Scrum

Základní charakteristika

- první varianta představena v roce 1995
- název odkazuje na důležitost týmové práce (odvozeno z hry rugby)
- dá se kombinovat s programovacími praktikami XP
- tři základní fáze
 - o pre-game
 - development (game)
 - o post-game

Reference

- http://www.controlchaos.com
- Ken Schwaber, Mike Beedle. Agile Software Development with SCRUM.

Úvod do softwarového inženýrství IUS 2019/2020

11. přednáška

Ing. Radek Kočí, Ph.D. Ing. Bohuslav Křena, Ph.D.

9. a 13. prosince 2019

3 / 61

4 / 61

Scrum Proces: Pre-game

Plánování

- počáteční seznam požadavků Product Backlog, seřazený podle priorit (backlog nedodělávky, nevyřízené objednávky)
- analýza rizik
- odhad času, zdrojů, ...
- formování týmů (scrum teams)
 - o jeden tým má 5 až 10 členů
 - o každý člen má jinou specializaci
 - Scrum Master vedoucí, zajišťuje správné používání Scrum praktik

Architektonický návrh

- analýza problémové domény na základě backlog; tvorba doménových modelů, prototypů, . . .
- definice architektury systému
- úprava požadavků (backlog) podle navržené architektury

Téma přednášky

- Agilní metodiky dokončení
- Jiný úhel pohledu na vývoj softwaru
 - Management SW projektů
 - Řízení kvality softwaru
 - Měření v SW inženýrství
 - Softwarový tým
 - Motivace lidí

Scrum Development: Sprint Development

Popis fáze

- analýza, návrh a implementace požadavků plynoucích z cíle *Sprintu* a úloh definovaných v *Sprint backlog*
- pro efektivní řízení aktivit se konají setkání týmů

Scrum Meeting

- každodenní, 15 minutová setkání týmu
- účastní se členové týmu, Scrum Master, management
- základní otázky
 - o co bylo uděláno od posledního setkání
 - o jaké překážky se objevily
 - o co bude uděláno do příští schůzky

7 / 61

8 / 61

Scrum Development: Sprint Planning

Setkání

- na začátku každého Sprintu
- účastníci: vývojový tým, uživatelé, zákazníci, management, Scrum Masters, ...

5 / 61

• definuje se cíl *Sprintu*

Sprint Backlog

- vývojový tým definuje Sprint backlog
- seznam úloh nutných pro dosažení cíle
- je implementačně orientovaná, rozšířená podmnožina Product backlog
- jednotlivé položky jsou rozděleny mezi týmy

Scrum Development: Sprint Review

Popis fáze

- na konci každého Sprintu
- demonstruje se výsledný produkt (inkrement)
- vyhodnocení dosažených výsledků ve srovnání s cílem Sprintu
- úprava Product backlog
 - o plně implementované požadavky jsou označeny
 - o nutné úpravy (opravy chyb nebo vylepšení) jsou přidány
 - o změny či nové požadavky jsou začleneny
- vyhodnocení úsilí, splnění cíle, možné změny architektury systému

Scrum Proces: Development

Popis fáze

- probíhá v iteracích; iterace se nazývá Sprint
- typická délka iterace je 30 dnů
- výsledkem je funkční část (inkrement) odpovídající Sprint Backlog (podmnožina Product Backlog)
- každá iterace obsahuje
 - o plánování (planning)
 - vývoj (development)
 - o posouzení (review)

Crystal

Základní charakteristika

- rodina metodologií
 - o různé projekty potřebují různé přístupy
- základní přístupy a techniky sdílí s XP
 - o ale na rozdíl od XP není tak přísně disciplinovaný proces
- obecně je méně produktivní než XP
 - ale více lidí je schopno tento proces lépe akceptovat

Reference

- http://alistair.cockburn.us/Crystal+methodologies
- Alistair Cockburn. Agile Software Development: The Cooperative Game.
- Alistair Cockburn. Crystal Clear: A Human-Powered Methodology for Small Teams.

