Functional Depend	dencies	
Anomalies (3)	 Bad designed schemas can result in redundancies and For example, having everything (all attributes and its is terrible Objective: To come up with a proper schema given 	corresponding values) in a single table
Update Anomaly	// Price of standard rooms is replicated and was wrongly entered in one of the replicas type price name tel address standard 75 Hotel A standard 76 Hotel A	 Because of repetition, easy to make mistakes Especially when need to update the attribute of certain rows to a new value If not all affected rows are updated to new value, database becomes inconsistent
Deletion Anomaly	// If Hotel B stops offering junior suites, then their price disappears from the database type price name tel address superior Hotel A standard Hotel A suite Hotel A superior Hotel A superior Hotel B superior Hotel B suite 250 Hotel B suite 200 Hotel B suite suite	- If we delete a row that contains a unique value of an attribute, then all details inferred from that particular value is also lost
Insertion Anomaly	// No hotels offer executive rooms yet, we cannot store their price type price name tel address executive 175	 We cannot use dummy values (dangerous) and null values (because attribute is part of primary key) This is because when all information is in a single table, all attributes form the primary key
+ Redundancies	Every time a hotel name is mentioned, its telephone and address is repeated	The same information is repeated, possibly unnessarily
Objectives	 (1) Define functional dependencies (FD) and correspond (2) Manipulate FDs (closure and equivalence) (3) Reason about FDs (Armstrong's Axioms) (4) Remove redundancy in dependencies and in sets of 	
Definition	For a relational schema R, a functional dependency from a set S of attributes of R to a set T of attributes of R exists if and only if For every instance of R, if 2 tuples in R agree on the values of the attributes in S, then they agree on the values of the attributes in T	We write it as: $S \rightarrow T$ Example: $\{A, B\} \rightarrow \{C, D\}$

Functional dependen	cies are:	
Integrity	Example:	
Constraints	For	
	R = {type, price, name, te	el, address},
	with functional dependency	
	{type} → {pric	<mark>e</mark> }
	// A FD is an integrity constraint that	- *** Note that this check cannot
	could be checked with:	be implemented in Postgres
	Courd be checked with.	- Currently, Postgres does not allow
	CHECK (NOW DATEME /	this as it can only handle simple
	CHECK (NOT EXISTS (conditions
	SELECT *	- The check here ensures that there
	FROM R r1, R r2	is no two rooms of the same type
	WHERE r1. type = r2. type	with different prices
	AND r1. price <> r2. price))	With amerene prices
Best implemented	Example:	
as	For	
Primary Keys or	R1 = {type, pric	e}.
Unique	R1 (type, pile R2 = {type, nam	
Constraints	with functional dependency	C)
	· · ·	al
	{type} → {pric	
	// A FD is an integrity constraint that	- This eliminates duplicate rows
	could be checked with:	- Helps with breaking of table into
		multiple tables
	// In R1:	
	type VARCHAR(36) UNIQUE	
	//or//	
	type VARCHAR (36) PRIMARY KEY	
	type Vancian (30) I RIMARI REI	
	// + Add a foreign key constraint	
	// In R2:	
	type VARCHAR(36) REFERENCES R1(type)	
Keys:		
Superkeys	A set of attributes whose knowledge determines the	Can be too big, smaller sets of
	value of the entire tuple (*** implies everything)	candidate keys are better
Candidate keys	A minimal (for inclusion) set of attributes whose	- Note that minimal is not the
•	knowledge determines the value of the entire tuple	same as minimum:
		- Minimal – partial order/bottom of
		the hierarchy (not necessarily
		comparable)
		- <u>Minimum</u> – order
	Example:	
	- {firstname, lastname} is not s	maller than {passport} for inclusion
	- {lastname} is smaller than {firs	
	Example:	Tas chame, 101 molecul
	For	
	R = {type, price, name, te	al address}
	with a set of FDs:	zi, audicooj,
