第一章:

奇异信号: $u(t), \delta(t)\cdots$

两者关系:
$$\frac{d}{dt}u(t) = \delta(t)$$

$$\frac{d}{dt}u(t-t_0) = \delta(t-t_0)$$

$$f(t)\delta(t) = f(0)\delta(t)$$

$$f(t) * \delta(t) = f(t)$$

$$f(t)\delta(t-t_0) = f(t_0)\delta(t)$$

$$f(t) * \delta(t - t_0) = f(t - t_0)$$

$$\int_{-\infty}^{t} \delta(\tau) d\tau = u(t)$$

$$\int_{-\infty}^{t} \delta(\tau - t_0) d\tau = u(t - t_0)$$

$$f(t)\delta(t) = f(0)\delta(t)$$

$$\int_{-\infty}^{\infty} \delta(t)f(t)dt = f(0)$$

$$f(t)\delta(t-t_0) = f(t_0)\delta(t) \qquad \int_{-\infty}^{\infty} \delta(t-t_0)f(t)dt = f(t_0)$$

$$= f(t - t_0)$$

$$h(t), g(t): h(t) = \frac{dg(t)}{dt}$$
 $g(t) = \int_{-\infty}^{t} h(\tau) d\tau$

卷积:
$$x(t)*h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

四步曲: 反褶、时移、相乘、积分。

反褶:
$$h(\tau) \rightarrow h(-\tau)$$
 $t < 0$.

反褶:
$$h(\tau) \to h(-\tau)$$

时移: $h(-\tau) \to h(t-\tau) = h[-(\tau-t)] \begin{cases} t < 0, & \text{左移 } t \\ t > 0, & \text{右移 } t \end{cases}$

相乘:
$$x(\tau)h(t-\tau)$$

积分:
$$x(t)*h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

计算卷积的方法:

时域方法:
$$\begin{cases} x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau \\ x(t) * h(t) = \frac{dx(t)}{dt} * \int_{-\infty}^{t} h(\tau)d\tau \end{cases}$$

变换域方法:
$$\begin{cases} x(t)*h(t) = \mathbf{F}^{-1} \left[X(j\Omega)H(j\Omega) \right] \\ x(t)*h(t) = \mathbf{L}^{-1} \left[X(s)H(s) \right] \end{cases}$$

卷积的性质:

卷积的代数性质

(1) 交換律
$$f_1(t) * f_2(t) = f_2(t) * f_1(t)$$

(2) 分配律
$$f_1(t)*[f_2(t)+f_3(t)] = f_1(t)*f_2(t)+f_1(t)*f_3(t)$$

(3) 结合律
$$[f_1(t)*f_2(t)]*f_3(t)=f_1(t)*[f_2(t)*f_3(t)]$$

卷积积分的微分与积分

$$\frac{d}{dt}[f_1(t) * f_2(t)] = f_1(t) * \frac{df_2(t)}{dt} = \frac{df_1(t)}{dt} * f_2(t)$$

$$\int_{-\infty}^{t} [f_1(\lambda) * f_2(\lambda)] d\lambda = f_1(t) * \int_{-\infty}^{t} f_2(\lambda) d\lambda = \int_{-\infty}^{t} f_1(\lambda) d\lambda * f_2(t)$$

任意信号可分解为偶分量与奇分量之和,即

$$f_e(t) = \frac{1}{2} [f(t) + f(-t)]$$

$$f_o(t) = \frac{1}{2} [f(t) - f(-t)]$$

第二章: 线性时不变系统:线性、时不变性、微分与积分性

零输入响应:
$$y_{zi}(t) = \sum_{k=1}^{n} A_{zik} e^{\alpha_k t}$$
 零输入响应:
$$y_{zs}(t) = \sum_{k=1}^{n} A_{zsk} e^{\alpha_k t} + y_p(t)$$

$$y_{zs}^{(k)}(0^+) = y^{(k)}(0^+) - y^{(k)}(0^-)$$

$$y(t) = \sum_{k=1}^{n} A_{zik} e^{\alpha_k t} + \sum_{k=1}^{n} A_{zsk} e^{\alpha_k t} + y_p(t)$$
 零粉入响应 零状态响应
$$= \sum_{k=1}^{n} (A_{zik} + A_{zsk}) e^{\alpha_k t} + y_p(t)$$
 强迫响应

