

Consideriamo 3 cariche in figura con q_1 =-q, q_2 = 2q, q_3 =-2q, q=1 μ C; sia a =3 cm; il punto P ha coordinate (x=0, y=a)

- Calcolare le componenti lungo gli assi E_x , E_y del campo elettrico totale generato dalle 3 cariche nel punto P
- b) Calcolare l'angolo α che la direzione del campo forma con l'asse x
- c) Calcolare la d.d.p. $\Delta V = V_P V_{P'}$ tra il punto P e il punto P' di coordinate (x = 0, y = 2 α) dovuta al campo delle 3 cariche
- d) Poniamo una quarta carica nel punto P, q_4 = 3q; calcolare le componenti lungo gli assi F_x , F_y della forza esercitata dal campo elettrico sulla carica q_4
- e) Calcolare il lavoro necessario per muovere la carica q_4 dal punto P al punto P' di coordinate (x=0, y=2a)

$$k = \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \frac{Nm^2}{C^2}$$

$$r_1 = a;$$
 $r_2 = \sqrt{2}a;$ $r_3 = \sqrt{2}a$

$$\cos(45^{\circ}) = \sin(45^{\circ}) = \frac{1}{\sqrt{2}}$$

$$\vec{E}_1 = -k \frac{q}{a^2} \hat{y}$$

$$\vec{E}_2 = k \frac{2q}{2a^2} \cos(45^\circ) \hat{x} + k \frac{2q}{2a^2} \sin(45^\circ) \hat{y}$$

$$\vec{E}_3 = k \frac{2q}{2a^2} \cos(45^\circ) \hat{x} - k \frac{2q}{2a^2} \sin(45^\circ) \hat{y}$$

$$\vec{E}_P = k \frac{\sqrt{2q}}{a^2} \hat{x} - k \frac{q}{a^2} \hat{y}$$

$$E_x = 9 \times 10^9 \frac{Nm^2}{C^2} \frac{\sqrt{2}\mu C}{(3cm)^2} = 1.41 \times 10^7 \frac{N}{C}$$

$$E_y = -9 \times 10^9 \frac{Nm^2}{C^2} \frac{1\mu C}{(3cm)^2} = -1.0 \times 10^7 \frac{N}{C}$$

$$\tan(\alpha) = \frac{E_y}{E_x} = -0.71 \Rightarrow \alpha = -35.3^{\circ}$$

$$V_{P} = V_{P,1} + V_{P,2} + V_{P,3}$$

$$= -k \frac{q}{a} + k \frac{2q}{\sqrt{2}a} - k \frac{2q}{\sqrt{2}a} = -k \frac{q}{a}$$

$$V_{P'} = V_{P',1} = -k \frac{q}{2a}$$

$$V_P - V_{P'} = -k \frac{q}{2a} = -9 \times 10^9 \frac{Nm^2}{C^2} \frac{1\mu C}{6 \times 10^{-2} m} = -1.5 \times 10^5 V$$

$$F_x = q_4 E_x = 3\mu C \times 1.41 \times 10^7 \frac{N}{C} = 42.3N$$

$$F_y = q_4 E_y = -3\mu C \times 1.0 \times 10^7 \frac{N}{C} = -30N$$

$$L = q_4 (V_P - V_{P'}) = -3\mu C \times 1.5 \times 10^5 V = -0.45 J$$

r_2 r_3 r_2 r_3

$$r_1' = \sqrt{a^2 + 4a^2} = \sqrt{5}a$$

$$r_2' = \sqrt{2}(2a)$$
$$r_3' = 2a$$

Supponiamo di spostare la carica da P ad un punto P' (x = a, y = 2a); ricalcoliamo la d.d.p. tra P e P'

$$V_P = -k \frac{q}{a} = -9 \times 10^9 \frac{Nm^2}{C^2} \frac{1\mu C}{3cm} = -3 \times 10^5 V$$

Potenziale in P':

$$V_1 = -k \frac{q}{\sqrt{5}a}$$
 $V_2 = k \frac{2q}{2\sqrt{2}a}$ $V_3 = -k \frac{2q}{2a}$

$$V_P - V_{P'} = k \frac{q}{a} \left(\frac{1}{\sqrt{5}} - \frac{1}{\sqrt{2}} \right) = -9 \times 10^9 \frac{Nm^2}{C^2} \frac{1\mu C}{3cm} \times 0.26 = -0.78 \times 10^5 V$$

Notiamo che il potenziale in P' è maggiore del potenziale in P: vuol dire che per spostare la carica q_4 da P a P' bisogna compiere un lavoro negativo, ovvero lavorare CONTRO il campo generato dalle cariche q_1 , q_2 , q_3 ; il lavoro speso dal campo delle 3 cariche per spostare q_4 da P a P' è:

$$L = q_4 (V_P - V_{P'}) = -3\mu C \times 0.78 \times 10^5 V = -0.234 J$$

Consideriamo 3 cariche in figura con q_1 = q, q_2 =-q, q_3 =-q, q=1 μ C; le loro distanze dall'origine sono r_1 = r_2 =4 cm, r_3 =3 cm, θ =60°

- a) Calcolare le componenti lungo gli assi E_x , E_y del campo elettrico totale generato dalle 3 cariche nell'origine del riferimento cartesiano (x=0,y=0)
- b) Poniamo una quarta carica q_4 = 3q nell'origine; calcolare le componenti lungo gli assi F_x , F_y della forza esercitata dal campo elettrico sulla carica q_4 .
- c) Calcolare modulo F e angolo α che la forza forma con l'asse x
- d) Disegnare con una freccia la forza in figura, indicando approssimativamente direzione e verso
- e) Calcolare il lavoro necessario a spostare la carica q_4 dall'origine al punto P indicato in figura.

Problema 2: campo e forza

$$\vec{E}_3 = k \frac{q}{r_2^2} \hat{y}$$
 $\vec{E}_1 = k \frac{q}{r_1^2} \cos(\theta) \hat{x} + k \frac{q}{r_1^2} \sin(\theta) \hat{y}$

$$\vec{E}_2 = k \frac{q}{r_2^2} \cos(\theta) \hat{x} - k \frac{q}{r_2^2} \sin(\theta) \hat{y}$$

$$\vec{E} = k \frac{2q}{r_1^2} \cos(60)\hat{x} + k \frac{q}{r_2^2} \hat{y} = k \frac{q}{r_1^2} \hat{x} + k \frac{q}{r_2^2} \hat{y}$$

$$E_x = 9 \times 10^9 \frac{Nm^2}{C^2} \frac{1\mu C}{(4cm)^2} = 0.56 \times 10^7 \frac{N}{C}$$

$$E_{x} = 9 \times 10^{9} \frac{10^{2}}{C^{2}} \frac{100 \times 10^{2}}{(4cm)^{2}} = 0.36 \times 10^{10} \frac{100^{2}}{C^{2}}$$

$$E_{y} = 9 \times 10^{9} \frac{Nm^{2}}{C^{2}} \frac{1\mu C}{(3cm)^{2}} = 1.0 \times 10^{7} \frac{N}{C}$$

$$F_x = q_4 E_x = 3\mu C \times 0.56 \times 10^7 \frac{N}{C} = 16.8N$$
$$F_y = q_4 E_y = 3\mu C \times 1.0 \times 10^7 \frac{N}{C} = 30N$$

$$F = \sqrt{1.68^2 + 3^2} \times 10N = 34.4N$$
 $\tan(\alpha) = \frac{F_y}{F_y} = 1.785 \Rightarrow \alpha = 60.75^\circ$

$$\frac{x}{2}$$

$$\frac{x}{\theta}$$

$$\cos(60) = \frac{1}{2}$$

Problema 2: potenziale

Il potenziale generato da q_1 , q_2 , q_3 nell'origine è:

$$V_1 = k \frac{q}{r_1}$$
 $V_2 = -k \frac{q}{r_2}$ $V_3 = -k \frac{q}{r_3}$

Il potenziale totale è quindi:

$$V_0 = -k \frac{q}{r_3} = -9 \times 10^9 \, \frac{Nm^2}{C^2} \, \frac{1 \mu C}{3 \, cm} = -3 \times 10^5 \, V$$
 Il potenziale generato da q_1 , q_2 , q_3 in P è:

$$V_1 = k \frac{q}{r_1 \cos(\theta)} \quad V_2 = -k \frac{q}{r_2 \cos(\theta)} \quad V_3 = -k \frac{q}{r_3 + r_1 \sin(\theta)}$$

