

CHAPTER 2

LINEAR
TIME-INVARIANT
SYSTEMS

Introduction 0 Discrete-Time LTI Systems: The Convolution 1 Sum Continuous-Time LTI Systems: The 2 **Convolution Integral** Properties of Linear Time-Invariant Systems 3 Causal LTI Systems Described by Differential and Difference Equations 4 **Block Diagram Representations of First-**Order Systems Described by Differential and 5

Difference Equations

2.0 Introduction

- Convolution property of LTI systems
- Impulse response and LTI systems' properties
- ➤ Linear constant-coefficient difference and differential equations (LCCDEs) and their solutions

2.1.1 What is the Convolution Sum?

$$x[n] \longrightarrow h[n] \\ \delta[n] \to h[n] \longrightarrow y[n] = x[n] * h[n]$$

Step 1: Decomposing x[n]:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$

= \cdots + x[-2]\delta[n+2] + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + \cdots

Step 2: From linearity and time-invariance property, we can write:

$$y[n] = \cdots + x[-2]h[n+2] + x[-1]h[n+1] + x[0]h[n] + x[1]h[n-1] + x[2]h[n-2] + \cdots$$

convolution sum
$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n]*h[n]$$

h[n] can completely characterize LTI system!

2.1.2 How to calculate the Convolution Sum?

Example 2.1 (Method 1: Graphical Method)

Consider an LTI system with unit sample response h[n] and input x[n], as illustrated in Figure (a). Calculate the convolution sum of these two sequences graphically.

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[-1] = x[0]h[-1] + x[1]h[-2] = 1.5$$

$$y[0] = x[0]h[0] + x[1]h[-1] + x[2]h[-2] = 2$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[1] = x[0]h[1] + x[1]h[0]$$

+ $x[2]h[-1] = 2.5$

$$y[2] = x[0]h[2] + x[1]h[1] + x[2]h[0] = 2$$

For
$$n = 4$$
,
$$y[4] = x[2]h[2] = 0.5$$

Method 2: (Table Method)

h[n]						ı	Ī
x[n]	h[-2]	<i>h</i> [-1]	<i>h</i> [0]	<i>h</i> [1]	<i>h</i> [2]		
	<i>y</i> [-2]	<i>y</i> [-1]	<i>y</i> [0]	<i>y</i> [1]	<i>y</i> [2]	<i>y</i> [3]	<i>y</i> [4]
<i>x</i> [0]	x[0]h[-2]	$x[\theta]h[-1]$	x[0]h[0]	x[0]h[1]	x[0]h[2]	0	0
<i>x</i> [1]	x[1]h[-2]	x[1]h[-1]	x[1]h[0]	x[1]h[1]	x[1]h[2]	0	0
<i>x</i> [2]	x[2]h[-2]	x[2]h[-1]	x[2]h[0]	x[2]h[1]	x[2]h[2]	0	0
:	0	0	0	0 0	0	0	

Method 3: Multiplying if two sequences are short.

Method 4: (Definition)

Example 2.2

Determine and plot the output y[n] = x[n] * h[n] where input x[n] and unit sample response h[n] given by

$$x[n] = \left(\frac{1}{2}\right)^{n-2} u[n-2], \qquad h[n] = u[n+2]$$

Sol: By definition

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} \left(\frac{1}{2}\right)^{k-2} u[k-2] \cdot u[n-k+2]$$

$$y[n] = \sum_{k=2}^{n+2} \left(\frac{1}{2}\right)^{k-2} u[n] = \left(\frac{1}{2}\right)^{-2} \sum_{k=2}^{n+2} \left(\frac{1}{2}\right)^{k} u[n]$$

From the geometric sum formula,
$$y[n] = 4 \cdot \frac{\frac{1}{4} [1 - 0.5^{n+1}]}{1 - 0.5} u[n] = 2 \left[1 - \left(\frac{1}{2}\right)^{n+1} \right] u[n]$$

2.2.1 What is the Convolution Integral?

$$x(t) \longrightarrow h(t) \longrightarrow y(t) = ?$$

$$\delta(t) \to h(t)$$

Step 1: Representing x(t) in terms of impulses (Decomposing):

Comparing with the *Sampling* $x(t_0) = \int_{-\infty}^{\infty} x(t) \delta(t - t_0) dt$ *property* of $\delta(t)$:

$$x(t_0) = \int_{-\infty}^{\infty} x(t)\delta(t - t_0)dt$$

$$\hat{x}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta) \delta_{\Delta}(t - k\Delta) \Delta \longrightarrow h(t)$$

$$\hat{y}(t) = \sum_{k=-\infty}^{\infty} x(k\Delta) h_{\Delta}(t - k\Delta) \Delta$$

$$y(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau$$

convolution integral

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = x(t) * h(t)$$

unit impulse response h(t) can completely characterize continuous-time LTI systems.

