

TỬ SÁCH KỸ THUẬT ĐIỆN - ĐIỆN TỬ NGUYỄN TẦN PHƯỚC

MẠCH TƯƠNG TỰ

Hình 2.1: Mạch khuếch đại

Hình 2.2: Mạch khưếch đại hồi tiếp

Hình 6.9: Mạch PID cải tiến

Hình 6.8: Đáp ứng biên độ - tấn số của mạch PID

NHÀ XUẤT BẢN HỒNG ĐỰC – HÀ NỘI

TỬ SÁCH KỸ THUẬT ĐIỆN - ĐIỆN TỬ NGUYỄN TẦN PHƯỚC

MẠCH TƯƠNG TỰ

NHÀ XUẤT BẢN HỒNG ĐỰC - HÀ NỘI

TỬ SÁCH KỸ THUẬT ĐIỆN – ĐIỆN TỬ NGUYỄN TẦN PHƯỚC

LINH KIỆN ĐIỆN TỬ

Chịu trách nhiệm xuất bản: HOÀNG CHÍ DŨNG

Biên tâp:

HỒNG NAM

Trình bày: NGUYỄN PHƯỚC TƯỜNG VÂN

Bìa:

NGUYỄN TẦN PHƯỚC

NHÀ XUẤT BẢN HỒNG ĐỰC – HÀ NỘI Chi nhánh phía Nam 11 Lê Thánh Tôn - Q.1 - TP.HCM

ተ

Thực hiện liên doanh: NGUYỄN TẨN PHƯỚC

LÖI NÓI ĐẦU

Những thập niên 70-90 của thế kỷ XX, Kỹ thuật Mạch điện tử thường được chia ra 3 phần: Mạch điện tử 1, Mạch điện tử 2, Mạch điện tử 3 và được dạy vào 3 học kỳ của năm thứ 3 và thứ 4 trong các Trường Đại học kỹ thuật hay trong năm cuối của các Trường Cao đẳng kỹ thuật ngành Điện tử.

Những năm gần đây, với sự phát triển mạnh và nhanh của ngành Kỹ thuật Điện - Điện tử, các môn kỹ thuật cơ sở thường được rút gọn để dành quỹ thời gian cho các môn học mới rất cần thiết, môn Kỹ thuật Mạch điện tử (1-2-3) được gói gọn trong môn Mạch Tương tự.

Giáo trình "Mạch Tương Tự" được soạn theo hướng thu gọn trên, nhưng vẫn đảm bảo lý luận cơ bản để người học có thể tự nghiên cứu học lên cao hơn và sâu hơn. Với cách trình bày đơn giản, rõ ràng, dễ hiểu, loại bỏ những phần tính toán phức tạp không cần thiết và chú trọng vào những ứng dụng cụ thể trong thực tế, hy vọng rằng giáo trình này sẽ là tài tiệu học tập và tham khảo tốt, hữu ích cho các đối tượng là học sinh, sinh viên các Trường Trung học và Đại học kỹ thuật cũng như giáo viên giảng dạy các môn kỹ thuật cơ sở ngành Điện – Điện tử.

Lần tái bản này, giáo trình được biên tập lại với hình vẽ và công thức chỉnh sửa theo đúng tiêu chuẩn, đồng thời khổ sách thay đổi thành 16x24 cho tiện dụng đối với HS/SV.

Rất mong nhận được sự góp ý của bạn đọc để sách ngày càng được hoàn thiện hơn trong những lần xuất bản sau.

Ngày 15 tháng 6 năm 2007

Tác giả

GIÁO TRÌNH ĐIỆN TỬ KỸ THUẬT

MẠCH TƯƠNG TỰ

Mục lục		
Trang		
Lời nói đầu3		
Mục lục4		
Chương 1: Lý thuyết cơ bản của mạch khuếch đại7		
1.1- Định nghĩa		
1.2- Các hạng khuếch đại		
1.3- Ba cách ráp căn bản		
1.4- Bảng so sánh các thông số của transistor theo ba cách rấp		
1.5- Các kiểu ghép các tầng khuếch đại		
1.6- Mạch khuếch đại hồi tiếp		
1.7- Cách tính hệ số ổn định nhiệt		
Chương 2: Khuếch đại hồi tiếp33		
2.1- Đại cương		
2.2- Phân loại mạch khuếch đại hồi tiếp		
2.3- Cách xác định loại hồi tiếp		
2.4- Phân loại hồi tiếp theo thừa số hồi tiếp F		
2.5- Hồi tiếp âm dòng điện ghép nối tiếp		
2.6- Hồi tiếp âm điện áp ghép nối tiếp		
2.7- Hồi tiếp âm điện áp ghép song song		
2.8- Hồi tiếp âm dòng điện áp ghép song song		
2.9- Ảnh hưởng của hồi tiếp âm đến thông số của mạch khuếch đại		
Chương 3: Mạch khuếch đại DC51		
3.1- Đại cương		
3.2- Các kiểu khuếch đại DC		
3.3- Mạch khuếch đại DC thông dung		

3.4- Hiện tượng "Trôi mức điện áp không"
3.5- Cách tính hệ số ổn định nhiệt
Chương 4: Mạch khuếch đại vi sai-Darlington-Cascode61
4.1- Mạch khuếch đại vi sai
4.2- Mạch khuếch đại vi sai có nguồn ổn dòng
4.3- Các mạch khuếch đại vi sai thông dụng
4.4- Các phương pháp giảm hiện tương điện áp trôi
4.5- Mach Darlington
4.6- Mach Cascode
Chương 5: Mạch khuếch đại thuật toán81
5.1- Đại cương
5.2- Đặc tính kỹ thuật của OP-AMP
5.3- Mạch tích hợp của OP-AMP 741
5.4- Các mạch ứng dụng cơ bản
5.5- Các phép toán cơ bản
5.6- Mạch tạo xung dùng OP-AMP
5.7- Hai trạng thái bão hoà của OP-AMP
5.8- Các ứng dụng khác của OP-AMP
Chương 6: Mạch tích phân - vi phân - Mạch PID116
6.1- Mạch tích phân
6.2- Mạch vi phân
6.3- Mạch vi - tích phân tỉ lệ PID
Chương 7: Mạch lọc127
7.1- Đại cương
7.2- Đáp ứng tần số
7.3- Mạch lọc thụ động dùng RC
7.4- Mạch lọc thụ động dùng LC
7.5- Mạch tích phân và vì phân
7.6- Mạch lọc tích cực

Mach Tương Tự	Nguyễn Tấn Phước
Chương 8: Khối cung cấp nguồn	157
8.1- Mạch nắn điện	
8.2- Mạch lọc điện	
8.3- Mạch ổn định nguồn	
Tài liệu tham khảo	196

Chương 1

LÝ THUYẾT CƠ BẢN CỦA MẠCH KHUẾCH ĐẠI

§1.1- ĐỊNH NGHĨA

Trong kỹ thuật, từ "khuếch đại" được định nghĩa là "dùng một năng lượng nhỏ để điều khiển một năng lượng khác lớn hơn gấp nhiều lần. Năng lượng thứ nhất - nhỏ - là năng lượng điều khiển, năng lượng thứ hai - lớn - là năng lượng bị điều khiển".

Từ "khuếch đại" không chỉ được dùng trong lĩnh vực điện tử mà còn được dùng trong các lĩnh vực khác như cơ khí, từ học ... Thí dụ: đòn bẩy là hệ thống khuếch đại cơ khí hay bộ khuếch đại từ ứng dụng trong lĩnh vực điều khiển điện công nghiệp.

Trong lĩnh vực điện tử nhiều lình kiện có tính năng khuếch đại như: transistor lưỡng nối, transistor trường ứng, op-amp ...vì các linh kiện trên nhận năng lượng ở ngõ vào rất nhỏ nhưng có thể điều khiển được năng lượng ở ngõ ra lớn hơn rất nhiều lần. Thí dụ: transistor nhận dòng điện ở ngõ vào là I_B có trị số rất nhỏ nhưng có thể điều khiển dòng điện ở ngõ ra là I_C có trị số lớn hơn I_B hàng trăm lần.

Mạch khuếch đại điện tử có ký hiệu như hình 1.1. Năng lượng ở ngỗ vào và ngỗ ra thường được gọi là tín hiệu vào và tín hiệu ra. Tín hiệu vào và tín hiệu ra có thể ở dạng điện áp hay cường độ dòng điện và được ký hiệu là V_i , V_O hay I_i , I_O .

Hình 1.1: Ký hiệu của mạch khuếch đại

§1.2- CÁC HẠNG KHUẾCH ĐẠI

Ba trạng thái hoạt động của transistor là: trạng thái ngưng dẫn, trạng thái khuếch đại và trạng thái bão hòa (hình 1.2).

Hình 1.2: Ba vùng trạng thái của transistor

Tính toán các điện trở phân cực cho transistor nghĩa là chọn điểm hoạt động tĩnh Q cho transistor đó. Khi có tín hiệu xoay chiều tác động ở ngõ vào thì điểm Q sẽ bị dời chỗ và làm thay đổi các thông số khác của mạch. Dựa vào điểm hoạt động tĩnh Q người ta chia mạch khuếch đại ra các hạng khuếch đại là: hạng A, hạng B, hạng C và hạng AB.

- Hạng A: transistor được phân cực cho điểm hoạt động tĩnh Q ở giữa vùng khuếch đại.
- Hạng B: transistor được phân cực cho điểm hoạt động tĩnh Q ở trong vùng ngưng dẫn.
- Hạng C: transistor được phân cực cho điểm hoạt động tĩnh Q nằm sâu trong vùng ngưng dẫn.

- Hạng AB: là một hạng trung gian giữa hạng A và hạng B, transistor sẽ được phân cực cho điểm Q ở giữa vùng khuếch đại và vùng ngưng dẫn.

1- Khuếch đại hạng A

Phân tích trên đặc tuyến ngõ vào I_B/V_{BE} của transistor, mạch khuếch đại hạng A có điểm hoạt động tĩnh Q ở khoảng giữa của đặc tuyến và có $V_{BE} = 0.7V$ cho transistor Sivà $V_{BE} = 0.2V$ cho transistor Ge. Khi transistor nhận được tín hiệu xoay chiều ở cực B thì dòng điện I_B sẽ thay đổi theo tín hiệu xoay chiều này (hình 1.3a).

Hình 1.3a: Đặc tuyến ngõ vào ở hạng A

Phân tích đặc tuyến ngõ ra I_C/V_{CE} của transistor, mạch khuếch đại hạng A có điểm hoạt động tĩnh Q ở giữa đường tải và $V_{CE} = 1/2V_{CC}$. Khi dòng điện I_B thay đổi theo tín hiệu xoay chiều sẽ làm cho dòng điện I_C thay đổi và kéo theo điện áp V_{CE} cũng thay đổi (hình 1.3b)

Các đặc điểm của mạch khuếch đại hạng A là:

- Khuếch đại trung thực tín hiệu xoay chiều (khuếch đại được cả hai bán kỳ của tín hiệu xoay chiều hình sin).
- Dùng cho các mạch khuếch đại tín hiệu có biên độ nhỏ.

Hình 1.3b: Đặc tuyến ngỗ ra ở hạng A

2- Khuếch đại hạng B

Phân tích trên đặc tuyến ngõ vào I_B/V_{BE} , mạch khuếch đại hạng B có điểm hoạt động tĩnh Q ở điểm $V_{BE}=0V$ nên $I_B=0$ và $I_C=0$. Khi transistor nhận được tín hiệu xoay chiều ở cực B thì chỉ có một bán kỳ được khuếch đại vì phân cực thuận mối nối BE và I_B

tăng lên, còn một bán kỳ làm giảm phân cực mối nối BE xuống vùng ngưng dẫn nên không được khuếch đại (hình 1.4a).

Hình 1.4a: Đặc tuyến ngỗ vào ở hạng B

Phân tích trên đặc tuyến ngỗ ra I_C/V_{CE} , mạch khuếch đại hạng B có điểm hoạt động tĩnh Q nằm trên đường biên giữa vùng khuếch đại và vùng ngưng dẫn, $V_{CE} \circ V_{CC}$. Khi dòng điện I_B tăng lên theo tín hiệu xoay chiều, dòng điện I_C cũng tăng lên và làm cho điện áp V_{CE} giảm xuống. Ở ngỗ ra cũng chỉ có một bán kỳ được khuếch đại (hình 1.4b).

Các đặc điểm của mạch khuếch đại hạng B là:

- khi không có tín hiệu, transistor ngưng $(I_B = 0, I_C = 0)$
- mỗi transistor chỉ khuếch đại được một bán kỳ nên muốn có đủ nguyên chu kỳ phải dùng hai transistor để khuếch đại luân phiên cho hai bán kỳ.
 - dùng cho các mạch khuếch đại tín hiệu có biên độ lớn
 - hiệu suất cao do công suất điện tiêu thụ nhỏ
- tín hiệu ra bị biến dạng xuyên trục (crossover distortion) (hình 1.4c).

Hình 1.4b: Đặc tuyến ngõ ra ở hạng B

Hình 1.4c: tín hiệu ra bị biến dạng xuyên trục

3- Khuếch đại hạng C

Phân tích trên đặc tuyến ngõ vào I_B/V_{BE} , mạch khuếch đại hạng C có điểm hoạt động tĩnh Q nằm sâu trong vùng ngưng dẫn và có $V_{BE} <= 0V$. Khi transistor nhận được tín hiệu xoay chiều ở cực B, nếu tín hiệu xoay chiều có điện áp đỉnh $V_P < V_Y$ thì transistor cũng chưa dẫn điện được nên không có tín hiệu ra, nếu tín hiệu có điện áp đỉnh $V_P > V_Y$ thì chỉ có một phần tín hiệu được khuếch đại (hình 1.5a).

Hình 1.5a: Đặc tuyến ngõ vào ở hạng C

Tương tự khi xét trên đặc tuyến ngõ ra I_C/V_{CE} , chỉ có một phần của bán kỳ dương được khuếch đại và tín hiệu ra bị đảo pha là một phần bán kỳ âm (hình 1.5b).

Các đặc điểm của mạch khuếch đại hạng C là:

- khi không có tín hiệu, transistor không dẫn ($I_B = 0$, $I_C = 0$).
- transistor chỉ khuếch đại được một phần của bán kỳ nên tín hiệu ra bị biến dạng rất lớn.
- mạch khuếch đại hạng C dùng trong mạch cắt bỏ phần dưới của các tín hiệu (mạch cắt gốc) hay trong các mạch dao động, mạch nhân tần số.

Hình 1.5b: Đặc tuyến ngỗ ra ở hạng C

4- Khuếch đại hạng AB

Hình 1.6a: Đặc tuyến ngô vào ở hạng AB

Trên đặc tuyến ngõ vào I_B/V_{BE} , mạch khuếch đại hạng AB có điểm hoạt động tĩnh Q ở giữa hạng A và hạng B - ngay điểm thiết đoạn - và có $V_{BE} = 0.6V$ cho transistor Si, $V_{BE} = 0.1V$ cho transistor Ge. Khi transistor nhận được tín hiệu xoay chiều ở cực B thì bán kỳ dương được rơi vào vùng gần như tuyến tính nên được khuếch đại mạnh, bán kỳ âm được rơi vào vùng dưới V_Y nên transistor không dẫn và không có tín hiệu ra (hình 1.6a).

Trên đặc tuyến ngõ ra I_C/V_{CE} , điểm hoạt động tĩnh Q nằm ở vùng gần ngưng dẫn nên $V_{CE} \approx V_{CC}$. Ở điểm hoạt động tĩnh này chỉ có bán kỳ dương của tín hiệu được khuếch đại và làm dòng điện I_C tăng lên. Tín hiệu ra bị đảo pha so với tín hiệu vào nên chỉ có bán kỳ âm của tín hiệu ở ngõ ra (hình I.6b).

Hình 1.6b: Đặc tuyến ngỗ ra ở hạng AB

§1.3- BA CÁCH RÁP CĂN BẢN

Mạch khuếch đại dùng transistor có thể được thiết kế theo một trong ba cách căn bản là kiểu E chung, B chung hay C chung.

1- Mạch khuếch đại kiểu E chung (CE: Common Emitter)

Hình 1.7a

Hình 1.7b

Sơ đồ hình 1.7a là mạch khuếch đại ráp kiểu E chung, tín hiệu vào ở cực B và ra ở cực C. Ở trạng thái xoay chiều các tụ điện liên lạc và tụ phân dòng C_E có tổng trở rất nhỏ nên coi như bị nối tắt. Hình 1.7b là mạch tương đương của transistor khi ráp kiểu E chung.

Các thông số kỹ thuật của mạch được tính như sau:

a) Tổng trở ngõ vào:

$$h_{ie} = r_i = \frac{v_i}{i_i} = \frac{i_h r_h + i_e r_e}{i_h} = \frac{i_h r_h + \beta i_h r_e}{i_h}$$

$$h_{ie} = r_h + \beta r_e \qquad (\approx vài k\Omega)$$

b) Tổng trở ngõ ra: $r_o \approx v \dot{a}i$ chục $k\Omega$ đến vài trăm $k\Omega$.

Do r_u có trị số rất lớn nên nhiều trường hợp có thể bỏ qua r_o.

c) Độ khuếch đại dòng điện:

$$A_{i} = \frac{i_{o}}{i_{i}} = \frac{i_{c}}{i_{b}} = \beta = h_{fe}$$

$$A_{i} = \beta = h_{fe} \qquad (\approx v \text{ài chục đến vài trăm lần})$$

d) Đô khuếch đại điện áp:

$$A_{v} = \frac{v_{cv}}{v_{he}} = -\frac{i_{v}R_{c}}{i_{h}r_{s}} = -\frac{\beta i_{h}R_{c}}{i_{h}h_{se}}$$

$$A_{v} = -\beta \frac{R_{c}}{h} \qquad (\approx v \grave{a}i \ tr \check{a}m \ l \grave{a}n)$$

- e) Góc pha: điện áp của tín hiệu vào và ra đảo pha nhau
- 2- Mạch khuếch đại ráp kiểu B chung (CB: Common Base)

Sơ đồ hình 1.8a là mạch khuếch đại ráp kiểu B chung, tín hiệu vào ở cực E và ra ở cực C. Ở trạng thái xoay chiều, các tụ điện liên lạc và tụ điện phân dòng C_B có tổng trở rất nhỏ nên được coi như nối tắt. Hình 1.8b là mạch tương đương của transistor ráp kiểu B chung.

Các thông số kỹ thuật của mạch được tính như sau:

a) Tổng trở ngõ vào:

$$r_{i} = \frac{v_{i}}{i_{i}} = \frac{i_{h}r_{h} + i_{e}r_{e}}{i_{e}} = \frac{i_{h}r_{h} + \beta i_{h}r_{e}}{\beta i_{h}} = \frac{r_{h} + \beta r_{e}}{\beta}$$

b) Tổng trở ngõ vào:

$$r_{t} = \frac{v_{t}}{i_{t}} = \frac{i_{b}r_{b} + i_{e}r_{e}}{i_{c}} = \frac{i_{b}r_{b} + \beta i_{b}r_{e}}{\beta i_{b}} = \frac{r_{b} + \beta r_{e}}{\beta}$$

$$r_{t} = \frac{h_{ee}}{\beta} \qquad (\approx v \lambda i \ chuc \ \Omega)$$

c) Tổng trở ngõ ra:

$$r_o = \frac{v_o}{i_o} = \frac{v_c}{i_c}$$
 (\approx vài trăm k Ω vì BC phân cực ngược)

d) Độ khuếch đại dòng điện:

$$A_{i} = \frac{i_{o}}{i_{i}} = \frac{i_{c}}{i_{c}} = \frac{\beta i_{h}}{(\beta + 1)i_{h}} = \frac{\beta}{\beta + 1} \approx 1$$

e) Độ khuếch đại điện áp:

$$A_{v} = \frac{v_{cb}}{v_{cb}} = -\frac{i_{c}R_{C}}{i_{c}r_{i}} = \frac{R_{C}}{h_{ic}} = \frac{\beta R_{C}}{h_{ic}}$$

$$A_{v} = \beta \frac{R_{C}}{h_{vv}} \qquad (\approx v \grave{a} i \ tr \check{a} m \ l \grave{a} n)$$

f) Góc pha: điện áp của tín hiệu vào và ra đồng pha nhau

<u>Hình 1.8a</u>

Hình 1.8b

3- Mạch khuếch đại ráp kiểu C chung (Common Collector)

Sở đồ hình 1.9a là mạch khuếch đại ráp kiểu C chung, trong đó cực C được nối thẳng lên nguồn $+V_{CC}$ và nguồn $+V_{CC}$ được gọi là mass đối với xoay chiều, vì có tụ lọc nguồn rất lớn. Hình 1.9b là mạch tương đương của transistor khi ráp kiểu C chung.

Các thông số kỹ thuật của mạch được tính như sau:

a) Tổng trở ngõ vào:

$$r_{i} = \frac{v_{i}}{i_{i}} = \frac{i_{b}r_{b} + i_{c}r_{c} + i_{c}R_{E}}{i_{b}}$$

$$r_{i} = r_{b} + \beta r_{e} + \beta R_{E}$$

$$r_{i} = h_{ie} + \beta R_{E} \qquad (\approx v \grave{a}i \ tr \check{a}m \ k\Omega)$$

b) Tổng trở ngõ ra:

Điện trở R_B là điện trở tương đương của cầu phân áp R_{B1} song song R_{B2} .

Khi đứng từ ngỗ ra nhìn vào transistor, ta thấy điện trở R_B song song nội trở của nguồn r_s . Thường điện trở R_B rất lớn so với r_s nên điện trở tương đương của R_B song song r_s cũng chính là r_s . Mạch tương đương như hình 1.9c.

Hình 1.9c

Tổng trở ngõ ra là:
$$r_o = \frac{v_o}{i_o} = \frac{v_e}{i_e}$$

Theo mạch tương đương thì các điện trở r_s , r_b , và βr_e ghép nối tiếp nhau và song song với điện trở tải R_E .

Ta có:
$$v_e = i_e R_E = i_b (r_s + r_b + \beta r_e)$$

Suy ra: $r_a = \frac{v_e}{i_e} = \frac{i_b (r_s + r_b + \beta r_e)}{\beta i_b} = \frac{r_s + r_b + \beta r_e}{\beta}$

$$r_o = \frac{r_c + r_b}{\beta} + r_e$$
 hay $r_o = \frac{r_c + h_{ie}}{\beta}$ ($\approx v \grave{a}i \; ch\mu c \; \Omega$)

c) Độ khuếch đại dòng điện:

$$A_{i} = \frac{i_{o}}{i_{b}} = \frac{i_{c}}{i_{b}} = \frac{(\beta + 1)i_{b}}{i_{b}} hay A_{i} = \beta + 1$$

d) Độ khuếch đại điện áp:

$$A_{v} = \frac{v_{o}}{i_{o}} = \frac{v_{e}}{v_{b}} = \frac{i_{e}R_{E}}{i_{b}r_{b} + i_{e}r_{e} + i_{e}R_{E}} = \frac{\beta R_{E}}{r_{b} + \beta r_{e} + \beta R_{E}}$$
$$A_{v} \approx l \qquad (vi r_{b} + \beta r_{e} << \beta R_{E})$$

e) Góc pha: khi V_B tăng làm I_B tăng và I_E tăng nên V_E cũng theo, do đó điện áp của tín hiệu vào và ra đồng pha nhau.

§1.4 BẢNG SO SÁNH CÁC THÔNG SỐ THEO BA CÁCH RÁP

Mạch khuếch đại dùng transistor ở mỗi cách ráp E chung, B chung hay C chung đều có những thông số kỹ thuật khác nhau nên sẽ được ứng dụng để đáp ứng những yêu cầu kỹ thuật khác nhau. Ví dụ:

- 1- Mạch khuếch đại ráp kiểu E chung có độ khuếch đại mạnh nhất vì A_v và A_i đều có trị số lớn.
- 2- Mạch khuếch đại B chung có tổng trở vào r_i rất nhỏ và tổng trở ra r_0 rất lớn nên dùng để đổi tổng trở từ nhỏ ra lớn.
- 3- Mạch khuếch đại rấp kiểu C chung có tổng trở vào r_i rất lớn và tổng trở ra r_o rất nhỏ nên dùng để đổi tổng trở từ lớn ra nhỏ.

Cách ráp	E chung	B chung	C chung
Thông số			
Tổng trở	$h_{ie} = r_b + \beta r_e$	$r = h_{\nu}$	$r_i = h_{ie} + \beta R_E$
ngõ vào	(vài kΩ)	$r_i = \frac{n_{ic}}{\beta}$	(vài trăm kΩ)
ri		(vài chục Ω)	
Tổng trở	Vài chục k Ω	V ài trăm k Ω	$r_{\alpha} = \frac{r_{\alpha} + h_{\alpha}}{\beta}$
ngõ ra			γ,, =
ro			(vài chục Ω)
Độ khuếch	$A_i = \beta = h_{je}$	$A_i \approx 1$	$A_i = \beta + l$
đại dòng	(vài chục -vài		(vài chục – vài
điện A _i	trăm)		tr <u>ă</u> m)
Độ khuếch	$A_{v} = -\beta \frac{R_{c}}{h_{c}}$	$A_{\rm r} = \beta \frac{R_{\rm C}}{h_{\rm rr}}$	$A_{\nu} \approx I$
đại điện áp	$h_{\nu} = -\rho \frac{1}{h_{\nu}}$	$h_{\nu} = \rho h_{\nu}$	
$A_{\mathbf{v}}$	(vài trăm lần)	(vài trăm lần)	
Gốc pha giữa	Đảo pha	Đồng pha	Đồng pha
tín hiệu vào			
và ra			

\$1.5- CÁC KIỂU GHÉP TẦNG KHUẾCH ĐẠI

Mỗi thiết bị điện tử thường có nhiều mạch khuếch đại ghép liên tiếp nhau, mỗi mạch có thể dùng một hay nhiều transistor để thực hiện một nhiệm vụ riêng được gọi là một tầng khuếch đại. Để ghép liên tiếp nhiều tầng khuếch đại người ta thường dùng một trong ba cách ghép là:

- Ghép bằng tụ điện liên lạc
- Ghép bằng biến áp
- Ghép bằng cách nối trực tiếp

1- Ghép tầng bằng tụ điện liên lạc

Sơ đồ hình 1.10a là mạch khuếch đại hai tầng dùng transistor kiểu cực E chung được ghép liên tiếp nhau. Tụ điện C_1 là tụ liên lạc từ nguồn tín hiệu vào transistor T_1 , tụ điện C_2 là tụ điện liên lạc từ T_1 sang T_2 và tụ điện C_3 là tụ liên lạc từ T_2 sang tầng sau hay ra tải.

Các tụ liên lạc có trị số tuỳ thuộc vào tần số của tín hiệu, đối với âm tần thì tụ liên lạc thường có trị số từ $1\mu F$ đến $10\mu F$. Các tụ phân dòng C_E có trị số tuỳ thuộc điện trở R_E và thường được chọn từ $25\mu F$ đến $50\mu F$.

Ở trạng thái xoay chiều, các mạch khuếch đại hạ tần được tính toán với tần số qui ước là f = 1kHz.

Ta có:

$$R_1 = R_{B1} // R_{B2}$$
, $R_2 = R_{B3} // R_{B4}$

h_{iel}: tổng trở vào của T_I

h_{1c2}: tổng trở vào của T₂.

Dung kháng của tu điện liên lạc là:

$$X_{C1} = X_{C2} = X_{C3} = \frac{1}{2\pi\ell C_1}$$
 (chọn $C_1 = 10\mu F$)

$$X_{C1} = \frac{1}{2.3,14.10^3.10.10^{-6}} = 16\Omega$$

Dung kháng của tụ điện phân dòng CE là:

$$X_{CE} = \frac{1}{2.3.14.10^3.50.10^{-6}} \approx 3.2\Omega$$
 (chọn $C_E = 50\mu F$)

Các trị số dung kháng trên rất nhỏ so với các điện trở trong mạch nên được coi như nối tắt. Sơ đồ hình 1.10b là mạch tương đương ở trạng thái xoay chiều của mạch khuếch đại hai tầng hình 1.10a.

Hình 1.10a

Từ đó sơ đồ mạch tương đương hình $1.10\mathrm{b}$ có thể vẽ lại với sơ đồ đơn giản hơn như hình $1.10\mathrm{c}$.

Hình 1.10c

$$R_1 = R_1 // h_{ie1}$$
 $R_{L1} = R_{C1} // R_2 // h_{ie2}$

Với sơ đồ hình 1.10c, việc tính các thông số của mạch sẽ đơn giản hơn.

Các cách ghép tầng bằng tụ liên lạc có ưu điểm là việc tính toán trạng thái một chiều cho các transistor độc lập nhau.

2- Ghép tầng bằng biến áp

Sơ đồ mạch hình 1.11a là hai tầng khuếch đại dùng transistor ráp kiểu E chung. Biến áp TR_1 dùng để ghép giữa hai tầng là biến áp có tỉ số vòng dây sơ cấp và thứ cấp là n_1/n_2 .

Đối với các biến áp, tổng trở giữa sơ và thứ cấp được tính theo công thức:

$$\frac{Z_1}{Z_2} = \left(\frac{n_1}{n_2}\right)^2 \qquad \text{(hình 1.11b)}$$

Như vậy tổng trở tải ở thứ cấp được qui đổi về sơ cấp là:

$$Z_1 = \left(\frac{n_1}{n_2}\right)^2 Z_2$$

Đối với biến áp TR_1 , tải ở thứ cấp là tổng trở ngõ vào của transistor T_2 (h_{ie2}). Đối với biến áp TR_2 , tải ở thứ cấp là Z_L

Biến áp TR₁ có tổng trở qui đổi về sơ cấp là:

$$Z_1 = \left(\frac{n_1}{n_2}\right)^2 h_{ie2}$$

Biến áp TR2 tổng trở qui đổi về sơ cấp là:

$$Z_1 = \left(\frac{n_1}{n_2}\right)^2 Z_L$$

Sơ đồ hình 1.11a có thể vẽ thành mạch tương đương như hình 1.11c.

Hình 1.11c

 \vec{O} ngõ ra với điện áp $v_{\rm o}$ và dòng điện $i_{\rm c2}$ ta có thể tính được điện áp $V_{\rm L}$ và dòng điện $I_{\rm L}$ trên tải.

Cách ghép tầng bằng biến áp có ưu điểm là việc tính toán trạng thái một chiều cho các transistor độc lập nhau, đồng thời có thể dung hợp tổng trở giữa các khối nhờ tỉ lệ của các bộ biến áp.

4- Ghép tầng trực tiếp

Hình 1.12a

Sơ đồ mạch hình 1.12a là hai tầng khuếch đại dùng transistor ghép trực tiếp. Theo cách ghép này, hai transistor sẽ phân cực lẫn nhau theo nguyên lý hồi tiếp âm để ổn định nhiệt mà không dùng cầu phân áp ở cực B. Cách tính điện áp một chiều và nguyên lý hồi

tiếp âm một chiều để ổn định nhiệt sẽ được phân tích chi tiết trong chương "Mạch khuếch đại DC".

Hình 1.12b

Sơ đồ hình 1.12b là mạch tương đương của hai transistor T_1 – T_2 ghép trực tiếp, trong đó, R_i là tổng trở tương đương của R_B song song với h_{ie1} , R_{L1} là tổng trở tương đương của R_{C1} song song với h_{ie2} .

Cách ghép tầng trực tiếp có ưu điểm là mạch điện đơn giản, do bớt được tụ điện liên lạc và điện trở cầu phân áp, độ ổn định nhiệt của mạch rất tốt nhờ hồi tiếp âm một chiều, băng thông rộng do không dùng tụ.

§1.6- MẠCH KHUẾCH ĐẠI HỒI TIẾP

1- Định nghĩa

Mạch hồi tiếp là mạch lấy một phần năng lượng ở ngỗ ra đưa về cung cấp cho ngỗ vào.

Trong sơ đồ hình 1.13 mạch hồi tiếp được ký hiệu bằng chữ FB do chữ "Feed Back". Điện áp của nguồn tín hiệu điều khiển là $v_{\rm o}$, tín hiệu ngõ có thể là dạng điện áp $v_{\rm i}$ hay dạng đòng điện $i_{\rm i}$, tín hiệu ngõ ra là $v_{\rm o}$ hay $i_{\rm o}$, điện áp lấy ra sau mạch hồi tiếp là $v_{\rm f}$.

Trường hợp mạch khuếch đại không có hồi tiếp -còn gọi là mạch khuếch đại vòng hở - thì độ khuếch đại điện áp được định nghĩa là:

$$A_{\Gamma O} = \frac{v_o}{v_v} \approx \frac{v_o}{v_c}$$

Hình 1.13

Mạch hồi tiếp FB có điện áp vào là v_o , điện áp ra là v_t . Hệ số hồi tiếp định nghĩa là:

$$b = \frac{v_f}{v_o} \qquad \Rightarrow \qquad v_f = bv_o$$

Trường hợp khuếch đại có hồi tiếp thì độ khuếch đại điện áp hồi tiếp được định nghĩa:

$$A_{vf} = \frac{v_o}{v_e}$$
 trong đó: $v_i = v_s + v_f \implies v_e = v_i - v_f$

Suy ra:
$$A_{vf} = \frac{v_o}{v_f - v_f}$$

2- Phân loại

- a) Theo tác dụng khuếch đại:
- Hồi tiếp dương là mạch có tác dụng làm tăng độ khuếch đại. Trường hợp này ta có: A_{vo} .
- Hồi tiếp âm là mạch có tác dụng làm giảm độ khuếch đại. Trường hợp này ta có: $A_{vi} < A_{vo}$.

b) Theo dạng tín hiệu:

- Hồi tiếp điện áp là mạch lấy điện áp ra v_o để tạo điện áp hồi tiếp v_f đưa trở lại ngõ vào.
- Hồi tiếp dòng điện là mạch lấy dòng điện ra i_o để tạo điện áp hồi tiếp v_f đưa trở lại ngõ vào.
 - c) Theo cách ghép:
- Hồi tiếp song song là khi điện áp nguồn tín hiệu v_s và điện áp hồi tiếp v_f ghép song song nhau Nói cách khác, hồi tiếp song song là khi hai tín hiệu v_s và v_f cùng đưa vào một cực của transistor.

Trường hợp này ta có:
$$v_i = v_1 + v_2 \rightarrow v_2 = v_1 - v_2$$

- Hồi tiếp nối tiếp là khi điện áp nguồn tín hiệu v_s và điện áp hồi tiếp v_f ghép nối tiếp nhau Nói cách khác, hồi tiếp nối tiếp là khi hai tín hiệu v_s và v_f đưa vào hai cực khác nhau của một transistor. Thí dụ: v_s đưa vào cực E của transistor.

Trường hợp này ta có:
$$v_i = v_x - v_y \rightarrow v_x = v_y + v_y$$

Mạch hồi tiếp có tên gọi đầy đủ gồm cả ba phần theo ba cách phân loại trên. Thí dụ: mạch hồi tiếp âm dòng điện ghép nối tiếp, hồi tiếp âm điện áp ghép song song.

Việc tính toán, phân tích nguyên lý của các kiểu khuếch đại hồi tiếp sẽ được nói rõ trong chương "Khuếch đại hồi tiếp".