Il potenziale totale in P:

$$V_P = -k \frac{q}{r_3 + r_1 \sin(\theta)} = -9 \times 10^9 \frac{Nm^2}{C^2} \frac{1\mu C}{6.464 cm} = -1.39 \times 10^5 V$$

$$L = q_4 (V_0 - V_P) = -3\mu C \times (3 - 1.39) \times 10^5 V = -0.483 J$$

Il potenziale in P è maggiore del potenziale in (0,0); dunque per spostare la carica q_4 dall'origine a P bisogna compiere un lavoro negativo, ovvero effettuato CONTRO il campo generato dalle cariche q_1 , q_2 , q_3 ; ciò è facilmente intuibile dalla direzione della forza su q_4 posta nell'origine, che tende a spostare la carica verso l'asse y positivo, dunque in direzione opposta rispetto a P.

Consideriamo le 4 cariche in figura con q_1 =-2e, q_2 = +2e , q_3 =+4e , q_4 =+2e; θ_1 =35° , d_1 =3 cm, d_2 = d_3 =2 cm; (e=1.6 ×10⁻¹⁹ C). Calcolare modulo, direzione e verso della forza agente sulla particella 4 per effetto delle altre

Date due cariche q_1 e q_2 nel piano (x,y), si consideri una terza carica positiva q_3 ; calcolare le coordinate (x_3,y_3) del punto in cui che deve essere posta q_3 affinché la forza netta su di essa sia nulla

$$q_1 = 3\mu C;$$
 $x_1 = 3.5cm;$ $y_1 = 0.5cm$
 $q_2 = -4\mu C;$ $x_2 = -2cm;$ $y_2 = 1.5cm$

- \checkmark Essendo i campi generati da q_1 e q_2 radiali, gli unici punti in cui possono compensarsi sono lungo la direzione della retta congiungente le due cariche
- ✓ Nel segmento compreso tra q_1 e q_2 i campi sono CONCORDI, per cui non possono compensarsi
- ✓ Essendo $q_2 > q_1$, per compensarsi la carica q_1 deve necessariamente essere quella più vicina a q_3

Siano r_{12} , r_{13} , r_{23} le distanze tra la cariche. Affinché i $\frac{q_1}{r_{13}^2} = \frac{q_2}{r_{23}^2}$ campi generati da q_1 e q_2 si compensino deve essere: $\frac{q_1}{r_{13}^2} = \frac{q_2}{r_{23}^2}$

La distanza r_{12} è nota; inoltre $r_{23} = r_{12} + r_{13}$, per cui possiamo risolvere l'equazione rispetto all'unica incognita r_{13} :

$$\frac{q_1}{r_{13}^2} = \frac{q_2}{(r_{12} + r_{13})^2} \Rightarrow r_{13} = r_{12} \left(\frac{\sqrt{q_1/q_2}}{1 - \sqrt{q_1/q_2}} \right)$$

$$r_{12} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = 5.6 cm$$
 $r_{13} = 5.6 cm \left(\frac{0.866}{1 - 0.866}\right) = 36.2 cm$

Per calcolare le coordinate di q_3 abbiamo bisogno di conoscere l'angolo α che il vettore distanza r_{13} forma con l'asse x; ma questo angolo è lo stesso che il vettore r_{12} forma con x, per cui:

$$\tan(\alpha) = \frac{y_1 - y_2}{x_1 - x_2} = -0.1818 \Rightarrow \alpha = -10.3^\circ$$

Con l'angolo α calcoliamo x_3 e y_3 proiettando il vettore distanza r_{13} lungo gli assi:

$$r_{13}\cos(\alpha) = x_3 - x_1 \Rightarrow x_3 = 39.1cm$$

 $r_{13}\sin(\alpha) = y_3 - y_1 \Rightarrow y_3 = -6cm$

Date due cariche uguali q_1 e q_2 nel piano (x,y) a distanza 2d, si consideri una terza carica positiva q_3 posta sull'asse delle x; calcolare il valore della coordinata x per cui l'intensità della forza esercitata su q_3 è minima e massima

$$\begin{array}{c|c}
 & y \\
\hline
 & 1 \\
 & d \\
\hline
 & d \\
\hline
 & d \\
\hline
 & d \\
\hline
 & 2
\end{array}$$

 $r_{13}^2 = d^2 + x^2$ $r_{13}\cos(\alpha) = x$

$$q_1 = q_2 = 2e;$$
 $d = 17 \, cm;$ $q_3 = 4e$

Siano $r_{13}=r_{23}$ le distanze tra la cariche; lungo y i campi generati da q_1 e q_2 si compensano per ogni valore di x, per cui solo il campo lungo x agisce su q_3 ; la forza totale su q_3 è

$$F_{3,x} = 2k \frac{q_1 q_3}{r_{13}^2} \cos(\alpha)$$

Sfruttando le relazioni geometriche, esprimiamo la forza in funzione della posizione x di q_3

$$F_{3,x} = 2kq_1q_3 \frac{x}{(x^2 + d^2)^{3/2}}$$

Date due cariche uguali q_1 e q_2 nel piano (x,y) a distanza 2d, si consideri una terza carica positiva q_3 posta sull'asse delle x; calcolare il valore della coordinata x per cui l'intensità della forza esercitata su q_3 è minima e massima

$$r_{12}^2 = d^2 + x^2$$
 $r_{12}\cos(\alpha) = x$ $q_1 = q_2 = 2e;$ $d = 17cm;$ $q_3 = 4e$

$$\vec{F}_{23} = \vec{F}_{3}$$

$$\vec{F}_{3} = \vec{F}_{3}$$

$$\vec{F}_{3} = \vec{F}_{3}$$

Il minimo è chiaramente ad x=0: per il massimo dobbiamo utilizzare la condizione di derivata nulla rispetto alla coordinata x

$$\frac{\partial F_{3,x}}{\partial x} = 0 = 2kq_1q_3 \frac{\left(x^2 + d^2\right)^{3/2} - 3x^2\left(x^2 + d^2\right)^{1/2}}{\left(x^2 + d^2\right)^3} \quad \Rightarrow \left(x^2 + d^2\right) = 3x^2 \Rightarrow x = \frac{d}{\sqrt{2}}$$

Una sfera isolante uniformemente carica (in giallo) di carica q_s = 4 μ C e raggio a =4 cm, è posta al centro di un guscio conduttore sferico (in azzurro) con raggio interno *b*=9 cm ed esterno c=10 cm; sul guscio è presente una carica $q_c = -1 \,\mu\text{C}$