2.2.2 How to calculate the Convolution Integral?

Example 2.3 (Method 1: Graphical Method)

Compute the convolution of the following two signals in

Figure (a).

Interval 1. For t < 0, there is no overlap between the nonzero portions of $x(\tau)$ and $h(t - \tau)$, and consequently, y(t) = 0.

$$x(\tau)h(t-\tau) = \begin{cases} t-\tau, & 0 < \tau < t \\ 0, & otherwise \end{cases}$$

Interval 2. For 0 < t < T,

$$y(t) = \int_0^t (t - \tau) d\tau = \frac{1}{2}t^2$$

Interval 3. For T < t < 2T,

$$y(t) = \int_0^T (t - \tau) d\tau = Tt - \frac{1}{2}T^2$$

For
$$2T < t < 3T$$

$$t-2T$$

$$t$$
For $t > 3T$

$$0$$

$$T$$

$$t-2T$$

$$t$$

Interval 4. For 2T < t < 3T

$$y(t) = \int_{t-2T}^{T} (t-\tau)d\tau = -\frac{1}{2}t^2 + Tt + \frac{3}{2}T^2$$

Interval 5. For t > 3T, there is no overlap between the nonzero portions of $x(\tau)$ and $h(t-\tau)$, hence, y(t) = 0.

Summarizing,
$$y(t) = \begin{cases} 0, & t < 0, & t > 3T \\ 0.5t^{2}, & 0 < t < T \\ Tt - 0.5T^{2}, & T < t < 2T \\ -0.5t^{2} + Tt + 1.5T^{2}, & 2T < t < 3T \end{cases}$$

2.3.1 Properties of Convolution and Systems' Construction

The Commutative Property (交換律)

$$x[n] * h[n] = \sum_{k = -\infty}^{\infty} x[k]h[n - k] = h[n] * x[n] = \sum_{k = -\infty}^{\infty} h[k]x[n - k]$$
$$x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau = h(t) * x(t) = \int_{-\infty}^{\infty} h(\tau)x(t - \tau)d\tau$$

➤ The Distributive Property (分配律)

$$x[n] * (h_1[n] + h_2[n]) = x[n] * h_1[n] + x[n] * h_2[n]$$

 $x(t) * [h_1(t) + h_2(t)] = x(t) * h_1(t) + x(t) * h_2(t)$

➤ The Associative Property (结合律)

$$x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$$
$$x(t) * [h_1(t) * h_2(t)] = [x(t) * h_1(t)] * h_2(t)$$

Two equivalent systems: they having same impulse responses

$$x[n] \longrightarrow h_1[n] \longrightarrow h_2[n] \longrightarrow y[n] \times [n] \longrightarrow h_2[n] \longrightarrow h_1[n] \longrightarrow y[n]$$

$$x[n] \longrightarrow h[n] = h_2[n] * h_1[n] \longrightarrow y[n] \times [n] \longrightarrow h[n] = h_1[n] * h_2[n] \longrightarrow y[n]$$
Four equivalent systems

Convolving with Impulses

$$x(t) * \delta(t) = x(t)$$

$$x[n] * \delta[n] = x[n]$$

$$x(t) * \delta(t - t_0) = x(t - t_0)$$

$$x[n] * \delta[n - n_0] = x[n - n_0]$$

Differentiation and Integration of Convolution Integral

$$y'(t) = x(t) * h'(t) = x'(t) * h(t)$$

$$\int_{-\infty}^{t} y(\tau)d\tau = \left[\int_{-\infty}^{t} x(\tau)d\tau\right] * h(t) = x(t) * \left[\int_{-\infty}^{t} h(\tau)d\tau\right]$$

Combining the two properties leading to

$$y(t) = \left[\int_{-\infty}^{t} x(\tau) d\tau \right] * h'(t) = x'(t) * \left[\int_{-\infty}^{t} h(\tau) d\tau \right] = \int_{-\infty}^{t} \left[x'(\tau) * h(\tau) \right] d\tau$$