§1.7- CÁCH TÍNH HỆ SỐ ỔN ĐỊNH NHIỆT

Các thông số của transistor đều bị thay đổi theo nhiệt độ, trong đó có ba thông số chịu ảnh hưởng lớn nhất là dòng điện rỉ I_{CBO} , độ khuếch đại β và điện áp phân cực V_{BE} .

Để tránh ảnh hưởng của nhiệt độ lên các thông số của transistor có thể làm sai điểm làm việc tĩnh Q, người ta dùng nhiều cách phân cực cho

transistor, mỗi cách phân cực có tác dụng và hiệu quả ổn định nhiệt khác nhau. Để đặc trưng cho tác dụng và hiệu quả ổn định nhiệt, người ta định nghĩa hệ số ổn định nhiệt là:

$$\dot{S} = \frac{\Delta I_C}{\Delta I_{CBO}}$$
S: stability (độ ổn định)
$$S : \text{phủ định của S}$$

 \hat{S} còn được gọi là "độ bất ổn định". Cách gọi này hợp lý hơn vì theo định nghĩa \hat{S} càng nhỏ thì mạch càng ổn định về nhiệt độ, nghĩa là \hat{S} càng nhỏ thì "độ bất ổn định càng thấp".

Công thức tổng quát để tính hệ số ổn định nhiệt \bar{S} là:

$$\dot{S} = \frac{q}{q - \alpha}$$

trong đó: q là hệ số tuỳ thuộc cách phân cực cho transistor

 α là hệ số khuếch đại dòng điện ráp kiểu B chung

$$\alpha = \frac{I_C}{I_L} = \frac{\beta}{\beta + 1}$$

Hệ số q được xác định theo cách phân cực trình bày trong bảng mạch thiết kế mẫu sau:

+ Xét mạch phân cực hình 1.14a, hệ số ổn định nhiệt là:

$$S = \frac{q}{q - \alpha} = \frac{1}{1 - \alpha} = \frac{1}{1 - \frac{\beta}{\beta + 1}} = \beta + 1$$

Đây là hệ số ổn định nhiệt kém nhất vì β lớn khoảng vài trăm.

+ Xét mạch phân cực hình 1.14b, hệ số ổn định nhiệt là:

$$\bar{S} = \frac{q}{q - \alpha} = \frac{1 + \frac{R_h}{R_B}}{1 + \frac{R_F}{R_B} - \alpha} = \frac{1 + \frac{R_F}{R_B}}{1 - \alpha + \frac{R_h}{R_B}}$$

Nếu transistor có β lớn thì 1- $\alpha \approx 0$.

Do đó:
$$S = \frac{1 + \frac{R_h}{R_B}}{R_B}$$

Thường thì $R_E << R_B \Rightarrow \frac{R_E}{R_B} << 1$ nên:

$$\bar{S} = \frac{1}{\frac{R_E}{R_E}} = \frac{R_B}{R_E}$$

Như vậy hệ số ổn định nhiệt S tỉ lệ nghịch với R_E . Nếu R_E lớn thì S nhỏ và mạch ổn định nhiệt tốt.

CHUONG 2

MẠCH KHUẾCH ĐẠI HỒI TIẾP

§2.1- ĐẠI CƯƠNG

Mạch khuếch đại có ký hiệu dạng sơ đồ khối như hình 2.1, khi có tín hiệu điện áp v_s ở ngõ vào sẽ cho ra tín hiệu v_o ở ngõ ra. Tỉ số $A_V = v_o/v_s$ được gọi là độ khuếch đại điện áp như đã trình bày trong chương trước. Mạch khuếch đại kiểu này còn gọi là khuếch đại vòng hở để phân biệt với mạch khuếch đại hồi tiếp, độ khuếch đại điện áp của mạch khuếch đại vòng hở được ký hiệu là A_{VO} (o: open).

Ta có:
$$A_{VO} = \frac{v_o}{v_s} = \frac{v_o}{v_i}$$

Mạch hồi tiếp là mạch lấy một phần năng lượng ở ngõ ra đưa về cung cấp lại cho ngõ vào để điều chỉnh lại các thông số và chỉ tiêu kỹ thuật của mạch khuếch đại. Mạch hồi tiếp trong sơ đồ khối được viết tắt là FB do chữ "Feed Back". Đối với mạch hồi tiếp, tín hiệu vào chính là tín hiệu ra của mạch khuếch đại (có thể là v_o hay i_o), tín hiệu ra của mạch hồi tiếp ký hiệu là v_f được đưa vào mạch khuếch đại chung với tín hiệu v_i . Tỉ số giữa tín hiệu ra và tín hiệu vào của mạch hồi tiếp được gọi là hệ số hồi tiếp ký hiệu là b.

Ta có:
$$b = \frac{v_f}{v_o} \Rightarrow v_f = b.v_o$$

Mạch khuếch đại có đường hồi tiếp như hình 2.2 được gọi là mạch khuếch đại hồi tiếp (hay mạch khuếch đại vòng kín). Tỉ số giữa điện áp ra v_o và điện áp nguồn v_s bây giờ gọi là độ khuếch đại hồi tiếp ký hiệu là A_{VF} (F tức Feed Back).

Ta có:
$$A_{VF} = \frac{v_o}{v_c}$$

Nếu v, và v_i đồng pha ta có:

$$v_i = v_s + v_f \implies v_s = v_i - v_f \implies A_{v_f} = \frac{v_o}{v_o - v_f}$$

Nếu v, và v_i ngược pha ta có:

$$V_1 = V_S - V_f \implies V_K = V_i + V_f \implies A_{VF} = \frac{V_o}{V_I + V_f}$$

Tổng quát:
$$A_{V_L} = \frac{v_a}{v_L + v_L}$$

Hình 2.1: Mach khuếch đại

Hình 2.2: Mạch khuếch đại hồi tiếp

§2.2- PHÂN LOẠI MẠCH HỒI TIẾP

Có thể phân loại mạch hồi tiếp theo ba cách: theo tác dụng khuếch đại, theo dạng tín hiệu và theo cách ghép giữa tín hiệu hồi tiếp và tín hiệu vào.

1. Theo tác dụng khuếch đại

- Mạch hồi tiếp dương: khi có hồi tiếp sẽ làm tăng độ khuếch đại điện áp. Trường hợp này ta có: $A_{VF} > A_{VO}$.
- Mạch hồi tiếp âm: khi có hồi tiếp sẽ làm giảm độ khuếch đại điện áp. Trường hợp này ta có: A_{VF} < A_{VO}.

2. Theo dang tín hiệu hồi tiếp

 - Mạch hồi tiếp điện áp: mạch lấy điện áp ra vo để tạo điện áp hồi tiếp vi đưa trở lại ngõ vào. - Mạch hồi tiếp dòng điện: mạch lấy dòng điện ra i_0 để tạo điện áp hồi tiếp v_f đưa trở lại ngõ vào.

3. Theo cách ghép với tín hiệu vào

- Hồi tiếp song song: khi điện áp nguồn tín hiệu v_s và điện áp hồi tiếp v_f ghép song song nhau. Nói cách khác, hồi tiếp song song là khi hai tín hiệu v_s và v_f cùng đưa vào một cực của transistor.

Trường hợp này ta có:

$$v_1 = v_s + v_f \implies v_s = v_1 - v_f$$

- Hồi tiếp nối tiếp: khi điện áp nguồn tín hiệu v, và điện áp hồi tiếp v_t ghép nối tiếp nhau. Nói cách khác, hồi tiếp nối tiếp là khi hai tín hiệu v, và v_t đưa vào hai cực khác nhau của một transistor. Thí dụ: v, đưa vào cực B còn v_t đưa vào cực E của cùng một transistor.

Trường hợp này ta có:

$$v_1 = v_5 - v_f \implies v_8 = v_1 + v_f$$

Một mạch hồi tiếp có tên gọi đủ gồm cả ba phần theo ba cách phân loại trên.

Thí dụ: - mạch hồi tiếp âm dòng điện ghép nối tiếp

- mạch hồi tiếp âm điện áp ghép song song.

§2.3- CÁCH XÁC ĐỊNH LOẠI HỒI TIẾP

1. Công thức tổng quát

Trong mạch khuếch đại vòng hở hình 2.1 ta có:

$$A_{FO} = \frac{v_o}{v_s} = \frac{v_o}{v_t}$$
 (nội trở r_s của nguồn thường nhỏ)

Trong mạch khuếch đại hồi tiếp hình 2.2, nếu chỉ xét từ ngô vào đến ngỗ ra thì độ khuếch đại điện áp chính là độ khuếch đại vòng hở A_{VO} là:

$$A_{VO} = \frac{v_o}{v_s} = \frac{v_o}{v_s} \Rightarrow v_o = v_s.A_{vo}$$

Trường hợp xét từ nguồn v_s đến ngõ ra v_o bao gồm cả mạch hồi tiếp thì độ khuếch đại hồi tiếp là:

Suy ra:
$$A_{1F} = \frac{v_i A_{1O}}{v_i \pm v_f} = \frac{v_i A_{1O}}{v_i \pm b v_o} = \frac{v_i A_{1O}}{v_i \pm b v_i A_{1O}}$$

$$\Rightarrow A_{1F} = \frac{A_{1O}}{1 \pm b A_{1O}}$$

Gọi mẫu số $1 \pm b$. A_{VO} là thừa số hồi tiếp F, ta có:

$$F = 1 \pm bA_{1D} \qquad A_{1T} = \frac{A_{1D}}{F}$$

2. Trường hợp $F = 1 - b.A_{VO}$

Trong phần 2.1 đã phân tích, nếu v_s và v_i đồng pha ta có:

$$v_i = v_s + v_f$$
 \Rightarrow $v_s = v_i \cdot v_f$ \Rightarrow $A_{v_F} = \frac{v_o}{v_i - v_f}$

Suyra:
$$A_{17} = \frac{A_{17}}{1 - bA_{17}}$$
 và $F = 1 - bA_{17}$ a2

Ta có các trường hợp sau:

a. Neu
$$F = 1 - b.A_{VO} > 1 \implies A_{VF} < A_{VO}$$

Mạch hồi tiếp có tác dụng làm giảm độ khuếch đại nên là mạch hồi tiếp âm. Khi đó: -b. $A_{VO} > 0 \implies b$. $A_{VO} < 0$, nghĩa là b và A_{VO} trái dấu.

b. Neu
$$F = 1 - b$$
. $A_{VO} < 1 \implies A_{VF} > A_{VO}$

Mạch hồi tiếp có tác dụng làm tăng độ khuếch đại nên là mạch hồi tiếp dương. Khi đó: -b. $A_{VO} < 0 \implies b.A_{VO} > 0$ và điều này có nghĩa là b và A_{VO} cùng dấu.

c. Nếu mạch khuếch đại có - b.Avo >> 1 thì:

$$A_{17} = \frac{A_{10}}{1 - bA_{10}} \cong \frac{A_{10}}{-bA_{10}} = -\frac{1}{b}$$

Trường hợp này độ khuếch đại hồi tiếp A_{VF} là nghịch đảo và ngược dấu với hệ số hồi tiếp b.

d. Nêu
$$F = 1 - b A_{VO} = 0 \implies b A_{VO} = 1$$

Trường hợp này ta có:

*
$$A_{IF} = \frac{A_{IO}}{1 - bA_{IO}} \rightarrow \infty$$

* $b.A_{VO} = 1 \implies \frac{v_f}{v_o} \frac{v_o}{v_t} = 1 \Rightarrow \frac{v_f}{v_t} = 1$

Suy ra: $v_i = v_i$

Lúc đó, mạch tự tạo ra tín hiệu và mạch dao động (phần này sẽ được phân tích trong giáo trình " Mạch điện tử - Tập 2").

Trường hợp $F = 1 - b.A_{VO}$ là trường hợp điện áp hồi tiếp v_f được ghép song song với nguồn tín hiệu v_s .

3. Trường hợp $F = 1 + b.A_{VO}$

Trong phần 2.1 ta cũng có xét trường hợp \mathbf{v}_{v} và \mathbf{v}_{f} ngược pha:

$$v_i = v_s - v_f$$
 \Rightarrow $v_s = v_i + v_f$ \Rightarrow $A_{ij} = \frac{v_o}{v_i + v_f}$

Suy ra:
$$A_{VF} = \frac{A_{VO}}{1 + bA_{VO}} \Rightarrow F = 1 + b.A_{VO}$$

Ta có các trường hợp:

a. Néu
$$F = 1 + b.A_{VO} > 1 \implies A_{VF} < A_{VO}$$

Mạch hồi tiếp có tác dụng làm giảm độ khuếch đại nên là mạch hồi tiếp âm. Khi đó $b.A_{VO} > 0$, nghĩa là b và A_{VO} cùng dấu.

b. Néu
$$F = 1 + b.A_{VO} < 1 \implies A_{VF} > A_{VO}$$

Mạch hồi tiếp có tác dụng làm tăng độ khuếch đại nên là mạch hồi tiếp dương. Khi đó $b.A_{VO} < 0$, nghĩa là b và A_{VO} trái dấu.

c. Nếu mạch khuếch đại có b.Avo >> 1 thì:

$$A_{17} = \frac{A_{10}}{1 + bA_{10}} \cong \frac{A_{10}}{bA_{10}} = \frac{1}{b}$$

d. Nêu
$$F = 1 + b.A_{VO} = 0$$
 \Rightarrow $b.A_{VO} = -1$

Trường hợp này ta có:

$$A_{1T} = \frac{A_{1O}}{1 + bA_{1O}} \to \infty$$

$$b.A_{VO} = 1 \quad \Rightarrow \quad \frac{v_f}{v_o} \frac{v_a}{v_o} = 1 \Rightarrow \frac{v_f}{v_o} = 1$$

Suy ra: $v_1 = v_1$

Lúc đó, mạch tự tạo ra tín hiệu và là mạch dao động (phần này sẽ được phân tích trong giáo trình "Mạch điện tử - Tập 2").

Trường hợp $F=1+b.A_{VO}$ là trường hợp điện áp hồi tiếp v_t được ghép nối tiếp với nguồn tín hiệu v_s .

§2.4- PHÂN LOẠI HỒI TIẾP THEO THỪA SỐ HỒI TIẾP F

Hồi tiếp song song	Hồi tiếp nối tiếp	
$A_{VF} = \frac{A_{VO}}{1 - bA_{VO}}$	$A_{VF} = \frac{A_{VO}}{1 + bA_{VO}}$	

$F = 1 - bA_{VO} > 1 \implies bA_{VO} < 0$	$F = 1 + bA_{VO} > 1 \implies bA_{VO} > 0$	
b và A _{VO} trái dấu ⇒ hồi tiếp âm	b và A _{vo} cùng dấú ⇒hồi tiếp âm	
$F = 1 - bA_{VO} < 1 \Rightarrow bA_{VO} > 0$	$F = 1 + bA_{VO} < 1 \implies bA_{VO} < 0$	
b và A _{VO} cùng dấu⇒ hồi tiếp dương	b và A _{vo} trái dấu ⇒ hồi tiếp dương	
$-bA_{VO} >> 1 \implies b \text{ và } A_{VO} \text{ trái}$ dấu	bA _{VO} >> 1 ⇒ b và A _{VO} cùng dấu	
Hồi tiếp âm với $A_{VF} = -\frac{1}{b}$	Hồi tiếp âm với $A_{VF} = \frac{1}{b}$	
$F = 1 - bA_{VO} = 0 \Rightarrow b.A_{VO} = 1$	$F = 1 + bA_{VO} = 0 \Rightarrow bA_{VO} = -1$	
⇒ A _{VF} → ∞ và trở thành mạch dao động	\Rightarrow A _{VF} \rightarrow ∞ và trở thành mạch dao động	

§2.5- HỒI TIẾP ÂM DÒNG ĐIỆN GHÉP NỐI TIẾP

1. Sơ đồ

<u>Hình 2.9</u>: Mạch khuếch đại không hồi tiếp

<u>Hình 2.9</u>: Mạch khuếch đại có hồi tiếp

2. Nguyên lý

Trong sơ đồ hai mạch khuếch đại hình 2.3 và 2.4, các tụ điện liên lạc C_1 - C_2 và tụ điện phân dòng C_E được chọn có trị số đủ lớn sao cho ở tần số tiêu biểu của tín hiệu nguồn v_s thì dụng kháng X_C rất nhỏ nên được coi như nối tắt.

Thường chọn:
$$C_1 = C_2 = 1\mu F \div 10\mu F$$
 cho $f = 1kHz$

$$C_E = 25\mu F \div 100\mu F$$
 cho $f = 1kHz$

Như vậy, tụ C_E trong mạch điện hình 2.3 coi như nối tắt điện trở R_E xuống mass đối với tín hiệu xoay chiều. Đây chính là mạch khuếch đại ráp kiểu E chung.

Độ khuếch đại điện áp của transistor là:

$$A_{10} = -\beta \frac{R_C}{h_w} \qquad (\cong \text{vài trăm lần})$$

Trong mạch khuếch đại hình 2.4 không dùng tụ điện C_E nên dòng điện tín hiệu ở ngõ ra là $i_e \cong i_c$ đi qua R_E tạo ra điện áp xoay chiều v_e cũng chính là điện áp hồi tiếp v_f .

Ta có:
$$v_f = v_c = i_c$$
. R_E

Độ khuếch đại áp của mạch chính là độ khuếch đại hồi tiếp:

$$A_{V} = A_{VF} = -\frac{R_{C}}{R_{F}}$$

Dùng lý thuyết hổi tiếp để phân tích ta có:

- hệ số hồi tiếp:
$$b = \frac{v_f}{v_o} = -\frac{v_e}{v_c}$$
 (dấu (-) do E và C đảo pha)

$$b = -\frac{i_c R_E}{i_c R_C} = -\frac{R_C}{R_E}$$
 (b là số âm)

Trong bảng phân loại hồi tiếp theo thừa số F ta có:

$$A_{1T} = \frac{A_{1O}}{1 + bA_{1O}}$$

Do $A_{VO} \cong v$ ài trăm lần nên b. $A_{VO} >> 1$, như vậy:

$$A_{tr} \cong \frac{A_{tO}}{bA_{tO}} = \frac{1}{b} = -\frac{R_C}{R_F}$$

Ta vẫn có kết quả giống như trên mạch tương đương nhưng cách tính đơn giản hơn nhiều.

§2.6- HỒI TIẾP ÂM ĐIỆN ÁP GHÉP NỐI TIẾP

1. Sơ đồ

Hình 2.5: Mạch khuếch đại không hồi tiếp

Hình 2.6: Mạch khuếch đại hồi tiếp

2. Nguyên lý

Mạch điện hình 2.5 là mạch khuếch đại hai tầng không có hồi tiếp. Mạch này có độ khuếch đại điện áp chung của hai tầng là:

$$A_{IO} = A_{IOI}.A_{IO2} = \beta_1 \beta_2 \frac{R_{C2}}{h_{w1}}$$
 (rất lớn)

Trong mạch điện hình 2.6, điện trở R_{E1} và R_f được thêm vào là cầu phân áp lấy điện áp ngõ ra v_o cho ra điện áp v_f trên R_{E1} để tạo sự hồi tiếp.

Điện áp hồi tiếp v_t lấy trên R_{EI} được tính theo công thức:

$$v_t = v_o \frac{R_{T1}}{R_{t\perp} + R_t}$$

Theo định nghĩa của mạch hồi tiếp ta có: $v_f = b.v_o$

Suy ra hệ số hồi tiếp b của mạch là:

$$b = \frac{R_{E1}}{R_{L1} + R_{L}}$$
 và b > 0 (b là số dương)

Trong bảng phân loại hồi tiếp theo thừa số F ta có:

$$A_{17} = \frac{A_{17}}{1 + bA_{17}}$$

Do A_{VO} rất lớn (≅ vài trăm lần) nên b.A_{VO} >> 1, như vậy:

$$A_{II} \cong \frac{A_{II}}{bA_{IO}} = \frac{1}{b} = \frac{R_{EI} + R_{I}}{R_{EI}}$$
 (Ave Avo)

Độ khuếch đại hồi tiếp sẽ phụ thuộc rất lớn vào điện trở $R_{\rm f}$. Điện trở $R_{\rm E1}$ có phạm vi thay đổi không lớn lắm vì ảnh hưởng đến trạng thái phân cực một chiều của transistor $T_{\rm 1}$.

Ta cũng có thể phân tích nguyên lý của mạch dựa vào góc pha của tín hiệu nguồn v_v - v_i - v_o và v_t như sau:

- khi v, có bán kỳ dương thì T₁ dẫn mạnh và cực C₁ có bán kỳ âm ra đưa vào cực B₂.
- khi T₂ nhận bán kỳ âm vào cực B₂ thì T₂ dẫn yếu và cực C₂ có bán kỳ dương ra, v₀ có bán kỳ dương.
- tín hiệu bán kỳ dương của vo tạo ra điện áp hồi tiếp vf cũng là bán kỳ dương nên vo và vf cùng dấu.

Ta đã có:
$$v_s = v_1 + v_1 \implies v_i = v_s - v_1$$

Do v_s và v_f cùng dấu nên v_i bị giảm biên độ sẽ làm giảm biên độ điện áp ra v_o , mạch hồi tiếp là loại mạch hồi tiếp âm.

§2.7- HỒI TIẾP ÂM ĐIỆN ÁP GHÉP SONG SONG

1. Sơ đồ

Hình 2.7: Mạch không hồi tiếp

Hình 2.8: Mạch khuếch đại hồi tiếp

2- Nguyên lý

Mạch điện hình 2.7 là mạch khuếch đại cơ cản dùng một transistor và không có hồi tiếp. Độ khuếch đại điện áp của mạch là:

$$A_{10} = -\beta \frac{R_C}{h}$$
 (\(\pi \partial \text{v\text{\text{i}} tr\text{\text{im}} l\text{\text{\text{\text{i}}}}\)

Mạch điện hình 2.8 có điện trở R_f thay R_B lấy điện áp cực C (V_C) để phân cực một chiều cho cực B, đồng thời là điện trở hồi tiếp để lấy điện áp ra v_o đưa trở lại ngõ vào.

Điện trở R_1 kết hợp với tổng trở ngõ vào h_{ie} tạo thành cầu phân áp cho ra điện áp hồi tiếp v_f tính theo công thức:

$$v_{f} = v_{a} \frac{h_{w}}{h_{w} + R_{f}}$$

Theo định nghĩa của mạch hồi tiếp ta có: $v_1 = b.v_0$

Suy ra hệ số hồi tiếp b là:

$$b = \frac{h_{ic}}{h_{ic} + R_{f}}$$
 (b > 0, b là số dương)

Theo sơ đỗ này điện áp nguồn v_{s} , điện áp hồi tiếp v_{f} cùng được đưa vào cực B nên đây là mạch hồi tiếp ghép song song.

Ta có:
$$v_i = v_s + v_f \implies v_s = v_i - v_i$$

Trong bảng phân loại hồi tiếp theo thừa số F ta có:

$$A_{IF} = \frac{A_{IO}}{1 - bA_{IO}}$$

Do A_{VO} rất lớn (≅ vài trăm lần) nên b.A_{VO} >> I và như vậy:

$$A_{\Gamma P} \cong \frac{A_{\Gamma O}}{-bA_{\Gamma O}} = -\frac{1}{b} = -\frac{h_w + R_f}{h_w}$$

Độ khuếch đại hồi tiếp sẽ phụ thuộc rất lớn vào điện trở R_1 vì tổng trở ngõ vào h_{ie} đối với mỗi transistor gần như không đổi.

Ta cũng có thể phân tích nguyên lý của mạch dựa vào góc pha của tín hiệu nguồn $v_x - v_t - v_o$ và v_f như sau:

- khi v, có bán kỳ dương thì ngỗ ra vo có bán kỳ âm do mạch khuếch đại đảo pha, vo có bán kỳ âm.
- > do hệ số b dương nên điện áp hồi tiếp v_i có bán kỳ âm.

ngõ vào v_i nhận hai tín hiệu v_s và v_i là hai tín hiệu đảo pha nên tín hiệu vào bị giảm nhỏ sẽ làm cho tín hiệu ra v_o bị giảm, mạch hồi tiếp là loại mạch hồi tiếp âm.

§2.8- HỒI TIẾP ÂM DÒNG ĐIỆN GHÉP SONG SONG

1. Sơ đồ

Hình 2.9: Mạch khuếch đại không hỗi tiếp

Hình 2.10: Mạch khuếch đại hồi tiếp

2. Nguyên lý

Mạch điện hình 2.9 là mạch khuếch đại không hồi tiếp có hai tầng. Độ khuếch đại điện áp chung cho hai tầng là:

$$A_{ii} = A_{ii1}.A_{ii2} = \beta_1 \beta_2 \frac{R_{i'2}}{h_{ii1}}$$
 (rất lớn)

Trong đó $\beta_1.\beta_2$ là độ khuếch đại dòng điện chung cho cả hai tầng gọi là độ khuếch đại dòng điện hở (không hồi tiếp) A_{IO} .

Ta có:
$$A_{IO} = \beta_1 \beta_2$$
 \Rightarrow $A_{IO} = A_{IO} \frac{R_{C2}}{h_{rel}}$

Hình 2.11: Mạch tương đương

Mạch điện hình 2.10 dùng điện trở R_f lấy điện áp V_{E2} để phân cực cho cực B_1 thay cho R_{B1} , đồng thời lấy tín hiệu ra trên cực E_2 để hồi tiếp về cực B_1 .

Tín hiệu điện áp trên cực E_2 , do dòng điện ra $i_o=i_{c2} \cong i_{c2}$ qua R_{E2} tạo ra, là mạch hồi tiếp dòng điện. Tín hiệu nguồn v_s và tín hiệu hồi tiếp v_t cùng đưa vào cực B nên đây là mạch hồi tiếp ghép song song.

Trong mạch hồi tiếp loại này, chúng ta sẽ phân tích bằng độ khuếch đại dòng điện hở A_{IO} và độ khuếch đại dòng điện hồi tiếp A_{IF} .

Ta có:
$$A_{KI} = \frac{i_0}{i_1} = \frac{i_{C2}}{i_{b1}} = \beta_1 \beta_2$$

Mạch hồi tiếp dòng điện bằng R_1 có thể vẽ ra mạch tương đương như hình 2.11.

Ta có:
$$i_{e2} = i_1 + i_2$$

 $i_1 (R_f + h_{ie1}) = i_2 R_{E2} = v_{e2}$

$$\Rightarrow \frac{i_2}{i_1} = \frac{R_f + h_{ie1}}{R_{F2}}$$

$$\Rightarrow \frac{i_1}{i_1} + \frac{i_2}{i_1} = \frac{R_{E2}}{R_{E2}} + \frac{R_f + h_{ie1}}{R_{E2}} = \frac{R_{E2} + R_f + h_{ie1}}{R_{E2}}$$

$$\Rightarrow \frac{i_{e2}}{i_1} = \frac{R_{F2} + R_f + h_{ie1}}{R_{E2}}$$
Do $h_{ie1} << R_f$ nên: $\frac{i_{e2}}{i_1} = \frac{R_{E2} + R_f}{R_{E2}}$ mà $i_f = i_1$ và $i_{e2} = i_0$
Suy ra: $\frac{i_1}{i_{e2}} = \frac{R_{E2}}{R_{E2} + R_f}$ mà $i_f = i_1$ và $i_{e2} = i_0$

nên hệ số hồi tiếp bị được tính theo công thức:

$$b_i = \frac{i_f}{i_n} = \frac{R_{1.2}}{R_{1.2} + R_f}$$

Độ khuếch đại dòng điện có hồi tiếp gọi là $A_{\rm IF}$ được tính theo công thức:

$$A_{IF} = \frac{1}{b_{I}} = \frac{R_{F2} + R_{I}}{R_{E2}}$$

Từ độ khuếch đại dòng điện hồi tiếp A_{IF} ta có thể tính độ khuếch đại điện áp hồi tiếp A_{VF} theo công thức:

$$A_{VF} = A_{fF} \frac{R_{C2}}{h_{rel}}$$

$$\Rightarrow A_{FF} = \frac{R_{h2} + R_f}{R_{h2}} \cdot \frac{R_{C2}}{h_{rel}}$$

Như thế, độ khuếch đại hồi tiếp phụ thuộc rất lớn vào $R_{\rm f}$, còn điện trở $R_{\rm E2}$ có phạm vi thay đổi không lớn lắm vì ảnh hưởng đến trạng thái phân cực một chiều.

Nếu dựa vào góc pha của tín hiệu để phân tích thì ta có:

- khi nguồn v, có bán kỳ dương thì T₁ khuếch đại đảo pha cho ra bán kỳ âm, qua T₂ lại khuếch đại đảo pha cho ra bán kỳ dương ở ngõ ra v_o.
- tín hiệu hồi tiếp lấy trên cực E₂ là tín hiệu đảo pha với cực C₂
 ở ngô ra nên tín hiệu hồi tiếp sẽ là bán kỳ âm.
- tín hiệu hồi tiếp v_f có bán kỳ âm cũng đưa vào cực B với nguồn v_s nhưng ngược pha với v_s nên làm giảm biên độ của điện áp tín hiệu vào v_f và giảm điện áp tín hiệu ra v₀, mạch hồi tiếp là loại mạch hồi tiếp âm.

§2.9- ẢNH HƯỞNG CỦA HỒI TIẾP ÂM ĐẾN CÁC THÔNG SỐ CỦA MẠCH KHUẾCH ĐẠI

Trong chương này chỉ phân tích các mạch hồi tiếp âm dùng trong mạch khuếch đại tuyến tính, các loại mạch hồi tiếp dương sẽ được phân tích trong giáo trình "Mạch điện tử - Tập 2".

Mạch hồi tiếp âm ngoài tác dụng làm giảm độ khuếch đại điện áp còn làm thay đổi các thông số và chỉ tiêu kỹ thuật khác của mạch như: tổng trở ngõ vào Z_0 , tổng trở ngõ ra Z_0 , độ rộng băng thông B.

Để thấy tác dụng của hồi tiếp âm ảnh hưởng lên các thông số trên, người ta thường dùng mạch tương đương để phân tích. Ở đây chỉ cho bảng kết quả sau khi đã phân tích, tính toán (phần phân tích, tính toán rất dài).

Gọi Z_i , Z_o , A_{VO} , B là các thông số của mạch khi không có hồi tiếp âm và gọi Z_{if} , Z_{of} , A_{VF} , B_F là các thông số của mạch khi có hồi tiếp âm ta có bảng kết quả như sau:

Thông số kỹ thuật	Hồi tiếp âm dòng điện nối tiếp	Hồi tiếp âm điện áp nối tiếp	Hồi tiếp âm điện áp song song	Hồi tiếp âm dòng điện song song
Tổng trở vào	$\mathbf{Z}_{if} = \mathbf{Z}_{i}\mathbf{F}$	$\mathbf{Z}_{i\mathbf{f}} = \mathbf{Z}_{i}\mathbf{F}$	$Z_{if} = \frac{Z_i}{F}$	$Z_{if} = \frac{Z_i}{F}$
Tổng trở ra	$Z_{Of} = Z_{O}F$	$Z_{\text{Of}} = \frac{Z_{\text{O}}}{F}$	$Z_{of} = \frac{Z_o}{F}$	$Z_{Of} = Z_{O}F$
Độ khuếch đại áp	$A_{VF} = \frac{A_{VO}}{F}$	$A_{vF} = \frac{A_{vO}}{F}$	$A_{VF} = \frac{A_{VO}}{F}$	$A_{VF} = \frac{A_{VO}}{F}$
Băng thông	$B_F = BF$	$B_F = BF$	$B_F = BF$	$B_F = BF$

Trong bảng kết quả trên, F là thừa số hồi tiếp và

$$F = 1 \pm b.A_{VO}$$
.

Nhận xét:

- Mạch hồi tiếp âm dòng điện nối tiếp làm tăng tổng trở ngô vào và ngô ra lên F lần.
- Mạch hồi tiếp âm điện áp nối tiếp làm tăng tổng trở ngô vào và giảm tổng trở ngô ra F lần.
- Mạch hồi tiếp âm điện áp song song làm giảm tổng trở ngô vào và ngô ra xuống F lần.
- Mạch hồi tiếp âm dòng điện song song làm giảm tổng trở ngô vào và tăng tổng trở ngô ra F lần.

Tất cả các mạch hồi tiếp âm đều làm độ khuếch đại điện áp giảm xuống F lần và độ rộng băng thông tăng lên F lần.

Các mạch hồi tiếp âm làm tăng tổng trở ngõ vào thường được dùng cho tầng khuếch đại đầu tiên để không làm giảm biên độ của tín hiệu nguồn v_v. Các mạch hồi tiếp âm làm giảm tổng trở ngõ ra thường được dùng cho tầng cuối cùng để tăng khả năng cấp dòng cho tải.

Ngoài các thông số kỹ thuật trên, mạch hồi tiếp còn có tác dụng giảm biên độ nhiễu, giảm độ méo phi tuyến và méo tần số.

CHUONG 3

MẠCH KHUẾCH ĐẠI DC

§3.1- DAI CUONG

Mạch khuếch đại DC còn gọi là mạch khuếch đại ghép trực tiếp. Thông thường các mạch khuếch đại tín hiệu AC được ghép liên lạc bằng tụ điện, khi đó tụ điện liên lạc sẽ có dung kháng thay đổi theo tần số của tín hiệu. Nếu tín hiệu có tần số cao thì dung kháng nhỏ có thể xem như không đáng kể, nếu tín hiệu có tần số thấp hay các tín hiệu có mức biến đổi chậm thì dung kháng của tụ sẽ rất lớn làm tổn hao điện áp trên tụ lớn.

Mạch khuếch đại DC được dùng để tránh ảnh hưởng của tụ liên lạc trong các trường hợp khuếch đại các tín hiệu biến đổi chậm hay các tín hiệu không có tính chu kỳ.

§3.2- CÁC KIỂU KHUẾCH ĐẠI DC

1. Mạch cơ bản

Hình 3.1: Mạch khuếch đại DC

Trong các mạch khuếch đại AC dùng tụ liên lạc, mỗi transistor được thiết kế phân cực một chiều độc lập.

Trong mạch khuếch đại DC cơ bản (hình 3.1) mức điện áp một chiều trên T_1 cũng chính là điện áp phân cực cho T_2 .

Ta có:
$$V_{C1} = V_{B2} \cong 0.7V$$
 và $V_{B1} \cong 0.7V$ $I_{RC1} = I_{C1} + I_{B2}$

Giả sử cầu phân áp R_1 - R_2 bị thay đổi theo hướng làm V_{B1} tăng sẽ làm I_{B1} , I_{C1} tăng. Lúc đó, V_{C1} giảm làm V_{B2} giảm và T_2 chạy yếu hay ngưng dẫn. Ngược lại, nếu V_{B2} tăng sẽ làm T_2 chạy mạnh hay bão hòa.

Như vậy, trong mạch khuếch đại DC, việc tính toán trạng thái tĩnh rất quan trọng vì điện áp một chiều của các transistor sẽ ảnh hưởng lẫn nhau rất lớn.

