Efficient Data Compression Methods for Multi-Dimensional Sparse Array Operations

Chun-Yuan Lin, Yeh-Ching Chung, and Jen-Shiuh Liu

Department of Information Engineering

Feng Chia University, Taichung, Taiwan 407, ROC

Email: {cylin, ychung, liuj}@iecs.fcu.edu.tw

Abstract

For sparse array operations, in general, the sparse arrays are compressed by some data compression schemes in order to obtain better performance. The Compressed Row/Column Storage (CRS/CCS) schemes are the two common used data compression schemes for sparse arrays in the traditional matrix representation (TMR). When extended to higher dimensional sparse arrays, array operations used the CRS/CCS schemes usually do not perform well. In this paper, we propose two data compression schemes. extended Karnaugh representation-Compressed Row/Column Storage (ECRS/ ECCS) for multi-dimensional sparse arrays based on the EKMR scheme. To evaluate the proposed schemes, both theoretical analysis and experimental test are conducted. In theoretical analysis, we analyze CRS/CCS and ECRS/ECCS schemes in terms of the time complexity, the space complexity, and the range of their usability for practical applications. In experimental test, we compare the performance of matrix-matrix addition and matrixmatrix multiplication sparse array operations that use the CRS/CCS and ECRS/ECCS schemes. The experimental results show that sparse array operations based on the ECRS/ECCS schemes outperform those based on the CRS/CCS schemes for all test samples.

Index Terms – Data compression scheme, Sparse array operation, Multi-dimensional sparse array, Karnaugh Map.

1. Introduction

Array operations are useful in a large number of important scientific codes, such as molecular dynamics [5], finite-element methods [8], climate modeling [16], etc. For sparse array operations, in general, the sparse arrays are compressed by some data compression schemes in

order to obtain better performance. Many data compression schemes have been proposed, such as Compressed Column Storage (CCS) [1], Compressed Row Storage (CRS) [1], Jagged Diagonal format (JAD) [1], and Symmetric Sparse Skyline format (SSS) [1], etc. Among them, the CRS/CCS schemes are the two common used data compression schemes due to their simplicity and pure with weak dependence relationship between array elements in a sparse array.

A multi-dimensional array can be viewed as a collection of the two-dimensional arrays. For example, one can use 5 separate 4×3 two-dimensional arrays to represent a three-dimensional array of size 5×4×3. This scheme is called traditional matrix representation (TMR) that is also known as canonical data layouts [4]. The compression schemes mentioned above are based on the TMR scheme. For the CRS/CCS schemes, a twodimensional sparse array based on the TMR scheme can be compressed into three one-dimensional arrays. Therefore, for a sparse array operation, we only operate these non-zero array elements to obtain better performance and use less memory space. However, for higher dimensional sparse arrays, array operations based on CRS/CCS schemes usually do not perform well. The reasons are two-fold. First, the number of onedimensional arrays increases as the dimension increases because more one-dimensional arrays are needed to store extra indices of non-zero array elements for higher dimensional sparse array. This increases the time and the memory space of compressing a multi-dimensional sparse array. Second, the costs of indirect data access and index comparisons for multi-dimensional sparse operations increase as the dimension increases.

In our previous work [13-14], we have proposed a new scheme called *extended Karnaugh map representation* (*EKMR*) for the multi-dimensional array representation. This scheme is suitable for the multi-dimensional dense or sparse array without using the data compression scheme.

In this paper, we propose two new data compression schemes, extended Karnaugh map representation-Compressed Row/Column Storage (ECRS/ECCS) for

multi-dimensional sparse array based on the *EKMR* scheme. Given a k-dimensional sparse array with a size of m along each dimension, the EKMR(k) can be represented by $m^{k-4}EKMR(4)$. If k=3 or 4, the ECRS/ECCS schemes use two one-dimensional integer arrays and one one-dimensional floating-point array to compress the sparse array. If k>4, the ECRS/ECCS schemes first use two one-dimensional integer arrays and an one-dimensional floating-point array to compress the $m^{k-4}EKMR(4)$ sparse arrays individually. Then, an abstract pointer array with a size of m^{k-4} is used to link these three one-dimensional arrays of each EKMR(4).

