MPC5200B Users Guide

Document Number: MPC5200BUG

Rev. 1 05/2005

Paragraph Number		Page Number
	Chapter 1 Introduction	
1.1	Overview	1-1
1.1.1	Features	
1.2	Architecture	
1.2.1	Embedded G2 LE Core	
1.2.2	BestComm I/O Subsystem	
1.2.2.1	Programmable Serial Controllers (PSCs)	
1.2.2.2	10/100 Ethernet Controller	
1.2.2.3	Universal Serial Bus (USB)	
1.2.2.4	Infrared Support	
1.2.2.5	Inter-Integrated Circuit (I ² C)	
1.2.2.6	Serial Peripheral Interface (SPI)	
1.2.3	Dual Freescale (formerly Motorola) Scalable (MS) Controller Area Network (CAN)	
1.2.4	Byte Data Link Controller - Digital BDLC-D	
1.2.5	System Level Interfaces	
1.2.5.1	Chip Selects	
1.2.5.2	Interrupt Controller	
1.2.5.3	Timers	
1.2.5.4	General Purpose Input/Outputs (GPIO)	
1.2.5.5	Functional Pin Multiplexing	
1.2.5.6	Real-Time Clock (RTC)	
1.2.6	SDRAM Controller and Interface	
1.2.7	Multi-Function External LocalPlus Bus	
1.2.8	Power Management	
1.2.9	Systems Debug and Test	
1.2.10	Physical Characteristics	
	Chapter 2 Signal Descriptions	
2.1	Overview	2-1
2.2	Pinout Tables	
	Chapter 3 Memory Map	
3.1	Overview	3_1
3.2	Internal Register Memory Map	
3.3	MPC5200 Memory Map	
3.3.1	MPC5200 Internal Register Space	
3.3.2	External Busses	
3.3.2.1	SDRAM Bus	
3.3.2.2	LocalPlus Bus	
3.3.3	Memory Map Space Register Description	
3.3.3.1	Memory Address Base Register —MBAR + 0x0000	
3.3.3.2	Boot and Chip Select Addresses	
3.3.3.3	SDRAM Chip Select Configuration Registers	
3.3.3.4	IPBI Control Register and Wait State Enable —MBAR+0x0054	
	Chapter 4 Resets and Reset Configuration	
4.1	Overview	∆ -1
4.2	Hard and Soft Reset Pins	
4.2.1	Power-On Reset—PORESET	
1	TOTAL OF ROOM TOTALDET	1

Paragraph Number		Page Number
4.2.2	Hard Reset—HRESET	4-1
4.2.3	Soft Reset—SRESET	4-2
4.3	Reset Sequence	4-2
4.4	Reset Operation	4-2
4.5	Other Resets	4-3
4.6	Reset Configuration	4-4
	Chapter 5 Clocks and Power Management	
5.1	Overview	5-1
5.2	Clock Distribution Module (CDM)	5-1
5.3	MPC5200 Clock Domains	5-1
5.3.1	MPC5200 Top Level Clock Relations	5-3
5.3.2	603e G2 LE Core Clock Domain	5-5
5.3.3	Processor Bus (XLB) Clock Domain	5-7
5.3.4	SDRAM Memory Controller Clock Domain	5-7
5.3.5	IPB Clock Domain	5-8
5.3.6	PCI Clock Domain	5-8
5.4	Power Management	5-9
5.4.1	Full-Power Mode	5-9
5.4.2	Power Conservation Modes	5-9
5.4.3	603e G2_LE Core Power Modes	5-9
5.4.3.1	Dynamic Power Mode	5-10
5.4.3.2	Doze Mode	5-10
5.4.3.3	Nap Mode	5-10
5.4.3.4	Sleep Mode	5-10
5.4.4	Deep-Sleep Mode	5-10
5.4.4.1	Entering Deep Sleep	5-11
5.4.4.2	Exiting Deep Sleep	5-11
5.5	CDM Registers	5-11
5.5.1	CDM JTAG ID Number Register—MBAR + 0x0200	5-12
5.5.2	CDM Power On Reset Configuration Register—MBAR + 0x0204	5-12
5.5.3	CDM Bread Crumb Register—MBAR + 0x0208	5-14
5.5.4	CDM Configuration Register—MBAR + 0x020C	5-14
5.5.5	CDM 48MHz Fractional Divider Configuration Register—MBAR + 0x0210	5-15
5.5.6	CDM Clock Enable Register—MBAR + 0x0214	5-16
5.5.7	CDM System Oscillator Configuration Register—MBAR + 0x0218	5-17
5.5.8	CDM Clock Control Sequencer Configuration Register—MBAR + 0x021C	5-18
5.5.9	CDM Soft Reset Register—MBAR + 0x0220	5-19
5.5.10	CDM System PLL Status Register—MBAR + 0x0224	5-19
5.5.11	PSC1 Mclock Config Register—MBAR + 0x0228	5-20
5.5.12	PSC2 Mclock Config Register—MBAR + 0x022C	5-21
5.5.13	PSC3 Mclock Config Register—MBAR + 0x0230	
5.5.14	PSC6 (IrDA) Mclock Config Register—MBAR + 0x0234	5-22
	Chapter 6 G2_LE Processor Core	
6.1	Overview	
6.2	MPC5200 G2_LE Processor Core Functional Overview	
6.3	G2_LE Core Reference Manual	
6.4	Not supported G2_LE Core Feature	
6.4.1	Not supported instruction	
6.4.2	Not supported XLB parity feature	6-2

Paragraph Number

Page Number

Chapter 7 System Integration Unit (SIU)

7.1	Overview	7-1
7.2	Interrupt Controller	7-1
7.2.1	Block Description	7-1
7.2.1.1	Machine Check Pin—core_mcp	7-2
7.2.1.2	System Management Interrupt—core_smi	7-2
7.2.1.3	Standard Interrupt—core int	7-2
7.2.2	Interface Description	7-4
7.2.3	Programming Note	
7.2.4	Interrupt Controller Registers	
7.2.4.1	ICTL Peripheral Interrupt Mask Register—MBAR + 0x0500	
7.2.4.2	ICTL Peripheral Priority and HI/LO Select 1 Register —MBAR + 0x0504	
7.2.4.3	ICTL Peripheral Priority and HI/LO Select 2 Register —MBAR + 0x0508	
7.2.4.4	ICTL Peripheral Priority and HI/LO Select 3 Register —MBAR + 0x050C	
7.2.4.5	ICTL External Enable and External Types Register —MBAR + 0x0510	
7.2.4.6	ICTL Critical Priority and Main Interrupt Mask Register—MBAR + 0x0514	
7.2.4.7	ICTL Main Interrupt Priority and INT/SMI Select 1 Register —MBAR + 0x0518	
7.2.4.8	ICTL Main Interrupt Priority and INT/SMI Select 2 Register—MBAR + 0x051C	
7.2.4.9	ICTL Perstat, MainStat, MainStat, CritStat Encoded Register—MBAR + 0x0524	
7.2.4.10	ICTL Critical Interrupt Status All Register—MBAR + 0x0528	
7.2.4.11	ICTL Main Interrupt Status All Register—MBAR + 0x052C	
7.2.4.12	ICTL Peripheral Interrupt Status All Register—MBAR + 0x0520	
7.2.4.13	ICTL Peripheral Interrupt Status All Register—MBAR + 0x0538	
7.2.4.13	ICTL Main Interrupt Emulation All Register—MBAR + 0x0540	
7.2.4.14	ICTL Peripheral Interrupt Emulation All Register—MBAR + 0x0544	
7.2.4.15	ICTL IRQ Interrupt Emulation All Register—MBAR + 0x0548	
7.2.4.16	General Purpose I/O (GPIO)	
	•	
7.3.1	GPIO Pin Multiplexing	
7.3.1.1	PSC1 (UART1/AC97/CODEC1)	
7.3.1.2	PSC2 (CAN1/2/UART2/AC97/CODEC2)	
7.3.1.3	PSC3 (USB2/CODEC3/SPI/UART3)	
7.3.1.4	USB1/RST_CONFIG	
7.3.1.5	Ethernet/USB2/UART4/5/J1850/RST_CONFIG	
7.3.1.6	PSC6	
7.3.1.7	I ² C	
7.3.1.8	GPIO Timer Pins	
7.3.1.9	Dedicated GPIO Port	
7.3.2	GPIO Programmer's Model	
7.3.2.1	GPIO Standard Registers—MBAR+0x0B00	
7.3.2.1.1	GPS Port Configuration Register—MBAR + 0x0B00	
7.3.2.1.2	GPS Simple GPIO Enables Register—MBAR + 0x0B04	
7.3.2.1.3	GPS Simple GPIO Open Drain Type Register —MBAR + 0x0B08	
7.3.2.1.4	GPS Simple GPIO Data Direction Register—MBAR + 0x0B0C	
7.3.2.1.5 7.3.2.1.6	GPS Simple GPIO Data Output Values Register —MBAR + 0x0B10GPS Simple GPIO Data Input Values Register —MBAR + 0x0B14	
7.3.2.1.7	GPS GPIO Output-Only Enables Register —MBAR + 0x0B18	
7.3.2.1.8	GPS GPIO Output-Only Data Value Out Register —MBAR + 0x0B1C	
7.3.2.1.9	GPS GPIO Simple Interrupt Enable Register—MBAR + 0x0B20	
7.3.2.1.10	GPS GPIO Simple Interrupt Open-Drain Emulation Register —MBAR + 0x0B24	
7.3.2.1.11	GPS GPIO Simple Interrupt Data Direction Register —MBAR + 0x0B28	
7.3.2.1.12	GPS GPIO Simple Interrupt Data Value Out Register —MBAR + 0x0B2C	
7.3.2.1.13	GPS GPIO Simple Interrupt Interrupt Enable Register —MBAR + 0x0B30	
7.3.2.1.14	GPS GPIO Simple Interrupt Interrupt Types Register —MBAR + 0x0B34	
7.3.2.1.15	GPS GPIO Simple Interrupt Master Enable Register —MBAR + 0x0B38	7-44

Paragraph Number		Page Number
7.3.2.1.16	GPS GPIO Simple Interrupt Status Register—MBAR + 0x0B3C	
7.3.2.2	WakeUp GPIO Registers—MBAR+0x0C00	
7.3.2.2.1	GPW WakeUp GPIO Enables Register—MBAR + 0x0C00	
7.3.2.2.2	GPW WakeUp GPIO Open Drain Emulation Register —MBAR + 0x0C04	
7.3.2.2.3 7.3.2.2.4	GPW WakeUp GPIO Data Direction Register—MBAR + 0x0C08	
7.3.2.2.5	GPW WakeUp GPIO Data Value Out Register—MBAR + 0x0C0C GPW WakeUp GPIO Interrupt Enable Register—MBAR + 0x0C10	
7.3.2.2.6	GPW WakeUp GPIO Individual Interrupt Enable Register —MBAR + 0x0C14	
7.3.2.2.7	GPW WakeUp GPIO Interrupt Types Register—MBAR + 0x0C18	
7.3.2.2.8	GPW WakeUp GPIO Master Enables Register —MBAR + 0x0C1C	
7.3.2.2.9	GPW WakeUp GPIO Data Input Values Register —MBAR + 0x0C20	
7.3.2.2.10	GPW WakeUp GPIO Status Register—MBAR + 0x0C24	
7.4	General Purpose Timers (GPT)	
7.4.1	Timer Configuration Method	
7.4.2	Mode Overview	
7.4.3	Programming Notes	
7.4.4	GPT Registers—MBAR + 0x0600	
7.4.4.1	GPT 0 Enable and Mode Select Register—MBAR + 0x0600	
7.4.4.2	GPT 0 Counter Input Register—MBAR + 0x0604	
7.4.4.3	GPT 0 PWM Configuration Register—MBAR + 0x0608	
7.4.4.4	GPT 0 Status Register—MBAR + 0x060C	
7.5	Slice Timers	
7.5.1	SLT Registers—MBAR + 0x0700	
7.5.1.1	SLT 0 Terminal Count Register—MBAR + 0x0700	
7.5.1.2	SLT 0 Control Register—MBAR + 0x0704	
7.5.1.3	SLT 0 Count Value Register—MBAR + 0x0708	
7.5.1.4	SLT 0 Timer Status Register—MBAR + 0x070C	
7.6	Real-Time Clock	
7.6.1	Real-Time Clock Signals	
7.6.2	Programming Note	
7.6.3	RTC Interface Registers—MBAR + 0x0800	
7.6.3.1	RTC Time Set Register—MBAR + 0x0800	
7.6.3.2 7.6.3.3	RTC Date Set Register—MBAR + 0x0804	
7.6.3.4	RTC New Year and Stopwatch Register—MBAR + 0x0808 RTC Alarm and Interrupt Enable Register—MBAR + 0x080C	
7.6.3.5	RTC Current Time Register—MBAR + 0x0810	
7.6.3.6		
7.6.3.7	RTC Current Date Register—MBAR + 0x0814 RTC Alarm and Stopwatch Interrupt Register—MBAR + 0x0818	
7.6.3.8	RTC Periodic Interrupt and Bus Error Register—MBAR + 0x0816	
7.6.3.9	RTC Test Register/Divides Register—MBAR + 0x0820	
	Chapter 8 SDRAM Memory Controller	
8.1	Overview	Q 1
8.2	Terminology and Notation	
8.1.1	"Endian"-ness	
8.3	Features	
8.3.1	Devices Supported	
8.4	Functional Description	
8.4.1	External Signals (SDRAM Side)	
8.4.2	Block Diagram	
8.4.3	Transfer Size	
8.4.4	Commands	
8.4.4.1	Load Mode/Extended Mode Register Command	
8.4.4.2	Precharge All Banks Command	
J. 1. 1.2	11001mt 50 1111 Dunite Communic	17

MPC5200B Users Guide, Rev. 1

Paragraph Number		Page Number
8.4.4.3	Bank Active Command	8-14
8.4.4.4	Read Command	8-14
8.4.4.5	Write Command	8-14
8.4.4.6	Auto Refresh Command	8-15
8.4.4.7	Self Refresh and Power Down Commands	8-15
8.5	Operation	8-15
8.5.1	Power-Up Initialization	8-15
8.5.2	Read Clock	8-16
8.5.2.1	Read Clock Programming Algorithm	8-16
8.6	Programming the SDRAM Controller	8-17
8.7	Memory Controller Registers (MBAR+0x0100:0x010C)	8-18
8.7.1	Mode Register—MBAR + 0x0100	8-18
8.7.2	Control Register—MBAR + 0x0104	8-19
8.7.3	Configuration Register 1—MBAR + 0x0108	8-21
8.7.4	Configuration Register 2—MBAR + 0x010C	8-23
8.8	Address Bus Mapping	
8.8.1	Example—Physical Address Multiplexing	
	Chapter 9 LocalPlus Bus (External Bus Interface)	
9.1	Overview	9-1
9.2	Features	9-1
9.3	Interface	
9.3.1	External Signals	
9.3.2	Block Diagram	
9.4	Modes of Operation	
9.4.1	Non-MUXed Mode	
9.4.2	MUXed Mode	
9.4.2.1	Address Tenure	
9.4.2.2	Data Tenure	
9.5	Configuration	
9.5.1	Boot Configuration	
9.5.2	Chip Selects Configuration	
9.5.3	Reset Configuration	
9.6	DMA (BestComm) Interface (SCLPC)	
9.7	Programmer's Model	
9.7.1	Interrupt and Bus Errors	
9.7.2	Chip Select/LPC Registers—MBAR + 0x0300	
9.7.2.1	Chip Select 0/Boot Configuration Register—MBAR + 0x0300	
9.7.2.2	Chip Select 1 Configuration Register—MBAR + 0x0304	
9.7.2.3	Chip Select Control Register—MBAR + 0x0318	
9.7.2.4	Chip Select Status Register—MBAR + 0x031C	
9.7.2.5	Chip Select Burst Control Register—MBAR + 0x0328	
9.7.2.6	Chip Select Deadcycle Control Register—MBAR + 0x032C	
9.7.3	SCLPC Registers—MBAR + 0x3C00	
9.7.3.1	SCLPC Packet Size Register—MBAR + 0x3C00	
9.7.3.2	SCLPC Start Address Register—MBAR + 0x3C04	
9.7.3.3	SCLPC Control Register—MBAR + 0x3C08	
9.7.3.4	SCLPC Enable Register—MBAR + 0x3C0C	
9.7.3.5	SCLPC Bytes Done Status Register—MBAR + 0x3C14	
9.7.4	SCLPC FIFO Registers—MBAR + 0x3C40	
9.7.4.1	LPC Rx/Tx FIFO Data Word Register—MBAR + 0x3C40	
9.7.4.2	LPC Rx/Tx FIFO Status Register—MBAR + 0x3C44	9-/.N

Paragraph Number	N	Page Number
9.7.4.4	LPC Rx/Tx FIFO Alarm Register—MBAR + 0x3C4C	9-30
9.7.4.5	LPC Rx/Tx FIFO Read Pointer Register—MBAR + 0x3C50	9-30
9.7.4.6	LPC Rx/Tx FIFO Write Pointer Register—MBAR + 0x3C54	9-31
	Chapter 10 PCI Controller	
10.1	Overview	10-1
10.1.1	Features	10-1
10.1.2	Block Diagram	10-2
10.2	PCI External Signals	10-2
10.2.1	PCI_AD[31:0] - Address/Data Bus	
10.2.2	PCI_CXBE[3:0] - Command/Byte Enables	
10.2.3	PCI_DEVSEL - Device Select	
10.2.4	PCI_FRAME - Frame	
10.2.5	PCI_IDSEL - Initialization Device Select	
10.2.6	PCI_IRDY - Initiator Ready	
10.2.6.1	PCI_PAR - Parity	
10.2.7	PCI_CLK - PCI Clock	
10.2.8	PCI_PERR - Parity Error	
10.2.9	PCI_RST - Reset	
10.2.10	PCI_SERR - System Error	
10.2.11	PCI_STOP - Stop	
10.2.12	PCI_TRDY - Target Ready	
10.3	Registers	
10.3.1	PCI Controller Type 0 Configuration Space	
10.3.1.1	Device ID/ Vendor ID Registers PCIIDR(R) —MBAR + 0x0D00	
10.3.1.2	Status/Command Registers PCISCR(R/RW/RWC) —MBAR + 0x0D04	
10.3.1.3	Revision ID/ Class Code Registers PCICCRIR(R) —MBAR + 0x0D08	
10.3.1.4	Configuration 1 Register PCICR1(R/RW) —MBAR + 0x0D0C	
10.3.1.5	Base Address Register 0 PCIBAR0(RW) —MBAR + 0x0D10	
10.3.1.6	Base Address Register 1 PCIBAR1(RW) —MBAR + 0x0D14	
10.3.1.7	CardBus CIS Pointer Register PCICCPR(RW) —MBAR + 0x0D28	
10.3.1.8	Subsystem ID/ Subsystem Vendor ID Registers PCISID(R)—MBAR + 0x0D2C	
10.3.1.9	Expansion ROM Base Address PCIERBAR(R) —MBAR + 0x0D30	
10.3.1.10	Capabilities Pointer (Cap_Ptr) PCICPR(R)—MBAR + 0x0D34	
10.3.1.11	Configuration 2 Register PCICR2 (R/RW) —MBAR + 0x0D3C	
10.3.2	General Control/Status Registers	
10.3.2.1	Global Status/Control Register PCIGSCR(RW) —MBAR + 0x0D60	
10.3.2.2	Target Base Address Translation Register 0 PCITBATR0(RW) —MBAR + 0x0D64	
10.3.2.3	Target Base Address Translation Register 1 PCITBATR1(RW) —MBAR + 0x0D68	
10.3.2.4	Target Control Register PCITCR(RW) —MBAR + 0x0D6C	
10.3.2.5	Initiator Window 0 Base/Translation Address Register PCIIW0BTAR(RW)—MBAR + 0x0D70	
10.3.2.6	Initiator Window 1 Base/Translation Address Register PCIIW1BTAR(RW) —MBAR + 0x0D74	
10.3.2.7	Initiator Window 2 Base/Translation Address Register PCIIW2BTAR(RW) —MBAR + 0x0D78	
10.3.2.8	Initiator Window Configuration Register PCIIWCR(RW) —MBAR + 0x0D80	
10.3.2.9	Initiator Control Register PCIICR(RW) —MBAR + 0x0D84	
10.3.2.10	Initiator Status Register PCIISR(RWC) —MBAR + 0x0D88	
10.3.2.11	PCI Arbiter Register PCIARB(RW) —MBAR + 0x0D8C	
10.3.2.12	Configuration Address Register PCICAR (RW) —MBAR + 0x0DF8	
10.3.3	Communication Sub-System Interface Registers	
10.3.3.1	Multi-Channel DMA Transmit Interface	
10.3.3.1.1	Tx Packet Size PCITPSR(RW) —MBAR + 0x3800	
10.3.3.1.2 10.3.3.1.3	Tx Start Address PCITSAR(RW) —MBAR + 0x3804 Tx Transaction Control Register PCITTCR(RW) —MBAR + 0x3808	
10.3.3.1.3	17 Transaction Control Register Ferri Terr(RW) — PIDAR + 075000	10-22

MPC5200B Users Guide, Rev. 1

Paragraph Number		Page Number
10.3.3.1.4	Tx Enables PCITER(RW)—MBAR + 0x380C	10-24
10.3.3.1.5	Tx Next Address PCITNAR(R) —MBAR + 0x3810	
10.3.3.1.6	Tx Last Word PCITLWR(R) —MBAR + 0x3814	
10.3.3.1.7	Tx Done Counts PCITDCR(R) —MBAR + 0x3818	
10.3.3.1.8	Tx Status PCITSR(RWC) —MBAR + 0x381C	
10.3.3.1.9	Tx FIFO Data Register PCITFDR(RW) —MBAR + 0x3840	10-28
10.3.3.1.10	Tx FIFO Status Register PCITFSR(R/RWC) —MBAR + 0x3844	
10.3.3.1.11	Tx FIFO Control Register PCITFCR(RW) —MBAR + 0x3848	
10.3.3.1.12	Tx FIFO Alarm Register PCITFAR(RW) —MBAR + 0x384C	
10.3.3.1.13	Tx FIFO Read Pointer Register PCITFRPR(RW) —MBAR + 0x3850	
10.3.3.1.14	Tx FIFO Write Pointer Register PCITFWPR(RW) —MBAR + 0x3854	
10.3.3.2	Multi-Channel DMA Receive Interface	
10.3.3.2.1	Rx Packet Size PCIRPSR(RW) —MBAR + 0x3880	
10.3.3.2.2	Rx Start Address PCIRSAR (RW)—MBAR + 0x3884	
10.3.3.2.3	Rx Transaction Control Register PCIRTCR(RW) —MBAR + 0x3888	
10.3.3.2.4	Rx Enables PCIRER (RW) —MBAR + 0x388C	
10.3.3.2.5	Rx Next Address PCIRNAR(R) —MBAR + 0x3890	
10.3.3.2.6	Rx Last Word PCIRLWR(R) —MBAR + 0x3894	10-35
10.3.3.2.7	RxDone Counts PCIRDCR(R) —MBAR + 0x3898	
10.3.3.2.8	Rx Status PCIRSR (R/sw1) —MBAR + 0x389C	
10.3.3.2.9	Rx FIFO Data Register PCIRFDR(RW) —MBAR + 0x38C0	
10.3.3.2.10	Rx FIFO Status Register PCIRFSR(R/sw1) —MBAR + 0x38C4	
10.3.3.2.11	Rx FIFO Control Register PCIRFCR(RW) —MBAR + 0x38C8	
10.3.3.2.12	Rx FIFO Alarm Register PCIRFAR(RW) —MBAR + 0x38CC	10-40
10.3.3.2.13	Rx FIFO Read Pointer Register PCIRFRPR(RW) —MBAR + 0x38D0	
10.3.3.2.14	Rx FIFO Write Pointer Register PCIRFWPR (RW) —MBAR + 0x38D4	10-41
10.4	Functional Description	10-41
10.4.1	PCI Bus Protocol	10-41
10.4.1.1	PCI Bus Background	10-41
10.4.1.2	Basic Transfer Control	
10.4.1.3	PCI Transactions	
10.4.1.4	PCI Bus Commands	
10.4.1.5	Addressing	
10.4.1.5.1	Memory space addressing	
10.4.1.5.1	I/O space addressing	
10.4.1.5.3	Configuration space addressing and transactions	
10.4.1.5.4	Address decoding	
10.4.1.5.4	Initiator Arbitration	
10.4.2.1	Priority Scheme	
10.4.3		
	Configuration Interface	
10.4.4	XL bus Initiator Interface	
10.4.4.1	Endian Translation	
10.4.4.2	Configuration Mechanism	
10.4.4.2.1	Type 0 Configuration Translation	
10.4.4.2.2	Type 1 Configuration Translation	
10.4.4.2.3	Interrupt Acknowledge Transactions	
10.4.4.2.4	Special Cycle Transactions	
10.4.4.3	Transaction Termination	
10.4.5	XL bus Target Interface	
10.4.5.1	Reads from Local Memory	
10.4.5.2	Local Memory Writes	10-55
10.4.5.3	Data Translation	10-55
10.4.5.4	Target Abort	10-56
10.4.5.5	Latrule Disable	
10.4.6	Communication Sub-System Initiator Interface	
10.4.6.1	Access Width	

Paragraph Number		Page Number
10.4.6.2	Addressing	
10.4.6.3	Data Translation	
10.4.6.4	Initialization	
10.4.6.5	Restart and Reset	
10.4.6.6	PCI Commands	
10.4.6.7	FIFO Considerations	
10.4.6.8	Alarms	
10.4.6.9	Bus Errors	
10.4.7	PCI - Supported Clock Ratios	
10.4.8	Interrupts	
10.4.8.1	PCI Bus Interrupts	
10.4.8.2	Internal Interrupt	
10.5	PCI Arbiter	
10.6	Application Information	
10.6.1	XL bus Initiated Transaction Mapping	
10.6.2	Address Maps	
10.6.2.1	Address Translation	
10.6.2.1.1	Inbound Address Translation	
10.6.2.1.2	Outbound Address Translation	
10.6.2.1.3 10.6.3	Base Address Register OverviewXL bus Arbitration Priority	
	Chapter 11 ATA Controller	
11.1	Overview	11-1
11.2	BestComm Key Features	
11.21	BestComm Read	
11.2.2	BestComm Write	
11.3	ATA Register Interface	
11.3.1	ATA Host Registers—MBAR + 0x3A00	
11.3.1.1	ATA Host Configuration Register—MBAR + 0x3A00	
11.3.1.2	ATA Host Status Register—MBAR + 0x3A04	
11.3.1.3	ATA PIO Timing 1 Register—MBAR + 0x3A08	
11.3.1.4	ATA PIO Timing 2 Register—MBAR + 0x3A0C	
11.3.1.5	ATA Multiword DMA Timing 1 Register—MBAR + 0x3A10	
11.3.1.6	ATA Multiword DMA Timing 2 Register—MBAR + 0x3A14	
11.3.1.7	ATA Ultra DMA Timing 1 Register—MBAR + 0x3A18	
11.3.1.8	ATA Ultra DMA Timing 2 Register—MBAR + 0x3A1C	
11.3.1.9	ATA Ultra DMA Timing 3 Register—MBAR + 0x3A20	
11.3.1.10	ATA Ultra DMA Timing 4 Register—MBAR + 0x3A24	
11.3.1.11	ATA Ultra DMA Timing 5 Register—MBAR + 0x3A28	
11.3.1.12	ATA Share Count Register—MBAR + 0x3A2C	
11.3.2	ATA FIFO Registers—MBAR + 0x3A00	
11.3.2.1	ATA Rx/Tx FIFO Data Word Register—MBAR + 0x3A3C	
11.3.2.2	ATA Rx/Tx FIFO Status Register—MBAR + 0x3A40	
11.3.2.3	ATA Rx/Tx FIFO Control Register—MBAR + 0x3A44	
11.3.2.4	ATA Rx/Tx FIFO Alarm Register—MBAR + 0x3A48	
11.3.2.5	ATA Rx/Tx FIFO Read Pointer Register—MBAR + 0x3A4C	
11.3.2.6	ATA Rx/Tx FIFO Write Pointer Register—MBAR + 0x3A50	
11.3.3	ATA Drive Registers—MBAR + 0x3A00	
11.3.3.1	ATA Drive Device Control Register—MBAR + 0x3A5C	
11.3.3.2	ATA Drive Alternate Status Register—MBAR + 0x3A5C	
11.3.3.3	ATA Drive Data Register—MBAR + 0x3A60	
11.3.3.4	ATA Drive Features Register—MBAR + 0x3A64	

Paragraph Number		Page Number
11.3.3.5	ATA Drive Error Register—MBAR + 0x3A64	11-14
11.3.3.6	ATA Drive Sector Count Register—MBAR + 0x3A68	
11.3.3.7	ATA Drive Sector Number Register—MBAR + 0x3A6C	
11.3.3.8	ATA Drive Cylinder Low Register—MBAR + 0x3A70	11-16
11.3.3.9	ATA Drive Cylinder High Register—MBAR + 0x3A74	
11.3.3.10	ATA Drive Device/Head Register—MBAR + 0x3A78	
11.3.3.11	ATA Drive Device Command Register—MBAR + 0x3A7C	
11.3.3.12	ATA Drive Device Status Register—MBAR + 0x3A7C	11-19
11.4	ATA Host Controller Operation	11-20
11.4.1	PIO State Machine	
11.4.2	DMA State Machine	
11.4.2.1	Software Requirements	11-22
11.5	Signals and Connections	11-23
11.6	ATA Interface Description	11-24
11.7	ATA Bus Background	
11.7.1	Terminology	11-26
11.7.2	ATA Modes	11-27
11.7.3	ATA Addressing	
11.7.31	ATA Register Addressing	11-28
11.7.3.2	Drive Interrupt	
11.7.3.3	Sector Addressing	
11.7.3.4	Physical/Logical Addressing Modes	
11.7.4	ATA Transactions	
11.7.4.1	PIO Mode Transactions	
11.7.4.1.1	Class 1—PIO Read	
11.7.4.1.2	Class 2—PIO Write	
11.7.4.1.3	Class 3—Non-Data Command	
11.7.4.2	DMA Protocol	
11.7.4.3	Multiword DMA Transactions	
11.7.4.3.1 11.7.4.4	Class 4—DMA Command	
11.7.4.4		
11.8.1	ATA RESET/Power-Up Hardware Reset	
11.8.2	Software Reset	
11.8.2	ATA I/O Cable Specifications	
11.9	Chapter 12 Universal Serial Bus (USB)	
12.1	Overview	12_1
12.1	Data Transfer Types	
12.3	Host Controller Interface	
12.3.1	Communication Channels	
12.3.2	Data Structures	
12.4	Host Control (HC) Operational Registers	
12.4.1	Programming Note	
12.4.2	Control and Status Partition—MBAR + 0x1000	
12.4.2.1	USB HC Revision Register—MBAR + 0x1000	
12.4.2.1	USB HC Control Register—MBAR + 0x1000	
12.4.2.3	USB HC Command Status Register—MBAR + 0x1004	
12.4.2.4	USB HC Command Status Register—MBAR + 0x1006 USB HC Interrupt Status Register —MBAR + 0x1006	
12.4.2.5	USB HC Interrupt Status Register—MBAR + 0x 1000	
12.4.2.6	USB HC Interrupt Disable Register—MBAR + 0x 1010	
12.4.3	Memory Pointer Partition—MBAR + 0x1018	
12.4.3.1	USB HC HCCA Register—MBAR + 0x1018	
12.7.3.1	ODD THE TREET REGISTED WILL WITH ANTOLO	12-13

Paragraph Number		Page Number
12.4.3.2	USB HC Period Current Endpoint Descriptor Register —MBAR + 0x101C	
12.4.3.3	USB HC Control Head Endpoint Descriptor Register —MBAR + 0x1020	
12.4.3.4	USB HC Control Current Endpoint Descriptor Register —MBAR + 0x1024	
12.4.3.5	USB HC Bulk Head Endpoint Descriptor Register—MBAR + 0x1028	12-14
12.4.3.6	USB HC Bulk Current Endpoint Descriptor Register—MBAR + 0x102C	12-15
12.4.3.7	USB HC Done Head Register—MBAR + 0x1030	12-15
12.4.4	Frame Counter Partition—MBAR + 0x1034	12-16
12.4.4.1	USB HC Frame Interval Register—MBAR + 0x1034	12-16
12.4.4.2	USB HC Frame Remaining Register—MBAR + 0x1038	12-17
12.4.4.3	USB HC Frame Number Register—MBAR + 0x103C	12-17
12.4.4.4	USB HC Periodic Start Register—MBAR + 0x1040	12-18
12.4.4.5	USB HC LS Threshold Register—MBAR + 0x1044	12-18
12.4.5	Root Hub Partition—MBAR + 0x1048	12-19
12.4.5.1	USB HC Rh Descriptor A Register—MBAR + 0x1048	12-19
12.4.5.2	USB HC Rh Descriptor B Register—MBAR + 0x104C	12-20
12.4.5.3	USB HC Rh Status Register—MBAR + 0x1050	12-21
12.4.5.4	USB HC Rh Port1 Status Register—MBAR + 0x1054	12-22
12.4.5.5	USB HC Rh Port2 Status Register—MBAR + 0x1058	12-26
	chapter 13 BestComm	
13.1	Overview	13-1
13.2	BestComm Functional Description	13-1
13.3	Features summary	
13.4	Descriptors	13-2
13.5	Tasks	
13.6	Memory Map/ Register Definitions	
13.7	Task Table (Entry Table)	
13.8	Task Descriptor Table	
13.9	Variable Table	13-3
13.10	Function Descriptor Table	13-3
13.11	Context Save Area	13-3
13.12	BestComm DMA Registers—MBAR+0x1200	13-3
13.12.1	SDMA Task Bar Register—MBAR + 0x1200	13-4
13.12.2	SDMA Current Pointer Register—MBAR + 0x1204	
13.12.3	SDMA End Pointer Register—MBAR + 0x1208	13-5
13.12.4	SDMA Variable Pointer Register—MBAR + 0x120C	13-5
13.12.5	SDMA Interrupt Vector, PTD Control Register—MBAR + 0x1210	
13.12.6	SDMA Interrupt Pending Register—MBAR + 0x1214	13-6
13.12.7	SDMA Interrupt Mask Register—MBAR + 0x1218	13-7
13.12.8	SDMA Task Control 0 Register—MBAR + 0x121C	13-8
13.12.9	SDMA Task Control 2 Register—MBAR + 0x1220	13-9
13.12.10	SDMA Task Control 4 Register—MBAR + 0x1224	13-10
13.12.11	SDMA Task Control 6 Register—MBAR + 0x1228	13-10
13.12.12	SDMA Task Control 8 Register—MBAR + 0x122C	13-11
13.12.13	SDMA Task Control A Register—MBAR + 0x1230	
13.12.14	SDMA Task Control C Register—MBAR + 0x1234	
13.12.15	SDMA Task Control E Register—MBAR + 0x1238	
13.12.16	SDMA Initiator Priority 0 Register—MBAR + 0x123C	
13.12.17	SDMA Initiator Priority 4 Register—MBAR + 0x1240	
13.12.18	SDMA Initiator Priority 8 Register—MBAR + 0x1244	13-14
13.12.19	SDMA Initiator Priority 12 Register—MBAR + 0x1248	
	SDMA Initiator Priority 16 Register—MBAR + 0x124C	
13.12.20	SDIVIA Illitiator i fronty to register—WIDAR + 0x124C	

MPC5200B Users Guide, Rev. 1

Paragraph Number		Page Number
13.12.22	SDMA Initiator Priority 24 Register—MBAR + 0x1254	13-17
13.12.23	SDMA Initiator Priority 28 Register—MBAR + 0x1258	13-18
13.12.24	SDMA Requestor MuxControl—MBAR + 0x125C	13-19
13.12.25	SDMA task Size0—MBAR + 0x1260	13-21
13.12.26	SDMA task 0 & task Size 1 map	13-21
13.12.27	SDMA Reserved Register 1—MBAR + 0x1268	13-22
13.12.28	SDMA Reserved Register 2—MBAR + 0x126C	13-22
13.12.29	SDMA Debug Module Comparator 1, Value 1 Register—MBAR + 0x1270	13-22
13.12.30	SDMA Debug Module Comparator 2, Value 2 Register—MBAR + 0x1274	13-23
13.12.31	SDMA Debug Module Control Register—MBAR + 0x1278	
13.12.32	SDMA Debug Module Status Register—MBAR + 0x127C	13-25
13.13	On-Chip SRAM	13-26
13.14	Programming Model	13-26
13.14.1	Task Table	13-26
13.14.1.1	Integer Mode	13-28
13.14.1.2	Pack	13-28
13.14.2	Variable Table	13-28
	Chapter 14 Fast Ethernet Controller (FEC)	
14.1	Overview	14-1
14.1.1	Features	
14.2	Modes of Operation	
14.2.1	Full- and Half-Duplex Operation	
14.2.2	10 Mbps and 100 Mbps MII Interface Operation	
14.2.3	10 Mbps 7-Wire Interface Operation	
14.2.4	Address Recognition Options	
14.2.5	Internal Loopback	14-3
14.3	I/O Signal Overview	14-3
14.3.1	Detailed Signal Descriptions	
14.3.1.1	MII Ethernet MAC-PHY Interface	
14.3.1.2	MII Management Frame Structure	14-5
14.3.1.2.1	MII Management Register Set	14-6
14.4	FEC Memory Map and Registers	
14.4.1	Top Level Module Memory Map	14-7
14.4.2	Control and Status (CSR) Memory Map	14-7
14.4.3	MIB Block Counters Memory Map	14-8
14.5	FEC Registers—MBAR + 0x3000	14-10
14.5.1	FEC ID Register—MBAR + 0x3000	14-11
14.5.2	FEC Interrupt Event Register—MBAR + 0x3004	14-12
14.5.3	FEC Interrupt Enable Register—MBAR + 0x3008	14-14
14.5.4	FEC Rx Descriptor Active Register—MBAR + 0x3010	14-14
14.5.5	FEC Tx Descriptor Active Register—MBAR + 0x3014	14-15
14.5.6	FEC Ethernet Control Register—MBAR + 0x3024	14-16
14.5.7	FEC MII Management Frame Register—MBAR + 0x3040	14-17
14.5.8	FEC MII Speed Control Register—MBAR + 0x3044	14-18
14.5.9	FEC MIB Control Register—MBAR + 0x3064	14-19
14.5.10	FEC Receive Control Register—MBAR + 0x3084	14-20
14.5.11	FEC Hash Register—MBAR + 0x3088	14-21
14.5.12	FEC Tx Control Register—MBAR + 0x30C4	14-21
14.5.13	FEC Physical Address Low Register—MBAR + 0x30E4	14-22
14.5.14	FEC Physical Address High Register—MBAR + 0x30E8	14-23
14.5.15	FEC Opcode/Pause Duration Register—MBAR + 0x30EC	14-23
14.5.16	FEC Descriptor Individual Address 1 Registe—MBAR + 0x3118	14-24

Paragraph Number		Page Number
14.5.17	FEC Descriptor Individual Address 2 Register—MBAR + 0x311C	
14.5.18	FEC Descriptor Group Address 1 Register—MBAR + 0x3120	
14.5.19	FEC Descriptor Group Address 2 Register—MBAR + 0x3124	
14.5.20	FEC Tx FIFO Watermark Register—MBAR + 0x3144	
14.6	FIFO Interface	
14.6.1	FEC Rx FIFO Data Register—MBAR + 0x3184	
14.7	FEC Tx FIFO Data Register—MBAR + 0x31A4	
14.7.1	FEC Rx FIFO Status Register—MBAR + 0x3188	
14.8	FEC Tx FIFO Status Register—MBAR + 0x31A8	
14.8.1	FEC Rx FIFO Control Register—MBAR + 0x318C	
14.8.2	FEC Rx FIFO Last Read Frame Pointer Register—MBAR + 0x3190	
14.8.3	FEC Rx FIFO Last Write Frame Pointer Register—MBAR + 0x3194	
14.8.4	FEC Rx FIFO Alarm Pointer Register—MBAR + 0x3198	
14.8.5	FEC Rx FIFO Read Pointer Register—MBAR + 0x319C	
14.8.6	FEC Rx FIFO Write Pointer Register—MBAR + 0x31A0	
14.8.7	FEC Reset Control Register—MBAR + 0x31C4	
14.8.8	FEC Transmit FSM Register—MBAR + 0x31C8	
14.9	Initialization Sequence	
14.9.1	Hardware Controlled Initialization	
14.9.2	User Initialization (Prior to Asserting ETHER_EN)	
14.9.2.1	Microcontroller Initialization	
14.9.3	Frame Control/Status Words	
14.9.3.1	Receive Frame Status Word	
14.9.3.2	Transmit Frame Control Word	
14.9.4	Network Interface Options	
14.9.5	FEC Frame Reception	
14.9.6	Ethernet Address Recognition	
14.9.7	Full-Duplex Flow Control	
14.9.8	Inter-Packet Gap Time	
14.9.9	Collision Handling	
14.9.10 14.9.11	Internal and External Loopback	
	Ethernet Error-Handling Procedure	
14.9.11.1 14.9.11.2		
14.9.11.2	Chapter 15 Programmable Serial Controllers (PSC)	
15.1	Overview	15-1
15.1.1	PSC Functions Overview	15-1
15.1.2	Features	15-2
15.2	PSC Registers—MBAR + 0x2000, 0x2200, 0x2400, 0x2600, 0x2800, 0x2C00	15-3
15.2.1	Mode Register 1 (0x00)—MR1	15-5
15.2.2	Mode Register 2 (0x00) — MR2	15-6
15.2.3	Status Register (0x04) — SR	15-7
15.2.4	Clock Select Register (0x04) — CSR	15-11
15.2.5	Command Register (0x08)—CR	15-11
15.2.6	Rx Buffer Register (0x0C) — RB	15-13
15.2.7	Tx Buffer Register (0x0C)—TB	15-15
15.2.8	Input Port Change Register (0x10) — IPCR	15-16
15.2.9	Auxiliary Control Register (0x10) — ACR	15-17
15.2.10	Interrupt Status Register (0x14) — ISR	
15.2.11	Interrupt Mask Register (0x14)—IMR	
15.2.12	Counter Timer Upper Register (0x18)—CTUR	
15.2.13	Counter Timer Lower Register (0x1C)—CTLR	15-20

Paragraph Number		Page Number
15.2.14	Codec Clock Register (0x20)—CCR	15-21
15.2.15	Interrupt Vector Register (0x30)—IVR	15-23
15.2.16	Input Port Register (0x34)—IP	15-23
15.2.17	Output Port 1 Bit Set (0x38)—OP1	15-24
15.2.18	Output Port 0 Bit Set (0x3C)—OP0	15-24
15.2.19	Serial Interface Control Register (0x40)—SICR	15-25
15.2.20	Infrared Control 1 (0x44)—IRCR1	15-27
15.2.21	Infrared Control 2 (0x48)—IRCR2	15-28
15.2.22	Infrared SIR Divide Register (0x4C)—IRSDR	15-29
15.2.23	Infrared MIR Divide Register (0x50)—IRMDR	15-30
15.2.24	Infrared FIR Divide Register (0x54)—IRFDR	15-31
15.2.25	Rx FIFO Number of Data (0x58)—RFNUM	15-33
15.2.26	Tx FIFO Number of Data (0x5C)—TFNUM	15-33
15.2.27	Rx FIFO Data (0x60)—RFDATA	15-33
15.2.28	Rx FIFO Status (0x64)—RFSTAT	15-33
15.2.29	Rx FIFO Control (0x68)—RFCNTL	15-34
15.2.30	Rx FIFO Alarm (0x6E)—RFALARM	
15.2.31	Rx FIFO Read Pointer (0x72)—RFRPTR	
15.2.32	Rx FIFO Write Pointer(0x76)—RFWPTR	
15.2.33	Rx FIFO Last Read Frame (0x7A)—RFLRFPTR	
15.2.34	Rx FIFO Last Write Frame PTR (0x7C)—RFLWFPTR	
15.2.35	Tx FIFO Data (0x80)—TFDATA	
15.2.36	Tx FIFO Status (0x84)—TFSTAT	
15.2.37	Tx FIFO Control (0x88)—TFCNTL	
15.2.38	Tx FIFO Alarm (0x8E)—TFALARM	
15.2.39	Tx FIFO Read Pointer (0x92)—TFRPTR	
15.2.40	Tx FIFO Write Pointer (0x96)—TFWPTR	
15.2.41	Tx FIFO Last Read Frame (0x9A)—TFLRFPTR	
15.2.42	Tx FIFO Last Write Frame PTR (0x9C)—TFLWFPTR	
15.3	PSC Operation Modes	
15.3.1	PSC in UART Mode	
15.3.1.1	Block Diagram and Signal Definition for UART Mode	
15.3.1.2	UART Clock Generation	
15.3.1.3	Transmitting in UART Mode	
15.3.1.4	Receiver in UART Mode	
15.3.1.5	Configuration Sequence for UART Mode	
15.3.2	PSC in Codec Mode	
15.3.2.1	Block Diagram and Signal Definition for Codec Mode	
15.3.2.2	Codec Clock and Frame Generation	
15.3.2.2.1	BitClk and Frame in "normal" Codec and I2S Mode	
15.3.2.2.2	BitClk and Frame in "Cell Phone" Mode	
15.3.2.2.3	BitClk and Frame in SPI Mode	
15.3.2.3	Transmitting and Receiving in Codec Mode	15-49
15.3.2.4	Configuration Sequence Examples for Codec Modes	15-50
15.3.2.4.1	PSC1 in 16-bit "soft Modem" Slave Mode	15-50
15.3.2.4.2	PSC2 in 32-bit "soft Modem" Master Mode	15-51
15.3.2.4.3	PSC 1 in Cell Phone Master Mode, PSC2 is Cell Phone Slave	
15.3.2.4.4	PSC2 in SPI Slave Mode	
15.3.2.4.5	PSC3 in SPI Master Mode	
15.3.2.4.6	PSC1 in I2S Master Mode	
15.3.3	PSC in AC97 Mode	
15.3.3.1	Block Diagram and Signal Definition for AC97 Mode	
15.3.3.2	Transmitting and Receiving in AC97 Mode	
15.3.3.3	AC97 Low-Power Mode	15-57

Paragraph Number		Page Number
15.3.3.4	Configuration Sequence for AC97 Mode	
15.3.4	PSC in SIR Mode	
15.3.4.1	Block Diagram and Signal Definition for SIR Mode	
15.3.4.2	Transmitting and Receiving in SIR Mode	
15.3.4.3	Configuration Sequence Example for SIR Mode	
15.3.5	PSC in MIR Mode	
15.3.5.1	Block Diagram and Signal Definition for MIR Mode	
15.3.5.2	Transmitting and Receiving in MIR Mode	
15.3.5.3	Serial Interaction Pulse (SIP)	
15.3.5.4	Configuration Sequence Example for MIR Mode	
15.3.6	PSC in FIR Mode	
15.3.6.1	Block Diagram and Signal Definition for FIR Mode	
15.3.6.2	Transmitting and Receiving in FIR Mode	
15.3.6.3	Configuration Sequence Example for FIR Mode	
15.3.7	PSC FIFO System	
15.3.7.1	RX FIFO	
15.3.7.2	TX FIFO	
15.3.8	Looping Modes	
15.3.8.1	Automatic Echo Mode	
15.3.8.2	Local Loop-Back Mode	
15.3.8.3	Remote Loop-Back Mode	
15.3.9	Multidrop Mode	15-68
	Chapter 16 XLB Arbiter	
16.1	Overview	16-1
16.1.1	Purpose	16-1
16.1.1.1	Prioritization	16-1
16.1.1.2	Bus Grant Mechanism	16-2
16.1.1.2.1	Bus Grant	16-2
16.1.1.2.2	Parking Modes	16-2
16.1.1.3	Configuration, Status, and Interrupt Generation	16-2
16.1.1.4	Watchdog Functions	16-2
16.1.1.4.1	Timer Functions	
16.1.1.4.2	Other Tenure Ending Conditions	
16.2	XLB Arbiter Registers—MBAR + 0x1F00	
16.2.1	Arbiter Configuration Register (R/W)—MBAR + 0x1F40	
16.2.2	Arbiter Version Register (R)—MBAR + 0x1F44	
16.2.3	Arbiter Status Register (R/W)—MBAR + 0x1F48	
16.2.4	Arbiter Interrupt Enable Register (R/W)—MBAR + 0x1F4C	
16.2.5	Arbiter Address Capture Register (R)—MBAR + 0x1F50	
16.2.6	Arbiter Bus Signal Capture Register (R)—MBAR + 0x1F54	
16.2.7	Arbiter Address Tenure Time-Out Register (R/W)—MBAR + 0x1F58	
16.2.8	Arbiter Data Tenure Time-Out Register (R/W)—MBAR + 0x1F5C	
16.2.9	Arbiter Bus Activity Time-Out Register (R/W)—MBAR + 0x1F60	
16.2.10	Arbiter Master Priority Enable Register (R/W)—MBAR + 0x1F64	
16.2.11	Arbiter Master Priority Register (R/W)—MBAR + 0x1F68	
16.2.12	Arbiter Snoop Window Register (RW)—MBAR + 0x1F70	
16.2.13	Arbiter Reserved Registers—MBAR + 0x1F00-1F3C, 0x1F74-1FFF	16-13

TOC-14 Freescale Semiconductor

Paragraph Number		Page Numbe
	Chapter 17 Serial Peripheral Interface (SPI)	
17.1	Overview	17-1
17.1.1	Features	17-1
17.1.2	Modes of Operation	17-1
17.2	SPI Signal Description	17-2
17.2.1	Master In/Slave Out (MISO)	17-2
17.2.2	Master Out/Slave In (MOSI)	17-2
17.2.3	Serial Clock (SCK)	17-3
17.2.4	Slave-Select (SS)	
17.3	SPI Registers—MBAR + 0x0F00	17-3
17.3.1	SPI Control Register 1—MBAR + 0x0F00	17-3
17.3.2	SPI Control Register 2—MBAR + 0x0F01	
17.3.3	SPI Baud Rate Register—MBAR + 0x0F04	
17.3.4	SPI Status Register —MBAR + 0x0F05	
17.3.5	SPI Data Register—MBAR + 0x0F09	
17.3.6	SPI Port Data Register—MBAR + 0x0F0D	
17.3.7	SPI Data Direction Register—MBAR + 0x0F10	17-7
	Chapter 18 Inter-Integrated Circuit (I ² C)	
18.1	Overview	18-1
18.1.1	Features	18-1
18.2	I ² C Controller	18-2
18.2.1	START Signal	18-2
18.2.2	STOP Signal	18-2
18.2.2.1	Slave Address Transmission	18-3
18.2.2.2	Data Transfer	18-3
18.2.2.3	Acknowledge	18-3
18.2.2.4	Repeated Start	18-4
18.2.2.5	Clock Synchronization and Arbitration	18-4
18.3	I ² C Interface Registers	
18.3.1	I ² C Address Register (MADR)—MBAR + 0x3D00	18-5
18.3.2	I ² C Frequency Divider Register (MFDR)—MBAR + 0x3D04	
18.3.3	I ² C Control Register (MCR)—MBAR + 0x3D08	
18.3.4	I ² C Status Register (MSR)—MBAR + 0x3D0C	
18.3.5	I ² C Data I/O Register (MDR)—MBAR+ x3D10	
18.3.6	I ² C Interrupt Control Register—MBAR + 0x3D20	18-10
18.4	Initialization Sequence	
18.5	Transfer Initiation and Interrupt	18-11
18.5.1	Post-Transfer Software Response	
18.5.2	Slave Mode	18-12
	Chapter 19 Motorola Scalable CAN (MSCAN)	
19.1	Overview	
19.2	Features	
19.3	External Signals	
19.3.1	RXCAN — CAN Receiver Input Pin	
19.3.2	TXCAN — CAN Transmitter Output Pin	
19.4	CAN System	
19.5	Memory Map / Register Definition	
19.5.1	Module Memory Map	
19.5.2	Register Descriptions	
19.5.3	MSCAN Control Register 0 (CANCTL0)—MBAR + 0x0900	19-5

Paragraph Number		Page Number
19.5.4	MSCAN Control Register 1 (CANCTL1)—MBAR + 0x0901	19-6
19.5.5	MSCAN Bus Timing Register 0 (CANBTR0)—MBAR + 0x0904	19-8
19.5.6	MSCAN Bus Timing Register 1 (CANBTR1)—MBAR + 0x0905	19-8
19.5.7	MSCAN Receiver Flag Register (CANRFLG)—MBAR+0x0908	19-10
19.5.8	MSCAN Receiver Interrupt Enable Register (CANRIER)—MBAR + 0x0909	19-11
19.5.9	MSCAN Transmitter Flag Register (CANTFLG)—MBAR + 0x090C	
19.5.10	MSCAN Transmitter Interrupt Enable Register (CANTIER)—MBAR+0x090D	
19.5.11	MSCAN Transmitter Message Abort Request(CANTARQ)—MBAR + 0x0910	19-13
19.5.12	MSCAN Transmitter Message Abort Ack(CANTAAK)—MBAR +0x0911	19-14
19.5.13	MSCAN Transmit Buffer Selection (CANTBSEL)—MBAR + 0x0914	
19.5.14	MSCAN ID Acceptance Control Register (CANIDAC)—MBAR + 0x0915	
19.5.15	MSCAN Receive Error Counter Register (CANRXERR)—MBAR + 0x091C	
19.5.16	MSCAN Transmit Error Counter Register (CANTXERR)—MBAR + 0x091D	
19.5.17	MSCAN ID Acceptance Registers (CANIDAR0-7)—MBAR + 0x0915	
19.5.18	MSCAN ID Mask Register (CANIDMR0-7)—MBAR + 0x0928	
19.6	Programmer's Model of Message Storage	
19.6.1	Identifier Registers (IDR0-3)	
19.6.2	Data Segment Registers (DSR0-7)	
19.6.3	Data Length Register (DLR)	
19.6.4	MSCAN Transmit Buffer Priority Register (TBPR)—MBAR + 0x0979	
19.6.5	MSCAN Time Stamp Register High (TSRH)—MBAR + 0x097C	
19.6.6	MSCAN Time Stamp Register Low (TSRL)—MBAR + 0x097D	
19.7	Functional Description	
19.7.1	General	
19.7.2	Message Storage	
19.7.2.1	Message Transmit Background	
19.7.2.2	Transmit Structures	
19.7.2.3	Receive Structures	
19.7.3	Identifier Acceptance Filter	
19.7.4	Protocol Violation Protection	
19.7.5	Clock System	
19.7.6	Timer Link	
19.7.7	Modes of Operation	
19.7.7.1	Normal Modes	
19.7.7.2	Listen-Only Mode	
19.7.8	Low Power Options	
19.7.8.1	CPU Run Mode	
19.7.8.2	CPU Sleep Mode	
19.7.8.3	CPU Deep Sleep Mode	
19.7.8.4	MSCAN Sleep Mode	
19.7.8.5	MSCAN Initialization Mode	
19.7.8.6	MSCAN Power Down Mode	
19.7.8.7	Programmable Wake-Up Function	
19.7.9	Description of Interrupt Operation	
19.7.9.1	Transmit Interrupt	
19.7.9.1	Receive Interrupt	
19.7.9.3	Wake-Up Interrupt	
19.7.9.4	Error Interrupt	
19.7.10	Interrupt Acknowledge	
19.7.10	Recovery from STOP or WAIT	19-37

Paragraph Number

Page Number

Chapter 20 Byte Data Link Controller (BDLC)

20.1	Overview	20-1
20.2	Features	20-1
20.3	Modes of Operation	
20.4	Block Diagram	
20.5	Signal Description	
20.6	Overview	
20.6.1	Detailed Signal Descriptions	
20.6.1.1	TXB - BDLC Transmit Pin	
20.6.1.2	RXB - BDLC Receive Pin	
20.7	Memory Map and Registers	
20.7.1	Overview	
20.7.2	Module Memory Map	
20.7.3	Register Descriptions	
20.7.3.1	BDLC Control Register 1 (DLCBCR1)—MBAR + 0x1300	
20.7.3.2	BDLC State Vector Register (DLCBSVR) - MBAR + 0x1300	
20.7.3.3	BDLC Control Register 2 (DLCBCR2) - MBAR + 0x1304	
20.7.3.4	BDLC Data Register (DLCBDR) - MBAR + 0x1305	
20.7.3.5	BDLC Analog Round Trip Delay Register (DLCBARD) - MBAR + 0x1308	
20.7.3.6	BDLC Rate Select Register (DLCBRSR) - MBAR + 0x1309	
20.7.3.7	BDLC Control Register (DLCSCR) - MBAR + 0x130C	
20.7.3.8	BDLC Status Register (DLCBSTAT) - MBAR + 0x130D	
20.8	Functional Description	
20.8.1	General	
20.8.1.1	J1850 Frame Format	
20.8.1.2	J1850 VPW Symbols	
20.8.1.3	J1850 VPW Valid/Invalid Bits & Symbols	
20.8.1.4	J1850 Bus Errors	
20.8.2	Mux Interface	
20.8.2.1	Mux Interface - Rx Digital Filter	
20.8.3	Protocol Handler	
20.8.3.1	Protocol Architecture	
20.8.4	Transmitting A Message	
20.8.4.1	BDLC Transmission Control Bits	
20.8.4.2	Transmitting Exceptions	
20.8.4.3	Aborting a Transmission	
20.8.5	Receiving A Message	
20.8.5.1	BDLC Reception Control Bits	
20.8.5.2	Receiving a Message with the BDLC module	
20.8.5.3	Filtering Received Messages	
20.8.5.4	Receiving Exceptions	
20.8.6	Transmitting An In-Frame Response (IFR)	
20.8.6.1	IFR Types Supported by the BDLC module	
20.8.6.2	BDLC IFR Transmit Control Bits	
20.8.6.3	Transmit Single Byte IFR	
20.8.6.4	Transmit Multi-Byte IFR 1	
20.8.6.5	Transmit Multi-Byte IFR 0	
20.8.6.6	Transmitting An IFR with the BDLC module	
20.8.6.7	Transmitting IFR Exceptions	
20.8.7	Receiving An In-Frame Response (IFR)	
20.8.7.1	Receiving an IFR with the BDLC module	
20.8.7.1	Receiving IFR Exceptions	
20.8.7.2	Special BDLC Module Operations	
-0.0.0	Special DDEC Module Operations	

Paragraph Number		Page Number
20.8.8.1	Transmitting Or Receiving A Block Mode Message	20-45
20.8.8.2	Transmitting Or Receiving A Message In 4X Mode	20-46
20.8.9	BDLC Module Initialization	20-47
20.8.9.1	Initialization Sequence	20-47
20.8.9.2	Initializing the Configuration Bits	20-48
20.8.9.3	Exiting Loopback Mode and Enabling the BDLC module	
20.8.9.4	Enabling BDLC Interrupts	20-48
20.9	Resets	
20.9.1	General	20-50
	Chapter 21 Debug Support and JTAG Interface	
21.1	Overview	21-1
21.2	TAP Link Module (TLM) and Slave TAP Implementation	21-1
21.3	TLM and TAP Signal Descriptions	21-4
21.3.1	Test Reset (TRST)	21-4
21.3.2	Test Clock (TCK)	21-4
21.3.3	Test Mode Select (TMS)	21-4
21.3.4	Test Data In (TDI)	21-4
21.3.5	Test Data Out (TDO)	21-5
21.4	Slave Test Reset (STRST)	21-5
21.4.1	Enable Slave—ENA[0:n]	21-5
21.4.2	Select DR Link—SEL[0:n]	21-5
21.4.3	Slave Test Data Out—STDO[0:n]	21-5
21.5	TAP State Machines	21-5
21.6	G2_LE Core JTAG/COP Serial Interface	21-6
21.7	TLM Link DR Instructions	21-7
21.7.1	TLM:TLMENA	21-8
21.7.2	TLM:PPCENA	21-8
21.8	TLM Test Instructions	21-8
21.8.1	IDCODE	21-8
21.8.1.1	Device ID Register	21-8
21.8.2	BYPASS	21-8
21.8.3	SAMPLE/PRELOAD	21-8
21.8.4	EXTEST	21-9
21.8.5	CLAMP	21-9
21.8.6	HIGHZ	21-9
21.9	G2. LE COP/BDM Interface	21-9

Appendix A Acronyms and Terms

Appendix B List of Registers

List of Figures

Figure		Page
Number		Number
1-1	Simplified Block Diagram—MPC5200	1-4
1-2	MPC5200-Based System	
2-1	272-Pin PBGA Pin Detail	
2-2	272-Pin PBGA — Top View	
2-3	MPC5200 Peripheral Muxing	
2-4	PSC1 Port Map—5 Pins	
2-5	PSC2 Port Map—5 Pins	
2-6	PSC3 Port Map—10 Pins	
2-7	USB Port Map—10 Pins	
2-8	Ethernet Output Port Map—8 Pins	
2-9	Ethernet Input / Control Port Map—10 Pins	
2-10	Timer Port Map—8 Pins	
2-11	PSC6 Port Map—4 Pins	
2-12	I ² C Port Map—4 Pins (two pins each, for two I ² Cs)	
4-1	Reset sequence	
4-2	PORESET Assertion	
4-3	Internal Hard Reset vs External HRESET Assertion	4-3
5-1	Primary Synchronous Clock Domains	5-2
5-2	MPC5200 Clock Relations	5-3
5-3	Timing Diagram—Clock Waveforms for SDRAM and DDR Memories	5-8
7-1	Interrupt Sources and Core Interrupt Pins	7-3
7-2	Interrupt Controller Routing Scheme	7-4
7-3	GPIO/Generic MUX Cell	7-24
7-4	Diagram—Suggested Crystal Oscillator Circuit	7-65
8-1	Block Diagram—SDRAM Subsystem Example	8-10
8-2	Block Diagram—SDRAM Memory Controller	8-12
8-3	Address Bus Mapping	8-25
9-1	LPC Concept Diagram	9-3
9-2	Muxed Mode Address Latching	9-3
9-3	Output Enable Signal	9-4
9-4	Timing Diagram—Non-MUXed Mode	9-6
9-5	Timing Diagram - MUXed Mode	9-9
10-1	PCI Block Diagram	10- 2
10-2	PCI Read Terminated by Master	10-43
10-3	PCI Write Terminated by Target	10-44
10-4	Contents of the AD Bus During Address Phase of a Type 0 Configuration Transaction	10-47
10-5	Contents of the AD Bus During Address Phase of a Type 1 Configuration Transaction	10-47
10-6	Initiator Arbitration Block Diagram	10-48
10-7	Type 0 Configuration Translation	10-52
10-8	Inbound Address Map	10-62
10-9	Outbound Address Map	10-63
11-1	ATA Controller Interface	11-1
11-2	Connections—Controller Cable, System Board, MPC5200	11-24
11-3	Pin Description—ATA Interface	11-26
11-4	ATA Sector Format	11-29
11-5	Timing Diagram—PIO Read Command (Class 1)	11-31
11-6	Timing Diagram—PIO Write Command (Class 2)	11-32
11-7	Timing Diagram—Non-Data Command (Class 3)	11-32
11-8	Flow Diagram—DMA Command Protocol	11-34
11-9	Timing Diagram—DMA Command (Class 4)	11-35
11-10	Timing Diagram—Reset Timing	11-37
12-1	USB Focus Areas	12-1

List of Figures

Figure Number		Page Number
12-2	Communication Channels	
12-3	Typical List Structure	
12-3	Interrupt ED Structure	12-4
12-4	Sample Interrupt Endpoint Schedule	
13-1	Task Table	13-27
14-1	Block Diagram—FEC	14-2
14-2	Ethernet Address Recognition - receive block decisions	14-39
14-3	Ethernet Address Recognition - microcode decisions	
15-1	PSC Functions Overview	15-1
15-2	Simplified Block Diagram	15-2
15-3	Signal configuration for a PSC/RS-232 interface	
15-4	Clocking Source Diagram	15-41
15-5	Timing Diagram—Transmitter	
15-6	Timing Diagram—Receiver	
15-7	PSC Codec Block Diagram	
15-8	PSC Codec Interface in Slave Mode	15-45
15-9	Clock Generation Diagram for Codec Mode	15-46
15-10	Clock distribution network in cell phone mode	
15-11	SPI Parameter	15-49
15-12	Timing Diagram—16-Bit Codec Interface (lsb First, DTS1 = 0)	15-50
15-13	Timing Diagram—8-Bit Codec Interface (msb First)	15-50
15-14	I2S Data Transmission	15-55
15-15	PSC AC97 Block Diagram	15-56
15-16	PSC - AC97 Interface	15-57
15-17	Timing Diagram—AC97 Interface	15-57
15-18	PSC SIR Block Diagram	15-59
15-19	Data Format in SIR Mode	
15-20	PSC MIR and FIR Block Diagram	15-61
15-21	Serial Interaction Pulse (SIP)	15-62
15-22	Data Format in FIR Mode	
15-23	PSC FIFO System	15-66
15-24	Automatic Echo	15-67
15-25	Local Loop-Back	15-68
15-26	Remote Loop-Back	
15-27	Timing Diagram—Multidrop Mode	15-69
16-1	Block Diagram of XLB Arbiter	16-1
17-1	Block Diagram—SPI	
18-1	Block Diagram—I ² C Module	
18-2	Timing Diagram—Start, Address Transfer and Stop Signal	
18-3	Timing Diagram—Data Transfer	
18-4	Timing Diagram—Receiver Acknowledgement	
18-5	Data Transfer, Combined Format	
18-6	Timing Diagram—Clock Synchronization	
18-7	Timing Diagram—Arbitration Procedure	18-5
19-1	MSCAN Block Diagram	
19-2	The CAN System	
19-3	User Model for Message Buffer Organization	
19-4	32-bit Maskable Identifier Acceptance Filter	
19-5	16-bit Maskable Identifier Acceptance Filters	
19-6	8-bit Maskable Identifier Acceptance Filters	
19-7	MSCAN Clocking Scheme	
19-8	Segments within the Bit Time	
19-9	Sleep Request / Acknowledge Cycle	
19-10	Simplified State Transitions for Entering/Leaving Sleep Mode	10.25

Figure		Page
Number		Number
19-11	Initialization Request/Acknowledge Cycle	19-35
20-1	BDLC Operating Modes State Diagram	20-2
20-2	BDLC Block Diagram	20-4
20-3	Types of In-Frame Response	20-10
20-4	J1850 Bus Message Format (VPW)	20-16
20-5	J1850 VPW Symbols	20-18
20-6	J1850 VPW Passive Symbols	20-22
20-7	J1850 VPW EOF and IFS Symbols	20-23
20-8	J1850 VPW Active Symbols	20-24
20-9	J1850 VPW BREAK Symbol	20-24
20-10	J1850 VPW Bitwise Arbitrations	20-25
20-11	BDLC Module Rx Digital Filter Block Diagram	20-28
20-12	BDLC Protocol Handler Outline	20-29
20-13	Basic BDLC Transmit Flowchart	20-33
20-14	Basic BDLC Receive Flowchart	20-36
20-15	Transmitting A Type 1 IFR	20-40
20-16	Transmitting A Type 2 IFR	20-41
20-17	Transmitting A Type 3 IFR	20-43
20-18	Receiving An IFR With the BDLC module	20-45
20-19	Basic BDLC Module Transmit Flowchart	20-47
20-20	Basic BDLC Module Initialization Flowchart	20-50
21-1	Generic TLM/TAP Architecture Diagram	21-2
21-2	Generic TAP Link Module (TLM) Diagram	21-3
21-3	Generic Slave TAP	21-4
21-4	State Diagram—TAP Controller	21-6
21-5	G2_LE Core JTAG/COP Serial Interface	21-7
21.6	COD Connector Diagram	21 11

List of Figures

Notes

Table Number		Page Number
2-1	Signals by Ball/Pin	
2-2	Signals by Signal Name	
2-3	LocalPlus Bus Address / Data Pin Assignments	
2-4	LocalPlus Pin Functions	2-14
2-5	LocalPlus Bus Address / Data Signals	
2-6	PCI Dedicated Signals	2-27
2-7	ATA Dedicated Signals	2-29
2-8	LocalPlus Dedicated Signals	2-30
2-9	PSC1 Pin Functions	2-31
2-10	PSC1 Functions by Pin	2-32
2-11	PSC2 Pin Functions	2-34
2-12	PSC2 Functions by Pin	2-35
2-13	PSC3 Pin Functions	2-37
2-14	PSC3 Pin Functions (cont.)	2-38
2-15	PSC3 Functions by Pin	2-38
2-16	USB Pin Functions	2-44
2-17	USB Pin Functions by Pin	
2-18	Ethernet Pin Functions	
2-19	Ethernet Pin Functions (cont.)	
2-20	Ethernet Output Functions by Pin	
2-21	Ethernet Input / Control Functions by Pin	
2-22	Timer Pin Functions	
2-23	Timer Functions by Pin	
2-24	PSC6 Pin Functions	
2-25	PSC6 Functions by Pin	
2-26	I2C Functions by Pin	
2-27	SDRAM Bus Pin Functions	
2-28	JTAG Access Port Pin	
2-29	CLOCK / RESET Pin Functions	
2-30	Dedicated GPIO Pin Function	
2-31	Systems Integration Unit Pin Functions	
3-1	Internal Register Memory Map	
4-1	Module Specific Reset Signals	
4-2	Reset Configuration Word Source Pins	
5-1	Clock Distribution Module	
5-2	System PLL Ratios	
5-3	MPC5200 Clock Ratios	
5-4	Typical System Clock Frequencies	
5-5	603e G2 LE Core Frequencies vs. XLB Frequencies	
5-6	603e G2_LE Core APLL Configuration Options	
5-7	SDRAM Memory Controller Clock Domain	
5-8	CDM JTAG ID Number Register	
5-9		
	CDM Proof County Provides	
5-10	CDM Bread Crumb Register	
5-11	CDM Configuration Register	
5-12	CDM Clark Fractional Divider Configuration Register	
5-13	CDM Clock Enable Register	
5-14	CDM System Oscillator Configuration Register	
5-15	CDM Clock Control Sequencer Configuration Register	
5-16	CDM Soft Reset Register	
5-17	CDM System PLL Status Register	
5-18	CDM PSC1 Mclock Config	5-20

Table Number		Page Number
5-19	CDM PSC2 Mclock Config	
5-20	CDM PSC3 Mclock Config	5-21
5-21	CDM PSC6 Mclock Config	5-22
6-1	SVR Values	6-1
7-1	Interrupt Sources	7-1
7-2	System Management Interrupt Pin Interrupts	7-2
7-3	Core Interrupt Pins Summary	7-2
7-4	ICTL Peripheral Interrupt Mask Register	7-5
7-5	ICTL Peripheral Priority and HI/LO Select 1 Register	7-7
7-6	ICTL Peripheral Priority and HI/LO Select 2 Register	7-8
7-7	ICTL Peripheral Priority and HI/LO Select 3 Register	7-8
7-8	ICTL External Enable and External Types Register	
7-9	ICTL Critical Priority and Main Interrupt Mask Register)	
7-10	ICTL Main Interrupt Priority and INT/SMI Select 1 Register	
7-11	ICTL Main Interrupt Priority and INT/SMI Select 2 Register	
7-12	ICTL PerStat, MainStat, CritStat Encoded Register	
7-13	ICTL Critical Interrupt Status All Register	7-15
7-14	ICTL Main Interrupt Status All Register	7-16
7-15	ICTL Peripheral Interrupt Status All Register	7-17
7-16	ICTL Bus Error Status Register	7-18
7-17	ICTL Main Interrupt Emulation All Register	7-19
7-18	ICTL Peripheral Interrupt Emulation All Register	7-20
7-19	ICTL IRQ Interrupt Emulation All Register	
7-20	GPIO Pin List	7-22
7-21	GPS Port Configuration Register	7-28
7-22	GPS Simple GPIO Enables Register	7-31
7-23	GPS Simple GPIO Open Drain Type Register	7-32
7-24	GPS Simple GPIO Data Direction Register	7-33
7-25	GPS Simple GPIO Data Output Values Register	7-36
7-26	GPS Simple GPIO Data Input Values Register	7-37
7-27	GPS GPIO Output-Only Enables Register	7-38
7-28	GPS GPIO Output-Only Data Value Out Register	7-39
7-29	GPS GPIO Simple Interrupt Enables Register	
7-30	GPS GPIO Simple Interrupt Open-Drain Emulation Register	
7-31	GPS GPIO Simple Interrupt Data Direction Register	7-41
7-32	GPS GPIO Simple Interrupt Data Value Out Register	7-42
7-33	GPS GPIO Simple Interrupt Interrupt Enable Register	7-42
7-34	GPS GPIO Simple Interrupt Interrupt Types Register	7-43
7-35	GPS GPIO Simple Interrupt Master Enable Register	7-44
7-36	GPS GPIO Simple Interrupt Status Register	7-44
7-37	GPW WakeUp GPIO Enables Register	7-46
7-38	GPW WakeUp GPIO Open Drain Emulation Register	7-46
7-39	GPW WakeUp GPIO Data Direction Register	
7-40	GPW WakeUp GPIO Data Value Out Register	7-48
7-41	GPW WakeUp GPIO Interrupt Enable Register	
7-42	GPW WakeUp GPIO Individual Interrupt Enable Register	7-49
7-43	GPW WakeUp GPIO Interrupt Types Register	7-50
7-44	GPW WakeUp GPIO Master Enables Register	
7-45	GPW WakeUp GPIO Data Input Values Register	
7-46	GPW WakeUp GPIO Status Register	
7-47	GPT 0 Enable and Mode Select Register	7-55
7-48	GPT 0 Counter Input Register	
7-49	GPT 0 PWM Configuration Register	7-59
7-50	GPT 0 Status Register	7.60

Table Number		Page Number
7-51	SLT 0 Terminal Count Register	7-62
7-52	SLT 0 Control Register	
7-53	SLT 0 Count Value Register	7-63
7-54	SLT 0 Timer Status Register	7-64
7-55	Real-Time Clock Signals	7-65
7-56	RTC Time Set Register	7-66
7-57	RTC Date Set Register	7-67
7-58	RTC New Year and Stopwatch Register	7-68
7-59	RTC Alarm and Interrupt Enable Register	7-68
7-60	RTC Current Time Register	7-69
7-61	RTC Current Date Register	7-70
7-62	RTC Alarm and Stopwatch Interrupt Register	7-70
7-63	RTC Periodic Interrupt and Bus Error Register	
7-64	RTC Test Register/Divides Register	7-72
8-1	Legal Memory Configurations	
8-2	SDRAM External Signals	8-11
8-3	SDRAM Commands	
8-4	Memory Controller Mode Register	
8-5	Memory Controller Control Register	
8-6	High Address Usage	
8-7	SDRAM Address Multiplexing	
8-8	Memory Controller Configuration Register 1	
8-9	Memory Controller Configuration Register 2	
9-1	LocalPlus External Signals	
9-2	Non-Muxed Mode Options	
9-3	Non-Muxed Aligned Data Transfers	
9-4	MUXed Mode Options	
9-5	Non-Muxed Aligned Data Transfers	
9-6	BOOT_CONFIG (RST_CONFIG) Options	
9-7	Chip Select 0/Boot Configuration Register	
9-8	Chip Select 1 Configuration Register	
9-9	Chip Select Control Register	
9-10	Chip Select Status Register	
9-10 9-11	Chip Select Status Register Chip Select Burst Control Register	
9-11	Chip Select Deadcycle Control Register	
9-12 9-13		
9-13 9-14	SCLPC Packet Size Register SCLPC Start Address Register	
9-14 9-15	SCLPC Start Address Register SCLPC Control Register	
9-13 9-16		
	SCLPC Enable Register	
9-17	SCLPC Bytes Done Status Register	
9-18	LPC Rx/Tx FIFO Data Word Register	
9-19	LPC Rx/Tx FIFO Status Register	
9-20	LPC Rx/Tx FIFO Control Register	
9-21	LPC Rx/Tx FIFO Alarm Register	
9-22	LPC Rx/Tx FIFO Read Pointer Register	
9-23	LPC Rx/Tx FIFO Write Pointer Register	
10-1	PCI External Signals	
10-2	PCI Register Map	
10-3	PCI Communication System Interface Register Map	
10-4	PCI Command encoding	
10-5	PCI Bus Commands	
10-6	PCI I/O space byte decoding	
10-7	XLB bus to PCI Byte Lanes for Memory Transactions	
10-8	Type 0 Configuration Device Number to IDSEL Translation	10-52

MPC5200B Users Guide, Rev. 1

Table Number		Page Number
10-9	Special Cycle Message Encodings	
10-10	Unsupported XLB Transfers	
10-11	Aligned PCI to XL bus Transfers	
10-12	Non-contiguous PCI to XL bus Transfers (require two XLB bus accesses)	
10-13	Comm bus to PCI Byte Lanes for Memory Transactions	
10-14	XLB:IP:PCI Clock Ratios	
10-15	Transaction Mapping: XLB -> PCI	
11-1	ATA Host Configuration Register	11-2
11-2	ATA Host Status Register	11-3
11-3	ATA PIO Timing 1 Register	11-3
11-4	ATA PIO Timing 2 Register	
11-5	ATA Multiword DMA Timing 1 Register	
11-6	ATA Multiword DMA Timing 2 Register	
11-7	ATA Ultra DMA Timing 1 Register	
11-8	ATA Ultra DMA Timing 2 Register	
11-9	ATA Ultra DMA Timing 3 Register	
11-10	ATA Ultra DMA Timing 4 Register	
11-11	ATA Ultra DMA Timing 5 Register	
11-12	ata_shre_cnt	
11-13	ATA Rx/Tx FIFO Data Word Register	
11-14	ATA Rx/Tx FIFO Status Register	
11-15	ATA Rx/Tx FIFO Control Register	11-10
11-16	ATA Rx/Tx FIFO Alarm Register	
11-17	ATA Rx/Tx FIFO Read Pointer Register	
11-18	ATA Rx/Tx FIFO Write Pointer Register	
11-19	ATA Drive Device Control Register	
11-20	ATA Drive Alternate Status Register	
11-21	ATA Drive Data Register	
11-22	ATA Drive Features Register	
11-23	ATA Drive Error Register	
11-24	ATA Drive Sector Count Register	
11-25	ATA Drive Sector Number Register	
11-26	ATA Drive Cylinder Low Register	
11-27	ATA Drive Cylinder High Register	
11-28	ATA Drive Device/Head Register	
11-29	ATA Drive Device Command Register	
11-30	ATA Drive Device Status Register	
11-31	PIO Timing Requirements	
11-23	Multiword DMA Timing Requirements	
11-33	MPC5200 External Signals	
11-34	ATA Controller External Connections	
11-35	ATA Standards	
11-36	ATA Physical Level Modes	
11-37	ATA Register Address/Chip Select Decoding	
11-38	DMA Command Parameters	
11-39	Redefinition of Signal Lines for Ultra DMA Protocol	
11-40	Reset Timing Characteristics	
12-1	USB HC Revision Register	
12-2	USB HC Control Register	
12-3	USB HC Command Status Register	
12-4	USB HC Interrupt Status Register	
12-5	USB HC Interrupt Enable Register	
12-6	USB HC Interrupt Disable Register	
12-7	USB HC HCCA Register	12-13
	MPC5200B Users Guide, Rev. 1	

Table Number		Page Number
12-8	USB HC Period Current Endpoint Descriptor Register	
12-9	USB HC Control Head Endpoint Descriptor Register	
12-10	USB HC Control Current Endpoint Descriptor Register	
12-11	USB HC Bulk Head Endpoint Descriptor Register	12-15
12-12	USB HC Bulk Current Endpint Descriptor Register	12-15
12-13	USB HC Done Head Register	12-16
12-14	USB HC Frame Interval Register	12-16
12-15	USB HC Frame Remaining Register	12-17
12-16	USB HC Frame Number Register	12-17
12-17	USB HC Periodic Start Register	12-18
12-18	USB HC LS Threshold Register	12-18
12-19	USB HC Rh Descriptor A Register	12-19
12-20	USB HC Rh Descriptor B Register	12-21
12-21	USB HC Rh Status Register	12-21
12-22	USB HC Rh Port1 Status Register	12-23
12-23	USB HC Rh Port2 Status Register	12-26
13-1	SDMA Task Bar Register	13-4
13-2	SDMA Current Pointer Register	
13-3	SDMA End Pointer Register	
13-4	SDMA Variable Pointer Register	
13-5	SDMA Interrupt Vector, PTD Control Register	
13-6	SDMA Interrupt Pending Register	
13-7	SDMA Interrupt Mask Register	
13-8	SDMA Tas k Control 0 Register	
13-9	SDMA Task Control 2 Register	
13-10	SDMA Task Control 4 Register	
13-11	SDMA Task Control 6 Register	
13-12	SDMA Task Control 8 Register	
13-13	SDMA Task Control A Register	
13-14	SDMA Task Control C Register	
13-15	SDMA Task Control E Register	
13-16	SDMA Initiator Priority 0 Register	
13-17	SDMA Initiator Priority 4 Register	
13-18	SDMA Initiator Priority 8 Register	
13-19	SDMA Initiator Priority 12 Register	
13-20	SDMA Initiator Priority 16 Register	
13-21	SDMA Initiator Priority 20 Register	
13-22	SDMA Initiator Priority 24 Register	
13-23	SDMA Initiator Priority 28 Register	
13-24	SDMA Request MuxControl	
13-25	FIxed REquestors Table	
13-26	SDMA task Size 0/1	
13-27	SDMA task Size Map	
13-28	SDMA Reserved Register 4	
13-29	SDMA Reserved Register 2	
13-30	SDMA Debug Module Comparator 1, Value 1 Register	
13-30	SDMA Debug Module Comparator 2, Value 2 Register	
13-31	SDMA Debug Module Control Register	
13-32	Comparator 1 Type Bit Encoding	
13-34	Comparator 2 Type Bit Encoding	
13-34	• • • • •	
13-36	EU Breakpoint encoding	
13-36	SDMA Debug Module Status Register Behavior of Task Table Control Bits	
13-38	Variable Table per Task	13-29

Table Number		
14-1	Signal Properties	14-3
14-2	MII: Valid Encoding of TxD, Tx EN and Tx ER	14-5
14-3	MII: Valid Encoding of RxD, Rx ER and Rx DV	
14-4	MMI Format Definitions	
14-5	MII Management Register Set	
14-6	Module Memory Map	
14-7	MIB Counters	
14-8	FEC ID Register	
14-9	FEC Interrupt Event Register	
14-10	FEC Interrupt Enable Register	
14-11	FEC Rx Descriptor Active Register	
14-12	FEC Tx Descriptor Active Register	
14-13	FEC Ethernet Control Register	
14-14	FEC MII Management Frame Register	
14-15	FEC MII Speed Control Register	
14-16	Programming Examples for MII SPEED Register	
14-17	FEC MIB Control Register	
14-18	FEC Receive Control Register	
14-19	FEC Hash Register	
14-20	FEC Tx Control Register	
14-21	FEC Physical Address Low Register	
14-22	FEC Physical Address High Register	
14-23	FEC Opcode/Pause Duration Register	
14-24	FEC Descriptor Individual Address 1 Register	
14-25	FEC Descriptor Individual Address 2 Register	
14-26	FEC Descriptor Group Address 1 Register	
14-27	FEC Descriptor Group Address 2 Register	
14-28	FEC Tx FIFO Watermark Register	
14-29	FIFO Interface Register Map	
14-30	FEC Rx FIFO Status Register	
14-31	FEC Rx FIFO Control Register	
14-32	FEC Rx FIFO Last Read Frame Pointer Register	
14-33	FEC Rx FIFO Last Write Frame Pointer Register	
14-34	FEC Rx FIFO Alarm Pointer Register	
14-35	FEC Rx FIFO Read Pointer Register	
14-36	FEC Rx FIFO Write Pointer Register	
14-37	FEC Reset Control Register	
14-38	FEC Transmit FSM Register	
14-39	ETHER EN De-Assertion Affect on FEC	
14-40	User Initialization (Before ETHER EN)	
14-41	Microcontroller Initialization (FEC)	
14-42	Receive Frame Status Word Format	
14-43	Transmit Frame Control Word Format	
14-44	Destination Address to 6-Bit Hash	
14-45	PAUSE Frame Field Specification	
14-46	Transmit Pause Frame Registers	
15-1	PSC Functions Overview	
15-2	PSC Memory Map	
15-3	Mode Register 1 (0x00) for UART Mode	
15-4	Mode Register 1 (0x00) for SIR Mode	
15-5	Mode Register 1 (0x00) for other Modes	
15-6	Parity Mode/Parity Type Definitions	
	Mode Register 2 (0x00) for UART / SIR Mode	
15-7		

Table Number		Page Number
15-9	Stop-Bit Lengths	15-7
15-10	Status Register (0x04) for UART Mode	15-8
15-11	Status Register (0x04) for SIR Mode	15-8
15-12	Status Register (0x04) for MIR / FIR Mode	15-8
15-13	Status Register (0x04) for other Modes	15-8
15-14	Clock Select Register (0x04) for UART / SIR Mode	15-11
15-15	Clock Select Register (0x04) for other Modes	15-11
15-16	Command Register (0x08) for all Modes	15-11
15-17	Rx Buffer Register (0x0C) for UART/SIR/MIR/FIR/Codec8/16/32	
15-18	Rx Buffer Register (0x0C) for AC97	
15-19	Rx Buffer Register (0x0C) for Codec24	15-14
15-20	Tx Buffer Register (0x0C) for UART/SIR/MIR/FIR/Codec8/16/32 Modes	
15-21	TX Buffer Register (0x0C) for AC97) Modes	
15-22	Tx Buffer Register (0x0c) for Codec24	
15-23	Input Port Change Register (0x10) for UART/SIR/MIR/FIR Modes	
15-24	PSC 1 Auxiliary Control Register (0x10) for all Modes	
15-25	Interrupt Status Register (0x14) for UART / SIR Mode	
15-26	Interrupt Status Register (0x14) other Modes	
15-27	Interrupt Mask Register (0x14) for UART / SIR Mode	
15-28	Interrupt Mask Register (0x14) for other Modes	
15-29	Counter Timer Upper Register (0x18) for all Modes	
15-30	Counter Timer Lower Register (0x1C) for all Modes	
15-31	Codec Clock Register (0x20)—CCR for Codec Mode	
15-32	Codec Clock Register (0x20)—CCR for MIR/FIR Mode	
15-33	Codec Clock Register (0x20)—CCR for other Modes	
15-34	Interrupt Vector Register (0x30) for all Modes	
15-35	Input Port Register (0x34) for UART/SIR/MIR/FIR Modes	
15-36	Input Port Register (0x34) for Codec Mode	
15-37	Input Port Register (0x34) for AC97 Mode	
15-38	Output Port 1 Bit Set Register (0x38) for all Modes	
15-39	Output Port 0 Bit Set Register (0x3C) for all Modes	
15-40	Serial Interface Control Register (0x40) for all Modes	
15-41	Infrared Control 1 (0x44) for SIR Mode	
15-42	Infrared Control 1 (0x44) for MIR/FIR Modes	
15-43	Infrared Control 2 (0x48) for MIR/FIR Modes	
15-44	Infrared Control 2 (0x48) for other Modes	
15-45	Infrared SIR Divide Register (0x48) for SIR Mode	
15-46	Infrared SIR Divide Register (0x48) for other Modes	
15-47	Infrared MIR Divide Register (0x50) for MIR Mode	
15-48	Infrared MIR Divide Register (0x50) for other Modes	
15-49	Frequency Selection in MIR Mode	
15-50	Infrared FIR Divide Register (0x54) for MIR Mode	
15-51	Infrared FIR Divide Register (0x54) for other Modes	
15-52	Frequency Selection for FIR Mode	
15-53	RX FIFO Number of DATA (0x58)	
15-54	Tx FIFO Number of Data (0x5C)	
15-55	Rx FIFO Status (0x64)	
15-56	Rx FIFO Control (0x68)	
15-57	Rx FIFO Alarm (0x6E)	
15-58	Rx FIFO Read Pointer (0x72)	
15-59	Rx FIFO Write Pointer (0x76)	
15-60	Rx FIFO Last Read Frame (0x7A)	
15-61	Rx FIFO Last Write Frame PTR (0x7C)	
15-62	Tx FIFO STAT (0x84)	15-36

Table Number		Page Number
15-63	Tx FIFO Control (0x88)	
15-64	Tx FIFO Alarm (0x8E)	15-37
15-65	Tx FIFO Read Pointer (0x92)	15-37
15-66	Tx FIFO Write Pointer (0x96)	15-38
15-67	Tx FIFO Last Read Frame PTR (0x9A)	15-38
15-68	Tx FIFO Last Write Frame PTR(0x9C)	15-38
15-69	PSC Modes Overview	15-39
15-70	Clock Short Cuts	15-39
15-71	PSC Signal Description for UART Mode	15-40
15-72	General Configuration Sequence for UART mode	
15-73	Signal Definition for all Codec Modes	15-44
15-74	PSC Signal Description for Codec Mode	15-46
15-75	16-Bit "soft Modem" Slave Mode	15-50
15-76	32-Bit "soft Modem" Master Mode	15-51
15-77	24-Bit Cell Phone Master Mode for PSC1	15-52
15-78	24-Bit Cell Phone Slave Mode for PSC2	15-52
15-79	8-bit SPI Slave mode for PSC2	15-53
15-80	32-bit SPI Master mode for PSC3	15-53
15-81	32-bit I2S Master Mode for PSC1	15-54
15-82	PSC Signal Description for AC97Mode	15-56
15-83	General Configuration Sequence for AC97 Mode	15-58
15-84	Signal Description for IrDa Mode	15-58
15-85	Configuration Sequence Example for SIR Mode	
15-86	Configuration Sequence Example for MIR Mode	
15-87	Configuration Sequence Example for FIR Mode	
16-1	Arbiter Configuration Register	
16-2	Arbiter Version Register	
16-3	Arbiter Status Register	
16-4	Arbiter Interrupt Enable Register	
16-5	Arbiter Address Capture Register	
16-6	Arbiter Bus Signal Capture Register	
16-7	Arbiter Address Tenure Time-Out Register	
16-8	Arbiter Data Tenure Time-Out Register	
16-9	Arbiter Bus Activity Time-Out Register	
16-10	Arbiter Master Priority Enable Register	
16-11	Hardware Assignments of Master Priority	
16-12	Arbiter Master Priority Register	
16-13	Arbiter Snoop Window Register	
16-14	Arbiter Reserved Registers	
17-1	SPI External Signal Descriptions	
17-2	SPI Control Register 1	
17-3	SS Input/Output Selection	
17-4	SPI Control Register 2	
17-5	Bidirectional Pin Configurations	
17-6	SPI Baud Rate Register	
17-7	SPI Baud Rate Selection	
17-8	SPI Status Register	
17-9	SPI Data Register	
17-10	SPI Port Data Register	
17-10	SPI Data Direction Register	
18-1	I ² C Terminology	
18-1	and the second s	
	I ² C Address Register	
18-3	I ² C Frequency Divider Register	
18-4	I ² C Tap and Prescale Values	18-6

18-5 I²C Control Register 18-6 I²C Status Register 18-7 I²C Data I/O Register 18-8 I²C Interrupt Control Register 19-1 MSCAN Register Organization 19-2 Module Memory Map 19-3 MSCAN Control Register 0 19-4 MSCAN Control Register 1 19-5 MSCAN Bus Timing Register 0 19-6 Baud Rate Prescaler 19-7 MSCAN Bus Timing Register 1 19-8 Time Segment 1 Values 19-9 Time Segment 2 Values 19-10 MSCAN Receiver Flag Register	18-818-1019-319-419-519-619-819-819-9
18-7 I²C Data I/O Register 18-8 I²C Interrupt Control Register 19-1 MSCAN Register Organization 19-2 Module Memory Map 19-3 MSCAN Control Register 0 19-4 MSCAN Control Register 1 19-5 MSCAN Bus Timing Register 0 19-6 Baud Rate Prescaler 19-7 MSCAN Bus Timing Register 1 19-8 Time Segment 1 Values 19-9 Time Segment 2 Values	18-1018-1019-319-419-519-619-819-819-9
18-8 I ² C Interrupt Control Register 19-1 MSCAN Register Organization 19-2 Module Memory Map 19-3 MSCAN Control Register 0 19-4 MSCAN Control Register 1 19-5 MSCAN Bus Timing Register 0 19-6 Baud Rate Prescaler 19-7 MSCAN Bus Timing Register 1 19-8 Time Segment 1 Values 19-9 Time Segment 2 Values	18-10 19-3 19-4 19-5 19-6 19-8 19-8 19-9
19-1 MSCAN Register Organization 19-2 Module Memory Map 19-3 MSCAN Control Register 0 19-4 MSCAN Control Register 1 19-5 MSCAN Bus Timing Register 0 19-6 Baud Rate Prescaler 19-7 MSCAN Bus Timing Register 1 19-8 Time Segment 1 Values 19-9 Time Segment 2 Values	19-319-419-519-619-819-819-9
19-2 Module Memory Map 19-3 MSCAN Control Register 0 19-4 MSCAN Control Register 1 19-5 MSCAN Bus Timing Register 0 19-6 Baud Rate Prescaler 19-7 MSCAN Bus Timing Register 1 19-8 Time Segment 1 Values 19-9 Time Segment 2 Values	19-4 19-5 19-6 19-8 19-8 19-9
19-3 MSCAN Control Register 0 19-4 MSCAN Control Register 1 19-5 MSCAN Bus Timing Register 0 19-6 Baud Rate Prescaler 19-7 MSCAN Bus Timing Register 1 19-8 Time Segment 1 Values 19-9 Time Segment 2 Values	19-519-619-819-819-9
19-4 MSCAN Control Register 1 19-5 MSCAN Bus Timing Register 0 19-6 Baud Rate Prescaler 19-7 MSCAN Bus Timing Register 1 19-8 Time Segment 1 Values 19-9 Time Segment 2 Values	19-619-819-819-819-9
19-5 MSCAN Bus Timing Register 0 19-6 Baud Rate Prescaler 19-7 MSCAN Bus Timing Register 1 19-8 Time Segment 1 Values 19-9 Time Segment 2 Values	19-8 19-8 19-9
19-6 Baud Rate Prescaler 19-7 MSCAN Bus Timing Register 1 19-8 Time Segment 1 Values 19-9 Time Segment 2 Values	19-8 19-8 19-9
19-7 MSCAN Bus Timing Register 1 19-8 Time Segment 1 Values 19-9 Time Segment 2 Values	19-8 19-9 19-9
19-8 Time Segment 1 Values	19-9 19-9
19-9 Time Segment 2 Values	19-9
-	
10-10 MSCAN Receiver Flag Register	
1)-10 WISCAN Received Flag Register	19-10
19-11 MSCAN Receiver Interrupt Enable Register	19-11
19-12 MSCAN Transmitter Flag Register	19-12
19-13 MSCAN Transmitter Interrupt Enable Register	19-13
19-14 MSCAN Transmitter Message Abort Request Register	
19-15 MSCAN Transmitter Message Abort Acknowledgement Register	
19-16 MSCAN Transmit Buffer Selection Register	
19-17 MSCAN ID Acceptance Control Register	
19-18 Identifier Acceptance Hit Indication	
19-19 Identifier Acceptance Mode Settings	
19-20 MSCAN Receive Error Counter Register	
19-21 MSCAN Transmit Error Counter Register	
19-22 MSCAN ID Acceptance Registers (1st Bank)	
19-23 MSCAN ID Acceptance Registers (2nd Bank)	
19-24 MSCAN ID MaskRegisters (1st Bank)	
19-25 MSCAN ID MaskRegisters (2nd Bank)	
19-26 Message Buffer Organization	
19-27 Receive / Transmit Message Buffer Extended Identifier	
19-28 Standard Identifier Mapping	
19-29 Data Length Codes	
19-30 MSCAN Transmit Buffer Priority Register	
19-31 MSCAN Time Stamp Register (High Byte)	
19-32 MSCAN Time Stamp Register (Low Byte)	
19-33 Time Segment Syntax	
19-34 CAN Standard Compliant Bit Time Segment Settings	
19-35 CPU vs. MSCAN Operating Modes	
20-1 Module Memory Map	
20-2 BDLC Control Register 1	
20-3 BDLC State Vector Register	
20-4 BDLC Control Register 2	
20-5 BDLC Data Register	
20-6 BDLC Analog Round Trip Delay Register	
20-7 BARD Values vs. Transceiver Delay and Transmitter Timing Adjustment	
20-8 BDLC Rate Select Register	
20-9 BDLC Rate Selection for Binary Frequencies [CLKS = 1]	
20-10 BDLC Rate Selection for Integer Frequencies [CLKS = 1]	
20-11 BDLC Control Register	
20-12 BDLC Status Register	
20-12 BDLC Status Register 20-13 BDLC Transmitter VPW Symbol Timing for Integer Frequencies	
20-14 BDLC Transmitter VPW Symbol Timing for Binary Frequencies	
20-14 BDLC Transmitter VPW Symbol Timing for Binary Frequencies BDLC Receiver VPW Symbol Timing for Integer Frequencies	

Table Number		Page Number
20-16	BDLC Receiver VPW Symbol Timing for Binary Frequencies	20-21
20-17	BDLC Receiver VPW 4X Symbol Timing for Integer Frequencies	20-21
20-18	BDLC Receiver VPW 4X Symbol Timing for Binary Frequencies	20-21
20-19	BDLC module J1850 Error Summary	20-27
20-20	IFR Control Bit Priority Encoding	20-38
21-1	TLM Link-DR Instructions	21-7
21-2	TLM Test Instruction Encoding	21-8
21-3	Device ID Register = 0001101D hex	21-8
21-4	COP/RDM Interface Signals	21-9

LOT-10 Freescale Semiconductor

Revision History

Release	Date	Author	Summary of Changes
0	26MAR2005	AS	Initial Version
0.1	26MAR2005	AS, TB, PL	Updated PCI, PSC, BestComm, I2C, GPIO, CDM chapters.
0.2	03MAY2005	AE	Cross refs, hyperlinks, TOC, Verso, and fonts.
1	12AUG2005	AE, TB, PL, CM, AS	Minor updates.

Chapter 1 Introduction

1.1 Overview

The digital communication networking and consumer markets require significant processor performance to enable operating systems and applications such as VxWorks™, QNX™, JAVA and soft modems. High integration is essential to reducing device and systems costs. The MPC5200B is specifically designed to meet these market needs while building on the family of microprocessors that use PowerPC™ architecture. For more information on PowerPC architecture, see "The Programming Environments Manual for 32-bit Implementations of the PowerPC Architecture".

The MPC5200B integrates a high performance e300 core with a rich set of peripheral functions focused on communications and systems integration. The e300 core design is based on the PowerPCTM core architecture. The MPC5200B incorporates an innovative I/O subsystem, which isolates routine maintenance of peripheral functions from the embedded e300 core.

The MPC5200B supports a dual external bus architecture. It has a high speed SDRAM Bus interface that connects directly to the e300 core. In addition, the MPC5200B has a LocalPlus Bus used as a generalized interface to system level peripheral devices and debug environments.

1.1.1 Features

Key features are shown below.

- e300 core
 - Superscalar architecture
 - 760MIPS at 400MHz (-40 to +85 °C)
 - 16k Instruction cache, 16k Data cache
 - Double precision FPU
 - Instruction and Data MMU
 - Standard & Critical interrupt capability
- SDRAM / DDR Memory Interface
 - up to 132MHz operation
 - SDRAM and DDR SDRAM support
 - 256-MByte addressing range per Chip Select (Two CS lines available)
 - 32-bit data bus
 - Built-in initialization and refresh
- Flexible multi-function External Bus Interface
 - Supports interfacing to ROM/Flash/SRAM memories or other memory mapped devices
 - 8 programmable Chip Selects
 - Non multiplexed data access using 8/16/32 bit databus with up to 26 bit address
 - Short or Long Burst capable
 - Multiplexed data access using 8/16/32 bit databus with up to 25 bit address
- Peripheral Component Interconnect (PCI) Controller
 - Version 2.2 PCI compatibility
 - PCI initiator and target operation
 - 32-bit PCI Address/Data bus
 - 33 and 66 MHz operation
 - PCI arbitration function
- ATA Controller
 - Version 4 ATA compatible external interface—IDE Disk Drive connectivity
- BestComm DMA subsystem
 - Intelligent virtual DMA Controller
 - Dedicated DMA channels to control peripheral reception and transmission
 - Local memory (SRAM 16kBytes)
- 6 Programmable Serial Controllers (PSC), configurable for:
 - UART or RS232 interface
 - CODEC interface for Soft Modem, Master/Slave CODEC Mode, I²S and AC97
 - Full duplex SPI mode

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 1-1

Architecture

- IrDA mode from 2400 bps to 4 Mbps
- Fast Ethernet Controller (FEC)
 - Supports 100Mbps IEEE 802.3 MII, 10Mbps IEEE 802.3 MII, 10Mbps 7-wire interface
- Universal Serial Bus Controller (USB)
 - USB Revision 1.1 Host
 - Open Host Controller Interface (OHCI)
 - Integrated USB Hub, with two ports.
- Two Inter-Integrated Circuit Interfaces (I²C)
- Serial Peripheral Interface (SPI)
- Dual CAN 2.0 A/B Controller (MSCAN)
 - Motorola Scalable CAN (MSCAN) architecture
 - Implementation of version 2.0A/B CAN protocol
 - Standard and extended data frames
- J1850 Byte Data Link Controller (BDLC)
 - J1850 Class B data communication network interface compatible and ISO compatible for low speed (<125kbps) serial data communications in automotive applications.
 - Supports 4X mode, 41.6 kbps
 - In-frame response (IFR) types 0, 1, 2, and 3 supported
- Systems level features
 - Interrupt Controller supports 4 external interrupt request lines and 47 internal interrupt sources
 - GPIO/Timer functions
 - Up to 56 total GPIO pins (depending on functional multiplexing selections) that support a variety of interrupt/Wake Up capabilities.
 - 8 GPIO pins with timer capability supporting input capture, output compare and pulse width modulation (PWM) functions
 - Real-time Clock with 1 second resolution
 - Systems Protection (watch dog timer, bus monitor)
 - Individual control of functional block clock sources
 - Power management: Nap, Doze, Sleep, Deep Sleep modes
 - Support of Wake Up from low power modes by different sources (GPIO, RTC, CAN)
- Test/Debug features
 - JTAG (IEEE 1149.1 test access port)
 - Common On-Chip Processor (COP) debug port
- On-board PLL and clock generation
- Software
 - QNX
 - VXWorks
 - Linux
 - Software Modem capable
 - JAVA

1.2 Architecture

The following areas comprise the MPC5200B system architecture:

- Embedded e300 Core
- BestComm I/O Subsystem
- Controller Area Network (CAN)
- Byte Data Link Controller Digital BDLC-D
- System Level Interfaces
- SDRAM Controller and Interface
- Multi-Function External LocalPlus Bus
- Power Management
- Systems Debug and Test
- Physical Characteristics

A dynamically managed external pin multiplexing scheme minimizes overall pin count. The result is low cost packaging and board assembly costs.

Figure 1-1 shows a simplified MPC5200B block diagram.

Figure 1-1. Simplified Block Diagram—MPC5200B

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 1-3

Architecture

The MPC5200B supports a dual external bus architecture consisting of:

- 1. an SDRAM Bus
- 2. a multi-function LocalPlus Bus

The SDRAM Bus has a Memory Controller interface which supports standard SDRAM and Double Data Rate (DDR) SDRAM devices. The Memory Controller has 13 Memory Address (MA) lines multiplexed with 32 Data Bus lines. Standard SDRAM control signals are included.

The high-speed Memory Controller SDRAM interface connects directly to the microprocessor, allowing optimized instruction and data bursting. The dedicated memory interface, coupled with on-chip 16Kilobyte instruction and 16Kilobyte data caches, enables high performance for computer intensive applications, such as Java and soft modems. Still, plenty of processing power remains for peripheral management and system control tasks.

The LocalPlus Bus provides for connection of external peripheral devices, disk storage, and slower speed memory. The LocalPlus Bus also supports an external Boot ROM/FLASH/SRAM interface.

The MPC5200B integrates a high performance e300 core with an I/O subsystem containing an intelligent Direct Memory Access (DMA) unit, BestComm. The BestComm unit is capable of:

- responding to peripheral interrupts, independent of the e300 core.
- providing low level peripheral management, protocol processing, and peripheral data movement functions.

The MPC5200B has an optimized peripheral mix to support today's embedded automotive and telematics requirements.

Figure 1-2 shows an MPC5200B-based system.

Figure 1-2. MPC5200B-Based System

1.2.1 Embedded e300 Core

The MPC5200B embedded e300 core is derived from Freescale's (formerly Motorola) MPC603e family of Reduced Instruction Set Computer (RISC) microprocessors. The e300 core is a high-performance, low-power implementation of the PowerPC superscalar architecture. The MPC5200B e300 core contains:

- 16KBytes of instruction cache
- 16KBytes of data cache

Caches are 4-way set associative and use the Least Recently Used (LRU) replacement algorithm.

Four independent execution units are used:

- 1. Branch Processing Unit (BPU)
- 2. Integer Unit (IU)
- 3. Load/Store Unit (LSU)
- 4. System Register Unit (SRU)

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 1-5

Architecture

Up to 3 instructions can be issued and retired per clock. Most instructions execute in a single cycle. The core contains an integrated Floating Point Unit (FPU), a Data Cache Memory Management Unit and an Instruction Cache Memory Management Unit. The core implements the 32-bit portion of the PowerPC architecture, which provides 32-bit effective addressing and integer data types of 8-, 16-, and 32-bits.

Enhancements in this core version, specific to embedded automotive/telematics include:

- Improved interrupt latency (critical interrupt)
- New MMU with additional 8 BAT (16 total) registers and 1KByte page management

The e300 core performance for SPEC95 benchmark integer operations, ranges between 4.4 and 5.1 at 200 MHz. In Drystone 2.1 MIPS, the e300 core is 280 MIPS at 200 MHz.

1.2.2 BestComm I/O Subsystem

BestComm contains an intelligent DMA unit. This unit provides a front-line interrupt control and data movement interface via a separate peripheral bus to the on-chip peripheral functions. This leaves the e300 core free for higher level activities. The concurrent operation enables a significant boost in overall systems performance.

BestComm supports up to 16 simultaneously enabled DMA tasks from up to 32 DMA requestors. Also included is:

- a hardware logic unit
- · a hardware CRC unit

BestComm uses internal buffers for prefetched reads and post writes. Bursting is used whenever possible. This optimizes both internal and external bus activity.

1.2.2.1 Programmable Serial Controllers (PSCs)

The MPC5200B supports six PSCs. Each can be configured to operate in different modes. PSCs support both synchronous and asynchronous protocols. They are used to interface to external full-function modems or external CODECs for soft modem support. 8, 16, 24 and 32-bit data widths are supported. PSCs can be configured to support 1200 baud POTS modem, SPI, I²S, V.34 or V.90 protocols. The standard UART interface supports connection to an external terminal/computer for debug support.

1.2.2.2 10/100 Ethernet Controller

The Ethernet Controller supports the following standard MAC-PHY interfaces:

- 100 Mbps IEEE 802.3 MII
- 10Mbps IEEE 802.3 MII
- 10Mbps 7-wire interface

The controller is full duplex, supports a programmable maximum frame length and retransmission from the Tx FIFO following a collision.

1.2.2.3 Universal Serial Bus (USB)

The MPC5200B supports two USB channels. The USB Controller implements the USB Host Controller/Root Hub in compliance with the USB1.1 specification. The user may choose to have either one or two USB ports on the root hub, each of which can interface to an off-chip USB transceiver. The Host Controller supports the Open Host Controller Interface (OHCI) standard.

1.2.2.4 Infrared Support

The MPC5200B supports the IrDA format. All three IrDA modes are supported (SIR, MIR, FIR) to 4.0 Mbps. The required 48 MHz clock can be generated internally or supplied externally on an input pin.

1.2.2.5 Inter-Integrated Circuit (I²C)

The MPC5200B supports two I^2C channels. Both master and slave interfaces can be controlled directly by the processor or can use the BestComm Controller to buffer Tx/Rx data when the I^2C data rate is high.

1.2.2.6 Serial Peripheral Interface (SPI)

The SPI module allows full-duplex, synchronous, serial communication between the MPC5200B and peripheral devices. It supports master and slave mode, double-buffered operation and can operate in a polling or interrupt driven environment.

1.2.3 Controller Area Network (CAN)

The MPC5200B supports two CAN channels. The CAN is an asynchronous communications protocol used in automotive and industrial control systems. It is a high speed, short distance, priority based protocol that runs on a variety of mediums. For example, transmission media of fiber optic cable or unshielded twisted wire pairs can be used.

MPC5200B Users Guide, Rev. 1

MSCAN supports both standard and extended identifier (ID) message formats specified in BOSCH CAN protocol specification, revision 2.0, part B. Each MSCAN module contains:

- 4 receive buffers (with FIFO storage scheme)
- 3 transmit buffers
- flexible maskable identifier filters

1.2.4 Byte Data Link Controller - Digital BDLC-D

The MPC5200B supports J1850 Class B data communication network interface compatible and ISO compatible for low speed (<125kbps) serial data communications in automotive applications.

- Hardware cyclical redundancy check (CRC) generation and checking
- Two power saving modes with automatic wake up on network activity
- Polling and CPU interrupt available
- Block mode receive/transmit supported
- Supports 4X mode, 41.6 kbps
- In-frame response (IFR) types 0, 1, 2, and 3 supported
- Wake up on J1850 message

1.2.5 System Level Interfaces

System Level Interfaces are listed below and described in the sections that follow:

- Chip Selects
- Interrupt Controller
- Timers
- General Purpose Input/Outputs (GPIO)
- Functional Pin Multiplexing
- Real-Time Clock (RTC)

1.2.5.1 Chip Selects

The MPC5200B integrates the most common system integration interfaces and signals. There are 8 fully programmable external chip selects, which are independent of the SDRAM interface. LP_CS0 has special features to support a Boot ROM. Two of the chip selects may be used by the IDE disk drive interface, when enabled.

1.2.5.2 Interrupt Controller

The Interrupt Controller has 4 external interrupt signals and manages both external and internal interrupts. All interrupt levels and priorities are programmable.

The Interrupt Controller takes advantage of the new critical interrupt feature defined by the PowerPC architecture. This allows e300 core interrupts outside operating system boundaries, for critical functions such as real-time packet processing.

1.2.5.3 Timers

MPC5200B integrates several timer functions required by most embedded systems:

- Two internal Slice timers can create short-cycle periodic interrupts.
- A WatchDog timer can interrupt the processor if not regularly serviced, catching software hang-ups.

A bus monitor monitors bus cycles and provides an interrupt if transactions take longer than a prescribed time.

1.2.5.4 General Purpose Input/Outputs (GPIO)

A total of 56 pins on the MPC5200B can be programmed as GPIOs.

- 8 pins can interrupt the processor.
- 8 pins can support a "Wake Up" capability that brings the MPC5200B out of low power modes.
- 8 pins are "output only" GPIOs.

The remaining GPIO pins support a simple "set the output level" or "detect the input level" type GPIO function. Eight I/Os can be connected to one of eight general purpose timers to support input capture, output compare or pulse width modulation functions.

The number of GPIOs available in the various modes depends on the peripheral functionality required. See pin descriptions and I/O port maps below for more information.

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 1-7

1.2.5.5 Functional Pin Multiplexing

Many serial/parallel port pins serve multiple functions, allowing flexibility in optimizing the system to meet a specific set of integration requirements. For example, when PSC3 interfaces to a full function external modem, 10 pins are required:

- PSC3 TXD—Transmit Data
- PSC3 RXD—Receive Data
- PSC3_RTS—Ready to Send
- PSC3 CTS—Clear to Send
- PSC3 CD—Carrier Detect
- MODEM RI—Ring Indicator
- MODEM DSR—Hook Switch
- MODEM IO—Control I/O (A0 gain)
- MODEM IO—Control I/O (Mode 1)
- MODEM IO—Control I/O (Mode 2)

If PSC3 connects to a simple UART, only the first four signals (shown above) are required. The remaining 6 signals can be used as GPIOs.

If a 7-wire Ethernet connection is adequate, the additional 11 Ethernet I/Os can be used as GPIOs.

1.2.5.6 Real-Time Clock (RTC)

An RTC is included on the MPC5200B. The RTC provides a 2-pin interface to an external 32.768 KHz crystal. This allows internal time-of-day/calendar tracking, as well as clock based periodic interrupts.

1.2.6 SDRAM Controller and Interface

The MPC5200B high speed SDRAM Controller supports both standard SDRAM and Double Data Rate (DDR) SDRAM devices. It supports up to 256MBytes per chip select (2 Chip Select lines available) with a 32-bit interface. Memory sizes of 64-Mbit, 128-Mbit, 256-Mbit and 512-Mbit are supported.

1.2.7 Multi-Function External LocalPlus Bus

The MPC5200B supports a multi-function external LocalPlus Bus to allow connections to PCI and ATA compliant devices, as well as external ROM/SRAM.

The MPC5200B integrates a 3.3 V, PCI V2.2 compatible external LocalPlus Bus controller and interface. This bus is a 32-bit multiplexed address/data bus.

The external LocalPlus Bus provides support for an ATA disk drive interface. ATA control signals (chip selects, write/read, etc.) are provided independent of the PCI control signals. This prevents bus contention. However, the 32-bit data bus is shared. When The MPC5200B recognizes an external LocalPlus Bus access meant for the ATA Controller, ATA control logic arbitrates for PCI interface control. The 32-bit address/data bus function is transformed into 16bits of ATA data and 3 bits of ATA address.

The external LocalPlus Bus also allows connection to external memory or peripheral devices that adhere to a ROM or SRAM-like interface. These devices occupy a separate location in the memory map and have independent control signals. When an internal access is decoded to fall in the SRAM/ROM memory space, the 32-bit PCI address/data bus is transformed into either:

- 24bits of address and 8bits of data
- 16bits of address and 16bits of data.

The MPC5200B supports a reset configuration mode common on the family of processors that use the PowerPC architecture. 16 bits of configuration information is driven and sampled during reset to establish the initial processor configuration.

1.2.8 Power Management

The MPC5200B is processed in a low-power static CMOS technology. In addition, it supports the dynamic power management modes available on the MPC52xx series processors using the e300 core. These modes include:

- nap
- dose
- sleep
- deep sleep

In deep sleep, all internal clocks can be disabled, thus, reducing the power draw to CMOS leakage levels.

1-8 Freescale Semiconductor

A Wake Up capability is supported by CAN, RTC, several GPIOs and the interrupt lines. Therefore, the MPC5200B can be shut down to a low-power standby mode, then re-enabled by one of the Wake Up inputs without resetting the MPC5200B.

1.2.9 Systems Debug and Test

The MPC5200B supports the Common On-chip Processor (COP) debug capability common on other microprocessors that use the PowerPC architecture. The COP interface supports features such as:

- · memory down load
- · single step instruction execution
- break/watch point capability
- · access to internal registers
- pipeline tracking, etc.

The MPC5200B also supports a JTAG IEEE 1149.1 controller and test access port (TAP).

1.2.10 Physical Characteristics

- 1.5V internal, 3.3V external operation (2.5v for DDR interface)
- TTL compatible I/O pins
- 272-pin Plastic Ball Grid Array (PBGA)

Freescale Semiconductor 1-9

Architecture

1-10 Freescale Semiconductor

2-1

Chapter 2 Signal Descriptions

2.1 Overview

The MPC5200B contains a e300 core, an internal DMA engine, BestComm, multiple functional blocks and associated I/O ports. There are two external data/address bus structures, the LocalPlus bus and SDRAM bus. A block diagram of the MPC5200B structure is shown in Figure

In general, the LocalPlus bus connects to external SRAM, FLASH, peripheral devices, etc. The LocalPlus bus is capable of executing standard memory cycles, PCI cycles and ATA cycles. In addition to the data and address bus pins on the LocalPlus bus, there are pins specifically dedicated to ATA transactions, PCI transactions and standard memory transactions. When the MPC5200B is released from reset, Chip Select 0 is the only active chip select. Program execution must always start from the "boot device" on the LocalPlus bus. There are 8 chip select signals associated with the LocalPlus bus. It's possible to execute from every CS. Also every CS can address "data space".

The SDRAM bus interfaces to Synchronous DRAM. Both Single Data Rate and Double Data Rate DRAMs are supported. Executable programs are generally loaded into memory residing on the SDRAM bus. The SDRAM bus has a 32-bit wide data/address bus structure and is capable of burst accesses. It is possible to execute program code over the LocalPlus bus. However, the data transfer rate on the SDRAM bus is many times faster than LocalPlus.

There are 16 peripheral functional blocks on the MPC5200B. These are General Purpose I/O, 12C, TIMER, PSC1, PSC2, PSC3, PSC4, PSC5, PSC6, Ethernet, USB, MSCAN, SPI and J1850. Each of these functional blocks are routed to one or more I/O ports through a system of multiplexers. A functional block can only be routed to one I/O port at a time and in many cases, several functional blocks can be routed to the same I/O port.

The I/O ports are Dedicated GPIO Group, I²C Group, Timer Group, PSC1 Group, PSC2 Group, PSC3 Group, PSC6 Group, Ethernet Group, and the USB Group.

Figures 2-2 through 2-10 present detailed on the multiplexing options for each I/O port.

MPC5200B is packaged in a 272-pin Plastic Ball Gate Array (PBGA). Package ball locations are shown in Figure 2-1. See Appendix D, for case diagram.

MPC5200B Users Guide, Rev. 1

Note: Table 2-1 and Table 2-2 give the signals on each pin/ball.

Figure 2-1. 272-Pin PBGA Pin Detail

Table 2-1 gives a list of MPC5200B I/O signals sorted by package ball name. Table 2-2 gives the same list sorted by signal name.

Many signal pins can have multiple functions depending on internal register settings. These additional functions are described in Table 2-3 through Table 2-31.

MPC5200B Users Guide, Rev. 1 2-2 Freescale Semiconductor

A01	A02	A03	A04	A05	A06	A07	A08	A09	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20
TEST_MODE_1	JTAG_TDO	JTAG_TDI	JTAG_TMS	PSC3_8	PSC3_5	PSC3_2	PSC2_4	PSC2_2	PSC1_4	PSC1_1	PSC6_2	PORRESET	SRESET	SYS_XTAL_IN	MEM_MA_1	MEM_MBA_1	MEM_RAS	MEM_WE	MEM_DQM_2
B01	B02	B03	B04	B05	B06	B07	B08	B09	B10	B11	B12	B13	B14	B15	B16	B17	B18	B19	B20
TEST_SEL_0	TEST_MODE_0	JTAG_TRST	JTAG_TCK	PSC3_7	PSC3_4	PSC3_1	PSC2_3	PSC2_1	PSC1_3	PSC1_0	PSC6_0	HRESET	SYS_PLL_AVDD	SYS_PLL_TPA	MEM_MA_2	MEM_MA_10	MEM_CS_0	MEM_CAS	MEM_MA_4
C01	C02	C03	C04	C05	C06	C07	C08	C09	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20
RTC_XTAL_OUT	RTC_XTAL_IN	TEST_SEL_1	PSC3_9	PSC3_6	PSC3_3	PSC3_0	CORE_PLL_AVDD	PSC2_0	PSC1_2	PSC6_1	GPIO_WKUP_7	PSC6_3	SYS_PLL_AVSS	GPIO_WKUP_6	MEM_MA_3	MEM_MA_0	MEM_MBA_0	MEM_MA_5	MEM_MA_6
D01	D02	D03	D04	D05	D06	D07	D08	D09	D10	D11	D12	D13	D14	D15	D16	D17	D18	D19	D20
E01	TIMER_3 E02	E03	E04	VDD_CORE	VDD_IO	VDD_CORE	LP_OE	VDD_IO	VDD_CORE	VDD_CORE	VDD_MEM_IO	VDD_MEM_IO	SYS_XTAL_OUT	VDD_MEM_IO	VSS	E17	MEM_MDQS_2 E18	MEM_MA_7 E19	MEM_MA_8 E20
TIMER_7	TIMER 6	TIMER_5	VDD_IO													VDD_MEM_IO	MEM_MDQ_16	MEM_MA_9	MEM_MA_11
F01	F02	F03	F04			Koy for	r IO Balls:									F17	F18	F19	F20
USB_7	USB_8	USB_9	VDD_IO					<– Ball								VDD_MEM_IO	MEM_MDQ_17	MEM_MA_12	MEM_CLK_EN
	_	_					A6		N										
G01	G02	G03	G04			PS	C3_5	<– Signal	Name							G17	G18	G19	G20
USB_3	USB_4 H02	USB_5	USB_6													MEM_MDQ_18	MEM_MDQ_19	MEM_CLK H19	MEM_CLK
H01	HUZ	H03	H04													H17	H18	_	H20
1100.0	1100 4	1100.0	VDD 10													d	203	204	206
J01	USB_1 J02	J03	J04				İ	J09	J10	J11	J12	ĺ				VDD_MEM_IO	MEM_MDQ_20	MEM_DQM_1	MEM_MDQS_1
JU I ETH_3	JUZ ETH_4	JU3 ETH_10	JU4 ETH_17					VSS	VSS	VSS	VSS					JI/ MEM_MDQ_22	JIO MEM_MDQ_21	JI9 MEM_MDQ_8	MEM_MDQ_9
K01	K02	K03	K04					K09	K10	K11	K12					K17	K18	K19	K20
IXO I	NUZ	1.03	1104					VSS	VSS	VSS	VSS					d d	193	194	196
ETH_0	ETH_1	ETH_2	VDD_CORE													VDD MEM IO	MEM_MDQ_23	MEM_MDQ_10	MEM_MDQ_11
L01	L02	L03	L04					L09	L10	L11	L12					L17	L18	L19	L20
ETH_9	ETH_16	ETH_5	ETH_11					VSS	VSS	VSS	VSS					MEM_DQM_3	MEM_MDQS_3	MEM_MDQ_12	MEM_MDQ_13
M01	M02	M03	M04					M09	M10	M11	M12					M17	M18	M19	M20
								VSS	VSS	VSS	VSS					d	182	184	186
ETH_13	ETH_12	ETH_8	VDD_CORE													VDD_MEM_IO	MEM_MDQ_24	MEM_MDQ_14	MEM_MDQ_15
N01	N02	N03	N04													N17	N18	N19	N20
ETH_7	ETH_6	ETH_15	ETH_14													MEM_MDQ_25	MEM_MDQ_26	MEM_DQM_0	MEM_MDQS_0
P01	P02	P03	P04													P17	P18	P19	P20
					Key	for PW	R/GND B	alls:								d	172	174	176
ĪRQ1	ĪRQ2	ĪRQ0	VDD_CORE		V	SS	Core and IO	VSS								VDD_MEM_IO	MEM_MDQ_27	MEM_MDQ_7	MEM_MDQ_6
R01	R02	R03	R04		VDD_	CORE	1.5V Core V	DD								R17	R18	R19	R20
ĪRQ3	PCI_RESET	EXT_AD_30	PCI_GNT		VDI	D IO	3.3V IO VDD)								MEM_MDQ_28	MEM_MDQ_29	MEM_MDQ_5	MEM_MDQ_4
T01	T02	T03	T04		VDD_N	/IEM_IO	Memory VDI)								T17	T18	T19	T20
PCI_CLOCK	EXT_AD_26	EXT_AD_28	VDD_IO		_	_										VDD_MEM_IO	MEM_MDQ_30	MEM_MDQ_3	MEM_MDQ_2
U01	U02	U03	U04	U05	U06	U07	U08	U09	U10	U11	U12	U13	U14	U15	U16	U17	U18	U19	U20
PCI_REQ	PCI_IDSEL	EXT_AD_24	VSS	VDD_IO	VDD_IO	VDD_CORE	EXT_AD_15	VDD_IO	VDD_IO	EXT_AD_6	VDD_CORE	VDD_IO	LP_ACK	VDD_CORE	VDD_IO	VSS	MEM_MDQ_31	MEM_MDQ_1	MEM_MDQ_0
V01	V02	V03	V04	V05	V06	V07	V08	V09	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20
EXT_AD_31	EXT_AD_20	EXT_AD_22	EXT_AD_18	PCI_FRAME	PCI_STOP	PCI_PAR	EXT_AD_13	EXT_AD_11	EXT_AD_9	EXT_AD_4	EXT_AD_2	EXT_AD_0	LP_ALE	LP_CS2	LP_CS5	ATA_DRQ	TIMER_1	12C_0	12C_2
W01	W02	W03	W04	W05	W06	W07	W08	W09	W10	W11	W12	W13	W14	W15	W16	W17	W18	W19	W20
Y01	Y02	Y03	Y04	Y05	Y06	Y07	PCI_SERR Y08	Y09	Y10	EXT_AD_8 Y11	Y12	Y13	Y14	Y15	Y16	Y17	ATA_IOCHRDY	Y19	Y20
YUI EXT_AD_27	PCI_CBE_3	YU3 EXT_AD_21	-	Y UO EXT_AD_17	PCI_IRDY	PCI_PERR	PCI_CBE_1	Y U9 EXT_AD_12	Y IU EXT_AD_10	Y I I EXT_AD_7	Y I∠ EXT_AD_3	T I 3	T 14	I I I D	Y IO ATA_ISOLATION	T I /	ATA_DACK	T 19 ATA_INTRQ	Y∠U TIMER_0
EXI_AD_Z/	FULUBE_3	EAT_AD_2T	EVI_WD_19	EX1_MD_1/	-CI_IKDY	FU_PERK					Δ — To	_		LP_C54	AIA_ISOLATION	MIM_IOR	AIA_DACK	AIA_INTRQ	TIMER_0

Figure 2-2. 272-Pin PBGA — Top View

Figure 2-3. MPC5200B Peripheral Muxing

2.2 Pinout Tables

Table 2-1. Signals by Ball/Pin

Ball/Pin	Pin Name
A01	TEST_MODE_1
A02	JTAG_TDO
A03	JTAG_TDI
A04	JTAG_TMS
A05	PSC3_8
A06	PSC3_5
A07	PSC3_2
A08	PSC2_4
A09	PSC2_2
A10	PSC1_4

Ball/Pin	Pin Name
B16	MEM_MA_2
B17	MEM_MA_10
B18	MEM_CS_0
B19	MEM_CAS
B20	MEM_MA_4
C01	RTC_XTAL_OUT
C02	RTC_XTAL_IN
C03	TEST_SEL_1
C04	PSC3_9
C05	PSC3_6

Table 2-1. Signals by Ball/Pin (continued)

<u>r</u>	
Ball/Pin	Pin Name
A11	PSC1_1
A12	PSC6_2
A13	PORRESET
A14	SRESET
A15	SYS_XTAL_IN
A16	MEM_MA_1
A17	MEM_MBA_1
A18	MEM_RAS
A19	MEM_WE
A20	MEM_DQM_2
B01	TEST_SEL_0
B02	TEST_MODE_0
B03	JTAG_TRST
B04	JTAG_TCK
B05	PSC3_7
B06	PSC3_4
B07	PSC3_1
B08	PSC2_3
B09	PSC2_1
B10	PSC1_3
B11	PSC1_0
B12	PSC6_0
B13	HRESET
B14	SYS_PLL_AVDD
B15	SYS_PLL_TPA
D11	VDD_CORE
D12	VDD_MEM_IO
D13	VDD_MEM_IO
D14	SYS_XTAL_OUT
D15	VDD_MEM_IO
D16	VSS_IO/CORE
D17	VDD_MEM_IO
D18	MEM_MDQS_2
D19	MEM_MA_7
D20	MEM_MA_8
L	1

Ball/Pin	Pin Name
C06	PSC3_3
C07	PSC3_0
C08	CORE_PLL_AVDD
C09	PSC2_0
C10	PSC1_2
C11	PSC6_1
C12	GPIO_WKUP_7
C13	PSC6_3
C14	SYS_PLL_AVSS
C15	GPIO_WKUP_6
C16	MEM_MA_3
C17	MEM_MA_0
C18	MEM_MBA_0
C19	MEM_MA_5
C20	MEM_MA_6
D01	TIMER_4
D02	TIMER_3
D03	TIMER_2
D04	VSS_IO/CORE
D05	VDD_CORE
D06	VDD_IO
D07	VDD_CORE
D08	LP_OE
D09	VDD_IO
D10	VDD_CORE
H04	VDD_IO
H17	VDD_MEM_IO
H18	MEM_MDQ_20
H19	MEM_DQM_1
H20	MEM_MDQS_1
J01	ETH_3
J02	ETH_4
J03	ETH_10
J04	ETH_17
J09	VSS_IO/CORE

Freescale Semiconductor 2-5

Table 2-1. Signals by Ball/Pin (continued)

	10.0.0 _ 11 O.g.
Ball/Pin	Pin Name
E01	TIMER_7
E02	TIMER_6
E03	TIMER_5
E04	VDD_IO
E17	VDD_MEM_IO
E18	MEM_MDQ_16
E19	MEM_MA_9
E20	MEM_MA_11
F01	USB_7
F02	USB_8
F03	USB_9
F04	VDD_IO
F17	VDD_MEM_IO
F18	MEM_MDQ_17
F19	MEM_MA_12
F20	MEM_CLK_EN
G01	USB_3
G02	USB_4
G03	USB_5
G04	USB_6
G17	MEM_MDQ_18
G18	MEM_MDQ_19
G19	MEM_CLK
G20	MEM_CLK
H01	USB_0
H02	USB_1
H03	USB_2
L17	MEM_DQM_3
L18	MEM_MDQS_3
L19	MEM_MDQ_12
L20	MEM_MDQ_13
M01	ETH_13
M02	ETH_12
M03	ETH_8
M04	VDD_CORE
	1

Ball/Pin	Pin Name
J10	VSS_IO/CORE
J11	VSS_IO/CORE
J12	VSS_IO/CORE
J17	MEM_MDQ_22
J18	MEM_MDQ_21
J19	MEM_MDQ_8
J20	MEM_MDQ_9
K01	ETH_0
K02	ETH_1
K03	ETH_2
K04	VDD_CORE
K09	VSS_IO/CORE
K10	VSS_IO/CORE
K11	VSS_IO/CORE
K12	VSS_IO/CORE
K17	VDD_MEM_IO
K18	MEM_MDQ_23
K19	MEM_MDQ_10
K20	MEM_MDQ_11
L01	ETH_9
L02	ETH_16
L03	ETH_5
L04	ETH_11
L09	VSS_IO/CORE
L10	VSS_IO/CORE
L11	VSS_IO/CORE
L12	VSS_IO/CORE
R18	MEM_MDQ_29
R19	MEM_MDQ_5
R20	MEM_MDQ_4
T01	PCI_CLOCK
T02	EXT_AD_26
T03	EXT_AD_28
T04	VDD_IO
T17	VDD_MEM_IO

2-6 Freescale Semiconductor

Table 2-1. Signals by Ball/Pin (continued)

Ball/Pin	Pin Name
M09	VSS_IO/CORE
M10	
	VSS_IO/CORE
M11	VSS_IO/CORE
M12	VSS_IO/CORE
M17	VDD_MEM_IO
M18	MEM_MDQ_24
M19	MEM_MDQ_14
M20	MEM_MDQ_15
N01	ETH_7
N02	ETH_6
N03	ETH_15
N04	ETH_14
N17	MEM_MDQ_25
N18	MEM_MDQ_26
N19	MEM_DQM_0
N20	MEM_MDQS_0
P01	IRQ1
P02	IRQ2
P03	IRQ0
P04	VDD_CORE
P17	VDD_MEM_IO
P18	MEM_MDQ_27
P19	MEM_MDQ_7
P20	MEM_MDQ_6
R01	IRQ3
R02	PCI_RESET
R03	EXT_AD_30
R04	PCI_GNT
R17	MEM_MDQ_28
V07	PCI_PAR
V08	EXT_AD_13
V09	EXT_AD_11
V10	EXT_AD_9
V11	EXT_AD_4
V12	EXT_AD_2

Ball/Pin	Pin Name
T18	MEM_MDQ_30
T19	MEM_MDQ_3
T20	MEM_MDQ_2
U01	PCI_REQ
U02	PCI_IDSEL
U03	EXT_AD_24
U04	VSS_IO/CORE
U05	VDD_IO
U06	VDD_IO
U07	VDD_CORE
U08	EXT_AD_15
U09	VDD_IO
U10	VDD_IO
U11	EXT_AD_6
U12	VDD_CORE
U13	VDD_IO
U14	LP_ACK
U15	VDD_CORE
U16	VDD_IO
U17	VSS_IO/CORE
U18	MEM_MDQ_31
U19	MEM_MDQ_1
U20	MEM_MDQ_0
V01	EXT_AD_31
V02	EXT_AD_20
V03	EXT_AD_22
V04	EXT_AD_18
V05	PCI_FRAME
V06	PCI_STOP
Y04	EXT_AD_19
Y05	EXT_AD_17
Y06	PCI_IRDY
Y07	PCI_PERR
Y08	PCI_CBE_1
Y09	EXT_AD_12

Freescale Semiconductor 2-7

Table 2-1. Signals by Ball/Pin (continued)

Ball/Pin	Pin Name
V13	EXT_AD_0
V14	LP_ALE
V15	LP_CS2
V16	LP_CS5
V17	ATA_DRQ
V18	TIMER_1
V19	I2C_0
V20	I2C_2
W01	EXT_AD_29
W02	EXT_AD_25
W03	EXT_AD_23
W04	EXT_AD_16
W05	PCI_TRDY
W06	PCI_CBE_2
W07	PCI_DEVSEL
W08	PCI_SERR
W09	EXT_AD_14
W10	PCI_CBE_0
W11	EXT_AD_8
W12	EXT_AD_5
W13	EXT_AD_1
W14	LP_CS0
W15	LP_CS3
W16	LP_RW
W17	ATA_IOW
W18	ATA_IOCHRDY
W19	I2C_1
W20	I2C_3
Y01	EXT_AD_27
Y02	PCI_CBE_3
Y03	EXT_AD_21

Ball/Pin	Pin Name
Y10	EXT_AD_10
Y11	EXT_AD_7
Y12	EXT_AD_3
Y13	LP_TS
Y14	LP_CS1
Y15	LP_CS4
Y16	ATA_ISOLATION
Y17	ATA_IOR
Y18	ATA_DACK
Y19	ATA_INTRQ
Y20	TIMER_0

2-8 Freescale Semiconductor

Table 2-2. Signals by Signal Name

	_
Signal Name	Ball/Pin
ATA_DACK	Y18
ATA_DRQ	V17
ATA_INTRQ	Y19
ATA_IOCHRDY	W18
ATA_IOR	Y17
ATA_IOW	W17
ATA_ISOLATION	Y16
LP_CS0	W14
LP_CS1	Y14
LP_CS2	V15
LP_CS3	W15
LP_CS4	Y15
LP_CS5	V16
ETH_0	K01
ETH_1	K02
ETH_2	K03
ETH_3	J01
ETH_4	J02
ETH_5	L03
ETH_6	N02
ETH_7	N01
ETH_8	M03
ETH_9	L01
ETH_10	J03
ETH_11	L04
ETH_12	M02
ETH_13	M01
ETH_14	N04
ETH_15	N03
ETH_16	L02
ETH_17	J04
EXT_AD_0	V13
EXT_AD_1	W13
EXT_AD_2	V12
EXT_AD_3	Y12
	I

Signal Name	Ball/Pin								
EXT_AD_6	U11								
EXT_AD_7	Y11								
EXT_AD_8	W11								
EXT_AD_9	V10								
EXT_AD_10	Y10								
EXT_AD_11	V09								
EXT_AD_12	Y09								
EXT_AD_13	V08								
EXT_AD_14	W09								
EXT_AD_15	U08								
EXT_AD_16	W04								
EXT_AD_17	Y05								
EXT_AD_18	V04								
EXT_AD_19	Y04								
EXT_AD_20	V02								
EXT_AD_21	Y03								
EXT_AD_22	V03								
EXT_AD_23	W03								
EXT_AD_24	U03								
EXT_AD_25	W02								
EXT_AD_26	T02								
EXT_AD_27	Y01								
EXT_AD_28	T03								
EXT_AD_29	W01								
EXT_AD_30	R03								
EXT_AD_31	V01								
GPIO_WKUP_6	C15								
GPIO_WKUP_7	C12								
CORE_PLL_AVDD	C08								
CORE_PLL_AVSS	NC (no connection)								
HRESET	B13								
I2C_0	V19								
I2C_1	W19								
I2C_2	V20								
I2C_3	W20								

Freescale Semiconductor 2-9

Table 2-2. Signals by Signal Name (continued)

Signal Name	Ball/Pin							
EXT_AD_4	V11							
EXT_AD_5	W12							
PSC6_3	C13							
PSC6_1	C11							
IRQ0	P03							
IRQ1	P01							
IRQ2	P02							
IRQ3	R01							
JTAG_TCK	B04							
JTAG_TDI	A03							
JTAG_TDO	A02							
JTAG_TMS	A04							
JTAG_TRST	B03							
LP_ACK	U14							
LP_ALE	V14							
LP_OE	D08							
LP_RW	W16							
LP_TS	Y13							
MEM_CAS	B19							
MEM_CLK_EN	F20							
MEM_CS_0	B18							
MEM_DQM_0	N19							
MEM_DQM_1	H19							
MEM_DQM_2	A20							
MEM_DQM_3	L17							
MEM_MA_0	C17							
MEM_MA_1	A16							
MEM_MA_2	B16							
MEM_MA_3	C16							
MEM_MA_4	B20							
MEM_MA_5	C19							
MEM_MA_6	C20							
MEM_MA_7	D19							
MEM_MA_8	D20							
MEM_MA_9	E19							

Signal Name	Ball/Pin
PSC6_0	B12
PSC6_2	A12
MEM_MBA_1	A17
MEM_MDQ_0	U20
MEM_MDQ_1	U19
MEM_MDQ_2	T20
MEM_MDQ_3	T19
MEM_MDQ_4	R20
MEM_MDQ_5	R19
MEM_MDQ_6	P20
MEM_MDQ_7	P19
MEM_MDQ_8	J19
MEM_MDQ_9	J20
MEM_MDQ_10	K19
MEM_MDQ_11	K20
MEM_MDQ_12	L19
MEM_MDQ_13	L20
MEM_MDQ_14	M19
MEM_MDQ_15	M20
MEM_MDQ_16	E18
MEM_MDQ_17	F18
MEM_MDQ_18	G17
MEM_MDQ_19	G18
MEM_MDQ_20	H18
MEM_MDQ_21	J18
MEM_MDQ_22	J17
MEM_MDQ_23	K18
MEM_MDQ_24	M18
MEM_MDQ_25	N17
MEM_MDQ_26	N18
MEM_MDQ_27	P18
MEM_MDQ_28	R17
MEM_MDQ_29	R18
MEM_MDQ_30	T18
MEM_MDQ_31	U18

MPC5200B Users Guide, Rev. 1

2-10 Freescale Semiconductor

Table 2-2. Signals by Signal Name (continued)

Signal Name	Ball/Pin
MEM_MA_10	B17
MEM_MA_11	E20
MEM_MA_12	F19
MEM_MBA_0	C18
MEM_CLK	G19
MEM_CLK	G20
MEM_RAS	A18
MEM_WE	A19
PCI_CBE_0	W10
PCI_CBE_1	Y08
PCI_CBE_2	W06
PCI_CBE_3	Y02
PCI_CLOCK	T01
PCI_DEVSEL	W07
PCI_FRAME	V05
PCI_GNT	R04
PCI_IDSEL	U02
PCI_IRDY	Y06
PCI_PAR	V07
PCI_PERR	Y07
PCI_REQ	U01
PCI_RESET	R02
PCI_SERR	W08
PCI_STOP	V06
PCI_TRDY	W05
PORRESET	A13
PSC1_0	B11
PSC1_1	A11
PSC1_2	C10
PSC1_3	B10
PSC1_4	A10
PSC2_0	C09
PSC2_1	B09
PSC2_2	A09
PSC2_3	B08

Signal Name	Ball/Pin							
MEM_MDQS_0	N20							
MEM_MDQS_1	H20							
MEM_MDQS_2	D18							
MEM_MDQS_3	L18							
PSC3_5	A06							
PSC3_6	C05							
PSC3_7	B05							
PSC3_8	A05							
PSC3_9	C04							
RTC_XTAL_IN	C02							
RTC_XTAL_OUT	C01							
SRESET	A14							
SYS_PLL_AVDD	B14							
SYS_PLL_AVSS	C14							
SYS_PLL_TPA	B15							
SYS_XTAL_IN	A15							
SYS_XTAL_OUT	D14							
TEST_MODE_0	B02							
TEST_MODE_1	A01							
TEST_SEL_0	B01							
TEST_SEL_1	C03							
TIMER_0	Y20							
TIMER_1	V18							
TIMER_2	D03							
TIMER_3	D02							
TIMER_4	D01							
TIMER_5	E03							
TIMER_6	E02							
TIMER_7	E01							
USB_0	H01							
USB_1	H02							
USB_2	H03							
USB_3	G01							
USB_4	G02							
USB_5	G03							

Freescale Semiconductor 2-11

Table 2-2. Signals by Signal Name (continued)

Signal Name Ball/Pin PSC2_4 A08 PSC3_0 C07 PSC3_1 B07 PSC3_2 A07 PSC3_3 C06 PSC3_4 B06 VDD_CORE D10 VDD_CORE D11 VDD_CORE K04 VDD_CORE M04 VDD_CORE W07 VDD_CORE U12 VDD_CORE U15 VDD_CORE U15 VDD_CORE U15 VDD_IO D06 VDD_IO D06 VDD_IO D09 VDD_IO H4 VDD_IO U05 VDD_IO U06 VDD_IO U06 VDD_IO U10 VDD_IO U10 VDD_IO U10 VDD_IO U10 VDD_IO U10 VDD_IO U10 VDD_MEM_IO D12 VDD_MEM_IO D15 VDD_		Table 2-2. Olgilals by
PSC3_0 C07 PSC3_1 B07 PSC3_2 A07 PSC3_3 C06 PSC3_4 B06 VDD_CORE D10 VDD_CORE D11 VDD_CORE M04 VDD_CORE M04 VDD_CORE M04 VDD_CORE U07 VDD_CORE U12 VDD_CORE U15 VDD_CORE U15 VDD_IO D06 VDD_IO D09 VDD_IO E04 VDD_IO F04 VDD_IO F04 VDD_IO T4 VDD_IO U05 VDD_IO U06 VDD_IO U06 VDD_IO U09 VDD_IO U09 VDD_IO U13 VDD_IO U13 VDD_IO U16 VDD_IO U16 VDD_IO U16 VDD_IO U16 VDD_IO U16 VDD_IO U17 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO F17 VDD_MEM_IO F17 VDD_MEM_IO H17	Signal Name	Ball/Pin
PSC3_1	PSC2_4	A08
PSC3_2	PSC3_0	C07
PSC3_4	PSC3_1	B07
PSC3_4	PSC3_2	A07
VDD_CORE D10 VDD_CORE D11 VDD_CORE K04 VDD_CORE M04 VDD_CORE P04 VDD_CORE U07 VDD_CORE U12 VDD_CORE U15 VDD_IO D06 VDD_IO D09 VDD_IO F04 VDD_IO F04 VDD_IO T4 VDD_IO U05 VDD_IO U06 VDD_IO U09 VDD_IO U10 VDD_IO U13 VDD_IO U16 VDD_IO U13 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D13 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO H17	PSC3_3	C06
VDD_CORE K04 VDD_CORE K04 VDD_CORE M04 VDD_CORE P04 VDD_CORE U07 VDD_CORE U12 VDD_CORE U15 VDD_IO D06 VDD_IO D09 VDD_IO E04 VDD_IO F04 VDD_IO H4 VDD_IO U05 VDD_IO U06 VDD_IO U09 VDD_IO U10 VDD_IO U10 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO H17	PSC3_4	B06
VDD_CORE K04 VDD_CORE M04 VDD_CORE P04 VDD_CORE U07 VDD_CORE U12 VDD_CORE U15 VDD_IO D06 VDD_IO D09 VDD_IO E04 VDD_IO F04 VDD_IO H4 VDD_IO U05 VDD_IO U06 VDD_IO U09 VDD_IO U10 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO F17 VDD_MEM_IO H17	VDD_CORE	D10
VDD_CORE M04 VDD_CORE P04 VDD_CORE U07 VDD_CORE U12 VDD_CORE U15 VDD_IO D06 VDD_IO E04 VDD_IO F04 VDD_IO H4 VDD_IO U05 VDD_IO U06 VDD_IO U09 VDD_IO U10 VDD_IO U16 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO H17	VDD_CORE	D11
VDD_CORE P04 VDD_CORE U07 VDD_CORE U12 VDD_CORE U15 VDD_IO D06 VDD_IO D09 VDD_IO E04 VDD_IO F04 VDD_IO H4 VDD_IO U05 VDD_IO U06 VDD_IO U10 VDD_IO U10 VDD_IO U16 VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17	VDD_CORE	K04
VDD_CORE U07 VDD_CORE U12 VDD_IO D06 VDD_IO D09 VDD_IO E04 VDD_IO F04 VDD_IO H4 VDD_IO U05 VDD_IO U06 VDD_IO U09 VDD_IO U10 VDD_IO U10 VDD_IO U16 VDD_IO U16 VDD_IO U16 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO H17	VDD_CORE	M04
VDD_CORE U12 VDD_IO D06 VDD_IO D09 VDD_IO E04 VDD_IO F04 VDD_IO H4 VDD_IO U05 VDD_IO U06 VDD_IO U09 VDD_IO U10 VDD_IO U13 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17	VDD_CORE	P04
VDD_CORE U15 VDD_IO D06 VDD_IO D09 VDD_IO E04 VDD_IO F04 VDD_IO H4 VDD_IO U05 VDD_IO U06 VDD_IO U10 VDD_IO U10 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17	VDD_CORE	U07
VDD_IO D06 VDD_IO D09 VDD_IO E04 VDD_IO F04 VDD_IO H4 VDD_IO U05 VDD_IO U06 VDD_IO U10 VDD_IO U13 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_CORE	U12
VDD_IO D09 VDD_IO E04 VDD_IO F04 VDD_IO H4 VDD_IO U05 VDD_IO U06 VDD_IO U10 VDD_IO U10 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_CORE	U15
VDD_IO E04 VDD_IO F04 VDD_IO H4 VDD_IO U05 VDD_IO U06 VDD_IO U09 VDD_IO U10 VDD_IO U13 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_IO	D06
VDD_IO F04 VDD_IO H4 VDD_IO T4 VDD_IO U05 VDD_IO U09 VDD_IO U10 VDD_IO U13 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_IO	D09
VDD_IO H4 VDD_IO T4 VDD_IO U05 VDD_IO U09 VDD_IO U10 VDD_IO U13 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_IO	E04
VDD_IO T4 VDD_IO U05 VDD_IO U06 VDD_IO U09 VDD_IO U10 VDD_IO U13 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_IO	F04
VDD_IO U05 VDD_IO U06 VDD_IO U09 VDD_IO U10 VDD_IO U13 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_IO	H4
VDD_IO U06 VDD_IO U09 VDD_IO U10 VDD_IO U13 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_IO	T4
VDD_IO U09 VDD_IO U10 VDD_IO U13 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_IO	U05
VDD_IO U10 VDD_IO U13 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_IO	U06
VDD_IO U13 VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_IO	U09
VDD_IO U16 VDD_MEM_IO D12 VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_IO	U10
VDD_MEM_IO D12 VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_IO	U13
VDD_MEM_IO D13 VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_IO	U16
VDD_MEM_IO D15 VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_MEM_IO	D12
VDD_MEM_IO D17 VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_MEM_IO	D13
VDD_MEM_IO E17 VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_MEM_IO	D15
VDD_MEM_IO F17 VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_MEM_IO	D17
VDD_MEM_IO H17 VDD_MEM_IO K17	VDD_MEM_IO	E17
VDD_MEM_IO K17	VDD_MEM_IO	F17
	VDD_MEM_IO	H17
VDD MEM IO M17	VDD_MEM_IO	K17
755_WEW_10	VDD_MEM_IO	M17

Signal Name	Ball/Pin
USB_6	G04
USB_7	F01
USB_8	F02
USB_9	F03
VDD_CORE	D05
VSS_IO/CORE	J12
VSS_IO/CORE	K10
VSS_IO/CORE	K10
VSS_IO/CORE	K11
VSS_IO/CORE	K12
VSS_IO/CORE	L09
VSS_IO/CORE	L10
VSS_IO/CORE	L11
VSS_IO/CORE	L12
VSS_IO/CORE	M09
VSS_IO/CORE	M10
VSS_IO/CORE	M11
VSS_IO/CORE	M12
VSS_IO/CORE	U04
VSS_IO/CORE	U17
VDD_CORE	D07

2-12 Freescale Semiconductor

Table 2-2. Signals by Signal Name (continued)

Signal Name	Ball/Pin
VDD_MEM_IO	P17
VDD_MEM_IO	T17
VSS_IO/CORE	D04
VSS_IO/CORE	D16
VSS_IO/CORE	J09
VSS_IO/CORE	J10
VSS_IO/CORE	J11

Signal Name	Ball/Pin

Table 2-3. LocalPlus Bus Address / Data Pin Assignments

MPC5200B LocaLPlus Bus	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T	E X T
Address / Data Pins	A D 3	A D 3 0	A D 2	A D 2 8	A D 2 7	A D 2 6	A D 2 5	A D 2 4	A D 2 3	A D 2 2	Ā D 2 1	Ā D 2 0	A D 1	A D 1 8	Ā D 1 7	A D 1 6	A D 1 5	A D 1 4	A D 1 3	A D 1 2	A D 1	A D 1	A D 9	A D 8	Ā D 7	A D 6	A D 5	A D 4	A D 3	A D 2	A D 1	A D 0
16 bit Adr, 16 bit Data	D 1 5	D 1 4	D 1 3	D 1 2	D 1 1	D 1 0	D 0 9	D 8	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	A 1 5	A 1 4	A 1 3	A 1 2	A 1 1	A 1 0	A 9	A 8	A 7	A 6	A 5	A 4	A 3	A 2	A 1	A 0
24 bit Adr, 8 bit Data	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	A 2 3	A 2 2	A 2 1	A 2 0	A 1 9	A 1 8	A 1 7	A 1 6	A 1 5	A 1 4	A 1 3	A 1 2	A 1 1	A 1 0	A 9	A 8	A 7	A 6	A 5	A 4	A 3	A 2	A 1	A 0
Muxed modes																																
All Muxed mode Address tenures	0	T S 1 Z E 2	T S 1 Z E 1	T S 1 Z E 0	0	B S 1	B S 0	A 2 4	A 2 3	A 2 2	A 2 1	A 2 0	A 1 9	A 1 8	A 1 7	A 1 6	A 1 5	A 1 4	A 1 3	A 1 2	A 1 1	A 1 0	A 9	A 8	A 7	A 6	A 5	A 4	A 3	A 2	A 1	A 0
8 bit Data tenure	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0								
16 bit Data tenure	D 1 5	D 1 4	D 1 3	D 1 2	D 1	D 1 0	D 9	D 8	D 7	D 6	D 5	D 4	D 3	D 3	D 2	D 0																
32 bit Data tenure	D 3 1	D 3 0	D 2 9	D 2 8	D 2 7	D 2 6	D 2 5	D 2 4	D 2 3	D 2 2	D 2 1	D 2 0	D 1 9	D 1 8	D 1 7	D 1 6	D 1 5	D 1 4	D 1 3	D 1 2	D 1 1	D 1 0	D 9	D 8	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0

Pinout Tables

Table 2-4. LocalPlus Pin Functions

		Loca Non-	IPlus ·mux	ML	LocalF JLTIPLEX				PCI E	BUS				Lorgo	
Pin name	BALL	Addr /Data 24/8	Addr /Data 16/16	Address Phase	32-bit Data Phase	16-bit Data Phase	8-bit Data Phase	PCI Address Phase	32-bit Data Phase	16-bit Data Phase	8-bit Data Phase	ATA	MOST	Large Flash	RESET
EXT_AD_31	V01	D7	D15	0	D31	D15	D7	A31	D31	0	0		D31	D15	
EXT_AD_30	R03	D6	D14	TSIZ0	D30	D14	D6	A30	D30	0	0		D30	D14	
EXT_AD_29	W01	D5	D13	TSIZ1	D29	D13	D5	A29	D29	0	0		D29	D13	
EXT_AD_28	T03	D4	D12	TSIZ2	D28	D12	D4	A28	D28	0	0		D28	D12	
EXT_AD_27	Y01	D3	D11	0	D27	D11	D3	A27	D27	0	0		D27	D11	
EXT_AD_26	T02	D2	D10	BS1	D26	D10	D2	A26	D26	0	0		D26	D10	
EXT_AD_25	W02	D1	D9	BS0	D25	D9	D1	A25	D25	0	0		D25	D9	
EXT_AD_24	U03	D0	D8	A24	D24	D8	D0	A24	D24	0	0		D24	D8	
EXT_AD_23	W03	A23	D7	A23	D23	D7	0	A23	D23	0	0		D23	D7	
EXT_AD_22	V03	A22	D6	A22	D22	D6	0	A22	D22	0	0		D22	D6	
EXT_AD_21	Y03	A21	D5	A21	D21	D5	0	A21	D21	0	0		D21	D5	
EXT_AD_20	V02	A20	D4	A20	D20	D4	0	A20	D20	0	0		D20	D4	
EXT_AD_19	Y04	A19	D3	A19	D19	D3	0	A19	D19	0	0		D19	D3	
EXT_AD_18	V04	A18	D2	A18	D18	D2	0	A18	D18	0	0	SA_2	D18	D2	
EXT_AD_17	Y05	A17	D1	A17	D17	D1	0	A17	D17	0	0	SA_1	D17	D1	
EXT_AD_16	W04	A16	D0	A16	D16	D0	0	A16	D16	0	0	SA_0	D16	D0	
EXT_AD_15	U08	A15	A15	A15	D15	0	0	A15	D15	D15	0	D15	D15	A15	
EXT_AD_14	W09	A14	A14	A14	D14	0	0	A14	D14	D14	0	D14	D14	A14	
EXT_AD_13	V08	A13	A13	A13	D13	0	0	A13	D13	D13	0	D13	D13	A13	
EXT_AD_12	Y09	A12	A12	A12	D12	0	0	A12	D12	D12	0	D12	D12	A12	
EXT_AD_11	V09	A11	A11	A11	D11	0	0	A11	D11	D11	0	D11	D11	A11	
EXT_AD_10	Y10	A10	A10	A10	D10	0	0	A10	D10	D10	0	D10	D10	A10	
EXT_AD_9	V10	A9	A9	A9	D9	0	0	A9	D9	D9	0	D9	D9	A9	
EXT_AD_8	W11	A8	A8	A8	D8	0	0	A8	D8	D8	0	D8	D8	A8	
EXT_AD_7	Y11	A7	A7	A7	D7	0	0	A7	D7	D7	D7	D7	D7	A7	
EXT_AD_6	U11	A6	A6	A6	D6	0	0	A6	D6	D6	D6	D6	D6	A6	
EXT_AD_5	W12	A 5	A5	A 5	D5	0	0	A5	D5	D5	D5	D5	D5	A 5	
EXT_AD_4	V11	A4	A4	A4	D4	0	0	A4	D4	D4	D4	D4	D4	A4	
EXT_AD_3	Y12	A3	А3	А3	D3	0	0	А3	D3	D3	D3	D3	D3	А3	
EXT_AD_2	V12	A2	A2	A2	D2	0	0	A2	D2	D2	D2	D2	D2	A2	
EXT_AD_1	W13	A1	A1	A1	D1	0	0	A1	D1	D1	D1	D1	D1	A1	
EXT_AD_0	V13	A0	A0	A0	D0	0	0	A0	D0	D0	D0	D0	D0	A0	
						PCI D	edicated s	Signals							
PCI_PAR	V07								PCI_I	PAR			A0	A16	
PCI_CBE_0	W10								PCI_C	BE_0			A1	A17	
PCI_CBE_1	Y08								PCI_C	BE_1		_	A2	A18	

MPC5200B Users Guide, Rev. 1

2-14 Freescale Semiconductor

Table 2-4. LocalPlus Pin Functions (continued)

	LocalPlus LocalPlus PIN Functions (continued)														
			IPlus -mux	MU	LocalF JLTIPLEX				PCI E	BUS				Largo	
Pin name	BALL	Addr /Data 24/8	Addr /Data 16/16	Address Phase	32-bit Data Phase	16-bit Data Phase	8-bit Data Phase	PCI Address Phase	32-bit Data Phase	16-bit Data Phase	8-bit Data Phase	ATA	MOST	Large Flash	RESET
PCI_CBE_2	W06								PCI_C	BE_2			А3	A19	
PCI_CBE_3	Y02								PCI_C	BE_3			A4	A20	
PCI_TRDY	W05								PCI_T	RDY			A5	A21	
PCI_IRDY	Y06								PCI_II	RDY			A6	A22	
PCI_STOP	V06								PCI_S	TOP			A7	A23	
PCI_DEVS EL	W07								PCI_DE	VSEL			A8	A24	
PCI_FRAM E	V05								PCI_FF	RAME			A9	A25	
PCI_SERR	W08								PCI_S	ERR			A10	Note 1	
PCI_PERR	Y07								PCI_P	ERR			A11	Note 1	
PCI_IDSEL	U02								PCI_IE	SEL			A12	Note 1	
PCI_REQ	U01								PCI_F	REQ			A13	Note 1	
PCI_GNT	R04								PCI_C	GNT			A14	Note 1	
PCI_CL0CK	T01	CLK	CLK OUT	CLK OUT	CLK OUT	CLK OUT	CLK OUT	Sar	me as PC	CI_CLOCI	<		CLK OUT	CLK OUT	
PCI_RESET	R02								PCI_RI	ESET		A15	Note 1		
						ATA D	edicated :	Signals							
ATA_DRQ	V17											ATA_D RQ	A16		
ATA_DACK	Y18											ATA_D ACK	A17		RST_CF G0
ATA_IOR	Y17											ATA_I OR	A18		RST_CF G1
ATA_IOW	W17											ATA_I OW	A19		RST_CF G2
ATA_IOCHR DY	W18											ATA_I OCHR DY	A20		
ATA_INTRQ	Y19											ATA_IN TRQ	A21		
ATA_ISOLA TION	Y16											ATA_IS OLATI ON	A22		
	· · ·					LocalPlus	Dedicate	ed Signals			ı	1	ı		
LP_RW	W16			LP_RW									LP_	.RW	RST_CF G3
LP_ALE	V14				LP_A	LE							A23		RST_CF G4
LP_ACK	U14			LP_ACK	(LP_ACK	K, Note 2	
LP_TS	Y13				LP_T	S							LP ₋	_TS	RST_CF G5

Table 2-4. LocalPlus Pin Functions (continued)

	LocalPlus Non-mux		LocalPlus MULTIPLEXED BUS			PCI BUS					Large				
Pin name	BALL	Addr /Data 24/8	Addr /Data 16/16	Address Phase	32-bit Data Phase	16-bit Data Phase	8-bit Data Phase	PCI Address Phase	32-bit Data Phase	16-bit Data Phase	8-bit Data Phase	ATA	MOST	Flash	RESET
LP_OE	D08			LP_OE									LP_	OE	
LP_CS0	W14	CS_0 / CS_BOOT									CS_E				
LP_CS1	Y14			CS_1									CS	3_1	
LP_CS2	V15	CS_2									CS	5_2			
LP_CS3	W15	CS_3									CS	3_3			
LP_CS4	Y15	CS_4							ATA_C S_0	CS	6_4				
LP_CS5	V16	CS_5								ATA_C S_1	CS	5_5			
						PSC 3 [Dedicated	l Signals				•			
PSC3_4	B06			CS_6									CS	6_6	
PSC3_5	A06			CS_7									CS	5_7	
	GPIO_WKUP Dedicated Signals														
GPIO_WKU P_7	C12										TSIZ1				
	JTAG Access Dedicated Signals														
TEST_SEL_ 1	C03												TSIZ2		

^{1.} The PCI signals, which are not used as address in Large Flash mode, are drive low during a Large Flash access.

Table 2-5. LocalPlus Bus Address / Data Signals

PIN / BALL NUMBER	Function	Reset Value	Description
Pin EXT_AD_31 Ball V01			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	logic 0 D7 D15 D31	hi - z	logic 0 LocalPlus Data Bit 7 LocalPlus Data Bit 15 LocalPlus Data Bit 31
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D15 D7	hi - z	logic 0 LocalPlus Data Bit 15
LFLASH	D15	hi - z	Large Flash Data Bit D15
MOST Graphics	D31	hi - z	MOST Graphics Data Bit D31
ATA			
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A31 logic 0 logic 0 D31	hi - z	PCI Address Bit A31 logic 0 logic 0 PCI Data Bit 31

2-16 Freescale Semiconductor

^{2.} For a burst transaction LP_ACK signal indicates the burst

Table 2-5. LocalPlus Bus Address / Data Signals (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin EXT_AD_30 Ball R03			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	TSIZE0 D6 D14 D30	hi - z	LocalPlus TSIZE0 LocalPlus Data Bit 6 LocalPlus Data Bit 14 LocalPlus Data Bit 30
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D14 D6	hi - z	LocalPlus Data Bit 14 LocalPlus Data Bit 6
LFLASH	D14	hi - z	Large Flash Data Bit D14
MOST Graphics	D30	hi - z	MOST Graphics Data Bit D30
ATA			
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A30 logic 0 logic 0 D30	hi - z	PCI Address Bit A30 logic 0 logic 0 PCI Data Bit 30
Pin EXT_AD_29 Ball W01			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	TSIZE1 D5 D13 D29	hi - z	LocalPlus TSIZE1 LocalPlus Data Bit 5 LocalPlus Data Bit 13 LocalPlus Data Bit 29
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D13 D5	hi - z	LocalPlus Data Bit 13 LocalPlus Data Bit 5
LFLASH	D13	hi - z	Large Flash Data Bit D13
MOST Graphics	D29	hi - z	MOST Graphics Data Bit D29
ATA			
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A31 logic 0 logic 0 D29	hi - z	PCI Address Bit A29 logic 0 logic 0 PCI Data Bit 29
Pin EXT_AD_28 Ball T03	•		
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	TSIZE2 D4 D12 D28	hi - z	TSIZE2 LocalPlus Data Bit 4 LocalPlus Data Bit 12 LocalPlus Data Bit 28
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D12 D4	hi - z	LocalPlus Data Bit 12 LocalPlus Data Bit 4
LFLASH	D12	hi - z	Large Flash Data Bit D12
MOST Graphics	D28	hi - z	MOST Graphics Data Bit D28
ATA			
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A28 logic 0 logic 0 D28	hi - z	PCI Address Bit A28 logic 0 logic 0 PCI Data Bit 28

Table 2-5. LocalPlus Bus Address / Data Signals (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin EXT_AD_27 Ball Y01			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	logic 0 D3 D11 D27	hi - z	logic 0 LocalPlus Data Bit 3 LocalPlus Data Bit 11 LocalPlus Data Bit 27
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D11 D3	hi - z	LocalPlus Data Bit 11 LocalPlus Data Bit 3
LFLASH	D11	hi - z	Large Flash Data Bit D11
MOST Graphics	D27	hi - z	MOST Graphics Data Bit D27
ATA			
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A27 logic 0 logic 0 D27	hi - z	PCI Address Bit A27 logic 0 logic 0 PCI Data Bit 27
Pin EXT_AD_26 Ball T02			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	BS1 D2 D10 D26	hi - z	LocalPlus BS1 LocalPlus Data Bit 2 LocalPlus Data Bit 10 LocalPlus Data Bit 26
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D10 D2	hi - z	LocalPlus Data Bit 10 LocalPlus Data Bit 2
LFLASH	D10	hi - z	Large Flash Data Bit D10
MOST Graphics	D26	hi - z	MOST Graphics Data Bit D26
ATA			
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A26 logic 0 logic 0 D26	hi - z	PCI Address Bit A26 logic 0 logic 0 PCI Data Bit 26
Pin EXT_AD_25 Ball W02			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	BS0 D1 D9 D25	hi - z	BS0 LocalPlus Data Bit 1 LocalPlus Data Bit 9 LocalPlus Data Bit 25
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D9 D1	hi - z	LocalPlus Data Bit 9 LocalPlus Data Bit 1
LFLASH	D9	hi - z	Large Flash Data Bit D9
MOST Graphics	D25	hi - z	MOST Graphics Data Bit D25
ATA			
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A25 logic 0 logic 0 D25	hi - z	PCI Address Bit A25 logic 0 logic 0 PCI Data Bit 25

2-18 Freescale Semiconductor

Table 2-5. LocalPlus Bus Address / Data Signals (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin EXT_AD_24 Ball U03			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A24 D0 D8 D24	hi - z	LocalPlus Address Bit 24 LocalPlus Data Bit 0 LocalPlus Data Bit 8 LocalPlus Data Bit 24
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D8 D0	hi - z	LocalPlus Data Bit 8 LocalPlus Data Bit 0
LFLASH	D8	hi - z	Large Flash Data Bit D8
MOST Graphics	D24	hi - z	MOST Graphics Data Bit D24
ATA			
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A24 logic 0 logic 0 D24	hi - z	PCI Address Bit A24 logic 0 logic 0 PCI Data Bit 24
Pin EXT_AD_23 Ball W03			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A23 logic 0 D7 D23	hi - z	Local Address Bit A23 logic 0 LocalPlus Data Bit 7 LocalPlus Data Bit 23
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D7 A23	hi - z	LocalPlus Data Bit 7 LocalPlus Address Bit A23
LFLASH	D7	hi - z	Large Flash Data Bit D7
MOST Graphics	D23	hi - z	MOST Graphics Data Bit D23
ATA			
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A23 logic 0 logic 0 D23	hi - z	PCI Address Bit A23 logic 0 logic 0 PCI Data Bit D23
Pin EXT_AD_22 Ball V03			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A22 logic 0 D6 D22	hi - z	LocalPlus Address Bit A22 logic 0 LocalPlus Data Bit 6 LocalPlus Data Bit D22
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D6 A22	hi - z	LocalPlus Data Bit D6 LocalPlus Address Bit A22
LFLASH	D6	hi - z	Large Flash Data Bit D6
MOST Graphics	D22	hi - z	MOST Graphics Data Bit D22
ATA			
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A22 logic 0 logic 0 D22	hi - z	PCI Address Bit A22 logic 0 logic 0 PCI Data Bit D22

Table 2-5. LocalPlus Bus Address / Data Signals (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin EXT_AD_21 Ball Y03			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A21 logic 0 D5 D21	hi - z	LocalPlus Address Bit A21 logic 0 LocalPlus Data Bit 5 LocalPlus Data Bit D21
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D5 A21	hi - z	LocalPlus Data Bit D5 LocalPlus Address Bit A21
LFLASH	D5	hi - z	Large Flash Data Bit D5
MOST Graphics	D21	hi - z	MOST Graphics Data Bit D21
ATA			
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A21 logic 0 logic 0 D21	hi - z	PCI Address Bit A21 logic 0 logic 0 PCI Data Bit D21
Pin EXT_AD_20 Ball V02			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A20 logic 0 D4 D20	hi - z	LocalPlus Address Bit A20 logic 0 LocalPlus Data Bit 4 LocalPlus Data Bit D20
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D4 A20	hi - z	LocalPlus Data Bit D4 LocalPlus Address Bit A20
LFLASH	D4	hi - z	Large Flash Data Bit D4
MOST Graphics	D20	hi - z	MOST Graphics Data Bit D20
ATA			
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A20 logic 0 logic 0 D20	hi - z	PCI Address Bit A20 logic 0 logic 0 PCI Data Bit D20
Pin EXT_AD_19 Ball Y04			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A19 logic 0 D3 D19	hi - z	LocalPlus Address Bit A19 logic 0 LocalPlus Data Bit 3 LocalPlus Data Bit D19
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D3 A19	hi - z	LocalPlus Data Bit D3 LocalPlus Address Bit A19
LFLASH	D3	hi - z	Large Flash Data Bit D3
MOST Graphics	D19	hi - z	MOST Graphics Data Bit D19
ATA			
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A19 logic 0 logic 0 D19	hi - z	PCI Address Bit A19 logic 0 logic 0 PCI Data Bit D19

MPC5200B Users Guide, Rev. 1

Table 2-5. LocalPlus Bus Address / Data Signals (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin EXT_AD_18 Ball V04			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A18 logic 0 D2 D18	hi - z	LocalPlus Address Bit A18 logic 0 LocalPlus Data Bit 2 LocalPlus Data Bit D18
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D2 A18	hi - z	LocalPlus Data Bit D2 LocalPlus Address Bit A18
LFLASH	D2	hi - z	Large Flash Data Bit D2
MOST Graphics	D18	hi - z	MOST Graphics Data Bit D18
ATA	ATA_SA_2	hi - z	
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A18 logic 0 logic 0 D18	hi - z	PCI Address Bit A18 logic 0 logic 0 PCI Data Bit D18
Pin EXT_AD_17 Ball Y05			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A17 logic 0 D1 D17	hi - z	LocalPlus Address Bit A17 logic 0 LocalPlus Data Bit 1 LocalPlus Data Bit D17
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D1 A17	hi - z	LocalPlus Data Bit D1 LocalPlus Address Bit A17
LFLASH	D1	hi - z	Large Flash Data Bit D1
MOST Graphics	D17	hi - z	MOST Graphics Data Bit D17
ATA			
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A17 logic 0 logic 0 D17	hi - z	PCI Address Bit A17 logic 0 logic 0 PCI Data Bit D17
Pin EXT_AD_16 Ball W04			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A16 logic 0 D0 D16	hi - z	LocalPlus Address Bit A16 logic 0 LocalPlus Data Bit 0 LocalPlus Data Bit D16
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	D0 A16	hi - z	LocalPlus Data Bit D0 LocalPlus Address Bit A16
LFLASH	D0	hi - z	Large Flash Data Bit D0
MOST Graphics	D16	hi - z	MOST Graphics Data Bit D16
ATA	ATA_SA_0	hi - z	ATA_SA_0
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A16 logic 0 logic 0 D16	hi - z	PCI Address Bit A16 logic 0 logic 0 PCI Data Bit D16

Table 2-5. LocalPlus Bus Address / Data Signals (continued)

PIN / BALL NUMBER	Function	Reset	Description
		Value	·
Pin EXT_AD_15 Ball U08 LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase	A15 logic 0	hi - z	LocalPlus Address Bit A15
16-Bit Data Phase 32-Bit Data Phase	logic 0 logic 0 D15		logic 0 logic 0 LocalPlus Data Bit D15
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A15 A15	hi - z	LocalPlus Address Bit A15 LocalPlus Address Bit A15
LFLASH	A15	hi - z	Large Flash Address Bit A15
MOST Graphics	D15	hi - z	MOST Graphics Data Bit D15
ATA	ATA_DATA_1 5	hi - z	ATA Data Bit 15
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A15 logic 0 D15 D15	hi - z	PCI Address Bit A15 logic 0 PCI Data Bit D15 PCI Data Bit D15
Pin EXT_AD_14 Ball W09			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A14 logic 0 logic 0 D14	hi - z	LocalPlus Address Bit A14 logic 0 logic 0 LocalPlus Data Bit D14
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A14 A14	hi - z	LocalPlus Address Bit A14 LocalPlus Address Bit A14
LFLASH	A14	hi - z	Large Flash Address Bit A14
MOST Graphics	D14	hi - z	MOST Graphics Data Bit D14
ATA	ATA_DATA_1 4	hi - z	ATA_DATA_14
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A14 logic 0 D14 D14	hi - z	PCI Address Bit A14 logic 0 PCI Data Bit D14 PCI Data Bit D14
Pin EXT_AD_13 Ball V08			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A13 logic 0 logic 03 D13	hi - z	LocalPlus Address Bit A13 logic 0 logic 0 LocalPlus Data Bit D13
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A13 A13	hi - z	LocalPlus Address Bit A13 LocalPlus Address Bit A13
LFLASH	A13	hi - z	Large Flash Address Bit A13
MOST Graphics	D13	hi - z	MOST Graphics Data Bit D13
АТА	ATA_DATA_1 3	hi - z	ATA Data Bit D13
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A13 logic 0 D13 D13	hi - z	PCI Address Bit A13 logic 0 PCI Data Bit D13 PCI Data Bit D13

2-22 Freescale Semiconductor

Table 2-5. LocalPlus Bus Address / Data Signals (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin EXT_AD_12 Ball Y09			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A12 logic 0 logic 0 D12	hi - z	LocalPlus Address Bit A12 logic 0 logic 0 LocalPlus Data Bit D12
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A12 A12	hi - z	LocalPlus Address Bit A12 LocalPlus Address Bit A12
LFLASH	A12	hi - z	Large Flash Address Bit A12
MOST Graphics	D12	hi - z	MOST Graphics Data Bit D12
АТА	ATA_DATA_1	hi - z	ATA_DATA_12
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A12 logic 0 D12 D12	hi - z	PCI Address Bit A12 logic 0 PCI Data Bit D12 PCI Data Bit D12
Pin EXT_AD_11 Ball V09			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A11 logic 0 logic 0 D11	hi - z	LocalPlus Address Bit A11 logic 0 logic 0 LocalPlus Data Bit D11
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A11 A11	hi - z	LocalPlus Address Bit A11 LocalPlus Address Bit A11
LFLASH	A11	hi - z	Large Flash Address Bit A11
MOST Graphics	D11	hi - z	MOST Graphics Data Bit D11
АТА	ATA_DATA_1 1	hi - z	ATA_DATA_11
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A11 logic 0 D11 D11	hi - z	PCI Address Bit A11 logic 0 PCI Data Bit D11 PCI Data Bit D11
Pin EXT_AD_10 Ball Y10			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A10 logic 0 logic 0 D10	hi - z	LocalPlus Address Bit A10 logic 0 logic 0 LocalPlus Data Bit D10
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A10 A10	hi - z	LocalPlus Address Bit A10 LocalPlus Address Bit A10
LFLASH	A10	hi - z	Large Flash Address Bit A10
MOST Graphics	D10	hi - z	MOST Graphics Data Bit D10
ATA	ATA_DATA_1	hi - z	ATA_DATA_10
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A10 logic 0 D10 D10	hi - z	PCI Address Bit A10 logic 0 PCI Data Bit D10 PCI Data Bit D10

Table 2-5. LocalPlus Bus Address / Data Signals (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin EXT_AD_9 Ball V10			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A9 logic 0 logic 0 D9	hi - z	LocalPlus Address Bit A9 logic 0 logic 0 LocalPlus Data Bit D9
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A9 A9	hi - z	LocalPlus Address Bit A9 LocalPlus Address Bit A9
LFLASH	A9	hi - z	Large Flash Address Bit A9
MOST Graphics	D9	hi - z	MOST Graphics Data Bit D22
ATA	ATA_DATA_9	hi - z	ATA_DATA_9
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A9 logic 0 D9 D9	hi - z	PCI Address Bit A9 logic 0 PCI Data Bit D9 PCI Data Bit D9
Pin EXT_AD_8 Ball W11			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A8 logic 0 logic 0 D8	hi - z	LocalPlus Address Bit A8 logic 0 logic 0 LocalPlus Data Bit D8
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A8 A8	hi - z	LocalPlus Address Bit A8 LocalPlus Address Bit A8
LFLASH	A8	hi - z	Large Flash Address Bit A8
MOST Graphics	D8	hi - z	MOST Graphics Data Bit D8
ATA	ATA_DATA_8	hi - z	ATA_DATA_8
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A8 logic 0 D8 D8	hi - z	PCI Address Bit A8 logic 0 PCI Data Bit D8 PCI Data Bit D8
Pin EXT_AD_7 Ball Y11			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A7 logic 0 logic 0 D7	hi - z	LocalPlus Address Bit A7 logic 0 logic 0 LocalPlus Data Bit D7
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A7 A7	hi - z	LocalPlus Address Bit A7 LocalPlus Address Bit A7
LFLASH	A7	hi - z	Large Flash Address Bit A7
MOST Graphics	D7	hi - z	MOST Graphics Data Bit D7
ATA	ATA_DATA_7	hi - z	ATA_DATA_7
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A7 D7 D7 D7	hi - z	PCI Address Bit A7 PCI Data Bit D7 PCI Data Bit D7 PCI Data Bit D7 PCI Data Bit D7

2-24 Freescale Semiconductor

Table 2-5. LocalPlus Bus Address / Data Signals (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin EXT_AD_6 Ball U11			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A6 logic 0 logic 0 D6	hi - z	LocalPlus Address Bit A6 logic 0 logic 0 LocalPlus Data Bit D6
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A6 A6	hi - z	LocalPlus Address Bit A6 LocalPlus Address Bit A6
LFLASH	A6	hi - z	Large Flash Address Bit A6
MOST Graphics	D6	hi - z	MOST Graphics Data Bit D6
ATA	ATA_DATA_6	hi - z	ATA_DATA_6
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A6 D6 D6 D6	hi - z	PCI Address Bit A6 PCI Data Bit D6 PCI Data Bit D6 PCI Data Bit D6 PCI Data Bit D6
Pin EXT_AD_5 Ball W12			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A5 logic 0 logic 0 D5	hi - z	LocalPlus Address Bit A5 logic 0 logic 0 LocalPlus Data Bit D5
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A5 A5	hi - z	LocalPlus Address Bit A5 LocalPlus Address Bit A5
LFLASH	A5	hi - z	Large Flash Address Bit A5
MOST Graphics	D5	hi - z	MOST Graphics Data Bit D5
ATA	ATA_DATA_5	hi - z	ATA_DATA_5
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A5 D5 D5 D5	hi - z	PCI Address Bit A5 PCI Data Bit D5 PCI Data Bit D5 PCI Data Bit D5 PCI Data Bit D5
Pin EXT_AD_4 Ball V11			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A4 logic 0 logic 0 D4	hi - z	LocalPlus Address Bit A4 logic 0 logic 0 LocalPlus Data Bit D4
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A4 A4	hi - z	LocalPlus Address Bit A4 LocalPlus Address Bit A4
LFLASH	A4	hi - z	Large Flash Address Bit A4
MOST Graphics	D4	hi - z	MOST Graphics Data Bit D4
ATA	ATA_DATA_4	hi - z	ATA_DATA_4
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A4 D4 D4 D4	hi - z	PCI Address Bit A4 PCI Data Bit D4 PCI Data Bit D4 PCI Data Bit D4 PCI Data Bit D4

Table 2-5. LocalPlus Bus Address / Data Signals (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin EXT_AD_3 Ball Y12			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A3 logic 0 logic 0 D3	hi - z	LocalPlus Address Bit A3 logic 0 logic 0 LocalPlus Data Bit D3
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A3 A3	hi - z	LocalPlus Address Bit A3 LocalPlus Address Bit A3
LFLASH	A3	hi - z	Large Flash Address Bit A3
MOST Graphics	D3	hi - z	MOST Graphics Data Bit D3
ATA	ATA_DATA_3	hi - z	ATA_DATA_3
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A3 D3 D3 D3	hi - z	PCI Address Bit A3 PCI Data Bit D3 PCI Data Bit D3 PCI Data Bit D3
Pin EXT_AD_2 Ball V12			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A2 logic 0 logic 0 D2	hi - z	LocalPlus Address Bit A2 logic 0 logic 0 LocalPlus Data Bit D2
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A2 A2	hi - z	LocalPlus Address Bit A2 LocalPlus Address Bit A2
LFLASH	A2	hi - z	Large Flash Address Bit A2
MOST Graphics	D2	hi - z	MOST Graphics Data Bit D2
ATA	ATA_DATA_2	hi - z	ATA_DATA_2
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A2 D2 D2 D2	hi - z	PCI Address Bit A2 PCI Data Bit D2 PCI Data Bit D2 PCI Data Bit D2 PCI Data Bit D2
Pin EXT_AD_1 Ball W13			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A1 logic 0 logic 0 D1	hi - z	LocalPlus Address Bit A1 logic 0 logic 0 LocalPlus Data Bit D1
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A1 A1	hi - z	LocalPlus Address Bit A1 LocalPlus Address Bit A1
LFLASH	A1	hi - z	Large Flash Address Bit A1
MOST Graphics	D1	hi - z	MOST Graphics Data Bit D1
ATA	ATA_DATA_1	hi - z	ATA_DATA_1
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A1 D1 D1 D1	hi - z	PCI Address Bit A1 PCI Data Bit D1 PCI Data Bit D1 PCI Data Bit D1

2-26 Freescale Semiconductor

Table 2-5. LocalPlus Bus Address / Data Signals (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin EXT_AD_0 Ball V13			
LocalPlus Bus multiplexed mode Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A0 logic 0 logic 0 D0	hi - z	LocalPlus Address Bit A0 logic 0 logic 0 LocalPlus Data Bit D0
LocalPlus non-mux 16-bit addr/16-bit data 24-bit addr/8-bit data	A0 A0	hi - z	LocalPlus Address Bit A0 LocalPlus Address Bit A0
LFLASH	A0	hi - z	Large Flash Address Bit A0
MOST Graphics	D0	hi - z	MOST Graphics Data Bit D0
ATA	ATA_DATA_0	hi - z	ATA_DATA_0
PCI Address Phase 8-Bit Data Phase 16-Bit Data Phase 32-Bit Data Phase	A0 logic 0 logic 0 D0	hi - z	PCI Address Bit A0 PCI Data Bit 0 PCI Data Bit 0 PCI Data Bit D0

Table 2-6. PCI Dedicated Signals

PIN / BALL NUMBER	Function	Reset Value	Description
Pin PCI_PAR Ball V07			
PCI	PCI_PAR	logic 1	PCI Bus Parity
LFLASH	A16	logic 1	Large Flash Address Bit A16
MOST Graphics	A0	logic 1	MOST Graphics Address Bit A0
Pin PCI_CBE_0 Ball W10			
PCI	PCI_CBE_0	logic 1	PCI Command Byte Enable 0
LFLASH	A17	logic 1	Large Flash Address Bit A17
MOST Graphics	A1	logic 1	MOST Graphics Address Bit A1
Pin PCI_CBE_1 Ball Y08			
PCI	PCI_CBE_1	logic 1	PCI Command Byte Enable 1
LFLASH	A18	logic 1	Large Flash Address Bit A17
MOST Graphics	A2	logic 1	MOST Graphics Address Bit A1
Pin PCI_CBE_2 Ball W06			
PCI	PCI_CBE_2	logic 1	PCI Command Byte Enable 2
LFLASH	A19	logic 1	Large Flash Address Bit A19
MOST Graphics	A3	logic 1	MOST Graphics Address Bit A3
Pin PCI_CBE_3 Ball Y02	•		
PCI	PCI_CBE_3	logic 1	PCI Command Byte Enable 3
LFLASH	A20	logic 1	Large Flash Address Bit A20
MOST Graphics	A4	logic 1	MOST Graphics Address Bit A4

Freescale Semiconductor 2-27

Table 2-6. PCI Dedicated Signals (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin PCI_TRDY Ball W05	1		
PCI	PCI_TRDY	logic 1	PCI_TRDY PCI Target Ready
LFLASH	A21	logic 1	Large Flash Address Bit A21
MOST Graphics	A5	logic 1	MOST Graphics Address Bit A5
Pin PCI_IRDY Ball Y06			
PCI	PCI_IRDY	logic 1	PCI Initiator (HOST) Ready
LFLASH	A22	logic 1	Large Flash Address Bit A22
MOST Graphics	A6	logic 1	MOST Graphics Address Bit A6
Pin PCI_STOP Ball V06			
PCI	PCI_STOP	logic 1	PCI Transition Stop
LFLASH	A23	logic 1	Large Flash Address Bit A23
MOST Graphics	A7	logic 1	MOST Graphics Address Bit A7
Pin PCI_DEVSEL Ball W07			
PCI	PCI_DEVSEL	logic 1	PCI Device Select
LFLASH	A24	logic 1	Large Flash Address Bit A24
MOST Graphics	A8	logic 1	MOST Graphics Address Bit A8
Pin PCI_FRAME Ball V05			
PCI	PCI_FRAME	logic 1	PCI Frame Start
LFLASH	A25	logic 1	Large Flash Address Bit A25
MOST Graphics	A9	logic 1	MOST Graphics Address Bit A9
Pin PCI_SERR Ball W08			
PCI	PCI_SERR	logic 1	PCI System Error (open drain)
MOST Graphics	A10	logic 1	MOST Graphics Address Bit A10
Pin PCI_PERR Ball Y07			
PCI	PCI_SERR	logic 1	PCI Parity Error
MOST Graphics	A11	logic 1	MOST Graphics Address Bit A11
Pin PCI_IDSEL Ball U02			
PCI	PCI_IDSEL	logic 1	PCI Initial Device Select
MOST Graphics	A12	logic 1	MOST Graphics Address Bit A12
Pin PCI_REQ Ball U01			
PCI	PCI_REQ	logic 1	PCI Bus Request
MOST Graphics	A13	logic 1	MOST Graphics Address Bit A13
Pin PCI_GNT Ball R04			
PCI	PCI_GNT	logic 1	PCI Bus Grant
MOST Graphics	A14	logic 1	MOST Graphics Address Bit A14
Pin PCI_CLOCK Ball T01			
PCI	PCI_CLOCK	clk	PCI Clock

MPC5200B Users Guide, Rev. 1

2-28 Freescale Semiconductor

Table 2-6. PCI Dedicated Signals (continued)

PIN / BALL NUMBER		Function	Reset Value	Description
Pin PCI_RESET	Ball R02			
PCI		PCI_RESET	logic 0	PCI Reset Output (open drain)
MOST Graphics A15		logic 0	MOST Graphics Address Bit A15	

Table 2-7. ATA Dedicated Signals

PIN / BALL NUMBER	Function	Reset Value	Description
Pin ATA_DRQ Ball V17			
ATA	ATA_DRQ	logic 0	ATA DMA Request
MOST Graphics	A16	logic 0	MOST Graphics Address Bit A16
Pin ATA_DACK Ball Y18			
ATA	ATA_DACK	logic 1	ATA DMA Request
MOST Graphics	A17	logic 1	MOST Graphics Address Bit A17
RESET Config.			bit 0 ppc_pll_cfg_4
Pin ATA_IOR Ball Y17			
ATA	ATA_IOR	logic 1	ATA read - 0, no read - 1
MOST Graphics	A18	logic 1	MOST Graphics Address Bit A18
RESET Config.	RST_CFG1		bit 1 ppc_pll_cfg_3
Pin ATA_IOW Ball W17			
ATA	ATA_IOW	logic 1	ATA write - 0, no write - 1
MOST Graphics	A19	logic 1	MOST Graphics Address Bit A19
RESET Config.	RST_CFG2		bit 2 ppc_pll_cfg_2
Pin ATA_IOCHDRY Ball W18			
ATA	ATA_IOCHDRY	logic 1	ATA negated to extend transfer
MOST Graphics	A20	logic 1	MOST Graphics Address Bit A20
Pin ATA_INTRQ Ball Y19			
ATA	ATA_INTRQ	logic 1	ATA Interrupt Request
MOST Graphics	A21	logic 1	MOST Graphics Address Bit A21
Pin ATA_ISOLATION Ball Y16			
ATA	ATA_ISOLATION	logic 1	ATA Levelshifter control signal
MOST Graphics	A22	logic 1	MOST Graphics Address Bit A22

Table 2-8. LocalPlus Dedicated Signals

PIN / BALL NUMBER	Function	Reset Value	Description
Pin LP_RW Ball W16			
LocalPlus	Read/Write	logic 1	LocalPlus Read/Write Line
Reset Configuration	RST_CFG3	logic 1	Bit 3 ppc_pll_cfg_1
Pin LP_ALE Ball V14			
LocalPlus	Address Latch Enable	logic 1	LocalPlus Address Latch Enable for Multiplexed Transitions
MOST Graphics	A23	logic 1	MOST Graphics Address Bit A23
Reset Configuration	RST_CFG4	logic 1	Bit 4 ppc_pll_cfg_0
Pin LP_ACK Ball U14			
LocalPlus	LP Acknowledge	logic 1	Acknowledge signal for LP peripherals. Acknowledge signal for Large Flash or MOST Graphics, if bursts are not enabled.
LFLASH	BRST	logic 1	BURST indication for Large Flash, if bursts are enabled
MOST Graphics	BRST	logic 1	BURST indication for MOST Graphics, if bursts are enabled
Pin LP_TS Ball Y13	•		
LocalPlus	LP Transfer Start	logic 1	LocalPlus Transfer Start
Reset Configuration 5	RST_CFG5	logic 1	Bit 5 xlb_clk_sel bit = 0: XLB_CLK = f _{system} / 4 bit = 1: XLB_CLK = f _{system} / 8
Pin LP_OE Ball D08			
LocalPlus	LP Output Enable	logic 1	LocalPlus Output Enable

2-30 Freescale Semiconductor

Note:

- 1. CODEC usage leaves pin 3 open for simple GPIO.
- 2. If port otherwise unused, all five pins are available as GPIO.
- 3. CODEC plus additional GPIO from elsewhere can implement Soft Modem or RS-232 functionality.
- 4. AC'97 usage is limited to PSC1 and PSC2.

Figure 2-4. PSC1 Port Map—5 Pins

Table 2-9. PSC1 Pin Functions

Pin Name	Dir.	GPIO	AC97_1	UART1	UART1e	CODEC1	CODEC1 w/ MCLK
PSC1_0	I/O	GPIO	AC97_1_SDATA_OUT	UART1_TXD	UART1e_TXD	CODEC1_TXD	CODEC1_w/ MCLK_TXD
PSC1_1	I/O	GPIO	AC97_1_SDATA_IN	UART1_RXD	UART1e_RXD	CODEC1_RXD	CODEC1_w/ MCLK_RXD
PSC1_2	I/O	GPIO	AC97_1_SYNC	UART1_RTS	UART1e_RTS	GPIO	CODEC1_w/ MCLK_MCLK
PSC1_3	I/O	GPIO	AC97_1_BITCLK	UART1_CTS	UART1e_CTS	CODEC1_CLK	CODEC1_w/ MCLK_CLK
PSC1_4	I/O	GPIO_W/W AKE_UP	AC97_1_RES	GPIO_W/WAKE_UP	UART1e_DCD	CODEC1_FRAME	CODEC1_w/ MCLK_FRAME

Table 2-10. PSC1 Functions by Pin

PIN / BALL NUMBER	Function	Reset Value	Description
Pin PSC1_0 Ball B11			
GPIO		hi - z	GPIO Simple General Purpose I/O
AC97_1		hi - z	AC97_1_SDATA_OUT AC97 Serial Data Out
UART1		hi - z	UART1_TXD Transmit Data
UART1e		hi - z	UART1e_TXD Transmit Data
CODEC1		hi - z	CODEC1_TXD Transmit Data
CODEC1_w/MCLK		hi - z	CODEC1_w/MCLK_TXD Transmit Data
Pin PSC1_1 Ball A11			
GPIO		hi - z	GPIO Simple General Purpose I/O
AC97_1		hi - z	AC97_1_SDATA_IN AC97 Serial Data In
UART1		hi - z	UART1_RXD Receive Data
UART1e		hi - z	UART1e_RXD Receive Data
CODEC1		hi - z	CODEC1_RXD Receive Data
CODEC1_w/MCLK		hi - z	CODEC1_w/MCLK_RXD Receive Data
Pin PSC1_2 Ball C10			
GPIO		hi - z	GPIO Simple General Purpose I/O
AC97_1		hi - z	AC97_1_SYNC AC97 Frame Sync
UART1		hi - z	UART1_RTS Ready To Send
UART1e		hi - z	UART1e_RTS Ready To Send
CODEC1		hi - z	GPIO Simple General Purpose I/O
CODEC1_w/MCLK		hi - z	CODEC1_w/MCLK _MCLK

Table 2-10. PSC1 Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin PSC1_3 Ball B10			
GPIO		hi - z	GPIO Simple General Purpose I/O
AC97_1		hi - z	AC97_1_BITCLK AC97 Bit Clock
UART1		hi - z	UART1_CTS UART Clear To Send
UART1e		hi - z	UART1e_CTS UARTe Clear To Send
CODEC1		hi - z	CODEC1_CLK CODEC Bit Clock
CODEC1_w/MCLK		hi - z	CODEC1_w/MCLK_CLK CODEC Bit Clock
Pin PSC1_4 Ball A10			
GPIO		hi - z	GPIO Simple General Purpose I/O with WAKE UP
AC97_1		hi - z	AC97_1_RES AC97 Reset
UART1		hi - z	GPIO Simple General Purpose I/O with WAKE UP
UART1e		hi - z	UART1e_DCD UARTe Carrier Detect
CODEC1		hi - z	CODEC1_FRAME CODEC Frame Sync
CODEC1_w/MCLK		hi - z	CODEC1_w/MCLK_FRAME CODEC Frame Sync

Note:

- 1. CODEC usage leaves pin 3 open for simple GPIO.
- 2. CAN usage leaves pin 5 open for WakeUp GPIO.
- 3. CODEC plus additional GPIO from elsewhere can implement Soft Modem or RS-232 functionality.
- 4. AC97 usage is limited to PSC1 or PSC2.
- 5. MSCAN ports 1 and 2 can be configured here or on timer/I²C ports. They cannot be split. (i.e., put CAN1 on PSC2 and CAN2 on the timer port).
- 6. CAN RX input supports WakeUp functionality.

