EJERCICIOS DE FICHEROS:

1) Dada la siguiente tabla de asignación de bloques a ficheros, y los datos que nos indican el primer bloque que tiene asignado cada fichero. Obtener el intervalo en el que se encontrará el tamaño en bytes del fichero, si se sabe que la capacidad del disco donde se almacena este sistema de ficheros es de 512 Mbytes y que un número de bloque lógico se expresa mediante 16 bits. Suponer que la capacidad de direccionamiento de la FAT está totalmente empleada.

0	X						
1	EOF						
2	17						
3	14						
4	2 9						
5							
2 3 4 5 6 7	8						
7	EOF						
8	4						
9	12						
10	16						
11	3						
12	10						
13	FREE						
14	21						
15	BAD						
16	19						
17	EOF						
18	FREE						
19	1						
20	FREE						
21	7						

Fichero A: 6

Fichero B: 5

Fichero C: 11

2) En un sistema de tipo UNIX en donde los inodos tienen dos punteros directos y uno indirecto simple se conoce la siguiente información sobre determinados inodos y bloques de disco. Se pide dibujar la tabla FAT de un sistema de archivos basado en FAT equivalente, es decir, que conserve la misma posición de los bloques de datos de los ficheros y los directorios que se encuentran en el disco y sobre los que poseemos información.

 Un disco de un computador dispone de la siguiente tabla de asignación de ficheros (FAT) en un momento determinado.

Se sabe que:

- cada dirección de bloque requiere 32 bits
- El tamaño de bloque es de 16 bytes
- La ruta del fichero INTER.C desde el directorio actual viene dada por PRAC/PRSO1/INTER.C
- Las entradas asociadas a cada uno de esos directorios y al fichero en la tabla FAT

son las siguientes:

PRAC: 20 PRSO1: 9 INTER.C: 38

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
FREE	FREE	4	10	8	33	EOF	12	44	3	11	30	16	2	FREE
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
13	27	22	28	18	15	26	25	6	29	24	36	21	EOF	23
•		,												
30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
17	34	FREE	47	19	FREE	42	46	49	EOF	FREE	7	31	FREE	48
45	46	47	48	49										
FREE	39	41	5	37										

a. Represéntese mediante un esquema esa misma situación del disco pero suponiendo que en vez de una FAT se dispone de un sistema de asignación tipo UNIX. Supóngase una estructura de inodo con 3 punteros directos, 1 índice simple indirecto, 1 índice doble indirecto y 1 índice triple indirecto.

- b. Indicar y explicar el número máximo de accesos que se requieren para leer todo el fichero INTER.C Utilizando el sistema de asignación tipo UNIX indicado y suponiendo que el inodo PRAC se encuentra cargado en memoria y que cada inodo ocupa 3 bloques.
- c. ¿Cuál es el tamaño máximo de fichero que admite el sistema de asignación tipo UNIX indicado?

4) Supongamos la siguiente FAT:

0	1	2	3	4	5	6	7	8	9	10	11	12	13
F	14	10	30	44	13	34	21	22	23	1	32	40	20
14	15	16	17	18	19	20	21	22	23	24	25	26	27
28	27	6	33	26	11	35	38	36	3	50	5	52	48
28	29	30	31	32	33	34	35	36	37	38	39	40	41
45	16	49	15	EOF	9	12	42	47	4	31	19	EOF	55
42	43	44	45	46	47	48	49	50	51	52	53	54	55
51	25	53	37	43	18	24	46	41	8	39	EOF	2	29

Indicar y explicar el número máximo y mínimo de accesos a bloques de disco que se requieren para leer todo el fichero Junio98.doc cuya ruta es: SO1/Examen/Junio98.doc.

	Primer Bloque	Tamaño
SO1	17	2700 bytes
Examen	7	1603 bytes
Junio98.doc	54	1050 bytes

Suponiendo que:

- en un bloque de disco caben 6 direcciones de bloque
- utilizamos un sistema de asignación tipo UNIX con 3 punteros directos, 1 puntero indirecto simple y 1 puntero indirecto doble
- el inodo de SO1 se encuentra cargado en memoria
- caben 4 inodos en un bloque de disco.