

${\it ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ} \ {\it И} \ {\it ПРОЦЕССЫ УПРАВЛЕНИЯ} \ {\it N 3, 2000}$

Электронный журнал, рег. N П23275 от 07.03.97

 $\label{linear_$

Теория обыкновенных дифференциальных уравнений

АЛГОРИТМ КОНТРОЛЯ ДЛЯ НЕЛИНЕЙНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЫ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ ПРИ СЛУЧАЙНОМ ВОЗБУЖДЕНИИ.

М.А.ГЛАДЧЕНКО

Россия, 620002, г. Екатеринбург, ул. Мира, д. 28, Уральский государственный технический университет, радио-технический факультет, кафедра вычислительных методов и уравнений математической физики. e-mail: glad@rtf.ustu.ru

П.А.КРУЧИНИН

Россия, 119899, Москва, Воробьевы горы, Московский государственный университет им. М.В.Ломоносова, механико-математический факультет, кафедра прикладной механики и управления, e-mail: kruch@mech.math.msu.su

Аннотация.

В статье предложен алгоритм контроля для динамической системы с полиномиальными нелинейностями, возмущенной случайным процессом типа

 $^{^{0}}$ Работа выполнена при частичной поддержке РФФИ (грант N 98-01-00616).

белого шума. Для записи контрольных условий используются инвариантные соотношения метода моментов.

Эффективность применения этого алгоритма рассмотрена на примере системы второго порядка с кубическими нелинейными выражениями для упругих и демпфирующих сил. Для этой системы построен набор контрольных переменных, проведено численное моделирование и анализ чувствительности их к изменению отдельных параметров системы.

В современной литературе большое внимание уделяется разработке диагностических процедур, позволяющих своевременно обнаружить изменения параметров в различных динамических системах, поведение которых описывается дифференциальными уравнениями. Подобная задача для нелинейных систем, возмущаемых случайным образом представляется особенно сложной. В работах [1] и [2] для решения подобной задачи предлагается использовать различные процедуры идентификации параметров нелинейной системы. Эти процедуры для сложных механических систем связаны с необходимостью решать аналитически нетривиальные системы нелинейных уравнений.

Современные методы функциональной диагностики позволяют оценить работоспособность системы, не занимаясь определением значений изменяющихся параметров [3]. Для этого используется естественная избыточность. В системе выбирается набор инвариантных величин Δ_I , сохраняющих свои номинальные значения при исправном функционировании системы. В качестве контрольных параметров системы по результатам измерений вычисляются оценки этих инвариантных величин. Они используются в качестве контрольных параметров системы и при отклонении хотя бы одного из них от номинальных значений делается вывод о наличии неисправности в системе.

1. Используем для получения подобных инвариантов соотношения метода моментов, хорошо известные из литературы [4]. Общие соотношения предлагаемого метода в общих чертах обсуждались авторами этой статьи в работах [5]-[6]. Разберем их более подробно на примере простой системы второго порядка вида

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -C(x_1) - K(x_2) + \sigma \xi \end{cases}$$
 (1)

В этой системе x_1, x_2 - параметры описывающие ее состояние (например,

координата и скорость), ξ - возмущение (случайный процесс типа белого шума единичной интенсивности), σ - интенсивность этого возмущения, $C(x_1), K(x_2)$ - функции переменных x_1 и x_2 , которые представимы в виде многочленов нечетной степени:

$$C(x_1) = \sum_r c_r x_1^r, \qquad K(x_2) = \sum_r k_r x_2^r.$$
 (2)

Системе (1)-(2) соответствует уравнение Колмогорова-Фокера-Планка для плотности распределения $p(x_1, x_2, t)$:

$$\frac{\partial p}{\partial t} - x_2 \frac{\partial p}{\partial x_1} - \frac{\partial}{\partial x_2} \left[\left(-C(x_1) - K(x_2) \right) p \right] = \frac{\sigma^2}{2} \frac{\partial^2 p}{\partial x_2^2}.$$
 (3)

Будем рассматривать стационарный случайный процесс, когда плотность распределения не зависит от времени. Тогда уравнение Колмогорова-Фокера-Планка (3) согласно [4] примет вид:

$$x_2 \frac{\partial p(x_1, x_2)}{\partial x_1} - \frac{\partial}{\partial x_2} \left[\left(\sum_r c_r x_1^r + \sum_r k_r x_2^r \right) p(x_1, x_2) \right] + \frac{\sigma^2}{2} \frac{\partial^2 p(x_1, x_2)}{\partial x_2^2} = 0.$$

$$\tag{4}$$

Домножив это равенство на $x_1^i x_2^j$ и проинтегрировав по x_1 и x_2 от $-\infty$ до $+\infty$, для установившихся значений моментов $(dm_{i,j}/dt=0)$ получим уравнения метода моментов

$$im_{i-1,j+1} - j(\sum_{r} c_r m_{i+r,j-1} + \sum_{r} k_r m_{i,j+r-1}) + j(j-1)\frac{\sigma^2}{2} m_{i,j-2} = 0,$$

$$i = 0, 1, 2, ...; \ j = 0, 1, 2, ...$$
(5)

