Chapter 8 Fundamental Sampling Distributions and Data Distributions

吳明龍 助理教授 成大資訊系/醫資所 minglong.wu@csie.ncku.edu.tw 辦公室:雲平大樓東棟 415 室

8.1 Random Sampling

- Outcome of a statistical experiment
 - Numerical value: total value of a pair of dice tossed
 - Descriptive representation: blood types in blood test
- Sampling from distributions or populations
 - Sample mean and sample variance
- The use of high speed computer enhance the use of formal statistical inference with graphical techniques.

Random Sampling

- Definition 8.1: A <u>population</u> consists of the <u>totality</u> of the observations with which we are concerned.
 - Finite size: 600 students are classified according to blood type
 a population of size 600
 - Infinite size: measuring the atmospheric pressure; some infinite populations are so large
- Each observation in a population is a value of a random variable X having some probability distribution f(x).
 - If one is inspecting items coming off an assembly line for defects, then each observation in population might be a value 0 or 1 of the binomial random variable X with probability distribution $b(x;1,p) = p^x q^{1-x}, \quad x = 0,1,$

where 0 indicates a nondefective item and 1 indicates a defective item.

Random Sampling

- Sometimes, it is impossible or impractical to observe the entire set of observations that make up the population.
- Definition 8.2: A sample is a subset of a population.
- Inference from the sample to the population are to be valid
 - Obtain representative samples
 - Bias: Erroneous inferences result from selecting convenient sampling members 偏差
 - Random sample: independent and at random

Random Sampling

• Definition 8.3: Let $X_1, X_2, ..., X_n$ be n independent random variables, each having the same probability distribution f(x). We then define $X_1, X_2, ..., X_n$ to be a random sample of size n from the population f(x) and write its joint probability distribution as

$$f(x_1, x_2, \dots, x_n) = f(x_1) f(x_2) \dots f(x_n).$$

– If we assume the population of battery lives to be normal, the possible values of any random sample X_i , i = 1, 2, ..., 8, will be precisely the same as those in the original population, and hence X_i has the same identical normal distribution as X.

8.2 Some Important Statistics

sample mean variance會隨著不同random sample而改變 (population 的mean和variance為定值)

- Definition 8.4: Any function of the random variables constituting a random sample is called a statistic.
- Definition 8.5: If $X_1, X_2, ..., X_n$ represent a random sample of size *n*, then the sample mean is defined by the statistic

 $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i}$ 不同於 μ , μ 為population的mean,但若為random sample,sample mean會很接近 μ ,

• Definition 8.6: If $X_1, X_2, ..., X_n$ represent a random sample of size n, then the sample variance is defined by the statistic $S^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$. 以sample mean 估計 μ

Some Important Statistics

Example 8.2: A comparison of coffee prices at 4
randomly selected grocery stores in San Diego showed
increases from the previous month of 12, 15, 17, and
20 cents for a 1-pound bag. Find the variance of this
random sample of price increases.

Solution

$$\frac{1}{x} = \frac{12 + 15 + 17 + 20}{4} = 16$$

$$s^{2} = \frac{\sum_{i=1}^{4} (x_{i} - 16)^{2}}{4 - 1} = \frac{(12 - 16)^{2} + (15 - 16)^{2} + (17 - 16)^{2} + (20 - 16)^{2}}{3}$$

$$= \frac{34}{3}$$

Some Important Statistics

• Theorem 8.1: If S^2 is the variance of a random sample of size n, we may write

$$S^{2} = \frac{n\sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n(n-1)}.$$

$$- \text{Proof}$$

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1} = \frac{\sum_{i=1}^{n} (X_{i}^{2} - 2\overline{X}X_{i} + \overline{X}^{2})}{n-1}$$

$$= \frac{\sum_{i=1}^{n} X_{i}^{2} - 2\overline{X}\sum_{i=1}^{n} X_{i} + n\overline{X}^{2}}{n-1} = \frac{\sum_{i=1}^{n} X_{i}^{2} - 2\left(\sum_{i=1}^{n} X_{i}\right)\sum_{i=1}^{n} X_{i} + n\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n-1}$$

Some Important Statistics

- (Definition 8.7): The <u>sample standard deviation</u>, denoted by *S*, is the positive square root of the sample variance.
- Example 8.3: Find the variance of the data 3, 4, 5, 6, 6, and 7, representing the number of trout caught by a random sample of 6 fishermen.