First Difference and Accumulation of Convolution Sum

$$\nabla y[n] = \{\nabla x[n]\} * h[n] = x[n] * \{\nabla h[n]\}$$

$$\sum_{k=-\infty}^{n} y[k] = \left\{ \sum_{k=-\infty}^{n} x[k] \right\} * h[n] = x[n] * \left\{ \sum_{k=-\infty}^{n} h[k] \right\}$$

$$y[n] = \left\{ \sum_{k=-\infty}^{n} x[k] \right\} * \left\{ \nabla h[n] \right\} = \left\{ \nabla x[n] \right\} * \left\{ \sum_{k=-\infty}^{n} h[k] \right\}$$

2.3.2 Relations between h(t)/h[n] and Properties of LTI Systems

LTI Systems with and without Memory
LTI systems without memory must have its impulse response

$$h[n] = K\delta[n]$$
 $h(t) = K\delta(t)$

Invertible LTI Systems

$$x(t) \longrightarrow h(t) \qquad x(t) * h(t) \qquad h_{I}(t) \longrightarrow x(t)$$

$$x(t) * h(t) * h_{I}(t) = x(t)$$

$$h(t) * h_{I}(t) = \delta(t) \qquad h[n] * h_{I}[n] = \delta[n]$$

Causal LTI Systems

Causal LTI systems must have its impulse response satisfying

$$h[n] = 0$$
 for $n < 0$ $h(t) = 0$ for $t < 0$

Stable LTI Systems

Stable LTI systems must have its impulse response satisfying

absolutely summable
$$\sum_{k=-\infty}^{\infty} |h[k]| < \infty$$

$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$
 absolutely integrable

Proof: (Sufficient condition)

$$|y[n]| = |x[n] * h[n]| = \left| \sum_{k=-\infty}^{\infty} x[n-k]h[k] \right| < \sum_{k=-\infty}^{\infty} |x[n-k]| h[k]|$$
Let $|x[n]| < B < \infty$ Then $|y[n]| < \sum_{k=-\infty}^{\infty} B|h[k]|$
If $\sum_{k=-\infty}^{\infty} |h[n]| < \infty$ Then $|y[n]| < \infty$

Therefore, the absolutely summable is a sufficient condition to guarantee the stability of a discrete-time LTI system.

(Necessary condition)

Let
$$x[n] = \begin{cases} \frac{h^*[-n]}{|h[-n]|}, h[n] \neq 0 \\ 0, h[n] = 0 \end{cases}$$
, $h^*[-n]$ is conjugate complex of $h[-n]$.

Obviously x[n] is bounded by 1, i.e. $|x[n]| \le 1$.

However,

$$y[0] = \sum_{k=-\infty}^{\infty} x[-k]h[k] = \sum_{k=-\infty}^{\infty} \frac{|h[k]|^2}{|h[k]|} = \sum_{k=-\infty}^{\infty} |h[k]|$$
If
$$\sum_{k=-\infty}^{\infty} |h[k]| \to \infty$$
 Then $y[0] \to \infty$

This showing that the absolutely summable is also a necessary condition.

2.3.3 The Unit Step Response s(t)/s[n] of an LTI System (单位阶跃响应)

$$u(t)/u[n] \longrightarrow h(t)/h[n] \longrightarrow s(t)/s[n]$$

$$s(t) = u(t) * h(t) = \int_{-\infty}^{\infty} h(\tau)u(t-\tau)d\tau = \int_{-\infty}^{t} h(\tau)d\tau$$

$$h(t) = \frac{ds(t)}{dt} = s'(t)$$

For a continuous-time LTI system, s(t) is the running integral of h(t). h(t) is the first derivative of s(t).

$$s[n] = u[n] * h[n] = \sum_{k=-\infty}^{\infty} h[k]u[n-k] = \sum_{k=-\infty}^{n} h[k]$$
$$h[n] = s[n] - s[n-1] = \nabla s[n]$$

For a discrete-time LTI system, s[n] is the running sum of h[n]. h[n] is the first difference of s[n].

2.4.1 Linear Constant-Coefficient Differential Equations (LCCDE)

Example 2.4

$$v_s(t)$$
: input signal; $v_s(t)$ +

 $v_c(t)$: output signal.

$$\frac{dv_c(t)}{dt} + \frac{1}{RC}v_c(t) = \frac{1}{RC}v_s(t)$$

- Linear constant-coefficient differential equation is the mathematical representation of a continuous-time LTI system.
- Seneral Mth-order LCCDE: $\sum_{i=0}^{N} a_i \frac{d^i y(t)}{dt^i} = \sum_{i=0}^{M} b_j \frac{d^j x(t)}{dt^j}$
- Note: If $v_s(t)$ is a causal signal and $v_c(0_-) \neq 0$, the circuit can also be represented by above equation. In this case it is an Incrementally Linear system.