Figure 2-5. PSC2 Port Map—5 Pins

Table 2-11. PSC2 Pin Functions

Pin Name	Dir.	GPIO	CAN1/2	AC97_2	UART2	UART2e	CODEC2	CODEC2 w/ MCLK
PSC2_0	I/O	GPIO	CAN1_TX	AC97_2_SDATA_OUT	UART2_TXD	UART2e_TXD	CODEC2_TXD	CODEC2_w/ MCLK_TXD
PSC2_1	I/O	GPIO	CAN1_RX	AC97_2_SDATA_IN	UART2_RXD	UART2e_RXD	CODEC2_RXD	CODEC2_w/ MCLK_RXD
PSC2_2	I/O	GPIO	CAN2_TX	AC97_2_SYNC	UART2_RTS	UART2e_RTS	GPIO	CODEC2_w/ MCLK_MCLK
PSC2_3	I/O	GPIO	CAN2_RX	AC97_2_BITCLK	UART2_CTS	UART2e_CTS	CODEC2_CLK	CODEC2_w/ MCLK_CLK
PSC2_4	I/O	GPIO_w/ WAKE_UP	GPIO_w/ WAKE_UP	AC97_2_RES	GPIO_w/ WAKE_UP	UART2e_DCD	CODEC2_FRAME	CODEC2_w/ MCLK_FRAME

2-34 Freescale Semiconductor

Table 2-12. PSC2 Functions by Pin

PIN / BALL NUMBER	Function	Reset Value	Description
Pin PSC2_0 Ball C09	•		
GPIO		hi - z	GPIO Simple General Purpose I/O
CAN1, CAN2		hi - z	CAN1_TX CAN Transmit
AC97_2		hi - z	AC97_2_SDATA_OUT AC97 Serial Data Out
UART2		hi - z	UART2_TXD Transmit Data
UART2e		hi - z	UART2e_TXD Transmit Data
CODEC2		hi - z	CODEC2_TXD Transmit Data
CODEC2_w/MCLK		hi - z	CODEC2_w/MCLK_TXD Transmit Data
Pin PSC2_1 Ball B09			
GPIO		hi - z	GPIO Simple General Purpose I/O
CAN_1, CAN_2		hi - z	CAN1_RX CAN Receive
AC97_2		hi - z	AC97_2_SDATA_IN AC97 Serial Data In
UART2		hi - z	UART2_RXD Receive Data
UART2e		hi - z	UART2e_RXD Receive Data
CODEC2		hi - z	CODEC2_RXD Receive Data
Pin PSC2_2 Ball A09			
GPIO		hi - z	GPIO Simple General Purpose I/O
CAN1, CAN2		hi - z	CAN2_TX CAN Transmit
AC97_2		hi - z	AC97_2_SYNC AC97 Frame Sync
UART2		hi - z	UART2_RTS Ready To Send
UART2e		hi - z	UART2e_RTS Ready To Send
CODEC2		hi - z	GPIO Simple General Purpose I/O

Pinout Tables

Table 2-12. PSC2 Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin PSC2_3 Ball B08	•		
GPIO		hi - z	GPIO Simple General Purpose I/O
CAN1, CAN2		hi - z	CAN2_RX CAN Receive Data
AC97_2		hi - z	AC97_2_BITCLK AC97 Bit Clock
UART2		hi - z	UART2_CTS UART Clear To Send
UART2e		hi - z	UART2e_CTS UARTe Clear To Send
CODEC2		hi - z	CODEC2_CLK CODEC Bit Clock
Pin PSC2_4 Ball A08			
GPIO		hi - z	GPIO Simple General Purpose I/O with WAKE UP
CAN1, CAN2		hi - z	GPIO Simple General Purpose I/O with WAKE UP
AC97_2		hi - z	AC97_2_RES AC97 Reset
UART2		hi - z	GPIO Simple General Purpose I/O with WAKE UP
UART2e		hi - z	UART2e_DCD UARTe Carrier Detect
CODEC2		hi - z	CODEC2_FRAME CODEC Frame

2-36 Freescale Semiconductor

NOTES:

- 1. If Soft Modem or RS-232 functionality is desired, use UARTe/CODEC function and use available GPIO from this or any other port.
- 2. Second USB port (USB2) can be configured on PSC3 or on the Ethernet port, but not both locations.
- 3. PSC3_4 can be configured to be LP_CS6 or an interrupt GPIO, except when PS3 is in USB2 or UART3e modes. In these modes, CS6 is not available.
- 4. PSC3_5 can be configured to be LP_CS7 or an interrupt GPIO, except when PS3 is in USB2 mode. In this mode, LP_CS7 is not available.

Figure 2-6. PSC3 Port Map—10 Pins

Table 2-13. PSC3 Pin Functions

Pin name	Dir.	GPIO	USB2	UART3	UART3e	CODEC3
PSC3_0	I/O (O)	GPIO	USB2_OE	UART3_TXD	UART3e_TXD	CODEC3_TXD
PSC3_1	I/O(I)	GPIO	USB2_TXN	UART3_RXD	UART3e_RXD	CODEC3_RXD
PSC3_2	I/O(I)	GPIO	USB2_TXP	UART3_RTS	UART3e_RTS	CODEC3_CLK
PSC3_3	I/O(I)	GPIO	USB2_RXD	UART3_CTS	UART3e_CTS	CODEC3_FRAME
PSC3_4	I/O(I)	LP_CS_6	USB2_RXP	LP_CS_6	UART3e_DCD	LP_CS_6
PSC3_5	I/O	LP_CS_7	USB2_RXN	LP_CS_7	LP_CS_7	LP_CS_7
PSC3_6	I/O	GPIO	USB2_PRTPWR	GPIO	GPIO	GPIO
PSC3_7	I/O	GPIO	USB2_SPEED	GPIO	GPIO	GPIO
PSC3_8	I/O	INTERRUPT_8	USB2_SUSPEND	INTERRUPT	INTERRUPT	INTERRUPT
PSC3_9	I/O	GPIO_W/WAKE-UP	USB2_OVRCNT	GPIO_W/WAKE_UP	GPIO_W/WAKE_UP	GPIO_W/WAKE_UP

MPC5200B Users Guide, Rev. 1

Table 2-14. PSC3 Pin Functions (cont.)

Pin name	Dir.	CODEC3 w/ M	SPI	UART3 / SPI	UART3e / SPI	CODEC3 / SPI
PSC3_0	I/O	CODEC3_w/MCLK_TXD	GPIO	UART3_TXD	UART3e_TXD	CODEC3_TXD
PSC3_1	I/O	CODEC3_w/MCLK_RXD	GPIO	UART3_RXD	UART3e_RXD	CODEC3_RXD
PSC3_2	I/O	CODEC3_w/MCLK_CLK	GPIO	UART3_RTS	UART3e_RTS	CODEC3_CLK
PSC3_3	I/O	CODEC3_w/MCLK_FRAME	GPIO	UART3_CTS	UART3e_CTS	CODEC3_FRAME
PSC3_4	I/O	LP_CS_6	LP_CS_6	LP_CS_6	UART3e_DCD	LP_CS_6
PSC3_5	I/O	LP_CS_7	LP_CS_7	LP_CS_7	LP_CS_7	LP_CS_7
PSC3_6	I/O	CODEC3_w/MCLK_MCLK	SPI_MOSI	SPI_MOSI	SPI_MOSI	SPI_MOSI
PSC3_7	I/O	GPIO	SPI_MISO	SPI_MISO	SPI_MISO	SPI_MISO
PSC3_8	I/O	INTERRUPT	SPI_SS	SPI_SS	SPI_SS	SPI_SS
PSC3_9	I/O	GPIO_W/WAKE-UP	SPI_CLK	SPI_CLK	SPI_CLK	SPI_CLK

Table 2-15. PSC3 Functions by Pin

PIN / BALL NUMBER	Function	Reset Value	Description
Pin PSC3_0 Ball C07			
GPIO		hi - z	GPIO Simple General Purpose I/O
USB2		hi - z	USB2_OE USB Output Enable
UART3		hi - z	UART3_TXD Uart Transmit Data
UART3e		hi - z	UART3e_TXD Uart Transmit Data
CODEC3		hi - z	CODEC3_TXD CODEC Transmit Data
CODEC3_w/MCLK		hi - z	CODEC3_w/MCLK_TXD CODEC Transmit Data
SPI		hi - z	GPIO Simple General Purpose I/O
UART3, SPI		hi - z	UART3_TXD Uart Transmit Data
UART3e,SPI		hi - z	UART3e_TXD Uart Transmit Data
CODEC3, SPI		hi - z	CODEC3_TXD CODEC Transmit Data

Table 2-15. PSC3 Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin PSC3_1 Ball B07			
GPIO		hi - z	GPIO Simple General Purpose I/O
USB2		hi - z	USB2_TXN USB Transmit Negative
UART3		hi - z	UART3_RXD Uart Receive Data
UART3e		hi - z	UART3e_RXD Uart Receive Data
CODEC3		hi - z	CODEC3_RXD CODEC Receive Data
CODEC3_w/MCLK		hi - z	CODEC3_w/MCLK_RXD CODEC Receive Data
SPI		hi - z	GPIO Simple General Purpose I/O
UART3, SPI		hi - z	UART3_RXD Uart Receive Data
UART3e,SPI		hi - z	UART3e_RXD Uart Receive Data
CODEC3, SPI		hi - z	CODEC3_RXD CODEC Receive Data
Pin PSC3_2 Ball A07			
GPIO		hi - z	GPIO Simple General Purpose I/O
USB2		hi - z	USB2_TXP USB Transmit Positive
UART3		hi - z	UART3_RTS Uart Ready To Send
UART3e		hi - z	UART3e_RTS Uart Ready To Send
CODEC3		hi - z	CODEC3_CLK CODEC Bit Clock
CODEC3_w/MCLK		hi - z	CODEC3_w/MCLK_CLK CODEC Bit Clock
SPI		hi - z	GPIO Simple General Purpose I/O
UART3, SPI		hi - z	UART3_RTS Uart Ready to Send
UART3e, SPI		hi - z	UART3_RTS Uart Ready To Send
CODEC3, SPI		hi - z	CODEC3_CLK CODEC Clock

Table 2-15. PSC3 Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin PSC3_3 Ball C06	6		
GPIO		hi - z	GPIO Simple General Purpose I/O
USB2		hi - z	USB2_RXD USB Receive Data
UART3		hi - z	UART3_CTS Uart Clear To Send
UART3e		hi - z	UART3e_CTS Uart Clear To Send
CODEC3		hi - z	CODEC3_FRAME CODEC Frame Sync
CODEC3_w/MCLK		hi - z	CODEC3_w/MCLK_FRAME CODEC Frame Sync
SPI		hi - z	GPIO Simple General Purpose I/O
UART3, SPI		hi - z	UART3_CTS Uart Clear to Send
UART3e, SPI		hi - z	UART3e_CTS Uart Clear To Send
CODEC3, SPI		hi - z	CODEC3_FRAME CODEC Frame Sync
Pin PSC3_4 Ball B06	3		
GPIO		hi - z	IP_CS_6
USB2		hi - z	USB2_RXP USB Receive Positive
UART3		hi - z	LP_CS_6
UART3e		hi - z	UART3e_DCD UART3e Carrier Detect
CODEC3		hi - z	LP_CS_6
CODEC3_w/MCLK		hi - z	LP_CS_6
SPI		hi - z	LP_CS_6
UART3, SPI		hi - z	LP_CS_6
UART3e,SPI		hi - z	UART3e_DCD UART3e Carrier Detect
CODEC3, SPI		hi - z	LP_CS_6

Table 2-15. PSC3 Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin PSC3_5 Ball A06	3		
GPIO		hi - z	LP_CS_7
USB2		hi - z	USB2_RXN USB Receive Positive
UART3		hi - z	LP_CS_7
UART3e		hi - z	LP_CS_7
CODEC3		hi - z	LP_CS_7
CODEC3_w/MCLK		hi - z	CODEC3_w/MCLK_MCLK CODEC Clock
SPI		hi - z	LP_CS_7
UART3, SPI		hi - z	LP_CS_7
UART3e,SPI		hi - z	LP_CS_7
CODEC3, SPI		hi - z	LP_CS_7
Pin PSC3_6 Ball C05	5		
GPIO		hi - z	GPIO Simple General Purpose I/O
USB2		hi - z	USB2_PRTPWR USB Port Power
UART3		hi - z	GPIO Simple General Purpose I/O
UART3e		hi - z	GPIO_ Simple General Purpose I/O
CODEC3		hi - z	GPIO Simple General Purpose I/O
CODEC3_w/MCLK		hi - z	LP_CS_7
SPI		hi - z	SPI_MOSI SPI_Master Out Slave In
UART3, SPI		hi - z	SPI_MOSI SPI_Master Out Slave In
UART3e, SPI		hi - z	SPI_MOSI SPI_Master Out Slave In
CODEC3, SPI		hi - z	SPI_MOSI SPI_Master Out Slave In

Table 2-15. PSC3 Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin PSC3_7 Ball B05			
GPIO		hi - z	GPIO Simple General Purpose I/O
USB2		hi - z	USB2_SPEED USB Speed
UART3		hi - z	GPIO Simple General Purpose I/O
UART3e		hi - z	GPIO Simple General Purpose I/O
CODEC3		hi - z	GPIO Simple General Purpose I/O
CODEC3_w/MCLK		hi - z	GPIO Simple General Purpose I/O
SPI		hi - z	SPI_MISO SPI Master In Slave Out
UART3, SPI		hi - z	SPI_MISO SPI Master In Slave Out
UART3e, SPI		hi - z	SPI_MISO SPI Master In Slave Out
CODEC3, SPI		hi - z	SPI_MISO SPI Master In Slave Out
Pin PSC3_8 Ball A05			
GPIO		hi - z	GPIO Simple General Purpose I/O
USB_2		hi - z	USB2_SUSPEND USB Susupend
UART3		hi - z	INTERRUPT
UART3e		hi - z	INTERRUPT
CODEC3		hi - z	INTERRUPT
CODEC3_w/MCLK		hi - z	INTERRUPT
SPI		hi - z	SPI_SS SPI Slave Select
UART_3, SPI		hi - z	SPI_SS SPI Slave Select
UART3e, SPI		hi - z	SPI_SS SPI Slave Select
CODEC3, SPI		hi - z	SPI_SS SPI Slave Select

2-42 Freescale Semiconductor

Table 2-15. PSC3 Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin PSC3_9 Ball C04			
GPIO		hi - z	GPIO_W/WAKE_UP Simple General Purpose I/O with WAKE UP
USB2		hi - z	USB2_OVRCRNT USB Over Current
UART3		hi - z	GPIO_W/WAKE_UP Simple General Purpose I/O with WAKE UP
UART3e		hi - z	GPIO_W/WAKE_UP Simple General Purpose I/O with WAKE UP
CODEC3		hi - z	GPIO_W/WAKE_UP Simple General Purpose I/O with WAKE UP
CODEC3_w/MCLK		hi - z	GPIO_W/WAKE_UP Simple General Purpose I/O with WAKE UP
SPI		hi - z	SPI_CLK SPI Clock
UART3, SPI		hi - z	SPI_CLK SPI Clock
UART3e, SPI		hi - z	SPI_CLK SPI Clock
CODEC3, SPI		hi - z	SPI_CLK SPI Clock

NOTE:

- 1. If not used for USB, this port is available as a GPIO resource.
- 2. USB clock source can be generated internally or sourced fromUSB_CLK input.
- 3. Pins 3-5 are not mapped to any function other than USB.
- 4. RST_config bits are sampled only during Reset.
- 5. PSC4/5 can be used here or on the Ethernet port, but not in both places.

Figure 2-7. USB Port Map—10 Pins

MPC5200B Users Guide, Rev. 1

Table 2-16. USB Pin Functions

Pin Name	Dir.	Reset Configuration	GPIO	USB	2x UART4/5
USB_0	I/O		GPIO	USB1_OE	GPIO
USB_1	I/O	RST_CFG6		USB1_TXN	UART4_RTS
USB_2	I/O	RST_CFG7		USB1_TXP	UART4_TXD
USB_3	I			USB1_RXD	UART4_RXD
USB_4	I			USB1_RXP	UART4_CTS
USB_5	I			USB1_RXN	UART5_RXD
USB_6	I/O		GPIO	USB1_PORTPWR	UART5_TXD
USB_7	I/O		GPIO	USB1_SPEED	UART5_RTS
USB_8	I/O		GPIO	USB1_SUSPEND	UART5_CTS
USB_9	I/O		INTERRUPT	USB1_OVERCNT	INTERRUPT

Table 2-17. USB Pin Functions by Pin

PIN / BALL NUMBER	Function	Reset Value	Description
Pin USB_0 Ball H01			
GPIO		hi - z	GPIO
USB1		hi - z	USB1_OE
RESET Config.		hi - z	
UART4, UART5		hi - z	GPIO
Pin USB_1 Ball H02			
GPIO		hi - z	
USB1		hi - z	USB1_TXN USB1 Transmit Negative
RESET Config.		hi - z	RST_CFG6 sys_pll_cfg_0 bit =0 : f _{system} = 16x SYS_XTAL_IN bit =1 : f _{system} = 12x SYS_XTAL_IN
UART4, UART5		hi - z	UART4_RTS
Pin USB_2 Ball H03			
GPIO		hi - z	
USB1		hi - z	USB1_TXP USB1 Transmit Positive
RESET Config.		hi - z	RST_CFG7 (Pull bit low)
UART4, UART5		hi - z	UART4_TXD Uart Transmit Data

MPC5200B Users Guide, Rev. 1

Table 2-17. USB Pin Functions by Pin (continued)

PIN / BALL NUMBE	R Function	Reset Value	Description
Pin USB_3 Ball G	01		
GPIO		hi - z	
USB1		hi - z	USB1_RXD USB1 Receive Data
RESET Config.		hi - z	
UART4, UART5		hi - z	UART4_RXD Uart Receive Data
Pin USB_4 Ball G	02		
GPIO		hi - z	
USB1		hi - z	USB1_RXP USB1 Receive Positive
RESET Config.		hi - z	
UART_, UART5		hi - z	UART4_CTS Uart Clear To Send
Pin USB_5 Ball G	03		
GPIO		hi - z	
USB1		hi - z	USB1_RXN USB1 Receive Negative
RESET Config.		hi - z	
UART4, UART5		hi - z	UART5_RXD Uart Recieve Data
Pin USB_6 Ball G	04		
GPIO		hi - z	GPIO Simple General Purpose I/O
USB1		hi - z	USB1_PRTPWR USB Receive Negative
RESET Config.		hi - z	
UART4, UART5		hi - z	UART5_TXD Uart Transmit Data
Pin USB_7 Ball F	01		
GPIO		hi - z	GPIO Simple General Purpose I/O
USB1		hi - z	USB1_SPEED USB Speed
RESET Config.		hi - z	
UART4, UART5		hi - z	UART5_RTS Uart Ready To Send
Pin USB_8 Ball F	02		
GPIO		hi - z	GPIO Simple General Purpose I/O
USB1		hi - z	USB1_SUSPEND USB Suspend
RESET Config.		hi - z	
UART4, UART5		hi - z	UART5_CTS Uart Clear To Send

2-46

Table 2-17. USB Pin Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin USB_9 Ball F03			
GPIO		hi - z	GPIO Simple General Purpose I/O
USB1		hi - z USB1_OVRCRNT USB1 Over Current	
RESET Config.		hi - z	
UART4, UART5		hi - z	INTERRUPT

Figure 2-8. Ethernet Output Port Map—8 Pins

MPC5200B Users Guide, Rev. 1

Figure 2-9. Ethernet Input / Control Port Map—10 Pins

Table 2-18. Ethernet Pin Functions

Pin name	Dir.	Reset Configuration	GPIO	USB2	ETH7	ETH7 / USB2
ETH_0	I/O	RST_CFG8	OUTPUT	OUTPUT	ETH7_TXEN	ETH7_TXEN
ETH_1	I/O	RST_CFG15	OUTPUT	OUTPUT	ETH7_TXD_0	ETH7_TXD_0
ETH_2	I/O	RST_CFG10	OUTPUT	USB2_TXP	OUTPUT	USB2_TXP
ETH_3	I/O	RST_CFG11	OUTPUT	USB2_PRTPWR	OUTPUT	USB2_PRTPWR
ETH_4	I/O	RST_CFG12	OUTPUT	USB2_SPEED	OUTPUT	USB2_SPEED
ETH_5	I/O	RST_CFG13	OUTPUT	USB2_SUSPEND	OUTPUT	USB2_SUSPEND
ETH_6	I/O	RST_CFG14	OUTPUT	USB2_OE	OUTPUT	USB2_OE
ETH_7	I/O		OUTPUT	USB2_TXN	OUTPUT	USB2_TXN
ETH_8	I/O		GPIO	GPIO	ETH7CD	ETH7CD

MPC5200B Users Guide, Rev. 1

Table 2-18. Ethernet Pin Functions (continued)

Pin name	Dir.	Reset Configuration	GPIO	USB2	ETH7	ETH7 / USB2
ETH_9	I/O		GPIO	GPIO	ETH7_RXCLK	ETH7_RXCLK
ETH_10	I/O		GPIO	GPIO	ETH7_COL	ETH7_COL
ETH_11	I/O		GPIO	GPIO	ETH7_TXCLK	ETH7_TXCLK
ETH_12	I				ETH7_RXD_0	ETH7_RXD_0
ETH_13	I/O		INTERRUPT	USB2_RXD	INTERRUPT	USB2_RXD
ETH_14	I/O		INTERRUPT	USB2_RXP	INTERRUPT	USB2_RXP
ETH_15	I/O		INTERRUPT	USB2_RXN	INTERRUPT	USB2_RXN
ETH_16	I/O		INTERRUPT	USB2_OVRCNT	INTERRUPT	USB2_OVRCNT
ETH_17	I/O		GPIO_W/WAKE-UP	GPIO_W/WAKE-UP	GPIO_W/WAKE-UP	GPIO_W/ WAKE-UP

Table 2-19. Ethernet Pin Functions (cont.)

Pin name	Dir.	ETH_18 no MD	ETH_18 w/ MD	ETH7 /	ETH7 /J1850	2UART4/5e/J1850	UART5e/J1850	J1850
				UART4e/J1850				
ETH_0	I/O	ETH18_TXEN	ETH18_w/IMD_ TXEN	ETH7_TXEN	ETH7_TXEN	OUTPUT	OUTPUT	OUTPUT
ETH_1	I/O	ETH18_TXD_0	ETH18_w/ MD_TXD_0	ETH7_TXD_0	ETH7_TXD_0	UART5eTXD	UART5eTXD	OUTPUT
ETH_2	I/O	ETH18_TXD_1	ETH18_w/ MD_TXD_1	OUTPUT	OUTPUT	UART5eRTS	UART5eRTS	OUTPUT
ETH_3	I/O	ETH18_TXD_2	ETH18_w/ MD_TXD_2	UART4e_TXD	OUTPUT	P4_TXD	OUTPUT	OUTPUT
ETH_4	I/O	ETH18_TXD_3	ETH18_w/ MD_TXD_3	J1850_TX	J1850_TX	J1850_TX	J1850_TX	J1850_TX
ETH_5	I/O	ETH18_TXERR	ETH18_w/ MD_TXERR	UART4eRTS	OUTPUT	UART4_RTS	OUTPUT	OUTPUT
ETH_6	I/O	OUTPUT	ETH18_w/ MD_MDC	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT
ETH_7	I/O	OUTPUT	ETH18_w/ MD_MDIO	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT
ETH_8	I/O	ETH18_RXDV	ETH18_w/ MD_RXDV	ETH7CD	ETH7CD	UART5eDCD	UART5eDCD	GPIO
ETH_9	I/O	ETH18_RXCLK	ETH18_w/ MD_RXCLK	ETH7_RXCLK	ETH7_RXCLK	UART5eCTS	UART5eCTS	GPIO
ETH_10	I/O	ETH18_COL	ETH18_w/ MD_COL	ETH7_COL	ETH7_COL	GPIO	GPIO	GPIO
ETH_11	I/O	ETH18_TXCLK	ETH18_w/ MD_TXCLK	ETH7_TXCLK	ETH7_TXCLK	GPIO	GPIO	GPIO
ETH_12	I	ETH18_RXD_0	ETH18_w/ MD_RXD_0	ETH7_RXD_O	ETH7_RXD_O	UART5eRXD	UART5eRXD	-
ETH_13	I/O	ETH18_RXD_1	ETH18_w/ MD_RXD_1	J1850_RX	J1850_RX	J1850_RX	J1850_RX	J1850_RX
ETH_14	I/O	ETH18_RXD_2	ETH18_w/ MD_RXD_2	UART4eRXD	INTERRUPT	UART4_RXD	INTERRUPT	INTERRUPT
ETH_15	I/O	ETH18_RXD_3	ETH18_w/ MD_RXD_3	UART4eCTS	INTERRUPT	UART4_CTS	INTERRUPT	INTERRUPT

2-48 Freescale Semiconductor

Table 2-19. Ethernet Pin Functions (cont.)

Pin name	Dir.	ETH_18 no MD	ETH_18 w/ MD	ETH7 / UART4e/J1850	ETH7 /J1850	2UART4/5e/J1850	UART5e/J1850	J1850
ETH_16	I/O	ETH18_RXERR	ETH18_w/ MD_RXERR	UART4eDCD	INTERRUPT	UART4_CD	INTERRUPT	INTERRUPT
ETH_17	I/O	ETH18_CRS	ETH18_w/ MD_CRS	GPIO_W/WAKE- UP	GPIO_W/WAKE-UP	GPIO_W/WAKE-UP	GPIO_W/WAKE- UP	GPIO_W/WAKE- UP

Table 2-20. Ethernet Output Functions by Pin

PIN / BALL NUMBER	Function	Reset Value	Description
Pin ETH_0 Ball K01		•	
GPIO		hi - z	GPIO Simple General Purpose Output
USB2		hi - z	GPIO Simple General Purpose Output
ETH7 Wire		hi - z	ETH_TX_EN Ethernet Transmit Enable
ETH7 Wire / USB2		hi - z	ETH_TX_EN Ethernet Transmit Enable
ETH18 Wire w/o MD		hi - z	ETH_TX_EN Ethernet Transmit Enable
ETH18 Wire w/ MD		hi - z	ETH_TX_EN Ethernet Transmit Enable
ETH7 Wire, UART4e, J1850		hi - z	ETH_TX_EN Ethernet Transmit Enable
ETH7 Wire, J1850		hi - z	ETH_TX_EN Ethernet Transmit Enable
UART_4, UART5e, J1850		hi - z	GPIO Simple General Purpose Output
UART5e, J1850		hi - z	GPIO Simple General Purpose Output
J1850		hi - z	GPIO Simple General Purpose Output
RESET Config. 8		hi - z	bit 8 most_graphics_sel bit = 0: Most Graphics boot not enabled bit = 1: Most Graphics boot enabled.

Pinout Tables

Table 2-20. Ethernet Output Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin ETH_1 Ball K02		-	
GPIO		hi - z	GPIO Simple General Purpose Output
USB2		hi - z	GPIO Simple General Purpose Output
ETH7 Wire		hi - z	ETH_TXD_0 Ethernet Transmit Data Output
ETH7 Wire / USB2		hi - z	ETH_TXD_0 Ethernet Transmit Data Output
ETH18 Wire w/o MD		hi - z	ETH_TXD_0 Ethernet Transmit Data Output
ETH18 Wire w/ MD		hi - z	ETH_TXD_0 Ethernet Transmit Data Output
EHT7 Wire, UART4e, J1850		hi - z	ETH_TXD_0 Ethernet Transmit Data Output
ETH7 Wire, J1850		hi - z	ETH_TXD_0 Ethernet Transmit Data Output
UART_4, UART5e, J1850		hi - z	UART5e_TXD Uart Transmit Data
UART5e, J1850		hi - z	UART5e_TXD Uart Transmit Data
J1850		hi - z	GPIO Simple General Purpose Output
RESET Config.		hi - z	bit 15 large_flash_sel bit = 0: Large Flash boot not enabled bit = 1: Large Flash boot enabled. Note 3.

2-50 Freescale Semiconductor

Table 2-20. Ethernet Output Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin ETH_2 Ball K03	•	•	
GPIO		hi - z	GPIO Simple General Purpose Output
USB2		hi - z	USB2_TXP USB Transmit Positive
ETH7 Wire		hi - z	GPIO Simple General Purpose Output
ETH7 Wire / USB2		hi - z	USB2_TXP USB Transmit Positive
ETH18 Wire w/o MD		hi - z	ETH_TXD_1 Ethernet Transmit Data Output
ETH18 Wire w/ MD		hi - z	ETH_TXD_1 Ethernet Transmit Data Output
EHT7 Wire, UART4e, J1850		hi - z	GPIO Simple General Purpose Output
ETH7 Wire, J1850		hi - z	GPIO Simple General Purpose Output
UART_4, UART5e, J1850		hi - z	UART5e_RTS Uart Transmit Data
UART5e, J1850		hi - z	UART5e_RTS Uart Transmit Data
J1850		hi - z	GPIO Simple General Purpose Output
RESET Config.		hi - z	bit 10 ppc_msrip PPC Boot Address / Exception Table Loc. bit = 0: 0000 0100 (hex) bit = 1: fff0 0100 (hex)

Pinout Tables

Table 2-20. Ethernet Output Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin ETH_3 Ball J01			
GPIO		hi - z	GPIO Simple General Purpose Output
USB2		hi - z	USB2_PrtPWR USB Port Power
ETH7 Wire		hi - z	GPIO Simple General Purpose Output
ETH7 Wire / USB2		hi - z	USB2_PrtPWR USB Port Power
ETH18 Wire w/o MD		hi - z	ETH_TXD_2 Ethernet Transmit Data Output
ETH18 Wire w/ MD		hi - z	ETH_TXD_2 Ethernet Transmit Data Output
EHT7 Wire, UART4e, J1850		hi - z	UART_4_TXD Uart Transmit Data
ETH7 Wire, J1850		hi - z	GPIO Simple General Purpose Output
UART_4, UART5e, J1850		hi - z	UART_4_TXD Uart Transmit Data
UART5e, J1850		hi - z	GPIO Simple General Purpose Output
J1850		hi - z	GPIO Simple General Purpose Output
RESET Config.		hi - z	bit 11 boot_rom_wait bit = 0: 4 IPbus clocks of waitstate* bit = 1: 48 IPbus clocks of waitstate*

2-52 Freescale Semiconductor

Table 2-20. Ethernet Output Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin ETH_4 Ball J02	•	•	
GPIO		hi - z	GPIO Simple General Purpose Output
USB2		hi - z	USB2_Speed USB Speed
ETH7 Wire		hi - z	GPIO Simple General Purpose Output
ETH7 Wire / USB2		hi - z	USB2_Speed USB Speed
ETH18 Wire w/o MD		hi - z	ETH_TXD_3 Ethernet Transmit Data Output
ETH18 Wire w/ MD		hi - z	ETH_TXD_3 Ethernet Transmit Data Output
EHT7 Wire, UART4e, J1850		hi - z	J1850_TX J1850 Transmit Data
ETH7 Wire, J1850		hi - z	J1850_TX J1850 Transmit Datat
UART_4, UART5e, J1850		hi - z	J1850_TX J1850 Transmit Data
UART5e, J1850		hi - z	J1850_TX J1850 Transmit Data
J1850		hi - z	J1850_TX J1850 Transmit Data
RESET Config.		hi - z	bit 12 boot_rom_swap bit = 0: no byte lane swap - same endian ROM image bit = 1: byte lane swap - different endian ROM image

Pinout Tables

Table 2-20. Ethernet Output Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin ETH_5 Ball L03			
GPIO		hi - z	GPIO Simple General Purpose Output
USB2		hi - z	USB2_Suspend USB Suspend
ETH7 Wire		hi - z	GPIO Simple General Purpose Output
ETH7 Wire / USB2		hi - z	USB2_Suspend USB Suspend
ETH18 Wire w/o MD		hi - z	ETH_TXERR Ethernet Transmit Error Output
ETH18 Wire w/ MD		hi - z	ETH_TXERR Ethernet Transmit Error Output
EHT7 Wire, UART4e, J1850		hi - z	UART_4_RTS Uart Ready To Send
ETH7 Wire, J1850		hi - z	GPIO Simple General Purpose Output
UART_4, UART5e, J1850		hi - z	UART_4_RTS Uart Ready To Send
UART5e, J1850		hi - z	GPIO Simple General Purpose Output
J1850		hi - z	GPIO Simple General Purpose Output
RESET Config.		hi - z	bit 13 boot_rom_size For "non-muxed" boot ROMs bit = 0: 8-bit boot ROM data bus / 24-bit boot ROM address bit = 1: 16-bit boot ROM data bus / 16-bit boot ROM address For "muxed" boot ROMs boot ROM addr is max 25 significant bits during address tenure. bit = 0: 16-bit ROM data bus bit = 1: 32-bit ROM data bus For "large flash" boot case boot Flash addr is 25 bits. bit = 0: 8-bit Flash data bus bit = 1: 16-bit Flash data bus

2-54 Freescale Semiconductor

2-55

Table 2-20. Ethernet Output Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin ETH_6 Ball N02		•	
GPIO		hi - z	GPIO Simple General Purpose Output
USB2		hi - z	USB2_OE USB Output Enable
ETH7 Wire		hi - z	GPIO Simple General Purpose Output
ETH7 Wire / USB2		hi - z	USB2OE USB Output Enable
ETH18 Wire w/o MD		hi - z	GPIO Simple General Purpose Output
ETH18 Wire w/ MD		hi - z	ETH_MDC Ethernet Transmit Error Output
EHT7 Wire, UART4e, J1850		hi - z	GPIO Simple General Purpose Output
ETH7 Wire, J1850		hi - z	GPIO Simple General Purpose Output
UART_4, UART5e, J1850		hi - z	GPIO Simple General Purpose Output
UART5e, J1850		hi - z	GPIO Simple General Purpose Output
J1850		hi - z	GPIO Simple General Purpose Output
RESET Config.		hi - z	bit 14 boot_rom_type bit = 0: non-muxed boot ROM bus, single tenure transfer. bit = 1: muxed boot ROM bus, PPC like with address & data tenures, ALE_b & TS_b active. Note 3.

Table 2-20. Ethernet Output Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin ETH_7 Ball N01			
GPIO		hi - z	GPIO Simple General Purpose Output
USB2		hi - z	USB2_TXN USB Transmit Negative
ETH7 Wire		hi - z	GPIO Simple General Purpose Output
ETH7 Wire / USB2		hi - z	USB2_TXN USB Transmit Negative
ETH18 Wire w/o MD		hi - z	GPIO Simple General Purpose Output
ETH18 Wire w/ MD		hi - z	ETH_MDIO Ethernet Management Data I/O
EHT7 Wire, UART4e, J1850		hi - z	GPIO Simple General Purpose Output
ETH7 Wire, J1850		hi - z	GPIO Simple General Purpose Output
UART_4, UART5e, J1850		hi - z	GPIO Simple General Purpose Output
UART5e, J1850		hi - z	GPIO Simple General Purpose Output
J1850		hi - z	GPIO Simple General Purpose Output

Notes:

- 1. The external bus clock (pci_clk) will be 1/2 the frequency of the internal bus clock (ipb_clk) at powerup. Therefore, 4 IPbus wait states will translate to as little as 1 external wait state (i.e. peripheral must respond within 2 external clocks). The "slow" setting represents 48 IPbus clocks of wait, or 23 external clocks of wait External waits are "minus-1" because Chip Select may assert on falling edge of external bus clock (dependant on internal timing).
- 2. For muxed boot ROM types, the width of ALE_b & TS_b will be 2 IPbus clocks (i.e. 1 external clock). This represents the "wide ALE" setting in the LocalPlus Controller (LPC). Care must be taken if these clock relationships are to be changed during the boot process. For the 1-to-1 internal-to-external clock setting (which must be programmed by software into the CDM), be sure to change the ALE width setting (in LPC) *after* adjusting the clock relationship. Any fetches to the boot device between these two settings will result in ALE and TS being 2 external clocks wide.
- 3. Only one boot mode can be enabled at a time. Large Flash and Most Graphics cannot be enabled at the same time. If neither Large Flash or Most Graphics is enabled, boot will occur from the normal LocalPlus mode, either muxed or nonmuxed (depending on the "boot_rom_type" configuration input).

2-56 Freescale Semiconductor

Table 2-21. Ethernet Input / Control Functions by Pin

PIN / BALL NUMBER	Function	Reset Value	Description
Pin ETH_8 Ball M03			
GPIO		hi - z	GPIO Simple General Purpose Output
USB2		hi - z	GPIO Simple General Purpose Output
ETH7 Wire		hi - z	ETH_CD Ethernet Carrier Detect
ETH7 Wire / USB2		hi - z	ETH_CD Ethernet Carrier Detect
ETH18 Wire w/o MD		hi - z	ETH_RXDV Ethernet Receive Data Valid
ETH18 Wire w/ MD		hi - z	ETH_RXDV Ethernet Receive Data Valid
EHT7 Wire, UART4e, J1850		hi - z	ETH_CD Ethernet Carrier Detect
ETH7 Wire, J1850		hi - z	ETH_CD Ethernet Carrier Detect
UART_4, UART5e, J1850		hi - z	UART5e_DCD Uart Carrier Detect
UART5e, J1850		hi - z	UART5e_DCD Uart Carrier Detect
J1850		hi - z	GPIO Simple General Purpose Output
Pin ETH_9 Ball L01			1
GPIO		hi - z	GPIO Simple General Purpose Output
USB2		hi - z	GPIO Simple General Purpose Output
ETH7 Wire		hi - z	ETH_RXCLK Ethernet Receive Clock
ETH7 Wire / USB2		hi - z	ETH_RXCLK Ethernet Receive Clock
ETH18 Wire w/o MD		hi - z	ETH_RXCLK Ethernet Receive Clock
ETH18 Wire w/ MD		hi - z	ETH_RXCLK Ethernet Receive Clock
EHT7 Wire, UART4e, J1850		hi - z	ETH_RXCLK Ethernet Receive Clock
ETH7 Wire, J1850		hi - z	ETH_RXCLK Ethernet Receive Clock
UART_4, UART5e, J1850		hi - z	ETH_RXCLK Ethernet Receive Clock
UART5e, J1850		hi - z	UART5e_CTS Uart Clear To Send
J1850		hi - z	UART5e_CTS Uart Clear To Send

Table 2-21. Ethernet Input / Control Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin ETH_10 Ball J03			
GPIO		hi - z	GPIO Simple General Purpose Output
USB2		hi - z	GPIO Simple General Purpose Output
ETH7 Wire		hi - z	ETH_COL Ethernet Collision Detect Input
ETH7 Wire / USB2		hi - z	ETH_COL Ethernet Collision Detect Input
ETH18 Wire w/o MD		hi - z	ETH_COL Ethernet Collision Detect Input
ETH18 Wire w/ MD		hi - z	ETH_COL Ethernet Collision Detect Input
EHT7 Wire, UART4e, J1850		hi - z	ETH_COL Ethernet Collision Detect Input
ETH7 Wire, J1850		hi - z	ETH_COL Ethernet Collision Detect Input
UART_4, UART5e, J1850		hi - z	GPIO Simple General Purpose Output
UART5e, J1850		hi - z	GPIO Simple General Purpose Output
J1850		hi - z	GPIO Simple General Purpose Output
Pin ETH_11 Ball L04			
GPIO		hi - z	GPIO Simple General Purpose Output
USB2		hi - z	GPIO Simple General Purpose Output
ETH7 Wire		hi - z	ETH_TXCLK Ethernet Transmit Clock Input
ETH7 Wire / USB2		hi - z	ETH_TXCLK Ethernet Transmit Clock Input
ETH18 Wire w/o MD		hi - z	ETH_TXCLK Ethernet Transmit Clock Input
ETH18 Wire w/ MD		hi - z	ETH_TXCLK Ethernet Transmit Clock Input
EHT7 Wire, UART4e, J1850		hi - z	ETH_TXCLK Ethernet Transmit Clock Input
ETH7 Wire, J1850		hi - z	ETH_TXCLK Ethernet Transmit Clock Input
UART_4, UART5e, J1850		hi - z	GPIO Simple General Purpose Output
UART5e, J1850		hi - z	GPIO Simple General Purpose Output
J1850		hi - z	GPIO Simple General Purpose Output

2-58 Freescale Semiconductor

Table 2-21. Ethernet Input / Control Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description		
Pin ETH_12 Ball M02					
GPIO		hi - z			
USB2		hi - z			
ETH7 Wire		hi - z	ETH_RXD0 Ethernet Receive Data Input		
ETH7 Wire / USB2		hi - z	ETH_RXD0 Ethernet Receive Data Input		
ETH18 Wire w/o MD		hi - z	ETH_RXD0 Ethernet Receive Data Input		
ETH18 Wire w/ MD		hi - z	ETH_RXD0 Ethernet Receive Data Input		
EHT7 Wire, UART4e, J1850		hi - z	ETH_RXD0 Ethernet Receive Data Input		
ETH7 Wire, J1850		hi - z	ETH_RXD0 Ethernet Receive Data Input		
UART_4, UART5e, J1850		hi - z	UART5e_RXD Uart Receive Data		
UART5e, J1850		hi - z	UART5e_RXD Uart Receive Data		
J1850		hi - z			
Pin ETH_13 Ball M01					
GPIO		hi - z	INTERRUPT		
USB2		hi - z	USB_2_RECEIVE DIFFERENTIAL		
ETH7 Wire		hi - z	INTERRUPT		
ETH7 Wire / USB2		hi - z	USB_2_RECEIVE DIFFERENTIAL		
ETH18 Wire w/o MD		hi - z	ETH_RXD1 Ethernet Receive Data Input		
ETH18 Wire w/ MD		hi - z	ETH_RXD1 Ethernet Receive Data Input		
EHT7 Wire, UART4e, J1850		hi - z	J1850_RX J1850 Receive Data		
ETH7 Wire, J1850		hi - z	J1850_RX J1850 Receive Data		
UART_4, UART5e, J1850		hi - z	J1850_RX J1850 Receive Data		
UART5e, J1850		hi - z	J1850_RX J1850 Receive Data		
J1850		hi - z	J1850_RX J1850 Receive Data		

Table 2-21. Ethernet Input / Control Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin ETH_14 Ball N04			
GPIO		hi - z	INTERRUPT
USB2		hi - z	USB_2_RXP USB Receive Positive
ETH7 Wire		hi - z	INTERRUPT
ETH7 Wire / USB2		hi - z	USB_2_RXP USB Receive Positive
ETH18 Wire w/o MD		hi - z	ETH_RXD2 Ethernet Receive Data Input
ETH18 Wire w/ MD		hi - z	ETH_RXD2 Ethernet Receive Data Input
EHT7 Wire, UART4e, J1850		hi - z	UART4e_RXD Uart Receive Data
ETH7 Wire, J1850		hi - z	INTERRUPT
UART_4, UART5e, J1850		hi - z	UART4e_RXD Uart Receive Data
UART5e, J1850		hi - z	INTERRUPT
J1850		hi - z	INTERRUPT
Pin ETH_15 Ball N03		_	
GPIO		hi - z	INTERRUPT
USB2		hi - z	USB_2_RXN USB Receive Negative
ETH7 Wire		hi - z	INTERRUPT
ETH7 Wire / USB2		hi - z	USB_2_RXN USB Receive Negative
ETH18 Wire w/o MD		hi - z	ETH_RXD3 Ethernet Receive Data Input
ETH18 Wire w/ MD		hi - z	ETH_RXD3 Ethernet Receive Data Input
EHT7 Wire, UART4e, J1850		hi - z	UART4e_CTS Uart Clear To Send
ETH7 Wire, J1850		hi - z	INTERRUPT
UART_4, UART5e, J1850		hi - z	UART4e_CTS Uart Clear To Send
UART5e, J1850		hi - z	INTERRUPT
J1850		hi - z	INTERRUPT

2-60 Freescale Semiconductor

Table 2-21. Ethernet Input / Control Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description		
Pin ETH_16 Ball L02					
GPIO		hi - z	INTERRUPT		
USB2		hi - z	USB_2_OVRCNT USB Over Current		
ETH7 Wire		hi - z	INTERRUPT		
ETH7 Wire / USB2		hi - z	USB_2_OVRCNT USB Over Current		
ETH18 Wire w/o MD		hi - z	ETH_RXERR Ethernet Receive Error Input		
ETH18 Wire w/ MD		hi - z	ETH_RXERR Ethernet Receive Error Input		
EHT7 Wire, UART4e, J1850		hi - z	UART4e_DCD Uart Carrier Detect		
ETH7 Wire, J1850		hi - z	INTERRUPT		
UART_4, UART5e, J1850		hi - z	INTERRUPT		
UART5e, J1850		hi - z	INTERRUPT		
J1850		hi - z	INTERRUPT		
Pin ETH_17 Ball J04	•				
GPIO		hi - z	GPIO Simple General Purpose Output with WAKE UP		
USB2		hi - z	GPIO Simple General Purpose Output with WAKE UP		
ETH7 Wire		hi - z	GPIO Simple General Purpose Output with WAKE UP		
ETH7 Wire / USB2		hi - z	GPIO Simple General Purpose Output with WAKE UP		
ETH18 Wire w/o MD		hi - z	ETH_CRS Ethernet Carrier Sense Input		
ETH18 Wire w/ MD		hi - z	ETH_CRS Ethernet Carrier Sense Input		
EHT7 Wire, UART4e, J1850		hi - z	GPIO Simple General Purpose Output with WAKE UP		
ETH7 Wire, J1850		hi - z	GPIO Simple General Purpose Output with WAKE UP		
UART_4, UART5e, J1850		hi - z	GPIO Simple General Purpose Output with WAKE UP		
UART5e, J1850		hi - z	GPIO Simple General Purpose Output with WAKE UP		
J1850		hi - z	GPIO Simple General Purpose Output with WAKE UP		

NOTES:

- Each pin is individually selectable as a Timer or GPIO. Each Timer can be individually configured as Input Capture (IC), Output Compare (OC), or Pulse Width Modulator (PWM) (GPT X Enable and Mode Select Register).
 If a timer pin is configured as a GPIO or some other function (SPI, chip select or CAN), the timer module can still be used internally by software.
- 2. Timers 6 and 7, when configured as input capture, contain WakeUp functionality.
- 3. All Timer and GPIO function controls are within the Timer module register set.
- 4. CAN RX input supports WakeUp functionality.

Figure 2-10. Timer Port Map—8 Pins

Table 2-22. Timer Pin Functions

Pin Name	Dir.	GPIO	TIMER	ATA CHIP SEL	CAN2	SPI	CAN2 / SPI
TIMER 0	I/O	SIMPLE GPIO	TIMER 0	ATA_CS_0	CAN2_TX	SIMPLE GPIO	CAN2_TX
TIMER 1	I/O	SIMPLE GPIO	TIMER 1	ATA_CS_1	CAN2_RX	SIMPLE GPIO	CAN2_RX
TIMER 2	I/O	SIMPLE GPIO	TIMER 2	SIMPLE GPIO	SIMPLE GPIO	SPI_MOSI	SPI_MOSI
TIMER 3	I/O	SIMPLE GPIO	TIMER 3	SIMPLE GPIO	SIMPLE GPIO	SPI_MISO	SPI_MISO
TIMER 4	I/O	SIMPLE GPIO	TIMER 4	SIMPLE GPIO	SIMPLE GPIO	SPI_SS	SPI_SS
TIMER 5	I/O	SIMPLE GPIO	TIMER 5	SIMPLE GPIO	SIMPLE GPIO	SPI_CLK	SPI_CLK
TIMER 6	I/O	SIMPLE GPIO	TIMER 6	SIMPLE GPIO	SIMPLE GPIO	SIMPLE GPIO	SIMPLE GPIO
TIMER 7	I/O	SIMPLE GPIO	TIMER 7	SIMPLE GPIO	SIMPLE GPIO	SIMPLE GPIO	SIMPLE GPIO

2-62 Freescale Semiconductor

Table 2-23. Timer Functions by Pin

PIN / BALL NUMBER	Function	Reset Value	Description			
Pin TIMER_0 Ball Y20						
TIMER		hi - z	TIMER_0			
GPIO		hi - z	GPIO Simple General Purpose I/O			
ATA CHIP SELECTS		hi - z	ATA_CS0 ATA Chip Select 0			
CAN2		hi - z	CAN2_TX CAN 2 Transmit Data			
SPI		hi - z	GPIO Simple General Purpose I/O			
CAN2 / SPI		hi - z	CAN2_TX CAN 2 Transmit Data			
Pin TIMER_1 Ball V18						
TIMER		hi - z	TIMER_1			
GPIO		hi - z	GPIO Simple General Purpose I/O			
ATA CHIP SELECTS		hi - z	ATA_CS0 ATA Chip Select 1			
CAN2		hi - z	CAN2_RX CAN 2 Receive Data			
SPI		hi - z	GPIO Simple General Purpose I/O			
CAN2 / SPI		hi - z	CAN2_RX CAN 2 Receive Data			
Pin TIMER_2 Ball D03	Pin TIMER_2 Ball D03					
TIMER		hi - z	TIMER_2			
GPIO		hi - z	GPIO Simple General Purpose I/O			
ATA CHIP SELECTS		hi - z	GPIO Simple General Purpose I/O			
CAN2		hi - z	GPIO Simple General Purpose I/O			
SPI		hi - z	SPI _MOSI SPI Master Out Slave In			
CAN2 / SPI		hi - z	SPI MOSI SPI Master Out Slave In			

Table 2-23. Timer Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin TIMER_3 Ball D02	<u>.</u>		
TIMER		hi - z	TIMER_3
GPIO		hi - z	GPIO Simple General Purpose I/O
ATA CHIP SELECTS		hi - z	GPIO Simple General Purpose I/O
CAN2		hi - z	GPIO Simple General Purpose I/O
SPI		hi - z	SPI _MISO SPI Master In Slave Out
CAN2 / SPI		hi - z	SPI MISO SPI Master In Slave Out
Pin TIMER_4 Ball D01	-	1	
TIMER		hi - z	TIMER_4
GPIO		hi - z	GPIO Simple General Purpose I/O
ATA CHIP SELECTS		hi - z	GPIO Simple General Purpose I/O
CAN2		hi - z	GPIO Simple General Purpose I/O
SPI		hi - z	SPI _SS SPI Slave Select
CAN2 / SPI		hi - z	SPI SS SPI Slave Select
Pin TIMER_5 Ball E03			
TIMER		hi - z	TIMER_5
GPIO		hi - z	GPIO Simple General Purpose I/O
ATA CHIP SELECTS		hi - z	GPIO Simple General Purpose I/O
CAN2		hi - z	GPIO Simple General Purpose I/O
SPI		hi - z	SPI _CLK SPI Clock
CAN2 / SPI		hi - z	SPI CLK SPI Clock

Table 2-23. Timer Functions by Pin (continued)

PIN / BALL NUMBER	Function	Reset Value	Description
Pin TIMER_6 Ball E02	1	•	
TIMER		hi - z	TIMER_6
GPIO		hi - z	GPIO Simple General Purpose I/O
ATA CHIP SELECTS		hi - z	GPIO Simple General Purpose I/O
CAN2		hi - z	GPIO Simple General Purpose I/O
SPI		hi - z	GPIO Simple General Purpose I/O
CAN2 / SPI		hi - z	GPIO Simple General Purpose I/O
Pin TIMER_7 Ball E01			
TIMER		hi - z	TIMER_7
GPIO		hi - z	GPIO Simple General Purpose I/O
ATA CHIP SELECTS		hi - z	GPIO Simple General Purpose I/O
CAN2		hi - z	GPIO Simple General Purpose I/O
SPI		hi - z	GPIO Simple General Purpose I/O
CAN2 / SPI		hi - z	GPIO Simple General Purpose I/O

Figure 2-11. PSC6 Port Map—4 Pins

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 2-65

Table 2-24. PSC6 Pin Functions

Pin name	Dir.	GPIO	UART6/ IrDA	CODEC6 / IrDA
PSC6_0	I/O	WAKE_UP	UART6_RXD IrDA_RX	CODEC6_RXD Irda_RX
PSC6_1	I/O	WAKE_UP	UART6_CTS	CODEC6_FRAME
PSC6_2	I/O	SIMPLE GPIO	UART6_TXD IrDA_TX	CODEC6_TXD IrDA_TX
PSC6_3	I/O	SIMPLE GPIO	UART6_RTS	CODEC6_CLK/ IR_USB_CLK

Table 2-25. PSC6 Functions by Pin

PIN / BALL NUMBER	Function	Reset Value	Description
Pin PSC6_0 Ball B12		1	
GPIO		hi - z	GPIO Simple General Purpose I/O with WAKE UP
UART6 / IrDA		hi - z	UART6_RXD Uart Receive Data IrDA_RX IrDA Receive Data
CODEC6 / IrDA		hi - z	CODEC6_RXD CODEC Receive Data IrDA_RX IrDA Receive Data
Pin PSC6_1 Ball C11			
GPIO		hi - z	GPIO Simple General Purpose I/O with WAKE UP
UART6		hi - z	UART6_CTS Uart Clear To Send
CODEC6		hi - z	CODEC6_FRAME CODEC Frame Sync
Pin PSC6_2 Ball A12			
GPIO		hi - z	GPIO Simple General Purpose I/O
UART6 / IrDA		hi - z	UART6_TXD Uart Transmit Data IrDA_TX Irda Transmit Data
CODEC6 / IrDA		hi - z	CODEC6_TXD CODEC Transmit Data IrDA_TX Irda Transmit Data
Pin PSC6_3 Ball C13			
GPIO		hi - z	GPIO Simple General Purpose I/O
UART6		hi - z	UART6_RTS Uart Clear To Send
CODEC6 / IrDA		hi - z	CODEC6_CLK IR_USB_CLK

2-66 Freescale Semiconductor

NOTE:

1. CAN RX input supports WakeUp functionality.

Figure 2-12. I²C Port Map—4 Pins (two pins each, for two I²Cs)

Table 2-26. I²C Functions by Pin

PIN / BALL NUMBER	Function	Reset Value	Description	
Pin I2C_0 Ball V19				
I2C_1 / I2C_2			I2C_1_CLK I2C Clock	
CAN_1/I2C_2			CAN1_TX CAN Transmit Data	
I2C_1/ATA_CS			I2C_1_CLK I2C Clock	
Pin I2C_1 Ball W19				
I2C_1 / I2C_2			I2C_1_I/O	
CAN1/CAN2			CAN1_RX	
I2C_1/ATA_CS			I2C_1_I/O	
Pin I2C_2 Ball V20	•	•		
I2C_1 / I2C_2			I2C_2_CLK I2C Clock	
CAN1/CAN2			I2C_2_CLK I2C Clock	
I2C_1/ATA_CS			ATA_CS0 ATA Chip Select 0	
Pin I2C_3 Ball W20				
I2C_1 / I2C_2			I2C_2_I/O I2C I/O line	
CAN1/CAN2			I2C_2_I/O I2C I/O line	
I2C_1/ATA_CS			ATA_CS1 ATA Chip Select 1	

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 2-67

Table 2-27. SDRAM Bus Pin Functions

PIN BALL NUMBER	Function	Reset Value	Description
Pin MEM_RAS Ball A18		logic 0	SDRAM Bus Row Address Strobe
Pin MEM_CAS Ball B19		logic 0	SDRAM Bus Column Address Strobe
Pin MEM_WE Ball A19		logic 0	SDRAM Bus Write enable
Pin MEM_CS_0 Ball B18		logic 1	SDRAM Bus Chip Select 0
Pin MEM_CS_1 Ball C15 (GPIO_WKUP_6)		logic 1	SDRAM Bus Chip Select 1 (shared with GPIO_WKUP_6)
Pin MEM_CLK_EN Ball F20		logic 0	SDRAM Bus Clock Enable
Pin MEM_CLK Ball G19		logic 0	SDRAM Bus Memory Clock
Pin MEM_CLK Ball G20		logic 1	SDRAM Bus Inverted Memory Clock
Pin MEM_MBA_1 Ball A17		logic 0	SDRAM Bus Memory Bank Address 1
Pin MEM_MBA_0 Ball C18		logic 0	SDRAM Bus Memory Bank Address 0
Pin MEM_MDQS_3 Ball L18		hi - z	SDRAM Bus Bidirectional Data Bus Strobe 3
Pin MEM_MDQS_2 Ball D18		hi - z	SDRAM Bus Bidirectional Data Bus Strobe 2
Pin MEM_MDQS_1 Ball H20		hi - z	SDRAM Bus Bidirectional Data Bus Strobe 1
Pin MEM_MDQS_0 Ball N20		hi - z	SDRAM Bus Bidirectional Data Bus Strobe 0
Pin MEM_DQM_3 Ball L17			SDRAM Bus Data Mask 3
Pin MEM_DQM_2 Ball A20			SDRAM Bus Data Mask 2
Pin MEM_DQM_1 Ball H19			SDRAM Bus Data Mask 1
Pin MEM_DQM_0 Ball N19			SDRAM Bus Data Mask 0
Pin MEM_MA_12 Ball F19		logic 0	SDRAM Bus Memory Address 12

2-68 Freescale Semiconductor

Table 2-27. SDRAM Bus Pin Functions (continued)

PIN BALL NUMBER	Function	Reset Value	Description
Pin MEM_MA_11 Ball E20		logic 0	SDRAM Bus Memory Address 11
Pin MEM_MA_10 Ball B17		logic 0	SDRAM Bus Memory Address 10
Pin MEM_MA_9 Ball E19		logic 0	SDRAM Bus Memory Address 9
Pin MEM_MA_8 Ball D20		logic 0	SDRAM Bus Memory Address 8
Pin MEM_MA_7 Ball D19		logic 0	SDRAM Bus Memory Address 7
Pin MEM_MA_6 Ball C20		logic 0	SDRAM Bus Memory Address 6
Pin MEM_MA_5 Ball C19		logic 0	SDRAM Bus Memory Address 5
Pin MEM_MA_4 Ball B20		logic 0	SDRAM Bus Memory Address 4
Pin MEM_MA_3 Ball C16		logic 0	SDRAM Bus Memory Address 3
Pin MEM_MA_2 Ball B16		logic 0	SDRAM Bus Memory Address 2
Pin MEM_MA_1 Ball A16		logic 0	SDRAM Bus Memory Address 1
Pin MEM_MA_0 Ball C17		logic 0	SDRAM Bus Memory Address 0
Pin MEM_MDQ_31 Ball U18		hi - z	SDRAM Bus Data 31
Pin MEM_MDQ_30 Ball T18		hi - z	SDRAM Bus Data 30
Pin MEM_MDQ_29 Ball R18		hi - z	SDRAM Bus Data 29
Pin MEM_MDQ_28 Ball R17		hi - z	SDRAM Bus Data 28
Pin MEM_MDQ_27 Ball P18		hi - z	SDRAM Bus Data 27
Pin MEM_MDQ_26 Ball N18		hi - z	SDRAM Bus Data 26
Pin MEM_MDQ_25 Ball N17		hi - z	SDRAM Bus Data 25

Freescale Semiconductor 2-69

Table 2-27. SDRAM Bus Pin Functions (continued)

PIN BALL NUMBER	Function	Reset Value	Description
Pin MEM_MDQ_24 Ball M18		hi - z	SDRAM Bus Data 24
Pin MEM_MDQ_23 Ball K18		hi - z	SDRAM Bus Data 23
Pin MEM_MDQ_22 Ball J17		hi - z	SDRAM Bus Data 22
Pin MEM_MDQ_21 Ball J18		hi - z	SDRAM Bus Data 21
Pin MEM_MDQ_20 Ball H18		hi - z	SDRAM Bus Data 20
Pin MEM_MDQ_19 Ball G18		hi - z	SDRAM Bus Data 19
Pin MEM_MDQ_18 Ball G17		hi - z	SDRAM Bus Data 18
Pin MEM_MDQ_17 Ball F18		hi - z	SDRAM Bus Data 17
Pin MEM_MDQ_16 Ball E18		hi - z	SDRAM Bus Data 16
Pin MEM_MDQ_15 Ball M20		hi - z	SDRAM Bus Data 15
Pin MEM_MDQ_14 Ball M19		hi - z	SDRAM Bus Data 14
Pin MEM_MDQ_13 Ball L20		hi - z	SDRAM Bus Data 13
Pin MEM_MDQ_12 Ball L19		hi - z	SDRAM Bus Data 12
Pin MEM_MDQ_11 Ball K20		hi - z	SDRAM Bus Data 11
Pin MEM_MDQ_10 Ball K19		hi - z	SDRAM Bus Data 10
Pin MEM_MDQ_9 Ball J20		hi - z	SDRAM Bus Data 9
Pin MEM_MDQ_8 Ball J19		hi - z	SDRAM Bus Data 8
Pin MEM_MDQ_7 Ball P19		hi - z	SDRAM Bus Data 7
Pin MEM_MDQ_6 Ball P20		hi - z	SDRAM Bus Data 6

MPC5200B Users Guide, Rev. 1

2-70 Freescale Semiconductor

Table 2-27. SDRAM Bus Pin Functions (continued)

PIN BALL NUMBER	Function	Reset Value	Description
Pin MEM_MDQ_5 Ball R19		hi - z	SDRAM Bus Data 5
Pin MEM_MDQ_4 Ball R20		hi - z	SDRAM Bus Data 4
Pin MEM_MDQ_3 Ball T19 ⁻		hi - z	SDRAM Bus Data 3
Pin MEM_MDQ_2 Ball T20		hi - z	SDRAM Bus Data 2
Pin MEM_MDQ_1 Ball U19		hi - z	SDRAM Bus Data 1
Pin MEM_MDQ_0 Ball U20		hi - z	SDRAM Bus Data 0
Pin MEM_RDCLK Ball not pinned out		clk	SDRAM Bus Memory Read Clock (not pinned out)

Table 2-28. JTAG and Test Pin Functions

PIN BALL NUMBER	Function	Reset Value	Description
Pin JTAG_TCK Ball B04			JTAG Test Clock
Pin JTAG_TMS Ball A04			JTAG Test Mode Select
Pin JTAG_TDI Ball A03			JTAG Test Data In
Pin JTAG_TRST Ball B03			JTAG Reset
Pin JTAG_TDO Ball A02			JTAG Test Data Out
Pin TEST_MODE_0 Ball B02			Test Mode Select 0 (for production test) NOTE: This pin requires a pull-down resistor.
Pin TEST_MODE_1 Ball A01			Test Mode Select 1 (for production test) NOTE: This pin requires a pull-down resistor.
Pin TEST_SEL_0 Ball B01			Scan Enable (for production test), PLL_BYPASS - input, CK_STOP - output
Pin TEST_SEL_1 Ball C03			ENID Input in Test Mode (for production test) NOTE: This pin requires a pull-down resistor.

Freescale Semiconductor 2-71

Table 2-29. CLOCK / RESET Pin Functions

CLOCK / RESET	Functions	Reset Value	Description
Pin PORRESET Ball A13		logic 1	Power On Reset
Pin HRESET Ball B13		logic 1	Hard Reset
Pin SRESET Ball A14		logic 1	Soft Reset
Pin SYS_XTAL_IN Ball A15			APLL Chip clock crystal / external clock input
Pin SYS_XTAL_OUT Ball D14		clk	APLL Chip Clock Crystal
Pin SYS_PLL_TPA Ball B15			MPC5200B System Test PII Output (analog output)

Table 2-30. Dedicated GPIO Pin Function

DEDICATED GPIO	Functions	Reset Value	Description
Pin GPIO_WKUP_6 Ball C15			
GPIO Wake_Up		logic 0	Asynchronous GPIO with Wake_Up Capability GPIO_WKUP_6
Memory Chip Select		logic 0	SDRAM Chip Select 1
Pin GPIO_WKUP_7 Ball C12			
GPIO Wake_Up		hi - z	Asynchronous GPIO with Wake_Up Capability GPIO_WKUP_7
LocalPlus MOST/Graphics TSIZ		hi - z	TSIZ1 for LocalPlus MOST/GRAPHICS mode

Table 2-31. Systems Integration Unit Pin Functions

SYSTEMS INTEGRATION UNIT	Functions	Reset Value	Descriptions
Pin LP_CS0 Ball W14		logic 1	LocalPlus Bus Chip Select 0
Pin LP_CS1 Ball Y14		logic 1	LocalPlus Bus Chip Select 1
Pin TP_CS2 Ball V15		logic 1	LocalPlus Bus Chip Select 2
Pin LP_CS3 Ball W15		logic 1	LocalPlus Bus Chip Select 3
Pin LP_CS4 Ball Y15		logic 1	LocalPlus Bus Chip Select 4
Pin <u>LP_CS5</u> Ball V16		logic 1	LocalPlus Bus Chip Select 5

MPC5200B Users Guide, Rev. 1

2-72 Freescale Semiconductor

Table 2-31. Systems Integration Unit Pin Functions (continued)

SYSTEMS INTEGRATION UNIT	Functions	Reset Value	Descriptions
Pin LP_OE		logic 1	LocalPlus Bus Output Enable
Ball D08			
Pin IRQ0			External Interrupt 0
Ball P03			
Pin IRQ1			External Interrupt 1
Ball P01			
Pin IRQ2			External Interrupt 2
Ball P02			
Pin IRQ3			External Interrupt 3
Ball R01			
Pin RTC_XTAL_IN			Real Time Clock Crystal Input / External
Ball C02			Clock Input
Pin RTC_XTAL_OUT			Real Time Clock Crystal Ouput
Ball C01			

Signal Descriptions

Notes

MPC5200B Users Guide, Rev. 1

Chapter 3 Memory Map

3.1 Overview

The following sections are contained in this document:

- MPC5200B Internal Register Memory Map
- MPC5200B Memory Map
- SDRAM Bus
- LocalPlus Bus
 - Memory Cycles
 - Boot Chip Select
 - Chip Selects
 - ATA Cycles
 - PCI Cycles
- MPC5200B Register Summaries
 - Memory Map Registers -- MBAR + 0x0000
 - SDRAM Registers -- MBAR + 0x0100
 - Clock Distribution Module Registers -- MBAR + 0x0200
 - Chip Select Configuration Registers -- MBAR + 0x0300
 - Interrupt Controller Registers -- MBAR + 0x0500
 - General Purpose Timer Registers -- MBAR + 0x0600
 - Slice Timer Control Registers -- MBAR + 0x0700
 - Real Time Clock Registers -- MBAR + 0x0800
 - MSCAN Registers -- MBAR + 0x0900
 - Simple GPIO Registers -- MBAR + 0x0B00
 - Wake-up GPIO Registers -- MBAR + 0x0C00
 - PCI Registers -- MBAR + 0x0D00
 - Serial Peripheral Interface Registers -- MBAR + 0x0F00
 - USB Host Registers -- MBAR + 0x1000
 - BestComm Registers -- MBAR + 0x1200
 - J1850 (BDLC Controller) Registers -- MBAR + 0x1300
 - XL BUS ARbitration Registers -- MBAR + 0x1F00
 - PSC1 Registers -- MBAR + 0x2000
 - PSC2 Registers -- MBAR + 0x2200
 - PSC3 Registers -- MBAR + 0x2400
 - PSC4 Registers -- MBAR + 0x2600
 - PSC5 Registers -- MBAR + 0x2800
 - PSC6 Registers -- MBAR + 0x2C00
 - Ethernet Registers -- MBAR + 0x3000
 - BestComm / PCI Interface Registers -- MBAR + 0x3800
 - ATA Bus Configuration Registers -- MBAR + 0x3A00
 - BestComm / LocalPlus Interface Registers -- MBAR + 0x3C00
 - I2C Configuration Registers -- MBAR + 0x3D00
 - SRAM Module -- MBAR + 0x8000

Freescale Semiconductor 3-1

3.2 Internal Register Memory Map

Table 3-1. Internal Register Memory Map

Address	Name	Description	Reference		
MBAR + 0x0000	MM	Memory Map Registers	Section 3.3.3		
MBAR + 0x0100	SDRAM	SDRAM Memory Controller registers.	Section 8.7		
MBAR + 0x0200	CDM	Clock Distribution Module registers.	Section 5.5		
MBAR + 0x0300	CSC	Chip Select Controller registers.	Section 9.7.1		
MBAR + 0x0500	ICTL	Interrupt Controller registers.	Section 7.2.4		
MBAR + 0x0600	GPT	General Purpose Timer registers.	Section 7.4.4		
MBAR + 0x0700	SLT	Slice Time registers.	Section 7.5.1		
MBAR + 0x0800	RTC	Real-Time Clock registers.	Section 7.6.3		
MBAR + 0x0900	CAN	MSCAN registers.	Section 19.5.2		
MBAR + 0x0B00	GPS	GPIO Standard registers	Section 7.3.2.1		
MBAR + 0x0C00	GPW	GPIO Wake up registers.	Section 7.3.2.2		
MBAR + 0x0D00	PCI	PCI XLB Configuration registers	Section 10.3		
MBAR + 0x0F00	SPI	Serial Peripheral Interface registers.	Section 17.3		
MBAR + 0x1000	USB	Universal Serial Bus registers.	Section 12.4		
MBAR + 0x1200	BDMA	BestComm DMA registers.	Section 13.15		
MBAR + 0x1300	BDLC	J1850 (BDLC) registers	Section 20.7		
MBAR + 0x1F00	XLARB	XL BUS ARBITRATION Registers	Section 16.2		
MBAR + 0x2000	PSC1	Programmable Serial Controller 1 registers.	Section 15.2		
MBAR + 0x2200	PSC2	Programmable Serial Controller 2 registers.	Section 15.2		
MBAR + 0x2400	PSC3	Programmable Serial Controller 3 registers.	Section 15.2		
MBAR + 0x2600	PSC4	Programmable Serial Controller 4 registers.	Section 15.2		
MBAR + 0x2800	PSC5	Programmable Serial Controller 5 registers.	Section 15.2		
MBAR + 0x2C00	PSC6	Programmable Serial Controller 6 / Infra-Red Data Association registers.	Section 15.2		
MBAR + 0x3000	ETH	Ethernet registers.	Section 14.5		
MBAR + 0x3800	BPCI	BestComm DMA PCI registers.	Section 10.3.3		
MBAR + 0x3A00	ATA	Advanced Technology Attachment registers.	Section 11.3.1 Section 11.3.2 Section 11.3.3		
MBAR + 0x3C00	BLPC	BestComm DMA LocalPlus registers	Section 9.7.2		
MBAR + 0x3D00	I ² C	Inter-Integrated Circuit registers.	Section 18.3		
MBAR + 0x8000	SRAM	On-chip Static RAM memory locations.	Section 13.16		

3-2 Freescale Semiconductor

3.3 MPC5200B Memory Map

The MPC5200B memory map has the following main regions:

- MPC5200B Internal Register Space
- External Busses
 - SDRAM Bus
 - LocalPlus Bus
 - External Chip Selects 0 7
 - Memory Space
 - Boot Space
 - Program Space
 - Data Space
- ATA Space

3.3.1 MPC5200B Internal Register Space

The internal registers of the MPC5200B are memory mapped, just like external RAM or any other peripheral devices. The addresses of the internal registers are expressed as offsets to the contents of the MBAR Register (Memory Base Address Register).

The Memory Base Address Register contains the upper 16 bits of the register address space. This sixteen bit value is contained in the lower 16 bits (bit 16 - bit 31) of the Memory Base Address Register. The default value at the release of RESET contained in the MBAR Register is 0x0000 8000. To form a register address, the lower sixteen bits of MBAR are left-justified, forming address bits A31 - A16. Then the 16-bit register offset address for a particular register is concatenated with this value to form a 32-bit address.

NOTE

On the LocalPlus Bus, A31 is the Most Significant Bit and A0 is the Least Significant Bit. It is most important to note that the internal registers of the MPC5200B use bit 0 as the Most Significant Bit and bit 31 as the Least Significant Bit.

The Memory Base Address Register is memory mapped, itself, and it is also the first register in the Internal Register Space. Because the default value in MBAR from the release of RESET is 0x0000 8000 and the MBAR register has an offset address of 0x0000 0000, the absolute address of MBAR becomes 0x8000 0000.

For an additional example, the offset addresses of the Clock Distribution Module Registers start at 0x0200. Using the default value in MBAR, the address of the first register in the Clock Distribution Module is 0x8000 0200.

NOTE

The MBAR register is a memory mapped register. In fact, the contents of the MBAR register hold the Most Significant 16 bits of its own address. When the contents of the MBAR register are changed, a copy of this value should be written to Special Purpose Register SPR (0d311). This location should be used to store the present Memory Base Address for the System Memory map. It is the responsibility of the system programmer to ensure the present value is current with the system's memory base offset.

3.3.2 External Busses

There are two external data / address bus structures on the MPC5200B. These are the LocalPlus Bus and the SDRAM Bus. The MPC5200B always begins execution from the release of RESET on the LocalPlus Bus and from the memory device connected to $\overline{\text{LP_CS0}}$.

3.3.2.1 SDRAM Bus

The SDRAM BUS is designed to accommodate Synchronous Single Data Rate DRAM and Synchronous Double Data Rate DRAM. Program execution generally occurs from programs stored in the memory located on the SDRAM Bus. The SDRAM bus has burst read capability which greatly enhances the bandwidth of the SDRAM Bus. The Memory Clock that drives the SDRAM bus is equal to the XL Bus clock frequency.

From Power On Reset the SDRAM Bus is inactive, that is, the chip select line for the SDRAMs is inactive. The appropriate registers must first be programmed to configure the SDRAM Bus chip select line and make it active before program execution can begin on the SDRAM bus. In general, when a system begins operation from a Power On Reset, "programs stored as data" in memory devices on the LocalPlus Bus are transferred to the SDRAM bus memory by a program stored in the Boot Device on the LocalPlus Bus. Once the "programs stored as data" are transferred to the SDRAM bus memory, the Boot program then causes the CPU to jump to the start address of the program which is now located in SDRAM Bus memory and execution continues from the SDRAM Bus memory.

Freescale Semiconductor 3-3

MPC5200B Memory Map

3.3.2.2 LocalPlus Bus

The LocalPlus Bus is designed to connect to ROM, FLASH, static RAM and other peripheral devices. It is not designed to accommodate DRAM's. Program execution begins from the LocalPlus Bus memory device connected to \overline{LP} _CSO. In actual practice, the only programs that are usually executed from LocalPlus Bus memory are those used to initialize the MPC5200B and to transfer data from LocalPlus Bus memory to SDRAM bus memory. In general, programs are stored as data in non-volatile memory on the LocalPlus Bus and then transferred to the SDRAM Bus. Once the transfer occurs, program execution is transferred to a program residing in memory on the SDRAM Bus.

The LocalPlus Bus can be accessed by the CPU to perform direct reads and writes of external memory or the LocalPlus Bus can be a BestComm Peripheral. In this case, the CPU programs the BestComm Controller to automatically transfer data from a particular source address to the LocalPlus memory or from the LocalPlus memory to a particular destination address. Almost all peripheral modules, such as the PSC modules, and both the SDRAM Bus and LocalPlus Bus can be BestComm data sources or destinations.

There are 8 chip select lines, CS0 - CS7, associated with the LocalPlus Bus. Also, there are three basic memory access types that can be run on the LocalPlus bus. These are normal memory accesses, PCI cycles and ATA cycles.

The LocalPlus $\overline{LP_CS0}$ pin can have two configurations. It can be the BOOT Chip Select line, which is its default condition from the release of RESET, and it can be configured after RESET to be $\overline{LP_CS0}$. When configured as the BOOT Chip Select, this chip select line can select Program Space. Thus, program execution can occur from the memory device selected by $\overline{LP_CS0}$. If the $\overline{LP_CS0}$ pin is configured for data space by user software, then only Data Space Memory can be read or written.

Associated with each Chip Select line is a Start Address Register and a Stop Address Register. There are two Chip Select Start/Stop Address Register pairs associated with the \overline{LP} _ $\overline{CS0}$ pin. One Chip Select Start/Stop Register pair is used to configure the \overline{LP} _ $\overline{CS0}$ pin as the BOOT Chip Select and the other register pair configures the \overline{LP} _ $\overline{CS0}$ pin to run normal memory access cycles in data space, only. Only one of the \overline{LP} $\overline{CS0}$ Chip Select Start/Stop Address Register pairs should be active at any given time.

When enabled as the Boot Chip Select, only reads are possible. Reads of 64-bits are supported for instruction fetches. Burst reads are also supported. When enabled as a data space memory chip select, only Data Space reads and writes are supported. Code cannot be executed from a memory device connected to $\overline{LP_CSO}$ when it is configured as a data space chip select. Bursting is not supported and reads are limited to 32-bits.

There are two additional Start/Stop Address Register pairs used for PCI cycles. These registers are not associated with any chip select line. Chip Select 4 and Chip Select 5 can be configured to run normal memory cycles or ATA cycles. Chip Select 1 - 3 and Chip Select 6 - 7 can only run normal memory cycles.

All the address related registers in this module are in the form of Start/Stop pairs. An address appearing on XL Bus is compared as equal-to-or-greater than the Start value and less-than-or-equal-to the Stop value. If both tests pass then a valid address "hit" occurs for the associated space. For Start values the unused bits are assumed to be zero, for Stop values the unused bits are assumed to be high.

Address registers (and the MBAR itself) have only 16 significant bits. Although these bits are right-justified in the registers they are actually interpreted as the most significant 16 bits of the address for comparison tests. For this reason, software must right shift an absolute address by 16 before writing it as a value into the desired START or STOP Address register. The same is true when reading values from these registers.

Start/Stop comparisons are enabled only if the corresponding enable bit in the MM Address Space Enable Register is high. The proper method for updating Start/Stop registers is to first write the enable bit to zero, update both the Start and Stop registers, and then re-enable the corresponding enable bit by writing it high.

NOTE

Failure to follow the above procedure could result in bus hanging and machine check errors.

3-4 Freescale Semiconductor

3-5

3.3.3 Memory Map Space Register Description

These registers exist in the Memory Map register space relative to Memory Base Address Register (MBAR).

3.3.3.1 Memory Address Base Register —MBAR + 0x0000

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Pos	erved							
W								nes	erveu							
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R							Bac	e Addre	see Boo	ietor						
W							Das	c Addit	.33 T 169	notoi						
RESET	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:15	Reserved	These bits are reserved.
16:31		Provides the offset to which all register space for MPC5200B is accessed. The reset value of this register is 0x8000, which provides for a MBAR of 0x8000 0000. All of MPC5200B registers are then accessible at MBAR+offset, where offset refers to the given value in Table 3-1 for the respective module.

3.3.3.2 Boot and Chip Select Addresses

MBAR offset	Name	Description
0x0004	CS0 Start Address	Chip Select 0 through the LocalPlus Bus. Any access on an address between the Start and Stop Addresses enables this chip select.
0x0008	CS0 Stop Address	
0x000C	CS1 Start Address	Chip Select 1 through the LocalPlus Bus. Any access on an address between the Start and Stop Addresses enables this chip select.
0x0010	CS1 Stop Address	
0x0014	CS2 Start Address	Chip Select 2 through the LocalPlus Bus. Any access on an address between the Start and Stop Addresses enables this chip select.
0x0018	CS2 Stop Address	
0x001C	CS3 Start Address	Chip Select 3 through the LocalPlus Bus. Any access on an address between the Start and Stop Addresses enables this chip select.
0x0020	CS3 Stop Address	
0x0024	CS4 Start Address	Chip Select 4 through the LocalPlus Bus. Any access on an address between the Start and Stop Addresses enables this chip select.
0x0028	CS4 Stop Address	

MPC5200B Memory Map

MBAR offset	Name	Description
0x002C	CS5 Start Address	Chip Select 5 through the LocalPlus Bus. Any access on an address between the Start and Stop Addresses enables this chip select.
0x0030	CS5 Stop Address	
0x004C	Boot Start Address	Boot Addressing through the LocalPlus Bus. Any access on an address between the Start and Stop Addresses accesses the boot space. By default, the address space
0x0050	Boot Stop Address	accessed starts at 0x0000 0000 or 0xFFF0 0000 depends on the reset configuration. The size of the boot address space after reset is 512Kbytes.
0x0058	CS6 Start Address	Chip Select 6 through the LocalPlus Bus. Any access on an address between the Start and Stop Addresses enables this chip select.
0x005C	CS6 Stop Address	
0x0060	CS7 Start Address	Chip Select 7 through the LocalPlus Bus. Any access on an address between the Start and Stop Addresses enables this chip select.
0x0064	CS7 Stop Address	

All of these Base Address Registers work the same

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Res	erved							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Base A	Address							
W																
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description
0:15	Reserved	These bits are reserved.
16:31	Base Address	The 16 most significant bits of the Base Address. A value of 0x4000 would translate into a base address of 0x4000 0000.

3.3.3.3 SDRAM Chip Select Configuration Registers

MBAR offset	Name	Description
0x0034	SDRAM Chip Select 0	Contains the Base Addresses and configurations for SDRAM's connected to the SDRAM controller.
0x0038	SDRAM Chip Select 1	

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R					В	ase XL	B Addre	ess						Res	erved	
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R					F	Reserve	d						SD	RAM S	ize	
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:11	Base XLB Address	Start address for memory
12:26	Reserved	These bits are reserved.
27:31	SDRAM size	Should be set to size of SDRAM at corresponding SDRAM chip select. Settings are included in the following table.
Note: T	he Base XI B Ad	dress has to be SDRAM size aligned.

SDRAM Memory Size	SDRAM size bit setting
11111	4GB
11110	2GB
11101	1GB
11100	512MB
11011	256MB
11010	128MB
11001	64MB
11000	32MB
10111	16MB
10110	8MB
10101	4MB
10100	2MB
10011	1MB
00001-10010	Reserved
0000	Disable

3.3.3.4 IPBI Control Register and Wait State Enable —MBAR+0x0054

The IPBI Control Register consists of the Enables for the Base Addresses set in Memory Map Space

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Res	erved		CS7	CS6	Boot		Reserve	ed	CS5	CS4	CS3	CS2	CS1	CS0
W					Ena	Ena	Ena				Ena	Ena	Ena	Ena	Ena	Ena
RESET	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		Reserved								WSE						
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Bits	Name	Description
0:3	Reserved	These bits are reserved.
4	CS7 Ena	Chip Select 7 Enable
5	CS6 Ena	Chip Select 6 Enable
6	Boot Ena	Boot Enable
7:9	Reserved	These bits are reserved.
10	CS5 Ena	Chip Select 5 Enable
11	CS4 Ena	Chip Select 4 Enable
12	CS3 Ena	Chip Select 3 Enable
13	CS2 Ena	Chip Select 2 Enable
14	CS1 Ena	Chip Select 1 Enable
15	CS0 Ena	Chip Select 0 Enable
16:30	Reserved	These bits are reserved.
31	WSE	Wait State Enable bit. This bit should always be enabled when running an IP bus frequency of >66MHz.

MPC5200B Users Guide, Rev. 1

Chapter 4 Resets and Reset Configuration

4.1 Overview

The following sections are contained in this document:

- Hard and Soft Reset Pins
- Reset Sequence
- Reset Operation
- Other Resets
- Reset Configuration

4.2 Hard and Soft Reset Pins

MPC5200B has three primary reset pins, which are implemented as open drain I/Os¹:

- Power-On Reset—PORRESET
- Hard Reset—HRESET
- Soft Reset—SRESET

PORRESET is a power-on reset input. It is asserted by an external source and must be held active for a specified period of time until power is stable to the MPC5200B.

HRESET and SRESET can be asserted by an external source or they can be asserted by reset generation logic internal to MPC5200B.

Internal reset logic analyzes all internal and external reset sources and asserts internal and external reset signals appropriately.

When a hard reset (HRESET) is detected, reset logic counters hold internal and external HRESET for a minimum of 4096 reference clock cycles or until the external HRESET source is released, whichever is longer.

4.2.1 Power-On Reset—PORRESET

PORRESET must be asserted externally when power is applied to the system for a required period of time (see Section 4.4, *Reset Operation*). When PORRESET is asserted, internal logic forces HRESET and SRESET active. PORRESET must remain asserted until the MPC5200B system oscillator begins oscillation and the system APLL establishes a locked condition.

During $\overline{PORRESET}$ or \overline{HRESET} the reset configuration word is sampled to establish the initial state of various vital internal MPC5200B functions. The reset configuration word is latched internally when \overline{HRESET} is released.

When initiated by PORRESET, HRESET asserts and remains asserted for 4096 reference clocks after PORRESET is released.

Source of power-on reset is an external, board level reset source like a push button, reset control logic, etc.

4.2.2 Hard Reset—HRESET

HRESET is a bidirectional signal with a Schmitt-trigger input and an open drain output. HRESET requires an external pull-up. Assertion of external HRESET causes external HRESET and SRESET, and internal hard and soft resets, to be asserted for at least 4096 reference clock cycles.

During PORRESET or HRESET the reset configuration word is sampled to establish the initial state of various vital internal MPC5200B functions. The reset configuration word is latched internally when PORRESET or HRESET is released.

HRESET can also be asserted by internal sources. When HRESET is asserted internally, external HRESET and SRESET are also asserted.

Sources of hard reset are:

- PORRESET or HRESET pins asserted
- Hard reset asserted by debug module
- Reset signal asserted by watchdog timer or checkstop reset

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 4-1

All "open drain" outputs of MPC5200B are actually regular 3-state output drivers with the output data tied low, and the output enable controlled. Thus, unlike a true open drain, there is a current path from the external system to the MPC5200B I/O power rail if the external signal is driven above the MPC5200B I/O power rail voltage.

4.2.3 Soft Reset—SRESET

External \overline{SRESET} is an open drain signal. \overline{SRESET} requires an external pull-up. Assertion of \overline{SRESET} causes assertion of the internal soft reset. Internal soft reset is actually an *interrupt* that takes the same exception vector as \overline{HRESET} . In particular, this means that \overline{SRESET} cannot abort a hung XLB operation, and no device should use \overline{SRESET} in a way that interferes with any bus operation in progress.

 \overline{SRESET} can also be asserted by internal sources. When \overline{SRESET} is asserted internally, external \overline{SRESET} is also asserted.

Sources of soft reset:

- PORRESET, HRESET, or SRESET external pins asserted
- Soft reset bit in Clock Distribution Module (CDM) register asserted by processor
- Soft reset asserted by debug module

4.3 Reset Sequence

Figure 4-1. Reset sequence

4.4 Reset Operation

PORRESET must remain asserted for at least 100µs after all power supplies and the system oscillator input are stable and operating within specs. Following deassertion of power-on reset, HRESET and SRESET remain low for 4096 reference clock cycles.

Figure 4-2. PORRESET Assertion

When external HRESET is asserted, internal reset logic catches the reset signal held low and asserts internal hard and soft resets for 4096 reference clock cycles. The external reset signal must be held low for at least 4 reference clock cycles (must catch 4 rising edges of reference clock) to be recognized and assert the internal reset signals.

Figure 4-3. Internal Hard Reset vs External HRESET Assertion

The Clock Distribution Module contains a register that can be written by the microprocessor to assert soft reset. Writing the \overline{SRESET} bit in this register to zero causes external \overline{SRESET} and internal soft reset to be asserted.

4.5 Other Resets

MPC5200B has four other reset signals. These signals are specific to certain peripheral modules and are controlled in the context of that module, not globally.

PCI_RESET PCI bus reset output. Generated by processor write to a PCI register.

AC97_1_RES AC97 reset output. Generated from the AC97 PSC1 module.

AC97_2_RES AC97 reset output. Generated from the AC97 PSC2 module.

Table 4-1. Module Specific Reset Signals

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 4-3

Table 4-1. Module Specific Reset Signals (continued)

	Definition
JTAG_TRST	JTAG reset input. Generated externally from JTAG or debug control logic. This input only resets the JTAG logic. Other system resets (PORRESET, HRESET, and SRESET) do not reset the JTAG logic.
	Note: For information on the reset signal JTAG_TRST and the relationship to other reset signals refer to the MPC5200 Hardware Specifications.
ATA Reset	This is NOT a reset pin on MPC5200B. The ATA reset for the external drive must be supplied by the board level reset source, or if software control is required, generated via a GPIO.

4.6 Reset Configuration

The MPC5200B is initialized by sampling values found on specific device pins during power-on reset (PORRESET) or hard-reset (HRESET). These pins are outputs in normal operation, but are sampled as inputs during power-on reset or hard-reset. External pull-up or pull-down resistors on the board are used to force a value on these pins during power-on reset or hard-reset. These values are latched into the CDM Reset Configuration register at the end of power-on reset or hard-reset, then distributed to various peripherals. After power-on reset or hard-reset, these outputs overdrive the external pull-up or pull-down resistors and behave as functional outputs. Only during power-on reset or hard-reset these pins are inputs.

Table 4-2 gives the power-on reset or hard-reset configuration inputs.

Table 4-2. Reset Configuration Word Source Pins

Pkg Ball	Reset Config Pin	I/O Signal Name	CDM Reset Config Register Bit	Config Signal from CDM	Description	
Y18	RST_CFG0	ATA_DACK	PORCFG[31]	ppc_pll_cfg_4	MPC5200B G2_LE PPC Core PLL	
Y17	RST_CFG1	ATA_IOR	PORCFG[30]	ppc_pll_cfg_3	Configuration	
W17	RST_CFG2	ATA_IOW	PORCFG[29]	ppc_pll_cfg_2		
W16	RST_CFG3	LP_RWB	PORCFG[28]	ppc_pll_cfg_1		
V14	RST_CFG4	LP_ALE	PORCFG[27]	ppc_pll_cfg_0		
Y13	RST_CFG5	LP_TS	PORCFG[26]	xlb_clk_sel	bit=0:XLB_CLK=f _{system} / 4 bit=1:XLB_CLK=f _{system} / 8	
H02	RST_CFG6	USB1_1	PORCFG[25]	sys_pll_cfg_0	bit=0:f _{system} =16 x SYS_XTAL_IN bit=1:f _{system} =12 x SYS_XTAL_IN	
H03	RST_CFG7	USB1_2	PORCFG[24]	sys_pll_cfg1	bit=0:f _{vcosys} = f _{system} bit=1:f _{vcosys} = 2 x f _{system}	
K01	RST_CFG8	ETH0	PORCFG[23]	boot_rom_mg	bit=0:No Boot in Most Graphics Mode ¹ bit=1:Boot in Most Graphics Mode ^{1,2,4}	
K03	RST_CFG10	ETH2	PORCFG[21]	ppc_msrip	Microprocessor Boot Address/Exception table location. bit=0:0000_0100 (hex) bit=1:FFF0_0100 (hex)	
J01	RST_CFG11	ETH3	PORCFG[20]	boot_rom_wait	bit=0:4 PCI bus clocks of wait state bit=1:48 PCI bus clocks of wait state	
J02	RST_CFG12	ETH4	PORCFG[19]	boot_rom_swap	bit=0:no byte lane swap, same endian ROM image bit=1:byte lane swap, different endian ROM image	

MPC5200B Users Guide, Rev. 1

4-4 Freescale Semiconductor

Table 4-2. Reset Configuration Word Source Pins (continued)

Pkg Ball	Reset Config Pin	I/O Signal Name	CDM Reset Config Register Bit	Config Signal from CDM	Description
L03	RST_CFG13	ETH5	PORCFG[18]	boot_rom_size	For non-muxed boot ROMs: ^{2,3} bit=0:8bit boot ROM data bus, 24bit max boot ROM address bus bit=1:16bit boot ROM data bus, 16bit boot ROM address bus For muxed boot ROMs: boot ROM address is max 25 significant bits during address tenure. bit=0:16bit ROM data bus bit=1:32bit ROM data bus
N02	RST_CFG14	ETH6	PORCFG[17]	boot_rom_type	bit=0:non-muxed boot ROM bus, single tenure transfer. bit=1:muxed boot ROM bus, with address and data tenures, ALE and TS active. 1
K02	RST_CFG15	ETH1	PORCFG[16]	large_flash_sel	bit=0:No Boot in Large Flash Mode ¹ bit=1:Boot in Large Flash Mode ^{1,3,4}

Note:

- 1. If multipe settings are choosen the following priorities are valid:
 - 1. large_flash_sel
 - 2. boot_rom_mg
 - 3. boot_rom_type
- 2. The boot_rom_size configuration signal doesn't influence the address and data bus width of the MOST Graphics boot mode configuration. The maximum address bus width is fixed to 24 bit and the data bus width is fixed to 32 bit.
- 3. The boot_rom_size configurationsignal doesn't influence the address bus width of the Large Flash boot mode configuration. The maximum address bus width is fixed to 26 bit.
- 4. The PCI controller is disabled, if booting in Large Flash or MOST Graphics mode is selected.

Freescale Semiconductor 4-5

Resets and Reset Configuration

Notes

Chapter 5 Clocks and Power Management

Overview 5.1

The following sections are contained in this document:

- Clock Distribution Module (CDM)
- MPC5200B Clock Domains
- Power Management
- **CDM Registers**

5.2 **Clock Distribution Module (CDM)**

The CDM is the source of all internally generated clocks and reset signals. The MPC5200B clock generation uses two analog phase locked loop (APLL) blocks. The system APLL takes an external reference frequency (nominal 27-33MHz) and generates the following internal clocks. See Table 5-1.

Clock Name	Description
XLB CLOCK (xlb_clk)	Microprocessor on-chip 64-bit XLB clock. This is the fundamental MPC5200B frequency.
MEM_CLOCK (mem_clock)	SDRAM Controller memory clock supplied to external SDRAM devices. Max frequency is 132MHz. The memory clock frequency is always equal to the XLB frequency.
IPB CLock (ipb_clk)	Intellectual Property Bus (IPB) clock.
PCI CLOCK (pci_clk)	PCI Controller clock.
CORE CLOCK	Clock for the e300 Core. The core APLL takes the XLB clock and generates the e300 clock.
48MHz CLOCK USB CLOCK	48MHz clock for USB and IrDA (PSC6). This clock can be sourced internally from the CDM or from an external source via the IrDA_USB_CLK pin.

Table 5-1. Clock Distribution Module

MPC5200B Clock Domains 5.3

The MPC5200B has 5 major clock domains, which are listed below. Details are given in the sections that follow.

- e300 Core Clock Domain—internal processor core frequency
- Processor Bus (XLB) Clock Domain —internal e300 Core processor bus
- SDRAM Memory Controller Clock Domain
- IPB Clock Domain—programming register and peripheral interface frequency
- PCI Clock Domain

The following smaller peripheral clock domains can be asynchronous to the fundamental clock frequencies on MPC5200B:

Ethernet—The Ethernet Controller requires a 10MHz (10 Mbit operation) or 25MHz (100 Mbit operation) Tx/Rx clock, Both clocks are inputs to the MPC5200B, supplied from the Ethernet physical device (ETH RXCLK, ETH TXCLK pins). The Ethernet Controller Tx/Rx portion of the MPC5200B is asynchronous to the rest of MPC5200B.

USB—The Universal Serial Bus module Tx/Rx portion can be clocked by an external clock source (IR USB CLK pin) or by an internally generated clock. Clock frequency must be 48MHz. When the clock source is externally supplied, the USB module Tx/Rx portion is asynchronous to the rest of MPC5200B.

PSC—The PSC (Programmable Serial Controller) module is instantiated in the MPC5200B 6 times (PSC1 to PSC6). The PSC has different modes of operation. In some cases the logic is clocked by internally generated clocks (i.e., UART mode), and in others the PSC is clocked by external clock sources (i.e., CODEC mode). If the PSC logic is clocked from an external source then the logic is asynchronous to the rest of the chip.

When the PSC6 is configured as IrDA—The Infrared Data Association module Tx/Rx portion can be clocked by an external clock source (IR USB CLK pin) or by an internally generated clock.

When generated internally, the clock source can be a fix 48MHz clock generator or a programmable clock generator (Mclk).

Freescale Semiconductor 5-1 — When generated externally, the frequency can be different

NOTE

Only one pin is allocated to supply the USB and PSC6/IrDA clock. If both modules require external clock generation, the frequency must be 48MHz.

SPI—The SPI (Serial Peripheral Interface) has a clock input pin, SPI_CLK. When the SPI is configured as a slave, the clock is supplied externally. The SPI module therefore has a small asynchronous clock domain.

I²C—There are two I²C (Inter-Integrated Circuit) modules on MPC5200B. Both have input source clocks (I²Cx_CLK) and therefore asynchronous clock domains.

RTC—The RTC (Real-Time Clock) has its own clock domain, clocked by an external 32.768KHz oscillator. The two oscillator pins are RTC_XTAL_IN and RTC_XTAL_OUT. There is an asynchronous boundary between this clock domain and the IPB register interface.

JTAG—The JTAG (Joint Test Action Group) has its own clock domain clocked by the JTAG TCK pin.

The following peripheral functions use clocks generated from CDM.

MSCAN—The MSCAN (Freescale [formerly Motorola] Scalable Controller Area Network) internal baud rate generator also uses the ipb_clk or can be derived from the oscillator clock sys_xtal_in. The resultant divided clock samples an incoming CAN data stream and generates an outgoing data stream.

Figure 5-1. Primary Synchronous Clock Domains

5.3.1 MPC5200B Top Level Clock Relations

Figure 5-2 shows the CDM clock divide circuitry. This picture shows only the functional clocks. The clock network regarding the scan and bypass modes is not included.

Figure 5-2. MPC5200 Clock Relations

Freescale Semiconductor 5-3

MPC5200B Clock Domains

Table 5-2 shows the System PLL configuration and the corresponding fsystem frequencies for a 27.0 MHz and 33.0 MHz input clock. Table 5-3 shows all possible clock ratios.

Table 5-2. System PLL Ratios

SYS_XTAL_IN	sys_pll_cfg[1]	sys_pll_cfg[0]	f _{VCOsys} [MHz]	f _{system} [MHz]
	0	0	432.0	432.0
27.0	0	1	324.0	324.0
	1 ^a	0	864.0	432.0
	1	1	648.0	324.0
	0	0	528.0	528.0
33.0	0	1	396.0	396.0
	1 ^a	0	1056.0	528.0
	1	1	792.0	396.0

 $^{^{\}rm a}$ These are invalid configurations. The f $_{\rm VCOsys}$ frequencies exceed the maximum operation frequency. See MPC5200B Hardware Specification.

Table 5-3. MPC5200B Clock Ratios

xlb_clk_sel	XLB CLOCK	ipb_clk_sel	IPB CLOCK	pci_clk_sel[1:0]	PCI CLOCK	CLOCK Ratio XLB:IPB:PCI
0	f _{system} / 4	0	XLB	00	XLB	4:4:4
0	f _{system} / 4	0	XLB	01	XLB/2	4:4:2
0	f _{system} / 4	0	XLB	10	XLB/4	4:4:1
0	f _{system} / 4	0	XLB	11	XLB/4	4:4:1
0	f _{system} / 4	1	XLB /2	00	XLB/2	4:2:2
0	f _{system} / 4	1	XLB /2	01	XLB/4	4:2:1
0	f _{system} / 4	1	XLB /2	10	XLB/4	4:2:1
0	f _{system} / 4	1	XLB /2	11	XLB/4	4:2:1
1	f _{system} / 8	0	XLB	00	XLB	2:2:2
1	f _{system} / 8	0	XLB	01	XLB/2	2:2:1
1	f _{system} / 8	0	XLB	10	XLB/4	2:2:0.5
1	f _{system} / 8	0	XLB	11	XLB/4	2:2:0.5
1	f _{system} / 8	1	XLB /2	00	XLB/2	2:1:1
1	f _{system} / 8	1	XLB /2	01	XLB/4	2:1:0.5
1	f _{system} / 8	1	XLB /2	10	XLB/4	2:1:0.5
1	f _{system} / 8	1	XLB /2	11	XLB/4	2:1:0.5

5-4 Freescale Semiconductor

MPC5200B Users Guide, Rev. 1

Table 5-4. Typical System Clock Frequencies

f _{system} [MHz]	XLB Clock [MHz]	IPB CLock [MHz]	PCI CLOCK [MHz]	Clock Ratio XLB:IPB:PCI
		132.0	66.0	4:4:2
	132.0		33.0	4:4:1
528.0		66.0	66.0	4:2:2
			33.0	4:2:1
		33.0	33.0	4:1:1
		66.0	66.0	2:2:2
	66.0		33.0	2:2:1
		33.0	33.0	2:1:1

Table 5-4 shows the typical clock ratios with a 33.0 MHz clock input on the SYS_XTAL_IN pin and a System PLL divide value 16 (sys_pll_cfg[0] = 0).

NOTE

Frequency ranges in Table 5-3 and Table 5-4 represent possible ranges of operation. A variety of conditions may prevent the part from actually performing at these frequency ranges. For data relating to actual performance, see Section A.2, AC Timing.

5.3.2 e300 Core Clock Domain

The e300 Core has its own APLL and clock domain, which is separate from, but synchronous with, the rest of the chip. The reference for the processor APLL is the XLB clock. The e300 Core can run at all integer and half-integer multiples of xlb_clk from 2x to 8x (i.e., 2x, 2.5x, 3x, 3.5x, 4x, 4.5x, 5x, 5.5x, 6x, 6.5x, 7x, 7.5x, 8x) to a maximum frequency of 396MHz. Table 5-5 shows the available core frequencies based on the xlb_clk frequency range.

NOTE

These frequencies are not guaranteed. Actual operation frequencies will depend on silicon characterization and operating conditions.

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 5-5

Table 5-5. e300 Core Frequencies vs. XLB Frequencies

XLB C	Clock (MHz)	132	108	99	81	66	54	49.5	40.5	33	27
	x1	_	_	_	_	_	_	_	_	_	
	x1.5	_	_	_	_	_	_	_	_	_	
	x2	264	216	198	162	132	108	99	81	66	54
_	x2.5	330	270	247.5	202.5	165	135	123.8	101.3	82.5	67.5
e300 Core PLL Bus to Core Multiplier ^a	х3	396	324	297	243	198	162	148.4	121.5	99	81
Multi	x3.5		378	346.5	283.5	231	189	173.3	141.8	115.5	94.5
Core	x4			396	324	264	216	198	162	132	108
us to	x4.5				364.5	297	243	222.8	182.3	148.5	121.5
'LL B	x5					330	270	247.5	202.5	165	135
ore P	x5.5					363	297	272.3	222.8	181.5	148.5
300 C	х6					396	324	297	243	198	162
ď	x6.5						351	321.8	263.3	214.5	175.5
	x7						378	346.5	283.5	231	189
	x7.5							371.3	303.8	247.5	202.5
	x8							396	324	264	216

^a See Table 5-6, XLB to CORE clock ratio.

Table 5-6 gives the e300 Core APLL and operating frequency options compared to the xlb_clk reference input (shown in Figure 5-2). The selection of an e300 Core frequency is made at Power-On Reset (POR) via the reset configuration inputs. For more information see Section 4.6, *Reset Configuration*.

Frequency ranges indicated in Table 5-6 represent possible ranges for the processor APLL. A variety of conditions may prevent the part from actually performing at these frequency ranges. For data relating to actual performance, see the MPC5200B Hardware Specification.

Table 5-6. e300 Core APLL Configuration Options

р	pc_pll_cfg	Bus:Core Ratio	Core:VCO Ratio	Bus:VCO Ratio		
hex	[0:1:2:3:4]	(XLB : CORE CLOCK)	(CORE CLOCK: f _{VCOcore})	(XLB : f _{VCOcore)}		
0x00	00000	_	_	_		
0x01	00001	_	_	_		
0x02	00010	_	_	_		
0x04	00100	1:2	1:2	1:4		
0x05	00101	1:2	1:4	1:8		
0x06	00110	1:2.5	1:2	1:5		
0x07	00111	1:4.5	1:2	1:9		

MPC5200B Users Guide, Rev. 1

5-6 Freescale Semiconductor

Table 5-6. e300 Core APLL Configuration Options (continued)

ppc_pll_cfg		Bus:Core Ratio	Core:VCO Ratio	Bus:VCO Ratio
hex	[0:1:2:3:4]	(XLB : CORE CLOCK)	(CORE CLOCK: f _{VCOcore})	(XLB : f _{VCOcore)}
0x08	01000	1:3	1:2	1:6
0x09	01001	1:5.5	1:2	1:11
0x0A	01010	1:4	1:2	1:8
0x0B	01011	1:5	1:2	1:10
0x0C	01100	_	_	_
0x0D	01101	1:6	1:2	1:12
0x0E	01110	1:3.5	1:2	1:7
0x10	10000	1:3	1:4	1:12
0x11	10001	1:2.5	1:4	1:10
0x12	10010	1:6.5	1:2	1:13
0x14	10100	1:7	1:2	1:14
0x16	10110	1:7.5	1:2	1:15
0x18	11000	_	_	_
0x1C	11100	1:8	1:2	1:16
0x03 0x13	00011 10011	PLL off/bypassed xlb_clk clocks core directly, 1x bus-to-core		
		Ε'		
0x0F 0x1F	01111 11111	PLL off, no core clocking occurs.		
0x15 0x17 0x19 0x1A 0x1B	10101 10111 11001 11010 11011	Reserved, should not be used.		
0x1D 0x1E	11101 11110	police come mede con be seen	figured with one all ofc[0] 0	
Note: Shading implies same mode can be configured with ppc_pll_cfg[0]=0				

NOTE

The XLB CLOCK frequency and the ppc_pll_cfg[0:4] must be chosen such that resulting CORE CLOCK frequency and PLL ($f_{VCOcore}$) frequency do not exceed their respective maximium or minimum operating frequencies. Refer to Table 5-5 and MPC5200B Hareware Specification.

5.3.3 Processor Bus (XLB) Clock Domain

The XLB clock (xlb_clk) is the fundamental MPC5200B clock frequency. The following operate at this frequency:

- The internal processor address/data bus
- The internal SDRAM Controller
- External SDRAM

All functional blocks that interface to the XLB must operate at this frequency, or have a section of logic that operates at this frequency.

MPC5200B Users Guide, Rev. 1

5.3.4 **SDRAM Memory Controller Clock Domain**

The Memory Controller uses the clocks shown in Table 5-7.

Table 5-7. SDRAM Memory Controller Clock Domain

Bits	Description
mem_clk	mem_clk is always the same frequency as xlb_clk.
mem_2x_clk, mem_2x_clk	These internal clocks are twice the frequency of xlb_clk and are used to add more resolution to SDRAMC control signals
mem2x1x_clk (becomes mem_rd_clk)	This is the source of the internal memory read clock. It always operates at the memory data rate, 1x mem_clk for SDR, 2x mem_clk for DDR. The physical circuit path of mem2x1x_clk is matched as closely as possible to the on-chip portion of the memory clock output and the read data input; a tapped delay chain is used to match off-chip portions of the memory clock and read data path.

Figure 5-3 shows the clock relationships for the SDRAM Controller.

Figure 5-3. Timing Diagram—Clock Waveforms for SDRAM and DDR Memories

The XLB is 64bits and the SDRAM external bus is 32bits. When SDR (single data rate) SDRAM memory is used, the XLB bandwidth is only half utilized. When DDR (dual data rate) memory is used, the XLB bandwidth is fully used on SDRAM transactions.

MPC5200B supplies 2 external memory clocks as part of the SDRAM interface:

- MEM MEMCLK
- MEM MEMCLK

 $\label{eq:memory} \begin{subarray}{ll} MEM_MEMCLK and $\overline{MEM_MEMCLK}$ are always the same frequency as XLB clock. SDR memory uses MEM_MEMCLK only; DDR memory uses both MEM_MEMCLK and $\overline{MEM_MEMCLK}$. \\ \end{subarray}$

5.3.5 IPB Clock Domain

IPB clock can run at the same frequency as XLB clock, or 1/2 the frequency. BestComm runs at the IPB clock frequency as does all IPB control register access logic.

5.3.6 PCI Clock Domain

The PCI bus clock is the fundamental frequency of the PCI bus interface. The PCI clock can run at the XLB clock frequency, or 1/2 the XLB clock frequency, or 1/4 the XLB clock frequency. The PCI clock cannot be faster than IPB Clock.

MPC5200B Users Guide, Rev. 1

5-8 Freescale Semiconductor

5.4 Power Management

Power Management modes are listed below. Details are given in the sections that follow.

- Full-Power Mode
- Power Conservation Modes

The MPC5200B design is equipped with many power conservation features, which are supported in the peripherals and system logic. The e300 Core has its own power-down modes:

- nap
- doze
- sleep

Individual peripheral functions can be disabled by stopping the module's clock. In addition to clock control of individual peripheral functions, clock control sequencer (CCS) logic sequences the MPC5200B clock system to enter and exit a deep-sleep power mode. This limits power consumption to device leakage levels.

The MPC5200B system is driven by:

- a 27/33MHz system OSC, and
- a 32KHz real-time clock (RTC) OSC.

The 27/33MHz OSC drives the main clock system through a PLL that multiplies the frequency for the system buses and peripherals on the chip. The e300 Core uses the XLB frequency as an input to the microprocessor PLL that generates the internal core frequencies.

The RTC clock domain is completely separate from the 27/33MHz clock domain. All interactions between the RTC clock domain and any other are handled with synchronizers.

5.4.1 Full-Power Mode

In Full-Power mode both the system PLL and microprocessor PLL are locked and the main system clocks are supplied to the MPC5200B system. In this mode, the e300 Core may use the Dynamic Power Mode (DPM). If this mode is enabled, logic not required for instruction execution, is not activated. This results in power reduction over a design that would be fully clocked during normal operation.

Performance in not decreased in Dynamic Power Mode, so it is recommended that it should never be disabled (although it is possible) when running the core at full speed.

MPC5200B peripherals can be individually enabled based on what functionality is required by the application running and the external stimulus presented to MPC5200B. Peripherals not required can be powered-down through a write to an MPC5200B system control register which disables the peripheral and gates the peripheral clock.

5.4.2 Power Conservation Modes

Sleep modes in the MPC5200B design can be exercised through microprocessor sleep mode control and peripheral clock disables. In all modes except Deep-Sleep mode, the system crystal oscillator is enabled, and the system PLL and microprocessor PLL remain locked. Response time to WakeUP interrupts is faster than in the deep-sleep mode (see Section 5.4.4, *Deep-Sleep Mode*). Since clocks are still running in the MPC5200B chip, any interrupt normally present in the MPC5200B design can be used to wake up the power-down logic. See Section 5.5.6, *CDM Clock Enable Register—MBAR + 0x0214*, Clock Enable register.

5.4.3 e300 Core Power Modes

The e300 Core power management modes are listed below. Details are given in the sections that follow.

- Dynamic Power Mode (default power state)
- Doze Mode
- Nap Mode
- Sleep Mode

These modes are controlled by writes to an internal e300 Core control register. These modes only apply to the e300 Core. Logic outside the e300 Core remains active unless separately disabled. In any of these modes, peripherals can be enabled or disabled by writing to an MPC5200B system control register.

Freescale Semiconductor 5-9

Power Management

5.4.3.1 Dynamic Power Mode

This is the default power state mode. The core is fully powered and internal functional units are operating at the full processor clock speed. If Dynamic Mode is enabled, idle functional units automatically enter a low-power state. This does not effect:

- performance
- · software execution
- · external hardware

5.4.3.2 Doze Mode

All functional e300 Core units are disabled except for the time base/decrementer registers and the bus snooping logic. When the processor is in Doze Mode, any of the following actions returns the core to Full-Power Mode:

- an external asynchronous interrupt
- a system management interrupt
- a decrementer (DEC) exception
- · a hard or soft reset
- a machine check input (MCP) signal

In Doze Mode, the core maintains the PLL in a fully powered state and locked to the system XLB clock input. Transition to Full-Power Mod takes only a few processor clock cycles.

5.4.3.3 Nap Mode

The Nap Mode further reduces e300 Core power consumption by disabling bus snooping, leaving only the time base register and the PLL in a powered state. When in Nap Mode, any of the following actions returns the core to Full-Power Mod:

- an external asynchronous interrupt
- · a system management interrupt
- a DEC exception
- a hard or soft reset
- an MCP signal

Transition to Full-Power Mode takes only a few processor clock cycles.

NOTE: It is not allowed to set the ccs_sleep_en bit of CDM Clock Control Sequencer Configuration Register before entering the nap mode. Otherwise all clocks will be disabled by entering the nap mode.

5.4.3.4 Sleep Mode

Sleep Mode reduces e300 Core power consumption to a minimum. It does this by disabling all internal functional units.

Any of the following actions returns the core to Full-Power Mode:

- an external asynchronous interrupt
- a system management interrupt
- · a hard or soft reset
- an MCP signal

In Sleep Mode it is possible to disable the e300 Core PLL, further reducing power. this requires special sequencing logic external to the e300 Core and is discussed in Section 5.4.4, *Deep-Sleep Mode*.

5.4.4 Deep-Sleep Mode

The MPC5200B system provides a very low power consumption mode where the 27/33MHz system oscillator, system PLL and e300 Core PLL are shut down and disabled. Once MPC5200B is sequenced into this mode and clocks are static, the current draw of the device (except the RTC) is reduced to leakage levels. The internal state of the device is maintained in Deep Sleep as long as power is maintained.

The real-time clock (RTC) is not disabled in Deep Sleep. If the RTC is used, that portion of the chip still consumes power in Deep Sleep.

Exiting Deep Sleep mode is initiated in one of the following ways:

- An interrupt from the RTC logic
- An external asynchronous interrupt (wake up interrupt)
- An interrupt from one of the MSCAN modules (which occurs when a data transition occurs on the serial input).

The RTC clock is necessary to wake up MPC5200B using an RTC interrupt. However, no clock is required to trigger the wake up process in the case of an external interrupt or the MSCAN module interrupt. This means the RTC clock does not have to be present to use Deep Sleep

mode. The e300 Core must enable the deep sleep process in the CDM module, then put itself into sleep mode before the e300 Core PLL can be disabled.

Since MPC5200B clocks are stopped in Deep Sleep mode, the wake-up time is longer than in the e300 Core-only power down modes. A power-on sequence must occur which re-locks both the MPC5200B system and processor PLLs.

The sequence of events to enter and exit Deep Sleep mode are initiated by the e300 Core under software control and then sequenced in hardware by the Clock Control Sequencer (CCS) in CDM.

5.4.4.1 Entering Deep Sleep

When entering Deep Sleep mode, the following occurs:

- e300 Core prepares the system for Deep Sleep power down.
 - This could involve disabling peripheral interfaces, waiting for transmit/receive messages to complete, putting the SDRAM into self refresh mode, etc.
- e300 Core finishes instructions in the execution pipeline.
- e300 Core software enables the Deep Sleep mode with a write to a MPC5200B control register.
- e300 Core Processor software writes sleep mode configuration to e300 Core Processor control register.
- e300 Core Processor asserts the QREQ signal indicating that it would like to enter sleep mode.
- CCS waits for e300 Core Processor sleep (initiated by QREQ, since QACK is always asserted in MPC5200B).
- CCS disables interrupts.
- CCS waits for the e300 Core Processor to enter the sleep mode.
- CCS disables the OSC, system PLL, e300 Core Processor PLL and gates the system clocks.

5.4.4.2 Exiting Deep Sleep

When exiting Deep Sleep mode, the following occurs:

- CCS receives an interrupt from a GPIO pin, RTC or a MSCAN peripheral.
- CCS enables the OSC and waits for the OSC to stabilize.
- CCS enables the system PLL and waits for the PLL to lock to the OSC clock.
- CCS enables system clocks.
- CCS enables the e300 Core Processor PLL and waits for the PLL to lock to the system PLL clock.
- CCS enables interrupts, which triggers a wakeup interrupt to the e300 Core Processor (from the WakeUp source).
- e300 Core Processor wakes up and puts MPC5200B into full power mode and then services the wakeup interrupt

Waking up from Deep Sleep mode does not require the system to be reset or a boot sequence. The functional state of MPC5200B should remain the same as when it went into Deep Sleep. If the SDRAM was put into self refresh mode, its contents should also remain unchanged.

5.5 CDM Registers

The Clock Distribution Module (CDM) contains 14 32-bit registers. All registers are located at an offset from the value in the Module Base Address Register (MBAR). The CDM base offset is 0x0200.

Hyperlinks to the CDM registers are provided below:

- CDM JTAG ID Number Register—MBAR + 0x0200 (0x0200), read-only
- CDM Power On Reset Configuration Register (0x0204)
- CDM Bread Crumb Register—MBAR + 0x0208 (0x0208), never reset
- CDM Configuration Register (0x020C)
- CDM 48MHz Fractional Divider Configuration Register (0x0210)
- CDM Clock Enable Register (0x0214)
- CDM System Oscillator Configuration Register (0x0218)

- CDM Clock Control Sequencer Configuration Register (0x021C)
- CDM Soft Reset Register (0x0220)
- CDM System PLL Status Register (0x0224)
- PSC1 Mclock Config Register—MBAR + 0x0228 (0x0228)
- CDM PSC2 Mclock Config (0x022C)
- CDM PSC3 Mclock Config (0x0230)
- (0x0234)

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 5-11

5.5.1 CDM JTAG ID Number Register—MBAR + 0x0200

The CDM JTAG ID Number Register is a read-only register that contains the JTAG Identification number identifying MPC5200B. The value is hard coded (1001 101D hex) and cannot be modified.

Table 5-8. CDM JTAG ID Number Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R						JT.	AG Iden	tification	n Numb	er Regis	ster					
W		Unused														
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R						JT	AG Iden	tification	n Numb	er Regis	ster					
W	Unused															
RESET:	0	0	0	1	0	0	0	0	0	0	0	1	1	1	0	1

Device I.D. Register = 1001 101D hex

Version	Device (MPC5200B)	Manufacturer (Freescale)					
0001	0000 0000 0001 0001	0000 0001 110	1				

5.5.2 CDM Power On Reset Configuration Register—MBAR + 0x0204

This is a mostly read-only register containing the configuration value latched at POR.

Table 5-9. CDM Power On Reset Configuration Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R	F	Reserve Write 0		Reserved						Reserved, Read Only							
W																	
RESET:	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	V	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R	<u> =</u>	ot_ _type	ot_ size	ot_ _swap	_ /ait	- Δ		t_ _mg	= +	0	o_ sel	llq.	ld_ L_1	IIq.	llq _3	llq.	
	boot_ ram_	boot_ ram_ty	boot_ ram_si	boot_ m_sw	boot_ ram_wait	ppc_ msrip		boot_ ram_r	sys_pll_ cfg_1	sys_pll_ cfg_0	s_s_s	_cfg_	_cfg_	_cfg_	ppc_t	ppc_l _cfg_	
		_ a	_ &	bc ram_	_ <u>a</u>			_ 6	ω.	w.	0	0. 1	0. 1	0 1	0. 1	Δ 1	
W	Reserved, Read Only																
RESET:	V	V	V	V	٧	٧	_	٧	V	V	V	٧	٧	٧	V	V	

Bit	Name	Description
0–2	1	Reserved for future use. Write 0.
3–7	_	Reserved.
8-14	_	Read Only. Do not write.

Bit	Name	Description
15	sys_pll_bypass	bit=0:Normal mode. The SYS OSC clock input is multiplied up by the system PLL, then the PLL VCO is divided down to produce internal clocks.
		bit=1:The SYS OSC clock input is used directly, bypassing the system PLL. No multiplication of the input frequency is performed, but the input frequency is divided to produce internal clocks just as the system PLL VCO frequency would be. sys_pll_cfg_1 and sys_pll_cfg_0 are ignored.
16	boot_rom_lf	Large Flash mode is selected
17	boot_rom_type	Latched pin value at reset.
		bit=0:non-muxed boot ROM bus, single tenure transfer.
		bit=1:muxed boot ROM bus, with address and data tenures, ALE and TS active.
18	boot_rom_size	Latched pin value at reset.
		For non-muxed boot ROMs:
		bit=0:8bit boot ROM data bus, 24bit max boot ROM address bus
		bit=1:16bit boot ROM data bus, 16bit boot ROM address bus
		For muxed boot ROMs: boot ROM address is max 25 significant bits during address tenure.
		bit=0:16bit ROM data bus
		bit=1:32bit ROM data bus
19	boot_rom_swap	Latched pin value at reset.
	boot_rom_owap	bit=0:no byte lane swap, same
		endian ROM image
		bit=1:byte lane swap, different endian ROM image
20	boot_rom_wait	Latched pin value at reset.
		bit=0:4 PCI clocks of wait state
		bit=1:48 PCI clocks of wait state
21	ppc_msrip	Latched pin value at reset.
		microprocessor Boot Address/Exception table location.
		bit=0:0000_0100 (hex)
		bit=1:FFF0_0100 (hex)
22	_	Read Only. Do not write.
23	boot_rom_mg	Most/Graphic Mode is selected as BOOT mode
24	sys_pll_cfg_1	Latched pin value at reset.
		bit=0:No operation.
		bit=1:Internal System PLL frequency multiplication ratio specified by sys_pll_cfg_0 is doubled (24x, 32x). No net effect on any internal clocks, except that PLL VCO runs twice as fast. Useful in low frequency applications to keep VCO frequency (f _{vcosys}) above min, see MPC5200B Hardware Specification.
25	sys_pll_cfg_0	Latched pin value at reset.
		bit=0: f _{system} =16x SYS_XTAL_IN Frequency
		bit=1: f _{system} =12x SYS_XTAL_IN Frequency
26	xlb_clk_sel	Latched pin value at reset.
		bit=0:XLB_CLK= f _{system} / 4
		bit=1:XLB_CLK= f _{system} / 8

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 5-13

CDM Registers

Bit	Name	Description
27	ppc_pll_cfg_0	e300 Core core pll config pins. See also Table 5-6
28	ppc_pll_cfg_1	
29	ppc_pll_cfg_2	
30	ppc_pll_cfg_3	
31	ppc_pll_cfg_4	

5.5.3 CDM Bread Crumb Register—MBAR + 0x0208

The CDM Bread Crumb Register is a 32-bit register that is not reset. Its purpose is to let firmware designers leave some status code before entering a reset condition. Since this register is never reset, the value written is available after the reset condition has ended. There is no additional functionality to this register.

Table 5-10. CDM Bread Crumb Register

5.5.4 CDM Configuration Register—MBAR + 0x020C

The CDM Configuration Register contains 3 bits that set IPB_CLK and PCI_CLK ratios.

Table 5-11. CDM Configuration Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Reserved Write 0										xlb_ clk_sel					
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	V
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R			F	Reserve Write 0				sel				erved				ci_
W			ipb_ clk_s	Write 0 clk							_sel					
RESET:	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1

5-14 Freescale Semiconductor

Bit	Name	Description
0–6	_	Reserved for future use. Write 0.
7	ddr_mode	SDRAM Controller DDR memory mode, read-only.
		bit=0:SDRAM Controller configured for SDR SDRAM (single data rate)
		bit=1:SDRAM Controller configured for DDR SDRAM (double data rate)
		This register location is a read-only status bit; write 0. The controlling register is in the SDRAM Controller register map. In the CDM this bit determines the frequency and phase of memory read clock.
8–14	_	Reserved for future use. Write 0.
15	xlb_clk_sel	XLB Clock Frequency
		bit=0:XLB CLK = f _{system} /4
		bit=1:XLB CLK = f _{system} /8
		This register location is a read-only status bit. The controlling register is the POR Configuration register - cdm configuration register [26].
16–22	_	Reserved for future use. Write 0.
23	ipb_clk_sel	IPB Clock Select
		bit=0:IPB CLK = XLB_CLK
		bit=1:IPB CLK = XLB_CLK/2
24–29	_	Reserved for future use. Write 0.
30-31	pci_clk_sel	PCI Clock Select
		00-PCI_CLK = IPB_CLK
		01-PCI_CLK = IPB_CLK/2
		10-PCI_CLK = XLB_CLK/4
		See also Table 5-3 and Table 5-4.

NOTE

The clock ratio should only be changed if no module, which is clocked by the IPB and/or PCI clock, is currently running. Suggestion is to change the clock ratio during the boot time only.

Table 5-12. CDM 48MHz Fractional Divider Configuration Register

5.5.5 CDM 48MHz Fractional Divider Configuration Register—MBAR + 0x0210

The CDM 48MHz Fractional Divider Configuration Register contains the control bits used in the 48MHz fractional divider.

msb 0 ext_usb_ 48mhz_en ext_irda_ 48mhz_en R Reserved Reserved fd_en ext_usb_ sync_en Write 0 Write 0 W RESET: 31 lsb Rsrvd Write 0 Rsrvd Write 0 Rsrvd Write 0 Rsrvd Write 0 R cfgd_p3_cnt cfgd_p2_cntt cfgd_p1_cnt cfgd_p0_cnt W RESET:

Freescale Semiconductor 5-15

CDM Registers

Bit	Name	Description
0–4	_	Reserved for future use. Write 0.
5	ext_usb_sync_en	Enable the synchronization logic which synchronize the external ext_usb_48Mhz clock to the internal clock system. bit=1:ext USB 48MHz clock is synchronized to the internal clock system. bit=0:ext USB 48MHz clock is not synchronized to the internal clock system.
6	ext_usb_48MHz_en	USB External 48MHz Clock Select bit=1:USB 48MHz clock tree sourced from external clock from GPIO. bit=0:USB 48MHz clock tree sourced from CDM Fractional Divider.
7	ext_irda_48MHz_en	IrDA (PSC6) External 48MHz Clock Select bit=1:IRDA 48MHz clock tree sourced from external clock from GPIO. bit=0:IRDA 48MHz clock tree sourced from CDM Fractional Divider.
8–14	_	Reserved for future use. Write 0.
15	fd_en	CDM 48MHz Fractional Divider Enable bit=1:enable CDM Fractional Divider. bit=0:disable CDM Fractional Divider.
16	_	These fields hold 4 phase divide ratios used by the fractional divider. The fields are
17–19	cgfd_p3_cnt[2:0]	incompletely decoded; f _{system} /11 is obtained with 3 values. 110-fractional counter divide ratio f _{system} /6
20	_	111–fractional counter divide ratio f _{system} /7
21–23	cgfd_p2_cnt[2:0]	000-fractional counter divide ratio f _{system} /8
24	_	001–fractional counter divide ratio f _{system} /9
25–27	cgfd_p1_cnt[2:0]	- 010-fractional counter divide ratio f _{system} /10 011-fractional counter divide ratio f _{system} /11
28	_	10X-fractional counter divide ratio f _{system} /11
29–31	cgfd_p0_cnt[2:0]	, ,

5.5.6 CDM Clock Enable Register—MBAR + 0x0214

The CDM Clock Enable Register, or power management register, contains control bits that enable/disable peripheral clocks. Unused peripherals can have their clock stopped, reducing power consumption.

Table 5-13. CDM Clock Enable Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R							erved						mem_ clk_en	pci_ lk_en	en	en
W		Write 0													lpc.	st R
RESET:	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	en en	en	- en	en	en	S C	en en	en en	3 en	2 en	1_ en	en en	an_ en	len	en en	en
W	scom_ clk_er	ata_ clk_e	eth Sk_e	usb_ clk_e	spi_clk_c	bdlc_c en	psc5_ clk_e	psc4 clk_e	psc3_ clk_e	psc2_ clk_e	psc1 clk_e	psc6 clk_er	mscan_ clk_en	i2c _A	timer clk_el	gpio c K_e
RESET:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

5-16 Freescale Semiconductor

Bit	Name	Description
0	_	Reserved for test. Write 0.
1–11	_	Reserved for future use. Write 0.
12	mem_clk_en	Memory Clock Enable—controls SDRAM Controller module clocks
		Memory Controller IPB_CLK is not controlled by mem_clk_en.
13	pci_clk_en	PCI Bus Clock Enable—controls PCI bus control module clocks
		Note: PCI Arbiter and external PCI Bus clocks are not controlled by pci_clk_en.
14	lpc_clk_en	Local Plus Bus Clock Enable—controls LP bus control module clocks
15	slt_clk_en	Slice Timer Clock Enable—controls slice timer module clocks
16	scom_clk_en	BestComm Clock Enable—controls BestComm module clocks
17	ata_clk_en	ATA Clock Enable—controls ATA disk drive control module clocks
18	eth_clk_en	Ethernet Clock Enable—controls Ethernet Controller module clocks
19	usb_clk_en	Universal Serial Bus Clock Enable—controls USB module clock
20	spi_clk_en	SPI Clock Enable—controls SPI module clocks
21	bdlc_clk_en	BDLC Clock Enable—controls BDLC module clocks
22	psc5_clk_en	PSC5 Clock Enable—control clock to the PSC5 module
23	psc4_clk_en	PSC4 Clock Enable—control clock to the PSC4 module
24	psc3_clk_en	PSC3 Clock Enable—control clock to the PSC3 module
25	psc2_clk_en	PSC2 Clock Enable—control clock to the PSC2 module
26	psc1_clk_en	PSC1 Clock Enable—control clock to the PSC1 module
27	psc6_clk_en	PSC6 Clock Enable—control clock to the PSC6 module
28	mscan_clk_en	MSCAN Clock Enable—controls MSCAN module clocks
29	i2c_clk_en	I2C Clock Enable—controls I ² C module clocks
30	timer_clk_en	Timer Clock Enable—controls timer module clocks
		Note: 2 timers for wake-up mode do not have gated clocks.
31	gpio_clk_en	GPIO Clock Enable—controls some GPIO module clocks
		Note: GPIO wake-up mode circuitry uses free running IPB_CLK
Note: A	An enable value of 1	1 enables the corresponding clock. An enable value of 0 disables corresponding clock.

5.5.7 CDM System Oscillator Configuration Register—MBAR + 0x0218

This register contains the System Oscillator disable bit. The system oscillator is disabled if an external clock source (not a crystal) drives the oscillator in package pin. The crystal oscillator pad cell is disabled to reduce power consumption (~6mW for system oscillator).

Table 5-14. CDM System Oscillator Configuration Register

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 5-17

CDM Registers

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R									erved							
W								Wri	te 0							
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0–6	_	Reserved for future use. Write 0.
7	sys_osc_disable	CDM System Oscillator Disable bit=1:System Oscillator is disabled. External clock source is required. bit=0:System Oscillator is enabled. 27–33MHz crystal is being used.
8–31	_	Reserved for future use. Write 0.

5.5.8 CDM Clock Control Sequencer Configuration Register—MBAR + 0x021C

This register contains the configuration that controls the CCS module. The CCS module lets MPC5200B enter deep sleep power down mode (all clocks stopped).

Table 5-15. CDM Clock Control Sequencer Configuration Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			F	Reserve				_en_			F	Reserve				osc_ p_en
W				Write 0				ccs				Write 0				ccs_o
RESE T:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R							ı	Reserve	d							_qreq test
W								vviile 0								ccs_c _te
RESE T:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Bit	Name	Description
0–6	_	Reserved for future use. Write 0.
7	ccs_sleep_en	CCS Module Enable bit=1:CCS enabled. e300 Core QREQ signal triggers deep sleep cycle. bit=0:CCS disabled and inactive. No deep sleep mode possible. Note: This bit should only be set before the processor should go into deep sleep mode. And it should be reseted after wake up. Note: It is not allowed to set this bit if a JTAG debugger or the nap mode should be used.
8–14	_	Reserved for future use. Write 0.
15	ccs_osc_sleep_en	CCS System Oscillator Disable Control bit=1:CCS can disable System Oscillator in deep sleep mode. bit=0:CCS cannot disable System Oscillator in deep sleep mode. Oscillator remains active.

5-18 Freescale Semiconductor

MPC5200B Users Guide, Rev. 1

Bit	Name	Description
16–30	_	Reserved for future use. Write 0.
31	ccs_qreq_test	CCS Test bit—Used in CCS module functional simulation to simulate a QREQ signal. bit=0:QREQ input to CCS forced active. bit=1:QREQ input to CCS comes directly from e300 Core.

Freescale Semiconductor 5-19

5.5.9 CDM Soft Reset Register—MBAR + 0x0220

This register contains 2 reset control bits.

Table 5-16. CDM Soft Reset Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				Reserve				soft			F	Reserve				no_ reset
W				Write 0				cdm_sof _reset				Write 0				cdm_n ckstp_re
RESET:	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Rese Wri								
W								VVII	ie 0							
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0–6	_	Reserved for future use. Write 0.
7	cdm_soft_reset	CDM Soft Reset bit. bit=0:requests CDM soft reset. bit=1:CDM soft reset request inactive.
8–14	_	Reserved for future use. Write 0.
15	cdm_no_ckstp_reset	CDM No reset on checkstop. bit=0:Checkstop assertion causes HRESET. bit=1:Checkstop assertion does not cause HRESET.
16–31	_	Reserved for future use. Write 0.

5.5.10 CDM System PLL Status Register—MBAR + 0x0224

This register contains control and status bits of the CDM PLL lock detect module.

Table 5-17. CDM System PLL Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			F	Reserve				lock	Reserved							lock
W				Write 0				_llq				Write 0				를 ^의
RESET:	0	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R			F	Reserve				Mop					erved			
W				Write 0				small_ _window				vvr	ite 0			
								필 성								
RESET:	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

5-20 Freescale Semiconductor

Bit	Name	Description
0–6	_	Reserved for future use. Write 0.
7	pll_lock ¹	CDM System PLL Lock Detect—read-only status bit. bit=1:CDM has detected System PLL lock condition. bit=0:CDM has NOT detected System PLL lock condition.
8–14		Reserved for future use. Write 0.
15	pll_lost_lock	CDM System PLL Lock Lost—hardware can only set this bit, register write must clear bit. bit=1:CDM detected loss of PLL lock after PLL lock has been achieved. bit=0:CDM has not detected loss of PLL lock (state before PLL lock occurs).
16–22	_	Reserved for future use. Write 0.
23	pll_small_ lock_window	PLL Small Lock Window—pulse width used to detect rising edge of PLL FREF clock. bit=1:lock window pulse width 2 f _{VCOsys} clock periods. bit=0:lock window pulse width 4 f _{VCOsys} clock periods.
24–31	_	Reserved for future use. Write 0.

Note:

- 1. System PLL Lock Condition—256 System PLL FREF clock rising edges within PLL_Lock_Window (System PLL FFB rising edge). In PLL bypass mode, Lock is active after 256 System Oscillator clock rising edges.
- 2. In current MPC5200B CDM the PLL Lock Circuitry is for information only. CDM does not wait for PLL lock to start clocks or use PLL_LOST_LOCK as an interrupt source.

5.5.11 PSC1 Mclock Config Register—MBAR + 0x0228

This register controls the generation of the Mclk for PSC1. Before modify the register value the divider must be disabled.

Table 5-18. CDM PSC1 Mclock Config

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R									erved							
W								Wri	te 0							
RESET:	0	0	0	0	0	0	0	_	0	0	0	0	0	0	0	_
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Mclock Enable				erved						М	clkDiv[8	:0]			
W	Mcl Ena			VVri	te 0											
RESET:	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

Bit	Name	Description
0–15	_	Reserved for future use. Write 0.
16	Mclock Enable	PSC1 Mclock enable. bit=0:Turns off internally generated Mclock. bit=1:Turns on internally generated Mclock.
17-22	_	Reserved for future use. Write 0.
23-31	MclkDiv[8:0]	The counter divide the f _{system} frequency by MclkDiv+1. A vallue of 0x00 in this register turns off internally generated Mclock.
		For example, a value of 7 in this register, where fsystem clock is at a frequency of 528MHz would result in a Mclock rate of 528/8, or 66 MHz.
		Note: f _{system} clock is always 12 or 16 times the reference clock, sys_xtal_in, depending on sys_pll_cfg_0 at reset.

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 5-21

5.5.12 PSC2 Mclock Config Register—MBAR + 0x022C

This register controls the generation of the Mclock for PSC2. Before modify the register value the divider must be disabled.

Table 5-19. CDM PSC2 Mclock Config

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R									erved							
W								Wri	te 0							
RESET:	0	0	0	0	0	0	0	_	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	ock ble				erved						М	clkDiv[8	3:0]			
W	Mclock Enable			vvri	te 0											
RESET:	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

Bit	Name	Description
0–15	_	Reserved for future use. Write 0.
16	Mclock Enable	PSC2 Mclock enable.
		bit=0:Turns off internally generated Mclock.
		bit=1:Turns on internally generated Mclock.
17-22	_	Reserved for future use. Write 0.
23-31	MclkDiv[8:0]	The counter divide the f _{system} frequency by MclkDiv+1. A vallue of 0x00 in this register turns off internally generated Mclock.
		For example, a value of 7 in this register, where fsystem clock is at a frequency of 528MHz would result in a Mclock rate of 528/8, or 66 MHz.
		Note: f _{system} clock is always 12 or 16 times the reference clock, sys_xtal_in, depending on sys_pll_cfg_0 at reset.

5.5.13 PSC3 Mclock Config Register—MBAR + 0x0230

This register controls the generation of the Mclock for PSC3. Before modify the register value the divider must be disabled.

Table 5-20. CDM PSC3 Mclock Config

Bit	Name	Description
0–15	_	Reserved for future use. Write 0.
16	Mclock Enable	PSC3 Mclock enable.
		bit=0:Turns off internally generated Mclock.
		bit=1:Turns on internally generated Mclock.
17-22	_	Reserved for future use. Write 0.
23-31	MclkDiv[8:0]	The counter divide the f _{system} frequency by MclkDiv+1. A vallue of 0x00 in this register turns off internally generated Mclock.
		For example, a value of 7 in this register, where fsystem clock is at a frequency of 528MHz would result in a Mclock rate of 528/8, or 66 MHz.
		Note: f _{system} clock is always 12 or 16 times the reference clock, sys_xtal_in, depending on sys_pll_cfg_0 at reset.

MPC5200B Users Guide, Rev. 1

5-22 Freescale Semiconductor

5.5.14 PSC6 (IrDA) Mclock Config Register—MBAR + 0x0234

This register controls the generation of the Mclock for PSC6. Before modify the register value the divider must be disabled.

Table 5-21. CDM PSC6 Mclock Config

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R									erved							
W								VVri	ite 0							
RESET:	0	0	0	0	0	0	0	_	0	0	0	0	0	0	0	_
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Mclock Enable				erved						M	clkDiv[8	3:0]			
W	Mol			VVII	te 0											
RESET:	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

Bit	Name	Description
0–15	_	Reserved for future use. Write 0.
16	Mclock Enable	PSC6 Mclock enable. bit=0:Turns off internally generated Mclock. bit=1:Turns on internally generated Mclock.
17-22	_	Reserved for future use. Write 0.
23-31	MclkDiv[8:0]	The counter divide the f _{system} frequency by MclkDiv+1. A vallue of 0x00 in this register turns off internally generated Mclock.
		For example, a value of 7 in this register, where fsystem clock is at a frequency of 528MHz would result in a Mclock rate of 528/8, or 66 MHz.
		Note: f _{system} clock is always 12 or 16 times the reference clock, sys_xtal_in, depending on sys_pll_cfg_0 at reset.

CDM Registers

5-24 Freescale Semiconductor

Chapter 6 e300 Processor Core

6.1 Overview

The following sections are contained in this document:

- MPC5200B e300 Processor Core Functional Overview
- e300 Core Reference Manual
- Not supported e300 Core Features

6.2 MPC5200B e300 Processor Core Functional Overview

The MPC5200B integrates a e300 processor core based on, and compatible with, the 603e which is a PowerPC compliant microprocessor. The e300 core is completely embedded, as its address, data, and control signals are not visible external to MPC5200B. The e300 core has the following features:

- 603e series PowerPC compliant processor core
- Dual Issue, superscalar architecture
- 16K instruction cache, 16K data cache
- Double precision FPU
- Instruction and data MMU
- Power management modes:
 - Nap
 - Doze
 - Sleep
 - Deep Sleep
- Standard & critical interrupt capability

For additional information on the capabilities and features of the e300 core, refer to 603e user documentation.

The e300 processor has a 32-bit address/64-bit data bus refered to as the 60X Local Bus (XLB). This bus is the main system connecting all internal mastering and slave modules. In addition to the e300 core, the USB host controller, PCI controller (as target) and BestComm controller can master the XLB.

The e300 core fetches 32-bit instructions (one word), two words at a time. After power-on reset, initial boot instructions are fetched from the LocalPlus bus, with CS0 active. The processor can execute code from the local bus or from the SDRAM controller. To facilitate high speed execution, boot code is typically copied from a Flash or ROM device attached to the LocalPlus bus, to SDRAM. The e300 core can execute code from the on-chip SRAM.

The e300 core has memory mapped access to all MPC5200B resources including:

- · all on-chip programming registers
- all on-chip FIFOs and memories
- external SDRAM
- · internal SRAM
- PCI-controlled address space
- external disk drive control register space (via PIO mode), etc.

When a master device wants access to the XLB, a request is made to the XLB Arbiter. When access is granted, the mastering device controls the XLB during the subsequent address tenure and data tenure.

Bursting is supported on the XLB. Critical Word First protocol is employed when the e300 core attempts to fill its address and data caches. Pipelining and cache coherency support (XLB address snooping) has been added to the MPC5200B to improve performance.

MPC5200B use the version 1.4 of the e300 core. The Processor version register (PVR) is 0x80822014. The e300 core has a System version register (SVR). The SVR numbers of MPC5200B are:

Table 6-1. SVR Values

Revision	SVR
M08A	80110020
M62C	80110021

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 6-1

e300 Core Reference Manual

6.3 e300 Core Reference Manual

A complete specification for the e300 core implementation used on the MPC5200B is obtained through a collection of documentation.

- PowerPC MicroprocessorFamily: The Programming Environments for 32-bit Microprocessors, Rev. 2: MPCFPE32B/AD
- G2 PowerPC Core Reference Manual, Rev. 1: G2CORERM/D

The programming environments manual provides information about resources defined by the PowerPC architecture that are common to PowerPC processors. Implementation variances relative to Rev. 2 of the Programming Environments Manual are available in the G2 Core Reference Manual.

The G2 Core Reference Manual can be obtained from the Freescale (formerly Motorola) Literature Distribution center at http://e-www.freescale.com. Click on the Dovumentation link to proceed to the Semiconductor Documentation Library. In the documentation form window, select "Reference Manual" and set the matching pages option button to "All". An alphabetical list of reference manuals will appear and the G2 core document ID is 'G2CORERM/D'. From this line entry, you may order hard copies of the G2 Core Reference Manual or download a PDF copy of the manual.

6.4 Not supported e300 Core Features

6.4.1 Not supported instruction

The e300 core supports two instructions that are not available by the MPC5200B. These two instructions are **eciowx** and **ecowx**. The execution of both instructions will generate a TEA signal on XLB. This will cause a machine check exception or a checkstop.

6.4.2 Not supported XLB parity feature

The e300 core supports an address and data parity error detection for the XL bus. This feature is not supported by the MPC5200B. The core input signals core_ap_in [0:3] are pulled-down to 0 and the core input signals core_dp_in [0:7] are pulled-up to 1. Enabling of the address or data parity error check by the HID0 [EBA, EBD] bits will generate a machine check exception or a checkstop depending on the HID0 [EMCP] bit.

7-1

Chapter 7 System Integration Unit (SIU)

7.1 Overview

The following sections are contained in this document:

- Interrupt Controller, includes:
 - Interrupt Controller Registers
- General Purpose I/O (GPIO), includes:
 - GPIO Standard Registers—MBAR+0x0B00
 - WakeUp GPIO Registers—MBAR+0x0C00
- General Purpose Timers (GPT), includes:
 - GPT Registers—MBAR + 0x0600
- Slice Timers, includes:
 - SLT Registers—MBAR + 0x0700
- Real-Time Clock, includes:
 - RTC Interface Registers—MBAR + 0x0800

NOTE

Watchdog timer functions are included in the GPT section.

The System Integration Unit (SIU) controls and support the functions listed above.

7.2 Interrupt Controller

A highly configurable Interrupt Controller directs all interrupt sources to the following e300 core interrupt pins:

- core cint -- critical interrupt
- · core_smi -- system management interrupt
- core int -- standard interrupt

7.2.1 Block Description

The Interrupt Controller MUXes a variety of interrupt sources to the limited interrupt pins on the e300 core. The interrupt sources and their descriptions are summarized in Table 7-1.

Table 7-1. Interrupt Sources

Source	No.	Description
External IRQ Interrupts	4	Can be programmed as level or edge sensitive. Provides interrupt requests to Interrupt Controller for external devices.
Slice Timers	2	"Tick" generators. Suitable for operating system update tick.
General Timers	8	Generates interrupt in Input Capture mode or Internal Timer mode. Timers 6 and 7 can interrupt from NAP/DOZE power-down.
BestComm and Peripherals	19	Various peripherals are priority programmed and encoded into HI or LO interrupt to the Interrupt Controller. BestComm Controller interrupt is connected to HI interrupt.
RTC	2	Stopwatch and periodic
WakeUp	8	These are special GPIO pins with WakeUP capability. There are 8 such pins funneled into one interrupt. The source module is gpio_wkup.
GPIO	8	GPIO pins with simple interrupt capability (not available in power down mode). The source module is gpio_std.
WatchDog Timer	0	No vector handler, generates SRESET output indication.
Total	51	

Freescale Semiconductor

Interrupt Controller

Table 7-1 does not include machine-check bus errors or transaction handshaking. e300 core interrupt pins given in Section 7.2.1.1, *Machine Check Pin—core mcp* through Section 7.2.1.3, *Standard Interrupt—core int* show e300 core interrupt priority.

7.2.1.1 Machine Check Pin—core_mcp

NOTE

The core_mcp pin is not used. Bus errors occur on the XL bus, thus generating an internal machine-check exception, or are reflected as a normal interrupt from the offending source module.

Internally, bus errors (TEA, APE, DPE, etc.) cause a machine check exception to a single exception vector. This pin allows additional, external to the e300 core, interrupts of the same type, but is not connected in this device.

7.2.1.2 System Management Interrupt—core_smi

The core smi is a e300 core pin for high priority interrupts. Table 7-2 defines the interrupts.

Table 7-2. System Management Interrupt Pin Interrupts

Interrupt	Description
Enables	The MSR[ee] bit must be set to enable interrupts at this e300 core pin. The MSR[ee] bit is automatically cleared when an interrupt occurs. Therefore, the exception handler must re-set this bit when interrupt is cleared.
Recovery/Status	Recovery is highly dependant on system and software design. Where multiple sources are tied to the same interrupt, a status register is provided to distinguish the interrupting source.
Timing	Assertion of this interrupt is persistent (i.e., interrupt remains until cleared). If other interrupts are pending when first interrupt is cleared, the core_smi pin should remain asserted for handling once the current exception handler re-sets the MSR[ee] bit.
Connections	Standard external and internal interrupts can be connected to this high priority interrupt. Slice timer 1 is a dedicated connection.

7.2.1.3 Standard Interrupt—core_int

Identical to core_smi, but of lower priority. This interrupt is shared by a variety of internal low priority interrupts such as GPIO and RTC functions. Some programmable connection are provided. Table 7-3 gives a summary of the interrupt pins. Figure 7-2 shows the interrupt sources and e300 core pins.

Table 7-3. e300 core Interrupt Pins Summary

Pin	Description	Sources	To Enable	Timing
core_mcp	Machine Check Pin	Tied inactive	_	_
core_cint	Critical Interrupt	BestComm HI, IRQ0, Slice Timer 0, CCS WakeUp	MSR[ce]	Persistent (remains until cleared)
core_smi	System Management Interrupt	Slice Timer 1, Programmable interrupts	MSR[ee]	Persistent
core_int	Standard Interrupt	Programmable interrupts	MSR[ee]	Persistent

Figure 7-1. Interrupt Sources and e300 core Interrupt Pins

IRQ[0:3] Interrupt Requests

<u>IRQ</u>[0:3] provides interrupt requests to Interrupt Controllers for external devices such as:

- · graphics controllers
- PCI interrupt controller
- ATAs
- transport de-multiplexers
- external I/O devices, etc.

These interrupts are programmable as edge or level sensitive. See Figure 7-1.

Freescale Semiconductor 7-3

7.2.2 Interface Description

Figure 7-2. Interrupt Controller Routing Scheme

7.2.3 Programming Note

Under specific conditions, the Interrupt Controller may not support nested interrupts. The Interrupt Controller may prevent the assertion of a core_cint interrupt if a core_int or a core_smi is pending. Similarly, the Interrupt Controller may block a core_smi if a core_int is pending. If the e300 core received the core_cint assertion during an core_int or core_smi assertion, it would preempt the current interrupt service routine and process the Critical Interrupt Service routine immediately. Since the MPC5200B Interrupt Controller postpones the core_cint assertion until after a current core_int or core_smi is finished, there can be a delay before the 603e receives and services Critical Interrupt Sources.

The interrupt Controller always supports nested interrupt if the Critical Interrupt sources come from IRQ0, Slice TImer 0 or the wakeup logic. There is a difference when the critical source comes from HI_int (Peripheral Interrupt Group). As shown in Figure 7-2, each Peripheral Interrupt can assert a HI_int or LO_int condition. But only one Peripheral Interrupt can be active at the time, so the Interrupt Controller has not the ability to simultaneously assert both HI_int and LO_int. Therefore, the peripheral 2 which generated by default a core_int (LO_int) interrupt will prevent a BestComm Interrupt to generate a core_cint (HI_int) interrupt.

In addition, a Peripheral Interrupt directed to a core_cint can be prevented by a pending core_smi interrupt. Each Peripheral Interrupt (LO_int) can be programmed to cause a core_smi by setting the Main4_pri msb. Once again, the Interrupt Controller does not has the ability to simultaneously generate the HI_int and LO_int. Then, a Peripheral Interrupt, which generates a core_smi, prevents any Peripheral Interrupts to assert a core_cint.

Similarly, the Interrupt Controller can activate only one Main Interrupt source at the time. Main4 source is the collection of all LO_int Peripheral Interrupts. The Main4_pri can be programmed in order to generate a core_smi or a core_int. As result, a Peripheral Interrupt that causes a core_int will prevent all other Main Interrupt sources to generate a core_smi. Although the Interrupt Controller does not exhibit the

7-4 Freescale Semiconductor

correct behavior, the e300 core always completes the core_int before treating the core_smi. In this case, the CPU does not authorize nested interrupt at the exception if the ISR set the 603e's MSR[EE] to support nested interrupt (core_smi and core_int).

In order to guaranty the assertion of the core_cint when a core_int is pending, the ISR needs to force the re-evaluation of the Peripheral Interrupt condition by writing "1" to the Peripheral Status Encoded Pse msb. The ISR has to repeatedly set this bit since the interrupt events are indeterministic. Moreover, the Peripheral Interrupt sources directed to core_cint needs to have their priorities to be higher than the LO_int Peripheral Interrupt sources. The Interrupt Controller always activates first the pending interrupt having the highest priority. Like for the Peripheral Interrupt Group, the ISR needs to set the Main Status Encoded MSe msb to force re-evaluation of the Main Interrupt Condition and each Main Interrupt Priority needs to be properly programmed.

7.2.4 Interrupt Controller Registers

The Interrupt Controller uses 13 32-bit registers. These registers are located at an offset from MBAR of 0x0500. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x0500 + register address

Hyperlinks to the Interrupt Controller registers are provided below:

- ICTL Peripheral Interrupt Mask Register (0x0500)
- ICTL Peripheral Priority and HI/LO Select 1 Register (0x0504)
- ICTL Peripheral Priority and HI/LO Select 2 Register (0x0508)
- ICTL Peripheral Priority and HI/LO Select 3 Register (0x050C)
- ICTL External Enable and External Types Register (0x0510)
- ICTL Critical Priority and Main Interrupt Mask Register) (0x0514)
- ICTL Main Interrupt Priority and INT/SMI Select 1 Register (0x0518)
- ICTL Main Interrupt Priority and INT/SMI Select 2 Register (0x051C)

- ICTL PerStat, MainStat, CritStat Encoded Register (0x0524)
- ICTL Critical Interrupt Status All Register (0x0528)
- ICTL Main Interrupt Status All Register (0x052C)
- ICTL Peripheral Interrupt Status All Register (0x0530)
- ICTL Bus Error Status Register (0x0538)
- ICTL Main Interrupt Emulation All Register (0x0540)
- ICTL Peripheral Interrupt Emulation All Register (0x0544)
- ICTL IRQ Interrupt Emulation All Register (0x0544)

7.2.4.1 ICTL Peripheral Interrupt Mask Register—MBAR + 0x0500 Table 7-4. ICTL Peripheral Interrupt Mask Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Per_mask														
W																
RESET:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				Per_m	nask							Res	erved			
W																
RESET:	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0

Freescale Semiconductor 7-5

Interrupt Controller

Bits 0:23—To mask/accept individual peripheral interrupt sources. This masking is in addition to interrupt enables, which may exist in each source module. 0=Accept interrupt from source module. 1=Ignore interrupt from source module. Important—See Note 1. 0 Per_mask Peripheral 1 (PSC1) 2 Per_mask Peripheral 2 (PSC2) 3 Per_mask Peripheral 3 (PSC3) 4 Per_mask Peripheral 4 (PSC6) 5 Per_mask Peripheral 5 (Ethernet) 6 Per_mask Peripheral 6 (USB) 7 Per_mask Peripheral 8 (PCI Control module) 9 Per_mask Peripheral 9 (PCI SC Initiator RX) 10 Per_mask Peripheral 10 (PCI SC Initiator TX) 11 Per_mask Peripheral 11 (PSC4) 12 Per_mask Peripheral 12 (PSC5) 13 Per_mask Peripheral 13 (SPI modf) 14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Peripheral 21 (XLB Arbiter) Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus) Pesserved Bits	Name	Description	
0 Per_mask BestComm interrupt source 1 Per_mask Peripheral 1 (PSC1) 2 Per_mask Peripheral 2 (PSC2) 3 Per_mask Peripheral 3 (PSC3) 4 Per_mask Peripheral 4 (PSC6) 5 Per_mask Peripheral 5 (Ethernet) 6 Per_mask Peripheral 6 (USB) 7 Per_mask Peripheral 7 (ATA) 8 Per_mask Peripheral 8 (PCI Control module) 9 Per_mask Peripheral 9 (PCI SC Initiator RX) 10 Per_mask Peripheral 10 (PCI SC Initiator TX) 11 Per_mask Peripheral 11 (PSC4) 12 Per_mask Peripheral 12 (PSC5) 13 Per_mask Peripheral 13 (SPI modf) 14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 15 (I2C1) 16 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	_	Per_mask	addition to interrupt enables, which may exist in each source module. 0=Accept interrupt from source module. 1=Ignore interrupt from source module.
1 Per_mask Peripheral 1 (PSC1) 2 Per_mask Peripheral 2 (PSC2) 3 Per_mask Peripheral 3 (PSC3) 4 Per_mask Peripheral 4 (PSC6) 5 Per_mask Peripheral 5 (Ethernet) 6 Per_mask Peripheral 6 (USB) 7 Per_mask Peripheral 7 (ATA) 8 Per_mask Peripheral 8 (PCI Control module) 9 Per_mask Peripheral 9 (PCI SC Initiator RX) 10 Per_mask Peripheral 10 (PCI SC Initiator TX) 11 Per_mask Peripheral 11 (PSC4) 12 Per_mask Peripheral 12 (PSC5) 13 Per_mask Peripheral 13 (SPI modf) 14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 15 (I2C1) 16 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask			
2 Per_mask Peripheral 2 (PSC2) 3 Per_mask Peripheral 3 (PSC3) 4 Per_mask Peripheral 4 (PSC6) 5 Per_mask Peripheral 5 (Ethernet) 6 Per_mask Peripheral 6 (USB) 7 Per_mask Peripheral 7 (ATA) 8 Per_mask Peripheral 8 (PCI Control module) 9 Per_mask Peripheral 9 (PCI SC Initiator RX) 10 Per_mask Peripheral 10 (PCI SC Initiator TX) 11 Per_mask Peripheral 11 (PSC4) 12 Per_mask Peripheral 12 (PSC5) 13 Per_mask Peripheral 13 (SPI modf) 14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 15 (I2C1) 16 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Reserved 21 Per_mask Peripheral 22 (BDLC) 22 Per_mask Peripheral 23 (Bes	0	Per_mask	BestComm interrupt source
3 Per_mask Peripheral 3 (PSC3) 4 Per_mask Peripheral 4 (PSC6) 5 Per_mask Peripheral 5 (Ethernet) 6 Per_mask Peripheral 6 (USB) 7 Per_mask Peripheral 7 (ATA) 8 Per_mask Peripheral 8 (PCI Control module) 9 Per_mask Peripheral 9 (PCI SC Initiator RX) 10 Per_mask Peripheral 10 (PCI SC Initiator TX) 11 Per_mask Peripheral 11 (PSC4) 12 Per_mask Peripheral 12 (PSC5) 13 Per_mask Peripheral 13 (SPI modf) 14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 15 (I2C1) 16 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 18 (CAN1) 18 Per_mask Reserved 20 Per_mask Reserved 21 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask <	1	Per_mask	Peripheral 1 (PSC1)
4 Per_mask Peripheral 4 (PSC6) 5 Per_mask Peripheral 5 (Ethernet) 6 Per_mask Peripheral 6 (USB) 7 Per_mask Peripheral 8 (PCI Control module) 9 Per_mask Peripheral 9 (PCI SC Initiator RX) 10 Per_mask Peripheral 10 (PCI SC Initiator TX) 11 Per_mask Peripheral 11 (PSC4) 12 Per_mask Peripheral 12 (PSC5) 13 Per_mask Peripheral 13 (SPI modf) 14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	2	Per_mask	Peripheral 2 (PSC2)
5 Per_mask Peripheral 5 (Ethernet) 6 Per_mask Peripheral 6 (USB) 7 Per_mask Peripheral 7 (ATA) 8 Per_mask Peripheral 8 (PCI Control module) 9 Per_mask Peripheral 9 (PCI SC Initiator RX) 10 Per_mask Peripheral 10 (PCI SC Initiator TX) 11 Per_mask Peripheral 11 (PSC4) 12 Per_mask Peripheral 12 (PSC5) 13 Per_mask Peripheral 13 (SPI modf) 14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 15 (I2C1) 16 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Reserved 21 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	3	Per_mask	Peripheral 3 (PSC3)
6 Per_mask Peripheral 6 (USB) 7 Per_mask Peripheral 7 (ATA) 8 Per_mask Peripheral 8 (PCI Control module) 9 Per_mask Peripheral 9 (PCI SC Initiator RX) 10 Per_mask Peripheral 10 (PCI SC Initiator TX) 11 Per_mask Peripheral 11 (PSC4) 12 Per_mask Peripheral 12 (PSC5) 13 Per_mask Peripheral 13 (SPI modf) 14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 15 (I2C1) 16 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 17 (CAN1) 18 Per_mask Reserved 20 Per_mask Reserved 21 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	4	Per_mask	Peripheral 4 (PSC6)
7 Per_mask Peripheral 7 (ATA) 8 Per_mask Peripheral 8 (PCI Control module) 9 Per_mask Peripheral 9 (PCI SC Initiator RX) 10 Per_mask Peripheral 10 (PCI SC Initiator TX) 11 Per_mask Peripheral 11 (PSC4) 12 Per_mask Peripheral 12 (PSC5) 13 Per_mask Peripheral 13 (SPI modf) 14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 15 (I2C1) 16 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	5	Per_mask	Peripheral 5 (Ethernet)
8 Per_mask Peripheral 8 (PCI Control module) 9 Per_mask Peripheral 9 (PCI SC Initiator RX) 10 Per_mask Peripheral 10 (PCI SC Initiator TX) 11 Per_mask Peripheral 11 (PSC4) 12 Per_mask Peripheral 12 (PSC5) 13 Per_mask Peripheral 13 (SPI modf) 14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 15 (I2C1) 16 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Peripheral 21 (XLB Arbiter) 21 Per_mask Peripheral 22 (BDLC) 22 Per_mask Peripheral 23 (BestComm LocalPlus)	6	Per_mask	Peripheral 6 (USB)
9 Per_mask Peripheral 9 (PCI SC Initiator RX) 10 Per_mask Peripheral 10 (PCI SC Initiator TX) 11 Per_mask Peripheral 11 (PSC4) 12 Per_mask Peripheral 12 (PSC5) 13 Per_mask Peripheral 13 (SPI modf) 14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 15 (I2C1) 16 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	7	Per_mask	Peripheral 7 (ATA)
10 Per_mask Peripheral 10 (PCI SC Initiator TX) 11 Per_mask Peripheral 11 (PSC4) 12 Per_mask Peripheral 12 (PSC5) 13 Per_mask Peripheral 13 (SPI modf) 14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 15 (I2C1) 16 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Reserved 21 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	8	Per_mask	Peripheral 8 (PCI Control module)
11 Per_mask Peripheral 11 (PSC4) 12 Per_mask Peripheral 12 (PSC5) 13 Per_mask Peripheral 13 (SPI modf) 14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 15 (I2C1) 16 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Reserved 21 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	9	Per_mask	Peripheral 9 (PCI SC Initiator RX)
12 Per_mask Peripheral 12 (PSC5) 13 Per_mask Peripheral 13 (SPI modf) 14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 15 (I2C1) 16 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Reserved 21 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	10	Per_mask	Peripheral 10 (PCI SC Initiator TX)
13 Per_mask Peripheral 13 (SPI modf) 14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 15 (I2C1) 16 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Reserved 21 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	11	Per_mask	Peripheral 11 (PSC4)
14 Per_mask Peripheral 14 (SPI spif) 15 Per_mask Peripheral 15 (I2C1) 16 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Reserved 21 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	12	Per_mask	Peripheral 12 (PSC5)
15 Per_mask Peripheral 15 (I2C1) 16 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Reserved 21 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	13	Per_mask	Peripheral 13 (SPI modf)
16 Per_mask Peripheral 16 (I2C2) 17 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Reserved 21 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	14	Per_mask	Peripheral 14 (SPI spif)
17 Per_mask Peripheral 17 (CAN1) 18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Reserved 21 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	15	Per_mask	Peripheral 15 (I2C1)
18 Per_mask Peripheral 18 (CAN2) 19 Per_mask Reserved 20 Per_mask Reserved 21 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	16	Per_mask	Peripheral 16 (I2C2)
19 Per_mask Reserved 20 Per_mask Reserved 21 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	17	Per_mask	Peripheral 17 (CAN1)
20 Per_mask Reserved 21 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	18	Per_mask	Peripheral 18 (CAN2)
21 Per_mask Peripheral 21 (XLB Arbiter) 22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	19	Per_mask	Reserved
22 Per_mask Peripheral 22 (BDLC) 23 Per_mask Peripheral 23 (BestComm LocalPlus)	20	Per_mask	Reserved
23 Per_mask Peripheral 23 (BestComm LocalPlus)	21	Per_mask	Peripheral 21 (XLB Arbiter)
	22	Per_mask	Peripheral 22 (BDLC)
24:31 — Reserved	23	Per_mask	Peripheral 23 (BestComm LocalPlus)
	24:31	_	Reserved

Note:

7-6 Freescale Semiconductor

^{1.} Setting these bits prevents an interrupt being presented to the e300 core pins for the masked sources. Encoded status indications in the ICTL Perstat, MainStat, CritiStat Encoded Register are suppressed, but the binary "all" status bits (PSa in ICTL Peripheral Interrupt Status All Register) are active as long as the source module is presenting an active input to the Interrupt Controller.

7.2.4.2 ICTL Peripheral Priority and HI/LO Select 1 Register —MBAR + 0x0504 Table 7-5. ICTL Peripheral Priority and HI/LO Select 1 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
R		Per0	_pri			Per ¹	1_pri			Per	2_pri			Per3_pri				
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb		
R		Per4	_pri			Pers	5_pri		Per6_pri					Per7_pri				
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bits	Name	Description
_	Per[x]_pri	Priority encoding is done using 4 configuration bits per input source. Each group of 4bits controls the source priority in relation to other peripheral sources. The most significant bit (msb) of each config nibble is called the HI/LO or "bank" bit.
		If this bit is high it implies not only a high priority, but causes this interrupt source to assert a HI interrupt condition. Under most circumstances this creates a Critical Interrupt assertion to the e300 core. See Note 1.
		Peripherals with identical priority settings (either zero or non-zero) are default prioritized with "lower peripheral has higher priority". In other words, Per1 has a default priority higher than Per2.
0:3	Per0_pri	Peripheral 0 = BestComm interrupt (fixed as highest peripheral)
4:7	Per1_pri	Peripheral 1 = PSC1 interrupt source
8:11	Per2_pri	Peripheral 2 = PSC2
12:15	Per3_pri	Peripheral 3 = PSC3
16:19	Per4_pri	Peripheral 4 = PSC6
20:23	Per5_pri	Peripheral 5 = Ethernet
24:27	Per6_pri	Peripheral 6 = USB
28:31	Per7_pri	Peripheral 7 = ATA

Note:

^{1.} Per0_pri, associated with the BestComm interrupt source, is not programmable and always has the highest peripheral priority and always results in a HI interrupt condition to the Interrupt Controller. These bits are writable and readable, but have no effect on controller operation.

7.2.4.3 ICTL Peripheral Priority and HI/LO Select 2 Register —MBAR + 0x0508 Table 7-6. ICTL Peripheral Priority and HI/LO Select 2 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
R		Per8	_pri			Pers	9_pri			Per1	I0_pri			Per11_pri				
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb		
R		Per12	_pri			Per1	3_pri			Per14_pri				Per15_pri				
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bits	Name	Description
_	Per[x]_pri	Identical to Peripheral_Priority 1 Register, but related to peripheral interrupt sources 8 through 15. All bits are programmable and significant.
0:3	Per8_pri	Peripheral 8 = PCI Control module
4:7	Per9_pri	Peripheral 9 = PCI SC Initiator RX
8:11	Per10_pri	Peripheral 10 = PCI SC Initiator TX
12:15	Per11_pri	Peripheral 11 = PSC4
16:19	Per12_pri	Peripheral 12 = PSC5
20:23	Per13_pri	Peripheral 13 = SPI modf
24:27	Per14_pri	Peripheral 14 = SPI spif
28:31	Per15_pri	Peripheral 15 = I2C1

7.2.4.4 ICTL Peripheral Priority and HI/LO Select 3 Register —MBAR + 0x050C Table 7-7. ICTL Peripheral Priority and HI/LO Select 3 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
R		Per16_pri				Per1	7_pri		Per18_pri					Per19_pri				
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb		
R		Per20	_pri			Per2	1_pri			Per2	22_pri			Per	23_pri			
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bits	Name	Description
_	Per[x]_pri	Identical to Peripheral_Priority 2 register, but related to peripheral interrupt sources 16–21. All bits are programmable and significant.
0:3	Per16_pri	Peripheral 16 = I2C2
4:7	Per17_pri	Peripheral 17 = CAN1

7-8 Freescale Semiconductor

Bits	Name	Description
8:11	Per18_pri	Peripheral 18 = CAN2
12:15	Per19_pri	Reserved
16:19	Per20_pri	Reserved
20:23	Per21_pri	Peripheral 21 = XLB Arbiter
24 :27	Per22_pri	Peripheral 22 = BDLC
28 :31	Per23_pri	Peripheral 23 = BestComm LocalPlus

7.2.4.5 ICTL External Enable and External Types Register —MBAR + 0x0510 Table 7-8. ICTL External Enable and External Types Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Rese	ved			ECL	.R(4)		Etype0		Etype1		Etype2		Et	уре3
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Reserved MEE			MEE	EENA(4)					CEb						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:3	_	Reserved
_	ECLR[x]	These bits clear external $\overline{\text{IRQ}}$ interrupt indications. When an $\overline{\text{IRQ}}$ input is configured as an edge-sensitive input, the Interrupt Controller must be notified that the specific interrupt has been serviced. Software must write 1 to the appropriate bit position to clear the interrupt indication. ECLR bits are always read as 0 (i.e., they do not contain status).
4	ECLR0	IRQ[0], write 1 to clear
5	ECLR1	IRQ[1], write 1 to clear
6	ECLR2	ĪRQ[2], write 1 to clear
7	ECLR3	IRQ[3], write 1 to clear
8:9	Etype0	These bits control how the Interrupt Controller interprets the IRQ[0] input pin.
		00 = Input is level sensitive and active hi
		01 = Input is edge sensitive, rising edge active"
		10 = Input is edge sensitive, falling edge active"
		11 = Input is level sensitive, and active low"
10:11	Etype1	Same as above, but for the IRQ[1] input pin.
12:13	Etype2	Same as above, but for the IRQ[2] input pin.
14:15	Etype3	Same as above, but for the $\overline{IRQ}[3]$ input pin.
16:18	_	Reserved—unused bits, writing has no effect, always read as 0.
19	MEE	Master External Enable—clearing this bit masks all $\overline{\text{IRQ}}$ input transitions (including status indications).

Freescale Semiconductor 7-9

Interrupt Controller

Bits	Name	Description
_	EENA[x]	Individual enable bits for each $\overline{\text{IRQ}}$ input pin. Setting the associated bit lets the related $\overline{\text{IRQ}}$ pin generate interrupts. In either case, status indications in PSa and CSa (ICTL Peripheral Interrupt Status All Register) are active.
20	EENA0	ĪRQ[0]
21	EENA1	ĪRQ[1]
22	EENA2	ĪRQ[2]
23	EENA3	ĪRQ[3]
24:30	_	Reserved
31	CEb	Critical Enable—a special control bit, which if set, directs critical interrupt sources to the normal e300 core Interrupt pin. This is for system programmer who prefers to handle all interrupts in a single ISR.
		The status operation remains unchanged, it is necessary to parse Critical Status information prior to Normal Status information to detect critical interrupt sources routed to the normal interrupt pin.

7.2.4.6 ICTL Critical Priority and Main Interrupt Mask Register—MBAR + 0x0514 Table 7-9. ICTL Critical Priority and Main Interrupt Mask Register)

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R	Crit0	Crit0_pri Crit1_pri				2_pri	Crit	Crit3_pri		Reserved							
W												Mask					
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R								Mai	n_Masl	<							
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bits	Name	Description
0:1	Crit0_pri	Priority encoding value for Critical Interrupt 0, $\overline{IRQ}[0]$ input pin. There are four Critical Interrupt sources that can be uniquely prioritized (a higher Priority value creates a higher priority, i.e. a value of 3 is the highest priority value). In the case of identical priority value, the lower numbered interrupt source has priority. This makes $\overline{IRQ}[0]$ the highest default priority (being the lowest numbered source).
2:3	Crit1_pri	Priority encoding value for Slice Timer 0 interrupt source. Hard-wired as critical interrupt source number 1, it has the second highest default priority.
4:5	Crit2_pri	Priority encoding value for HI_int interrupt source. Hard-wired as critical interrupt source number 2. It is programmable such that any peripheral source can be directed to it, and thus get maximum priority service.
6:7	Crit3_pri	Priority encoding value for CCS WakeUp source. Hard-wired as critical interrupt source number 3.
8:14	_	Reserved

Bits	Name	Description
_	Main_Mask[x]	To mask/accept individual main interrupt sources (as opposed to peripheral or critical interrupt sources). This masking is in addition to interrupt enables, which may exist in each source module.
		0=Default. Accept interrupt from source module. 1=Ignore interrupt from source module.
		Take care if masking LO_int, which is a collection of multiple Peripheral sources in a single presentation. Masking LO_int essentially prevents any LO Peripheral from generating an interrupt, even when those interrupts are enabled (i.e., unmasked) in Per_Mask, Reg0. Important—See Note 1.
15	Main_Mask0	Slice Timer 1, which is hardwired to SMI interrupt output. See Note 2.
_	_	Interrupt sources below are bank/priority programmable (in Reg6 and Reg7).
16	Main_Mask1	IRQ[1] (IRQ[1] input pin interrupt)
17	Main_Mask2	IRQ[2] (IRQ[2] input pin interrupt)
18	Main_Mask3	IRQ[3] (IRQ[3] input pin interrupt)
19	Main_Mask4	LO_int (source programmable from Peripheral ints)
20	Main_Mask5	RTC_pint (Real time clock, periodic interrupt)
21	Main_Mask6	RTC_sint (Real time clock, stopwatch and alarm interrupt)
22	Main_Mask7	GPIO_std (collected GPIO interrupts, non-WakeUp)
23	Main_Mask8	GPIO_wkup (collected WakeUp interrupts)
24	Main_Mask9	TMR0 (internal Timer resource)
25	Main_Mask10	TMR1 (internal Timer resource)
26	Main_Mask11	TMR2 (internal Timer resource)
27	Main_Mask12	TMR3 (internal Timer resource)
28	Main_Mask13	TMR4 (internal Timer resource)
29	Main_Mask14	TMR5 (internal Timer resource)
30	Main_Mask15	TMR6 (internal Timer resource)
31	Main_Mask16	TMR7 (internal Timer resource)

Note:

- 1. Setting these bits prevents an interrupt being presented to the masked sources e300 core pins. Encoded status indications (MSe in Reg9) are therefore suppressed, but the binary all status bits (MSa in RegB) are active as long as the source module is presenting an active input to the Interrupt Controller. Masking IRQ[1:3], is redundant with External ENA bits in Reg4, but both masks are applied.
- 2. Slice Timer 1 is hard-coded and neither bank nor priority adjustable.

7.2.4.7 ICTL Main Interrupt Priority and INT/SMI Select 1 Register —MBAR + 0x0518 Table 7-10. ICTL Main Interrupt Priority and INT/SMI Select 1 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
R		Main1	_pri			Main	2_pri			Mair	n3_pri			Main4_pri				
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb		
R		Main5	5_pri			Main	6_pri			Mair	n7_pri			Mai	n8_pri			
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bits	Name	Description
0:3	Main1_pri	Main interrupt source 1 (IRQ[1]) priority encoding value.
		All four bits are used to set a priority value (higher value equals higher priority). MS bit is also used as a bank bit to direct this interrupt source to SMI interrupt output (if bank = 1), or to normal INT interrupt output (if bank = 0).
		For interrupt sources set at the same priority value, default priority is the lower numbered interrupt has higher priority. This means main source 1 has a higher default priority than main source 2. See Note 1.
4:7	Main2_pri	Main interrupt source 2 (IRQ[2] input pin) priority encoding value.
8:11	Main3_pri	Main interrupt source 3 (IRQ[3] input pin) priority encoding value.
12:15	Main4_pri	Main interrupt source 4 (LO_int) priority encoding value. LO_int is a collection of any Peripheral Interrupts directed to this interrupt source. Peripheral interrupts sources are directed to either LO_int, or to the critical interrupt source HI_int.
16:19	Main5_pri	Main interrupt source 5 (RTC_periodic) priority encoding value.
20:23	Main6_pri	Main interrupt source 6 (RTC_stopwatch and RTC_alarm) priority encoding value.
24:27	Main7_pri	Main interrupt source 7 (GPIO_std) priority encoding value. GPIO_std is a collection of all simple interrupt GPIO pins enabled for Interrupt operation.
28:31	Main8_pri	Main Interrupt source 8 (GPIO_wkup) priority encoding value.
		GPIO_wkup is a collection of all enabled WakeUp capable GPIO sources. WakeUp interrupt sources also operate in normal powered-up modes so all GPIO interrupt sources are represented by main interrupt sources 7 and 8 (also see Timer GPIOs in Reg7).

Note:

1. Main source 0 (Slice Timer 1) is not listed, it is fixed as both the highest priority main interrupt and to generate an SMI interrupt output only.

7.2.4.8 ICTL Main Interrupt Priority and INT/SMI Select 2 Register—MBAR + 0x051C Table 7-11. ICTL Main Interrupt Priority and INT/SMI Select 2 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Main9	_pri			Main ²	10_pri			Main	11_pri			Mair	n12_pri	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		Main1	3_pri			Main ⁻	14_pri			Main	15_pri			Mair	n16_pri	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:3	Main9_pri	Main interrupt source 9 (TMR0) priority encoding value.
		All 4bits are used to set a priority value (higher value equals higher priority). The msb is also used as a bank bit to direct this interrupt source to SMI interrupt output (if bank = 1), or to normal INT interrupt output (if bank = 0).
		For interrupt sources set at the same priority value, default priority is the lower numbered interrupt has higher priority. This means main source 9 has a higher default priority than main source 10.
		Timer 0 is one of eight internal timer resources that can be configured as input capture, output compare, or PWM output. As such, there is an I/O pin associated with each timer. The timer can use this pin as GPIO, in which case the internal timer function becomes available. These eight timers complete the MPC5200B GPIO structure. All potential GPIO interrupt sources are represented by main sources 7, 8, and 9–16.
4:7	Main10_pri	Main interrupt source 10 (TMR1) priority encoding value.
8:11	Main11_pri	Main interrupt source 11 (TMR2) priority encoding value.
12:15	Main12_pri	Main interrupt source 12 (TMR3) priority encoding value.
16:19	Main13_pri	Main interrupt source 13 (TMR4) priority encoding value.
20:23	Main14_pri	Main interrupt source 14 (TMR5) priority encoding value.
24:27	Main15_pri	Main interrupt source 15 (TMR6) priority encoding value. See Note 1.
28:31	Main16_pri	Main interrupt source 16 (TMR7) priority encoding value. See Note 1.

Note:

1. This timer has WakeUp functionality and therefore can provide a WakeUp interrupt source.

7.2.4.9 ICTL Perstat, MainStat, MainStat, CritStat Encoded Register—MBAR + 0x0524 Table 7-12. ICTL PerStat, MainStat, CritStat Encoded Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Reser	ved			P	Se			Res	erved			N	lSe		
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 Isb
R		R	eserve	d			CSe				R	eserved				CEbSh
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:1	_	Reserved
2:7	PSe	Peripheral Status Encoded—makes a singular indication of the current peripheral interrupt (6bits indicating 1 of 24 possible peripheral interrupts).
		The msb operates as a flag bit and is set if any peripheral interrupt is currently being presented by the Interrupt Controller (e.g., if peripheral interrupt source 0 is current, then this register reads as 0x20). Normally it would not be necessary to clear this status register since all peripheral interrupt sources are level sensitive.
		Once an interrupt source negates at the input of the controller, the new input condition is re-evaluated without software intervention. However, if ISR does not clear the interrupt source (at the source module), then the controller is locked on the current interrupt and cannot re-evaluate the input condition (possibly to detect the presence of a higher priority interrupt). Therefore, ISR can force a re-evaluation of the input condition by writing 1 to the msb of PSe. This sticky-bit clear operation is optional and can be used at the discretion of the ISR writer.
		The encoded value cross-reference to a specific source is described in ICTL Peripheral Interrupt Mask Register and re-stated in ICTL Peripheral Interrupt Status All Register. In all cases, the peripheral status encoded value converts to a single source module (i.e., no additional status parsing is required at the Interrupt Controller).
8:9	_	Reserved
10:15	MSe	Main Status Encoded—makes a singular indication of the current main interrupt (6 bits indicating 1 of 17 possible main interrupts).
		The msb operates as a flag bit, as described above. The msb can also be written to 1 to force a re-evaluation of the main interrupt sources.
		The cross-reference of the encoded value to a particular source is described in Reg5 (main mask) and re-stated in ICTL Main Status All Register.
		All MSe values convert to a single source module, EXCEPT Main source 4 (LO_int), which indicates a peripheral source is active. In this case it is necessary to parse the PSe to determine which peripheral source is active. See Note 1.
16:20	_	Reserved

Bits	Name	Description
21:23	CSe	Critical Status Encoded—makes a singular indication of the current critical interrupt (3bits indicating 1 of 4 possible interrupts).
		The msb operates as a Flag bit, as described above. This msb can also be written to 1 to force a re-evaluation of the critical interrupt sources.
		$00 = \overline{IRQ}$ input pin is the source. See Note 2.
		01 = Slice Timer 0 is the source.
		10 = HI_int is the source. See Note 3.
		11 = CCS module is the source. WakeUp from deep-sleep. See Note 4.
24:30	_	Reserved
31	CEbSh	Critical Enable bar Shadow bit—this is a special bit that shadows the setting programmed into ICTL External Enable and External Types Register. This bit indicates whether Critical interrupt sources have or have not been directed to the normal INT e300 core pin.
		If Critical interrupts are directed to INT (CEbSh = 1), to detect higher priority interrupt sources, INT ISR must always parse the CSe prior to MSe or PSe. All other processing remains the same.
		This shadow bit is provided here so a single read to this register can obtain all necessary information to make the interrupt source determination.

Note:

- 1. For Main sources 1, 2, and 3 that represent $\overline{\text{IRQ}}$ [1:3] respectively, if the $\overline{\text{IRQ}}$ pin is set as edge sensitive, it is REQUIRED that the MSe flag bit be cleared (i.e., written to 1) or the appropriate ECLR bit in ICTL External Enable and External Types Register be set to clear this interrupt indication. Only one method should be used, not both (this limit is only true for multiple edge-sensitive $\overline{\text{IRQ}}$ inputs).
- 2. For IRQ[0] set as edge sensitive, it is REQUIRED that either the CSe flag bit be cleared (i.e., written to 1) or the ECLR[0] bit in ICTL External Enable and External Types Register be set to clear this interrupt indication. You can do both if desired, and you can do it regardless of the IRQ[0] interrupt type.
- 3. This indicates a peripheral source programmed for HI bank priority is the source. It is necessary to parse the PSe value to determine the peripheral source module.
- For recovery from deep-sleep mode, it is necessary to acknowledge this WakeUp interrupt by writing 1 to the msb of this field (CSe). Only then does the CCS module release it's power-down internal signal and let MPC5200B operate normally.

7.2.4.10 ICTL Critical Interrupt Status All Register—MBAR + 0x0528 Table 7-13. ICTL Critical Interrupt Status All Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Rese	rved			C	Sa					Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	eserved							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Freescale Semiconductor 7-15

Interrupt Controller

Bits	Name	Description
0:3	_	Reserved
_	CSa[x]	Critical Interrupt Status All—Indicates all pending interrupts, including the currently active interrupt (if any). CSa is binary, showing each active interrupt input in its corresponding bit position. See Note 1.
		Number in parenthesis indicates equivalent encoded value in CSe, ICTL PerStat, MainStat, CritStat Encoded Register.
4	CSa0	indicates IRQ[0] interrupt
5	CSa1	Slice Timer 0 interrupt
6	CSa2	HI_int interrupt
7	CSa3	WakeUp from deep-sleep mode (CCS) interrupt
8:31	_	Reserved

Note:

7.2.4.11 ICTL Main Interrupt Status All Register—MBAR + 0x052C Table 7-14. ICTL Main Interrupt Status All Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Reserv	ed							MSa
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R									MSa							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:14	_	Reserved
_	MSa[x]	Main Interrupt Status All. Indicates all pending interrupts. Is binary, showing each active interrupt in its corresponding bit position. See Note 1. Number in parenthesis indicates equivalent encoded value in MSe, Reg9.
15	MSa0	Slice_Timer 1 (SMI interrupt only)
16	MSa1	IRQ[1] input pin
17	MSa2	IRQ[2] input pin
18	MSa3	IRQ[3] input pin
19	MSa4	LO_int (some Peripheral source)
20	MSa5	RTC_periodic interrupt
21	MSa6	RTC_stopwatch interrupt
22	MSa7	GPIO std interrupt

MPC5200B Users Guide, Rev. 1

7-16 Freescale Semiconductor

^{1.} No direct mask register is defined for critical interrupts. However, $\overline{IRQ}[0]$ can be masked by the MEE bit in Reg4, in which case CSa status does not occur. If only the EENA[0] bit in ICTL External Enable and External Types Register is cleared, then CSa status occurs, but controller does not assert a e300 core interrupt.

Bits	Name	Description
23	MSa8	GPIO WakeUp interrupt
24	MSa9	TMR0 interrupt
25	MSa10	TMR1 interrupt
26	MSa11	TMR2 interrupt
27	MSa12	TMR3 interrupt
28	MSa13	TMR4 interrupt
29	MSa14	TMR5 interrupt
30	MSa15	TMR6 interrupt
31	MSa16	TMR7 interrupt

Note:

7.2.4.12 ICTL Peripheral Interrupt Status All Register—MBAR + 0x0530 Table 7-15. ICTL Peripheral Interrupt Status All Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				Rese	rved							Р	Sa			
W	-															
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R							PSa							Rese	erved	PSa21
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:7	_	Reserved
_	PSa[x]	Peripheral Interrupt Status All. Indicates all pending interrupts. Is binary, showing each active interrupt in its corresponding bit position. See Note 1. Number in parenthesis indicates equivalent encoded value in PSe, ICTL PerStat, MainStat, CritStat Encoded Register.
8	PSa23	BestComm LocalPlus
9	PSa22	BDLC
10	PSa0	BestComm interrupt source
11	PSa1	PSC1
12	PSa2	PSC2
13	PSa3	PSC3
14	PSa4	PSC6
15	PSa5	Ethernet

Freescale Semiconductor 7-17

^{1.} All main interrupt sources are directly maskable in Main_Mask, ICTL Critical Priority and Main Interrupt Mask Register. If masked in Main_Mask, status information still shows in MSa. However, if interrupt is not enabled at the source module (i.e., in source module registers) the Interrupt Controller cannot observe or record status information for that interrupt.

Interrupt Controller

Bits	Name	Description
16	PSa6	USB
17	PSa7	ATA
18	PSa8	PCI Control module
19	PSa9	PCI SC Initiator Rx
20	PSa10	PCI SC Initiator Tx
21	PSa11	PSC4
22	PSa12	PSC5
23	PSa13	SPI modf
24	PSa14	SPI spif
25	PSa15	I ² C1
26	PSa16	I ² C2
27	PSa17	CAN1
28	PSa18	CAN2
29:30	_	Reserved
31	PSa21	XLB Arbiter

Note:

7.2.4.13 ICTL Peripheral Interrupt Status All Register—MBAR + 0x0538 Table 7-16. ICTL Bus Error Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Reserved										Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:5	_	Reserved
6	BE1	Bus Error 1—Indicates write attempt to read-only register, clear with a write to 1.
7	BE2	Bus Error 0—Indicates access to unimplemented register, clear with a write to 1.
8:31	_	Reserved

^{1.} These interrupts are directly maskable by ICTL Peripheral Interrupt Mask Register. However, PSa status occurs regardless of Per_Mask setting, as long as the source module interrupt is enabled in the source module registers.

7.2.4.14 ICTL Main Interrupt Emulation All Register—MBAR + 0x0540 Table 7-17. ICTL Main Interrupt Emulation All Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Reserv	red							MEa
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R									MEa							
W																
BESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:14	_	Reserved
_	MEa[x]	This register provides a way for software to emulate the assertion of a particular Main/SIU interrupt. The actual interrupt is the OR or the normal interrupt source and each of these test register bits. The order is exactly the same as the MSa in
		ICTL Main Interrupt Status All Register.
		The MEa[x] bits ARE masked by the Main_Mask setting, so they operate as much as possible as the real interrupt source. Even the IRQ sources, which may be programmed as edge sensitive, will react just like the pin when emulated here with test bit assertion/negation. One exception is LO-int, which if asserted here, will NOT create a corresponding Peripheral Status indication.
		If relying on MEa[x] assertion/negation to emulate and test an ISR routine it is
		important to disable all source modules so that real source interrupts will not disturb
		the test generated interrupt.
15	MEa0	Slice_Timer 1 (SMI interrupt only)
16	MEa1	IRQ[1] input pin
17	MEa2	IRQ[2] input pin
18	MEa3	IRQ[3] input pin
19	MEa4	LO_int (some Peripheral source)
20	MEa5	RTC_periodic interrupt
21	MEa6	RTC_stopwatch interrupt
22	MEa7	GPIO std interrupt
23	MEa8	GPIO WakeUp interrupt
24	MEa9	TMR0 interrupt
25	MEa10	TMR1 interrupt
26	MEa11	TMR2 interrupt
27	MEa12	TMR3 interrupt
28	MEa13	TMR4 interrupt
29	MEa14	TMR5 interrupt
30	MEa15	TMR6 interrupt
31	MEa16	TMR7 interrupt

Freescale Semiconductor 7-19

7.2.4.15 ICTL Peripheral Interrupt Emulation All Register—MBAR + 0x0544 Table 7-18. ICTL Peripheral Interrupt Emulation All Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				Rese	rved				PEa							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R							PEa							Rese	erved	PEa21
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:7	_	Reserved
_	PEa[x]	This register provides a way for software to emulate the assertion of a particular Peripheral interrupt. The actual interrupt is the OR or the normal interrupt source and each of these test register bits. The order is exactly the same as the PSa in ICTL Peripheral Interrupt Status All Register. The PEa[x] bits ARE masked by the Per_Mask setting, so they operate as much as possible as the real interrupt source. Test assertion of a Periperhal source will cause HI-int or LO-int indications which will be reflected in the Main or Critical status registers. If relying on PEa[x] assertion/negation to emulate and test an ISR routine it is important to disable all source modules so that real source interrupts will not disturb the test generated interrupt.
8	PEa23	BestComm LocalPlus
9	PEa22	BDLC
10	PEa0	BestComm interrupt source
11	PEa1	PSC1
12	PEa2	PSC2
13	PEa3	PSC3
14	PEa4	PSC6
15	PEa5	Ethernet
16	PEa6	USB
17	PEa7	ATA
18	PEa8	PCI Control module
19	PEa9	PCI SC Initiator Rx
20	PEa10	PCI SC Initiator Tx
21	PEa11	PSC4
22	PEa12	PSC5
23	PEa13	SPI modf
24	PEa14	SPI spif
25	PEa15	I ² C1
26	PEa16	l ² C2

7-20 Freescale Semiconductor

Bits	Name	Description
27	PEa17	CAN1
28	PEa18	CAN2
29:30	_	Reserved
31	PEa21	XLB Arbiter

7.2.4.16 ICTL IRQ Interrupt Emulation All Register—MBAR + 0x0548 Table 7-19. ICTL IRQ Interrupt Emulation All Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R		Reserved				IRQEa				Reserved							
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R								Re	served								
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bits	Name	Description
0:3	_	Reserved
_	IRQEa[x]	This register provides a way for software to emulate the assertion of a particular external interrupt pin. The actual interrupt is the OR of the normal interrupt source and each of these IRQEa[x] bits.
		This register represents the four IRQ inputs. This register is redundant with IICTL Main Interrupt Emulation All Register for IRQ1-3 but is the only source to emulate IRQ0. It provides a single register with which to test and develop an ISR for the external interrupt sources. Each bit operates as if it were the pin itself, i.e. edge sensitive operation would require multiple test writes to create the emulation of a pulsing input. See Note 1
4	IRQEa0	IRQ[0] input pin emulation
5	IRQEa1	IRQ[1] input pin emulation
6	IRQEa2	IRQ[2] input pin emulation
7	IRQEa3	IRQ[3] input pin emulation
8:31		Reserved

Note:

1. The emulation is only possible if the IRQ pins are externally pulled down. Otherwise the OR between the external pin values and the IRQEa[x] bits is whole the time one.

Freescale Semiconductor 7-21

There are a total of 56 possible GPIO pins on the MPC5200B. Virtually all of these pins are shared with alternate hardware functions. Therefore, GPIO availability is entirely dependant on the peripheral set a particular application requires.

There are 5 basic types of GPIO pins, controlled by separate register groupings, and in some cases, different register modules:

- 24 "Simple" GPIO, controlled in the standard GPIO register module.
- 8 "Output Only" GPIO, controlled in the standard GPIO register module.
- 8 "Interrupt" GPIO, controlled in the standard GPIO register module.
- 8 "Wakeup" GPIO, controlled in the WakeUp GPIO register module.
- 8 "Timer" GPIO, controlled in the General Purpose Timer register module.

There is a hierarchy of GPIO functionality. Higher function GPIO can be programmed to operate at any lower functional level. The hierarchy, from lowest to highest, is as follows:

- Output Only—As the name suggests, these GPIO cannot be programmed as Inputs. As outputs, they can be programmed to emulate an Open-Drain output.
- Simple—Same as Output Only, but with additional capability to be programmed as inputs, with a corresponding Input Value register
 that can be read by software.
- Interrupt—Same as Simple, but with additional capability of generating an Interrupt to the CPU during normal powered-up mode. The Interrupt Type can be programmed as edge (any/rising/falling/2nd edge) sensitive. These GPIO are sometimes referred to as "Simple Interrupt".
- Wakeup—Same as Interrupt, but with additional capability of generating an Interrupt during Deep Sleep mode. Includes Interrupt Type registers and has an extra enable bit to distinguish between Simple Interrupt or WakeUp Interrupt operation.
- Timer GPIO—Operates with Simple GPIO capability, but can generate CPU Interrupts if configured as Input Capture timer mode.
 These Timer GPIO have special capabilities and limitations, which are described in Section 7.4, General Purpose Timers (GPT).
 Timer GPIO does not fit cleanly into the GPIO functional hierarchy concept, and should therefore be considered as a unique GPIO function.

GPIO functionality is available on an I/O pin only if the pin is enabled for GPIO usage in the Section 7.3.2.1.1, GPS Port Configuration Register—MBAR + 0x0B00. The GPIOPCR register controls the top level pin-muxing, which sets an I/O pin's usage between some hardware function(s) and GPIO. If the pin is available for GPIO, the associated GPIO registers must be enabled and configured by software to complete the GPIO operation for that specific pin. If a Timer GPIO is consumed by an alternate hardware function, it is still available to work as an internal General Purpose Timer (GPT).

Simple GPIO are controlled by a group of registers in the Standard GPIO module. They are organized in relation to the multi-function hardware port groupings. For example, you will see a GPIO field named PSC1 (4 bits) that corresponds to the 4 Simple GPIO available on the PSC1 port group. There is also a WakeUp GPIO on the PSC1 port. However, this pin, as GPIO, would be controlled by a separate register in the Wakeup GPIO module. Even though the pins are physically scattered throughout the multi-function port groups, register control groupings exist for the:

- 8 Wakeup GPIO pins
- 8 Interrupt GPIO pins, and
- 8 Output-Only GPIO pins.

Only Simple GPIO register groupings correspond to the physical pin groupings.

Table 7-20 lists all 56 GPIO pins.

Table 7-20. GPIO Pin List

GPIO PIN	Alternate Functionality	Interrupt	WakeUp
TIMER_0	Timer_GPIO/ATA/CAN2	Only as Timer	No
TIMER_1	Timer_GPIO/ATA/CAN2	Only as Timer	No
TIMER_2	Timer_GPIO/SPI	Only as Timer	No
TIMER_3	Timer_GPIO/SPI	Only as Timer	No
TIMER_4	Timer_GPIO/SPI	Only as Timer	No
TIMER_5	Timer_GPIO/SPI	Only as Timer	No
TIMER_6	Timer_GPIO	Only as Timer	Yes (Timer IC)
TIMER_7	Timer_GPIO	Only as Timer	Yes (Timer IC)

MPC5200B Users Guide, Rev. 1

7-22 Freescale Semiconductor

Table 7-20. GPIO Pin List (continued)

GPIO PIN	Alternate Functionality	Interrupt	WakeUp		
PSC1_0	UART1/AC971/CODEC1	No	No		
PSC1_1	UART1/AC971/CODEC1	No	No		
PSC1_2	UART1/AC971	No	No		
PSC1_3	UART1/AC971/CODEC1	No	No		
PSC1_4	UART1/AC971/CODEC1	Yes	Yes		
PSC2_0	UART2/AC972/CODEC2/CAN1	No	No		
PSC2_1	UART2/AC972/CODEC2/CAN1	No	No		
PSC2_2	UART2/AC972/CAN2	No	No		
PSC2_3	UART2/AC972/CODEC2/CAN2	No	No		
GPIO_WKUP_1(PSC2_4)	UART2/AC972/CODEC2	Yes	Yes		
GPIO_PSC3_0	USB2/CODEC3/UART3	No	No		
GPIO_PSC3_1	USB2/CODEC3/UART3	No	No		
GPIO_PSC3_2	USB2/CODEC3/UART3	No	No		
GPIO_PSC3_3	USB2/CODEC3/UART3	No	No		
GPIO_SINT_0(PSC3_4)	USB2/UART3	Yes	No		
GPIO_SINT_1(PSC3_5)	USB2	Yes	No		
GPIO_PSC3_6	USB2/SPI	No	No		
GPIO_PSC3_7	USB2/SPI	No	No		
GPIO_SINT_2(PSC3_8)	USB2/SPI	Yes	No		
GPIO_WKUP_2(PSC3_9)	USB2/SPI	Yes	Yes		
GPIO_USB_0	USB1 (OE)	No	No		
GPIO_USB_1	USB1 (PORTPWR)/UART5 (TXD)	No	No		
GPIO_USB_2	USB1 (SPEED)/UART5 (RTS)	No	No		
GPIO_USB_3	USB1 (SUSPEND)/UART5 (CTS)	No	No		
GPIO_SINT_3(USB)	USB1 (OvrCrnt)	Yes	No		
GPIO_ETHO_0(out only)	Ethernet	No	No		
GPIO_ETHO_1 (out only)	Ethernet/UART5	No	No		
GPIO_ETHO_2(out only)	Ethernet/USB2/UART5	No	No		
GPIO_ETHO_3(out only)	Ethernet/USB2/UART4	No	No		
GPIO_ETHO_4(out only)	Ethernet/USB2/J1850	No	No		
GPIO_ETHO_5(out only)	Ethernet/USB2/UART4	No	No		
GPIO_ETHO_6(out only)	Ethernet/USB2	No	No		
GPIO_ETHO_7(out only)	Ethernet/USB2	No	No		
GPIO_ETHI_0	Ethernet/UART5	No	No		
GPIO_ETHI_1	Ethernet/UART5	No	No		

Table 7-20. GPIO Pin List (continued)

GPIO PIN	Alternate Functionality	Interrupt	WakeUp
GPIO_ETHI_2	Ethernet	No	No
GPIO_ETHI_3	Ethernet	No	No
GPIO_SINT_4(ETH)	Ethernet/USB2/J1850	Yes	No
GPIO_SINT_5(ETH)	Ethernet/USB2/UART4	Yes	No
GPIO_SINT_6(ETH)	Ethernet/USB2/UART4	Yes	No
GPIO_SINT_7(ETH)	Ethernet/USB2/UART4	Yes	No
GPIO_WKUP_3(ETH)	Ethernet	Yes	Yes
GPIO_IRDA_0	IRDA/UART6/Codec6	No	No
GPIO_IRDA_1	IRDA(and/or USB)/UART6/Codec6	No	No
GPIO_WKUP_4(IRDA)	IRDA/UART6/Codec6	Yes	Yes
GPIO_WKUP_5(IRDA)	IRDA/UART6/Codec6	Yes	Yes
GPIO_WKUP_6	Dedicated GPIO Pin/SDRAM CS1	Yes	Yes
GPIO_WKUP_7	Dedicated GPIO Pin/LocalPlus Most/Graphics mode TSIZ1	Yes	Yes

7-24 Freescale Semiconductor

7.3.1 GPIO Pin Multiplexing

Figure 7-3 shows the GPIO/Generic MUX cell.

