Statistical analysis of $in\ vitro$ screening for inhibitors of viral infection

Normalization and target selection methods

2020-04-17

Franck Touret, Magali Gilles, Karine Barral, Antoine Nougaire, Etienne Decroly, Xavier de Lamballerie,

Contents

Introduction	2
Data	2
Sources	2
Supplementary data tables	Ş
Viability measurements	
Cell Titer Blue intensity (CTB)	9
Distribution of raw CTB values	
Arbidol treatment	
Hydroxychloroquine sulfate	
CTB boxplots	ç
Plate-wise standardization	11
Plate-wise control points	1.
Viability ratio and log2(ratio)	13
Viability ratio boxplots	14
Two-points scaling: defining a plate-wise relative viability $(V_{m,i})$	15
Relative viability boxplots	17
Dot plots: relative viability	19
· · · · · · · · · · · · · · · · · · ·	2.
IQR-based standardization	2
Plate-wise IQR-standardized viability	25 25
Histograms of inter-quartile standardized viability	
Boxplots: inter-quartile standardized viability	26
Dot plots: inter-quartile standardized viability	28
P-value computation	31
P-value histogram	33
Significance plot	33
Volcano plot	34
Significance of Arbidol after IQR-based standardisation	35
Comparison between viability scores	36
CTB versus viability	
Relative versus IQR-standardised viability	38
FDR versus relative viability	40
Relative viability versus inhibition index	
Hit molecules selected by the different criteria	43

```
Selected hits
                                                              45
     48
     48
Result files
                                                              50
Libraries and versions
                                                              52
#### Parameters ####
alpha <- 0.05
markColor <- c(</pre>
 cellCtl = "grey",
 virusCtl = "red",
 treated = "blue",
 Arbidol = "black",
 Hydroxychloroquine = "orange"
markPCh <- c(</pre>
 cellCtl = 5,
 virusCtl = 17,
 treated = 1,
 Arbidol = 19,
 Hydroxychloroquine = 13
```

Introduction

This document describes in detail the procedure used to select molecules having a potential inhibitory effect on the infection of cultured cells by covid-19.

Pre-publication in bioRxiv:

• In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Franck Touret, Magali Gilles, Karine Barral, Antoine Nougairede, Etienne Decroly, Xavier de Lamballerie, Bruno Coutard. bioRxiv 2020.04.03.023846. DOI 10.1101/2020.04.03.023846

Data

Sources

Doc	URL
bioRxiv article Supplementary tables	https://www.biorxiv.org/content/10.1101/2020.04.03.023846v1 https://www.biorxiv.org/content/biorxiv/early/2020/04/05/2020. 04.03.023846/DC1/embed/media-1.xlsx?download=true

Supplementary data tables

```
#### Load data from Excel workbook ####
message("Loading data from excel workbook.")
supTable <- read.xlsx(file = supTableFile, sheetIndex = 1)</pre>
# View(supTable)
colNames <- colnames(supTable)</pre>
colNames[1] <- "ID"</pre>
colnames(supTable) <- colNames</pre>
supTable <- supTable[!is.na(supTable$ID), ]</pre>
## Assign row names for convenience
# View(supTable)
supTable$plateNumber <- as.numeric(substr(supTable[, 1], start = 1, stop = 2))</pre>
# table(supTable$plateNumber)
plateNumbers <- unique(supTable$plateNumber)</pre>
plateColor <- rainbow(n = length(plateNumbers))</pre>
names(plateColor) <- unique(supTable$plateNumber)</pre>
supTable$color <- plateColor[supTable$plateNumber]</pre>
message("\tLoaded main table with ", nrow(supTable), " rows ")
```

The supplementary table downloaded from bioRxiv contains 1520 molecules.

Viability measurements

Cell Titer Blue intensity (CTB)

The number of viable cells per well is measured by a colorimetric test. The primary measure is the **Cell Titer Blue intensity** (CTB).

```
message("Reading Cell Titer Blue (CTB) values from file ", supTableFile)
nbPlates <- 19
rowsPerPlate <- 8
columnsPerPlate <- 12</pre>
dataPerPlate <- list()</pre>
## Control 1: uninfected cells
cellControl <- data.frame(matrix(ncol = 8, nrow = nbPlates))</pre>
colnames(cellControl) <- LETTERS[1:rowsPerPlate]</pre>
virusControl <- data.frame(matrix(ncol = 6, nrow = nbPlates))</pre>
colnames(virusControl) <- LETTERS[3:rowsPerPlate]</pre>
inhibTable <- data.frame(matrix(ncol = 8, nrow = nbPlates*rowsPerPlate * columnsPerPlate))</pre>
colnames(inhibTable) <- c("ID",</pre>
                             "Column".
                             "CTB",
                             "virusControl",
                             "Chemical.name")
i <- 2 ## for quick test
for (i in 1:nbPlates) {
  message("\tLoading data from plate ", i)
  sheetName <- paste0("Plate", i)</pre>
  ## Raw measures
  # rawMeasures <- read.xlsx(file = supTableFile,</pre>
  rawMeasures <- read_xlsx(path = supTableFile, col_names = FALSE,</pre>
                              sheet = sheetName,
                              range = "B30:M37", progress = FALSE)
  rawMeasures <- as.data.frame(rawMeasures)</pre>
  rownames(rawMeasures) <- LETTERS[1:nrow(rawMeasures)]</pre>
  colnames(rawMeasures) <- 1:ncol(rawMeasures)</pre>
  # dim(rawMeasures)
  # View(rawMeasures)
  cellControl[i, ] <- as.vector(rawMeasures[,1])</pre>
  virusControl[i, ] <- as.vector(rawMeasures[3:8,12])</pre>
  platevc <- mean(unlist(virusControl[i, ]))</pre>
  platecc <- mean(unlist(cellControl[i, ]))</pre>
  ## Extract all values
```

```
for (r in 1:rowsPerPlate) {
    currentRowName <- LETTERS[r]</pre>
    currentValues <- unlist(rawMeasures[currentRowName,])</pre>
    id <- paste0(sprintf("%02d",i),</pre>
                  currentRowName,
                  sprintf("%02d",1:columnsPerPlate))
    ## Compute the start index for the data table
    startIndex <- (i - 1) * (rowsPerPlate * columnsPerPlate) + (r - 1) * columnsPerPlate + 1
    indices <- startIndex:(startIndex + columnsPerPlate - 1)</pre>
    inhibTable[indices, "ID"] <- id</pre>
    inhibTable[indices, "Plate"] <- i</pre>
    inhibTable[indices, "Row"] <- currentRowName</pre>
    inhibTable[indices, "Column"] <- 1:columnsPerPlate</pre>
    inhibTable[indices, "CTB"] <- currentValues</pre>
    inhibTable[indices, "virusControl"] <- platevc</pre>
    inhibTable[indices, "cellControl"] <- platecc</pre>
  dataPerPlate[[i]] <- list()</pre>
  dataPerPlate[[i]][["rawMeasures"]] <- rawMeasures</pre>
# names(inhibTable)
# View(dataPerPlate)
# View(dataPerPlate[[1]][["rawMeasures"]])
# table(inhibTable$Row, inhibTable$Column) ## Check that there are 19 entries for each plate position
rownames(inhibTable) <- inhibTable$ID</pre>
## and those created here
touretIDs <- unlist(supTable$ID)</pre>
inhibIDs <- inhibTable$ID</pre>
## Cell control: uninfected cells
cellControlIndices <- inhibTable$Column == 1</pre>
inhibTable[cellControlIndices, "Chemical.name"] <- "uninfected"</pre>
virusControlIndices <- (inhibTable$Column == 12) & (inhibTable$Row %in% LETTERS[3:8])
# table(virusControlIndices)
inhibTable[virusControlIndices, "Chemical.name"] <- "infected no treatment"</pre>
```

Table 2: Well types. cellCtl: no infection; virusCtl: infection without treatment; treated: inhected and treated with one molecule

cellCtl	treated	virusCtl
152	1558	114

The raw data contains 19 plates with 8 rows (indiced A to H) and 12 columns (indiced from 1 to 12.)

The raw data consists of CTB measurements in cell cultures.

Distribution of raw CTB values

```
#### Distribution of raw measurements ####
classInterval <- 500
# xmin <- floor(min(inhibTable$CTB)/classInterval) * classInterval
xmin <- 0 ## Intently start the scale at0 to show the remnant CTB
xmax <- ceiling(max(inhibTable$CTB)/classInterval) * classInterval
breaks = seq(from = xmin, to = xmax, by = classInterval)
# range(inhibTable$CTB)</pre>
```

```
par(mfrow = c(3, 1))
par(mar = c(2,5,3,1))
hist(inhibTable[wellType == "cellCtl", "CTB"],
     main = "Uninfected (cell control)",
     xlab = "CTB",
     ylab = "Number of plate wells",
     las = 1,
     breaks = breaks, col = "palegreen", border = "palegreen")
hist(inhibTable[wellType == "virusCtl", "CTB"],
     main = "Infected, no treatment (virus control))",
     xlab = "CTB",
     ylab = "Number of plate wells",
     las = 1,
     breaks = breaks, col = "orange", border = "orange")
hist(inhibTable[wellType == "treated", "CTB"],
     main = "Treated cells",
     xlab = "CTB",
     ylab = "Number of plate wells",
     las = 1,
     breaks = breaks, col = "#AACCFF", border = "#AACCFF")
```


Figure 1: Distributions of the CTB measures. Top: uninfected cells. Middle: infected cells without treatment. Bottom: infected cells treated with a specific molecule.

par(par.ori)

• Cell control.

- The top panel (green) shows the distribution of CTB measurements in controls cultures, where

- the cells were neither infected by the virus nor treated with a drug.
- Each plate contains 8 wells with uninfected cells (total = 152).

• Virus control.

- The middle panel (orange) shows the distribution of CTB measurements in infected cells without drug treatment
- The virus control was performed on 6 wells per plate, total = 114).

• Treated cells.

