Math40003 Linear Algebra and Groups Term 2 Unseen 4B Groups (Week 7)

Recall the following lemma and fact that you may want to use for some of the questions.

Lemma 1 (Corollary 3.2.1 (?) from Introduction to University Mathematics). Let $a, b \in \mathbb{Z}$. If n|ab and gcd(n, a) = 1, then n|b.

Fact 1 (The Pigeonhole Principle). Let A be a finite set, and let $f: A \to A$ be a function on A. Then f is injective if and only if it is surjective.

- 1. Let us define a new algebraic structure, $group^*$, to be a set A, with an associative binary operation, denoted by \cdot , and an element $e \in A$ satisfying:
 - $\forall a \in A : a \cdot e = a$.
 - $\forall a \in A : \exists a' \in A$, such that $a \cdot a' = e$.

Prove that this new algebraic structure, $group^*$, gives the classical group structure. In other words, prove that if (A, \cdot) is a group*, then it is a group.

It suffices to show:

- (a) $\forall a \in A : e \cdot a = a$.
- (b) $\forall a \in A : \exists a' \in A$, such that $a' \cdot a = a \cdot a' = e$.

For Item 1b, let $a \in A$, let $a' \in A$ such that $a \cdot a' = e$ and let $a'' \in A$ such that $a' \cdot a'' = e$, as promised from the definition of group*. Then

$$a' \cdot a = a' \cdot (a \cdot e) = a' \cdot (a \cdot a') \cdot a'' = (a' \cdot e) \cdot a'' = a' \cdot a'' = e.$$

For Item 1a, let $a \in A$. Then

$$e \cdot a = (a \cdot a') \cdot a = a \cdot (a' \cdot a) = a \cdot e = a.$$

2. A monoid is a set A with an associative binary operation \circ and an element $e \in A$ such that

$$\forall a \in A : a \circ e = e \circ a = a.$$

Let (A, \circ) be a monoid, and let $A^{\times} := \{ a \in A | \exists b \in A : a \circ b = b \circ a = e \}$. Prove that (A^{\times}, \circ) is a group.

Clearly \circ is associative on A^{\times} and $e \in A^{\times}$. It remains to show that for all $a \in A^{\times}$, there is some $b \in A^{\times}$ such that $a \circ b = b \circ a = e$. Such b exists in A, so it is only left to show it is in A^{\times} , but this follows from the definition.

Closedness: let $a_1, a_2 \in A^{\times}$, and let $b_1, b_2 \in A^{\times}$ such that $a_1 \circ b_1 = a_2 \circ b_2 = e$. Then $a_1 \circ a_2 \circ b_2 \circ b_1 = a_1 \circ e \circ b_1 = a_1 \circ b_1 = e$. 3. We recall the definition of $\mathbb{Z}/n\mathbb{Z}$ (Sometimes denoted \mathbb{Z}_n). For $a, b \in \mathbb{Z}$, denote $a \equiv b \mod n$ if n|a-b. This is an equivalence relation with n equivalence classes. The set of equivalence classes is denoted

$$\mathbb{Z}/n\mathbb{Z} = \{ [0], [1], \dots, [n-1] \}.$$

The operations +, \cdot on $\mathbb{Z}/n\mathbb{Z}$ are defined as follows: [a]+[b]=[a+b]; $[a]\cdot[b]=[a\cdot b]$.

- (a) Prove $(\mathbb{Z}/n\mathbb{Z}, +)$ is an Abelian group.
- (b) \cdot is associative and commutative on $\mathbb{Z}/n\mathbb{Z}$, but $(\mathbb{Z}/n\mathbb{Z},\cdot)$ is not a group.
- 4. Let $(\mathbb{Z}/n\mathbb{Z})^{\times} := \{ [a] \in \mathbb{Z}/n\mathbb{Z} | \exists [b] \in \mathbb{Z}/n\mathbb{Z} : [a] \cdot [b] = [1] \}.$
 - (a) Prove $((\mathbb{Z}/n\mathbb{Z})^{\times}, \cdot)$ is an Abelian group.

Questions 2 and 3b.

- (b) Show that for $[a] \in (\mathbb{Z}/n\mathbb{Z})$ the following are equivalent:
 - (i) $[a] \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.
 - (ii) $\forall [c] \in (\mathbb{Z}/n\mathbb{Z})$: if $[a] \cdot [c] = [0]$ then [c] = [0].
 - (iii) gcd(a, n) = 1.
- (i) \Longrightarrow (ii) Let $[a] \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Then there is some $[b] \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ such that $[a] \cdot [b] = [1]$. If there is some $[c] \in (\mathbb{Z}/n\mathbb{Z}) \setminus \{[0]\}$ such that $[a] \cdot [c] = [0]$. Then ac = nk and ab 1 = nl. So nkb c = cab c = c(ab 1) = cnl. Therefore, [c] = [0].
- (ii) \Longrightarrow (iii) Assume gcd(a, n) = d > 1. Then there are 0 < a' < a and 0 < n' < n such that a = a'd and n = n'd. So an' = a'n'd = a'n So $[a] \cdot [n'] = [0]$, but 0 < n' < n, so $[n'] \neq [0]$.
- (ii) \Leftarrow (iii) Assume there is some $[c] \in (\mathbb{Z}/n\mathbb{Z})$ such that $[c] \neq [0]$ and $[a] \cdot [c] = [0]$. Then ac = nk for some $k \in \mathbb{Z}$. Therefore, n|ac. If $\gcd(a,n) = 1$, then n|c, contradicting $[c] \neq [0]$.
 - (i) \Leftarrow (ii) Assume there is no $[c] \in (\mathbb{Z}/n\mathbb{Z})$ such that $[c] \neq [0]$ and $[a] \cdot [c] = [0]$. Then we have a map $f: (\mathbb{Z}/n\mathbb{Z}) \setminus \{ [0] \} \to (\mathbb{Z}/n\mathbb{Z}) \setminus \{ [0] \}$ defined by $f(x) = [a] \cdot x$. Furthermore, by Lemma 1, f is injective: if $[a \cdot b_1] = f([b_1]) = f([b_2]) = [a \cdot b_2]$, then $[b_1 b_2] = [0]$, therefore, $[b_1] = [b_2]$. By the Pigeonhole Principle, f is also surjective, therefore, since $[1] \neq [0]$ there is some $[b] \in (\mathbb{Z}/n\mathbb{Z}) \setminus \{ [0] \}$ such that $[a] \cdot [b] = [1]$.
 - (c) Let $a, b, x, y \in \mathbb{Z}$ such that ax + by = 1, then gcd(a, b) = 1.
 - (d) Find the size of the sets $(\mathbb{Z}/8\mathbb{Z})^{\times}$ and $(\mathbb{Z}/9\mathbb{Z})^{\times}$. Try generalizing your findings.

For p prime: $(\mathbb{Z}/p^r\mathbb{Z})^{\times}=p^r-p^{r-1}$. The elements in $\mathbb{Z}/p^r\mathbb{Z}$ that are not in $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ are exactly $p\mathbb{Z}/p^r\mathbb{Z}$.