

Christina M. Karlhoff Technical Liaison

Reviewed by:

Gregory M. Snyder Chief EMC Engineer

Abstract

This report has been prepared on behalf of MB Martin & Company to support the attached Application for Equipment Authorization. The test report and application are submitted for a transceiver under Part 87 part of the FCC Rules and Regulations. This Federal Communication Commission (FCC) Certification Test Report documents the test configuration and test results for a MB Martin & Company AVIACOM1 VHF Transceiver.

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

The MB Martin & Company AVIACOM1 VHF Transceiver complies with the limits for a transmitter device under Part 87 part of the FCC Rules and Regulations.

Table of Contents

A	bstra	act	ii
1		Introduction	
	1.1	Compliance Statement	1
	1.2	Test Scope	1
	1.3	Contract Information	1
	1.4	Test Dates	
	1.5	Test and Support Personnel	1
	1.6	Abbreviations	2
2		Equipment Under Test	3
	2.1	EUT Identification & Description	3
	2.2	Test Configuration	3
	2.3	Testing Algorithm	4
	2.4	Test Location	4
	2.5	Measurements	5
	2.	.5.1 References	5
	2.6	Measurement Uncertainty	5
3		Test Results	
	3.1	RF Power Output: (§2.1046(a)/§87.131)	6
	3.2	Modulation Characteristics: (FCC Part 87 §2.1047(a)/§87.141); Audio Filter Response and	
	Mod	dulation Limiting	7
	3.3	Emission Mask and Occupied Bandwidth: (FCC Part §2.1049/§87.139(a))	. 10
	3.4	Spurious Emissions at Antenna Terminals (FCC §87.139(a) and §2.1051)	. 15
	3.5	Radiated Spurious Emissions: (FCC Part 87 and §2.1053)	. 25
	3.	5.1 Test Procedure	. 25
	3.6	Frequency Stability: (FCC Part §2.1055/§87.133)	. 29

List of Tables

Table 1. Device Summary	3
Table 2. RF Power Output	
Table 3. Occupied Bandwidth Results	
Table 4: Radiated Emission Test Data	26
Table 5. Frequency Deviation as a Function of Temperature	29
Table 6. Frequency Deviation as a Function of Voltage	
List of Figures	
Figure 1. Test Configuration	
Figure 2. Audio Frequency Response	
Figure 3. Modulation Deviation with Varying Input Amplitude	8
Figure 4. Occupied Bandwidth, Low Channel Emission Mask	
Figure 5. Occupied Bandwidth, Mid Channel Emission Mask	12
Figure 6. Occupied Bandwidth, High Channel Emission Mask	13
Figure 7. Conducted Spurious Emissions, Low Channel Plot 1	16
Figure 8. Conducted Spurious Emissions, Low Channel Plot 2	17
Figure 9. Conducted Spurious Emissions, Low Channel Plot 3	18
Figure 10. Conducted Spurious Emissions, Mid Channel Plot 1	19
Figure 11. Conducted Spurious Emissions, Mid Channel Plot 2	20
Figure 12. Conducted Spurious Emissions, Mid Channel Plot 3	21
Figure 13. Conducted Spurious Emissions, High Channel Plot 1	22
Figure 14. Conducted Spurious Emissions, High Channel Plot 2	
Figure 15. Conducted Spurious Emissions, High Channel Plot 3	24

1 Introduction

1.1 Compliance Statement

The MB Martin & Company AVIACOM1 VHF Transceiver complies with the limits for a transmitter device under Part 87 part of the FCC Rules and Regulations.

1.2 Test Scope

Tests for radiated and conducted emissions were performed. All measurements were performed according to the ANSI/TIA-603-B. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

