Lecture 10 Recurrent neural networks

Information Systems (Machine Learning) Andrey Filchenkov

29.11.2018

Lecture plan

- Sequences and time series
- Recurrent neural networks
- RNNs with memory
- More connections
- Word representation
- The presentation is prepared with materials of
 - D. Polykovsky and K. Khrabrov "Neural networks in machine learning"
 - A. Ng "Recurrent neural networks"
- Slides are available online: goo.gl/BspjhF

Lecture plan

- Sequences and time series
- Recurrent neural networks
- RNNs with memory
- More connections
- Word representation

Application area

- Time series
- Natural language
- Speech
- Dynamical systems
- Images and videos

• In general, is state-of-the art for sequence processing

Sequence processing methods

- Spectral
- Time
- Time-frequency

Time domain methods

Can be viewed as a stochastic process

- Autoregressive
- Integrated
- Moving average

Bayesian models

Can be viewed as a stochastic process with certain independence structure assumptions

- Hidden Markov models
- Dynamic Bayesian networks

Recurrent neural network

 Network with loops or unrolled network without loops

Lecture plan

- Sequences and time series
- Recurrent neural networks
- RNNs with memory
- More connections
- Word representation

Feedforward NN

- Several theorems that FNN approximates any function
- FNN allows decomposition to apply chain rule for gradient computation
- Widely used

Recurrent NN

- Biological neural networks are recurrent
- RNN models a dynamic system
- Not as widespread and has a few conventional models / ways to learn them
- Any Turing machine can be represented as a fully connected RNN with sigmoid activation function (Siegelman and Sontag, 1991)

Hopfield NN

- Represent associative memory
- Networks show interesting behavior, they may become stable, oscillate or show deterministic chaotic behavior.

Backpropagation through time

Unfolded RNN

 Limiting the maximum length, we can perform backpropagation through time

Weights sharing

The problem is that the weights must remain the same

Backpropagation can be easily changed to obtain this

If we want
$$w_i = w_j$$
, then $w_i^{(0)} = w_j^{(0)}$ and $\Delta w_i^{(k)} = \Delta w_j^{(k)} \ \forall k$ should be satisfied.
$$\Delta w_i^{(k)} = \Delta w_j^{(k)} \coloneqq \frac{\delta L}{\delta w_i} + \frac{\delta L}{\delta w_i}$$

RNN analysis

Advantages

- Can represent not just functions, but systems
- Is a part of deep learning evaluation framework

Disadvantages

- Requires a lot of time to be trained
- Vanishing / exploding gradient
- Forgets everything old enough

Lecture plan

- Sequences and time series
- Recurrent neural networks
- RNNs with memory
- More connections
- Word representation

Long term and short term memory

Long-term memory represented as a vector, containing slowly changing information about what we have learned previously Short-term memory is with hidden states

Long-short term memory (LSTM) combines these two

LSTM

Memory unit uses LM input and entry to process them in SM

Connections between memory units are linear

Memory unit

Memory unit uses LM input and entry to process them in SM

Connections between memory units are linear

Conveyor belt

Stores long term memory

Forget layer

Forget layer multiplies some values in LM to erase information from it

Long term memory updating

After evaluations, we update LTM

Hidden state updating

and hidden state

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t \times \tanh (C_t)$$

LSTM variation: peephole connections

LTM vector can be used to update itself and the hidden state

$$f_t = \sigma \left(W_f \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_f \right)$$

$$i_t = \sigma \left(W_i \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_t] + b_i \right)$$

$$o_t = \sigma \left(W_o \cdot [\boldsymbol{C_t}, h_{t-1}, x_t] + b_o \right)$$

Gated restricted unit

We can reduce the number of parameters in unit by rearranging operations and storing everything just with *h*

Lecture plan

- Sequences and time series
- Recurrent neural networks
- RNNs with memory
- More connections
- Word representation

Main idea of adding reverse direction

Not only previous information is useful for understanding current signal

He said "Teddy bears are on sail!" He said "Teddy Roosevelt was a great President!"

Bidirectional RNN

Deep RNN

a) 2-layer Recurrent Neural Network (RNN)

b) Unfolded 2-layer Recurrent Neural Network (RNN)

Classification of RNNs

Attention mechanism

Attention weights

$$\alpha_{ts} = \frac{\exp\left(\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_s)\right)}{\sum_{s'=1}^{S} \exp\left(\operatorname{score}(\boldsymbol{h}_t, \bar{\boldsymbol{h}}_{s'})\right)}$$

Context vector

$$c_t = \sum_s \alpha_{ts} \bar{h}_s$$

Attention vector

$$\boldsymbol{a}_t = f(\boldsymbol{c}_t, \boldsymbol{h}_t) = \mathrm{tanh}(\boldsymbol{W_c}[\boldsymbol{c}_t; \boldsymbol{h}_t])$$

Lecture plan

- Sequences and time series
- Recurrent neural networks
- RNNs with memory
- More connections
- Word representation

The text representation question

Networks works with vectors.

How to vectorize text?

One-hot encoding

- Fix a vocabulary of size |V|
- Enumerate words with i(w)
- Each word w is represented as a vector $(0_1, ..., 0_{i(w)-1}, 1_{i(w)}, 0_{i(w)+1}, ..., 0_{|V|})$

Main idea of Word2Vec

Distributional hypothesis (Harris, 1954): words that occur in the same contexts tend to have similar meanings

Main idea: characterize words with its context by learning such representations

Continuous bag of words

Predict word given its context

Loss function is

 $-\log \Pr(w_i|\operatorname{context}(w_i))$

Skip-gram

Predict context given word

Loss function is

 $-\log \Pr(\operatorname{context}(w_i)|w_i)$

How to train?

- Show pairs of word in context, say $(w_i|\text{context}_j(w_i))$
- Subsample from the previous set deleting frequent words more frequently
- Negative sampling for creating negative samples

Word2Vec properties

State-of-the-art embeddings

- BERT
- ELMO
- FastText
- Skip-Thoughts
- Quick-Thoughts
- InferSent (for machine translation)
- RusVectores (for Russian)