Scrum Proces: Post-Game

Popis fáze

- integrace výsledků jednotlivých Sprintů (inkrementů)
- testování celého systému
- příprava dokumentace
- zaškolování uživatelů
- akceptační testování

11 / 61

Crystal

Kategorie projektů

- projekty jsou rozděleny do kategorií podle kritičnosti, důležitosti (criticality /jaké jsou ztráty, pokud vývoj selže/) a velikosti
- kritičnost (důležitost)
 - Comfort (C)
 - o Discretionary /volné uvážení/ Money (D)
 - Essential /zásadní, nezbytný/ Money (E)
 - o Life (L)
- velikost maximální počet lidí zapojených do vývoje

Složitost projektů

- větší projekt potřebuje komplexnější metodiku a lepší koordinaci
- kritičtější projekt (criticality) potřebuje rigoróznější (preciznější) přístup

Scrum: Vyhodnocení

Silné stránky

- iterativní inkrementální proces
- časté uvolňování verzí (inkrementů)
- architektura systému je navržena před procesem vývoje
- požadavky se ladí během celého vývoje
- zapojení uživatelů
- jednoduchý proces

Slabé stránky

- nedefinuje přesný postup úloh
- integrace až po vytvoření všech inkrementů
- předpoklad, že přímá komunikace je vhodná pro všechny typy projektů
- nepředepisuje modely pro návrh, často se od Project backlog přechází na implementaci

12 / 61 10 / 61

Je RUP agilní metodikou?

Základní charakteristika

- základní vyjadřovací prostředek je UML
- pracuje v iteracích
- definuje obsah každé iterace
- definuje pracovní rámec (framework)

Je RUP agilní metodikou?

Základní charakteristika

- základní vyjadřovací prostředek je UML
- pracuje v iteracích
- definuje obsah každé iterace
- definuje pracovní rámec (framework)

Použití RUP

- klasický heavyweight proces
- agilní proces

Crystal

Kategorie metodik

- medotiky patřící do rodiny Crystal jsou přiřazeny do kategirií podle své velikosti
- kategorie metodik se označují barvou (seřazeno od nejméně náročné)
 - o Clear C6, D6
 - → Yellow C20, D20, E20
 - o Orange C40, D40, E40
 - *Red* − C80, D80, E80
 - Maroon, Blue, Violet
 - o další mohou být přidány

15 / 61

Crystal: Vyhodnocení

Silné stránky

- iterativní inkrementální proces
- časté uvolňování verzí
- proces se ladí na základě zpětné vazby
- požadavky se ladí během celého vývoje
- zapojení uživatelů
- průběžná integrace

Slabé stránky

- nedefinuje jasný společný proces
- není vhodný pro vysoce kritické projekty
- příliš velká závislost na přímé komunikaci, nepodporuje distribuované týmy

16 / 61 14 / 61

Prediktivní či agilní metodika?

Kdy použít agilní metodiku?

- neurčité nebo měnící se požadavky
- menší nebo neurčitý rozpočet
- odpovědní a dobře motivovaní vývojáři
- menší až středně velký vývojový tým (do cca 80 lidí)
- zákazník, který je ochoten zapojit se do vývoje
- ...

Kdy použít prediktivní metodiku?

- známé a stabilní požadavky
- dostatečný rozpočet
- velký vývojový tým (více jak 100 lidí)
- pevný rozsah projektu
- ...

Metodiky v praxi

- většina metodik může být vytvořena (použita) tak, aby pracovala v nějakém projektu
- libovolná metodika může vést nějaký projekt k neúspěchu
- úspěšné týmy používají inkrementální vývoj
- heavy procesy bývají úspěšné
- light procesy jsou častěji úspěšné

Je RUP agilní metodikou?

