ЛЕКЦИЯ. Маршруты (пути) в графах (орграфах). Минимальные маршруты (пути). Методы их нахождения

Задача о лабиринте. Опишем метод поиска маршрута в связном графе G = (V, X), соединяющим заданные вершины $v, w \in V, \ v \neq w$.

Алгоритм 3.1 (Тэрри) поиска маршрута в связном графе

Если, исходя из вершины v и осуществляя последовательный переход от каждой достигнутой вершины к смежной ей вершине, руководствоваться следующими правилами: (1) идя по произвольному ребру, всякий раз отмечать направление, по которому оно пройдено; (2) исходя из некоторой вершины v', всегда следовать по тому ребру, которое не было пройдено или было пройдено в противоположном направлении; (3) для всякой вершины v', отличной от v, отмечать первое заходящее в v' ребро, если вершина v' встречается в первый раз; (4) исходя из некоторой вершины v', отличной от v, по первому заходящему в v' ребру идти лишь тогда, когда нет других возможностей, то всегда можно найти маршрут в связном графе G, соединяющий v, w.

Замечание 3.1. Задача, которую решает алгоритм Тэрри, нередко называют *задачей о лабиринте*. Здесь v – начальная точка поиска, w – выход из лабиринта.

Замечание 3.2. Алгоритм Тэрри позволяет избежать повторного прохождения ребер в одном направлении. Если конец маршрута не задан, то, проводя поиск согласно алгоритму Тэрри, пока это возможно, мы найдем замкнутый маршрут, проходящий ровно по два раза (по разу в каждом направлении) по каждому ребру связного графа *G*.

Задача о поливочной машине. Пусть граф G соответствует схеме дорог некоторого района, которые нужно полить летом водой (соответственно посыпать песком зимой) с двух сторон (дорожки с двухсторонним движением). Вершина v_1 соответствует базе, где машина заправляется водой и бензином и куда она возвращается после полива дорожек. В силу замечания 3.2, алгоритм Тэрри дает оптимальное решение этой задачи (минимальный расход бензина и воды), поскольку каждая дорожка поливается ровно по разу в каждом направлении.

Разбор типового варианта. Решить задачу о поливочной машине, если схема дорог описывается графом $G = (V, X), V = \{v_1, ..., v_7\}$, изображенным на рис. 3.1 (см. замечание 1.1), т.е. требуется указать маршрут, обеспечивающий полный обход всех вершин и ребер графа G, начиная из вершины v_1 и заканчивая в этой же вершине. При этом каждое ребро должно быть пройдено по разу в каждом направлении.

Решение. Для решения этой задачи действуем в соответствии с алгоритмом Тэрри (см. замечание 3.2). Для реализации алгоритма помечаем первые заходящие в вершины ребра крестиками, которые наносим на ребрах ближе к той вершине в которую в первый раз заходим, а также указываем направления прохождения ребер и последовательность прохождения ребер. Алгоритм 3.1 дает следующий возможный маршрут (см. рис. 3.1) $v_1v_3v_2v_1v_2v_3v_4v_5v_7v_4v_6v_7v_6v_4v_7v_5v_4v_3v_1$ (см. замечание 1.1).

Рис 3.1

Поиск минимальных путей в орграфах. Алгоритм «фронта волны». Путь в орграфе D из вершины v в вершину w, где $w \neq v$, называется минимальным, если он имеет минимальную длину среди всех путей орграфа D из v в w. Аналогично определяется минимальный маршрут в графе G. Пусть D = (V, X) — орграф с $n \geq 2$ вершинами, v, w — заданные вершины из V, $v \neq w$. Опишем алгоритм фронта волны поиска минимального пути из v в w в орграфе D.

Алгоритм 3.2 (фронта волны)

Шаг 1. Помечаем вершину v индексом 0, а все вершины, принадлежащие образу вершины v, индексом 1. Обозначим через $FW_0(v)$, $FW_1(v)$ — множества вершин, помеченных индексами 0 и 1, соответственно, т.е. $FW_0(v) = \{v\}$, $FW_1(v) = D(v)$. Полагаем k = 1.

