Computational information geometry on Bregman manifolds and submanifolds

Frank Nielsen

Sony Computer Science Laboratories, Inc.

Applied geometry for data sciences Part II
Singapore
2nd June 2025

Outline of the talk

Bregman divergences with some extensions

- Geometry of Bregman balls
- Two applications on Bregman manifolds:
 - Jensen-Shannon centroid on a mixture family manifold
 - Chernoff information/point on an exponential family manifold

Bregman divergences (1960's)

• F: $\Theta \subseteq \mathbb{R}^m \to \mathbb{R}$ a strictly convex and smooth real-valued function on a finite dim. Hilbert space <.,.>

Bregman divergence $B_F: \Theta \times RelInt(\Theta) \rightarrow \mathbb{R}_{\geq 0}$

$$B_F(\theta_1:\theta_2)=F(\theta_1)-F(\theta_2)-<\theta_1-\theta_2, \nabla F(\theta_2)>$$

Lev M. Bregman (1941 - 2023) Photo: courtesy of Alexander Fradkov

Smooth measure of discrepancy, not a metric distance because it violates the triangle inequality, and is asymmetric when F is not quadratic function. Hence the delimiter notation ":" instead of $B_F(\theta_1, \theta_2)$

BD interpreted as **remainder** of a first order Taylor expression of $F(\theta_1)$ around θ_2 :

$$F(\theta_1) = F(\theta_2) + <\theta_1 - \theta_2, \ \nabla F(\theta_2) > + \underbrace{B_F(\theta_1 : \theta_2)}_{Taylor\ remainder}$$

Example of remainder: Lagrange remainder (smooth C² generators): $\nabla^2 \mathbf{F} \, \mathbf{SPD} \Rightarrow B_F(\theta_1 : \theta_2) \ge 0$

$$\mathsf{B}_{\mathsf{F}}(\theta_1:\theta_2) = \frac{1}{2} (\theta_2 - \theta_1)^{\top} \nabla^2 \mathsf{F}(\theta) (\theta_2 - \theta_1) \ge 0 , \theta \in [\theta_1, \theta_2]$$

BDs: Versatile and popular in OR, ML, IT, signal processing

Originally motivated for finding an intersection point in a set of convex objects using **Bregman projections**. (ex. of convex objects: halfspaces, balls, etc.)

BDs unify:

- squared Euclidean divergence $F(\theta) = \frac{1}{2} \Sigma_i < \theta, \theta > \theta$
- Kullback-Leibler divergence $F(\theta) = \Sigma_i \theta_i \log(\theta_i)$ (relative Shannon entropy)
- Itakura-Saito divergence $F(\theta) = \Sigma_i \log(\theta_i)$ (relative Burg entropy)

$$B_F(\theta_1:\theta_2)=F(\theta_1)-F(\theta_2)-\langle \theta_1-\theta_2, \nabla F(\theta_2)\rangle$$

convex feasibility of Bregman cyclic projections $\theta_0 \in \Theta, t \leftarrow 0$ $\theta_{t+1} = \arg\min_{\theta \in O_{1+\ell_t}}$

L22 ($\beta = 2$), KLD ($\beta \to 0$), ISD ($\beta = 1$), belong to a *family* of β -divergences, learn ad hoc $\beta \ge 0$

$$\mathsf{x},\mathsf{y}\!>\!0,\;\beta\geq 0 \qquad d_{\beta}(x|y) = \left\{ \begin{array}{ll} \frac{x}{y} - \log(\frac{x}{y}) - 1 & \beta = 0 \\ x(\log x - \log y) + (y - x) & \beta = 1 \\ \frac{x^{\beta} + (\beta - 1)y^{\beta} - \beta xy^{\beta - 1}}{\beta(\beta - 1)} & \beta \in \mathbb{R}\backslash\{0, 1\} \end{array} \right. \qquad \text{Bregman} \\ \beta \in \mathbb{R}\backslash\{0, 1\} \qquad \text{Generator: } \phi_{\beta}(x) = \left\{ \begin{array}{ll} -\log x + x - 1 & \beta = 0 \\ x\log x - x + 1 & \beta = 1 \\ \frac{x^{\beta}}{\beta(\beta - 1)} - \frac{x}{\beta - 1} + \frac{1}{\beta} & \text{otherwise.} \end{array} \right.$$

Geometric interpretation as a **vertical** gap using the graph $(\theta, F(\theta))$:

$$\mathbf{B_F(\theta_1:\theta_2)} = F(\theta_1) - (F(\theta_2) + <\theta_1 - \theta_2, \nabla F(\theta_2) >)$$

Design novel divergences from graph of convex functions...