To evaluate the proposed schemes, both theoretical analysis and experimental test are conducted. theoretical analysis, we analyze CRS/CCS and ECRS/ ECCS schemes in terms of the time complexity, the space complexity, and the range of their usability for practical applications. From the theoretical analysis, we can see that the time and the space complexities for compressing a multi-dimensional sparse array based on the ECRS/ECCS schemes are less than those based on the CRS/CCS schemes. The range of usability of the ECRS/ECCS schemes is wider than that of the CRS/CCS schemes for practical applications. In experimental test, we compare the execution time of matrix-matrix addition and matrixmatrix multiplication sparse array operations for both CRS/CCS and ECRS/ECCS schemes. The experimental results show that sparse array operations based on the ECRS/ECCS schemes outperform those based on the CRS/CCS schemes. There are two reasons. First, for the ECRS/ECCS schemes, the number of one-dimensional arrays does not increase as the dimension increases since a multi-dimensional sparse array based on the EKMR scheme is represented by a set of two-dimensional sparse The time and the memory space required to compress a sparse array can be reduced. Second, the costs to perform the indirect data access and index comparisons of sparse array operations for the ECRS/ ECCS schemes are less than those of the CRS/CCS schemes.

This paper is organized as follows. In Section 2, a brief survey of related work will be presented. Section 3 will describe the *ECRS/ECCS* schemes and analyze their theoretical performance along with the *CRS/CCS* schemes for compressing a multi-dimensional sparse array. The efficient algorithms of multi-dimensional sparse array operations based on the *ECRS/ECCS* schemes will be given in Section 4. The performance comparisons of these algorithms will be given in Section 5.

2. Related Work

Many methods for improving sparse array computation have been proposed in the literature. We briefly describe the related researches. Kotlyar *et al.* [11-12] presented a relational algebra based framework

for compiling efficient sparse array code from dense DO-Any loops and a specified sparse array. Sularycke and Ghose [15] showed a simple sequential loop interchange algorithm that can produce a better performance than existing algorithms for sparse array multiplication. Zapata et al. [6-7] analyzed the cache effects for the array operations. They established the cache probabilistic modeling and modeled the cache behavior for sparse array operations. Kebler and Smith [10] described a system, SPARAMAT, for concept comprehension that is particularly suitable for sparse array codes. Lee et al. [2-3] presented an efficient library for parallel sparse computations with Fortran 90 array intrinsic operations. They provide a new data compression scheme, which is obtained by extending the CRS/CCS schemes for two-dimensional sparse arrays, for multi-dimensional sparse arrays based on the TMR Kandemir et al. [9] proposed a compiler technique to perform loop and data layout transformations to solve the global optimization problem on sequential and multiprocessor machines. They used one data layout for the entire program and improved the performance by using the loop transformation scheme. However, their method may be difficult to extend to sparse array programs. The reason is that sparse array programs, in general, use the data compression scheme, which heavily use of indirect addressing through index stored in index arrays. Since these index arrays are read at run-time, compiler cannot analyze which non-zero array element will actually be accessed in a given loop.

3. The ECRS/ECCS Schemes

Before presenting the ECRS/ECCS schemes, we briefly describe the EKMR scheme for three-dimensional arrays. Details of the EKMR scheme for four- or higher dimensional arrays can be found in [13]. In the following, we describe the EKMR scheme based on the row-major storage scheme, such as C language. The idea of the EKMR scheme is based on the Karnaugh map. Let A[k][i][j] denote a three-dimensional array in the EKMR(3). The corresponding EKMR(3) of array A[3][4][5], is shown in Figure 1. The EKMR(3) is represented by a two-dimensional array with the size of $4\times(3\times5)$.

Figure 1: The *EKMR*(3) scheme.

The difference between the TMR(3) and the EKMR(3) is the placement of array elements along the direction indexed by k. In the EKMR(3), we use the index variable i to indicate the row direction and the index variable j to indicate the column direction. Note that the index i is the same as i, whereas the index j is a combination of the indices j and k. A more concrete example is given in Figure 2.

Figure 2: (a) A three-dimensional array in the TMR(3). (b) The corresponding EKMR(3).

3.1 The CRS/CCS Schemes

Given a two-dimensional sparse array based on the TMR(2), the CRS (CCS) scheme using two onedimensional integer arrays, RO and CO, and an onedimensional floating-point array, VL, to compress all of non-zero array elements along rows (columns for CCS) of Array RO stores information of the sparse array. non-zero array elements of each row (column for CCS). The number of non-zero array elements in the *i*th row (*j*th column for CCS) can be obtained by subtracting the value of RO[i] from RO[i+1]. Array CO stores the column (row for CCS) indices of non-zero array elements of each row (column for CCS). Array VL stores the values of non-zero array elements of the sparse array. The base of these three arrays is 0. An example of the CRS/CCS schemes for a two-dimensional sparse array based on the TMR(2) is given in Figure 3. Figure 3(a) shows a 3×4 sparse array A with 6 non-zero array elements. Figures 3(b) and 3(C) show the CRS/CCS schemes for the sparse array, respectively. In Figure 3(b), the number of non-zero array elements in the second row can be obtained by $RO_{CRS}[3] - RO_{CRS}[2] = 7 - 5 = 2$. The column indices of non-zero array elements of the second row are stored in $CO_{CRS}[RO_{CRS}[2]-1],$ $CO_{CRS}[RO_{CRS}[3]-2]$. The non-zero array elements of the second row are stored in $VL_{CRS}[4:5]$.

