Predicting mortality of patients based on the first 24 hours and last 24 hours

- · we will compare which model performs better
- · discuss does feature importance change between the two time periods?

Feature selection:

- · we use three different models
 - logistic
 - o random forest
 - o RFE
 - o to find which indicators we should set on

	△ feature	# importance
1	Mean_GCS.x	0.07223031787977341
20	Mean_PaCO2.x	0.04315522047425926
2	Mean_HR.x	0.040680473761705443
23	Mean_FiO2.x	0.03861268980106999
12	Mean_HCO3.x	0.03798905880402715
7	Mean_Temp.x	0.03610220991557654
15	Mean_Platelets.x	0.034831225040007754
18	Mean_WBC.x	0.03456678688811546
8	Mean_Urine.x	0.0343379909899835
11	Mean_Glucose.x	0.033223630573684326

RF

	Feature	Coefficient	Abs Importance
32	Mean_Bilirubin.x	1.825013	1.825013
1	Mean_GCS.x	-1.656659	1.656659
9	Mean_BUN.x	1.263250	1.263250
23	Mean_Fi02.x	1.174630	1.174630
2	Mean_HR.x	1.035356	1.035356
28	Mean_Albumin.x	-0.882943	0.882943
11	Mean_Glucose.x	0.845737	0.845737
18	Mean_WBC.x	0.832326	0.832326
33	Mean_Lactate.x	0.823838	0.823838
27	Mean_Sa02.x	-0.794865	0.794865
4	Mean_NIMAP.x	-0.793791	0.793791
22	Mean_DiasABP.x	-0.758433	0.758433
0	Mean_Weight.x	-0.643891	0.643891
20	Mean_PaC02.x	-0.598986	0.598986
19	Mean_pH.x	0.573889	0.573889

After comparing between each model we settled with these 13 indicators...

```
colums_keep = ["Mean_GCS.x", "Mean_Temp.x", "Mean_PaCO2.x", "Mean_BUN.x", "Mean_Lactate.x", "Mean_WBC.x", "Mean_HR.x", "Mean_Glucose.x", "Mean_SysABP.x", "Mean_Urine.x", "Mean_Platelets.x", "Mean_HCO3.x", "Mean_Bilirubin.x"]
```

- 48 hour model produced the same results... with same important indicators
- Building the model and what is important
 - RECALL and PRECISION
 - o because in the medical field FN where we predict survival when death is bad.
 - o FP, means surive but predicted as dead... this means that we could overload staff with work
 - o there needs to be some form of balance between the two
 - we however will prioritise Recall as getting treatement is important.

· settle with RF. Why? no linear relationship between the dataset

FIRST TRIAL 24 HR

FIRST TRIAL last 24HR

```
Accuracy 0.742
Recall 0.538
             feature importance
0
         Mean_GCS.y
                        0.155882
                        0.088689
9
       Mean_Urine.y
         Mean_WBC.y
                        0.084760
       Mean_PaC02.y
                        0.074638
        Mean_Temp.y
                        0.074378
           Mean_HR.y
                        0.073811
     Mean_Glucose.y
                        0.072888
   Mean_Platelets.y
                        0.069516
          Mean_BUN.y
                        0.065193
8
       Mean_SysABP.y
                        0.062780
11
         Mean_HC03.y
                        0.062682
      Mean_Lactate.y
                        0.060919
12 Mean_Bilirubin.y
                        0.053863
```

CV_COMPARISON

-talk about features and differences and similarities

AFTER REMOVING SOME VARIABLES

Improving the model... using GridSearch to find best hyperparamaters and some finetuning

Using threshold: 0.4534867988694888

Accuracy: 0.698
Recall: 0.712
Precision: 0.581
F1 Score: 0.64
ROC AUC: 0.749

Using threshold: 0.4025322696760549

Accuracy: 0.692
Recall: 0.802
Precision: 0.563
F1 Score: 0.662
ROC AUC: 0.763

Clear to say that 48 hr is better indicator. why?

Some graphs to visualise tradeoff

Interpreting the model

- · comment on feature importance
- 2nd graph showcases some trend/correlation between GCS and predicted prob for Random Forest
- · around the threshold random forest is not as accurate in predicting mortality or not
- GCS 3-8 is critical
- · still a very strong indicator though
- · 24hr features hold similar importance vs 48hr which shows GCS as most important by alot

What are the applications of this model and limitations?

- · discussion or part of mine?
- · black box hard to understand
- DNR
- · unbalanced datasets can affect model performance
- · what form of medical faciltiies are being used

Conclusion

- insights and possible things to be improved on
- more information
- · use different models for future
- interpreting RF
- · consider doing time series and predict probability of death over time
- feature engineering
- based on indicators coming in and final hours. does this spread significantly impact probabilty of death