Example: Bregman chord divergence, application: zero-order optimization in ML

The chord gap divergence and a generalization of the Bhattacharyya distance, IEEE ICASSP 2018

Bregman divergences in machine learning…

Kullback-Leibler divergence between two probability densities:

$$D_{KL}[p(x):q(x)] = \int p(x) \log (p(x)/q(x)) d\mu(x)$$

is difficult to calculate in closed form because of the integral \(\) ...

But Kullback-Leibler divergence between two probability densities of a natural exponential family with densities p(x|θ) ∝ exp(<x, θ >)

amount to a reverse Bregman divergence $B_F^{rev}(\theta_1 : \theta_2) := B_F(\theta_2 : \theta_1)$

$$D_{\mathsf{KL}}[\mathsf{p}(\mathsf{x}|\theta_1) : \mathsf{p}(\mathsf{x}|\theta_2)] = \mathsf{B}_{\mathsf{F}}^{\mathsf{rev}}(\theta_1 : \theta_2) = \mathsf{B}_{\mathsf{F}}(\theta_2 : \theta_1)$$

Bypass the \int , ∇ F in BD easy to calculate! \Rightarrow Easy calculations of KLDs

Representational Bregman divergences (2009)

Use a representation function R:

$$B_{F,R}(\lambda_1 : \lambda_2) := B_F(R(\lambda_1) : R(\lambda_2))$$

$$= F(R(\lambda_1)) - F(R(\lambda_2)) - \langle R(\lambda_1) - R(\lambda_2), \nabla F(R(\lambda_2)) \rangle$$

Note that FoR may not be a Bregman generator, i.e., not be strictly convex.

For example, consider the KLD between two densities of a **generic exponential family (natural parameter from representation function)**

$$p_{\lambda}(x) \propto \tilde{p}_{\lambda}(x) = \exp(\langle \theta(\lambda), t(x) \rangle) h(x)$$
 include normal, Gamma/Beta, Wishart, Poisson, etc.

 θ (λ): natural parameter corresponding to λ , representation function R(.)= θ (.)

$$D_{\mathsf{KL}}[\mathsf{p}(\mathsf{x}|\,\boldsymbol{\lambda}_{1}):\mathsf{p}(\mathsf{x}|\,\boldsymbol{\lambda}_{2})] = \mathsf{B}_{\mathsf{F}}^{\mathsf{rev}}(\,\theta\ (\boldsymbol{\lambda}_{1}):\,\theta\ (\boldsymbol{\lambda}_{2})) = \mathsf{B}_{\mathsf{F}}(\,\theta\ (\boldsymbol{\lambda}_{2}):\,\theta\ (\boldsymbol{\lambda}_{1}))$$

NEF density $p(x|\theta) \propto \exp(\langle x, \theta \rangle)$ $D_{KL}[p(x|\theta_1) : p(x|\theta_2)] = B_F^{rev}(\theta_1 : \theta_2) = B_F(\theta_2 : \theta_1)$

Extended α -divergences are representational BDs

α-divergences extended to m-dimensional positive measures are representational Bregman divergences:

$$D_{\alpha}^{+}(q_{1}:q_{2}) = \begin{cases} \frac{4}{1-\alpha^{2}} \sum_{i=1}^{m} \left(\frac{1-\alpha}{2}q_{1} + \frac{1+\alpha}{2}q_{2} - q_{1}^{\frac{1-\alpha}{2}}q_{2}^{\frac{1+\alpha}{2}}\right), & \alpha \in \mathbb{R} \setminus \{-1,1\} \\ D_{\text{KL}}^{+}(q_{1}:q_{2}) = D_{\text{KL}}^{+}(q_{2}:q_{1}) = \sum_{i=1}^{m} q_{2}^{i} \log \frac{q_{2}^{i}}{q_{1}^{i}} + q_{1}^{i} - q_{2}^{i} & \alpha = 1 \\ D_{\text{KL}}^{+}(q_{1}:q_{2}) = \sum_{i=1}^{m} q_{1}^{i} \log \frac{q_{1}^{i}}{q_{2}^{i}} + q_{2}^{i} - q_{1}^{i} & \alpha = -1. \end{cases}$$

$$D_{\alpha}^{+}(q_{1}:q_{2}) = B_{F_{\alpha}}(R_{\alpha}(q_{1}):R_{\alpha}(q_{2}))$$

