Operations with Functions

Objectives

Write the sum, difference, product, and quotient of two functions

Evaluate the sum, difference, product, and quotient of two functions at a value

We can add, subtract, multiply, and divide functions just like we can with real numbers.

Sum	(f+g)(x)=f(x)+g(x)
Difference	(f-g)(x)=f(x)-g(x)
Product	$(fg)(x) = f(x) \cdot g(x)$
Quotient	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$

So if
$$f(x) = x + 2$$
 and $g(x) = x^2 - 4$, then

So if
$$f(x) = x + 2$$
 and $g(x) = x^2 - 4$, then
$$(f+g)(x) = f(x) + g(x)$$

So if
$$f(x) = x + 2$$
 and $g(x) = x^2 - 4$, then
$$(f + g)(x) = f(x) + g(x)$$
$$= x + 2 + x^2 - 4$$

So if
$$f(x) = x + 2$$
 and $g(x) = x^2 - 4$, then
$$(f + g)(x) = f(x) + g(x)$$

$$= x + 2 + x^2 - 4$$

$$= x^2 + x - 2$$

(a)
$$(f+g)(x)$$

(a)
$$(f+g)(x)$$

$$(f+g)(x) = f(x) + g(x)$$

(a)
$$(f+g)(x)$$

 $(f+g)(x) = f(x) + g(x)$
 $= x^2 - 3 + 4x + 5$

(a)
$$(f+g)(x)$$

 $(f+g)(x) = f(x) + g(x)$
 $= x^2 - 3 + 4x + 5$
 $= x^2 + 4x + 2$

Example 1
$$f(x) = x^2 - 3$$
 $g(x) = 4x + 5$

(b)
$$(f - g)(x)$$

(b)
$$(f-g)(x)$$

 $(f-g)(x) = f(x) - g(x)$

(b)
$$(f-g)(x)$$

 $(f-g)(x) = f(x) - g(x)$
 $= x^2 - 3 - (4x + 5)$

(b)
$$(f-g)(x)$$

 $(f-g)(x) = f(x) - g(x)$
 $= x^2 - 3 - (4x + 5)$
 $= x^2 - 3 - 4x - 5$

(b)
$$(f-g)(x)$$

 $(f-g)(x) = f(x) - g(x)$
 $= x^2 - 3 - (4x + 5)$
 $= x^2 - 3 - 4x - 5$
 $= x^2 - 4x - 8$

Example 1
$$f(x) = x^2 - 3$$
 $g(x) = 4x + 5$

(c)
$$(g-f)(x)$$

(c)
$$(g-f)(x)$$

 $(g-f)(x) = g(x) - f(x)$

(c)
$$(g-f)(x)$$

 $(g-f)(x) = g(x) - f(x)$
 $= 4x + 5 - (x^2 - 3)$

(c)
$$(g-f)(x)$$

 $(g-f)(x) = g(x) - f(x)$
 $= 4x + 5 - (x^2 - 3)$
 $= 4x + 5 - x^2 + 3$

(c)
$$(g-f)(x)$$

 $(g-f)(x) = g(x) - f(x)$
 $= 4x + 5 - (x^2 - 3)$
 $= 4x + 5 - x^2 + 3$
 $= -x^2 + 4x + 8$

(d) (fg)(x)

Example 1
$$f(x) = x^2 - 3$$
 $g(x) = 4x + 5$

(d)
$$(fg)(x)$$

$$(fg)(x) = f(x) \cdot g(x)$$

Example 1
$$f(x) = x^2 - 3$$
 $g(x) = 4x + 5$

(d)
$$(fg)(x)$$

 $(fg)(x) = f(x) \cdot g(x)$
 $= (x^2 - 3)(4x + 5)$

Example 1
$$f(x) = x^2 - 3$$
 $g(x) = 4x + 5$

Example 1
$$f(x) = x^2 - 3$$
 $g(x) = 4x + 5$

Example 1
$$f(x) = x^2 - 3$$
 $g(x) = 4x + 5$

Example 1
$$f(x) = x^2 - 3$$
 $g(x) = 4x + 5$

Example 1
$$f(x) = x^2 - 3$$
 $g(x) = 4x + 5$

(d)
$$(fg)(x)$$

 $(fg)(x) = f(x) \cdot g(x)$
 $= (x^2 - 3)(4x + 5)$
 $4x - 5$
 $x^2 = 4x^3 = 5x^2$
 $-3 = -12x = -15$

Example 1
$$f(x) = x^2 - 3$$
 $g(x) = 4x + 5$

(d)
$$(fg)(x)$$

$$(fg)(x) = f(x) \cdot g(x)$$

$$= (x^{2} - 3)(4x + 5)$$

$$4x + 5$$

$$x^{2} \boxed{4x^{3} | 5x^{2}}$$

$$-3 \boxed{-12x | -15}$$

$$4x^{3} + 5x^{2} - 12x - 15$$

(e)
$$\left(\frac{f}{g}\right)(x)$$

Example 1
$$f(x) = x^2 - 3$$
 $g(x) = 4x + 5$

(e)
$$\left(\frac{f}{g}\right)(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Example 1
$$f(x) = x^2 - 3$$
 $g(x) = 4x + 5$

(e)
$$\left(\frac{f}{g}\right)(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
$$= \frac{x^2 - 3}{4x + 5}$$

