I B. Tech II Semester Supplementary Examinations, Nov/Dec - 2017 MATHEMATICS-III

(Com. to CE, CSE, IT, AE, AME, EIE, EEE, ME, ECE, Min. E, E Com. E, Agri. E, Chem. E, PE)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer **ALL** the question in **Part-A**
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

- 1. a) Define Rank and write two properties of rank. (2M)
 - b) Find the Eigen values of A^{-1} if $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ (2M)
 - c) Write the matrix corresponding to the Quadratic form. (2M) $x^2 + y^2 + z^2 + 2xy + 2yz + 2xz$
 - d) Evaluate $\int_0^1 \int_0^y x dx dy$ (2M)
 - e) Find $\beta(1,1)$ (2M)
 - f) Write physical interpretation of curl of vector. (2M)
 - g) State Stoke's theorem. (2M)

PART-B

- 2. a) Solve the system of equations x + 10y + z = 6,10x + y = 6, x + y + 10z = 6 (7M) by Gauss-Seidel method.
 - b) Find the Rank of the matrix $A = \begin{bmatrix} 3 & -2 & 0 & -1 \\ 0 & 2 & 2 & 1 \\ 1 & -2 & -3 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}$ by reduce into Normal form. (7M)
- 3. a) Reduce the quadratic form $x^2 + 3y^2 + 3z^2 2yz$ into canonical form and find its rank, index and signature. (7M)
 - b) Diagnolize the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ (7M)
- 4. a) Trace the curve $y = \frac{x^2 + 1}{x^2 1}$ (7M)
 - b) Using double integration, find the volume of the sphere $x^2 + y^2 + z^2 = a^2$. (7M)

WWW.MANARESULTS.CO.IN

||||"||"||

Code No: R161203

R16

SET - 1

- 5. a) Evaluate $\int_{0}^{1} (x \log x)^{4} dx$ using beta –gamma function. (7M)
 - b) Evaluate $\int_{0}^{1} x^3 \sqrt{1-x} dx$ (7M)
- 6. a) Find the directional derivative of $\frac{1}{r}$ in the direction of $r = x\overline{i} + y\overline{j} + z\overline{k}$ at .(1,1,2) (7M)
 - b) Show that $\overline{f} = r^n (\overline{a} \times \overline{r})$ is solenoidal where $\overline{a} = a_1 \overline{\iota} + a_2 \overline{\jmath} + a_3 \overline{k}$ and $\overline{r} = x \overline{\iota} + y \overline{\jmath} + z \overline{k}$ (7M)
- 7. a) Evaluate $\iint_{S} \overline{F} \cdot \overline{n} \, ds$ if $\overline{F} = 2xy \, \overline{i} + y \, z^2 \, \overline{j} + xz \, \overline{k}$ over the parallelepiped x = 0, y = 0, (7M) x = 2, y = 1, z = 3.
 - b) Using Divergence theorem, evaluate $\iint_{S} \overline{F} \cdot \overline{n} ds$ where s is the surface of the sphere (7M) $x^{2} + y^{2} + z^{2} = b^{2} \text{ in the first octant where } \overline{F} = y\overline{i} + z\overline{j} + x\overline{k}.$

I B. Tech. II Semester Supplementary Examinations, Nov/Dec - 2018 MATHEMATICS-III

(Com. to CE,CSE,IT,AE,AME,EIE,EEE,ME,ECE,Metal E,Min E,E Com E,Agri E,Chem E,PCE,PE)
Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer ALL the question in Part-A
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

- 1. a) Define Echelon form. (2M)
 - b) Find the Eigen values of A^{-1} if $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ (2M)
 - c) Write the matrix corresponding to the Quadratic form. (2M) $x^2 + y^2 + z^2 + 4xy 2yz + 6xz$
 - d) Evaluate $\int_0^1 \int_0^x y dy dx$ (2M)
 - e) Find $\beta(2,2)$ (2M)
 - f) Write the two properties of gradient. (2M)
 - g) State Gauss Divergence theorem. (2M)

PART -B

- 2. a) Solve the system of equations 2x + y + 2z + w = 6, 6x 6y + 6z + 12w = 36, 4x + 3y + 3z 3w = -1, 2x + 2y z + w = 10 by Gauss Elimination method. (7M)
 - Find the Rank of the matrix $A = \begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{bmatrix}$ by reduce into Normal form. (7M)
- 3. a) Reduce the quadratic form $10x^2 + 2y^2 + 5z^2 4xy 10xz + 6yz$ into canonical form and find its rank, index and signature. (7M)
 - b) Diagnolize the matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ (7M)
- 4. a) Trace the curve $r^2 = a^2 \sin 2\theta$. (7M)
 - b) Find by double Integration, the volume of solid bounded by z = 0, $x^2 + y^2 = 1$, and (7M) x + y + z = 3.

WWW.MANARESULTS.CO.IN

Code No: R161203

R16

SET - 1

- 5. a) Evaluate $\int_{0}^{\infty} xe^{-ax} \sin bx dx$ (7M)
 - b) Evaluate $\int_{0}^{1} x^5 (1-x)^3 dx$ (7M)
- 6. a) Find the directional derivative of the function $\phi = xy^2 + yz^3$ at the point (2,-1,1) in the direction of the normal to the surface $x \log z y^2 + 4 = 0$ at (-1,2,1)
 - b) Show that $\overline{f} = \overline{a} \times \overline{r}$ is solenoidal where $\overline{a} = a_1 \overline{\iota} + a_2 \overline{\jmath} + a_3 \overline{k}$ and $\overline{r} = x \overline{\iota} + y \overline{\jmath} + z \overline{k}$ (7M)
- 7. a) Evaluate $\int_{s} \phi \, \overline{n} \, ds$ where s is the surface $x^2 + y^2 = 16$ included in the first octant between z = 0 z = 5 where $\varphi = \frac{3}{8} xyz$.
 - b) Evaluate $\iint_c (x^2 + y^2) dx + 3xy^2 dy$ where c is the circle $x^2 + y^2 = 4$ in xy plane using (7M) Green's theorem.

