位相空間

集合 X に部分集合族 \mathcal{O} が開集合の公理をみたすとき、その集合と集合族の組 (X,\mathcal{O}) を位相空間という。

開集合の公理

X: 集合、 \mathcal{O} : 部分集合族

- 1. $X \in \mathcal{O}, \emptyset \in \mathcal{O}$
- 2. $A_i \in \mathcal{O}$ に対して $\bigcap_{i=1}^n A_i \in \mathcal{O}$
- 3. $A_k \in \mathcal{O}$ に対して $\bigcup_{k \in \Lambda} A_k \in \mathcal{O}$

距離空間

集合 X に距離関数 $d: X \times X \to \mathbb{R}$ が定義される時集合と関数の組 (X,d) を距離空間 という。

距離関数

関数 $d: X \times X \to \mathbb{R}$ が次を満たす時距離関数という。

- 1. d(x,y) > 0, $d(x,y) = 0 \Leftrightarrow x = y$
- 2. d(x, y) = d(y, x)
- 3. $d(x,z) \le d(x,y) + d(y,z)$

距離位相

集合 X に対し距離関数を用いて開集合族 \mathcal{O} が定められる時 (X,\mathcal{O}) を距離位相空間という。

 $\mathcal{O} = \{O \subset X \mid \forall x \in O, \exists \varepsilon > 0 \text{ s.t. } U_{\varepsilon}(x) \subset O\} \ (U_{\varepsilon}(x) \text{ は点 } x \text{ に於ける } \varepsilon\text{-近傍である})$

離散位相

全ての部分集合が開集合である時、離散位相という。

密着位相

全体集合と空集合のみが開集合となる時、密着位相という。

.....

位相空間は何を開集合と定めるかによって異なる性質を持つ。

問題

1. 有限集合上の距離位相空間は離散空間であることを示せ。

.....

X を有限集合とし、d を距離関数とする。

 $x \in X$ とする。x と異なる X の点との距離の内、最小のものを m とする。

$$m = d(x, \{x\}^c) \tag{1}$$

x の近傍 $U_m(x)$ は x のみの集合となる。 $U_m(x) = \{x\}$ より集合 $\{x\}$ は $U_m(x) \subset$ $\{x\}$ を満たす為、開集合である。

任意の点 $x \in X$ に対して 1 点集合 $\{x\}$ が開集合となる。この為、複数の点が含ま れた集合 $\{x_1,\ldots,x_n\}$ も各点における近傍が含まれるため開集合となる。

つまり任意の部分集合が開集合となるので離散位相となる。

 \dots Xが離散位相 \Rightarrow 1 点集合が開集合 \dots X が離散位相空間である時、全ての部分集合は開集合となる。1 点からなる集合

{x} も部分集合であるのでこれらも開集合となる。

 \dots Xが離散位相 \Leftarrow 1点集合が開集合 \dots \dots

 $\forall x \in X$ において $\{x\}$ が開集合であるとする。

 $x \neq y$ のとき、 $\{x\} \cap \{y\} = \emptyset$ より \emptyset は開集合となる。

X の全ての部分集合も 1 点集合の和集合として表せる。任意個の和集合も開集合 となるので任意の部分集合も開集合である。

よって、X は離散位相空間となる。