Targeted Maximum Likelihood Super Learning

Mark van der Laan

works.bepress.com/mark_van_der_laan Division of Biostatistics, University of California, Berkeley

Biopharmaceutical Section of the American Statistical Association Web-based Training Series August 24, 2009

Statistics are a tool of modern life

- Identifying associations, correlations and patterns
- Establishing causation based on randomized trials and observational studies.
- Making predictions
- Shaping strategies and future behavior
 - Of people and societies
 - Of machines and computing
 - Of complex systems

Bias is a hazard of statistics

- Statistical data samples can be biased
 - The sample selected does not represent the population
 - Example: There are five red heads in a town of 100 people. Our sample of 20 people happens to include all five.
- Statistical methods for learning from data can be biased
 - The statistical model selected is not the one that best fits the data...
 - ... for the question being asked!
- Statistical interpretations of findings can be biased.

Statistics are often cited to denote a certainty that *does not, in fact, exist*

- "There is increasing concern that in modern research, false findings may be the majority, or even the vast majority, of published research claims."
 - "Simulations show that for most study designs and settings it is more likely for a research claim to be false than true."
 - "For many current scientific fields, claimed research findings often may be simply accurate measures of the prevailing bias."

- J.P.A. Ioannidis, "Why Most Published Research Findings are False", *Chance*, Vol. 18, No. 4, 2005

Why Most Published Research Findings Are False

John P. A. Ioannidis

Corollary 2: The smaller the effect sizes in a scientific field, the less likely the research findings are to be true. Power is also related to the effect size. Thus research findings are more

Corollary 3: The greater the number and the lesser the selection of tested relationships in a scientific field, the less likely the research findings are to be true. As shown above, the post-study probability that a finding is true (PPV)

Corollary 4: The greater the flexibility in designs, definitions, outcomes, and analytical modes in a scientific field, the less likely the research findings are to be true.

Flexibility increases the potential for

Corollary 6: The hotter a scientific field (with more scientific teams involved), the less likely the research findings are to be true.

Claimed Research Findings May Often Be Simply Accurate Measures of the Prevailing Bias

As shown, the majority of modern biomedical research is operating in areas with very low pre- and poststudy probability for true findings.

False conclusions are expensive

- · In medicine
 - False positives lead to expensive additional tests and anxiety
 - False negatives lead to delayed treatment with escalated costs and illness
- In drug discovery
 - False positives lead to failed trials
 - The average cost of a phase III clinical trial is \$4m-\$20m, some cost more than \$100m
 - False negatives lead to failed trials
 - Missed contraindications, negative interactions and imprecise dosages
- In genomics, proteomics and chemoinformatics
 - False positives are abundant and lead to wasted time, effort and experimentation
 - False negatives lead to missed business opportunities
- In public policy
 - False positives and false negatives lead to action based on false premises and, frequently, public cynicism

Government mandates and programs

- FDA Critical Path Initiative
 - Better evaluation tools
 - Streamlining clinical trials
 - Harnessing bioinformatics
- FDA Amendment Act of 2007
 - Post-market safety trials and studies
 - Requires FDA to develop systems and analyses
 - Risk evaluation and mitigation
 - Safety labeling
- FDA Chief Scientist's Challenge Grants
 - Biomarkers
 - Personalized medicine
 - Clinical trials design and analysis
 - Predicting safety and efficacy

Solution

- Avoid reliance on human art and reliance on misspecified parametric models
- · Adapt the model to fit the data
- Target the fit to the parameter of interest

TMLE/SL

Targeted Maximum Likelihood coupled with Super Learner methodology

Outline

- Two-stage Methodology: <u>Targeted</u> Maximum Likelihood and Super Learning
- Causal effect on survival, handling right-censoring and confounding
 - Application to Phase IV RCT
- Variable Importance Analysis in Genomic Studies
 - Biomarker Discovery
 - Effect of SNPs
 - Yeast Regulatory Network Collaborative double robust T-MLE
- Collaborative double robust T-MLE
- Causal effect in Case Control Studies

Two-stage Methodology: TMLE/SL

1. Super Learning

- · Works on a library of model fits
- Builds data-adaptive composite model by assigning weights
- Weights are optimized based on lossfunction specific cross-validation to guarantee best overall fit

2. Targeted Maximum Likelihood Estimation

- Zooms in on one aspect of the model fit—the target
- Removes bias for the target.