Bregman generator:
$$F_{\alpha}(r) = \sum_{i=1}^{m} f_{\alpha}(r_i), \quad f_{\alpha}(x) = \begin{cases} \frac{2}{1+\alpha} \left(\frac{1-\alpha}{2}x\right)^{\frac{2}{1-\alpha}}, & \alpha \neq 1 \\ \log x, & \alpha = 1. \end{cases}$$

Representation function:
$$R_{\alpha}(q) = (r_{\alpha}(q_1), \dots, r_{\alpha}(q_m)), \quad r_{\alpha}(x) = \frac{2}{1-\alpha} x^{\frac{1-\alpha}{2}}$$

Bregman divergence:
$$B_F(\theta_1:\theta_2)=F(\theta_1)-F(\theta_2)-<\theta_1-\theta_2$$
, $\nabla F(\theta_2)>$

"The dual Voronoi diagrams with respect to representational Bregman divergences." IEEE ISVD 2009

Convex duality via Legendre-Fenchel transform

• Legendre-Fenchel transform of a convex function F:

$$F^*(\eta) = \sup_{\theta \in \Theta} \{ \langle \theta, \eta \rangle - F(\theta) \}$$

• Problem: some *tricky functions* with gradient map ∇F domain not convex...

```
Example: h(\xi_1, \xi_2) = [(\xi_1^2/\xi_2) + \xi_1^2 + \xi_2^2]/4 on upper plane domain \Xi = (\xi_1, \xi_2)
```

• Thus, we consider "nice convex functions" = Legendre-type functions $(\Theta, F(\theta))$

```
(i) \Theta open, and (ii) \lim_{\theta \to \partial \Theta} \| \nabla F(\theta) \| = \infty
```

Then we get:

- **1** reciprocal gradient maps $\eta = \nabla F(\theta)$ and $\theta = \nabla F^*(\eta)$, $\nabla F^* = (\nabla F)^{-1}$
- **2** conjugation yields $(H,F^*(\eta))$ of Legendre type
- **3** biconjugation is an **involution**: $(H,F^*(\eta))^* = (H^* = \theta,F^{**} = F(\theta))$
- Convex conjugate: $F^*(\eta) = \langle \nabla F^{-1}(\eta), \eta \rangle F(\nabla F^{-1}(\eta))$ since $\eta = \nabla F(\theta)$

Fenchel-Young divergences & convex duality

- Young inequality: F (θ ₁)+F* (η ₂)≥< θ ₁, η ₂> with equality when η ₂ = ∇ F (θ ₁)
- Build the Fenchel-Young divergence from the inequality: lhs-rhs ≥0

$$Y_{F, F^*}(\theta_1, \eta_2) = F(\theta_1) + F^*(\eta_2) - \langle \theta_1, \eta_2 \rangle \ge 0$$

- Mixed parameterizations θ and η : $B_F(\theta_1:\theta_2) = Y_{F,F^*}(\theta_1, \eta_2)$
- Duality: $B_F(\theta_1; \theta_2) = Y_{F, F^*}(\theta_1, \eta_2) = Y_{F^*,F}(\eta_2, \theta_1) = B_{F^*}(\eta_2, \eta_1)$
- Dual BDs + Dual FYs from involution F**=F
- Note: $B_F(\theta_1:\theta_2)=0 \Leftrightarrow \theta_1=\theta_2 \Leftrightarrow \eta_1=\eta_2 \text{ i.e., } \nabla F(\theta_1)=\nabla F(\theta_2)$

Bregman divergence vs Fenchel-Young divergence

Same parameterization $B_F(\theta_1; \theta_2) = Y_{F, F^*}(\theta_1, \eta_2)$ mixed parameterization