1.3 Contract Information

Customer: MB Martin & Company

965 Leigh Mill Road Great Falls, VA 22066

Purchase Order Number: N/A
Quotation Number: 62475

1.4 Test Dates

Testing was performed on the following date(s): 07/21/2005 to 08/02/2005

1.5 Test and Support Personnel

Washington Laboratories, Ltd. Greg Snyder; James Ritter

Client Representative Jim Mastropole

1.6 Abbreviations

A	Ampere					
ac	alternating current					
AM	Amplitude Modulation					
	Amperes					
	b/s bits per second					
BW						
CE Conducted Emission						
cm	c enti m eter					
CW	Continuous Wave					
dB	decibel					
dc	direct current					
EMI Electromagnetic Interference						
EUT	EUT Equipment Under Test					
FM Frequency Modulation						
G giga - prefix for 10 ⁹ multiplier						
Hz						
IF	Intermediate Frequency					
k	kilo - prefix for 10 ³ multiplier					
M	Mega - prefix for 10 ⁶ multiplier					
m	m eter					
μ	micro - prefix for 10 ⁻⁶ multiplier					
	N arrow b and					
	Line Impedance Stabilization Network					
RE	Radiated Emissions					
RF	Radio Frequency					
rms	root-mean-square					
SN						
	Spectrum Analyzer					
V	Volt					

2 Equipment Under Test

2.1 EUT Identification & Description

The MB Martin & Company AVIACOM1 VHF Transceiver is an aviation VHF transceiver "building block" intended for ground-based applications. The frequency range of operation is from 118-137 MHz.

ITEM DESCRIPTION Manufacturer: MB Martin & Company FCC ID Number TDOAVICOM1 EUT Name: Aviation VHF Transceiver Model: AVIACOM1 FCC Rule Parts: Part 2 and Part 87 Frequency Range: 118 MHz - 136.975 MHz Maximum Output Power: 0.4198 W Modulation: AM Necessary Bandwidth: 5.6kHz Keying: Manual Type of Information: Voice Power Output Level Fixed Antenna Type Connector Frequency Tolerance: <20 ppm Emission Type(s): A₃E RS-232 Comm Port, Interface Cables: SMA Antenna Port Custom connector for Audio I/O Power Source & Voltage: +12Vdc

Table 1. Device Summary

2.2 Test Configuration

The AVIACOM1 VHF Transceiver was powered from an external AC to DC regulated supply into a custom connector. The custom connector also has 2 RCA type connections for transmit audio input and for receive. The transmit audio port was attached to a function generator providing 2500Hz 1 Vp-p input to EUT. The receive port was terminated in 50 Ohms. A support Laptop with HyperTerminal was connected to the EUT's RS232 port (DB9 connector) for controlling the radio during testing.

Figure 1. Test Configuration

2.3 Testing Algorithm

The AVIACOM1 VHF Transceiver was operated for continuous transmission as follows:

The Unit was set to transmit @ 127.5MHz via a RS232 link to HyperTerminal on the support laptop. The command: \$F127.5000 set the transmit frequency to 127.5 MHz, and \$T\$ started the transmit pulses. A function generator supplied 2500 Hz sine wave at the audio input port to modulate the transmission as necessary. Additional frequencies were similarly programmed.

Worst case emission levels are provided in the test results data.

2.4 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

2.5 Measurements

2.5.1 References

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation Land Mobile FM or PM Communications Equipment Measurement and Performance Standards (ANSI/TIA/EIA-603-93)

2.6 Measurement Uncertainty

All results reported herein relate only to the equipment tested. For the purposes of the measurements performed by Washington Laboratories, the measurement uncertainty is ± 2.3 dB. This has been calculated for a *worst-case situation* (radiated emissions measurements performed on an open area test site).

The following measurement uncertainty calculation is provided:

Total Uncertainty =
$$(A^2 + B^2 + C^2)^{1/2}/(n-1)$$

where:

A = Antenna calibration uncertainty, in dB = 2 dB

B = Spectrum Analyzer uncertainty, in dB = 1 dB

C = Site uncertainty, in dB = 4 dB

n = number of factors in uncertainty calculation = 3

Thus, Total Uncertainty = $0.5 (2^2 + 1^2 + 4^2)^{1/2} = \pm 2.3 \text{ dB}$.

3 Test Results

3.1 RF Power Output: (§2.1046(a)/§87.131)

The test setup was in accordance with TIA/EIA 603. The unmodulated output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer. The analyzer offset was adjusted to compensate for the attenuator and other losses in the system. The spectrum analyzer bandwidth settings were: RBW = 1MHz, VBW = 1MHz.

Table 2. RF Power Output

Channel and/or Frequency	Measured Level (dBm)	Measured Level (mWatts)	Rated (mWatts)	Limit (Watts)
118 MHz	26.23	419.8	350	55
127.5 MHz	26.02	400	350	55
136.975 MHz	25.13	325.8	350	55

Notes: The unit has a linear Class A amplifier. The voltage is 8Vdc and the current is 300mA.

