1

Chapter 9 Gaussian

Jay Vikrant EE22BTECH11025

Q9.3.6: The probability that a student is not a swimmer is $\frac{1}{5}$. Then the probability that out of five students, four are swimmers

1)
$${}^{5}C_{4}\left(\frac{4}{5}\right)^{4}\frac{1}{5}$$

2)
$$\left(\frac{4}{5}\right)^4 \frac{1}{5}$$

3)
$${}^{5}C_{1}\frac{1}{5}\left(\frac{4}{5}\right)^{4}$$

4) None of these

Solution: The *X* is the random variable, We require

Parameter	Value	Description
n	5	number of students
q	<u>1</u> 5	not a swimmer
p	4 5	swimmer
k	4	number of swimmers
X	$0 \le X \le 5$	X swimmer out of 5
Y	$0 \le Y \le 5$	Gaussian variable
μ	np = 4	mean
σ^2	$npq = \frac{4}{5}$	variance

TABLE 4
Given Information

pmf at X = 4,

$$p_X(4) = {}^5C_4 \left(\frac{4}{5}\right)^4 \left(\frac{1}{5}\right)^{5-4} = 0.4096$$
 (1)

Using central limit theorem, we can use the gaussian distribution function:

$$p_Y(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 $(x \in Y)$ (2)

Now, using Normal distribution at Y=4

$$p_Y(4) = \frac{1}{\sqrt{2\pi \left(\frac{4}{5}\right)}} e^{-\frac{(4-4)^2}{2\left(\frac{4}{5}\right)}}$$
(3)

$$=\frac{1}{\sqrt{2\pi\left(\frac{4}{5}\right)}}e^0\tag{4}$$

$$= 0.4463$$
 (5)

From the plot also the pmf is close to normal distribution pdf. Hence, $p_Y(4) \approx p_X(4)$ so, option (3) is correct

Fig. 4. Binomial pmf vs Gaussian pdf