Mạch hình 3.1 có nhược điểm là V_{CEI} có mức điện áp thấp (0.7V) do $V_{B2}=0.7V$. Để nâng cao mức V_{CEI} thường dùng R_{E2} .

2. Mạch khuếch đại DC có R_{E2}

Hình 3.2a: Hai transistor

cùng loại

Hình 3,2b: Hai transistor

khác loại

Trong mạch điện hình 3.2a người ta dùng thêm R_{E2} để có V_{E2} cao và $V_{B2} = V_{C1}$ cũng được nâng cao vì:

$$V_{B2} = V_{C1} = V_{E2} + V_{BE}$$

Nhờ đó, việc tính chọn điểm làm việc tĩnh của T_1 được dễ dàng hơn. Tuy nhiên khi có $R_{\rm E2}$ thì độ khuếch đại điện áp của tầng hai bị giảm do tác dụng hồi tiếp âm dòng điện của $R_{\rm E2}$.

Mạch điện hình 3.2b là trường hợp dùng hai transistor khác toại nhưng cả hai transistor trong hai mạch đều được ráp kiểu E chung, điện áp tín hiệu vào v, và tín hiệu ra v, là hai tín hiệu đồng pha cho cả hai mạch.

Hình 3.2a có:
$$I_{RC1} = I_{C1} + I_{B2}$$

Hình 3.2b có:
$$I_{C1} = I_{RC1} + I_{B2}$$

Khi có sự thay đổi điện áp phân cực ở ngõ vào thì tác dụng phân cực lên T_2 của hai mạch có sự khác nhau như sau:

- hình 3.2a: khi V_{B1} tăng làm I_{C1} tăng nên V_{C1} giảm sẽ làm V_{B2} giảm và T_2 chạy yếu.
- hình 5.2b: khi V_{B1} tăng làm I_{C1} tăng nên V_{C1} giảm sẽ làm V_{B2} giảm và T_2 chạy mạnh vì là loại PNP.

3. Mạch khuếch đại DC ghim áp ở cực E2

Khi dùng điện trở R_{E2} để nâng điện áp V_{E2} , V_{B2} và V_{C1} thì R_{E2} sẽ làm giảm độ khuếch đại điện áp của T_2 như trong hình 3.2a và 3.2b.

Muốn tránh tác dụng hồi tiếp âm cho $R_{\rm E2}$ tạo ra người ta có thể thay mạch phân cực ổn áp cho cực E_2 bằng cầu phân áp R_Z của Zener. Lúc đó, Zener được chọn có điện áp thích hợp để tạo phân cực cho cực C_1 và B_2 .

Hình 3.3: Ghim áp bằng diod zener

\$3.3- MẠCH KHUẾCH ĐẠI DC THÔNG DỤNG

Mạch điện hình 3.4 là mạch khuếch đại DC thông dụng nhất có thể dùng để khuếch đại cả tín hiệu DC hay AC. Tụ $C_{\rm E}$ chỉ dùng trong mạch khuếch đại AC để loại bỏ tác dụng hồi tiếp âm trên $R_{\rm E2}$ và làm tăng độ khuếch đại điện áp của mạch.

Hình 3.4: Mạch khuếch đại DC có hồi tiếp âm dòng điện

Do hai transistor ghép trực tiếp nên điện áp một chiều của hai transistor sẽ là điện áp phân cực lẫn nhau vì:

$$V_{C1} = V_{B2}$$
 và $V_{B1} = V_{E2} - I_{B1}.R_{f}$

Điện trở R_f lấy điện áp V_{E2} giảm áp để hồi tiếp phân cực cho cực B_1 . Điện trở R_f là mạch hồi tiếp âm dòng điện để ổn định nhiệt cho cả hai transistor.

Nguyên lý mạch hồi tiếp âm để ổn định nhiệt như sau:

- Giả thiết T₁ bị nóng do nhiệt độ của môi trường làm I_{C1} tăng, V_{C1} giảm làm V_{B2} giảm. Lúc đó, T₂ chạy yếu nên I_{E2} giảm, V_{E2} giảm, qua R₁ sẽ làm V_{B1} giảm nên I_{C1} giảm trở lại.
- \succ Giả thiết T_2 bị nóng làm I_{C2} tăng, I_{E2} tăng và V_{E2} tăng. Lúc đó, V_{B1} cũng tăng nên T_1 chạy mạnh làm I_{C1} tăng và V_{C1} giảm làm V_{B2} giảm nên I_{C2} giảm trở lại.

Nếu không có tụ C_{E} , điện trở R_f còn có tác dụng hồi tiếp âm đối với tín hiệu xoay chiều để cải thiện các thông số kỹ thuật của mạch.

Độ khuếch đại điện áp được tính theo công thức:

*
$$T_1$$
 có $A_{V1} = -\beta_1 \frac{R_{C1} // r_{be2}}{r_{be1} + \beta_1 R_{E1}}$

*
$$T_2$$
 có $A_{V2} = -\beta_2 \frac{R_{C2} // R_L}{r_{bc2}}$ (tụ C_E nối tất R_{E2})

* Độ khuếch đại chung của T₁-T₂ là:

$$A_{V} = A_{V1} A_{V2} = \beta_{1} \beta_{2} \frac{R_{C1} // r_{be2}}{r_{be1} + \beta_{1} R_{L1}} \frac{R_{C2} // R_{L}}{r_{be2}}$$

Mach thực tế thường có điều kiện:

$$R_{C1} \gg r_{be2}$$
 nên $R_{C1} // r_{be2} \approx r_{be2}$

$$r_{be1} \ll \beta_1.R_{E1}$$
 nên $r_{be1} + \beta_1.R_{E1} \cong \beta_1.R_{E1}$

Như vậy ta có:
$$A_{t'} = \beta_1 \beta_2 \frac{r_{he2}}{\beta_1 R_{E1}} \frac{R_{C2} // R_L}{r_{he2}}$$

$$\Rightarrow A_V = \beta_2 \frac{R_{C2} // R_L}{R_{C1}}$$

§3.4- HIỆN TƯƠNG " TRÔI ĐIỆN ÁP MỨC KHÔNG "

Đối với các mạch khuếch đại DC, điện áp một chiều giữa các transistor ảnh hưởng nhau rất lớn. Thí nghiệm cho thấy khi không cho tín hiệu vào mạch, bằng cách nối tắt cực B_1 xuống mass qua một điện trở, đo điện áp ra ở cực C_2 cho thấy điện áp ra bị thay đổi không có tính chu kỳ, lúc cao lúc thấp, lúc nhanh lúc chậm. Hiện tượng này được gọi là hiện tượng trôi điện áp mức không. Mức trôi điện áp ở ngõ ra càng lớn nếu mạch có độ khuếch đại điện áp càng lớn.

Điện áp mức không ở ngõ ra bị trôi do các nguyên nhân chính như sau:

1. Ẩnh hưởng của nhiệt độ lên các thông số của transistor

Các thông số kỹ thuật của transistor đều bị thay đổi theo nhiệt độ đối với cả hai loại transistor S_i và G_e , trong đó ba thông số chịu ảnh hưởng lớn nhất là điện áp phân cực V_{BE} , độ khuếch đại β và dòng điện rĩ I_{CBO} .

a. Điện áp V_{BE} thay đổi theo nhiệt độ:

Theo thực nghiệm và lý thuyết bán dẫn, khi nhiệt độ tăng 1^{0} C thì điện áp phân cực V_{BE} giảm 2mV. Hệ số nhiệt của điện áp

$$V_{BE}$$
 là:
$$\frac{dV_{BE}}{dT^0} \cong -2mV/^0 C$$

b. Độ khuếch đại β thay đổi theo nhiệt độ:

Theo thực nghiệm, khi nhiệt độ tăng 1^{0} C thì độ khuếch đại β tăng khoảng 1%. Hệ số nhiệt của β là:

$$\frac{d\beta}{dT^0}.100\% \cong 1\%/^0 C$$

c. Dòng điện ri ICBO theo nhiệt độ:

Trong transistor, mối nối CB được phân cực ngược nên dòng điện qua mối nối CB chỉ là dòng điện rỉ. Tuy nhiên, dòng I_{CBO} tăng cao khi nhiệt độ tăng. Dòng điện rỉ I_{CBO} được tính theo công thức:

$$I_{CBO} = I_{CBO(R)} e^{k(T-25)}$$

Trong đó: $I_{CBO(R)}$: dòng điện rỉ ở nhiệt độ tiêu chuẩn là 25^{0} C

T: nhiệt độ môi trường đang thí nghiệm (°C)

I_{CBO}: dòng điện rỉ ở nhiệt độ T (⁰C)

k: hệ số nhiệt (k = 0.08/ $^{\circ}$ C cho G_e và 0.12/ $^{\circ}$ C cho S_i)

Khi nhiệt độ tăng sẽ làm giảm V_{BE} , nghĩa là với mức điện áp phân cực đang có thì dòng điện I_B sẽ tăng. Lúc đó, độ khuếch đại β cũng tăng sẽ làm dòng điện I_C tăng mạnh, kết hợp với dòng điện rỉ I_{CBO} tăng, càng làm I_C tăng mạnh hơn, dẫn đến điện áp V_C giảm nhỏ làm "điện áp mức không bị trôi".

Để giới hạn ảnh hưởng của nhiệt độ làm "điện áp mức không bị trôi", người ta thường phân cực cho transistor làm việc với dòng điện I_B nhỏ, lúc đó sẽ có độ khuếch đại β nhỏ. Ngoài ra, khi chọn transistor nên chọn loại transistor có I_{CBO} càng nhỏ càng tốt.

2. Bù ảnh hưởng của nhiệt độ

Để tránh hiện tượng "điện áp mức không bị trôi", có thể dùng các mạch bù ảnh hưởng của nhiệt độ lên điện áp V_{BE} và dòng điện rỉ I_{CB0} như mạch điện hình 3.5a và 3.5b.

a. Bù mức thay đổi điện áp V_{BE}:

Mạch điện hình 3.5a dùng cầu phân áp R và diod D có tác dụng ghim áp cho cực E. Do nối đến nguồn âm - V_{CC} nên cực E có điện áp âm là điện áp phân cực cho diod D.

$$V_E = -V_D \cong -0.7V$$
 và $V_B = 0V$

$$\Rightarrow V_{BE} = V_B - V_E = V_B + V_D = V_D \cong 0.7V$$

Hình 3.5a: Ghim áp ở cực E

Khi nhiệt độ tăng sẽ làm giảm V_{BE} , nhưng do diod D cũng chịu ảnh hưởng của nhiệt độ nên V_D cũng giảm nhỏ hơn 0,7V do đó diod D có tác dụng bù cho mức thay đổi của điện áp V_{BE} khi nhiệt độ tăng.

b. Bù cho dòng điện rỉ I_{CBO}:

Hình 3.5b: Không có diod và có diod D song song hai chân BE

Khi nhiệt độ tăng, dòng điện rỉ I_{CBO} cũng tăng và dòng điện rỉ này làm dòng I_B tăng dẫn đến I_C tăng và làm điện áp mức không

bị trôi. Trong mạch điện hình 3.5b người ta dùng diod D ghép song song ngược chiều với mối nối BE. Khi nhiệt độ tăng làm tăng I_{CBO} thì diod D cũng có điện trở ngược giảm nên dòng điện rỉ I_{CBO} của transistor sẽ qua diod D xuống mass chứ không vào mối nối BE.

Như vậy, đòng I_B không tăng và I_C không tăng nên không làm thay đổi mức điện áp ra.

Ngoài yếu tố nhiệt độ làm thay đổi các thông số kỹ thuật của transistor, làm cho điện áp mức không bị trôi, còn có yếu tố khác là sự thay đổi mức điện áp nguồn V_{CC} . Khi điện áp nguồn thay đổi trị số sẽ làm thay đổi điện áp V_B , V_C và dẫn đến trôi điện áp mức không. Tuy nhiên vấn đề này được giải quyết một cách đơn giản là sử dụng nguồn ổn áp để có điện áp V_{CC} là hằng số.

§3.5- CÁCH TÍNH HỆ SỐ ỔN ĐỊNH NHIỆT

Qua các phần phân tích và lý luận trên cho thấy để tránh ảnh hưởng của nhiệt độ làm thay đổi các thông số của transistor có thể làm sai điểm làm việc tĩnh, người ta dùng nhiều cách khác nhau để phân cực cho transistor, mỗi cách phân cực có tác dụng và hiệu quả ổn định nhiệt khác nhau.

Để đặc trưng cho tác dụng và hiệu quả ổn định nhiệt, người ta đinh nghĩa hệ số ổn đinh nhiệt là:

$$\overline{S} = \frac{\Delta l_C}{\Delta l_{CBO}} \qquad \left\{ \begin{array}{l} \underline{S} : \text{Stability} = \hat{\text{on dinh}} \\ \overline{S} : \text{phủ dinh của S} \end{array} \right\}$$

 \overline{S} còn được gọi là "độ bất ổn định nhiệt". Cách gọi này hợp lý hơn vì theo định nghĩa \overline{S} càng nhỏ thì mạch càng ổn định về nhiệt độ, nghĩa là \overline{S} càng nhỏ thì "độ bất ổn định nhiệt" càng thấp.

Công thức tổng quát để tính hệ số ổn định nhiệt \overline{S} là:

$$\overline{S} = \frac{q}{q - \alpha}$$

Trong đó: q là hệ số tùy thuộc cách phân cực cho transistor α là hệ số khuếch đại dòng ráp kiểu B chung.

$$\alpha = \frac{I_C}{I_E} = \frac{\beta}{\beta + 1}$$

Hệ số q
 đã được giới thiệu trong bảng thiết kế mẫu hình 1.14, chương
 1.

Chương 4

MẠCH KHUẾCH ĐẠI VI SAI DARLINGTON – CASCODE

§4.1- MACH KHUẾCH ĐẠI VI SAI

Để có thể khuếch đại các tín hiệu có tần số rất thấp hay các tín hiệu biến thiên chậm và không có tính chu kỳ, người ta thường dùng mạch khuếch đại DC theo kiểu liên lạc trực tiếp. Mạch này có đáp ứng tần số thấp rất tốt nhưng lại có hiện tượng điện áp trôi, do đó, để tránh hiện tượng điện áp trôi và tăng khả năng chống nhiễu ở các tầng khuếch đại đầu tiên, người ta dùng mạch khuếch đại vi sai (Differential Amplifier).

1. Sơ đồ mạch cơ bản

Hình 4.1: Mạch vi sai cơ bản

Mạch khuếch đại vi sai cơ bản (hình 4.1) trong đó hai transistor T_1 - T_2 là hai transistor cùng tên, các điện trở phân cực có trị số giống nhau.

Tín hiệu vào được đưa vào hai cực $B_1\text{-}B_2$ và R là điện trở nhận tín hiệu vào của mỗi transistor.

Khi ở ngô vào có mức điện áp v_i thì ½ v_i sẽ tác động vào mỗi transistor do tính phân áp của hai điện trở R và sẽ có hai trường hợp: khi cực B_1 nhận điện áp dương thì cực B_2 nhận điện áp âm so với mass và ngược lại.

Theo hình vẽ 4.1, ở ngỗ ra điện áp V_{C1} giảm và điện áp V_{C2} tăng. Điện áp ra lấy giữa hai cực C là:

$$\Delta V_{O} = \Delta V_{C1} - \Delta V_{C2}$$

Thông thường transistor được phân cực với điều kiện $R_{B2} >> r_{bc}$ nên độ lợi điện áp của mỗi transistor là:

$$A_{i'|} = A_{i|2} = \frac{\Delta V_{C1}}{\Delta V_{c1}} = \frac{\Delta V_{C1}}{\Delta V_{i2}} = -\beta \frac{R_{C}}{R_{n_1} + r_{b_1}}$$

Suy ra:
$$\Delta V_{C1} = A_{V1}.\Delta V_{i1} = \frac{1}{2} A_{V1}.\Delta V_{i}$$

$$\Delta V_{C2} = A_{V2}.\Delta V_{12} = -1/2 A_{V2}.\Delta V_{1}$$

Do ta có:
$$\Delta V_O = \Delta V_{C1} - \Delta V_{C2} = A_V \cdot \Delta V_i$$

Suy ra:
$$A_{1} = \frac{\Delta V_o}{\Delta V_r} = -\beta \frac{R_C}{R_{B1} + r_{bc}}$$

Trong đó:
$$r_{bv} = r_b + (1 + \beta) \frac{26mA}{I_L}$$

Công thức trên cho thấy tuy mạch khuếch đại vi sai dùng hai transistor, nhưng độ lợi điện áp chỉ bằng độ lợi của tầng khuếch đại thông thường với một transistor.

2. Đặc điểm của mạch khuếch đại vi sai

Khi có điện áp tín hiệu ở ngõ vào thì do cầu phân áp dùng hai điện trở R làm cho cực B₁ có điện áp dương và cực B₂ có điện áp

âm hay ngược lại. Lúc đó, T_1 dẫn mạnh làm V_{C1} giảm và T_2 dẫn yếu làm V_{C2} tăng sẽ cho ra tín hiệu ngõ ra ΔV_{C1} và ΔV_{C2} ngược dấu.

Điện áp ra của mạch vi sai là:

$$\Delta V_O = \Delta V_{C1} - \Delta V_{C2} = 2\Delta V_{C1} = 2\Delta V_{C2}$$

Khi có tín hiệu nhiễu phá rối thì tín hiệu nhiễu sẽ tác động đồng thời lên cực B_1 và B_2 với điện áp đồng pha (cùng đương hay cùng âm). Như vậy, ở ngõ ra ΔV_{C1} và ΔV_{C2} biến thiên cùng hướng sẽ triệt tiêu nhau và $\Delta V_{O} = 0$.

Như vậy, mạch khuếch đại vi sai có khả năng chống nhiễu rất tốt. Tín hiệu nhiễu ở đây có thể là tín hiệu điện từ, nhiệt độ môi trường hay sự biến thiên điện áp của nguồn.

3. Tỉ số nén đồng pha CMRR (Common Model Rejection Ratio)

Hình 4.2: Mạch vi sai có RE

Để đánh giá khả năng chống nhiễu của mạch khuếch đại vi sai người ta đưa ra khái niệm tỉ số nén đồng pha CMRR.

Trong sơ đồ mạch điện hình 4.2, điện trở R_E có tác dụng làm tăng khả năng chống nhiễu của mạch, biến trở VR có tác dụng tạo sự cân bằng dòng điện I_{C1} và I_{C2} .

Trong các mạch khuếch đại dùng transistor, điện trở R_{E} có tác dụng ổn định nhiệt và là mạch hồi tiếp âm dòng điện.

Trong mạch khuếch đại vi sai điện trở R_E nhận đồng thời hai dòng điện I_{E1} và I_{E2} . Tác dụng ổn định nhiệt của R_E trong mạch điều khiển vi sai có nguyên lý sau:

- \succ Giả thiết nhiệt độ môi trường tăng làm T_1 bị nóng lên \Rightarrow I_{C1} tăng \Rightarrow I_{E1} tăng qua $R_E \Rightarrow V_E$ chung tăng. Lúc đó, I_{BE1} giảm nên T_1 chạy yếu trở lại \Rightarrow dòng điện I_{C1} giảm \Rightarrow I_{E1} giảm xuống mức trung bình.
- Ngược lại, giả thiết nhiệt độ môi trường tăng làm T_2 bị nóng lên $\Rightarrow I_{C2}$ tăng $\Rightarrow I_{E2}$ tăng qua $R_E \Rightarrow V_E$ chung tăng. Lúc đó, V_{BE2} giảm nên T_2 chạy yếu trở lại \Rightarrow dòng I_{C2} giảm \Rightarrow I_{E2} giảm xuống mức trung bình.

Như vậy, nếu chọn trị số R_E đủ lớn thì khi dòng I_E tăng ít cũng làm V_E tăng cao đủ để tạo hồi tiếp ổn định nhiệt giảm hiện tượng điện áp trôi ở ngõ ra và chống các tín hiệu nhiễu đồng pha.

Trường hợp ở ngõ vào nhận tín hiệu vi sai sẽ điều khiển hai transistor chạy ngược hướng nhau (T_1 chạy mạnh thì T_2 chạy yếu và ngược lại) nên khi I_{C1} tăng thì I_{C2} giảm; và do $2I_E = I_{C1} + I_{C2}$ nên dòng điện qua R_E là $2I_E$ có trị số gần như không đổi.

Như vậy, điện trở R_E không có tác dụng hồi tiếp âm đối với tín hiệu vi sai và như thế độ lợi của mạch khuếch đại vi sai không đổi và vẫn được tính theo công thức:

$$A_{t} = \frac{\Delta V_{n}}{\Delta V_{t}} = -\beta \frac{R_{t}}{R_{B1} + r_{bc}}.$$

Khi phân tích, tính toán cho mạch khuếch đại vi sai người ta xét riêng hai trường hợp có tín hiệu vi sai và có tín hiệu nhiễu đồng pha.

Hình 4.3 là mạch tương đương khi xét tín hiệu vào là tín hiệu vi sai, điện áp đặt vào cực B_1 và B_2 là hai tín hiệu ngược pha nhau. Lúc đó, điện trở R_E không có tác dụng nên ở cực E_1 và E_2 chỉ còn $\frac{1}{2}$ VR (biến trở điều chỉnh tạo sự cân bằng dòng điện I_{C1} - I_{C2}).

Tổng trở ngõ vào của mạch hình 4.3 là:

$$r_i = 2(R_{B1} + r_{be} + \frac{1}{2}\beta VR)$$

$$va do: r_{be} = r_b + \beta r_c \quad \text{nen ta co}:$$

$$r_i = 2(R_{B1} + r_b + \beta r_c + \frac{1}{2}\beta VR)$$

$$Dat: R_B = R_{B1} + r_b \quad va \qquad R_E = r_e + \frac{1}{2}VR$$

Suy ra: $r_i = 2(R_B + \beta R_E)$

Hình 4.3: Mạch tương đương với tín hiệu vi sai

 \mathring{O} ngỗ ra dòng tín hiệu lấy ở hai cực C_1 , C_2 nên dòng tín hiệu đi từ cực C_1 qua C_2 phải qua tổng trở ngỗ ra là:

$$r_0 \cong 2R_C$$

Hình 4.4 là mạch tương đương khi xét tín hiệu vào là tín hiệu đồng pha nhau. Lúc đó, điện trở R_E có tác dụng ổn định nhiệt và dòng điện qua R_E là $2I_E$ nên trong mạch tương đương điện trở R_E cho mỗi transistor là $2R_E$ để vẫn có điện áp ở cực E là $V_E = 2I_E$. R_E .

Với cách phân tích tương tự ta vẫn có thể tính được tổng trở ở ngõ vào và ngõ ra của mạch hình 4.4. Lưu ý là tín hiệu vào vị đặt vào cực B của từng transistor so với mass chứ không đặt vào giữa hai cực B như tín hiệu vi sai.

Đặt:
$$R_B = R_{B1} + r_b$$
 và $R_E = r_e + \frac{1}{2}VR$
Suy ra: $r_i = 2(R_B + \beta R_E)$

Hình 4.4: Mạch tương đương với tín hiệu đồng pha

Để đánh giá chất lượng của mạch khuếch đại vi sai thường dùng tỉ số nén đồng pha (CMRR) được định nghĩa theo hệ thức sau:

$$CMRR = \frac{A_V \text{ vi sai}}{A_V \text{ đồng pha}} \left\{ \frac{\text{(Độ lợi điện áp vi sai)}}{\text{(Độ lợi điện áp đồng pha)}} \right\}$$

Nếu mạch có tính đối xửng một cách lý tưởng thì độ lợi điện áp đồng pha bằng θ_i Như vậy tỉ số CMRR tiến đến vô cực, khả năng chống nhiễu của mạch vô cùng lớn.

§4.2- MẠCH KHUẾCH ĐẠI VI SAI CÓ NGUỒN ỔN DÒNG

1. Mạch ổn dòng cơ bản

Mạch ổn dòng viết tắt là VCCR (Voltage Controlled Current Source = nguồn dòng điện được kiểm soát bằng điện áp) còn được gọi là nguồn dòng hằng.

Mạch ổn dòng là mạch giữ cho dòng tải ổn định mà không phụ thuộc theo điện áp nguồn V_{CC} hay trị số của điện trở tải R_L trong một giới hạn cho phép.

Sơ đồ 4.5 là mạch ổn dòng cơ bản dùng transistor và diod Zener.

Hình 4.5: Mạch ổn dòng cơ bản Hình 4.6: Ký hiệu nguồn ổn dòng

Theo mạch phân cực ta có:

$$V_B = V_Z$$
 (hằng số)

$$V_E = V_B - V_{BE} = V_Z - 0.7V \qquad (hang so)$$

Suy ra:
$$I_E = \frac{V_E}{R_E} = \frac{V_2 - 0.7}{R_E}$$
 (hằng số)

Do $I_L = I_C \cong I_E$ nên dòng điện tải cũng có trị số ổn định theo công thức trên mà không tùy thuộc trị số điện trở tải R_L hay điện áp nguồn V_{CC} trong một giới hạn cho phép.

Theo định nghĩa, mạch ổn dòng hay nguồn ổn dòng có tổng trở được tính theo công thức:

$$r_i = \frac{\Delta V}{\Delta I_c}$$

Trong đó: ΔV là mức biến đổi điện áp

ΔI_S là mức biến đổi dòng điện của nguồn.

Do I_S là hằng số nên $\Delta I_S = 0$. Như vậy, tổng trở r_i vô cùng lớn.

2. Mạch khuếch đại vi sai có nguồn ổn dòng

Trong mạch khuếch đại vi sai khi có tín hiệu vào vi sai sẽ làm T_1 dẫn mạnh cho I_{E1} tăng thì T_2 dẫn yếu cho I_{E2} giảm. Điều này làm cho dòng điện qua R_E là $2I_E$ không đổi như mạch ổn dòng. Như vậy, có thể thay R_E bằng mạch ổn dòng như mạch điện hình 4.7 trong đó T_3 là mạch ổn dòng thay cho R_E .

Hai nguồn $+V_{CC}$ và $-V_{CC}$ là hai nguồn dương và âm có thể đối xứng hoặc không đối xứng và là hai nguồn ổn áp. Cầu phân áp R_1 - R_2 có tác dụng phân cực ổn định cho T_3 nên có dòng I_{C3} ổn định tính theo công thức:

$$I_{C3} \cong I_{E3} = \frac{V_{R3}}{R_3}$$
 và $I_{C3} = I_{E1} + I_{E2}$

Theo phân tích trên, mạch ổn dòng T_3 có nội trở r_i rất lớn thay cho R_E . Khi R_E rất lớn làm tăng tác dụng hồi tiếp ổn định nhiệt và làm cho độ khuếch đại đồng pha A_V đồng pha = 0. Lúc đó, tỉ số

nén đồng pha CMRR sẽ vô cùng lớn và mạch khuếch đại vi sai có

Hình 4.7: Mạch vi sai có nguồn ổn dòng T3

§4.3- CÁC MẠCH KHUẾCH ĐẠI VI SAI THÔNG DỤNG

1. Mạch khuếch đại ngõ vào và ra cân bằng

Hình 4.8: Ngõ vào và ra cân bằng

Mạch điện hình 4.8 chính là mạch khuếch đại vi sai cơ bản có R_E để tăng khả năng chống nhiễu.

Mạch dùng hai nguồn + V_{CC} và - V_{CC} (có thể đối xứng, có thể không đối xứng). Với cách phân cực này cực B có thể không dùng cầu phân áp $R_{\rm B1}$ - $R_{\rm B2}$ và cực B có $V_{\rm B1} = V_{\rm B2} = 0V$.

Lúc đó, V_E sẽ có điện áp âm $V_E \cong$ - 0,7V.

Các thông số kỹ thuật của mạch là:

- Độ khuếch đại điện áp vi sai: $A_V = -\beta \frac{R_c}{R_{B1} + r_{bc}}$
- Tỉ số nén đồng pha CMRR rất lớn
- Tổng trở ngõ vào : $r_i = 2(R_B + r_{be})$
- Tổng trở ngõ ra: $r_0 = 2R_C$

Mạch này thường được chọn làm mạch khuếch đại ngõ vào của các tầng khuếch đại DC có ngõ ra đối xứng.

2. Mạch khuếch đại vào cân bằng - ra không cân bằng

Hình 4.9: Ngõ ra không cân bằng

Mạch điện hình 4.9 có ngõ ra không cân bằng, tín hiệu chỉ lấy từ cực C_1 xuống mass nên điện áp ra bị giảm đi một phần hai so với mạch 4.8.

Điện trở R_E có tác dụng giảm hiện tượng điện áp trôi.

Về phân cực ta vẫn có:

$$V_{B1} = V_{B2} = 0V$$
 và $V_{E1} = V_{E2} = -0.7V$

Các thông số kỹ thuật của mạch là:

- Độ khuếch đại điện áp vi sai: $A_{t'} = -\frac{1}{2}\beta \frac{R_C}{R_B + r_{bc}}$
- Tổng trở ngõ vào: $r_i = 2(R_B + r_{be})$
- Tổng trở ngõ ra: $r_0 = R_C$

Mạch này thường dùng trong tầng khuếch đại trung gian trong Ampli hay các mạch khuếch đại DC.

3. Mạch khuếch đại vào không cân bằng, ra cân bằng

Mạch điện hình 4.10 là trường hợp ngược lại của hình 4.9, tín hiệu v_i chỉ cho vào cực B_1 so với mass.

Hình 4.10: Ngõ vào không cân bằng

Về phân cực một chiều ta vẫn có:

$$V_{B1} = V_{B2} = 0V$$
 $V_{E1} = V_{E2} = -0.7V$

Khi có tín hiệu vào v_i , T_1 khuếch đại sẽ cho ra hai tín hiệu ở cực C_1 và E_1 . Lúc đó, T_2 được xem như transistor khuếch đại ráp kiểu B chung có tín hiệu vào cực E_2 và ra ở cực C_2 .

Xét trường hợp tín hiệu v_i có bán kỳ dương vào cực B_1 , cực C_1 có tín hiệu ra đảo pha là bán kỳ âm, trong khi cực E_1 có tín hiệu ra đồng pha là bán kỳ dương. Đối với T_2 có tín hiệu vào E_2 là bán kỳ dương nên cực C_2 có tín hiệu ra đồng pha là bán kỳ dương, vì mạch khuếch đại B chung là mạch khuếch đại đồng pha.

Như vậy, tín hiệu ra trên hai cực C_1 và C_2 cũng là hai tín hiệu ngược pha nhau sẽ làm cho điện áp ra v_0 tăng gấp đôi so với tín hiệu v_{c1} .

Các thông số kỹ thuật của mạch là:

- Độ khuếch đại điện áp vi sai: $A_V = -\beta \frac{R_C}{R_B + r_{ba}}$
- Tổng trở ngõ vào: $r_i = 2(R_B + r_{be})$
- Tổng trở ngõ ra: $r_o = 2R_C$

Mạch này có tác dụng đổi từ tín hiệu không cân bằng ra tín hiệu cân bằng.

4. Mạch khuếch đại có ngõ vào và ngõ ra không cân bằng

Mạch điện hình 4.11 cũng dùng hai transistor như mạch khuếch đại vi sai cơ bản nhưng tín hiệu vào v_i chỉ đưa vào cực B_1 và tín hiệu ra chỉ lấy trên cực C_1 so với mass.

Hai transistor T_1 và T_2 vẫn có tác dụng trừ các tín hiệu nhiều đồng pha hay ảnh hưởng của nhiệt độ tác dụng lên hai transistor.

<u>Hình 4.11</u>: Ngõ vào và ra không cân bằng Về phân cực một chiều ta vẫn có:

$$V_{B1} = V_{B2} = 0V$$

 $V_{E1} = V_{E2} = -0.7V$

T₁ là transistor khuếch đại đảo pha ráp kiểu E chung.

Các thông số kỹ thuật của mạch là:

- Độ khuếch đại điện áp vi sai:
$$A_V = -\frac{1}{2}\beta \frac{R_C}{R_R + r_{bu}}$$

- Tổng trở ngõ vào: $r_i = 2(R_B + r_{be})$

- Tổng trở ngõ ra: $r_0 = R_C$

§4.4- PHƯƠNG PHÁP GIẢM HIỆN TƯỢNG ĐIỆN ÁP TRÔI

Mạch khuếch đại vi sai có hiện tượng điện áp trôi là do đặc tính kỹ thuật của hai transistor không giống nhau hoàn toàn, mặc dù hai transistor cùng tên do cùng một hãng sản xuất trong cùng một loạt hàng (Series). Để tránh hiện tượng điện áp trôi trong mạch khuếch đại vi sai người ta thường dùng các biên pháp sau:

1. Dùng điện trở R_E không đối xứng

Sự mất đối xứng của hai transistor là do điện áp V_{BE} khác nhau. Để bù lại sự khác biệt này người ta điều chỉnh dòng điện I_{E} bằng cách thay đổi R_{E} .

Hình 4.12: Điện trở RE không đối xứng

Trong mạch hình 4.12 biến trở VR sẽ làm thay đổi trị số R_{E1} và R_{E2} . Nếu chỉnh biến trở VR sang cực E_1 thì R_{E1} giảm, R_{E2} tăng và ngược lại. Khi hai điện trở R_{E1} và R_{E2} khác nhau thì dòng điện I_{E1} và I_{E2} cũng khác nhau.

- * Cách thực hiện:
- Bước 1: Điều chỉnh $R_{C1} = R_{C2}$
- Bước 2: Điều chỉnh biến trở VR để cho dòng I_{E1} và I_{E2} để bù sự mất đối xứng giữa V_{BE1} và V_{BE2} . Khi đó I_{C1} và I_{C2} sẽ làm cho V_{C1} khác V_{C2} .
- Bước 3: Điều chỉnh lại biến trở R_{C1} sao cho V_{C1} = V_{C2} để có V_{O} = 0V.

Cách điều chỉnh này làm cho R_{C1} khác R_{C2} nên sẽ làm mạch giảm khả năng chống nhiễu đồng pha.

2. Dùng mạch hồi tiếp đồng pha

Hình 4.13: Tránh điện áp trôi bằng mạch hồi tiếp đồng pha

Trong sơ đồ mạch điện hình 4.13 có hai mạch khuếch đại vi sai, mạch vi sai T_1 - T_2 có T_3 là transistor ổn dòng thay cho R_{E1} , mạch vi sai T_3 - T_5 có R_E là cầu phân áp R_1 - R_2 để lấy điện áp hồi tiếp về cực B_3 .

Khi có tín hiệu nhiễu đồng pha nhau do ảnh hưởng của nhiệt độ thì cả hai transistor cùng chịu tác động như sau: giả thiết tín hiệu nhiễu đồng pha làm V_{B1} - V_{B2} tăng nên I_{C1} - I_{C2} tăng làm V_{C1} - V_{C2} giảm. Điều này làm cho V_{B4} - V_{B5} giảm nên I_{C4} - I_{C5} giảm đưa đến V_{E4} - V_{E5} giảm và điện áp hồi tiếp V_E giảm nên V_{B3} giảm. Như đã biết: $I_{C3} = I_{C1} + I_{C2}$ nên khi V_{B3} giảm sẽ làm cho I_{C3} giảm tức là I_{C1} và I_{C2} không tăng được, mạch có độ ổn định tốt.

