Corrigé du CC2

Exercice 1. a) f est dérivable sur $]0,+\infty[$ (comme combinaison linéaire de fonctions dérivables) et

$$f'(x) = 1 - \frac{1}{x} - \frac{2}{x^2} = \frac{x^2 - x - 2}{x^2}$$
.

On a $x^2 - x - 2 = (x - 2)(x + 1)$; les points critiques de f sont les solutions $dans \]0, +\infty[$ de l'équation $x^2 - x - 2 = 0$; le seul point critique de f est donc 2.

b) Lorsque x tend vers 0 (à droite), $-\ln(x)$ tend vers $+\infty$ et $\frac{2}{x}$ tend vers $+\infty$, donc $\lim_{x\to 0, x>0} f(x) = +\infty$.

On a $f(x) = x \left(1 - \frac{\ln(x)}{x} + \frac{2}{x^2}\right)$. Lorsque x tend vers $+\infty$, $\frac{\ln(x)}{x}$ et $\frac{2}{x^2}$ tendent vers 0, donc $\lim_{x \to +\infty} 1 - \frac{\ln(x)}{x} + \frac{2}{x^2} = 1$. On en déduit : $\lim_{x \to +\infty} f(x) = +\infty$.

c) f'(x) a le même signe que $x^2 - x - 2 = (x - 2)(x + 1)$; comme x + 1 > 0 pour $x \in]0, +\infty[$, f'(x) a le même signe que x - 2. On obtient le tableau de variation suivant.

x	0		2		$+\infty$
f'(x)		_	0	+	
	$+\infty$				$+\infty$
$\int f(x)$		\searrow		7	
			$3 - \ln(2)$		

d) D'après le tableau de variation trouvé en c), la fonction f n'admet pas de maximum (local ou global); f a un minimum global, qui est atteint en 2.

Exercice 2. Par définition, $2^x = e^{x \ln(2)}$. La fonction exponentielle étant strictement croissante sur \mathbb{R} , on a :

$$2^{x} > e^{x^{2}} \iff e^{x \ln(2)} > e^{x^{2}}$$

$$\iff \ln(2)x > x^{2}$$

$$\iff x(\ln(2) - x) > 0$$

Or $x(\ln(2) - x) < 0$ si x < 0 ou $x > \ln(2)$, $x(\ln(2) - x) = 0$ si x = 0 ou $x = \ln(2)$ et $x(\ln(2) - x) > 0$ si $0 < x < \ln(2)$. L'ensemble des solutions est donc : $S =]0, \ln(2)[$.

Exercice 3. a) La fonction cos étant de classe C^{∞} , il en est de même de g, et

$$g'(x) = 2(1 + \cos x)\cos'(x) = -2(1 + \cos x)\sin x;$$

$$g''(x) = -2\cos'(x)\sin x - 2(1+\cos x)\sin'(x) = 2(\sin x)^2 - 2(1+\cos x)\cos x.$$

b) La formule de Taylor-Young en 0 à l'ordre 2 pour la fonction g est :

$$g(x) = g(0) + g'(0)x + \frac{g''(0)}{2}x^2 + x^2\epsilon(x)$$
 avec $\lim_{x\to 0} \epsilon(x) = 0$.

Comme $\cos 0 = 1$ et $\sin 0 = 0$, on trouve : $g(0) = 2^2 = 4$, g'(0) = 0, g''(0) = -4. D'où :

$$(1 + \cos x)^2 = g(x) = 4 - 2x^2 + x^2 \epsilon(x)$$
 avec $\lim_{x \to 0} \epsilon(x) = 0$.

c) D'après b),

$$\frac{g(x) - 4}{x^2} = \frac{-2x^2 + x^2 \epsilon(x)}{x^2} = -2 + \epsilon(x) \quad \text{avec } \lim_{x \to 0} \epsilon(x) = 0.$$

Donc $\lim_{x \to 0} \frac{g(x) - 4}{x^2} = -2.$

Exercice 4. a) $I = \left[\frac{(t-2)^3}{3} + \frac{t^4}{4}\right]_1^4 = \frac{2^3}{3} + \frac{4^4}{4} - (\frac{(-1)^3}{3} + \frac{1^4}{4})$. On obtient : $I = \frac{8}{3} + 64 + \frac{1}{3} - \frac{1}{4} = 67 - \frac{1}{4} = \frac{267}{4}$.

b) La fonction $u: x \mapsto \sin(3x)$ a pour dérivée la fonction $x \mapsto 3\cos(3x)$. Donc la fonction $\frac{u}{3}$ est une primitive de $x \mapsto \cos(3x)$, et

$$J = \left[\frac{\sin(3x)}{3}\right]_0^{\pi/2} = \frac{\sin(3\pi/2) - \sin(0)}{3} = \frac{-1 - 0}{3} = -\frac{1}{3}$$

c) Posons $\varphi(s) = s^2 + 1$. On a $\varphi'(s) = 2s$, donc $s\sqrt{s^2 + 1} = \frac{1}{2}\varphi'(s)\varphi(s)^{1/2}$.

Ainsi la fonction $s \mapsto \frac{1}{2} \frac{\varphi(s)^{\frac{1}{2}+1}}{\frac{1}{2}+1}$ est une primitive sur \mathbb{R} de la fonction $s \mapsto s\sqrt{1+s^2}$. Il vient

$$K = \left[\frac{1}{2} \frac{\varphi(s)^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^2 = \left[\frac{1}{3} (s^2 + 1)^{\frac{3}{2}}\right]_0^2 = \frac{5^{\frac{3}{2}} - 1}{3} = \frac{5\sqrt{5} - 1}{3}.$$

Remarque : on peut aussi utiliser directement la formule de changement de variable

$$K = \frac{1}{2} \int_{0}^{2} \varphi'(s) \sqrt{\varphi(s)} \, ds = \frac{1}{2} \int_{\varphi(0)}^{\varphi(2)} \sqrt{x} \, dx = \frac{1}{2} \int_{1}^{5} \sqrt{x} \, dx = \frac{1}{3} [x^{3/2}]_{1}^{5}.$$