Agile Unified Process

- zjednodušená verze RUP (blíží se UP)
- hlavní modelovací jazyk je UML, ale není omezeno
- modelování bez limitů může ohrozit agilnost metodiky
- Ambler, S. W., The Agile Unified Process (AUP)., Ambysoft Corp., 2006.
 http://www.ambysoft.com/unifiedprocess/agileUP.html

dX proces

- minimální RUP proces
- považuje UML za jeden z možných pomocných prostředků

Jména spojená s agilními metodikami

• Ward Cunningham, Kent Beck, Craig Larman, Ron Jeffries, ...

19 / 61

Srovnání přístupů z pohledu požadavků

Jednotlivé typy přístupů k procesu vývoje

- se příliš neliší v celkovém úsilí věnovanému tvorbě požadavků
- se liší v rozložení tohoto úsilí v čase

Převzato z Software Requirements, Microsoft Press, 2014

Úvod do managementu SW projektů

Co je to management?

Management je proces koordinace činností skupiny lidí, který realizuje jednotlivec nebo skupina lidí za účelem dosažení stanovených cílů. Tyto cíle se nedají dosáhnout jenom prací jednotlivce.

Management se uskutečňuje v rámci projektů. Proto se zde soustředíme na management softwarových projektů.

23 / 61

Projekt je ...

... časově ohraničené úsilí, které se vyvíjí s cílem vytvořit jedinečný výsledek (např. výrobek nebo službu).

- časově ohraničené (úsilí) každý projekt má jednoznačný začátek a konec. Konec projektu je dosažen tehdy, když jsou dosaženy stanovené cíle projektu nebo když se ukáže, že těchto cílů dosáhnout nelze.
- jedinečný (výsledek) výsledek projektu se nějak liší od výsledků podobných projektů.

SW inženýr a metodiky

Existuje pro náš projekt 100% správná metodika?

• Ne!

Co musí umět dobrý SW inženýr?

- vybrat vhodnou metodiku nebo
- na základě metodik vytvořit scénář vývoje softwaru tak, aby projekt úspěšně dosáhl stanoveného cíle,
- stanovit cíle splnitelné v daném prostředí
 - o cena
 - termín dokončení
 - rozsah
 - kvalita

a to s ohledem na vývojový tým, který má k dispozici.

Jiný úhel pohledu na vývoj softwaru

- Management SW projektů
- Řízení kvality softwaru
- Měření v SW inženýrství
- Softwarový tým
- Motivace lidí

24 / 61

Inicializace

- Rozpoznání, že projekt může začít a získání všech relevantních informací potřebných pro plánování projektu, např.
 - o časový a cenový horizont
 - základní koncepce projektu
 - o potenciální rizika
- trvá několik dní až měsíců
- v některých organizacích je projekt formálně inicializovaný až po ukončení studie vhodnosti, předběžného plánu nebo jiné formy analýzy
- zdroj nebo stimulace inicializace projektu může být:
 - poptávka na trhu
 - požadavek zákazníka
 - o z důvodu prestiže
 - o výhody technologie
 - požadavky legislativy

Demingův manažerský cyklus (PDCA)

Manažerské procesy by měly probíhat v této nekonečné smyčce:

- Plánování (Plan) naplánování zamýšleného zlepšení
- Zavádění (Do) realizace plánu
- Ověření (Check) zhodnocení dosažených výsledků
- **Jednání (Act)** rozhodnutí, jaké další změny provést pro další zlepšení procesu řízení

27 / 61 25 / 61

Plánování

Vytvoření a udržování plánu pro zabezpečení chodu projektu.

- Definují se požadavky na zdroje, požadavky na práci a definuje se kvalita a kvantita práce.
- Plánování by mělo být tak podrobné, jak je to nezbytné a ne tak, jak je to možné.
- Plánování je intenzivní hlavně v počátečních etapách projektu, v průběhu provádění a řízení se plány upravují podle potřeby.
- Vytvořený plán musí schválit všechny skupiny zapojené do projektu.
- Nedostatky v plánování představují pro projekt značné riziko.