		$ddragg\{ \sum_{i=1}^{n} \{+a_i\} \sum_{i=1}^{n} \{-a_i\} \}$
	$F = \{ \{ \text{type} \} \rightarrow \{ \text{price} \}, \{ \text{name} \} \rightarrow \{ \text{address} \}. \{ \text{address} \}. \}$	
	// The candidate keys are:	Unique
	{type, name},	
	{type, address},	
	{type, tel}	
Primary keys	If there are several candidate keys, only one is chosen	to be the primary key
in a proper	The state of the s	

Types of FDs:				
For:	Trivial	Non-trivia	ıl	Completely Non-trivial
X→Y	$Y \subseteq X$ (Y is a subset or equals to X)	Y⊄X (Y is not a subse	et of X)	$Y \not\subset X$ and $Y \cap X = \emptyset$ (empty intersection)
(Diagram)	,			
Example:	{type, name} → {type}		{type} → {p	rice}
		{type, name}→{pri where Y ∩ X =		
Armstrong's Axioms	 It is possible to infer new There are 3 tools in the A given FD They are sound and com anything – although may no Q: Find the non-trivial FD Let X, Y, Z be subsets of the 	Armstrong's axioms to conplete (# correct, mean by the easy) s which are not comple	reate redund ns these 3 axi etely non-trivi	oms are sufficient to proof
Reflexivity	If $Y \subseteq X$, the		- Simplifies	
Melicalvicy	$11 = \chi$, the		- Forms a t	rivial FD
Example:	For R1 = {type, price, na with the set of FDs F = {{type}} → {name} → {tel,	→{price},	1. It is {ty 2. Th {ty	ow proofs are written! s a fact that pe} ⊂ {type, name} erefore pe, name} → {type} reflexivity with (I)
Augmentation	If $X \rightarrow Y$, then X	∪ Z → Y ∪ Z	Add on bot	
Example:	(Table and set of FDs same	as above)	2. There {type	\rightarrow {price, name} \rightarrow {price, name}
Transitivity	If $X \rightarrow Y$ and $Y \rightarrow Y$	Z , then $X \rightarrow Z$,
Example:	For R1 = {type, price, nawith the set of FDs $F = \{\{type\} \rightarrow \{name\} \rightarrow \{address\}, \{te1\} \rightarrow \{name\} \}$	<pre>>{price}, address} → {tel}, ame}}</pre>	2. We know 3. Therefor transitivity	w that {name}→{address} w that {address}→{tel} re {name}→{tel} by of (I) and (2)
Other axioms: Weak- Augmentation	If X → Y , then	X∪Z→Y	2. Let X → 3. Therefor augmentation 4. We know reflexivity by	a relation scheme Y be a FD on R The X \cup Z \rightarrow Y \cup Z, by Son of (2) with {Z} W that Y \cup Z \rightarrow Y by The example of $(Y \cup Z)$ The X \cup Z \rightarrow Y by transitivity A)

Example: Finding keys

Set of Functional	Dependencies		
Closure	- Notation for a closure of F, a set of FDs: F+		
of a set of FDs	- F+ is the set of all FDs that F entails (it carries equivalent information as F)		
	- F+ can be gotten by applying Armstrong's Ax	tioms in all possible ways until nothing new is	
Example	created (called a fixpoint) Consider the relation schema		
Example	$R = \{A,$	R C D}	
	with set of FDs,	D, C, D)	
	$F = \{\{A\} \rightarrow \{B\},\$	$\{B C\} \rightarrow \{D\}\}$	
	$F + = \{$	(D, O) 7 (D))	
		١	
Equivalence	Two sets of functional dependencies F and G	are equivalent	
Equivalence	Two sets of functional dependencies F and G are equivalent		
	F≡G if and only if		
	if and		
		only if G+	
	F+ =	only if G+	
Set of Attributes	F+ = (i.e. everything in	only if G+ pplies everything)	
Attribute	F+ = (i.e. everything in - For a set S of attributes, the closure of S (win	only if G+ pplies everything) th respect to a set of FDs, F), S+, is the	
	F+ = (i.e. everything in $-$ For a set S of attributes, the closure of S (wind maximum set of attributes such that $S \rightarrow S+$ (a)	only if G+ Inplies everything) th respect to a set of FDs, F), S+, is the last a consequence of F)	
Attribute	F+ = (i.e. everything in inc. e	only if G+ Inplies everything) th respect to a set of FDs, F), S+, is the as a consequence of F) attr	
Attribute	F+ = (i.e. everything in - For a set S of attributes, the closure of S (wir maximum set of attributes such that $S \rightarrow S+$ (a - Closure size is exponential, 2^N where $N = \#$ or $2^N - I$ (if we do	only if G+ inplies everything) th respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set)	
