MWE as WSD: Solving Multiword Expression Identification with Word Sense Disambiguation

*Joshua Tanner
Mantra Inc.

*Jacob Hoffman
Project Ronin

*Both authors contributed equally to this work.

Motivation

• Determining whether a group of words constitutes a multiword expression (MWE) requres an understanding of that MWE's meaning and whether it matches the context

kick_the_bucket

Grandpa kicked the bucket at the age of 102. I kicked the bucket down the hill.

No MWE

- Approaches using gloss information (definition text) to represent meaning have recently been very successful in word sense disambiguation (WSD)
- Extending these gloss-based WSD methods to MWE identification allows us to efficiently solve both tasks with a single Bi-Encoder model

Data

• We train on a modified SemCor dataset with added synthetic negative MWE examples and a small number of manual MWE annotations

SemCor after each addition of data

	Positive MWEs	Negative MWEs
SemCor	12409	0
+Annotation	12907	658
+SyntheticNegatives	12907	14688

Examples of each annotation type

Context	MWE	Type	
What effort do you make to assess	make do	Synthetic Negative	
your in plant feeding operation?	in operation	Annotated Negative	
works full-time on some other assignme	ent? work on	Annotated Positive	

We also experiment with fine-tuning on the PARSEME and DiMSUM training datasets

Results

Test set results on PARSEME 1.1 English and DiMSUM for MWE identification

Training data is listed in parenthesis: S=SemCor, P=PARSEME, D=DiMSUM

	PARSEME1.1				DiMSUM				
MV	MWE-based Token-based Sy		System	MWEs					
P	R	F	P	R	F		P	R	F
-	-	36.0	-	-	40.2	Taslimipoor+(2019) Kirilin+(2016)	73.5	48.4	58.4
_	-	41.9	-	-	-	Rohanian+(2019) Williams(2017)	65.4	56.0	60.4
36.1	45.5	40.3	40.2	52.0	45.4	Liu+(2021)	47.9	52.2	50.0
16.3	39.9	23.1	19.2	43.9	26.7	Rule-basedPipeline	57.7	55.5	56.6
28.2	38.5	32.5±0.4	30.7	39.0	34.3±0.4	Rules+DCA(S)	70.9	53.0	60.6±0.1
35.7	39.3	37.4±0.6	37.7	38.6	38.1±0.4	Rules+DCA(S / D)	78.2	51.8	62.3 ±0.1
47.1	33.8	39.4±0.3	48.3	32.1	38.6±0.2	Rules+DCA(S/P)	75.7	49.4	59.8±0.1
45.4	33.2	38.3±0.1	46.9	31.9	38.0±0.2	Rules+DCA($S/P/D$)	80.4	49.5	61.3±0.4

- Our approach improves precision substantially, achieving SOTA on DiMSUM
- DCA Poly-encoder is our most perfomant model
- Recall is limited by our dependence on a MWE lexicon; work in lexicon expansion could further improve scores

English WSD all-words task F1

System	F1	System	F 1
Blevins+	79.0	PolyEnc(S)	73.8±0.2
DCA(S)	77.2±0.1	BiEnc(S)	77.4±0.6
DCA(S/P/D)	74.4±0.6	BiEnc(S/P/D)	74.2±1.0

 Our models retain most of their WSD performance, but lose around 6% when fine-tuned for MWE identification

Methodology

I ran down the stairs and fell over.

run_down

fall_down

fall_over

run_over

• We exhaustively generate MWE candidates with a rule-based approach and then filter them using simple rule-based filters and our Bi-Encoder model, which excludes MWEs with meanings inappropriate for the context sentence

Bi-encoder

 Our model encodes the context sentence and possible meanings of an MWE, scoring each meaning for the given context and filtering out unlikely MWEs

DCA Poly-Encoder

• We also introduce a modified Poly-encoder (distinct codes attention=DCA) architecture for solving token-level tasks which outperforms the Bi-Encoder

