Contents

 cvbn

2 CONTENTS

Chapter 1

Odds and ends

1.1 Space of sequences

Definition 1.1. For $1 \leq p < \infty$, ℓ_p is defined to be the set of all sequences $x = (x_1, x_2, \cdots)$ for which $\|x\|_p < \infty$. Where

$$\|x\|_p = (\sum_1^\infty |x_i|^p)^{1/p}$$

is the ℓ_p norm of the sequences.

While ℓ_{∞} is defined as the set of all $\sup\{|x_n|\} \leq \infty$, such norm is called ℓ_{∞} norm, supremum norm or uniform norm.

All of these spaces are vector space. And sequence $\{\ell_i\}_{i=1}^{\infty}$ is increasing.

The space of all convergent sequence is denoted c and all sequences convergent to 0 is denoted c_0 . Finally, the collection of sequences with finite nonzero terms is φ . One can check that

$$\varphi \subset \ell_p \subset c_0 \subset \ell_\infty \subset \mathbb{R}^n$$

1.2 Spaces of functions

One can think \mathbb{R}^n as

$$\{f:\{1,2,\cdots,n\}\to\mathbb{R}\}=\mathbb{R}^n=\mathbb{R}^{\{1,2,\cdots,n\}}$$

Replace $\{1, 2, \dots, n\}$ by an arbitrary X, then \mathbb{R}^X is all functions from X to \mathbb{R} .

For $1 \leq p < \infty$, $L_p(\mu)$ is defined to be the set of all μ measurable functions f for which $\|f\|_p < \infty$, where the L_p **norm** is defined as

$$\|f\|_p=(\int_\Omega |f|^p)^{1/p}$$

And the L_{∞} norm, or essential supremum is defined as

$$||f||_{\infty} = \operatorname{ess\,sup} f = \sup\{t : \mu(\{x : |f(x)| \ge t\})0\}$$

1.3 Ordinals

Suppose R is an order relation on Ω , then Ω is said to be **inductively ordered** by R if every totally ordered subset has an **supremum**.

Zorn's Lemma states that every inductively ordered set has a maximal element.

Definition 1.2. A set X is **well ordered** by linear \leq if every nonempty subset has a least element.

Definition 1.3. An **initial segement** of (X, \preceq) is any set of the form $I(x) = \{y \in X : y \leq x\}$.

Definition 1.4. An **ideal** in a well ordered X is a subset A s.t. for all $a \in A$, $I(a) \subset A$.

Theorem 1.1 (Well Ordering Principle). Every nonempty set can be well ordered.

Proof. Let X nonempty, and let

$$\mathcal{X} = \{(A, \leq_A) \text{ is well order} : A \subset X\}$$

all well ordered sets, and define \preceq on $\mathcal X$ as $(B, \preceq_B) \preceq (A, \preceq_A)$ if B is an ideal in A and \preceq_A extends \preceq_B . Suppose every chain $\mathcal C$ in $\mathcal X$, $(\cup \mathcal C, \cup \{\prec_A \colon A \in \mathcal C\})$ clearly an upper bound of $\mathcal C$ and well ordered. By Zorn's lemma, there is a maximal element of $\mathcal X$ and it's actually X.

Kind of remarkable and useful well ordered set is exist:

Theorem 1.2. There exist poset (Ω, \preceq) satisfy

1. (Ω, \preceq) is well ordered.

1.3. ORDINALS 5

- 2. Ω has a greast element ω_1
- 3. I(x) is countable for $x < \omega_1$
- 4. $\{y \in \Omega : x \leq y \leq \omega_1\}$ is uncountable.
- 5. Every nonempty subset of Ω has a least upper bound.
- 6. A nonempty subset of $\Omega \{\omega_1\}$ has greatst element iff it's countable. Every uncountable subset has least upper bound ω_1 .

Proof. Let (X, \preceq) be uncountable well ordered set, and let A

$$A = \{x \in X : I(x) \text{is uncountable}\}$$

w.l.o.g we may assume A is nonempty. Then there is a first element and denoted by ω_1 . Then we show that $\Omega = I(\omega_1)$ enjoy all the properies.

1-4 is straightforward and 5 follows from all the upper bound is well ordered and thus least upper bound exist. For 6, suppose there is a countable $C \subset \Omega - \{\omega_1\}$, then $\bigcup_{i=1}^{\infty} I(x_i)$ is countable, so there is some $x < \omega_1 \notin \bigcup_{i=1}^{\infty} I(x_i)$, that is an upper bound. By 5, least upper bound is exist and belong to C. Conversely, if some subset C has some least upper bound $b < \omega_1$, then $C \subset I(b)$ and must countable.

The elements of Ω are called **ordinals** and ω_1 is called **first uncountable ordinal**. The elements of $\Omega_0 = \Omega - \{\omega_1\}$ is **countable ordinals**. We treat $\mathbb N$ as a subset of Ω . Then the first element of $\Omega - \mathbb N$ is **first infinite ordinal**.

Theorem 1.3 (Interlacing Lemma). Suppose sequence $\{x_n\}$ and $\{y_n\}$ in Ω_0 with $x_n \leq y_n \leq x_{n+1}$. Then they share the same least upper bound.

Proof. Clearly since $x_n \leq y_n \leq x_{n+1}$.

Chapter 2

Topology

2.1 Topological spaces

Let Ω be as space

Definition 2.1. A class of subset τ of Ω is an **topology** if

- 1. \emptyset and Ω belongs to τ .
- 2. closed under arbitrary union.
- 3. closed under finite intersection.

 (Ω, τ) called a **topological space** where Ω is called as **underlying set**. The sets in τ are called **open** while sets with complement in τ is **closed**. Both open and closed set is called **clopen**.

Definition 2.2. Countable intersection of open sets is \mathcal{G}_{σ} set and countable union of closed sets is \mathcal{F}_{δ} set.

Definition 2.3. (X, ρ) is a **semimetric space**, when ρ defined on $X \times X$ s.t. $\forall x, y, z \in X$:

- 1. $\rho(x, y) \ge 0$
- 2. $\rho(x, y) = \rho(y, x)$
- 3. $\rho(x,y) \le \rho(x,z) + \rho(z,y)$

 ρ is called a **semimetric**.

If $\rho(x,y) = 0 \iff x = y$, ρ become a **metric** and (X,ρ) become **metric** space. $B(a,r) = \{x \in E, d(x,a) < r\}$ is r-ball with center a.

U is **open** in (Ω, d) iff $\forall x \in U, \exists r_x 0 \ni B_d(x, r_x) \subseteq U$. Let τ_d be the set of all open subsets of Ω , we call τ_d the **topology generated by** d. A Topological space is **metrizable** if there exist metric d generates it.

Suppose d is discrete, that is, d(x,y)=0 iff x=y, otherwise, d(x,y)=1. Then every subset is open hence $\tau_d=\mathcal{P}(\Omega)$ and called **discrete topology**. The zero semimetric, defined by d(x,y)=0 for all $x,y\in\Omega$ generates $\tau_d=\{\varnothing,\Omega\}$ and called **trivial topology**.

Let $\Omega=\mathbb{R}^n,$ $l^2=\sqrt{\sum_1^n(x_i-y_i)^2}$ is called **Euclidean metric**. $l^1=\sum_1^n|x_i-y_i|$ is called **taxi-cab metric** and $l^\infty=\sup\{|x_i-y_i|\}$ is called **sup norm metric**.

Note $d_{l^2}(x,y) \leq d_{l^1}(x,y) \leq \sqrt{n} d_{l^2}(x,y)$ and $d_{l^2}(x,y) \leq \sqrt{n} d_{l^\infty}(x,y) \leq \sqrt{n} d_{l^2}(x,y)$, then d_{l^∞} open \iff d_{l^2} open \iff d_{l^1} open. Hence $\tau_{d_{l^2}} = \tau_{d_{l^1}} = \tau_{d_{l^\infty}}$.

All topologies on Ω is poset with greatest element $\mathcal{P}(\Omega)$ and least $\{\varnothing, \Omega\}$. If $\tau' \subset \tau$, we say τ' coarser than τ while τ finer than τ' .

If τ can be form by taking union of families in some $\mathcal{B} \subset \tau$, we call \mathcal{B} the **base** for the topology τ .

Theorem 2.1. \mathcal{B} is a base in (X, τ) iff $\forall U \in \tau, \forall x \in U, \exists W \in \mathcal{B} \ni x \in W \subset U$.

Proof. \Longrightarrow : Any U can be written as $U=\cup W_i$ and $x\in U\implies x\in W_i$ for some i and $W_i\in\mathcal{B}$. \Longleftrightarrow : For any $U\in T$, consider arbitrary $x\in U$, then there exist W_x such that $x\in W_x\subset U$, thus we have $U=\cup_x W_x$.

Let $\mathcal{S} \subset \tau$, suppose all topologies include \mathcal{S} . Then the intersection of all of them is again a topology, denoted as $\tau(S) = \cap T$, then $\tau(\mathcal{S})$ is the smallest topology contains \mathcal{S} . We call it the topology **generated** by \mathcal{S} .

Theorem 2.2. $\tau(S)$ is unions of families of finite intersections together with Ω , formally:

$$\{\bigcup(\bigcap_1^N S_i)\}\cup\Omega$$

 $\mathcal{S} \subset \tau$ is a **subbase** for τ if $\bigcup \mathcal{S} = \Omega$ then all finite intersections of \mathcal{S} is a base. Note that if $\Omega \in \mathcal{S}$, \mathcal{S} is the subbase of $\tau(\mathcal{S})$.

 (Ω, τ) is **second countable** if τ has countable base. Clearly, a topology is second countable iff it has countable subbase.

For any subset X in (Ω, τ) , then

$$\tau_X = \{X \cap V : V \in \tau\}$$

form a topology in X and we call (X, τ_X) a subspace or relative topology. Sets in τ_X are relative open. Relative closed sets of the form

$$X-(X\cap V)=X-V=X\cap V^c$$

2.2 Neighborhood

A subset V is called a **neighborhood** of a if there exists a open set $U \subset V$ contains a. Then we called $V' = V - \{a\}$ **punctured(deleted)** neighborhood. A **neighborhood base** is a collection of neighborhood BN(a) s.t. for any neighborhood V of a, there exist a $W \in BN(a)$ and $W \subset V$. Clearly, all the neighborhoods is a neighborhood base and denoted as $\mathcal{N}(x)$, which is called **neighborhood system**.

Lemma 2.1. A subset U is open iff it's a neighborhood for each of its points.

Proof. \Longrightarrow is trivial. \longleftarrow follows from $\cup_x G_x = U$ and unions of open set is still open. \blacksquare

This suggest a equivalent definition of finer topology:

Lemma 2.2. $\tau' \subset \tau \iff \tau'$ neighborhood is a τ neighborhood.

Proof. \Longrightarrow any open set G_x satisfy $x \in G_x \subset V$ in T' is still open in T, hence V is T neighborhood. \longleftarrow Consider any open set $G \in T'$, it's a T' neighborhood for each of its points implies it's a T neighborhood for each of its points and hence G is T open.

2.3 Closures

The **interior** of A is the union of all open sets which are included A, i.e., the largest open set included in A, we denote it A° . And the **closure** is the intersection of all closed sets which include A and thus the smallest closed set includes A, we denote it \overline{A} .

