Algebraic Tools for Computing Polynomial Loop Invariants

Fatemeh Mohammadi

Joint work with Erdenebayar Bayarmagnai and Rémi Prébet

Polynomial invariant

Polynomial equations/inequalities that hold before & after every iteration.

Polynomial invariant

Polynomial equations/inequalities that hold before & after every iteration.

$$(x, y) = (0, 1)$$
while true do
$$\begin{pmatrix} x \\ y \end{pmatrix} \longleftarrow \begin{pmatrix} x + y \\ x \end{pmatrix}$$
end while

• Values of (x, y): (1,0), (1,1), (2,1), (3,2), (5,3), 8,5)

Polynomial invariant

Polynomial equations/inequalities that hold before & after every iteration.

$$\begin{aligned} (\mathbf{x}, \mathbf{y}) &= (0, 1) \\ \text{while true do} \\ \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} &\longleftarrow \begin{pmatrix} \mathbf{x} + \mathbf{y} \\ \mathbf{x} \end{pmatrix} \\ \text{end while} \\ \end{aligned}$$

- Values of (x, y): (1, 0), (1, 1), (2, 1), (3, 2), (5, 3), (5, 3)
- Two consecutive numbers of Fibonacci sequence satisfy

$$x^4 + y^4 + 2x^3y - x^2y^2 - 2xy^3 - 1 = 0.$$

Polynomial invariant

Polynomial equations/inequalities that hold before & after every iteration.

$$\begin{array}{c} (\textbf{x},\textbf{y}) = (0,1) \\ \text{while true do} \\ \begin{pmatrix} \textbf{x} \\ \textbf{y} \end{pmatrix} \longleftarrow \begin{pmatrix} \textbf{x}+\textbf{y} \\ \textbf{x} \end{pmatrix} \\ \text{end while} \\ \end{array}$$

- Values of (x, y): (1, 0), (1, 1), (2, 1), (3, 2), (5, 3), (5, 3)
- Two consecutive numbers of Fibonacci sequence satisfy

$$x^4 + y^4 + 2x^3y - x^2y^2 - 2xy^3 - 1 = 0.$$

Prior Works

Special classes of loops:

- Affine loops (Hrushovski, Ouaknine, Pouly, Worrell; LICS '18)
- P-solvable loops Kovács; TACAS '08
- Solvable loops (Rodriguez-Carbonell, Kapur; Symb. Comput. '07)

Degree-bounded polynomial invariants:

- Synthesis for solvable loops (Amrollahi, Bartocci, Kenison, Kovács, Moosbrugger, Stankovic; Formal Methods Syst. Des. '24)
- Ideal-based reasoning (Cyphert Kincaid; ACM '24)
- Invariants from symbolic initialization (Müller-Olm, Seidl; Inf. Process. Lett. '04)

(Semi)-algebraic loop

$$\begin{aligned} &(x_1,x_2,\ldots,x_n) = (a_1,a_2,\ldots,a_n) \\ &\textbf{while } g_1 = \cdots = g_k = 0 \text{ and } h_1 > 0,\ldots,h_s > 0 \textbf{ do} \\ &\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \xleftarrow{F} \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} \\ &\textbf{end while} \end{aligned}$$

(Semi)-algebraic loop

$$\begin{aligned} &(x_1,x_2,\ldots,x_n) = (a_1,a_2,\ldots,a_n) \\ &\textbf{while } g_1 = \cdots = g_k = 0 \text{ and } h_1 > 0,\ldots,h_s > 0 \textbf{ do} \\ &\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \xleftarrow{F} \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} \\ &\textbf{end while} \end{aligned}$$

$$(x_1, \dots, x_n) = (a_1, \dots, a_n)$$
while true do
$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}
\stackrel{F}{\leftarrow} \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix}$$
end while

- Symbolic Computations Algorithms:
 - Compute all polynomial invariants up to a fixed degree.

