KIT REKATRONIK

SPESIFIKASI UMUM

BEKALAN KUASA:

- 12V 1A (AC to DC 5.5mm*2.1mm 5.5mm*2.5mm)
- USB ESP32 TTGO (5V)
- AMARAN!!!JANGAN SAMBUNGKAN USB KE ESP32 TTGO DAN BEKALAN KUASA SERENTAK!!

BAHAGIAN EKSPERIMEN:

- Eksperimen 1 LED Berkelip
- Eksperimen 2 Penderia cahaya dab Lampu 12V
- Eksperimen 3 Penderia Suhu dan Kelembapan serta Indikator

BAHAGIAN MIKROPENGAWAL:

ESP32 TTGO

BAHAGIAN LED DAN BUZZER:

- LED Merah, Kuning, Hijau, Biru dan Putih
- Buzzer

LAIN-LAIN:

- Output Tambahan
 Nota tambahan Kod QR
- Input Tambahan
- Pin Tambahan

PENGENALAN

Kit elektronik ini dibangunkan rujukan dari Dokumen Standard Kurikulum dan Pentaksiran (DSKP) dan Buku Teks Tingkatan 2 Rekabentuk Teknologi (RBT). Elemen dan komponen yang digunakan adalah berdasarkan keperluan latihan amali yang perlu dilakukan bagi membantu murid memahami lebih lanjut berkenaan bagaimana untuk mengaturcara mikropengawal di dalam sistem elektronik sehingga berfungsi.

BEKALAN KUASA:

Kit ini menggunakan bekalan kuasa AC ke DC 5.5mm*2.1mm 5.5mm*2.5mm 12V 1A. Penukar Penyesuai Bekalan Kuasa Menerusi sambungan 12V. Selain itu bekalan kuasa juga boleh disalurkan menerusi mikropengawal ESP32 TTGO dengan penggunaan wayar USB. Pengguna hanya perlu memilih salah satu jenis bekalan kuasa sahaja dalam satu-satu masa. Penggunaan dua bekalan kuasa secara serentak akan menyebabkan kerosakan mikropengawal.

Eksperimen 1:

Ekskperimen ini adalah mengikut Buku Teks Tingkatan dimana sistem suis tekan digunakan dalam menghidupkan satu lampu LED. Apabila suis ditekan lampu led disebelahnya akan berkelip. Apabila tidak ditekan, LED tidak akan menyala. Kefungsian kit adalah bergantung kepada pengaturcaraan yang dimasukkan.

Eksperimen 2:

Eksperimen ini menggunakan penderia cahaya sebagai input dan lampu LED 12V sebagai output. Komponen tambahan digunakan iaitu lampu LED 12V dan geganti 12V yang berfungsi sebagai litar penukar bekalan kuasa. Bekalan 12V juga digunakan sebagai sumber kuasa yang boleh diambil daripada kit rekatronik.

Eksperimen 3:

Eksperimen ini menggunakan penderia kelembapan dan suhu iaitu DHT11 sebagai input dan lampu indikator sebagai output. Apabila suhu berada pada keadaan sejuk lampu traffic akan hijau, sebaliknya lampu merah menyala pada keadaan yang panas dan kuning jika suhu berada di paras sederhana.

OLOG

BAHAGIAN KIT REKATRONIK

12V TO 5V DC TO DC CONVERTER

BIL	NAMA	FUNGSI	
1	LED INDIKATOR	LED berfungsi sebagai indikator kefungsian litar bekalan kuasa.	
2	3.3V/5V/GND PIN POWER SUPPLY	Pin ini berfungsi sebagai bekalan kuasa tambahan untuk litar elektronik yang direka.	
3	TERMINAL BEKAKAN 12V	Berfungsi sebagai bekalan kuasa tambahan 12V.	
4	SAMBUNGAN PUNCA KUASA	Berfungsi bagi penyambungan punca kuasa dari adapter (AC 240V to DC 12V).	

5

BAHAGIAN EKSPERIMEN 1

BIL	NAMA	FUNGSI
1	SUISTEKAN	Suis tekan berfungsi bagi menyambung dan memutuskan litar dan bersedia untuk diprogramkan. Suis ini disambungkan secara dalaman dengan kaki D32 ESP32 TTGO.
2	LED MERAH	LED akan menyala jika mendapat bekalan kuasa 3.3V. LED ini telah tersedia disambung dengan kaki D26 ESP32 TTGO dan boleh diprogramkan mengikut kehendak pengguna.

