Final Project AE 569 IGM Guidance algorithm

Christian Engelbrecht November 12, 2017

1 Equations of motion; K1, K2

For a given set of final states of an ascent vehicle leaving the lunar surface, we can write the equations of motion simply as:

$$\begin{aligned} \dot{x} &= V_x \\ \dot{y} &= V_y \\ \dot{V}_x &= a \cos \beta \\ \dot{V}_y &= -g + a \sin \beta \end{aligned}$$

Where β is the flight angle of the vehicle, and

$$a = \frac{T}{m(t)} = \frac{T}{m_0 - \dot{m}(t - t_0)}$$

is the thrust acceleration of the vehicle, for a given thrust T.The vehicle ascends from some time 0 to a final time t_f , where the final condition of the vehicle is

$$V_x(t_f) = V_x^*$$

$$V_y(t_f) = V_y^*$$

$$y(t_f) = y_f^*$$

Using optimal control theory, we now aim to maximize the Hamiltonian H of the system. The Hamiltonian is

$$H = P_x V_x + P_y V_y + P_{V_x} a \cos(\beta) + P_{V_y} (-g + a \sin(\beta))$$

Where P_r is $\binom{P_x}{P_y}$, and P_V is $\binom{P_{V_x}}{P_{V_y}}$ are the costate vectors for position and velocity, respectively.

We also define a performance index J that will minimize the total flight time

$$J = t_f$$

The derivatives for the costate equations are

$$\dot{P}_{x} - \frac{\partial H}{\partial x} = 0$$

$$\Rightarrow P_{x} = c_{1}$$

$$\dot{P}_{y} - \frac{\partial H}{\partial y} = 0$$

$$\Rightarrow P_{y} = c_{2}$$

$$\dot{P}_{V_{x}} = -\frac{\partial H}{\partial V_{x}} = -P_{x}$$

$$\Rightarrow P_{V_{x}} = c_{1}t + c_{3}$$

$$\dot{P}_{V_{y}} - \frac{\partial H}{\partial V_{y}} = -P_{y}$$

$$\Rightarrow P_{V_{y}} = c_{2}t + c_{4}$$

Our control variable here is β , and since this is not a constrained control (β can take on any value), the optimility condtition $\frac{\partial H}{\partial \beta} = 0$ gives us an expression to relate β to the constants found above:

$$\frac{\partial H}{\partial \beta} = \left(\frac{T}{M}\right) \left(-P_{V_x} \sin \beta + P_{V_y} \cos \beta\right) = 0$$

$$\Rightarrow -P_{V_x} \sin \beta + P_{V_y} \cos \beta = 0$$

$$P_{V_x} tan\beta - P_{V_y} = 0$$

$$\tan \beta = \frac{P_{V_y}}{P_{V_x}}$$

$$\tan \beta = \frac{c_2 t + c_4}{c_1 t + c_3}$$

This is the familiar bilinear tangent law. We can now use the transversality conditions to trim down the number of unknowns. The transversality condition for P_{V_x} is

$$P_x(t_f) = -\frac{\partial \Phi}{\partial x(t_f)} = -\frac{\partial t_f}{x(t_f)} = 0$$
$$\Rightarrow P_x = c_1 = 0$$

Similarly, the transversality condition for P_y :

$$\begin{split} P_y(t_f) &= -\frac{\partial \Phi}{\partial y(t_f)} = -\frac{\partial t_f}{y(t_f)} = 0 \\ &\Rightarrow P_y = c_2 = 0 \\ &\therefore \tan \beta = \frac{c_4}{c_3} = constant \equiv \tan \tilde{\chi} \end{split}$$

We can now integrate the equations of motion to find explicit closed form solutions for V_x, V_y, x, y . Integrating V_x and V_y :

$$V_y(t) =$$