转子的临界转速与隔振

曾凡林

哈尔滨工业大学理论力学教研组

本讲主要内容

- 1、转子的临界转速
- 2、隔振

1、转子的临界转速

临界转速 ——使转子发生激烈振动的特定转速。

圆盘惯性力的合力 F_1 由A指向C,通过质心。 $F_1 = m\omega^2 \cdot OC$ 转轴的弹性恢复力F指向轴心O,大小为: $F = kr_{\Lambda}$ 由达朗贝尔原理,惯性力与弹性恢复力相互"平衡",得到

$$kr_A = m\omega^2 \cdot OC = m\omega^2(r_A + e)$$

解得点A的挠度(轴的变形量)为:
$$r_A = \frac{m\omega^2 e}{k - m\omega^2}$$
 考虑到 $\sqrt{\frac{k}{m}} = \omega_0$,上式变为: $r_A = \frac{\omega^2 e}{\omega_0^2 - \omega^2}$

当 $\omega = \omega_0$ 时, $r_A \rightarrow \infty$

使转轴挠度异常增大的转动角速度

—临界角速度。记为 $\omega_{\rm cr}=\omega_{\rm o}$

对应的转速称为临界转速,记为 n_{cr} .

当 $\omega > \omega_0$ 时, r_A 迅速减小而趋于e。

当 $\omega >> \omega_0$ 时, $r_A \approx e$

质心C与轴心点O重合,圆盘绕质心转动。

—自动定心现象

1、转子的临界转速