I B. Tech II Semester Regular/Supplementary Examinations, April/May - 2018 MATHEMATICS-III

(Com. to CE,CSE,IT,AE,AME,EIE,EEE,ME,ECE,Metal E,Min E,E Com E,Agri E,Chem E,PCE,PE)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer ALL the question in Part-A
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

- 1. a) Write the working procedure to reduce the given matrix into Echelon form. (2M)
 - b) Find the Eigen value of the matrix $A = \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix}$. (2M)
 - c) Find the point of the curve $r = a (1 + \cos \theta)$ where tangent coincide with the radius (2M) vector.
 - d) Evaluate $\int_{1}^{2} \int_{3}^{4} (xy + e^{y}) dxdy$ (2M)
 - e) Show that $\Gamma(n+1) = n\Gamma(n)$ for n > 0 (2M)
 - f) Find grad ϕ where $\phi = x^3 + y^3 + 3xyz$ at (1,1,-2) (2M)
 - g) Find the work done in moving particle in the force field $\overline{F} = 3x^2 \overline{i} + \overline{j} + z\overline{k}$ along the (2M) straight line (0, 0, 0) to (2, 1, 3).

PART-B

- 2. a) Reduce the matrix $A = \begin{bmatrix} 3 & -2 & 0 & -1 \\ 0 & 2 & 2 & 1 \\ 1 & -2 & -3 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}$ in to normal form hence find the rank. (7M)
 - b) If consistent, solve the system of equations. (7M) x + y + z + t = 4 x z + 2t = 2 y + z 3t = -1 x + 2y z + t = 3.
- 3. a) Determine the diagonal matrix orthogonally similar to the matrix. (7M)
 - $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$
 - b) Find the Nature , index and signature of the quadratic form (7M) $10x^2 + 2y^2 + 5z^2 4xy 10xz + 6yz$

- 4. a) By change of order of integration evaluate $\int_{0}^{a} \int_{x}^{a} (x^{2} + y^{2}) dy dx$ (7M)
 - b) Evaluate $\int_{0}^{\pi/2} \int_{0}^{a \sin \theta} \int_{0}^{(a^{2}-r^{2})/a} r \, dr \, d\theta \, dz$ (7M)
- 5. a) Evaluate $\int_{0}^{\infty} 3^{-4x^2} dx$ (7M)
 - b) Show that $\int_{0}^{\infty} \sin x^{2} dx = \int_{0}^{\infty} \cos x^{2} dx = \frac{1}{2} \sqrt{\frac{\pi}{2}}$ (7M)
- 6. a) Show that $\overline{f} = r^n \left(\overline{a} \times \overline{r} \right)$ is solenoidal where $\overline{a} = a_1 \overline{\iota} + a_2 \overline{\jmath} + a_3 \overline{k}$ and $\overline{r} = x \overline{\iota} + y \overline{\jmath} + z \overline{k}$ (7M)
 - b) Prove that $\nabla \left(r \nabla \left(\frac{1}{r^3} \right) \right) = \frac{3}{r^4}$ (7M)
- 7. a) Verify stoke's theorem for $\overline{F} = y\overline{i} + z\overline{j} + x\overline{k}$ for the upper part of the sphere (7M) $x^2 + y^2 + z^2 = 1$.
 - b) Verify Green's theorem in the plane for $\oint_c (xy + y^2) dx + x^2 dy$. Where c is the (7M) closed curve of the region bounded by $y=x & y=x^2$

(7M)

I B. Tech II Semester Regular/Supplementary Examinations, April/May - 2018 MATHEMATICS-III

(Com. to CE,CSE,IT,AE,AME,EIE,EEE,ME,ECE,Metal E,Min E,E Com E,Agri E,Chem E,PCE,PE)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer **ALL** the question in **Part-A**
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

- 1. a) Write the working procedure to reduce the given matrix into Normal form. (2M)
 - b) Write quadratic form $x^2 + 3y^2 + 3z^2 2yz$ (2M)
 - c) Write the tangents at the origin of the curve $a^2y^2 = x^2(a^2 x^2)$. (2M)
 - d) Evaluate $\iint_{0}^{1} \iint_{0}^{1} dx \, dy \, dz$ (2M)
 - e) Prove that $\beta(m,n) = \int_{0}^{\frac{\pi}{2}} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$ (2M)
 - f) Find the maximum value of the directional derivative of $\phi = 2x^2 y z^4$ at (2M) (2,-1,1)
 - g) Write Stoke's theorem. (2M)

PART -B

2. a) For what value of k the matrix $A = \begin{bmatrix} 4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & 2 \\ 9 & 9 & k & 3 \end{bmatrix}$ has rank 3. (7M)

$$8x - 3y + 2z = 20$$

b) Solve the following system of equations 4x + 11y - z = 33 by using.

$$6x + 3y + 12z = 35$$

Gauss – Seidel method.

