화율예측: 화폐적 현상인가, 임의보행 현상인가?

김 창 범* 모 수 원**

본고는 환율이 장기적으로 기초경제변수들(fundamentals)에 의해 결정된다 는 MacDonald and Taylor(1993, 1994)의 연구에 기초하여 오스트리아, 캐나 다, 덴마크, 프랑스, 독일, 이태리, 일본, 노르웨이, 스웨덴, 그리고 한국을 대 상으로 대표적인 화폐론적 모형이라고 할 수 있는 BF(Bilson-Frenkel)모형, FD(Dornbusch-Frankel)모형, 여기에 상대물가를 포함한 ABF(augmented BF)모형, AFD(augmented FD)모형의 예측능력을 임의보행(random walk)모 형과 비교한다. 이를 위해서 Engle and Granger(1987)의 공적분기법과 이의 문제점을 보완한 Johansen(1988) 다변량공적분기법으로 화폐론적 모형의 장 기적 균형관계를 검증하여, EG검정에서는 모형의 장기적 안정성을 확인할 수 없는데 반해 Iohansen검정에서는 적어도 하나의 공적분관계가 존재함을 보인다. 또한 공적분관계를 갖는 것으로 나타남에 따라 오차수정모형을 통해 예측을 실시하여 RMSE(root mean squared error)통계량이 대부분의 국가와 예측단계에서 화폐론적 모형의 예측오류가 임의보행모형보다 작게 나타나 화폐론적 모형이 임의보행모형보다 예측능력이 우수함을 보인다. 또한 MAE (mean absolute error)와 ME(mean error)통계량의 비교를 통해 화폐론적 모 형에 비해 임의보행모형에 있어서 예측의 체계적 편의가 있음을 밝힌다.

< 차 례 >

- I. 서론
- Ⅱ. 모형도입과 안정성 검정
- Ⅲ. 예측력 비교
- IV. 결론

^{*} 조선대학교 경제무역학부 강사

^{**} 목포대학교 경영대학 무역학과 교수

I. 서 론

대부분의 국가들이 변동환율제도로 이행함에 따라 경제환경의 변화가 외환시장의 수급요인에 미치는 영향이 커졌을 뿐만 아니라 장단기 환율의 변동성이 증가하였으며, 그 결과 미래 환율에 대한 불확실성이 높아지고 있다. 이와 같은 외환시장의 환경변화에 따라 환율변동의 예측가능성에 대한 많은 연구가 활발하게 이루어지고 있다.

환율결정모형의 예측능력에 대한 주요 연구로는 Meese and Rogoff (1983), Woo(1985), Finn(1986), Somanath(1986), Wolff(1987a), Schinasi and Swamy(1989) 등을 들 수 있다. Meese and Rogoff(1983)는 1973년 3월부터 1981년 6월까지 미국 달러-독일 마르크, 미국 달러-영국 파운드, 미국 달러-일본 엔, 그리고 무역가중(trade-weighted) 미국 달러환율을 이용하여 화폐론적 모형의 예측능력을 임의보행(random walk)모형과 비교하여 후자가 전자보다 우수함을 밝힌 바 있다. 여기에 이용된 모형은 Frenkel(1976)과 Bilson(1978)의 신축가격 화폐론적 모형(이하 BF모형), 국가간 실질이자율 차를 포함시킨 Dornbusch(1976a)와 Frankel(1979)의 경직가격 화폐론적 모형(이하 FD모형), 그리고 포트폴리오와 화폐론적 모형을 결합한 Hooper and Morton(1982)모형이다.

반면에 Woo(1985)는 신축물가모형에 합리적 기대가설을 결합하여 미국 달러-독일 마르크 환율의 경우 화폐론적 모형이 임의보행모형보다 낮은 RMSE(root mean squared error)를 갖는다는 것을 밝힌 바 있다.

그러나 Finn(1986)은 동일한 모형을 이용하여 임의보행모형의 예측능력이 더 우수함을 보이고 있다. 한편 Schinasi and Swamy(1989)는 시간변화모수(time-varying parameter) 모형을 이용하여 미국 달러-독일 마르크, 미국 달러-일본 엔, 미국 달러-영국 파운드 환율의 경우 신축물가 화폐론적 모형과 경직가격 화폐론적 모형 모두 임의보행모형보다 우수한 예측실적을 나타내고 있음을 보이고 있다. 또한 Wolff(1987a)는 BF모형, FD모형, 상대물가를 포함하는 AFD(augmented FD)모형을 이용하여 미국 달러-독일 마르크, 미국 달러-일본 엔, 미국 달러-영국 파운드 환율에 대해

칼만 필터링 방법(Kalman filtering methodology)을 적용하여 미국 달러-독일 마르크 환율의 경우에서만 임의보행모형보다 예측력이 우수하다는 결과를 제시하고 있다.

이상에서 살펴본 바와 같이, 화폐론적 모형과 임의보행모형의 예측력을 비교·연구한 기존의 논문들은 대부분 영국, 독일, 일본 등을 분석대상으로 하고 있을 뿐만 아니라 이용하는 자료와 분석방법에 따라 상이한 결과를 보이고 있다. 또한 화폐론적 모형이 장기에서 더욱 중요한 의미를 가짐에도 불구하고 환율의 단기적 예측에 치중하고 있다. 장기환율결정모형의 중요성은 환율이 장기에 기초경제변수들(economic fundamentals)에 의해 결정된다는 MacDonald and Taylor(1993, 1994)의 연구와, 외환시장에서 외환딜러들이 예측기간이 길어질수록 환율변동에 영향을 미치는 경제적 요인들에 보다 더 큰 비중을 둔다는 것을 밝힌 Taylor and Allen(1992)의 연구에서도 확인할 수 있다. 이에 따라 본고는 1973년 1월부터 1998년 10월까지인 오스트리아, 캐나다, 덴마크, 프랑스, 독일, 이태리, 일본, 노르웨이, 스웨덴과 1980년 1월부터 1997년 10월까지인 한국의 OECD 10개국을 대상으로 4가지 화폐론적 모형과 임의보행모형의 예측실적을 비교한다.

본고는 다음과 같이 구성된다. 제Ⅱ절에서 환율결정의 화폐론적 모형 4가지를 도입하며, 장기분석 예비절차로서 시계열자료에 대한 단위근검정(unit root test)을 실시한다. 다음으로 Engle and Granger(1987)와 Johansen(1988)의 공적분기법(cointegration methodology)을 이용하여 모형의 장기적 안정성을 검정한다. 제Ⅲ절에서는 공적분벡터가 존재하는 것으로 판명될 경우오차수정모형(error-correction model)을 이용하여 예측을 하되, 예측력 비교평가를 위해 임의보행모형에 의한 예측도 실시한다. 그리고 제Ⅳ절에서 결론을 내린다.

Ⅱ. 모형도입과 안정성 검정

본고가 다루는 4가지 화폐론적 모형은 다음과 같다.

BF:
$$s_t = a_0 + a_1(m - m^*)_t + a_2(ip - ip^*)_t + a_3(i - i^*)_t$$
 (1)

ABF:
$$s_t = a_0 + a_1(m - m^*)_t + a_2(ip - ip^*)_t + a_3(i - i^*)_t + a_4(wc - wc^*)_t$$
 (2)

FD:
$$s_t = a_0 + a_1(m - m^*)_t + a_2(ip - ip^*)_t + a_3(i - i^*)_t + a_4(r - r^*)_t$$
 (3)

AFD:
$$s_t = a_0 + a_1(m - m^*)_t + a_2(ip - ip^*)_t + a_3(i - i^*)_t + a_4(r - r^*)_t + a_5(wc - wc^*)_t$$
 (4)

여기서 $m(m^*)$ 은 자국(미국) 통화량, $ip(ip^*)$ 는 자국(미국) 계절조정 산업생산지수, $i(i^*)$ 는 자국(미국)의 단기이자율, $r(r^*)$ 은 자국(미국)의 장기이자율, $wc(wc^*)$ 는 자국(미국)의 도매물가에 대한 자국(미국)의 소비자물가를 나타낸다. 본고에서 사용된 통계자료는 IMF의 IFS(International Financial Statistics) CD ROM과 OECD의 MEI(Main Economic Indicators)로부터 구한다.

분석을 시작하기 이전에 먼저 공적분기법을 이용하여 모형이 안정적인 가를 살펴보아야 한다. 그것은 공적분관계가 성립하지 않을 경우 환율과 기초경제변수들간에 안정적인 관계가 성립하지 않는다는 것을 의미하며, 따라서 분석결과가 허구적일 가능성이 크기 때문이다. 이를 위해 먼저 Engle and Granger(1987)의 공적분기법(이하 EG검정)을 이용한다.

