

Discrete & Continuous Data

Semester 1, 2021 Kris Ehinger

- Naïve Bayes (as discussed last lecture) assumes nominal data
 - What happens if we have continuous data?

• How to compute probabilities $P(x_i | c_i)$?

Wind	Temp	Rain?
north	32.1	no
east	18.4	yes
east	19.5	no
north	23.5	no
north	20.3	yes
east	19.7	yes

This doesn't look right...

Outline

- Converting data types
 - Nominal -> numeric
 - Numeric -> nominal
- Naïve Bayes with continuous data
 - Gaussian naïve Bayes
 - Kernel Density Estimation (KDE)
 - KDE naïve Bayes

Converting data types

Data types

- The input to a machine learning system consists of instances, which have:
 - Attributes
 - Class labels (if supervised)
- Attributes and class labels can be:
 - Nominal / categorical
 - Ordinal
 - Continuous / numeric

Attribute types

- Machine learning algorithms typically assume attributes have a particular data type
- Algorithms that assume nominal attributes:
 - Naïve Bayes (as described in last lecture)
 - Decision trees
- Algorithms that assume numeric attributes:
 - Support vector machines (SVM)
 - Perceptron, neural network

Attribute types

- What if we have attributes of the wrong type for a given model?
- Options:
 - Discard those attributes
 - Convert the attributes to match the model
 - Change the model assumptions to match the data

Nominal -> numeric

- Option 1: Convert category names to numbers
 - Attribute: mode of transport
 - Nominal: "bus," "tram," "car," "bike," "walk"
 - Numeric: 0, 1, 2, 3, 4
- Problem: creates an artificial ordering when no order exists, makes some categories seem more/less similar to each other

Nominal -> numeric

- Option 2: One-hot encoding
 - Attribute with m possible values -> m boolean attributes
 - "bus" = [1, 0, 0, 0, 0]
 - "tram" = [0, 1, 0, 0, 0]
 - "car" = [0, 0, 1, 0, 0]
 - "bike" = [0, 0, 0, 1, 0]
 - "walk" = [0, 0, 0, 0, 1]
- Best way to represent nominal values in a continuous space, but increases dimensionality of the space

Visualisation of option 2

Computing distances

- How to compute distances between nominal attributes?
- Consider these boolean attributes for an animal classifier:
 - Size: large/small
 - Diet: meat/plants

Computing distances (difference)

Computing distances

- How to compute distances between nominal attributes?
 - Euclidean distance
 - If A and B differ on N attributes, $dist_E(A, B) = \sqrt{N}$

$$dist_E(A,B) = \sqrt{\sum_i (a_i - b_i)^2}$$

- Hamming distance
 - If A and B differ on N attributes, $dist_H(A, B) = N$

$$dist_H(A, B) = \sum_{i} \begin{cases} 0, & a_i == b_i \\ 1, & otherwise \end{cases}$$

Numeric -> nominal

- Discretisation is the translation of continuous numeric attributes to discrete nominal attributes
 - Example: map temperatures to "hot," "mild," "cool"
- Discretisation is generally a two-step process:
 - Decide how many nominal values (= intervals) onto which you will map the numeric values
 - Decide where to place the boundaries for these intervals

Discretisation example 1

You measured app usage (hours/week) from 1000 users. How would you recode this attribute into 3 levels: low, medium, high?

Week 3, Lecture 1 COMP30027 Machine Learning 20

Discretisation example 2

You measured app usage (hours/week) from 1000 users. How would you recode this attribute into 3 levels: low, medium, high?

Week 3, Lecture 1 COMP30027 Machine Learning 21

Discretisation example 3

You measured app usage (hours/week) from 1000 users. How would you recode this attribute into 3 levels: low, medium, high?