6

BAHAGIAN EKSPERIMEN 2

BIL	NAMA	FUNGSI
1	PIN PENDERIA LDR	Pin ini bersedia disambungkan ke Modul LDR dan tersedia disambung ke kaki D39 dan D38 mikropengawal.
2	PIN GEGANTI	Pin ini bersedia disambungkan ke Modul Geganti dan tersedia disambung ke kaki D13 dan D15 mikropengawal.
3	BEKALAN KUASA 12V	Bekalan kuasa 12V ini boleh digunakan secara terus untuk ekperimen 2 yang menjadi sumber bekalan Lampu LED 12V

BAHAGIAN EKSPERIMEN 3

BIL	NAMA	FUNGSI			
1	PIN PENDERIA SUHU DAN KELEMBAPAN PERSEKITARAN (DHT11)	Pin ini bersedia disambungkan ke Modul DHT dan tersedia disambung ke kaki D33 mikropengawal.			
2	INDIKATOR LED/LAMPU TRAFIK	Pin ini bersedia disambungkan ke Modul Lampu Trafik dan tersedia disambung ke kaki D22,D17, D21 mikropengawal.			
TEKNOLOGY					

BAHAGIAN LED DAN BUZZER

BAHAGIAN LED DAN BUZZER

- Buzzer 5V sebagai komponen suara ataupun bunyi di dalam litar tersebut.
- 5 Lampu LED 5mm LED 20 (mA) boleh berfungsi dengan amali yang diaturkan ke dalam mikropengawal sebagai komponen cahaya.
- Kelima-lima komponen disambungkan secara terus ke Mikropengawal ESP32 TTGO
- Ia sedia diprogramkan mengikut kehendak pengguna atau tujuan latihan singkat tanpa sambungan litar.

INPUT dan OUTPUT TAMBAHAN

INPUT TAMBAHAN

- Papan boleh digunakan dengan menambah input (penderia lain) bagi tujuan membuat latihan atau pengubahsuaian amali sedia ada.
- Memberi peluang sekiranya ada variasi eksperimen lain yang ingin dicuba.

OUTPUT TAMBAHAN

- Papan boleh digunakan dengan menambah output (LED dan Servo Motor) lain bagi tujuan membuat latihan atau pengubahsuaian amali sedia ada.
- Memberi peluang sekiranya ada variasi eksperimen lain yang ingin dicuba.

PIN TAMBAHAN

PIN TAMBAHAN

- Papan boleh digunakan dengan menambah komponen lain bagi tujuan membuat latihan atau pengubahsuaian amali sedia ada.
- Memberi peluang sekiranya ada variasi eksperimen lain yang ingin dicuba.
- Digunakan untuk pengguna mereka bentuk litar atau projek elektronik berskala besar atau lebih rumit.
- Sesuai untuk terus dijadikan papan elektronik utama bagi sesebuah projek elektronik.
- Tersedia pin bekalan 5V/GND
- Sedia untuk disambung kepada semua jenis input dan ouput
- Mewakili semua Pin yang ada pada ESP32 TTGO

MIKROPENGAWAL ESP32 TTGO

MIKROPENGAWAL ESP32 TTGO

- Papan pengembangan ESP32 WIFI + Bluetooth
- Kerangka Pembangunan Internet Espressif (ESP-IDF)
 menggunakan FreeRTOS untuk memanfaatkan kedua
 pemproses berkelajuan tinggi dengan lebih baik dan
 menguruskan banyak periferal terbina dalam ESP32
 melaksanakan TCP / IP, protokol WLAN MAC 802.11 b /
 g / n / e / i penuh, dan spesifikasi Wi-Fi Direct.
- ESP 32 boleh berhubung dengan sebahagian besar Broker WiFi luar.
- ESP32 juga menyokong Wi-Fi Direct.
- Kelajuan boleh mencapai 240MHz dan ia mempunyai RAM 512 kB.
- Pelbagai jenis periferal yang ada, seperti: sentuhan kapasitif, ADC, DAC, UART, SPI, I2C dan banyak lagi.