Lemma 2.3. Following is some useful truth:

1.
$$(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$$

2. $A \cup B = A \cup B$

3.
$$A \subset \overline{B} \implies \overline{A} \subset \overline{B}$$

$$4. \ \underline{A^{\circ}} \subset B \Longrightarrow A^{\circ} \subset B^{\circ}$$

$$5. \ \underline{A^{c}} = (A^{\circ})^{c}$$

5.
$$\overline{A^c} = (A^\circ)^c$$

6.
$$(\overline{A})^c = (A^c)^\circ$$

Proof. We only prove 5, note $(A^{\circ})^c$ is closed and

$$A^{\circ} \subset A \implies (A^c) \subset (A^{\circ})^c$$

we have $\overline{A^c} \subset (A^\circ)^c$. On the other hand

$$\overline{A^c}\supset (A^\circ)^c \iff (\overline{A^c})^c\subset A^\circ \iff (\overline{A^c})^c\subset A \iff \overline{A^c}\supset A^c$$

The **frontier** of A is $\partial A = \overline{A} \cap \overline{A^c} = \overline{A} \cap (A^\circ)^c = \overline{A} - A^\circ$.

x is said to be an **interior point** of A if A is neighborhood of x.

x is said to be an adherent point if it's every neighborhood meets A, an ω accumulation point of A if every neighborhood of x contains infinitely many points of A and is a **condensation point** of A if every neighborhood of x contains **uncountable** many points of A.

x is a cluster point or accumulation point if every deleted neighborhood of x meets A and is **isolated point** if x is not cluster point. That is, $\{x\}$ is relative open in A. We denoted all the cluster points as A' and called **derived** set.

x is frontier point or boundary point if every neighborhood of x meets both A and A^c .

It's east to show that the points of A° are precisely all the interior points of A and A are precisely all the adherent points. ∂A is precisely points of frontier. We claim that

$$\overline{A} = A^{\circ} \cup \partial A = A \cup A'$$

A subset A is called **perfect** if it's closed while point in A is cluster points in A, that is $A' = A = \overline{A}$.

2.4. DENSE 11

2.4 Dense

A is said dense if $\overline{A} = \Omega$ and nowhere dense if $(\overline{A})^{\circ} = \emptyset$ (\mathbb{Q} is dense in \mathbb{R} while \mathbb{Z} is nowhere dense.) A is said to be **meagre** or **set of the first category** if it's countable union of nowhere dense. Sets which are not meagre is set of the second category set.

Space (Ω, τ) is first countable if every point of Ω has countable neighborhood base. The space is said **separable** if Ω has a countable dense subset.

Lemma 2.4. Second countable space is separable

Proof. Suppose $\mathcal{B} = (B_i)_{i \in I}$ is a countable base, by axiom of choice, we may take x_i in I, let $X = \{x_i\}_{i \in I} \subset \Omega$. Then we show that X is dense. For any $x \in \Omega$, it's neighborhood must contain some open G which is unions of \mathcal{B} and thus contains at least one element in X, that is, G meet X. Hence $\overline{X} = \Omega$.

Lemma 2.5. Second countable space is first countable

Proof. Suppose $\mathcal{B} = (B_i)_{i \in I}$ is a countable base, for each point $x \in \Omega$, one may take all the sets in \mathcal{B} which contains x as a neighborhood base. To verify it's neighborhood base, if there is a neighborhood N of x, then there is a open Gcontains x. By the definition of base, G is the union of sets of \mathcal{B} and those sets must at least one contains x and these sets is subset to G.

2.5**Mappings**

Suppose (Ω, τ) and (Ω', τ') are two spaces and f is a mapping from Ω to Ω' in the following.

Lemma 2.6. Following is some useful truth for mappings.

```
1. ff^{-1}(A) \subset A
```

2.
$$f^{-1}f(A) \supset A$$

3.
$$f^{-1}(U \cap N) = f^{-1}(U) \cap f^{-1}(N)$$

5.
$$f(U \cup N) = f^{-1}(U) \cup f^{-1}(N)$$

5. $f^{-1}(A^c) = (f^{-1}(A))^c$

- 6. $f^{-1}f(A) = A$ always holds if f is injection while $ff^{-1}(A) = A$ always holds if g is surjection.
- 7. If f is bijection, $(f^{-1})^{-1}(A)=f(A)$ always hold. 8. $(f\circ g)^{-1}(A)=g^{-1}f^{-1}(A)$

8.
$$(f \circ q)^{-1}(A) = q^{-1}f^{-1}(A)$$

9.
$$f^{-1}(A) \subset f^{-1}(B) \iff A \subset B$$

10.
$$f(A) \subset f(B) \iff A \subset B$$

Definition 2.4. f is **continuous** at x if for every neighborhood N' of f(x), there is a neighborhood N of x s.t. $f(N) \subset N'$. It's continuous if it's continuous at every points $x \in \Omega$.

Theorem 2.3. *f is continuous iff*

- 1. $f^{-1}(G')$ is open for every open subset G' of Ω' .
- 2. $f^{-1}(F')$ is closed for every closed subset F' of Ω' .
- 3. If $A \subset \Omega'$, then $f^{-1}(A^{\circ}) \subset (f^{-1}(A))^{\circ}$
- 4. If $A \subset \Omega$, then $f(\overline{A} \subset \overline{f(A)})$

Proof. We only prove 1 and 3.

 $1 \implies$: For any $x \in f^{-1}(G')$, it's sufficient to show that $f^{-1}(G')$ is its neighborhood. By definition, there is a neighborhood N s.t. $f(N) \subset G'$, and

$$x\in N\subset f^{-1}f(N)\subset f^{-1}(G')$$

 \Leftarrow : For every neighborhood N', there is some open G' contain f(x), and $f^{-1}(G')$ is neighborhood of x and $ff^{-1}(G') \subset G'$.

 $3 \implies : f^{-1}(A^{\circ})$ is open and th claim follows from $f^{-1}(A) \subset f^{-1}(A)$. \iff : Suppose A is open, then $A^{\circ} = A$ and hence $f^{-1}(A) \subset (f^{-1}(A))^{\circ}$. Which suggest $f^{-1}(A)$ is open.

Lemma 2.7 (Glueing Lemma). Let $X = A \cup B$ and A and B are both closed or both open, then $f: X \to Y$ is continuous iff it's restriction on A and B are both continuous.

Proof. \Longrightarrow is trivial.

 \Leftarrow Suppose they are both open and U be any open set in Y. Note $f_{|A}^{-1}(U)$ is open in A and thus open in X, thus

$$f^{-1}(U) = \left(f^{-1}(U) \cap B\right) \cup \left(f^{-1}(U) \cap A\right) = f_{|A}^{-1}(U) + f_{|B}^{-1}(U)$$

is open.

Lemma 2.8. Suppose $f: \Omega_1 \to \Omega_2$ and $g: \Omega_2 \to \Omega_3$, $f \circ g$ is continuous if f and g are continuous.

Proof. Suppose G_3 is open and the claims follows from $(f \circ g)^{-1}(G_3) = f^{-1}(g^{-1}(G_3))$.

Lemma 2.9. Suppose $f:(\Omega,\tau),(\Omega',\tau(\mathcal{S})),\ f$ is continuous iff $f^{-1}(S)\in\tau$ for any $S\in\mathcal{S}$.

 (Ω,τ) and (Ω',τ') are said to be **homeomorphic** if there exist continuous bijection f, s.t. f^{-1} is continuous and such f is called **homeomorphism**. In particular, f is an **embedding** if $f:(\Omega,\tau)\to (f(\Omega),\tau|f(\Omega))$ is a homeomorphism.

f is **open** if f(G) is open for all open set $G \in \tau$ and is **closed** if f(F) is closed for all closed set $F^c \in \tau$.

Lemma 2.10. Suppose f is bijection, then it's homeomorphism iff it's continuous and either open or closed.

Proof. By the continuity of f^{-1} , since $(f^{-1})^{-1}(G) = f(G)$ for all open set G.

 f^{-1} is continuous $\iff f(G)$ is open $\iff f$ is open.

Lemma 2.11. Suppose f is bijection, it's a homeomorphism iff τ' is the finest topology where f continuous.

Proof. Suppose f is homeomorphism, T_0 is another topology where f is continuous. For any $G \in \tau_0$, $f^{-1}(G) \in \tau$ by the continuity of f^{-1} ,

$$G=(f^{-1})^{-1}(f^{-1}(G))\in\tau'$$

That is τ' is finer than any τ_0 .

Note that $\mathcal{P}(\Omega)$ let all f continuous and $\{\emptyset, \Omega\}$ let all $g: \Omega' \to \Omega$ continuous.

2.6 Semicontinuous

 $f:\Omega\to\mathbb{R}^*$ is

• lower semicontinuous if for any $c \in \mathbb{R}$, the set $\{x \in \Omega : f(x) \leq c\}$ is closed.

• upper semicontinuous if for any $c \in \mathbb{R}$, the set $\{x \in \Omega : f(x) \geq c\}$ is closed.

Clearly f is lower semicontinuous iff -f is upper and vice versa. Also, f is continuous iff it's both upper and lower semicontinuous.

Lemma 2.12. Suppose $\{f_i\}_{i\in I}$ is family of lower(upper) semicontinuous function then $\sup f_i(\inf f_i)$ is lower(upper) semicontinuous.

Proof. Note

$$\{x\in\Omega:\sup f_i(x)\leq c\}=\bigcap_{i\in I}\{x\in\Omega:f_i(x)\leq c\}$$

is closed.

Lemma 2.13. $f: \Omega \to \mathbb{R}^*$ is

• lower semicontinuous iff for any net

$$x. \to x \implies \liminf f(x.) \ge f(x)$$

• upper semicontinuous iff for any net

$$x. \to x \implies \limsup f(x.) \le f(x)$$

Proof. Suppose f is lower semicontinuous and $x. \to x$. For any c < f(x), then $G = \{\omega \in \Omega : f(\omega)c\}$ is open and thus x. eventually in, that is x.c eventually and thus $\liminf f(x.) \ge c$. This implies that $\liminf f(x.) \ge f(x)$.

Conversely, for any $c \in \mathbb{R}$, consider $F = \{\omega \in \Omega : f(\omega) \leq c\}$. Then we show that F is closed. Suppose x. is nets in F and converges to some $x \in \Omega$. Then $c \geq \liminf f(x) \geq f(x)$ thus x in F and thus F is closed.

Then we can generalize Weierstrass' Theorem in corollary ??.

Theorem 2.4. $f: \Omega \to \mathbb{R}^*$ on a compact set attains a minimum(maximum) value and set of minima(maxima) is compact if it's lower(upper) semicontinuous.

Proof. Suppose X is compact and f is lower semicontinuous, then for every $c \in f(X)$, $F_c = \{x \in X : f(x) \le c\}$ is closed and $\{F_c : c \in f(X)\}$ has FIP clearly. Note X is compact, $\ker\{F_c : c \in f(X)\}$ is nonempty by $\ref{fig:suppose}$? That is just the set of minima and it's compact since it's closed.

2.7 Comparing topologies

We list some useful properties when comparing topologies, some of them has been mentioned before and proof omitted.

Lemma 2.14. Suppose τ' and τ are two topologies on Ω , then the following are equivalent.

- 1. $\tau' \subset \tau$
- 2. Identity mapping $I: x \mapsto x$ from (Ω, τ) to (Ω', τ') is continuous.
- 3. τ' closed set is closed in τ .
- 4. $x. \stackrel{\tau}{\to} x \implies x. \stackrel{\tau'}{\to} x$
- 5. $Cl_{\tau}(A) \subset Cl_{\tau'}(A)$

Lemma 2.15. Suppose $\tau' \subset \tau$, then

- 1. Every τ compact set is τ' compact.
- 2. Every τ' continuous function is τ continuous.
- 3. Every τ dense set is τ' dense.