Based on the *CRS/CCS* schemes for the twodimensional sparse array, for a three-dimensional sparse array based on the *TMR*(3), it also can be compressed by the *CRS/CCS* schemes by adding one one-dimensional integer array, *KO*. Array *KO* stores the indices of all non-zero array elements in the third dimension of the sparse array. For a four- or higher dimensional sparse array based on the TMR scheme, more one-dimensional integer arrays are added to store indices of all non-zero array elements in the fourth or higher dimension. An example of the CRS/CCS schemes for a three-dimensional sparse array based on the TMR(3) is shown in Figure 4.

Figure 3: The CRS/CCS schemes for a two-dimensional sparse array based on the TMR(2).

$$\begin{pmatrix}
0 & 1 & 0 & 2 & 7 & 0 & 8 & 0 \\
3 & 0 & 4 & 0 & 0 & 9 & 10 & 0 \\
0 & 5 & 6 & 0 & 11 & 0 & 0 & 12
\end{pmatrix}$$

(a) A three-dimensional sparse array based on the TMR(3)

Figure 4: The *CRS/CCS* schemes for a three-dimensional sparse array based on the *TMR*(3).

3.2 The ECRS/ECCS Schemes

The main idea of the *EKMR* scheme is to represent a multi-dimensional array by a set of two-dimensional arrays. Therefore, the *ECRS/ECCS* schemes use a set of two one-dimensional integer arrays, *R* and *CK*, and one one-dimensional floating-point array, *V*, to compress a multi-dimensional sparse array.

Given a three-dimensional sparse array based on the EKMR(3), the ECRS (ECCS) scheme compresses all of non-zero array elements along the rows (columns for ECCS) of the sparse array. Array R stores information of non-zero array elements of each row (column for ECCS). The number of non-zero array elements in the ith row (jth column for ECCS) can be obtained by subtracting the value of R[i] from R[i+1]. Array CK stores the column (row for ECCS) indices of non-zero array elements of each row (column for ECCS). Array V stores the values

of non-zero array elements of the sparse array. The base of these three arrays is 0. An example of the ECRS/ECCS schemes for a three-dimensional sparse array based on the EKMR(3) is given in Figure 5. Figure 5(a) shows a 3×8 sparse array A with 12 non-zero array elements based on the EKMR(3) whose TMR(3) is shown in Figure 4(a). Figures 5(b) and 5(c) show the ECRS/ECCS schemes of the sparse array, respectively. By the definition of the EKMR scheme, a fourdimensional sparse array based on the EKMR(4) is also presented by a two-dimensional sparse array. We can use one-dimensional integer arrays one-dimensional floating-point array to compress the four-dimensional sparse array.

Figure 5: The *ECRS/ECCS* schemes for a three-dimensional sparse array based on the *EKMR*(3).

Figure 6: The *ECRS* scheme for a six-dimensional sparse array based on the *EKMR*(6).

Given a k-dimensional sparse array with a size of m along each dimension based on the EKMR(k), the EKMR(k) can be represented by $m^{k-4}EKMR(4)$. Since we use an abstract one-dimensional array to link all the sparse arrays in the EKMR(4), to compress this k- dimensional sparse array, the ECRS/ECCS schemes first compress each EKMR(4) sparse array by using two one-dimensional integer arrays and one one-dimensional floating-point array. Then, an abstract array with a size of m^{k-4} is used to link these three one-dimensional arrays of each EKMR(4). For example, assume that there is a six-dimensional sparse array A with a size of $3\times2\times2\times3\times4\times5$ in the TMR(6). The array A in the EKMR(6) can be

represented by six (3×2) arrays in the EKMR(4) with a size of $(2\times4)\times(3\times5)$. If we compress the sparse array based on the ECRS scheme, we first compress each EKMR(4) to three one-dimensional arrays, R, CK, and V. Then, we use an abstract array with a size of 6 to link these three one-dimensional arrays of each EKMR(4). An example is shown in Figure 6.

3.3 Theoretical Analysis

In the following, we analyze the theoretical performance for both CRS/CCS and ECRS/ECCS schemes in terms of the time complexity, the space complexity, and the range of their usability for practical applications. In the following analysis, we assume that a k-dimensional sparse array A has n^k array elements and the sparse probability [7] for each array element is equal.