F strictly convex and differentiable

F' / strictly increasing

$$B_F(\theta_1:\theta_2)=F(\theta_1)-F(\theta_2)-<\theta_1-\theta_2, \nabla F(\theta_2)>$$

$$Y_{F, F^*}(\theta_{1, \eta_2}) = F(\theta_1) + F^*(\eta_2) - \langle \theta_{1, \eta_2} \rangle$$

Kullback-Leibler divergence between non-normalized exponential family densities

Kullback-Leibler divergence between two positive measures:

$$D_{KL}^{+}[p_1(x):p_2(x)] = \int \{p_1(x) \log (p_1(x)/p_2(x)) + p_2(x)-p_1(x)\} d\mu(x)$$

- Exponential family density:
 - Normalized: $p(x|\theta) = \exp(\langle x, \theta \rangle F(\theta)) d\mu(x)$
 - Non-normalized: $q(x|\theta) = \exp(\langle x, \theta \rangle) d\mu(x)$
- Hence, p(x| θ)= q(x| θ)/Z(θ) with partition function Z(θ)=exp(F(θ)) and cumulant function F(θ)=log Z(θ)
- When F is convex, Z=exp(F) is log-convex
- log-convex functions are convex functions: So both F and Z are convex functions
- KLD between normalized densities = reverse Bregman wrt F:

$$D_{KL}[p_{\theta 1}(x):p_{\theta 2}(x)] = B_{F}^{*}[\theta_{1}:\theta_{2}] = B_{F}[\theta_{2}:\theta_{1}]$$

• KLD between non-normalized densities = reverse Bregman wrt Z:

$$D_{KL}^{+}[q_{\theta 1}(x):q_{\theta 2}(x)] = B_{Z}[\theta_{1}:\theta_{2}] = B_{Z}[\theta_{2}:\theta_{1}]$$

Duo Bregman divergences: Generalize BDs with <u>a pair of generators</u>

One generator **majorizes** the other one:

$$F_1(\theta) \geq F_2(\theta)$$

Then

$$B_{F_1,F_2}(\theta:\theta') = F_1(\theta) - F_2(\theta') - (\theta - \theta')^{\top} \nabla F_2(\theta')$$

$$\geq \mathsf{B}_{\mathsf{F}2}(\theta:\theta')$$

- Recover Bregman divergence when $\mathbf{F_1}(\mathbf{\theta}) = \mathbf{F_2}(\mathbf{\theta}) = \mathbf{F}(\mathbf{\theta})$ $\mathbf{B_F}(\mathbf{\theta}_1:\mathbf{\theta}_2) = \mathbf{F}(\mathbf{\theta}_1) - \mathbf{F}(\mathbf{\theta}_2) - <\mathbf{\theta}_1 - \mathbf{\theta}_2, \ \nabla \mathbf{F}(\mathbf{\theta}_2) >$
- Only pseudo-divergence because $B_{F1,F2}(\theta'':\theta'')$ positive, not zero

KLD between nested exponential families amount to duo Bregman pseudo-divergences

$$\frac{p(x|\theta)}{q(x|\theta)} X_1$$

- Consider an exponential family on support X_1 : $D_{\text{KL}}[p(x):q(x)] = \int p(x) \log (p(x)/q(x)) \, d\mu(x)$ $p(x|\theta) = \exp(\langle x, \theta \rangle F_1(\theta)) \, d\mu(x)$ with cumulant function $F_1(\theta) = \log \int_{x_1} \exp(\langle x, \theta \rangle) \, d\mu(x)$
- Another exponential family with **nested supports:** $X_1 \subseteq X_2$ $q(x|\theta) = \exp(\langle x, \theta \rangle - F_2(\theta)) d\mu(x)$ is an exponential family with $F_1(\theta)$ degree (x, θ) and (x, θ) and (x, θ) and (x, θ)

is an exponential family with $F_2(\theta) = \log \int_{X_2} \exp(\langle x, \theta \rangle) d\mu(x) \ge F_1(\theta)$

• Then KLD amounts to a reverse duo Bregman pseudo-divergence:

$$D_{KL}[p(x|\theta_1):q(x|\theta_2)] = B_{F2,F1}^{rev}(\theta_1;\theta_2) = B_{F2,F1}(\theta_2;\theta_1)$$

"Statistical divergences between densities of truncated exponential families with nested supports: Duo Bregman and duo Jensen divergences." *Entropy* 24.3 (2022)