3. a) Determine the characteristic roots and the corresponding characteristic vectors of (7M) the matrix.

$$A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}$$

b) Find the Nature, index and signature of the quadratic form (7M) $4x^2 + 3y^2 + z^2 - 8xy + 4xz - 6yz$

- 4. a) Trace the curve $r^2 = a^2 \cos 2\theta$ (7M)
 - b) Evaluate $\iint (x^2 + y^2) dx dy$ over the area bounded by the Ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (7M)
- 5. a) Evaluate $\int_{0}^{\infty} a^{-bx^2} dx \ b > 0, a > 1$ (7M)
 - b) Show that $\int_{0}^{1} x^{m} (\log x)^{n} dx = \frac{(-1)^{n} n!}{(m+1)^{n+1}}$ (7M)
- 6. a) Find the constants 'a' and 'b' such that the surfaces $5x^2-2yz-9x=0$ and $ax^2y+bz^3=4$ (7M) cuts orthogonally at (1,-1,2)
 - b) Show that the vector $(x^2 yz)\overline{i} + (y^2 zx)\overline{j} + (z^2 xy)\overline{k}$ is irrotational and find (7M) its scalar potential.
- 7. a) If $\tilde{f} = (3x^2 2z)\tilde{i} 4xy\tilde{j} 5x\tilde{k}$ Evaluate $\int_{V} Cur \, F \, dv$, where v is volume bounded by (7M) the planes x = 0; y = 0; z = 0 and 3x + 2y 3z = 6.
 - b) Evaluate $\iint_{c} \cos y \, dx + x(1 \sin y) \, dy$ over a closed curve c given by $x^2 + y^2 = 1$; z = 0 (7M) using Green's theorem.

I B. Tech II Semester Regular/Supplementary Examinations, April/May - 2018 MATHEMATICS-III

(Com. to CE,CSE,IT,AE,AME,EIE,EEE,ME,ECE,Metal E,Min E,E Com E,Agri E,Chem E,PCE,PE)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer ALL the question in Part-A
- 3. Answer any **FOUR** Questions from **Part-B**

DADE A

PART -A

- 1. a) Write the working procedure to find the inverse of the given matrix by Jordan (2M) method.
 - b) Find the Eigen value of Adj A if the 'λ' is the Eigen value of A. (2M)
 - c) Write the symmetry of the curve $y^2 (2a x) = x^3$ (2M)
 - d) Evaluate $\int_{0-x}^{3} \int_{-x}^{x} xy \, dx \, dy$ (2M)
 - e) Find the value of $\beta\left(\frac{1}{2}, \frac{1}{2}\right)$ (2M)
 - f) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the (2M) point (2, -1, 2).
 - g) Write the physical interpretation of Gauss divergence theorem. (2M)

PART -B

2. a) Reduce the matrix to Echelon form and find its rank $\begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6 \end{bmatrix}$ (7M)

b) Solve the equations
$$2x + 10y + z = 12$$
, $2x + 10y + z = 13$, by Gauss – Jordan method. $x + y + 5z = 7$. (7M)

- 3. a) Find the Natural frequencies and normal modes of vibrating system for which (7M) mass $M = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and stiffness $K = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$
 - b) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$. Hence find A^{-1} (7M)

- 4. a) Find the volume of region bounded by the surface $z = x^2 + y^2$ and z = 2x. (7M)
 - b) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 x^2}} \sqrt{x^2 + y^2} \, dy \, dx$ by changing in to polar co-ordinates. (7M)
- 5. a) Show that $\int_{a}^{b} (x-a)^{m-1} (b-x)^{n-1} dx = (b-a)^{m+n-1} \beta(m,n)m > 0, n > 0$ (7M)
 - b) Evaluate $\int_{0}^{1} (x \log x)^{4} dx$ (7M)
- 6. a) Find the directional derivative of $\phi = xyz$ at (1,-1, 1) along the direction which (7M) makes equal angles with the positive direction of x, y, z axes
 - b) Prove that $\operatorname{div} \operatorname{curl} \overline{f} = 0$ (7M)
- 7. a) Verify Green's theorem for $\int_{c} (3x^2 8y^2) dx + (4y 6xy) dy$ where c is the boundary of (7M) the region enclosed by the lines. x = 0 y = 0 x + y = 1.
 - b) Find the flux of vector function $\overline{F} = (x 2z)\overline{i} (x + 3y)\overline{j} + (5x + y)\overline{k}$ through the upper (7M) side of the triangle ABC with vertices (1,0,0), (0,1,0), (0,0,1).

I B. Tech II Semester Regular/Supplementary Examinations, April/May - 2018 MATHEMATICS-III

(Com. to CE,CSE,IT,AE,AME,EIE,EEE,ME,ECE,Metal E,Min E,E Com E,Agri E,Chem E,PCE,PE)

Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answer ALL the question in Part-A
- 3. Answer any **FOUR** Questions from **Part-B**

1. a) Find the Rank of the matrix
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 (2M)

- b) Prove the AB and BA has same Eigen values. (2M)
- c) Write the Asymptote of the curve $y = \frac{x^2 + 1}{x^2 1}$ (2M)
- d) Evaluate $\int_{0}^{3} \int_{1}^{2} xy(x+y) dx dy$ (2M)
- e) Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ (2M)
- Show that $\nabla(r^2) = 2\overline{r}$ (2M)
- g) Write Green's theorem. (2M)

2. a) Reduce the matrix $A = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix}$ into PAQ form and hence find the rank (7M)

of the matrix.

$$x + y + z = 8,$$

- (7M)Solve the equations 2x + 3y + 2z = 19 by Gauss – Elimination method. 4x + 2y + 3z = 23
- 3. a) Diagonalize the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 3 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ if possible. (7M)
 - b) Find the Nature, index and signature of the quadratic form (7M) $3x^2 + 5y^2 + 3z^2 - 2xy + 2xz - 2yz$ by orthogonal reduction.