Week 3, Lecture 1 COMP30027 Machine Learning 22

Discretisation options

- Equal-width discretisation find min/max of range, partition into n bins of width (max-min)/n
- Equal-frequency discretisation sort values, find breakpoints that produce n bins with (approximately) equal numbers of items
- Disadvantages:
 - Arbitrary group boundaries
 - Equal-width is sensitive to outliers, equal-frequency is sensitive to sample bias > some numbers of a population are systematically more likely to be selected in a sample
 - User must choose n

Discretisation options

- Use some clustering method to discover natural breakpoints within your data (e.g., k-means clustering)
- Disadvantages
 - More complicated than equal-width or -frequency
 - If data doesn't have natural "groups," k-means result is the same as equal-width discretisation
 - Sensitive to outliers
 - User must choose n

Supervised discretisation

- Group values into class-contiguous intervals
 - Sort values, and identify breakpoints in class membership

• Reposition breakpoints if the numeric value is the same

Set the breakpoints midway between the neighbouring values

Supervised discretisation

- Supervised discretisation may help you find "groups" that are most relevant for your classification task
- Disadvantages
 - Arbitrary group boundaries
 - Arbitrary number of groups (tends to produce too many groups)
 - Tends to overfit training set

Discretisation summary

- Various options; each has advantages and disadvantages
- Discretisation means throwing out some information
 - This can help simplify data to make it easier for the model to learn
 - But you can potentially lose details that would have been useful

Naïve Bayes with continuous data

Naïve Bayes

• In naïve Bayes, we choose the class c_j that maximizes:

$$P(c_j)\prod_i P(x_i|c_j)$$
Prior probability of class c_j Likelihood of feature x_i in class c_j

- $P(x_i|c_j)$ can be computed differently for different data types:
 - If x_i is a nominal attribute with multiple levels, count number of times each level occurs in class c_i
 - If x_i is a numeric attribute, compute its probability distribution

Probability density function

- A popular pdf for continuous data is the Gaussian distribution (or normal distribution)
- The probability of observing value x from a variable with mean (expected value) μ and standard deviation σ:

$$f(x) = \phi_{\sigma}(x - \mu) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x - \mu}{\sigma}\right)^{2}}$$

 ϕ_{σ} is a Gaussian distribution with mean = 0 and standard

deviation = σ

- Important properties of this distribution:
 - Symmetric about the mean μ
 - Area under the curve sums to 1

Probability density function

- Where do the **mean** μ and **standard deviation** σ come from?
- These are descriptive statistics that can be estimated from our data

Mean of N samples of an attribute X:

$$\mu_{\mathcal{X}} = \sum_{i=1}^{N} \frac{x_i}{N}$$

Standard deviation of N samples of an attribute X:

$$\sigma_{x} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N - 1}}$$

Why Gaussian?

- In practice, the normal distribution is a reasonable approximation for many events
 - Including binomial, Poisson, chi-square, and Student's tdistributions
 - E.g., height, weight, shoe size, reaction time ...

Compute probability distribution for each class:

Wind	Temp	Rain?
north	32.1	no
east	18.4	yes
east	19.5	no
north	23.5	no
north	20.3	yes
east	19.7	yes

When rain=no, temp is [32.1, 19.5, 23.5]

Mean:

$$\mu_{no} = (32.1 + 19.5 + 23.5)/3 = 25.0$$

Standard deviation:

$$\sigma_{no} = \sqrt{\frac{(32.1 - 25.0)^2 + (19.5 - 25.0)^2 + (23.5 - 25.0)^2}{3 - 1}} = 6.4$$

Compute probability distribution for each class:

Wind	Temp	Rain?
north	32.1	no
east	18.4	yes
east	19.5	no
north	23.5	no
north	20.3	yes
east	19.7	yes

When rain=yes, temp is [18.4, 20.3, 19.7]

Mean:

$$\mu_{yes} = (18.4 + 20.3 + 19.7)/3 = 19.5$$

Standard deviation:

$$\sigma_{yes} = \sqrt{\frac{(18.4 - 19.5)^2 + (20.3 - 19.5)^2 + (19.7 - 19.5)^2}{3 - 1}} = 1.0$$

• Compute the probability of the test instance by substituting the μ and σ for each class:

$$P(temp = 22.8 | rain = no) = P(rain == no)\phi_{\sigma_{no}}(22.8 - \mu_{no})$$