где $m_{i,j}$ - момент распределения

$$m_{i,j} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_1^i x_2^j p(x_1, x_2) \, dx_1 \, dx_2. \tag{6}$$

Часть уравнений (5) не зависят от параметров системы и могут быть использованы для проверки достоверности рассматриваемой модели возмущений. Например, при j=0 уравнения (5) примут вид:

$$im_{i-1,1} = 0.$$
 (7)

Следовательно для системы (1) все моменты $m_{\ell,1} = 0$ для всех целых $\ell \geq 0$.

Остальные уравнения этой системы можно рассматривать как бесконечномерную систему соотношений, связывающих моменты распределения $m_{i,j}$ и параметры $c_r, k_r, \sigma(r=1,2,3...)$. Значения моментов $m_{i,j}$ в силу этих соотношений зависят от указанных параметров - $m_{i,j}(c_r, k_r, \sigma)$.

Соотношения системы (5) используем при формировании контрольного условия для обнаружения неисправности в системе. Для этого введем набор переменных $\Delta_{i,j}$, зависящих от моментов распределения:

$$\Delta_{i,j}(c_r, k_r, \sigma) = i m_{i-1,j+1}(c_r, k_r, \sigma) - j (\sum_r \tilde{c}_r m_{i+r,j-1}(c_r, k_r, \sigma) + \sum_r \tilde{k}_r m_{i,j+r-1}(c_r, k_r, \sigma)) + j (j-1) \frac{\tilde{\sigma}^2}{2} m_{i,j-2}(c_r, k_r, \sigma).$$
(8)

Здесь \tilde{c}_r , \tilde{k}_r , $\tilde{\sigma}$ - априорные оценки значений параметров системы, используемые вычислителем (например их паспортные значения).

В силу соотношений (5) –

$$\Delta_{i,j}(\tilde{c}_r,\tilde{k}_r,\tilde{\sigma})=0.$$

В процессе функционирования на реальном объекте коэффициенты c_r , k_r , σ , принимают значения \hat{c}_r , \hat{k}_r , $\hat{\sigma}$, и для этих значений при функционировании системы контрольная переменная $\Delta_{i,j}(\hat{c}_r,\hat{k}_r,\hat{\sigma}) \neq 0$.

Эти соображения и используем для организации контроля в системе следующим образом:

На интервале стационарности системы будем вычислять оценки контрольных переменных $\Delta_{i,j}$ из соотношений (8). Если вычисленное значение $\Delta_{i,j}$ превышает пороговое значение $D_{i,j}$, считаем, что по крайней мере один из параметров c_r, k_r, σ опасно изменил свое значение.

Пороговые величины $D_{i,j}$ целесообразно выбирать таким образом, чтобы оно превышало, например, утроенное среднее квадратическое значение оценки величины $\Delta_{i,j}(\tilde{c}_r, \tilde{k}_r, \tilde{\sigma})$.

2. Для оценки чувствительности предлагаемого алгоритма контроля проведем анализ зависимости величин $\Delta_{i,j}(c_r,k_r,\sigma)$ от параметров c_r,k_r,σ . Вычислим для этого частные производные $\Delta_{i,j}$ по параметрам c_r,k_r,σ . Рассмотрим, например, параметр c_q . По определению $\Delta_{i,j}$

$$\frac{\partial \Delta_{i,j}}{\partial c_q} = i \frac{\partial m_{i-1,j+1}}{\partial c_q} - j \left(\sum_r \tilde{c}_r \frac{\partial m_{i+r,j-1}}{\partial c_q} + \sum_r \tilde{k}_r \frac{\partial m_{i,j+r-1}}{\partial c_q} \right) + j(j-1) \frac{\tilde{\sigma}^2}{2} \frac{\partial m_{i,j-2}}{\partial c_q}$$

