Teorema de Thales Triángulos semejantes. Criterios de semejanza. Consecuencias de los criterios de semejanza Razones trigonométricas Bibliografía

Tema 37: La relación de semejanza en el plano. Consecuencias. Teorema de Thales. Razones trigonométricas.

Autor: Juan Manuel Hernández

Academia Deimos www.academiadeimos.com

Contenidos

- Teorema de Thales
- 2 Triángulos semejantes. Criterios de semejanza.
- 3 Consecuencias de los criterios de semejanza
- Razones trigonométricas
- 5 Bibliografía

Introducción

En la primera sección se introduce la relación de semejanza en el plano y se demuestra el teorema de Thales, se utiliza en la segunda para obtener los criterios de semejanza de triángulos. Como aplicación obtenemos los teoremas del cateto y de la altura. El teorema de Thales hace consistentes las definiciones de las razones trigonométricas, de cuyas propiedades nos ocupamos en la última sección.

Triángulos semajantes

Se dice que los triángulos $\triangle ABC$ y $\triangle MNP$ son semejantes, y lo denotaremos $\triangle ABC \sim \triangle MNP$, si se cumplen las igualdades

$$\frac{AB}{MN} = \frac{AC}{MP} = \frac{BC}{NP}.$$

Nótese que la relación de semejanza es de equivalencia. Si los cocientes anteriores valen 1 se dice que los triángulos son *congruentes*.

Teorema de Thales

Dados un triángulo $\triangle ABC$ y dos puntos $D \in S(B, C)$ y $E \in S(A, B)$ de modo que las rectas r(D, E) y r(A, C) son paralelas, los triángulos $\triangle ABC$ y $\triangle EBD$ son semejantes.

[Incluir demostracción]

Semejanza de triángulos

- 1. Sean $\triangle ABC$ un triángulo y $D \in S(B,C)$ y $E \in S(A,B)$ dos puntos tales que los triángulos $\triangle ABC$ y $\triangle EBD$ son semejantes. Entonces las rectas r(A,C) y r(D,E) son paralelas.
- 2. [Criterios de semejanza de triángulos] Sean $\mathcal{T}_1 := \triangle ABC \ y \ \mathcal{T}_2 := \triangle MNP$.
 - (1) $Si \angle BAC = \angle NMP \ y \angle CBA = \angle PNM$, entonces \mathcal{T}_1 $y \mathcal{T}_2$ son semejantes.
 - (2) Si $\angle BAC = \angle NMP$ y $AB \cdot MP = AC \cdot MN$, entonces \mathcal{T}_1 y \mathcal{T}_2 son semejantes.

Algunas consecuencias.

Sean $\triangle ABC$ un triángulo rectángulo en A y H la proyección ortogonal de A sobre la recta r(B,C). Se cumplen las siguientes igualdades:

- (1) $AB^2 = BC \cdot HB$ (Teorema del cateto).
- (2) $AH^2 = CH \cdot BH$ (Teorema de la altura).
- (3) $BC^2 = AB^2 + AC^2$ (Teorema de Pitágoras).

Sea $\mathcal{R}:=\{O;e_1,e_2\}$ un sistema de referencia ortogonal de \mathbb{R}^2 , Γ la circunferencia de centro O y radio 1 y Q el punto cuyas coordenadas respecto de \mathcal{R} son (1,0). Para cada punto $P\in\Gamma$ cuyas coordenadas respecto de \mathcal{R} son (x,y) denotamos $\alpha:= \angle(r^+,s^+)$, donde r^+ y s^+ son las semirrectas de origen O que pasan por Q y P, respectivamente. Las razones trigonométricas de α son los siguientes números:

- (1) Coseno de α , que se denota $\cos \alpha := x$.
- (2) Seno de α , que se denota sen $\alpha := y$.
- (3) Tangente de α , que se denota tg $\alpha := \frac{y}{x}$, si $x \neq 0$.
- (4) Cotangente de α , que se denota $\alpha := \frac{x}{y}$, si $y \neq 0$.
- (5) Secante de α , que se denota $\sec \alpha := \frac{1}{x}$, $\sin x \neq 0$.

Observaciones:

(1) Sea Γ_1 otra circunferencia concéntrica con Γ de radio r > 0. Los triángulos $\triangle OPQ$ y $\triangle OP'Q'$ son semejantes pues las amplitudes de sus ángulos son iguales dos a dos. Sea M el pie de la perpendicular a la recta r(O,Q) trazada desde P.

Entonces P' := (rx, ry) y Q' := (r, 0), por lo que se tiene

$$\cos \alpha = \frac{OM}{OP} = x = \frac{rx}{r}$$
; $\sin \alpha = \frac{MP}{OP} = y = \frac{ry}{r}$.

Por ello es consistente definir las razones trigonométricas de la amplitud $\alpha := \angle BAC$ del ángulo en A del triángulo $\triangle ABC$ rectángulo en B, como

$$sen \alpha := \frac{BC}{AC}$$
 $y cos \alpha := \frac{AB}{AC}$

(2) En términos de las razones trigonométricas el teorema de Pitágoras se reformula:

$$\cos^2 \alpha + \sin^2 \alpha = \frac{AB^2 + BC^2}{AC^2} = 1.$$

En particular, $|\cos\alpha| \le 1$ y $|\sin\alpha| \le 1$. Dividiendo la anterior relación, respectivamente entre $\cos\alpha^2$ y $\sin^2\alpha$ cuando estos números no son nulos, resulta

$$1 + \operatorname{tg}^2 \alpha = \sec^2 \alpha$$
 y $1 + \alpha = \csc^2 \alpha$.

(3) Las razones trigonométricas han sido definidas para amplitudes de ángulos en el intervalo $[0,2\pi)$. Para todo $\alpha \in \mathbb{R}$ existe un único entero k tal que $\alpha-2k\pi \in [0,2\pi)$, así que podemos extender por prolongación periódica a toda la recta real las fundades.

(4) De la simetría de la circunferencia se siguen las llamadas fórmulas *de reducción:*

Para cualquier ángulo α se cumplen las siguientes igualdades:

(i)
$$\operatorname{sen}(\pi - \alpha) = \operatorname{sen} \alpha$$
, $\cos(\pi - \alpha) = -\cos \alpha$, $\operatorname{sen}(\pi + \alpha) = -\sin \alpha$, $\cos(\pi + \alpha) = -\cos \alpha$.

(ii)
$$\operatorname{sen}(-\alpha) = -\operatorname{sen}\alpha$$
, $\cos(-\alpha) = \cos\alpha$, $\operatorname{sen}(\frac{\pi}{2} - \alpha) = \cos\alpha$, $\cos(\frac{\pi}{2} - \alpha) = \operatorname{sen}\alpha$.

(iii)
$$\operatorname{sen}\left(\frac{\pi}{2} + \alpha\right) = \cos \alpha$$
, $\cos\left(\frac{\pi}{2} + \alpha\right) = -\operatorname{sen} \alpha$.

Bibliografía

- Retorno a la Geometría. H.S.M Coxeter. S.L. Greitzer. La Tortuga de Aquiles.
- Fundamentos de la Geometría. David Hilbert. CSIC.
- Curso de geometría básica. Antonio F. Costa. Ed. Sanz y Torres.
- Curso de geometría métrica. Tomo 1. Puig Adam.
- Geometría. S. Xambó. Edicions UPB.