Real Analysis Qualifying Exam Questions

D. Zack Garza

Tuesday 11th August, 2020

Contents

1	Und	ergraduate Analysis: Uniform Convergence	:	3
	1.1	Fall 2018 # 1		3
	1.2	Fall 2017 # 1		3
	1.3	Fall 2014 # 1		3
	1.4	Spring 2017 # 4		4
	1.5	Spring 2015 # 1		4
	1.6	Fall 2014 # 2		4
	1.7	Spring 2014 # 2		4
2	Gen	eral Analysis	į	5
	2.1	Spring 2020 # 1	. !	5
	2.2	Fall 2019 # 1		6
		2.2.1 a	. (6
		2.2.2 b	. ,	7
	2.3	Fall 2018 # 4	. 8	8
	2.4	Fall 2017 # 4	. 8	8
	2.5	Spring 2017 # 3	. 9	9
	2.6	Fall 2016 # 1	. 9	9
	2.7	Fall 2016 # 5	. 9	9
	2.8	Fall 2016 # 6	. 10	0
	2.9	Spring 2016 # 1	. 10	0
	2.10	Fall 2015 # 1	. 10	0
3	Mea	sure Theory: Sets	10	0
	3.1	Spring 2020 # 2	. 10	0
		3.1.1 a	. 10	0
		3.1.2 b	. 1	1
		3.1.3 a	. 1	1
		3.1.4 b	. 15	2
	3.2	Fall 2019 # 3	. 13	3
	3.3	Spring 2019 # 2	. 13	3
	3.4	Fall 2018 # 2		3
	3.5	Spring 2018 # 1	. 13	3
	3.6	Fall 2017 # 2	. 14	4

	3.7	Spring 2017 #	2																		 				14
	3.8	Fall 2016 # 4																			 				14
	3.9	Spring 2016 #	3				 														 				15
	3.10	Spring 2016 #	5																		 				15
	3.11	Fall 2015 # 2																			 				15
	3.12	Spring 2015 #	3																		 				15
		Spring 2014 #																							
		Spring 2014 #																							16
		Spring 2017 #																							16
		Spring 2016 #																							
_																									
4		sure Theory: F																							16
	4.1	Fall 2016 # 2																							
	4.2	Spring 2016 #	4		•	 •	 •	•	•	 •	•	 •	•	 •	٠	 •	•	 •	•	•	 •	•	•	•	16
5	Inte	grals: Converge	ence	2																					17
	5.1	Fall 2019 # 2.					 														 				17
	5.2	Spring 2020 #																							
	5.3	Spring 2019 #																							
	5.4	Fall 2018 # 6																							
	5.5	Fall 2018 # 3																							
	5.6	Spring 2018 #																							
	5.7	Spring 2018 #																							
	5.8	Fall 2016 # 3																							
	5.9	Fall 2015 # 3																							
		Fall 2015 # 4																							
	0.10	1011 2010 // 1		• •	•	 •	 •	•	•	 •	•	 •	•	•	•	 •	•	 •	•	•	 •	•	•	•	
6	Inte	grals: Approxin																							22
	6.1	Spring 2018 $\#$																							
	6.2	Spring 2018 $\#$																							
	6.3	Spring 2015 $\#$																							
	6.4	Fall 2014 # 4			•	 ٠					•	 •		 •	•	 •	•		•		 	•			23
7	L^1																								23
•	7.1	Spring 2020 #	3				 		_				_	 _	_		_		_		 	_			
	•••	7.1.1 a																							
		7.1.2 b																							
		7.1.3 c																							
	7.2	Fall 2019 # 5.																							27
	7.3	Fall 2017 # 3																							27
	7.4	Spring 2015 #																							27
	7.5	Fall 2014 # 3																							28
	7.6	Spring 2014 #																							28
	1.0	~pims 2014 #	•	• •	•	 •	 •	•	•	 •	•	•	 •	•	•	•	_0								
8	Fubi	ini-Tonelli																							28
	8.1	Spring 2020 $\#$	4																		 				28
	8.2	Spring 2019 $\#$	4																		 				29
	8.3	Fall 2018 # 5					 														 				30

Contents 2

	8.4	Fall 2015 # 5	30
	8.5	Spring 2014 # 5	
9	L^2 a	and Fourier Analysis 3	30
	9.1	Spring 2020 # 6	30
		9.1.1 a	30
		9.1.2 b	31
		9.1.3 a	
	9.2	Fall 2017 # 5	
	9.3	Spring 2017 # 5	
	9.4	Spring 2015 # 6	
	9.5	Fall 2014 # 5	
	0.0		
10	Fund	ctional Analysis: General 3	33
		Fall 2019 # 4	33
		Spring 2019 # 5	
		10.2.1 a	
		10.2.2 b	
	10.3	Spring 2016 # 6	
		Spring 2015 # 5	
		Fall 2015 # 6	
		Fall 2014 # 6	
	10.0		, ,
11	Fund	ctional Analysis: Banach Spaces 3	35
		Spring 2019 # 1	35
		Spring 2017 # 5	
			35

1 Undergraduate Analysis: Uniform Convergence

1.1 Fall 2018 # 1

Let $f(x) = \frac{1}{x}$. Show that f is uniformly continuous on $(1, \infty)$ but not on $(0, \infty)$.

1.2 Fall 2017 # 1

Let

$$f(x) = s \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Describe the intervals on which f does and does not converge uniformly.

1.3 Fall 2014 # 1

Let $\{f_n\}$ be a sequence of continuous functions such that $\sum f_n$ converges uniformly.

Prove that $\sum f_n$ is also continuous.

1.4 Spring 2017 # 4

Let f(x,y) on $[-1,1]^2$ be defined by

$$f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Determine if f is integrable.

1.5 Spring 2015 # 1

Let (X, d) and (Y, ρ) be metric spaces, $f: X \longrightarrow Y$, and $x_0 \in X$.

Prove that the following statements are equivalent:

- 1. For every $\varepsilon > 0$ $\exists \delta > 0$ such that $\rho(f(x), f(x_0)) < \varepsilon$ whenever $d(x, x_0) < \delta$.
- 2. The sequence $\{f(x_n)\}_{n=1}^{\infty} \longrightarrow f(x_0)$ for every sequence $\{x_n\} \longrightarrow x_0$ in X.

1.6 Fall 2014 # 2

Let I be an index set and $\alpha: I \longrightarrow (0, \infty)$.

1. Show that

$$\sum_{i \in I} a(i) := \sup_{\substack{J \subset I \\ J \text{ finite}}} \sum_{i \in J} a(i) < \infty \implies I \text{ is countable.}$$

2. Suppose $I=\mathbb{Q}$ and $\sum_{q\in\mathbb{Q}}a(q)<\infty.$ Define

$$f(x) := \sum_{\substack{q \in \mathbb{Q} \\ q \le x}} a(q).$$

Show that f is continuous at $x \iff x \notin \mathbb{Q}$.

1.7 Spring 2014 # 2

Let $\{a_n\}$ be a sequence of real numbers such that

$$\{b_n\} \in \ell^2(\mathbb{N}) \implies \sum a_n b_n < \infty.$$

Show that $\sum a_n^2 < \infty$.

Note: Assume a_n, b_n are all non-negative.

2 General Analysis

2.1 Spring 2020 # 1

Prove that if $f:[0,1] \longrightarrow \mathbb{R}$ is continuous then

$$\lim_{k \to \infty} \int_0^1 kx^{k-1} f(x) \, dx = f(1).$$

Solution.

Concepts used:

- DCT
- Weierstrass Approximation Theorem

Solution:

• Suppose p is a polynomial, then

$$\begin{split} \lim_{k \longrightarrow \infty} \int_0^1 k x^{k-1} p(x) \, dx &= \lim_{k \longrightarrow \infty} \int_0^1 \left(\frac{\partial}{\partial x} \, x^k \right) \! p(x) \, dx \\ &= \lim_{k \longrightarrow \infty} \left[x^k p(x) \Big|_0^1 - \int_0^1 x^k \! \left(\frac{\partial}{\partial x} \, p(x) \right) dx \right] \quad \text{integrating by parts} \\ &= p(1) - \lim_{k \longrightarrow \infty} \int_0^1 x^k \! \left(\frac{\partial}{\partial x} \, p(x) \right) dx, \end{split}$$

• Thus it suffices to show that

$$\lim_{k \to \infty} \int_0^1 x^k \left(\frac{\partial}{\partial x} p(x) \right) dx = 0.$$

• Integrating by parts a second time yields

$$\lim_{k \to \infty} \int_0^1 x^k \left(\frac{\partial}{\partial x} p(x) \right) dx = \lim_{k \to \infty} \frac{x^{k+1}}{k+1} p'(x) \Big|_0^1 - \int_0^1 \frac{x^{k+1}}{k+1} \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx$$

$$= -\lim_{k \to \infty} \int_0^1 \frac{x^{k+1}}{k+1} \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx$$

$$= -\int_0^1 \lim_{k \to \infty} \frac{x^{k+1}}{k+1} \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx \quad \text{by DCT}$$

$$= -\int_0^1 0 \left(\frac{\partial^2}{\partial x^2} p(x) \right) dx$$

$$= 0.$$

– The DCT can be applied here because f'' is continuous and [0,1] is compact, so f'' is bounded on [0,1] by a constant M and

$$\int_0^1 |x^k f''(x)| \le \int_0^1 1 \cdot M = M < \infty.$$

- Now use the Weierstrass approximation theorem:
 - If $f:[a,b] \longrightarrow \mathbb{R}$ is continuous, then for every $\varepsilon > 0$ there exists a polynomial $p_{\varepsilon}(x)$ such that $||f p_{\varepsilon}||_{\infty} < \varepsilon$.