2.8 Filter

Definition 2.5. A filter is a non-empty collection \mathcal{F} of subset in Ω s.t.

- 1. $A \in \mathcal{F}, A \subset \mathcal{B} \implies \mathcal{B} \in \mathcal{F}$
- 2. Closed under finite intersection.
- 3. $\emptyset \notin \mathcal{F}$

Note the definition of \mathcal{F} is independent with topology τ . A **free filter** is filter with $\ker \mathcal{F} = \bigcap_{F \in \mathcal{F}} F = \emptyset$. Not free filters are called **fixed**.

Filter can be formed by taking upward closure of a filter base.

Definition 2.6. A collection \mathcal{B} of subset in Ω is a fitter base of or prefilter if

- 1. $\mathcal{B} \subset \mathcal{F}$
- $2. \ \forall N \in \mathcal{F}, \exists W \in \mathcal{B} \ni W \subset N$

We say \mathcal{B} generates \mathcal{F} , where

$$\mathcal{F} = \mathcal{B}^{\uparrow} = \{ X \in \mathcal{P}(\Omega) : \exists A \in \mathcal{B} \ni X \supset A \}$$

For example,

• Suppose $x \in \Omega$ then

$$\mathcal{N}(x) = \{\text{All neighbourhoods of } x\}$$

is a filter on Ω , that is, **neighbourhood filter**, while each neighborhood base is a base for this filter. Note

$$\tau(x) = \{X \in \tau : x \in X\}$$

is a base for $\mathcal{N}(x)$ and thus $\mathcal{N}(x) = \tau(x)^{\uparrow}$.

• Suppose Ω is infinite, the collection of all **cofinite** subsets(subset s with finite complement) is a filter on Ω , such filter is free and called **Frechet** filter.

To assert a collection is a base, we have

Theorem 2.5. Let \mathcal{B} be a collection of nonempty subsets. Then \mathcal{B} is a filter base, that is, \mathcal{B} may generates a filter iff

- 1. The intersection of each finite family of sets in \mathcal{B} includes a set in \mathcal{B}
- 2. \mathcal{B} is non-empty and $\varnothing \notin \mathcal{B}$.

Proof. We claim that

$$\mathcal{F} = \{X \in \mathcal{P}(\Omega): \exists A \in \mathcal{B} \ni X \supset A\}$$

 \mathcal{F} is the filter generated by \mathcal{B} .

A family of subsets \mathcal{F} is said to have **finite intersection property** if intersection of every finite subfaimily is nonempty.

Let \mathcal{A} be collection of subsets with finite intersection property, then collection of all finite intersection of \mathcal{A} is a base, we call the filter generated **filter generated** by \mathcal{A} . Formally

$$\mathcal{F} = \{\bigcap_{A \in \mathcal{I}} A : \mathcal{I} \subset \mathcal{A} \text{ and } \mathcal{I} \text{ is finite}\}^{\uparrow}$$

A filter \mathcal{F} is **finer** than another \mathcal{G} if $\mathcal{F} \subset \mathcal{G}$. Clearly, the set of all filters on Ω is inductively ordered by inclusion. By Zorn's lemma, the set of all filters has maximal filters and we call such fliters **ultrafilters**.

2.8. FILTER 17

Lemma 2.16. Every fixed ultrafilter of the form

$$\mathcal{U}(x) = \{x\}^{\uparrow}$$

for any $x \in \Omega$. And every free ultrafilter contains no finite subsets.

To assert a filter is ultra, we have:

Theorem 2.6. Let A be a collection of subsets and \mathcal{F} the filter generates by A. If

$$\forall X \subset \Omega$$
, either $X \in A$ or $X^c \in A$

then A is an ultrafilter on Ω .

Proof. Suppose \mathcal{F}' is an ultrafilter include \mathcal{F} , we have $\mathcal{F}' \supset A$ clearly. Consider any $X \in \mathcal{F}'$, we claim that $X \in A$ since if $X^c \in A$ then $X^c \in \mathcal{F}'$ as $\mathcal{F}' \supset \mathcal{F} \supset A$ and $X \cap X^c = \emptyset \in \mathcal{F}'$ results in a contradiction. It follows that $A \supset \mathcal{F}'$ and thus $A = \mathcal{F}'$.

Theorem 2.7. Every filter \mathcal{F} is the intersection of all the ultrafilter which include \mathcal{F} .

Proof. We claim that

$$\mathcal{F} = \cap \{\text{ultrafilter generates by } \{x\} : x \in \cap \mathcal{F} \}$$

Suppose mappings on a filter:

Theorem 2.8. Let f be a mapping from Ω to Ω' and \mathcal{B} a base for a flitter \mathcal{F} on Ω . Then $f(\mathcal{B}) = \{f(X)\}_{X \in \mathcal{B}}$ is also a base on Ω' . Moreover, if \mathcal{F} is ultra then $f(\mathcal{B})$ also generates an ultrafilter.

Proof. First assertion is straightforward and the second follows from \mathcal{B} is collection of supset for some $\{x\}$, then $f(\mathcal{B})$ generates the fliter that generates by $\{f(x)\}$.

Theorem 2.9. In the same situation as previous theorem. If \mathcal{B}' is a base on Ω' , then $f^{-1}(\mathcal{B}')$ is a base on Ω iff every set in \mathcal{B}' meets $f(\Omega)$

Proof. We have

$$\Omega \in f^{-1}(\mathcal{B}') \implies f(\Omega) \subset X'$$

for some $X' \in f^{-1}(\mathcal{B}')$, by definition, \implies is immediately.

For \iff , suppose any finite family $X_i \in \mathcal{B}'$, then

$$\bigcap_{i=1}f^{-1}(X_i)=f^{-1}(\bigcap_i X_i)\in f^{-1}(\mathcal{B}')$$

Then the claim follows from theorem ??.

A point $x \in \Omega$ is said to be a **limit** or a **limit point** of the fliter \mathcal{F} and \mathcal{F} is said to **converge** to x, or $\mathcal{F} \to x$, if the neighborhood filter $\mathcal{N}(x) \subset \mathcal{F}$. For filter base \mathcal{B} , we define on the filter generated by \mathcal{B} , that is, if $\mathcal{N}(x) \subset \mathcal{B}^{\uparrow}$.

This implies a equivalent definition of finer topology:

$$\tau\supset\tau'\iff\mathcal{N}_{\tau}(x)\supset\mathcal{N}_{\tau'}(x)\iff\mathcal{F}\to a\implies\mathcal{F}'\to a$$

also, an equivalent definition of continuity as follows:

Theorem 2.10. $f:(\Omega,\tau)\to(\Omega',\tau')$ is continous at x iff

$$\forall \mathcal{F} \to x, f(\mathcal{F}) \to f(x)$$

Proof. By definition, $f(\mathcal{F}) \to f(x)$ if

$$\mathcal{N}(f(x)) \subset f(\mathcal{F})^{\uparrow}$$

That is, for any neighbourhood $N' \in \mathcal{N}(f(x))$, there exist some $A \in \mathcal{F}$ s.t. $f(A) \subset N'$, as $\mathcal{N}(x) \subset \mathcal{F}$ and f is continuous at x, such A is always exists. Conversely, take $\mathcal{F} = \mathcal{N}(x)$ then the claim is follows

A point $x \in \Omega$ is said to be an **adherent point** of \mathcal{F} if x is an adherent point of every set in \mathcal{F} . The **adherence** of \mathcal{F} , $\mathrm{Adh}_{\tau}(\mathcal{F})$ or $\overline{\mathcal{F}}$ is the set of all adherent points, thus

$$\overline{\mathcal{F}} = \bigcap_{X \in F} \overline{X}$$

Define similarly on filter base \mathcal{B} by the filter generated. By definition, we have

$$\overline{\mathcal{B}} = \bigcap_{X \in B} \overline{X}$$

2.8. FILTER 19

Lemma 2.17. Suppose A be a subset of Ω , then $x \in \overline{A}$ iff there is a filter \mathcal{F} s.t. $A \in \mathcal{F}$ and \mathcal{F} converges to x.

Theorem 2.11. Suppose BN(x) a neighbourhood base of x, then

- 1. \mathcal{B} converges to x iff every set in BN(x) includes a set in \mathcal{B} .
- 2. $x \in \overline{\mathcal{B}}$ iff every set in BN(x) meets every set in \mathcal{B} .

As consequence, we have

Corollary 2.1. x is adherent to a filter \mathcal{F} iff there is $\mathcal{F}' \supset \mathcal{F}$ and converges to x

Proof. \Longrightarrow follows from taking $\mathcal{F} = BN(x)$. Conversely, $\forall N \in BN(x)$, we have $X' \subset N$ for some $X' \in \mathcal{F}'$, thus for any $X \in \mathcal{F}$, $N \cap X \subset X' \cap X \neq \emptyset$ as $X', X \in \mathcal{F}'$.

Corollary 2.2. Every limit point of \mathcal{F} is adherent to \mathcal{F}

Proof. Clearly holds by applying theorem ??.1 and ??.2.

Corollary 2.3. Every adherent point of an ultra-filter is a limit point of it.

Proof. Clearly as kernel of ultrafilter is a one point set. \Box

Suppose $f:(\Omega,\tau)\to(\Omega',\tau')$, a point $x'\in\Omega'$ is called

- 1. a **limit point** of f relative to \mathcal{F} if $f(\mathcal{F}) \to x$.
- 2. an **adherent point** of f relative \mathcal{F} if it's adherent point of $f(\mathcal{F})$.

Theorem 2.12. Suppose $f:(\Omega,\tau)\to(\Omega',\tau')$

- 1. x' is a limit point of f relative to \mathcal{F} iff for any τ' neighbourhood $N' \in \mathcal{N}(x')$, we have $f^{-1}(N') \in \mathcal{F}$.
- 2. x' is an adherent point of f relative to \mathcal{F} iff for any τ' neighbourhood $N' \in \mathcal{N}(x')$, it meets f(X) for any $X \in \mathcal{F}$.

Proof. x' is limit is equivalent to

$$\mathcal{N}(x') \subset f(\mathcal{F})^{\uparrow}$$

That is, there exist some $A = f(X) \subset N'$ for any N', followed by $X \subset f^{-1}f(X) \subset f^{-1}(N')$, then the claim follows from the definition of filter.

By theorem ??, x' is adherent to $f(\mathcal{F})$ iff

$$\forall N' \in BN(x'), \forall X \in \mathcal{F}, f(X) \cap N' \neq \emptyset$$

note for any $N' \in N'(x')$, there exist $N' \in BN(x') \ni N' \subset N'$, thus $f(X) \cap N' \neq \emptyset$ also holds. Conversely, making use of $BN(x') \subset N'(x')$.

For example, suppose $f:(\mathbb{N},\tau)\to (\Omega',\tau')$ and \mathcal{F} the frechet filter on \mathbb{N} . Then x' is limit of f relative to \mathcal{F} iff for all $N'\in N'(x'), f^{-1}(N')\in \mathcal{F} \iff f^{-1}(N')^c\subset [0,k] \iff f^{-1}(N')\supset \{n\in\mathbb{N}:n\geq k\}$ for some k, that is, $f(n)\in N'$ for any $n\geq k$.

Theorem 2.13. Suppose $f:(\Omega,\tau)\to (\Omega',\tau')$ and let $\mathcal{F}=\mathcal{N}(x)$. By theorm g,x' is limit of f relative to $\mathcal{N}(x)$ iff for all $N'\in \mathcal{N}(x'), f^{-1}(N')\in \mathcal{N}(x) \iff N\subset f^{-1}(N') \iff f(N)\subset N'$ for some $N\in \mathcal{N}(x)$. That is, iff x'=f(x), f is continous at x. Such limit points also called limit points of f at x.