自由响应

第二章:

冲激响应h(t)

以单位冲激信号 $\delta(t)$ 作为激励,系统产生的零状态响应 称为"单位冲激响应",以h(t)表示。

系统的全响应, 表达式如下

$$y(t) = \sum_{k=1}^{n} A_{zik} e^{\alpha_k t} + \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau$$
零输入响应
零粉入响应

第三章:

零输入响应与零状态响应: $y[n] = y_{zi}[n] + y_{zs}[n]$

 $y_{zi}[n]$: 当激励x[n]=0时,由系统的起始状态y[-1], y[-2], y[-N]所产生的响应。

 $y_{zs}[n]$: 当起始状态y[-1]=y[-2]==y[-N]=0时,由系统的激励x[n]所产生的响应。

$$y[n] = \sum_{k=1}^{N} C_k \alpha_k^n + y_p[n]$$

$$(C_k = C_{zik} + C_{zsk})$$
强迫响应
$$N$$

$$= \underbrace{\sum_{k=1}^{N} C_{zik} \alpha_{k}^{n}}_{\text{\mathbb{Z}} + \sum_{k=1}^{N} C_{zsk} \alpha_{k}^{n} + y_{p}[n]$$

$$= \underbrace{\sum_{k=1}^{N} C_{zik} \alpha_{k}^{n}}_{\text{\mathbb{Z}} + \sum_{k=1}^{N} C_{zsk} \alpha_{k}^{n} + y_{p}[n]$$

离散线性卷积(卷积和):

$$y[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m] = x[n] * h[n]$$

$$x[n] * u[n] = \sum_{m=-\infty}^{\infty} x[m]u[n-m] = \sum_{m=-\infty}^{n} x[m]$$

反褶、时移、相乘、求和四个步骤:

$$h[-m]$$
, $h[n-m]$, $x[m]$ $h[n-m]$, $\sum_{m=-\infty}^{\infty} x[m]h[n-m]$

第四章:

周期信号---傅里叶级数(离散谱):

非周期信号---傅里叶变换(连续谱):

$$F_n = \frac{E\tau}{T_1} \operatorname{Sa}(\frac{n\Omega_1 \tau}{2})$$

$$F(j\Omega) = E\tau \operatorname{Sa}(\frac{\Omega\tau}{2})$$

对偶性:

若
$$\mathcal{F}[f(t)] = F(j\Omega)$$
, 则 $\mathcal{F}[F(jt)] = 2\pi f(-\Omega)$

若
$$\mathcal{F}[f(t)] = F(j\Omega)$$
则 $\mathcal{F}[F(jt)] = 2\pi f(-\Omega)$

即
$$f(-\Omega) = \frac{1}{2\pi} \mathcal{F}[F(jt)]$$

$$\therefore f(t) = \frac{1}{2\pi} \mathcal{F}[F(jt)]|_{\Omega=-t}$$

时移特性
$$F[f(t\pm t_0)] = F(j\Omega)e^{\pm j\Omega t_0}$$

尺度变换
$$\mathcal{F}[f(at)] = \frac{1}{|a|} F(j\frac{\Omega}{a})$$

频移特性(调制定理)

若
$$\mathcal{F}[f(t)] = F(j\Omega)$$
 ,则
$$\mathcal{F}[f(t)e^{j\Omega_0 t}] = F[j(\Omega - \Omega_0)]$$

$$\mathcal{F}[f(t)\cos\Omega_0 t] = \frac{1}{2} \{ F[j(\Omega + \Omega_0)] + F[j(\Omega - \Omega_0)] \}$$

$$\mathcal{F}[f(t)\sin\Omega_0 t] = \frac{j}{2} \{ F[j(\Omega + \Omega_0)] - F[j(\Omega - \Omega_0)] \}$$

$$\mathcal{F}[e^{j\Omega_0 t}] = 2\pi \delta(\Omega - \Omega_0)$$

$$\mathcal{F}\left[\cos\Omega_{0}t\right] = \pi\left[\delta(\Omega + \Omega_{0}) + \delta(\Omega - \Omega_{0})\right]$$

$$\mathcal{F}\left[\sin\Omega_0 t\right] = j\pi \left[\delta(\Omega + \Omega_0) - \delta(\Omega - \Omega_0)\right]$$

