Name:	
Date Due:	<u>.</u>

80% A
70% B
60% C
50% D
40% E
Below U

1.2 Assessed Homew

Assessed Homework Amount of Substance

%

59

1.	(a)	Define t	he term relative atomic mass.	
			(2	·)
	(b)	How wo atom?	uld you calculate the mass of one mole of atoms from the mass of a single	Э
			(1)
	(c)	Sodium	hydride reacts with water according to the following equation.	
			$NaH_{(s)}$ + $H_2O_{(l)}$ \rightarrow $NaOH_{(aq)}$ + $H_{2(g)}$	
		A 1.00 g	sample of sodium hydride was added to water and the resulting solution	
		was dilu	ted to a volume of exactly 250 cm ³	
		(i) (Calculate the concentration in moldm ⁻³ , of sodium hydroxide solution formed	
		, ,	Calculate the volume of hydrogen gas evolved, measured at 293 K and 100 kPa.	
		(iii) (Calculate the volume of 0.112 M hydrochloric acid which would react exactly	,
			with a 25.0 cm ³ sample of sodium hydroxide solution.	
			8))

[TOTAL 11 marks]

2.	(a)	Sodi	um carbonate forms a number of hydrates of general formula Na ₂ CO ₃ .xH ₂ O	
		made In a t	01 g sample of one of these hydrates was dissolved in water and the solution e up to 250 cm ³ . titration, a 25.0 cm ³ portion of this solution required 24.3 cm ³ of 0.200 mol ⁻³ hydrochloric acid for complete reaction.	
		The	equation for this reaction is shown below.	
			$Na_2CO_3 + 2HCI \rightarrow 2NaCI + H_2O + CO_2$	
		(i)	Calculate the number of moles of HCl in 24.3 cm ³ of 0.200 mol dm ⁻³ hydrochloric acid.	
		(ii)	Deduce the number of moles of Na ₂ CO ₃ in 25.0 cm ³ of the Na ₂ CO ₃ solution.	
		(iii)	Hence deduce the number of moles of Na_2CO_3 in the original 250 cm ³ of solution.	
		(iv)	Calculate the $M_{\rm r}$ of the hydrated sodium carbonate.	
				(5)
	(b)	be 25 Use t	experiment, the $M_{\rm r}$ of a different hydrated sodium carbonate was found to 50. this value to calculate the number of molecules of water of crystallisation, x , s hydrated sodium carbonate, Na ₂ CO ₃ . x H ₂ O	
				(3)
(c)		A gas	s cylinder, of volume $5.00 \times 10^{-3} \mathrm{m}^3$, contains 325 g of argon gas.	
		(i)	Give the ideal gas equation.	

		(11)	Use the ideal gas equation to calculate the pressure of the argon gas in the cylinder at a temperature of 298 K. (The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)	
				(4)
			[Total 12 mar	
3.	(a)		ample of ethanol vapour, C ₂ H ₅ OH (M_{Γ} = 46.0), was maintained at a pressure	
		of 100	kPa and at a temperature of 366K.	
		(i)	State the ideal gas equation.	
		(ii)	Use the ideal gas equation to calculate the volume, in cm ³ , that 1.36 g of ethanol vapour would occupy under these conditions.	
			(The gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)	
				(5)
	(b)	Mag	nesium nitride reacts with water to form magnesium hydroxide and ammonia.	
		(i)	Balance the equation, given below, for the reaction between magnesium nitride and water.	
			$Mg_3N_2 \qquad \qquad + \qquad H_2O \qquad \rightarrow \qquad \qquad Mg(OH)_2 \ + NH_3$	

4.