Note:

- 1. Open-Drain Emulation is supported on the GPIO function.
- 2. Pin MUX Logic is controlled by the Port Configuration Register and supersedes any individual GPIO register programming.

Figure 7-3. GPIO/Generic MUX Cell

7.3.1.1 PSC1 (UART1/AC97/CODEC1)

The PSC1 port has 5 pins with hardware support for:

- CODEC
- UART (4 pins consumed)
- UARTe (expanded with carrier detect input–5 pins consumed)
- AC97

Unused pins can serve as simple GPIOs, with one available as a WakeUp input. For use as AC97, this WakeUp GPIO becomes available. A special mode is available in which the CD input for UART use can be unused. This makes a WakeUp GPIO available on this port. CODEC usage makes one simple GPIO available. Use of this port for AC97 consumes all 5 pins and leaves no GPIO available.

Refer to the port-mapping illustrations Figure 2-4.

7.3.1.2 PSC2 (CAN1/2/UART2/AC97/CODEC2)

The PSC2 port has 5 pins with hardware support for:

- CAN
- CODEC
- UART (4 pins consumed)
- UARTe (expanded with carrier detect input–5 pins consumed)
- AC97

Unused pins can serve as simple GPIOs, with one available as a WakeUp input. For use as AC97, this WakeUp GPIO becomes available. A special mode is available in which the CD input for UART use can be unused. This makes a WakeUp GPIO available on this port. CODEC usage makes one simple GPIO available. Use of this port for AC97 consumes all 5 pins and leaves no GPIO available.

Refer to the port-mapping illustrations Figure 2-5.

7.3.1.3 PSC3 (USB2/CODEC3/SPI/UART3)

The PSC3 port has 10pins with hardware support for:

- CODEC
- Expanded UART (5 pins consumed)
- SPI (4 pins consumed)
- USB secondary port (10 pins consumed)

SPI can simultaneously exist, with no pins leftover for GPIO. Similarly, CODEC or UART can exist with SPI leaving no leftover pins. Unless, CD input on UART is designated unused, in which case a WakeUp GPIO becomes available. Any unused pins are available for related RS232 GPIO functionality.

Refer to the port-mapping illustrations Figure 2-6.

7.3.1.4 USB1/RST CONFIG

This is a 10-bit port dedicated to primary USB. GPIO becomes available **only** if the USB function is not used. When this occurs, the following GPIO becomes available:

- 4 Simple GPIO
- 1 Interrupt GPIO

Other pins on this port serve as Reset Configuration inputs.

7.3.1.5 Ethernet/USB2/UART4/5/J1850/RST_CONFIG

This port consists of 8 output data pins and 10 control pins (in ethernet mode). For GPIO grouping these are the EthO and EthI ports, respectively. The output-only pins (EthO) are also used for input reset configuration data, therefore these pins must act as output only in all other cases. No peripheral is allowed to overdrive the reset configuration pull-up/pull-down settings. The 8 GPIOs on the EthO port are therefore output-only, and only available if the pin is otherwise unused (beyond reset config).

NOTE

The ethernet pin, MDIO, is actually an I/O. However, there should be no danger of an external chip driving this pin during power-up.

This port is configured such that 7-wire Ethernet and a secondary USB port can exist simultanaeouly. This configuration makes available 1 GPIO WakeUp pin.

MPC5200B Users Guide, Rev. 1

Full Ethernet consumes all 18 pins, unless the optional MDIO and MDC pins are specified as unused. In this case, 2 Output Only GPIO are available.

Meanwhile, there are other cases becasue many pins can be used for UART, J1850. Please Refer to the port-mapping illustrations for details.

USB stand-alone usage leaves available:

- 2 Output Only GPIO
- 4 Simple GPIO
- 1 WakeUp GPIO

7-wire Ethernet stand-alone leaves available:

- 6 Output Only GPIO
- 4 Interrupt GPIO
- 1 WakeUp GPIO

1850 stand-alone leaves available:

- 7 Output Only GPIO
- 4 Simple GPIO
- 3 Interrupt GPIO
- 1 WakeUp GPIO

Total GPIO available on this port is:

- 8 Output Only GPIO
- 4 Simple GPIO
- 4 Interrupt GPIO
- 1 WakeUp GPIO

7.3.1.6 PSC6

The PSC6 port has 4 pins, which includes:

- 2 Simple GPIO
- 2 WakeUp GPIO

Hardware functions available are:

- IRDA
 - 3 pins with clock input
 - 2 pins with internal clock
- UART (4 pins)
- Codec (4 pins)

The IRDA clock pin can be used as a Input USB clock and is separately programmable for this use.

- If unused, the IRDA Receive pins are available as WakeUp GPIO.
- If unused, the IRDA Transmit pin and the Clock pin are available as Simple GPIO.

7.3.1.7 I^2C

There are 2 I^2C ports consisting of 2 pins each. Although no GPIO is available on these pins, they can be alternately programmed as CAN1 pins (on I^2C1) and/or as the ATA Chip Selects (on I^2C2). If the alternate function is specified, the associated I^2C port is consumed and unavailable.

7.3.1.8 GPIO Timer Pins

The GPIO Timer port consists of 8 pins. Each pin is driven by a internal timer module, which can do either of the following:

- drive the pin in Output Compare mode and Pulse Width Modulation mode, or
- monitor the pin as input in Input Capture mode.

Additionally, the timer module can operate the pin as a Simple GPIO. This GPIO control is handled in the Timer Module register, see Section 7.4.4, GPT Registers—MBAR + 0x0600. If the pin is controlled as a GPIO, then the Timer Module timer can be used as an internal CPU timer.

The Timer pins can be reconfigured for alternate functionality in the Port Configuration Register, as follows:

- Timer pins 0 and 1 can operate as CAN2 Tx/Rx or ATA Chip Selects.
- Timer pins 2–5 can operate as the SPI port.

• Timer pins 6 and 7 are dedicated as Timer GPIO and have no alternate function.

Although the Timer as GPIO only operates to the Simple GPIO level, Interrupt capability can be achieved by configuring the Timer for Input Capture mode.

7.3.1.9 Dedicated GPIO Port

There is a dedicated GPIO port group that consists of 2 pins. Both pins operate at the WakeUp GPIO level. They are designated:

- GPIO WKUP 6
- GPIO WKUP 7

However, GPIO_WKUP_6 is not dedicated and can be programmed to operate as a second SDRAM memory chip select. As such, this pin is connected to the Memory Vdd supply. For Dual Data Rate memory, the GPIO_WKUP_6 pin is driven at the reduced 2.5V level.

If not used as a memory chip select, the GPIO_WKUP_6 pin serves as a memory voltage compatible GPIO.

7.3.2 GPIO Programmer's Model

The GPIO programmer's model contains 3 separate register sets (or modules), each at different offsets from MBAR. These register sets are:

- 1. GPIO Standard Registers—MBAR+0x0B00. Output Only, Simple, and Interrupt GPIO are controlled by registers within this module. There are 3 register groupings for individual control of each of the named GPIO types.
- WakeUp GPIO Registers—MBAR+0x0C00. WakeUp GPIO are controlled by this register set
- 3. GPT Registers—MBAR + 0x0600. Timer functions and Timer GPIO are controlled by this module.

All GPIO functionality is dependent on the Port Configuration Register (PCR) setting. The PCR is the first register in the GPIO Standard Module. This register controls the Pin MUX Logic. Therefore, the PCR also controls the physical routing of MPC5200B I/O pins to and from internal logic. The PCR is expected to be configured early in the boot process and set to a static value that supports the given peripheral set of a specific application.

NOTE

The PCR is **not** accessible during Deep Sleep mode.

7.3.2.1 GPIO Standard Registers—MBAR+0x0B00

The GPIO Standard Register set has separate registers for each GPIO type.

- Simple
- Output Only
- Interrupt

These registers are at an offset of MBAR + 0x0B00.

The GPIO Standard Register set uses 16 32-bit registers. These registers are located at an offset from MBAR of 0x0B00. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x0B00 + register address

Hyperlinks to the GPIO pin type registers are provided below:

- GPS Port Configuration Register (0x0B00)
- GPS Simple GPIO Enables Register (0x0B04)
- GPS Simple GPIO Open Drain Type Register (0x0B08)
- GPS Simple GPIO Data Direction Register (0x0B0C)
- GPS Simple GPIO Data Output Values Register (0x0B10)
- GPS Simple GPIO Data Input Values Register (0x0B14)
- GPS GPIO Output-Only Enables Register (0x0B18)
- GPS GPIO Output-Only Data Value Out Register (0x0B1C)

- GPS GPIO Simple Interrupt Enables Register (0x0B20)
- GPS GPIO Simple Interrupt Open-Drain Emulation Register (0x0B24)
- GPS GPIO Simple Interrupt Data Direction Register (0x0B28)
- GPS GPIO Simple Interrupt Data Value Out Register (0x0B2C)
- GPS GPIO Simple Interrupt Interrupt Enable Register (0x0B30)
- GPS GPIO Simple Interrupt Interrupt Types Register (0x0B34)
- GPS GPIO Simple Interrupt Master Enable Register (0x0B38)
- GPS GPIO Simple Interrupt Status Register (0x0B3C)

7-28 Freescale Semiconductor

7.3.2.1.1 GPS Port Configuration Register—MBAR + 0x0B00

Table 7-21. GPS Port Configuration Register

	msb 0	1	2	3		4	5	6	7	8	9	10	11	12	13	14	15		
R	CS1		Д	LTs	CS7 (CS6	ATA		×		IRDA			Ether				
		Z.								CLK									
W		LPJ								USB									
										<u>~</u>									
RESET:	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0		
	16	1	7	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb		
R	PCI_DIS	USE	S_SE	US	SB		PS	C3		Rsvd		PSC2		Rsvd		PSC1			
W																			
RESET:	0	(0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bit	Name	Description
0	CS1	Memory Chip Select bit
		0 = gpio_wkup_6
		1 = mem_cs1 (second SDRAMC chip select) on gpio_wkup_6 pin
1	LPTZ	LocalPlus non-muxed TSIZ bit
		0 = gpio_wkup_7 and test_sel_1
		1 = TSIZ 1 on gpio_wkup_7 and TSIZ 2 on test_sel_1
2:3	ALTs	Alternatives, see Note 2
		00 = No Alternatives: CAN1/2 on PSC2 according to PSC2 setting. SPI on PSC3 according to PSC3 setting.
		01 = ALT CAN position: CAN1 on I2C1, CAN2 on Tmr0/1 pins, see Note 1
		10 = ALT SPI position: SPI on Tmr2/3/4/5 pins, see Note 2
		11 = Both on ALT
4	CS7	0 = Interrupt GPIO on PSC3_5 (see note 6)
		1 = CS7 on PSC3_5
5	CS6	0 = Interrupt GPIO on PSC3_4 (see note 6)
		1 = CS6 on PSC3_4
6:7	ATA	Advanced Technology Attachment
		00 = No ATA chip selects, csb_4/5 used as normal chip select
		$01 = ATA cs0/1 on csb_4/5$
		10 = ATA cs0/1 on i2c2 clk/io
		11 = ATA cs0/1 on Tmr0/1, see Note 1
8	IR_USB_CLK	Infrared USB Clock
		0 = IrDA/USB 48MHz clock generated internally, pin is GPIO
		1 = IrDA/USB clock is sourced externally, input only

Bit	Name	Description
9:11	IRDA	Infrared Data Association
		000 = All IrDA pins are GPIOs
		001 = Reserved
		010 = Reserved
		011 = Reserved
		100 = Reserved
		101 = UART (without CD) / IrDA
		110 = Reserved
		111 = CODEC (without MCLK) / IrDA
12: 15	Ether	Ethernet
		0000 = All 18 Ethernet pins are GPIOs
		0001 = USB2 on Ethernet, see Note 3
		0010 = Ethernet 10Mbit (7-wire) mode
		0011 = Ethernet 7-wire and USB2, see Note 3
		0100 = Ethernet 100Mbit without MD
		0101 = Ethernet 100Mbit with MD
		011X = Reserved
		1000 = Ether 7-wire, UARTe, J1850
		1001 = Ether 7-wire, J1850
		1010 = Two UARTes, J1850
		1011 = One UARTe, J1850
		1100 = J1850
		1101 = Reserved
		111X = Reserved
16	PCI_DIS	0 = PCI controller enabled
		1 = PCI controller disabled.
		When Large Flash or Most Graphics modes are enabled on the localPlus bus interface, the PCI interface can not be used (PCI control signals are used to support these modes).
		When these modes are enabled (see LocalPlus control registers), the PCI controller must be disabled to prevent interference.
		If these modes are enabled at boot, this bit will come out of reset set to 1.
		If these modes are not enabled at boot, this bit will come out of reset set to 0.
17	USB_SE	USB Single Ended mode.
		The USB interface is able to support both Differential and Single Ended modes. This bit allows the USB I/O interface to be programmed to Single Ended mode. Differential mode supplies TXP/TXN and RXP/TXN.
		Single ended mode supplies TXP/TX_SE0 and RXP/RX_SE0.
		This bit controls "all" USB ports (i.e. they are not individually programmable). Default is Differential mode.
		0 = Differential mode (Default after reset)
		1 = Single ended mode
18:19	USB	00 = 4 GPIOs and 1 Interrupt GPIO
		01 = USB
		10 = Two UARTs
		11 = Reserved

MPC5200B Users Guide, Rev. 1

7-30 Freescale Semiconductor

Bit	Name	Description
20:23	PSC3	Programmable Serial Controller 3
		0000 = All PSC3 pins are GPIOs
		0001 = USB2 on PSC3, no GPIOs available, see Note 3
		001X = Reserved
		0100 = UART functionality without CD
		0101 = UARTe functionality with CD
		0110 = CODEC3 functionality
		0111 = CODEC3 functionality (with MCLK)
		100X = SPI
		101X = Reserved
		1100 = SPI with UART3
		1101 = SPI with UART3e
		111X = SPI with CODEC3
24	_	Reserved
25:27	PSC2	Programmable Serial Controller 2
		000 = All PSC2 pins are GPIOs
		001 = CAN1&2 on PSC2 pins, see Note 3
		01X = AC97 functionality
		100 = UART functionality without CD
		101 = UARTe functionality with CD
		110 = CODEC2 functionality(without MCLK)
		111 = CODEC2 functionality (with MCLK)
28	_	Reserved
29:31	PSC1	Programmable Serial Controller 1
		00X = All PSC1 pins are GPIOs
		01X = AC97 functionality
		100 = UART functionality without CD
		101 = UARTe functionality with CD
		110 = CODEC1 functionality (without MCLK)
		111 = CODEC1 functionality (with MCLK)

Note:

- 1. ALT CAN cannot exist with ATA on Tmr0/1, not with CAN on PSC2.
- 2. ALT SPI cannot exist with any SPI on PCS3.
- 3. USB cannot exist on both Either and PSC3.
- 4. See Section 7.3.1, *GPIO Pin Multiplexing* or Table 2-1 or Table 2-2 to determine GPIO availability for the various PCR field settings.
- 5. If Large Flash or Most Graphics mode is enabled at boot, using a reset configuration bit, PCI disable will come out of reset set to 1. If these modes are not enabled at boot, this bit will come out of reset set to 0.
- 6. PSC3_4 and PSC3_5 default to zero (interrupt gpio) after reset. However, if the PSC3 is pro-grammed to USB2 mode RXP and RXN will be on these pins. If PSC is programmed to UARTe mode, CD will be on the PSC3_4 pin.

7.3.2.1.2 GPS Simple GPIO Enables Register—MBAR + 0x0B04

Table 7-22. GPS Simple GPIO Enables Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

Table 7-22. GPS Simple GPIO Enables Register

R	Reserved IRDA			DA		ET	HR		Reserved					USB				
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb		
R	Rese	rved			PS	СЗ			PSC2				PSC1					
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bit	Name	Description
0:1	_	Reserved
2:3	IRDA	Individual enable bits for the 2 Simple GPIO on IRDA port. bit 2 controls GPIO_IRDA_1 (IR_USB_CLK pin) bit 3 controls GPIO_IRDA_0 (IRDA_TX pin) 0 = Disabled for GPIO (default) 1 = Enabled for GPIO
4:7	ETHR	Individual enable bits for the 4 Simple GPIO on ETHR port. bit 4 controls GPIO_ETHI_3 (ETH_11 pin) bit 5 controls GPIO_ETHI_2 (ETH_10 pin) bit 6 controls GPIO_ETHI_1 (ETH_9 pin) bit 7 controls GPIO_ETHI_0 (ETH_8 pin) 0 = Disabled for GPIO (default) 1 = Enabled for GPIO
8:11	_	Reserved
12:15	USB	Individual enable bits for the 4 Simple GPIO on USB port. bit 12 controls GPIO_USB_3 (USB1_8 pin) bit 13 controls GPIO_USB_2 (USB1_7 pin) bit 14 controls GPIO_USB_1 (USB1_6 pin) bit 15 controls GPIO_USB_0 (USB1_0 pin) 0 = Disabled for GPIO (default) 1 = Enabled for GPIO
16:17	_	Reserved
18:23	PSC3	Individual enable bits for the 6 Simple GPIO on PSC3 port. bit 18 controls GPIO_ PSC3_5 (PSC3_7 pin) bit 19 controls GPIO_ PSC3_4 (PSC3_6 pin) bit 20 controls GPIO_ PSC3_3 (PSC3_3 pin) bit 21 controls GPIO_ PSC3_2 (PSC3_2 pin) bit 22 controls GPIO_ PSC3_1 (PSC3_1 pin) bit 23 controls GPIO_ PSC3_0 (PSC3_0 pin) 0 = Disabled for GPIO (default) 1 = Enabled for GPIO

7-32 Freescale Semiconductor

Bit	Name	Description
24:27	PSC2	Individual enable bits for the 4 Simple GPIO on PSC2 port.
		bit 24 controls GPIO_PSC2_3 (PSC2_3 pin)
		bit 25 controls GPIO_PSC2_2 (PSC2_2 pin)
		bit 26 controls GPIO_PSC2_1 (PSC2_1 pin)
		bit 27 controls GPIO_PSC2_0 (PSC2_0 pin)
		0 = Disabled for GPIO (default)
		1 = Enabled for GPIO
28:31	PSC1	Individual enable bits for the 4 Simple GPIO on PSC1 port.
		bit 28 controls GPIO_PSC1_3 (PSC1_3 pin)
		bit 29 controls GPIO_PSC1_2 (PSC1_2 pin)
		bit 30 controls GPIO_PSC1_1 (PSC1_1 pin)
		bit 31 controls GPIO_PSC1_0 (PSC1_0 pin)
		0 = Disabled for GPIO (default)
		1 = Enabled for GPIO

7.3.2.1.3 GPS Simple GPIO Open Drain Type Register —MBAR + 0x0B08

Table 7-23. GPS Simple GPIO Open Drain Type Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Reser	rved	IR	IRDA ETHR				Reserved				USB				
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Reser	rved			PS	СЗ				PS	SC2			Р	SC1	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:1	_	Reserved
2:3	IRDA	Individual bits to cause open drain emulation for pins configured as GPIO output. bit 2 controls GPIO_IRDA_1 (IR_USB_CLK pin) bit 3 controls GPIO_IRDA_0 (IRDA_TX pin) 0 = Normal CMOS output (default) 1 = Open Drain emulation (a drive to high creates Hi-Z)
4:7	ETHR	Individual bits to cause open drain emulation for pins configured as GPIO output. bit 4 controls GPIO_ETHI_3 (ETH_11 pin) bit 5 controls GPIO_ETHI_2 (ETH_10 pin) bit 6 controls GPIO_ETHI_1 (ETH_9 pin) bit 7 controls GPIO_ETHI_0 (ETH_8 pin) 0 = Normal CMOS output (default) 1 = Open Drain emulation (a drive to high creates Hi-Z)
8:11	_	Reserved

Bit	Name	Description
12:15	USB	Individual bits to cause open drain emulation for pins configured as GPIO output. bit 12 controls GPIO_USB_3 (USB1_8 pin) bit 13 controls GPIO_USB_2 (USB1_7 pin) bit 14 controls GPIO_USB_1 (USB1_6 pin) bit 15 controls GPIO_USB_0 (USB1_0 pin) 0 = Normal CMOS output (default) 1 = Open Drain emulation (a drive to high creates Hi-Z)
16:17	_	Reserved
18:23	PSC3	Individual bits to cause open drain emulation for pins configured as GPIO output. bit 18 controls GPIO_ PSC3_5 (PSC3_7 pin) bit 19 controls GPIO_ PSC3_4 (PSC3_6 pin) bit 20 controls GPIO_ PSC3_3 (PSC3_3 pin) bit 21 controls GPIO_ PSC3_2 (PSC3_2 pin) bit 22 controls GPIO_ PSC3_1 (PSC3_1 pin) bit 23 controls GPIO_ PSC3_0 (PSC3_0 pin) 0 = Normal CMOS output (default) 1 = Open Drain emulation (a drive to high creates Hi-Z)
24:27	PSC2	Individual bits to cause open drain emulation for pins configured as GPIO output. bit 24 controls GPIO_PSC2_3 (PSC2_3 pin) bit 25 controls GPIO_PSC2_2 (PSC2_2 pin) bit 26 controls GPIO_PSC2_1 (PSC2_1 pin) bit 27 controls GPIO_PSC2_0 (PSC2_0 pin) 0 = Normal CMOS output (default) 1 = Open Drain emulation (a drive to high creates Hi-Z)
28:31	PSC1	Individual bits to cause open drain emulation for pins configured as GPIO output. bit 28 controls GPIO_PSC1_3 (PSC1_3 pin) bit 29 controls GPIO_PSC1_2 (PSC1_2 pin) bit 30 controls GPIO_PSC1_1 (PSC1_1 pin) bit 31 controls GPIO_PSC1_0 (PSC1_0 pin) 0 = Normal CMOS output (default) 1 = Open Drain emulation (a drive to high creates Hi-Z)

7.3.2.1.4 GPS Simple GPIO Data Direction Register—MBAR + 0x0B0C

Table 7-24. GPS Simple GPIO Data Direction Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Rese	rved	IRI	DA		ET	HR			Res	erved			ι	JSB	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Rese	rved			PS	C3				PS	SC2			Р	SC1	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

7-34 Freescale Semiconductor

Bit	Name	Description
0:1		Reserved
2:3	IRDA	Individual bits to control directionality of the pin as GPIO. bit 2 controls GPIO_IRDA_1 (IR_USB_CLK pin) bit 3 controls GPIO_IRDA_0 (IRDA_TX pin) 0 = Pin is Input (default) 1 = Pin is Output
4:7	ETHR	Individual bits to control directionality of the pin as GPIO. bit 4 controls GPIO_ETHI_3 (ETH_11 pin) bit 5 controls GPIO_ETHI_2 (ETH_10 pin) bit 6 controls GPIO_ETHI_1 (ETH_9 pin) bit 7 controls GPIO_ETHI_0 (ETH_8 pin) 0 = Pin is Input (default) 1 = Pin is Output
8:11	_	Reserved
12:15	USB	Individual bits to control directionality of the pin as GPIO. bit 12 controls GPIO_USB_3 (USB1_8 pin) bit 13 controls GPIO_USB_2 (USB1_7 pin) bit 14 controls GPIO_USB_1 (USB1_6 pin) bit 15 controls GPIO_USB_0 (USB1_0 pin) 0 = Pin is Input (default) 1 = Pin is Output
16:17	_	Reserved
18:23	PSC3	Individual bits to control directionality of the pin as GPIO. bit 18 controls GPIO_ PSC3_5 (PSC3_7 pin) bit 19 controls GPIO_ PSC3_4 (PSC3_6 pin) bit 20 controls GPIO_ PSC3_3 (PSC3_3 pin) bit 21 controls GPIO_ PSC3_2 (PSC3_2 pin) bit 22 controls GPIO_ PSC3_1 (PSC3_1 pin) bit 23 controls GPIO_ PSC3_0 (PSC3_0 pin) 0 = Pin is Input (default) 1 = Pin is Output

Bit	Name	Description
24:27	PSC2	Individual bits to control directionality of the pin as GPIO.
		bit 24 controls GPIO_PSC2_3 (PSC2_3 pin)
		bit 25 controls GPIO_PSC2_2 (PSC2_2 pin)
		bit 26 controls GPIO_PSC2_1 (PSC2_1 pin)
		bit 27 controls GPIO_PSC2_0 (PSC2_0 pin)
		0 = Pin is Input (default)
		1 = Pin is Output
28:31	PSC1	Individual bits to control directionality of the pin as GPIO.
		bit 28 controls GPIO_PSC1_3 (PSC1_3 pin)
		bit 29 controls GPIO_PSC1_2 (PSC1_2 pin)
		bit 30 controls GPIO_PSC1_1 (PSC1_1 pin)
		bit 31 controls GPIO_PSC1_0 (PSC1_0 pin)
		0 = Pin is Input (default)
		1 = Pin is Output

7-36 Freescale Semiconductor

7.3.2.1.5 GPS Simple GPIO Data Output Values Register —MBAR + 0x0B10

Table 7-25. GPS Simple GPIO Data Output Values Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Rese	rved	IR	DA		ET	HR			Res	erved			ι	JSB	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Rese	rved			PS	C3				PS	SC2			Р	SC1	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:1	_	Reserved
2:3	IRDA	Individual bits to control the state of pins configured as GPIO output. bit 2 controls GPIO_IRDA_1 (IR_USB_CLK pin) bit 3 controls GPIO_IRDA_0 (IRDA_TX pin) 0 = Drive 0 on the pin (default) 1 = Drive 1 on the pin
4:7	ETHR	Individual bits to control the state of pins configured as GPIO output. bit 4 controls GPIO_ETHI_3 (ETH_11 pin) bit 5 controls GPIO_ETHI_2 (ETH_10 pin) bit 6 controls GPIO_ETHI_1 (ETH_9 pin) bit 7 controls GPIO_ETHI_0 (ETH_8 pin) 0 = Drive 0 on the pin (default) 1 = Drive 1 on the pin
8:11	_	Reserved
12:15	USB	Individual bits to control the state of pins configured as GPIO output. bit 12 controls GPIO_USB_3 (USB1_8 pin) bit 13 controls GPIO_USB_2 (USB1_7 pin) bit 14 controls GPIO_USB_1 (USB1_6 pin) bit 15 controls GPIO_USB_0 (USB1_0 pin) 0 = Drive 0 on the pin (default) 1 = Drive 1 on the pin
16:17	_	Reserved
18:23	PSC3	Individual bits to control the state of pins configured as GPIO output. bit 18 controls GPIO_ PSC3_5 (PSC3_7 pin) bit 19 controls GPIO_ PSC3_4 (PSC3_6 pin) bit 20 controls GPIO_ PSC3_3 (PSC3_3 pin) bit 21 controls GPIO_ PSC3_2 (PSC3_2 pin) bit 22 controls GPIO_ PSC3_1 (PSC3_1 pin) bit 23 controls GPIO_ PSC3_0 (PSC3_0 pin) 0 = Drive 0 on the pin (default) 1 = Drive 1 on the pin

MPC5200B Users Guide, Rev. 1

Bit	Name	Description
24:27	PSC2	Individual bits to control the state of pins configured as GPIO output.
		bit 24 controls GPIO_PSC2_3 (PSC2_3 pin)
		bit 25 controls GPIO_PSC2_2 (PSC2_2 pin)
		bit 26 controls GPIO_PSC2_1 (PSC2_1 pin)
		bit 27 controls GPIO_PSC2_0 (PSC2_0 pin)
		0 = Drive 0 on the pin (default)
		1 = Drive 1 on the pin
28:31	PSC1	Individual bits to control the state of pins configured as GPIO output.
		bit 28 controls GPIO_PSC1_3 (PSC1_3 pin)
		bit 29 controls GPIO_PSC1_2 (PSC1_2 pin)
		bit 30 controls GPIO_PSC1_1 (PSC1_1 pin)
		bit 31 controls GPIO_PSC1_0 (PSC1_0 pin)
		0 = Drive 0 on the pin (default)
		1 = Drive 1 on the pin

7.3.2.1.6 GPS Simple GPIO Data Input Values Register —MBAR + 0x0B14

Table 7-26. GPS Simple GPIO Data Input Values Register

Bit	Name	Description
0:1	_	Reserved
2:3	IRDA	Individual status bits reflecting the state of corresponding GPIO pins. bit 2 reflects GPIO_IRDA_1 (IR_USB_CLK pin) bit 3 reflects GPIO_IRDA_0 (IRDA_TX pin)
4:7	ETHR	Individual status bits reflecting the state of corresponding GPIO pins. bit 4 reflects GPIO_ETHI_3 (ETH_11 pin) bit 5 reflects GPIO_ETHI_2 (ETH_10 pin) bit 6 reflects GPIO_ETHI_1 (ETH_9 pin) bit 7 reflects GPIO_ETHI_0 (ETH_8 pin)
8:11	_	Reserved

Bit	Name	Description
12:15	USB	Individual status bits reflecting the state of corresponding GPIO pins.
		bit 12 reflects GPIO_USB_3 (USB1_8 pin)
		bit 13 reflects GPIO_USB_2 (USB1_7 pin)
		bit 14 reflects GPIO_USB_1 (USB1_6 pin)
		bit 15 reflects GPIO_USB_0 (USB1_0 pin)
16:17	_	Reserved
18:23	PSC3	Individual status bits reflecting the state of corresponding GPIO pins.
		bit 18 reflects GPIO_ PSC3_5 (PSC3_7 pin)
		bit 19 reflects GPIO_ PSC3_4 (PSC3_6 pin)
		bit 20 reflects GPIO_ PSC3_3 (PSC3_3 pin)
		bit 21 reflects GPIO_ PSC3_2 (PSC3_2 pin)
		bit 22 reflects GPIO_ PSC3_1 (PSC3_1 pin)
		bit 23 reflects GPIO_ PSC3_0 (PSC3_0 pin)
24:27	PSC2	Individual status bits reflecting the state of corresponding GPIO pins.
		bit 24 reflects GPIO_PSC2_3 (PSC2_3 pin)
		bit 25 reflects GPIO_PSC2_2 (PSC2_2 pin)
		bit 26 reflects GPIO_PSC2_1 (PSC2_1 pin)
		bit 27 reflects GPIO_PSC2_0 (PSC2_0 pin)
28:31	PSC1	Individual status bits reflecting the state of corresponding GPIO pins.
		bit 28 reflects GPIO_PSC1_3 (PSC1_3 pin)
		bit 29 reflects GPIO_PSC1_2 (PSC1_2 pin)
		bit 30 reflects GPIO_PSC1_1 (PSC1_1 pin)
		bit 31 reflects GPIO_PSC1_0 (PSC1_0 pin)
Note: T	hese status bits o	perate regardless of the function on the pin.

7.3.2.1.7 GPS GPIO Output-Only Enables Register —MBAR + 0x0B18

Table 7-27. GPS GPIO Output-Only Enables Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R W	_			ETH	ΗR					Res	erved				I2C	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R W								Re	served	I						
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	ETHR	Individual bits to enable each Output Only GPIO pin—all reside on the Ethernet port. bit 0 controls GPIO_ETHO_7 (ETH_7 pin) bit 1 controls GPIO_ETHO_6 (ETH_6 pin) bit 2 controls GPIO_ETHO_5 (ETH_5 pin) bit 3 controls GPIO_ETHO_4 (ETH_4 pin) bit 4 controls GPIO_ETHO_3 (ETH_3 pin) bit 5 controls GPIO_ETHO_2 (ETH_2 pin) bit 6 controls GPIO_ETHO_1 (ETH_1 pin) bit 7 controls GPIO_ETHO_0 (ETH_0 pin) 0 = Disabled for GPIO use (default) 1 = Enabled for GPIO use
8 :11	_	Reserved
12:15	I2C	Individual bits to enable each Output Only GPIO pin—all reside on the I2C ports. bit 12 controls I2C2_CLK (I2C_2 pin) bit 13 controls I2C2_IO (I2C_3 pin) bit 14 controls I2C1_CLK (I2C_0 pin) bit 15 controls I2C1_IO (I2C_1 pin) 0 = Disabled for GPIO use (default) 1 = Enabled for GPIO use This bits can be used to toggle the clock (SCL) and data (SDA) lines of the I2C interface.
16:31	_	Reserved

7.3.2.1.8 GPS GPIO Output-Only Data Value Out Register —MBAR + 0x0B1C

Table 7-28. GPS GPIO Output-Only Data Value Out Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				ETH	HR.					Res	erved				I2C	
W															12C	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	eserved							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	ETHR	Individual bits to control the state of enabled Output Only GPIO pins.
		bit 0 controls GPIO_ETHO_7 (ETH_7 pin)
		bit 1 controls GPIO_ETHO_6 (ETH_6 pin)
		bit 2 controls GPIO_ETHO_5 (ETH_5 pin)
		bit 3 controls GPIO_ETHO_4 (ETH_4 pin)
		bit 4 controls GPIO_ETHO_3 (ETH_3 pin)
		bit 5 controls GPIO_ETHO_2 (ETH_2 pin)
		bit 6 controls GPIO_ETHO_1 (ETH_1 pin)
		bit 7 controls GPIO_ETHO_0 (ETH_0 pin)
		0 = Drive 0 on the pin (default)
		1 = Drive 1 on the pin
8 :11	_	Reserved
12:15	I2C	Individual bits to control the state of enabled Output Only GPIO pins — all reside on the I2C ports.
		bit 12 controls I2C2_CLK (I2C_2 pin)
		bit 13 controls I2C2_IO (I2C_3 pin)
		bit 14 controls I2C1_CLK (I2C_0 pin)
		bit 15 controls I2C1_IO (I2C_1 pin)
		0 = Drive 0 on the pin (default)
		1 = Drive 1 on the pin
		This bits can be used to toggle the clock (SCL) and data (SDA) lines of the I2C interface.
16:31	_	Reserved

7.3.2.1.9 GPS GPIO Simple Interrupt Enable Register—MBAR + 0x0B20

Table 7-29. GPS GPIO Simple Interrupt Enables Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				SIGP	IOe							Res	erved			
W	-															
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	SIGPIOE	Individual bits to enable each Interrupt GPIO pin (pins are scattered).
		bit 0 controls GPIO_SINT_7 (ETH_16 pin)
		bit 1 controls GPIO_SINT_6 (ETH_15 pin)
		bit 2 controls GPIO_SINT_5 (ETH_14 pin)
		bit 3 controls GPIO_SINT_4 (ETH_13 pin)
		bit 4 controls GPIO_SINT_3 (USB1_9 pin)
		bit 5 controls GPIO_SINT_2 (PSC3_8 pin)
		bit 6 controls GPIO_SINT_1 (PSC3_5 pin)
		bit 7 controls GPIO_SINT_0 (PSC3_4 pin)
		0 = disabled for GPIO use (default)
		1 = enabled for GPIO use
8:31	_	Reserved

7.3.2.1.10 GPS GPIO Simple Interrupt Open-Drain Emulation Register —MBAR + 0x0B24

Table 7-30. GPS GPIO Simple Interrupt Open-Drain Emulation Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				SIO	De							Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	SIODe	Individual bits to cause open drain emulation for pins configured as GPIO output.
		bit 0 controls GPIO_SINT_7 (ETH_16 pin)
		bit 1 controls GPIO_SINT_6 (ETH_15 pin)
		bit 2 controls GPIO_SINT_5 (ETH_14 pin)
		bit 3 controls GPIO_SINT_4 (ETH_13 pin)
		bit 4 controls GPIO_SINT_3 (USB1_9 pin)
		bit 5 controls GPIO_SINT_2 (PSC3_8 pin)
		bit 6 controls GPIO_SINT_1 (PSC3_5 pin)
		bit 7 controls GPIO_SINT_0 (PSC3_4 pin)
		0 = Normal CMOS output (default)
		1 = Open Drain emulation (a drive to high creates Hi-Z)
8:31	_	Reserved

7.3.2.1.11 GPS GPIO Simple Interrupt Data Direction Register —MBAR + 0x0B28

Table 7-31. GPS GPIO Simple Interrupt Data Direction Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				SIDI	OR							Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	SIDDR	Individual bits to control direction of the pin as GPIO.
		bit 0 controls GPIO_SINT_7 (ETH_16 pin)
		bit 1 controls GPIO_SINT_6 (ETH_15 pin)
		bit 2 controls GPIO_SINT_5 (ETH_14 pin)
		bit 3 controls GPIO_SINT_4 (ETH_13 pin)
		bit 4 controls GPIO_SINT_3 (USB1_9 pin)
		bit 5 controls GPIO_SINT_2 (PSC3_8 pin)
		bit 6 controls GPIO_SINT_1 (PSC3_5 pin)
		bit 7 controls GPIO_SINT_0 (PSC3_4 pin)
		0 = Pin is Input (default)
		1 = Pin is Output
8:31	_	Reserved

7.3.2.1.12 GPS GPIO Simple Interrupt Data Value Out Register —MBAR + 0x0B2C

Table 7-32. GPS GPIO Simple Interrupt Data Value Out Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				SID	VO							Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	SIDVO	Individual bits to control the state of pins configured as GPIO output.
		bit 0 controls GPIO_SINT_7 (ETH_16 pin)
		bit 1 controls GPIO_SINT_6 (ETH_15 pin)
		bit 2 controls GPIO_SINT_5 (ETH_14 pin)
		bit 3 controls GPIO_SINT_4 (ETH_13 pin)
		bit 4 controls GPIO_SINT_3 (USB1_9 pin)
		bit 5 controls GPIO_SINT_2 (PSC3_8 pin)
		bit 6 controls GPIO_SINT_1 (PSC3_5 pin)
		bit 7 controls GPIO_SINT_0 (PSC3_4 pin)
		0 = Drive 0 on the pin (default)
		1 = Drive 1 on the pin
8:31	_	Reserved

7.3.2.1.13 GPS GPIO Simple Interrupt Interrupt Enable Register —MBAR + 0x0B30

Table 7-33. GPS GPIO Simple Interrupt Interrupt Enable Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				SIIN	ΓΕΝ							Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	SIINTEN	Individual bits to enable Interrupt generation for each GPIO pin configured as an Input.
		bit 0 controls GPIO_SINT_7 (ETH_16 pin)
		bit 1 controls GPIO_SINT_6 (ETH_15 pin)
		bit 2 controls GPIO_SINT_5 (ETH_14 pin)
		bit 3 controls GPIO_SINT_4 (ETH_13 pin)
		bit 4 controls GPIO_SINT_3 (USB1_9 pin)
		bit 5 controls GPIO_SINT_2 (PSC3_8 pin)
		bit 6 controls GPIO_SINT_1 (PSC3_5 pin)
		bit 7 controls GPIO_SINT_0 (PSC3_4 pin)
		0 = Pin cannot generate an Interrupt (default)
		1 = Pin can generate an Interrupt if configured as an Input GPIO
8:31	_	Reserved

Note: See Interrupt Type data in GPS GPIO Simple Interrupt Interrupt Types Register —MBAR + 0x0B34 Register. Also, the Master Interrupt Enable bit must be set in the GPS GPIO Simple Interrupt Master Enable Register —MBAR + 0x0B38 Register, before any Simple Interrupt pin can generate an Interrupt.

7-45

7.3.2.1.14 GPS GPIO Simple Interrupt Interrupt Types Register —MBAR + 0x0B34

Table 7-34. GPS GPIO Simple Interrupt Interrupt Types Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	ITYI	P7	ITY	/P6	ITYP5		ITY	ITYP4		YP3	ITY	/P2	ITY	′P1	ITYP0	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:15	ITYP[0:7]	GPIO Interrupt Type bits for Simple-Interrupt GPIO pin 7.
		ITYP7—bits 0:1 controls GPIO_SINT_7 (ETH_16 pin)
		ITYP6—bits 2:3 controls GPIO_SINT_6 (ETH_15 pin)
		ITYP5—bits 4:5 controls GPIO_SINT_5 (ETH_14 pin)
		ITYP4—bits 6:7 controls GPIO_SINT_4 (ETH_13 pin)
		ITYP3—bits 8:9 controls GPIO_SINT_3 (USB1_9 pin)
		ITYP2—bits 10:11 controls GPIO_SINT_2 (PSC3_8 pin)
		ITYP1—bits 12:13 controls GPIO_SINT_1 (PSC3_5 pin)
		ITYP0—bits 14:15 controls GPIO_SINT_0 (PSC3_4 pin)
		00 = Interrupt on any transition
		01 = Interrupt on rising edge
		10 = Interrupt on falling edge
		11 = Interrupt on pulse (any two transitions)
16:31	_	Reserved

7.3.2.1.15 GPS GPIO Simple Interrupt Master Enable Register —MBAR + 0x0B38

Table 7-35. GPS GPIO Simple Interrupt Master Enable Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
R	Re	eserved	t	ME						Re	eserved							
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb		
R								Re	eserved									
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bit	Name	Description
0:2	_	Reserved
3	ME	GPIO Simple Interrupt Master Enable pin—This pin must be high before any Simple Interrupt pin can generate an interrupt. This bit should remain clear while programming individual interrupts, then set high as a final step. This prevents any spurious interrupt occurring during programming.
4:31	_	Reserved

7.3.2.1.16 GPS GPIO Simple Interrupt Status Register—MBAR + 0x0B3C

Table 7-36. GPS GPIO Simple Interrupt Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R				IST	ΑT				IVAL								
W	rwc	rwc	rwc	rwc	rwc	rwc	rwc	rwc									
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R								Re	served								
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bit	Name	Description
0:7	ISTAT	Interrupt Status—status bit for GPIO Simple interrupt pins 7 to 0, where 1 indicates an interrupt has occurred. Clear bit with a Sticky bit write to 1.
		Bit 0 reflects GPIO_SINT_7 (ETH_16 pin)
		Bit 1 reflects GPIO_SINT_6 (ETH_15 pin)
		Bit 2 reflects GPIO_SINT_5 (ETH_14 pin)
		Bit 3 reflects GPIO_SINT_4 (ETH_13 pin)
		Bit 4 reflects GPIO_SINT_3 (USB1_9 pin)
		Bit 5 reflects GPIO_SINT_2 (PSC3_8 pin)
		Bit 6 reflects GPIO_SINT_1 (PSC3_5 pin)
		Bit 7 reflects GPIO_SINT_0 (PSC3_4 pin)
8:15	IVAL	Input Value—status bit for GPIO Simple Interrupt pins 7 to 0. This is the raw state of the input pin at the time this register is read. It is not latched to the state that caused the Interrupt (if any).
		Bit 8 reflects GPIO_SINT_7 (ETH_16 pin)
		Bit 9 reflects GPIO_SINT_6 (ETH_15 pin)
		Bit 10 reflects GPIO_SINT_5 (ETH_14 pin)
		Bit 11 reflects GPIO_SINT_4 (ETH_13 pin)
		Bit 12 reflects GPIO_SINT_3 (USB1_9 pin)
		Bit 13 reflects GPIO_SINT_2 (PSC3_8 pin)
		Bit 14 reflects GPIO_SINT_1 (PSC3_5 pin)
		Bit 15 reflects GPIO_SINT_0 (PSC3_4 pin)
		IVAL is always available regardless of enable or setting, even if not used as GPIO.
		Writing to this byte has no effect.
16:31	_	Reserved

MPC5200B Users Guide, Rev. 1

7-46 Freescale Semiconductor

7.3.2.2 WakeUp GPIO Registers—MBAR+0x0C00

The WakeUp GPIO Register Set provides GPIO control for the 8 WakeUp GPIO pins. These pins are scattered throughout the pin groups, but are all controlled in this module. It should be noted that WakeUp GPIO can operate as Simple Interrupt GPIO. Because of this, there are separate registers to enable these pins as Wakeup interrupts and/or Simple Interrupts. The distiniction between these two types of interrupts is made according to the powered state of MPC5200B.

- In Deep Sleep mode, the WakeUp Interrupt enables are used.
- In all other modes, the Simple Interrupt enables are used.

In either of the above types of interrupts, we are referring to the WakeUp GPIO and the registers in this module. These are not to be confused with the Simple Interrupt GPIO pins, which are controlled in the previous module, GPIO Standard.

This WakeUp GPIO register set uses 10 32-bit registers. These registers are located at an offset from MBAR of 0x0C00. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x0C00 + register address

Hyperlinks to the WakeUp GPIO registers are provided below:

•	GPW WakeUp GPIO Enables Register (0x0C00)	•	GPW WakeUp GPIO Individual Interrupt Enable Register (0x0C14)
•	GPW WakeUp GPIO Open Drain Emulation Register (0x0C04)	•	GPW WakeUp GPIO Interrupt Types Register (0x0C18)
•	GPW WakeUp GPIO Data Direction Register (0x0C08)	•	GPW WakeUp GPIO Master Enables Register (0x0C1C)
•	GPW WakeUp GPIO Data Value Out Register (0x0C0C)	•	GPW WakeUp GPIO Data Input Values Register (0x0C20)
•	GPW WakeUp GPIO Interrupt Enable Register (0x0C10)	•	GPW WakeUp GPIO Status Register (0x0C24)

7.3.2.2.1 GPW WakeUp GPIO Enables Register—MBAR + 0x0C00

Table 7-37. GPW WakeUp GPIO Enables Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				WGP	lOe							Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	WGPIOe	Bits to enable the operation of individual WaleUp GPIO pins.
		Bit 0 controls GPIO_WKUP_7 (GPIO_WKUP_7 pin)
		Bit 1 controls GPIO_WKUP_6 (GPIO_WKUP_6 pin)
		Bit 2 controls GPIO_WKUP_5 (PSC6_1 pin)
		Bit 3 controls GPIO_WKUP_4 (PSC6_0 pin)
		Bit 4 controls GPIO_WKUP_3 (ETH_17 pin)
		Bit 5 controls GPIO_WKUP_2 (PSC3_9 pin)
		Bit 6 controls GPIO_WKUP_1 (PSC2_4 pin)
		Bit 7 controls GPIO_WKUP_0 (PSC1_4 pin)
		0 = Pin not enabled for any GPIO use (default).
		1 = Pin enabled for use as GPIO.
8:31	_	Reserved

MPC5200B Users Guide, Rev. 1

7.3.2.2.2 GPW WakeUp GPIO Open Drain Emulation Register —MBAR + 0x0C04

Table 7-38. GPW WakeUp GPIO Open Drain Emulation Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				WO	De							Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	WODe	Bits to control open drain emulation for individual WakeUp GPIO configured as outputs.
		Bit 0 controls GPIO_WKUP_7 (GPIO_WKUP_7 pin)
		Bit 1 controls GPIO_WKUP_6 (GPIO_WKUP_6 pin)
		Bit 2 controls GPIO_WKUP_5 (PSC6_1 pin)
		Bit 3 controls GPIO_WKUP_4 (PSC6_0 pin)
		Bit 4 controls GPIO_WKUP_3 (ETH_17 pin)
		Bit 5 controls GPIO_WKUP_2 (PSC3_9 pin)
		Bit 6 controls GPIO_WKUP_1 (PSC2_4 pin)
		Bit 7 controls GPIO_WKUP_0 (PSC1_4 pin)
		0 = Normal CMOS output (default).
		1 = Open Drain emulation (a drive to high creates Hi-Z).
8:31	_	Reserved

7.3.2.2.3 GPW WakeUp GPIO Data Direction Register—MBAR + 0x0C08

Table 7-39. GPW WakeUp GPIO Data Direction Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				WDDR	[7:0]							Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	eserved							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	WDDR[7:0]	Individual bits to control directionality of the pin as GPIO.
		Bit 0 controls GPIO_WKUP_7 (GPIO_WKUP_7 pin)
		Bit 1 controls GPIO_WKUP_6 (GPIO_WKUP_6 pin)
		Bit 2 controls GPIO_WKUP_5 (PSC6_1 pin)
		Bit 3 controls GPIO_WKUP_4 (PSC6_0 pin)
		Bit 4 controls GPIO_WKUP_3 (ETH_17 pin)
		Bit 5 controls GPIO_WKUP_2 (PSC3_9 pin)
		Bit 6 controls GPIO_WKUP_1 (PSC2_4 pin)
		Bit 7 controls GPIO_WKUP_0 (PSC1_4 pin)
		0 = Pin is Input (default).
		1 = Pin is Output.
8:31	_	Reserved

7.3.2.2.4 GPW WakeUp GPIO Data Value Out Register —MBAR + 0x0C0C

Table 7-40. GPW WakeUp GPIO Data Value Out Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
R				WD	VO				Reserved									
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb		
R								Re	eserved									
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bit	Name	Description
0:7	WDVO	Individual bits to control the state of pins configured as GPIO output.
		Bit 0 controls GPIO_WKUP_7 (GPIO_WKUP_7 pin)
		Bit 1 controls GPIO_WKUP_6 (GPIO_WKUP_6 pin)
		Bit 2 controls GPIO_WKUP_5 (PSC6_1 pin)
		Bit 3 controls GPIO_WKUP_4 (PSC6_0 pin)
		Bit 4 controls GPIO_WKUP_3 (ETH_17 pin)
		Bit 5 controls GPIO_WKUP_2 (PSC3_9 pin)
		Bit 6 controls GPIO_WKUP_1 (PSC2_4 pin)
		Bit 7 controls GPIO_WKUP_0 (PSC1_4 pin)
		0 = Drive 0 on the pin (default).
		1 = Drive 1 on the pin.
		Note: If pin is emulating open drain, this setting results in Hi-Z
8:31	_	Reserved

7.3.2.2.5 GPW WakeUp GPIO Interrupt Enable Register—MBAR + 0x0C10

Table 7-41. GPW WakeUp GPIO Interrupt Enable Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
R				WU	Pe				Reserved									
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb		
R								Re	served									
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bit	Name	Description
0:7	WUPe	Individual bits to enable generation of WakeUp interrupt for WakeUp GPIO configured as
		input.
		Bit 0 controls GPIO_WKUP_7 (GPIO_WKUP_7 pin)
		Bit 1 controls GPIO_WKUP_6 (GPIO_WKUP_6 pin)
		Bit 2 controls GPIO_WKUP_5 (PSC6_1 pin)
		Bit 3 controls GPIO_WKUP_4 (PSC6_0 pin)
		Bit 4 controls GPIO_WKUP_3 (ETH_17 pin)
		Bit 5 controls GPIO_WKUP_2 (PSC3_9 pin)
		Bit 6 controls GPIO_WKUP_1 (PSC2_4 pin)
		Bit 7 controls GPIO_WKUP_0 (PSC1_4 pin)
		0 = Pin cannot generate WakeUp Interrupt (default).
		1 = Pin can generate WakeUp Interrupt while MPC5200B is in Deep Sleep mode.
		Note: These enable bits apply ONLY when MPC5200B is in Deep Sleep mode.
8:31	_	Reserved

Note: Only valid when Port Configuration indicates GPIO usage and pin is configured as input in the associated DDR bit in GPIOWDO. Also, Master Interrupt Enable bit in GPIOWME must be set.

7.3.2.2.6 GPW WakeUp GPIO Individual Interrupt Enable Register —MBAR + 0x0C14

Table 7-42. GPW WakeUp GPIO Individual Interrupt Enable Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
R				NIM	le				Reserved									
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb		
R								Re	served									
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

MPC5200B Users Guide, Rev. 1

7-50 Freescale Semiconductor

Bit	Name	Description
0:7	WINe	Individual bits to enable generation of Simple interrupt for WakeUp GPIO configured as
		input.
		Bit 0 controls GPIO_WKUP_7 (GPIO_WKUP_7 pin)
		Bit 1 controls GPIO_WKUP_6 (GPIO_WKUP_6 pin)
		Bit 2 controls GPIO_WKUP_5 (PSC6_1 pin)
		Bit 3 controls GPIO_WKUP_4 (PSC6_0 pin)
		Bit 4 controls GPIO_WKUP_3 (ETH_17 pin)
		Bit 5 controls GPIO_WKUP_2 (PSC3_9 pin)
		Bit 6 controls GPIO_WKUP_1 (PSC2_4 pin)
		Bit 7 controls GPIO_WKUP_0 (PSC1_4 pin)
		0 = Pin cannot generate Simple Interrupt (default).
		1 = Pin can generate Simple Interrupt while MPC5200B is not in Deep Sleep mode.
		Note: These enable bits apply only when MPC5200B is not in Deep Sleep mode.
8:31	_	Reserved

Note: Only valid when Port Configuration indicates GPIO usage and pin is configured as input in the associated DDR bit in GPIOWDO. Also, Master Interrupt Enable bit in GPIOWME must be set.

7.3.2.2.7 GPW WakeUp GPIO Interrupt Types Register—MBAR + 0x0C18

Table 7-43. GPW WakeUp GPIO Interrupt Types Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Ityp	Ityp7		rp6	Ity	Ityp5		Ityp4		Ityp3		p2	ltyp7		ltyp0	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:1	ltyp7	GPIO Interrupt Type bits for WakeUp GPIO pins 7–0
2:3	ltyp6	00=Interrupt at any transition
4:5	ltyp5	O1=Interrupt on rising edge
6:7	Ityp4	10=Interrupt on falling edge
		11=Interrupt on pulse (any 2 transitions)
8:9	ltyp3	The above interrupt types describe operation for interrupts occuring while MPC5200B is
10:11	ltyp2	not in Deep Sleep mode (i.e., Simple Interrupt types). For operation while in Deep Sleep mode the interpretation of these bits is slightly different, because no clocking is present in
12:13	ltyp1	this mode and it is therefore impossible to detect an edge on the input. For Deep Sleep mode the bits are interpretted as follows:
14:15	ltyp0	00 = Not Valid, no interrupt can be detected
		01 = Level High, any high creates WakeUp from Deep Sleep
		10 = Level Low, any low creates WakeUp from Deep Sleep
		11 = Not Valid, no interrupt can be detected.
		ITYP7 controls GPIO_WKUP_7 (GPIO_WKUP_7 pin)
		ITYP6 controls GPIO_WKUP_6 (GPIO_WKUP_6 pin)
		ITYP5 controls GPIO_WKUP_5 (PSC6_1 pin)
		ITYP4 controls GPIO_WKUP_4 (PSC6_0 pin)
		ITYP3 controls GPIO_WKUP_3 (ETH_17 pin)
		ITYP2 controls GPIO_WKUP_2 (PSC3_9 pin)
		ITYP1 controls GPIO_WKUP_1 (PSC2_4 pin)
		ITYP0 controls GPIO_WKUP_0 (PSC1_4 pin)
		Note: Any GPIO WakeUp interrupt creates a Main Level 2 interrupt in the Interrupt Controller.
16:31		Reserved

7.3.2.2.8 GPW WakeUp GPIO Master Enables Register —MBAR + 0x0C1C

Table 7-44. GPW WakeUp GPIO Master Enables Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R			Re	eserve	t			ME	Reserved								
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R								Re	served								
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bit	Name	Description
0:6	_	Reserved
7	ME	WakeUp GPIO Master Enable pin. This pin must be high before any WakeUp GPIO pin can generate an interrupt. This bit should remain clear while programming individual interrupts and then set high as a final step. This prevents any spurious interrupt occuring during programming.
8:31	_	Reserved

7.3.2.2.9 GPW WakeUp GPIO Data Input Values Register —MBAR + 0x0C20

Table 7-45. GPW WakeUp GPIO Data Input Values Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				WIV	AL							Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	WIVAL	Input Value bits for GPIO WakeUp pins 7–0. This is the raw state of the input pin at the time this register is read. It is not latched to the state that caused the interrupt (if any).
		This status bit is always available, regardless of any enable or setting. For example, even if the pin is not used as GPIO.
		Writing to this byte has no effect.
		Bit 0 reflects GPIO_WKUP_7 (GPIO_WKUP_7 pin)
		Bit 1 reflects GPIO_WKUP_6 (GPIO_WKUP_6 pin)
		Bit 2 reflects GPIO_WKUP_5 (PSC6_1 pin)
		Bit 3 reflects GPIO_WKUP_4 (PSC6_0 pin)
		Bit 4 reflects GPIO_WKUP_3 (ETH_17 pin)
		Bit 5 reflects GPIO_WKUP_2 (PSC3_9 pin)
		Bit 6 reflects GPIO_WKUP_1 (PSC2_4 pin)
		Bit 7 reflects GPIO_WKUP_0 (PSC1_4 pin)
8:31	_	Reserved

7.3.2.2.10 GPW WakeUp GPIO Status Register—MBAR + 0x0C24

Table 7-46. GPW WakeUp GPIO Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				Ista	at				Reserved							
W	rwc	rwc	rwc	rwc	rwc	rwc	rwc	rwc								
RESET:	1	1	1	1	1	1	1	1	0	0	0	0	0	1	1	1
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	Istat	Interrupt status bits for GPIO WakeUp pins 7–0.
		1 indicates an interrupt occurred. Cleared with a sticky-bit write to a 1 to clear the interrupt condition.
		Bit 0 reflects interrupt on GPIO_WKUP_7 (GPIO_WKUP_7 pin)
		Bit 1 reflects interrupt on GPIO_WKUP_6 (GPIO_WKUP_6 pin)
		Bit 2 reflects interrupt on GPIO_WKUP_5 (PSC6_1 pin)
		Bit 3 reflects interrupt on GPIO_WKUP_4 (PSC6_0 pin)
		Bit 4 reflects interrupt on GPIO_WKUP_3 (ETH_17 pin)
		Bit 5 reflects interrupt on GPIO_WKUP_2 (PSC3_9 pin)
		Bit 6 reflects interrupt on GPIO_WKUP_1 (PSC2_4 pin)
		Bit 7 reflects interrupt on GPIO_WKUP_0 (PSC1_4 pin)
8:31	_	Reserved

7.4 General Purpose Timers (GPT)

Eight (8) General-Purpose Timer (GPT) pins are configurable for:

- · Input Capture
- Output Compare
- Pulse Width Modulation (PWM) Output
- Simple GPIO
- · Internal CPU timer
- Watchdog Timer (on GPT0 only)

Timer modules run off the internal IP bus clock. Each Timer is associated to a single I/O pin. Each Timer has a 16-bit prescaler and 16-bit counter, thus achieving a 32-bit range (but only 16-bit resolution).

7.4.1 Timer Configuration Method

Use the following method to configure each timer:

- 1. Determine the Mode Select field (Timer MS) value for the desired operation.
- 2. Program any other registers associated with this mode.
- 3. Program Interrupt enable as desired.
- 4. Enable the Timer by writing the Mode Select value into the Timer MS field.

7.4.2 Mode Overview

The following gives a brief description of the available modes:

- 1. **Input Capture**—In this mode the I/O pin is an Input. Once enabled, the counters run until the specified "Capture Event" occurs (rise, fall, either, or pulse). At the Capture Event, the counter value is latched in the status register. If enabled, a CPU interrupt is generated. The GP Timers 6 & 7 are active during low power modes (except for deep sleep), and therefore have the ability to initiate a wake up the device from a low-power mode.
- Output Compare—In this mode the I/O pin is an Output. When enabled the counters run until they reach the programmed
 Terminal Count value. At this point, the specified "Output Event" is generated (toggle, pulse hi, or pulse low). If enabled, a CPU
 interrupt is generated.
- 3. **PWM**—In this mode the I/O pin is an Output. The user can program "Period" and "Width" values to create an adjustable, repeating output waveform on the I/O pin. A CPU interrupt can be generated at the beginning of each PWM Period, at which time a new Width value can be loaded. The new Width value, which represents "ON time", is automatically applied at the beginning of the **next** period. Note that there is no interrupt at the beginning of the first PWM Period. This mode is suitable for PWM audio encoding.
- 4. **Simple GPIO**—In this mode the I/O pin operates as a GPIO pin. It can be specified as Input or Output, according to the programmable GPIO field. GPIO mode is mutually exclusive of modes 1 through 3 (listed above). In GPIO mode, modes 5 through 6 (listed below) remain available.
- 5. **CPU Timer**—The I/O pin is not used in this mode. Once enabled, the counters run until they reach a programmed Terminal Count. When this occurs, an interrupt can be generated to the CPU. This Timer mode can be used simultaneously with the Simple GPIO mode.
- 6. **Watchdog Timer**—This is a special CPU Timer mode, available only on Timer 0. The user must enable the Watchdog Timer mode, which is not active upon reset. The Terminal Count value is programmable. If the counter is allowed to expire, a full MPC5200B reset occurs. To prevent the Watchdog Timer from expiring, software must periodically write a specific value to a specific register (in Timer 0). This causes the counter to reset.

7.4.3 Programming Notes

Programmers should observe the following notes:

- 1. Intermediate values of the Timer internal counters are **not** readable by software.
- 2. The Stop_Cont bit operates differently for different modes. In general, this bit controls whether the Timer halts at the end of a current mode, or resets and continues with a repetition of the mode. See the Bit Description for precise operation.
- 3. The Timer_MS field operates somewhat as a Global Enable. If it is zero, then all Timer modes are disabled and internal counters are reset. See the Bit Descriptions for more detail.
- 4. There is a CE (Counter Enable) bit that operates somewhat independently of the Timer_MS field. This bit controls the Counter for CPU Timer or Watchdog Timer modes only. See the Bit Descriptions to understand the operation of these bits across the various modes.

7.4.4 GPT Registers—MBAR + 0x0600

Each GPT uses 4 32-bit registers. These registers are located at an offset from MBAR of 0x0600. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x0600 + register address

Hyperlinks to the Interrupt Controller registers are provided below:

- GPT 0 Enable and Mode Select Register (0x0600)
- GPT 1 Enable and Mode Select Register (0x0610)
- GPT 2 Enable and Mode Select Register (0x0620)
- GPT 3 Enable and Mode Select Register (0x0630)
- GPT 4 Enable and Mode Select Register (0x0640)
- GPT 5 Enable and Mode Select Register (0x0650)
- GPT 6 Enable and Mode Select Register (0x0660)
- GPT 7 Enable and Mode Select Register (0x0670)
- GPT 0 Counter Input Register (0x0604)
- GPT 1 Counter Input Register (0x0614)
- GPT 2 Counter Input Register (0x0624)
- GPT 3 Counter Input Register (0x0634)
- GPT 4 Counter Input Register (0x0644)
- GPT 5 Counter Input Register (0x0654)
- GPT 6 Counter Input Register (0x0664)
- GPT 7 Counter Input Register (0x0674)

- GPT 0 PWM Configuration Register (0x0608)
- GPT 1 PWM Configuration Register (0x0618)
- GPT 2 PWM Configuration Register (0x0628)
- GPT 3 PWM Configuration Register (0x0638)
- GPT 4 PWM Configuration Register (0x0648)
- GPT 5 PWM Configuration Register (0x0658)
- GPT 6 PWM Configuration Register (0x0668)
- GPT 7 PWM Configuration Register (0x0678)
- GPT 0 Status Register (0x060C)
- GPT 1 Status Register (0x061C)
- GPT 2 Status Register (0x062C)
- GPT 3 Status Register (0x063C)
- GPT 4 Status Register (0x064C)
- GPT 5 Status Register (0x065C)
- GPT 6 Status Register (0x066C)
- GPT 7 Status Register (0x067C)

7.4.4.1 GPT 0 Enable and Mode Select Register—MBAR + 0x0600

GPT 1 Enable and Mode Select Register—MBAR + 0x0610

GPT 2 Enable and Mode Select Register—MBAR + 0x0620

GPT 3 Enable and Mode Select Register—MBAR + 0x0630

GPT 4 Enable and Mode Select Register—MBAR + 0x0640

GPT 5 Enable and Mode Select Register—MBAR + 0x0650

GPT 6 Enable and Mode Select Register—MBAR + 0x0660

GPT 7 Enable and Mode Select Register—MBAR + 0x0670

Table 7-47. GPT 0 Enable and Mode Select Register

GPT 1 Enable and Mode Select Register

GPT 2 Enable and Mode Select Register

GPT 3 Enable and Mode Select Register

GPT 4 Enable and Mode Select Register

GPT 5 Enable and Mode Select Register

GPT 6 Enable and Mode Select Register

GPT 7 Enable and Mode Select Register

												•				
	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				OCI	PW				Res	erved	00	СТ	Rese	rved	10	CT
W																
RESET :	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	WDen	Rese	erved	CE	Rsvd	Cont	Drn	IntEn	Res	erved	GF	PIO	Rsvd	,	Timer_N	ИS
W						Stop_	Open_Drn									
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

7-56 Freescale Semiconductor

Bit	Name	Description
0:7	OCPW	Output Compare Pulse Width—Applies to OC Pulse types only. This field specifies the number of IP bus clocks (non-prescaled) to create a short output pulse at each Output Event. This pulse is generated at the end of the OC period and overlays the next OC period (rather than adding to the period). Note: This field is alternately used as the Watchdog reset field if Watchdog Timer mode is enabled.
8:9		Reserved
10:11	ОСТ	Output Compare Type—describes action to occur at each output compare event, as follows:
		00=Special case, output is immediately forced low without respect to each output compare event. 01=Output pulse highs, initial value is low (OCPW field applies).
		10=Output pulses low, initial value is high (OCPW field applies).
		11=Output toggles.
		GPIO modalities can be used to achieve an initial output state prior to enabling OC mode. It is important to move directly from GPIO output mode to OC mode and not to pass through the Timer_MS=000 state.
		To prevent the Internal Timer Mode from engaging during the GPIO state, CE bit should be held low during the configuration steps.
		GPIO initialization is needed when presetting the I/O to 1 in conjunction with a simple toggle OCT setting.
		Note: For Stop Mode operation (see Stop_Cont bit below) it is necessary to pass through the mode_sel = 0 state to restart the output compare counters with their programmed values. See prescale and count fields in GPT 0 Counter Input Register.
12:13	_	Reserved
14:15	ICT	Input Capture Type—describes the input transition type required to trigger an input capture event, as follows:
		00=Any input transition causes an IC event.
		01=IC event occurs at input rising edge.
		10=IC event occurs at input falling edge.
		11=IC event occurs at any input pulse (i.e., at 2nd input edge).
		BE AWARE: For ICT=11 (pulse capture), status register records only the pulse width.
16	WDen	Watchdog enable—bit enables watchdog operation. A timer expiration causes an internal MPC5200B reset. Watchdog operation requires the Timer_MS field be set for internal timer mode and the CE bit to be set high.
		In this mode the OCPW byte field operates as a watchdog reset field. Writing A5 to the OCPW field resets the watchdog timer, preventing it from expiring. As long as the timer is properly configured, the watchdog operation continues.
		This bit (and functionality) is implemented only for Timer 0. 1 = enabled
17:18	_	Reserved
19	CE	Counter Enable—bit enables or resets the internal counter during Internal timer modes only. CE must be high to enable these modes. If low, counter is held in reset.
		This bit is secondary to the timer mode select bits (Timer_MS). If Timer_MS is1XX, internal timer modes are enabled. CE can then enable or reset the internal counter without changing the Timer_MS field.
		GPIO operation is also available in this mode. 1 = enabled
20	_	Reserved

General Purpose Timers (GPT)

Bit	Name	Description
21	Stop_Cont	Stop Continuous—Applies to multiple modes, as follows: 0 = Stop 1 = Continuous IC mode Stop operation—At each IC event, counter is reset. Continuous operation—counter is not reset at each IC event. Effect is to create Status count values that are cumulative between Capture events. If the special Pulse Mode Capture type is specified, the Stop_Cont bit is not used, operation fixed as if it were Stop. OC mode Stop operation—Counter resets and stops at first OC event. Note: Software needs to pass through Timer_MS=000 state to restart timer. Continuous operation—counter resets and continues at each OC event. Effect to is create back-to-back periodic OC events. BE AWARE—In this mode the polarity of Stop_cont is reversed. Also, in Stop Mode, the output event falsely retriggers at the expiration of the prescale count. This means the software has to service and output event prior to the prescale expiring. Service is defined as programming mode_sel field to 0, which causes the programmed prescale and count values to be reset. PWM mode Bit not used, operation is always Continuous. CPU Timer mode Stop operation—On counter expiration, Timer waits until Status bit is cleared by passing through Timer_MS=000 state before beginning a new cycle. Continuous operation—On counter expiration, Timer resets and immediately begin a new cycle. Effect is to generate fixed periodic timeouts. WatchDog Timer and GPIO modes Bit not used.
22	Open_Drn	Open Drain 0 = Normal I/O 1 = Open Drain emulation—affects all modes that drive the I/O pin (GPIO, OC, & PWM). Any output "1" is converted to a tri-state at the I/O pin.
23	IntEn	Enable interrupt—enables interrupt generation to the CPU for all modes (IC, OC, PWM, and Internal Timer). IntEn is not required for watchdog expiration to create a reset. 1 = enabled
24:25	_	Reserved
26:27	GPIO	GPIO mode type. Simple GPIO functionality that can be used simultaneously with the Internal Timer mode. It is not compatible with IC, OC, or PWM modes, since these modes dictate the usage of the I/O pin. 0x=Timer enabled as simple GPIO input 10=Timer enabled as simple GPIO output, value=0
		11=Timer enabled as simple GPIO output, value=1 (tri-state if Open_Drn=1) While in GPIO modes, internal timer mode is also available. To prevent undesired timer expiration, keep the CE bit low.

7-58

Bit	Name	Description
28	_	Reserved
29:31	Timer_MS	Timer Mode Select (and module enable).
		000=Timer module not enabled. Associated I/O pin is in input state. All Timer operation is completely disabled. Control and status registers are still accessible. This mode should be entered when timer is to be re-configured, except where the user does not want the I/O pin to become an input.
		001=Timer enabled for input capture.
		010=Timer enabled for output compare.
		011=Timer enabled for PWM.
		1xx=timer enabled for simple GPIO. Internal timer modes available. CE bit controls timer counter.

7.4.4.2 GPT 0 Counter Input Register—MBAR + 0x0604

GPT 1 Counter Input Register—MBAR + 0x0614

GPT 2 Counter Input Register—MBAR + 0x0624

GPT 3 Counter Input Register—MBAR + 0x0634

GPT 4 Counter Input Register—MBAR + 0x0644

GPT 5 Counter Input Register—MBAR + 0x0654

GPT 6 Counter Input Register—MBAR + 0x0664

GPT 7 Counter Input Register—MBAR + 0x0674

Table 7-48. GPT 0 Counter Input Register

GPT 1 Counter Input Register

GPT 2 Counter Input Register

GPT 3 Counter Input Register

GPT 4 Counter Input Register

GPT 5 Counter Input Register

GPT 6 Counter Input Register

GPT 7 Counter Input Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Pı	rescale							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								(Count							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

General Purpose Timers (GPT)

RESET:

Bit	Name	Description
0:15	Prescale	Prescale amount applied to internal counter (in IP bus clocks).
		BE AWARE—The prescale field should be written prior to enabling any timer mode. A prescale of 0x0001 means one IP bus clock per count increment. If prescale is 0 when any timer mode is started, it results in an effective prescale of 64K. The counter will immediately begin and an output event will occur with the 64K prescale, rather than the desired value.
16:31	COUNT	Sets number of prescaled counts applied to reference events, as follows:
		IC—Field has no effect, internal counter starts at 0.
		OC—Number of prescaled counts counted before creating output event.
		PWM—Number of prescaled counts defining the PWM output period.
		Internal Timer—Number of prescaled counts counted before timer (or watchdog) expires.
		Note: Reading this register only returns the programmed value, intermediate values of the internal counter are not available to software.

7.4.4.3 GPT 0 PWM Configuration Register—MBAR + 0x0608

GPT 1 PWM Configuration Register—MBAR + 0x0618

GPT 2 PWM Configuration Register—MBAR + 0x0628

GPT 3 PWM Configuration Register—MBAR + 0x0638

GPT 4 PWM Configuration Register—MBAR + 0x0648

GPT 5 PWM Configuration Register—MBAR + 0x0658

GPT 6 PWM Configuration Register—MBAR + 0x0668

GPT 7 PWM Configuration Register—MBAR + 0x0678

Table 7-49. GPT 0 PWM Configuration Register

GPT 1 PWM Configuration Register

GPT 2 PWM Configuration Register

GPT 3 PWM Configuration Register

GPT 4 PWM Configuration Register

GPT 5 PWM Configuration Register

GPT 6 PWM Configuration Register

GPT 7 PWM Configuration Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								WID	ГН							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R			R	eserve	d			PWMOP			F	leserve	t			LOAD
W																

Bit	Name	Description
0:15	WIDTH	PWM only. Defines ON time for output in prescaled counts. Similar to count value, which defines the period. ON time overlays the period time. If WIDTH = 0, output is always OFF. If WIDTH exceeds count value, output is always ON. ON and OFF polarity is set by the PWMOP bit.
16:22	_	Reserved

7-60 Freescale Semiconductor

Bit	Name	Description
23	PWMOP	Pulse Width Mode Output Polarity—Defines PWM output polarity for OFF time. Opposite state is ON time polarity. PWM cycles begin with ON time.
24:30	_	Reserved
31	LOAD	Bit forces immediate period update. Bit auto clears itself. A new period begins immediately with the current count and width settings.
		If LOAD = 0, new count or width settings are not updated until end of current period.
		Note: Prescale setting is not part of this process. Changing prescale value while PWM is active causes unpredictable results for the period in which it was changed. The same is true for PWMOP bit.

7.4.4.4 GPT 0 Status Register—MBAR + 0x060C

GPT 1 Status Register—MBAR + 0x061C

GPT 2 Status Register—MBAR + 0x062C

GPT 3 Status Register—MBAR + 0x063C

GPT 4 Status Register—MBAR + 0x064C

GPT 5 Status Register—MBAR + 0x065C

GPT 6 Status Register—MBAR + 0x066C

GPT 7 Status Register—MBAR + 0x067C

This is a read-only register.

Table 7-50. GPT 0 Status Register

GPT 1 Status Register

GPT 2 Status Register

GPT 3 Status Register

GPT 4 Status Register

GPT 5 Status Register

GPT 6 Status Register

GPT 7 Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								C	APTUR	E						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Rsvd		OVF		F	Reserve	ed	PIN		Rese	erved		TEXP	PWMP	COMP	CAFT
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:15	Capture	Read of internal counter, latch at reference event. This is pertinent only in IC mode, in which case it represents the count value at the time the Input Event occurred. Capture status does not shadow the internal counter while an event is pending, it is updated only at the time the Input Event occurs.
		Note: If ICT is set to 11, which is Pulse Capture Mode, the Capture value records the width of the pulse. Also, the Stop_Cont bit is irrelevant in Pulse Capture Mode, operation is as if Stop_Cont were 0.
16	_	Reserved

Slice Timers

Bit	Name	Description
17:19	OVF	Represents how many times internal counter has rolled over. This is pertinent only during IC mode and would represent an extremely long period of time between Input Events. However, if Stop_Cont = 1 (indicating cumulative reporting of Input Events), this field could come into play. Note: This field is cleared by any "sticky bit" status write in the 4 bit fields below (28, 29, 30, 31).
20:22	_	Reserved
23	PIN	Registered state of the I/O PIN (all modes). The IP bus Clock registers the state of the I/O input. Valid, even if Timer is not enabled.
24:27	_	Reserved
28	TEXP	Timer Expired in Internal Timer mode. Cleared by writing 1 to this bit position. Also cleared if Timer_MS is 000 (i.e., Timer not enabled). See Note.
29	PWMP	PWM end of period occurred. Cleared by writing 1 to this bit position. Also cleared if Timer_MS is 000 (i.e., Timer not enabled). See Note.
30	COMP	OC reference event occurred. Cleared by writing 1 to this bit position. Also cleared if Timer_MS is 000 (i.e., Timer not enabled). See Note.
31	CAPT	IC reference event occurred. Cleared by writing 1 to this bit position. Also cleared if Timer_MS is 000 (i.e., Timer not enabled). See Note.
Note: T	o clear any	of these bits, it is necessary to clear all of them. An F must be written to bits 28:31.

7.5 Slice Timers

Two Slice Timers are included to provide shorter term periodic interrupts. Each timer consists of a 24-bit counter with **no** prescale. Running off the IP bus clock, each timer can generate interrupts from 7.75 uS to 508 mS in 30 nS steps (based on 33 MHz IP bus clock). The counters count up from zero and expire/interrupt when they reach the programmed terminal count. They can be configured to automatically reset to zero and resume counting or wait until the Status/Interrupt is serviced before beginning a new cycle.

The current count value can be read without disturbing the count operation. Each Slice Timer has a Status bit to indicate the Timer has expired. If enabled, a CPU interrupt is generated at count expiration. Each Timer has a separate Interrupt. Slice Timer 0 represents CPU interrupt Critical Level 2 and Slice Timer 1 represents Main Level 0 (which is hardwired to the core_smi pin). Clearing the Status and/or Interrupt is accomplished by writing 1 to the Status bit, or disabling the Timer entirely with the Timer Enable (TE) bit.

As a safety, the Timer does not count until a Terminal Count value of greater than 255 is programmed into it. Also, writing a Terminal Count value of 0 is converted to all 1s, resulting in a maximum duration timeout.

7.5.1 SLT Registers—MBAR + 0x0700

There are two SLT Timers. Each one uses four 32-bit registers. These registers are located at an offset from MBAR of 0x0700. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x0700 + register address

Hyperlinks to the Interrupt Controller registers are provided below:

- SLT 0 Terminal Count Register (0x0700)
- SLT 1 Terminal Count Register (0x0710)
- SLT 0 Control Register (0x0704)
- SLT 1 Control Register (0x0714)
- SLT 0 Count Value Register (0x0708) Read Only
- SLT 1 Count Value Register (0x0718) Read Only
- SLT 0 Timer Status Register (0x070C) Read Only
- SLT 1 Timer Status Register (0x071C) Read Only

7.5.1.1 SLT 0 Terminal Count Register—MBAR + 0x0700 SLT 1 Terminal Count Register—MBAR + 0x0710

Table 7-51. SLT 0 Terminal Count Register SLT 1 Terminal Count Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				Rese	rved							Termina	al Coun	t		
W																
RESET:	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Term	inal Cou	unt						
W																
RESET:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit	Name	Description
0:7	_	Reserved
8:31	Terminal	The user programs this register to set the Terminal Count value to be used by the Timer.
	Count	This register can be updated even if the Timer is running, the new value takes effect immediately. The internal counter is compared to this register to determine if Terminal Count has been reached.
		Note: The Timer will not begin counting until a value greater than 255 is programmed into the Terminal Count Register. A value less than 255 will essentially suspend the Timer.
		Writing a value of zero to this register is considered invalid and will be converted to all ones, creating a maximum duration count period.
		Defaults at reset: TerminalCount will default to all ones, all other control bits willn default to zero.

7.5.1.2 SLT 0 Control Register—MBAR + 0x0704 SLT 1 Control Register—MBAR + 0x0714

Table 7-52. SLT 0 Control Register SLT 1 Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Re	eserved	ł		Wait	pt e	r e				Rese	erved			
W						Run_M	Interrupt Enable	Timer Enable								
						Œ										
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
DESET.	0	0	٥	٥	0	٥	٥	Λ	٥	Λ	٥	٥	٥	Λ	٥	0

Slice Timers

Bit	Name	Description
0:4	_	Reserved
5	Run_ Wait	A high indicates the Timer should run continuously while enabled. When the Timer counter reaches terminal count it immediately resets to 0 and resumes counting. If the Run/Wait bit is set low, the Timer Counter expires, but then waits until the Timer is cleared (either by writing 1 to the status bit or by disabling and re-enabling the Timer), before resuming operation.
6	Interrupt Enable	CPU Interrupt is generated only if this bit is high. This bit does not affect operation of the Timer Counter or Status Bit registers.
7	Timer Enable	While this bit is high the Timer operates normally, while low the Timer is reset and remains idle.
8:32	_	Reserved

7.5.1.3 SLT 0 Count Value Register—MBAR + 0x0708 SLT 1 Count Value Register—MBAR + 0x0718

Table 7-53. SLT 0 Count Value Register SLT 1 Count Value Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				Rese	rved				TimerCount							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Tim	erCoun	t						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	_	Reserved
8:31	Timer Count	Provides current state of the Timer counter. This register does not chodange while a read is in progress, but the actual Timer counter continues unaffected.

7.5.1.4 SLT 0 Timer Status Register—MBAR + 0x070C SLT 1 Timer Status Register—MBAR + 0x071C

Table 7-54. SLT 0 Timer Status Register SLT 1 Timer Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			Re	eservec	ŀ			ST				Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:6	_	Reserved
7	ST	This status bit goes high whenever the Timer has reached Terminal Count. The bit is cleared by writing 1 to its bit position. If Interrupts are enabled, clearing this status bit also clears the interrupt.
8:31	_	Reserved

7.6 Real-Time Clock

The Real-Time Clock (RTC) uses an external 32KHz crystal to provide:

- alarm
- stop-watch
- periodic interrupts
 - minute
 - second
 - midnight rollover(day)

The clock runs as long as power is maintained and the crystal is running, regardless of MPC5200B power-down states.

The RTC module has the following features:

- full clock features
- minute countdown timer—provides 256-minute capability, slightly over 4 hours
- programmable alarm—operates on time of day only, not related to calendar
- periodic interrupts for:
 - 1 second
 - 1 minute
 - 1 day—operates only at midnight rollover
- calendar features:
 - day
 - date
 - year
- Crystal support (32.768KHz only)

RTC registers are writable, letting time and date be updated. If software enabled, RTC operates during all MPC5200B power-down modes. At a reset, control registers are put in a default state such that no interrupts generate until software enabled.

The RTC has two CPU interrupt signals connected to the Interrupt Controller, they are:

- RTC_Periodic, which is Main Level 5 fed by the Day, Minute, or Second sources.
- RTC_Stopwatch, which is Main Level 6 fed by the Alarm or Stopwatch sources.

Real-Time Clock

Periodic interrupts are separately enabled by control bits, and a global enable must be asserted to allow any of the periodic sources to generate a CPU interrupt. Clearing Periodic interrupts is accomplished by writing 1 to the appropriate status bit.

Stopwatch and Alarm interrupts are enabled simply by initiating the function. In the Stopwatch case, this means starting the Stopwatch, in the Alarm case, this means enabling the Alarm. Clearing Stopwatch or Alarm interrupts is accomplished by writing 1 to the appropriate status bit.

Either of the RTC interrupts to the CPU can be used to awaken the MPC5200B from any power down mode.

7.6.1 Real-Time Clock Signals

Table 7-55. Real-Time Clock Signals

Signal	I/O	Definition
RTC_XTAL_IN	I	Real-time Clock External Crystal/External Clock Input
RTC_XTAL_OUT	0	Real-time Clock External Crystal

Figure 7-4 shows a suggested circuit using an Epson® MC-405 32.768KHz quartz crystal oscillator.

NOTE

External component values are highly dependent on the crystal. These values will be different for different brands of crystals.

Figure 7-4. Diagram—Suggested Crystal Oscillator Circuit

7.6.2 Programming Note

Accesses to the RTC control registers are performed on the IP bus clock domain, but the RTC itself runs on the (much) slower 32 KHz crystal domain. When software initiates a setting of the Time and/or Date, it must be realized that many IP bus clocks may go by before the setting actually takes effect. If this is a system concern then it is recommended that software poll the Time and/or Date Status fields to confirm the setting has occurred. This requires some careful bit manipulation of the expected status versus the written control values, particularly if the output status is designated as 12-Hour format (input control format is always 24-Hour).

It should be noted that updates to the RTC control registers, such as time and date set, must be synchronized with the 32KHz clock domain. It can take four 32KHz clock cycles for this synchronizing hand shake to complete. Multiple time/date updates made within this four clock synchronizing period may not be properly accepted by the RTC logic.

7.6.3 RTC Interface Registers—MBAR + 0x0800

RTC uses 8 32-bit registers. These registers are located at an offset from MBAR of 0x0800. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x0800 + register address

Hyperlinks to the Interrupt Controller registers are provided below:

- RTC Time Set Register (0x0800)
- RTC Date Set Register (0x0804)

- RTC Current Date Register (0x0814), read-only
- RTC Alarm and Stopwatch Interrupt Register (0x0818), read-only

MPC5200B Users Guide, Rev. 1

- RTC New Year and Stopwatch Register (0x0808)
- RTC Periodic Interrupt and Bus Error Register (0x081C), read-only
- RTC Alarm and Interrupt Enable Register (0x080C)
- RTC Test Register/Divides Register (0x0820)
- RTC Current Time Register (0x0810), read-only

7.6.3.1 RTC Time Set Register—MBAR + 0x0800

Table 7-56. RTC Time Set Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			Rese	rved			6	ЭС	Rese	erved	L		C	24Hour_	_set	
							set_time	e_time			SictHour					
W							set	pause			Slct					
								<u> </u>								
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Reser	ved			Minut	te_set			Rese	erved			Seco	nd_set		
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:5	_	Reserved
6	set_time	A bit used in conjunction with pause_time bit (below) to cause a new time to be programmed into the RTC. After a proper software sequence, the values in the *_set fields below are loaded.
		The proper software sequence is:
		Write register with pause_time 1 and set_time 0
		Write register with pause_time 1 and set_time 1 Write register with pause_time 1 and set_time 0
		4. Write register with pause_time 0 and set_time 0 4. Write register with pause_time 0 and set_time 0
		At completion of Step 4, RTC is updated with the new time.
		The C24Hour_set, Minute_set, and the Second_set fields should remain consistent values throughout the four steps (i.e., at the desired new time values).
		Note: Read-modify-write operations may disrupt this procedure, it is advised that four simple writes occur. Byte writes to this byte are also acceptable.
7	pause_time	Used with set_time above to perform time update. Must be zero for normal operation.
8:9	_	Reserved
10	SlctHour	This bit determines the hour output format.
		• low bit = 24-hour format
		• high bit = 12-hour format with AM/PM
		Note: This bit does NOT affect time set procedure, it only affects how the Hour Status field is presented.
11:15	C24Hour_set	Hour in 24-hour format written in RTC after successful state machine transition by set_time and pause_time bits.
		Note: This field is always written with 24-Hour format, it is NOT affected by SlctHour bit above.
16:17		Reserved

MPC5200B Users Guide, Rev. 1

Real-Time Clock

Bits	Name	Description
18:23	Minute_set	Minute written in RTC after successful state machine transition by set_time and pause_time bits.
24:25	_	Reserved
26:31	Second_set	Second written in RTC after successful state machine transition by set_time and pause_time bits.

7.6.3.2 RTC Date Set Register—MBAR + 0x0804

Table 7-57. RTC Date Set Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			Rese	rved			Ф	date	Reserved Month_set							
							set_date									
W							set	pause								
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Reser	rved			Weeko	lay_set			Res	erved			Day	_set		
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:5	_	Reserved
6	set_date	Operation of pause_date and set_date is similar to pause_time and set_time described in the time set register.
7	pause_date	Used with set_date above to perform date update. Must be zero for normal operation.
8:10	_	Reserved
11:15	Month_set	New month written in RTC after successful state machine transition by set_date and pause_date bits. Actually the lower 4 bits is used
16:17	_	Reserved
18:23	Weekday_set	New weekday written in RTC after state machine transition by set_date and pause_date bits. 1 = Monday; 7 = Sunday. Actually the lower 3 bits is used.
24:25	_	Reserved
26:31	Date_set	New date written in RTC after state machine transition by set_date and pause_date bits. Actually the lower 5 bits is used.
		Note: Year_set in the following register is also part of the date set function.

7.6.3.3 RTC New Year and Stopwatch Register—MBAR + 0x0808 Table 7-58. RTC New Year and Stopwatch Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Reserved							SW	SW_set							
W					write											
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	10	10	00	01	00	00	0.4	05	06	07	00	00	20	31 lsb
	10	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 180
R	Reserved									Ye	ear_set					
W																
BESET.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:6	_	Reserved
7	write_SW	Typical stopwatch operation is to write initial value into 8-bit wide SW_set and assert write_SW bit. The write_SW bit is immediately auto cleared, but it triggers the stopwatch minute countdown to begin.
8:15	SW_set	Number of minutes to be written into stopwatch. Max is 255, a little over 4 hours.
16:19	_	Reserved
20:31	Year_set	New year written in RTC after successful state machine transition by set_date and pause_date bits. Note: This is part of date set function in the previous register.

7.6.3.4 RTC Alarm and Interrupt Enable Register—MBAR + 0x080C Table 7-59. RTC Alarm and Interrupt Enable Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Reserved og G									Reserved			Alm_24H_set			
W	Heserved Alm_enable															
								⋖								
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Reser	ved			Alm_N	/lin_set				Res	erved			day	min	sec
													MPEb			
W													¥	IntEn	IntEn	IntEn
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0

Bits	Name	Description
0:6	_	Reserved
7	Alm_enable	Alarm Enable bit for once-a-day Alarm. If high, Alarm status/interrupt operation is enabled. If low, Alarm setting is not compared to time of day.

Real-Time Clock

Bits	Name	Description
8:10	_	Reserved
11:15	Alm_24Hset	Hour setting (in 24 hour format) to be compared to time of day for the purpose of generating Alarm Status/Interrupt. Can be written at any time.
16:17	_	Reserved
18:23	Alm_Min_set	Minute setting to be compared to time of day for the purpose of generating Alarm Status/Interrupt. Can be written at any time.
24:27	_	Reserved
28	MPEb	Master Periodic Enable bar. Must be written low after reset to allow periodic interrupts.
29	IntEn_day	Enable bit of periodic interrupts at midnight rollover.
30	IntEn_min	Enable bit of periodic interrupts at minute rollover.
31	IntEn_sec	Enable bit of periodic interrupts at second rollover.

Note: The Interrupt enable bits (28, 29, 30, 31) control the Periodic Interrupt coming from the RTC. The separate Stopwatch/Alarm Interrupt signal does not have a specific interrupt enable bit. An Alarm interrupt is automatically generated if Alarm is enabled and the Alarm setting matches time of day. Similarly, a Stopwatch expiration, which shares the Alarm interrupt signal, automatically occurs once the Stopwatch is initiated and the Stopwatch counter expires.

7.6.3.5 RTC Current Time Register—MBAR + 0x0810

This is a read-only register.

Table 7-60. RTC Current Time Register

Bits	Name	Description
0:10	_	Reserved
11:15	Hour	Hour format can be either 24-hour or 12-hour with AM/PM. If 24-hour format is selected (SlctHour low in Reg 0), the whole 5-bit hour field designates current time in 24-hour format. If 12-hour format is selected (SlctHour high in Reg 0), the MSB of hour field indicates: • Hour[0]=0: AM, • Hour[0]=1: PM and • Hour[1:4] designates current time in 12-hour format.
16:17	_	Reserved
18:23	Minute	Shows minutes in current time.

7-70 Freescale Semiconductor

Bits	Name	Description
24:25	_	Reserved
26:31	Second	Shows seconds in current time.

7.6.3.6 RTC Current Date Register—MBAR + 0x0814

This is a read-only register.

Table 7-61. RTC Current Date Register

Bits	Name	Description
0:3	_	Reserved
4:7	Month	Shows current month. 1 = January; 12 = December
8:10	Weekday	Indicates day of week. (Monday = 1, Sunday = 7)
11:15	Date	Shows current date. Calendar feature is implemented, therefore, day rollover at the end of month including February (and Leap Years) is automatic.
16:19	_	Reserved
20:31	Year	Shows current year. Max is 4052.

7.6.3.7 RTC Alarm and Stopwatch Interrupt Register—MBAR + 0x0818

This is a read-only register.

Table 7-62. RTC Alarm and Stopwatch Interrupt Register

MPC5200B Users Guide, Rev. 1

Real-Time Clock

Bits	Name	Description
0:6	_	Reserved
7	Int_alm	Status bit indicating that enabled once-a-day Alarm has occurred (active high). Alarm interrupt has been activated. This bit and the Interrupt is cleared by writing 1 to this bit position. Note: A Stopwatch interrupt, if also active, must be cleared before the interrupt signal to the CPU is negated.
8:14	_	Reserved
15	Int_SW	Status bit indicating that Stopwatch expiration has occurred (active high). Stopwatch interrupt has been activated. This bit and the Interrupt are cleared by writing 1 to this bit position.
		Note: An Alarm interrupt, if also active, must be cleared before the interrupt signal to the CPU is negated.
16:22	_	Reserved
23	Alm_status	Status bit indicating that once-a-day Alarm has occurred. Same as Int_alm bit above except that clearing this bit does NOT clear the interrupt.
24:31	SW_min	Minutes remaining in stopwatch.

7.6.3.8 RTC Periodic Interrupt and Bus Error Register—MBAR + 0x081C

This is a read-only register.

Table 7-63. RTC Periodic Interrupt and Bus Error Register

Bits	Name	Description
0:6	_	Reserved
7	Bus_error_1	Internal status register—If high, indicates software has attempted a write access to a read-only register in this module. No actual register contents are corrupted if this happens. Cleared by writing 1 to this bit position.
8:14	_	Reserved
15	Int_day	Periodic interrupt at midnight. High indicates interrupt has occurred. OR'd function of Int_day, Int_min and Int_sec produces RTC periodic interrupt to CPU interface. Cleared by writing 1 to this bit position.

MPC5200B Users Guide, Rev. 1

7-72 Freescale Semiconductor

Bits	Name	Description
16:22	_	Reserved
23	Int_min	Periodic interrupt at each minute rollover. High indicates interrupt has occurred. Cleared by writing 1 to this bit position.
24:30	_	Reserved
31	Int_sec	Periodic interrupt at each second rollover. High indicates interrupt has occurred. Cleared by writing 1 to this bit position.

7.6.3.9 RTC Test Register/Divides Register—MBAR + 0x0820

This register is used during manufacturing test to expedite RTC testing and is not intended to be a user register. However, no protection from software access is provided.

Table 7-64. RTC Test Register/Divides Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Rsvd				PTERM	1			ETERM							
W																
RESET:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0	_	Reserved
1:7	PTERM	Prescale Termination value, the number of 32KHz clocks per 7-bit prescale counter. Default at reset is the maximum (and proper) value of 128 decimal. Any value lower than this causes the RTC to run fast.
8:15	ETERM	External Termination value, the number of prescaled counts per 8-bit external counter. Default at reset is the maximum (and proper) value of 256 decimal. Any value lower than this causes the RTC to run fast.
16:31	_	Reserved

Note: The 32.768KHz crystal frequency is divided by PTERM, which is then divided by ETERM to produce a 1 second time interval. It is conceivable that a system might wish to adjust these values to produce a more locally accurate clock rate. However, be aware that these values are affected by reset. Therefore, any adjustment value must be stored and retrieved from non-volatile memory. Further, the adjustment could only increase the clock rate, not decrease it.

Real-Time Clock

7-74 Freescale Semiconductor

MPC5200B Users Guide, Rev. 1

Chapter 8 SDRAM Memory Controller

8.1 Overview

The following sections are contained in this document:

- Section 8.2, Terminology and Notation
- Section 8.3, Features
 - Section 8.3.1, Devices Supported
- Section 8.4, Functional Description
 - Section 8.4.1, External Signals (SDRAM Side)
 - Section 8.4.2, Block Diagram
 - Section 8.4.3, Transfer Size
 - Section 8.4.4, Commands
- Section 8.5, Operation
 - Section 8.5.1, *Power-Up Initialization*
- Section 8.6, *Programming the SDRAM Controller*
- Section 8.7, Memory Controller Registers (MBAR+0x0100:0x010C)

8.2 Terminology and Notation

Synchronous DRAM devices (SDR-SDRAM, DDR-SDRAM) are organized internally as columns by rows by "banks". Older type asynchronous DRAMs (FP, EDO) had rows and columns, but no internal banks. Historically, the word "bank" was often used to refer to the set of memory devices all activated for the same address range (same \overline{RAS}). To avoid confusion between these two meanings of "bank", this document uses the term "bank" for the internal banks of an SDRAM device, and the term "space" to indicate the memory device(s) activated for a common address range (same \overline{CS}).

8.2.1 "Endian"-ness

Endian-ness is a source of seemingly endless confusion, yet it need not be. The source of the confusion usually seems to be that bit number and/or byte address are improperly equated with significance. In fact, bit number and byte address *neither govern, nor imply*, significance.

- Significance can only exist within an arithmetic context. An arithmetic context can be explicit or implicit.
- An explicit arithmetic context is the scope of an arithmetic operator, that is, the operand(s) and result(s).
- An *implicit* arithmetic context exists within any collection of bits representing an atomic arithmetic object, that is, a *number*. Significance does *not* extend beyond the boundaries of the bit range.
- With a single exception, an arithmetic context, and therefore significance, can only exist within an execution context, that is, an
 abstract process or the actual hardware to which it is mapped. The single exception is an implicit context: A byte is an implicit
 arithmetic context.
- Within an atomic object "obj[m:n]", in an arithmetic context, the most significant bit(byte) is on the *left* (m), and the least significant bit(byte) is on the *right* (n), unless otherwise specified. The bit numbering and byte addressing order from left to right (ascending or descending) is *strictly cosmetic*.

Note that ":" in "m:n" is an arithmetic operator, and therefore m and n are arithmetic objects within the operator scope. (If they weren't, then the terms "ascending" and "descending" would be meaningless.)

Note furthermore that the scope of the ":" operator does not include "obj": obj could be of a non-arithmetic type. One particular value (pattern of the bit range) of obj could represent "red"; another value might represent "cold". The bit patterns are *enumerations* of the legal values of obj; sometimes arithmetic operations on enumeration values are valid for the concepts they represent, sometimes not.

An enumeration value is not an arithmetic context. An enumeration value is a representation of an object value; the nature of the object itself need not be numeric.

The enumeration value of a collection of bits (e.g. process variable) is only meaningful *in the context* of a process which manipulates those bits in a manner consistent with the concept they represent. (A process itself may be just a concept represented by a collection of bits manipulated (by a processing unit) in a manner consistent with the concept they represent.) And *in the context* of the concept they represent, bits and bytes may have significance.

But while transporting bits from one location to another, the hardware transport media almost never have any knowledge of the concepts represented by the data, or the contexts in which they are valid (this does not include protocol bits of the media, which may be added and

MPC5200B Users Guide, Rev. 1

stripped along the way). Nor is the transportation of data an execution context. Without knowledge of atom boundaries and significance (if any), the following convention is the *de facto* standard:

• "Bit significance, byte address": From every observation point in a system, the relative *address order* of bytes shall be maintained, and the relative *significance* of bits *within* each individual byte shall be maintained, *as if* they represented an 8 bit unsigned binary integer. This is the implicit arithmetic context of bytes. The "native" bit numbering and address significance order of different observers shall have *no bearing* on the byte address or bit significance order of visible data.

Byte "swapping", the intentional transposition of bytes' relative addresses between a source and a destination to maintain inter-byte significance, is *improper*.

Bit "swizzling", the intentional renumbering of bit positions, is perfectly legal *if necessary* to maintain intra-byte bit significance or inter-byte address order. When necessary, it is required; when not necessary, it is prohibited.

To correctly join data path segments in accordance with this convention, the bit significance *and byte addressing* of each segment must be specified.

In this document, significance is always msb on the left, lsb on the right, if any significance relationship exists.

All multi-bit components of the internal XL bus are defined with bit numbers and byte addresses (if any) *ascending* from left to right: XLA[0:31], XLD[0:63]. The address of byte XLD[0:7] is a modulo 8 boundary, 8n (0x00, 0x08, 0x10, 0x18); the address of byte XLD[56:63] is a modulo 8 boundary plus offset 7, 8n+7 (0x07, 0x0F, 0x17, 0x1F).

All internal IP busses are defined with bit numbers *descending* from left to right: IPA[31:0], IPD[31:0]. The byte addresses of IPD[31:0] are defined *acsending* from left to right: IPD[31:24] is a modulo 4 address boundary, 4n (0x00, 0x04, 0x08, 0x0C); IPD[7:0] is a modulo 4 address boundary plus offset 3, 4n+3 (0x03, 0x07, 0x0B, 0x0F). IPA[31:0] correspond left-to-right with XLA[0:31]. IPD[31:0] correspond left-to-right with XLD[0:31] (XLA[29] == 0) or XLD[32:63] (XLA[29] == 1).

The Memory Controller registers are defined with byte addresses and *bus* bit numbers *ascending* from left to right; but object bit *fields* within the registers may have *ascending* or *descending* bit numbers. The numbering order of bits as a bus does not govern the numbering order of bits within a data object.

All external memory interface busses are defined with *descending* bit numbers: MEM_MA[12:0], MEM_MBA[1:0], MEM_MDQ[31:0], MEM_DQM[3:0], MEM_MDQS[3:0]. Byte addressing of MEM_MDQ[31:0], MEM_DQM[3:0], and MEM_MDQS[3:0] is *ascending*: MEM_MDQ[31:24], MEM_DQM[3], and MEM_MDQS[3] are associated with address offset θ modulo 4 (4n); MEM_MDQ[7:0], MEM_DQM[θ], and MEM_MDQS[θ] are associated with address offset 3 modulo 4 (4n+3).

8.3 Features

The MPC5200B SDRAM Memory Controller has the following features:

- · Supports either:
 - SDR SDRAM—memory I/Os are powered at 3.3V
 - DDR SDRAM—memory I/Os are powered at 2.5V

DDR SDRAM transfers data at twice the rate and uses MEM CLK and MEM CLK as a differential pair.

- 32-bit memory data bus
- 16-bit memory data bus (connected only to upper half, bits 31-16, of the data bus).
- Maximum address space 512MB; 256MB per \overline{CS} , 32-bit memory data bus:
 - Up to 13 bits of row address (RA[12:0])
 - Up to 12 bits of column address (CA[11:0])
 - 2 bits of bank address (BA[1:0])
 - Cannot use all 13 bits of RA and all 12 bits of CA at the same time. Maximum total address bits $(RA+CA+BA) \le 26$; 26 address bits x 4Byte data bus = 256MB.

NOTE

In this document the Auto Precharge control signal (A10 usually), conveyed on the memory address bus along with column address, is *never* included in the stated CA width; it is always *in addition* to the CA width.

The Memory Controller does not support memory devices with >8 CA bits, but <13 RA bits.

RA[12:0] correspond directly with MEM_MA[12:0]. CA[7:0] correspond directly with MEM MA[7:0]. CA[11:8] do *not* correspond directly with MEM MA[12:8].

- Maximum address space 512MB; 256MB per \overline{CS} , 16-bit memory data bus:
 - Up to 13 bits of row address (RA[12:0])
 - Up to 13 bits of column address (CA[12:0])

— 2 bits of bank address (BA[1:0])

NOTE

In this document the Auto Precharge control signal (A10 usually), conveyed on the memory address bus along with column address, is *never* included in the stated CA width; it is always *in addition* to the CA width.

The Memory Controller does not support memory devices with >9 CA bits, but <13 RA bits.

RA[12:0] correspond directly with MEM_MA[12:0]. CA[7:0] correspond directly with MEM MA[7:0]. CA[11:8] do *not* correspond directly with MEM MA[12:8].

- Maximum of 2 pinned-out Chip Selects (\overline{CS}).
 - CS0 is pinned out all the time (i.e., a dedicated pin).
 - CS1 is only available if the GPIO_WKUP6 pin is programmed to be an SDRAM chip select. The default function of the pin is GPIO_WKUP6.
 - To configure the GPIO_WKUP6 pin as SDRAM chip select, write 1 to the Port Configuration register msb.Section 7.3.2.1.1, GPS Port Configuration Register—MBAR + 0x0B00

NOTE

The GPIO_WKUP_6 pin, which can be programmed as CS1 for the SDRAM bus, is powered by the Memory Vdd supply. When using Single Data Rate SDRAMS, the Memory Vdd supply is 3.3 volts. When using Double Data Rate SDRAMs, the Memory Vdd supply is 2.5 volts.

If GPIO_WKUP_6 is used as a GPIO pin (as opposed to CS1), the input levels must be appropriate for the voltage on the Memory Vdd supply. For instance, if DDR memory is used which requires a Vdd mem supply of 2.5 volts, then logic levels applied to GPIO WKUP 6 must not exceed 2.5 volts.

— The size of each \(\overline{CS}\) space is independent. It is possible but not recommended to overlap the address space pointed to by the 2 independent chip select.

NOTE

Maximum 4 physical memory devices total, all \overline{CS} .

- Minimum allocatable address space 1MB:
 - 8 bits of row address;
 - 8 bits of column address for 32-bit interface, 9 bits of column address for 16-bit interface;
 - 2 bits of bank address;
 - 1 chip select;

NOTE

Minimum allocatable address space is much smaller (8Mb) than the lowest density available (64Mb). Excess memory bits are not used or simply wasted.

- 32 Byte PowerPC e300 critical word first burst transfer;
- Supports PowerPC e300 bus, 2-stage address/data pipeline (one data tenure in progress, one pipelined address tenure);
- Supports SDRAM Power Down and Self Refresh modes;
- Supports page mode and bursting to maximize the data rate;

NOTE

The SDRAM Memory Controller (MC) does not support error detect or parity check.

8.3.1 Devices Supported

Supported SDRAM devices (SDR and DDR both) are:

- 64Mbit;
- 128Mbit;
- 256Mbit;
- 512Mbit
- 1Gbit when available, assuming the same interface style;
- 2Gbit when available, assuming the same interface style;

The MPC5200B limits external memory to a maximum of 4 memory chips placed within 5 cm of the MPC5200B processor. Flight delay on the board should be no more than 0.5 ns each way, and *all* signals must be matched. The maximum load is 20pF/pin.

MPC5200B Users Guide, Rev. 1

Table 8-1. 32-Bit External Data Width Legal Memory Configurations

Row Bits	Column Bits	Bank Bits	Spaces (CS)	Physical	Address Range	
11	8	2	1	1 x 64Mb 512K x 4bank x 32bit	8MB	
			2	2 x 64Mb 512K x 4bank x 32bit	16MB	
12	8	2	1	2 x 64Mb 1M x 4bank x 16bit	16MB	
				1 x 128Mb 1M x 4bank x 32bit		
			2	4 x 64Mb 1M x 4bank x 16bit	32MB	
				2 x 128Mb 1M x 4bank x 32bit		
12 13	9 8	2 2	1	4 x 64Mb 2M x 4bank x 8bit	32MB	
				2 x 128Mb 2M x 4bank x 16bit		
				1 x 256Mb 2M x 4bank x 32bit		
			2	4 x 128Mb 2M x 4bank x 16bit	64MB	
				2 x 256Mb 2M x 4bank x 32bit		
12 13	10 9	I	1	4 x 128Mb 4M x 4bank x 8bit	64MB	
				2 x 256Mb 4M x 4bank x 16bit		
					1 x 512Mb 4M x 4bank x 32bit	
		2	4 x 256Mb 4M x 4bank x 16bit	128MB		
				2 x 512Mb, 2 CS 4M x 4bank x 32bit		
12 13	11 10	2 2	1	4 x 256Mb 8M x 4bank x 8bit	128MB	
					2 x 512Mb 8M x 4bank x 16bit	
				1 x 1Gb 8M x 4bank x 32bit		
			2	4 x 512Mb 8M x 4bank x 16bit	256MB	
				2 x 1Gb 8M x 4bank x 32bit		

8-4 Freescale Semiconductor

Table 8-1. 32-Bit External Data Width Legal Memory Configurations (continued)

	Table 6-1. 32-Bit External Data Width Legal Memory Configurations (continued)						
Row Bits	Column Bits	Bank Bits	Spaces (CS)	Physical	Address Range		
12 13	12 11	2 2	1	4 x 512Mb 16M x 4bank x 8bit	256MB		
				2 x 1Gb 16M x 4bank x 16bit			
				1 x 2Gb 16M x 4bank x 32bit			
			2	4 x 1Gb 16M x 4bank x 16bit	512MB		
				2 x 2Gb 16M x 4bank x 32bit			
11	8	2	1	1 x 64Mb 512K x 4bank x 32bit	24MB		
12	8	2	1	+ 1 x 128Mb 1M x 4bank x 32bit			
11	8	2	1	1 x 64Mb 512K x 4bank x 32bit	40MB		
12 13	9 8	2	1	+ 1 x 256Mb 2M x 4bank x 32bit			
11	8	2	1	1 x 64Mb 512K x 4bank x 32bit	72MB		
12 13	10 9	2	1	+ 1 x 512Mb 4M x 4bank x 32bit			
11	8	2	1	1 x 64Mb 512K x 4bank x 32bit	136MB		
12 13	11 10	2	1	+ 1 x 1Gb 8M x 4bank x 32bit			
11	8	2	1	1 x 64Mb 512K x 4bank x 32bit	264MB		
12 13	12 11	2	1	+ 1 x 2Gb 16M x 4bank x 32bit			
12	8	2	1	2 x 64Mb 1M x 4bank x 16bit	48MB		
12 13	9 8	2	1	+ 2 x 128Mb 2M x 4bank x 16bit			
12	8	2	1	2 x 64Mb 1M x 4bank x 16bit	80MB		
12 13	10 9	2	1	+ 2 x 256Mb 4M x 4bank x 16bit			

Table 8-1. 32-Bit External Data Width Legal Memory Configurations (continued)

Row Bits	Column Bits	Bank Bits	Spaces (CS)	Physical	Address Range
12	8	2	1	2 x 64Mb 1M x 4bank x 16bit +	144MB
12 13	11 10	2	1	2 x 512Mb 8M x 4bank x 16bit	
12	8	2	1	2 x 64Mb 1M x 4bank x 16bit +	272MB
12 13	12 11	2	1	2 x 1Gb 16M x 4bank x 16bit	
12	8	2	1	1 x 128Mb 1M x 4bank x 32bit +	48MB
12 13	9 8	2	1	1 x 256Mb 2M x 4bank x 32bit	
12	8	2	1	1 x 128Mb 1M x 4bank x 32bit +	80MB
12 13	10 9	2	1	1 x 512Mb 4M x 4bank x 32bit	
12	8	2	1	1 x 128Mb 1M x 4bank x 32bit +	144MB
12 13	11 10	2	1	1 x 1Gb 8M x 4bank x 32bit	
12	8	2	1	1 x 128Mb 1M x 4bank x 32bit +	272MB
12 13	12 11	2	1	1 x 2Gb 16M x 4bank x 32bit	
12	9	2	1	2 x 128Mb 2M x 4bank x 16bit +	96MB
12	10	2	1	2 x 256Mb 4M x 4bank x 16bit	
13	8	2	1	2 x 128Mb 2M x 4bank x 16bit +	96MB
13	9	2	1	2 x 256Mb 4M x 4bank x 16bit	
12	9	2	1	2 x 128Mb 2M x 4bank x 16bit +	160MB
12	11	2	1	2 x 512Mb 8M x 4bank x 16bit	

8-6 Freescale Semiconductor

Table 8-1. 32-Bit External Data Width Legal Memory Configurations (continued)

			Spaces	Dhysical	-
Row Bits	Column Bits	Bank Bits	(CS)	Physical	Address Range
13	8	2	1	2 x 128Mb 2M x 4bank x 16bit	160MB
				+	
13	10	2	1	2 x 512Mb	
12	9	2	1	8M x 4bank x 16bit 2 x 128Mb	288MB
		_		2M x 4bank x 16bit	2001112
40	40			+	
12	12	2	1	2 x 1Gb 16M x 4bank x 16bit	
13	8	2	1	2 x 128Mb 2M x 4bank x 16bit	288MB
				2 VI X 4 DATIK X 16 DIL +	
13	11	2	1	2 x 1Gb	
40		0	1	16M x 4bank x 16bit	OCMP
12	9	2	l	1 x 256Mb 2M x 4bank x 32bit	96MB
				+	
12	10	2	1	1 x 512Mb 4M x 4bank x 32bit	
13	8	2	1	1 x 256Mb	96MB
				2M x 4bank x 32bit +	
13	9	2	1	1 x 512Mb	
	_			4M x 4bank x 32bit	
12	9	2	1	1 x 256Mb 2M x 4bank x 32bit	160MB
				+	
12	11	2	1	1 x 1Gb 8M x 4bank x 32bit	
13	8	2	1	1 x 256Mb	160MB
				2M x 4bank x 32bit +	
13	10	2	1	1 x 1Gb	
				8M x 4bank x 32bit	
12	9	2	1	1 x 256Mb 2M x 4bank x 32bit	288MB
				+	
12	12	2	1	1 x 2Gb 16M x 4bank x 32bit	
13	8	2	1	1 x 256Mb	288MB
				2M x 4bank x 32bit	
13	11	2	1	+ 1 x 2Gb	
		_	·	16M x 4bank x 32bit	

Table 8-1. 32-Bit External Data Width Legal Memory Configurations (continued)

Table 6-1. 32-bit External Data Width Legal Memory Configurations (Continued)							
Row Bits	Column Bits	Bank Bits	Spaces (CS)	Physical	Address Range		
12	10	2	1	2 x256Mb 4M x 4bank x 16bit	192MB		
				+			
12	11	2	1	2 x 512Mb 8M x 4bank x 16bit			
13	9	2	1	2 x256Mb 4M x 4bank x 16bit	192MB		
				+			
13	10	2	1	2 x 512Mb 8M x 4bank x 16bit			
12	10	2	1	2 x256Mb 4M x 4bank x 16bit	320MB		
				+			
12	12	2	1	2 x 1Gb 16M x 4bank x 16bit			
13	9	2	1	2 x256Mb 4M x 4bank x 16bit	320MB		
				+			
13	11	2	1	2 x 1Gb 16M x 4bank x 16bit			
12	10	2	1	1 x 512Mb 4M x 4bank x 32bit	192MB		
				+			
12	11	2	1	1 x 1Gb 8M x 4bank x 32bit			
13	9	2	1	1 x 512Mb 4M x 4bank x 32bit	192MB		
				+			
13	10	2	1	1 x 1Gb 8M x 4bank x 32bit			
12	10	2	1	1 x 512Mb 4M x 4bank x 32bit	320MB		
				+			
12	12	2	1	1 x 2Gb 16M x 4bank x 32bit			
13	9	2	1	1 x 512Mb 4M x 4bank x 32bit	320MB		
				+			
13	11	2	1	1 x 2Gb 16M x 4bank x 32bit			
12	10	2	1	2 x 512Mb 8M x 4bank x 32bit	384MB		
				+			
12	12	2	1	2 x 1Gb 16M x 4bank x 32bit			

Table 8-1. 32-Bit External Data Width Legal Memory Configurations (continued)

Row Bits	Column Bits	Bank Bits	Spaces (CS)	Physical	Address Range
13	9	2	1	2 x 512Mb 8M x 4bank x 32bit +	384MB
13	11	2	1	2 x 1Gb 16M x 4bank x 32bit	
12	11	2	1	1 x 1Gb 8M x 4bank x 32bit +	384MB
12	12	2	1	1 x 2Gb 16M x 4bank x 32bit	
13	10	2	1	1 x 1Gb 8M x 4bank x 32bit	384MB
13	11	2	1	+ 1 x 2Gb 16M x 4bank x 32bit	

Table 8-2. 16-Bit External Data Width Legal Memory Configurations

Row Bits	Column Bits	Bank Bits	Spaces (CS)	Physical	Address Range
12	10	2	1	2 x 128Mb 4M x 4bank x 8bit	32MB
				1 x 256Mb 4M x 4bank x 16bit	
			2	4 x 64Mb 1M x 4bank x 16bit	32MB
				2 x 128Mb 1M x 4bank x 32bit	
12	9	9 2	1	2 x 64Mb 2M x 4bank x 8bit	16MB
				1 x 128Mb 2M x 4bank x 16bit	
			2	4 x 64Mb 2M x 4bank x 8bit	32MB
				2 x 128Mb 2M x 4bank x 16bit	
12	10	2	2 1	2 x 128Mb 4M x 4bank x 8bit	32MB
				1 x 256Mb 4M x 4bank x 16bit	
			2	4 x 128Mb 4M x 4bank x 8bit	64MB
				2 x 256Mb 4M x 4bank x 16bit	

Table 8-2. 16-Bit External Data Width Legal Memory Configurations (continued)

Row Bits	Column Bits	Bank Bits	Spaces (CS)	Physical	Address Range
13	10	2	1	2 x 256Mb	64MB
				8M x 4bank x 8bit 1 x 512Mb	-
			2	8M x 4bank x 16bit 4 x 256Mb	128MB
				8M x 4bank x 8bit 2 x 512Mb	 -
				8M x 4bank x 16bit	
13	11	2	1	2 x 512Mb 16M x 4bank x 8bit	128MB
				1 x 1Gb 16M x 4bank x 16bit	
			2	4 x 512Mb 16M x 4bank x 8bit	256MB
				2 x 1Gb 16M x 4bank x 16bit	
12	9	2	1	2 x 64Mb 2Mx 4bank x 8bit	32MB
				+	
12	9	2	1	1 x 128Mb 2M x 4bank x 16bit	
12	9	2	1	2 x 64Mb 2Mx 4bank x 8bit	48MB
				+	
12	10	2	1	2 x 128Mb 4M x 4bank x 8bit	
12	9	2	1	2 x 64Mb 2Mx 4bank x 8bit	48MB
				+	
13	9	2	1	1 x 256Mb 4M x 4bank x 16bit	
12	9	2	1	2 x 64Mb 2Mx 4bank x 8bit	80MB
				+	
13	10	2	1	2 x 256Mb 8M x 4bank x 8bit	
12	9	2	1	2 x 64Mb 2Mx 4bank x 8bit	80MB
				+	
13	10	2	1	1 x 512Mb 8M x 4bank x 16bit	
12	9	2	1	2 x 64Mb 2M x 4bank x 8bit	144MB
13	11	2	1	+ 2 x 512Mb 16M x 4bank x 8bit	

MPC5200B Users Guide, Rev. 1

8-10 Freescale Semiconductor

Table 8-2. 16-Bit External Data Width Legal Memory Configurations (continued)

Table	Table 6-2. 16-bit External Data Width Legal Memory Configurations (Continued)							
Row Bits	Column Bits	Bank Bits	Spaces (CS)	Physical	Address Range			
12	9	2	1	2 x 64Mb 2M x 4bank x 8bit	144MB			
				+				
13	11	2	1	1 x 1Gb 16M x 4bank x 16bit				
12	9	2	1	1 x 128Mb 2M x 4bank x 16bit	48MB			
				+				
13	9	2	1	1 x 256Mb 4M x 4bank x 16bit				
12	9	2	1	1 x 128Mb 2M x 4bank x 16bit	80MB			
				+				
13	10	2	1	2 x 256Mb 8M x 4bank x 8bit				
12	9	2	1	1 x 128Mb 2M x 4bank x 16bit	80MB			
				+				
13	10	2	1	1 x 512Mb 8M x 4bank x 16bit				
12	9	2	1	1 x 128Mb 2M x 4bank x 16bit	144MB			
				+				
13	11	2	1	2 x 512Mb 16M x 4bank x 8bit				
12	9	2	1	1 x 128Mb 2M x 4bank x 16bit	144MB			
				+				
13	11	2	1	1 x 1Gb 16M x 4bank x 16bit				
12	10	2	1	2 x 128Mb 4M x 4bank x 8bit	64MB			
				+				
13	9	2	1	1 x 256Mb 4M x 4bank x 16bit				
12	10	2	1	2 x 128Mb 4M x 4bank x 8bit	64MB			
				+				
13	10	2	1	2 x 256Mb 8M x 4bank x 8bit				
12	10	2	1	2 x 128Mb 4M x 4bank x 8bit	80MB			
13	10	2	1	+ 1 x 512Mb				
10	10	۷	l	8M x 4bank x 16bit				

Table 8-2. 16-Bit External Data Width Legal Memory Configurations (continued)

Table 6-2. 16-bit External Data Width Legal Memory Configurations (Continued)							
Row Bits	Column Bits	Bank Bits	Spaces (CS)	Physical	Address Range		
12	10	2	1	2 x 128Mb 4M x 4bank x 8bit	160MB		
				+			
13	11	2	1	2 x 256Mb 16M x 4bank x 8bit			
12	10	2	1	2 x 128Mb 4M x 4bank x 8bit	160MB		
				+			
13	11	2	1	1 x Gb 16M x 4bank x 16bit			
13	9	2	1	1 x 256Mb 4M x 4bank x 16bit	96MB		
				+			
13	10	2	1	1 x 512Mb 8M x 4bank x 16bit			
13	9	2	1	1 x 256Mb 4M x 4bank x 16bit	160MB		
				+			
13	11	2	1	2 x 512Mb 16M x 4bank x 8bit			
13	9	2	1	1 x 256Mb 4M x 4bank x 16bit	160MB		
				+			
13	11	2	1	1 x 1Gb 16M x 4bank x 16bit			
13	10	2	1	2 x 256Mb 8M x 4bank x 8bit	128MB		
				+			
13	10	2	1	1 x 512Mb 8M x 4bank x 16bit			
13	10	2	1	2 x 256Mb 8M x 4bank x 8bit	192MB		
				+			
13	11	2	1	2 x 512Mb 16M x 4bank x 8bit			
13	10	2	1	2 x 256Mb 8M x 4bank x 8bit	192MB		
				+			
13	11	2	1	1 x 1Gb 16M x 4bank x 16bit			
13	10	2	1	1 x 512Mb 8M x 4bank x 16bit	192MB		
13	11	2	1	+ 1 x 1Gb			
13	11	2	I	16M x 4bank x 16bit			

Table 8-2. 16-Bit External Data Width Legal Memory Configurations (continued)

Row Bits	Column Bits	Bank Bits	Spaces (CS)	Physical	Address Range
13	11	2	1	2 x 512Mb 16M x 4bank x 8bit	256MB
13	11	2	1	+ 1 x 1Gb 16M x 4bank x 16bit	

Figure 8-1 shows an example memory configuration of 1 space (\overline{CS}) of 4 devices of 128Mbit (4M x 4 banks x 8bit) DDR SDRAM, for a total memory size of 64MB.

Figure 8-1. Block Diagram—SDRAM Subsystem Example

Both chip selects contribute together to access the whole memory. Each \overline{CS} base address and size are programmed independently. Each \overline{CS} base address must be size-aligned.

The MPC5200B does not support DIMM memory modules, however it can support a DIMM-compatible EEPROM using an on-chip I²C chip interface (with appropriate configuration of pin functions).

MPC5200B Users Guide, Rev. 1

8.4 Functional Description

8.4.1 External Signals (SDRAM Side)

Table 8-3. SDRAM External Signals

Signal Name	Description						
	Outputs						
MEM_CLK	Memory Clock (frequency is the same as the internal XL bus clock). Maximum allowed value is 132 MHz.						
MEM_CLK	Inverted Memory Clock, used for DDR-SDRAM devices.						
	Internally generated "DQS" for SDR-SDRAM devices.						
MEM_CLK_EN	Memory Clock Enable (CKE). When low, the SDRAM is disabled. Used to switch memory into and out of self-refresh/power-down modes.						
MEM_CS[0], MEM_CS[1]	Memory Command Select. Each space has a command select to enable commands						
MEM_RAS	Memory Row Address Select						
MEM_CAS	Memory Column Address Select						
MEM_WE	Memory Write Enable						
MEM_MA[12:0]	Memory Multiplexed Address. These are used as row address, column address, or Mode(Extended Mode) register data, depending on the command issued.						
	Row address during Active command.						
	Column address during Read and Write commands. MEM_MA10 is used as a control signal instead of an address line, to control Auto Precharge operation. The Auto Precharg control bit is not counted as a column address bit. The Memory Controller does not use Auto Precharge.						
	Mode register data during Load Mode Register and Load Extended Mode Register (DDF only) commands.						
MEM_MBA[1:0]	Memory Bank Address, or Mode register select, depending on the command issued.						
	Bank address during Precharge Selected, Active, Read, and Write commands. The Memory Controller does not use the Precharge Selected command.						
	Mode register select during Load Mode Register and Load Extended Mode Register (DDF only) commands. Although SDR memory only has a single internal Mode register, the Ban Address bits must still be valid.						
MEM_DQM[3:0]	Memory Data Mask. Addressing = 0:3						
	0 Data byte read/write is enabled						
	1 Data byte read/write is inhibited						
	SDR memories 3-state inhibited data during reads; DDR memories ignore Data Mask during reads. The memory controller never masks read data.						
	Bidirectional Signals						
MEM_MDQ[31:0]	Memory Data. Addressing = 0:3.						
MEM_MDQS[3:0]	Memory Data Strobe, DDR only. Addressing = 0:3.						
	NS, MEM_CAS, MEM_WE, and MEM_CLK_EN encode the SDRAM commands to control the						

Note: Signals MEM_RAS, MEM_CAS, MEM_WE, and MEM_CLK_EN encode the SDRAM commands to control the different SDRAM operations.

Note: For 16-bit mode external pull-down devices are required on MEM_MDQS[1:0].

8.4.2 Block Diagram

Figure 8-2 shows the SDRAM MC block diagram. It is important to notice:

- the internal XL bus is 64 bits wide
- the external interface to the SDRAM is only 32 bits wide

The SDRAM row, column, and bank address bits are extracted from internal address XLA[4:29]; XLA[29:31], TSIZ[0:2], and TBST control the data path (MDQ, DQM).

Note: For 16-Bit External Data Width, mem_ps = 1, only MDOUT[31:16] and MDIN[31:16] shouldbe connected to the external memories.

Figure 8-2. Block Diagram—SDRAM Memory Controller

8.4.3 Transfer Size

All SDRAMs are "burst oriented" for read and write operations. The memory will move a full burst of data for every Read and Write command unless the command is interrupted by a new command, explicitely terminated, or the data is masked. (Data mask does not shorten the command, it only inhibits data capture.) The Memory Controller can interrupt certain commands, by supporting the explicit Burst Terminate command.

The Memory Controller supports Burst and Non-Burst, or Single, transfers corresponding to the homonymous XL bus transfer types. A Burst transfer is a 32 Byte block, 4 XLB data beats (8 memory data beats), spanning a modulo 32 address range. The starting address can be any

8-16 Freescale Semiconductor

modulo 8 boundary within the modulo 32 range; the address "wraps" from the highest address to the lowest address of the range if the starting address is not aligned at the beginning of the range. No data is masked during a burst.

The beat address order of the XL bus is *sequential*. Based on the start address issued by the internal master, the address order of the 4 XLD beats in a burst transfer is one of the following:

- 0x00, 0x08, 0x10, 0x18 (memory data address order 0x00, 0x04, 0x08, 0x0c, ...)
- 0x08, 0x10, 0x18, 0x00
- 0x10, 0x18, 0x00, 0x08
- 0x18, 0x00, 0x08, 0x10

To implement single-beat transfers, the Memory Controller uses DM[3:0] to mask unwanted bytes or words. The Memory Controller supports all single-beat transfer sizes from 1 to 8 contiguous bytes within a single modulo 8 address range.

A Single transfer is exactly 1 beat on the XLD bus. The relevant data for a Single transfer is always within the first 2 beats on the memory bus, allowing the command to be aborted (interrupt) as soon as possible.

8.4.4 Commands

When an internal bus master accesses SDRAM address space, the Memory Controller generates the corresponding SDRAM command. Table 8-4 lists SDRAM commands supported by the Memory Controller.

Function	Symbol	CKE	cs	RAS	CAS	WE	BA[1:0]	A10	Other A
Command Inhibit	INH	Н	Н	Х	Х	Х	Х	Х	Х
No Operation	NOP	Н	L	Н	Н	Н	Х	Х	Х
Read	READ	Н	L	Н	L	Н	V	L	V
Write	WRIT	Н	L	Н	L	L	V	L	V
Row and Bank Active	ACT	Н	L	L	Н	Н	V	V	V
Burst Terminate	BST	Н	L	Н	Н	L	Х	Х	Х
Precharge All Banks	PALL	Н	L	L	Н	L	Х	Н	Х
Load Mode Register	LMR	Н	L	L	L	L	LL	V	V
Load Extended Mode Register	LEMR	Н	L	L	L	L	LH	V	V
CBR Auto Refresh	AREF	Н	L	L	L	Н	Х	Х	Х
Self Refresh	SREF	H→L	L	L	L	Н	Х	Х	Х
Power Down	PDWN	H→L	Н	Х	Х	Х	Х	Х	Х

Table 8-4. SDRAM Commands

Note:

- 1. H = High
- 2. L = Low
- 3. V = Valid
- 4. X = Don't care

Many commands require a delay before the next command may be issued; sometimes the delay depends on the type of the next command. These delay requirements are managed by the values programmed in the Memory Controller Configuration registers.

8.4.4.1 Load Mode/Extended Mode Register Command

The Load Mode Register (LMR) and Load Extended Mode Register (LEMR) commands are used during SDRAM initialization only.

When a bus master writes to the Memory Controller Mode register, the Memory Controller generates the LMR or LEMR command to forward the data to the memory. In these two operations, data written to the Memory Controller is put on the SDRAM address and bank select busses. The bank select data selects the Mode or Extended Mode register.

The Memory Controller Mode register must be enabled before writing, and disabled after all memory Mode register operations are complete. This is done by setting or clearing the Control register mode en bit. See Section 8.7.1, *Mode Register—MBAR* + 0x0100

Functional Description

Some of the configuration parameters required by the memory are also needed by the Memory Controller for command generation. The parameters are:

- burst length
- latency

These must be programmed in the Memory Controller Configuration registers separately from setting the memory Mode register.

8.4.4.2 Precharge All Banks Command

The Memory Controller issues the Precharge command only when necessary for one of the following conditions:

- Access to a new row
- Refresh interval elapsed
- Software commanded Precharge

NOTE

DRAMs also have a maximum bank open period, after which a precharge is required. The Memory Controller does not time the bank open period because the refresh interval is always less.

The Precharge command puts SDRAM into an idle state. In this state, the following commands can be issued:

- Refresh
- Bank Active
- Load Mode/Extended Mode Register

NOTE

The Memory Controller does not support the Precharge Selected Bank memory command.

8.4.4.3 Row and Bank Active Command

SDRAM devices have 4 internal banks. A particular row and bank of memory must be activated to allow read and write accesses. For page mode support, the Memory Controller keeps the active row and bank(s) open as long as possible.

In an SDRAM device each internal bank can have one active row. The Bank Active command activates a row of one bank. The Memory Controller only supports the same active row in all banks of each $\overline{\text{CS}}$ space independently. The page size of a $\overline{\text{CS}}$ space is equal to the space size divided by the number of rows; but the page may not be contiguous in the XLB address space because the XLA bits for memory column address bits [11:8] and memory column address [7:0] are not consecutive. The size of a contiguous page segment is 4KB, corresponding to 8 CA bits plus 2 BA bits times 4Bytes of data.

Each $\overline{\text{CS}}$ space almost always has an active row. If no row is already active, any read or write access will activate one; and the only reasons that a row is deactivated are to activate a different one instead, or to perform a refresh.

8.4.4.4 Read Command

When the Memory Controller receives a read request via the XL bus, it first checks the row and bank of the new access. If the address falls within the active row of an active bank, it is a page hit, and the Read command is issued as soon as possible (pending any delays required by previous commands). If the address is within the active row, but the needed bank is inactive, or if there is no active row, the Memory Controller will issue a Bank Active command followed by the Read command. If the address is not within the active row, the Memory Controller will issue a Precharge command to close the active row, followed by a Bank Active command to activate the necessary bank and row for the new access, followed finally by the Read command.

The Precharge and Bank Active commands (if necessary) can sometimes be issued in parallel with an on-going data movement.

All Reads, whether Burst or Single, must be allowed to complete the entire burst length on the memory bus. With SDR memory, the Data Masks are negated throughout the entire Read burst length. With DDR memory, the Data Masks are *asserted* throughout the entire Read burst length; but DDR memory ignores the Data Masks during Reads.

8.4.4.5 Write Command

When the Memory Controller receives a write request via the XL bus, it first checks the row and bank of the new access. If the address falls within the active row of an active bank, it is a page hit, and the Write command is issued as soon as possible (pending any delays required by previous commands). If the address is within the active row but the needed bank is inactive, or if there is no active row, the Memory Controller will issue a Bank Active command followed by the Write command. If the address is not within the active row, the Memory Controller will issue a Precharge command to close the active row, followed by a Bank Active command to activate the necessary row and bank for the new access, followed finally by the Write command.

The Precharge and Bank Active commands (if necessary) can sometimes be issued in parallel with an on-going data movement.

8-18 Freescale Semiconductor

With both SDR and DDR memory, a Read command can be issued overlapping the masked beats at the end of a previous Single Write of the same \overline{CS} ; the Read command aborts the remaining (unnecessary) Write beats. With DDR memory, a Read of one \overline{CS} can even overlap the masked beats at the end of a previous Single Write of the other \overline{CS} . The Write is not aborted, but the masks remain asserted. This is not possible with SDR memory, because SDR memory cannot be read with the masks asserted.

8.4.4.6 Burst Terminate Command

SDRAMs are burst-only devices, but they provide mechanisms to truncate a burst if not all of the beats are needed. The burst terminate command is used to truncate read bursts (SDR and DDR) and write bursts (SDR). The most recently registered read or write command prior to the burst terminate command will be truncated. The open page which the read or write burst was terminated from remains open.

8.4.4.7 Auto Refresh Command

The Memory Controller issues Auto Refresh commands according to the ref_interval value specified in the Memory Controller Control register. Each time the programmed refresh interval elapses, the Memory Controller issues a Precharge All Banks command followed by an Auto Refresh command.

If a memory access is in progress at the time the refresh interval elapses, the Memory Controller schedules the refresh after the transfer is finished; but the interval timer continues counting so that the average refresh rate is constant.

After refresh, the SDRAM is in an idle state and waits for an Active command.

8.4.4.8 Self Refresh and Power Down Commands

The Memory Controller issues either a Power Down or a Self Refresh command if the Control register cke bit is changed from asserted to negated. If the ref_en bit of the same register is asserted when cke is negated, the controller issues a Self Refresh command; if the ref_en bit is negated, the controller issues a Power Down command. The ref_en bit may be changed in the same register write that changes the cke bit; the controller will act upon the new value of the ref_en bit.

Unlike an Auto Refresh, the controller does *not* automatically issue a Precharge command before the Self Refresh command. It is a software responsibility to command a Precharge, using the Control register soft pre bit, by a separate write before negating the cke bit.

The memory is reactivated from Power Down or Self Refresh mode by reasserting the cke bit.

If a normal refresh interval elapses while the memory is in Self Refresh mode, a Precharge and Auto Refresh will be performed as soon as the memory is reactivated. If the memory is put into and brought out of Self Refresh all within a single refresh interval, the next automatic refresh will occur on schedule.

In Self Refresh mode, the memory does not require an external clock. The MEM_CLK can be stopped for maximum power savings by negating the Memory Controller Clock Enable bit of the CDM Clock Enable register. See Section 5.5.6, CDM Clock Enable Register—MBAR + 0x0214. If the Memory Controller clock is stopped, the refresh interval timer must be reset before the memory is reactivated (if periodic refresh is to be resumed). The refresh interval timer is reset by negating the Control register ref_en bit. This can be done at any time while the memory is in Self Refresh mode, before or after the Memory Controller clock is stopped/restarted, but **not** with the same Control register write that negates cke; this would put the memory in Power Down mode. To restart periodic refresh when the memory is reactivated, the ref_en bit must be reasserted; this can be done before the memory is reactivated, or in the same Control register write that cke is reasserted.

NOTE

As soon as the CKE signal is negated (set to a logical 0) a SDRAM memory device does *NOT* answer any longer to any command (all its input but the CKE are ignored) until the CKE is re-asserted and a minimum time has elapsed (as specified by the memory vendor).

8.5 Operation

8.5.1 Power-Up Initialization

The SDRAM and SDRAM MC must be initialized after power-up. SDRAM parameters may be read from an I^2 C serial EEPROM, or compiled into the boot ROM. See Section 18, *Inter-Integrated Circuit* (I^2 C) if using serial EEPROM.

The steps below should be followed to initialize the memory system.

NOTE

The sequence might change slightly from device to device. Refer to the device data sheet for the most up-to-date information. In any case of conflict between this document and the device data sheet, the data sheet shall prevail.

- Step 1. After reset is deactivated, pause for the amount of time indicated in the SDRAM specification. Usually 100 µs or 200 µs.
- Step 2. Determine the number of SDRAM \overline{CS} spaces. If using both \overline{CS} spaces, configure GPIO WKUP6/ $\overline{CS1}$ for $\overline{CS1}$ mode.

MPC5200B Users Guide, Rev. 1

Programming the SDRAM Controller

If all the memory and controller register values have been precalculated and stored in ROM, skip step 3 and go directly to step 4. Otherwise, continue with step 3.

- Step 3. Read the SDRAM parameters (type, size, address muxing, timing), and determine the memory clock frequency. (The memory clock frequency is always equal to the XLB frequency.) Using the SDRAM parameters and the clock frequency, calculate all the memory and controller register values now. Certain register fields are mandatory:
 - Memory Mode register Burst Mode = Sequential
 - Memory Mode register Burst Length = 8
 - Controller Configuration register 2 burst length = 7
 - Controller Control register cke = 1

Do not write any registers yet. Use these register values as default values for the following operations. An operation can override the default, but overrides do not carry forward to subsequent operations.

- Step 4. Write the SDRAMCS Configuration registers and the controller Config registers 1 & 2.
- Step 5. Write the controller Control register with these overrides:
 - assert the mode en bit (1).
 - negate ref en (0).
- Step 6. (DDR only) Write the controller Control register to issue a Precharge All Banks command (soft_pre=1); maintain mode_en=1, ref en=0, all other bits default.
- Step 7. (DDR only) Write to the memory Extended Mode register to enable the DLL.
- Step 8. (DDR only) Write to the memory Mode register to reset the DLL.
- Step 9. (DDR only) Pause for the DLL lock time specified by the memory (roughly 100 µs. See memory datasheet for detailed time).
- Step 10.Write to the controller Control register to issue a Precharge All Banks command (soft pre=1); maintain mode en=1, ref en=0.
- Step 11.Write to the controller Control register to issue 2 or more Auto Refresh commands (soft_ref=1); maintain mode_en=1, ref_en=0. Each command requires a separate write.
- Step 12. Write to the memory Mode register to specify normal operation.
- Step 13. Write to the controller Control register to specify normal operation.

8.5.2 Read Clock

The MPC5200B implements a self-calibrating, software adjustable, read clock recovery circuit. A 400 tap master delay chain, continuously measures either the half or full period delay of the memory clock. The master tap value is used to derive a 1/4 period tap value, for use in 4 independent, 256 tap, slave delay chains. In DDR mode, the MDQS signal is used to generate the 1/4 period delayed read clock. In SDR mode, an internally generated "DQS" signal is used to generate the 1/4 period delayed read clock. For both DDR and SDR memories, the delayed read clock is used to latch the data from the memories.

8.6 Programming the SDRAM Controller

The Memory Controller registers consist of:

- Section Table 8-5., Memory Controller Mode Register / SDRAM MC Extended Mode Register (MBAR+0x0100), write only
- Section Table 8-6., Memory Controller Control Register (MBAR+0x0104)
- Section Table 8-10., Memory Controller Configuration Register 1 (MBAR+0x0108)
- Section Table 8-11., Memory Controller Configuration Register 2 (MBAR+0x010C)

All registers are 32bit-aligned in memory (modulo 4 address boundary).

8.7 Memory Controller Registers (MBAR+0x0100:0x010C)

8.7.1 Mode Register—MBAR + 0x0100

Each time the 32-bit write-only Mode register (mode[0:31]) is written (and cmd is set to 1), the controller generates a Load Mode Register or Load Extended Mode Register command to memory.

The memory Mode/Extended Mode registers must be initialized during the system boot sequence; but before writing to the controller Mode register, the mode_en and cke bits in the Control register must be set to 1. After memory initialization is complete, the Control register mode en bit should be cleared to prevent subsequent access to the controller Mode register.

Table 8-5. Memory Controller Mode Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R															Rsvd	
W	MEM_ [1:			MEM_MA[11:0]												cmd
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R									served							
								1100	ocivea							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:1	MEM_MBA [1:0]	See SDRAM data sheet. Select either the memory device Mode register or the memory device Extended Mode register, if present.
2:13	MEM_MA[11:0]	See SDRAM data sheet. MPC5200B supports: Read CAS Latency, SDR: 2, 3 Read CAS Latency, DDR: 2, 2.5 Burst type: Sequential only Burst length: 8 only Other fields: As appropriate Specific bit allocation can vary from device to device. All devices in all CS spaces must have compatible format(s), because all are written at the same time with the same value.
14	_	Reserved
15	cmd	Generate a (Extended) Mode Register Set memory command. Applied to all CS at once. Do not generate any memory command.
16:31	_	Reserved

Memory Controller Registers (MBAR+0x0100:0x010C)

8.7.2 Control Register—MBAR + 0x0104

The 32-bit read/write Control register controls specific operations and generates some SDRAM commands. This register is reset only by a power-up reset signal.

Table 8-6. Memory Controller Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	mode	cke	ddr	ref		Rsvd		hi_	Rsvd	drive			ref_inte	rval[0:5]	
W	_en			_en				addr		_rule						
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Resei	rved	mem_	Rsvd		dqs	_oe			F	Reserve	d				Rsvd
W			ps											soft	soft	
														_ref	_pre	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0	mode_en	Mode register locked, cannot be written. Mode register enabled, can be written.
1	cke	MEM_CLK_EN negated (low). MEM_CLK_EN asserted (high). cke must be set to 1 to perform normal read and write operations. Set cke to 0 to put the memory in Self Refresh or Power Down mode.
2	ddr	0 SDR mode. 1 DDR mode.
3	ref_en	0 Automatic refresh disabled. 1 Automatic refresh enabled. In general, refresh must be enabled, unless the system is known to access memory in a pattern that is guaranteed to open every row in every bank within every refresh period t_{REF} Some memory data sheets do not spec t_{REF} but spec t_{REFI} instead. In this case, $t_{REF} = t_{REFI} \times \text{#rows}$. NOTE: The number of Refresh commands required in t_{REF} is #rows; if refresh is disabled, the number of Read/Write commands required in t_{REF} is #rows x 4banks.
4:6	_	Reserved
7	hi_addr	Control the use of internal address bits XLA[4:7] as row or column bits on the MEM_MA bus. See Table 8-7.
8	_	Reserved (must be written 0)
9	drive_rule	0 "Tri-state except to write" mode: MPC5200B drives the MDQ and MDQS lines only when necessary to perform write commands. 1 "Drive except to read" mode: MPC5200B tri-states the MDQ and MDQS lines only when necessary to perform read commands. "Drive except to read" mode prevents unterminated memory signals from floating for extended periods. However, terminated routing is always recommended over unterminated.

Bit	Name	Description
10:15	ref_interval[0:5]	The average periodic interval at which the controller generates refresh commands to memory; measured in increments of 64 x MEM_CLK period.
		1) Multiply t_{REFI} by the MEM_CLK frequency. (If the memory data sheet does not define t_{REFI} , it can be calculated by $t_{REFI} = t_{REF}$ / #rows.) Example: Assume $t_{REF} = 64$ ms, #rows = 4K, MEM_CLK = 133MHz. Then: $t_{REFI} = 64$ ms / 4K = 15.625 μ s; 15.625 μ s x 133MHz = 2078.1
		2) Divide the previous result by 64, rounding toward 0 2078.1 / 64 = 32.471; discard the fractional part.
		3) Subtract 1 from the previous result. The new result is ref_interval. 32 - 1 = 31 = 0x1f
16:17	_	Reserved
18	mem_ps	Memory data port size. 0 32-bit data bus.
		1 16-bit data bus (upper two data bytes, MEM_MDQ[31:16]).
19	_	Reserved
20:23	dqs_oe[3:0]	Each bit individually controls one MEM_MDQS output.
		0 The corresponding MEM_MDQS pin is <i>never</i> driven, regardless of memory operation and drive_rule. Always set to 0000 for SDR.
		1 The corresponding MEM_MDQS pin <i>can</i> be driven, depending on memory operations and drive_rule. DDR only.
24:28	_	Reserved
29	soft_ref	0 No operation.
		1 Generate a non-periodic Auto Refresh command as soon as possible.
		This is a write-only bit; always returns 0 on a read. A software requested refresh is completely independent of the periodic refresh interval counter. Software refresh is only possible when mode_en==1.
30	soft_pre	0 No operation.
		1 Generate a Precharge All command as soon as possible.
		This is a write-only bit; always returns 0 on a read. Software precharge is only possible when mode_en==1.
31	_	Reserved

The Table 8-7 indicates how the internal address bits XLA[4:7] are multiplexed internally to support higher column or row address bits.

Table 8-7. High Address Usage

bi oddr	XL Bus Address Line Mapping to Column or Row Address												
hi_addr	4	5	6	7									
32-Bit Data Bus													
0	CA12	CA11	CA9	CA8									
1	CA11	CA9	CA8	RA12									
16-Bit Data Bus													
0	CA13	CA12	CA11	CA9									
1	CA12	CA11	CA9	RA8									

Memory Controller Registers (MBAR+0x0100:0x010C)

Table 8-8. 32-Bit SDRAM Address Multiplexing

		Row bits ×		Internal XLA[4:29]												
Device	Structure	Col bits × Bank bits	hi_ addr	4	5	6	7	8	9:19	20:21	22:29					
64Mbit	2Mx32bit	11x8x2	0	a	_	_	_	_	RA [10:0]	BA [1:0]	CA [7:0]					
	4M×16bit	12×8×2	0	_	_		_	RA	[11:0]							
	8M×8bit	12×9×2	0	_	_	_	CA8									
		13×8×2	1	_	_	_	RA12									
128Mbit	4M×32bit	12×8×2	0	_	_	_	_	RA	[11:0]	BA	CA					
	8M×16bit	12×9×2	0	_	_		CA8			[1:0]	[7:0]					
		13×8×2	1	_	_		RA12									
	16M×8bit	12×10×2	0	_	_	CA9	CA8	·								
		13×9×2	1	_	_	CA8	RA12									
256Mbit	8M×32bit	12×9×2	0	_	_		CA8	RA	[11:0]	BA	CA					
		13×8×2	1	_	_		RA12			[1:0]	[7:0]					
	16M×16bit	12×10×2	0	_	_	CA9	CA8									
		13×9×2	1	_	_	CA8	RA12									
	32M×8bit	12×11×2	0	_	CA11	CA9	CA8	·								
		13×10×2	1	_	CA9	CA8	RA12									
512Mbit	16M×32bit	12×10×2	0	_	_	CA9	CA8	RA	[11:0]	BA	CA					
		13×9×2	1	_	_	CA8	RA12			[1:0]	[7:0]					
	32M×16bit	12×11×2	0	_	CA11	CA9	CA8									
		13×10×2	1	_	CA9	CA8	RA12									
	64M×8bit	12×12×2	0	CA12	CA11	CA9	CA8	·								
		13×11×2	1	CA11	CA9	CA8	RA12									
1Gbit	32Mx32bit	12×11×2	0	_	CA11	CA9	CA8	RA	[11:0]	BA	CA					
		13×10×2	1	_	CA9	CA8	RA12			[1:0]	[7:0]					
	64Mx16bit	12×12×2	0	CA12	CA11	CA9	CA8	†								
		13×11×2	1	CA11	CA9	CA8	RA12									
2Gbit	64Mx32bit	12×12×2	0	CA12	CA11	CA9	CA8	RA	[11:0]	BA	CA					
		13×11×2	1	CA11	CA9	CA8	RA12			[1:0]	[7:0]					

^a All MEM_MA pins are driven in all cases, but only the bits used by memory are listed.

8-24 Freescale Semiconductor

		Row bits ×					Interr	nal XLA	\[4:30]		
Device	Structure	Col bits × Bank bits	hi_ addr	4	5	6	7	8	9:19	20:21	22:30
64Mbit	8Mx8bit	12x9x2	0	a	_	_	_	RA	[11:0]	BA [1:0]	CA [8:0]
128Mbit	8Mx16bit	12x9x2	0	_	_	_	_	RA[11:0]		BA	CA
	16Mx8bit	12x10x2	0	_	_	_	CA9			[1:0]	[8:0]
		13x9x2	1	_	_	_	RA12				
256Mbit	8Mx32bit	12x9x2	0	_	_	_	_	RA[11:0]		BA	CA
	16Mx16bit	12x10x2	0	_	_	_	CA9			[1:0]	[8:0]
		13x9x2	1	_	_	_	RA12				
	32Mx8bit	12x11x2	0	_	_	CA11	CA9				
		13x10x2	1	_	_	CA9	RA12				
512Mbit	16Mx32bit	12x10x2	0	_	_	_	CA9	RA[11:0]		BA	CA
		13x9x2	1	_	_	_	RA12			[1:0]	[8:0]
	32Mx16bit	12x11x2	0	_	_	CA11	CA9				
		13x10x2	1	_	_	CA9	RA12				
	64Mx8bit	12x12x2	0	_	CA12	CA11	CA9				
		13x11x2	1		CA11	CA9	RA12				
1Gbit	32Mx32bit	12x11x2	0		_	CA11	CA9	RA	[11:0]	BA	CA
		13x10x2	1		_	CA9	RA12			[1:0]	[8:0]
	64Mx16bit	12x12x2	0		CA12	CA11	CA9				
		13x11x2	1		CA11	CA9	RA12	-			
2Gbit	64Mx32bit	12x12x2	0		CA12	CA11	CA9	RA	[11:0]	BA	CA
		13x11x2	1	_	CA11	CA9	RA12			[1:0]	[8:0]

Table 8-9. 16-Bit SDRAM Address Multiplexing

8.7.3 Configuration Register 1—MBAR + 0x0108

The 32-bit read/write Configuration register 1 stores delay values necessary between specific SDRAM commands. During initialization, software loads values to the register according to the SDRAM information obtained from the data sheet. This register is reset only by a power-up reset signal.

The Read and Write Latency fields govern the relative timing of commands and data, and must be exact values. All other fields govern the relative timing from one command to another, they have minimum values but any larger value is also legal (but with decreased performance). The "suggested values" are based on the maximum routing delay of memory signals and the MPC5200B maximum memory frequency of 133MHz; they do not guarantee maximum performance for actual board routing delay or operating frequency.

The minimum values of certain fields can be different for SDR and DDR SDRAM, even if the data sheet timing is the same, because:

- In SDR mode, the Memory Controller counts the delay in MEM CLK
- In DDR mode, the Memory Controller counts the delay in 2xMEM CLK (also referred to as MEM CLK2)

MEM_CLK—Memory Controller clock—is the speed of the SDRAM interface and is equal to the internal XL bus clock. MEM_CLK is fixed at boot time along with the XL bus clock, via the HW RESET WORD setting. It is an integer multiple of the external reference clock (e.g., 66MHz, 99MHz or 132MHz if a 33MHz reference is used).

MPC5200B Users Guide, Rev. 1

^a All MEM_MA pins are driven in all cases, but only the bits used by memory are listed.

Memory Controller Registers (MBAR+0x0100:0x010C)

 $MEM_CLK2--double\ frequency\ of\ MEM_CLK--DDR\ uses\ both\ edges\ of\ the\ bus-frequency\ clock\ (MEM_CLK)\ to\ read/write\ data.$

Table 8-10. Memory Controller Configuration Register 1

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R		srd2rwp			swt2rwp					rd_la	tency		Rsvd	act2rw			
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R	Rsvd		pre2ac	:t		re	f2act		Rsvd	w	r_laten	су		Res	served		
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bit	Name	Description
0:3	srd2rwp	Single Read to Read/Write/Precharge delay. Limiting case is Read to Write: For DDR: CL + round trip delay + t _{Hz} ; round up.
		If round trip delay = 1 clk and t _{Hz} = 0.75 ns::
		If $CL==2: 2 + 1 + 0.75 \text{ ns} = 3 \text{ clk} + 0.75 \text{ ns}$, round to 0x3.
		If CL== 2.5 : $2.5 + 1 + 0.75$ ns = 3.5 clk + 0.75 ns, round to $0x4$
		For SDR: CL + round trip delay + t _{Hz} + 1; round up.
		If round trip delay = 1 clk and t _{Hz} = 5.4 ns:
		If $CL==2: 2 + 1 + 5.4 \text{ns} + 1 = 4 \text{ clk} + 5.4 \text{ns}$, round to $0x5$.
		If $CL==3: 3 + 1 + 5.4 \text{ns} + 1 = 5 \text{ clk} + 5.4 \text{ns}$, round to $0x6$.
4	_	Reserved
4:7	swt2rwp	Single Write to Read/Write/Precharge delay. Limiting case is Write to Precharge.
		For DDR, suggested value = $0x3 (t_{WR} + 1 clk)$
		For SDR, suggested value = $0x2 (t_{WR})$
8:11	rd_latency	Read CAS Latency.
		For DDR:
		If CL==2, write 0x6 If CL==2.5, write 0x7
		For SDR:
		If CL==2, write 0x2
		If CL==3, write 0x3
		Note: NOTE: CL=2.5 is not supported for SDR.
12	1	Reserved
13:15	act2rw	Active to Read/Write delay.
		Suggested value at 132 MHz = 0x02
		Rule: t _{RCD} /MEM_CLK-1. Round up to nearest integer.
		EXAMPLE:
		If t _{RCD} = 20ns and MEM_CLK = 99 MHz
		20ns / 10.1 ns = 1.98; round to 2; write 0x1.
		If $t_{RCD} = 20 \text{ ns}$ and MEM_CLK = 132 MHz
		20ns / 7.5 ns = 2.66; round to 3; write 0x2.

MPC5200B Users Guide, Rev. 1

Bit	Name	Description
16	_	Reserved
17:19	pre2act	Precharge to Active or Refresh delay.
		Suggested value at 132 MHz = 0x02
		Rule: t _{RP} /MEM_CLK-1. Round up to nearest integer.
		EXAMPLE:
		If t _{RP} = 20ns and MEM_CLK = 99 MHz
		20ns / 10.1 ns = 1.98; round to 2; write 0x1.
		If $t_{RP} = 20$ ns and MEM_CLK = 132 MHz
		20ns / 7.5 ns = 2.66; round to 3; write 0x2.
20:23	ref2act	Refresh to Active delay.
		Suggested value at 132 MHz = 0x9
		Rule: t _{RFC} /MEM_CLK - 1. Round up to nearest integer.
		EXAMPLE:
		If $t_{RFC} = 75$ ns and MEM_CLK = 99 MHz
		75ns / 10.1ns = 7.425; round to 8; write 0x7.
		If $t_{RFC} = 75$ ns and MEM_CLK = 132 MHz
		75 ns / 7.5 ns = 10; round to 9; write 0x9.
24	_	Reserved
25:27	wr_latency	Write latency.
		For DDR, write 0x3
		For SDR, write 0x0
28:31	_	Reserved

8.7.4 Configuration Register 2—MBAR + 0x010C

The 32-bit read/write Configuration register 2 stores delay values necessary between specific SDRAM commands. During initialization, software loads values to the register according to the SDRAM information obtained from the data sheet. This register is reset only by a power-up reset signal.

The Burst Length field must be exact. All other fields govern the relative timing from one command to another, they have minimum values but any larger value is also legal (but with decreased performance).

All delays in this register are expressed in MEM_CLK.

Table 8-11. Memory Controller Configuration Register 2

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		brd2	2rp		bwt2rwp					bro	d2wt		burst_length			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Freescale Semiconductor

8-27

Memory Controller Registers (MBAR+0x0100:0x010C)

Bit	Name	Description
0:3	brd2rp	Burst Read to Read/Precharge delay. Limiting case is Read to Read.
		For DDR, suggested value = 0x4 (BurstLength/2)
		For SDR, suggested value = 0x8 (BurstLength)
4:7	bwt2rwp	Burst Write to Read/Write/Precharge delay. Limiting case is Write to Precharge.
		For DDR, suggested value = $0x6$ (BurstLength/2 + t_{WR})
		For SDR, suggested value = 0x8 (BurstLength + t_{WR} - 2)
8:11	brd2wt	Burst Read to Read/Write/Precharge delay. Limiting case is Read to Write:
		For DDR: CL + burstlength/2 + round trip delay + t _{Hz} - 1.5 clk; round up.
		If round trip delay = 1 clk and $t_{Hz} = 0.75$ ns:
		If CL==2: 2 + 4 + 1 + 0.75ns -1.5 = 5.5clk + 0.75ns, round to 0x6.
		If $CL==2.5$: $2.5 + 4 + 1 + 0.75$ ns + $1.5 = 6$ clk + 0.75 ns, round to $0x7$.
		For SDR: CL + burstlength + round trip delay + t _{Hz} - 1 clk:
		If CL==2: 2 + 8 + 1 + 5.4ns - 1 = 10clk + 5.4ns, round to 0xB.
		If $CL==3: 3+8+1+5.4$ ns - 1 = 11clk + 5.4ns, round to 0xC.
12:15	burst_length	Write 0x07 (Burst Length - 1)
16:31	_	Reserved

8-28 Freescale Semiconductor

The Figure 8-3. Programmable Command Timings shows the timings which can be programmed by the two Controller Configuration Register. The timing diagram uses the suggested values for a DDR memory and a 132 MHz memory clock. The displayed Commands are the limiting cases.

Figure 8-3. Programmable Command Timings

Freescale Semiconductor 8-29

MPC5200B Users Guide, Rev. 1

8.8 Address Bus Mapping

This is an illustration of how the XL bus address enters the Memory Controller and is broken down into Row, Column, and Bank Address fields. Shown below is the 32-bit XL bus address. The Memory Controller uses bits 4:31.

Figure 8-4. Address Bus Mapping (32-Bit External Data Width)

8-30 Freescale Semiconductor

This is an illustration of how the XL bus address enters the Memory Controller and is broken down into Row, Column, and Bank Address fields. Shown below is the 32-bit XL bus address. The Memory Controller uses bits [27:0].

Figure 8-5. Address Bus Mapping (16-Bit External Data Width)

8.8.1 Example—Physical Address Multiplexing

The mapping of XL address bus to memory address bus is shown in Figure 8-4. The default mapping is:

- Row address comes from XLA[8:19]
- Column address comes from XLA[4:7, 22:29]
- Bank address comes from XLA[20:21]

Using the MT46V32M16 DDR SDRAM memory from Micron as an example, the device holds 512Mb organized as 8M x 16bit x 4banks. 2 devices are required to support the MPC5200B 32bit memory data bus, giving a total 128MB of address space (assuming just one \overline{CS}).

The Micron data sheet shows the following requirements:

- 13 row address bits
- 10 column address bits
- 2 bank select bits

Address Bus Mapping

By default, the Memory Controller only provides 12 row address bits and 12 column address bits. To enable the 13th row address bit, the hi_addr bit of the Control register must be set to 1 (MBAR+0x0104, Control[7]). This also reduces the column address width to 11 bits.

MPC5200B Users Guide, Rev. 1

Chapter 9 LocalPlus Bus (External Bus Interface)

9.1 Overview

The LocalPlus Bus is the external bus interface of the MPC5200B. This multi-function bus system supports interfacing to external Boot ROM or Flash memories, external SRAM memories or other memory mapped devices. The following sections are contained herein:

- Section 9.1, Overview
- Section 9.2, Features
- Section 9.3, *Interface*
 - Section 9.3.1, External Signals
 - Section 9.3.2, Block Diagram
- Section 9.4, *Modes of Operation*
 - Section 9.4.1, Non-MUXed Mode
 - Section 9.4.2, MUXed Mode
- Section 9.5, Configuration
 - Section 9.5.1, *Boot Configuration*
 - Section 9.5.2, Chip Selects Configuration
 - Section 9.5.3, Reset Configuration
- Section 9.6, DMA (BestComm) Interface (SCLPC)
- Section 9.7, Programmer's Model
 - Section 9.7.1, *Interrupt and Bus Errors*
 - Section 9.7.1, Chip Select/LPC Registers—MBAR + 0x0300
 - Section 9.7.2, SCLPC Registers—MBAR + 0x3C00
 - Section 9.7.3, SCLPC FIFO Registers—MBAR + 0x3C40

The MPC5200B offers a shared external 32-bit address/data bus, which supports connections to PCI and ATA compliant devices, as well as memory mapped devices such as Flash memories, ROM, SRAM, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. Separate control signals are used by each interface. The on-chip arbiter (called PCI Arbiter) controls the access to the shared AD bus for the different clients.

NOTE

If the PCI interface is NOT used (and internally disabled) the PCI control pins must be terminated as indicated by the PCI Local Bus specification. PCI control signals always require pull-up resistors on the motherboard (not the expansion board) to ensure that they contain stable values when no agent is actively driving the bus. This includes PCI_FRAME, PCI_TRDY, PCI_IRDY, PCI_DEVSEL, PCI_STOP, PCI_SERR, PCI_PERR, and PCI_REQ.

The PCI signals, which are not used as address in Large Flash mode, are drive low during a Large Flash access. This includes PCI_SERR, PCI_PERR, PCI_IDSEL, PCI_REQ, PCI_GNT and PCI_RESET.

The PCI interface is described in Chapter 10, PCI Controller. The ATA compliant interface is described in Chapter 11, ATA Controller. The interface for memory mapped devices, called LocalPlus Bus, is described in this chapter. The MPC5200B LocalPlus Controller (LPC) module implements the LocalPlus Bus interface.

The LocalPlus Bus interface provides a high flexibility and all its different operating modes can be selected by means of software configuration and in some cases minimal external logic (in multiplexed mode).

9.2 Features

LocalPlus has the following features:

- · Interface to memory mapped or chip selected devices
- Two main modes of operation:
 - non-MUXed Modes

Legacy Modes (Address 8, 16, or 24 bits, Data 8 or 16 bits) Most Graphics Mode (Address 24 bits, Data 32 bits)

Large Flash Mode (Address 26 bits, Data 8 or 16 bits)

MUXed Modes

MPC5200B Users Guide, Rev. 1

- (Address 8, 16, 24 or 25 bits, Data 8,16 or 32 bits, 2 Bank Selects)
- 8 Chip Select (CS) signals
 - Programmable Wait States per CS
 - Programmable Deadcycles per CS
 - Programmable Byte Swapping per CS
- Configurable Boot interface supporting PowerPC architecture code execution
- Dynamic bus sizing on some interfaces
- Support of BURST MODE FLASH devices
- DMA (BestComm) support allows data movement independently from the CPU
- NO support of misaligned accesses

9.3 Interface

The LocalPlus interface consists of:

- Address Bus
- Data Bus
- Chip Select signals CS0-7
- control signals:
 - R/W (Read/Write)
 - ALE (Address Latch Enable)
 - ACK (Acknowledge)
 - TS (Transfer Start)
 - OE (Output Enable)
 - TSIZ bits (Transfer Size)
 - Bank Select bits
- reference clock PCI CLOCK

The reference clock PCI CLOCK is always running, even if the PCI Controller is disabled.

9.3.1 External Signals

The external I/O bus is shared with the PCI AD bus and the ATA bus and requires arbitration for access to the external bus.

Table 9-1. LocalPlus External Signals

Signal	I/O	Definition
CS [7:0]	0	Chip Selects (active low), $\overline{CS}[4]$ and $\overline{CS}[5]$ shared with ATA, $\overline{CS}[6]$ and $\overline{CS}[7]$ shared with PSC3.
R/W	0	Read/Write. 1 = Read, 0 = Write
EXT_AD[31:0]	I/O	AD Address / Data bus (bi-directional when used as data; bit 31=msb)
ĀCK	I/O	External Acknowledge input (non-burst transactions), BURST indication for Most Graphics or Large Flash Modes (Open Drain)
TS	0	Transfer Start
ŌĒ	0	Output Enable
TSIZ[1:2]	0	Transfer Size
		1. TSIZ bits are available in non-muxed modes on GPIO_WKUP_7 and TEST_SEL_1 pins, if the LPTZ bit is set in the GPS Port Configuration Register—MBAR + 0x0B00 2. The MUXed Mode provides 3 bits TSIZ[0:2], which are available on EX_AD[30:28].
ALE	0	Address Latch Enable

9.3.2 Block Diagram

The block diagram of the LocalPlus Controller (LPC) is shown in Figure 9-1. This diagram shows the non-multiplexed implementation of address and data lines.

The LPC is driven by the internal IP bus clock and the PCI_CLOCK. The supported ratios of the IP bus clock to the reference clock PCI_CLOCK (the one externally seen by peripherals) are 4:1, 2:1 and 1:1.

The reference clock is the PCI_CLOCK and all clock counts are referred to this clock. All transitions are synchronized to the rising edge of the PCI_CLOCK.

Start/Stop registers to define the CS address range for each CS output are contained in the MPC5200B MMAP register group, see Section 3.3.3.2, *Boot and Chip Select Addresses*. Registers in the LPC are accessed through the address range specified in the MPC5200B Internal Register Map. For more information, see Section 9.7, *Programmer's Model*. These registers control the operation of a particular CS and peripheral, when a "hit" occurs in the MMAP module for the corresponding CS space.

Figure 9-1. LPC Concept Diagram

NOTE

BestComm Interface + FiFo not shown

Not all pins are used in all modes.

For multiplexed bus implementation, external logic is required to capture the address phase as shown in Figure 9-2.

Figure 9-2. Muxed Mode Address Latching

9.4 Modes of Operation

There are 2 primary modes of operation:

- MUXed
- non-MUXed (Legacy, Large Flash, Most/Graphic modes, Burst and Non-Burst)

Within each mode, there is considerable flexibility to control the operation.

Each CS can be programmed to a different mode of operation (MUXed, non-MUXed, number of wait states, byte swapping etc.).

The MPC5200B always begins execution from the release of HRESET on the LocalPlus Bus and from the memory device connected to $\overline{\text{CS0}}$.

If an ATA Disk drive is present in the system, 2 CS signals may be taken up by the ATA interface. The ATA CSs can also be programmed to appear on other signals. For more information, see Chapter 11, ATA Controller.

MUXed mode allows devices with a larger address range be attached to the LocalPlus bus. In this mode the same 32-bit local bus presents an Address in an address tenure and Data in a data tenure, in a multiplexed fashion (similar to PCI protocol).

MUXed mode provides an \overline{ALE} during the address phase and a \overline{TS} during a separate data phase. This mode requires external logic to latch the address during the address tenure. An \overline{ACK} input is provided and can be asserted to shorten (but not extend) wait states. The MUXed mode is available for all CSs, including CS0 (i.e., Boot Device).

The LocalPlus Bus on MPC5200B provides an Output Enable signal \overline{OE} to achieve a complete glue less interface for most devices.

The logic equation for the internal generation of the \overline{OE} signal is :

 $\overline{OE} = \overline{CSx} + (NOT R/\overline{W})$

Figure 9-3. Output Enable Signal

MUXed and non MUXed modes support a variety of device configurations and are configurable on a per CS basis.

9.4.1 Non-MUXed Mode

In Non-MUXed mode the 32-bit address/data bus is divided into address and data lines. Eight different partitionings of address and data lines can be configured.

9-4 Freescale Semiconductor

Table 9-2. Non-Muxed Mode Options

Category	Address Size	Data Size	Pins used	Memory size	Comments
Small	8	8	16	256 Bytes	Legacy Mode
Small	8	16	24	256 Bytes	Legacy Mode
Small	16	8	24	64 kBytes	Legacy Mode
Small	16	16	32	64 kBytes	Legacy Mode (BOOT OPTION)
Medium	24	8	32	16 MBytes	Legacy Mode (BOOT OPTION)
MOST/G	24	32	56	16 MBytes	MOST Graphics (BOOT OPTION) Burst support. No PCI or ATA support
Large	26	8	34	64 MBytes	Large Flash Mode (BOOT OPTION). Burst support. No PCI support.
Large	26	16	42	64 MBytes	Large Flash Mode (BOOT OPTION) Burst support. No PCI support

NOTE

The 24-bit data width is **not** supported.

The total pin number requires also the addition of the control signals CS,

 R/\overline{W} , \overline{ACK} , \overline{OE} , \overline{TS} (MOST/Graphis and Large Flash mode) and TSIZ (MOST/Graphics mode) where available.

The total supported memory size has been calculated taking into account that when accessing 16/32 bit devices A1 and/or A0 can NOT be used.

The above options defined as BOOT Option are selectable via the reset configuration word. Other configurations are possible via software configuration (e.g., 8-bit data and 16-bit address). Figure 9-4 shows the operation of Non-MUXed Read/Write accesses.

TSIZ bits are available in all non-muxed modes. They appear on GPIO_WKUP_7 (TSIZ most significant bit, TSIZ 1) and TEST_SEL_1 (TSIZ least significant bit, TSIZ 2), if the LPTZ bit is set in the GPS Port Configuration Register—MBAR + 0x0B00. Only TSIZEs of 1, 2, or 4 are supported.

TSIZ[1:2] are driven as follows:

01 = Transaction is 1 byte.

10 = Transaction is 2 bytes.

00 = Transaction is 4 bytes.

Other values are invalid and should not be required by the external peripheral!

Table 9-3 describes the various combinations of TSIZ, address and byte lanes for MOST/Graphis mode.

Transfer Size	TSIZ[1:2]	Addr[1.0]	Data lanes							
Transfer Size	1312[1.2]	Addr[1:0]	AD[31:24]	AD[23:16]	AD[15:8]	AD[7:0]				
1 Byte	01	00	Data							
		01		Data						
		10			Data					
		11				Data				
2 Bytes	10	00	Data	Data						
		10			Data	Data				
4 Bytes	00	00	Data	Data	Data	Data				

Table 9-3. Non-Muxed Aligned Data Transfers

- 1. \overline{ACK} can shorten the CS pulse width.
- 2. TS is only available in Large Flash and MOST Graphics mode.

Figure 9-4. Timing Diagram—Non-MUXed Mode

- 1. Burst Mode is only available for Large Flash and MOST Graphics mode.
- 2. $\overline{\text{ACK}}$ is output and indicates the burst.

Figure 9-5. Timing Diagram—Burst Mode

MPC5200B Users Guide, Rev. 1

9-6 Freescale Semiconductor

In this mode, the peripheral address and data lines are limited to a total of 32 in Legacy Modes, to 40 or 48 in Large Flash or to 56 in MOST Graphics mode. They are driven/read simultaneously on the external AD bus. A single dedicated R/\overline{W} pin is driven to indicate read or write. An individually dedicated CS pin is driven low while an external access is active.

Wait states are programmable and simply select how many PCI clocks the CS pin (and related signals) remain asserted. Separate values are available for Read cycles versus Write Cycles. These values can be combined to create extremely long (up to 16 bits) Write cycles. Byte lane swapping is separately programmable between Reads versus Writes and can be used to perform Endian conversions. The 24-bit data width is **not** supported.

Peripherals can be marked as read-only or write-only by setting a control bit in the appropriate LPC register. Attempted accesses in violation of this setting are prevented and result in either a Bus Error and/or an Interrupt as controlled by corresponding Enable bits. Each CS pin can be individually enabled/disabled and the entire LPC module has a Master Enable bit. No software reset bit is provided or needed.

The non-multiplexed mode requires no external logic for interfacing to simple devices such as Flash ROM, E2PROM or SRAM. It is faster than the multiplexed mode because data and address are provided in a single tenure. The supported address space is limited by the 26 address lines.

9.4.2 MUXed Mode

In MUXed mode the addresses and data are multiplexed using dual tenure. First, the address is put on the shared address/data bus and ALE is asserted. Then the data is driven when the chip select is asserted. Twelve different modes of address and data sizes can be configured:

Category	Address Size	Data Size Memory Size per Bank		Memory Size Total	Comments
Legacy	8	8	256 Bytes	1 kBytes	
Legacy	8	16	256 Bytes	1 kBytes	A0 not used.
Legacy	8	32	256 Bytes	1 kBytes	A0, A1 not used.
Legacy	16	8	64 kBytes	256 kBytes	
Legacy	16	16	64 kBytes	256 kBytes	A0 not used.
Legacy	16	32	64 kBytes	256 kBytes	A0, A1 not used.
Legacy	24	8	16 MBytes	64 MBytes	
Legacy	24	16	16 MBytes	64 MBytes	A0 not used.
Legacy	24	32	16 MBytes	64 MBytes	A0, A1 not used.
Legacy	25	8	32 MBytes	128 MBytes	
Legacy	25	16	32 MBytes	128 MBytes	BOOT
Legacy	25	32	32 MBytes	128 MBytes	ВООТ

Table 9-4. MUXed Mode Options

NOTE

The 24-bit data width is **not** supported.

The total supported Memory space consists of four banks.

Bank select bits are written in a register by the e300 processor. They can be used as individual selects or as encoded values. They are presented on the bus during the address tenure as additional upper address bits.

In this mode, an address tenure is generated that can be up to 25 bits of active address. The additional address bits drive:

- a TSIZE value (3 bits)
- a Bank Select value (2 bits)

An ALE signal is asserted (active lo) during this address tenure. ALE width is always one PCI bus clock. The dedicated R/\overline{W} output is also driven with ALE (and throughout the cycle). One clock after ALE negates, the appropriate CS pin asserts (low) and the AD bus enters the data tenure. The CS pin and this data tenure remain active until the programmed wait states expire, or the peripheral responds with an ACK assertion. ACK polarity is active low, but can be programmed to be ignored. The data tenure can contain up to the full 32-bit width. However, the data width is programmable to support dynamically bus-sized transactions.

Freescale Semiconductor 9-7

MPC5200B Users Guide, Rev. 1

Modes of Operation

The MUXed mode requires external logic to latch the address during the address tenure and to decode bank selects if they are encoded. This mode is slower than the non-MUXed mode because data and address are multiplexed in time. The supported address space is limited by the 25 address lines. In MUXed mode, LocalPlus can access up to 128 MBytes of data divided into four banks each of 32 MBytes maximum.

9.4.2.1 Address Tenure

The address is presented on the corresponding AD bus bits up to a maximum of 25 bits (i.e., AD[24:0]). Smaller devices (with address ranges at 8, 16, or 24 respectively) must use the corresponding AD bits, beginning with AD[0]. AD[0] is the least significant address bit. Regardless of address size, the entire AD bus is driven during the address phase.

The Bank Select bits appear on AD[26] (Bank Select most significant bit) and AD[25] (Bank Select least significant bit). These bit values are pre-programmed into the corresponding LPC control register prior to initiating an external transaction.

The TSIZ bits appear on AD[30] (TSIZ most significant bit) to AD[28] (TSIZ least significant bit). These bits are calculated and driven by the LPC based on the internal Byte Lane enables on the IP bus.

NOTE

Only TSIZs of 1, 2, or 4 are supported.

TSIZ [0:2]/AD[30:28] are driven as follows:

001 = Transaction is 1 byte.

010 = Transaction is 2 bytes.

100 = Transaction is 4 bytes.

NOTE

Other values are invalid and should not be required by the external peripheral!

Table 9-5 describes the various combinations of TSIZ, address and byte lanes for 32 bit wide data bus.

Transfer Size	T017[0.01	A D[1.0]	Data lanes								
	TSIZ[0:2]	AD[1:0]	AD[31:24]	AD[23:16]	AD[15:8]	AD[7:0]					
1 Byte	001	00	Data								
		01		Data							
		10			Data						
		11				Data					
2 Bytes	010	00	Data	Data							
		10			Data	Data					
4 Bytes	100	00	Data	Data	Data	Data					

Table 9-5. Muxed Aligned Data Transfers

The ALE signal is active low and remains asserted for 1 external PCI bus clocks. When active any external latch should be transparent.

AD[31] & AD[27] are unused and are driven low by the LPC during the address tenure, they are used as data lines during the data phase in 32-bit modes.

9.4.2.2 Data Tenure

During Data Tenure, the following occurs:

- In the case of a write to the peripheral, the LPC drives the indicated AD data bits.
- In the case of a read, the indicated AD bits are tri-stated by the LPC.

NOTE

AD[0] is treated as the least significant data bit. Any unused data bits (as indicated by the Data Size field in the associated control register) are driven low by the LPC. Therefore, they should NOT be driven by the peripheral or glue chip.

At the first PCI clock edge where the ACK input is detected as asserted, the LPC terminates the transaction and releases the bus on the **next** PCI Bus clock. AD bus control reverts to the PCI Controller, which is then responsible for driving default values on the bus. Obviously, any peripheral device **must** tri-state the AD bus when it is not in use.

MPC5200B Users Guide, Rev. 1

9-8 Freescale Semiconductor

Figure 9-6 shows a MUXed transaction type timing diagram.

- 1. ACK can shorten the CS pulse width.
- 2. Address should be latched with the rising edge of ALE.

Figure 9-6. Timing Diagram—MUXed Mode

9.5 Configuration

The LPC supports several options in terms of modes, address and data sizes, speed, and configuration which are described below.

9.5.1 Boot Configuration

After power-on reset (POR) the e300 processor accesses the local bus to fetch initial code sequences. Chip Select Boot (CS Boot) is dedicated for this purpose. CS Boot and CS0 are physically the same pins. The difference is that CS Boot is impacted by the reset configuration and is enabled after reset.

Several options are also available for boot code fetches. The boot configuration is determined during POR using the reset_configuration word.

- MUXed or non-MUXed mode.
 - In MUXed mode Data bus can be 16- or 32-bits wide.

The following boot code configuration options are available, see Table 9-6.

- In non-MUXed Legacy mode Data bus can be 8- or 16-bits wide.
- In non-MUXed MOST Graphics mode Data bus can be 32-bits wide.
- In non-MUXed Large Flash modes Data bus can be 8- or 16-bits wide.
- The number of wait states during boot can be 4 or 48 PCI bus clock cycles.

MPC5200B Users Guide, Rev. 1

Configuration

• The boot address/exception table can be located at 0x0000 0100 or 0xfff0 0100.

The PowerPC architecture compatible processor core requires 64-bit instruction fetches. During boot code accesses from CS Boot space on-chip logic is provided to perform enough LocalPlus accesses to accumulate 64-bit instructions to be given to the e300 processor. For example, before passing the resulting 64-bit instruction to the e300 processor, LocalPlus logic does either:

- 8 accesses to an 8-bit device
- 4 accesses to a 16-bit device
- 2 accesses to a 32-bit device

NOTE

The Boot space supports cached instruction reads and "critical doubleword word first" transactions. The Boot space does NOT support:

• an 8-bit wide MUXed mode configuration during boot.

After boot, CS Boot space can be programmed to act as other MPC5200B Chip Select spaces (CS0-7). This capability is described in the sections below.

9.5.2 Chip Selects Configuration

All Chip Selects CS0-7 have the same functionality. Only one CS can be active at any given time. Multiple CS windows should not overlap. In the case that an address "hit" is located in multiple CS windows, only one CS, the one with the highest priority, becomes active. The CS with the lowest number has the highest priority (CS0 highest priority, CS7 lowest priority).

CS Boot and CS0 are identical with the exception of their control registers contained in the MPC5200B MMAP register group, see Section 3.3.2., *Boot and Chip Select Addresses*. CS Boot and CS0 are physically the same pins. The difference is that CS Boot is impacted by the reset configuration and is enabled after reset, so boot is always performed only at CS Boot.

To change from CS Boot to CS0 the CS0 start and stop addresses must be configured and the disable of CS Boot must occur together with the Enable of CS0 (see example).

```
ipbi->control reg = (ipbi->control reg & ~CSCTRL BOOT EN) | CSCTRL CS0 EN;
```

Deadcycles from 0 to 3 can be added to any CS read access and will occur in addition to any cycles which already exist. The configuration of Dead cycles are done by the Chip Select Deadcycle Control Register.

Burst Mode operations are supported on all CS and can be configured by the Chip Select Burst Control Register.

The e300 processor can execute code from all CSs of the LP bus.

CS0-CS7 in MUXed mode:

- Supports 8-, 16- and 32-bit data reads and writes.
- Support of Dynamic bus sizing. This means read and write transactions greater than the defined port size are possible (up to a maximum of 32 bits).
- The LPC Controller creates multiple transactions at the defined port size to satisfy the transaction size requested up to a maximum of 32 bits. Transactions **less** than the defined port size are supported only if the peripheral can decode the TSIZE[0:2] bits, which indicate the current transaction size.
- 64-bit access is not supported. Internal logic is limited to 32-bits accesses.
- Support of Code execution

CS0-CS7 non-MUXed mode:

- In non-MUXed mode the data port size can be 8, 16 or 32 bits.
- Dynamic Bus Sizing for read and write transactions are supported at the defined port sizes. However, transactions that are **less** than the port size fail because no control signals exist to alert the peripheral to the current transaction size. TSIZE[1:2] bits are available in all non-muxed modes on separate pins, if the LPTZ bit is set in the GPS Port Configuration Register—MBAR + 0x0B00.
- · Support of Burst access

9.5.3 Reset Configuration

The mode of the LocalPlus interface at boot is controlled by bits in the RST_CONFIG word described in Chapter 4, *Resets and Reset Configuration*. The following 6 RST_CONFIG bits control boot device operation from reset:

- BootType
- BootSize
- BootMostGraphics
- BootLargeFlash
- BootWait

BootSwap

Table 9-1 describes possible boot settings

Table 9-6. BOOT_CONFIG (RST_CONFIG) Options

Parameter	If Pulled Down (0)	If Pulled Up (1)	Notes
BootType	non-MUXed boot mode	MUXed boot mode	
BootSize	non-MUXed type: 8-bit data	non-MUXed type: 16-bit data	
	24-bit address MUXed type: 16-bit data	16-bit address MUXed type: 32-bit data	
	(25 bit address)	(25 bit address)	
BootMostGr aphics	-	MostGraphics boot mode.	
LargeFlash	-	Large Flash boot mode	when active BootSize defines data size (8/16)
BootWait	Minimum Wait states 4 pci_clk cycles	Maximum Wait states: 48 pci_clk cycles	The ACK input can shorten wait states, if BootDevice supports it.
BootSwap	no Endian swapping applied to read from Boot Device	Standard Endian swapping performed on reads from Boot Device	If swap indicated: 8-bit access = no swap 16-bit access = 2Byte swap 32-bit access = 4Byte swap

9.6 DMA (BestComm) Interface (SCLPC)

The SCLPC interface provides a separate path from BestComm directly (on CommBus) to any peripheral. The supported transactions are limited to 1, 2, 4, or 8 bytes only.

A single FIFO with a size of 512 bytes (32 x 128 bits) supports half duplex operation (Transmit or Receive) only. If software configures a Transmit Packet, the Packet must be complete before a Receive operation can be configured and started.

9.7 Programmer's Model

Table 9-7 through Table 9-12 describe in detail the registers and bit meanings for configuring CS operation. There are eight identical chip select configuration registers, one for each CS output. However, the CS Boot ROM Configuration Register has active defaults for use by BOOTROM on CS0. All other configuration registers power-up disabled and require software intervention before the corresponding CS operates. The Chip Select Control Register is the enable register and the Chip Select Status Register serves as a status register. For Burst Mode the Chip Select Burst Control Register exists and the configuration of Dead cycles are done by the Chip Select Deadcycle Control Register.

NOTE

The address range registers for each CS reside in the MMAP register set rather than in the LPC register set. See Section 3.3.3.2, *Boot and Chip Select Addresses*.

9.7.1 Chip Select/LPC Registers—MBAR + 0x0300

There are 12 32-bit Chip Select/LocalPlus (CS/LP) registers. These registers are located at an offset from MBAR of 0x0300. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x0300 + register address

The following registers are available:

- Section 9-7, Chip Select 0/Boot Configuration Register (0x0300)
- Section 9-8, Chip Select 1 Configuration Register (0x0304)
- Section 9-9, Chip Select Control Register (0x0318)

MPC5200B Users Guide, Rev. 1

Programmer's Model

- Section 9-7, Chip Select 0/Boot Configuration Register (0x0300)
- Section 9-10, Chip Select Status Register (0x031C)
- Section 9-11, Chip Select Burst Control Register (0x0328)
- Section 9-12, Chip Select Deadcycle Control Register (0x032C)

9.7.1.1 Chip Select 0/Boot Configuration Register—MBAR + 0x0300 Table 9-7. Chip Select 0/Boot Configuration Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		WaitP										Wa	aitX			
W																
RESET:	0	0	0	0	0	0	0	0	cfg	cfg	cfg	cfg	cfg	cfg	cfg	cfg
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	MX	Rsvd	AA	CE	А	S	D	S	Ва	ank	W	Тур	ws	RS	WO	RO
W																
RESET:	cfg	1	1	1	cfg	cfg	cfg	cfg	0	0	0	0	0	0	0	1

Bits	Name	Description
0:7	WaitP	Number of wait states to insert. Can be applied as a prescale to WaitX or used by itself, as specified by WTyp bits below. Wait states control how many PCI clocks the corresponding CS pin remains active.
8:15	WaitX	Base number of wait states to insert, or combined with WaitP as specified by WTyp bits below.
		cfg operation —If rstcfg[11] (on pad_eth_03) is zero then 4 wait states are in effect, else 48 wait states are in effect. Wait States equals the number of PCI clocks from CS assertion to when data must be valid from boot device.
16	MX	MX bit specifies whether a transaction operates as multiplexed or non-multiplexed. A multiplexed transaction presents address and data in different tenures. During the address tenure, ALE is asserted. At the end of ALE, AD bus is switched to data tenure and CSx pin is asserted. 0 = Non-multiplexed 1 = Multiplexed
		cfg operation —If rstcfg[14] on pad_eth_06 is low, boot operation is non-multiplexed (single tenure), else boot operation is multiplexed (dual tenure).
17	_	Reserved
18	AA	ACK Active—multiplexed transactions only. This bit defines whether ALK input is active or not. If AA is 1, programmed wait states can be overridden when/if the external device drives the ACK input low. If AA is 0, the ACK input is ignored. Wait states are still in effect. If no ACK is received, cycle terminates at end of wait state period.
		Note: Bit must be set to 0, to use ACK as burst indication signal during a burst transaction.
19	CE	An individual Enable bit—allows CS operation for the corresponding CS pin. CE must be high to allow operation. Chip Select Control Register ME bit must also be high, except when CS[0] is used for boot ROM. 1 = Enable
		0 = Disabled, register writes can occur but no external access is generated.

Programmer's Model

Bits	Name	Description
20:21	AS	Address Size field—defines size of peripheral Address bus (in bytes) and must be consistent with physical connections.
		00 = 8 bits
		01 = 16 bits
		10 = 24 bits
		11 = > 25 bits
		See documentation for Physical Connection requirements.
		The combination of address size, data size, and transaction type (MX) must be consistent with the peripheral physical connection. In case of a multiplexed transaction, the entire address is driven regardless of address size field.
		cfg operation—If rstcfg[13] on pad_eth_05 is low, then the address size for non-multiplexed boot device is set to 24 bits (AS=10), else the boot device is treated as a 16 bit address (AS=01) device. For multiplexed mode boot devices the maximum 25 bits of address is always driven. This rstcfg bit more particularly affects the DS field below, and can be thought of as the "small" or "big" data size config bit.
22:23	DS	Data Size field—represents the peripheral data bus size (in bytes): 00 = 1 Byte
		01 = 2 Bytes
		10 = 3 Bytes (Not Supported)
		11 = 4Bytes
		cfg operation —If rstcfg[13] on pad_eth_05 is low, then the data size for non-multiplexed boot device is set to 8 bits (DS=00), else the boot device is treated as a 16 bit (DS=01) device. For multiplexed mode boot device the selection is 16 bit data or 32 bit data respectively.
24:25	Bank	Bank bits—are reflected on external AD lines (AD[26:25]) during Address tenure of a multiplexed transaction. Register bit 24 is the msb and appears on AD[26].
26:27	WTyp	Wait state Type bits—define the application of wait states contained in WaitP and WaitX fields, as follows:
		00 = WaitX is applied to read and write cycles (WaitP is ignored).
		01 = WaitX is applied to Read cycles, WaitP is applied to Write cycles.
		10 = WaitX is applied to Reads, WaitP/WaitX (16-bit value) is applied to Writes.
		11 = WaitP/Waitx (as a full 16-bit value) is applied to Reads and Writes.
28	WS	Write Swap bit—If high, Endian byte swapping occurs during writes to a peripheral.
		For 8-bit peripherals, this bit has no effect.
		For 16-bit peripherals, byte swapping can occur.
		For 32-bit peripherals (possible in MUXed mode only) byte swap can occur.
		1 = swap
		0 = NO swap
		2-byte swap is AB to BA, 4-byte swap is ABCD to DCBA.
		Note: Transactions at less than the defined port size (i.e., data size) apply swap rules as above, according to the current transaction size.
29	RS	Read Swap bit—Same as WS, but swapping is done when reading data from a peripheral. 1 = swap
		0 = NO swap
		cfg operation —If rstcfg[12] on pad_eth_04 is low, data from the boot device is Endian swapped when read. This only has effect for boot devices configured as 16- or 32-bit data size.

9-14

Bits	Name	Description
30	WO	Write Only bit—If bit is high, the peripheral is treated as a write-only device. An attempted read access results in a bus error (as dictated by Chip Select Contro Register EBEE bit) and/or an interrupt (as dictated by Chip Select Control Register IE bit). In any case, no transaction is presented to the peripheral.
		A bus error means the internal cycle is terminated with a transfer error acknowledge (ips_xfr_err assertion to IP bus, TEA assertion to XL bus).
31	RO	Read Only bit—If bit is high, the peripheral is treated as a read-only device. An attempted write access results in a bus error (as specified by Chip Select Control Register EBEE bit) and/or an interrupt (as specified by Chip Select Control Register IE bit). In any case, no transaction is presented to the peripheral.
		NOTE: This bit is high from Reset, indicating Boot Device is Read-Only.

Note:

- 1. The reset values defined as "cfg" depends on the Reset Configuration.
- 2. Large Flash mode is used, if AS is set to 11 and DS is set to 00 or 01.
- 3. MOST/Graphics mode is used, if AS is set to 10 and DS is set to 11.

9.7.1.2 Chip Select 1 Configuration Register—MBAR + 0x0304

Chip Select 2 Configuration Register—MBAR + 0x0308

Chip Select 3 Configuration Register—MBAR + 0x030C

Chip Select 4 Configuration Register—MBAR + 0x0310

Chip Select 5 Configuration Register—MBAR + 0x0314

Chip Select 6 Configuration Register—MBAR + 0x0320

Chip Select 7 Configuration Register—MBAR + 0x0324

Table 9-8. Chip Select 1 Configuration Register

Chip Select 2 Configuration Register

Chip Select 3 Configuration Register

Chip Select 4 Configuration Register

Chip Select 5 Configuration Register

Chip Select 6 Configuration Register

Chip Select 7 Configuration Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R		WaitP									WaitX						
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R	MX	Rsvd	AA	CE	Α	AS		DS		Bank WTyp		Тур	ws	RS	WO	RO	
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bits	Name	Description
0:7	WaitP	Number of Wait States to insert. Can be applied as a prescale to Wait X or used by itself, as dictated by the WTyp bits (see below). Wait States control how many PCI clocks the corresponding CS pin remains active.
8:15	WaitX	The base number of wait states to insert, or combined with WaitP as dictated by the WTyp bits below.

Programmer's Model

MX bit specifies whether transaction operates as multiplexed or no multiplexed transaction presents address and data in different tenu tenure, ALE is asserted. At the end of ALE, AD bus is switched to dis asserted. 0 = Non-multiplexed 1 = Multiplexed Reserved AA ACK Active—multiplexed transactions only. This bit defines whether not. If AA is 1, programmed wait states can be overridden when/if the multiplexed transactions only.	res. During the address
1 = Multiplexed 17 — Reserved 18 AA ACK Active—multiplexed transactions only. This bit defines whethe not. If AA is 1, programmed wait states can be overridden when/if the not.	
17 — Reserved 18 AA ACK Active—multiplexed transactions only. This bit defines whethe not. If AA is 1, programmed wait states can be overridden when/if the not. If AA is 1, programmed wait states can be overridden when/if the not.	
18 AA ACK Active—multiplexed transactions only. This bit defines whethe not. If AA is 1, programmed wait states can be overridden when/if the	
not. If AA is 1, programmed wait states can be overridden when/if the	
the ACK input low. If AA is 0, the ACK input is ignored.	
Wait states are still in effect. If no ACK is received, cycle terminates period.	s at end of wait state
Note: Bit must be set to 0, to use ACK as burst indication signal du	uring a burst transaction.
19 CE Chip Enable—bit allows CS operation for the corresponding CS pir operation. Chip Select Control Register ME bit must also be high.	n. Must be high to allow
Enabled.	
0 = Disabled, register writes can occur but no external access i	s generated.
20:21 AS Address Size field—defines the peripheral address bus size in bytes with the physical connections.	s, and must be consistent
00 = 8 bits	
01 = 16 bits	
10 = 24 bits	
11 = > 25 bits	
Note: The combination of address size, data size, and transaction consistent with the physical peripheral connection. In a multiplexed address is driven, regardless of the address size field.	
22:23 DS Data Size field—represents the peripheral data bus size (in bytes):	
00 =1 Byte	
01 = 2 Bytes	
10 = 3 Bytes (Not Supported)	
11 = 4Bytes	
24:25 Bank Bank bits—are reflected on external AD lines (AD[26:25]) during a multiplexed transaction. Register bit 24 is the msb and appears on	
26:27 WTyp Wait state Type bits—define application of wait states contained in as follows:	WaitP and WaitX fields,
00 = WaitX is applied to Read and Write cycles (WaitP is ignore	ed)
01 = WaitX is applied to Read cycles, WaitP is applied to Write	cycles
10 = WaitX is applied to Reads, WaitP/WaitX (16-bit value) is a	pplied to Writes
11 = WaitP/Waitx (as a full 16-bit value) is applied to Reads and	d Writes

9-16 Freescale Semiconductor

Bits	Name	Description
28	WS	 Write Swap bit—If high, Endian byte swapping occurs during writes to a peripheral. For 8-bit peripherals, this bit has no effect. For 16-bit peripherals, byte swapping can occur. For 32-bit peripherals (possible in MUXed mode only) byte swap can occur. 1 = swap 0 = NO swap
		2-byte swap is AB to BA, 4-byte swap is ABCD to DCBA. Note: Transactions at less than the defined port size (i.e., data size) apply swap rules as above, according to the current transaction size.
29	RS	Read Swap bit—Same as WS, but swapping is done when reading data from a peripheral. 1 = swap 0 = NO swap Note: Transactions at less than the defined port size (i.e., data size) apply swap rules as above, according to the current transaction size.
30	WO	Write Only bit—If high peripheral is treated as a write-only device. An attempted Read access results in a bus error (as specified by Chip Select Control Register EBEE bit) and/or an interrupt (as dictated by Chip Select Control Register IE bit). In any case, no transaction is presented to the peripheral. A bus error means the internal cycle is terminated with a transfer error acknowledge (ips_xfr_err assertion to IP bus, TEA assertion to XL bus).
31	RO	Read Only bit—If high, peripheral is treated as a read-only device. An attempted Write access results in a bus error (as specified by Chip Select Control Register EBEE bit) and/or an interrupt (as dictated by Chip Select Control Register IE bit). In any case, no transaction is presented to the peripheral.

Note:

- 1. Large Flash mode is used, if AS is set to 11 and DS is set to 00 or 01.
- 2. MOST Graphics mode is used, if AS is set to 10 and DS is set to 11.