• Thus

$$\left| \int_0^1 kx^{k-1} p_{\varepsilon}(x) \, dx - \int_0^1 kx^{k-1} f(x) \, dx \right| = \left| \int_0^1 kx^{k-1} (p_{\varepsilon}(x) - f(x)) \, dx \right|$$

$$\leq \left| \int_0^1 kx^{k-1} || p_{\varepsilon} - f ||_{\infty} \, dx \right|$$

$$= || p_{\varepsilon} - f ||_{\infty} \cdot \left| \int_0^1 kx^{k-1} \, dx \right|$$

$$= || p_{\varepsilon} - f ||_{\infty} \cdot x^k \right|_0^1$$

$$= || p_{\varepsilon} - f ||_{\infty} \xrightarrow{\varepsilon \longrightarrow 0} 0$$

and the integrals are equal.

• By the first argument,

$$\int_0^1 kx^{k-1} p_{\varepsilon}(x) dx = p_{\varepsilon}(1) \text{ for each } \varepsilon$$

• Since uniform convergence implies pointwise convergence, $p_{\varepsilon}(1) \stackrel{\varepsilon \longrightarrow 0}{\longrightarrow} f(1)$.

2.2 Fall 2019 # 1.

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

a. Prove that if $\lim_{n \to \infty} a_n = 0$, then

$$\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = 0$$

b. Prove that if $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges, then

$$\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = 0$$

Solution.

Cesaro mean/summation. Break series apart into pieces that can be handled separately.

2.2.1 a

Prove a stronger result:

$$a_k \longrightarrow S \implies S_N \coloneqq \frac{1}{N} \sum_{k=1}^N a_k \longrightarrow S.$$

Idea: once N is large enough, $a_k \approx S$, and all smaller terms will die off as $N \longrightarrow \infty$. See this MSE answer. • Use convergence $a_k \longrightarrow S$: choose M large enough such that

$$k \ge M + 1 \implies |a_k - S| < \varepsilon.$$

Then

$$\left| \left(\frac{1}{N} \sum_{k=1}^{N} a_k \right) - S \right| = \frac{1}{N} \left| \left(\sum_{k=1}^{N} a_k \right) - NS \right|$$

$$= \frac{1}{N} \left| \left(\sum_{k=1}^{N} a_k \right) - \sum_{k=1}^{N} S \right|$$

$$= \frac{1}{N} \left| \sum_{k=1}^{N} (a_k - S) \right|$$

$$\leq \frac{1}{N} \sum_{k=1}^{N} |a_k - S|$$

$$= \frac{1}{N} \sum_{k=1}^{M} |a_k - S| + \sum_{k=M+1}^{N} |a_k - S|$$

$$\leq \frac{1}{N} \sum_{k=1}^{M} |a_k - S| + \sum_{k=M+1}^{N} \frac{\varepsilon}{2}$$

$$= \frac{1}{N} \sum_{k=1}^{M} |a_k - S| + (N - M) \frac{\varepsilon}{2}$$

$$\stackrel{\varepsilon}{\Longrightarrow} \frac{1}{N} \sum_{k=1}^{M} |a_k - S| + 0$$

$$\stackrel{N \longrightarrow \infty}{\Longrightarrow} 0 + 0.$$

Note: M is fixed, so the last sum is some constant c, and $c/N \longrightarrow 0$ as $N \longrightarrow \infty$ for any constant. To be more careful, choose M first to get $\varepsilon/2$ for the tail, then choose N(M) > M for the remaining truncated part of the sum.

2.2.2 b

• Define

$$\Gamma_n \coloneqq \sum_{k=n}^{\infty} \frac{a_k}{k}.$$

- $\Gamma_1 = \sum_{k=1}^n \frac{a_k}{k}$ is the original series and each Γ_n is a tail of Γ_1 , so by assumption $\Gamma_n \xrightarrow{n \longrightarrow \infty} 0$.
- Compute

$$\frac{1}{n}\sum_{k=1}^{n}a_k = \frac{1}{n}(\Gamma_1 + \Gamma_2 + \dots + \Gamma_n - \mathbf{\Gamma_{n+1}})$$

•

• This comes from consider the following summation:

$$\Gamma_1: \qquad \qquad a_1 \qquad +\frac{a_2}{2} \qquad +\frac{a_3}{3} \qquad +\cdots$$

$$\Gamma_2: \qquad \qquad \frac{a_2}{2} \qquad + \frac{a_3}{3} \qquad + \cdots$$

$$\Gamma_3$$
: $\frac{a_3}{3}$ + · · ·

$$\sum_{i=1}^{n} \Gamma_i: \qquad \qquad a_1 \qquad +a_2 \qquad +a_3 \qquad +\cdots \qquad a_n \qquad +\frac{a_{n+1}}{n+1} \qquad +\cdots$$

- Use part (a): since $\Gamma_n \stackrel{n \longrightarrow \infty}{\longrightarrow} 0$, we have $\frac{1}{n} \sum_{k=1}^n \Gamma_k \stackrel{n \longrightarrow \infty}{\longrightarrow} 0$.
- Also a minor check: $\Gamma_n \longrightarrow 0 \implies \frac{1}{n}\Gamma_n \longrightarrow 0$.
- Then

$$\frac{1}{n} \sum_{k=1}^{n} a_k = \frac{1}{n} (\Gamma_1 + \Gamma_2 + \dots + \Gamma_n - \Gamma_{n+1})$$
$$= \left(\frac{1}{n} \sum_{k=0}^{n} \Gamma_k\right) - \left(\frac{1}{n} \Gamma_{n+1}\right)$$
$$\stackrel{n \to \infty}{\longrightarrow} 0.$$

2.3 Fall 2018 # 4

Let $f \in L^1([0,1])$. Prove that

$$\lim_{n \to \infty} \int_0^1 f(x) |\sin nx| \ dx = \frac{2}{\pi} \int_0^1 f(x) \ dx$$

Hint: Begin with the case that f is the characteristic function of an interval.

2.4 Fall 2017 # 4

Let

$$f_n(x) = nx(1-x)^n, \quad n \in \mathbb{N}.$$

1. Show that $f_n \longrightarrow 0$ pointwise but not uniformly on [0,1].

Hint: Consider the maximum of f_n .

2.

$$\lim_{n \to \infty} \int_0^1 n(1-x)^n \sin x \, dx = 0$$

2.5 Spring 2017 # 3

Let

$$f_n(x) = ae^{-nax} - be^{-nbx}$$
 where $0 < a < b$.

Show that

a.
$$\sum_{n=1}^{\infty} |f_n| \text{ is not in } L^1([0,\infty),m)$$

Hint: $f_n(x)$ has a root x_n .

b.

$$\sum_{n=1}^{\infty} f_n \text{ is in } L^1([0,\infty),m) \text{ and } \int_0^{\infty} \sum_{n=1}^{\infty} f_n(x) \, dm = \ln \frac{b}{a}$$

2.6 Fall 2016 # 1

Define

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}.$$

Show that f converges to a differentiable function on $(1,\infty)$ and that

$$f'(x) = \sum_{n=1}^{\infty} \left(\frac{1}{n^x}\right)'.$$

Hint:

$$\left(\frac{1}{n^x}\right)' = -\frac{1}{n^x} \ln n$$

2.7 Fall 2016 # 5

Let $\varphi \in L^{\infty}(\mathbb{R})$. Show that the following limit exists and satisfies the equality

$$\lim_{n \to \infty} \left(\int_{\mathbb{R}} \frac{|\varphi(x)|^n}{1 + x^2} \, dx \right)^{\frac{1}{n}} = \|\varphi\|_{\infty}.$$

2.8 Fall 2016 # 6

Let $f, g \in L^2(\mathbb{R})$. Show that

$$\lim_{n \to \infty} \int_{\mathbb{R}} f(x)g(x+n) \, dx = 0$$

2.9 Spring 2016 # 1

For $n \in \mathbb{N}$, define

$$e_n = \left(1 + \frac{1}{n}\right)^n$$
 and $E_n = \left(1 + \frac{1}{n}\right)^{n+1}$

Show that $e_n < E_n$, and prove Bernoulli's inequality:

$$(1+x)^n \ge 1 + nx$$
 for $-1 < x < \infty$ and $n \in \mathbb{N}$

Use this to show the following:

- 1. The sequence e_n is increasing.
- 2. The sequence E_n is decreasing.
- 3. $2 < e_n < E_n < 4$.
- 4. $\lim_{n \to \infty} e_n = \lim_{n \to \infty} E_n.$

2.10 Fall 2015 # 1

Define

$$f(x) = c_0 + c_1 x^1 + c_2 x^2 + \ldots + c_n x^n$$
 with n even and $c_n > 0$.

