

c) Los números racionales, \mathbb{Q} . d) Los números reales, \mathbb{R} .

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

$IIC1253 \text{ - } Matemáticas \text{ } Discretas \\ 1^{\circ} \text{ semestre } 2014 \text{ - } Prof. \text{ } Gabriel \text{ } Diéguez$

Interrogación 1

Nombre:	N° alumno:
Parte A (10	0%)
Instrucciones	
■ Marque sólo	una alternativa.
■ En las líneas	s siguientes a cada pregunta debe justificar brevemente su respuesta.
 Si no justific 	a o la justificación es incorrecta, no se considerará la alternativa que haya marcado.
■ Cada pregun	ata vale 1.2 ptos.
1. Se tiene la si	iguiente definición inductiva de un conjunto A :
A es el meno	or conjunto que satisface las siguientes reglas:
	(1) $0 \in A$ (2) Si $a \in A$, entonces $(a + 1) \in A$ y $(a - 1) \in A$.
El conjunto	A corresponde a:
a) Los núr	meros naturales, N.
b) Los núr	meros enteros, \mathbb{Z} .

2. Sea $P = \{p, q\}$ y L(P) el conjunto de fórmulas en lógica proposicional sobre las variables en P.

¿Cuál de las siguientes fórmulas en L(P) es una tautología?

- $a) \ ((p \vee q) \leftrightarrow (\neg p \vee q))$
- $b) \ ((p \to q) \leftrightarrow (p \vee \neg q))$
- $c) \ ((p \to q) \leftrightarrow (\neg p \lor q))$
- $d) \ ((p \to q) \land (\neg p \lor q))$

3. Suponga que P es un conjunto de variables proposicionales, y sea L(P) el conjunto de todas las fórmulas proposicionales que se pueden construir usando las variables en P. Si P contiene n elementos,

¿Cuántas tablas de verdad distintas existen para L(P)?

- a) 2^{n-1}
- b) 2n
- $c) 2^n$
- $d) 2^{2^n}$

4. Una relación binaria ${\cal R}$ es una relación de equivalencia si es:

- a) Refleja, simétrica y transitiva
- b) Refleja, antisimétrica y transitiva
- $\boldsymbol{c})$ No refleja, simétrica y conexa
- $d)\,$ No refleja, simétrica y no transitiva

5. Si $A,\,B$ y C son conjuntos, ¿cuál de las siguientes afirmaciones es ${\bf FALSA}?$

- $a) \ A \subseteq B \Leftrightarrow A \cup B = B$
- $b) \ A \subseteq B \Leftrightarrow A \cap B = A$
- c) $(A \cup B) \subseteq C \Leftrightarrow (A \subseteq C) \land (B \subseteq C)$
- $d) \ (A \cup B) \subseteq C \Leftrightarrow (A \subseteq C) \vee (B \subseteq C)$

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA DEPARTAMENTO DE CIENCIA DE LA COMPUTACION

IIC1253 - Matemáticas Discretas 1° semestre 2014 - Prof. Gabriel Diéguez

Interrogación 1

Parte B (90%)

- La nota de esta parte será el promedio de las notas de las 4 preguntas.
- Cada pregunta tiene un máximo de 6 ptos.
- Si no se indican puntajes, cada sub-pregunta tiene el mismo valor.
- 1. En esta pregunta debe justificar sus respuestas usando la noción de consecuencia lógica y el método de resolución.
 - a) Considere las siguientes aseveraciones:

 α_1 = "Si es de noche y no llueve, Daniela sale a pasear"

 α_2 = "Si no es de noche, Daniela no sale a pasear"

 $\varphi =$ "Todas las noches llueve"

¿Es correcto decir que φ se deduce de α_1 y α_2 ?

b) ¿Qué pasa con el problema anterior si ahora tomamos las siguientes aseveraciones?