2.4.2 Solutions to LCCDEs

One or more auxiliary conditions must be specified to solve a differential equation. For a causal LTI system, we will use the condition of initial rest (初始松弛), that is if x(t)=0 for $t \le t_0$, y(t)=0 for $t \le t_0$ and therefore for a Mth-order equation, the N initial conditions are

$$y(t_0) = \frac{dy(t_0)}{dt} = \frac{d^2y(t_0)}{dt^2} = \dots = \frac{d^{N-1}y(t_0)}{dt^{N-1}} = 0$$

Classic solution:

$$y(t) = y_p(t) + y_h(t)$$

 $y(t) = y_p(t) + y_h(t)$ Particular solution (特解) homogeneous solution (齐次解)

Forced response (受迫响应) Natural response (自然响应)

> The second solution: Decomposing response by the reason leading to the part of outputs, i.e., $y(t) = y_{zi}(t) + y_{zc}(t)$

Example 2.4 (Continued) (Reviewing Classic Method)

Sol: Let *R*=4, *C*=1/2, and
$$v_s(t) = 3e^{-t}u(t)$$

Then
$$\frac{dy(t)}{dt} + 0.5y(t) = 0.5x(t)$$
 ① Obviously, $y_h(t) = Be^{-0.5t}$

Since
$$x(t) = 3e^{-t}$$
 for $t > 0$, so let $y_p(t) = Ae^{-t}$ $t > 0$

Taking x(t) and $y_p(t)$ for t>0 into equation ① yields

$$-Ae^{-t} + 0.5Ae^{-t} = 1.5e^{-t}$$

Thus

$$A = -3$$

So for
$$t>0$$
, $y(t) = Be^{-0.5t} - 3e^{-t}$, $t>0$

Taking use of the condition of initial rest, we get B=3

Consequently,
$$y(t) = 3e^{-0.5t} - 3e^{-t}$$
 for $t>0$
or $y(t) = 3(e^{-0.5t} - e^{-t})u(t)$

or

2.4 Causal LTI Systems Described By Differential and Difference Equations 2.4.3 Linear Constant-Coefficient Difference Equations (LCCDE)

> Linear constant-coefficient difference equation is the mathematical representation of a discrete-time LTI system.

Example 2.5 Jack saves money every month and the interest

rate of bank is α per month. He saves into the bank x[n] yuan at the beginning of the n^{th} month and y[n] is the deposits in his account of the nth month (before the bank calculates the interest) Try to write a difference equation relating x[n] and y[n]. (For

simplicity suppose he wouldn't withdraw his money in bank.) y[n] is consists of the sum of the following three parts: Sol:

(1) x[n] — saved at the beginning of the n^{th} month

or

(2) y[n-1] — deposit of the (n-1)th month (3) $\alpha y[n-1]$ — interest at the end of the $(n-1)^{th}$ month

 $y[n] = x[n] + y[n-1] + \alpha y[n-1]$ So $y[n] - (1 + \alpha)y[n - 1] = x[n]$

Additionally,

For sequence x[n], its *First forward difference* (一阶前向差分) is defined as $\Delta x[n] = x[n+1] - x[n]$

First backward difference (一阶后向差分) is defined as $\nabla x[n] = x[n] - x[n-1]$

Analogously, Second forward difference can be constructed as

$$\Delta^{2}x[n] = \Delta\{\Delta x[n]\}\$$
= $\Delta x[n+1] - \Delta x[n] = x[n+2] - 2x[n+1] + x[n]$

Second backward difference as

$$\nabla^2 x[n] = \nabla x[n] - \nabla x[n-1] = x[n] - 2x[n-1] + x[n-2]$$

2.4.4 Solutions to LCCDEs

- > General Mth-order linear constant-coefficient difference equation: $\sum_{i=0}^{N} a_i y[n-i] = \sum_{j=0}^{M} b_j x[n-j]$
- \rightarrow For causal LTI systems, initial rest condition is that if x[n]=0for $n < n_0$, y[n] = 0 for $n < n_0$ and therefore for a Mth-order equation, the Ninitial conditions are

$$y[n_0 - 1] = y[n_0 - 2] = \cdots = y[n_0 - N] = 0$$

Classic solution: $y[n] = y_p[n] + y_h[n]$ Forced response Natural response

- Parameter Recursive method: $y[n] = \frac{1}{a_0} \left\{ \sum_{j=0}^{M} b_j x[n-j] \sum_{i=1}^{N} a_i y[n-i] \right\}$ (递归法)
- $y[n] = y_{zi}[n] + y_{zs}[n]$

Example 2.6 (Classic Method)

Solve the difference equation y[n] + 2y[n-1] = n-2 with the initial condition y[0]=1.