공적분은 동태적으로 불안정적인 시계열간의 균형에 대한 검정이므로 먼저 각 변수들의 I(d)과정에서 d에 대한 검정이 이루어져야 한다. 시계열 변수에 대한 단위근검정은 Dickey and Fuller(1979)의 ADF(Augmented Dickey-Fuller)검정법과 PP(Philips and Perron)검정법이 있으나, PP검정은 시계열이 불안정하다는 귀무가설을 기각하는 경향을 강하게 갖고 있기 때문에 ADF통계량을 이용한다(Schwert, 1987). 다음은 OLS를 이용하여 추정하는 ADF검정법을 보여준다.

$$DX_{t} = \beta_{0} + \beta_{1}X_{t-1} + \sum_{j=1}^{p} \beta_{j}DX_{t-j} + \mu_{0}t + \varepsilon_{t}$$
 (5)

여기서 귀무가설은 X_t 가 I(1)이라는 것이며 t통계량을 이용하여 β_1 의 계수가 통계적으로 유의하게 0보다 작을 경우 기각된다.

< 표 1>은 수준변수와 1차 차분변수에 대한 ADF검정 결과를 보여주고 있다. ADF검정의 경우 검정통계량을 구하기 위한 시차수는 계열상관을 제거하기에 충분하여야 하므로, 최대 12개의 시차를 부여한 후 Ljung-Box Q 검정통계량을 이용하여 모형을 체크한다. 이때 잔차가 백색잡음 (white noise)을 갖는 것으로 나타나면 시차수를 감소시킨 후 다시 모형 을 점검한다. 이와 같은 방법을 통해 시차수를 계속 감소시킴으로써 최소 시차수를 갖는 모형을 선택한다.

< 표 1>에 의하면 덴마크의 $(m-m^*)$ 변수를 제외한 모든 수준변수는 귀무가설을 기각하지 못하는 반면에, 1차 차분한 시계열자료는 1% 유의수준에서 완벽하게 귀무가설의 기각에 성공하고 있음을 보여주고 있다. 이러한 결과로 볼 때 변수들이 모두 1차 적분되어 있는 I(1)과정임을 알 수 있다.

<표 1> 단위근검정

		오스트리아	캐나다	덴마크	프랑스	독일
*	수준	$-0.32^{s}(12)$	$-2.59^{s}(6)$	$-4.94^{s}(5)^{*}$	$-1.92^{s}(8)$	$-1.88^{s}(8)$
$m-m^*$	차분	$-5.79^{s}(10)^{*}$	-4.63 ^s (5)*	$-2.47^{s}(6)^{*}$	$-4.70^{s}(7)^{*}$	$-4.96^{\mathrm{s}}(6)^{*}$
*	수준	-3.09(12)	-3.31	-3.20(1)	-2.62(6)	-1.80(8)
$ip-ip^*$	차분	-4.23(11)*	-21.0*	-22.2*	-7.38(5)*	-6.50(7)*
. **	수준	-2.14 ^s (7)	-3.13	-2.63 ^s (8)	-2.88(6)	-2.75(9)
$i-i^*$	차분	$-8.24^{\rm s}(6)^*$	-10.2(3)*	$-8.98^{s}(7)^{*}$	-8.13(5)*	-7.06(8)*
*	수준	-2.24(1)	-2.73(7)	-2.83	-3.37 ^s (4)	-2.05(1)
$r-r^*$	차분	-13.5(1)*	-16.7(1)*	-16.2*	-7.58(4)*	-13.20(1)*
	수준	-2.37(12)	-1.15(3)	-2.83(12)	-3.19 ^s (1)	-2.17
$wc-wc^*$	차분	-4.54(11)*	-9.36(2)*	-3.44(11)*	-12.77*	-15.4*
	수준	-1.50	-1.48	-1.42	-1.42	-2.17
S	차분	-17.1*	-18.3*	-16.9*	-17.6*	-16.9*

		이태리	일본	노르웨이	스웨덴	한국
*	수준	$-2.09^{s}(12)$	-2.51 ^s (6)	-2.69(12)	$-2.52^{s}(12)$	$-1.34^{s}(3)$
$m-m^*$	차분	$-6.22^{s}(7)^{*}$	-4.36 ^s (5)*	$-5.55^{s}(7)^{*}$	-3.92 ^s (11)*	$-3.59^{s}(2)^{*}$
	수준	-3.14(7)	-0.52(4)	-2.52(2)	-2.65(1)	-0.83(4)
ip−ip*	차분	-6.22(7)*	-6.86(3)*	-18.5(1)*	-25.0*	-9.95(4)*
• •*	수준	$-3.52^{s}(4)$	-2.68(8)	-3.18(3)	-1.98(3)	-3.22
$i-i^*$	차분	-11.4(1)*	-5.50(8)*	-12.4(2)*	-10.2(3)*	-13.8*
*	수준	-2.62(1)	-1.98(4)	-2.19	-2.80(2)	-3.21(1)
$\gamma - \gamma^*$	차분	-12.4(1)*	-6.75(4)*	-16.5*	$-7.30(4)^*$	-10.8*
*	수준	-3.02 ^s (12)	-2.82 ^s (3)	-1.91(1)	-1.57	-1.83(1)
$wc - wc^*$	차분	-5.73 ^s (11)*	$-7.11^{s}(2)^{*}$	-19.3*	-15.1*	-10.19(2)*
	수준	-1.51	-1.86	-2.36	-1.88(1)	-1.34(3)
<i>S</i>	차분	-16.1*	-15.2*	-11.2*	-15.7*	-3.59(2)*

주: 1) 숫자는 상수항과 추세변수항을 포함한 경우의 t통계량($t\tilde{a}$)을 의미하며, "s"는 계절가변수(seasonal dummy variable)를 도입한 경우를 나타냄.

- 2) ()안은 시차를 의미하며, 시차가 없는 경우는 DF 통계량을 의미함.
- 3) 임계치는 1% 유의수준에서 -3.99임(Fuller, 1976, p.373).
- 4) "*"는 1% 유의수준에서 단위근을 갖는다는 귀무가설이 기각됨을 나타냄.

다음단계로 I(1) 시계열간의 선형결합에 대한 공적분검정이 필요하다. EG검정의 ADF검정은 X_i 와 Y_i 에 대해 공적분 회귀분석(cointegrating regression)을 하여 추정된 잔차가 단위근을 갖는가에 대해 검정하는 것이다.

$$D \widehat{u}_t = \delta \widehat{u}_{t-1} + \sum_{i=1}^p \Theta_i D \widehat{u}_{t-i} + e_t$$
 (6)

여기서 \hat{u}_{t-1} 의 계수가 유의하게 0보다 작을 경우 분석대상 변수들사이에 공적분관계가 있다고 판단할 수 있다. 시차수는 Ljung-Box Q 검정통계량을 이용하여 잔차가 백색잡음과정을 따르는 것으로 나타낼때까지 시차수를 증가시키는 방법을 택한다. 그 결과 <표 2>에서 보는 바와 같이 분석 대상국의 모든 모형에서 공적분관계를 갖지 않는다는 귀무가설을 기각하지 못함으로써 모형이 안정적이지 못함을 알 수 있다.

<표 2> EG검정

	오스트리아	캐나다	덴마크	프랑스	독일
BF	-2.03	-2.52	-1.68(1)	-2.19(11)	-2.73
ABF	-2.78(8)	-2.70	-1.97	-2.38(11)	-1.98(6)
FD	-2.24	-2.54	-1.77(1)	-2.16(11)	-2.74
AFD	-2.46(11)	-3.13	-2.03	-2.32(11)	-2.10(6)

	이태리	일본	노르웨이	스웨덴	한국
BF	-3.40(2)	-1.15(3)	-3.04	-2.25(2)	-1.68
ABF	-3.00(3)	-1.40(2)	-3.17	-3.48	-1.92(6)
FD	-3.45(2)	-1.12(3)	-2.97	-2.29(2)	-2.04(1)
AFD	-3.09(3)	-1.43(2)	-3.24	-3.63(1)	-2.75

주:1)()안의 숫자는 ADF검정의 시차수를 나타냄.

그러나 EG검정은 몇 가지 문제점을 안고 있는 것으로 알려져 있으므로¹⁾ Johansen의 다변량공적분기법(이하 Johansen검정)을 이용하여 공적 분관계를 다시 살펴보기로 한다. Johansen기법에 따라 다음과 같은 p개의 변수에 대한 벡터자기회귀모형(VAR)모형을 고려한다.

$$X_{t} = \sum_{j=1}^{k} A_{j} X_{t-j} + \mu + \varepsilon_{t}, \quad t = 1, \ 2, \cdot \cdot \cdot , T$$
 (7)

여기서 X_t 는 p개의 변수로 이루어진 벡터이며, ϵ_t 는 정규분포를 따르

^{2) 1%} 유의수준에서 DF와 ADF의 임계치는 각각 5.02와 4.97임(Engle and Yoo, 1987, pp.157-158).