9.7.1.3 **Chip Select Control Register—MBAR + 0x0318**

Table 9-9. Chip Select Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			Re	eserve	k			ME	Reserved							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Programmer's Model

Bits	Name	Description
0:6	_	Reserved
7	ME	Master Enable bit—a global module enable bit. If this bit is low, register access can still occur, but no external transactions are accepted. However, ME does not affect boot ROM operation on $\overline{\text{CS}}[0]$. If software wishes to disable $\overline{\text{CS}}[0]$, it must write 0 to the Chip Select Boot ROM Configuration Register enable bit (CE).
8:31	_	Reserved

9.7.1.4 Chip Select Status Register—MBAR + 0x031C

Table 9-10. Chip Select Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Resei	rved	WOerr	err	Rsvd		CSxerr					Rese	erved			
W			×	ROerr												
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	eserved							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:1	_	Reserved
2	WOerr	Write Only error—If 1, it indicates a Read access was attempted on a peripheral marked as write-only.
		This is a sticky bit and must be written with 1 to be cleared. This status bit is always active regardless of bus error enable bit. The CS number that relates to the error is reflected in the CSxerr field.
3	ROerr	Read Only error—If 1, it indicates a Write access was attempted on a peripheral marked as read-only.
		This is a sticky bit and must be written with 1 to be cleared. This status bit is always active regardless of bus error enable bit. The CS number that relates to the error is reflected in the CSxerr field.
4	_	Reserved
5:7	CSxerr	Chip Select error—Indicates CS number associated with WOerr or ROerr.
8:31	_	Reserved

9.7.1.5 Chip Select Burst Control Register—MBAR + 0x0328

Table 9-11. Chip Select Burst Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	CW7	SLB7	Rsvd	E7	CW6	SLB6	Rsvd	E6	CW5	SLB5	Rsvd	E5	CW4	SLB4	Rsvd	E4
W				BRE7				BB				BRE				BB
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

9-18 Freescale Semiconductor

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	CW3	SLB3	Rsvd	E3	CW2	SLB2	Rsvd	3E2	CW1	SLB1	Rsvd	Ш	CW0	SLB0	Rsvd	E0
W				BB				BB				BB				BB
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0	CW7	Chip Select 7 Cache Wrap capable, set if peripheral burst can perform PPC cache wrap. This bit setting only applies in Large Flash or MOST Graphics Mode.
1	SLB7	Chip Select 7 Short/Long Burst, 0 for Short Burst only, 1 for Long Burst capable. Short burst is 8-bytes, used for Instruction fetches, and CDWF cache line bursts on XLB if cache wrap not capable. Long Burst capable means that peripheral can do 32-byte burst which hardware will generate for cache line aligned XLB bursts (and CDWF if peripheral tagged as cache wrap capable also).
		This bit setting only applies in Large Flash or MOST Graphics Mode.
2	_	Reserved
3	BRE7	Chip Select 7 Burst Read Enable, 1 to enable peripheral bursting for given chip select. Must be set to enable any Bursting reads.
		This bit setting only applies in Large Flash or MOST Graphics Mode.
4	CW6	Chip Select 6 Cache Wrap capable, set if peripheral burst can perform PPC cache wrap. This bit setting only applies in Large Flash or MOST Graphics Mode.
5	SLB6	Chip Select 6 Short/Long Burst, 0 for Short Burst only, 1 for Long Burst capable. Short burst is 8-bytes, used for Instruction fetches, and CDWF cache line bursts on XLB if cache wrap not capable. Long Burst capable means that peripheral can do 32-byte burst which hardware will generate for cache line aligned XLB bursts (and CDWF if peripheral tagged as cache wrap capable also).
		This bit setting only applies in Large Flash or MOST Graphics Mode.
6	_	Reserved
7	BRE6	Chip Select 6 Burst Read Enable, 1 to enable peripheral bursting for given chip select. Must be set to enable any Bursting reads.
		This bit setting only applies in Large Flash or MOST Graphics Mode.
8	CW5	Chip Select 5 Cache Wrap capable, set if peripheral burst can perform PPC cache wrap. This bit setting only applies in Large Flash or MOST Graphics Mode.
9	SLB5	Chip Select 5 Short/Long Burst, 0 for Short Burst only, 1 for Long Burst capable. Short burst is 8-bytes, used for Instruction fetches, and CDWF cache line bursts on XLB if cache wrap not capable. Long Burst capable means that peripheral can do 32-byte burst which hardware will generate for cache line aligned XLB bursts (and CDWF if peripheral tagged as cache wrap capable also). This bit setting only applies in Large Flash or MOST Graphics Mode.
10	_	Reserved
11	BRE5	Chip Select 5 Burst Read Enable, 1 to enable peripheral bursting for given chip select. Must be set to enable any Bursting reads.
		This bit setting only applies in Large Flash or MOST Graphics Mode.
12	CW4	Chip Select 4 Cache Wrap capable, set if peripheral burst can perform PPC cache wrap. This bit setting only applies in Large Flash or MOST Graphics Mode.

Programmer's Model

Bits	Name	Description
13	SLB4	Chip Select 4 Short/Long Burst, 0 for Short Burst only, 1 for Long Burst capable. Short burst is 8-bytes, used for Instruction fetches, and CDWF cache line bursts on XLB if cache wrap not capable. Long Burst capable means that peripheral can do 32-byte burst which hardware will generate for cache line aligned XLB bursts (and CDWF if peripheral tagged as cache wrap capable also).
		This bit setting only applies in Large Flash or MOST Graphics Mode.
14	_	Reserved
15	BRE4	Chip Select 4 Burst Read Enable, 1 to enable peripheral bursting for given chip select. Must be set to enable any Bursting reads.
		This bit setting only applies in Large Flash or MOST Graphics Mode.
16	CW3	Chip Select 3 Cache Wrap capable, set if peripheral burst can perform PPC cache wrap. This bit setting only applies in Large Flash or MOST Graphics Mode.
17	SLB3	Chip Select 3 Short/Long Burst, 0 for Short Burst only, 1 for Long Burst capable. Short burst is 8-bytes, used for Instruction fetches, and CDWF cache line bursts on XLB if cache wrap not capable. Long Burst capable means that peripheral can do 32-byte burst which hardware will generate for cache line aligned XLB bursts (and CDWF if peripheral tagged as cache wrap capable also).
		This bit setting only applies in Large Flash or MOST Graphics Mode.
18	_	Reserved
19	BRE3	Chip Select 3 Burst Read Enable, 1 to enable peripheral bursting for given chip select. Must be set to enable any Bursting reads.
		This bit setting only applies in Large Flash or MOST Graphics Mode.
20	CW2	Chip Select 2 Cache Wrap capable, set if peripheral burst can perform PPC cache wrap. This bit setting only applies in Large Flash or MOST Graphics Mode.
21	SLB2	Chip Select 2 Short/Long Burst, 0 for Short Burst only, 1 for Long Burst capable. Short burst is 8-bytes, used for Instruction fetches, and CDWF cache line bursts on XLB if cache wrap not capable. Long Burst capable means that peripheral can do 32-byte burst which hardware will generate for cache line aligned XLB bursts (and CDWF if peripheral tagged as cache wrap capable also). This bit setting only applies in Large Flash or MOST Graphics Mode.
22		Reserved
23	BRE2	Chip Select 2 Burst Read Enable, 1 to enable peripheral bursting for given chip select. Must
20	DITLE	be set to enable any Bursting reads.
		This bit setting only applies in Large Flash or MOST Graphics Mode.
24	CW1	Chip Select 1 Cache Wrap capable, set if peripheral burst can perform PPC cache wrap. This bit setting only applies in Large Flash or MOST Graphics Mode.
25	SLB1	Chip Select 1 Short/Long Burst, 0 for Short Burst only, 1 for Long Burst capable. Short burst is 8-bytes, used for Instruction fetches, and CDWF cache line bursts on XLB if cache wrap not capable. Long Burst capable means that peripheral can do 32-byte burst which hardware will generate for cache line aligned XLB bursts (and CDWF if peripheral tagged as cache wrap capable also). This bit setting only applies in Large Flash or MOST Graphics Mode.
26		
26		Reserved Chip Calcat 1 Burst Bood Enable 1 to enable parisheral bursting for given ship calcat Must
27	BRE1	Chip Select 1 Burst Read Enable, 1 to enable peripheral bursting for given chip select. Must be set to enable any Bursting reads. This bit catting only applies in Large Flesh or MOST Craphics Mode.
		This bit setting only applies in Large Flash or MOST Graphics Mode.

MPC5200B Users Guide, Rev. 1

9-20 Freescale Semiconductor

Bits	Name	Description
28	CW0	Chip Select 0 Cache Wrap capable, set if peripheral burst can perform PPC cache wrap. This bit setting only applies in Large Flash or MOST Graphics Mode.
29	SLB0	Chip Select 0 Short/Long Burst, 0 for Short Burst only, 1 for Long Burst capable. Short burst is 8-bytes, used for Instruction fetches, and CDWF cache line bursts on XLB if cache wrap not capable. Long Burst capable means that peripheral can do 32-byte burst which hardware will generate for cache line aligned XLB bursts (and CDWF if peripheral tagged as cache wrap capable also). This bit setting only applies in Large Flash or MOST Graphics Mode.
30	_	Reserved
31	BRE0	Chip Select 0 Burst Read Enable, 1 to enable peripheral bursting for given chip select. Must be set to enable any Bursting reads. This bit setting only applies in Large Flash or MOST Graphics Mode.

Note:

- 1. CDWF is defined as "critical doubleword word first".
- 2. The bits for Chip Select 0 (CS0) control CS Boot too.
- 3. With a clock ratio 1:1:1 (66:66:66 MHz) it is not possible to burst in Large Flash mode.

9.7.1.6 Chip Select Deadcycle Control Register—MBAR + 0x032C Table 9-12. Chip Select Deadcycle Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Reser	rved	DO	C7	Rese	erved	D	C6	Res	erved	D	C5	Rese	erved	Г	C4
W																
RESET:	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Reser	rved	D	C3	Rese	erved	D	C2	Res	erved	D	C1	Rese	erved		C0
W																
RESET:	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1

Bits	Name	Description
0:1	_	Reserved
2:3	DC7	Deadcycles can be specified as 0 to 3. Dead cycles will be added to the end of Chip Select 7 read access and will occur in addition to any cycles which may already exist. These cycles are to provide peripheral additional time to tri-state it's bus after a read operation. This is for all access types.
4:5	_	Reserved
6:7	DC6	Deadcycles can be specified as 0 to 3. Dead cycles will be added to the end of Chip Select 6 read access and will occur in addition to any cycles which may already exist. These cycles are to provide peripheral additional time to tri-state it's bus after a read operation. This is for all access types.
8:9	_	Reserved
10:11	DC5	Deadcycles can be specified as 0 to 3. Dead cycles will be added to the end of Chip Select 5 read access and will occur in addition to any cycles which may already exist. These cycles are to provide peripheral additional time to tri-state it's bus after a read operation. This is for all access types.

MPC5200B Users Guide, Rev. 1

Programmer's Model

Bits	Name	Description
12:13	_	Reserved
14:15	DC4	Deadcycles can be specified as 0 to 3. Dead cycles will be added to the end of Chip Select 4 read access and will occur in addition to any cycles which may already exist. These cycles are to provide peripheral additional time to tri-state it's bus after a read operation. This is for all access types.
16:17	_	Reserved
18:19	DC3	Deadcycles can be specified as 0 to 3. Dead cycles will be added to the end of Chip Select 3 read access and will occur in addition to any cycles which may already exist. These cycles are to provide peripheral additional time to tri-state it's bus after a read operation. This is for all access types.
20:21	_	Reserved
22:23	DC2	Deadcycles can be specified as 0 to 3. Dead cycles will be added to the end of Chip Select 2 read access and will occur in addition to any cycles which may already exist. These cycles are to provide peripheral additional time to tri-state it's bus after a read operation. This is for all access types.
24:25	_	Reserved
26:27	DC1	Deadcycles can be specified as 0 to 3. Dead cycles will be added to the end of Chip Select 1 read access and will occur in addition to any cycles which may already exist. These cycles are to provide peripheral additional time to tri-state it's bus after a read operation. This is for all access types.
28:29	_	Reserved
30:31	DC0	Deadcycles can be specified as 0 to 3. Dead cycles will be added to the end of Chip Select 0 read access and will occur in addition to any cycles which may already exist. These cycles are to provide peripheral additional time to tri-state it's bus after a read operation. This is for all access types.

NOTE

Deadcycle counter is only used, if no arbitration to an other module (ATA or PCI) of the shared local bus happens. If an arbitration happens the bus can be dirven within 4 IPB clocks by an other module.

9-22 Freescale Semiconductor

9.7.2 SCLPC Registers—MBAR + 0x3C00

There are 6 32-bit BestComm Registers for the LocalPlus (SCLPC). These registers are located at an offset from MBAR of 0x3C00. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x3C00 + register address

The following registers are available:

- Section 9-13, SCLPC Packet Size Register (0x3C00)
- Section 9-14, SCLPC Start Address Register (0x3C04)
- Section 9-15, SCLPC Control Register (0x3C08)
- Section 9-16, SCLPC Enable Register (0x3C0C)
- Section 9-17, SCLPC Bytes Done Status Register (0x3C14)

9.7.2.1 SCLPC Packet Size Register—MBAR + 0x3C00

Table 9-13. SCLPC Packet Size Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			Re	eserved	t			0				Packe	et Size			
W	-							Restart								
								Re								
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Pac	ket Size	Э						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description							
0:6	_	Reserved							
7	Restart	Once all registers have been programmed, software writes a 1 to this bit to begin a transfer. It will auto-clear and always reads back as zero.							
8:31	Packet Size	This 24-bit field represents the number of bytes SCLPC is to transact before going idle and waiting for a Restart.							
		Note: The co-location of Restart bit and Packet_Size field allows Software to both Restart a transaction AND change the Packet_Size in a single write. Maximum packet size is 16M-1 bytes.							

9.7.2.2 SCLPC Start Address Register—MBAR + 0x3C04 Table 9-14. SCLPC Start Address Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Star	t Addre	ss						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Star	t Addre	ss						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:31	Start Address	Address of the first byte in the packet to be sent. This value must be aligned with the "BPT" (Bytes Per Transaction) field, described below. This address will appear directly at the peripheral and is completely independent of XLB address decoding logic.

9.7.2.3 SCLPC Control Register—MBAR + 0x3C08

Table 9-15. SCLPC Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Re	eservec	k		CSX			Reserved						Flush	RWb
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R			Re	eserved	i			DAI		Res	erved				BPT	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:4	_	Reserved
5:7	CSX	This field should be written with the Chip Select number associated with each DMA transaction.
		Note: LPC configuration registers associated with this CS also affect SCLPC transactions. The two work together.
8:13	_	Reserved
14	Flush	If set to 1, enables the assertion of SCLPC requestor at the completion of a *Read* Packet, regardless of the actual state of the physical fifo ALarm. Requestor will de-assert once the fifo goes empty. This is the fix for the familiar "Stale Read Data" fifo problem.
15	RWb	Read - Write bar. Controls direction of DMA transaction. 1 = SCLPC will read from the peripheral, i.e. Fifo Receive 0 = SCLPC will write to the peripheral, i.e. Fifo Transmit

MPC5200B Users Guide, Rev. 1

9-24 Freescale Semiconductor

Bits	Name	Description
16:22	_	Reserved
23	DAI	Disable Auto Increment. Normally, SCLPC and LPC will present sequential incrementing addresses to the peripheral as the Packet proceeds. If the peripheral is operating as a single address Fifo, then the DAI bit should be set to 1. When set, addresses to the peripheral will be stuck at Start_Address for every transaction. For DAI operation, the BPT field *MUST* be set to the port size of the peripheral.
24:27	_	Reserved
28:31	BPT	Bytes Per Transaction. Indicates number of bytes per transaction. The "only" valid entries in this field are decimal/hex 1, 2, 4, or 8 bytes (i.e. binary 0001, 0010, 0100, 1000). BPT should not be set to less than the peripheral port size, but certainly can be set to larger than the peripheral port size. The higher the BPT value, the greater the throughput.
		Note: Start_Address and Packet_Size values *must* be aligned/multiples of BPT. For DAI operation, BPT must be set to the peripheral port size.

9.7.2.4 SCLPC Enable Register—MBAR + 0x3C0C

Table 9-16. SCLPC Enable Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			Re	eserved	ł			RC	Reserved							RF
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R			Rese	rved			AIE	NIE			F	Reserved	i			ME
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:6	_	Reserved
7	RC	Reset Controller. This bit allows for a Software reset of the SCLPC state machine. Writing a 1 to this bit will reset the SCLPC state machine. Reset will be maintained as long as this bit is high. Software must write this bit low to release the reset and start operation. Note:
		 Although RC does *not* reset this register interface, it does clear interrupt and interrupt status conditions. Never reset the SCLPC Controller during a transaction (tx or rx).
8:14	_	Reserved
15	RF	Reset Fifo. This is the Fifo software reset bit. Writing a 1 to this bit will reset the SCLPC Fifo. The Fifo must not be in reset for normal operation. Software reset of the Fifo will clear the fifo of data, reset its read/write pointers, but *not* disturb previously programmed Alarm and Granularity settings.
		Note: Good Practice would be for software to set and clear the RC and RF bits prior to programming and starting a Packet.
16:21	_	Reserved

LocalPlus Bus (External Bus Interface)

Bits	Name	Description
22	AIE	Abort Interrupt Enable. If set, and a fifo error occurs during packet transmission, a cpu interrupt from SCLPC will be generated. In any case, the Packet will be terminated and an Abort Status bit will be set.
		Note: This bit does *not* affect the Requestor to BestComm in any way.
23	NIE	Normal Interrupt Enable. This bit, if set enables a cpu interrupt to occur at the end of a normally terminated Packet. There is also a NT status bit which sets in any case. Note: This bit does *not* affect the Requestor to BestComm in any way.
24:30	_	Reserved
31	ME	Master Enable. This bit must be set to 1 to allow a Restart to be generated to the SCLPC state machine. Restart is achieved by writing 1 to Byte 0 of the Packet_Size register. This ME bit must also be set for a Restart to occur.
		Note: ME being low (inactive) will also clear Interrupt and Interrupt status. But it does *NOT* affect the BestComm Requestor.

9.7.2.5 SCLPC Bytes Done Status Register—MBAR + 0x3C14 Table 9-17. SCLPC Bytes Done Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R	R	eserve	t	AT	Reserved			NT	Bytes Done								
W				rwc		rwc						Read Only					
RESET:	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R								Byte	es Don	е							
W	Read Only																
RESET:	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	

Note: X: Bit does not reset to a defined value.

Bits	Name	Description
0:2	_	Reserved
3	AT	Abort Termination. This bit will be set to 1 if the Packet has terminated abnormally (which is only possible if a fifoError occurred).
		Note: This bit is ANDed with the AIE bit above to generate a single CPU interrupt signal to the core. This bit is "sticky write to 1" for clearing the bit and clearing the interrupt.
		Note: This bit (and any interrupt) is also cleared if; 1) RC bit is set, 2) ME bit is clear, or 3) Restart occurs.
4:6	_	Reserved

Programmer's Model

Bits	Name	Description
7	NT	Normal Termination. This bit is set to 1 whenever a complete Packet has been transferred successfully.
		Note: This bit is ANDed with the NIE bit above to generate a single CPU interrupt signal to the core. This bit is "sticky write to 1" for clearing the bit and clearing the interrupt.
8:31	Bytes Done	Bytes Done is updated dynamically by the SCLPC state machine to represent the actual number of bytes transmitted at a given point in time. At the normal conclusion of a Packet, the bytes_done field should match the Packet_Size field.

9.7.3 SCLPC FIFO Registers—MBAR + 0x3C40

LPC uses a single FIFO that changes direction based on the Rx/Tx mode. Software controls direction change and flushes FIFO before changing directions. FIFO memory is 512 Bytes (32 x 128).

LPC FIFO is controlled by six 32-bit registers. These registers are located at an offset from MBAR of 0x3C40. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x3C40 + register address

Hyperlinks to the LPC FIFO registers are provided below:

- Section 9-18, LPC Rx/Tx FIFO Data Word Register (0x3C40)
- Section 9-19, LPC Rx/Tx FIFO Status Register (0x3C44)
- Section 9-20, LPC Rx/Tx FIFO Control Register (0x3C48)
- Section 9-21, LPC Rx/Tx FIFO Alarm Register (0x3C4C)
- Section 9-22, LPC Rx/Tx FIFO Read Pointer Register (0x3C50)
- Section 9-23, LPC Rx/Tx FIFO Write Pointer Register (0x3C54)

9.7.3.1 LPC Rx/Tx FIFO Data Word Register—MBAR + 0x3C40 LPC_rx/tx_fifo_data_word_register Table 9-18. LPC Rx/Tx FIFO Data Word Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								FIFO_	Data_V	/ord						
W																
RESET:	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								FIFO_	Data_V	/ord						
W																
RESET:	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Х

Note: X: Bit does not reset to a defined value.

9-28 Freescale Semiconductor

Bits	Name	Description
0:31	FIFO_Data_Word	The FIFO data port. Reading from this location "pops" data from the FIFO, writing "pushes" data into the FIFO. During normal operation the BestComm Controller pushes data here.
		Note: ONLY full word access is allowed. If all byte enables are not asserted when accessing this location, a FIFO error flag is generated.

9.7.3.2 LPC Rx/Tx FIFO Status Register—MBAR + 0x3C44 Table 9-19. LPC Rx/Tx FIFO Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				R	eserved	i			Err	UF	OF	Full	HI	LO	Emty	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:8	_	Reserved
9	Err	Error—flag bit is essentially the logical "OR" of other flag bits and can be polled for detection of any FIFO error. After clearing the offending condition, writing 1 to this bit clears flag.
10	UF	UnderFlow—flag indicates read pointer has surpassed the write pointer. FIFO was read beyond empty. Resetting FIFO clears this condition; writing 1 to this bit clears flag.
11	OF	OverFlow—flag indicates write pointer surpassed read pointer. FIFO was written beyond full. Resetting FIFO clears this condition; writing 1 to this bit clears flag.
12	Full	FIFO full—this is NOT a sticky bit or error condition. Full indication tracks with FIFO state.
13	HI	High—FIFO requests attention, because high level alarm is asserted. To clear this condition, FIFO must be read to a level below the setting in granularity bits.
14	LO	Low—FIFO requests attention, because Low level alarm is asserted. To clear this condition, FIFO must be written to a level in which the space remaining is less than the granularity bit setting.
15	Emty	FIFO empty—this is NOT a sticky bit or error condition. Full indication tracks with FIFO state.
16:31	_	Reserved

9.7.3.3 LPC Rx/Tx FIFO Control Register—MBAR + 0x3C48 Table 9-20. LPC Rx/Tx FIFO Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Resei	rved	WFR	Rese	erved		GR					Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:1	_	Reserved
2	WFR	When bit sets, FIFO Controller assumes next data write is End of Frame (EOF). Note: This module does not support Framing. This bit should remain low.
3:4	_	Reserved
5:7	GR	Granularity—bits control high "watermark" point at which FIFO negates Alarm condition (i.e., request for data). It represents the number of free bytes times 4. 000 = FIFO waits to become completely full before stopping data request.
		001 = FIFO stops data request when only one long word of space remains.
8:31	_	Reserved

9.7.3.4 LPC Rx/Tx FIFO Alarm Register—MBAR + 0x3C4C Table 9-21. LPC Rx/Tx FIFO Alarm Register

msb 0 R Reserved W RESET: 31 lsb R Reserved Alarm W RESET:

Bits	Name	Description
0:22	_	Reserved
23:31	Alarm	User writes these bits to set low level "watermark", which is the point where FIFO asserts request for BestComm Controller data filling. Value is in bytes. For example, with Alarm = 32, alarm condition occurs when FIFO contains 32 Bytes or less. Once asserted, alarm does not negate until high level mark is reached, as specified by FIFO control register granularity bits.

9.7.3.5 LPC Rx/Tx FIFO Read Pointer Register—MBAR + 0x3C50 Table 9-22. LPC Rx/Tx FIFO Read Pointer Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R			Re	eserved	t							ReadPtı				
W												ReadPli				
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:22	_	Reserved
23:31	ReadPtr	Value is maintained by FIFO hardware and is NOT normally written. It can be adjusted in special cases, but this disrupts data flow integrity. Value represents the Read address presented to the FIFO RAM.

9.7.3.6 LPC Rx/Tx FIFO Write Pointer Register—MBAR + 0x3C54 Table 9-23. LPC Rx/Tx FIFO Write Pointer Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R			Re	eservec	ł							WritePt				
W												Willer	L			
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:22	_	Reserved
23:31	WritePtr	Value is maintained by FIFO hardware and is NOT normally written. It can be adjusted in special cases, but this disrupts data flow integrity. Value represents the Read address presented to the FIFO RAM.

MPC5200B Users Guide, Rev. 1

LocalPlus Bus (External Bus Interface)

Notes

MPC5200B Users Guide, Rev. 1

10-1

Chapter 10 PCI Controller

10.1 Overview

The Peripheral Component Interface (PCI) Bus is a high-performance bus with multiplexed address and data lines. It is especially suitable for high data-rate applications.

The MPC5200B PCI Controller module supports a 32-bit PCI initiator and target interface. As a target, access to the internal XL bus is supported. As an initiator, the PCI controller is coupled directly to the XL bus (as a slave) and available on the Communication Sub-System as a Multi-Channel DMA peripheral.

The 32-bit multiplexed address/data is shared with the ATA Controller and LocalPlus Controllers. However, control signals are on separate pins and only one operation (PCI, ATA, or LocalPlus) can be done at any given time.

The LocalPlus Large Flash and Most/Graphic interfaces are not compatible with any PCI operation. When these interfaces are needed, the PCI internal controller **must** be disabled by setting bit 16 (PCI_DIS) of the GPS Configuration register. Section 7.3.2.1.1, GPS Port Configuration Register—MBAR + 0x0B00

The MPC5200B contains PCI central resource functions such as the PCI Arbiter (Section 10.5, PCI Arbiter) and PCI reset control. The PCI bus clock is *always* sourced from the MPC5200B and either equal to 1, 1/2 the frequency of the Slave bus clock (IP bus clock) or 1/4 the frequency of the XL Bus clock. Even when the PCI internal controller is disabled, the PCI clock is sourced by the MPC5200B.

A PCI reset signal is provided and implemented as an open-drain pin. An external (on board) pull-up resistor (e.g. 5.6 kOhm) is then required to ensure proper operation.

NOTE

If the PCI interface is NOT used (and internally disabled) the PCI control pins must be terminated as indicated by the PCI Local Bus specification. PCI control signals always require pull-up resistors to ensure that they contain stable values when no agent is actively driving the bus. This includes PCI_FRAME, PCI_TRDY, PCI_IRDY, PCI_DEVSEL, PCI_STOP, PCI_SERR, PCI_PERR, and PCI_REQ.

10.1.1 Features

- Supports system clock: Slave (IP) bus (internal peripheral slave bus) to PCI bus frequency ratios 1:1, 2:1. Or the XL Bus to PCI bus frequency ratio 4:1 (e.g. PCI runs at 33 MHz while the XL Bus bus runs at 132 MHz).
- Compatible with PCI 2.2 specification
- · PCI initiator and target operation
- Fully synchronous design
- 32-bit PCI Address/Data bus
- PCI 2.2 Type 0 Configuration Space header
- Supports the PCI 16/8 clock rule
- PCI master Multi-Channel DMA or CPU access to PCI Bus
- High transfer rates at 66Mhz PCI clock, 512 byte buffer
- PCI to system bus address translation
- Target response is medium DEVSEL generation
- Initiator latency time-outs are NOT supported.
- Automatic retry of target disconnects
- Fast Back-to-Back transactions are NOT supported.

NOTE

The corresponding FC bit in the Configuration Status Register is fixed to '1' indicating the opposite. Nonetheless no Fast Back-to-Back transaction is supported.

10.1.2 Block Diagram

Figure 10-1. PCI Block Diagram

10.2 PCI External Signals

Table 10-1. PCI External Signals

Signal	I/O	Definition
AD[31:0]	I/O	Multiplexed Address and Data Bus (Shared with ATA and LPC). AD31 is the most significant bit while AD0 is the least significant as per the PCI specification. The entire PCI external bus is little Endian ordered.
PCI_CBE[3:0]	I/O	Command/Bytes Enables
PCI_DEVSEL	I/O	Device Select
PCI_FRAME	I/O	Frame
PCI_IDSEL	I	Initialization Device Select
PCI_IRDY	I/O	Initiator Ready
PCI_PAR	I/O	Parity
PCI_CLK	0	PCI Clock
PCI_PERR	I/O	Parity Error
PCI_RST	0	PCI Reset
PCI_SERR	I/O	System Error
PCI_STOP	I/O	Stop
PCI_TRDY	I/O	Target Ready

MPC5200B Users Guide, Rev. 1

10-2 Freescale Semiconductor

For detailed description of the PCI bus signals, see the PCI Local Bus Specification, Revision 2.2.

10.2.1 PCI_AD[31:0] - Address/Data Bus

The PCI_AD[31:0] lines are a time multiplexed address data bus. The address is presented on the bus during the address phase while the data is presented on the bus during one or more data phases.

10.2.2 PCI_CBE[3:0] - Command/Byte Enables

The PCI_CBE[3:0] lines are time multiplexed. The PCI command is presented during the address phase and the byte enables are presented during the data phase.

10.2.3 PCI_DEVSEL - Device Select

The PCI_DEVSEL signal is asserted active low when MPC5200B decodes that it is the target of a PCI transaction from the address presented on the PCI bus during the address phase.

10.2.4 PCI FRAME - Frame

The PCI_FRAME signal is asserted by a PCI initiator to indicate the beginning of a transaction. It is deasserted when the initiator is ready to complete the final data phase.

10.2.5 PCI IDSEL - Initialization Device Select

The PCI_IDSEL signal is asserted during a PCI Type 0 Configuration Cycle to address the PCI Configuration header.

10.2.6 PCI_IRDY - Initiator Ready

The PCI_IRDY signal is asserted to indicate that the PCI initiator is ready to transfer data. During a write operation, assertion indicates that the master is driving valid data on the bus. During a read operation, assertion indicates that the master is ready to accept data.

10.2.6.1 PCI PAR - Parity

The PCI PAR signal indicates the parity of data on the PCI AD[31:0] and PCI CBE[3:0] lines.

10.2.7 PCI CLK - PCI Clock

The PCI_CLK signal is the clock for the internal PCI Controller and the external PCI system. The PCI clock is also used as reference clock for the LocalPlus synchronous interfaces (Burst Flash, ATA). The PCI_CLK is **always** sourced by the MPC5200B.

10.2.8 PCI_PERR - Parity Error

The PCI_PERR signal, if enabled, is asserted when a data phase parity error is detected.

10.2.9 PCI RST - Reset

The PCI_RST signal is asserted active low by MPC5200B to reset the PCI bus. This signal is asserted after MPC5200B reset and must be negated to enable usage of the PCI bus. An external shared pull-up resistor is required on this pin.

10.2.10 PCI_SERR - System Error

The PCI_SERR signal, if enabled, is asserted by the MPC5200B only when an address phase parity error is detected.

10.2.11 PCI STOP - Stop

The PCI_STOP signal is asserted by the currently addressed target to indicate that it wishes to stop the current transaction.

10.2.12 PCI_TRDY - Target Ready

The PCI TRDY signal is asserted by the currently addressed target to indicate that it is ready to complete the current data phase.

10.3 Registers

MPC5200B has several sets of registers that control and report status for the different interfaces to the PCI controller: PCI Type 0 Configuration Space Registers, General Status/Control Registers, and Communication Sub-System Interface Registers. All of these registers are accessible as offsets of MBAR (the PCI interface is located starting at offset 0x0D00 relative to the MBAR register's value, while the BestComm interface starts at offset 0x3800). As an XL bus master, an external PCI bus master can access MBAR space for register updates and the internal SRAM.

NOTE

<u>PCI_RST</u> is controlled by a bit in the register space and must first be cleared before external PCI devices wake-up. In other words, an external PCI master cannot load configuration software across the PCI bus until this bit is cleared by internal means.

All registers are accessible at an offset of MBAR in the memory space. There are two module offsets for PCI configuration space. One is allocated to the Communication Sub-System Interface registers and the other to all other PCI Controller Registers including the standard Type 0 PCI Configuration Space. Software reads from unimplemented registers return 0x00000000 and writes have no effect. See Section 3.2, *Internal Register Memory Map* for module offsets and descriptions of module responses.

Table 10-2. PCI Register Map

Register Offset	Mnemonic	Name
	PCI Typ	e 0 Configuration Registers
0x00	PCIIDR	Device ID/Vendor ID
0x04	PCISCR	Status/Command
80x0	PCICCRIR	Class Code/Revision ID
0x0C	PCICR1	Configuration 1Register
0x10	PCIBAR0	Base Address Register 0
0x14	PCIBAR1	Base Address Register 1
0x18		Reserved
0x24		
0x28	PCICCPR	Cardbus CIS Pointer
0x2C	PCISID	Subsystem ID/Subsystem Vendor ID
0x30	PCIERBAR	Expansion ROM
0x34	PCICPR	Capabilities Pointer
0x38		Reserved
0x3C	PCICR2	Configuration 2 Register
0x40		Reserved
0x5C		
	Gener	al Control/Status Registers
0x60	PCIGSCR	Global Status/Control Register
0x64	PCITBATR0	Target Base Address Translation Register 0
0x68	PCITBATR1	Target Base Address Translation Register 1
0x6C	PCITCR	Target Control Register
0x70	PCIIW0BTAR	Initiator Window 0 Base/Translation Address Register

MPC5200B Users Guide, Rev. 1

10-4 Freescale Semiconductor

Table 10-2. PCI Register Map (continued)

Register Offset	Mnemonic	Name							
0x74	PCIIW1BTAR	Initiator Window 1 Base/Translation Address Register							
0x78	PCIIW2BTAR	Initiator Window 2 Base/Translation Address Register							
0x7C		Reserved							
0x80	PCIIWCR	Initiator Window Configuration Register							
0x84	PCIICR	Initiator Control Register							
0x88	PCIISR	Initiator Status Register							
0x8C	PCIARB	PCI Arbiter Register							
0x90		Reserved							
0xF4									
0xF8	PCICAR	Configuration Address Register							
0xFC		Reserved							

Table 10-3. PCI Communication System Interface Register Map

Register Offset	Mnemonic	Name
0x00	PCITPSR	Tx Packet Size
0x04	PCITSAR	Tx Start Address
80x0	PCITTCR	Tx Transaction Control Register
0x0C	PCITER	Tx Enables
0x10	PCITNAR	Tx Next Address
0x14	PCITLWR	Tx Last Word
0x18	PCITDCR	Tx Bytes Done Counts
0x1C	PCITSR	Tx Status
0x20	PCITPDCR	Tx Packets Done Counts
0x24		Reserved
0x3C		
0x40	PCITFDR	Tx FIFO Data
0x44	PCITFSR	Tx FIFO Status
0x48	PCITFCR	Tx FIFO Control
0x4C	PCITFAR	Tx FIFO Alarm
0x50	PCITFRPR	Tx FIFO Read Pointer
0x54	PCITFWPR	Tx FIFO Write Pointer

Table 10-3. PCI Communication System Interface Register Map (continued)

Register Offset	Mnemonic	Name
0x58		Reserved
0x7C		
0x80	PCIRPSR	Rx Packet Size
0x84	PCIRSAR	Rx Start Address
0x88	PCIRTCR	Rx Transaction Control Register
0x8C	PCIRER	Rx Enables
0x90	PCIRNAR	Rx Next Address
0x94	PCIRLWR	Rx Last Word
0x98	PCIRDCR	Rx Bytes Done Counts
0x9C	PCIRSR	Rx Status
0xA0	PCIRPDCR	Rx Packets Done Counts
0xA4		Reserved
0xBC		
0xC0	PCIRFDR	Rx FIFO Data
0xC4	PCIRFSR	Rx FIFO Status
0xC8	PCIRFCR	Rx FIFO Control
0xCC	PCIRFAR	Rx FIFO Alarm
0xD0	PCIRFRPR	Rx FIFO Read Pointer
0xD4	PCIRFWPR	Rx FIFO Write Pointer
0xD8		Reserved
0xFC		

10.3.1 PCI Controller Type 0 Configuration Space

MPC5200B supplies a type 0 PCI Configuration Space header. These registers are accessible as an offset from MBAR (Section 3.2, *Internal Register Memory Map*) or through externally mastered PCI Configuration Cycles.

NOTE

The internal PCI controller can discover itself (by means of connecting an AD line [preferably AD24 to AD31] to the PCI_IDSEL input). It is essential, when the PCI interface is used as a Target, to enable the internal PCI controller to access via the external PCI bus its own PCI registers. This is the only available way in order to clear any error flag RWC bit (Read/WriteClear bit).

Reg Addr	PCI DWord Offset	Reg	[31:24]	[23:16]	[15:8]	[7:0]			
0x100	0x00	PCIIDR	Devid	ce ID	Vendor ID				
0x104	0x01	PCISCR	Sta	tus	Command				

MPC5200B Users Guide, Rev. 1

10-6 Freescale Semiconductor

0x108	0x02	PCICCRIR		Class Code		Revision ID								
0x10C	0x03	PCICR1	BIST	Header Type	Latency Timer	Cache Line Size								
0x110	0x04	PCIBAR0		BAR0										
0x114	0x05	PCIBAR0		BAR1										
0x118	0x06			Reserved										
0x124	0x09													
0x128	0x0A	PCICCPR	CardBus CIS Pointer											
0x12C	0x0B	PCISID	Subsys	stem ID	Subsystem	Nendor ID								
0x130	0x0C			Expansion ROM	// Base Address									
0x134	0x0D			Reserved		Cap_Ptr								
0x138	0x0E			Rese	erved									
0x13C	0x0F	PCICR2	Min_Gnt	Max_Lat	Int Pin	Int Line								
na	0x10			Rese	erved									
na														
na	0x3F													

PCI Dword Reserved space (0x10 - 0x3F) can be accessed only from an external PCI Configuration access.

NOTE

A PCI Double Word (DWORD) is a 32 bit long word. A PowerPC Double Word is instead a 64 bit word (according to the EABI rule) while a Word is a 32 bit value. In the following PCI Configuration space a DWORD refers **always** to a 32 bit word.

10.3.1.1 Device ID/ Vendor ID Registers PCIIDR(R) —MBAR + 0x0D00

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Device ID														
W																
RESET	0x5809															
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Ve	ndor ID							
W																
RESET								0:	x1057							

Bits	Name	Description
0:15	Device ID	This field is read-only and represents the PCI Device Id assigned to MPC5200B Its value is: 0x5809.
16:31	Vendor ID	This field is read-only and represents the PCI Vendor Id assigned to MPC5200B Its value is: 0x1057.

Registers

10.3.1.2 Status/Command Registers PCISCR(R/RW/RWC) —MBAR + 0x0D04

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	PE	SE	MA	TR	TS		DΤ	DP	FC	R	66M	С	Reserved			
W	rwc	rwc	rwc	rwc	rwc			rwc								
RESET:	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Reserved						F	S	St	PER	V	MW	Sp	В	М	Ю
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits 31-27 and 24 are read-write-clear (RWC).

- Hardware can set RWC bits, but cannot clear them.
- Only PCI configuration cycles can clear RWC bits that are currently set by writing a 1 to the bit location. Writing a 1 to a RWC bit that is currently a 0 or writing a 0 to any RWC bit has no effect.

Bits	Name	Description
0	Parity Error Detected (PE)	This bit is set when a parity error is detected, even if the Parity Error Response bit in the Command Register (bit 6) is disabled. A CPU interrupt will be generated if the PCIGSCR[PEE] bit is set. This register is read-write-clear (RWC) via PCI configuration cycles.
1	System Error Signalled (SE)	This bit is set whenever MPC5200B generates a PCI System Error on the SERR line. This register is read-write-clear (RWC) via PCI configuration cycles.
2	Master Abort Received (MA)	This bit is set whenever MPC5200B is the PCI master and terminates a transaction (except for Special Cycle) with a Master-Abort. This register is read-write-clear (RWC) via PCI configuration cycles.
3	Target Abort Received (TR)	This bit is set whenever MPC5200B is the PCI master and a transaction is terminated by a Target Abort from the currently-addressed target. This register is read-write-clear (RWC) via PCI configuration cycles.
4	Target Abort Signalled (TS)	This bit is set whenever MPC5200B is the PCI target and it terminates a transaction with a Target Abort. This register is read-write-clear (RWC) via PCI configuration cycles.
5:6	DEVSEL# Timing (DT)	Fixed to 01. These bits encode a medium DEVSEL timing. This defines the slowest DEVSEL timing when MPC5200B is the PCI target (except configuration accesses).
7	Master Data Parity Error (DP)	This bit applies only when MPC5200B is PCI master and is set only if the following conditions are met: • MPC5200B-as-master sets PERR itself during a read or detected it asserted by the target during a write • The Parity Error Response bit in the Command Register, bit 6, is set to 1 This register is read-write-clear (RWC) via PCI configuration cycles.
8	Fast Back-to-Back Capable (FC)	Fixed to 1. The MPC5200B PCI controller does NOT support Fast Back-to-Back transactions.

MPC5200B Users Guide, Rev. 1

10-9

Bits	Name	Description
9	Reserved (R)	Fixed to 0. Prior to the 2.2 PCI Spec, this was the UDF (User Defined Features) Supported bit. 1 = Supported User Defined Features 0 = Does not support UDF
10	66 MHz Capable (66M)	Fixed to 1. This bit indicates that the PCI controller is 66 MHz capable.
11	Capabilities List (C)	Fixed to 0. This bit indicates that the PCI controller does not implement the New Capabilities List Pointer Configuration Register in DWORD 13 of the Configuration Space.
12:21	Reserved	These bits are reserved.
22	Fast Back-to-Back Transfer Enable (F)	The MPC5200B PCI controller does NOT support Fast Back-to-Back transactions. Setting this bit has no effect.
23	SERR enable (S)	This bit is an enable bit for the SERR driver. A value of zero disables the SERR driver. A value of 1 enables the SERR driver. Note: Address parity errors are reported only if this bit and bit 6 are 1.
		This bit is programmable (read/write from both the IP bus and PCI bus Configuration cycles).
24	Address and Data Stepping (St)	Fixed to 0. This bit indicates that the PCI controller never uses address/data stepping. Initialization software should write a 0 to this bit location.
25	Parity Error Response (PER)	This bit controls the device's response to parity errors. When set and a parity error is detected, the PCI controller asserts PERR. When the bit is "0", the device sets its Detected Parity Error status bit (bit 0) in the event of a parity error, but does not assert PERR.
		This bit is programmable (read/write from both the IP bus and PCI bus Configuration cycles).
26	VGA Palette Snoop Enable (V)	Fixed to 0. This bit indicates that the PCI controller is not VGA compatible. Initialization software should write a 0 to this bit location.
27	Memory Write and Invalidate Enable (MW)	This bit is an enable for using the Memory Write and Invalidate command. When this bit is 1, MPC5200B-as-master may generate the command. When it is 0, Memory Write must be used instead. This bit is programmable (read/write from both the IP bus and PCI bus Configuration cycles).
28	Special Cycle Monitor or Ignore (Sp)	This bit is to determine whether or not to ignore PCI Special Cycles. Since MPC5200B-as-target does not recognize messages delivered via the Special Cycle operation, a value of 1 should never be programmed to this register. This bit, however, is programmable (read/write from both the IP bus and PCI bus Configuration cycles).
29	Bus Master Enable (B)	This bit indicates whether or not MPC5200B has the ability to serve as a master on the PCI bus. A value of 1 indicates this ability is enabled. If MPC5200B is used as a master on the PCI bus (via XL bus or CommBus), a 1 should be written to this bit during initialization. Even if set to 0, a transaction initiated by an internal master (the core, BestComm) is allowed to take place. It is meant to be read by configuration software.
		This bit is programmable (read/write from both the IP bus and PCI bus Configuration cycles).

Registers

Bits	Name	Description
30	Memory Access Control (M)	This bit controls the PCI controller's response to Memory Space accesses. A value of 0 disables the response. A value of 1 allows the controller to recognize a Memory access. This bit is programmable (read/write from both the IP bus and PCI bus Configuration cycles).
31	IO access Control (IO)	Fixed to 0. This bit is not implemented because there is no MPC5200B IO type space accessible from the PCI bus. The PCI base address registers are Memory address ranges only. Initialization software should write a 0 to this bit location.

10.3.1.3 Revision ID/ Class Code Registers PCICCRIR(R) —MBAR + 0x0D08

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Class Code														
W																
RESET		0x0680														
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R			Class	Code	(continu	ued)						Revis	ion ID			
W																
RESET	•			0x0	00				0x00							

Bits	Name	Description
0:23	Class Code	This field is read-only and represents the PCI Class Code assigned to MPC5200B Its value is: 0x068000. (Other bridge device)
24:31	Revision ID	This field is read-only and represents the PCI Revision Id for this version of MPC5200B. Its value is: 0x00.

10.3.1.4 Configuration 1 Register PCICR1(R/RW) —MBAR + 0x0D0C

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				BI	ST							Heade	er Type			
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		La	t timer[7	7:3]		Lat	t Timer[2:0]		Rese	erved		(Cache L	ine Siz	ze
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

10-10 Freescale Semiconductor

MPC5200B Users Guide, Rev. 1

Bits	Name	Description
0:7	Built-In Self Test (BIST)	Fixed to 0x00. The PCI controller does not implement the Built-In Self Test register. Initialization software should write a 0x00 to this register location.
8:15	Header Type	Fixed to 0x00. The PCI controller implements a Type 0 PCI Configuration Space Header. Initialization software should write a 0x00 to this register location.
16:23	Latency Timer	This register contains the latency timer value, in PCI clocks, used when MPC5200B is the PCI master. The lower three bits of the register are hardwired low and the upper five bits are programmable (read/write from both the IP bus and PCI bus Configuration cycles).
		Note: The MPC5200B does NOT support initiator latency time-outs, the internal PCI Arbiter does not support preemption of the internal masters XIPCI or SCPCI. The internal master is granted until the transaction has been completed. The Latency Timer (LT) cannot terminate any transfer.
28:31	Cache Line Size	The four lower bits of this register are programmable (read/write from both the IP bus and PCI bus Configuration cycles). The value programmed specifies the cacheline size in units of DWORDs.

10.3.1.5 Base Address Register 0 PCIBAR0(RW) —MBAR + 0x0D10

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R							Base A	ddress	0						Re	served
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R						Rese	erved						pref	ra	nge	IO/M#
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:13	Base Address Register 0 (BAR0)	MPC5200B PCI Base Address Register 0 (256Kbyte). Applies only when MPC5200B is target. These bits are programmable (read/write from both the IP bus and PCI bus Configuration cycles). This BAR register <i>should</i> be used to point at the internal MPC5200B register space (MBAR)
14:27	Reserved	These bits are reserved.
28	prefetchable access (pref)	Fixed to 0. This bit indicates that the memory space defined by BAR0 is NOT prefetchable. Configuration software should write a 0 to this bit location.
29:30	range	Fixed to 00. This register indicates that base address 0 is 32 bits wide and can be mapped anywhere in 32-bit address space. Configuration software should write 00 to these bit locations.
31	IO or Memory Space (IO/M#)	Fixed to 0. This bit indicates that BAR0 is for memory space. Configuration software should write a 0 to this bit location. 0 = Memory 1 = I/O

MPC5200B Users Guide, Rev. 1

10.3.1.6 Base Address Register 1 PCIBAR1(RW) —MBAR + 0x0D14

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		ise							Res	erved						
W	Addr	ess 1														
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R						Rese	erved						pref	rai	nge	IO/M#
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0

Bits	Name	Description
0:1	Base Address Register 1 (BAR1)	MPC5200B PCI Base Address Register 1 (1Gbyte). Applies only when MPC5200B is target. These bits are programmable (read/write from both the IP bus and PCI bus Configuration cycles). This BAR register shall be used to point at the local SDRAM/DDR Memory Space.
		Note: The address 'Window' is much larger than the maximum theoretically supported physical memory.
		Note: This register should not point to the LocalPlus Memory Space. This is not supported.
2:27	Reserved	These bits are reserved.
28	prefetchable access (pref)	Fixed to 1. This bit indicates that the memory space defined by BAR1 is prefetchable. Configuration software should write a 1 to this bit location.
29:30	range	Fixed to 00. This register indicates that base address 1 is 32 bits wide and can be mapped anywhere in 32-bit address space. Configuration software should write 00 to these bit locations.
31	IO or Memory Space (IO/M#)	Fixed to 0. This bit indicates that BAR1 is for memory space. Configuration software should write a 0 to this bit location. 0 = Memory 1 = I/O

10.3.1.7 CardBus CIS Pointer Register PCICCPR(RW) —MBAR + 0x0D28

This optional register contains the pointer to the Card Information Structure (CIS) for the CardBus card. All 32 bits of the register are programmable by the Slave bus. It can only be read from the PCI Bus. Its reset value is 0x00000000.

10.3.1.8 Subsystem ID/ Subsystem Vendor ID Registers PCISID(R)—MBAR + 0x0D2C

The Subsystem Vendor ID register contains the 16-bit manufacturer identification number of the add-in board or subsystem that contains this PCI device. The Subsystem ID register contains the 16-bit subsystem identification number of the add-in board or subsystem that contains this PCI device. A value of zero in these registers indicates there isn't a Subsystem Vendor and Subsystem ID associated with the device. If used, software must write to these registers before any PCI bus master reads them.

All 32 bits of the register are programmable by the Slave bus. They can only be read from the PCI Bus. The reset value is 0x000000000.

10.3.1.9 Expansion ROM Base Address PCIERBAR(R) — MBAR + 0x0D30

Not implemented. Fixed to 0x00000000.

10-12 Freescale Semiconductor

15

10.3.1.10 Capabilities Pointer (Cap_Ptr) PCICPR(R)—MBAR + 0x0D34

Not implemented. Fixed to 0x00000000.

0

0

0

W

RESET

10.3.1.11 Configuration 2 Register PCICR2 (R/RW) —MBAR + 0x0D3C

0

0

	0	'	2	3	4	5	0	1	0	9	10	11	12	13	14	15
R			N	/laximun	n Laten	Су						Minimu	m Grant	t		
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				Interru	ıpt Pin							Interru	pt Line			

0

0

0

0

0

0

0

0

0

0

0

Bits	Name	Description
0:7	Maximum Latency (Max_Lat)	Specifies how often, in units of 1/4 microseconds, the PCI controller would like to have access to the PCI bus as master. A value of zero indicates the device has no stringent requirement in this area. The register is read/write to/from the Slave bus, but read only from the PCI bus.
		Note: The MPC5200B does NOT support initiator latency time-outs, the internal PCI Arbiter does not support preemption of the internal masters XIPCI or SCPCI. The internal master is granted until the transaction has been completed. The Latency Timer (LT) cannot terminate any transfer.
8:15	Minimum Grant (Min_Gnt)	The value programmed to this register indicates how long the PCI controller as master would like to retain PCI bus ownership whenever it initiates a transaction. The register is programmable from the Slave bus, but read only from the PCI bus.
16:23	Interrupt Pin	Fixed to 0x00. Indicates that this device does NOT use an interrupt request pin.
24:31	Interrupt Line	Fixed to 0x00. The Interrupt Line register stores a value that identifies which input on a PCI interrupt controller the function's PCI interrupt request pin. Since no interrupt request pin is used, as specified in the Interrupt Pin register, this register has no function.

10.3.2 General Control/Status Registers

The General Control/Status Registers primarily address the configurability of the XL bus Initiator and Target Interfaces, though some also address global options which affect the Multi-Channel DMA interface (BestComm). These registers are accessed primarily internally as offsets of MBAR, but can also be accessed by an external PCI master if PCI base and Target base address registers are configured to access the space. See Section 10.6.2, *Address Maps* on configuring address windows.

10.3.2.1 Global Status/Control Register PCIGSCR(RW) —MBAR + 0x0D60

msb 2 3 8 10 12 13 14 15 0 Rsvd PΕ SE Rsvd XL Bus_clk to Reserved ipg_clk to PCI_CLK PCI_CLK differential differential

W rwc rwc rwc RESET 0 0 0 0 0 0 0 0 0 0 Χ

Freescale Semiconductor 10-13

MPC5200B Users Guide, Rev. 1

Registers

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Rsvd	BME	PEE	SEE					F	Reserve	d					PR
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Bits	Name	Description
0	Reserved	Unused bit. Software should write zero to this register.
1	Broken Master Detected (BM)	This bit is set when the PCI Arbiter detects a broken external PCI master. Note: In case of broken master detection the external PCI request will be ignored until external deassertion of PCI request or until a software reset (PCI Arbiter Softreset) or by Hardreset is detected. After broken master detection (PCI bus idle for 16 clocks) the
		arbiter will ignore any FRAME# assertion. A CPU interrupt will be generated if the PCIGSCR[BME] bit is set. This is a RWC (Read/WriteClear) bit: to clear it, software must write a '1' at this position.
2	PERR Detected (PE)	This bit is set when the PCI Parity Error line, PERR, asserts (any device). A CPU interrupt will be generated if the PCIGSCR[PEE] bit is set. This is a RWC (Read/WriteClear) bit: to clear it, software must write a '1' at this position.
3	SERR Detected (SE)	This bit is set when a PCI System Error line, SERR, asserts (any device). A CPU interrupt will be generated if the PCIGSCR[SEE] bit is set. This is a RWC (Read/WriteClear) bit: to clear it, software must write a '1' at this position.
4	Reserved	Unused bit. Software should write zero to this register.
5:7	XL Bus_clk to PCI_CLK differential (read only)	This bit field stores the XL bus clock to the PCI clock divide ratio. This field is read-only and the reset value is determined by the PLL multiplier (either 1, 2, or 4). Software can read these bits to determine a valid ratio. If the register contains a differential value that does not reflect the PLL settings, the PCI controller could malfunction.
8:12	Reserved	Unused bits. Software should write zero to this register.
13:15	ipg_clk to PCI_CLK differential (read only)	This bit field stores the Slave bus clock to the PCI clock divide ratio. This field is read-only and the reset value is determined by the PLL multiplier (either 1, 2, or 4). Software can read these bits to determine a valid ratio. If the register contains a differential value that does not reflect the PLL settings, the PCI controller could malfunction.
16	Reserved	Unused bit. Software should write zero to this register.
17	Broken Master Interrupt Enable (BME)	This bit enables CPU Interrupt generation when a broken Master is detected. When enabled, software must clear the BM status bit to clear the interrupt condition.
18	Parity Error Interrupt Enable (PEE)	This bit enables CPU Interrupt generation when the PCI Parity Error signal, PERR, is sampled asserted. When enabled and PERR asserts, software must clear the PE status bit to clear the interrupt condition.
19	System Error Interrupt Enable (SEE)	This bit enables CPU Interrupt generation when a PCI System Error is detected on the SERR line. When enabled and SERR asserts, software must clear the SE status bit to clear the interrupt condition.

10-14 Freescale Semiconductor

20:30	Reserved	Unused bits. Software should write zero to this register.
31	PCI Reset (PR)	This bit controls the external PCI RST. When this bit is cleared, the external PCI RST deasserts. Setting this bit does not reset the internal PCI controller. The application software must not initiate PCI transactions while this bit is set. It is recommended that this bit be programmed last.
		The reset value of the bit is 1 (PCI RST asserted). Note: A global PCI reset should be asserted just by the MPC5200B controller. Any external common reset controller signal will be ignored by the internal PCI controller.

10.3.2.2 Target Base Address Translation Register 0 PCITBATR0(RW) —MBAR + 0x0D64

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R						Base	Address	s Transla	ation 0						Res	erved
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R							F	Reserve	d							En
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:13	Base Address Translation 0	This base address register corresponds to a hit on the BAR0 in MPC5200B PCI Type 0 Configuration space register from PCI space. When there is a hit on MPC5200B PCI BAR0 (MPC5200B as Target), the upper 14 bits of the external PCI address (256Kbyte boundary) are written over by this register value to address some space in MPC5200B. In normal operation, this value should be written during the initialization sequence only to point to the internal Register space.
14:30	Reserved	Unused bits. Software should write zero to this register.
31	Enable 0	This bit enables a transaction in BAR0 space. If this bit is zero and a hit on MPC5200B PCIBAR0 occurs, the target interface gasket will abort the PCI transaction.

10.3.2.3 Target Base Address Translation Register 1 PCITBATR1(RW) —MBAR + 0x0D68

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Address		Reserved												
W	Irans	lation 1														
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R							F	Reserve	d							En
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:1	Base Address Translation 1	This base address register corresponds to a hit on the BAR1 in MPC5200B PCI Type 0 Configuration space register (PCI space). When there is a hit on MPC5200B PCI BAR1 (MPC5200B as Target), the upper 2 bits of the external PCI address (1Gbyte boundary) are written over by this register value to address some 1Gbyte space in MPC5200B. This register can be reprogrammed to move the window of MPC5200B address space accessed during a hit in PCIBAR1. It should be written by software during initialization to point to the internal SDR/DDR memory space.
		Note: This register should not point to the LocalPlus Memory Space. This is not supported.
2:30	Reserved	Unused bits. Software should write zero to this register.
31	Enable 1	This bit enables a transaction in BAR1 space. If this bit is zero and a hit on MPC5200B PCI BAR1 occurs, the target interface gasket will abort the PCI transaction.

10.3.2.4 Target Control Register PCITCR(RW) —MBAR + 0x0D6C

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			F	Reserve	d			LD			F	Reserve	d			Р
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R			F	Reserve	d			wc			Write (Combir	no Time	er [7:0]		
W											vviile	COITIBII		51 [7.U]		
RESET	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0

Bits	Name	Description
0:6	Reserved	Unused bits. Software should write zero to this register.
7	Latrule Disable (LD)	This control bit applies only when MPC5200B is Target. When set, it prevents the PCI Controller from automatically issuing a retry disconnect due to the PCI 16/8 clock rule. The bit must be set before the 15th PCI clock for the first transfer and before the 7th clock for other transfers.
8:14	Reserved	Unused bits. Software should write zero to this register.
15	Prefetch Reads (P)	This bit controls fetching a line from memory in anticipation of a request from the external master. The target interface will continue to prefetch lines from memory as long as PCI_FRAME is asserted and there is space to store the data in the target read buffer. Note: This bit only applies to PCI reads in the address range for BAR 1 (prefetchable memory). Note: Prefetching is performed in response to a PCI memory-read-multiple command even if this bit is cleared.
16:22	Reserved	Unused bits. Software should write zero to this register.

Registers

23	Write Combine Disable (WCD)	This control bit applies only when MPC5200 is Target. When set, it prevents the PCI Controller from automatically combining write data to be sent out on the XL bus as a burst, if possible. Instead, data is transferred as soon as possible on the XL bus as single-beat transactions. Better target write performance is achieved when this bit cleared.
24:31	Write Combine Timer (WCT)	This register contains the timer value, in PCI clocks, used when a partial burst has been buffered in the target write data path and write data stops being transferred to local memory from the external PCI device. Every time a sequential beat of write data is stored in the buffer, the counter is reset with this value.
		If partial burst data has been buffered, thereby activating the count-down counter, and this field is reprogrammed to a value less than the current counter value, the counter will jump down to the new write combine timer value. This way, software can force the write buffer to flush data to the XL bus more quickly than when the counter was initialized.
		The reset value of the write combine timer is 0x08. All 8 bits are programmable.

10.3.2.5 Initiator Window 0 Base/Translation Address Register PCIIW0BTAR(RW)—MBAR + 0x0D70

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			Windo	ow 0 Ba	se Add	Iress			Window 0 Address Mask							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		W	/indow	0 Trans	lation A	Address	;		Reserved							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:7	Window 0 Base Address	One of three base address registers to determine an XL bus hit on PCI. At most, the upper byte of the address is decoded. The Window 0 Address Mask register determines what bits of this register to compare the XL bus address against to generate the hit.
		Note: The smallest possible Window is a 16 MByte block.
8:15	Window 0 Address Mask	The Window 0 Address Mask Register masks the corresponding XL bus base address bit of the base address for Window 0 (Window 0 Base Address) to instruct the address decode logic to ignore or "don't care" the bit. If the base address mask bit is set, the associated base address bit of Window 0 is ignored when generating the PCI hit. Bit 16 masks bit 24, bit 17 masks bit 25, and so on.
		0 Corresponding address bit is used in address decode
		1 Corresponding address bit is ignored in address decode
		For XL Bus accesses to Window 0 address range, this byte also determines which upper 8 bits of the XL Bus address to pass on for presentation as a PCI address. Any address bit used to decode the XL Bus address, indicated by a "0", will be translated. This provides a way to overlay a PCI page address onto the XL Bus address. A "1" in the Address Mask byte indicates that the XL Bus address bit will be passed to PCI unaltered.

10-18 Freescale Semiconductor

16:23	Window 0 Translation Address	For any translated bit (described above), the corresponding value here will be driven onto the PCI address bus for the XL bus Window 0 address hit. Note: The Window Translation operation can not be turned off. If a direct mapping from XL Bus to PCI space is desired, program the same value to both the Window Base Address Register and Window Translation Address Register.
24:31	Reserved	Unused bits. Software should write zero to this register.

Initiator Window 1 Base/Translation Address Register PCIIW1BTAR(RW) —MBAR + 0x0D74 10.3.2.6

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R			Windo	w 1 Ba	se Add	Iress			Window 1 Address Mask								
W																	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R		Window 1 Translation Address									Reserved						
W																	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Registers

10.3.2.7 Initiator Window 2 Base/Translation Address Register PCIIW2BTAR(RW) —MBAR + 0x0D78

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			Windo	ow 2 Ba	se Add	Iress					Win	dow 2 A	ddress	Mask		
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		W	/indow	2 Trans	lation A	Address	;					Rese	erved			
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

10.3.2.8 Initiator Window Configuration Register PCIIWCR(RW) —MBAR + 0x0D80

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Rese	rved				low 0			Res	erved				ndow 1	
W						Cor	ntrol							Co	ontrol	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		Rese	rved				low 2					Rese	erved			
W						Cor	ntrol									
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:3	Reserved	Reserved register. Write a zero to this register.
4:7	Window 0 Control [3:0]	Bit[3] - IO/M#. 0 = Window is mapped to PCI memory 1 = Window is mapped to PCI I/O Bit[2:1] - PCI Read Command (PRC). If bit[3] is programmed memory, "0", then these bits are used to determine the type of PCI memory command to issue. See Table 10-15. If bit[3] is set to "1", the value of these bits are meaningless. 00 = PCI Memory Read 01 = PCI Memory Read Line 10 = PCI Memory Read Multiple 11 = Reserved Note: A PCI write command is automatically detected and needs not to be explicitly configured. No PCI Write and Invalidate command is allowed in any case with this interface. Bit[0] - Enable. This bit is set to indicate the address registers that control the XL Bus initiator interface access to PCI initialized and will be used. The PCI Controller can begin to decode XL Bus PCI accesses. 0 = Do not decode XL Bus PCI accesses to Window
		This bit is set to indicate the address registers that control the XL Bus initiator interfa access to PCI initialized and will be used. The PCI Controller can begin to decode XL BPCI accesses.

10-20 Freescale Semiconductor

8:11	Reserved	Reserved register. Write a zero to this register.
12:15	Window 1Control [3:0]	Bit[3] - IO/M#. Bit[2:1] - PRC. Bit[0] - Enable.
16:19	Reserved	Reserved register. Write a zero to this register.
20:23	Window 0 Control [3:0]	Bit[3] - IO/M#. Bit[2:1] - PRC. Bit[0] - Enable.
24:31	Reserved	Reserved register. Write a zero to this register.

10.3.2.9 Initiator Control Register PCIICR(RW) —MBAR + 0x0D84

msb	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0															

	U															
R		F	Reserve	d		REE	IAE	TAE				Rese	erved			
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				Rese	erved						N	/laximur	n Retrie	s		

R				Rese	erved						N	/laximur	n Retrie	S		
W																
RESET	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Bits	Name	Description
0:4	Reserved	Unused bits. Software should write zero to this register.
5	Retry Error Enable (RE)	This bit enables CPU Interrupt generation in the case of Retry Error termination of a packet transmission. It may be desirable to mask CPU interrupts, but in such a case, software should poll the status bits to prevent a possible lock-up condition.
6	Initiator Abort Enable (IAE)	This bit enables CPU Interrupt generation in the case of Initiator Abort termination of a packet transmission. It may be desirable to mask CPU interrupts, but in such a case, software should poll the status bits to prevent a possible lock-up condition.
7	Target Abort Enable (TAE)	This bit enables CPU Interrupt generation in the case of Target Abort termination of a packet transmission. It may be desirable to mask CPU interrupts, but in such a case, software should poll the status bits to prevent a possible lock-up condition.
8:23	Reserved	Unused bits. Software should write zero to this register.
24:31	Maximum Retries	This bit field controls the maximum number of automatic PCI retries to permit per transaction. The retry counter is reset at the beginning of each transaction (i.e. it is not cumulative). Setting the Maximum Retries to 0x00 allows infinite automatic retry cycles.
		A finite (0x01 to 0xff) Maximum Retries value will detect the maximum PCI retries and the next retry will abort the transaction. For a Write transaction an interrupt will be generated, for a Read transaction an interrupt and a TEA on the XL Bus will be generated.

10.3.2.10 Initiator Status Register PCIISR(RWC) —MBAR + 0x0D88

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		F	Reserve	d		RE	IA	TA				Rese	erved			
W						rwc	rwc	rwc								
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Rese	erved							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:4	Reserved	Unused bits. Software should write zero to this register.
5	Retry Error (RE)	This flag is set if Max_Retries is set to a finite value (0x01 through 0xff) and the Target has performed Max_Retries number of retry disconnects for a single transaction. A retry error would generally indicate a broken or improperly accessed Target. A CPU interrupt will be generated if PCIICR[RE] bit is set. This is a RWC (Read/WriteClear) bit: to clear it, software must write a '1' at this position.
6	Initiator Abort (IA)	This flag bit is set if the PCI controller issues an Initiator Abort flag. This indicates that no Target responded by asserting DEVSEL within the time allowed for subtractive decoding. A CPU interrupt will be generated if the PCIICR[IAE] bit is set. This is a RWC (Read/WriteClear) bit: to clear it, software must write a '1' at this position.
7	Target Abort (TA)	This flag bit is set if the addressed PCI Target has signalled an Abort. A CPU interrupt will be generated if the PCIICR[TAE] bit is set. It is up to application software to query the Target's status register and determine the source of the error. This is a RWC (Read/WriteClear) bit: to clear it, software must write a '1' at this position.
8:31	Reserved	Unused bits. Software should write zero to this register.

10.3.2.11 PCI Arbiter Register PCIARB(RW) —MBAR + 0x0D8C

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			F	Reserve	d			ASR				Res	erved			
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Rese	rved							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:6	Reserved	Unused bits. Software should write zero to this register.

10-22 Freescale Semiconductor

7	PCI Arbiter Soft Reset (ASR)	This bit puts the PCI Arbiter in a reset condition. 1 = reset the PCI Arbiter 0 = release the PCI Arbiter Note: Resetting the PCI arbiter will disrupt any related transaction in progress and should be reserved only for error conditions, or when it is known that no PCI or AD bus transactions
		are in progress.
8:31	Reserved	Unused bits. Software should write zero to this register.

10.3.2.12 Configuration Address Register PCICAR (RW) —MBAR + 0x0DF8

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R	E,			l	Reserve	ed			Bus Number								
W																	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R		Dev	rice Nun	nber		Fund	tion Nu	mber			dw	ord			Res	erved	
W																	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bits	Name	Description
0	Enable (E)	The enable flag that controls configuration space mapping. When enabled, subsequent access to initiator window space defined as I/O in the PCIIWCR is translated into a PCI configuration access using the Configuration Address Register information (Section 10.6, Application Information). When disabled, a read or write to the window is passed through to the PCI bus as an I/O transaction using the. 1 = Enabled 0 = Disabled
1:7	Reserved	Unused bits. Software should write zero to this register.
8:15	Bus Number	This register field is an encoded value used to select the target bus of the configuration access. For target devices on the PCI bus connected to MPC5200B, this field should be set to 0x00.
16:20	Device Number	This field is used to select a specific device on the target bus.
21:23	Function Number	This field is used to select a specific function in the requested device. Single-function devices should respond to function number 0b000.
24:29	dword	This field is used to select the dword address offset in the configuration space of the target device.
30:31	Reserved	Unused bits. Software should write zero to this register.

10.3.3 Communication Sub-System Interface Registers

The Communication Sub-System/Multi-Channel DMA interface (also shortly referred to as SCPCI) has separate control registers for transmit and receive operations.

10.3.3.1 Multi-Channel DMA Transmit Interface

PCI Tx is controlled by 14 '32-bit' registers. These registers are located at an offset 0x3800 from MBAR. Register addresses are relative to this offset.

MPC5200B Users Guide, Rev. 1

10.3.3.1.1 Tx Packet Size PCITPSR(RW) —MBAR + 0x3800

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Packet_	_Size[3	1:16]						
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R						P	acket_	Size[15	5:2]						Packet	:Size[1:0]
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:31	Packet_Size	User writes the number of bytes for transmit controller to send over PCI. The two low bits are hardwired low; only 32-bit data transfers to the FIFO are allowed. Writing to this register also completes a Restart Sequence as long as the Master Enable bit, PCITER[ME], is high and Reset Controller bit, PCITER[RC], is low.

10.3.3.1.2 Tx Start Address PCITSAR(RW) —MBAR + 0x3804

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Sta	art_Add							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Sta	art_Add							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:31	Start_Add	User writes the PCI address to be presented for the first DWORD (32 bit) of a PCI packet. The PCI Tx controller will track and calculate the necessary address for subsequent transactions (addressing is assumed to be sequential from the start address).

10.3.3.1.3 Tx Transaction Control Register PCITTCR(RW) —MBAR + 0x3808

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Rese	ved			PCI_	cmnd					Max_	Retries			
W																
RESET	0	0	0	0		01	11		0	0	0	0	0	0	0	0

10-24 Freescale Semiconductor

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		Re	eservec	ŀ		М	ax_Bea	ats		Reserve	ed	W	I	Reserve	ed	DI
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:3	Reserved	Unused. Software should write zero to these bits.
4:7	PCI_cmd	The user writes this field with the desired PCI command to present during the address phase of each PCI transaction. The default is Memory Write. This field is not checked for consistency and if written to an illegal value, unpredictable results will occur. If not using the default value, the user should write this register only once prior to any packet Restart.
8:15	Max_Retries	The user writes this field with the maximum number of retries to permit "perpacket". The retry counter is reset when the packet completes normally or is terminated by a master abort, target abort, or an abort due to exceeding the retry limit. A slow or malfunctioning Target might issue infinite disconnects and therefore permanently tie up the PCI bus. A finite (0x01 to 0xff) Max_Retries value will detect this condition and generate an interrupt. Setting Max_Retries to 0x00 will not generate any interrupt.
16:20	Reserved	Unused bits. Software should write zero to these bits.
21:23	Max_Beats	The user writes this register with the desired number of PCI data beats to attempt on each PCI transaction. The default setting of 0 represents the maximum of eight beats per transaction. The transmit controller will wait until sufficient bytes are in the Transmit FIFO to support the indicated number of beats (NOTE: Each beat is four bytes). In the case that a packet is nearly complete and less than the Max_Beats number of bytes remain to complete the packet, the Transmit Controller will issue single-beat transactions automatically until the packet is finished.
24:26	Reserved	Unused. Software should write zero to these bits.
27	Word Transfer (W)	The user writes this register to disable the two high byte enables of the PCI bus during SCPCI initiated write transactions. The default setting is 0, enable all 4 byte enables.
28:30	Reserved	Unused. Software should write zero to these bits.
31	Disable address Incrementing (DI)	The user writes this register to disable PCI address incrementing between transactions. The default setting is 0, incrementing the address by 4 (4 byte data bus). Note: This feature is recommended when an external FIFO (with a fixed address) must be written.

10.3.3.1.4 Tx Enables PCITER(RW)—MBAR + 0x380C

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	RC	RF	Rsvd	СМ	BE	Rese	erved	ME	Res	erved	FEE	SE	RE	TAE	IAE	NE
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0	Reset Controller (RC)	User writes this bit high to put Transmit Controller in a reset state. Other register bits are not affected. This Reset is intended for recovery from an error condition or to reload the Start Address when Continuous mode is selected. This Reset bit does not prohibit register access but it must be negated in order to initiate a Restart sequence (i.e. writing the Packet_Size register). If it is used to reload a Start Address then the Start_Add register must be written prior to asserting this Reset bit.
1	Reset FIFO (RF)	The FIFO will be reset and flushed of any existing data when set high. The Reset Controller bit and the Reset FIFO bit operate independently but clearly both must be low for normal operation.
2	Reserved	Unused bit. Software should write a zero to this bit.
3	Continuous mode (CM)	User writes this bit high to activate Continuous mode. In Continuous mode the Start_Add value is ignored at each packet restart and the PCI address is auto-incremented from one packet to the next. Also, the Packets_Done status byte will become active, indicating how many packets have been transmitted since the last Reset Controller condition. If the Continuous bit is low, software is responsible for updating the Start_Add value at each packet Restart.
4	Bus error Enable (BE)	User writes this bit high to enable Bus Error indications. Section 10.3.3.1.9, <i>Tx Status PCITSR(RWC) —MBAR + 0x381C</i> for Bus Error descriptions. Normally this bit will be low (negated) since illegal Slave bus accesses are not destructive to register contents (although it may indicate broken software). This bit does not affect interrupt generation.
5:6	Reserved	Unused. Software should write zero to these bits.
7	Master Enable (ME)	This is the Transmit Controller master enable signal. User must write it high to enable operation. It can be toggled low to permit out-of-order register updates prior to generating a Restart sequence (in which case transmission will begin when Master Enable is written back high), but it should not be used as such in Continuous mode because it has the side effect of resetting the Packets_Done status counter.
8:9	Reserved	Unused. Software should write zero to these bits.
10	FIFO Error Enable (FEE)	User writes this bit high to enable CPU Interrupt generation in the case of FIFO error termination of a packet transmission. It may be desirable to mask CPU interrupts in the case that Multi-Channel DMA is controlling operation, but in such a case software should poll the status bits to prevent a possible lock-up condition.
11	System error Enable (SE)	User writes this bit high to enable CPU Interrupt generation in the case of system error termination of a packet transmission. It may be desirable to mask CPU interrupts in the case that Multi-Channel DMA is controlling operation, but in such a case someone should be polling the status bits to prevent a possible lock-up condition.

10-26 Freescale Semiconductor

Bits	Name	Description
12	Retry abort Enable (RE)	User writes this bit high to enable CPU Interrupt generation in the case of retry abort termination of a packet transmission. It may be desirable to mask CPU interrupts in the case that Multi-Channel DMA is controlling operation, but in such a case software should poll the status bits to prevent a possible lock-up condition.
13	Target Abort Enable (TAE)	User writes this bit high to enable CPU Interrupt generation in the case of target abort termination of a packet transmission. It may be desirable to mask CPU interrupts in the case that Multi-Channel DMA is controlling operation, but in such a case software should poll the status bits to prevent a possible lock-up condition.
14	Initiator Abort Enable (IAE)	User writes this bit high to enable CPU Interrupt generation in the case of initiator abort termination of a packet transmission. It may be desirable to mask CPU interrupts in the case that Multi-Channel DMA is controlling operation, but in such a case software should poll the status bits to prevent a possible lock-up condition.
15	Normal termination Enable (NE)	User writes this bit high to enable CPU Interrupt generation at the conclusion of a normally terminated packet transmission. This may or may not be desirable depending on the nature of program control by Multi-Channel DMA or the processor core.
16:31	Reserved	Unused. Software should write zero to these bits.

10.3.3.1.5 Tx Next Address PCITNAR(R) —MBAR + 0x3810

Bits	Name	Description
0:31	Next_Address	This status register contains the next (unwritten) PCI address and is updated at the successful completion of each PCI data beat. It represents a byte address and is updated with the user-written Start_Add value whenever the Start_Add is reloaded. It is intended to be accurate even in the case of abnormal terminations on the PCI bus.

10.3.3.1.6 Tx Last Word PCITLWR(R) — MBAR + 0x3814

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Las	st_Word							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Las	st_Word							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:31		This status register indicates the last 32-bit data fetched from the FIFO and is designed for the case in which an abnormal PCI termination has corrupted the integrity of the FIFO data (for that word).

10.3.3.1.7 Tx Bytes Done Counts PCITDCR(R) —MBAR + 0x3818

Bits	Name	Description
0:31		This status register indicates the number of bytes transmitted since the start of a packet. It is updated at the end of each successful PCI data beat. For normally terminated packets the Bytes_Done value and the Packet_Size values will be equal. If Continuous Mode is active the Bytes_Done value will read zero at the end of a successful packet and the Packets_Done field will be incremented.

10.3.3.1.8 Tx Packets Done Counts PCITPDCR(R) —MBAR + 0x3820

10-28 Freescale Semiconductor

Bits	Name	Description
0:31	Packets_Done	This status register indicates the number of packets transmitted and is active only if continuous mode is in effect. The counter is reset if the following occurs:
		Reset Controller bit, PCITER[RC], is asserted (normal way to restart continuous mode)
		Master Enable bit, PCITER[ME], becomes negated
		Master enable can reset Packets_Done status without disturbing continuous mode addressing. At any point in time, the total number of Bytes transmitted can be calculated as:
		(Packets_Done x Packet_Size) + Bytes_Done assuming Packet_Size is the same for all restart sequences

10.3.3.1.9 Tx Status PCITSR(RWC) —MBAR + 0x381C

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			Re	eserved	l			NT	BE3	BE2	BE1	FE	SE	RE	TA	IA
W								rwc	rwc	rwc	rwc	rwc	rwc	rwc	rwc	rwc
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:6	Reserved	Unused. Software should write zero to these bits.
7	Normal Termination (NT)	This flag is set when any packet terminates normally. It is NOT set for abnormally terminated packets. Note: Flag does not require clearing, but does not clear until 1 is written, in which case 0 is read back (i.e., negated). The following flag bits operate similarly.
8	Bus Error type 3 (BE3)	This flag is set whenever a Slave bus transaction attempts to write to a Read-Only register. This flag bit is set regardless of the Bus error Enable bit (BE). If software is polling this Byte and wishes to disregard this error it must mask this bit out. No register bit corruption occurs for this (or any other) bus error case.
9	Bus Error type 2 (BE2)	This flag is set whenever a Slave bus transaction attempts to write to a Reserved register (an entire 32-bit register, not just a Reserved bit or byte). This flag bit is set regardless of the Bus error Enable bit (BE). If software is polling this Byte and wishes to disregard this error it must mask this bit out.

Registers

Bits	Name	Description
10	Bus Error type 1 (BE1)	This flag is set whenever a Slave bus transaction attempts to read a Reserved register (an entire 32-bit register, not just a Reserved bit or byte). This flag bit is set regardless of the Bus error Enable bit (BE). If software is polling this Byte and wishes to disregard this error it must mask this bit out.
11	FIFO Error (FE)	This flag is set whenever the Transmit FIFO asserts its FIFO Error output. A CPU interrupt will be generated if the FIFO Error Enable (FEE) bit is set. The source of the error must be determined by reading the FIFO Error status register. Also, the error condition must be cleared at the FIFO prior to clearing this Sticky bit or this flag will continue to assert.
12	System Error (SE)	This flag is set in response to the Transmit Controller entering an illegal state. A CPU interrupt will be generated if the System error Enable (SE) bit is set. In normal operation this should never occur. The only recovery is to assert the Reset Controller bit, PCITER[RC], and clear this flag.
13	Retry Error (RE)	This flag is set if Max_Retries is set to a finite value (0x01 to 0xff) and the PCI transaction has performed retries in excess of the setting. A CPU interrupt will be generated if the Retry error Enable (RE) bit is set. The retry counter is reset at the beginning of each transaction (i.e. it is not cumulative throughout a packet) and would generally indicate a broken or improperly accessed Target.
14	Target Abort (TA)	This flag bit is set if the PCI controller has issued a Target Abort (which means the addressed PCI Target has signalled an Abort). A CPU interrupt will be generated if the Target Abort Enable (TAE) bit is set. It is up to application software to query the Target's status register and determine the source of the error. The coherency of the Transmit FIFO data and the Transmit Controller's status registers (Next_Address, Bytes_Done, etc.) should remain valid.
15	Initiator Abort (IA)	This flag bit is set if the PCI controller issues an Initiator Abort flag. This indicates that no Target responded but further status information can be read from the PCI Configuration interface. A CPU interrupt will be generated if the Initiator Abort error Enable (IAE) bit is set. The coherency of the Transmit FIFO data and the Transmit Controller's status registers (Next_Address, Bytes_Done, etc.) should remain valid.
16:31	Reserved	Unused. Software should write zero to these bits.

10.3.3.1.10 Tx FIFO Data Register PCITFDR(RW) —MBAR + 0x3840

RESET uninitialized random 16 bit value

Bits	Name	Description
0:31	FIFO_Data_Word	This is the data port to the FIFO. Reading from this location will "pop" data from the FIFO, writing data will "push" data into the FIFO. During normal operation the Multi-Channel DMA controller will be pushing data here. The PCI controller will pop data for transmission from a dedicated peripheral port, so the user program should not be reading here. At reset any uninitialized random 32 bit value is read at this address. A FIFO reset must be always performed before first accessing the FIFO.
		Note: Only full 32-bit accesses are allowed. If all Byte enables are not asserted when accessing this location, FIFO data will be corrupted.

10.3.3.1.11 Tx FIFO Status Register PCITFSR(R/RWC) —MBAR + 0x3844

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				R	eserve	d				RXW	UF	OF	FR	Full	Alarm	Empty
W										rwc	rwc	rwc				
RESET	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:8	Reserved	Unused. Software should write zero to these bits.
9	Receive Wait Condition (RXW)	This flag bit indicates that the ipf_rcv bus is incurring wait states because there is not enough room in the FIFO to accept the data without causing overflow. This bit will cause the error outputs (fifoError, ipf_rcv_error, ipf_xmit_error) to assert unless the RXW_MASK bit in the FIFO Control register is set. Resetting the FIFO will clear this condition and the flag bit is cleared by writing a one to its bit position.
10	UnderFlow (UF)	This flag bit indicates that the read pointer has surpassed the write pointer. In other words the FIFO has been read beyond Empty. Resetting the FIFO will clear this condition and the flag bit is cleared by writing a one to its bit position.
11	OverFlow (OF)	This flag bit indicates that the write pointer has surpassed the read pointer. In other words the FIFO has been written beyond Full. Resetting the FIFO will clear this condition and the flag bit is cleared by writing a one to its bit position.
12	Frame Ready (FR)	The FIFO has a complete Frame of data ready for transmission. This module does not provide support for Data Framing applications, so this bit should be ignored.
13	Full	The FIFO is Full. This is not a sticky bit or error condition. The Full indication tracks with the state of the FIFO.
14	Alarm	When the FIFO pointer is at or below the Alarm "watermark", as written by the user according to the Alarm and Control registers settings, this bit is set, automatically signalling to the DMA engine the need to re-fill the FIFO. By writing a '1' to this bit software can enforce a re-evaluation of the 'alarm' condition.
15	Empty	The FIFO is empty. This is not a sticky bit or error condition.
16:31	Reserved	Unused. Software should write zero to these bits.

10.3.3.1.12 Tx FIFO Control Register PCITFCR(RW) —MBAR + 0x3848

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Reserved							×	λ	MASK	SK	SK		Reserv	ed
W									IP_MASK	FAE_MASK	RXW_M/	UF_MASK	OF_MASK			
										F/	æ	\supset	0			
RESET	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:4	Reserved	Unused. Software shall write zero to these bits. (R/W)
5:7	Granularity (GR)	Granularity bits control high "watermark" point at which FIFO negates Alarm condition (i.e., request for data). It represents the number of free Bytes, which is given by the granularity value multiplied by 4.
		Note: A granularity setting of zero should be avoided because it means the Alarm bit (and the Requestor signal) will not negate until the FIFO is completely full. The Multi-Channel DMA module may perform up to 2 additional data writes after the negation of a Requestor due to its internal pipelining
		Note: This field must be set to a value of 4 or higher. When the FIFO granularity is 0 - 3, read data can be corrupted with no error indication when the PCI controller simultaneously writes to the same location that the BestComm is reading from. The workaround is to use a FIFO granularity of 4 or greater.
8	IP_MASK	Illegal Pointer Mask When this bit is set, the FIFO controller masks the Status register's IP bit from generating an error.
9	FAE_MASK	When this bit is set, the FIFO controller masks the Status Register's FAE bit from generating an error.
10	RXW_MASK	When this bit is set, the FIFO controller masks the Status Register's RXW bit from generating an error. (To help with backward compatibility, this bit is asserted at reset.)
11	UF_MASK	When this bit is set, the FIFO controller masks the Status Register's UF bit from generating an error.
12	OF_MASK	When this bit is set, the FIFO controller masks the Status Register's OF bit from generating an error.
13:15	Reserved	Unused. Software should write zero to these bits.
16:31	Reserved	Unused. Software should write zero to these bits. (R/W)

10.3.3.1.13 Tx FIFO Alarm Register PCITFAR(RW) —MBAR + 0x384C

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	served							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

10-32 Freescale Semiconductor

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		Rese	rved			Ala	ırm					Ala	arm			
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:19	Reserved	Unused. Software should write zero to these bits.
20:31	Alarm	User writes these bits to set low level "watermark", which is the point where FIFO asserts request for Multi-Channel DMA controller data filling. Value is in Bytes. For example, with Alarm = 32, alarm condition occurs when FIFO contains less than 32Bytes. Once asserted, alarm does not negate until high level mark is reached, as specified by FIFO control register granularity (GR) bits.
		Note: An Alarm setting less than the value of Max_Beats x 4 should be avoided. The transmit operation waits for the data to be stored in the FIFO before transmission onto the PCI bus. (e.g. A Max_setting of 0 represents eight beats (32-bits each) per transaction. The value of Alarm is in bytes. Ex: the value programmed to the Alarm register should be at least 0x20 (32 bytes) for the Multi-Channel DMA to continue to write enough data to complete at least one PCI burst.) Note: TX PCI FIFO is 512 bytes deep.

10.3.3.1.14 Tx FIFO Read Pointer Register PCITFRPR(RW) —MBAR + 0x3850

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	served							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		Reserv	ed							R	eadPtr					
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bits	Name Description															
0:19	Reserved Unused. Software should write zero to these bits.															

20:31	This value is maintained by FIFO hardware and is NOT normally written. It can be adjusted in special cases, but this disrupts data flow integrity. The value represents the Read address presented to the FIFO RAM.

10.3.3.1.15 Tx FIFO Write Pointer Register PCITFWPR(RW) —MBAR + 0x3854

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	served							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		Reser	ved							W	/ritePtr					
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:19	Reserved	Unused bits. Software should write zero to these bits.
20:31	WritePtr	Value is maintained by FIFO hardware and is NOT normally written. It can be adjusted in special cases, but this disrupts data flow integrity. Value represents the Write address presented to the FIFO RAM.

This marks the end of the PCI Multi-Channel DMA Transmit Interface description.

10.3.3.2 Multi-Channel DMA Receive Interface

PCI Rx is controlled by 13 32-bit registers. These registers are located at an offset from MBAR. Register addresses are relative to this offset.

10.3.3.2.1 Rx Packet Size PCIRPSR(RW) —MBAR + 0x3880

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Packet_	_Size[3	1:16]						
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R						P	acket_	Size[15	:2]						Packet	_Siz[1:0]
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:31	Packet_Size	The user writes this register with the number of bytes for Receive Controller to fetch over PCI. The two low bits are hardwired low; only 32-bit data transfers to the FIFO are allowed.
		Writing to this register also completes a Restart Sequence as long as Master Enable bit, PCIRER[ME], is high and Reset Controller bit, PCIRER[RC], is low.

10.3.3.2.2 Rx Start Address PCIRSAR (RW) —MBAR + 0x3884

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Sta	art_Add							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Sta	art_Add							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:31		The user writes this register with the desired Starting Address for the current packet. This is the address which will be first presented on the external PCI bus and then auto-incremented as necessary. This register will not increment as the PCI packet proceeds.

10.3.3.2.3 Rx Transaction Control Register PCIRTCR(RW) —MBAR + 0x3888

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Rese	rved			PCI_	cmnd					Max_	Retries			
W	-															
RESET	0	0	0	0		11	00		0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

Registers

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	R	eserved		FB	R	М	ax_Bea	ats		Reserve	ed	W	F	Reserve	ed	DI
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:3	Reserved	Unused. Software should write zero to these bits.
4:7	PCI_cmd	The user writes this field with the desired PCI command to present during the address phase of each PCI transaction. The default is Memory Read Multiple. This field is not checked for consistency and if written to an illegal value, unpredictable results will occur. If not using the default value, the user should write this register only once prior to any packet Restart.
8:15	Max_Retries	The user writes this field with the maximum number of retries to permit "per packet". The retry counter is reset when the packet completes normally or is terminated by a master abort, target abort, or an abort due to exceeding the retry limit. A slow or malfunctioning Target might issue infinite disconnects and therefore permanently tie up the PCI bus. A finite (0x01 to 0xff) Max_Retries value will detect this condition and generate an interrupt. Setting Max_Retries to 0x00 will not generate any interrupt.
16:18	Reserved	Unused. Software should write zero to these bits.
19	Full Burst (FB)	This is the Full Burst bit. If Full Burst is set, no check of the Receive Fifo emptiness is done and the PCI transaction is immediately started when Packet_Size register is written (and SCPCI RX gains the PCI bus).
		The PCI transaction will continue with multiple data beats UNTIL THE FULL PACKET IS TRANSFERRED (up to 4G bytes). The Full Burst operation avoids latency time-out and will not relinquish the bus until all Packet Bytes are received.
		Note: All FIFO checks (by scpci Rx) are disabled in this mode. It is up to the Multi-Channel DMA to keep the Rx FIFO from being overrun by the continuous incoming PCI burst data.
		Note: It is recommended to use the Full Burst mode only for transactions where more than 32 Bytes should be received.
		Note: Max_Beats must be set to 0.
20	Reserved	Unused. Software should write zero to this bit.
21:23	Max_Beats	The user writes this register with the desired number of PCI data beats to attempt on each PCI transaction. The default setting of 0 represents the maximum of eight beats per transaction. The receive controller will wait until sufficient space is in the Receive FIFO to support the indicated number of beats (Note: Each beat is four bytes). In the case that a packet is nearly complete and less than the Max_Beats number of bytes remain to complete the packet, the Receive Controller will issue single-beat transactions automatically until the packet is finished.
24:26	Reserved	Unused. Software should write zero to these bits.
27	Word Transfer (W)	The user writes this register to disable the two high byte enables of the PCI bus during initiated read transactions. The default setting is 0, enable all 4 byte enables.
28:30	Reserved	Unused. Software should write zero to these bits.
31	Disable address Incrementing (DI)	The user writes this register to disable PCI address incrementing between transactions. The default setting is 0, increment address by 4 (4 byte data bus). Note: This feature is recommended when reading from an external FIFO (having a fixed address).

10-36 Freescale Semiconductor

10.3.3.2.4 Rx Enables PCIRER (RW) —MBAR + 0x388C

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	RC	RF	FE	СМ	BE	Res	erved	ME	Res	served	FEE	SE	RE	TAE	IAE	NE
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Reserv	ed														
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0	Reset Controller (RC)	User writes this bit high to put Receive Controller in a reset state. Note that other register bits are not affected. This Reset is intended for recovery from an error condition or to reload the Start Address when Continuous mode is selected. This Reset bit does not prohibit register access but it must be negated in order to initiate a Restart sequence (i.e. writing the Packet_Size register). If it is used to reload a Start Address then the Start_Add register must be written prior to asserting this Reset bit.
1	Reset FIFO (RF)	The FIFO will be reset and flushed of any existing data when set high. The Reset Controller bit and the Reset FIFO bit operate independently, but clearly both must be low for normal operation.
2	FE	Flush enable. This is an important bit which causes a flush signal to be generated to the Receive FIFO Controller when the end of the current packet occurs. This Flush is necessary to insure that the Multi-Channel DMA will get all data left in the Receive FIFO. FE is active high.
3	Continuous mode (CM)	User writes this bit high to activate Continuous mode. In Continuous mode the Start_Add value is ignored at each packet restart and the PCI address is auto-incremented from one packet to the next. Also, the Packets_Done status byte will become active, indicating how many packets have been received since the last Reset Controller condition. If the Continuous bit is low, software is responsible for updating the Start_Add value at each packet Restart.
4	Bus error Enable (BE)	User writes this bit high to enable Bus Error indications. Section 10.3.3.2.9, Rx Status PCIRSR (R/sw1) —MBAR + 0x389C for Bus Error descriptions. Normally this bit will be 0 since illegal Slave bus accesses are not destructive to register contents, although it may indicate broken software. Note that this bit does not affect interrupt generation.
5:6	Reserved	Unused. Software should write zero to these bits.
7	Master Enable (ME)	This is the Receive Controller master enable signal. User must write it high to enable operation. It can be toggled low to permit out-of-order register updates prior to generating a Restart sequence (in which case transmission will begin when Master Enable is written back high), but it should not be used as such in Continuous mode because it has the side effect of resetting the Packets_Done status counter.
8:9	Reserved	Unused. Software should write zero to these bits.
10	FIFO Error Enable (FEE)	User writes this bit high to enable CPU Interrupt generation in the case of FIFO error termination of a packet transmission. It may be desirable to mask CPU interrupts in the case that Multi-Channel DMA is controlling operation, but in such a case software should poll the status bits to prevent a possible lock-up condition.

Registers

Bits	Name	Description
11	System error Enable (SE)	User writes this bit high to enable CPU Interrupt generation in the case of system error termination of a packet transmission. It may be desirable to mask CPU interrupts in the case that Multi-Channel DMA is controlling operation, but in such a case software should be polling the status bits to prevent a possible lock-up condition.
12	Retry abort Enable (RE)	User writes this bit high to enable CPU Interrupt generation in the case of retry abort termination of a packet transmission. It may be desirable to mask CPU interrupts in the case that Multi-Channel DMA is controlling operation, but in such a case, software should poll the status bits to prevent a possible lock-up condition.
13	Target Abort Enable (TAE)	User writes this bit high to enable CPU Interrupt generation in the case of target abort termination of a packet transmission. It may be desirable to mask CPU interrupts in the case that Multi-Channel DMA is controlling operation, but in such a case software should poll the status bits to prevent a possible lock-up condition.
14	Initiator Abort error Enable (IAE)	User writes this bit high to enable CPU Interrupt generation in the case of initiator abort error termination of a packet transmission. It may be desirable to mask CPU interrupts in the case that Multi-Channel DMA is controlling operation, but in such a case software should poll the status bits to prevent a possible lock-up condition.
15	Normal termination Enable (NE)	User writes this bit high to enable CPU Interrupt generation at the conclusion of a normally terminated packet transmission. This may or may not be desirable depending on the nature of program control by Multi-Channel DMA or the processor core.
16:31	Reserved	Unused. Software should write zero to these bits.

10.3.3.2.5 Rx Next Address PCIRNAR(R) —MBAR + 0x3890

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Next	_Addre	SS						
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Next	_Addre	SS						
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:31	Next_Address	This status register contains the next (unread) PCI address and is updated at the successful completion of each PCI data beat. It represents a Byte address and is updated with a user-written Start_Add value when Start_Add is reloaded. This register is intended to be accurate even if an abnormal PCI bus termination occurs.

10.3.3.2.6 Rx Last Word PCIRLWR(R) — MBAR + 0x3894

10-38 Freescale Semiconductor

Bits	Name	Description
0:31	Last_Word	This status register indicates the last 32-bit data fetched from the FIFO and is designed for the case in which an abnormal PCI termination has corrupted the integrity of the FIFO data (for that word).

10.3.3.2.7 Rx Bytes Done Counts PCIRDCR(R) —MBAR + 0x3898

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Byte	es_Don	е						
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Byte	es_Don	е						
W																

Bits	Name	Description
0:31	Bytes_Done	This status register indicates the number of Bytes received since the start of a packet. It is updated at the end of each successful PCI data beat. For normally terminated packets, the Bytes_Done value and the Packet_Size values are equal. If continuous mode is active, the Bytes_Done value reads 0 at the end of a successful packet and the Packets_Done field is incremented.

10.3.3.2.8 Rx Packets Done Counts PCIRPDCR(R) —MBAR + 0x38A0

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Pack	ets_Do	ne						
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Pack	ets_Do	ne						
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

Registers

Bits	Name	Description
0:31	Packets_Done	This status register indicates the number of packets received. It is active only if continuous mode is in effect. If the following occurs, the counter is reset:
		 Reset Controller bit, PCIRER[RC], is asserted (normal way to restart continuous mode) Master Enable bit, PCIRER[ME], is negated
		In this way, master enable can be used to reset Packets_Done status without disturbing continuous mode addressing. At any point in time the total number of Bytes received can be calculated as:
		(Packets_Done x Packet_Size) + Bytes_Done
		This assumes Packet_Size is the same for all restart sequences.

10.3.3.2.9 Rx Status PCIRSR (R/sw1) —MBAR + 0x389C

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			Re	eservec	l			NT	BE3	BE2	BE1	FE	SE	RE	TA	IA
W								rwc	rwc	rwc	rwc	rwc	rwc	rwc	rwc	rwc
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Po	served	ı						
W								Ne	Servec							
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:6	Reserved	Unused. Software should write zero to these bits.
7	Normal Termination (NT)	This flag is set when any packet terminates normally. It is not set in the case of an abnormally terminated packet. It does not require clearing but will not clear until it is written to a one (in which case it will now read back as zero, i.e. negated). >ALL THE FOLLOWING FLAG BITS OPERATE SIMILARLY<
8	Bus Error type 3 (BE3)	This flag is set whenever a Slave bus transaction attempts to write to a Read-Only register. This flag bit is set regardless of the Bus error Enable bit (BE). If software is polling this Byte and wishes to disregard this error it must mask this bit out. No corruption of the register bits occur for this (or any other) Bus Error case.
9	Bus Error type 2 (BE2)	This flag is set whenever a Slave bus transaction attempts to write to a Reserved register (an entire 32-bit register, not just a Reserved bit or byte). This flag bit is set regardless of the Bus error Enable bit (BE). If software is polling this Byte and wishes to disregard this error it must mask this bit out.
10	Bus Error type 1 (BE1)	This flag is set whenever a Slave bus transaction attempts to read a Reserved register (an entire 32-bit register, not just a Reserved bit or byte). This flag bit is set regardless of the Bus error Enable bit (BE). If software is polling this Byte and wishes to disregard this error it must mask this bit out.
11	FIFO Error (FE)	This flag is set whenever the Receive FIFO asserts its FIFO Error output. A CPU interrupt will be generated if the FIFO Error Enable (FEE) bit is set. The source of the error must be determined by reading the FIFO Error status register. Also, the error condition must be cleared at the FIFO prior to clearing this Sticky bit or this flag will continue to assert.

10-40 Freescale Semiconductor

Bits	Name	Description
12	System Error (SE)	This flag is set in response to the Transmit Controller entering an illegal state. A CPU interrupt will be generated if the System error Enable (SE) bit is set. In normal operation this should never occur. The only recovery is to assert the Reset Controller bit, PCIRER[RC], and clear this flag.
13	Retry Error (RE)	This flag is set if Max_Retries is set to a finite value (0x01 to 0xff) and the PCI transaction has performed retries in excess of the setting. A CPU interrupt will be generated if the Retry error Enable (RE) bit is set. The retry counter is reset at the beginning of each transaction (i.e. it is not cumulative throughout a packet) and would generally indicate a broken or improperly accessed Target.
14	Target Abort (TA)	This flag bit is set if the PCI controller has issued a Target Abort (which means the addressed PCI Target has signalled an Abort). A CPU interrupt will be generated if the Target Abort Enable (TAE) bit is set. It is up to application software to query the Target's status register and determine the source of the error. The coherency of the Receive FIFO data and the Receive Controller's status registers (Next_Address, Bytes_Done, etc.) should remain valid.
15	Initiator Abort (IA)	This flag bit is set if the PCI controller issues an Initiator Abort flag. This indicates that no Target responded but further status information can be read from the PCI Configuration interface. A CPU interrupt will be generated if the Initiator Abort error Enable (IAE) bit is set. The coherency of the Receive FIFO data and the Receive Controller's status registers (Next_Address, Bytes_Done, etc.) should remain valid.
16:31	Reserved	Unused. Software should write zero to these bits.

10.3.3.2.10 Rx FIFO Data Register PCIRFDR(RW) —MBAR + 0x38C0

Bits	Name	Description
0:31	FIFO_Data_Word	FIFO data port—Reading from this location "pops" data from the FIFO; writing "pushes" data into the FIFO. During normal operation the Multi-Channel DMA controller pops data here. The receive controller pushes data. Therefore, user programs should not write here. At power on reset an uninitialized random value is read at this register. A FIFO reset must be always performed before first accessing the FIFO.
		Note: Only full 32-bit accesses are allowed. If all Byte enables are not asserted when accessing this location, FIFO data will be corrupted.

10.3.3.2.11 Rx FIFO Status Register PCIRFSR(R/sw1) —MBAR + 0x38C4

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Registers

R				Re	eserved	I				RXW	UF	OF	FR	Full	Alarm	Empty
W										rwc	rwc	rwc				
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																

Bits	Name	Description
0:8	Reserved	Unused byte. Software should write zero to these bits.
9	Receive Wait Condition (RXW)	This flag bit indicates that the ipf_rcv bus is incurring wait states because there is not enough room in the FIFO to accept the data without causing overflow. This bit will cause the error outputs (fifoError, ipf_rcv_error, ipf_xmit_error) to assert unless the RXW_MASK bit in the FIFO Control register is set. Resetting the FIFO will clear this condition and the flag bit is cleared by writing a one to its bit position.
10	UnderFlow (UF)	This flag bit indicates that the read pointer has surpassed the write pointer. In other words the FIFO has been read beyond Empty. Resetting the FIFO will clear this condition and the flag bit is cleared by writing a one to its bit position.
11	OverFlow (OF)	This flag bit indicates that the write pointer has surpassed the read pointer. In other words the FIFO has been written beyond Full. Resetting the FIFO will clear this condition and the flag bit is cleared by writing a one to its bit position.
12	Frame Ready	The FIFO has a complete Frame of data ready for transmission. This module
	(FR)	does not provide support for Data Framing applications, so this bit should be ignored.
13	Full	The FIFO is Full. This is not a sticky bit or error condition. The Full indication tracks with the state of the FIFO.
14	Alarm	When the FIFO pointer is at or above the Alarm "watermark", as written by the user according to the Alarm and Control registers settings, the Alarm bit is asserted, thus automatically signalling to the DMA engine that the FIFO needs to be 'emptied'. By writing a '1' to this location software can enforce re-evaluation of the alarm condition.
15	Empty	The FIFO is empty. This is not a sticky bit or error condition.
16:31	Reserved	Unused. Software should write zero to these bits.

10.3.3.2.12 Rx FIFO Control Register PCIRFCR(RW) —MBAR + 0x38C8

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		R	eserve	d			GR		ㅗ	SK	SK	×	×		Reserv	ed
101									IP_MASK	MASK	RXW_MASK	MASK	MASK			
W										FAE	AX W	귀	P			
RESET	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	eserved	l						
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

10-42 Freescale Semiconductor

Bits	Name	Description
0:4	Reserved	Unused. Software shall write zero to these bits. (R/W)
5:7	Granularity (GR)	Granularity bits control high "watermark" point at which FIFO negates Alarm condition (i.e., request for data). It represents the number of free Bytes times 4.
		Note: A granularity setting of zero should be avoided because it means the Alarm bit (and the Requestor signal) will not negate until the FIFO is completely full. The Multi-Channel DMA module may perform up to 2 additional data writes after the negation of a Requestor due to its internal pipelining.
		Note: This field must be set to a value of 4 or higher. When the FIFO granularity is 0 - 3, read data can be corrupted with no error indication when the PCI controller simultaneously writes to the same location that the BestComm is reading from. The workaround is to use a FIFO granularity of 4 or greater.
8	IP_MASK	Illegal Pointer Mask
		When this bit is set, the FIFO controller masks the Status register's IP bit from generating an error.
9	FAE_MASK	When this bit is set, the FIFO controller masks the Status Register's FAE bit from generating an error.
10	RXW_MASK	When this bit is set, the FIFO controller masks the Status Register's RXW bit from generating an error. (To help with backward compatibility, this bit is asserted at reset.)
11	UF_MASK	When this bit is set, the FIFO controller masks the Status Register's UF bit from generating an error.
12	OF_MASK	When this bit is set, the FIFO controller masks the Status Register's OF bit from generating an error.
13:15	Reserved	Unused. Software should write zero to these bits.
16:31	Reserved	Unused. Software shall write zero to these bits. (R/W)

10.3.3.2.13 Rx FIFO Alarm Register PCIRFAR(RW) —MBAR + 0x38CC

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	served							
W	-															
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		Rese	rved			Ala	ırm					Ala	arm			
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:19	Reserved	Unused. Software should write zero to these bits.
20:31	Alarm [11:0]	User writes these bits to set the low level watermark, which is the point at which the FIFO asserts its request for data emptying to the Multi-Channel DMA controller. This value is in bytes. For example, with Alarm = 32, the alarm condition will occur when the FIFO has 32 or less free bytes in it. The alarm, once asserted, will not negate until the high level mark is reached, as specified by the Granularity bits in the Rx FIFO Control Register. Note: The PCI RX FIFO is 512 bytes deep.

Freescale Semiconductor 10-43

MPC5200B Users Guide, Rev. 1

10.3.3.2.14 Rx FIFO Read Pointer Register PCIRFRPR(RW) —MBAR + 0x38D0

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R								Re	served								
W																	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R		Reserve	ed		ReadPtr												
W																	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bits	Na	Name Description															
0:19	Reserved Unused. Software should write zero to these bits.																
20:31	ReadPtr This value is maintained by the FIFO hardware and is not normally written. It can be adjusted																

in special cases but will disrupt the integrity of the data flow. This value represents the Read

10.3.3.2.15 Rx FIFO Write Pointer Register PCIRFWPR (RW) —MBAR + 0x38D4

address being presented to the FIFO RAM.

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	served							
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		Reser	ved							W	ritePtr					
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
12:19	Reserved	Unused. Software should write zero to these bits.
20:31	WritePtr	This value is maintained by the FIFO hardware and is not normally written. It can be adjusted in special cases but will of course disrupt the integrity of the data flow. This value represents the Write address being presented to the FIFO RAM.

This marks the end of the PCI Multi-Channel DMA Receive Interface description.

10.4 Functional Description

The MPC5200B PCI module provides both master and target PCI bus interfaces as shown in Figure 10-1. The internal *PCI master*, or *initiator*, interface is accessible by any XL bus master such as the processor core and also provides a DMA interface (for BestComm) through the Communication Sub-System, which can be accessed by the Multi-Channel DMA engine. The internal *PCI target* interface provides external PCI masters access into two memory windows of MPC5200B address space. PCI arbitration is handled external to this module, by the MPC5200B internal PCI arbiter.

10-44 Freescale Semiconductor

NOTE

Only the internal PCI arbiter of the MPC5200B can be used as PCI arbiter for the PCI bus. An external PCI arbiter cannot be used.

The registers, described in Section 10.3, *Registers*, control and provide information about these multiple interfaces. An additional Configuration interface allows internal access through the Slave bus(also referred to as IP bus) to the PCI Type 0 Configuration registers, which are accessible to both MPC5200B and external masters through the PCI bus.

The following sections describe the operation of the PCI module.

10.4.1 PCI Bus Protocol

This section will provide a simple overview of the PCI bus protocol, including some details of MPC5200B implementation. For details regarding PCI bus operation, refer to the PCI Local Bus Specification, Revision 2.2.

10.4.1.1 PCI Bus Background

The PCI interface is synchronous and is best used for bursting data in large chunks. Its maximum theoretical bandwidth approaches 266 Megabytes per second for the 32-bit implementation running at 66MHz. A system will contain one device that is responsible for configuring all other devices on the bus upon reset. Each device has 256 bytes of configuration space that define individual requirements to the system controller. These registers are read and written through a "configuration access" command. A PCI transfer is started by the **master** and is directed toward a specific **target**. A provision is made for broadcasting to several targets through the "special command." Data is transferred through the use of memory and IO read and write commands.

C/BE[3:0]	Command Type
0000	Interrupt Acknowledge
0001	Special Cycle
0010	I/O Read
0011	I/O Write
0100	Reserved
0101	Reserved
0110	Memory Read
0111	Memory Write
1000	Reserved
1001	Reserved
1010	Configuration Read
1011	Configuration Write
1100	Memory Read Multiple
1101	Dual Address Cycle
1110	Memory Read Line
1111	Memory Write and Invalidate

Table 10-4. PCI Command encoding

10.4.1.2 Basic Transfer Control

The basic PCI bus transfer mechanism is a burst. A burst is composed of an address phase followed by one or more data phases. Fundamentally, all PCI data transfers are controlled by three signals \overline{FRAME} , \overline{IRDY} , and \overline{TRDY} . An initiator asserts \overline{FRAME} to indicate the beginning of a PCI bus transaction and negates \overline{FRAME} to indicate the end of a PCI bus transaction. An initiator negates \overline{IRDY} to force wait cycles. A target negates \overline{TRDY} to force wait cycles.

The PCI bus is considered idle when both \overline{FRAME} and \overline{IRDY} are negated. The first clock cycle in which \overline{FRAME} is asserted indicates the beginning of the address phase. The address and bus command code are transferred in that first cycle. The next cycle begins the first of one

Functional Description

or more data phases. Data is transferred between initiator and target in each cycle that both $\overline{\text{IRDY}}$ and $\overline{\text{TRDY}}$ are asserted. Wait cycles may be inserted in a data phase by the initiator (by negating $\overline{\text{IRDY}}$) or by the target (by negating $\overline{\text{TRDY}}$).

Once an initiator has asserted \overline{IRDY} , it cannot change \overline{IRDY} or \overline{FRAME} until the current data phase completes regardless of the state of \overline{TRDY} . Once a target has asserted \overline{TRDY} or \overline{STOP} , it cannot change \overline{DEVSEL} , \overline{TRDY} , or \overline{STOP} until the current data phase completes. In simpler terms, once an initiator or target has committed to the data transfer, it cannot back out.

When the initiator intends to complete only one more data transfer (which could be immediately after the address phase), \overline{FRAME} is negated and \overline{IRDY} is asserted (or kept asserted) indicating the initiator is ready. After the target indicates the final data transfer (by asserting \overline{TRDY}), the PCI bus may return to the idle state (both \overline{FRAME} and \overline{IRDY} are negated).

NOTE

No Fast Back-to-Back transactions are supported by the MPC5200B.

10.4.1.3 PCI Transactions

The figures in this section show the basic "memory read" and "memory write" command transactions.

Figure 10-2 shows a PCI burst read transaction (2-beat). The signal \overline{FRAME} is driven low to initiate the transfer. Cycle 1 is the address phase with valid address information driven on the AD bus and a PCI command driven on the $\overline{C/BE}$ bus. In cycle 2, the AD bus is in a turnaround cycle because of the read on a muxed bus. The byte enables, which are active low, are driven onto the $\overline{C/BE}$ bus in this clock. Any combination of byte enables can be asserted (none may be asserted). A target will respond to an address phase by driving the \overline{DEVSEL} signal. The specification allows for four types of decode operations. The target can drive \overline{DEVSEL} in 1, 2 or 3 clocks depending on whether the target is a fast, medium or slow decode device. A single device is allowed to drive \overline{DEVSEL} should another agent fail to respond by the fourth clock. This is called "subtractive decoding" in PCI terminology.

A valid transfer occurs when both \overline{IRDY} and \overline{TRDY} are asserted. If either are negated during a data phase, it is considered a wait state. The target asserts a wait state in cycles 3 and 5 of Figure 10-2. A master indicates that the final data phase is to occur by negating \overline{FRAME} . The final data phase occurs in cycle 6. Another agent cannot start an access until cycle 8.

Figure 10-2. PCI Read Terminated by Master

Figure 10-3 shows a write cycle which is terminated by the target. In this diagram the target responds as a slow device, driving \overline{DEVSEL} in cycle 4. The first data is transferred in cycle 4. The master inserts a wait state at cycle 5. The target indicates that it can accept only one more transfer by asserting both \overline{TRDY} and \overline{STOP} at the same time in cycle 5. The signal \overline{STOP} must remain asserted until \overline{FRAME} negates. The final data phase does not have to transfer data. If \overline{STOP} and \overline{IRDY} are both asserted while \overline{TRDY} is negated, it is considered a target disconnect without a transfer. See the PCI specification for more details.

MPC5200B Users Guide, Rev. 1

10-46 Freescale Semiconductor

Figure 10-3. PCI Write Terminated by Target

10.4.1.4 PCI Bus Commands

PCI supports a number of different commands. These commands are presented by the initiator on the $\overline{\text{C/BE}[3:0]}$ lines during the address phase of a PCI transaction.

Table 10-5. PCI Bus Commands

C/BE[3:0]	PCI Bus Command	MPC5200B supports as Initiator	MPC5200B supports as Target	Definition
0000	Interrupt Acknowledge	Yes	No	The interrupt acknowledge command is a read (implicitly addressing an external interrupt controller). Only one device on the PCI bus should respond to the interrupt acknowledge command.
0001	Special Cycle	Yes	No	The Special Cycle command provides a mechanism to broadcast select messages to all devices on the PCI bus.
0010	I/O-read	Yes	No	The I/O-read command accesses agents mapped into the PCI I/O space.
0011	I/O-write	Yes	No	The I/O-write command accesses agents mapped into the PCI I/O space.
0100	Reserved	No	No	
0101	Reserved	No	No	
0110	Memory-read	Yes	Yes	The memory read command accesses agents mapped into PCI memory space.

MPC5200B Users Guide, Rev. 1

Table 10-5. PCI Bus Commands (continued)

C/BE[3:0]	PCI Bus Command	MPC5200B supports as Initiator	MPC5200B supports as Target	Definition
0111	Memory-write	Yes	Yes	The memory write command accesses agents mapped into PCI memory space.
1000	Reserved	No	No	
1001	Reserved	No	No	
1010	Configuration read	Yes	Yes	The configuration read command accesses the 256 byte configuration space of a PCI agent.
1011	Configuration write	Yes	Yes	The configuration read command accesses the 256 byte configuration space of a PCI agent.
1100	Memory read multiple	Yes	Yes	For MPC5200B, the memory read multiple command functions the same as the memory read command. Cache line wrap is implemented when XL Bus is the transaction initiator and it also wraps.
1101	Dual address cycle	No	No	The dual address cycle command is used to transfer a 64-bit address (in two 32-bit address cycles) to 64-bit addressable devices. MPC5200B device does not respond to this command.
1110	Memory read line	Yes	Yes	The memory read line command indicates that an initiator is requesting the transfer of an entire cache line. For MPC5200B, the memory read line functions the same as the memory read command. Cache line wrap is not implemented.
1111	Memory write and invalidate	Yes (DMA access only)	Yes	The memory write and invalidate command indicates that an initiator is transferring an entire cache line, and, if this data is in any cacheable memory, that cache line needs to be invalidated. The memory write and invalidate functions the same as the memory write command. Cache line wrap is implemented.
				Software must make sure that the cache line register and max_beats register are set to the same value and the packet size must be a multiple of the cache line size. This instruction is supported only by the TX SCPCI initiator interface and when the MPC5200B acts as a target.

Though MPC5200B supports many PCI commands as an initiator, the Communication Sub-System Initiator interface is intended to use PCI Memory Read, and Memory Write commands.

10.4.1.5 Addressing

PCI defines three physical address spaces: PCI memory space, PCI I/O space, and PCI configuration space. Address decoding on the PCI bus is performed by every device for every PCI transaction. Each agent is responsible for decoding its own address. PCI supports two types of address decoding: positive decoding and subtractive decoding. The address space which is accessed depends primarily on the type of PCI command that is used.

10.4.1.5.1 Memory space addressing

For memory accesses, PCI defines two types of burst ordering controlled by the two low-order bits of the address: linear incrementing(AD[1:0] = 0b00) and cache wrap mode (AD[1:0] = 0b10). The other two AD[1:0] encodings (0b01 and 0b11) are reserved.

MPC5200B Users Guide, Rev. 1

10-48 Freescale Semiconductor

For linear incrementing mode, the memory address is encoded/decoded using AD[31:2]. Thereafter, the address is incremented by 4 bytes after each data phase completes until the transaction is terminated or completed (a 4 byte data width per data phase is implied). Note, the two low-order bits of the address are still included in all the parity calculations.

MPC5200B supports both linear incrementing and cache wrap mode as an initiator. For memory transactions, when an XL Bus burst transaction is wrapped, the cache wrap mode is automatically generated. For zero-word-aligned bursts and single-beat transactions, MPC5200B drives AD[1:0] to 0b00. As a target, the MPC5200B treats cache wrap mode as a reserved memory mode. MPC5200B will return the first beat of data and then signal a disconnect without data on the second data phase.

10.4.1.5.2 I/O space addressing

For PCI I/O accesses, all 32 address signals are used to provide an address with granularity of a single byte. Once a target has claimed an I/O access, it must determine if it can complete the entire access as indicated by the byte enable signals. If all the selected bytes are not in the address range of the target, the entire access cannot complete. In this case, the target does not transfer any data, and terminates the transaction with a target-abort.

Access Size	AD[1:0]	C/BE[3:0]	Data
8-bit	00	xxx0	AD[7:0]
	01	xx01	AD[15:8]
	10	x011	AD[23:16]
	11	0111	AD[31:24]
16-bit	00	xxx0	AD[15:0]
	01	xx01	AD[23:8]
	10	x011	AD[31:16]
24-bit	00	xxx0	AD[23:0]
	01	xx01	AD[31:8]
32-bit	00	xxx0	AD[31:0]

Table 10-6. PCI I/O space byte decoding

10.4.1.5.3 Configuration space addressing and transactions

PCI supports two types of configuration accesses. Their primary difference is the format of the address on the AD[31:0] signals during the address phase. The two low-order bits of the address indicate the format used for the configuration address phase: type 0 (AD[1:0] = 0b00) or type 1 (AD[1:0] = 0b01). Both address formats identify a specific device and a specific configuration register for that device.

Type 0 configuration accesses are used to select a device on the local PCI bus. They do not propagate beyond the local PCI bus and are either claimed by a local device or terminated with a master-abort. Type 1 configuration accesses are used to target a device on a subordinate bus through a PCI-to-PCI bridge. Type 1 accesses are ignored by all targets except PCI-to-PCI bridges that pass the configuration request to another PCI bus.

When the controller initiates a configuration access on the PCI bus, it places the configuration address information on the AD bus and the configuration command on the $\overline{\text{C/BE[3:0]}}$ bus. A Type 0 configuration transaction is indicated by setting AD[1:0] to 0b00 during the address phase. The bit pattern tells the community of devices on the PCI bus that the bridge that "owns" that bus has already performed the bus number comparison and verified that the request targets a device on its bus. Figure 10-4 shows the contents of the AD bus during the address phase of the Type 0 configuration access.

Figure 10-4. Contents of the AD Bus During Address Phase of a Type 0 Configuration Transaction

Address bits [10:8] identify the target function and bits AD[7:2] select one of the 64 configuration dwords within the target function's configuration space. For Type 0 configuration transactions, the target device's IDSEL pin must be asserted. The upper 21 address lines are commonly used as IDSELs since they are not used during the address phase of a type 0 configuration transaction.

If the target bus is a bus that is subordinate to the local PCI bus (bus 0), the configuration transaction is still initiated on bus 0, but indicates that none of the devices on this bus are the target of the transaction. Rather, only PCI-to-PCI bridges residing on the bus should pay attention to the transaction because it targets a device on a bus further out in the hierarchy beyond a PCI-to-PCI bridge that is attached to the local PCI bus (bus 0). This is accomplished by initiating a Type 1 configuration transaction (setting AD[1:0] to 01b during the address phase). This pattern instructs all functions other than PCI-to-PCI bridges that the transaction is not for any of them. Figure 10-5 illustrates the contents of the AD bus during the address phase of the Type 1 configuration access.

Figure 10-5. Contents of the AD Bus During Address Phase of a Type 1 Configuration Transaction

During the address phase of a Type 1 configuration access, the information on the AD bus if formatted as follows:

- AD[1:0] contain a 01b, identifying this as a Type 1 configuration access.
- AD[7:2] identifies one of 64 configuration dwords within the target devices's configuration space.
- AD[10:8] identifies one of the eight functions within the target physical device.
- AD[15:11] identifies one of 32 physical devices. This field is used by the bridge to select which device's IDSEL line to assert.
- AD[23:16] identifies one of 256 PCI buses in the system.
- AD[31:24] are reserved and are cleared to zero.

During a Type 1 configuration access, PCI devices ignore the state of their IDSEL inputs. When any PCI-to-PCI bridge latches a Type 1 configuration access (command = configuration read or write and AD[1:0] = 01b) on its primary side, it must determine whether the bus number field on the AD bus matches the number of its secondary bus or if it's within the range of its subordinate buses. If the bus number matches, it should claim and pass the configuration access onto its secondary bus as a Type 0 configuration access, decoding the device number to select one of the IDSEL lines. If the bus number isn't equal to its secondary bus, but is within the range of buses that are subordinate to the bridge, the bridge claims and passes that access through as a Type 1 access.

10.4.1.5.4 Address decoding

For positive address decoding, an address hits when the address on the address bus matches an assigned address range. Multiple devices on the same PCI bus may use positive address decoding, though there can not be any overlap in the assigned address ranges.

For subtractive address decoding, an address hits when the address on the address bus does not match any address range for any of the PCI devices on the bus. Only one device on a PCI bus may use subtractive address decoding, and its use is optional.

10-50 Freescale Semiconductor

10-51

10.4.2 Initiator Arbitration

There are three possible internal initiator sources - CommBus Transmit, CommBus Receive, or the XL bus (from Internal System Arbiter). Custom interface logic arbitrates and provides mux select control for these sources to the PCI controller. Figure 10-6 illustrates the arbitration block connection.

Figure 10-6. Initiator Arbitration Block Diagram

10.4.2.1 Priority Scheme

The PCI Initiator arbiter uses the following fixed priority scheme.

- 1. XL bus Initiator
- 2. CommBus Transmit (Tx)
- 3. CommBus Receive (Rx) (lowest)

10.4.3 Configuration Interface

The PCI bus protocol requires the implementation of a standardized set of registers for most devices on the PCI bus. MPC5200B implements a Type 0 Configuration register set or header. They are described in Section 10.3.1, PCI Controller Type 0 Configuration Space. These registers are primarily intended to be read or written by the PCI configuring master at initialization time through the PCI bus. MPC5200B provides internal access to these registers through a Slave bus interface. As with most MPC5200B registers, they are accessible by software in the address space at offsets of MBAR. Internal accesses to the Type 0 Configuration header do not require PCI arbitration when they are accessed as offsets of MBAR and are allowed to execute regardless of whether any write data is posted in the PCI Controller.

If MPC5200B is the configuring master, the Slave bus interface should be used to configure the PCI Controller. An external master would configure the PCI controller through the external PCI bus.

More information on the standard PCI Configuration register can be found in the PCI 2.2 specification.

10.4.4 XL bus Initiator Interface

The XL bus Initiator Interface provides access to the PCI bus for XL bus masters, primarily the processor core. This interface is accessed through three windows in MPC5200B address space set up by base address and base address mask registers (Section 10.3.2.5, *Initiator Window 0 Base/Translation Address Register PCIIW0BTAR(RW)—MBAR + 0x0D70*). The base address registers must be enabled by setting their respective Enable bits in the Section 10.3.2.8, *Initiator Window Configuration Register PCIIWCR(RW) —MBAR + 0x0D80*. Accesses to this area are translated into PCI transactions on the PCI bus. See Section 10.6.2, *Address Maps* for examples on setting up address windows.

The particular type of PCI transaction generated is determined by the PCI configuration bits associated with the address window (PCIIWCR). For example, the user might set one window to do PCI memory read multiple accesses, one window for PCI I/O accesses, and the other window to do non-prefetchable (memory-mapped I/O) PCI memory accesses. Table 10-15 for command translation.

Functional Description

In addition to the configurable address window mapping logic, the register interface provides a Configuration Address Register, which provides the ability to generate Configuration, Interrupt Acknowledge and Special Cycles. External PCI devices should be configured through this interface. Section 10.4.4.2, *Configuration Mechanism* for configuration, interrupt acknowledge, and special cycle command support.

The PCI XL Bus Initiator interface supports all XL Bus transactions, including single-beat transfers and bursts (32 bytes). Single-beat 64-bit data transactions are automatically translated into 2-beats burst transfers on the PCI bus. Standard XL bus burst transactions are supported as well, however, buffering is implemented to boost performance during writes and avoid deadlock scenario for all reads and memory writes. If the target for an XL bus read from PCI disconnects part way through the burst, MPC5200B may have to handle a local memory access from an alternate PCI master before the disconnected transfer can continue.

XL Bus initiator read requests are decoded into four types: PCI Memory, I/O, Configuration, and Interrupt Acknowledge. The PCI Controller must first gain access to the PCI bus before acknowledging the XL Bus read request. The specific timing of the address acknowledge is dependent upon the type of transfer.

When the XL bus requests burst data from PCI space, the data received from PCI is stored in a buffer until all requested data has been latched. The PCI Controller does not terminate the address tenure of the XL Bus transaction until all requested data is latched. This is because PCI targets are allowed to disconnect in the middle of a transfer, and the XL bus requires burst transfers to be atomic. If the PCI target disconnects in the middle of the data transfer and an alternate PCI master acquires the bus and initiates a local memory access, the Controller retries the internal read transaction on the XL bus. The PCI Controller continues to request mastership of the PCI bus until the original request is completed.

For example, if the XL bus initiates a burst read, and the PCI target disconnects after transferring the first half of the burst, MPC5200B re-arbitrates for the PCI bus, and when granted, initiates a new transaction with the address of the third beat of the burst (4-beat XL Bus bus bursts). If an alternate PCI master requests data from local memory while the PCI Controller is waiting for the PCI bus grant, the PCI controller retries the XL Bus bus transaction to allow the PCI-initiated transaction to complete and the read buffer will be emptied.

PCI critical-word-first (CWF) burst operation (i.e. cache line wrap burst) is supported and the 2-bit cache line wrap address mode is driven on the address bus when the XL Bus bus starts the burst at a non-zero-word-first address. Note that this option is only provided as a means to support memory targets that support cache-line wrap.

NOTE

A processor is not permitted to cache from any external memory targets residing on the PCI bus. This was allowed previously in the PCI spec. 2.1. The PCI spec. 2.2. took this requirements away.

XL bus writes are decoded into PCI memory, PCI I/O, PCI configuration, or special cycles. If the transaction decodes into an I/O, configuration, or special cycle, the write is connected. The PCI controller gains access to the PCI bus and successfully transfers the data before it asserts address acknowledge to the XL bus. If the address maps to PCI memory space, the XL Bus address tenure is immediately acknowledged and write data is posted.

A 32-byte buffer is used to post memory writes from XL Bus to PCI. Buffering minimizes the effect of the slower PCI bus on the higher-speed XL bus. It may contain single-beat XL Bus write transactions or a single burst. After the XL bus write data is latched internally, the bus is available for subsequent transactions without having to wait for the write to the PCI target to complete. If a subsequent XL Bus write request to the PCI bus comes in, the data transfer is delayed until all previous writes to the PCI bus are completed. Only when the write buffer is empty can burst data from the XL bus be posted.

10.4.4.1 Endian Translation

The PCI bus is inherently little endian in its byte ordering. The internal XLB bus, however, is big endian. XLB bus transactions are limited to 1, 2, 3, 4, 5, 6, 7, 8, or 32 byte (burst) transactions within the data bus byte lanes on any 32-bit address boundary for burst transfers. Table 10-7 shows the byte lane mapping between the two buses.

PCI Bus XL bus **Data Bus Byte Lanes** Α **TSIZ** AD BE 31:2 23:1 15:8 7:0 [29:31] 4 6 [0:2] [2:0] [3:0] 0 7 1 2 6 3 5 000 001 OP7 000 1110 OP7 001 001 OP7 000 1101 OP7 --------010 001 OP7 1011 OP7 000 ------------011 001 OP7 000 0111 OP7 100 001 OP7 100 1110 OP7

Table 10-7. XLB bus to PCI Byte Lanes for Memory^a Transactions

MPC5200B Users Guide, Rev. 1

10-52 Freescale Semiconductor

Table 10-7. XLB bus to PCI Byte Lanes for Memory^a Transactions (continued)

				XL bı	us							PCII	Bus		
Α	TSIZ			Data	Bus	Byte L	anes			AD	BE	31:2	23:1		
[29:31]	[0:2]	0	1	2	3	4	5	6	7	[2:0]	[3:0]	4	6	15:8	7:0
101	001						OP7			100	1101			OP7	
110	001							OP7		100	1011		OP7		
111	001								OP7	100	0111	OP7			
000	010	OP6	OP7							000	1100			OP7	OP6
001	010		OP6	OP7						000	1001		OP7	OP6	
010	010			OP6	OP7					000	0011	OP7	OP6		
011	010				OP6	OP7				000	0111	OP6			
										100	1110				OP7
100	010					OP6	OP7			100	1100			OP7	OP6
101	010						OP6	OP7		100	1001		OP7	OP6	
110	010							OP6	OP7	100	0011	OP7	OP6		
000	011	OP5	OP6	OP7						000	1000		OP7	OP6	OP5
001	011		OP5	OP6	OP7					000	0001	OP7	OP6	OP5	
010	011			OP5	OP6	OP7				000	0011	OP6	OP5		
										100	1110				OP7
011	011				OP5	OP6	OP7			000	0111	OP5			
										100	1100			OP7	OP6
100	011					OP5	OP6	OP7		100	1000		OP7	OP6	OP5
101	011						OP5	OP6	OP7	00	0001	OP7	OP6	OP5	
000	100	OP4	OP5	OP6	OP7					00	0000	OP7	OP6	OP5	OP4
001	100		OP4	OP5	OP6	OP7				000	0001	OP6	OP5	OP4	
										100	1110				OP7
010	100			OP4	OP5	OP6	OP7			000	0011	OP5	OP4		
										100	1100			OP7	OP6
011	100				OP4	OP5	OP6	OP7		000	0111	OP4			
										100	1000		OP7	OP6	OP5
100	100					OP4	OP5	OP6	OP7	100	0000	OP7	OP6	OP5	OP4
000	101	OP3	OP4	OP5	OP6	OP7				000	0000	OP6	OP5	OP4	OP3
										100	1110				OP7
001	101		OP3	OP4	OP5	OP6	OP7			000	0001	OP5	OP4	OP3	
										100	1100			OP7	OP6
010	101			OP3	OP4	OP5	OP6	OP7		000	0011	OP4	OP3		
										100	1000		OP7	OP6	OP5

Table 10-7. XLB bus to PCI Byte Lanes for Memory^a Transactions (continued)

				XL bu	us							PCI	Bus		
Α	TSIZ			Data	Bus	Byte L	anes			AD	BE	31:2	23:1	15:8	7:0
[29:31]	[0:2]	0	1	2	3	4	5	6	7	[2:0]	[3:0]	4	6	15.0	7.0
011	101				OP3	OP4	OP5	OP6	OP7	000	0111	OP3			
										100	0000	OP7	OP6	OP5	OP4
000	110	OP2	OP3	OP4	OP5	OP6	OP7			000	0000	OP5	OP4	OP3	OP2
										100	1100			OP7	OP6
001	110		OP2	OP3	OP4	OP5	OP6	OP7		000	0001	OP4	OP3	OP2	
										100	1000		OP7	OP6	OP5
010	110			OP2	OP3	OP4	OP5	OP6	OP7	000	0011	OP3	OP2		-
										100	0000	OP7	OP6	OP5	OP4
000	111	OP1	OP2	OP3	OP4	OP5	OP6	OP7		000	0000	OP4	OP3	OP2	OP1
										100	1000		OP7	OP6	OP5
001	111		OP1	OP2	OP3	OP4	OP5	OP6	OP7	000	0001	OP3	OP2	OP1	-
										100	0000	OP7	OP6	OP5	OP4
000	000	OP0	OP1	OP2	OP3	OP4	OP5	OP6	OP7	000	0000	OP3	OP2	OP1	OP0
										100	0000	OP7	OP6	OP5	OP4

The byte lane translation will be similar for other types of transactions. However, the PCI address may be different as explained in Section 10.4.1.5, Addressing.

10.4.4.2 Configuration Mechanism

In order to support both Type 0 and Type 1 configuration transactions, MPC5200B provides the 32 bit Configuration Address Register (CAR), located at module address 0x1F8. The register specifies the target PCI bus, device, function, and configuration register to be accessed. A read or a write to the MPC5200B window defined as PCI I/O space, in PCIIWCR, causes the host bridge to translate the access into a PCI configuration cycle if the enable bit in the Configuration Address Register is set and the device number does not equal 0b1_1111. For space to be defined as I/O space, the accessed space (one of the initiator Windows) must be programmed as I/O, not memory. Section 10.3.2.8, Initiator Window Configuration Register PCIIWCR(RW) —MBAR + 0x0D80.

The format of the Configuration Address Register is shown in Section 10.3.2.12, Configuration Address Register PCICAR (RW) —MBAR + 0x0DF8. When MPC5200B detects an access to an I/O Window, it checks the enable flag and the device number in the Configuration Address Register. If the enable bit is set, and the device number is not 0b1_1111, the MPC5200B performs a configuration cycle translation function and runs a configuration read or configuration write transaction on the PCI bus. The device number 0b1_1111 is used for performing interrupt acknowledge and Special Cycle transactions. See Section 10.4.4.2.3, Interrupt Acknowledge Transactions and Section 10.4.4.2.4, Special Cycle Transactions for more information. If the bus number corresponds to the local PCI bus (bus number = 0x00), a Type 0 configuration cycle transaction is performed. If the bus number indicates a remote PCI bus, MPC5200B performs a Type 1 configuration cycle translation. If the enable bit is not set, the access to the Configuration Window is passed through to the PCI bus as a I/O space transaction at the internal address (window translation applies).

Note that the PCI data byte enables $(\overline{C/BE[3:0]})$ are determined by the size access to the Window.

10.4.4.2.1 Type 0 Configuration Translation

Figure 10-7 shows the Type 0 translation function performed on the contents of the Configuration Address Register to the AD[31:0] signals on the PCI bus during the address phase of the configuration cycle (only applies when the Enable bit in the Configuration Address Register is set).

10-54 Freescale Semiconductor

Figure 10-7. Type 0 Configuration Translation

For Type 0 configuration cycles, MPC5200B translates the device number field of the Configuration Address Register into a unique IDSEL line shown in Table 10-8. (allows for 21 different devices).

Table 10-8. Type 0 Configuration Device Number to IDSEL Translation

Device N	IDGEI	
Binary	Decimal	- IDSEL
0b0_0000-0b0_1001	0-9	-
0b0_1010	10	AD31
0b0_1011	11	AD11
0b0_1100	12	AD12
0b0_1101	13	AD13
0b0_1110	14	AD14
0b0_1111	15	AD15
0b1_0000	16	AD16
0b1_0001	17	AD17
0b1_0010	18	AD18
0b1_0011	19	AD19
0b1_0100	20	AD20
0b1_0101	21	AD21
0b1_0110	22	AD22
0b1_0111	23	AD23
0b1_1000	24	AD24
0b1_1001	25	AD25
0b1_1010	26	AD26
0b1_1011	27	AD27
0b1_1100	28	AD28

MPC5200B Users Guide, Rev. 1

Table 10-8. Type 0 Configuration Device Number to IDSEL Translation (continued)

Device N	IDSEL			
Binary	Decimal	IDSEL		
0b1_1101	29	AD29		
0b1_1110	30	AD30		
0b1_1111	31	-		

NOTE: Device numbers 0b0_0000 to 0b0_1001 are reserved. Programming to these values and issuing a configuration transaction will result in a PCI configuration cycle with AD31-AD11 driven low.

MPC5200B can issue PCI configuration transactions to itself. A Type 0 configuration initiated by MPC5200B can access its own configuration space by asserting its IDSEL input signal. This is the only way MPC5200B can clear its own status register bits (read-write-clear).

For Type 0 translations, the function number and dword fields are copied without modification onto the AD[10:2] signals and AD[1:0] are driven low during the address phase.

10.4.4.2.2 Type 1 Configuration Translation

For Type 1 translations, the 30 high-order bits of the Configuration Address Register are copied without modification onto the AD[31:2] signals during the address phase. The AD[1:0] signals are driven to 0b01 during the address phase to indicate a Type 1 configuration cycle.

10.4.4.2.3 Interrupt Acknowledge Transactions

When MPC5200B detects a **read** from an I/O-defined Window (Section 10.3.2.8, *Initiator Window Configuration Register PCIIWCR(RW)* — MBAR + 0x0D80), it checks the enable flag, bus number, and the device number in the Configuration Address Register (Section 10.3.2.12, *Configuration Address Register PCICAR (RW)* — MBAR + 0x0DF8). If the enable bit is set, the bus number corresponds to the local PCI bus (bus number = 0x00), and the device number is all 1's (device number = 0b1_1111), then an interrupt acknowledge transaction is initiated. If the bus number indicates a subordinate PCI bus (bus number! = 0x00), a Type 1 configuration cycle is initiated, similar to any other configuration cycle for which the bus number does not match. The function number and dword values are ignored.

The interrupt acknowledge command (0b0000) is driven on the $\overline{C/BE[3:0]}$ signals and the address bus is driven with a stable pattern during the address phase, but a valid address is not driven. The address of the target device during an interrupt acknowledge is implicit in the command type. Only the system interrupt controller on the PCI bus should respond to the interrupt acknowledge and return the interrupt vector on the data bus during the data phase. The size of the interrupt vector returned is indicated by the value driven on the $\overline{C/BE[3:0]}$ signals.

10.4.4.2.4 Special Cycle Transactions

When the MPC5200B detects a **write** to an I/O-defined Window (Section 10.3.2.8, *Initiator Window Configuration Register PCIIWCR(RW)* — MBAR + 0x0D80), it checks the enable flag, bus number, and the device number in the Configuration Address Register (Section 10.3.2.12, *Configuration Address Register PCICAR (RW)* — MBAR + 0x0DF8). If the enable bit is set, the bus number corresponds to the local PCI bus (bus number = 0x00), and the device number is all 1's (device number = 0b1_1111), then a Special Cycle transaction is initiated. If the bus number indicates a subordinate PCI bus (bus number != 0x00), a Type 1 configuration cycle is initiated, similar to any other configuration cycle for which the bus number does not match. The function number and dword values are ignored.

The Special Cycle command (0b0001) is driven on the $\overline{\text{C/BE}[3:0]}$ signals and the address bus is driven with a stable pattern during the address phase, but contains no valid address information. The Special Cycle command contains no explicit destination address, but broadcast to all agents on the same bus segment. Each receiving agent must determine whether the message is applicable to it. PCI agent will never assert $\overline{\text{DEVSEL}}$ in response to a Special Cycle command. Master Abort is the normal termination for a Special Cycle and no errors are reported for this case of Master Abort termination. This command is basically a broadcast to all agents, and interested agents accept the command and process the request.

NOTE

Special Cycle commands do not cross PCI-to-PCI bridges. If a master wants to generate a Special Cycle command on a specific bus in the hierarchy that is not its local bus, it must use a Type 1 configuration write command to do so. Type 1 configuration write commands can traverse PCI-to-PCI bridges in both directions for the purpose of generating Special Cycle commands on any bus in the hierarchy and are restricted to a single data phase in length. However, the master must know the specific bus on which it desires to generate the Special Cycle command and cannot simply do a broadcast to one bus and expect it to propagate to all buses.

MPC5200B Users Guide, Rev. 1

10-56 Freescale Semiconductor

During the data phase, AD[31:0] contain the Special Cycle message and an optional data field. The Special Cycle message is encoded on the 16 least significant bits (AD[15:0]) and the optional data field is encoded on the most significant bits (AD[31:16]). The Special Cycle message encodings are assigned by the PCI SIG Steering Committee. The current list of defined encodings are provided in Table 10-9.

Table 10-9. Special Cycle Message Encodings

AD[15:0]	Message
0x0000	SHUTDOWN
0x0001	HALT
0x0002	x86 architecture-specific
0x0003-0xFFFF	reserved

10.4.4.3 Transaction Termination

If the PCI cycle Master Aborts, interface will return 0xFFFFFFF as read data, but complete without error. It will issue an interrupt to the internal interrupt controller if enabled.

For abnormal transaction termination during an XL bus-initiated transaction (unsupported transfer types, retry limit reached, or target abort), an error is generated. It will issue an interrupt to the MPC5200B Interrupt controller if such interrupts are enabled.

Transfers that cross the 32-bit boundary (greater than 4 bytes) to a PCI non-memory address range result in a transfer error. The space is defined as nonmemory if the IO/M# configuration bit associated with that window is programmed "0".

Table 10-10. Unsupported XL Bus Transfers

XL Bus Transaction	PCI Address Space
Burst (32-byte)	Nonmemory
> 4 byte Single Beat	Nonmemory
4 byte Single Beat at a[29:31] 001, 010, or 011	Nonmemory
3 byte Single Beat at a[29:31] 010 or 011	Nonmemory
2 byte Single Beat at a[29:31] 011	Nonmemory

10.4.5 XL bus Target Interface

- The target interface can issue target abort, target retry, and target disconnect terminations.
- The target interface does NOT support fast back-to-back cycles.
- No support of dual address cycles as a PCI target.
- Target transactions are not snooped by the processor.
- Medium device selection timing
- Three 32-byte buffers enhance data throughput.

The XL Bus Target Interface provides access for external PCI masters to two windows of MPC5200B address space. Target Base Address Translation Registers 0 and 1 allow the user to map PCI address hits on MPC5200B PCI Base Address Registers to areas in the internal address space. All of these registers must be enabled for this interface to operate.

Upon detection of a PCI address phase, the PCI controller decodes the address and bus command to determine if the transaction is for local memory (BAR0 or BAR1hit). If the transaction falls within MPC5200B PCI space (a PCI memory space *only*), the PCI Controller target interface asserts DEVSEL, latches the address, decodes the PCI bus command, and forwards them to the internal control unit. On writes, data is forwarded along with the byte enables to the internal gasket. On reads, four bytes of data are provided to the PCI bus and the byte enables determine which byte lanes contain meaningful data. If no byte enables are asserted, MPC5200B completes a read access with valid data and completes a write access by discarding the data internally. All target transactions will be translated into XL bus master transactions.

There are two address translation registers that must be initialized before data transfer can begin. These address registers correspond to BAR0 and BAR1 in MPC5200B PCI Type 00h Configuration space register (PCI space). When there is a hit on MPC5200B PCI base address ranges (0 or 1), the upper bits of the address are written over by this register value to address some space in MPC5200B. One 256Kbyte base address range (BAR0) maps to non-prefetchable local memory and one 1Gbyte range (BAR1) targeted to prefetchable memory.

Functional Description

10.4.5.1 Reads from Local Memory

MPC5200B can provide continuous data to a PCI master using two 32-byte buffers. The PCI controller bursts reads internally at each 32-byte PCI address boundary. The data is stored in the first 32-byte buffer until either the PCI master flushes the data or the transaction terminates (FRAME deasserts). For prefetchable memory (BAR1 space), the next line can be fetched from memory in anticipation of the next PCI request (speculative read) and stored in the second buffer. Prefetching is performed for BAR1-addressed transactions if the PCI command is a Memory-Read-Multiple or the prefetch bit is set in the Section 10.3.2.4, *Target Control Register PCITCR(RW)* —*MBAR* + 0x0D6C.

10.4.5.2 Local Memory Writes

A 32-byte write buffer is implemented to improve data throughput. This allows a write operation to be "posted", that is to successfully complete even when the PCI internal controller is requesting access to the local memory. In other words, data is latched while waiting for internal access to local memory to complete. While PCI burst transactions are accepted, writes are sent out on the internal bus as single-beat.

NOTE

Before a read from XL Bus to PCI or PCI to XL Bus can complete, all posted writes are flushed.

If the PCI controller aborts the transaction in the middle of PCI burst due to internal conflicts, the external master recognizes some of the data as transferred. (Subsequent transfers of a burst will be aborted on PCI bus). The external PCI master must query the "Target abort signalled" bit in the PCI Type 00h configuration status register to determine if a target abort occurred.

10.4.5.3 Data Translation

The XL bus supports misaligned operations, however, it is strongly recommended that software attempt to transfer contiguous code and data where possible. Non-contiguous transfers degrade performance.

PCI-to-XL Bus transaction data translation is shown in Table 10-11 and Table 10-12.

Table 10-11. Aligned PCI to XL bus Transfers

PCI Bus						XL bus										
BE	4 D[0.0]	01.04	00.10	15.0	7.0	A[00:04]		Data Bus Byte Lanes								
[3:0]	AD[2:0]	31:24	23:16	15:8	7:0	A[29:31]	0	1	2	3	4	5	6	7		
1110	000				OP3	000	OP3									
1101	000			OP3		001		OP3								
1011	000		OP3			010			OP3							
0111	000	OP3				011				OP3						
1110	100				OP3	100					OP3					
1101	100			OP3		101						OP3				
1011	100		OP3			110							OP3			
0111	100	OP3				111								OP3		
1100	000			OP3	OP2	000	OP2	OP3								
1001	000		OP3	OP2		001		OP2	OP3							
0011	000	OP3	OP2			010			OP2	OP3						
1100	100			OP3	OP2	100					OP2	OP3				
1001	100		OP3	OP2		101						OP2	OP3			
0011	100	OP3	OP2			110							OP2	OP3		
1000	000		OP3	OP2	OP1	000	OP1	OP2	OP3							
0001	000	OP3	OP2	OP1		000		OP1	OP2	OP3						
1000	100		OP3	OP2	OP1	100					OP1	OP2	OP3			
0001	100	OP3	OP2	OP1		101						OP1	OP2	OP3		
0000	000	OP3	OP2	OP1	OP0	000	OP0	OP1	OP2	OP3				_		
0000	100	OP3	OP2	OP1	OP0	100					OP0	OP1	OP2	OP3		

MPC5200B Users Guide, Rev. 1

10-58 Freescale Semiconductor

Table 10-12. Non-contiguous PCI to XL bus Transfers (require two XL Bus bus accesses)

PCI Bus					XL bus									
BE	A D.[0, 0]	1 24.04 0	00.10	4-0	7.0	A[00.04]			Data	a Bus I	Byte La	anes		
[3:0]	AD[2:0]	31:24	23:16	15:8	7:0	A[29:31]	0	1	2	3	4	5	6	7
1010	000		OP3		OP2	000	OP2							
						010			OP3					
1010	100		OP3		OP2	100					OP2			
						110							OP3	
0110	000	OP3			OP2	000	OP2							
						011				OP3				
0110	100	OP3			OP2	100					OP2			
						111								OP3
0101	000	OP3		OP2		001		OP2						
						011				OP3				
0101	100	OP3		OP2		101						OP2		
						111								OP3
0010	000	OP3	OP2		OP1	000	OP1							
						010			OP2	OP3				
0010	100	OP3	OP2		OP1	100					OP1			
						110							OP2	OP3
0100	000	OP3		OP2	OP1	000	OP1	OP2						
						011				OP3				
0100	100	OP3		OP2	OP1	100					OP1	OP2		
						111								OP3

10.4.5.4 Target Abort

A target abort will occur if the PCI address falls within a base address window (BAR0 or BAR1) that has not been enabled. Section 10.3.2.2, Target Base Address Translation Register 0 PCITBATR0(RW) —MBAR + 0x0D64 and Section 10.3.2.3, Target Base Address Translation Register 1 PCITBATR1(RW) —MBAR + 0x0D68.

10.4.5.5 Latrule Disable

The latrule disable bit in the interface control register, Section 10.3.2.4, *Target Control Register PCITCR(RW)* —*MBAR + 0x0D6C*, prevents the PCI controller from automatically disconnecting a target transaction due to the PCI 16/8 clock rule. With this bit set, it is possible to hang the PCI bus if the internal bus does not complete the data transfer.

10.4.6 Communication Sub-System Initiator Interface

This interface provides for high-speed, autonomous DMA transactions to PCI with the PCI Controller operating as a standard Communication Sub-System peripheral. Full duplex operation is supported and direct XL bus transactions can also be interleaved while CommBus transactions are in progress. Internal arbitration will occur continuously to support transaction interleaving. (Section 10.4.2, *Initiator Arbitration*.) Multi-Channel DMA operation operates independently of the XL bus. Non-PCI transactions on the XL bus will have 100% bandwidth available to them during PCI Multi-Channel DMA activities. In general, this block will be used by functions in the Multi-Channel DMA API.

Freescale Semiconductor 10-59

MPC5200B Users Guide, Rev. 1

Functional Description

The Communication Sub-System Initiator Interface consists of Receive and Transmit FIFOs, integrated as separate Multi-Channel DMA peripherals. Therefore, it is generally controlled by the Multi-Channel DMA controller through a pre-described program loop. As with all Communication Sub-System peripherals, it can be accessed and controlled directly through the Slave bus interface if desired, but this path does not generally lend itself to high throughput.

The Transmit and Receive FIFOs are 512 bytes deep and support PCI bursts up to 8 beats, each beat being a 32 bit word. The burst size is programmable. The general approach is to write a PCI command and address to the control register along with the number of bytes to be transmitted (Packet_Size).

When transmitting data, the module will wait for the Transmit FIFO to fill at least to the minimum number of bytes required to perform the programmed burst; then it begins transmitting the data onto the PCI bus. Multi-Channel DMA must handle filling the Transmit FIFO to support the specified number of bytes. Transmission will continue until the specified number of bytes have been sent.

When reading data, the module will check that enough space is available in the Receive FIFO and immediately begin PCI read transactions. Multi-Channel DMA must handle emptying the Receive FIFO to support the specified number of bytes. Transmission will continue until the specified number of bytes have been received. To avoid stale data while receiving the last burst flushing of the RX FIFO can be forced with the set of the flush bit FE. Section 10.3.3.2.4, Rx Enables PCIRER (RW) —MBAR + 0x388C

At this point, software must restart the procedure by at least re-writing the Packet_Size register. Each transmission of the specified number of bytes is considered a "packet". A new packet can be instructed to continue at the last valid PCI address or software may choose to write a new starting address. The largest burst size is 8 PowerPC words and the largest *Packet_Size* is 4 Gbytes, so a packet will typically consist of many PCI data bursts.

The Transmit Controller will wait until sufficient bytes are in the Transmit FIFO to support a full burst and will continue in this mode until the entire packet is transmitted. Similarly, the Receive Controller will stall until sufficient space is available in the Receive FIFO to support a full burst. If the packet is nearly done and the number of bytes remaining to complete the packet is less than Max_beats, the remaining data will be performed as single-beat PCI transactions.

10.4.6.1 Access Width

This Multi-Channel DMA module primarily performs 32-bit data accesses to and from PCI, even though some signals are referred to in bytes. The two least significant bits of the PCITPSR and PCIRPSR value are ignored. All PCI byte enables are enabled during these types of accesses. Additionally, the FIFOs should only be accessed using 32-bit accesses.

The Communication Sub-System interface optionally supports 16 bit accesses on the PCI bus. Since reads and writes to and from the FIFO require 32-bit accesses, using this option requires padding the remaining 16 bits of data.

10.4.6.2 Addressing

The Communication Sub-System Initiator interface does not use the addressing windows that are set up for the XL bus Initiator Interface. Instead, the Tx Start Address register and Rx Start Address register are used. Software programs these registers with the initial starting address for the packet. The module contains an internal counter which will present the incremented PCI address at the beginning of each successive burst for packet transfers.

10.4.6.3 Data Translation

The PCI bus is inherently little endian in its byte ordering. The Comm bus however is big endian. Table 10-13 shows the byte lane mapping between the two buses. Since this interface only allows 32-bit accesses, there is only one entry.

Transfer		Co	omm bu	s		PCI data bus						
	cAddress [1:0]	cByte	Data Bus				PCI_	BE	Data Bus			
		Enable [3:0]	31: 24	23: 16	15:8	7:0	AD [1:0]	[3:0]	31:24	23:16	15:8	7:0
long	00	1111	OP0	OP1	OP2	OP3	00	0000	OP3	OP2	OP1	OP0

Table 10-13. Comm bus to PCI Byte Lanes for Memory^a Transactions

10.4.6.4 Initialization

The following list is the recommended procedure for setting up either the Transmit or Receive controller.

1. Set the Start Address

10-60 Freescale Semiconductor

^a The byte lane translation will be similar for other types of transactions. However, the PCI address may be different as explained in Section 10.4.1.5, *Addressing*.

- 2. Set the PCI command, Max Retries, and Max Beats
- 3. Set mode, Continuous or Non-continuous
- 4. Reset the FIFO
- 5. Set the FIFO Alarm and Granularity fields
- 6. Set the Master Enable bit (eventually enable the wanted interrupt in case of errors or even of a normal termination)
- 7. Set the Reset Controller bit low
- 8. Setup the BestComm (eventually passing the parameters to the task if needed, enabling, if required, the Task to interrupt the Core when finished, etc.)
- 9. Start the Task(s). It is not strictly necessary to start a PCI RX or TX task before starting the PCI to transmit/receive as one will 'wait' for the other to fill the data in or out of the FIFO.
- 10. Write the Packet Size value to fire off the transfer

10.4.6.5 Restart and Reset

A Restart sequence (namely writing of the Packet Size register) is required whenever the controller ends a packet transmission, either normally or abnormally. In non-continuous mode, a new Start_Add address is generally required since this value is re-used as the start of the next packet once it is Restarted. In Continuous mode, the Start_Add value is not reused. Instead, the next packet begins where the last one left off, but a Restart sequence is still required to get this next packet started.

Writing a non-zero value to the Packet_Size register generates a Restart pulse to the controller. Depending on the desired mode of operation other register accesses may be required, as described in the following paragraphs.

If Continuous mode is not selected, operation is fairly straight forward. Upon packet termination, Restart will not occur until Packet_Size is written with a non-zero value, even if the packet size is the same it must be re-written. Master Enable bit was previously high and can remain so. Reset Controller bit was previously low and can remain so. Toggling the Master Enable or Reset bit is unnecessary but would not disrupt the transmit controller. If any other Control values, e.g. Start_Add, are to be changed they should be written either prior to writing the Packet_Size value or written while the Master Enable bit is negated and the Reset Controller bit is negated. The recommended approach is to write the control values in order (Packet_Size must be last) and not toggle the Master Enable bit. The Reset bit should remain negated.

If Continuous mode is active, basic operation is still straight forward. A Restart is achieved by writing the Packet_Size register to a non-zero value (just as before). However, the Master Enable and Reset bits must **not** toggle in this case. If the Master Enable bit goes low the Packets_Done counter will be reset. If the Reset bit goes high the Start_Add value will be re-loaded and subsequent transactions will begin at this address. Therefore, the Master Enable bit can be used to reset the Packets_Done counter but without disturbing the current PCI address. The Reset Controller bit will reset the counter and reload the Start_Add value into the transmit controller, thus achieving a total restart of a continuous mode sequence. In any case, it is still required that the Packet_Size register be written to complete a Restart sequence.

The Master Enable bit, if negated, will prevent a Restart sequence but allows Control values to be updated without order dependency. A side effect is to reset the Packets Done counter and status, which is a concern in continuous mode only.

The Reset bit (RC bit of the RX/TX Enables register, **NOT** the external PCI RESET line), if asserted, will force a Reset of the controller. All continuous mode effects will be reset and the Start_Add value is re-loaded. However, the Reset bit must be negated while the required write to the Packet_Size register is accomplished. The Reset bit provides the only means to re-load the Start_Add value into the transmit controller while Continuous mode is active. In either mode it provides a means to clear the transmit controller in cases of abnormal termination. Note, a new Start_Add value must be written prior to setting the Reset bit.

10.4.6.6 PCI Commands

The expected PCI commands are Memory Write for transmit and Memory Read for receive. These are independent of cache or line size. This permits the number of data beats per transaction to be flexible. If any requirements exist on number of data beats, then the software must carefully consider the possibilities. If the Max_Beats setting does not divide properly into the Packet_Size setting then the packet will end up with one or more single-beat transaction(s). Setting Max_Beats to 1 will force all transactions to be single-beat but will affect throughput.

In normal operation, all PCI byte enables will be asserted for PCI transactions through this interface, except if the 16-bit Word register bit is set in the Section 10.3.3.1.3, *Tx Transaction Control Register PCITTCR(RW)* —*MBAR* + 0x3808 or Section 10.3.3.2.3, *Rx Transaction Control Register PCIRTCR(RW)* —*MBAR* + 0x3888, in which case $\overline{BE[3:0]} = 1100$.

Configuration writes to an external target should be handled exclusively by the XL bus Initiator interface.

10.4.6.7 FIFO Considerations

Careful consideration must also be given to filling and counting bytes of the Transmit FIFO and emptying and counting bytes of the Receive FIFO. This operation is expected to be accomplished through Multi-Channel DMA which can also perform the register writes to the controller, including necessary Restart sequences.

PCI Arbiter

10.4.6.8 Alarms

The FIFO alarm registers allow software to control when the DMA fills or empties the appropriate FIFO.

10.4.6.9 Bus Errors

Since Bus Errors are particular to the module register set and that register set includes both Transmit and Receive Controller and FIFO settings, the Bus Error status bits and Bus error Enable bit(s) are duplicated in the Transmit and Receive register groupings. Clearing or setting one will clear or set the other. From a software point of view, then, they can be treated separately or together, as desired.

10.4.7 PCI - Supported Clock Ratios

MPC5200B supports the following XL Bus:IP:PCI clock ratios.

Table 10-14. XL Bus:IP:PCI Clock Ratios

XL Bus:IP:PCI	XL Bus CLK	IP CLK	PCI CLK
4:4:2	132 MHz	132 MHz	66 MHz
4:4:1	132 MHz	132 MHz	33 MHz
4:2:2	132 MHz	66 MHz	66 MHz
4:2:1	132 MHz	66 MHz	33 MHz
2:2:2	66 MHz	66 MHz	66 MHz
2:2:1	66 MHz	66 MHz	33 MHz
2:1:1	66 MHz	33 MHz	33 MHz

10.4.8 Interrupts

10.4.8.1 PCI Bus Interrupts

MPC5200B does not generate interrupts on the PCI bus interrupt lines INTA - INTD.

10.4.8.2 Internal Interrupt

The PCI module is capable of generating 3 interrupts to MPC5200B interrupt controller in MPC5200B SIU. Each interrupt can be enabled for a variety of conditions, mostly error conditions. For the XL bus Initiator interface, the internal interrupt can be enabled for Retry errors, Target Aborts and Initiator (Master) Aborts. See Section 10.3.2.9, *Initiator Control Register PCIICR(RW)*—*MBAR* + 0x0D84 and Section 10.3.2.10, *Initiator Status Register PCIISR(RWC)*—*MBAR* + 0x0D88 for more information. For the Comm bus Initiator interface, an internal interrupt can be enabled for FIFO errors and Normal Termination of a packet transfer for either the Receive (rx) or Transmit (tx) interface. For more information, see the Enable and Status registers for the Comm bus Transmit and Receive interfaces, Section 10.3.3.1, *Multi-Channel DMA Transmit Interface* and Section 10.3.3.2, *Multi-Channel DMA Receive Interface*.

10.5 PCI Arbiter

The PCI Arbiter is a separate module, it is not part of the PCI Controller module. The 32-bit multiplexed PCI A/D bus is shared with the ATA Controller and LocalPlus Controller. The on-chip arbiter (called PCI Arbiter) controls the access to the AD bus for the different clients:

- PCI clients
 - XIPCI (XL Bus-PCI interface)
 - SCPCI (BestComm-PCI interface)
 - external PCI
- · non-PCI clients
 - LPC (LocalPlus bus interface)
 - SCLPC (BestComm LocalPlus bus interface)
 - ATA

One pair **only** of external PCI REQ#/GNT# signals is supported by the PCI Arbiter. By an external Priority Encoder multiple external masters could be connected. The PCI bus clock is always sourced from the MPC5200B.

10-62 Freescale Semiconductor

The PCI Arbiter implements a Round-Robin fairness algorithm, which avoids the domination of the bus by high-priority masters and exclusion of low-priority masters. The PCI Arbiter is capable of Parking the current Master to stay on last master in absence of other requests. The support of the non-PCI clients presents special challenges to the arbitration scheme.

The PCI Arbiter runs independently. The programmability consists of a Soft Reset, which allows to reset the PCI Arbiter, and one status bit to detect the Broken Master condition. and a corresponding enable bit for the generation of a CPU interrupt for the Broken Master condition. All these register bits are located in registers of the PCI Controller.

In case of broken master detection the external PCI REQ# will be dis-connected internally and will be re-connected after external deassertion of PCI REQ# or by software (Softreset) or by Hardreset. After broken master detection (bus idle for 16 clocks) the arbiter will ignore any PCI FRAME# assertion.

The PCI Arbiter does not support preemption of the internal masters XIPCI or SCPCI. The internal master is granted until the transaction has been completed. The Latency Timer (LT) cannot terminate any transfer.

10.6 Application Information

This section provides example usage of some of the features of the PCI module.

10.6.1 XL bus Initiated Transaction Mapping

The use of the PCI Configuration Address Register along with the initiator window registers provide many possibilities for PCI command and address generation. Table 10-15 shows how the PCI Controller accepts read and write requests from a XLB bus master and decodes them to different address ranges resulting in the generation of memory, I/O, configuration, interrupt acknowledge and special cycles on the PCI bus. The Window Registers are defined in Section 10.3.2.6, *Initiator Window I Base/Translation Address Register PCIIW1BTAR(RW) —MBAR + 0x0D74* through Section 10.3.2.8, *Initiator Window Configuration Register PCIIWCR(RW) —MBAR + 0x0D80*.

Table 10-15. Transaction Mapping: XL Bus -> PCI

		Initiat	or Registe			
XL bus Transaction (XL Bus Slave Interface)	Cache Line Size Register=	Initiator V Configura	A	figuration ddress egister	PCI Transaction Controller (XL Bus Initiator Interface) ->	
(AL Bus Slave Illeriace)	8 8	IO/M#	PRC	En	device number == b1_1111	PCI Target
Single-Beat 1 -> 8 byte Read	х	0	b00	х	х	Memory Read
Burst Read (32 bytes)	х	0	b00	х	х	Memory Read
Single-Beat 1 -> 8 byte Read	х	0	b01	х	х	Memory Read
Burst Read	false	0	b01	х	х	Memory Read
Burst Read	true	0	b01	х	х	Memory Read Line
Single-Beat 1 -> 8 byte Read	х	0	b10	х	х	Memory Read Multiple
Burst Read	х	0	b10	х	х	Memory Read Multiple
Single-Beat 1 -> 8 byte, or Burst Write	х	0	х	х	х	Memory Write
Single-Beat 1 -> 4 byte Read	х	1	х	0	х	I/O Read
Single-Beat 1 -> 4 byte Write	х	1	х	0	х	I/O Write
Single-Beat 1 -> 4 byte Read	х	1	х	1	false	Configuration Read
Single-Beat 1 -> 4 byte Write	х	1	х	1	false	Configuration Write
Single-Beat 1 -> 4 byte Read	х	1	Х	1	true	Interrupt acknowledge

Table 10-15. Transaction Mapping: XL Bus -> PCI (continued)

			Initiat	or Registe				
XL bus Transacti (XL Bus Slave Inter	on	Cache Line Size Register=	Initiator V Configura		A	iguration ddress egister	PCI Transaction Controller (XL Bus Initiator Interface) ->	
(XE Bus slave linter	idocy	8	IO/M#	PRC	En	device number == b1_1111	PCI Target	
Single-Beat 1 -> 4 byte V	Vrite	х	1	Х	1	true	Special Cycle	

Note:

- 1. Dual Address Cycles and Memory Write and Invalidate Commands are not supported
- 2. x means "don't care"

10.6.2 Address Maps

The address mapping in MPC5200B system is setup by software through a number of base address registers. (Section 3.2, *Internal Register Memory Map* for more detail). The internal CPU writes the base address value to module base address register MBAR. MBAR holds the base address for the 256 Kbyte space allocated to internal registers.

10.6.2.1 Address Translation

10.6.2.1.1 Inbound Address Translation

The MPC5200B-as-Target occupies 2 memory target address windows on the PCI bus. The location is determined by the values programmed to BAR0 and BAR1 of the PCI Type 00h Configuration space. These inbound memory window sizes are fixed to one 256 Kbyte window (BAR0) and one 1 Gbyte window (BAR1).

PCI inbound address translation allows address translation to any space in the MPC5200B space (4 Gbyte of address space). The target base address translation registers TBATR0 and TBATR1 specify the location of the inbound memory window. These registers are described in Section Section 10.4.3, *Configuration Interface*. Address translation occurs for all enabled inbound transactions. If the enable bit of the Target Base Address Translation Registers is cleared, MPC5200B aborts all PCI memory transactions to that base address window.

Note, the PCI configuring master can program BAR0 to overlap BAR1. The default address translation value is TBATR0 in that case. It is not recommended to program overlapping BAR0 and BAR1 or overlapping TBATR0 and TBATR1. An overlap of TBATRs can cause data write-over of BAR0 data.

The Initiator Window Base Address Registers are used to decode XL bus addresses for PCI bus transactions. The base address and base address mask values define the upper byte of address to decode. The XL bus address space in MPC5200B dedicated to PCI transactions can be mapped to two 16-Mbyte or larger address spaces in MPC5200B. In normal operation, software should not program either Target Address Window Translation Register to address Initiator Window space. In that event, MPC5200B-as-Target transaction would propagate through MPC5200B's internal bus and request PCI bus access as the PCI Initiator. The PCI arbiter could see the PCI bus as busy (target read transaction in progress) and only a time-out would free the PCI bus.

10-64 Freescale Semiconductor

Figure 10-8. Inbound Address Map

10.6.2.1.2 Outbound Address Translation

Figure 10-9 shows example XL Bus Initiator Window configurations. Overlapping the inbound memory window (MPC5200B Memory) and the outbound translation window is not supported and can cause unpredictable behavior.

This figure doesn't show configuration mechanism.

MPC5200B Users Guide, Rev. 1

Figure 10-9. Outbound Address Map

10.6.2.1.3 Base Address Register Overview

Table 10-15 shows the available accessibility for all PCI associated base address and translation address registers in MPC5200B.

Base Address Register	Register Function	PCI Bus Configuration Access	Processor Access	Any XL bus Master Access
BAR0	PCI Base Address Register 0 (256 Kbyte)	Х	Х	Х
BAR1	PCI Base Address Register 1 (1 Gbyte)	Х	Х	Х
TBATR0	Target Base Address Translation Register 0 (256Kbyte)		Х	Х
TBATR1	Target Base Address Translation Register 0 (1 Gbyte)		Х	Х
IMWBAR	Initiator Window Base/Translation Address Registers		Х	X

MPC5200B Users Guide, Rev. 1

10-66 Freescale Semiconductor

10.6.3 XL bus Arbitration Priority

When the XL Bus Arbiter Master Priority Register (Section 16.2.11, *Arbiter Master Priority Register (R/W)—MBAR + 0x1F68*) is set to any configuration except all-master fair-share (all masters have the same priority), live lock can occur on the shared PCI bus and the XL Bus, which results in system-wide live lock.

The only resolution that guarantees that this live lock scenario will not occur is to set all the XL Bus Arbiter master priorities to be equal. Additionally, it is usually preferable that all master priorities are not set to zero, as this can generate an interrupt by the XL Bus Arbiter, if enabled.

Application Information

10-68 Freescale Semiconductor

Chapter 11 ATA Controller

11.1 Overview

The following sections are contained in this document:

- Section 11.2, BestComm Key Features
 - Section 11.3, ATA Register Interface, includes:
 - Section 11.3.1, ATA Host Registers—MBAR + 0x3A00
 - Section 11.3.2, ATA FIFO Registers—MBAR + 0x3A00
 - Section 11.3.3, ATA Drive Registers—MBAR + 0x3A00
- Section 11.4, ATA Host Controller Operation
- Section 11.5, Signals and Connections
- Section 11.6, ATA Interface Description
- Section 11.7, ATA Bus Background
- Section 11.8, ATA RESET/Power-Up
- Section 11.9, ATA I/O Cable Specifications

The Advanced Technology Attachment (ATA) Controller provides full functional compatibility with ATA-4 documentation, supporting Ultra-33. For more ATA Standards information, refer to "American National Standard for Information Technology—AT Attachment with Packet Interface Extension (ATA/ATAPI-4)".

A dedicated MPC5200B pin for ATA reset is *not* provided. An appropriate signal on the board should be routed to the reset input on the ATA connector. If ATA reset is tied to HRESET or SRESET on MPC5200B pins, they are asserted and internally held low for an appropriate period of time to satisfy ATA reset. An MPC5200B GPIO may be used to drive ATA reset independently if special software control is needed.

Figure 11-1 shows the ATA Controller Interface.

Figure 11-1. ATA Controller Interface

11.2 BestComm Key Features

11.2.1 BestComm Read

- 1. microprocessor sets up descriptors in BestComm RAM and initiates a transfer.
- 2. BestComm hits on an ATA command FIFO space and writes a command (ATA drive register address, transfer size) into FIFO.
- 3. ATA Controller reads data from the drive and puts data in FIFO.

MPC5200B Users Guide, Rev. 1

ATA Register Interface

4. As FIFO fills, BestComm is interrupted and moves data from FIFO to an internal destination.

11.2.2 BestComm Write

- 1. microprocessor sets up descriptors in BestComm RAM and initiates a transfer.
- 2. BestComm hits on an ATA command FIFO space and writes a command (ATA drive register address, transfer size) into FIFO.
- 3. BestComm reads data from internal source and puts data in FIFO
- 4. ATA Controller transfers data from FIFO and writes to drive.

NOTE

Any DMA transfer, where source and destination are both on the local bus, requires internal BestComm SRAM buffering.

11.3 ATA Register Interface

The IPBI module contains all software-programmable ATA Controller registers and the IPB glue logic needed to read and write these registers. The IPBI registers are listed below. Unless otherwise noted, each register is written and read from the same address.

11.3.1 ATA Host Registers—MBAR + 0x3A00

ATA is controlled by 10 32-bit registers. These registers are located at an offset from MBAR of 0x3A00. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x3A00 + register address

Hyperlinks to the ATA Host registers are provided below:

- ATA Host Configuration Register (0x3A00)
- ATA Host Status Register (0x3A04)
- ATA PIO Timing 1 Register (0x3A08)
- ATA PIO Timing 2 Register (0x3A0C)
- ATA Multiword DMA Timing 1 Register (0x3A10)
- ATA Multiword DMA Timing 2 Register (0x3A14)

- ATA Ultra DMA Timing 1 Register (0x3A18)
- ATA Ultra DMA Timing 2 Register (0x3A1C)
- ATA Ultra DMA Timing 3 Register (0x3A20)
- ATA Ultra DMA Timing 4 Register (0x3A24)
- ATA Ultra DMA Timing 5 Register (0x3A28)

11.3.1.1 ATA Host Configuration Register—MBAR + 0x3A00

Table 11-1. ATA Host Configuration Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	SMR	FR		Rese	erved		IE	IORDY	Reserved							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Rese	erved							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0	SMR	State Machine Reset—bit resets ATA state machine to IDLE state for PIO, DMA and UDMA read/write.
1	FR	FIFO Reset—bit can be used to reset FIFO when bit 0 of this register is set to reset the ATA state machine. During normal ATA transaction, FIFO can be reset by setting ATA Drive Command Register FR bit (see Table 11-29.)
2:5	_	Reserved

MPC5200B Users Guide, Rev. 1

11-2 Freescale Semiconductor

Bits	Name	Description
6	IE	Enables drive interrupt to pass to CPU in PIO modes.
7	IORDY	Set by software when the drive supports IORDY. Required for PIO mode 3 and above.
16:31	_	Reserved

11.3.1.2 ATA Host Status Register—MBAR + 0x3A04

Table 11-2. ATA Host Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	TIP	UREP	Reserved			RERR	WERR	Reserved								
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Reserve	ed							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0	TIP	Transaction in Progress—indicator bit MUST be polled by software before PIO access. System bus (XL bus) locks up if PIO access is attempted while this bit is set. This bit is read-only.
1	UREP	UDMA Read Extended Pause—bit sets when drive stops strobing for an extended period without initiating burst termination by negating DMARQ, during an UDMA read burst. Software may initiate an Ultra DMA read burst termination, in this case by setting ATA Drive Device Command Register HUT bit (see Table 11-29.).
2:5	_	Reserved
6	RERR	Read Error—An un-implemented register read.
7	WERR	Write Error—An un-implemented register write.
8:31	_	Reserved

11.3.1.3 ATA PIO Timing 1 Register—MBAR + 0x3A08

Table 11-3. ATA PIO Timing 1 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R				pio_	_t0				pio_t2_8								
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R				pio_t2	2_16							Rese	erved				
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

ATA Register Interface

Bits	Name	Description
0:7	pio_t0	PIO cycle time count value is based on system clock operating frequency.
8:15	pio_t2_8	PIO read/write pulse width for 8-bit transfers. Count value is based on system clock operating frequency.
16:23	pio_t2_16	PIO read/write pulse width for 16-bit transfers. Count value is based on system clock operating frequency.
24:31	_	Reserved

11.3.1.4 ATA PIO Timing 2 Register—MBAR + 0x3A0C

Table 11-4. ATA PIO Timing 2 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R				pio_	_t4				pio_t1								
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R				pio_	_ta							Res	erved				
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bits	Name	Description
0:7	pio_t4	PIO write (DIOW) data hold time. Count value is based on system clock operating frequency.
8:15	pio_t1	Address valid to DIOR/DIOW setup. Count value is based on system clock operating frequency.
16:23	pio_ta	IORDY setup time. Count value is based on system clock operating frequency.
24:31	_	Reserved

11.3.1.5 ATA Multiword DMA Timing 1 Register—MBAR + 0x3A10 Table 11-5. ATA Multiword DMA Timing 1 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R				dma	_t0				dma_td								
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R				dma	_tk							dma	a_tm				
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

11-4 Freescale Semiconductor

Bits	Name	Description
0:7	dma_t0	Multiword DMA cycle time. Count value is based on system clock operating frequency.
8:15	dma_td	Multiword DMA read/write (DIOR/DIOW) asserted pulse width. Count value is based on system clock operating frequency.
16:23	dma_tk	Multiword DMA read/write (DIOR/DIOW) negated pulse width. Count value is based on system clock operating frequency.
24:31	dma_tm	CS[0], CS[1] valid to DIOR/DIOW. Count value is based on system clock operating frequency.

11.3.1.6 ATA Multiword DMA Timing 2 Register—MBAR + 0x3A14 Table 11-6. ATA Multiword DMA Timing 2 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			
R				dma	_th				dma_tj										
W																			
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb			
R				dma	_tn							Rese	erved						
W																			
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			

Bits	Name	Description
0:7	dma_th	Multiword DMA write (DIOW) data hold time. Count value is based on system clock operating frequency.
8:15	dma_tj	Multiword DMA read/write (DIOR/DIOW) asserted pulse width. Count value is based on system clock operating frequency.
16:23	dma_tn	CS[0], CS[1] hold. Count value is based on system clock operating frequency.
24:31	_	Reserved

11.3.1.7 ATA Ultra DMA Timing 1 Register—MBAR + 0x3A18 Table 11-7. ATA Ultra DMA Timing 1 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			
R				udma_	t2cyc				udma_tcyc										
W																			
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb			
R				udma	_tds							udm	a_tdh						
W																			
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			

ATA Register Interface

Bits	Name	Description
0:7	udma_t2cyc	Ultra DMA sustained average two cycle time. Count value is based on system clock operating frequency.
8:15	udma_tcyc	Ultra DMA strobe edge to strobe edge cycle time. Count value is based on system clock operating frequency.
16:23	udma_tds	Ultra DMA read data setup time. Count value is based on system clock operating frequency.
24:31	udma_tdh	Ultra DMA read data hold time. Count value is based on system clock operating frequency.

11.3.1.8 ATA Ultra DMA Timing 2 Register—MBAR + 0x3A1C Table 11-8. ATA Ultra DMA Timing 2 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				udma_	_tdvs							udma	_tdvh			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				udma	_tfs							udn	na_tli			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:7	udma_tdvs	Ultra DMA write data setup time. Count value is based on system clock operating frequency.
8:15	udma_tdvh	Ultra DMA write data hold time. Count value is based on system clock operating frequency.
16:23	udma_tfs	First strobe time during the initiation of ultra DMA data transfer. Count value is based on system clock operating frequency.
24:31	udma_tli	Limited interlock time with a defined maximum, when drive or host are waiting for response from each other. Count value is based on system clock operating frequency.

11.3.1.9 ATA Ultra DMA Timing 3 Register—MBAR + 0x3A20 Table 11-9. ATA Ultra DMA Timing 3 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
R				udma	_tmli				udma_taz									
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb		
R				udma_	_tenv							udm	a_tsri					
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

MPC5200B Users Guide, Rev. 1

11-6 Freescale Semiconductor

Bits	Name	Description
0:7	udma_tmli	Limited interlock time with a defined minimum, when drive or host are waiting for response from each other. Count value is based on system clock operating frequency.
8:15	udma_taz	Maximum time allowed for output drivers to release from being driven. Count value is based on system clock operating frequency.
16:23	udma_tenv	Envelope time from DMACK to STOP and HDMARDY during data-out burst initiation. Count value is based on system clock operating frequency.
24:31	udma_tsr	Strobe to DMARDY time. If DMARDY is negated before this long after strobe edge the recipient receives no more than one additional data word. Count value is based on system clock operating frequency.

11.3.1.10 ATA Ultra DMA Timing 4 Register—MBAR + 0x3A24

Table 11-10. ATA Ultra DMA Timing 4 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			
R				udma	_tss				udma_trfs										
W																			
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb			
R				udma	_trp							udm	a_tac						
W																			
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			

Bits	Name	Description
0:7	udma_tss	Time from strobe edge to negation of DMARQ (when drive terminates burst) or assertion of STOP (when host terminates burst). Count value is based on system clock operating frequency.
8:15	udma_trfs	Ready-to-final-strobe time. No strobe edges are sent this long after negation of DMARDY. Count value is based on system clock operating frequency.
16:23	udma_trp	Ready-to-pause time. The time that recipient waits to initiate pause after negating DMARDY. Count value is based on system clock operating frequency.
24:31	udma_tack	Setup and hold times for DMACK before negation or assertion. Count value is based on system clock operating frequency.

11.3.1.11 ATA Ultra DMA Timing 5 Register—MBAR + 0x3A28 Table 11-11. ATA Ultra DMA Timing 5 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
R				udma_	_tzah				Reserved									
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb		
R								Re	served									
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bits	Name	Description
0:7	udma_tzah	Minimum delay time required for output drivers to assert or negate from release state. Count value is based on system clock operating frequency.
8:31	_	Reserved

11.3.1.12 ATA Share Count Register—MBAR + 0x3A2C Table 11-12. ata_shre_cnt

	msb0	1	2	3	3	5	6	7	8	9	10	11	12	13	14	15
R								ata_s	share_c	nt						
W																
RESET:	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:15	ata_share_cnt	This 16-bit value controls the length of the "time slot" assigned to ATA transactions when PCI arbiter provides a grant to the ATA device. This is in IPB clocks. The arbiter will maintain the grant to ATA for (at least) the ata_share_cnt value. When this value has expired, ATA may be interrupted (paused) by the arbiter, to service other pending requests for the AD bus.
		Default value at reset is 128
		Note: The maximal allowed setting is 0xFFFE.
16:31	_	Reserved

11.3.2 ATA FIFO Registers—MBAR + 0x3A00

ATA uses a single FIFO that changes direction based on the Rx/Tx mode. Software controls direction change and flushes FIFO before changing directions. FIFO memory is 512Bytes (Four 8 x 128 memories).

11-8 Freescale Semiconductor

ATA FIFO is controlled by 32-bit registers. These registers are located at an offset from MBAR of 0x3a00. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x3A00 + register address

Hyperlinks to the ATA FIFO registers are provided below:

• ATA Rx/Tx FIFO Data Word Register (0x3A3C)

ATA Rx/Tx FIFO Control Register (0x3A44)

- ATA Rx/Tx FIFO Status Register (0x3A40)
 - 40)
- ATA Rx/Tx FIFO Alarm Register (0x3A48)
- ATA Rx/Tx FIFO Read Pointer Register (0x3A4C)
- ATA Rx/Tx FIFO Write Pointer Register (0x3A50)

11.3.2.1 ATA Rx/Tx FIFO Data Word Register—MBAR + 0x3A3C Table 11-13. ATA Rx/Tx FIFO Data Word Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								FIFO_	Data_V	/ord						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								FIFO_	Data_V	/ord						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:31	FIFO_Data_Word	The FIFO data port. Reading from this location "pops" data from the FIFO, writing "pushes" data into the FIFO. During normal operation the BestComm Controller pushes data here.
		Note: ONLY full long-word access is allowed. If all byte enables are not asserted when accessing this location, a FIFO error flag is generated.

11.3.2.2 ATA Rx/Tx FIFO Status Register—MBAR + 0x3A40 Table 11-14. ATA Rx/Tx FIFO Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				Re	eserved	t				Err	UF	OF	Full	HI	LO	Emty
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
BESET.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:8	_	Reserved
9	Err	Error—flag bit is essentially the logical "OR" of other flag bits and can be polled for detection of any FIFO error. After clearing the offending condition, writing 1 to this bit clears flag.

ATA Register Interface

RESET:

Bits	Name	Description
10	UF	UnderFlow—flag indicates read pointer has surpassed the write pointer. FIFO was read beyond empty. Resetting FIFO clears this condition; writing 1 to this bit clears flag.
11	OF	OverFlow—flag indicates write pointer surpassed read pointer. FIFO was written beyond full. Resetting FIFO clears this condition; writing 1 to this bit clears flag.
12	Full	FIFO full—this is NOT a sticky bit or error condition. Full indication tracks with FIFO state.
13	HI	High—FIFO requests attention, because high level alarm is asserted. To clear this condition, FIFO must be read to a level below the setting in granularity bits.
14	LO	Low—FIFO requests attention, because Low level alarm is asserted. To clear this condition, FIFO must be written to a level in which the space remaining is less than the granularity bit setting.
15	Emty	FIFO empty—this is NOT a sticky bit or error condition. Full indication tracks with FIFO state.
16:31	_	Reserved

11.3.2.3 ATA Rx/Tx FIFO Control Register—MBAR + 0x3A44 Table 11-15. ATA Rx/Tx FIFO Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Resei	rved	WFR	Rese	erved		GR					Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																

Bits	Name	Description
0:1	_	Reserved
2	WFR	Write End of Frame (EOF) This bit should remain low.
3:4	_	Reserved
5:7	GR	Granularity—bits control high "watermark" point at which FIFO negates Alarm condition (i.e., request for data). It represents the number of free bytes times 4. 000 = FIFO waits to become completely full before stopping data request.
		001 = FIFO stops data request when only one long word of space remains.
8:31	_	Reserved

11.3.2.4 ATA Rx/Tx FIFO Alarm Register—MBAR + 0x3A48 Table 11-16. ATA Rx/Tx FIFO Alarm Register

11-10 Freescale Semiconductor

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		Rese	rved							A	Alarm					
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:19		Reserved
20:31	Alarm	User writes these bits to set low level "watermark", which is the point where FIFO asserts request for BestComm Controller data filling. Value is in bytes. For example, with Alarm = 32, alarm condition occurs when FIFO contains 32 Bytes or less. Once asserted, alarm does not negate until high level mark is reached, as specified by FIFO control register granularity bits.

11.3.2.5 ATA Rx/Tx FIFO Read Pointer Register—MBAR + 0x3A4C Table 11-17. ATA Rx/Tx FIFO Read Pointer Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		Rese	rved							R	eadPtr					
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:19	_	Reserved
20:31	ReadPtr	Value is maintained by FIFO hardware and is NOT normally written. It can be adjusted in special cases, but this disrupts data flow integrity. Value represents the Read address presented to the FIFO RAM.

11.3.2.6 ATA Rx/Tx FIFO Write Pointer Register—MBAR + 0x3A50 Table 11-18. ATA Rx/Tx FIFO Write Pointer Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		Rese	ved							W	/ritePtr					
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ATA Register Interface

Bits	Name	Description
0:19		Reserved
20:31	WritePtr	Value is maintained by FIFO hardware and is NOT normally written. It can be adjusted in special cases, but this disrupts data flow integrity. Value represents the Read address presented to the FIFO RAM.

11.3.3 ATA Drive Registers—MBAR + 0x3A00

The ATA drive registers are physically located inside the drive controller on the ATA disk drive. The MPC5200B ATA Host Controller provides access to these registers using the chip selects and address bits.

ATA Drive is controlled by 32-bit registers. These registers are located at an offset from MBAR of 0x3a00. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x3A00 + register address

Hyperlinks to the ATA Drive registers are provided below:

- ATA Drive Device Control Register (0x3A5C), write-only
- ATA Drive Alternate Status Register (0x3A5C), read-only
- ATA Drive Data Register (0x3A60), R/W
- ATA Drive Features Register (0x3A64), write-only
- ATA Drive Error Register (0x3A64), read-only
- ATA Drive Sector Count Register (0x3A68), R/W

- ATA Drive Sector Number Register (0x3A6C), R/W
- ATA Drive Cylinder Low Register (0x3A70), R/W
- ATA Drive Cylinder High Register (0x3A74), R/W
- ATA Drive Device/Head Register (0x3A78), R/W
- ATA Drive Device Command Register (0x3A7C), write-only
- ATA Drive Device Status Register, (0x3A7C) read-only

11.3.3.1 ATA Drive Device Control Register—MBAR + 0x3A5C Table 11-19. ATA Drive Device Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Re	eserved	t							F	Reserve	d			
W						SRST	nIEN									
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Res	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:4	_	Reserved
5	SRST	Software Reset—Host controlled software reset bit. Drive executes software reset protocol when bit is set to 1 by host.
6	nIEN	Interrupt Enable—Host controlled interrupt enable. INTRQ is enabled when this bit is cleared to 0.
		Note: NOTE: For MPC5200B ATA Host Controller, enabling INTRQ is mandatory for DMA/UDMA data transfer modes.
7:31		Reserved

11.3.3.2 ATA Drive Alternate Status Register—MBAR + 0x3A5C Table 11-20. ATA Drive Alternate Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	BSY	DRDY	Rese	erved	DRQ	Rs	svd	ERR				Res	served			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Rese	erved							
W	-															
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0	BSY	Drive Busy—Transactions internal to drive are in progress. Host must wait.
1	DRDY	Drive Ready
2:3	_	Reserved
4	DRQ	Set to 1 indicates drive is ready to transfer a word of data.
5:6	_	Reserved
7	ERR	Indicates an error during the execution of the previous command.
8:31	_	Reserved

11.3.3.3 ATA Drive Data Register—MBAR + 0x3A60

Table 11-21. ATA Drive Data Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				Data	ı H							Da	ta L			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:7	Data H	Upper byte of drive data (read/write)
8:15	Data L	Lower byte of drive data (read/write)
16:31	_	Reserved

MPC5200B Users Guide, Rev. 1

11.3.3.4 ATA Drive Features Register—MBAR + 0x3A64 Table 11-22. ATA Drive Features Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R												Rese	erved			
W				Dat	ta											
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:7	Data	Register content is command dependent. Contents become command parameters when the ATA drive command register is written.
8:31	_	Reserved

11.3.3.5 ATA Drive Error Register—MBAR + 0x3A64

Table 11-23. ATA Drive Error Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			Data			ABRT	Da	ata	Reserved							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Res	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:4	Data	Register content is command dependent. Contents become command parameters when the ATA drive command register is written.
		Register content is valid when BSY and DRQ bits are set to 0 and ERR bit is set to 1 in the ATA drive status register. Register content is not valid when drive is in sleep mode.
5	ABRT	Bit is set to 1 to indicate requested command has been aborted, because command code or a command parameter is invalid or some other error occurred.
0:7	Data	Register content is command dependent. Contents become command parameters when the ATA drive command register is written.
		Register content is valid when BSY and DRQ bits are set to 0 and ERR bit is set to 1 in the ATA drive status register. Register content is not valid when drive is in sleep mode.
8:31	_	Reserved

11.3.3.6 ATA Drive Sector Count Register—MBAR + 0x3A68 Table 11-24. ATA Drive Sector Count Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				Da	ta							Res	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:7	Data	Bit content is command dependent. For most read/write commands, this register indicates the total number of sectors requested for transfer.
		Register is written only when ATA drive status register bits BSY and DRQ equal 0 and DMACK is not asserted. If register is written when BSY and DRQ bits are set to 1, the result is indeterminate. Register content is not valid when drive is in sleep mode.
8:31	_	Reserved

11.3.3.7 ATA Drive Sector Number Register—MBAR + 0x3A6C Table 11-25. ATA Drive Sector Number Register

msb 0 R Data Reserved W RESET: 31 lsb Reserved R W RESET:

Bits	Name	Description
0:7	Data	Bit content is command dependent. For most commands, this register indicates the data transfer starting sector number for when CHS addressing is enabled. This register indicates part of the LBA address when the LBA addressing is enabled.
		Register is written only when ATA drive status register bits BSY and DRQ equal 0 and DMACK is not asserted. If register is written when BSY and DRQ bits are set to 1, the result is indeterminate.
		Register content is not valid when drive is in sleep mode.
8:31	_	Reserved

MPC5200B Users Guide, Rev. 1

11.3.3.8 ATA Drive Cylinder Low Register—MBAR + 0x3A70 Table 11-26. ATA Drive Cylinder Low Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				Da	ta							Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	eserved							
W																
BESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:7	Data	Bit content is command dependent. For most commands, this register indicates the data transfer starting sector number for when CHS addressing is enabled. This register indicates part of the LBA address when the LBA addressing is enabled.
		Register is written only when ATA drive status register bits BSY and DRQ equal 0 and DMACK is not asserted. If this register is written when BSY and DRQ bits are set to 1, the result is indeterminate.
		Register content is not valid when drive is in sleep mode.
8:31	_	Reserved

11.3.3.9 ATA Drive Cylinder High Register—MBAR + 0x3A74 Table 11-27. ATA Drive Cylinder High Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			
R				Da	ta				Reserved										
W																			
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb			
R								Re	eserved										
W																			
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			

Bits	Name	Description
0:7	Data	Bit content is command dependent. For most commands, this register indicates the data transfer starting sector number for when CHS addressing is enabled. This register indicates part of the LBA address when the LBA addressing is enabled.
		This register is written only when ATA drive status register bits BSY and DRQ equal 0 and DMACK is not asserted. If this register is written when BSY and DRQ bits are set to 1, the result is indeterminate.
		Register content is not valid when drive is in sleep mode.
8:31	_	Reserved

11.3.3.10 ATA Drive Device/Head Register—MBAR + 0x3A78

Table 11-28. ATA Drive Device/Head Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
R	Rsvd	Data	Rsvd	DEV		Da	ata		Reserved									
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb		
R								Re	served									
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bits	Name	Description
0	_	Reserved
1	Data	Bit is command dependent. In LBA addressing mode, this bit is set to 1 to indicate LBA addressing is chosen for data transfer.
2	_	Reserved
3	_	Reserved
4:7	Data	Bit content is command dependent. For most commands, this register indicates the data transfer starting sector number for when CHS addressing is enabled. This register indicates part of the LBA address when the LBA addressing is enabled.
		This register is written only when ATA drive status register bits BSY and DRQ equal 0 and DMACK is not asserted. If this register is written when BSY and DRQ bits are set to 1, the result is indeterminate.
		Register content is not valid when drive is in sleep mode.
8:31	_	Reserved

11.3.3.11 ATA Drive Device Command Register—MBAR + 0x3A7C

Table 11-29. ATA Drive Device Command Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R									Rsvd	HUT	FR	FE	ΙE	UDMA	READ	WRITE
W				Dat	ta											
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								1	Reserve	ed						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Freescale Semiconductor 11-17

MPC5200B Users Guide, Rev. 1

ATA Register Interface

Bits	Name	Description
0:7	Data	Register contains the command code sent to the drive. When this register is written, command execution begins immediately. Writing this register clears any pending interrupt condition.
8	_	Reserved
9	HUT	Host UDMA burst Terminate—Software can terminate UDMA burst prematurely by setting this bit. Bits 15 through 10 are unaffected and retain previous values.
10	FR	FIFO Reset—Hardware resets FIFO when the direction is switched from Tx to Rx. No hardware reset is done for Rx to Tx switch. Software must verify FIFO is empty before filling it for Tx. When bit 10 is set, FIFO is being reset and bits 15, 14, 13, 12, 11, 9 and 8 are invalid.
11	FE	Enable FIFO flush in Rx mode—For all commands except DEVICE RESET, this register is written only when the ATA drive status register bits BSY and DRQ equal 0 and DMACK is not asserted. If this register is written when BSY or DRQ bits are set to 1, the result is indeterminate except for the DEVICE RESET command.
		Register content is not valid when drive is in sleep mode.
12	E	 Enables drive interrupt to pass to CPU in DMA/UDMA modes. Software writes to this register as follows: FE (bit 11) and IE (bit 12) Clear IE and set FE if SDMA task loop count is the same as the data transfer requested from the drive. The following is a typical sequence if the BestComm task loop is a larger count than data request programmed for the drive: Start transaction with IE set and FE cleared. Repeat 1 until task loop count expires. Start last transaction with IE clear and FE set. Controller issues flush at end. Task loop completes and interrupts CPU. CPU responds to SDMA interrupt instead of drive interrupt. UDMA (bit 13)—Set when UDMA protocol is selected for data transfer, cleared for DMA protocol. READ (bit 14)—Set when read command for DMA/UDMA protocols is written to drive command register, cleared otherwise. WRITE (bit 15)—Set when write command for DMA/UDMA protocols is written to drive command register, cleared otherwise. MANDATORY—Be Aware: Drive interrupt must be enabled by clearing bit 1 of drive control register for DMA/UDMA mode transfers.
13	UDAMA	Bit is set when UDMA protocol is selected, cleared when multiword DMA protocol is selected.
14	READ	Bit is set when READ DMA command is issued.
15	WRITE	Bit is set when WRITE DMA command is issued.
16:31	_	Reserved

11-18 Freescale Semiconductor

11.3.3.12 ATA Drive Device Status Register—MBAR + 0x3A7C Table 11-30. ATA Drive Device Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	BSY	DRDY	Da	ata	DRQ	Rese	erved	ERR	Rsvd	HUT	FR	FE	ΙE	UDMA	Read	Write
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	2	8 29	30	31 lsb
R								Re	eserved							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	(0	0	0

Bits	Name	Description				
0	BSY	Indicates drive is busy processing a command.				
1	DRDY	ndicates drive is ready to accept executable commands.				
2:3	Data	Command dependent—Register is written only when ATA drive status register bits BSY and DRQ equal 0 and DMACK is not asserted. If this register is written when BSY and DRQ bits are set to 1, the result is indeterminate. Register content is not valid when drive is in sleep mode.				
4	DRQ	Indicates drive is ready to transfer a data word.				
5:6	_	Reserved				
7	ERR	Set to 1 indicates ATA drive error register bits are valid.				
8	_	Reserved				
9	HUT	Host UDMA burst Terminate—Software can terminate UDMA burst prematurely by setting this bit. Bits 15 through 10 are unaffected and retain previous values.				
10	FR	FIFO Reset—Hardware resets FIFO when the direction is switched from Tx to Rx. No hardware reset is done for Rx to Tx switch. Software must verify FIFO is empty before filling it for Tx. When bit 10 is set, FIFO is being reset and bits 15, 14, 13, 12, 11, 9 and 8 are invalid.				
11	FE	Enable FIFO flush in Rx mode—For all commands except DEVICE RESET, this register is written only when the ATA drive status register bits BSY and DRQ equal 0 and DMACK is not asserted. If this register is written when BSY or DRQ bits are set to 1, the result is indeterminate except for the DEVICE RESET command. Register content is not valid when drive is in sleep mode.				

