Sequências Numéricas

Definição: Seja $n_0 \in \mathbb{N}$.

Uma função f, cujo domínio é $\{n \in \mathbb{N}/n \ge n_0\}$ ou $\{n \in \mathbb{N}/n \le n_0\}$ e que associa a cada elemento deste conjunto um número real, é chamada uma sequência numérica. Quando o domínio é $\{n \in \mathbb{N}/n \ge n_0\}$ dizemos que a sequência é infinita e, no outro caso, dizemos que é finita.

Para sequências, o número real associado por f ao natural n é chamado termo geral da sequência e notado por a_n , em lugar de f(n), como é usual para funções. Usamos a notação $\{a_n\}_{n\geq n_0}$ ou $\{a_n\}_{n\leq n_0}$ para representarmos a sequência de termo geral a_n .

Exemplos:

- 1. $\{(-1)^n\}_{n\geq 0}$. Desta forma representamos a sequência cujos termos são $a_0=1,\ a_1=-1,$ $a_2=1,\ a_3=-1,\ldots,$ o que também podemos representar por $\{1,-1,1,-1,1,-1,\ldots\}$.
- 2. $\left\{\frac{1}{n}\right\}_{n\geq 1}$. Desta forma representamos a sequência cujos termos são $a_1=1,\ a_2=1/2,\ a_3=1/3,$ $a_4=1/4,\ldots,$ o que também podemos representar por $\{1,\ 1/2,\ 1/3,\ 1/4,\ 1/5,\ 1/6,\ldots\}$.
- 3. $\{n\}_{n\geq 0}$. Desta forma representamos a sequência cujos termos são $a_1=1, a_2=2, a_3=3, a_4=4, \ldots,$ o que também podemos representar por $\{1, 2, 3, 4, 5, 6, \ldots\}$.
- 4. $\left\{\frac{(-1)^n}{(n+5)^2}\right\}_{n\geq 0}$. Desta forma representamos a sequência cujos termos são $a_0=1/25,\ a_1=-1/36,$ $a_2=1/49,\ a_3=-1/64,\ldots,$ o que também podemos representar por $\{1/25,\ -1/36,\ 1/49,\ -1/64,1/81,\ -1/100,\ldots\}$.
- 5. Neste exemplo, a sequência está definida por recorrência e é denominada sequência de Fibonacci $a_1=1,\ a_2=1,$ e, para $n\geq 2,\ a_n=a_{n-2}+a_{n-1}.$ Os primeiros termos desta sequência são $a_1=1,\ a_2=1,\ a_3=2,\ a_4=3,\ldots$
 - O termo a_n desta sequência representa o número de casais de coelhos que haverá no n-ésimo mês, supondo que iniciamos a criação com um casal de coelhos, que cada casal de coelhos precisa dois meses para amadurecer e que, passado este tempo, gera um novo casal a cada mês. Supõe-se também que não há mortes nem problemas de cruzamentos.
- 6. Fixados os números reais a e r, a sequência definida por $\{a+nr\}_{n\geq 0}$ é chamada $progress\~ao$ aritm'etica com primeiro termo "a" e razão "r". Neste caso, dois termos consecutivos da sequência diferem por r.
- 7. Fixados os números reais a e r, a sequência definida por $\{ar^n\}_{n\geq 0}$ é chamada $progress\~ao$ geom'etrica com primeiro termo "a" e razão "r". Neste caso, o quociente entre dois termos consecutivos da sequência é r.