- The bottom distribution (pale blue) shows the CTB values for cells infected and treated with a given drug.
- Note that each drug was tested on a single well (no replicates). Indeed, in order to face the COVID-19 emergency, the study attempted to test as fast as possible a wide range of molecules. This first screening was thus performed without replicates. This has to be taken into account for the normalization, which should be done with no estimation of the variance for the individual drugs.
- The distribution is strongly asymmetrical, and seems bi- or multi-modal. This distribution can be considered as a mixture between different distributions:
 - * all the drugs that have no inhibitory effect (and are thus expected to have a CTB similar to the virus control);
 - * various drugs that inhibit the action of the virus, each one with its specific level of inhibition. This probably corresponds to the widely dispersed values above the bulk of distribution (and above the virus control distribution)

```
#### Plate-wise colors ####

## Assign a color to each plate
## A trick: we alternate the colors of the rainbow in order
## to see the contrast between successive plates
platePalette <- rainbow(n = length(plateNumbers))
plateColor <- vector(length = nbPlates)
oddIndices <- seq(1, nbPlates, 2)
evenIndices <- seq(2, nbPlates, 2)
plateColor[oddIndices] <- platePalette[1:length(oddIndices)]
plateColor[evenIndices] <- platePalette[(length(oddIndices) + 1):nbPlates]
names(plateColor) <- 1:nbPlates

## Assign a color to each result according to its plate
inhibTable$color <- plateColor[inhibTable$Plate]
inhibTable$color <- plateColor[inhibTable$Plate]
inhibTable[inhibTable$wellType == "cellCtl", "pch"] <- markPCh["cellCtl"]
inhibTable[inhibTable$wellType == "virusCtl", "pch"] <- markPCh["virusCtl"]
# table(inhibTable$color) ## Check that each plate has 96 wells
# table(inhibTable$pch)</pre>
```

Arbidol treatment

A treatment with $10\mu M$ Arbidol – a broad-spectrum antiviral – was used as control, with duplicate test in 2 wells per plate.

```
#### Select arbidol duplicates as plate-wise milestones ####
arbidolWells <- (inhibTable$Column == 12) & (inhibTable$Row %in% c("A", "B"))
inhibTable[arbidolWells, "Chemical.name"] <- "Arbidol"
# inhibTable[arbidolWells, c("ID", "Chemical.name")]</pre>
```

```
#### Extract raw CTB measures per plate for arbidol ####
arbidoltV <- inhibTable[arbidolWells, c("Plate", "CTB")]
inhibTable[arbidolWells, "color"] <- markColor["Arbidol"]
inhibTable[arbidolWells, "pch"] <- markPCh["Arbidol"]

# table(inhibTable$color)</pre>
```

Hydroxychloroquine sulfate

We assin a specific label to Hydroxychloroquine sulfate, which has a specific interest since it is one of the molecules tested in an European clinical trial.

```
HOClSindex <- which(inhibTable$Chemical.name == "Hydroxychloroquine sulfate")
HOClSpch <- 13
inhibTable[HOClSindex, "color"] <- markColor["Hydroxychloroquine"]
inhibTable[HOClSindex, "pch"] <- HOClSpch</pre>
```

CTB boxplots

The boxplot of the CTB measurements highlights a plate effect, for the treated cells (middle barplots) but also for the untreated virus control (top boxplots) and uninfected cell control (bottom boxplots).

• Treated:

- The medians and interquartile ranges show strong variations between plates.
- In particular, plate 1 (in red) has a the smallest median and a remarkably compact interquartile range. There are many statistical outliers (empty circles) in this plate, which might correspond to the molecules having a significant inhibitory effect.
- In contrast, plates 11 to 15 show a high median and a wide dispersion of CTB measures, and there
 is not a single statistical outlier.

Cell Ttiter Blue (CTB) per plate

Figure 2: Distribution of CTB values per plate. Top virus control (untreated infected cells); middle: treated cells; bottom: cell control (uninfected). Black plain circles: arbidol control duplicates.

• Virus control (vc)

- As expected, untreated infected cells generally gave a very small CTB, with small variations (very compact interquartile rectangles)
- There is a problem for the virus control of plate 17, which shows a broad range of values, with a third quartile falling in the range of the uninfected cells. This suggests a problem with at least 2 of the 6 replicates (missed infection?). However, the median of the virus controls for this plate falls in the same range as for the virus control of the other plates.

• Cell control (cc)

- The cell control performs as expected in all the plates, with high CTB values.
- Note however that the CTB of uninfected cells show inter-plate variations, with median values ranging from ~37,000 to ~53,000.

Importantly, there is a consistency between the inter-plate differences observed for virus control, treated cells and cell control, respectively. For example, plate 2 whose consistently higher value than the other plates for the three types of wells. This highlights the importances to perform a plate-wise standardization.

Plate-wise standardization

Plate-wise control points

Taking into account the above-reported results, we apply the following procedure to standardize the individual viability measures.

For each plate, we define two control values:

- $CTB_{cc,i}$: median CTB of the 8 cell controls (uninfected cells) of plate i
- $CTB_{vc,i}$: median CTB of the 6 virus controls (infected untreated cells) of plate i

These two values are deliberately estimated with the median measurement of the control replicate, in order to avoid the effect of outliers as denoted for the virus control of plate 17.

```
plateStat <- data.frame(</pre>
  plate = plateNumbers,
  ## Mean CTB
  CTBmean = as.vector(by(
    data = inhibTable$CTB,
    INDICES = inhibTable$Plate,
    FUN = mean)),
  ## Standard deviation
  CTBsd = as.vector(by(
    data = inhibTable$CTB,
    INDICES = inhibTable$Plate,
    FUN = sd)),
  ## Median
  CTBmedian = as.vector(by(
    data = inhibTable$CTB,
    INDICES = inhibTable$Plate,
    FUN = median)),
```

```
CTBmin = as.vector(by(
    data = inhibTable$CTB,
    INDICES = inhibTable$Plate,
    FUN = min)),
  ## maximum
 CTBmax = as.vector(by(
    data = inhibTable$CTB,
    INDICES = inhibTable$Plate,
    FUN = max)),
  # INDICES = inhibTable$Plate,
  ## Plate-wise virus control
  CTBvc = as.vector(by(
    data = inhibTable[wellType == "virusCtl", "CTB"],
    INDICES = inhibTable[wellType == "virusCtl", "Plate"],
    FUN = median)),
  CTBcc = as.vector(by(
    data = inhibTable[wellType == "cellCtl", "CTB"],
    INDICES = inhibTable[wellType == "cellCtl", "Plate"],
    FUN = median))
rownames(plateStat) <- plateStat$plate</pre>
kable(plateStat, caption = "Plate-wise statistics on the CTB")
```

Table 3: Plate-wise statistics on the CTB

plate	CTBmean	CTBsd	CTBmedian	CTBmin	CTBmax	CTBvc	CTBcc
1	14968.79	9179.079	10568.5	7326	45194	10202.0	37197.5
2	21151.54	11359.022	17339.0	10069	55014	14018.0	51971.0
3	15561.16	8274.558	12261.0	8110	43083	10482.0	40016.0
4	20376.58	10986.807	15742.0	8648	46289	12241.0	44342.0
5	16882.96	9640.466	13660.5	7114	43824	9876.5	42012.0
6	15654.72	9488.589	11291.5	7389	43312	9942.0	38458.5
7	17024.33	9779.790	12338.0	8040	43221	10626.0	39375.0
8	16583.02	9286.450	12010.5	8033	43402	11185.5	38161.0
9	18603.48	9702.154	14293.5	9418	45126	12852.5	43904.5
10	18183.64	9574.292	14639.0	8690	45927	11993.0	42310.5
11	22241.27	10113.348	19335.0	5255	46301	12856.0	40742.5
12	21527.03	9444.469	19471.5	5248	43404	10781.5	40187.5
13	24039.02	10818.207	23996.5	5097	44821	11987.0	39596.5
14	23585.09	9364.788	23567.0	4263	42400	12083.0	36942.0

plate	CTBmean	CTBsd	CTBmedian	CTBmin	CTBmax	CTBvc	CTBcc
15	24082.91	10388.209	23327.0	4685	45445	11686.0	38995.5
16	19891.76	8991.913	19738.0	4483	45555	10090.0	34521.5
17	19518.59	9053.786	17587.0	4983	41762	12314.5	36445.0
18	21942.55	9706.601	19075.5	5173	44573	12623.0	40740.5
19	19526.67	9930.452	15299.5	4578	43712	10505.0	37360.5

```
## Add columns with the control values according to the plate
inhibTable$CTBvc <- plateStat$CTBvc[inhibTable$Plate]
inhibTable$CTBcc <- plateStat$CTBcc[inhibTable$Plate]
# sort(table(inhibTable$CTBvc))
# sort(table(inhibTable$CTBcc))</pre>
```

Viability ratio and log2(ratio)

The viability ratio (R) associated to a given treatment with molecule m on a given plate i is defined as the ratio between

- the CTB measured on infected cells treated with this molecule $(CTB_{m,i})$ and
- the median CTB of 8 replicates of uninfected cells (denoted cc for $cell\ control$) on the same plate $(CTB_{cc,i})$.

$$R_{m,i} = \frac{CTB_{m,i}}{CTB_{cc,i}}$$

We further apply logarithmic transformation in order to normalise this ratio.