Шаг 2. Если $FW_k(v) = \emptyset$, то вершина w не достижима из v и работа алгоритма на этом заканчивается. В противном случае переходим к шагу 3.

Шаг 3. Если $w \notin FW_k(v)$, то переходим к шагу 4. В противном случае существует минимальный путь из v в w, имеющий длину k. Последовательность его вершин $vw_1...w_{k-1}w$, где

 $w_{k-1} \in FW_{k-1}(v) \cap D^{-1}(w), \ w_{k-2} \in FW_{k-2}(v) \cap D^{-1}(w_{k-1}), \dots, w_1 \in FW_1(v) \cap D^{-1}(w_2),$ (3.1) и есть искомый минимальный путь из v в w длины k. На этом работа алгоритма заканчивается.

Шаг 4. Помечаем индексом k+1 все непомеченные вершины, принадлежащие образу множества вершин, помеченных индексом k. Множество вершин, помеченных индексом k+1, обозначаем $FW_{k+1}(v)$, т.е. $FW_{k+1}(v) = D(FW_k(v)) \setminus \bigcup_{i=0}^k FW_i(v)$. Увеличиваем k на 1 и переходим к шагу 2.

Замечание 3.3. Множество $FW_k(v)$ будем называть фронтом волны k –го уровня с центром в вершине v.

Замечание 3.4. Вершины $w_1,...,w_{k-1}$ из (3.1), вообще говоря, могут быть выделены неоднозначно, что говорит о возможности существования нескольких различных минимальных путей из v в w.

Замечание 3.5. Аналогично описывается алгоритм поиска минимальных маршрутов в неориентированном графе G.

Разбор типового варианта. Орграф D = (V, X), где $V = \{v_1, ..., v_{10}\}$, задан матрицей смежности A(D), приведенной в табл.3.1. Найти все минимальные пути из v_1 в v_{10} .

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_{10}
v_1	0	0	0	1	1	0	1	0	0	0
v_2	1	0	1	0	1	0	1	1	0	1
v_3	0	1	0	1	1	1	0	0	1	1
v_4	1	0	0	0	0	1	0	1	0	0
v_5	1	0	0	0	0	1	0	1	0	0
v_6	0	1	0	1	1	0	0	1	1	0
v_7	1	0	0	0	1	0	0	0	1	0
ν_8	0	1	1	1	0	1	1	0	0	0
v_9	1	0	1	0	1	0	1	1	0	0
v_{10}	0	1	1	0	0	1	1	0	1	0

Табл.3.1

Решение. Действуя согласно алгоритму 3.2, последовательно определяем:

$$FW_{0}(v_{1}) = \{v_{1}\}, \quad FW_{1}(v_{1}) = D(v_{1}) = \{v_{4}, v_{5}, v_{7}\},$$

$$FW_{2}(v_{1}) = D(FW_{1}(v_{1})) \setminus (FW_{0}(v_{1}) \cup FW_{1}(v_{1})) = D(\{v_{4}, v_{5}, v_{7}\}) \setminus \{v_{1}, v_{4}, v_{5}, v_{7}\} =$$

$$= \{v_{1}, v_{5}, v_{6}, v_{8}, v_{9}\}) \setminus \{v_{1}, v_{4}, v_{5}, v_{7}\} = \{v_{6}, v_{8}, v_{9}\},$$

$$FW_{3}(v_{1}) = D(FW_{2}(v_{1})) \setminus (FW_{0}(v_{1}) \cup FW_{1}(v_{1}) \cup FW_{2}(v_{1})) = D(\{v_{6}, v_{8}, v_{9}\}) \setminus$$

$$\{v_{1}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\} = \{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\} \setminus \{v_{1}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\} = \{v_{2}, v_{3}\},$$

$$FW_{4}(v_{1}) = D(FW_{3}(v_{1})) \setminus (FW_{0}(v_{1}) \cup FW_{1}(v_{1}) \cup FW_{2}(v_{1}) \cup FW_{3}(v_{1})) =$$

$$= D(\{v_{2}, v_{3}\}) \setminus \{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\} = \{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\} \setminus$$

$$\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\} = \{v_{10}\}.$$

Таким образом, $v_{10} \in FW_4(v_1)$, а следовательно, согласно алгоритму 3.2 существует минимальный путь в орграфе D из v_1 в v_{10} длины 4. Найдем все эти пути. На рис. 3.2 изображен подграф D' орграфа D, на котором последовательно изображены множества $FW_k(v_1), k=0,1,2,3,4$, а также дуги вида (v,v'), где для некоторого $k \in \{0,1,2,3\}$ $v \in FW_k(v_1), v' \in FW_{k+1}(v_1)$, т.е. исходящие из вершин некоторого k —го фронта волны и заходящие в вершины следующего (k+1) —го фронта волны.