Důvody pro plánování

- snížit neurčitost (výsledku projektu)
- dosáhnout cenovou efektivitu
- zajistit lepší pochopení cílů projektu
- vytvořit základnu pro sledování a řízení práce

Procesy managementu projektu

28 / 61

Řízení

- kontrola a řízení na základě naměřených výkonů (na základě výsledků práce a požadavků na změny)
- preventivní činnosti s cílem předcházet problémům
- shromažďují a rozšiřují se informace
 - o stavu projektu (kde se projekt momentálně nachází v porovnání s plánem)
 - o o postupu projektu (co se dosud udělalo)
 - o budoucím stavu a postupu projektu (předpověď vývoje projektu)
- sleduje se stav projektu, porovnává a posuzuje se
 - postup dosažený v posledním období (týden, měsíc, ...)
 a v obdobích předcházejících
 - o dosažené výsledky s tím, co je ještě potřeba udělat
 - o odhady a skutečné hodnoty; předpověď budoucích hodnot
 - o přiřazení zdrojů (lidé, počítače, ...)
 - poměr dosažených výsledků a času, který uplynul;
 rozhoduje se, či je dosažení cílů projektu reálné
- zajišťuje se řízení změn

Provádění

- spotřebuje nejvíce času (úsilí) a peněz
 u SW projektů jenom při špatném plánu
- realizace plánu projektu
- manažer projektu koordinuje a usměrňuje provádění činností z plánu
 - o přidělování úkolů
 - stanovení priorit
 - o rozdělování pravomocí
 - o sledování postupu prací na projektu
 - rozhodování o umístění důležitých zdrojů
- provádění projektu nejvíce ovlivňuje problémová doména (oblast), technické parametry řešení a model vývoje
- vytváří se výsledek (výrobek, služba)

Projektový plán

Projektový plán obsahuje:

- definici cílů, úloh a odpovědností co je potřeba udělat, pro koho je to potřeba udělat
- definici požadavků na zdroje **kdo** to má udělat **kolik** to bude stát
- techniky, prostředky, zdroje pro vykonávání plánu jak to udělat
- kontrolní body
 kdy je to potřeba udělat
- definici kvality, základ pro měření postupu projektu
- stanovení rizik projektuco když nastane určitá situace

31 / 61

Plánování

32 / 61

Plánování staví mosty mezi tím, kde jsme, a kam chceme jít.

H. Koontz, H. Weihrich

29 / 61

Řízení kvality SW projektů

Obvyklý postup při tvorbě softwaru spočívá v

- co nejrychlejší implementaci programu a
- rychlém **testování** s cílem najít a
- odstranit chyby a nedostatky.

V žádném jiném technickém oboru se nevytvářejí výrobky **nekontrolovatelné kvality**, přičemž by se spoléhalo na **testování**.

35 / 61

36 / 61

Kvalita

- The totality of features and characteristics of a product or service that bear on its ability to meet stated or implied needs. (ISO 8402-1986)
- Souhrn vlastností nebo charakteristik produktu či služby, které souvisí s jeho či její schopností splnit explicitně uvedené či implicitně předpokládané potřeby.
- Kvalita není definovaná jako absolutní míra, ale jako stupeň splnění požadavků či potřeb.
- Kvalita je . . .
 - míra stupně dokonalosti (Oxfordský slovník)
 - splnění požadavků (Crosby)
 - o vhodnost k danému účelu (ISO 9001)
 - schopnost produktu nebo služby plnit dané potřeby (BS 4778)

Ukončení

- zaznamenají se nové poznatky, zkušenosti a poučení pro budoucí projekty
- ukončí se kontrakty s dodavateli a dodávky potřebných výrobků a služeb v rámci projektu, vyřeší se také všechny otevřené problémy (závazky a pohledávky) spojené s dodávkami

33 / 61

Jiný úhel pohledu na vývoj softwaru

- Management SW projektů
- Řízení kvality softwaru
- Měření v SW inženýrství
- Softwarový tým
- Motivace lidí