- 2.4GHz Dual Mode WiFi + Bluetooth Development Board
 - Penggunaan kuasa yang sangat rendah, berfungsi dengan sempurna dengan Arduino IDE
 - Sokong protokol LWIP, Freertos
 - Sokongan Tiga Mod: AP, STA, dan AP + STA
 - ESP32 adalah selamat, boleh dipercayai, dan sesuai dengan pelbagai aplikasi

SENARAI KOMPONEN

KOMPONEN TAMBAHAN

KUANTITI.	SENARAI	KUANTITI.	SENARAI
	Resistors		Adapter 12V
4	220 ohm	1	AC to DC 5.5mm*2.1mm
	Lampu LED		5.5mm*2.5mm 12V 1A Penukar
2	5mm LED 20 (mA) - Merah		Penyesuai Bekalan Kuasa
1	5mm LED 20 (mA) - Kuning	Y	Lampu LED12V
1	5mm LED 20 (mA) - Hijau	1	8mm LED 20 (mA) - Putih
1	5mm LED 20 (mA) - Biru		Geganti 12V
1	5mm LED 20 (mA) - Putih	1	DC+ = DC Voltage input , 5V Module input voltage is 5V,
	Suis Tekan	1	ModulLDR
1	Suis butang tekan 2 Pin	1	Modul DHT11
	Buzzer	1	
1	30mA Buzzer 5V Buzzer atau Pasif Buzzer-PCB		Lampu LED
		1	Modul LED trafik
	TES	1	Kabel USB type C
		1	Set Jumper Wire
		1	Test Pen

PERKARA ASAS MENGGUNAKAN KIT ELEKTRONIK RBT

Kit Elektronik RBT

Wayar Jenis C (Type C)

Komputer Riba/ Dekstop

Sambungkan Kabel Jenis C dari Kit Elekttronik RBT ke Laptop

Jika ESP 32 TTGO menyala, ia bermaksud ia mendapat bekalan kuasasa daripada USB kompter.

CARA INSTALL ARDUINO IDE UNTUK ESP 32 TTGO

Langkah-langkah:

1. Muat turun Arduino IDE do web Arduino https://www.arduino.cc/en/software/

Pilih Installer yang sesuai dengan laptop yang digunakan sama Windows atau Mac OX.

Tekan double click pada ikon Arduino IDE dan lengkapkan proses muat turun macam biasa

Langkah-langkah:

2. Muat turun Arduino sehingga selesai

Langkah-langkah:

3. Buka software Arduino IDE.

Berikut adalah penerangan tentang fungsi butang yang penting yang perlu diketahui sebelum memulakan praktikal.

Langkah-langkah:

1) Tekan butang File dan pilih Preferences

2) Masukkan https://dl.espressif.com/dl/package_esp32_index.json di Additional Board Manager URLs dan seterusnta tekan OK

3) Kemudian, klik butang Tools>Board>Board Manager

4) Setelah selesai, tulis ESP32 pada bahagian Type seperti gambarajah di bawah. Pilih version 1.0.0 dan klik install. Tunggu sehingga selesai/

5) Setelah Selesai, sambungkan Kit ini seperti biasa dan pastikan anda ingat nombor COM X yang terpapar pada Device Manager.

6) Klik butang Tools>Board>ESP32 Arduino dan pilih DOIT ESP32 DEVKIT V1

7) Klik butang Tools>Port>COMX dan pilih Port yanf sama dipaparkan pada DEVICE MANAGER

8) Setelah selesai, pastikan paparan pada bawah Arduino adalah betul dengan memaparkan device dan Port yang digunakan

9) Jika semuanta telah betul, cuba tekan butang Upload dan upload pengaturcaraan kosong seperti di bawah.

10) Jika berjaya dan tiada error, paparan seperti gambarajah di bawah akan dipaparkan.

```
sketch_jan28a | Arduino 1.8.13

File Edit Sketch Tools Help

sketch_jan28a

void setup() {
    // put your setup code here, to run once:
}

void loop() {
    // put your main code here, to run repeatedly:
}

Cone upbading

Hard resetting via RTS pin...
Invalid library found in C:\Users\HP\Documents\Arduino\libraries

Domespace*Arduino\libraries

Domespace*Arduino\libraries
```