- 4. a) Trace the curve $x = a \cos t + \frac{a}{2} \log \tan^2 t/2$, $y = a \sin t$ (7M)
 - b) Find the area between the circles $r = a \cos\theta$ and $r = 2a \cos\theta$. (7M)
- 5. a) Prove that $\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1}}{(a+bx)^{m+n}} dx = \frac{\beta(m,n)}{(a+b)^{m} a^{n}}$ (7M)
 - b) Evaluate $\int_{0}^{\infty} e^{-x^{6}} x^{4} dx$ (7M)
- 6. a) Find the directional derivative of the function $e^{2x}\cos yz$ at the origin in the (7M) direction to the tangent to the curve $x = a\sin t$, $y = a\cos t$, z = at at $t = \frac{\pi}{4}$
 - b) Show that $\operatorname{curl} \operatorname{curl} \overline{f} = \nabla \times (\nabla \times \overline{f}) = \nabla (\nabla \cdot \overline{f}) (\nabla \cdot \nabla) \overline{f}$ if $\overline{f}(x, y, z)$ is vector (7M) point function.
- 7. a) Verify Gauss Divergence theorem for $\overline{F} = (x^2 yz)\overline{i} + (y^2 zx)\overline{j} + (z^2 xy)\overline{k}$ taken (7M) over the rectangular parallelepiped $0 \le x \le a$; $0 \le y \le b$; $0 \le z \le c$.
 - b) Evaluate $\iint_s (\nabla \times \overline{F}) \cdot \overline{n} \, ds$ where $\overline{F} = (x^2 + y 4) \overline{i} + 3xy \overline{j} + (2xy + z^2) \overline{k}$ and s in the (7M) surface of the paraboloid $z = 4 x^2 y^2$ above the xy plane.

I B. Tech II Semester Regular/Supplementary Examinations, April/May - 2019 MATHEMATICS-III

(Com to AE.AME,CE,CSE,IT,EIE,EEE,ME,ECE,Metal E, Min E, E Com E, Agri E, Chem E, PCE,PE)
Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

- 1. a) Find the rank of the matrix by reducing it to normal form $\begin{bmatrix} 3 & 2 & 1 & 5 \\ 2 & 3 & 4 & 6 \\ 3 & 5 & 6 & 10 \end{bmatrix}$. (2M)
 - b) What is the nature of the quadratic form $x^2+y^2+z^2-2xy$? (2M)
 - c) Write the physical significance of grad φ . (2M)
 - d) Find the area bounded by the upper half of the curve $r = a(1 \cos \theta)$. (2M)
 - e) Prove that the work done in moving an object from P_1 to P_2 in a conservative (2M) force field \overline{F} is independent of the path joining the two points P_1 and P_2 .
 - f) Show that $\int_{0}^{1} \left(\log \frac{1}{x} \right)^{m-1} dx = \Gamma(m).$ (2M)
 - g) Prove that the eigenvalues of A^{-1} are the reciprocals of the eigenvalues of A. (2M)

PART-B

- 2. a) Use Gauss Seidel method to solve 25x + 2y + 2z = 69, 2x + 10y + z = 63, x + y + z (6M) = 43.
 - b) Reduce the quadratic form $x^2 + 4y^2 + z^2 + 4xy + 6yz + 2zx$ to canonical form by linear transformation. Also find signature and rank of the quadratic form. (8M)
- 3. a) Find the natural frequencies and normal modes of vibrating system for which the mass matrix is $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and stiffness $K = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$.
 - b) Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 2 & -1 & 2 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and find A^{-1} . (7M)
- 4. a) Trace the curve $x^3 + y^3 + 3axy = 0$. (7M)
 - b) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 x^2}} \sqrt{x^2 + y^2} \, dy dx$ by changing into polar coordinates. (7M)
- 5. a) Express the integral $\int_{0}^{\infty} \frac{x^{c}}{c^{x}} dx$ in terms of Gamma function. (7M)
 - b) Show that $\int_{0}^{1} \frac{x^{m-1} (1-x)^{n-1}}{(x+a)^{m+n}} dx = \frac{B(m,n)}{a^{n} (1+a)^{m}}.$ (7M)

- 6. a) Find the directional derivative of the function $f = x^2 y^2 + 2z^2$ at the point P=(1,2,3) in the direction of the line PQ where Q = (5,0,4).
 - b) Prove that $\nabla \times \left(\frac{\overline{A} \times \overline{r}}{r^n}\right) = \frac{(2-n)\overline{A}}{r^n} + \frac{n(\overline{r}.\overline{A})\overline{r}}{r^{n+2}}.$ (7M)
- 7. If $\overline{F} = 4xz\overline{i} y^2\overline{j} + yz\overline{k}$, evaluate $\int_S \overline{F}.\overline{n}ds$ where S is the surface of the cube bounded by x = 0, x = a, y = 0, y = a, z = 0, z = a.

(6M)

I B. Tech II Semester Regular/Supplementary Examinations, April/May - 2019 MATHEMATICS-III

(Com to AE.AME,CE,CSE,IT,EIE,EEE,ME,ECE,Metal E, Min E, E Com E, Agri E, Chem E, PCE,PE)
Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

- 1. a) Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -2 & 1 \\ 3 & 0 & 4 \end{bmatrix}$ by reducing it into echelon form. (2M)
 - b) What is the nature of the quadratic form $x^2-2y^2+z^2-2zy$? (2M)
 - c) Evaluate $\int_0^1 \sqrt[3]{\log \frac{1}{x} dx}$. (2M)
 - d) If λ is eigenvalue of an orthogonal matrix, then show that $\frac{1}{\lambda}$ is also an eigenvalue. (2M)
 - e) Find the area bounded by the curves y = x and $y = x^2$. (2M)
 - f) In what direction from the point (1,-1,3) the directional derivative of (2M) $\phi = 2xy + z^2$ is maximum? What is the magnitude of this maximum?
 - g) State Gauss divergence theorem. (2M)

PART-B

2. a) Solve by Gauss – Seidal method, the equations.

