Consider the ridge regression problem (3.41). Show that this problem is equivalent to the problem

$$\hat{eta}^c = rg\min_{eta^c} \left\{ \sum_{i=1}^N [y_i - eta^c_0 - \sum_{j=1}^p (x_{ij} - ar{x}_j) eta^c_j]^2 + \lambda \sum_{j=1}^p (eta^c_j)^2
ight\}.$$

Given the correspondence between β^c and the original β in (3.41). Characterize the solution to this modified criterion. Show that a similar result holds for the lasso.

We center each x_{ij} by replacing x_{ij} with $x_{ij} - \bar{x}_j$, then (3.41) becomes

$$\hat{\beta}^{\mathrm{ridge}} = \argmin_{\beta} \left\{ \sum_{i=1}^N [y_i - \beta_0 - \sum_{j=1}^p \bar{x}_j \beta_j - \sum_{j=1}^p (x_{ij} - \bar{x}_j) \beta_j]^2 + \lambda \sum_{j=1}^p \beta_j^2 \right\}.$$

Looking at the two problems, we can see β^c can be transformed from original β as

$$eta_0^c = eta_0 + \sum_{j=1}^p \bar{x}_j eta_j$$
 $eta_j^c = eta_j ext{ for } j = 1, \dots, p.$

It's easy to see that exact same centering technique applies to the lasso.

To characterize the solution, we first take derivative w.r.t β_0^c and set it equal to 0, which yields

$$\sum_{i=1}^N \left(y_i-eta_0^c-\sum_{j=1}^p (x_{ij}-ar{x}_j)eta_j
ight)=0,$$

which further implies that $eta_0^c = ar{y}$. Next we set

$$egin{aligned} ilde{y}_i &= y_i - eta_0^c, \ ilde{x}_{ij} &= x_{ij} - ar{x}_j, \end{aligned}$$

the problem, in matrix form, becomes

$$\min_{eta^c} (ilde{\mathbf{y}} - ilde{\mathbf{X}}eta^c)^T (ilde{\mathbf{y}} - ilde{\mathbf{X}}eta^c) + \lambdaeta_c^Teta_c.$$

It's easy to see the solution is

$$\hat{eta}_c = (\mathbf{\tilde{X}}^T \mathbf{\tilde{X}} + \lambda \mathbf{I})^{-1} \mathbf{\tilde{X}}^T \mathbf{y}.$$

3.6

Show that the ridge regression estimate is the mean (and mode) of the posterior distribution, under a Gaussian prior $\beta \sim N(0, \tau \mathbf{I})$, and Gaussian sampling model $\mathbf{y} \sim N(\mathbf{X}\beta, \sigma^2 \mathbf{I})$. Find the relationship between the regularization parameter λ in the ridge formula, and the variances τ and σ^2 .

By Bayes' theorem we have

$$\begin{split} P(\beta|\mathbf{y}) &= \frac{P(\mathbf{y}|\beta)P(\beta)}{P(\mathbf{y})} \\ &= \frac{N(\mathbf{X}\beta, \sigma^2\mathbf{I})N(0, \tau\mathbf{I})}{P(\mathbf{y})}. \end{split}$$

Taking logarithm on both sides we get

$$\ln(P(eta|\mathbf{y})) = -rac{1}{2}igg(rac{(\mathbf{y}-\mathbf{X}eta)^T(\mathbf{y}-\mathbf{X}eta)}{\sigma^2} + rac{eta^Teta}{ au}igg) + C,$$

where C is a constant independent of β . Therefore, if we let $\lambda = \frac{\sigma^2}{\tau}$, then maximizing over β for $P(\beta|\mathbf{y})$ is equivalent to

$$\min_{eta} (\mathbf{y} - \mathbf{X}eta)^T (\mathbf{y} - \mathbf{X}eta) + \lambdaeta^Teta,$$

which is essentially solving a ridge regression.

3.7

Assume $y_i \sim N(\beta_0 + x_i^T \beta, \sigma^2)$, $i=1,2,\ldots,N$, and the parameters β_j are each distributed as $N(0,\tau^2)$, independently of one another. Assuming σ^2 and τ^2 are known, show that the (minus) log-posterior density of β is proportional to $\sum_{i=1}^N (y_i - \beta_0 - \sum_j x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^p \beta_j^2$ where $\lambda = \sigma^2/\tau^2$.

By Bayes' theorem we have

$$P(\beta|\mathbf{y}) = \frac{P(\mathbf{y}|\beta)P(\beta)}{P(\mathbf{y})}.$$
 (1)

By assumptions here we have

$$\begin{split} P(\mathbf{y}|\beta) &= \frac{1}{(2\pi)^{N/2}\sigma^N} \exp{\left(-\frac{1}{2\sigma^2} \sum_{i=1}^N (y_i - \beta_0 - \sum_j x_{ij}\beta_j)^2\right)}, \\ P(\beta) &= \frac{1}{(2\pi)^{p/2}\sigma^p} \exp{\left(-\frac{1}{\tau^2} \sum_{j=1}^p \beta_j^2\right)}. \end{split}$$

Therefore, with $\lambda = \sigma^2/\tau^2$, from (1) we have

$$-\ln(P(eta|\mathbf{y})) = rac{1}{2\sigma^2}\Biggl(\sum_{i=1}^N (y_i - eta_0 - \sum_j x_{ij}eta_j)^2 + \lambda \sum_{i=1}^p eta_j^2\Biggr) + C,$$

where C is a constant independent of β .

The claim is true if and only if C=0, which is not the case here.