$$R_{m,i} = log2(R) = log2\left(\frac{CTB_{m,i}}{CTB_{cc,i}}\right)$$

```
#### Compute plate-relative viability ####
inhibTable$Vratio <- inhibTable$CTB / inhibTable$CTBcc
inhibTable$Vlog2R <- log2(inhibTable$Vratio)
# table(wellType)
# hist(inhibTable[wellType == "cellCtl", "Vratio"], breaks = 50)
# hist(inhibTable[wellType == "cellCtl", "Vlog2R"], breaks = 50)
## Plate-wise virus control viability ratio
plateStat$Rvc <- as.vector(by(
    data = inhibTable[wellType == "virusCtl", "Vratio"],
    INDICES = inhibTable[wellType == "virusCtl", "Plate"],
    FUN = median))

## Plate-wise cell control viability ratio
## Note: this is 1 by definition, we compute it for validation
plateStat$Rcc <- as.vector(by(
    data = inhibTable[wellType == "cellCtl", "Vratio"],
    INDICES = inhibTable[wellType == "cellCtl", "Plate"],
    FUN = median))

## Plate-wise virus control viability log2 ratio
plateStat$Lvc <- as.vector(by(</pre>
```

```
data = inhibTable[wellType == "virusCtl", "Vlog2R"],
   INDICES = inhibTable[wellType == "virusCtl", "Plate"],
   FUN = median))

## Plate-wise cell control viability log2 ratio
plateStat$Lcc <- as.vector(by(
   data = inhibTable[wellType == "cellCtl", "Vlog2R"],
   INDICES = inhibTable[wellType == "cellCtl", "Plate"],
   FUN = median))</pre>
```

Viability ratio boxplots

```
par(mfrow = c(1,2))
Rfloor <- floor(min(inhibTable$Vratio))</pre>
Rceiling <- max(inhibTable$Vratio) * 1.1</pre>
boxplot(Vratio ~ Plate + wellType,
        main = "Viability ratio distribution",
        data = inhibTable,
        las = 1, col = plateColor,
        xlab = "R = CTB / CTBcc",
        ylim = c(min(inhibTable$Vratio), Rceiling),
        cex.axis = 0.5, cex = 0.5,
        horizontal = TRUE)
abline(v = 1, col = "#00BB00")
abline(v = seq(from = Rfloor, to = Rceiling, by = 0.05), col = "#EEEEEE", lty = "dashed")
abline(v = seq(from = Rfloor, to = Rceiling, by = 0.2), col = "grey")
legend("topright", legend = names(plateColor),
       title = "Plate", fill = plateColor, cex = 0.6)
stripchart(Vratio ~ Plate, vertical = FALSE,
           data = inhibTable[arbidolWells, ],
           method = "jitter", add = TRUE, cex = 0.7,
           col = markColor["Arbidol"], pch = markPCh["Arbidol"])
legend("bottomleft",
       legend = "Arbidol",
       col = markColor["Arbidol"],
       pch = markPCh["Arbidol"],
       cex = 0.8
Lfloor <- floor(min(inhibTable$Vlog2R))</pre>
Lceiling <- ceiling(max(inhibTable$Vlog2R))</pre>
```

```
boxplot(Vlog2R ~ Plate + wellType,
        main = "Viability log2(ratio) distribution",
        data = inhibTable,
        las = 1, col = plateColor,
        xlab = "L = log2(CTB / CTBcc)",
        ylim = c(min(inhibTable$Vlog2R), Lceiling),
        cex.axis = 0.5, cex = 0.5,
        horizontal = TRUE)
abline(v = seq(from = Lfloor, to = Lceiling, by = 0.2), col = "#EEEEEE", lty = "dashed")
abline(v = seq(from = Lfloor, to = Lceiling, by = 1), col = "grey")
legend("topright", legend = names(plateColor),
       title = "Plate", fill = plateColor, cex = 0.6)
stripchart(Vlog2R ~ Plate, vertical = FALSE,
           data = inhibTable[arbidolWells, ],
           method = "jitter", add = TRUE, cex = 0.7,
           col = markColor["Arbidol"], pch = markPCh["Arbidol"])
legend("bottomleft",
       title = "Markers",
       legend = "Arbidol",
       col = markColor["Arbidol"],
       pch = markPCh["Arbidol"],
       cex = 0.8)
```

par(par.ori)

The barplots of log2-transformed viability measures show another indication for the possible existence of a plate bias: in plates 11 to 19, several molecules are associated to a much smaller viability than in any of the untreated cells. This might reflect a cytotoxic effect of the drug that would enforce the viral infection, but there is a priori no reason to expect such effects to be concentrated on the last plates.

Two-points scaling: defining a plate-wise relative viability $(V_{m,i})$

A plate-wise relative viability $V_{m,i}$ is defined to indicate the viability of cells treated with a given molecule m relative to the two controls f their plate (i):

- virus control (vc): infected untreated cells;
- cell control (cc): uninfected cells.

It is computed as follows.

$$V_{m,i} = 100 \cdot \frac{L_{m,i} - L_{vc}}{L_{cc} - L_{vc}}$$

where $L_{cc,i}$ and $L_{vc,i}$ denote the median values of the log2(ratios) respectively obtained in cell controls and virus controls for plate i.

The plate-wise relative viability $V_{m,i}$ is measured on a scale where

- 0 corresponds to the median of infected untreated cells (virus control), and
- 100 to the median of uninfected cells (cell control).

Figure 3: Distribution of the viability ratio (left) and log(ratio) (right) per plate. Top virus control (untreated infected cells); middle: treated cells; bottom: cell control (uninfected). Black plain circles: arbidol control duplicates.

Note that $V_{m,i}$ values lower than 0 denote treatments with a lower viability than the untreated virus infection. This might result from various sources: experimental flucturations, cytotoxic effect of the drug or plate bias.

 $V_{m,i}$ can also take values higher than 100, denoting a highly efficient treatment.

```
#### Compute relative viability from ratios ####
inhibTable$Vrel <- 100 *
   (inhibTable$Vratio - plateStat$Rvc[inhibTable$Plate]) /
        (plateStat$Rcc[inhibTable$Plate] - plateStat$Rvc[inhibTable$Plate])

#### Compute relative viability from log-ratios ####
inhibTable$Vrel <- 100 *
   (inhibTable$Vlog2R - plateStat$Lvc[inhibTable$Plate]) /
        (plateStat$Lcc[inhibTable$Plate] - plateStat$Lvc[inhibTable$Plate])

# hist(inhibTable$I, breaks = 100)
#</pre>
```

Relative viability boxplots

```
VrFloor = floor(min(inhibTable$Vrel))
VrCeiling = max(inhibTable$Vrel) * 1.2
## Box plot per plate and well type
boxplot(Vrel ~ Plate + wellType,
        main = "Relative viability",
        data = inhibTable,
        las = 1, col = plateColor,
        xlab = "Vr = (R - Rvc) / (Rcc - Rvc)",
        ylim = c(VrFloor, VrCeiling),
        cex.axis = 0.5, cex = 0.5,
        horizontal = TRUE)
abline(v = seq(from = VrFloor, to = VrCeiling, by = 5), col = "#EEEEEE", lty = "dashed")
abline(v = seq(from = -100, to = 150, by = 25), col = "grey")
legend("topright", legend = names(plateColor),
       title = "Plate", fill = plateColor, cex = 0.6)
stripchart(Vrel ~ Plate, vertical = FALSE,
           data = inhibTable[arbidolWells, ],
           method = "jitter", add = TRUE, cex = 0.7,
           col = markColor["Arbidol"], pch = markPCh["Arbidol"])
legend("bottomleft",
       title = "Markers",
       legend = "Arbidol",
       col = markColor["Arbidol"],
       pch = markPCh["Arbidol"],
       cex = 0.8)
```

par(par.ori)

The box plots show that the relative viability standardises the measures by positioning each treatment relative to two milestones of its own plate:

Relative viability

Figure 4: Distribution of relative viability (I) values per plate. Top virus control (untreated infected cells); middle: treated cells; bottom: cell control (uninfected). Black plain circles: arbidol control duplicates.

- the median virus control (0)
- the cell control (100)

The virus controls are well regrouped in the range of smaller v_r values, except for plate 17.

The cell controls occupy the high range (their first quartile is higher than 80) and are quite compactly grouped around 100.

However, we still observe a strong difference between plates 11-19 and the other plates:

- their median is mich higher than for the plates 1 to 10;
- they also show a much wider inter-quartile rectangle, denoting a wide dispersion of values on this plate;
- for plates 11 and 13-19, this wider dispersion is even visible for the virus controls (untreated infected cells), and it is thus unlikely that it results from the particular molecules sampled on this second half of the plates.

We thus need a way to perform a between-plates standardization of the variance.

Dot plots: relative viability

```
#### Dot plots of the relative viability ####
VrFloor <- floor(min(inhibTable$Vrel / 10)) * 10</pre>
VrCeiling <- max(inhibTable$Vrel) * 1.1</pre>
par(mfrow = c(4,1))
plot(inhibTable[wellType == "virusCtl", "Vrel"],
     main = "Virus control (infected, untreated)",
     xlab = "Replicates, sorted per plate",
     ylab = "Vr = (R - Rvc) / (Rcc - Rvc)",
     col = inhibTable[wellType == "virusCtl", "color"],
     pch = inhibTable[wellType == "virusCtl", "pch"],
     xlim = c(0, (nbPlates * 6 * 1.05)),
     ylim = c(VrFloor, VrCeiling),
     panel.first = c(abline(h = 0, col = "red", lwd = 2),
                     abline(h = 100, col = "#008800", lwd = 2),
                     abline(h = seq(VrFloor, VrCeiling, 10), col = "#DDDDDD"),
                     abline(v = (0:19) * 6, col = "#999999")
     xaxt = "n",
     las = 1,
     cex = 0.5
mtext(plateNumbers, at = (1:19) * 6 - 3, side = 1, col = plateColor)
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.7
## Treated cells
plot(inhibTable[wellType == "treated", "Vrel"],
     main = "Relative viability (Vr)",
     xlab = "Molecules",
     ylab = "relative viability",
     col = inhibTable[wellType == "treated", "color"],
     pch = inhibTable[wellType == "treated", "pch"],
```

```
xlim = c(0, (nbPlates * 80 * 1.05)),
     ylim = c(VrFloor, VrCeiling),
     panel.first = c(abline(h = 0, col = "red", lwd = 2),
                     abline(h = 100, col = "#008800", lwd = 2),
                     abline(h = seq(VrFloor, VrCeiling, 10), col = "#DDDDDDD"),
                     abline(v = (0:19) * 80, col = "#999999")
     xaxt = "n",
     las = 1,
     cex = 0.5
mtext(plateNumbers, at = (1:19) * 80 - 40, side = 1, col = plateColor)
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.6)
plot(inhibTable[wellType == "cellCtl", "Vrel"],
     main = "Cell control (uninfected)",
     xlab = "Replicates, sorted per plate",
     ylab = "relative viability",
     col = inhibTable[wellType == "cellCtl", "color"],
     pch = inhibTable[wellType == "cellCtl", "pch"],
     xlim = c(0, (nbPlates * 8 * 1.05)),
     ylim = c(VrFloor, VrCeiling),
     panel.first = c(abline(h = 0, col = "red", lwd = 2),
                     abline(h = 100, col = "#008800", lwd = 2),
                     abline(h = seq(VrFloor, VrCeiling, 10), col = "#DDDDDD"),
                     abline(v = (0:19) * 8, col = "#999999")
     xaxt = "n",
     las = 1,
     cex = 0.5
mtext(plateNumbers, at = (1:19) * 8 - 4, side = 1, col = plateColor)
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.7
## Rank plot
VrRank <- order(inhibTable$Vrel, decreasing = TRUE)</pre>
plot(inhibTable[VrRank, "Vrel"],
     main = "Ranked relative viability values",
     xlab = "Molecules (ranked by relative viability)",
     ylab = "relative viability",
     col = inhibTable[VrRank, "color"],
     pch = inhibTable[VrRank, "pch"],
     cex = 0.5,
     panel.first = grid(),
     xlim = c(0, length(VrRank) * 1.05)
```

par(mfrow = c(1,1))