- Symbolic Computations Algorithms:
 - Compute all polynomial invariants up to a fixed degree.
 - a) Valid for all possible initial values

- Symbolic Computations Algorithms:
 - Compute all polynomial invariants up to a fixed degree.
 - a) Valid for all possible initial values
 - b) Specific to a given initial value

- Symbolic Computations Algorithms:
 - Compute all polynomial invariants up to a fixed degree.
 - a) Valid for all possible initial values
 - b) Specific to a given initial value
 - Identify initial values for which a given polynomial is an invariant.

- Symbolic Computations Algorithms:
 - Compute all polynomial invariants up to a fixed degree.
 - a) Valid for all possible initial values
 - b) Specific to a given initial value
 - Identify initial values for which a given polynomial is an invariant.
 - Generate all polynomial invariants of a specified algebraic form.

- Symbolic Computations Algorithms:
 - Compute all polynomial invariants up to a fixed degree.
 - a) Valid for all possible initial values
 - b) Specific to a given initial value
 - Identify initial values for which a given polynomial is an invariant.
 - Generate all polynomial invariants of a specified algebraic form.
 - · Algebraic formulation

Polynomial ideals

- Consider the polynomial ring $R = \mathbb{C}[x_1, \dots, x_n]$.
- A subset I ⊆ R is called a polynomial ideal if:
 - If $f, g \in I$, then $f + g \in I$ (closed under addition)
 - If $f \in I$ and $h \in R$, then $hf \in I$ (closed under multiplication in R).

Polynomial ideals

- Consider the polynomial ring $R = \mathbb{C}[x_1, \dots, x_n]$.
- A subset I ⊆ R is called a polynomial ideal if:
 - If $f,g \in I$, then $f+g \in I$ (closed under addition)
 - If $f \in I$ and $h \in R$, then $hf \in I$ (closed under multiplication in R).

Hilbert Basis Theorem

Every ideal in the polynomial ring $\mathbb{C}[x_1, x_2, \dots, x_n]$ is finitely generated.

Polynomial ideals

- Consider the polynomial ring $R = \mathbb{C}[x_1, \dots, x_n]$.
- A subset I ⊆ R is called a polynomial ideal if:
 - If $f, g \in I$, then $f + g \in I$ (closed under addition)
 - If $f \in I$ and $h \in R$, then $hf \in I$ (closed under multiplication in R).

Hilbert Basis Theorem

Every ideal in the polynomial ring $\mathbb{C}[x_1, x_2, \dots, x_n]$ is finitely generated.

• For any ideal $I \subseteq R$, there exist polynomials $f_1, \ldots, f_r \in I$ such that

$$I = \langle f_1, \ldots, f_r \rangle.$$

• For any polynomial g in I there exists h_1, \ldots, h_r in R such that

$$g=h_1f_1+\cdots+h_rf_r$$

Algebraic varieties

• Let $S = \{f_1, f_2, \dots, f_s\} \subseteq \mathbb{C}[x_1, x_2, \dots, x_n]$. Define

$$V(S) = \{(a_1, \dots, a_n) \in \mathbb{C}^n : f_i(a_1, \dots, a_n) = 0 \text{ for all } 1 \le i \le s\}.$$

Algebraic varieties

• Let $S = \{f_1, f_2, \dots, f_s\} \subseteq \mathbb{C}[x_1, x_2, \dots, x_n]$. Define

$$V(S) = \{(a_1, \ldots, a_n) \in \mathbb{C}^n : f_i(a_1, \ldots, a_n) = 0 \text{ for all } 1 \leq i \leq s\}.$$

• Let I be the smallest ideal containing S. Then: V(S) = V(I).