9x - 2y + z - t = 50 x - 7y + 3z + t = 20 -2x + 2y + 7z + 2t = 22 x + y - 2z + 6t = 18

- b) Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 3 & 4 \\ 2 & 1 & 3 \end{bmatrix}$ and find A^{-1} . (8M)
- 3. a) Find the natural frequencies and normal modes of vibrating system for which the mass matrix is $\begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$ and stiffness $K = \begin{bmatrix} 6 & -2 \\ -2 & 9 \end{bmatrix}$.
 - b) Reduce the quadratic form $3x_1^2 + 3x_2^2 + 3x_3^2 + 2x_1x_2 + 2x_1x_3 2x_2x_3$ to orthogonal transformation. Also find signature and rank of the quadratic form. (7M)
- 4. a) Trace the curve $y^2(a+x) = x^2(a-x)$. (7M)
 - b) By changing the order of integration, evaluate $\int_{0}^{1} \int_{1}^{2-x} xy dx dy.$ (7M)

5. a) Evaluate $\int_{0}^{1} (8-x^3)^{1/3} dx$ using β and γ functions.

(7M)

- b) Prove that $\Gamma\left(n + \frac{1}{2}\right) = \frac{\sqrt{\pi} \Gamma(2n+1)}{2^{2n} \Gamma(n+1)}$ (7M)
- 6. a) Find the directional derivative of $\phi = x^2 yz + 4xz^2$ at (1, -2, -1) in the direction of (7M) $2\bar{i} \bar{j} 2\bar{k}$.
 - b) Prove that $\operatorname{curl}(\overline{a} \times \overline{b}) = \overline{a} \operatorname{div} \overline{b} \overline{b} \operatorname{div} \overline{a} + (\overline{b} \cdot \nabla) \overline{a} (\overline{a} \cdot \nabla) \overline{b}$. (7M)
- 7. Verify Stoke's theorem for $\overline{F} = (2x y)\overline{i} yz^2\overline{j} y^2z\overline{k}$ over the upper half of surface of sphere $x^2 + y^2 + z^2 = 1$ bounded by the projection of the xy- plane. (14M)

I B. Tech II Semester Regular/Supplementary Examinations, April/May - 2019 **MATHEMATICS-III**

(Com to AE.AME,CE,CSE,IT,EIE,EEE,ME,ECE,Metal E, Min E, E Com E, Agri E, Chem E, PCE,PE) Time: 3 hours Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in **Part-A** is Compulsory

3. Answer any **FOUR** Questions from **Part-B**

- Find the rank of the matrix by reducing it to normal form $\begin{bmatrix} 1 & 7 & 8 & 1 \\ 1 & 3 & 4 & 2 \\ 3 & 5 & 6 & 10 \end{bmatrix}$ 1. (2M)
 - What is the nature of the quadratic form $-2x^2+2y^2-z^2-2xy$? (2M)
 - Find the complete area of the curve $a^2y^2 = x^3(2a x)$. (2M)
 - Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^4 \theta \cos^2 \theta d\theta$. (2M)
 - (2M)If λ is an eigenvalue of a nonsingular matrix A, then show that $\frac{|A|}{\lambda}$ is an eigenvalue of adj A.
 - In what direction from the point (2, -1, 1) the directional derivative of (2M) $\phi = xy^2 + yz^3$ is maximum. What is the magnitude of this maximum?
 - State Stoke's theorem. (2M)

PART-B

Apply Guass – Seidel method to solve the equations. (6M)27x + 6y - z = 85

$$x + y + 54z = 110$$

$$6x + 15y + 2z = 72$$

$$6x + 15y + 2z = 72$$

- Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 10 & 1 & 1 \\ 1 & 10 & -1 \end{bmatrix}$ and find A^{-1} . (8M)
- Find the natural frequencies and normal modes of vibrating system for which the 3. (7M)mass matrix is $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and stiffness $K = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$.
 - Reduce the quadratic form $4x^2 + 3y^2 + z^2 8xy 6yz + 4zx$ to orthogonal (7M)transformation. Also find signature and rank of the quadratic form.
- Find the perimeter of the loop of the curve $3ay^2 = x(x a)^2$. (7M)
 - b) By changing the order of integration, evaluate $\int_{0}^{3} \int_{1}^{\sqrt{4-y}} (x+y) dx dy.$ (7M)

- 5. a) Evaluate $\int_{0}^{\infty} \frac{x^2}{1+x^4} dx$ using β and γ functions. (7M)
 - b) Show that $\Gamma(m)\Gamma\left(m+\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2m-1}}\Gamma(2m)$. (7M)
- 6. a) Find the angle between the normal to the surface $x^2 = yz$ at the points (1, 1, 1) and (2, 4, 1).
 - b) Find the constants a, b, c so that $(x+2y+az)\bar{i}+(bx-3y-z)\bar{j}+(4x+cy+2z)\bar{k}$ (7M) is irrotational. Also find the scalar potential.
- 7. Verify Green's theorem for $\int_C (xy + y^2) dx + (x^2) dy$ where C is the curve bounded by $y = x^2$ and y = x.