Attribute Closure ***	F+ = (i.e. everything in (i.e. everything in a set S of attributes, the closure of S (wind maximum set of attributes such that $S \rightarrow S+$ (and a constraint of $S \rightarrow S+$ (but in a set S of attributes such that $S \rightarrow S+$ (and a constraint of $S \rightarrow S+$ (but in a set S of attributes such that $S \rightarrow S+$ (but in a set S of attributes such that $S \rightarrow S+$ (but in a set S of attributes, the closure of S of attributes, the closure of S (wind a set S) of attributes, the closure of S (wind a set S) of attributes, the closure of S (wind a set S) of attributes, the closure of S (wind a set S) of attributes, the closure of S (wind a set S) of attributes, the closure of S (wind a set S) of attributes, the closure of S (wind a set S) of attributes, the closure of S (wind a set S) of attributes, the closure of S (wind a set S) of attributes, the closure of S (wind a set S) of attributes, the closure of S (wind a set S) of attributes, the closure of S (wind a set S) of attributes such that $S \rightarrow S+$ (and a set S) of attributes are at $S \rightarrow S+$ (only if GH pplies everything) th respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) pply	
Attribute	F+ = (i.e. everything in - For a set S of attributes, the closure of S (win maximum set of attributes such that S → S+ (a - Closure size is exponential, 2 ^N where N = # or 2 ^N − I (if we do - Q: Given {A}, {B}, tell everything that they in Input	only if G+ inplies everything) th respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) inply Output	
Attribute Closure ***	F+ = (i.e. everything in - For a set S of attributes, the closure of S (wir maximum set of attributes such that S → S+ (a - Closure size is exponential, 2 ^N where N = # or 2 ^N − I (if we do - Q: Given {A}, {B}, tell everything that they in Input R, a relation scheme	only if GH pplies everything) th respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) pply	
Attribute Closure ***	F+ = (i.e. everything in - For a set S of attributes, the closure of S (wir maximum set of attributes such that S → S+ (a - Closure size is exponential, 2N where N = # or 2N - I (if we do - Q: Given {A}, {B}, tell everything that they in Input R, a relation scheme F, a set of FDs X ⊂ R	only if G+ inplies everything) th respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) inply Output	
Attribute Closure ***	F+ = (i.e. everything in - For a set S of attributes, the closure of S (wir maximum set of attributes such that S → S+ (a - Closure size is exponential, 2 ^N where N = # or 2 ^N − I (if we do - Q: Given {A}, {B}, tell everything that they in Input R, a relation scheme F, a set of FDs	only if G+ inplies everything) th respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) inply Output	
Attribute Closure ***	F+ = (i.e. everything in - For a set S of attributes, the closure of S (wir maximum set of attributes such that S → S+ (a - Closure size is exponential, 2 ^N where N = # or 2 ^N - I (if we do - Q: Given {A}, {B}, tell everything that they in Input R, a relation scheme F, a set of FDs X ⊂ R X ⁽⁰⁾ := X Repeat	only if G+ inplies everything) th respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) inply Output	
Attribute Closure ***	F+ = (i.e. everything in - For a set S of attributes, the closure of S (wir maximum set of attributes such that S → S+ (a - Closure size is exponential, 2 ^N where N = # or 2 ^N - I (if we do - Q: Given {A}, {B}, tell everything that they in Input R, a relation scheme F, a set of FDs X ⊂ R X ⁽⁰⁾ := X	only if G+ inplies everything) th respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) inply Output	