Algebraic varieties

- Let $S = \{f_1, f_2, \dots, f_s\} \subseteq \mathbb{C}[x_1, x_2, \dots, x_n]$. Define $V(S) = \{(a_1, \dots, a_n) \in \mathbb{C}^n : f_i(a_1, \dots, a_n) = 0 \text{ for all } 1 \leq i \leq s\}.$
- Let *I* be the smallest ideal containing *S*. Then: V(S) = V(I).
- If $\{f_1, \ldots, f_s\}$ and $\{g_1, \ldots, g_t\}$ generate the same ideal I, then:

$$V(f_1,\ldots,f_s)=V(g_1,\ldots,g_t)$$

Equivalent polynomial systems

 $\{x^2+y^2+z^2=1,\ 3x^2\ y^2-6x^2z+9x^2+y^4-y^2z^2-2y^2z+2y^2+2z^3-3z^2+2z-3=0,\ 5x^2-z^2+2y^2=2\}\ \ is\ decomposed\ to\ \{x^2+y^2+z^2=1,\ x-z=0\}\ and\ \{x^2+y^2+z^2=1,\ x+z=0\}$

Radical of ideals

Given an ideal $I \subseteq \mathbb{C}[x_1, x_2, \dots, x_n]$, the **radical** of I is:

$$rad(I) = \{ f \in \mathbb{C}[x_1, x_2, \dots, x_n] : f^n \in I \text{ for some } n \in \mathbb{N}_{>0} \}.$$

Radical of ideals

Given an ideal $I \subseteq \mathbb{C}[x_1, x_2, \dots, x_n]$, the **radical** of I is:

$$rad(I) = \{ f \in \mathbb{C}[x_1, x_2, \dots, x_n] : f^n \in I \text{ for some } n \in \mathbb{N}_{>0} \}.$$

$$I = (x_1^5 x_5^5 + 5 x_1^5 x_4^6 - 10 x_1^4 x_3 x_5^4 + 5 x_1^4 x_4 x_4^6 + 10 x_1^5 x_3^5 - 40 x_1^4 x_3 x_3^3 + 40 x_1^3 x_3^2 x_3^3 + 20 x_1^4 x_4 x_3^5 - 40 x_1^3 x_3 x_4 x_3^5 + 10 x_1^3 x_4^2 x_3^5 + 10 x_1^5 x_2^5 - 60 x_1^4 x_3 x_2^5 + 120 x_1^3 x_3^2 x_4^2 x_3^5 + 120 x_1^3 x_3 x_4 x_3^5 + 120 x_1^3 x_3 x_4 x_3^5 + 120 x_1^3 x_3^2 x_4 x_2^5 + 30 x_1^4 x_4 x_3^5 - 60 x_1^2 x_3 x_4^2 x_2^5 + 10 x_1^2 x_4^3 x_3^5 + 5 x_1^5 x_5 - 40 x_1^4 x_3 x_5 + 120 x_1^3 x_3^2 x_5 - 160 x_1^2 x_3^3 x_5 + 80 x_1 x_4^3 x_5 + 20 x_1^4 x_4 x_5 - 120 x_1^3 x_3 x_4 x_5 + 240 x_1^2 x_3^2 x_4 x_5 - 160 x_1^2 x_3^3 x_4 x_5 + 30 x_1^3 x_4^2 x_5 - 120 x_1^2 x_3^2 x_4^2 x_5 + 120 x_1 x_3^2 x_4^2 x_5 + 20 x_1^2 x_4^3 x_5 - 40 x_1 x_3 x_4^3 x_5 + 5 x_1 x_4^4 x_5 + x_1^5 - 10 x_1^4 x_3 + 40 x_1^3 x_3^2 - 80 x_1^2 x_3^3 + 80 x_1 x_4^3 - 32 x_5^5 + 5 x_1^4 x_4 - 40 x_1^3 x_3 x_4 + 120 x_1^2 x_3^2 x_4 - 160 x_1 x_3^3 x_4 + 80 x_3^4 x_4 + 10 x_1^3 x_4^2 - 60 x_1^2 x_3 x_4^2 + 120 x_1 x_3^2 x_4^2 - 80 x_3^3 x_4^2 + 10 x_1^2 x_3^2 - 40 x_1 x_3 x_4^2 + 3 x_1^2 x_3^2 x$$