8. $\{1+2+3+\cdots+n\}_{n\geq 1}$. Desta forma representamos a sequência cujos termos são $s_1=1$, $s_2=1+2$, $s_3=1+2+3$, $s_4=1+2+3+4$,..., o que também podemos representar por $\{1, 3, 6, 10, 15, ...\}$. Neste caso, o termo geral da sequência representa a soma dos naturais de 1 até n. Podemos determinar uma fórmula para s_n . Para tanto, basta observarmos que reescrevendo s_n com as parcelas na ordem invertida e somando membro a membro, obtemos:

$$s_n = 1 + 2 + 3 + \dots + (n-1) + n$$

 $+ = + + + \dots + \dots + \dots + \dots$
 $s_n = n + (n-1) + (n-2) + \dots + 2 + 1$
 $2s_n = (n+1) + (n+1) + (n+1) + \dots + (n+1) + (n+1)$

Como no lado direito da última igualdade temos n parcelas, todas iguais a n+1, concluímos que

soma dos números naturais de 1 até
$$n=s_n=\frac{n\left(n+1\right)}{2}$$
.

Podemos também justificar a fórmula da soma obtida acima conforme descrito abaixo, usando fórmulas da geometria.

Para isto, construímos uma escada com "n + 1" degraus, empilhando quadradinhos iguais, cujos lados medem 1 unidade.

O número total de quadradinhos que formam a escada é

$$1+2+3+4+\cdots+n+(n+1)$$
,

obtido somando-se o número de quadradinhos de cada coluna.

Vejamos como obter o valor de

$$s_n = 1 + 2 + 3 + 4 + \dots + n.$$

A escada está desenhada dentro do quadrado $(n+1)\times(n+1).$

Observamos que a escada é formada por dois tipos de quadradinhos, os quadradinhos da diagonal, que estão pintados de cinza e os quadradinhos abaixo da diagonal, que são brancos. Quando retiramos os n+1 quadradinhos pintados de cinza do quadrado $(n+1)\times(n+1)$, sobram duas partes , aquela formada pelos quadradinhos brancos e a formada pelos quadradinhos hachurados, que têm a mesma área, pois cada uma destas partes contém um número de quadradinhos igual a $1+2+3+\cdots+n=s_n$.

Assim, temos que

área do quadrado de lado $(n+1)=2(1+2+3+\cdots+n)+$ número de quadradinhos da diagonal, ou seja, $(n+1)^2=2(1+2+3+\cdots+n)+(n+1)$.

Daí concluímos que $s_n = 1 + 2 + 3 + \cdots + n = \frac{(n+1)^2 - (n+1)}{2} = \frac{(n+1)n}{2}$, conforme obtido anteriormente.

9. $\{1+3+5+\cdots+(2n-1)\}_{n\geq 1}$. Os primeiros termos desta sequência são $s_1=1,\ s_2=1+3,$ $s_3=1+3+5,\ s_4=1+3+5+7,\ldots$, ou seja, s_n é a soma dos n primeiros números ímpares.

Na figura ao lado estão representados quadriláteros cuja área corresponde ao valor do termo s_n indicado abaixo da figura. Use este fato para obter uma fórmula para s_n .

Definição: Dada a sequência $\{a_n\}_{n\geq n_0}$, chamamos de série numérica com termo geral a_n , ou simplesmente série com termo geral a_n , a sequência $\{s_k\}_{k\geq n_0}$ cujos termos são $s_0=a_{n_0},\ s_1=a_{n_0}+a_{n_0+1},\ s_2=a_{n_0}+a_{n_0+1}+a_{n_0+2},\ldots,\ s_k=a_{n_0}+a_{n_0+1}+a_{n_0+2}+\cdots+a_{n_0+k}$ ou, expressando na forma de somatório, temos $s_k=\sum_{n=n_0}^{n=n_0+k}a_n$.

Cada um dos termos da sequência $\{s_k\}_{k\geq 1}$ é chamada de soma parcial da série com termo geral a_n . Representamos a série numérica com termo geral a_n com a notação $\sum_{n=1}^{\infty} a_n$.