Одновременно из соотношений (5) следует,

$$i\frac{\partial m_{i-1,j+1}}{\partial c_q} - j\left(\sum_r c_r \frac{\partial m_{i+r,j-1}}{\partial c_q} + \sum_r k_r \frac{\partial m_{i,j+r-1}}{\partial c_q}\right) + j(j-1)\frac{\sigma^2}{2}\frac{\partial m_{i,j-2}}{\partial c_q} - jm_{i+q,j-1} = 0,$$

и значит значение соответствующей частной производной в точке $\tilde{c}_r,\,\tilde{k}_r,\,\tilde{\sigma}$ равно

$$\varphi_{i,j}^{(q)} = \frac{\partial \Delta_{i,j}(\tilde{c}_r, \tilde{k}_r, \tilde{\sigma})}{\partial c_q} = j m_{i+q,j-1}(\tilde{c}_r, \tilde{k}_r, \tilde{\sigma})$$
(9)

Тогда минимальное изменение параметра c_q , обнаруживаемое предлагаемым алгоритмом контроля оценивается в области линейности зависимости $\Delta_{i,j}$ от c_q соотношением

$$(c_q - \tilde{c}_q) \approx \frac{D_{i,j}}{j m_{i+1,j-1}(\tilde{c}_r, \tilde{k}_r, \tilde{\sigma})}$$

Аналогично для параметров k_r и σ получим

$$\psi_{i,j}^{(q)} = \frac{\partial \Delta_{i,j}(\tilde{c}_r, \tilde{k}_r, \tilde{\sigma})}{\partial k_q} = j m_{i,j+q-1}(\tilde{c}_r, \tilde{k}_r, \tilde{\sigma})$$

$$\gamma_{i,j} = \frac{\partial \Delta_{i,j}(\tilde{c}_r, \tilde{k}_r, \tilde{\sigma})}{\partial (\sigma^2)} = \frac{j(j-1)}{2} m_{i,j-2}(\tilde{c}_r, \tilde{k}_r, \tilde{\sigma})$$
(10)

3. Рассмотрим простой пример системы вида (1) с кубической нелинейностью

$$C(x_1) = c_1 x_1 + c_3 x_1^3, K(x_2) = k_1 x_2 + k_3 x_2^3.$$
 (11)

Так как функции $C(x_1)$ и $K(x_2)$ нечётные, то плотность распределения такой системы будет центральносимметричной, и моменты с нечётной суммой индексов будут равны нулю. Соответственно и $\Delta_{i,j}$ с нечётной суммой индексов тоже будут равны нулю. Поэтому для контроля можно использовать только $\Delta_{i,j}$ с чётной суммой индексов.

Переменные $\Delta_{i,j}$ для $i+j \leq 4$ определим в соответствии с (8) выражениями

$$\Delta_{2,0} = 2m_{1,1}
\Delta_{1,1} = m_{0,2} - c_1 m_{2,0} - c_3 m_{4,0} - k_3 m_{1,3}
\Delta_{0,2} = -2k_1 m_{0,2} - 2k_3 m_{0,4} + \sigma^2
\Delta_{4,0} = 4m_{3,1}
\Delta_{3,1} = 3m_{2,2} - c_1 m_{4,0} - c_3 m_{6,0} - k_3 m_{3,3}
\Delta_{2,2} = 2m_{1,3} - 2k_1 m_{2,2} - 2k_3 m_{2,4} + \sigma^2 m_{2,0}
\Delta_{1,3} = m_{0,4} - 3c_1 m_{2,2} - 3c_3 m_{4,2} - 3k_1 m_{1,3} - 3k_3 m_{1,5}
\Delta_{0,4} = -4c_1 m_{1,3} - 4c_3 m_{3,3} - 4k_1 m_{0,4} - 4k_3 m_{0,6} + 6\sigma^2 m_{0,2}$$
(12)

Переменные $\Delta_{2,0}$ и $\Delta_{4,0}$ всегда равны 0 в соответствии с (7). Они не зависят от параметров $c_1, c_3, k_1, k_3, \sigma$ и не могут использоваться в качестве контрольных величин.

Остальные величины $\Delta_{i,j}$ из приведенного списка можно использовать в качестве контрольных параметров, причем $\Delta_{1,1}$, $\Delta_{3,1}$, $\Delta_{1,3}$ не зависят от оценки $\tilde{\sigma}$ интенсивности возмущения.

Аналитические оценки для чувствительности предлагаемой процедуры контроля и для области ее работоспособности провести достаточно сложно, так как в этом случае необходимо решать систему уравнений (5). Поэтому анализ проведем численно на примере систем со следующими параметрами:

1.
$$c_1 = 1$$
; $c_3 = 1$; $k_1 = 1$; $k_3 = 1$; $\sigma = 1$.