Radical of ideals

Given an ideal $I \subseteq \mathbb{C}[x_1, x_2, \dots, x_n]$, the **radical** of I is:

$$rad(I) = \{ f \in \mathbb{C}[x_1, x_2, \dots, x_n] : f^n \in I \text{ for some } n \in \mathbb{N}_{>0} \}.$$

$$I = (x_1^5 x_5^5 + 5 x_1^5 x_5^4 - 10 x_1^4 x_3 x_5^4 + 5 x_1^4 x_4 x_5^4 + 10 x_1^5 x_3^3 - 40 x_1^4 x_3 x_3^3 + 40 x_1^3 x_3^2 x_3^5 + 20 x_1^4 x_4 x_3^5 - 40 x_1^3 x_3 x_4 x_3^5 + 10 x_1^3 x_4^2 x_3^5 + 10 x_1^5 x_5^2 - 60 x_1^4 x_3 x_5^2 + 120 x_1^3 x_3^2 x_5^2 - 80 x_1^2 x_3^3 x_5^2 + 30 x_1^4 x_4 x_5^2 - 120 x_1^3 x_3 x_4 x_5^2 + 120 x_1^2 x_3^2 x_4 x_5^2 + 30 x_1^3 x_4^2 x_5^2 - 60 x_1^2 x_3 x_4^2 x_5^2 + 10 x_1^2 x_4^3 x_5^2 + 5 x_1^5 x_5 - 40 x_1^4 x_3 x_5 + 120 x_1^3 x_3^2 x_5 - 160 x_1^2 x_3^3 x_5 + 80 x_1 x_3^4 x_5 + 20 x_1^4 x_4 x_5 - 120 x_1^3 x_3 x_4 x_5 + 240 x_1^2 x_3^2 x_4 x_5 - 160 x_1 x_3^3 x_4 x_5 + 30 x_1^3 x_4^2 x_5 - 120 x_1^2 x_3 x_4^2 x_5 + 120 x_1 x_3^2 x_4^2 x_5 + 20 x_1^2 x_4^3 x_5 - 40 x_1 x_3 x_4^3 x_5 + 5 x_1 x_4^4 x_5 + x_1^5 - 10 x_1^4 x_3 + 40 x_1^3 x_3^2 - 80 x_1^2 x_3^3 + 80 x_1 x_3^4 - 32 x_3^5 + 5 x_1^4 x_4 - 40 x_1^3 x_3 x_4 + 120 x_1^2 x_3^2 x_4 - 160 x_1 x_3^3 x_4 + 80 x_3^4 x_4 + 10 x_1^3 x_4^2 - 60 x_1^2 x_3 x_4^2 + 120 x_1 x_3^2 x_4^2 - 80 x_3^3 x_4^2 + 10 x_1^2 x_4^3 - 40 x_1 x_3 x_4^3 + 40 x_2^3 x_4^3 + 5 x_1 x_4^4 - 10 x_3 x_4^4 + x_5^5 - 2 x_3, \ x_3^3 x_4^6 + 3 x_1^2 x_3^2 x_4^4 + 3 x_1^2 x_3 x_4^2 + x_1^3)$$

$$rad(I) = (x_1x_5 + x_1 - 2x_3 + x_4, x_1^5 - 2x_3, x_3x_4^2 + x_1)$$

- V(I) = V(rad(I))
- $I \subseteq rad(I)$

Description of polynomial invariant ideals

• Polynomial systems with the same solution set.

 $\{x^2+y^2+z^2=1,\ 3x^2\ y^2-6x^2z+9x^2+y^4-y^2z^2-2y^2z+2y^2+2z^3-3z^2+2z-3=0,\ 5x^2-z^2+2y^2=2\}\ \ is\ decomposed\ to\ \{x^2+y^2+z^2=1,\ x-z=0\}\ and\ \{x^2+y^2+z^2=1,\ x+z=0\}$

Description of polynomial invariant ideals

Polynomial systems with the same solution set.