Curved Bregman divergences

Consider a domain U which maps to a subset of Θ by $\theta = c(u)$ with dim(U)<dim(Θ):

 $B_{F,u}(u_1:u_2):=B_F(c(u_1):c(u_2))$ is not Bregman when $\{c(u)\mid u\in U\}$ not convex usually not a Bregman divergence unless c(.) is affine

Example: Symmetrized Bregman divergences (Jeffreys-Bregman div.) are curved Bregman divergences: $S_F(\theta_1,\theta_2)=<\theta_1-\theta_2$, $\eta_1-\eta_2>$

$$\begin{split} S_F(\theta_1:\theta_2) &= B_F(\theta_1:\theta_2) + B_F(\theta_2:\theta_1), \\ &= B_F(\theta_1:\theta_2) + B_{F^*}(\nabla F(\theta_1):\nabla F(\theta_2)) \\ &= B_{F_{\xi}}(\xi(\theta_1):\xi(\theta_2)), \\ F^*(\eta) &= \langle \theta, \eta \rangle - F(\theta) \qquad F_{\xi}(\theta, \eta) := F(\theta) + F^*(\eta) \qquad \xi(\theta) = (\theta, \nabla F(\theta)) \\ \mathcal{U} &= \{(\theta, \nabla F(\theta)) : \theta \in \Theta\} \qquad \text{m-dimensional submanifold in 2m-dimensional space} \end{split}$$

Curved Bregman centroid is the Bregman projection of the full Bregman centroid

Theorem:

$$\arg\min_{u\in\mathcal{U}}\sum_{i=1}^n w_i\,B_F(\theta_i:\theta(u)) = \arg\min_{u\in\mathcal{U}}B_F(\bar{\theta}:\theta(u)) \qquad \text{[Bregman projection]}$$

$$\theta_i = \theta(u_i) \qquad \bar{\theta} = \sum_i w_i\theta_i$$

Proof.

$$\min_{u \in \mathcal{U}} \sum_{i=1}^{n} w_{i} B_{F}(\theta_{i} : \theta(u)) = \sum_{i=1}^{n} w_{i} (F(\theta_{i}) - F(\theta(u)) - \langle \theta_{i} - \theta(u), \nabla F(\theta(u)) \rangle),$$

$$\equiv -F(\theta(u)) - \langle \bar{\theta} - \theta(u), \nabla F(\theta(u)) \rangle,$$

$$\equiv F(\bar{\theta}) - F(\theta(u)) - \langle \bar{\theta} - \theta(u), \nabla F(\theta(u)) \rangle$$

$$= B_{F}(\bar{\theta} : \theta(u)).$$

"What is... an information projection?" Notices of the AMS 65.3 (2018): 321-324.

Space of Bregman balls

Example: Itakura-Saito right and left spheres

Right-sided Bregman ball: $\sigma_F(\theta,r) = \{\theta' \in \Theta : B_F(\theta':\theta) \leq r\}$ Left-sided Bregman ball: $\sigma_F^{\star}(\theta,r) = \{\theta' \in \Theta : B_F(\theta:\theta') \leq r\}$

Application: Boolean algebra of unions & intersections of Bregman balls

Right Bregman ball and its complement

$$\mathcal{F} := \{ (\theta, y \ge F(\theta)) : \theta \in \Theta \subset \mathbb{R}^m \} \subset \mathbb{R}^{m+1}$$

↓ means vertical projection

S^c: complement of set S

To any sphere, associate an hyperplane:

$$H_{\theta,r}: y = \langle \theta' - \theta, \nabla F(\theta) \rangle + F(\theta) + r$$

Reciprocally, to an hyperplane cutting the function graph, associate a sphere

$$z = \langle \mathbf{x}, \mathbf{a} \rangle + b$$

Center:
$$\mathbf{c} = \nabla^{-1} F(\mathbf{a})$$

Radius:
$$\langle \mathbf{a}, \mathbf{c} \rangle - F(\mathbf{c}) + b$$

$$\sigma^c = \mathbb{X} \backslash \sigma = \downarrow (H_\sigma^- \cap \partial \mathcal{F}) \qquad \sigma = \downarrow (H_\sigma^+ \cap \partial \mathcal{F}) \qquad \sigma^c = \mathbb{X} \backslash \sigma = \downarrow (H_\sigma^- \cap \partial \mathcal{F})$$