TMLE/SL Toolbox

Targeted effects

- Effect of static or dynamic treatments (e.g. on survival time)
- · Direct and Indirect Effects
- Parameters of Marginal Structural Models
- Structural Nested Models

Types of data

- Point treatment
- Longitudinal/Repeated Measures
- Censoring/Missingness/Time-dependent confounding.
- · Case-Control
- · Randomized clinical trials and observational data

11

Super Learner

Super Learning in Semiparametric Models

- Allows one to combine many data adaptive MLEs into one improved MLE.
- Grounded by oracle results for loss-function based cross-validation (vdL&D, 2003). Loss function needs to be bounded.
- Performs asymptotically as well as best (oracle) weighted combination, or achieves parametric rate of convergence.

Super Learning in Prediction

method	study 1	study 2	study 3	study 4	overall
Least Squares	1.00	1.00	1.00	1.00	1.00
LARS	0.91	0.95	1.00	0.91	0.95
D/S/A	0.22	0.95	1.04	0.43	0.71
Ridge	0.96	0.99	1.02	0.98	1.00
Random Forest	0.39	0.72	1.18	0.71	0.91
MARS	0.02	0.82	0.17	0.61	0.38
Super Learner	0.02	0.67	0.16	0.22	0.19

Table 1: Simulation Example: Estimates of the relative mean squared prediction error (compared to least squares) based on the validation sample.

Illustration of Super Learning in Hazard Estimation

Super Learner can be extended to prediction with right censored data.

Example: Interested in predicting survival curves for cancer patients based on baseline characteristics and treatment decisions

Illustration of Super Learning in Hazard Estimation

Observed data: $(W,A,Y=min(T,C), \Delta)$ with

- Conditional hazard: $\lambda = \lambda(T|A,W)$
- Indicator of failure at t: $dN(t) = I(Y=t, \Delta=1)$
- Censoring survivor function: G(t) = P(C > t)

Loss functions for Super Learner:

- IPCW: $L(\lambda) = \Delta \{\bar{G}(T)\}^{-1} \left(\mathrm{I}(T>t_0) S_{\lambda}(t_0|A,W)\right)^2$
- LogLik: $L(\lambda) = \sum_t \left(\mathrm{I}(\tilde{T} \geq t) \log \lambda^{dN(t)} \log (1-\lambda)^{(1-dN(T))} \right)$
- L2: $L(\lambda) = \sum_{t} I(\tilde{T} \ge t) (dN(t) \lambda)^2$

Illustration of Super Learning in Hazard Estimation

Targeted Maximum Likelihood

Targeted Maximum Likelihood

- MLE/SL aims to do good job of estimating whole density
- Targeted MLE aims to do good job at parameter of interest
 - General decrease in bias for parameter of Interest
 - Fewer false positives
 - Honest p-values, inference, multiple testing

Philosophy of Targeted Estimator

Given initial P-estimator, find updated P* in the model which gives:

- Large bias reduction for parameter of interest (target feature)
 - E.g. by requiring that it solves the efficient influence curve equation ∑_{i=1}D*(P)(O_i)=0.
- Small increase of log-likelihood relative to the initial P estimator

Targeted log-likelihood loss -log p* can be used for selection.

(Iterative) Targeted MLE

- 1. Identify optimal strategy for "stretching" initial P
 - Small "stretch" -> maximum change in target
- 2. Given strategy, identify optimum amount of stretch by MI F
- 3. Apply optimal stretch to P using optimal stretching function -> 1st-step targeted maximum likelihood estimator
- 4. Repeat until the incremental "stretch" is zero
 - Some important cases: 1 step to convergence
- 5. Final probability distribution solves efficient influence curve equation
 - → (Iterative) T-MLE is double robust & locally efficient

(Iterative) Targeted MLE Estimating a Median

- Start with the initial P-estimator P
- Determine optimal "stretching function" and "amount of stretch", producing a new P-estimator.
- Continue repeating until further stretching is essentially zero

Targeted MLE Applied to Clinical Trial or Observational Data

Impact of Treatment on Disease

TMLE for Average Causal Effect

$$W \Longrightarrow A \Longrightarrow Y$$

- Observe predictors W, treatment A, missingness indicator Delta, and outcome Y: (W, A, Δ, ΔY)
- Target is additive causal effect: EY(1)-Y(0)
- Regress Y on treatment A and W (e.g. Super Learning), and add clever covariate