2.9 Net

 (D, \preceq) is called a **directed set** if every couple $\{x,y\}$ in which has an upper bound.

If $\{D_i\}_{i\in I}$ is family of directed set then $D=\prod_{i\in I}D_i$ is also directed under **product direction** defined by $(a_i)_{i\in I}\succeq (b_i)_{i\in I}$ for all $i\in I$.

Definition 2.7. Let (D, \preceq) be a directed set, $\nu : D \to \Omega$ is called a **net** in Ω with domain D. The directed set is called **index set** of the net and members of D are **indexes**. We often write ν as x. or $\{x_{\alpha}\}$.

Suppose A a subset of Ω , we say x. **eventually in** A if there exist some $k \in D$ s.t. $x_n \in A$ for all $n \succeq k$. And we say ν is **frequently** in A if for all $n \in D$, there exist an $n' \succeq n$ s.t. $x_{n'} \in A$.

Lemma 2.18. If x, not frequently in A, then x, eventually in A^c . Thus, for any $X \in \Omega$, x, frequently in either X or X^c .

Suppose $x \in \Omega$, then x is said **converge** to x, or $x \to x$ if x eventually in N for all $N \in \mathcal{N}(x)$, i.e., $\mathcal{N}(x) \subset \mathcal{F}(x)$. The point x is **adherent** to x if x frequently in N for all $N \in \mathcal{N}(x)$.

Theorem 2.14. Suppose $A \in (\Omega, \tau)$, then $x \in \overline{A}$ iff it's the limit of some net in the set.

Proof. \Leftarrow is clear. \Rightarrow follows from we may find a associated net taking value in A(since each neighborhood meets A) and such net converges to x. \square

As with sequence, if x is bounded, there is

 $\liminf x = \sup \inf x \le \limsup x = \inf \sup x$

 ${\bf Subnet\ generalizes\ subsequence.}$

Definition 2.8. Suppose D is directed, a subset B of D is called **cofinal** if for any $a \in D$, there exist $b \in B$ s.t. $a \leq b$. A map $f : D \to A$ is **final** if f(D) is cofinal of A.

Let x, and x' are two nets in Ω with domains D and D' respectively. We say that x' is a **subnet** of x, if there exists a final mapping $\varphi: D' \to D$ s.t. $x'_{\alpha} = x_{\varphi(\alpha)}$.

Theorem 2.15. Let \mathcal{A} be a collection of subsets that x. is frequently in. If \mathcal{A} is closed under finite intersection, then there exists a subnet x'. of x. and x.' eventually in every member of \mathcal{A}

Lemma 2.19. Suppose x.' is subnet of x., we have

```
1. x. \to x \implies x.' \to x
2. x adherent to x.' \implies x adherent to x..
```

Theorem 2.16. A point x is adherent to x. iff there is a subnet converges to x. While $x \to x$ iff every subnet converges to x.

Proof. \Longrightarrow is clear by lemma??. Conversely, suppose a is not adherent to x, there exist a neighborhood N that x. not frequently in, i.e., exist k s.t. $x_n \notin N$ for any $n \geq k$, thus there is no subnet eventually in N.

For the second part, \implies is also clear by lemma?? and \iff comes from taking subnet as itself.

A net x is called **ultranet** or **universal net** if for all $X \in \Omega$, we have either x eventually in X or x eventually in X^c . Clearly, subnet of ultranet is ultra and

Lemma 2.20. Every net has a ultra subnet.

Proof. Consider collection of \mathcal{Q} s.t. x. is frequently in every member and closed under finite intersection. By Zorn's Lemma, there is a maximal \mathcal{Q}_0 . By theorem 11, x. has a subnet x.' which eventually in every member of \mathcal{Q}_0 . We claim that this subnet is ultra since, \mathcal{Q}_0 is maximal and thus either $X \in \mathcal{Q}_0$ or $X^c \in \mathcal{Q}_0$. \square

2.10 Nets and filters

Let

$$\mathcal{F}(x.) = \{X \in \mathcal{P}(\Omega) : x. \text{ is eventually in } X\}$$

Then $\mathcal{F}(x)$ is a filter and we call it the filter associated with the net x...

Theorem 2.17. Associated filter is the upward closure of the net's tail, that is

$$\mathcal{F}(x.) = \{\{x_b : b \succeq a\} : a \in D\}$$

Motivated by the definition of filter that filter is closed under pairwise intersection, let $X \leq Y \iff X \supset Y$, then any mapping $\nu : \mathcal{F} \to \Omega$ s.t. $\nu(X) \in X$ is a **net associated with the filter** \mathcal{F} .

By definition, we claim that \mathcal{F} is the associated filter of every associated net and x. is an associated net of the associated fiter.

Theorem 2.18. Filter $\mathcal{F} \to x$ iff $x. \to x$ for any x. associated with \mathcal{F} .

Proof. Note

$$\forall N \in \mathcal{N}(x), x.$$
 eventually in $N \iff \mathcal{N}(x) \subset \mathcal{F}(x.)$

Then is sufficient to show that $\mathcal{F}(x.) = \mathcal{F}$. It's follows from for any $X \in \mathcal{F}$, x. eventually in X.

Theorem 2.19.

$$x. \to x \iff \mathcal{F}(x.) \to x$$

Proof. Both side is equivalent to $\mathcal{N}(x) \subset \mathcal{F}(x)$

Theorem 2.20. Suppose $f:(\Omega,\tau)\to (\Omega',\tau')$, then f is continuous at x iff $\forall x.\to x, f(x.)\to f(x)$.

Proof. By theorem ??,?? and ??. \Box

By above theorems, we have

$$Adh(\mathcal{F}(x.)) = Adh(x.), Lim(\mathcal{F}(x.)) = Lim(x.)$$

and similarly results holds for any filter and one of associated nets.

Lemma 2.21. If x, is ultra then the associated filter $\mathcal{F}(x)$ is also ultra and if \mathcal{F} is ultra, every associated net is ultra.

Proof. Directly from theorm ??.

2.11 Convergence

If \mathcal{F} is collection of functions on X, X can be seen as functions on \mathcal{F} by $e_x(f) = f(x)$ for each $x \in X$, such functions are called **evaluation functional**.

The product topology on \mathbb{R}^X is also called **topology of pointwise convergence** on X because a net $f. \to f$ iff $e_x(f.) \to e_x(f) \iff f.(x) \to f(x)$ for each $x \in X$.

There also exist induced topology $\sigma(\mathcal{F}, X)$ on \mathcal{F} , which is identical to the subspace $\mathbb{R}^X|_{\mathcal{F}}$ endowed the product topology. Formally

$$\sigma(\mathcal{F},X)=\sigma(\mathbb{R}^X,X)|_{\mathcal{F}}$$

Lemma 2.22. If \mathcal{F} is total, the function

$$x \mapsto e_x : (X, \sigma(X, \mathcal{F})) \to (\mathbb{R}^{\mathcal{F}}, \sigma(\mathbb{R}^{\mathcal{F}}, \mathcal{F}))$$

is injective and thus an embedding.

Proof. It's remain to show the continuity.

$$\begin{split} x. \to x &\iff \forall f \in \mathcal{F}, f(x.) \to f(x) \\ &\iff \forall f \in \mathcal{F}, e_f(e_{x.}) \to e_f(e_x) \\ &\iff e_{x.} \to e_x \end{split}$$

By Tychonoff theorem ??, \mathcal{F} is compact iff $\forall x \in X$, $\{f(x)\}_{f \in \mathcal{F}}$ it's closed and pointwise bounded by borel theorem.

Definition 2.9. A net f converges uniformly to $f \in \mathbb{R}^X$ iff $|f(x) - f(x)| < \epsilon$ eventually for each $x \in X$ after some f_{α} for any ϵ .

Theorem 2.21. The uniform limit of a continuous net is continuous.

Proof. Suppose $f. \to f$ uniformly, then for any $x \in X$, for any $\alpha > \alpha_0$

$$|f_{\alpha}(x) - f(x)| < \epsilon$$

as f_{α} is continuous, for any $x \to x$, for any $\lambda > \lambda_0$

$$|f_{\alpha}(x_{\lambda}) - f_{\alpha}(x)| < \epsilon$$

also, there is

$$|f_{\alpha}(x_{\lambda}) - f(x_{\lambda})| < \epsilon$$

Hence, we have

$$|f(x_{\lambda}) - f(x)| < 3\epsilon$$

Thus, $f(x.) \to f$ and continuity follows.

Theorem 2.22 (Dini's Theorem). If continuous real function net f. on a compact set converges monotonically to f pointwise, then the net converges to f uniformly.

Proof. Let g. = f. - f, we have $g. \to 0$, |g.| is decreasing as monotone. Then it's sufficient to show that $g. \to g$ uniformly. Note $|g.(x)| < \epsilon$ eventually for any $x \in X$ after, say, α_x . By continuity and compactness:

$$X = \bigcup_{x \in X} |g_{\alpha_x}|^{-1}(B(0,\epsilon)) = \bigcup_{x \in J} |g_{\alpha_x}|^{-1}(B(0,\epsilon))$$

Then we may pick $\alpha_0 \geq \alpha_x$ for all $x \in J$, and for any $\alpha \geq \alpha_0$ and any $x \in X$, suppose $x \in |g_{\alpha_{x_i}}|^{-1}(B(0,\epsilon))$

$$\epsilon > |g_{\alpha_{x_i}}(x)| > |g_{\alpha}(x)|$$

by monotone and thus $g. \to 0$ uniformly.

2.12 Separation

Definition 2.10. Space (Ω, τ) is said to be T_0 or **kolmogorov** if for every pair $(x, y) \in \Omega^2$, either there exist $N \in \mathcal{N}(x)$ s.t. $y \notin N$ or $N \in \mathcal{N}(y)$ s.t. $x \notin N$.

Lemma 2.23. τ isn't T_0 iff there exist pair (x,y), s.t:

$$\begin{array}{ll} \textit{1.} & \mathcal{N}(x) = \mathcal{N}(y). \\ \textit{2.} & \overline{\{x\}} = \overline{\{y\}}. \end{array}$$

Proof. 1 If every $N \in \mathcal{N}(x)$ contains y, then $N \in \mathcal{N}(y) \implies \mathcal{N}(x) \subset \mathcal{N}(y)$, thus $\mathcal{N}(x) = \mathcal{N}(y)$.

2 If some point $a \in \overline{\{x\}}$, then every $N \in \mathcal{N}(a)$ also is neighborhood of x and thus neighborhood of y, hence $a \in \overline{\{y\}}$.

Definition 2.11. Space (Ω, τ) is said to be T_1 or **Frechet** if for every pair $(x, y) \in \Omega^2$, there exist $N \in \mathcal{N}(x)$ s.t. $y \notin N$ and $N \in \mathcal{N}(y)$ s.t. $x \notin N$.

Theorem 2.23. Following statements are equivalent:

- 1. τ is T_1 .
- 2. Singetons are closed.
- 3. $\ker \mathcal{N}(x) = \{x\} \text{ holds for any } x \in \Omega.$

Proof. 1 \implies 2 If there exist a singeton $\{x\}$ not closed, there is $y \in \overline{\{x\}}$, hence every neighborhood of y contains x, contradiction.

 $2 \implies 3$ Suppose ker $\mathcal{N}(x)$ contains y differ x, that implies any neighborhood of x contains y and contradict 2.