ATA Host Controller Operation

Bits	Name	Description
12	ΙΕ	 Enables drive interrupt to pass to CPU in DMA/UDMA modes. Software writes to this register as follows: FE (bit 11) and IE (bit 12) Clear IE and set FE if SDMA task loop count is the same as the data transfer requested from the drive. The following is a typical sequence if the SDMA task loop is a larger count than data request programmed for the drive: Start transaction with IE set and FE cleared. Repeat 1 until task loop count expires. Start last transaction with IE clear and FE set. Controller issues flush at end. Task loop completes and interrupts CPU. CPU responds to BestComm interrupt instead of drive interrupt. UDMA (bit 13)—Set when UDMA protocol is selected for data transfer, cleared for DMA protocol. READ (bit 14)—Set when read command for DMA/UDMA protocols is written to drive command register, cleared otherwise. WRITE (bit 15)—Set when write command for DMA/UDMA protocols is written to drive command register, cleared otherwise. MANDATORY—Be Aware: Drive interrupt must be enabled by clearing bit 1 of drive control register for DMA/UDMA mode transfers.
13	UDAMA	Bit is set when UDMA protocol is selected, cleared when multiword DMA protocol is selected.
14	READ	Bit is set when READ DMA command is issued.
15	WRITE	Bit is set when WRITE DMA command is issued.
16:31	_	Reserved

11.4 ATA Host Controller Operation

With the asynchronous ATA interface, an interface must be implemented that meets the timing specifications, given an input clock from the processor that is not fixed among all applications. The challenge is to meet the minimum ATA specifications while minimizing wasted time. Time is wasted because of differences between the minimum specification and the number of clock-cycles, multiplied by the clock-cycle period. This indicates the counter compare value depends on:

- the data transfer mode
- the clock frequency driving the ATA state machine (IPB clock)
- the minimum data transfer mode cycle-time passed in the INDENTIFY block from the drive to the ATA Host Controller

Software requirements for setting up the Host Controller are as follows:

- 1. Write into ata_config register to enable (ata_config[7] == 1) support for IORDY for PIO modes 3 and 4.
- 2. Software determines ATA mode timing based on the operating clock frequency

$$Count = \frac{ATA \mod e \ timing \ spec + ipbi \ clock \ period - 1}{clock_period}$$

This rounds up to the smallest integer number of clock counts that meet the minimum specification.

In the case of counters that control duration of a read strobe (pio_t2_8, pio_t2_16 and dma_td), the added transceiver propagation delay must be taken into account so the read data meets setup time to the rising edge of the strobe. Therefore:

$$Count = \frac{ATA \mod timing \ spec + 2 \times XCVR \ PROP \ DLY + clock \ period - 1}{clock \ period}$$

11-20 Freescale Semiconductor

udma_t2cyc is another special case. Unlike the name implies, this register does not control 2 UDMA timing cycles. Rather, it controls how long the host continues to accept data after it has de-asserted HDMARDY—. According to the ATA-4 specification—if tSR is met, the host should accept 0–1 more data words, or if tSR is exceeded, 0–2 more data words. A safe value to ensure the host accepts these data words after HDMARDY— de-asserts is:

$$Count = \frac{4 + t2CYC \ sec[mode] + clock \ period - 1}{clock \ period}$$

- 1. Write the calculated count in the timing registers provided in the ATA host register memory map.
- 2. Write ATA drive registers per ATA-4 specification using Host Controller register memory map to the setup drive for desired operation.
- 3. Read/Write to unimplemented registers or read of a write-only or vice versa errors set flag bits in the ATA Host Controller status register. The status register is cleared by writing 1 to the flag bit set to indicate an error.
- 4. Write ata dma mode register to indicate UDMA/DMA READ/WRITE operations for UDMA/DMA data transfer modes.
- 5. Initiate and complete data transfers according to protocols described in ATA-4 specification.

ATA host hardware does data transfers per chosen protocol. Hardware also maintains proper handshaking with the MPC5200B system.

The ATA state machine is a combination of several small state machines. The data transfers is initiated by the software. The software chooses the mode of operation and sets up needed registers in the ATA Host Controller IPBI module.

The ATA drive registers are also set up by the software through ATA IPBI module using PIO mode. The ATA drive command and control block registers are mapped into ATA Host Controller register memory map.

The software writes a command to be executed in the ATA drive command register. The command code is decoded by the drive electronics. The software, at the same time indicates to the host if UDMA/DMA protocol is used for READ/WRITE of the data. This is done by setting proper bits in the ata_dma_mode register in the ATA IPBI module.

11.4.1 PIO State Machine

In the ATA-4 spec, 16 timing characteristics must be met for a PIO data or register access:

- 9 are driven by the ATA drive controller—2 (t1 and ta) are counted by the Host Controller for checking/latching purposes.
- 7 are driven by the ATA Host Controller

To simplify Host Controller design, the following implementation is used:

- Counter—The counter used to count this timing spec (pio_<name>_counter). All non-zero counters count down from an initial value to 1 (end)
- Start from—Where this counter is initialized.
- Activity at end—What activity to perform when counter reaches 1
- Dependencies—When counter reaches 0, what signals must be checked before counter is finished (cleared to 0)

Table 11-31. PIO Timing Requirements

Counter	Start from	Activity at end	Dependencies
t0	t1	go to IDLE	t2=0, t2i=0, t4=0
t11	N/A (Use t1 instead)	_	_
t2	t1	Latch Read_Data	IORDY_reg=1
t2i	t2	_	_
t32	N/A (Use t2 instead)	_	_
t4	t3	write_enable=0	
		address_enable=0	_
t5	N/A (Timing controlled by drive controller)	_	_
t6	N/A (Timing controlled by drive controller)	_	_
t6z	N/A (Timing controlled by drive controller)	_	_

MPC5200B Users Guide, Rev. 1

Table 11-31. PIO Timing Requirements (continued)

Counter	Start from	Activity at end	Dependencies
t93	N/A (Use t4 instead)	_	_
tA	t1	Check IORDY	IORDY=1
tB	N/A (Timing controlled by drive controller)	_	_
tC	N/A (Timing controlled by drive controller)	_	_

Note:

- Since t1 and t1 are both minimum specs, and t1 <= t1 for PIO modes 0-2, and t1 >= t1 for PIO modes 3-4, t1 is used
 to count both, by loading in an initial value that depends on the PIO mode being used. This is the responsibility of
 software.
- 2. Since t3 (WDATA setup time) is a minimum, and t3 <= t2 for all PIO modes, t2 is used to determine when to drive Write_Data on DD.
- 3. Since t4 and t9 are both minimum specs, and t4 >= t9 for all PIO modes, t4 is used to count from DIOR/DIOW negate to CS[1]FX/CS[3]FX/ADDR negate.

If ATA drive address space is accessed by CPU, the ATA IPBI module generates:

- a signal to enable the PIO mode state machine
- a wait state to the IPBI module to hold off any further IPBI module access

The PIO state machine indicates transfer is in progress to the IPBI module. This extends the transfer wait to the IPBI module until the PIO transaction is complete.

11.4.2 DMA State Machine

The interface between the ATA Controller DMA channel and the rest of the system is through a standard Type 1 BestComm FIFO interface. Table 11-32 shows the timing requirements specified in the ATA-4 spec for multiword DMA data transfers.

Table 11-32. Multiword DMA Timing Requirements

Counter	Start from	Activity at end	Dependencies
ТМ	START (Negate CS0, CS1, set DMA_In_Progress flag)	Assert DMACK, Assert DIOR/DIOW, Write Data ready	DMARQ asserted by drive
TE	N/A (Timing controlled by drive controller)	_	_
TD	ТМ	Negate DIOR/DIOW, Latch Read Data/Drive Write Data	DMARQ=1
TK	TD	Assert DIOR/DIOW	DMARQ=1
TH	TD	Ready for new write data	DMARQ=1
T0	TD	Begin next cycle	DMARQ=1
		Start TJ, Start TN	DMARQ=0
TJ	T0 Negate DMACK, Go to Idle		DMARQ Negated, DMACK asserted, T0=0
TN	ТО	Clear DMA_In_Progress flag. Allow CS0, CS1 to be driven	DMARQ Negated, DMACK asserted, T0=0

11.4.2.1 Software Requirements

Software calculates the appropriate values of TD and TK based on information reported for the cycle time (T0) in the drive's IDENTIFY DEVICE data and the operating clock frequency. Cycle time (T0) must be greater than the sum of TD and TK.

11-22 Freescale Semiconductor

MPC5200B Users Guide, Rev. 1

11.5 Signals and Connections

Table 11-33. MPC5200B External Signals

Signal	I/O	Description
DATA[15:0]	I/O	Data—16-bit Data Bus (DD pins on ATA cable).
SA[2:0]	0	Address—3-bit address, when combined with the two chip-selects, CS1FX and CS3FX, is used to address Control and Command Block Registers in an ATA drive controller (DA2, DA1 and DA0 on ATA cable, respectively).
CS[1]FX	0	Chip select connected to CS[0] on ATA cable.
CS[3]FX	0	Chip select connected to CS[1] on ATA cable.
Signal	I/O	Description
IOW	0	I/O Write—Active low signal that denotes a WRITE transaction (DIOW on ATA cable).
IOR	0	I/O Read—Active low signal that denotes a READ transaction (DIOR on ATA cable).
DACK	0	DMA Acknowledge (DMACK on ATA cable).
INTRQ	0	ATA interrupt.
ATA_ISOLATION	0	ATA Write Enable to allow sharing of the ATA DD bus with PCI Bus.
IOCHRDY	I	I/O Channel Ready (IORDY pin on ATA cable)
DRQ	I	DMA Request (DMARQ pin on ATA cable)
RESET	NC1	Reset—Handled at the board level
Note:		

1. NC=No Connection

NOTE

The ATA_ISOLATION output is an active high signal to control external ATA transceiver devices and to isolate the ATA bus from the Local Plus (shared) bus. The ATA_ISOLATION pin is driven low immediately after the positive edge of HRESET for 4 PCI_CLK cycles.

This note is only a warning about the behavior of this pin.

Normally, the ATA_ISOLATION pin is used to control an isolation buffer between the LocalPlus Bus and the ATA bus. Even though this glitch will cause the ATA Isolation Buffer to drive the LocalPlus Bus for four PCI Clock Cycles, the LocalPlus Bus cannot initiate a bus cycle for approximately 10 cycles after the positive edge of HRESET. Therefore, bus conflict will not occur.

Figure 11-2. Connections—Controller Cable, System Board, MPC5200B

11.6 ATA Interface Description

Table 11-34. ATA Controller External Connections

Pin#	Cable	I/O	System Board	I/O	MPC5200B
1	RESET	0	RESET: Reset	_	N/A—GPIO optional
2	GND	_	_	_	_
3–18	DD[15:0] 3,5,7,9,11,13,15,17→DD[7:0] 18,16,14,12,10,8,6,4→DD[15:8]	I/O	DD[0:15]	I/O	ATA_DATA[15:0]
19	GND	_	_	_	_

MPC5200B Users Guide, Rev. 1

11-24 Freescale Semiconductor

Table 11-34. ATA Controller External Connections (continued)

Pin#	Cable	I/O	System Board	I/O	MPC5200B
20	KEY		No Signal: Alignment key	_	_
2	DMARQ	I	DMARQ:DMA Request	I	ATA_DRQ
22	GND	_	_	_	_
23	DIOW:STOP	0	DIOW	0	ATA_ IOW
24	GND	_	_	_	_
25	DIOR:HDMARDY:HSTROBE	0	DIOR	0	ATA_ IOR
26	GND		ı	_	_
27	IORDY: DDMARDY: DSTROBE	I	IORDY	I	ATA_IOCHRDY
28	CSEL		NC	_	_
29	DMACK	0	DMACK	0	ATA_ DACK
30	GND		1	_	_
31	INTRQ	_	INTRQ	I	ATA_INTRQ
32	Reserved		_	_	_
33	DA[1]	0	DA[1]:Address Bus Bit1	0	ATA_SA[1]
34	PDIAG		NC	_	_
35	DA[0]	0	DA[0]:Address Bus Bit0	0	ATA_SA[0]
36	DA[2]	0	DA[2]:Address Bus Bit2	0	ATA_SA[2]
37	CS[0]	0	CS[1]FX:Chip Select 0	0	ATA_CS[1]FX(CS[4])
38	CS[1]	0	CS[3]FX:Chip Select 1	0	ATA_CS[3]FX(CS[5])
39	DASP		NC		_
40	GND	_	_	_	_

NOTE

MPC5200B provides the ATA_ISOLATION output signal. This signal is shared with the A22 output of the LocalPlus Most/Graphics mode.

The ATA_ISOLATION is not a signal defined by the ATA Standard. It is provided to support an external ATA transceiver. ATA_ISOLATION is an active high signal to control external transceiver devices and to 'isolate' the ATA bus from the LocalPlus (shared) bus.

It can force the transceiver direction "MPC5200B -> disk drive". Only during an ATA read is this signal allowed to go low, forcing tranceiver direction "disk drive ->MPC5200B".

The ATA_ISOLATION should be connected to the Direction input of the transceiver.

- High = Write to drive
- Low = Read from drive

Figure 11-3. Pin Description—ATA Interface

11.7 ATA Bus Background

11.7.1 Terminology

The most popular interface used in modern hard disks is the Integrated Drive Electronics (IDE) interface, also known by various other names such as: ATA, EIDE, ATA-2, Fast ATA, Ultra ATA, etc.

- Western Digital[®] used the term IDE when they first integrated the drive controller logic board on the disk drive.
- Quantum[®] and Seagate[®] used the term ATA (Advanced Technology Attachment) or AT-Attachment, because it has a 16-bit data interface like original AT machines.

ATA is the interface name adopted by the American National Standards Institute (ANSI). Thus far, ANSI has published ATA, ATA-2, ATA-3 and ATA-4 interfaces. More work is underway for ATA-5 and future extensions of the ATA interface. Table 11-35 summarizes the different ATA standards.

MPC5200B is compliant with the latest officially published ANSI ATA-4 interface.

MPC5200B Users Guide, Rev. 1

Table 11-35. ATA Standards

Interface Standard	Standard Type	PIO Modes	DMA Modes	Special Features or Enhancements introduced Relative to IDE/ATA
IDE/ATA	ANSI	0,1,2	Single word—0,1,2 Multiword—0	_
ATA-2	ANSI	0,1,2,3,4	Single word—0,1,2 Multiword—0,1,2	Block transfers, logical block addressing, improved identify drive command
FAST ATA	Marketing	0,1,2,3	Single word—0,1,2 Multiword 0,1	Same as ATA-2
Fast ATA-2	Marketing	0,1,2,3,4	Single word—0,1,2 Multiword—0,1,2	Same as ATA-2
ATA-3	Unofficial	0,1,2,3,4	Single word—0,1,2 Multiword—0,1,2	Same as ATA-2, plus improved reliability, SMART
Ultra ATA	Unofficial	0,1,2,3,4	Single word—0,1,2 Multiword—0,1,2,3	Same as ATA-3
ATAPI	ANSI	0,1,2,3,4	Single word—0,1,2 Multiword—0,1,2	Support for non-hard-disk devices CD-ROM, Tape drives, etc.
EIDE	Marketing	0,1,2,3,4	Single word—0,1,2 Multiword—0,1,2	Same as ATA-2, plus ATAPI and dual host adapters
ATA-4	ANSI	0,1,2,3,4	Multiword—0,1,2 Ultra DMA—0,1,2	Same as ATA-3, Single word DMA retired

11.7.2 ATA Modes

Table 11-36. ATA Physical Level Modes

Mode	Cycle Time (ns)	Transfer Rate (MB/s)	Standard
PIO mode 0	600	3.3	ATA
PIO mode 1	383	5.2	ATA
PIO mode 2	240	8.3	ATA
PIO mode 3	180	11.1	ATA-2 (IORDY required)
PIO mode 4	120	16.7	ATA-2 (IORDY required)
DMA mode 0 (Multiword)	480	4.2	ATA
DMA mode 1 (Multiword)	150	13.3	ATA-2
DMA mode 2 (Multiword)	120	16.7	ATA-2
Ultra DMA mode 0	114	16.7	ATA-4
Ultra DMA mode 1	75	25	ATA-4
Ultra DMA mode 2	55	33	ATA-4

11.7.3 ATA Addressing

In the ATA interface, there are two aspects of addressing that are present: register addressing and sector addressing. These are discussed in the next sections.

ATA Bus Background

11.7.3.1 ATA Register Addressing

The address used to reference an ATA drive register. This is the actual address ($\overline{CS}[1]\overline{FX}$, $\overline{CS}[3]\overline{FX}$, DA[2:0]) present on the physical ATA interface. Table 11-37 gives details.

Table 11-37. ATA Register Address/Chip Select Decoding

Address						Function	
System Address	CS[1]FX	CS[3]FX	DA[2]	DA[1]	DA[0]	READ (DIOR)	WRITE (DIOW)
						Control Block Registers	
_	1	1	х	х	х	Data bus high impedance	Not used
03F0-03F3	1	0	0	х	х	Data bus high impedance	Not used
03F4-03F5	1	0	1	0	х	Data bus high impedance	Not used
03F6	1	0	1	1	0	Alternate status	Device control
03F7	1	0	1	1	1	Obsolete	Not used
					Command Block Registers		
01F0	0	1	0	0	0	Data	Data
01F1	0	1	0	0	1	Error register	Features
01F2	0	1	0	1	0	Sector count	Sector count
01F3	0	1	0	1	1	Sector number	Sector number
01F3	0	1	0	1	1	LBA bits 0-71	LBA bits 0-71
01F4	0	1	1	0	0	Cylinder low	Cylinder low
01F4	0	1	1	0	0	LBA bits 8-151	LBA bits 8–151
01F5	0	1	1	0	1	Cylinder high	Cylinder high
01F5	0	1	1	0	1	LBA bits 16-231	LBA bits 16-231
01F6	0	1	1	1	0	Drive/head	Drive/head
01F6	0	1	1	1	0	LBA bits 24–271	LBA bits 24–271
01F7	0	1	1	1	1	Status	Command
_	0	0	х	х	х	Invalid address	Invalid address

Note:

1. LBA mode register mapping—system addresses are for a single channel, accommodating two drives only.

11.7.3.2 Drive Interrupt

A pending drive interrupt is cleared by the following actions:

- Read of status (not the alternate status) register
- · Write to command register

11.7.3.3 Sector Addressing

Sector addressing is the address used to reference data on the drive. It is the address used by the low-level drivers to access a particular piece of data and to place it into one or more ATA registers as part of a command block. To understand the data addressing, it is necessary to understand the physical organization of data in a drive, as presented in Figure 11-1. Each drive contains a number of disks, each with one or two heads (one head per surface). Each disk is divided into concentric tracks that are then divided into a number of sectors. A sector is the smallest unit of data that can be written or read by a drive. The collections of tracks that can be accessed by the heads at a single position is called a cylinder. Therefore, a sector can be uniquely identified by a sector number, a head number and a cylinder number. From this addressing scheme there are two ways to address an individual sector: physical addressing and logical block addressing, which are described in the next two sections.

11-28 Freescale Semiconductor

Notes

- 1. LBA mode is only available in ATA-2 or later specifications.
- A block mode exists (not to be confused with logical block addressing), in which sectors are grouped into a unit, called a block, for purposes of data transfer. The number of sectors is set with SET MULTIPLE MODE command and is used by the READ MULTIPLE and WRITE MULTIPLE commands. When specifying sectors within a block, either CHS or LBA mode may be used.

11.7.3.4 Physical/Logical Addressing Modes

Addressing is done by referencing the sector, head and cylinder for a particular sector. Using a physical addressing mode, there are two mappings available:

- Natural—Sector, head and cylinder numbers represent actual physical sectors, heads and cylinders on the drive.
- Logical—Sector, head and cylinder numbers map to different physical sectors, heads and cylinders on the drive.

Most modern hard disks usually have 2, 3 or 4 platters. All platters are connected together on a common spindle to spin as a single assembly. Each platter has two surfaces and two heads to access each surface. The platter is a collection of concentric circles called tracks, to store data. Each track is subdivided into sectors. Each sector can hold 540 Bytes of information, with 512 Bytes being used for data and 28 Bytes being used for error correction code (ECC). A set of tracks under each head at the same track position is called a cylinder. So to get to the disk read/write data point, a cylinder address, a head address and a sector address is needed. Hence the basic addressing mode is called cylinder head sector (CHS) addressing.

In this mode, the address is written into the ATA registers as follows:

- Cylinder \rightarrow {Cylinder High (0x01F5), Cylinder Low (0x01F4)}
- Head→Drive/Head (0x01F6)
- Sector \rightarrow Sector Number (0x01F3)

To most efficiently use the drive for data storage, the physical geometry is translated into logical geometry by the hard disk manufacturers. The BIOS or overlay software from the disk manufacturer translates the logical geometry to physical geometry to get to the physical location of the data written/read on/from the disk.

The CHS method is limited to 1024 cylinders, 16 heads and 63 sectors. This limits the hard disk recognition to a maximum of 504MBytes. This limit is increased for larger disks by enhancing the CHS translation. BIOS limits cylinder size to 1024 (10bits allocated), but allows the number of heads to be 256 (8bits allocated). Therefore, a 3.1 GByte hard disk with 6136 cylinders and 16 heads is translated by dividing the cylinders by 8 (6136 \div 8 = 767). The number of heads is then multiplied by the same number (16 x 8 = 128). This fits well within the limits set by the BIOS and a larger disk is recognized for its true size (767 x 128 x 63 x 512 = 3.1 GBytes).

Another form of addressing is called logical block addressing (LBA). This uses 28bits in the ATA standard to address a particular sector on a hard disk. A sum total of sectors on a drive is available and each unique sector is addressed using LBA.

Mapping from physical organization to logical block numbers is done using the following formula:

LBA→(Cylinder# x HeadCount + Head#) x SectorCount + Sector# -1

In this mode, the address is written in the ATA Registers as follows:

 $LBA \rightarrow \{LBA[0:7](0x01F3), LBA[8:15](0x01F4), LBA[16:23](0x01F5), LBA[24:27](0x01F6)\}$

Figure 11-4. ATA Sector Format

ATA Bus Background

11.7.4 ATA Transactions

ATA Transactions are divided into three types:

- PIO Mode
- Multiword DMA
- Ultra DMA

11.7.4.1 PIO Mode Transactions

PIO mode transactions are the simplest transaction available on the ATA interface. They essentially consist of single word accesses across the ATA interface. There are currently 6 PIO modes available, which are summarized in Table 11-36. Timing and sequence information are given in the MPC5200B datasheet.

Three classes of ATA commands use PIO Mode:

- Class 1—PIO Read
- Class 2—PIO Write
- · Class Non-Data Command

11.7.4.1.1 Class 1—PIO Read

Figure 11-5 shows the PIO Read process.

- PIO Single sector read [identify drive, read buffer, read sector(s)]
- Interrupt is generated after each sector is read into the sector buffer:
- 1. HOST: Write to ATA control/command block registers to setup for data read.
- 2. HOST: Write to ATA command register to execute read command.
- 3. HOST: Poll drive to see if it is ready.
- 4. DRIVE: Read sector from physical medium to sector buffer.
- 5. DRIVE: Interrupt HOST when done.
- 6. HOST: Read ATA control/command block registers to get status
- DRIVE: Clear interrupt after reading status register.
- 8. HOST: Read ATA data register 256 times to get all 512 Bytes from sector buffer.
- 9. Repeat steps 4–8 for multiple sectors.
 - PIO Block mode read [read multiple]
 - Interrupt is generated after each block is read into sector buffer:
- 1. HOST: Write to ATA control/command block registers to setup for data read.
- 2. HOST: Write to ATA command register to execute read command.
- 3. HOST: Poll drive to see if it is ready.
- 4. DRIVE: Read block of sectors from physical medium to sector buffer.
- 5. DRIVE: Interrupt HOST when done.
- 6. HOST: Read ATA control/command block registers to get status.
- 7. DRIVE: Clear interrupt after reading status register.
- 8. HOST: Read ATA data register to get all sectors from sector buffer.

Figure 11-5. Timing Diagram—PIO Read Command (Class 1)

11.7.4.1.2 Class 2—PIO Write

The PIO single sector write command [format, write buffer, write sector(s)] is as follows:

- 1. HOST: Write to ATA control/command block registers to setup for data write.
- 2. HOST: Write to ATA command register to execute write command.
- 3. HOST: Poll drive to see if it is ready.
- 4. HOST: Write ATA data register 256 times to get all 512 Bytes into sector buffer.
- 5. DRIVE: When sector buffer is filled, write sector to physical medium.
- 6. DRIVE: Interrupt HOST when done.
- 7. HOST: Read ATA control/command block registers to get status.
- 8. DRIVE: Clear interrupt after reading status register.
- 9. Repeat steps 4–8 for multiple sector writes.

The PIO block mode write command (write multiple) is as follows:

- 1. HOST: Write to ATA control/command block registers to set up for data write.
- 2. HOST: Write to ATA command register to execute write command.
- 3. HOST: Poll drive to see if it is ready.
- 4. HOST: Write ATA data register 256 times to get all sectors into sector buffer.
- 5. DRIVE: When sector buffer is filled, write sector to physical medium.
- 6. DRIVE: Interrupt HOST when done.
- 7. HOST: Read ATA control/command block registers to get status.
- 8. DRIVE: Clear interrupt after reading status register.

Figure 11-6 shows the PIO Write process.

ATA Bus Background

Figure 11-6. Timing Diagram—PIO Write Command (Class 2)

11.7.4.1.3 Class 3—Non-Data Command

The Non-Data Command is as follows:

- 1. HOST: Write to ATA control/command block registers to setup for data read.
- 2. HOST: Write to ATA command register to execute read command.
- 3. DRIVE: Execute command.

Figure 11-7 shows the Non-Data Command

Figure 11-7. Timing Diagram—Non-Data Command (Class 3)

11.7.4.2 DMA Protocol

The DMA protocol has the following commands:

- READ DMA
- WRITE DMA

The Host selects the multiword DMA protocol as follows:

- 1. Write 00100b to upper 5 bits ([7:3]) of sector count register to select multiword DMA protocol. Write desired mode value to lower 3 bits ([2:0]) of sector count register to set multiword DMA transfer mode (mode 0=000b, mode 1=001b, etc.).
- 2. Write sub-command code 0x03 to features register to set transfer mode, based on value in sector count register.

MPC5200B Users Guide, Rev. 1

Write command code 0xEF to command register to execute SET FEATURES command. This sets the data transfer protocol to multiword DMA with desired mode.

Data transfers into DMA differ from a PIO transfer in that:

- Data is transferred using the DMA channel.
- A single interrupt is issued at command completion.

The Host initializes the DMA channel prior to issuing DMA mode commands. The drive asserts an interrupt when data transfer is complete. The DMA command protocol is as follows:

- 1. HOST: Read status or alternate status register until BSY and DRQ are both 0. (ATA-4, 41, 48).
- 2. HOST: Write device/head register with appropriate DEV bit value to select drive. (ATA-4, 45).
- 3. HOST: Wait 400 ns, read status or alternate status register until BSY & DRQ are set to 0. The required drive is then assured to be selected.
- 4. HOST: Write required command parameters to the features, sector count, sector number, cylinder high, cylinder low, and device/head registers. (ATA-4, chapter 7).
- 5. HOST: Write command code to command register for drive to start processing command using parameters from the command block registers. (ATA-4, 41).
- 6. DRIVE: If no drive error exists, set BSY=1 and begin processing command.
- 7. HOST: Wait 400ns, read status or alternate status register to ensure valid contents.
- 8. DRIVE: Set BSY=1 or BSY=0 && DRQ=1.
- 9. DRIVE: Assert DMARQ when ready, transfer data per multiword DMA timing or ultra DMA protocol.
- 10. HOST: Assert DMACK, negate CS[0] and CS[1] when ready to transfer data per multiword DMA timing or ultra DMA protocol. Transfers are 16-bit wide from the data port. DMA data out (drive→host) transfers are processed by a series of reads to the data port. Each read transfers the data that follows the previous read. DMA in data (host→drive) transfers are processed by a series of writes to this port. Each write transfers the data that follows the previous write. Results are indeterminate if data port is written during a DMA data out or data port is read during a DMA data in transfers.
- 11. DRIVE: Negate DMARQ when transfer is complete.
- 12. DRIVE: Set error status in error register if error exists.
- 13. DRIVE: Clear BSY and DRQ.
- 14. DRIVE: Assert INTRQ if Host has enabled nIEN (set to 0) in command control register. This register is written by the host to enable interrupt from the drive by clearing nIEN bit to 0. INTRQ is in a high impedance state if nIEN bit is set to 1.

When host sets command control register bit SRST to 1, software can reset selected drive. However, the command control register must be written while DMACK is not asserted. Bit 0 must be cleared to 0.

- 1. HOST: To clear pending interrupt, read status register (regardless of nIEN status).
- 2. DRIVE: If enabled by nIEN (nIEN = 0), negate INTRQ.
- 3. DMA command completes.

Table 11-38. DMA Command Parameters

DMA Command	Command	Parameters Used (Registers)										
	Code	Features	Sector Count	Sector Number/LBA	Cylinder HI/LO/LBA	Device/Head/LBA						
READ DMA	C8h	Yes	Yes	Yes	Yes	D/H Both						
WRITE DMA	CAh	Yes	Yes	Yes	Yes	D/H Both						

Figure 11-8 shows the DMA command protocol flow diagram.

Figure 11-8. Flow Diagram—DMA Command Protocol

MPC5200B Users Guide, Rev. 1

11.7.4.3 Multiword DMA Transactions

Multiword DMA transactions differ from PIO mode transactions in three ways:

- 1. Data transfers are done using a drive DMA and a host DMA (optional).
- 2. Handshaking is done with DMARQ and DMACK, no address is necessary.
- 3. Interrupts do not occur after every sector for multi-sector transfers

11.7.4.3.1 Class 4—DMA Command

Figure 11-9 shows the DMA timing diagram. The DMA command (Read DMA, Write DMA) is as follows:

- 1. HOST: Set up HOST DMA (in ATA Host Controller or system DMA).
- 2. HOST: Write to ATA control/command block registers to setup drive DMA.
- 3. HOST: Write to ATA control/command block registers to set up data read/write.
- 4. HOST: Write to ATA command register to execute the read/write command.
- DRIVE: Assert DMARO.
- 6. HOST: When DMARQ is asserted, assert DMACK.
- 7. DRIVE: Read sector from physical medium to sector buffer.
- DRIVE: Transfer data to HOST using DMA handshaking.
- 9. Repeat steps 7–8 as needed for multiple sectors.
- 10. DRIVE: De-assert DMARQ.
- 11. HOST: De-assert DMACK.
- 12. DRIVE: Interrupt HOST.
- 13. HOST: Stop HOST DMA.
- 14. HOST: Read ATA control/command block registers to get status.
- 15. DRIVE: Clear interrupt after reading status register.

Figure 11-9. Timing Diagram—DMA Command (Class 4)

11.7.4.4 Ultra DMA Protocol

The Ultra DMA protocol has the following commands:

- READ DMA
- WRITE DMA

The host selects the Ultra DMA protocol as follows:

- Write 01000b to upper 5 bits ([7:3]) of sector count register to select ultra DMA protocol. Write desired mode value to lower 3 bits ([2:0]) of sector count register to set ultra DMA transfer mode (mode 0=000b, mode 1=001b, etc.).
- Write sub-command code 03h to features register to set transfer mode based on value in sector count register.
- Write command code EFh to command register to execute SET FEATURES command, which sets the data transfer protocol to ultra DMA with desired mode.

When enabled, the ultra DMA protocol is used instead of the multiword DMA protocol.

MPC5200B Users Guide, Rev. 1

NOTE

Ultra DMA mode 2 (UDMA2) requires that the ip bus clock speed is at least 66MHz.

Table 11-39 lists the redefined ultra DMA protocol signal lines. These lines provide new functions during the ultra DMA mode. At termination of an ultra DMA burst, the host negates DMACK and the lines revert to the definitions used for non-ultra DMA transfers.

Table 11-39. Redefinition of Signal Lines for Ultra DMA Protocol

Non-Ultra DMA modes	Ultra DMA Modes	Description
DIOR	HDMARDY	Host DMA ready during Ultra DMA data in bursts
	HSTROBE	Host data strobe during Ultra DMA data out bursts
IORDY	DDMARDY	Drive DMA ready during Ultra DMA data out bursts
	DSTROBE	Drive data strobe during Ultra DMA data in bursts
DIOW	STOP	Host stop ultra DMA bursts

Both the host and drive do a CRC function during an ultra DMA burst:

- The host sends CRC data to the drive.
- The drive does a CRC data comparison.

If the CRC comparison fails, the error register ERR bit is set. The drive always reports the first error that occurs.

11.8 ATA RESET/Power-Up

11.8.1 Hardware Reset

The host asserts \overline{RESET} for a minimum of 25 μ s after power has stabilized within system specified tolerance. A signal assertion less than 20 ns is not recognized by the drive.

The host should not do the following:

- set the device control register bit SRST to 1 to enable the drive for software reset
- issue a DEVICE RESET command while the status register BSY bit is set to 1.

NOTE

Hardware reset is a board requirement, not an MPC5200B function unless GPIO is used.

11.8.2 Software Reset

The host sets the device control register bit SRST to 1. Any subsequent setting and clearing of the SRST bit must be at least 5 µs apart.

Figure 11-10 shows the Reset timing diagram. Table 11-40 gives timing characteristics.

11-36 Freescale Semiconductor

Figure 11-10. Timing Diagram—Reset Timing

Table 11-40. Reset Timing Characteristics

Name	PIO Timing Parameter	Min/Max	Timing
tM	Reset pulse width	Min	25µs
tN	Reset negated to BSY active setup	Max	400ns
tP	Reset negated to DASP inactive setup	Max	1 ms
tQ	DASP active to PDIAG active setup	Max	30s
tR	Drive 0—Reset negated to DASP active setup	Max	450ms
	Drive 1—Reset negated to DASP active setup	Max	400 ms
tS	DASP active to PDIAG inactive setup	Max	30.5s

11.9 ATA I/O Cable Specifications

For reference, the standard ATA cable specifications affects stem integrity and should not exceed 18 inches or 0.46 m. Total cable capacitance should not exceed 35 pF.

ATA Controller

Notes

Chapter 12 Universal Serial Bus (USB)

Overview 12.1

The following sections are contained in this document:

- Section 12.2, Data Transfer Types
- Section 12.4, Host Control (HC) Operational Registers, includes:
 - Section 12.4.2, Control and Status Partition—MBAR + 0x1000
 - Section 12.4.3, Memory Pointer Partition—MBAR + 0x1018
 - Section 12.4.4, Frame Counter Partition—MBAR + 0x1034
 - Section 12.4.5, Root Hub Partition—MBAR + 0x1048

The Universal Serial Bus (USB) is an external bus standard that supports data transfer rates of 12Mbps. Figure 12-1 shows the four main areas of a USB system, which are:

- Client software/USB driver—software implemented
- Host Controller Driver (HCD)—software implemented
- Host Controller (HC)—hardware implemented
- USB device—hardware implemented

Figure 12-1. USB Focus Areas

The Open Host Controller Interface (OHCI) is a register-level description of a HC for the Universal Serial Bus (USB). OHCI specifies the interface between and the fundamental HCD operation and the HC.

The HCD and HC work in tandem to transfer data between client software and a USB device. Data is translated from shared-memory data structures at the client software end, to USB signal protocols at the USB device end, and vice-versa.

12.2 **Data Transfer Types**

Four data transfer types are defined in the USB. Each type is optimized to match the service requirements between client software and the USB device. These types are:

- Interrupt Transfers—Small data transfers used to communicate information from the USB device to the client software. The HCD polls the USB device by issuing tokens to the device at a periodic interval sufficient for the requirements of the device.
- Isochronous Transfers—Periodic data transfers with a constant data rate. Data transfers are correlated in time between the sender and receiver.
- Control Transfers—Non-periodic data transfers used to communicate configuration/command/status type information between client software and the USB device.

Host Controller Interface

 Bulk Transfers—Non-periodic data transfers used to communicate large amounts of information between client software and the USB device.

In OpenHCI the data transfer types are classified into two categories: periodic and nonperiodic. Periodic transfers are interrupt and isochronous since they are scheduled to run at periodic intervals. Non-periodic transfers are control and bulk since they are not scheduled to run at any specific time, but rather on a time-available basis.

12.3 Host Controller Interface

12.3.1 Communication Channels

There are two communication channels between the HC and HCD.

- 1. The first channel uses a set of operational registers located on the HC. The HC is the target for all communication on this channel. The operational registers contain control, status, and list pointer registers. Within the operational register set is a pointer to a location in shared memory named the HC Communications Area (HCCA).
- 2. The HCCA is the second communication channel. The HC is the master for all communication on this channel. The HCCA contains the head pointers to the interrupt endpoint descriptor lists, the head pointer to the done queue, and status information associated with start-of-frame processing.

Figure 12-2. Communication Channels

NOTE

The Open Host Controller Interface (OHCI) specification describes the Host Controller Communication Area (HCCA), which is located in memory (as opposed to the USB module register). The start address (base address) of that memory area is defined by the USB controller register HC Communication Register.

12-2 Freescale Semiconductor

12-3

The HCCA includes the "virtual" registers HccaFrameNumber and HccaPad1. The offsets shall be 0x80 (for HccaFrameNumber) and 0x82 (for HccaPad1).

In the USB module of the MPC5200B these two "virtual" registers are swapped. The HccaFrameNumber is a copy of the Frame Number field at the USB HC Timing Reference Register.

12.3.2 Data Structures

The basic building blocks for communication across the interface are the endpoint descriptor (ED) and transfer descriptor (TD).

The HCD assigns an endpoint descriptor to each endpoint in the system. The endpoint descriptor contains the information necessary for the HC to communicate with the endpoint. The fields include the maximum packet size, the endpoint address, the speed of the endpoint, and the direction of data flow. Endpoint descriptors are linked in a list.

A queue of transfer descriptors is linked to the endpoint descriptor for the specific endpoint. The transfer descriptor contains the information necessary to describe the data packets to be transferred. The fields include data toggle information, shared memory buffer location, and completion status codes. Each transfer descriptor contains information that describes one or more data packets. The data buffer for each transfer descriptor ranges in size from 0 to 8192 Bytes with a maximum of one physical page crossing. Transfer descriptors are linked in a queue; the first one queued is the first one processed.

Each data transfer type has its own linked list of endpoint descriptors to be processed. Figure 12-3 shows the data structure relationship.

Figure 12-3. Typical List Structure

The head pointers to the bulk and control endpoint descriptor lists are maintained within the operational registers in the HC. The HCD initializes these pointers prior to the HC gaining access to them. Should these pointers need to be updated, the HCD may need to stop the HC from processing the specific list, update the pointer, then re-enable the HC.

The head pointers to the interrupt endpoint descriptor lists are maintained within the HCCA. There is no separate head pointer for isochronous transfers. The first isochronous endpoint descriptor simply links to the last interrupt endpoint descriptor. There are 32 interrupt head pointers. The head pointer used for a particular frame is determined by using the last five bits of the frame counter as an offset into the interrupt array within the HCCA.

The interrupt endpoint descriptors are organized into a tree structure with the head pointers being the leaf nodes. The desired interrupt endpoint polling rate is achieved by scheduling the endpoint descriptor at the appropriate depth in the tree. The higher the polling rate, the closer to the root of the tree the endpoint descriptor is placed. Figure 12-4 shows the interrupt endpoint structure. The Interrupt endpoint descriptor placeholder indicates where zero or more endpoint descriptors may be queued. The numbers on the left are the index into the HCCA interrupt head pointer array.

Figure 12-4. Interrupt ED Structure

Figure 12-5 shows a sample interrupt endpoint schedule. The schedule shows:

- two endpoint descriptors at a 1 ms poll interval
- two endpoint descriptors at a 2ms poll interval
- one endpoint descriptor at a 4ms poll interval
- two endpoint descriptors at an 8ms poll interval
- two endpoint descriptors at a 16ms poll interval
- two endpoint descriptors at a 32ms poll interval.

NOTE

Unused interrupt endpoint placeholders are bypassed and the link is connected to the next available endpoint in the hierarchy.

12-4 Freescale Semiconductor

Figure 12-5. Sample Interrupt Endpoint Schedule

Host Control contains a set of on-chip operational registers which are mapped into a non-cacheable portion of the system addressable space. These registers are used by the HCD. According to the function of these registers, they are divided into four partitions, specifically for control and status, memory pointer, frame counter and root hub. All of the registers should be read and written as 32-bit words.

Reserved bits may be allocated in future releases of this specification. To ensure interoperability, the HCD that does not use a reserved field should not assume the reserved field contains 0. In addition, HCD should always preserve the reserved field value(s).

When a R/\overline{W} register is modified, the HCD should first read the register and modify the bits desired. Then, HCD should write the register with the reserved bits still containing the read value. Alternatively, HCD can maintain an in-memory copy of previously written values that can be modified and written to the HC register. When a write to the set/clear register is written, bits written to reserved fields should be 0.

12.4.1 Programming Note

Programmers should observe the following notes:

- The CDM 48MHz Fractional Divider Configuration Register—MBAR + 0x0210 must be initialized before you can access any USB registers. If this register is not initialized, every USB register access will cause a machine check interrupt.
 For Example: If the SYS_XTAL_IN frequency is 33 MHz and the RST_CFG6 pin is low (multiplier 16), than the four phase divide ratios must be set to 0x5, fractional counter divide ration of f_{system}/11. 33 MHz * 16 / 11 = 48 MHz (USB frequency)
- 2. The GPS Port Configuration Register—MBAR + 0x0B00 must be initialized to communicate over the muxed USB port. It configures USB for Differential or SE0 mode, the port to be used for USB2 and if the IrDA/USB 48MHz clock is generated internally or externally.

12.4.2 Control and Status Partition—MBAR + 0x1000

This HC partition uses 6 32-bit registers. These registers are located at an offset from MBAR of 0x1000. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x1000 + register address

The following registers are available:

- USB HC Revision Register (0x1000)
- USB HC Control Register (0x1004)
- USB HC Command Status Register (0x1008)
- USB HC Interrupt Status Register (0x100C)
- USB HC Interrupt Enable Register (0x1010)
- USB HC Interrupt Disable Register (0x1014)

12.4.2.1 USB HC Revision Register—MBAR + 0x1000

Table 12-1. USB HC Revision Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Reserved														
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Reserved									REV						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

Bits	Name	Description
0:23	1	Reserved
24:31	REV	Revision—a read-only field containing the BCD representation of the HCl specification version implemented by this HC. For example, a value of 11h corresponds to version 1.1. All HC implementations compliant with this specification have a value of 10h.

12.4.2.2 USB HC Control Register—MBAR + 0x1004

The HC Control register defines HC operating modes. Except for HostController Functional State and Remote Wake Up Connected, most fields in this register are modified only by the HCD.

Table 12-2. USB HC Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Reserved														
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		Re	eserved	ı		RWE	RWC	IR	НС	FS	BLE	CLE	IE	PLE	CE	BSR
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

12-6 Freescale Semiconductor

Bits	Name	Description
0:20	_	Reserved
21	RWE	Remote WakeUp Enable—HCD uses bit to enable or disable the remote WakeUp feature on detection of upstream resume signaling.
		When this bit is set and the ResumeDetected bit in HcInterruptStatus is set, a remote WakeUp is signaled to the host system. Setting this bit has no impact on the generation of hardware interrupt.
22	RWC	Remote WakeUp Connected—bit indicates whether HC supports remote WakeUp signaling. If remote WakeUp is supported and used by the system it is the responsibility of system firmware to set this bit during BOOT UP.
		HC clears bit on a hardware reset, but does not alter it on a software reset. Host system remote WakeUp signaling is host-bus-specific and not described in this specification.
23	IR	InterruptRouting—bit determines routing of interrupts generated by events registered in HcInterruptStatus.
		The IR Bit is ignored by the MPC5200B. It is here to maintain OHCI compliancy. The interrupt from the USB module is routed to the interrupt controller in the SIU where it can be routed to the SMI or NORMAL interrupt.
24:25	HCFS	HostControllerFunctionalState—a USB field:
		00=USBRESET
		01=USBRESUME
		10=USBOPERATIONAL
		11=USBSUSPEND
		Transition to USBOPERATIONAL from another state causes SOF generation to begin 1 ms later.
		HCD may determine if HC has begun sending SOFs by reading the StartofFrame field of HcInterruptStatus. This field may be changed by HC, only when in the USBSUSPEND state. HC may move from the USBSUSPEND state to the USBRESUME state after detecting resume signaling from a downstream port. HC enters USBSUSPEND after a software reset, whereas it enters USBRESET after a hardware reset. A hardware reset also resets the Root Hub and asserts subsequent reset signaling to downstream ports.
26	BLE	BulkListEnable—setting bit enables Bulk list processing in next Frame.
		 If cleared by HCD, Bulk list processing does not occur after next SOF. HC checks this bit whenever it determines to process the list. When disabled, HCD may modify the list. If HcBulkCurrentED points to an ED to be removed, HCD advances pointer by updating HcBulkCurrentED before re-enabling list processing.
27	CLE	ControlListEnable—setting bit enables Control list processing in next Frame.
		 If cleared by HCD, Control list processing does not occur after next SOF. HC checks this bit whenever it determines to process the list. When disabled, HCD may modify the list. If HcControlCurrentED points to an ED to be removed, HCD advances pointer by updating HcControlCurrentED before re-enabling list processing.
28	ΙE	Isochronous Enable—HCD uses bit to enable/disable isochronous EDs processing. While processing the periodic list in a Frame, HC checks bit status when it finds an Isochronous ED (F=1).
		 If set (enabled), HC continues processing the EDs. If cleared (disabled), HC halts periodic list processing, which now contains only isochronous EDs, and begins processing Bulk/Control lists.
		Setting this bit is guaranteed to take effect in the next Frame, not the current Frame.

Bits	Name	Description
29	PLE	PeriodicListEnable—setting bit enables periodic list processing in next Frame. If cleared by HCD, periodic list processing does not occur after the next SOF. HC checks this bit prior to starting list processing.
30:31	CBSR	Control Bulk Service Ratio—field specifies the service ratio between Control and Bulk EDs. Before processing non-periodic lists, HC compares the ratio specified with its internal count on how many non-empty Control EDs have been processed, in determining whether to continue serving another Control ED or switching to Bulk EDs. When crossing the frame boundary, the internal count is retained. In case of reset, HCD is responsible for restoring this value.
		CBSR=Number of Control EDs Over Bulk EDs Served
		0=1:1
		1=2:1
		2=3:1
		3=4:1

12.4.2.3 USB HC Command Status Register—MBAR + 0x1008

HC uses the HC Command Status register to receive (Rx) commands issued by HCD. It reflects the current HC status. To HCD, it appears to be a write-to-set register. HC ensures bits written as 1 are set in the register, while bits written as 0 remain unchanged in the register. HCD may issue multiple distinct commands to HC without concern for corrupting previously issued commands. HCD has normal read access to all bits.

The Scheduling Overrun Count field indicates the number of frames in which HC detects scheduling overrun errors. This occurs when the Periodic list does not complete before EOF. When a scheduling overrun error is detected, HC increments the counter and sets Scheduling Overrun field in HcInterruptStatus register.

Table 12-3. USB HC Command Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R		Reserved													S	SOC	
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R						Res	erved						OCR	BLF	CLF	HCR	
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bits	Name	Description
0:13	_	Reserved
14:15	SOC	SchedulingOverrunCount—bits are incremented on each scheduling overrun error. SOC is initialized to 00 and wraps at 11. SOC increments when a scheduling overrun is detected, even if SchedulingOverrun in HcInterruptStatus has already been set. HCD uses SOC to monitor any persistent scheduling problems.
16:27	_	Reserved
28	OCR	Ownership Change Request—OS HCD sets this bit to request an HC change of control. When set, HC sets the Ownership Change field in HcInterrupt Status. After changeover, this bit is cleared and remains clear until the next OS HCD request.

12-8 Freescale Semiconductor

Bits	Name	Description
29	BLF	BulkListFilled—bit indicates whether there are Bulk List TDs. HCD sets this bit when it adds a TD to a Bulk List ED. When HC begins processing the Bulk List head, it checks BF. If BLF is 0, HC does not start Bulk List processing. If BLF is 1, HC starts Bulk List processing and sets BF to 0. If HC finds a Bulk List TD, HC sets BLF to 1, causing Bulk List processing to continue. If HC does not find a Bulk List TD and HCD does not set BLF, then BLF remains 0 when HC completes processing and Bulk List processing stops.
30	CLF	Control List Filled—bit indicates whether there are Control List TDs. HCD sets this bit when it adds a TD to a Control List ED. When HC begins processing the Control List head, it checks CLF. If CLF is 0, HC does not start Control List processing. If CF is 1, HC starts Control List processing and sets CLF to 0. If HC finds a Control List TD, CLF is set to 1, causing Control List processing to continue. If HC does not find a Control List TD and HCD does not set CLF, then CLF remains 0 when HC completes processing and Control List processing stops.
31	HCR	HostControllerReset—HCD sets bit to initiate a software reset of HC. Regardless of the HC functional state, it moves to the USBSUSPEND state in which most of the operational registers are reset except those stated otherwise. For example, HcControl Interrupt Routing field and no Host bus access is allowed. On completion of the reset operation, HC clears this bit. Completion must be within 10ms. When set, this bit should not cause a root hub reset and no subsequent reset signaling should be asserted to downstream ports.

12.4.2.4 USB HC Interrupt Status Register —MBAR + 0x100C

This register provides status on various events that cause hardware interrupts. When an event occurs, HC sets the corresponding register bit. When a bit is set, a hardware interrupt is generated, if the interrupt is enabled in the HcInterruptEnable register and the MasterInterruptEnable bit is set. HCD may clear specific bits in this register by writing 1 to bit positions to be cleared. HCD may not set any of these bits. HC never clears the bit.

Table 12-4. USB HC Interrupt Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Rsvd	ОС														
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				Re	eserved	i				RHSC	FNO	UE	RD	SF	WDH	so
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0	_	Reserved
1		Ownership Change—HC sets this bit when HCD sets the HcCommand Status Ownership Change Request field. This event, when unmasked, always generate an immediate System Management Interrupt (SMI). When the SMI pin is not implemented, the OC bit is tied to 0.
2:24	_	Reserved Pin to that impromotions, the Go six to dea to G.

Bits	Name	Description
25	RHSC	RootHubStatusChange—bit is set when HcRhStatus content or content of any HcRhPortStatus[Number of Downstream Port] changes.
26	FNO	Frame Number Overflow—bit is set when HcFmNumber msb (bit 15) changes value (from 0 to 1, or from 1 to 0) and after HccaFrame Number is updated.
27	UE	Unrecoverable Error—bit is set when HC detects a system error not related to USB. HC should not proceed with processing or signaling prior to the system error being corrected. HCD clears this bit after HC is reset.
28	RD	Resume Detected—bit is set when HC detects a USB device asserting a resume signal. It is the transition from no resume signaling to resume signaling that causes this bit to be set. This bit is not set when HCD sets the USBRESUME state.
29	SF	Startof Frame—bit is set by HC at each start of a frame and after updating the Hcca Frame Number. HC also generates an SOF token at the same time.
30	WDH	WritebackDoneHead—bit is set immediately after HC writes HcDoneHead to HccaDoneHead. Further HccaDoneHead updates do not occur until this bit is cleared. HCD should only clear this bit after saving HccaDoneHead contents.
31	SO	SchedulingOverrun—bit is set when USB schedule for the current Frame overruns and after an HccaFrameNumber update. A scheduling overrun also causes the HcCommandStatus SOC to increment.

12.4.2.5 USB HC Interrupt Enable Register—MBAR + 0x1010

Each enable bit in the HC Interrupt Enable register corresponds to an associated interrupt bit in the HcInterruptStatus register. The HcInterruptEnable register is used to control which events generate a hardware interrupt. When:

- 1. a bit is set in the HcInterruptStatus register, and
- 2. the corresponding bit is set in the HcInterruptEnable register, and
- 3. the MasterInterruptEnable bit is set, then
- 4. a hardware interrupt is requested on the host bus.

Writing 1 to a bit in this register sets the corresponding bit, whereas writing 0 to a bit in this register leaves the corresponding bit unchanged. On read, the current value of this register is returned.

Table 12-5. USB HC Interrupt Enable Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	MIE	ОС							B	eserved						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				Re	eserved	t				RHSC	FNO	UE	RD	SF	WDH	so
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

12-10 Freescale Semiconductor

Bits	Name	Description
0	MIE	Master Interrupt Enable—used by HCD.
		0 - writing to this bit is ignored by HC.
		1 - writing to this bit enables interrupt generation, due to events specified in other bits of this register.
1	ОС	Ownership Change
		0 - writing to this bit is ignored by HC.
		1 - writing to this bit enables interrupt generation, due to ownership.
2:24		Reserved
25	RHSC	RootHubStatusChange
		0 - Ignore
		1 - Enable interrupt generation due to root hub status change.
26	FNO	FrameNumberOverflow
		0 - Ignore
		1- Enable interrupt generation due to frame number overflow.
27	UE	Unrecoverable Error
		0 - Ignore
		1 - Enable interrupt generation due to unrecoverable error.
28	RD	Resume Detected
		0 - Ignore
		1 - Enable interrupt generation due to resume detect.
29	SF	StartofFrame
		0 - Ignore
		1 - Enable interrupt generation due to start of frame.
30	WDH	WritebackDone Head
		0 - Ignore
		1 - Enable interrupt generation due to HcDoneHead writeback.
31	SO	SchedulingOverrun
		0 - Ignore
		1 - Enable interrupt generation due to scheduling overrun.

12.4.2.6 USB HC Interrupt Disable Register—MBAR + 0x1014

Each disable bit in the HC Interrupt Disable register corresponds to an associated interrupt bit in the HcInterruptStatus register. The HcInterruptDisable register is coupled with the HcInterruptEnable register. Thus, writing a '1' to a bit in this register clears the corresponding bit in the HcInterruptEnable register, whereas writing a '0' to a bit in this register leaves the corresponding bit in the HcInterruptEnable register unchanged. On read, the current value of the HcInterruptEnable register is returned.

Table 12-6. USB HC Interrupt Disable Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	MIE	ОС							Re	eserved						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				Re	eserved	k				RHSC	FNO	UE	RD	SF	WDH	so
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0	MIE	Master Interrupt Enable—bit is set after a hardware or software reset. 0 written to this bit is ignored by HC. 1 written to this bit disables interrupt generation, due to events specified in other bits of this register.
1	OC	Ownership Change Ignore Disable interrupt generation due to Ownership Change
2:24	_	Reserved
25	RHSC	Root Hub Status Change Ignore Disable interrupt generation due to root hub status change.
26	FNO	Frame Number Overflow Ignore Disable interrupt generation due to frame number overflow.
27	UE	Unrecoverable Error Ignore Disable interrupt generation due to unrecoverable error.
28	RD	Resume Detected Ignore Disable interrupt generation due to resume detect.
29	SF	StartofFrame Ignore Disable interrupt generation due to start of frame.
30	WDH	WritebackDoneHead Ignore Disable interrupt generation due to HcDoneHead writeback.
31	SO	SchedulingOverrun Ignore Disable interrupt generation due to scheduling overrun.

12.4.3 Memory Pointer Partition—MBAR + 0x1018

This HC partition uses 7 32-bit registers. These registers are located at an offset from MBAR of 0x1018. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x1018 + register address

The following registers are available:

- USB HC HCCA Register (0x1018)
- USB HC Period Current Endpoint Descriptor Register (0x101C)
- USB HC Control Head Endpoint Descriptor Register (0x1020)
- USB HC Control Current Endpoint Descriptor Register (0x1024)
- USB HC Bulk Head Endpoint Descriptor Register (0x1028)

12-12 Freescale Semiconductor

- USB HC Bulk Current Endpint Descriptor Register (0x102C)
- USB HC Done Head Register (0x1030)

12.4.3.1 USB HC HCCA Register—MBAR + 0x1018

The HC HCCA register contains the physical address of the Host Controller Communication Area. HCD determines alignment restrictions by writing all 1s to HcHCCA and reading the HcHCCA content. Alignment is evaluated by examining the number of 0s in the lower order bits. Minimum alignment is 256 Bytes. Bits 0 through 7 must always return 0 when read. This area holds control structures and the interrupt table, which are accessed by both the HC and HCD.

Table 12-7. USB HC HCCA Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								F	ICCA							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				HCC	CA							Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:23	HCCA	Host Controller Communication Area—base address.
24:31	1	Reserved

12.4.3.2 USB HC Period Current Endpoint Descriptor Register —MBAR + 0x101C

The HC Period Current Endpoint Descriptor (ED) register contains the physical address of the current isochronous or interrupt endpoint descriptor.

Table 12-8. USB HC Period Current Endpoint Descriptor Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								F	PCED							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R						PC	CED							Res	served	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:27	PCED	PeriodCurrentED—HC uses this field to point to the head of one of the Periodic lists, which is processed in the current Frame. HC updates register content after a periodic ED is processed. HCD may read the content in determining which ED is currently being processed at the time of reading.
28:31	_	Reserved

Freescale Semiconductor 12-13

MPC5200B Users Guide, Rev. 1

12.4.3.3 USB HC Control Head Endpoint Descriptor Register —MBAR + 0x1020

The HC Control Head Endpoint Descriptor register contains the physical address of the first endpoint descriptor of the Control list.

Table 12-9. USB HC Control Head Endpoint Descriptor Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								(CHED							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R						CH	HED							Res	served	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:27		Control Head ED—HC traverses the control list starting with the HcControl Head ED pointer. Content is loaded from HCCA during HC initialization.
28:31	_	Reserved

12.4.3.4 USB HC Control Current Endpoint Descriptor Register —MBAR + 0x1024

The HC Control Current Endpoint Descriptor register contains the physical address of the current control list endpoint descriptor.

Table 12-10. USB HC Control Current Endpoint Descriptor Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								(CCED							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R						CC	CED							Res	served	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:27	CCED	Control Current ED—pointer is advanced to next ED after serving the present one. HC continues processing the list from where it left off in the last frame. When it reaches the control list end, HC checks the HcCommand Status Control List Filled.
		If set, CCED copies HcControlHeadED content to HcControlCurrentED and clears bit.
		If not set, it does nothing.
		HCD is allowed to modify this register only when the ControlListEnable of HcControl is cleared. When set, HCD only reads the instantaneous value of this register. Initially, this is set to 0 to indicate the end of the Control List.
28:31	_	Reserved

12.4.3.5 USB HC Bulk Head Endpoint Descriptor Register—MBAR + 0x1028

The HC Head Endpoint Descriptor register contains the physical address of the first bulk list endpoint descriptor.

12-14 Freescale Semiconductor

Table 12-11. USB HC Bulk Head Endpoint Descriptor Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								E	BHED							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R						ВН	HED							Res	served	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:27		BulkHeadED—HC traverses the Bulk List starting with the HcBulkHeadED pointer. The content is loaded from HCCA during the HC initialization.
28:31	_	Reserved

12.4.3.6 USB HC Bulk Current Endpoint Descriptor Register—MBAR + 0x102C

The HC Bulk Current Endpoint Descriptor register contains the physical address of the current endpoint of the bulk list. The bulk list is served in a round-robin fashion, therefore endpoints are ordered according to their insertion into the list.

Table 12-12. USB HC Bulk Current Endpint Descriptor Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								E	BCED							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R						ВС	CED							Res	served	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:27	BHED	BulkCurrentED—advances to the next ED after HC has served the present ED.
		HC continues processing the list from where it left off in the last Frame. When it reaches the end of the Bulk List, HC checks the HcCommandStatus BulkListFilled.
		If set, BHED copies HcBulkHeadED content to HcBulkCurrentED and clears bit.
		If not set, it does nothing.
		HCD is only allowed to modify this register when HcControl BulkListEnable is cleared. When set, HCD only reads the instantaneous value of this register. This is initially set to 0 to indicate the end of the Bulk List.
28:31	_	Reserved

12.4.3.7 USB HC Done Head Register—MBAR + 0x1030

The HC Done Head register contains the physical address of the last completed transfer descriptor that was added to the done queue. In normal operation, HCD does not need to read this register as its content is periodically written to the HCCA.

Freescale Semiconductor 12-15

MPC5200B Users Guide, Rev. 1

Table 12-13. USB HC Done Head Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R									DH							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R						С	ЭH							Res	served	
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:27		Done Head—When a TD is complete, HC writes the HcDone Head content to the TD NextTD field. HC then overwrites the HcDone Head content with the TD address. This is set to 0 when HC writes the register content to HCCA. HcInterrupt Status Writeback Done Head is also set.
28:31	_	Reserved

12.4.4 Frame Counter Partition—MBAR + 0x1034

This HC partition uses 5 32-bit registers. These registers are located at an offset from MBAR of 0x1034. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x1034 + register address

The following registers are available:

- USB HC Frame Interval Register (0x1034)
- USB HC Frame Remaining Register (0x1038)
- USB HC Frame Number Register (0x103C)
- USB HC Periodic Start Register (0x1040)
- USB HC LS Threshold Register (0x1044)

12.4.4.1 USB HC Frame Interval Register—MBAR + 0x1034

The HC Frame Interval register contains a 14-bit value that indicates:

- the bit-time interval in a Frame. For example, between two consecutive SOFs.
- a 15-bit value that indicates the full speed maximum packet size the HC may transmit or receive without causing scheduling overruns.

HCD may carry out minor adjustment on the frame interval by writing a new value over the present one at each SOF. This provides the programmability necessary for the HC to synchronize with an external clocking resource and to adjust any unknown local clock offset.

Table 12-14. USB HC Frame Interval Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R	FIT			FSMPS													
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R	Reser	rved								FI							
W																	
RESET:	0	0	1	0	1	1	1	0	1	1	0	1	1	1	1	1	

MPC5200B Users Guide, Rev. 1

12-16 Freescale Semiconductor

Bits	Name	Description
0	FIT	FrameIntervalToggle—HCD toggles this bit when it loads a new value to the frame interval.
1:15	FSMPS	FSLargestDataPacket—specifies a value that is loaded into the largest data packet counter at the beginning of each frame. The counter value represents the largest amount of data in bits that the HC can send or received in a single transaction at any given time without causing scheduling overrun. HCD calculates this field value.
16:17	_	Reserved
18:31	FI	FrameInterval—specifies the bit-time interval between two consecutive SOFs. Nominally, this value is set to 11,999. HCD should store the field's current value before resetting HC. Setting the HcCommandStatus HostControllerReset field causes the HC to reset this field to its nominal value. HCD may choose to restore the stored value when the reset sequence completes.

12.4.4.2 USB HC Frame Remaining Register—MBAR + 0x1038

This register is a 14-bit count-down counter containing the remaining current Frame bit-time.

Table 12-15. USB HC Frame Remaining Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R	FRT			Reserved													
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R	Resei	ved								FR							
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bits	Name	Description
0	FRT	FrameRemainingToggle—bit is loaded from the HcFmInterval FrameIntervalToggle field when FrameRemaining reaches 0. HCD uses this bit for synchronization between FrameInterval and FrameRemaining.
1:17	_	Reserved
18:31	FR	FrameRemaining—is a counter that is decremented at each bit-time. When it reaches 0, it is reset by loading the FrameInterval value specified in HcFmInterval at the next bit-time boundary.
		When entering the USBOPERATIONAL state, HC reloads the content with the HcFmInterval Frame Interval and uses the updated value from the next SOF.

12.4.4.3 USB HC Frame Number Register—MBAR + 0x103C

The HC Frame Number register is a 16-bit counter. It provides a timing reference among events happening in the HC and HCD. The HC driver may use the 16-bit value specified in this register and generate a 32-bit frame number without requiring frequent access to the register.

Table 12-16. USB HC Frame Number Register

	msb 0	1	2	3	4	5	6	/	8	9	10	11	12	13	14	15	
R								Res	served								
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

MPC5200B Users Guide, Rev. 1

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R									FN							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
16:31	FN	FrameNumber—is incremented when HcFmRemaining is re-loaded. FN rolls over to 0 after ffff.
		When entering the USBOPERATIONAL state, this is automatically incremented. Content is written to HCCA after HC has incremented the FN at each frame boundary and sent a SOF, but before HC reads the first ED in that frame. After writing to HCCA, HC sets the HcInterrupt Status Startof Frame.
0:15	_	Reserved

12.4.4.4 USB HC Periodic Start Register—MBAR + 0x1040

This register has a 14-bit programmable value that determines when is the earliest time HC should start processing the periodic list.

Table 12-17. USB HC Periodic Start Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	eserved							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Reser	ved								PS						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:17	1	Reserved
18:31	PS	PeriodicStart—field is cleared after a hardware reset. PS is then set by HCD during HC initialization. PS value is calculated roughly as 10% off from HcFmInterval. A typical value is 3E67.
		When HcFmRemaining reaches the value specified, processing of periodic lists has priority over Control/Bulk processing. HC then starts processing the Interrupt list after completing the current Control or Bulk transaction in progress.

12.4.4.5 USB HC LS Threshold Register—MBAR + 0x1044

This register contains an 11-bit value used by the HC to determine whether to commit to the transfer of a maximum 8-Byte LS packet before EOF. Neither the HC nor HCD are allowed to change this value.

Table 12-18. USB HC LS Threshold Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		Rese	rved								LST					
W																
RESET:	0	0	0	0	1	1	0	0	0	1	0	1	0	0	0	0

Bits	Name	Description
0:19		Reserved
20:31	LST	LSThreshold—field contains a value which is compared to the Frame Remaining field prior to initiating a low speed transaction. The transaction is started only if Frame Remaining is greater than or equal to this field. HCD calculates this value with the consideration of transmission and setup overhead.

12.4.5 Root Hub Partition—MBAR + 0x1048

This HC partition uses 5 32-bit registers. These registers are located at an offset from MBAR of 0x1048. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x1048 + register address

The following registers are available:

- USB HC Rh Descriptor A Register (0x1048)
- USB HC Rh Descriptor B Register (0x104C)
- USB HC Rh Status Register (0x1050)
- USB HC Rh Port1 Status Register (0x1054)
- USB HC Rh Port2 Status Register (0x1058)

All registers included in this partition are dedicated to the USB root hub, which is an integral part of the HC though still a functionally separate entity. HCD emulates USBD access to the root hub via a register interface. HCD maintains many USB-defined hub features which are not required to be supported in hardware. For example, the hub's device, configuration, interface, and endpoint descriptors are maintained only in the HCD and some class descriptor static fields. HCD also maintains and decodes the root hub device address as well as other trivial operations better suited to software than hardware.

The root hub register interface is otherwise developed to maintain similarity of bit organization and operation to typical hubs which are found in the system. Each register is read and written as a 32-bit word. These registers are only written during initialization to correspond with the system implementation.

- HcRhDescriptorA and HcRhDescriptorB registers should be implemented such that they are writeable regardless of the HC USB state.
- HcRhStatus and HcRhPortStatus must be writeable during the USBOPERATIONAL state.

NOTE

IS denotes an implementation-specific reset value for that field.

12.4.5.1 USB HC Rh Descriptor A Register—MBAR + 0x1048

This register is the first of two registers describing the root hub characteristics. Reset values are implementation-specific. The HCD emulates the following hub class descriptor fields:

- descriptor length (11)
- descriptor type (TBD)
- hub controller current (0)

All other fields are located in the HcRhDescriptorA and HcRhDescriptorB registers.

Table 12-19. USB HC Rh Descriptor A Register

	msb 0	1	2	3	4	5	6	/	8	9	10	11	12	13	14	15
R				POTE	PGT							Rese	erved			
W																
RESET:	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	R	eserved		NOC	ОСР	DT	NPS	PSM				NI	DP			
W				P	М											
RESET:	0	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0

Bits	Name	Description
0:7	POTPGT	PowerOnToPowerGoodTime—specifies the duration HCD must wait before accessing a Root Hub powered-on port. POTPGT is implementation-specific. The time unit is 2ms. Duration is calculated as POTPGT x 2ms.
8:18	_	Reserved
19	NOCP	No OverCurrent Protection—describes how the Root Hub port overcurrent status is reported. When NOCP is cleared, OCPM specifies global or per-port reporting. 0 = Overcurrent status is reported collectively for all downstream ports. 1 = No overcurrent protection supported.
20	ОСРМ	OverCurrentProtectionMode—describes how the Root Hub port overcurrent status is reported. At reset, OCPM should reflect the same mode as PowerSwitchingMode. OCPM is valid only if NoOverCurrentProtection is cleared. 0 = Overcurrent status is reported collectively for all downstream ports. 1 = Overcurrent status is reported on a per-port basis.
21	DT	DeviceType—specifies Root Hub is not a compound device. Root Hub is not permitted to be a compound device. DT should always read/write 0.
22	NPS	No Power Switching—specifies whether power switching is supported or ports are always powered. NPS is implementation specific. When this bit is cleared, PSM specifies global or per-port switching. 0 = Ports are power switched. 1 = Ports are always powered on when HC is powered on.
23	PSM	PowerSwitchingMode—specifies how the root hub port power switching is controlled. PSM is implementation-specific and is only valid if the NoPowerSwitching field is cleared. 0 = All ports are powered at the same time. 1 = Each port is powered individually. This mode lets port power be controlled by either the global switch or per-port switching. • If PortPowerControlMask bit is set, port responds only to port power commands (Set/ClearPortPower). • If port mask is cleared, port is controlled only by the global power switch (Set/ClearGlobalPower).
24:31	NDP	Number Downstream Ports—specifies the number of downstream ports supported by the Root Hub. NDP is implementation-specific. • Minimum number of ports is 1. • Maximum number of ports (supported by OpenHCI) is 15.

12.4.5.2 USB HC Rh Descriptor B Register—MBAR + 0x104C

This register is the second of two registers describing the Root Hub characteristics. These fields are written during initialization to correspond with the system implementation. Reset values are implementation-specific.

12-20 Freescale Semiconductor

Table 12-20. USB HC Rh Descriptor B Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								F	PPCM							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R									DR							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:15	PPCM	PortPowerControlMask—each bit indicates whether a port is affected by a global power control command when PSM is set.
		When set, port power state is only affected by per-port power control (Set/ClearPortPower).
		When cleared, port is controlled by the global power switch (Set/ClearGlobal Power).
		If device is configured to Global Switching Mode (PSM=0), this field is not valid.
		bit 0—Reserved
		bit 1—Ganged-power mask on Port #1
		bit 2—Ganged-power mask on Port #2
		bit15—Ganged-power mask on Port #15
16:31	DR	NDevice Removable—each bit is dedicated to a Root Hub port. When cleared, the attached device is removable. When set, the attached device is not removable.
		bit 0—Reserved
		bit 1—Device attached to Port #1
		bit 2—Device attached to Port #2
		bit15—Device attached to Port #15

12.4.5.3 USB HC Rh Status Register—MBAR + 0x1050

This register is divided into two parts. The lower 16 bits of a 32-bit word represents the hub status field; the upper word represents the hub status change field. Reserved bits should always be written 0.

Table 12-21. USB HC Rh Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	CRWE							Reserv	/ed						OCIC	LPSC
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	DRWE							Reserv	/ed						OCI	LPS
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

Bits	Name	Description
0	CRWE	ClearRemoteWakeUpEnable (write)
		Writing 1 clears DRWE.
		Writing 0 has no effect.
1:13	1	Reserved
14	OCIC	OverCurrentIndicatorChange—is set by hardware when a change occurs to the OCI field of this register.
		Writing 1 causes HCD to clear this bit.
		Writing 0 has no effect.
15	LPSC	Local Power Status Change (read)—Root Hub does not support the local power status feature. Thus, this bit is always read as 0.
		SetGlobalPower (write)
		 In global power mode (PSM=0), LPSC is written to 1 to turn on power to all ports (clear Port Power Status).
		In per-port power mode, LPSC sets PortPowerStatus only on ports whose PPCM bit is not set.
		Writing 0 has no effect.
16	DRWE	Device Remote Wake Up Enable (write)—enables a Connect Status Change bit as a resume event, causing a USBSUSPEND to USBRESUME state transition and setting the Resume Detected interrupt.
		0 = ConnectStatusChange is not a remote WakeUp event.
		1 = ConnectStatusChange is a remote WakeUp event.
		Set Remote WakeUp Enable (read).
		1 = Sets DRWE.
		0 = Has no effect.
17:29	_	Reserved
30	OCI	OverCurrentIndicator—reports overcurrent conditions when global reporting is implemented.
		When set, an overcurrent condition exists.
		When cleared, all power operations are normal.
		If per-port overcurrent protection is implemented this bit is always 0.
31	LPS	LocalPowerStatus—Root Hub does not support the local power status feature. This bit is always read as 0 (write) ClearGlobalPower.
		In global power mode (PSM=0), bit is written to 1 to turn off power to all ports (clear PortPowerStatus).
		In per-port power mode, bit clears PortPowerStatus only on ports whose PPCM bit is not set.
		Writing 0 has no effect.

12.4.5.4 USB HC Rh Port1 Status Register—MBAR + 0x1054

This register is controls and reports port events on a per-port basis. The Number of Downstream Ports (NDP) represents the number of HcRhPortStatus registers that are implemented in hardware. The lower 16-bits is used to reflect the port status; the upper 16-bits reflects the status change bits. MPC5200B has NDP = 2, therefore, HcRhPort1Status (MBAR + 1054) and HcRhPort2Status (MBAR + 1058).

Some status bits are implemented with special write behavior. If a transaction (token through handshake) is in progress when a write to change port status occurs, the resulting port status change is postponed until the transaction completes. Reserved bits should always be written 0.

MPC5200B Users Guide, Rev. 1

Table 12-22. USB HC Rh Port1 Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R					F	Reserve	ed					PRSC	OCIC	PSSC	PESC	CSC
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R			Rese	rved			LSDA	PPS	F	Reserve	d	PRS	POCI	PSS	PES	ccs
W																
RESET:	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

Bits	Name	Description
0:10	_	Reserved
11	PRSC	PortResetStatusChange—bit is set at the end of the 10ms port reset signal. • Writing 1 causes HC to clear this bit. • Writing 0 has no effect. 0 = Port reset not complete 1 = Port reset complete
12	OCIC	PortOverCurrentIndicatorChange—bit is valid only if overcurrent conditions are reported on a per-port basis. This bit is set when Root Hub changes the PortOverCurrentIndicator bit. • Writing 1 causes HC to clear this bit. • Writing 0 has no effect. 0 = No change in POCI 1 = POCI has changed
13	PSSC	PortSuspendStatusChange—bit is set when the full resume sequence completes. Sequence includes a 20s resume pulse, LS EOP, and 3ms resychronization delay. • Writing 1 causes HC to clear this bit. • Writing 0 has no effect. This bit is also cleared when ResetStatusChange is set. 0 = Resume not complete 1 = Resume complete
14	PESC	PortEnableStatusChange—bit is set when hardware events cause the PES bit to be cleared. Changes from HCD writes do not set this bit. • Writing 1 causes HC to clear this bit. • Writing 0 has no effect. 0 = No change in PES 1 = Change in PES

Bits	Name	Description
15	CSC	Connect Status Change—bit is set whenever a connect or disconnect event occurs. • Writing 1 causes HC to clear this bit. • Writing 0 has no effect.
		If CCS is cleared when a SetPortReset, SetPortEnable, or SetPortSuspend write occurs, this bit is set to force the driver to re-evaluate the connection status since these writes should not occur if the port is disconnected.
		0 = No change in CCS 1 = Change in CCS
		If the Device Removable [NDP] bit is set, this bit is set only after a Root Hub reset to notify the system that the device is attached.
16:21	_	Reserved
22	LSDA	LowSpeed Device Attached (read)—bit indicates the speed of the device attached to this port. 0 = Full speed device attached
		1 = Low speed device attached This field is valid only when CurrentConnectStatus is set.
		Clear Port Power (write)
		Writing 1 causes HC to clear the PortPowerStatus bit.
		Writing 0 has no effect.
23	PPS	PortPowerStatus (read)—bit reflects the port power status, regardless of the type of power switching implemented.
		If an overcurrent condition is detected, this bit is cleared. HCD sets this bit by writing SetPortPower or SetGlobalPower. HCD clears this bit by writing ClearPortPower or ClearGlobalPower. Which power control switches are enabled is determined by PowerSwitchingMode and PortPortControlMask[NDP].
		In global switching mode (PSM=0), only Set/ClearGlobalPower controls this bit.
		In per-port power switching (PSM=1), if the PortPowerControlMask[NDP] bit for the port is set, only Set/ClearPortPower commands are enabled.
		If the mask is not set, only Set/ClearGlobalPower commands are enabled.
		If port power is disabled, CurrentConnectStatus, PortEnableStatus, PortSuspendStatus, and PortResetStatus should be reset.
		0 = Port power is off
		1 = Port power is on
		SetPortPower (write) Writing causes HC to set the PortPowerStatus bit.
		Writing 0 has no effect.
		If power switching is not supported, this bit always reads '1b'.
24:26	_	Reserved
27	PRS	PortResetStatus (read)—When this bit is set by a write to SetPortReset, port reset signaling is asserted. When reset is completed, this bit is cleared when PortResetStatusChange is set. This bit cannot be set if CurrentConnectStatus is cleared.
		0 = Port reset signal is not active
		1 = Port reset signal is active
		SetPortReset (write)
		 Writing 1 causes HC to set port reset signaling. Writing 0 has no effect
		 Writing 0 has no effect. If CurrentConnectStatus is cleared, a write does not set PortResetStatus. Instead, it sets ConnectStatusChange. This notifies the driver that an attempt was made to reset a
		disconnected port.

MPC5200B Users Guide, Rev. 1

12-24 Freescale Semiconductor

Bits	Name	Description
28	POCI	PortOverCurrentIndicator (read)—bit is only valid when root hub is configured in such a way that overcurrent conditions are reported on a per-port basis.
		If per-port overcurrent reporting is not supported, this bit is set to 0.
		If cleared, all power operations are normal for this port.
		If set, an overcurrent condition exists on this port. This bit always reflects the overcurrent input signal
		0 = No overcurrent condition.
		1 = Overcurrent condition detected.
		Clear Suspend Status (write)
		Writing 1 causes HC to initiate a resume.
		Writing 0 has no effect.
		A resume is initiated only if PSS is set.
29	PSS	PortSuspendStatus (read)—bit indicates port is suspended or in resume sequence. It is set by a SetSuspendState write and cleared when PortSuspendStatusChange is set at the end of the resume interval.
		This bit cannot be set if CCS. This bit is cleared when:
		PortResetStatusChange is set at the end of the port reset, or
		when HC is placed in the USBRESUME state.
		If an upstream resume is in progress, it should propagate to the HC.
		0 = Port is not suspended
		1 = Port is suspended
		SetPortSuspend (write)
		Writing 1 causes HC to set PSS bit.
		Writing 0 has no effect.
		If CurrentConnectStatus is cleared, this write does not set PSS. Instead it sets ConnectStatusChange. This notifies the driver an attempt was made to suspend a disconnected port.

Bits	Name	Description
30	PES	PortEnableStatus (read)—indicates whether the port is enabled or disabled.
		The Root Hub may clear this bit when the following conditions are detected:
		an overcurrent condition
		disconnect event
		switched-off power
		operational bus error (such as babble)
		This change causes PESC to be set. HCD sets this bit by writing SetPortEnable and clears it by writing ClearPortEnable.
		PES cannot be set when CurrentConnectStatus is cleared. If not already set, PES is set at the completion of a port reset when ResetStatusChange is set or port suspend when SuspendStatusChange is set.
		0 = port is disabled
		1 = port is enabled
		SetPortEnable (write)—HCD sets PES by writing 1. Writing 0 has no effect.
		If CCS is cleared, this write does not set PES, but instead sets CSC. This notifies the driver that an attempt was made to enable a disconnected port.
31	CCS	CurrentConnectStatus (read)—reflects current state of downstream port.
		0 = No device connected
		1 = Device connected
		ClearPortEnable (write)—HCD writes 1 to this bit to clear PortEnableStatus bit. Writing 0 has no effect. CCS is not affected by any write.
		Note: This bit is always read '1b' when the attached device is non-removable (Device Removeable [NDP]).

12.4.5.5 USB HC Rh Port2 Status Register—MBAR + 0x1058

This register is controls and reports port events on a per-port basis. The Number of Downstream Ports (NDP) represents the number of HcRhPortStatus registers that are implemented in hardware. The lower word is used to reflect the port status; the upper word reflects the status change bits. MPC5200B has NDP = 2, therefore, HcRhPort1Status (MBAR + 1054) and HcRhPort2Status (MBAR + 1058).

Some status bits are implemented with special write behavior. If a transaction (token through handshake) is in progress when a write to change port status occurs, the resulting port status change is postponed until the transaction completes. Reserved bits should always be written 0.

Table 12-23. USB HC Rh Port2 Status Register

msb 0 R Reserved **PRSC** OCIC **PSSC PESC** CSC W RESET: 31 lsb R **LSDA PPS** PRS **POCI PSS PES** CCS Reserved Reserved W RESET:

12-26 Freescale Semiconductor

Bits	Name	Description
0:10	_	Reserved
11	PRSC	PortResetStatusChange—bit is set at the end of the 10ms port reset signal. • Writing 1 clears this bit. • Writing 0 has no effect. 0 = Port reset not complete 1 = Port reset complete
12	OCIC	PortOverCurrentIndicatorChange—bit is valid only if overcurrent conditions are reported on a per-port basis. This bit is set when Root Hub changes the PortOverCurrentIndicator bit. • Writing 1 clears this bit. • Writing 0 has no effect. 0 = No change in POCI 1 = POCI has changed
13	PSSC	PortSuspendStatusChange—bit is set when the full resume sequence completes. Sequence includes a 20s resume pulse, LS EOP, and 3ms resychronization delay. • Writing 1 clears this bit. • Writing 0 has no effect. This bit is also cleared when ResetStatusChange is set. 0 = Resume not complete 1 = Resume complete
14	PESC	PortEnableStatusChange—bit is set when hardware events cause the PES bit to be cleared. • Writing 1 clears this bit. • Writing 0 has no effect. 0 = No change in PES 1 = Change in PES
15	CSC	ConnectStatusChange—bit is set whenever a connect or disconnect event occurs. • Writing 1 clears this bit. • Writing 0 has no effect. If CCS is cleared when a SetPortReset, SetPortEnable, or SetPortSuspend write occurs, this bit is set to force the driver to re-evaluate the connection status since these writes should not occur if the port is disconnected. 0 = No change in CCS 1 = Change in CCS If the DeviceRemovable[NDP] bit is set, this bit is set only after a Root Hub reset to notify the system that the device is attached.
16:21	_	Reserved
22	LSDA	LowSpeed Device Attached (read)—bit indicates the speed of the device attached to this port. 0 = Full speed device attached 1 = Low speed device attached This field is valid only when CurrentConnectStatus is set. ClearPortPower (write) Writing 1 causes HC to clear the PortPowerStatus bit. Writing 0 has no effect.

Bits	Name	Description
23	PPS	PortPowerStatus (read)—bit reflects the port power status, regardless of the type of power switching implemented.
		If an overcurrent condition is detected, this bit is cleared. HCD sets this bit by writing SetPortPower or SetGlobalPower. HCD clears this bit by writing ClearPortPower or ClearGlobalPower. Which power control switches are enabled is determined by PowerSwitchingMode and PortPortControlMask[NDP].
		In global switching mode (PSM=0), only Set/ClearGlobalPower controls this bit.
		In per-port power switching (PSM=1), if the PortPowerControlMask[NDP] bit for the port is set, only Set/ClearPortPower commands are enabled.
		If the mask is not set, only Set/ClearGlobalPower commands are enabled.
		If port power is disabled, CurrentConnectStatus, PortEnableStatus, PortSuspendStatus, and PortResetStatus should be reset.
		0 = Port power is off
		1 = Port power is on
		SetPortPower (write)
		Writing causes HCD to set the PortPowerStatus bit.
		Writing 0 has no effect.
		If power switching is not supported, this bit always reads '1b'.
24:26	_	Reserved
27	PRS	PortResetStatus (read)—When this bit is set by a write to SetPortReset, port reset signaling is asserted. When reset is completed, this bit is cleared when PortResetStatusChange is set. This bit cannot be set if CurrentConnectStatus is cleared.
		0 = Port reset signal is not active
		1 = Port reset signal is active
		SetPortReset (write)
		Writing 1 causes HCD to set port reset signaling.
		Writing 0 has no effect.
		If CurrentConnectStatus is cleared, a write does not set PortResetStatus. Instead, it sets ConnectStatusChange. This notifies the driver that an attempt was made to reset a disconnected port.
28	POCI	PortOverCurrentIndicator (read)—bit is only valid when root hub is configured in such a way that overcurrent conditions are reported on a per-port basis.
		If per-port overcurrent reporting is not supported, this bit is set to 0.
		If cleared, all power operations are normal for this port.
		If set, an overcurrent condition exists on this port. This bit always reflects the overcurrent input signal
		0 = No overcurrent condition.
		1 = Overcurrent condition detected.
		ClearSuspendStatus (write)
		Writing 1 causes HC to initiate a resume.
		Writing 0 has no effect.
		A resume is initiated only if PSS is set.

12-28 Freescale Semiconductor

Bits	Name	Description
29	PSS	PortSuspendStatus (read)—bit indicates port is suspended or in resume sequence. It is set by a SetSuspendState write and cleared when PortSuspendStatusChange is set at the end of the resume interval.
		This bit cannot be set if CCS. This bit is cleared when:
		PortResetStatusChange is set at the end of the port reset, or
		when HC is placed in the USBRESUME state.
		If an upstream resume is in progress, it should propagate to the HC.
		0 = Port is not suspended
		1 = Port is suspended
		SetPortSuspend (write)
		Writing 1 causes HCD to set PSS bit.
		Writing 0 has no effect.
		If CurrentConnectStatus is cleared, this write does not set PSS. Instead it sets ConnectStatusChange. This notifies the driver an attempt was made to suspend a disconnected port.
30	PES	PortEnableStatus (read)—indicates whether the port is enabled or disabled.
		The Root Hub may clear this bit when the following conditions are detected:
		an overcurrent condition
		disconnect event
		switched-off power
		operational bus error (such as babble)
		This change causes PESC to be set. HCD sets this bit by writing SetPortEnable and clears it by writing ClearPortEnable.
		PES cannot be set when CurrentConnectStatus is cleared. If not already set, PES is set at the completion of a port reset when ResetStatusChange is set or port suspend when SuspendStatusChange is set.
		0 = port is disabled
		1 = port is enabled
		SetPortEnable (write)—HCD sets PES by writing 1. Writing 0 has no effect.
		If CCS is cleared, this write does not set PES, but instead sets CSC. This notifies the driver that an attempt was made to enable a disconnected port.
31	ccs	CurrentConnectStatus (read)—reflects current state of downstream port.
		0 = No device connected
		1 = Device connected
		Clear Port Enable (write)—HCD writes 1 to this bit to clear Port Enable Status bit. Writing 0 has no effect. CCS is not affected by any write.
		Note: This bit is always read '1b' when the attached device is non-removable (Device Removeable [NDP]).

Universal Serial Bus (USB)

Notes

MPC5200B Users Guide, Rev. 1

Chapter 13 BestComm

13.1 Overview

The following sections are contained in this document:

- Section 13.2. BestComm Functional Description
- Section 13.15, BestComm DMA Registers—MBAR+0x1200
- Section 13.16, On-Chip SRAM

BestComm provides an efficient, integrated approach to gathering and manipulating data sets from a broad range of communication interfaces. The DMA controller reduces the workload on the microprocessor, allowing it to continue execution of system software. The DMA microcode engine is tailored to efficiently transfer data across the internal bus architecture to memory and peripheral devices.

The DMA controller processes microcode tasks that are stored in local memory (SRAM 16 kBytes). A task is a sequence of instructions, referred to as *descriptors*, that specifies a series of data movements or manipulations. The DMA controller steps through the descriptors and executes the specified function in a similar fashion to a CPU executing a program.

For the MPC5200B, BestComm consists of SDMA and the following peripheral interfaces:

- 10/100 Fast Ethernet Controller (FEC)
- I²C
- PCI
- ATA
- LocalPlus
- PSC Peripheral Serial Controller (implementing a different mix of functionalities such as SPI, UART, CODEC 8-16-32 bits, AC97 controller, I2S, IrDA controller)

Many of the peripherals' port pins serve multiple functions, allowing flexibility in optimizing the system to meet a specific set of integration requirements. For a description of the pin multiplexing scheme and supported functions, refer to Chapter 2, *Signal Descriptions*.

Other peripheral functions are included in MPC5200B, but are not directly supported by BestComm. These peripherals include:

- A separate Serial Peripheral Interface (SPI), which:
 - supports a 6.25MHz rate as a master
 - supports a 12.5 MHz rate as a slave
- USB Host/Hub controller
- MSCAN controller
- General Purposes Timers

13.2 BestComm Functional Description

The BestComm I/O subsystem consists of the following:

- a BestComm DMA Controller
- an on-chip 16 kBytes SRAM
- a set of peripheral interface modules with DMA controllable:
 - transmit (Tx)
 - receive (Rx)

The BestComm unit provides an interrupt control and data movement interface. The Interface is on a separate peripheral bus to several on-chip peripheral functions. This independent control of data movement leaves the e300 core free to concentrate on higher level activities, which increases overall system performance.

BestComm DMA can control data movement on the following peripherals and interfaces:

- PCI bus
- ATA Controller
- Ethernet
- PSC
- I²C
- IrDA
- LP bus interface

Freescale Semiconductor

NOTE

It is possible for the BESTComm DMA to produce misaligned word addresses on its Slave and Comm bus. These accesses occur due to incorrect program code executed by the BestComm unit. Any misaligned access will be incorrectly processed on the internal SRAM bus and the Comm bus.

The work around is to avoid using misaligned accesses. That is, BestComm program code must be written such that misaligned word accesses will not occur.

BestComm DMA performs general purpose DMA transfers. Most data transactions are between the peripheral/interface (typically a FIFO) and the system SDRAM.

BestComm allows up to 16 tasks to run simultaneously under the control of up to 32 DMA hardware requestors, user selectable from a possible 64 DMA request sources.

A hardware logic unit capable of basic logic operations (boolean arbitrary operations, shift, byte swap) plus some precoded CRC (CRC-16, CRC-CCITT, CRC-32, Internet Checksum) is also integrated in the SDMA engine.

BestComm uses internal buffers to prefetch reads and post writes such that bursting is used whenever possible. This optimizes both internal and external bus activity.

Speculative reads from system SDRAM may also be enabled to increase performance.

FIFO interfaces are implemented between the DMA and each peripheral/interface. As FIFOs are filled or emptied, automatic requests are made to the DMA unit. Based on programmable water mark levels (called ALARM and GRANULARITY level), the DMA unit moves data to and from the FIFOs. This method insures uninterrupted data movement at the given peripheral/interface rate.

13.3 Features summary

- A programmatic, deterministic capability for managing bus resources while servicing many data streams with individual latency and processing requirements.
- Single cycle access of peripheral and memory data.
- Support for up to 16 simultaneously enabled tasks (channels).
- Support for up to 32 separate DMA requestors at a time, user selectable from a possible 64 DMA request sources.
- Support for operations with up to 12 sources, or 11 sources and 1 destination.
- Simultaneous 32-bit reads and writes.
- Checksum generation.
- · Endian conversion.
- Chaining/Scatter-gather capability.
- Support for packet-based I/O protocols (limitation might be dictated by performance when too much control is implemented within the task).
- External DMA Request.
- · External DMA breakpoint.

13.4 Descriptors

The DMA controller interprets a series of descriptors that specifies a sequence of data movements and manipulations. A collection of these descriptors is much like a program. The two types of descriptors are Loop Control Descriptors (LCDs) and Data Routing Descriptors (DRDs). These descriptors allow a "for"-loop programming style for the SDMA engine.

The LCDs specify the index variables (memory pointers, byte counters, etc.) along with the termination and increment values, while the DRDs specify the nature of the operation to perform.

13.5 Tasks

A task is a microcode program that embodies a desired function. An example could be to gather an ethernet frame, store it in memory and interrupt the processor when done. The multi-channel DMA supports sixteen simultaneously enabled tasks. By dynamically swapping task pointers in the task table, an unlimited number of tasks could be supported.

13.6 Memory Map/ Register Definitions

Memory organization is described in the register array pointed to by the Task Base Address Register (TaskBAR).

The TaskBAR identifies a location for a table of pointers to multi-channel DMA tasks (Task TABLE or Entry Table).

MPC5200B Users Guide, Rev. 1

13-2 Freescale Semiconductor

Each task has an entry (8 long words) that contains information about the microcode's location (start address and stop address) in memory as well as pointers to the variable table to be used in the task, the Function Descriptor Table for the logic functions used within the task, the Context Save area used during task switch/swap and some specific flags to enable performance affecting modes such as speculative reads, prefetch enable, readline and combined write.

A task's code should always be loaded into SRAM as the SDMA engine can fetch its descriptors from this internal memory with one cycle access per instruction. It is not recommended to place the code in SDRAM as there will then be a few overhead clocks which are needed to load the SDMA instruction unit.

13.7 Task Table (Entry Table)

The Task Table (or Entry Table) is a memory region containing pointers to each SDMA task. A Task Table Base Address Register (taskBAR) sets the location of the Task Table itself. Each entry in the Task Table contains pointers to the task's first descriptor, last descriptor, Variable Table, and other task-specific information.

13.8 Task Descriptor Table

Each Task Descriptor Table is a memory region containing the descriptors that comprise the task. The pointers in the Task Table define the beginning and end of each Task Descriptor Table.

13.9 Variable Table

Each task has a private 32-word Variable Table, where a word is four bytes (32 bits). According to the application requirements, the user initializes some of the words in the Variable Table as follows. The first 24 words are for pointers, counter values and initial data. The DMA Engine manipulates these variables as it executes loops. The next 8 words hold words-aligned, two-byte ("short word" or 16 bit word) increment variables.

13.10 Function Descriptor Table

An area of 256 bytes divided in 4 groups of 64 bytes. Each group can represent a set of 16 different Logic Functions belonging to a single execution unit. Every function is encoded with a single word (32 bits).

The implemented SDMA engine uses only one out of four potential Execution Units, execution unit 3, so all the functions needed by the task will be encoded in the third group (starting at offset 0xC0 from the start address of the Function Descriptor Table). The other words are reserved and must be written to '0' to maintain memory alignment.

For space optimization, tasks which use the same logic functions could share a single Function Descriptor Table avoiding the redundancy of re-writing the same table many times in SRAM.

13.11 Context Save Area

This is an area allocated for each task to allow the SDMA engine to save vital data (such as index values, etc.) during a task switch operation to allow later restoration.

The context save area should never be used or modified by the user as it is managed directly by the SDMA engine.

13.12 External DMA Request

BestComm supports 64 user selectable request sources. 32 of them are controllable via GPIO pins, see SDMA Request MuxControl Register. This GPIO group is split up into two different kind of GPIO's, 24 simple and 8 simple interrupt GPIO's. The differences are:

- Simple GPIO's: The external request event must be kept asserted until the first, intended data transaction is executed.
- Simple interrupt GPIO's: The external request event can be deasserted before the first, intended data transaction has started. Additionally, the external request can generate an interrupt for the e300 core.

The GPIO, which is indended to generate a DMA request, must be enabled and set up as input, in both cases (see General Purpose I/O (GPIO) chapter).

NOTE

MPC5200B doesn't support external DMA Acknowledge.

13.13 External DMA Breakpoint

The SDMA engine can be halted if the Enable Breakpoint (EB) and the Enable External Breakpoint (E) bits of the SDMA Debug Module Control Register are set and the 603e e300 core hits an Instruction Address Breakpoint or a Data Address Breakpoint.

Freescale Semiconductor

13.14 BestComm XLB Address Snooping

BestComm prefetches data from the XLB into 4 32-Byte wide Read Line Buffers. A buffer will be invalidated, if the BestComm XLB Address Snooping (BSDIS) is enabled, see XLB Arbiter Configuration Register, and a write operation on the XLB to the prefetched data address happens. No invalidation of the buffer will happen if the BSDIS bit is set. BestComm will still use the old prefetched data.

13.15 BestComm DMA Registers—MBAR+0x1200

A register overview is provided in Section 3.2, Internal Register Memory Map.

Hyperlinks to the BestComm DMA registers are provided below:

- Section 13-1, SDMA Task Bar Register (0x1200)
- Section 13-2, SDMA Current Pointer Register (0x1204)
- Section 13-3, SDMA End Pointer Register (0x1208)
- Section 13-4, SDMA Variable Pointer Register (0x120C)
- Section 13-5, SDMA Interrupt Vector, PTD Control Register (0x1210)
- Section 13-6, SDMA Interrupt Pending Register (0x1214)
- Section 13-7, SDMA Interrupt Mask Register (0x1218)
- Section 13-8, SDMA Task Control 0 Register (0x121C)
- Section 13-9, SDMA Task Control 2 Register (0x1220)
- Section 13-10, SDMA Task Control 4 Register (0x1224)
- Section 13-11, SDMA Task Control 6 Register (0x1228)
- Section 13-12, SDMA Task Control 8 Register (0x122C)
- Section 13-13, SDMA Task Control A Register (0x1230)
- Section 13-14, SDMA Task Control C Register (0x1234)
- Section 13-15, SDMA Task Control E Register (0x1238)
- Section 13-16, SDMA Initiator Priority 0 Register (0x123C)
- Section 13-17, SDMA Initiator Priority 4 Register (0x1240)

- Section 13-18, SDMA Initiator Priority 8 Register (0x1244)
- Section 13-19, SDMA Initiator Priority 12 Register (0x1248)
- Section 13-20, SDMA Initiator Priority 16 Register (0x124C)
- Section 13-21, SDMA Initiator Priority 20 Register (0x1250)
- Section 13-22, SDMA Initiator Priority 24 Register (0x1254)
- Section 13-23, SDMA Initiator Priority 28 Register (0x1258)
- Section 13-24, SDMA Request MuxControl (0x125C)
- Section 13-26, SDMA task Size 0/1 (0x1260)
- Section 13-26, SDMA task Size 0/1 (0x1264)
- Section 13-30, SDMA Debug Module Comparator 1, Value 1 Register (0x1270)
- Section 13-31, SDMA Debug Module Comparator 2, Value 2 Register (0x1274)
- Section 13-31, SDMA Debug Module Comparator 2, Value 2 Register (0x1278)
- Section 13-36, SDMA Debug Module Status Register (0x127C)

13.15.1 SDMA Task Bar Register—MBAR + 0x1200 sdma_task_bar_register

Table 13-1. SDMA Task Bar Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								ta	skBar							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								ta	skBar							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:31	taskBar	TaskBAR is the pointer to the base address of the Task Table (Entry Table)

13.15.2 SDMA Current Pointer Register—MBAR + 0x1204

Table 13-2. SDMA Current Pointer Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Curre	entPoint	ter						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Curre	entPoint	ter						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:31	currentPointer	CurrentPointer contains the address of the currently executing DMA descriptor.

13.15.3 SDMA End Pointer Register—MBAR + 0x1208

Table 13-3. SDMA End Pointer Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								End	dPointe	r						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								End	dPointe	r						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:31	endPointer	EndPointer contains the address of the last descriptor in the currently executing SDMA task.

13.15.4 SDMA Variable Pointer Register—MBAR + 0x120C

Table 13-4. SDMA Variable Pointer Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Varia	blePoin	ter						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

·

MPC5200B Users Guide, Rev. 1

BestComm DMA Registers—MBAR+0x1200

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Varia	blePoin	ter						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:31	variablePointer	VariablePointer contains the starting address of the variable table for the currently executing task.

13.15.5 SDMA Interrupt Vector, PTD Control Register—MBAR + 0x1210

Table 13-5. SDMA Interrupt Vector, PTD Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Vector /	A[7:6]			INA	[3:0]			Vecto	r B[7:6]			INI	B[3:0]	
W																
RESET:	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	T/I	TEA	HE						Re	served						PE
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

13-7

Bit	Name	Description
0:7	IntVect1	The Interrupt Vector register is used during interrupt acknowledge read cycles. The high order four bits are programmed by the user, and the low order four bits are decoded from either the current task number or execution unit. If any task interrupts are asserted, Interrupt Vector 1 is driven during the interrupt acknowledge cycle. If the task interrupts are negated and the execution unit interrupts are asserted, Interrupt Vector 2 is driven during the interrupt acknowledge cycle. The registers are set to the uninitialized vector \$0F by system reset.
		The interrupt A number is prioritized with IPR[15] the highest and IPR[0] the lowest. If all interrupt mask bits are set, then INA[3:0] = 1111 is read from this location.
		The interrupt B number is prioritized with the dbgInterrupt as the highest and euInterrupt[0] the lowest. If all interrupt mask bits are set, then INB[3:0] = 1111 is read from this location.
8:15	IntVect2	See above
16	T/I	T/I: Task/Iniator priority. Set to '1' to switch to "TASK priority" control; set to '0' to revert to INITIATOR (Requestor) Priority mode.
		The priority level of either the TASK or the initiator is set in the register IPR0 through IPR31
17	TEA	TEA: If set to '1' a TEA received by BestComm will be ignored and the task will NOT be halted. TEA indication can still trigger an interrupt if the proper mask bit is cleared in the Interrupt Mask Register and the TEA status bit plus the TASK number of the task which received the TEA are still updated in the Interrupt Pending Register.
18	HE	HE = 1; allows smartDMA higher task number same request priority to block current task, and allow arbitration.
		HE = 0; disables higher task number from blocking. This bit is cleared by reset.
19:30	_	Reserved
31	PE	Prefetch Disable: set to '1' to disable prefetch. Set to '0' to enable prefetch on CommBus

13.15.6 SDMA Interrupt Pending Register—MBAR + 0x1214

Table 13-6. SDMA Interrupt Pending Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	DBG	Rs	svd	TEA		Etn	[3:0]					EU	[7:0]			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								TAS	K[15:0)]						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

BestComm DMA Registers—MBAR+0x1200

Bit	Name	Description
0	DBG	Debug
1:2	_	Reserved
3	TEA	A TEA has been received by the currently running task. The corresponding task number is written in the Error Task Number field
4:7	Etn[3:0]	Error Task Number: when a TEA is received by the currently executing task its corresponding number is indicated here. If the TEA bit of the PtdControl register is set then the task will not be halted. If the TEA Msk bit in the Mask register is set then no interrupt to the core will be generated.
8:15	EU[7-0]	Execution Unit: only EU3 is valid for MPC5200B
16:31	TASK[15:0]	Each bit corresponds to an interrupt source defined by the task number or execution unit. This register contains a registered copy of the interrupt signal that the interrupting source generates. The corresponding bit in the register reflects the state of the interrupt signal even if the corresponding mask bit is set. An interrupt is masked by setting the corresponding bit in the IntMask register. A bit is cleared by writing 1 to that bit location. Writing 0 has no effect. At system reset, all bits are initialized to logic 0. 0 = The corresponding interrupt source is not pending. 1 = The corresponding interrupt source is pending.

13.15.7 SDMA Interrupt Mask Register—MBAR + 0x1218

Table 13-7. SDMA Interrupt Mask Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	DBG	Rese	erved	TEA		Rese	erved					EU[7:0]			
W				Msk												
RESET:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								TAS	K[15:0)]						
W																
RESET:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit	Name	Description
0	DBG	Debug: set to '1' to mask the "debug" interrupt (see the SDMA Debug Control Register)
1:2	_	Reserved
3	TEA Msk	TEA Mask: set to '1' to mask the TEA. If set to '1' and a TEA is received in the currently executing Task an interrupt is generated.
4:7	_	Reserved
8:15	EU[x]	Execution Unit: Only EU3 is present in MPC5200B
16:31	TASK[15:0]	Each bit corresponds to an interrupt source defined by the task number or execution unit. An interrupt is masked by setting the corresponding bit. At system reset, all bits are initialized to logic 1.
		0 = The corresponding interrupt source is not masked.
		1 = The corresponding interrupt source is masked (no interrupt is generated).

13-8 Freescale Semiconductor

13.15.8 SDMA Task Control 0 Register—MBAR + 0x121C SDMA Task Control 1 Register—MBAR + 0x121E

Table 13-8. SDMA Task Control 0 Register SDMA Task Control 1 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	En	Val	Alw			IN[4:0]			Auto	High	Hold	Rsvd		AS	[3:0]	
W			Init						Start	En						
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R							TCF	R1 (san	ne as fo	r TCR0)						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0	EN	Each of the sixteen tasks has an associated task control register. Only one register is shown. At system reset, all bits are initialized to logic zeros.
		Enable - Task Enable
		0 = Disabled
		1 = Enabled
		This bit can be set or cleared by the programmer at any time when a task is enabled or disabled. This bit is also set by the PTD logic if the auto-restart bit is set and the task completes.
1	Val	Valid - Initiator Number is Valid
		0 = Initiator is not valid
		1 = Initiator is valid
		This bit is set by the engine logic when it obtains the requestor value from the first DRD that is parsed. This bit is cleared by the logic when the task completes. At system reset, this bit is cleared.
2	Alw Init	Always Init - Decode of the always initiator
		0 = The always initiator is not being used
		1 = The always initiator is being used
		This bit is a status bit only and is set and cleared by writing the initiator number into the Task Control Register.
3:7	IN[4:0]	InitNum[4:0] - Initiator number from task descriptor
		These bits are registered when the SDMA engine has parsed the first DRD to obtain the requestor number. These bits are cleared by system reset. These bits can be written by the programmer when the Hold Init Num bit is set or being set and the task is not enabled.
		At system reset, these bits are cleared.
8	Auto Start	Auto-Start - Task Start
		0 = Task will not restart within program control
		1 = Task will restart at end of task automatically.
		This bit can be set or cleared by the programmer at any time. This bit is also cleared if the SDMA engine encounters an error in the task. At system reset, this bit is cleared.

Freescale Semiconductor 13-9

BestComm DMA Registers—MBAR+0x1200

Bit	Name	Description
9	High En	High-Enable - High Priority Task Enable
		0 = Normal task enable control
		1 = High priority task enable control
		This bit can be set or cleared by the programmer at any time. This bit enables the SDMA to give priority to the enabled task function over running a task. At system reset, this bit is cleared.
10	Hold	Hold Init Num- Hold initiator number
		0 = Allow the SDMA engine to update initiator number for task
		1 = Keep current initiator number.
		This bit allows the initiator number to be set by the programmer and held for the complete task. The SDMA can not overwrite the programmed initiator except for the use of the always initiator which is contained in a separate control bit.
11	_	Reserved
12-15	AS[3:0]	ASNum[3:0] - Auto-Start Task Number
		These four bits contain the task number which will be auto-started when the Auto-Start control bit is set. At system reset, these bits are cleared.
16:31	TCR1	Task control register for task 1. Same bit layout as for TCR0

13.15.9 SDMA Task Control 2 Register—MBAR + 0x1220 SDMA Task Control 3 Register—MBAR + 0x1222

Table 13-9. SDMA Task Control 2 Register SDMA Task Control 3 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								-	TCR2							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								-	TCR3							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:15	TCR2	Task control register for task 2. Same bit layout as for TCR0
16:31	TCR3	Task control register for task 3. Same bit layout as for TCR0

13.15.10 SDMA Task Control 4 Register—MBAR + 0x1224 SDMA Task Control 5 Register—MBAR + 0x1226

Table 13-10. SDMA Task Control 4 Register SDMA Task Control 5 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								-	ΓCR4							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								-	TCR5							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:15	TCR4	Task control register for task 4. Same bit layout as for TCR0
16:31	TCR5	Task control register for task 5. Same bit layout as for TCR0

13.15.11 SDMA Task Control 6 Register—MBAR + 0x1228 SDMA Task Control 7 Register—MBAR + 0x122A

Table 13-11. SDMA Task Control 6 Register SDMA Task Control 7 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								-	TCR6							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								-	TCR7							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:15	TCR6	Task control register for task 6. Same bit layout as for TCR0
16:31	TCR7	Task control register for task 7. Same bit layout as for TCR0

13.15.12 SDMA Task Control 8 Register—MBAR + 0x122C SDMA Task Control 9 Register—MBAR + 0x122E

Table 13-12. SDMA Task Control 8 Register SDMA Task Control 9 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								٦	rcr8							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								٦	rcr9							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:15	TCR8	Task control register for task 8. Same bit layout as for TCR0
16:31	TCR9	Task control register for task 9. Same bit layout as for TCR0

13.15.13 SDMA Task Control A Register—MBAR + 0x1230 SDMA Task Control B Register—MBAR + 0x1232

Table 13-13. SDMA Task Control A Register SDMA Task Control B Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								٦	ГСRA							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								٦	ГСRВ							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:15	TCRA	Task control register for task 10. Same bit layout as for TCR0
16:31	TCRB	Task control register for task 11. Same bit layout as for TCR0

13.15.14 SDMA Task Control C Register—MBAR + 0x1234 SDMA Task Control D Register—MBAR + 0x1236

Table 13-14. SDMA Task Control C Register SDMA Task Control D Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								٦	rcrc							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								٦	rcrd							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:15	TCRC	Task control register for task 12. Same bit layout as for TCR0
16:31	TCRD	Task control register for task 13. Same bit layout as for TCR0

13.15.15 SDMA Task Control E Register—MBAR + 0x1238 SDMA Task Control F Register—MBAR + 0x123C

Table 13-15. SDMA Task Control E Register SDMA Task Control F Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								٦	TCRE							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								7	TCRF							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:15	TCRE	Task control register for task 14. Same bit layout as for TCR0
16:31	TCRF	Task control register for task 15. Same bit layout as for TCR0

13.15.16 SDMA Initiator Priority 0 Register—MBAR + 0x123C SDMA Initiator Priority 1 Register—MBAR + 0x123D SDMA Initiator Priority 2 Register—MBAR + 0x123E SDMA Initiator Priority 3 Register—MBAR + 0x123F

Table 13-16. SDMA Initiator Priority 0 Register SDMA Initiator Priority 1 Register SDMA Initiator Priority 2 Register SDMA Initiator Priority 3 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
R	IPR0		Reserved			F	rior [2:	0]	IPR1									
W	Hold																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb		
R				IPF	R2							IP	R3					
W																		
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bit	Name	Description
Each of t	the thirty-two initia	ators has an associated priority level. Only one register is shown. All bits are set to '0 at reset.
0	IPR0 Hold	Hold - Keep current priority of initiator
		0 = Allow higher priority initiator to block current initiator
		1 = Hold current initiator priority level
		This bit can be set or cleared by the programmer at any time. This bit allows the current initiator to hold priority until the initiator has negated or the task has finished. When this bit is cleared, an initiator with a higher priority will block the current initiator and force arbitration. At system reset, this bit is cleared.
1:4	_	Reserved
5:7	Prior[2:0]	InitPrior[2:0] - Initiator/Task priority level.
		These bits can be set by the programmer at any time. These bits control the priority of the requestor/task which will be serviced next depending on the setting of the T/I bit in the PtdControl register.
		The highest priority is level 7. The lower priority is level 0 If more than one initiator/task contains the same priority then the order of the task within the Task table (task 7 highest to task 0 lowest) will set the priority.
8:15	IPR1	Initiator Priority register for initiator 1 (or Task1 if PtdControl[16]=1). Same bit layout as IPR0
16:23	IPR2	Initiator Priority register for initiator 2.(or Task2 if PtdControl[16]=1) Same bit layout as IPR0
24:31	IPR3	Initiator Priority register for initiator 3.(or Task3 if PtdControl[16]=1) Same bit layout as IPR0

13.15.17 SDMA Initiator Priority 4 Register—MBAR + 0x1240

SDMA Initiator Priority 5 Register—MBAR + 0x1241

SDMA Initiator Priority 6 Register—MBAR + 0x1242

SDMA Initiator Priority 7 Register—MBAR + 0x1243

Table 13-17. SDMA Initiator Priority 4 Register
SDMA Initiator Priority 5 Register
SDMA Initiator Priority 6 Register
SDMA Initiator Priority 7 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				IPF	R4							IP	R5			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				IPF	R6							IP	R7			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description	
0:7	IPR4	Initiator Priority register for initiator 4 (or Task4 if PtdControl[16]=1)	
		Same bit layout as IPR0	
8:15	IPR5	Initiator Priority register for initiator 5 (or Task5 if PtdControl[16]=1)	
		Same bit layout as IPR0	
16:23	IPR6	Initiator Priority register for initiator 6 (or Task6 if PtdControl[16]=1)	
		Same bit layout as IPR0	
24:31	IPR7	Initiator Priority register for initiator 7 (or Task7 if PtdControl[16]=1)	
		Same bit layout as IPR0	

13.15.18 SDMA Initiator Priority 8 Register—MBAR + 0x1244
SDMA Initiator Priority 9 Register—MBAR + 0x1245
SDMA Initiator Priority 10 Register—MBAR + 0x1246
SDMA Initiator Priority 11 Register—MBAR + 0x1247

Table 13-18. SDMA Initiator Priority 8 Register
SDMA Initiator Priority 9 Register
SDMA Initiator Priority 10 Register
SDMA Initiator Priority 11 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				IPR	18							IP	R9			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Freescale Semiconductor 13-15

MPC5200B Users Guide, Rev. 1

BestComm DMA Registers—MBAR+0x1200

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				IPR	10							IPF	311			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	IPR8	Initiator Priority register for initiator 8 (or Task8 if PtdControl[16]=1) Same bit layout as IPR0
8:15	IPR9	Initiator Priority register for initiator 9 (or Task9 if PtdControl[16]=1) Same bit layout as IPR0
16:23	IPR10	Initiator Priority register for initiator 10 (or Task10 if PtdControl[16]=1) Same bit layout as IPR0
24:31	IPR11	Initiator Priority register for initiator 11 (or Task11 if PtdControl[16]=1) Same bit layout as IPR0

13.15.19 SDMA Initiator Priority 12 Register—MBAR + 0x1248 SDMA Initiator Priority 13 Register—MBAR + 0x1249 SDMA Initiator Priority 14 Register—MBAR + 0x124A SDMA Initiator Priority 15 Register—MBAR + 0x124B

Table 13-19. SDMA Initiator Priority 12 Register SDMA Initiator Priority 13 Register SDMA Initiator Priority 14 Register SDMA Initiator Priority 15 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				IPR	12							IPI	R13			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				IPR	14							IPF	R15			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	IPR12	Initiator Priority register for initiator 12 (or Task12 if PtdControl[16]=1) Same bit layout as IPR0
8:15	IPR13	Initiator Priority register for initiator 13 (or Task13 if PtdControl[16]=1) Same bit layout as IPR0

Bit	Name	Description
16:23	IPR14	Initiator Priority register for initiator 14 (or Task14 if PtdControl[16]=1) Same bit layout as IPR0
24:31	IPR15	Initiator Priority register for initiator 15 (or Task15 if PtdControl[16]=1) Same bit layout as IPR0

13.15.20 SDMA Initiator Priority 16 Register—MBAR + 0x124C SDMA Initiator Priority 17 Register—MBAR + 0x124D SDMA Initiator Priority 18 Register—MBAR + 0x124E SDMA Initiator Priority 19 Register—MBAR + 0x124F

Table 13-20. SDMA Initiator Priority 16 Register SDMA Initiator Priority 17 Register SDMA Initiator Priority 18 Register SDMA Initiator Priority 19 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				IPR	16							IPF	R17			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				IPR	18							IPF	R19			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	IPR16	Initiator Priority register for initiator 16. Same bit layout as IPR0
8:15	IPR17	Initiator Priority register for initiator 17. Same bit layout as IPR0
16:23	IPR18	Initiator Priority register for initiator 18. Same bit layout as IPR0
24:31	IPR19	Initiator Priority register for initiator 19. Same bit layout as IPR0

13.15.21 SDMA Initiator Priority 20 Register—MBAR + 0x1250

SDMA Initiator Priority 21 Register—MBAR + 0x1251

SDMA Initiator Priority 22 Register—MBAR + 0x1252

SDMA Initiator Priority 23 Register—MBAR + 0x1253

Table 13-21. SDMA Initiator Priority 20 Register SDMA Initiator Priority 21 Register SDMA Initiator Priority 22 Register SDMA Initiator Priority 23 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				IPR	20							IPI	R21			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				IPR	22							IPF	R23			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	IPR20	Initiator Priority register for initiator 20. Same bit layout as IPR0
8:15	IPR21	Initiator Priority register for initiator 21. Same bit layout as IPR0
16:23	IPR22	Initiator Priority register for initiator 22. Same bit layout as IPR0
24:31	IPR23	Initiator Priority register for initiator 23. Same bit layout as IPR0

13.15.22 SDMA Initiator Priority 24 Register—MBAR + 0x1254
SDMA Initiator Priority 25 Register—MBAR + 0x1255
SDMA Initiator Priority 26 Register—MBAR + 0x1256
SDMA Initiator Priority 27 Register—MBAR + 0x1257

Table 13-22. SDMA Initiator Priority 24 Register SDMA Initiator Priority 25 Register SDMA Initiator Priority 26 Register SDMA Initiator Priority 27 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				IPR	24							IPI	R25			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

13-18 Freescale Semiconductor

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				IPR	26							IPI	R27			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	IPR24	Initiator Priority register for initiator 24. Same bit layout as IPR0
8:15	IPR25	Initiator Priority register for initiator 25. Same bit layout as IPR0
16:23	IPR26	Initiator Priority register for initiator 26. Same bit layout as IPR0
24:31	IPR27	Initiator Priority register for initiator 27. Same bit layout as IPR0

13.15.23 SDMA Initiator Priority 28 Register—MBAR + 0x1258 SDMA Initiator Priority 29 Register—MBAR + 0x1259 SDMA Initiator Priority 30 Register—MBAR + 0x125A SDMA Initiator Priority 31 Register—MBAR + 0x125B

Table 13-23. SDMA Initiator Priority 28 Register SDMA Initiator Priority 29 Register SDMA Initiator Priority 30 Register SDMA Initiator Priority 31 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				IPR	28							IPI	R29			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		IPR30						IPR31								
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	IPR28	Initiator Priority register for initiator 28. Same bit layout as IPR0
8:15	IPR29	Initiator Priority register for initiator 29. Same bit layout as IPR0

BestComm DMA Registers—MBAR+0x1200

Bit	Name	Description
16:23	IPR30	Initiator Priority register for initiator 30. Same bit layout as IPR0
24:31	IPR31	Initiator Priority register for initiator 31. Same bit layout as IPR0

13.15.24 SDMA Requestor MuxControl—MBAR + 0x125C

Table 13-24. SDMA Request MuxControl

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Req	31	Re	q30	Re	q29	Re	q28	Re	q27	Re	q26	Re	q25	Re	eq24
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Req	23	Re	q22	Re	q21	Re	q20	Re	q19	Re	q18	Re	q17	Re	eq16
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:1	Req31	00: Requestor (RESERVED)
		01: GPIO_PSC2_3
		10: GPIO_IRDA_1
		11: Always Requestor 31
2:3	Req30	00: Requestor (RESERVED)
		01: GPIO_PSC2_2
		10: GPIO_IRDA_0
		11: Always Requestor 30
4:5	Req29	00: Requestor (RESERVED)
		01: GPIO_PSC2_1
		10: GPIO_ETH_3
		11: Always Requestor 29
6:7	Req28	00: Requestor (RESERVED)
		01: GPIO_PSC2_0
		10: GPIO_ETH_2
		11: Always Requestor 28
8:9	Req27	00: Requestor (RESERVED)
		01: GPIO_PSC1_3
		10: GPIO_ETH_1
		11: Always Requestor 27
10:11	Req26	00: Requestor IrDA TX (PSC_6)
		01: GPIO_PSC1_2
		10: GPIO_ETH_0
		11: Always Requestor 26

13-20 Freescale Semiconductor

Bit	Name	Description
12:13	Req25	00: Requestor IrDA RX (PSC_6) 01: GPIO_PSC1_1 10: GPIO_USB_3 11: Always Requestor 25
14:15	Req24	00: Requestor I2C1_TX 01: GPIO_PSC1_0 10: GPIO_USB_2 11: Always Requestor 24
16:17	Req23	00: Requestor I2C1_RX 01: GPIO_SINT_7 10: GPIO_USB_1 11: Always Requestor 23
18:19	Req22	00: Requestor I2C2_TX 01: GPIO_SINT_6 10: GPIO_USB_0 11: Always Requestor 22
20:21	Req21	00: Requestor I2C2_RX 01: GPIO_SINT_5 10: GPIO_PSC3_5 11: Always Requestor 21
22:23	Req20	00: Requestor PSC4_TX 01: GPIO_SINT_4 10: GPIO_PSC3_4 11: Always Requestor 20
24:25	Req19	00: Requestor PSC4_RX 01: GPIO_SINT_3 10: GPIO_PSC3_3 11: Always Requestor 19
26:27	Req18	00: Requestor PSC5_TX 01: GPIO_SINT_2 10: GPIO_PSC3_2 11: Always Requestor 18
28:29	Req17	00: Requestor PSC5_RX 01: GPIO_SINT_1 10: GPIO_PSC3_1 11: Always Requestor 17
30:31	Req16	00: Requestor LP 01: GPIO_SINT_0 10: GPIO_PSC3_0 11: Always Requestor 16

The remaining 16 Requestors are fixed as follows:

Freescale Semiconductor 13-21

Table 13-25. Fixed REquestors Table

REQUESTORS	Peripheral
REQ15	(RESERVED)
REQ14	PSC1_TX
REQ13	PSC1_RX
REQ12	PSC2_TX
REQ11	PSC2_RX
REQ10	PSC3_TX
REQ9	PSC3_RX
REQ8	PCI TX
REQ7	PCI RX
REQ6	ATA TX
REQ5	ATA RX
REQ4	FEC TX
REQ3	FEC RX
REQ2	(RESERVED)
REQ1	(RESERVED)
REQ0	ALWAYS

13.15.25 SDMA task Size0—MBAR + 0x1260 SDMA task Size 1—MBAR + 0x1264

Table 13-26. SDMA task Size 0/1

Bits	0,4,8,12, 16,20,24,28	1,5,9,13, 17,21,25,29	2,6,10,14, 18,22,26,30	3,7,1115 19,23,27,31
R	srcSize[1]	srcSize[0]	dstSize[1]	dstSize[0]
W				

RESET: At reset all Bits are set to 0

Bit	Name	Description
	srcSize[1:0]	Each of the 16 tasks can be programmed to use the source and destination sizes contained in one of the Task Size Registers. The task size information is used by the SDMA module to determine the source and destination transfer size of the operands. When the size contained the task descriptor is set to 2'b11 then the size field from the Task Size Control register is selected.
		srcSize[1:0] - source size
		00 - Word (32 bit)
		01 - Byte
		10 - Word
		11 - Word
		destSize[1:0] - destination size
		00 - Word (32 bit)
		01 - Byte
		10 - Word
		11 - Word

13.15.26 SDMA task 0 & task Size 1 map

Table 13-27. SDMA task Size Map

Offset	Register Name	Byte 0	Byte 1	Byte 2	Byte 3	Access
0x1260	task Size 0	TS[0:1]	TS[2:3]	TS[4:5]	TS[5:7]	R/W
0x1264	task Size 1	TS[8:9]	TS[10:11]	TS[12:13]	TS[14:15]	R/W

Bit	Name	Description
		See Table 13-26 for details. Each task has 4 bits allocated (2 for source and 2 for destination Size)

13.15.27 SDMA Reserved Register 1—MBAR + 0x1268

Table 13-28. SDMA Reserved Register 4

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R									res1							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R									res1							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:31	res1	Reserved

Freescale Semiconductor 13-23

13.15.28 SDMA Reserved Register 2—MBAR + 0x126C

Table 13-29. SDMA Reserved Register 2

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R									res2							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R									res2							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:31	res2	Reserved

13.15.29 SDMA Debug Module Comparator 1, Value 1 Register—MBAR + 0x1270

Table 13-30. SDMA Debug Module Comparator 1, Value 1 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								٧	alue1							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								٧	alue1							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:31	Value1	Debug Module Comparator 1 Value.

13.15.30 SDMA Debug Module Comparator 2, Value 2 Register—MBAR + 0x1274

Table 13-31. SDMA Debug Module Comparator 2, Value 2 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								٧	/alue2							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

13-24 Freescale Semiconductor

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								٧	alue2							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:31	Value2	Debug Module Comparator 2 Value.

13.15.31 SDMA Debug Module Control Register—MBAR + 0x1278

Table 13-32. SDMA Debug Module Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Bloo	k Tasks	8						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	AA	В	Comp	arator	Type 1	Comp	arator	Type 2	and/		EU brea	kpoints		Е	I	В
W									or							
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:15	Block Tasks	Specify for each of tasks 15-0, whether to block that task with detection of a breakpoint (bit 0 halts TASK 15, bit 1 halts TASK 14, etc)
		0 Do not block task
		1 Block the task
16	AA	AutoArm—specifies whether or not the triggered bit dbgStatusReg[16] will be automatically reset to 0 following the saving of context for a breakpoint. This bit is set to 0 at reset.
		0 Triggered bit will not be automatically reset
		1 Triggered bit will be automatically reset
17	В	Breakpoint—This bit specifies whether or not to take a breakpoint. This bit is set to 0 at reset.
		0 Disable breakpoints
		1 Enable breakpoints
18:20	Comparator Type 1	Comparator 1 type—These bits specify the type of data that has been loaded into comparator 1; refer to Table 13-33 for the bit encoding.
21:23	Comparators Type 2	Comparator 2 type—These bits specify the type of data that has been loaded into comparator 2; refer to Table 13-34 for the bit encoding.
24	and / or	AND/OR—This specifies what type of operation is to be used with the comparators. This bit is set to 0 at reset.
		0 Indicates an OR'ing of the comparators
		1 Indicates an AND'ing of the comparators

Freescale Semiconductor 13-25

BestComm DMA Registers—MBAR+0x1200

Bit	Name	Description
25:28	EU breakpoints	euBreakpoint: These bits indicate that a breakpoint has occurred in one of the four execution units. Each execution unit has one bit dedicated to it. A 1 in any of these bits indicates that the associated execution unit has issued breakpoint. These bits are sticky and must be overwritten to continue. These bits are cleared to zero at reset. See Table 13-35 for the bit encoding. MPC5200B has integrated only EU3
29	E	Enable External Breakpoint. 0 Do not enable external breakpoint to cause a halt condition 1 Allow external breakpoint to cause a halt condition
30	I	Enable Internal Breakpoint 0 Do not enable internal breakpoint to cause a halt condition 1 Allow internal breakpoint to cause a halt condition
31	ЕВ	Enable Breakpoint (this bit must be always set to allow any kind of breakpoint to halt the task) 0 Disable breakpoint 1 Enable breakpoint

Table 13-33. Comparator 1 Type Bit Encoding

Encoding	Comparator Type 1
000	uninitialized
001	write address
010	read address
011	current pointer
100	task #
101	reserved
110	reserved
111	reserved

Table 13-34. Comparator 2 Type Bit Encoding

Encoding	Comparator Type 1
000	uninitialized
001	write address
010	read address
011	current pointer
100	task #
101	counter value
110	reserved
111	reserved

The reserved encodings are set to $\boldsymbol{0}$ indicating an uninitialized state.

13-26 Freescale Semiconductor

Table 13-35. EU Breakpoint encoding

	EU3	EU2	EU1	EU0
Reset	0	0	0	0

It must be noted that even if a breakpoint is issued at a specific address the SDMA engine will halt ONLY at a "data aligned" boundary (for instance, if the task moves 32 bits of data per transaction and a breakpoint is set at address 0x02 then the task will be halted at offset 0x04).

13.15.32 SDMA Debug Module Status Register—MBAR + 0x127C

Table 13-36. SDMA Debug Module Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Reserved										I	Е	Т		
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R							(dbgStat	usReg[15:0]						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:12	Reserved	Reserved
13	I	Interrupt—This bit indicates whether or not an interrupt has been taken. This bit is set to 0 at reset. It can be written by the user or the SDMA engine.
		0 No Interrupt
		1 Interrupt taken
14	Е	External Breakpoint—This bit indicates detection of an external breakpoint. Status bit is sticky and requires a one (1) to be written to it to clear it. The writing of a zero (0) to this bit has no effect. This bit is set to zero (0) at reset.
		0 No external breakpoint detected
		1 External breakpoint detected
15	Т	Triggered (dbgStatusReg[16])—This bit indicates that a SmartDMA breakpoint has occurred with the current settings. Status bit is sticky and requires a one (1) to be written to it to clear it. The writing of a zero (0) to this bit has no effect. This bit is set to zero (0) at reset.
		0 Armed or normal operation
		1 Triggered or debug mode
16:31	dbgStatusReg[15:0]	dbgTaskBlock (dbgStatusReg[15:0])—Each bit corresponds to one of the 16 task numbers.
		The value of the register bit reflects the debug state of the task number. A bit is cleared by writing a one to that bit location; writing a zero (0) has no effect. At system reset, all bits are initialized to logic zeros (0).
		0 Unblocked or normal operation
		1 Blocked, task has been blocked due to a breakpoint

13.16 On-Chip SRAM

MPC5200B contains 16KBytes of on-chip SRAM. This memory is directly accessible by the BestComm DMA unit. It is used primarily as storage for task table and buffer descriptors used by BestComm DMA to move peripheral data to and from SDRAM or other locations. These descriptors must be downloaded to the SRAM at boot.

This SRAM resides in the MPC5200B internal register space and is also accessible by the processor core. As such it can be used for other purposes, such as scratch pad storage. The 16kBytes SRAM starts at location MBAR + 0x8000.

13.17 **Programming Model**

The SDMA engine expects the programmer to initialize several things in memory including the Task Table and the Variable Table(s). These are described and illustrated in the following sub-sections. The various descriptors used in each task are also described below.

13.17.1 Task Table

The programmer must initialize the taskBAR register in the IPB Interface Module (offset 0x1200). The Task Table (sometime also referred to as Entry Table), whose format is shown in Figure 13-1, should reside at the address specified by taskBAR.

The Task Table base address must be aligned to a 512-byte boundary. There are sixteen tasks, each of which has its own unique Task Descriptor Table (TDT) start pointer, TDT end pointer, Variable Table pointer, control information, and status information. The TDT start pointer is a 32-bit value that points to the first descriptor, an LCD, of that particular task. The remaining descriptors (LCDs and DRDs) should consecutively follow the first one in memory, except in special branching cases. The TDT end pointer is a 32-bit value that points to the last descriptor, which must be a DRD, of that particular task.

The 32-bit Variable Table pointer points to the top of the 32-word (128 byte) memory space where this task's Variable Table resides. The Variable Table format is explained later in more detail.

The control information is located in the fourth word of each task's Task Table information as shown in Figure 13-1. Bits 0 through 23 contain the base address for this task's function descriptors. Control bits 24 through 31 are for precise increment, not resetting the error code, whether to pack data, integer mode, complex data mode, to enable speculative reads and whether bursting is allowed on reads and writes.

The fifth and sixth word of the task table are reserved.

The seventh word is a pointer to the Context Save Area where important data is saved and later restored in case of a task switch.

The last word is used by the SDMA engine in conjunction with Literal Initialization of LCD (to save variable usage). The user should not modify the values stored there.

Figure 13-1. Task Table

MPC5200B Users Guide, Rev. 1

3

				4 5		9 0									1
			Т	ask Descriptor S	tart Po	inter									
			7	ask Descriptor E	nd Po	inter									
	Variable Table Pointer														
Task 0											C W				
				Reserve	d										
				Reserve	d										
			Base	Address for Cont	ext Sa	ve Spac	е								
	Literal Base 0	Reserved	Literal Base 1			Re	served								
			Т	ask Descriptor S	tart Po	inter									
			7	ask Descriptor E	nd Po	inter									
				Variable Table	Pointe	er									
Task n		Fund	ction Descrip	tor Base Address	6			R S V	– А	Е	Р	I		C W	
				Reserve	d										
				Reserve	d										
			Base .	Address for Cont	ext Sa	ve Spac	е								
	Literal Base 0	Reserved	Literal Base 1			Re	served								

Note: For each task, the start pointer, end pointer, and variable table pointer are 32-bit values. For the task control bits, bits 0 through 23 are for the Function Descriptor Base Address, and bits 24 through 31 are RSV = Reserved, PI = Precise Increment, E = do not reset error code if '1', P = Pack data if '1', I = Integer mode if '1' (else fractional), SPR = speculative enable, CW = Combined Write Enable if '1', and RL = Read Line Buffer Enable if '1'

speculative Reads if '1'

0

4 5

Freescale Semiconductor 13-29

Table 13-37. Behavio Nort €ask Table Control Bits

Control Function	Value	Meaning
Precise Increment	0	Increments are allowed at any time the SDMA can do it
	1	Only increment at the end of an iteration
No Error Code Reset	0	Reserved
	1	Reserved
Pack	0	Do not pack data
	1	Pack data
Integer Mode	0	Fractional data representation
	1	Integer data representation
Speculative Reads	0	Disabled
	1	Enabled
Combined Write Enable	0	Do not enable combined writes
	1	Enable combined writes
Read Line Buffer Enable	0	Do not enable line reads
	1	Enable line reads

13.17.1.1 Integer Mode

This input signal is only valid if the pack signal is negated (set to '0'). This signal indicates if the SDMA engine should operate in integer mode or fractional mode. During integer mode, the engine sign-extends read data and the it reads the write size amount of data starting from the MSB position and drives it to the proper destination byte lanes as indicated by the write address.

During fractional mode, the engine zero-extends read data and the ADS reads the write size amount of data starting from the LSB position and drives it to the proper write byte lanes as indicated by the write address.

13.17.1.2 Pack

This input signal indicates that packing or unpacking of data should occur if the read size does not equal the write size. The pack signal has precedence over the integerMode signal.

This signal indicates to the SmartDMA that it should pack data when the source size does not match the destination size. When this signal is asserted, the SmartDMA should pack data, and the *integerMode* signal is ignored. Otherwise, the SmartDMA should not pack data. Packing data refers to the case where the SmartDMA will wait for a full word of data before passing the data to one of the memory interfaces.

13.17.2 Variable Table

Table 13-38 shows the Variable Table format to which each task must adhere. The Variable Table pointer that is located in the Task Table in Figure 13-1 points to the first location in this 32-word (128-byte) memory space.

If restoring, and the Variable Table has been modified, then the new Variable Table pointer is located at the end of the context save space for the corresponding task. The Variable Table for each task must be aligned to a 16-byte boundary (to aid in address calculation). Before executing a particular task, that task's Variable Table must be initialized with the appropriate data. Specifically, any constants, initial values, and increment values must be written to the Variable Table before executing the corresponding task.

Variables may be loaded into words 0 through 23. Increment values 0 through 7 may be loaded into words 24 through 31, respectively.

Any of the eight increment values may be used as normal Loop-Index Variables or Constants if they are not needed as increment values. All of these variables and increment values may be used to initialize loop-index registers. However, only variables 0 through 31 may be written by the ADS. At this time, if variables 24 through 31 are written, it is assumed that these variables should be treated as normal Loop-Index Variables or Constants and not as increment values. Also, note that Variables may overlap if sharing the last eight variables with another

13-30 Freescale Semiconductor

task's Variable Table is desired. In addition, if a task does not use the last 16 variables, another Variable Table could start immediately after that task's increment values, so as to not waste memory.

Table 13-38. Variable Table per Task

#	Hex Offset	Contents	Comments
0	00	Loop-Index Variable or Constant 0	These twenty-four
1	04	Loop-Index Variable or Constant 1	words (32 bits) are used for constant
2	08	Loop-Index Variable or Constant 2	operands to the EUs,
3	0с	Loop-Index Variable or Constant 3	for initialization values, or for a place
4	10	Loop-Index Variable or Constant 4	to write results straight to a variable
5	14	Loop-Index Variable or Constant 5	in this table. These
6	18	Loop-Index Variable or Constant 6	are typically preloaded by the
7	1c	Loop-Index Variable or Constant 7	CPU unless you are
8	20	Loop-Index Variable or Constant 8	writing directly to a variable.
9	24	Loop-Index Variable or Constant 9	Variable.
10	28	Loop-Index Variable or Constant 10	
11	2c	Loop-Index Variable or Constant 11	
12	30	Loop-Index Variable or Constant 12	
13	34	Loop-Index Variable or Constant 13	
14	38	Loop-Index Variable or Constant 14	
15	3с	Loop-Index Variable or Constant 15	
16	40	Loop-Index Variable or Constant 16	
17	44	Loop-Index Variable or Constant 17	
18	48	Loop-Index Variable or Constant 18	
19	4c	Loop-Index Variable or Constant 19	
20	50	Loop-Index Variable or Constant 20	
21	54	Loop-Index Variable or Constant 21	
22	58	Loop-Index Variable or Constant 22	
23	5c	Loop-Index Variable or Constant 23	
24	60	Compare Type[31:29], Reserved[28:16], Increment Variable 0[15:0]	Variables 24 - 31
25	64	Compare Type[31:29], Reserved[28:16], Increment Variable 1[15:0]	may be increment variables of the
26	68	Compare Type[31:29], Reserved[28:16], Increment Variable 2[15:0]	format shown to the
27	6c	Compare Type[31:29], Reserved[28:16], Increment Variable 3[15:0]	left. Any of these variables may be
28	70	Compare Type[31:29], Reserved[28:16], Increment Variable 4[15:0]	used as normal
29	74	Compare Type[31:29], Reserved[28:16], Increment Variable 5[15:0]	Loop-Index Variables or Constants (like
30	78	Compare Type[31:29], Reserved[28:16], Increment Variable 6[15:0]	variables 0 - 23) instead.
31	7c	Compare Type[31:29], Reserved[28:16], Increment Variable 7[15:0]	- moleau.

When the user writes a program, or when the assembler converts the user's programs, the SDMA engine will use the initialization variables and constants that the user or processor should have loaded into the Variable Table. The initial index variables in the LCD tells the engine to allocate space for the resulting variables in the loop registers. The space will be allocated consecutively, so the user knows with which register each variable will be associated. This is important when the user's program tries to reference one of these previously allocated variables. Also, the eight increment variables in positions 24 through 31 of Table 13-38 are preloaded by the processor, as programmed by the user.

Freescale Semiconductor 13-31

Programming Model

13-32 Freescale Semiconductor

Chapter 14 Fast Ethernet Controller (FEC)

14.1 Overview

The fast Ethernet controller (FEC) is an Ethernet MAC plus two 1 Kbyte FIFOs that work under the control of the processor and BestComm DMA engine to support 10/100 Mbps Ethernet/802.3 networks. Table 14-1 shows a block diagram.

A brief introduction and overview of the major functional blocks aid in understanding and programming the FEC.

The FEC is controlled by writing through the system interface (SIF) module into control registers located in each block. The control/status register (CSR) block provides global control and interrupt handling registers. User programming of the CSR is the primary focus of this chapter.

The RISC based Ethernet controller provides the following functions:

- Initialization
- Address recognition for <u>receive</u> frames
- · Random number generation for transmit collision backoff timer

The FIFO controller is the focal point of all data flow in the FEC. The FIFO is divided into a transmit and receive FIFO of 1Kbyte each. Transmit data flows from the CommBus into the transmit FIFO and through the transmit block to the physical layer device (PHY). Receive data flows from the PHY to the receive block and is pulled out of the FIFO by BestComm. BestComm data transfers are interrupt driven. Interrupt driven data movement from the processor is not supported.

The bus controller decides which block is to be the T-bus master for each cycle. All the blocks receive their control information over the T-bus and provide status information over this same internal bus.

The media independent interface (MII) block provides a serial channel for control/status communication with the external physical layer device (transceiver or PHY). The serial channel consists of the MDC (clock) and MDIO (bidirectional data I/O) lines of the MII interface.

The transmit and receive blocks provide the Ethernet MAC functionality (with some assistance from the BestComm unit). Internal to these blocks are clock domain boundaries between the system clock and the network clocks supplied by the PHY.

The management information base (MIB) block maintains the counters for a variety of network events and statistics. The counters support the RMON (RFC 1757) Ethernet statistics group and some of the IEEE 802.3 counters.

The FEC supports several standard MAC-PHY interfaces to connect to an external Ethernet transceiver. One is the 10/100 Mbps MII (18-wire) interface. Another is the 10-Mbps only 7-Wire interface, which uses a subset of the MII pins.

Freescale Semiconductor 14-1

Figure 14-1. Block Diagram—FEC

14.1.1 Features

The FEC incorporates several features/design goals that are key to its use:

- Support for different Ethernet physical interfaces:
 - 100 Mbps IEEE 802.3 MII
 - 10 Mbps IEEE 802.3 MII
 - 10 Mbps 7-wire interface (industry standard)
- IEEE 802.3 full-duplex flow control
- Programmable max frame length supports IEEE 802.1 VLAN tags and priority
- Support for full-duplex operation (200 Mbps throughput) with a minimum system clock rate of 50 MHz.
- Support for half-duplex operation (100 Mbps throughput) with a minimum system clock rate of 25 MHz.
- Large (1 Kbyte) on-chip transmit and receive FIFOs to support a variety of bus latencies.
- Retransmission from transmit FIFO following a collision (no processor bus utilization).

- Automatic internal flushing of the Rx FIFO for runts (collision fragments) and address recognition rejects (no processor bus utilization).
- Address recognition
 - Frames with broadcast address may be always accepted or always rejected
 - Exact match for single 48-bit individual (unicast) address
 - Hash (64-bit hash) check of individual (unicast) addresses
 - Hash (64-bit hash) check of group (multicast) addresses
 - Promiscuous mode

14.2 Modes of Operation

The primary operational modes are described in this section.

14.2.1 Full- and Half-Duplex Operation

This is determined by the X_CNTRL register FDEN bit. Full-duplex mode is intended for use on point to point links between switches or end node to switch. Half-duplex mode is used in connections between an end node and a repeater or between repeaters.

Full-duplex flow control is an option that may be enabled in full-duplex mode.

14.2.2 10Mbps and 100Mbps MII Interface Operation

The MAC-PHY interface operates in MII mode by asserting the R_CNTRL register MII_MODE bit. MII is the media independent interface defined by the 802.3 standard for 10/100 Mbps operation.

Speed of operation is determined by the TX_CLK and RX_CLK pins, which are driven by the transceiver. The transceiver either auto-negotiates the speed or it may be controlled by software using the serial management interface (MDC/MDIO pins) to the transceiver.

14.2.3 10Mbps 7-Wire Interface Operation

If the external transceiver supports 10 Mbps only and uses a 7-wire style interface then deassert the R_CNTRL register MII_MODE bit in the R_CNTRL register. This style of interface is not defined by the 802.3 standard, but instead is an industry standard.

14.2.4 Address Recognition Options

The options supported are promiscuous, broadcast reject, individual address hash or exact match and multicast hash match. Refer to the R CNTRL register for address recognition programming.

14.2.5 Internal Loopback

Internal loopback mode is selected using the R CNTRL register LOOP bit.

14.3 I/O Signal Overview

This section defines the FEC-to-chip pin I/O. The FEC network interface supports multiple options. One is the MII option that requires 18 I/O pins and supports both data and an out-of-band serial management interface to the PHY (transceiver) device. The MII option supports both 10 and 100 Mbps Ethernet rates. The second is referred to as the 7-wire interface and supports only 10 Mbps Ethernet data. The 7-wire interface uses a subset of the MII signals.

Table 14-1 shows the network interface signals and lists 18 signals, all of which are used for the 10/100 MII interface.

NOTE

The MDIO pin is bidirectional and corresponds to the FEC block MDI, MDO and MDIO pins. The 7-wire interface option uses a subset of these signals.

Table 14-1. Signal Properties

Signal Name	Chip Pin	Function	Reset State
tx_en	ETH0	MII—transmit data valid output 7-wire—transmit data valid output	0
tdata[0]	ETH1	MII—transmit data bit 0 output 7-wire—transmit data output	

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 14-3

Table 14-1. Signal Properties (continued)

Signal Name	Chip Pin	Function	Reset State
tdata[1]	ETH2	MII—transmit data bit 1 output	
tdata[2]	ETH3	MII—transmit data bit 2 output	
tdata[3]	ETH4	MII—transmit data bit 3 output	
tx_er	ETH5	MII—transmit error output	0
mdc	ETH6	MII—management clock output	0
mdi mdo md_en	ETH7	MII—management data bidirect	Hi-Z (input)
rx_dv	ETH8	MII—Rx data valid input 7-wire—rena input	
rx_clk	ETH9	MII—Rx clock input 7-wire—Rx clock input	
col	ETH10	MII—collision input 10 Mbps 7-wire—collision input	
tx_clk	ETH11	MII—transmit clock input 7-wire—transmit clock input	
rdata[0]	ETH12	MII—Rx data bit 0 input 7-wire—Rx data input	
rdata[1]	ETH13	MII—Rx data bit 1 input	
rdata[2]	ETH14	MII—Rx data bit 2 input	
rdata[3]	ETH15	MII—Rx data bit 3 input	
rx_er	ETH16	MII—Rx error input	
crs	ETH17	MII—carrier sense input	

14.3.1 Detailed Signal Descriptions

14.3.1.1 MII Ethernet MAC-PHY Interface

This section gives a detailed description of the Media-Independent Interface (MII). An overview of the MII is presented followed by a description of the MII signals. Two different types of MII frames are described. A brief MII management function overview is given.

The MII interface has 18 signals. Tx and Rx functions require 7 signals each:

- 4 data signals
- 1 delimiter
- 1 error
- 1 clock

Media status is indicated by 2 signals:

- 1 signal indicates a carrier is present.
- 1 signal indicates a collision occurred.

Management interface is provided by 2 signals.

MII signals are described below.

- Tx_CLK A continuous clock that provides a timing reference for Tx_EN, TxD, and Tx_ER. The frequency of Tx_CLK is 25% of the transmit data rate, ± 100 ppm. Duty cycle shall be 35%-65% inclusive.
- **Rx_CLK**..... A continuous clock that provides a timing reference for Rx_DV, RxD, and Rx_ER. The frequency of Rx_CLK is 25% of the receive data rate, with a duty cycle between 35% and 65%.

MPC5200B Users Guide, Rev. 1

Tx_EN	. Assertion of this signal indicates valid nibbles are being presented on the MII. This signal is asserted with the first nibble of preamble and is negated prior to the first Tx_CLK following the final nibble of the frame.
TxD	. $TxD[0:3]$ represent a nibble of data when Tx_EN is asserted and have no meaning when Tx_EN is de-asserted. Table 14-2 summarizes the permissible encoding of TxD .
Tx_ER	. Assertion of this signal for one or more clock cycles while Tx_EN is asserted causes PHY to transmit one or more illegal symbols. Asserting Tx_ER has no affect when operating at 10 Mbps or when Tx_EN is de-asserted This signal transitions synchronously with respect to Tx_CLK .
Rx_DV	. When this signal is asserted, PHY is indicating a valid nibble is present on the MII. This signal remains asserted from the first recovered nibble of the frame through the last nibble. Assertion of Rx_DV must start no later than the SFD, and exclude any EOF.
RxD	. RxD[0:3] represents a nibble of data to be transferred from the PHY to the MAC when Rx_DV is asserted. A completely formed SFD must be passed across the MII. When Rx_DV is not asserted, RxD has no meaning. There is an exception to this which is explained later. Table 14-3 summarizes the permissible encoding of RxD.
Rx_ER	. When Rx_ER and Rx_DV are asserted, the PHY has detected an error in the current frame. When Rx_DV is not asserted, Rx_ER shall have no affect. This signal transitions synchronously with Rx_CLK.
CRS	. Signal is asserted when Tx or Rx medium is not idle. If a collision occurs, CRS remains asserted through the duration of the collision. This signal is not required to transition synchronously with Tx_CLK or Rx_CLK.
COL	. Signal is asserted on a collision detection and remains asserted while the collision persists. The signal behavior is not specified when in full-duplex mode. This signal is not required to transition synchronously with Tx_CLK or Rx_CLK .
MDC	. Signal provides a timing reference to the PHY for data transfers on the MDIO signal. MDC is aperiodic and has no maximum high or low times. The minimum high and low times is 160 ns with the minimum period being 400 ns.
MDIO	. Signal transfers control/status information between the PHY and MAC. It transitions synchronously to MDC. The MDIO pin is a bidirectional pin. The internal FEC signals that connect to this pad are: MDI (data in), MDO (data out) and MD_EN (direction control, high for output).

Table 14-2 lists the interpretation of possible encodings for Tx EN and Tx ER.

Table 14-2. MII: Valid Encoding of TxD, Tx_EN and Tx_ER

TX_EN	TX_ER	TXD	Indication
0	0	0000 through 1111	Normal inter-frame
0	1	0000 through 1111	Reserved
1	0	0000 through 1111	Normal data transmission
1	1	0000 through 1111	Transmit error propagation

A false carrier condition occurs if the PHY detects a bad start-of-stream delimiter. This condition signals the MII by asserting Rx_ER and placing 1110 on RxD. Rx DV must also be de-asserted. Valid Rx DV, Rx ER and RxD[3:0] encodings are shown in Table 14-3.

Table 14-3. MII: Valid Encoding of RxD, Rx_ER and Rx_DV

RX_DV	RX_ER	RXD	Indication
0	0	0000 through 1111	Normal inter-frame
0	1	0000	Normal inter-frame
0	1	0001 through 1101	Reserved
0	1	1110	False Carrier
0	1	1111	Reserved
1	0	0000 through 1111	Normal data reception
1	1	0000 through 1111	Data reception with errors

14.3.1.2 MII Management Frame Structure

MPC5200B Users Guide, Rev. 1

Table 14-4. MMI Format Definitions

Name	Description
<pre><preamble></preamble></pre>	Optional—consists of a sequence of 32 continuous logic 1s.
<st></st>	Start of frame—indicated by a <01> pattern.
<op></op>	Operation code:
	Read instruction is <10>
	Write instruction is <01>
<phyad></phyad>	A 5-bit field that lists up to 32 PHYs be addressed. The first address bit transmitted is the msb of the address.
<regad></regad>	A 5-bit field that lets 32 registers be addressed within each PHY. The first register bit transmitted is the msb of the address.
<ta></ta>	A 2-bit field that provides spacing between the register address field and the data field to avoid contention on the MDIO signal during a read operation.
<data></data>	Data field is 16 bits wide. Data bit 15 is first bit transmitted and received.
<idle></idle>	During idle condition, MDIO is in the high impedance state.

14.3.1.2.1 MII Management Register Set

The MII management register set located in the PHY may consist of a basic register set and an extended register set as defined in Table 14-5.

Table 14-5. MII Management Register Set

Register Address	Register Name	Basic/Extended
0	Control	В
1	Status	В
2:3	PHY Identifier	Е
4	Auto-Negotiation Advertisement	E
5	AN Link Partner Ability	E
6	AN Expansion	Е
7	AN Next Page Transmit	Е
8:15	Reserved	Е
16:31	Vendor Specific	E

14.4 FEC Memory Map and Registers

The FEC device is programmed by a combination of control/status registers (CSRs) and BestComm task loops. Since the FEC software model is BestComm-based, there is no similarity with existing CPM-based products' coding.

The CSRs are used for mode control, interrupts and extraction of status information. BestComm tasks are used to pass data buffers and related buffer or frame information between the hardware and software.

All access via microprocessor to and from the registers must be 32-bit accesses. There is no support for accesses other than 32-bit. All access via BestComm to and from the registers may be byte, word or longword (32-bit) accesses. Top Level Module Memory Map

The FEC implementation requires a 2K Byte memory map space. This is divided into two sections of 512 Bytes and an additional 1KBytes of reserved space. The first 512 Bytes is used for Control and Status Registers. The second contains event/statistic counters held in the MIB block. Table 14-6 defines the top level memory map.

14-6 Freescale Semiconductor

Table 14-6. Module Memory Map

Address	Function
000-1FF	Control/Status Registers
200-3FF	MIB Block Counters, see Table 14-8
400–7FF	Reserved

14.4.1 Control and Status (CSR) Memory Map

Table 14-7. CSR Counters

Address	Mnemonic	Name
000	FEC_ID	FEC_ID Register
004	IEVENT	Interrupt Event Register
800	IMASK	Interrupt Enable Register
00C		Reserved
010	R_DES_ACTIVE	Receive Ring Updated Flag
014	X_DES_ACTIVE	Transmit Ring Updated Flag
018-020		Reserved
024	ECNTRL	Ethernet Control Register
028-03C		Reserved
040	MII_DATA	MII Data Register
044	MII_SPEED	MII Speed Register
04C-060		Reserved
064	MIB_CONTROL	MIB Control/Status Register
068-080		Reserved
084	R_CNTRL	Receive Control Register
088	R_HASH	Receive Hash
08C-0C0		Reserved
0C4	X_CNTRL	Transmit Control Register
0C8-0E0		Reserved
0E4	PADDR1	Physical Address Low
0E8	PADDR2	Physical Address High+ Type Field
0EC	OP_PAUSE	Opcode + Pause Duration
0F0-114		Reserved
118	IADDR1	Upper 32 bits of individual Hash Table
11C	IADDR2	Lower 32 bits of individual Hash Table
120	GADDR1	Upper 32 bits of Group Hash Table
124	GADDR2	Lower 32 bits of Group Hash Table
128-140		Reserved

Table 14-7, CSR Counters

Address	Mnemonic	Name
144	X_WMRK	Transmit FIFO Watermark
148-180		Reserved
184	RFIFO_DATA	Receive FIFO Data
188	RFIFO_STATUS	Receive FIFO Status
18C	RFIFO_CONTROL	Receive FIFO Control
190	RFIFO_LRF_PTR	Receive FIFO Last Read Frame Pointer
194	RFIFO_LWF_PTR	Receive FIFO Last Write Frame Pointer
198	RFIFO_ALARM	Receive FIFO Alarm Pointer
19C	RFIFO_RDPTR	Receive FIFO Read Pointer
1A0	RFIFO_WRPTR	Receive FIFO Write Pointer
1A4	TFIFO_DATA	Transmit FIFO Data
1A8	TFIFO_STATUS	Transmit FIFO Status
1AC	TFIFO_CONTROL	Transmit FIFO Control
1B0	TFIFO_LRF_PTR	Transmit FIFO Last Read Frame Pointer
1B4	TFIFO_LWF_PTR	Transmit FIFO Last Write Frame Pointer
1B8	TFIFO_ALARM	Transmit FIFO Alarm Pointer
1BC	TFIFO_RDPTR	Transmit FIFO Read Pointer
1C0	TFIFO_WRPTR	Transmit FIFO Write Pointer
1C4	RESET_CNTRL	Reset Control
1C8	XMIT_FSM	Transmit FSM
1CC-1FF		

14.4.2 **MIB Block Counters Memory Map**

Table 14-8 defines the MIB Counters memory map which defines the MIB RAM space locations where hardware-maintained counters reside. These fall in the 3200-33FF address range. Counters are divided into two groups.

- RMON counters—are included which cover Ethernet statistics counters defined in RFC 1757. In addition to Ethernet statistics group counters, a counter is included to count truncated frames as FEC only supports frame lengths up to 2047 bytes. RMON counters are implemented independently for Tx and Rx, to ensure accurate network statistics when operating in full-duplex mode.
- IEEE counters—are included which support the mandatory and recommended counter packages defined in Section 5 of ANSI/IEEE Standard 802.3 (1998 edition). FEC supports IEEE Basic Package objects, but does not require MIB block counters. In addition, some recommended package objects supported do not require MIB counters. Counters for Tx and Rx full-duplex flow control frames are included.

Table 14-8. MIB Counters

Address	Mnemonic	Description
200	RMON_T_DROP	Count of Frames Not Correctly Counted
204	RMON_T_PACKETS	RMON Tx Packet Count
208	RMON_T_BC_PKT	RMON Tx Broadcast Packets
20C	RMON_T_MC_PKT	RMON Tx Multicast Packets
210	RMON_T_CRC_ALIGN	RMON Tx Packets with CRC/Align error
214	RMON_T_UNDERSIZE	RMON Tx Packets less than 64bytes, good CRC
218	RMON_T_OVERSIZE	RMON Tx Packets greater than MAX_FL bytes, good CRC
21C	RMON_T_FRAG	RMON Tx Packets less than 64bytes, bad CRC
220	RMON_T_JAB	RMONTxPackets greater than MAX_FL bytes, bad CRC
224	RMON_T_COL	RMON Tx collision count
228	RMON_T_P64	RMON Tx 64Byte packets
22C	RMON_T_P65TO127	RMON Tx 65 to 127Byte packets
230	RMON_T_P128TO255	RMON Tx 128 to 255 Byte packets
234	RMON_T_P256TO511	RMON Tx 256 to 511 Byte packets
238	RMON_T_P512TO1023	RMON Tx 512 to 1023Byte packets
23C	RMON_T_P1024TO2047	RMON Tx 1024 to 2047 Byte packets
240	RMON_T_P_GTE2048	RMON Tx packets with greater than 2048 Bytes
244	RMON_T_OCTETS	RMON Tx Octets
248	IEEE_T_DROP	Count of Frames Not Counted Correctly
24C	IEEE_T_FRAME_OK	Frames Transmitted OK
250	IEEE_T_1COL	Frames Transmitted with Single Collision
254	IEEE_T_MCOL	Frames Transmitted with Multiple Collisions
258	IEEE_T_DEF	Frames Transmitted after Deferral Delay
25c	IEEE_T_LCOL	Frames Transmitted with Late Collision
260	IEEE_T_EXCOL	Frames Transmitted with Excessive Collisions
264	IEEE_T_MACERR	Frames Transmitted with Tx FIFO Underrun
268	IEEE_T_CSERR	Frames Transmitted with Carrier Sense Error
26C	IEEE_T_SQE	Frames Transmitted with SQE Error
270	T_FDXFC	Flow Control Pause Frames Transmitted
274	IEEE_T_OCTETS_OK	Octet Count for Frames Transmitted w/o Error
278–27C	rsvd	Reserved
280	RMON_R_DROP	Count of frames Not Counted Correctly
284	RMON_R_PACKETS	RMON Rx Packet Count
288	RMON_R_BC_PKT	RMON Rx Broadcast Packets
28C	RMON_R_MC_PKT	RMON Rx Multicast Packets

Table 14-8. MIB Counters (continued)

Address	Mnemonic	Description
290	RMON_R_CRC_ALIGN	RMON Rx Packets with CRC/Align error
294	RMON_R_UNDERSIZE	RMON Rx Packets less than 64Bytes, good CRC
298	RMON_R_OVERSIZE	RMON Rx Packets greater than MAX_FL bytes, good CRC
29C	RMON_R_FRAG	RMON Rx Packets less than 64Bytes, bad CRC
2A0	RMON_R_JAB	RMONRxPackets greater than MAX_FL bytes, bad CRC
2A4	RMON_R_RESVD_0	Reserved
2A8	RMON_R_P64	RMON Rx 64Byte packets
2AC	RMON_R_P65TO127	RMON Rx 65 to 127Byte packets
2B0	RMON_R_P128TO255	RMON Rx 128 to 255Byte packets
2B4	RMON_R_P256TO511	RMON Rx 256 to 511 Byte packets
2B8	RMON_R_P512TO1023	RMON Rx 512 to 1023Byte packets
2BC	RMON_R_P1024TO2047	RMON Rx 1024 to 2047 Byte packets
2C0	RMON_R_P_GTE2048	RMON Rx packets with greater than 2048Bytes
2C4	RMON_R_OCTETS	RMON Rx Octets
2C8	IEEE_R_DROP	Count of frames not counted correctly
2CC	IEEE_R_FRAME_OK	Frames received OK
2D0	IEEE_R_CRC	Frames received with CRC error
2D4	IEEE_R_ALIGN	Frames received with alignment error
2D8	IEEE_R_MACERR	Rx FIFO overflow count
2DC	R_FDXFC	Flow Control Pause frames received
2E0	IEEE_R_OCTETS_OK	Octet count for frames received without error
2E4-2FC	rsvd	Reserved
300–3FF	rsvd	Reserved

14.5 FEC Registers—MBAR + 0x3000

The FEC uses 37 32-bit registers. These registers are located at an offset from MBAR of 0x3000. Register addresses are relative to this offset. Therefore, the actual register address is MBAR + 0x3000 + register address

Hyperlinks to the FEC registers are provided below:

- Section 14-9, FEC ID Register (0x3000)
- Section 14-10, FEC Interrupt Event Register (0x3004)
- Section 14-11, FEC Interrupt Enable Register (0x3008)
- Section 14-12, FEC Rx Descriptor Active Register (0x3010)
- Section 14-13, FEC Tx Descriptor Active Register (0x3014)
- Section 14-14, FEC Ethernet Control Register (0x3024)
- Section 14-15, FEC MII Management Frame Register (0x3040)
- Section 14-16, FEC MII Speed Control Register (0x3044)
- Section 14-18, FEC MIB Control Register (0x3064)
- Section 14-19, FEC Receive Control Register (0x3084)
- Section 14-20, FEC Hash Register (0x3088)
- Section 14-21, FEC Tx Control Register (0x30C4)
- Section 14-22, FEC Physical Address Low Register (0x30E4)
- Section 14-23, FEC Physical Address High Register (0x30E8)
- Section 14-24, FEC Opcode/Pause Duration Register (0x30EC)
- Section 14-25, FEC Descriptor Individual Address 1 Register (0x3118)
- Section 14-26, FEC Descriptor Individual Address 2 Register (0x311C)
- Section 14-27, FEC Descriptor Group Address 1 Register (0x3120)
- Section 14-28, FEC Descriptor Group Address 2 Register (0x3124)

- Section 14-29, FEC Tx FIFO Watermark Register (0x3144)
- Section 14.7, FEC Tx FIFO Data Register—MBAR + 0x31A4 (0x3184)
- Section 14.6.1, FEC Rx FIFO Data Register—MBAR + 0x3184 (0x31A4)
- Section 14-31, FEC Rx FIFO Status Register (0x3188)
- Section, FEC Tx FIFO Status Register (0x31A8)
- Section 14-32, FEC Rx FIFO Control Register (0x318C)
- Section, FEC Tx FIFO Control Register (0x31AC)
- Section 14-33, FEC Rx FIFO Last Read Frame Pointer Register (0x3190)
- Section, FEC Tx FIFO Last Read Frame Pointer Register (0x31B0)
- Section 14-34, FEC Rx FIFO Last Write Frame Pointer Register (0x3194)
- Section, FEC Tx FIFO Last Write Frame Pointer Register (0x31B4)
- Section 14-35, FEC Rx FIFO Alarm Pointer Register (0x3198)
- Section, FEC Tx FIFO Alarm Pointer Register (0x31B8)
- Section 14-36, FEC Rx FIFO Read Pointer Register (0x319C)
- Section , FEC Tx FIFO Read Pointer Register (0x31BC)
- Section 14-37, FEC Rx FIFO Write Pointer Register (0x31A0)
- Section , FEC Tx FIFO Write Pointer Register (0x31C0)
- Section 14-38, FEC Reset Control Register (0x31C4)
- Section 14-39, FEC Transmit FSM Register (0x31C8)

14-11

14.5.1 FEC ID Register—MBAR + 0x3000

The read-only FEC ID Register (FEC ID) identifies the FEC block and revision.

Table 14-9. FEC ID Register

FEC Registers—MBAR + 0x3000

Bits	Name	Description
0:15	FEC_ID	Value identifying the FEC
16:20	_	Reserved
21	DMA	DMA function is included in the FEC 0 = FEC does not include DMA (BestComm is the DMA engine)
22	FIFO	FIFO function included in the FEC 1 = FEC does include a FIFO
24:31	FEC_REV	Value identifies the FEC revision

14.5.2 FEC Interrupt Event Register—MBAR + 0x3004

When an event occurs that sets a bit in the IEVENT register, an interrupt is generated if the corresponding bit in the interrupt enable register (IMASK) is also set. The IEVENT register bit is cleared if 1 is written to that bit position. A 0 write has no effect. A hardware reset clears this register.

These interrupts can be divided into operational interrupts, transceiver/network error interrupts and internal error interrupts. Interrupts that may occur in normal operation are:

- GRA
- TFINT
- MII

Interrupts resulting from errors/problems detected in the network or transceiver are:

- HBERR
- BABR
- BABT
- LATE COL
- COL_RETRY_LIM

Interrupts resulting from FIFO errors are:

- XFIFO UN
- XFIFO ERROR
- RFIFO ERROR

Some error interrupts are independently counted in the MIB block counters. Software may choose to mask these interrupts, since the errors are visible to network management via the MIB counters.

- HBERR IEEE T SQE
- BABR RMON R OVERSIZE (good CRC), RMON R JAB (bad CRC)
- BABT RMON_T_OVERSIZE (good CRC), RMON_T_JAB (bad CRC)
- LATE COL IEEE T LCOL
- COL RETRY LIM IEEE T EXCOL
- XFIFO UN IEEE T MACERR

Table 14-10. FEC Interrupt Event Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	ERR	BABR	BABT	GRA	TFINT	F	Reserve	d	MII	Rsvd	-COL	COL_ TRY_LIM	Nn_o	XFIFO_ ERROR	RFIFO_ ERROR	Rsvd
W	HB	B/	B,	0	Ĕ						LATE	RETE	XFIFO	X	HH HH	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

14-12 Freescale Semiconductor

R								Re	served							
W																
BESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

HBERR Heartbeat Error— interrupt bit indicates HBC is set in the X_CNTRL regis input was not asserted within the heartbeat window following a transmiss. Babbling Receive Error—bit indicates frame was received with a length in R_CNTRL.MAX_FL bytes. Babbling Transmit Error—bit indicates transmitted frame length exceeded R_CNTRL.MAX_FL bytes. This condition is usually caused by a frame the being placed into the transmit data buffer(s). Truncation does not occur. GRA Graceful Stop Complete—interrupt bit is asserted for one of three reason 1 = A graceful stop initiated by setting X_CNTRL.GTS bit is completed. 2 = A graceful stop initiated by setting X_CNTRL.FC_PAUSE bit is completed.	in excess of
BABT Babbling Transmit Error—bit indicates transmitted frame length exceede R_CNTRL.MAX_FL bytes. This condition is usually caused by a frame the being placed into the transmit data buffer(s). Truncation does not occur. GRA Graceful Stop Complete—interrupt bit is asserted for one of three reason 1 = A graceful stop initiated by setting X_CNTRL.GTS bit is complete.	ed .
R_CNTRL.MAX_FL bytes. This condition is usually caused by a frame the being placed into the transmit data buffer(s). Truncation does not occur. GRA Graceful Stop Complete—interrupt bit is asserted for one of three reason 1 = A graceful stop initiated by setting X_CNTRL.GTS bit is complete.	
1 = A graceful stop initiated by setting X_CNTRL.GTS bit is complete	
	ns.
2 = A graceful stop initiated by setting X_CNTRL.FC_PAUSE bit is co	e.
	omplete.
3 = A graceful stop initiated by reception of a valid full duplex flow cor frame is complete. Refer to "Full-Duplex Flow Control" section of the Operation chapter.	
A "graceful stop" means the transmitter is put into a pause state after co the frame currently being transmitted.	mpletion of
4 TFINT Transmit frame interrupt. This bit indicates that a frame has been transm	nitted.
5 — Reserved	
6 — Reserved	
7 — Reserved	
8 MII MII Interrupt—bit indicates MII completed the data transfer requested.	
9 — Reserved	
LATE_COL Late Collision bit indicates a collision occurred beyond the collision windo in half-duplex mode. The frame is truncated with a bad CRC. Remainder is discarded.	
COL_RETRY_LIM Collision Retry Limit—bit indicates a collision occurred on each of 16 sucattempts to transmit the frame. The frame is discarded without being transmission of the next frame begins. Only occurs in half-duplex mode.	
12 XFIFO_UN Transmit FIFO Underrun—bit indicates the transmit FIFO became empty complete frame was transmitted. A bad CRC is appended to the frame frame is discarded.	
Transmit FIFO Error—indicates an error occurred within the transmit FIF XFIFO_ERROR bit is set, ECNTRL.ETHER_EN is cleared, halting FEC processing. When this occurs, software must ensure both the FIFO Contest BestComm are soft-reset.	frame
RFIFO_ERROR Receive FIFO Error—indicates error occurred within the RX FIFO. When RFIFO_ERROR bit is set, ECNTRL.ETHER_EN is cleared, halting FEC processing. When this occurs, software must ensure both the FIFO Control BestComm are soft-reset.	frame
15:31 — Reserved.	

MPC5200B Users Guide, Rev. 1

14.5.3 FEC Interrupt Enable Register—MBAR + 0x3008

The IMASK register provides control over the interrupt events allowed to generate an interrupt. All implemented bits in this CSR are R/\overline{W} . This register is cleared by a hardware reset. If corresponding bits in both the IEVENT and IMASK registers are set, the interrupt is signalled to the CPU. The interrupt signal remains asserted until 1 is written to the IEVENT bit (write 1 to clear) or a 0 is written to the IMASK bit.

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	HBEEN	BREN	BTEN	GRAEN	TFIEN	F	Reserve	d	MIIEN	Rsvd	LCEN	CRLEN	XFUNEN	XFERREN	RFERREN	Rsvd
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0	HBEEN	Heartbeat Error Interrupt Enable
1	BREN	Babbling Receiver Interrupt Enable
2	BTEN	Babbling Transmitter Interrupt Enable
3	GRAEN	Graceful Stop Interrupt Enable
4	TFIEN	Transmit Frame Interrupt Enable
5	_	Reserved
6	_	Reserved
7	_	Reserved
8	MIIEN	MII Interrupt Enable
9	_	Reserved
10	LCEN	Late Collision Enable
11	CRLEN	Late Collision Enable
12	XFUNEN	Transmit FIFO Underrun Enable
13	XFERREN	Transmit FIFO Error Enable
14	RFERREN	Receive FIFO Error Enable
15:31	_	Reserved

14.5.4 FEC Rx Descriptor Active Register—MBAR + 0x3010

The FEC descriptor active register is a command register which should be written by the user to indicate that the receive descriptor ring has been updated (empty receive buffers have been produced by the driver with the E bit set).

Whenever the register is written the R_DES_ACTIVE bit is set. This is independent of the data actually written by the user. When set, the FEC will poll the receive descriptor ring and process receive frames (provided ETHER_EN is also set). Once the FEC polls a receive descriptor whose ownership bit is not set, then the FEC will clear the R_DES_ACTIVE bit and cease receive descriptor ring polling until the user sets the bit again, signifying additional descriptors have been placed into the receive descriptor ring.

14-15

The R DES ACTIVE bit is cleared at reset and by the clearing of ETHER EN.

Table 14-12. FEC Rx Descriptor Active Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			Re	eservec	I			ACTIVE	Reserved							
								1 1								
W								DES								
								π.								
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:6		Reserved
7	R_DES_ACTIVE	Set to one when this register is written, regardless of the value written. Cleared by the FEC device whenever no additional "ready" descriptors remain in the receive ring.
8:31		Reserved

14.5.5 FEC Tx Descriptor Active Register—MBAR + 0x3014

The FEC descriptor active register is a command register which should be written by the user to indicate that the transmit descriptor ring has been updated (transmit buffers have been produced by the driver with the R bit set in the buffer descriptor).

Whenever the register is written the X_DES_ACTIVE bit is set. This is independent of the data actually written by the user. When set, the FEC will poll the transmit descriptor ring and process transmit frames (provided ETHER_EN is also set). Once the FEC polls a transmit descriptor whose ownership bit is not set, then the FEC will clear the X_DES_ACTIVE bit and cease transmit descriptor ring polling until the sets the bit again, signifying additional descriptors have been placed into the transmit descriptor ring.

The X DES ACTIVE bit is cleared at reset and by the clearing of ETHER EN.

Table 14-13. FEC Tx Descriptor Active Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			Re	eservec	ı			VE				Res	erved			
								ACTI								
W								X_DES_ACTIVE								
								×								
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	40	4-	4.0	40		0.4		00	0.4	0.5		07		00		04.1.1
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	eserved							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

FEC Registers—MBAR + 0x3000

Bits	Name	Description
0:6	_	Reserved
7	X_DES_ACTIVE	Set to one when this register is written, regardless of the value written. Cleared by the FEC device whenever no additional "ready" descriptors remain in the transmit ring.
8:31	_	Reserved

14.5.6 FEC Ethernet Control Register—MBAR + 0x3024

The ECNTRL register is a read/write user register that can enable/disable the FEC. Some fields may be altered by hardware.

Table 14-14. FEC Ethernet Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	TAGO	5	TAG2	TAG3	Rsvd	TESTMD					Res	erved				
W	¥	TAG1	¥	Ţ	Rs	TES.										
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R						i	Reserve	ed						OE	N __	H.
	-													FEC_C	THER	RESET
W														쁘	占	Œ
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:3	TAG[0:3]	This field allows programming and reading the TBUS tag bits. This field is used for debug/test only, and is implemented in two separate 4-bit registers. The "tags_in" register is written to when a write to this register takes place. This field (tags_in) resets to 1111. During a write cycle to any FEC register other than ECNTRL the tags_in value is driven onto the tbus data bus tag field. During a read cycle the tbus tag field bits is latched and saved in the "tags_out" register. When the ECNTRL register is read the value from "tags_out" shows in the TAG field.
4	_	Reserved
5	TESTMD	Test Mode—used for manufacturing test only. TESTMD resets to 0. This bit forces the bus controller to ignore all bus requests except the one from the SIF.
6:28	_	Reserved
29	FEC_OE	FEC Output Enable—It is a spare bit and has no affect on internal operation.
30	ETHER_EN	Ethernet Enable—When this bit is set, FEC is enabled and Rx/Tx can occur. When bit is cleared, Rx stops immediately; Tx stops after a bad CRC is appended to any frame currently being transmitted. The ETHER_EN bit is altered by hardware under the following conditions: • If ECNTRL.RESET is written to 1 by software, ETHER_EN is cleared. • If error conditions causing the IEVENT.EBERR, XFIFO_ERROR or RFIFO_ERROR bits to set occur ETHER_EN is cleared.
31	RESET	Ethernet Controller Reset—When this bit is set, the equivalent of a hardware reset is done, but it is local to the FEC. ETHER_EN is cleared and all other FEC registers take their reset values. Also, any Tx/Rx currently in progress is abruptly aborted. This bit is automatically cleared by hardware during the reset sequence. The reset sequence takes approximately 8 clock cycles after RESET is written with 1.

MPC5200B Users Guide, Rev. 1

14-16 Freescale Semiconductor

14.5.7 FEC MII Management Frame Register—MBAR + 0x3040

This MII_DATA register does not reset to a defined value. The MII_DATA register is used to communicate with the attached MII compatible PHY device(s), providing read/write access to the MII registers.

Writing to the MII_DATA register causes a management frame to be sourced unless the MII_SPEED register has been programmed to 0. When writing to MII_DATA when MII_SPEED = 0, if the MII_SPEED register is then written to a non-zero value, an MII frame is generated with the data previously written to the MII_DATA register. This let MII_DATA and MII_SPEED be programmed in either order if MII_SPEED is currently 0.

2 3 5 6 7 8 9 msb 0 1 4 10 11 12 13 14 15 R ST OP PA RA TΑ W Χ Х Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ RESET: Χ Χ Χ 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 lsb R DATA W RESET: Х Х Χ Х Х Χ Χ Х Х Х Х Х Х Χ Χ Х

Table 14-15. FEC MII Management Frame Register

Note: X: Bit does not reset to a defined value.

Bits	Name	Description
0:1	ST	Start of Frame Delimiter—bits must be programmed to 01 for a valid MII management frame.
2:3	OP	Operation Code—field must be programmed to 10 (read) or 01 (write) to generate a valid MII management frame.
		A value of 11 causes a "read" frame operation.
		A value of 00 causes a "write" frame operation. However, these frames are not MII compliant.
4:8	PA	PHY Address—specifies 1 of up to 32 attached PHY devices.
9:13	RA	Register Address—specifies 1 of up to 32 registers within the specified PHY device.
14:15	TA	TurnAround—must be programmed to 10 to generate a valid MII management frame.
16:31	DATA	Management Frame Data—used for data written to or read from PHY register.

To do a read or write operation the MII management interface writes to the MII_DATA register. To generate a valid read or write management frame:

- the ST field must be written with a 01
- the OP field must be written with either:
 - 01 (management register write frame), or
 - 10 (management register read frame), and
- the TA field must be written with a 10

If other patterns are written to these fields, a frame is generated, but it does not comply to the IEEE 802.3 MII definition:

- OP field = 1x produces a "read" frame operation, while
- OP field = 0x produces a "write" frame operation.

To generate an IEEE 802.3 compliant MII management interface write frame (write to a PHY register), the user must write the following to the MII_DATA register:

{01 01 PHYAD REGAD 10 DATA}

Writing this pattern causes control logic to shift out the data in the MII_DATA register following a preamble generated by the control state machine. During this time, the MII_DATA register contents are altered as the contents are serially shifted, and is unpredictable if read by the

FEC Registers—MBAR + 0x3000

user. When the write management frame operation is complete, the MII_DATAIO_COMPL interrupt is generated. At this time the MII_DATA register contents match the original value written.

To generate an MII Management Interface read frame (read a PHY register) the user must write the following to the MII_DATA register (DATA field content is "don't care"):

{01 10 PHYAD REGAD 10 XXXX}

Writing this pattern causes control logic to shift out data in the MII_DATA register following a preamble generated by the control state machine. During this time, the MII_DATA register contents are altered as the contents are serially shifted, and is unpredictable if read by the user. When the read management frame operation is complete, the MII_DATAIO_COMPL interrupt is generated. At this time the MII_DATA register contents matches the original value written, except for the DATA field whose contents have been replaced by the value read from the PHY register.

If the MII_DATA register is written while frame generation is in progress, frame contents are altered. Software should use the MII_STATUS register and/or the MII_DATAIO_COMPL interrupt to avoid writing to the MII_DATA register while frame generation is in process.

14.5.8 FEC MII Speed Control Register—MBAR + 0x3044

The MII_SPEED register provides MII clock (MDC pin) frequency control. This allows dropping the MII management frame preamble and provides observability (intended for manufacturing test) of an internal counter used in generating an MDC clock signal.

Table 14-16. FEC MII Speed Control Register

msb 0 R Reserved W RESET: 31 lsb R DIS_PREAMBLE Reserved MII_SPEED Rsvd W RESET: 0

Bits	Name	Description
0:23	_	Reserved
24	DIS_PREAMBLE	Asserting this bit causes preamble (32 1s) to not be prepended to the MII management frame. The MII standard allows the preamble to be dropped, if not required by the attached PHY device(s).
25:30	MII_SPEED	Controls the frequency of the MII management interface clock (MDC) relative to ipb_clk. A 0 value in this field "turns off" the MDC and leaves it in low voltage state. Any non-zero value results in the MDC frequency of
		1/(MII_SPEED*2) of the ipb_clk frequency.
		The MII_SPEED field must be programmed with a value to provide an MDC frequency of less than or equal to 2.5 MHz to be compliant with the IEEE MII characteristic. The MII_SPEED must be set to a non-zero value in order to source a read or write management frame. After the management frame is complete, the MII_SPEED register may optionally be set to 0 to turn off the MDC. The MDC generated has a 50% duty cycle except when MII_SPEED is changed during operation (change takes affect following either a rising or falling edge of MDC).
		If the ipb_clk is 25MHz, programming MII_SPEED field to 0x5 results in a MDC frequency of 25MHz * 1/(5*2) = 2.5 MHz. Table 14-17 shows MII_SPEED optimum values as a function of the ipb_clk frequency.
31	_	Reserved

Table 14-17. Programming Examples for MII_SPEED Register

ipb_clk Frequency	MII_SPEED (Field in Register)	MDC Frequency
25MHz	\$5	2.5MHz
33MHz	\$7	2.36MHz
40MHz	\$8	2.5MHz
50MHz	\$A	2.5MHz

14.5.9 FEC MIB Control Register—MBAR + 0x3064

The MIB_CONTROL register is a read/write register used to provide control of and to observe the state of the MIB block. This register is accessed by user software if there is a need to disable the MIB block operation. For example, to clear all MIB counters in RAM the user should disable the MIB block, clear all MIB RAM locations, then enable the MIB block. The MIB_DISABLE bit is reset to 1.

Table 14-18. FEC MIB Control Register

MPC5200B Users Guide, Rev. 1

FEC Registers—MBAR + 0x3000

Bits	Name	Description
0	MIB_DISABLE	A read/write control bit. If set, MIB logic halts and MIB counters do not update.
1	MIB_IDLE	A read-only status bit. If set, MIB block is not currently updating MIB counters.
2:31	_	Reserved

14.5.10 FEC Receive Control Register—MBAR + 0x3084

The R_CNTRL register is user programmable. It controls the operational mode of the receive block and should be written only when $ETHER_EN = 0$ (initialization time).

Table 14-19. FEC Receive Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
R		Re	eserved	l			MAX_FL											
W																		
RESET:	0	0	0	0	0	1	0	1	1	1	1	0	1	1	1	0		
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb		
R					Rese	rved					FCE	REJ	>	MODE	DRT	LOOP		
W													PROM					
V												BC	ш.	Ĭ,				
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1		

Bits	Name	Description
0:4	_	Reserved
5:15	MAX_FL	Maximum Frame Length—User R/W field. Resets to decimal 1518. The length is measured starting at DA and includes CRC at End Of Frame (EOF). Tx frames longer than MAX_FL causes the BABT interrupt to occur. Rx Frames longer than MAX_FL causes BABR interrupt to occur and sets the EOF Receive Frame Status Word LG bit. The recommended user programmed default value is 1518, or if VLAN Tags are supported, 1522.
16:25	_	Reserved
26	FCE	Flow Control Enable—If asserted, the receiver detects PAUSE frames. On PAUSE frame detection, transmitter stops transmitting data frames for a given duration.
27	BC_REJ	Broadcast Frame Reject—If asserted, frames with DA (destination address) = FFFF_FFFF are rejected, unless PROM bit is set. If both BC_REJ and PROM = 1, frames with broadcast DA are accepted and M (MISS) bit is set in the Rx buffer descriptor.
28	PROM	Promiscuous mode—All frames are accepted regardless of address matching.
29	MII_MODE	Selects External Interface Mode—controls the interface mode for Tx/Rx blocks. • Setting bit to 1 selects MII mode. • Setting bit to 0 selects 7 wire mode (used only for serial 10Mbps).

Bits	Name	Description
30	DRT	Disable Receive on Transmit
		0 = Rx path operates independently of Tx (use for full-duplex or to monitor Tx activity in half-duplex mode).
		1 = Disable frames reception while transmitting (normally used for half-duplex mode).
31	LOOP	Internal Loopback—If set, transmitted frames are looped back internal to the device and transmit output signals are not asserted. The system clock is substituted for TX_CLK when LOOP is asserted. DRT must be set to 0 when asserting LOOP.

14.5.11 FEC Hash Register—MBAR + 0x3088

RESET:

The read-only R_HASH register provides address recognition information from the Rx block about the frame currently being received. These bits provide information used in the address recognition subroutine.

Table 14-20. FEC Hash Register msb 0 R HASH Reserved MULTI FCE W RESET: 31 lsb R Reserved W

Bits	Name	Description
0	FCE_DC	This is a read-only view of the R_CNTRL register FCE bit.
1	MULTICAST	Set if current Rx frame contained a multi-cast destination address, indicating DA LSB was set. Cleared if current Rx frame does not correspond to a multi-cast address.
2:7	HASH	Corresponds to "hash" value of current Rx frame's destination address. Hash value is a 6-bit field extracted from least significant portion of CRC register.
8:31	_	Reserved

14.5.12 FEC Tx Control Register—MBAR + 0x30C4

This X_{CNTRL} register is read/write and is written to configure the transmit block. This register is cleared at system reset. Bits 29:30 should be modified only when ETHER EN = 0.

Table 14-21. FEC Tx Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Res	served							0
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

·

Freescale Semiconductor 14-21

MPC5200B Users Guide, Rev. 1

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Reserv	red												FDEN	HBC	GTS
												JSE	JSE			
w	=											\[\]	PA			
												RFC.	TFC			
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:26	_	Reserved
27	RFC_PAUSE	This read-only status bit is asserted when a full-duplex flow control pause frame is received. The transmitter is paused for the duration defined in this pause frame. Bit automatically clears when the pause duration is complete.
28	TFC_PAUSE	Assert to transmit a PAUSE frame. When this bit is set, the MAC stops transmission of data frames after the current transmission is complete. At this time, the INTR_EVENT register GRA interrupt is asserted. With transmission of data frames stopped, the MAC transmits a MAC Control PAUSE frame. Next, the MAC clears the TFC_PAUSE bit and resumes transmitting data frames. Note: If the transmitter is paused due to user assertion of GTS or reception of a PAUSE frame, MAC may still transmit a MAC Control PAUSE frame.
29	FDEN	Full Duplex Enable—If set, frames are transmitted independent of Carrier Sense and Collision inputs. This bit should only be modified when ETHER_EN is deasserted.
30	НВС	Heartbeat Control—If set, the heartbeat check is done following End Of Transmission (EOT) and the Event Status Register HB bit is set if the collision input does not assert within the heartbeat window. This bit should only be modified when ETHER_EN is deasserted.
31	GTS	Graceful Transmit Stop—When this bit is set, the MAC stops transmission after any frame that is currently being transmitted is complete and the INTR_EVENT register GRA interrupt is asserted. If frame transmission is not currently underway, the GRA interrupt is immediately asserted. Once transmission completes, a "restart" can be done by clearing the GTS bit. The next frame in the transmit FIFO is then transmitted. If an early collision occurs during transmission when GTS = 1, transmission stops after the collision. The frame is transmitted again once GTS is cleared.
		Note: Old frames may exist in the transmit FIFO and be transmitted when GTS is reasserted. To avoid this, deassert ETHER_EN after the GRA interrupt.

14.5.13 FEC Physical Address Low Register—MBAR + 0x30E4

The PADDR1 register is written by the user. This register contains the lower 32bits (Bytes 0,1,2,3) of the 48-bit address used in the address recognition process to compare with the destination address (DA) field of receive frames with an individual DA. In addition, this register is used in Bytes 0:3 of the 6-Byte source address field when transmitting PAUSE frames. This register is not reset and must be initialized.

Table 14-22. FEC Physical Address Low Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								PA	DDR1							
W																
RESET:	Х	Х	Χ	Χ	Χ	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

MPC5200B Users Guide, Rev. 1

14-22 Freescale Semiconductor

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								P/	ADDR1							
W																
RESET:	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Note: X: Bit is not reset and must be initialized.

Bits	Name	Description
0:31		Bytes 0 (bits 31:24), 1 (bits 23:16), 2 (bits 15:8) and 3 (bits 7:0) of the 6-byte individual address used for an exact match, and the Source Address field in PAUSE frames.

14.5.14 FEC Physical Address High Register—MBAR + 0x30E8

The PADDR2 register is written by the user. This register contains the upper 16 bits (bytes 4 and 5) of the 48-bit address used in the address recognition process to compare with the destination address (DA) field of receive frames with an individual DA. In addition, this register is used in Bytes 4 and 5 of the 6-Byte source address field when transmitting PAUSE frames. Bits 16:31 of XMIT.PADDR2 contain a constant type field (hex 8808) used for transmission of PAUSE frames. This register is not reset and bits 0:15 must be initialized.

Table 14-23. FEC Physical Address High Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								P/	ADDR2							
W																
RESET:	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Х	Х
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								٦	ГҮРЕ							
W																
RESET:	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0

Note: X: Bit is not reset and must be initialized.

Bits	Name	Description
0:15	PADDR2	Bytes 4 (bits 31:24) and 5 (bits 23:16) of the 6-byte individual address used for an exact match, and the Source Address field in PAUSE frames.
16:31	TYPE	These 16 bits are a constant value, hex 8808.

14.5.15 FEC Opcode/Pause Duration Register—MBAR + 0x30EC

The OP_PAUSE register is read/write accessible. This register contains the 16-bit opcode, and 16-bit pause duration fields used in transmission of a PAUSE frame. The opcode field is a constant value, hex 0001. When another node detects a PAUSE frame, that node pauses transmission for the duration specified in the pause duration field. This register is not reset and bits 16:31 must be initialized.

Table 14-24. FEC Opcode/Pause Duration Register

Freescale Semiconductor 14-23

MPC5200B Users Guide, Rev. 1

FEC Registers—MBAR + 0x3000

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								PAU	SE_DU	R						
W																
RESET:	Х	Х	Χ	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х

Note: X: Bit is not reset and must be initialized.

Bits	Name	Description
0:15	OPCODE	Opcode field used in PAUSE frames. Bits are a constant value, hex 0001.
16:31	PAUSE_DUR	Pause Duration field used in PAUSE frames.

14.5.16 FEC Descriptor Individual Address 1 Registe—MBAR + 0x3118

The IADDR1 register is written by the user. This register contains the upper 32 bits of the 64-bit individual address hash table used in the address recognition process to check for possible match with the DA field of receive frames with an individual DA. This register is not reset and must be initialized.

Table 14-25. FEC Descriptor Individual Address 1 Register

Note: X: Bit is not reset and must be initialized.

Bits	Name	Description
0:31	IADDR1	The upper 32 bits of the 64-bit hash table used in the address recognition process for receive frames with a unicast address.
		Bit 31 contains hash index bit 63.
		Bit 0 contains hash index bit 32.

14.5.17 FEC Descriptor Individual Address 2 Register—MBAR + 0x311C

The IADDR2 register is written by the user. This register contains the lower 32 bits of the 64-bit individual address hash table used in the address recognition process to check for possible match with the DA field of receive frames with an individual DA. This register is not reset and must be initialized.

Table 14-26. FEC Descriptor Individual Address 2 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								IA	DDR2							
W																
RESET:	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	X

MPC5200B Users Guide, Rev. 1

14-24 Freescale Semiconductor

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								IA	DDR2							
W																
RESET:	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Note: X: Bit is not reset and must be initialized.

Bits	Name	Description
0:31	IADDR2	The lower 32bits of the 64-bit hash table used in the address recognition process for receive frames with a unicast address.
		Bit 31 contains hash index bit 31.Bit 0 contains hash index bit 0.

14.5.18 FEC Descriptor Group Address 1 Register—MBAR + 0x3120

The GADDR1 register is written by the user. This register contains the upper 32 bits of the 64-bit hash table used in the address recognition process for receive frames with a multicast address. This register must be initialized.

Table 14-27. FEC Descriptor Group Address 1 Register

Note: X: Bit is not reset and must be initialized.

Bits	Name	Description
0:31	GADDR1	The GADDR1 register contains the upper 32bits of the 64-bit hash table used in the address recognition process for receive frames with a multicast address.
		Bit 31 contains hash index bit 63.Bit 0 contains hash index bit 32.

14.5.19 FEC Descriptor Group Address 2 Register—MBAR + 0x3124

The GADDR2 register is written by the user. The GADDR2 register contains the lower 32 bits of the 64-bit hash table used in the address recognition process for receive frames with a multicast address. This register must be initialized.

Table 14-28. FEC Descriptor Group Address 2 Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								G/	ADDR2							
W																
RESET:	Х	Χ	Х	Х	Χ	Х	Х	Х	Χ	Χ	Χ	Х	Χ	Х	Χ	Х

Freescale Semiconductor 14-25

MPC5200B Users Guide, Rev. 1

FEC Registers—MBAR + 0x3000

		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
	R								G/	ADDR2							
İ	W																
_	RESET:	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х

Note: X: Bit is not reset and must be initialized.

Bits	Name	Description
0:31		The GADDR2 register contains the lower 32 bits of the 64-bit hash table used in the address recognition process for receive frames with a multicast address.
		Bit 31 contains hash index bit 31.
		Bit 0 contains hash index bit 0.

14.5.20 FEC Tx FIFO Watermark Register—MBAR + 0x3144

The X_WMRK register is a user programmable 4-bit read/write register that controls the amount of data required in the transmit FIFO before transmission of a frame can begin. This lets the user minimize transmit latency ($X_WMRK = 0000$) or allows for larger bus access latency ($X_WMRK = 1111$) due to contention for the system bus. Setting the watermark to a high value minimizes the risk of transmit FIFO underrun due to contention for the system bus. The X_WMRK register resets to 0.

NOTE

This register value may need to be customized by software for specific FEC applications to be compatible with specific FIFO/system bus access latency requirements.

Table 14-29. FEC Tx FIFO Watermark Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Reserved															
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Reserved X_WMRK															
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:28	_	Reserved
0:28 28:31	X_WMRK	Transmit FIFO Watermark—Frame transmission begins: • If the number of bytes selected by this field are written into the transmit FIFO, or • if an EOF is written to the FIFO, or • if the FIFO is full before the selected number of bytes are written. Options are: 0000 = 64Bytes written to FIFO. 0001 = 128Bytes written to FIFO. 0010 = 192Bytes written to FIFO. 0011 = 256Bytes written to FIFO. 0100 = 320Bytes written to FIFO. 0101 = 384Bytes written to FIFO. 0110 = 448Bytes written to FIFO. 0111 = 512Bytes written to FIFO. 1000 = 576Bytes written to FIFO. 1001 = 640Bytes written to FIFO.
		1010 = 704Bytes written to FIFO. 1011 = 768Bytes written to FIFO.
		1100 = 832Bytes written to FIFO.
		1101 = 896Bytes written to FIFO. 1110 = 960Bytes written to FIFO.
		1111 = 1024Bytes written to FIFO.

14.6 FIFO Interface

The programming interface to the FIFO allows access to Data, Status, Control, Last Write Pointer, Last Read Pointer, Alarm, Read and Write Pointers for Transmit and Receive configurations. The FIFO can be accessed by byte, word, or longword, but all accesses must be aligned with the most significant byte (big endian) of the data port. BestComm supports byte, word or longword accesses. The processor supports longword access only. All register name access is longword aligned

Table 14-30. FIFO Interface Register Map

Address	byte0	byte1	byte2	byte3	Description
0x184	Data	Data	Data	Data	Receive FIFO Data
0x188	Stat	Stat			Receive FIFO Status
0x18C	Ctl				Receive FIFO Control
0x190			LRF	LRF	Receive Last Read Frame Pointer
0x194			LWF	LWF	Receive Last Write Frame Pointer
0x198			Alarm	Alarm	Receive (High/Low) Alarm Pointer
0x19C			Read	Read	Receive FIFO Read Pointer
0x1A0			Write	Write	Receive FIFO Write Pointer
0x1A4	Data	Data	Data	Data	Transmit FIFO Data
0x1A8	Stat	Stat			Transmit FIFO Status
0x1AC	0x1AC Ctl				Transmit FIFO Control
0x1B0		LRF	LRF	Transmit Last Read Frame Pointer	

MPC5200B Users Guide, Rev. 1

Table 14-30. FIFO Interface Register Map (continued)

Address	byte0	byte1	byte2	byte3	Description
0x1B4			LWF	LWF	Transmit Last Write Frame Pointer
0x1B8			Alarm	Alarm	Transmit (High/Low) Alarm Pointer
0x1BC			Read	Read	Transmit FIFO Read Pointer
0x1C0			Write	Write	Transmit FIFO Write Pointer

14.6.1 FEC Rx FIFO Data Register—MBAR + 0x3184

14.7 FEC Tx FIFO Data Register—MBAR + 0x31A4

The RFIFO_DATA and TFIFO_DATA registers are the main interface port for the transmit and receive FIFO. Data which is to be buffered in the FIFO, or has been buffered in the FIFO, is accessed through this register.

