Работа 1.1.1

Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

7 сентября 2023 г.

1 Аннотация

В работе измеряется удельное сопротивление нихромовой проволоки двумя способами: 1) путем анализа графика ВАХ проволоки, 2) путем вычисления по известной формуле $R=\rho \frac{l}{S}$, где R измерено посредством моста Уильсона (моста постоянного тока).

Цель работы: измерить удельное соединение нихромовой проволоки и вычислить систематические и случайные погрешности при использовании измерительных прибров.

Оборудование: линейка, штангенциркуль, микрометр, нихромовая проволока, амперметр, стрелочный вольтметр, источник ЭДС, мост Уильсона (мост постоянного тока), реостат, ключ, провода.

2 Теоритические сведения

Удельное сопротивление цилиндрической проволоки определяется по формуле: $\rho=\frac{R}{l}S$, а учитывая что $S=\pi\frac{d^2}{4}$,

$$\rho = \frac{R}{l} \frac{\pi d^2}{4}$$

Где R - сопротивление отрезка проволоки, l - его длина, d - диаметр.

По закону Ома для участка цепи:

$$R = \frac{U}{I}$$

Рис. 1: Используемая схема

U - напряжение на участке цепи, I - сила тока, R - сопротивление.

Таким образом, для определения сопротивления проволоки достаточно измерить силу тока и напряжение на нем. Это возможно с помощью схемы рис.1.

Вольтметр верно измеряет падение напряжения на проволоке, а амперметр измеряет сумму токов через проволоку и вольтметр. Поэтому можно записать систему:

$$\begin{cases} I_A = I + I_V, \\ IR = U_V, \\ I_V R_V = U_V \end{cases}$$

 U_V - показания вольтметра, I_A - показания амперметра

Выразив токи I и I_V и подставив их в первое уравнение получим

$$R_1 = \frac{U_V}{I_A} = R \frac{R_V}{R + R_V}$$

3 Оборудование и экспериментальные погрешности

 $\mathit{Линейкa}$: $\Delta_{\text{лин}}=\pm 0.5$ мм (половина цены деления) $\mathit{Штангенциркуль}$: $\Delta_{\text{шт}}=\pm 0.05$ мм (половина цены деления) $\mathit{Микрометp}$: $\Delta_{\text{микм}}=\pm 0.01$ мм (маркировка производителя)

 $Aмперметр: \Delta_{A} = Bольтметр: \Delta_{V} =$

4 Измерения и обработка данных

4.1 Измерение длины проволоки l

Значения l измерялись с помощью линейки, результаты приведены в Табл.

4.2 Измерение диаметра проволоки d

Проволока неоднородна, поэтому ее диаметр различен в разных местах. Мы можем измерить его в нескольких местах и усреднить полученные значения.

Измерения с помощью штангенциркуля показали одинаковый диаметр проволоки для N=12 измерений, $d_{
m mt}=0.4{
m mm}$.

Для измерения диаметра был также использован микрометр, который вы-

$\mathcal{N}_{ar{0}}$	1	2	3	4	5	6	7	8	9	10	11	12
d_{iiit} , mm	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4

явил отличия в диаметре проволоки в разных ее местах (см. Табл. 1).

$N_{\overline{0}}$	1	2	3	4	5	6	7	8	9	10	11	12
d, мкм	380	380	360	390	360	370	350	340	360	380	370	370

4.3 Вычисление сопротивления проволоки R

Измерить сопротивление отрезка проволоки R возможно двумя способами

4.3.1 Метод вычисления R путем анализа ${\bf BAX}$ проволоки

Для снятия ВАХ проволоки была собрана схема Рис. 1 ВАХ снималась для трех разных длин проволоки путем постепенного уменьшения напряжения источника. Результаты измерений приведены в Табл. 3

4.3.2 Метод прямого измерения R с помощью моста постоянного тока

Для измерения R использовался мост постоянного тока Р4833. Для трех l были подобраны такие положения рубильников, при котором стрелка прибора была минимально отклонена от нуля.

3.0	TT T	**	TT T	T .
№	Uист, В	Uv, дел	Uv, мВ	Іа, мА
1	3.5	148	592	111.16
2	3.3	137	548	103.42
3	3.1	130	520	97.84
4	2.9	121	484	90.41
5	2.7	115	460	86.6
6	2.3	98	392	73.78
7	1.9	80	320	60.3
8	1.5	64	256	47.9
9	1.1	36	144	26.63
10	0.7	23	92	17.29
11	0.2	3	12	1.98

Для l=20 см $R=\Omega;$ для l=30 см $R=\Omega;$ для l=50 см $R=\Omega;$