

Preventing Overfitting & DL Wrap-Up

Prof. Marcelo J. Rovai rovai@unifei.edu.br

UNIFEI - Federal University of Itajuba, Brazil TinyML4D Academic Network Co-Chair

+Data

+Data

+Data

+Data

- +Data
- +Data
- +Data
- +Data

What can we do if we need more data?

- +Data
- +Data
- +Data
- +Data

What can we do if we need more data?

- Data Augmentation (artificial)
- Transfer Learning
- Early Stopping
- Dropout Regularization

Preventing Overfitting More Data, Data Augmentation (artificial)

Overfitting generally occurs when there are a small number of training examples. <u>Data augmentation</u> takes the approach of generating additional training data from your existing examples by augmenting them using random transformations that yield believable-looking images. This helps expose the model to more aspects of the data and generalize better.

Using Keras preprocessing layers

```
1 data_augmentation = tf.keras.Sequential([
2    layers.RandomFlip("horizontal_and_vertical"),
3    layers.RandomRotation(0.2),
4 ])
```

```
1 plt.figure(figsize=(10, 10))
2 for i in range(9):
3   augmented_image = data_augmentation(image)
4   ax = plt.subplot(3, 3, i + 1)
5   plt.imshow(augmented_image[0])
6   plt.axis("off")
```

There are a variety of preprocessing layers you can use for data augmentation including:

- tf.keras.layers.RandomContrast,
- tf.keras.layers.RandomCrop,
- tf.keras.layers.RandomZoom,
- and others.

Using tf.image

```
1 flipped = tf.image.flip_left_right(image)
2 visualize(image, flipped)
```


1 rotated = tf.image.rot90(image)
2 visualize(image, rotated)

Using tf.image

```
1 saturated = tf.image.adjust_saturation(image, 3)
2 visualize(image, saturated)
```



```
1 bright = tf.image.adjust_brightness(image, 0.4)
2 visualize(image, bright)
```



```
1 for i in range(3):
2   seed = (i, 0) # tuple of size (2,)
3   stateless_random_crop = tf.image.stateless_random_crop(
4        image, size=[210, 300, 3], seed=seed)
5   visualize(image, stateless_random_crop)
```


Original image

Original image

Transfer Learning

The end result of the training is to learn the weights of the neural network model.

Learns *general features*irrespective of task

Transfer Learning

Reuse (freeze general feature extraction)

Learns *general features*irrespective of task

Transfer Learning

Train **only** last few layers

features

covidXray

Detecting Covid-19 in Chest X-Ray images

VGG-16 Convolutional Neural Network Model

Training the model (Transfer Learning)

Inference

i.e. User_A.png

https://github.com/Mjrovai/covid19Xray

Early Stopping & Dropout Regularization

Early Stopping

Dropout Regularization

Fashion MNIST Dataset

- 20 Epochs
- 94.0% Accuracy on Train Data
- 88.5% Accuracy on Validation Data

Dropout Regularization

model = tf.keras.models.Sequential([

```
tf.keras.layers.Flatten(input_shape=(28,28)),
tf.keras.layers.Dense(256, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(128, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(64, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dropout(0.2),
```

Fashion MNIST Dataset

- 20 Epochs
- 89.5% Accuracy on Train Data

• 88.3% Accuracy on Validation Data

Removing a random number of neurons and connections (in this example, 20%), reduces the chances of the neurons becoming overspecialized and the model will generalize better, reducing the overfit.

Wisconsin Diagnostic Breast Cancer (WDBC) Optional Homework

Breast Cancer Classification.ipynb

UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2

Deep Learning Wrap-Up

What have we learned so far?

In Part 1, while discussing what is the language of machine learning, we introduced ML with TensorFlow.

Total Recall from Part 1

Training Data

Neural Network

Training

Features

Validation Data

Classification

Gradient Descent

Inference

Test Data

Loss Function

Kernels

Filters

Overfitting

Regression

CNNs

DNNs

Data augmentation

1 44

Responsible Al

Preprocessing

Training Data

Neural Network

Training

Validation Data

Gradient Descent

Inference

Test Data

Loss Function

Kernels

Features

Classification

Filters

Overfitting

Regression

CNNs

DNNs

Data augmentation

Responsible Al

Preprocessing

Training Data

Neural Network

Training

Validation Data

Classification

Gradient Descent

Inference

Test Data

Loss Function

Filters

Overfitting

Features

Regression

Kernels

Data augmentation

CNNs

DNNs

Preprocessing

Responsible Al

Training Data

Neural Network

Training

Validation Data

Gradient Descent

Inference

Filters

Test Data

Loss Function

Features

Classification

Kernels

Overfitting

Regression

CNNs

DNNs

Data augmentation

Responsible Al

Preprocessing

What will we learn?

In Part 2, we will get a sneak peek into the variety of different TinyML applications, as keyword spotting ("Alexa"), gesture recognition, understand how to leverage the sensors, and so forth.

38

What will we learn?

In Part 2, we will also learn how to deploy models on a real microcontroller. Along the way we will explore the challenges unique to and amplified by TinyML (e.g., preprocessing, post-processing, dealing with resource constraints).

Train a model

Convert model

Optimize model Deploy model at Edge Make inferences at Edge

Train a model

Convert model

Optimize model

Deploy model at Edge Make inferences at Edge

Thanks