¹⁾ EG검정은 다음과 같은 단점을 갖는 것으로 알려져 있다. 낮은 검정력을 갖으며 (Hendry, 1986; Dolado, Jenkins and Sosvilla-Rivero, 1990), 상대적으로 높은 임계치를 이용하기 때문에 공적분관계를 갖지 않는다는 귀무가설의 기각이 용이하지 않고 (Engle and Yoo, 1987; Siklos, 1989a), 몇 개의 공적분관계가 존재하는가를 결정하지 못하며(Clements, 1989), 어떤 변수가 좌변항에 위치하는냐에 따라 공적분관계가 바뀔수 있다(Hung, Kim, and Ohno, 1993). 이에 비해 Johansen의 다변량공적분기법은 다음의 4가지에 있어서 EG검정보다 우수하다(Siklos, 1993b). 첫째, 벡터자기회귀모형을 이용하기 때문에 데이터의 시계열특성을 충분히 파악할 수 있다. 둘째, 모든 공적분벡터의 추정치를 도출할 수 있다. 셋째, 공적분벡터수에 대한 검정통계량을 구할 수 있다. 넷째, 모형내의 모든 변수가 내생변수일 수 있기 때문에 벡터자기회귀모형이 우수하다.

는 백색잡음이다.

식 (7)을 차분함으로써 식 (8)과 같은 벡터오차수정모형(VECM)이 얻어 진다.

$$\Delta X_t = \sum_{j=1}^{k-1} \Gamma_j \Delta X_{t-j} + \Pi X_{t-k} + \mu + \varepsilon_t, \tag{8}$$

여기서 $\Gamma_i = -(I - A_1 - \cdots - A_i)$ 과 $\Pi = -(I - A_1 - \cdots - A_b)$ 이다.

전형적인 1차차분된 벡터자기회귀모형과 식 (8)의 차이는 ΠX_{t-k} 에 있으며, Π 로 X_t 변수들간의 장기관계를 분석할 수 있다. $^{(2)}$

일반적으로 행렬 π의 계수(rank)는 알려진 값이 아니므로 Johansen기법에 의하면 이 계수를 검정하는 검정기법을 이용한다. 이 검정기법은 특성근(eigenvalue)에 기초한 것으로 다음과 같은 검정통계량이 있다.

trace통계량 =
$$-T\sum_{i=r+1}^{p} \ln(1-\widehat{\lambda}_i)$$
 (9)

trace통계량은 많아야 $_r$ 개의 공적분벡터가 존재한다는 귀무가설과 공적분벡터가 그보다 1개 더 존재한다는 대립가설과 관련된 통계량이다. 우도비검정통계량을 구하기 이전에 투입되는 시차길이는 Ljung-Box Q 검정통계량을 이용하여 잔차가 백색잡음인 최소의 시차길이를 선택한다. 그러나 결과가 시차수에 강건한가를(robust) 파악하기 위하여 최소시차수를 2단계까지 증가시켜 살펴보았다. 그 결과 5% 유의수준에서 공적분관계가존재하지 않는다는 귀무가설이 기각됨으로써 모든 국가의 4가지 모형에서적어도 한 개의 공적분관계가 존재함을 보여주고 있다.

²⁾ 여기에는 3가지 경우가 가능하다. 즉 Π 의 계수($_{r}$)가 시스템내 변수의 수($_{p}$)와 일치하면 Π 는 완전계수이며 이는 벡터과정 X_{i} 가 안정적임을 의미한다. 또한 Π 의 계수가 0이면 Π 가 공행렬이며 이는 변수들간에 장기적 관계가 존재하지 않음을 의미한다. 만약 $(0<\Pi$ 의 계수<변수의 수)일 경우 장기관계 혹은 공적분관계가 존재하게 된다. 그리고 Π' 를 $\Pi=ab'$ 로 나타낼 수 있는데, a는 오차수정계수로서 조정계수의 속도를 나타내며, b는 공적분벡터를 가르키고, bX_{i} 는 공적분관계를 의미한다.

BF모형

BF 로 영							
		오스트리아	-		캐나다		
	VAR(2)	VAR(3)	VAR(4)	VAR(7)	VAR(8)	VAR(9)	
r=0	71.11^{*}	58.24*	60.89*	58.84*	56.96*	60.08*	
<i>r</i> ≤1	35.62*	35.40*	32.90	29.29	28.77	28.19	
$r \leq 2$	13.57	15.83	14.82	9.349	10.07	11.39	
r≤3	3.718	4.038	3.687	0.487	0.168	0.173	
		덴마크			프랑스		
	VAR(3)	VAR(4)	VAR(5)	VAR(7)	VAR(8)	VAR(9)	
r = 0	67.05*	72.61*	67.37*	63.82*	66.77*	75.99*	
<i>r</i> ≤1	25.59	29.73	26.22	34.26	35.56*	34.96*	
$r \leq 2$	7.923	8.118	7.862	12.49	13.87	12.28	
r≤3	3.209	2.877	2.130	3.858	4.188	4.085	
		독일			이태리		
	VAR(7)	VAR(8)	VAR(9)	VAR(7)	VAR(8)	VAR(9)	
r=0	66.05*	63.35*	60.84*	66.17^*	69.40*	72.60^{*}	
$r \le 1$	27.77	26.40	26.29	34.35	30.95	33.37	
$r \leq 2$	11.09	12.07	12.39	12.68	12.32	12.96	
r≤3	4.568	4.454	4.521	4.600	4.007	4.952	
		일본			노르웨이		
	VAR(8)	VAR(9)	VAR(10)	VAR(4)	VAR(5)	VAR(6)	
r=0	73.66*	64.11*	66.12*	90.63*	90.22*	81.14*	
$r \le 1$	26.57	26.40	27.03	21.46	18.79	19.04	
$r \le 2$	5.994	6.707	6.759	9.879	9.181	8.615	
r≤3	0.566	1.578	1.431	3.716	3.175	2.990	

		스웨덴			한국			
	VAR(4)	VAR(5)	VAR(6)	VAR(4)	VAR(5)	VAR(6)		
r=0	63.95*	60.46^{*}	60.34^{*}	81.44*	84.67*	65.90*		
<i>r</i> ≤1	26.14	24.74	25.48	35.55*	47.76^*	33.67		
<i>r</i> ≤2	6.288	5.446	6.381	12.33	13.41	16.22		
r≤3	0.410	0.466	0.484	1.724	2.235	2.309		

주: ()안의 숫자는 VAR모형의 시차를 의미하며, 임계치는 Osterwald-Lenum (1992)의 표를 참조하였음.

ABF모형

		오스트리아	<u> </u>	캐나다			
	VAR(9)	VAR(10)	VAR(11)	VAR(8)	VAR(9)	VAR(10)	
r=0	130.4^{*}	116.2^{*}	115.6*	86.99*	88.99*	106.6*	
<i>r</i> ≤1	38.09	27.25	28.38	49.59	46.36	46.86	
$r \le 2$	14.75	12.18	11.83	27.98	26.92	27.82	
<i>r</i> ≤3	5.075	4.225	3.083	9.617	8.840	9.971	
r≤4	0.684	0.519	0.301	0.921	0.366	0.246	

		덴마크			프랑스	
	VAR(8)	VAR(9)	VAR(10)	VAR(9)	VAR(10)	VAR(11)
r=0	83.25*	86.48*	84.96*	94.00^{*}	88.32*	95.23*
<i>r</i> ≤1	43.01	43.45	43.28	52.02	48.41	58.32*
$r \leq 2$	18.70	21.11	19.90	25.75	25.32	27.09
r≤3	8.329	7.891	7.022	11.24	12.29	13.51
$r \leq 4$	0.649	0.834	0.611	4.344	3.409	3.066

		독일				이태리	
	VAR(7)	VAR(8)	VAR(9)	VA	R(6)	VAR(7)	VAR(8)
r=0	82.43*	83.88*	100.8*	11	14.4^{*}	111.2*	114.8*
<i>r</i> ≤1	38.48	39.19	39.92	66	5.68*	69.61^{*}	67.75*
r≤2	15.39	16.10	19.19	33	3.61	32.48	28.42
r≤3	6.475	6.638	6.620	13	3.37	15.58	14.90
$r \leq 4$	0.997	0.912	0.025	5.	081	5.693	6.087

		일본	-		노르웨이			
	VAR(7)	VAR(8)	VAR(9)	VAR(7)	VAR(8)	VAR(9)		
r=0	111.0^{*}	96.47^{*}	86.31*	96.68*	93.20*	84.77*		
<i>r</i> ≤1	56.70*	43.89	40.71	43.61	40.37	41.63		
$r \leq 2$	32.73	25.35	23.76	20.99	20.42	21.60		
r≤3	14.23	11.65	9.879	7.619	8.911	9.395		
r≤4	2.356	1.457	1.398	2.221	3.142	3.214		

		스웨덴		한국			
	VAR(7)	VAR(8)	VAR(9)	VAR(4)	VAR(5)	VAR(6)	
r=0	96.66*	89.19*	99.21*	96.62*	103.9*	81.40*	
$r \le 1$	47.52	47.94	51.82	52.71	52.27	41.77	
$r \le 2$	21.70	20.65	21.66	18.98	17.08	19.13	
<i>r</i> ≤3	6.627	6.303	5.099	8.558	7.220	8.641	
$r \leq 4$	0.087	0.124	0.286	1.363	0.901	0.653	

주: BF모형의 각주와 동일함.