 $h(A, W) = \frac{1}{\Pi(A, W)} \left(\frac{A}{g(1 \mid W)} - \frac{1 - A}{g(0 \mid W)} \right)$

where

$$g(1\mid W) = P(A=1\mid W)$$
 Treatment Mechanism $\Pi(A,W) = P(\Delta=1\mid A,W)$ Missingness Mechanism

- Then average regression over W for fixed treatment a: E_nY_a
- Evaluate average effect: E_nY₁-E_nY₀

TMLE with Survival Outcome

 Suppose one observes baseline covariates, treatment, and one observes subject up till end of follow up or death:

$$(W, A, \Delta = I(T \le C), \tilde{T} = \min(T, C))$$

- One wishes to estimate causal effect of treatment A on survival T
- Targeted MLE uses covariate information to adjust for confounding, informative drop out and to gain efficiency

TMLE with Survival Outcome

• Target $\psi_1(t_0)=\Pr(T_1>t_0)$ and $\psi_0(t_0)=\Pr(T_0>t_0)$ — thereby target treatment effect, e.g.,

1) Difference: $Pr(T_1>t_0)$ - $Pr(T_0>t_0)$, 2) Log RH: $\log \frac{\log \psi_1(t_0)}{\log \psi_0(t_0)}$

 Obtain initial conditional hazard fit (e.g. super learner for discrete survival) and add two time-dependent covariates

$$h_{\delta}(t, A, W) = \frac{I(A = \delta)}{g(A \mid W)\bar{G}(t \mid A, W)} \frac{S(t_0 \mid A, W)}{S(t \mid A, W)} I(t \leq t_0)$$

 Iterate until convergence, then use updated conditional hazard from final step, and average corresponding conditional survival over W for fixed treatments 0 and 1

TMLE in RCT with Survival Outcome Difference at Fixed End Point

Independent Censoring

	% Bias	Power	95% Coverage	Relative Efficiency
KM	<1%	0.79	0.95	1.00
TMLE	<1%	0.91	0.95	1.44

→ TMLE: gain in power over KM

Informative Censoring

	% Bias	Power	95% Coverage	Relative Efficiency
KM	13%	0.88	0.92	1.00
TMLE	<1%	0.92	0.95	1.50

→ TMLE: unbiased

TMLE in Actual Phase IV RCT

- Study: RCT aims to evaluate safety based on mortality due to drug-to-drug interaction among patients with severe disease
- Data obtained with random sampling from original real RCT FDA dataset
- Goal: Estimate risk difference (RD) in survival at 28 days (0/1 outcome) between treated and placebo groups

TMLE in Phase IV RCT

	Unadjusted	TMLE
Estimate	0.034	0.043
p-value (RE)	0.085 (1.000)	0.009 (1.202)

- TMLE adjusts for small amount of empirical confounding (imbalance in AGE covariate)
- TMLE exploits the covariate information to gain in efficiency and thus power over unadjusted
- TMLE Results significant at 0.05

TMLE in RCT: Summary

- TMLE approach handles censoring and improves efficiency over standard approaches
 - Measure strong predictors of outcome
- Implications
 - Unbiased estimates with informative censoring
 - Improved power for clinical trials
 - Smaller sample sizes needed
 - Possible to employ earlier stopping rules
 - Less need for homogeneity in sample
 - · More representative sampling
 - Expanded opportunities for subgroup analyses

Targeted MLE Analysis of Genomic Data

Biomarker discovery, Impact of mutations on disease, or response to treatment

The Need for Experimentation

- Estimation of Variable Importance/Causal Effect requires assumption not needed for prediction
- "Experimental Treatment Assignment" (ETA)
 - Must be some variation in treatment variable A within every stratum of confounders W
 - W must not perfectly predict/determine A
 - g(a|W)>0 for all (a,W)

Biomarker Discovery: HIV Resistance Mutations

- Goal: Rank a set of genetic mutations based on their importance for determining an outcome
 - Mutations (A) in the HIV protease enzyme
 - · Measured by sequencing
 - Outcome (Y) = change in viral load 12 weeks after starting new regimen containing saquinavir
- How important is each mutation for viral resistance to this specific protease inhibitor drug?
 - Inform genotypic scoring systems

Stanford Drug Resistance Database

- All Treatment Change Episodes (TCEs) in the Stanford Drug Resistance Database
 - Patients drawn from 16 clinics in Northern CA