Code No: R161203

I B. Tech II Semester Regular/Supplementary Examinations, April/May - 2019 MATHEMATICS-III

(Com to AE.AME,CE,CSE,IT,EIE,EEE,ME,ECE,Metal E, Min E, E Com E, Agri E, Chem E, PCE,PE)
Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

1. a) Find the rank of the matrix by reducing it to normal form
$$\begin{bmatrix} 2 & 6 & 8 & 2 \\ 1 & 3 & 4 & 1 \\ 3 & 5 & 6 & 10 \end{bmatrix}$$
 (2M)

- b) What is the nature of the quadratic form $x^2-3y^2-z^2-zy$? (2M)
- c) Prove that zero is an eigen value of a matrix if and only if it is singular. (2M)
- d) In what direction from the point (1,-2,-1) the directional derivative of $\phi = x^2 yz + 4xz^2$ is maximum? What is the magnitude of the maximum?
- e) Show that in an irrotational field, the value of a line integral between two points A and B will be independent of the path of integration and be equal to their potential difference. (2M)
- f) Find the area bounded by the curves $y = x^2$ and $x = y^2$ (2M)
- g) Show that $\int_{0}^{\infty} x^{n-1} e^{-kx} dx = \frac{\Gamma(n)}{k^{n}}$ (2M)

PART -B

- 2. a) Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & 1 \\ 1 & 2 & 1 \end{bmatrix}$ and find A^{-1} . (6M)
 - b) Apply Guass Seidel method to solve the equations 20x + y 2z = 17, 3x + 20y z = -18 2x 3y + 20z = 25 (8M)
- 3. a) Find the natural frequencies and normal modes of vibrating system for which the mass matrix is $\begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$ and stiffness $K = \begin{bmatrix} 6 & -2 \\ -2 & 9 \end{bmatrix}$.
 - b) Using Lagrange's reduction, transform $x_1^2 + 2x_2^2 7x_3^2 4x_1x_2 + 8x_1x_3$. (7M)
- 4. a) Trace the curve $x^{2/3} + y^{2/3} = a^{2/3}$. (7M)
 - b) By changing the order of integration, evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 x^2}} \sqrt{a^2 x^2 y^2} \, dy dx.$ (7M)

Code No: R161203 (SET - 4)

- 5. a) Show that $\Gamma(m)\Gamma\left(m+\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2m-1}}\Gamma(2m)$. (7M)
 - b) Express the integral $\int_{0}^{\infty} \frac{x^{c}}{c^{x}} dx$ in terms of Gamma function. (7M)
- 6. a) Find the angle of intersection of the spheres $x^2 + y^2 + z^2 = 39$ and $x^2 + y^2 + z^2 + (7M)$ 4x - 6y - 8z + 52 = 0 at the point (4, -3, 2).
 - b) Prove that $grad(\bar{a}.\bar{b}) = (\bar{b}.\nabla)\bar{a} + (\bar{a}.\nabla)\bar{b} + \bar{b} \times curl\bar{a} + \bar{a} \times curl\bar{b}$. (7M)
- 7. Verify Gauss divergence theorem for $\overline{F} = x^2 \overline{i} + y^2 \overline{j} + z^2 \overline{k}$, over the cube formed by the planes x = 0, x = a, y = 0, y = b, z = 0, z = c.

I B. Tech II Semester Regular Examinations, April/May – 2017 MATHEMATICS-III

(Com. to CE, EEE, ME, ECE, CSE, CHEM, EIE, IT, ECC, AE, AME, MM, PE, PCE, MET, AGE) Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in Part-A is Compulsory
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

- 1. a) Find the rank of a matrix $A = \begin{bmatrix} -1 & 2 & 1 & 8 \\ 2 & 1 & -1 & 0 \\ 3 & 2 & 1 & 7 \end{bmatrix}$ (2M)
 - b) Prove that if λ is an eigen value of a matrix A then λ^{-1} is an eigen value of the matrix A^{-1} if it exists. (2M)
 - c) Evaluate $\int_0^1 \int_0^1 \int_{\sqrt{x^2 + y^2}}^y xyz \, dz dy dx$. (2M)
 - d) Find the value of $\Gamma\left(\frac{5}{2}\right)$. (2M)
 - e) Find the angle between the surface $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at (2, -1, 2). (2M)
 - f) If $\overline{F} = (5xy 6x^2)\overline{\iota} + (2y 4x)\overline{\jmath}$ then evaluate $\int \overline{F} \cdot d\overline{R}$ along the curve $y = x^3$ from the point (1, 1) to (2, 8).
 - g) Write the quadratic form corresponding to the symmetric matrix

$$\begin{bmatrix} 1 & 0 & 4 \\ 0 & -2 & -1 \\ 4 & -1 & 3 \end{bmatrix}. \tag{2M}$$

PART -B

- 2. a) Solve the system of equations 20x + y 2z = 17, 3x + 20y z = -18, 2x (7M) 3y + 20z = 25 by Gauss Jacobi method.
 - b) Find the currents in the following circuit (7M)

SET - 1

Verify Cayley-Hamilton theorem and find the inverse of the matrix

(7M)