FD모형

		오스트리아	-				
	VAR(9)	VAR(10)	VAR(11)	VAR(8)	VAR(9)	VAR(10)	
r=0	98.49*	98.46*	98.43*	89.01*	85.18*	97.71*	
<i>r</i> ≤1	58.80*	54.04*	49.05	53.32*	46.51	47.46	
$r \le 2$	32.36	28.52	28.36	28.44	25.39	27.55	
r≤3	11.89	11.92	12.10	12.16	11.56	11.98	
$r \leq 4$	1.755	1.421	2.184	0.192	0.091	0.320	

		덴마크			프랑스	
	VAR(4)	VAR(5)	VAR(6)	VAR(7)	VAR(8)	VAR(9)
r=0	102.2^{*}	96.60*	89.18^{*}	91.16^*	92.87*	99.21*
<i>r</i> ≤1	50.52	42.50	47.09	51.86	55.85*	59.03*
$r \leq 2$	17.87	18.76	18.70	28.89	31.87	34.47
r≤3	8.495	7.995	8.320	12.46	14.16	13.15
$r \leq 4$	2.491	2.151	1.664	3.605	4.015	3.333

		독일			이태리	
	VAR(7)	VAR(8)	VAR(9)	VAR(8)	VAR(9)	VAR(10)
r=0	91.96*	90.76*	90.08*	90.33*	94.96*	88.70*
<i>r</i> ≤1	41.20	40.08	39.62	52.41	55.59*	49.90
r≤2	18.75	19.10	18.45	28.16	31.33	29.88
r≤3	6.578	6.986	7.662	14.63	16.05	16.93
$r \leq 4$	0.495	0.817	1.404	6.220	6.913	7.512

		일본			노르웨이	
	VAR(8)	VAR(9)	VAR(10)	VAR(10)	VAR(11)	VAR(12)
r=0	87.62*	95.95*	101.0^*	80.98*	93.06*	102.0^{*}
<i>r</i> ≤1	40.51	43.59	48.13	38.94	46.49	49.47
$r \leq 2$	18.53	19.40	21.47	18.41	21.02	18.51
r≤3	5.288	6.344	6.018	10.27	11.06	9.979
$r \leq 4$	0.117	0.312	0.451	3.027	3.983	3.389

		스웨덴			한국	
	VAR(6)	VAR(7)	VAR(8)	VAR(3)	VAR(4)	VAR(5)
r=0	85.47*	91.02^{*}	89.90*	99.22*	93.35*	97.14^{*}
<i>r</i> ≤1	50.67	52.76	50.66	61.17^{*}	55.14*	46.30
$r \leq 2$	27.06	27.84	26.26	34.46	25.56	23.63
r≤3	10.14	11.74	12.30	16.98	11.61	10.13
r≤4	4.147	4.218	4.031	1.256	1.264	2.112

주:BF모형의 각주와 동일함.

AFD모형

		오스트리아	-	캐나다					
	VAR(9)	VAR(10)	VAR(11)	VAR(8)	VAR(9)	VAR(10)			
r=0	120.5^{*}	119.6^{*}	114.1^{*}	120.5^{*}	116.8^{*}	138.7*			
<i>r</i> ≤1	75.51	69.72	63.14	75.55	67.43	66.97			
$r \leq 2$	45.44	38.64	36.19	49.10	41.17	41.19			
r≤3	25.60	21.65	20.36	24.76	21.19	22.40			
$r \leq 4$	9.863	7.614	7.525	8.802	8.170	9.216			
<i>r</i> ≤5	2.823	2.315	2.784	0.075	0.055	0.132			

		덴마크			프랑스	
	VAR(8)	VAR(9)	VAR(10)	VAR(4)	VAR(5)	VAR(6)
r=0	114.4^*	116.2^{*}	118.5*	117.1*	110.4^{*}	105.8*
<i>r</i> ≤1	66.86	74.64	69.40	66.62	69.35	63.24
<i>r</i> ≤2	32.63	36.79	38.21	32.87	34.48	35.50
r≤3	19.34	21.63	22.75	12.86	14.23	14.89
$r \leq 4$	8.163	9.652	7.795	4.325	3.830	4.111
r≤5	0.525	0.954	1.263	0.646	0.500	1.085

		독일			이태리	
	VAR(6)	VAR(7)	VAR(8)	VAR(7)) VAR(8)	VAR(9)
r=0	144.8^{*}	105.8*	104.3*	136.9*	137.2*	134.7^{*}
<i>r</i> ≤1	62.70	62.25	62.32	83.34*	84.63*	82.59*
$r \leq 2$	34.68	36.53	36.52	44.16	43.04	44.07
r≤3	17.33	17.54	16.83	26.58	24.94	25.91
$r \leq 4$	5.977	8.363	7.189	13.99	13.70	13.85
<i>r</i> ≤5	1.071	0.320	0.535	4.452	5.169	5.194

		일본			노르웨이	
	VAR(5)	VAR(6)	VAR(7)	VAR(10)	VAR(11)	VAR(12)
r=0	110.5^{*}	122.4^{*}	106.5^{*}	108.2^{*}	118.51*	117.7^{*}
$r \le 1$	59.34	63.35	63.70	62.32	67.246	64.50
$r \leq 2$	31.09	34.90	38.69	36.88	41.178	35.14
<i>r</i> ≤3	12.84	15.68	22.16	21.84	24.476	20.29
$r \leq 4$	4.569	5.982	8.437	9.842	12.988	9.514
<i>r</i> ≤5	0.139	0.047	0.005	3.163	3.7205	3.094

		스웨덴			한국	
	VAR(7)	VAR(8)	VAR(9)	VAR(7)	VAR(8)	VAR(9)
r = 0	129.2^{*}	125.7^{*}	135.7^{*}	108.9^{*}	118.1^{*}	131.2^{*}
<i>r</i> ≤1	81.60^{*}	78.92^*	83.57*	65.17	70.20	76.79^*
<i>r</i> ≤2	40.77	40.51	41.88	36.74	38.89	41.74
r≤3	23.13	24.06	23.69	18.03	18.91	21.90
$r \leq 4$	9.655	9.494	8.386	6.522	8.207	10.64
<i>r</i> ≤5	1.566	0.890	0.542	0.515	3.720	5.183

주: BF모형의 각주와 동일함.

Ⅲ. 예측력 비교

앞에서 살펴본 바와 같이 4가지 화폐론적 환율결정모형에는 적어도 한 개의 공적분벡터가 존재함으로써 화폐론적 모형의 장기적 유효성이 입증되었다. 이에 따라 오차수정모형을 이용하여 예측을 실시한다. 예측은 표본외 예측으로서 1995년 12월까지 표본기간을 추정한 후 1, 2, 6, 9, 12 개월에 대한 예측치를 도출한다. 예측절차는 먼저 1995년 12월까지(한국은 1994년 12월)를 추정한 후 다음단계의 예측실적을 도출하기 이전에 모형내의 모수를 갱신시킨다. 이와 같은 과정은 1998년 10월(한국은 1997년 10월)의 마지막 데이터가 투입될 때까지 계속된다. 또한 화폐론적 모형의예측력 비교평가를 위해 임의보행모형의 예측실적도 도출한다.3) 예측실적의 정확도는 일반적으로 RMSE(root mean squared error), MAE(mean absolute error), 그리고 ME(mean error) 3가지 통계량으로 판단하며 다음과 같이 나타낼 수 있다.

$$RMSE = \left(\sum_{s=0}^{N_{k-1}} [F(t+s+k) - A(t+s+k)]^2 / N_k\right)^{1/2}$$
 (10)

$$MAE = \sum_{s=0}^{N_{k-1}} |F(t+s+k) - A(t+s+k)| / N_k$$
 (11)

$$ME = \sum_{s=0}^{N_{k-1}} [F(t+s+k) - A(t+s+k)] / N_k$$
 (12)

여기서 k는 예측단계를, F(p)와 A(p)는 각각 p기 환율의 예측치와 실제치를 나타내며, N_k 는 예측기간의 예측수이다. RMSE가 상대적으로 큰예측오류를 밝히는 데 좋은 척도가 되기 때문에 Meese and Rogoff(1983)에서와 같이 RMSE를 중요 기준으로 한다. MAE와 ME는 모형의 체계적인 편의(systematic bias) 즉 과소예측(underpredict) 혹은 과대예측(over predict)을 밝히는데 유용하기 때문에 도입한다. $\langle \mathbf{E} \rangle$ 는 4가지 모형과임의보행모형의 국가별 예측실적을 보여주고 있다.