Sol: The characteristic equation is a + 2 = 0, the root is a = -2.

So
$$y_h[n] = C(-2)^n$$
 , Let $y_p[n] = D_1 n + D_2$

Taking $y_p[n]$ into the original equation yields

$$D_{1}n + D_{2} + 2D_{1}(n-1) + 2D_{2} = n-2$$

$$D_{1} = \frac{1}{3}, \quad D_{2} = -\frac{4}{9}$$

$$y[n] = y_{h}[n] + y_{p}[n] = C(-2)^{n} + \frac{1}{3}n - \frac{4}{9}$$

From the initial condition of y[0]=1, we have $C=\frac{13}{9}$

Consequently,
$$y[n] = \frac{1}{9} [13(-2)^n + 3n - 4]$$

Example 2.7 (Recursive Method)

A first-order LTI system is represented by equation

$$y[n] - 0.5y[n-1] = 3x[n]$$

Determine the output recursively with the condition of initial rest and $x[n] = \delta[n-1]$.

Sol: Rewrite the given difference equation as

$$y[n] = 3x[n] + 0.5y[n-1]$$

Starting from initial condition, we can solve for successive

values of
$$y[n]$$
 for $n \ge 1$: $y[1] = 3x[1] + 0.5y[0] = 3$

$$y[2] = 3x[2] + 0.5y[1] = 3 \cdot 0.5$$

$$y[3] = 3x[3] + 0.5y[2] = 3 \cdot (0.5)^2$$

$$y[4] = 3x[4] + 0.5y[3] = 3 \cdot (0.5)^3$$

$$y[n] \stackrel{:}{=} 3x[n] + 0.5y[n-1] = 3 \cdot (0.5)^{n-1}$$

Considering y[n] = 0 for $n \le 0$, the solution is

$$y[n] = 3 \cdot (0.5)^{n-1} u[n-1]$$

2.4.5 Relationships between y_p , y_h , y_{zi} and y_{zs}

$$x(t)/x[n] \longrightarrow h(t)/h[n] \longrightarrow y(t)/y[n] = y_p(t)/y_p[n] + y_h(t)/y_h[n] y(t)/y[n] = y_{zi}(t)/y_{zi}[n] + y_{zs}(t)/y_{zs}[n]$$

Example 2.8 $(y(t) = y_{zi}(t) + y_{zs}(t))$

A second-order causal LTI system is described by differential equation y''(t) + 5y'(t) + 6y(t) = x'(t) + x(t). Determine the response with initial conditions $y(0_-) = 2$, $y'(0_-) = -3$ and input $x(t) = 3e^{-4t}u(t)$. Sol: The roots of characteristic equation are a=-2 and a=-3, so

$$y_{zi}(t) = C_1 e^{-2t} + C_2 e^{-3t}, \quad t > 0$$

Plug in the initial conditions, $\begin{cases} y(0_{-}) = 2 = C_{1} + C_{2} \\ y'(0_{-}) = -3 = -2C_{1} - 3C_{2} \end{cases}$

Solve for
$$C_1 = 3$$
, $C_2 = -1$

$$y_{zi}(t) = (3e^{-2t} - e^{-3t})u(t)$$

$$y'(0_{-}) = -3 = -2C_{1} - 3C_{2}$$

$$y_{zi}(0_{+}) = y_{zi}(0_{-}) = y(0_{-}) = 2,$$

$$y'_{zi}(0_{+}) = y'_{zi}(0_{-}) = y'(0_{-}) = -3$$

The impulse response of this system is

$$h(t) = (2e^{-3t} - e^{-2t})u(t)$$

Thus

Relation?