 $\{x^2+y^2+z^2=1,\ 3x^2\ y^2-6x^2z+9x^2+y^4-y^2z^2-2y^2z+2y^2+2z^3-3z^2+2z-3=0,\ 5x^2-z^2+2y^2=2\}\ \ is\ decomposed\ to\ \{x^2+y^2+z^2=1,\ x-z=0\}\ and\ \{x^2+y^2+z^2=1,\ x+z=0\}$

Goals:

- Find a **minimal** generating set for the ideal of polynomial invariants.
- Decompose the associated variety into smaller ones
- Generate equivalent generating sets which are easier to represent

Symbolic-numerical algebraic computation

Approach: Degenerating a given system F to a more-structured system

Constructing structured system GDistinguished monomials Solving system G by elimination Computing all solutions

Symbolic method: solving system F

Numeric method: solving system F

Main idea: Gröbner degenerations.

Algebraic formulation

$$g$$
 is a P.I. of $\mathcal{L}(a, F)$:
$$x \leftarrow a$$
while true do
$$x \leftarrow F(x)$$
end while

$$g(a) = 0$$

$$g \circ F(a) = 0$$

$$g \circ F^{(2)}(a) = 0$$
...
$$g \circ F^{(k)}(a) = 0 \text{ for all } k \in \mathbb{N}$$

Algebraic formulation

$$\begin{array}{c} g \text{ is a P.l. of } \mathcal{L}(a,F) \colon \\ \hline \hline x \leftarrow a \\ \text{while true do} \\ \hline x \leftarrow F(x) \\ \text{end while} \end{array} \iff \begin{array}{c} g(a) = 0 \\ g \circ F(a) = 0 \\ g \circ F^{(2)}(a) = 0 \\ \cdots \\ g \circ F^{(k)}(a) = 0 \text{ for all } k \in \mathbb{N} \end{array}$$

Definition

The invariant set of (F, g) is

$$S_{(F,g)} = \{x \in \mathbb{C}^n \mid \forall m \in \mathbb{Z}_{\geq 0} : g \circ F^{(m)}(x) = 0\}.$$

Invariant sets are algebraic varieties.

Algebraic formulation

$$g$$
 is a P.I. of $\mathcal{L}(a, F)$:
$$x \leftarrow a$$
while true do
$$x \leftarrow F(x)$$
end while

$$g(a) = 0$$

$$g \circ F(a) = 0$$

$$g \circ F^{(2)}(a) = 0$$
...
$$g \circ F^{(k)}(a) = 0 \text{ for all } k \in \mathbb{N}$$

Definition

The invariant set of (F, g) is

$$S_{(F,g)} = \{x \in \mathbb{C}^n \mid \forall m \in \mathbb{Z}_{\geq 0} : g \circ F^{(m)}(x) = 0\}.$$

Invariant sets are algebraic varieties.

Proposition

Let $a \in \mathbb{C}^n$. Then, g is a P.I. of $\mathcal{L}(a, F)$ if and only if $a \in \mathcal{S}_{(F,g)}$.

Computing Invariant Sets

Theorem

Given a polynomial map $F: \mathbb{C}^n \to \mathbb{C}^n$ and a polynomial g, there exists an integer $N \in \mathbb{N}$ such that:

$$S_{(F,g)} = V(g) \cap V(g \circ F) \cap \cdots \cap V(g \circ F^{(N)}).$$

INVARIANTSETCOMPUTATION

```
Input: g and F = (f_1, \ldots, f_n) in \mathbb{Q}[x_1, \ldots, x_n]

Output: A finite set of polynomials whose common zero set is S_{(F,g)}

1: S \leftarrow \{g\}

2: \widetilde{g} \leftarrow g \circ F

3: while V(S) \neq V(S \cup \{\widetilde{g}\}) do

4: S \leftarrow S \cup \{\widetilde{g}\}

5: \widetilde{g} \leftarrow \widetilde{g} \circ F

6: end while

7: return S
```

