MA 544: Homework 12

Carlos Salinas

April 24, 2016

PROBLEM 12.1 (WHEEDEN & ZYGMUND §8, Ex. 2)

Prove the converse of Hölder's inequality for p=1 and ∞ . Show also that for $1 \leq p \leq \infty$, a real-valued measurable f belongs to $L^p(E)$ if $fg \in L^1(E)$ for every $g \in L^{p'}(E)$, 1/p + 1/p' = 1. The negation is also of interest: if $f \in L^p(E)$ then there exists $g \in L^{p'}(E)$ such that $fg \notin L^1(E)$. (To verify the negation, construct g of the form $\sum a_k g_k$ satisfying $\int_E fg_k \to \infty$.)

Proof. In this problem, we finish the proof of Theorem 8.8 for the case $p = 1, \infty$. Therefore, we must show that:

For f a measurable real-valued function on E and $p=1,\infty$. Then

$$||f||_p = \sup \int_E fg,$$

where the supremum is taken over every real-valued g such that $||g||_{p'} \le 1$ and $\int_E fg$ exists.

Let us prove this for p=1. Recall that by convention, if p=1 its conjugate exponent, p', is ∞ and vice versa. Suppose $\|g\|_{\infty} \leq 1$ and the integral $\int_E fg$ exists. By Hölder's inequality, we have

$$\int_{E} |fg| \le ||f||_1 ||g||_{\infty};$$

note that we may choose g such that $fg \ge 0$ for all $\mathbf{x} \in E$ by, for instance, setting $\tilde{g} \coloneqq (\operatorname{sgn} f)g$ as in the proof of Theorem 8.8.

PROBLEM 12.2 (WHEEDEN & ZYGMUND §8, Ex. 3)

Prove Theorems 8.12 and 8.13. Show that Minkowski's inequality for series fails when p < 1.

PROBLEM 12.3 (WHEEDEN & ZYGMUND §8, Ex. 4)

Let f and g be real-valued and not identically 0 (i.e., neither function equals 0 a.e.), and let $1 . Prove that equality holds in the inequality <math>|\int fg| \le ||f||_p ||g||_{p'}$ if and only if fg has constant sign a.e. and $|f|^p$ is a multiple of $|g|^{p'}$ a.e. If $||f+g||_p = ||f||_p + ||g||_p$ and $g \neq 0$ in Minkowski's inequality, show that f is a multiple of g.

Find analogues of these results for the spaces ℓ^p .

PROBLEM 12.4 (WHEEDEN & ZYGMUND §8, Ex. 5)

For $0 and <math>0 < |E| < \infty$, define

$$N_p[f] := \left(\frac{1}{E} \int_E |f|^p\right)^{1/p},$$

where $N_{\infty}[f]$ means $||f||_{\infty}$. Prove that if $p_1 < p_2$, then $N_{p_1}[f] \le N_{p_2}[f]$. Prove also that if $1 \le p \le \infty$, then $N_p[f+g] \le N_p[f] + N_p[g]$, $(1/|E|) \int_E |fg| \le N_p[f] N_{p'}[g]$, 1/p + 1/p' = 1, and $\lim_{p \to \infty} N_p[f] = ||f||_{\infty}$. Thus, N_p behaves like $||\cdot||_p$ but has the advantage of being monotone in p. Recall Exercise 28 of Chapter 5.

PROBLEM 12.5 (WHEEDEN & ZYGMUND §8, Ex. 6)

(a) Let $1 \le p_i, r \le \infty$ and $\sum_{i=1}^k 1/p_i = 1/r$. Prove the following generalization of Hölder's inequality:

$$||f_1 \cdots f_k||_r \leq ||f_1||_{p_1} \cdots ||f_k||_{p_k}.$$

(b) Let $1 \le p < r < q \le \infty$ and define $\theta \in (0,1)$ by $1/r = \theta/p + (1-\theta)/q$. Prove the interpolation estimate

$$||f||_r \le ||f||_p^{\theta} ||f||_q^{1-\theta}.$$

In particular, if $A := \max\{\|f\|_p, \|f\|_q\}$, then $\|f\|_r \le A$.

PROBLEM 12.6 (WHEEDEN & ZYGMUND §8, Ex. 9)

If f is real-valued and measurable on E, |E| > 0, define its essential infimum on E by

ess inf
$$f := \sup \{ \alpha : |\{ x \in E : f(x) < \alpha \}| = 0 \}.$$

If $f \ge 0$, show that $\operatorname{ess\,inf}_E f = (\operatorname{ess\,sup} 1/f)^{-1}$.

PROBLEM 12.7 (WHEEDEN & ZYGMUND §8, Ex. 11)

If $f_k \to f$ in L^p , $1 \le p < \infty$, $g_k \to g$ pointwise, and $\|g_k\|_{\infty} < M$ for all k, prove that $f_k g_k \to f g$ in L^p .