- Solution
$$\sum_{i=1}^{6} x_i^2 = 171, \ \sum_{i=1}^{6} x_i = 31$$

$$s^2 = \frac{6 \times 171 - 31^2}{6 \times 5} = \frac{13}{6}$$

Skipped in 9th ed.

in 9th ed. (8.3) Data Displays and Graphical Methods

- Motivation: Use creative displays to extract information about properties of a set.
 - The stem and leaf plots provide the viewer a look at symmetry of the data.
 - Normal probability plots and quantile plots are used to check normal distribution.
- Characterize <u>statistical analysis</u> as the process of drawing conclusion about <u>system variability</u>.
- Statistics provide single measures, whereas <u>a</u> graphical display adds <u>additional information</u> in terms of a picture.

Skipped in 9th ed. p. 25

Box and Whisker Plot or Boxplot

- Box and whisker plot encloses the <u>interquartile range</u> of the data in a box that has median displayed within.
- Interquartile range: between the 75th percentile (upper quartile) and the 25th percentile (lower quartile).
- Boxplot provides the viewer information about <u>outliers</u> which represent "rare event".
- Example 8.3: Nicotine content was measured in a random sample of 40 cigarettes. The data is displayed right.
 - Mild outliers: 0.72, 0.85, and 2.55

1.09	1.92	2.31	1.79	2.28
1.74	1.47	1.97	0.85	1.24
1.58	2.03	1.70	2.17	2.55
2.11	1.86	1.90	1.68	1.51
1.64	0.72	1.69	1.85	1.82
1.79	2.46	1.88	2.08	1.67
1.37	1.93	1.40	1.64	2.09
1.75	1.63	2.37	1.75	1.69

Box and Whisker Plot or Boxplot

Figure 8.1: Box-and-whisker plot for nicotine data of Exercise 1.21.

```
Stem Leaf
 25 5
 24 6
 23 17
 22 8
  21 17
 20 389
  19 0237
 18 2568
  17 045599
 16 3447899
 15 18
 14 07
  13 7
  12 4
  11
 10 9
  9
  8 5
  7 2
Multiply Stem.Leaf by 10**-1
```

Figure 8.2: Stem-and-leaf plot for nicotine data.

p. 26

Box and Whisker Plot or Boxplot

• Example 8.4: Consider the following data, consisting of 30 samples measuring the thickness of paint can ears. Figure 8.3 depicts a box and whisker plot for this asymmetric set of data.

Sample 1	Measurements					Sample	Measurements				
	29	36	39	34	34	16	35	30	35	29	37
2	29	29	28	32	31	17	40	31	38	35	31
3	34	34	39	38	37	18	35	36	30	33	32
4	35	37	33	38	41	19	35	34	35	30	36
5	30	29	31	38	29	20	35	35	31	38	36
6	34	31	37	39	36	21	32	36	36	32	36
7	30	35	33	40	36	22	36	37	32	34	34
8	28	28	31	34	30	23	29	34	33	37	35
9	32	36	38	38	35	24	36	36	35	37	37
10	35	30	37	35	31	25	36	30	35	33	31
11	35	30	35	38	35	26	35	30	29	38	35
12	38	34	35	35	31	27	35	36	30	34	36
13	34	35	33	30	34	28	35	30	36	29	35
14	40	35	34	33	35	29	38	36	35	31	31
15	34	35	38	35	30	30	30	34	40	28	30

Figure 8.3 Box and whisker plot for thickness of paint can "ears."

Quantile Plot

- Quantile plot
 - Compare samples of data
 - Draw distinctions
 - Depict <u>cumulative distribution</u> function
- Definition 8.8: A quantile of a sample, q(f), is a value for which a specified fraction f of the data values is less than or equal to q(f).
 - Sample median: q(0.5); 75th percentile: q(0.75); 25th percentile: q(0.25);
 - $f_i = \frac{i \frac{3}{8}}{n + \frac{1}{4}}, \text{ where } i \text{ is the order of the observations when they are ranked from low to high.}$

If we denote the ranked observations as $y_{(1)} \le y_{(2)} \le ... \le y_{(n-1)} \le y_{(n)}$ then the quantile plot depicts a plot of $y_{(i)}$ against f_i

Quantile Plot

- In Figure 8.4, quantile plot shows all observations.
 - Large clusters: slopes near zero
 - Sparse data: steeper slopes
- E.g.
 - Sparse data: 28-30
 - High density: 36-38

Figure 8.4 Quantile plot for paint data.