IQR-based standardization

Plate-wise IQR-standardized viability

To take into account the between-plate differences in variance denoted above, we compute a z-scores from the original value.

- centering: substract an estimator of the plate-wise mean $\hat{\mu}$;
- scaling: divide by an estimator of the plate-wise standard deviation $(\hat{\sigma}_i)$

$$z_{c,i} = \frac{V_c - \hat{\mu}_i}{\hat{\sigma}_i}$$

where

- V_c is the viability for molecule c;
- $\hat{\mu}_i$ is the estimate for the mean viability of all the treated cells in plate i;
- $\hat{\sigma}_i$ is the estimate for the standard deviation of all the treated cells in plate i;

In classical statistics, the estimators of centrality and dispersion are derived from the sample mean and standard deviation, respectively:

- the population mean is used as maximum likelihood estimator of the population: $\hat{\mu} = \bar{x}$
- the population standard deviation (σ) is estimated with the sample standard deviation, corrected for the systematic bias: $\hat{\sigma} = \sqrt{n/(n-1)} \cdot s$

However, we must be careful because each plate supposedly contain a mixture of inactive (no inhibitory effect) and active (inhibitory) molecules. The previous histograms and box plots show that these inhibitory molecules appear as statistical outliers (with very high viability values) and would thus strongly bias the estimation of the background variance (the variance due to fluctuations in absence of treatment).

One possibility would be to use the standard deviation of the virus control to this purpose, but this would leat to instable estimators, since they would be based on 6 points per plate. In addition, the boxplots show that the variance among treated cells is higher than the virus control, suggesting some generic effect of the treatments.

Another strategy is to consider that the variance (and standard deviation) can be estimated from the bulk of treated cell viability measures themselves, and to use **robust estimators** of the central tendency (i.e. the plate-wise median) and dispersion (i.e. the plate-wise interquartile range).

This approach relies on the assumption that, in each plate, the number of active molecule (statistical outliers). Since teach plate contains tests of 80 molecules, there are 19 molecules above the third quartile (Q3). However, it has to be noted that the plates were manufactured with some grouping of molecules of the same structural family. It might thus happen that some plates contain more than 19 molecules having an inhibitory effect. Such a situation would result in a loss of sensitivity, since the presence of active molecules in the inter-quartile range would lead to over-estimate the dispersion.

An alternative is to estimate the dispersion based on the range between the first quartile (Q1) and the median (\tilde{x}) of each plate.

Virus control (infected, untreated) Vr = (R - Rvc) / (Rcc - Rvc)100 50 0 -50 -100 Replicates, sorted per plate Relative viability (Vr) 100 relative viability 50 0 -50 -100 Molecules Cell control (uninfected) 100 relative viability 50 0 8 9 0 10 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 -50 -100 Replicates, sorted per plate Ranked relative viability values 100 relative viability 20 0 -50 -100 0 500 1500

Figure 5: Values of the plate-wise relative viability for all the tested molecules. Molecules are colored according to the plate number. A: virus control (infected untreated); B: treated cells; C: cell control (untreated cells); D: ranked values (all types). Plain triangles: virus control (untreated infected cells). Black plain circles: arbidol control duplicates per plate. Orange square: Hydroxychloroquine sulfate.

1000
Molecules (ranked by relative viability)

In summary, we compute robust estimators, in order to avoid the effect of outliers (in this case, the suspected outliers are the molecules having an actual inhibitory effect). To this purpose, we use:

- the median plate-wise relative viability for all the molecules (\tilde{I}_i) to estimate the mean
- the plate-wise standardized inter-quantile range; (IQR_i) standardized by the normal IQR to estimate the standard deviation.

```
#### Compute plate-wise statistics ####
statPerPlate <- data.frame(</pre>
  Plate = plateNumbers,
  TrMean = as.vector(by(
    data = inhibTable[wellType == "treated", "Vrel"],
    INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = mean)),
  TrSD = as.vector(by(
    data = inhibTable[wellType == "treated", "Vrel"],
    INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = sd)),
  TrMedian = as.vector(by(
    data = inhibTable[wellType == "treated", "Vrel"],
    INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = median)),
  vcMedian = as.vector(by(
    data = inhibTable[wellType == "virusCtl", "Vrel"],
    INDICES = inhibTable[wellType == "virusCtl", "Plate"],
   FUN = median)),
  ccMedian = as.vector(by(
    data = inhibTable[wellType == "cellCtl", "Vrel"],
    INDICES = inhibTable[wellType == "cellCtl", "Plate"],
    FUN = median)),
  arbidolMean = as.vector(by(
    data = inhibTable[arbidolWells, "Vrel"],
    INDICES = inhibTable[arbidolWells, "Plate"],
    FUN = mean)),
  TrMin = as.vector(by(
    data = inhibTable[wellType == "treated", "Vrel"],
    INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = min)),
  TrMax = as.vector(by(
    data = inhibTable[wellType == "treated", "Vrel"],
    INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = max)),
  TrQ1 = as.vector(by(
    data = inhibTable[wellType == "treated", "Vrel"],
    INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = quantile, probs = 0.25)),
  TrQ3 = as.vector(by(
    data = inhibTable[wellType == "treated", "Vrel"],
    INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = quantile, probs = 0.75)),
  INDICES = inhibTable[wellType == "treated", "Plate"],
    FUN = IQR)
rownames(statPerPlate) <- statPerPlate$Plate</pre>
```

We define a plate-wise scaling factor from the interquantile range, standardized by the inter-quartile range of a Gaussian distribution.

$$S_i = \frac{Q3_N - Q1_N}{Q3_i - Q3_i} = \frac{1.349}{Q3_i - Q3_i}$$

Where Q1 and Q3 denote the first and third quartile, N the Normal distribution, and i is the plate number.

The relative viabilities of each plate are then multiplied by the corresponding scaling factor to obtain plate-wise standardized values (z), which will have the same inter-quartile range as the normal distribution.

$$z_{c,i} = \frac{I_{m,i} - \hat{\mu}_i}{\hat{\sigma}_i} = (I_{m,i} - \tilde{I}_i) \frac{Q3_N - Q1_N}{Q3_i - Q3_i} = (v_c - \tilde{v}_i) \cdot S_i$$

where

- $Q1_N$ and $Q3_N$ are the first and third quartiles of the normal distribution,
- $Q1_i$ and $Q3_i$ are the first and third quartiles of the relative viability for all the molecules tested on plate i,

The table below indicates the plate-wise statistics and scaling factor.

```
#### Scaling factor per plate ####

## Compute scaling factor based on the standardized inter-quartile range.
statPerPlate$scaling <-
   (qnorm(p = 0.75) - qnorm(p = 0.25)) /
   (statPerPlate$TrQ3 - statPerPlate$TrQ1)

kable(statPerPlate, caption = "Plate-wise statistics of treated cells. Column prefixes: Tr = treated cells.")</pre>
```

Table 4: Plate-wise statistics of treated cells. Column prefixes: Tr = treated cells; cc = cell control (uninfected cells); vc = virus control (infected, untreated cells).

