Breakout room	Activity
	P(Q1 = Love it)
1	$P(Q2 = R \mid Q1 = \text{Love it})$
	$P(Q2 = R \cap Q1 = \text{Love it})$
	P(Q1 = Love it)
2	$P(Q2 = \text{Excel} \mid Q1 = \text{Love it})$
	$P(Q2 = \text{Excel} \cap Q1 = \text{Love it})$
3	P(Q2 = R)
	P(Q1 = Love it Q2 = R)
	$P(Q1 = \text{Love it } \cap Q2 = R)$
	P(Q2 = Excel)
4	P(Q1 = Love it Q2 = Excel)
	$P(Q1 = \text{Love it} \cap Q2 = \text{Excel})$
5	$P(Q1 = \text{Crying} \cup \text{Meh})$
(a little more	$P(Q2 = R \cap Q1 = \text{Crying} \cup \text{Meh})$
advanced)	$P(Q2 = R \mid Q1 = \text{Crying} \cup \text{Meh})$

$$P(Q2 = R \cap Q1 = \text{Love it}) = P(Q1 = \text{Love it} \cap Q2 = R)$$

$$P(Q2 = R) + P(Q2 = Excel) = 1$$

$$P(Q1 = \text{Love it}) + P(Q1 = \text{Crying} \cup \text{Meh}) = 1$$

$$P(Q2 = \text{Excel} \mid Q1 = \text{Love it}) + P(Q2 = \text{R} \mid Q1 = \text{Love it}) = 1$$

$$P(Q2 = \operatorname{Excel} \cap Q1 = \operatorname{Love} \, \operatorname{it}) + P(Q2 = \operatorname{R} \cap Q1 = \operatorname{Love} \, \operatorname{it}) = P(Q1 = \operatorname{Love} \, \operatorname{it})$$