- b) Reduce the quadratic form $2x^2 + 2y^2 + 2z^2 2xy 2yz 2zx$ to canonical (7M)form by orthogonal transformation and hence find rank, index, signature and nature of the quadratic form.
- 4. a) Trace the curve $r^2 = a^2 \cos 2\theta$. (7M)
 - b) Evaluate $\int_0^a \int_{\frac{x^2}{2}}^{2a-x} x y^2 dy dx$ by changing the order of integration. (7M)
- 5. a) Express $\int_0^1 x^m (1-x^n)^p dx$ in terms of Γ functions and hence evaluate 6M) $\int_0^1 x^5 (1-x^3)^{10} \, dx.$
 - b) Evaluate $\int_0^{\frac{\pi}{2}} \sin^5\theta \cos^7\theta \ d\theta$ by using β , Γ functions. c) Express $\int_0^4 \sqrt{x} (4-x)^{3/2} \ dx$ in terms of β function. (4M)
 - (4M)
- 6. a) Show that the vector field $\overline{F} = (x^2 yz)\overline{i} + (y^2 zx)\overline{j} + (z^2 xy)\overline{k}$ is (7M)conservative and find the scalar potential function corresponding to it.
 - b) Show that $\nabla \cdot (\bar{F} \times \bar{G}) = \bar{G} \cdot (\nabla \times \bar{F}) \bar{F} \cdot (\nabla \times \bar{G})$ (7M)
- State Stoke's theorem and verify the theorem for $\overline{F} = (x + y)\overline{\iota} + (y + z)\overline{\iota} x\overline{k}$ 7. (14M)and S is the surface of the plane 2x + y + z = 2, which is in the first octant.

SET - 2

I B. Tech II Semester Regular Examinations, April/May – 2017 MATHEMATICS-III

(Com. to CE, EEE, ME, ECE, CSE, CHEM, EIE, IT, ECC, AE, AME, MM, PE, PCE, MET, AGE) Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

1. a) Determine the rank of a matrix $A = \begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6 \end{bmatrix}$. (2M)

b) Use Cayley-Hamilton theorem to find A^8 if $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$. (2M)

c) Evaluate $\int_0^1 \int_0^1 \int_0^y xyz \, dx dy dz$. (2M)

d) Find the value of $\Gamma\left(-\frac{5}{2}\right)$. (2M)

e) Find unit normal vector to the surface $x^2y + 2xz^2 = 8$ at the point (1, 0, 2). (2M)

f) If $\overline{F} = (3x^2 + 6y)\overline{\iota} - 14yz\overline{\jmath} + 20xz\overline{k}$ then evaluate $\int \overline{F} \cdot d\overline{R}$ from (0, 0, 0) to (1, 1, 1) along the path $x = t, y = t^2, z = t^3$.

g) Write the quadratic form corresponding to the symmetric matrix

$$\begin{bmatrix} 0 & \frac{5}{2} & 3 \\ \frac{5}{2} & 7 & 1 \\ \frac{3}{2} & \frac{1}{2} & 2 \end{bmatrix}$$
 (2M)

PART -B

- 2. a) Show that the system of equations is consistent 2x y z = 2, x + 2y + z = 2, 4x 7y 5z = 2 and solve. (7M)
 - b) Find the currents in the following circuit (7M)

WWW.MANARESULTS.CO.IN

1"1""11""11"

- 3. a) Reduce the quadratic form $6x_1^2 + 3x_2^2 + 3x_3^2 4x_1x_2 2x_2x_3 + 4x_1x_3$ to (7M) canonical form and hence state nature, rank, index and signature of the quadratic form
 - b) Determine the natural frequencies and normal modes of a vibrating system for (7M) which mass $m = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and stiffness $k = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$.
- 4. a) Trace the curve $y^2(2a x) = x^3$. (7M)
 - b) Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dxdy$ by changing in to polar coordinates and hence (7M) deduce $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.
- 5. a) Show that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$.
 - b) Evaluate $\int_0^{\frac{\pi}{2}} \sin^4\theta \cos^2\theta \ d\theta$ by using β , Γ functions. (4M)
 - c) Express $\int_0^1 \frac{1}{(1-x^3)^{1/3}} dx$ in terms of β function. (4M)
- 6. a) Show that the vector field $\bar{F} = (x^2 + xy^2)\bar{\iota} + (y^2 + x^2y)\bar{\jmath}$ is conservative and (7M) find the scalar potential function.
 - b) Show that $\nabla(\nabla \cdot \bar{F}) = \nabla \times (\nabla \times \bar{F}) + \nabla^2 \bar{F}$. (7M)
- State Greens theorem in plane and verify the theorem for $\oint_C [(y-sinx)dx + (14M)\cos x \, dy]$, where C is the plane triangle formed by the lines $y=0, x=\frac{\pi}{2}$, $y=\frac{2}{\pi}x$.

I B. Tech II Semester Regular Examinations, April/May – 2017 MATHEMATICS-III

(Com. to CE, EEE, ME, ECE, CSE, CHEM, EIE, IT, ECC, AE, AME, MM, PE, PCE, MET, AGE) Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **FOUR** Questions from **Part-B**

DADE A

PART -A

- 1. a) Determine the rank of a matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ (2M)
 - b) Use Cayley-Hamilton theorem and find A^{-1} if $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$. (2M)
 - Evaluate $\int_0^{\frac{\pi}{2}} \int_0^{asin\theta} \int_0^{\frac{(a^2-r^2)}{a}} r \, dz dr \, d\theta. \tag{2M}$
 - d) Show that $\beta\left(\frac{1}{2}, \frac{1}{2}\right) = \pi$. (2M)
 - e) Find directional derivative of $\phi = xy^2 + yz^2$ at the point (2,-1,1) in the direction (2M) of the vector $\overline{\iota} + 2\overline{\jmath} + 2\overline{k}$.
 - f) If $\overline{F} = (x^2 y)\overline{\iota} + (2xz y)\overline{\jmath} + z^2\overline{k}$ then evaluate $\int \overline{F} \cdot d\overline{R}$ where C is the (2M) straight line joining the points (0, 0, 0) to (1, 2, 4).
 - g) Write the quadratic form corresponding to the symmetric matrix (2M) $\begin{bmatrix} 3 & 5 & 0 \\ 5 & 5 & 4 \\ 0 & 4 & 7 \end{bmatrix}$.