Manufacturer	Description/Model	Asset Number	Cal. Due
Agilent	E4446A	00528	6/2/06
Hewlett-Packard	8714C RF Network Analyzer	00420	5/9/2006
MCL	Attenuator 3dB	None	Cal-in-use
Mini-Circuits	Attenuator 6dB	None	Cal-in-use

3.2 Modulation Characteristics: (FCC Part 87 §2.1047(a)/§87.141); Audio Filter Response and Modulation Limiting

Audio Filter Response:

The audio Frequency Response was measured and recorded. The test setup was in accordance with EIA/EIA 603 2.2.6.2.2 Constant Input Method. A plot of the response of the audio filter is shown in the following figure.

Figure 2. Audio Frequency Response

Modulation Limiting:

The test setup is in accordance with TIA/EIA 603. The EUT is functioning normally on the indicated frequency. EUT is powered by an external 12VDC power source. A family of curves is plotted as a function of modulation percentage over a varying input level. The input voltage level was varied from 0 to 2V. Modulation frequencies of 100, 300, 1500, 2500, and 5000 Hz were used.

Modulation Percentage with varying input amplitude 100 90 80 70 % Amplitude Modulation 60 → 300 Hz Modulation 1500 Hz Modulation → 2500 Hz Modulation --- 100Hz Modulation x 5000 Hz Modulation x 5000 Hz Modulation 40 30 20 10 1000 1300 140C

Figure 3. Modulation Deviation with Varying Input Amplitude

Input Level (mV RMS)

Manufacturer	Description/Model	Asset Number	Cal. Due
Tektronix	TDS-222	00333	8/26/05
Boonton	82AD/01A/S10/S13 Modulation Analyzer	00012	5/2/06
B&K Precision	4040A Function/Signal Generator	00406	Cal-in-use
Hewlett-Packard	8714C RF Network Analyzer	00420	5/9/2006
MCL	Attenuator 3dB	None	Cal-in-use
Mini-Circuits	Attenuator 6dB	None	Cal-in-use

3.3 Emission Mask and Occupied Bandwidth: (FCC Part §2.1049/§87.139(a))

The EUT was setup in accordance with the method described in EIA/TIA 603 for sideband spectrum measurements. A 2500Hz audio signal was provided to the audio input of the EUT. The spurious emissions were then measured for the low, middle, and high channels and compared to the appropriate emission mask.

The following figures are plots of the emissions within the emission mask.

Figure 4. Occupied Bandwidth, Low Channel Emission Mask

Figure 5. Occupied Bandwidth, Mid Channel Emission Mask

Figure 6. Occupied Bandwidth, High Channel Emission Mask

Table 3 provides a summary of the Occupied Bandwidth Results.

Table 3. Occupied Bandwidth Results

Frequency	Bandwidth	Pass/Fail
Low Channel: 118 MHz	5.766 kHz	Pass
Mid Channel: 127.5 MHz	5.832 kHz	Pass
High Channel: 136.975 MHz	5.816 kHz	Pass

Emissions Designator:

Per §87.137 for a transmitter with an emission class of A3E operating above 50MHz with an authorized bandwidth of 8.33kHz, the emission designator will be:

5K6A3E

Manufacturer	Description/Model	Asset Number	Cal. Due
Tektronix	TDS-222	00333	8/26/05
Hewlett Packard	8564E Spectrum Analyzer	00012	7/16/06
B&K Precision	4040A Function/Signal Generator	00406	Cal-in-use
Hewlett-Packard	8714C RF Network Analyzer	00420	5/9/2006
MCL	Attenuator 3dB	None	Cal-in-use
Mini-Circuits	Attenuator 6dB	None	Cal-in-use

3.4 Spurious Emissions at Antenna Terminals (FCC §87.139(a) and §2.1051)

The EUT must comply with requirements for spurious emissions at antenna terminals. The limits, from §87.139(a), are as follows:

- (1) When the frequency is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth the attenuation must be at least 25 dB;
- (2) When the frequency is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth the attenuation must be at least 35 dB.
- (3) When the frequency is removed from the assigned frequency by more than 250 percent of the authorized bandwidth the attenuation for aircraft station transmitters must be at least 40 dB; and the attenuation for aeronautical station transmitters must be at least $43 + 10 \log_{10} pY dB$.