First, we analyze the time complexity for both CRS/CCS and ECRS/ECCS schemes. Assume that a three-dimensional sparse array A based on the TMR(3)with size $n \times n \times n$ is given and the sparse ratio of A is S. The number of non-zero elements of array A is Sn^3 . Let sparse array A' be the corresponding array A in the In the CRS/CCS schemes, four one-EKMR(3). dimensional arrays, RO, CO, KO, and VL are used for compression. They first need to scan entire array A to find all of non-zero array elements. Then, they need to record the information of each non-zero array element to these four arrays. Therefore, the time complexity for the CRS/CCS schemes is n^3+4Sn^3 . Similarly, if we compress array A' with the ECRS/ECCS schemes by using three one-dimensional arrays, R, CK, and V, the time complexity for the ECRS/ECCS schemes is n^3+3Sn^3 . For four- or higher dimensional sparse arrays, we can obtain the time complexities of CRS/CCS and ECRS/ECCS schemes in a similar manner. Table 1 lists the time complexities for both CRS/CCS and ECRS/ECCS schemes for $k \ge 2$. In Table 1, the improved rate is defined as follows: *Improved* Rate (%) $Time(CRS/CCS) - Time(ECRS/ECCS) \times 100$ where

Time(CRS/CCS) and Time(ECRS/ECCS) are the time required by CRS/CCS and ECRS/ECCS schemes to perform a compression, respectively. From Table 1, we can see that the improved rates increase as the dimension increases. In the CRS/CCS schemes, array A is compressed by using three one-dimensional integer arrays, RO, CO, and KO, and one one-dimensional floating-point array, VL. The size of RO is n+1, the size of CO, KO, and VL arrays are all Sn^3 . Assume that an integer is α bytes long and a floating-point is β bytes long. The space complexity of the CRS/CCS schemes for A is $(2Sn^3+n+1)\alpha + Sn^3\beta$. Similarly, the space complexities of the ECRS/ECCS schemes for A' are $(Sn^3+n+1)\alpha + Sn^3\beta$ and $(Sn^3+n^2+1)\alpha + Sn^3\beta$, respectively. Note that for the ECCS scheme based on the EKMR(3), the size of array R

Time(CRS/CCS)

is $n^2 + 1$.

Table 2 lists the theoretical analysis of the space complexities for both *CRS/CCS* and *ECRS/ECCS* schemes. If the conditions listed in Table 2 are satisfied, the space complexity of the *ECRS/ECCS* schemes is less than that of the *CRS/CCS* schemes. In general, the size of sparse array is large and the conditions can be easily satisfied.

Finally, we discuss the range of their usability for practical applications. One of goal to use the data compression scheme is to decrease the memory space requirement. Therefore, the space complexity for the non-compressed sparse array must larger than that of the compressed sparse array. From Table 2, we can derive the range of usability of the CRS/CCS and the ECRS/ECCS schemes for practical application according to the sparse ratio S. The results are shown in Table 3. From Table 3, we can see that the range of usability of the CRS/CCS schemes reduces as the dimension increases. Hence, the range of usability of the ECRS/ECCS schemes is wider than that of the CRS/CCS schemes for practical applications. The ECRS/ECCS schemes are more suitable for practical applications with a higher sparse ratio than the CRS/CCS schemes.

Table 1: Time complexities.

Schemes Dimensions	CRS/CCS	ECRS/ECCS	Improved Rate (%)
3- <i>D</i>	n^3+4Sn^3	n^3+3Sn^3	$\frac{S}{1+4S} \times 100$
4-D	n^4+5Sn^4	n^4+3Sn^4	$\frac{2S}{1+5S} \times 100$
$k-D \\ (k \ge 2)$	$n^k+(k+1)Sn^k$	$n^k + 3Sn^k$	$\frac{(k-2)S}{1+(k+1)S} \times 100$

Table 2: Space complexities.

Schemes Dimensions	CRS/CCS	ECRS/ECCS	Condition
3-D	$(2Sn^3 + n + 1)\alpha + Sn^3\beta$	ECRS: $(Sn^{3} + n + 1)\alpha + Sn^{3}\beta$ ECCS: $(Sn^{3} + n^{2} + 1)\alpha + Sn^{3}\beta$	ECRS: $S > 0$ ECCS: $S > \frac{1}{n}$
4-D	$(3Sn^4 + n + 1)\alpha + Sn^4\beta$	$(Sn^4 + n^2 + 1)\alpha + Sn^4\beta$	$S > \frac{1}{2n^2}$
$k-D \\ (k \ge 4)$	$\frac{((k-1)Sn^k + n + 1)\alpha}{+ Sn^k \beta}$	$(Sn^k + n^{k-2} + n^{k-4})\alpha + Sn^k\beta$	$S > \frac{1}{(k-2)n^2}$

 $^{* \} Condition: Space(CRS/CCS) > Space(ECRS/ECCS).$

Table 3: The range of usability.