Используя изображение D', нетрудно выделить все минимальные пути из v_1 в v_{10} в орграфе D. При этом, следуя (3.1), находим эти минимальные пути, используя орграф D', но двигаясь в D' в обратной последовательности (т.е. не из v_1 в v_{10} , а наоборот, из v_{10} в v_1). Используя рис. 3.2, получаем, что в любом минимальном пути из v_1 в v_{10} соблюдается следующая последовательность вершин. Вершиной, предшествующей вершине v_{10} , может быть любая из вершин v_2, v_3 . Вершиной, предшествующей вершине v_2 , может быть любая из вершин v_6, v_8 , а вершиной, предшествующей вершине v_3 , — любая из вершин v_3, v_9 и т.д. Этими условиями однозначно определяется множество минимальных путей из v_1 в v_{10} , которое компактно изображено на рис. 3.3. На этом рисунке изображены все вершины, входящие в минимальные пути из v_1 в v_{10} . Для каждой из промежуточных вершин v показано множество вершин, которые могут ей предшествовать, а также соответствующие дути (исходящие из вершин, предшествующих v, и заходящие в v). Из рис. 3.3 видно, что всего существует семь минимальных путей из v_1 в v_{10} одним из которых является $v_1v_4v_6v_2v_{10}$.

Поиск минимальных путей (маршрутов) в нагруженных орграфах (графах).

Назовем орграф D=(V,X) нагруженным, если на множестве дуг X определена некоторая функция $l:X\to \mathbb{R}$. Тем самым в нагруженном орграфе D каждой дуге $x\in X$ поставлено в соответствие некоторое действительное число $l(x)-\partial$ лина дуги x. Для любого пути π нагруженного орграфа D обозначим через $l(\pi)$ сумму длин входящих в π дуг; при этом каждая дуга учитывается столько раз, сколько она входит в этот путь. Будем называть $l(\pi)$ длиной пути π . Путь в нагруженном орграфе D из вершины v в вершину v, где $v,v\in V$, называется минимальным, если он имеет минимальную длину среди всех путей орграфа D из v в v.

Пусть D = (V, X) — нагруженный орграф, $V = \{v_1, ..., v_n\}$, $n \ge 2$. Опишем метод Φ орда — Беллмана поиска минимальных путей из начальной вершины v_i в вершины v_i , i = 2,..., n (если таковые пути существуют). Если в орграфе существует хотя бы один контур отрицательной длины, то в нем может не существовать путь минимальной длины из некоторой вершины в некоторую другую вершину.

Пример 3.1. Рассмотрим нагруженный орграф D, изображенный на рис. 3.4 (около каждой дуги указана ее длина). В этом орграфе не существует минимального пути из v_1 в v_4 , поскольку в нем существует контур $\sigma = v_2 v_3 v_2$ длины -1. Действительно, $I(v, v, v_1) = 3 I(v, \sigma v_2) = 2 I(v, \sigma \sigma v_1) = 1 I(v, \sigma \sigma v_2) = 3 - k k = 0.1...$

$$l(v_1v_2v_4) = 3, l(v_1\sigma v_4) = 2, l(v_1\sigma\sigma v_4) = 1, \dots, l(v_1\underbrace{\sigma\sigma...\sigma}_k v_4) = 3-k, \ k = 0,1,\dots \ .$$