Show that there is a number x_m such that $f(x_m) \leq f(x)$ for all $x \in \mathbb{R}$.

3 Measure Theory: Sets

3.1 Spring 2020 # 2

Let m_* denote the Lebesgue outer measure on \mathbb{R} .

3.1.1 a.

Prove that for every $E \subseteq \mathbb{R}$ there exists a Borel set B containing E such that

$$m_*(B) = m_*(E).$$

3.1.2 b.

Prove that if $E \subseteq \mathbb{R}$ has the property that

$$m_*(A) = m_*(A \cap E) + m_*(A \cap E^c)$$

for every set $A \subseteq \mathbb{R}$, then there exists a Borel set $B \subseteq \mathbb{R}$ such that $E = B \setminus N$ with $m_*(N) = 0$. Be sure to address the case when $m_*(E) = \infty$.

Solution.

Concepts used:

- Definition of outer measure: $m_*(E) = \inf_{\{Q_j\} \rightrightarrows E} \sum |Q_j|$ where $\{Q_j\}$ is a countable collection of closed cubes.
- Break $\mathbb R$ into $\coprod_{n\in\mathbb Z}[n,n+1)$, each with finite measure.
- Theorem: $m_*(Q) = |Q|$ for Q a closed cube (i.e. the outer measure equals the volume).

Proof (of Theorem) Statement: if Q is a closed cube, then $m_*(Q) = |Q|$, the usual volume.

- $m_*(Q) \le |Q|$
 - Since $Q \subseteq Q$, $Q \rightrightarrows Q$ and $m_*(Q) \leq |Q|$ since m_* is an infimum over such coverings.
- $|Q| \le m_*(Q)$:
 - Fix $\varepsilon > 0$.
 - Let $\{Q_i\}_{i=1}^{\infty} \rightrightarrows Q$ be arbitrary, it suffices to show that

$$|Q| \le \left(\sum_{i=1}^{\infty} |Q_i|\right) + \varepsilon.$$

- Pick open cubes S_i such that $Q_i \subseteq S_i$ and $|Q_i| \le |S_i| \le (1+\varepsilon)|Q_i|$.
- Then $\{S_i\} \rightrightarrows Q$, so by compactness of Q pick a finite subcover with N elements.
- Note

$$Q \subseteq \bigcup_{i=1}^{N} S_i \implies |Q| \le \sum_{i=1}^{N} |S_i| \le \sum_{i=1}^{N} (1+\varepsilon)|Q_j| \le (1+\varepsilon) \sum_{i=1}^{\infty} |Q_i|.$$

- Taking an infimum over coverings on the RHS preserves the inequality, so

$$|Q| \leq (1+\varepsilon)m_*(Q)$$

- Take $\varepsilon \longrightarrow 0$ to obtain final inequality.

3.1.3 a

- If $m_*(E) = \infty$, then take $B = \mathbb{R}^n$ since $m(\mathbb{R}^n) = \infty$.
- Suppose $N := m_*(E) < \infty$.
- Since $m_*(E)$ is an infimum, by definition, for every $\varepsilon > 0$ there exists a covering by closed cubes $\{Q_i(\varepsilon)\}_{i=1}^{\infty} \rightrightarrows E$ depending on ε such that

$$\sum_{i=1}^{\infty} |Q_i(\varepsilon)| < N + \varepsilon.$$

- For each fixed n, set $\varepsilon_n = \frac{1}{n}$ to produce such a covering $\{Q_i(\varepsilon_n)\}_{i=1}^{\infty}$ and set $B_n :=$ $\bigcup_{i=1}^{\infty} Q_i(\varepsilon_n).$
- The outer measure of cubes is equal to the sum of their volumes, so

$$m_*(B_n) = \sum_{i=1}^{\infty} |Q_i(\varepsilon_n)| < N + \varepsilon_n = N + \frac{1}{n}.$$

- Now set $B := \bigcap^{\infty} B_n$.
 - Since $E \subseteq B_n$ for every $n, E \subseteq B$
 - Since B is a countable intersection of countable unions of closed sets, B is Borel.
 - Since $B_n \subseteq B$ for every n, we can apply subadditivity to obtain the inequality

$$E \subseteq B \subseteq B_n \implies N \le m_*(B) \le m_*(B_n) < N + \frac{1}{n} \text{ for all } n \in \mathbb{Z}^{\ge 1}.$$

This forces $m_*(E) = m_*(B)$.

3.1.4 b

Suppose $m_*(E) < \infty$.

- By (a), find a Borel set $B \supseteq E$ such that $m_*(B) = m_*(E)$
- Note that $E \subseteq B \implies B \cap E = E$ and $B \cap E^c = B \setminus E$.
- By assumption,

$$m_*(B) = m_*(B \cap E) + m_*(B \cap E^c)$$

$$m_*(E) = m_*(E) + m_*(B \setminus E)$$

$$m_*(E) - m_*(E) = m_*(B \setminus E) \quad \text{since } m_*(E) < \infty$$

$$\implies m_*(B \setminus E) = 0.$$

- So take $N = B \setminus E$; this shows $m_*(N) = 0$ and $E = B \setminus (B \setminus E) = B \setminus N$.
 - Apply result to E_R := E ∩ [R, R + 1)ⁿ ⊂ ℝⁿ for R ∈ ℤ, so E = ∐_RE_R
 Obtain B_R, N_R such that E_R = B_R \ N_R, m_{*}(E_R) = m_{*}(B_R), and m_{*}(N_R) = 0.

 - - $-B := \bigcup B_R$ is a union of Borel sets and thus still Borel
 - $-E = \bigcup_{R}^{R} E_{R}$

 - $-N := \stackrel{R}{B} \setminus E$ $-N' := \bigcup N_R \text{ is a union of null sets and thus still null}$
 - Since $E_R \subset B_R$ for every R, we have $E \subset B$
 - We can compute

$$N = B \setminus E = \left(\bigcup_R B_R\right) \setminus \left(\bigcup_R E_R\right) \subseteq \bigcup_R \left(B_R \setminus E_R\right) = \bigcup_R N_R := N'$$

where $m_*(N') = 0$ since N' is null, and thus subadditivity forces $m_*(N) = 0$.

3.2 Fall 2019 # 3.

Let (X, \mathcal{B}, μ) be a measure space with $\mu(X) = 1$ and $\{B_n\}_{n=1}^{\infty}$ be a sequence of \mathcal{B} -measurable subsets of X, and

$$B := \left\{ x \in X \mid x \in B_n \text{ for infinitely many } n \right\}.$$

a. Argue that B is also a \mathcal{B} -measurable subset of X.

b. Prove that if
$$\sum_{n=1}^{\infty} \mu(B_n) < \infty$$
 then $\mu(B) = 0$.

c. Prove that if $\sum_{n=1}^{\infty} \mu(B_n) = \infty$ and the sequence of set complements $\{B_n^c\}_{n=1}^{\infty}$ satisfies

$$\mu\left(\bigcap_{n=k}^{K} B_{n}^{c}\right) = \prod_{n=k}^{K} \left(1 - \mu\left(B_{n}\right)\right)$$

for all positive integers k and K with k < K, then $\mu(B) = 1$.

Hint: Use the fact that $1 - x \le e^{-x}$ for all x.

3.3 Spring 2019 # 2

Let \mathcal{B} denote the set of all Borel subsets of \mathbb{R} and $\mu: \mathcal{B} \longrightarrow [0, \infty)$ denote a finite Borel measure on \mathbb{R} .

a. Prove that if $\{F_k\}$ is a sequence of Borel sets for which $F_k \supseteq F_{k+1}$ for all k, then

$$\lim_{k \to \infty} \mu\left(F_k\right) = \mu\left(\bigcap_{k=1}^{\infty} F_k\right)$$

b. Suppose μ has the property that $\mu(E) = 0$ for every $E \in \mathcal{B}$ with Lebesgue measure m(E) = 0. Prove that for every $\varepsilon > 0$ there exists $\delta > 0$ so that if $E \in \mathcal{B}$ with $m(E) < \delta$, then $\mu(E) < \varepsilon$.

3.4 Fall 2018 # 2

Let $E \subset \mathbb{R}$ be a Lebesgue measurable set. Show that there is a Borel set $B \subset E$ such that $m(E \setminus B) = 0$.

3.5 Spring 2018 # 1

Define

$$E := \left\{ x \in \mathbb{R} : \left| x - \frac{p}{q} \right| < q^{-3} \text{ for infinitely many } p, q \in \mathbb{N} \right\}.$$

Prove that m(E) = 0.

3.6 Fall 2017 # 2

Let $f(x) = x^2$ and $E \subset [0, \infty) := \mathbb{R}^+$.

1. Show that

$$m^*(E) = 0 \iff m^*(f(E)) = 0.$$

2. Deduce that the map

$$\varphi: \mathcal{L}(\mathbb{R}^+) \longrightarrow \mathcal{L}(\mathbb{R}^+)$$

$$E \mapsto f(E)$$

is a bijection from the class of Lebesgue measurable sets of $[0, \infty)$ to itself.