Lifting to potential Bregman generator graph

Intersection of two right Bregman balls

Union of two right Bregman balls

Example: Euclidean spheres potential function: Paraboloid, L22

Top view displays the union of disks

$$B_F(\theta_1:\theta_2)=F(\theta_1)-F(\theta_2)-<\theta_1-\theta_2$$
, $\nabla F(\theta_2)>$

Bregman manifolds: Geometry of convex conjugates

Dual Hessian geometry

[Koszul'64, Shima'70's, Amari&Nagaoka'80's]

On geodesic triangles with right angles in a dually flat space, Progress in Information Geometry: Theory and Applications, Springer 2021

Dual geometry of Bregman manifolds: Convex conjugates (F, F*) yield dual flat connections

(M,F
$$\rightarrow$$
g(θ)= ∇ ²F(θ), F \rightarrow ∇ , F* \rightarrow ∇ *)

Legendre-Fenchel transform

$$D(P_1,P_2) = B_F(\theta_1:\theta_2) = Y_{F,F^*}(\theta_1, \eta_2) = Y_{F^*,F}(\eta_2, \theta_1) = B_{F^*}(\eta_2, \eta_1)$$

- A connection ∇ is **flat** if there exists a coordinate system θ such that all Christoffel symbols vanish: Γ (θ) =0.
- θ is called ∇ –affine coordinate system
- ∇-geodesic solves as line segments

$$\frac{d^2\theta_k}{dt^2} + \sum_{i=1}^p \sum_{j=1}^p \Gamma_{ij}^k \frac{d\theta_i}{dt} \frac{d\theta_j}{dt} = 0$$

"The many faces of information geometry." Not. Am. Math. Soc 69.1 (2022): 36-45.

Dual geometry of smooth Legendre-type functions

Example: Bregman manifold of multivariate Gaussians

$$(M,g, \nabla, \nabla^*)$$

Cumulant function is convex:

$$\mu_{\alpha}^{e} = \Sigma_{\alpha}^{e} \left((1 - \alpha) \Sigma_{1}^{-1} \mu_{1} + \alpha \Sigma_{2}^{-1} \mu_{2} \right)$$

$$\Sigma_{\alpha}^{e} = \left((1 - \alpha) \Sigma_{1}^{-1} + \alpha \Sigma_{2}^{-1} \right)^{-1}$$

$$F_{\theta}(\theta) = \frac{1}{2} \left(d \log \pi - \log |\theta_M| + \frac{1}{2} \theta_v^{\top} \theta_M^{-1} \theta_v \right)$$

with respect to natural parameters:

$$\theta = (\Sigma^{-1}\mu, \frac{1}{2}\Sigma^{-1})$$

$$\theta = (\theta_v, \theta_M) = \left(\Sigma^{-1}\mu, \frac{1}{2}\Sigma^{-1}\right)$$

m-geodesic beware not mixture of Gaussians!

 ∇^e

 p_{μ_1,Σ_1}

$$\gamma_{p_{\mu_1,\sigma_1},p_{\mu_2,\Sigma_2}}^m(\alpha) =: p_{\mu_{\alpha}^m,\Sigma_{\alpha}^m} = p_{(1-\alpha)\eta_1 + \alpha\eta_2} \qquad \eta = (\mu, -\Sigma - \mu\mu^\top)$$

$$\mu_{\alpha}^{m} = (1 - \alpha)\mu_{1} + \alpha\mu_{2} =: \bar{\mu}_{\alpha}$$

$$\Sigma_{\alpha}^{m} = (1 - \alpha)\Sigma_{1} + \alpha\Sigma_{2} + (1 - \alpha)\mu_{1}\mu_{1}^{\top} + \alpha\mu_{2}\mu_{2}^{\top} - \bar{\mu}_{\alpha}\bar{\mu}_{\alpha}^{\top}$$

Bregman divergence = reverse Kullback-Leibler divergence

$$\frac{1}{2} \left(\operatorname{tr}(\Sigma_2^{-1} \Sigma_1) - \log \frac{\det(\Sigma_2)}{\det(\Sigma_1)} - d + (\mu_2 - \mu_1)^\top \Sigma_2^{-1} (\mu_2 - \mu_1) \right)$$