Plate	TrMean	TrSD	TrMedian	vcMedian	ccMedian	arbidolMean	TrMin	TrMax	TrQ1	
1	12.90684	28.85439	2.589052	0	100	86.95038	-25.59828	96.51344	-1.7821824	13.
2	17.39446	27.93057	16.069910	0	100	83.09473	-25.25135	85.57929	-0.5736503	26
3	16.83370	18.63510	11.395323	0	100	75.08391	-19.15266	79.09630	6.5846565	21.
4	24.81053	34.66755	18.942453	0	100	74.97339	-26.98529	95.77630	3.5136062	51
5	23.26384	29.05021	21.490158	0	100	77.77693	-22.65224	95.78776	6.7390393	37
6	17.43508	30.30878	8.006709	0	100	90.14721	-21.90392	93.95942	-0.8851005	33.
7	21.08448	30.61298	11.384151	0	100	79.78517	-21.27708	107.11582	3.6549605	28.
8	16.67873	30.63601	5.283791	0	100	89.77955	-26.97461	110.48853	-2.4830636	27
9	16.31472	25.35433	7.863786	0	100	85.92780	-25.29322	94.09538	2.5641306	19.
10	19.42648	25.89632	14.943992	0	100	87.83983	-25.54365	94.03011	2.5522727	25
11	35.61332	39.56404	35.389084	0	100	95.99690	-76.49642	111.03708	14.4378585	62
12	43.11607	30.50020	44.454842	0	100	94.35243	-54.72326	102.67258	22.5882232	63.
13	45.02793	47.46814	55.760669	0	100	92.00095	-71.05808	110.34226	27.3510609	78.
14	48.84468	46.17014	58.970068	0	100	82.41156	-93.22169	112.33839	35.9895577	76.
15	49.12716	41.55740	57.064352	0	100	85.30208	-75.32854	112.66365	28.9231837	83.
16	43.91908	38.84888	53.967685	0	100	79.82340	-65.94913	122.55003	18.4567483	71
17	26.21813	40.33094	28.927309	0	100	81.93965	-82.28630	98.15012	5.1396817	53
18	35.81653	36.11849	34.146657	0	100	94.46603	-75.77164	107.65872	17.4846896	58.
19	35.74937	37.27653	28.621896	0	100	87.94144	-65.45262	112.37523	15.1202507	62.

```
## Centering: substract the median
plate <- as.vector(inhibTable$Plate)</pre>
inhibTable$z <- (inhibTable$Vrel</pre>
      - statPerPlate[plate, "TrMedian"]) * statPerPlate[plate, "scaling"]
# as.vector(by(data = inhibTable$z[wellType == "treated"], INDICES = inhibTable$Plate[wellType == "treated"]
# as.vector(by(data = inhibTable$z[wellType == "treated"], INDICES = inhibTable$Plate[wellType == "treated"]
### Descriptive statistics on the IQR-standardized viability ####
zstat <- data.frame(
  mean = mean(inhibTable$z[wellType == "treated"]),
  sd = sd(inhibTable$z[wellType == "treated"]),
  IQR = IQR(inhibTable$z[wellType == "treated"]),
  var = var(inhibTable$z[wellType == "treated"]),
  min = min(inhibTable$z[wellType == "treated"]),
  Q1 = as.vector(quantile(inhibTable$z[wellType == "treated"], probs = 0.25)),
  median = median(inhibTable$z[wellType == "treated"]),
  Q3 = as.vector(quantile(inhibTable$z[wellType == "treated"], probs = 0.75)),
  max = max(inhibTable$z[wellType == "treated"])
kable(t(zstat),
      col.names = "Stat",
      caption = "Statistics of the plate-wise IQR-standardized viability")
```

Table 5: Statistics of the plate-wise IQR-standardized viability

	Stat
mean	0.1656308
sd	1.4587500
IQR	1.2842621
var	2.1279515
min	-5.1287479
Q1	-0.5507888
median	0.0000000
Q3	0.7334733
max	8.4789023

Histograms of inter-quartile standardized viability

The histogram of plate-wise IQR-standardized viability shows a clear improvement: the median is much closer to the mode than with the raw or log-transformed II values.

```
## Virus controls
hist(inhibTable[wellType == "virusCtl", "z"],
     main = "Virus control - IQR standardized viability",
     breaks = histBreaks,
     xlab = "Plate-wise z-score",
     col = "orange", border = "orange")
abline(v = 0)
abline(v = c(-1, 1), lty = "dotted")
## Treated cells
hist(inhibTable[wellType == "treated", "z"],
     main = "Treated cells - IQR standardized viability",
     breaks = histBreaks,
     xlab = "Plate-wise z-score",
     col = "grey", border = "grey")
abline(v = 0)
abline(v = c(-1, 1), lty = "dotted")
abline(v = mean(inhibTable[wellType == "treated", "z"]), col = "blue")
abline(v = median(inhibTable[wellType == "treated", "z"]), col = "darkgreen")
legend("topright", legend = c("mean", "median"),
       col = c("blue", "darkgreen"),
       lwd = 2)
hist(inhibTable[wellType == "cellCtl", "z"],
     main = "Cell control (untreated) - IQR standardized viability",
     breaks = histBreaks,
     xlab = "Plate-wise z-score",
     col = "palegreen", border = "palegreen")
abline(v = 0)
abline(v = c(-1, 1), lty = "dotted")
```

main = "Inter-quartile standardized viability",

Boxplots: inter-quartile standardized viability #### Boxplots of IQR-standardized viability per plate

zfloor <- floor(min(inhibTable\$z))</pre> zceiling <- max(inhibTable\$z) * 1.1</pre>

data = inhibTable,

las = 1, col = plateColor,

ylim = c(zfloor, zceiling),

boxplot(z ~ Plate + wellType,

xlab = "z",

cex.axis = 0.5, cex = 0.5,

horizontal = TRUE)

par(par.ori)

Figure 6: Distribution of the plate-wise IQR-standardized viability (z-scores) Top: virus control (infected, untreated); middle: treated; bottom: cell control (untreated)

par(par.ori)

The above boxplots show that the inter-quartile standardization efficiently corrects for the over-dispersion of the plates 11 to 19. However we may expect a lot of sensitivity for these plates. There are however still some weaknesses.

- The virus control show good properties: in absence of treatment, infected cells have sligtly negative values, except for 2 outliers in plate 17.
- The cell control box plots show wide variation in their medians and dispersion:
 - Uninfected cells (cell control) have much lower values in some plates (plates 4 and 11-19) than in other ones. This is not expected, since these cells should by definition have the same inhibition values.
 - Even for the plates where the cell controls have a high relative viability after IQR-based standardization, there are strong between-plates variations.

This standardization seems thus efficient to correct the apparent over-dispersion of plates 11 to 19, and thereby reduce the rate of likely false positives, but the wide between-plate variability of the untreated cells suggest that the resulting z-scores should not be interpreted as indicators of inhibition.

Dot plots: inter-quartile standardized viability

```
zceiling <- max(inhibTable$z) * 1.1
zRange <- c(zfloor, zceiling)

## Virus control
par(mfrow = c(4,1))
plot(inhibTable[wellType == "virusCtl", "z"],
    main = "Virus control (infected, untreated)",
    xlab = "Replicates, sorted per plate",
    ylab = "z",
    ylim = zRange,
    xlim = c(0, (19*6*1.1)),
    col = inhibTable[wellType == "virusCtl", "color"],
    pch = inhibTable[wellType == "virusCtl", "pch"],
    panel.first = c(
      abline(h = seq(from = zfloor, to = zceiling, by = 1), col = "#EEEEEE"),</pre>
```

Inter-quartile standardized viability

Figure 7: Distribution of inter-quartile standardized viability (z) values per plate. Top virus control (untreated infected cells); middle: treated cells; bottom: cell control (uninfected). Black plain circles: arbidol control duplicates.

```
abline(h = seq(from = -5, to = zceiling, by = 5), col = "grey"),
       abline(v = (0:19) * 6, col = "#999999")
     xaxt = "n",
     cex = 0.5,
     las = 1
abline(h = 0)
abline(h = c(-1, 1), lty = "dotted")
mtext(plateNumbers, at = (1:19) * 6 - 3, side = 1, col = plateColor)
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.7)
## Treated cells
plot(inhibTable[wellType == "treated", "z"],
     main = "IQR-standardized viability (z)",
     xlab = "Molecules",
     ylab = "z",
     ylim = zRange,
     col = inhibTable[wellType == "treated", "color"],
     pch = inhibTable[wellType == "treated", "pch"],
     xaxt = "n",
     cex = 0.5,
     las = 1,
     xlim = c(0, length(inhibTable[wellType == "treated", "z"])*1.1)
abline(h = seq(from = zfloor, to = zceiling, by = 1), col = "#EEEEEE")
abline(h = seq(from = zfloor, to = zceiling, by = 5), col = "grey")
abline(h = 0)
abline(h = c(-1, 1), lty = "dotted")
abline(v = (0:19) * 82, col = "#999999")
mtext(plateNumbers, at = (1:19) * 82 - 41, side = 1, col = plateColor)
legend("right",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.6)
legend("topright",
       legend = names(markColor),
       col = markColor,
       pch = markPCh,
       cex = 0.6)
plot(inhibTable[wellType == "cellCtl", "z"],
     panel.first = grid(),
     main = "Cell control (uninfected)",
     xlab = "Replicates, sorted per plate",
     ylab = "z",
     ylim = zRange,
     col = inhibTable[wellType == "cellCtl", "color"],
```

```
pch = inhibTable[wellType == "cellCtl", "pch"],
     xaxt = "n",
     cex = 0.5,
     las = 1
abline(h = seq(from = zfloor, to = zceiling, by = 1), col = "#EEEEEE")
abline(h = seq(from = zfloor, to = zceiling, by = 5), col = "grey")
abline(h = 0)
abline(h = c(-1, 1), lty = "dotted")
abline(v = (0:19) * 8, col = "#999999")
mtext(plateNumbers, at = (1:19) * 8 - 4, side = 1, col = plateColor)
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.7)
zrank <- order(inhibTable$z, decreasing = TRUE)</pre>
plot(inhibTable[zrank, "z"],
     main = "Ranked IQR-standardized viability values",
     xlab = "Molecules (ranked by z index)",
     ylab = "z",
     col = inhibTable[zrank, "color"],
     pch = inhibTable[zrank, "pch"],
     cex = 0.5, las = 1,
     panel.first = grid(),
     xlim = c(0, length(zrank) * 1.05)
abline(h = seq(from = zfloor, to = zceiling, by = 1), col = "#EEEEEE")
abline(h = seq(from = zfloor, to = zceiling, by = 5), col = "grey")
abline(h = 0)
abline(h = c(-1, 1), lty = "dotted")
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.4)
```

```
par(mfrow = c(1,1))
```

The plot of IQR-standardized viability values (top panel) clearly shows that the plate-wise normalization suppressed the background bias. However it denotes a new problem: the cell controls show striking differences depending on the plates. Noticeably, they show very high values in plates 1 and 3, and very low values in plates 11 to 19, as well as in plate 4.