Будем для простоты считать, что все дуги в орграфе D неотрицательны. В этом случае в D отсутствуют контуры отрицательной длины. Введем величины $\lambda_i^{(k)}$, где i=1,2,...,n, k=1,2,... Для каждых фиксированных i и k величина $\lambda_i^{(k)}$ равна длине минимального пути среди всех путей орграфа D из v_1 в v_i , содержащих не более k дуг; если же таких путей нет, то $\lambda_i^{(k)}=\infty$ (здесь и далее под ∞ понимается $+\infty$). Кроме того, если произвольную вершину $v\in V$ считать путем из v в v нулевой длины, то величины $\lambda_i^{(k)}$ можно ввести также и для k=0, и при этом

$$\lambda_1^{(0)} = 0, \ \lambda_i^{(0)} = \infty, \ i = 2, ..., n.$$
 (3.2)

Поскольку по предположению в D отсутствуют контуры отрицательной длины, то $\lambda_1^{(k)} = 0, k = 0,1,...$ (3.3)

Введем также в рассмотрение квадратную матрицу $C(D) = [c_{ij}]$ порядка n с элементами $c_{ij} = l(v_i, v_j)$, если $(v_i, v_j) \in X$, и $c_{ij} = \infty$ — в противном случае, которую будем называть матрицей длин дуг нагруженного орграфа D.

Справедливы следующие утверждения.

Утверждение 3.1. При j=2,...,n,k=0,1,... выполняется равенство $\lambda_{j}^{(k+1)}=\min_{1\leqslant i\leqslant n}\{\lambda_{i}^{(k)}+c_{ij}\}. \tag{3.4}$

Утверждение 3.2. Если $i \in \{2,...,n\}$, $\lambda_i^{(n-1)} = \infty$, то вершина v_i не достижима из v_1 . В противном случае v_i достижима из v_1 и $\lambda_i^{(n-1)}$ – длина минимального пути из v_1 в v_i .

Таким образом, по величинам $\lambda_2^{(n-1)}, \dots, \lambda_n^{(n-1)}$ можно судить о достижимости вершин v_2, \dots, v_n из v_1 , а также определять длины минимальных путей из v_1 во все достижимые вершины. Кроме того, по таблице $\lambda_i^{(j)}, i=1,2,\dots,n,\ j=0,1,\dots,n-1,$ можно определять минимальные пути из v_1 во все достижимые вершины. При этом, как и в алгоритме «фронта волны», двигаемся в обратной последовательности, т.е. из некоторой заданной вершины v_i с $\lambda_i^{(n-1)} < \infty$, где $i \in \{2,\dots,n\}$, в исходную вершину v_1 , после чего восстанавливаем истинную последовательность вершин. Сначала определяем минимальный номер k_0 , при котором $\lambda_i^{(k_0)} = \lambda_i^{(n-1)}$. Величина k_0 соответствует числу дуг в минимальном пути из v_1 в v_i . Предшествующей вершиной для v_i (в минимальном пути из v_1 в v_i , для которой выполняется равенство

$$\begin{split} & \lambda_i^{(k_0)} = \min_{1 \leq i' \leq n} \{ \lambda_{i'}^{(k_0-1)} + c_{i'i} \} = \lambda_{i_1}^{(k_0-1)} + c_{i_1 i}. \text{ Вершиной, предшествующей вершине } v_{i_1} \text{ (в} \\ & \text{минимальном пути из } v_1 \text{ в } v_i \text{), является вершина } v_{i_2}, \text{ для которой выполняется равенство} \\ & \lambda_{i_1}^{(k_0-1)} = \min_{1 \leq i' \leq n} \{ \lambda_{i'}^{(k_0-2)} + c_{i'i_1} \} = \lambda_{i_2}^{(k_0-2)} + c_{i_2 i_1} \text{ и т.д. (это рассуждение основано на равенстве (3.4)).} \end{split}$$

Разбор типового варианта. Нагруженный орграф D задан матрицей длин дуг C(D) (см. табл. 3.2). Найти минимальные пути из v_1 во все достижимые вершины. Сначала определим таблицу величин $\lambda_i^{(j)}$, i=1,2,...,n, j=0,1,...,n-1 (см. табл. 3.3), где n=7.