Attribute Closure ***	F+ = (i.e. everything in - For a set S of attributes, the closure of S (wir maximum set of attributes such that S → S+ (a - Closure size is exponential, 2 ^N where N = # or 2 ^N - I (if we do - Q: Given {A}, {B}, tell everything that they in Input R, a relation scheme F, a set of FDs X ⊂ R X ⁽⁰⁾ := X Repeat	only if GH Inplies everything) The respect to a set of FDs, F), S+, is the eas a consequence of F) attr not consider the empty set) Inply Output X+, the closure of A wrt F	
Attribute Closure ***	F+ = (i.e. everything in From a set S of attributes, the closure of S (with maximum set of attributes such that S → S+ (a) Closure size is exponential, 2N where N = # or 2N - I (if we do) Q: Given {A}, {B}, tell everything that they in Input R, a relation scheme F, a set of FDs X ⊂ R X ⁽⁰⁾ := X Repeat X ⁽ⁱ⁺¹⁾ := X ⁽ⁱ⁾ ∪ A	only if GH Inplies everything) The respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) Inply Output X+, the closure of A wrt F	
Attribute Closure ***	F+ = (i.e. everything in For a set S of attributes, the closure of S (win maximum set of attributes such that S → S+ (a Closure size is exponential, 2N where N = # or 2N - I (if we do Q: Given {A}, {B}, tell everything that they in Input R, a relation scheme F, a set of FDs X ⊂ R X ⁽⁰⁾ := X Repeat X ⁽ⁱ⁺¹⁾ := X ⁽ⁱ⁾ U A where A is the union of the set s. t. there exists and	only if GH Inplies everything) The respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) Inply Output X+, the closure of A wrt F	
Attribute Closure ***	F+ = (i.e. everything in For a set S of attributes, the closure of S (win maximum set of attributes such that S → S+ (a Closure size is exponential, 2N where N = # or 2N - I (if we do Q: Given {A}, {B}, tell everything that they in Input R, a relation scheme F, a set of FDs X ⊂ R X ⁽⁰⁾ := X Repeat X ⁽ⁱ⁺¹⁾ := X ⁽ⁱ⁾ U A where A is the union of the set s. t. there exists	only if GH Inplies everything) The respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) Inply Output X+, the closure of A wrt F Solve Z of attributes Solve Y \rightarrow Z in F	
Attribute Closure ***	F+ = (i.e. everything in For a set S of attributes, the closure of S (win maximum set of attributes such that S → S+ (a Closure size is exponential, 2N where N = # or 2N - I (if we do Q: Given {A}, {B}, tell everything that they in Input R, a relation scheme F, a set of FDs X ⊂ R X ⁽⁰⁾ := X Repeat X ⁽ⁱ⁺¹⁾ := X ⁽ⁱ⁾ U A where A is the union of the set s. t. there exists and	only if GH Inplies everything) The respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) Inply Output X+, the closure of A wrt F Solve Z of attributes Solve Y \rightarrow Z in F	
Attribute Closure ***	F+= (i.e. everything in F+= (i.e. everything in F (i.e. everything in Input R, a relation scheme F, a set of FDs X ⊂ R X ⁽⁰⁾ := X Repeat X ⁽ⁱ⁺¹⁾ := X ⁽ⁱ⁾ U A where A is the union of the set s. t. there exists and Until X ⁽ⁱ⁺¹⁾ := X ⁽ⁱ⁾	only if GH Inplies everything) The respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) Inply Output X+, the closure of A wrt F Solve Z of attributes Solve Y \rightarrow Z in F	
Attribute Closure *** Algorithm	F+= (i.e. everything in From a set S of attributes, the closure of S (with maximum set of attributes such that S → S+ (a) Closure size is exponential, 2N where N = # or 2N - I (if we do) Q: Given {A}, {B}, tell everything that they in Input R, a relation scheme F, a set of FDs X ⊂ R X ⁽⁰⁾ := X Repeat X ⁽ⁱ⁺¹⁾ := X ⁽ⁱ⁾ U A where A is the union of the set so there exists and Until X ⁽ⁱ⁺¹⁾ := X ⁽ⁱ⁾ Return X ⁽ⁱ⁺¹⁾	only if GH Inplies everything) The respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) Inply Output X+, the closure of A wrt F Solve Z of attributes Solve Y → Z in F Solve Y ⊂ X ⁽ⁱ⁾	
Attribute Closure *** Algorithm	F+= (i.e. everything in F+= (i.e. everything in F (i.e. everything in F (i.e. everything in Input R R R R R R R R	only if GH Inplies everything) The respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) Inply Output X+, the closure of A wrt F Solve Y \rightarrow Z in F If Y \subseteq X^{(1)}	