P-value computation

We compute the p-value as the upper tail of the normal distribution (rigth-side test) in order to detect significantly high values of the plate-wise IQR-standardized viability.

```
#### Compute P-value from the IQR-standardized viability ####
inhibTable$p.value <- pnorm(inhibTable$z, mean = 0, sd = 1, lower.tail = FALSE)
inhibTable$log10Pval <- log10(inhibTable$p.value)
inhibTable$e.value <- inhibTable$p.value * sum(wellType == "treated")
inhibTable$FDR <- NA</pre>
```


0

-5

Ranked IQR-standardized viability values

Figure 8: Values of the plate-wise IQR-standardized relative viability (z) for all the tested molecules. Molecules are colored according to the plate number. A: virus control (infected untreated); B: treated cells; C: cell control (untreated cells); D: ranked values (all types). Plain triangles: virus control (untreated infected cells). Black plain circles: arbidol control duplicates per plate. Orange square: Hydroxychloroquine sulfate.

```
inhibTable[wellType == "treated", "FDR"] <-
  p.adjust(inhibTable[wellType == "treated", "p.value"], method = "fdr")
inhibTable$log10FDR <- log10(inhibTable$FDR)
inhibTable$sig <- -inhibTable$log10FDR</pre>
```

P-value histogram

```
hist(inhibTable[wellType == "treated", "p.value"],
    breaks = 20,
    col = "grey",
    main = "P-value histogram after plate-wise normalization",
    xlab = "Nominal P-value (unadjusted)",
    ylab = "Frequency")
```

P-value histogram after plate-wise normalization

Figure 9: Histogram of the nominal (unadjusted) p-values derived from the plate-wise IQR-standardized relative viability.

```
## Estimate the proportion of tests under H0 and H1
## following the method proposed by Storey-Tibshirani (2003)
# lambda <- 0.40
# table(inhibTable[wellType == "treated", "p.value"] > lambda)
# m0 <- sum(inhibTable[wellType == "treated", "p.value"] > lambda) / (1 - lambda)
# m1 <- sum(wellType == "treated") - m0
# print(m0)
# print(m1)
#</pre>
```

Significance plot

```
pch = inhibTable[wellType == "treated", "pch"],
     main = "Significance plot",
     xlab = "Molecules sorted per plate",
     ylab = "Significance = -log10(FDR)",
     xlim = c(0, sum(wellType == "treated") * 1.1),
     xaxt = "n",
     cex = 0.5)
abline(h = 0)
abline(h = seq(0, sigCeiling, 1), lty = "dotted", col = "grey")
abline(h = -log10(alpha), col = "red")
abline(v = (0:19) * 82, col = "grey")
mtext(plateNumbers, at = (1:19) * 82 - 41, side = 1, col = plateColor)
legend("bottomright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.6)
legend("topright", legend = names(markColor),
       title = "Markers",
       col = markColor,
       pch = markPCh,
```

Significance plot

Molecules sorted per plate

Figure 10: Volcano plot.

Volcano plot

```
#### Volcano plot ####
```

```
plot(x = inhibTable[wellType == "treated", "Vrel"],
     y = inhibTable[wellType == "treated", "sig"],
     col = inhibTable[wellType == "treated", "color"],
     pch = inhibTable[wellType == "treated", "pch"],
     main = "Volcano plot",
     xlab = "Relative viability",
     ylab = "Significance = -log10(FDR)",
     xlim = c(VrFloor, VrCeiling),
     panel.first = c(
       abline(h = seq(sigFloor, sigCeiling, 1), col = "#DDDDDD"),
       abline(v = seq(VrFloor, VrCeiling, 10), col = "#DDDDDD"),
       abline(v = seq(VrFloor, VrCeiling, 50), col = "#BBBBBB")
     las = 1,
     cex = 0.7)
abline(h = 0)
abline(h = -log10(alpha), col = "blue")
abline(v = 0, col = "red")
abline(v = 100, col = "#00BB00")
points(x = inhibTable[arbidolWells, "Vrel"],
     y = inhibTable[arbidolWells, "sig"],
     col = inhibTable[arbidolWells, "color"],
     pch = inhibTable[arbidolWells, "pch"], cex = 0.7)
## Mark hydroxychloroquine
points(x = inhibTable[HOClSindex, "Vrel"],
     y = inhibTable[HOClSindex, "sig"],
     col = inhibTable[HOClSindex, "color"],
     pch = inhibTable[HOClSindex, "pch"], cex = 0.7)
legend("topright",
       legend = names(plateColor),
       col = plateColor, pch = 1,
       cex = 0.7)
legend("topleft", legend = names(markColor),
       title = "Markers",
       col = markColor,
       pch = markPCh,
```

Significance of Arbidol after IQR-based standardisation

```
#### Relative viabilities for the arbidol contron ####
# names(inhibTable)
kable(inhibTable[arbidolWells, c("Plate", "CTB", "Vratio", "Vrel", "z", "FDR", "sig")], caption = "relative viabilities for the arbidol contron ####
```

Table 6: relative viabilities for the arbidol controls (2 replicates per plate)

	Plate	СТВ	Vratio	Vrel	Z	FDR	sig
01A12	1	30140	0.8102695	83.73696	7.3255223	0.0000000	10.2090616
01B12	1	32753	0.8805162	90.16381	7.9056975	0.0000000	11.9838973

	Plate	СТВ	Vratio	Vrel	Z	FDR	sig
02A12	2	43022	0.8278078	85.57929	3.4364768	0.0095644	2.0193432
02B12	2	40310	0.7756249	80.61017	3.1908082	0.0179826	1.7451485
03A12	3	27158	0.6786785	71.07152	5.2596065	0.0000056	5.2500335
03B12	3	30240	0.7556977	79.09630	5.9668772	0.0000002	6.8041204
04A12	4	28768	0.6487754	66.39001	1.3210805	0.6399280	0.1938689
04B12	4	35882	0.8092102	83.55677	1.7990539	0.3966139	0.4016321
05A12	5	29898	0.7116538	76.50695	2.4417358	0.1279384	0.8929990
05B12	5	31018	0.7383129	79.04691	2.5544633	0.1022814	0.9902034
06A12	6	32760	0.8518273	88.15047	3.1319317	0.0214732	1.6681026
06B12	6	34579	0.8991250	92.14395	3.2879925	0.0140365	1.8527400
07A12	7	31481	0.7995175	82.92103	3.8488803	0.0023701	2.6252267
07B12	7	28998	0.7364571	76.64930	3.5114438	0.0076324	2.1173377
08A12	8	32999	0.8647310	88.15897	3.7874855	0.0029637	2.5281661
08B12	8	34338	0.8998192	91.40012	3.9356094	0.0017472	2.7576602
09A12	9	34990	0.7969570	81.53001	5.9461083	0.0000002	6.7837172
09B12	9	38983	0.8879044	90.32560	6.6560607	0.0000000	8.5044463
10A12	10	36991	0.8742747	89.35443	4.3967436	0.0002952	3.5299142
10B12	10	35605	0.8415169	86.32523	4.2177554	0.0005825	3.2347260
11A12	11	40557	0.9954470	99.62165	1.7960449	0.3966139	0.4016321
11B12	11	37285	0.9151378	92.37214	1.5933371	0.4843136	0.3148733
12A12	12	38378	0.9549736	96.50145	1.7357792	0.4170330	0.3798296
12B12	12	36268	0.9024697	92.20341	1.5924375	0.4843136	0.3148733
13A12	13	37554	0.9484172	95.58200	1.0523741	0.8170508	0.0877510
13B12	13	34465	0.8704052	88.41989	0.8630982	0.8917906	0.0497371
14A12	14	29114	0.7881003	78.69880	0.6648434	0.9330662	0.0300875
14B12	14	31633	0.8562882	86.12432	0.9150780	0.8732382	0.0588673
15A12	15	33124	0.8494313	86.49818	0.7232261	0.9199074	0.0362559
15B12	15	32180	0.8252234	84.10597	0.6644467	0.9330662	0.0300875
16A12	16	28576	0.8277740	84.63658	0.7826548	0.9060414	0.0428520
16B12	16	25385	0.7353388	75.01022	0.5369949	0.9330662	0.0300875
17A12	17	30476	0.8362190	83.61734	1.5110402	0.5361907	0.2706807
17B12	17	29380	0.8061462	80.26197	1.4183340	0.5798132	0.2367119
18A12	18	37191	0.9128754	92.23756	1.9312183	0.3203252	0.4944090
18B12	18	39189	0.9619175	96.69449	2.0793879	0.2549801	0.5934937
19A12	19	32305	0.8646833	88.54249	1.7199327	0.4239580	0.3726772
19B12	19	31816	0.8515946	87.34039	1.6854284	0.4339075	0.3626029

Comparison between viability scores

CTB versus viability

```
#### Dot plots to compare viability scores ####

# names(inhibTable)
# par(mfrow = c(2,2))

#### Dot plot: viability ratio versus relative viability ####
plot(inhibTable[, c("CTB", "Vrel")],
```

Volcano plot

Figure 11: Volcano plot.

```
main = "CTB vs relative viability",
     xlab = "Cell Titer Blue intensity (CTB)",
     ylab = "Relative viability (I)",
     col = inhibTable[, "color"],
     pch = inhibTable[, "pch"],
     cex = 0.5,
     las = 1)
points(inhibTable[wellType == "cellCtl", c("CTB", "Vrel")],
       col = markColor["cellCtl"], pch = markPCh["cellCtl"], cex = 0.5)
points(inhibTable[wellType == "virusCtl", c("CTB", "Vrel")],
       col = markColor["virusCtl"], pch = markPCh["virusCtl"], cex = 0.5)
## Mark arbidol controls
points(inhibTable[arbidolWells, c("CTB", "Vrel")],
       col = markColor["Arbidol"], pch = markPCh["Arbidol"], cex = 0.5)
points(inhibTable[HOClSindex, c("CTB", "Vrel")],
       col = markColor["Hydroxychloroquine"], pch = markPCh["Hydroxychloroquine"], cex = 0.5)
abline(h = seq(from = -100, to = 150, by = 10), col = "#DDDDDD")
abline(h = 0, col = "red")
abline(h = 100, col = "#00BB00")
abline(v = seq(from = 0, to = max(inhibTable$CTB), by = 2000), col = "#DDDDDDD")
```