	U	•
Schemes Dimensions	CRS/CCS	ECRS/ECCS
3-D	$S < \frac{\beta}{2\alpha + \beta}$	$S < \frac{\beta}{\alpha + \beta}$
4-D	$S < \frac{\beta}{3\alpha + \beta}$	$S < \frac{\beta}{\alpha + \beta}$
$k-D$ $(k \ge 2)$	$S < \frac{\beta}{(k-1)\alpha + \beta}$	$S < \frac{\beta}{\alpha + \beta}$

4. Algorithms for Sparse Array Operations

Most algorithms of sparse array operations are based on the CRS/CCS schemes. The structure of compressing a sparse array based on the ECRS/ECCS schemes is quite different from that based on the CRS/CCS schemes. Hence, we need to redesign algorithms for sparse array operations with the ECRS/ECCS schemes. For the page limitation, in this section, we only present efficient algorithms for matrix-matrix addition and matrix-matrix multiplication sparse array operations based on the For both sparse array ECRS(3)/ECCS(3) schemes. operations, we can consider the compression of one or two sparse arrays. However, the compression of two sparse arrays for both sparse array operations is complicated and has many issues for discussions. For simplicity, in this paper, we only consider the compression of one sparse array. However, we do give some experimental results for the case where two sparse arrays are compressed in Section 6. For the algorithms based on the CRS/CCS schemes, please refer to [1].

4.1 Matrix-Matrix Addition Algorithms

Assume that A and B are two $n \times n \times n$ three-dimensional sparse arrays in the TMR(3). Let A' and B' be the corresponding arrays of A and B in the EKMR(3), respectively. According to the ECRS/ECCS schemes, array A' can be compressed into three one-dimensional arrays, R, CK, and V. Based on the ECRS/ECCS schemes, the efficient algorithms for B' = A' + B' are given below.

 $Algorithm\ matrix-matrix_addition_ECRS_EKMR(3)$

- 1. for(i = 0; i < n; i++)
- 2. $for(j = R_{ECRS}[i]; j < R_{ECRS}[i+1]; j++)$
- 3. $B[i][CK_{ECRS}[j-1]] = V_{ECRS}[j-1] + B[i][CK_{ECRS}[j-1]];$ $end_of_matrix_addition_ECRS_EKMR(3)$

Algorithm matrix-matrix_addition_ECCS_EKMR(3)

- 1. for(i = 0; i < n; i++)
- 2. $for(j = R_{ECCS}[i]; j < R_{ECCS}[i+1]; j++)$
- 3. $B'[CK_{ECCS}[j-1]][i] = V_{ECCS}[j-1] + B'[CK_{ECCS}[j-1]][i]$; end of matrix-matrix addition ECCS EKMR(3)

4.2 Matrix-Matrix Multiplication Algorithms

Assume that A and B are two $n \times n \times n$ three-dimensional sparse arrays with the sparse ratio S in the TMR(3). Let A' and B' be the corresponding arrays of A and B in the EKMR(3), respectively. For the ECRS/ECCS schemes, array A' can be compressed into three one-dimensional arrays, R, CK, and V. The algorithms for $C' = A' \times B'$ based on the ECRS/ECCS schemes are given below.


```
Algorithm matrix-matrix_multiplication_ECRS_EKMR(3)
  1. for (i = 0; i < Sn^3; i++)
  2. K[i]=CK_{ECRS}[i] / n;
  3. CK_{ECRS}[i] = CK_{ECRS}[i] \% n;
  4 for (i = 0; i < n; i++)
         for (k = 0; k < n; k++)
  6.
            r1 = k \times n;
  7.
            for (j = R_{ECRS}[i]; j < R_{ECRS}[i+1]; j++)
  8.
              r2 = CK_{ECRS}[j-1] + r1;
  9
              C[i][r2] = C[i][r2] + V_{ECRS}[j-1] \times B[K[j-1]][r2];
end_of_matrix-matrix_multiplication_ECRS_EKMR(3)
Algorithm matrix-matrix_multiplication_ECCS_EKMR(3)
  1. for (i = 0; i < n^2; i++)
  2. for (j = R_{ECCS}[i]; j < R_{ECCS}[i+1]; j++)
         r3 = i \% n;
         r4 = i / n;
  5.
         r6 = CK_{ECCS}[j-1];
```

5. Experimental Results

7.

8.

for (k = 0; k < n; k++)

 $r5 = k \times n + r3$;

To evaluate the performance of the proposed data compression schemes, we compare the compression time of the *ECRS/ECCS* and the *CRS/CCS* schemes. We also compare the execution time of sparse array operations based on the *ECRS/ECCS* and the *CRS/CCS* schemes. For the sparse array operations, *matrix-matrix addition* and *matrix-matrix multiplication* operations are implemented. For all the implemented sparse array operations, we use three-dimensional arrays as test samples. The compression algorithms and the sparse array operations were implemented in *C* and were executed on an IBM RS/6000 workstation.