• 333 patients on saquinavir regimen

Parameter of Interest

- Need to control for a range of other covariates W
 - Include: past treatment history, baseline clinical characteristics, non-protease mutations, other drugs in regimen
- Parameter of Interest <u>Variable Importance</u>
 ψ = E[E(Y|A_i=1,W)-E(Y|A_i=0,W)]
 - For each protease mutation (indexed by j)

Parameter of Interest

- Assuming no <u>unmeasured</u> confounders (W sufficient to control for confounding)
 - → Causal Effect is same as W-adjusted Variable Importance

$$E(Y_1)-E(Y_0)=E[E(Y|A=1,W)-E(Y|A=0,W)]=\psi$$

Same advantages to T-MLE

Targeted Maximum Likelihood Estimation of the Adjusted Effect of HIV Mutation on Resistance to Lopinavir

mutation	score	estimate	95 % CI
p50V	20	1.703	(0.760, 2645)*
p82AFST	20	0.389	(0.084, 0.695)*
p54VA	11	0.505	(0.241, 0.770)*
p54LMST	11	0.369	(0.002, 0.735)*
p84AV	11	0.099	(-0.130, 0.329)
p46ILV	11	0.046	(-0.222, 0.315)
p48VM	10	0.306	(-0.162, 0.774)
p47V	10	0.805	(0.282, 1.328)*
p32I	10	0.544	(0.312, 0.777)*
p90M	10	0.209	(-0.058, 0.476)
p82MIC	10	1.610	(1.330, 1.890)*
p84C	10	0.602	(0.471, 0.734)*
p33F	5	0.300	(-0.070, 0.669)
p53LY	3	0.214	(-0.266, 0.695)
p73CSTA	2	0.635	(0.278, 0.992)*
p24IF	2	0.229	(-0.215, 0.674)
p10FIRVY	2	-0.266	(-0.522, -0.011)*
p71TVI	2	0.019	(-0.243, 0.281)
p30N	0	-0.440	(-0.853, -0.028)*
p88S	0	-0.474	(-0.840, -0.108)*
p88DTG	0	-0.426	(-0.842, -0.010)*
p36ILVTA	0	0.272	(-0.001, 0.544)
p20IMRTVL	0	0.178	(-0.111, 0.467)
p23I	0	0.822	(-0.050, 1.694)
p16E	0	0.239	(-0.156, 0.633)
p63P	0	-0.131	(-0.392, 0.131)

Stanford mutation score, http://hivdb.stanford.edu, accessed September, 1997

Evaluation of Biomarker Methods Sensitivity to Correlation

- Biological data is highly correlated
- Exploration of false positives is costly
- Compare under increasing correlation
 - Univariate Regression
 - LASSO Regression
 - randomForest (Breiman 1996, 1999)
 - tVIM using LASSO for estimation of E[YIA,W] and E[AIW]

- Performance Assessment distinguishing "true" variables from decoys
 - Minimum length of list necessary to find all "true" variables

41

Targeted Variable Importance for continuous A

Parameter of Interest: $\mu(a) = E[E(Y \mid A = a, W) - E(Y \mid A = 0, W)]$

define
$$m(A = a, W \mid \beta) = E(Y \mid A = a, W) - E(Y \mid A = 0, W)$$

 $m(A = 0, W \mid \beta) = 0 \quad \forall \beta, W$

- Update is obtained with least squares regression on a "clever covariate,"
 h*(A,W), derived from the efficient influence curve
- For linear $m(A, W|\beta)$, tMLE converges in one step

$$m(A, W \mid B) = A\beta^{T}W$$

 $\mu(a) = a\beta E[W]$ "Importance Curve"
 $h^{*}(A, W) = W(A - E[A \mid W])$ Assuming $\sigma(A, W) = \sigma(W)$

• Simplest model used for simulations $m(A,W|\beta)=A\beta$

Simulation Set-up

- Variables
 - p=100, n=300
 - Block Diagonal correlation structure: 10 independent sets of 10
 - Multivariate normal distribution
 - Constant ρ, variance=1,
 - $\rho = \{0,0.1,0.2,0.3,...,0.9\}$
- Outcome
 - · Main effect linear model
 - 10 "true" biomarkers, one variable from each set of 10
 - · Equal coefficients
 - Noise term with mean=0 sigma=10
 - "realistic noise"

$$W^*_{nxp} \sim MVN(\mu_{1xp}, \Sigma_{pxp})$$

$$Y=\beta X_{true} + \zeta$$

$$\mathbf{X}_{true} = \{W_i^* : i = 5, 15, \dots, 85, 95\}$$

$$\zeta \sim N(0, 10)$$

Evaluation of Biomarker Methods: Simulation

 Variable importance coupled with LARS estimates true causal effect and outperforms both linear regression and randomForest