Như vậy, tín hiệu nhiễu đồng pha đã bị giảm hay loại bỏ bởi tác dụng của mạch hồi tiếp tránh hiện tượng điện áp trôi.

§4.5- MACH DARLINGTON

Trong các mạch khuếch đại cần có độ khuếch đại dòng điện thật lớn hay các mạch cần có tổng trở vào lớn người ta có thể dùng hai hay nhiều transistor ráp tổ hợp theo sơ đồ mạch Darlington để đạt các yêu cầu trên.

1. Mạch Darlington cơ bản

Mạch Darlington cơ bản có sơ đồ như hình 4.14 trong đó cực E_1 nối trực tiếp vào cực B_2 nên $I_{E1} = I_{B2}$.

Hình 4.14: Mạch Darlington cơ bản

Transistor T_1 có: $I_{E1} \cong I_{C1} = \beta_1 I_{B1}$ (1)

Transistor T_2 có: $I_{E2} \cong I_{C2} = \beta_2 \cdot I_{B2}$ (2)

Do mạch Darlington có: $I_{E1} = I_{B2}$

nên khi thay (1) vào (2) ta có:

$$I_{E2} = \beta_2 . I_{B2} = \beta_2 . I_{E1}$$

= $\beta_2 . \beta_1 . I_{B1} = \beta_1 . \beta_2 . I_{B1}$

Suy ra: $I_{E2} = \beta_1.\beta_2.I_{B1}$

Nếu gọi dòng điện ngõ vào của mạch là I_I thì $I_1 = I_{BI}$, dòng điện ngõ ra của mạch là I_O thì $I_O = I_{E2}$ và gọi β là độ khuếch đại dòng điện của toàn mạch thì:

$$\beta = \frac{I_O}{I_I} = \frac{I_{F2}}{I_{H1}} = \beta_1 \beta_2$$

Giả sử T_1 có $\beta_1 = 100$, T_2 có $\beta_2 = 80$

Độ khuếch đại dòng điện của mạch Darlington là:

$$\beta = \beta_1.\beta_2 = 100.80 = 8000$$

Như vậy, dòng điện ra trên tải sẽ bằng 8000 lần dòng điện ở ngõ vào. Mạch Darlington có độ khuếch đại dòng điện rất lớn.

2- Xét tổng trở vào của mạch Darlington

Như đã biết, tổng trở vào của transistor ráp kiểu C chung là:

$$r_1 = r_{be} + \beta . R_E$$

Nếu nhìn vào từ cực B₂ thì tổng trở vào của T₂ là:

$$r_{i2} = r_{be2} + \beta_2.R_L$$

Nếu nhìn vào từ cực B_1 thì tổng trở vào của T_1 cũng chính là tổng trở vào của toàn mạch là:

$$\begin{aligned} r_i &= r_{i1} = r_{be1} + \beta_1.r_{i2} \\ \Rightarrow r_i &= r_{be} + \beta_1 \left(r_{be} + \beta_2.R_L \right) & \text{(cho } r_{be1} \cong r_{be2}) \\ \Rightarrow r_i &= (\beta + 1) r_{be} + \beta_1.\beta_2.R_L & \text{(rất lớn)} \end{aligned}$$

Như đã chứng minh phần trên, tích số $\beta_1.\beta_2$ rất lớn nên tổng trở vào của mạch Darlington sẽ rất lớn.

Mạch Darlington ngoài tác dụng tạo độ khuếch đại dòng điện rất lớn còn có tác dụng đổi tổng trở từ rất lớn ở ngõ vào thành tổng trở ra rất nhỏ để dung hợp với tải.

3- Các kiểu mạch Darlington

Trong thực tế mạch Darlington có thể dùng hai transistor cùng loại NPN hay cùng loại PNP và cũng có thể dùng một transistor NPN tổ hợp với một transistor PNP.

Có bốn kiểu mạch Darlington như sau:

Sơ đồ hình 4.15a dùng hai transistor NPN với nguồn dương $+V_{CC}$, sơ đồ hình 4.15b dùng hai transistor PNP với nguồn âm $-V_{CC}$. Hai mạch này có quan hệ dòng điện giữa hai transistor là: $I_{EI} = I_{B2}$.

Sơ đồ hình 4.15c và 4.15d dùng hai transistor khác loại với nguồn điện theo loại transistor T_2 . Hai mạch này có quan hệ dòng điện giữa hai transistor là: $I_{C1} = I_{B2}$.

3. Mạch tương đương của kiểu Darlington

Sơ đồ hình 4.16 là mạch tương đương của hai transistor Darlington trong hình 4.15a và 4.15b. Trong mạch này hai transistor rấp kiểu C chung, tín hiệu lấy ra ở cực E_2 .

Thật ra mạch Darlington vẫn có thể ráp kiểu E chung nhưng do mạch có độ khuếch đại dòng điện lớn nên thường được dùng ở tầng khuếch đại công suất và tầng này lại có yêu cầu đổi tổng trở

lớn ra tổng trở nhỏ để dung hợp với tải có tổng trở nhỏ, nên mạch Darlington thường được rấp kiểu C chung như các mạch trong hình 4.15.

Hình 4.16: Mạch tương đương của hình 4.15a và 4.15b

§4.6- MACH CASCODE

Mạch Cascode gồm hai transistor khuếch đại ghép chồng lên nhau (hình 4.17), T_1 là transistor khuếch đại ngõ vào ráp kiểu E chung, T_2 là transistor khuếch đại ngỗ ra ráp kiểu B chung vì có tụ C_B phân dòng.

Cầu phân áp R_1 - R_2 để phân cực một chiều cho hai transistor và điên áp V_{B2} phải đủ cao vì:

$$V_{C1} = V_{E2} = V_{B2} - V_{BE} = V_{B2} - 0.7V$$

Lúc đó, V_{C1} mới có mức điện áp đủ lớn để T_1 làm việc trong vùng tuyến tính (vùng khuếch đại) của transistor.

Tín hiệu ra sau T_1 là v_{o1} , chính là tín hiệu vào v_{i2} của T_2 . Do T_2 ráp kiểu B chung nên có tổng trở vào nhỏ, tổng trở ra rất lớn, nhờ

đó T_2 có tác dụng ngăn cách ảnh hưởng của ngõ ra đến ngõ vào nhất là ở tần số cao.

Hình 4.17: Mạch Cascode

Mạch Cascode có độ khuếch đại điện áp bằng độ khuếch đại điện áp của mạch ráp kiểu E chung nhưng có điện dung Miller ở ngỗ vào nhỏ (tác dụng này sẽ được phân tích trong giáo trình "Mạch điện tử – Tập 2").

Điện áp tín hiệu v_{i1} và v_{o1} đảo pha nhau nhưng điện áp tín hiệu v_{o1} và v_{o2} đồng pha nhau.

Khi điều chỉnh điện áp phân cực của cầu phân áp $R_1\text{-}R_2$ sẽ làm thay đổi mức điện áp một chiều của cả V_{O1} và V_{O2} .

CHUONG 5

MẠCH KHUẾCH ĐẠI THUẬT TOÁN

§5.1- ĐẠI CƯƠNG

Mạch khuếch đại thuật toán, thường được gọi tắt là OP-AMP (Operational-Amplifier), được thiết kế để thực hiện các phép toán như: cộng, trừ, nhân, chia, vi phân, tích phân... trong các máy tính tương tự. Trong quá trình phát triển OP-AMP còn có thêm nhiều ứng dụng khác và trở thành linh kiện tích cực quan trọng nhất trong các mạch khuếch đại AC, mạch khuếch đại DC, mạch so sánh, mạch dao động, mạch tạo xung, mạch đo...

Trong các loại OP-AMP đã được sản xuất và sử dụng hiện nay, IC741 được xem là OP-AMP tiêu chuẩn, là loại vi mạch đơn khối tích hợp lớn được chế tạo theo công nghệ màng mỏng. Nhờ khả năng tích hợp lớn nên IC741 được ứng dụng rất rộng rãi và đa dạng.

Trong chương này chủ yếu chỉ giới thiệu đặc tính kỹ thuật và các mạch ứng dụng cơ bản của IC741.

OP-AMP có ngõ vào kiểu vi sai, được ký hiệu như hình 5.1a.

Các chân ra:

- In+: ngõ vào không đảo
- In : ngõ vào đảo
- Out: ngõ ra
- +V: nối nguồn dương
- -V: nối nguồn âm
- GND: điểm chung, điểm 0V (mass)

Hình 5.1a: Ký hiệu của OP-AMPvà cách cấp nguồn đối xứng

Theo tiêu chuẩn OP-AMP phải được cấp bởi hai nguồn đối xứng $\pm V$ như hình vẽ. Tuy nhiên, trong nhiều trường hợp OP-AMP cũng có thể làm việc với nguồn đơn như trong hình 5.1b.

Hình 5.1b: OP-AMP dùng nguồn đơn

Trường hợp OP-AMP dùng nguồn đôi, tín hiệu ra có thể biến đổi về phía điện áp dương hay điện áp âm so với mass.

Trường hợp OP-AMP dùng nguồn đơn thì tín hiệu ra chỉ có mức điện áp dương nhưng sẽ biến đổi chung quanh một giá trị trung bình thường là 1/2 nguồn +V.

§5.2- ĐẶC TÍNH KỸ THUẬT CỦA OP-AMP

1) Các thông số đặc trưng của OP-AMP

Một OP-AMP lý tưởng là mạch có tổng trở vào vô cùng lớn, tổng trở ra vô cùng nhỏ, độ lợi điện áp và băng thông cũng vô cùng lớn, tốc độ bám giữa tín hiệu ra với tín hiệu vào không bị hạn chế.

Trong thực tế, OP-AMP có độ lợi, băng thông, tổng trở vào... hữu hạn và có tốc độ bám bị hạn chế giữa tín hiệu vào và ra. Do đó, khi sử dụng OP-AMP loại nào, cần thiết phải biết các thông số đặc trưng sau đây:

a) Độ khuếch đại điện áp vòng hở: Avo

Mạch khuếch đại không có đường hồi tiếp được gọi là mạch khuếch đại vòng hở. A_{VO} là tỉ số giữa điện áp tín hiệu ra và điện áp tín hiệu vào.

$$A_{1O} = \frac{V_a}{V_1 - V_2}$$

Avo thường được biểu diễn bằng đơn vị dexiben (dB).

Độ khuếch đại điện áp theo đơn vị dB được định nghĩa là:

$$A (dB) = 20lgA$$

Thí dụ:
$$A_{VO} = 10.000$$
 cho ra A (dB) = $20 \lg 10.000$
= $20 \times 4 = 80 dB$
 $A_{VO} = 100.000$ cho ra A (dB) = $20 \lg 100.000$
= $20 \times 5 = 100 dB$

b) Tổng trở ngõ vào: Z_I

 Z_l là số đo trở kháng nhìn trực tiếp từ các ngõ vào của OP-AMP. Z_l được tính bằng đơn vị điện trở và thường Z_l có trị số khoảng vài chục $M\Omega$. Đối với các tín hiệu có tần số cao thì tổng trở Z_l bị giảm trị số.

c) Tổng trở ngõ ra: Zo

 $Z_{\rm O}$ là số đo trở kháng nhìn trực tiếp từ ngõ ra và cũng được tính bằng đơn vị điện trở. $Z_{\rm O}$ thường có trị số từ vài Ω đến 100Ω . Đối với các tín hiệu có tần số cao thì tổng trở $Z_{\rm O}$ tăng trị số.

d) Dòng điện phân cực ngỗ vào: Ib

Ngõ vào của OP-AMP thường dùng transistor lưỡng nối nên cần một dòng điện phân cực cho cực B ở mỗi ngõ vào. Đòng điện phân cực ngõ vào I_b có trị số khoảng dưới 1 μA.

e) Nguồn điện cung cấp:

Thường dùng nguồn đối xứng ±V, nguồn cung cấp phải ở trong giới hạn nhỏ nhất và lớn nhất. Nếu nguồn điện áp quá cao sẽ

dễ làm hỏng OP-AMP, nếu điện áp quá thấp thì OP-AMP hoạt động kém, không thực hiện đầy đủ và chính xác các chức năng của nó.

Mức giới hạn của nguồn điện cung cấp là: ± 3V đến ±15V.

f) Mức điện áp tín hiệu vào: V_{imax}

Không được vượt quá mức điện áp nguồn cung cấp. Trị số V_{lmax} thường nhỏ hơn nguồn từ IV đến 2V.

g) Mức điện áp tín hiệu ra: Vomax

Nếu điện áp tín hiệu vào quá lớn thì ở ngỗ ra sẽ có trạng thái bão hòa. Điện áp tín hiệu ra V_{Omax} phụ thuộc vào điện áp nguồn và thường nhỏ hơn 1V đến 2V.

h) Điện áp lệch ng \tilde{o} vào vi sai: V_D

Điện áp vào vi sai V_D là hiệu số giữa hai điện áp V_1 và V_2 .

Trường hợp OP-AMP lý tưởng, nếu ngõ vào có $V_1 = V_2$ thì điện áp vào vi sai $V_D = 0$, điện áp ra vi sai $V_O = 0$. Trong thực tế, các transistor ở ngõ vào rất khó chế tạo để có các thông số hoàn toàn giống nhau, do đó sẽ có một điện áp lệch rất nhỏ giữa các ngõ vào.

Điện áp lệch ngõ vào vi sai có trị số khoảng vài mV nhưng do OP-AMP có độ khuếch đại rất lớn nên điện áp ở ngõ ra của OP-AMP có thể ở trạng thái bão hòa.

Để tránh ảnh hưởng của điện áp lệch ngõ vào vi sai, người ta phải dùng mạch điều chỉnh bù trừ - gọi là chỉnh OFFSET sẽ được giới thiệu trong phần sau.

i) Ti số nén đồng pha: CMRR (Common Model Rejection Ratio)

OP-AMP lý tưởng có điện áp ra V_0 tỉ lệ với hiệu số hai điện áp vào V_1 và V_2 . Khi hai tín hiệu ở hai ngõ vào bằng nhau (gọi là tín hiệu đồng pha) thì V_1 - V_2 = 0, ở ngõ ra sẽ có V_0 = 0.

Thực tế, khi ngô vào có tín hiệu đồng pha thì ngô ra vẫn có tín hiệu ra nhỏ. Khả năng giảm tín hiệu đồng pha của OP-AMP được định nghĩa là tỉ số giữa độ khuếch đại tín hiệu vi sai với độ khuếch đại tín hiệu đồng pha.

$$CMRR = \frac{A_{v \text{ vi sa}_1}}{A_{v \text{ dong pha}}}$$

CMRR cũng có thể tính theo tỉ lệ dexiben theo công thức:

$$CMRR = 20Ig \frac{A_{v \text{ vi sai}}}{A_{v \text{ doing pha}}}$$

Tỉ lệ nén đồng pha CMRR có thể đạt từ 80dB đến 100dB.

j) Tần số cắt: f_T

OP-AMP có độ khuếch đại điện áp vòng hở rất lớn, thực tế $A_{VO} \cong 100 dB$, khi làm việc ở tần số thấp. Độ khuếch đại nầy sẽ giảm khi tần số tăng. Tần số cắt f_T là tần số mà độ khuếch đại $A_{VO} = 1$.

OP-AMP có đáp ứng tần số như hình 5.2. Thông thường đáp ứng của tần số của OP-AMP sẽ suy giảm 6dB ứng với mỗi octave hay 20dB mỗi decade.

Hình 5.2: Đáp ứng tần số của OP-AMP

- * Octave: khoảng tần số từ f đến 2f gọi là một octave. Thí dụ: 1kHz đến 2kHz là 1 octave. Theo lý thuyết âm nhạc thì octave gọi là một bát độ.
- * <u>Decade</u>: khoảng tần số từ 1f đến 10f gọi là một decade. Thí dụ: 1kHz đến 10kHz là 1 decade.

Đáp ứng tần số hình 5.2 cho thấy ở tần số thấp (f < 10Hz) thì độ khuếch đại vòng hở $A_{VO} = 100dB$, ở tần số f = 1kHz thì độ khuếch đại $A_{VO} = 60dB$ và ở tần số f = 1MHz thì độ khuếch đại $A_{VO} = 0dB$ (= 1 lần). Như vậy: $f_T = 1MHz$.

Nếu OP-AMP dùng trong mạch khuếch đại vòng kín (khuếch đại hồi tiếp) thì băng thông của mạch sẽ tùy độ khuếch đại vòng kín. Tần số cắt chính là tích số của băng thông và độ khuếch đại vòng kín.

Ta có:
$$f_T = B.A_{VF}$$
 với $A_{IT} = \frac{v_o}{v_c}$ (không dùng dB)

Thí dụ: OP-AMP có $f_T = 1$ MHz $\Rightarrow B = \frac{f_T}{A_{IT}}$

Nếu có $A_{VF} = 10$ thì $B = \frac{1MHz}{10} = 100kHz$

Nếu có $A_{VF} = 1000$ thì $B = \frac{1MHz}{1000} = 1kHz$

Như vậy, muốn mở rộng băng thông thì phải giảm độ khuếch đại hồi tiếp và ngược lại.

k) Tốc độ quét: S (Speed)

Do quán tính của linh kiện và ảnh hưởng của tự điện bổ chính tần số trong mạch mà tốc độ thay đổi điện áp ra sẽ không theo kịp tốc độ thay đổi điện áp ngõ vào - gọi là tốc độ quét. Tốc độ quét được tính bằng giá trị tối đa với đơn vị tính là $V/\mu s$, thường $S=1V/\mu s$ đến $10V/\mu s$.

Do bị giới hạn bởi tốc độ quét nên đối với tín hiệu ra nhỏ sẽ có băng thông rộng hơn. Khi tín hiệu ngõ vào có tốc độ tăng lớn hơn tốc độ quét thì tín hiệu ra sẽ bị méo dạng. Thí dụ: tín hiệu vào là hình sin thì ở ngõ ra sẽ có tín hiệu hình tam giác.

2) Các thông số kỹ thuật của OP-AMP 741

- A _{VO} : Độ khuếch đại điện áp vòng hở	100d B
- Z_i : Tổng trở ngõ vào	$1M\Omega$
- $Z_{O:}$ Tổng trở ngõ ra	150Ω
- I _b : Dòng phân cực ngõ vào	$0.2 \mu A$
- V _{smax} : Điện áp nguồn tối đa	±18V
- V _{1 max} : Điện áp vào tối đa	±13V
- V _{omax} : Điện áp ra tối đa	±14V
- V_{io} : Điện áp lệch ngõ vào vi sai	2mV
- CMRR: Tỉ số nén đồng pha	90dB
- f _T : Tần số cắt	1MHz
- S : Tốc độ quét tối đa	0,5V/μs

§5.3- MACH TÍCH HỢP CỦA OP-AMP 741

1) Sơ đồ mạch tích hợp OP-AMP 741 (hình 5.3)

OP-AMP 741 dùng transistor lưỡng nối chia ra các khối chức năng:

a) Khối đầu gồm các transistor từ Q_1 đến Q_9 . Hai transistor Q_1 - Q_2 là mạch khuếch đại vi sai có ngõ vào không đảo (chân 3) và ngõ vào đảo (chân 2). Tín hiệu ra của khối đầu từ cực C của Q_6 để đưa sang khối sau. Q_8 và Q_9 là nguồn dòng điện cho Q_1 - Q_2 . Hai transistor Q_3 - Q_4 là mạch gương dòng điện của Q_1 - Q_2 (Q_1 - Q_2 loại NPN, Q_3 - Q_4 loại PNP). Q_5 và Q_7 là mạch gương dòng điện cho Q_6 .

Hai cực E của Q_5 và Q_6 (nối ra hai chân 1 và 5) để chỉnh OFFSET, bù trừ cho dòng điện lệch ngõ vào vi sai.

b) Khối giữa có hai transistor Q_{16} - Q_{17} ráp kiểu Darlington để điều khiển tầng công suất. Q_{22} để bảo vệ quá tải cho Q_{16} - Q_{17} . Transistor Q_{21} được xem là điện trở tải của Q_{17} .

Hình 5.3: Sơ đồ mạch tích hợp μΑ 741

c) Khối cuối là khối khuếch đại công suất ráp kiểu bổ phụ với Q_{14} (loại NPN) và Q_{20} (loại PNP) với ngõ ra là điểm giữa (chân 6). Q_{15} để bảo vệ quá tải cho Q_{14} , diod Q_{18} và Q_{19} để bảo vệ quá tải cho Q_{20} .

Hai transistor Q_{12} - Q_{13} là nguồn dòng chung cho khối giữa và khối cuối. Q_{10} và Q_{11} là mạch gương dòng điện để điều hòa giữa hai nguồn dòng của khối đầu và hai khối sau. Tụ $C_1 = 30 \text{pF}$ để chống dao động tự kích. Do có tụ C_1 nên tốc độ quét của OP-AMP bị giảm xuống.

Chân 7 của OP-AMP được nối nguồn dương, chân 4 được nối nguồn âm. Chân 8 là chân dư, không dùng, ký hiệu là NC (No-Connect).

2) Ký hiệu và các hình dạng thông thường

Hình 5.4c: Vỏ dang chữ nhật dẹp

3) Các phương pháp cân bằng điểm O (chỉnh OFFSET)

Để tránh ảnh hưởng của điện áp lệch ngõ vào vi sai, phải dùng mạch điều chỉnh bù trừ - gọi là phương pháp cân bằng điểm O.

a) Điều chỉnh điện áp bù ở một ngõ vào:

Hình 5.5 là mạch điều chỉnh cân bằng điểm O bằng điện áp bù ở ngõ vào với các trị số linh kiện tiêu biểu.

Hai cầu phân áp $22k\Omega$ - $1k\Omega$ để tạo điện áp V_A và V_B là hai điện áp đối xứng có trị số thấp khoảng $\pm 0,5V$ để điều chỉnh đưa vào ngõ I_n . Nếu điện áp ngõ ra $V_O>0V$ thì điều chỉnh biến trở $10k\Omega$ về

gần điểm A để giảm V_O về 0V. Nếu điện áp ngõ ra $V_O < 0V$ thì điều chỉnh biến trở $10k\Omega$ về gần điểm B để tăng V_O lên 0V.

Hình 5.5: Bù ở ngõ vào

Hình 5.5 là mạch điều chỉnh cân bằng điểm O bằng điện áp bù ở ngõ vào với các trị số linh kiện tiêu biểu.

Hai cầu phân áp $22k\Omega$ - $1k\Omega$ để tạo điện áp V_A và V_B là hai điện áp đối xứng có trị số thấp khoảng $\pm 0,5V$ để điều chỉnh đưa vào ngỗ I_n . Nếu điện áp ngỗ ra $V_O > 0V$ thì điều chỉnh biến trở $10k\Omega$ về gần điểm A để giảm V_O về 0V. Nếu điện áp ngỗ ra $V_O < 0V$ thì điều chỉnh biến trở $10k\Omega$ về gần điểm B để tăng V_O lên 0V.

b) Điều chỉnh bù với hồi tiếp âm dòng điện:

Hình 5.6b: Mạch tương đương của hình 5.6a

Trong sơ đồ mạch tích hợp có hai transistor Q_5 và Q_6 nối hai cực E ra chân 1 và 5 để điều chỉnh cân bằng điểm O nhờ nguyên lý hồi tiếp âm dòng điên.

Hình 5.6a là mạch áp dụng chỉnh cân bằng điểm O cho OP-AMP 741 bằng cách đặt thêm biến trở $VR = 10k\Omega$ giữa hai chân 1 và 5, điểm giữa biến trở nối vào nguồn -V để điều chỉnh.

Hình 5.6b là mạch tương đương cho thấy ảnh hưởng của việc điều chỉnh. Khi điều chỉnh biến trở VR tức là thay đổi R_E của T_1 và T_2 để bù trừ cho sư mất cân bằng giữa hai transistor do chế tạo.

Các biến trở trong hai phương pháp trên được điều chỉnh sao cho khi ở ngõ vào có $V_1 = 0V$ thì ngõ ra $V_0 = 0V$.

§5.4- CÁC MẠCH ỨNG DỤNG CƠ BẨN

1) Mạch khuếch đại không đảo

Hình 5.7a: Mạch khuếch đại không đảo

Mạch khuếch đại không đảo có điện áp ngõ vào V_i nối đến ngõ I_n^+ qua điện trở ngõ vào R_i . Ngõ I_n^- nhận tín hiệu hồi tiếp từ ngõ ra qua cầu phân áp R_1 - R_2 (hình 5.7a).

Độ khuếch đại hồi tiếp (còn gọi là độ khuếch đại vòng kín) được tính theo công thức:

$$A_{17} = \frac{R_1 + R_2}{R_1}$$

Điện trở R_i ở ngõ vào I_n^+ có tác dụng ổn định nhiệt, tránh không cho điện áp ngõ ra trôi đến trạng thái bão hòa.

Qua biểu thức tính Avr cho thấy:

- nếu giảm $R_2 = 0\Omega$ thì $A_{VF} = 1$
- nếu giảm $R_1=0\Omega$ thì $A_{VE}\to \infty$ (thực tế thì A_{VF} sẽ tiến đến giới hạn là độ khuếch đại vòng hở của OP-AMP).

Mạch khuếch đại không đảo có ưu điểm là tổng trở vào rất lớn. Theo lý thuyết: tổng trở vào là tích số tổng trở vào của OP-AMP trong mạch vòng hở ($Z_1 \cong 1M\Omega$) nhân với tỉ số của độ lợi vòng hở trên độ lợi vòng kín.

$$Z'_I = Z_I \frac{A_{VO}}{A_{VF}}$$

Trị số Z_1 có thể lên đến hàng trăm $M\Omega$.

Trong phần giới thiệu các thông số đặc trưng của OP-AMP, với tần số cắt f_T nhất định, nếu A_{VF} càng lớn thì băng thông B càng hẹp và ngược lại.

 \mathring{O} đây ta cũng thấy, nếu A_{VF} càng lớn thì Z_{I} càng thấp và ngược lại.

Điện trở ngỗ vào R₁ thường được chọn có trị số:

$$R_1 = R_1 // R_2$$

2) Mạch khuếch đại đảo (hình 5.7b)

Mạch khuếch đại đảo có điện áp ngõ vào V_i nối đến ngõ I_n qua điện trở ngõ vào $R_1 = R_1$. Điện trở R_2 là điện trở hồi tiếp âm (còn gọi là R_1). Điện trở R_3 nối ngõ I_n^+ xuống mass có tác dụng ổn định nhiệt, tránh không cho điện áp ngỗ ra trôi đến trạng thái bão hòa.

Hình 5.7b: Mach khuếch đai đảo

Do OP-AMP có tổng trở vào rất lớn nên dòng điện ngõ vào i_1 rất nhỏ. Ngõ I_n^+ có R_3 nối mass nên có điện áp $V_{in}^+=0V$. Ngõ I_n^- có điện áp chênh lệch với ngõ I_n^+ rất nhỏ nên $V_{in}^- \equiv 0V$ và ngõ I_n^- được xem như điểm mass giả.

Do tín hiệu V_i vào ngõ I_n nên tín hiệu ra V_O sẽ có điện áp ngược dấu. Nếu $V_i > 0V$ thì $V_O < 0V$ và ngược lại.

Theo hình 5.7, dòng điện i_1 qua R_1 đi từ ngoài vào là do $V_i > 0$ V. Như vậy, điện áp $V_0 < 0$ V và dòng điện i_2 sẽ đi từ ngõ I_n qua R_2 đến ngõ ra. Thực tế dòng i_1 chính là dòng điện $i_2 \Rightarrow i_1 = i_2$.

Hai điện trở R_1 và R_2 tạo thành cầu phân áp có điểm giữa là ngõ I_n với điện áp $V_{in} \cong 0V$.

Suy ra:
$$i_i = \frac{V_i}{R_1}$$
 và $i_2 = -\frac{V_o}{R_2}$

$$\Rightarrow \frac{V_i}{R_1} = -\frac{V_o}{R_2}$$
 (vì $i_1 = i_2$)

Độ khuếch đại hồi tiếp được tính theo công thức:

$$A_{1F} = \frac{V_O}{V_I} = -\frac{R_2}{R_1}$$
 hay $A_{1F} = -\frac{R_F}{R_I}$

Qua biểu thức tính Ave cho thấy:

- nếu giảm $R_2 = R_1$ thì $A_{VF} = -1$
- nếu giảm $R_1=0\Omega$ thì $A_{VF}\to \infty$ (thực tế thì A_{VF} sẽ tiến tới giới hạn bão hòa là độ khuếch đại vòng hở A_{VO}).

Khi thay đổi trị số R_1 sẽ làm thay đổi tổng trở ngõ vào, khi thay đổi trị số R_2 chỉ làm thay đổi độ khuếch đại còn tổng trở vào không đổi. Tuy nhiên, giá trị R_2 phải được chọn trong giới hạn cho phép. Nếu chọn trị số R_2 quá nhỏ, dòng ngõ ra của OP-AMP sẽ vượt quá trị số $I_{\rm Omax}$ vì dòng ngõ ra là dòng ra tải và dòng hồi tiếp qua R_2 . Nếu chọn R_2 có trị số quá lớn thì mạch khuếch đại dễ bị nhiễu và không ổn định.

Thông thường R_2 được chọn trong khoảng $2k\Omega$ đến $2M\Omega$. Điện trở ổn định nhiệt R_3 thường chọn có trị số:

$$R_1 = R_1 // R_2$$

Trong mạch khuếch đại đảo hình 5.7b, tổng trở vào của mạch Z_i chính là R_1 (vì ngõ I_n được xem là điểm mass giả). Muốn tăng tổng trở vào Z_i thì phải tăng R_1 , điều này sẽ làm giảm độ khuếch đại hồi tiếp $A_{\rm VF}$.

Để có tổng trở vào của mạch Z_l lớn mà độ khuếch đại hồi tiếp vẫn lớn, có thể dùng mạch khuếch đại đảo theo sơ đồ hình 5.8.

Công thức tính độ khuếch đại hồi tiếp của mạch hình 5.8 là:

$$A_{1T} = \frac{R_2}{R_1} \cdot \frac{R_3 + R_4}{R_4}$$

Hình 5.8: Mạch khuếch đại đảo có tổng trở vào Z₁ lớn

Với các trị số điện trở trong mạch, độ khuếch đại là:

$$A_{VF} = -100$$

Điện trở $R_i = 1M\Omega$ nên tổng trở ngõ vào Z_i vẫn có trị số lớn.

3) Mạch lặp hay mạch đệm (hình 5.9)

Mạch lặp là mạch khuếch đại không đảo có độ khuếch đại $A_{VF}=1$. Trong mạch này, tín hiệu vào đưa đến ngõ I_n^+ , ngõ I_n^- được nối trực tiếp đến ngõ ra. Như vậy, điện áp hồi tiếp V_f bằng điện áp ra V_O (mạch hồi tiếp âm 100%).

Hình 5.9a: Mạch lặp DC

Hình 5.9b: Mạch lặp AC

Độ khuếch đại hồi tiếp là:
$$A_{IJ} = \frac{V_O}{V_I} = 1$$

Tổng trở vào của mạch là:

$$Z_{I} = Z_{I} \frac{A_{VO}}{A_{UV}} = Z_{I}.A_{IO}$$
 (rất lớn \cong vài trăm $M\Omega$)

Trong mạch lặp AC có tụ liên lạc C_1 - C_2 để cách ly điện áp một chiều giữa các khối. Điện trở $1M\Omega$ ở ngõ I_n^+ nối xuống mass có tác dụng ổn định nhiệt cho OP-AMP và để tạo dòng nạp xả cho tụ C_1 . Do có điện trở $1M\Omega$ nên tổng trở vào sẽ giảm và bằng $1M\Omega$.

Đặc điểm của mạch là tổng trở vào rất lớn, tổng trở ra rất nhỏ (≅ vài Ω) nên mạch lặp được dùng làm mạch đổi tổng trở từ lớn ra nhỏ.

4) Mạch tạo lệch pha (hình 5.10)

Hai OP-AMP (1) và (2) là hai mạch khuếch đại đảo có độ khuếch đai hồi tiếp bằng 1.

$$A_{VF1} = A_{VF2} = 1$$

<u>Hình 5.10</u>: Mạch tạo tín hiệu đảo pha

Do trong mạch có điện trở ngõ vào $R_1=R_1=R_4=100k\Omega$ và điện trở hỗi tiếp $R_f=R_2=R_5=100k\Omega$ nên điện áp ra đảo dấu nhưng có cùng biên độ với điện áp vào.

Như vậy, điện áp ra V_{o1} đảo dấu với V_i , điện áp ra V_{o2} đảo dấu với V_{o1} nên V_{o2} cùng dấu với V_i . Điện áp ra V_{o1} và V_{o2} là hai điện áp ra cùng biên độ nhưng đảo pha cân bằng.

§5.5 CÁC PHÉP TOÁN CƠ BẢN

1) Mạch cộng (hình .11)

Hình 5.11: Mạch cộng đảo pha

Để thực hiện phép cộng nhiều tín hiệu thì OP-AMP có nhiều điện trở ở ngõ vào nối chung vào ngõ I_n^- hay I_n^+ . Nếu cho vào ngõ I_n^- là mạch cộng đảo dấu, cho vào ngõ I_n^+ là mạch cộng không đảo dấu.

Điện trở R_4 là điện trở hồi tiếp, điện trở R_5 ổn định nhiệt cho OP-AMP. Nếu xét riêng từng ngõ vào, mỗi điện trở cùng với R_4 tạo thành mạch khuếch đại đảo với độ khuếch đại điện áp hồi tiếp là:

$$A_{1F1} = -\frac{R_4}{R_1}$$
 $A_{1F2} = -\frac{R_4}{R_2}$ $A_{VF3} = -\frac{R_4}{R_3}$

Khí cùng lúc có tín hiệu vào cả 3 ngõ, các dòng điện ở mỗi ngõ vào đều qua điện trở hồi tiếp. Vì vậy, dòng qua R_4 chính là tổng của 3 dòng điện vào của R_1 - R_2 và R_3 .

Điện áp ra được tính theo công thức:

$$V_{ij} = V_{ij1} + V_{ij2} + V_{ij3}$$

$$V_{O} = -V_{I1} \frac{R_4}{R_1} - V_{I2} \frac{R_4}{R_2} - V_{I3} \frac{R_4}{R_3}$$

$$V_{ij} = -R_4 \left(\frac{V_{i1}}{R_1} + \frac{V_{i2}}{R_2} + \frac{V_{i3}}{R_3} \right)$$

Độ lợi điện áp của mạch vẫn được tính theo công thức của mạch khuếch đai đảo là:

$$A_{VF} = -\frac{R_F}{R_*} \tag{R_F = R_4}$$

 $\dot{\mathbf{O}}$ các ngỗ vào thường chọn: $\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_3 = \mathbf{R}_1$

Nếu chọn: $R_4=R_1=R_1=R_2=R_3$ và chọn: $R_5=R_1$ // R_2 // R_3 // R_4 thì mạch có độ khuếch đại điện áp là 1 và điện áp ra là:

$$V_0 = -(V_{11} + V_{12} + V_{13})$$

Sơ đồ mạch hình 5.12 là mạch cộng không đảo dấu. Cầu phân áp R_3 - R_4 là mạch hồi tiếp từ điện áp ra V_0 trở về ngõ I_n .