Relative versus IQR-standardised viability

```
#### Dot plot: IQR-standardized versus relative viability ####
plot(inhibTable[, c("Vrel", "z")],
     main = "Relative viability vs IQR-standardized viability",
     xlab = "Relative viability (I)",
     ylab = "IQR-standardized viability (z-score)",
     col = inhibTable[, "color"],
     pch = inhibTable[, "pch"],
     cex = 0.5,
     xlim = c(VrFloor, VrCeiling),
     panel.first = grid(),
     las = 1)
## Mark cell controls
points(inhibTable[wellType == "cellCtl", c("Vrel", "z")],
       col = markColor["cellCtl"], pch = markPCh["cellCtl"], cex = 0.5)
## Mark virus controls
points(inhibTable[wellType == "virusCtl", c("Vrel", "z")],
       col = markColor["virusCtl"], pch = markPCh["virusCtl"], cex = 0.5)
## Mark arbidol controls
points(inhibTable[arbidolWells, c("Vrel", "z")],
       col = markColor["Arbidol"], pch = markPCh["Arbidol"], cex = 0.5)
points(inhibTable[HOClSindex, c("Vrel", "z")],
       col = markColor["Hydroxychloroquine"], pch = markPCh["Hydroxychloroquine"], cex = 0.5)
## Mark milestones for the selected metrics
abline(v = seq(-100, 150, 10), col = "#EEEEEEE")
abline(v = seq(-100, 150, 50), col = "#BBBBBBB")
abline(v = 0, col = "red")
abline(v = 100, col = "#00BB00")
abline(h = seq(-5, 10, 1), col = "#EEEEEEE")
abline(h = seq(-5, 10, 5), col = "#BBBBBBB")
abline(h = 0)
abline(h = c(-1, 1), lty = "dashed")
## Legends
legend("topleft", legend = names(plateColor),
       title = "Plate", fill = plateColor, cex = 0.7)
legend("bottomright", legend = names(markColor),
```

CTB vs relative viability

Figure 12: Comparison between viability scores. CTB versus relative viability (V_r) . Diamonds: cell control (uninfected cells). Plain triangles: virus control (untreated infected cells). Black plain circles: arbidol control duplicates per plate. Orange square: Hydroxychloroquine sulfate.

```
title = "Markers",
col = markColor,
pch = markPCh,
cex = 0.7)
```

FDR versus relative viability

```
plot(x = inhibTable[, "Vrel"],
     y = -inhibTable[, "log10FDR"],
     main = "relative viability vs FDR",
     xlab = "relative viability",
     ylab = "-log10(FDR)",
     col = inhibTable[, "color"],
     pch = inhibTable[, "pch"],
     cex = 0.7,
     xlim = c(VrFloor, VrCeiling),
     panel.first = grid(),
     las = 1)
points(x = inhibTable[arbidolWells, "Vrel"],
       y = -inhibTable[arbidolWells, "log10FDR"],
       col = markColor["Arbidol"],
       pch = markPCh["Arbidol"], cex = 0.7)
points(x = inhibTable[HOClSindex, "Vrel"],
       y = -inhibTable[HOClSindex, "log10FDR"],
       col = markColor["Hydroxychloroquine"],
       pch = markPCh["Hydroxychloroquine"], cex = 0.7)
abline(v = seq(VrFloor, VrCeiling, 10), col = "#EEEEEE")
abline(v = seq(VrFloor, VrCeiling, 50), col = "#BBBBBB")
abline(v = 0, col = "red")
abline(v = 100, col = "#00BB00")
abline(h = seq(0, sigCeiling, 1), col = "#EEEEEE")
abline(h = seq(0, sigCeiling, 5), col = "#BBBBBBB")
abline(h = 0)
abline(h = -log10(alpha), col = "blue", lwd = 2)
legend("topright", legend = names(plateColor),
       title = "Plate", fill = plateColor, cex = 0.7)
legend("topleft", legend = names(markColor),
       title = "Markers",
       col = markColor,
       pch = markPCh,
       cex = 0.7)
```

Relative viability versus inhibition index

. We compare hereafter the values of the relative variability with the inhibition index defined in the bioRxiv publication (DOI 10.1101/2020.04.03.023846).

Relative viability vs IQR-standardized viability

Figure 13: Comparison between viability scores. Relative viability versus IQR-standardized viability (z-score). Diamonds: cell control (uninfected cells). Plain triangles: virus control (untreated infected cells). Black plain circles: arbidol control duplicates per plate. Orange square: Hydroxychloroquine sulfate.

relative viability vs FDR

Figure 14: Comparison between viability scores. Diamonds: cell control (uninfected cells). Plain triangles: virus control (untreated infected cells). Black plain circles: arbidol control duplicates per plate. Orange square: Hydroxychloroquine sulfate.

```
iiFloor <- floor(min(inhibTable$Inhibition.Index, na.rm = TRUE))</pre>
iiCeiling <- ceiling(max(inhibTable$Inhibition.Index, na.rm = TRUE))
plot(x = inhibTable[, "Inhibition.Index"],
     y = inhibTable[, "Vrel"],
     main = "Relative viability vs inhibition index",
     xlab = "Inhibition index",
     ylab = "Vr = (R - Lvc) / (Lcc - Lvc)",
     col = inhibTable[, "color"],
     pch = inhibTable[, "pch"],
     xlim = c(iiFloor, iiCeiling),
     panel.first = c(
       abline(v = seq(-0.5, 2, 0.5), col = "#BBBBBBB"),
       abline(h = seq(VrFloor, VrCeiling, 10), col = "#EEEEEE"),
       abline(h = seq(VrFloor, VrCeiling, 50), col = "#BBBBBBB"),
       abline(h = 1)),
     las = 1)
abline(v = 1, col = "blue", lwd = 2)
abline(h = 0, col = "red")
abline(h = 100, col = "#00BB00")
points(x = inhibTable[HOClSindex, "Inhibition.Index"],
       y = inhibTable[HOClSindex, "Vrel"],
       col = markColor["Hydroxychloroquine"],
       pch = markPCh["Hydroxychloroquine"], cex = 0.7)
legend("bottomright", legend = names(plateColor),
       title = "Plate", fill = plateColor, cex = 0.7)
legend("topleft",
       title = "Markers",
       legend = "Hydroxychloroquine",
       col = markColor["Hydroxychloroquine"],
       pch = markPCh["Hydroxychloroquine"],
       cex = 0.7)
```

Hit molecules selected by the different criteria

par(par.ori)

```
#### Select candidate molecules accordint to different criteria ####

## False Discovery Rate computed from the IQR-standardized viabilities
inhibTable$selected.FDR <- as.numeric(inhibTable$FDR < alpha)

# `table(inhibTable$selected.FDR)

# sum(inhibTable$selected.FDR, na.rm = TRUE)

## Previous inhibition index above 1 (Arbidol)
inhibTable$selected.ii <- as.numeric(inhibTable$Inhibition.Index >= 1)
# table(inhibTable$selected.ii)
```

Relative viability vs inhibition index

Figure 15: Comparison between viability scores. Diamonds: cell control (uninfected cells). Plain triangles: virus control (untreated infected cells). Black plain circles: arbidol control duplicates per plate. Orange square: Hydroxychloroquine sulfate.

Table 7: Contingency table of the molecules selected by different criteria. Columns: inhibition index >= 1. Rows: Vrel > arbidol mean.

	0	1
0	1397	89
1	50	22

```
## Compute some combinations between criteria
inhibTable$selected.FDRandArbidol <-
    as.numeric(inhibTable$selected.FDR & inhibTable$selected.arbidolMean)
inhibTable$selected.FDRorArbidol <-
    as.numeric(inhibTable$selected.FDR | inhibTable$selected.arbidolMean)
inhibTable$selected.FDRonly <-
    as.numeric(inhibTable$selected.FDR & !inhibTable$selected.arbidolMean)
inhibTable$selected.ArbidolOnly <-
    as.numeric(!inhibTable$selected.FDR & inhibTable$selected.arbidolMean)

par(par.ori)</pre>
```

Selected hits

```
#### Select significant normalized II values ####
kable(t(table(inhibTable$FDR < alpha)), caption = paste("Number of tests declared positive with FDR <",</pre>
```

Table 8: Number of tests declared positive with FDR < 0.05

FALSE	TRUE
1486	72

```
# table(inhibTable$FDR < alpha)</pre>
selected <- subset(inhibTable, inhibTable$FDR < alpha)</pre>
selected <- selected[order(selected$FDR, decreasing = FALSE), ]</pre>
names(selected) <- sub(pattern = "selected.",</pre>
                        replacement = "+",
                         x = names(selected))
selectedFields <- c("ID",</pre>
                     "Reported.therapeutic.effect",
                      "Inhibition.Index",
                     "+FDR",
                      "+FDRonly",
                      "+ArbidolOnly")
# kable(selectedFields)
# View(selected[ , selectedFields])
kable(selected[ , selectedFields],
      row.names = FALSE,
      digits = 4,
      caption = "Candidate moecules sorted by significance after plate-wise normalization. ")
```

Table 9:

ID	Chemical.name	Reported.therapeutic.effect
	Benoxinate hydrochloride Arbidol Arbidol	Local anesthetic NA NA