 $3 \implies 1$ is straightforward.

Lemma 2.24. Suppose (Ω, τ) with a finite base is T_1 , then Ω is finite and τ is discrete.

Definition 2.12. A topology (Ω, τ) is T_2 , or **Hausdorff** or **separated** if every pair $(x, y) \in \Omega^2$, there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ s.t. $U \cap V = \emptyset$.

Theorem 2.24. Following statements are equivalent:

- 1. τ is T_2 .
- 2. Intersection of family of closed neighborhoods of x is x.
- 3. If a filter(net) converges to some point x, then $Adh(\mathcal{F}) = \{x\}$
- 4. Every net(filter) converges to at most one point.

Proof. 1 \implies 2 For any pair (x,y), by definition, there is $y \notin \overline{U}$, hence intersection of family of closed neighborhoods of x can only contains x.

 $2 \implies 3$ follows from a point adherent to a filter converges to x must be in every closed neighborhood of x.

 $3 \implies 4$ is clearly.

 $4 \implies 1$ If there is a net x. converges to both x and y, then $\mathcal{N}(x) \subset \mathcal{F}(x)$ and $\mathcal{N}(y) \subset \mathcal{F}(x)$, that is, U and V meets for any $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$. \square

Definition 2.13. Space (Ω, τ) is said to be $T_{2.5}$ or **Completely Hausdorff** if for every pair $(x, y) \in \Omega^2$, there exist $U \in \mathcal{N}(x)$ and $V \in \mathcal{N}(y)$ s.t. $\overline{U} \cap \overline{V} = \emptyset$.

Two nonempty sets are called **separated by open sets** if they are included in disjoint open sets, and they are **separated by continuous functions** if there is continuous f taking values in [0,1] and assign 0 on one set and 1 on the other.

Space (Ω, τ) are said to be **regular** if every singeton and any closed A disjoint from it can be separated by open sets.

Definition 2.14. Space (Ω, τ) is said to be T_3 if it's T_1 and regular.

Space (Ω, τ) are said to **Completely regular** if every singeton and any closed A disjoint from it can be separated by continous function.

Definition 2.15. Space (Ω, τ) is said to be $T_{3.5}$ or **Tychonoff space** if it's T_1 and completely regular.

Theorem 2.25 (Tychonoff's Embedding Theorem). Space (Ω, τ) is $T_{3.5}$ iff it's homeomorphic to a subspace of $([0,1]^n, \tau_{d,1})$.

Space (Ω,τ) is said to be $\bf normal$ if two disjoint closed subsets can be separated by open sets.

Definition 2.16. Space (Ω, τ) is said to be T_4 if it's normal and T_1 .

Theorem 2.26 (Urysohn's Lemma). Following statements are equivalent:

- 1. (Ω, τ) is normal.
- 2. For any $U \in \tau$ and any closed $A \subset U$, there is a $U' \in \tau$ s.t. $A \subset U'$ and $\overline{U'} \subset U$.
- 3. Every two disjoint closed subsets can be separated by continous function.

Proof. 1 \Longrightarrow 2 Apply normal property to A and U^c , there is a U' include A and V include U^c , as $U' \cap V = \varnothing \Longrightarrow U' \subset V^c \Longrightarrow \overline{U'} \subset V^c \subset U$.

 $2 \implies 3$ Suppose A and B are two disjoint closed subset, apply 2 to A and $U_1 = B^c$ we have $A \subset U_0$ and $\overline{U_0} \subset U_1$. Apply again for $\overline{U_0}$ and U_1 to generates $U_0 \subset U_{\frac{1}{2}}$ and $\overline{U_{\frac{1}{2}}} \subset U_1$, repeat such process, that is, apply 2 to $\overline{U_{\frac{j}{2^k}}}$ and $U_{\frac{j+1}{2^k}}$ to generates $U_{\frac{2j+1}{2^{k+1}}}$. Finally, we construct a open strictly increasing squence U_r . where r is any dyadic rational in [0,1], i.e., $r \in DR \cap [0,1]$.

Then define f as

$$f = \begin{cases} 1 & x \in B \\ \inf\{r : x \in U_r\} & x \in B^c \end{cases}$$

Then it's sufficient to show that f is continuous. Note subspace [0,1] of $\mathbb R$ can be generated by collection of [0,s) and (t,1] and

$$\begin{split} f^{-1}[0,s) &= \bigcup_{r \in DR \cap [0,s)} U_r \\ f^{-1}(t,1] &= \bigcup_{r \in DR \cap (t,1]} \overline{U_r}^c \end{split}$$

Then the claim follows from lemma??.

 $3 \implies 1$ By taking any disjoint open set A contains 0 and B contains 1 and looking $f^{-1}(A)$ and $f^{-1}(B)$.

Theorem 2.27 (Tietze's Extension Theorem). Let (Ω, τ) be normal, F any closed subset and I any bounded closed interval of \mathbb{R} . Then any continous $f: F \to I$ can be extended to $f': \Omega \to I$ and remain continous.

Proof. Suppose I=[-1,1], then $A=f^{-1}[-1,-\frac{1}{3}]$ and $f^{-1}[\frac{1}{3},1]$ are disjoint and closed. By Urysohn's Lemma, there is $g:\Omega\to[-\frac{1}{3},\frac{1}{3}]$ s.t. $g(A)=\{-\frac{1}{3}\}$ and $g(B)=\frac{1}{3}$. Set $f_0=f,g_0=g,f_1=f-g|_F$. Then we can show that $|f_1|$ is bounded by $\frac{2}{3}$.

Repeat such process, we have series of

$$\begin{split} f_n: F &\to [-(\frac{2}{3})^n, (\frac{2}{3})^n] \\ g_n: E &\to [-\frac{1}{3}(\frac{2}{3})^n, \frac{1}{3}(\frac{2}{3})^n] \\ f_{n+1} &= (f_n - g_n)|_F \end{split}$$

Then we show that $g = \sum_{i=0}^{\infty} g_i$ is the extension of f. That is g is continous and f = g in F. Note for any x

$$|\sum_{i=m}^n g_i(x)| \leq \sum_{i=m}^n |g_i(x)| \leq \sum_{i=m}^n \frac{1}{3} (\frac{2}{3})^i \leq (\frac{2}{3})^m \to 0$$

Thus $\{\sum_{i=0}^n g_i\}_{n=0}^\infty$ converges uniformly by Cauchy's criterion, followed by g is continuous. And f=g on F follows from

$$|f(x) - \sum_{i=0}^n g_i(x)| = |f_0(x) - \sum_{i=0}^n g_i(x)| = |f_1(x) - \sum_{i=1}^n g_i(x)| = |f_{n+1}(x)| \leq (\frac{2}{3})^{n+1} \to 0$$

2.13 Compactness

Definition 2.17. A **cover** of a set K is collection of sets whose union includes K. A **subcover** is subcollection of a cover and also covers K.

Definition 2.18. K is **compact** if every open cover has a finite subcover and called **relatively compact** if it's closure is compact. A topology (Ω, τ) is **compact** if Ω is compact.

Compactness is a "topological" property. That is, subset compactness in a subspace iff it's also compact in full space.

Theorem 2.28. Let (Ω, τ) be a space, TFAE:

- 1. (Ω, τ) is compact.
- 2. Every filter(net) has at least one adherent point.
- 3. Every ultrafilter(ultranet) converges.
- 4. $\ker \mathcal{F} \neq \varnothing$ For every collection \mathcal{F} of closed sets having FIP.

Proof. $4 \iff 1$ Taking contrapositive:

$$\neg \ker \mathcal{F} \neq \varnothing \equiv \ker \mathcal{F} = \varnothing \equiv \bigcup_{F \in \mathcal{F}} F^c = \Omega$$

And

$$\neg \forall \bigcap_{i}^{n} F_{i} = \varnothing \equiv \exists \bigcup_{i}^{n} F_{i}^{c} = \Omega$$

note that's precisely the definition of compactness.

 $1 \implies 2$ Suppose filter \mathcal{F} , then

$$\{\overline{F}:F\in\mathcal{F}\}$$

Enjoy finite intersection property by definition, then \overline{F} has at least one adherent point since $\ker\{\overline{F}:F\in\mathcal{F}\}=\overline{\mathcal{F}}\neq\varnothing$ by 4

 $2 \implies 3$ Clearly by corollary ??.

 $3 \implies 1$ Suppose \mathcal{A} a family of closed subsets with finite intersection property. Then the filter generates by \mathcal{A} has an ultrafilter with a limit point x. Note x is also adherent to \mathcal{U} and thus adherent to \mathcal{F} , followed by $x \in A$ for any $A \in \mathcal{A}$, hence $\ker \mathcal{A} \supset \{x\}$. Then the claim follows from 4.

Theorem 2.29. Let (Ω, τ) be Hausdorff, then every compact subset and disjoint singleton can be separated by open sets. In particular, compact subset is closed.

Proof. Suppose $F \subset \Omega$ is compact, for any $x \in \Omega$ not in F, by Hausdorff, there is $x \notin U_y$ and $y \notin V_y$. Then $\bigcup_{y \in F} U_y$ cover F, there is subcover $U = \bigcup_i^n U_{y_i}$ and $V = \bigcup_i^n V_{y_i}$ selected from the same family separated F and $\{x\}$.

Theorem 2.30. Closed subset is compact in compact topological space.

Proof. Note any open cover of F plus F^c become a open cover of Ω .

Theorem 2.31. Every compact Hausdorff space is normal.

Proof. Suppose A and B are closed and thus compact by theorem ??. For any point $x \in A$, there exist disjoint $V_x \supset B$ and $x \in U_x$ by theorem ??. Note $\bigcup_{x \in A} U_x$ cover A, there exist subcover $U = \bigcup_i^n U_{x_i} \supset A$ and $V = \bigcap_i^n V_{x_i} \supset B$ separated A and B.

Theorem 2.32. Suppose $f:(\Omega,\tau)\to(\Omega',\tau')$ is continuous, then f(A) is compact if A is compact.

Proof. For any open cover of f(A):

$$\cup G_i \supset f(A) \implies f^{-1}(\cup G_i) = \cup f^{-1}(G_i) \supset f^{-1}f(A) \supset A$$

Thus there exist subcover s.t.

$$\bigcup_{1}^{n} f^{-1}(G_i) = f^{-1}(\bigcup_{1}^{n} G_i) \supset A \implies \bigcup_{1}^{n} G_i \supset f f^{-1}(\bigcup_{1}^{n} G_i) \supset f(A)$$

Which shows that f(A) is compact.

Corollary 2.4. Let X be compact and Y be Hausdorff and $f: X \to Y$ is continuous bijection, then f is closed.

Proof. Note F is closed and thus compact as theorem ?? then f(F) is compact as theorem ?? and thus closed by theorem ??.

As consequence:

Corollary 2.5 (Extreme value theorem). A continuous real valued function defined on a compact space achieves its maximum and minimum values.

Theorem 2.33. Let X be compact and Y be Hausdorff and $f: X \to Y$ is continuous bijection. Then f is homeomorphism.

Proof. By lemma ?? and corollary ??.

2.13.1 Sequentially compact

A subset A of a topological space is **sequentially compact** if every sequence in A has a subsequence converging to an element of A. A topological space is sequentially compact if itself is a sequentially compact set.

Example 2.1. The open interval (0,1) is not sequentially compact because $\{\frac{1}{n}\}$ has no convergent subsequence.

2.14 Locally compact spaces

Definition 2.19. A topological space is **locally compact** if every point has a compact neighborhood.

