ASTR 792 HW 11

Craig Brooks

December 2023

14.2a

The transition probability in general can be written as

$$P(3p \to 1s) = A_{3p->1s}\delta t$$

The two possible transitions from the 3p state are

$$3p \to 2s$$
 $A_{3p->2s} = 2.245 \cdot 10^7 \ s^{-1}$
 $3p \to 1s$ $A_{3p->1s} = 1.672 \cdot 10^8 \ s^{-1}$

with wavelengths

$$H\alpha: \ 3p \to 2s$$
 $\lambda_{3p->2s} = 656.46 \ nm$ $Ly\beta: \ 3p \to 1s$ $A_{3p->1s} = 102.57 \ nm$

The transition probability can be calculated by taking te branching ratios

$$\frac{A_{3p->2s}}{A_{3p->1s}} = \frac{2.245 \cdot 10^7 \ s^{-1}}{1.672 \cdot 10^8 \ s^{-1}}$$
$$= 135$$

Thus, the probability for emitting $Ly\beta=1-.134=.866$