- a) Determinare la carica Q accumulata sulla superficie interna ed esterna del guscio conduttore
- b) Calcolare l'intensità del campo elettrico nei punti r = 2 cm, r=4 cm, r=7 cm, r=9.5 cm, r=12 cm

$$r = 2 cm E = 9 \times 10^{9} \frac{Nm^{2}}{C^{2}} \frac{4\mu C \times 2 cm}{(4 cm)^{3}} = 1.125 \times 10^{7} (N/C) Sup. interna Q = -4 \mu C Sup. esterna Q = 3 \mu C$$

$$r = 4 cm E = 9 \times 10^{9} \frac{Nm^{2}}{C^{2}} \frac{4\mu C}{16 \times 10^{-4} m^{2}} = 2.25 \times 10^{7} (N/C)$$

$$r = 7 cm E = 9 \times 10^{9} \frac{Nm^{2}}{C^{2}} \frac{4\mu C}{49 \times 10^{-4} m^{2}} = 0.735 \times 10^{7} (N/C)$$

$$r = 9.5 cm E = 0$$

$$r = 12 cm E = 9 \times 10^{9} \frac{Nm^{2}}{C^{2}} \frac{3\mu C}{12^{2} \times 10^{-4} m^{2}} = 0.1875 \times 10^{7} (N/C)$$

Sup. interna Q = -4
$$\mu$$
C
Sup. esterna Q = 3 μ C

Sia dato un guscio sferico isolante carico, con carica distribuita uniformemente q_s =3 μ C, raggio interno a=5 cm ed esterno b=10 cm

- Scrivere l'espressione del campo elettrico E(r) in funzione della distanza r per r < a (nella cavità), per a > r > b (nel guscio), per r > b (esterno al guscio)
- b) Calcolare l'intensità del campo elettrico nei punti r = 2 cm, r = 7 cm, r = 10 cm

$$a \begin{cases} r < a & E(r) = 0 \\ a < r < b & E(r) = k \frac{q(r)}{r^2} = k \frac{q_s}{r^2} \left(\frac{r^3 - a^3}{b^3 - a^3} \right) \\ r > b & E(r) = k \frac{q_s}{r^2} \end{cases}$$

In un punto a distanza r interna al guscio il campo elettrico è dato da:

$$E(r) = k \frac{q(r)}{r^2}$$

q(r) è la sola carica contenuta all'interno del raggio r; poiché la densità di carica 3D ρ è uniforme, si ha:

$$q(r) = \rho V(r)$$
 $q_s = \rho V$

V è il volume del guscio, V(r) il volume del guscio di raggio esterno r:

$$\frac{q(r)}{q_s} = \frac{V(r)}{V} = \frac{r^3 - a^3}{b^3 - a^3} \Rightarrow E(r) = k \frac{q_s}{r^2} \frac{r^3 - a^3}{b^3 - a^3}$$

$$b) \begin{cases} r = 2cm & E = 0 \\ r = 7cm & E = 9 \times 10^9 \frac{Nm^2}{C^2} \frac{3\mu C}{49 \times 10^{-4} m^2} \left(\frac{7^3 - 5^3}{10^3 - 5^3}\right) = 0.137 \times 10^7 (N/C) \\ r = 10cm & E = 9 \times 10^9 \frac{Nm^2}{C^2} \frac{3\mu C}{10^{-2} m^2} = 0.27 \times 10^7 (N/C) \end{cases}$$

Una sfera isolante uniformemente carica con q_s =5 μ C di raggio a=2 cm, è posta al centro di un guscio conduttore sferico con raggio interno b=4 cm ed esterno c=5 cm; sul guscio è presente una carica q_c = -5 μ C

- 1) calcolare l'intensità del campo elettrico nei punti: r=0, r=1 cm, r=2 cm, r=3 cm; r=4.6 cm; r=7 cm 2) Quale carica appare sulla superficie interna ed esterna del guscio ?
- \square il guscio sferico non contribuisce ad E nella cavità
- \Box r < a : E lineare in r
- \square a < r < b: campo della carica puntuale q_s nel centro

 \Box b < r < c: all'interno del conduttore deve essere E=0, per cui tutta la carica q_C deve essere sulla superficie interna del guscio, per compensare esattamente q_s \Box r > c: sfera isolante e guscio conduttore equivalgono entrambe a due cariche puntuali q_s e q_C poste nel centro; essendo uguali ed opposte in segno, i rispettivi campi si compensano: E=0

 q_s = 5 μ C a = 2 cm; b = 4 cm

$$r = 1cm$$
 $E = 9 \times 10^9 \frac{Nm^2}{C^2} \frac{5\mu C}{(2cm)^3} 1cm = 5.625 \times 10^7 (N/C)$

$$r = 2 cm$$
 $E = 9 \times 10^9 \frac{Nm^2}{C^2} \frac{5\mu C}{(2cm)^2} = 11.25 \times 10^7 (N/C)$

$$r = 3 cm$$
 $E = 9 \times 10^9 \frac{Nm^2}{C^2} \frac{5\mu C}{(3cm)^2} = 5 \times 10^7 (N/C)$

$$r = 4.6 \, cm \quad E = 0$$

r = 7 cm E = 0

Un guscio sferico uniformemente carico ha densità di carica ρ =1.84 nC/m³, raggio interno a=10 cm ed esterno b=2a. Calcolare l'intensità del campo elettrico nei punti: r=0; r=a/2; r=a; r=1.5a; r=b; r=3b.

- \Box r < a : E = 0 il campo del guscio sferico è zero nella cavità
- \square a < r < b: Applichiamo Gauss ad una superficie di raggio r. Attenzione: la cavità NON contribuisce alla carica.
- \square r > b: E equivale al campo di una carica puntiforme centrata nell'origine

La carica totale del guscio è

$$q = \frac{4\pi}{3} \left(b^3 - a^3 \right) \rho$$

La carica interna ad una superficie di raggio r:

$$q(r) = \frac{4\pi}{3} \left(r^3 - a^3 \right) \rho$$

All'interno del guscio:

$$E = k \frac{q(r)}{r^2} = \frac{\rho}{3\varepsilon_0} \left(r - \frac{a^3}{r^2} \right)$$

Un guscio sferico uniformemente carico ha densità di carica ρ =1.84 nC/m³, raggio interno a=10 cm ed esterno b=2a. Calcolare l'intensità del campo elettrico nei punti: r=0; r=a/2; r=a; r=1.5a; r=b; r=3b.

Nella cavità:
$$r = 0$$
; $r = a/2$; $r = a : E = 0$

Nel guscio
$$E = \frac{\rho}{3\varepsilon_0} \left(r - \frac{a^3}{r^2} \right)$$

$$r = 6a$$
 $E = \frac{1.84nC}{3 \times 8.85 \, pFm^2} (1.94cm) = 1.35 \frac{V}{m}$

Un guscio sferico isolante di raggio interno a=2 cm ed esterno b=2.4cm ha densità di carica volumica $\rho=A/r$, ove A è una costante ed r la distanza dal centro del guscio; nel centro è presente una carica puntiforme q=45 fC; Calcolare il valore di A per cui all'interno del guscio (a < r < b) il campo è costante, ovvero non dipende da r

Il campo generato da q è:
$$E = k \frac{q}{r^2}$$

Il campo del guscio: $E = k \frac{q(r)}{r^2}$

La carica del guscio è:
$$q(r) = \int_{a}^{r} \rho(r') 4\pi \, r'^2 \, dr' = 4\pi A \int_{a}^{r} r' \, dr' = 2\pi A \Big(r^2 - a^2 \Big)$$

Il campo totale all'interno del guscio: $E = k \frac{q}{r^2} + 2\pi kA \left(1 - \frac{a^2}{r^2}\right) = 2\pi kA + \frac{k}{r^2} \left(q - 2\pi Aa^2\right)$

Affinché E sia costante deve annullarsi il 2° termine, ovvero: $q = 2\pi A a^2 \Rightarrow A = \frac{q}{2\pi a^2} = 0.018 \frac{nC}{m^2}$