14.7.1 FEC Rx FIFO Status Register—MBAR + 0x3188

14.8 FEC Tx FIFO Status Register—MBAR + 0x31A8

The RFIFO_STATUS and TFIFO_STATUS registers contain bits which provide information about the status of the FIFO controller. The bits marked sticky are cleared by writing a "1" to their positions.

Table 14-31. FEC Rx FIFO Status Register FEC Tx FIFO Status Register

Bits	Name	Description
0:3	_	Reserved
4:7	Frame[0:3]	Frame Indicator – READ ONLY This bus provides a frame status indicator for non-DMA applications. Frame[0] = A frame boundary has occurred on the [31:24] byte of the data bus. Frame[1] = A frame boundary has occurred on the [23:16] byte of the data bus. Frame[2] = A frame boundary has occurred on the [15:8] byte of the data bus. Frame[3] = A frame boundary has occurred on the [7:0] byte of the data bus.
8		Reserved
9	Error	FIFO Error – Sticky, Write To Clear. This bit signifies that an error has occurred in the FIFO controller. Errors can be caused by underflow, overflow,or pointers being out of bounds. This bit will remain set until this bit of the FIFO status register has been written with a 1.

MPC5200B Users Guide, Rev. 1

14-28 Freescale Semiconductor

Bits	Name	Description
10	UF	UF FIFO Underflow – Sticky, Write To Clear
		This bit signifies the read pointer has surpassed the write pointer. This bit will remain set until this bit of the FIFO status register has been written with a 1.
11	OF	OF FIFO Overflow – Sticky, Write To Clear
		This bit signifies the write pointer has surpassed the read pointer. This bit will remain set until this bit of the FIFO status register has been written with a 1.
12	FR	FR Frame Ready – Read Only
		The FIFO has requested attention because there is framed data ready. All complete frames must be read from the FIFO to clear this alarm. This alarm will only be asserted while in frame mode.
13	Full	Full Alarm – Read Only
		The FIFO has requested attention because it is full. The FIFO must be read to clear this alarm.
14	Alarm	FIFO Alarm – Read Only
		The FIFO has requested attention because it has determined an alarm condition. The specific alarm condition detected is dependent upon the FIFO direction (Transmit or Receive); if it is a Transmit FIFO, then the FIFO alarm output pin provides indication of a low level, asserting when there is less than alarm bytes of data remaining in the FIFO, and deasserting when there are less than 4* granularity free bytes remaining. When the FIFO is configured to Receive, the FIFO alarm provides high level indication, asserting when there are less than alarm bytes free in the FIFO, and deasserting when there are less than granularity bytes of data remaining. This signal can be cleared by reading or writing (as appropriate) the FIFO, or manipulating the FIFO pointers.
15	Empty	Empty – Read Only
		The FIFO has requested attention because it is empty. The FIFO must be written to clear this alarm.
16:31		Reserved

14.8.1 FEC Rx FIFO Control Register—MBAR + 0x318C FEC Tx FIFO Control Register—MBAR + 0x31AC

The RFIFO_CONTROL and TFIFO_CONTROL registers provide programmability of many FIFO behaviors, from last transfer granularity to frame operation. Last transfer granularity allows the user to control when the FIFO controller stops requesting data transfers through the FIFO alarm. When the alarm is configured as a Receive FIFO, the granularity value is the GR[2:0] value. When the alarm is configured as a Transmit FIFO, the granularity value is four times the GR[2:0] value, or the pipeline depth. The frame bit of the control register provides a capability to enable and control the FIFO controller's ability to view data on a packetized basis. The FIFO controller also has the programmable capability to not request attention after it has received a complete frame until Ethernet has reported completion of transmission. Frame mode supersedes the FIFO granularity bits, through the assertion of a hardware signal to BestComm.

Table 14-32. FEC Rx FIFO Control Register FEC Tx FIFO Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15				
R	Shadow	WFF	WFR[1:0]		ME		GR[2:0]		IP	FAE	RXW	UF	OF	TXW	Б-					
W				COMP	FRAME				MASK	MASK	MASK	MASK	MAS K	MAS K	Re	served				
RESET	: 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb				
R							Reserved													
W																				
RESE	T: 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				

Bits	Name	Description
0	_	Reserved
1:2	WFR[1:0]	Write Frame 01 = the FIFO controller assumes the next write to its data port is the next to last write. 10 = the FIFO controller assumes the next write to its data port is status / control information.
3	COMP	COMP Re-enable Requests on Frame Transmission Completion. When this bit is set, the FIFO controller will not request attention between receiving the last data of the frame from the BestComm until the peripheral acknowledges transmission of the frame.
4	FRAME	Frame Mode Enable. When this bit is set, the FIFO controller monitors frame done information from the peripheral or BestComm. Setting this bit also enables the other frame control bits in this register, as well as other frame functions. This bit must be set to use frame functions.
5:7	GR[2:0]	Last Transfer Granularity. These bits define the deassertion point for the "high" service request and also define the deassertion point for the "low" service request. A "high" service request is deasserted when there are less than GR[2:0] data bytes remaining in the FIFO. A "low" service request is deasserted when there are less than (4 * GR[2:0]) free bytes remaining in the FIFO.

14.8.2 FEC Rx FIFO Last Read Frame Pointer Register—MBAR + 0x3190 FEC Tx FIFO Last Read Frame Pointer Register—MBAR + 0x31B0

The RFIFO_LRF_PTR and TFIFO_LRF_PTR are a FIFO-maintained pointer which indicates the location of the start of the most recently read frame, or the start of the frame currently in transmission. The LRFP updates on FIFO read data accesses to a frame boundary. The LRFP can be read and written for debug purposes. For the frame retransmit function, the LRFP indicates which point to begin retransmission of the data frame. The LRFP carries validity information, however, there are no safeguards to prevent retransmitting data which has been overwritten. When FRAME is not set, then this pointer has no meaning.

Table 14-33. FEC Rx FIFO Last Read Frame Pointer Register FEC Tx FIFO Last Read Frame Pointer Register

		msb u	ı	2	3	4	5	О	1	0	9	10	11	12	13	14	15
F									Rese	erved							
٧	/																
RES	ET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

14-30 Freescale Semiconductor

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R			Rese	ved			LRFP[9:0]										
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bits	Name	Description
0:21	1	Reserved
22:31	LRFP[9:0]	LRFP Last Read Frame Pointer. This pointer indicates the start of the last data frame read from the FIFO by the peripheral.

14.8.3 FEC Rx FIFO Last Write Frame Pointer Register—MBAR + 0x3194 FEC Tx FIFO Last Write Frame Pointer Register—MBAR + 0x31B4

The RFIFO_LWF_PTR and TFIFO_LWF_PTR are a FIFO maintained pointer which indicates the location of the start of the last frame written into the FIFO. The LWFP updates on FIFO write data accesses which create a frame boundary, whether that be by setting the WFC control bit or by feeding a frame bit in on the appropriate bus. The LWFP can be read and written for debug purposes. For the frame discard function, the LWFP divides the valid data region of the FIFO (the area in-between the read and write pointers) into framed and unframed data. Data between the LWFP and write pointer constitutes an incomplete frame, while data between the read pointer and the LWFP has been received as whole frames. When FRAME is not set, then this pointer has no meaning.

Table 14-34. FEC Rx FIFO Last Write Frame Pointer Register FEC Tx FIFO Last Write Frame Pointer Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Reserved							LRFP[9:0]								
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:21	_	Reserved
22:31	LWFP[9:0]	LRFP Last WriteFrame Pointer.
		This pointer indicates the start of the last data frame written into the FIFO by the peripheral.

14.8.4 FEC Rx FIFO Alarm Pointer Register—MBAR + 0x3198 FEC Tx FIFO Alarm Pointer Register—MBAR + 0x31B8

RFIFO_ALARM and TFIFO_ALARM include pointer which provide high/low level alarm information to the user integration logic and the BestComm interface. A low level alarm reports lack of data; a high level alarm reports lack of space. The alarm pointer is interpreted depending on the state of the FIFO transmit input pin: if FIFO transmit = "1", then the alarm is represented in terms of data bytes, if FIFO Transmit = "0", the alarm is represented in terms of free bytes. This programmable alarm can warn the system when the FIFO is almost full of data (FIFO Transmit = "0"), or when the FIFO is almost out of data (FIFO Transmit = "1"). This register is programmed to the upper limit for the number of bytes in the FIFO of data, when FIFO transmit is negated, or space, when FIFO transmit is asserted, before an internal alarm is set. Any time the amount of data or space in the FIFO is above the indicated amount, the alarm will be set. The alarm is cleared when there is less data or space than is defined as the FIFO granularity or pipeline depth. The number of bits in the alarm pointer register will vary with the address space of the FIFO memory, and the alarm pointer is initialized to zero.

Table 14-35. FEC Rx FIFO Alarm Pointer Register FEC Tx FIFO Alarm Pointer Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R			Rese	ved							Alar	m[9:0]				
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:21	-	Reserved
22:31	Alarm[9:0]	Alarm Pointer. This pointer indicates the point at (or below) which to assert the FIFO alarm signal. This value is compared with data or free bytes, depending upon the state of FIFO Transmit (FIFO Transmit = "1", alarm measures data bytes).

14.8.5 FEC Rx FIFO Read Pointer Register—MBAR + 0x319C FEC Tx FIFO Read Pointer Register—MBAR + 0x31BC

The RFIFO_RDPTR and TFIFO_RDPTR are a FIFO-maintained pointer which point to the next FIFO location to be read. The read pointer can be both read and written.

Table 14-36. FEC Rx FIFO Read Pointer Register FEC Tx FIFO Read Pointer Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R			Rese	ved			READ[9:0]									
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:21	_	Reserved
22:31	READ[9:0]	Read Pointer. This pointer indicates the next location to be read by the FIFO controller.

14.8.6 FEC Rx FIFO Write Pointer Register—MBAR + 0x31A0 FEC Tx FIFO Writer Pointer Register—MBAR + 0x31C0

The RFIFO_WRPTR and TFIFO_WRPTR are a FIFO-maintained pointer which point to the next FIFO location to be written. The write pointer can be both read and written.

Table 14-37. FEC Rx FIFO Write Pointer Register FEC Tx FIFO Write Pointer Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R			Rese	rved							WRI	TE[9:0]				
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description
0:21		Reserved
22:31	WRITE[9:0]	WRITE Pointer. This pointer indicates the next location to be written by the FIFO controller.

14.8.7 FEC Reset Control Register—MBAR + 0x31C4

The RESET CNTRL register allows reset of the FIFO controllers.

Table 14-38. FEC Reset Control Register

Table 1-1.

Bits	Name	Description
0:5	_	Reserved
6	RCTL[1]	0 = Do not Reset FIFO controllers. 1 = Reset FIFO controllers.

Table 1-1.

Bits	Name	Description
7	RCTL[0]	0 = Disable fec_enable as a reset to FIFO controllers. 1 = Enable fec_enable as a reset to FIFO controllers.
8:31		Reserved

14.8.8 FEC Transmit FSM Register—MBAR + 0x31C8

The transmit finite state machine register (XMIT_FSM) controls operation of appending CRC. Typical use is enabled and CRC is appended.

Table 14-39. FEC Transmit FSM Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R			Rese	rved			Ξ	[0]	Reserved							
W							XFSM[1]	XFSM[0]								
							^	^								
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		Reserved														
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description				
0:5	_	Reserved				
6	XFSM[1]	0 = Do not append CRC.				
		1 = Append CRC (typical use).				
7	XFSM[0]	0 = Disable CRC FSM.				
		1 = Enable CRC FSM (typical use is enabled).				
8:31		Reserved				

14.9 Initialization Sequence

This section describes which registers are hardware reset, which are reset by the FEC and what locations the user must initialize prior to enabling the FEC.

14.9.1 Hardware Controlled Initialization

Some registers in the FEC are reset by internal logic. Specifically those registers are control logic that generate interrupts, cause outputs to be asserted and, in general, configuration control bits.

Other registers are reset when the ETHER_EN bit is not asserted (i.e., cleared). To halt operation ETHER_EN is deasserted by either a hard reset or by software. By deasserting ETHER_EN configuration control registers such as X_CNTRL and R_CNTRL are not reset, but the entire data path is reset.

Table 14-40 shows the effect deasserting ETHER_EN has on Ethernet MAC operation and registers.

Table 14-40. ETHER EN De-Assertion Affect on FEC

Register/Machine	Reset Value
XMIT block	Transmission Aborted (bad CRC appended)
RECV block	Receive activity aborted
Tx/Rx FIFO	Reset control logic dependent on reset_cntrl

MPC5200B Users Guide, Rev. 1

14-34 Freescale Semiconductor

14-35

14.9.2 User Initialization (Prior to Asserting ETHER_EN)

The user needs to initialize portions of the FEC prior to setting the ETHER_EN bit. The exact values depend on the particular application; the sequence of writing the registers is not important. Ethernet MAC registers requiring initialization are defined in Table 14-41.

Table 14-41. User Initialization (Before ETHER_EN)

Description
Initialize IMASK
Clear IEVENT (write FFFF_FFFF)
X_WMRK (optional)
IADDR2/IADDR1
GADDR1/GADDR2
PADDR1/PADDR2
OP_PAUSE (only needed for FDX flow control)
R_CNTRL
X_CNTRL
MII_SPEED (optional)
Clear MIB_RAM (locations 200–2FC)

14.9.2.1 Microcontroller Initialization

In the FEC the descriptor control RISC initializes some registers after ETHER_EN is asserted. After the microcontroller initialization sequence is complete, hardware is ready for operation.

Table 14-42 shows RISC initialization operations common to the FEC.

Table 14-42. Microcontroller Initialization (FEC)

Description
Initialize BackOff random number seed
Activate Receiver
Activate Transmit

14.9.3 Frame Control/Status Words

In the FEC transmit frame control words and receive frame status words cross the following the end of frame data. These words are marked with a type value of 10 and have the following formats.

14.9.3.1 Receive Frame Status Word

Table 14-2 below defines the format for the receive frame status word.

Table 14-43. Receive Frame Status Word Format

Bits 31-28, 26-25, 19 and 15-11—Reserved

Freescale Semiconductor

MPC5200B Users Guide, Rev. 1

Bits	Name	Description			
0:3	_	Reserved			
4	L	Last in Frame, written by the FEC			
		The buffer is not the last in a frame.			
		The buffer is the last in a frame.			
5:7		Reserved			
8	ВС	Will be set if the DA is broadcast (FF-FF-FF-FF)			
9	MC	Will be set if the DA is multicast and not BC			
10	LG	Rx Frame Length Violation, written by the FEC.			
		A frame length greater than R_CNTRL.MAX_FL was recognized. This bit is valid only if the L-bit is set. The receive data is not altered in any way unless the length exceeds 2047 bytes.			
11	NO	Rx Non-octet Aligned Frame, written by the FEC.			
		A frame that contained a number of bits not divisible by 8 was received and the CRC check that occurred at the preceding byte boundary generated an error. This bit is valid only if the L-bit is set. If this bit is set the CR bit will not be set.			
12		Reserved			
13	CR	Rx CRC Error, written by the FEC.			
		This frame contains a CRC error and is an integral number of octets in length. This bit is valid only if the L-bit is set.			
14	OV	Overrun, written by the FEC.			
		A receive FIFO overrun occurred during frame reception. If this bit is set, the other status bits, M, LG, NO, SH, CR, and CL lose their normal meaning and will be zero. This bit is valid only if the L-bit is set.			
15	TR	Rx Frame Truncated			
		Will be set if the receive frame is truncated (frame length > 2047 bytes). If the TR bit is set the frame should be discarded and the other error bits should be ignored as they may be incorrect.			
16:20		Reserved			
21:31	FRAME_ LENGTH	Length of Received Frame			

14.9.3.2 Transmit Frame Control Word

The only requirement for this control word is to have the TC and ABC bits valid. The TC bit defines whether the transmit block should append the CRC (TC = 1) or not (TC = 0) for the current frame. The ABC bit defines whether the transmit block should append a bad CRC (ABC = 1), independent of the TC value. Refer to Table 14-44 below for the format of the transmit frame control word.

Table 14-44. Transmit Frame Control Word Format

0	1	2	3	4	5	6	7	8	9	0	11	12	13	14	15
					TC	ABC									
<u> </u>															
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

14-36 Freescale Semiconductor

MPC5200B Users Guide, Rev. 1

Bits 31-27, 24-0—Reserved

Bits	Name	Description				
0:4	_	Reserved				
5	TC	Transmit CRC, written by user				
		0 = End transmission immediately after the last data byte.				
		1 = Transmit the CRC sequence after the last data byte.				
6	ABC	Append Bad CRC, written by user				
		0 = No affect				
		1 = Transmit the CRC sequence inverted after the last data bye (regardless of TC value).				
7:31		Reserved				

14.9.4 Network Interface Options

The FEC supports both an MII interface for 10/100 Mbps Ethernet and a 7-wire serial interface for 10 Mbps Ethernet. The interface mode is selected by the MII_MODE bit in the R_CNTRL register. In MII mode (R_CNTRL.MII_MODE = 1) there are 18 signals defined by the 802.3 standard and supported by the FEC. These are shown in Table 14-1:

The 7-Wire serial interface (R CNTRL.MII MODE = 0) operates in what is generally referred to as the "AMD" mode.

The Ethernet transmitter is designed to work with almost no intervention from software. Once ETHER_EN is asserted and data appears in the transmit FIFO the Ethernet MAC is able to transmit onto the network.

When the transmit FIFO fills to the watermark (defined by the X_WMRK register), the MAC transmit logic will assert TX_EN and start transmitting the preamble sequence, the start frame delimiter, and then the frame information from the FIFO. However, the controller defers the transmission if the network is busy (carrier sense is asserted). Before transmitting, the controller waits for carrier sense to become inactive, then determines if carrier sense stays inactive for 60 bit times. If so, then the transmission begins after waiting an additional 36 bit times (96 bit times after carrier sense originally became inactive).

If a collision occurs during transmission of the frame (half-duplex mode), the Ethernet controller follows the specified backoff procedures and attempts to retransmit the frame until the retry limit is reached. The transmit FIFO stores at least the first 64 bytes of the transmit frame, so that they do not have to be retrieved from system memory in case of a collision. This improves bus utilization and latency in case immediate retransmission is necessary.

When all the frame data has been transmitted, the FCS (32-bit CRC) bytes are appended if the TC bit is set in the transmit frame control word. If the ABC bit is set in the transmit frame control word, a bad CRC will be appended to the frame data regardless of the TC bit value. Following the transmission of the CRC, the Ethernet controller writes the frame status information to the MIB block. Short frames are automatically padded by the transmit logic (if the TC bit in the transmit buffer descriptor for the end of frame buffer = 1).

The FEC frame interrupts may be generated as determined by the settings in the IMASK register.

Transmit error interrupts are HBERR, BABT, LATE_COL, COL_RETRY_LIM, XFIFO_UN and XFIFO_ERROR. If the transmit frame length exceeds MAX FL bytes the BABT interrupt will be asserted, however the entire frame will be transmitted (no truncation).

To pause transmission, set the GTS (Graceful Transmit Stop) bit in the X_CNTRL register. When the GTS is set the FEC transmitter stops immediately if transmission is not in progress; otherwise, it continues transmission until the current frame either finishes or terminates with a collision. After the transmitter has stopped the GRA (Graceful Stop Complete) interrupt is asserted. If GTS is cleared, the FEC resumes transmission with the next frame.

The Ethernet controller transmits bytes least significant bit first.

14.9.5 FEC Frame Reception

The FEC receiver is designed to work with almost no intervention from the host and can perform address recognition, CRC checking, short frame checking and maximum frame length checking.

When the driver enables the FEC receiver by asserting ETHER_EN it will immediately start processing receive frames. When RX_DV asserts, the receiver will first check for a valid PA/SFD header. If the PA/SFD is valid it will be stripped and the frame will be processed by the receiver. If a valid PA/SFD is not found the frame will be ignored.

In 7-wire serial mode, the first 16 bit times of RX_D0 following assertion of RX_DV (RENA) are ignored. Following the first 16 bit times the data sequence is checked for alternating 1s and 0s. If a 11 or 00 data sequence is detected during bit times 17 to 21, the remainder of the frame is ignored. After bit time 21, the data sequence is monitored for a valid SFD (11). If a 00 is detected, the frame is rejected. When a 11 is detected, the PA/SFD sequence is complete.

Initialization Sequence

In MII mode the receiver checks for at least one byte matching the SFD. Zero or more PA bytes may occur, but if a 00 bit sequence is detected prior to the SFD byte, the frame is ignored.

After the first 6 bytes of the frame have been received, the FEC performs address recognition on the frame.

Once a collision window (64 bytes) of data has been received and if address recognition has not rejected the frame, the receive FIFO is signalled that the frame is "accepted" and may be passed on to the DMA. If the frame is a runt (due to collision) or is rejected by address recognition, the receive FIFO is notified to "reject" the frame. Thus, no collision fragments are presented to the user except late collisions, which indicate serious LAN problems.

During reception, the Ethernet controller checks for various error conditions and once the entire frame is written into the FIFO, a 32-bit frame status word is written into the FIFO. This status word contains the M, BC, MC, LG, NO, SH, CR, OV and TR status bits, and the frame length.

The Ethernet controller receives serial data LSB first.

14.9.6 Ethernet Address Recognition

The FEC filters the received frames based on destination address (DA) type — individual (unicast), group (multicast) or broadcast (all-ones group address). The difference between an individual address and a group address is determined by the I/G bit in the destination address field. A flowchart for address recognition on received frames is illustrated in the figures below.

Address recognition is accomplished through the use of the receive block and microcode running on the microcontroller. The flowchart shown in Figure 14-4 illustrates the address recognition decisions made by the receive block, while Figure 14-5 illustrates the decisions made by the microcontroller.

If the DA is a broadcast address and broadcast reject (R_CNTRL.BC_REJ) is deasserted, then the frame will be accepted unconditionally as shown in Figure 14-4. Otherwise, if the DA in not a broadcast address the microcontroller runs the address recognition subroutine as shown in Figure 14-5.

If the DA is a group (multicast) address and flow control is disabled the microcontroller will perform a group hash table lookup using the 64-entry hash table programmed in GADDR1 and GADDR2. If a hash match occurs AR_HM_B (address recognition hash match bar) is set to 0 and the receiver accepts the frame. If flow control is enabled the microcontroller will do an exact address match check between the DA and the designated PAUSE DA in registers XMIT.FDXFC_DA1 and XMIT.FDXFC_DA2. In the case where a PAUSE DA exact match occurs AR_EM_B (address recognition exact match bar) is set to 0. If the receive block determines that the received frame is a valid PAUSE frame the frame will be rejected. Note the receiver will detect a PAUSE frame with the DA field set to either the designated PAUSE DA or the unicast physical address.

If the DA is the individual (unicast) address the microcontroller performs an individual exact match comparison between the DA and 48-bit physical address that the user programs in the PADDR1 and PADDR2 registers. If an exact match occurs AR_EM_B is set to 0; otherwise, the microcontroller does an individual hash table lookup using the 64-entry hash table programmed in registers IADDR1 and IADDR2. In the case of an individual hash match AR_HM_B is set to 0. Again, the receiver will accept or reject the frame based on PAUSE frame detection, shown in Figure 14-4.

If neither a hash match (group or individual) nor an exact match (group or individual) occur both AR_HM_B and AR_EM_B are set to 1. In this case, if promiscuous mode is enabled (R_CNTRL.PROM = 1), then the frame will be accepted and the MISS bit in the receive buffer descriptor is set; otherwise, the frame will be rejected and the MISS bit will be cleared.

Similarly, if the DA is a broadcast address, broadcast reject (R_CNTRL.BC_REJ) is asserted and promiscuous mode is enabled. Then the frame will be accepted and the MISS bit in the receive buffer descriptor is set; otherwise, the frame will be rejected and the MISS bit will be cleared.

In general, when a frame is rejected it is flushed from the FIFO.

14-38 Freescale Semiconductor

MPC5200B Users Guide, Rev. 1

Figure 14-2. Ethernet Address Recognition - receive block decisions

Figure 14-3. Ethernet Address Recognition - microcode decisions

The hash table algorithm used in the group and individual hash filtering operates as follows. The 48-bit destination address is mapped into one of 64 bits which are represented by 64 bits stored in GADDR1,2 (group address hash match) or IADDR1,2 (individual address hash match). This mapping is performed by passing the 48-bit address through the on-chip 32-bit CRC generator and selecting the 6 most significant bits of the CRC-encoded result to generate a number between 0 and 63. The MSB of the CRC result selects GADDR1 (MSB = 1) or GADDR2 (MSB = 0). The least significant 5 bits of the hash result select the bit within the selected register. If the CRC generator selects a bit that is set in the hash table, the frame is accepted; otherwise, it is rejected.

For example, if eight group addresses are stored in the hash table and random group addresses are received, the hash table prevents roughly 56/64 (or 87.5%) of the group address frames from reaching memory. Those that do reach memory must be further filtered by the processor to determine if they truely contain one of the eight desired addresses.

The effectiveness of the hash table declines as the number of addresses increases.

The hash table registers must be initialized by the user. The user may compute the hash for a particular address in software. The CRC32 polynomial to use in computing the hash is:

$$X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$$

A table of example Destination Addresses and corresponding hash values is included below for reference.

14-40 Freescale Semiconductor

Table 14-45. Destination Address to 6-Bit Hash

48-bit DA	6-bit hash (in hex)	hash decimal value
65:ff:ff:ff:ff	0x0	0
55:ff:ff:ff:ff	0x1	1
15:ff:ff:ff:ff	0x2	2
35:ff:ff:ff:ff	0x3	3
b5:ff:ff:ff:ff	0x4	4
95:ff:ff:ff:ff	0x5	5
d5:ff:ff:ff:ff	0x6	6
f5:ff:ff:ff:ff	0x7	7
db:ff:ff:ff:ff	0x8	8
fb:ff:ff:ff:ff	0x9	9
bb:ff:ff:ff:ff	0xa	10
8b:ff:ff:ff:ff	0xb	11
Ob:ff:ff:ff:ff	0xc	12
3b:ff:ff:ff:ff	0xd	13
7b:ff:ff:ff:ff	0xe	14
5b:ff:ff:ff:ff	0xf	15
27:ff:ff:ff:ff	0x10	16
07:ff:ff:ff:ff	0x11	17
57:ff:ff:ff:ff	0x12	18
77:ff:ff:ff:ff	0x13	19
f7:ff:ff:ff:ff	0x14	20
c7:ff:ff:ff:ff	0x15	21
97:ff:ff:ff:ff	0x16	22
a7:ff:ff:ff:ff	0x17	23
99:ff:ff:ff:ff	0x18	24
b9:ff:ff:ff:ff	0x19	25
f9:ff:ff:ff:ff	0x1a	26
c9:ff:ff:ff:ff	0x1b	27
59:ff:ff:ff:ff	0x1c	28
79:ff:ff:ff:ff	0x1d	29
29:ff:ff:ff:ff	0x1e	30
19:ff:ff:ff:ff	0x1f	31
d1:ff:ff:ff:ff	0x20	32
f1:ff:ff:ff:ff	0x21	33
b1:ff:ff:ff:ff	0x22	34

Table 14-45. Destination Address to 6-Bit Hash (continued)

48-bit DA	6-bit hash (in hex)	hash decimal value
91:ff:ff:ff:ff	0x23	35
11:ff:ff:ff:ff	0x24	36
31:ff:ff:ff:ff	0x25	37
71:ff:ff:ff:ff	0x26	38
51:ff:ff:ff:ff	0x27	39
7f:ff:ff:ff:ff	0x28	40
4f:ff:ff:ff:ff	0x29	41
1f:ff:ff:ff:ff	0x2a	42
3f:ff:ff:ff:ff	0x2b	43
bf:ff:ff:ff:ff	0x2c	44
9f:ff:ff:ff:ff	0x2d	45
df:ff:ff:ff:ff	0x2e	46
ef:ff:ff:ff:ff	0x2f	47
93:ff:ff:ff:ff	0x30	48
b3:ff:ff:ff:ff	0x31	49
f3:ff:ff:ff:ff	0x32	50
d3:ff:ff:ff:ff	0x33	51
53:ff:ff:ff:ff	0x34	52
73:ff:ff:ff:ff	0x35	53
23:ff:ff:ff:ff	0x36	54
13:ff:ff:ff:ff	0x37	55
3d:ff:ff:ff:ff	0x38	56
Od:ff:ff:ff:ff	0x39	57
5d:ff:ff:ff:ff	0x3a	58
7d:ff:ff:ff:ff	0x3b	59
fd:ff:ff:ff:ff	0x3c	60
dd:ff:ff:ff:ff	0x3d	61
9d:ff:ff:ff:ff	0x3e	62
bd:ff:ff:ff:ff	0x3f	63

14.9.7 Full-Duplex Flow Control

Full-duplex flow control allows the user to transmit pause frames and to detect received pause frames. Upon detection of a pause frame, MAC data frame transmission stops for a given pause duration.

To enable pause frame detection, the FEC must operate in full-duplex mode (X_CNTRL.FDEN asserted) and flow control enable (R_CNTRL.FCE) must be asserted. The FEC detects a pause frame when the fields of the incoming frame match the pause frame specifications as shown in the table below. In addition, the receive status associated with the frame should indicate that the frame is valid

14-42 Freescale Semiconductor

Table 14-46. PAUSE Frame Field Specification

48-bit destination address	0180_c200_0001 or Physical ADDRESS
48-bit Source Address	any
16-bit type	8808
16-bit opcode	0001
16-bit PAUSE duration	0000 to ffff

Pause frame detection is performed by the receiver and microcontroller modules. The microcontroller runs an address recognition subroutine to detect the specified pause frame destination address, while the receiver detects the type and opcode pause frame fields. On detection of a pause frame, graceful transmit stop is asserted by the FEC internally. When transmission has paused, the GRA (Graceful Stop complete) interrupt is asserted and the pause timer begins to increment. Note that the pause timer makes use of the transmit backoff timer hardware which is used for tracking the appropriate collision backoff time in half-duplex mode. The pause timer increments once every slot time until PAUSE_DURATION slot times have expired. On PAUSE_DURATION expiration, graceful transmit stop is deasserted allowing MAC data frame transmission to resume. Note that the receive flow control pause (X_CNTRL.RFC_PAUSE) status bit is asserted while the transmitter is paused due to reception of a pause frame.

To transmit a pause frame the FEC must operate in full-duplex mode and the user must assert flow control pause (X_CNTRL.TFC_PAUSE). On assertion of transmit flow control pause (X_CNTRL.TFC_PAUSE) the transmitter asserts graceful transmit stop internally. When the transmission of data frames stops the GRA (Graceful Stop complete) interrupt asserts. Following GRA assertion the Pause frame is transmitted. On completion of pause frame transmission flow control pause (X_CNTRL.TFC_PAUSE) and graceful transmit stop are deasserted internally.

During pause frame transmission the transmit hardware places data into the transmit data stream from the registers shown in the table below.

PAUSE FRame fields FEC register Register Contents 48-bit destination address {FDXFC_DA1[0:31], FDXFC_DA2[0:15]} 0180_c200_0001 48-bit Source Address {PADDR1[0:31], PADDR2[0:15]} physical address 16-bit type PADDR2[16:31] 8808 OP_PAUSE[0:15] 0001 16-bit opcode 16-bit PAUSE duration OP_PAUSE[16:31] 0000 to ffff

Table 14-47. Transmit Pause Frame Registers

The user must specify the desired pause duration in the OP PAUSE register.

Note that when the transmitter is paused due to receiver/microcontroller pause frame detection, transmit flow control pause (X_CNTRL.TFC_PAUSE) still may be asserted and will cause the transmission of a single pause frame. In this case the GRA interrupt will not be asserted.

14.9.8 Inter-Packet Gap Time

The minimum inter packet gap time for back-to-back transmission is 96 bit times. After completing a transmission or after the backoff algorithm completes the transmitter waits for carrier sense to be negated before starting its 96 bit time IPG counter. Frame transmission may begin 96 bit times after carrier sense is negated if it stays negated for at least 60 bit times. If carrier sense asserts during the last 36 bit times it will be ignored and a collision will occur.

The receiver receives back-to-back frames with a minimum spacing of at least 28 bit times. If an inter-packet gap between receive frames is less than 28 bit times the following frame may be discarded by the receiver.

14.9.9 Collision Handling

If a collision occurs during frame transmission the Ethernet controller will continue the transmission for at least 32 bit times, transmitting a JAM pattern consisting of 32 one's. If the collision occurs during the preamble sequence the JAM pattern will be sent after the end of the preamble sequence.

Initialization Sequence

If a collision occurs within 64 byte times the retry process is initiated. The transmitter waits a random number of slot times. A slot time is 512 bit times. If a collision occurs after 64 byte times no retransmission is performed and the end of frame buffer is closed with an LC error indication.

14.9.10 Internal and External Loopback

Both internal and external loopback are supported by the Ethernet controller. In loopback mode both of the FIFOs are used and the FEC actually operates in a full-duplex fashion. Both internal and external loopback are configured using combinations of the LOOP and DRT bits in the R CNTRL register and the FDEN bit in the X CNTRL register.

For both internal and external loopback set FDEN = 1.

For internal loopback set LOOP = 1 and DRT = 0. TX_EN and TX_ER will not assert during internal loopback. During internal loopback the transmit/receive data rate is higher than in normal operation because the internal system clock is used by the transmit and receive blocks instead of the clocks from the external transceiver. This will cause an increase in the required system bus bandwidth for transmit and receive data being transferred to/from external memory. It may be necessary to pace the frames on the transmit side and/or limit the size of the frames to prevent transmit FIFO underrun and receive FIFO overflow.

For external loopback set LOOP = 0, DRT = 0 and configure the external transceiver for loopback.

14.9.11 Ethernet Error-Handling Procedure

The Ethernet controller reports frame reception and transmission error conditions using the FEC BDs (receive), the IEVENT register and the MIB block counters.

14.9.11.1 Transmission Errors

Transmitter Underrun

- If this error occurs the FEC sends 32 bits that ensure a CRC error and stops transmitting. All remaining buffers for that frame are then flushed and closed. The UN bit is set in the X_STATUS register. The FEC will then continue to the next transmit buffer descriptor and begin transmitting the next frame.
- The XFIFO UN interrupt will be asserted if enabled in the IMASK register.

Carrier Sense Lost During Frame Transmission

- When this error occurs and no collision is detected in the frame the FEC sets the CSL bit in X_STATUS register. The frame is transmitted normally. No retries are performed as a result of this error.
- No interrupt is generated as a result of this error.

Retransmission Attempts Limit Expired

- When this error occurs the FEC terminates transmission. All remaining buffers for that frame are then flushed and closed and the RL bit is set in the X_STATUS register. The FEC will then continue to the next transmit buffer descriptor and begin transmitting the next frame.
- The COL_RETRY_LIM interrupt will be asserted if enabled in the IMASK register.

Late Collision

- When a collision occurs after the slot time (512 bits starting at the Preamble), the FEC terminates transmission. All remaining buffers for that frame are then flushed and closed and the LC bit is set in the X_STATUS register. The FEC will then continue to the next transmit buffer descriptor and begin transmitting the next frame.
- The LATE COL interrupt will be asserted if enabled in the IMASK register.

Heartbeat

- Some transceivers have a self-test feature called "heartbeat" or "signal quality error." To signify a good self-test the transceiver indicates a collision to the FEC within 20 clocks after completion of a frame transmitted by the Ethernet controller. This indication of a collision does not imply a real collision error on the network but is rather an indication that the transceiver still seems to be functioning properly. This is called the heartbeat condition.
- If the HBC bit is set in the X_CNTRL register and the heartbeat condition is not detected by the FEC after a frame transmission a heartbeat error occurs. When this error occurs the FEC closes the buffer, sets the HB bit in the X_STATUS register and generates the HBERR interrupt if it is enabled.

14.9.11.2 Reception Errors

Overrun Error

— If the receive block has data to put into the receive FIFO and the receive FIFO is full, the FEC sets the OV bit in the receive status word. All subsequent data in the frame will be discarded and subsequent frames may also be discarded until the receive FIFO is serviced by the DMA and space is made available. At this point the receive frame/status word is written into the FIFO with the OV bit isset. This frame must be discarded by the driver.

MPC5200B Users Guide, Rev. 1

14-44 Freescale Semiconductor

Non-Octet Error (Dribbling Bits)

— The Ethernet controller handles up to seven dribbling bits when the receive frame terminates nonoctet aligned and it checks the CRC of the frame on the last octet boundary. If there is a CRC error, then the frame nonoctet aligned (NO) error is reported in the Receive Frame Status Word. If there is no CRC error, then no error is reported.

CRC Error

When a CRC error occurs with no dribble bits, the FEC closes the buffer and sets the CR bit in the Receive Frame Status Word.
 CRC checking cannot be disabled, but the CRC error can be ignored if checking is not required.

Frame Length Violation

 When the receive frame length exceeds MAX_FL bytes the BABR interrupt will be generated and the LG bit in the end of frame Receive Frame Status Word will be set. The frame is not truncated (truncation occurs if the frame length exceeds 2047 bytes).

Truncation

— When the receive frame length exceeds 2047 bytes the frame is truncated and the TR bit is set in the receive BD.

Fast Ethernet Controller (FEC)

Notes

15-1

Chapter 15 Programmable Serial Controller (PSC)

15.1 Overview

The following sections are contained in this document:

- Section 15.2, PSC Registers—MBAR + 0x2000, 0x2200, 0x2400, 0x2600, 0x2800, 0x2C00
- Section 15.3, PSC Operation Modes
- Section 15.4, PSC FIFO System

The MPC5200 has 6 independent Programmable Serial Controllers (PSCs)

• PSC1 = MBAR + 0x2000

• PSC4 = MBAR + 0x2600

• PSC2 = MBAR + 0x2200

• PSC5 = MBAR + 0x2800

• PSC3 = MBAR + 0x2400

• PSC6 = MBAR + 0x2C00

The internal configuration registers and the functional behavioral is equal for all PSC modules. Because of a Pin out limitation, not all functions are available for all PSC's on every ports. Table 15-1 shows, which PSC supports which mode.

Table 15-1. PSC Mode Overview

	PSC1	PSC2	PSC3	PSC4	PSC5	PSC6
UART	yes	yes	yes	yes	yes	yes
Modem / SPI / I2S / ESAI	yes	yes	yes	no	no	yes
Mclk Generation output	yes	yes	yes	no	no	no
AC97	yes	yes	no	no	no	no
IrDA	no	no	no	no	no	yes
Cell Phone	master	slave	slave	no	no	slave

Each PSC can be clocked by an internal clock source or an external clock source. Figure 15-2 shows a simplified PSC block diagram. In addition, each PSC module interfaces directly to the CPU and consists of the following:

- Serial Communication Channel
- Programmable Transmit (Tx) Receive (Rx) Clock Generation
- Internal Channel Control Logic
- Interrupt Control Logic
- · FIFO System

In addition the PSC provide an Mclk for the external Codec, eliminating the need for an external crystal for the external device. For more information about the Codec mode see section: Section 15.3.2, PSC in Codec Mode

15.1.1 PSC Functions Overview

The PSC module of the MPC5200 provide different groups of interfaces to connect the MPC5200 to other devices. Figure 15-1.shows the groups of interfaces:

Figure 15-1. PSC Functions Overview

- 1. PSC Codec Mode: In this section the name Codec mode is used as a collective term for the "normal soft Modem" the SPI, I2S and ESAI mode. This interfaces are provide by one internal block of the PSC. The interface consist of serial TX and RX lines, a bit clock line and a FrameSync signal. For these modes the clock configuration is similar and use the same configuration registers. The transmitter converts the parallel data from the CPU to a serial bit-stream, the receiver converts the serial data from the RX line to parallel data. The PSCs support Codec mode with 8, 16, 24 and 32 bit data width, with active high or active low FrameSync signal and with programmable bit clock polarity. All Codec modes can work as an Codec master (PSC dive the bit clock and FrameSync signals) or as a Codec Slave (PSC receive the bit clock and frame sync signal). For more information about the Codec mode see Section 15.3.2, PSC in Codec Mode.
- 2. AC97 Mode: When programmed as AC97 the PSC works as an AC97 Controller, it's means that the PSC receive the BitClk from the external AC97 Codec and provide the FrameSync signal to the external Codec. Only PSC1 and 2 support the AC97 functionality. In the normal AC97 mode, the data words for all AC97 slots must be in the TX FIFO including the slot 0,1 and slot 2data. The PSC is not able to modify the control slot data. Also all data words from the RX line will be in the FIFO. Only if the

15-3

- PSC detect a "codec not ready" status the PSC will stop sending and receiving data. In the enhanced AC97 mode, only the data slots must be in the FIFO. The PSC generate the slot0,1 and slot2 values depend on data to send. In both AC97 modes the PSC reads only 32 bits from the FIFO. For more information about the AC97 mode see Section 15.3.3, PSC in AC97 Mode
- 3. <u>PSC UART mode</u>: When programmed as a UART the PSC serial communication channel provides a full-duplex asynchronous receiver and transmitter deriving an operating frequency from an internal clock. The transmitter converts parallel data from the CPU to a serial bit-stream, inserting appropriate start, stop, and parity bits. It outputs the resulting stream on the channel transmitter serial data output (TxD). The receiver converts serial data from the channel receiver serial data input (RxD) to parallel format, checks for start, stop, and parity bits, or line break conditions, and transfers the assembled character onto the bus during read operations. The receiver may be poll-driven or interrupt-driven. For more information about the UART mode see section: Section 15.3.1, *PSC in UART Mode*.
- 4. <u>PSC IrDA mode</u>: When programmed as an IrDA interface the PSC provides an full-duplex asynchronous communication which is optimized for Infrared transmission. The in this configuration the SIR, MIR and FIR modes are supported. The transmitter converts the parallel data from the CPU to a serial bit-stream and add some control characters, the receiver checks the control characters and converts the serial data from the RX line to parallel data. For more information about the UART mode see section: Section 15.3.4, *PSC in IrDA mode*.

15.1.2 Features

General Features:

- 512-byte receiver (Rx) FIFO
- 512-byte transmitter (Tx) FIFO
- Each channel is programmable to normal (full-duplex), automatic echo, local loop-back, or remote loop-back mode
- Automatic Walk-up mode for multidrop applications
- 6 maskable interrupt conditions
- PSC Tx and Rx FIFOs can be programmed to interrupt either the BestComm or the CPU when they require filling or emptying, respectively.

PSC UART mode:

- · Each is clocked by an internal clock source (IPB clock), eliminating the need for an external crystal
- Full-duplex asynchronous receiver/transmitter channel
- Programmable data format:
 - five to eight data bits plus parity
 - Odd, even, no parity, or force parity
 - One, one-and-a-half, or two STOP bits
- Parity, framing, and overrun error detection
- · False-start bit detection
- Line-break detection and generation
- Detection of breaks originating in the middle of a character
- Start/end break interrupt/status

PSC Codec mode:

- Programmable to interface to an 8, 16, 24 or 32bit Codec for "soft modem" support
- Support master mode, driving clock and FrameSync signals
- Support slave mode, receiving clock and the FrameSync from the external Codec
- Supports full duplex SPI interface
- Supports I2S interface
- No parity error, framing error, or line break detection in Codec mode
- · Ability to generate a master clock (Mclk) for an external Codec device, independent from the mode (master or slave)
- Programmable width of the FrameSync signal
- FrameSync and bit clock frequencies are independently programmable
- Frame sync and bit clock polarity are programmable
- Support "digital cell phone" interface

AC97 mode:

• PSC1 and PSC2 support an AC97 interface

IrDA SIR mode:

• Baud rate: 2400 to 115200 bps

PSC Registers—MBAR + 0x2000, 0x2200, 0x2400, 0x2600, 0x2800, 0x2C00

• Selectable pulse width: either 3/16 bit duration or 1.6 μs

IrDA MIR mode:

• Baud rate: 0.576 Mbps to 1.152 Mbps

IrDA FIR mode:

• Baud rate: 4 Mbps

15.2 PSC Registers—MBAR + 0x2000, 0x2200, 0x2400, 0x2600, 0x2800, 0x2C00

The PSCs are located at an address as indicated below:

- PSC1 BASE = MBAR + 0x2000
- PSC2 BASE = MBAR + 0x2200
- PSC3 BASE = MBAR + 0x2400
- PSC4 BASE = MBAR + 0x2600
- PSC5 BASE = MBAR + 0x2800
- PSC6 BASE = MBAR + 0x2C00

Each PSC uses 42 registers. The register address is calculated as base address for the regarding PSC plus the offset value. Table 15-2 shows the list with all implemented registers and the associated offset value.

Table 15-2. PSC Memory Map

Offset	Register Name	Register width	Access
00	Mode Register 1 (0x00)—MR1	8	R/W
00	Mode Register 2 (0x00) — MR2	8	R/W
04	Status Register (0x04) — SR	16	R
04	Clock Select Register (0x04) — CSR	16	W
80	Command Register (0x08)—CR	8	R/W
0C	Rx Buffer Register (0x0C) — RB	32	R
0C	Tx Buffer Register (0x0C)—TB	32	W
10	Input Port Change Register (0x10) — IPCR	8	R
10	Auxiliary Control Register (0x10) — ACR	8	W
14	Interrupt Status Register (0x14) — ISR	16	R
14	Interrupt Mask Register (0x14)—IMR	16	W
18	Counter Timer Upper Register (0x18)—CTUR	8	W
1C	Counter Timer Lower Register (0x1C)—CTLR	8	W
20	Codec Clock Register (0x20)—CCR	32	R/W
24	AC97 Slots Register (0x24)—AC97Slots	32	W
28	AC97 Command Register (0x28)—AC97CMD	32	R/W
2C	AC97 Status Data Register (0x2C)—AC97Data	32	R
30	Interrupt Vector Register (0x30)—IVR - Reserved	8	R/W
34	Input Port Register (0x34)—IP	8	R
38	Output Port 1 Bit Set (0x38)—OP1	8	W
3C	Output Port 0 Bit Set (0x3C)—OP0	8	W
40	Serial Interface Control Register (0x40)—SICR	32	R/W

15-4 Freescale Semiconductor

Table 15-2. PSC Memory Map (continued)

44	Infrared Control 1 (0x44)—IRCR1	8	R/W
48	Infrared Control 2 (0x48)—IRCR2	8	R/W
4C	Infrared SIR Divide Register (0x4C)—IRSDR	8	R/W
50	Infrared MIR Divide Register (0x50)—IRMDR	8	R/W
54	Infrared FIR Divide Register (0x54)—IRFDR	8	R/W
58	Rx FIFO Number of Data (0x58)—RFNUM	16	R
5C	Tx FIFO Number of Data (0x5C)—TFNUM	16	R
	, ,		
60	Rx FIFO Data (0x60)—RFDATA	32	R/W
64	Rx FIFO Status (0x64)—RFSTAT	16	R/W
68	Rx FIFO Control (0x68)—RFCNTL	8	R/W
6E	Rx FIFO Alarm (0x6E)—RFALARM	16	R/W
72	Rx FIFO Read Pointer (0x72)—RFRPTR	16	R/W
76	Rx FIFO Write Pointer(0x76)—RFWPTR	16	R/W
7A	Rx FIFO Last Read Frame (0x7A)—RFLRFPTR - Reserved	16	R/W
7C	Rx FIFO Last Write Frame PTR (0x7C)—RFLWFPTR - Reserved	16	R/W
80	Tx FIFO Data (0x80)—TFDATA	32	R/W
84	Tx FIFO Status (0x84)—TFSTAT	16	R/W
88	Tx FIFO Control (0x88)—TFCNTL	8	R/W
8E	Tx FIFO Alarm (0x8E)—TFALARM	16	R/W
92	Tx FIFO Read Pointer (0x92)—TFRPTR	16	R/W
96	Tx FIFO Write Pointer (0x96)—TFWPTR	16	R/W
9A	Tx FIFO Last Read Frame (0x9A)—TFLRFPTR - Reserved	16	R/W
9C	Tx FIFO Last Write Frame PTR (0x9C)—TFLWFPTR - Reserved	16	R/W

PSC module operation is controlled by writing control bytes into the appropriate registers.

15.2.1 Mode Register 1 (0x00)—MR1

The Mode registers control configuration. MR1 can be read or written when the Mode register pointer points to it, at reset or after a reset Mode register pointer command using CR[MISC]. After MR1 is read or written, the pointer points to MR2.

Table 15-3. Mode Register 1 (0x00) for UART Mode

	msb 0	1	2	3	4	5	6	7 lsb
R	RxRTS	RxIRQ/FFUL L	Reserved	P	М	PT	В	/C
W								
RESET:	0	0	1	0	0	0	0	0

Freescale Semiconductor

15-5

Table 15-4. Mode Register 1 (0x00) for SIR Mode

	msb 0	1	2	3	4	5	6	7 Isb
R	RxRTS	RxIRQ/FFUL L	Reserved					
W								
BESET:	0	0	1	1	0	0	1	1

Table 15-5. Mode Register 1 (0x00) for other Modes

	msb 0	1	2	3	4	5	6	7 lsb
R	Reserved	RxIRQ/FFUL			Rese	rved		
W		_						
RESET:	0	0	1	1	0	0	1	1

Bit	Name	Description			
0	RxRTS	UART / SIR—Receiver request-to-send—Allows $\overline{\text{RTS}}$ output to control the $\overline{\text{CTS}}$ input of the transmitting device to prevent receiver overrun. If both the receiver and transmitter are incorrectly programmed for $\overline{\text{RTS}}$ control, $\overline{\text{RTS}}$ control is disabled for both. Transmitter RTS control is configured in MR2[TxRTS]. Not used in Codec mode.			
		0 = Receiver has no effect on RTS.			
		1 = When a valid start bit is received, \overline{RTS} is negated if the PSC FIFO is full. \overline{RTS} is reasserted when the FIFO has an empty position available.			
		other Modes—Reserved			
1	RxIRQ/	Receiver interrupt select.			
	FFULL	0 = RxRDY is the source that generates IRQ			
		1 = FFULL is the source that generates IRQ.			
2	_	Reserved			
3:4	PM	UART —Parity mode—Selects the parity or multidrop mode for the channel. The parity bit is added to the transmitted character, and the receiver performs a parity check on incoming data. The value of PM affects PT, as shown Table 15-6. PM is not used in Codec mode. other Modes —Reserved			
5	PT	UART —Parity Type—PM and PT together select parity type (PM = 0x) or determine whether a data or address character is transmitted (PM = 11). PT is not used in Codec mode. See Table 15-6. other Modes —Reserved			
6:7	B/C	UART —Bits per Character—Select the number of data bits per character to be sent. The values shown do not include start, parity, or stop bits. B/C is not used in Codec mode. 00 = 5 bits			
		00 = 5 bits 01 = 6 bits			
		10 = 7 bits			
		11 = 8 bits			
		other Modes—Reserved			
		other modes i reserved			

Table 15-6. Parity Mode/Parity Type Definitions

PM	Parity Mode	Parity Type (PT=0)	Parity Type (PT=1)
00	With parity	Even parity	Odd parity

15-6 Freescale Semiconductor

Table 15-6. Parity Mode/Parity Type Definitions

01	Force parity	Low parity High parity		
10	No parity	n/a		
11	Multidrop mode	Data character Address character		

15.2.2 Mode Register 2 (0x00) — MR2

MR2 can be read or written when the Mode register pointer points to it, which occurs after any access to MR1. An MR2 access does not update the mode register address.

Table 15-7. Mode Register 2 (0x00) for UART / SIR Mode

	msb 0	1	2	3	4	5	6	7 lsb
R	CI	М	TxRTS	TxCTS		SE	3	
W								
RESET:	0	0	0	0	0	0	0	0
		Table 15	5-8. Mode Re	egister 2 (0)	(00) for othe	er Modes		
	msb 0	1	2	3	4	5	6	7 lsb

R	(СМ			Reser	ved		
W								
RESET:	0	0	0	0	0	0	0	0

Bit	Name	Description
0:1	СМ	Channel mode—Selects a channel mode.CM is used in both UART and Codec modes.
		00 = Normal
		01 = Automatic echo
		10 = Local loop-back
		11 = Remote loop-back
2	TxRTS	$ \begin{array}{c} \textbf{UART / SIR} \\ \textbf{-} \text{Transmitter ready-to-send} \\ \textbf{-} \text{Controls negation of } \\ \overline{\text{RTS}} \text{ to automatically terminate a} \\ \text{message transmission. Attempting to } \\ \underline{\text{program a receiver and transmitter in the same channel for } \\ \overline{\text{RTS}} \\ \text{control is not permitted and disables } \\ \overline{\text{RTS}} \\ \text{control for both. TxRTS is not used in Codec mode.} \\ \end{array} $
		$0 = $ The transmitter has no effect on \overline{RTS} .
		1 = In applications where the transmitter is disabled during the last byte transmission is running (TX FIFO is empty), setting this bit automatically clears RTS line one bit-time after any characters in the transmitter shift registers are completely sent, including the programmed number of stop bits.
		other Modes—Reserved

PSC Registers—MBAR + 0x2000, 0x2200, 0x2400, 0x2600, 0x2800, 0x2C00

Bit	Name	Description
3	TxCTS	UART / SIR —Transmitter clear-to-send—If both TxCTS and TxRTS are enabled, TxCTS controls the operation of the transmitter. TxCTS is not used in Codec mode.
		$0 = \overline{\text{CTS}}$ has no effect on the transmitter.
		1 = Enables clear-to-send operation. The transmitter checks the state of $\overline{\text{CTS}}$ each time it is ready to send a character.
		If CTS is asserted, the character is sent
		If it is negated, the channel TxD remains in a high state and transmission is delayed until CTS is asserted.
		Changes in $\overline{\text{CTS}}$ as a character is being sent do not affect its transmission.
		other Modes—Reserved
4:7	SB	UART —Stop-Bit (length control)—Selects the stop bit length that is appended to the transmitted character. Stop-bit lengths of 9/16th to 2 bits are programmable for 6-, 8-bit characters. Lengths of 1 1/16th to 2 bits are programmable for 5-bit characters. In all cases, the receiver checks only for a high condition at the center of the first stop-bit position, that is, one bit-time after the last data bit or after the parity bit, if parity is enabled. Therefore the receiver doesn't support a stop bit length less than one. Not used in Codec mode, see Table 15-9.
		other Modes—Reserved

Table 15-9. Stop-Bit Lengths

SB	5 Bits	6–8 Bits	SB	5 Bits	6–8 Bits	SB	5-8 Bits	SB	5–8 Bits
0000	1.063	0.563	0100	1.313	0.813	1000	1.563	1100	1.813
0001	1.125	0.625	0101	1.375	0.875	1001	1.625	1101	1.875
0010	1.188	0.688	0110	1.438	0.938	1010	1.688	1110	1.938
0011	1.250	0.750	0111	1.500	1.000	1011	1.750	1111	2.000

15.2.3 Status Register (0x04) — SR

The read-only SR register shows status of the transmitter, the receiver, and the FIFO.

Table 15-10. Status Register (0x04) for UART Mode

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R	RB	FE	PE	ORERR	TxEMP	TxRDY	FFULL	RxRDY	CDE	Error			Res	erved		
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 15-11. Status Register (0x04) for SIR Mode

	msb u	ı	2	3	4	5	О	/	0	9	10	11	12	13	14	15 ISD
R	RB	FE	PE	ORERR	TxEMP	TxRDY	FFULL	RxRDY	Reserved	Error			Res	erved		
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

15-8 Freescale Semiconductor

Table 15-12. Status Register (0x04) for MIR / FIR Mode

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R	EOF	PHYERR	Reserved	ORERR	URERR	TxRDY	FFULL	RxRDY	DEOF	Error			Res	erved		
W																
RESET.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 15-13. Status Register (0x04) for other Modes

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R	R	eserved		ORERR	URERR	TxRDY	FFULL	RxRDY	Reserved	Error	Rese	erved	CMD_SEND	DATA_OVR	DATA_VALID	UNEX_RX_ SLOT
W													_			
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0	RB/ EOF	UART / SIR —Received Break—detects breaks originating in middle of received character. Such a break must persist until the end of next detected character time.
		0 = No break received.
		1 = An all-0 character of the programmed length was received without a stop bit. RB is valid only when RxRDY = 1. Only a single FIFO position is occupied when a break is received. Further entries to FIFO are inhibited until RxD returns to high state for at least one-half bit-time, which equals two successive PSC clock edges.
		MIR / FIR—End of frame
		0 = The next byte to be read from the RX-FIFO is not the last one of the frame.
		1= The next byte to be read from the RX-FIFO is the last one of the frame. This bit is effective when RxRDY=1.
		other Modes—Reserved
1	FE/	UART / SIR—Framing Error— is not used (always 0) in Codec mode.
	PHYERR	0 = No framing error occurred.
		1 = No stop bit detected when corresponding FIFO data character received. Stop bit-check occurs in middle of first stop bit position. FE is valid only when RxRDY=1.
		MIR / FIR—Physical layer error
		0 = No error
		1 = In MIR mode, this denotes that the RX received an abort. In FIR mode, this denotes that there was a decode error. This bit can be cleared by the reset error status command in the CR.
		other Modes—Reserved
2	PE	UART / SIR—Parity Error—valid only if RxRDY = 1. PE is not used (always 0) in Codec mode.
		0 = No parity error occurred.
		1 = If MR1[PM]=0x (with parity or force parity), corresponding FIFO character was received with incorrect parity. If MR1[PM]=11 (multidrop), PE stores received A/D bit.\
		other Modes—Reserved

PSC Registers—MBAR + 0x2000, 0x2200, 0x2400, 0x2600, 0x2800, 0x2C00

Bit	Name	Description
3	ORERR	Overrun Error
		Indicates whether an overrun occurs. For purposes of overrun, FIFO full means all FIFO space is occupied; the Rx FIFO threshold is irrelevant to overrun.
		0 = No overrun occurred.
		1 = One or more characters in Rx data stream were lost. ORERR sets on receipt of a new character when FIFO is full and a character is already in the shift register waiting for an empty FIFO position. When this occurs, the character in the Rx shift register and its break detect, framing error status, and parity error, if any, are lost. ORERR is cleared by the RESET ERROR STATUS command in CR.
		Also see the note on the end of this table.
4	TxEMP/	UART / SIR—Transmitter Empty
	URERR	0 = Tx buffer not completely empty. Either a character is being shifted out, or Tx is disabled. Tx is enabled/disabled by programming CR [TC].
		1 = Tx has underrun (both the Tx holding register and Tx shift registers are empty). This bit sets after transmission of the last stop bit of a character, if there are no characters in the Tx holding register awaiting transmission.
		other Modes—Underrun error
		0 = No error.
		1 = Underrun error occurred, which means the number of Tx FIFO bytes is 0, the Tx shift register is empty, and a FrameSync occurs. In other words, the time has come to transmit a new sample, but no sample is available in the Tx shift register. Unlike UART mode, TxEMP high indicates an error condition similar to the overrun condition (ORERR = 1), and as such it is now cleared the same way as ORERR, by a RESET ERROR STATUS command in the CR and not by a reset Tx command in the CR.
		Also see the note on the end of this table.
5	TxRDY	Transmitter Ready
		0 - Tx FIFO contains a number of data bytes greater than the TFALARM register value, or the Tx is disabled.
		1 - Tx FIFO is "almost empty" as defined by the TFALARM. TxRDY sets when the number of Tx FIFO bytes falls to, or below, the TFALARM value, due to data transfer from the Tx FIFO to the Tx shift register. Once set, TxRDY remains set until the number of empty bytes in the Tx FIFO falls to 4 times the granularity level specified in the TFCNTL register. In UART mode this bit only asserts if the Tx is enabled.
		Also see the note on the end of this table.
6	FFULL	Rx FIFO full
		0 = The Rx FIFO is not "almost full"
		1 = Rx FIFO is "almost full" as defined by the RFALARM. FFULL sets as soon as the number of bytes in the Rx FIFO exceeds the RFALARM value, due to the transfer of data from the Rx shift register to the Rx FIFO. Once set, FFULL remains set until the number of bytes in the Rx FIFO falls to the granularity level specified in the RFCNTL register.
		Also see the note on the end of this table.
7	RxRDY	Receiver Ready
		0 = There is no data in the Rx FIFO.
		1 = One or more characters were received and are waiting in the Rx buffer FIFO.
		Also see the note on the end of this table.

15-10

Bit	Name	Description
8	CDE DEOF	UART—DCD Error 0 = The DCD input is negated while receiving data. 1 = No error MIR / FIR—Detect End of Frame 0 = Rx did not receive an EOF after the last read SR command. 1 = Rx received the EOF in the frame. In this case, the interrupt and request can be asserted
		even if the Rx FIFO number is less than the threshold and MR1[1]=1. other Modes—Reserved
9	Error	Error Status Detect 0 = The PSC controller detect no errors 1 = The PSC controller detect an error state. This error is a combination of the error bits: RB, FE, PE, URERR, ORERR from this register and RX and RX FIFO bit from the TFSTAT and RFSTAT register. other Modes—Reserved
10:11		Reserved
12	CMD_SEND	Enhanced AC97 Mode—Command Send ready 0 = The data in the AC97CMD register was sent out by the AC97 transmitter 1= The data in the AC97CMD register was not sent out. A write access to the AC97CMD register set this bit to one. If the AC97 transmitter send out the CMD data then this bit was cleared. other Modes—Reserved
13	DATA_OVR	Enhanced AC97 Mode— Receive Status Data Overwrite 0 = No received status data overwrite. 1 = The received frame contains a new valid data status word in slot2, but the previous received status data word was not read out before the new one was written to the AC97Data register. Therefore the old status data word was lost. A read access to the AC97Data register cleared this bit other Modes—Reserved
14	DATA_VALID	Enhanced AC97 Mode—Received Status Data 0 = The received frame doesn't contains valid status data. 1 = The received frame contains a valid data status word in slot2. The received data are located in the AC97Data register. A read access to the AC97Data register cleared this bit. other Modes—Reserved
15	UNEX_RX_ SLOT	Enhanced AC97 Mode—Unexpected Receive Slots detect 0 = The received frame contains only the slots which are defined in the AC97Slots register or a frame without AC97 data (frame is empty or contains only slot1 or slot2 data) 1 = The AC97 receive detect one or more slots which are not defined in the AC97Slots register. other Modes—Reserved

NOTE

The FIFO related status bits ORERR, URERR, RxRDY, FFUL and TxRDY will be changed only if the peripheral (transmitter or receiver) access the FIFO. These bits reflect to the related bits in the ISR, therefore only the peripheral side can generate a FIFO access interrupt. The bits in the RFSTAT or TFSTAT register are also set. If the CPU side read from an empty FIFO or write to a full FIFO the status bits in the RFSTAT or TFSTAT register will be set, but the status bit in the SR register are unchanged. An access from the CPU side to the FIFO can't generate an interrupt.

15.2.4 Clock Select Register (0x04) — CSR

The MPC5200B supports only the internal clock as source for the UART / SIR clock generation. For the UART clock generation a prescaler by 32 or 4 is available. For the SIR clock generation only the prescaler by 32 is valid. After reset, the prescaler by 4 for the UART mode and the prescaler by 32 for the SIR mode is selected. Writing "1110" to this register will stop the UART / SIR clock generation.

Table 15-14. Clock Select Register (0x04) for UART / SIR Mode

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb		
R																		
W		RC	S			TC	cs		Reserved									
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Table 15-15. Clock Select Register (0x04) for other Modes

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R								Re	served							
W																
RESET:	Λ	0	Λ	Λ	n	0	0	0	Λ	0	Λ	Λ	0	0	0	0

Bit	Name	Description
0:3	RCS	UART—Receiver Clock Select Register 0000 -1101 = choose the prescaler by 32 for the UART receive clock generation 1110 = disable the clock generation 1111 = choose the prescaler by 4 for the UART receive clock generation SIR —Clock Select Register 1110 = disable the clock generation others = choose the prescaler by 32 for the SIR receive clock generation other Modes—Reserved
4:7	TCS	UART—Transmitter Clock Select Register 0000 -1101 = choose the prescaler by 32 for the UART transmit clock generation 1110 = disable the clock generation 1111 = choose the prescaler by 4 for the UART transmit clock generation SIR —Clock Select Register 1110 = disable the clock generation others = choose the prescaler by 32 for the SIR transmit clock generation other Modes—Reserved
8:15	_	Reserved

15.2.5 Command Register (0x08)—CR

The write-only command registers (CR), provide the commands to the PSC in all modes. Only multiple commands that do not conflict can be specified in a single write to a CR. For example, reset Tx and enable Tx cannot be specified in one command.

Table 15-16. Command Register (0x08) for all Modes

	msb 0	1	2	3	4	5	6	7 lsb
R				Re	served			
W	Reserved		MISC			TC		RC
RESET:	0	0	0	0	0	0	0	0

Bit	Value	Command	Description
0		<u> </u>	Reserved
1:3	000	no command	_
	001	reset mode register pointer	Causes MR register address to point to MR1.
	010	reset receiver	Immediately disables receiver, clears SR[FFULL, RxRDY], and re-initializes receiver FIFO pointer. No other registers are altered. Because it places the receiver in a known state, use this command instead of RECEIVER DISABLE when reconfigure the receiver.
	011	reset transmitter	In UART mode, immediately disables Tx and clears SR[TxEMP,TxRDY]. No other registers are altered. Because it places Tx in a known state, use this command instead of TRANSMITTER DISABLE when reconfigure transmitter. In Codec mode, URERR is not cleared by this soft reset. It is cleared the same way as the Rx overflow bit, by a RESET ERROR STATUS command.
	100	reset error status	In UART mode, clears ISR[RB,FE,PE,ORERR]. In Codec mode, command clears ISR[ORERR, URERR, DEOF, CMD_SEND, DATA_OVR, DATA_VALID, UNEX_RX_SLOT]]
	101	reset break change interrupt	Clears the delta break bit, ISR[DB]. Command has no effect in Codec mode.
	110	start break	Forces TxD low If Tx is empty, break may be delayed up to one bit-time. If Tx is active, break starts when character transmission completes. Break is delayed until any character in Tx shift register is sent. Any character in Tx holding register is sent after the break. Tx must be enabled for command to be accepted. This command ignores the CTS state and has no effect in Codec mode.
	111	stop break	Causes TxD to go high (mark) within two bit-times. Any characters in the Tx buffer are sent.

Bit	Value	Command	Description
4:5	00	no action	Causes Tx to stay in current mode.
		taken	If Tx is enabled, it remains enabled.
			If Tx is disabled, it remains disabled.
	01	transmitter enable	Enables operation of Tx channels. SR[TxEMP,TxRDY] sets. If Tx is already enabled, this command has no effect.
			In UART mode, TxRDY and TxEMP bits in SR become asserted.
			In Codec mode:
			Tx FIFO can be loaded while Tx is disabled, unlike in UART mode. Therefore this command does not affect TxRDY or URERR behavior. It does not automatically set TxRDY and URERR. If no data is written to Tx FIFO, URERR sets at the first FrameSync after Tx is enabled.
			In AC97 mode:
			URERR sets if Tx FIFO is empty, Tx is enabled, Rx detects a "Codec Ready" condition, and a FrameSync occurs before samples are written to the Tx FIFO.
			Note: In Codec / AC97 mode it's not possible to use the transmitter without the receiver. To transmit data only, also the receiver must be enabled!
	10	transmitter	Terminates Tx operation and clears SR[TxEMP,TxRDY].
		disable	If a character is being sent when Tx is disabled, transmission completes before Tx becomes inactive.
			If Tx is already disabled, the command has no effect.
			In UART mode, SR[TxEMP,TxRDY] are negated.
			In Codec mode SR[TxEMP] is negated.
			Tx does not clear SR[TxRDY] unless PSC is in remote loop-back or auto-echo mode. In Codec mode, unlike UART mode, the Tx FIFO may be loaded while Tx is disabled.
			Note: If the transmitter was disabled and transmit data are available in the TX FIFO, then TX line is not driven low, the frame signal is also visible on the TX line.
	11	_	Reserved, do not use.
6:7	00	no action	Causes receiver to stay in current mode.
		taken	If receiver is enabled, it remains enabled.
			If receiver is disabled, it remains disabled.
	01	receiver enable	 Enables receiver If PSC module is not in multidrop mode (MR1[PM] ≠ 11), RECEIVER ENABLE command enables channel's receiver and forces it into a search-for-start-bit state. In multidrop mode the Rx continuously monitors the received data regardless of whether it is enabled or not. If receiver is already enabled, this command has no effect.
	10	receiver disable	Immediately disables receiver. In UART mode any character being received is lost. The command does not affect receiver status bits or other control registers. • If the PSC module is programmed for local loop-back or multidrop mode, the receiver operates even though this command is selected.
			If the receiver is already disabled, the command has no effect.
			In Codec mode, if the receiver is disabled while a character is being received, reception completes before the receiver becomes inactive.
	11	_	Reserved, do not use.
Note: This	s field se	lects a single co	mmand.

15-14 Freescale Semiconductor

15.2.6 Rx Buffer Register (0x0C) — RB

Data are read from the Rx FIFO by reading from this read-only register. The Rx FIFO size is 512 bytes. To read data from the RX FIFO you can also use the RFDATA register, see Section 15.2.30, Rx FIFO Data (0x60)—RFDATA.

Table 15-17. Rx Buffer Register (0x0C) for UART/SIR/MIR/FIR/Codec8/16/32

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								RE	3[0:15]							
W								Used b	у Тх В	uffer						
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								RB	[16:31]						
W								Used b	у Тх Ві	uffer						
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				Table	e 15-1	8. R	c Buff	er Re	gister	(0x0C) for A	C97				
	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								RE	3[0:15]							
W	Used by Tx Buffer															
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R		RB[16	6:19]		SOF						Reserv	ed				
W								Used b	у Тх Ві	uffer						
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			Т	able ⁻	15-19.	Rx I	Buffer	Regi	ster (0x0C)	for Co	dec24				
	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								RE	3[0:15]							
W								Used b	у Тх Ві	uffer						
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	RB[16:23] Reserved															
W								Used b	у Тх Ві	uffer						
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:19 (AC97) or	RB	AC97 (0:19)—Received data—AC97 data must be read one complete sample at a time, where all samples except time slot #0 are 20 bits. Time slot #0 data is in bits 0:15. Bit 20 is 1 in the first sample of a new frame.
0:31		Bit 20 contains the "Start of Frame Indicator" SOF:
(other)		0 = RB[0:19] is not the first sample in the frame.
		1 = RB[0:15] is the first sample in a new frame. The number 0 slot is called the TAG slot.
		The bits [21:31] are reserved at this mode.
		UART/SIR/MIR/FIR/Codec8 (0:31)—Received data—For these modes, data can be read 1, 2 or 4 bytes at a time. For one byte at a time, all bytes must be read from bits 0:7. For 2 bytes at a time, data must be read from bits 0:15. Lower-bit data was received before upper-bit data.
		Codec16 (0:31)—Received data—For these modes, data can be read 2 or 4 bytes at a time. For 2 bytes at a time, data must be read from bits 0:15. Lower-bit data was received before upper-bit data.
		Codec24 (0:23)—Received data—For these modes, data must be read 4 bytes at a time. The lower 24 bits contain the received data word.
		Codec32 (0:31)—Received data—For these modes, data must be read 4 bytes at a time.

15.2.7 Tx Buffer Register (0x0C)—TB

Data is written to the Tx FIFO by writing to this write-only register. The Tx FIFO size is 512 bytes. To write data to the TX FIFO you can also use the TFDATA register, see Section 15.2.38, *Tx FIFO Data (0x80)—TFDATA*.

NOTE

Please note that the TX FIFO access via TB address will be blocked if the PSC was set to UART or SIR mode and the transmitter is disabled. The access via TFDATA will be never blocked.

15

iable i	5-20.	IXBU	ımer ı	tegisi	er (ux	(UC) I	or UA	KH 1/51	K/WIK	/FIR/C	oaec	8/16/3	2 Wod	es
msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

R	Used by Rx Buffer															
W								TE	8[0:15]							
RESET:	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0														
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Used b	y Rx Bı	uffer						
W	TB[16:31]															
RESET:																

Table 15-21. TX Buffer Register (0x0C) for AC97) Modes

	Table 15-21. 1X Buffer Register (UXUC) for AC97) Modes															
	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Used b	y Rx Bı	uffer						
W		TB[0:15]														
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Used b	y Rx Bı	uffer						
W	TB[16:19] SOF Reserved															
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

15-16 Freescale Semiconductor

Table 15-22. Tx Buffer Register (0x0c) for Codec24

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Used b	y Rx Bı	uffer						
W								TE	8[0:15]							
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Used b	y Rx Bı	uffer						
W	TB[16:23 Reserved															
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:19 (AC97) or	RB	"normal" AC97 (0:19)—Transmit data—AC97 data must be written one complete sample at a time, where all samples except time slot #0 are 20 bits, time slot #0 data is in bits 0:15. Bit 20 is 1 in the first sample of a new frame.
0:31		Bit 20 contains the "Start of Frame Indicator" SOF:
(other)		0 = RB[0:19] is not the first sample in the frame.
		1 = RB[0:15] is the first sample in a new frame. The number 0 slot is called the TAG slot.
		The bits [21:31] are reserved at this mode.
		"enhanced" AC97 (0:19)—Transmit data—AC97 data for the expected time slots (3 to 12). The lower 20 bits contain the valid data word.
		UART/SIR/MIR/FIR/Codec8 (0:31)—Transmit data—For these modes, data can be written 1, 2 or 4 bytes at a time. For one byte at a time, all bytes must be written to bits 0:7. For 2 bytes at a time, data must be written to bits 0:15. Lower-bit data is stored before upper-bit data.
		Codec16 (0:31)—Transmit data—For these modes, data can be written 2 or 4 bytes at a time. For 2 bytes at a time, data must be written to bits 0:15. Lower-bit data is stored before upper-bit data.
		Codec24 (0:23)—Transmit data—For these modes, data must be written 4 bytes at a time. The lower 24 bits contain the valid data word.
		Codec32 (0:31)—Transmit data—For these modes, data must be written 4 bytes at a time.

15.2.8 Input Port Change Register (0x10) — IPCR

The read-only IPCR register shows the current state and change-of-state for the Modem control input port.

Table 15-23. Input Port Change Register (0x10) for UART/SIR/MIR/FIR Modes

	msb 0	1	2	3	4	5	6	7 lsb
R	Reserv	/ed	D_DCD	D_CTS	Res	erved	DCD	CTS
W				Re	served			
RESET:	0	0	0	0	0	0	0	0

Table 15-24. Input Port Change Register (0x10) for Codec Mode

	msb 0	1	2	3	4	5	6	7 Isb			
R	SYNC	Reserved	D_DCD	D_CTS	Res	served	DCD	CTS			
W		Reserved									
RESET:	0	0	0	0	0	0	0	0			

MPC5200B Users Guide, Rev. 1

PSC Registers—MBAR + 0x2000, 0x2200, 0x2400, 0x2600, 0x2800, 0x2C00

Bit	Name	Description
0	SYNC	Codec—Sync detected.
		0 = Has not detected sync.
		1 = Detected sync (Frame = 1 in Codec Modes or Sync = 1 in AC97 mode)
		other Modes—Reserved
1	_	Reserved
2	D_DCD	Delta DCD.
		0 = No change-of-state has occurred since the last time the CPU read the IPCR. A read of the IPCR also clears the IPCR D_DCD bit.
		1 = A change of state, lasting more than a certain time (1/16 or 1 bit duration determined by the CSR, CTUR and CTLR) has occurred at DCD input. When this bit is set, the ACR can be programmed to generate an interrupt to the processor.
3	D_CTS	Delta CTS.
		0 = No change-of-state has occurred since the last time the CPU read the IPCR. A read of the IPCR also clears the IPCR D_CTS bit.
		1 = A change of state, lasting a certain time has occurred at CTS input. When this bit is set, the ACR can be programmed to generate an interrupt to the processor.
		After the enable of the PSC the CPU must read this bit to make sure, that this bit is cleared at the beginning of the transmission.
4:5	_	Reserved
6	DCD	Current state of \overline{DCD} port. This input is double latched.
		0 = The current state of the DCD input port is low.
		1 = The current state of the DCD input port is high.
7	CTS	Current state of CTS port. This input is double latched.
		$0 = $ The current state of the \overline{CTS} input port is low.
		1 = The current state of the CTS input port is high.

15.2.9 Auxiliary Control Register (0x10) — ACR

The write-only ACR register controls Tx/Rx handshaking.

Table 15-25. PSC 1 Auxiliary Control Register (0x10) for all Modes

	msb U	1	2	3	4	5	6	/ ISD
R				Re	eserved			
W				IEC1	IEC0			
RESET:	0	0	0	0	0	0	0	0

Bit	Name	Description
0:5	_	Reserved

Bit	Name	Description
6	IEC1	Interrupt enable control for D_DCD.
		0 = D_DCD has no effect on the IPC in the ISR.
		1 = When the D_DCD becomes high, IPC bit in the ISR sets (causing an interrupt if mask is set).
7	IEC0	Interrupt enable control for D_CTS.
		0 = D_CTS has no effect on the IPC in the ISR.
		1 = When the D_CTS becomes high, IPC bit in the ISR sets (causing an interrupt if mask is set).
		After enable the PSC the D_CTS bit can be set, therefore it's important to clear the D_CTS bit before enable this interrupt.

Interrupt Status Register (0x14) — ISR 15.2.10

The read-only ISR register provides status for all potential interrupt sources. Register contents is masked by the IMR.

- If an ISR flag sets and the corresponding IMR bit is also set, the internal interrupt output is asserted.
- If the corresponding IMR bit is cleared, the ISR bit state has no effect on the interrupt output.

Table 15-26. Interrupt Status Register (0x14) for UART / SIR Mode

Table 15-27. Interrupt Status Register (0x14) other Modes

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R	IPC	Rese	erved	ORERR	URERR	Reserved	RxRDY FFULL	TxRDY	DEOF	Error	Rese	erved	CMD_SEND	DATA_OVR	DATA_VALID	UNEX_RX_ SLOT
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0	IPC	Input port change interrupt.
		0 = No IPC event was occurred.
		1 = An IPC event was occurred.
1:2	_	Reserved
3	ORERR	Overrun Error
		This bit is identical to the ORERR bit in the SR register. To clear this interrupt use the reset error status command in the CR register.

Bit	Name	Description
4	TxEMP/	UART / SIR—TxEMP
	URERR	This bit is identical to the URERR bit in the SR register.
		other Modes—Underrun Error
		This bit is identical to the URERR bit in the SR register. To clear this interrupt use the reset error status command in the CR register.
5	DB	UART / SIR—Delta Break
		Receiver detect an Delta Break state.
		other Modes—Reserved
6	RxRDY FFULL	Rx FIFO over threshold. If MR1[1]=1, then this bit is identical to the FFULL bit in the SR register. If MR1[1]=0, then this bit is identical to the RxRDY bit in the SR register.
7	TxRDY	Transmitter ready - identical to the TxRDY bit in the SR register
8	DEOF	MIR / FIR—Detect End of Frame
		0 = Rx did not receive an EOF after the last read SR command.
		1 = Rx received the EOF in the frame. In this case, the interrupt and request can be asserted even if the Rx FIFO number is less than the threshold and MR1[1]=1.
		To clear this interrupt use the reset error status command in the CR register.
		other Modes—Reserved
9	Error	Error
		This bit is identical to the Error bit in the SR register. To clear this interrupt use the reset error status command in the CR register.
10:11	_	Reserved
12	CMD_SEND	Enhanced AC97 Mode—Command Send ready
		This bit is identical to the CMD_SEND bit in the SR register. To clear this interrupt use the reset error status command in the CR register.
		other Modes—Reserved
13	DATA_OVR	Enhanced AC97 Mode—Receive Data Overwrite
		This bit is identical to the DATA_OVR bit in the SR register. To clear this interrupt use the reset error status command in the CR register.
		other Modes—Reserved
14	DATA_VALID	Enhanced AC97 Mode—Received Status Data
		This bit is identical to the DATA_VALID bit in the SR register. To clear this interrupt use the reset error status command in the CR register.
		other Modes—Reserved
15	UNEX_RX_	Enhanced AC97 Mode—Unexpected RX Slots detect
	SLOT	This bit is identical to the UNEX_RX_SLOT bit in the SR register. To clear this interrupt use the reset error status command in the CR register.
		other Modes—Reserved

15.2.11 Interrupt Mask Register (0x14)—IMR

The write-only IMR register selects corresponding bits in the ISR that cause an interrupt.

- If one ISR bit is set and the corresponding IMR bit is also set, the internal interrupt output is asserted.
- If the corresponding bit in IMR is 0, the state of the ISR bit has no effect on the interrupt output. The IMR does not mask reading the ISR.

Table 15-28. Interrupt Mask Register (0x14) for UART / SIR Mode

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R		Reserved														
W	IPC	Rese	erved	ORERR	TxEMP	DB	R _X RDY FFULL	TxRDY	Reserved	Error	Reserved					
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 15-29. Interrupt Mask Register (0x14) for other Modes

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R		Reserved														
W	IPC	Rese	erved	ORERR	URERR	Reserved	RxRDY FFULL	TxRDY	DEOF	Error	Rese	erved	CMD_SEND	DATA_OVR	DATA_VALID	UNEX_RX_ SLOT
RESET:	0	0	0	0	0	Ο	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0	IPC	Input port change interrupt.
		0 = IPC has no effect on the interrupt.
		1 = Enable the interrupt for IPC in the ISR register.
1:2	_	Reserved
3	ORERR	Overrun Error
		0 = ORERR has no effect on the interrupt.
		1 = Enable the interrupt for ORERR
4	TxEMP/	UART / SIR—TxEMP
	URERR	0 = TxEMP has no effect on the interrupt.
		1 = Enable the interrupt for TxEMP
		other Modes—Underrun Error.
		0 = URERR has no effect on the interrupt.
		1 = Enable the interrupt for URERR.
5	DB	UART / SIR —Delta Break
		0 = DB has no effect on the interrupt.
		1 = Enable the interrupt for DB
		other Modes—Reserved
6	RxRDY	Rx FIFO over threshold
	FFULL	0 = RxRDY/FFULL has no effect on the interrupt.
		1 = Enable the interrupt for RxRDY/FFULL.
7	TxRDY	Transmitter ready
		0 = TxRDY has no effect on the interrupt.
		1 = Enable the interrupt for TxRDY

PSC Registers—MBAR + 0x2000, 0x2200, 0x2400, 0x2600, 0x2800, 0x2C00

Bit	Name	Description
8	DEOF	MIR / FIR Detect End of Frame
		0 = DEOF has no effect on the interrupt.
		1 = Enable the interrupt for DEOF.
		other Modes—Reserved
9	Error	Error
		0 = Error bit in the ISR register has no effect on the interrupt.
		1 = Enable the interrupt for Error
10:11	_	Reserved
12	CMD_SEND	Enhanced AC97 Mode—Command Send ready
		0 = CMD_SEND bit in the ISR register has no effect on the interrupt.
		1 = Enable the interrupt for CMD_SEND
		other Modes—Reserved
13	DATA_OVR	Enhanced AC97 Mode—Receive Data Overwrite
		0 = DATA_OVR bit in the ISR register has no effect on the interrupt.
		1 = Enable the interrupt for DATA_OVR
		other Modes—Reserved
14	DATA_VALID	Enhanced AC97 Mode—Received Status Data
		0 = DATA_VALID bit in the ISR register has no effect on the interrupt.
		1 = Enable the interrupt for DATA_VALID
		other Modes—Reserved
15	UNEX_RX_	Enhanced AC97 Mode—Unexpected RX Slots detect
	SLOT	0 = UNEX_RX_SLOT bit in the ISR register has no effect on the interrupt.
		1 = Enable the interrupt for UNEX_RX_SLOT
		other Modes—Reserved

15.2.12 Counter Timer Upper Register (0x18)—CTUR

This write-only register holds the upper bytes of the preload value used by the timer to provide a given Baud rate. Reading from this register shows the current value of the Baud rate generation counter. For a detailed description see the next section, Section 15.2.13, Counter Timer Lower Register (0x1C)—CTLR.

Table 15-30. Counter Timer Upper Register (0x18) for all Modes

	msb 0	1	2	3	4	5	6	7 lsb
R				Re	served			
W				СТ	UR[0:7]			
RESET:	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	CTUR	Code —Frame Sync width, define the number of Bit clocks during the FrameSync signal is active.
		FrameSync Width = CTUR[0:7]+1
		UART/ SIR/ SPI —Baud rate prescaler value.
		See next section, Section 15.2.13, Counter Timer Lower Register (0x1C)—CTLR
		Other—Reserved

15-22 Freescale Semiconductor

15.2.13 Counter Timer Lower Register (0x1C)—CTLR

This write-only register hold the lower bytes of the preload value used by the timer to provide a given Baud rate. Reading from this register shows the current value of the Baud rate generation counter.

Table 15-31. Counter Timer Lower Register (0x1C) for all Modes

	msb 0	1	2	3	4	5	6	7 Isb
R				Re	eserved			
W				СТ	LR[0:7]			
RESET:	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	CTLR	UART—Baud rate prescale value. The Baud rate is calculated as:
		Baud rate = $\frac{\text{IPB clock frequency}}{\text{CT[0:15] x "prescaler"}} \text{where:} \\ \text{CT[0:15] = {CTUR[0:7], CTLR[0:7]}}$
		The minimum CT value is 1; 0 denotes counter stop.
		The prescaler was defined in the CSR register.
		SIR—Baud rate prescale value. The Baud rate is calculated as:
		Baud rate = $\frac{\text{IPB clock frequency}}{\text{CT[0:15] x 32}}$ where: $\text{CT[0:15] = \{CTUR[0:7], CTLR[0:7]\}}$
		The minimum CT value is 1; 0 denotes counter stop.
		SPI—Delay After Transfer (DTL)
		$DTL = \frac{CT[0:15] + 2}{IPB^{\dagger}clock \text{ frequency}} + \frac{3}{Mclk \text{ frequency}}$ where: $CT[0:15] = \{CTUR[0:7], CTLR[0:7]\}$ Other—Reserved

DTL — Length of Delay after Transfer

When the PSC is in SPI mode (SICR[SPI] = 1), the Counter Timer is used to determine the length of time that the PSC delays after each serial transfer, i. E. the length of time that SS stays high/inactive between consecutive transfers. This is a feature that exists in a QSPI. Delay after transfer can be used to ensure that the deselect time requirement (for peripherals having such a requirement) is met. Some peripherals must be deselected for a minimum period of time between consecutive serial transfers. A delay after transfer can be inserted between consecutive transfers to a given peripheral to ensure that its minimum deselect time requirement is met or to allow serial A/D converters to complete conversion before the next transfer is made.

15.2.14 Codec Clock Register (0x20)—CCR

This register defines the divider for the FrameSync and BitClk generation for Codec mode. This register value has only effect, if the GenClk bit in the PSC Control Register SICR was set to one. In UART, SIR and AC97 mode this register is reserved.

Table 15-32. Codec Clock Register (0x20)—CCR for Codec Mode

MPC5200B Users Guide, Rev. 1

Table 15-32. Codec Clock Register (0x20)—CCR for Codec Mode

	1																
R			Fr	ameSyı	ncDiv[0	:7]			BitClkDiv[8:15]								
W	L																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
	msb	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R	16			Bit€lk[Div[0:7]				Reserved								
W				DITOIRE	JIV[O.7]							1103	erveu				
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
NESEI.	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	
		Table 15-33. Codec Clock Regis								r (0x20)—CCR for MIR/FIR Mode							
	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb	
R		Reserved										BitClkE	Div[8:15]]			
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
	msb 16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R				BitClk	Div[0:7]							Res	erved				
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		Ta	able 1	5-34.	Code	c Clo	ck Re	giste	r (0x2	0)—C	CR for	other	Mode	es			
	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb	
R								R	eserve	t							
W	-																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	msb 16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb	
R								R	eserve	b							
W																	
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Bit	Name	Description									
0:7	FrameSyncDiv	Codec—Frame Sync Divider									
		FrameSync is generated internally by dividing down the Bit Clock. The FrameSyncDiv defines the number of Bit clock cycles between two active frame edges:									
		FrameSync Length = FrameSyncDiv[0:7] + 1									
		For more information see also Section 15.3.2.3, <i>Transmitting and Receiving in "Soft Modem" Codec Mode</i>									
		Codec / SPI—delay before SCK (DSCKL)									
		When the PSC is in SPI mode (SICR[SPI] = 1), the FrameSyncDiv divider is used to letermine the length of time the PSC delays after SS goes low/active before the first SCK transition of the serial transfer. This is a feature that exists in a QSPI. The following equation determines the actual delay before SCK:									
		$DSCKL delay = \frac{FrameSyncDiv[0:7] + 1}{Mclk Frequency}$									
		other Modes—Reserved									
		Note: The value 0x00 stops this counter and disables the clock generator.									
7:23	BitClkDiv	Codec—Bit Clock Divider									
		Bit clock is generated internally by dividing down the Mclk frequency as follows:									
		BitClk frequency = $\frac{\text{Mclk Frequency}}{\text{BitClkDiv}[0:15] + 1}$									
		Codec SPI—Baud Rate									
		SCK is generated internally by dividing down the Mclk frequency as follows:									
		SCK frequency = $\frac{\text{Mclk Frequency}}{\text{BitClkDiv}[0:15] + 1}$									
		MIR / FIR—Irda clock									
		IrdaClk is generated internally by dividing down the Mclk frequency as follows:									
		IrdaClk frequency = $\frac{\text{Mclk Frequency}}{\text{BitClkDiv}[0:15] + 1}$									
		other Modes—Reserved									
		Note: The value 0x00 stops this counter and disables the clock generator.									

The Mclk frequency is generated in the Clock Distribution Module (CDM) by dividing down the f_{system} frequency as follows:

$$Mclk = \frac{f_{system}}{MclkDiv [8:0] + 1}$$

There is a separate cdm_pscX_bitclk_config register in the CDM for each of PSC1,2,3 and 6, which are the PSCs available for use in Codec modes. These cdm_pscX_bitclk_config registers are further described in the CDM Section 5.5.11, PSC1 Mclock Config Register—MBAR + 0x0228 to Section 5.5.14, PSC6 (IrDA) Mclock Config Register—MBAR + 0x0234.

Freescale Semiconductor

15-25

15.2.15 AC97 Slots Register (0x24)—AC97Slots

This write only register defines which slots are expected in a receive AC97 frame and which slots will be send in a AC97 TX frame. If the received frame doesn't match the expected slots the SR[UNEXP_RX_SLOTS] bit will be set. This register has affect only if the and AC97 mode is selected in the SICR register and if the EnAC97 bit is active.

			J		ole 15	-35. A	C97 9	Slots	Regis	ter (0:	(24)—	AC975	olots			
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R								Re	served							
W			Rese	ved				TX_Slots[3:12]								
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
R								Re	served							
W	Reserved						RX_Slots[3:12]									
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:5	_	Reserved
6:15	TX_Slots[3:12]	Enhanced AC97 Mode—Expected Receive Slots
		The bits in this register specifies which data slots [3:12] will be send in an AC97 TX frame. The AC97 transmitter will use this information to generate the Slot0 and will read out the according number of data words from the TXFIFO. If the TXFIFO is empty an empty AC97 frame will be send until new data are available.
		other Modes—Reserved
16:21	_	Reserved
22:3'	RX_Slots[3:12]	Enhanced AC97 Mode—Expected Receive Slots
		The bits in this register specifies which data slots [3:12] in the receive AC97 frame must contain valid data. The AC97 Codec select the valid data slots by setting the according data valid bit in Slot0[12:3]. If the received valid slots not match the expected slots the "Unexpected Slot Received" state occurred. See register SR. Only if the received slots matched the expected slots the received data will be written to the RXFIFO. If the Receiver detect an AC97 frame without data (Frame is empty or contains only status data) the "Unexpected Slot Received" state will not occurred.
		other Modes—Reserved

15.2.16 AC97 Command Register (0x28)—AC97CMD

This register contains the AC97 address for transmit slot1 and the AC97 command data for transmit slot 2. A write access to any byte of this register will set the SR[CMD_SEND] bit to one. The AC97 transmitter generate a frame with valid slot1 and slot2 and paste the values of this register to the next transmitted slot1 and slot2. If the data was send, then the SR[CMD_SEND] bit will be cleared by the transmitter.

				Table	15-36	6. AC	97 Co	mmaı	าd Re	gister	(0x28)	—AC	97CM	D		
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R	A97		AC:	97 Con	trol Re	gister Ir	ndex		AC97 Command Data[15:8]							
W	CMD															
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
R			AC97 (Comma	ind Data	a[7:0]						Res	erved			
W																
RESET.	0	Λ	Λ	Λ	Λ	Λ	Λ	Λ	0	n	Λ	Λ	Λ	Λ	n	0

15-26 Freescale Semiconductor

Bit	Name	Description
0	AC97 CMD	Enhanced AC97 Mode—AC97 Command
		This bit indicates if the access to the Control Register is a read or write access. It will be paste to the Slot1 bit 19.
		0 = write access
		1 = read access
		other Modes—Reserved
1:7	AC97 Control	Enhanced AC97 Mode—AC97 address Register
	Register Index	This register contains target control register address. It will be paste to the Slot1 bit 18 to 12.
		other Modes—Reserved
6:23	AC97 Command	Enhanced AC97 Mode—AC97 Command Data Register
	Data	This register is used define the command data value for a write command. It will be paste to the Slot2 bit 19 to 4.
		other Modes—Reserved
24:31		Reserved

15.2.17 AC97 Status Data Register (0x2C)—AC97Data

This read-only register contains the received response of a AC97 read command. If this register contains new data then the SR[DATA_VALID] will be set to one by the receiver. A read access to this register cleared the SR[DATA_VALID] bit.

	Table 15-37. AC97 Status Data Register (0x2C)—AC97Data															
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R	AC97 Register Index Echo							AC97 Control Register Read Data[15:8]								
W		Reserved														
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	39	31
R		AC97	AC97 Control Register Read Data[7:0]						Reserved							
W								Re	eserved							
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description				
0	_	Reserved				
1:7	AC97 Register	Enhanced AC97 Mode—AC97 Register Index Echo				
	Index Echo	This register contains the received Register Index Echo from the RX Slot0.				
		other Modes—Reserved				
6:23	AC97 Control	Enhanced AC97 Mode—AC97 Control Register Read Data				
	Register	This register contains the received control data from Rx Slot2.				
	ReadData	other Modes—Reserved				
24:31	_	Reserved				

15.2.18 Interrupt Vector Register (0x30)—IVR

This register is not used since the MPC5200 does not use interrupt vectors supplied by the peripherals.

MPC5200B Users Guide, Rev. 1

Table 15-38. Interrupt Vector Register (0x30) for all Modes

	msb 0	1	2	3	4	5	6	7 Isb			
R		IVR[0:7]									
W											
RESET:	0	0	0	0	0	0	0	0			

Bit	Name	Description
0:7	IVR	Interrupt Vector— Not applicable for MPC5200.

15.2.19 Input Port Register (0x34)—IP

This read-only IP register shows the current state of the input ports.

Table 15-39. Input Port Register (0x34) for UART/SIR/MIR/FIR Modes

	msb 0	1	2	3	4	5	6	7 lsb		
R			Res	erved			DCD	CTS		
W		Reserved								
RESET:	1	1	1	1	1	1	0	0		

Table 15-40. Input Port Register (0x34) for Codec Mode

	msb 0	1	2	3	4	5	6	7 Isb				
R	Reserved	TGL		Re	DCD	CTS						
W				Reserved								
RESET:	1	0	1	1	1	1	0	0				

Table 15-41. Input Port Register (0x34) for AC97 Mode

	msb u	ı	2	3	4	5	О	7 ISD
R	LPWR	TGL		Re	served		DCD	CTS
W								
RESET:	1	1	1	1	1	1	0	0

Bit	Name	Description							
0	LPWR	AC97—Low power mode in AC97 mode							
		= Codec is in low power mode.							
		= Usual operation.							
		er Modes—Reserved							
1	TGL	AC97 / Codec—Test usage. Toggle by FrameSync.							
		other Modes—Reserved							
2:5	_	Reserved							

Bit	Name	Description
6	DCD	Current state of the \overline{DCD} input. $0 = \overline{DCD}$ input is low.
		$1 = \overline{DCD} \text{ input is high.}$
7	CTS	Current state of the CTS input 0 = Input port CTS is low. 1 = Input port CTS is high.

Output Port 1 Bit Set (0x38)—OP1 15.2.20

This is a write-only register. Output ports are asserted by writing to this register.

Table 15-42. Output Port 1 Bit Set Register (0x38) for all Modes

	msb 0	1	2	3	4	5	6	7 Isb
R								
W			RES	RTS				
RESET:	0	0	0	0	0	0	0	0

Bit	Name	Description
0:5	_	Reserved
6	RES	Assert RES output. 0 = No operation 1 = Asserts output port RES, (RES becomes 0)
7	RTS	AC97—Reserved other Modes—Assert RTS output. 0 = No operation 1 = Asserts output port RTS, (RTS becomes 0)

15.2.21 Output Port 0 Bit Set (0x3C)—OP0

This is a write-only register. Output ports are negated by writing to this register.

Table 15-43. Output Port 0 Bit Set Register (0x3C) for all Modes

		msb 0	1	2	3	4	5	6	7 lsb		
	R	Reserved									
	W		Reserved								
F	RESET:	0	0	0	0	0	0	0	0		

Bit	Name	Description
0:5		Reserved

PSC Registers—MBAR + 0x2000, 0x2200, 0x2400, 0x2600, 0x2800, 0x2C00

Bit	Name	Description
6	RES	Assert RES output.
		0 = No operation
		1 = Negates output port RES, (RES becomes 1).
7	RTS	AC97—Reserved
		other Modes—Assert RTS output.
		0 = No operation
		1 = Negates output port RTS, (RTS becomes 1).

15.2.22 Serial Interface Control Register (0x40)—SICR

This register sets the main operation mode.

Table 15-44. Serial Interface Control Register (0x40) for all Modes

	msb 0	1	2	3	4	5	6	7	
R	ACRB	AWR	DTS1	SHDIR		SIM[3:0]		
W									
RESET:	0	0	0	0	0	0	0	0	
	8	9	10	11	12	13	14	15	
R	GenClk	128	ClkPol	SyncPol	CellSlave	Cell2xClk	ESAI	EnAC97	
W									
RESET:	0	0	0	1	0	0	0	0	
	16	17	18	19	20	21	22	23 lsb	
R	SPI	MSTR	CPOL	СРНА	UseEOF	Disable_EOF	Reserved		
W									
RESET:	0	0	0	0	0	0	0	0	

Bit	Name	Description					
0	ACRB	AC97—AC97 Cold Reset to the transceiver in PSC. This bit was prepared for backward compatibility with the MCF5407 USART. It is recommended to use OP1 and OP0 registers to set and to reset AC97 reset line.					
		0 = The transceiver recovers from low power mode in AC97.					
		1 = The transceiver stays in the current state.					
		other Modes—Reserved					
1	AWR	AC97—AC97 Warm Reset (to the PSC and off-chip AC97 Codec) 0 = AC97 warm reset is negated. RTS output functions normally as the AC97 FrameSyr					
		1 = Force "1" on RTS output, which is used as the AC97 FrameSync, and the PSC recovers from AC97 power down mode.					
		other Modes—Reserved					
2	DTS1	Codec—Delay of time slot #1.					
		0 = first bit of first time slot of a new frame starts at the rising edge of FrameSync.					
		1 = first bit of first time slot of a new frame starts one bit clock cycle after the rising edge of FrameSync.					
		other Modes—Reserved					

MPC5200B Users Guide, Rev. 1

15-30 Freescale Semiconductor

Bit	Name	Description
3	SHDIR	Codec—Shift Direction.
		0 = msb first
		1 = lsb first
		other Modes—Reserved
4:7	SIM[3:0]	PSC operation mode.
		CAUTION : When the operating mode change occurs, all Rx/Tx and error statuses are reset. Rx and Tx are disabled.
		0000 = UART mode, DCD input ignored
		1000 = UART mode, DCD input ignored
		x001 = Codec mode, 8-bit data
		x010 = Codec mode, 16-bit data
		x011 = AC97 mode
		0100 = SIR model, DCD input ignored
		1100 = SIR mode, DCD input is effective
		x101 = MIR mode
		x110 = FIR mode
		0111 = Codec mode, 24-bit data
		1111 = Codec mode, 32-bit data
8	GenClk	Codec—Generate Bit Clock and FrameSync, not used to enable the SPI master mode, use
		the MSTR bit of the this register
		0 = use bit clock and FrameSync provided by external device
		1 = use bit clock and FrameSync generated internally from Mclk
		MIR / FIR—Generate Bit Clock and FrameSync
		0 = use for clock generation the external Clk from Pad IR_USB_CLK
		1 = use for clock generation the internal Mclk other Modes—Reserved
	I2S	Codec—I2S mode
9	125	0 = no I2S mode supported
		1 = PSC works in I2S mode
		other Modes—Reserved
10	ClkPol	Codec—Bit Clock Polarity
10	CIKI OI	0 = data in is sampled on the falling edge of the BitClk and data out is shifted on the rising
		edge
		1 = data in is sampled on the rising edge of the BitClk and data out is shifted on the falling
		edge
		other Modes—Reserved
11	SyncPol	Codec—FrameSync Polarity
		0 = FrameSync is low true
		1 = FrameSync is high true
		Codec I2S—FrameSync Polarity
		0 = Frame starts if LRCK is low
		1 = Frame starts if LRCK is high other Modes—Reserved
10	0-1101	
12	CellSlave	Codec—Cell Phone Slave
		0 = PSC is not a slave to PSC1
		1 = PSC uses Bit Clock from PSC1 master as its Mclk

MPC5200B Users Guide, Rev. 1

PSC Registers—MBAR + 0x2000, 0x2200, 0x2400, 0x2600, 0x2800, 0x2C00

Bit	Name	Description
13	Cell2xClk	Codec —Cell Slave 2x Clock Frequency - takes effect only when bit 12 CellSlave = 1
		0 = PSC Mclk frequency = Bit Clock from PSC1 master
		1 = PSC Mclk frequency = 2x the Bit Clock from PSC1 master
		other Modes—Reserved
14	ESAI	Codec—Enhanced Serial Audio Interface
		0 = PSC doesn't support the ESAI mode.
		1 = PSC support the ESAI mode. This mode allows the PSC to send and receive more the one data word per frame, if the frame length is greater than the word length. The PSC send only complete data words.
		other Modes—Reserved
15	EnAC97	Codec —Enhanced AC97 mode - takes effect only when the AC97 mode is selected
		(SIM = 0x3)
		0 = No effect
		1 = If the AC97 mode was selected the PSC use the "Enhanced AC97" mode to transmit and receive the data.
		other Modes—Reserved
16	SPI	Codec—SPI mode
10	SFI	0 = PSC does not behave like an SPI
		1 = PSC behaves like an SPI
		other Modes—Reserved
17	MSTR	Codec—SPI Master mode - takes effect only when bit SICR[SPI mode] = 1
''	WIGHT	0 = PSC behaves as an SPI slave
		1 = PSC behaves as an SPI master
		other Modes—Reserved
18	CPOL	Codec—SPI Clock Polarity - takes effect only when bit SICR[SPI mode] = 1
	0.02	This bit selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, the SPI modules must have identical CPOL values
		0 = Active-low clocks selected; SCK idles high
		1 = Active-high clocks selected; SCK idles low
		other Modes—Reserved
19	CPHA	Codec—SPI Clock Phase
		This bit is used to shift the SCK serial clock. To transmit data between SPI modules, the SPI
		modules must have identical CPHA values
		0 = data transfer starts which assertion of SS
		1 = data transfer starts with the first edge of SCK other modes—Reserved
20	UseEOF	Codec—Use End-of-Frame flag takes effect only when bit 16 SPI mode = 1
		0 = either 1, 2 or 4 bytes are transferred while Slave Select (SS) is held low, as determined by Codec8, Codec16, Codec24 or Codec32 being selected by SICR[SIM]
		1 = multiple bytes are transferred while maintaining SS low, up to and including the next byte read from the Tx FIFO that has its EOF flag set
		other modes—Reserved

MPC5200B Users Guide, Rev. 1

Bit	Name	Description
21		UART/SIR —Disable EOF generation
	EOF	0 = The UART receiver generate an EOF tag if an UART error was detected. For more information's regarding the UART errors (RB, FE,PE, CDE,) see register SR.
		1 = The UART receiver doesn't generate an EOF tag if an UART error was detected
		other modes—Reserved
22:23	_	Reserved

15.2.23 Infrared Control 1 (0x44)—IRCR1

This register controls the configuration in one of the IrDA modes (SIR/MIR/FIR).

Table 15-45. Infrared Control 1 (0x44) for SIR Mode

Table 15-45. Infrared Control 1 (0x44) for SIR Mode											
	msb 0	1	2	3		5	6	7 Isb			
R W	Rese	rved	INV_RX	Reserved		FD	Reserved	SPUL			
RESET:	0	0	0	0	0	0	0	0			
	Table 15-46. Infrared Control 1 (0x44) for MIR/FIR Modes										
	msb 0	1	2	3	4	5	6	7 Isb			
R			Reserved			FD	SIPEN	Reserved			
W											
RESET:	0	0	0	0	0	0	0	0			
Bit	Name				Descript	ion					
0:1	_	Reserved									
2	INV_RX	SIR / MIR	/ FIR—Inve	rt the RX li	ne						
					e receive line						
			eceiver inver		e line.						
		other Mod	l es —Reser	ved							
		Reserved									
3:4	_	Reserved									
5	FD	SIR / MIR	FIR —Full	duplex ena	able						
						le the TX is bus	2				
						while the TX is blode, CM=10, the					
			l es —Reser		ion chamier in	1040, 2111 10, 11	115 011 15 4410	matically set.			
6	SIPEN	MIR / FIR-	-Send SIP	enable afte	er every fram	ne					
		0 = SIP i	s sent only w	hen the SIP	REQ bit in th	e IRCR2 becon	nes high.				
			ΓX always se t higher spee			TO flag in order	r to inform sl	ow speed de-			
					SIP pulse see	also Figure 15-2	0.				
			l es —Reser	ved							
7	SPUL	1	pulse width								
		-			e bit duration.						
			oulse width i l es —Reser								
		other woo	es—Reser	veu							

15.2.24 Infrared Control 2 (0x48)—IRCR2

This register controls the configuration in one of the IrDA modes (SIR/MIR/FIR).

MPC5200B Users Guide, Rev. 1

Table 15-47. Infrared Control 2 (0x48) for MIR/FIR Modes

	msb 0	1	2	3	4	5	6	7 lsb					
R			Reserved	SIPREQ	ABORT	NXTEOF							
W													
RESET:	0	0	0	0	0	0	0	0					
	Table 15-48. Infrared Control 2 (0x48) for other Modes												
	msb 0	1	2	3	4	5	6	7 lsb					

R				Re	eserved			
W								
RESET:	0	0	0	0	0	0	0	0

Bit	Name	Description
0:4	_	Reserved
5	SIPREQ	MIR / FIR—Request to send SIP 0 = No operation
		1 = If the TX becomes idle state, the TX starts to send one SIP pulse. This bit keeps high until the TX finishes sending a SIP and becomes low automatically when the TX finishes sending a SIP.
		For more informations about the SIP pulse see also Figure 15-20. other Modes—Reserved
6	ABORT	MIR / FIR— Abort output
		0 = Stop sending abort sequence.
		1 = While the TX is sending data or CRC, writing 1 to this bit causes the TX immediately start to output abort sequence (2 or more illegal symbol "0000" in FIR mode, or 7 or more consecutive 1 in MIR mode). Before the next frame is transmitted, this bit must be reset.
		other Modes—Reserved
7	NXTEOF	SIR / MIR / FIR— Next is the last byte. This bit works independent form the mode. For other modes which support the framing, like SPI, you can also use this bit to mark the last bit of frame.
		0 = The next write data is not the last byte in a frame.
		1 = The next write data is the last byte in the current frame. When the processor performs a write to the TB, an EOF mark is added to the data in the TX-FIFO memory. This bit is cleared after writing to the transmit buffer. This bit is usually set by IP bus write operation. During the CommBus transfer, the signal transmit done line indicate the end of frame, therefore this bit is not used by the CommBus write operation.
l		other Modes—Reserved

15.2.25 Infrared SIR Divide Register (0x4C)—IRSDR

This register set the SIR pulse width. To set the SIR mode Baud rate see Section 15.2.12, Counter Timer Upper Register (0x18)—CTUR. This register is reserved in other modes.

15-34 Freescale Semiconductor

Table 15-49. Infrared SIR Divide Register (0x48) for SIR Mode

	msb 0	1	2	3	4	5	6	7 Isb			
R	IRSTIM[0:7]										
W											
RESET:	0	0	1	1	0	1	1	0			

Table 15-50. Infrared SIR Divide Register (0x48) for other Modes

	msb 0	1	2	3	4	5	6	/ ISD
R				Re	served			
W								
RESET:	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	IRSTIM	SIR—Timer counter value for 1.6us pulse
		In SIR mode, this is used to make 1.6 μs pulse when SPUL in the IRCR1 is high. This value should be set so that
		IPB clock period * IRSTIM = 1.6 μs
		Reset value is 54(0x36) and this is for 33 MHz bus clock.
		other Modes—Reserved

15.2.26 Infrared MIR Divide Register (0x50)—IRMDR

This register set the MIR mode Baud rate. This register is reserved in other modes.

1

2

msb 0

Table 15-51. Infrared MIR Divide Register (0x50) for MIR Mode

	msb 0	1	2	3	4	5	6	7 Isb				
R	FREQ	M_FDIV										
W												
RESET:	0	0	0	0	0	0	0	0				

Table 15-52. Infrared MIR Divide Register (0x50) for other Modes

5

6

7 Isb

R				Re	eserved		
W							
RESET	0	0	0	0	0	0	0

Freescale Semiconductor 15-35

MPC5200B Users Guide, Rev. 1

Bit	Name	Description
0	FREQ	MIR—0.576 M bps mode.
		0 = The Baud rate is 1.152 M bps.
		1 = If the Baud rate is 0.576 Mbps, this bit should be set high in order to output 1.
		For more informations about the SIP pulse see also Figure 15-20.
		other Modes—Reserved
1:7	M_FDIV	MIR—Clock divide ratio in MIR mode. The bit frequency is derived by:
		$f_{bit} = \frac{f_{IrdaClk}}{M_{FDIV} + 1}$
		This bit frequency should be 0.576 or 1.152 MHz. In order to send a quarter bit duration pulse and receive minimum pulse described in the IrDA spec, (M_FDIV + 1) should be a factor of 4 and larger than or equal to 8. Table 15-53 shows the selectable divide factor and the input clock frequency on IrdaClk port. For more informations about the frequency generation see also Figure 15-19,Section 15.2.14, Codec Clock Register (0x20)—CCR and Section 15.3.4.2, PSC in MIR Mode.
		other Modes—Reserved

Table 15-53. Frequency Selection in MIR Mode

M_FDIV[1:7]	Frequency of IrdaClk [MHz]									
W_FDIV[1:7]	1.152 Mbps	0.576 Mbps								
0x07	9.216	4.6080								
0x0B	13.824	6.912								
0x0F	18.432	9.216								
0x13	23.040	11.520								
0x17	27.648	13.824								
0x7F	147.456	73.728								

15.2.27 Infrared FIR Divide Register (0x54)—IRFDR

This register set the FIR mode Baud rate. This register is reserved in other modes.

Table 15-54. Infrared FIR Divide Register (0x54) for MIR Mode

	msb 0	1	2	3	4	5	6	7 lsb		
R		Reser	rved		F_FDIV					
W										
RESET:	0	0	0	0	0	0	0	0		

Table 15-55. Infrared FIR Divide Register (0x54) for other Modes

	msb 0	1	2	3	4	5	6	7 lsb
R				Re	eserved			
W								
RESET:	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

15-36 Freescale Semiconductor

Bit	Name	Description
0:3	_	Reserved
4:7	F_FDIV	$f_{bit} = \frac{f_{IrdaClk}}{F_FDIV + 1}$ This bit frequency should be 8 MHz. In order to receive the minimum pulse width described in the IrDA spec, (F_FDIV + 1) should be larger than or equal to 4. Table 15-56 shows several frequency selection. For more informations about the frequency generation see also Figure 15-19, Section 15.2.14, Codec Clock Register (0x20)—CCR and Section 15.3.4.3, PSC in FIR Mode.
		other Modes—Reserved

Table 15-56. Frequency Selection for FIR Mode

F_FDIV[3:0]	Frequency of IrdaClk [MHz]
0x3	32.0
0x4	40.0
0x5	48.0
0x6	56.0
0x7	64.0
0x8	72.0
0x9	80.0
0xA	88.0

MPC5200B Users Guide, Rev. 1

15.2.28 Rx FIFO Number of Data (0x58)—RFNUM

Table 15-57. RX FIFO Number of DATA (0x58)

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb		
R		Reserved								COUNT[0:8]								
W	-											Reserve	ed					
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bit	Name	Description
0:6	_	Reserved
7:15	COUNT	Number of data bytes in the Rx FIFO.

15.2.29 Tx FIFO Number of Data (0x5C)—TFNUM

Table 15-58. Tx FIFO Number of Data (0x5C)

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb		
R		Reserved								COUNT[0:8]								
W	-											Reserve	ed					
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Bit	Name	Description
0:6	_	Reserved
7:15	COUNT	Number of data bytes in the Tx FIFO.

15.2.30 Rx FIFO Data (0x60)—RFDATA

Read - write register to access the internal RX FIFO Data register. Reads from this register reads out the receive data. In addition the register provides the possibility to fill the RX FIFO for debug issues. For more informations about the data format see Section 15.2.6, Rx Buffer Register (0x0C) - RB.

15.2.31 Rx FIFO Status (0x64)—RFSTAT

For additional informations about the FIFO related status bits see Section 15.2.3, Status Register (0x04) — SR.

NOTE

To make sure that the PSC never lost the data in the FIFO, the PSC controller avoid writing to a full FIFO or reading from an empty FIFO. Therefore the status bits in the FIFO STAT register never reports an ERROR, UF or OF state. The SR register reports these errors.

Table 15-59. Rx FIFO Status (0x64)

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R		Rese	rved		me[3]	me[2]	me[1]	me[0]	Rese rved	Error	UF	OF	FR	FULL	ARM	ИРТY
W	-				Fra	Fra	Fra	Fra							A A	
RESET.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

15-38 Freescale Semiconductor

Bit	Name	Description
0:3	_	Reserved
4:7	Frame[3:0]	Frame indicator. Not applicable to PSC FIFO's, since the PSCs do not recognize frame formats in the serial data stream.
8	_	Reserved
9	Error	FIFO error. A FIFO error has occurred due to either underflow, overflow, or read or write pointer out of bounds. This bit is cleared by writing a '1' to it.
10	UF	Underflow. The read pointer has surpassed the write pointer due to the FIFO having been read when it contained no data. This bit is cleared by writing a '1' to it.
11	OF	Overflow. The write pointer has surpassed the read pointer due to the FIFO having been written when it was already completely full of data. This bit is cleared by writing a '1' to it.
12	FR	Frame ready. Not applicable to PSC FIFO's, since the PSCs do not recognize frame formats in the serial data stream.
13	FULL	Full. The FIFO is completely full of data.
14	ALARM	The FIFO is requesting service from either BestComm or CPU. See Section 15.2.33, Rx FIFO Alarm (0x6E)—RFALARM for a detailed description.
15	EMPTY	FIFO Empty. The FIFO is completely empty.

15.2.32 Rx FIFO Control (0x68)—RFCNTL

Table 15-60. Rx FIFO Control (0x68)

	msb 0	1	2	3	4	5	6	7 lsb				
R	Reser	ved	WFR	COMP	FRAME	GR[2:0]						
W												
RESET:	0	0	0	0	1	0	0	1				

Bit	Name	Description
0:1	1	Reserved
2	WFR	Write frame. Not applicable to PSC FIFOs, since the PSCs do not recognize frame formats in the serial data stream.
3	COMP	Re-enable requests on frame transmission completion. Not applicable to PSC FIFOs, since the PSCs do not recognize frame formats in the serial data stream.
4	FRAME	Frame mode enable. THIS BIT MUST BE CLEARED BY WRITING A '0' TO IT, since the PSCs do not recognize frame formats in the serial data stream.
5:7	GR[2:0]	Last transfer granularity. Amount of data remaining in the Rx FIFO at which the ALARM bit in the status register will go low/inactive. See Section 15.4, PSC FIFO System for details.

15.2.33 Rx FIFO Alarm (0x6E)—RFALARM

Table 15-61. Rx FIFO Alarm (0x6E)

		msb u	1	2	3	4	5	О	/	0	9	10	11	12	13	14	15 150	
	R		Reser	ved			ALARM											
Ī	W																	
_	RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

MPC5200B Users Guide, Rev. 1

PSC Registers—MBAR + 0x2000, 0x2200, 0x2400, 0x2600, 0x2800, 0x2C00

Bit	Name	Description
0:3	_	Reserved
4:15	ALARM	"Almost full" threshold level. Amount of empty space remaining in the Rx FIFO at which the ALARM bit in the status register goes high/active. See Section 15.4, PSC FIFO System for details.

15.2.34 Rx FIFO Read Pointer (0x72)—RFRPTR

Table 15-62. Rx FIFO Read Pointer (0x72)

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R		Reser	ved							F	R_PTR					
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:3	_	Reserved
4:15	R_PTR	Read pointer. This FIFO-maintained pointer points to the next FIFO location to be read.

15.2.35 Rx FIFO Write Pointer(0x76)—RFWPTR

Table 15-63. Rx FIFO Write Pointer (0x76)

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R		Reser	ved		W_PTR											
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:3	_	Reserved
4:15	W_PTR	Write pointer. This FIFO-maintained pointer points to the next FIFO location to be written to.

15.2.36 Rx FIFO Last Read Frame (0x7A)—RFLRFPTR

Table 15-64. Rx FIFO Last Read Frame (0x7A)

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R		Rese	rved			LFP										
W																
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:3	1	Reserved
4:15	LFP	Last Frame Pointer. Not applicable to PSC FIFOs, since the PSCs do not recognize frame formats in the serial data stream.

15-40 Freescale Semiconductor

15.2.37 Rx FIFO Last Write Frame PTR (0x7C)—RFLWFPTR

Table 15-65. Rx FIFO Last Write Frame PTR (0x7C)

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R		Reser	ved								LFP					
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:3	_	Reserved
4:15	LFP	Last Frame Pointer. Not applicable to PSC FIFOs, since the PSCs do not recognize frame formats in the serial data stream.

15.2.38 Tx FIFO Data (0x80)—TFDATA

Read - write register to access the internal TX FIFO Data register. Write to this register write data to the transmit FIFO. Additional the register provide the possibility to read data back from the TX FIFO for debug issues. For more informations about the data format see Section 15.2.7, *Tx Buffer Register (0x0C)—TB*.

15.2.39 Tx FIFO Status (0x84)—TFSTAT

For additional informations about the FIFO related status bits see Section 15.2.3, Status Register (0x04) — SR.

NOTE

To make sure that the PSC never lost the data in the FIFO, the PSC controller avoid writing to a full FIFO or reading from an empty FIFO. Therefore the status bits in the FIFO STAT register never reports an ERROR, UF or OF state. The SR register reports these errors.

Table 15-66. Tx FIFO STAT (0x84)

Bit	Name	Description
0:3	_	Reserved
4:7	Frame[3:0]	Frame indicator. Not applicable to PSC FIFOs, since the PSCs do not recognize frame formats in the serial data stream.
8	_	Reserved
9	Error	FIFO error. A FIFO error has occurred due to either underflow, overflow, or read or write pointer out of bounds. This bit is cleared by writing 1 to it.
10	UF	Underflow. The read pointer has surpassed the write pointer due to the FIFO having been read when it contained no data. This bit is cleared by writing 1 to it.
11	OF	Overflow. The write pointer has surpassed the read pointer due to the FIFO having been written when it was already completely full of data. This bit is cleared by writing 1 to it.
12	FR	Frame ready. Not applicable to PSC FIFOs, since the PSCs do not recognize frame formats in the serial data stream.
13	FULL	Full. The FIFO is completely full of data.

Freescale Semiconductor 15-41

MPC5200B Users Guide, Rev. 1

Bit	Name	Description
14		The FIFO is requesting service from either BestComm or CPU. See Section 15.4, <i>PSC FIFO System</i> for a detailed description.
15	EMPTY	FIFO Empty. The FIFO is completely empty.

15.2.40 Tx FIFO Control (0x88)—TFCNTL

Table 15-67. Tx FIFO Control (0x88)

	msb 0	1	2	3	4	5	6	7 Isb
R	Reserv	ed	WFR	COMP	FRAME		GR[2:0]	
W								
RESET:	0	0	0	0	1	0	0	1

Bit	Name	Description
0:1	_	Reserved
2	WFR	Write frame. Not applicable for PSC FIFOs, since the PSCs do not recognize frame formats in the serial data stream.
3	COMP	Re-enable requests on frame transmission completion. Not applicable to PSC FIFO's, since the PSCs do not recognize frame formats in the serial data stream.
4	FRAME	Frame mode enable. THIS BIT MUST BE CLEARED BY WRITING A '0' TO IT, since the PSCs do not recognize frame formats in the serial data stream.
5:7	GR[2:0]	Last transfer granularity. Four times this value is the amount of data remaining in the FIFO at which the ALARM bit in the status register will go low/inactive. See Section 15.4, PSC FIFO System for details.

15.2.41 Tx FIFO Alarm (0x8E)—TFALARM

Table 15-68. Tx FIFO Alarm (0x8E)

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R		Reser	ved							А	LARM					
W																
RESET:	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1

Bit	Name	Description
0:3	_	Reserved
4:15		"Almost empty" threshold level. Amount of data remaining in the Tx FIFO at which the ALARM bit in the status register goes high/active. See Section 15.4, PSC FIFO System for details

15.2.42 Tx FIFO Read Pointer (0x92)—TFRPTR

Table 15-69. Tx FIFO Read Pointer (0x92)

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R		Reser	ved							R	_PTR					
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

Bit	Name	Description
0:3	_	Reserved
4:15	R_PTR	Read pointer. This FIFO-maintained pointer points to the next FIFO location to be read

15.2.43 Tx FIFO Write Pointer (0x96)—TFWPTR

Table 15-70. Tx FIFO Write Pointer (0x96)

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R		Reser	ved							V	/_PTR					
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

В	Bit	Name	Description
0:	:3	_	Reserved
4:	15	W_PTR	Write pointer. This FIFO-maintained pointer points to the next FIFO location to be written to

15.2.44 Tx FIFO Last Read Frame (0x9A)—TFLRFPTR

Table 15-71. Tx FIFO Last Read Frame PTR (0x9A)

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R		Reser	ved								LFP					
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:3	_	Reserved
4:15	LFP	Last Frame Pointer. Not applicable to PSC FIFOs, since the PSCs do not recognize frame formats in the serial data stream

15.2.45 Tx FIFO Last Write Frame PTR (0x9C)—TFLWFPTR

Table 15-72. Tx FIFO Last Write Frame PTR(0x9C)

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15 lsb
R		Rese	rved								LFP					
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:3		Reserved
4:15	LFP	Last Frame Pointer. Not applicable to PSC FIFOs, since the PSCs do not recognize frame formats in the serial data stream

15.3 PSC Operation Modes

This section describes the different PSC operation modes including the pin muxing, the module configuration, signal definition and some programming examples. All PSC are independent and can be used at the same time in different modes. But not all PSCs support all modes, Table 15-73 shows an overview.

Table 15-73. PSC Modes Overview

	PSC1	PSC2	PSC3	PSC4	PSC5	PSC6
UART	yes	yes	yes	yes	yes	yes
Modem / SPI / I2S	yes	yes	yes	no	no	yes
Mclk Generation	yes	yes	yes	no	no	no
AC97	yes	yes	no	no	no	no
IRDA	no	no	no	no	no	yes
"Cell Phone"	master	slave	slave	no	no	slave

In this section the following abbreviations will used as:

Table 15-74. Clock Short Cuts

Short Cut	Description				
f _{system}	Clock from the system PLL				
Mclk	Clock from the Mclk divider, used as clock input for internal clock generation or as clock output to an external device. Before modify the counter value the Mclk divider must be disable. See Section 5.5.11, PSC1 Mclock Config Register—MBAR + $0x0228$ to Section 5.5.14, PSC6 (IrDA) Mclock Config Register—MBAR + $0x0234$. $Mclk = \frac{f_{system}}{MclkDiv[8:0] + 1}$				
IP bus Clock	Intellectual Property Clock for the internal IP bus system, 33, 66 or 132 MHz, see Section 5.5, CDM Registers				

15.3.1 PSC in UART Mode

Select the UART mode by writing the corresponding value to the PSC Control (SICR) register. The PSC UART mode is the default mode after reset. The important registers to configure the PSC for UART mode are:

- SICR register select the UART mode
- CSR register select the clock source
- CTUR, CTLR register select the Baud rate
- MR1 register select the UART mode (parity mode, bits per character)
- MR2 register select RTS and CTS control, Stop Bit Length
- RFALARM, TFALARM select the FIFO "Alarm" level
- CR register enable or disable receiver and transmitter
- Port config select the right Pin-Muxing, see Chapter 2, Signal Descriptions

15.3.1.1 Block Diagram and Signal Definition for UART Mode

The Figure 1-1 shows the simplified Block Diagram of the PSC for UART mode.

15-44 Freescale Semiconductor

Figure 1-1PSC UART Block Diagram

An internal interrupt request signal (\overline{IRQ}) is provided to notify the Interrupt Controller of an interrupt condition. The output is the logical NOR of unmasked ISR bits. The interrupt level of a PSC module is programmed in the Interrupt Controller in the system integration module: Chapter 7, System Integration Unit (SIU). The PSC uses the autovector for the programmed interrupt level.

The PSC can automatically transfer data using the BestComm, rather than interrupting the core. When IMR[FFULL] is 1 and Rx FIFO is full, it can send an interrupt to a BestComm channel so the FIFO data can be transferred to memory.

Table 15-75 briefly describes the PSC module signals.

NOTE

The terms "assertion" and "negation" are used to avoid confusion between active-low and active-high signals.

- Asserted indicates a signal is active, independent of the voltage level
- Negated indicates a signal is inactive.

Table 15-75. PSC Signal Description for UART Mode

Signal	Description
TxD	Transmitter Serial Data Output—TxD is held high (mark condition) when Tx is disabled, idle, or operating in the local loop-back mode. Data is shifted out on TxD on the falling edge of the clock source, with the least significant bit (lsb) sent first.
RxD	Receiver Serial Data Input—Data received on RxD is sampled on the rising edge of the clock source, with the lsb received first.
CTS	Clear-to-Send—This input can generate an interrupt on a change of state.
RTS	Request-to-Send—This output can be programmed to be negated or asserted automatically by either Rx or Tx. When connected to a transmitter CTS, RTS can control serial data flow.
DCD	Data carrier detect Input — In the enhanced UART mode this signal must be assert during the data transmission.

Figure 15-2. Signal configuration for a PSC/RS-232 interface

15.3.1.2 UART Clock Generation

IPB clock serves as the basic timing reference for the clock source generator logic, which consists of a Clock Generator and a programmable 16-bit divider dedicated to the PSC and a fix prescaler. The IPB clock passes through the prescaler (divide by 32 or 4) and then through 16-bit divider of the concatenated CTUR and CTLR registers. See also Figure 15-3. Using a 66 MHz IPB clock and the 32 prescaler, the Baud-rate calculation is as follows:

Let Baud rate = 9600, the divider can be calculated as follows:

Divider =
$$\frac{66 \text{ MHz}}{32 \times 9600}$$
 = 215(decimal) = 0x00D7

Therefore CTUR = 0x00 and CTLR = 0xD7.

Figure 15-3. Clocking Source Diagram

15.3.1.3 Transmitting in UART Mode

After a hardware reset all PSC are in UART mode. The transmitter is enabled through the PSC command register (CR). When it is ready to accept a character, the PSC sets SR[TxRDY]. The transmitter converts parallel data from the CPU to a serial bit-stream on TxD. It automatically sends a start bit followed by:

- the programmed number of data bits
- an optional parity bit
- the programmed number of stop bits

The lsb is sent first. Data is shifted from the Tx output on the falling edge of the clock source.

15-46 Freescale Semiconductor

15-47

After the stop bits are sent, if no new character is in the Tx holding register, the TxD output remains high (mark condition) and the Tx empty bit, SR[TxEMP], is set. Transmission resumes and TxEMP is cleared when the CPU loads a new character into the PSC Tx buffer (TB).

- · If the transmitter receives a disable command, it continues until any character in the Tx shift register is completely sent.
- If the transmitter is reset through a software command, operation stops immediately.
- If the clear-to-send operation is enabled, TTS must be asserted for the character to be transmitted.
- If $\overline{\text{CTS}}$ is negated in the middle of a transmission, the character in the shift register is sent and TxD remains in mark state until $\overline{\text{CTS}}$ is reasserted.
- If the transmitter is forced to send a continuous low condition by issuing a send break command, the transmitter ignores the state of CTS.
- If the transmitter is programmed to automatically negate \overline{RTS} when a message transmission completes, \overline{RTS} must be asserted manually before a message is sent.

In applications in which the transmitter is disabled after transmission is complete and \overline{RTS} is appropriately programmed, \overline{RTS} is negated one bit-time after the character in the shift register is completely transmitted. The transmitter must be manually re-enabled by reasserting \overline{RTS} before the next message is to be sent.

Figure 15-4 shows the transmitter functional timing information.

NOTE:

Freescale Semiconductor

- 1. Cn = transmit characters
- 2. W = write
- 3. MR2[TxCTS] = 1
- 4. MR2[TxRTS] = 1

Figure 15-4. Timing Diagram—Transmitter

15.3.1.4 Receiving in UART Mode

After a hardware reset, all PSCs are in UART mode. The receiver is enabled through its CR, as described in Section 15.2.5, *Command Register* (0x08)—CR. Figure 15-5 shows the receiver functional timing.

Figure 15-5. Timing Diagram—Receiver

When the receiver detects a high-to-low (mark-to-space) transition of the start bit on RxD, the state of RxD is sampled. It samples each 16× clock for eight clocks, starting one-half clock after the transition (asynchronous operation) or at the next rising edge of the bit-time clock (synchronous operation).

- If RxD is sampled high, start bit is invalid; a valid start bit search begins again.
- If RxD is still low, a valid start bit is assumed and receiver continues sampling input at 1-bit time intervals at the theoretical center of the bit. This continues until the proper number of data bits and parity, if any, is assembled and 1 stop bit is detected.

RxD input data is sampled on the rising edge of the programmed clock source. The lsb is received first. Data is then transferred to a receiver holding register and SR[RxRDY] is set. If the character is less than 8 bits, the most significant unused bits in the receiver holding register are cleared.

If the MR2[TxRTS] bit was set to one then the user must control the \overline{RTS} line by writing to the output port register. For all user generated commands to the UART receiver, like enable RX, disable RX or set break, the user must set the associated \overline{RTS} signal by writing the OP0 or OP1 register. But the UART receiver automatically deasserts the \overline{RTS} signal if the number of received data words reached the FIFO alarm level and deasserts the \overline{RTS} line if the number of words in the FIFO falls under the granularity level.

After the stop bit is detected, the receiver immediately looks for the next start bit.

- If a non-zero character is received without a stop bit (framing error) and RxD remains low for one-half of bit period after stop bit is sampled, the receiver operates as if a new start bit were detected. Parity error (PE), framing error (FE), overrun error (ORERR), and received break (RB) conditions set respective error and break flags in SR at the received character boundary and are valid only if SR[RxRDY] is set.
- If a break condition is detected (RxD is low for the entire character including the stop bit), a character of all 0s is loaded into the Receiver Shift Register and SR[RB,RxRDY] are set. RxD must return to a high condition for at least one-half bit-time before a search for the next start bit begins.

The receiver will detect the beginning of a break in the middle of a character, if the break persists through the next character time.

- If the break begins in the middle of a character, the receiver places the damaged character in the Rx FIFO stack and sets the corresponding SR error bits and SR[RxRDY].
- If the break lasts until the next character time, the receiver places an all-0 character into the Rx FIFO and sets SR[RB,RxRDY].

15.3.1.5 Configuration Sequence for UART Mode

Table 15-76 shows the configuration sequences. This list includes the UART mode related registers only, not the other configure values like interrupt and FIFO configurations. PSC module registers can be accessed by word or byte operations.

15-48 Freescale Semiconductor

Table 15-76. General Configuration Sequence for UART mode

Register	Value	Setting
CR	0x0A	Disable the Tx and Rx part for configuration if the PSC was enabled by the work before.
CSR	0xdd00	select the clock source
SICR	0x00000000 or 0x08000000	Select the UART mode
MR1	0xXX	Select Error Mode, Parity Mode and the Parity Type
MR2	0xXX	Select Channel Mode, Port Control and Stop-Bit Length
CTUR	0x00	set the Baud rate to 9600 with IPB clock frequency 66 MHz
CTLR	0xD7	
RFALARM	0x0XXX	Choose Rx FIFO "almost full" threshold level.
TFALARM	0x0XXX	Choose Tx FIFO "almost empty" threshold level.
IMR	0xXXXX	select the desired interrupt
Port_Config	0x0000005	Select the Pin-Muxing for UART mode for PSC1, see Chapter 2, Signal Descriptions
CR	0x05	Enable Tx and Rx

15.3.2 PSC in Codec Mode

After reset all PSCs are in UART mode. PSC1,2,3 and 6 can be put to one of the Codec modes by writing the appropriate value to the SICR register. The other values should be initialized at the same time. During Codec mode the PSC can connect to Codec interfaces with 8, 16, 24 or 32 bit data. For all these modes the PSC can be programmed to behave as a "normal soft modem" interface, SPI, ESAI or I2S interface. The PSC Codec supports for all these modes the master mode (PSC drive the BitClk and FrameSync signal) or slave mode (PSC receive the BitClk and FrameSync signals) functionality. Independently from the mode (master or slave) the PSC can provide an Mclk (master clock) for an external Codec device. This behavior eliminates the need for an external crystal for the external Codec device. Figure 15-6 shows a simplified block Diagram for the PSC Codec mode. The Chapter 2, Signal Descriptions shows only the PSC signal names for the "normal" Codec mode. Table 15-77 shows the signal assignment for all PSC Code modes.

Table 15-77. Signal Definition for all Codec Modes

Mode		Signal		
"normal" Codec ESAI	TXD	RXD	CLK	FrameSync
I2S	SDATA_out	SDATA_in	SCK	LRCK
SPI Master	MOSI	MISO	SCK	SS
SPI Slave	MISO	MOSI	SCK	SS

The important register to configure the PSC for Codec mode are:

- SICR register select the Codec mode
- for master mode:
 - cdm_pscX_bitclk_config select Mclk frequency, see Section 5.5.11, PSC1 Mclock Config Register—MBAR + 0x0228
 - cdm clock enable register-enable Mclk, see Section 5.5.6, CDM Clock Enable Register—MBAR + 0x0214
 - CCR- select BitClk and FrameSync Frequency
 - CTUR select FrameSync width
- RFALARM, TFALARM select the FIFO "Alarm" level
- CR register enable or disable receiver and transmitter
- Port_config select the right Pin-Muxing, Chapter 2, Signal Descriptions

MPC5200B Users Guide, Rev. 1

15.3.2.1 Block Diagram and Signal Definition for Codec Mode

Figure 15-6. PSC Codec Block Diagram

NOTE

Here is important difference between PSC6 and the other PSCs. To work with PSC6 in slave mode (CODEC slave, SPI slave), the ext_48MHz_en bit in the

cdm_48mhz_fractional_divider_configuration register must be set to one. If this bit was set to zero then the internal 48 Mhz clock generator drive the clock line. For more informations see Section 5.5.5, CDM 48MHz Fractional Divider Configuration Register—MBAR + 0x0210.

Figure 15-7. PSC Codec Interface in Slave Mode

15-50 Freescale Semiconductor

Table 15-78. PSC Signal Description for Codec Mode

Signal	Description
TxD	Transmitter Serial Data Output—Data is shifted out on TxD on the falling or rising edge of the clock source. Transfers can be specified as either lsb or msb first. TxD is held low when Tx is disabled or idle.
	- data shifted out on the rising edge of CLK if SICR[ClkPol] = 0
	- data shifted out on the falling edge of CLK if SICR[ClkPol] = 1
	and
	- data send msb first if SICR[SHDIR] = 0
	- data send lsb first if SICR[SHDIR] = 1
RxD	Receiver Serial Data Input—Data received on RxD is sampled on the falling or rising edge of the clock signal. Transfers can be specified as either lsb or msb first.
	- data sampled on the rising edge of CLK if SICR[ClkPol] = 1
	- data sampled on the falling edge of CLK if SICR[ClkPol] = 0
	and
	- data sampled msb first if SICR[SHDIR] = 0
	- data sampled lsb first if SICR[SHDIR] = 1
Frame	Frame Sync—In Codec mode Frame can be driven from an external Codec or can be generate by the internal clock logic. Frame can be programmed as active High or active Low.
	- the frame sync input from the external Codec if SICR[GenClk] = 0
	- the frame sync output to the external Codec if SICR[GenClk] = 1
	and
	- frame sync is active low if SICR[SyncPol] = 0
	- frame sync is active high if SICR[SyncPol] = 1
CLK	Bit Clock— In Codec mode CLK is:
	 - the clock input from the external Codec if SICR[GenClk] = 0
	 the clock output to the external Codec if SICR[GenClk] = 1
Mclk	Clock output for an external Codec

15.3.2.2 Codec Clock and FrameSync Generation

The serial BitClk and the FrameSync can either be inputs that come from an external Codec device, or they can be internally generated by the PSC and provided as outputs to the external device, under control of bit SICR[GenClk]. When the bit SICR[GenClk] is set to zero then the BitClk and the FrameSync are inputs. In this case the FrameSync width can be anything from one BitClk period up to the total FrameSync length/period minus one BitClk. If the GenClk bit set to one, then the MPC5200 PSC generate the BitClk and the FrameSync signal. Figure 15-8 shows how the PSC generate the clocks.

Figure 15-8. Clock Generation Diagram for Codec Mode

MPC5200B Users Guide, Rev. 1

PSC Operation Modes

The source for the internal clock generation is the MclkDiv clock divider in CDM module. The CDM provides for each Codec PSC (1, 2, 3 and 6) a separate Mclk and MclkDiv clock divider. For more information about the f_{system} clock see also Section 5.5.11, *PSC1 Mclock Config Register—MBAR* + 0x0228. The PSC provides the clock to the external Codec divided independently whether the PSC configured as a master (provide BitClk and FrameSync) or as a slave (receive the clock signals). These dividers generate the Mclks by dividing the f_{system} clock as follows:

$$Mclk = \frac{f_{system}}{MclkDiv [8:0] + 1}$$

Each PSC consists of an CCR register to generate a BitClk and a FrameSync signal. If the PSC is configured as a master and all necessary register (cdm_pscX_bitclk_config and CCR) are set to the right value the PSC generate both clock signals independent if the transmitter or receiver is enabled or not. As opposed to the SPI behavior. The equations below shows the calculation:

$$BitClk = \frac{Mclk}{CCR[8:15] + 1}$$

Frame =
$$\frac{\text{BitClk}}{\text{CCR}[0:7] + 1}$$

When the FrameSync is an output the pulse width can programmed by the register CTUR. This register defines the number of BitClk cycle during the FrameSync signal is active. The default reset value for this register is 0x00 therefore the default FrameSync width is one BitClk. See the calculation below:

Frame sync width =
$$CTUR[0:7] + 1$$

15.3.2.3 Transmitting and Receiving in "Soft Modem" Codec Mode

The PSC supports the full duplex "soft modem" mode, data will be received and transmitted at the same time. To start the full duplex transmission, the Tx and the Rx must be enable by writing the according value to the CR register. Also it's possible to use only the receiver. For this case only the Rx enable bit in the CR register must be set to one. But it's **not** possible to use the transmitter without the receiver. To transmit data only, also the receiver must be enabled. The received data and the according status and interrupt bits can be ignored.

If the receiver is enabled, the PSC samples data from the receive line after detecting the start of frame condition. The receiver converts the serial data from the RX line to parallel data words and write the data to the RxFIFO. The data word length is depend on the programmed word length. If are no data on the Rx line the receiver writes zeros to the RxFIFO until the data word width was reached. The receiver waits until the next start of frame condition was detected. The transmitter converts the parallel data from the TxFIFO to a serial data stream on the TX line. If the TxFIFO is empty during the transmit state, the Tx line will be zero. If the last bit of the data word was send then the transmitter waits until the next start of frame condition was detected.

When SICR[GenClk] = 1 then the PSC is in master mode and generate the BitClk and the FrameSync signal from the internal clock system, like described in Section 15.3.2.2, Codec Clock and FrameSync Generation.

Figure 15-9 shows a Codec interface diagram example for "Soft Modem" master mode. The different parameter to define the interface are follows:

- Frame Sync Polarity SICR[SyncPol], the leading edge is defined as a rising edge if bit SICR[SyncPol] = 1, or a falling edge if SICR[SyncPol] = 0
- BitClk Polarity SICR[ClkcPol], when bit SICR[ClkPol] = 0 data is shifted out on the rising edge of bit clock and sampled on the falling edge of BitClk otherwise data is shifted out on the falling edge and sampled on rising edge of bit clock
- FrameSync width CTUR, define the number of BitClk during the FrameSync is active
- FrameSync length CCR[FrameSyncDiv], define the number of BitClk until the next frame starts
- Data length SICR[SIM], define the data with of the receive and transmit data, 8, 16,24 or 32 bit per word are possible, in Codec 24 mode each 24-bit data sample uses an entire 32-bit longword in the Tx FIFO. The least significant (right-hand) byte is not used, data should be written to the Tx FIFO four bytes at a time.
- Delay of time slot 1 SICR[DTS1], the PSC starts to send a sample at either the leading edge of FrameSync SICR[DTS1] = 0, or 1 bit-clock cycle after the leading edge of FrameSync SICR[DTS1] = 1

MPC5200B Users Guide, Rev. 1

15-52 Freescale Semiconductor

 Data shift direction SICR[SHDIR], data shifted out LSB first if SICR[SHDIR] = 1 otherwise data shifted out MSB first if SICR[SHDIR] = 0

In the Codec "Soft Modem" mode the PSC send only one data word per frame.

Figure 15-9. "Soft Modem" Codec interface diagram

Table 15-79 shows an example how to configure the PSC1 as:

- · PSC in Slave mode
- 16 bit "soft Modem" mode
- Data are sampled on the falling edge of BitClk
- FrameSync is low true
- MSB first, transfer starts with leading edge of FrameSync
- set the TFALARM level to 0x010, alarm occurs if 16 byte are in the TxFIFO
- set the RFALARM level to 0x00C, alarm occurs if 12 byte space in the RxFIFO
- enable TxRDY interrupt

Table 15-79. 16-Bit "soft Modem"Slave Mode

Register	Value	Setting
CR	0x0A	Disable the Tx and Rx part for configuration if the PSC was enabled by the work before.
SICR	0x02100000	Select the 16 bit Codec mode, msb first, DTS1 = 0, slave mode
RFALARM	0x000C	set the RFALARM level to 0x00C
TFALARM	0x0010	set the TFALARM level to 0x010
IMR	0x0100	enable TxRDY interrupt
Port_Config	0x00000006	Select the Pin-Muxing for PSC1 Codec mode, see Chapter 2, Signal Descriptions
CR	0x05	Enable Tx and Rx

Table 15-80 shows an example how to configure the PSC2 as:

- PSC in Master mode
- 32bit "soft Modem" mode
- Data are sampled on the rising edge of BitClk

PSC Operation Modes

- FrameSync is low true
- lsb first, transfer starts one cycle after the leading edge of FrameSync
- set Mclk frequency to 33MHz
- set Bitclk frequency to 250 KHz
- FrameSync every 35 BitClk
- set FrameSync width to 3 BitClk
- set the TFALARM level to 0x010, alarm occurs if 16 byte are in the TxFIFO
- set the RFALARM level to 0x00C, alarm occurs if 12 byte space in the RxFIFO
- enable TxRDY interrupt

Table 15-80. 32-Bit "Soft Modem" Master Mode

Register	Value	Setting
CR	0x0A	Disable the Tx and Rx part for configuration if the PSC was enabled by the work before.
SICR	0x3FA00000	Select the 32bit Codec mode, lsb first, DTS1 = 1, master mode
cdm_psc2_bitclk_config	0x800F	divide the f _{system} clock frequency from 528 to 33MHz Mclk, see Section 5.5.12, <i>PSC2 Mclock Config Register—MBAR + 0x022C</i>
cdm_clock_enable_register	0x00000040	enable Mclk, see Section 5.5.6, CDM Clock Enable Register—MBAR + 0x0214
CCR	0x22830000	select the BitClk and FrameSync frequency
CTUR	0x02	select the FrameSync width
RFALARM	0x000C	set the RFALARM level to 0x00C
TFALARM	0x0010	set the TFALARM level to 0x010
IMR 0x0100		enable TxRDY interrupt
Port_Config	0x00000070	Select the Pin-Muxing for PSC2 Codec mode, Mclk output enabled, see Chapter 2, Signal Descriptions
CR	0x05	Enable Tx and Rx

15.3.2.4 Transmitting and Receiving in ESAI Mode (Enhanced Serial Audio Interface)

The ESAI transmission is similar to the "Soft Modem" mode. Therefore the configuration is the same like described in Section 15.3.2.3, *Transmitting and Receiving in "Soft Modem" Codec Mode.* The different is, that the ESAI protocol allow to transmit and receive more than one data word per frame. To enable the ESAI mode the SICR[ESAI] bit must be set. The PSC calculate how many data words the transmitter will send and how many data the receiver will expect. Figure 15-10 shows the ESAI transmission diagram.

15-54 Freescale Semiconductor

15-55

start of Frame

Figure 15-10. ESAI Data Transmission

Table 15-80 shows an example how to configure the PSC1 as ESAI master. For the slave mode the bit SICR[GenClk] must be cleared and the configuration of the CCR register can be ignored. In this configuration example the PSC will send 3 data words with 16 bit data in the 52 BitClk frame length. The last four bits in the frame will be empty (zero).

- use PSC1 as ESAI master
- 16bit data, LSB first
- BitClk frequency 4 MHz
- FrameSync length 52 bit
- data shifted out on the rising edge of BitClk
- data transfer starts on FrameSync is active
- FrameSync is active high
- set the TFALARM level to 0x010, alarm occurs if 16 byte are in the TxFIFO
- set the RFALARM level to 0x00C, alarm occurs if 12 byte space in the RxFIFO
- enable TxRDY interrupt

Table 15-81. 16-bit ESAI Master Mode for PSC1

Register	Value	Setting
CR	0x0A	Disable the Tx and Rx part for configuration if the PSC was enabled by the work before.
SICR	0x12D20000	Select the 16bit Codec ESAI master mode, LSB first, DTS1=0
cdm_psc1_bitclk_config	0x8020	divide the f _{system} clock frequency from 528 to 16 MHz Mclk, see Section 5.5.11, <i>PSC1 Mclock Config Register—MBAR</i> + 0x0228
cdm_clock_enable_register	0x00000020	enable McIk, see Section 5.5.6, <i>CDM Clock Enable Register—MBAR</i> + 0x0214
CCR	0x33030000	set the FrameSync length (52 bit) and SCKL frequency
RFALARM	0x000C	set the RFALARM level to 0x00C
TFALARM	0x0010	set the TFALARM level to 0x010
IMR	0x0100	enable TxRDY interrupt
Port_Config	0x00000006	Select the Pin-Muxing for PSC1 Codec mode, see Chapter 2, Signal Descriptions
CR	0x05	Enable Tx and Rx

15.3.2.5 Transmitting and Receiving in "Cell Phone" Mode

The transmission protocol for the "Cell Phone" mode is the same like in the "Soft Modem" mode. The PSC use the configure and clock generation registers is the same as described in the section before, see Section 15.3.2.3, *Transmitting and Receiving in "Soft Modem" Codec Mode.* The goal for this mode is, that PSC2, 3 or 6 can generate a BitClk which is synchronous to in the BitClk input on PSC1. Only the internal clock distribution is different to the "Soft Modem" mode. The major deviation is, that the "Cell Phone" slave PSCs use the clock from PSC1 for BitClk and FrameSync generation instead of Mclk from the CDM module.

PSC1 is the only PSC that can work as "Cell Phone" master, PSC2, 3 or 6 are available as "Cell Phone" slave. The "Cell Phone" master PSC must be configured as codec slave, this means that the PSC1 receive the BitClk from the outside. Therefore the SICR[GenClk] bit must be cleared. The "Cell Phone" slave PSCs must be configured as codec master. Therefore the SICR[GenClk] must be set and the FrameSyncDiv and BitClkDiv values in the CCR register must be set to the desired value, like described in Section 15.3.2.2, Codec Clock and FrameSync Generation. To enable the "Cell Phone" slave functionality the SICR[CellSlave] bit must set. If this bit was set the PSCs use the BitClk from PSC1 for the internal clock generation instead of the Mclk. If the SICR[CellSlave] and the SICR[Cell2xClk] bit was set, then the "Cell Phone" salve PSCs use the BitClk from PSC1 multiplied by 2 for the internal clock generation. These facts are described in Figure 15-11

Table 15-82 and Table 15-83 shows an example how to configure the PSC system as follows:

- PSC1 is "Cell Phone" master, PSC2 works as "Cell Phone" slave
- both PSC work with 24bit data
- Data are sampled on the falling edge of BitClk
- FrameSync is high true
- MSB first, transfer starts on the leading edge of FrameSync
- PSC2 us the BitClk from PSC1 multiplied by 2 for clock generation
- FrameSync every 24BitClk, for both PSCs
- set FrameSync width to 1 BitClk
- set the TFALARM level to 0x010, alarm occurs if 16 byte are in the TxFIFO
- set the RFALARM level to 0x00C, alarm occurs if 12 byte space in the RxFIFO
- enable TxRDY interrupt

Figure 15-11. Clock distribution network in cell phone mode

15-56 Freescale Semiconductor

Table 15-82. 24-Bit Cell Phone Master Mode for PSC1

Register	Value	Setting
CR	0x0A	Disable the Tx and Rx part for configuration if the PSC was enabled by the work before.
SICR	0x07100000	Select the 24bit Codec mode, msb first, DTS1 = 0, slave mode
RFALARM	0x000C	set the RFALARM level to 0x00C
TFALARM	0x0010	set the TFALARM level to 0x010
IMR	0x0100	enable TxRDY interrupt
Port_Config	0x00000066	Select the Pin-Muxing for PSC1,PSC2 Codec mode, see Chapter 2, Signal Descriptions
CR	0x05	Enable Tx and Rx

Table 15-83, 24-Bit Cell Phone Slave Mode for PSC2

Register	Value	Setting
CR	0x0A	Disable the Tx and Rx part for configuration if the PSC was enabled by the work before.
SICR	0x07980000	Select the 24bit Codec mode, msb first, DTS1 = 0, master mode, cell phone master
CCR	0x01170000	select the BitClk and Frame frequency
CTUR	0x00	select the FrameSync width, default value
RFALARM	0x000C	set the RFALARM level to 0x00C
TFALARM	0x0010	set the TFALARM level to 0x010
IMR	0x0100	enable TxRDY interrupt
Port_Config	0x00000066	Select the Pin-Muxing for PSC12, PSC2 Codec mode, see Chapter 2, Signal Descriptions
CR	0x05	Enable Tx and Rx

15.3.2.6 Transmitting and Receiving in I2S Master Mode

The next support mode is the I2S mode. The I2S transmission is similar to the "Soft Modem" mode. Therefore the configuration is the same like described in Section 15.3.2.3, *Transmitting and Receiving in "Soft Modem" Codec Mode.* The different is, that during the I2S word transmission the FrameSync signal (LRCK) is stable for the complete data word and is the opposite for the next one. To enable the I2S mode the SICR[I2S] bit must be set. The SICR[SyncPol] bit define if the frame starts with a low LRCK signal or with a high LRCK signal. If the transmitter detect the start condition he starts to send the data from the TxFIFO. If the receiver detects an start condition, he starts to write the data from the RX line to the RxFIFO. The FIFO doesn't provide the ability to mark the data in the FIFO, therefore only the order in the FIFO define if the data was receive/transmit during high or low phase of the LRCK. Figure 15-12 shows the I2S transmission diagram.

Figure 15-12. I2S-Data Transmission

Table 15-84 shows an example how to configure the PSC1 as I2S master. For the slave mode the bit SICR[GenClk] must be cleared and the configuration of the CCR register can be ignored.

- use PSC1 as I2S master
- 32bit data, MSB first
- SCLK frequency 1 MHz
- FrameSync width 40 bit
- data shifted out on the falling edge of SCLK
- data transfer starts one CLK cycle after the FrameSync is active
- Frame starts with LRCK low
- set the TFALARM level to 0x010, alarm occurs if 16 byte are in the TxFIFO
- set the RFALARM level to 0x00C, alarm occurs if 12 byte space in the RxFIFO
- enable TxRDY interrupt

Table 15-84. 32-bit I2S Master Mode for PSC1

Register	Value	Setting
CR	0x0A	Disable the Tx and Rx part for configuration if the PSC was enabled by the work before.
SICR	0x2FE00000	Select the 32bit Codec I2S master mode, msb first, DTS1 =1
cdm_psc1_bitclk_config	0x8020	divide the f _{system} clock frequency from 528 to 16 MHz Mclk, see Section 5.5.11, <i>PSC1 Mclock Config Register—MBAR</i> + 0x0228
cdm_clock_enable_register	0x00000020	enable McIk, see Section 5.5.6, CDM Clock Enable Register—MBAR + 0x0214
CCR	0x270F0000	set the FrameSync width (40 bit) and SCKL frequency
RFALARM	0x000C	set the RFALARM level to 0x00C
TFALARM	0x0010	set the TFALARM level to 0x010
IMR	0x0100	enable TxRDY interrupt
Port_Config	0x00000006	Select the Pin-Muxing for PSC1 Codec mode, see Chapter 2, Signal Descriptions
CR	0x05	Enable Tx and Rx

MPC5200B Users Guide, Rev. 1

15-58 Freescale Semiconductor

15.3.2.7 Transmitting and Receiving in SPI Mode

An other available Codec mode is the SPI mode. The PSC support a full duplex SPI interface. This mode is chosen by setting SICR[SPI] = 1, which must be true in order for the MSTR, CPOL, CPHA and UseEOF bits in the SICR register to take effect. In SPI mode, the SICR[SIM] bits must also be set to select the data width. To configure the PSC to act like an SPI master set SICR[MSTR] = 1, or set SICR[MSTR] = 0 to configure the PSC as an SPI slave. When SICR[MSTR] bit was set then SICR[GenClk] must also be set to 1 since the PSC is driving the SPI clock line. When SICR[MSTR] = 0 then SICR[GenClk] must be set to 0 since the external SPI is driving the SCK clock line. The CPOL and CPHA bits in the SICR register operate exactly the same way as they do in an SPI, and their values must be the same as the CPOL and CPHA bits in the SPI device that is communicating with the PSC. The SICR[UseEOF] bit has an effect only when SICR[MSTR] = 1 for master mode. If the UseEOF bit is cleared then only one data word (8, 16, 24 or 32 bit width depend on the SICR[SIM] filed) will be send before Slave Select (\overline{SS}) goes high/inactive. When SICR[UseEOF] = 1then the number of bytes transferred prior to \overline{SS} going high is controlled by the BestComm task that fills the Tx FIFO. By using the "tfdOnExit" keyword in the for-loop that fills the Tx FIFO, the last byte written into the Tx FIFO by the for-loop is marked with an EOF flag. As the PSC reads bytes out of the Tx FIFO it will hold \overline{SS} low/active until it transmits a byte whose EOF flag is set. In this mode there is virtually no limit on how many bytes can be sent in one SPI transfer.

To mark a data word with the EOF flag during a IPB transfer set the Bit IRCR2[NXTEOF] before writing the last data word to the TX FIFO. This bit will be cleared after the next write access to the TX FIFO.

The SICR[SHDIR] bit controls the shift direction in SPI mode, just as it does in the non-SPI Codec modes. The DTS1, MultiWd, ClkPol, SyncPol, CellSlave and Cell2xClk bits in the SICR register have no effect in SPI mode.

In SPI master mode the BitClk (SCK) frequency is generated by dividing down the Mclk frequency, see Section 15.3.2.2, Codec Clock and FrameSync Generation. Additional to the BitClk generation the DSCLK delay and the DTL delay must be defined. The DSCLK defines the delay between the \overline{SS} going active and the first BitClk (SCK) clock pulse transition. The DSCLK delay is created by dividing down the Mclk frequency. The delay between consecutive transfers is created by dividing down the IPB clock frequency. For more informations about the delay generation see also the description of the CTUR, CTLR and CCR register.

In SPI master mode the PSC controls the serial data transfers. In this mode if either the Tx FIFO becomes empty (underrun) or the Rx FIFO becomes full (overflow) in the middle of a multi-byte transfer, rather than set the Tx underrun or Rx overflow status bits the PSC will keep the Slave Select signal low/active and stop the SCK serial clock. When the Tx FIFO doesn't become empty and the Rx FIFO becomes not full the transfer proceeds.

In SPI slave mode the Mclk must be running/enabled even though it is not being used to generate the serial clock SCK, which is provided by the external master SPI device. The frequency of Mclk is not critical, as long as it is faster than the SCK frequency.

The PSC starts to generate the SCK if the transmitter is enabled and the Tx FIFO is not empty!

Figure 15-13. SPI Parameter

Table 15-85 shows an example how to configure the PSC3 as SPI master.

- 32bit data
- clock is active high, CPOL = 1;
- the first SCK edge is issued one half cycle into the data transfer; CPHA = 0
- msb first
- Baud Rate 1MBit
- DSCLK delay = $0.5 \mu s$
- DTL delay = 2.0 μs
- set the TFALARM level to 0x010, alarm occurs if 16 byte are in the TxFIFO
- set the RFALARM level to 0x00C, alarm occurs if 12 byte space in the RxFIFO
- enable TxRDY interrupt

Table 15-85. 32-bit SPI Master mode for PSC3

Register	Value	Setting
CR	0x0A	Disable the Tx and Rx part for configuration if the PSC was enabled by the work before.
SICR	0x0F00E000	Select the 32bit Codec SPI master mode, msb first, CPOL = 1,CPHA = 0
cdm_psc345_bitclk_config	0x8020	divide the f _{system} clock frequency from 528 to 16 MHz Mclk, see Section 5.5.13, <i>PSC3 Mclock Config Register—MBAR + 0x0230</i>
cdm_clock_enable_register	0x00000080	enable Mclk, see Section 5.5.6, <i>CDM Clock Enable Register—MBAR</i> + 0x0214
CCR	0x070F	set the SCK and DSCKL delay
CTUR	0x00	set the DTL delay 2us
CTLR	0x84	
RFALARM	0x000C	set the RFALARM level to 0x00C
TFALARM	0x0010	set the TFALARM level to 0x010
IMR	0x0100	enable TxRDY interrupt

15-60

Register	Value	Setting
Port_Config	0x00000600	Select the Pin-Muxing for PSC3 Codec mode, see: Chapter 2, Signal Descriptions
CR	0x05	Enable Tx and Rx

Table 15-86 shows an example how to configure the PSC2 as SPI slave.

- use PSC2 as SPI slave
- 8bit data
- clock is active low, CPOL = 0;
- the first SCK edge is issued at the beginning of the data transfer; CPHA = 1
- msb first
- set the TFALARM level to 0x010, alarm occurs if 16 byte are in the TxFIFO
- set the RFALARM level to 0x00C, alarm occurs if 12 byte space in the RxFIFO
- enable TxRDY interrupt

Table 15-86. 8-bit SPI Slave mode for PSC2

Register	Value	Setting
CR	0x0A	Disable the Tx and Rx part for configuration if the PSC was enabled by the work before.
SICR	0x01009000	Select the 8bit Codec SPI slave mode, msb first, CPOL = 0; CPHA = 1
RFALARM	0x000C	set the RFALARM level to 0x00C
TFALARM	0x0010	set the TFALARM level to 0x010
IMR	0x0100	enable TxRDY interrupt
Port_Config	0x00000060	Select the Pin-Muxing for PSC2 Codec mode, see Chapter 2, Signal Descriptions
CR	0x05	Enable Tx and Rx

15.3.3 **PSC in AC97 Mode**

After reset all PSCs are in UART mode. AC97 mode is chosen by setting the SICR[SIM] =0x3. The other SICR field should be initialized at the same time. Only PSC1 and PSC2 support the AC97 mode. The AC97 controller supports two different AC97 modes, see Section 15.3.3.4, *Transmitting and Receiving in "Normal" AC97 Mode* and Section 15.3.3.5, *Transmitting and Receiving in "Enhanced" AC97 Mode*. The important register to configure the PSC for AC97 mode are:

- SICR register select the Codec mode
- RFALARM, TFALARM select the FIFO "Alarm" level
- CR register enable or disable receiver and transmitter
- OP0, OP1 register generate the reset pulse for the external device
- Port_config select the right Pin-Muxing, see Chapter 2, Signal Descriptions

15.3.3.1 Block Diagram and Signal Definition for AC97 Mode

Figure 15-14. PSC AC97 Block Diagram

Figure 15-14 shows the simplified PSC Block Diagram for AC97 mode. The BitClk is an input from the external Codec. The PSC divide BitClk by 256 to generate a Frame pulse (Sync) that is high for 16 BitClk cycles. The PSC can only work as AC97 controller, it's means that the PSC receive the BitClk from the external AC97 codec and provide the associated Frame signal. In AC97 mode the Clock and Frame relations are fixed, therefore the CCR register and the SICR[GenClk] bit are not used. The table below shows the Pin definition for the AC97 mode and the Figure 15-15 shows an AC97 interface. An MPC5200 general-purpose I/O (GPIO) is used as a reset to the external AC97 device.

Table 15-87. PSC Signal Description for AC97 Mode

Signal	Description
Sdata_out	Transmitter Serial Data Output—Data is shifted out on TxD on the rising edge of the clock signal. Transfers must be specified as msb first.
Sdata_in	Receiver Serial Data Input—Data received on RxD is sampled on the falling edge of the clock signal. Transfers must be specified as msb first.
Sync	In AC97 mode Sync is the frame sync, or start-of-frame (SOF), output to the external AC97 Controller. In this mode the AC97 BitClk, which is input on CLK, is divided by 256 to generate the Sync.
BitClk	BitClk— In AC97 mode CLK must be driven by the serial bit-clock from the external AC97 Controller.
Res	Reset signal to the external AC97 device

15-62 Freescale Semiconductor

Figure 15-15. PSC - AC97 Interface

Figure 15-16 shows the Timing diagram for the AC97 interface. For more AC97 Controller interface information, see the *Audio Codec'97 Component Specification*.

Figure 15-16. Timing Diagram—AC97 Interface

15.3.3.2 Generate a reset pulse for the external AC97 Codec device

The follow sequence generate a reset pulse for the external AC97 device:

- 1. Res line is high, after power up
- 2. write 0x02 to the OP1 register $\overline{\text{Res}}$ line goes low
- 3. write 0x02 to the OPO register $\overline{\text{Res}}$ line goes high

NOTE

Some AC97 devices goes to a test mode, if the Sync line is high during the $\overline{\text{Res}}$ line is low (reset phase). To avoid this behavior the Sync line must be also forced to zero during the reset phase. To do that, the pin muxing should switch to GPIO mode and the GPIO control register should be used to control the output lines.

15.3.3.3 AC97 Low-Power Mode

A General-Purpose I/O (GPIO) must be used as an AC97 reset output pin. PSC1 (or PSC2) monitors the first three time slots of each Tx frame to detect the power-down condition for the AC97 digital interface. The power-down condition is detected as follows:

- 1. The first 3 bits of slot 1 must be set, indicating Tx frame and slots 1 and 2 are valid.
- 2. Slot 2 holds the power-down register (0x26) address in the external AC97 device.
- 3. Slot 3 has "1" in the fourth bit (bit 12/PR4 in power-down register 1), as defined in the AC97 specification.

PSC Operation Modes

Low-power mode can be left through either a warm or cold reset. The CPU does a warm reset by setting SICR [AWR] for at least 1 µs. This asserts the FRAME frame sync output in AC97 mode. The CPU does a cold reset in two steps:

- 1. Writes 0 to whichever GPIO is being used as the active low AC97 reset pin for the minimum time specified in the AC97 specification.
- 2. Writes 0 to PSC1 or PSC2 SICR[ACRB]. CPU should set this bit after writing 1 to the GPIO used for the AC97 reset pin.

NOTE

Step 2 (above) is required so that the PSC knows when an AC97 cold reset is occurring.

15.3.3.4 Transmitting and Receiving in "Normal" AC97 Mode

When an AC97 Controller is specified (SICR[SIM]=0x3), PSC1 (or PSC2) begins receiving time slot 1 data, 1 bit-clock cycle after the rising edge of frame sync, regardless of SICR[DTS1] value. However, SICR[SHDIR] must be 0, because the shift order must be msb first. The PSC divides the bit-clock by 256 to generate a frame sync pulse that is high for 16-bit clock cycles. The transmitter sends 0s until the receiver detects the Codec-ready condition (1 in the first bit of a new frame).

- Until the receiver detects the Codec ready condition (1 in the first bit of a new frame), no data is put into the Rx FIFO for that frame.
- When a Codec ready condition is detected, the receiver begins loading the Rx FIFO with the received time slot samples and continues to do so until a 0 is received in the first bit of a new frame.

Figure 15-16 shows a AC97 interface timing diagram example. Because Rx data is sampled on the falling edge of the BitClk, for transmit purposes, the frame has already started when the receiver detects a Codec-ready condition. For this reason, transmission starts at the next frame sync after the Codec-ready condition is detected. The PSC stops transmission at the end of the frame in which the first bit of the received frame is detected low (Codec not ready).

In the "normal" AC97 mode the controller never generate or analyze the Slot0,1 and Slot3 data, expect the Codec-ready bit in Slot0. In opposite to the enhanced AC97 mode, see Section 15.3.3.5, *Transmitting and Receiving in "Enhanced" AC97 Mode*. Therefore all data slots must be in the TxFIFO, for a complete frame must be 13 data words in the TxFIFO. The software must take sure that the data in the control slots0,1 and 2 match the value in the data slots. For each AC97 slot a 32 bit data word must be in the TxFIFO. The receiver writes 13 32 bit data words per AC97 frame to the RxFIFO.

Table 15-88 shows an example who to configure the PSC1 in AC97 mode.

Register	Value	Setting
CR	0x0A	Disable the Tx and Rx part for configuration if the PSC was enabled by the work before.
SICR	0x03000000	Select the AC97 mode
RFALARM	0x0XXX	Choose Rx FIFO "almost full" threshold level.
TFALARM	0x0XXX	Choose Tx FIFO "almost empty" threshold level.
IMR	0xXXXX	select the desired interrupt
Port_Config	0x00000030	Select the Pin-Muxing for AC97 mode PSC2, see Chapter 2, Signal Descriptions
CR	0x05	Enable Tx and Rx

Table 15-88. General Configuration Example for "normal" AC97 Mode

15.3.3.5 Transmitting and Receiving in "Enhanced" AC97 Mode

To use PSC1 or PSC2 in "Enhanced" AC97 mode the bit SICR[EnAC97] and the SICR[SIM]=0x3 must be selected. The data transmission is the standard AC97 one, see Section 15.3.3.1, *Block Diagram and Signal Definition for AC97 Mode*. But the AC97 controller is able to generate the time slot0,1 and 2 data on the transmit site and will analyze received time slot0,1, and 2. Only during "Enhanced" AC97 mode the registers AC97Slots, AC97CMD and AC97Data are used. In this mode, only the used data slots (3 to 12) are in the FIFOs.

The Rx_Slots field in the AC97Slots register specify the expected RX data slots. If the received slots doesn't match this specification the receiver will ignore all data slots from the current frame and will set the SR[UNEX_RX_SLOT] bit. Only the expected and valid tagged data slots will be in the RxFIFO. This functionality guarantees that the software can assign the data in the RxFIFO to an AC97 slot. Only the order in the RxFIFO mark the AC97 slot number.

The TX_Slots field in the AC97Slots register define, which data slots will be send. All data for these slots must be in TxFIFO. The transmitter generates the related slot0 tag data. If the TxFIFO is empty the transmitter will tag the frame as empty. The transmitter send data if the receiver detect the "Codec ready state" for the current frame, the Tx FIFO contains the specified data words (defined in the AC97Slots register) and

15-64 Freescale Semiconductor

the slot request for the specified slots was active (slot request bit was zero in the previous frame). If the AC97 Codec set a slot request to one, then the transmitter will send a complete empty frame because the transmitter is not able to send a port of the required slots without changing the order of the data in the FIFO.

If the software will send a command to the AC97 codec the "Control Register Index" and the "Control Register Write Data" values must be written to the AC97CMD register. A write access to any word of this register will trigger the transmitter to send out the register value, synchronous the SR[CMD_SEND] bit was set. The transmitter generate a slot0 tag which mark slot1 and slot2 as valid slot. If the receiver was able to send out the command data, the SR[CMD_SEND] bit will be cleared.

If the receiver detect a valid data in time slot2, then the SR[DATA_VALID] bit was set by the receiver. The software can read the received data from the AC97Data register, synchronous the read access to this register will clear the SR[DATA_VALID] bit. If the receive detect an additional command data before the previous data was read out, the SR[DATA_OVR] bit was also set to one. The previous received command data word goes lost. A read access to the AC97Data register will clear the SR[DATA_VALID] and SR[DATA_OVR] register. Table 15-89 shows an example how to configure the AC97 controller. In this example the AC97 controller will only send time slot 3 and slot4 data and will expect data for time slot9,10,11 and 12 on the receive site. For this purpose the software must write 2 data words to the TxFIFO for one complete AC97 frame and must read 4 data words from the RxFIFO per frame.

Register	Value	Setting
CR	0x0A	Disable the Tx and Rx part for configuration if the PSC was enabled by the work before.
SICR	0x03010000	Select the enhanced AC97 mode
AC97Slots	0x0300000F	define the expected receive and transmit slots
RFALARM	0x0XXX	Choose Rx FIFO "almost full" threshold level.
TFALARM	0x0XXX	Choose Tx FIFO "almost empty" threshold level.
IMR	0xXXXX	select the desired interrupt
Port_Config	0x00000020	Select the Pin-Muxing for AC97 mode PSC2, see Chapter 2, Signal Descriptions
CR	0x05	Enable Tx and Rx

Table 15-89. General Configuration Example for "enhanced" AC97 Mode

15.3.4 PSC in IrDA mode

The PSC support 3 different IrDA modes. These modes are described in the follows sections.

15.3.4.1 PSC in SIR Mode

The SIR mode is one of the supported IrDA modes. This section will give some more informations about this mode. The imported register to configure the PSC6 (only this PSC support the IrDA modes) for SIR mode are:

- SICR register select the SIR mode
- CTUR, CTLR register select the Baud rate
- MR1 register select the Receiver interrupt mode
- MR2 register Channel Mode
- IRCR1 register select the pulse width
- IRSDR register select the counter for pulse width
- RFALARM, TFALARM select the FIFO "Alarm" level
- CR register enable or disable receiver and transmitter
- Port_config select the right Pin-Muxing, see Chapter 2, Signal Descriptions

15.3.4.1.1 Block Diagram and Signal Definition for SIR Mode

The Table 15-90 shows the interface signal definition. This definition is equal for all IrDA modes. The Figure 15-17. shows the PSC in SIR mode. The simplified block diagram describe the clock distribution.

Table 15-90. Signal Description for IrDa Mode

Signal	Description
IRDA_TX	Transmitter Serial Data Output—Transfers must be specified as msb first.
IRDA_RX	Receiver Serial Data Input—Transfers must be specified as msb first.

Figure 15-17. PSC SIR Block Diagram

15.3.4.1.2 Transmitting and Receiving in SIR Mode

This data format is similar to the UART. Each data consists of a start bit, 8 bit data and a stop bit. Each bit data is encoded so that a 0 is encoded as 3/16 of the bit time pulse (or 1.6 µs pulse) and a 1 is encoded as no pulse. Similarly, the received serial pulse is decoded as a 0 and an absence of a pulse is decoded as a 1. Like the UART mode, the SIR mode sends the lsb first. Here is an example of data stream of UART and SIR.

Figure 15-18. Data Format in SIR Mode

NOTE

Please choose first the desired mode (SIR mode) than configure the port (write to port_config register). This sequence will avoid pulses on the TX line during port configuration. This is very important for all IrDA (SIR, MIR, and FIR) modes.

For more informations regarding the pulse width and Baud rate calculations see Section 15.2.25, *Infrared SIR Divide Register (0x4C)—IRSDR* and Section 15.2.12, *Counter Timer Upper Register (0x18)—CTUR*.

15-66 Freescale Semiconductor

15.3.4.1.3 Configuration Sequence Example for SIR Mode

The Table 15-91 shows the configuration sequences. This list includes the SIR mode related registers only, not the other configure values like interrupt and FIFO configurations. PSC module registers can be accessed by word or byte operations.

Table 15-91. Configuration Sequence Example for SIR Mode

Register	Value	Setting
CR	0x0A	Disable the Tx and Rx part for configuration if the PSC was enabled by the work before.
SICR	0x04000000	select the SIR mode
IRCR1	0x01	set SIR pulse width to 1.6 ms
IRSDR	0x6A	set counter for SIR pulse width for IPB clock 66 MHz
CTUR	0x00	set the Baud rate to 9600 with IPB clock frequency 66 MHz
CTLR	0xD7	
RFALARM	0x0XXX	Choose Rx FIFO "almost full" threshold level.
TFALARM	0x0XXX	Choose Tx FIFO "almost empty" threshold level.
IMR	0xXXXX	select the desired interrupt
Port_Config	0x00500000	Select the Pin-Muxing for IrDA mode, see Section 15.3.4.1, PSC in SIR Mode
CR	0x05	Enable Tx and Rx

15.3.4.2 **PSC in MIR Mode**

The MIR mode is the second IrDA mode, which the PSC supports. This section will give some more informations about this mode. The important register to configure the PSC6 (only this PSC supports the IrDA modes) for MIR mode are:

- SICR register select the MIR mode
- MR2 register Channel Mode
- If clock generate from the internal source:
 - cdm_irda_bitclk_config select Mclk frequency, see Section 5.5.14, PSC6 (IrDA) Mclock Config Register—MBAR + 0x0234
 - cdm_clock_enable_register enable Mclk, see Section 5.5.6, CDM Clock Enable Register—MBAR + 0x0214
 - CCR- select BitClk and Frame Frequency
- IRCR1 register select full duplex and SIP mode
- IRMDR register select the clock divider
- RFALARM, TFALARM select the FIFO "Alarm" level
- CR register enable or disable receiver and transmitter
- Port_config select the right Pin-Muxing, see Chapter 2, Signal Descriptions

15.3.4.2.1 Block Diagram and Signal Definition for MIR Mode

The signal definitions for MIR mode are the same as in SIR mode. Please see Table 15-90.

Freescale Semiconductor 15-67

Figure 15-19. PSC MIR and FIR Block Diagram

For MIR and FIR mode the clock for the transmitter and receiver is generated by dividing down from the internal Mclk or from an external clock. If the bit GenClk in the SICR was set to "1" then PSC generate the clock from the internal source. The clock from the Mclk generator goes through a pre-divider to the clock generator. See Section 15.2.26, *Infrared MIR Divide Register (0x50)—IRMDR* or Section 15.2.27, *Infrared FIR Divide Register (0x54)—IRFDR* for the possible frequencies for this mode. For more informations about the Mclk divider see Section 5.5.11, *PSCI Mclock Config Register—MBAR* + 0x0228. If the bit GenClk cleared then the PSC use the clock from an external source for the clock generation.

NOTE

If the CCR register was not changed (reset value 0x01) then the counter divide the clock (Mclk) by 2. This is the minimum value. 0x00 deactivate the clock generation.

15.3.4.2.2 Transmitting and Receiving in MIR Mode

Each bit data is encoded so that a 0 is encoded as 1/4 of the bit time pulse and a 1 is encoded as no pulse. Similarly, the received serial pulse is decoded as a 0 and an absence of a pulse is decoded as a 1. The PSC MIR mode use the HDLC bit stuffing after five consecutive ones to decode/encode the data, except the STA and STO flag. For example see the Figure below:

The packet format is:

MPC5200B Users Guide, Rev. 1

15-68 Freescale Semiconductor

The STA represents the start of the frame and the STO represents the end of the frame. Both of STA and STO are defined as 01111110 in binary format. Like the UART mode, the MIR mode sends the lsb first. The FCS is a 16 bit CRC defined as

$$CRC(x) = x^{16} + x^{12} + x^5 + 1$$

NOTE

The MIR module doesn't support the CRC generation. If the transfer require a CRC Field use the CRC generation from the BestComm module. See also Chapter 13, *BestComm*.

15.3.4.2.3 Serial Interaction Pulse (SIP)

The MIR and FIR system must emit SIP (Serial Interaction Pulse) at least once per 500ms while the connection lasts, in order to inform slower systems (SIR) not to interfere the link. If the SIPEN bit in IRCR1 is high, the transmitter automatically append one SIP after every frame. SIP can be also sent by writing 1 to SIPREQ bit in IRCR2. If SIPREQ is high and the transmitter is in idle state, one SIP is sent and SIPREQ bit is automatically cleared. The SIP is defined as:

Figure 15-20. Serial Interaction Pulse (SIP)

15.3.4.2.4 Configuration Sequence Example for MIR Mode

This list includes the MIR mode related registers only, not the other configure values like interrupt and FIFO configurations. PSC module registers can be accessed by word or byte operations. The Table 15-92 shows the configuration sequences for follow example:

PSC6 in IrDA MIR mode

MIR mode: 1.152 Mbps, SIP pulse after every transfer

• Mclk frequency: 27.78 MHz

IrdaClk: 9.26 MHz

NOTE

Please choose first the desired mode (MIR mode) than configure the port (write to port_config register). This sequence will avoid pulses on the TX line during port configuration. This is very important for all IrDA (SIR, MIR, and FIR) modes

Table 15-92. Configuration Sequence Example for MIR Mode

Register	Value	Setting						
CR	0x0A	Disable the Tx and Rx part for configuration if the PSC was enabled by the work before.						
SICR	0x05800000	Select the MIR mode, use internal clock						
cdm_irda_bitclk_config	0x80012	set Mclk to 27.78 Mhz, see Section 5.5.11, <i>PSC1 Mclock Config Register—MBAR + 0x0228</i>						
cdm_clock_enable_register	0x00000010	enable Mclk, see Section 5.5.6, <i>CDM Clock Enable Register—MBAR</i> + 0x0214						
CCR	0x0002	set IrdaClk to 9.26 MHz						
IRCR1	0x02	enable SIP						
IRMDR	0x07	set Baud rate to 1.152 Mbps						
RFALARM	0x0XXX	Choose Rx FIFO "almost full" threshold level.						
TFALARM	0x0XXX	Choose Tx FIFO "almost empty" threshold level.						

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 15-69

Programmable Serial Controller (PSC)

Table 15-92. Configuration Sequence Example for MIR Mode

Register	Value	Setting
IMR	0xXXXX	select the desired interrupt
Port_Config	0x00F00000	Select the Pin-Muxing for IrDA mode, see Chapter 2, Signal Descriptions
CR	0x05	Enable Tx and Rx

15.3.4.3 **PSC in FIR Mode**

The FIR mode is also a supported IrDA mode. This section will give some more informations about this mode. The important registers to configure the PSC6 (only this PSC support the IrDA modes) for FIR mode are:

- SICR register select the FIR mode
- MR2 register Channel Mode
- If clock generate from the internal source:
 - cdm irda bitclk config select Mclk frequency, see Section 5.5.14, PSC6 (IrDA) Mclock Config Register—MBAR + 0x0234
 - cdm clock enable register enable Mclk, see Section 5.5.6, CDM Clock Enable Register—MBAR + 0x0214
 - CCR- select BitClk and Frame Frequency
- IRCR1 register full duplex and SIP mode
- IRMDR register select the clock divider
- RFALARM, TFALARM select the FIFO "Alarm" level
- CR register enable or disable receiver and transmitter
- Port config select the right Pin-Muxing, see Chapter 2, Signal Descriptions

15.3.4.3.1 Block Diagram and Signal Definition for FIR Mode

The signal definition for FIR mode is the same as in SIR mode. Please see Table 15-90. Figure 15-19. shows the Block diagram for FIR mode. The clock generation is the same as in MIR mode, see Section 15.3.4.2.1, *Block Diagram and Signal Definition for MIR Mode*.

15.3.4.3.2 Transmitting and Receiving in FIR Mode

The data field is 4PPM encoded by the transmitter. Data encoding is done LSB first. Each chip duration is 125 ns.

bit pair	4PPM data						
00	1000						
01	0100						
10	0010						
11	0001						

Figure 15-21. Data Format in FIR Mode

The packet format is defined as

PA	STA	DATA	FCS	STO

The preamble (PA) field is used by a receiver to establish phase lock. After receiving the start flag (STA), the receiver begin to interpret the 4PPM encoded symbols. The receiver continues receiving until it receives the stop flag (STO). Like the UART mode, the FIR mode sends the lsb first. For more informations regarding the pulse width and Baud rate calculations see Section 15.2.27, *Infrared FIR Divide Register* (0x54)—IRFDR. The FCS is 32 bit CRC defined as:

$$CRC(x) \, = \, x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$$

15-70 Freescale Semiconductor

NOTE

The FIR module doesn't support the CRC generation. If the transfer require a CRC Field use the CRC generation from the BestComm module. See also Chapter 13, *BestComm*.

The chip patterns for PA, STA and STO are defined as:

PA	1000	0000	1010	1000	(16 times repeated)							
STA	0000	1100	0000	1100	0110 0000 0110 0000							
STO	0000	1100	0000	1100	0000	0110	0000	0110				

first chip last chip

The FIR system must emit SIP (Serial Interaction Pulse), for more informations see Section 15.3.4.2.3, Serial Interaction Pulse (SIP).

NOTE

Please choose first the desired mode (FIR mode) than configure the port (write to port_config register). This sequence will avoid pulses on the TX line during port configuration. This is very important for all IrDA (SIR, MIR, and FIR) modes.

15.3.4.3.3 Configuration Sequence Example for FIR Mode

The Table 15-93 shows the configuration sequences. This list includes the FIR mode related registers only, not the other configure values like interrupt and FIFO configurations. PSC module registers can be accessed by word or byte operations.

Register	Value	Setting						
CR	0x0A	Disable the Tx and Rx part for configuration if the PSC was enabled by the work before.						
SICR	0x06800000	Select the FIR mode, use internal clock						
cdm_irda_bitclk_config	0x8002	set Mclk to 176 Mhz, see Section 5.5.14, <i>PSC6 (IrDA) Mclock Config Register—MBAR + 0x0234</i>						
cdm_clock_enable_register	0x00000010	enable Mclk, see Section 5.5.6, CDM Clock Enable Register—MBAR + 0x0214						
CCR	0x0001	set IrdaClk to 88 MHz						
IRCR1	0x02	enable SIP						
IRFDR	0x0A	set bit clock frequency = 8 MHZ with Mclk frequency = 88 MHz						
RFALARM	0x0XXX	Choose Rx FIFO "almost full" threshold level.						
TFALARM	0x0XXX	Choose Tx FIFO "almost empty" threshold level.						
IMR	0xXXXX	select the desired interrupt						
Port_Config	0x00F00000	Select the Pin-Muxing for IrDA mode, see Chapter 2, Signal Descriptions						
CR	0x05	Enable Tx and Rx						

Table 15-93. Configuration Sequence Example for FIR Mode

15.4 PSC FIFO System

The receive FIFO stack consists of the FIFO and a receiver shift register connected to the RxD. Data is assembled in the receiver shift register and loaded into the FIFO at the location pointed to by the FIFO Write Pointer.

Reading the Rx buffer produces an output of data from the location pointed to by the FIFO Read Pointer. After the read cycle data at the top of the FIFO stack is popped and the Rx shift register can add new data at the bottom of the FIFO. The standard FIFO Controller used in MPC5200 peripherals, such as the PSCs, was designed to control either:

- a transmit (Tx) FIFO
- a receive (Rx) FIFO

Freescale Semiconductor 15-71

MPC5200B Users Guide, Rev. 1

PSC FIFO System

Depending on whether the FIFO is set for Tx or Rx, "Alarm" and "Granularity" are measured differently, either:

- valid data bytes (Tx FIFO)
- empty bytes (Rx FIFO)

For both Tx and Rx FIFOs:

- "Alarm" specifies a threshold at which the FIFO generates an interrupt to either:
 - BestComm
 - CPU (alternate)
- "Granularity" specifies a threshold at which the interrupt goes away.

Each PSC provide two control lines to the BestComm system, control the transfer from and to the PSC FIFO.

The FIFOs can be accessed as follows:

- 8-bit Codec mode or UART mode
 - Can access FIFOs either 1, 2, or 4 1-Byte samples at a time.
- 16-bit Codec mode:
 - Can access FIFOs 1 or 2 2-Byte samples at a time.
- 32-bit and 32-Bit Codec mode
 - Can access FIFOs 4-Byte samples at a time
- AC97 mode:

15-72

- Must access FIFOs one sample at a time
- In addition, when the Rx FIFO is being read, a "1" in bit 20 (21st bit of the sample) marks this sample as the first time slot of a new frame.

Block error mode is always selected because MR1[ERR] is hard-wired high. In block mode SR shows a logical OR of all characters received after the last RESET ERROR STATUS command. Block mode offers a data-reception speed advantage where the software overhead of error-checking each character cannot be tolerated. Errors are not detected until the check is done at the end of an entire message; the faulting character is not identified.

Reading SR does not affect the FIFO. FIFO is popped only when the Rx buffer is read. If the Rx FIFO is completely full a new character is held in the Rx shift register until space is available. However, if a second new character is received, contents of the character in the Rx shift register is lost. The FIFO's are unaffected, and SR[ORERR] sets when the receiver detects the start bit of the new overrunning character.

To support flow control, the receiver can be programmed to automatically negate and assert \overline{RTS} . In which case, the receiver automatically negates \overline{RTS} when a valid start bit is detected and the FIFO stack is full. The receiver asserts \overline{RTS} when a FIFO position becomes available. Overrun errors can be prevented by connecting \overline{RTS} to the \overline{CTS} input of the transmitting device.

NOTE

The receiver can still $\underline{\text{read}}$ characters in the FIFO stack if the receiver is disabled. If the receiver is reset, the FIFO stack, \overline{RTS} control, all receiver status bits, and interrupt requests are reset. No more characters are received until the receiver is re-enabled.

Freescale Semiconductor

Figure 15-22. PSC FIFO System

15.4.1 RX FIFO

The RX FIFO space is 512 Byte. For an Rx FIFO, the "Alarm" value is **not** the amount of "data" in the Rx FIFO. Instead, an interrupt occurs as a result of the amount of empty space remaining in the Rx FIFO. These facts are described in Figure 15-22.

If it is known how much data is needed in the Rx FIFO to cause an interrupt, the value that must be written into the "Alarm" register is:

• the FIFO size, minus the number of data bytes in the FIFO

Unlike the "Alarm" value, "Granularity" value represents a number of data bytes, not empty space.

NOTE

In AC97, the number of data bytes are 4-times the number of time slot samples in the FIFO. Because, each 20-bit sample uses an entire 32-bit longword in the FIFO.

For the Rx FIFO, the value can be between 0 and 7 bytes only. Therefore, the interrupt has hysteresis. For example, the interrupt goes active when the Rx FIFO is "almost full" (i.e., amount of empty space is less than the "Alarm" level). It stays active until enough data is read out of the Rx FIFO so that the amount of data left in the FIFO is less than the "Granularity" level.

For the example (see Figure 15-22) it means:

The requestor to the BestComm to emptying the RX FIFO becomes active if the empty space in the FIFO is less the 8 Bytes (504 date Bytes are in the FIFO).

The requester became inactive if 4Bytes are left in the FIFO. (508 Byte space now)

When BestComm is servicing the FIFO's, this process works well. However, if the CPU is servicing the FIFO's, the interrupt has no hysteresis. For Example, the "Alarm" level is used for both activating and deactivating the CPU interrupt.

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 15-73

PSC FIFO System

When using BestComm you must specify a non-zero "Granularity" to get FIFO underrun errors. This is due to its internal pipelining. BestComm does not immediately stop accessing the FIFO when the FIFO interrupt goes away.

15.4.2 TX FIFO

The TX FIFO space is 512 Byte. For a Tx FIFO, the "Alarm" value specifies a threshold in terms of DATA bytes, **not** in terms of empty space as with the Rx FIFO. Once the amount of data in the Tx FIFO falls below the "Alarm" level, an interrupt activates. The interrupt indicates the Tx FIFO is "almost empty" and needs more data. Tx FIFO "Granularity" is specified in terms of empty bytes, **not** a number of data bytes as with the Rx FIFO. For more informations see also Figure 15-22. The "Granularity" value range is 0-7.

The Tx FIFO controller hardware multiplies this value by 4, to establish the actual level at which the FIFO alarm goes away.

For the Tx FIFO, the alarm goes away when the number of empty bytes left in the Tx FIFO is less than or equal to:

- 0 (Granularity value 0)
- 4 (Granularity value 1)
- 8 (Granularity value 2)
- 12 (Granularity value 3)
- 16 (Granularity value 4)
- 20 (Granularity value 5)
- 24 (Granularity value 6)
- 28 (Granularity value 7)

The FIFO interrupt stays active until BestComm writes enough data into the Tx FIFO to reach the Granularity level. Once the Granularity level is reached, the interrupt goes away.

For the example (see Figure 15-22) it means:

The requestor to the BestComm to filling the TX FIFO becomes active if the amount of data in the FIFO is less then 16 data.

The requester became inactive if less than 20 (5 * 4) bytes space in the FIFO.

15.4.3 Looping Modes

The PSC can be configured to operate in various loopback modes as shown in Figure 15-23. These modes are useful for local and remote system diagnostic functions and can be used by in Codec mode as well as UART mode. The modes are described below and in Section 15.2, *PSC Registers—MBAR + 0x2000, 0x2200, 0x2400, 0x2600, 0x2800, 0x2C00*.

The PSCs transmitter and receiver should be disabled when switching between modes. The selected mode is activated immediately on mode selection, regardless of whether a character is being received or transmitted.

15.4.3.1 Automatic Echo Mode

In automatic echo mode, shown in Figure 15-23, the PSC automatically resends received data bit-by-bit. The local CPU-to-receiver communication continues normally, but the CPU-to-transmitter link is disabled. In this mode, received data is clocked on the receiver clock and resent on TxD. The receiver must be enabled, but the transmitter need not be.

Figure 15-23. Automatic Echo

Because the transmitter is inactive, SR[TxEMP,TxRDY] is inactive and data is sent as it is received. Received parity is checked, but is not recalculated for transmission. Character framing is also checked, but stop bits are sent as they are received. A received break is echoed as received until the next valid start bit is detected.

15.4.3.2 Local Loop-Back Mode

Figure 15-24 shows how TxD and RxD are internally connected in local loop-back mode. This mode is for testing the operation of a local PSC module channel by sending data to the transmitter and checking data assembled by the receiver to ensure proper operations.

MPC5200B Users Guide, Rev. 1

Figure 15-24. Local Loop-Back

Features of this local loop-back mode are:

- Transmitter and CPU-to-receiver communications continue normally.
- RxD input data is ignored.
- TxD data is held marking.
- The receiver is clocked by the transmitter clock.
- Transmitter must be enabled, but the receiver need not be enabled.

15.4.3.3 Remote Loop-Back Mode

In remote loop-back mode, shown in Figure 15-25, the channel automatically transmits received data bit-by-bit on the TxD output. The local CPU-to-transmitter link is disabled. This mode is useful in testing receiver and transmitter operation of a remote channel. For this mode, the transmitter uses the receiver clock.

Because the receiver is not active, received data cannot be read by the CPU and error status conditions are inactive. Received parity is not checked and is not recalculated for transmission. Stop bits are sent as they are received. A received break is echoed as received until the next valid start bit is detected.

Figure 15-25. Remote Loop-Back

15.4.4 Multidrop Mode

Setting MR1[PM] programs the PSC to operate in a Walk-up mode for multidrop or multiprocessor applications. In this mode, a master can transmit an address character followed by a block of data characters targeted for one of up to 256 slave stations.

Although slave stations have their channel receivers disabled, they continuously monitor the masters data stream. When the master sends an address character, the slave receiver channel notifies its respective CPU by setting SR[RxRDY] and generating an interrupt (if programmed to do so). Each slave station CPU then compares the received address to its station address and enables its receiver if it wishes to receive the subsequent data characters or block of data from the master station. Slave stations not addressed continue monitoring the data stream. Data fields in the data stream are separated by an address character. After a slave receives a block of data, its CPU disables the receiver and repeats the process.

Figure 15-26 shows functional timing information for multidrop mode.

Freescale Semiconductor 15-75

Figure 15-26. Timing Diagram—Multidrop Mode

A character sent from the master station consists of:

- a start bit
- a programmed number of data bits
- an address/data (A/D) bit flag
 - A/D=1 indicates an address character
 - A/D=0 indicates a data character
- a programmed number of stop bits

A/D polarity is selected through MR1 [PT]. MR1 should be programmed before enabling the transmitter and loading the corresponding data bits into the Tx buffer.

In multidrop mode, the receiver continuously monitors the received data stream, regardless of whether it is enabled or disabled.

- If the receiver is disabled, it sets the RxRDY bit and loads the character into the receiver holding register FIFO stack, provided the received A/D bit is 1 (address tag). If the received A/D bit is 0 (data tag), the character is discarded.
- If the receiver is enabled, all received characters are transferred to the CPU through the receiver holding register stack during read
 operations.

In either case, data bits are loaded into the data portion of the stack while the A/D bit is loaded into the status portion of the stack normally used for a parity error (SR[PE]).

Framing error, overrun error, and break detection operate normally. The A/D bit takes the place of the parity bit. Parity is neither calculated nor checked. Messages in this mode may still contain error detection and correction information. One way to provide error detection if 8-bit characters are not required, is to use software to calculate parity and append it to the 5-, 6-, or 7-bit character.