3.7 Spring 2017 # 2

a. Let μ be a measure on a measurable space (X, \mathcal{M}) and f a positive measurable function.

Define a measure λ by

$$\lambda(E) := \int_{E} f \ d\mu, \quad E \in \mathcal{M}$$

Show that for g any positive measurable function,

$$\int_X g \ d\lambda = \int_X fg \ d\mu$$

b. Let $E \subset \mathbb{R}$ be a measurable set such that

$$\int_E x^2 \ dm = 0.$$

Show that m(E) = 0.

3.8 Fall 2016 # 4

Let (X, \mathcal{M}, μ) be a measure space and suppose $\{E_n\} \subset \mathcal{M}$ satisfies

$$\lim_{n\to\infty}\mu\left(X\backslash E_n\right)=0.$$

Define

$$G := \{ x \in X \mid x \in E_n \text{ for only finitely many } n \}.$$

Show that $G \in \mathcal{M}$ and $\mu(G) = 0$.

3.9 Spring 2016 # 3

Let f be Lebesgue measurable on $\mathbb R$ and $E\subset\mathbb R$ be measurable such that

$$0 < A = \int_{E} f(x)dx < \infty.$$

Show that for every 0 < t < 1, there exists a measurable set $E_t \subset E$ such that

$$\int_{E_t} f(x)dx = tA.$$

3.10 Spring 2016 # 5

Let (X, \mathcal{M}, μ) be a measure space. For $f \in L^1(\mu)$ and $\lambda > 0$, define

$$\varphi(\lambda) = \mu(\{x \in X | f(x) > \lambda\})$$
 and $\psi(\lambda) = \mu(\{x \in X | f(x) < -\lambda\})$

Show that φ, ψ are Borel measurable and

$$\int_{X} |f| \ d\mu = \int_{0}^{\infty} [\varphi(\lambda) + \psi(\lambda)] \ d\lambda$$

3.11 Fall 2015 # 2

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be Lebesgue measurable.

- 1. Show that there is a sequence of simple functions $s_n(x)$ such that $s_n(x) \longrightarrow f(x)$ for all $x \in \mathbb{R}$.
- 2. Show that there is a Borel measurable function g such that g = f almost everywhere.

3.12 Spring 2015 # 3

Let μ be a finite Borel measure on \mathbb{R} and $E \subset \mathbb{R}$ Borel. Prove that the following statements are equivalent:

1. $\forall \varepsilon > 0$ there exists G open and F closed such that

$$F \subseteq E \subseteq G$$
 and $\mu(G \setminus F) < \varepsilon$.

2. There exists a $V \in G_{\delta}$ and $H \in F_{\sigma}$ such that

$$H \subseteq E \subseteq V$$
 and $\mu(V \setminus H) = 0$

3.13 Spring 2014 # 3

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ and suppose

$$\forall x \in \mathbb{R}, \quad f(x) \ge \limsup_{y \to x} f(y)$$

Prove that f is Borel measurable.

3.14 Spring 2014 # 4

Let (X, \mathcal{M}, μ) be a measure space and suppose f is a measurable function on X. Show that

$$\lim_{n \to \infty} \int_X f^n \ d\mu = \begin{cases} \infty & \text{or} \\ \mu(f^{-1}(1)), \end{cases}$$

and characterize the collection of functions of each type.

3.15 Spring 2017 # 1

Let K be the set of numbers in [0,1] whose decimal expansions do not use the digit 4.

We use the convention that when a decimal number ends with 4 but all other digits are different from 4, we replace the digit 4 with $399\cdots$. For example, $0.8754 = 0.8753999\cdots$.

Show that K is a compact, nowhere dense set without isolated points, and find the Lebesgue measure m(K).

3.16 Spring 2016 # 2

Let $0 < \lambda < 1$ and construct a Cantor set C_{λ} by successively removing middle intervals of length λ . Prove that $m(C_{\lambda}) = 0$.

4 Measure Theory: Functions

4.1 Fall 2016 # 2

Let $f, g : [a, b] \longrightarrow \mathbb{R}$ be measurable with

$$\int_a^b f(x) \ dx = \int_a^b g(x) \ dx.$$

Show that either

- 1. f(x) = g(x) almost everywhere, or
- 2. There exists a measurable set $E \subset [a, b]$ such that

$$\int_{E} f(x) \ dx > \int_{E} g(x) \ dx$$

4.2 Spring 2016 # 4

Let $E \subset \mathbb{R}$ be measurable with $m(E) < \infty$. Define

$$f(x) = m(E \cap (E + x)).$$

Show that

1. $f \in L^1(\mathbb{R})$.

2. f is uniformly continuous.

$$3. \lim_{|x| \to \infty} f(x) = 0.$$

Hint:

$$\chi_{E\cap(E+x)}(y) = \chi_E(y)\chi_E(y-x)$$

5 Integrals: Convergence

5.1 Fall 2019 # 2.

Prove that

$$\left| \frac{d^n}{dx^n} \frac{\sin x}{x} \right| \le \frac{1}{n}$$

for all $x \neq 0$ and positive integers n.

Hint: Consider
$$\int_0^1 \cos(tx) dt$$

Solution.

Concepts used:

- DCT
- Bounding in the right place. Don't evaluate the actual integral!

Solution:

- By induction on the number of limits we can pass through the integral.
- For n=1 we first pass one derivative into the integral: let $x_n \longrightarrow x$ be any sequence converging to x, then

$$\frac{\partial}{\partial x} \frac{\sin(x)}{x} = \frac{\partial}{\partial x} \int_0^1 \cos(tx) dt$$

$$= \lim_{x_n \to x} \frac{1}{x_n - x} \left(\int_0^1 \cos(tx_n) dt - \int_0^1 \cos(tx) dt \right)$$

$$= \lim_{x_n \to x} \left(\int_0^1 \frac{\cos(tx_n) - \cos(tx)}{x_n - x} dt \right)$$

$$= \lim_{x_n \to x} \left(\int_0^1 \left(t \sin(tx) \Big|_{x = \xi_n} \right) dt \right) \quad \text{where} \quad \xi_n \in [x_n, x] \text{ by MVT}, \xi_n \to x$$

$$= \lim_{\xi_n \to x} \left(\int_0^1 t \sin(t\xi_n) dt \right)$$

$$= \int_0^1 t \sin(tx) dt$$

$$= \int_0^1 t \sin(tx) dt$$

5 INTEGRALS: CONVERGENCE

• Taking absolute values we obtain an upper bound

$$\left| \frac{\partial}{\partial x} \frac{\sin(x)}{x} \right| = \left| \int_0^1 t \sin(tx) dt \right|$$

$$\leq \int_0^1 |t \sin(tx)| dt$$

$$\leq \int_0^1 1 dt = 1,$$

since $t \in [0,1] \implies |t| < 1$, and $|\sin(xt)| \le 1$ for any x and t.

• Note that this bound also justifies the DCT, since the functions $f_n(t) = t \sin(t\xi_n)$ are uniformly dominated by g(t) = 1 on $L^1([0,1])$.

Note: integrating by parts here yields the actual formula:

$$\int_{0}^{1} t \sin(tx) dt =_{IBP} \left(\frac{-t \cos(tx)}{x} \right) \Big|_{t=0}^{t=1} - \int_{0}^{1} \frac{\cos(tx)}{x} dt$$
$$= \frac{-\cos(x)}{x} - \frac{\sin(x)}{x^{2}}$$
$$= \frac{x \cos(x) - \sin(x)}{x^{2}}.$$

• For the inductive step, we assume that we can pass n-1 limits through the integral and show we can pass the nth through as well.

$$\frac{\partial^n}{\partial x^n} \frac{\sin(x)}{x} = \frac{\partial^n}{\partial x^n} \int_0^1 \cos(tx) \, dt$$
$$= \frac{\partial}{\partial x} \int_0^1 \frac{\partial^{n-1}}{\partial x^{n-1}} \cos(tx) \, dt$$
$$= \frac{\partial}{\partial x} \int_0^1 t^{n-1} f_{n-1}(x,t) \, dt$$

- Note that $f_n(x,t) = \pm \sin(tx)$ when n is odd and $f_n(x,t) = \pm \cos(tx)$ when n is even, and a constant factor of t is multiplied when each derivative is taken.
- We continue as in the base case:

$$\frac{\partial}{\partial x} \int_0^1 t^{n-1} f_{n-1}(x,t) dt = \lim_{x_k \to x} \int_0^1 t^{n-1} \left(\frac{f_{n-1}(x_n,t) - f_{n-1}(x,t)}{x_n - x} \right) dt$$

$$=_{\text{IVT}} \lim_{x_k \to x} \int_0^1 t^{n-1} \frac{\partial f_{n-1}}{\partial x} \left(\xi_k, t \right) dt \quad \text{where } \xi_k \in [x_k, x], \, \xi_k \to x$$

$$=_{\text{DCT}} \int_0^1 \lim_{x_k \to x} t^{n-1} \frac{\partial f_{n-1}}{\partial x} \left(\xi_k, t \right) dt$$

$$\coloneqq \int_0^1 \lim_{x_k \to x} t^n f_n(\xi_k, t) dt$$

$$\coloneqq \int_0^1 t^n f_n(x, t) dt.$$

- We've used the fact that $f_0(x) = \cos(tx)$ is smooth as a function of x, and in particular continuous
- The DCT is justified because the functions $h_{n,k}(x,t) = t^n f_n(\xi_k,t)$ are again uniformly (in k) bounded by 1 since $t \leq 1 \implies t^n \leq 1$ and each f_n is a sin or cosine.