Xét riêng từng ngõ, độ khuếch đại hồi tiếp của mạch vẫn là:

$$A_{VF} = \frac{R_3 + R_4}{R_3}$$

Khi chỉ có ngõ vào V_{11} ($V_{12} = 0$) thì R_1 - R_2 là cầu phân áp ở ngõ vào nên điện áp tác dụng lên ngõ I_n^+ là:

$$V_1 = V_{11} \frac{R_2}{R_1 + R_2}$$
 (R₂ xem như nối mass)

Khi chỉ có ngỗ vào V_{12} ($V_{11} = 0$), điện áp tác dụng lên ngỗ I_n^+

là:
$$V_1 = V_{12} \frac{R_1}{R_1 + R_2}$$
 (R₁ xem như nối mass)

Khi cùng lúc có cả hai tín hiệu V_{i1} và V_{i2} thì điện áp ở ngõ

vào là:

$$V_1 = V_{11} \frac{R_2}{R_1 + R_2} + V_{12} \frac{R_1}{R_1 + R_2}$$

Hình 5.12: Mạch cộng không đảo dấu

Điện áp ở ngõ ra là: $V_O = V_I A_{IT}$

$$V_O = \frac{V_{I1} R_2 + V_{I2} R_1}{R_1 + R_2} \cdot \frac{R_3 + R_4}{R_2}$$

Trường hợp có 3 tín hiệu cùng vào ngõ ${\rm I_n}^+$ thì công thức tính điện áp ra sẽ phức tạp hơn.

2) Mạch trừ (hay mạch khuếch đại vi sai)

Mạch trừ có hai tín hiệu vào ở hai ngõ I_n^+ và I_n^- . Điện áp ra tỉ lệ với hiệu số điện áp của hai tín hiệu vào nên mạch có chức năng thực hiện phép trừ.

Hình 5.13: Mạch trừ

 \mathring{O} ngỗ vào I_n , hai điện trở $R_1\text{-}R_2$ tạo thành mạch hồi tiếp cho mạch khuếch đại đảo là - R_2/R_1 .

 \mathring{O} ngỗ vào I_n^+ , hai điện trở R_3 - R_4 tạo thành cầu phân áp làm giảm điện áp vào OP-AMP theo tỉ lê:

$$V_I = V_{I2} \frac{R_4}{R_2 + R_4}$$

Trường hợp này là mạch khuếch đại không đảo với cầu phân áp R_1 - R_2 là mạch hồi tiếp về ngõ I_n . Độ khuếch đại không đảo I_n

$$A_{17.} = \frac{R_1 + R_2}{R_1}$$

Nếu xét riêng từng ngỗ vào, điện áp ra cho ngỗ vào In là:

$$V_{O1} = V_{I1}(-\frac{R_2}{R_1}) = -V_{I1}\frac{R_2}{R_1}$$

Điện áp ra cho ngõ vào In tà:

$$V_{O2} = V_{t2} \cdot \frac{R_4}{R_1 + R_4} \cdot \frac{R_1 + R_2}{R_1}$$

Khi cùng lúc có tín hiệu vào cả 2 ngõ thì điện áp ra là tổng hai điên áp trên:

$$V_{O} = V_{O1} + V_{O2}$$

$$V_{O} = V_{I2} \cdot \frac{R_{4}}{R_{3} + R_{4}} \cdot \frac{R_{1} + R_{2}}{R_{1}} - V_{I1} \frac{R_{2}}{R_{1}}$$

$$V_{O} = V_{I2} \cdot \frac{R_{1} + R_{2}}{R_{2} + R_{4}} \cdot \frac{R_{4}}{R_{1}} - V_{I1} \frac{R_{2}}{R_{2}}$$

Hay:

Tùy theo yêu cầu về độ khuếch đại có thể chọn trị số các điện trở nhưng phải theo điều kiện là: $\frac{R_1}{R_2} = \frac{R_3}{R_4}$

Với điều kiện trên độ lợi điện áp của mạch là:

$$A_{VV} = \frac{R_2}{R_1} = \frac{R_4}{R_3}$$

Điện áp ra của mạch trừ được tính theo công thức:

$$V_{ij} = (V_{12} - V_{11}).\frac{R_2}{R_1}$$

3) Mạch tích phân (hình 5.14)

Hình 5.14; Mạch tích phân đảo

Mạch tích phân có tín hiệu vào ngõ đảo I_n , mạch hồi tiếp từ ngõ ra về ngõ I_n là tụ C. Điện trở R_1 là điện trở nạp xả của tụ, điện trở R_2 ổn định nhiệt cho OP-AMP. Thường chọn: $R_1 = R_2 = R$.

Do tính chất của OP-AMP nên dòng điện I_1 vào OP-AMP xem như bằng 0, điểm I_n xem như điểm mass. Ta có:

$$I_1 = I_L = \frac{V_L}{R}$$

Dòng I_F là dòng nạp vào tụ nên: $I_F = -C \frac{dV_O}{dt}$

Suy ra:
$$\frac{V_I}{R} = -C \frac{dV_O}{dt}$$
 \Rightarrow $dV_O = -\frac{1}{RC} V_I dt$

Lấy tích phân ta có:
$$V_O = -\frac{1}{RC} \int V_I dt$$

RC chính là hằng số thời gian nạp xả của tụ C. Dấu trừ trong công thức là do mạch đảo dấu.

Do đặc tính nạp xả của tụ điện, khi ngõ vào có tín hiệu dạng xung vuông thì ở ngỗ ra sẽ có tín hiệu dạng răng cưa hay tam giác và ngược dấu.

Mạch tích phân sẽ được phân tích kỹ hơn trong chương "Mach loc".

4) Mạch vi phân (hình 5.15)

Mạch vi phân có tín hiệu vào ngỗ đảo I_n qua tụ C, mạch hồi tiếp từ ngỗ ra về ngỗ I_n là điện trở R (cách lắp RC ngược lại với mạch tích phân). Điện trở R_1 nối ngỗ I_n xuống mass để ổn định nhiệt cho OP-AMP.

Do tính chất của OP-AMP, dòng điện vào $I_I = 0$ nên $I_I = I_F$

Dòng điện I_1 là dòng nạp qua tụ C được tính theo công thức:

$$I_1 = C \frac{dV_j}{dt}$$

Do ngõ In xem như điểm mass nên dòng điện hồi tiếp là:

$$I_{+} = -\frac{V_{O}}{R}.$$

Suy ra:
$$C \frac{dV_i}{dt} = -\frac{V_o}{R}$$

$$\Rightarrow V_O = -RC \frac{dV_I}{dt}$$

RC chính là hằng số thời gian nạp xả của tụ C qua R. Dấu trừ trong công thức là do mạch đảo dấu.

Do đặc tính nạp xả của tụ, khi ngõ vào có xung tam giác thì ngõ ra có xung vuông và ngược dấu.

5) Mạch khuếch đại phi tuyến (semi-log)

Các mạch trên là các mạch khuếch đại tuyến tính. Mạch khuếch đại phi tuyến có điện áp ra tỉ lệ với điện áp vào theo hàm logarit nhờ mạch hồi tiếp phi tuyến dùng diod (diod có dòng điện thuận tỉ lệ logarit với điện áp đặt vào chân AK).

Trong mạch điện hình 5.16, đường hồi tiếp là hai diod silicon mắc song song ngược chiều. Khi diod có điện áp $V_D \cong 0V$, diod có noit trở rất lớn nên có độ lợi cao. Khi có điện áp vào lớn, diod có nội trợ nhỏ nên có độ lợi bị giảm nhỏ.

Điện trở R_2 ổn định nhiệt cho OP-AMP. Thường chọn $R_1=R_2$.

Điện áp ra được tính theo công thức:

$$V_0 = -30\log(V_1)$$

Hình 5.16: Mạch phi tuyến

Nếu điện áp tín hiệu vào có dạng hình sin thì tín hiệu ngõ ra có dạng gần như vuông.

§5.6- MACH TAO XUNG DÙNG OP-AMP

1) Mạch Flip-Flop dùng OP-AMP

Mạch F/F dùng OP-AMP như sơ đồ hình 5.17, có hai OP-AMP làm việc như hai mạch khuếch đại so sánh. OP-AMP sẽ ở trạng thái bão hòa dương nếu có:

$$V_1^+ > V_1^- \Rightarrow V_0 \cong +V_{CC}$$

hay ở trạng thái bão hòa âm nếu có:

$$V_1^- > V_1^+ \Rightarrow V_0 \cong + 0V$$

Giả thiết mạch có trạng thái như hình vẽ với $V_{O1}\cong +V_{CC}$ và $V_{O2}=0V$.

OP-AMP ① được hồi tiếp từ $V_{O2}=0$ V về ngõ In qua điện trở $10k\Omega$ nên vẫn có $V_1^+>V_1$ và $V_{O1}\cong +V_{CC}$ ổn định.

OP-AMP ② được hồi tiếp từ $V_{OI} \cong +V_{CC}$ về ngõ In $^-$ qua điện trở $10k\Omega$ ($10k\Omega << 100k\Omega$) nên vẫn có $V_I^- > V_I^+$ và $V_{OI} = 0V$ ổn định.

<u>Hình 5.17</u>: Mạch F/F dùng OP-AMP kích đổi trang thái bằng xung âm

Đây là trạng thái ổn định thứ nhất của mạch F/F, OP-AMP 1 ở trạng thái bão hòa dương và OP-AMP 2 ở trạng thái bão hòa âm. Để đổi trạng thái của F/F, cho công tắc S nối vào ngō In¯ của OP-AMP 2 đang bão hòa âm. Lúc đó, $V_1^- = 0V$ và $V_1^+ > V_1^-$ nên OP-AMP 2 chuyển sang bão hòa dương, $V_{O2} \cong +V_{CC}$ qua điện trở hồi tiếp 10K sẽ làm đổi trạng thái của OP-AMP 1 từ bão hòa dương sang bão hòa âm vì lúc đó OP-AMP 1 có $V_1^- > V_1^+$.

 $Luu \ \dot{y}$: Điện trở hồi tiếp phải có trị số khá nhỏ so với điện trở nối ngõ In^+ lên nguồn $+V_{CC}$.

Công tắc S có điểm chung nối mass xem như xung âm kích điều khiển F/F. Công tắc S có thể nối lên nguồn +V_{CC} qua điện trở để kích đổi trạng thái của F/F như xung dương kích điều khiển F/F. Trường hợp này xung dương phải được đưa vào OP-AMP ① đang bão hòa dương. Sơ đồ hình 1.18 là mạch F/F đổi trạng thái bằng xung dương.

Như vậy, để đổi trạng thái của F/F có thể dùng một trong hai phương pháp sau:

- Cho xung âm (hay mức điện áp thấp) vào ngỗ In của OP-AMP đang bão hòa âm.
- Cho xung dương (hay mức điện áp cao) vào ngô In của
 OP-AMP đang bão hòa dương.

Hình 5.18: Mạch F/F dùng OP-AMP kích đổi trạng thái bằng xung âm

2) Mạch Flip-Flip hồi tiếp bằng diod

Mạch Flip-Flop hình 5.19 dùng hai diod D_1 - D_2 để nhận xung kích ở ngõ vào và hai diod D_3 - D_4 để lấy điện áp hồi tiếp.

Mạch Flip-Flop hình 5.19 dùng hai diod D_1 - D_2 để nhận xung kích ở ngõ vào và hai diod D_3 - D_4 để lấy điện áp hồi tiếp.

Giả sử mạch đang có trạng thái ổn định như hình vẽ, OP-AMP ① đang bão hòa dương, $V_{O1}\cong +V_{CC}$; OP-AMP ② đang bão hòa âm, $V_{O2}=0V$.

Hình 5.19: Mạch Flip-Flop hồi tiếp bằng diod

Trường hợp này nếu cho xung âm vào ngỗ V_{12} của OP-AMP đang bão hòa âm thì diod D_2 bị phân cực ngược nên xung âm không tác động được vào mạch F/F và mạch không đổi trạng thái.

Muốn đổi trạng thái của mạch F/F phải cho xung dương vào ngõ $V_{\rm II}$ của OP-AMP đang bão hòa dương. Lúc đó, diod $Q_{\rm I}$ được phân cực thuận sẽ cho xung dương vào mạch F/F và làm mạch đổi trạng thái.

Như vậy, khi sử dụng diod như hình 5.19 thì 2 mạch F/F chỉ còn một cách kích đổi trạng thái là cho xung dương (hay mức điện áp cao) vào ngỗ In của OP-AMP ① đang bão hòa dương

3) Mạch dao động tích thoát

a) Nguyên lý:

Mạch điện hình 5.20 là sơ đồ mạch dao động tích thoát dùng OP-AMP để cho ra tín hiệu vuông.

Sơ đồ có hai mạch hồi tiếp từ ngõ ra về hai ngõ vào. Cầu phân áp RC hồi tiếp về ngõ In^- , cầu phân áp R_1 - R_2 hồi tiếp về ngõ In^+ .

Hình 5.20: Mạch dao động tích thoát

Để giải thích nguyên lý mạch, ta giả sử tụ C chưa nạp điện và OP-AMP đang ở trạng thái bão hòa dương. Lúc này cầu phân áp R_1 - R_2 đưa điện áp dương về ngõ In^+ với mức điện áp là: $V_O \cong +V_{CC}$.

$$V_{in}^+ = +V_{CC} \frac{R_2}{R_1 + R_2} = V_A \qquad (V_{in}^+ > 0V)$$

Trong khi đó, ở ngõ In có điện áp tăng dần lên từ 0V, điện áp tăng do tụ C nạp qua R theo qui luật hàm mũ với hằng số thời gian là $\tau = RC$.

Khi tụ nạp và có $V_{in}^- < V_{in}^+$ thì OP-AMP vẫn ở trạng thái bão hòa dương. Khi tụ C nạp đến mức điện áp $V_{in}^- > V_{in}^+$ thì OP-AMP đổi thành trạng thái bão hòa âm, ngō ra có $V_O \cong -V_{CC}$. Lúc này, cầu phân áp R_1 - R_2 đưa điện áp âm về ngõ In^+ với mức điện áp là:

$$V_{\text{in}}^+ = -V_{\text{CC}} \frac{R_2}{R_1 + R_2} = V_{\text{B}}$$
 ($V_{\text{in}}^+ < 0V$)

Trong khi đó, ngỗ In vẫn còn đang ở mức điện áp dương với trị số $V_{in}^- > +V_{CC} \frac{R_2}{R_1+R_2}$ do tụ C đang còn nạp điện. Như vậy, OP-

AMP sẽ chuyển sang trạng thái bão hòa âm nhanh cho cạnh vuông thẳng đứng. Tụ C bây giờ sẽ xả điện áp dương đang nạp trên tụ qua R_1 và tải ở ngõ ra xuống mass.

Khi tụ C xả điện áp dương đang có thì $V_{\rm in}^+$ vẫn ở mức điện áp âm nên OP-AMP vẫn ở trạng thái bão hòa âm. Khi tụ C đã xả hết điện áp dương sẽ nạp điện qua R để có điện áp âm do ngõ ra đang ở trạng thái bão hòa âm, chiều nạp điện bây giờ ngược với chiều dòng điện nạp trên hình vẽ.

Khi tụ C nạp điện áp âm đến mức $V_{in}^- < V_{in}^+$ (ngỗ In nhỏ hơn ngỗ In thì OP-AMP lại đổi thành trạng thái bão hòa dương về ngỗ ra có $V_O \cong +V_{CC}$.

Mạch đã trở lại trạng thái giả thiết ban đầu và hiện tượng trên cứ tiếp diễn liên tục tuần hoàn.

b) Dạng sóng ở các chân:

Mức giới hạn điện áp ngõ ra là:

$$V_{Omax} \cong +V_{CC}$$
 và $V_{Omax} \cong -V_{CC}$

Mức giới hạn điện áp ở hai ngõ vào là :

$$V_A = +V_{CC} \frac{R_2}{R_1 + R_2}$$
 và $V_B = -V_{CC} \frac{R_2}{R_1 + R_2}$

Dạng điện áp ở ngỗ In là dạng tam giác. Thời gian điện áp ở ngỗ In tăng từ V_B lên V_A là thời gian OP-AMP bão hòa dương, thời gian điện áp ngỗ In giảm từ V_A xuống V_B là thời gian OP-AMP bão hòa âm. Dạng điện áp ở ngỗ In và ngỗ ra là trạng thái xung vuông đối xứng.

Chu kỳ của tín hiệu: $T = 2RC.ln \frac{R_1 + 2R_2}{R_1}$

Suy ra tần số của tín hiệu: $f = \frac{1}{T}$

Hình 5.21: Dạng sóng ngõ vào và ngõ ra

Trường hợp đặc biệt:

•
$$R_1 = 2R_2 \Rightarrow T = 2RC.\ln 2 = 2RC.0,69$$
 (ln2 = 0,69)

$$\Rightarrow f = \frac{1}{2.0.69.R.C} \approx \frac{1}{1.4.R.C}$$

•
$$R_1 = R_2 \implies T = 2RC.ln3 = 2RC.1,1$$
 (ln3 = 1,1)

$$\Rightarrow f = \frac{1}{2,2.R.C}$$

c) Mạch đổi tần số:

Theo công thức tính chu kỳ và tần số dao động như trên ta có thể đổi tần số dao động bằng các phương pháp sau :

- Thay đổi tỉ số cầu phân áp mạch hồi tiếp dương (R₁ và R₂)
- Thay đổi trị số điện trở R hay tụ C trong mạch hồi tiếp âm.

Tần số của mạch dao động tính thoát hình 5.22 được tính theo công thức:

$$T = 2 (R + VR_1) C.ln \frac{R_1 + 2(R_2 + VR_2)}{R_1}$$

<u>Hình 5.22</u>: Mạch dao động tích thoát đổi tần số

<u>Hình 5.23</u>: Mạch dao động tích thoát đổi chu trình làm việc

d) Mạch đổi chu trình làm việc:

Trong sơ đồ mạch dao động tích thoát cơ bản dùng OP-AMP, tụ C nạp điện và xả điện đều qua điện trở R nên hằng số thời gian

nạp và xả bằng nhau. Điều này có nghĩa là thời gian xung vuông có điện áp cao và có điện áp thấp dài bằng nhau. Xung vuông ra là xung đối xứng có chu trình làm việc là D = 50%.

Để thay đổi chu trình làm việc, mạch dao động tích thoát có sơ đồ như hình 5,23, biến trở VR sẽ làm thay đổi thời gian nạp và thời gian xả của tụ theo hai hưởng ngược nhau, nên tăng thời gian nạp sẽ làm giảm thời gian xả và ngược lại.

Khi tụ C nạp điện áp dương, từ ngỗ ra sẽ nạp qua điện trở R, biến trở VR (phần dưới) và qua diod D_2 . Khi tụ C xả điện áp dương và sau đó nạp điện áp âm sẽ xả qua R, biến trở VR (phần trên) và qua diod D_1 .

Khi điều chỉnh biến trở VR chỉ làm thay đổi chu trình làm việc mà vẫn giữ nguyên tần số dao động.

4) Mạch tạo xung vuông và tam giác

Hình 5.24: Mạch tạo xung vuông và tam giác

Mạch dao động tích thoát cơ bản tạo xung vuông đối xứng ở ngỗ ra. Nếu kết hợp mạch tích phân tích cực dùng OP-AMP thì mạch có thể cho ra xung tam giác.

OP-AMP \odot là mạch dao động tích thoát để tạo xung vuông theo nguyên lý trên. Xung vuông được lấy trên biến trở VR_1 để thay đổi biên độ ngõ ra.

OP-AMP ② là mạch tích phân tích cực nhận xung vuông từ ngõ ra của OP-AMP ① đổi thành dạng xung tam giác. Xung tam giác được lấy trên biến trở VR₂ để thay đổi biên độ ngõ ra.

§5.7- HAI TRẠNG THÁI BÃO HÒA CỦA OP-AMP

1) Hai trạng thái bão hòa của OP-AMP

Để thực hiện chức năng chuyển đổi trạng thái của mạch, ngoài transistor, có thể dùng OP-AMP nhờ vào 2 trạng thái bão hòa của nó trong mạch khuếch đại so sánh.

Hình 5.25: Mach khuếch đại so sánh

Sơ đồ hình 5.25 là mạch khuếch đại so sánh cơ bản dùng hai nguồn đối xứng $\pm V_{CC}$. Điện áp vào ngõ không đảo (ngõ +) gọi là V_1^+ và điện áp vào ngõ đảo (ngõ -) gọi là V_1^- .

Tùy thuộc điện áp ở hai ngõ này so với nhau mà OP-AMP sẽ ở một trong hai trạng thái sau:

Nếu: $V_i^+ > V_i^-$ thì $V_0 \cong +V_{CC}$ là trạng thái bão hòa dương

Nếu: $V_i^- > V_i^+$ thì $V_0 \cong -V_{CC}$ gọi là trạng thái bão hòa âm.

Trong thực tế mạch khuếch đại so sánh sẽ nhận một điện áp ở ngõ vào V_I để so với điện áp chuẩn V_R . Tùy theo yêu cầu của mỗi mạch mà ta cho điện áp ngõ vào V_I vào ngõ đảo hay ngõ không đảo và điện áp chuẩn V_R vào ngõ còn lại.

a) Điện áp V_I ở ngõ đảo, điện áp chuẩn V_R ở ngõ không đảo:

Hình 5.26a: Mach so sánh

<u>Hình 5.26b</u>: Điện áp ra V_O theo điện áp vào V_I

Theo sơ đồ, mạch so sánh hình 5.26a có điện áp ngõ vào V_1 đưa đến ngõ đảo để so với điện áp chuẩn V_R ở ngõ không đảo.

Hàm truyền đạt của mạch hình 5.26b, theo đó, nếu $V_1 < V_R$ (hay $V_1^- < V_1^+$) thì $V_O \cong +V_{CC}$ và ngược lại nếu $V_I > V_R$ (hay $V_I^- > V_1^+$) thì $V_O \cong -V_{CC}$

b) Điện áp V_I vào ngõ không đảo, V_R vào ngõ đảo:

Mạch so sánh hình 5.27a có cách cho điện áp vào ngược lại với mạch so sánh hình 5.26a nên có hàm truyền đạt ngược lại nhự hình 5.27b. Nếu $V_I < V_R$ (hay ${V_I}^+ < {V_I}^-$) thì $V_O \cong -V_{CC}$ ngược lại, nếu $V_I > V_R$ (hay ${V_I}^+ > {V_I}^-$) thì $V_O \cong +V_{CC}$.

Hình 5.27a: Mạch so sánh

<u>Hình 5.27b</u>: Điện áp ra V_0 theo điện áp vào V_1

Hai trạng thái ngắt và dẫn bão hòa của transistor hay hai trạng thái bão hòa dương và bão hòa âm của OP-AMP được dùng để cho ra hai điện áp mức cao và mức thấp tạo ra tín hiệu xung điện.

\$5.8- CÁC ỨNG DỤNG KHÁC CỦA OP-AMP

OP-AMP còn rất nhiều ứng dụng trong các lĩnh vực khác nhau như:

- Mach loc tích cực (kết hợp R-C)
- Mạch đao động tạo tín hiệu hình sin
- Mạch ổn áp (kết hợp với diod Zener)
- Mạch đóng ngắt điều khiển rơ-le.

CHUONG 6

MACH TÍCH PHÂN - VI PHÂN - MẠCH PID

§6.1- MACH TÍCH PHÂN

1) Mạch tích phân đảo (hình 6.1)

Mạch tích phân có tín hiệu vào ngõ đảo I_n , mạch hồi tiếp từ ngõ ra về ngõ I_n là tụ C. Điện trở R_1 là điện trở nạp xả của tụ, điện trở R_2 ổn định nhiệt cho OP-AMP. Thường chọn: $R_1 = R_2 = R$.

Hình 6.1: Mạch tích phân đảo

Do tính chất của OP-AMP nên dòng điện I_1 vào OP-AMP xem như bằng 0, điểm I_n xem như điểm mass. Ta có:

$$I_1 = I_F = \frac{V_I}{P}$$

Dòng I_F là dòng nạp vào tụ nên: $I_F = -C \frac{dV_o}{dt}$

Suy ra:
$$\frac{V_I}{R} = -C \frac{dV_O}{dt}$$
 \Rightarrow $dV_O = -\frac{1}{RC} V_I dt$

Lấy tích phân ta có:
$$V_o = -\frac{1}{RC} \int V_I dt$$

RC chính là hằng số thời gian nạp xả của tụ C. Dấu trừ trong công thức là do mạch đảo dấu.

Nếu vị là điện áp xoay chiều thì:

$$v_o = -\frac{1}{RC} \int_0^T v_{tmax} \sin \omega t dt = \frac{v_{tmax}}{\omega RC} \cos \omega t$$

Như vậy, biên độ điện áp ra v_0 tỉ lệ nghịch với tần số ω . Đặc tuyến biên độ theo tần số của mạch tích phân là: $A = \frac{v_0}{v_1} = f(\omega)$ có độ dốc -6dB/ Octave (xem chương 7 "Mạch lọc").

2) Mạch tích phân không đảo

Hình 6.2: Mạch tích phân không đảo

Xét ở ngõ vào không đảo (In+):

$$\frac{v_{i} - v_{i}^{+}}{R} + \frac{v_{o} - v_{i}^{+}}{R} - C \frac{dv_{i}^{+}}{dt} = 0$$

Theo sơ đồ và do tính chất của OP-AMP ta có:

$$\mathbf{v}_i^- = \frac{1}{2} \mathbf{v}_o$$
 $\mathbf{v}_i^- \cong \mathbf{v}_i^+$

$$v_{i} - \frac{1}{2}v_{o} + v_{o} - \frac{1}{2}v_{o} = \frac{RC}{2} \times \frac{dv_{o}}{dt}$$

$$\Rightarrow v_{i} = \frac{RC}{2} \times \frac{dv_{o}}{dt}$$

$$\Rightarrow v_{i} dt = \frac{RC}{2} dv_{o} \Rightarrow v_{o} = \frac{2}{RC} \int v_{i} dt$$

3) Mạch tích phân tỉ lệ PI (Proportional Integrated)

Trong lĩnh vực điều khiển người ta thường sử dụng mạch tích phân tỉ lệ (PI). Mạch PI có sơ đồ như hình 6.3, điện áp ra được tính theo công thức:

$$v_o = Av_B \int v_i dt$$
 (1)

Do tính chất của OP-AMP nên $v_1 = v_1^+ = 0V$.

Dòng điện vào từ nguồn tín hiệu v_i là i_i sẽ tạo ra điện áp trên điện trở R_2 và tụ C là:

$$v_2 = \frac{R_2}{R_1} v_1$$
 $var{a}$ $v_c = \frac{1}{R_1 C} \int v_1 dt$

Hình 6.3: Mạch tích phân tỉ lệ

Do
$$v_i = 0V$$
 nên: $-v_0 = \frac{R_2}{R_1} v_i + \frac{1}{R_1 C} \int v_i dt$ (2)

Giả thiết:
$$v_1 = v_{1max} .\cos \omega t$$

Suy ra:
$$-v_0 = \frac{R_2}{R_1} v_{imax} \cos \omega t + \frac{v_{imax}}{\omega R_1 C} \sin \omega t$$
 (3)

Xét ba biểu thức (1), (2) và (3) ta thấy đây là ba biểu thức cùng dạng với: $A = \frac{R_2}{R_1}$, $B = \frac{1}{R_1}C$

Từ biểu thức (3), có thể tính được hàm truyền của mạch PI là:

$$|K| = \frac{\overline{v_0}}{v_i} = \frac{1}{R_1} \sqrt{R_2^2 + \frac{1}{\omega^2 C^2}} = \frac{1}{R_1} \sqrt{\frac{\omega^2 R_2^2 C^2 + 1}{\omega^2 C^2}}$$

Xét tần số đặc biệt:
$$\omega_{O} = \frac{1}{R_{2} C}$$
 \Rightarrow $R_{2} = \frac{1}{\omega_{O} C}$

Khi có
$$\omega \ll \omega_o$$
 (f \ll f_o) thì $|K| \cong \frac{1}{R_+} \times \frac{1}{\omega C}$, đặc tuyến biên

độ tần số của mạch có độ dốc -6dB/octave. Khoảng tần số này mạch có tác dụng như mạch tích phân (ký hiệu là vùng I do chữ Integrated = tích phân).

Hình 6.4: Giản đồ Bode của mạch PI

Khi có $\omega >> \omega_{_{\rm O}}$ (f >> f_{_{_{\rm O}}) thì $\left|K\right| \cong \frac{R_{_{\rm 2}}}{R_{_{\rm 1}}}$ (hằng số), đặc tuyến}

biên độ tần số của mạch có tính chất như mạch khuếch đại (ký hiệu là vùng P do chữ Proportional = tỉ lệ).

Khoảng tần số ở giữa là vùng chuyển tiếp.

Giản đồ Bode trên hình 6.4 cho thấy hai vùng I và P.

§6.2- MACH VI PHÂN

1) Mạch vi phân cơ bản (hình 6.5a)

Mạch vi phân có tín hiệu vào ngõ đảo I_n qua tụ C, mạch hồi tiếp từ ngõ ra về ngõ I_n là điện trở R (cách lấp RC ngược lại với mạch tích phân). Điện trở R_1 nối ngõ I_n^+ xuống mass để ổn định nhiệt cho OP-AMP.

Do tính chất của OP-AMP, dòng điện vào $I_I = 0$ nên $I_1 = I_{F.}$

Hình 6.5a: Mạch vi phân

Dòng điện I₁ là dòng nạp qua tụ C được tính theo công thức:

$$I_1 = C \frac{dV_1}{dt}$$

Do ngỗ In xem như điểm mass nên dòng điện hồi tiếp là:

$$I_{t} = -\frac{V_{O}}{R}$$
Suy ra:
$$C\frac{dV_{t}}{dt} = -\frac{V_{O}}{R}$$

$$\Rightarrow V_{O} = -RC\frac{dV_{t}}{dt}$$

RC chính là hằng số thời gian nạp xả của tụ C qua R. Đấu trừ trong công thức là do mạch đảo dấu.

Giả sử ngỗ vào có: $v_i = V_{lmax}.sin\omega t$

Ngõ ra có: $v_o = -RC\omega V_{lmax}.cos\omega t = -V_{Omax}.cos \omega t$

 $v\acute{\sigma}i$: $v_{omax} = RC\omega v_{imax}$

Do đó, độ khuếch đại của mạch vi phân là:

$$|K| = R C \omega$$

Độ khuếch đại K tăng theo ω nên đặc tuyến biên độ/tần số của mạch có độ dốc 6dB/Octave. Vì độ khuếch đại của mạch tỉ lệ với tần số nên nhiễu tần số cao ở ngõ ra của mạch này rất lớn.

Do ngõ vào có tụ C_1 nên tổng trở vào $Z_i = \frac{1}{j\omega C}$ sẽ giảm xuống khi tần số tăng. Điều này làm biên độ tín hiệu vào bị giảm nhỏ.

Do các nhược điểm trên, mạch vi phân được cải tiến theo sơ đồ 6.5b.

Để giảm nhiễu tần số cao, điện trở R_1 được mắc nối tiếp thêm ở ngõ vào. Như vậy, mạch chỉ có tác dụng vi phân khi làm việc ở tần số thấp với $\omega << \omega_0 = \frac{1}{R_1 \ C_1}$. Tụ C_2 ghép song song điện trở hồi tiếp R_2 được chọn sao cho ở tần số ω , C_2 xem như hở mạch.

Hình 6.5b: Mạch vi phân cải tiến

Tụ C_2 song song mạch hồi tiếp nên ở tần số cao có dung kháng rất nhỏ nên sẽ tăng tác dụng hồi tiếp âm đối với tần số cao để giảm nhiễu.

Nếu chọn trị số linh kiện sao cho: $R_1C_1=R_2C_2$ thì khi làm việc ở tần số cao $\omega>\omega_0$, hệ số khuếch đại giảm theo tần số, đặc tuyến tần số trong khoảng tần số này có độ dốc -6 dB/octave.

Hình 6.6: Giản đồ Bode của mạch vi phân cải tiến

Giản đồ Bode của mạch vi phân cải tiến có dạng như hình 6.6, trong đó, khoảng tần số $\omega < \omega_0$ (f < f₀) có độ dốc +6 dB/octave gọi là vùng D (do chữ Differential = vi phân) là vùng vi phân, khoảng tần số $\omega > \omega_0$ (f > f₀) có độ dốc – 6dB/octave gọi là vùng I (do chữ Integrated = tích phân).

Điện áp ra v_0 được tính bởi biểu thức: $v_0 = -R_2C_1 \frac{d v_1}{dt}$

§6.3- MACH VI TÍCH PHÂN TỈ LỆ PID

Mạch vi tích phân tỉ lệ PID (Proportional Integrated Differential) được dùng rộng rải trong lĩnh vực điều khiển để mở rộng phạm vi tần số điều khiển, tăng tính ổn định của hệ thống điều khiển trong một dải tần rộng.

1) Mạch PID cơ bản

Xét điểm I ở ngõ vào đảo, ta có phương trình dòng điện nút:

$$\frac{v_1}{R_1} + C_1 \frac{dv_1}{dt} + i_2 = 0 \tag{1}$$

Hình 6.7: Mạch PID cơ bản

Xét ở ngõ ra, ta có phương trình điện áp là:

$$v_0 = R_2 i_2 + \frac{1}{C_2} \int i_2 dt$$
 (2)

Từ phương trình (1) suy ra:

$$i_2 = -\left(\frac{v_{t}}{R_1} + C_1 \frac{dv_{t}}{dt}\right) \tag{3}$$

Thay (3) vào phương trình (2) ta có:

$$\mathbf{v}_{0} = -\left(\frac{\mathbf{v}_{1}}{\mathbf{R}_{1}} + C_{1} \frac{d\mathbf{v}_{1}}{dt}\right) R_{2} - \frac{1}{C_{2}} \int \left(\frac{\mathbf{v}_{1}}{\mathbf{R}_{1}} + C_{1} \frac{d\mathbf{v}_{1}}{dt}\right) dt$$

$$-\mathbf{v}_{0} = \left(\frac{\mathbf{v}_{1}}{\mathbf{R}_{1}} + C_{1} \frac{d\mathbf{v}_{1}}{dt}\right) R_{2} + \frac{1}{R_{1}C_{2}} \int \mathbf{v}_{1} dt + \frac{C_{1}}{C_{2}} \mathbf{v}_{1}$$

$$-\mathbf{v}_{0} = \left(\frac{R_{2}}{R_{1}} + \frac{C_{1}}{C_{2}}\right) \mathbf{v}_{1} + \frac{1}{R_{1}C_{2}} \int \mathbf{v}_{1} dt + R_{2}C_{1} \frac{d\mathbf{v}_{1}}{dt}$$

$$(4)$$

Xét ở hai tần số đặc biệt: $\omega_1 = \frac{1}{R_1 C_1}$ và $\omega_2 = \frac{1}{R_2 C_2}$

với điều kiện: $\omega_1 > \omega_2$

Khi có tần số thấp $\omega \ll \omega_2 = \frac{1}{R_2 C_2}$ thì thành phần tích phân $\left(\frac{1}{R_1 C_2} \int v_1 dt\right)$ có tác dụng lớn hơn (mạch tích phân là loại lọc hạ thông), nên đặc tuyến biên độ tần số có độ dốc giảm (gọi là vùng I).

