Module 4: Metric Spaces and Sequences II Operational math bootcamp

Emma Kroell

University of Toronto

July 15, 2022

Outline

- Sequences
 - Cauchy sequences
 - subsequences

Sequences

Definition (Sequence)

Let (X,d) be a metric space. A *sequence* is an ordered list of points x_n , $n \in \mathbb{N}$, in X, denoted $(x_n)_{n \in \mathbb{N}}$. We say that a sequence $(x_n)_{n \in \mathbb{N}}$ converges to a point $x \in X$ if

Proposition

Let (X, d) be a metric space, and let $A \subseteq X$. Then \overline{A} is equal to the set of points in X which are limits of a sequence in A.

Proof.

Proof continued

Corollary

A set $F \subseteq X$, where (X, d) is a metric space, is closed if and only if every sequence in F which converges in X converges to a point in F.

Cluster points of a set

Definition

Let (X, d) be a metric space and $A \subseteq X$. A point $x \in X$ is a *cluster point* of A (also called accumulation point) if for every $\epsilon > 0$, $B_{\epsilon}(x)$ contains uncountably many points in A.

Proposition

 $x \in X$ is a cluster point of $A \subseteq X$ where (X, d) is a metric space if and only if there exists a sequence of points $x_n \in A$, $n \in \mathbb{N}$, such that $x_n \to x$.

Proof.

Combining the previous result with the limit characterization of closure gives the following:

Corollary

For $A \subseteq X$, (X, d) a metric space, we have

$$\overline{A} = A \cup \{x \in X : x \text{ is a cluster point of } A\}.$$

Cauchy sequences

Definition (Cauchy sequence)

Let (X,d) be a metric space. A sequence denoted $(x_n)_{n\in\mathbb{N}}\in X$ is called a *Cauchy sequence* if

Proposition

Let (X, d) be a metric space, and let $(x_n)_{n \in \mathbb{N}}$ be a convergent sequence in X. Then $(x_n)_{n \in \mathbb{N}}$ is Cauchy.

Proof.

Definition

A metric space where every Cauchy sequence converges (to a point in the space) is called *complete*.

Proposition

Let (X, d) be a metric space, and let $Y \subseteq X$.

- (i) If X is complete and if Y is closed in X, then Y is complete.
- (ii) If Y is complete, then it is closed in X.

Subsequences

Definition

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in a metric space (X,d). Let $(n_k)_{k\in\mathbb{N}}$ be a sequence of natural numbers with $n_1 < n_2 < \cdots$. The sequence $(x_{n_k})_{k \in \mathbb{N}}$ is called a *subsequence* of $(x_n)_{n\in\mathbb{N}}$. If $(x_{n_k})_{k\in\mathbb{N}}$ converges to $x\in X$, we call x a subsequential limit.

$$((-1)^n)_{n\in\mathbb{N}}$$

Proposition

A sequence $(x_n)_{n\in\mathbb{N}}$ in a metric space (X,d) converges to $x\in X$ if and only if every subsequence of $(x_n)_{n\in\mathbb{N}}$ also converges to x.

Proof.

Proof continued

Continuity

Definition

Let (X, d_X) and (Y, d_Y) be metric spaces, let $x_0 \in X$, and let $f: X \to Y$. f is continuous at x_0 if for every sequence $(x_n)_{n \in \mathbb{N}}$ in X that converges to x_0 , we have $\lim_{n \to \infty} f(x_n) = f(x_0)$.

We say that f is continuous if it is continuous at every point in X.

Theorem

Let (X, d_X) and (Y, d_Y) be metric spaces, let $x_0 \in X$, and let $f: X \to Y$. The following are equivalent:

- (i) f is continuous at x_0
- (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \epsilon$ for all $x \in X$ with $d_X(x,x_0)<\delta$
- (iii) for each $\epsilon > 0$, there is $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$

- (i) f is continuous at x_0
- (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \epsilon$ for all $x \in X$ with $d_X(x, x_0) < \delta$

Proof.

$$(i) \Rightarrow (ii)$$

- (i) f is continuous at x_0
- (ii) for all $\epsilon > 0$, there exists $\delta > 0$ such that $d_Y(f(x), f(x_0)) < \epsilon$ for all $x \in X$ with $d_X(x, x_0) < \delta$
- (iii) for each $\epsilon > 0$, there is $\delta > 0$ such that $B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0)))$

Proof continued

- $(ii) \Rightarrow (iii)$
- $(iii) \Rightarrow (i)$

Corollary

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$. The following are equivalent:

- (i) f is continuous
- (ii) if $U \subseteq Y$ is open, then $f^{-1}(U)$ is open
- (iii) if $F \subseteq Y$ is closed, then $f^{-1}(F)$ is closed

We need the following results about sets and functions:

Let X and Y be sets and $f: X \to Y$. Let $A, B \subseteq Y$. Then

1
$$f^{-1}(A) \subseteq f^{-1}(B)$$

2
$$f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$$

Proof.

Let (X, d_X) and (Y, d_Y) be metric spaces and let $f: X \to Y$.

$$(i) \Rightarrow (ii)$$
:

Proof continued

$$(ii) \Rightarrow (i)$$

$$(ii) \Rightarrow (iii)$$

$$(iii) \Rightarrow (ii)$$

References

Charles C. Pugh (2015). Real Mathematical Analysis. Undergraduate Texts in Mathematics. https://link-springercom.myaccess.library.utoronto.ca/book/10.1007/978-3-319-17771-7

Runde , Volker (2005). A Taste of Topology. Universitext. url: https://link.springer.com/book/10.1007/0-387-28387-0

Zwiernik, Piotr (2022). Lecture notes in Mathematics for Economics and Statistics. url: http://84.89.132.1/piotr/docs/RealAnalysisNotes.pdf

