

SmartBeat

Plan

2 Solution

3 Implimentation

4 Conclusion

- Cardiovascular diseases are a leading global killer
- Early detection is critical
- Current monitoring tools are: Bulky, Invasive, Not suitable for long-term use

Heart disease in Europe

WHO's European region

It kills 40 in 100 men and 49 in 100 women

Number one killer of women in European countries

Number one killer of men in European countries

4,002,632

total deaths

otal deatils

Figures for the 53 countries in the WHO European region

CENTRAL ILLUSTRATION: Global Burden of Cardiovascular Diseases and Risks

From 2011 to 2017

SmartBeat

Smart health monitoring vest

Al-powered analytics

Continuous data collection

Predictive the heart state

Smart vest

Sensors

Mer Jobesa

Textile ECG Electrodes

Pressure Sensor

Electronics and Connectivity

Fabric and Materials

Moisture-Wicking Fabric

Elastic Compression Fabric

We trained a model using the "heart-failure-prediction" dataset, inspired by the research paper "Application of Deep Learning for Heart Attack Prediction with Explainable AI." We employed an LSTM model to predict heart attacks.

Precision	90%
Recall	95%
Accuracy	85%

We trained a Google Vision
Transformer (ViT) model to classify
ECG images, inspired by the paper
"Heart Disease Detection using Vision-Based Transformer Models from ECG
Images".

ECGRATE & RHYTHM

Conclusion

Developed a smart health monitoring vest with advanced sensors and Al.

Designed for comfort, scalability, and costeffectiveness.

- classify ECG using google VIT
- Enables continuous health monitoring and early disease detection.
- Future work: clinical validation and expanded capabilities.

Q8A