MPC5200B Users Guide, Rev. 1

Chapter 16 XLB Arbiter

16.1 Overview

This document contains the following section:

- Section 16.1, Overview
- Section 16.2, XLB Arbiter Registers—MBAR + 0x1F00

16.1.1 Purpose

The purpose of the XLB Arbiter is to manage bus requests from the XLB masters (USB, PCI, BestComm, and e300 core), and determine which master should be granted the bus at any one time. The arbiter employs both master prioritization and a fair-share LRU (least-recently-used) algorithm to reduce access latency and starvation across all masters.

The XLB Arbiter consists of five functional blocks as shown below.

Figure 16-1. Block Diagram of XLB Arbiter

16.1.1.1 Prioritization

The prioritization block signals that a master is requesting the bus and which master has priority.

Priority is determined first by using the master priority level assigned by either the hardware-wired internal signals, or software-programmable Master N Priority bits in the Arbiter Master N Priority Register depending on the Master Priority Enable bit for each master. Masters at the same level of priority will be further sorted by a least recently used algorithm (LRU). Once a requesting master is identified as having priority and is granted the bus, that master will be continue to be granted the bus if:

- 1. It is requesting the bus. The request must occur immediately after the required one clock de-assertion after a qualified bus grant, and
- 2. It is the highest priority device, and
- 3. There is no address retry assertion.

Freescale Semiconductor

Overview

Multiple masters at level 0 will only be able to perform one tenure before the bus is passed to the next master at level 0 using the LRU algorithm.

The priority level of each master may be changed while the arbiter is running. This allows dynamic changes in priority such as an aging scheme. It is possible for the e300 core to control priority by enabling the Master Priority Enable bits for a master. This causes the priority to be determined from the Master N Priority bits in the Arbiter Master N Priority Register. The e300 core then may write this register to set the master's priority.

16.1.1.2 Bus Grant Mechanism

16.1.1.2.1 Bus Grant

The Bus Grant mechanism will generate the address bus grant signals to the masters using the signals from the prioritization function as well as the internal XL bus signals (ts_b, aack_b, ta_b, tt[0:4], artry, tbst_b, tea_b, dbb_b). It will also generate required indicators of state to the prioritization and watchdog functions.

The Bus Grant mechanism will enforce a one level address pipeline, if pipelining is enabled (via the PLDIS bit in the Arbiter Configuration Register). The critical condition is that before a third address tenure is granted, the first tenure (address, and if needed, data) must be completed. The arbiter will assert bus grant to a master when the master is requesting, or if parking is enabled, and the one level pipeline condition is met.

16.1.1.2.2 Parking Modes

The Bus Grant mechanism will support the No Parking, Park on Programmed Master, and Park on Last Master bus parking modes. When in No Parking Mode, the arbiter will not assert bus grant when there are no masters asserting bus request. In Park on Programmed Master Mode, the arbiter will assert bus grant to the master indicated in the Select Parked Master bits (Arbiter Configuration Register, SP[2:0] bits) when no masters are asserting bus request, and the one level pipeline will not be violated. In Park on Last Master Mode, the arbiter will assert bus grant to the last master granted the bus when no masters are asserting bus request, and the one level pipeline will not be violated.

16.1.1.3 Configuration, Status, and Interrupt Generation

This block provides a set of status and configuration registers as well as interrupt generation for enabled interrupt conditions. These registers are detailed in the register section below. Some registers have reserved (unused, undefined) bits. These bits will always read as 0, and if written, should be written to 0 for future software compatibility.

16.1.1.4 Watchdog Functions

16.1.1.4.1 Timer Functions

There are three watchdog timers for address tenure, data tenure, and bus activity time out. Each has a programmable timer count and can be disabled. A timer time-out will set a status bit and trigger an interrupt if that interrupt is enabled.

The address tenure watchdog is a 32-bit timer. If an AACK is not detected by the programmed number of clocks after bus grant is accepted, the address watchdog timer will expire and the arbiter will issue AACK. The related data tenure will be terminated with TEA. The arbiter will set the Address Tenure Time-out Status bit in the Arbiter Status Register and issue an interrupt if that interrupt is enabled.

The upper 28-bits of address tenure time-out are programmed via the Address Tenure Time-out Register. The lower 4 bits are always 0xF.

The data tenure watchdog is a 32-bit timer. If a data tenure is not terminated, the data watchdog timer will expire and the arbiter will issue TEA. The arbiter will set the Data Tenure Time-out Status bit in the Arbiter Status Register and issue an interrupt if that interrupt is enabled.

Address Time-out (32 bits) = {Address Tenure Time-out Register (28-bits), 0xF}

Data Time-out (32 bits) = {Data Tenure Time-out Register (28-bits), 0xF}

NOTE

Enabling the data time-out will also enable the address time-out. This is required to prevent a data time-out before an AACK assertion.

The bus activity watchdog is a 32-bit timer. If no bus activity (no assertion of DBB or ABB) is detected by the programmed number of clocks, the bus activity watchdog timer will expire and the arbiter will set the Bus Activity Time-out Status bit in the Arbiter Status Register and issue an interrupt if that interrupt is enabled.

For any TEA assertion (from a watchdog time-out, or other source), a Machine Check exception will result in the e300 core. See the XLB Arbiter interrupt enablement recommendations below for the Arbiter Interrupt Enable Register. For more information on the Machine Check exception, see the 603e Users' Manual, Section 4.5.

16-2 Freescale Semiconductor

16.1.1.4.2 Other Tenure Ending Conditions

In addition to the watchdog timers, this function will terminate tenures with or without TEA depending on the following conditions:

- AACK the address tenure for eciwx and ecowx transfer types, then TEA the ensuing data tenure. This sets the External Control Word Read/Write Status bit in the Arbiter Status Register.
- AACK the address tenure for address only and reserved transfer types. (no ensuing data tenure) This sets the TT Address Only Status bit or TT Reserved Status Bit, respectively, in the Arbiter Status Register.
- AACK the address tenure for invalid TBST/TSIZ combinations, then TEA the ensuing data tenure. This sets the TBST/TSIZ
 Mismatch Status bit in the Arbiter Status Register.

If enabled, an interrupt will be issued when a status bit is set.

When the arbiter ends a tenure or detects a TEA from a device, certain bus signals (Address, TT, TSIZ, TBST, GLB) are latched into the Arbiter Address Capture Register and Arbiter Bus Signal Capture Register. Additional errors will be handled but the original error related information is maintained until the error status is cleared.

16.2 XLB Arbiter Registers—MBAR + 0x1F00

The XLB Arbiter provides thirteen 32-bit active registers. All registers are located at an offset from the Module Base Address Register (MBAR). The XLB Arbiter offset from MBAR is 0x1F00. Therefore, the actual address for each XLB Arbiter register is: MBAR + 0x1F00 + register address.

The read/write nature of each register is shown in the descriptions that follow.

- Bit 0 in all registers is the most significant bit (MSB).
- Reserved bits cannot be written to, and will always read 0.
- Registers may be accessed on the following aligned boundaries:
 - 1 byte
 - 2 byte
 - word (32-bit)
 - double-word (64-bit)

Registers are organized on word boundaries to allow easy register mask operations.

When a bit enables or disables a function, the values are defined as:

- 0 = disabled
- 1 = enabled

The XLB Arbiter registers are listed below, followed by detailed descriptions of each register.

- Arbiter Configuration Register (R/W)—MBAR + 0x1F40
- Arbiter Address Tenure Time-Out Register (R/W)—MBAR + 0x1F58
- Arbiter Version Register (R)—MBAR + 0x1F44
- Arbiter Data Tenure Time-Out Register (R/W)—MBAR + 0x1F5C
- Arbiter Status Register (R/W)—MBAR + 0x1F48
- Arbiter Bus Activity Time-Out Register (R/W)—MBAR + 0x1F60
- Arbiter Interrupt Enable Register (R/W)—MBAR + 0x1F4C
- Arbiter Master Priority Enable Register (R/W)—MBAR + 0x1F64
- Arbiter Address Capture Register (R)—MBAR + 0x1F50
- Arbiter Master Priority Register (R/W)—MBAR + 0x1F68
- Arbiter Bus Signal Capture Register (R)—MBAR + 0x1F54
- Arbiter Snoop Window Register (RW)—MBAR + 0x1F70

16.2.1 Arbiter Configuration Register (R/W)—MBAR + 0x1F40

The Arbiter Configuration Register is used to control the arbiter watchdog functionality and other XLB-related system configuration parameters.

MPC5200B Users Guide, Rev. 1

XLB Arbiter Registers—MBAR + 0x1F00

Table 16-1. Arbiter Configuration Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	PLDIS		Rsvd													BSDIS
W																
RESET:	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	SE	USE_	TBEN	Rsvd	WS		SP		Rsvd	Р	М	Rsvd	ВА	DT	AT	Rsvd
W		WWF														
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0

Bit	Name	Description
0	PLDIS	Pipeline Disable. This bit is used to enable or disable transaction pipelining on the XLB. See note below.
		0 = Enable pipelining 1 = Disable pipelining
1:14	_	Reserved
15	BSDIS	BestComm Snooping Disable.
		0 = BestComm XLB addresss snooping enabled.
		1 = BestComm XLB addresss snooping disabled.
16	SE	Snoop Enable. This sets the address snooping enablement on the XLB.
		0 = Disable address snooping. Internally on the XLB, the gbl_b signal is gated (always negated). This overrides any setting of the Arbiter Snoop Window Register (RW)—MBAR + 0x1F70.
		1 = Allow address snooping. Internally on the XLB, the gbl_b signal is not gated, and assertions of this signal during address tenures will be recognized.
17	USE_WWF	Force write-with-flush transfer type (TT) for PCI, BestComm, and USB interfaces to XLB.
		0 = Write-with-kill operation is allowed on burst transactions.
		1 = Always use write-with-flush on burst transactions.
18	TBEN	Timebase Enable. This bit is used as a "count enable" control input for the timebase counter in the 603e core.
		0 = Timebase should stop clocking.
		1 = Timebase should continue clocking.
19	_	Reserved
20	WS	Minimum Wait State. This bit sets the minimum number of wait states for slaves to respond with AACK assertion on the XLB.
		0 = 0 minimum wait state.
		1 = 1 minimum wait state.
21:23	SP[2:0]	Select Parked Master. These bits set the master that is used in Park on Programmed Master mode (000 = master 0, 001 = master 1,, 111 = master 7).
24	_	Reserved

16-4 Freescale Semiconductor

Bit	Name	Description
25:26	PM[1:0]	Parking Mode.
		00 = No parking (default).
		01 = Reserved.
		10 = Park on most recently used master.
		11 = Park on programmed master as specifed by the Select Parked Master bits 21:23 above.
27	_	Reserved
28	ВА	Bus Activity Time-out Enable. If enabled, the arbiter will set the Bus Activity Time-out Status bit (Arbiter Status Register, bit 29) when the Bus Activity Time-out is reached. Bus Activity Time-out is derived from the Arbiter Bus Activity Time Out Count register.
29	DT	Data Tenure Time-out Enable. If enabled, the arbiter will assert TEA when the Data Tenure Time-out is reached. Data Tenure Time-out is derived from the Arbiter Data Tenure Time Out Count Register. Also, the arbiter will set the Data Tenure Time-out Status bit (Arbiter Status Register, bit 30). Setting this bit will also enable the Address Tenure Time-out. This is required to ensure that a data time-out will not occur before an address acknowledge.
30	AT	Address Tenure Time-out Enable. If enabled, the arbiter will assert AACK and TEA (if required) when the Address Tenure Time-out is reached. Address Tenure Time-out is derived from the Arbiter Address Tenure Time Out Count register. Also, the arbiter will set the Address Tenure Time-out Status bit (Arbiter Status Register, bit 31). Address Tenure Time-out is also enabled by the DT bit above.
31		Reserved

NOTE

The PLDIS reset value is 1, which means the XLB Arbiter will prohibit transaction pipelining. In most applications, transaction pipelining will provide a significant performance increase, and therefore the customer should consider setting this bit to 0 to take advantage of this increase.

16.2.2 Arbiter Version Register (R)—MBAR + 0x1F44

The Arbiter Version Register contains the silicon version number for the arbiter hardware.

Table 16-2. Arbiter Version Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	R Version ID[0:15]															
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Versio	n ID[16	:31]						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Bit	Name Description															

16.2.3 Arbiter Status Register (R/W)—MBAR + 0x1F48

0:31

VER

The Arbiter Status Register indicates the state of watchdog functions. When a monitored condition occurs, the respective bit is set to 1. The bit remains 1 until cleared by writing 1 into that bit position. Even if the causal condition is removed, the bit remains set until cleared.

Hardware version ID. The current version number is 0x0001.

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 16-5

Table 16-3. Arbiter Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								F	Rsvd							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				Rsvd				SEA	MM	TTA	TTR	ECW	TTM	ВА	DT	AT
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:22	_	Reserved
23	SEA	Slave Error Acknowledge. This bit is set when an error is detected by any slave devices during the transfer.
24	ММ	Multiple Masters at Priority 0. If more than one master is recognized at priority 0, this bit is set. Once this occurs, this bit will remain set until cleared. The arbiter recognizes priority by the hardware-wired mNpri signals or (if enabled) the Arbiter Master N Priority Register. This bit is intended to help in tuning dynamic priority algorithm development.
25	TTA	TT Address Only. The arbiter automatically AACKs for address only TT (transfer type) codes. This bit is set when this condition occurs. For a description of TT codes, see the MPC603e Users' Manual, Section 7.2.
26	TTR	TT Reserved. The arbiter automatically AACKs for reserved TT (transfer type) codes. This bit is set when this condition occurs. For a description of TT codes, see the MPC603e Users' Manual, Section 7.2.
27	ECW	External Control Word Read/Write. External Control Word Read/Write operations are not supported on the XLB. If either occur, the arbiter AACKs and TEAs the transaction, and sets this bit.
28	TTM	TBST/TSIZ mismatch. Set when an illegal/reserved TBST and TSIZ[0:2] combinations occur. These combinations are TBST asserted and TSIZ[0:2] = 000, 001, 011, or 1xx (where "x" is 0 or 1). For a description of TBST and TSIZ, see the MPC603e Users' Manual, Section 7.2.
29	BA	Bus Activity Tenure Time-out. Set when the bus activity time-out counter expires.
30	DT	Data Tenure Time-out. Set when the data tenure time-out counter expires.
31	AT	Address Tenure Time-out. Set when the address tenure time-out counter expires.

16.2.4 Arbiter Interrupt Enable Register (R/W)—MBAR + 0x1F4C

The Arbiter Interrupt Enable Register is used to enable a status bit to cause an interrupt. If the interrupt enable and corresponding status bits are set in the Arbiter Status Register and the Arbiter Interrupt Enable Register, the arbiter will assert the internal arb_int signal. Normally, an interrupt service routine would read the status register to determine the state of the arbiter. It is possible that multiple conditions exist that would cause an interrupt. Disabling an interrupt by writing a 0 to a bit in this register will not clear the status bit in the Arbiter Status Register.

NOTE

For SEAE, ECWE, TTME and ATE interrupt conditions, the arbiter also generates a TEA at a later time (dependent upon XL bus activity), which will cause a Machine Check exception. As a result, state information for the interrupted exception in the save/restore registers (SRR0 and SRR1) may be lost. Therefore, it is recommended that SEA, ECW, TTM, and ATE remain disabled at all times. It is possible to enable an arbiter interrupt for MME, TTAE, TTRE, as they do not result in a TEA; in case of DTE and BAE, arbiter interrupt can be enabled, as the TEA assertion always preceeds the interrupt.

MPC5200B Users Guide, Rev. 1

16-6 Freescale Semiconductor

Table 16-4. Arbiter Interrupt Enable Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R									Rsvd							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				Rsvd				SEAE	MME	TTAE	TTRE	ECWE	TTME	BAE	DTE	ATE
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:22	_	Reserved
23	SEAE	Slave Error Acknowledge interrupt enable
24	MME	Multiple Masters at priority 0 interrupt enable
25	TTAE	TT Address Only interrupt enable
26	TTRE	TT Reserved interrupt enable
27	ECWE	External Control Word Read/Write interrupt enable
28	TTME	TBST/TSIZ mismatch interrupt enable
29	BAE	Bus Activity Tenure Time-out interrupt enable
30	DTE	Data Tenure Time-out interrupt enable
31	ATE	Address Tenure Time-out interrupt enable

16.2.5 Arbiter Address Capture Register (R)—MBAR + 0x1F50

The Arbiter Address Capture Register captures the address for a tenure that has either:

- an address time-out,
- · a data time-out, or
- a TEA from another source

The captured value is held until unlocked by writing any value to the Arbiter Address Capture Register or Arbiter Bus Signal Capture Register. This value is also unlocked by writing a 1 to either the Arbiter Status Register, bit 30 (Data Tenure Time-out Status) or bit 31 (Address Tenure Time-Out Status). Unlocking the register does not clear its contents.

Table 16-5. Arbiter Address Capture Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Addr	ess[0:1	5]						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Addre	ess[16:3	31]						
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 16-7

XLB Arbiter Registers—MBAR + 0x1F00

Bit	Name	Description
0:31	ADRCAP	Address Capture Value. This is the address that is captured when a bus error occurs. This happens after an address time-out, data time-out, or any TEA assertion.

16.2.6 Arbiter Bus Signal Capture Register (R)—MBAR + 0x1F54

The Arbiter Bus Signal Capture Register captures TT, TBST, GBL, and TSIZ for an XLB address tenure that has either:

- an address time-out,
- a data time-out, or
- a TEA from another source

These values are held until unlocked by writing any value to the Arbiter Address Capture Register or Arbiter Bus Signal Capture Register. These values are also unlocked by writing 1 to either the Arbiter Status Register, bit 30 (Data Tenure Time-out Status) or bit 31 (Address Tenure Time-Out Status). Unlocking the register does not clear its contents.

Table 16-6. Arbiter Bus Signal Capture Register msb 0 R Rsvd W RESET: 31 lsb R Rsvd TSIZ[0:2] **GBL TBST** TT[0:4] W RESET:

Bit	Name	Description
0:21	_	Reserved
22:24	TSIZ	Captured Value of TSIZ[0:2].
25	GBL	Captured Value of GBL.
26	TBST	Captured Value of TBST.
27:31	П	Captured Value of TT[0:4].

16.2.7 Arbiter Address Tenure Time-Out Register (R/W)—MBAR + 0x1F58

The Arbiter Address Tenure Time-out Register provides an expiration value to the arbiter watchdog for address tenures. After an address tenure is initiated with a TS signal assertion by the master, the address tenure watchdog starts counting until either AACK is asserted, or the counter expires. If expiration occurs before the AACK is encountered, the arbiter issues an AACK assertion, followed by a TEA assertion for the corresponding data tenure. Subsequently, the Arbiter Status Register, bit 31 (AT) is set, and an interrupt is generated if the Arbiter Interrupt Enable Register, bit 31 (ATE) is set.

The Arbiter Address Tenure watchdog can be enabled/disabled via the Arbiter Configuration Register, bit 30 (AT).

Table 16-7. Arbiter Address Tenure Time-Out Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Rsv	'd							ADF	RTO[4:15]				
W																
RESET:	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1

MPC5200B Users Guide, Rev. 1

16-8 Freescale Semiconductor

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								ADR	TO[16:3	81]						
W																
RESET:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit	Name	Description
0:3	1	Reserved
4:31	ADRTO	Address Tenure Time-out. Contains the upper 28 bits of the Address Time-out Counter. Values represent increments of 16. Default value is 0xFFFFFF.

16.2.8 Arbiter Data Tenure Time-Out Register (R/W)—MBAR + 0x1F5C

The Arbiter Data Tenure Time-out Register provides an expiration value to the arbiter watchdog for data tenures. After a data tenure is initiated with a DBB signal assertion by the master, the data tenure watchdog starts counting until either TA is asserted, or the counter expires. If expiration occurs before TA is encountered, the arbiter issues a TEA assertion for the data tenure. Subsequently, the Arbiter Status Register, bit 30 (DT) is set, and an interrupt is generated if the Arbiter Interrupt Enable Register, bit 30 (DTE) is set.

The Arbiter Data Tenure watchdog can be enabled/disabled via the Arbiter Configuration Register, bit 29 (AT).

Table 16-8. Arbiter Data Tenure Time-Out Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R		Rsv	⁄d							DAT	TO[4:15]				
W																
RESET:	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								DAT	ГО[16:3	1]						
W																
RESET:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit	Name	Description
0:3	_	Reserved
4:31	DATTO	Data Tenure Time-out. Contains the upper 28 bits of the DataTime-out Counter. Values represent increments of 16. Default value is 0xFFFFFFF.

16.2.9 Arbiter Bus Activity Time-Out Register (R/W)—MBAR + 0x1F60

The Arbiter Bus Activity Time-out Register provides an expiration value to the arbiter watchdog for bus activity. The watchdog monitors bus activity, after the counter expires due to excessive bus idle time, the Arbiter Status Register, bit 29 (BA) is set, and an interrupt is generated if the Arbiter Interrupt Enable Register, bit 29 (BAE) is set.

The Arbiter Bus Activity watchdog can be enabled/disabled via the Arbiter Configuration Register, bit 28 (BA).

Table 16-9. Arbiter Bus Activity Time-Out Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								BUS	TO[0:1	5]						
W																
RESET:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 16-9

		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
	R								BUS	TO[16:3	1]						
İ	W																
٠	RESET:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit	Name	Description
0:31	BUSTO	Bus Activity Time-out. Contains the value of the Bus Activity Time-out Counter. Values represent increments of 1. Default value is 0xFFFFFFF.

16.2.10 Arbiter Master Priority Enable Register (R/W)—MBAR + 0x1F64

The Arbiter Master Priority Enable Register determines whether the arbiter uses the hard-wired or software programmable priority for a master. The default is enabled for all masters. Both methods may be employed at the same time for different masters. This register may be written to at any time, and the change becomes effective one clock after the register is written.

When enabled, the software programmable value in the Arbiter Master N Priority Register is used as the priority for the master. When disabled, the priority assignment for each master is determined by the hardware-wired mNpri signals, as shown in Table 16-10.

Table 16-10. Arbiter Master Priority Enable Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R									Rsvd							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R				Rsv	vd				M7	M6	M5	M4	МЗ	M2	M1	MO
W																
RESET:	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Bit	Name	Description
0:23	_	Reserved
24	M7	Master 7 Priority Register Enable
25	M6	Master 6 Priority Register Enable
26	M5	Master 5 Priority Register Enable
27	M4	Master 4 Priority Register Enable
28	М3	Master 3 Priority Register Enable
29	M2	Master 2 Priority Register Enable
30	M1	Master 1 Priority Register Enable
40	MO	Master 0 Priority Register Enable

Table 16-11. Hardware Assignments of Master Priority

Master	Priority	Description
M7-M4	_	Unused
М3	0	PCI Target Interface

16-10 Freescale Semiconductor

Table 16-11. Hardware Assignments of Master Priority

Master	Priority	Description
M2	1	BestComm
M1	2	USB
MO	7	e300 Core

16.2.11 Arbiter Master Priority Register (R/W)—MBAR + 0x1F68

The Arbiter Master N Priority Register is used to set the software-programmable priority of each master. This register is used in conjunction with the Arbiter Master Priority Enable Register to enable software-programmable master priorites, consequently ignoring internal, hardware-wired signals. This register may be written at any time, and changes to this register become effective one clock after the register is written.

Valid priority values range from 0 to 7, with 0 being the highest priority. Each of the eight fields in the register has the upper (fourth) bit reserved. This allows for a possible future expansion to 16 priority levels. Currently, the reserved bits will always read as 0, and should be written as 0 for future software compatibility.

Table 16-12. Arbiter Master Priority Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	Rsvd	M7 Priority		Rsvd	M6 Priority		Rsvd	M5 Priority			Rsvd	M4 Priority				
W																
RESET:	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R	Rsvd	М	3 Prior	ity	Rsvd	М	2 Priori	ty	Rsvd	N	11 Priorit	У	Rsvd		M0 Prio	rity
W																
RESET:	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0

Bit	Name	Description
0	_	Reserved
1:3	M7P	Master 7 Priority
4	_	Reserved
5:7	M6P	Master 6 Priority
8	_	Reserved
9:11	M5P	Master 5 Priority
12	_	Reserved
13:15	M4P	Master 4 Priority
16	_	Reserved
17:19	МЗР	Master 3 Priority
20	_	Reserved
21:23	M2P	Master 2 Priority
24	_	Reserved
25:27	M1P	Master 1 Priority
28	_	Reserved
29:31	M0P	Master 0 Priority

Freescale Semiconductor 16-11

MPC5200B Users Guide, Rev. 1

16.2.12 Arbiter Snoop Window Register (RW)—MBAR + 0x1F70

The Arbiter Snoop Window Register is used by the PCI, BestComm, and USB Host interfaces to the XLB. This register dictates the size of an address range in memory that will allow or prohibit address snooping. Each master interface (MBI) monitors this register and determines if the master's address transferred to the XLB should be sent with gbl_b signal assertion.

The benefit of this implementation of a system-wide address snooping control mechanism is that address ranges that need not be cache-coherent will not be snooped by the core. Under certain conditions, the core can assert an internal signal, ARTRY, when it is too busy to check the cache for a snooped address on the bus. Therefore, by specifying an address range that doesn't require snooping, the number of core-initiated "busy ARTRY" scenarios can be minimized, and the subsequent time penalty to eventually retry the transaction is avoided. The quantity of this incremental system performance increase is dependant upon the loading of core (especially as related to the caches), and the average number of accesses to the designated regions of the snoop window.

The MPC5200B implementation of this address snooping control is shown in the figure below. At the start of a master's address tenure, the master interface decodes the address and determines if it needs to be snooped, based on the configuration of the Arbiter Snoop Window Register. If the transaction requires snooping, the gbl_b signal is asserted; otherwise, gbl_b is negated. However, before the gbl_b signal reaches the XLB for the address tenure, it is gated by a mux, controlled by the Arbiter Configuration Register SE (snoop enable) bit. If SE is 0, gbl_b will always be negated, and no XLB transaction will be snooped. If SE is 1, the gbl_b signal generated by the master bus interface will be allowed to pass to the XLB.

For a more detailed description of address snooping and e300 cache-coherency, see the MCP603e Users' Manual, Section 3.6.

Table 16-13. Arbiter Snoop Window Register msb 0 R WINBASE[0:15] W RESET: 31 lsb WINSIZE[0:4] WINBASE[16:19] Rsvd DS R Rsvd W RESET:

Bit	Name	Description
0:19	WINBASE	Window Base Address. Defines the base address of snoopable/non-snoopable addresses for all PCI, BestComm, and USB address transfers.
20:23	_	Reserved
24	DS	Default Snooping Policy:
		0 = Addresses inside window are snooped. Default gbl_b = "negated"
		1 = Addresses outside window are snooped. Default gbl_b = "asserted"

Bit	Name	Description
25:26		Reserved
		·
		WINSIZE = 11101: TGByte (18 bits mask) WINSIZE = : 2GByte (19 bits mask)
		WINSIZE = 1.2GByte (19 bits mask) WINSIZE = 11111: Reserved
		Note: *NOTE: Software should always write a non-zero value in this field. Otherwise, the address comparison does not take effect (treated as a "window miss").

16.2.13 Arbiter Reserved Registers—MBAR + 0x1F00-1F3C, 0x1F74-1FFF

These are reserved registers and should not be accessed.

0:31

Reserved

Table 16-14. Arbiter Reserved Registers

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rit	Name Description															

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 16-13

XLB Arbiter

Notes

MPC5200B Users Guide, Rev. 1

Chapter 17 Serial Peripheral Interface (SPI)

17.1 Overview

The following sections are contained in this document:

- Section 17.2, SPI Signal Description
- Section 17.3, SPI Registers—MBAR + 0x0F00
- Section 17.4, Functional Description

The Serial Peripheral Interface (SPI) allows full-duplex, synchronous, serial communication between the MPC5200B and peripheral devices. Software can poll the SPI status flags or the SPI operation can be interrupt driven.

Figure 17-1 shows the SPI block diagram.

Figure 17-1. Block Diagram—SPI

17.1.1 Features

The SPI has the following features:

- Master mode and slave mode
- · Bi-directional mode
- Slave-select output
- Mode fault error flag with CPU interrupt capability
- Double-buffered data register
- Serial clock with programmable polarity and phase
- · Control of SPI operation during wait mode

Freescale Semiconductor 17-1

17.1.2 Modes of Operation

The SPI functions in the following three modes:

- Run Mode—The normal mode of operation.
- Wait Mode—The SPI can be configured to operate in low-power mode. Based on the internal bit state, the SPI can operate normally
 when the CPU is in wait mode or the SPI clock generation can be turned off and the SPI module enters a power conservation state
 during wait mode. During wait mode, any master transmission in progress stops. Transmission and reception resumes when the SPI
 exits wait mode.
- Stop Mode—This mode is system dependent. The SPI enters the stop mode when the module clock is disabled (held high or low).
 If the SPI is in master mode and exchanging data when the processor enters stop mode, the transmission stops until the processor exits stop mode.

17.2 SPI Signal Description

Table 17-1 shows external SPI signals and their properties. These signals may connect off-chip. Detailed signal descriptions are given in the sections below.

Port Function₁ **Reset State Signal Name** SPIPORT[7] Master Data In/Slave Data Out **MISO** 0 0 MOSI SPIPORT[6] Master Data Out/Slave Data In SCK SPIPORT[5] Serial Clock 0 SS SPIPORT[4] Slave Select 0

Table 17-1. SPI External Signal Descriptions

Note:

17.2.1 Master In/Slave Out (MISO)

MISO is one of two SPI module pins that transmit serial data. MISO is an input when the SPI is configured as a master and an output when the SPI is configured as a slave.

If the bidirectional serial pin mode is selected as a slave, MISO becomes a slave in/slave out (SISO) and the direction is controlled by the associated bit in the SPI port data direction register.

In a multiple-master system, all MISO pins are tied together.

17.2.2 Master Out/Slave In (MOSI)

MOSI is one of two SPI module pins that transmit serial data. MOSI is an output when the SPI is configured as a master and an input when the SPI is configured as a slave.

If the bidirectional serial pin mode is selected as a master, MOSI becomes master out/master in (MOMI) and the direction is controlled by the associated bit in the SPI port data direction register.

In a multiple-master system, all MOSI pins are tied together.

17.2.3 Serial Clock (SCK)

The serial clock synchronizes data transmissions between master and slave devices. SCK is an output if the SPI is configured as a master and SCK is an input if the SPI is configured as a slave.

In master mode the Serial Clock is derived from the IPB clock.

In a multiple-master system, all SCK pins are tied together.

17.2.4 Slave-Select (SS)

The slave-select output or input provides a means of selectively enabling slaves so several may coexist in one system. \overline{SS} is either a general-purpose output (SSOE = 0) or the slave select output (SSOE = 1) when the SPI is in master mode and the associated data direction bit is set.

17-2 Freescale Semiconductor

^{1.} SPI ports MISO, MOSI, SCK, and SS are GPIO ports when SPI is disabled (SPE=0).

The \overline{SS} pin is the mode fault input when the SPI is in master mode and the associated data direction bit is clear. When the data direction bit is clear and SSOE = 1, the \overline{SS} pin is a general-purpose input.

SS is always an input when the SPI is in slave mode, regardless of the state of the data direction bit for that pin. When the SPI is configured as a slave, the MISO (or SISO) output driver is three-stated until enabled by the slave select input (low true) so that many slaves may be wire-ORed to the same MISO (or SISO) line.

The directions of the MOSI and MISO pins are also determined by the serial pin control (SPC[0]) bit.

17.3 SPI Registers—MBAR + 0x0F00

This section gives a detailed description of memory and accessible registers.

These registers are located at an offset from MBAR of 0x0F00. Register addresses are relative to this offset. Therefore, the actual register address is: MBAR + 0x0F00 + register address

Reads from a non-implemented address returns zeros, writes to a non-implemented address has no effect.

Hyperlinks to the SPI registers are provided below:

- SPI Control Register 1 (0x0F00)
- SPI Control Register 2 (0x0F01)
- SPI Baud Rate Register (0x0F04)
- SPI Status Register (0x0F05)

- SPI Data Register (0x0F09)
- SPI Port Data Register (0x0F0D)
- SPI Data Direction Register (0x0F10)

17.3.1 SPI Control Register 1—MBAR + 0x0F00

Table 17-2. SPI Control Register 1

	msb 0	1	2	3	4	5	6	7 lsb
R	SPIE	SPE	SWOM	MSTR	CPOL	СРНА	SSOE	LSBFE
W			(unused)					
RESET:	0	0	0	0	0	1	0	0

Bit	Name	Description
0	SPIE	SPI Interrupt Enable—bit enables SPI interrupts each time the SPIF or MODF status flag is set. 0 = SPI interrupts disabled 1 = SPI interrupts enabled
1	SPE	SPI System Enable—bit enables the SPI system and dedicates SPI port pins 3–0 to SPI functions. When SPE is clear, the SPI system is initialized, but in a low-power disabled state. 0 = SPI system is in a low-power, disabled state 1 = SPI port pins 3–0 are dedicated to SPI functions
2	SWOM	Unused
3	MSTR	SPI Master/Slave Mode Select bit 0 = Slave mode 1 = Master mode
4	CPOL	SPI Clock Polarity—bit selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, the SPI modules must have identical CPOL values 0 = Active-high clocks selected; SCK idles low 1 = Active-low clocks selected; SCK idles high
5	СРНА	SPI Clock Phase—bit is used to shift the SCK serial clock. 0 = The first SCK edge is issued one-half cycle into the 8-cycle transfer operation 1 = The first SCK edge is issued at the beginning of the 8-cycle transfer operation

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 17-3

SPI Registers—MBAR + 0x0F00

Bit	Name	Description
6	SSOE	Slave Select (SS) Output Enable—bit is enabled only in master mode by asserting SSOE and SPIDDR bit 3 as shown in Table 17-3.
7	LSBFE	SPI LSB-First Enable—bit does not affect the position of the msb and lsb in the data register. Reads and writes of the data register always have the msb in bit 7.
		0 = Data is transferred most significant bit first.
		1 = Data is transferred least significant bit first.

Table 17-3. SS Input/Output Selection

SPIDDR Bit 4 (DDR3)	SSOE Master Mode		Slave Mode
0	0	SS input with MODF feature	SS input
0	1	General-purpose input	SS input
1	0	General-purpose output	SS input
1	1	SS output	SS input

17.3.2 SPI Control Register 2—MBAR + 0x0F01

Table 17-4. SPI Control Register 2

	msb 0	1	2	3	4	5	6	7 Isb
R			Res	erved			SPISWAI	SPC0
W	_							
RESET:	0	0	0	0	0	0	0	0

Bit	Name	Description
0:5	_	Reserved
6	SPISWAI	SPI Stop in Wait Mode—bit is used for power conservation while in wait mode. 0 = SPI clock operates normally in wait mode 1 = Stop SPI clock generation when in wait mode
7	SPC0	Serial Pin Control Bit 0—working with the MSTR control bit, this bit enables bidirectional pin configurations as shown in Table 17-5.

Table 17-5. Bidirectional Pin Configurations

P	Pin Mode		MSTR	MISO1	MOSI2	SCK3	SS 4
Α	Normal	0	0	Slave Out	Slave In	SCK in	SS In
В			1	Master In	Master Out	SCK out	SS I/O
С	Bidirectional	1	0	Slave I/O	GP I/O5	SCK in	SS In
D			1	GP I/O	Master I/O	SCK out	SS I/O

Note:

- 1. Slave output is enabled if SPIDDR bit 0 = 1, $\overline{SS} = 0$, and MSTR = 0 (A, C).
- 2. Master output is enabled if SPIDDR bit 1 = 1 and MSTR = 1 (B, D).
- 3. SCK output is enabled if SPIDDR bit 2 = 1 and MSTR = 1 (B, D).
- 4. SS output is enabled if SPIDDR bit 3 = 1, SSOE = 1, and MSTR = 1 (B, D).
- 5. GP I/O = General-Purpose Input/Output.

17.3.3 SPI Baud Rate Register—MBAR + 0x0F04

Table 17-6. SPI Baud Rate Register

	msb 0	1	2	3	4	5	6	7 Isb
R	Reserved	SPPR2	SPPR1	SPPR0	Reserved	SPR2	SPR1	SPR0
W								
RESET:	0	0	0	0	0	0	0	0

Bit	Name	Description
0	_	Reserved
1:3	SPPR[0:2]	SPI Baud Rate Preselection bits
4	_	Reserved
5:7	SPR[0:2]	SPI Baud Rate Selection bits

The SPI baud rate is derived from the IPB clock. The SPI module clock divisor is calculated as following:

SPI module clock divisor =
$$(SPPR + 1) \times 2^{(SPR + 1)}$$

The SPI Baud rate is calculated as following:

SPI Baud Rate =
$$\frac{IPB CLock}{SPI \text{ module clock divisor}}$$

Table 17-7 shows some Baud rates derived from the possible IPB clock values:

Freescale Semiconductor 17-5

Table 17-7. SPI Baud Rate Selection

SPPR2	SPPR1	SPPR0	SPR2	SPR1	SPR0	SPI Module Clock Divisor	Baud Rate IPB 33.0 MHz	Baud Rate IPB 66.0 MHz	Baud Rate IPB 132.0 MHz
0	0	0	0	0	0	2	16.50 MHz	33.00 MHz	66.00 MHz
0	0	0	0	0	1	4	8.250 MHz	16.50 MHz	33.00 MHz
0	0	0	0	1	0	8	4.125 MHz	8.250 MHz	16.50 MHz
0	0	0	0	1	1	16	2.063 MHz	4.125 MHz	8.250 MHz
1	1	1	1	0	0	256	128.9 KHz	257.8 KHz	512.6 KHz
1	1	1	1	0	1	512	64.45 KHz	128.9 KHz	257.8 KHz
1	1	1	1	1	0	1024	32.23 KHz	64.45 KHz	128.9 KHz
1	1	1	1	1	1	2048	16.1 KHz	32.23 KHz	64.45 KHz

17.3.4 SPI Status Register —MBAR + 0x0F05

Table 17-8. SPI Status Register

	msb 0	1	2	3	4	5	6	7 lsb
R	SPIF	WCOL	Reserved	MODF		Res	erved	
W								
RESET:	0	0	0	0	0	0	0	0

Bit	Name	Description
0	SPIF	SPI Interrupt flag—bit sets after 8th SCK cycle in a data transfer. Bit is cleared by an SPISR register read (with SPIF set) followed by an SPI data register read or write access. 0 = Transfer not yet complete 1 = New data copied to SPIDR
1	WCOL	Write Collision flag—bit indicates a serial transfer was in progress when the MCU tried to write new data into the SPI data register. The flag is cleared automatically by an SPI status register read (with WCOL set) followed by a SPI data register read or write access. 0 = Write collision did not occur 1 = Write collision occurred
2	_	Reserved
3	MODF	Mode Fault flag—bit sets if SS input goes low while SPI is configured as a master. Flag is cleared automatically by an SPI status register read (with MODF set) followed by a SPI control register 1 write. 0 = Mode fault did not occur 1 = Mode fault occurred
4:7		Reserved

17-6 Freescale Semiconductor

17.3.5 SPI Data Register—MBAR + 0x0F09

Table 17-9. SPI Data Register

	msb 0	1	2	3	4	5	6	7 lsb
R	D7	D6	D5	D4	D3	D2	D1	D0
W								
RESET:	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	D[0:7]	The SPI Data register is both an input and output register for SPI data.
		Attempts to write to this register while data transfers are in progress sets the WCOL flag and disables the attempted write. Review the WCOL bit description in Table 17-8 for more information.
		Reading data can occur anytime, from after SPIF is set, to before the end of the next transfer. If SPIF is not serviced by the end of the successive transfers, those data bytes are lost and data within SPIDR retains the first byte until SPIF is serviced.

17.3.6 SPI Port Data Register—MBAR + 0x0F0D

Table 17-10. SPI Port Data Register

	msb 0	1	2	3	4	5	6	7 lsb
R	D7	D6	D5	D4	D3	D2	D1	D0
W								
RESET:	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7 (Note 1)	D[0:7]	SPI Port Data bits—data written to SPIPORT drives pins only when they are configured as general-purpose outputs.
		Reading an input (data direction bit is clear) returns the pin level.
		Reading an output (data direction bit is set) returns the pin driver input level.
		Writes do not change the state of pins 0:3 when pin is configured for SPI output.
		SPIPORT I/O function depends upon the state of the SPE bit in SPI control register 1 and the state of each associated data direction bit in SPIDDR.
Note:		

Note:

17.3.7 SPI Data Direction Register—MBAR + 0x0F10

Table 17-11. SPI Data Direction Register

	msb 0	1	2	3	4	5	6	7 lsb
R	DDR7	DDR6	DDR5	DDR4	DDR3	DDR2	DDR1	DDR0
W								
RESET:	0	0	0	0	0	0	0	0
Pin Function					SS	SCK	MOSI	MISO

Freescale Semiconductor 17-7

MPC5200B Users Guide, Rev. 1

^{1.} Bits 4:7 do not drive output pins. When programmed as inputs (data direction bit is set), they return "0".

Functional Description

Bit	Name	Description				
0:7	DDR[0:7]	In SPI slave mode, SPIDDR bit 3 has no meaning or effect.				
		In SPI master mode, SPIDDR bit 3 determines if SPI port pin 3 is:				
		an error-detect input to SPI				
		a general-purpose output				
		a slave select output line				
		Note: When SPI is Enabled, MISO, MOSI, and SCK are:				
		inputs if expected to be inputs, regardless of associated data direction bit state.				
		outputs if expected to be outputs, only if associated data direction bit is set.				
		SPIDDR bits 0:7—SPI Port Data Direction Control bits				
		0 = Associated pin is an input				
		1 = Associated pin is an output				

17.4 Functional Description

17.4.1 **General**

The SPI module allows full-duplex, synchronous, serial communication between the MCU and peripheral devices. Software can poll the SPI status flags or SPI operation can be interrupt driven.

The SPI system is enabled by setting the SPI enable (SPE) bit in SPI control register 1. While SPE is set, the four associated SPI port pins are dedicated to the SPI function as:

- Slave select (SS)
- Serial clock (SCK)
- Master out/slave in (MOSI)
- Master in/slave out (MISO)

While SPE is clear, SPI port pins 3, 2, 1, and 0 are general-purpose I/O (input/output) pins controlled by the SPI port data direction register.

The main element of the SPI system is the SPI data register. The 8-bit data register in the master and the 8-bit data register in the slave are linked by the MOSI and MISO pins to form a distributed 16-bit register. When a data transfer operation is performed, this 16-bit register is serially shifted eight bit positions by the SCK clock from the master; data is exchanged between the master and the slave. Data written to the master SPI data register becomes the output data for the slave, and data read from the master SPI data register after a transfer operation is the input data from the slave.

A write to the SPI data register puts data into a serial shifte. When a transfer is complete, received data is moved into a receive data register. Data may be read from this double-buffered system any time before the next transfer is complete. This 8-bit data register acts as the SPI receive data register for reads and as the SPI transmit data register for writes. A single SPI register address is used for reading data from the read data buffer and for writing data to the shifter.

The clock phase control bit (CPHA) and a clock polarity control bit (CPOL) in the SPI control register 1 select one of four possible clock formats to be used by the SPI system. The CPOL bit simply selects a non-inverted or inverted clock. The CPHA bit is used to accommodate two fundamentally different protocols by shifting the clock by a half cycle or by not shifting the clock (17.4.4 Transmission Formats).

The SPI can be configured to operate as a master or as a slave. When MSTR in SPI control register 1 is set, the master mode is selected; when the MSTR bit is clear, the slave mode is selected.

17.4.2 Master Mode

The SPI operates in master mode when the MSTR bit is set. Only a master SPI module can initiate transmissions. A transmission begins by writing to the master SPI data register. If the shift register is empty, the byte immediately transfers to the shift register. The byte begins shifting out on the MOSI pin under the control of the serial clock.

The SPR2, SPR1, and SPR0 baud rate selection bits in conjunction with the SPPR2, SPPR1, and SPPR0 baud rate preselection bits in the SPI baud rate register control the baud rate generator and determine the speed of the shift register. The SCK pin is the SPI clock output. Through the SCK pin, the baud rate generator of the master controls the shift register of the slave peripheral.

In master mode, the function of the serial data output pin (MOSI) and the serial data input pin (MISO) is determined by the SPC0 and MSTR control bits.

17-8 Freescale Semiconductor

The SS pin is normally an input which should remain in the inactive high state. However, in the master mode, if the associated data direction bit (SPIDDR bit 4) is set, then the SS pin is a general-purpose output or the slave select output depending on the state of the SSOE bit.

General-purpose output (SSOE = 0) or slave select output (SSOE = 1) is specified by the SSOE bit in SPI control register 1. When this pin is being used as the output pin with SPIDDR bit 4 set, the mode error function for the master is disabled (MODF in the SPI status register).

The SS output becomes low during each transmission and is high when the SPI is in the idling state. If the SS input becomes low while the SPI is configured as a master, it indicates a mode fault error where more than one master may be trying to drive the MOSI and SCK lines simultaneously. In this case, the SPI immediately clears the data direction bits associated with the MISO, MOSI (or MOMI), and SCK pins so that these pins become inputs. This mode fault error also clears the SPE and MSTR control bits and sets the mode fault (MODF) flag in the SPI status register. If the SPI interrupt enable bit (SPIE) is set when the MODF bit gets set, then an SPI interrupt sequence is also requested

When a write to the SPI data register in the master occurs, there is a half SCK-cycle delay. After the delay, SCK is started within the master. The rest of the transfer operation differs slightly, depending on the clock format specified by the SPI clock phase bit, CPHA, in SPI control register 1 (17.4.4 Transmission Formats).

17.4.3 Slave Mode

The SPI operates in slave mode when the MSTR bit in SPI control register 1 is clear. In slave mode, SCK is the SPI clock input from the master, and SS is the slave select input. Before a data transmission occurs, the SS pin of the slave SPI must be at logic 0. SS must remain low until the transmission is complete.

In slave mode, the function of the serial data output pin (MISO) and serial data input pin (MOSI) is determined by the SPC0 bit in SPI control register 2 and the MSTR control bit. While in slave mode, the SS input controls the serial data output pin; if SS is high (not selected), the serial data output pin is high impedance, and, if SS is low the msb (most significant bit) in the SPI data register is driven out of the serial data output pin. Also, if the slave is not selected (SS is high), then the SCK input is ignored and no internal shifting of the SPI shift register takes place.

Although the SPI is capable of full-duplex operation, some SPI peripherals are capable of only receiving SPI data in a slave mode. For these simpler devices, there is no serial data out pin

NOTE

When peripherals with full-duplex capability are used, take care not to simultaneously enable two receivers whose serial outputs drive the same system slave's serial data output line.

As long as no more than one slave device drives the system slave's serial data output line, it is possible for several slaves to receive the same transmission from a master, although the master would not receive return information from all of the receiving slaves.

If the CPHA bit in SPI control register 1 is clear, odd numbered edges on the SCK input cause the data at the serial data input pin to be latched. Even numbered edges cause the value previously latched from the serial data input pin to shift into the LSB of the SPI shifter.

If the CPHA bit is set, even numbered edges on the SCK input cause the data at the serial data input pin to be latched. Odd numbered edges cause the value previously latched from the serial data input pin to shift into the LSB of the SPI shifter.

When CPHA is set, the first edge is used to get the most significant data bit onto the serial data output pin. When CPHA is clear and the SS input is low (slave selected), the msb of the SPI data is driven out of the serial data input pin. After the eighth shift, the transfer is considered complete and the received data is transferred into the SPI data register. To indicate transfer is complete, the SPIF flag in the SPI status register is set.

17.4.4 Transmission Formats

During an SPI transmission, data is transmitted (shifted out serially) and received (shifted in serially) simultaneously. The serial clock (SCK) synchronizes shifting and sampling of the information on the two serial data lines. A slave select line allows selection of an individual slave SPI device; slave devices that are not selected do not interfere with SPI bus activities. Optionally, on a master SPI device, the slave select line can be used to indicate multiple-master bus contention.

Freescale Semiconductor 17-9

Figure 17-2. Master/Slave Transfer Block Diagram

17.4.4.1 Clock Phase and Polarity Controls

Using two bits in the SPI control register 1, software selects one of four combinations of serial clock phase and polarity.

The CPOL clock polarity control bit specifies an active high or low clock and has no significant effect on the transmission format.

The CPHA clock phase control bit selects one of two fundamentally different transmission formats.

Clock phase and polarity should be identical for the master SPI device and the communicating slave device. In some cases, the phase and polarity are changed between transmissions to allow a master device to communicate with peripheral slaves having different requirements.

17.4.4.2 CPHA = 0 Transfer Format

The first edge on the SCK line is used to clock the slave msb into the master and the master msb into the slave. In some peripherals, the msb of the slave's data is available at the slave data out pin as soon as the slave is selected. In this format, the first SCK edge is not issued until a half cycle into the 8-cycle transfer operation. The first edge of SCK is delayed a half cycle by clearing the CPHA bit.

The SCK output from the master remains in the inactive state for a half SCK period before the first edge appears. A half SCK cycle later, the second edge appears on the SCK line. When this second edge occurs, the value previously latched from the serial data input pin is shifted into the LSB of the shifter.

After this second edge, the next bit of the SPI master data is transmitted out of the serial data output pin of the master to the serial input pin on the slave. This process continues for a total of 16 edges on the SCK line, with data being latched on odd numbered edges and shifted on even numbered edges.

Data reception is double buffered. Data is shifted serially into the SPI shift register during the transfer and is transferred to the parallel SPI data register after the last bit is shifted in.

After the 16th (last) SCK edge:

- Data that was previously in the master SPI data register should now be in the slave data register and the data that was in the slave data register should be in the master.
- The SPIF flag in the SPI status register is set and the clock is stopped, indicating that the transfer is complete.

Table 17-3 is a timing diagram of an SPI transfer where CPHA = 0. SCK waveforms are shown for CPOL = 0 and CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the SCK, MISO, and MOSI pins are connected directly between the master and the slave. The MISO signal is the output from the slave and the MOSI signal is the output from the master. The SS pin of the master must be either high or reconfigured as a general-purpose output not affecting the SPI.

17-10 Freescale Semiconductor

t_L = Minimum leading time before the first SCK edge

Figure 17-3. SPI Clock Format 0 (CPHA = 0)

In slave mode, if the SS line is not deasserted between the successive transmissions then the content of the SPI Data Register is not transmitted, instead the last received byte is transmitted. If the SS line is deasserted for at least minimum idle time (half SCK cycle) between successive transmissions content of the SPI Data Register is transmitted.

In master mode, with slave select output enabled the SS line is always deasserted and reasserted successive transfers for at least minimum idle time.

17.4.4.3 CPHA = 1 Transfer Format

Some peripherals require the first SCK edge before the msb becomes available at the data out pin; the second edge clocks data into the system. In this format, the first SCK edge is issued by setting the CPHA bit at the beginning of the 8-cycle transfer operation.

The first edge of SCK occurs immediately after the half SCK clock cycle synchronization delay. This first edge commands the slave to transfer its most significant data bit to the serial data input pin of the master.

A half SCK cycle later, the second edge appears on the SCK pin. This is the latching edge for both the master and slave.

When the third edge occurs, the value previously latched from the serial data input pin is shifted into the LSB of the SPI shifter. After this edge, the next bit of the master data is coupled out of the serial data output pin of the master to the serial input pins on the slave.

This process continues for a total of 16 edges on the SCK line with data being latched on even numbered edges and shifting taking place on odd numbered edges.

Data reception is double buffered; data is serially shifted into the SPI shift register during the transfer and is transferred to the parallel SPI data register after the last bit is shifted in.

After the 16th SCK edge:

- Data that was previously in the SPI data register of the master is now in the data register of the slave, and data that was in the data register of the slave is in the master.
- The SPIF flag bit in SPISR is set and the clock is stopped, indicating that the transfer is complete.

Table 17-4 shows two clocking variations for CPHA = 1. The diagram may be interpreted as a master or slave timing diagram since the SCK, MISO, and MOSI pins are connected directly between the master and the slave. The MISO signal is the output from the slave, and the MOSI

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 17-11

t_T = Minimum trailing time after the last SCK edge

 t_{I} = Minimum idling time between transfers (minimum \overline{SS} high time)

 t_L , t_T , and t_I are guaranteed for the master mode and required for the slave mode.

Functional Description

signal is the output from the master. The SS line is the slave select input to the slave. The SS pin of the master must be either high or reconfigured as a general-purpose output not affecting the SPI.

t_L = Minimum leading time before the first SCK edge

Figure 17-4. SPI Clock Format 1 (CPHA = 1)

When CPHA = 1, the SS line can remain active low between successive transfers (can be tied low at all times). This format is sometimes preferred in systems having a single fixed master and a single slave that drive the MISO data line.

The SPI interrupt request flag (SPIF) is common to both the master and slave modes. SPIF gets set after the last SCK cycle in a data transfer operation to indicate that the transfer is complete SPIF is cleared automatically when the SPI status register is read (with SPIF set) followed by a read or write to the SPI data register. If the SPIE bit is set when the SPIF flag is set, a hardware interrupt is requested.

A warning flag (WCOL) is set if a write to the SPI data register is attempted while a transfer is in progress. This is a conflict since the write would erroneously overwrite the current contents of the SPI serial shift register. If this situation arises, the write to the SPI data register is inhibited so as not to disturb the transfer in progress, and the WCOL flag is set to indicate the error. No interrupt is generated by WCOL because an interrupt comes at the end of the transfer that was in progress at the time of the error.

17.4.5 SPI Baud Rate Generation

Baud rate generation consists of a series of divider stages. Six bits in the SPI baud rate register (SPPR2, SPPR1, SPPR0, SPR2, SPR1, and SPR0) determine the divisor to the SPI module clock which results in the SPI baud rate.

The SPI clock rate is determined by the product of the value in the baud rate preselection bits (SPPR2–SPPR0) and the value in the baud rate selection bits (SPR2–SPR0). The module clock divisor equation is shown in **Table 17-5**.

When all bits are clear (the default condition), the SPI module clock is divided by 2. When the selection bits (SPR2–SPR0) are 001 and the preselection bits (SPPR2–SPPR0) are 000, the module clock divisor becomes 4. When the selection bits are 010, the module clock divisor becomes 8, etc.

When the preselection bits are 001, the divisor determined by the selection bits is multiplied by 2. When the preselection bits are 010, the divisor is multiplied by 3, etc. See Table 17-6 for baud rate calculations for all bit conditions, based on a 40 MHz SPI module clock. The two sets of selects allows the clock to be divided by a non-power of two to achieve other baud rates such as divide by 6, divide by 10, etc.

The baud rate generator is activated only when the SPI is in the master mode and a serial transfer is taking place. In the other cases, the divider is disabled to decrease IDD current

t_T = Minimum trailing time after the last SCK edge

t₁ = Minimum idling time between transfers (minimum SS high time)

t_L, t_T, and t_I are guaranteed for the master mode and required for the slave mode.

BaudRateDivisor =
$$(SPPR + 1) \cdot 2^{(SPR + 1)}$$

Figure 17-5. Baud Rate Divisor Equation

17.4.6 Special Features

17.4.6.1 SS Output

The SS output feature automatically drives the SS pin low during transmission to select external devices and drives it high during idle to deselect external devices. When SS output is selected, the SS output pin is connected to the SS input pin of the external device.

The SS output is available only in master mode during normal SPI operation by asserting SSOE and SPIDDR bit 4 as shown in Table 17-3.

The mode fault feature is disabled while SS output is enabled.

NOTE

Care must be taken when using the SS output feature in a multimaster system since the mode fault feature is not available for detecting system errors between masters.

17.4.6.2 Bidirectional Mode (MOMI or SISO)

The bidirectional mode is selected when the SPC0 bit is set in SPI control register 2 (Table 17-12. Normal Mode and Bidirectional Mode). In this mode, the SPI uses only one serial data pin for the interface with external device(s). The MSTR bit decides which pin to use. The MOSI pin becomes the serial data I/O (MOMI) pin for the master mode, and the MISO pin becomes serial data I/O (SISO) pin for the slave mode The MISO pin in the master mode and MOSI pin in the slave mode become general-purpose I/O.

When SPE = 1 Master Mode MSTR = 1 Slave Mode MSTR = 0 Serial Out MOSI Serial In MOSI SPIDDR 7 **Normal Mode** (DDR0) SPI SPI SPC0 = 0SPIDDR 6 (DDR1) Serial In MISO Serial Out MISO SWOM enables open drain output. SWOM enables open drain output. Serial Out SPI port MOMI Serial In SPIDDR 7 pin 1 (DDR0) **Bidirectional Mode** SPI SPIDDR 6 SPI SPI port SPC0 = 1(DDR1) Serial In pin 0 SISO Serial Out SWOM enables open drain output. SWOM enables open drain output. SPI port pin 7 becomes general-purpose I/O. SPI port pin 6 becomes general-purpose I/O.

Table 17-12. Normal Mode and Bidirectional Mode

The direction of each serial I/O pin depends on the corresponding data direction register bit If the pin is configured as an output, serial data from the shift register is driven out on the pin. The same pin is also the serial input to the shift register.

If the pin is configured as an input, serial data from the shift register is discarded, but the external serial data through the pin is the serial input to the shift register.

The SCK is output for the master mode and input for the slave mode.

The SS is the input or output for the master mode, and it is always the input for the slave mode.

The bidirectional mode does not affect SCK and SS functions; however, the SPIDDR bit 7 is not cleared by the mode fault error in the bidirectional mode.

Freescale Semiconductor 17-13

Functional Description

17.4.7 Error Conditions

The SPI has two error conditions:

- Write collision error
- Mode fault error

17.4.7.1 Write Collision Error

The WCOL status flag in the SPI status register indicates that a serial transfer was in progress when the MCU tried to write new data into the SPI data register. The following list explains valid write times (reference **Table 17-3** and **Table 17-4** for definitions of tT and tI).

- In Master Mode, a valid write is defined as any write within tI (when SS is high).
- In Slave Phase 0, a valid write is defined as any write within tI (when SS is high).
- In Slave Phase 1, a valid write is defined as any write within tT or tI (after last SCK edge to when SS goes low) excluding the first two module clocks after the last SCK edge (beginning of tT is an illegal write).

A write during any other time will result in a WCOL error. The MCU write is disabled to avoid writing over the data being transmitted. No interrupt is generated because the error status flag can be read upon completion of the transfer that was in progress at the time of the error. This flag is cleared automatically by a read of the SPI status register (with WCOL set) followed by a read or write access to the SPI data register.

17.4.7.2 Mode Fault Error

If the SS input becomes low while the SPI is configured as a master, it indicates a system error where more than one master may be trying to drive the MOSI and SCK lines simultaneously. This condition is not permitted in normal operation; the MODF bit in the SPI status register is set automatically.

In the special case where SPIDDR bit 4 is set, the SS pin is either a general-purpose output pin or SS output pin rather than being dedicated as the SS input for the SPI system. In this special case, the mode error function is inhibited and MODF remains cleared.

When a mode fault error occurs, the SPE and MSTR bits are cleared and data direction bits controlling the output enable for the SCK, MISO, and MOSI (or MOMI) pins are cleared. This forces those pins to be high impedance inputs to avoid any possibility of conflict with another output driver.

If the mode fault error occurs in the bidirectional mode, the data direction bit associated with MISO (SISO) is not affected, since this bit is dedicated for general purpose.

This flag is cleared automatically by a read of the SPI status register (with MODF set) followed by a write to SPI control register 1.

17.4.8 Low Power Mode Options

17.4.8.1 SPI in Run Mode

In run mode with the SPI system enable (SPE) bit in the SPI control register clear, the SPI system is in a low-power, disabled state. SPI registers can still be accessed, but clocks to the core of this module are disabled. Since the SPI does not support other user modes (such as supervisory), any configurations to those modes will cause the SPI to act as it does in normal run mode. The supported modes are run, wait, and stop.

17.4.8.2 SPI in Wait Mode

SPI operation in wait mode depends upon the state of the SPISWAI bit in SPI control register 2.

- If SPISWAI is clear, the SPI operates normally when the CPU is in wait mode
- If SPISWAI is set, SPI clock generation ceases and the SPI module enters a power conservation state when the CPU is in wait mode.
 - If SPISWAI is set and the SPI is configured for master, any transmission and reception in progress stops at wait mode entry. The transmission and reception resumes when the SPI exits wait mode.
 - If SPISWAI is set and the SPI is configured as a slave, any transmission and reception in progress continues if the SCK continues to be driven from the master. This keeps the slave synchronized to the master and the SCK.
 - If the master transmits several bytes while the slave is in wait mode, the slave will continue to send out bytes consistent with the its operation mode at the start of wait mode (i.e. If the slave is currently sending its SPIDR to the master, it will continue to send the same byte. Else if the slave is currently sending the last received byte from the master, it will continue to send each previous master byte).

17-14 Freescale Semiconductor

NOTE

Care must be taken when expecting data from a master while the slave is in wait or stop mode. Even though the shift register will continue to operate, the rest of the SPI is shut down (i.e. a SPIF interrupt will not be generated until exiting stop or wait mode). Also, the byte from the shift register will not be copied into the SPIDR register until after the slave SPI has exited wait or stop mode. A SPIF flag and SPIDR copy is only generated if wait mode is entered or exited during a tranmission. If the slave enters wait mode in idle mode and exits wait mode in idle mode, neither a SPIF nor a SPIDR copy will occur.

17.4.8.3 SPI in Stop Mode

Stop mode is dependent on the system. The SPI enters stop mode when the module clock is disabled (held high or low). If the SPI is in master mode and exchanging data when the MCU enters stop mode, the transmission is frozen until the MCU exits stop mode. After stop, data to and from the external SPI is exchanged correctly. In slave mode, the SPI will stay synchronized with the master.

The stop mode is equivalent to the wait mode with the SPISWAI bit set except that the stop mode is not dependent on the SPISWAI bit.

17.4.9 SPI Interrupts

The Serial Peripheral Interface only originates interrupt requests. The following is a description of how the Serial Peripheral Interface makes a request and how the MCU should acknowledge that request. The interrupt vector offset and interrupt priority are chip dependent.

17.4.9.1 MODF Description

MODF occurs when the master detects an error on the SS pin. The master SPI must be configured for the MODF feature (see Table 17-3. SS Input/Output Selection). Once MODF is set, the current transfer is halted and the following bits are changed:

- SPE=0, The SPI automatically disables itself.
- MSTR=0, The master bit in SPICR1 resets.

The MODF interrupt is reflected in the status register MODF flag. Clearing the flag will also clear the interrupt. This interrupt will stay active while the MODF flag is set. MODF has an automatic clearing process which is described in 17.3.4 SPI Status Register —MBAR + 0x0F05.

17.4.9.2 SPIF Description

SPIF occurs when the SPI receives/transmits the last SCK edge in a data transfer operation. Once SPIF is set, it does not clear until it is serviced. SPIF has an automatic clearing process which is described in 17.3.4 SPI Status Register —MBAR + 0x0F05 In the event that the SPIF is not serviced before the end of the next transfer (i.e. SPIF remains active throughout another transfer), the latter transfers will be ignored and no new data will be copied into the SPIDR

Freescale Semiconductor 17-15

Functional Description

17-16 Freescale Semiconductor

Chapter 18 Inter-Integrated Circuit (I²C)

18.1 Overview

The following sections are contained in this document:

- Section 18.2. I²C Controller
- Section 18.3, I²C Interface Registers
- Section 18.4, Initialization Sequence
- Section 18.5, Transfer Initiation and Interrupt

The Inter-Integrated Circuit (I²C) is a two-wire, bidirectional serial bus that provides a simple, efficient method for data exchange between devices. This two-wire bus minimizes the interconnection between devices.

The MPC5200B contains 2 identical and independent I²C modules:

- I2C1 = MBAR + 0x3D00
- I2C2 = MBAR + 0x3D40

The I²C module is connected to the IP bus, and the CommBus.

Each module operates up to $100 \, \text{Kbps}$ with a maximum bus load and timing. Both I²C modules are capable of operating at higher baud rates, up to a maximum of clock/20, with reduced bus loading.

The maximum communication length and the number of devices that can be connected are limited by a maximum bus capacitance of 400 pF. This bus is suitable for applications requiring occasional communications over a short distance between a number of devices. It also provides flexibility, allowing more devices to be connected to the bus for further expansion and system development.

I²C is a true multi-master bus including collision detection and arbitration to prevent data corruption if two or more masters attempt to control the bus simultaneously. This feature provides the capability for complex applications with multi-processor control. It may also be used for rapid testing and alignment of end products via external connections to an assembly-line computer.

18.1.1 Features

The I²C module has the following key features:

- Compatible with I²C bus standard
- · Multi-master operation
- Software programmable for one of 71 different serial clock frequencies
- Software selectable acknowledge bit
- Interrupt driven Byte-by-Byte data transfer
- Arbitration loss with automatic mode switching from master to slave
- Calling address identification interrupt
- Start and stop signal generation/detection
- Repeated start signal generation
- Acknowledge bit generation/detection
- Bus busy detection
- Programmable Glitch Filter

Figure 18-1 shows a block diagram of the I²C module.

Freescale Semiconductor 18-1

Figure 18-1. Block Diagram—I²C Module

18.2 I²C Controller

The I²C has simple bidirectional two-wire bus for efficient inter-IC control. The two wires, serial data line (SDA) and serial clock line (SCL), carry information between MPC5200B and other devices connected to the bus. Each device, including MPC5200B, is recognized by a unique address, and can operate as either transmitter or receiver, depending on the function of the device. In addition to the transmitters and receivers, devices can be considered as masters or slaves. A master is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device addressed is considered a slave. See Table 18-1.

Term	Description
Transmitter	Device that sends data to bus.
Receiver	Device that receives data from bus.
Master	Device that initiates transfer, generates SCL, and terminates transfer.
Slave	Device that is addressed by master.

Table 18-1. I²C Terminology

Standard communication usually has 4 functional areas:

- START signal
- · slave address transmission
- data transfer
- STOP signal

Activities listed above are briefly described in the sections below. Also see Figure 18-1.

18.2.1 START Signal

A START signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the beginning of a new data transfer and wakes up all slaves. Each data transfer may contain several data bytes.

When the bus is free, (i.e., no master device is engaging the bus) both SCL and SDA lines are at a logical high. A master initiates communication by sending a START signal.

18.2.2 STOP Signal

A STOP signal is defined as a low-to-high transition of SDA while SCL is high.

The master terminates communication by generating a STOP signal, which frees the bus. The master can generate a STOP even if the slave has generated an acknowledge, at which point the slave must release the bus.

The master can generate a START signal followed by a calling command without generating a STOP signal first. This is called repeated START.

18.2.2.1 Slave Address Transmission

The first byte of <u>data</u> transfer immediately after a START signal is the slave address transmitted by the master. This is a 7-bit calling address followed by a R/\overline{W} bit. The R/\overline{W} bit tells the slave the desired direction of data transfer.

- 0 = Write transfer
- 1 = Read transfer

Only a slave with a calling address matching the address transmitted by the master will respond by sending back an acknowledge bit. This is done by pulling SDA low at the 9th clock. See Figure 17 - 2.

Figure 18-2. Timing Diagram—Start, Address Transfer and Stop Signal

18.2.2.2 Data Transfer

Data transfer proceeds Byte-by-Byte in a direction specified by the R/\overline{W} bit sent by the calling master. Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while SCL is high.

There is one clock pulse on SCL for each data bit. The MSB is transferred first. Each data byte must be followed by an acknowledge bit, which is signalled from the receiving device by pulling SDA low at the 9th clock. One complete data byte transfer needs nine clock pulses. See Figure 18-3.

Figure 18-3. Timing Diagram—Data Transfer

18.2.2.3 Acknowledge

Figure 18-4 shows the transmitter releases the SDA line HIGH during the acknowledge clock pulse. The receiver pulls the SDA line low during the acknowledge clock pulse so that it remains stable LOW during the clock pulse high period.

If a slave-receiver does not acknowledge the byte transfer, SDA must be left HIGH by the slave. The master then generates a STOP condition to abort the transfer.

If a master-receiver does not acknowledge the slave transmitter after a byte transmission, it means End-Of-Data (EOD) to the slave. The slave then releases the SDA line for the master to generate a STOP or START signal.

Freescale Semiconductor 18-3

Figure 18-4. Timing Diagram—Receiver Acknowledgement

18.2.2.4 Repeated Start

A repeated START signal is a START signal generated without first generating a STOP signal to terminate the communication. The master uses this means to communicate with another slave or with the same slave in a different mode without releasing the bus.

Various combinations of read/write formats are possible. Figure 18-5 shows examples of:

- the master-transmitter transmitting to a slave-receiver. The transfer direction is not changed.
- the master reading a slave immediately after first byte. At the moment of the first acknowledge, the master-transmitter becomes a
 master-receiver and the slave-receiver becomes a slave-transmitter.
- the START condition and slave address are both repeated using the repeated START signal. This communicates with same slave in a different mode without releasing the bus. The master transmits data to the slave first, then the master reads data from the slave by reversing the R/W bit.

Figure 18-5. Data Transfer, Combined Format

18.2.2.5 Clock Synchronization and Arbitration

 I^2C is a true multi-master bus; more than one master can be connected to the bus. If two or more masters try to control the bus at the same time, a clock synchronization procedure determines the bus clock.

Since wire-AND logic is used on the SCL line, a high-to-low transition on the SCL line affects all devices connected on the bus. The devices start counting their low period. Once a device clock goes low, it holds the SCL line low until the clock high state is reached. However, the change of low-to-high in this device clock may not change the SCL line state if another device clock is still within its low period. Therefore, the synchronized clock SCL is held low by the device with the longest low period. Devices with shorter low periods enter a high wait state during this time. See Figure 18-6.

When all devices concerned have counted off their low period, the synchronized clock SCL line is released and pulled high. No difference exists between device clocks and the SCL line state. All devices start counting their high periods. The first device to complete its high period pulls the SCL line low again.

18-4 Freescale Semiconductor

Figure 18-6. Timing Diagram—Clock Synchronization

A data arbitration procedure determines the relative priority of contending masters. A bus master loses arbitration if it transmits logic "1" while another master transmits logic "0". Losing masters immediately switch to slave-receive mode and stop driving SDA output. In this case, transition from master to slave mode does not generate a STOP condition. A status bit is hardware set to indicate loss of arbitration. See Figure 18-7.

Figure 18-7. Timing Diagram—Arbitration Procedure

18.3 I²C Interface Registers

The I^2C is controlled by 7 32-bit registers. The registers are located at an offset from MBAR of 0x3D00 (I2C1) and 0x3D40 (I2C2). Register addresses are relative to this offset. There is one I^2C Interrupt Control Register only for both I^2C modules. There is also one glitch filter control register for both I2C modules.

Hyperlinks to the I²C Interface registers are provided below:

- I²C Address Register (0x3D00)
- I²C Frequency Divider Register (0x3D04)
- I²C Control Register (0x3D08)
- I²C Filter Register (0x3D24)

- I²C Status Register (0x3D0C)
- I²C Data I/O Register (0x3D10)
- I²C Interrupt Control Register (0x3D20)

•

·

18.3.1 I²C Address Register (MADR)—MBAR + 0x3D00 / 0x3D40

Table 18-2. I²C Address Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	ADR[7:1]							Reserved								
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:6	ADR[7:1]	Bits 0 to 6 contains the address I ² C responds to, when addressed as a slave.
		Note: This is not the address sent on the bus during address transfer.
7:31	_	Reserved

18.3.2 I²C Frequency Divider Register (MFDR)—MBAR + 0x3D04 / 0x3D44

Table 18-3. I²C Frequency Divider Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R				FDR[7:0]							Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bit	Name	Description
Ī	0:1	FDR[7:6]	These 2 bits act as a prescale divider of the input module clock.
Ī	2:7	FDR[5:0]	This field is used to prescale the clock for bit-rate selection.
Ī	8:31	_	Reserved

The Frequency Divide register determines the SCL or serial bit-clock frequency. Table 18-4 must be used to select FDR bits that produce an appropriate SCL. The following relationships (1) through (4), which illustrate the connection between Table 18-4 and the signals in the I2C timing specification, are as follows:

SCL (in kHz) = (1/1000) * [system clock speed (in Hz)] / (SCL period) (1)

SDA Hold Time (in us) = 1000 * (SDA Hold / SCL Period) / [SCL (in kHz)] (2)

SCL Hold Time of START (in us) = 1000 * (SDA Hold of START / SCL Period) / [SCL (in kHz)] (3)

SCL Hold Time of STOP (in us) = 1000 * (SDA Hold of STOP / SCL Period) / [SCL (in kHz)] (4)

The following figure illustrates the relationship between system clock and the I2C signals.

MPC5200B Users Guide, Rev. 1

18-6 Freescale Semiconductor

Figure 18-8. Timing Diagram of I2C Signal Relationships

```
For standard mode I2C, the I2C specification states that (SCL \leq 100 kHz)
```

AND

 $(0.3 \text{ us} \le SDA \text{ Hold Time} \le 3.45 \text{ us})$

AND

(SCL Hold of START >= 4 us)

AND

(SCL Hold of STOP \geq 4 us)

which means that the system programmer must choose SCL Period, SDA Hold, SCL Hold of START, and SCL Hold of STOP from Table 18-4 to satisfy the following four equations (5) through (8):

SCL Period \geq = (1/100,000) * [system clock speed (in Hz) (5)

AND

 $(0.0003)*[SCL (in kHz)]*(SCL Period) \le SDA Hold \le (0.00345)*[SCL (in kHz)]*(SCL Period) (6)$

AND

SCL Hold of START $\geq (0.004)*[SCL (in kHz)]*(SCL Period)$ (7)

AND

SCL Hold of STOP \geq (0.004)*[SCL (in kHz)]*(SCL Period) (8)

In this case, the simplest strategy for the system programmer to follow is this:

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 18-7

I²C Interface Registers

- 1. Identify all rows of Table 18-4 where SCL Period satisfies criteria (5). This set of rows limits the choices of SCL allowed for this particular system clock.
- Calculate the SCL associated with these rows according to (1), and decide which speeds are "acceptable" (fast enough or slow enough) for the system.
- 3. Then, find the subset of those rows associated with the "acceptable" I2C clock speeds such that SDA Hold satisfies criteria (6).
- 4. Choose the preferred FDR setting from among that subset that meets (5) and (6).
- 5. Check that the preferred FDR setting also satisfies (7) and (8) usually it does. If not, then choose a different FDR setting that meets (5), (6), (7), and (8).

Likewise, for fast mode I2C, the I2C specification states that

 $(SCL \le 400 \text{ kHz})$

AND

 $(0.3 \text{ us} \le SDA \text{ Hold Time} \le 0.9 \text{ us})$

AND

(SCL Hold of START \geq 0.6 us)

AND

(SCL Hold of STOP \geq 0.6 us)

which means that the system programmer must choose SCL Period, SDA Hold, SCL Hold of START, and SCL Hold of STOP from Table 18-4 to satisfy the following four equations (9) through (12):

SCL Period \geq (1/400,000) * [system clock speed (in Hz) (9)

AND

 $(0.0003)*[SCL (in kHz)]*(SCL Period) \le SDA Hold \le (0.0009)*[SCL (in kHz)]*(SCL Period) (10)$

AND

SCL Hold of START \geq (0.0006)*[SCL (in kHz)]*(SCL Period) (11)

AND

SCL Hold of STOP \geq (0.0006)*[SCL (in kHz)]*(SCL Period) (12)

In this case, the simplest strategy for the system programmer to follow is this:

- 1. Identify all rows of Table 18-4 where SCL Period satisfies criteria (9). This set of rows limits the the choices of SCL allowed.
- Calculate the SCL associated with these rows according to (1), and decide which speeds are "acceptable" (fast enough or slow enough) for the system.
- 3. Then, find the subset of those rows associated with the "acceptable" I2C clock speeds such that SDA Hold satisfies criteria (10).
- 4. Choose the preferred FDR setting from among that subset that meets (9) and (10).
- 5. Check that the preferred FDR setting also satisfies (11) and (12) usually it does. If not, then choose a different FDR setting that meets (9), (10), (11), and (12).

As a final note, the programmer should be aware of the order of the FDR bits in Table 18-4. Additionally there may be several different combinations of FDR bits that satisfy the system programmer, because Table 18-4 has duplicated entries.

FDR[7,6]	FDR[5,1,0]	FDR[4,3,2]	SCL Period	SDA Hold	SCL Hold of START	SCL Hold of STOP
00	000	000	28	9	10	15
00	000	001	44	11	18	23
00	000	010	80	17	34	41

Table 18-4. I2C Frequency Divider Bit Selection

MPC5200B Users Guide, Rev. 1

18-8 Freescale Semiconductor

FDR[7,6]	FDR[5,1,0]	FDR[4,3,2]	SCL Period	SDA Hold	SCL Hold of START	SCL Hold of STOP
00	000	011	144	25	70	73
00	000	100	288	49	142	145
00	000	101	576	97	286	289
00	000	110	1152	193	574	577
00	000	111	2304	385	1150	1153
00	001	000	30	9	11	16
00	001	001	48	11	20	25
00	001	010	88	17	38	45
00	001	011	160	25	78	81
00	001	100	320	49	158	161
00	001	101	640	97	318	321
00	001	110	1280	193	638	641
00	001	111	2560	385	1278	1281
00	010	000	34	10	13	18
00	010	001	56	13	24	29
00	010	010	104	21	46	53
00	010	011	192	33	94	97
00	010	100	384	65	190	193
00	010	101	768	129	382	385
00	010	110	1536	257	766	769
00	010	111	3072	513	1534	1537
00	011	000	40	10	16	21
00	011	001	68	13	30	35
00	011	010	128	21	58	65
00	011	011	240	33	118	121
00	011	100	480	65	238	241
00	011	101	960	129	478	481
00	011	110	1920	257	958	961
00	011	111	3840	513	1918	1921
00	100	000	20	7	6	11
00	100	001	28	7	10	15
00	100	010	48	9	18	25
00	100	011	80	9	38	41
00	100	100	160	17	78	81
00	100	101	320	33	158	161
00	100	110	640	65	318	321
00	100	111	1280	129	638	641
00	101	000	22	7	7	12
00	101	001	32	7	12	17
00	101	010	56	9	22	29
00	101	011	96	9	46	49
00	101	100	192	17	94	97
00	101	101	384	33	190	193

Freescale Semiconductor 18-9

FDR[7,6]	FDR[5,1,0]	FDR[4,3,2]	SCL Period	SDA Hold	SCL Hold of START	SCL Hold of STOP		
00	101	110	768	65	382	385		
00	101	111	1536	129	766	769		
00	110	000	24	8	8	13		
00	110	001	36	9	14	19		
00	110	010	64	13	26	33		
00	110	011	112	17	54	57		
00	110	100	224	33	110	113		
00	110	101	448	65	222	225		
00	110	110	896	129	446	449		
00	110	111	1792	257	894	897		
00	111	000	26	8	9	14		
00	111	001	40	9	16	21		
00	111	010	72	13	30	37		
00	111	011	128	17	62	65		
00	111	100	256	33	126	129		
00	111	101	512	65	254	257		
00	111	110	1024	129	510	513		
00	111	111	2048	257	1022	1025		
01	000	000	56	18	20	30		
01	000	001	88	22	36	46		
01	000	010	160	34	68	82		
01	000	011	288	50	140	146		
01	000	100	576	98	284	290		
01	000	101	1152	194	572	578		
01	000	110	2304	386	1148	1154		
01	000	111	4608	770	2300	2306		
01	001	000	60	18	22	32		
01	001	001	96	22	40	50		
01	001	010	176	34	76	90		
01	001	011	320	50	156	162		
01	001	100	640	98	316	322		
01	001	101	1280	194	636	642		
01	001	110	2560	386	1276	1282		
01	001	111	5120	770	2556	2562		
01	010	000	68	20	26	36		
01	010	001	112	26	48	58		
01	010	010	208	42	92	106		
01	010	011	384	66	188	194		
01	010	100	768	130	380	386		
01	010	101	1536	258	764	770		
01	010	110	3072	514	1532	1538		
01	010	111	6144	1026	3068	3074		
01	011	000	80	20	32	42		

18-10 Freescale Semiconductor

FDR[7,6]	FDR[5,1,0]	FDR[4,3,2]	SCL Period	SDA Hold	SCL Hold of START	SCL Hold of STOP
01	011	001	136	26	60	70
01	011	010	256	42	116	130
01	011	011	480	66	236	242
01	011	100	960	130	476	482
01	011	101	1920	258	956	962
01	011	110	3840	514	1916	1922
01	011	111	7680	1026	3836	3842
01	100	000	40	14	12	22
01	100	001	56	14	20	30
01	100	010	96	18	36	50
01	100	011	160	18	76	82
01	100	100	320	34	156	162
01	100	101	640	66	316	322
01	100	110	1280	130	636	642
01	100	111	2560	258	1276	1282
01	101	000	44	14	14	24
01	101	001	64	14	24	34
01	101	010	112	18	44	58
01	101	011	192	18	92	98
01	101	100	384	34	188	194
01	101	101	768	66	380	386
01	101	110	1536	130	764	770
01	101	111	3072	258	1532	1538
01	110	000	48	16	16	26
01	110	001	72	18	28	38
01	110	010	128	26	52	66
01	110	011	224	34	108	114
01	110	100	448	66	220	226
01	110	101	896	130	444	450
01	110	110	1792	258	892	898
01	110	111	3584	514	1788	1794
01	111	000	52	16	18	28
01	111	001	80	18	32	42
01	111	010	144	26	60	74
01	111	011	256	34	124	130
01	111	100	512	66	252	258
01	111	101	1024	130	508	514
01	111	110	2048	258	1020	1026
01	111	111	4096	514	2044	2050
10 or 11	000	000	112	36	40	60
10 or 11	000	001	176	44	72	92
10 or 11	000	010	320	68	136	164
10 or 11	000	011	576	100	280	292

Freescale Semiconductor 18-11

FDR[7,6]	FDR[5,1,0]	FDR[4,3,2]	SCL Period	SDA Hold	SCL Hold of START	SCL Hold of STOP
10 or 11	000	100	1152	196	568	580
10 or 11	000	101	2304	388	1144	1156
10 or 11	000	110	4608	772	2296	2308
10 or 11	000	111	9216	1540	4600	4612
10 or 11	001	000	120	36	44	64
10 or 11	001	001	192	44	80	100
10 or 11	001	010	352	68	152	180
10 or 11	001	011	640	100	312	324
10 or 11	001	100	1280	196	632	644
10 or 11	001	101	2560	388	1272	1284
10 or 11	001	110	5120	772	2552	2564
10 or 11	001	111	10240	1540	5112	5124
10 or 11	010	000	136	40	52	72
10 or 11	010	001	224	52	96	116
10 or 11	010	010	416	84	184	212
10 or 11	010	011	768	132	376	388
10 or 11	010	100	1536	260	760	772
10 or 11	010	101	3072	516	1528	1540
10 or 11	010	110	6144	1028	3064	3076
10 or 11	010	111	12288	2052	6136	6148
10 or 11	011	000	160	40	64	84
10 or 11	011	001	272	52	120	140
10 or 11	011	010	512	84	232	260
10 or 11	011	011	960	132	472	484
10 or 11	011	100	1920	260	952	964
10 or 11	011	101	3840	516	1912	1924
10 or 11	011	110	7680	1028	3832	3844
10 or 11	011	111	15360	2052	7672	7684
10 or 11	100	000	80	28	24	44
10 or 11	100	001	112	28	40	60
10 or 11	100	010	192	36	72	100
10 or 11	100	011	320	36	152	164
10 or 11	100	100	640	68	312	324
10 or 11	100	101	1280	132	632	644
10 or 11	100	110	2560	260	1272	1284
10 or 11	100	111	5120	516	2552	2564
10 or 11	101	000	88	28	28	48
10 or 11	101	001	128	28	48	68
10 or 11	101	010	224	36	88	116
10 or 11	101	011	384	36	184	196
10 or 11	101	100	768	68	376	388
10 or 11	101	101	1536	132	760	772
10 or 11	101	110	3072	260	1528	1540

18-12 Freescale Semiconductor

FDR[7,6]	FDR[5,1,0]	FDR[4,3,2]	SCL Period	SDA Hold	SCL Hold of START	SCL Hold of STOP
10 or 11	101	111	6144	516	3064	3076
10 or 11	110	000	96	32	32	52
10 or 11	110	001	144	36	56	76
10 or 11	110	010	256	52	104	132
10 or 11	110	011	448	68	216	228
10 or 11	110	100	896	132	440	452
10 or 11	110	101	1792	260	888	900
10 or 11	110	110	3584	516	1784	1796
10 or 11	110	111	7168	1028	3576	3588
10 or 11	111	000	104	32	36	56
10 or 11	111	001	160	36	64	84
10 or 11	111	010	288	52	120	148
10 or 11	111	011	512	68	248	260
10 or 11	111	100	1024	132	504	516
10 or 11	111	101	2048	260	1016	1028
10 or 11	111	110	4096	516	2040	2052
10 or 11	111	111	8192	1028	4088	4100

18.3.3 I²C Control Register (MCR)—MBAR + 0x3D08 / 0x3D48

Table 18-5. I²C Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	EN	IEN	STA	TX	TXAK	RSTA					Res	erved				
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Rese	erved							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

I²C Interface Registers

Bit	Name	Description
0	EN	 If I²C module is enabled in the middle of a byte transfer, interface behaves as follows: Slave mode ignores current bus transfer and starts operating when a subsequent start condition is detected. Master mode is not aware if bus is busy. If a start cycle is initiated, current bus cycle may become corrupt. Ultimately this results in the current bus master or I²C module losing arbitration, after which bus operation returns to normal. 0 = module is reset and disabled. This is the Power-ON reset. When low the interface is held in reset, but registers can still be accessed. 1 = I²C module is enabled. Bit must be set before other CR bits have any effect.
1	IEN	I ² C Interrupt Enable 0 = Interrupts from I ² C module are disabled. This does not clear currently pending interrupt condition. 1 = Interrupts from I ² C module are enabled. An I ² C interrupt occurs, provided the status register IF bit is also set.
2	STA	 Master/Slave mode select—bit clears on reset. When bit changes from 0 to 1, a START signal is generated on the bus and master mode is selected. When bit changes from 1 to 0, a STOP signal is generated and operation mode changes from master to slave. STA is cleared without generating a STOP signal when the master loses arbitration. 0 = Slave Mode 1 = Master Mode
3	ТХ	Transmit/Receive mode select—bit selects master/slave transfer direction. • When addressed as slave, software should set according to status register SRW bit. • When in master mode, bit should be set according to type of transfer required. For address cycles, bit is always high. 0 = Receive 1 = Transmit
4	TXAK	Transmit Acknowledge enable—bit specifies value driven to SDA during acknowledge cycles for both master and slave receivers. Values are used only when I ² C is a receiver, not a transmitter. 0 = Acknowledge signal is sent to bus at 9th clock bit after receiving 1 Byte of data. 1 = No acknowledge signal response is sent (i.e., acknowledge bit = 1)
5	RSTA	Repeat Start—writing 1 to this bit generates a repeated START condition on the bus, provided it is the current bus master. Bit is always read low. If the bus is owned by another master, attempting a repeated start at the wrong time results in loss of arbitration. 1 = Generate repeat start cycle
6:31	_	Reserved

18-14 Freescale Semiconductor

18.3.4 I²C Status Register (MSR)—MBAR + 0x3D0C / 0x3D4C

Table 18-6. I²C Status Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	CF	AAS	BB	AL	AKF	SRW	IF	RXAK				Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Res	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0	CF	Data transferring—bit clears while 1 Byte of data is being transferred. Bit is set by falling edge of
		9th clock of a byte transfer.
		0 = Transfer in progress
		1 = Transfer complete
1	AAS	Addressed As Slave—bit sets when its own specific address (I^2 C Address Register) is matched with the calling address. The CPU is interrupted provided IEN is set. The CPU then needs to check the SRW bit and set its Tx/Rx mode accordingly. Writing to the I^2 C Control Register clears this bit.
		0 = Not addressed
		1 = Addressed as a slave
2	BB	Bus Busy—bit indicates bus status. When a START signal is detected, BB is set. If a STOP signal is detected, it is cleared.
		0 = Bus is idle
		1 = Bus is busy
3	AL	Arbitration Lost—bit is set by hardware when the arbitration procedure is lost. Arbitration is lost in the following circumstances:
		SDA sampled low when master drives high during an address or data Tx cycle.
		SDA sampled low when master drives high during a data Rx cycle acknowledge bit. Start cycle is attempted when bus is busy.
		A repeated start cycle is requested in slave mode.
		Stop condition is detected when not requested by master. Software must clear bit by writing it low.
4	AKF	Acknowledge Cycle Falling Edge when Arbitration Lost <u>AND</u> Addressed as Slave - bit is set by hardware upon the falling edge of the acknowledge cycle after arbitration has been lost and addressed as slave. In this very specific case, the interrupt (IF=1) is really the 2nd one set by the hardware (which is a <i>side-effect</i> of a fix to make the I2C module fully I2C-spec compliant - <i>see note in section 18.5.3 Special note on AKF</i>), The software must use this bit to distinguish if the interrupt is the first one (set upon rising edge of acknowledge cycle) or the second one (set upon falling edge of acknowledge cycle). The software should only take action for AL & AAS if the interrupt is the <u>second</u> one, the "traditional time" for the interrupt.
		0 = 1st interrupt on rising edge of acknowledge cycle- software should <u>not</u> take AL&AAS action (see later section for typical software flow diagram).
		1 = 2nd interrupt on falling edge of acknowledge - software should take AL&AAS action This bit must be cleared by software writing it low in the interrupt routine

I²C Interface Registers

Bit	Name	Description
5	SRW	Slave Read/Write—when set, bit indicates the R/W command bit value of the calling address sent from the master.
		BE AWARE: Bit is valid only when I ² C is in slave mode, a complete address transfer occurred with an address match, and no other transfers were initiated. Checking this bit, the CPU can select slave Tx/Rx mode according to the master command.
		0 = Slave receive, master writing to slave
		1 = Slave transmit, master reading from slave
6	IF	I ² C Interrupt—sets when an interrupt is pending. If IEN is set, a processor interrupt request is generated. IF sets when one of the following events occurs:
		 Complete 1 Byte transfer (set at falling edge of 9th clock). A Rx calling address matches its own specific address in slave mode.
		3. Arbitration is lost.
		This bit must be cleared by software writing it low in the interrupt routine.
7	RXAK	Receive Acknowledge—SDA value during the bus cycle acknowledge bit.
		If bit is low, it indicates an acknowledge signal was received after completion of 8 bits of data transmission on the bus.
		If bit is high, it means no acknowledge signal is detected at the 9th clock.
		0 = Acknowledge received
		1 = No acknowledge received
8:31	_	Reserved

Note: This status register is read-only with the exception of bit6 (IF), bit4 (AKF) and bit3 (AL), which are software clearable.

18.3.5 I²C Data I/O Register (MDR)—MBAR+ x3D10 / 0x3D50

Table 18-7. I²C Data I/O Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	D7	D6	D5	D4	D3	D2	D1	D0				Rese	erved			
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:7	D[7:0]	In Master Transmit Mode—when data is written to this register, a data transfer is initiated. The most significant bit is sent first.
		Note: In this mode, the first data byte written to DR. Assertion of STA is used for the address transfer and should be comprise of the calling address (in position D[7]:D[1]) concatenated with the required R/\overline{W} bit (in position D0).
		In Master Receive Mode—reading this register initiates next byte data receiving.
		In Slave Mode—the same functions are available after an address match occurs.
8:31		Reserved

18.3.6 I²C Interrupt Control Register—MBAR + 0x3D20

Table 18-8. I²C Interrupt Control Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	3E2	TE2	RE2	IE2	3E1	TE1	RE1	IE1				Rese	erved			
W	BNBE2				BNBE1											
RESET:	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0	BNBE2	Bus Not Busy Enable 2—lets module 2 generate an interrupt when the bus is not busy. BNBE2 indicates an idle condition. To clear the interrupt, software must write 0 to the bit position. Reset condition disables BNBE2.
1	TE2	Transmit Enable 2—routes the interrupt for module 2 to the TX requestor at SDMA. Clear by writing 0 to this bit position. Reset condition disables TE2.
2	RE2	Receive Enable 2—routes the interrupt for module 2 to the RX requestor at SDMA. Clear by writing 0 to this bit position. Reset condition disables RE2.
3	IE2	Interrupt Enable 2—routes the interrupt for module 2 to the CPU. Clear by writing 0 to this bit position. Reset condition enables IE2.
4	BNBE1	Bus Not Busy Enable 1—lets module 1 generate an interrupt when the bus is not busy. BNBE1 indicates an idle condition. To clear the interrupt, software must write 0 to the bit position. Reset condition disables this bit.
5	TE1	Transmit Enable 1—routes the interrupt for module 1 to the TX requestor at SDMA. Clear by writing 0 to this bit position. Reset condition disables TE1.
6	RE1	Receive Enable 1—routes the interrupt for module 1 to the RX requestor at SDMA. Clear by writing a 0 to this bit position. Reset condition disables RE1.
7	IE1	Interrupt Enable 1—routes the interrupt for module 1 to the CPU. Clear by writing 0 to this bit position. Reset condition enables IE1.
8:31	_	Reserved

The Interrupt Control register is common to both MPC5200B I²C modules. Each module generates an internal interrupt that can be routed as follows:

- To the CPU interrupt, if IE is set to 1.
- To the TX requestor at SDMA, if TE is set to 1.

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 18-17

I²C Interface Registers

• To the RX requestor at SDMA, if RE is set to 1.

Typically, only one (or none) of the above destinations would be specified. Although, it may be useful to send an interrupt to both the CPU and SDMA. Selecting between TX and RX is based on whether the module is:

- sending data (master or slave TX)
- receiving data (master or slave RX)

Individual requests trigger different SDMA tasks. Reset condition is, IE set and all other enable bits clear.

The BNBE bit lets the module generate an interrupt when the bus becomes not-busy. This implies receipt of a STOP condition, for which the module normally does not generate an interrupt. Because bus-not-busy is an idle condition, it is necessary for software responding to this interrupt to clear the BNBE bit to clear the interrupt condition. Otherwise, the interrupt condition persists until another I²C transaction is initiated.

18.3.7 I²C Filter Register (MIFR)—MBAR + 0x3D24

Table 18-9. I²C Filter Register

	msb 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	sv	sv	SV	sv	33	32	Ξ.	20				Rese	erved			
W	Ë	Resv	Resv	Resv	Æ	FR2	뜐	FR0								
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 lsb
R								Re	served							
W																
RESET:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Name	Description
0:3	_	Reserved
4:7	FR[7:4]	Bits 7 to 4 contain the programming controls for the width of glitch (in terms of IPBUS clock cycles) that the filter should absorb, that is, the filter will not let pass glitches less than or equal to this width setting. FR[] 3210 0000 - No Filter / Bypass 0001 - Filter glitches up to width of 1 IPBUS clock cycle
		0010 - Filter glitches up to width of 2 IPBUS clock cycles
		0011 - Filter glitches up to width of 3 IPBUS clock cycles
		0100 - Filter glitches up to width of 4 IPBUS clock cycles
		0101 - Filter glitches up to width of 5 IPBUS clock cycles
		0110 - Filter glitches up to width of 6 IPBUS clock cycles
		0111 - Filter glitches up to width of 7 IPBUS clock cycles
		1000 - Filter glitches up to width of 8 IPBUS clock cycles
		1001 - Filter glitches up to width of 9 IPBUS clock cycles
		1010 - Filter glitches up to width of 10 IPBUS clock cycles
		1011 - Filter glitches up to width of 11 IPBUS clock cycles
		1100 - Filter glitches up to width of 12 IPBUS clock cycles
		1101 - Filter glitches up to width of 13 IPBUS clock cycles
		1110 - Filter glitches up to width of 14 IPBUS clock cycles
		1111 - Filter glitches up to width of 15 IPBUS clock cycles
8:31		Reserved

MPC5200B Users Guide, Rev. 1

18-18 Freescale Semiconductor

An I2C glitch filter has been added outside the I2C legacy modules (but within the I2C package). This filter can absorb (or "eat") glitches on both the I2C clock and data lines for each I²C module. The width of glitch to absorb can be specified in terms on number of IPBUS clock cycles. A single glitch filter control register is provided for both I2C modules.

The programming of the glitch filter is simple - the programmer only needs to specify the size of glitch (in terms of IPBUS clock cycles) for the filter to absorb and not pass.

18.4 Initialization Sequence

Reset puts the I²C Control register to its default status. Before the interface can be used to transfer serial data, the following initialization procedure must be done:

- Step 1. Update the Frequency Divider register and select the required division ratio to obtain the SCL frequency from the system clock.
- Step 2. Update the I²C Address register to define a slave address.
- Step 3. Set the Control register EN bit to enable the I²C interface system.
- Step 4. Modify the Control register bits to select master/slave mode, transmit/receive mode and interrupt enable or not.

18.5 Transfer Initiation and Interrupt

In master transmit mode, a data transfer is initiated when data is written to the DATA register. The most significant bit is sent first.

In master receive mode, reading this register initiates next byte data receiving.

In slave mode, the same functions as are available after an address match occurs. Data transfer is initiated by:

- writing to the DATA register for slave transmits, or
- a dummy reading from the DATA register in slave receive mode occurs.

The I²C interrupt STATUS register bit is set when an interrupt is pending. If the CONTROL register interrupt enable bit is set, setting the I²C interrupt STATUS register bit causes a processor interrupt request. The interrupt bit sets when one of the following events occurs:

- A complete 1 Byte transfer (set at falling edge of 9th clock) occurs.
- A receive calling address matches its own specific address in slave receive mode.
- Arbitration is lost.

18.5.1 Post-Transfer Software Response

In the interrupt service routine, software must clear the IF status bit first. The CF status bit will be cleared automatically by reading from the Data I/O Register (MBDR) in receive mode or writing to MBDR in transmit mode.

Software may service the bus I/O in the main program by monitoring the IF status bit if the interrupt function is disabled. Polling should monitor the IF status bit rather than the CF bit since their operation is different when arbitration is lost.

When an interrupt occurs at the end of the address cycle the master will always be in transmit mode, i.e. the address is transmitted. If master receive mode is required, indicated by R/W bit in the DATA register, then the TX control bit should be toggled at this stage.

During slave mode address cycles (AAS = 1) the SRW bit in the STATUS register is read to determine the direction of the subsequent transfer and the TX control bit is programmed accordingly. For slave mode, data cycles (AAS = 0) the SRW bit is not valid, therefore the TX bit in the control register should be read to determine the direction of the current transfer.

18.5.2 Slave Mode

In the slave interrupt service routine, the AAS bit should be tested to determine if a calling of its own address was received. If AAS is set, software should set the Tx/Rx mode select bit (Control register Tx bit) according to the R/\overline{W} command bit (SRW). Writing to the CONTROL register automatically clears AAS. The slave interrupt service routine should also "move" the data, depending on whether its acting as a transmitter or a receiver, as follows: For a slave transmitter, the slave interrupt service routine must initiate a data transfer by writing information to the DATA register. For a slave receiver, the slave interrupt service routine must initiate a transfer by performing a dummy read from the DATA register. The slave drives SCL low between byte transfers. SCL is released when the DATA register is accessed in the required mode.

In slave transmitter routine, RXAK must be tested before transmitting the next data byte. Setting RXAK means an end of data signal from the master receiver. After which, software causes a switch from transmitter mode to receiver mode. A dummy read then releases the SCL line letting the master generate a STOP signal.

Freescale Semiconductor 18-19

Transfer Initiation and Interrupt

18.5.3 Special Note on AKF

A new status bit has been added to MSR[4] for the MPC5200B release of this chip. The reason for this is that the legacy I2C module was found to violate, in a merely academic sense, the I2C specification by sending out a very short 9th clock pulse after losing arbitration to another master. According to the I2C specification, the losing I2C master may only complete "one byte's worth" of clock pulses after losing arbitration. The extra short 9th clock pulse driven by the losing I2C master was deemed to violate spec, so a fix to the module was performed to bring the module in line with spec. One "side-effect" of this fix s that for the <u>unique</u> situation when the I2C module both loses arbitration (AL) and is addressed as slave (AAS), the newly fixed I2C module generates <u>two</u> interrupt (IF) requests: one on the rising edge of the acknowledge clock pulse (which is a <u>new time</u> to make the interrupt request) as well as on the falling edge of the acknowledge clock pulse (which is the legacy time to do so). In order to help the software programmer distinguish the first interrupt request (which is non-legacy) from the second interrupt request (which is legacy), the AKF bit was added. The AKF bit will be set only for the 2nd interrupt. The software programmer may thus use the value of AKF (in addition to all the usual bits the software checks) to determine when to act. The following figure on typical software flow for I2C routines will illustrate clearly how the AKF bit may be used.

18-20 Freescale Semiconductor

Figure 18-9. Software Flowchart of Typical I2C Interrupt Routine

Transfer Initiation and Interrupt

MPC5200B Users Guide, Rev. 1

18-22 Freescale Semiconductor

19-1

Chapter 19 Controller Area Network (MSCAN)

19.1 Overview

The following sections are contained in this document:

- Section 19.1, Overview
- Section 19.2, Features
- Section 19.3, External Signals
- Section 19.4, CAN System
- Section 19.5, Memory Map / Register Definition
- Section 19.6, Programmer's Model of Message Storage
- Section 19.7, Functional Description

The MPC5200B contains 2 identical and independent MSCAN Controller:

- MSCAN1 = MBAR + 0x0900
- MSCAN2 = MBAR + 0x0980

The Motorola Scalable Controller Area Network (MSCAN) definition is based on the MSCAN12 definition which is the specific implementation of the Motorola Scalable CAN concept targeted for the Freescale Semiconductor, Inc. (formerly Motorola) MC68HC12 Microcontroller Family.

The module is a communication controller implementing the CAN 2.0 A/B protocol as defined in the BOSCH specification dated September 1991. For users to fully understand the MSCAN specification, it is recommended that the Bosch specification be read first to familiarize the reader with the terms and concepts contained within this document.

The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth.

MSCAN utilizes an advanced buffer arrangement resulting in a predictable real-time behavior and simplifies the application software.

Figure 19-1. MSCAN Block Diagram

Freescale Semiconductor

19.2 Features

The basic features of the MSCAN are as follows:

- Implementation of the CAN protocol Version 2.0A/B
 - Standard and extended data frames
 - 0 8 bytes data length
 - Programmable bit rate up to 1 Mbps (Depending on the actual bit timing and the clock jitter of the PLL)
 - Support for remote frames
 - 4 receive buffers with FIFO storage scheme
- 3 transmit buffers with internal prioritization using a "local priority" concept
- Flexible maskable identifier filter supports two full size extended identifier filters (two 32-bit) or four 16-bit filters or eight 8-bit filters
- Programmable wake-up functionality
- Programmable loop back mode supports self-test operation
- Programmable listen-only mode for monitoring of CAN bus
- · Separate signalling and interrupt capabilities for all CAN receiver and transmitter error states (Warning, Error Passive, Bus-Off)
- Programmable MSCAN clock source either IP bus clock or Oscillator clock
- Internal timer for time-stamping of received and transmitted messages
- Three low power modes: Sleep, Power Down and MSCAN Disabled
- Global initialization of configuration registers

19.3 External Signals

The MSCAN uses two external pins. In the MPC5200B the MSCAN pins are shared with other funtionality and can be available at two different groups of pins. The configuration of the pin-muxing is controlled by the Port Configuration Register, see Section 7.

19.3.1 RXCAN — CAN Receiver Input Pin

RXCAN is the MSCAN receiver input pin.

19.3.2 TXCAN — CAN Transmitter Output Pin

TXCAN is the MSCAN transmitter output pin. The TXCAN output pin represents the logic level on the CAN bus:

- 0 = Dominant state
- 1 = Recessive state

19.4 CAN System

A typical CAN system with MSCAN is shown in Figure 19-2. Each CAN station is connected physically to the CAN bus lines through a transceiver chip. The transceiver is capable of driving the large current needed for the CAN bus and has current protection against defected CAN or defected stations.

19-2 Freescale Semiconductor

Figure 19-2. The CAN System

19.5 Memory Map / Register Definition

The MPC5200B contains 2 independent MSCAN Controller:

- MSCAN1 = MBAR + 0x0900
- MSCAN2 = MBAR + 0x0980

19.5.1 Module Memory Map

Table 19-1 and Table 19-2 give an overview on all registers and their individual bits in the MSCAN memory map. The *register address* results from the addition of *base address* and *address offset*. The *base address* is determined at the MPC5200B MCU level. The *address offset* is defined at the module level.

The MSCAN occupies 64 bytes in the memory space. The base address of the MSCAN module is determined at the MPC5200B MCU level when the MCU is defined. The register decode map is fixed and begins at the first address of the module address offset.

Table 19-1. MSCAN Register Organization

Address

Offset	
\$00	CONTROL REGISTERS
\$15	12 BYTES
\$18	RESERVED
\$19	2 BYTES
\$1C	ERROR COUNTERS
\$1D	2 BYTES

·

Freescale Semiconductor 19-3

Table 19-1. MSCAN Register Organization (continued)

\$20	IDENTIFIER FILTER
\$3F	16 BYTES
\$40	RECEIVE BUFFER
\$5F	16 BYTES (Window)
\$60	TRANSMIT BUFFER
\$7F	16 BYTES (Window)

Table 19-1 shows the individual registers associated with the MSCAN and their relative offset from the base address. The detailed register descriptions follow in the order they appear in the register map (see Table 19-2).

Table 19-2. Module Memory Map

Address	Use	Access				
\$00,\$80	MSCAN Control Register 0 (CANCTL0)	R/W ^a				
\$01,\$81	MSCAN Control Register 1 (CANCTL1)	R/W ¹				
\$04,\$84	MSCAN Bus Timing Register 0 (CANBTR0)	R/W				
\$05,\$85	MSCAN Bus Timing Register 1 (CANBTR1)	R/W				
\$08,\$88	MSCAN Receiver Flag Register (CANRFLG)	R/W ¹				
\$09,\$89	MSCAN Receiver Interrupt Enable Register (CANRIER)	R/W				
\$0C,\$8C	MSCAN Transmitter Flag Register (CANTFLG)	R/W ¹				
\$0D,\$8D	MSCAN Transmitter Interrupt Enable Register (CANTIER)	R/W ¹				
\$10,\$80	MSCAN Transmitter Message Abort Control (CANTARQ)	R/W ¹				
\$11,\$91	MSCAN Transmitter Message Abort Control (CANTAAK)	R				
\$14,\$94	MSCAN Transmit Buffer Selection (CANTBSEL)	R/W ¹				
\$15,\$95	\$15,\$95 MSCAN Identifier Acceptance Control Register (CANIDAC)					
\$18 -\$19, \$98 -\$99	RESERVED					
\$1C,\$9C	MSCAN Receive Error Counter Register (CANRXERR)	R				
\$1D,\$9D	MSCAN Transmit Error Counter Register (CANTXERR)	R				
\$20,\$A0	MSCAN Identifier Acceptance Register 0 (CANIDAR0)	R/W				
\$21,\$A1	MSCAN Identifier Acceptance Register 1 (CANIDAR1)	R/W				
\$24,\$A4	MSCAN Identifier Acceptance Register 2 (CANIDAR2)	R/W				
\$25,\$A5	MSCAN Identifier Acceptance Register 3 (CANIDAR3)	R/W				
\$28,\$A8	MSCAN Identifier Mask Register 0 (CANIDMR0)	R/W				
\$29,\$A9	MSCAN Identifier Mask Register 1 (CANIDMR1)	R/W				
\$2C,\$AC	MSCAN Identifier Mask Register 2 (CANIDMR2)	R/W				
\$2D,\$AD	MSCAN Identifier Mask Register 3 (CANIDMR3)	R/W				
\$30,\$B0	\$_30,\$_B0 MSCAN Identifier Acceptance Register 4 (CANIDAR4)					
\$31,\$B1	MSCAN Identifier Acceptance Register 5 (CANIDAR5)	R/W				
\$34,\$B4	MSCAN Identifier Acceptance Register 6 (CANIDAR6)	R/W				

MPC5200B Users Guide, Rev. 1

19-4 Freescale Semiconductor

Table 19-2. Module Memory Map (continued)

\$35,\$B5	MSCAN Identifier Acceptance Register 7 (CANIDAR7)	R/W
\$38,\$B8	MSCAN Identifier Mask Register 4 (CANIDMR4)	R/W
\$39,\$B9	MSCAN Identifier Mask Register 5 (CANIDMR5)	R/W
\$3C,\$BC	MSCAN Identifier 6 Mask Register 6 (CANIDMR6)	R/W
\$3D,\$BD	MSCAN Identifier Mask Register 7 (CANIDMR7)	R/W
\$40 -\$5F, \$C0 -\$DF	Foreground Receive Buffer (CANRXFG)	R ^b
\$60 -\$7F, \$E0 -\$FF	Foreground Transmit Buffer (CANTXFG)	R ² /W

^a Refer to detailed register description for write access restrictions on per bit basis.

19.5.2 Register Descriptions

This section describes in detail all the registers and register bits in the MSCAN module. Each description includes a standard register diagram with an associated figure number. Details of register bit and field function follow the register diagrams, in bit order. All bits of all registers in this module are completely synchronous to internal clocks during a register read.

The registers are located at an offset from MBAR of 0x0900 (MSCAN1) and 0x0980 (MSCAN2). Register addresses are relative to this offset.

19.5.3 MSCAN Control Register 0 (CANCTL0)—MBAR + 0x0900 / 0x980

Table 19-3. MSCAN Control Register 0

The MSCAN Control Register 0, CANCTL0, provides for various control of the MSCAN Module.

NOTE: The MSCAN Control Register 0, except the WUPE, INITRQ and SLPRQ bits, is held in the reset state when the Initialization Mode is active (INITRQ = 1 and INITAK = 1). This register is writable again as soon as the Initialization Mode is exited (INITRQ = 0 and INITAK = 0).

Read: Anytime

Write: Anytime when out of Initialization; exceptions are bits RXACT and SYNCH which are read-only and bit RXFRM which is set by the module. A write of '1' to the RXFRM register clears the flag and a write of '0' is ignored.

Freescale Semiconductor

Reserved bits and unused bits within the TX- & RX-Buffers (CANTXFG, CANRXFG) will be read as "X", because of RAM based implementation.

Memory Map / Register Definition

Bit	Name	Description
0	RXFRM	Received Frame—flag bit is read and clear only. It is set when a receiver has received a valid message correctly, independently of the filter configuration. Once set, it remains set until cleared by software or reset. Clear by writing 1 to the bit. This bit is not valid in loop-back mode.
		0 = No valid message was received since last clearing this flag
		1 = A valid message was received since last clearing of this flag
1	RXACT	Receiver Active Status—flag bit indicates MSCAN is receiving a message. The flag is controlled by the receiver front end. This bit is not valid in loop-back mode. 0 = MSCAN is transmitting or idle
		1 = MSCAN is receiving a message (including when arbitration is lost)
		Note: See the Bosch CAN 2.0A/B protocol specification dated September 1991 for a detailed definition of transmitter and receiver states.
2	CSWAI	CAN Stops in Wait Mode—enabling this bit allows lower power consumption in wait mode by disabling all clocks at the bus interface to the MSCAN module.
		0 = Module is not affected during WAIT mode
		1 = Module ceases to be clocked during WAIT mode
3	SYNCH	Synchronized Status—flag bit indicates whether MSCAN is synchronized to the CAN bus and, as such, can participate in the communication process. It is set and cleared by MSCAN. 0 = MSCAN is not synchronized to the CAN bus
		1 = MSCAN is synchronized to the CAN bus
4	TIME	Timer Enable—bit activates an internal 16-bit wide free running timer, clocked by the bit-clock. If timer is enabled, a 16-bit time stamp is assigned to each transmitted/received message within the active Tx/Rx buffer. As soon as a message is acknowledged on CAN, the time stamp is written to the highest bytes (\$_E, \$_F) in the appropriate buffer. The internal timer is reset (all bits set to "0") when Initialization Mode is active.
		0 = Disable internal MSCAN timer
		1 = Enable internal MSCAN timer
5	WUPE	WakeUp Enable—bit lets MSCAN restart when being locked in idle state during sleep mode and traffic on CAN is detected.
		0 = WakeUp disabled—MSCAN ignores traffic on CAN
		1 = WakeUp enabled—MSCAN is able to restart
6	SLPRQ	Sleep Mode Request—bit requests MSCAN enter sleep mode, an internal power saving mode. If a CAN message transfer is occurring when receiving this request, MSCAN waits until end of current message before entering sleep mode. The module indicates entry to Sleep Mode by setting SLPAK=1. MSCAN Control 1 Register (CANCTL1). Sleep mode is active until the CPU clears SLPRQ or, depending on the WUPE bit setting, MSCAN detects CAN bus activity and clears SLPRQ.
		0 = Running—MSCAN functions normally
		1 = Sleep Mode Request—MSCAN locks in idle state
7	INITRQ	Initialization Mode Request—When the CPU sets this bit, MSCAN skips to initialization mode. Any ongoing transmission or reception is aborted and bus synchronization lost. The module indicates entry to initialization mode by setting INITAK=1

19.5.4 MSCAN Control Register 1 (CANCTL1)—MBAR + 0x0901 / 0x981

Table 19-4. MSCAN Control Register 1

		msb 0	1	2	3	4	5	6	7 Isb
	R	ANE	KSRC	ОРВ	STEN	Rsvd	WUPM	SLPAK	INITAK
ĺ	W	O	ರ	2	ä	ш	≥		
	RESET:	0	0	0	1	0	0	0	1

The MSCAN Control Register 1 provides for various control and handshake status information of the MSCAN module.

READ: Anytime

WRITE: Anytime when INITRQ = 1 and INITAK = 1, except CANE which is write once in normal modes and anytime in special modes when the MSCAN is in Initialization Mode (INITRQ = 1 and INITAK = 1).

Bit	Name	Description
0	CANE	MSCAN Enable
		0 = MSCAN module is disabled
		1 = MSCAN module is enabled
1	CLKSRC	MSCAN Clock Source—bit defines MSCAN module clock source (only for systems with a system clock generation module.
		0 = MSCAN clock source is the IP bus clock (IP CLK)
		1 = MSCAN clock source is the oscillator clock (SYS_XTAL_IN)
		NOTE: The two MSCAN modules can have different selected clock sources.
2	LOOPB	Loop-Back Self-Test Mode—when bit is set, MSCAN does an internal loop-back that can be used for self test operation. Tx bit-stream output feeds back to receiver internally. RxCAN input pin is ignored and TxCAN output goes to recessive state (logic '1'). MSCAN behaves as it does normally when transmitting and treats its own transmitted message as a message received from a remote node. In this state, MSCAN ignores bit sent during ACK slot in CAN frame acknowledge field to ensure proper reception of its own message. Both Tx and Rx interrupts are generated.
3	LISTEN	Listen-Only Mode—bit configures MSCAN as bus monitor. When bit is set, all valid CAN messages with matching ID are received, but no acknowledgement or error frames are sent out. In addition, error counters are frozen. Listen-only mode supports applications that require "hot plugging" or throughput analysis. MSCAN is unable to transmit any messages, when listen-only mode is active. 0 = normal operation 1 = Listen Only Mode activated
4	_	Reserved
5	WUPM	WakeUp Mode—bit defines whether the integrated low-pass filter is applied to protect the MSCAN from spurious WakeUp.
		0 = MSCAN wakes-up the CPU after any recessive to dominant edge on the CAN bus and WUPE=1 in CANCTL0
		1 = MSCAN wakes-up the CPU only in case of a dominant pulse on the bus which has a length of Twup and WUPE=1 in CANCTL0

Freescale Semiconductor 19-7

Memory Map / Register Definition

Bit	Name	Description
6	SLPAK	Sleep Mode Acknowledge—flag indicates whether MSCAN module has entered sleep mode. It is used as a handshake flag for SLPRQ sleep mode request. Sleep mode is active when INITRQ=1 and INITAK=1. Depending on the WUPE bit setting, MSCAN clears the flag if it detects bus activity on CAN while in Sleep Mode.
		0 = Running—MSCAN operates normally
		1 = Sleep Mode Active—MSCAN has entered Sleep Mode
7	INITAK	Initialization Mode Acknowledge—flag indicates whether MSCAN module is in initialization mode. It is used as a handshake flag for the INITRQ initialization mode request. Initialization mode is active when INITRQ=1 and INITAK=1. The registers CANCTL1, CANBTR0, CANBTR1, CANIDAC, CANIDAR0-7, CANIDMR0-7 can only be written by the CPU when the MSCAN is in initialization mode.
		0 = Running - The MSCAN operates normally
		1 = Initialization Mode Active - The MSCAN has entered initialization mode

19.5.5 MSCAN Bus Timing Register 0 (CANBTR0)—MBAR + 0x0904 / 0x984

Table 19-5. MSCAN Bus Timing Register 0

		msb 0	1	2	3	4	5	6	7 Isb
	R	SJW[1:0]			BRP	[5:0]		
	W								
_	RESET:	0	0	0	0	0	0	0	0

The MSCAN Bus Timing Register 0 provides for various bus timing control of the MSCAN module.

Read: Anytime

Write: Anytime in Initialization Mode (INITRQ = 1 and INITAK = 1)

Bit	Name	Description
0:1	SJW[1:0]	Synchronization Jump Width—defines the maximum number of time quanta (Tq) clock cycles a bit can be shortened or lengthened to achieve re-synchronization to data transitions on the bus.
		00 = 1 Tq clock cycle
		01 = 2 Tq clock cycles
		10 = 3 Tq clock cycles
		11 = 4 Tq clock cycles
2:7	BRP[5:0]	Baud Rate Prescaler—bits determine time quanta (Tq) clock used to build up individual bit timing, see Table 19-6.

Table 19-6. Baud Rate Prescaler

BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	Prescaler Value (P)
0	0	0	0	0	0	1
0	0	0	0	0	1	2
0	0	0	0	1	0	3
0	0	0	0	1	1	4

19-8 Freescale Semiconductor

Table 19-6. Baud Rate Prescaler (continued)

BRP5	BRP4	BRP3	BRP2	BRP1	BRP0	Prescaler Value (P)
1	1	1	1	1	0	63
1	1	1	1	1	1	64

19.5.6 MSCAN Bus Timing Register 1 (CANBTR1)—MBAR + 0x0905 / 0x985

Table 19-7. MSCAN Bus Timing Register 1

	msb 0	1	2	3	4	5	6	7 lsb
R	ΜP	٦	SEG[22:2	0]		TSEG	[13:10]	
W	SAI							
RESET:	0	0	0	0	0	0	0	0

The MSCAN Bus Timing Register 1 provides for various bus timing control of the MSCAN module.

Read: Anytime

Write: Anytime in Initialization Mode (INITRQ = 1 and INITAK = 1)

Bit	Name	Description
0	SAMP	Sampling—bit determines number of serial bus samples taken per bit-time. If set, three samples per bit are taken; the regular one (sample point) and two preceding samples using a majority rule. For higher bit-rates, it is recommended that SAMP be cleared, which means only one sample is taken per bit.
		0 = One sample per bit
		1 = Three samples per bit
1:3	TSEG[22:20]	Time Segment 2—time segments within the bit-time, fix the number of clock cycles per bit-time and the location of the sample point. Time segment 2 (TSEG2) values are programmable as shown in Table 19-9.
4:7	TSEG[13:10]	Time Segment 1—time segments within the bit-time, fix the number of clock cycles per bit-time and the location of the sample point. Time segment 1 (TSEG1) values are programmable as shown in Table 19-8.

Read: Anytime

Write: Anytime in Initialization Mode (INITRQ = 1 and INITAK = 1)

Bit-time, as shown below, is determined by:

- · oscillator frequency
- · baud rate prescaler
- number of time quanta (Tq) clock cycles per bit

Table 19-8 and Table 19-9 give time segment values.

Bit Time =
$$\frac{(Prescaler \, value)}{f_{CANCLK}}$$
 • (Number of Time Quanta)

Table 19-8. Time Segment 1 Values

TSEG13	TSEG12	TSEG11	TSEG10	Time segment 1
0	0	0	0	1 Tq clock cycle (a)
0	0	0	1	2 Tq clock cycles (1)
0	0	1	0	3 Tq clock cycles (1)

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 19-9

Table 19-8. Time Segment 1 Values (continued)

TSEG13	TSEG12	TSEG11 TSEG10		Time segment 1
0	0	1	1	4 Tq clock cycles
1	1	1	0	15 Tq clock cycles
1	1	1	1	16 Tq clock cycles

Table 19-9. Time Segment 2 Values

TSEG22	TSEG21 TSEG20 T		Time segment 2
0	0	0	1 Tq clock cycle (a)
0	0	1	2 Tq clock cycles
1	1	0	7 Tq clock cycles
1	1	1	8 Tq clock cycles

19.5.7 MSCAN Receiver Flag Register (CANRFLG)—MBAR+0x0908 / 0x988

Table 19-10. MSCAN Receiver Flag Register

	msb 0	1	2	3	4	5	6	7 lsb
R	PIF	H C	RSTA	T[1:0]	TSTA	T[1:0]	HE.	F)
W	M	CSC					8	<u> </u>
RESET:	0	0	0	0	0	0	0	0

Note: This register is held in the reset state when the initialization mode is active (INITRQ = 1 and INITAK = 1). This register is writable again as soon as the initialization mode is exited (INITRQ = 0 and INITAK = 0).

A flag can only be cleared when the condition which caused the setting is no longer valid and can only be cleared by software (writing a "1" to the corresponding bit position). Every flag has an associated interrupt enable bit in the MSCAN Receive Interrupt Enable Register.

Read: Anytime

Write: Anytime when out of initialization mode, except RSTAT(1:0) & TSTAT(1:0) flags which are read only; write of "1" clears flag; write of "0" ignored.

19-10 Freescale Semiconductor

Bit	Name	Description
0	WUPIF	WakeUp Interrupt Flag—If MSCAN detects bus activity while in sleep mode and WUPE=1 in CANTCTL0, it sets the WUPIF flag. If not masked, a WakeUp interrupt is pending while this flag is set.
		0 = No WakeUp activity observed while in Sleep Mode.
		1 = MSCAN detected bus activity and requested WakeUp.
1	CSCIF	CAN Status Change Interrupt Flag—flag is set when MSCAN changes its current bus status due to actual value of Tx error counter (TEC) and Rx error counter (REC). An additional 4-bit (RSTAT[1:0], TSTAT[1:0]) status register, split into separate sections for TEC/REC, notifies system of actual bus status.
		If not masked, an error interrupt is pending while this flag is set. CSCIF provides a blocking interrupt. That guarantees the Rx/Tx status bits (RSTAT/TSTAT) are updated only when no CAN Status Change interrupt is pending.
		If TECs/RECs change their current value after CSCIF is asserted and therefore cause an additional state change in RSTAT/TSTAT bits, these bits keep their old state bits until the current CSCIF interrupt is again cleared.
		0 = No change in bus status occurred since last interrupt
		1 = MSCAN changed current bus status.
2:3	RSTAT[1:0]	Receiver Status bits—values of the error counters control the actual bus status of the MSCAN. As soon as the status change interrupt flag (CSCIF) is set these bits indicate the appropriate receiver related bus status of the MSCAN. The coding for the bits RSTAT1, RSTAT0 is:
		00 = RxOK: 0 ≤ Receive Error Counter ≤ 96
		01 = RxWRN: 96 < Receive Error Counter ≤ 127
		10 = RxERR: 127 < Receive Error Counter
		11 = BusOff: Transmit Error Counter > 255
		Note: Redundant Information for the most critical bus status which is CAN Bus-Off. This only occurs if the Tx Error Counter exceeds a number of 255 errors. CAN Bus-Off affects the receiver state. As soon as the transmitter leaves its Bus-Off state the receiver state skips to RxOK too. Refer also to TSTAT[1:0] coding.
4:5	TSTAT[1:0]	Transmitter Status bits—values of the error counters control the actual bus status of the MSCAN. As soon as the status change interrupt flag (CSCIF) is set these bits indicate the appropriate transmitter related bus status of the MSCAN. The coding for the bits TSTAT1, TSTAT0 is:
		00 = TxOK: 0 ≤ Transmit Error Counter ≤ 96
		01 = TxWRN: 96 < Transmit Error Counter ≤ 127
		10 = TxERR: 127 < Transmit Error Counter ≤ 255
		11 = BusOff: Transmit Error Counter > 255
6	OVRIF	Overrun Interrupt Flag—flag is set when a data overrun condition occurs. If not masked, an Error interrupt is pending while this flag is set.
		0 = No data overrun condition.
		1 = data overrun detected.

Memory Map / Register Definition

Bit	Name	Description
7	RXF	Receive Buffer Full—flag is set by MSCAN when a new message is shifted into RX FIFO. Flag indicates whether the shifted buffer is loaded with a correctly received message (matching identifier, matching cyclic redundancy code (CRC) and no other errors detected). After CPU reads message from RxFG buffer in Rx FIFO, RxF flag must be cleared to release the buffer.
		A set RxF flag prohibits shifting of next FIFO entry into foreground buffer (RxFG). If not masked, RX interrupt is pending while this flag is set.
		To ensure data integrity, do not read the Rx buffer registers while RxF flag is cleared. For MCUs with dual CPUs, reading Rx buffer registers while RxF flag is cleared may result in a CPU fault condition.
		0 = No new message available within the RxFG.
		1 = The receiver FIFO is not empty. A new message is available in the RxFG.
		Note: To ensure data integrity, do not read the receive buffer registers while the RXF flag is cleared. For MCUs with dual CPUs, reading the receive buffer registers while the RXF flag is cleared may result in a CPU fault condition.

Note:

- 1. Every flag has an associated interrupt enable bit in the CANRIER register. A flag can only be cleared:
- when the condition that caused the setting is no longer valid.
- by software writing 1 to the corresponding bit position.

19.5.8 MSCAN Receiver Interrupt Enable Register (CANRIER)—MBAR + 0x0909 / 0x989

Table 19-11. MSCAN Receiver Interrupt Enable Register

	msb 0	1	2	3	4	5	6	7 Ist)
R	블	SE	RSTAT	ΓΕ[1:0]	TSTAT	E[1:0]	3IE	#	
W	M	CSC					NO.	X	
BESET:	0	0	0	0	0	0	0	0	

Bit	Name	Description
0	WUPIE	WakeUp Interrupt Enable
		0 = No interrupt request is generated from this event.
		1 = A WakeUP event causes a WakeUp interrupt request.
1	CSCIE	CAN Status Change Interrupt Enable
		0 = No interrupt request is generated from this event
		1 = A CAN Status Change event causes an error interrupt request
2:3	RSTATE[1:0]	Receiver Status Change Enable—bits control sensitivity level in which Rx state changes cause CSCIF interrupts. Independent of the chosen sensitivity level, RSTATE flags still indicate the actual Rx state and are only updated if no CSCIF interrupt is pending.
		00 = Do not generate CSCIF interrupt caused by Rx state changes.
		01 = Generate CSCIF interrupt only if receiver enters or leaves "BusOff" state. Discard other Rx state changes for generating CSCIF interrupt.
		10 = Generate CSCIF interrupt only if receiver enters or leaves "RxErr" or "BusOff" state. Discard other Rx state changes for generating CSCIF interrupt.
		11 = Generate CSCIF interrupt on all Rx state changes.

19-12 Freescale Semiconductor

Bit	Name	Description
4:5	TSTATE[1:0]	Transmitter Status Change Enable—bits control sensitivity level in which Tx state changes cause CSCIF interrupts. Independent of the chosen sensitivity level, TSTATE flags still indicate the actual Tx state and are only updated if no CSCIF interrupt is pending.
		00 = Do not generate CSCIF interrupt caused by Tx state changes.
		01 = Generate CSCIF interrupt only if transmitter enters or leaves "BusOff" state. Discard other Tx state changes for generating CSCIF interrupt.
		10 = Generate CSCIF interrupt only if transmitter enters or leaves "TxErr" or "BusOff" state. Discard other Tx state changes for generating CSCIF interrupt.
		11 = Generate CSCIF interrupt on all Tx state changes.
6	OVRIE	Overrun Interrupt Enable
		0 = No interrupt request is generated from this event.
		1 = An overrun event causes an overrun interrupt request
7	RXFIE	Receiver Full Interrupt Enable
		0 = No interrupt request is generated from this event
		1 = Rx buffer full (successful message reception) event causes Rx full interrupt request

Note: The MSCAN Receive Interrupt Enable Register is held in reset state when the initialization mode is active (INITRQ = 1 and INITAK = 1). This register is writable again as soon as the initialization mode is exited (INITRQ = 0 and INITAK = 0).

19.5.9 MSCAN Transmitter Flag Register (CANTFLG)—MBAR + 0x090C / 0x98C Table 19-12. MSCAN Transmitter Flag Register

		msb 0	1	2	3	4	5	6	7 Isb
	R	Reserved					TXE[2:0]		
	W								
,	BESET:	0	0	0	0	0	1	1	1

Bit	Name	Description
0:4	_	Reserved
5:7	TXE[2:0]	Transmitter Buffer Empty—flag indicates the associated Tx message buffer is empty, and thus not scheduled for transmission. CPU must clear the flag after a message is set up in the Tx buffer and is due for transmission. MSCAN sets flag after message is successfully sent. Flag is also set by MSCAN when Tx request is successfully aborted due to a pending abort request. If not masked, a Tx interrupt is pending while this flag is set.
		Clearing a TxEx flag also clears the corresponding ABTAKx. When a TxEx flag is set, the corresponding ABTRQx bit is cleared. When listen-mode is active TxEx flags cannot be cleared and no transmission is started.
		0 = associated message buffer full (loaded with message due for Tx)
		1 = associated message buffer empty (not scheduled)

Note: This register is held in the reset state when the initialization mode is active (INITRQ = 1 and INITAK = 1). This register is writable again as soon as the initialization mode is exited (INITRQ = 0 and INITAK = 0).

Note: To insure data integrity, do not write to Tx buffer registers while the TXE flag is cleared

Read: Anytime

Write: Anytime for TXEx flags when not in Initialization Mode; write of "1" clears flag, write of "0" is ignored.

19.5.10 MSCAN Transmitter Interrupt Enable Register (CANTIER)—MBAR+0x090D / 0x098D

Table 19-13. MSCAN Transmitter Interrupt Enable Register

	msb 0	1	2	3	4	5	6	7 Isb	
R		Reserved					TXEIE[2:0]		
W									
RESET:	0	0	0	0	0	0	0	0	

Bit	Name	Description
0:4	1	Reserved
5:7	TXEIE[2:0]	Transmitter Empty Interrupt Enable
		0 = No interrupt request is generated from this event.
		1 = Transmitter empty (Tx buffer available) event causes Tx empty interrupt request.

Note: This register is held in the reset state when the initialization mode is active (INITRQ = 1 and INITAK = 1). This register is writable again as soon as the initialization mode is exited (INITRQ = 0 and INITAK = 0).

Read: Anytime

Write: Anytime when not in Initialization Mode.

19.5.11 MSCAN Transmitter Message Abort Request (CANTARQ)—MBAR + 0x0910 / 0x0990

Table 19-14. MSCAN Transmitter Message Abort Request Register

Bit	Name	Description
0:4	_	Reserved
5:7	ABTRQ[2:0]	Abort Request—CPU sets bit to request a scheduled message buffer (TxEx=0) be aborted. MSCAN grants request if message has not already started transmission, or if transmission is not successful (lost arbitration or error). When message is aborted, the associated TxE and abort acknowledge flags (ABTAK) are set and a Tx interrupt occurs if enabled. The CPU cannot reset ABTRQx. ABTRQx is reset whenever the associated TxE flag is set. 0 = No abort request 1 = Abort request pending

Note: This register is held in the reset state when the initialization mode is active (INITRQ = 1 and INITAK = 1). This register is writable again as soon as the initialization mode is exited (INITRQ = 0 and INITAK = 0).

Read: Anytime

Write: Anytime when not in Initialization Mode; write of "1" clears flag, write of "0" is ignored.

Note: Software must not clear one or more bits of TXE Flag and simultaneously set the respective ABTRQ bit(s).

19-14 Freescale Semiconductor

19.5.12 MSCAN Transmitter Message Abort Ack (CANTAAK)—MBAR +0x0911 / 0x0991

Table 19-15. MSCAN Transmitter Message Abort Acknowledgement Register

	msb 0	1	2	3	4	5	6	7 lsb
R		Reserved	ABTAK[2:0]					
W								
RESET:	0	0	0	0	0	0	0	0

Note: This register is held in the reset state when the initialization mode is active (INITRQ = 1 and INITAK = 1).

READ: Anytime

WRITE: Not writable at any time

Bit	Name	Description
0:4	_	Reserved
5:7	ABTAK[2:0]	Abort Acknowledge—flag acknowledges a message was aborted due to a pending CPU abort request. After a specific message buffer is flagged empty, application software can use this flag to identify whether message was successfully aborted or was sent. Flag is cleared whenever the corresponding TxE flag is cleared. 0 = message not aborted 1 = message aborted

19.5.13 MSCAN Transmit Buffer Selection (CANTBSEL)—MBAR + 0x0914 /0x0991

Table 19-16. MSCAN Transmit Buffer Selection Register

	msb 0	1	2	3	4	5	6	7 Isb
R	Reserved					TX[2:0]		
W								
RESET:	0	0	0	0	0	0	0	0

Bit	Name	Description
0:4	_	Reserved
5:7	TX[2:0]	Transmit Buffer Select—lowest numbered bit places respective Tx buffer in CANTxFG register space (e.g., Tx1=1 and Tx0=1 selects Tx buffer Tx0, Tx1=1 and Tx0=0 selects Tx buffer Tx1)
		0 = associated message buffer deselected
		1 = associated message buffer selected, if lowest numbered bit

Note: This register is held in the reset state when the initialization mode is active (INITRQ = 1 and INITAK = 1). This register is writable again as soon as the initialization mode is exited (INITRQ = 0 and INITAK = 0).

READ: Find the lowest ordered bit set to '1', all other bits will be read as '0'

WRITE: Anytime when not in Initialization Mode

19.5.14 MSCAN ID Acceptance Control Register (CANIDAC)—MBAR + 0x0915 / 0x0995 Table 19-17. MSCAN ID Acceptance Control Register

		msb 0	1	2	3	4	5	6	7 Isb
	R	Reserved		IDAM[1:0]		Rsvd	IDHIT[2:0]		
	W								
,	RESET:	0	0	0	0	0	0	0	0

READ: Anytime

WRITE: Anytime in Initialization Mode (INITRQ = 1 and INITAK =1)

Bit	Name	Description
0:1	_	Reserved
2:3	IDAM[1:0]	Identifier Acceptance Mode—CPU sets these flags to define the identifier acceptance filter organization. In filter closed mode, no message is accepted such that the foreground buffer is never reloaded. See Table 19-19.
4	_	Reserved
5:7	IDHIT[2:0]	Identifier Acceptance Hit Indicator—MSCAN sets these flags to indicate an identifier acceptance hit. See Table 19-18.

Table 19-18. Identifier Acceptance Hit Indication

IDHIT2	IDHIT2 IDHIT1		Identifier Acceptance Hit
0	0	0	Filter 0 Hit
0	0	1	Filter 1 Hit
0	1	0	Filter 2 Hit
0	1	1	Filter 3 Hit
1	0	0	Filter 4 Hit
1	0	1	Filter 5 Hit
1	1	0	Filter 6 Hit
1	1	1	Filter 7 Hit

Table 19-19. Identifier Acceptance Mode Settings

IDAM1	IDAM0	Identifier Acceptance Mode
0	0	Two 32-bit Acceptance Filters
0	1	Four 16-bit Acceptance Filters
1	0	Eight 8-bit Acceptance Filters
1	1	Filter Closed

19.5.15 MSCAN Receive Error Counter Register (CANRXERR)-MBAR + 0x091C / 0x099C

Table 19-20. MSCAN Receive Error Counter Register

		msb 0	1	2	3	4	5	6	7 Isb
	R				RxER	R[7:0]			
	W								
,	RESET:	0	0	0	0	0	0	0	0

READ: Only when in Sleep Mode (SLPRQ = 1 and SLPAK = 1) or Initialization Mode (INITRQ = 1 and INITAK = 1).

WRITE: Unimplemented

Bit	Name	Description
0:7	RxERR[7:0]	This register reflects the status of the MSCAN receive error counter.

NOTE

Reading this register when in any other mode other than sleep or Initialization may return an incorrect value.

NOTE

Writing to these registers when in special modes can alter the MSCAN functionality.

19.5.16 MSCAN Transmit Error Counter Register (CANTXERR)-MBAR + 0x091D/0x099D

Table 19-21. MSCAN Transmit Error Counter Register

	msb 0	1	2	3	4	5	6	7 Isb
R				TxER	R[7:0]			
W								
RESET:	0	0	0	0	0	0	0	0

Note: This register reflects the status of the MSCAN transmit error counter.

READ: Only when in Sleep Mode (SLPRQ = 1 and SLPAK = 1) or Initialization Mode (INITRQ = 1 and INITAK =1).

WRITE: Unimplemented

Bit	Name	Description
0:7	TxERR[7:0]	This register reflects the status of the MSCAN transmit error counter.

NOTE

Reading this register when in any other mode other than sleep or Initialization may return an incorrect value.

NOTE

Writing to these registers when in special modes can alter the MSCAN functionality.

19.5.17 MSCAN ID Acceptance Registers (CANIDAR0-7)—MBAR + 0x0920 / 0x09A0

Table 19-22. MSCAN ID Acceptance Registers (0 - 3)

	msb 0	1	2	3	4	5	6	7 Isb			
Adress (Offset	0x9	(920 / 0x9A0 CANIDRO								
R	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0			
W											
RESET:	0	0	0	0	0	0	0	0			
	msb 0	1	2	3	4	5	6	7 Isb			
Adress (Offset	0x9	21 / 0x	9A1			CAN	AC1 AC0 0			
R	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0			
W											
RESET:	0	0	0	0	0	0	0	0			
	msb 0	1	2	3	4	5	6	7 Isb			
Adress (Offset	0x9	24 / 0x	9 A 4			CAN	0 0 6 7 lsb CANIDR1 AC1 AC0 0 0 6 7 lsb CANIDR2 AC1 AC0 0 0			
R	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0			
W											
RESET:	0	0	0	0	0	0	0	0			
	msb 0	1	2	3	4	5	6	7 Isb			
Adress (Offset	0x9	25 / 0x	9 A 5			CAN	IDR3			
R	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0			
W											
L											

MPC5200B Users Guide, Rev. 1

19-18

Freescale Semiconductor

Table 19-23. MSCAN ID Acceptance Registers (4 - 7)

	msb 0	1	2	3	4	5	6	7 Isb			
Adress (Offset	0x9	30 / 0x	9B0			CAN	CANIDR4 AC1			
R	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0			
W											
RESET:	0	0	0	0	0	0	0	0			
	msb 0	1	2	3	4	5	6	7 Isb			
Adress (Offset	0x9	31 / 0x	9B1			CAN	CANIDR5 AC1 AC0			
R	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0			
W											
RESET:	0	0	0	0	0	0	0	0			
	msb 0	1	2	3	4	5	6	7 Isb			
Adress (Offset	0x9	34 / 0x	9B4			CAN				
R	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0			
W											
RESET:	0	0	0	0	0	0	0	0			
	msb 0	1	2	3	4	5	6	7 Isb			
Adress (Offset	0x9	0x935 / 0x9B5				CAN	IDR7			
R	AC7	AC6	AC5	AC4	AC3	AC2	AC1	AC0			
W											
RESET:	0	0	0	0	0	0	0	0			

Bit	Name	Description
0:7	AC[7:0]	Acceptance Code—bits comprise a user defined sequence with which corresponding bits of the related identifier register (IDRn) of the receive message buffer are compared. Result of this comparison is then masked with the corresponding identifier mask register.

READ: Anytime

WRITE: Anytime in initialization mode (INITRQ + 1 and INITAK = 1).

On reception, each message is written into the background receive buffer. The CPU is only signalled to read the message if it passes the criteria in the identifier acceptance and identifier mask registers (accepted); otherwise, the message is overwritten by the next message (dropped).

The acceptance registers of the MSCAN are applied on the IDR0 to IDR3 registers of incoming messages in a bit-by-bit manner.

For extended identifiers, all four acceptance and mask registers are applied. For standard identifiers, only the first two (CANIDAR0/1 and CANIDMR0/1) are applied.

19.5.18 MSCAN ID Mask Register (CANIDMR0-7)—MBAR + 0x0928 / 0x09A8 Table 19-24. MSCAN ID MaskRegisters (0 - 3)

	msb 0	1	2	3	4	5	6	7 Isb		
Adress (Offset	0x9	28 / 0x	9 A 8			CANII	DMR0		
R	AM7	AM6	AM5	AM4	АМЗ	AM2	AM1	AM0		
W										
RESET:	0	0	0	0	0	0	0	0		
	msb 0	1	2	3	4	5	6	7 Isb		
Adress (Offset	0x9	29 / 0x	9 A 9			CANI	CANIDMR0 AM1		
R	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0		
W										
RESET:	0	0	0	0	0	0	0	0		
	msb 0	1	2	3	4	5	6	7 Isb		
Adress (Offset	0x92	2C / 0x	9AC			CANII	0 0 6 7 lsb CANIDMR1 AM1 AM0 0 0 6 7 lsb CANIDMR2 AM1 AM0 0 0 6 7 lsb CANIDMR3		
R	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0		
W										
RESET:	0	0	0	0	0	0	0	0		
	msb 0	1	2	3	4	5	6	7 Isb		
Adress (Offset	0x92D / 0x9AD					CANII	DMR3		
R	AM7	AM6	AM5	AM4	АМЗ	AM2	AM1	AM0		
W										
RESET:	0	0	0	0	0	0	0	0		

	Table 19-25. MSCAN ID MaskRegisters (4 - 7)											
	msb 0	1	2	3	4	5	6	7 Isb				
Adress (Offset	0x9	38 / 0x	9B8	CANIDME							
R	AM7	AM6	AM5	AM4	АМЗ	AM2	AM1	AM0				
W												
RESET:	0	0	0	0	0	0	0	0				
	msb 0	1	2	3	4	5	6	7 lsb				
Adress (Offset	0x9	39 / 0x	9B9			CANII	DMR5				
R	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0				
W												
RESET:	0	0	0	0	0	0	0	0				
	msb 0	1	2	3	4	5	6	7 lsb				
Adress (Offset	0x93	3C / 0x	9BC			0 0					
R	AM7	AM6	AM5	AM4	АМЗ	AM2	AM1	AM0				
W												
RESET:	0	0	0	0	0	0	0	0				
	msb 0	1	2	3	4	5	6	7 Isb				
Adress (Offset	0x93	3D / 0x	9BD		CANIDMR7						
R	AM7	AM6	AM5	AM4	АМЗ	AM2	AM1	AM0				
W	1											

READ: Anytime

WRITE: Anytime in initialization mode (INITRQ + 1 and INITAK = 1).

Bit	Name	Description
0:7	AM[7:0]	Acceptance Mask bits—If a particular bit in this register is cleared, this indicates the corresponding bit in the identifier acceptance register must be the same as its identifier bit before a match is detected. The message is accepted if all such bits match. If a bit is set, it indicates the state of the corresponding bit in the identifier acceptance register does not affect whether or not message is accepted. 0 = Match corresponding acceptance code register and identifier bits 1 = Ignore corresponding acceptance code register bit

The identifier mask register specifies which of the corresponding bits in the identifier acceptance register are relevant for acceptance filtering.

- To receive standard identifiers in 32-bit filter mode, the last three bits (AM[0:2]) in the following mask registers must be programmed as "don't care":
 - CANIDMR1
 - CANIDMR5
- To receive standard identifiers in 16-bit filter mode, the last three bits (AM[0:2]) in the following mask registers must be programmed as "don't care":
 - CANIDMR1
 - CANIDMR3
 - CANIDMR5

MPC5200B Users Guide, Rev. 1

— CANIDMR7

19.6 Programmer's Model of Message Storage

The following section details the organization of the receive and transmit message buffers and the associated control registers. For reasons of programmer interface simplification, the receive and transmit message buffers have the same outline. Each message buffer allocates 16 bytes in the memory map containing a 13 byte data structure. An additional Transmit Buffer Priority Register (TBPR) is defined for the transmit buffers. Within the last two bytes of this memory map the MSCAN stores a special 16-bit time stamp, which is sampled from an internal timer after successful transmission or reception of a message. This feature is only available for transmit and receiver buffers, if the TIME bit is set (Section 19.5.3, MSCAN Control Register 0 (CANCTL0)—MBAR + 0x0900/0x980). The Time Stamp register is written by the MSCAN. The CPU can only read these registers.

Table 19-26.	Message	Buffer	Organization
--------------	---------	--------	--------------

Addr	Register Name
\$00,\$80	Identifier Register 0
\$01,\$81	Identifier Register 1
\$04,\$844	Identifier Register 2
\$05,\$85	Identifier Register 3
\$08,\$88	Data Segment Register 0
\$09,\$89	Data Segment Register 1
\$0C,\$8C	Data Segment Register 2
\$0D,\$8D	Data Segment Register 3
\$10,\$90	Data Segment Register 4
\$11,\$91	Data Segment Register 5
\$14,\$94	Data Segment Register 6
\$15,\$95	Data Segment Register 7
\$18,\$98	Data Length Register
\$19,\$99	Transmit Buffer Priority Register ^a
\$1C,\$9C	Time Stamp Register (High Byte) ^b
\$1D,\$9D	Time Stamp Register (Low Byte) ^c

^a Not Applicable for Receive Buffers

Figure 19-27 shows the common 13 byte data structure of receive and transmit buffers for extended identifiers. The mapping of standard identifiers into the IDR registers is shown in Figure 19-28. All bits of the receive and transmit buffers are 'x' out of reset because of RAM based implementation¹. All reserved or unused bits of the receive and transmit buffers are always read 'x'.

Table 19-27. Receive / Transmit Message Buffer Extended Identifier

Register		Bit 7	6	5	4	3	2	1	Bit 0	ADDR
IDR0	Read:	ID28	ID27	ID26	ID25	ID24	ID23	ID22	ID21	\$00
	Write:									
= Unused ^a										

^{1.} Exception: The Transmit Priority Registers are "0" out of reset

MPC5200B Users Guide, Rev. 1

b Read-Only for CPU

^c Read-Only for CPU

Table 19-27. Receive / Transmit Message Buffer Extended Identifier (continued)

Register		Bit 7	6	5	4	3	2	1	Bit 0	ADDR
IDR1	Read:	ID20	ID19	ID18	SRR (=1)	IDE (=1)	ID17	ID16	ID15	\$01
	Write:									
IDR2	Read:	ID14	ID13	ID12	ID11	ID10	ID9	ID8	ID7	\$04
	Write:									
IDR3	Read:	ID6	ID5	ID4	ID3	ID2	ID1	ID0	RTR	\$05
	Write:									
DSR0	Read:	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	\$08
	Write:									
DSR1	Read:	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	\$09
	Write:									
DSR2	Read:	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	\$0C
	Write:									
DSR3	Read:	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	\$0D
	Write:									
DSR4	Read:	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	\$10
	Write:									
DSR5	Read:	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	\$11
	Write:									1
DSR6	Read:	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	\$14
	Write:									
DSR7	Read:	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	\$15
	Write:									
DLR	Read:					DLC3	DLC2	DLC1	DLC0	\$18
	Write:]
	ĺ) ,,	18						
			= Uni	usea~						

^a Unused bits are always read 'x'

Read: anytime for transmit buffers; only when RXF flag is set for receive buffers (see Section 19.5.7, MSCAN Receiver Flag Register (CANRFLG)—MBAR+0x0908 / 0x988).

Write: anytime for transmit buffers when TXEx flag is set (see Section 19.5.9, MSCAN Transmitter Flag Register (CANTFLG)—MBAR + 0x090C / 0x98C) and the corresponding transmit buffer is selected in CANTBSEL (see Section 19.5.13, MSCAN Transmit Buffer Selection (CANTBSEL)—MBAR + 0x0914 / 0x0991); unimplemented for receive buffers

Reset: \$xx because of RAM based implementation

Programmer's Model of Message Storage

Table 19-28. Standard Identifier Mapping

Register		Bit 7	6	5	4	3	2	1	Bit 0	ADDR
IDR0	Read:	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3	\$x0
	Write:									
IDR1	Read:	ID2	ID1	ID0	RTR	IDE (=0)				\$x1
	Write:									
IDR2	Read:									\$x4
	Write:									
IDR3	Read:									\$x5
	Write:									
	•									•
			= Uni	used ^a						
			ļi.							

^aUnused bits are always read 'x'

19.6.1 Identifier Registers (IDR0-3)

The identifier registers for an extended format identifier consist of a total of 32 bits; ID28 - ID0, SRR, IDE, and RTR bits. The identifier registers for a standard format identifier consist of a total of 13 bits; ID10 - ID0, RTR, and IDE bits.

ID28 - ID0 — Extended format identifier

The identifiers consist of 29 bits (ID28 - ID0) for the extended format. ID28 is the most significant bit and is transmitted first on the bus during the arbitration procedure. The priority of an identifier is defined to be highest for the smallest binary number.

ID10 - ID0 — Standard format identifier

The identifiers consist of 11 bits (ID10 – ID0) for the standard format. ID10 is the most significant bit and is transmitted first on the bus during the arbitration procedure. The priority of an identifier is defined to be highest for the smallest binary number.

SRR — Substitute Remote Request

This fixed recessive bit is used only in extended format. It must be set to 1 by the user for transmission buffers and is stored as received on the CAN bus for receive buffers.

IDE - ID Extended

This flag indicates whether the extended or standard identifier format is applied in this buffer. In the case of a receive buffer, the flag is set as received and indicates to the CPU how to process the buffer identifier registers. In the case of a transmit buffer, the flag indicates to the MSCAN what type of identifier to send.

1=Extended format (29 bit)

0=Standard format (11 bit)

RTR — Remote Transmission Request

This flag reflects the status of the Remote Transmission Request bit in the CAN frame. In the case of a receive buffer, it indicates the status of the received frame and supports the transmission of an answering frame in software. In the case of a transmit buffer, this flag defines the setting of the RTR bit to be sent.

1=Remote frame

0=Data frame

19.6.2 **Data Segment Registers (DSR0-7)**

The eight data segment registers, each with bits DB7-DB0, contain the data to be transmitted or received. The number of bytes to be transmitted or received is determined by the data length code in the corresponding DLR register.

MPC5200B Users Guide, Rev. 1

DB7 - DB0 — Data Bits 7-0

19.6.3 Data Length Register (DLR)

This register keeps the data length field of the CAN frame.

DLC3 - DLC0 — Data Length Code bits

The data length code contains the number of bytes (data byte count) of the respective message. During the transmission of a remote frame, the data length code is transmitted as programmed while the number of transmitted data bytes is always 0. The data byte count ranges from 0 to 8 for a data frame. Table 19-29 shows the effect of setting the DLC bits.

Table 19-29. Data Length Codes

	Data Length Code					
DLC3	DLC2	DLC1	DLC0	Data Byte Count		
0	0	0	0	0		
0	0	0	1	1		
0	0	1	0	2		
0	0	1	1	3		
0	1	0	0	4		
0	1	0	1	5		
0	1	1	0	6		
0	1	1	1	7		
1	0	0	0	8		

19.6.4 MSCAN Transmit Buffer Priority Register (TBPR)—MBAR + 0x0979 / 0x09F9 Table 19-30. MSCAN Transmit Buffer Priority Register

Bit	Name	Description			
0:7	PRIO[7:0]	Register defines local priority of associated message buffer. Local priority is used for MSCAN internal prioritization process and is defined to be highest for the smallest binary number. MSCAN implements the following internal prioritization mechanism:			
		 All transmission buffers with a cleared TXEx flag participate in prioritization immediately before start of frame (SOF) is sent. 			
		 Transmission buffer with lowest local priority field wins prioritization. If more than one buffer has the same lowest priority, message buffer with lower in number wins. 			

19.6.5 MSCAN Time Stamp Register High (TSRH)—MBAR + 0x097C / 0x09FC

Table 19-31. MSCAN Time Stamp Register (High Byte)

	msb 0	1	2	3	4	5	6	7 Isb
R	TSR15	TSR14	TSR13	TSR12	TSR11	TSR10	TSR9	TSR8
W								
RESET:	0	0	0	0	0	0	0	0

READ: Anytime

WRITE: Unimplemented

Bit	Name	Description
0:7	TSR[15:8]	If TIME bit is enabled, MSCAN writes a special time stamp to respective registers in active Tx or Rx buffer as soon as a message is acknowledged on the CAN bus. Time stamp is written on bit sample point for recessive bit of ACK delimiter in CAN frame. If Tx, CPU can only read time stamp after respective Tx buffer is flagged empty.
		Timer value, used for stamping, is taken from a free running internal CAN bit-clock. Timer overrun is not indicated by MSCAN. Timer is reset (all bits set to 0) during initialization mode. CPU can only read time stamp registers.

19.6.6 MSCAN Time Stamp Register Low (TSRL)—MBAR + 0x097D / 0x09FD

Table 19-32. MSCAN Time Stamp Register (Low Byte)

	msb 0	1	2	3	4	5	6	7 Isb
R	TSR7	TSR6	TSR5	TSR4	TSR3	TSR2	TSR1	TSR0
W								
RESET:	0	0	0	0	0	0	0	0

READ: Anytime

WRITE: Unimplemented

Bit	Name	Description
0:7	TSR[7:0]	If TIME bit is enabled, MSCAN writes a special time stamp to respective registers in active Tx or Rx buffer as soon as message is acknowledged on CAN bus. Time stamp is written on bit sample point for recessive bit of ACK delimiter in CAN frame. If Tx, CPU can only read time stamp after respective Tx buffer is flagged empty.
		Timer value, used for stamping, is taken from a free running internal CAN bit-clock. Timer overrun is not indicated by MSCAN. Timer is reset (all bits set to 0) during initialization mode. CPU can only read time stamp registers.

19.7 Functional Description

19.7.1 **General**

This section provides a complete functional description of the MSCAN. It describes each of the features and modes listed in the introduction.

19.7.2 Message Storage

Figure 19-3. User Model for Message Buffer Organization

MSCAN facilitates a sophisticated message storage system which addresses the requirements of a broad range of network applications.

19.7.2.1 Message Transmit Background

Modern application layer software is built upon two fundamental assumptions:

- Any CAN node is able to send out a stream of scheduled messages without releasing the bus between the two messages. Such nodes arbitrate for the bus immediately after sending the previous message and only release the bus in case of lost arbitration.
- The internal message queue within any CAN node is organized such that the highest priority message is sent out first, if more than one message is ready to be sent.

The above behavior cannot be achieved with a single transmit buffer. That buffer must be reloaded right after the previous message is sent. This loading process lasts a finite amount of time and has to be completed within the Inter-Frame Sequence (IFS)¹ to be able to send an uninterrupted stream of messages. Even if this is feasible for limited CAN bus speeds, it requires that the CPU react with short latencies to the transmit interrupt.

1. Reference the Bosch CAN 2.0A/B protocol specification dated September 1991.

MPC5200B Users Guide, Rev. 1

Functional Description

A double buffer scheme de-couples the reloading of the transmit buffer from the actual message sending and, as such, reduces the reactiveness requirements on the CPU. Problems can arise if the sending of a message is finished while the CPU re-loads the second buffer. No buffer would then be ready for transmission and the bus would be released.

At least three transmit buffers are required to meet the first of the above requirements under all circumstances. The MSCAN has three transmit buffers.

The second requirement calls for some sort of internal prioritization which the MSCAN implements with the "local priority" concept described in Section 19.7.2.2, *Transmit Structures*.

19.7.2.2 Transmit Structures

The MSCAN has a triple transmit buffer scheme which allows multiple messages to be set up in advance and achieve an optimized real-time performance. The three buffers are arranged as shown in Section Figure 19-3., *User Model for Message Buffer Organization*.

All three buffers have a 13 byte data structure similar to the outline of the receive buffers Section 19.6, *Programmer's Model of Message Storage*. An additional MSCAN Transmit Buffer Priority Register (TBPR)—MBAR + 0x0979 / 0x09F9 contains an 8-bit "Local Priority" field (PRIO). The remaining two bytes are used for time stamping of a message, if required (see Section 19.6.5, *MSCAN Time Stamp Register High (TSRH)—MBAR* + 0x097C / 0x09FC, Section 19.6.6, *MSCAN Time Stamp Register Low (TSRL)—MBAR* + 0x097D / 0x09FD).

To transmit a message, the CPU has to identify an available transmit buffer which is indicated by a set Transmitter Buffer Empty (TXEx) flag Section 19.5.9, MSCAN Transmitter Flag Register (CANTFLG)—MBAR + 0x090C / 0x98C. If a transmit buffer is available, the CPU has to set a pointer to this buffer by writing to the CANTBSEL register (Section 19.5.13, MSCAN Transmit Buffer Selection (CANTBSEL)—MBAR + 0x0914 /0x0991). This makes the respective buffer accessible within the CANTXFG address space Section 19.6, Programmer's Model of Message Storage. The algorithmic feature associated with the CANTBSEL register simplifies the transmit buffer selection. In addition this scheme makes the handler software simpler as only one address area is applicable for the transmit process. In addition the required address space is minimized.

The CPU then stores the identifier, the control bits and the data content into one of the transmit buffers. Finally, the buffer is flagged as ready for transmission by clearing the associated TXE flag.

The MSCAN then schedules the message for transmission and signals the successful transmission of the buffer by setting the associated TXE flag. A transmit interrupt Section 19.7.9.1, *Transmit Interrupt* is generated when TXEx is set and can be used to drive the application software to re-load the buffer.

In case more than one buffer is scheduled for transmission when the CAN bus becomes available for arbitration, the MSCAN uses the "local priority" setting of the three buffers to determine the prioritization. For this purpose, every transmit buffer has an 8-bit local priority field (PRIO). The application software programs this field when the message is set up. The local priority reflects the priority of this particular message relative to the set of messages being transmitted from this node. The lowest binary value of the PRIO field is defined to be the highest priority. The internal scheduling process takes place whenever the MSCAN arbitrates for the bus. This is also the case after the occurrence of a transmission error.

When a high priority message is scheduled by the application software, it may become necessary to abort a lower priority message in one of the three transmit buffers. As messages that are already in transmission cannot be aborted, the user has to request the abort by setting the corresponding Abort Request bit (ABTRQ) Section 19.5.12, MSCAN Transmitter Message Abort Ack (CANTAAK)—MBAR +0x0911 / 0x0991. The MSCAN then grants the request, if possible, by: 1) setting the corresponding Abort Acknowledge flag (ABTAK) in the CANTAAK register, 2) setting the associated TXE flag to release the buffer, and 3) generating a transmit interrupt. The transmit interrupt handler software can tell from the setting of the ABTAK flag whether the message was aborted (ABTAK=1) or sent (ABTAK=0).

19.7.2.3 Receive Structures

The received messages are stored in a four stage input FIFO. The four message buffers are alternately mapped into a single memory area Section Figure 19-3., *User Model for Message Buffer Organization*. While the background receive buffer (RxBG) is exclusively associated with the MSCAN, the foreground receive buffer (RxFG) is addressable by the CPU Section Figure 19-3., *User Model for Message Buffer Organization*. This scheme simplifies the handler software as only one address area is applicable for the receive process.

All receive buffers have a size of 15 bytes to store the CAN control bits, the identifier (standard or extended), the data contents and a time stamp, if enabled (for details Section 19.6, *Programmer's Model of Message Storage*)².

The Receiver Full flag (RXF) Section 19.5.7, MSCAN Receiver Flag Register (CANRFLG)—MBAR+0x0908 / 0x988 signals the status of the foreground receive buffer. When the buffer contains a correctly received message with a matching identifier, this flag is set.

On reception, each message is checked to see if it passes the filter (Section 19.7.3, *Identifier Acceptance Filter*) and in parallel, is written into the active RxBG. After successful reception of a valid message the MSCAN shifts the content of RxBG into the receiver FIFO³, sets the RXF

- 1. The transmit interrupt occurs only if not masked. A polling scheme can be applied on TXEx also.
- 2. Reference the Bosch CAN 2.0A/B protocol specification dated September 1991 for details.
- 3. Only if the RXF flag is not set.

19-28 Freescale Semiconductor

flag, and generates a receive interrupt Section 19.7.9.2, *Receive Interrupt* to the CPU¹. The user's receive handler has to read the received message from the RxFG and then reset the RXF flag to acknowledge the interrupt and to release the foreground buffer. A new message, which can follow immediately after the IFS field of the CAN frame, is received into the next available RxBG. If the MSCAN receives an invalid message in its RxBG (wrong identifier, transmission errors etc.) the actual contents of the buffer will be over-written by the next message. The buffer will then not be shifted into the FIFO.

When the MSCAN module is transmitting, the MSCAN receives its own transmitted messages into the background receive buffer, RxBG, but does not shift it into the receiver FIFO, generate a receive interrupt, or acknowledge its own messages on the CAN bus. The exception to this rule is in loop back mode Section 19.5.4, MSCAN Control Register 1 (CANCTL1)—MBAR + 0x0901 / 0x981 where the MSCAN treats its own messages exactly like all other incoming messages. The MSCAN receives its own transmitted messages in the event that it loses arbitration². If arbitration is lost, the MSCAN must be prepared to become a receiver.

An overrun condition occurs when all receive message buffers in the FIFO are filled with correctly received messages with accepted identifiers and another message is correctly received from the bus with an accepted identifier. The latter message is discarded and an error interrupt with overrun indication is generated if enabled Section 19.7.9.4, *Error Interrupt*. The MSCAN is still able to transmit messages while the receiver FIFO being filled, but all incoming messages are discarded. As soon as a receive buffer in the FIFO is available again, new valid messages will be accepted.

19.7.3 Identifier Acceptance Filter

The MSCAN Identifier Acceptance Registers (Section 19.5.14, MSCAN ID Acceptance Control Register (CANIDAC)—MBAR + 0x0915 / 0x0995) define the acceptable patterns of the standard or extended identifier (ID10 - ID0 or ID28 - ID0). Any of these bits can be marked 'don't care' in the MSCAN Identifier Mask Registers Section 19.5.18, MSCAN ID Mask Register (CANIDMR0-7)—MBAR + 0x0928 / 0x0948.

A filter hit is indicated to the application software by a set Receive Buffer Full flag (RXF=1) and three bits in the CANIDAC register Section 19.5.17, *MSCAN ID Acceptance Registers (CANIDAR0-7)—MBAR* + 0x0920 / 0x09A0. These Identifier Hit flags (IDHIT2-0) clearly identify the filter section that caused the acceptance. They simplify the application software's task to identify the cause of the receiver interrupt. In case more than one hit occurs (two or more filters match), the lower hit has priority.

A very flexible programmable generic identifier acceptance filter has been introduced to reduce the CPU interrupt loading. The filter is programmable to operate in four different modes³:

- Two identifier acceptance filters, each to be applied to a) the full 29 bits of the extended identifier and to the following bits of the CAN 2.0B frame: Remote Transmission Request (RTR), Identifier Extension (IDE), and Substitute Remote Request (SRR) or b)⁴ the 11 bits of the standard identifier plus the RTR and IDE bits of the CAN 2.0A/B messages. This mode implements two filters for a full length CAN 2.0B compliant extended identifier. Figure 19-4 shows how the first 32-bit filter bank (CANIDAR0-3, CANIDMR0-3) produces a filter 0 hit. Similarly, the second filter bank (CANIDAR4-7, CANIDMR4-7) produces a filter 1 hit.
- Four identifier acceptance filters, each to be applied to a) the 14 most significant bits of the extended identifier plus the SRR and IDE bits of CAN 2.0B messages or b) the 11 bits of the standard identifier, the RTR and IDE bits of CAN 2.0A/B messages. Figure 19-5 shows how the first 32-bit filter bank (CANIDAR0-3, CANIDMR0-3) produces filter 0 and 1 hits. Similarly, the second filter bank (CANIDAR4-7, CANIDMR4-7) produces filter 2 and 3 hits.
- Eight identifier acceptance filters, each to be applied to the first 8 bits of the identifier. This mode implements eight independent filters for the first 8 bits of a CAN 2.0A/B compliant standard identifier or a CAN 2.0B compliant extended identifier. Figure 19-6 shows how the first 32-bit filter bank (CANIDAR0-3, CANIDMR0-3) produces filter 0 to 3 hits. Similarly, the second filter bank (CANIDAR4-7, CANIDMR4-7) produces filter 4 to 7 hits.
- · Closed filter. No CAN message is copied into the foreground buffer RxFG, and the RXF flag is never set.

^{1.} The receive interrupt occurs only if not masked. A polling scheme can be applied on RXF also.

^{2.} Reference the Bosch CAN 2.0A/B protocol specification dated September 1991 for details.

^{3.} For a better understanding of references made within the filter mode description, reference the Bosch specification dated September 1991 which details the CAN 2.0A/B protocol.

^{4.} Although this mode can be used for standard identifiers, it is recommended to use the four or eight identifier acceptance filters for standard identifiers

MPC5200B Users Guide, Rev. 1

Functional Description

Figure 19-4. 32-bit Maskable Identifier Acceptance Filter

Figure 19-5. 16-bit Maskable Identifier Acceptance Filters

19-30 Freescale Semiconductor

Figure 19-6. 8-bit Maskable Identifier Acceptance Filters

19.7.4 Protocol Violation Protection

The MSCAN protects the user from accidentally violating the CAN protocol through programming errors. The protection logic implements the following features:

The receive and transmit error counters cannot be written or otherwise manipulated.

Functional Description

- All registers which control the configuration of the MSCAN cannot be modified while the MSCAN is on-line. The MSCAN has to be in Initialization Mode. The corresponding INITRQ/INITAK handshake bits in the CANCTL0/CANCTL1 registers Section 19.5.3, MSCAN Control Register 0 (CANCTL0)—MBAR + 0x0900 / 0x980 serve as a lock to protect the following registers:
 - MSCAN Control 1 Register (CANCTL1)
 - MSCAN Bus Timing Registers 0 and 1 (CANBTR0, CANBTR1)
 - MSCAN Identifier Acceptance Control Register (CANIDAC)
 - MSCAN Identifier Acceptance Registers (CANIDAR0-7)
 - MSCAN Identifier Mask Registers (CANIDMR0-7)
- The TXCAN pin is immediately forced to a recessive state when the MSCAN goes into the Power Down Mode or Initialization Mode (see Section 19.7.8.6, MSCAN Power Down Mode and Section 19.7.8.5, MSCAN Initialization Mode).
- The MSCAN enable bit (CANE) is only writable once in normal modes as further protection against inadvertently disabling the MSCAN.

19.7.5 Clock System

Figure 19-7 shows the structure of the MSCAN clock generation circuitry. With this flexible clocking scheme, the MSCAN is able to handle CAN bus rates ranging from 10 Kbps up to 1 Mbps.

Figure 19-7. MSCAN Clocking Scheme

The clock source bit (CLKSRC) in the CANCTL1 register Section 19.5.4, MSCAN Control Register 1 (CANCTL1)—MBAR + 0x0901 / 0x981 defines whether the internal CANCLK is connected to the output of the system oscillator clock (SYS XTAL IN) or to the IP bus clock.

NOTE

Both MSCAN modules can have different selected clock sources. To select the oscillator clock the CLKSRC bit in the CANCTL1 register must be set.

The clock source has to be chosen such that the tight oscillator tolerance requirements (up to 0.4%) of the CAN protocol are met. Additionally, for high CAN bus rates (1 Mbps), a 45%-55% duty cycle of the clock is required.

Because the Bus Clock is generated from a PLL, it is recommended to select the Oscillator Clock rather than the Bus Clock due to jitter considerations, especially at the faster CAN bus rates.

A programmable prescaler generates the time quanta (Tq) clock from CANCLK. A time quantum is the atomic unit of time handled by the MSCAN.

$$f_{Tq} = \frac{f_{CANCLK}}{(Prescaler value)}$$

A bit time is subdivided into three segments 1 2 (reference Figure 19-8):

- SYNC SEG: This segment has a fixed length of one time quantum. Signal edges are expected to happen within this section.
- Time Segment 1: This segment includes the PROP_SEG and the PHASE_SEG1 of the CAN standard. It can be programmed by setting the parameter TSEG1 to consist of 4 to 16 time quanta.

MPC5200B Users Guide, Rev. 1

19-32 Freescale Semiconductor

^{1.} For further explanation of the under-lying concepts please refer to ISO/DIS 11519-1, Section 10.3.

^{2.} Reference the Bosch CAN 2.0A/B protocol specification dated September 1991 for bit timing.

• Time Segment 2: This segment represents the PHASE_SEG2 of the CAN standard. It can be programmed by setting the TSEG2 parameter to be 2 to 8 time quanta long.

Figure 19-8. Segments within the Bit Time

Table 19-33. Time Segment Syntax

Syntax	Description
SYNC_SEG	System expects transitions to occur on the bus during this period.
Transmit Point	A node in transmit mode transfers a new value to the CAN bus at this point.
Sample Point	A node in receive mode samples the bus at this point. If the three samples per bit option is selected, then this point marks the position of the third sample.

The Synchronization Jump Width¹ can be programmed in a range of 1 to 4 time quanta by setting the SJW parameter.

The above parameters are set by programming the MSCAN Bus Timing Registers (CANBTR1) (see Section 19.5.3, MSCAN Control Register 0 (CANCTL0)—MBAR + 0x0900 / 0x980 and Section 19.5.6, MSCAN Bus Timing Register 1 (CANBTR1)—MBAR + 0x0905 / 0x985).

Table 19-34 gives an overview of the CAN compliant segment settings and the related parameter values.

NOTE

It is the user's responsibility to ensure the bit time settings are in compliance with the CAN standard.

Table 19-34. CAN Standard Compliant Bit Time Segment Settings

Time Segment 1	TSEG1	Time Segment 2	TSEG2	Synchronization Jump Width	SJW
5 10	4 9	2	1	1 2	0 1
4 11	3 10	3	2	1 3	0 2

1. Reference the Bosch CAN 2.0A/B protocol specification dated September 1991 for bit timing.

MPC5200B Users Guide, Rev. 1

Table 19-34. CAN Standard Compliant Bit Time Segment Settings (continued)

Time Segment 1	TSEG1	Time Segment 2	TSEG2	Synchronization Jump Width	SJW
5 12	4 11	4	3	1 4	03
6 13	5 12	5	4	1 4	03
7 14	6 13	6	5	1 4	03
8 15	7 14	7	6	1 4	03
9 16	8 15	8	7	1 4	03

19.7.6 Timer Link

The MSCAN generates an internal time stamp whenever a valid frame is received or transmitted and the TIME bit is enabled. Because the CAN specification defines a frame to be valid if no errors occur before the End of Frame (EOF) field is transmitted successfully, the actual value of an internal timer is written at EOF to the appropriate time stamp position within the transmit buffer. For receive frames the time stamp is written to the receive buffer.

19.7.7 Modes of Operation

19.7.7.1 Normal Modes

The MSCAN module behaves as described within this specification in all normal modes.

19.7.7.2 Listen-Only Mode

In an optional bus monitoring mode (Listen-Only), the CAN node is able to receive valid data frames and valid remote frames, but it sends only "recessive" bits on the CAN bus. In addition it cannot start a transmission. If the MAC sub-layer is required to send a "dominant" bit (ACK bit, overload flag, active error flag), the bit is rerouted internally so that the MAC sub-layer monitors this "dominant bit, although the CAN bus may remain in recessive state externally.

19.7.8 Low Power Options

If the MSCAN is disabled (CANE=0), the MSCAN clocks are stopped for power savings.

If the MSCAN is enabled (CANE=1), the MSCAN has two additional modes with reduced power consumption, compared to normal mode: Sleep and Power Down Mode. In Sleep Mode power consumption is reduced by stopping all clocks except those to access the registers from the CPU side. In Power Down Mode, all clocks are stopped and no power is consumed.

Table 19-35 summarizes the combinations of MSCAN and CPU modes. A particular combination of modes is entered by the given settings on the CSWAI and SLPRQ/SLPAK bits.

For all modes, an MSCAN Wake-Up interrupt can only occur if the MSCAN is in Sleep Mode (SLPRQ=1 and SLPAK=1), wake-up functionality is enabled (WUPE=1) and the Wake-Up interrupt is enabled (WUPIE=1).

Table 19-35. CPU vs. MSCAN Operating Modes

Power Mode	MSCAN Mode					
	Normal	Power Down	Sleep	(CANE=0)		
Full Power	CSWAI = X ^a SLPRQ = 0 SLPAK = 0		CSWAI = X SLPRQ = 1 SLPAK = 1	CSWAI = X SLPRQ = X SLPAK = X		
Sleep	CSWAI = 0 SLPRQ = 0 SLPAK = 0	CSWAI = 1 SLPRQ = X SLPAK = X	CSWAI = 0 SLPRQ = 1 SLPAK = 1	CSWAI = X SLPRQ = X SLPAK = X		
Deep Sleep		CSWAI = X SLPRQ = X SLPAK = X	CSWAI = X SLPRQ = 1 SLPAK = 1	CSWAI = X SLPRQ = X SLPAK = X		

MPC5200B Users Guide, Rev. 1

19-34 Freescale Semiconductor

a 'X' means don't care.

19.7.8.1 CPU Run Mode

As can be seen in Table 19-35, only MSCAN Sleep Mode is available as low power option, when CPU is in run mode.

19.7.8.2 CPU Sleep Mode

While the CPU is in Sleep Mode, the MSCAN can be operated in Normal Mode and generate interrupts (registers can be accessed via background debug mode). The MSCAN can also operate in any of the low power modes depending on the values of the SLPRQ/SLPAK and CSWAI bits as seen in Table 19-35.

19.7.8.3 CPU Deep Sleep Mode

In Deep Sleep Mode, the MSCAN operates in Power Down mode regardless of the value of the SLPRQ/SLPAK and CSWAI bits Table 19-35.

19.7.8.4 MSCAN Sleep Mode

The CPU can request the MSCAN to enter this low power mode by asserting the SLPRQ bit in the CANCTL0 register. The time when the MSCAN enters Sleep Mode depends on a fixed synchronization delay and its current activity:

- If it is transmitting, it continues to transmit until the entire message is transmitted and then goes into Sleep Mode.
- If it is receiving, it waits for the end of this message and then goes into Sleep Mode.
- If it is neither transmitting nor receiving, it immediately goes into Sleep Mode.

Figure 19-9. Sleep Request / Acknowledge Cycle

NOTE

The application software must avoid setting up a transmission (by clearing one or more TXEx flag(s)) and immediately request Sleep Mode (by setting SLPRQ). It depends on the exact sequence of operations whether the MSCAN starts transmitting or goes into Sleep Mode directly.

If Sleep Mode is active, the SLPRQ and SLPAK bits are set (Figure 19-9). The application software must use SLPAK as a handshake indication for the request (SLPRQ) to go into Sleep Mode.

When in Sleep Mode (SLPRQ=1 and SLPAK=1), the MSCAN stops its internal clocks. However, clocks to allow register accesses from the CPU side still run. If the MSCAN is in Bus-Off state, it stops counting the 128*11 consecutive recessive bits due to the stopped clocks. The TXCAN pin remains in a recessive state. If RXF=1, the message can be read and RXF can be cleared. Shifting a new message into the foreground buffer of the receiver FIFO (RxFG) does not take place while in Sleep Mode. It is possible to access the transmit buffers and to clear the associated TXE flags. No message abort takes place while in Sleep Mode. If the WUPE bit in CANCLT0 is not asserted, the MSCAN will mask any activity it detects on CAN. The RXCAN pin is therefore held internally in a recessive state. This locks the MSCAN in Sleep Mode (Section Figure 19-10., Simplified State Transitions for Entering/Leaving Sleep Mode).

The MSCAN is only able to leave Sleep Mode (wake-up) when

- bus activity occurs and WUPE=1 or
- the MCU clears the SLPRQ bit

NOTE

The MCU cannot clear the SLPRQ bit before Sleep Mode (SLPRQ=1 and SLPAK=1) is active.

After wake-up, the MSCAN waits for 11 consecutive recessive bits to synchronize to the bus. As a consequence, if the MSCAN is woken-up by a CAN frame, this frame is not received. The receive message buffers (RxFG and RxBG) contain messages if they were received before Sleep Mode was entered. All pending actions will be executed upon wake-up; copying of RxBG into RxFG, message aborts and message transmissions. If the MSCAN is still in Bus-Off state after Sleep Mode was left, it continues counting the 128*11 consecutive recessive bits.

Figure 19-10. Simplified State Transitions for Entering/Leaving Sleep Mode

19.7.8.5 MSCAN Initialization Mode

In Initialization Mode, any ongoing transmission or reception is immediately aborted and synchronization to the bus is lost potentially causing CAN protocol violations. To protect the CAN bus system from fatal consequences of violations, the MSCAN immediately drives the TXCAN pin into a recessive state.

NOTE

The user is responsible for ensuring that the MSCAN is not active when Initialization Mode is entered. The recommended procedure is to bring the MSCAN into Sleep Mode (SLPRQ=1 and SLPAK=1) before setting the INITRQ bit in the CANCTL0 register. Otherwise the abort of an ongoing message can cause an error condition and can have an impact on the other bus devices.

In Initialization Mode, the MSCAN is stopped. However, interface registers can still be accessed. This mode is used to reset the CANTCTL0, CANRFLG, CANRIER, CANTER, CANTER, CANTARQ, CANTAAK, CANTBSEL registers to their default values. In addition it enables the configuration of the CANBTR0, CANBTR1 bit timing registers, CANIDAC and the CANIDAR, CANIDMR message filters. Section 19.5.3, MSCAN Control Register 0 (CANCTL0)—MBAR + 0x0900 / 0x980 for a detailed description of the Initialization Mode.

19-36 Freescale Semiconductor

Figure 19-11. Initialization Request/Acknowledge Cycle

Due to independent clock domains within the MSCAN the INITRQ has to be synchronized to all domains by using a special handshake mechanism. This handshake causes additional synchronization delay (). If there is no message transfer ongoing on the CAN bus, the minimum delay will be two additional bus clocks and three additional CAN clocks. When all parts of the MSCAN are in Initialization Mode the INITAK flag is set. The application software must use INITAK as a handshake indication for the request (INITRQ) to go into Initialization Mode.

NOTE

The MCU cannot clear the INITRQ bit before Initialization Mode (INITRQ=1 and INITAK=1) is active.

19.7.8.6 MSCAN Power Down Mode

The MSCAN is in Power Down Mode when Table 19-35

- the CPU is in Deep Sleep Mode or
- the CPU is in SLEEP Mode and the CSWAI bit is set.

When entering the Power Down Mode, the MSCAN immediately stops all ongoing transmissions and receptions, potentially causing CAN protocol violations. To protect the CAN bus system from fatal consequences of violations to the above rule, the MSCAN immediately drives the TXCAN pin into a recessive state. In Power-Down modes, no registers can be accessed.

NOTE

The user is responsible for ensuring that the MSCAN is not active when Power Down Mode is entered. The recommended procedure is to bring the MSCAN into Sleep Mode before the STOP or WAI instruction (if CSWAI is set) is executed. Otherwise the abort of an ongoing message can cause an error condition and can have an impact on the other bus devices.

In Power Down Mode, all clocks are stopped and no registers can be accessed. If the MSCAN was not in Sleep Mode before Power Down Mode became active, the module would perform an internal recovery cycle after powering up. This causes some fixed delay before the module enters Run Mode again.

19.7.8.7 Programmable Wake-Up Function

The MSCAN can be programmed to wake-up the MSCAN as soon as bus activity is detected (see control bit WUPE in Section 19.5.3, MSCAN Control Register 0 (CANCTL0)—MBAR + 0x0900 / 0x980). The sensitivity to existing bus action can be modified by applying a low-pass filter function to the RXCAN input line while in Sleep Mode (see control bit WUPM in Section 19.5.4, MSCAN Control Register 1 (CANCTL1)—MBAR + 0x0901 / 0x981). This feature can be used to protect the MSCAN from wake-up due to short glitches on the CAN bus lines. Such glitches can result, for example, from electromagnetic interference within noisy environments.

19.7.9 Description of Interrupt Operation

The MSCAN supports one interrupt vector mapped onto eight different interrupt sources, any of which can be individually masked (for details see sections Section 19.5.8, MSCAN Receiver Interrupt Enable Register (CANRIER)—MBAR + 0x0909 / 0x989 to Section 19.5.10, MSCAN Transmitter Interrupt Enable Register (CANTIER)—MBAR+0x090D / 0x098D):

Controller Area Network (MSCAN)

19.7.9.1 Transmit Interrupt Notes

At least one of the three transmit buffers is empty (not scheduled) and can be loaded to schedule a message for transmission. The TXEx flag of the empty message buffer is set.

19.7.9.2 Receive Interrupt

A message is successfully received and shifted into the foreground buffer (RxFG) of the receiver FIFO. This interrupt is generated immediately after receiving the EOF symbol. The RXF flag is set. If there are multiple messages in the receiver FIFO, the RXF flag is set as soon as the next message is shifted to the foreground buffer.

19.7.9.3 Wake-Up Interrupt

Activity on the CAN bus occurred during MSCAN internal Sleep Mode and WUPE Section 19.5.3, MSCAN Control Register 0 (CANCTL0)—MBAR + 0x0900 / 0x980 enabled.

MPC5200B Users Guide, Rev. 1

19.7.9.4 Error Interrupt

An overrun of the receiver FIFO, error, warning or Bus-Off condition occurred. The Section 19.5.7, MSCAN Receiver Flag Register (CANRFLG)—MBAR+0x0908 / 0x988 indicates one of the following conditions:

Overrun

An overrun condition of the receiver FIFO as described in Section 19.7.2.3, Receive Structures occurred.

CAN Status Change

The actual value of the Transmit and Receive Error Counters control the bus state of the MSCAN. As soon as the error counters skip into a critical range (Tx/Rx-Warning, Tx/Rx-Error, Bus-Off) the MSCAN flags an error condition. The status change, which caused the error condition, is indicated by the TSTAT and RSTAT flags (see section Section 19.5.7, MSCAN Receiver Flag Register (CANRFLG)—MBAR + 0x0908 / 0x988 and Section 19.5.8, MSCAN Receiver Interrupt Enable Register (CANRIER)—MBAR + 0x0909 / 0x989).

19.7.10 Interrupt Acknowledge

Interrupts are directly associated with one or more status flags in either the Section 19.5.7, MSCAN Receiver Flag Register (CANRFLG)—MBAR+0x0908 / 0x988 or the Section 19.5.9, MSCAN Transmitter Flag Register (CANTFLG)—MBAR + 0x090C / 0x98C. Interrupts are pending as long as one of the corresponding flags is set. The flags in the above registers must be reset within the interrupt handler to handshake the interrupt. The flags are reset by writing a "1" to the corresponding bit position. A flag cannot be cleared if the respective condition still prevails.

NOTE

It must be guaranteed that the CPU only clears the bit causing the current interrupt. For this reason, bit manipulation instructions (*BSET*) must not be used to clear interrupt flags. These instructions may cause accidental clearing of interrupt flags which are set after entering the current interrupt service routine.

19.7.11 Recovery from STOP or WAIT

The MSCAN can recover from Sleep Mode via the Wake-Up interrupt. This interrupt can only occur if the MSCAN is in Sleep Mode (SLPRQ=1 and SLPAK=1), the wake-up option is enabled (WUPE=1) and the Wake-Up interrupt is enabled (WUPIE=1).

Functional Description

19-40 Freescale Semiconductor

Chapter 20 Byte Data Link Controller (BDLC)

20.1 Overview

The BDLC module is a serial communication module which allows the user to send and receive messages across a Society of Automotive Engineers (SAE) J1850 serial communication network. The user's software handles each transmitted or received message on a byte-by-byte basis, while the BDLC performs all of the network access, arbitration, message framing and error detection duties.

It is recommended that the reader be familiar with the operation and requirements of the SAE J1850 protocol as described in the document "SAE Standard J1850 Class B Data Communications Network Interface" prior to proceeding with this specification.

The BDLC module is designed in a modular structure for use as an IP block. A general working knowledge of the IP bus signals and bus control is assumed in the writing of this document.

20.2 Features

Features of the BDLC module include the following:

- SAE J1850 Class B Data Communications Network Interface Compatible and ISO Compatible for Low-Speed (≤ 125 Kbps) Serial Data Communications in Automotive Applications
- 10.4 Kbps Variable Pulse Width (VPW) Bit Format
- Digital Noise Filter
- Digital Loopback Mode
- 4X Receive and Transmit Mode, 41.6 Kbps, Supported
- · BREAK symbol generation Supported
- · Block Mode Receive and Transmit Supported
- Collision Detection
- Hardware Cyclical Redundancy Check (CRC) Generation and Checking
- Dedicated Register for Symbol Timing Adjustments
- IP bus Interface
- In-Frame Response (IFR) Types 0, 1, 2, and 3 Supported
- Polling and CPU Interrupt Generation with Vector Lookup Available

20.3 Modes of Operation

The BDLC module has 6 main modes of operation which interact with the power supplies, pins, and the rest of the MCU as shown below.

Figure 20-1. BDLC Operating Modes State Diagram

Power Off

This mode is entered from the Reset mode whenever the BDLC module supply voltage V_{dd} drops below its minimum specified value for the BDLC module to guarantee operation. The BDLC module will be placed in the Reset mode by a system Low Voltage Reset (LVR) before being powered down. In this mode, the pin input and output specifications are not guaranteed.

Reset

This mode is entered from the Power Off mode whenever the BDLC module supply voltage V_{dd} rises above its minimum specified value ($V_{dd(MIN)}$) and some MCU reset source is asserted. To prevent the BDLC from entering an unknown state, the internal MCU reset is asserted while powering up the BDLC module. BDLC Reset mode is also entered from any other mode as soon as one of the MCU's possible reset sources (e.g. LVR, POR, COP watchdog, Reset pin etc.) is asserted.

In this mode, the internal BDLC module voltage references are operative, V_{dd} is supplied to the internal circuits, which are held in their reset state and the internal BDLC module system clock is running. Registers will assume their reset condition. Outputs are held in their programmed Reset state, inputs and network activity are ignored.

BDLC Disabled

This mode is entered from the Reset mode after all MCU reset sources are no longer asserted. It is entered from the Run mode whenever the BDLCE bit in the BDLC Control Register is cleared.

In this mode the mux interface clock (f_{bdlc}) is stopped to conserve power and allow the BDLC module to be configured for proper operation on the J1850 bus. The IP bus interface clocks are left running in this mode to allow access to all BDLC module registers for initialization.

MPC5200B Users Guide, Rev. 1

20-2 Freescale Semiconductor

Run

This mode is entered from the BDLC Disabled mode when the BDLCE bit in the BDLC Control Register is set. It is entered from the BDLC Wait mode whenever activity is sensed on the J1850 bus or some other MCU source wakes the CPU out of Wait mode.

It is entered from the BDLC Stop mode whenever network activity is sensed or some other MCU source wakes the CPU out of Stop mode. Messages will not be received properly until the clocks have stabilized and the CPU is also in the Run mode.

BDLC Wait

This power conserving mode is automatically entered from the Run mode whenever the CPU executes a WAIT instruction and if the WCM bit in the BDLC Control Register 1 register is previously cleared. In this mode, the BDLC module internal clocks continue to run. Any activity on the J1850 network will cause the BDLC module to exit BDLC Wait mode and generate an unmaskable interrupt of the CPU. This wakeup interrupt state is reflected in the BDLC State Vector Register, encoded as the highest priority interrupt. This interrupt can be cleared by the CPU with a read of the BDLC State Vector Register.

Wakeup from BDLC Wait with CPU in WAIT

If the CPU executes the WAIT instruction and the BDLC module enters the WAIT mode (WCM = 0), the clocks to the BDLC module as well as the clocks in the MCU continue to run. Therefore, the message which wakes up the BDLC module from WAIT and the CPU from WAIT mode will also be received correctly by the BDLC module. This is because all of the required clocks continue to run in the BDLC module in WAIT mode. The wakeup behavior of the BDLC module applies regardless of whether the BDLC module is in normal or 4X mode when the WAIT instruction is executed.

BDLC Stop

This power conserving mode is automatically entered from the Run mode whenever the CPU executes a STOP instruction, or if the CPU executes a WAIT instruction and the WCM bit in the BDLC Control Register 1 register is previously set. In this mode, the BDLC internal clocks are stopped. Any activity on the network will cause the BDLC module to exit BDLC Stop mode and generate an unmaskable interrupt of the CPU. This wakeup interrupt state is reflected in the BDLC State Vector Register, encoded as the highest priority interrupt. This interrupt can be cleared by the CPU with a read of the BDLC State Vector Register. Depending upon which low-power mode instruction the CPU executes to cause the BDLC module to enter BDLC Stop, the message which wakes up the BDLC module (and the CPU) may or may not be received. There are two different possibilities, both of which is described below. These descriptions apply regardless of whether the BDLC module is in normal or 4X mode when the STOP or WAIT instruction is executed.

Wakeup from BDLC Stop with CPU in STOP

When the CPU executes the STOP instruction, all clocks in the MCU, including clocks to the BDLC module, are turned off. Therefore, the message which wakes up the BDLC module and the CPU from STOP mode will not be received. This is due primarily to the amount of time required for the MCU's oscillator to stabilize before the clocks can be applied internally to the other MCU modules, including the BDLC module.

Wakeup from BDLC Stop with CPU in WAIT

If the CPU executes the WAIT instruction and the BDLC module enters the Stop mode (WCM = 1), the clocks to the BDLC module are turned off, but the clocks in the MCU continue to run. Therefore, the message which wakes up the BDLC module from Stop and the CPU from WAIT mode will be received correctly by the BDLC module. This is because very little time is required for the CPU to turn the clocks to the BDLC module back on once the wakeup interrupt occurs.

NOTE

While the BDLC module will correctly receive a message which arrives when the BDLC module is in Stop mode or Wait mode and the MCU is in WAIT mode, if the user enters this mode while a message is being received, the data in the message will become corrupted. This is due to the steps required for the BDLC module to resume operation upon exiting Stop mode or Wait mode, and its subsequent resynchronization with the SAE J1850 bus.

Digital Loopback

When a bus fault has been detected, the digital loopback mode is used to determine if the fault condition is caused by failure in the node's internal circuits or elsewhere in the network, including the node's analog physical interface. In this mode, the input to the digital filter is disconnected from the receive pin input (RXB). The input to the digital filter is then connected to the transmitter output to form the loopback connection. The transmit pin (TXB) is negated and will always drive a passive state onto the bus. Digital loopback mode is entered by setting the DLOOP bit in Section 20.7.3.3, BDLC Control Register 2 (DLCBCR2) - MBAR + 0x1304.

• Normal and Emulation Mode Operation

The BDLC module operates in the same manner in all Normal and Emulation Modes. All BDLC module registers can be read and written except those that are reserved, unimplemented, or write once. The user must be careful not to unintentionally write a register when using 16-bit writes in order to avoid unexpected BDLC module behavior.

• Special Mode Operation

Some aspects of BDLC module operation can be modified in special test mode. This mode is reserved for internal use only.

MPC5200B Users Guide, Rev. 1

Block Diagram

• Low Power Options

The BDLC module can save power in Disabled, Wait, and Stop modes. A complete description of what the BDLC module does while in a low power mode can be found in Section 20.3, *Modes of Operation*.

20.4 Block Diagram

Figure 20-2 shows the organization of the BDLC module. The Buffers provide storage for data received and data to be transmitted onto the J1850 bus. The Protocol Handler is responsible for the encoding and decoding of data bits and special message symbols during transmission

and reception. The MUX Interface provides the link between the BDLC digital section and the analog Physical Interface. The wave shaping, driving and digitizing of data is performed by the Physical Interface.

NOTE

The Physical Interface is not implemented in the BDLC module and must be provided externally.

The main functional blocks of the BDLC module are explained in greater detail in the following sections.

Use of the BDLC module in message networking fully implements the "SAE Standard J1850 Class B Data Communication Network Interface" specification.

20.5 Signal Description

20.6 Overview

The BDLC module has a total of 2 external pins.

20.6.1 Detailed Signal Descriptions

20.6.1.1 TXB - BDLC Transmit Pin

The TXB pin serves as the transmit output channel for the BDLC module.

20.6.1.2 RXB - BDLC Receive Pin

The RXB pin serves as the receive input channel for the BDLC module.

20.7 Memory Map and Registers

20.7.1 Overview

This section provides a detailed description of all memory and registers accessible to the end user.

20.7.2 Module Memory Map

Table 20-1. Module Memory Map

Address	Use	Access
MBAR + 0x1300	BDLC Control Register 1 (DLCBCR1)	R/W
MBAR + 0x1301	BDLC State Vector Register (DLCBSVR)	R
MBAR + 0x1304	BDLC Control Register 2 (DLCBCR2)	R/W
MBAR + 0x1305	BDLC Data Register (DLCBDR)	R/W
MBAR + 0x1308	BDLC Analog Round Trip Delay Register (DLCBARD)	R/W
MBAR + 0x1309	BDLC Rate Select Register (DLCBRSR)	R/W
MBAR + 0x130C	BDLC Control Register (DLCSCR)	R/W
MBAR + 0x130D	BDLC Status Register (DLCBSTAT)	R

20.7.3 Register Descriptions

20.7.3.1 BDLC Control Register 1 (DLCBCR1)—MBAR + 0x1300

This register is used to configure and control the BDLC module.

Memory Map and Registers

Table 20-2. BDLC Control Register 1

	msb 0	1	2	3	4	5	6	7 Isb
R	IMSG	CLKS	0	0	0	0	ΙE	WCM
W								
RESET:	1	1	0	0	0	0	0	0
		= Unimp	lemented or R	leserved				

READ: any time

WRITE: IMSG, IE, and WCM any time.

CLKS write once in normal and emulation modes.

CLKS bit has modified functionality in special test mode.

Writes to unimplemented bits 5-2 are ignored.

IMSG — Ignore Message (Bit 7)

This bit allows the CPU to ignore messages by disabling updates of the BDLC State Vector Register register until a new Start of Frame (SOF) or a BREAK symbol is detected. BDLC module transmitter and receiver operation are unaffected by the state of the IMSG bit.

1 = Disable BDLC State Vector Register Updates. When set, all BDLC interrupt sources (exceptions are described below) will be prevented from updating BDLC State Vector Register status bits. Setting IMSG does not clear pending interrupt flags, the behavior of which will still be as described in Section, BDLC State Vector Register (DLCBSVR). If this bit is set while the BDLC is receiving or transmitting a message, state vector register updates will be inhibited for the rest of the message.

0 = Enable BDLC State Vector Register Updates. This bit is automatically cleared by the reception of a SOF symbol or a BREAK symbol. It will then allow updates of the state vector register to occur.

There are two situations in which interrupts will not be masked by the IMSG bit: when a wakeup interrupt occurs; and when a receiver error occurs which causes a byte pending transmission to be flushed from the transmit shadow register. See Section 20.7.3.4, BDLC Data Register (DLCBDR) - MBAR + 0x1305 for a description of the conditions which cause a pending transmission to be flushed.

CLKS — Clock Select (Bit 6)

The nominal BDLC operating frequency (mux interface clock frequency - f_{bdlc}) must always be 1.048576 MHz or 1 MHz in order for J1850 bus communications to take place properly. The CLKS register bit is provided to allow the user to indicate to the BDLC module which frequency (1.048576 MHz or 1 MHz) is used so that each symbol time can be automatically adjusted.

The CLKS bit is a write once bit. All writes to this bit will be ignored after the first one.