卷积定理:

周期信号的傅里叶变换:

$$F(j\Omega) = \mathcal{F}\left[\tilde{f}(t)\right] = 2\pi \sum_{n=-\infty}^{\infty} F_n \delta(\Omega - n\Omega_1)$$

其中
$$F_n = \frac{1}{T_1} \int_{-T_1/2}^{T_1/2} \tilde{f}(t) e^{-jn\Omega_1 t} dt$$
 或 $F_n = \frac{1}{T_1} F_0(j\Omega) \Big|_{\Omega = n\Omega_1}$

第五章:

系统的频域分析:
$$Y(j\Omega) = H(j\Omega)X(j\Omega)$$

$$H(j\Omega) = \frac{Y(j\Omega)}{X(j\Omega)} = \mathcal{F}[h(t)]$$
 ------频响特性

信号的传输与滤波:

无失真传输:
$$y(t) = Kx(t-t_0)$$

$$H(j\Omega) = Ke^{-j\Omega t_0}$$

理想低通滤波器:

$$H(j\Omega) = e^{-j\Omega t_0} [u(\Omega + \Omega_c) - u(\Omega - \Omega_c)]$$

冲激响应: $h(t) = \frac{\Omega_c}{-} \operatorname{Sa}[\Omega_c(t - t_0)]$

取样信号的傅里叶变换

$$f_{s}(t) = f(t)\delta_{T}(t)$$

$$\delta_T(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_1)$$

$$F_s(j\Omega) = \frac{1}{2\pi} F(j\Omega) * P(j\Omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} F[j(\Omega - n\Omega_s)]$$

幅度调制(常规调幅 ---AM)

$$g(t) = A_0 + f(t); c(t) = \cos(\Omega_0 t + \theta_0)$$

$$\Rightarrow \theta_0 = 0, \quad c(t) = \cos \Omega_0 t$$

$$s_{AM}(t) = g(t)\cos\Omega_0 t = [A_0 + f(t)]\cos\Omega_0 t$$

$$\begin{split} S_{AM}(j\Omega) = & F[s_{AM}(t)] = \pi A_0[\delta(\Omega + \Omega_0) + \delta(\Omega - \Omega_0)] \\ + & \frac{1}{2} \{ F[j(\Omega + \Omega_0)] + F[j(\Omega - \Omega_0)] \} \end{split}$$

2. 双边带抑制载波调幅(DSB)

$$s_{DSB}(t) = f(t)\cos\Omega_0 t$$

$$S_{DSB}(j\Omega) = \frac{1}{2} \{ F[j(\Omega + \Omega_0)] + F[j(\Omega - \Omega_0)] \}$$

解调

$$s_{DSB}(t) = g(t)\cos\Omega_t$$
 相乘 低通滤波器 $\frac{1}{2}g(t)$ $\cos\Omega_t$ (本地载波)

$$\begin{split} G_{0}(j\Omega) &= \frac{1}{2} \{ S_{DSB}[j(\Omega + \Omega_{0})] + S_{DSB}[j(\Omega - \Omega_{0})] \} \\ &= \frac{1}{2} F(j\Omega) + \frac{1}{4} \{ F[j(\Omega + 2\Omega_{0})] + F[j(\Omega - 2\Omega_{0})] \} \end{split}$$

再通过一个理想低通滤波器,其截止频率 Ω_c 满足

$$\Omega_m \leq \Omega_c \leq 2\Omega_0 - \Omega_m$$
 即可取出 $\frac{1}{2}g(t)$

第六章:

拉普拉斯变换

$$F(s) = \mathcal{L}[f(t)] = \int_{0^{-}}^{\infty} f(t) e^{-st} dt$$

-----f(t)的单边拉氏变换

典型信号的拉普拉斯变换----表6-1

拉普拉斯变换的基本性质----表6-2

$$\mathcal{L}\left[\frac{d^{n} f(t)}{dt^{n}}\right] = s^{n} F(s) - s^{n-1} f(0^{-}) - s^{n-2} f'(0^{-}) - \dots - f^{(n-1)}(0^{-})$$

$$= s^{n} F(s) - \sum_{r=0}^{n-1} s^{n-r-1} f^{(r)}(0^{-})$$

拉普拉斯逆变换-----部分分式展开法

拉氏变换求解微分方程及电路(电路的s域模型)