³⁾ 추세를 갖는 경우와 갖지 않는 경우 예측실적에 있어서 유의한 차이를 발견하지 못하였다. 따라서 본고에서는 추세를 갖지 않는 경우를 선택한다.

<표 4> 예측력 비교

-		<u>ما</u>]측단계	<u></u> 別(o み	F리스	L)		세츠대	<u></u> 난계(카	lı lrl)	
		$\frac{\neg}{1}$	2	6	9	12	1	2	6	9	12
BF	RMSE	2.434	2.394	2.463	2.498	2.548	1.406	1.415	1.497	1.571	1.628
Di	MAE	2.027	1.981	2.065	2.101	2.133	1.097	1.103	1.185	1.264	1.315
	ME	0.454	0.377	0.348	0.543	0.484	0.215	0.201	0.258	0.307	0.426
ABF	RMSE	2.501	2.465	2.544	2.626	2.684	1.405	1.415	1.495	1.571	1.629
	MAE	2.116	2.073	2.170	2.244	2.296	1.101	1.111	1.183	1.265	1.315
	ME	0.586	0.516	0.482	0.643	0.570	0.210	0.201	0.276	0.337	0.456
FD	RMSE	2.443	2.402	2.486	2.512	2.558	1.405	1.414	1.495	1.569	1.626
	MAE	2.021	1.974	2.066	2.079	2.091	1.097	1.102	1.183	1.262	1.312
	ME	0.545	0.458	0.474	0.701	0.685	0.214	0.200	0.258	0.310	0.430
AFD	RMSE	2.481	2.447	2.512	2.561	2.624	1.392	1.402	1.480	1.556	1.613
	MAE	2.082	2.042	2.114	2.156	2.196	1.088	1.097	1.169	1.249	1.298
	ME	0.363	0.273	0.352	0.560	0.505	0.187	0.178	0.249	0.308	0.426
RW	RMSE	2.513	3.766	7.446	10.55	13.75	1.405	1.939	3.199	3.545	4.770
	MAE	2.083	3.108	5.908	9.136	12.14	1.103	1.407	2.315	2.818	3.523
	ME	0.667	1.292	4.801	8.206	11.83	0.283	0.536	1.646	2.117	3.076
			예측되	- - - - - - - - - - - - - - - - - - -	마ㅋ)			예측되	구계(<u>교</u>	라스)	
	-	1	예측단 2	보계(덴 6	마크) 9	12	1	예측 F	단계(프 6	(라스) 9	12
BF	RMSE	1 2.436				12 2.593	1 2.396				12 2.580
BF	RMSE MAE		2	6	9			2	6	9	
BF		2.436	2.422	6 2.470	9 2.492	2.593	2.396	2.389	6 2.501	9 2.507	2.580
BF ABF	MAE	2.436 2.022	2 2.422 1.990	6 2.470 2.040	9 2.492 2.069	2.593 2.150	2.396 2.013	2 2.389 1.994	6 2.501 2.127	9 2.507 2.135	2.580 2.171
	MAE ME	2.436 2.022 0.100	2 2.422 1.990 0.018	6 2.470 2.040 -0.044	9 2.492 2.069 0.100	2.593 2.150 0.053	2.396 2.013 0.211	2 2.389 1.994 0.145	6 2.501 2.127 0.102	9 2.507 2.135 0.242	2.580 2.171 0.178
	MAE ME RMSE	2.436 2.022 0.100 2.442	2 2.422 1.990 0.018 2.428	6 2.470 2.040 -0.044 2.481	9 2.492 2.069 0.100 2.510	2.593 2.150 0.053 2.616	2.396 2.013 0.211 2.413	2 2.389 1.994 0.145 2.402	6 2.501 2.127 0.102 2.514	9 2.507 2.135 0.242 2.527	2.580 2.171 0.178 2.598
	MAE ME RMSE MAE	2.436 2.022 0.100 2.442 2.027	2 2.422 1.990 0.018 2.428 1.997	6 2.470 2.040 -0.044 2.481 2.051	9 2.492 2.069 0.100 2.510 2.089	2.593 2.150 0.053 2.616 2.179	2.396 2.013 0.211 2.413 2.031	2 2.389 1.994 0.145 2.402 2.009	6 2.501 2.127 0.102 2.514 2.143	9 2.507 2.135 0.242 2.527 2.158	2.580 2.171 0.178 2.598 2.195
ABF	MAE ME RMSE MAE ME	2.436 2.022 0.100 2.442 2.027 0.074	2 2.422 1.990 0.018 2.428 1.997 -0.008	6 2.470 2.040 -0.044 2.481 2.051 -0.072	9 2.492 2.069 0.100 2.510 2.089 0.069	2.593 2.150 0.053 2.616 2.179 0.021	2.396 2.013 0.211 2.413 2.031 0.209	2 2.389 1.994 0.145 2.402 2.009 0.136	6 2.501 2.127 0.102 2.514 2.143 0.079	9 2.507 2.135 0.242 2.527 2.158 0.206	2.580 2.171 0.178 2.598 2.195 0.130
ABF	MAE ME RMSE MAE ME RMSE	2.436 2.022 0.100 2.442 2.027 0.074 2.424	2 2.422 1.990 0.018 2.428 1.997 -0.008 2.417	6 2.470 2.040 -0.044 2.481 2.051 -0.072 2.466	9 2.492 2.069 0.100 2.510 2.089 0.069 2.494	2.593 2.150 0.053 2.616 2.179 0.021 2.592	2.396 2.013 0.211 2.413 2.031 0.209 2.422	2 2.389 1.994 0.145 2.402 2.009 0.136 2.413	6 2.501 2.127 0.102 2.514 2.143 0.079 2.538	9 2.507 2.135 0.242 2.527 2.158 0.206 2.539	2.580 2.171 0.178 2.598 2.195 0.130 2.595
ABF	MAE ME RMSE MAE ME RMSE MAE MASE	2.436 2.022 0.100 2.442 2.027 0.074 2.424 2.016	2 2.422 1.990 0.018 2.428 1.997 -0.008 2.417 1.992	6 2.470 2.040 -0.044 2.481 2.051 -0.072 2.466 2.042	9 2.492 2.069 0.100 2.510 2.089 0.069 2.494 2.079	2.593 2.150 0.053 2.616 2.179 0.021 2.592 2.159	2.396 2.013 0.211 2.413 2.031 0.209 2.422 2.053	2 2.389 1.994 0.145 2.402 2.009 0.136 2.413 2.034	6 2.501 2.127 0.102 2.514 2.143 0.079 2.538 2.193	9 2.507 2.135 0.242 2.527 2.158 0.206 2.539 2.197	2.580 2.171 0.178 2.598 2.195 0.130 2.595 2.215
ABF	MAE ME RMSE MAE ME RMSE MASE MAE MAE	2.436 2.022 0.100 2.442 2.027 0.074 2.424 2.016 0.096	2 2.422 1.990 0.018 2.428 1.997 -0.008 2.417 1.992 0.019	6 2.470 2.040 -0.044 2.481 2.051 -0.072 2.466 2.042 -0.054	9 2.492 2.069 0.100 2.510 2.089 0.069 2.494 2.079 0.084	2.593 2.150 0.053 2.616 2.179 0.021 2.592 2.159 0.039	2.396 2.013 0.211 2.413 2.031 0.209 2.422 2.053 0.200	2 2.389 1.994 0.145 2.402 2.009 0.136 2.413 2.034 0.127	6 2.501 2.127 0.102 2.514 2.143 0.079 2.538 2.193 0.097	9 2.507 2.135 0.242 2.527 2.158 0.206 2.539 2.197 0.247	2.580 2.171 0.178 2.598 2.195 0.130 2.595 2.215 0.185
ABF	MAE ME RMSE MAE ME RMSE MAE ME RMSE MAE ME	2.436 2.022 0.100 2.442 2.027 0.074 2.424 2.016 0.096 2.433	2 2.422 1.990 0.018 2.428 1.997 -0.008 2.417 1.992 0.019 2.425	6 2.470 2.040 -0.044 2.481 2.051 -0.072 2.466 2.042 -0.054 2.479 2.055	9 2.492 2.069 0.100 2.510 2.089 0.069 2.494 2.079 0.084 2.514	2.593 2.150 0.053 2.616 2.179 0.021 2.592 2.159 0.039 2.617	2.396 2.013 0.211 2.413 2.031 0.209 2.422 2.053 0.200 2.431	2 2.389 1.994 0.145 2.402 2.009 0.136 2.413 2.034 0.127 2.421	6 2.501 2.127 0.102 2.514 2.143 0.079 2.538 2.193 0.097 2.546	9 2.507 2.135 0.242 2.527 2.158 0.206 2.539 2.197 0.247 2.551	2.580 2.171 0.178 2.598 2.195 0.130 2.595 2.215 0.185 2.607 2.221
ABF FD AFD	MAE ME RMSE MAE ME RMSE MAE MAE MAE ME RMSE	2.436 2.022 0.100 2.442 2.027 0.074 2.424 2.016 0.096 2.433 2.024	2 2.422 1.990 0.018 2.428 1.997 -0.008 2.417 1.992 0.019 2.425 2.000 -0.001	6 2.470 2.040 -0.044 2.481 2.051 -0.072 2.466 2.042 -0.054 2.479 2.055 -0.076	9 2.492 2.069 0.100 2.510 2.089 0.069 2.494 2.079 0.084 2.514 2.100 0.058	2.593 2.150 0.053 2.616 2.179 0.021 2.592 2.159 0.039 2.617 2.188 0.010	2.396 2.013 0.211 2.413 2.031 0.209 2.422 2.053 0.200 2.431 2.056 0.180	2 2.389 1.994 0.145 2.402 2.009 0.136 2.413 2.034 0.127 2.421 2.036	6 2.501 2.127 0.102 2.514 2.143 0.079 2.538 2.193 0.097 2.546 2.197 0.069	9 2.507 2.135 0.242 2.527 2.158 0.206 2.539 2.197 0.247 2.551 2.203 0.210	2.580 2.171 0.178 2.598 2.195 0.130 2.595 2.215 0.185 2.607 2.221 0.138
ABF	MAE ME RMSE MAE ME RMSE MAE ME RMSE MAE ME RMSE RMSE	2.436 2.022 0.100 2.442 2.027 0.074 2.424 2.016 0.096 2.433 2.024 0.075 2.456	2 2.422 1.990 0.018 2.428 1.997 -0.008 2.417 1.992 0.019 2.425 2.000 -0.001 3.634	6 2.470 2.040 -0.044 2.481 2.051 -0.072 2.466 2.042 -0.054 2.479 2.055 -0.076 6.537	9 2.492 2.069 0.100 2.510 2.089 0.069 2.494 2.079 0.084 2.514 2.100 0.058 8.870	2.593 2.150 0.053 2.616 2.179 0.021 2.592 2.159 0.039 2.617 2.188 0.010 11.27	2.396 2.013 0.211 2.413 2.031 0.209 2.422 2.053 0.200 2.431 2.056 0.180 2.515	2 2.389 1.994 0.145 2.402 2.009 0.136 2.413 2.034 0.127 2.421 2.036 0.104 3.570	6 2.501 2.127 0.102 2.514 2.143 0.079 2.538 2.193 0.097 2.546 2.197 0.069 6.410	9 2.507 2.135 0.242 2.527 2.158 0.206 2.539 2.197 0.247 2.551 2.203 0.210 8.599	2.580 2.171 0.178 2.598 2.195 0.130 2.595 2.215 0.185 2.607 2.221 0.138 10.73
ABF FD AFD	MAE ME RMSE MAE ME RMSE MAE ME RMSE MAE ME RMSE MMSE MAE MAE	2.436 2.022 0.100 2.442 2.027 0.074 2.424 2.016 0.096 2.433 2.024 0.075	2 2.422 1.990 0.018 2.428 1.997 -0.008 2.417 1.992 0.019 2.425 2.000 -0.001	6 2.470 2.040 -0.044 2.481 2.051 -0.072 2.466 2.042 -0.054 2.479 2.055 -0.076	9 2.492 2.069 0.100 2.510 2.089 0.069 2.494 2.079 0.084 2.514 2.100 0.058	2.593 2.150 0.053 2.616 2.179 0.021 2.592 2.159 0.039 2.617 2.188 0.010	2.396 2.013 0.211 2.413 2.031 0.209 2.422 2.053 0.200 2.431 2.056 0.180	2 2.389 1.994 0.145 2.402 2.009 0.136 2.413 2.034 0.127 2.421 2.036 0.104	6 2.501 2.127 0.102 2.514 2.143 0.079 2.538 2.193 0.097 2.546 2.197 0.069	9 2.507 2.135 0.242 2.527 2.158 0.206 2.539 2.197 0.247 2.551 2.203 0.210	2.580 2.171 0.178 2.598 2.195 0.130 2.595 2.215 0.185 2.607 2.221 0.138