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	$\lambda^{(0)}$	$\lambda^{(1)}$	$\lambda^{(2)}$	$\lambda^{(3)}$	$\lambda^{(4)}$	$\lambda^{(5)}$	$\lambda^{(6)}$
v_1	8	8	9	8	∞	2	12	0	0	0	0	0	0	0
v_2	1	∞	∞	∞	1	2	4	∞	∞	10	5	5	5	5
v_3	2	1	∞	8	1	∞	2	∞	9	9	9	6	6	6
v_4	8	1	1	8	8	1	8	∞	8	∞	5	5	5	5
v_5	1	2	∞	2	8	8	8	∞	8	3	3	3	3	3
v_6	8	8	8	8	1	8	8	∞	2	2	2	2	2	2
v_7	8	2	1	8	1	2	8	∞	12	10	10	9	8	8

Табл. 3.2 Табл. 3.3

Обозначим $\lambda^{(k)} = (\lambda_1^{(k)},...,\lambda_7^{(k)})^{\mathrm{T}}$, где k = 0,1,...,6. Это столбцы в табл. 3.3. Элементы $\lambda_i^{(0)}$, где i = 1,2,...,7, столбца $\lambda^{(0)}$ определяются согласно (3.2). Из (3.3) следует, что первая строка таблицы 3.3 состоит из нулевых элементов. Далее, используя утверждение 3.1, последовательно определяем (согласно формуле (3.4)) элементы столбца $\lambda^{(1)}$, используя элементы столбца $\lambda^{(0)}$ (а также элементы матрицы C(D)), затем находим элементы столбца $\lambda^{(2)}$, используя элементы столбца $\lambda^{(1)}$ и т.д. Например, $\lambda_2^{(3)} = \min_{1 \le i \le 7} \{\lambda_i^{(2)} + c_{i2}\} = 5$, поскольку при сложении соответствующих столбцов имеем (см. табл. 3.4):

v_2		$\lambda^{(2)}$		
∞	+	0	Ш	8
∞	+	10		8
1	+	9	=	10
1	+	8	=	8
2	+	3	=	5
∞	+	2	=	8
2	+	10	Ш	12

Табл. 3.4

и число 5 является минимальным элементом в последнем столбце этой таблицы (выделено жирным шрифтом).

Длина минимального пути из v_1 в v_7 равна 8 (см. утверждение 3.2). В таблице 3.3 жирным шрифтом указаны величины, по которым последовательно находятся вершины в минимальном пути из v_1 в v_7 . Минимальное число k_0 , при котором $\lambda_7^{(k_0)} = 8$, равно 5, поэтому выделена величина $\lambda_7^{(5)} = 8$. Вершиной, предшествующей v_7 (в минимальном

пути из v_1 в v_7) является вершина v_3 , поскольку $\lambda_7^{(5)} = 8 = \min_{1 \le i \le 7} \{\lambda_i^{(4)} + c_{i7}\} = \lambda_3^{(4)} + c_{37} = 6 + 2$ (вершина v_3 находится в первом столбце табл. 3.2, в котором перечисляются вершины орграфа D, напротив выделенного числа $6 = \lambda_3^{(4)}$). Вершиной, предшествующей v_3 , является v_4 (вершина v_4 находится в первом столбце табл. 3.2 напротив выделенного числа $5 = \lambda_4^{(3)}$) и т.д. Таким образом, минимальным путем из v_1 в v_7 является $v_1v_6v_5v_4v_3v_7$ (см. последовательность выделенных элементов в табл. 3.3). Соответственно, $v_1v_6v_5v_4v_3$, $v_1v_6v_5v_4$, $v_1v_6v_5$, v_1v_6 — минимальные пути из v_1 в соответствующие вершины. Минимальный путь из v_1 в v_2 находится аналогично. Его длина равна 5. Минимальное число k_0 , при котором $\lambda_2^{(k_0)} = 5$, равно 3. Вершиной, предшествующей v_2 , является вершина v_5 , поскольку $\lambda_2^{(3)} = 5 = \min_{1 \le i \le 7} \{\lambda_i^{(2)} + c_{i2}\} = \lambda_5^{(2)} + c_{52} = 2 + 3$. Далее, как было показано ранее, вершиной, предшествующей v_5 , является вершина v_6 , а вершиной, предшествующей вершине v_6 , является вершина v_1 . Таким образом, минимальным путем из v_1 в v_2 является $v_1v_6v_5v_2$.