Parametry softwarového projektu

V každém projektu existují čtyři základní parametry

cena

- o nízké náklady: klesá kvalita i rozsah
- o příliš nízké náklady: zadání nelze splnit
- příliš vysoké náklady: kvalita se nezvýší, čas se nesníží

čas

- o málo času: snižuje se kvalita a rozsah zadání, roste cena
- o příliš mnoho času: oddaluje se zpětná vazba od systému v provozu

kvalita

- o vyšší kvalita: zvyšuje počáteční náklady, do budoucna je snižuje
- nízká kvalita: nízké počáteční náklady, do budoucna zvyšuje enormě náklady (finanční i lidské)

rozsah

o menší rozsah zadaní: možnost vyvíjet rychle, levně a s lepší kvalitou

39 / 61

40 / 61

Parametry softwarového projektu

- žádný účastník nemůže definovat *všechny* parametry
- pro heavyweight metodiky platí, že zákazník často volí rozsah a případně kvalitu, vývojový tým pak určí cenu a čas
- pro agilní metodiky platí, že zákazník často volí cenu, čas a kvalitu, vývojový tým pak určí rozsah

Alternativní pohled (funkcionalita = rozsah + kvalita)

• čas, cena a funkcionalita (rozsah + kvalita)

Různé pohledy na kvalitu

- Z pohledu uživatele může kvalita odpovídat jednoduchosti obsluhy systému, spolehlivému a efektivnímu provádění jednotlivých funkcí systému.
- Z pohledu **provozu** systému kvalita obvykle znamená dobrou provozní dokumentaci a efektivní využití výpočetních prostředků.
- Z pohledu tvůrce a údržbáře systému kvalita odpovídá čitelným a modifikovatelným programům a srozumitelné a přesné dokumentaci.
- Z pohledu **manažera** kvalita obvykle odpovídá dodání výrobku včas, v rámci rozpočtu a dohodnutých požadavků.

37 / 61

Kvalita SW produktu

ISO 9000

- ISO Mezinárodní organizace pro normy (International Standards Organisation), viz http://www.iso.ch/
- ISO 9000 soustava norem pro řízení a zajištění kvality (1979, 1987, 1994, 2000, 2008)
- slučuje standardy 9001, 9002, 9003 (rok 2000) a 9004 (rok 2008)
- mezinárodní měřítko kvality
- Zavádí zpětnou vazbu do business procesů.
- Umožňuje nezávislé posuzování kvality třetí stranou.
- Vychází z vnitřních norem britského ministerstva obrany pro muniční závody z druhé světové války.
- Primárně byly tyto normy vytvořeny pro hromadnou výrobu (ne pro softwarový průmysl). Obsahují však všeobecné požadavky platné pro libovolnou oblast výroby.
- ISO 9000 definuje body, které musí systém výroby splňovat, aby vyhověl této normě.

43 / 61

Zhodnocení ISO 9000

- Dává slušný základ pro dobře fungující výrobu, který se dá dále rozvíjet.
- Zákazník získá určitou představu o organizaci.
- Zvyšuje konkurenceschopnost a zlepšuje jméno organizace (dokud certifikát nezískají všichni).
- Snadno sklouzne k byrokratickému přístupu.
- Důraz je kladen na kontrolu a ne na samotnou kvalitu.
- Zavedení ISO 9000 je poměrně vysoká investice. Zatím neexistuje přizpůsobení normy malým organizacím.
- Poměrně dlouhé zavádění normy (zisk certifikátu).
- Norma nestanovuje vhodný postup pro jejich zavedení.

Funkcionalita, chyby a kvalita

Neplette si kvalitu s funkcionalitou! Systém s řadou funkcí může mít nízkou kvalitu (např. příliš chyb) a naopak. software bez chyb \neq kvalitní software

41 / 61

Normy pro systém zajištění kvality

Pro softwarové produkty se vychází z následujícího předpokladu:

Pokud má organizace kvalitní proces tvorby výrobku (softwaru), budou i její výrobky kvalitní.