Normal Quantile-Quantile Plot

 Approximation of quantile of normal distribution

$$q_{\mu,\sigma}(f) = \mu + \sigma \{4.91[f^{0.14} - (1-f)^{0.14}]\}$$

$$q_{0.1}(f) = 4.91[f^{0.14} - (1-f)^{0.14}]$$

 Definition 8.9: The normal quantile-quantile plot is a plot of

 $y_{(i)}$ (ordered observations)

against
$$q_{0,1}(f_i)$$
, where $f_i = \frac{i - \frac{3}{8}}{n + \frac{1}{4}}$.

Figure 8.5 Normal quantile-quantile plot for paint can data.

Normal Quantile-Quantile Plot

Example 8.5: Construct a normal quantile-quantile plot and draw conclusions regarding whether or not it is reasonable to assume that the two samples are from the same N(μ, σ) distribution.

Solution

- Far from a straight line
- Station 1 reflect a few values in the lower tail of the distribution and several in the upper tail
- Unlikely

Figure 8.6 Normal quantile-quantile plot for density data of Example 8.5.

8.3 Sampling Distribution

- Statistical inference is concerned with generalizations and predictions.
 - Based on the opinions of several people interviewed on the street, that in a forthcoming election 60% of the eligible voters in the city of Detroit favor a certain candidate.
- Definition 8.5: The probability distribution of a statistic is called a sampling distribution.
 - E.g., the probability distribution of \overline{X} is called the sampling distribution of the mean.
- The sampling distribution of a statistic depends on the distribution of the population, the size of the samples, and the method of choosing the samples.

8.4 Sampling Distribution of Means

- Suppose that a random sample of n observations is taken from a normal population with mean μ and variance σ^2 .
- By the reproductive property of the normal distribution established in Theorem 7.11

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

$$\mu_{\overline{X}} = \frac{\mu + \mu + \dots + \mu}{n} = \mu$$

$$\sigma_{\overline{X}}^2 = \frac{\sigma^2 + \sigma^2 + \dots + \sigma^2}{n^2} = \frac{\sigma^2}{n}$$

•Theorem 7.11: If $X_1, X_2, ..., X_n$ are independent random variables having normal distributions with means $\mu_1, \mu_2, ..., \mu_n$ and variances $\sigma_1^2, \sigma_2^2, ..., \sigma_n^2$, respectively, then the random variable $Y = a_1X_1 + a_2X_2 + ... + a_nX_n$

has a normal distribution with mean

$$\mu_Y = a_1 \mu_1 + a_2 \mu_2 + ... + a_n \mu_n$$

and variance

$$\sigma_{\mathsf{Y}}^2 = a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + \dots + a_n^2 \sigma_n^2.$$

Sampling Distribution of Means

中央極限定理

• Theorem 8.2: (**Central Limit Theorem**) If \overline{X} is the mean of a random sample of size n taken from a population with mean μ and finite variance σ^2 , then the limiting form of the distribution of $Z = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$,

as $n \rightarrow \infty$, is the standard normal distribution n(z; 0, 1).

- The normal approximation for \overline{X} will generally be good if $n \ge 30$.
- If n < 30, the approximation is good only if the population is not too different from a normal distribution.
- If the population is known to be normal, the sampling distribution of X will follow a normal distribution exactly, no matter how small the size of the samples.

Sampling Distribution of Means

 Example 8.4: An electric firm manufactures light bulbs that have life mean equal to 800 hours and a standard deviation of 40 hours. Find the probability that a random sample of 16 bulbs will have an average life of less than 775 hours.

Solution

The sampling distribution of \overline{X} will be approximately normal,

with
$$\mu_{\overline{X}} = 800, \sigma_{\overline{Y}} = 40/\sqrt{16} = 10$$

$$\bar{x} = 775 \Rightarrow z = \frac{775 - 800}{10} = -2.5$$

Figure 8.2(8.8): Area for Example 8.4(8.6)

$$\therefore P(\overline{X} < 775) = P(Z < -2.5) = 0.0062$$

Sampling Distribution of Means

• Case Study 8.1: A engineer conjectures that the <u>population mean</u> of a certain component parts is <u>5.0 millimeters</u>. An experiment is conducted in which <u>100 parts</u> produced by the process are selected randomly and the diameter measured on each. It is known that the <u>population standard deviation $\sigma = 0.1$ </u>. The experiment indicates a sample average diameter $\frac{1}{x} = 5.027$ millimeters. Does this sample information appear to support or refute the engineer's conjecture?