Khi có tần số cao $\omega >> \omega_1 = \frac{1}{R_1 C_1}$ thì thành phần vi phân $\left(R_2 C_1 \frac{d v_1}{dt}\right)$ có tác dụng lớn hơn (mạch vi phân là loại lọc thượng thông), nên đặc tuyến biên độ tần số có độ dốc tăng (gọi là vùng D).

Trong khoảng tần số sao cho $\omega_2 < \omega < \omega_1$ thì thành phần tỉ lệ với điện áp ra có tác dụng lớn hơn (gọi là vùng P do chữ Proportional).

Mach PID có nhược điểm:

- khoảng tần số cao, mạch vị phân gây nhiễu biên độ lớn

- khoảng tần số thấp, mạch tích phân có độ khuếch đại lớn có thể gây dao động tự kích.

Để tránh nhược điểm trên, người ta giới hạn độ khuếch đại khoảng tần số cao và khoảng tần số thấp trong một mức nhất định.

Hình 6.8: Đáp ứng biên độ - tần số của mạch PID

Giản đồ Bode hình 6.8 cho thấy đáp ứng biên độ tần số của mạch PID cơ bản.

2. Mạch PID cải tiến

Hình 6.9: Mạch PID cải tiến

Sơ đồ hình 6.9 là mạch PID cải tiến được lấp thêm R_3 và R_4 . Điện trở R_3 ghép nối tiếp với tụ C_1 có tác dụng làm giảm độ khuếch đại ở khoảng tần số cao của mạch vi phân.

Điện trở R_4 ghép song song mạch hồi tiếp $R_2\text{-}C_2$ có tác dụng làm giảm độ khuếch đại ở khoảng tần số thấp của mạch tích phân.

Thường chọn: $R_3 \ll R_1$ và $R_4 \gg R_2$

Điện áp ra vẫn được tính theo phương trình (4) nhưng chỉ có tác dụng trong dải tần số hẹp hơn là:

$$f_0 < f < f_3$$
 trong đó:
$$f_0 = \frac{1}{2\pi R_4 C_2} \quad \text{và} \quad f_3 = \frac{1}{2\pi R_3 C_1}$$

Đáp ứng biên độ/tần số của mạch PID được minh họa trong giản đồ Bode hình 6.10.

Hình 6.10: Đáp ứng tần số mạch PID cải tiến

CHƯƠNG 7

MẠCH LỌC

§7.1- ĐẠI CƯƠNG

Mạch lọc là một bộ phận rất qưan trọng trong kỹ thuật mạch điện tử. Mạch lọc có tác dụng cho một dải tần số đi qua và chặn dải tần số còn lại, do đó, mạch lọc được dùng để chọn lọc tần số hay loại bỏ tần số của các tín hiệu điện.

Trong kỹ thuật mạch điện tử người ta phân loại mạch lọc như sau:

1) Phân loại theo linh kiện

a) Mạch lọc thụ động:

Là những mạch lọc chỉ gồm các linh kiện thụ động như điện trở R, tụ điện C và cuộn dây L.

Có các loại mạch lọc thụ động như:

- Mach loc RC, RL, RLC
- Mach loc hình π, hình T

b) Mạch lọc tích cực:

Là những mạch lọc kết hợp các linh kiện thụ động R-L-C với các linh kiên tích cực như transistor, OP-AMP...

Mạch lọc thụ động có nhược điểm là làm suy giảm năng lượng qua nó, không có tính khuếch đại và khó phối hợp tổng trở với các mạch khác.

Mạch lọc tích cực dùng transistor, OP-AMP... để có thể khuếch đại, phối hợp tổng trở, điều chỉnh độ suy giảm... nhằm cải thiện nhược điểm của mạch lọc thụ động.

2) Phân loại theo tác dụng

Tùy theo tác dụng chọn lọc hay loại bỏ tần số của mạch lọc, người ta chia ra các loại mạch lọc như sau:

- Mạch lọc hạ thông (cho tần số thấp qua, bỏ tần số cao)
- Mạch lọc thượng thông (cho tần số cao qua, bỏ tần số thấp)
- Mạch lọc dải thông
- Mach loc dải triệt
- Mạch vi phân, mạch tích phân

§7.2- ĐÁP ỨNG TẦN SỐ (Frequency reponse)

Mạch lọc cũng là một loại mạch tứ cực có hai cực ở ngỗ vào và hai cực ở ngỗ ra như hình 7.1. Điện áp ở ngỗ vào là V_i , điện áp ở ngỗ ra là V_o .

Để khảo sát đặc tính của mạch lọc theo tần số, người ta dùng tín hiệu hình sin (là tín hiệu tiêu biểu cho loại tín hiệu tuyến tính) đặt ở ngõ vào, rồi đo điện áp ở ngõ ra.

Hình 7.1: Mạch lọc dạng tứ cực

Đáp ứng tần số của mạch lọc được định nghĩa là tỉ số giữa điện áp tín hiệu ra V_0 trên điện áp tín hiệu vào V_1 , theo biểu thức:

$$\overline{A} = \frac{\overline{V_o}}{\overline{V_I}}$$
 $(\overline{V_o}, \overline{V_I} \text{ là giá trị hiệu dụng})$

A còn được gọi là hàm truyền của mạch lọc.

Hình 7.2: Đáp ứng tần số của mạch lọc

Do mạch lọc thụ động có đầy đủ các tính năng cơ bản của bộ lọc, mạch lọc tích cực chỉ dùng để cải thiện nhược điểm của mạch lọc, do đó, khi phân tích tính năng của các bộ lọc thường người ta phải khảo sát trước trên các mạch lọc thụ động RC, RL hay RLC.

§7.3- MẠCH LỌC THỤ ĐỘNG DÙNG RC

1) Mạch lọc hạ thông (hình 7.3)

a) Sơ đồ - Đáp ứng tần số:

Do tụ C có dung kháng là: $-jX_C$ với $X_C = 1/\omega C$ nên trong mạch RC vừa có số thực (real) vừa có số ảo (imaginary) được gọi là số phức (complex).

Từ cầu phân áp R và $-jX_C$, tính điện áp ra V_0 theo công thức:

$$\overline{V_o} = \frac{\overline{V_o}.(-j\frac{1}{\omega C})}{R - j\frac{1}{\omega C}}$$

Suy ra đáp ứng tần số của mạch lọc hạ thông là:

$$\overline{A} = \frac{\overline{V_o}}{\overline{V_i}} = \frac{-j\frac{1}{\omega C}}{R - j\frac{1}{\omega C}} = \frac{-j\frac{1}{\omega C}j\omega C}{(R - j\frac{1}{\omega C})j\omega C}$$

Ta đã biết: $j.j = j^2 = -1$ nên suy ra:

$$\overline{A} = \frac{1}{1 + j\omega CR}$$

Mẫu số $1 + j\omega CR$ là số phức được phân tích như hình 7.4 trong đó trục hoành số thực là 1, trục tung số ảo là ωCR , cạnh huyền tam giác vuông là biên độ của số phức, φ là góc pha. Do đó, đáp ứng tần số còn được phân ra đáp ứng biên độ và đáp ứng pha theo tần số.

b) Đáp ứng biên độ:

Theo hình 7.4, biên độ của số phức là cạnh huyền nên ta có:

$$\left|1 + j\omega CR\right| = \sqrt{1 + (\omega CR)^2}$$

Đáp ứng biên độ của mạch lọc hạ thông là:

$$A = |\overline{A}| = \left| \frac{1}{1 + j\omega RC} \right| = \frac{1}{\sqrt{1 + (\omega RC)^2}} \qquad (\omega = 2\pi f)$$

Nhận xét: - ở tần số thấp: $f \rightarrow 0$ nên $\omega \rightarrow 0$

$$A = \frac{1}{\sqrt{1+0}} = 1$$
 \Rightarrow $\overline{V}_o = \overline{V}_i$

- ở tần số cao:
$$f \rightarrow \infty$$
 nên $\omega \rightarrow \infty$

$$A = \frac{1}{\sqrt{1+\infty}} = 0 \implies \overline{V_a} \to 0$$

- ở tần số đặc biệt f_C (hay ω_C) sao cho:

$$R = \frac{1}{\omega_{c}C} = \frac{1}{2\pi f_{c}C}$$

$$\Rightarrow \qquad \omega_{c} = \frac{1}{RC} \Rightarrow f_{c} = \frac{1}{2\pi RC}$$

Thay $\omega_{c} = \frac{1}{RC}$ vào đáp ứng biên độ A ta có:

$$A = \frac{1}{\sqrt{1 + \left(\frac{1}{RC}RC\right)^2}} = \frac{1}{\sqrt{2}} = 0,707$$

Tần số này được gọi là tần số cất f_C (hay ω_C). Ở tần số này biên độ tín hiệu ngõ ra bị giảm đi $\frac{1}{\sqrt{2}}$ lần so với biên độ tín hiệu vào (hình 7.4).

Hình 7.4: Đáp ứng biên độ

Hình 7.5: Đáp ứng pha

c) Đáp ứng pha: (hình 7.5)

Pha φ của $\overline{A} = \frac{1}{1+j\omega RC}$ chính là pha của 1 trừ đi pha của 1+ j ω RC.

Ta có:
$$φ = 0$$
 - arctgωRC = -arctgωRC

$$\vec{O}$$
 tần số thấp $f \rightarrow 0$ nên $\omega \rightarrow 0$

$$\Rightarrow \qquad \varphi = -\arctan g0 = 0^{\circ}$$

 $\mathring{\mathbf{O}}$ tần số cao f $\rightarrow \infty$ nên $\omega \rightarrow \infty$

$$\Rightarrow \qquad \phi = -\arctan \propto = -90^{\circ}$$

 \vec{O} tần số cất $f = f_C$, $\omega = \omega_C$ thì

$$\Rightarrow$$
 $\varphi = -arctg1 = -45^{\circ}$

Như vậy, tín hiệu ra bị chậm pha so với tín hiệu vào. Ở tần số thấp mức chậm pha nhỏ, ở tần số cao mức chậm pha lớn hơn và ở tần số cắt mức chậm pha là 45°. Sự chậm pha này ở nhiều trường hợp sẽ làm cho tín hiệu ra bị méo dạng so với tín hiệu vào.

d) Đáp ứng biên độ tính bằng deciBel:

Tương tự như độ khuếch đại điện áp của OP-AMP thường được tính bằng đơn vị deciBel (dB), đáp ứng biện độ A của mạch lọc cũng thường được tính bằng đơn vị dB theo công thức:

$$A_{dB} = 20 \lg A = 20 \lg \frac{1}{\sqrt{1 + (\omega RC)^2}}$$

Suy ra: $A_{dB} = 20 \lg 1 - 20 \lg \sqrt{1 + (\omega RC)^2}$

$$A_{dB} = 0 - 20\lg\sqrt{1 + (\omega RC)^2}$$

Khi
$$f \rightarrow 0$$
, $\omega \rightarrow 0 \implies A_{dR} = -20 \lg 1 = 0$

Khi
$$f \to \infty$$
, $\omega \to \infty$ \Rightarrow $A_{dB} = -20 \lg \infty = -\infty$

Khi ở tần số cắt:
$$\omega = \omega_c = \frac{1}{RC} \Rightarrow f = f_c = \frac{1}{2\pi RC}$$

$$A_{dB} = -20 \lg \sqrt{2} = -20 \frac{1}{2} \lg \sqrt{2} = -3 dB$$
 (lg2 = 0,3)

<u>Hình 7.6</u>: Đáp ứng biên độ tính bằng dexiben

<u>Hình 7.7</u>: Đáp ứng biên độ theo giản đồ Bode

Trị số trên trục hoành là tỉ số của tần số f so với tần số cắt f_C và được ghi theo giai logarit cơ số 10.

Khi f= f_c thì
$$\frac{f}{f_c} = 1 \Rightarrow A_{dB} = -3 \text{ dB}$$

Khi f= 2f_c thì $\frac{f}{f_c} = 2 \Rightarrow A_{dB} = -6 \text{ dB}$
Khi f= 10f_c thì $\frac{f}{f_c} = 1 \Rightarrow A_{dB} = -20 \text{ dB}$
Khi f= 100f_c thì $\frac{f}{f_c} = 1 \Rightarrow A_{dB} = -40 \text{ dB}$

Nhận xét:

- Khi tần số f tăng lên gấp đôi thì A giảm xuống 6dB gọi là -6dB/octave (octave = quãng 8 trong âm giai).
- Khi tần số f tăng lên gấp mười lần thì A giảm xuống 20dB gọi là -20dB/decade (decade = quãng 10).

Để đơn giản trong tính toán, người ta dùng hai đường tiệm cận để biểu diễn đáp ứng biên độ A (dB) gọi là giản đồ Bode (hình 2.7).

2) Mạch lọc thượng thông

a) Sơ đồ, đáp ứng tần số: (hình 7.8)

Từ cầu phân áp $-jX_C$ và R như hình 7.8, ta tính được điện áp ra V_O theo công thức:

$$\overline{V_O} = \frac{\overline{V_I}R}{R - j\frac{1}{\omega C}} = \frac{\overline{V_I}}{1 - j\frac{1}{\omega RC}}$$

Suy ra đáp ứng tần số của mạch lọc thượng thông là:

$$\overline{A} = \frac{\overline{V_o}}{\overline{V_t}} = \frac{1}{1 - j \frac{1}{\omega RC}}$$

b) Đáp ứng biên độ:

Ta có:
$$A = |\overline{A}| = \frac{1}{\left|1 - j \frac{1}{\omega RC}\right|} = \frac{1}{\sqrt{1 + \left(\frac{1}{\omega RC}\right)^2}}$$

Nhận xét: - ở tần số thấp: $f \to 0$, $\omega \to 0$

$$A = \frac{1}{\sqrt{1 + \left(\frac{1}{0}\right)^2}} = \frac{1}{\infty} \to 0 \qquad \text{nên} \qquad \overline{V_{ij}} \to 0$$

- ở tần số cao: $f \rightarrow \infty$, $\omega \rightarrow \infty$

$$A = \frac{1}{\sqrt{1 + \left(\frac{1}{\infty}\right)^2}} = \frac{1}{1} = 1 \qquad \text{nên} \qquad \overline{V_O} = \overline{V_I}$$

- ở tần số cắt:
$$f = f_c = \frac{1}{2\pi RC}$$
 hay $\omega = \omega_c = \frac{1}{RC}$

$$\Rightarrow A = \frac{1}{\sqrt{1 + \left(\frac{1}{RC}RC\right)^2}} = \frac{1}{\sqrt{2}} = 0,707$$

Ở tần số cắt biên độ tín hiệu ra bị giảm đi 0,707 lần so với biên độ tín hiệu vào (hình 7.10).

Hình 7.10: Đáp ứng biên độ

Hình 7.11: Đáp ứng pha

c) Đáp ứng pha: (hình 7.11)

Pha của
$$\overline{A} = \frac{1}{1 - j \frac{1}{\omega RC}}$$
 là pha của 1 trừ đi pha của $1 - j \frac{1}{\omega RC}$

Ta có:
$$\varphi = 0 - arctg\left(-\frac{1}{\omega RC}\right) = arctg\frac{1}{\omega RC}$$

 $\mathring{\mathbf{C}}$ tần số thấp $\mathbf{f} \to \mathbf{0}$ nên $\omega \to \mathbf{0}$

$$\varphi = arctg \frac{1}{0} = arctg \infty = 90^{\circ}$$

 $\mathring{\mathbf{O}}$ tần số cao f $\rightarrow \infty$ nên $\omega \rightarrow \infty$

$$\varphi = arctg\left(\frac{1}{\omega}\right) = arctg0 = 0^0$$

 \vec{O} tần số cắt $f = f_C$, $\omega = \omega_C$ thì

$$\varphi = arctg1 = 45^{\circ}$$

Như vậy, tín hiệu ra bị sớm pha so với tín hiệu vào. Ở tần số cao mức sớm pha nhỏ, ở tần số thấp mức sớm pha lớn hơn và ở tần số cất thì mức sớm pha là 45°. Sự sớm pha này ở nhiều trường hợp sẽ làm cho tín hiệu ra bị méo dạng so với tín hiệu vào.

Tương tự, ta cũng có thể tính đấp ứng biên độ theo dB, vẽ giản đồ Bode và có nhận xét:

- khi tần số f bằng tần số cắt $f = f_c = \frac{1}{2\pi RC}$ thì biên độ tín hiệu ra bị giảm 3dB (-3dB/octave).
 - khi tần số f giảm còn 1/2 thì A giảm 6dB (-6dB/octave).
 - •khi tần số f giảm còn 1/10 thì A giảm 20dB (-20dB/decade).

3) Mạch lọc dải thông

Mạch lọc dải thông chính là mạch lọc hạ thông ghép nối tiếp với mạch lọc thượng thông như hình 7.12.

Đáp ứng tần số của mạch lọc dải thông chính là tích số của hai đáp ứng tần số mạch hạ thông và thượng thông.

Hình 7.12: Mạch lọc dải thông

Hình 7.13a: $f_{C1} < f_{C2}$

<u>Hình 7.13b</u>: $f_{C1} = f_{C2}$

Hình 7.13c: fc1> fc2

Đáp ứng tần số của mạch lọc dải thông là:

$$\overline{A} = \frac{\overline{V_o}}{\overline{V_i}} = \frac{\overline{V_{o1}}}{\overline{V_{o1}}}, \frac{\overline{V_{o2}}}{\overline{V_{o2}}}$$

Như vậy, đáp ứng biên độ chính là tích số của hai đáp ứng biên độ.

$$A = A_1.A_2$$

Gọi tần số cắt của A_1 là f_{C1} và A_2 là f_{C2} , ta có ba trường hợp như hình 7.13.

Đường rời nét chính là đáp ứng tần số của mạch lọc dải thông.

Trường hợp $f_{C1} < f_{C2}$ thì đáp ứng biên độ A rất thấp, nếu $f_{C1} > f_{C2}$ thì đáp ứng biên độ A lớn hơn và băng thông rộng.

Một cách khác để có mạch lọc đải thông được thực hiện như mạch điện hình 7.14, trong đó, ở ngõ vào có R-C nối tiếp, ở ngõ ra có R-C ghép song song.

Với luận lý tương tự, ở ngỗ vào có $Z_1 = R - jX_C$, ở ngỗ ra có:

$$Z_2 = \frac{R(-jX_L)}{R - jX_L}$$

Tính trên cầu phân áp Z₁ và Z₂ ta sẽ có:

$$\overline{A} = \frac{\overline{V_o}}{\overline{V_i}} = \frac{j\omega RC}{(j\omega RC + 1)^2 + j\omega RC}$$

Khi
$$\omega = \omega_c = \frac{1}{RC} \Rightarrow f = f_c = \frac{1}{2\pi RC}$$
 thì $\overline{A} = \frac{1}{3}$

 \mathring{O} tần số $f = f_c = \frac{1}{2\pi RC}$ thì biên độ ngõ ra giảm còn $\frac{1}{3}$ so với biên độ ngõ vào.

<u>Hình 7.14</u>: Mạch lọc dải thống dạng khác

Hình 7.15: Đáp ứng biên độ

4) Mạch lọc dải triệt

Mạch lọc dải triệt chính là mạch lọc hạ thông ghép song song với mạch lọc thượng thông như hình 7.16.

Trong mạch lọc dải triệt, R_1 - C_1 là mạch lọc hạ thông sẽ cho tín hiệu tần số thấp qua, R_2 - C_2 là mạch lọc thượng thông sẽ cho tín hiệu tần số cao qua. Tần số cắt của hai mạch lọc là f_{C_1} và f_{C_2} . Như

vậy, khoảng tần số giữa f_{C1} và f_{C2} sẽ không qua được cả hai mạch lọc nên bị loại bỏ. Đường rời nét chính là đáp ứng tần số của mạch loc dải triết.

A hạ thông dải thương thông dải f_{C1} f_0 f_{C2} f

Hình 7.16: Mạch lọc dải triệt

<u>Hình 7.17</u>: Đáp ứng tần số mạch loc dải triệt

Do hai mạch lọc rấp song song nên ta có $Z_1 = R_1 // C_2$, $Z_2 = R_2 // C_1$ là hai tổng trở của cầu phân ấp.

Suy ra:
$$\overline{A} = \frac{\overline{V_o}}{\overline{V_I}} = \frac{\overline{Z_2}}{\overline{Z_1} + \overline{Z_2}}$$

Các bước phân tích tương tự như trên nhưng việc tính toán xác định dải triệt tương đối phức tạp hơn.

Một cách khác để có mạch lọc dải triệt là mạch lọc cầu T đôi như hình 7.18.

Hình 7.18a: Bốn mạch lọc ghép thành hai nhánh

Hình 7.18b: Lọc cầu T đôi

Nhánh thứ nhất gồm hai mạch lọc hạ thông ghép nối tiếp ngược đầu nên có tụ tương đương là 2C. Nhánh thứ hai gồm mạch lọc thượng thông ghép nối tiếp ngược đầu nên có điện trở tương đương là R/2. Hai nhánh lọc hạ thông và thượng thông có dạng hình chữ T lại được ghép song song nhau nên được gọi là mạch lọc cầu T đôi.

Để phân tích đáp ứng tần số của mạch dải triệt cầu T đôi, ta có thể tính điện áp V_1 và V_2 , sau đó khử V_1 , V_2 để có V_0 so với V_1 .

Tần số cộng hưởng của mạch là:
$$f_0 = \frac{1}{2\pi RC}$$

Mạch lọc dải triệt đơn hình 7.16 có đáp ứng tần số như hình 7.19. Ở tần số $f = 0.1.f_0$ hay $f = 10f_0$, đáp ứng biên độ A = 0.9. Do có độ dốc lớn nên mạch lọc cầu T đôi có dải tần triệt hẹp hơn mạch lọc dải triệt đơn.

<u>Hình 7.19</u>: Đáp ứng biên độ mạch loc dải triệt đơn

Hình 7.20: Đáp ứng biên độ mạch lọc dải triệt cầu T đôi

5) Hai mạch lọc RC ghép nổi tiếp

- Trong mạch lọc hạ thông dùng RC, nếu tần số tăng lên 10 lần thì biên độ giảm 20dB (-20dB/decade). Nếu ta mắc hai mạch lọc hạ thông ghép nối tiếp, khi tần số tăng lên 10 lần thì biên độ giảm 40dB (-40 dB/decade).
- Tương tự, trong mạch lọc thượng thông dùng RC, nếu tần số giảm xuống còn 1/10 thì biên độ giảm 20dB. Nếu ta mắc hai mạch lọc thượng thông ghép nối tiếp, khi tần số giảm xuống còn 1/10 thì biên độ giảm xuống 40dB.

Như vậy, khi số tầng mắc nối tiếp càng nhiều thì đáp ứng biên độ sẽ giảm nhanh. Tuy nhiên, cách mắc này không thực tế.

§7.4- MẠCH LỌC THỤ ĐỘNG DÙNG LC

Ngoài mạch lọc thụ động dùng RC, người ta còn dùng mạch lọc thụ động LC. Tuy nhiên ở tần số thấp thì cuộn dây L có kích thước lớn nên ít được sử dụng, mạch lọc LC thích hợp ở tần số cao.

1) Mạch lọc hạ thông dùng LC

a) Sơ đồ - Đáp ứng tần số:

Từ cầu phân áp jX_L và $-jX_C$ như hình 7.21, ta tính được điện áp ra V_O theo công thức:

$$\overline{V_n} = \frac{-jX_{C}.\overline{V_i}}{jX_L - jX_C}$$

Hình 7.21: Lọc hạ thông dùng LC

Hình 7.22: Đáp ứng tần số

Đáp ứng tần số là:
$$\overline{A} = \frac{\overline{V_o}}{\overline{V_i}} = \frac{-jX_C}{jX_L - jX_C}$$

Thay $X_C = \frac{1}{\omega C}$ và $X_L = \omega L$ và đơn giản:

$$\overline{A} = \frac{-j\frac{1}{\omega C}}{j\omega L - j\frac{1}{\omega C}} = \frac{1}{1 - \omega^2 LC}$$

Trong trường hợp này \overline{A} chỉ là số thực vì không có j.

b) Nhận xét:
$$\overline{V}_a = \overline{V}_i$$

- ở tần số thấp:
$$f \to 0$$
, $\omega \to 0 \Rightarrow A = 1$ và $\overline{V_a} = \overline{V_b}$

- ở tần số cao :
$$f \to \infty$$
, $\omega \to \infty \Rightarrow A = 0$ và $\overline{V_0} = 0$

- ở tần số sao cho mẫu số 1 -
$$\omega^2 LC = 0 \Rightarrow A \rightarrow \infty$$

Tần số này được gọi là tần số cộng hưởng của mạch LC và ký hiệu là ω_0 :

Ta có:
$$\omega_0 = \frac{1}{\sqrt{LC}} \text{ và } f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Đáp ứng tần số mạch hạ thông dùng LC hình 2.22 cho thấy ở khoảng tần số $f < f_0$ thì A = 1, $f = f_0$ thì $A \to \infty$, khi $f > f_0$ thì biên độ giảm nhanh vì A tỉ lệ với nghịch đảo bình phương của ω .

2) Mạch lọc thượng thông dùng LC

a) Sơ đồ - Đáp ứng tần số:

Hình 7.23: Lọc thượng thông dùng LC

Hình 7.24: Đáp ứng tần số

Từ cầu phân áp $-jX_C$ và jX_L hình 7.23, ta tính được điện áp ra V_O theo công thức:

$$\overline{V_o} = \frac{jX_L \overline{V_i}}{jX_L - jX_C} \implies \overline{A} = \frac{\overline{V_o}}{\overline{V_i}} = \frac{jX_L}{jX_L - jX_C}$$

Thay $X_L = \omega L$, $X_C = 1/\omega C$ vào \overline{A} và đơn giản, ta có:

$$\overline{A} = \frac{j\omega L}{j\omega L - j\frac{1}{\omega C}} = \frac{1}{1 - \frac{1}{\omega^2 LC}}$$

Trường hợp này \overline{A} cũng chỉ là số thực vì không có j.

b) Nhận xét:

- ở tần số thấp: $f \to 0$, $\omega \to 0 \Rightarrow A = 0$ và $\overline{V_o} = 0$
- ở tần số cao: $f \to \infty$, $\omega \to \infty \Rightarrow A = 1$ và $\overline{V_o} = \overline{V_1}$
- ở tần số sao cho mẫu số $1 \frac{1}{\omega^2 LC} = 0 \Rightarrow A = \infty$

Tần số này được gọi là tần số cộng hưỡng của mạch LC, ký hiệu ω_0 :

Ta có:
$$\omega_0 = \frac{1}{\sqrt{IC}}$$
 và $f_0 = \frac{1}{2\pi\sqrt{IC}}$

Đáp ứng tần số mạch lọc thượng thông dùng LC hình 7.24 cho thấy ở khoảng tần số $f > f_0$ thì A = 1, $f = f_0$ thì $A \to \infty$, khi $f < f_0$ thì biên độ giảm nhanh vì A tỉ lệ với bình phương của ω .

Với cách phân tích và lý luận tương tự, ta cũng có thể khảo sát đáp ứng tần số của các mạch lọc dải thông và dải triệt dùng LC.

§7.5- MẠCH TÍCH PHÂN VÀ VI PHÂN

Mạch lọc hạ thông dùng RC còn công dụng khác trong kỹ thuật điện tử là mạch tích phân. Tương tự mạch lọc hạ thông dùng RC cũng còn công dụng khác là mạch vi phân.

Khi nào thì gọi là mạch lọc hạ thông, mạch lọc thượng thông, khi nào thì gọi là mạch tích phân, vi phân?

Chúng ta có thể tạm phân biệt một cách đơn giản như sau:

- Mạch RC là mạch lọc hạ thông, thượng thông khi ngỗ vào tín hiệu có nhiều tần số và thường khảo sát với tín hiệu hình sin.
- Mạch RC là mạch tích phân, vi phân khi ngỗ vào tín hiệu chỉ có một tần số và thường khảo sát với tín hiệu xung vuông.

Mạch tích phân, vi phân dùng để biến đổi dạng sóng của tín hiệu, được sử dụng nhiều trong kỹ thuật xung để ứng dụng trong lĩnh vực tự động điều khiển.

1) Mạch tích phân

Theo định nghĩa, mạch tích phân là mạch mà điện áp ra $v_0(t)$ tỉ lệ với tích phân theo thời gian của điện áp vào $v_1(t)$.

Ta có:
$$v_0(t) = k \int v_i(t) dt$$
 (trong đó k là hệ số tỉ lệ)

Mạch tích phân như hình 7.25 chính là mạch lọc thấp qua dùng RC. Tần số cắt của mạch lọc là: $f_c = \frac{1}{2\pi RC}$

Do điện áp vào v, là hàm biến thiên theo thời gian nên điện áp trên R và C cũng là hàm biến thiên theo thời gian.

a) Mạch tích phân RC:

Hình 7.25: Mạch tích phân RC

Ta có:
$$v_i(t) = v_R(t) + v_C(t)$$

Xét mạch điện ở trường hợp nguồn điện áp vào v_i có tần số f_i rất cao so với tần số cất f_C . Lúc đó, dung kháng X_C sẽ có trị số rất nhỏ (do $X_C = \frac{1}{2\pi i C}$).

Nếu:
$$f >> f_C = \frac{1}{2\pi RC}$$
 thì $R >> X_C = \frac{1}{2\pi f_C}$

Suy ra: $v_R(t) >> v_C(t)$ (vì dòng i(t) qua R và C bằng nhau)

Đối với tụ C, điện áp trên tu được tính theo công thức:

$$v_{C}(t) = \frac{1}{C} \int i(t) dt$$

Điện áp trên tụ C cũng là điện áp ra nên:

$$v_o(t) = v_{C}(t) = \frac{1}{C} \int i(t)dt$$

trong đó: $i(t) = \frac{v_i(t)}{R}$ (vì R>> X_C nên bổ qua X_C)

Suy ra:
$$v_o(t) = \frac{1}{C} \int \frac{v_i(t)}{R} dt$$
$$v_o(t) = \frac{1}{RC} \int v_i(t) dt$$

Như vậy điện áp ra $v_o(t)$ là tích phân của điện áp vào $v_i(t)$ với hệ số tỉ lệ k là: $k = \frac{1}{RC}$ khi tần số f_i rất lớn so với f_C.

Điều kiện của mạch là:

$$f_i >> f_C \Rightarrow f_i >> \frac{1}{2\pi RC}$$

Nói cách khác là:
$$RC >> \frac{1}{2\pi f_i} \Rightarrow \tau >> \frac{1}{2\pi f_i} = \frac{T_i}{2\pi}$$

trong đó: $\tau = RC$ là hằng số thời gian, T_i là chụ kỳ.

Trường hợp điện áp vào vị là tín hiệu hình sin thì:

$$v_i(t) = V_m \sin \omega t$$

Diện áp ra:

$$v_0(t) = \frac{1}{RC} \int V_m \sin \omega t \, dt = -\frac{V_m}{\omega RC} \cos \omega t$$

$$v_0(t) = \frac{V_m}{\omega RC} \sin(\omega t - 90^0)$$

Như vậy, nếu thỏa mãn điều kiện của mạch tích phân thì điện áp ra bị trễ pha 90^{0} và biên độ bị giảm xuống với hệ số tỉ lệ là: $1/\omega RC$.

b) Điện áp vào là tín hiệu xung vuông:

Khi điện áp vào là tín hiệu xung vuông có chu kỳ T_i thì có thể xét tỷ lệ hằng số thời gian $\tau = RC$ so với T_i để giải thích các dạng sóng ra theo hiện tượng nạp xả của tụ.

Giả thiết điện áp ngõ vào là tín hiệu xung vuông đối xứng có chu kỳ T_i (hình 7.26a).

Nếu mạch tích phân có hằng số thời gian $\tau = RC$ rất nhỏ so với T_i thì tụ nạp và xả rất nhanh nên điện áp ngõ ra v_0 (t) có dạng giống như dạng điện áp vào v_i (t) (hình 7.26b).

Nếu mạch tích phân có hằng số thời gian $\tau = \frac{T_i}{5}$ thì tụ nạp và xả điện áp theo dạng hàm số mũ, biên độ đỉnh của điện áp ra thấp hơn V_n (hình 7.26c).

Nếu mạch tích phân có hằng số thời gian τ rất lớn so với T_i thì tụ C nạp rất chậm nên điện áp ra có biên độ rất thấp (hình 7.26d) nhưng đường tăng giảm điện áp gần như đường thẳng.

Như vậy, mạch tích phân nếu chọn trị số RC thích hợp thì có thể sửa dạng xung vuông ở ngõ vào thành dạng sóng tam giác ở ngõ ra. Nếu xung vuông đối xứng thì xung tam giác ra là tam giác cân.

Trường hợp tín hiệu ngõ vào là một chuỗi xung vuông không đối xứng với $t_{on} > t_{off}$. Trong thời gian t_{on} ngõ vào có điện áp cao nén tụ C nạp điện. Trong thời gian t_{off} ngõ vào có điện áp 0V tụ C xả

điện nhưng do thời gian $t_{\rm off}$ nhỏ hơn $t_{\rm on}$ nên tụ chưa xả điện hết thì lại nạp điện tiếp làm cho điện áp trên tụ tăng dần (hình 7.27).

V_o(t

a) Dạng sóng ngõ vào

b) Dạng sóng ngỗ ra khi τ << T_i

c) Dạng sóng ngỗ ra khi $\tau = \frac{T_i}{5}$

d) Dạng sóng ngỗ ra khi $\tau >> T_i$

<u>Hình 7.26</u>: Dạng sóng vào và ra của mạch tích phân nhận xung vuông.

<u>Hình 7.27</u>: Chuỗi xung vuông vào

c) Mạch tích phân RL:

Mạch lọc thấp qua dùng RL cũng có thể dùng làm mạch tích phân như hình 7.28.

Hình 7.28: Mạch tích phân dùng RL

Chứng minh tương tự như mạch tích phân dùng RC ta có điện áp ra v_{o} (t) tỉ lệ tích phân với điện áp vào v_{i} (t) theo thời gian.

Ta có:
$$v_o(t) = \frac{R}{L} \int v_i(t) dt$$
 (trong đó hệ số tỉ lệ $k = \frac{R}{L}$).

2) Mạch vi phân

Theo định nghĩa, mạch vi phân là mạch có điện áp ngỗ ra $v_o(t)$ tỉ lệ với đạo hàm theo thời gian của điện áp ngỗ vào $v_i(t)$.

Ta có:
$$v_o(t) = k \frac{d}{dt} v_o(t)$$
 (trong đó k là hệ số tỉ lệ)

Trong kỹ thuật xung, mạch vi phân có tác dụng thu hẹp độ rộng xung tạo ra các xung nhọn để kích các linh kiện điều khiển hay linh kiện công suất khác như thyristor, triac ...

a) Mạch vi phân dùng RC:

Mạch điện hình 7.29 chính là mạch lọc cao qua dùng RC. Tần số cắt của mạch lọc là: $f_c = \frac{1}{2\pi RC}$

Hình 7.29: Mạch vi phân RC

Dòng điện i(t) qua mạch cho ra sự phân áp như sau:

$$v_i(t) = v_c(t) + v_R(t)$$

Xét mạch điện ở trường hợp nguồn điện áp vào $v_i(t)$ có tần số f_i rất thấp so với tần số cắt f_C .