=
$$(0.5) \frac{1}{6.4\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{22.8-25.0}{6.4}\right)^2} = \mathbf{0.0292}$$

$$P(temp = 22.8|rain = yes) = P(rain == yes)\phi_{\sigma_{yes}}(22.8 - \mu_{yes})$$

=
$$(0.5) \frac{1}{1.0\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{22.8-19.5}{1.0})^2} = \mathbf{0.0006}$$

Gaussian Naïve Bayes

• In naïve Bayes, we choose the class c_j that maximizes:

$$P(c_j)\prod_i P(x_i|c_j)$$
Prior probability of class c_j Likelihood of feature x_i in class c_j

- If x_i is a numeric attribute, $P(x_i|c_j)$ can be represented with a Gaussian distribution
- But not all real-world data follows a Gaussian distribution...

Example: Detect boundaries

Problem: classify boundary type from elevation

Example: Detect boundaries

Are these distributions Gaussian?

Kernel density estimate of the distribution:

$$\hat{f}(x) = \frac{1}{N} \sum_{i=1}^{N} \phi_{\sigma}(x - x_i)$$

where ϕ_{σ} is the Gaussian distribution with mean of 0 and standard deviation of σ

 Learn the probability distribution from the data instead of assuming a specific distribution (e.g., Gaussian)

KDE: Kernel bandwidth

- KDE has one parameter: the standard deviation of the Gaussian σ (= "kernel bandwidth")
- Parameter must be chosen by user

Example: KDE naïve Bayes

Probability distribution function

KDE Naïve Bayes

- Which class is more likely for test item x_{test} ?
- We only have one feature x (elevation), so choose the class c_j that maximizes $P(c_j)P(x_{test}|c_j)$
- Compute likelihood using KDE:

$$P(x_{test}|c_{yes}) = \frac{1}{N} \sum_{n=1}^{N} \phi_{\sigma_{yes}}(x_{test} - x_n)$$

$$x_{1,...} x_{n} = \text{elevations of the N "yes"}$$

$$P(x_{test}|c_{no}) = \frac{1}{M} \sum_{m=1}^{M} \phi_{\sigma_{no}}(x_{test} - x_m)$$

$$\mathbf{x}_{1, \dots} \mathbf{x}_m = \mathbf{ele}$$

 $x_1,...x_m$ = elevations of the M "no" examples in the training set

examples in the training set

argmax (P(cj) P(Xtest(cj))

Example: KDE naïve Bayes

 Compute the probability of the test instance using KDE:

$$P(x = 15|yes) = P(yes) \frac{1}{N} \sum_{n=1}^{N} \phi_{\sigma_{yes}}(x_{test} - x_n)$$

$$= (0.266) \left(\frac{1}{266}\right) \sum_{n=1}^{266} \phi_5(15 - x_n) = \mathbf{0.00029}$$

$$P(x = 15|no) = P(no) \frac{1}{M} \sum_{m=1}^{M} \phi_{\sigma_{no}}(x_{test} - x_m)$$

$$= (0.734) \left(\frac{1}{734}\right) \sum_{n=1}^{734} \phi_5(15 - x_m) = \mathbf{0.00497}$$

KDE summary

- Advantages:
 - Model arbitrary probability distributions
 - No assumptions about the shape of the distribution (e.g., Gaussian)
- Disadvantages:
 - Need to choose a kernel bandwidth
 - Need many parameters to represent the PDF; slow to compute probability at new points

Naïve Bayes summary

- Naïve Bayes works with various data types
 - Different ways to compute $P(x_i|c_j)$ for different types of attributes
- Mix numeric and nominal attributes in one model no need to convert data types
- Optimal combination of attributes
 - Assuming conditional independence, and correct estimates of the probability distributions

Types of naïve Bayes

- Multivariate: attributes are nominal and can take any of a fixed number of values
- Binomial (or Bernoulli): attributes are binary
 - Special case of multivariate
- Multinomial: attributes are natural numbers corresponding to frequency
 - Probability $P(a_k = m|c_j) \approx P(a_k = 1|c_j)^m/(m!)$
- Gaussian: attributes are numeric, and we can assume they come from a Gaussian distribution
- Kernel density estimation: attributes are numeric, and come from an arbitrary distribution