Definition 2.20. Subset $A \subset X$ is said **precompact** if \overline{A} is compact.

Theorem 2.34 (Compact neighborhood base). Let X be Hausdorff, TFAE

- 1. X is locally compact.
- 2. Every $x \in X$ has a precompact neighborhood.
- 3. X has a basis of precompact open sets, i.e., there exist $x \in K^{\circ} \subset K \subset N$.

Proof. It's clear that $3 \Rightarrow 2 \Rightarrow 1$ even without Hausdorff, so we show that $1 \Rightarrow 3$.

Begin by open G and compact K neighborhood for x s.t. $A:=K-G\neq\varnothing$. For any $y\in A$, there is $U_y\cap W_y=\varnothing$ by Hausdorff, where $y\in U_y$ and $x\in W_y\subset K$. Note A is also compact and then there exist:

$$U = \bigcup_{i=1}^{k} U_{y_i} \supset A$$

Respectively, consider $W=\bigcap_{i=1}^k W_{y_i}$, and we claim that \overline{W} is compact and included in G. Compactness is clear as $\overline{V}\subset K$. By theorem $\ref{W}\cap U=\varnothing$. Consequently,

$$\overline{W} \cap G^c = \overline{W} \cap K \cap G^c = \overline{W} \cap A \subset \overline{W} \cap U = \emptyset$$

hence $\overline{W} \subset G$.

Consequently, that imply the existence of a compact neighborhood base.

Corollary 2.6. Suppose G is open and F is closed in a locally compact Hausdorff space, then $G \cap F$ is locally compact. That implies every closed and open set is locally compact.

Proof. Let $x \in G \cap F$, and $N \cap G \cap F$ be neighborhood of x in the subspace, by theorem $\ref{eq:subspace}$, there exist K s.t.

$$x \in K^{\circ} \subset K \subset N \cap G$$

Then $F \cap K$ is compact as it's closed in compact Hausdorff subspace K.

Corollary 2.7. If K is compact in a locally compact Hausdorff space and G is an open set including K, then there is an open V with compact closure s.t.

$$K\subset V\subset \overline{V}\subset G$$

Proof. For any $x \in K$, by theorem ??, we have

$$x \in V_x \subset \overline{V_x} \subset G$$

then note

$$K \subset \bigcup_{i=1}^k V_{x_i} = V$$

we claim that V is desired. Since

$$\overline{V} = \overline{\bigcup_{i=1}^k V_{x_i}} = \bigcup_{i=1}^k \overline{V_{x_i}}$$

is compact and included in G.

2.14.1 Compactification

Locally compact Hausdorff space is very close to a compact Hausdorff space

Definition 2.21. A Compactification of a space X is an embedding $i: X \hookrightarrow Y$, where Y is compact and i(X) is dense.

Definition 2.22. Let (X, τ) be a space and define $\hat{X} = X \cup \{\infty\}$, with topology $\hat{\tau}$ consisting of sets that:

- 1. $G \in \tau$.
- 2. $\infty \in G$ and $\hat{X} G = X G \subset X$ is compact.

Theorem 2.35. If X is Hausdorff and noncompact, then \hat{X} is a compactification.

Proof. Firstly we show that \hat{X} is a space. By definition, \varnothing and \hat{X} are open clearly. To show it's closed under countable intersection, it suffices to show that $U_1 \cap U_2$ is open when U_1 and U_2 are so. We classify cases by whether ∞ occurs.

- 1. If $\infty \notin U_1 \cup U_2$, $U_1 \cap U_2 \in \hat{\tau}$ as $U_1 \cap U_2 \in \tau$.
- 2. If $\infty \in U_1$ and $\infty \notin U_2$, then $X-U_1$ is compact, as X is Hausdorff, $X-U_1$ is closed in X and thus $X-(X-U_1)=U_1-\{\infty\}$ is open in X, it follows that $U_1\cap U_2=(U_1-\{\infty\})\cap U_2$ and the same as 1.
- 3. If $\infty \in U_1 \cap U_2$, then

$$X-(U_1\cap U_2)=(X-U_1)\cup (X-U_2)$$

is compact as it's union of compact sets and thus $U_1 \cap U_2$ is open.

Now we turn to show closed under union. Suppose $\bigcup_{i\in I}U_i$ is a collection of open sets. If none contain ∞ , $\bigcup_{i\in I}U_i$ is open clearly as it's open in X. If $\infty\in U_i, \forall j\in J$ for some $J\subset I$. Then

$$X - \bigcup_{i \in I} U_i = \bigcap_{i \in I} (X - U_i)$$

is closed subset of any compact Hausdorff space $X-U_j$ and thus compact. It follows that $\bigcap_{i\in I}U_i$ is open.

Next, we show that $\iota: X \to \hat{X}$ is an embedding. It's injective and open clearly and it suffices to show it continuity by lemma ??. For open sets G in \hat{X} :

$$\iota^{-1}(G) = \begin{cases} G & \infty \notin G \\ G - \{\infty\} & \infty \in G \end{cases}$$

is also open as $G - \{\infty\} = X - (X - G)$ is open have shown above.

To see $\iota(X)$ is dense, it suffices to see $\{\infty\}$ is not open and that follows from definition of \hat{X} .

Finally, we show that X is compact. Let \mathcal{G} be open cover, then there is some $G \in \mathcal{G}$ contains ∞ . Note remaining of \mathcal{G} still cover X - G and thus have a finite cover then claim follows easily,

Lemma 2.25. If noncompact X is Hausdorff and locally compact, \hat{X} is also Hausdorff.

Proof. Let x_1 and x_2 in \hat{X} . If neither is ∞ , we have desired disjoint neighborhood immediately. If $x_2 = \infty$, let $x_1 \in U \subset K$ then U and $V = \hat{X} - K$ are what we desired.

Lemma 2.26. \hat{X} is not Hausdorff if there is no subset G and K of X s.t. $G \subset K$.

Proof. Suppose \hat{X} is Hausdorff, then there is $\infty \in U$ s.t. K = X - U is compact and disjoint to some V open in X, note

$$\begin{split} U \cap V &= \varnothing \Rightarrow (U - \{\infty\}) \cap V = \varnothing \\ &\Rightarrow (X - K) \cap V = \varnothing \\ &\Rightarrow V \subset K \end{split}$$

Example 2.2. $\widehat{\mathbb{Q}}$ is non Hausdorff as any open sets G of the form $(a,b)\cap\mathbb{Q}$, if it's contained in a compact subset K, then \overline{G} would be compact, which contradict to $[a,b]\cap\mathbb{Q}$ is not compact.

Theorem 2.36. X is locally compact iff X is open of \hat{X} .

Proof. \Leftarrow comes from corollary ??.

 \implies Suppose $(\hat{X},\hat{\tau})$ is compactification of Hausdorff (X,τ) . For any $x\in X$, we may pick $x\in G\subset K$, where G is open and K is compact in τ . Consider $W\in\hat{\tau}$ where $W\cap X=G$, we have

$$W = W \cap \hat{X} = W \cap \overline{X} \subset \overline{W \cap X} = \overline{G} \subset K \subset X$$

that implies $x \in X^{\circ} \implies X^{\circ} = X$, i.e. X is open.

Lemma 2.27. Let X be a locally compact Hausdorff space and $f: X \to Y$ a compactification, then f is open.

Proof. As f is an embedding, we can pretend $X \subset Y$ and f is just inclusion. Then it suffices to show that X is open and that follows from theorem ??.

Theorem 2.37 (Universal property of compactification). Let X be a locally compact Hausdorff space and $f: X \hookrightarrow Y$ be a compactification. Then there is a unique quotient map $q: Y \to \hat{X}$ s.t. $q \circ f = \iota$.

Let X be locally compact and Hausdorff and let $f: X \hookrightarrow Y$ be a compactification. Then there is a unique quotient map $q: Y \to \hat{X}$ s.t. $q \circ f = \iota$.

2.15 Weak topology

Suppose $\{(Y_i, \tau_i)\}_{i \in I}$ a family of topological space and $f_i : X \to Y_{i_i \in I}$. Let \mathcal{F} be the set of all the topologies s.t. f_i is continuous for all i. We call $\cap \mathcal{F}$, i.e., the coarsest topology the **induced topology** or **weak topology** or **initial topology** on X by $\{f_i\}_{i \in I}$. The topology induced by $\{f_i\}_{i \in I}$ is generated by

$$\mathcal{S} = \{ f_i^{-1}(G_i) : G_i \in \tau_i \}$$

or

$$\mathcal{S} = \{f_i^{-1}(G_i): G_i \in \mathcal{S}_i\}$$

where S_i is a subbase for τ_i .

Lemma 2.28. A net $x \to x$ in the weak topology iff $f_i(x) \to f_i(x)$ for each i.

Proof. \Longrightarrow is immediately. Conversely, noting sets of the form $\bigcap_{i=1}^{n} f_i^{-1}(V_i)$ consist a neighborhood base.

Theorem 2.38. g is (τ', τ) continuous iff $f_i \circ g$ continuous for each f_i . Where τ is $\tau(S)$ in above .theorem.

 $\textit{Proof.} \implies \text{is immediately.} \iff, \text{ suppose } G \in \tau, \text{by above .theorem, this implies}$

$$G=\cup_I\cap_F X=\cup_I\cap_F f_i^{-1}(G_i)$$

thus $g^{-1}(G)$ is open since $f\circ g^{-1}$ is continuous and thus $g^{-1}(G)=\cup_I\cap_F g^{-1}f^{-1}(G)=\cup_I\cap_F (f\circ g)^{-1}(G).$

If the family \mathcal{F} consists of real function on X, the weak topology is denoted $\sigma(X,\mathcal{F})$. A subbase for $\sigma(X,\mathcal{F})$ consist of

$$U(f, x, \epsilon) = f^{-1}(B(f(x), \epsilon)) = \{ y \in X : |f(y) - f(x)| < \epsilon \}$$

where $f \in \mathcal{F}, x \in X, \epsilon > 0$. \mathcal{F} is said **total** if $\forall f \in \mathcal{F}, f(x) = f(y) \implies x = y$. $\sigma(X, \mathcal{F})$ is Hausdorff iff \mathcal{F} is total.

Lemma 2.29. Let A be a subset, then

$$(A, \sigma(A, \mathcal{F}|_A)) = (A, \sigma(X, \mathcal{F})|_A)$$

Proof. Nets converges in $(A, \sigma(X, \mathcal{F})|_A)$ also converges in $(X, \sigma(X, \mathcal{F}))$, that is $\forall f, f_i(x) \to x$ and thus the same as nets converges in $\sigma(A, \mathcal{F}|_A)$. That implies identical mapping is a homeomorphism since $x \to x \iff I(x) \to I(x)$.

The weak topology generated by C(X) is also generated by $C_b(X)$ by noting for any $f \in C(X)$,

$$g(y) = \min\{f(x) + \epsilon, \max\{f(x) - \epsilon, f(y)\}\}\$$

is bounded by $B(f(x), \epsilon)$ and $U(g, x, \epsilon) = U(f, x, \epsilon)$.

Theorem 2.39. (X,) is completely regular iff $\tau = \sigma(X, C(X))$

Suppose $\tau = \sigma(X, \mathcal{F})$ and is completely regular, then we claim that $\mathcal{F} = C(X)$.

2.16 Product topology

Theorem 2.40 (Universal property of the Cartesian product). Let X, Y and Z be any space and given $f_X : Z \to X$ and $f_Y : Z \to Y$, there exist unique function $f : Z \to X \times Y$ s.t.

$$f_X = \pi_X \circ f \text{ and } f_Y = \pi_Y \circ f$$

and f is just (f_X, f_Y) .