Un guscio sferico isolante di raggio interno a=2 cm ed esterno b=2.4cm ha densità di carica volumica $\rho=A/r$, ove A è una costante ed r la distanza dal centro del guscio; nel centro è presente una carica puntiforme q=45 fC; Calcolare il valore di A per cui all'interno del guscio (a < r < b) il campo è costante, ovvero non dipende da r

$$E = k \frac{q}{r^2} + \frac{A}{2\varepsilon_0} - \frac{Aa^2}{2\varepsilon_0} \frac{1}{r^2}$$

$$2\pi A = \frac{q}{a^2}$$

Consideriamo un lungo tubo metallico di raggio R=3 cm, parete sottile trascurabile, e densità di carica lineare $\lambda=20$ nC/m;

- a) calcolare l'intensità del campo elettrico nei punti: r = R/2; r=2R
- b) tracciare in un grafico E(r) tra r=0 ed r=2R
- c) calcolare la d.d.p. tra i punti $r_1=2R$ ed $r_2=4R$
- d) calcolare il lavoro necessario a spostare una carica puntuale $q_0 = 1 \mu C$ da r_1 ad r_2
 - ✓ Nella cavità il campo è nullo
 - ✓ All'esterno del cilindro il campo è quello di un filo carico posto lungo l'asse del tubo:

$$\begin{array}{c|c}
E \\
2k \frac{\lambda}{r} \\
R & 2R
\end{array}$$

$$E = \frac{1}{2\pi\varepsilon_0} \frac{\lambda}{r} = 2k \frac{\lambda}{r}$$

a)
$$r = 2R$$
 $E = 18 \times 10^9 \frac{Nm^2}{C^2} \frac{20nC}{6 \times 10^{-2} m^2} = 6 \times 10^3 \frac{N}{C}$

Calcoliamo la caduta di potenziale tra r_1 =2R ed r_2 =4R

$$V(r_1) - V(r_2) = \int_{r_1}^{r_2} \vec{E} \cdot d\vec{r} = 2k\lambda \int_{r_1}^{r_2} \frac{1}{r} dr = 2k\lambda \ln\left(\frac{r_2}{r_1}\right) = 2k\lambda \ln(2)$$

$$V(r_1) - V(r_2) = 18 \times 10^9 \frac{Nm^2}{C^2} \frac{20nC}{m} \times 0.69 = 249V$$

$$L = q_0 [V(r_1) - V(r_2)] = 1\mu C \times 249V = 249\mu J$$

il potenziale diminuisce allontanandosi dal tubo, per cui il lavoro speso per allontanare la carica positiva q_0 è positivo; dunque è lavoro compiuto dal campo elettrico

Un lungo filo carico (rosso) con densità lineare λ_F = -3.6 nC/m, è racchiuso da un tubo cavo di spessore trascurabile, coassiale col filo, di raggio R=1.5 cm, con densità uniforme bidimensionale σ_T ; si calcoli il valore di σ_T che rende nullo il campo totale al di fuori del cilindro

Il campo del filo è
$$E_F = \frac{1}{2\pi\varepsilon_0} \left(\frac{\lambda_F}{r}\right)$$

Il campo del cilindro, per
$$r > R$$
 è $E_T = \frac{1}{2\pi\varepsilon_0} \left(\frac{\lambda_T}{r}\right)$

Per il cilindro, la relazione tra densità lineare e di superficie si trova dalla conservazione della carica: $\lambda_T L = 2\pi \ R L \sigma_T$

Affinché i due campi si compensino deve essere:

$$\lambda_T = 2\pi R\sigma_T = -\lambda_F \Rightarrow \sigma_T = -\frac{\lambda_F}{2\pi R} = \frac{3.6nC}{2\pi \times 1.5 \times 10^{-2} m^2} = 38 \frac{nC}{m^2}$$

In figura è mostrata la sezione di un guscio cilindrico conduttore di lunghezza L=2 m, raggio interno a=4 cm ed esterno b=8 cm, su cui è presente una carica Q_c = 3 μ C; al centro del guscio scorre un filo carico coassiale col guscio cilindrico, con densità di carica lineare λ_f =1 μ C/m; supponendo di poter trascurare gli effetti di bordo:

- a) Determinare la densità di carica lineare presente sulla superficie interna λ_{int} e sulla superficie esterna λ_{ext} del cilindro
- b) Calcolare l'intensità del campo elettrico nei punti r=3 cm, r=6 cm, r=10 cm

a)
$$\lambda_{int}$$
 =

$$\lambda_{ext} =$$

$$\lambda_{\text{int}} = -1\frac{\mu C}{m} \quad \lambda_{ext} = 2.5 \frac{\mu C}{m} \qquad \lambda_{g} = \lambda_{\text{int}} + \lambda_{ext} = 1.5 \frac{\mu C}{m}$$

$$\lambda_{f} + \lambda_{g} = \lambda_{ext} = 2.5 \frac{\mu C}{m}$$

$$r < a \qquad E(r) = 2k \frac{\lambda_{f}}{r}$$

$$a < r < b \quad E(r) = 0$$

$$r > b \qquad E(r) = 2k \frac{\lambda_{f} + \lambda_{g}}{r}$$

$$r = 3cm \quad E = 18 \times 10^{9} \frac{Nm^{2}}{C^{2}} \frac{1\mu C}{3 \times 10^{-2} m^{2}} = 6 \times 10^{5} (N/C)$$

$$r = 6cm \quad E = 0$$

$$r = 10cm \quad E = 18 \times 10^{9} \frac{Nm^{2}}{C^{2}} \frac{2.5\mu C}{10 \times 10^{-2} m^{2}} = 4.5 \times 10^{5} (N/C)$$

Due fogli grandi isolanti paralleli hanno identica densità di carica σ =1.77×10⁻²² C/m²; trascurando effetti di bordo, calcolare il campo in modulo, direzione e verso, nelle tre zone: sopra, sotto, ed in mezzo ai fogli

Il campo è perpendicolare ai piani, dunque E_x =0

Sopra i fogli:

$$\vec{E}_{1,y} = \frac{\sigma}{2\varepsilon_0} \hat{y}; \quad \vec{E}_{2,y} = \frac{\sigma}{2\varepsilon_0} \hat{y}; \quad \vec{E}_{tot,y} = \frac{\sigma}{\varepsilon_0} \hat{y} = \left(0.2 \times 10^{-10} \frac{V}{m}\right) \hat{y}$$

Sotto i fogli:

$$\vec{E}_{1,y} = -\frac{\sigma}{2\varepsilon_0} \hat{y}; \quad \vec{E}_{2,y} = -\frac{\sigma}{2\varepsilon_0} \hat{y}; \quad \vec{E}_{tot,y} = -\left(0.2 \times 10^{-10} \frac{V}{m}\right) \hat{y}$$

In mezzo ai fogli:

$$\vec{E}_{1,y} = -\frac{\sigma}{2\varepsilon_0}\hat{y}; \quad \vec{E}_{2,y} = \frac{\sigma}{2\varepsilon_0}\hat{y}; \quad \vec{E}_{tot,y} = 0$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \frac{C^2}{N m^2}$$

$$= 8.85 \frac{pF}{M}$$

Consideriamo un condensatore vuoto carico, con carica q_c = 5 pC; sia A = 1 cm² l'area dei piatti, e d = 1 mm la distanza tra i piatti; sia x=0 la posizione del piatto positivo; trascurando gli effetti di bordo,

- a) calcolare il campo elettrico nei punti $x_1 = 0.4 \text{ mm}$, $x_2 = 0.8 \text{ mm}$
- b) calcolare l'energia immagazzinata nel condensatore
- c) calcolare il lavoro necessario a spostare una carica puntuale $q_0 = 1$ pC da x_1 ad x_2