			예측	단계(목	독일)			예측단	<u></u> 관계(이	태리)	
		1	2	6	9	12	1	2	6	9	12
BF	RMSE	2.538	2.491	2.559	2.617	2.683	2.051	2.098	2.187	2.282	2.395
	MAE	2.104	2.052	2.081	2.137	2.176	1.632	1.684	1.757	1.844	1.960
	ME	0.672	0.581	0.679	0.901	0.866	-0.279	-0.316	-0.277	-0.193	-0.132
ABF	RMSE	2.530	2.512	2.505	2.543	2.607	2.062	2.114	2.205	2.312	2.423
	MAE	2.085	2.055	2.090	2.122	2.174	1.640	1.689	1.761	1.868	1.983
	ME	0.386	0.301	0.334	0.520	0.492	-0.316	-0.358	-0.330	-0.273	-0.206
FD	RMSE	2.503	2.456	2.522	2.557	2.616	2.092	2.140	2.210	2.287	2.384
	MAE	2.089	2.039	2.106	2.145	2.174	1.705	1.758	1.812	1.873	1.958
	ME	0.550	0.455	0.464	0.680	0.644	-0.375	-0.423	-0.365	-0.261	-0.191
AFD	RMSE	2.511	2.492	2.511	2.547	2.606	2.095	2.145	2.219	2.310	2.405
	MAE	2.121	2.092	2.080	2.098	2.133	1.703	1.757	1.811	1.890	1.976
	ME	0.470	0.388	0.446	0.653	0.649	-0.398	-0.449	-0.403	-0.323	-0.247
RW	RMSE	2.542	3.752	7.199	10.04	12.96	2.194	3.397	5.761	6.664	6.500
	MAE	2.118	3.077	5.679	8.625	11.42	1.747	2.587	4.753	5.403	5.625
	ME	0.617	1.183	4.457	7.655	11.04	-0.271	-0.527	-0.278	0.741	2.119
			예측	단계(약	일본)			계측단	계(노.		
		1	예측 2	단계(약 6	일본) 9	12	1	예측단 2	계(노ː 6		
BF	RMSE	1 4.054				12 4.670	-		-	르웨이)
BF			2	6	9		1	2	6	르웨이 9	12
BF	RMSE	4.054	2 4.080	6 4.276	9 4.481	4.670	1 2.574	2 2.541	6 2.647	르웨이 9 2.753	12 2.887
BF	RMSE MAE	4.054 2.748	2 4.080 2.717	6 4.276 2.815	9 4.481 3.003	4.670 3.151	1 2.574 2.032	2 2.541 1.986	6 2.647 2.089	르웨이 9 2.753 2.175	12 2.887 2.322
	RMSE MAE ME	4.054 2.748 0.350	2 4.080 2.717 0.318	6 4.276 2.815 0.364	9 4.481 3.003 0.394	4.670 3.151 0.236	1 2.574 2.032 0.426	2 2.541 1.986 0.360	6 2.647 2.089 0.439	르웨이 9 2.753 2.175 0.596	12 2.887 2.322 0.722
	RMSE MAE ME RMSE	4.054 2.748 0.350 4.134	2 4.080 2.717 0.318 4.191	6 4.276 2.815 0.364 4.375	9 4.481 3.003 0.394 4.589	4.670 3.151 0.236 4.788	1 2.574 2.032 0.426 2.570	2 2.541 1.986 0.360 2.536	6 2.647 2.089 0.439 2.637	三위이 9 2.753 2.175 0.596 2.743	12 2.887 2.322 0.722 2.874
	RMSE MAE ME RMSE MAE	4.054 2.748 0.350 4.134 2.729	2 4.080 2.717 0.318 4.191 2.692	6 4.276 2.815 0.364 4.375 2.755	9 4.481 3.003 0.394 4.589 2.941	4.670 3.151 0.236 4.788 3.100	1 2.574 2.032 0.426 2.570 2.028	2 2.541 1.986 0.360 2.536 1.981	6 2.647 2.089 0.439 2.637 2.072	르웨이 9 2.753 2.175 0.596 2.743 2.158	12 2.887 2.322 0.722 2.874 2.297
ABF	RMSE MAE ME RMSE MAE ME	4.054 2.748 0.350 4.134 2.729 -0.069	2 4.080 2.717 0.318 4.191 2.692 -0.157	6 4.276 2.815 0.364 4.375 2.755 -0.147	9 4.481 3.003 0.394 4.589 2.941 -0.173	4.670 3.151 0.236 4.788 3.100 -0.381	1 2.574 2.032 0.426 2.570 2.028 0.216	2 2.541 1.986 0.360 2.536 1.981 0.139	6 2.647 2.089 0.439 2.637 2.072 0.206	三위이 9 2.753 2.175 0.596 2.743 2.158 0.329	12 2.887 2.322 0.722 2.874 2.297 0.440
ABF	RMSE MAE ME RMSE MAE ME RMSE	4.054 2.748 0.350 4.134 2.729 -0.069 4.063	2 4.080 2.717 0.318 4.191 2.692 -0.157 4.057 2.762	6 4.276 2.815 0.364 4.375 2.755 -0.147 4.235	9 4.481 3.003 0.394 4.589 2.941 -0.173 4.444	4.670 3.151 0.236 4.788 3.100 -0.381 4.643 3.224	1 2.574 2.032 0.426 2.570 2.028 0.216 2.557	2 2.541 1.986 0.360 2.536 1.981 0.139 2.528 1.991	6 2.647 2.089 0.439 2.637 2.072 0.206 2.641	르웨이 9 2.753 2.175 0.596 2.743 2.158 0.329 2.746 2.183	12 2.887 2.322 0.722 2.874 2.297 0.440 2.868
ABF	RMSE MAE ME RMSE MAE ME RMSE MAE	4.054 2.748 0.350 4.134 2.729 -0.069 4.063 2.816	2 4.080 2.717 0.318 4.191 2.692 -0.157 4.057 2.762	6 4.276 2.815 0.364 4.375 2.755 -0.147 4.235 2.839	9 4.481 3.003 0.394 4.589 2.941 -0.173 4.444 3.045	4.670 3.151 0.236 4.788 3.100 -0.381 4.643 3.224	1 2.574 2.032 0.426 2.570 2.028 0.216 2.557 2.036	2 2.541 1.986 0.360 2.536 1.981 0.139 2.528 1.991	6 2.647 2.089 0.439 2.637 2.072 0.206 2.641 2.101	르웨이 9 2.753 2.175 0.596 2.743 2.158 0.329 2.746 2.183	12 2.887 2.322 0.722 2.874 2.297 0.440 2.868 2.305
ABF	RMSE MAE ME RMSE MAE ME RMSE MAE MAE	4.054 2.748 0.350 4.134 2.729 -0.069 4.063 2.816 0.359	2 4.080 2.717 0.318 4.191 2.692 -0.157 4.057 2.762 0.320	6 4.276 2.815 0.364 4.375 2.755 -0.147 4.235 2.839 0.387	9 4.481 3.003 0.394 4.589 2.941 -0.173 4.444 3.045 0.443	4.670 3.151 0.236 4.788 3.100 -0.381 4.643 3.224 0.321	1 2.574 2.032 0.426 2.570 2.028 0.216 2.557 2.036 0.444	2 2.541 1.986 0.360 2.536 1.981 0.139 2.528 1.991 0.369	6 2.647 2.089 0.439 2.637 2.072 0.206 2.641 2.101 0.460	三위이 9 2.753 2.175 0.596 2.743 2.158 0.329 2.746 2.183 0.609	12 2.887 2.322 0.722 2.874 2.297 0.440 2.868 2.305 0.728
ABF	RMSE MAE ME RMSE MAE ME RMSE MAE RMSE MAE ME RMSE	4.054 2.748 0.350 4.134 2.729 -0.069 4.063 2.816 0.359 4.134 2.787	2 4.080 2.717 0.318 4.191 2.692 -0.157 4.057 2.762 0.320 4.162	6 4.276 2.815 0.364 4.375 2.755 -0.147 4.235 2.839 0.387 4.327 2.771	9 4.481 3.003 0.394 4.589 2.941 -0.173 4.444 3.045 0.443 4.543	4.670 3.151 0.236 4.788 3.100 -0.381 4.643 3.224 0.321 4.747 3.162	1 2.574 2.032 0.426 2.570 2.028 0.216 2.557 2.036 0.444 2.555	2 2.541 1.986 0.360 2.536 1.981 0.139 2.528 1.991 0.369 2.525	6 2.647 2.089 0.439 2.637 2.072 0.206 2.641 2.101 0.460 2.635	르웨이 9 2.753 2.175 0.596 2.743 2.158 0.329 2.746 2.183 0.609 2.740	2.887 2.322 0.722 2.874 2.297 0.440 2.868 2.305 0.728 2.860
ABF	RMSE MAE ME RMSE MAE ME RMSE MAE ME RMSE MAE	4.054 2.748 0.350 4.134 2.729 -0.069 4.063 2.816 0.359 4.134 2.787	2 4.080 2.717 0.318 4.191 2.692 -0.157 4.057 2.762 0.320 4.162 2.722	6 4.276 2.815 0.364 4.375 2.755 -0.147 4.235 2.839 0.387 4.327 2.771	9 4.481 3.003 0.394 4.589 2.941 -0.173 4.444 3.045 0.443 4.543 2.975	4.670 3.151 0.236 4.788 3.100 -0.381 4.643 3.224 0.321 4.747 3.162	1 2.574 2.032 0.426 2.570 2.028 0.216 2.557 2.036 0.444 2.555 2.035	2 2.541 1.986 0.360 2.536 1.981 0.139 2.528 1.991 0.369 2.525 1.989	6 2.647 2.089 0.439 2.637 2.072 0.206 2.641 2.101 0.460 2.635 2.095	三위이 9 2.753 2.175 0.596 2.743 2.158 0.329 2.746 2.183 0.609 2.740 2.179	2.887 2.322 0.722 2.874 2.297 0.440 2.868 2.305 0.728 2.860 2.300
ABF FD AFD	RMSE MAE ME RMSE MAE ME RMSE MAE ME MAE ME RMSE MAE ME	4.054 2.748 0.350 4.134 2.729 -0.069 4.063 2.816 0.359 4.134 2.787 -0.058	2 4.080 2.717 0.318 4.191 2.692 -0.157 4.057 2.762 0.320 4.162 2.722 -0.158	6 4.276 2.815 0.364 4.375 2.755 -0.147 4.235 2.839 0.387 4.327 2.771 -0.125	9 4.481 3.003 0.394 4.589 2.941 -0.173 4.444 3.045 0.443 4.543 2.975 -0.124	4.670 3.151 0.236 4.788 3.100 -0.381 4.643 3.224 0.321 4.747 3.162 -0.297	1 2.574 2.032 0.426 2.570 2.028 0.216 2.557 2.036 0.444 2.555 2.035 0.295	2 2.541 1.986 0.360 2.536 1.981 0.139 2.528 1.991 0.369 2.525 1.989 0.212	6 2.647 2.089 0.439 2.637 2.072 0.206 2.641 2.101 0.460 2.635 2.095 0.291	로웨이 9 2.753 2.175 0.596 2.743 2.158 0.329 2.746 2.183 0.609 2.740 2.179 0.409	2.887 2.322 0.722 2.874 2.297 0.440 2.868 2.305 0.728 2.860 2.300 0.511