Lemma 2.30. Suppose $\varphi: X \times Y \to Z$ is continuous, for each $x \in X$, define $\hat{\varphi}: Y \to Z$ by $\hat{\varphi}_x(y) = \varphi(x,y)$, then φ_x is continuous.

Proof. Note $\hat{\varphi}_x$ is composition by $Y \overset{i_x}{\to} X \times Y \overset{\varphi}{\to} Z$, so it suffices to show that i_x is continuous. And that is just the product of constant map $Y \to X$ and identity map $Y \to Y$. Then the claim follows as both is continuous.

Also, φ is continuous if $\hat{\varphi}$ is continuous as φ is composition by

$$X\times Y \xrightarrow{\hat{\varphi}\times i} \mathcal{C}(Y,Z)\times Y \xrightarrow{eval} Z$$

Where we should use the truth that product of continuous function is continuous:

Theorem 2.41. Let $f: X \to Y$ and $f': X' \to Y'$ be continuous. Then the product $f \times f': X \times X' \to Y \times Y'$ is also continuous.

Proof. Clearly as the factor $X \times X' \to Y$ is the composition $X \times X' \xrightarrow{\pi_X} X \xrightarrow{f} Y$

Let $((\Omega_i, \tau_i))_{i \in I}$ be family of topological spaces, let $\Omega = \prod_{i \in I} \Omega_i$ and π_i be projection mappings from Ω to Ω_i . The topology τ induced by $(\pi_i)_{i \in I}$ is called **product topology** on Ω and denoted by $\prod_{i \in I} \tau_i$. (Ω, τ) is called **topological product**.

A subbase of this topology is all the sets of the form $\pi_i^{-1}(U_i) = \prod_{i \in I} X_i$ where $X_i = \Omega_i$ for all $i \neq j$ and $X_i = U_i$.

Lemma 2.31. Suppose $G \in \prod \tau_i$, then $\pi_i(G) = \Omega_i$ except a finite set in I.

Proof. By definition,

$$G=\bigcup_I\bigcap_F(\prod_{i\in I}X_i)$$

where $X_i = \Omega_i$ for all i but one. Note there is a finitely intersection, that is

$$G = \bigcup_I (\prod_{i \in I} X_i)$$

where $X_i = \Omega_i$ for all i but finite exception. And the claim is easily follows.

The product topology satisfy similar universal property if I is finite, that is

Theorem 2.42. Given any space Z and $\{f_i: Z \to \Omega_i\}_{i \in I}$, there exist unique continuous $f: Z \to \prod_{i \in I} \Omega_i$ s.t. $\forall i \in I, \pi_i \circ f = f_i$.

Proof. Existence is clear as we may define f by $f(z)_i = f_i(z)$ and $\pi_i \circ f = f_\alpha$ suggests the uniqueness. Then it suffices to show that continuity. Note the product topology has subbasis $\pi_i^{-1}(U_i)$ and

$$f^{-1}(\pi_i^{-1}(U_i)) = (\pi_i \circ f)^{-1}(U_i) = f_i^{-1}(U_i)$$

is open as f_i is continuous.

We call the topology generated by $\{\prod_{i\in I} U_i\}$ box topology and it's finer than product topology unless I is finite and can't enjoy universal property. But they still share following property.

Lemma 2.32. Let $A_i \subset \Omega_i$ for each $i \in I$, then

$$\prod_{i\in I}\overline{A_i}=\overline{\prod_{i\in I}A_i}$$

in both product and box topology.

 $\begin{array}{l} \textit{Proof.} \ \subset : \ \operatorname{Let} \ (x_i)_{\{i \in I\}} \in \prod_{i \in I} \overline{A_i}, \ \text{and} \ U = \prod_{i \in I} U_i \ \text{be a open neighborhood of which, then} \ U_i \ \text{is neighborhood of} \ x_i \ \text{and thus} \ U_i \ \text{meet} \ A_i \ \text{in, say,} \ y_i, \ \text{then we} \ \text{may find} \ (y_i) \in U \cap \prod_{i \in I} A_i \ \text{and thus} \ (x_i) \in \overline{\prod_{i \in I} A_i}. \end{array}$

⊃: Note product closed set is closed as

$$\left(\prod_{i\in I}F_i\right)^c=\bigcup_{i\in I}\prod_{i=I}X_i$$

Where $X_j = \Omega_j$ for $j \neq i$ and $X_i = F_i^c$, that is open clearly. And the claim follows as closure is minimum.

Lemma 2.33. Ω_i is Hausdorff for each i iff so is $\prod_{i \in I} \Omega_j$ in both product and box topology.

Proof. \Rightarrow : Pick any different (x_i) and (x_i') in $\prod_{i \in I} \Omega_i$ and suppose $x_\ell \neq x_\ell'$ for particular ℓ and they can be separated by U_ℓ and U_ℓ' . Then (x_i) and $(x_i)'$ can be separated by $\pi_\ell^{-1}(U_i)$ and $\pi_\ell^{-1}(U_i')$ and thus Hausdorff. For box topology, it's Hausdorff clearly as it's finer than product topology.

 \Leftarrow : Note Hausdorff property is hereditary and we may treat factor Ω_{ℓ} as subspace by define embedding

$$f_{\ell}(x)_j:\Omega_{\ell}\to\prod_{i\in I}\Omega_i=\begin{cases}x&j=\ell\\y_j&j\neq\ell\end{cases}$$

where y_j is any fixed point for each j. It's continuous and injective certainly, to see it's embedding, it suffices to show that it's open. Suppose any open $U_\ell \subset \Omega_\ell$, then

$$f_{\ell}(U_{\ell}) = \pi_{\ell}^{-1}(U_{\ell}) \cap f_{\ell}(\Omega_{\ell})$$

is open in subspace $f_{\ell}(\Omega_{\ell})$.

Thus, $\{(x_i^{\alpha})\}_{\{i\in I\}}$ in X converges to some $(x_i)_{i\in I}$ iff its every components converges to the components respectably. A function is called **jointly continuous** if it's continuous w.r.t. the product topology.

Theorem 2.43 (Closed Graph Theorem). Function $f:(X,\tau)\to (Y,\tau)$ where Y is compact Hausdorff is continuous iff its graph Grf is closed.

Proof. \Longrightarrow . For any net $(x,y) \to (x,y)$, we show that $(x,y) \in \operatorname{Gr} f$. Note $f(x) = y \to y$, also, $f(x) \to f(x)$ by continuity. It follows by f(x) = y since Hausdorff and we finished.

 \Leftarrow . Since Y is compact and Hausdorff, f(x) converges to precisely one point and denoted as y. As Gr f is closed, y = f(x) and hence f is continuous.

Suppose A_i is subset of each i, then

$$\mathop{\mathrm{Cl}}_{\tau}(\prod A_i) = \prod (\mathop{\mathrm{Cl}}_{\tau_i}(A_i))$$

Thus we have an alternative definition of semicontinuous:

$$f: X \to \mathbb{R}^*$$
 is

- lower semicontinuous iff its epigraph $\{(x,c):c\geq f(x)\}$ is closed.
- upper semicontinuous iff its hypograph $\{(x,c):c\leq f(x)\}$ is closed.

Theorem 2.44 (Tychonoff Product Theorem). The product topology of a family of topologies $\tau = \prod_{i \in I} \tau_i$ is compact iff τ_i is compact for every $i \in I$.

Proof. \implies is clearly as projection is continuous.

 \Leftarrow , suppose $\mathcal U$ is ultrafilter in τ , then $\pi_i(\mathcal U)$ is ultra base and thus converges to some point, say x_i , then we claim that $\mathcal U \to x = (x_i)_{i \in I}$. Suppose V any neighborhood of x, there is

$$a\in \bigcap_{i\in J}\pi_i^{-1}(X_i)\subset V$$

where X_i is neighborhood of x_i and thus belong to $\pi_i(\mathcal{U})^{\uparrow}$, that implies there is $U \in \mathcal{U}$ s.t. $\pi_i(U) \subset X_i$, note $U \subset \pi_i^{-1}\pi_i(U) \subset \pi_i^{-1}(X_i)$, then $\pi_i^{-1}(X_i) \in \mathcal{U}$ and thus $V \in \mathcal{U}$. It followed by x is adherent to \mathcal{U} and thus $\mathcal{U} \to x$ as \mathcal{U} is ultra.

As consequence, we have

Theorem 2.45. In the same notations, let K_i be compact for each i, G is open in τ and including $\prod_{i \in I} K_i$, then there exist basic open set sandwich by them.

2.17 coinduced topology

If we turn all of the arrows around in the diagram of product, that is,

Theorem 2.46. Given space Z and f_X and f_Y , there is a unique map from $X \coprod Y$ to Z:

The coproduct of $\{X_i\}_{i\in I}$ is given by

$$\coprod_{i \in I} X_i = \bigcup_{i \in I} \left(X_i \times \{i\} \right)$$

Clearly, there are nature inclusions $\iota_{X_i}: X_i \hookrightarrow \coprod_{i \in I} X_i = x_i \mapsto (x_i, i)$. We topologize the coproduct by giving it the finest topology s.t. all ι_{X_i} are continuous.

Proof. Suppose $V \subset Z$ is open, then is open in $\coprod_{i \in I} X_i$ if each $\iota_i^{-1} f^{-1}(V)$ is open. Note

$$\left(f\circ\iota_{i}\right)^{-1}\left(V\right)=f_{i}^{-1}(V)$$

is open as each f_i is continuous.

Lemma 2.34. Let X_i be a space for $i \in I$, then $\coprod_{i \in I} X_i$ is Hausdorff iff all X_i are Hausdorff.

 $Proof. \Rightarrow \text{is trivial as } X_i \text{ embeds as a subset. For } \Rightarrow, \text{ suppose } x \neq y \text{ in } \coprod_{i \in I} X_i, \text{ if } x \text{ and } y \text{ come from different } X_i, \text{ we simple select } X_i \text{ and } X_j \text{ they live, otherwise, } X_i \text{ is Hausdorff and guarantee a disjoint neighborhood.}$

2.17.1 Quotient

Suppose $q: X \to Y$ is any subjective function, we define \sim by $x \sim y$ if q(x) = q(y), then $X/\sim \to Y$ is bijection and we can treat q as function that $X/\sim \to Y$. And that gives the universal property of the quotient.

Definition 2.23. A surjection $q: X \to Y$ is a **quotient map** if $V \subset Y$ is open iff $q^{-1}(V)$ is open in X.

Theorem 2.47 (Universal property of quotient). Let $q: X \to Y$ be a quotient map and $f: X \to Z$ is continuous and constant on the fiber of q, then there exist a unique continuous $g: Y \to Z$.

Proof. Clearly g must be defined by $g=f\circ q^{-1}$ and it remains to show that g is continuous. Let $G\subset Z$ is open then $g^{-1}(G)\subset Y$ is open iff $q^{-1}(g^{-1}(G))=(g\circ q)^{-1}(G)=f^{-1}(G)$ is open, and that follows from f is continuous.

Lemma 2.35. Let $q: X \to Y$ be a continuous open surjection, then it's quotient map. The same is true if q is closed instead of open.

Proof. Open case follows easily. For the other, for $V \subset Y$ s.t. $q^{-1}(V) \subset X$ is open, then $q^{-1}(V^c)$ is closed and thus $q(q^{-1}(V^c)) = V^c$ is close as surjection.

However, the converse is not true.