Binary frequency (1.048576 MHz) is used for f_{bdlc}.

Integer frequency (1 MHz) is used. for f_{bdlc}

Section 20.8.1.3, J1850 VPW Valid/Invalid Bits & Symbols describes the transmitter and receiver VPW symbol timing for integer and binary frequencies.

IE — Interrupt Enable (Bit 1)

This bit determines whether the BDLC module will generate CPU interrupt requests. It does <u>not</u> affect CPU interrupt requests when exiting the BDLC module Stop or Wait modes. Interrupt requests will be maintained until all of the interrupt request sources are cleared, by performing the specified actions upon the BDLC module's registers. Interrupts that were pending at the time that this bit is cleared may be lost.

- 1 = Enable interrupt requests from BDLC module
- 0 = Disable interrupt requests from BDLC module

If the programmer does not wish to use the interrupt capability of the BDLC module, the BDLC State Vector Register (BDLC State Vector Register) can be polled periodically by the programmer to determine BDLC module states. Refer to Section 20.7.3.2, BDLC State Vector Register (DLCBSVR) - MBAR + 0x1300 for a description of BDLC State Vector Register register and how to clear interrupt requests.

WCM — Wait Clock Mode (Bit 0) (Provided CPU has Low Power Mode Options)

This bit determines how the BDLC module responds when the CPU enters WAIT mode. As described in Section 20.3, *Modes of Operation*, the BDLC module can respond by either entering BDLC_STOP mode, where all internal clocks are stopped, or entering BDLC_WAIT mode where internal clocks are allowed to run.

1 = Stop BDLC internal clocks during CPU wait mode (BDLC STOP)

0 = Run BDLC internal clocks during CPU wait mode (BDLC WAIT)

20.7.3.2 BDLC State Vector Register (DLCBSVR) - MBAR + 0x1300

This register is provided to substantially decrease the CPU overhead associated with servicing interrupts while under operation of a MUX protocol. It provides a index offset that is directly related to the BDLC module's current state, which can be used with a user supplied jump table to rapidly enter an interrupt service routine. This eliminates the need for the user to maintain a duplicate state machine in software.

Table 20-3. BDLC State Vector Register

READ: any time WRITE: ignored

I[3:0] — Interrupt State Vector (Bits 5-2)

These bits indicate the source of the interrupt request that is currently pending.

Table 1-1. Interrupt Summary

BSVR	13	12	I1	10	Interrupt Source	Priority
\$00	0	0	0	0	No Interrupts Pending	0 (Lowest)
\$04	0	0	0	1	Received EOF	1
\$08	0	0	1	0	Received IFR byte	2
\$0C	0	0	1	1	Rx data register full	3
\$10	0	1	0	0	Tx data register empty	4
\$14	0	1	0	1	Loss of arbitration	5
\$18	0	1	1	0	CRC error	6
\$1C	0	1	1	1	Symbol invalid or out of range	7
\$20	1	0	0	0	Wakeup	8 (Highest)

The state encoding of the interrupt sources mean that only one interrupt source is dealt with at a time. Once the highest priority interrupt source is dealt with, if another interrupt event of a lower priority has also occurred, the value corresponding to that interrupt source appears in the BDLC State Vector Register. This continues until all BDLC interrupt sources have been dealt with and all bits in the BDLC State Vector Register are cleared.

Wakeup

The BDLC has two different power-conserving modes, stop and wait. Wakeup from these modes is described below.

Wakeup from BDLC Wait with CPU in Wait

If the CPU executes a WAIT instruction and the BDLC enters the BDLC wait mode, the clocks to the BDLC as well as the clocks in the MCU continue to run. The message which generates a Wake-up interrupt of the BDLC and the CPU will be received correctly.

• Wakeup from BDLC Stop with CPU in Wait

If the CPU executes a WAIT instruction and the BDLC enters the BDLC stop mode, the clocks to the BDLC are turned off, but the clocks in the MCU continue to run. The message which generates a Wake-up interrupt of the BDLC and the CPU will be received correctly. To ensure this, the EOF following the last message appearing on the bus must be received; otherwise, the message will not be received correctly.

Wakeup from BDLC Stop with CPU in Stop

Freescale Semiconductor 20-7

MPC5200B Users Guide, Rev. 1

Memory Map and Registers

If the CPU executes a STOP all clocks to the BDLC as well as the clocks in the MCU are turned off including clocks to the BDLC. The message which generates a Wake-up interrupt of the BDLC and the CPU will not be received correctly.

- · Symbol Invalid or Out of Range
- CRC Error

The Cyclical Redundancy Check Byte is used by the receiver(s) of each message to determine if any errors have occurred during the transmission of the message. If the message is not error free, the CRC error status is shown in the BDLC State Vector Register.

· Loss of Arbitration

The Loss of Arbitration status is entered when a loss of arbitration occurs while the BDLC is transmitting onto the bus.

• Tx Data Register Empty

The Tx Data Register Empty (TDRE) Byte is used to tell when data has been unloaded from the BDLC Data Register.

• Rx Data Register Full

The Rx Data Register Full (RDRF) Byte is used to tell when data has been loaded in the BDLC Data Register.

· Received IFR Byte

The BDLC can transmit and receive all four types of in-frame responses. As each byte of an IFR is received, the BDLC State Vector Register indicates this by setting this state.

Received EOF

When a 280us passive period on the bus is received, it signifies an EOF. Whenever this occurs, the EOF flag is set.

No Interrupts Pending

This interrupt cannot generate an interrupt of the CPU.

20.7.3.3 BDLC Control Register 2 (DLCBCR2) - MBAR + 0x1304

This register controls transmitter operations of the BDLC module.

Table 20-4. BDLC Control Register 2

	msb 0	1	2	3	4	5	6	7 Isb
R	SMRST	DLOOP	4XE	NBFS	TEOD	TSIFR	TMIFR1	TMIFR0
W								
RESET:	0	1	0	0	0	0	0	0

READ: any time

WRITE: any time

SMRST — State Machine Reset (Bit 7)

The programmer can use this bit to reset the BDLC state machines to an initial state after the user put the off-chip analog transceiver in loop back mode.

- 1 = Setting SMRST arms the state machine reset generation logic. Setting SMRST does not affect BDLC module behavior in any way.
- 0 = Clearing SMRST after it has been set will cause the generation of a state machine reset. After SMRST is cleared, the BDLC requires the bus to be idle for a minimum of an End of Frame symbol (EOF) time before allowing the reception of a message. The BDLC requires the bus to be idle for a minimum of an Inter-Frame Separator symbol (IFS) time before allowing any message to be transmitted.

DLOOP — Digital Loopback Mode (Bit 6)

This bit determines the source to which the input of the digital filter is connected and can be used to isolate bus fault conditions. If a fault condition has been detected on the bus, this control bit allows the programmer to disconnect the digital filter from input from the receive pin (RXB) and connect it to the transmit output to the pin (TXB). In this configuration, data sent from the transmit buffer should be reflected back into the receive buffer. If no faults exist in the digital block, the fault is in the physical interface block or elsewhere on the J1850 bus.

1 = When set, digital filter input is connected to the transmitter output. The BDLC module is now in Digital Loopback Mode of operation. The transmit pin (TXB) is driven low and not driven by the transmitter output.

0 = When cleared, digital filter input is connected to receive pin (RXB) and the transmitter output is connected to the transmit pin (TXB). The BDLC module is taken out of Digital Loopback Mode and can now drive and receive from the J1850 bus normally. After writing DLOOP to zero, the BDLC module requires the bus to be idle for a minimum of an End of Frame symbol time before allowing a reception of a message. The BDLC module requires the bus to be idle for a minimum of an Inter-Frame Separator symbol time before allowing any message to be transmitted.

NOTE

The DLOOP bit is a fault condition aid and should never be altered after the BDLC Data Register is loaded for transmission. Changing DLOOP during a transmission may cause corrupted data to be transmitted onto the J1850 network.

4XE — 4X Mode Enable (Bit 5)

This bit determines if the BDLC operates at normal transmit and receive speed (10.4 kbps) or in 4X Mode at 41.6 kbps. This feature is useful for fast download of data into a J1850 node for diagnostic or factory programming of the node.

- 1 =When set, the BDLC module is put in 4X (41.6 kbps) operation.
- 0 = When cleared, the BDLC module transmits and receives at 10.4 kbps. Reception of a BREAK symbol automatically clears this bit and sets the symbol invalid or out of range flag BDLC State Vector Register = \$1C).

The effect of 4X receive operation on receive symbol timing boundaries is described in Section 20.8.1.3, *J1850 VPW Valid/Invalid Bits & Symbols*.

NBFS — Normalization Bit Format Select (Bit 4)

This bit controls the format of the Normalization Bit (NB). SAE J1850 strongly encourages the use of an active long: '0' for In-Frame Responses containing CRC and active short, '1' for In-Frame Responses without CRC.

- 1 = NB that is received or transmitted is a '0' when the response part of an In-Frame Response (IFR) ends with a CRC byte. NB that is received or transmitted is a '1' when the response part of an In-Frame Response (IFR) does not end with a CRC byte.
- 0 = NB that is received or transmitted is a '1' when the response part of an In-Frame Response (IFR) ends with a CRC byte. NB that is received or transmitted is a '0' when the response part of an In-Frame Response (IFR) does not end with a CRC byte.

TEOD — Transmit End of Data (Bit 3)

This bit is set by the programmer to indicate the end of a message being sent by the BDLC. It will append an 8-bit CRC after completing transmission of the current byte in the Tx Shift Register followed by the EOD symbol. If the transmit shadow register (refer to Section 20.8.3.1, *Protocol Architecture* for a description of the transmit shadow register) is full when TEOD is set, the CRC byte and EOD will be transmitted after the current byte in the Tx Shift Register and the byte in the Tx Shadow Register have been transmitted. Once TEOD is set, the transmit data register empty flag (TDRE) in the BDLC State Vector Register (BDLC State Vector Register) is cleared to allow lower priority interrupts to occur. This bit is also used to end an IFR. Bits TSIFR, TMIFR1, and TMIFR0 determine whether a CRC byte is appended before EOD transmission for IFRs.

- 1 = Transmit EOD symbol.
- 0 = The TEOD bit will be automatically cleared after the first CRC bit is sent, or if an error or loss of arbitration is detected on the bus. When TEOD is used to end an IFR transmission, TEOD is cleared when the BDLC receives back a valid EOD symbol, or an error condition or loss of arbitration occurs.

TSIFR, TMIFR1, TMIFR0 — Transmit In-Frame Response Control (Bits 2-0)

These three bits control the type of In-Frame Response being sent. The programmer should not set more than one of these control bits to a one at any given time. However, if more than one of these three control bits are set to one, the priority encoding logic will force the internal register bits to a known value as shown in the following table. But, when these bits are read, they will be the same as written earlier. For instance, if "011" is written to TSIFR, TMIFR1, TMIFR0, then internally, they'll be encoded as "010". However, when these bits are later read back, it'll still be "011".

Table 1-2. Transmit In-Frame Response Control Bit Priority Encoding

WRITE			READ			ACTUAL (internal register)		
TSIFR	TMIFR1	TMIFR0	TSIFR	TMIFR1	TMIFR0	TSIFR	TMIFR1	TMIFR0
0	0	0	0	0	0	0	0	0
1	Х	Х	1	Х	Х	1	0	0
0	1	Х	0	1	Х	0	1	0
0	0	1	0	0	1	0	0	1

MPC5200B Users Guide, Rev. 1

Memory Map and Registers

The BDLC supports the In-frame Response (IFR) feature of J1850 by setting these bits correctly. The four types of J1850 IFR are shown in Figure 20-3. The purpose of the in-frame response modes is to allow single or multiple nodes to acknowledge receipt of the data by responding to a received message after they have seen the EOD symbol. For VPW modulation, the first bit of the IFR is always passive; therefore, an active normalization bit must be generated by the responder and sent prior to its ID/address byte. When there are multiple responders on the J1850 bus, only one normalization bit is sent which assists all other transmitting nodes to sync their responses.

Type 3 - Multiple Bytes From a Single Responder (with or without CRC)

Figure 20-3. Types of In-Frame Response

TSIFR — Transmit Single Byte IFR with no CRC (Type 1 or 2)

This bit is used to request the BDLC to transmit the byte in the BDLC Data Register as a single byte IFR with no CRC. Typically, the byte transmitted is a unique identifier or address of the transmitting (responding) node.

- 1 = If this bit is set prior to a valid EOD being received with no CRC error, once the EOD symbol has been received the BDLC module will attempt to transmit the appropriate normalization bit followed by the byte in the BDLC Data Register.
- 0 = The TSIFR bit will be automatically cleared once the EOD following one or more IFR bytes has been received or an error is detected on the bus.

The user must set the TSIFR bit before the EOF following the main part of the message frame is received, or no IFR transmit attempts will be made for the current message. If another node transmits an IFR to this message, the user must set the TSIFR bit before the normalization bit is received or no IFR transmit attempts will be made for the message. If another node does transmit a successful IFR or a reception error occurs, the TSIFR bit will be cleared. If not, the IFR will be transmitted after the EOD of the next received message.

If a loss of arbitration occurs when the BDLC module attempts transmission, after the IFR byte winning arbitration completes transmission, the BDLC module will again attempt to transmit the byte in the BDLC Data Register (with no normalization bit). The BDLC module will continue transmission attempts until an error is detected on the bus, or TEOD is set by the CPU, or the BDLC transmission is successful.

NOTE

Setting the TEOD bit before transmission of the IFR byte will direct the BDLC to make only one attempt at transmitting the byte.

If loss of arbitration occurs in the last bit of the IFR byte, two additional '1' bits **will not** be sent out because the BDLC will attempt to retransmit the byte in the transmit shift register after the IFR byte winning arbitration completes transmission.

TMIFR1 — Transmit Multiple Byte IFR with CRC (Type 3)

This bit requests the BDLC module to transmit the byte in the BDLC Data Register (BDLC Data Register) as the first byte of a multiple byte IFR with CRC or as a single byte IFR with CRC. Response IFR bytes are still subject to J1850 message length maximums.

- 1 = If this bit is set prior to a valid EOD being received with no CRC error, once the EOD symbol has been received, the BDLC module will attempt to transmit the appropriate normalization bit followed by IFR bytes. The programmer should set TEOD after the last IFR byte has been written into BDLC Data Register. After TEOD has been set and the last IFR byte has been transmitted, the CRC byte is transmitted.
- 0 = The TMIFR1 bit will be automatically cleared once the BDLC module has successfully transmitted the CRC byte and EOD symbol, by the detection of an error on the multiplex bus, a transmitter underrun, or loss of arbitration.

MPC5200B Users Guide, Rev. 1

20-10 Freescale Semiconductor

After the byte in the BDLC Data Register has been loaded into the transmit shift register, the TDRE flag will be set in the BDLC State Vector Register register, similar to the main message transmit sequence. If the interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request from the BDLC module is generated. The programmer should then load the next byte of the IFR into the BDLC Data Register for transmission. When the last byte of the IFR has been loaded into the BDLC Data Register, the programmer should set the TEOD bit in the BDLC control register 2. This will instruct the BDLC module to transmit a CRC byte once the byte in the BDLC Data Register is transmitted, and then transmit an EOD symbol, indicating the end of the IFR portion of the message frame.

However, if the programmer wishes to transmit a single byte followed by a CRC byte, the programmer should load the byte into the BDLC Data Register and then set the TMIFR1 bit before the EOD symbol has been received. Once the TDRE flag is set and interrupt occurs (if enabled), the programmer should then set the TEOD bit in BDLC Control Register 2. This will result in the byte in the BDLC Data Register being the only byte transmitted before the IFR CRC byte.

The user must set the TMIFR1 bit before the EOF following the main part of the message frame is received, or no IFR transmit attempts will be made for the current message. If another node transmits an IFR to this message, the user must set the TMIFR1 bit before the normalization bit is received or no IFR transmit attempts will be made for the message. If another node does transmit a successful IFR or a reception error occurs, the TMIFR1 bit will be cleared. If not, the IFR will be transmitted after the EOD of the next received message.

If a transmitter underrun error occurs during transmission (caused by the programmer not writing another byte to the BDLC Data Register following the TDRE flag being set) the BDLC module will automatically disable the transmitter after the byte currently in the shifter plus two extra 1-bits have been transmitted. The receiver will pick this up as an framing error and relay it in the State Vector Register as an invalid symbol error. The TMIFR1 bit will also be cleared.

If a loss of arbitration occurs when the BDLC module is transmitting a multiple byte IFR with CRC, the BDLC module will go to the loss of arbitration state, set the appropriate flag and cease transmission. The TMIFR1 bit will be cleared and no attempt will be made to retransmit the byte in the BDLC Data Register. If loss of arbitration occurs in the last bit of the IFR byte, two additional one bits (a passive long followed by an active short) will be sent out.

NOTE

The extra logic 1s are an enhancement to the J1850 protocol which forces a byte boundary condition fault. This is helpful in preventing noise on the J1850 bus from corrupting a message.

TMIFR0 — Transmit Multiple Byte IFR with no CRC (Type 3)

This bit is used to request the BDLC module to transmit the byte in the BDLC Data Register as the first byte of a multiple byte IFR without CRC. Response IFR bytes are still subject to J1850 message length maximums.

1 = If this bit is set prior to a valid EOD being received with no CRC error, once the EOD symbol has been received the BDLC module will attempt to transmit the appropriate normalization bit followed by IFR bytes. The programmer should set TEOD after the last IFR byte has been written into BDLC Data Register. After TEOD has been set, the last IFR byte to be transmitted will be the last byte which was written into the BDLC Data Register.

0 = The TMIFR0 bit will be automatically cleared once the BDLC module has successfully transmitted the EOD symbol, by the detection of an error on the multiplex bus, a transmitter underrun, or loss of arbitration.

After the byte in the BDLC Data Register has been loaded into the transmit shift register, the TDRE flag will be set in the BDLC State Vector Register register, similar to the main message transmit sequence. If the interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request from the BDLC module is generated. The programmer should then load the next byte of the IFR into the BDLC Data Register for transmission. When the last byte of the IFR has been loaded into the BDLC Data Register, the programmer should set the TEOD bit in the BDLC Control Register 2. This will instruct the BDLC to transmit an EOD symbol, indicating the end of the IFR portion of the message frame. The BDLC module will not append a CRC.

However, if the programmer wishes to transmit a single byte, the programmer should load the byte into the BDLC Data Register and then set the TMIFR0 bit before the EOD symbol has been received. Once the TDRE flag is set and interrupt occurs (if enabled), the programmer should then set the TEOD bit in BDLC Control Register 2. This will result in the byte in the BDLC Data Register being the only byte transmitted.

The user must set the TMIFR0 bit before the EOF following the main part of the message frame is received, or no IFR transmit attempts will be made for the current message. If another node transmits an IFR to this message, the user must set the TMIFR0 bit before the normalization bit is received or no IFR transmit attempts will be made for the message. If another node does transmit a successful IFR or a reception error occurs, the TMIFR0 bit will be cleared. If not, the IFR will be transmitted after the EOD of the next received message.

If a transmitter underrun error occurs during transmission (caused by the programmer not writing another byte to the BDLC Data Register following the TDRE flag being set) the BDLC module will automatically disable the transmitter after the byte currently in the shifter plus two extra 1-bits have been transmitted. The receiver will pick this up as an framing error and relay it in the State Vector Register as an invalid symbol error. The TMIFR0 bit will also be cleared.

If a loss of arbitration occurs when the BDLC module is transmitting a multiple byte IFR without CRC, the BDLC module will go to the loss of arbitration state, set the appropriate flag and cease transmission. The TMIFR0 bit will be cleared and no attempt will be made to retransmit the byte in the BDLC Data Register. If loss of arbitration occurs in the last bit of the IFR byte, two additional one bits (a passive long followed by an active short) will be sent out.

MPC5200B Users Guide, Rev. 1

NOTE

The extra logic 1s are an enhancement to the J1850 protocol which forces a byte boundary condition fault. This is helpful in preventing noise on the J1850 bus from corrupting a message.

20.7.3.4 BDLC Data Register (DLCBDR) - MBAR + 0x1305

This register is used to pass the data to be transmitted to the J1850 bus from the CPU to the BDLC module. It is also used to pass data received from the J1850 bus to the CPU.

Table 20-5. BDLC Data Register

	msb 0	1	2	3	4	5	6	7 Isb
R	D7	D6	D5	D4	D3	D2	D1	D0
W								
RESET:	0	0	0	0	0	0	0	0

READ: any time WRITE: any time

D7:D0 — Receive/Transmit Data (Bits 7 - 0)

While transmitting, each data byte (after the first one) should be written only after a "Tx Data Register Empty" (TDRE) interrupt has occurred, or the BDLC State Vector Register register has been polled indicating this condition.

Data read from this register will be the last data byte received from the J1850 bus. This received data should only be read after a "Rx Data Register Full" (RDRF) or "Received IFR byte" (RXIFR) interrupt has occurred or the BDLC State Vector Register register has been polled indicating either of these two conditions.

The BDLC Data Register is double buffered via a transmit shadow register and a receive shadow register. After the byte in the transmit shift register has been transmitted, the byte currently stored in the transmit shadow register is loaded into the transmit shift register. Once the transmit shift register has shifted the first bit out, the TDRE flag is set, and the shadow register is ready to accept the next byte of data.

The receive shadow register works similarly. Once a complete byte has been received, the receive shift register stores the newly received byte into the receive shadow register. The RDRF flag (or RXIFR flag if the received byte is part of an IFR) is set to indicate that a new byte of data has been received. The programmer has one BDLC module byte reception time to read the shadow register and clear the RDRF or RXIFR flag before the shadow register is overwritten by the newly received byte.

If the user writes the first byte of a message to be transmitted to the BDLC Data Register and then determines that a different message should be transmitted, the user can write a new byte to the BDLC Data Register up until the transmission begins. This new byte will replace the original byte in the BDLC Data Register.

From the time a byte is written to the BDLC Data Register until it is transferred to the transmit shift register, the transmit shadow register is considered full and the byte pending transmission. If one of the IFR transmission control bits (TSIFR, TMIFR1, or TMIFR0 in BDLC Control Register 2) is also set, the byte is pending transmission as an IFR. A byte pending transmission will be flushed from the transmit shadow register and the transmission canceled if one of the following occurs: a loss of arbitration or transmitter error on the byte currently being transmitted; a symbol error, framing error, bus fault, or BREAK symbol is received. If the byte pending transmission is an IFR byte, the reception of a message with a CRC error will also cause the byte in the transmit shadow register to be flushed.

To abort an in-progress transmission, the programmer should simply stop loading more data into the BDLC Data Register. This will cause a transmitter underrun error and the BDLC module will automatically disable the transmitter on the next non-byte boundary. This means that the earliest a transmission can be halted is after at least one byte (plus two extra 1-bits) has been transmitted. The receiver will pick this up as an error and relay it in the State Vector Register as an invalid symbol error.

20.7.3.5 BDLC Analog Round Trip Delay Register (DLCBARD) - MBAR + 0x1308

This register is used to program the BDLC module so that it compensates for the round trip delays of different external transceivers. Also the polarity of the receive pin (RXB) is set in this register.

Table 20-6. BDLC Analog Round Trip Delay Register

READ: any time

WRITE: write once in normal and emulation modes.

Register functionality modified in special test mode.

Writes to unimplemented bits 7, 5 are ignored.

RXPOL — Receive Pin Polarity (Bit 6)

The Receive pin Polarity bit is used to select the polarity of incoming signal on the receive pin. Some external analog transceiver inverts the receive signal from the J1850 bus before feeding back to the digital receive pin.

- 1 = Select normal/true polarity; true non-inverted signal from J1850 bus, i.e., the external transceiver does not invert the receive signal.
- 0 = Select inverted polarity, where external transceiver inverts the receive signal.

BO4-BO0 — BDLC Analog Roundtrip Delay Offset Field (Bits 4-0)

BO[4:0] adjust the transmitted symbol timings to account for the differing roundtrip delays found in different SAE J1850 analog transceivers. The allowable delay range is from 0 μ s to 31 μ s, with a nominal target of 16 μ s (reset value). Refer to Table 20-7 for the BO[4:0] values corresponding to the expected transceiver delays and the resultant transmitter timing adjustment (in mux interface clock periods (t_{bdlc})). Refer to the analog transceiver device specification for the expected roundtrip delay through both the transmitter and the receiver. The sum of these two delays makes up the total roundtrip delay value.

NOTE

For Digital Loopback test, the Analog Roundtrip Delay Offset Field should be set to 0µs.

Table 20-7. BARD Values vs. Transceiver Delay and Transmitter Timing Adjustment

BARD Offset Bits BO[4:0]	Corresponding Expected Transceiver's delays (μs)	Transmitter Symbol Timing Adjustment (t bdlc) ¹
00000	0	0
00001	1	1
00010	2	2
00011	3	3
00100	4	4
00101	5	5
00110	6	6
00111	7	7
01000	8	8
01001	9	9
01010	10	10
01011	11	11
01100	12	12
01101	13	13
01110	14	14

MPC5200B Users Guide, Rev. 1

Memory Map and Registers

Table 20-7. BARD Values vs. Transceiver Delay and Transmitter Timing Adjustment (continued)

BARD Offset Bits BO[4:0]	Corresponding Expected Transceiver's delays (μs)	Transmitter Symbol Timing Adjustment (t bdlc) ¹
01111	15	15
10000	16	16
10001	17	17
10010	18	18
10011	19	19
10100	20	20
10101	21	21
10110	22	22
10111	23	23
11000	24	24
11001	25	25
11010	26	26
11011	27	27
11100	28	28
11101	29	29
11110	30	30
11111	31	31

^{1.} The transmitter symbol timing adjustment is the same for binary and integer bus frequencies.

20.7.3.6 BDLC Rate Select Register (DLCBRSR) - MBAR + 0x1309

This register determines the divider prescaler value for the mux interface clock (f_{bdlc}). Only integer multiple of the 1 MHz or 1.048576 MHz f_{bdlc} are supported as input clock.

Table 20-8. BDLC Rate Select Register

READ: any time

WRITE: write once in normal and emulation modes.

R7-R0 — Rate Select (Bits 7-0)

These bits determine the amount by which the frequency of the system clock signal is divided to generate the MUX Interface clock (f_{bdlc}) which defines the basic timing resolution of the MUX Interface. The value programmed into these bits is dependent on the chosen system clock frequency. See Table 20-9 and Table 20-10 for example rate selects for different bus frequencies. All divisor values from divide by 1 to divide by 256 are possible, but are not shown in the tables.

NOTE

Although the maximum divider is 256, a divider which will generate a 1 MHz or 1.048576 MHz f_{bdlc} must be selected in order for J1850 communications to occur.

20-14 Freescale Semiconductor

Table 20-9. BDLC Rate Selection for Binary Frequencies [CLKS = 1]

IP bus clock frequency	R[7:0]	division	f _{bdlc}
f _{CLOCK} =1.048576 MHz	\$00	1	1.048576 MHz

Table 20-10. BDLC Rate Selection for Integer Frequencies [CLKS = 0]

IP bus clock frequency	R[7:0]	division	f _{bdlc}
f _{CLOCK} =132.00000 MHz	\$83	132	1.000000 MHz
f _{CLOCK} =66.00000 MHz	\$41	66	1.000000 MHz
f _{CLOCK} =54.00000 MHz	\$35	54	1.000000 MHz
f _{CLOCK} =33.00000 MHz	\$20	33	1.000000 MHz
f _{CLOCK} =27.00000 MHz	\$1A	27	1.000000 MHz

20.7.3.7 BDLC Control Register (DLCSCR) - MBAR + 0x130C

The following register enables the BLDC module.

Table 20-11. BDLC Control Register

READ: any time WRITE: any time

BDLCE — BDLC Enable (Bit 4)

This bit serves as a mux interface clock ($f_{\mbox{\scriptsize bdlc}}$) enable/disable for power savings.

- 1 = The mux interface clock (f_{bdlc}) and BDLC module are enabled to allow J1850 communications to take place.
- 0 = The mux interface clock (f_{bdlc}) is disabled, shutting down the BDLC module for power saving. Bus clocks are still running allowing registers to be accessed.

BREAK — send BREAK signal (Bit 0)

This bit determines whether the BDLC module will generate a BREAK symbol.

- 1 = The BDLC module will immediately send a Break signal on the bus, regardless of its current transmit or receive status.
- 0 = The BDLC module does not generate a BREAK symbol.

After setting the BREAK bit it will automatically be cleared after two IPB clock cycles.

The active Break signal causes any other transmitting module to stop transmitting immediately because it loses arbitration. It is at least 280 µs long.

When the BDLC is operating at the high bus speed all 4X symbol times are one fourth that shown, except for Break, which will be transmitted the same length in 1X or 4X mode.

20.7.3.8 BDLC Status Register (DLCBSTAT) - MBAR + 0x130D

This register Indicates the status of the BLDC module.

Table 20-12. BDLC Status Register

	msb 0	1	2	3	4	5	6	7 Isb
R	0	0	0	0	0	0	0	IDLE
W		L	Inimplemente	d		Reserved	Unimple	emented

= Unimplemented

READ: any time

WRITE: ignored in normal and emulation modes

Register functionality is modified in special test mode.

IDLE Idle (Bit 0)

This bit indicates when the BDLC module is idle.

1 = BDLC module has received IFS and no data is being transmitted or received.

0 = BDLC module is either transmitting or receiving data.

NOTE

BDLC module is only idle after receiving IFS. The IDLE bit is 0 during reset since the BDLC module needs to wait for an IFS before becoming idle. Noise on the bus will be filtered and the IDLE bit will remain unchanged.

20.8 Functional Description

20.8.1 **General**

The BDLC module is a serial communication module which allows the user to send and receive messages across a Society of Automotive Engineers (SAE) J1850 serial communication network. The user's software handles each transmitted or received message on a byte-by-byte basis, while the BDLC performs all of the network access, arbitration, message framing and error detection duties.

20.8.1.1 J1850 Frame Format

As noted above and in Section 20.2, *Features*, the BDLC module communicates across an SAE J1850 network. As such, all messages transmitted on the J1850 bus are structured using the format below. The following sections describe this format and it's meanings.

Figure 20-4. J1850 Bus Message Format (VPW)

SAE J1850 states that each message has a maximum length of 101 bit times or 12 bytes (excluding SOF, EOD, NB and EOF).

SOF - Start of Frame Symbol

All messages transmitted onto the J1850 bus must begin with an long active SOF symbol. This indicates to any listeners on the J1850 bus the start of a new message transmission. The SOF symbol is not used in the CRC calculation.

Data - In Message Data Bytes

The data bytes contained in the message include the message priority/type, message I.D. byte, and any actual data being transmitted to the receiving node. See SAE J1850 - Class B Data Communications Network Interface, for more information about 1 and 3 Byte Headers.

·

MPC5200B Users Guide, Rev. 1

Messages transmitted by the BDLC module onto the J1850 bus must contain at least one data byte, and therefore can be as short as one data byte and one CRC byte. Each data byte in the message is 8 bits in length, transmitted MSB to LSB.

• CRC - Cyclical Redundancy Check Byte

This byte is used by the receiver(s) of each message to determine if any errors have occurred during the transmission of the message. The BDLC calculates the CRC byte and appends it onto any messages transmitted onto the J1850 bus, and also performs CRC detection on any messages it receives from the J1850 bus.

CRC generation uses the divisor polynomial $X^8+X^4+X^3+X^2+1$. The remainder polynomial is initially set to all ones, and then each byte in the message after the SOF symbol is serially processed through the CRC generation circuitry. The one's complement of the remainder then becomes the 8-bit CRC byte, which is appended to the message after the data bytes, in MSB to LSB order.

When receiving a message, the BDLC uses the same divisor polynomial. All data bytes, excluding the SOF and EOD symbols, but including the CRC byte, are used to check the CRC. If the message is error free, the remainder polynomial will equal $X^7+X^6+X^2$ (\$C4), regardless of the data contained in the message. If the calculated CRC does not equal \$C4, the BDLC will recognize this as a CRC error and set the CRC error flag in the BDLC State Vector Register.

• EOD - End of Data Symbol

The EOD symbol is a long passive period on the J1850 bus used to signify to any recipients of a message that the transmission by the originator has completed. No flag is set upon reception of the EOD symbol.

• IFR - In Frame Response Bytes

The IFR section of the J1850 message format is optional. Users desiring further definition of in-frame response should review the "SAE J1850 Class B Data Communications Network Interface" specification.

EOF - End of Frame Symbol

This symbol is a passive period on the J1850 bus, longer than an EOD symbol, which signifies the end of a message. Since an EOF symbol is longer than an EOD symbol, if no response is transmitted after an EOD symbol, it becomes an EOF, and the message is assumed to be completed. The EOF flag is set upon receiving the EOF symbol.

IFS - Inter-Frame Separation Symbol

The IFS symbol is a passive period on the J1850 bus which allows proper synchronization between nodes during continuous message transmission. The IFS symbol is transmitted by a node following the completion of the EOF period.

When the last byte of a message has been transmitted onto the J1850 bus, and the EOF symbol time has expired, all nodes must then wait for the IFS symbol time to expire before transmitting an SOF, marking the beginning of another message.

However, if the BDLC module is waiting for the IFS period to expire before beginning a transmission and a rising edge is detected before the IFS time has expired, it will internally synchronize to that edge.

A rising edge may occur during the IFS period because of varying clock tolerances and loading of the J1850 bus, causing different nodes to observe the completion of the IFS period at different times. Receivers must synchronize to any SOF occurring during an IFS period to allow for individual clock tolerances.

Break

If the BDLC module is transmitting at the time a BREAK is detected, it treats the BREAK as if a transmission error had occurred, and halts transmission. The BDLC module can transmit a BREAK symbol. If while receiving a message the BDLC module detects a BREAK symbol, it treats the BREAK as a reception error and sets the invalid symbol flag. If while receiving a message in 4X mode, the BDLC module detects a BREAK symbol, it treats the BREAK as a reception error, sets BDLC State Vector Register register to \$1C, and exits 4X mode. The 4XE bit in BDLC Control Register 2 is automatically cleared upon reception of the BREAK symbol.

• Idle Bus

An idle condition exists on the bus during any passive period after expiration of the IFS period. Any node sensing an idle bus condition can begin transmission immediately.

20.8.1.2 J1850 VPW Symbols

Variable Pulse Width modulation (VPW) is an encoding technique in which each bit is defined by the time between successive transitions, and by the level of the bus between transitions, active or passive. Active and passive bits are used alternately. This encoding technique is used to reduced the number of bus transitions for a given bit rate. See Section 20.2, *Features*.

The symbol values shown below are nominal values. Refer to the electrical specification for a more complete description of symbol values. Each logic one or logic zero contains a single transition, and can be at either the active or passive level and one of two lengths, either $64\mu s$ or $128\mu s$ (T_{NOM} at 10.4kbps baud rate), depending upon the encoding of the previous bit. The SOF, EOD, EOF and IFS symbols will always be encoded at an assigned level and length. See Figure 20-5.

Figure 20-5. J1850 VPW Symbols

Each message will begin with an SOF symbol, an <u>active</u> symbol, and therefore each data byte (including the CRC byte) will begin with a <u>passive</u> bit, regardless of whether it is a logic one or a logic zero. All VPW bit lengths stated in the following descriptions are typical values at a 10.4kbps bit rate.

• Logic "0"

A logic zero is defined as either an active to passive transition followed by a passive period $64\mu s$ in length, or a passive to active transition followed by an active period $128\mu s$ in length (Figure 20-5(a)).

• Logic "1"

A logic one is defined as either an active to passive transition followed by a passive period 128µs in length, or a passive to active transition followed by an active period 64µs in length (Figure 20-5(b)).

• NB - Normalization Bit

The NB symbol has the same property as a logic "1" or a logic "0". It is only used in IFR message responses. This bit is defined as an active bit.

SOF - Start of Frame Symbol

20-18 Freescale Semiconductor

The SOF symbol is defined as passive to active transition followed by an active period 200µs in length (Figure 20-5(c)). This allows the data bytes which follow the SOF symbol to begin with a passive bit, regardless of whether it is a logic one or a logic zero.

• EOD - End of Data Symbol

The EOD symbol is defined as an active to passive transition followed by a passive period 200µs in length (Figure 20-5(d)).

• EOF - End of Frame Symbol

The EOF symbol is defined as an active to passive transition followed by a passive period 280µs in length (Figure 20-5(e)). If there is no IFR byte transmitted after an EOD symbol is transmitted, after another 80µs the EOD becomes an EOF, indicating the completion of the message.

IFS - Inter-Frame Separation Symbol

The IFS symbol is defined as a passive period 300μs in length. The IFS symbol contains no transition, since when used it always follows an EOF symbol.(Figure 20-5(g))

BREAK - Break Signal

The BREAK signal is defined as a passive to active transition followed by an active period of at least 240 us (Figure 20-5(f)).

IDLE

An IDLE is defined as a passive period greater than 300µs in length.

20.8.1.3 J1850 VPW Valid/Invalid Bits & Symbols

The timing tolerances for receiving data bits and symbols from the J1850 bus have been defined to allow for variations in oscillator frequencies. In many cases the maximum time allowed to define a data bit or symbol is equal to the minimum time allowed to define another data bit or symbol.

Since the minimum resolution of the BDLC module for determining what symbol is being received is equal to a single period of the MUX Interface clock, (t_{bdlc}). i.e. the receiver symbol timing boundaries are subject to an uncertainty of 1 t_{bdlc} due to sampling considerations.

This clock resolution of 1 t_{bdlc} allows the BDLC module to properly differentiate between the different bits and symbols, without reducing the valid window for receiving bits and symbols from transmitters onto the J1850 bus having varying oscillator frequencies.

• Transmit and Receive Symbol Timing Specifications

Table 20-13 through Table 20-18 contain the SAE J1850 transmit and receive symbol timing specifications for the BDLC module. The units used in these tables are mux interface clock periods (t_{bdlc}). The mux interface clock is a divided down version of the bus clock input to the module (see Section 20.7.3.6, BDLC Rate Select Register (DLCBRSR) - MBAR + 0x1309). The mux interface clock drives the transmit and receive counters which control symbol generation and identification. The symbol timing in effect during J1850 operations is dependent the state of two control bits: the CLKS bit BDLC Control Register 1, which indicates whether the bus clock is an integer frequency or a binary frequency; the 4XE bit in BDLC Control Register 2, which is used to select 4X operation.

Table 20-13 and Table 20-15 indicate the transmit and receive timing for integer bus frequencies (CLKS = 0) and 4X operation disabled (4XE = 0). It is assumed that for integer bus frequencies the divided down mux interface clock frequency will be 1MHz ($t_{bdlc} = 1 \mu s$).

Table 20-14 and Table 20-16 indicated the transmit and receive timing for binary bus frequencies (CLKS = 1) and 4X operation disabled (4XE = 0). It is assumed that for binary bus frequencies the divided down mux interface clock frequency will be 1.048576 MHz ($t_{bdlc} = 0.953674$ µs). The symbol timing values are adjusted to compensate for the shortening of the mux interface clock period.

Table 20-17 and Table 20-18 show how the receive symbol timing values are adjusted when 4X operation is enabled (4XE = 1) for both integer bus frequencies (CLKS = 0) and binary bus frequencies (CLKS = 1), respectively.

The values specified in the tables are for the symbols appearing on the SAE J1850 bus. These values assume the BDLC module is communicating on the SAE J1850 bus using an external analog transceiver, and that the BDLC module analog roundtrip delay value programed into the BDLC Analog Round Trip Delay Register register is the appropriate value for the transceiver being used. If these conditions are not met, the symbol timings being measured on the SAE J1850 bus will be significantly affected. For a detailed description of how symbol timings are measured on the SAE J1850 bus, refer to the appropriate SAE documents.

Number Characteristic **Symbol** Min Max Unit Typ Passive Logic 0 62 1 64 66 T_{tvp1} t_{bdlc} 2 T_{tvp2} Passive Logic 1 126 128 130 t_{bdlc} 3 Active Logic 0 126 128 130 T_{tva1} t_{bdlc} 4 Active Logic 1 T_{tva2} 62 64 66 t_{bdlc}

Table 20-13. BDLC Transmitter VPW Symbol Timing for Integer Frequencies

MPC5200B Users Guide, Rev. 1

Table 20-13. BDLC Transmitter VPW Symbol Timing for Integer Frequencies (continued)

Number	Characteristic	Symbol	Min	Тур	Max	Unit
5	Start of Frame (SOF)	T _{tva3}	198	200	202	t _{bdlc}
6	End of Data (EOD) ¹	T _{tvp3}	162	164	166	t _{bdlc}
7	End of Frame (EOF) ¹	T _{tv4}	238	240	242	t _{bdlc}
8	Inter-Frame Separator (IFS) ¹	T _{tv5}	298	300	302	t _{bdlc}

Note:

Table 20-14. BDLC Transmitter VPW Symbol Timing for Binary Frequencies

Number	Characteristic	Symbol	Min	Тур	Max	Unit
1	Passive Logic 0	T _{tvp1}	65	67	69	t _{bdlc}
2	Passive Logic 1	T _{tvp2}	132	134	136	t _{bdlc}
3	Active Logic 0	T _{tva1}	132	134	136	t _{bdlc}
4	Active Logic 1	T _{tva2}	65	67	69	t _{bdlc}
5	Start of Frame (SOF)	T _{tva3}	208	210	212	t _{bdlc}
6	End of Data (EOD) ¹	T _{tvp3}	170	172	174	t _{bdlc}
7	End of Frame (EOF) ¹	T _{tv4}	250	252	254	t _{bdlc}
8	Inter-Frame Separator (IFS) ¹	T _{tv5}	313	315	317	t _{bdlc}

Note:

Table 20-15. BDLC Receiver VPW Symbol Timing for Integer Frequencies

Number	Characteristic	Symbol	Min	Тур	Max	Unit
1	Passive Logic 0	T _{rvp1}	32	64	95	t _{bdlc}
2	Passive Logic 1	T _{rvp2}	96	128	163	t _{bdlc}
3	Active Logic 0	T _{rva1}	96	128	163	t _{bdlc}
4	Active Logic 1	T _{rva2}	32	64	95	t _{bdlc}
5	Start of Frame (SOF)	T _{rva3}	164	200	239	t _{bdlc}
6	End of Data (EOD)	T _{rvp3}	164	200	239	t _{bdlc}
7	End of Frame (EOF)	T _{rv4}	240	280	299	t _{bdlc}
8	Inter-Frame Separator (IFS)	T _{rv5}	281			t _{bdlc}
9	Break Signal (BREAK)	T _{rv6}	240			t _{bdlc}

Note:

20-20 Freescale Semiconductor

^{1.} The transmitter timing for this symbol depends upon the minimum detection time of the symbol by the receiver.

^{1.} The transmitter timing for this symbol depends upon the minimum detection time of the symbol by the receiver.

^{1.} The receiver symbol timing boundaries are subject to an uncertainty of 1 t_{bdlc} due to sampling considerations.

Table 20-16. BDLC Receiver VPW Symbol Timing for Binary Frequencies

Number	Characteristic	Symbol	Min	Тур	Max	Unit
1	Passive Logic 0	T _{rvp1}	34	67	100	t _{bdlc}
2	Passive Logic 1	T _{rvp2}	101	134	171	t _{bdlc}
3	Active Logic 0	T _{rva1}	101	134	171	t _{bdlc}
4	Active Logic 1	T _{rva2}	34	67	100	t _{bdlc}
5	Start of Frame (SOF)	T _{rva3}	172	210	251	t _{bdlc}
6	End of Data (EOD)	T _{rvp3}	172	210	251	t _{bdlc}
7	End of Frame (EOF)	T _{rv4}	252	293	314	t _{bdlc}
8	Inter-Frame Separator (IFS)	T _{rv5}	315			t _{bdlc}
9	Break Signal (BREAK)	T _{rv6}	252			t _{bdlc}

Note:

Table 20-17. BDLC Receiver VPW 4X Symbol Timing for Integer Frequencies

Number	Characteristic	Symbol	Min	Тур	Max	Unit
1	Passive Logic 0	T _{rvp1}	8	16	23	t _{bdlc}
2	Passive Logic 1	T _{rvp2}	24	32	40	t _{bdlc}
3	Active Logic 0	T _{rva1}	24	32	40	t _{bdlc}
4	Active Logic 1	T _{rva2}	8	16	23	t _{bdlc}
5	Start of Frame (SOF)	T _{rva3}	41	50	59	t _{bdlc}
6	End of Data (EOD)	T _{rvp3}	41	50	59	t _{bdlc}
7	End of Frame (EOF)	T _{rv4}	60	70	74	t _{bdlc}
8	Inter-Frame Separator (IFS)	T _{rv5}	75			t _{bdlc}
9	Break Signal (BREAK)	T _{rv6}	60			t _{bdlc}

Note:

1. The receiver symbol timing boundaries are subject to an uncertainty of 1 t_{bdlc} due to sampling considerations.

Table 20-18. BDLC Receiver VPW 4X Symbol Timing for Binary Frequencies

Number	Characteristic	Symbol	Min	Тур	Max	Unit
1	Passive Logic 0	T _{rvp1}	9	17	25	t _{bdlc}
2	Passive Logic 1	T _{rvp2}	26	34	42	t _{bdlc}
3	Active Logic 0	T _{rva1}	26	34	42	t _{bdlc}
4	Active Logic 1	T _{rva2}	9	17	25	t _{bdlc}
5	Start of Frame (SOF)	T _{rva3}	43	53	62	t _{bdlc}
6	End of Data (EOD)	T _{rvp3}	43	53	62	t _{bdlc}
7	End of Frame (EOF)	T _{rv4}	63	74	78	t _{bdlc}
8	Inter-Frame Separator (IFS)	T _{rv5}	79			t _{bdlc}
9	Break Signal (BREAK)	T _{rv6}	63			t _{bdlc}

Note:

1. The receiver symbol timing boundaries are subject to an uncertainty of 1 t_{bdlc} due to sampling considerations.

MPC5200B Users Guide, Rev. 1

^{1.} The receiver symbol timing boundaries are subject to an uncertainty of 1 t_{bdlc} due to sampling considerations.

Functional Description

The min and max symbol limits shown in the following sections (Invalid Passive Bit - Valid BREAK Symbol) and figures (Figure 20-6 - Figure 20-9) refer to the values listed in Table 20-13 through Table 20-18.

· Invalid Passive Bit

If the passive to active transition beginning the next data bit or symbol occurs between the active to passive transition beginning the current data bit or symbol and $T_{\text{rvp1}(\text{Min})}$, the current bit would be invalid. See Figure 20-6(1).

Figure 20-6. J1850 VPW Passive Symbols

Valid Passive Logic Zero

If the passive to active transition beginning the next data bit or symbol occurs between $T_{rvp1(Min)}$ and $T_{rvp1(Max)}$, the current bit would be considered a logic zero. See Figure 20-6(2).

Valid Passive Logic One

If the passive to active transition beginning the next data bit or symbol occurs between $T_{rvp2(Min)}$ and $T_{rvp2(Max)}$, the current bit would be considered a logic one. See Figure 20-6(3).

· Valid EOD Symbol

If the passive to active transition beginning the next data bit or symbol occurs between $T_{rvp3(Min)}$ and $T_{rvp3(Max)}$, the current symbol would be considered a valid EOD symbol. See Figure 20-6(4).

20-22 Freescale Semiconductor

20-23

Figure 20-7. J1850 VPW EOF and IFS Symbols

Valid EOF & IFS Symbol

In Figure 20-7(1), if the passive to active transition beginning the SOF symbol of the next message occurs between $T_{rv4(Min)}$ and $T_{rv4(Max)}$, the current symbol will be considered a valid EOF symbol.

If the passive to active transition beginning the SOF symbol of the next message occurs after $T_{rv5(Min)}$, the current symbol will be considered a valid EOF symbol followed by a valid IFS symbol. See Figure 20-7(2). All nodes must wait until a valid IFS symbol time has expired before beginning transmission. However, due to variations in clock frequencies and bus loading, some nodes may recognize a valid IFS symbol before others, and immediately begin transmitting. Therefore, anytime a node waiting to transmit detects a passive to active transition once a valid EOF has been detected, it should immediately begin transmission, initiating the arbitration process.

• Idle Bus

Freescale Semiconductor

If the passive to active transition beginning the SOF symbol of the next message does not occur before $T_{tv5(Min)}$, the bus is considered to be idle, and any node wishing to transmit a message may do so immediately.

Figure 20-8. J1850 VPW Active Symbols

Invalid Active Bit

If the active to passive transition beginning the next data bit or symbol occurs between the passive to active transition beginning the current data bit or symbol and $T_{rva2(Min)}$, the current bit would be invalid. See Figure 20-8(1).

Valid Active Logic One

If the active to passive transition beginning the next data bit or symbol occurs between $T_{rva2(Min)}$ and $T_{rva2(Max)}$, the current bit would be considered a logic one. See Figure 20-8(2).

• Valid Active Logic Zero

If the active to passive transition beginning the next data bit or symbol occurs between $T_{rva1(Min)}$ and $T_{rva1(Max)}$, the current bit would be considered a logic zero. See Figure 20-8(3).

Valid SOF Symbol

If the active to passive transition beginning the next data bit or symbol occurs between $T_{rva3(Min)}$ and $T_{rva3(Max)}$, the current symbol would be considered a valid SOF symbol. See Figure 20-8(4).

Figure 20-9. J1850 VPW BREAK Symbol

MPC5200B Users Guide, Rev. 1

20-24 Freescale Semiconductor

Valid BREAK Symbol

If the next active to passive transition does not occur until after $T_{\text{rv6(Min)}}$, the current symbol will be considered a valid BREAK symbol. A BREAK symbol should be followed by a SOF symbol beginning the next message to be transmitted onto the J1850 bus. See Figure 20-9.

Message Arbitration

Message arbitration on the J1850 bus is accomplished in a non-destructive manner, allowing the message with the highest priority to be transmitted, while any transmitters which lose arbitration simply stop transmitting and wait for an idle bus to begin transmitting again.

If the BDLC module wishes to transmit onto the J1850 bus, but detects that another message is in progress, it automatically waits until the bus is idle. However, if multiple nodes begin to transmit in the same synchronization window, message arbitration will occur beginning with the first bit after the SOF symbol and continue with each bit thereafter.

The VPW symbols and J1850 bus electrical characteristics are carefully chosen so that a logic zero (active or passive type) will always dominate over a logic one (active or passive type) simultaneously transmitted. Hence logic zeroes are said to be 'dominant' and logic ones are said to be 'recessive'.

Whenever a node transmits a recessive bit and detects a dominant bit, it loses arbitration, and immediately stops transmitting. This is known as 'bitwise arbitration'. The loss of arbitration flag (in BDLC State Vector Register) is set when arbitration is lost. If the interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request from the BDLC module is generated. Reading the BDLC State Vector Register register will clear this flag.

Figure 20-10. J1850 VPW Bitwise Arbitrations

During arbitration, or even throughout the transmitting message, when an opposite bit is detected, transmission is immediately stopped unless it occurs on the 8th bit of a byte. In this case the BDLC module will automatically append up to two extra 1 bits and then stop transmitting. These two extra bits will be arbitrated normally and thus will not interfere with another message. The second 1 bit will not be sent if the first loses arbitration. If the BDLC module has lost arbitration to another valid message then the two extra ones will not corrupt the current message. However, if the BDLC module has lost arbitration due to noise on the bus, then the two extra ones will ensure that the current message will be detected and ignored as a noise-corrupted message.

Since a "0" dominates a "1", the message with the lowest value will have the highest priority, and will always win arbitration, i.e. a message with priority 000 will win arbitration over a message with priority 011. This method of arbitration will work no matter how many bits of priority encoding are contained in the message.

Functional Description

20.8.1.4 J1850 Bus Errors

The BDLC module detects several types of transmit and receive errors which can occur during the transmission of a message onto the J1850 bus

Transmission Error

If the BDLC module is transmitting a message and the message received contains a symbol error, a framing error, a bus fault, a BREAK symbol, or a logic '1' symbol when a logic "0" is being transmitted, this constitutes a transmission error. Receiving a logic '0' symbol when transmitting a logic '1' is considered a loss of arbitration condition (See Message Arbitration) and not a transmission error. When a transmission error is detected, the BDLC module will immediately cease transmitting. Further transmission or reception will be disabled until a valid EOF symbol is detected on the J1850 bus. The error condition is reflected by setting the symbol invalid or out of range flag in the BDLC State Vector Register register. If the interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request from the BDLC module is generated. Reading the BDLC State Vector Register register will clear this flag.

CRC Error

A cyclical redundancy check (CRC) error is detected when the data bytes and CRC byte of a received message are processed, and the CRC calculation result is not equal to \$C4. The CRC code should detect any single and 2 bit errors, as well as all 8 bit burst errors, and almost all other types of errors. The CRC error flag (in BDLC State Vector Register) is set when a CRC error is detected. If the interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request from the BDLC module is generated. Reading the BDLC State Vector Register register will clear this flag.

· Symbol Error

A symbol error is detected when an abnormal (invalid) symbol is detected in a message being received from the J1850 bus. See sections Invalid Passive Bit and Invalid Active Bit which define invalid symbols. The symbol invalid or out of range flag (in BDLC State Vector Register) is set when a symbol error is detected. If the interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request from the BDLC module is generated. Reading the BDLC State Vector Register register will clear this flag.

· Framing Error

A framing error is detected when a received symbol occurs in an inappropriate location in the message frame. The following situations result in framing errors:

- An active logic "0" or logic "1" received as the first symbol of the frame.
- An SOF symbol received in any location other than the first symbol of a frame. Erroneous locations include: Within the data
 portion of a message or IFR; Immediately following the EOD in a message or IFR.
- An EOD symbol received on a non-byte boundary in a message or IFR.
- An active logic "0" or logic "1" received immediately following the EOD at the end of an IFR.

The symbol invalid or out of range flag (in BDLC State Vector Register) is set when a framing error is detected. If the interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request from the BDLC module is generated. Reading the BDLC State Vector Register register will clear this flag.

Bus Fault

If a bus fault occurs, the response of the BDLC module will depend upon the type of bus fault.

If the bus is shorted to V_{DD} , the BDLC module will wait for the bus to fall to a passive state before it will attempt to transmit a message. As long as the short remains, the BDLC will never attempt to transmit a message onto the J1850 bus.

If the bus is shorted to ground, the BDLC module will see an idle bus, begin to transmit the message, and then detect a transmission error, since the short to ground would not allow the bus to be driven to the active (dominant) state. The BDLC module will wait for assertion of the receive pin for (64 - analog round trip delay) t_{bdlc} cycles, after assertion of the transmit pin, before detecting the error. If the transmission is an IFR, the BDLC module will wait for (280 - analog round trip delay) t_{bdlc} cycles before detecting an error. The "analog round trip delay" is determined by the value stored in the BDLC Analog Round Trip Delay Register register. The BDLC module will set the symbol invalid or out of range flag (in BDLC State Vector Register), abort that transmission and wait for the next CPU command to transmit. In this case, the transmitter does not have to wait for an EOF symbol to be received to be enabled. If the interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request from the BDLC module is generated. Reading the BDLC State Vector Register register will clear this flag.

In any case, if the bus fault is temporary, as soon as the fault is cleared, the BDLC module will resume normal operation. If the bus fault is permanent, it may result in permanent loss of communication on the J1850 bus.

BREAK - Break

Any BDLC transmitting at the time a BREAK is detected will treat the BREAK as if a transmission error had occurred, and halt transmission.

If while receiving a message the BDLC module detects a BREAK symbol, it will treat the BREAK as a reception error.

20-26 Freescale Semiconductor

20-27

If a BREAK symbol is received while the BDLC module is transmitting or receiving, the symbol invalid or out of range flag (in BDLC State Vector Register) is set. Further transmission/reception will be disabled until the J1850 bus returns to the passive state and a valid EOF symbol is detected on the J1850 bus. If the interrupt enable bit (IE in BDLC Control Register 1) is set, an interrupt request from the BDLC module is generated. Reading the BDLC State Vector Register register will clear this flag.

The BDLC module can transmit a BREAK symbol. And it can receive a BREAK symbol from the J1850 bus.

• Bus Error Summary

The possible J1850 bus errors and the actions taken by the BDLC module are summarized in Table 20-19.

Table 20-19. BDLC module J1850 Error Summary

Error Condition	BDLC Module Function
Transmission Error	BDLC module will immediately cease transmitting. Further transmission and reception will be disabled until a valid EOF symbol is detected. The symbol invalid or out of range flag will be set and interrupt generated if enabled.
Cyclical Redundancy Check (CRC) Error	CRC error flag set and interrupt generated if enabled.
Symbol Error	The symbol invalid or out of range flag will be set and interrupt generated if enabled. Transmission and reception will be disabled until a valid EOF symbol is detected.
Framing Error	The symbol invalid or out of range flag will be set and interrupt generated if enabled. Transmission and reception will be disabled until a valid EOF symbol is detected.
Bus short to V _{DD} .	The BDLC module will not transmit until short is corrected and a valid EOF is detected. Depending upon when short occurs and is corrected, this error condition may set the symbol invalid or out of range, crc error, or loss of arbitration flags.
Bus short to GND.	Short will be seen as an idle bus by BDLC module. If a transmission attempt is made before short is corrected, the symbol invalid or out of range flag will be set and interrupt generated if enabled. Another transmission can be initiated as soon as short is corrected.
BREAK symbol reception	If doing so, the BDLC module will immediately cease transmitting. Symbol invalid or out of range flag set and interrupt generated if enabled. Transmission and reception will be disabled until a valid EOF symbol is detected.

20.8.2 Mux Interface

The MUX Interface is responsible for bit encoding/decoding and digital noise filtering between the Protocol Handler and the Physical Interface. Refer to Figure 20-2.

20.8.2.1 Mux Interface - Rx Digital Filter

The Receiver section of the BDLC module includes a digital low pass filter to remove narrow noise pulses from the incoming message. An outline of the digital filter is shown in Figure 20-11.

Figure 20-11. BDLC Module Rx Digital Filter Block Diagram

Operation

The clock for the digital filter is provided by the MUX Interface clock. At each positive edge of the clock signal, the current state of the Receiver input signal from the RXB pad is sampled. The RXB signal state is used to determine whether the counter should increment or decrement at the next positive edge of the clock signal.

The counter will increment if the input data sample is high but decrement if the input sample is low. The counter will thus progress up towards '15' if, on average, the RXB signal remains high or progress down towards '0' if, on average, the RXB signal remains low.

When the counter eventually reaches the value '15', the digital filter decides that the condition of the RXB signal is at a stable logic level one and the Data Latch is set, causing the Filtered Rx Data signal to become a logic level one. Furthermore, the counter is prevented from overflowing and can only be decremented from this state.

Alternatively, should the counter eventually reach the value '0', the digital filter decides that the condition of the RXB signal is at a stable logic level zero and the Data Latch is reset, causing the Filtered Rx Data signal to become a logic level zero. Furthermore, the counter is prevented from underflowing and can only be incremented from this state.

The Data Latch will retain its value until the counter next reaches the opposite end point, signifying a definite transition of the RXB signal.

Performance

The performance of the digital filter is best described in the time domain rather than the frequency domain.

If the signal on the RXB signal transitions, then there will be a delay before that transition appears at the Filtered Rx Data output signal. This delay will be between 15 and 16 clock periods, depending on where the transition occurs with respect to the sampling points. This 'filter delay' must be taken into account when performing message arbitration.

For example, if the frequency of the MUX Interface clock (f_{bdlc}) is 1.0486MHz, then the period (t_{bdlc}) is 954ns and the maximum filter delay in the absence of noise will be 15.259us.

The effect of random noise on the RXB signal depends on the characteristics of the noise itself. Narrow noise pulses on the RXB signal will be completely ignored if they are shorter than the filter delay. This provides a degree of low pass filtering.

If noise occurs during a symbol transition, the detection of that transition may be delayed by an amount equal to the length of the noise burst. This is just a reflection of the uncertainty of where the transition is truly occurring within the noise.

Noise pulses that are wider than the filter delay, but narrower than the shortest allowable symbol length will be detected by the next stage of the BDLC module's receiver as an invalid symbol.

Noise pulses that are longer than the shortest allowable symbol length will normally be detected as an invalid symbol or as invalid data when the frame's CRC is checked.

20.8.3 Protocol Handler

The Protocol Handler is responsible for framing, collision detection, arbitration, CRC generation/checking, and error detection. The Protocol Handler conforms to SAE J1850 - Class B Data Communications Network Interface. Refer to Figure 20-2

MPC5200B Users Guide, Rev. 1

20.8.3.1 Protocol Architecture

The Protocol Handler contains the State Machine, Rx Shadow Register, Tx Shadow Register, Rx Shift Register, Tx Shift Register, and Loopback Multiplexer as shown in Figure 20-12. Each block will now be described in more detail.

To IP bus Interface & Rx/Tx Buffer's

Figure 20-12. BDLC Protocol Handler Outline

Rx & Tx Shift Registers

The Rx Shift Register gathers received serial data bits from the J1850 bus and makes them available in parallel form to the Rx Shadow Register. The Tx Shift Register takes data, in parallel form, from the Tx Shadow Register and presents it serially to the State Machine so that it can be transmitted onto the J1850 bus.

• Rx & Tx Shadow Registers

Immediately after the Rx Shift Register has completed shifting in a byte of data, this data is transferred to the Rx Shadow Register and RDRF or RXIFR is set and interrupt is generated if the interrupt enable bit (IE) in BDLC Control Register 1 is set. After the transfer takes place, this new data byte in the Rx Shadow Register is available to the CPU, and the Rx Shift Register is ready to shift in the next byte of data. Data in Rx Shadow Register must be retrieved by the CPU before it is overwritten by new data from the Rx Shift Register.

Once the Tx Shift Register has completed its shifting operation for the current byte, the data byte in the Tx Shadow Register is loaded into the Tx Shift Register. After this transfer takes place, the Tx Shadow Register is ready to accept new data from the CPU.

MPC5200B Users Guide, Rev. 1

Functional Description

Digital Loopback Multiplexer

The Digital Loopback Multiplexer connects the input of the receive digital filter (See Figure 20-12) to either the transmit signal out to the pad (TXB) or the receive signal from the pad (RXB), depending on the state of the DLOOP bit in BDLC Control Register 2 register.

State Machine

All of the functions associated with performing the protocol are executed or controlled by the State Machine. The State Machine is responsible for framing, collision detection, arbitration, CRC generation/checking, and error detection. The following sections describe the BDLC module's actions in a variety of situations.

4X Mode

The BDLC module can exist on the same J1850 bus as modules which use a special 4X (41.6 kbps) mode of J1850 VPW operation. The BDLC module can transmit and receive messages in 4X mode, if the 4XE bit is set in BDLC Control Register 2. If the 4XE bit is not set in the BDLC Control Register 2, any 4X message on the J1850 bus is treated as noise by the BDLC module and is ignored. Likewise, 4X messages transmitted on the SAE J1850 bus when the BDLC module is in normal mode will be interpreted as noise on the network by the BDLC module.

Receiving a Message in Block Mode

Although not a part of the SAE J1850 protocol, the BDLC module does allow for a special "Block Mode" of operation of the receiver. As far as the BDLC module is concerned, a Block Mode message is simply a long J1850 frame that contains an indefinite number of data bytes. All of the other features of the frame remain the same, including the SOF, CRC, and EOD symbols.

Another node wishing to send a Block Mode transmission must first inform all other nodes on the network that this is about to happen. This is usually accomplished by sending a special predefined message.

Transmitting a Message in Block Mode

A Block mode message is transmitted inherently by simply loading the bytes one by one into the BDLC Data Register register until the message is complete. The programmer should wait until the TDRE flag is set prior to writing a new byte of data into the BDLC Data Register register. The BDLC module does not contain any predefined maximum J1850 message length requirement.

20.8.4 Transmitting A Message

The design of the BDLC module enables the user to easily handle message reception and message transmission separately. This can greatly simplify the communication software, as all received messages can be handled virtually the same, regardless of their origin.

This chapter will therefore describe only the steps necessary for transmitting a message, and will not address the resulting reception of that message by the BDLC module. Message reception is described in Section 20.8.5, *Receiving A Message*. Later sections will deal with transmitting and receiving In-Frame Responses on the SAE J1850 bus.

20.8.4.1 BDLC Transmission Control Bits

There is only one BDLC module control bit which is used when transmitting a message onto the SAE J1850 bus. This bit, the Transmit End of Data (TEOD) bit, is set by the user to indicate to the BDLC module that the last byte of that part of the message frame has been loaded into the BDLC Data Register. The TEOD bit, located in BDLC Control Register 2, is also used when transmitting an In-Frame Response (IFR), but that usage is described in Section 20.8.6, *Transmitting An In-Frame Response (IFR)*. Setting the TEOD bit indicates to the BDLC module that the last byte written to the BDLC Data Register is the final byte to be transmitted, and that following this byte a CRC byte and EOD symbol should be transmitted automatically. Setting the TEOD bit will also inhibit any further TDRE interrupts until TEOD is cleared. The TEOD bit will be cleared on the rising edge of the first bit of the transmitted CRC byte, or if an error or loss of arbitration is detected on the bus.

• BDLC Data Register

The BDLC Data Register is a double-buffered register which is used for handling the transmitted and received message bytes. Bytes to be transmitted onto the SAE J1850 bus are written to the BDLC Data Register, and bytes received from the bus by the BDLC module are read from the BDLC Data Register. Since this register is double buffered, bytes written into it cannot be read by the CPU. If this is attempted, the byte which is read will be the last byte placed in the BDLC Data Register by the BDLC module, not the last byte written to the BDLC Data Register by the CPU. For an illustration of the BDLC Data Register, refer to Section 20.7.3.4, BDLC Data Register (DLCBDR) - MBAR + 0x1305.

Transmitting a Message with the BDLC

To transmit a message using the BDLC module, the user just writes the first byte of the message to be transmitted into the BDLC Data Register, initiating the transmission process. When the TDRE status appears in the BDLC State Vector Register, the user writes the next byte into the BDLC Data Register. Once all of the bytes have been loaded into the BDLC Data Register, the user sets the TEOD bit, and the BDLC module completes the message transmission. What follows is an overview of the basic steps required to transmit a message onto an SAE J1850 network using the BDLC module. For an illustration of this sequence, refer to Figure 20-13.

NOTE

Due to the byte-level architecture of the BDLC module, the 12-byte limit on message length as defined in SAE J1850 must be enforced by the user's software. The number of bytes in a message (transmitted or received) has no meaning to the BDLC module.

Step 1: Write the First Byte into the BDLC Data Register

To initiate a message transmission, the CPU simply loads the first byte of the message to be transmitted into the BDLC Data Register. The BDLC module will then perform the necessary bus acquisition duties to determine when the message transmission can begin.

Once the BDLC module determines that the SAE J1850 bus is free, a Start of Frame (SOF) symbol will be transmitted, followed by the byte written to the BDLC Data Register. Once the BDLC module readies this byte for transmission, the BDLC State Vector Register will reflect that the next byte can be written to the BDLC Data Register (TDRE interrupt).

NOTE

If the user writes the first byte of a message to be transmitted to the BDLC Data Register and then determines that a different message should be transmitted, the user can write a new byte to the BDLC Data Register up until the transmission begins. This new byte will replace the original byte in the BDLC Data Register.

Step 2: When TDRE is Indicated, Write the Next Byte into the BDLC Data Register

When a TDRE state is reflected in the BDLC State Vector Register, the CPU writes the next byte to be transmitted into the BDLC Data Register. This step is repeated until the last byte to be transmitted is written to the BDLC Data Register.

NOTE

Due to the design and operation of the BDLC module, when transmitting a message the user may write two, or possibly even three of the bytes to be transmitted into the BDLC Data Register before the first RDRF interrupt occurs. For this reason, the user should never use receive interrupts to control the sequencing of bytes to be transmitted.

Step 3: Write the Last Byte to the BDLC Data Register and Set TEOD

Once the user has written the last byte to be transmitted into the BDLC Data Register, the user then sets the TEOD bit in BDLC Control Register 2. When the TEOD bit is set, once the byte written to the BDLC Data Register is transmitted onto the bus, the BDLC module will begin transmitting the 8-bit CRC byte, as specified in SAE J1850. Following the CRC byte, the BDLC module will transmit an EOD symbol onto the SAE J1850 bus, indicating that this part of the message has been completed. If no IFR bytes are transmitted following the EOD, an EOF will be recognized and the message will be complete.

Setting the TEOD bit is the last step the CPU needs to take to complete the message transmission, and no further transmission-related interrupts will occur. Once the message has been completely received by the BDLC module, an EOF interrupt will be generated. However, this is technically a receive function which can be handled by the message reception routine.

NOTE

While the TEOD bit is typically set immediately following the write of the last byte to the BDLC Data Register, it is also acceptable to wait until a TDRE interrupt is generated before setting the TEOD bit. While the example flowchart in Figure 20-13 shows the TEOD bit being set after the write to the BDLC Data Register, either method is correct. If a TDRE interrupt is pending, it will be cleared when the TEOD bit is set.

20.8.4.2 Transmitting Exceptions

While this is the basic transmit flow, at times the message transmit process will be interrupted. This can be due to a loss of arbitration to a higher priority message or due to an error being detected on the network. For the transmit routine, either of these events can be dealt with in a similar manner.

· Loss of Arbitration

If a loss of arbitration (LOA) occurs while the BDLC module is transmitting onto the SAE J1850 bus, the BDLC module will immediately stop transmitting, and a LOA status will be reflected in the BDLC State Vector Register. If the loss of arbitration has occurred on a byte boundary, an RDRF interrupt may also be pending once the LOA interrupt is cleared.

When a loss of arbitration occurs, the J1850 message handling software should immediately switch into the receive mode. If the TEOD bit was set, it will be cleared automatically. If another attempt is to be made to transmit the same message, the user must start the transmit sequence over from the beginning of the message.

Error Detection

Functional Description

Similar to a loss of arbitration, if any error (except a CRC error) is detected on the SAE J1850 bus during a transmission, the BDLC module will stop transmitting immediately. The byte which was being transmitted will be discarded, and the "Symbol Invalid or Out of Range" status will be reflected in the BDLC State Vector Register. As with the loss of arbitration, if the TEOD bit was set, it will be cleared automatically, and any attempt to transmit the same message will have to start from the beginning.

If a CRC error occurs following a transmission, this will also be reflected in the BDLC State Vector Register. However, since the CRC error is really a receive error based on the received CRC byte, at this point all bytes of the message will have been transmitted. It is therefore up to the user's software to determine if another attempt should be made to transmit the message in which the error occurred.

• Transmitter Underrun

A transmitter underrun can occur when a TDRE interrupt is not serviced in a timely fashion. If the last byte loaded into the BDLC Data Register is completely transmitted onto the network before the next byte is loaded into the BDLC Data Register, a transmitter underrun will occur. If this does happen, the BDLC module will transmit two additional logic ones to ensure that the partial message which was transmitted onto the bus does not end on a byte boundary. This will be followed by an EOD and EOF symbol. The only indication to the CPU that an underrun occurred is the Symbol Invalid or Out of Range error which will be indicated in the BDLC State Vector Register. As with the other errors, it is up to the user's software to determine if another transmission attempt should be made.

In-Frame Response to a Transmitted Message

If an In-Frame Response (IFR) is received following the transmission of a message, the status indicating that an IFR byte has been received will be indicated in the BDLC State Vector Register before an EOF is indicated. Refer to Section 20.8.7, *Receiving An In-Frame Response (IFR)* for a description of how to handle the reception of IFR bytes.

20.8.4.3 Aborting a Transmission

The BDLC module does not have a mechanism designed specifically for aborting a transmission. Since the module transmits each message on a byte-by-byte basis, there is little need to implement an abort mechanism. If the user has loaded a byte into the BDLC Data Register to initiate a message transmission and decides to send a different message, the byte in the BDLC Data Register can be replaced, right up to the point that the message transmission begins.

If the user has loaded a byte into the BDLC Data Register and then decides not to send any message at all, the user can let the byte transmit, and when the TDRE interrupt occurs let the transmitter underrun. This will cause two extra logic ones followed by an EOF to be transmitted. While this method may require a small amount of bus bandwidth, the need to do this should be very rare. Replacing the byte originally written to the BDLC Data Register with \$FF will also increase the probability of the transmitter losing arbitration if another node begins transmitting at the same time, also reducing the bus bandwidth needed.

Figure 20-13. Basic BDLC Transmit Flowchart

20.8.5 Receiving A Message

The design of the BDLC module makes it especially easy to use for receiving messages off of the SAE J1850 bus. When the first byte of a message comes in, the BDLC State Vector Register will indicate to the CPU that a byte has been received. As each successive byte is received, that will in turn be reflected in the BDLC State Vector Register. When the message is complete and the EOF has been detected on the bus, the BDLC State Vector Register will reflect this, indicating that the message is complete.

The basic steps required for receiving a message from the SAE J1850 bus are outlined below. For more information on receiving IFR bytes, refer to Section 20.8.7, *Receiving An In-Frame Response (IFR)*.

Functional Description

20.8.5.1 BDLC Reception Control Bits

The only control bit which is used for message reception, the IMSG bit, is actually used to prevent message reception. When the IMSG bit is set BDLC module interrupts of the CPU are inhibited until the next SOF symbol is received. This allows the BDLC module to ignore the remainder of a message once the CPU has determined that it is of no interest. This helps reduce the amount of CPU overhead used to service messages received from the SAE J1850 network, since otherwise the BDLC module would require attention from the CPU for each byte broadcast on the network. The IMSG bit is cleared when the BDLC module receives an SOF symbol, or it can also be cleared by the CPU.

NOTE

While the IMSG bit can be used to prevent the CPU from having to service the BDLC module for every byte transmitted on the SAE J1850 bus, the IMSG bit should never be used to ignore the BDLC module's own transmission. Because setting the IMSG bit prevents all BDLC State Vector Register bits from being updated until an SOF is received, the user would not receive any further transmit-related interrupts until another SOF was received, making it very difficult for the CPU to complete the transmission correctly.

20.8.5.2 Receiving a Message with the BDLC module

Receiving a message using the BDLC module is extremely straight-forward. As each byte of a message is received and placed into the BDLC Data Register, the BDLC module will indicate this to the CPU with an Rx Data Register Full (RDRF) status in the BDLC State Vector Register. When an EOF symbol is received, indicating to the CPU that the message is complete, this too will be reflected in the BDLC State Vector Register.

Outlined below are the basic steps to be followed for receiving a message from the SAE J1850 bus with the BDLC module. For an illustration of this sequence, refer to Section Figure 20-14., Basic BDLC Receive Flowchart.

Step 1: When RDRF Interrupt Occurs, Retrieve Data Byte

When the first byte of a message following a valid SOF symbol is received that byte is placed in the BDLC Data Register, and an RDRF state is reflected in the BDLC State Vector Register. No indication of the SOF reception is made, since the end of the previous message is marked by an EOF indication. The first RDRF state following this EOF indication should allow the user to determine when a new message begins.

The RDRF interrupt is cleared when the received byte is read from the BDLC Data Register. Once this is done, no further CPU intervention is necessary until the next byte is received, and this step is repeated.

All bytes of the message, including the CRC byte, will be placed into the BDLC Data Register as they are received for the CPU to retrieve.

• Step 2: When an EOF is Received, the Message is Complete

Once all bytes (including the CRC byte) have been received from the bus, the bus will be idle for a time period equal to an EOD symbol. Once the EOD symbol is received, the BDLC module will verify that the CRC byte is correct. If the CRC byte is not correct, this will be reflected in the BDLC State Vector Register.

If no In-Frame Response bytes are transmitted following the EOD symbol, the EOD will transition into an EOF symbol. When the EOF is received it will be reflected in the BDLC State Vector Register, indicating to the user that the message is complete. If IFR bytes do follow the first EOD symbol, once they are complete another EOD will be transmitted, followed by an EOF.

Once the EOF state is reflected in the BDLC State Vector Register, this indicates to the user that the message is complete, and that when another byte is received it is the first byte of a new message.

20.8.5.3 Filtering Received Messages

No message filtering hardware is included on the BDLC module, so all message filtering functions must be performed in software. Because the BDLC module handles each message on a byte-by-byte basis, message filtering can be done as each byte is received, rather than after the entire message is complete. This enables the CPU to decide while a message is still in progress whether or not that message is of any interest.

At any point during a message, if the CPU determines that the message is of no interest the IMSG bit can be set. Setting the IMSG bit commands the BDLC module not to update the BDLC State Vector Register until the next valid SOF is received. This prevents the CPU from having to service the BDLC module for each byte of every message sent over the network.

20.8.5.4 Receiving Exceptions

As with a message transmission, this basic message reception flow can be interrupted if errors are detected by the BDLC module. This can occur if an incorrect CRC is detected or if an invalid or out of range symbol appears on the SAE J1850 bus. A problem can also arise if the CPU fails to service the BDLC Data Register in a timely manner during a message reception.

• Receiver Overrun

20-34 Freescale Semiconductor

Once a message byte has been received, the CPU must service the BDLC Data Register before the next byte is received, or the first byte will be lost. If the BDLC Data Register is not serviced quickly enough, the next byte received will be written over the previous byte in the BDLC Data Register. No receiver overrun indication is made to the CPU. If the CPU fails to service the BDLC module during the reception of an entire message, the byte remaining in the BDLC Data Register will be last byte received (usually a CRC byte).

Once a receiver overrun occurs, there is no way for the CPU to recover the lost byte(s), so the entire message should be discarded. To prevent receiver overrun, the user should ensure that a BDLC RDRF interrupt will be serviced before the next byte can be received. When polling the BDLC State Vector Register, the user should select a polling interval which will provide timely monitoring of the BDLC module.

CRC Error

If a CRC error is detected during a message reception, this will be reflected in the BDLC State Vector Register once an EOD time is recognized by the BDLC module. Since all bytes of the message will have been received when this error is detected, it is up to the user to ensure that all the received message bytes are discarded.

· Invalid or Out of Range Symbol

If an invalid or out of range symbol, a framing error or a BREAK symbol is detected on the SAE J1850 bus during the reception of a message, the BDLC module will immediately stop receiving the message and discard any partially received byte. The "Symbol Invalid or Out of Range" status will immediately be reflected in the BDLC State Vector Register. Following this the BDLC module will wait until the bus has been idle for a time period equal to an EOF symbol before receiving another message. As with the CRC error, the user should discard any partially received message if this occurs.

In-Frame Response to a Received Message

As mentioned above, if one or more IFR bytes are received following the reception of a message, the status indicating the reception of the IFR byte(s) will be indicated in the BDLC State Vector Register before the EOF is indicated. Refer to Section 20.8.7, *Receiving An In-Frame Response (IFR)* for a description of how to deal with the reception of IFR bytes.

Figure 20-14. Basic BDLC Receive Flowchart

20.8.6 Transmitting An In-Frame Response (IFR)

The BDLC module can be used to transmit all four types of In-Frame Response (IFR) which are defined in SAE J1850. A very brief definition of each IFR type is given below. For a more detailed description of each, refer the SAE J1850 document.

The explanation regarding IFR support by the BDLC module which assumes the user is familiar with the use of IFRs as defined in SAE J1850, and understands the message header bit encoding and normalization bit formats which are used with the different types of IFRs. For more information on this, refer to the SAE J1850 document.

20-36 Freescale Semiconductor

20.8.6.1 IFR Types Supported by the BDLC module

SAE J1850 defines four distinct types of IFR. The first (and most basic) IFR is Type 0, or no IFR. IFR types 1, 2 & 3 are each made up of one or more bytes and, depending upon the type used, may be followed by a CRC byte. The BDLC module is designed to allow the user to transmit and receive all types of SAE J1850 IFRs, but only the network framing/error checking/bus acquisition duties are performed by the BDLC module. The user is responsible for determining the type of IFR to be transmitted, the number of retries to be made (if allowed), and the allowable number of bytes to be transmitted.

• IFR Type 0: No Response

The most basic type of IFR is no IFR. The Type 0 IFR, as defined in SAE J1850, is no response. The EOD and EOF symbols follow directly after the CRC byte at the end of the message frame being transmitted. This type of IFR is, of course, inherently supported by the BDLC module with no additional user intervention required.

• IFR Type 1: Single Byte from a Single Responder

SAE J1850 defines the Type 1 IFR as a single byte from a single receiver. This type of IFR is used to acknowledge to the transmitter that the message frame was transmitted successfully on the network, and that at least one receiver received it correctly. A Type 1 IFR generally consists of the physical node ID of the receiver responding to the message, with no CRC byte appended. This type of response is used for Broadcast-type messages, where there may be several intended receivers for a message but the transmitter only wants to know that at least one node received it. In this case, all receivers will begin transmitting their node ID following the EOD. Since all nodes on an SAE J1850 network have a unique node ID, if multiple nodes begin transmitting their node ID simultaneously, arbitration takes place. The node with the highest priority (lowest value) ID wins this arbitration process, and that node's ID makes up the IFR. No retries are attempted by the nodes which lose arbitration during a Type 1 IFR transmission.

A Type 1 IFR can also be used as a response to a physically addressed message, where the only intended receiver is the one which responds. In this case, no arbitration would take place during the IFR transmission, but the resulting IFR would still consist of a single byte.

• IFR Type 2: Single Byte from Multiple Responders

The Type 2 IFR, as defined in SAE J1850, is a series of single bytes, each transmitted by a different responder. This IFR type not only acknowledges to the transmitter that the message was transmitted successfully, but also reveals which receivers actually received the message. As with the Type 1 IFR, no CRC byte is appended to the end of a Type 2 IFR.

This IFR type is typically used with Function-type messages, where the original transmitter may need to know which nodes actually received the message. The basic difference between this type of IFR and the Type 1 IFR is that the nodes which lose arbitration while attempting to transmit their node ID during a Type 2 IFR wait until the byte which wins arbitration is transmitted and then again attempt to transmit their node ID onto the bus. The result is a series of node IDs, one from each receiver of the original message.

IFR Type 3: Multiple Bytes from a Single Responder

The last type of IFR defined by SAE J1850 is the Type 3 IFR. This IFR type consists of one or more bytes from a single responder. This type of IFR is used to return data to the original transmitter within the original message frame. This type of IFR may or may not have a CRC byte appended to it.

The Type 3 IFR is typically used with Function Read-type or Function Query-type messages, where the original transmitter is requesting data from the intended receiver. The node requesting the data transmits the initial portion of the message, and the intended receiver responds by transmitting the desired data in an IFR. In most cases, the original message requiring a Type 3 IFR is addressed to one particular node, so no arbitration should take place during the IFR portion of the message.

20.8.6.2 BDLC IFR Transmit Control Bits

The BDLC module has three bits which are used to control the transmission of an In-Frame Response. These bits, all located in BDLC Control Register 2, are TSIFR, TMIFR1 and TMIFR0. Each is used in conjunction with the TEOD bit to transmit one of three IFR types defined in SAE J1850. What follows is a brief description of each bit.

Because each of the bits used for transmitting an IFR with the BDLC module is used to transmit a particular type of IFR, only one bit should be set by the CPU at a time. However, should more than one of these bits get set at one time, a priority encoding scheme is used to determine which type of IFR is sent. This scheme prevents unpredictable operation caused by conflicting signals to the BDLC module. Table 20-20 illustrates which IFR bit will actually be acted upon by the BDLC module should multiple IFR bits get set at the same time.

NOTE

As with transmitted messages, IFRs transmitted by the BDLC module will also be received by the BDLC module. For a description of how IFR bytes received by the BDLC module should be handled, refer to Section 20.8.7, *Receiving An In-Frame Response (IFR)*.

Table 20-20. IFR Control Bit Priority Encoding

READ/WRITE			ACTUAL			
TSIFR	TMIFR1	TMIFR0	TSIFR	TMIFR1	TMIFR0	
0	0	0	0	0	0	
1	Х	Х	1	0	0	
0	1	Х	0	1	0	
0	0	1	0	0	1	

20.8.6.3 Transmit Single Byte IFR

The Transmit Single Byte IFR (TSIFR) bit in BDLC Control Register 2 is used to transmit Type 1 and Type 2 IFRs onto the SAE J1850 bus. If this bit is set after a byte is loaded into the BDLC Data Register, the BDLC module will attempt to send that byte, preceded by the appropriate Normalization Bit, as a single byte IFR without a CRC. If arbitration is lost, the BDLC module will automatically attempt to transmit the byte again (without a Normalization Bit) as soon as the byte winning arbitration completes transmission. Attempts to transmit the byte will continue until either the byte is successfully transmitted, the TEOD bit is set by the user or an error is detected on the bus.

The user must set the TSIFR bit before the EOD following the main part of the message frame is received, or no IFR transmit attempts will be made for the current message. If another node does transmit an IFR to this message or a reception error occurs, the TSIFR bit will be cleared. If not, the IFR will be transmitted after the EOD of the next received message.

The TSIFR bit will be automatically cleared once the EOD following one or more IFR bytes has been received or an error is detected on the bus.

20.8.6.4 Transmit Multi-Byte IFR 1

The Transmit Multi-Byte IFR 1 (TMIFR1) bit is used to transmit an SAE J1850 Type 3 IFR with a CRC byte appended. If this bit is set after the user has loaded the first byte of a multi-byte IFR into the BDLC Data Register, the BDLC module will begin transmitting that byte, preceded by the appropriate Normalization Bit, onto the SAE J1850 bus. Once this happens a TDRE interrupt will occur, indicating to the user that the next IFR byte should be loaded into the BDLC Data Register. When the last byte to be transmitted is written to the BDLC Data Register, the user sets the TEOD bit. This will cause a CRC byte and an EOD symbol to be transmitted following the last IFR byte.

As with the TSIFR bit, the TMIFR1 bit must be set before the EOD symbol is received, or it will remain cleared and no IFR transmit attempt will be made. The TMIFR1 bit will be cleared once the CRC byte and EOD are transmitted, if an error is detected on the bus, if a loss of arbitration occurs during the IFR transmission or if a transmitter underrun occurs when the user fails to service the TDRE interrupt in a timely manner. If a loss of arbitration occurs while the Type 3 IFR is being transmitted, transmission will halt immediately and the loss of arbitration will be indicated in the BDLC State Vector Register.

20.8.6.5 Transmit Multi-Byte IFR 0

The Transmit Multi-Byte IFR 0 (TMIFR0) bit is used to transmit an SAE J1850 Type 3 IFR without a CRC byte appended. If this bit is set after the user has loaded the first byte of a multi-byte IFR into the BDLC Data Register, the BDLC module will begin transmitting that byte, preceded by the appropriate Normalization Bit, onto the SAE J1850 bus. Once this happens a TDRE interrupt will occur, indicating to the user that the next IFR byte should be loaded into the BDLC Data Register. When the last byte to be transmitted is written to the BDLC Data Register, the user sets the TEOD bit. This will cause an EOD symbol to be transmitted following the last IFR byte.

As with the TSIFR and TMIFR1 bits, the TMIFR0 bit must be set before the EOD symbol is received, or it will remain cleared and no IFR transmit attempt will be made. The TMIFR0 bit will be cleared once the CRC byte and EOD are transmitted, if an error is detected on the bus, if a loss of arbitration occurs during the IFR transmission or if a transmitter underrun occurs when the user fails to service the TDRE interrupt in a timely manner. If a loss of arbitration occurs while the Type 3 IFR is being transmitted, transmission will halt immediately and the loss of arbitration will be indicated in the BDLC State Vector Register.

NOTE

The TMIFR0 bit should not be used to transmit a Type 1 IFR. If a loss of arbitration occurs on the last bit of a byte being transmitted using the TMIFR0 bit, two extra logic ones will be transmitted to ensure that the IFR will not end on a byte boundary. This can cause an error in a Type 1 IFR.

20.8.6.6 Transmitting An IFR with the BDLC module

While the design of the BDLC module makes the transmission of each type of IFR similar, the steps necessary for sending each will be discussed. Again, a discussion of the bytes making up any particular IFR is not within the scope of this document. For a more detailed description of the use of IFRs on an SAE J1850 network, refer to the SAE J1850 document.

MPC5200B Users Guide, Rev. 1

20-38 Freescale Semiconductor

• Transmitting a Type 1 IFR

To transmit a Type 1 IFR, the user loads the byte to be transmitted into the BDLC Data Register and sets both the TSIFR bit and the TEOD bit. This will direct the BDLC module to attempt transmitting the byte written to the BDLC Data Register one time, preceded by the appropriate Normalization Bit. If the transmission is not successful, the byte will be discarded and no further transmission attempts will be made. For an illustration of the steps described below, refer to Section Figure 20-15., *Transmitting A Type 1 IFR*.

• Step 1: Load the IFR Byte into the BDLC Data Register

The user begins initiation of a Type 1 IFR by loading the desired IFR byte into the BDLC Data Register. If a byte has already been written into the BDLC Data Register for transmission as a new message, the user can simply write the IFR byte to the BDLC Data Register, replacing the previously written byte. This must be done before the first EOD symbol is received.

Step 2: Set the TSIFR and TEOD Bits

The final step in transmitting a Type 1 IFR with the BDLC module is to set the TSIFR and TEOD bits in BDLC Control Register 2. Setting both bits will direct the BDLC module to make one attempt at transmitting the byte in the BDLC Data Register as an IFR. If the byte is transmitted successfully, or if an error or loss of arbitration occurs, TEOD and TSIFR will be cleared and no further transmit attempts will be made.

• Transmitting a Type 2 IFR

To transmit a Type 2 IFR, the user loads the byte to be transmitted into the BDLC Data Register and sets the TSIFR bit. Once this is done, the BDLC module will attempt to transmit the byte in the BDLC Data Register as a single byte IFR, preceded by the appropriate Normalization Bit. If the first BDLC module loses arbitration on the first attempt, it will make repeated attempts to transmit this byte until it is successful, an error occurs or the user sets the TEOD bit.

Figure 20-15. Transmitting A Type 1 IFR

Step 1: Load the IFR Byte into the BDLC Data Register

As with the Type 1 IFR, the user begins initiation of a Type 2 IFR by loading the desired IFR byte into the BDLC Data Register. If a byte has already been written into the BDLC Data Register for transmission as a new message, the user can simply write the IFR byte to the BDLC Data Register, replacing the previously written byte. This must be done before the first EOD symbol is received.

— Step 2: Set the TSIFR Bit

The second step necessary for transmitting a Type 2 IFR is to set the TSIFR bit in BDLC Control Register 2. Setting this bit will direct the BDLC module to attempt to transmit the byte in the BDLC Data Register as an IFR until it is successful. If the byte is transmitted successfully, or if an error or loss of arbitration occurs, TSIFR will be cleared and no further transmit attempts will be made.

Step 3: If Necessary, Set the TEOD Bit

The third step in transmitting a Type 2 IFR is only necessary if the user wishes to halt the transmission attempts. This may be necessary if the BDLC module's attempt to transmit the byte loaded into the BDLC Data Register continually loses arbitration, and the overall message length approaches the 12-byte limit as defined in SAE J1850.

If it becomes necessary to halt the IFR transmission attempts, the user simply sets the TEOD bit in BDLC Control Register 2. If the BDLC module is between transmission attempts, it will make one more attempt to transmit the IFR byte. If it is transmitting the

MPC5200B Users Guide, Rev. 1

20-40 Freescale Semiconductor

byte when TEOD is set, the BDLC module will continue the transmission until it is successful or it loses arbitration to another transmitter. At this point it will then discard the byte and make no more transmit attempts.

NOTE

When transmitting a Type 2 IFR, the user should monitor the number of IFR bytes received to ensure that the overall message length does not exceed the 12-byte limit for the length of SAE J1850 messages. The user should set the TEOD bit when the 11th byte is received, which will prevent the 12-byte limit from being exceeded.

Figure 20-16. Transmitting A Type 2 IFR

• Transmitting a Type 3 IFR

Transmitting a Type 3 IFR, with or without a CRC byte, is done in a fashion similar to transmitting a message frame. The user loads the first byte to be transmitted into the BDLC Data Register and then sets the appropriate TMIFR bit, depending upon whether a CRC byte is desired. When the last byte is written to the BDLC Data Register, the TEOD bit is set, and a CRC byte (if desired) and an EOD are then transmitted. Because the two versions of the Type 3 IFR are transmitted identically, the description which follows will discuss both. For an illustration of the Type 3 IFR transmit sequence, refer to Figure 20-17.

— Step 1: Load the First IFR Byte into the BDLC Data Register

MPC5200B Users Guide, Rev. 1

Functional Description

The user begins initiation of a Type 3 IFR, as with each of the other IFR types, by loading the desired IFR byte into the BDLC Data Register. If a byte has already been written into the BDLC Data Register for transmission as a new message, the user can simply write the first IFR byte to the BDLC Data Register, replacing the previously written byte. This must be done before the first EOD symbol is received.

— Step 2: Set the TMIFR Bit

The second step necessary for transmitting a Type 3 IFR is to set the desired TMIFR bit in BDLC Control Register 2, depending upon whether or not a CRC is desired. As previously described in Section 20.8.6.2, BDLC IFR Transmit Control Bits, the TMIFR1 bit should be set if the user requires a CRC byte to be appended following the last byte of the Type 3 IFR, and TMIFR0 if no CRC byte is required.

Setting the TMIFR1 or TMIFR0 bit will direct the BDLC module to transmit the byte in the BDLC Data Register as the first byte of a single or multi-byte IFR preceded by the appropriate Normalization Bit. Once this has occurred, the BDLC State Vector Register will reflect that the next byte of the IFR can be written to the BDLC Data Register (TDRE interrupt).

NOTE

The user must set the TMIFR1 or TMIFR0 bit before the EOD following the main part of the message frame is received, or no IFR transmit attempts will be made for the current message. If another node does transmit an IFR to this message or a reception error occurs, the TMIFR1 or TMIFR0 bit will be cleared. If not, the IFR will be transmitted after the EOD of the next received message.

— Step 3: When TDRE is Indicated, Write the Next IFR Byte into the BDLC Data Register

When a TDRE state is reflected in the BDLC State Vector Register, the CPU writes the next IFR byte to be transmitted into the BDLC Data Register, clearing the TDRE interrupt. This step is repeated until the last IFR byte to be transmitted is written to the BDLC Data Register.

NOTE

As when transmitting a message, when transmitting a Type 3 IFR the user may write two, or possibly even three of the bytes to be transmitted into the BDLC Data Register before the first RxIFR interrupt occurs. For this reason, the user should never use receive IFR byte interrupts to control the sequencing of IFR bytes to be transmitted.

Step 4: Write the Last IFR Byte into the BDLC Data Register and Set TEOD

Once the last IFR byte to be transmitted is written to the BDLC Data Register, the CPU then sets the TEOD bit in BDLC Control Register 2. Once the TEOD bit is set, after the last IFR byte written to the BDLC Data Register is transmitted onto the bus, if the TMIFR1 bit has been set the BDLC module will begin transmitting the CRC byte, followed by an EOD. If the TMIFR0 bit has been set, the last IFR byte will immediately be followed by the transmission of an EOD. Following the EOD, and EOF will be recognized and the message will be complete.

If at any time during the transmission of a Type 3 IFR a loss of arbitration occurs, the TMIFR bit which is set and the TEOD bit (if set) will be cleared, any IFR byte being transmitted will be discarded and the loss of arbitration state will be reflected in the BDLC State Vector Register. Likewise, if an error is detected during the transmission of a Type 3 IFR the IFR control bits will be cleared, the byte being transmitted will be discarded and the BDLC State Vector Register will reflect the detected error.

NOTE

If the Type 3 IFR being transmitted is made up of a single byte, the appropriate TMIFR bit and the TEOD bit can be set at the same time. The BDLC module will then treat that byte as both the first and last IFR byte to be sent.

20.8.6.7 Transmitting IFR Exceptions

This basic IFR transmitting flow can be interrupted for the same reasons as a normal message transmission. The IFR transmit process can be adversely affected due to a loss of arbitration, an Invalid or Out of Range Symbol, or due to a transmitter underrun caused by the CPU failing to service a TDRE interrupt in a timely fashion. For a description of how these exceptions can affect the IFR transmit process, refer to Section 20.8.4.2, *Transmitting Exceptions*.

20-42 Freescale Semiconductor

Figure 20-17. Transmitting A Type 3 IFR

20.8.7 Receiving An In-Frame Response (IFR)

Receiving an In-Frame Response with the BDLC module is very similar to receiving a message frame. As each byte of an IFR is received, the BDLC State Vector Register will indicate this to the CPU. An EOF indication in the BDLC State Vector Register indicates that the IFR (and message) is complete. Also, the IMSG bit can also be used to command the BDLC module to mask any further network activity from the CPU, including IFR bytes being received, until the next valid SOF is received.

MPC5200B Users Guide, Rev. 1

Functional Description

NOTE

As with a message transmission, the IMSG bit should never be used to ignore the BDLC module's own IFR transmissions. This is again due to the BDLC State Vector Register bits being inhibited from updating until IMSG is cleared, preventing the CPU from detecting any IFR-related state changes which may be of interest.

20.8.7.1 Receiving an IFR with the BDLC module

Receiving an IFR from the SAE J1850 bus requires the same procedure that receiving a message does, except that as each byte is received the Received IFR Byte (RxIFR) state is indicated in the BDLC State Vector Register. All other actions are the same. For an illustration of the steps described below, refer to Figure 20-18.

- Step 1: When RxIFR Interrupt Occurs, Retrieve IFR Byte
 - When the first byte of an IFR following a valid EOD symbol is received that byte is placed in the BDLC Data Register, and an RxIFR state is reflected in the BDLC State Vector Register. No indication of the EOD reception in made, since the RxIFR state will indicate that the main portion of the message has ended and the IFR portion has begun.
 - The RxIFR interrupt is cleared when the received IFR byte is read from the BDLC Data Register. Once this is done, no further CPU intervention is necessary until the next IFR byte is received, and this step is repeated. As with a message reception, all bytes of the IFR, including the CRC byte, will be placed into the BDLC Data Register as they are received for the CPU to retrieve.
- When an EOF is Received, the IFR (and Message) is Complete
 - Once all IFR bytes (including the possible CRC byte) have been received from the bus, the bus will again be idle for a time period equal to an EOD symbol. Following this, the BDLC module will determine whether or not the last byte of the IFR is a CRC byte, and if so verify that the CRC byte is correct. If the CRC byte is not correct, this will be reflected in the BDLC State Vector Register.
 - After an additional period of time the EOD symbol will transition into an EOF symbol. When the EOF is received it will be reflected in the BDLC State Vector Register, indicating to the user that the IFR, and the message, is complete.

MPC5200B Users Guide, Rev. 1

Figure 20-18. Receiving An IFR With the BDLC module

20.8.7.2 Receiving IFR Exceptions

This basic IFR receiving flow can be interrupted for the same reasons as a normal message reception. The IFR receiving process can be adversely affected due to a CRC error, an Invalid or Out of Range Symbol or due to a receiver overrun caused by the CPU failing to service an RxIFR interrupt in a timely fashion. For a description of how these exceptions can affect the IFR receiving process, refer to Section 20.8.5.4, Receiving Exceptions.

20.8.8 Special BDLC Module Operations

There are a few special operations which the BDLC module can perform. What follows is a brief description of each of these functions and when they might be used.

20.8.8.1 Transmitting Or Receiving A Block Mode Message

The BDLC module, because it handles each message on a byte-by-byte basis, has the inherent capability of handling messages any number of bytes in length. While during normal operation this requires the user to carefully monitor message lengths to ensure compliance with SAE J1850 message limits, often in a production or diagnostic environment messages which exceed the SAE J1850 limits can be beneficial. This is especially true when large amounts of configuration data need to be downloaded over the SAE J1850 network.

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor 20-45

Functional Description

Because of the BDLC module's architecture, it can both transmit and receive messages of unlimited length. The CRC calculations, both for transmitting and receiving, are not limited to eight bytes, but will instead be calculated and verified using all bytes in the message, regardless of the number. All control bits, including TEOD and IMSG, also work in an identical manner, regardless of the length of the message.

To transmit or receive these "Block Mode" messages, no extra BDLC module control functions must be performed. The user simply transmits or receives as many bytes as desired in one message frame, and the BDLC module will operate just as if a message of normal length was being used.

20.8.8.2 Transmitting Or Receiving A Message In 4X Mode

In a diagnostic or production environment large amounts of data may need to be downloaded across the network to a component or module. This data is often sent in a large "Block Mode" message (see above) which violates the SAE J1850 limit for message length. In order to speed up the downloading of these large blocks of data, they are sometimes transmitted at four times (4X) the normal bit rate for the Variable Pulse Width modulation version of SAE J1850. This higher speed transmission, nominally 41.6kbps, allows these large blocks to be transmitted much more quickly.

The BDLC module is designed to receive and transmit messages at this higher speed. By setting the 4XE bit in BDLC Control Register 2, the user can command the BDLC module to transmit and receive any message over the network at a 4X rate.

If the BDLC module is placed in this 4X mode, messages transmitted at the normal bit rate will not be received correctly. Likewise, 4X messages transmitted on the SAE J1850 bus when the BDLC module is in normal mode will be interpreted as noise on the network by the BDLC module. For more information on the 4XE bit, refer to Section • 4X Mode.

20-46 Freescale Semiconductor

Figure 20-19. Basic BDLC Module Transmit Flowchart

20.8.9 BDLC Module Initialization

This section includes sample flows for initializing the BDLC module and using it to transmit and receive messages.

20.8.9.1 Initialization Sequence

To initialize the BDLC module, the user should first write the desired data to the configuration bits. The BDLC module should then be taken out of digital and analog loopback mode and enabled. Exiting from loopback mode will entail change of state indications in the BDLC State Vector Register which must be dealt with. Once this is complete, CPU interrupts can be enabled (if desired), and then the BDLC module is capable of SAE J1850 serial network communication. For an illustration of the sequence necessary for initializing the BDLC module, refer to Figure 20-20.

Freescale Semiconductor 20-47

Functional Description

20.8.9.2 Initializing the Configuration Bits

The first step necessary for initializing the BDLC module following an MCU reset is to write the desired values to each of the BDLC module control registers. This is best done by storing predetermined initialization values directly into these registers. The following description outlines a basic flow for initializing the BDLC module. This basic flow does not detail more elaborate initialization routines, such as performing digital and analog loopback tests before enabling the BDLC module for SAE J1850 communication. However, from the following descriptions and the BDLC module specification, the user should be able to develop routines for performing various diagnostic procedures such as loopback tests.

• Step 1 - Initialize BDLC Analog Round Trip Delay Register

Begin initialization of the configuration bits by writing the desired analog transceiver configuration data into the BDLC Analog Round Trip Delay Register. Following this write to BDLC Analog Round Trip Delay Register, all of these bits will become read only.

Step 2- Initialize BDLC Baud Rate Select Register

The next step in BDLC module initialization is to write the desired bus clock divisor minus one into the BDLC Baud Rate Select RegisterBDLC Baud Rate Select Register. The divisor should be chosen to generate a 1 MHz or 1.048576 MHz mux interface clock (f_{bdlc}). Following this write to BDLC Baud Rate Select Register, all of these bits will become read only.

Step 3- Initialize BDLC Control Register 2

The next step in BDLC module initialization should be writing the configuration bits into the BDLC Control Register 2 register. This initialization description assumes that the BDLC module will be put into normal mode (not 4X mode), and that the BDLC module should not yet exit either digital or analog loopback mode. Therefore, this step should write SMRST and DLOOP as logic ones, 4XE as a logic zero, write NBFS to the desired level, and write TEOD, TSIFR, TMIFR1 and TMIFR0 as logic zeros. These last four bits MUST be written as logic zeros in order to prevent undesired operation of the BDLC module.

• Step 4- Initialize BDLC Control Register 1

The next step in BDLC module initialization is to write the configuration bits in BDLC Control Register 1. The CLKS bit should be written to its desired values at this time, following which it will become read-only. The IE bit should be written as a logic zero at this time so BDLC module interrupts of the CPU will remain masked for the time being. The IMSG bit should be written as a logic one to prevent any receive events from setting the BDLC State Vector Register until a valid SOF (or BREAK) symbol has been received by the BDLC module.

20.8.9.3 Exiting Loopback Mode and Enabling the BDLC module

Once the configuration bits have been written to the desired values, the BDLC module should be taken out of loopback and connected to the SAE J1850 bus. This is done by clearing the DLOOP bit and then setting the BDLCE bit in the BDLC Control Register.

• Step 5- Perform Loopback Tests (optional)

Once the BDLC module is configured for desired operation, the user may wish to perform digital and/or analog loopback tests to determine the integrity of the link to the SAE J1850 network. This would involve leaving the DLOOP bit (BDLC Control Register 2) set, setting the BDLCE bit, preforming the desired loopback tests and finally exiting digital loopback mode by clearing DLOOP in the BDLC Control Register 2.

• Step 6- Exit Loopback Mode and enable the BDLC module

If loopback mode tests are not to be preformed the BDLC module can be removed from digital loopback mode by clearing the DLOOP bit. The BDLC module can then be enabled by setting the BDLCE bit in the BDLC Control Register.

Once DLOOP is cleared and BDLCE is set, the BDLC module is ready for SAE J1850 communication. However, to ensure that the BDLC module does not attempt to receive a message already in progress or to transmit a message while another device is transmitting, the BDLC module must first observe an EOF symbol on the bus before the receiver will be activated. To activate the transmitter, the BDLC module will need to observe an Inter-Frame Separator symbol.

20.8.9.4 Enabling BDLC Interrupts

The final step in readying the BDLC module for proper communication is to clear any pending interrupt sources and then, if desired, enable BDLC module interrupts of the CPU.

Step 7- Clear Pending BDLC Interrupts

In order to ensure that the BDLC module does not immediately generate a CPU interrupt when interrupts are enabled, the user should read the BDLC State Vector Register to determine if any BDLC module interrupt sources are pending before setting the IE bit in the BDLC Control Register 1. If the BDLC State Vector Register reads as a %00000000, no interrupts are pending and the user is free to enable BDLC interrupts, if desired.

If the BDLC State Vector Register indicates that an interrupt is pending, the user should perform whatever actions are necessary to clear the interrupt source before enabling the interrupts. Whether any interrupts are pending will depend primarily upon how much

20-48 Freescale Semiconductor

Functional Description

time passes between the exit from loopback modes and enabling the BDLC module and the enabling of interrupts. It is a good practice to always clear any source of interrupts before enabling interrupts on any MCU subsystem.

If any interrupts are pending (BDLC State Vector Register not %00000000), then each interrupt source should be dealt with accordingly. Once all of the interrupt sources have been dealt with, the BDLC State Vector Register should read %00000000, and the user is then free to enable BDLC interrupts.

• Step 8- Enable BDLC Interrupts

The last step in initializing the BDLC module is to enable interrupts to the CPU, if so desired. This is done by simply setting the IE bit in the BDLC Control Register 1. Following this, the BDLC module is ready for operating in interrupt mode. If the user chooses not to enable interrupts, the BDLC State Vector Register must be polled periodically to ensure that state changes in the BDLC module are detected and dealt with appropriately.

MPC5200B Users Guide, Rev. 1

Figure 20-20. Basic BDLC Module Initialization Flowchart

20.9 Resets

20.9.1 **General**

The reset state of each individual bit is listed within Section 20.7, Memory Map and Registers which details the registers and their bit-fields.

20-50 Freescale Semiconductor

Chapter 21 Debug Support and JTAG Interface

21.1 Overview

The following sections are contained in this document:

- Section 21.2, TAP Link Module (TLM) and Slave TAP Implementation
- Section 21.3, TLM and TAP Signal Descriptions
- Section 21.4, Slave Test Reset (STRST)
- Section 21.5, TAP State Machines
- Section 21.6, e300 Core JTAG/COP Serial Interface
- Section 21.7, TLM Link DR Instructions
- Section 21.8, *TLM Test Instructions*, includes:
 - Section 21.8.1, *IDCODE*
 - Section 21.8.1.1, Device ID Register
- Section 21.9, e300 COP/BDM Interface

The MPC5200B provides the user an IEEE 1149.1 JTAG interface to facilitate board/system testing. It also provides a Common On-Chip Processor (COP) Interface, which shares the IEEE 1149.1 JTAG port. The COP Interface provides access to the MPC5200B's imbedded Freescale MPC603e G2_LE processor. This interface provides a means for executing test routines and for performing software development & debug functions.

21.2 TAP Link Module (TLM) and Slave TAP Implementation

The MPC5200B debug and development logic consists of:

- a master TAP Link Module (TLM), which implements the mandatory instructions of the IEEE JTAG 1149.1 standard.
- a slave JTAG TAP block dedicated to microprocessor debug functions, which are contained within the imbedded e300 microprocessor.

The master/slave TLM/TAP architecture is not yet an approved extension of the IEEE standard. It is, however, interface-compatible with the standard.

The TLM state machine is active at all times.

The TLM and slave TAP blocks each consist of:

- a TAP Controller state machine
- Instruction Register (IR)
- · instruction decode
- various Data Registers (DR)

There is no inherent limit to the number of slave TAP blocks. However, no more than one slave TAP Controller state machine, designated by its asserted Enable, is active at any time. The slave TAP state machines have an Enable input and a Select output not present in the IEEE standard.

- All slave Enable signals are generated by the TLM block. No more than one Enable signal is ever asserted at one time.
- All slave Select signals are inputs to the TLM block. Any number of Select signals may be asserted at any time.

The TLM block contains a Link DR that determines which, if any, slave TAP block is active.

- When a slave TAP block is inactive, its TAP Controller state machine is locked in the RunTestIdle state, preventing its IR and DRs from shifting.
- When a slave TAP block is active, the TLM IR and DRs (except the TLM Link DR described below) are disabled. However, the TLM state machine continues to respond to the TAP interface signals TRST, TCK, and TMS.

The TLM Link DR can be shifted while a slave TAP is active. This is done by loading the slave IR with an instruction that activates the Select signal, then performing a DR scan operation. This only affects the TLM Link DR, because the TLM IR selected the Link DR to enable a slave in the first place, and the TLM IR cannot change while a slave is active.

Freescale Semiconductor 21-1

Figure 21-1. Generic TLM/TAP Architecture Diagram

Figure 21-2. Generic TAP Link Module (TLM) Diagram

Freescale Semiconductor 21-3

Figure 21-3. Generic Slave TAP

21.3 TLM and TAP Signal Descriptions

21.3.1 Test Reset (TRST)

JTAG reset, active low. When asserted, any on-going JTAG operation is immediately aborted. All TAP state machines, including the TLM, immediately enter the Test-Logic-Reset state. Other JTAG input signals (TCK, TMS, and TDI) have no effect while TRST is asserted. TDO is immediately tri-stated.

21.3.2 Test Clock (TCK)

This is the JTAG clock. The (non-reset) behavior of the active TAP and TLM state machines is governed by the TMS value at the TCK rising edge. TDI value is sampled at the TCK rising edge for all shift operations. All TDO non-reset transitions (including impedance) occur at the TCK falling edge. All shift register capture operations occur at the TCK rising edge. All shift register Update operations occur at the TCK falling edge.

21.3.3 Test Mode Select (TMS)

TAP state machine control, including TLM. The state of TMS at rising edges of TCK uniquely determines the state sequence of the TLM and the active TAP state machines. See Figure 21-4. Inactive TAPs ignore TMS completely.

21.3.4 Test Data In (TDI)

Serial test data input can be routed to any IR or DR, as determined by the state of the active TAP state machine and the contents of the active IR. TDI is sampled at the TCK rising edge while the active TAP state machine is in either the Shift-IR or Shift-DR state.

21-4 Freescale Semiconductor

21.3.5 Test Data Out (TDO)

Serial test data output is routed from the active shift register to this pin. To ensure setup and hold time for TDO when connected to TDI (of another device), TDO switches at the TCK falling edge. TDO is driven while the TLM state machine is in the Shift-IR or Shift-DR states only; it is tri-stated in all other TAP states. Except, for the first half clock after exiting the shift state, because of its falling edge timing.

21.4 Slave Test Reset (STRST)

STRST is the active-low reset from the TLM to all slave TAP blocks. STRST is asserted whenever the TLM state machine is in the Test Logic Reset state. This is a result of TRST being asserted, or the TMS sequence.

21.4.1 Enable Slave—ENA[0:n]

Enable signals are decoded from the contents of the TLM:Link DR. There is one Enable signal for the TLM and one for each slave TAP block. No more than one Enable signal can be asserted at one time. Each slave TAP block gates (logical AND) TMS with a unique Enable signal. Any number of TLM:Link DR codes may activate any Enable signal. MPC5200B implements one TLM:Link DR code for each Enable signal.

21.4.2 Select DR Link—SEL[0:n]

Each slave TAP block generates one Select signal; its value is decoded from the contents of its IR. Any number of Select signals may be asserted at any time; the TLM ignores all SEL[0:n] signals except from the active slave TAP (if any). Instruction codes that activate Select may be different in each slave TAP block. Any number of instruction codes may activate Select, but the mandatory BYPASS, EXTEST, and SAMPLE:PRELOAD instructions (and IDCODE, if implemented) must not. However, a slave is allowed to implement additional instructions that behave identically to any of these instructions, except that Select is asserted and the normal DR is disabled.

21.4.3 Slave Test Data Out—STDO[0:n]

Each slave TAP block provides a serial test data output. Just like TDO, all transitions of STDO[0:n] must occur on the falling edge of TCK. ENA[0:n] and SEL[0:n] select either the active slave serial output data or the TLM serial output data to appear at the TDO pin.

21.5 TAP State Machines

All TAP state machines are the same, including the TLM, except for the single control signal. The TLM receives the external TMS signal unmodified; all other (slave) TAP Controllers respond to unique versions of TMS combined with their unique Enable signal.

Freescale Semiconductor 21-5

Figure 21-4. State Diagram—TAP Controller

Instructions are loaded by stepping the state machine to the Shift-IR state by applying an appropriate sequence of values on TMS at successive rising edges of TCK. Once in the Shift-IR state, TMS is held low and appropriate values are applied at TDI (lsb-first) at successive rising edges of TCK. As the last (ms) bit is applied at TDI, TMS is set high and the state machine is advanced through the Exit1-IR and Update-IR states. The instruction becomes effective at the falling edge of TCK in the Update-IR state.

Data registers are loaded by first selecting the desired data register with an appropriate instruction, then stepping the state machine to the Shift-DR state. Once in the Shift-DR state, TMS is held low and appropriate values are applied at TDI (lsb-first) at successive rising edges of TCK. As the last (ms) bit is applied at TDI, TMS is set high and the state machine is advanced through the Exit1-DR and Update-DR states. The data becomes effective at the falling edge of TCK in the Update-DR state.

21.6 e300 Core JTAG/COP Serial Interface

The Common On-chip Processor (COP) external interface adheres to the IEEE 1149.1 serial protocol. The COP uses the JTAG interface which includes a TAP Controller, a COP Controller, input and output multiplexors, registers, several shift register latches (SRLs) and a counter (RunN) which controls clock execution. All IEEE 1149.1 public instructions are implemented (SAMPLE_PRELOAD, BYPASS, and EXTEST). Figure 21-5 shows the components that make up the microprocessor JTAG/COP serial interface.

21-6 Freescale Semiconductor

Figure 21-5. e300 Core JTAG/COP Serial Interface

21.7 TLM Link DR Instructions

— CAUTION —

- 1. For the following registers, only the instruction codes listed should be used. All other codes must be considered private and potentially damaging.
- 2. "Persistent" means an instruction's effect(s) persist even after it is overwritten in the register.
- 3. The reset value shown is the update register reset value. Per the JTAG standard, the raw IR shift register reset value is irrelevant.

Table 21-1. TLM Link-DR Instructions

Instruction	Encoding (ENA[1:0])	Persistent
TLM:TLMENA	01	N3
TLM:PPCENA	10	N

Note:

- 1. Reset = TLM:TLMENA
- 2. Capture = Current Value
- 3. Link Pseudo-instructions are persistent with respect to the enabled IR, but not with respect to the contents of the TLM:Link DR itself.

Link pseudo-instructions are loaded into the 2-bit TLM:Link DR when it is selected by instructions of the TLM or slave TAP blocks. The value shifted into the TLM:Link DR determines which IR will be active after the Update-DR state. The selection remains in effect until the TLM:Link register is selected again, and modified.

Freescale Semiconductor 21-7

TLM Test Instructions

21.7.1 TLM:TLMENA

The TLM:TLMENA pseudo-instruction selects the 6-bit TLM IR.

21.7.2 TLM:PPCENA

The TLM:PPCENA pseudo-instruction selects the 8-bit microprocessor CPU test IR.

21.8 TLM Test Instructions

The TLM IR activates device-level functions, including the mandatory JTAG instructions and private device test data registers.

Table 21-2. TLM Test Instruction Encoding

Instruction	Encoding	Persistent	TLM Register
IDCODE	011101	N	Device_ID
BYPASS	111111	N	Bypass
SAMPLE/PRELOAD	100000	N	Boundary
EXTEST	000000	N	Boundary
CLAMP	100001	N	Bypass
HIGHZ	011111	N	Bypass
	RESET: IDCODE	Capture: IDCODE	
	0 1 1	1 0 1	

21.8.1 IDCODE

The IDCODE instruction selects the 32-bit DeviceID DR to be logically connected between TDI and TDO during DR shift operations. The capture value of the DeviceID DR identifies the manufacturer (Freescale), device type (MPC5200B), and device revision level.

21.8.1.1 Device ID Register

Table 21-3. Device ID Register = 1001 101D hex

Version Device (MPC5200B – Initial Release)		Device (MPC5200B - Initial Release)	Manufacturer (Freescale)	
	0001	0000 0000 0001 0001	0000 0001 110	1

21.8.2 BYPASS

The BYPASS instruction selects the 1-bit Bypass DR to be logically connected between TDI and TDO during DR shift operations. It performs no testing function. The Bypass register provides for a minimum-length serial datapath from TDI to TDO. This allows more rapid test data movement to and from other JTAG scan chain components. The Bypass register capture value is 0. The Bypass register update value has no effect.

21.8.3 SAMPLE/PRELOAD

The SAMPLE/PRELOAD instruction selects the Boundary Scan DR to be logically connected between TDI and TDO during DR shift operations. As the name implies, the SAMPLE/PRELOAD instruction has two distinct uses:

Sample: To capture and examine the device pins state without disturbing normal system operation. Signals are captured at the TCK rising edge in the Capture-DR state, and examined by shifting out. For captured values to be meaningful, TCK may need to be synchronized to the normal system clock. The update value has no effect.

21-8 Freescale Semiconductor

Preload: To shift an initial value into the boundary scan register prior to loading the EXTEST or CLAMP instruction into the Instruction register. Capture value may be examined or ignored. Update value has no effect until EXTEST/CLAMP instruction is loaded. It is then presented at the device pins.

21.8.4 EXTEST

The EXTEST instruction selects the Boundary Scan DR to be logically connected between TDI and TDO during DR shift operations. It also forces the Boundary Scan register contents to appear at the pins of the device. The state of all pins is captured at the TCK rising edge in the Capture-DR TAP Controller state. The update value appears on the pins at the TCK falling edge in the Update-DR state. EXTEST does not affect on-chip pull-up or pulldown resistors.

21.8.5 CLAMP

The CLAMP instruction forces the contents of the Boundary Scan DR to appear at the boundary of the microprocessor block, just like the EXTEST instruction, but selects the 1-bit Bypass DR to be logically connected between TDI and TDO during DR shift operations. This allows a static data pattern to be driven onto the device pins, while at the same time minimizing the length of shifts to access test data registers on other devices in the JTAG scan chain. CLAMP does not affect on-chip pull-up or pull-down resistors.

21.8.6 HIGHZ

The HIGHZ instruction selects the 1-bit Bypass DR to be logically connected between TDI and TDO during DR shift operations, and also forces all output and bidirectional pins of the device into a non-driving state. Input pins, and the input portion of bidirectional pins, are not affected.

21.9 e300 COP/BDM Interface

The MPC5200B functional pin interface and internal logic provides access to the embedded e300 processer core through the Freescale standard COP/BDM interface. For information on the connection between COP connector and MPC5200B refer to the MPC5200B Hardware Specifications.

Freescale Semiconductor 21-9

Debug Support and JTAG Interface

Notes

MPC5200B Users Guide, Rev. 1

Appendix A Acronyms and Terms

This section contains an alphabetical list of terms, phrases, acronyms, and abbreviations used in this book. Some terms and definitions included are reprinted from *IEEE Std. 754-1985*, *IEEE Standard for Binary Floating-Point Arithmetic*, copyright ©1985 by the Institute of Electrical and Electronics Engineers, Inc. with permission of the IEEE.

A

AAL ATM Adaptation Layer
ABR Available Bit-Rate. See also CBR and UBR.
ACR Allowed Cell Rate
addr, adr address
almalarm
ALE Address Latch Enable
ALU Arithmetic Logic Unit
APC ATM Pace Control unit
ARB Microprocessor Arbitor
Architecture A detailed specification of requirements for a processor or computer system. It does not specify details of how the processor or computer system must be implemented; instead it provides a template for a family of compatible <i>implementations</i> .
Asynchronous exception <i>Exceptions</i> that are caused by events external to the processor's execution. In this document, the term 'asynchronous exception' is used interchangeably with the word <i>interrupt</i> .
AT Address Types
ATA
ATAPI ATA Packet Interface
ATM Asynchronous Transfer Mode
Atomic access A bus access that attempts to be part of a read-write operation to the same address uninterrupted by any other access to that address (the term refers to the fact that the transactions are indivisible). The PowerPC architecture implements atomic access through the lwarx/stwcx instruction pair.
Autobaud

В

DAT	Block Address Translation
DAI	Block Address Hansiation
BB	Bus Busy
BD	Buffer Descriptor
BG	Bus Grant
BI	Burst Inhibit
Big-Endian (BE)	. A byte-ordering method in memory where the address <i>n</i> of a word corresponds to the <i>Most-Significant Byte</i> . In an addressed memory word, the bytes are ordered (left to right) 0, 1, 2, 3, with 0 being the Most-Significant Byte. <i>See also</i> Little-Endian.

00000000 00000000 00000100 00000001		
Addr	Big-Endian	Little-Endian
00	00000000	0000001
01	00000000	00000100
02	00000100	00000000
03	0000001	00000000

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor A-1

C

BIP Bit Interleaved Parity BIST Built-In Self Test BISYNC Binary Synchronous communication Blockage A pipeline stall that occurs when an instruction occupies an execution unit and prevents a subsequent instruction from being dispatched. Boundedly undefined A characteristic of certain operations results not rigidly prescribed by the PowerPC architecture. Boundedly undefined results for a given operation may vary among implementations, and between execution attempts in the same implementation. Although the architecture does not prescribe the exact behavior for when results are allowed to be boundedly undefined, the results of executing instructions in contexts where results are allowed to be boundedly undefined are constrained to ones that could have been achieved by executing an arbitrary sequence of defined instructions, in valid form, starting in the state the machine was in before attempting to execute the given instruction. bps..... bits per second BPU..... Branch Processing Unit BR Bus Request BRC Backward Reporting Cells Breakpoint. A programmable event that forces the core to take a breakpoint exception. BT Burst Tolerance BUID..... Bus Unit ID burst can transfer four, 64-bit double words. Bus parking A feature that optimizes bus usage by letting a device retain bus mastership without having to rearbitrate. C memory). Cache coherency...... An attribute in which an accurate and common view of memory is provided to all devices that share a memory system. Caches are coherent if a processor performing a read from its cache is supplied with data corresponding to the most recent value written to memory or to another processor's cache. modified data within the specified address range is written back to main memory. This operation is generated typically by a Data Cache Block Flush (dcbf) instruction. Caching-inhibited A memory update policy in which the *cache* is bypassed and the load or store is done to or from main memory. CAM Content Addressable Memory CAN Controller Area Network CBR Constant Bit-Rate. See also UBR and ABR. CD...... Carrier Detect CDM Clock Distribution Module CDV Cell Delay Variation and Telecommunications Administrations). CES..... Circuit Emulation Service cfg configuration Changed bit One of two page history bits found in each page table entry (PTE). The processor sets the changed bit if any store is performed into the page. See also Page access history bits and Referenced bit. CLP..... Cell Loss Priority cmd command cnt count

CODEC COder/DECoder, or COmpression/DECommpression

A-2 Freescale Semiconductor

A-3

Context synchronization An operation that ensures:

• all instructions in execution complete past the point where they can produce an exception

• all instructions in execution complete in the context in which they began execution

• all subsequent instructions are *fetched* and executed in the new context.

COP..... Common On-chip Processor

Copy-back...... An operation in which modified data in a cache block is copied back to memory.

CPM Communications Processor Module

CPS ... Cells Per Slot
CQ ... Completion Queue
CR ... Condition Register

CRC Cyclic Redundancy Check—Error detecting codes that generate a parity check.

Critical-data first...... An aspect of burst access that lets requested data (typically a word or double word) in a cache block be

transferred first.

CSC...... Chip Select Controller—LocalPlus Controller

CSMA..... Carrier Sense Multiple Access

CT Connection Table

CUMB..... Check Unused Mask Bits

D

DABR Data Address Breakpoint Register

DAR Data Address Register
DDR Dual-Data Rate

DEC Decrementer (register)

Denormalized number. A non-zero floating-point number whose exponent has:

a reserved value, usually the format's minimum, and

whose explicit or implicit leading significant bit is 0.

Direct-mapped cache A cache in which each main memory address can appear in only one location within the cache, operates more

quickly when the memory request is a cache hit.

Direct-store Interface available only on microprocessors that use the PowerPC architecture; supports direct-store devices

from the POWER architecture. When the T-bit of a *segment descriptor* is set, the descriptor defines the region of memory to be used as a direct-store segment.

This facility is being phased out of the architecture and is not likely be supported in future devices. Therefore, software should not depend on it and new software should not use it.

MPC5200B Users Guide, Rev. 1

DMA..... Direct Memory Access

DPLL Digital Phase-Locked Loop

DRAM Dynamic Random Access Memory

DSI Data Storage Interrupt

DTLB Data Translation Lookaside Buffer

DTV Digital TV

DWPCI designware PCI—synopsys designware component

.

Е

E

EA..... Effective Address—The 32- or 64-bit address specified for a load, store, or instruction fetch. This address is

then submitted to the MMU for translation to either a physical memory address or an I/O address.

ED..... Endpoint Descriptor

EEST..... Enhanced Ethernet Serial Transceiver

en..... enable

EPROM..... Erasable Programmable Read-Only Memory

err error

ESAR Enhanced Segmentation And Reassembly

ETH..... Ethernet

Exception handler A software routine that executes when an exception is taken. Normally, the exception handler corrects the

condition that caused the exception, or performs some other meaningful task, which may include aborting the program that caused the exception. The address for each exception handler is identified by an exception vector

offset defined by the architecture and a prefix selected by the MSR.

Extended opcode..... A secondary opcode field generally located in instruction bits 21–30, that further defines the instruction type.

All instructions are one word in length. The most significant 6 bits of the instruction are the *primary opcode*,

identifying the type of instruction. See also Primary opcode.

Execution synchronization. . . A mechanism by which all instructions in execution are architecturally complete before beginning execution

(appearing to begin execution) of the next instruction. Similar to context synchronization, but doesn't force

contents of the instruction buffers to be deleted and refetched.

to which the value two is raised in determining the value of the represented number. See also Biased exponent.

EXTAL External Crystal. See also XTAL.

F

FBP Free Buffer Pool

FEC Fast Ethernet Controller

Fetch Retrieving instructions from either the cache or main memory and placing them into the instruction queue.

FIFO First-In-First-Out (buffer)

FIR Fast Infrared. See also MIR and SIR.

FMC Forward Monitor Cells
FPR Floating Point Register

FPSCR Floating Point Status and Control Register

FPU Floating Point Unit

FRM Forward Resource Management

flg flag

FLT First-Level Table. See also SLT.

Fully-associative Addressing scheme where every cache location (every byte) can have any possible address.

G

Gb, Gbit Gigabit (written with lowercase b; 1024 megabits)

GCI General Circuit Interface

GCRA Generic Cell Rate Algorithm (leaky bucket)

GFC..... Generic Flow Control

the source operands and destination results for all integer data manipulation instructions. Integer load instructions move data from memory to GPRs and store instructions move data from GPRs to memory.

GPTMR..... General Purpose Timer

GUI..... Graphical User Interface

MPC5200B Users Guide, Rev. 1

A-4 Freescale Semiconductor

Н

	. An architectural model featuring separate caches for instruction and data.
HC, Hc	
HCD	
HDLC	. High-level Data Link Control—a transmission protocol used at the data link layer (layer 2) of the OSI seven layer model for data communications. The HDLC protocol embeds information in a data frame that allows devices to control data flow and correct errors.
	. HDLC is an ISO standard developed from the Synchronous Data Link Control (SDLC) standard proposed by IBM.
HEC	. Header Error Control
1	
ICTL	. Interrupt Controller
IEEE	. Institute of Electrical and Electronics Engineers
IEEE754	. A standard, written by the Institute of Electrical and Electronics Engineers, which defines operations and representations of binary floating-point arithmetic.
I^2C	. Inter-Integrated Circuit
IC	. Input Capture. Also see OC and PWM.
IDE	. Integrated Drive Electronics—Interface for connecting additional hard drives to a computer.
IDL	. Inter-chip Digital Link
IDMA	. Internal Direct Memory Access
Illegal instructions	. A class of instructions not implemented for a particular microprocessor. These include instructions not defined by the PowerPC architecture. In addition:
	. For 32-bit implementations, instructions defined for 64-bit implementations only are considered illegal
	instructions.
	. For 64-bit implementations, instructions defined for 32-bit implementations only are considered illegal instructions.
Implementation	. A particular processor that conforms to the PowerPC architecture, but may differ from other architecture-compliant implementations; for example, in design, feature set, and implementation of <i>optional</i> features. The PowerPC architecture has many different implementations.
Implementation-dependent .	. An aspect of a feature in a processor's design that is defined by a processor's design specifications, rather than by the PowerPC architecture.
Implementation-specific	. An aspect of a feature in a processor's design that is not required by the PowerPC architecture, but for which the PowerPC architecture may provide concessions to ensure processors implementing the feature do so consistently.
	. A type of <i>synchronous exception</i> that is allowed not to adhere to the precise exception model. <i>See also</i> Precise exception. The PowerPC architecture lets only floating-point exceptions be handled imprecisely.
individual serial controllers	. SCC, SMC, SPI, I ² C, and USB—these individual serial controllers request service from the CPM.
	. bus that connects the core and System Interface Unit (SIU).
•	. The total number of clock cycles necessary to execute an instruction and make ready the results of that instruction.
int	•
•	. An <i>asynchronous exception</i> —on processors that use the PowerPC architecture, interrupts are a special case of exceptions. <i>See also</i> asynchronous exception.
IP	. Intellectual Property—a unique number that identifies a particular computer in a network of computers. The IP part of TCP/IP; a protocol used to route a data packet from its source to its destination.
IPBI, IP bus	. IP Bus Interface—the Intellectual Property Bus Interface
IR	
IR	. Instruction Register
IrDA, IRDA	
IRQ	
	. Instruction Storage Interrupt
	. Instruction Translation Lookaside Buffer
IU	. Integer Unit

MPC5200B Users Guide, Rev. 1

Freescale Semiconductor A-5

J

- Write software on one platform and run it on another.
- Create programs to run within a web browser.
- Develop server-side applications for online forums, stores, polls, processing HTML forms, and more.
- Write applications for cell phones, two-way pagers, and other consumer devices.

JTAG..... Joint Test Action Group

K

Kbps thousand (K) bits per second

Kb, Kbit Kilobit (written with lowercase b; 1024 Bytes)

KB, KByte KiloByte (written with uppercase B; 1024 bits)

\mathbf{L}

LANs are capable of transmitting data at fast rates, much faster than data can be transmitted over a telephone line. However, distances are limited. There is also a limit on the number of computers that can be attached to a single LAN.

Latency The time an operation requires. For example:

- execution latency is the number of processor clocks an instruction takes to execute.
- memory latency is the number of bus clocks needed to perform a memory operation.

ld load

LIFO Last-In-First-Out (buffer)

Little-Endian (LE) A byte-ordering method in memory where the address *n* of a word corresponds to the *Least-Significant Byte*. In an addressed memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3 being the *Most-Significant*

Byte. See also Big-Endian.

00000000 00000000 00000100 00000001		
Addr	Big-Endian	Little-Endian
00	00000000	0000001
01	00000000	00000100
02	00000100	00000000
03	0000001	00000000

LP	. LocalPlus
LR	. Link Register
LRU	. Least Recently Used

lsb least significant bit—the bit of least value in an address, register, data element, or instruction encoding.

LSB...... Least Significant Byte—the Byte of least value in an address, register, data element, or instruction encoding.

LSU..... Load/Store Unit

M

MA Memory Address
MAC Media Access Control

A-6 Freescale Semiconductor

MAC/PHY Multiply-and-ACcumulate/Physical Layer Device

Master Name given to a bus device granted control, or mastership, of the bus.

MBAR..... Module Base Address Register

Mb, Mbit Megabit (written with lowercase b; 1024 Kilobits)

MB, MByte MegaByte (written with uppercase B; 1024 KiloBytes)

MbpsMillion bits per secondMBSMaximum Burst SizeMCMemory ControllerMEMCTLSDRAM Controller

Memory access ordering.... The specific order in which the processor performs load and store memory access and the order in which those

accesses complete.

Memory Controller A unit whose primary function is to control the external bus memories and I/O devices.

Memory coherency An aspect of caching in which it is ensured an accurate view of memory is provided to all devices sharing

system memory.

Memory consistency...... Refers to agreement of levels of memory with respect to a single processor and system memory. For example,

on-chip cache, secondary cache, and system memory.

MIR..... Medium Infrared. See also FIR and SIR.

MMAP Memory Map

MMU Memory Management Unit—a functional unit capable of translating an effective (logical) address to a

physical address, providing protection mechanisms, and defining caching methods.

Mnemonic The abbreviated name of an instruction used for coding.

mod mode

Modified state............ When a cache block is in the modified state, it has been modified by the processor since it was copied from

memory. See also MESI.

MPC603e a microprocessor—a low-power implementation of the PowerPC Reduced Instruction Set Computer (RISC)

architecture. The MPC603e microprocessor offers workstation-level performance packed into a low-power, low-cost design ideal for desktop computers, notebooks and battery-powered systems, as well as printer and imaging equipment, telecommunications systems, networking and communications infrastructure, industrial

controls, and home entertainment and educational devices.

Munging A modification performed on an *effective address* that allows it to appear to the processor that individual aligned

scalars are stored as Little-Endian values, when in fact it is stored in Big-Endian order, but at different byte

addresses within double words.

Note: Munging affects only the effective address and not the byte order. The PowerPC architecture

does not use this term.

MS..... Motorola Scalable

msb most significant bit—highest-order bit in an address, register, data element, or instruction encoding.

MSB Most Significant Byte—highest-order Byte in an address, register, data element, or instruction encoding.

MSCAN Motorola Scalable CAN (Controller Area Network)

MSR Main Shift Register, or Machine State Register

Ν

NaN..... Not a Number

NCITS...... Number of Cells In Time Slot

NIC Network Interface Card
NMI Non-Maskable Interrupt

NMSI Non-Multiplexed Serial Interface

NRT..... Non-Real Time

Freescale Semiconductor A-7

0

O

OC.....Output Compare
OE....Output Enable signal

OEA Operating Environment Architecture—the level of PowerPC architecture that describes memory

 $management\ model, supervisor-level\ registers, synchronization\ requirements, and\ the\ exception\ model.\ It\ also$

defines the time-base feature from a supervisor-level perspective.

OHCI......Open Host Controller Interface—an "Open Host" standard.

Option, Optional A feature, such as an instruction, register, or exception, defined by the PowerPC architecture, but not required

to be implemented.

OSI Open Systems Interconnection

model. For example, speculative operations. An operation is said to be performed out-of-order if, at the time it

is performed, it is not known to be required by the sequential execution model. See also In-order.

Out-of-order execution A technique that lets instructions be issued and completed in an order that differs from their sequence in the

instruction stream.

destination register(s). For example, if two 32-bit numbers are multiplied, the result may not be representable

in 32 bits.

Р

Pace control. Controls the data flow rate between a master and slave.

Page..... A region in memory. The OEA defines a page as a 4KByte area of memory, aligned on a 4KByte boundary.

reside within a page not currently resident in physical memory. On microprocessors that use the PowerPC architecture, a page fault exception condition occurs when a matching, valid page table entry (PTE[V]=1)

cannot be located.

PCI Peripheral Component Interconnect

PCMCIA Personal Computer Memory Card International Association

PCR. Peak Cell Rate
PDU Protocol Data Unit
PHY Physical Layer Device

Physical memory. The actual memory that can be accessed through the system memory bus.

PIP..... Parallel Interface Port

Pipelining A technique that breaks operations (such as instruction processing or bus transactions) into smaller distinct

stages or tenures (respectively) so that a subsequent operation can begin before the previous one has completed.

distinctions between POTS and non-POTS services are speed and bandwidth. POTS is generally restricted to

about 52 Kbps. The POTS network is also called the public switched telephone network (PSTN).

PPC Port Power Control

PPM Pulse-Position Modulation

Precise exceptions...... A category of exception for which the pipeline can be stopped so that instructions preceding the faulting

instruction can complete. Subsequent instructions can then be flushed and redispatched after exception handling

has completed. See also Imprecise exceptions.

pri priority

Primary opcode The most-significant 6 bits (bits 0–5) of the instruction encoding that identifies the type of instruction. See also

Secondary opcode.

Protection boundary A boundary between protection domains.

Protection domain a segment, virtual page, BAT area, or range of unmapped effective addresses. It is defined only when the

appropriate relocate bit in the MSR (IR or DR) is 1.

PSC Programmable Serial Controller

PTE Page Table Entry PTI..... Payload Type Identifier PTP Port-To-Port switching PTR Program Trace PVR..... Processor Version Register PWM..... Pulse Width Modulator

Q

QNX From QNX Software Systems—a hybrid realtime platform that represents a cross between a realtime operating system and a platform OS. The first integrated, self-hosted, graphical platform for embedded developers.

R

rA The rA instruction field specifies a GPR used as a source or destination. rB The rB instruction field specifies a GPR used as a source. rD The rD instruction field specifies a GPR used as a destination. rS..... The rS instruction field specifies a GPR used as a source. RCT..... Receive Connection Table RD..... Read

Real address mode An MMU mode when no address translation is done and the effective address specified is the same as the physical address. The processor's MMU is operating in real address mode if its ability to perform address

translation has been disabled through the MSR registers IR and/or DR bits.

Record bit Bit 31 (or the Rc bit) in the instruction encoding. When set, it updates the condition register (CR) to reflect the

result of the operation.

Registers See Section XXX

Register indirect addressing. . A form of addressing that specifies one GPR that contains the address for the load or store.

Register indirect with A form of addressing that specifies an immediate value to

immediate index addressing. . be added to the contents of a specified GPR to form the target address for the load or store.

Register indirect with A form of addressing that specifies that the contents of two

index addressing GPRs be added together to yield the target address for the load or store.

Reservation The processor establishes a reservation on a *cache block* of memory space when it executes an **lwarx** instruction

to read a memory semaphore into a GPR.

Reserved field In a register, a reserved field is one not assigned a function. A reserved field may be a single bit. The handling

of reserved bits is implementation-dependent. Software is allowed to write any value to such a bit. A subsequent reading of the bit returns 0 if the value last written to the bit was 0; otherwise, it returns an undefined value (0

or 1).

non-overlapping functionality and a separate set of load and store instructions that perform memory access.

RM Resource Management

rst reset RSV..... Reservation RT Real Time RTC..... Real-Time Clock

RTOS..... Real-Time Operating System

R/W Read/Write rwc read-write-clear

RWITM..... Read With Intent To Modify

Rx, RX Receive

S

SAR..... Segment And Reassemble

Freescale Semiconductor A-9

Scalability	. The capability of an architecture to generate <i>implementations</i> specific for a wide range of purposes, and in particular implementations of significantly greater performance and/or functionality than at present, while
	maintaining compatibility with current implementations.
	. The peripheral buffers of a device, linked in JTAG test mode, that are addressed in a shift-register fashion.
	. Serial Communication Controller
SCP	
SCR	
	. Synchronous Data Link Control
	. Synchronous Dynamic RAM—a faster version of DRAM. SDRAM is generally synchronized with the clock speed for which the microprocessor is optimized. This tends to increase the number of instructions the processor can perform in a given time. The speed of SDRAM is rated in MHz rather than in nanoseconds (ns). This makes it easier to compare the bus speed and the RAM chip speed. You can convert the RAM clock speed to nanoseconds by dividing the chip speed into 1 billion ns (which is one second). For example, an 83 MHz RAM would be equivalent to 12ns.
sel	
Set (<i>v</i>)	. To write a non-zero value to a bit or bit field; the opposite of <i>clear</i> . The term "set" may also be used to generally describe the updating of a bit or bit field.
Set (<i>n</i>)	. A subdivision of a <i>cache</i> . Cacheable data can be stored in a given location in any one of the sets, typically corresponding to its lower-order address bits. Because several memory locations can map to the same location, cached data is typically placed in the set whose <i>cache block</i> corresponding to that address was least recently used (LRU). <i>See also</i> Set-associative.
Set-associative	. Aspect of cache organization in which cache space is divided into sections, called <i>sets</i> . The cache controller associates a particular main memory address with the contents of a particular set, or region, within the cache.
Signals	. See Section XXX
Significand	. The component of a binary floating-point number that consists of an explicit or implicit leading bit to the left of its implied binary point and a fraction field to the right.
SI	. Serial Interface
SIM	. System Integration Module
SIMM	. Signed IMMediate Value, or Single In-line Memory Module
SIP	. Serial Infrared Interaction Pulse
SIR	. Slow Infrared. See also FIR and MIR.
SIU	. Systems Interface Unit
Slave	. A device that responds to the master's address. A slave receives data on a write cycle and gives data to the master on a read cycle.
SLT	. Second-Level Tables. See also FLT.
SLTMR	. Slice Timer
SMC	. Serial Management Controllers
SNA	. Systems Network Architecture
SPI	. Serial Peripheral Interface—the SPI channel supports the out-of-band control channel to external physical chips. The SPI module allows full-duplex, synchronous, serial communication between the MPC5200B and peripheral devices. It supports master and slave mode, double-buffered operation and can operate in a polling or interrupt driven environment.
SPR	. Special-Purpose Register
SR	. Segment Register
SRAM	. Static Random Access Memory—a type of memory that is faster and more reliable than the more common DRAM (Dynamic RAM). The term "static" is derived from the fact that it does not need to be refreshed like DRAM.
SRR 0	. machine Status save/Restore Register 0
SRR 1	. machine Status save/Restore Register 1
SRTS	. Synchronous Residual Time Stamp
SRU	. System Register Unit
sta	. status
Static branch prediction	. Mechanism by which software (for example, compilers) can give a hint to the machine hardware about the direction a branch is likely to take.
STB	. Set-Top Box
Sticky bit	. A bit that when <i>set</i> must be cleared explicitly.

MPC5200B Users Guide, Rev. 1

TDM Time-Division Multiplex—a single serial channel used by several channels taking turns. TE Terminal Endpoint

TEA..... Transfer Error Acknowledge

TC Transmission Convergence TCT..... Transmit Connection Table

Throughput A measure of the number of instructions processed per clock cycle.

TLB...... Translation Lookaside Buffer—A cache that holds recently-used page table entries.

TLE True Little-Endian

TMR, tmr Timer TO, to Timeout TS Transfer Start TSA..... Time-Slot Assigner

tst..... test

TSIZ Transfer Size Tx, TX..... Transmit

U

	Universal Asynchronous Receiver-Transmitter—a component that handles asynchronous serial
	communication.
UARTe	UART enhanced (simple UART with carrier detect input)
UBR	Unspecified Bit-Rate. See also CBR and ABR.
UBR+	Unspecified Bit-Rate with minimum cell rate guarantee
UIMM	Unsigned IMMediate value
UISA	User Instruction Set Architecture —the level of the architecture to which user-level software should conform. The UISA defines the base user-level instruction set, user-level registers, data types, floating-point memory conventions and exception model as seen by user programs, and the memory and programming models.
UPM	User-Programmable Machine
USART	Universal Synchronous/Asynchronous Rx/Tx
USB	Universal Serial Bus—a new external bus standard that supports data transfer rates of 12Mbps.
User mode	The unprivileged operating state of a processor used typically by application software. In user mode, software can only access certain control registers and can access only user memory space. No privileged operations can be performed. Also referred to as problem state.
UTOPIA	Universal Test and Operations Physical Interface for ATM

V

Freescale Semiconductor A-11

W

VBR	
VC	. Virtual Channel, Circuit, Call, or Connection
VCC	. Virtual Channel Connection
VCI	. Virtual Circuit Identifier
VCO	. Voltage-Controlled Oscillator
VEA	. Virtual Environment Architecture—the level of the <i>architecture</i> that describes the memory model for an
	environment in which multiple devices can access memory. VEA can:
	• define aspects of the cache model
	define cache control instructions
	• define the time-base facility from a user perspective.
ver	. version
VM	. Virtual Memory—the address space created using the memory management facilities of the processor. Program access to virtual memory is possible only when it coincides with <i>physical memory</i> .
VP	. Virtual Path
VPC	. Virtual Path Connection
VPI	. Virtual Path Identifier
W	
WAN	. Wide Area Network—A computer network that spans a relatively large geographical area. Typically, a WAN consists of two or more local-area networks (LANs).
Watchpoint	. A reported event, but does not change machine timing.
WE	. Write Enable signals
WKIO	. GPIO WakeUp
Word	. A 32-bit data element.
	Note: Other processors may have a different word size.
WR	. Write
Write-back	. A cache memory update policy in which processor write cycles are directly written only to the cache. External memory is updated only indirectly. For example, when a modified cache block is <i>cast out</i> to make room for newer data.
Write-through	. A cache memory update policy in which all processor write cycles are written to both cache and memory.
X	
XCPCI	. PCI CFG (PCI configuration)
	Register used primarily for indicating conditions such as carries and overflows for integer operations.
XFC	
XTAL	
	. From Wind River Systems, is a networked real-time operating system designed to be used in a distributed
v x vvOIKS	. From while Kiver Systems, is a networked rear-time operating system designed to be used in a distributed

environment.

A-12 Freescale Semiconductor

Appendix B List of Registers

Section 5.5	CDM Registers	5-11
5.5.1	CDM JTAG ID Number Register—MBAR + 0x0200	5-12
5.5.2	CDM Power On Reset Configuration Register—MBAR + 0x0204	5-12
5.5.3	CDM Bread Crumb Register—MBAR + 0x0208	5-14
5.5.4	CDM Configuration Register—MBAR + 0x020C	5-14
5.5.5	CDM 48MHz Fractional Divider Configuration Register—MBAR + 0x0210	5-15
5.5.6	CDM Clock Enable Register—MBAR + 0x0214	5-16
5.5.7	CDM System Oscillator Configuration Register—MBAR + 0x0218	5-17
5.5.8	CDM Clock Control Sequencer Configuration Register—MBAR + 0x021C	5-18
5.5.9	CDM Soft Reset Register—MBAR + 0x0220	5-20
5.5.10	CDM System PLL Status Register—MBAR + 0x0224	5-20
5.5.11	PSC1 Mclock Config Register—MBAR + 0x0228	5-21
5.5.12	PSC2 Mclock Config Register—MBAR + 0x022C	5-22
5.5.13	PSC3 Mclock Config Register—MBAR + 0x0230	5-22
5.5.14	PSC6 (IrDA) Mclock Config Register—MBAR + 0x0234	5-23
Section 7.2.4	Interrupt Controller Registers	8-5
7.2.4.1	ICTL Peripheral Interrupt Mask Register—MBAR + 0x0500.	
7.2.4.2	ICTL Peripheral Priority and HI/LO Select 1 Register —MBAR + 0x0504	
7.2.4.3	ICTL Peripheral Priority and HI/LO Select 2 Register —MBAR + 0x0508	
7.2.4.4	ICTL Peripheral Priority and HI/LO Select 3 Register —MBAR + 0x050C	
7.2.4.5	ICTL External Enable and External Types Register —MBAR + 0x0510	
7.2.4.6	ICTL Critical Priority and Main Interrupt Mask Register—MBAR + 0x0514	
7.2.4.7	ICTL Main Interrupt Priority and INT/SMI Select 1 Register —MBAR + 0x0518	
7.2.4.8	ICTL Main Interrupt Priority and INT/SMI Select 2 Register—MBAR + 0x051C	
7.2.4.9	ICTL Perstat, MainStat, MainStat, CritStat Encoded Register—MBAR + 0x0524	
7.2.4.10	ICTL Critical Interrupt Status All Register—MBAR + 0x0528	
7.2.4.11	ICTL Main Interrupt Status All Register—MBAR + 0x052C	
7.2.4.12	ICTL Peripheral Interrupt Status All Register—MBAR + 0x0530	
7.2.4.13	ICTL Peripheral Interrupt Status All Register—MBAR + 0x0538	
7.2.4.14	ICTL Main Interrupt Emulation All Register—MBAR + 0x0540	
7.2.4.15	ICTL Peripheral Interrupt Emulation All Register—MBAR + 0x0544	
7.2.4.16	ICTL IRQ Interrupt Emulation All Register—MBAR + 0x0548	
Section 7.3.2.1	GPIO Standard Registers—MBAR+0x0B00	8-28
7.3.2.1.1	GPS Port Configuration Register—MBAR + 0x0B00	8-29
7.3.2.1.2	GPS Simple GPIO Enables Register—MBAR + 0x0B04	8-31
7.3.2.1.3	GPS Simple GPIO Open Drain Type Register —MBAR + 0x0B08.	8-33
7.3.2.1.4	GPS Simple GPIO Data Direction Register—MBAR + 0x0B0C	8-34
7.3.2.1.5	GPS Simple GPIO Data Output Values Register —MBAR + 0x0B10	8-37
7.3.2.1.6	GPS Simple GPIO Data Input Values Register —MBAR + 0x0B14	8-38
7.3.2.1.7	GPS GPIO Output-Only Enables Register —MBAR + 0x0B18	8-39
7.3.2.1.8	GPS GPIO Output-Only Data Value Out Register —MBAR + 0x0B1C	8-40
7.3.2.1.9	GPS GPIO Simple Interrupt Enable Register—MBAR + 0x0B20	8-41
7.3.2.1.10	GPS GPIO Simple Interrupt Open-Drain Emulation Register —MBAR + 0x0B24	8-42
7.3.2.1.11	GPS GPIO Simple Interrupt Data Direction Register —MBAR + 0x0B28	8-43
7.3.2.1.12	GPS GPIO Simple Interrupt Data Value Out Register —MBAR + 0x0B2C	8-43

7.3.2.1.13	GPS GPIO Simple Interrupt Interrupt Enable Register —MBAR + 0x0B30	8-44
7.3.2.1.14	GPS GPIO Simple Interrupt Interrupt Types Register —MBAR + 0x0B34	8-45
7.3.2.1.15	GPS GPIO Simple Interrupt Master Enable Register —MBAR + 0x0B38	8-45
7.3.2.1.16	GPS GPIO Simple Interrupt Status Register—MBAR + 0x0B3C	8-46
Section 7.3.2.2	WakeUp GPIO Registers—MBAR+0x0C00	8-47
7.3.2.2.1	GPW WakeUp GPIO Enables Register—MBAR + 0x0C00	
7.3.2.2.2	GPW WakeUp GPIO Open Drain Emulation Register —MBAR + 0x0C04	8-48
7.3.2.2.3	GPW WakeUp GPIO Data Direction Register—MBAR + 0x0C08	8-48
7.3.2.2.4	GPW WakeUp GPIO Data Value Out Register —MBAR + 0x0C0C	8-49
7.3.2.2.5	GPW WakeUp GPIO Interrupt Enable Register—MBAR + 0x0C10	8-50
7.3.2.2.6	GPW WakeUp GPIO Individual Interrupt Enable Register —MBAR + 0x0C14	8-50
7.3.2.2.7	GPW WakeUp GPIO Interrupt Types Register—MBAR + 0x0C18	8-51
7.3.2.2.8	GPW WakeUp GPIO Master Enables Register —MBAR + 0x0C1C	8-52
7.3.2.2.9	GPW WakeUp GPIO Data Input Values Register —MBAR + 0x0C20	8-53
7.3.2.2.10	GPW WakeUp GPIO Status Register—MBAR + 0x0C24	8-54
Section 7.4.4	GPT Registers—MBAR + 0x0600	8-56
7.4.4.1	GPT 0 Enable and Mode Select Register—MBAR + 0x0600	8-56
7.4.4.2	GPT 0 Counter Input Register—MBAR + 0x0604	8-59
7.4.4.3	GPT 0 PWM Configuration Register—MBAR + 0x0608	8-60
7.4.4.4	GPT 0 Status Register—MBAR + 0x060C	8-61
Section 7.5.1	SLT Registers—MBAR + 0x0700	8-62
7.5.1.1	SLT 0 Terminal Count Register—MBAR + 0x0700	8-63
7.5.1.2	SLT 0 Control Register—MBAR + 0x0704	8-63
7.5.1.3	SLT 0 Count Value Register—MBAR + 0x0708	8-64
7.5.1.4	SLT 0 Timer Status Register—MBAR + 0x070C	8-65
Section 7.6.3	RTC Interface Registers—MBAR + 0x0800	8-66
7.6.3.1	RTC Time Set Register—MBAR + 0x0800	8-67
7.6.3.2	RTC Date Set Register—MBAR + 0x0804.	
7.6.3.3	RTC New Year and Stopwatch Register—MBAR + 0x0808	
7.6.3.4	RTC Alarm and Interrupt Enable Register—MBAR + 0x080C	
7.6.3.5	RTC Current Time Register—MBAR + 0x0810	
7.6.3.6	RTC Current Date Register—MBAR + 0x0814	
7.6.3.7	RTC Alarm and Stopwatch Interrupt Register—MBAR + 0x0818	
7.6.3.8	RTC Periodic Interrupt and Bus Error Register—MBAR + 0x081C	
7.6.3.9	RTC Test Register/Divides Register—MBAR + 0x0820	8-73
Section 8.7	Memory Controller Registers (MBAR+0x0100:0x010C)	
8.7.1	Mode Register—MBAR + 0x0100.	
8.7.2	Control Register—MBAR + 0x0104	
8.7.3	Configuration Register 1—MBAR + 0x0108	
8.7.4	Configuration Register 2—MBAR + 0x010C	8-27
Section 9.7.1	Chip Select/LPC Registers—MBAR + 0x0300	9-11
9.7.1.1	Chip Select 0/Boot Configuration Register—MBAR + 0x0300	9-13
9.7.1.2	Chip Select 1 Configuration Register—MBAR + 0x0304	
9.7.1.3	Chip Select Control Register—MBAR + 0x0318	
9.7.1.4	Chip Select Status Register—MBAR + 0x031C	9-18
9.7.1.5	Chip Select Burst Control Register—MBAR + 0x0328	
9.7.1.6	Chip Select Deadcycle Control Register—MBAR + 0x032C	9-21

Section 9.7.2	SCLPC Registers—MBAR + 0x3C00	9-23
9.7.2.1	SCLPC Packet Size Register—MBAR + 0x3C00	9-23
9.7.2.2	SCLPC Start Address Register—MBAR + 0x3C04	9-24
9.7.2.3	SCLPC Control Register—MBAR + 0x3C08.	9-24
9.7.2.4	SCLPC Enable Register—MBAR + 0x3C0C	9-25
9.7.2.5	SCLPC Bytes Done Status Register—MBAR + 0x3C14	9-26
Section 9.7.3	SCLPC FIFO Registers—MBAR + 0x3C40	9-28
9.7.3.1	LPC Rx/Tx FIFO Data Word Register—MBAR + 0x3C40	9-28
9.7.3.2	LPC Rx/Tx FIFO Status Register—MBAR + 0x3C44	9-29
9.7.3.3	LPC Rx/Tx FIFO Control Register—MBAR + 0x3C48	9-30
9.7.3.4	LPC Rx/Tx FIFO Alarm Register—MBAR + 0x3C4C	9-30
9.7.3.5	LPC Rx/Tx FIFO Read Pointer Register—MBAR + 0x3C50	9-31
9.7.3.6	LPC Rx/Tx FIFO Write Pointer Register—MBAR + 0x3C54	9-31
Section 10.3.1	PCI Controller Type 0 Configuration Space	10-6
10.3.3.1.1	Tx Packet Size PCITPSR(RW) —MBAR + 0x3800	. 10-24
10.3.3.1.2	Tx Start Address PCITSAR(RW) —MBAR + 0x3804	. 10-24
10.3.3.1.3	Tx Transaction Control Register PCITTCR(RW) —MBAR + 0x3808	. 10-24
10.3.3.1.4	Tx Enables PCITER(RW)—MBAR + 0x380C	. 10-26
10.3.3.1.5	Tx Next Address PCITNAR(R) —MBAR + 0x3810	. 10-27
10.3.3.1.6	Tx Last Word PCITLWR(R) —MBAR + 0x3814	. 10-28
10.3.3.1.7	Tx Bytes Done Counts PCITDCR(R) —MBAR + 0x3818	. 10-28
10.3.3.1.8	Tx Packets Done Counts PCITPDCR(R) —MBAR + 0x3820	. 10-28
10.3.3.1.9	Tx Status PCITSR(RWC) —MBAR + 0x381C	. 10-29
10.3.3.1.10	Tx FIFO Data Register PCITFDR(RW) —MBAR + 0x3840	. 10-30
10.3.3.1.11	Tx FIFO Status Register PCITFSR(R/RWC) —MBAR + 0x3844	. 10-31
10.3.3.1.12	Tx FIFO Control Register PCITFCR(RW) —MBAR + 0x3848	
10.3.3.1.13	Tx FIFO Alarm Register PCITFAR(RW) —MBAR + 0x384C	
10.3.3.1.14	Tx FIFO Read Pointer Register PCITFRPR(RW) —MBAR + 0x3850	. 10-34
10.3.3.1.15	Tx FIFO Write Pointer Register PCITFWPR(RW) —MBAR + 0x3854	. 10-34
Section 10.3.2	General Control/Status Registers	. 10-13
10.3.2.1	Global Status/Control Register PCIGSCR(RW) —MBAR + 0x0D60	. 10-13
10.3.2.2	Target Base Address Translation Register 0 PCITBATR0(RW) —MBAR + 0x0D64	. 10-16
10.3.2.3	Target Base Address Translation Register 1 PCITBATR1(RW) —MBAR + 0x0D68	. 10-16
10.3.2.4	Target Control Register PCITCR(RW) —MBAR + 0x0D6C	. 10-17
10.3.2.5	Initiator Window 0 Base/Translation Address Register PCIIW0BTAR(RW)—MBAR + 0x0D70	. 10-18
10.3.2.6	Initiator Window 1 Base/Translation Address Register PCIIW1BTAR(RW) —MBAR + 0x0D74.	. 10-19
10.3.2.7	Initiator Window 2 Base/Translation Address Register PCIIW2BTAR(RW) —MBAR + 0x0D78.	. 10-20
10.3.2.8	Initiator Window Configuration Register PCIIWCR(RW) —MBAR + 0x0D80	. 10-20
10.3.2.9	Initiator Control Register PCIICR(RW) —MBAR + 0x0D84	. 10-21
10.3.2.10	Initiator Status Register PCIISR(RWC) —MBAR + 0x0D88	. 10-22
10.3.2.11	PCI Arbiter Register PCIARB(RW) —MBAR + 0x0D8C	. 10-22
10.3.2.12	Configuration Address Register PCICAR (RW) —MBAR + 0x0DF8	. 10-23
Section 10.3.3	Communication Sub-System Interface Registers	. 10-23
10.3.3.1.1	Tx Packet Size PCITPSR(RW) —MBAR + 0x3800	
10.3.3.1.2	Tx Start Address PCITSAR(RW) —MBAR + 0x3804	. 10-24
10.3.3.1.3	Tx Transaction Control Register PCITTCR(RW) —MBAR + 0x3808	
10.3.3.1.4	Tx Enables PCITER(RW)—MBAR + 0x380C	. 10-26
10.3.3.1.5	Tx Next Address PCITNAR(R) —MBAR + 0x3810	. 10-27

10.3.3.1.6	Tx Last Word PCITLWR(R) —MBAR + 0x3814	10-28
10.3.3.1.7	Tx Bytes Done Counts PCITDCR(R) —MBAR + 0x3818	10-28
10.3.3.1.8	Tx Packets Done Counts PCITPDCR(R) —MBAR + 0x3820	
10.3.3.1.9	Tx Status PCITSR(RWC) —MBAR + 0x381C	10-29
10.3.3.1.10	Tx FIFO Data Register PCITFDR(RW) —MBAR + 0x3840	10-30
10.3.3.1.11	Tx FIFO Status Register PCITFSR(R/RWC) —MBAR + 0x3844	
10.3.3.1.12	Tx FIFO Control Register PCITFCR(RW) —MBAR + 0x3848	
10.3.3.1.13	Tx FIFO Alarm Register PCITFAR(RW) —MBAR + 0x384C	10-32
10.3.3.1.14	Tx FIFO Read Pointer Register PCITFRPR(RW) —MBAR + 0x3850	
10.3.3.2.15	Rx FIFO Write Pointer Register PCIRFWPR (RW) —MBAR + 0x38D4	10-44
Section 10.3.3.2	Multi-Channel DMA Receive Interface	10-34
10.3.3.2.1	Rx Packet Size PCIRPSR(RW) —MBAR + 0x3880	
10.3.3.2.2	Rx Start Address PCIRSAR (RW) —MBAR + 0x3884	10-35
10.3.3.2.3	Rx Transaction Control Register PCIRTCR(RW) —MBAR + 0x3888	10-35
10.3.3.2.4	Rx Enables PCIRER (RW) —MBAR + 0x388C	10-37
10.3.3.2.5	Rx Next Address PCIRNAR(R) —MBAR + 0x3890	10-38
10.3.3.2.6	Rx Last Word PCIRLWR(R) —MBAR + 0x3894	10-38
10.3.3.2.7	Rx Bytes Done Counts PCIRDCR(R) —MBAR + 0x3898	10-39
10.3.3.2.8	Rx Packets Done Counts PCIRPDCR(R) —MBAR + 0x38A0	10-39
10.3.3.2.9	Rx Status PCIRSR (R/sw1) —MBAR + 0x389C	10-40
10.3.3.2.10	Rx FIFO Data Register PCIRFDR(RW) —MBAR + 0x38C0	10-41
10.3.3.2.11	Rx FIFO Status Register PCIRFSR(R/sw1) —MBAR + 0x38C4	10-41
10.3.3.2.12	Rx FIFO Control Register PCIRFCR(RW) —MBAR + 0x38C8	10-42
10.3.3.2.13	Rx FIFO Alarm Register PCIRFAR(RW) —MBAR + 0x38CC	
10.3.3.2.14	Rx FIFO Read Pointer Register PCIRFRPR(RW) —MBAR + 0x38D0	10-44
10.3.3.2.15	Rx FIFO Write Pointer Register PCIRFWPR (RW) —MBAR + 0x38D4	10-44
Section 11.3.1	ATA Host Registers—MBAR + 0x3A00	11-2
11.3.1.1	ATA Host Configuration Register—MBAR + 0x3A00	11-2
11.3.1.2	ATA Host Status Register—MBAR + 0x3A04	11-3
11.3.1.3	ATA PIO Timing 1 Register—MBAR + 0x3A08	11-3
11.3.1.4	ATA PIO Timing 2 Register—MBAR + 0x3A0C	11-4
11.3.1.5	ATA Multiword DMA Timing 1 Register—MBAR + 0x3A10	11-4
11.3.1.6	ATA Multiword DMA Timing 2 Register—MBAR + 0x3A14	11-5
11.3.1.7	ATA Ultra DMA Timing 1 Register—MBAR + 0x3A18	11-5
11.3.1.8	ATA Ultra DMA Timing 2 Register—MBAR + 0x3A1C	11-6
11.3.1.9	ATA Ultra DMA Timing 3 Register—MBAR + 0x3A20	11-6
11.3.1.10	ATA Ultra DMA Timing 4 Register—MBAR + 0x3A24	11-7
11.3.1.11	ATA Ultra DMA Timing 5 Register—MBAR + 0x3A28	11-8
11.3.1.12	ATA Share Count Register—MBAR + 0x3A2C	11-8
Section 11.3.2	ATA FIFO Registers—MBAR + 0x3A00	11-8
11.3.2.1	ATA Rx/Tx FIFO Data Word Register—MBAR + 0x3A3C	
11.3.2.2	ATA Rx/Tx FIFO Status Register—MBAR + 0x3A40	
11.3.2.3	ATA Rx/Tx FIFO Control Register—MBAR + 0x3A44	
11.3.2.4	ATA Rx/Tx FIFO Alarm Register—MBAR + 0x3A48	
11.3.2.5	ATA Rx/Tx FIFO Read Pointer Register—MBAR + 0x3A4C	
11.3.2.6	ATA Rx/Tx FIFO Write Pointer Register—MBAR + 0x3A50	

Section 11.3.3	ATA Drive Registers—MBAR + 0x3A00	11-12
11.3.3.1	ATA Drive Device Control Register—MBAR + 0x3A5C	11-12
11.3.3.2	ATA Drive Alternate Status Register—MBAR + 0x3A5C	11-13
11.3.3.3	ATA Drive Data Register—MBAR + 0x3A60	11-13
11.3.3.4	ATA Drive Features Register—MBAR + 0x3A64	11-14
11.3.3.5	ATA Drive Error Register—MBAR + 0x3A64	11-14
11.3.3.6	ATA Drive Sector Count Register—MBAR + 0x3A68	11-15
11.3.3.7	ATA Drive Sector Number Register—MBAR + 0x3A6C	11-15
11.3.3.8	ATA Drive Cylinder Low Register—MBAR + 0x3A70	11-16
11.3.3.9	ATA Drive Cylinder High Register—MBAR + 0x3A74	11-16
11.3.3.10	ATA Drive Device/Head Register—MBAR + 0x3A78	11-17
11.3.3.11	ATA Drive Device Command Register—MBAR + 0x3A7C	11-17
11.3.3.12	ATA Drive Device Status Register—MBAR + 0x3A7C	11-19
Section 12.4.2	Control and Status Partition—MBAR + 0x1000.	12-6
12.4.2.1	USB HC Revision Register—MBAR + 0x1000	12-6
12.4.2.2	USB HC Control Register—MBAR + 0x1004	12-6
12.4.2.3	USB HC Command Status Register—MBAR + 0x1008	12-8
12.4.2.4	USB HC Interrupt Status Register —MBAR + 0x100C	12-9
12.4.2.5	USB HC Interrupt Enable Register—MBAR + 0x1010	12-10
12.4.2.6	USB HC Interrupt Disable Register—MBAR + 0x 1014	12-11
Section 12.4.3	Memory Pointer Partition—MBAR + 0x1018	12-12
12.4.3.1	USB HC HCCA Register—MBAR + 0x1018	12-13
12.4.3.2	USB HC Period Current Endpoint Descriptor Register —MBAR + 0x101C	12-13
12.4.3.3	USB HC Control Head Endpoint Descriptor Register —MBAR + 0x1020	12-14
12.4.3.4	USB HC Control Current Endpoint Descriptor Register —MBAR + 0x1024	12-14
12.4.3.5	USB HC Bulk Head Endpoint Descriptor Register—MBAR + 0x1028	12-14
12.4.3.6	USB HC Bulk Current Endpoint Descriptor Register—MBAR + 0x102C	12-15
12.4.3.7	USB HC Done Head Register—MBAR + 0x1030.	12-15
Section 12.4.4	Frame Counter Partition—MBAR + 0x1034	12-16
12.4.4.1	USB HC Frame Interval Register—MBAR + 0x1034	12-16
12.4.4.2	USB HC Frame Remaining Register—MBAR + 0x1038	12-17
12.4.4.3	USB HC Frame Number Register—MBAR + 0x103C	12-17
12.4.4.4	USB HC Periodic Start Register—MBAR + 0x1040	12-18
12.4.4.5	USB HC LS Threshold Register—MBAR + 0x1044	12-18
Section 12.4.5	Root Hub Partition—MBAR + 0x1048.	12-19
12.4.5.1	USB HC Rh Descriptor A Register—MBAR + 0x1048	12-19
12.4.5.2	USB HC Rh Descriptor B Register—MBAR + 0x104C	12-20
12.4.5.3	USB HC Rh Status Register—MBAR + 0x1050	12-21
12.4.5.4	USB HC Rh Port1 Status Register—MBAR + 0x1054	12-22
12.4.5.5	USB HC Rh Port2 Status Register—MBAR + 0x1058	12-26
Section 13.2	BestComm Functional Description	
13.15.1	SDMA Task Bar Register—MBAR + 0x1200	13-4
13.15.2	SDMA Current Pointer Register—MBAR + 0x1204	13-5
13.15.3	SDMA End Pointer Register—MBAR + 0x1208	
13.15.4	SDMA Variable Pointer Register—MBAR + 0x120C	13-5
13.15.5	SDMA Interrupt Vector, PTD Control Register—MBAR + 0x1210	13-6
13.15.6	SDMA Interrupt Pending Register—MBAR + 0x1214	13-7
13.15.7	SDMA Interrupt Mask Register—MBAR + 0x1218	13-8

13.15.8	SDMA Task Control 0 Register—MBAR + 0x121C	13-9
13.15.9	SDMA Task Control 2 Register—MBAR + 0x1220	13-10
15.2.10	Interrupt Status Register (0x14) — ISR	
13.15.11	SDMA Task Control 6 Register—MBAR + 0x1228	13-11
13.15.12	SDMA Task Control 8 Register—MBAR + 0x122C	13-12
13.15.13	SDMA Task Control A Register—MBAR + 0x1230	13-12
13.15.14	SDMA Task Control C Register—MBAR + 0x1234	
13.15.15	SDMA Task Control E Register—MBAR + 0x1238	
13.15.16	SDMA Initiator Priority 0 Register—MBAR + 0x123C	
13.15.17	SDMA Initiator Priority 4 Register—MBAR + 0x1240	
13.15.18	SDMA Initiator Priority 8 Register—MBAR + 0x1244	
13.15.19	SDMA Initiator Priority 12 Register—MBAR + 0x1248	
13.15.20	SDMA Initiator Priority 16 Register—MBAR + 0x124C	
13.15.21	SDMA Initiator Priority 20 Register—MBAR + 0x1250	
13.15.22	SDMA Initiator Priority 24 Register—MBAR + 0x1254	
13.15.23	SDMA Initiator Priority 28 Register—MBAR + 0x1258	
13.15.24	SDMA Requestor MuxControl—MBAR + 0x125C	
13.15.25	SDMA task Size0—MBAR + 0x1260	
13.15.26	SDMA task 0 & task Size 1 map	
13.15.27	SDMA Reserved Register 1—MBAR + 0x1268.	
13.15.28	SDMA Reserved Register 2—MBAR + 0x126C	
13.15.29	SDMA Debug Module Comparator 1, Value 1 Register—MBAR + 0x1270	
13.15.30	SDMA Debug Module Comparator 2, Value 2 Register—MBAR + 0x1274	
13.15.31	SDMA Debug Module Control Register—MBAR + 0x1274	
13.15.31	SDMA Debug Module Status Register—MBAR + 0x1276	
Section 14.5	FEC Registers—MBAR + 0x3000	
14.5.1	FEC ID Register—MBAR + 0x3000	
14.5.2	FEC Interrupt Event Register—MBAR + 0x3004	
14.5.3	FEC Interrupt Enable Register—MBAR + 0x3008	14-14
14.5.4	FEC Rx Descriptor Active Register—MBAR + 0x3010	
14.5.5	FEC Rx Descriptor Active Register—MBAR + 0x3010	14-15
14.5.5 14.5.6	FEC Rx Descriptor Active Register—MBAR + 0x3010	14-15 14-16
14.5.5 14.5.6 14.5.7	FEC Rx Descriptor Active Register—MBAR + 0x3010	
14.5.5 14.5.6 14.5.7 14.5.8	FEC Rx Descriptor Active Register—MBAR + 0x3010	
14.5.5 14.5.6 14.5.7 14.5.8 14.5.9	FEC Rx Descriptor Active Register—MBAR + 0x3010 FEC Tx Descriptor Active Register—MBAR + 0x3014 FEC Ethernet Control Register—MBAR + 0x3024 FEC MII Management Frame Register—MBAR + 0x3040 FEC MII Speed Control Register—MBAR + 0x3044 FEC MIB Control Register—MBAR + 0x3064	
14.5.5 14.5.6 14.5.7 14.5.8 14.5.9 14.5.10	FEC Rx Descriptor Active Register—MBAR + 0x3010 FEC Tx Descriptor Active Register—MBAR + 0x3014 FEC Ethernet Control Register—MBAR + 0x3024 FEC MII Management Frame Register—MBAR + 0x3040 FEC MII Speed Control Register—MBAR + 0x3044 FEC MIB Control Register—MBAR + 0x3064 FEC Receive Control Register—MBAR + 0x3084	
14.5.5 14.5.6 14.5.7 14.5.8 14.5.9 14.5.10 14.5.11	FEC Rx Descriptor Active Register—MBAR + 0x3010 FEC Tx Descriptor Active Register—MBAR + 0x3014 FEC Ethernet Control Register—MBAR + 0x3024 FEC MII Management Frame Register—MBAR + 0x3040 FEC MII Speed Control Register—MBAR + 0x3044 FEC MIB Control Register—MBAR + 0x3064 FEC Receive Control Register—MBAR + 0x3084 FEC Hash Register—MBAR + 0x3088	
14.5.5 14.5.6 14.5.7 14.5.8 14.5.9 14.5.10 14.5.11 14.5.12	FEC Rx Descriptor Active Register—MBAR + 0x3010 FEC Tx Descriptor Active Register—MBAR + 0x3014 FEC Ethernet Control Register—MBAR + 0x3024 FEC MII Management Frame Register—MBAR + 0x3040 FEC MII Speed Control Register—MBAR + 0x3044 FEC MIB Control Register—MBAR + 0x3064 FEC Receive Control Register—MBAR + 0x3084 FEC Hash Register—MBAR + 0x3088 FEC Tx Control Register—MBAR + 0x30C4	
14.5.5 14.5.6 14.5.7 14.5.8 14.5.9 14.5.10 14.5.11 14.5.12 14.5.13	FEC Rx Descriptor Active Register—MBAR + 0x3010 FEC Tx Descriptor Active Register—MBAR + 0x3014 FEC Ethernet Control Register—MBAR + 0x3024 FEC MII Management Frame Register—MBAR + 0x3040 FEC MII Speed Control Register—MBAR + 0x3044 FEC MIB Control Register—MBAR + 0x3064 FEC Receive Control Register—MBAR + 0x3084 FEC Hash Register—MBAR + 0x3088 FEC Tx Control Register—MBAR + 0x30C4 FEC Physical Address Low Register—MBAR + 0x30E4	14-15 14-16 14-17 14-18 14-19 14-20 14-21 14-21 14-21
14.5.5 14.5.6 14.5.7 14.5.8 14.5.9 14.5.10 14.5.11 14.5.12 14.5.13	FEC Rx Descriptor Active Register—MBAR + 0x3010 FEC Tx Descriptor Active Register—MBAR + 0x3014 FEC Ethernet Control Register—MBAR + 0x3024 FEC MII Management Frame Register—MBAR + 0x3040 FEC MII Speed Control Register—MBAR + 0x3044 FEC MIB Control Register—MBAR + 0x3064 FEC Receive Control Register—MBAR + 0x3084 FEC Hash Register—MBAR + 0x3088 FEC Tx Control Register—MBAR + 0x30C4 FEC Physical Address Low Register—MBAR + 0x30E4 FEC Physical Address High Register—MBAR + 0x30E8	14-15 14-16
14.5.5 14.5.6 14.5.7 14.5.8 14.5.9 14.5.10 14.5.11 14.5.12 14.5.13 14.5.14	FEC Rx Descriptor Active Register—MBAR + 0x3010 FEC Tx Descriptor Active Register—MBAR + 0x3014 FEC Ethernet Control Register—MBAR + 0x3024 FEC MII Management Frame Register—MBAR + 0x3040 FEC MII Speed Control Register—MBAR + 0x3044 FEC MIB Control Register—MBAR + 0x3064 FEC Receive Control Register—MBAR + 0x3084 FEC Hash Register—MBAR + 0x3088 FEC Tx Control Register—MBAR + 0x30C4 FEC Physical Address Low Register—MBAR + 0x30E4 FEC Physical Address High Register—MBAR + 0x30E8 FEC Opcode/Pause Duration Register—MBAR + 0x30EC	14-15 14-16 14-17 14-18 14-19 14-20 14-21 14-21 14-22 14-23
14.5.5 14.5.6 14.5.7 14.5.8 14.5.9 14.5.10 14.5.11 14.5.12 14.5.13 14.5.14 14.5.15 14.5.16	FEC Rx Descriptor Active Register—MBAR + 0x3010 FEC Tx Descriptor Active Register—MBAR + 0x3014 FEC Ethernet Control Register—MBAR + 0x3024 FEC MII Management Frame Register—MBAR + 0x3040 FEC MII Speed Control Register—MBAR + 0x3044 FEC MIB Control Register—MBAR + 0x3064 FEC Receive Control Register—MBAR + 0x3084 FEC Hash Register—MBAR + 0x3088 FEC Tx Control Register—MBAR + 0x30C4 FEC Physical Address Low Register—MBAR + 0x30E4 FEC Physical Address High Register—MBAR + 0x30E8 FEC Opcode/Pause Duration Register—MBAR + 0x30EC FEC Descriptor Individual Address 1 Registe—MBAR + 0x3118	14-15 14-16 14-17 14-18 14-19 14-20 14-21 14-21 14-22 14-23 14-23
14.5.5 14.5.6 14.5.7 14.5.8 14.5.9 14.5.10 14.5.11 14.5.12 14.5.13 14.5.14 14.5.15 14.5.16 14.5.17	FEC Rx Descriptor Active Register—MBAR + 0x3010 FEC Tx Descriptor Active Register—MBAR + 0x3014 FEC Ethernet Control Register—MBAR + 0x3024 FEC MII Management Frame Register—MBAR + 0x3040 FEC MII Speed Control Register—MBAR + 0x3044 FEC MIB Control Register—MBAR + 0x3064 FEC Receive Control Register—MBAR + 0x3084 FEC Hash Register—MBAR + 0x3088 FEC Tx Control Register—MBAR + 0x30C4 FEC Physical Address Low Register—MBAR + 0x30E4 FEC Physical Address High Register—MBAR + 0x30E8 FEC Opcode/Pause Duration Register—MBAR + 0x30EC FEC Descriptor Individual Address 1 Register—MBAR + 0x3118 FEC Descriptor Individual Address 2 Register—MBAR + 0x311C	14-15 14-16
14.5.5 14.5.6 14.5.7 14.5.8 14.5.9 14.5.10 14.5.11 14.5.12 14.5.13 14.5.14 14.5.15 14.5.16 14.5.17 14.5.18	FEC Rx Descriptor Active Register—MBAR + 0x3010 FEC Tx Descriptor Active Register—MBAR + 0x3014 FEC Ethernet Control Register—MBAR + 0x3024 FEC MII Management Frame Register—MBAR + 0x3040 FEC MII Speed Control Register—MBAR + 0x3044 FEC MIB Control Register—MBAR + 0x3064 FEC Receive Control Register—MBAR + 0x3084 FEC Hash Register—MBAR + 0x3088 FEC Tx Control Register—MBAR + 0x30C4 FEC Physical Address Low Register—MBAR + 0x30E4 FEC Physical Address High Register—MBAR + 0x30E8 FEC Opcode/Pause Duration Register—MBAR + 0x30EC FEC Descriptor Individual Address 1 Register—MBAR + 0x3118 FEC Descriptor Group Address 1 Register—MBAR + 0x3120	14-15 14-16 14-17 14-18 14-19 14-20 14-21 14-21 14-22 14-23 14-23 14-24 14-24
14.5.5 14.5.6 14.5.7 14.5.8 14.5.9 14.5.10 14.5.11 14.5.12 14.5.13 14.5.14 14.5.15 14.5.16 14.5.17 14.5.18 14.5.19	FEC Rx Descriptor Active Register—MBAR + 0x3010 FEC Tx Descriptor Active Register—MBAR + 0x3014 FEC Ethernet Control Register—MBAR + 0x3024 FEC MII Management Frame Register—MBAR + 0x3040 FEC MII Speed Control Register—MBAR + 0x3044 FEC MIB Control Register—MBAR + 0x3064 FEC Receive Control Register—MBAR + 0x3084 FEC Hash Register—MBAR + 0x3088 FEC Tx Control Register—MBAR + 0x30C4 FEC Physical Address Low Register—MBAR + 0x30E4 FEC Physical Address High Register—MBAR + 0x30E8 FEC Opcode/Pause Duration Register—MBAR + 0x30EC FEC Descriptor Individual Address 1 Register—MBAR + 0x3118 FEC Descriptor Group Address 1 Register—MBAR + 0x3120 FEC Descriptor Group Address 2 Register—MBAR + 0x3124	14-15 14-16
14.5.5 14.5.6 14.5.7 14.5.8 14.5.9 14.5.10 14.5.11 14.5.12 14.5.13 14.5.14 14.5.15 14.5.16 14.5.17 14.5.18	FEC Rx Descriptor Active Register—MBAR + 0x3010 FEC Tx Descriptor Active Register—MBAR + 0x3014 FEC Ethernet Control Register—MBAR + 0x3024 FEC MII Management Frame Register—MBAR + 0x3040 FEC MII Speed Control Register—MBAR + 0x3044 FEC MIB Control Register—MBAR + 0x3064 FEC Receive Control Register—MBAR + 0x3084 FEC Hash Register—MBAR + 0x3088 FEC Tx Control Register—MBAR + 0x30C4 FEC Physical Address Low Register—MBAR + 0x30E4 FEC Physical Address High Register—MBAR + 0x30E8 FEC Opcode/Pause Duration Register—MBAR + 0x30EC FEC Descriptor Individual Address 1 Register—MBAR + 0x3118 FEC Descriptor Group Address 1 Register—MBAR + 0x3120	14-15 14-16
14.5.5 14.5.6 14.5.7 14.5.8 14.5.9 14.5.10 14.5.11 14.5.12 14.5.13 14.5.14 14.5.15 14.5.16 14.5.17 14.5.18 14.5.19	FEC Rx Descriptor Active Register—MBAR + 0x3010 FEC Tx Descriptor Active Register—MBAR + 0x3014 FEC Ethernet Control Register—MBAR + 0x3024 FEC MII Management Frame Register—MBAR + 0x3040 FEC MII Speed Control Register—MBAR + 0x3044 FEC MIB Control Register—MBAR + 0x3064 FEC Receive Control Register—MBAR + 0x3084 FEC Hash Register—MBAR + 0x3088 FEC Tx Control Register—MBAR + 0x30C4 FEC Physical Address Low Register—MBAR + 0x30E4 FEC Physical Address High Register—MBAR + 0x30E8 FEC Opcode/Pause Duration Register—MBAR + 0x30EC FEC Descriptor Individual Address 1 Register—MBAR + 0x3118 FEC Descriptor Group Address 1 Register—MBAR + 0x3120 FEC Descriptor Group Address 2 Register—MBAR + 0x3124	14-15 14-16 14-17 14-18 14-19 14-20 14-21 14-21 14-22 14-23 14-23 14-24 14-25 14-25 14-26
14.5.5 14.5.6 14.5.7 14.5.8 14.5.9 14.5.10 14.5.11 14.5.12 14.5.13 14.5.14 14.5.15 14.5.16 14.5.16 14.5.17 14.5.18 14.5.19 14.5.20	FEC Rx Descriptor Active Register—MBAR + 0x3010 FEC Tx Descriptor Active Register—MBAR + 0x3014 FEC Ethernet Control Register—MBAR + 0x3024 FEC MII Management Frame Register—MBAR + 0x3040 FEC MII Speed Control Register—MBAR + 0x3044 FEC MIB Control Register—MBAR + 0x3064 FEC Receive Control Register—MBAR + 0x3084 FEC Hash Register—MBAR + 0x3088 FEC Tx Control Register—MBAR + 0x30C4 FEC Physical Address Low Register—MBAR + 0x30E4 FEC Physical Address High Register—MBAR + 0x30E8 FEC Opcode/Pause Duration Register—MBAR + 0x30EC FEC Descriptor Individual Address 1 Register—MBAR + 0x3118 FEC Descriptor Group Address 1 Register—MBAR + 0x3120 FEC Descriptor Group Address 2 Register—MBAR + 0x3124 FEC Tx FIFO Watermark Register—MBAR + 0x3144	14-15 14-16 14-17 14-18 14-19 14-20 14-21 14-21 14-23 14-23 14-24 14-25 14-25 14-26

Section 14.8	FEC Tx FIFO Status Register—MBAR + 0x31A8	14-28
14.8.1	FEC Rx FIFO Control Register—MBAR + 0x318C	14-29
14.8.2	FEC Rx FIFO Last Read Frame Pointer Register—MBAR + 0x3190	14-30
14.8.3	FEC Rx FIFO Last Write Frame Pointer Register—MBAR + 0x3194	14-31
14.8.4	FEC Rx FIFO Alarm Pointer Register—MBAR + 0x3198	14-31
14.8.5	FEC Rx FIFO Read Pointer Register—MBAR + 0x319C	14-32
14.8.6	FEC Rx FIFO Write Pointer Register—MBAR + 0x31A0	14-33
14.8.7	FEC Reset Control Register—MBAR + 0x31C4	14-33
14.8.8	FEC Transmit FSM Register—MBAR + 0x31C8	14-34
Section 15.2	PSC Registers—MBAR + 0x2000, 0x2200, 0x2400, 0x2600, 0x2800, 0x2C00	15-4
15.2.1	Mode Register 1 (0x00)—MR1	15-5
15.2.2	Mode Register 2 (0x00) — MR2	15-7
15.2.3	Status Register (0x04) — SR	15-8
15.2.4	Clock Select Register (0x04) — CSR	15-12
15.2.5	Command Register (0x08)—CR	15-12
15.2.6	Rx Buffer Register (0x0C) — RB	15-15
15.2.7	Tx Buffer Register (0x0C)—TB	15-16
15.2.8	Input Port Change Register (0x10) — IPCR	15-17
15.2.9	Auxiliary Control Register (0x10) — ACR	15-18
15.2.10	Interrupt Status Register (0x14) — ISR	15-19
15.2.11	Interrupt Mask Register (0x14)—IMR	15-20
15.2.12	Counter Timer Upper Register (0x18)—CTUR	15-22
15.2.13	Counter Timer Lower Register (0x1C)—CTLR	
15.2.14	Codec Clock Register (0x20)—CCR.	
15.2.18	Interrupt Vector Register (0x30)—IVR	15-27
15.2.19	Input Port Register (0x34)—IP.	15-28
15.2.20	Output Port 1 Bit Set (0x38)—OP1	
15.2.21	Output Port 0 Bit Set (0x3C)—OP0	
15.2.22	Serial Interface Control Register (0x40)—SICR	
15.2.23	Infrared Control 1 (0x44)—IRCR1	
15.2.24	Infrared Control 2 (0x48)—IRCR2	
15.2.25	Infrared SIR Divide Register (0x4C)—IRSDR	
15.2.26	Infrared MIR Divide Register (0x50)—IRMDR	
15.2.27	Infrared FIR Divide Register (0x54)—IRFDR	
15.2.28	Rx FIFO Number of Data (0x58)—RFNUM	
15.2.29	Tx FIFO Number of Data (0x5C)—TFNUM	
15.2.30	Rx FIFO Data (0x60)—RFDATA	
15.2.31	Rx FIFO Status (0x64)—RFSTAT	
15.2.32	Rx FIFO Control (0x68)—RFCNTL	
15.2.33	Rx FIFO Alarm (0x6E)—RFALARM.	
15.2.34	Rx FIFO Read Pointer (0x72)—RFRPTR	
15.2.35	Rx FIFO Write Pointer(0x76)—RFWPTR	
15.2.36	Rx FIFO Last Read Frame (0x7A)—RFLRFPTR	
15.2.37	Rx FIFO Last Write Frame PTR (0x7C)—RFLWFPTR	
15.2.38	Tx FIFO Data (0x80)—TFDATA	
15.2.39	Tx FIFO Status (0x84)—TFSTAT	
15.2.40	Tx FIFO Control (0x88)—TFCNTL	
15.2.41	Tx FIFO Alarm (0x8E)—TFALARM	
15.2.42	Tx FIFO Read Pointer (0x92)—TFRPTR	
15,2,72	1.1.1.1 (1.000 1 (1.1.0) (1.1.2) 11 10 110	13-72

15.2.43	Tx FIFO Write Pointer (0x96)—TFWPTR	15-43
15.2.44	Tx FIFO Last Read Frame (0x9A)—TFLRFPTR	
15.2.45	Tx FIFO Last Write Frame PTR (0x9C)—TFLWFPTR	
Section 16.2	XLB Arbiter Registers—MBAR + 0x1F00	16-3
16.2.1	Arbiter Configuration Register (R/W)—MBAR + 0x1F40	16-3
16.2.2	Arbiter Version Register (R)—MBAR + 0x1F44	16-5
16.2.3	Arbiter Status Register (R/W)—MBAR + 0x1F48	16-5
16.2.4	Arbiter Interrupt Enable Register (R/W)—MBAR + 0x1F4C	16-6
16.2.5	Arbiter Address Capture Register (R)—MBAR + 0x1F50	16-7
16.2.6	Arbiter Bus Signal Capture Register (R)—MBAR + 0x1F54	16-8
16.2.7	Arbiter Address Tenure Time-Out Register (R/W)—MBAR + 0x1F58	16-8
16.2.8	Arbiter Data Tenure Time-Out Register (R/W)—MBAR + 0x1F5C	16-9
16.2.9	Arbiter Bus Activity Time-Out Register (R/W)—MBAR + 0x1F60	
16.2.10	Arbiter Master Priority Enable Register (R/W)—MBAR + 0x1F64	16-10
16.2.11	Arbiter Master Priority Register (R/W)—MBAR + 0x1F68	
16.2.12	Arbiter Snoop Window Register (RW)—MBAR + 0x1F70	
16.2.13	Arbiter Reserved Registers—MBAR + 0x1F00-1F3C, 0x1F74-1FFF	
Section 17.3	SPI Registers—MBAR + 0x0F00	
17.3.1	SPI Control Register 1—MBAR + 0x0F00	
17.3.1	SPI Control Register 2—MBAR + 0x0F01	
17.3.2	SPI Baud Rate Register—MBAR + 0x0F04	
17.3.4	SPI Status Register —MBAR + 0x0F05	
17.3.4	SPI Data Register—MBAR + 0x0F09	
17.3.6 17.3.7	SPI Port Data Register—MBAR + 0x0F0D SPI Data Direction Register—MBAR + 0x0F10	
Section 18.3	I ² C Interface Registers	
18.3.1	I2C Address Register (MADR)—MBAR + 0x3D00 / 0x3D40	
18.3.2	I2C Frequency Divider Register (MFDR)—MBAR + 0x3D04 / 0x3D44	
18.3.3	I2C Control Register (MCR)—MBAR + 0x3D08 / 0x3D48	
18.3.4	I2C Status Register (MSR)—MBAR + 0x3D0C / 0x3D4C	
18.3.5	I2C Data I/O Register (MDR)—MBAR+ x3D10 / 0x3D50	
18.3.6	I2C Interrupt Control Register—MBAR + 0x3D20	
18.3.7	I2C Filter Register (MIFR)—MBAR + 0x3D24	18-18
Section 19.5	Memory Map / Register Definition	19-3
19.5.2	Register Descriptions	
19.5.3	MSCAN Control Register 0 (CANCTL0)—MBAR + 0x0900 / 0x980	19-5
19.5.4	MSCAN Control Register 1 (CANCTL1)—MBAR + 0x0901 / 0x981	19-7
19.5.5	MSCAN Bus Timing Register 0 (CANBTR0)—MBAR + 0x0904 / 0x984	19-8
19.5.6	MSCAN Bus Timing Register 1 (CANBTR1)—MBAR + 0x0905 / 0x985	19-9
19.5.7	MSCAN Receiver Flag Register (CANRFLG)—MBAR+0x0908 / 0x988	19-10
19.5.8	MSCAN Receiver Interrupt Enable Register (CANRIER)—MBAR + 0x0909 / 0x989	19-12
19.5.9	MSCAN Transmitter Flag Register (CANTFLG)—MBAR + 0x090C / 0x98C	19-13
19.5.10	MSCAN Transmitter Interrupt Enable Register (CANTIER)—MBAR+0x090D / 0x098D	19-14
19.5.11	MSCAN Transmitter Message Abort Request (CANTARQ)—MBAR + 0x0910 / 0x0990	19-14
19.5.12	MSCAN Transmitter Message Abort Ack (CANTAAK)—MBAR +0x0911 / 0x0991	19-15
19.5.13	MSCAN Transmit Buffer Selection (CANTBSEL)—MBAR + 0x0914 /0x0991	19-15
19.5.14	MSCAN ID Acceptance Control Register (CANIDAC)—MBAR + 0x0915 / 0x0995	19-16
19.5.15	MSCAN Receive Error Counter Register (CANRXERR)-MBAR + 0x091C / 0x099C	19-17

19.5.16	MSCAN Transmit Error Counter Register (CANTXERR)-MBAR + 0x091D/0x099D	19-17
19.5.17	MSCAN ID Acceptance Registers (CANIDAR0-7)—MBAR + 0x0920 / 0x09A0	19-18
19.5.18	MSCAN ID Mask Register (CANIDMR0-7)—MBAR + 0x0928 / 0x09A8	19-20
Section 19.6.1	Identifier Registers (IDR0-3)	19-24
19.6.2	Data Segment Registers (DSR0-7)	19-24
19.6.3	Data Length Register (DLR)	19-25
19.6.4	MSCAN Transmit Buffer Priority Register (TBPR)—MBAR + 0x0979 / 0x09F9	19-25
19.6.5	MSCAN Time Stamp Register High (TSRH)—MBAR + 0x097C / 0x09FC	19-26
19.6.6	MSCAN Time Stamp Register Low (TSRL)—MBAR + 0x097D / 0x09FD	19-26
Section 20.7	Memory Map and Registers	20-5
20.7.3.1	BDLC Control Register 1 (DLCBCR1)—MBAR + 0x1300	20-5
20.7.3.2	BDLC State Vector Register (DLCBSVR) - MBAR + 0x1300	20-7
20.7.3.3	BDLC Control Register 2 (DLCBCR2) - MBAR + 0x1304	20-8
20.7.3.4	BDLC Data Register (DLCBDR) - MBAR + 0x1305	20-12
20.7.3.5	BDLC Analog Round Trip Delay Register (DLCBARD) - MBAR + 0x1308	20-12
20.7.3.6	BDLC Rate Select Register (DLCBRSR) - MBAR + 0x1309	20-14
20.7.3.7	BDLC Control Register (DLCSCR) - MBAR + 0x130C	20-15
20.7.3.8	BDLC Status Register (DLCBSTAT) - MBAR + 0x130D	20-15
Section 21 8 1 1	Device ID Register	21-8

Freescale Semiconductor B-9

MPC5200B Users Guide, Rev. 1

B-10 Freescale Semiconductor

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 26668334
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.® Freescale Semiconductor, Inc. 2005. All rights reserved.

Document Number: MPC5200BUG Rev. 1 05/2005