Curved exponential families: Submanifolds

Theorem (Curved Bregman centroid/barycenter) Let $\theta_i = \theta(u_i)$'s be n weighted parameters of \mathcal{U} with weight vector $w \in \Delta_{n-1}$ (the (n-1)-dimensional standard simplex). Then the barycenter in \mathcal{U} with respect to the curved Bregman divergence amounts to the Bregman projection of the center of mass $\bar{\theta} = \sum_i w_i \theta_i$ (right Bregman barycenter) onto \mathcal{U} :

$$\arg\min_{u\in\mathcal{U}}\sum_{i=1}^n w_i\,B_F(\theta_i:\theta(u)) = \arg\min_{u\in\mathcal{U}}\,B_F(\bar{\theta}:\theta(u)).$$

Example: Fisher circle model

Note: submanifold topology can be non-trivial

Bijection between regular exponential families and regular Bregman divergences:

$$\log p_F(x;\theta) = -B_{F^*}(t(x):\eta) + F^*(t(x))$$

Curved BD centroid ↔ MLE of curved exp. fam.

k-MLE: A fast algorithm for learning statistical mixture models, IEEE ICASSP 2012

Scaled skewed Jensen divergences & Bregman divergences

Jensen divergences

measures the vertical gap induced by a strictly convex function

$$\lim_{\alpha \to 0} \mathrm{sJ}_{F,\alpha}(\theta_1:\theta_2) = B_F(\theta_1:\theta_2)$$
 (Bregman divergence)

$$\lim_{\alpha \to 1} sJ_{F,\alpha}(\theta_1 : \theta_2) = B_F(\theta_2 : \theta_1)$$

(reverse BD)

Example 1 of Bregman manifolds:

Mixture family manifolds (F=-S is Shannon negentropy)

Jensen-Shannon centroid for mixture families

Jensen-Shannon divergence Bounded symmetrization of KLD

$$JS(p,q) := \frac{1}{2} \left(KL \left(p : \frac{p+q}{2} \right) + KL \left(q : \frac{p+q}{2} \right) \right)$$

• Jensen-Shannon divergence between two mixtures amounts to a Jensen divergence: $JS(p_1,p_2) = J_F(\theta_1,\theta_2)$ for $p_1 = m_{\theta_1}$ and $p_2 = m_{\theta_2}$, where

$$J_F(\theta_1:\theta_2) = \frac{F(\theta_1) + F(\theta_2)}{2} - F\left(\frac{\theta_1 + \theta_2}{2}\right).$$

• Task: Given a set of discrete distributions (categorical distributions, normalized histograms), calculate its Jensen-Shannon centroid:

$$\min_{p} \sum_{i} JS(p_{i}, p),$$

$$\min_{\theta} \sum_{i} J_{F}(\theta_{i}, \theta),$$

$$\min_{\theta} \sum_{i} \frac{F(\theta_{i}) + F(\theta)}{2} - F\left(\frac{\theta_{i} + \theta}{2}\right),$$

$$\equiv \min_{\theta} \frac{1}{2}F(\theta) - \frac{1}{n}\sum_{i} F\left(\frac{\theta_{i} + \theta}{2}\right) := E(\theta).$$

Need to minimize a difference of convex functions DCA or ConCave Convex algorithm or DCA!

F is Shannon negentropy (convex)

Example 2 of Bregman manifolds:

Exponential family manifolds

(F is cumulant function aka log-partition function)

Chernoff information: A geometric characterization

Generalized

manifold

to

 $= D(P_{\lambda^*}||P_1) = D(P_{\lambda^*}||P_2)$

$$P_{\lambda} = \frac{P_1^{\lambda}(x)P_2^{1-\lambda}(x)}{\sum_{a \in \mathcal{X}} P_1^{\lambda}(a)P_2^{1-\lambda}(a)}$$

Probability simplex

$$C(P_{\theta_1}: P_{\theta_2}) = B(\theta_1: \theta_{12}^{(\alpha^*)}) = B(\theta_2: \theta_{12}^{(\alpha^*)})$$

$$P^* = P_{\theta_{12}^*} = G_e(P_1, P_2) \cap \operatorname{Bi}_m(P_1, P_2)$$

Exponential family manifold

 $p(x|\theta) \propto exp(\langle x, \theta \rangle)$

Chernoff point & information-geometry

Unique intersection point of the exponential geodesic with the dual mixture bisector