2.
$$c_1 = -1$$
; $c_3 = 1$; $k_1 = -1$; $k_3 = 1$; $\sigma = 1$.

Кривые соответствующих зависимостей приведены на рис. 1.

В ходе численного моделирования проводилось вычисление контрольных величин $\tilde{\Delta}_{i,j}$ по N=10000 измерениям. Для вычислений моментов распределения использованы традиционные оценки моментов распределения, вычисляемые по измерениям:

$$\tilde{m}_{i,j} = \frac{1}{N} \sum_{n=1}^{N} \tilde{x}_1^i(n) \tilde{x}_2^j(n)$$

где $\tilde{x}_1(n)$ и $\tilde{x}_2(n)$ п-ые измерения x_1 и x_2 . Ошибка оценки в этом случае является случайной величиной, зависящей от количества измерений, и согласно [7] имеет нормальное распределение с нулевым средним.

Изменения величин $\Delta_{i,j}$ от значения параметра c_1 для 1-го набора параметров приведены в таблице 1 .

		$\Delta_{i,j}$					
i	j	$c_1 = 0.8$	$c_1 = 0.9$	$c_1 = 1.0$	$c_1 = 1.1$	$c_1 = 1.2$	
0	2	0.0202	0.0165	0.0103	0.0222	0.0243	
0	4	0.0477	0.0267	0.0219	0.0385	0.0336	
1	1	0.0387	0.0181	0.0001	0.0213	0.0407	
1	3	0.0344	0.0018	0.0038	0.0261	0.0523	
2	2	0.0028	0.0089	0.0031	0.0046	0.0110	
3	1	0.0209	0.0082	0.0008	0.0084	0.0187	

Таблица 1.

На рис. 2 приведены верхние (1) и нижние (2) 3σ границы значений оценок величин $\Delta_{1,1}$, $\Delta_{1,3}$ и $\Delta_{3,1}$, полученных по 10-ти сериям измерений. Изменения величин $\Delta_{0,4}$, $\Delta_{0,2}$ и $\Delta_{2,2}$ представляются незначительными.

Из таблицы и рисунка видно, что зависимость величин $\Delta_{i,j}$ от пара-

метра c_1 в интересующей нас области мало отличается от линейной. Вычисления показывают, что имеют место аналогичные зависимости величин $\Delta_{i,j}$ от параметров c_3, k_1, k_3 и σ^2 . Возможности обнаружения изменения параметров в системе можно оценить по результатам вычислений частных производных $\varphi_{i,j}^{(1)}, \, \varphi_{i,j}^{(3)}, \, \psi_{i,j}^{(1)}, \, \psi_{i,j}^{(3)}$ и $\gamma_{i,j}$.

В таблица 2 приведены значения этих величин для системы (1) с каждым из рассмотренных наборов параметров. В третьем столбце таблицы приведена величина $\sigma(\delta\Delta_{i,j})$, представляющая апостериорное среднее квадратическое отклонение оценки величины $\Delta_{i,j}$ от среднего значения (т.е. ошибку оценивания этой величины).

i	j	$\sigma(\delta\Delta_{i,j})$	$\varphi_{i,j}^{(1)}$	$\varphi_{i,j}^{(3)}$	$\psi_{i,j}^{(1)}$	$\psi_{i,j}^{(3)}$	$\gamma_{i,j}$
			Набор параметров 1				
0	2	0,0235	0,0	0,0	0,58	0,43	2,00
0	4	0,0608	0,01	0,01	0,86	0,94	0,48
1	1	0,0092	0, 19	0,09	0,00	0,00	0,00
1	3	0,0200	0, 17	0,08	0,01	0,03	0,0
2	2	0,0082	0,00	0,00	0, 11	0,08	0,39
3	1	0,0087	0,09	0,07	0,00	0,00	0,00
			Набор параметров 2				
0	2	0,0383	0,00	0,00	1,73	2,74	2,00
0	4	0,0197	0, 26	0,63	5,49	11,05	1,74
1	1	0,0395	1,03	1,96	0,00	0,05	0,00
1	3	0,0133	2,50	4,33	0, 16	0,55	0,00
2	2	0,0776	0,02	0,00	1,65	2,59	2,06
3	1	0,0121	1,96	4,59	0,00	0, 13	0,00

Таблица 2.