Tento přístup se používá hlavně proto, že v softwarovém inženýrství není jednoduché měřit kvalitu programů pomocí nějaké výstupní kontroly.

kvalitní proces ⇒ kvalitní výrobek

44 / 61 42 / 61

Capability Maturity Model – CMM

Úrovně

- 0 Neexistující řízení. Procesy a jejich řízení je zcela chaotické.
- 1 Počáteční (Initial). Procesy jsou realizovány ad hoc, organizace je schopna použít nové či nedokumentované procesy.
- 2 Opakovatelné (Repeatable). Procesy jsou dostatečně dokumentované a umožňují opakování stejných kroků.
- 3 Definované (Defined). Procesy jsou definovány a potvrzeny jako standardní procesy.
- 4 Řízené (Managed). Procesy jsou vyhodnocovány na základě předem stanovených metrik.
- Optimalizující (Optimizing). Řízení procesů zahrnuje i inovační cyklus, lze optimalizovat a zlepšovat procesy.

Capability Maturity Model – CMM

Účel

- vyhodnocení schopnosti (U.S.) vládních dodavatelů splnit softwarové projekty
- zaměřuje se na *procesy*
- Humphrey, W. S. Managing the Software Process. SEI series in software engineering. Addison-Wesley. 1989
- Capability Maturity Model for Software. Technická zpráva. Software Engineering Institute, Carnegie Mellon University. 1993

Maturity Model

- nástroje popisující, jak dobře jsou nastaveny praktiky, procesy a chování organizace; jak kvalitně mohou dosáhnout požadovaných výstupů
- lze použít jako prostředek pro srovnání procesů různých organizací a pro porozumění těmto procesům

47 / 61

Normy pro systém zajištění kvality

Capability Maturity Model Integration (CMMI)

- Řeší problém s nasazením CMM pro tvorbu softwaru Aplikace různorodých modelů, které nejsou integrální součástí procesů vývoje softwaru, zvyšují náklady spojené se školením, posuzováním apod.
- Určený pro vývojové týmy
- CMM se stává obecným teoretickým modelem

ISO/IEC 15504

- IEC International Electrotechnical Commission
- Soustava technických standardů pro vývoj počítačového softwaru
- Odvozen od ISO/IEC 12207 a modelů zralosti CMM, Bootstrap a Trillium
- Další související normy: ISO/IEC 33001 (rodina norem 330xx má nahradit 155xx)
- Není dostupné zdarma

Capability Maturity Model – CMM

Struktura modelu

48 / 61

- Úrovně zralosti (Maturity Levels) 5 úrovní, nejvyšší stupeň reprezentuje ideální stav
- Klíčové oblasti (Key Process Areas) soubory souvisejících aktivit pro dosažení stanovených cílů

45 / 61

- Cíle (Goals) cíle definují rozsah, omezení a záměry klíčových oblastí
- Vlastnosti (Common Features) praktiky pro začlenění klíčových oblastí do procesů organizace
- Klíčové praktiky (Key Practices) popisují praktiky a elementy infrastruktury, které přispívají k efektivnímu začlenění oblastí

Měření v softwarovém inženýrství

Graphs Can Be Very Useful

Very often, a picture is much easier to interpret than raw data

Jiný úhel pohledu na vývoj softwaru

- Management SW projektů
- Řízení kvality softwaru
- Měření v SW inženýrství
- Softwarový tým
- Motivace lidí

51 / 61

Měření v softwarovém inženýrství

- Typy měření
 - Přímé měření: přímé získání hodnoty sledovaného atributu např. počet řádků programu
 - Nepřímé měření: odvození z jiných atributů, které lze měřit přímo např. udržovatelnost lze určit jako čas potřebný pro odstranění chyby
 - jsou možné různé interpretace naměřených hodnot např. počet chyb nalezených za jednotku času reprezentuje kvalitu testování nebo (ne)spolehlivost programu
- Pro úspěch projektu je důležitá dohoda na kritériích přijetí projektu.
 Musejí být měřitelná.
 - Uživatelské rozhraní musí být přátelské.
 - + Operátoři musí být schopní začít pracovat s libovolnou funkcí programu do 30 sekund od usednutí k terminálu.