Exemplos:

- 1. Nos exemplos 6 e 7 anteriores, as sequências dadas são, de fato, séries numéricas, que podem ser representadas por $\sum_{n=1}^{\infty} n$, no exemplo 6 e por $\sum_{n=1}^{\infty} (2n-1)$, no exemplo 7, e cujas sequências de somas parciais são $\left\{\sum_{n=1}^{n=k} n\right\}_{k\geq 1}$, no exemplo 6 e $\left\{\sum_{n=1}^{n=k} (2n-1)\right\}_{k\geq 1}$, no exemplo 7. Naqueles exemplos foram encontradas fórmulas para as sequências das somas parciais. Mostramos que $\sum_{n=1}^{n=k} n = \frac{k(k+1)}{2}$ e que $\sum_{n=1}^{n=k} (2n-1) = k^2$.
- 2. $\sum_{n=1}^{\infty} 1$. Os quatro primeiros termos da sequência das somas parciais desta série são $s_1=1$, $s_2=1+1=2,\ s_3=1+1+1=3,\ s_4=1+1+1+1=4$. É fácil ver que, para cada $n\in\mathbb{N},\ s_n=n$.
- 3. A série $\{\sum_{n=0}\infty\}ar^n$ é chamada série geométrica de razão r, pois as parcelas formam uma progressão geométrica de razão r. Para obtermos uma fórmula para a soma parcial s_n , iniciamos efetuando a subração $rs_n s_n$.

$$rs_n = ar + ar^2 + ar^3 + \dots + ar^n + ar^{n+1}$$

 $-= - - - - \dots - - \dots$
 $s_n = a + ar + ar^2 + \dots + ar^{n-1} + ar^n$
 $(r-1)s_n = -a$

Portanto,
$$s_n = \frac{a(r^{n+1} - 1)}{r - 1} = \frac{a(1 - r^{n+1})}{1 - r}$$

Observação:

Dada a sequência $\{a_n\}_{n\geq 1}$, formamos a série $\left\{\sum_{j=1}^{j=k} (a_{j+1}-a_j)\right\}$, chamada de série telescópica. As quatro primeiras somas parciais da série são $s_1=a_2-a_1,\ s_2=(a_2-a_1)+(a_3-a_2)=a_3-a_1,$ $s_3=(a_2-a_1)+(a_3-a_2)+(a_4-a_3)=a_4-a_1,\ s_4=(a_2-a_1)+(a_3-a_2)+(a_4-a_3)+(a_5-a_4)=a_5-a_1.$ É fácil ver que uma soma parcial de ordem n é dada por $s_n=a_{n+1}-a_1.$

Exemplos:

1. $\sum_{n=1}^{n=k} n^2$. As quatro primeiras somas parciais da série dada são $s_1 = 1^2 = 1$; $s_2 = 1^2 + 2^2 = 5$; $s_3 = 1^2 + 2^2 + 3^2 = 14$; $s_4 = 1^2 + 2^2 + 3^2 + 4^2 = 30$.

Vamos agora determinar uma fórmula para as somas parciais. Para isto usaremos a série telescópica e a fórmula já encontrada da soma dos n primeiros números naturais.

Para $n \in \mathbb{N}$, temos:

$$(n+1)^3 = n^3 + 3n^2 + 3n + 1 \Longrightarrow (n+1)^3 - n^3 = 3n^2 + 3n + 1 \Longrightarrow$$

$$\sum_{n=1}^{n=k} \left[(n+1)^3 - n^3 \right] = 3 \sum_{n=1}^{n=k} n^2 + 3 \sum_{n=1}^{n=k} n + \sum_{n=1}^{n=k} 1 \implies$$

$$(k+1)^3 - 1 = 3\sum_{n=1}^{n=k} n^2 + 3\frac{k(k+1)}{2} + k \Longrightarrow$$

$$(k+1)^3 - 1 - 3\frac{k(k+1)}{2} - k = 3\sum_{n=1}^{n=k} n^2 \Longrightarrow$$

$$\frac{2(k+1)^3 - 2 - 3k(k+1) - 2k}{6} = \sum_{n=1}^{n=k} n^2 \implies$$

$$\frac{k(k+1)(2k+1)}{6} = \sum_{n=1}^{n=k} n^2.$$

2. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. Usando que $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$, é fácil encontrar uma fórmula para a sequência das somas parciais, uma vez que a série dada é telescópica.