Mantenendo il condensatore carico ed isolato dal circuito, si riempie lo spazio tra i piatti di acqua distillata (ε_r = 80);

d) Ricalcolare le quantità ai punti a), b), c) con dielettrico inserito

Condensatore vuoto:

$$E_{x} = \frac{\sigma}{\varepsilon_{0}} = \frac{q_{C}}{\varepsilon_{0} A} = \frac{5pC}{8.85 \times 10^{-12} \frac{C^{2}}{N m^{2}} \times 10^{-4} m^{2}} = 0.56 \times 10^{4} \frac{N}{C}$$

$$\Delta U = \frac{1}{2} \frac{q_C^2}{C} = \frac{q_C^2}{2\varepsilon_0 (A/d)} = \frac{12.5 \times 10^{-24} C^2}{8.85 \times 10^{-12} \frac{C^2}{N m^2} \times 10^{-1} m} = 1.41 \times 10^{-11} J$$

$$V(x_1) - V(x_2) = \int_{x_1}^{x_2} E dx = E(x_2 - x_1) =$$

$$0.56 \times 10^4 \, \frac{N}{C} \times 0.4 \times 10^{-3} \, m = 2.24 \, V$$

$$L = q_0 \left[V(x_1) - V(x_2) \right] = 1pC \times 2.24V = 2.24 \ pJ$$

Condensatore pieno: essendo il condensatore isolato, la carica ai piatti resta la stessa; dunque campo elettrico ed energia del condensatore si riducono

$$E_x = \frac{\sigma}{\varepsilon_r \varepsilon_0} = \frac{1}{80} 0.56 \times 10^4 \frac{N}{C} = 70 \frac{N}{C}$$

$$\Delta U = \frac{1}{2} \frac{q_C^2}{\varepsilon_r C} = \frac{1}{80} 1.41 \times 10^{-11} J = 1.76 \times 10^{-13} J$$

$$V(x_1) - V(x_2) = E(x_2 - x_1) = 70 \frac{N}{C} \times 0.4 \times 10^{-3} m = 28 mV$$

$$L = q_0 \left[V(x_1) - V(x_2) \right] = 1pC \times 28mV = 28 \times 10^{-15} J$$

3 condensatori uguali hanno capacità $C=25~\mu F$; si chiude il circuito su una una batteria di f.e.m. $\mathscr{E}=4200~V$; all'equilibrio i condensatori saranno carichi; calcolare quanta carica totale ha attraversato l'amperometro

La carica totale è la somma delle cariche depositate sui piatti dei 3 condensatori, ovvero la carica depositata sui piatti del condensatore di capacità equivalente data dalla somma delle singole capacità; dunque:

$$C_{eq} = 75 \mu F;$$

$$q = C_{eq} \mathcal{E} = 75 \mu F \times 4200V = 0.315 C$$

Una d.d.p. \mathscr{E} = 200 V viene applicata su una coppia di condensatori C_1 =6.0 μF e C_2 =4.0 μF in serie.

- a) Calcolare la capacita equivalente
- b) Calcolare carica e d.d.p. su ciascun condensatore
- c) Si ripeta l'esercizio con i condensatori in parallelo.

$$C_{eq} = C_1 C_2 / (C_1 + C_2) = 2.4 \mu F$$

$$q_1 = q_2 = C_{eq} \mathcal{E} = 2.4 \mu F \times 200V = 4.8 \times 10^{-4} C$$

$$V_{ac} = \frac{q_1}{C_1} = \frac{4.8 \times 10^{-4} C}{6 \mu F} = 80V; \quad V_{cb} = \frac{q_2}{C_2} = 120V$$

PARALLELO:

$$C_{eq} = C_1 + C_2 = 10 \mu F; \quad V_{ab} = V$$

$$q_1 = C_1 \mathcal{E} = 6\mu F \times 200V = 12 \times 10^{-4} C$$

$$q_2 = C_2 \mathcal{E} = 4\mu F \times 200V = 8 \times 10^{-4} C$$

Una batteria con f.e.m. *8* = 20 V viene connessa ad una coppia di condensatori con $C_1=3$ pF e $C_2=7$ pF in serie; i piatti di C₁ hanno superficie A=30 mm²; all'equilibrio, calcolare.

1) Le cariche q_1 e q_2 sui condensatori
2) La distanza d tra le armature di C_1

$$C_{eq} = C_1 C_2 / (C_1 + C_2) = 2.1 pF$$

1)
$$q_1 = q_2 = q_{eq} = C_{eq} \mathcal{E} = 2.1 pF \times 20V = 4.2 \times 10^{-11} C$$

2)
$$d = \varepsilon_0 \frac{A}{C_1} = \frac{8.85 \, pF}{m} \frac{30 \times 10^{-6} \, m^2}{3 \, pF} = 0.088 \, mm$$

3)
$$\Delta U_2 = \frac{1}{2} \frac{q_2^2}{C_2} = \frac{1}{2} \frac{\left(4.2 \times 10^{-11} C\right)^2}{7 pF} = 1.26 \times 10^{-22} \frac{C^2}{pF} = 1.26 \times 10^{-10} J$$

Dato il circuito in figura, con 4 condensatori con capacità C_1 = 5 μ F, C_2 = 8 μ F, C_3 = 4 μ F, C_4 = 10 μ F, ed una batteria con f.e.m. = 12 V

- a) Calcolare le cariche q_1 , q_2 , q_3 , q_4 presenti sui condensatori
- b) Calcolare le d.d.p. ΔV_1 , ΔV_2 , ΔV_3 , ΔV_4 presenti ai piatti dei condensatori
- c) Calcolare l'energia elettrostatica U_1 , U_2 , U_3 , U_4 immagazzinata nei 3 condensatori
- d) Ricalcolare le cariche q_1 , q_2 , q_3 , q_4 dopo che C_2 è stato interamente riempito di una sostanza di costante dielettrica relativa ε_{r2} = 4, e C_4 riempito di una sostanza con ε_{r4} = 6.
- e) Ricalcolare i potenziali ΔV_1 , ΔV_2 , ΔV_3 , ΔV_4 dopo l'inserimento dei due dielettrici
- f) Ricalcolare l'energia elettrostatica U_1 , U_2 , U_3 , U_4 dopo l'inserimento dei due dielettrici

Problema 3

Dato il circuito in figura, con 4 condensatori con capacità C_1 = 5 μ F, C_2 = 8 μ F, C_3 = 4 μ F, C_4 = 10 μ F, ed una batteria con f.e.m. = 12 V

$$C_{12} = \frac{40}{13} \mu F = 3.077 \mu F; \quad C_{1234} = 17.077 \mu F$$

$$q_{12} = q_1 = q_2 = C_{12} \mathcal{E} = 36.923 \mu C \quad q_3 = C_3 \mathcal{E} = 48 \mu C \quad q_4 = C_4 \mathcal{E} = 120 \mu C$$

$$q_{1234} = C_{1234} \mathcal{E} = 204.923 \mu C$$

$$\Delta V_1 = \frac{q_1}{C_1} = \frac{36.923 \mu C}{5 \mu F} = 7.385 V \qquad \Delta V_2 = \frac{q_2}{C_2} = \frac{36.923 \mu C}{8 \mu F} = 4.615 V$$

$$U_1 = \frac{1}{2}C_1\Delta V_1^2 = 2.5\mu F \times (7.385V)^2 = 136.345\,\mu J$$

$$U_2 = \frac{1}{2}C_2\Delta V_2^2 = 4 \mu F \times (4.615V)^2 = 85.19 \mu J$$

 $\Delta V_3 = \Delta V_4 = 12V$

$$U_3 = \frac{1}{2}C_3\Delta V_3^2 = 2\,\mu F \times (12V)^2 = 288\,\mu J \quad U_4 = \frac{1}{2}C_4\Delta V_4^2 = 5\,\mu F \times (12V)^2 = 720\,\mu J$$