 $C[r6][r5] = C[r6][r5] + V_{ECCS}[j-1] \times B[r4][r5];$

end_of_matrix-matrix_multiplication_ECCS_EKMR(3)

5.1 The Compressing Time

For a k-dimensional sparse array based on the TMR(k) where $k \ge 2$, there are (k-1)! ways for the CRS/CCS schemes to compress the sparse array. Assume that a three-dimensional sparse array A[k][i][j] based on the TMR(3) is given. If we compress array A[k][i][j] based on the CRS(CCS) scheme, we first compress all of non-zero array elements along i index (j index for CCS) of the sparse array. Then, we compress non-zero array elements along k or k index k or k index for k or k index for k or k index for k or k or k index for k

For a k-dimensional sparse array based on the EKMR(k), where $k \ge 3$, there is only one way for the ECRS/ECCS schemes to compress the sparse array. Table 4 shows the execution time for compressing three-dimensional sparse arrays with various sparse ratios and array sizes based on the CRS and the ECRS schemes. From Table 4, we can see that the performance of

compressing three-dimensional sparse arrays based on the ECRS scheme is better than that based on the CRS scheme for all test samples. The results match the theoretical analysis described in Section 4. From Table 4, we also can see that the performance of compressing spare arrays using the *IJK* order is different from that of the *IKJ* order in the CRS scheme. Since the size of R for the ECCS scheme is larger than the size of RO for the CCS scheme, we also list the execution time of compressing three-dimensional sparse arrays with various sparse ratios and array sizes based on the CCS and the ECCS schemes in Table 5. From Table 5, we have similar observations as those of Table 4. In Table 5, we also can see that the compression time of the CCS scheme is much larger than that of the CRS scheme. The reason is that the compression algorithms were implemented in C. However, for the ECRS/ECCS schemes, the difference is not that large. The reason is that the data locality of the EKMR scheme is better than that of the TMR scheme.

Table 4: The execution time of compressing three-dimensional sparse arrays.

Sche	emes	Cl	ECRS		
Sparse Ratios	Array Sizes	IJK	IKJ	LCAS	
	10×10×10	0.176	0.178	0.143	
0.1	100×100×100	180.088	177.635	146.23	
	200×200×200	1442.718	1432.797	1173.592	
	10×10×10	0.156	0.158	0.128	
0.01	100×100×100	158.273	157.734	131.781	
	200×200×200	1266.479	1264.874	1043.532	
0.001	10×10×10	0.157	0.156	0.128	
	100×100×100	155.174	154.371	124.607	
	200×200×200	1242.497	1240.752	1032.02	

Time: ms

Table 5: The execution time of compressing three-dimensional sparse arrays.

Sche	emes	C	ECCS		
Sparse Ratios	Array Sizes	JIK	JKI	ECCS	
	10×10×10	0.176	0.176	0.159	
0.1	100×100×100	333.68	318.25	148.371	
	200×200×200	2847.594	2615.103	1199.344	
	10×10×10	0.156	0.157	0.146	
0.01	100×100×100	309.988	295.739	140.51	
	200×200×200	2685.472	2435.533	1061.865	
	10×10×10	0.154	0.155	0.144	
0.001	100×100×100	308.022	294.132	135.681	
	200×200×200	2657.696	2426.895	1045.681	
				Time: me	

Time: ms

5.2 The Execution time of Sparse Array Operations

Table 6 shows the execution time of algorithms for the *matrix-matrix addition* sparse array operation based on the *CRS* and the *ECRS* schemes by compressing one three-dimensional sparse array with various sparse ratios

and array sizes. In Table 6, we also compare the execution time of algorithms for the *matrix-matrix addition* sparse array operation with and without the data compression scheme. From Table 6, we can see that the performance of the *matrix-matrix addition* sparse array operation based on the *ECRS* scheme is better than that based on the *CRS* scheme. The reason is that the cost of indirect data access for the *ECRS* scheme is less than that for the *CRS* scheme. Moreover, the performance of the *matrix-matrix addition* sparse array operation with the data compression scheme is better than that without the data compression scheme.

Table 7 shows the execution time of algorithms for the *matrix-matrix addition* sparse array operation based on the *CCS* and the *ECCS* schemes by compressing one three-dimensional sparse array with various sparse ratios and array sizes. From Table 7, we have similar observations as those shown in Table 6.

