

Développez vos systèmes embarqués sur SoC FPGA

Comment embarquer Linux et développer en VHDL vos applicatifs dédiés au traitement d'image sans pénaliser le CPU.

Jean-Marie CODOL Développeur

Submarine Open Technologies Montpellier

Développez vos systèmes embarqués sur SoC FPGA

Comment embarquer Linux et développer en VHDL vos applicatifs dédiés au traitement d'image sans pénaliser le CPU.

Partie 4

Plan

JOUR '

Plan

§001 Faire communiquer Linux avec un FPGA sur le SoC intel DE10-nano

- distribution fournie par Altera
- créer une image SD (en partie sur un serveur distant)
- compilation croisée (eclipse CDT embedded)
- activer les bridges HPS <-> FPGA par un device tree
- utiliser le bridge HPS2FPGA

J 2

§002 Partager une zone de RAM entre Linux et un FPGA sur le SoC intel DE10-nano

- projet de lecture/écriture en RAM sur FPGA
- projet de lecture/écriture en RAM sur CPU

J 3

§003 Cas pratique avec seuillage d'image

- projet openCV
- échange sur mémoire RAM

Compilation croisée (eclipse CDT embedded)

Logiciels que l'on va installer en local :

```
Quartus 20.1
SoC EDS 20.1 (déja fait précédement)
Eclipse CDT embedded 2021-09 (4.21.0)

Suivre les instructions de :
    <captronic_formation_fpga_img_proc>/scripts/5-cross-compiler.sh
```

Compilation croisée (eclipse CDT embedded)

Eclipse CDT embedded:

```
~/intelFPGA/20.1/embedded/embedded_command_shell.sh
DEWD=$PWD/de10nano-wd
cd $DEWD/eclipse/
./eclipse/eclipse
Espace de travail --> <captronic_formation_fpga_img_proc>/eclipse_proj2
Créer et compiler pour arm (voir page suivante)
```


Compilation croisée (eclipse CDT embedded)

Installer Eclipse CDT embedded:

Fichier -> nouveau projet -> C/C++ / C managed build /

Project name : arm_cross_gcc

Executable / Empty Project / Arm Cross GCC

Toolchain name : Linaro ARMv7 Linux GNU EABI HF (arm-linux-gnueabihf-gcc)

Toolchain path : \$HOME/intelFPGA/20.1/embedded/host tools/linaro

Compilation croisée (eclipse CDT embedded)

Compilation croisée (eclipse CDT embedded)

Créer un projet : 01-test avec un hello World

L'exécuter sur cible DE10-nano (copier avec scp et lancer).

Créer un projet : 02-hps_gpio avec le contenu du CDROM :

demos/SoC/hps_gpio/main.c
L'exécuter sur cible DE10-nano
Utiliser l'execution distante du logiciel Eclipse.

Compilation croisée (eclipse CDT embedded)

Compilation croisée (eclipse CDT embedded)

Plan

JOUR,

Plan

§001 Faire communiquer Linux avec un FPGA sur le SoC intel DE10-nano

- distribution fournie par Altera
- créer une image SD (en partie sur un serveur distant)
- compilation croisée (eclipse CDT embedded)
- activer les bridges HPS <-> FPGA par un device tree
- utiliser le bridge HPS2FPGA

J 2

§002 Partager une zone de RAM entre Linux et un FPGA sur le SoC intel DE10-nano

- projet de lecture/écriture en RAM sur FPGA
- projet de lecture/écriture en RAM sur CPU

J 3 §003 Cas pratique avec seuillage d'image

- projet openCV
- échange sur mémoire RAM