6.5 Recursion revisited

Question 1

_____ / 2

What is the expected number of rolls of a six-sided die that is rolled until a 1 appears?

$$E[X] = \frac{1}{6}(1) + \frac{5}{6}(1 + E[X])$$

$$E[X] = 6$$

Question 2

____/

A pair of dice are thrown until at least one of the die comes up 1 for the first time. How many tosses, on average, are required?

We are rolling two die, which comes out to:

(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

- a. What is the sample size? 36
- b. How many of these rules have at least one 1? 11
- c. What is the probability of getting at least one? $\frac{11}{36}$ (Prob(E) = n(E)/n(S))
- d. Use the formula to find the expected value (average trials). $E[X] = \frac{11}{36}(1) + \frac{25}{36}(1 + E[X])$ $E[X] = \frac{36}{11}$