Results of the conducted spurious emissions are shown in the following plots.

Manufacturer	Description/Model	Asset Number	Cal. Due
Tektronix	TDS-222	00333	8/26/05
Hewlett Packard	8564E Spectrum Analyzer	00012	7/16/06
B&K Precision	4040A Function/Signal Generator	00406	Cal-in-use
Hewlett-Packard	8714C RF Network Analyzer	00420	5/9/2006
MCL	Attenuator 3dB	None	Cal-in-use
Mini-Circuits	Attenuator 6dB	None	Cal-in-use

Figure 7. Conducted Spurious Emissions, Low Channel Plot 1

Figure 8. Conducted Spurious Emissions, Low Channel Plot 2

Figure 9. Conducted Spurious Emissions, Low Channel Plot 3

Figure 10. Conducted Spurious Emissions, Mid Channel Plot 1

Figure 11. Conducted Spurious Emissions, Mid Channel Plot 2

Figure 12. Conducted Spurious Emissions, Mid Channel Plot 3

Figure 13. Conducted Spurious Emissions, High Channel Plot 1

Figure 14. Conducted Spurious Emissions, High Channel Plot 2

Figure 15. Conducted Spurious Emissions, High Channel Plot 3

3.5 Radiated Spurious Emissions: (FCC Part 87 and §2.1053)

The EUT must comply with requirements for radiated spurious emissions. The limit for the spurious radiated emissions is calculated from \$87.139(a) as all spurious emissions must be attenuated below the carrier by $43 + 10 \log_{10} pY$.

3.5.1 Test Procedure

The EUT was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters.

The Effective Isotropic Radiated Power (EIRP) levels were measured and compared with the limit of \$87.139(a). The limit of -13dB is derived from the formula of $43 + 10 \log_{10} pY dB per \$87.139(a)(3)$.

Emissions were scanned up to the 10th harmonic of the fundamental. Worst case measurements are reported. The signal substitution method procedure as given in TIA-603 was used to obtain EIRP levels.

Sample Calculation:

EIRP Level (dBm) = Sub. Power Level (dBm) + Sub. Ant. Gain (dBi)

Test Equipment:

Manufacturer	Description/Model	Asset Number	Cal. Due
Tektronix	TDS-222	00333	8/26/05
Hewlett-Packard	8568B Spectrum Analyzer	00073	6/30/06
Hewlett-Packard	85650A Quasi-Peak Adapter	00074	6/30/06
Hewlett-Packard	85685A RF Preselector	00071	6/30/06
Hewlett Packard	8564E Spectrum Analyzer	00012	7/16/06
Hewlett Packard	8449B Pre-amplifier	00066	6/14/06
Hewlett Packard	8648A Signal Generator	00159	8/12/06
Electro Metrics	BIA-30 Biconical Antenna	00034	6/14/06
EMCO	3146A Log Periodic Antenna	00029	6/28/06
Sunol	JB1 Antenna	00382	1/6/06
ARA	DRG-118 Horn Antenna	00004	2/17/06
B&K Precision	4040A Function/Signal Generator	00406	Cal-in-use
Hewlett-Packard	8714C RF Network Analyzer	00420	5/9/2006
MCL	Attenuator 3dB	None	Cal-in-use
Mini-Circuits	Attenuator 6dB	None	Cal-in-use