• Now take absolute values

$$\left| \frac{\partial^n}{\partial x^n} \frac{\sin(x)}{x} \right| = \left| \int_0^1 -t^n f_n(x,t) \, dt \right|$$

$$\leq \int_0^1 |t^n f_n(x,t)| \, dt$$

$$\leq \int_0^1 |t^n| |f_n(x,t)| \, dt$$

$$\leq \int_0^1 |t^n| \cdot 1 \, dt$$

$$\leq \int_0^1 t^n \, dt \quad \text{since } t \text{ is positive}$$

$$= \frac{1}{n+1}$$

$$< \frac{1}{n}.$$

- We've again used the fact that $f_n(x,t)$ is of the form $\pm \cos(tx)$ or $\pm \sin(tx)$, both of which are bounded by 1.

5.2 Spring 2020 # 5

Compute the following limit and justify your calculations:

$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x^2}{n} \right)^{-(n+1)} dx.$$

Not finished, flesh out

Solution.

Concepts used:

- DCT
- Passing limits through products and quotients

Note that

$$\lim_{n} \left(1 + \frac{x^2}{n} \right)^{-(n+1)} = \frac{1}{\lim_{n} \left(1 + \frac{x^2}{n} \right)^1 \left(1 + \frac{x^2}{n} \right)^n}$$
$$= \frac{1}{1 \cdot e^{x^2}}$$
$$= e^{-x^2}.$$

If passing the limit through the integral is justified, we will have

$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x^2}{n} \right)^{-(n+1)} dx = \lim_{n \to \infty} \int_{\mathbb{R}} \chi_{[0,n]} \left(1 + \frac{x^2}{n} \right)^{-(n+1)} dx$$

$$= \int_{\mathbb{R}} \lim_{n \to \infty} \chi_{[0,n]} \left(1 + \frac{x^2}{n} \right)^{-(n+1)} dx \quad \text{by the DCT}$$

$$= \int_{\mathbb{R}} \lim_{n \to \infty} \left(1 + \frac{x^2}{n} \right)^{-(n+1)} dx$$

$$= \int_0^\infty e^{-x^2}$$

$$= \frac{\sqrt{\pi}}{2}.$$

Computing the last integral:

$$\left(\int_{\mathbb{R}} e^{-x^2} dx\right)^2 = \left(\int_{\mathbb{R}} e^{-x^2} dx\right) \left(\int_{\mathbb{R}} e^{-y^2} dx\right)$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} e^{-(x+y)^2} dx$$

$$= \int_0^{2\pi} \int_0^{\infty} e^{-r^2} r dr d\theta \qquad u = r^2$$

$$= \frac{1}{2} \int_0^{2\pi} \int_0^{\infty} e^{-u} du d\theta$$

$$= \frac{1}{2} \int_0^{2\pi} 1$$

$$= \pi.$$

and now use the fact that the function is even so $\int_0^\infty f = \frac{1}{2} \int_{\mathbb{R}} f$. Justifying the DCT:

• Apply Bernoulli's inequality:

$$1 + \frac{x^2^{n+1}}{n} \ge 1 + \frac{x^2}{n} (1 + x^2) \ge 1 + x^2,$$

where the last inequality follows from the fact that $1 + \frac{x^2}{n} \ge 1$

5.3 Spring 2019 # 3

Let $\{f_k\}$ be any sequence of functions in $L^2([0,1])$ satisfying $\|f_k\|_2 \leq M$ for all $k \in \mathbb{N}$. Prove that if $f_k \longrightarrow f$ almost everywhere, then $f \in L^2([0,1])$ with $\|f\|_2 \leq M$ and

$$\lim_{k \to \infty} \int_0^1 f_k(x) dx = \int_0^1 f(x) dx$$

Hint: Try using Fatou's Lemma to show that $||f||_2 \leq M$ and then try applying Egorov's

5.4 Fall 2018 # 6

Compute the following limit and justify your calculations:

$$\lim_{n\to\infty} \int_1^n \frac{dx}{\left(1+\frac{x}{n}\right)^n \sqrt[n]{x}}$$

5.5 Fall 2018 # 3

Suppose f(x) and xf(x) are integrable on \mathbb{R} . Define F by

$$F(t) := \int_{-\infty}^{\infty} f(x) \cos(xt) dx$$

Show that

$$F'(t) = -\int_{-\infty}^{\infty} x f(x) \sin(xt) dx.$$

5.6 Spring 2018 # 5

Suppose that

- $f_n, f \in L^1$, $f_n \longrightarrow f$ almost everywhere, and $\int |f_n| \to \int |f|$.

Show that $\int f_n \to \int f$

5.7 Spring 2018 # 2

Let

$$f_n(x) := \frac{x}{1+x^n}, \quad x \ge 0.$$

- a. Show that this sequence converges pointwise and find its limit. Is the convergence uniform on $[0,\infty)$?
- b. Compute

$$\lim_{n\to\infty} \int_0^\infty f_n(x) dx$$

5.8 Fall 2016 # 3

Let $f \in L^1(\mathbb{R})$. Show that

$$\lim_{x \to 0} \int_{\mathbb{R}} |f(y - x) - f(y)| \, dy = 0$$

5.9 Fall 2015 # 3

Compute the following limit:

$$\lim_{n \to \infty} \int_1^n \frac{ne^{-x}}{1 + nx^2} \sin\left(\frac{x}{n}\right) dx$$

5.10 Fall 2015 # 4

Let $f:[1,\infty)\longrightarrow \mathbb{R}$ such that f(1)=1 and

$$f'(x) = \frac{1}{x^2 + f(x)^2}$$

Show that the following limit exists and satisfies the equality

$$\lim_{x \to \infty} f(x) \le 1 + \frac{\pi}{4}$$

6 Integrals: Approximation

6.1 Spring 2018 # 3

Let f be a non-negative measurable function on [0,1].

Show that

$$\lim_{p \to \infty} \left(\int_{[0,1]} f(x)^p dx \right)^{\frac{1}{p}} = ||f||_{\infty}.$$

6.2 Spring 2018 # 4

Let $f \in L^2([0,1])$ and suppose

$$\int_{[0,1]} f(x)x^n dx = 0 \text{ for all integers } n \ge 0.$$

Show that f = 0 almost everywhere.

6.3 Spring 2015 # 2

Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be continuous with period 1. Prove that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(n\alpha) = \int_{0}^{1} f(t)dt \quad \forall \alpha \in \mathbb{R} \setminus \mathbb{Q}.$$

Hint: show this first for the functions $f(t) = e^{2\pi i k t}$ for $k \in \mathbb{Z}$.

6.4 Fall 2014 # 4

Let $g \in L^{\infty}([0,1])$ Prove that

 $\int_{[0,1]} f(x)g(x) dx = 0 \quad \text{for all continuous } f:[0,1] \longrightarrow \mathbb{R} \implies g(x) = 0 \text{ almost everywhere.}$

7 L^{1}

7.1 Spring 2020 # 3

a. Prove that if $g \in L^1(\mathbb{R})$ then

$$\lim_{N \to \infty} \int_{|x| > N} |f(x)| \, dx = 0,$$

and demonstrate that it is not necessarily the case that $f(x) \longrightarrow 0$ as $|x| \longrightarrow \infty$.

b. Prove that if $f \in L^1([1,\infty])$ and is decreasing, then $\lim_{x \to \infty} f(x) = 0$ and in fact $\lim_{x \to \infty} x f(x) = 0$.

c. If $f:[1,\infty) \longrightarrow [0,\infty)$ is decreasing with $\lim_{x \to \infty} x f(x) = 0$, does this ensure that $f \in L^1([1,\infty))$?

Solution.

Concepts used:

• Limits

• Cauchy Criterion for Integrals: $\int_{a}^{\infty} f(x) dx$ converges iff for every $\varepsilon > 0$ there exists an M_0 such that $A, B \geq M_0$ implies $\left| \int_{A}^{B} f \right| < \varepsilon$, i.e. $\left| \int_{A}^{B} f \right| \stackrel{A \longrightarrow \infty}{\longrightarrow} 0$.

• Integrals of L^1 functions have vanishing tails: $\int_{N}^{\infty} |f| \stackrel{N \longrightarrow \infty}{\longrightarrow} 0$.

• Mean Value Theorem for Integrals: $\int_a^b f(t) dt = (b-a)f(c)$ for some $c \in [a,b]$.

