# Markov Bases in Polymake

Antony Della Vecchia

Technische Universität Berlin

2023-02-03

## Overview

- 1 Background and Theory
- 2 Algorithms

## Markov Basis

#### Definition

■ Given a lattice  $\mathcal{L} \subset \mathbb{Z}^n$  we define

$$\mathcal{F}_{\mathcal{L},b} := \{z : z = b \mod \mathcal{L}, z \in \mathbb{Z}_+^n\}.$$

- For  $S \subset \mathcal{L}$  we define  $\mathcal{G}(\mathcal{F}_{\mathcal{L},b},S)$  to be the undirected graph with vertices  $\mathcal{F}_{\mathcal{L},b}$  and edges (u,v) for  $u-v \in S$  or  $v-u \in S$ .
- We say S is a generating set of  $\mathcal{F}_{\mathcal{L},b}$  if  $\mathcal{G}(\mathcal{F}_{\mathcal{L},b},S)$  is connected.
- We say S is a Markov basis if S is a generating set for  $\mathcal{F}_{\mathcal{L},b}$  for any  $b \in \mathbb{Z}^n$ .

#### Remark

Note when  $\mathcal{L} \cap \mathbb{Z}_+^n = \{0\}$ ,  $\mathcal{F}_{\mathcal{L},b}$  is finite for any  $b \in \mathbb{Z}^n$ .

## Example

Let  $S = \{(1, -1, -1, -3, -1, 2), (1, 0, 2, -2, -2, 1)\}$ , and let  $\mathcal L$  be the lattice spanned by S, then we have that  $\mathcal L$  is the integer kernel of

$$A = \begin{bmatrix} -2 & -3 & 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Let b = (2, 2, 4, 2, 4, 1), and consider  $\mathcal{F}_{\mathcal{L}, b}$  projected onto the  $(x_1, x_2)$ -plane.





## Lattice Ideals

### Definition

Given a set  $S \subset \mathbb{Z}^n$  define the I(S) as

$$I(S) := \langle x^a - x^b : a - b \in \mathcal{L} \rangle = \langle x^{u_+} - x^{u_-} : u \in S \rangle$$

When  $\mathcal{L} \subset \mathbb{Z}^n$  is a lattice, we call  $I(\mathcal{L})$  a lattice ideal

#### Lemma

A set M is a Markov basis if and only if  $I(M) = I(\mathcal{L})$ 

## Term Order and Gröbner basis

#### Definition

- We call  $\succ$  a <u>term order</u> for  $\mathcal{L}$  if  $\succ$  is a total well ordeing on  $\mathcal{F}_{\mathcal{L},b}$  for all  $b \in \mathbb{Z}^n$  and an additive order.
- We define  $\mathcal{L}_{\succ} := \{u \in \mathcal{L} : u^+ \succ u^-\}.$
- We call  $G \subset \mathcal{L}_{\succ}$  a <u>Gröbner basis</u> of  $\mathcal{L}$  with respect to  $\succ$  if for every  $b \in \mathbb{Z}_+^n$  there exists a decreasing path in  $\mathcal{G}(\mathcal{F}_{\mathcal{L},b})$  from b to the unique  $\succ$ -minimal element in  $\mathcal{F}_{\mathcal{L},b}$ .

#### Lemma

Given a term order  $\succ$  a set  $G \subset \mathcal{L}_{\succ}$  is a  $\succ$ -Gröbner basis of  $\mathcal{L}$  if and only if for all  $v \in \mathcal{L}_{\succ}$  there exists  $u \in \mathcal{L}_{\succ}$  such that  $u^+ \leq v^+$ , that is,  $v^+ - u \in \mathcal{F}_{\mathcal{L},v^+}$  and  $v^+ \succ v^+ - u$ .

### Reduction Paths

### Definition

A path  $(z_0, z_1, \ldots, z_i)$  in  $\mathcal{G}(\mathcal{F}_{\mathcal{L},b}, G$  is a <u>reduction path</u> with respect to  $\succ$  if for no  $i \in \{1, \ldots, k-1\}$  both  $z_i \succ z_0$  and  $z_i \succ z_k$ .

#### Lemma

Let  $\succ$  be a term order of  $\mathbb{Z}_+^n$ . A set  $G \subset \mathcal{L}_{\succ}$  is a  $\succ$ -Gröbner basis if and only if for any  $b \in \mathbb{Z}^n$  and for each pair  $u, v \in \mathcal{F}_{\mathcal{L},b}$  there exists a reduction in  $\mathcal{G}(\mathcal{F}_{\mathcal{L},b})$  between u and v.



## Critical Paths

### Definition

Given  $G \subset \mathcal{L}_{\succ}$  and  $b \in \mathbb{Z}^n$ , a path  $(\alpha, z, \beta)$  is a <u>critical path</u> if  $z \succ \alpha$  and  $z \succ \beta$ .

#### Lemma

A set  $G \subset \mathcal{L}_{\succ}$  is a Gröbner basis of  $\mathcal{L}$  if and only if G is a generating set of  $\mathcal{L}$  and if for all  $b \in \mathbb{Z}^n$  and for every critical path  $(\alpha, z, \beta)$  in  $\mathcal{G}(\mathcal{F}_{\mathcal{L},b}, G)$  there exists a reduction path in  $\mathcal{G}(\mathcal{F}_{\mathcal{L},b}, G)$ .