Table 4: Radiated Emission Test Data

Frequency (MHz)	Polarity H/V	Azimuth Degree	Ant. Height (m)	Spurious Level dBµV	Sub. Sig. Gen. Level dBm	Sub. Power Level dBm	Sub. Ant. Factor dB/m	Sub. Ant. Gain dBi	EIRP Level dBm	Limit dBm	Margin dB
Configuratio											
Tx Frequenc	y: 127.5 M	IHz (Tx into	Dummy lo								
	1	T			nit Flat		T	1	ı	Γ	
38.22	V	100.0	1.0	2.9	-70.0	-71.0	10.8	-9.0	-80.0	-13.0	-67.0
42.22	V	270.0	1.0	4.9	-71.2	-72.2	10.8	-8.1	-80.3	-13.0	-67.3
45.46	V	90.0	1.0	3.2	-73.1	-74.1	10.9	-7.6	-81.7	-13.0	-68.7
56.80	V	0.0	1.2	6.5	-74.7	-75.7	11.2	-5.9	-81.6	-13.0	-68.6
111.13	V	180.0	1.0	7.3	-64.1	-65.1	14.3	-3.2	-68.3	-13.0	-55.3
122.88	V	90.0	1.0	3.2	-66.9	-67.9	13.4	-1.4	-69.3	-13.0	-56.3
181.89	V	45.0	1.5	4.6	-70.9	-71.9	16.9	-1.5	-73.4	-13.0	-60.4
307.18	V	180.0	1.6	2.5	-71.9	-73.9	14.1	5.9	-68.0	-13.0	-55.0
127.50	V	90.0	1.0	57.5	-11.0	-12.0	13.3	-1.0	-13.0	26.0	-39.0
255.00	V	90.0	1.2	14.9	-54.5	-55.5	16.9	1.4	-54.1	-13.0	-41.1
382.50	V	270.0	1.2	4.8	-75.4	-77.4	15.7	6.2	-71.2	-13.0	-58.2
510.00	V	190.0	1.5	2.2	-71.7	-74.7	17.1	7.3	-67.4	-13.0	-54.4
637.50	V	180.0	2.0	-0.4			No si	ignal det	tected		
765.00	V	180.0	2.0	-2.0			No si	ignal det	tected		
892.50	V	180.0	1.2	5.9			No si	ignal det	tected		
1020.00	V	180.0	2.0	0.6			No si	ignal det	tected		
1147.50	V	180.0	2.0	-0.2			No si	ignal det	tected		
1275.00	V	180.0	2.0	-1.1			No si	ignal det	tected		
38.22	Н	190.0	4.0	1.5	-65.0	-66.0	10.8	-9.0	-75.0	-13.0	-62.0
42.22	Н	90.0	4.0	1.6	-63.6	-64.6	10.8	-8.1	-72.7	-13.0	-59.7
111.13	Н	290.0	3.6	8.2	-65.6	-66.6	14.3	-3.2	-69.8	-13.0	-56.8
122.88	Н	190.0	3.4	2.8	-75.1	-76.1	13.4	-1.4	-77.5	-13.0	-64.5
181.89	Н	100.0	3.2	4.9	-67.1	-68.1	16.9	-1.5	-69.6	-13.0	-56.6
127.50	Н	0.0	2.7	54.9	-23.6	-24.6	13.3	-1.0	-25.6	26.0	-51.6
255.00	Н	90.0	1.7	26.3	-42.4	-43.4	16.9	1.4	-42.0	-13.0	-29.0
382.50	Н	270.0	3.0	6.4	-64.9	-66.9	15.7	6.2	-60.7	-13.0	-47.7
510.00	Н	180.0	2.7	2.4	-74.3	-77.3	17.1	7.3	-70.0	-13.0	-57.0
637.50	Н	180.0	1.5	-0.4			No si	ignal det	tected		
765.00	Н	180.0	2.0	-0.7	No signal detected						
892.50	Н	180.0	2.0	0.5	No signal detected						
1020.00	Н	180.0	1.0	0.3	No signal detected						
1147.50	Н	180.0	1.0	-1.0	No signal detected						
1275.00	Н	180.0	1.0	-0.3			No si	ignal det	tected		

