

Contrastive Prototypical Network with Wasserstein Confidence Penalty

Haoqing Wang, Zhi-Hong Deng School of Intelligence Science and Technology, Peking University

1. Background

Unsupervised Few-Shot Learning

- > Few-shot learning
- ♦ it is hard for machine to solve a *novel* task based on limited labeled data.
- one can learn task-shared inductive bias from a base dataset beforehand.
- Unlabeled base dataset
- obtaining sufficient labeled data for certain domains may be difficult or even impossible in practice, such as satellite imagery and skin diseases.
- **♦** learn the inductive bias in the unsupervised manner
- Sampling-Augmentation paradigm: given an unlabeled dataset \mathcal{D} , samples $\{x_i\}_{i=1}^N$ are randomly selected and each x_i represents a pseudo class. For each x_i , in-class mples $\{v_i^j\}_{j=1}^M$ are generated via manually or learnable data augmentations. For a specific problem, the loss function \mathcal{L} is calculated on the sub-dataset $\{v_i^j\}_{i=1,j=1}^{N,M}$ and the training objective is

$$\min_{\theta} \mathbb{E}_{p(\{v_i^j\}_{i=1,j=1}^{N,M})} [\mathcal{L}(\{v_i^j\}_{i=1,j=1}^{N,M},\theta)]$$

where θ represents the model parameter.

- data augmentation based unsupervised few-shot learning models
- Set M = S + Q, we get $N \cdot S$ support samples and $N \cdot Q$ query samples
- \blacksquare small N (e.g., 5) and big M (e.g., 5+15)
- contrastive learning models
- InfoNCE loss
- huge N (e.g., 4096) and tiny M (e.g., 2)

Figure 1: Average few-shot classification accuracy across four different settings (5-way 1-shot/5-shot/20-shot/50-shot) on miniImageNet with varying batch size. Here 'CPN' represents prototypical loss with pairwise contrast.

2. Contrastive Prototypical Network

- > Empirical study on Sampling-Augmentation paradigm (Fig. 1)
- lacklost the loss function \mathcal{L} , the batch size N and the view number M
- in the few-shot learning, with the same batch size the contrastive losses perform worse than the prototypical loss which directly compares the representations of different views.
- unsupervised few-shot learning prefers large batch size.
- more augmented views lead to better performance due to increased view diversity.
- Pairwise contrast is useful.

	Backbone		5-shot	20-shot	50-shot
CPN w/o PC		46.08 ± 0.19	63.89 ± 0.17	72.59 ± 0.14	74.81 ± 0.14
CPN		46.90 ± 0.19	64.75 ± 0.17		
CPN w/o PC	ResNet12	48.80 ± 0.19	69.09 ± 0.16	78.54 ± 0.13	80.83 ± 0.12
CPN		50.01 ± 0.18	70.73 ± 0.16	80.33 ± 0.13	82.74 ± 0.11

- Contrastive Prototypical Network
- the *l*-th view $\{v_i^l\}_{i=1}^N$ is used as the one-shot support set to classify all the views.
- prototypical loss with pairwise contrast and large batch size.

3. Wasserstein Confidence Penalty

- Sampling bias
- \bullet some negative pairs (e.g., (a_1, b_2)) may be semantically similar or even belong to the same semantic class.
- using the one-hot prediction target could overly push the semantically similar negative pairs away from each other and has the risk of learning sample-specific information.

Penalizing over-confident prediction

- making the prediction p approximating a latent distribution q (i.e., the uniform distribution)
- existing regularization methods based on f-divergence: $D(p, q) = \sum_{k=1}^{N} f(p_k/q_k)$
- Label Smoothing: $f(z) = -\ln z$
- Confidence Penalty: $f(z) = z \ln z$
- Wasserstein Confidence Penalty
- the difference in the probability of each class is computed independently in f-divergence and the structural information, i.e., the semantic relationships among different classes, is ignored.
- we use the Wasserstein distance as D(p, q) and introduce the structural information using the cost matrix.
- \blacksquare the transportation cost between pseudo class i and pseudo class j

 $C_{ii} = \gamma \cdot (1 - S_{ii}) + \mathbb{I}_{i=i}$

where γ is a scaling factor, S_{ij} represents the semantic similarity between class i and class j, \mathbb{I}_{ij} is an indicator function in the condition i = j.