Приведенная таблица наглядно показывает возможность обнаружения неисправностей при изменении одного из параметров системы. $\Delta_{0,2}$, $\Delta_{0,4}$ значительно изменяются при отклонении коэффициентов k_1, k_3 от их априорных (паспортных) значений. Для первого набора параметров при величинах $\Delta_{0,2} > 3\sigma(\delta\Delta_{0,2}) \sim 0,08$ можно сделать вывод об изменении коэффициентов k_1 или k_3 более чем на 25%. Для второго набора параметров контрольная величина $\Delta_{0,2}$ позволяет обнаружить изменение параметра k_1 на 6% и параметра k_3 на 4%, а $\Delta_{0,4}$ позволяет обнаружить изменение параметра k_1 на 2% и параметра k_3 на 1% соответственно. Менее эффективным оказывается использование параметра $\Delta_{2,2}$.

Аналогично величины $\Delta_{1,1}$, $\Delta_{1,3}$, $\Delta_{3,1}$ удается использовать в качестве контрольных для обнаружения изменений параметров c_1, c_3 . При этом следует отметить, что в соответствии с (12) изменение интенсивности случайного возмущения не влияет на изменение этих контрольных величин, что позволяет контролировать значение параметров c_1, c_3 при отсутствии информации о величине σ .

Представление о чувствительности предлагаемого метода позволяет также получить таблица 3, в которой собраны значения величин

$$\left| \frac{\sigma(\delta \Delta_{i,j})}{\varphi_{i,j}^{(q)}} \right|, \left| \frac{\sigma(\delta \Delta_{i,j})}{\psi_{i,j}^{(q)}} \right|, \left| \frac{\sigma(\delta \Delta_{i,j})}{\gamma_{i,j}} \right|.$$

Эти величины характеризуют изменения параметров системы, необходимых, чтобы соответствующие $\Delta_{i,j}$ изменились на величину $\sigma(\delta\Delta_{i,j})$ среднего квадратического отклонения ошибки оценивания (т.е. $D_{i,j} = \sigma(\delta\Delta_{i,j})$). В верхней строке таблицы указан параметр, чувствительность к изменению которого характеризует приведенная величина. Прочерками обозначены позиции для которых вероятность обнаружения изменения параметра пренебрежимо мала.

i	j	c_1	c_3	k_1	k_3	σ^2
		Набо				
0	2			0,04	0,06	0,01
0	4			0,07	0,07	0,13
1	1	0,05	0,10			
1	3	0,12	$0,\!25$			
2	2			0,08	0,10	0,02
3	1	0,09	0,13			—
		Набо				
0	2			0,02	0,015	0,02
0	4	1,1	0,4	0,04	0,02	0,01
1	1	0,04	0,02		_	—
1	3	0,05	0,35	1,2	0,3	
2	2			0,05	0,04	0,04
3	1	0,07	0,03		1,2	

Таблица 3.

Приведенная таблица показывает работоспособность предлагаемой процедуры для контроля изменения одного из параметров системы в случае, когда остальные параметры остаются неизменными.

В заключение заметим, что случай одновременного изменения двух или нескольких параметров представляется более сложным. Например, статистические характеристики контрольной величины $\Delta_{0,2}$ не изменятся при выполнении соотношения $(k_1 - \hat{k}_1)m_{0,2}(\hat{c}_r, \hat{k}_r, \hat{\sigma}) = -(k_3 - \hat{k}_3)m_{0,4}(\hat{c}_r, \hat{k}_r, \hat{\sigma})$. Анализ ограничений и возможностей для такой процедуры является предметом отдельного исследования.

Список литературы

[1] Диментберг М.Ф., Соколов А.А. Вибродиагностика нелинейностей по данным о колебаниях, возбуждаемых случайными силами // Известия АН СССР. МТТ. 1992. N 1, c. 14-18.

- [2] Гладченко М.А. Идентификация параметров нелинейной механической системы // Вестник МГУ. Математика. Механика. 1994. N 5. C. 105-108.
- [3] Мироновский Л.А. Функциональное диагностирование динамических систем // СПб., 1998г, 256 с.
- [4] Диментберг М.Ф. Случайные процессы в динамических системах с переменными параметрами // М. Наука. 1989. 176 с.
- [5] Гладченко М.А., Кручинин П.А. О диагностике нелинейных динамических систем при случайном внешнем воздействии// в сб. Нелинейный анализ и его приложения. // М.,1998, с.164.
- [6] Кручинин П.А., Гладченко М.А. О контроле изменения параметров в нелинейной динамической системе при случайном возбуждении// в сб. Труды IX Международного научно-технического семинара «Современные технологии в задачах управления, автоматики и обработки информации»// Алушта.,2000, с. 62-63.
- [7] Кендал М., Стьюарт А. Теория распределений. // М., Наука, 1966, 898c.