$$y_{zs}(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(t - \tau)h(\tau)d\tau$$

$$= \int_{0}^{t} 3e^{-4(t - \tau)}(2e^{-3\tau} - e^{-2\tau})d\tau$$

$$= 6e^{-4t} \int_{0}^{t} e^{\tau}d\tau - 3e^{-4t} \int_{0}^{t} e^{2\tau}d\tau$$

$$= \left(-\frac{3}{2}e^{-2t} + 6e^{-3t} - \frac{9}{2}e^{-4t}\right)u(t)$$

$$y(t) = y_{zi}(t) + y_{zs}(t) = \left(\frac{3}{2}e^{-2t} + 5e^{-3t} - \frac{9}{2}e^{-4t}\right)u(t)$$
Natural response

Natural response forced response

If applying $y(t) = y_h(t) + y_p(t)$, then from the characteristic roots

$$y_h(t) = A_1 e^{-2t} + A_2 e^{-3t}, \quad t > 0$$

and

$$y_p(t) = Be^{-4t}, \quad t > 0$$

Taking x(t) and $y_p(t)$ for t>0 into input-output equation yields

$$16Be^{-4t} - 20Be^{-4t} + 6Be^{-4t} = -12e^{-4t} + 3e^{-4t}$$

$$B = -\frac{9}{2}$$

Then

$$y(t) = y_h(t) + y_p(t) = A_1 e^{-2t} + A_2 e^{-3t} - \frac{9}{2} e^{-4t}, \quad t > 0$$

Finally plug in
$$y'(0_{+}) = y'(0_{-}) + 3 = 0, y(0_{+}) = y(0_{-}) = 2$$
 to find

$$A_1 = \frac{3}{2}$$
, $A_2 = 5$ Not given! Found by

impulse balance

Example 2.9 (Is there anything between h(n)/h(t) and y_h ?)

Determine the h[n] of a causal LTI system described by

$$y[n] - 0.5y[n-1] = 3x[n]$$

Sol: h[n] satisfies h[n] - 0.5h[n-1] = 0 n > 0

with initial condition h[-1] = 0

It's obvious that $h[n] = C(0.5)^n$ n > 0 ①

From $h[0] - 0.5h[-1] = 3\delta[0]$ we have h[0] = 3

Continuingly from $h[1] - 0.5h[0] = 3\delta[1]$, h[1] = 1.5

Taking h[1] into equation ① yields C=3

Thus $h[n] = 3(0.5)^n$ for n > 0 ②

In fact, h[0] also satisfies equation 2, so we can write

$$h[n] = 3\left(0.5\right)^n u[n]$$

Trying one more time by recursive method!

2.5.1 Block Diagram Representations of Discrete-Time Systems

> First-order difference equation :

$$y[n] + ay[n-1] = bx[n]$$

addition delay multiplication

Three basic elements in block diagram (方框图): adder (加法器), multiplier (乘法器) and delayer (延时器).

Basic elements for the block diagram representation of causal discrete-time systems: (a) an adder;(b) a multiplier;(c) a delayer.

2.5 Block Diagram Representations of First-Order Systems Described By Differential and Difference Equations

Steps to draw the block diagram of causal system represented by first-order difference equation

$$y[n] + ay[n-1] = bx[n]$$

$$y[n] = bx[n] - ay[n-1]$$

2.5.2 Block Diagram Representations of Continuous-Time Systems

First-order Differential equation :

$$\frac{dy(t)}{dt} + ay(t) = bx(t)$$
 differentiation addition multiplication

> Three basic elements in block diagram are adder, multiplier and integrator (积分器).

$$x(t) \longrightarrow \int_{-\infty}^{t} x(\tau) d\tau$$

Block diagram representation of an integrator

2.5 Block Diagram Representations of First-Order Systems Described By Differential and Difference Equations

Steps to draw the block diagram of causal system represented by first-order differential equation

$$\frac{dy(t)}{dt} + ay(t) = bx(t)$$

$$\frac{dy(t)}{dt} = bx(t) - ay(t)$$

2.6 SUMMARY

- ➤ A representation of an arbitrary signal as weighted sum/integral of shifted unit impulses;
- ➤ Convolution sum / convolution integral representation for the response of a LTI system;
- Properties including causality and stability of LTI system;
- Solutions to LCCDEs;
- \triangleright Relationships between y_h , y_p , y_{zi} and y_{zs} ;
- \triangleright Understanding of initial conditions used to solve LCCDEs, like $y(0_{-})$, $y(0_{+})$ and initial rest.

Homework

2.21 (a) (c) 2.22 (a) (c) 2.23 2.24

2.28 (b) (e) (g) 2.29 (b) (e) (f)

2.31