Figure 3.CPNWCP

4. Experiments

A. SOTA in unsupervised few-shot learning

Model	1-shot	5-shot	20-shot	50-shot
Train from scratch [21]	27.59 ± 0.59	38.48 ± 0.66	51.53 ± 0.72	59.63 ± 0.74
CACTUs-ProtoNet [21]	39.18 ± 0.71	53.36 ± 0.70	61.54 ± 0.68	63.55 ± 0.64
CACTUs-MAML [21]	39.90 ± 0.74	53.97 ± 0.70	63.84 ± 0.70	69.64 ± 0.63
UMTRA [25]	39.93	50.73	61.11	67.15
ULDA-ProtoNet [36]	40.63 ± 0.61	56.18 ± 0.59	64.31 ± 0.51	66.43 ± 0.47
ULDA-MetaOptNet [36]	40.71 ± 0.62	54.49 ± 0.58	63.58 ± 0.51	67.65 ± 0.48
LASIUM-ProtoNet [26]	40.05 ± 0.60	52.53 ± 0.51	59.45 ± 0.48	61.43 ± 0.45
LASIUM-MAML [26]	40.19 ± 0.58	54.56 ± 0.55	65.17 ± 0.49	69.13 ± 0.49
ArL-RelationNet [54]	36.37 ± 0.92	46.97 ± 0.86	-	_
ArL-ProtoNet [54]	38.76 ± 0.84	51.08 ± 0.84	_	_
ArL- $SoSN$ [54]	41.13 ± 0.84	55.39 ± 0.79	_	_
SimCLR [9]	40.91 ± 0.19	57.22 ± 0.17	65.74 ± 0.15	67.83 ± 0.15
BYOL [16]	39.81 ± 0.18	56.65 ± 0.17	64.58 ± 0.15	66.69 ± 0.15
BarTwins [51]	39.02 ± 0.18	57.20 ± 0.17	65.26 ± 0.15	67.42 ± 0.14
ProtoCLR [30]	44.89 ± 0.58	63.35 ± 0.54	72.27 ± 0.45	74.31 ± 0.45
CPNWCP (ours)	$ 47.93\pm0.19 $	$\textbf{66.44}\pm\textbf{0.17}$	$\textbf{75.69}\pm\textbf{0.14}$	$\textbf{78.20}\pm\textbf{0.13}$
ProtoNet-Sup [40]	49.42 ± 0.78	68.20 ± 0.66	_	=

B. Analytical experiments

* Wasserstein Confidence Penalty can more effectively alleviate the sampling bias.

Model	Backbone	1-shot	5-shot	20-shot	50-shot
CPN	Conv4	46.96 ± 0.19	64.75 ± 0.17	73.31 ± 0.14	75.63 ± 0.14
+ CR [48]		47.33 ± 0.19	65.15 ± 0.17	73.28 ± 0.14	75.50 ± 0.14
+ LS [41]		47.19 ± 0.19	65.22 ± 0.17	74.21 ± 0.14	76.71 ± 0.13
+ CP [34]		47.22 ± 0.19	65.46 ± 0.17	74.52 ± 0.14	77.05 ± 0.13
+ JSCP		46.82 ± 0.19	64.89 ± 0.17	73.92 ± 0.14	76.37 ± 0.13
+ WCP (ours)		$\textbf{47.93}\pm\textbf{0.19}$	$\textbf{66.44}\pm\textbf{0.17}$	$\textbf{75.69}\pm\textbf{0.14}$	$\textbf{78.20}\pm\textbf{0.13}$
CPN	ResNet12	50.01 ± 0.18	70.73 ± 0.16	80.33 ± 0.13	82.74 ± 0.11
+ CR [48]		51.85 ± 0.19	72.23 ± 0.16	81.35 ± 0.12	83.28 ± 0.11
+ LS [41]		50.41 ± 0.19	71.10 ± 0.16	80.97 ± 0.12	83.61 ± 0.11
+ CP [34]		50.71 ± 0.18	71.29 ± 0.16	81.11 ± 0.12	83.91 ± 0.11
+ JSCP		49.87 ± 0.18	70.53 ± 0.16	81.01 ± 0.13	83.19 ± 0.11
+ WCP (ours)		53.56 ± 0.19	$\textbf{73.21}\pm\textbf{0.16}$	$\textbf{82.18}\pm\textbf{0.12}$	84.35 ± 0.11

* Wasserstein Confidence Penalty can improve the prediction calibration.