Application of Targeted MLE to Assess Effects of Single Nucleotide Polymorphisms

Wound Healing Genes in Mice

- Goal: map genes controlling for wound healing trait in mice.
- 119 microsatellite markers on 19 chromosomes were genotyped for 633 F2 mice, covering about 1100 cM (70%) of the entire mouse genome with an average marker interval about 15cM.
- 400 positions are tested
 - Reference: MASINDE, G. L., X. LI, W. GU, H. DAVIDSON, S. MOHAN and D. J. BAYLINK, 2001. Identification of wound healing/regeneration quantitative trait loci (QTL) at multiple time points that explain seventy percent of variance in (MRL/MpJ and SJL/J) mice F2 population. *Genome Research* 11: 2027-2033.

- Compare TMLE to Composite interval mapping (CIM)
 - A traditional MLE based approach, obtained from QTL mapping software QTL Cartographer.
- Dashed line is 0.05 significant line.

Significant Genes at 0.05 in Mouse Data

CIM				c-tMI	E	
QTL ID	Chr	cM	Prop(%)	Chr	cM	Prop(%)
1	1	43.91	6.72	1	47.40	5.47
2	2	56.81	0.98	2	58.30	1.02
3	3	35.31	3.54	-	-	-
4	4	14.01	5.02	4	25.40	5.90
5	4	55.01	4.28	4	59.40	4.63
7	6	28.21	4.90	6	35.40	4.79
8	7	30.91	5.87	7	33.40	5.29
9	9	41.31	10.39	9	38.30	11.82
10	-	-	-	9	48.30	13.11
11	12	2.01	1.58	12	8.30	1.35
13	13	45.91	2.93	13	42.10	3.70
14	13	58.61	2.92	-	-	-
Σ			49.14			58.06

--- Chr means chromosome; cM means position of the gene on chromosome, in centi-morgans; Prop is the percentage of variance explained by the gene. --- Genes in red are supported by various previous studies.

Simulation

- Objective: Composite Interval Mapping Method (standard), and CTMLE
- Data:
 - 1000 Backcross mice
 - 30 markers on one chromosome, spaced at 2 centimorgans. Due to this small space, nearby markers are highly correlated.
 - 3 main effects at marker position 10, 30 and 50 centimorgans.
 - Outcome y is simulated with the linear model: $y = 5 + 1.5 x_{10} + 1.2 x_{30} + 1.8 x_{50} + N(0, 8)$ and then truncated at 6.5, with y = 15 + rnorm(0, 8) This creates a bi-mode distribution of the outcome y.

Application of Repeated Measures TMLE to Yeast Regulatory Network Cell Cycle Data

TVIM for Repeated Measures

Generalization to Multivariate Outcome

Parameter of Interest: $\mu(a,t) = E[E(Y(t) | A = a,W) - E(Y(t) | A = 0,W)]$

define
$$m_t(a, W \mid \beta) = E(Y(t) \mid A = a, W) - E(Y(t) \mid A = 0, W)$$

 $m_t(A = 0, t, W \mid \beta) = 0 \quad \forall \beta, W$

Update achieved using Gaussian generalized estimating equation with "clever covariate"

$$h^*(A,W) = \left(\frac{d}{d\beta}m(A,W|\beta) - E\left[\Sigma(A,W)^{-1}|W\right]^{-1}E\left[\Sigma(A,W)^{-1}\frac{d}{d\beta_0}m(A,W|\beta)|W\right]\right)$$

 Applied using geeglm() implementation of generalized estimating equations (R library geepack)

53

Yeast Regulatory Network: Cell Cycle

· Importance of transcription factor over cell cycle

Gene Expression Profiles

- Y =
- · Cho et al 1998 data
 - t=0,...,160 min (2 cycles)
 - $m(A,W|\beta)=At_0\beta_0 + At_{10}\beta_{10} + \ldots + At_{160}\beta_{160}$
- · Examples:
 - MBP1 (G1 phase)
 - SWI5 (M and M to G1)
 - FKH2, MCM1 (G2, G2 to M, M, M to G1 phases)

http://nobelprize.org/nobel_prizes/medicine/laureates/2001/press.html

54

Collaborative Targeted MLE in Observational Studies:

Causal Effect of Treatment

Why Collaborative TMLE?

