18.100A Assignment 9

Octavio Vega

May 22, 2023

Problem 1

Proof. We have that $\forall x \in \mathbb{R}$, $|\arctan(x)| < \frac{\pi}{2}$, i.e.

$$\arctan(x) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right),$$
 (1)

which is an open set. So $\forall |y| < \frac{\pi}{2}$, $\exists \epsilon > 0$ such that $(y - \epsilon, y + \epsilon) \subset (-\frac{\pi}{2}, \frac{\pi}{2})$. Thus for every such y, we can always find a $y_0 < y$ and $y_1 > y$ inside this open set. This means that there is no x_1 such that $\arctan(x_1) \ge \arctan(x)$ nor an x_0 such that $\arctan(x_0) \le \arctan(x) \ \forall x$.

Hence $f(x) = \arctan(x)$ does not achieve an absolute minimum or maximum.

Problem 2

Proof. Let $x, y \in (c, \infty)$. Choose $L = \frac{1}{c^2}$. Then

$$|f(y) - f(x)| = \left| \frac{1}{y} - \frac{1}{x} \right| \tag{2}$$

$$=\frac{|x-y|}{xy}\tag{3}$$

$$<\frac{|x-y|}{c^2}\tag{4}$$

$$=L|x-y|. (5)$$

Therefore $f(x) = \frac{1}{x}$ is Lipschitz continuous.

Problem 3

Proof. Let $\delta > 0$ and choose $\epsilon_0 = |\sin(\delta)|$. Choose $x = \frac{1}{2\pi k + \delta}$ and $c = \frac{1}{2\pi k}$ for some $k \in \mathbb{N}$. Then

$$|x - c| = \left| \frac{1}{2\pi k} - \frac{1}{2\pi k} \right|$$

$$= \left| \frac{2\pi k - (2\pi k + \delta)}{2\pi k (2\pi k + \delta)} \right|$$

$$(6)$$

$$(7)$$

$$= \left| \frac{2\pi k - (2\pi k + \delta)}{2\pi k (2\pi k + \delta)} \right| \tag{7}$$

$$=\frac{\delta}{4\pi^2 k^2 + 2\pi k \delta} \tag{8}$$

$$<\delta$$
. (9)

We also have

$$|f(x) - f(c)| = |\sin(2\pi k + \delta) - \sin(2\pi k)|$$
 (10)

$$= |\sin(2\pi k)\cos(\delta) + \cos(2\pi k)\sin(\delta) - \sin(2\pi k)| \tag{11}$$

$$= |\sin(\delta)| \tag{12}$$

$$=\epsilon_0. \tag{13}$$

Hence, $f(x) = \sin\left(\frac{1}{x}\right)$ is not uniformly continuous.

Problem 4

Proof. Suppose $f: S \to \mathbb{R}$ is Lipschitz continuous on S. Then $\exists L \geq 0$ such that $\forall x, y \in S, |f(x) - f(y)| \le L|x - y|.$

Let $\epsilon > 0$. Choose $\delta = \frac{\epsilon}{L}$. If $|x - y| < \delta$, then

$$|f(x) - f(y)| \le L|x - y| \tag{14}$$

$$< L\delta$$
 (15)

$$=\epsilon. \tag{16}$$

Thus f is uniformly continuous on S.

Problem 5

(a)

Proof. Let $x, y \in \mathbb{R}$. Choose L = 1. Then

$$|f(x) - f(y)| = |\cos(x) - \cos(y)|$$
 (17)

$$= \left| 2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) \right| \tag{18}$$

$$\leq 2 \left| \sin \left(\frac{x - y}{2} \right) \right| \tag{19}$$

$$\leq 2 \left| \frac{x - y}{2} \right| \tag{20}$$

$$=|x-y|. (21)$$

Therefore $f(x) = \cos(x)$ is Lipschitz continuous on \mathbb{R} .

(b)

Proof. (1) Let $\epsilon > 0$. Choose $\delta = c^{\frac{2}{3}}\epsilon$. Then $\forall x, c \in [0, 1]$, we have

$$|f(x) - f(c)| = |x^{\frac{1}{3}} - c^{\frac{1}{3}}| \tag{22}$$

$$= \frac{|x-c|}{|x^{\frac{2}{3}} + x^{\frac{1}{3}}c^{\frac{1}{3}} + c^{\frac{2}{3}}|}$$
 (23)

$$<\frac{\delta}{c^{\frac{2}{3}}}\tag{24}$$

$$=\epsilon. \tag{25}$$

Thus, $f(x) = x^{\frac{1}{3}}$ is uniformly continuous on [0,1].

(2) (By contradiction.)

Suppose f is Lipschitz continuous on [0,1]. Then $\forall x,y \in [0,1], \exists L \geq 0$ such that $|x^{\frac{1}{3}} - y^{\frac{1}{3}}| \leq L|x-y|$.

Choose y=0. Then $|x^{\frac{1}{3}}| \leq L|x|$, i.e. $\frac{1}{x^{\frac{2}{3}}} \leq L$. Taking $x \to 0$ on both sides, this implies that $\lim_{x \to 0} \frac{1}{x^{\frac{2}{3}}}$ exists and is finite. But we know that this limit does not exist, so we have arrived at a contradiction.

Therefore $f(x) = x^{\frac{1}{3}}$ is not Lipschitz continuous on [0,1].

Problem 6

(a)

Proof. Choose $M = \frac{1}{\sqrt{\epsilon}}$. Then $\forall x \geq M$,

$$|f(x) - L| = \left| \frac{x^2}{x^2 + 1} - 1 \right|$$
 (26)

$$|x^{2} + 1| = \left| \frac{x^{2} - x^{2} - 1}{x^{2} + 1} \right|$$

$$= \frac{1}{x^{2} + 1}$$

$$< \frac{1}{x^{2}}$$
(27)
$$< \frac{1}{x^{2}}$$
(28)

$$=\frac{1}{x^2+1}$$
 (28)

$$<\frac{1}{x^2}\tag{29}$$

$$= \epsilon. \tag{30}$$

Therefore
$$\lim_{x \to \infty} \frac{x^2}{x^2 + 1} = 1$$
.

(b)

Proof. (By contradiction.)

Suppose $L = \lim_{x \to \infty} \sin(x)$ exists. Let $M \in \mathbb{R}$ and choose $x = \pi$. Let $\epsilon_0 = L$. Then

$$|\sin(x) - L| = |\sin(\pi) - L| \tag{31}$$

$$= |-1 - L| \tag{32}$$

$$=1+L\tag{33}$$

$$>L$$
 (34)

$$=\epsilon_0. \quad (\Rightarrow \Leftarrow) \tag{35}$$

Therefore $\lim_{x\to\infty} \sin(x)$ does not exist.