• Consider $g = x_1^2 - x_1x_2 + 9x_1^3 - 24x_1^2x_2 + 16x_1x_2^2$

$$\begin{array}{c} (\mathbf{x}_1,\mathbf{x}_2) \leftarrow (a_1,a_2) \\ \textbf{while true do} \\ \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \leftarrow \begin{pmatrix} 10 & -8 \\ 6 & -4 \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \\ \textbf{end while} \end{array}$$

- Consider $g = x_1^2 x_1x_2 + 9x_1^3 24x_1^2x_2 + 16x_1x_2^2$
- $g \circ F = 360x_1^3 1248x_1^2x_2 + 40x_1^2 + 1408x_1x_2^2 72x_1x_2 512x_2^3 + 32x_2^2$

- Consider $g = x_1^2 x_1x_2 + 9x_1^3 24x_1^2x_2 + 16x_1x_2^2$
- $g \circ F = 360x_1^3 1248x_1^2x_2 + 40x_1^2 + 1408x_1x_2^2 72x_1x_2 512x_2^3 + 32x_2^2$
- Gröbner basis computation shows $V(g) \neq V(g, g \circ F)$.

- Consider $g = x_1^2 x_1x_2 + 9x_1^3 24x_1^2x_2 + 16x_1x_2^2$
- $g \circ F = 360x_1^3 1248x_1^2x_2 + 40x_1^2 + 1408x_1x_2^2 72x_1x_2 512x_2^3 + 32x_2^2$
- Gröbner basis computation shows $V(g) \neq V(g, g \circ F)$.
- $g \circ F^2 = 7488x_1^3 26880x_1^2x_2 + 832x_1^2 + 31744x_1x_2^2 1600x_1x_2 12288x_2^3 + 768x_2^2$
- This time, $V(g, g \circ F) = V(g, g \circ F, g \circ F^2)$.

- Consider $g = x_1^2 x_1x_2 + 9x_1^3 24x_1^2x_2 + 16x_1x_2^2$
- $g \circ F = 360x_1^3 1248x_1^2x_2 + 40x_1^2 + 1408x_1x_2^2 72x_1x_2 512x_2^3 + 32x_2^2$
- Gröbner basis computation shows $V(g) \neq V(g, g \circ F)$.
- $g \circ F^2 = 7488x_1^3 26880x_1^2x_2 + 832x_1^2 + 31744x_1x_2^2 1600x_1x_2 12288x_2^3 + 768x_2^2$
- This time, $V(g, g \circ F) = V(g, g \circ F, g \circ F^2)$.

Conclusion: g is a P.I. for $\mathcal{L}((a_1, a_2), F)$ if and only if $(a_1, a_2) \in V(g, g \circ F)$.

Polynomial invariants of degree d

$$g = \sum_{|\alpha_i| \leq d} \mathbf{b}_i x^{\alpha_i} \in \mathbb{C}[x] \text{ is a P.I.}$$

$$\boxed{\mathbf{x} \leftarrow \mathbf{a}}$$
 while true do
$$\mathbf{x} \leftarrow F(\mathbf{x})$$
 end while

Polynomial invariants of degree d

$$g = \sum_{|\alpha_i| \leq d} \mathbf{b}_i x^{\alpha_i} \in \mathbb{C}[x] \text{ is a P.I.}$$

$$\mathbf{x} \leftarrow \mathbf{a}$$

$$\mathbf{while} \text{ true do}$$

$$\mathbf{x} \leftarrow F(\mathbf{x})$$

$$\mathbf{end while}$$

```
h = \sum_{|\alpha_i| \le d} y_i x^{\alpha_i} \in \mathbb{C}[x, y] \text{ is a P.I.}
(x, y) \leftarrow (a, b)
while true do
(x, y) \leftarrow G(x, y) = (F(x), y)
end while
```

- Let $I_{d,\mathcal{L}}$ denote the set of all polynomial invariants of degree $\leq d$.
- It forms a finite-dimensional vector space and can thus be uniquely characterized by a system of linear equations.