## Minimal Critical Paths

#### Definition

- A critical path  $(\alpha, z, \beta)$  is minimal if there does not exist another critical path  $(\alpha', z', \beta') = (\alpha + \gamma, z + \gamma, \beta + \gamma)$  for some  $\gamma \in \mathbb{Z}_+^n$ .
- The unique minimal critical path for a pair  $(u, v) \in \mathcal{L}$  is denoted by  $(\alpha^{(u,v)}, z^{(u,v)}, \beta^{(u,v)})$ , where  $z^{(u,v)} := max\{u^+, v^+\}$ ,  $\alpha^{(u,v)} := z u$ ,  $\beta^{(u,v)} := z v$ .

#### Remark

Using minimal critical paths we reduce the amount of reduction paths to be checked to a finite number.

## Projecting and Lifting

#### Lemma

- If  $\mathcal{L} \cap \mathbb{Z}_+^n \neq 0$ , then let  $a \in \mathcal{L} \cap \mathbb{Z}_+^n$ , and we know there is an i such that  $a_i > 0$ . Let  $M \subset \mathcal{L}$  be such that  $M^i$  is a Markov basis of  $\mathcal{L}^i$ , then  $M \cup \{a\}$  is a Markov basis for  $\mathcal{L}$
- If  $\mathcal{L} \cap \mathbb{Z}_+^n = 0$ , then we can find a term order  $\succ_c$  on  $\mathcal{L}$ .
- A set  $G \subset \mathcal{L}_{\succ_c}$  is a  $\succ_c$  Gröbner basis for  $\succ_{\rfloor}$  if and only if  $G^i$  is a  $\succ_c^i$ -Gröbner basis for  $\mathcal{L}^i$ .

## Geometric Buchberger

**Input:** a term ordering  $\succ$  and a set  $\mathcal{S} \subset \mathcal{L}$ 

**Output:** a set  $G \subset \mathcal{L}$  such that if  $\alpha, \beta$  are connected in  $\mathcal{G}(\mathcal{F}_{\mathcal{L},\alpha}, G)$  then there exists a reduction path between  $\alpha$  and  $\beta$  in  $\mathcal{G}(\mathcal{F}_{\mathcal{L},\alpha}, G)$ .

```
1: G \leftarrow \{u : u^+ \succ u^-, u \in S\} \cup \{u : u^- \succ u^+, u \in S\}
 2: C \leftarrow \{(u, v) : u, v \in G\}
 3: while C \neq \emptyset do
 4: select (u, v) \in C
 5: C \leftarrow C \setminus (u, v)
 6: r \leftarrow MDPA(\alpha^{(u,v)}, G) - MDPA(\beta^{(u,v)}, G)
 7: if r \neq 0 then
 8. if r^- > r^+ then
 9: r \leftarrow -r
10. end if
11: C \leftarrow C \cup \{(r,s) : s \in G\}
12: G \leftarrow G \cup r
       end if
13:
14 end while
```

15: return G

## Maximal Decreasing Path Algorithm

**Input:** a vector  $\alpha \in \mathbb{Z}_+^n$  and a set  $G \subset \mathcal{L}_{\succ}$ .

**Output:** a vector  $\alpha'$  where there is a maximal decreasing path in  $\mathcal{G}(\mathcal{F}_{\mathcal{L},\alpha},\mathcal{G})$  from  $\alpha$  to  $\alpha'$ .

- 1:  $\alpha' \leftarrow \alpha$
- 2: **while** there is some  $u \in G$  such that  $u^+ \leq \alpha^+$  **do**
- 3:  $\alpha' \leftarrow \alpha' u$
- 4: end while
- 5: return  $\alpha'$

## Project and Lift

```
Input: A lattice \mathcal{L}.
Output: A Markov basis M of \mathcal{L}.
  1: Find a set \sigma \subset \{1, 2, ..., n\} such that \ker^{\sigma}(\mathcal{L}) = 0
  2: Find a set M \subset \mathcal{L} such that M^{\sigma} is a Markov basis \mathcal{L}^{i}
  3: while \sigma \neq \emptyset do
      Select i \in \sigma
  4.
       if There exists a \in \mathcal{L} such that a^{\sigma} \geq 0 and a_i > 0 then
  5:
        M \leftarrow M \cup \{a\}
  6.
        else
  7:
             Find c \in \mathbb{R}^n_+ such that c_{\sigma} = 0 and c^T u = -u_i for all u \in \mathcal{L}
  8.
             Using M, compute G \subset \mathcal{L} such that G^{\sigma} is a \succ_{c}^{\sigma} - Gröbner basis of \mathcal{L}^{\sigma}
  9:
         M \leftarrow G
10.
11. end if
12: \sigma \leftarrow \sigma \setminus \{i\}
13: end while
14: return M
```

### References



Jesus DeLoera, Raymond Hemmecke, Mathias Köppe, (2013)

Algebraic and Geometric Ideas in the Theory of Discrete Optimization MOS-SIAM Series on Optimization

Society for Industrial and Applied Mathematics, Philadelphia, PA



Hemmecke, Raymond and Malkin, Peter, (2005)

Computing generating sets of lattice ideals

arxiv https://arxiv.org/abs/math/0508359