FIGURE 1

42390P12279 VOLTAGE CONTROLLER FOR A HIGHLY LINEAR PHASE INTERPOLATOR ROBERT C. GLENN, et al.

42390P12279 VOLTAGE CONTROLLER FOR A HIGHLY LINEAR PHASE INTERPOLATOR ROBERT C. GLENN, et al.

FIGURE 3A

42390P12279 VOLTAGE CONTROLLER FOR A HIGHLY LINEAR PHASE INTERPOLATOR ROBERT C. GLENN, et al.

4/20

FIGURE 3B

5/20

FIGURE 3C

42390P12279 VOLTAGE CONTROLLER FOR A HIGHLY LINEAR PHASE INTERPOLATOR ROBERT C. GLENN, et al.

42390P12279 VOLTAGE CONTROLLER FOR A HIGHLY LINEAR PHASE INTERPOLATOR ROBERT C. GLENN, et al.

42390P12279 VOLTAGE CONTROLLER FOR A HIGHLY LINEAR PHASE INTERPOLATOR ROBERT C. GLENN, et al.

FIGURE 6

FIGURE 11

42390P12279 VOLTAGE CONTROLLER FOR A HIGHLY LINEAR PHASE INTERPOLATOR ROBERT C. GLENN, et al.

PSEUDO-DIFFERENTIAL AMPLIFIER SWING RANGE BASED ON DEGENERATION

42390P12279 VOLTAGE CONTROLLER FOR A HIGHLY LINEAR PHASE INTERPOLATOR ROBERT C. GLENN, et al.

16/20

RECEIVING A DATA SIGNAL	1410	GENERATING INTERRELATED CONTROL SIGNALS BASED ON SAID COMPARING 1440
COMPARING THE DATA SIGNAL TO A	1420	COMBINING AMPLITUDE CONTRIBUTIONS FROM PHASES OF A REFERENCE CLOCK SIGNAL WHEREIN THE AMPLITUDE CONTRIBUTIONS ARE
RECOVERED CLOCK SIGNAL		BASED ON THE INTERRELATED CONTROL SIGNALS, TO CHANGE A PHASE OF THE RECOVERED CLOCK SIGNAL WITH AN ANALOG TRANSITION

FIGURE 14

FIGURE 16

42390P12279 VOLTAGE CONTROLLER FOR A HIGHLY LINEAR PHASE INTERPOLATOR ROBERT C. GLENN, et al.

18/20

1640 1630 INTERRELATED CONTROL SIGNAL AND THE SECOND INTERRELATED CONTROL SIGNAL BETWEEN A HIGH PHASE IN PROPORTION TO THE INCREASE IN THE INTERRELATED CONTROL SIGNAL SUBSTANTIALLY CONTRIBUTION OF A SECOND REFERENCE CLOCK AMPLITUDE BOUNDARY AND A LOW AMPLITUDE BOUNDARY, TO CHANGE THE PHASE OF THE SIMULTANEOUSLY WITH SAID INCREASING AN DECREASING AN AMPLITUDE OF A SECOND Bounding the amplitudes of the first AMPLITUDE, TO DECREASE AN AMPLITUDE AMPLITUDE CONTRIBUTION OF THE FIRST REFERENCE CLOCK PHASE INTERPOLATED CLOCK SIGNAL WITH A SUBSTANTIALLY ANALOG TRANSITION 1620 1610 AMPLITUDE CONTRIBUTION OF A FIRST REFERENCE PHASE OF AN INTERPOLATED CLOCK SIGNAL INTERRELATED CONTROL SIGNAL IN RESPONSE SAID RECEIVING A SIGNAL, TO INCREASE AN RECEIVING A SIGNAL TO TRANSITION NCREASING AN AMPLITUDE OF A FIRST MACHINE-READABLE MEDIUM CLOCK PHASE

MACHINE-KEADABLE MEDIUM	
1810	1830
RECEIVING MORE THAN ONE PHASE OF A REFERENCE CLOCK SIGNAL	PROPORTIONING AN AMPLITUDE CONTRIBUTION OF THE FIRST PHASE AND AN AMPLITUDE CONTRIBUTION OF THE SECOND PHASE, BASED
	UPON THE INTERRELATED CONTROL SIGNAL
1820	1840
RECEIVING AN INTERRELATED CONTROL SIGNAL ASSOCIATED WITH A FIRST PHASE AND A SECOND PHASE OF THE MORE THAN ONE PHASE OF THE REFERENCE CLOCK SIGNAL	COMBINING THE AMPLITUDE CONTRIBUTIONS OF THE FIRST PHASE AND THE SECOND PHASE BASED UPON SAID PROPORTIONING, TO GENERATE A PHASE OF AN INTERPOLATED CLOCK SIGNAL WITH A SUBSTANIALLY ANALOG TRANSITION