Polynomial invariants of degree d

$$g = \sum_{|\alpha_i| \le d} b_i x^{\alpha_i} \in \mathbb{C}[x] \text{ is a P.I.}$$

$$x \leftarrow a$$
while true do
$$x \leftarrow F(x)$$
end while

```
h = \sum_{|\alpha_i| \le d} y_i x^{\alpha_i} \in \mathbb{C}[x,y] \text{ is a P.I.}
(x,y) \leftarrow (a,b)
while true do
(x,y) \leftarrow G(x,y) = (F(x),y)
end while
```

- Let $I_{d,\mathcal{L}}$ denote the set of all polynomial invariants of degree $\leq d$.
- It forms a finite-dimensional vector space and can thus be uniquely characterized by a system of linear equations.

Theorem (ISSAC 2024)

Let $F = (f_1, \dots, f_n)$ be a sequence of polynomials in $\mathbb{Q}[x_1, \dots, x_n]$ and let $d \ge 1$. Then, there is an algorithm that computes a polynomial matrix A, s.t.

$$I_{d,\mathcal{L}} = \{ \sum_{|\alpha_i| \leq d} b_i x^{\alpha_i} \mid (b_1, \dots, b_m) \in \ker A(\mathbf{a}) \}.$$

- Goal: Compute all polynomial invariants of degree ≤ 2.
- Consider $F = (10x_1 8x_2, 6x_1 4x_2, y_1, \dots, y_6)$
- The general polynomial: $g = y_1 + y_2x_1 + y_3x_2 + y_4x_1^2 + y_5x_1x_2 + y_6x_2^2$
- The algorithm returns a matrix $M(x_1, x_2)$ such that

$$M(x_1, x_2) \cdot (y_1 \ y_2 \ \cdots \ y_6)^T = 0$$

encodes the polynomial invariants.

Output matrix and basis cases

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3x_1 - 4x_2 & 3x_1 - 4x_2 & 0 & 0 & 0 & 0 \\ 0 & 64x_2 & 112x_2 - 48x_1 & 48x_2^2 & 84x_2^2 - 36x_1x_2 & 27x_1^2 - 126x_1x_2 + 147x_2^2 \\ 0 & 32x_2 & 56x_2 - 24x_1 & 24x_1x_2 & -9x_1^2 + 21x_1x_2 + 12x_2^2 & -18x_1x_2 + 42x_2^2 \\ 0 & 4x_2 & 7x_2 - 3x_1 & 3x_1^2 & 3x_1x_2 & 3x_2^2 \end{bmatrix}$$

Output matrix and basis cases

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3x_1 - 4x_2 & 3x_1 - 4x_2 & 0 & 0 & 0 & 0 \\ 0 & 64x_2 & 112x_2 - 48x_1 & 48x_2^2 & 84x_2^2 - 36x_1x_2 & 27x_1^2 - 126x_1x_2 + 147x_2^2 \\ 0 & 32x_2 & 56x_2 - 24x_1 & 24x_1x_2 & -9x_1^2 + 21x_1x_2 + 12x_2^2 & -18x_1x_2 + 42x_2^2 \\ 0 & 4x_2 & 7x_2 - 3x_1 & 3x_1^2 & 3x_1x_2 & 3x_2^2 \end{bmatrix}$$

• We compute an explicit basis for the vector space $I_{2,\mathcal{L}}$ by computing the kernel of the above matrix, depending on the initial values (a_1, a_2) .

Output matrix and basis cases

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3x_1 - 4x_2 & 3x_1 - 4x_2 & 0 & 0 & 0 & 0 \\ 0 & 64x_2 & 112x_2 - 48x_1 & 48x_2^2 & 84x_2^2 - 36x_1x_2 & 27x_1^2 - 126x_1x_2 + 147x_2^2 \\ 0 & 32x_2 & 56x_2 - 24x_1 & 24x_1x_2 - 9x_1^2 + 21x_1x_2 + 12x_2^2 & -18x_1x_2 + 42x_2^2 \\ 0 & 4x_2 & 7x_2 - 3x_1 & 3x_1^2 & 3x_1x_2 & 3x_2^2 \end{bmatrix}$$