ID	Chemical.name	Reported.therapeutic.effect
01H07	Dibucaine	Local anesthetic
01A06	Atracurium besylate	Curarizing
09F04	Promazine hydrochloride	Antipsychotic
09B12	Arbidol	NA
09D04	Opipramol dihydrochloride	Antidepressant 'Antipsychotic
01D05	Triamterene	Antihypertensive 'Diuretic
01D08	Pyrimethamine	Antimalarial 'Antiprotozoal 'Antineoplastic
01H05	Amitryptiline hydrochloride	Antidepressant
03B12	Arbidol	NA
09A12	Arbidol	NA
01H03	Imipramine hydrochloride	Antidepressant
09G07	Chlorcyclizine hydrochloride	Antiemetic 'Antihistaminic 'Sedative
03G08	Clemizole hydrochloride	Antibacterial 'Antifungal 'Antihistaminic 'Antipruritic
03H10	Orphenadrine hydrochloride	Antihistaminic 'Antiparkinsonian
09G08	Diphenylpyraline hydrochloride	Antihistaminic 'Antipruritic 'Sedative
01G11	Tolnaftate	Antifungal 'Antifungal
03A12	Arbidol	NA
07G07	Pregnenolone	Anabolic 'Anti-inflammatory
01H04	Sulindac	Analgesic 'Anti-inflammatory 'Antipyretic
08E11	Hydroxychloroquine sulfate	Antimalarial
01C05	Norethynodrel	Contraceptive
10G08	Merbromin disodium salt	Antibacterial 'Antineoplastic
03B05	Alverine citrate salt	Antispastic
07G09	Chloroquine diphosphate	Anti-inflammatory 'Antimalarial 'Antiprotozoal
01E08	Ticlopidine hydrochloride	Anticoagulant 'Antiplatelet
10A12	Arbidol	NA
09G09	Benzethonium chloride	Antibacterial 'Antiseptic 'Antineoplastic
07B04	Omeprazole	Antiulcer
01G06	Diphenhydramine hydrochloride	Antiemetic 'Antihistaminic 'Antitussive 'Sedative
10B12	Arbidol	NA
08D06	Exemestane	Antineoplastic
10D08	Chlorotrianisene	Antineoplastic
09D02	Dydrogesterone	Progestogen
08B12	Arbidol	NA
08H03	Dipivefrin hydrochloride	Antiglaucoma
07A12	Arbidol Arbidol	NA NA
08A12 07H07	Arbidoi Mirtazapine	
10H10	Pridinol methanesulfonate salt	Antidepressant Antiparkinsonian
03F02	Piroxicam	Antiparkinsoman Analgesic 'Anticoagulant 'Anti-inflammatory 'Antiplatelet 'Antipyretic
09G04	Famprofazone	Analgesic 'Antipyretic Analgesic 'Antipyretic Analgesic 'Antipyretic
09G04 07B03	Nitrofural	Antibacterial 'Antidotes
07B03 07B12	Arbidol	NA
07F02	Pirenperone	Anxiolytic
02A12	Arbidol	NA
02H12	Tazarotene	Antipsoriatic 'Antiacneic
07C10	Bromperidol	Antipsychotic
07C10 09F10	Hexestrol	Antipsychotic Antineoplastic
08H02	Alendronate sodium	Antiosteoporetic
06D11	Epiandrosterone	Anabolic
09A09	Nilvadipine	Antianginal 'Antihypertensive
05A10	Tacrine hydrochloride	CNS Stimulant
001110	racinic nyarochioriac	OTA Summanu

ID	Chemical.name	Reported.therapeutic.effect
06B12	Arbidol	NA
07C03	Biperiden hydrochloride	Antiparkinsonian 'Antineoplastic
09G02	Trihexyphenidyl-D,L hydrochloride	Antiparkinsonian
06H02	Vatalanib	Antineoplastic
10A08	Liranaftate	Antifungal
02B12	Arbidol	NA
02C08	Pioglitazone	NA
06A12	Arbidol	NA
10E06	Ethoxyquin	Antifungal 'Antineoplastic
07H06	Nifuroxazide	Antibacterial 'Antineoplastic
03E06	Tolfenamic acid	Analgesic 'Anti-inflammatory
02B04	Azacyclonol	Antipsychotic
08G02	Mizolastine	Antihistaminic
08E07	Rimantadine hydrochloride	Antiviral
08B06	Tenatoprazole	Antiulcer
07D09	Budesonide	Anti-inflammatory 'Antineoplastic
06F06	${\bf Mebhydroline~1,5-naphtale ned is ulfon ate}$	Antihistaminic

Venn diagram

Figure 16: Venn diagram of the molecules selected by different criteria.

Hits per plate

```
#### Compute the number of candidates per plate depending on the criterion ####
```

```
criteria <- c("ii", "arbidolMean", "FDR", "FDRandArbidol", "FDRorArbidol", "FDRonly", "ArbidolOnly")
candidatesPerPlate <- data.frame(matrix(</pre>
 nrow = nbPlates,
 ncol = length(criteria), 0))
row.names(candidatesPerPlate) <- 1:nbPlates</pre>
names(candidatesPerPlate) <- criteria</pre>
for (criterion in criteria) {
  candidates <- as.data.frame.table(</pre>
    table(
    subset(x = inhibTable,
            subset = inhibTable[pasteO("selected.", criterion)] == 1,
            select = "Plate")))
  names(candidates) <- c("Plate", "n")</pre>
  candidatesPerPlate[as.vector(candidates$Plate), criterion] <- candidates$n</pre>
ccpp <- candidatesPerPlate</pre>
ccpp["Total", ] <- apply(ccpp, 2, sum)</pre>
kable(ccpp, row.names = TRUE, ccaption = "Candidates per plate depending on the selection criteria")
```

	ii	arbidolMean	FDR	FDRandArbidol	FDRorArbidol	FDRonly	ArbidolOnly
1	1	2	14	2	14	12	0
2	0	1	4	1	4	3	0
3	1	2	7	2	7	5	0
4	7	9	0	0	9	0	9
5	3	4	1	1	4	0	3
6	1	2	5	2	5	3	0
7	4	5	13	5	13	8	0
8	3	4	9	4	9	5	0
9	2	3	12	3	12	9	0
10	1	2	7	2	7	5	0
11	3	4	0	0	4	0	4
12	2	3	0	0	3	0	3
13	9	10	0	0	10	0	10
14	14	15	0	0	15	0	15
15	16	17	0	0	17	0	17
16	9	11	0	0	11	0	11
17	3	4	0	0	4	0	4
18	3	4	0	0	4	0	4
19	8	9	0	0	9	0	9
Total	90	111	72	22	161	50	89

```
#### Compare number of candidates per plate according to the criteria ####
names(candidatesPerPlate)
```

[1] "ii" "arbidolMean" "FDR" "FDRandArbidol" "FDRorArbidol" "FDRonly"

```
maxc <- max(candidatesPerPlate)</pre>
plot(candidatesPerPlate[, c("FDR", "arbidolMean")],
     main = "Candidates per plate",
     type = "n",
     xlab = paste("FDR < ", alpha),</pre>
     ylab = paste("Relative viability arbidol mean"),
     xlim = c(0, maxc * 1.1),
     las = 1, pch = 20,
     panel.first =
       c(abline(h = seq(0, maxc, by = 1), col = "#DDDDDD"),
         abline(h = seq(0, maxc, by = 5), col = "#BBBBBB"),
         abline(v = seq(0, maxc, by = 1), col = "#EEEEEE"),
         abline(v = seq(0, maxc, by = 5), col = "#BBBBBBB")),
     col = plateColor[rownames(candidatesPerPlate)])
text(candidatesPerPlate[, c("FDR", "arbidolMean")], rownames(candidatesPerPlate), col = plateColor)
legend("topright", legend = names(plateColor),
       title = "Plate", col = plateColor, pch = 20, cex = 0.8)
```

Candidates per plate

Figure 17: Number of candidate molecules per plate depending on the method.

Result files

```
#### Export result tables ####
## Define output file names
outFiles <- list(</pre>
```

```
"All results (tsv)" =
    file.path(dir["results"], "result_table_all-molecules.tsv"),
  "All results (xlsx)" =
    file.path(dir["results"], "result_table_all-molecules.xlsx"),
  "FDR-based hits (xlsx)" =
    file.path(dir["results"], "result_table_FDR-hits.xlsx"),
    file.path(dir["results"], "result_table_arbidol-hits.xlsx"),
  "High confidence hits (xlsx)" =
    file.path(dir["results"], "result_table_HiConfidence-hits.xlsx")
write.table(x = inhibTable,
            file = outFiles$`All results (tsv)`,
            sep = "\t", quote = FALSE,
            row.names = FALSE, col.names = TRUE)
write.xlsx2(x = inhibTable,
            file = outFiles$`All results (xlsx)`,
            row.names = FALSE, col.names = TRUE)
write.xlsx2(x = inhibTable[inhibTable$selected.FDR, ],
            file = outFiles$`FDR-based hits (xlsx)`,
            row.names = FALSE, col.names = TRUE)
write.xlsx2(x = inhibTable[inhibTable$selected.arbidolMean, ],
            file = outFiles$`Arbidol-based hits (xlsx)`,
            row.names = FALSE, col.names = TRUE)
write.xlsx2(x = inhibTable[inhibTable$selected.FDRandArbidol, ],
            file = outFiles \text{`High confidence hits (xlsx)`,}
            row.names = FALSE, col.names = TRUE)
fileLinks <- data.frame(</pre>
  name = names(outFiles),
  path = unlist(outFiles),
  basename = basename(unlist(outFiles))
fileLinks$link <- paste0("<a href="", fileLinks$path, "'>", fileLinks$basename, "</a>")
kable(fileLinks[, c("name", "link")], row.names = FALSE, caption = "Links to the result tables.")
```

Table 11: Links to the result tables.

name	link
All results (tsv)	result_table_all-molecules.tsv
All results (xlsx)	$result_table_all-molecules.xlsx$
FDR-based hits (xlsx)	result table FDR-hits.xlsx

name	link
Arbidol-based hits (xlsx)	result_table_arbidol-hits.xlsx
High confidence hits (xlsx)	result_table_HiConfidence-hits.xlsx

Libraries and versions

For the sake of reproducibility, we list hereafter the R libraries used to generate this report, as well as their versions.

sessionInfo()

R version 3.6.1 (2019-07-05)

Platform: x86_64-apple-darwin15.6.0 (64-bit)

Running under: macOS Mojave 10.14.6

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] grid stats graphics grDevices utils datasets methods base

other attached packages:

[1] vioplot_0.3.4 zoo_1.8-7 sm_2.2-5.6 fitdistrplus_1.0-14 npsurv_0.4-0

loaded via a namespace (and not attached):

[1] Rcpp_1.0.4 highr_0.8 pillar_1.4.3 cellranger_1.1.0 compiler_3.6.1 [15] rlang_0.4.5 Matrix_1.2-18 cli_2.0.2 yaml_2.2.1 xfun_0.12 [29] lambda.r_1.2.4 magrittr_1.5 htmltools_0.4.0 ellipsis_0.3.0 splines_3.6.1