系统函数与冲激响应:

$$H(s) = \frac{Y(s)}{X(s)} = \mathcal{L}[h(t)]$$

自由响应: 由系统函数的极点产生的响应

强迫响应:由激励信号的极点产生的响应

系统频率响应特性:

矢量作图法: H(s) — 零极点图 — $H(j\Omega)$

$$H(s) = H_0 \frac{\prod_{j=1}^{m} (s - z_j)}{\prod_{i=1}^{n} (s - p_i)} \longrightarrow H(j\Omega) = H_0 \frac{\prod_{j=1}^{m} (j\Omega - z_j)}{\prod_{i=1}^{n} (j\Omega - p_i)}$$

$$H(j\Omega) = H_0 \frac{N_1 N_2 \cdots N_m}{M_1 M_2 \cdots M_n} e^{j[(\psi_1 + \psi_2 + \cdots + \psi_m) - (\theta_1 + \theta_2 + \cdots + \theta_n)]}$$

极点靠近*j* Ω轴 ── 幅频特性出现峰点,相频特性迅速减小。

极点在 $j\Omega$ 轴上 ——幅频特性趋于 ∞ ,相频特性出现 -180°跳变。

零点靠近jΩ轴 幅频特性出现谷点,相频特性迅速上升。

零点在jΩ轴上 ——幅频特性趋于0,相频特性出现 180° 跳变。

零、极点离*j*Ω轴远 ——零、极点影响很小。

一般结论: 人

系统模拟: 直接型、级联型、并联型

系统稳定性:

对于因果系统,系统稳定的充要条件是:H(s) 的所有极点均在左半s平面

或
$$H(s) = \frac{b_1 s + b_0}{a_2 s^2 + a_1 s + a_0}$$

 $a_i \ge 0$, i = 0,1,2 ------系统稳定的充要条件

第七章:

序列的傅里叶变换

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

 $X(e^{j\omega})$ 是 ω 的连续的周期函数,周期为 2π 。

第八章:

z变换:
$$X(z) = \mathcal{Z}(x[n]) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

z变换的收敛域:

1) 有限长序列 x[n],

$$n_1 \le n \le n_2$$

收敛域

$$n_{1} < 0, n_{2} > 0$$

$$0 < |z| < \infty$$

$$n \ge 0$$
, $n \ge 0$

$$n_{1} < 0, n_{2} \le 0$$

$$|z| < \infty$$

x[n],

$$n_1 \le n \le \infty$$

收敛域

$$n_1 < 0$$

$$R_{x1} < |z| < \infty$$

$$n_1 > 0$$

$$|z| > R_{x1}$$

$$-\infty \le n \le n_2$$

收敛域

$$n_2 > 0$$

$$0 < |z| < R_{x1}$$

$$n_2 < 0$$

$$|z| < R_{x1}$$

$$-\infty \le n \le \infty$$

收敛域

$$|R_{x1}| < |z| < R_{x2}$$

z逆变换: 部分分式展开法

z变换求解差分方程,零输入响应,零状态响应。 系统函数H(z)。 稳定性:

离散系统稳定的充分必要条件是H(z)的收敛域必须包含单位圆。

因果系统: H(z)的全部极点落在单位圆内

离散系统的频率响应特性:

-----频率响应的几何作图法

$$H(z) \xrightarrow{z = e^{j\omega}} H(e^{j\omega})$$

离散系统频率响应是 ω 的连续的周期函数,周期为 2π 。

数字滤波器:

-----直接型、级联型和并联型

第九章 系统的状态变量分析

连续系统状态方程的建立:

- (1)给定电路-----选电容两端电压和流经电感的电流作为状态变量
- (2)系统的信号流图-----选择积分器、延时器的输出作为状态变量

$$[H(s)] = [C](s[I] - [A])^{-1}[B] + [D]$$

$$[H(z)] = [C](z[I] - [A])^{-1}[B] + [D]$$

-----系统函数矩阵