Problema 3

$$C_1 = 5 \mu F$$
, $C_2 = 8 \mu F$, $C_3 = 4 \mu F$, $C_4 = 10 \mu F$, f.e.m. = 12 V $\epsilon_{r2} = 4$, $\epsilon_{r4} = 6$.

$$\begin{split} \tilde{C}_{12} &= 4.324 \, \mu F \quad \tilde{C}_{1234} = 68.324 \, \mu F \\ q_{12} &= q_1 = q_2 = \tilde{C}_{12} \, \mathcal{E} = 51.89 \, \mu C \quad q_3 = C_3 \, \mathcal{E} = 48 \, \mu C \quad q_4 = \tilde{C}_4 \, \mathcal{E} = 720 \, \mu C \\ q_{1234} &= \tilde{C}_{1234} \, \mathcal{E} = 819.89 \, \mu C \end{split}$$

$$\Delta V_1 = \frac{q_1}{C_1} = \frac{51.89 \,\mu\text{C}}{5 \,\mu\text{F}} = 10.378V \qquad \Delta V_2 = \frac{q_2}{\tilde{C}_2} = \frac{51.89 \,\mu\text{C}}{32 \,\mu\text{F}} = 1.622V$$

$$\Delta V_3 = \Delta V_4 = 12V$$

$$U_1 = \frac{1}{2}C_1\Delta V_1^2 = 2.5\mu F \times (10.378V)^2 = 269.257 \,\mu J$$

$$U_2 = \frac{1}{2}\tilde{C}_2\Delta V_2^2 = 16\,\mu F \times (1.622V)^2 = 42.094\,\mu J$$

$$U_3 = \frac{1}{2}C_3\Delta V_3^2 = 2\,\mu F \times (12V)^2 = 288\,\mu J \quad U_4 = \frac{1}{2}\tilde{C}_4\Delta V_4^2 = 30\,\mu F \times (12V)^2 = 4320\,\mu J$$

 $\Delta V_{ad} = \Delta V_{dc} = q_5 / C_5 = q_3 / C_3 = 5V$

 $q_3 = q_5 = q_{35} = C_{35}V_{ac} = 20\mu C$

2 condensatori con capacità C_1 =1 μ F, C_2 =3 μ F vengono separatamente caricati con una batteria \mathscr{E} = 100 V; una volta carichi, vengono connessi come in figura, connettendo i piatti di segno opposto: la corrente fluirà fino al raggiungimento dell'equilibrio; calcolare le cariche q_1 , q_2 e la differenza di potenziale tra a e b all'equilibrio

Prima di essere connessi, i 2 condensatori hanno carica:

$$q_{01} = C_1 \mathcal{E} = 100 \mu C; \quad q_{02} = C_2 \mathcal{E} = 300 \mu C$$

A circuito chiuso, in equilibrio, applichiamo la legge di Kirchoff:

$$(V_a - V_b) + (V_b - V_a) = \frac{q_1}{C_1} + \frac{q_2}{C_2} = 0 \implies q_1 = -\frac{C_1}{C_2} q_2$$

la carica totale sui piatti dei condensatori deve conservarsi: consideriamo la carica netta presente sul piatto negativo di C_1 e sul piatto positivo di C_2

prima della chiusura del circuito:

$$q_{02} - q_{01} = 200 \mu C$$

dopo la chiusura del circuito questa carica (racchiusa dall'area rossa) deve essere la stessa, per cui:

$$q_2 - q_1 = 200 \mu C \Rightarrow q_2 = q_1 + 200 \mu C$$

Sostituendo l'espressione precedente:

$$\begin{aligned} q_2 &= -\frac{C_1}{C_2} q_2 + 200 \mu C \Rightarrow q_2 = 150 \mu C \\ V_b - V_a &= \frac{q_2}{C_2} = \frac{150 \mu C}{3 \mu F} = 50 V = -\frac{q_1}{C_1} \end{aligned}$$

Condensatori isolati:

Si noti che poiché la capacità di C_2 è il triplo di quella di C_1 , a circuito chiuso C_2 deve avere il triplo della carica di C_i ; inoltre la carica totale sui piatti connessi dal filo deve conservarsi; ne segue che a circuito chiuso la polarità di C_1 deve invertirsi

Nel circuito in figura scorre una corrente i=1 mA; inoltre:

$$\mathcal{E}_1 = 2V$$
 $\mathcal{E}_2 = 3V$ $r_1 = r_2 = 3\Omega$

Calcolare il valore di R e la potenza termica dissipata su R

Essendo il generatore 2 più potente, è evidente che la corrente deve circolare in senso antiorario; dalla legge di Kirchhoff:

$$\mathcal{E}_2 - \mathcal{E}_1 = i(r_1 + r_2 + R) \qquad \Rightarrow R = \frac{\mathcal{E}_2 - \mathcal{E}_1}{i} - (r_1 + r_2) = 994\Omega$$

$$P = i^2 R = (1mA)^2 \times 994\Omega = 0.994 \, mW$$

Nel circuito in figura tutte le resistenze valgono $R=5\,\Omega$

1) Calcolare la resistenza equivalente tra i punti F ed H

$$\frac{1}{R_{FH}} = \frac{1}{2R} + \frac{1}{2R} + \frac{1}{R} \Longrightarrow R_{FH} = \frac{R}{2} = 2.5\Omega$$

2) Calcolare la resistenza equivalente tra i punti F e G

- a) R_1 ed R_2 in serie: $R_{12} = 2R$
- b) R_{12} in parallelo con R_3 : $R_{123} = (2/3)R$
- c) R_{123} in serie con R_4 : $R_{1234} = (5/3)R$
- d) R_{1234} in parallelo con R_5 : $R_{eq} = R_{1234} \times R_5 / (R_{1234} + R_5) = (5/3) / (8/3) R = (5/8) R = 3.13 <math>\Omega$

$a \xrightarrow{+} \begin{array}{c} & & & \\ &$

Esercizio 27.13

Consideriamo il circuito in figura con 3 batterie; sia:

$$\mathcal{E}_1 = 4V$$
 $\mathcal{E}_2 = 2V$ $\mathcal{E}_3 = 7V$ $R_1 = 5\Omega$ $R_2 = 10\Omega$

- a) Calcolare la corrente i_1 che attraversa la resistenze R_1 , la corrente i_2 che attraversa la resistenza R_2 , la corrente i_3 che attraversa il ramo della batteria 3.
- b) Calcolare la differenza di potenziale ΔV_1 ai capi di R_1 , la differenza di potenziale ΔV_2 ai capi di R_2 , la differenza di potenziale ΔV_{ab} tra i punti a e b
- c) Indicare con frecce in figura il verso delle correnti positive i_1 i_2 i_3
- d) Calcolare la potenza P_{B1} , P_{B2} , P_{B3} erogata dalle batterie 1, 2, 3
- e) Calcolare la potenza P_{R1} , P_{R2} dissipata dalle resistenze R_1 , R_2 ,

Ipotizziamo un verso di percorrenza per le correnti positive, come indicato in figura, e risolviamo le equazioni di Kirchoff per le due maglie chiuse

per la maglia superiore:

$$\mathcal{E}_2 + \mathcal{E}_3 - \mathcal{E}_1 = i_2 R_2 \Longrightarrow i_2 = \frac{5V}{10\Omega} = 0.5A$$

per la maglia inferiore:

$$\mathcal{E}_3 = i_1 R_1 \Longrightarrow i_1 = \frac{7V}{5\Omega} = 1.4A$$

Equazione dei nodi in *a*:

$$i_3 = i_1 + i_2 = 1.9A$$

le correnti sono tutte positive, dunque i versi ipotizzati sono effettivamente quelli delle correnti positive; calcoliamo le d.d.p.: ΔV_1 non è altro che la d.d.p. ai poli della batteria 3, e Δv_{ab} la somma delle d.d.p. ai poli delle batterie 2 e 3:

$$\Delta V_1 = \mathcal{E}_3 = 7V;$$
 $\Delta V_2 = i_2 R_2 = 5V;$ $V_a - V_b = \mathcal{E}_2 + \mathcal{E}_3 = 9V$