- TMLE requires estimation of a treatment mechanism (i.e. p(A|W), E[A|W])
 - Getting this right results in targeted bias reduction
 - Often many covariates, requires using non-targeted machine learning algorithm based on irrelevant likelihood of treatment mechanism
- Collaborative TMLE eliminates reliance on external estimate of treatment mechanism
- Results in a fully targeted estimating procedure

Collaborative Robustness of T-MLE

- Suppose the initial outcome regression of Y on A,W, minus true regression only depends on a subset S of all confounders W
- Suppose the treatment mechanism in clever covariate only adjusts correctly for a set of confounders that includes S
- Then, the Targeted MLE is consistent!
- Thus the treatment mechanism in clever covariate only needs to adjust for covariates whose effect has not been captured by the initial regression yet.

Collaborative TMLE

Building the Propensity Score Based on Outcome Data

- · Initial regression based on super learning
- Construct rich set of one dimensional dimension reductions of W. that will be used as main terms below
- Select main terms in propensity score in clever covariate using forward selection based on fit (e.g, loglik) of
 - TMLE using this clever covariate
- If no main term increases emp. fit of TMLE, then carry out TMLE update with the current clever covariate
- Proceed to generate a sequence of T-MLE's using increasingly nonparametric treatment mechanisms in the subsequent clever covariates
- Select the wished T-MLE with cross-validation

Causal Effect on Survival

Simulation Study Investigating C-TMLE

- Generated 500 data sets of 500 observations each per scenario.
- Varied How Well Hazard Was Specified (Well/Badly)
- Varied Level of ETA Violation (Low/Med/High)
- Observed performance of: IPCW, G-comp, Double Robust, TMLE, C-TMLE and TMLE excluding the variable that causes the eta violation in the treatment mechanism.

MSE and Relative Efficiency of Estimating $P(T_{A=1}>t_0)$

	Low	Low ETA		Medum ETA		h ETA
Method	Well Specified λ	Badly Specified λ	Well Specified λ	Badly Specified λ	Well Specified λ	Badly Specified λ
IPCW	0.00086	0.00086	0.00117	0.00117	0.00698	0.00698
	(1.1)	(1.1)	(1.2)	(1.2)	(1.9)	(1.9)
G-comp	0.00071	0.00086	0.00073	0.00161	0.00071	0.00231
	(0.9)	(1.1)	(0.7)	(1.6)	(0.2)	(0.6)
Double	0.00085	0.00088	0.00106	0.00116	0.00455	0.00819
Robust	(1.1)	(1.1)	(1.1)	(1.2)	(1.3)	(2.3)
TMLE	0.00085	0.00088	0.00105	0.00111	0.00347	0.00375
	(1.1)	(1.1)	(1.1)	(1.1)	(1.0)	(1.0)
TMLE w/o ETA	0.00084 (1.0)	0.00088 (1.1)	0.00083	0.00087 (1.2)	0.00079 (0.2)	0.00085 (0.2)
c-TMLE	0.00085 (1.1)	0.00104 (1.3)	0.00085 (0.9)	0.00122 (1.2)	0.00080 (0.2)	0.00101 (0.3)

Percent of Time Influence Curve Based 95% CI Includes Truth

	Low ETA		Medum ETA		High ETA	
Method	Well Specified λ	Badly Specified λ	Well Specified λ	Badly Specified λ	Well Specified λ	Badly Specified λ
IPCW	98.4%	98.4%	97.2%	97.2%	89.8%	89.8%
Double Robust	94.2%	95.4%	95.0%	96.4%	94.8%	95.8%
TMLE	94.0%	95.2%	95.4%	95.6%	84.8%	87.0%
TMLE w/o ETA	94.2%	94.8%	94.4%	95.6%	94.6%	95.0%
c-TMLE	94.6%	93.6%	96.0%	95.0%	94.8%	93.2%