Attribute Closure *** Algorithm	F+= (i.e. everything in inc. (i.e. everything in inc.) - For a set S of attributes, the closure of S (wind maximum set of attributes such that $S \to S+$ (and $S \to S+$ (but in its inclusion of the set of	only if GH Inplies everything) The respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) Inply Output X+, the closure of A wrt F A Y - X in F A Y - X in F A Y - X in F B Y - B Y - B B B B	
Attribute Closure *** Algorithm	F+ = (i.e. everything in For a set S of attributes, the closure of S (win maximum set of attributes such that S → S+ (a Closure size is exponential, 2N where N = # or 2N - I (if we do - Q: Given {A}, {B}, tell everything that they in Input R, a relation scheme F, a set of FDs X ⊂ R X ⁽⁰⁾ := X Repeat X ⁽ⁱ⁺¹⁾ := X ⁽ⁱ⁾ U A where A is the union of the set s. t. there exists and Until X ⁽ⁱ⁺¹⁾ := X ⁽ⁱ⁾ Return X ⁽ⁱ⁺¹⁾ For R = {A, B, C, D}, with set of FDs	only if GH Inplies everything) The respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) Inply Output X+, the closure of A wrt F Solve X → Z in F H Y ⊂ X (a) ■ {A}+= {A, C} ■ {B}+= {B, D} ■ {A, B}+= {A, B, C, D} (Minimal - everything else is a	
Attribute Closure *** Algorithm	F+ = (i.e. everything in For a set S of attributes, the closure of S (win maximum set of attributes such that S → S+ (a Closure size is exponential, 2N where N = # or 2N - I (if we do - Q: Given {A}, {B}, tell everything that they in Input R, a relation scheme F, a set of FDs X ⊂ R X ⁽⁰⁾ := X Repeat X ⁽ⁱ⁺¹⁾ := X ⁽ⁱ⁾ U A where A is the union of the set s. t. there exists and Until X ⁽ⁱ⁺¹⁾ := X ⁽ⁱ⁾ Return X ⁽ⁱ⁺¹⁾ For R = {A, B, C, D}, with set of FDs	only if GH ch respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) nply Output X+, the closure of A wrt F Solve Y → Z in F Solve Y ← X(i) ■ {A}+= {A, C} ■ {B}+= {B, D} ■ {A, B}+= {A, B, C, D}	
Attribute Closure *** Algorithm	F+ = (i.e. everything in For a set S of attributes, the closure of S (win maximum set of attributes such that S → S+ (a Closure size is exponential, 2N where N = # or 2N - I (if we do - Q: Given {A}, {B}, tell everything that they in Input R, a relation scheme F, a set of FDs X ⊂ R X ⁽⁰⁾ := X Repeat X ⁽ⁱ⁺¹⁾ := X ⁽ⁱ⁾ U A where A is the union of the set s. t. there exists and Until X ⁽ⁱ⁺¹⁾ := X ⁽ⁱ⁾ Return X ⁽ⁱ⁺¹⁾ For R = {A, B, C, D}, with set of FDs	only if GH Inplies everything) The respect to a set of FDs, F), S+, is the as a consequence of F) attr not consider the empty set) Inply Output X+, the closure of A wrt F Solve X → Z in F If Y ⊂ X (1) If A = {A, C} If B + = {B, D} If A = {A, B} + = {A, B, C, D} (Minimal - everything else is a superkey)	

Example 2 (Using algorithm)	For $R = \{A, B, C, D, E, G\},$ with set of FDs $F = \{\{A, B\} \rightarrow \{C\}, \{C\} \rightarrow \{A\}, \{B, C\} \rightarrow \{D\}, \{A, C, D\} \rightarrow \{B\}, \{D\} \rightarrow \{E, G\}, \{B, E\} \rightarrow \{C\}, \{C, G\} \rightarrow \{B, D\}, \{C, E\} \rightarrow \{A, G\}\}$ and $X = \{B, D\}$ Q: Find X+	 Calculate given set of attributes Look at each FD, if LHS is something in LHS of current set X(N), then can add in RHS (e.g. {A, B} → {A, B, C}) Always choose a FD that can introduce more new attributes Once a FD is used, no need to use it again Stop when nothing new is created (fixpoint) or when LHS is superkey X(0) = {B, D} Since {D} → {E, G}, X(0) = {B, D, E, G} Since {B, E} → {C}, X(0) = {B, D, E, G} Since {C, E} → {A, G}, X(0) = X(0) = X(0) Since {C, E} → {A, G}, X(0) = X(0) Since {C, E} → {A, C}
Equivalence	- Q: Testing equivalence based on attribute closure Let R be a relational scheme	Example:
	Let F, G be 2 sets of FDs on R	If F contains {A}→{B, C}
	■ For each {X → Y} in F +(G)	but $\{A\}^{+(G)} \rightarrow \{A, B\}$
	1) compute X ^{+(G)} (i.e. compute X+ based on FDs in G)	then {A}→{C} is entailed by F but not by G
	2) if $Y \not\subset X^+(G)$, return false	,
	■ For each $\{X \rightarrow Y\}$ in G	Therefore F and G are not equivalent
	1) compute X ^{+(F)}	
	2) if Y ⊄ X ^{+(F)} , return false	
	return true(i.e. equivalent set of FDs)	