Měření v softwarovém inženýrství

- Měření je proces přiřazování hodnot k vlastnostem entit reálného světa.
- Měření zvyšuje pravděpodobnost, že i přes nejistotu uděláme dobré rozhodnutí.
- Každé měření musí mít svůj účel (cíl).

Bez měření nelze řídit.

ale

Dostaneme, co měříme.

52 / 61 50 / 61

Metriky pro výrobek - pokračování

- složitost
 - o počet souborů
 - velikost programu (počet příkazů, řádků, ...)
 - počet větvení (příkazy IF)
 - hloubka zanoření řídicích struktur
 - o počet cyklů
 - průměrná délka věty v dokumentaci
- chyby
 - o počet chyb a nedostatků
 - chybovost = počet chyb / kLOC
 - o klasifikace chyb a nedostatků a frekvence jejich výskytu
- udržovatelnost
 - o střední doba potřebná na opravu chyby
 - o střední doba potřebná na pochopení logiky modulu
 - o střední doba na nalezení příslušné informace v dokumentaci

Další používané metriky

Metriky pro proces

- úsilí čas vynaložený na vývoj systému (člověko-měsíce)
- změny požadavků (odráží kvalitu specifikace požadavků)
 - o počet změn požadavků
 - o střední doba od dokončení specifikace do požadavku na změnu
- náklady a čas
 - o začátky a konce činností
 - o délka trvání činností
 - náklady na provedení jednotlivých činností

Metriky pro zdroje

- charakteristiky personálu
 - o produktivita
 - velikost týmu
 - o rozsah a způsob komunikace
 - o zkušenosti
- zatížení sítě, ...

Metriky pro výrobek

- velikost, rozsah (pro odhad času a nákladů a měření produktivity)
 - o počet řádků zdrojového textu programu (LOC)
 - počet modulů
 - o průměrný počet LOC na modul
 - o rozsah dokumentace (počet stran)
- modularita
 - svázanost modulů (počet toků údajů a řízení mezi moduly a počet globálních datových struktur)
 - o soudržnost modulů
- spolehlivost
 - o střední doba mezi výpadky systému (MTBF)

MTBF = MTTF + MTTR

MTTF – střední doba do následujícího výpadku

MTTR – střední doba opravy

dostupnost

56 / 61

o pravděpodobnost, že v daném čase program pracuje správně dostupnost = 100 * MTTF/MTBF [%]

55 / 61

Určení spolehlivosti a dostupnosti

$$MTTF = (3 + 3 + 5 + 7) / 4 = 4,5 dne$$

$$MTTR = (2 + 3 + 1 + 1) / 4 = 1,75 dne$$

$$\mathsf{MTBF} = \mathsf{MTTF} + \mathsf{MTTR} = 25 \ / \ 4 = 6,25 \ \mathsf{dne}$$

dostupnost = MTTF
$$/$$
 MTBF = 18 $/$ 25 = 72 %

Poznámka: Plánované odstávky z důvodu údržby se do výpadků nepočítají.

Studijní koutek – Důvody ukončení studia

Studijní důvody

- alespoň 15 kreditů v 1. semestru studia
- alespoň 30 kreditů za každý rok studia nebo nejméně polovina zapsaných kreditů
- opakovaný povinný předmět
- státní závěrečná zkouška
 Státní závěrečnou zkoušku nebo kteroukoli její část lze jednou opakovat.
- překročení maximální doby studia (SZŘ VUT, čl. 4)
- (opakovaná neomluvená neúčast v kontrolované výuce)

Kázeňské důvody

• vyloučení ze studia za závažný nebo opakovaný disciplinární přestupek

Formální důvody

• nezapsání se do dalšího ročníku

Zanechání studia písemným oznámením

59 / 61

60 / 61

Studijní koutek - Poplatek za studium

§ 58 odst. 3 Zákona č. 111/1998 O Vysokých školách (...)