	(ii)	Calculate the number of moles, and hence the number of molecules, of NH ₃ in 0.263 g of ammonia gas.		
		(The Avogadro constant $L = 6.02 \times 10^{23} \text{ mol}^{-1}$)		
		(4)		
(c)		ium carbonate is manufactured in a two-stage process as shown by the ations below.		
		NaCl + NH ₃ + CO ₂ + H ₂ O \rightarrow NaHCO ₃ + NH ₄ Cl		
		2NaHCO ₃ \rightarrow Na ₂ CO ₃ + H ₂ O + CO ₂		
		culate the maximum mass of sodium carbonate which could be obtained from g of sodium chloride.		
		(4) [Total 13 marks]		
		[Total To marks]		
(a)		equation for the reaction between magnesium carbonate and hydrochloric is given below.		
		$MgCO_3 + 2HCI \rightarrow MgCl_2 + H_2O + CO_2$		
	impı	en 75.0 cm ³ of 0.500 mol dm ⁻³ hydrochloric acid were added to 1.25 g of ure MgCO ₃ some acid was left unreacted. This unreacted acid required 21.6 of a		
		0 mol dm ⁻³ solution of sodium hydroxide for complete reaction.		
	(i)	Calculate the number of moles of HCl in 75.0 ${\rm cm}^3$ of 0.500 ${\rm mol}\ {\rm dm}^{-3}$ hydrochloric acid.		

	Calculate the number of moles of NaOH used to neutralise the unreacted HCI.
(iii)	Show that the number of moles of HCl which reacted with the MgCO $_3$ in the sample was 0.0267
(iv)	Calculate the number of moles and the mass of MgCO ₃ in the sample, and hence deduce the percentage by mass of MgCO ₃ in the sample.
	Moles of MgCO3
	Mass of MgCO3
	Percentage of MgCO3
Асс	empound contains 36.5% of sodium and 25.5% of sulphur by mass, the rest
bein	ompound contains 36.5% of sodium and 25.5% of sulphur by mass, the rest g oxygen. Use this information to show that the empirical formula of the compound is Na ₂ SO ₃
bein	ompound contains 36.5% of sodium and 25.5% of sulphur by mass, the rest g oxygen. Use this information to show that the empirical formula of the compound is
bein	ompound contains 36.5% of sodium and 25.5% of sulphur by mass, the rest g oxygen. Use this information to show that the empirical formula of the compound is Na ₂ SO ₃
bein	ompound contains 36.5% of sodium and 25.5% of sulphur by mass, the rest g oxygen. Use this information to show that the empirical formula of the compound is Na ₂ SO ₃
bein	ompound contains 36.5% of sodium and 25.5% of sulphur by mass, the rest g oxygen. Use this information to show that the empirical formula of the compound is Na ₂ SO ₃
bein	ompound contains 36.5% of sodium and 25.5% of sulphur by mass, the rest g oxygen. Use this information to show that the empirical formula of the compound is Na ₂ SO ₃
bein	ompound contains 36.5% of sodium and 25.5% of sulphur by mass, the rest g oxygen. Use this information to show that the empirical formula of the compound is Na ₂ SO ₃
	with the state of the compound contains 36.5% of sodium and 25.5% of sulphur by mass, the rest goxygen. Use this information to show that the empirical formula of the compound is Na ₂ SO ₃ When Na ₂ SO ₃ is treated with an excess of hydrochloric acid, aqueous sodium chloride is formed and sulphur dioxide gas is evolved. Write an

5.	(a)	Give the meaning of the term empirical formula
	(b)	Analysis of 3.150 g of compound X showed that it contained 0.769 g of calcium and 0.539 g of nitrogen; the remainder was oxygen. Calculate the empirical formula of X.
	(c)	What additional information is required in order to deduce the molecular formula of X.
	(d)	A sample of X when heated in alkaline solution with an aluminium-zinc allo
	(-)	produced ammonia gas. After cooling to 293 K, the ammonia occupied a volume of
		1.53 x 10 ⁻³ m3 at a pressure of 95.0 kPa. The ammonia was dissolved in water an
		made up to 250 cm ³ of aqueous solution. A 25.0 cm ³ sample of this was the titrated with a 0.150 M hydrochloric acid.
		(i) Calculate the number of moles of ammonia gas in 1.53x 10 ⁻³ m ³ , at pressure of 95.0 kPa and a temperature of 293K.
		(ii) Calculate the concentration in moldm ⁻³ of ammonia in aqueous solution.
		(iii) Calculate the volume of 0.150 M hydrochloric acid required to neutralise the 25.0 cm ³ sample of ammonia solution.

(6