Properties of c-TMLE Algorithm

	Low ETA		Medum ETA		High ETA	
Method	Well Specified λ	Badly Specified λ	Well Specified λ	Badly Specified λ	Well Specified λ	Badly Specified λ
Mean Moves	2.7	9.1	2.1	7.3	2.9	7.1
% No Moves	68.8%	0.2%	74.2%	6.4%	62.6%	1.6%
% ETA Variable	27.8%	60.4%	1.2%	6.0%	0.0%	0.4%

Protease Inhibitors (PI) Effect on Viral Changes After Viral Failure

- 608 Subjects That Experience Viral Failure
- 478 Treated With Protease Inhibitor
- Baseline covariates adjusted for included: age, race, sexual orientation, IV drug use, baseline CD4, Viral Load, and prior therapeutic history.
- · Two Outcomes of Interest Explored
 - T1 = Time until CD4 below 75 percent of baseline
 - T2 = Time until Viral Load below 500.

Targeted MLE of Effects in Case Control Studies

Case-Control Weighted Targeted MLE

- Case-control weighting of the targeted MLE designed for prospective sampling results in wished targeted MLE for case-control sampling.
- This technique relies on knowledge of the true prevalence probability P(Y=1)=q₀ to eliminate the bias due to the case-control sampling design.
- The CC-W-TMLE is double robust and locally efficient. It produces efficient estimators when its prospective sample counterpart is efficient.

Case-Control Weighted Targeted MLE

Table: Odds Ratio – MSEs and REs						
IPTW MSE M 3.39						
IPTW RE	C	1.69				
	C/C C/M	14.58				
CCW T-MLE RE	C/M	14.57				
	M/C	16.68				

Table results for a sample of 500 cases and 1000 controls taken from a population of 120,000 where q0 = 0.035

Simulation Results

- We showed striking improvements in efficiency and bias of case-control weighted method versus the IPTW estimator of causal odds ratio (Mansson 2007, Robins 1999), which does not utilize q₀.
- Our complete simulation results bolster our theoretical arguments that gains in efficiency and reductions in bias can be obtained by having known q₀ and using a targeted estimator.

Closing Remarks

- True knowledge is embodied by semi or nonparametric models
- Semi-parametric models require fully automated state of the art machine learning (super learning)
- Targeted bias removal is essential and is achieved by collaborative targeted MLE
- Statistical inference is now sensible
- The machine learning algorithms are (super) efficient for the target parameters.

Acknowledgements: Special Thanks to Cathy Tuglus

- UC Berkeley
 - Susan Gruber
 - Ori Stittelman
 - Hui Wang
 - Kelly Moore
 - Maya Petersen
 - Dan Rubin
 - Cathy Tuglus
 - Sherri Rose
 - Michael Rosenblum
 - Eric Polley

- Stanford: Dr. Robert Shafer
- Kaiser: Dr. Jeffrey Fessels
- Harvard: Dr. David Bangsberg
- UCSF: Dr. Steve Deeks
- FDA: Thamban Vallappil, Greg Soon

-P.I. Ira Tager (Epi).

References

- Oliver Bembom, Maya L. Petersen, Soo-Yon Rhee, W. Jeffrey Fessel, Sandra E. Sinisi, Robert W. Shafer, and Mark J. van der Laan, "Biomarker Discovery Using Targeted Maximum Likelihood Estimation: Application to the Treatment of Antiretroviral Resistant HIV Infection" (August 2007). *U.C. Berkeley Division of Biostatistics Working Paper Series.* Working Paper 221.
- Mark J. van der Laan and Susan Gruber, "Collaborative Double Robust Targeted Penalized Maximum Likelihood Estimation" (April 2009). U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 246, http://www.bepress.com/ucbbiostat/paper246
- Mark J. van der Laan, Eric C. Polley, and Alan E. Hubbard, "Super Learner" (July 2007). *U.C. Berkeley Division of Biostatistics Working Paper Series.* Working Paper 222.
 - http://www.bepress.com/ucbbiostat/paper222
- Mark J. van der Laan and Daniel Rubin, "Targeted Maximum Likelihood Learning" (October 2006). *U.C. Berkeley Division of Biostatistics Working Paper Series*. Working Paper 213. http://www.bepress.com/ucbbiostat/paper213

 Oliver Bembom, Mark van der Laan (2008), A practical illustration of the importance of realistic individualized treatment rules in causal inference, Electronic Journal of Statistics.
- Mark J. van der Laan, "Statistical Inference for Variable Importance" (August 2005). U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 188. http://www.bepress.com/ucbbiostat/paper188