PART -B

- 2. a) Solve the system of equations 10x + y + z = 12, 2x + 10y + z = 13, 2x + (7M) 2y + 10z = 14 by Gauss Seidel method.
 - b) Find the currents in the following circuit (7M)

WWW.MANARESTITS.CO.IN

- 3. a) Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 2xy 2yz + 2zx$ to canonical (7M) form by orthogonal transformation and hence find the rank, index signature and nature of the quadratic form.
 - b) Find the natural frequencies and normal modes of a vibrating system mx'' + kx = 0 for mass $m = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ and stiffness $k = \begin{bmatrix} 9 & -3 \\ -3 & 3 \end{bmatrix}$. (7M)
- 4. a) Trace the curve $a^2v^2 = x^2(a^2 x^2)$. (7M)
 - b) Evaluate $\int_0^1 \int_{\sqrt{y}}^{2-y} xy \, dx dy$ by changing the order of integration. (7M)
- 5. a) Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.
 - b) Evaluate $\int_0^{\frac{\pi}{2}} \sin^5 \theta \ d\theta$ by using β , Γ functions. (4M)
 - c) Express $\int_0^1 \frac{x \, dx}{\sqrt{1+x^4}}$ in terms of β function. (4M)
- 6. a) Find the constants a, b such that the surfaces $5x^2 2yz 9x = 0$ and $ax^2y + (7M)$ $bz^3 = 4$ cut orthogonally at (1,-1,2).
 - b) Show that $\nabla \times (\nabla \times \overline{F}) = \nabla(\nabla \cdot \overline{F}) \nabla^2 \overline{F}$. (7M)
- 7. State Gauss divergence theorem in plane and verify the theorem for $\bar{F} = 4xz\bar{\iota} (14M)$ $y^2\bar{\jmath} + zy\bar{k}$ over the cube x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

I B. Tech II Semester Regular Examinations, April/May – 2017 MATHEMATICS-III

(Com. to CE, EEE, ME, ECE, CSE, CHEM, EIE, IT, ECC, AE, AME, MM, PE, PCE, MET, AGE) Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in **Part-A** is Compulsory
- 3. Answer any **FOUR** Questions from **Part-B**

PART -A

- 1. a) Find inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ by elementary operations. (2M)
 - b) Prove that if λ is an eigen value of a matrix A then $\frac{|A|}{\lambda}$ is an eigen value of adjA. (2M)
 - c) Evaluate $\int_{0}^{1} \int_{v^{2}}^{1} \int_{0}^{1-x} x \, dz dx dy$. (2M)
 - d) Determine the value of $\beta(2,3)$. (2M)
 - e) Show that $\nabla f g = f \nabla g + g \nabla f$. (2M)
 - f) If $\overline{F} = x^2 y^2 \overline{\iota} + y \overline{\jmath}$ then evaluate $\int_C \overline{F} \cdot \overline{dR}$ where C is the curve $y^2 = 4x$ in the XY plane from (0, 0) to (4, 4).
 - g) Write the quadratic form corresponding to the symmetric matrix (2M)

 $\begin{bmatrix} 2 & -3 & 5 \\ -3 & 2 & -2 \\ 5 & -2 & 2 \end{bmatrix}$

PART -B

- 2. a) Solve the system of equations (7M) x + 10y + z = 6, 10x + y + z = 6, x + y + 10z = 6 by Gauss Seidel method.
 - b) Find the currents in the following circuit (7M)

- 3. a) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$ and hence find A^4 .
 - b) Reduce the quadratic form $3x_1^2 + 5x_2^2 + 3x_3^2 2x_1x_2 2x_1x_3 + 2x_2x_3$ to (7M) canonical form and hence state nature, rank, index and signature of the quadratic form.
- 4. a) Trace the curve $r = a \sin 3\theta$. (7M)
 - b) Evaluate $\int_0^a \int_0^{\sqrt{a^2 x^2}} y \sqrt{x^2 + y^2} dy dx$ by transforming to polar coordinates. (7M)
- 5. a) Establish a relation between β and Γ functions. 6M)
 - b) Evaluate $\int_0^{\frac{\pi}{2}} \cos^7 \theta \ d\theta$ by using β , Γ functions. (4M)
 - c) Express $\int_0^1 \frac{x \, dx}{\sqrt{1-x^5}}$ in terms of β function. (4M)
- 6. a) Find the angle between the surfaces $ax^2 + y^2 + z^2 xy = 1$ and conservative (7M) $bx^2y + y^2z + z = 1$ at (1, 1, 0).
 - b) Show that $\overline{F} = (y^2 z^2 + 3yz 2x)\overline{\iota} + (3xz + 2xy)\overline{\jmath} + (3xy 2xz + 2z)\overline{k}$ (7M) is both solenoidal and irrotational.
- 7. a) State Greens theorem in plane and apply the theorem to evaluate $\oint_C x^2 y \, dx + y^3 \, dy$, where C is the closed path formed by y = x, $y = x^3$ from (0, 0) to (1, 1).
 - b) Evaluate $\int_S \overline{F}$. \overline{ds} using Gauss divergence theorem, where $\overline{F} = 2xy \,\overline{\iota} + yz^2 \,\overline{\jmath}$ $+ z \,\overline{k}$ and S is the surface of the region bounded by x = 0, y = 0, z = 0, x + 2z = 6.