- Solution

$$P[|(\overline{X} - 5)| \ge 0.027] = P[(\overline{X} - 5) \ge 0.027] + P[(\overline{X} - 5) \le -0.027]$$

$$= 2P\left(\frac{\overline{X} - 5}{0.1/\sqrt{100}} \ge 2.7\right)$$

 $= 2P(Z \ge 2.7) = 2 \times 0.0035 = 0.007.$

∴ Strongly refutes the conjecture!

Figure 8.3(8.9): Area for Case Study 8.1(8.7)

Sampling Distribution of the Difference Between Two Averages

• Theorem 8.3: If independent sample of size n_1 and n_2 are drawn at random from two populations, discrete or continuous, with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 , respectively, then the sampling distribution of the differences of means, $\overline{X}_1 - \overline{X}_2$, is approximately normally distributed with mean and variance given by

$$\mu_{\overline{X}_1 - \overline{X}_2} = \mu_1 - \mu_2 \text{ and } \sigma_{\overline{X}_1 - \overline{X}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}.$$
Hence
$$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{(\sigma_1^2 / n_1) + (\sigma_2^2 / n_2)}}$$

•Theorem 7.11: If $X_1, X_2, ..., X_n$ are independent random variables having normal distributions with means $\mu_1, \mu_2, ..., \mu_n$ and variances $\sigma_1^2, \sigma_2^2, ..., \sigma_n^2$, respectively, then the random variable $Y = a_1 X_1 + a_2 X_2 + ... + a_n X_n$ has a normal distribution with mean $\mu_Y = a_1 \mu_1 + a_2 \mu_2 + ... + a_n \mu_n$ and variance $\sigma_Y^2 = a_1^2 \sigma_1^2 + a_2^2 \sigma_2^2 + ... + a_n^2 \sigma_n^2.$

is approximately a standard normal variable.

Sampling Distribution of the Difference Between Two Averages

• Case Study 8.2: Two independent experiments are being run in which two different types of paints are compared. <u>Eighteen specimens</u> are painted using type *A* and the drying time in hours is recorded on each. The same is done with type *B*. The <u>population standard</u> deviations are both known to be 1.0. Assuming that the mean drying time is equal for the two types of paint? (Fixed – $\overline{X}_B > 1.0$), where \overline{X}_A and \overline{X}_B are average drying times for samples of size $n_A = n_B = 18$.

 $\mu_{\overline{X}_{A}-\overline{X}_{B}} = \mu_{A} - \mu_{B} = 0 \text{ and } \sigma_{\overline{X}_{A}-\overline{X}_{B}}^{2} = \frac{\sigma_{A}^{2}}{n_{A}} + \frac{\sigma_{B}^{2}}{n_{B}} = \frac{1}{18} + \frac{1}{18} = \frac{1}{9}.$ $z = \frac{(\overline{X}_{A} - \overline{X}_{B}) - (\mu_{A} - \mu_{B})}{\sqrt{(\sigma_{A}^{2}/n_{A}) + (\sigma_{B}^{2}/n_{B})}} = \frac{1 - 0}{\sqrt{1/9}} = 3.0$ P(Z > 3.0) = 1 - P(Z < 3.0) = 1 - 0.9987 = 0.0013

Figure 8.5(8.10): Area for Case Study 8.2(8.10)

Solution

Sampling Distribution of the Difference Between Two Averages

Example 8.6: The television picture tubes of manufacturer A have a mean lifetime of 6.5 yeas and a standard deviation of 0.9 year, while those of manufacturer B have a mean lifetime of 6.0 years and a standard deviation of 0.8 year. What is the probability that a random sample of 36 tubes from manufacturer A will have a mean lifetime that is at least 1 year more than the mean lifetime of a sample of 49 tubes from manufacturer B?

Solution

$$\mu_{\overline{X}_1 - \overline{X}_2} = 6.5 - 6.0 = 0.5 \text{ and } \sigma_{\overline{X}_1 - \overline{X}_2} = \sqrt{\frac{0.9^2}{36} + \frac{0.8^2}{49}} = 0.189.$$

$$z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{(\sigma_1^2 / n_1) + (\sigma_2^2 / n_2)}} = \frac{1 - 0.5}{0.189} = 2.65$$

$$P(\overline{X}_1 - \overline{X}_2 \ge 1.0) = P(Z > 2.65)$$

$$= 1 - P(Z < 2.65) = 1 - 0.9960 = 0.004$$
Figure 8 6(8.11): Area for Example 8 6(8.9)

Figure 8.6(8.11): Area for Example 8.6(8.9)

Exercise

• 8.1, 8.14, 8.17, 8.29