2. 機械学習の基本的な手順

: ツールによる支援が可能

2.1 Weka を用いた機械学習

- Weka とは
 - Waikato Environment for Knowledge Analysis
 - 機械学習のアルゴリズムを実装した Java ライブラリ
 - データファイルを直接操作できる GUI を持つ
 - ライセンスは GNU GPL
 - プログラムの実行・改変・再配布が自由
 - ただし二次的著作物に対しても GNU GPL が適用される

2.1.1 データ収集・整理

萼・花びらの

長さ・幅

アヤメの

種類

• Weka のデータ形式 ARFF フォーマット

```
% 1. Title: Iris Plants Database
@RELATION iris
                    データセット名
@ATTRIBUTE sepallength
                        REAL
                                特徴名と型
@ATTRIBUTE sepalwidth
                        REAL
@ATTRIBUTE petallength
                        REAL
@ATTRIBUTE petalwidth
                        REAL
@ATTRIBUTE class {Iris-setosa, Iris-versicolor, Iris-virginica}
@DATA
                                        これ以降、1行に1事例
5.1, 3.5, 1.4, 0.2, Iris-setosa
4.9, 3.0, 1.4, 0.2, Iris-setosa
                                      (Excel の CSV 形式と同じ)
7.0, 3.2, 4.7, 1.4, Iris-versicolor
6.4, 3.2, 4.5, 1.5, Iris-versicolor
6.3, 3.3, 6.0, 2.5, Iris-virginica
5.8, 2.7, 5.1, 1.9, Iris-virginica
```

2.1.2 前処理

- 分析
 - 主成分分析(次元削減)
 - データの散らばりをできるだけ保存する低次元空間へ 写像
 - データの可視化に有効
- データの標準化
 - すべての次元を平均0、分散1にそろえる
 - 各次元に対して平均値を引き、標準偏差で割る

2.1.2 前処理

• 主成分分析の考え方

2.1.3 評価基準の設定

- 分割学習法
 - データの半分を学習用、残りの半分を評価用とする
 - ハイパーパラメータを調整する場合は、学習用・検証用・評価用に分ける
- 交差確認法
 - データを m 個の集合に分割し、 m-1 個の集合で 学習、残りの 1 個の集合で評価を行う
 - 評価する集合を入れ替え、合計 m 回評価を行う
 - 分割数をデータ数とする場合を一つ抜き法とよぶ

2.1.3 評価基準の設定

• 交差確認法

2.1.4 学習 k-NN 法

• 識別したいデータの近傍の k 個の学習データを 探し、属するクラスの多数決で識別

2.1.5 結果の可視化

• 混同行列

	予測+	予測一
正解十	true positive(TP)	false negative(FN)
正解一	falsepositive(FP)	true negative(TN)

• 正解率
$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

• 精度
$$Precision = \frac{TP}{TP + FP}$$

• 再現率
$$Recall = \frac{TP}{TP + FN}$$

• F i
$$F$$
-measure = $2 \times \frac{Precision \times Recall}{Precision + Recall}$

正解の割合 クラスの出現率に 偏りがある場合は不適

正例の判定が 正しい割合

正しく判定された 正例の割合

> 精度と再現率の 調和平均

2.1.5 結果の可視化

- 識別のための閾値の設定
 - sepallength 特徴による Iris-setosa の識別

2.1.5 結果の可視化

- 精度と再現率のトレードオフ
 - ROC 曲線

2.2 Python による機械学習

- Python を使うメリット
 - データ処理や機械学習のパッケージが充実
 - グラフ表示などの可視化が容易
 - Jupyter Notebook で、実行手順を記録しながら コーディングが可能

2.2 Python による機械学習

- 組み込みデータは datasets パッケージを利用
- 外部データは pandas の read_csv 等を利用
- 標準化:scale
- 主成分分析: PCA
- 学習パラメータを与えてインスタンスを作成
- fit に学習データを与えて学習
- 分割学習法では predict で予測を得る
- 交差確認法では cross_val_score を実行
- 分割学習法では confusion_matrix で混同行列を求める
- 交差確認法では、結果から平均・標準偏差などを求める