Here 2D probability simplex of the family of categorical distributions with 3 choices

In the beginning of IG…

[Hotelling 1930, Rao 1945]

$$I(\theta) = [I_{ij}(\theta)], \quad I_{ij}(\theta) = \operatorname{Cov}(X_i, X_j) = E_{\theta} \left[\frac{\partial}{\partial_{\theta_i}} \log p_{\theta}(x) \, \frac{\partial}{\partial_{\theta_j}} \log p_{\theta}(x) \right] = -E_{\theta} \left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log p_{\theta}(x) \right]$$

Fisher-Rao manifolds

Riemannian geometry

1854

Photo 1956

1915, GR

Tractability of Fisher-Rao distance: Yet the open case of the multivariate normal family!

$$I_{ij}(\theta) = \left(\frac{\partial \mu}{\partial \theta_i}\right)^{\top} \Sigma^{-1} \frac{\partial \mu}{\partial \theta_j} + \frac{1}{2} \operatorname{tr} \left(\Sigma^{-1} \frac{\partial \mu}{\partial \theta_i} \Sigma^{-1} \frac{\partial \mu}{\partial \theta_j}\right) \qquad \text{Fisher length:} \\ \mathrm{d}s_{\mathcal{N}}^2(\mu, \Sigma) = \mathrm{d}\mu^{\top} \Sigma^{-1} \mathrm{d}\mu + \frac{1}{2} \mathrm{tr} \left(\left(\Sigma^{-1} \mathrm{d}\Sigma\right)^2\right)$$

Geodesic ODE: $\begin{cases} \ddot{\mu} - \dot{\Sigma} \Sigma^{-1} \dot{\mu} &= 0, \\ \ddot{\Sigma} + \dot{\mu} \dot{\mu}^{\mathsf{T}} - \dot{\Sigma} \Sigma^{-1} \dot{\Sigma} &= 0. \end{cases}$

Solve ODE with initial values (IV) or boundary values (BV)

Non-constant sectional curvatures which can also be positive! (geodesics are always unique when negative sectional curvatures)

Bivariate normal (represented by ellipsoids)

[IV: Eriksen 1987] $\gamma(0), \dot{\gamma}(0) \in T_{\gamma(0)}$

[BV: Kobayashi 2023]

Fisher-Rao geodesics with boundary

$$\gamma(0), \gamma(1)$$

$$\begin{cases}
\ddot{\mu} - \dot{\Sigma} \Sigma^{-1} \dot{\mu} &= 0, \\
\ddot{\Sigma} + \dot{\mu} \dot{\mu}^{\top} - \dot{\Sigma} \Sigma^{-1} \dot{\Sigma} &= 0.
\end{cases}$$

Red ellipsoids are the boundary conditions: That is bivariate normal distributions (μ_0, Σ_0) and (μ_1, Σ_1)

[BV: Kobayashi 2023]

Technically, MVN Fisher-Rao geodesic: Riemannian submersion of a horizontal geodesic of a Riemannian symmetric space in 2d+1 dimension

A Python library for geometric computing on Bregman Manifolds

pyBregMan

https://franknielsen.github.io/pyBregMan/

Jensen-Shannon centroid

Joint work of Frank Nielsen and Alexander Soen

Thank you!

Some references

- NF and Richard Nock. "The dual Voronoi diagrams with respect to representational Bregman divergences." Sixth International Symposium on Voronoi Diagrams. IEEE, 2009.
- Boissonnat, Jean-Daniel, FN, and Richard Nock. "Bregman Voronoi diagrams." Discrete & Computational Geometry 44 (2010): 281-307.
- NF. "Statistical divergences between densities of truncated exponential families with nested supports: Duo Bregman and duo Jensen divergences." Entropy 24.3 (2022)
- NF and Richard Nock. "Generalizing skew Jensen divergences and Bregman divergences with comparative convexity." IEEE Signal Processing Letters 24.8 (2017)
- NF. "Curved representational Bregman divergences and their applications." arXiv preprint arXiv:2504.05654