Laboratório de Circuitos Digitais

Tensões de Entrada e Saída nos circuitos integrados (Cl's) digitais.

> Baseado na apostila de Humberto Ferasoli Filho

Introdução

- Os circuitos integrados (Cl's) digitais são subdivididos segundo a sua tecnologia de fabricação.
- Famílias
 - C-MOS (Complementary Metal Oxide Semiconductor) e
 - TTL (Transistor-Transistor-Logic).

Famílias de Cl's Digitais

As subfamílias são indicadas no código 74xxyy

Onde yy é o código do componente e xx é corresponde às letras da primeira coluna da tabela

Nada ou N	Transistor-Transistor Logic	177L Padrão Crigam
L	Low Power	Batra Polifincia
LS	Low Power Schottky	Balsa Polifincia com Junções Schottky
S	Schotky	Junções Schottky
ALS	Advanced Low Power Schottky	Balta Potência Avançada com Junções Schotfily
AS	Advanced Schotlity	Junções Schottly Avançada

Famílias de Cl's Digitais

HC	High Speed CMOS	CMOS de Alta Welocidade Citoponio			
HCT	High Speed CMOS with TTL inputs	CMOS de Alta Velocidade com en adaz TTL			
AC	Advanced CMOS	CMOS de Alta Velocidade-ventão avençada			
ACT	Advanced CMOS com TTL Inputs	CMOS com entradas TTL-versão avançada			
вст	BICMOS Technology	Tecnologia BICMOS (BipolanCMOS)			
ABT	Advanced BICMOS Technology	Tecnologia BICMOS Avançada			
LVT	Low Voltage Technology	Tecnología de Balxa Tensão			

Para os experimentos utilizaremos circuitos integrados da subfamília HC, únicos disponíveis nos simuladores.

Faixas de Tensão 74HC

- · Cada familia tem faixas de tensão para serem reconhecidas com nivel 0 (baixo) ou 1 (alto)
- VCC Tensão de Alimentação;
- V_{s.} Tensão de entrada que o circuito reconhece como nivel lógico O (balxo);
- V_{er} Tensão de entrada que o circuito reconhece como nível lógico 1 (alto);
- V_{o.} Tensão na saida para o estado lógico 0 (balxo);
- V_{ox} Tensão na saida para o estado lógico 1 (alto).

Familia VCC1	Familia 74HC VCC = 4,5V		
V _k	s 1,35V		
V _m	≥ 3,15V		
V _m	s 0,17V		
V _{an}	≥ 2,84V		

Faixas de Tensão 74HC

			MIN	NOM	MAX	UNIT
Voc	Supply voltage		2	5	- 6	V
V _H	High-level input voltage	V _{CC} = 4.5 V	3.15			v
V _k	Low-level input voltage	$V_{\rm GC} = 4.5~\rm V$			1.35	V
V ₁	input voltage		0		Voc	V
Wo.	Output voltage		- 0		Wee	v

	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Voe	$t_{\rm CM}$ = -20 μ A, $V_{\rm CC}$ = 4.5 V $t_{\rm CM}$ = -4 mA, $V_{\rm CC}$ = 4.5 V	4.4	4.499		٧
		3.84	4.3		
V _{OL}	I _{cs.} = 20 μA, V _{cc.} = 4.5 V		0.001	0.1	٧
	l _{ox} = 20 μA, V _{cc} = 4.5 V l _{ox} = 4 mA, V _{cc} = 4.5 V		0.17	0.33	

Dados obtidos na folha de dados do componente 74HC00 https://www.ti.com/lit/ds/symlink/sn74hc00.pdf

Tolerância à Variação de Tensão.

Fornecimento e Absorção de Corrente

Faixas de Corrente

- · Valores de referência
 - Is. Corrente de entrada quando em nível lógico 0;
 - I_M Corrente de entrada quando em nível lógico 1;
 - I_{ot} Corrente na saida com nivel lógico 0;
 - I_{OH} Corrente na saida com nivel lógico 1.

Familia 74HC		
ř	s tuA	
f	s ipA	
l _{oc}	s 4mA	
l _{on}	s 4mA	
Fan-out	4000	

 Fan-out é número máximo de entradas que uma saída pode alimentar ou, em outras palavras, quantas entradas podem ser conectadas a uma única saída.

.