	(1.e. equivalent set of PDS)	
Minimal Set of	A set of dependencies F is minimal if and only if: 1) Every RHS is a single attribute	
Dependencies	 For no FD {X→A} in F and proper subset ? 	
	(i.e. for 2 FDs with the same RHS, if one LI the FD with the smaller set)	HS is a subset of the other LHS, choose
	3) For no FD $\{X \rightarrow A\}$ in F is the set $F - \{X \rightarrow A\}$	equivalent to F
Example	For I), $\{A\} \rightarrow \{B, C\} \Rightarrow \{A\} \rightarrow \{B\} \text{ and } \{A\} \rightarrow \{C\}$	}
	For 2), $\{X\} \rightarrow \{A\}$	
	$\{Y\} \rightarrow \{A\}$ is minimal since $Y \subseteq X$	
	Therefore no need to keep $\{X\} \rightarrow \{A\}$ For 3),	
	{A}→{B}	
	{B}→{C} {C}→{A}	

Minimal Cover	 - A set of FDs F is a minimal cover of a set of FDs G if and only if F is minimal F is equivalent to G Every set of FDs has a minimal cover There might be several different minimal covers of the same set Q: Find the minimal cover of a set of FDs and reduce redundancy A: Answers are not unique, depends on order of steps in algorithm Challenge is to cover all cases, if there is redundancy left – if will be reflected in schema 	
Algorithm	 At every step, transform the set of FDs into an equivalent set Steps (1), (2), (3) can be applied iteratively in various orders Algorithm: (1) Simplify the RHS (by splitting into single attribute on RHS) Find FDs with RHS with more than 1 attribute, split (2) Simplify the LHS (by finding smallest possible algo/eliminate redundant lists) Find if there exists a LHS that is a subset of it in set of FDs (same RHS), use that FD instead Or, use Armstrong's Axioms to find redundant FDs (finding attribute closure will make it faster in identifying) (3) Simplify the entire set Find FDs which are redundant (i.e. can already be gotten by Armstrong's Axioms through other FDs) 	
Extended	Add a fourth step to the algorithm:	
Minimal Cover	(4) Regroup (combine LHS, undo step 1)	
(Example) Step (I) - Look for common RHS	- Combine FDs with same LHS Set of FDs, $F = \{\{A, B\} \rightarrow \{C\}, \{C\} \rightarrow \{A\}, \{B, C\} \rightarrow \{D\}, \{A, C, D\} \rightarrow \{B\}, \{D\} \rightarrow \{E, G\}, \{B, E\} \rightarrow \{C\}, \{C, G\} \rightarrow \{B, D\}, \{C, E\} \rightarrow \{A, G\}\}$ $F = \{\{A, B\} \rightarrow \{C\}, \{C\} \rightarrow \{A\}, \{B, C\} \rightarrow \{D\}, \{C, G\} \rightarrow \{B, D\}, \{C, E\} \rightarrow \{A, G\}\}$ $F' = \{\{A, B\} \rightarrow \{C\}, \{C\} \rightarrow \{A\}, \{B, C\} \rightarrow \{D\}, \{C, G\} \rightarrow \{B, D\}, \{C, E\} \rightarrow \{A, G\}\}$ $F' = \{\{A, B\} \rightarrow \{C\}, \{C\} \rightarrow \{A\}, \{B, C\} \rightarrow \{D\}, \{C, B\} \rightarrow \{C\}, \{C\} \rightarrow \{B\}, \{C\} \rightarrow \{C\}, \{C\}$	
(Example) Step (2) - Check if LHS is a subset and can be reduced	$ \begin{array}{l} \{C, \ G\} \to \{B, D\}, \ \{C, \ G\} \to \{B\}, \ \{C, \ G\} \to \{D\}, \\ \{C, \ E\} \to \{A, \ G\}, \end{array} \} \ \{C, \ E\} \to \{A\}, \ \{C, \ E\} \to \{G\} \} \\ \\ F' = \{ \{A, \ B\} \to \{C\}, \ \{C\} \to \{A\}, \ \{B, \ C\} \to \{D\}, \\ \{A, \ C, \ D\} \to \{B\}, \ \{D\} \to \{E\}, \ \{D\} \to \{G\}, \ \{B, \ E\} \to \{C\}, \\ \{C, \ G\} \to \{B\}, \ \{C, \ G\} \to \{D\}, \ \{C, \ E\} \to \{A\}, \ \{C, \ E\} \to \{G\} \} \\ \\ Since \ \{C\} \ is \ a \ subset \ of \ \{C, \ E\} \ and \ \{C\} \to \{A\}, \\ then \ \{C, \ E\} \to \{A\} \ is \ redundant. \\ \\ Since \ \{C, \ G\} \to \{B\}, \ therefore \ \{C, \ D\} \to \{B\} \ by \ transitivity. \\ \end{array} $	
	Therefore $\{A, C, D\} \rightarrow \{B\}$ is redundant and can be replaced by $\{C, D\} \rightarrow \{B\}$. $F' ' = \{\{A, B\} \rightarrow \{C\}, \frac{\{C\} \rightarrow \{A\}, \{B, C\} \rightarrow \{D\},}{\{C, D\} \rightarrow \{B\}, \{C\}, \{D\} \rightarrow \{B\}, \{D\} \rightarrow \{G\}, \{B, E\} \rightarrow \{C\},}{\{C, G\} \rightarrow \{B\}, \{C, G\} \rightarrow \{D\}, \frac{\{C, E\} \rightarrow \{A\}, \{C, E\} \rightarrow \{G\}\}}{\{C\}, \{C\} \rightarrow \{C\}, \{C\} \rightarrow \{C\}, \{C\} \rightarrow \{C\},}{\{C\} \rightarrow \{C\}, \{C\} \rightarrow \{C\}, \{C\} \rightarrow \{C\},}{\{C\} \rightarrow \{C\}, \{C\} \rightarrow \{C\}, \{C\} \rightarrow \{C\},}{\{C\} \rightarrow \{C\}, \{C\} \rightarrow \{C\},}{\{C\} \rightarrow \{C\},}{$	