Lúc đó: $f_c << f_C = \frac{1}{2\pi RC}$ và ở tần số này thì dung kháng X_C sẽ có trị số rất lớn ($vi\ X_C = \frac{1}{2\pi f_c C}$).

Như vậy:
$$R << X_C = \frac{1}{2\pi f C}$$

Suy ra: $v_R(t) \ll v_c(t)$ (vì dòng i(t) qua R và C bằng nhau)

hay:
$$v_i(t) \approx v_c(t)$$

Đối với tụ C, điện áp trên tụ còn được tính theo công thức:

$$v_{C}(t) = \frac{q(t)}{C}$$
 (trong đó q(t) là điện tích nạp vào tụ)

Từ đó ta có:
$$\frac{dv_{i}(t)}{dt} = \frac{dv_{C}(t)}{dt} = \frac{1}{C} \frac{dq(t)}{dt} = \frac{1}{C} i(t)$$

hay là:
$$i(t) = C \frac{dv_{i}(t)}{dt}$$

Điện áp trên điện trở cũng là điện áp ra là:

$$v_{o}(t) = v_{R}(t) = Ri(t)$$

$$v_{o}(t) = RC \frac{dv_{i}(t)}{dt}$$

Điện áp ra chính là vi phân (đạo hàm) theo thời gian của điện áp vào với hệ số tỉ lệ k là k = RC khi tần số f_i rất thấp so với f_C .

Điều kiện của mạch vi phân là:

$$f_1 << f_C$$
 hay $f_i << \frac{1}{2\pi RC}$

Nói cách khác là:

$$RC \ll \frac{1}{2\pi f_i}$$
 hay $\tau \ll \frac{1}{2\pi f_i} = \frac{T_i}{2\pi}$

trong đó: $\tau = RC$ là hằng số thời gian, T_1 là chu kỳ.

Trường hợp điện áp vào v_i(t) là tín hiệu hình sin thì:

$$v_i(t) = V_m \sin \omega(t)$$

điện áp ra là:
$$v_0(t) = RC \frac{d}{dt} (V_m \sin \omega t)$$

$$= \omega RCV_m \cos \omega t$$

$$= \omega RCV_m \sin(\omega t + 90^0)$$

Như vậy, nếu thỏa điều kiện của mạch vi phân như trên thì điện áp ra sớm pha 90° và biên độ nhân với hệ số tỉ lệ là ω RC.

b) Điện áp vào là tín hiệu xung vuông:

Khi điện áp vào là tín hiệu xung vuông có chu kỳ T_i thì có thể xét tỉ lệ hằng số thời gian $\tau = RC$ so với T_i để giải thích các dạng sóng ra theo hiện tượng nạp xả của tụ.

<u>Hình 7.30</u>: Dạng sóng vào và ra của mạch vi phân nhận xung vuông.

Giả thiết điện áp ngõ vào là tín hiệu xung vuông đối xứng có chu kỳ T_i (hình 7.30a).

Nếu mạch vi phân có hằng số thời gian $\tau = \frac{T_i}{5}$ thì tụ nạp và xả điện tạo dòng i(t) qua điện trở R tạo ra điện áp giảm theo hàm số mũ. Khi điện áp ngõ vào bằng 0V thì đầu dương của tụ nối mass và tụ sẽ xả điện áp âm trên điện trở R. Ở ngõ ra sẽ có 2 xung ngược đầu nhau biên độ giảm dần (hình 7.30b).

Như vậy, nếu thỏa điều kiện của mạch vi phân, mạch RC sẽ đổi tín hiệu từ xung vuông đơn cực ra 2 xung nhọn lưỡng cực (hình 7.30c).

Nếu mạch vi phân có hằng số thời gian τ rất nhỏ so với T_i thì tụ sẽ nạp và xả điện rất nhanh cho ra 2 xung ngược dấu nhưng có độ rộng xung rất hẹp được gọi là xung nhọn.

c) Mạch vi phân dùng RL:

Mạch lọc cao qua dùng RL cũng có thể làm mạch vi phân như hình 7.31.

Chứng minh tương tự như mạch vi phân dùng RC ta có điện áp ra $v_o(t)$ tỉ lệ vi phân với điện áp vào $v_i(t)$ theo thời gian.

Ta có:
$$v_0(t) = \frac{L}{R} \frac{dv_i(t)}{dt}$$

Trong đó, hệ số tỉ lệ là: $k = \frac{L}{R}$

Hình 7.31: Mạch vi phân RL

§7.6- MACH LOC TÍCH CỰC

1) Dai cương

Mạch lọc thụ động có nhược điểm là tín hiệu bị tổn hao trên R nên đáp ứng biên độ thường thấp và bị lệ thuộc vào phụ tải.

Để tránh nhược điểm của mạch lọc thụ động người ta kết hợp mạch lọc với linh kiện tích cực và đặt mạch lọc RC nằm trên đường hồi tiếp để tăng hệ số truyền đạt, tăng hệ số phẩm chất. Để không bị lệ thuộc vào phụ tải người ta dùng mạch khuếch đại đệm để phối hợp trở kháng.

2) Mạch lọc hạ thông

a) Mạch lọc hạ thông khuếch đại không đảo:

Trong sơ đồ hình 7.32, OP-AMP được ráp kiểu khuếch đại không đảo nên có độ khuếch đại điện áp một chiều là:

$$A_{\nu} = \frac{R_1 + R_2}{R_2}$$

Mạch RC ở ngô vào I_n^+ là mạch lọc hạ thông thụ động nên vẫn có tần số cắt là: $\omega_c = \frac{1}{RC}$ và $f_c = \frac{1}{2\pi RC}$

Đáp ứng tần số mạch lọc là:
$$A_O = \frac{\overline{V_O}}{\overline{V_I}} = \frac{1}{1 + j\omega RC}$$

Đáp ứng tần số của toàn mạch là:

$$A = A_O A_V = \frac{1}{1 + j\omega RC} \frac{R_1 + R_2}{R_2}$$

b) Mạch lọc hạ thông khuếch đại đảo:

Trong sơ đồ hình 7.33, OP-AMP được ráp kiểu khuếch đại đảo nên có độ khuếch đại điện áp một chiều là:

$$A_{V} = -\frac{R_{2}}{R_{1}} \qquad (R_{2} \text{ hồi tiếp âm})$$

$$V_{1} \qquad V_{0}$$

Hình 7.33: Mạch lọc hạ thông khuếch đai đảo

Mạch hồi tiếp $R_2/\!/C$ từ ngõ ra về ngõ I_n có tác dụng của mạch lọc hạ thông, vì ở tần số cao X_C có trị số nhỏ nên mức hồi tiếp âm lớn sẽ làm giảm biên độ của tần số cao.

Tần số cắt của mạch lọc vẫn được tính theo công thức:

$$f_c = \frac{1}{2\pi R_1 C}$$
 và $\omega_c = \frac{1}{R_2 C}$

Đáp ứng tần số của mạch lọc là: $A_O = \frac{\overline{V_O}}{\overline{V_I}} = \frac{1}{1 + j\omega R_2 C}$

Đáp ứng tần số của toàn mạch là:

$$A = A_{O}A_{V} = -\frac{1}{1 + j\omega R_{2}C} \frac{R_{2}}{R_{1}}$$

3) Mạch lọc thượng thông

Hình 7.34: Mạch lọc thượng thông tích cực

Trong sơ đồ hình 7.34, OP-AMP được ráp kiểu khuếch đại đảo nên có độ khuếch đại điện áp một chiều là:

$$A_{V} = -\frac{R_2}{R_1}$$

Mạch lọc R_1 -C ở ngõ vào là mạch lọc thụ động RC nên vẫn có tần số cắt được tính theo công thức:

$$f_c = \frac{1}{2\pi R_1 C}$$
 và $\omega_c = \frac{1}{R_1 C}$

Đáp ứng tần số của mạch lọc là:

$$A_O = \frac{\overline{V_O}}{\overline{V_I}} = \frac{1}{1 + \frac{1}{j\omega R_I C}}$$

Đáp ứng tần số của toàn mạch là:

$$A = A_O A_V = -\frac{1}{1 + \frac{1}{j\omega R_1 C}} \frac{R_2}{R_1}$$

4) Mạch lọc dải thông

Mạch lọc dải thông tích cực có thể chọn một trong hai sơ đồ sau theo kiểu hai mạch lọc hạ thông và thượng thông mắc nối tiếp.

Tần số trung bình của mạch lọc dải thông vẫn được tính theo công thức: $f_a = \frac{1}{2\pi RC}$

Hình 7.35: Hai kiểu lọc đải thông

5) Mạch lọc dải triệt

Mạch lọc dải triệt áp dụng mạch lọc cầu T đôi kết hợp OP-AMP, có mạch hồi tiếp dương (hình 7.36).

Hình 7.36: Mạch lọc dải triệt tích cực

Tần số trung bình của mạch lọc dải triệt là: $f_o = \frac{1}{2\pi RC}$

Lý thuyết về mạch lọc còn rất nhiều và rất phức tạp. Trong khuôn khổ một chương của giáo trình "Mạch Tương Tự" không thể trình bày hết được. Ở đây chỉ giới thiệu những phần thật căn bản và thông dụng trên các mạch lọc bậc 1.

CHUONG 8

KHỐI CUNG CẤP NGUỒN

§8.1- MẠCH NẮN ĐIỆN

1. Mạch nắn điện bán kỳ

Điện áp ngõ vào V_i có giá trị hiệu dụng là V_{AC} . Do mạch nắn điện bán kỳ nên điện áp ngõ ra là những bán kỳ dương gián đoạn.

Điện áp một chiều trung bình ở ngỗ ra là:

$$\overline{V_O} = \frac{V_P}{\pi} = 0.318V_P \qquad (V_P: \text{ diện áp đỉnh})$$

$$\overline{V_O} = \frac{\sqrt{2}V_{AC}}{\pi} = 0.45V_{AC}$$

hay

Hình 8.1 là sơ đồ mạch và dạng sóng ở ngõ vào, ngõ ra của mạch nắn điện bán kỳ. Trong mạch này tải thuần trở và không có mạch lọc.

Diod D được chon sao cho có các thông số giới han là:

$$I_{max} \ge 4I_L$$

$$V_{R,max} \ge 2\sqrt{2}V_{max}$$

2. Mạch nắn điện toàn kỳ một pha

Hình 8.2: Nắn toàn kỳ

Khi điểm A có bán kỳ dương so với điểm B, diod D_1 dẫn điện qua tải R_L rồi trở về nguồn qua diod D_3 (dòng điện có đường liền nét). Khi điểm B có bán kỳ dương so với điểm A, diod D_2 dẫn điện qua tải R_L rồi trở về nguồn qua diod D_4 (dòng điện có đường rời nét). Như vậy, bốn diod sẽ chia ra hai cặp D_1 - D_3 và D_2 - D_4 luân phiên nhau dẫn điện, điện áp ngõ ra là những bán kỳ dương liên tục.

Điện áp trung bình một chiều ở ngō ra là:

$$\overline{V_O} = \frac{2V_P}{\pi} = 0.63V_P \qquad (V_P: \text{diện áp dỉnh})$$

$$\overline{V_O} = \frac{2\sqrt{2}V_{AC}}{\pi} = 0.9V_{AC} \qquad (V_{AC}: \text{diện áp hiệu dụng})$$

hay

Do các diod luân phiên dẫn điện cấp dòng qua tải nên các diod được chọn có các thông số giới hạn là:

$$I_{D \max} \ge 2I_{L}$$

$$V_{R \max} \ge 2\sqrt{2}V_{AC}$$

3. Mạch nắn điện tăng đôi điện áp

a) Mạch nắn điện tăng đôi điện áp kiểu Latour:

Trong sơ đồ hình 8.3 dùng hai diod và hai tụ để dẫn và nạp điện ở hai bán kỳ.

Khi điểm A có bán kỳ dương, D_1 dẫn và nạp vào tụ C_1 , dòng điện đi từ A qua D_1 tụ C_1 rồi về điểm B (đường liền nét).

Hình 8.3: Nắn tăng đôi kiểu Latour

Khi điểm A có bán kỳ âm, D_2 dẫn và nạp vào tụ C_2 , dòng $\dot{}$ điện đi từ B qua tụ C_2 , diod D_2 rồi trở về điểm A (đường rời nét).

Điện áp nạp cực đại trên tụ C_1 và tụ C_2 bằng điện áp đỉnh của dòng điện xoay chiều ở ngõ vào.

$$V_{C1 \text{ max}} = V_{C2 \text{ max}} = V_P = \sqrt{2}V_{AC}$$

Điện áp cấp cho tải là điện áp nối tiếp trên tu C_1 và tụ C_2 sẽ có trị số cực đại tăng gấp đôi so với điện áp xoay chiều ở ngō vào.

$$V_{O max} = V_{C1 max} + V_{C2 max} = 2V_P = 2\sqrt{2}V_{AC}$$

Điện áp trung bình trên tải có trị số nhỏ hơn $V_{O\ max}$ vì tụ C_1 và C_2 xả điện làm giảm áp, mức giảm áp tùy thuộc trị số dòng điện tải lớn hay nhỏ và tuỳ trị số điện dung C_1 - C_2 .

b) Mạch nắn điện tăng đôi điện áp kiểu Schenkel:

Trong sơ đồ hình 8.4 cũng dùng hai diod và hai tụ để dẫn và nạp điện ở hai bán kỳ, nhưng điểm B chính là điểm mass của nguồn điện một chiều sau mạch nắn điện.

Khi điểm A có bán kỳ âm (nói cách khác là điểm B có bán kỳ dương) thì diod D_1 dẫn và nạp vào tụ C_1 , dòng điện đi từ B qua D_1 , tụ C_1 rồi về điểm A (đường rời nét).

Hình 8.4: Nắn tăng đôi kiểu Schenkel

Khi điểm A có bán kỳ dương thì điện áp đã nạp trên tụ C_1 sẽ nối tiếp với điện áp bán kỳ dương của nguồn tạo thành điện áp tăng gấp đôi, điện áp này phân cực thuận D_2 làm dẫn nạp vào tụ C_2 , dòng điện đi qua D_2 , tụ C_2 rồi về điểm B (đường liền nét).

Như vậy, điện áp nạp cực đại trên tụ C_1 chỉ bằng điện áp đỉnh của dòng điện xoay chiều ở ngõ vào trong khi điện áp nạp cực đại trên tụ C_2 được tăng gấp đôi so với dòng điện xoay chiều ở ngõ vào. Điện áp trên tụ C_2 cũng chính là điện áp ra trên tải.

$$V_{C1 \text{ max}} = V_{P} = \sqrt{2}V_{AC}.$$

$$V_{O \text{ max}} = V_{C2 \text{ max}} = 2V_{P} = 2\sqrt{2}V_{AC}.$$

Tương tự như mạch trên, điện áp trung bình trên tải có trị số nhỏ hơn $V_{O\,max}$ vì tụ C_2 xả điện làm giảm áp. Mức giảm áp cũng tùy thuộc trị số dòng tải lớn hay nhỏ và trị số điện dung C_1 - C_2 .

Trong mạch này tụ C_2 phải có điện áp làm việc lớn gấp hai lần điện áp làm việc của tụ C_1 .

4. Mạch nắn điện tăng ba lần điện áp

Sơ đồ hình 8.5 là sự kết hợp của hai mạch nắn điện tăng đôi kiểu Latour và Schenkel. Nguồn xoay chiều cho vào hai điểm A và B, ở đây phải xét hai bán kỳ liên tiếp nhau như sau:

Khi điểm A có bán kỳ âm thì hai diod D_1 và D_3 đều được phân cực thuận, diod D_1 dẫn điện nạp vào tụ C_1 với điện áp đỉnh là V_P , đồng thời diod D_3 dẫn điện nạp vào tụ C_3 với điện áp đỉnh là V_P (hai dòng điện là hai đường rời nét).

Hình 8.5: Mạch nắn điện tăng ba

Khi điểm A có bán kỳ dương, điện áp trên tụ C_1 sẽ nối tiếp với bán kỳ dương của nguồn điện xoay chiều V_{AC} cho ra điện áp đỉnh là $2V_P$ và điện áp này phân cực thuận diod D_2 làm D_2 dẫn nạp vào tụ C_2 với điện áp đỉnh là $2V_P$ (dòng điện có đường liền nét).

Điện áp nạp được trên các tụ là:

$$V_{C1 \max} = V_P = \sqrt{2}V_{AC}$$

$$V_{C3 \text{ max}} = V_P = \sqrt{2}V_{u}$$

$$V_{C2 \text{ max}} = 2V_P = 2\sqrt{2}V_{AC}$$
 (tụ C_2 nạp tăng gấp đôi)

Điện áp cấp cho tải là điện áp của tụ C_2 và tụ C_3 nối tiếp nhau nên có điện áp cực đại tăng gấp ba lần so với dòng điện xoay chiều ở ngõ vào.

$$V_{0 \text{ max}} = V_{C2 \text{ max}} + V_{C3 \text{ max}}$$

= $2V_P + V_P = 3V_P = 3\sqrt{2}V_{AC}$

Trong mạch này tụ C_2 phải có điện áp làm việc lớn gấp hai lần điện áp làm việc của tụ C_1 và C_3 .

5. Mạch nắn điện tăng bốn lần điện áp

Mạch nắn điện tăng bốn lần điện áp có nguyên lý giải thích theo trình tự sau:

Hình 8.6: Mạch nắn điện tăng bốn lần điện áp

- a) Khi điểm A có bán kỳ âm lần thứ nhất, D_1 dẫn, nạp vào tụ C_1 (dòng điện là đường liền một nét), điện áp nạp tối đa trên tụ C_1 là V_P .
- b) Khi A có bán kỳ dương lần thứ nhất thì điện áp trên tụ C_1 sẽ nối tiếp với điện áp bán kỳ dương của nguồn AC làm điện áp tăng gấp đôi $(2V_P)$. Lúc này diod D_2 dẫn điện nạp vào tụ C_2 (dòng điện là đường rời có hai đoạn). Điệp áp nạp được tối đa trên tụ C_2 là $2V_P$.

- c) Khi A có bán kỳ âm lần thứ hai thì điện áp trên tụ C_2 là $2V_P$ sẽ nối tiếp với điện áp bán kỳ âm của nguồn AC là điện áp tăng gấp ba $(3V_P)$. Lúc này, diod D_1 cũng dẫn điện nạp vào tụ C_1 điện áp đỉnh là V_P đồng thời diod D_3 dẫn điện nạp vào tụ C_3 điện áp đỉnh là $2V_P$. Điện áp tối đa trên tụ C_1 và C_3 nối tiếp nhau là $3V_P$ (dòng điện là đường rời có ba đoạn).
- d) Khi điểm A có bán kỳ dương lần thứ hai thì điện áp $3V_P$ trên tụ C_1 và C_3 sẽ nối tiếp với điện áp bán kỳ âm nguồn AC là điện áp tăng gấp bốn $(4V_P)$. Lúc này, diod D_2 cũng dẫn điện nạp vào tụ C_4 điện áp đỉnh là $2V_P$ (dòng điện là đường rời có bốn đoạn). Điện áp ra trên tải chính là điện áp trên tụ C_2 và tụ C_4 nối tiếp nhau có trị số tối đa là $4V_P$.

Như vậy, trong bốn tụ điện, tụ C_1 chỉ nạp được điện áp tối đa là V_P , các tụ điện C_2 - C_3 - C_4 sẽ nạp được điện áp tối đa là $2V_P$. Điều này cần lưu ý khi chọn điện áp làm việc của tụ.

§8.2- MẠCH LỌC ĐIỆN

Trong phần này đề cập đến mạch lọc điện của các nguồn một chiều sau khi nắn điện từ nguồn điện xoay chiều hình sin. Mạch lọc điện nguồn có tác dụng làm giảm mức điện áp gợn sóng để có nguồn điện áp một chiều thẳng hàng.

Mach lọc điện có thể chia ra các loại sau:

- Mạch lọc thụ động: mạch lọc C, mạch lọc RC, mạch lọc LC.
- Mạch lọc tích cực kết hợp mạch lọc thụ động và linh kiện tích cực như transistor, IC.

1. Mạch lọc dùng tụ điện

Hình 8.7 là mạch nắn điện bán kỳ lọc điện bằng tụ C, trong đó V_C là mức điện áp một chiều trung bình nạp trên tụ và ΔV_C là điên áp gơn sóng V_r (Ripple Voltage).

Ta có:
$$Q = V_C C$$
 hay $V_C = \frac{Q}{C}$ và $Q = I_L T$

Suy ra:
$$\Delta V_c = \frac{\Delta Q}{C} = \frac{I_t T}{C} = \frac{I_L}{f C}$$
 (T: chu kỳ)

Nói cách khác điện áp gợn sóng trên tụ C là:

$$V_r = \frac{I_L}{fC}$$
 (f: tần số của dòng điện xoay chiều)

Điện áp một chiều trên tải là:

$$V_{DC} = V_P - \frac{V_r}{2} = V_P - \frac{I_L}{2 f C}$$
 (V_P là điện áp đỉnh)

Hình 8.7: Mạch nắn bán kỳ và dạng điện áp ra

Hình 8.8: Mạch nắn toàn kỳ và dang điện áp ra

Qua hai công thức trên cho thấy muốn giảm mức điện áp gợn sóng và tăng mức điện áp một chiều trung bình trên tải thì tụ điện C có trị số càng lớn càng tốt.

Thí dụ: Mạch nấn điện bán kỳ cố $V_{AC}=12V$, dòng tải $I_L=0.5A$, cần có $V_{DC}=12V$. Tính trị số tụ điện C.

Ta có: $V_{AC} = 12V$ nên điện áp đỉnh V_P là:

$$V_p = \sqrt{2} V_{.u} = \sqrt{2} 12 \cong 17V$$

Do:
$$V_{DC} = V_P - \frac{V_r}{2}$$
 nên $\frac{V_r}{2} = V_P - V_{DC} = 17V - 12V = 5V$

Suy ra: $V_r = 2 \times 5V = 10V$

Như vậy, tụ điện lọc C được tính theo công thức:

$$V_r = \frac{I_L}{fC}$$
 \Rightarrow $C = \frac{I_L}{fV_r}$

Cuối cùng: $C = \frac{0.5A}{50 \times 10} = 1000 \,\mu F$

Hình 8.8 là mạch nắn điện toàn kỳ có lọc điện bằng tụ C. Bằng cách lý luận tương tự, ta sẽ có công thức tính điện áp gợn sóng trên tu C là:

$$V_r = \frac{I_L}{2fC}$$
 (mạch nắn điện toàn kỳ)

Như vậy, mạch nắn điện toàn kỳ với trị số tụ lọc C nhỏ xuống ½ lần vẫn cho ra mức điện áp gơn sóng bằng với mạch nắn điện bán kỳ.

2. Mạch lọc hình π

Trong mạch lọc bằng tụ C cho thấy điện áp gợn sóng V_r tỉ lệ thuận với dòng chuyển tải I_L và tỉ lệ nghịch với điện dung C của tụ lọc. Ngoài ra, điện áp gợn sóng tùy thuộc kiểu nắn điện bán kỳ hay toàn kỳ, nếu nắn điện toàn kỳ thì độ gợn sóng giảm đi một nửa.

Thí dụ: Một mạch lọc có dòng điện tải $I_L = 500$ mA, tụ C = 1000µF và mạch nắn điện kiểu toàn kỳ thì điện áp gợn sóng là:

$$V_r = \frac{I_t}{2 fC} = \frac{500 \cdot 10^{-3}}{2 \cdot 100 \cdot 1000 \cdot 10^{-6}} = 2,5 \text{V}$$

Muốn giảm điện áp gợn sóng V_r thì phải tăng trị số điện dung C lên khá lớn.

Thông thường các dòng tải có trị số lớn không cần điện áp gợn sóng thật nhỏ, điều này chỉ cần thiết cho các dòng tải có trị số nhỏ. Mạch lọc hình π có tác dụng tạo ra hai nguồn điện áp một chiều có độ gợn sóng thích hợp cho dòng điện tải để tính chọn trị số tụ lọc C theo yêu cầu kỹ thuật mà vẫn đảm bảo tính kinh tế.

Hình 9.3a: Mạch lọc hình π

Hình 9.3b: Mạch tương đượng

Sơ đồ hình 8.9a là mạch lọc điện hình π , V_1 là điện áp sau cầu diod nắn điện đã được lọc bằng tụ điện C_1 .

Giả thiết nguồn V_1 có dòng điện tải là I_{L1} thì điện áp gợn sóng trên nguồn V_1 là: $V_{r1} = \frac{I_{L1}}{2 f C_1}$

Và điện áp một chiều trung bình là:

$$V_{DC1} = V_P - \frac{V_{c1}}{2}$$
 (V_P: điện áp đỉnh ở thứ cấp)

Nguồn V_1 được qui ra mạch tương đương như hình 8.3b gồm có nguồn V_{DC1} và nguồn V_{r1} nối tiếp nhau.

Để có thể tính được điện áp nguồn V_2 thì ta phải xét hai loại điện áp: điện áp một chiều và điện áp gợn sóng trên tụ C_1 .

Đối với nguồn một chiều thì tụ C_2 coi như hở mạch nên điện áp một chiều trung bình trên tụ C_2 là:

$$V_{i \times 2} = V_{i \times 1} \frac{R_L}{R + R_L}$$

Theo công thức này nếu muốn điện áp một chiều ra cao thì điện trở R có trị số càng nhỏ càng tốt.

Đối với nguồn gợn sóng (xoay chiều) thì tụ C_2 có dung kháng là X_{C2} thường có trị số rất nhỏ so với R_L nên dung kháng của tụ C_2 song song với R_L có giá trị tương đương X_{C2} .

Ta có:
$$Z_I = X_{C2} // R_L \cong X_{C2} = \frac{1}{2\pi (2f)C}$$

Trong mạch dùng cầu diod nắn điện toàn kỳ nên tần số gợn sóng là 2f, trong đó f là tần số của lưới điện xoay chiều công nghiệp.

Ở đây để đơn giản ta không cần xét góc lệch pha do có thành phần dung kháng vì đối với mạch lọc nguồn thì không cần thiết thật chính xác.

Giả thiết nguồn V_2 có dòng điện tải là I_{C2} thì điện áp gợn sóng còn lại trên C_2 là:

$$V_{r2} = V_{r1} \frac{X_{C2}}{R + X_{C2}}$$

Theo công thức này nếu muốn điện áp gợn sóng có biên độ thấp thì phải giảm X_{C2} (tức là tăng điện dung của tụ C_2) hay tăng điện trở lọc R. Đối với các dòng tải I_{L2} có trị số nhỏ thì có thể chọn R có trị số lớn để giảm điện áp gợn sóng trên nguồn.

Thật ra điện áp gợn sóng V_{r2} cũng tỉ lệ theo dòng điện tải I_{L2} , công thức trên chỉ dùng khi X_{C2} rất nhỏ so với R_L . Để tăng hiệu quả mạch lọc điện hình π đối với các tải I_{C2} lớn, người ta thường dùng mạch lọc tích cực.

3. Mạch lọc tích cực

Hình 8.10: Mạch lọc tích cực

Hình 8.10 là sơ đồ mạch lọc hình π có thêm transistor, trong đó điện trở R_B thay cho điện trở lọc R, tụ R_B thay cho tụ lọc R.

Có thể xem tụ C_1 , điện trở R_B và tụ C_2 là mạch lọc hình π , như sơ đồ hình 8.9, nhưng điểm khác giữa hai sơ đồ là:

- Mạch lọc hình π (hình 8.9) có dòng điện tải qua điện trở lọc R là dòng điện I_{L2} .
- Mạch lọc tích cực (hình 8.10) có dòng điện tải qua điện trở lọc R là I_B , còn dòng điện tải I_{L2} giờ chính là I_E của transistor.

Ta có:
$$I_B = \frac{I_L}{\beta} = \frac{I_{L2}}{\beta}$$

Nếu xét mạch lọc hình π trong mạch lọc tích cực thì dòng điện qua mạch lọc là I_B đã được giảm β lần. Trường hợp tụ lọc C_B có trị số điện dung bằng tụ C_2 thì dòng điện áp gợn sóng trên tụ C_B sẽ giảm xuống β lần – vì điện áp gơn sóng V_r tỉ lệ theo dòng điện tải.

Điện áp một chiều cấp cho tải bây giờ là:

$$V_E = V_B - V_{BE} = V_B - 0.7V$$

\$8.3- MẠCH ỔN ĐỊNH NGUỒN

Trong các mạch điện tử người ta phân biệt hai loại nguồn là nguồn điện áp và nguồn dòng điện. Đối với nguồn cấp điện ổn định người ta cũng chia ra hai loại nguồn ổn định là nguồn ổn áp và nguồn ổn dòng.

Hình 8.11a: Nguồn ổn áp

Hình 8.11b: Nguồn ổn dòng

Nguồn ổn dùng để tạo ra điện áp cấp cho tải là V_L có trị số ổn định không tùy thuộc theo điện áp ngõ vào V_I và trị số điện trở tải R_L (hình 8.11a).

Nguồn ổn dòng dùng để tạo ra dòng điện cung cấp cho tải là l_L có trị số ổn định không tùy thuộc theo điện áp ngõ vào V_I và trị số của điên trở tải R_I (hình 8.11b).

1. Nguyên tắc ổn áp

Sơ đồ hình 8.12 cho thấy nguyên tắc của các mạch ổn áp bao gồm các khối sau:

a) Mach tao điện áp chuẩn:

Lấy điện áp từ nguồn chung cho ra một mức điện áp không đổi, điện áp này gọi là điện áp chuẩn V_R (Reference). Điện áp

chuẩn V_R chính là cơ sở cho việc ổn áp, điện áp ở ngõ ra V_o sẽ bị điều khiển trực tiếp bởi điện áp chuẩn V_R .

Hình 8.12: Nguyên tắc ổn áp

b) Mach lấy điên áp mẫu:

Là mạch lấy điện áp ở ngõ ra đổi thành mức điện áp bằng hay gần bằng mức điện áp chuẩn, mức điện áp này gọi là mức điện áp mẫu V_S (Sample) hay còn được gọi là điện áp hồi tiếp V_F . Khi ngõ ra có điện áp bị thay đổi sẽ làm cho điện áp hồi tiếp nhỏ hơn hay lớn hơn điên áp chuẩn V_R .

c) Mach khuếch đai sai biệt: (Error-Amplifier)

Mạch khuếch đại sai biệt còn gọi là mạch khuếch đại so sánh dùng để so sánh mức điện áp mẫu V_S với điện áp chuẩn V_R . Điện áp ra sau mạch khuếch đại sai biệt dùng để thay đổi trạng thái dẫn điện của phần tử điều khiển.

d) Phần tử điều khiển:

Phần tử điều khiển thường là linh kiện điện tử công suất được coi như một tổng trở có trị số tùy thuộc ngõ ra của mạch khuếch đại sai biệt.

Tùy thuộc cách thiết kế phần tử điều khiển mà mạch ổn áp được chia ra các loại sau:

<u>Hình 8.13a</u>: ổn áp nối tiếp

Hình 8.13h: ổn áp song song

Trong mạch ổn áp nối tiếp (hình 8.13a) phần tử điều khiển R_S được mắc nối tiếp với điện trở tải R_L . Lúc đó, điện áp ra V_O tính theo công thức:

$$V_O = V_1 - (I_L R_S)$$

Theo công thức này để có V_0 ổn định, V_i tăng, mạch điện phải điều khiển làm cho $R_{\rm S}$ tăng và ngược lại.

Trong mạch ổn áp song song (hình 8.13b) phần tử điều khiển R_S được mắc song song với điện trở R_L . Lúc đó, điện áp ra V_0 được tính theo công thức:

$$V_O = V_1 - (I_L + I_S) R \qquad (I_S = \frac{V_O}{R_S})$$

Theo công thức này để có V_0 ổn định thì khi V_1 tăng mạch điện phải điều khiển làm cho I_S tăng tức là R_S giảm và ngược lại .

Trong mạch ổn áp xung (hình 8.13c) phần tử điều khiển chính là công tắc S được điều khiển đóng hay ngắt nhờ mạch dao động tạo xung. Khi công tắc S đóng thì điện áp ra $V_O = V_I$, khi công tắc S hở thì điện áp ra $V_O = 0$. Thời gian công tắc đóng là t_{on} , thời gian công tắc hở là t_{off} . Như vậy, điện áp ra sẽ có mức trung bình là:

$$V_{ij} = V_{ij} \frac{t_{on}}{t_{on} + t_{off}}$$

Theo công thức này để có V_0 ổn định thì khi V_1 tăng mạch điện phải điều khiển làm cho giảm thời gian t_{on} (tức là tăng thời gian t_{off}) và ngược lại.

2. Mạch ổn áp tuyến tính

a) Mạch ổn áp dùng diod Zener:

Mạch ổn áp dùng điốt Zener như hình 8.14 chỉ dùng cho các loại tải R_L có công suất nhỏ.

Mạch yêu cầu phải cho ra điện áp $V_0 = V_L = hằng số. Ở đây dùng diod Zener làm linh kiện ghim áp để giữ điện áp ra cấp cho tải được ổn định.$

Ta có:
$$V_0 = V_1 = V_Z$$
 (hằng số)

Điều kiện để mạch ổn áp hoạt động tốt là:

$$V_1 = (1.5 \div 2)V_0$$

và thông thường chọn: $I_Z = I_L$

Như vậy, dòng điện chung qua điện trở R là:

$$I_R = I_L + I_Z = 2I_L$$

Tính tri số điện trở R:

$$R = \frac{V_I - V_O}{2I_I}$$
 (V₁ = là trị số trung bình)

Điện trở R được chọn có công suất là:

$$P_R = 2P = 2RI_L^2$$

Trong công thức trên, "2" là hệ số an toàn cho điện trở.

Diod Zener được chọn phải có các thông số kỹ thuật như sau:

$$V_Z = V_L$$
 (4: là hê số an toàn)

Mạch này có nhược điểm là khi tải có dòng điện lớn thì diod Zener cũng phải có công suất lớn. Điều này khó thực hiện trong thực tế.

b) Mạch ổn áp nối tiếp:

Để tránh nhược điểm của mạch ổn áp dùng Zener như mạch trên, người ta dùng Zener kết hợp với transistor để tạo nguồn ổn áp có công suất lớn. $V_{\rm O} = V_{\rm L}$

Xét mạch ổn áp nối tiếp hình 8.15 ta có:

$$V_L = V_O = V_E = V_B - V_{BE}$$

Trong đó: $V_B = V_Z = h \, \text{ang so} \, \hat{}$

nên
$$V_O = V_L = V_Z - V_{BE} = h ang số (V_{BE} = 0.7V)$$

Như vậy, điện áp ra được ổn định và không tùy thuộc điện áp vào V_1 và dòng điện tải I_2 mà chỉ tùy thuộc vào V_2 .