7.1.1 a

Stated integral equality:

- Let $\varepsilon > 0$
- $C_c(\mathbb{R}^n) \hookrightarrow L^1(\mathbb{R}^n)$ is dense so choose $\{f_n\} \longrightarrow f$ with $||f_n f||_1 \longrightarrow 0$.
- Since $\{f_n\}$ are compactly supported, choose $N_0 \gg 1$ such that f_n is zero outside of $B_{N_0}(\mathbf{0})$.

7 L^1 23

• Then

$$N \ge N_0 \implies \int_{|x|>N} |f| = \int_{|x|>N} |f - f_n + f_n|$$

$$\le \int_{|x|>N} |f - f_n| + \int_{|x|>N} |f_n|$$

$$= \int_{|x|>N} |f - f_n|$$

$$\le \int_{|x|>N} ||f - f_n||_1$$

$$= ||f_n - f||_1 \left(\int_{|x|>N} 1 \right)$$

$$\stackrel{n \to \infty}{\longrightarrow} 0 \left(\int_{|x|>N} 1 \right)$$

$$= 0$$

$$\stackrel{N \to \infty}{\longrightarrow} 0.$$

To see that this doesn't force $f(x) \longrightarrow 0$ as $|x| \longrightarrow \infty$:

- Take f(x) to be a train of rectangles of height 1 and area $1/2^{j}$ centered on even integers.

$$\int_{|x|>N} |f| = \sum_{j=N}^{\infty} 1/2^j \stackrel{N \longrightarrow \infty}{\longrightarrow} 0$$

as the tail of a convergent sum.

• However f(x) = 1 for infinitely many even integers x > N, so $f(x) \not\longrightarrow 0$ as $|x| \longrightarrow \infty$.

7.1.2 b

Solution 1 ("Trick")

• Since f is decreasing on $[1, \infty)$, for any $t \in [x - n, x]$ we have

$$x - n < t < x \implies f(x) < f(t) < f(x - n).$$

• Integrate over [x, 2x], using monotonicity of the integral:

$$\int_{x}^{2x} f(x) dt \le \int_{x}^{2x} f(t) dt \le \int_{x}^{2x} f(x-n) dt$$

$$\implies f(x) \int_{x}^{2x} dt \le \int_{x}^{2x} f(t) dt \le f(x-n) \int_{x}^{2x} dt$$

$$\implies x f(x) \le \int_{x}^{2x} f(t) dt \le x f(x-n).$$

- By the Cauchy Criterion for integrals, $\lim_{x \to \infty} \int_{x}^{2x} f(t) dt = 0$.
- So the LHS term $xf(x) \stackrel{x \longrightarrow \infty}{\longrightarrow} 0$.
- Since x > 1, $|f(x)| \le |xf(x)|$ Thus $f(x) \xrightarrow{x \to \infty} 0$ as well.

Solution 2 (Variation on the Trick)

• Use mean value theorem for integrals:

$$\int_{x}^{2x} f(t) dt = x f(c_x) \quad \text{for some } c_x \in [x, 2x] \text{ depending on } x.$$

• Since f is decreasing,

$$\begin{aligned} x & \leq c_x \leq 2x \implies f(2x) \leq f(c_x) \leq f(x) \\ & \Longrightarrow 2x f(2x) \leq 2x f(c_x) \leq 2x f(x) \\ & \Longrightarrow 2x f(2x) \leq 2x \int_x^{2x} f(t) \, dt \leq 2x f(x) \end{aligned}$$

• By Cauchy Criterion, $\int_{x}^{2x} f \longrightarrow 0$.

• So $2xf(2x) \longrightarrow 0$, which by a change of variables gives $uf(u) \longrightarrow 0$.

• Since $u \ge 1$, $f(u) \le u f(u)$ so $f(u) \longrightarrow 0$ as well.

Solution 3 (Contradiction)

Just showing $f(x) \stackrel{x \longrightarrow \infty}{\longrightarrow} 0$:

• Toward a contradiction, suppose not.

• Since f is decreasing, it can not diverge to $+\infty$

• If $f(x) \longrightarrow -\infty$, then $f \notin L^1(\mathbb{R})$: choose $x_0 \gg 1$ so that $t \geq x_0 \implies f(t) < -1$, then

• Then $t \ge x_0 \implies |f(t)| \ge 1$, so

$$\int_{1}^{\infty} |f| \ge \int_{x_0}^{\infty} |f(t)| dt \ge \int_{x_0}^{\infty} 1 = \infty.$$

• Otherwise $f(x) \longrightarrow L \neq 0$, some finite limit.

• If L > 0:

- Fix $\varepsilon > 0$, choose $x_0 \gg 1$ such that $t \geq x_0 \implies L - \varepsilon \leq f(t) \leq L$

- Then

$$\int_{1}^{\infty} f \ge \int_{x_0}^{\infty} f \ge \int_{x_0}^{\infty} (L - \varepsilon) dt = \infty$$

• If L < 0:

- Fix $\varepsilon > 0$, choose $x_0 \gg 1$ such that $t \geq x_0 \implies L \leq f(t) \leq L + \varepsilon$.

- Then

$$\int_{1}^{\infty} f \ge \int_{r_0}^{\infty} f \ge \int_{r_0}^{\infty} (L) dt = \infty$$

Showing $xf(x) \stackrel{x \longrightarrow \infty}{\longrightarrow} 0$.

• Toward a contradiction, suppose not.

• (How to show that $xf(x) \leftrightarrow +\infty$?)

• If $xf(x) \longrightarrow -\infty$

- Choose a sequence $\Gamma = \{\hat{x}_i\}$ such that $x_i \longrightarrow \infty$ and $x_i f(x_i) \longrightarrow -\infty$.

- Choose a subsequence $\Gamma' = \{x_i\}$ such that $x_i f(x_i) \leq -1$ for all i and $x_i \leq x_{i+1}$.

7 L^1 25

- Choose a further subsequence $S = \{x_i \in \Gamma' \mid 2x_i < x_{i+1}\}.$
- Then since f is always decreasing, for $t \geq x_0$, |f| is increasing, and $|f(x_i)| \leq |f(2x_i)|$, so

$$\int_{1}^{\infty} |f| \ge \int_{x_0}^{\infty} |f| \ge \sum_{x_i \in S} \int_{x_i}^{2x_i} |f(t)| dt \ge \sum_{x_i \in S} \int_{x_i}^{2x_i} |f(x_i)| = \sum_{x_i \in S} x_i f(x_i) \longrightarrow \infty.$$

• If $xf(x) \longrightarrow L \neq 0$ for $0 < L < \infty$:

– Fix $\varepsilon > 0$, choose an infinite sequence $\{x_i\}$ such that $L - \varepsilon \leq x_i f(x_i) \leq L$ for all i.

$$\int_{1}^{\infty} |f| \ge \sum_{S} \int_{x_i}^{2x_i} |f(t)| dt \ge \sum_{S} \int_{x_i}^{2x_i} f(x_i) dt = \sum_{S} x_i f(x_i) \ge \sum_{S} (L - \varepsilon) \longrightarrow \infty.$$

• If $xf(x) \longrightarrow L \neq 0$ for $-\infty < L < 0$:

- Fix $\varepsilon > 0$, choose an infinite sequence $\{x_i\}$ such that $L \leq x_i f(x_i) \leq L + \varepsilon$ for all i.

$$\int_{1}^{\infty} |f| \ge \sum_{S} \int_{x_i}^{2x_i} |f(t)| dt \ge \sum_{S} \int_{x_i}^{2x_i} f(x_i) dt = \sum_{S} x_i f(x_i) \ge \sum_{S} (L) \longrightarrow \infty.$$

Solution 4 (Akos's Suggestion) For $x \ge 1$,

$$|xf(x)| = \left| \int_{x}^{2x} f(x) dt \right| \le \int_{x}^{2x} |f(x)| dt \le \int_{x}^{2x} |f(t)| dt \le \int_{x}^{\infty} |f(t)| dt \xrightarrow{x \to \infty} 0$$

where we've used

- Since f is decreasing and $\lim_{x \to \infty} f(x) = 0$ from part (a), f is non-negative.
- Since f is positive and decreasing, for every $t \in [a, b]$ we have $|f(a)| \le |f(t)|$.
- By part (a), the last integral goes to zero.

Solution 5 (Peter's)

• Toward a contradiction, produce a sequence $x_i \longrightarrow \infty$ with $x_i f(x_i) \longrightarrow \infty$ and $x_i f(x_i) > \varepsilon > 0$, then

$$\int f(x) dx \ge \sum_{i=1}^{\infty} \int_{x_i}^{x_{i+1}} f(x) dx$$

$$\ge \sum_{i=1}^{\infty} \int_{x_i}^{x_{i+1}} f(x_{i+1}) dx$$

$$= \sum_{i=1}^{\infty} f(x_{i+1}) \int_{x_i}^{x_{i+1}} dx$$

$$\ge \sum_{i=1}^{\infty} (x_{i+1} - x_i) f(x_{i+1})$$

$$\ge \sum_{i=1}^{\infty} (x_{i+1} - x_i) \frac{\varepsilon}{x_{i+1}}$$

$$= \varepsilon \sum_{i=1}^{\infty} \left(1 - \frac{x_{i-1}}{x_i} \right) \longrightarrow \infty$$

which can be ensured by passing to a subsequence where $\sum \frac{x_{i-1}}{x_i} < \infty$.