Example 1
$$f(x) = x^2 - 3$$
 $g(x) = 4x + 5$

(f)
$$\left(\frac{g}{f}\right)(x)$$

Example 1
$$f(x) = x^2 - 3$$
 $g(x) = 4x + 5$

(f)
$$\left(\frac{g}{f}\right)(x)$$

$$\left(\frac{g}{f}\right)(x) = \frac{g(x)}{f(x)}$$

Example 1
$$f(x) = x^2 - 3$$
 $g(x) = 4x + 5$

(f)
$$\left(\frac{g}{f}\right)(x)$$

$$\left(\frac{g}{f}\right)(x) = \frac{g(x)}{f(x)}$$
$$= \frac{4x + 5}{x^2 - 3}$$

Objectives

Write the sum, difference, product, and quotient of two functions

2 Evaluate the sum, difference, product, and quotient of two functions at a value

If
$$f(x) = x + 2$$
 and $g(x) = x^2 - 4$, then

If
$$f(x) = x + 2$$
 and $g(x) = x^2 - 4$, then
$$(f+g)(3) = f(3) + g(3)$$

If
$$f(x) = x + 2$$
 and $g(x) = x^2 - 4$, then
$$(f+g)(3) = f(3) + g(3)$$
$$= (3+2) + (3^2 - 4)$$

If
$$f(x) = x + 2$$
 and $g(x) = x^2 - 4$, then
$$(f+g)(3) = f(3) + g(3)$$
$$= (3+2) + (3^2 - 4)$$
$$= 10$$

If
$$f(x) = x + 2$$
 and $g(x) = x^2 - 4$, then

If
$$f(x) = x + 2$$
 and $g(x) = x^2 - 4$, then
$$(f+g)(x) = f(x) + g(x)$$

If
$$f(x) = x + 2$$
 and $g(x) = x^2 - 4$, then
$$(f + g)(x) = f(x) + g(x)$$
$$= x + 2 + x^2 - 4$$

If
$$f(x) = x + 2$$
 and $g(x) = x^2 - 4$, then
$$(f+g)(x) = f(x) + g(x)$$

$$= x + 2 + x^2 - 4$$

$$= x^2 + x - 2$$

If
$$f(x) = x + 2$$
 and $g(x) = x^2 - 4$, then
$$(f+g)(x) = f(x) + g(x)$$

$$= x + 2 + x^2 - 4$$

$$= x^2 + x - 2$$

$$(f+g)(3) = 3^2 + 3 - 2$$

If
$$f(x) = x + 2$$
 and $g(x) = x^2 - 4$, then
$$(f+g)(x) = f(x) + g(x)$$

$$= x + 2 + x^2 - 4$$

$$= x^2 + x - 2$$

$$(f+g)(3) = 3^2 + 3 - 2$$

$$= 10$$

(a)
$$(f+g)(3)$$

(a)
$$(f+g)(3)$$

$$(f+g)(3) = f(3) + g(3)$$

(a)
$$(f+g)(3)$$

 $(f+g)(3) = f(3) + g(3)$
 $= 6 + 17$

(a)
$$(f+g)(3)$$

 $(f+g)(3) = f(3) + g(3)$
 $= 6 + 17$
 $= 23$

Example 2
$$f(x) = x^2 - 3$$
 and $g(x) = 4x + 5$

(b)
$$(f-g)(0)$$

(b)
$$(f-g)(0)$$

$$(f-g)(0) = f(0) - g(0)$$

(b)
$$(f-g)(0)$$

 $(f-g)(0) = f(0) - g(0)$
 $= -3 - 5$

(b)
$$(f-g)(0)$$

 $(f-g)(0) = f(0) - g(0)$
 $= -3 - 5$
 $= -8$

Example 2 $f(x) = x^2 - 3 \text{ and } g(x) = 4x + 5$

(c) (fg)(2)

(c)
$$(fg)(2)$$

$$(fg)(2) = f(2) \cdot g(2)$$

$$(fg)(2) = f(2) \cdot g(2)$$

= 1(13)

= 13

(c)
$$(fg)(2)$$

$$(fg)(2) = f(2) \cdot g(2)$$

$$= 1(13)$$

Example 2 $f(x) = x^2 - 3 \text{ and } g(x) = 4x + 5$

(d) (gg)(1)

(d)
$$(gg)(1)$$

$$(gg)(1)=g(1)\cdot g(1)$$

(d)
$$(gg)(1)$$

$$(gg)(1) = g(1) \cdot g(1)$$

$$= 9(9)$$

(d)
$$(gg)(1)$$

 $(gg)(1) = g(1) \cdot g(1)$
 $= 9(9)$
 $= 81$

(e)
$$\left(\frac{f}{g}\right)(1)$$

Example 2 $f(x) = x^2 - 3 \text{ and } g(x) = 4x + 5$

(e)
$$\left(\frac{f}{g}\right)(1)$$

$$\left(\frac{f}{g}\right)(1) = \frac{f(1)}{g(1)}$$

(e)
$$\left(\frac{f}{g}\right)(1)$$

$$\left(\frac{f}{g}\right)(1) = \frac{f(1)}{g(1)}$$
$$= \frac{-2}{9}$$

(f)
$$\left(\frac{g}{f}\right)$$
 (8)

(f)
$$\left(\frac{g}{f}\right)$$
 (8)

$$\left(\frac{g}{f}\right)(8) = \frac{g(8)}{f(8)}$$

(f)
$$\left(\frac{g}{f}\right)$$
 (8)

$$\left(\frac{g}{f}\right)(8) = \frac{g(8)}{f(8)}$$
$$= \frac{37}{61}$$