-			예측단	단계(스	:웨덴)			예측	단계(*	한국)	
		1	2	6	9	12	1	2	6	9	12
BF	RMSE	2.147	2.102	2.127	2.232	2.337	1.438	1.411	1.453	1.497	1.594
	MAE	1.732	1.731	1.760	1.896	2.016	1.027	1.006	0.949	0.969	1.047
	ME	0.520	0.485	0.632	0.773	0.835	0.250	0.324	0.555	0.603	0.739
ABF	RMSE	2.139	2.116	2.114	2.209	2.306	1.428	1.391	1.423	1.458	1.556
	MAE	1.743	1.748	1.756	1.870	1.978	1.023	0.994	0.929	0.955	1.032
	ME	0.285	0.229	0.393	0.528	0.552	0.246	0.317	0.547	0.590	0.719
FD	RMSE	2.150	2.096	2.117	2.218	2.323	1.444	1.425	1.471	1.518	1.618
	MAE	1.751	1.721	1.765	1.893	2.008	1.032	1.015	0.955	0.979	1.060
	ME	0.492	0.447	0.596	0.740	0.811	0.265	0.347	0.593	0.644	0.773
AFD	RMSE	2.136	2.118	2.100	2.184	2.282	1.435	1.406	1.440	1.477	1.576
	MAE	1.753	1.778	1.773	1.863	1.975	1.029	1.005	0.937	0.965	1.047
	ME	0.124	0.043	0.211	0.347	0.386	0.258	0.336	0.577	0.623	0.746
RW	RMSE	2.166	3.318	6.378	8.143	9.404	1.477	2.137	4.105	5.901	7.592
	MAE	1.796	2.649	4.357	6.186	7.645	1.004	1.628	3.525	5.256	6.623
	ME	0.355	0.622	2.551	4.578	7.291	0.488	0.857	2.639	4.420	6.051

주: 숫자는 %를 의미함.

< 표 4>에서 보는 바와 같이, 예측 1단계에서는 캐나다의 BF모형, 일본의 4가지 모형을 제외하고 구조적 모형의 RMSE가 임의보행보다 낮게 나타나고 있다. 예측 2단계 이후에 있어서는 모든 국가의 4가지 모형의 RMSE가 임의보행모형보다 지속적으로 낮게 나타나고 있다. 또한 ME와 MAE를 기준으로 비교해보면 화폐론적 환율결정모형은 예측에 있어서 체계적의 편의를 보이지 않으나 임의보행모형에 있어서는 이태리의 ME를 제외하고 상당한 크기의 과대예측을 보임을 알 수 있다.