 α_1 = "Si es de noche y no llueve, Daniela sale a pasear"

 α_2 = "Si es de noche, Daniela no sale a pasear"

 $\varphi =$ "Todas las noches llueve"

2. Sea EQ un conectivo ternario definido por la siguiente propiedad:

$$\sigma(EQ(\varphi, \psi, \theta)) = 1 \text{ si y s\'olo si } 3 \cdot \sigma(\varphi) - 2 \cdot (\sigma(\psi) + \sigma(\theta)) > 0.$$

- a) [2 ptos.] Dado $P = \{p, q, r\}$, defina el conectivo EQ(p, q, r) utilizando los conectivos $\neg, \lor y \land$.
- b) [4 ptos.] Demuestre que {EQ} no es funcionalmente completo.

- a) [1,2 ptos.] Defina inductivamente el conjunto de los números naturales N, suponiendo que sólo conoce el axioma del conjunto vacío, la operación de unión de conjuntos y cómo hacer una definición inductiva.
 - *Hint:* Defina un operador sucesor $\delta(n)$.
 - b) [0,6 ptos.] Use la definición que hizo en a) para listar los números naturales hasta el 4.
 - c) [0,6 ptos.] Defina la noción de "ser menor" a partir de su definición inductiva, de manera que capture la noción intuitiva usual. Es decir, debe dar una propiedad P tal que
 - $\forall m, n \in \mathbb{N}, m \text{ es menor que } n \text{ si y sólo si se cumple } P.$
 - d) [1,2 ptos.] Demuestre usando inducción que el 0 es el menor natural a partir de la definición de "ser menor" que hizo en c).
 - e) [1,2 ptos.] Defina inductivamente las funciones $sum : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ y $mult : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, que reciben dos números naturales y retornan su suma y su multiplicación respectivamente.
 - f) [1,2 ptos.] Muestre que mult(2,2) = 4.
- 4. Sea R una relación sobre un conjunto A. Diremos que una relación S sobre A es la **clausura transitiva** de R si:
 - S contiene a R; vale decir, $R \subseteq S$.
 - \blacksquare S es transitiva.
 - S es mínima; vale decir, para toda relación transitiva T sobre A que contiene a R, se tiene que $S \subseteq T$.

En esta pregunta usted construirá una fórmula en lógica proposicional φ tal que dadas dos relaciones R y S sobre un conjunto finito A, se cumpla que

S es la clausura transitiva de R si y sólo si φ es satisfacible.

Suponga que A contiene n elementos. Para cada $i, j \in \{1, ..., n\}$ considere variables proposicionales r_{ij} y s_{ij} , que indican que los elementos i y j están relacionados en R y S respectivamente. Utilice estas variables para las siguientes preguntas:

- a) [0,5 ptos.] Construya fórmulas φ_R y φ_S que representen a las relaciones.
- b) [0,5 ptos.] Construya una fórmula φ_{\subset} que diga que S contiene a R.
- c) [0,5 ptos.] Construya una fórmula φ_T que diga que S es transitiva.
- d) [2,5 ptos.] Dados dos elementos $i, j \in A$, diremos que existe un camino de largo k entre i y j en R si existen elementos $p_1, \ldots, p_k \in A$ tales que $R(i, p_1) \wedge R(p_1, p_2) \wedge \ldots \wedge R(p_k, j)$. Construya una fórmula φ_{ijk}^R que dados $i, j \in A$ diga que existe un camino de largo k entre ellos en R. Para esto, use variables proposicionales C_{ml}^{ij} , que indicarán que en un camino entre i y j, el elemento m-ésimo del camino es $l \in A$.
- e) [1 pto.] Use las fórmulas definidas en el ejercicio anterior para construir una fórmula φ_{min} que diga que S es mínima.
- f) [1 pto.] Use φ_R , φ_S , φ_{\subseteq} , φ_T y φ_{min} (junto con otras fórmulas si es necesario) para construir la fórmula φ pedida.