Московский физико-технический институт

Лабораторная работа

Эффект Холла в полупроводниках

выполнила студентка 653 группы ФФКЭ Карпова Татьяна

1 Цель работы

измерение подвижности и концентрации носителей заряда в полупроводниках

2 В работе используются:

- электромагнит с источником питания
- амперметр
- миллиамперметр
- милливеберметр
- реостат
- источник питания (1,5 В)
- образцы легированного германия

3 Теоретические положения

На электрон, движущийся в магнитном поле, действует сила Лоренца. Также на пластине с током, помещённой в магнитное поле, возникает разность потенциалов. В итоге, сила, действующая на электрон:

$$F_1 = -eE - e < v > B \tag{1}$$

Под действием этой силы электроны отклоняются к грани Б, на грани А создаётся нескомпенсированный положительный заряд. Из-за разности потенциалов возникает электрическое поле, направленное от грани А к Б: $F_2=eE_z$. Приравнивая F_1 и F_2 , найдём ЭДС Холла:

$$U_{ab} = -\frac{IB}{nea} = -R_x \frac{IB}{a}$$
 (2) Рис. 1: Образец с током в магнитном токе

Также в эксперименте проводится измерение удельной проводимости образца:

$$\sigma = \frac{IL_{34}}{U_{35}al} \tag{3}$$

4 Экспериментальная установка

Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

5 Выполнение работы

1. Проведём калибровку электромагнита - определим связь между индукцией магнитного поля в зазоре электромагнита и током через обмотку магнита. Для этого снимем зависимость магнитного потока Φ , пронизывающего катушку в поле, от тока I_M ($\Phi=BSN$). Результаты занесём в таблицу 1, а также представим на графике. Уравнение для нахождения B в зависимости от I_M : $B=-0.196I^2+0.91I$

Таблица 1: Калибровка электромагнита

I_M, A	0	0.3	0.6	0.9	1.2	1.5	1.8	2.08
Ф,мВб	0.15	1.7	3.3	4.9	6.25	7.2	7.8	8.3
В,Тл	0.021	0.236	0.458	0.681	0.868	1.000	1.083	1.153

Рис. 3: График калибровки электромагнита

2. Проведём измерение ЭДС Холла. Снимем зависимость напряжения U_{34} от тока через обмотки магнита (с учётом U_0 при $I_M=0$). Выполним серию экспериментов для различных токов через образец I (от 0.3 до 1 мА). Результаты измерений занесём в таблицу 2, построим на одном графике семейство прямых $_X=f(B)$ (рис. 4)

Таблица 2: Зависимость напряжения в образце от тока в обмотке электромагнита

I_M, A	0	0.21	0.42	0.63	0.84	1.05	1.26	1.47	1.68	1.89	2.06
В,Тл	0.000	0.184	0.352	0.506	0.645	0.769	0.878	0.973	1.052	1.116	1.157
$U_{34}, B(I=0.3\text{MA})$	0.069	0.088	0.107	0.126	0.142	0.156	0.169	0.177	0.184	0.189	0.192
$U_{34}, B(I=0.4\text{MA})$	0.092	0.116	0.143	0.167	0.189	0.208	0.225	0.236	0.245	0.251	0.255
$U_{34}, B(I = 0.5\text{MA})$	0.115	0.146	0.178	0.209	0.237	0.26	0.281	0.295	0.305	0.301	0.319
$U_{34}, B(I = 0.6 \text{mA})$	0.139	0.175	0.215	0.254			0.338	0.356	0.368	0.378	0.383
$U_{34}, B(I = 0.7 \text{mA})$	0.161	0.205	0.25	0.293	0.332	0.366	0.394	0.415	0.429	0.441	
$U_{34}, B(I = 0.8 \text{mA})$	0.184	0.233	0.286		0.38	0.416	0.449	0.473	0.483	0.502	0.509
$U_{34}, B(I = 1.0 \text{mA})$	0.231	0.292	0.358	0.418	0.457	0.521	0.563	0.591	0.613	0.629	0.635

3. Определив угловые коэффициенты прямых рис.4, построим график зависимости K=f(I) (рис.

Рис. 4: Семейство зависимостей ЭДС Холла от магнитного воля в электромагните при разных токах через образец

5). По этому графику определим величину постоянной Холла. Погрешность рассчитаем по методу наименьших квадратов, учитывая погрешности приборов

$$R_x = -ka = 0.363 * 2.2 = (7.98 \pm 0.69)10^{-4} \text{ м}^3/\text{Кл}$$

Относительная погрешность составляет 8,6%.

- 4. Учитывая рис. 1, направление тока в образце и знак ЭДС Холла, определим характер проводимости в образце по правилу векторного произведения. Проводимость электронная.
- 5. Рассчитаем концентрацию носителей тока:

$$n=rac{1}{R_x e}=(0.78\pm0.21)$$
ед/м 3

По формуле (3) рассчитаем удельную проводимость исследуемого образца. При I=1 мА $U_{35}=2.16$ В, параметры установки: $a=2.2mm, l=7mm, L_{35}=6mm$

$$\sigma = 148.9 \ 1/(O_{\rm M} \ {\rm M})$$

Наконец, рассчитаем подвижность носителей в образце.

$$b=rac{\sigma}{ne}=1448\pm350{
m cm}^2/({
m B}^*{
m c})$$
 $b_{theor}=3800~{
m cm}^2/({
m B}^*{
m c})$ для электронной проводимости

6 Вывод

В ходе работы был исследован эффект Холла в полупроводнике-германии. Были определены такие характеристики, как постоянная Холла, концентрация холловских частиц, удельная электрическая проводимость германия и подвижность электронов-носителей заряда в нём. Результаты совпали с табличными по порядку величины. Возможная причина несовпадения - характер проводимости в исследуемом образце не чисто электронный, а электронно-дырочный (подвижность носителей заряда уменьшится).

Рис. 5: Определение постоянной Холла

установке (у окна) полученное значение подвижности электронов сходилось с табличным, а на другой (ближе к двери) - была меньше практически на 2000 единиц. Самое разумное объяснение этого - то, что исследуемый образец не является чистым германием, а лигированным, с иными свойствами. Даже мельчайшие доли примесей способны изменять подвижность носителей заряда на тысячи единиц.