7 L^1 26

7.1.3 c

• No: take $f(x) = \frac{1}{x \ln x}$ • Then by a *u*-substitution,

$$\int_0^x f = \ln\left(\ln(x)\right) \stackrel{x \longrightarrow \infty}{\longrightarrow} \infty$$

is unbounded, so $f \notin L^1([1,\infty))$.

• But

$$xf(x) = \frac{1}{\ln(x)} \xrightarrow{x \to \infty} 0.$$

7.2 Fall 2019 # 5.

a. Show that if f is continuous with compact support on \mathbb{R} , then

$$\lim_{y \to 0} \int_{\mathbb{R}} |f(x - y) - f(x)| dx = 0$$

b. Let $f \in L^1(\mathbb{R})$ and for each h > 0 let

$$\mathcal{A}_h f(x) := \frac{1}{2h} \int_{|y| \le h} f(x - y) dy$$

c. Prove that $\|\mathcal{A}_h f\|_1 \leq \|f\|_1$ for all h > 0.

ii. Prove that $A_h f \longrightarrow f$ in $L^1(\mathbb{R})$ as $h \longrightarrow 0^+$.

7.3 Fall 2017 # 3

Let

$$S = \operatorname{span}_{\mathbb{C}} \left\{ \chi_{(a,b)} \mid a, b \in \mathbb{R} \right\},$$

the complex linear span of characteristic functions of intervals of the form (a, b).

Show that for every $f \in L^1(\mathbb{R})$, there exists a sequence of functions $\{f_n\} \subset S$ such that

$$\lim_{n \to \infty} \|f_n - f\|_1 = 0$$

7.4 Spring 2015 # 4

Define

$$f(x,y) := \begin{cases} \frac{x^{1/3}}{(1+xy)^{3/2}} & \text{if } 0 \le x \le y\\ 0 & \text{otherwise} \end{cases}$$

Carefully show that $f \in L^1(\mathbb{R}^2)$.

 $7 L^1$ 27

7.5 Fall 2014 # 3

Let $f \in L^1(\mathbb{R})$. Show that

$$\forall \varepsilon > 0 \exists \delta > 0 \text{ such that} \qquad m(E) < \delta \implies \int_E |f(x)| \, dx < \varepsilon$$

7.6 Spring 2014 # 1

- 1. Give an example of a continuous $f \in L^1(\mathbb{R})$ such that $f(x) \not\longrightarrow 0$ as $|x| \longrightarrow \infty$.
- 2. Show that if f is uniformly continuous, then

$$\lim_{|x| \to \infty} f(x) = 0.$$

8 Fubini-Tonelli

8.1 Spring 2020 # 4

Let $f,g\in L^1(\mathbb{R})$. Argue that $H(x,y)\coloneqq f(y)g(x-y)$ defines a function in $L^1(\mathbb{R}^2)$ and deduce from this fact that

$$(f * g)(x) \coloneqq \int_{\mathbb{R}} f(y)g(x - y) \, dy$$

defines a function in $L^1(\mathbb{R})$ that satisfies

$$||f * g||_1 \le ||f||_1 ||g||_1.$$

Solution.

Relevant concepts:

- Tonelli: non-negative and measurable yields measurability of slices and equality of iterated integrals
- Fubini: $f(x,y) \in L^1$ yields integrable slices and equality of iterated integrals
- F/T: apply Tonelli to |f|; if finite, $f \in L^1$ and apply Fubini to f

$$\begin{split} \|H(x)\|_1 &= \int_{\mathbb{R}} |H(x,y)| \, dx \\ &= \int_{\mathbb{R}} \left| \int_{\mathbb{R}} f(y) g(x-y) \, dy \right| \, dx \\ &\leq \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y) g(x-y)| \, dy \right) \, dx \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y) g(x-y)| \, dx \right) \, dy \quad \text{by Tonelli} \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y) g(t)| \, dt \right) \, dy \quad \text{setting } t = x-y, \, dt = -dx \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(y)| \cdot |g(t)| \, dt \right) \, dy \\ &= \int_{\mathbb{R}} |f(y)| \cdot \left(\int_{\mathbb{R}} |g(t)| \, dt \right) \, dy \\ &\coloneqq \int_{\mathbb{R}} |f(y)| \cdot \|g\|_1 \, dy \\ &= \|g\|_1 \int_{\mathbb{R}} |f(y)| \, dy \\ &\coloneqq \|g\|_1 \|f\|_1 \\ &< \infty \quad \text{by assumption} \quad . \end{split}$$

- H is measurable on \mathbb{R}^2 :
 - If we can show $\tilde{f}(x,y) := f(y)$ and $\tilde{g}(x,y) := g(x-y)$ are both measurable on \mathbb{R}^2 , then $H = \tilde{f} \cdot \tilde{g}$ is a product of measurable functions and thus measurable.
 - $-f \in L^1$, and L^1 functions are measurable by definition.
 - The function $(x,y) \mapsto g(x-y)$ is measurable on \mathbb{R}^2 :
 - * Let g be measurable on \mathbb{R} , then the cylinder function G(x,y)=g(x) on \mathbb{R}^2 is always measurable
 - * Define a linear transformation T := [1, -1; 0, 1] which sends $(x, y) \longrightarrow (x y, y)$, then $T \in GL(2, \mathbb{R})$ is linear and thus measurable.
 - * Then $(G \circ T)(x,y) = G(x-y,y) = \tilde{g}(x-y)$, so \tilde{g} is a composition of measurable functions and thus measurable.
- Apply **Tonelli** to |H|
 - -H measurable implies |H| is measurable
 - -|H| is non-negative
 - So the iterated integrals are equal in the extended sense
 - The calculation shows the iterated integral is finite, to $\int |H|$ is finite and H is thus integrable on \mathbb{R}^2 .

Note: Fubini is not needed, since we're not calculating the actual integral, just showing H is integrable.

8.2 Spring 2019 # 4

Let f be a non-negative function on \mathbb{R}^n and $\mathcal{A} = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} : 0 \le t \le f(x)\}.$

Prove the validity of the following two statements:

- a. f is a Lebesgue measurable function on $\mathbb{R}^n \iff \mathcal{A}$ is a Lebesgue measurable subset of \mathbb{R}^{n+1}
- b. If f is a Lebesgue measurable function on \mathbb{R}^n , then

$$m(\mathcal{A}) = \int_{\mathbb{R}^n} f(x)dx = \int_0^\infty m\left(\left\{x \in \mathbb{R}^n : f(x) \ge t\right\}\right)dt$$

8.3 Fall 2018 # 5

Let $f \geq 0$ be a measurable function on \mathbb{R} . Show that

$$\int_{\mathbb{R}} f = \int_0^\infty m(\{x : f(x) > t\}) dt$$

8.4 Fall 2015 # 5

Let $f, g \in L^1(\mathbb{R})$ be Borel measurable.

- 1. Show that
- The function

$$F(x,y) \coloneqq f(x-y)g(y)$$

is Borel measurable on \mathbb{R}^2 , and

• For almost every $y \in \mathbb{R}$,

$$F_{y}(x) \coloneqq f(x-y)g(y)$$

is integrable with respect to y.

2. Show that $f * g \in L^1(\mathbb{R})$ and

$$||f * g||_1 \le ||f||_1 ||g||_1$$

8.5 Spring 2014 # 5

Let $f, g \in L^1([0,1])$ and for all $x \in [0,1]$ define

$$F(x) := \int_0^x f(y) \, dy$$
 and $G(x) := \int_0^x g(y) \, dy$.

Prove that

$$\int_0^1 F(x)g(x) \, dx = F(1)G(1) - \int_0^1 f(x)G(x) \, dx$$

9 L^2 and Fourier Analysis

9.1 Spring 2020 # 6

9.1.1 a

Show that

$$L^2([0,1]) \subseteq L^1([0,1])$$
 and $\ell^1(\mathbb{Z}) \subseteq \ell^2(\mathbb{Z})$.

9.1.2 b

For $f \in L^1([0,1])$ define

$$\widehat{f}(n) := \int_0^1 f(x)e^{-2\pi i nx} dx.$$

Prove that if $f \in L^1([0,1])$ and $\{\widehat{f}(n)\} \in \ell^1(\mathbb{Z})$ then

$$S_N f(x) := \sum_{|n| \le N} \widehat{f}(n) e^{2\pi i n x}.$$

converges uniformly on [0,1] to a continuous function g such that g=f almost everywhere.

Hint: One approach is to argue that if $f \in L^1([0,1])$ with $\{\widehat{f}(n)\} \in \ell^1(\mathbb{Z})$ then $f \in L^2([0,1])$.

Solution.

Concepts used:

- For $e_n(x) := e^{2\pi i n x}$, the set $\{e_n\}$ is an orthonormal basis for $L^2([0,1])$.
- For any orthonormal sequence in a Hilbert space, we have Bessel's inequality:

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2.$$

- When $\{e_n\}$ is a basis, the above is an equality (Parseval)
- Arguing uniform convergence: since $\{\widehat{f}(n)\}\in\ell^1(\mathbb{Z})$, we should be able to apply the M

9.1.3 a

Claim: $\ell^1(\mathbb{Z}) \subset \ell^2(\mathbb{Z})$.