Table 8 shows the execution time of algorithms for the *matrix-matrix addition* sparse array operation based on the *CRS/CCS* and the *ECRS/ECCS* schemes by compressing two three-dimensional sparse arrays with various sparse ratios and array sizes. From Table 8, we can see that the performance of the *matrix-matrix addition* sparse array operation based on the *ECRS/ECCS* schemes is better than that based on the *CRS/CCS* schemes. The reason is that the cost of index comparison for the *ECRS/ECCS* schemes is less than that for the *CRS/CCS* schemes.

Table 9 shows the execution time of algorithms for the *matrix-matrix multiplication* sparse array operation based on the *CRS/CCS* and the *ECRS/ECCS* schemes by compressing one three-dimensional sparse array with various sparse ratios and array sizes. From Table 9, we can see that the performance of the *matrix-matrix multiplication* sparse array operation based on the *ECRS/ECCS* schemes is better than that based on the *CRS/CCS* schemes. The reason is that the cost of indirect data access in the *ECRS/ECCS* schemes is less than that in the *CRS/CCS* schemes.

Table 7: The execution time for the *matrix-matrix addition* operation by compressing one sparse array.

Sche	emes	C	ECCS	
Sparse Ratios	Array Sizes	C-N JIK	C-N JKI	C-N
	10×10×10	0.028	0.028	.028
0.1	100×100×100	49.709	51.390	31.577
	200×200×200	441.520	433.586	306.398
0.01	10×10×10	0.008	0.008	0.008
	100×100×100	4.961	5.560	4.001
	200×200×200	52.721	51.688	40.222
	10×10×10	0.006	0.006	0.006
0.001	100×100×100	0.486	0.552	0.422
	200×200×200	5.245	5.114	4.568

Time: ms

6. Conclusions

In this paper, we have presented the ECRS/ECCS data compression schemes for multi-dimensional sparse array based on the EKMR scheme. We have analyzed the theoretical performance for both CRS/CCS and ECRS/ECCS schemes in terms of the time complexity, the space complexity, and the range of their usability for practical applications. From the theoretical analysis, we can conclude that the time and the space complexities for compressing a multi-dimensional sparse array based on the ECRS/ECCS schemes are less than those based on the CRS/CCS schemes. The range of usability of the ECRS/ECCS schemes is wider than that of the CRS/CCS schemes for practical applications. In experimental test, we also compared the execution time of matrix-matrix addition and matrix-matrix multiplication sparse array operations for both CRS/CCS and ECRS/ECCS schemes. The experimental results show that sparse array operations based on the ECRS/ECCS schemes outperform those based on the CRS/CCS schemes for all test samples. The results encourage us using the ECRS/ECCS schemes to compress multi-dimensional sparse arrays.

Acknowledgments

The work in this paper was partially supported by National Science Council of the Republic of China under contract NSC90-2213-E-035-019.

References

- [1] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for the Iterative Methods, 2nd Edition, SIAM, 1994.
- [2] Rong-Guey Chang, Tyng-Ruey Chung, and Jenq Kuen Lee, "Compiler Optimization for Parallel Sparse Programs with Array Intrinsics of Fortran 90," *In the International Conference on Parallel Processing*, September, 1999.
- [3] Rong-Guey Chang, Tyng-Ruey Chung, and Jenq Kuen Lee, "Parallel Sparse Supports for Array Intrinsic Functions of Fortran 90," accepted by Journal of Supercomputing.
- [4] M. Cierniak and W. Li, "Unifying Data and Control Transformations for Distributed Shared Memory Machines," *Technical Report*, November 1994.
- [5] J.K. Cullum and R.A. Willoughby, "Algorithms for Large Symmetric Eignenvalue Computations," vol. 1, 1985.
- [6] B. B. Fraguela, R. Doallo, E. L. Zapata, "Cache Misses Prediction for High Performance Sparse Algorithms," 4th International Euro-Par Conference, pp.224-233, 1998.
- [7] B. B. Fraguela, R. Doallo, E. L. Zapata, "Cache Probabilistic Modeling for Basic Sparse Algebra Kernels Involving Matrices with a Non-Uniform Distribution," 24th IEEE Euromicro Conference, pp.345-348, August, 1998.
- [8] G.H. Golub and C.F. Van Loan, *Matrix Computations*, 2nd ed. (Johns Hopkins Univ.Press, Baltimore, 1989)
- [9] Mahmut Kandemir, J. Ramanujam, Alok Choudhary, "Improving Cache Locality by a Combination of Loop and Data Transformations," *IEEE Trans. on Computers*, vol. 48, no. 2, February 1999.