Frequency (MHz)	Polarity H/V	Azimuth Degree	Ant. Height (m)	Spurious Level dBµV	Sub. Sig. Gen. Level dBm	Sub. Power Level dBm	Sub. Ant. Factor dB/m	Sub. Ant. Gain dBi	EIRP Level dBm	Limit dBm	Margin dB
	1	ı	ı		t On side		Τ	1	ı	1	
38.22	V	190.0	2.1	3.0	-67.3	-68.3	10.8	-9.0	-77.3	-13.0	-64.3
45.46	V	180.0	1.4	3.0	-71.2	-72.2	10.9	-7.6	-79.8	-13.0	-66.8
56.80	V	220.0	2.0	6.0	-74.0	-75.0	11.2	-5.9	-80.9	-13.0	-67.9
111.13	V	180.0	1.4	5.5	-60.7	-61.7	14.3	-3.2	-64.9	-13.0	-51.9
122.88	V	190.0	1.3	3.4	-62.7	-63.7	13.4	-1.4	-65.1	-13.0	-52.1
181.89	V	180.0	1.3	4.3	-72.5	-73.5	16.9	-1.5	-75.0	-13.0	-62.0
307.18	V	180.0	1.7	2.4	-79.1	-81.1	14.1	5.9	-75.2	-13.0	-62.2
127.50	V	0.0	1.0	61.2	-6.2	-7.2	13.3	-1.0	-8.2	26.0	-34.2
255.00	V	190.0	1.0	22.6	-48.8	-49.8	16.9	1.4	-48.4	-13.0	-35.4
382.50	V	0.0	2.4	8.5	-68.7	-70.7	15.7	6.2	-64.5	-13.0	-51.5
510.00	V	180.0	2.0	2.9	-71.0	-74.0	17.1	7.3	-66.7	-13.0	-53.7
637.50	V	10.0	1.6	1.6	-71.7	-75.7	19.2	7.1	-68.6	-13.0	-55.6
765.00	V	180.0	2.0	-1.1			No si	ignal det	tected		
892.50	V	180.0	2.0	-1.6			No si	ignal det	tected		
1020.00	V	180.0	2.0	0.5			No si	ignal det	tected		
1147.50	V	180.0	2.0	0.1			No si	ignal det	tected		
1275.00	V	180.0	1.3	-0.2			No si	ignal det	tected		
38.22	Н	100.0	3.4	2.7	-63.8	-64.8	10.8	-9.0	-73.8	-13.0	-60.8
111.13	Н	190.0	3.6	9.0	-64.6	-65.6	14.3	-3.2	-68.8	-13.0	-55.8
122.88	Н	180.0	3.4	2.1	-75.6	-76.6	13.4	-1.4	-78.0	-13.0	-65.0
181.89	Н	200.0	3.0	5.7	-65.7	-66.7	16.9	-1.5	-68.2	-13.0	-55.2
127.50	Н	170.0	2.6	61.8	-17.8	-18.8	13.3	-1.0	-19.8	26.0	-45.8
255.00	Н	170.0	1.3	25.2	-45.8	-46.8	16.9	1.4	-45.4	-13.0	-32.4
382.50	Н	160.0	1.7	4.3	-71.9	-73.9	15.7	6.2	-67.7	-13.0	-54.7
510.00	Н	180.0	2.0	3.6	-70.7	-73.7	17.1	7.3	-66.4	-13.0	-53.4
637.50	Н	180.0	2.0	-0.2				ignal det			
765.00	Н	190.0	1.6	-2.0				ignal det			
892.50	Н	190.0	2.0	-0.5				ignal det			
1020.00	Н	180.0	1.0	0.2	No signal detected						
1147.50	Н	180.0	1.0	-0.4				ignal det			
1275.00	Н	180.0	1.0	-1.3	No signal detected						
	1	I	I		t upright		Τ	I	I	1	
38.22	V	200.0	1.0	1.3	-72.1	-73.1	10.8	-9.0	-82.1	-13.0	-69.1