- We compute an explicit basis for the vector space $I_{2,\mathcal{L}}$ by computing the kernel of the above matrix, depending on the initial values (a_1, a_2) .
- Performing Gaussian elimination on M leads to four cases:

Initial values	Basis of $I_{2,\mathcal{L}}$
$a_1 = a_2 = 0$	$\{x_1, x_2, x_1 x_2, x_1^2, x_2^2\}$
$a_1 = a_2 \neq 0$	$\{x_1 - x_2, x_1^2 - x_1x_2, -x_1x_2 + x_2^2\}$
$a_1 = \frac{4}{3}a_2 \neq 0$	${3x_1 - 4x_2, -3x_1^2 + 16x_1x_2 - 16x_2^2, -3x_1x_2 + 4x_2^2}$
$a_1 \neq \frac{4}{3}a_2$,	$\left\{ (3a_1 - 4a_2)^2 x_1 - (3a_1 - 4a_2)^2 x_2 - 9(a_1 - a_2) x_1^2 + 24(a_1 - a_2) x_1 x_2 - 16(a_1 - a_2) x_2^2 \right\}$
$a_1 \neq a_2$	

Experiments (comparison with Polar)

- Polar: Moosbrugger, Stankovic, Bartocci, Kovács OOPSLA2, 2022
- Polar can handle probabilistic loops, whereas ours is limited to deterministic ones.
- We compute all possible polynomial invariants up to a specified degree,
- Ours are minimal generating polynomials of degree 1 to 4. TL = Timeout (360 seconds).

Degree	1		2		3		4	
Benchmark	Ours	Polar	Ours	Polar	Ours	Polar	Ours	Polar
Fib1	0.014	0.2	0.046	0.32	0.17	0.68	1.31	1.58
Fib2	0.017	0.23	0.056	0.46	6.3	1.18	TL	3.69
Fib3	0.013	0.21	0.056	0.4	0.137	1.26	0.61	3.82
Nagata	0.026	0.25	0.07	0.55	0.15	1.21	0.35	2.84
Yagzhev9	0.12	0.43	TL	5.2	TL	131.5	TL	TL
Yagzhev11	0.095	0.45	2.7	6.83	241	359	TL	TL
Ex 9	0.016	0.28	0.06	0.64	0.19	2.38	0.55	11.5
Ex 10	0.02	0.51	0.07	1.7	0.16	16.21	0.75	TL
Squares	0.02	0.5	0.06	0.67	0.15	1.15	0.38	2.25

Degree	1		2		3		4	
Benchmark	d	Polar	d	Polar	d	Polar	d	Polar
Fib1	0	0	0	0	1	1	4	1
Fib2	0	0	0	0	1	1	TL	1
Fib3	0	0	0	0	1	1	4	1
Nagata	1	0	5	1	13	1	26	2
Yagzhev9	3	0	TL	3	TL	3	TL	TL
Yagzhev11	0	0	0	0	TL	1	TL	TL
Ex 9	0	0	0	0	3	1	11	1
Ex 10	0	0	2	0	8	0	19	0
Squares	1	0	5	0	13	0	26	0

Summary

Summary

- Compute the set of initial values for which given polynomials are P.I.
- Compute all polynomial invariants up to a given degree:
 - For each possible initial value
 - For a fixed initial value
- Compute all polynomial invariants of a given form (fixed terms).
- · Exploit the structure of polynomial systems for efficiency.
- Extend methods to loops with inequality guards (ISSAC 2024).

Summary

Summary

- Compute the set of initial values for which given polynomials are P.I.
- Compute all polynomial invariants up to a given degree:
 - For each possible initial value
 - · For a fixed initial value
- Compute all polynomial invariants of a given form (fixed terms).
- Exploit the structure of polynomial systems for efficiency.
- Extend methods to loops with inequality guards (ISSAC 2024).
- Bayarmagnai, Mohammadi, Prébet. ISSAC 2024

Thank you for your attention!