Potenza dissipata sulle resistenze:

$$P_{R1} = i_1^2 R_1 = 1.4^2 A^2 \times 5\Omega = 9.8W$$

$$P_{R2} = i_2^2 R_2 = 0.5^2 A^2 \times 10\Omega = 2.5W$$

Potenza erogata dalle batterie:

$$P_{B1} = i_2 \mathcal{E}_1 = 0.5A \times 4V = 2W$$

$$P_{B2} = i_2 \mathcal{E}_2 = 0.5A \times 2V = 1W$$

$$P_{B3} = i_3 \mathcal{E}_3 = 1.9A \times 7V = 13.3W$$

Notiamo che mentre la polarità delle batterie 2 e 3 è concorde col verso positivo delle correnti che attraversano i relativi rami, la polarità della batteria 1 è opposta al verso della corrente i_2 , dunque la potenza P_{B1} è ASSORBITA, non erogata; la conservazione dell'energia impone quindi che:

$$P_{B2} + P_{B3} = P_{R1} + P_{R2} + P_{B1}$$

Inserendo i valori calcolati si può verificare che questa equazione è soddisfatta

Consideriamo il circuito in figura, con due batterie identiche con valori: $\mathcal{E} = 12V$ $r = 0.3\Omega$ $R = 10~\Omega$

- a) Calcolare la correnti i_1 , i_2 , i_3 che attraversano i tre rami orizzontali del circuito
- b) Calcolare la differenza di potenziale ΔV ai capi di R, e la differenza di potenziale ΔV_1 e ΔV_2 ai capi di r del ramo superiore ed inferiore
- c) Indicare con frecce in figura il verso delle correnti $i_1 \ i_2 \ i_3$

Ipotizziamo che il verso delle correnti siano quelli indicati dalle linee rosse e applichiamo Kirchhoff alle maglie chiuse:

Maglia inferiore: $\mathscr{E} = i_2 r + i_3 R$

Giro largo: $\mathscr{E} = i_1 r + i_3 R$

Da cui segue che deve essere $i_1 = i_2$; inoltre dalla legge dei nodi:

$$i_1 + i_2 = i_3 \Longrightarrow i_3 = 2i_1$$

Consideriamo il circuito in figura, con due batterie identiche con valori: -20.20 -20.20 -20.20

ori:
$$\mathscr{E} = 12V$$
 $r = 0.3\Omega$ $R = 10 \Omega$
 $\mathscr{E} = i_1 r + i_3 R = i_1 (r + 2R)$
 $\Rightarrow i_1 = i_2 = \frac{\mathscr{E}}{(r + 2R)} = \frac{12V}{20.3\Omega} = 0.59A$
 $i_3 = 1.18A$

$$\Delta V = i_3 R = 1.18 A \times 10 \Omega = 11.8 V$$

 $\Delta V_1 = \Delta V_2 = i_1 r = 0.59 A \times 0.3 \Omega = 0.2 V$

La d.d.p. ai capi dei rami orizzontali è uguale alla f.e.m. delle batterie meno la caduta di tensione dovuta alla resistenza interna delle batterie

Problema 27.3

La figura mostra un circuito a 2 maglie; date le f.e.m. e le resistenze, trovare i valori delle correnti in ogni ramo del circuito

$$\mathcal{E}_1 = 3V \quad \mathcal{E}_2 = 6V$$

$$R_1 = 2\Omega \quad R_2 = 4\Omega$$

Ipotizziamo un verso per le correnti e scriviamo la 2° legge di Kirchoff per ciascuna maglia chiusa e la legge dei nodi in *a*:

Problema 27.3

Maglia di sinistra:
$$\mathcal{E}_1 - \mathcal{E}_2 = i_1 R_1 + i_2 R_2 + i_1 R_1 = 2i_1 R_1 + i_2 R_2$$
 (1)

Maglia di destra:
$$\mathcal{E}_2 - \mathcal{E}_2 = i_3 R_1 + i_2 R_2 + i_3 R_1 = 0 \Rightarrow i_3 = -i_2 (R_2 / 2R_1)$$
 (2)

Legge dei nodi:
$$i_2 = i_1 + i_3$$
 (3)

Abbiamo un sistema di 3 equazioni in 3 incognite; sostituendo l'eq. (2) nella (3) ricaviamo la relazione tra i_2 ed i_1

$$i_2 = i_1 - i_2 \frac{R_2}{2R_1} \Longrightarrow i_2 = i_1 \frac{2R_1}{2R_1 + R_2}$$
 (4)

Sostituisco questo risultato nell'Eq. (1) e risolviamo rispetto ad i_1

$$i_1 = (\mathcal{E}_1 - \mathcal{E}_2) \frac{2R_1 + R_2}{4R_1^2 + 4R_1R_2} = -0.5A$$

Conoscendo i_1 è facile calcolare i_2 dall'eq. (4) e poi i_3 dalla (3)

$$i_2 = -0.25A$$
 $i_3 = 0.25A$

Problema 27.3

Dai valori calcolati risulta che il verso delle correnti positive i_1 e i_2 è opposto a quanto ipotizzato; era preventivabile considerando che la batteria più potente è la 2, e dunque tende ad imporre il proprio verso di percorrenza stabilito dai suoi poli

Il giusto verso delle correnti positive è quindi quello disegnato in figura

Esercizio

Consideriamo il circuito in figura, con:

$$R_1 = 2\Omega$$
 $R_2 = 5\Omega$

Calcolare il valore di R_3 che rende massima la potenza dissipata su questa resistenza

Dobbiamo determinare la corrente nel circuito in funzione di R_3

$$\mathscr{E} = i_1(R_1 + R_{23}) \Longrightarrow i_1 = \frac{\mathscr{E}}{(R_1 + R_{23})}$$

$$V_a - V_b = i_1 R_{23} = i_2 R_2 = i_3 R_3$$

$$i_1 = i_2 + i_3 = i_3 \left(\frac{R_3}{R_2} + 1\right) = i_3 \left(\frac{R_2 + R_3}{R_2}\right) = \frac{\mathscr{E}}{\left(R_1 + R_{23}\right)}$$

$$\Rightarrow i_3 = \left(\frac{1}{R_2 + R_3}\right) \frac{R_2 \mathcal{E}}{\left(R_1 + \frac{R_2 R_3}{R_2 + R_2}\right)} = \frac{R_2 \mathcal{E}}{R_1 R_2 + R_1 R_3 + R_2 R_3}$$

Esercizio

Consideriamo il circuito in figura, con:

$$R_1 = 2\Omega$$
 $R_2 = 5\Omega$

Calcolare il valore di R_3 che rende massima la potenza dissipata su questa resistenza

$$P = i_3^2 R_3 \quad \frac{\partial P}{\partial R_3} = 2i_3 \frac{\partial i_3}{\partial R_3} R_3 + i_3^2 = 0$$

$$\frac{\partial i_3}{\partial R_3} = -\frac{(R_1 + R_2)R_2 \mathcal{E}}{(R_1 R_2 + R_1 R_3 + R_2 R_3)^2} = -\frac{(R_1 + R_2)}{(R_1 R_2 + R_1 R_3 + R_2 R_3)} i_3$$