• Studuje-li student ve studijním programu déle, než je standardní doba studia zvětšená o jeden rok v bakalářském nebo magisterském studijním programu, stanoví mu veřejná vysoká škola poplatek za studium, který činí za každých dalších započatých šest měsíců studia nejméně jedenapůlnásobek základu; do doby studia se započtou též doby všech předchozích studií v bakalářských a magisterských studijních programech, které byly ukončeny jinak než řádně podle § 45 odst. 3 nebo § 46 odst. 3, nejde-li o předchozí studium, po jehož ukončení student řádně ukončil studijní program stejného typu. Období, ve kterém student studoval v takovýchto studijních programech, nebo v takovýchto studijních programech a v aktuálním studijním programu souběžně, se do doby studia započítávají pouze jednou. Od celkové doby studia vypočtené podle tohoto odstavce se však nejdříve odečte uznaná doba rodičovství.

Příloha č. 4, článek 2, odst. 2 Statutu VUT

 Výše poplatků za prodlouženou dobu studia za každých započatých 6 měsíců studia činí: a) trojnásobek základu v prvním roce, b) šestinásobek základu ve druhém roce, c) dvanáctinásobek základu ve třetím a dalších akademických rocích.

Zkouška – Variantní termíny

- 1. termín: čtvrtek 2. 1. 2020, 12:00 (výsledky do 9. 1. 2020)
 - o 270 míst (D105, D0206, D0207, E112)
- 2. termín: **pátek 10. 1. 2020, 9:00** (výsledky do 17. 1. 2020)
 - o 270 míst (D105, D0206, D0207, E112)
- 3. termín: **pondělí 20. 1. 2020, 15:00** (výsledky do 27. 1. 2020)
 - o 180 míst (D105, D0206)
- 4. termín: čtvrtek 23. 1. 2020, 15:00 (výsledky do 30. 1. 2020)
 - o 180 míst (D105, D0206)
- 5. termín: **pátek 31. 1. 2020, 16:00** (výsledky do 7. 2. 2020)
 - o **326 míst** (D105, D0206, D0207, E112, E104, E105)
- Celkem vypsáno 1 226 míst pro 775 zapsaných studentů.
- Na studenta je 1,58 místa (tedy více než minimum 1,50).

Přihlašování na termíny zkoušky

Zkouška – Průběh

- o student v IS FIT (přihlašování začíná 18. 12. 2019 ve 20:04)
- podmínkou je získání zápočtu
- o lze se přihlásit nejvýše na jeden termín současně
- o na další termín až po získání neuspokojivého výsledku
- přihlašování/odhlašování končí **24 hodin** před zkouškou
- Rozsazení do místností (ob 2): v IS FIT
- Nutné: průkaz studenta, propisovací tužka
- Povoleno: nealkoholické nápoje a klasické hodinky
- Zakázáno: vše ostatní
- Čistá doba trvání: 90 minut
- Maximální počet bodů: 60
- Minimum bodů pro průchod: 30

57 / 61

Studijní koutek – Poplatek za studium

Výše základu vyhlášeného MŠMT pro akademický rok 2019/2020

• 4.090 Kč

Výše poplatku za každých započatých 6 měsíců studia po dobu 12 měsíců pro akademický rok 2019/20:

12.300 Kč pokud studium přesahuje standardní dobu zvětšenou o 1 rok
 24.600 Kč pokud studium přesahuje standardní dobu zvětšenou o 2 roky
 49.200 Kč pokud studium přesahuje standardní dobu zvětšenou o 3 a více let

Vizte Přílohu č. 1 Rozhodnutí rektora č. 6/2017.