

Centralna Komisja Egzaminacyjna

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

∪kład graficzny © CKE 2010

WPISUJE ZDAJĄCY

KOD					Pl	ESE	CL			

Miejsce na naklejkę z kodem

EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 24 strony (zadania 1–11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 4. Pisz czytelnie i używaj <u>tylko długopisu lub pióra</u> z czarnym tuszem lub atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MAJ 2010

Czas pracy: 180 minut

Liczba punktów do uzyskania: 50

MMA-R1 1P-102

Zadanie 1. (4 pkt)

Rozwiąż nierówność $|2x+4|+|x-1| \le 6$.

	Nr zadania	1.
Wypełnia		4
egzaminator	Uzyskana liczba pkt	

Zadanie 2. (4 pkt)

Wyznacz wszystkie rozwiązania równania $2\cos^2 x - 5\sin x - 4 = 0$ należące do przedziału $\langle 0, 2\pi \rangle$.

	Nr zadania	2.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 3. (4 pkt)

Bok kwadratu \overrightarrow{ABCD} ma długość 1. Na bokach BC i CD wybrano odpowiednio punkty E i F umieszczone tak, by |CE| = 2|DF|. Oblicz wartość x = |DF|, dla której pole trójkąta AEF jest najmniejsze.

	1	
	Nr zadania	3.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 4. (4 pkt)

Wyznacz wartości a i b współczynników wielomianu $W(x) = x^3 + ax^2 + bx + 1$ wiedząc, że W(2) = 7 oraz, że reszta z dzielenia W(x) przez (x-3) jest równa 10.

	Nr zadania	4.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 5. *(5 pkt)*

O liczbach a, b, c wiemy, że ciąg (a, b, c) jest arytmetyczny i a+c=10, zaś ciąg (a+1, b+4, c+19) jest geometryczny. Wyznacz te liczby.

	Nr zadania	5.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 6. (5 pkt)

Wyznacz wszystkie wartości parametru m, dla których równanie $x^2 + mx + 2 = 0$ ma dwa różne pierwiastki rzeczywiste takie, że suma ich kwadratów jest większa od $2m^2 - 13$.

	Nr zadania	6.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 7. *(6 pkt)*

Punkt A = (-2,5) jest jednym z wierzchołków trójkąta równoramiennego ABC, w którym |AC| = |BC|. Pole tego trójkąta jest równe 15. Bok BC jest zawarty w prostej o równaniu y = x + 1. Oblicz współrzędne wierzchołka C.

	Nr zadania	7.
Wypełnia	Maks. liczba pkt	6
egzaminator	Uzyskana liczba pkt	

Zadanie 8. (5 pkt)

Rysunek przedstawia fragment wykresu funkcji $f(x) = \frac{1}{x^2}$. Przeprowadzono prostą równoległą do osi Ox, która przecięła wykres tej funkcji w punktach A i B. Niech C = (3,-1). Wykaż, że pole trójkąta ABC jest większe lub równe 2.

	Nr zadania	8.
Wypełnia	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

Zadanie 9. (4 pkt) Na bokach BC i CD równoległoboku ABCD zbudowano kwadraty CDEF i BCGH (zobacz rysunek). Udowodnij, że |AC| = |FG|.

	Nr zadania	9.
Wypełnia	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 10. *(4 pkt)*Oblicz prawdopodobieństwo tego, że w trzech rzutach symetryczną sześcienną kostką do gry suma kwadratów liczb uzyskanych oczek będzie podzielna przez 3.

Wypełnia	Nr zadania	10.
	Maks. liczba pkt	4
egzaminator	Uzyskana liczba pkt	

Zadanie 11. *(5 pkt)*

W ostrosłupie prawidłowym trójkątnym krawędź podstawy ma długość a. Ściany boczne są trójkątami ostrokątnymi. Miara kąta między sąsiednimi ścianami bocznymi jest równa 2α . Wyznacz objętość tego ostrosłupa.

Wypełnia	Nr zadania	11.
	Maks. liczba pkt	5
egzaminator	Uzyskana liczba pkt	

BRUDNOPIS