```
F' ' = \{ \{A, B\} \rightarrow \{C\}, \{C\} \rightarrow \{A\}, \{B, C\} \rightarrow \{D\}, \}
                                                             (Example)
                                                                     Step (3)
                                                                                                                                                                                                                                                                                                                                                                                                        \{C, D\} \rightarrow \{B\}, \{D\} \rightarrow \{E\}, \{D\} \rightarrow \{G\}, \{B, E\} \rightarrow \{C\},
                                                                                                                                                                                                                                                                                                                                                                                                          \{C, G\} \rightarrow \{B\}, \{C, G\} \rightarrow \{D\}, \{C, E\} \rightarrow \{G\}\}
                                         Check if LHS
          implies something
                                                                                                                                                                                                                                                                             Since \{C, G\} \rightarrow \{D\}, therefore \{C, G\} \rightarrow \{C, D\} by augmentation of it with \{C\}.
                                           new and this
                                                                                                                                                                                                                                                                             Since \{C, D\} \rightarrow \{B\}, therefore \{C, G\} \rightarrow \{B\} by transitivity.
  something new is a
                                                                                                                                                                                                                                                                             Therefore \{C, G\} \rightarrow \{B\} is redundant.
                                  subset of LHS
                                  (trivial/cancel)
                                                                                                                                                                                                                                                                        F' ' ' = \{ \{A, B\} \rightarrow \{C\}, \{C\} \rightarrow \{A\}, \{B, C\} \rightarrow \{D\}, \}
                                                                                                                                                                                                                                                                                                                                                                                                                                  \{C, D\} \rightarrow \{B\}, \{D\} \rightarrow \{E\}, \{D\} \rightarrow \{G\}, \{B, E\} \rightarrow \{C\},