- Set $\mathbf{c} = \left\{ c_k \mid k \in \mathbb{Z} \right\} \in \ell^1(\mathbb{Z}).$
- It suffices to show that if $\sum_{k\in\mathbb{Z}}|c_k|<\infty$ then $\sum_{k\in\mathbb{Z}}|c_k|^2<\infty$.
- Let S = {c_k | |c_k| ≤ 1}, then c_k ∈ S ⇒ |c_k|² ≤ |c_k|
 Claim: S^c can only contain finitely many elements, all of which are finite.
- - If not, either $S^c := \{c_j\}_{j=1}^{\infty}$ is infinite with every $|c_j| > 1$, which forces

$$\sum_{c_k \in S^c} |c_k| = \sum_{j=1}^{\infty} |c_j| > \sum_{j=1}^{\infty} 1 = \infty.$$

- If any $c_j = \infty$, then $\sum_{k \in \mathbb{Z}} |c_k| \ge c_j = \infty$.
- So S^c is a finite set of finite integers, let $N = \max \{|c_j|^2 \mid c_j \in S^c\} < \infty$.

• Rewrite the sum

$$\sum_{k \in \mathbb{Z}} |c_k|^2 = \sum_{c_k \in S} |c_k|^2 + \sum_{c_k \in S^c} |c_k|^2$$

$$\leq \sum_{c_k \in S} |c_k| + \sum_{c_k \in S^c} |c_k|^2$$

$$\leq \sum_{k \in \mathbb{Z}} |c_k| + \sum_{c_k \in S^c} |c_k|^2 \quad \text{since the } |c_k| \text{ are all positive}$$

$$= \|\mathbf{c}\|_{\ell^1} + \sum_{c_k \in S^c} |c_k|^2$$

$$\leq \|\mathbf{c}\|_{\ell^1} + |S^c| \cdot N$$

$$\leq \infty.$$

Claim: $L^2([0,1]) \subseteq L^1([0,1])$.

- It suffices to show that $\int |f|^2 < \infty \implies \int |f| < \infty$.
- Define $S = \{x \in [0,1] \mid |f(x)| \le 1\}$, then $x \in S^c \implies |f(x)|^2 \ge |f(x)|$. Break up the integral:

$$\begin{split} \int_{\mathbb{R}} |f| &= \int_{S} |f| + \int_{S^{c}} |f| \\ &\leq \int_{S} |f| + \int_{S^{c}} |f|^{2} \\ &\leq \int_{S} |f| + \|f\|_{2} \\ &\leq \sup_{x \in S} \{|f(x)|\} \cdot \mu(S) + \|f\|_{2} \\ &= 1 \cdot \mu(S) + \|f\|_{2} \quad \text{by definition of } S \\ &\leq 1 \cdot \mu([0,1]) + \|f\|_{2} \quad \text{since } S \subseteq [0,1] \\ &= 1 + \|f\|_{2} \\ &< \infty. \end{split}$$

Note: this proof shows $L^2(X) \subseteq L^1(X)$ whenever $\mu(X) < \infty$.

9.2 Fall 2017 # 5

Let φ be a compactly supported smooth function that vanishes outside of an interval [-N, N] such that $\int_{\mathbb{R}} \varphi(x) dx = 1$.

For $f \in L^1(\mathbb{R})$, define

$$K_j(x) := j\varphi(jx), \qquad f * K_j(x) := \int_{\mathbb{D}} f(x-y)K_j(y) \, dy$$

and prove the following:

1. Each $f * K_i$ is smooth and compactly supported.

2.

$$\lim_{j \to \infty} \|f * K_j - f\|_1 = 0$$

Hint:

$$\lim_{y \to 0} \int_{\mathbb{R}} |f(x - y) - f(x)| dy = 0$$

9.3 Spring 2017 # 5

Let $f, g \in L^2(\mathbb{R})$. Prove that the formula

$$h(x) := \int_{-\infty}^{\infty} f(t)g(x-t) dt$$

defines a uniformly continuous function h on \mathbb{R} .

9.4 Spring 2015 # 6

Let $f \in L^1(\mathbb{R})$ and g be a bounded measurable function on \mathbb{R} .

- 1. Show that the convolution f * g is well-defined, bounded, and uniformly continuous on \mathbb{R} .
- 2. Prove that one further assumes that $g \in C^1(\mathbb{R})$ with bounded derivative, then $f * g \in C^1(\mathbb{R})$ and

$$\frac{d}{dx}(f*g) = f*\left(\frac{d}{dx}g\right)$$

9.5 Fall 2014 # 5

1. Let $f \in C_c^0(\mathbb{R}^n)$, and show

$$\lim_{t \to 0} \int_{\mathbb{R}^n} |f(x+t) - f(x)| \, dx = 0.$$

2. Extend the above result to $f \in L^1(\mathbb{R}^n)$ and show that

 $f \in L^1(\mathbb{R}^n), \quad g \in L^\infty(\mathbb{R}^n) \implies f * g \text{ is bounded and uniformly continuous.}$

10 Functional Analysis: General

10.1 Fall 2019 # 4.

Let $\{u_n\}_{n=1}^{\infty}$ be an orthonormal sequence in a Hilbert space \mathcal{H} .

a. Prove that for every $x \in \mathcal{H}$ one has

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||^2$$

b. Prove that for any sequence $\{a_n\}_{n=1}^{\infty} \in \ell^2(\mathbb{N})$ there exists an element $x \in \mathcal{H}$ such that

$$a_n = \langle x, u_n \rangle$$
 for all $n \in \mathbb{N}$

and

$$||x||^2 = \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2$$

10.2 Spring 2019 # 5

10.2.1 a

Show that $L^2([0,1]) \subseteq L^1([0,1])$ and argue that $L^2([0,1])$ in fact forms a dense subset of $L^1([0,1])$.

10.2.2 b

Let Λ be a continuous linear functional on $L^1([0,1])$.

Prove the Riesz Representation Theorem for $L^1([0,1])$ by following the steps below:

i. Establish the existence of a function $g \in L^2([0,1])$ which represents Λ in the sense that

$$\Lambda(f) = f(x)g(x)dx$$
 for all $f \in L^2([0,1])$.

Hint: You may use, without proof, the Riesz Representation Theorem for $L^2([0,1])$.

ii. Argue that the g obtained above must in fact belong to $L^{\infty}([0,1])$ and represent Λ in the sense that

$$\Lambda(f) = \int_0^1 f(x)\overline{g(x)}dx \quad \text{ for all } f \in L^1([0,1])$$

with

$$||g||_{L^{\infty}([0,1])} = ||\Lambda||_{L^{1}([0,1])}$$

10.3 Spring 2016 # 6

Without using the Riesz Representation Theorem, compute

$$\sup \left\{ \left| \int_0^1 f(x)e^x dx \right| \mid f \in L^2([0,1], m), \|f\|_2 \le 1 \right\}$$

10.4 Spring 2015 # 5

Let \mathcal{H} be a Hilbert space.

1. Let $x \in \mathcal{H}$ and $\{u_n\}_{n=1}^N$ be an orthonormal set. Prove that the best approximation to x in \mathcal{H} by an element in $\operatorname{span}_{\mathbb{C}}\{u_n\}$ is given by

$$\widehat{x} := \sum_{n=1}^{N} \langle x, u_n \rangle u_n.$$

2. Conclude that finite dimensional subspaces of \mathcal{H} are always closed.

10.5 Fall 2015 # 6

Let $f:[0,1] \longrightarrow \mathbb{R}$ be continuous. Show that

$$\sup \left\{ \|fg\|_1 \mid g \in L^1[0,1], \|g\|_1 \le 1 \right\} = \|f\|_{\infty}$$

10.6 Fall 2014 # 6

Let $1 \leq p, q \leq \infty$ be conjugate exponents, and show that

$$f \in L^p(\mathbb{R}^n) \implies ||f||_p = \sup_{\|g\|_q = 1} \left| \int f(x)g(x)dx \right|$$

11 Functional Analysis: Banach Spaces

11.1 Spring 2019 # 1

Let C([0,1]) denote the space of all continuous real-valued functions on [0,1].

- a. Prove that C([0,1]) is complete under the uniform norm $\|f\|_u := \sup_{x \in [0,1]} |f(x)|$.
- b. Prove that C([0,1]) is not complete under the L^1 -norm $||f||_1 = \int_0^1 |f(x)| dx$.

11.2 Spring 2017 # 5

Show that the space $C^1([a,b])$ is a Banach space when equipped with the norm

$$||f|| := \sup_{x \in [a,b]} |f(x)| + \sup_{x \in [a,b]} |f'(x)|.$$

11.3 Fall 2017 # 6

Let X be a complete metric space and define a norm

$$||f|| := \max\{|f(x)| : x \in X\}.$$

Show that $(C^0(\mathbb{R}), \|\cdot\|)$ (the space of continuous functions $f: X \longrightarrow \mathbb{R}$) is complete.