

Faculty of Engineering and Applied Science SOFE 3770U Design & Analysis of Algorithms Assignment 2 Report

Group Member

Name: Frobisher Moses

Student ID: 100588689

Group Member

Name: Anthony Desouza

Student ID: 100519930

Group Member

Name: Umar Qureshi

Student ID: 100591742

Date: September 29, 2017

Pseudo Code:

Import matplotlip.pyplot as plt					
Import random as r					
Def plot_pareto_frontier(Xs, Ys, maxX=True, maxY=True):					
Sorted_list = sorted([[Xs[i], Ys[i]], for i in range(len(Xs))], reverse = maxX)	c1	1			
Pareto_front = [sorted_list[0]]	c2	1			
For pair in sorted_list[:]:		n			
if maxY:	c4	n-1			
if pair[1] >= pareto_front[-1][1]:	c5	T((n)/2)			
pareto_front.append(pair)	c6	T((n)/4)			
else:	с7	T((n-1)/2)			
If pair[1] <= pareto_front[-1][1]:	с8	T((n-1)/2)			
pareto_front.append(pair)	с9	T((n-1)/4)			
plt.scatter(Xs, Ys)	c10	1			
pf_X = [pair[0] for pair in pareto_front]	c11	1			
pf_Y = [pair[1] for pair in pareto_front]	c12	1			
print("Pareto Frontier [MaxX: %s, MaxY: %s]: " % (maxX, maxY))	c13	1			
print(pareto_front)	c14	1			
plt. plot(pf_X, pf_Y)		1			
plt. xlabel("Objective 1")	c16	1			
plt. ylabel("Objective 2")	c17	1			
plt. show()	c18	1			
Def generate_points(n):					
Xs = []	c1	1			
Ys = []	c2	1			

	For _ in range(n):	с3	n
	xs. append(r. randrange(-30, 30))	c4	n-1
	ys. append(r. randrange(-30, 30))	c5	n-1
	return (xs, ys)	с6	1
р	pints = generate_points(100)	c1	1
pl	ot_pareto_frontier(points[0], points[1], maxX=True, maxY=True)	c2	1
pl	plot_pareto_frontier(points[0], points[1], maxX=False, maxY=True)		1
p	ot_pareto_frontier(points[0], points[1], maxX=True, maxY=False)	c4	1
p	ot_pareto_frontier(points[0], points[1], maxX=False, maxY=False)	c5	1

Time complexity:

The time complexity of the pareto frontier is $O(n^2)$. Time complexity of $O(n^2)$ is due to the comparison from pair to pair.

Example:

```
Pareto Frontier [MaxX: True, MaxY: True]: [[29, -3], [26, 29]]
```


Pareto Frontier [MaxX: False, MaxY: True]: [[-30, -27], [-30, 24], [-28, 24], [-20, 24], [-19, 24], [-18, 24], [-16, 25], [-16, 28], [12, 28], [26, 29]]

Pareto Frontier [MaxX: True, MaxY: False]: [[29, -3], [29, -26], [28, -27], [21, -27], [17, -29], [4, -29], [-26, -29], [-27, -29]]

Pareto Frontier [MaxX: False, MaxY: False]: [[-30, -27], [-27, -29], [-26, -29], [4, -29], [17, -29]]