Frequency (MHz)	Polarity H/V	Azimuth Degree	Ant. Height (m)	Spurious Level dBµV	Sub. Sig. Gen. Level dBm	Sub. Power Level dBm	Sub. Ant. Factor dB/m	Sub. Ant. Gain dBi	EIRP Level dBm	Limit dBm	Margin dB
45.46	V	180.0	1.0	3.0	-72.7	-73.7	10.9	-7.6	-81.3	-13.0	-68.3
56.80	V	200.0	1.0	5.0	-76.8	-77.8	11.2	-5.9	-83.7	-13.0	-70.7
111.13	V	180.0	1.0	4.8	-67.5	-68.5	14.3	-3.2	-71.7	-13.0	-58.7
122.88	V	0.0	1.0	2.2	-66.3	-67.3	13.4	-1.4	-68.7	-13.0	-55.7
181.89	V	190.0	1.2	2.3	-74.9	-75.9	16.9	-1.5	-77.4	-13.0	-64.4
307.18	V	45.0	1.3	1.5	-80.2	-82.1	14.1	5.9	-76.2	-13.0	-63.2
127.50	V	0.0	1.0	53.5	-13.2	-14.2	13.3	-1.0	-15.2	26.0	-41.2
255.00	V	270.0	2.5	26.7	-49.4	-50.4	16.9	1.4	-49.0	-13.0	-36.0
382.50	V	180.0	1.0	7.2	-73.1	-75.1	15.7	6.2	-68.9	-13.0	-55.9
510.00	V	180.0	1.5	7.0	-67.1	-80.1	17.1	7.3	-72.8	-13.0	-59.8
637.50	V	180.0	1.0	5.2	-67.8	-71.8	19.2	7.1	-64.7	-13.0	-51.7
765.00	V	180.0	1.7	0.2	No signal detected						
892.50	V	180.0	1.0	0.4	No signal detected						
1020.00	V	180.0	2.0	0.4	No signal detected						
1147.50	V	180.0	2.0	0.2	No signal detected						
1275.00	V	180.0	2.0	-1.1	No signal detected						
111.13	Н	0.0	3.0	5.1	-69.8	-70.8	14.3	-3.2	-74.0	-13.0	-61.0
181.89	Н	180.0	3.2	3.7	-68.6	-69.6	16.9	-1.5	-71.1	-13.0	-58.1
127.50	Н	220.0	2.5	50.3	-28.0	-29.0	13.3	-1.0	-30.0	26.0	-56.0
255.00	Н	90.0	1.8	22.1	-48.6	-49.6	16.9	1.4	-48.2	-13.0	-35.2
382.50	Н	180.0	3.0	3.2	-73.0	-75.0	15.7	6.2	-68.8	-13.0	-55.8
510.00	Н	180.0	3.0	4.3	No signal detected						
637.50	Н	200.0	2.4	3.2	-70.6	-74.6	19.2	7.1	-67.5	-13.0	-54.5
765.00	Н	230.0	2.0	-1.7	No signal detected						
892.50	Н	190.0	1.7	1.6	No signal detected						
1020.00	Н	180.0	1.0	36.0	No signal detected						
1147.50	Н	180.0	1.0	34.2	No signal detected						
1275.00	Н	180.0	1.0	33.2	No signal detected						

3.6 Frequency Stability: (FCC Part §2.1055/§87.133)

Frequency as a function of temperature and voltage variation shall be maintained within the FCC-prescribed tolerances. The frequency stability requirement for this radio is 20 ppm.

The temperature stability was measured with the unit in an environmental chamber used to vary the temperature of the sample. The sample was held at each temperature step to allow the temperature of the sample to stabilize.

The EUT is powered by DC voltage supplied externally. The manufacturer's power requirements for the EUT include the following:

Low DC Voltage of 9 VDC (manufacturer's specification)

High DC Voltage of 16 VDC (manufacturer's specifications)

The frequency stability of the transmitter was examined at the voltage extremes and for the temperature range of -30°C to +50°C. The carrier frequency was measured while the EUT was in the temperature chamber. The reference frequency of the EUT was measured at the ambient room temperature with the frequency counter. The following are the reference frequencies at ambient for the Middle channel.

Mid Channel: 127.5 MHz

Table 5. Frequency Deviation as a Function of Temperature

Temperature (Celsius)	Frequency (MHz)	Deviation (Hz)	Limit (Hz)	Result
Ambient	127.499987	0.0	-	-
-30	127.500069	82.0	2550	Pass
-20	127.499984	-3.0	2550	Pass
-10	127.499954	-33.0	2550	Pass
0	127.499967	-20.0	2550	Pass
10	127.499988	1.0	2550	Pass
20	127.499987	0.0	2550	Pass
30	127.499963	-24.0	2550	Pass
40	127.499941	-46.0	2550	Pass
50	127.499940	-47.0	2550	Pass

Table 6. Frequency Deviation as a Function of Voltage

Channel	Voltage (Volts DC)	Frequency (MHz)	Deviation (Hz)	Volts (Rated 10-18 VDC)
Mid Channel 127.5 MHz	at rated	127.499984	0	13.5 VDC
	At 85% of 10 VDC	127.499983	1	8.5VDC
	At 115% of 18VDC	127.499984	0	20.7VDC

Test Equipment:

Manufacturer	Description/Model	Asset Number	Cal. Due
Racal-Dana	1992 Frequency Counter	00117	5/16/06
Global Specialties	1337 Adjustable Power Supply	00361	Cal-in-use
Fluke	73 Multimeter	00045	5/9/06
Tenney Engineering	TR64 Environmental Chamber	00254	9/7/05