                                                                                                                                                                                                                                                                                                                                                                                                                              \{C, G\} \rightarrow \{B\}, \{C, G\} \rightarrow \{D\}, \{C, E\} \rightarrow \{G\}\}
                                                                                                                                                                                                                                                                          F''' is the minimal cover.
                                                                                                                                                                                                                                                                        F' ' ' = \{\{A, B\} \rightarrow \{C\}, \{C\} \rightarrow \{A\}, \{B, C\} \rightarrow \{D\}, \{C\} \rightarrow \{C\} \rightarrow \{C\}, \{C\} \rightarrow \{C
                                                             (Example)
                                                                     Step (4)
                                                                                                                                                                                                                                                                                                                                                                                                                                  \{C, D\} \rightarrow \{B\}, \{D\} \rightarrow \{E\}, \{D\} \rightarrow \{G\}, \{B, E\} \rightarrow \{C\},
                                                                                                                                                                                                                                                                                                                                                                                                                                  \{C, G\} \rightarrow \{D\}, \{C, E\} \rightarrow \{G\}\}
        Obtain extended
                minimal cover by
                                                                                                                                                                                                                                                                        F' ' ' ' = \{ \{A, B\} \rightarrow \{C\}, \{C\} \rightarrow \{A\}, \{B, C\} \rightarrow \{D\}, \{C\} \rightarrow 
undoing Step (I) on
                                                                                                                                                                                                                                                                                                                                                                                                                                  minimal cover
                                                                                                                                                                                                                                                                                                                                                                                                                                  \{C, G\} \rightarrow \{D\}, \{C, E\} \rightarrow \{G\}\}
                                                                                                                                                                                                                                                                                                                                                                                                                            is the extended minimal cover.
```