Exercises 91

7. Prove:

$$\Box \Box A \leftrightarrow \Box A, \tag{4.9}$$

$$\Diamond \Diamond A \quad \leftrightarrow \quad \Diamond A, \tag{4.10}$$

$$\Diamond \Box \Diamond A \quad \leftrightarrow \quad \Box \Diamond A, \tag{4.11}$$

$$\Box \Diamond \Box A \leftrightarrow \Diamond \Box A. \tag{4.12}$$

It follows that strings of unary temporal operators "collapse" to a single operator or to a pair of distinct operators.

- 8. Using the operator \mathcal{U} , modify Equation 4.1 (page 79) so that it also specifies freedom from starvation for process p.
- 9. The temporal operator *leads to*, denoted \rightsquigarrow , is defined as: $A \rightsquigarrow B$ is true in a state s_i if and only if for all states s_j , $j \ge i$, if A is true s_j , then B is true in some state s_k , $k \ge j$. Express \rightsquigarrow in terms of the other temporal operators.
- 10. Prove the correctness of Peterson's algorithm, repeated here for convenience:

Algorithm 4.3: Peterson's algorithm			
boolean wantp \leftarrow false, wantq \leftarrow false			
integer last $\leftarrow 1$			
p		q	
loop forever		loop forever	
p1:	non-critical section	q1:	non-critical section
p2:	wantp ← true	q2:	wantq ← true
p3:	last ← 1	q3:	last ← 2
p4:	await wantq $=$ false or	q4:	await wantp $=$ false or
	last = 2		last = 1
p5:	critical section	q5:	critical section
p6:	wantp \leftarrow false	q6:	wantq ← false

First show that

$$(p4 \land q5) \rightarrow (wantq \land last = 1),$$
 (4.13)

$$(p5 \land q4) \rightarrow (wantp \land last = 2)$$
 (4.14)

are invariant, and then use them to prove that mutual exclusion holds. To prove liveness for process p, prove the following formulas:

$$p4 \land \Box \neg p5 \rightarrow \Box \Diamond (wantq \land (last \neq 2)), \quad (4.15)$$

$$\Diamond \Box (\neg wantq) \lor \Diamond (last = 2),$$
 (4.16)

$$p4 \land \Box \neg p5 \land \Diamond (last = 2) \rightarrow \Diamond \Box (last = 2),$$
 (4.17)

and deduce a contradiction.