Sostituisco la derivata nell'equazione precedente ed ottengo:

$$\frac{2(R_1 + R_2)R_3}{(R_1R_2 + R_1R_3 + R_2R_3)} = 1 \implies R_3 = \frac{R_1R_2}{R_1 + R_2} = \frac{10\Omega^2}{7\Omega} = 1.43\Omega$$

Problema 27.5: scarica dell'automobile

Durante il moto, una quantità di elettroni si trasferiscono dal suolo alla carrozzeria attraverso i pneumatici. Una volta che l'auto è ferma, carrozzeria e suolo rappresentano i 'piatti' di un condensatore cortocircuitato dalla resistenza dei pneumatici; al sistema serve del tempo per scaricare attraverso le gomme l'energia accumulata durante il moto

Il sistema è equivalente ad un condensatore con le 4 resistenze dei pneumatici in parallelo; sia R_{pn} = 100 G Ω la resistenza di ciascun pneumatico; siano C=500 pF e ΔV_0 = 30 kV capacità e potenziale del condensatore auto/suolo; immaginiamo di dover fare benzina: quanto tempo dobbiamo attendere prima di inserire la pistola nel serbatoio, affinché l'energia del condensatore cali al di sotto del valore di innesco della scintilla U_{inc} = 50 mJ ?

Problema 27.5: scarica dell'automobile

Il sistema può ridursi ad un RC equivalente con:
$$\frac{1}{R} = \frac{4}{R_{nn}} \rightarrow R = 25 G\Omega$$

Il tempo caratteristico dei questo circuito RC è:

$$\tau = RC = 25G\Omega \times 500 \, pF = 12.5 \, s$$

È un tempo piuttosto lungo, a causa dell'altissima resistenza dei pneumatici (la gomma è isolante)

Carica e d.d.p. ai piatti del condensatore durante il processo di scarica variano secondo la legge:

A $T = t/\tau$

$$\Delta V(t) = V_0 e^{-t/\tau} \qquad q(t) = C V_0 e^{-t/\tau}$$

La corrispondente variazione di energia immagazzinata nel condensatore durante la scarica è: $1 \quad \text{(AVIII)}^2 \quad 1 \quad \text{CVI}^2 \quad ^{-2t/\tau}$

$$\Delta U(t) = \frac{1}{2} C(\Delta V(t))^{2} = \frac{1}{2} C V_{0}^{2} e^{-2t/\tau}$$

Possiamo invertire l'equazione e ricavare il tempo in funzione dell'energia:

$$\frac{2\Delta U}{CV_0^2} = e^{-2t/\tau} \Rightarrow t = -\frac{\tau}{2} \ln \frac{2\Delta U}{CV_0^2}$$

Problema 27.5: scarica dell'automobile

Calcoliamo il tempo necessario a far sì che l'energia del condensatore arrivi all'energia di soglia per l'innesco, ovvero il tempo corrispondente all'energia $\Delta U = U_{inc} = 50 \text{ mJ}$:

$$t = -\frac{\tau}{2} \ln \frac{2\Delta U}{CV_0^2} = -\frac{12.5}{2} s \ln \frac{2 \times 50 mJ}{500 pF (30 kV)^2} = -6.25 \times \ln \frac{10}{45} s = 9.4 s$$

E' un tempo considerevole: mai arrivare alla pompa e fare benzina al volo! Nelle gare automobilistiche, tipicamente i pneumatici inglobano granuli di materiale conduttore (ad es. carbonio) per ridurre il tempo di scarica.

L'andamento dell'energia è prevalentemente stabilito dal tempo caratteristico, ovvero da RC; dal grafico vediamo che se la resistività dei pneumatici si riduce da $100~\rm G\Omega$ a $10~\rm G\Omega$ il tempo di soglia necessario a scongiurare l'innesco diventa inferiore al secondo

Esercizio 27.3: batteria auto

Le caratteristiche più importanti di una batteria per auto sono: carica totale (q = 60 Ah) e la f.e.m. (voltaggio) $\mathcal{E} = 12 \text{ V}$

$$60Ah = 60A \times 3600 s = 2.16 \times 10^5 C$$

Immaginiamo di lasciare le luci dell'auto accese, e che queste consumino una potenza P = 100 W; in quanto tempo si scarica la batteria?

La potenza erogata dalla batteria è: $P=i\,\mathscr{E}$

Se la potenza erogata è costante nel tempo, ed il voltaggio resta costante nel tempo, ovviamente anche la corrente è costante; si ha quindi:

$$q = \int_{0}^{t} i \, dt = i \, t \Rightarrow t = \frac{q}{i} = \frac{q}{P} \mathcal{E} = \frac{60Ah \times 12V}{100W} = 7.2 \, h = 7h,12 \, \text{min}$$

Esercizio: stufa elettrica

Una stufa elettrica della potenza di 1250 W viene alimentata con una d.d.p. di 220 V.

- a) Qual'e la corrente nella stufa?
- b) Qual'e la resistenza della spirale riscaldante?
- c) Quanta energia termica viene prodotta in un'ora dalla stufa?

a)
$$P = iV \implies i = \frac{P}{V} = \frac{1250W}{220V} = 5.68A$$

b)
$$P = i^2 R \Rightarrow R = \frac{P}{i^2} = \frac{1250W}{(5.68A)^2} = 38.74\Omega$$

Se potenza erogata, voltaggio e corrente sono costanti nel tempo, la quantità di carica che attraversa la stufa in 1 ora è:

$$q = it = 5.68A \times 3600 s = 2.04 \times 10^4 C$$

L'energia associata all'erogazione di una carica q spinta da una differenza di potenziale ΔV costante è data da:

c)
$$\Delta U = q\Delta V = 2.04 \times 10^4 C \times 220V = 4.5 \times 10^6 J$$

Problema 3

Consideriamo una sfera isolante uniformemente carica di carica q_s = 5 μ C e raggio a=4 cm

a) scrivere l'espressione del modulo campo elettrico E(r) e del potenziale corrispondente V(r) in funzione della distanza dal centro, nella regione interna alla sfera (r < a) Per il calcolo del potenziale si assuma nullo il potenziale nel centro della sfera, ovvero V(0) = 0

a)
$$r < a$$
 $E(r) = k \frac{q_s}{a^3} r$ $V(r) = -k \frac{q_s}{2a^3} r^2$

b) scrivere l'espressione E(r) del modulo campo elettrico E(r) e del potenziale corrispondente V(r) in funzione della distanza dal centro, nella regione esterna alla sfera (r > a). Per il calcolo del potenziale, si assuma nullo il potenziale all'infinito, ovvero $V(\infty) = 0$

b)
$$r > a$$
 $E(r) = k \frac{q_s}{r^2}$ $V(r) = k \frac{q_s}{r}$

Problema 3

c) Calcolare l'intensità del campo elettrico e del potenziale nei punti r=2 cm, r=6 cm

$$r = 2cm$$
 $E = 9 \times 10^9 \frac{Nm^2}{C^2} \frac{5\mu C \times 2cm}{(4cm)^3} = 1.41 \times 10^7 (N/C)$

$$r = 6cm$$
 $E = 9 \times 10^9 \frac{Nm^2}{C^2} \frac{5\mu C}{36 \times 10^{-4} m^2} = 1.25 \times 10^7 (N/C)$

$$r = 2cm$$
 $V = -9 \times 10^9 \frac{Nm^2}{C^2} \frac{5\mu C \times 4cm^2}{2(4cm)^3} = -1.41 \times 10^5 V$

$$r = 6cm$$
 $E = 9 \times 10^9 \frac{Nm^2}{C^2} \frac{5\mu C}{6 \times 10^{-2} m} = 7.5 \times 10^5 V$