Ⅳ. 결 론

본고에서는 오스트리아, 캐나다, 덴마크, 프랑스, 독일, 이태리, 일본, 노

르웨이, 스웨덴, 한국의 OECD 10개국에 대해 화폐론적 환율결정모형과 임의보행모형의 예측실적 비교로 환율예측가능성 여부를 살펴보았다. 이 용한 시계열의 안정성을 판별하기 위한 DF와 ADF 단위근검정을 통해 모든 수준변수는 불안정한 특성을 갖으나 1차차분을 통해 안정성을 갖는 I(1) 과정임을 알 수 있었다. 또한 EG검정과 이의 문제점을 보완한 Johansen검정을 실시하여 EG검정에서는 공적분관계를 갖지 않는 것으로 나타난 반면에 Iohansen검정에서는 적어도 한 개의 공적분벡터가 존재하 는 것으로 나타나 환율이 기초경제변수들과 안정적인 관계를 가지고 있 음을 알 수 있었다. 모형이 공적분관계를 갖는 것으로 나타남에 따라 오 차수정모형을 통해 표본외 예측을 실시하여 임의보행모형과 예측력 비교 를 하였다. RMSE통계량에 있어서 대부분의 국가와 대부분의 예측단계에 서 화폐론적 모형의 예측오류가 임의보행모형보다 작게 나타나 화폐론적 모형의 예측능력이 임의보행모형보다 우수함을 보였다. 또한 ME 및 MAE 비교를 통해 화폐론적 환율결정모형은 예측에 있어서 체계적의 편 의를 보이지 않으나 임의보행모형에 있어서는 이태리의 ME를 제외하고 상당한 크기의 체계적 편의가 있음을 확인할 수 있었다.

이와 같은 결과는 본고가 도입한 환율결정모형이 장기적 유용성을 갖는 다는 것과, 외환시장의 딜러들이 환율예측시에 예측기간이 길어질수록 환율의 변화양상(chart)보다는 경제적 요인을 더 크게 고려한다는 것과 일맥상통하며, 이는 MacDonald and Taylor(1993, 1994)와 Taylor and Allen(1992)의 연구결과를 다시 한 번 입증한 것이라 할 수 있다.

〈참고문헌〉

- (1) Bilson, J. F. O.(1978), "The Monetary Approach to the Exchange Rate- Some Empirical Evidence," *IMF Staff Papers*, 25(1), March, 48-75.
- (2) Clements, K. W., and Frenkel, J. A.(1980), "Exchange Rates, Money, and Relative Prices: The Dollar-Pound in the 1920s," *Journal of International Economics*, 10, 249–262.
- (3) Clements, M. P.(1989), "The Estimation and Testing of Cointegrating Vectors: A Survey of Recent Approaches and an Application to the U.K. Non-Durable Consumption Function," *Applied Discussion Paper*, 79. Oxford: Institute of Economics and Statistics, May.
- (4) Dickey, D. A., and Fuller, W. A.(1979), "Distribution of the Estimators for Autoregressive Time Series with a Unit Root," *Journal of the American Statistical Association*, 74(366), June, 427–431.
- (5) Dolado, J., Jenkins, T., and Sosvilla-Rivero, S.(1990), "Cointegration: A Survey of Recent Developments," *Journal of Economic Surveys*, 4, 249–273.
- (6) Dornbusch, R.(1976a), "Expectations and Exchange Rate Dynamic s," *Journal of Political Economy*, 84, 1161–1176.
- (7) Engle, R. F., and Yoo, B. S.(1987), "Forecasting and Testing in Cointegrated Systems," *Journal of Econometrics*, 35, 143–159.
- (8) ___, and Granger, C. W. J.(1987), "Cointegration and Error Correction: Representation, Estimation, and Testing," *Econometrica*, 55, March, 251–276.
- (9) Finn, M. G.(1986), "Forecasting the Exchange Rate: A Monetary or

- Random Walk Phenomenon," Journal of International Money and Finance, 5, 181–193.
- (10) Frankel, J. A.(1979), "On the Mark: A Theory of Floating Exchange Rates based on Real Interest Differentials," *American Economic Review*, 69, September, 610–622.
- (11) Frenkel, J. A.(1976), "A Monetary Approach to the Exchange Rate: Doctrinal Aspects and Empirical Evidence," *Scandinavian Journal of Economics*, 78, 200–224.
- (12) Fuller, W. A.(1976), Introduction to Statistical Time Series, New York: Wiley.
- (13) Hendry, D. F.(1986), "Econometric Modelling with Cointegrated variables:
 An Overview," Oxford Bulletin of Economics and Statistics, 48, August, 201–212.
- (14) Hooper, P., and Morton, J. E.(1982), "Fluctuations in the Dollar: A Model of Nominal and Real Exchange Rate Determination," *Journal of International Money and Finance*, 1, 39–56.
- (15) Hung, W., Y. Kim, and Ohno, K.(1993), "Pricing Exports: A Cross-Country Study," *Journal of International Money and Finance*, 12(1), 3–28.
- (16) International Financial Statistics, International Monetary Fund, CD ROM.
- (17) Johansen, S.(1988), "Statistical Analysis of Cointegration Vectors," Journal of Economic Dynamics and Control, 12, 231–254.
- (18) MacDonald, R., and Taylor, M. P.(1991), "Monetary Approach to the Exchange Rate: Long-Run Relationships and Coefficient Restrictions," *Economic Letters*, 37, October, 179–85.
- (19) ____(1993), "The Monetary Approach to the Exchange Rate: Rational Expectations, Long-Run Equilibrium, and Forecasting,"

- IMF Staff Papers, 40(1), March, 89-107.
- (20) ___(1994), "The Monetary Model of the Exchange Rate: Long-Run Relationships, Short-Run Dynamics and How to Beat a Random Walk, *Journal of International Money and Finance*, 13, 276–290.
- (21) Meese, R. A., and Rogoff, K.(1983), "Empirical Exchange Rate Models of the Seventies: Do They Fit Out of Sample?" *Journal of International Economics*, 14, February, 3–24.
- (22) Osterwald-Lenum(1992), M., "A Note with Quantiles of the Asymptotic Distribution of the Maximum Likelihood Cointegration Rank Test Statistics," Oxford Bulletin of Economics and Statistics, 54, 461-471.
- (23) Schinasi, G.J., and Swamy, P.A.V.B.(1989), "The Out-of-Sample Forecasting Performance of Exchange Rate Models When Coefficients Are Allowed to Change," *Journal of International Money and Finance*, 8, 375–390.
- (24) Schwert, G. W.(1987), "The Effects of Model Specification on Tests for Unit Roots in Macroeconomic Data," *Journal of Monetary Economics*, 20, 73–103.
- (25) Siklos, P.L. (1989a), "Unit Root Behavior in Velocity: Cross-Country Evidence Using Recursive Estimation," *Economics Letters*, 30, 231–236.
- (26) ___(1993b), "Income Velocity and Institutional Change: Some New Time Series Evidence, 1870–1986," *Journal of Money, Credit, and Banking*, 25(3), August, Part 1, 377–392.
- (27) Somanath, V. S.(1986), "Efficient Exchange Rate Forecasts: Lagged Models Better than the Random Walk," *Journal of International Money and Finance*, 5, 195–220.
- (28) Taylor, M. P., and Allen, H. L.(1992), "The Use of Technical Analysis in the Foreign Exchange Market," *Journal of*

- International Money and Finance, 11, 304-314.
- (29) Wolff, C. C. P.(1987a), "Time-varying Parameters and the Out-of-Sample Forecasting Performance of Structural Exchange Rate Models," *Journal of Business and Economic Statistics*, 5(1), January, 87-97.
- (30) Woo, W. T.(1985), "The Monetary Approach to Exchange Rate Determination Under Rational Expectations: The Dollar-Deutschmark Rate," *Journal of International Economics*, 18, February, 1-16.

Forecasting the Exchange Rate: A Monetary or Random Walk Phenomenon

ChangBeom Kim · SooWon Mo

<Abstract>

The purpose of this paper is to evaluate the ability to forecast the exchange rate of the monetary models. We introduce the four monetary models, which are the simple flexible-price(BF) model, the sticky-price(FD) model, and the augmented BF and FD models with the relative price of traded to non-traded goods to allow for shifts in the equilibrium exchange rate. Our findings of the cointegrating vectors indicate that the monetary models can be interpreted as having long-run validity. We proceeded by comparing the forecasting performance of the four monetary models of exchange rates with that of the random walk model using RMSE, MAE, and ME. The results of the study suggest that the structural monetary models outperform the random walk model in the long-run forecasting.