Để cho mạch ổn áp họat động tốt vẫn phải có điều kiện:

$$V_1 = (1.5 \div 2)V_0$$

Cách xác đinh tri số của linh kiên:

Trong mạch điện ta có dòng điện tải I_L chính là dòng điện I_E do transistor cung cấp.

Ta có:
$$I_L = I_E$$
 và $I_R = \frac{I_E}{\beta} = \frac{I_L}{\beta}$

Trong trường hợp này dòng diện tải có trị số lớn đã được qui ra dòng điện nhỏ là I_B nhờ tính khuếch đại dòng của transistor. Lúc đó, việc chọn dòng I_Z qua Zener sẽ chọn theo dòng điện I_B có trị số nhỏ chứ không chọn theo dòng điện tải I_L có trị số lớn. Như vậy, diod Zener có thể được chọn loại có công suất nhỏ mà vẫn ổn áp được cho tải có công suất lớn.

Thông thường chọn: $I_Z \ge (1 \div 2) I_B$ $(I_R = I_Z + I_B)$

Điện trở R_B được tính theo công thức:

$$R_{H} = \frac{\overline{V_{I}} - V_{Z}}{I_{B}}$$

Diod Zener được chọn với các thông số sau:

$$I_{Z \text{ max}} \ge 4.I_{Z}$$

$$V_2 = V_O + V_{BE}$$

Transistor được chọn với các thông số sau:

$$I_{C \max} \geq 2.I_{L}$$

Công suất tiêu tán ở transistor là:

$$P_T = I_{C} \cdot V_{CE} = I_T (\overline{V_T} - \overline{V_O})$$

Chọn transistor có công thức tiêu tán cực đại là:

$$P_{D \text{ max}} \ge 2P_{T}$$

Thí du: Mạch ổn áp nối tiếp có $V_1 = 18V$ đến 24V.

Yêu cầu điện áp ra ổn định là V_0 = 12V và dòng tải trung bình là I_L = 500mA. Cho biết transistor có β = 50.

Điện áp vào trung bình là:

$$V_I = \frac{18 + 24}{2} = 21$$
V

Do dòng điện tải I_L qua transistor nên:

$$I_C = I_L = 500 \text{mA}$$

Suy ra:
$$I_B = \frac{I_C}{\beta} = \frac{500.10^{-3}}{50} = 10 \text{ mA}$$

Chọn dòng điện qua Zener là:

$$I_Z = 2I_B = 2.10 \text{mA} = 20 \text{mA}$$

Như vậy, có thể chọn điod Zener có các thông số:

$$V_Z = V_O + V_{BE} = 12 + 0.7 = 12,7V$$

$$I_{Z,max} = 100 \text{mA}$$

Tính điện trở R_B:

٠.

$$R_B = \frac{\overline{V_I} - V_Z}{I_B} = \frac{\overline{V_I} - V_Z}{I_Z + I_B} = \frac{21 - 12.7}{20.10^{-3} + 10.10^{-3}} = 280\Omega$$

Chọn transistor có: I_{C max} ≥ 1A

Ta có: $P_T = I_C \cdot V_{CE} = 500 \cdot 10^{-3} (21 - 12) = 4.5W$

Chọn: $P_{D \text{ max}} = 2P_T = 2 \text{ x } 4.5W = 9W$

c) Mạch ổn áp song song:

Ngược lại với mạch ổn áp nối tiếp, trong mạch ổn áp song song transistor công suất được ghép song song với điện trở tải R_L .

Điều kiện cho mạch ổn áp vẫn là:

$$V_1 = (1,5 \div 2)V_0$$

Trong mạch ổn áp song song hình 8.16 ta có:

$$V_O = V_L = V_Z + V_{BE} = h \text{ ang so}$$

Như vậy, điện áp ra V_0 vẫn giữ ổn định và không tùy thuộc điện áp vào V_t hay điện trở tải R_L mà chỉ tùy thuộc vào V_z . Tuy nhiên mạch chỉ hoạt động đúng theo nguyên lý ổn áp nếu tính chọn các linh kiện có các thông số thích hợp.

Chon: $I_C = I_L$

Suy ra: $I = I_C + I_L = 2I_L$

Tính điện trở R:

Trong khi tính chọn trị số các linh kiện nên tính với trị số điện áp V_1 trung bình là:

$$\overline{V_{I}} = \frac{V_{\text{Im} ax} + V_{\text{Im} m}}{2}$$

$$\Rightarrow \overline{V_{I}} = \frac{\overline{V_{I}} - V_{O}}{I} = \frac{\overline{V_{I}} - V_{O}}{I_{L} + I_{L}} = \frac{\overline{V_{I}} - V_{O}}{2I_{L}}$$

Tính chọn diod Zener:

Ta có: $I_B = \frac{I_C}{\beta}$

Thường chọn: $I_Z = (5 \div 10) I_B$

Diod Zener được chọn có các thông số sau:

$$V_Z = V_L - V_{BE}$$

$$I_{7 \text{ max}} \ge 2I_2$$

Cách tính chọn các thông số kỹ thuật cho transistor giống như mạch trên.

d) Mach ổn áp dùng transistor ráp Darlington:

Để tăng khả năng cung cấp dòng của mạch ổn áp người ta dùng hai transistor T_1 - T_2 rấp kiểu Darlington như mạch điện hình 8.17.

 $V_{i} = V_{L}$ I_{Bi} I_{Z} I_{Z} I_{Z} I_{Z} I_{Z} I_{Z}

<u>Hình 8.17:</u> Mạch ổn áp ráp kiểu Darlington

Điện áp ngỗ ra được tính theo công thức:

$$V_0 = V_Z - 2V_{BE} = hang so$$

Quan hệ giữa các dòng điện trong hai transistor ta có:

$$I_{L} = I_{E2}$$
 và $I_{E1} = I_{B2} = \frac{I_{L2}}{\beta_{2}} = \frac{I_{L}}{\beta_{2}}$ (1)

trong đó:
$$I_{E1} = \beta_1 . I_{B1}$$
 hay $I_{B1} = \frac{I_{E1}}{\beta_1}$ (2)

Thay I_{E1} (1) vào I_{E1} (2) ta có:

$$I_{B1} = \frac{I_{E1}}{\beta_1} = \frac{I_L}{\beta_2} \frac{1}{\beta_1} = \frac{I_L}{\beta_1 \beta_2}$$

Như vậy, dòng điện IBI sẽ rất nhỏ so với dòng điện tải IL.

Chọn $I_Z = 2I_{B1}$ thì dòng điện qua điện trở R_B là:

$$I = I_{B1} + I_{Z} = I_{B1} + 2I_{B1} = 3I_{B1} = 3\frac{I_{L}}{\beta_{1} \beta_{2}}$$

Tính điện trở R_B:
$$R_B = \frac{\overline{V_1} - V_2}{I} = \frac{\overline{V_1} - V_2}{3I_L} \beta_1 \beta_2$$

Trong mạch này dòng điện I qua R_B rất nhỏ nên điện trở R_B có trị số lớn, dòng điện qua diod Zener ít biến thiên hơn nên điện áp Zener sẽ chuẩn hơn.

e) Mach ổn áp phao (mach ổn áp thả nổi):

•

Mạch ổn áp phao còn gọi là mạch ổn áp có hồi tiếp nhờ lấy điện áp mẫu ở ngõ ra đưa về so với điện áp chuẩn bằng transistor khuếch đại sai biệt T_1 (hình 8.18).

Điện áp mẫu V_S là điện áp giữa của cầu phân áp R_A - R_B cũng là điện áp phân cực V_{B1} . Điện áp chuẩn V_R chính là điện áp V_Z của Zener để phân cực cho cực E_1 .

Ở ngõ ra ta có:

$$V_{_{\rm N}} = V_{_{O}} \frac{R_{_{\rm B}}}{R_{_{\rm A}} + R_{_{\rm B}}} \Longrightarrow V_{_{O}} = V_{_{\rm S}} \frac{R_{_{\rm A}} + R_{_{\rm B}}}{R_{_{\rm B}}}$$

Xét transistor T₁ ta có:

$$V_S = V_{B1} = V_Z + V_{BE} = V_Z + 0.7V = hang số$$

Thay $V_S = h \ ang \ s \ o \ c \ o \ ng \ thức tính <math>V_O$ ta có:

$$V_O = (V_Z + 0.7) \frac{R_A + R_B}{R_B} = \text{hằng số}$$

Như vậy, điện áp ra V_0 sẽ ổn định và có trị số tùy thuộc V_Z và tỉ lệ của cầu phân áp R_A - R_B .

* Nguyên lý tư đông điều chỉnh:

Ta có:
$$V_O = V_1 - V_{CE2}$$
 (1)

$$V_{CE2} = V_{R1} + V_{BE2} \tag{2}$$

Giả sử V_I tăng, do điện áp xoay chiều trước mạch nắn điện tăng, sẽ làm V_O tăng theo công thức (1). Lúc đó, điện áp mẫu V_S cũng tăng theo tỉ lệ của cầu phân áp R_A - R_B . Khi V_S tăng làm V_{BI} tăng nên tăng phân cực cho T_I làm T_I dẫn điện mạnh hơn, dòng I_{CI} qua R_I cũng được tăng lên nên giảm áp trên R_I làm V_{RI} tăng. Điều này sẽ làm V_{CE2} tăng lên theo công thức (2) và khi V_{CE2} tăng thì điện áp ra V_O sẽ giảm trở lại trị số ổn định theo công thức (1).

Tương tự ta có thể qui ra nguyên lý ổn áp ở các trường hợp khác như khi $V_{\rm I}$ giảm, dòng điện tải thay đổi thì điện áp ra vẫn được giữ ổn định.

Mạch ổn áp phao điều chỉnh được điện áp ra theo công thức:

$$V_O = (V_Z + 0.7) \frac{R_A + R_B}{R_B}$$

Nếu thay đổi tỉ số điện trở của cầu phân áp R_A - R_B sẽ làm thay đổi điện áp ra. Trong thực tế người ta thay cầu phân áp R_A - R_B bằng cầu phân áp R_3 -VR- R_4 . Khi điều chỉnh biến trở VR (hình 8.19) thì điện áp ra V_O sẽ thay đổi theo công thức :

Hình 8.19: ổn áp điều chỉnh được

* Thiết kế mach:

Giả sử thiết kế mạch ổn áp có yêu cầu: $V_L = 9V$, $I_L = 1A$ Điều kiện phải có của mạch là:

$$V_1 = (1.5 \div 2) V_L$$

Suy ra:
$$V_1 = 1.5 \times 9V \div 2 \times 9V$$

 $V_1 = 13.5V \div 18V \implies \overline{V_L} = 15V$

Tính công suất tiêu tán trên transistor T₂ là:

$$P_{L}$$
, = $(\overline{V_{L}} - V_{O})I_{L} = (15 - 9).1 = 6W$

Chọn transistor T2 có công suất tiêu tán cực đại là:

$$P_{D,max} = 2 \times 6 = 12W$$
 (VD: chon transistor 2SD 28)

Chọn diod Zener có $V_Z \cong 1/2V_L$. Ví dụ chọn Zener 4,5V. Dòng điện I_R qua cầu phân áp R_3 -VR- R_4 được tính sao cho có trị số rất nhỏ so với tải để coi như không đáng kể.

Chọn:
$$I_R = \frac{I_L}{100} = \frac{1}{100} = 10 mA$$

Như vậy, có thể tính được tổng điện trở của cầu phân áp là:

$$R_3 + VR + R_4 = \frac{V_O}{I_B} = \frac{9}{10.10^{-3}} = 900\Omega$$

Có thể chọn $R_3 = 300\Omega$, $R_4 = 400\Omega$ và biến trở $VR = 200\Omega$

Transistor T_1 phải có I_{B1} rất nhỏ so với I_R để không ảnh hưởng đến cầu phân áp:

Chọn:
$$I_{B1} = \frac{I_R}{100} = \frac{10.10^{-3}}{100} = 0,1 \text{ mA}$$

Như vậy, nếu T_1 có $\beta = 50$ thì dòng điện I_{E1} là:

$$I_{E1} = \beta . I_{B1} = 50 \times 0.1 \text{ mA} = 5 \text{ mA}$$

Chọn dòng điện qua Zener lớn khoảng hai đến ba lần I_{EI} để dòng I_Z được ổn định và ít bị ảnh hưởng theo điện áp V_i .

Chon:
$$I_2 = 3I_{E1} = 3 \cdot 5mA = 15mA$$

Suy ra dòng điện I2 qua điện trở R2 là:

$$I_2 = I_Z - I_{E1} = 15 \text{mA} - 5 \text{mA} = 10 \text{mA}$$

Tính tri số R₂:

$$R_2 = \frac{V_L - V_Z}{I_2} = \frac{9 - 4.5}{10.10^{-3}} = 450\Omega$$

Dòng điện qua R₁ là tổng số của dòng I_{B2} và I_{C1}, trong đó:

$$I_{B2} = \frac{I_{C2}}{\beta} = \frac{I_L}{\beta} = \frac{1}{50} = 20mA$$

và:

$$I_{CI} = I_{EI} = 5 \text{mA}$$

Dòng điện qua R_1 là: $I_1 = I_{C1} + I_{B2} = 5mA + 20mA = 25mA$

Từ đó có thể tính điện trở R₁ là:

$$R_1 = \frac{\overline{V_I} - (V_I + V_{HI})}{I_1} = \frac{15 - (9 + 0.7)}{25.10^{-3}} = \frac{5.4}{25.10^{-3}} \cong 200\Omega$$

Với các trị số điện trở của cầu phân áp R_3 -VR- R_4 thì khoảng điện áp ổn định ở ngõ ra có thể điều chính là:

$$V_{O \min} = (V_Z + 0.7) \frac{R_3 + VR + R_4}{VR + R_4}$$

$$V_{O \min} = (4.5 + 0.7) \frac{900}{200 + 400} = 7,65V$$

νà

$$V_{O \text{ max}} = (V_z + 0.7) \frac{R_1 + VR + R_4}{R_4}$$

$$V_{O \text{max}} = (4.5 + 0.7) \frac{900}{400} = 11.5V$$

Như vậy, khoảng điện áp ra có thể điều chỉnh được là:

$$V_0 = 7.65V \div 11.5V$$

Khoảng điện áp này đã thỏa yêu cầu của mạch là $V_L = 9V$.

f) Các kiểu ổn áp phao khác:

*Dùng transistor công suất PNP và Zener đặt ở trên:

Trong mạch điện hình 8.20, điện trở R_1 là điện trở khởi động cho mạch. Khi mạch được cấp nguồn V_I thì R_1 lấy nguồn V_I cấp cho cầu phân áp R_3 -VR- R_4 phân cực cho T_1 dẫn sẽ điều khiển T_2 dẫn.

Điện áp ổn định ở ngỗ ra bây giờ được tính theo công thức:

$$V_O = (V_2 + 0.7) \frac{R_3 + VR + R_4}{R_2 + VR}$$

Nguyên lý hoạt động của mạch là:

- Khi V_O tăng sẽ làm V_1 tăng và sẽ làm V_{BE1} giảm, điều này sẽ làm T_1 chạy yếu điều khiển T_2 chạy yếu (do $I_{C1} = I_{B2}$). Khi T_2 chạy yếu có nghĩa điện áp V_{CE2} sẽ tăng và làm cho điện áp V_O giảm lại vì ta đã có: $V_O = V_I - V_{CE2}$ (1)

* Dùng transistor công suất PNP đặt ở dưới:

Mạch điện hình 8.21 cũng có nguyên lý ổn áp giống như các mạch trên. Công thức tính điện áp ổn định ở ngõ ra là:

$$V_O = (V_Z + 0.7) \frac{R_3 + VR + R_4}{R_2 + VR}$$

Hình 8.21: Transistor công suất đặt ở dưới V_i T_1 R_2 R_4

3. IC ổn áp ba chân

Hiện nay người ta chế tạo được các IC ổn áp ba chân rất tiện lợi cho việc thiết kế các bộ nguồn ổn áp có công suất nhỏ vì chỉ dùng ít linh kiện bên ngoài.

a) IC ổn áp ba chân họ 78xx và 79xx:

IC họ 78xx là IC ổn áp nguồn dương, IC họ 79xx là IC ổn áp nguồn âm. Hai số sau ghi là xx chỉ điện áp ra được ổn định.

Thí dụ: μ A 7805 là IC ổn áp nguồn dương có $V_0 = +5V$ μ A 7905 là IC ổn áp nguồn âm có $V_0 = -5V$

Tùy theo khả năng cung cấp dòng điện của IC ổn áp người ta ghi thêm một mẫu tự sau họ 78 hay họ 79 để chỉ dòng điện ra danh định.

Thí dụ: IC 78Lxx: có dòng ra danh định là 100mA.

IC 78Mxx: có dòng ra danh định là 500mA.

IC 78xx: có dòng ra danh định là 1A.

IC 78Txx: có dòng ra danh định là 3A.

IC 78Hxx: có dòng ra danh định là 5A.

Các loại IC ổn áp khác tương ứng với họ 78-79 là:

- Họ LM340 xx tương ứng với họ 78xx.
- Họ LM320 xx tương ứng với họ 79xx.

b) Các dang vỏ IC ổn áp:

Hình 8.22: Cách ra chân của IC họ 78

Hình 8.23: Cách ra chân của IC họ 79

c) Mach ổn áp nguồn dương và mạch ổn áp nguồn âm:

Mạch ổn áp dùng IC ba chân có sơ đồ rất đơn giản như hình 8.24a và hình 8.24b. Các tụ điện .33 và .1 ở ngõ vào, ngõ ra dùng để lọc nhiễu tần số cao, bù cho đáp ứng quá độ của ổn áp. Điện trở R và Led ở ngõ ra được tính có đòng điện qua Led từ 5mA đên 10mA tạo đòng nuôi cho mạch ổn áp giữ cho điện áp ra được ổn định.

Hình 8.24a: ổn áp nguồn dương

Hình 8.24b: Ön áp nguồn âm

d) IC ổn áp ha chận điều chỉnh được:

Hiện nay người ta còn chế tạo ra ổn áp ba chân có thể điều chỉnh điện áp ra bằng mạch điều chỉnh đặt bên ngoài IC rất tiện dụng. Khả năng điều chỉnh điện áp ở ngõ ra của các loại IC này từ 1,2V đến 25V.

Loại IC ổn áp nguồn dương có LM117/217/317... Loại IC ổn áp nguồn âm có LM137/237/337... Mạch điện hình 8.25a là mạch điện ứng dụng của IC ổn áp dương điều chỉnh được.

Yêu cầu:
$$V_0 = 1,2V \div 25V$$

$$V_1 \ge 28V$$

Dòng điện điều chỉnh I_{adj} có trị số rất nhỏ khoảng $50\mu A$ đến $100\mu A$.

Điện áp ra thay đổi được tính theo công thức:

$$V_O = 1,25 \frac{R_1 + R_2}{R_1}$$

4. Mạch ổn áp xung

Các bộ nguồn ổn áp theo phương pháp thông số (dùng diod Zener) hay phương pháp tuyến tính (dùng diod Zener hay transistor) có hiệu suất thấp, khối lượng và kích thước lớn do có chứa nhiều phần tử cảm kháng như bộ biến áp. Hiệu suất của mạch ổn áp loại này thường chỉ khoảng 50%.

Mạch ổn áp theo phương pháp xung (còn gọi là ổn áp theo kiểu chuyển mạch) tránh được các nhược điểm trên, hiệu suất cao khoảng 80% đến 90%.

a) Nguyên lý mach ổn áp xung:

Trong mạch ổn áp tuyến tính các phần tử điều khiển phải làm việc liên tục, trong mạch ổn áp xung các phần tử điều khiển làm việc theo kiểu đóng mở. Thời gian đóng mở của nó được tự điều chỉnh để điều tiết số năng lượng cung cấp cho tải nhằm giữ cho điện áp trung bình cấp cho tải là hằng số.

<u>Hình 8.26:</u> Nguyên lý mạch ổn áp xung

Hình 8.26 là sơ đồ nguyên lý của mạch ổn áp xung với K là phần tử điều khiển sẽ làm việc ở hai trạng thái. Thời gian K đóng gọi là thời gian dẫn t_{on} có $V_O = V_I$, thời gian K hở gọi là thời gian ngất t_{off} có $V_O = 0V$.

Chu kỳ hoạt động của khóa K là:

$$T = t_{on} + t_{off}$$

Điện áp ra được tính theo công thức:

$$V_{O} = V_{I} \frac{t_{on}}{T}$$

Người ta định nghĩa độ rỗng Q là: $Q = \frac{T}{t_{on}}$

Suy ra:
$$V_O = \frac{V_t}{Q}$$

Khi điện áp ngõ vào V_I thay đổi thì ta có thể thay đổi Q theo cùng hướng với V_I theo tỉ lệ tương ứng thì sẽ có điện áp ra V_O không đổi. Thay đổi Q có nghĩa là thay đổi thời gian t_{on} mà vẫn giữ nguyên chu kỳ T.

Tương tự nếu V_1 có dạng gợn sóng bất kỳ thì ta cũng có thể thay đổi thời gian đóng mở của khoá K sao cho khi V_1 thay đổi thì V_0 không đổi.

Để điều chỉnh giá trị Q có thể thực hiện bằng các phương pháp sau:

* Điều chế đô rông xung:

Điều chế độ rộng xung là làm thay đổi thời gian đóng khóa K (t_{on}) hay làm thay đổi thời gian mở khóa K (t_{off}) . Lúc đó chu kỳ T sẽ không đổi.

Theo nguyên lý trên ta có:

$$V_O = \frac{V_I}{Q}$$
 với $Q = \frac{T}{t_{out}}$

Như vậy, khi V_1 tăng thì độ rỗng Q phải tăng theo cùng tỉ lệ hay nói cách khác là $t_{\rm on}$ phải giảm. Lúc đó điện áp ra V_0 sẽ được giữ ổn định.

* Điều chế tần số xung:

Điều chế tần số xung là làm thay đổi chu kỳ T trong khi giữ nguyên t_{on} (hay t_{off}). Khi chu kỳ T thay đổi tức là thay đổi tần số f của xung điều khiển .

Cũng theo nguyên lý trên mạch có nguyên tắc điều chỉnh là khi điện áp vào V_1 tăng, độ rỗng Q phải tăng bằng cách tăng chu kỳ T. Nếu có t_{on} là hằng số thì tăng chu kỳ T tức là tăng thời gian mở khóa K (t_{off}).

b) <u>Sơ đồ khối:</u>

Biến áp nguồn dùng để đổi điện áp 220V của lưới điện xuống mức điện áp thích hợp cho tải. Nhiều trường hợp điện áp lưới 220V được nắn điện trực tiếp chứ không qua biến áp nguồn.

Mạch nắn điện đổi nguồn điện áp xoay chiều sau khi biến áp nguồn ra điện áp một chiều nhưng không được giữ ổn áp.

Phần tử điều khiển là một linh kiện bán dẫn tích cực có chức năng như một chuyển mạch (công tắc) để dẫn hay ngắt nguồn một chiều sang mạch lọc điện, sau đó cung cấp nguồn ổn áp cho tải.

Điện áp ra trên tải qua mạch lấy điện áp mẫu V_S được đưa vào mạch khuếch đại so sánh để so với mức điện áp chuẩn V_R tạo bởi linh kiện điện tử thông qua diod Zener.

Mạch dao động tạo xung để tạo ra các xung chuẩn đưa vào phần tử điều khiển. Xung kích điều khiển có thông số thời gian thay đổi như thế nào thì tùy thuộc mạch điều chế xung. Như vậy, xung kích điều khiển lấy ra sau mạch điều chế xung sẽ điều khiển trạng thái đóng hay mở của phần tử điều khiển.

c) Sơ đồ chi tiết:

* Nguồn ổn áp:

Biến áp TR nhận nguồn điện áp xoay chiều của lưới điện đổi ra mức điện áp thích hợp, thường điện áp ra ở thứ cấp có trị số bằng khoảng hai lần điện áp ra V_o . Cầu diod và mạch lọc LC là mạch nắn điện lọc điện cho ra nguồn điện áp DC không ổn áp.

* <u>Phần tử điều khiển và mach loc ngõ ra:</u>

Transistor T_9 là phần tử điều khiển loại transistor công suất mà sẽ cấp dòng cho tải R_L . Ở ngõ ra của mạch ổn áp có mạch lọc LC để loại bỏ thành phần xoay chiều. Do xung kích có tần số cao nên tu lọc chỉ cần có trị số nhỏ $1\mu F$ là đủ.

* Mach dao động tao xung:

Mạch dao động tạo xung là dao động đa hài phi ổn dùng hai transistor T_1 và T_2 . Hai transistor T_1 - T_2 sẽ luân phiên chạy ở hai trạng thái bão hoà và ngưng dẫn, thời gian ngưng dẫn của hai transistor là thời gian xả điện của tụ điện $C = 0.2\mu F$ qua điện trở R_B

phân cực cho hai cực B. Trong mạch này điện trở R_B của hai transistor được thay thế bằng hai transistor T_3 và T_4 .

Hình 8.28: Mạch ổn áp xung

Như vậy, dòng xả của tụ C cũng chính là dòng I_{C3} và I_{C4} . Tín hiệu xung vuông ra ở cực C_2 sẽ điều khiển mạch tạo xung kích.

* Mach khuếch đại so sánh và điều chế đô rông xung:

Mạch khuếch đại so sánh là hai transistor T_5 và T_6 rấp kiểu khuếch đại vi sai. Cực B_6 được phân cực ở điện áp chuẩn V_R nhờ cầu phân áp có diod Zener, cực B_5 được phân cực bằng điện áp mẫu V_S nhờ cầu phân áp lấy từ điện áp ra V_o có biến trở điều chỉnh V_R .

Mạch khuếch đại vi sai T_5 - T_6 sẽ so sánh V_8 và V_R để điều chỉnh phân cực cho T_3 và T_4 , điều này làm thay đổi thời gian xả điện của tụ C tức là thay đổi độ rộng của xung vuông ra ở cực C_2 .

* Mach kích điều khiển:

Tín hiệu xung vuông ra của mạch dao động đa hài ở cực C_2 sẽ được hai cực của transistor T_7 - T_8 khuếch đại dòng điện lên đủ lớn (do T_7 - T_8 là hai transistor ráp kiểu Darlington). Dòng I_{C8} sẽ điều khiển phần tử điều khiển T_9 (còn gọi là phần tử chuyển mạch) theo dạng tín hiệu xung vuông nên T_9 sẽ chạy ở chế độ bão hòa và ngưng dẫn.

d) Nguyên lý vân chuyển:

Khi cấp nguồn V_{AC} vào sơ cấp biến áp, qua biến áp giảm xuống mức điện áp thích hợp. Mạch nắn điện và mạch lọc LC sẽ cho ra nguồn một chiều không ổn định. Lúc đó, T_9 không dẫn nên $V_o = 0V$ do các mạch tạo xung, khuếch đại so sánh chưa làm việc vì chưa được cung cấp nguồn.

Ấn nút K để lấy nguồn không ổn định cấp cho mạch điều khiển theo kiểu kích mỗi. Lúc đó $T_1\text{-}T_2$ dao động cho ra xung điều khiển $T_7\text{-}T_8$ và T_8 điều khiển trực tiếp T_9 bằng tín hiệu xung vuông do mạch tạo xung tạo ra. Khi T_9 hoạt động cho ra điện áp V_0 cấp cho tải đồng thời cấp cho các transistor từ T_1 đến T_8 trong khối điều khiển thay cho nguồn lấy qua nút ấn K.

Nguyên lý tự động điều chỉnh của mạch ổn áp:

- Giả thiết điện áp ra V_0 tăng do điện áp ngõ vào tăng hay do sự giảm dòng tải tiêu thụ, lúc đó, điện áp mẫu V_S sẽ tăng làm tăng phân cực T_5 . Khi T_5 được tăng phân cực thì I_{CS} tăng kéo T_3 chạy mạnh theo nên I_{C3} tăng. Điều này làm tụ C xả điện qua T_3 nhanh hơn có nghĩa là thời gian ngưng của T_2 ngắn hơn làm thời gian cực C_2 có điện áp cao ngắn hơn. Khi cực C_2 có điện áp cao sẽ điều khiển T_7 và T_8 dẫn điện để điều khiển T_9 dẫn điện ứng với thời gian

 t_{on} sẽ bị giảm theo thời gian ngưng của T_2 . Như vậy, điện áp sẽ được giữ ổn định theo nguyên lý ổn áp xung là:

$$V_{ij} = V_l \frac{t_{on}}{T}$$

Các thông số và linh kiện tích cực của mạch:

T₁ - T₂: 2 x C 425

T₃ - T₄: 2 x A 554

T₅ - T₆: 2 x C 425

T₇: C 1016 có công suất 2W

T₈: C 1061 có công suất 25W

T₇: B 693 có công suất 125W

Z: 5.1V - 500mW

 $V_0 = V_L = 12V$

Mạch bảo vệ quá tải hay ngắn mạch ở ngõ ra hoạt động theo nguyên lý sau:

Khi ngỗ ra bị ngắn mạch thì tức thời cũng mất nguồn cấp cho mạch tạo xung nên T_1 - T_2 ngưng kéo theo T_3 - T_4 - T_5 - T_6 đều ngưng làm T_7 - T_8 cũng ngưng và tức thời T_9 ngưng dẫn không cấp điện áp cho tải. Hệ thống chỉ hoạt động lại khi ngỗ ra hết ngắn mạch và ấn nút K để mạch tạo xung tiếp tục cho ra xung điều khiển.

5. Mạch ổn dòng

Mạch ổn dòng viết tắt là VCCR (Voltage Controlled Current Source = nguồn dòng điện được kiểm soát bằng điện áp).

<u>a) Mach ổn dòng cơ bản:</u>

Mạch ổn dòng là mạch giữ cho dòng tải ổn định mà không phụ thuộc theo điện áp nguồn V_{CC} hay trị số của điện trở tải R_L trong một giới hạn cho phép.

Hình 8.29: ổn dòng cơ bản

Hình 8.30: ổn dòng dùng OP-AMP

Sơ đồ hình 8.29 là mạch ổn dòng cơ bản dùng một transistor và dịod Zener.

Theo mach phân cực ta có:

$$V_{B} = V_{Z} \quad (h \text{ ang so})$$

$$V_{E} = V_{B} - V_{BE} = V_{Z} - 0.7V \qquad (h \text{ ang so})$$
Suy ra:
$$I_{E} = \frac{V_{E}}{R_{E}} = \frac{V_{Z} - 0.7}{R_{E}}$$

Do: $I_L=I_C\cong I_E\,$ nên dòng điện tải cũng có trị số ổn định theo công thức trên.

b) Mach ổn dòng dùng OP-AMP:

Đối với các tải công suất nhỏ thì có thể dùng OP-AMP kết hợp diod Zener để làm mạch ổn dòng.

Trong mạch điện hình 8.30, điện trở R_S (Sense) là điện trở cảm biến (còn gọi là điện trở dò) dòng điện tải tạo ra điện áp hồi tiếp về để so với điện áp chuẩn.

Điện trở R và diod Zener là mạch tạo điện áp chuẩn V_R để đưa vào ngõ ${\rm In}^+$ của OP-AMP.

Do tính chất của OP-AMP ta có:

$${V_i}^+\cong V_i^-$$
 hay $V_Z\cong V_S$
$$Z_i\to \infty\Omega \ (\text{nên dòng điện vào }I_i\to 0 \)$$

Như vậy, đồng I_L qua tải R_L và qua R_S có cùng trị số nên:

$$I_L = \frac{V_S}{R_S} = \frac{V_Z}{R_S}$$
 (hằng số)

Muốn thay đổi trị số dòng điện ổn định qua tải thì người ta thay đổi trị số điện trở R_S hay diod Zener.

TÀI TIỆU THAM KHẢO

- 1- Linh kiện điện tử Nguyễn Tấn Phước,
 NXB Tp Hồ Chí Minh 2000
- 2- Mạch điện tử- Tập 1 Nguyễn Tấn Phước, NXB Tp Hồ Chí Minh - 2001
- 3- Mạch điện tử- Tập 2 Nguyễn Tấn Phước,NXB Tp Hồ Chí Minh 2002
- 4- Điện tử trung cấp Nguyễn Hữu Phương,
 NXB Tp Hồ Chí Minh ~ 1992
- 5- Fundamentals of Linear Circuit Tom Floyd, Dunod 1991
- 6- Kỹ thuật mạch điện tử Phạm Minh Hà,NXB Khoa học Kỹ thuật 1996

TỬ SÁCH KỸ THUẬT ĐIỆN - ĐIỆN TỬ CỦA TÁC GIẢ NGUYỄN TẦN PHƯỚC

* GIÁO TRÌNH ĐIỆN TỬ KỸ THUẬT	
1- Linh kiện điện tử (khổ 16x24)	(tái bản lần thứ 10)
2- Mạch điện tử - Tập 1	(tái bản lần thứ 6)
3- Mạch điện tử - Tập 2	(tái bản lần thứ 4)
4- Mạch điện tử - Tập 3	(sắp xuất bản)
5- Mạch số - tập 1, 2	(đã xuất bản)
6- Mạch tương tự (khổ 16x24)	(tái bản lần thứ 3)
* GIÁO TRÌNH ĐIỆN TỬ CÔNG NGHIỆP	
1- Linh kiện điều khiển	(tái bản lần thứ 6)
2- Kỹ thuật xung căn bản và nâng cao	(tái bản lần thứ 3)
3- Điện tử ứng dụng trong công nghiệp- Tập 1	(tái bản lần thứ 4)
4- Điện tử ứng dụng trong công nghiệp- Tập 2	(sắp xuất bản)
5- Điện tử công suất	(tái bản lần thứ 2)
* GIÁO TRÌNH ĐIỆN CÔNG NGHIỆP	
1- Điện kỹ thuật	(sắp xuất bản)
2- Đo lường điện và không điện	(sắp xuất bản)
3- Khí cụ điện – Cảm biến	(sắp xuất bản)
4-Trang bị điện	(sắp xuất bản)
* GIÁO TRÌNH ĐIỆN TỬ TỰ ĐỘNG HÓA	
1- Ứng dụng PLC Siemens và Moeller trong tự động hóa	(tái bản lần thứ 5)
2- Tự động hoá với PLC và Inverter của Omron	(tái bản lần thứ 3)
3- Lập trình tự động hoá với PLC S7-200 của Siemens	(sắp xuất bản)
4- Cảm biến - Ứng dụng trong đo lường và điều khiển	(sắp xuất bản)
5 -Trang bị điện không tiếp điểm-Thang máy công ngh	iệp (sắp xuất bản)
* GIÁO TRÌNH DẠY NGHỀ – HƯỚNG NGHIỆP (khổ 14x20)	
1- Sửa chữa Thiết bị Điện - Điện tử gia dụng	(đã xuất bản)
2- Điện và Điện tử căn bản	(đã xuất bản)
3- Điện tử công nghiệp và Cảm biến - Tập 1	(đã xuất bản)
4- Điện tử công nghiệp và Cảm biến – Tập 2	(sắp xuất bản)

5- Ampli - Lý thuyết và Thực hành

Giá: 30.000 đồng

(sắp xuất bản)