 $[*]C-N: Compressed \ array-Non-compressed \ array \ addition.$

- [10] Christoph W. Kebler and Craig H. Smith, "The SPARAMAT Approach to Automatic Comprehension of Sparse Matrix Computations," In Proceedings of the Seventh International Workshop on Program Comprehension, pp. 200-207, 1999.
- [11] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill, "A Relation Approach to the Compilation of Sparse Matrix Programs," *In Euro Par*, August 1997.
- [12] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill, "Compiling Parallel Code for Sparse Matrix Applications," In Proceedings of the Supercomputing Conference, 1997.
- [13] Chun-Yuan Lin, Jen-Shiuh Liu, and Yeh-Ching Chung, "Efficient Representation Scheme for Multi-Dimensional Array Operations," *IEEE Transactions on Computers*, vol.51, no. 3, pp.327-345, March 2002.
- [14] Jen-Shiuh Liu, Jiun-Yuan Lin, and Yeh-Ching Chung, "Efficient Parallel Algorithms for Multi-Dimensional Matrix Operations," Proceedings of IEEE International Symposium on Parallel Architectures, Algorithms and Networks, Dec. 2000, Dallas, USA.
- [15] Peter D. Sulatycke and Kanad Ghose, "Caching Efficient Multithreaded Fast Multiplication of Sparse Matrices," In Proceedings of the 1st Merged International Parallel Processing Symposium and Symposium on Parallel and Distributed Processing, 1998.
- [16] Manuel Ujaldon, Emilio L. Zapata, Shamik D. Sharma, and Joel Saltz, "Parallelization Techniques for Sparse Matrix Applications," *Journal of parallel and distribution* computing, 1996.

Table 6: The execution time for the *matrix-matrix addition* operation by compressing one sparse array.

Schemes			CRS	ECRS		
Sparse Ratios	Array Sizes	C-N IJK	C-N IKJ	N-N	C-N	N-N
	10×10×10	0.027	0.027	0.156	0.025	0.125
0.1	100×100×100	26.599	26.166	160.421	21.797	134.796
	200×200×200	219.133	217.494	1280.544	174.875	1088.741
	10×10×10	0.007	0.007	0.154	0.007	0.123
0.01	100×100×100	4.447	3.907	156.594	3.762	129.826
	200×200×200	33.392	32.886	1245.941	28.305	1044.63
	10×10×10	0.006	0.006	0.154	0.006	0.124
0.001	100×100×100	0.492	0.484	154.613	0.479	130.545
	200×200×200	4.043	3.985	1234.613	3.879	1030.545

Time: ms

*C-N: Compressed array-Non-compressed array addition.

*N-N: Non-compressed array-Non-compressed array addition.

Table 8: The execution time of the matrix-matrix addition operation by compressing two sparse arrays.

Sch	nemes	Cl	RS	ECRS	CCS		ECCS
Sparse Ratios	Array Sizes	C-C IJK	C-C IKJ	C-C	C-C JIK	C-C JKI	C-C
	10×10×10	0.096	0.087	0.07	0.135	0.118	0.105
0.1	100×100×100	106.702	91.38	66.03	110.376	106.695	67.540
	200×200×200	873.434	828.625	524.72	897.346	868.475	609.974
	10×10×10	0.017	0.015	0.014	0.023	0.021	0.017
0.01	100×100×100	9.178	8.816	7.838	11.911	11.169	8.445
	200×200×200	78.243	73.842	55.5	80.763	78.935	65.247
	10×10×10	0.009	0.009	0.009	0.013	0.012	0.011
0.001	100×100×100	0.794	0.775	0.718	1.040	0.911	0.837
	200×200×200	6.723	6.655	6.598	7.078	6.918	6.614

Time: ms

Table 9: The execution time of the *matrix-matrix multiplication* operation by compressing one sparse array.

Table 7. The execution time of the matrix-matrix multiplication operation by compressing one sparse array.								
Sch	iemes	C	RS	ECRS	C	CS	ECCS	
Sparse Ratios	Array Sizes	C-N IJK	C-N IKJ	C-N	C-N JIK	C-N JKI	C-N	
	10×10×10	0.296	0.295	0.276	0.234	0.232	0.224	
0.1	100×100×100	3597.635	3335.909	3096.54	2600.032	2578.901	2316.291	
	200×200×200	161984.8	150129.8	138897.2	41779.968	41029.251	36921.883	
	10×10×10	0.037	0.035	0.035	0.029	0.029	0.029	
0.01	100×100×100	455.157	419.873	395.519	265.967	256.444	231.658	
	200×200×200	41274.71	40388.59	38301.28	4164.510	4147.689	3689.118	
	10×10×10	0.009	0.009	0.009	0.007	0.000007	0.000006	
0.001	100×100×100	44.556	44.102	43.102	24.813	24.534	22.422	
	200×200×200	729.424	722.765	712.617	407.339	409.073	369.492	

Time: ms

^{*}C-C: Compressed array-Compressed array addition.

^{*}C-N: Compressed array-Non-compressed array multiplication.