Definition 2.24. Let $q: X \to Y$ be a continuous surjection. We say $U \subset X$ is saturated w.r.t. q if $U = q^{-1}(V)$ for some $V \subset Y$, i.e., $q^{-1}(q(U)) = U$.

Lemma 2.36. Let $q: X \to Y$ be a continuous surjection, then it's a quotient map iff it takes saturated open sets to open sets.

Proof. Suppose $q^{-1}(V) \subset X$ is open, then it's a saturated open sets, thus $q(q^{-1}(V)) = V$ is open. And the other implication follows from definition of continuity and quotient map.

Suppose $\{(\Omega_i, \mathcal{T}_i)\}_{i \in I}$ a family of topological space and $\{f_i : (\Omega_i, \mathcal{T}_i) \to (\Omega, \tau)\}_{i \in I}$. Let A be the set of all the topologies s.t. f_i is continuous for all i. We call the finest of A topology coinduced on Ω by $\{(f_i)\}_{i \in I}$.

Let R an equivalence relation on Ω , $\eta:\Omega\to\Omega/R$ the canonical surjection. The coinduced topology on Ω/R by η is denoted by τ/R and $(\Omega/R,\tau/R)$ is the quotient space w.r.t. R.

2.18 Connection

Definition 2.25. Two subset A and B are said to be **separated** if

$$A \cap \overline{B} = B \cap \overline{A} = \emptyset$$

Clearly, if disjoint A and B are both open or closed, they are separated.

Definition 2.26. Two nonempty separated subset A and B are called a **separation** if $A \cup B = X$.

Lemma 2.37. Separation are both clopen.

Proof. Suppose A and B is a separation, then

$$\overline{A} = \overline{A} \cap X = \overline{A} \cap (A \cup B) = (\overline{A} \cap A) \cup (\overline{A} \cap B) = \overline{A} \cap A = A$$

thus A and B are closed, that implies A and B are open.

Definition 2.27. Space X is said to be **connected** if the only clopen set is X and \varnothing . Not connected space is said to be disconnection. Subset A is said to be *connected* or *disconnected* according to the connectedness of their subspace (A, τ_A)

Note separation are clopen, thus X is disconnected iff there exist a separation in X.

Theorem 2.48. Suppose A is connected in X, then every set B s.t. $A \subset B \subset \overline{A}$ is connected.

Proof. Suppose B is disconnected and separated by X and Y, then

$$A = (A \cap X) \cup (A \cap Y)$$

also construct a separation, as A is connected, we have, say $A \cap X = \emptyset$ and thus $A \subset Y$. It follows that

$$X \subset B \subset \overline{A} \subset \overline{Y}$$

whence contradict to $X \cap \overline{Y} = \emptyset$.

Theorem 2.49. Suppose $\{A_i\}_{i\in I}$ is a family of connected subsets, then $A=\bigcup_{i\in I}A_i$ is connected if $\ker\{A_i\}_{i\in I}\neq\varnothing$.

Proof. Suppose A is disconnected and separated by X and Y, then

$$A_i = A_i \cap A = (A_i \cap X) \cup (A_i \cap Y)$$

also construct a separation, as A_i is connected, we have $A_i \cap X = \emptyset$ or $A_i \cap Y = \emptyset$, suppose $I_X + I_Y = I$ and $A_i \cap X = \emptyset$ for $i \in I_X$ and $A_i \cap Y = \emptyset$ for $i \in I_Y$. Note $A_i \cap X = \emptyset \Rightarrow A_i \cap Y = A_i$ and thus

$$\begin{split} \varnothing &= X \cap Y \supset (X \cap \bigcap_{i \in I_Y} A_i) \cap (Y \cap \bigcap_{i \in I_X} A_i) \\ &= \left(\bigcap_{i \in I_Y} A_i\right) \cap \left(\bigcap_{i \in I_X} A_i\right) \\ &= \ker\{A_i\}_{i \in I} \end{split}$$

A contradiction.

Theorem 2.50. Suppose $f: X \to Y$ is continuous, then f bring connected set subset $A \subset X$ to connected subset of Y.

Proof. Suppose f(A) is disconnected and separated by two open set, say, $f(A) \cap U$ and $f(A) \cap V$, where U, V are open in Y. That implies $f(A) \subset U \cup V$, note

$$A\subset f^{-1}f(A)\subset f^{-1}(U\cup V)=f^{-1}(U)\cup f^{-1}(V)$$

thus A is separated by $A \cap f^{-1}(U)$ and $A \cap f^{-1}(V)$, say, $A \cap f^{-1}(U) = \emptyset$, then

$$A\subset f^{-1}(V)\Rightarrow f(A)\subset V\Rightarrow f(A)\cap U=\varnothing$$

A contradiction.

Theorem 2.51. Suppose each of family $\{X_i\}_{i\in I}$ is nonempty, then their product topology $\prod_{i\in I} X_i$ is connected iff each X_i is closed.

Proof. \Rightarrow follows from π_i is continuous and theorem ??(uses each X_i is nonempty).

 \Leftarrow Firstly, we should prove that in finite case, i.e., when I is finite. By induction, it suffices to show that $X_1 \times X_2$ is connected. Pick fixed $z \in X_2$ we have the embedding $f(x): X_1 \to X_1 \times X_2 = (x,z)$ and thus $D = f(X_1)$ is connected as theorem $\ref{eq:total_substitute}$. Then for each $x \in X$, define embedding $g_x(y) = (x,y)$, let $D_x = g_x(X_2) \cup C$, it's connected as theorem $\ref{eq:total_substitute}$?, then $X_1 \times X_2 = \bigcup_{x \in X_1} D_x$ is connected for the same reason.

Now we are ready for the general case. Pick some $(z_i)_{i\in I}\in\prod_{i\in I}X_i$, for each finite collection $S_j\subset I$, let

$$F_{S_j} = \bigcap_{i \notin S_j} \pi_i^{-1}(z_i) \subset \prod_{i \in I} X_i$$

Clearly $F_{S_j}\cong\prod_{i\in S_j}X_i$, so it follows that F_{S_j} is connected and $(z_i)\in F_{S_j}$ for each S_j , so it follows that

$$F = \bigcup_{j \in J} F_{S_j}$$

Definition 2.28. $A \subset X$ is said **path-connected** if every distinction singleton a and b has a **path** $f: [0,1] \to A$ s.t. f(a) = 0 and f(b) = 1.

Lemma 2.38. Path-connected implies connected.

Proof. Pick any $a_0 \in A$, for each other $b \in A$, there exit a path f_b , then $f_b(I)$ is connected. Then

$$A=\bigcup_{b\in A}f_b(I)$$

is connected as theorem ??.

Path-connected is quite similar to connected.

Theorem 2.52. 1. Image of path-connected spaces are path-connected.

- 2. Overlapping unions of path-connected spaces are path-connected.
- 3. Product is path-connected iff every factor is path-connected.

Proof. We only prove part 3. \Rightarrow is trivial. To achieve \Leftarrow , for any pair (x_i) and (y_i) , there exist path f_i for each $i \in I$, and then we get a continuous path $f = (f_i)$ by the universal property.

The overlapping union property for (path-)connectedness allows us to make the following definition.

Definition 2.29. Let $x \in X$, connected component of x is defined as:

$$C_x = \bigcup \{C|C \text{ is connected and } x \in C\}$$

Similarly, the **path-component** is

$$PC_x = \bigcup \{C|C \text{ is path-connected and } x \in C\}$$

Example 2.3. Suppose \mathbb{Q} equipped with the subspace topology from \mathbb{R} . Then the only connected subsets are singletons, so $C_x = \{x\}$. Such a space is said **totally disconnected**

In the light of connected component is maximum, each component C_x is closed as $\overline{C_x}$ is connected.

Definition 2.30. Let X be a space, it's **locally connected** if any neighborhood U of any x contains a connected neighborhood. And we define **locally path connected** in a similar way.

Theorem 2.53. Let X be a space. TFAE:

- 1. X is locally connected.
- 2. X has a basis consisting of connected open sets.
- 3. For every open set $G \subset X$, any component $C \subset U$ is open in X.

Proof. $1 \Rightarrow 3$. For any open $G \subset X$ and any $C \subset G$, for any $x \in C$, there exist connected neighborhood $x \in U \subset G$, as C is component, we have $U \subset C$ and thus C is open.

 $3 \Rightarrow 1$. Let G be a open neighborhood of x, then the component C_x is the desired neighborhood.

 $3 \Leftrightarrow 2$. $3 \Rightarrow 2$ is clear, for the converse, note $2 \Rightarrow 1$ and thus implies 3.

The property of path-connected is even better.

Theorem 2.54. Let X be a space, TFAE:

- 1. X is locally path-connected.
- 2. X has a basis consisting of path-connected open sets.
- 3. For every open $G \subset X$, the path-component of G are open in X.
- 4. For every open set $G \subset X$, every component of G is path-connected and thus a path-component.

Proof. We only show that $1 \Leftrightarrow 4$. Suppose X is locally path-connected, and let $P \subset C \subset G \subset X$, where P, C, G are path-component, component and open set respectly. Then P is open.

Chapter 3

Topology Background in Real Analysis

3.1 Meager Set

Definition 3.1. A subset E of a metric space X is said to be **dense in an open set** U if $U \subset \overline{E}$. E is defined to be **nowhere dense** if it is not dense in any open subset $U \subset X$. It means \overline{E} does not contain any open set.

Definition 3.2 (first and second category). A set E is said to be of first category in X if it is the union of a countable family of nowhere dense sets.

A set E is said to be a of **second category** in X if it is not the first category set.

Theorem 3.1 (Baire Category Theorem). A complete metric space X is not the union of a countable family of nowhere dense sets. That is, a complete metric space is of the second category.

Proof. The proof of the Baire category theorem is to construct a sequence of balls and show that the center of the balls is a Cauchy sequence and find the limit of this sequence is not in X then result in a contradiction.

Theorem 3.2 (uniform boundedness theorem). Let \mathcal{F} be a family of real-valued functions defined on a complete metric space X and suppose

$$f^{*}\left(x\right) = \sup_{f \in \mathcal{F}} \left| f\left(x\right) \right| < \infty$$

for each $x \in X$.

Then there exists a nonempty open set $U \subset X$ and a constant M s.t. $|f(x)| \leq M$ for all $x \in U$ and $f \in \mathcal{F}$.

Proof. For each positive $i \in \mathbb{N}$, let

$$E_{i,f} = \left\{x; \left|f\left(x\right)\right| \leq i\right\}, \ E_i = \bigcap_{f \in \mathcal{F}} E_{i,f}$$

Notice that $E_{i,f}$ is closed so is E_i and as the hypothesis, we find that for each $x \in X$, there is a M_x s.t. $f(x) \leq M_x$ for all $f \in \mathcal{F}$, so

$$X = \bigcup_{i=1}^{\infty} E_i$$

And the Baire category theorem implies that there is some $E_M, M \in \mathbb{N}$ is not nowhere dense which means there is some open subset $U \subset E_M$ s.t. for all $x \in U$, and $f \in \mathcal{F}$, $|f(x)| \leq M$.

3.2 Compactness in Metric Spaces

Lemma 3.1. • A convergent sequence in a metric space is Cauchy.

- A metric space which all the Cauchy sequence in it is convergence is complete.
- A metric space is a first countable space.
- A metric space is separable iff it is a second countable space.

 $\begin{array}{l} \textit{Proof. Give a sequence } (x_i) \rightarrow x \text{ in } X \text{, as } X \text{ is a metric space, give any } \epsilon > 0, \\ \text{there exists a } m \in \mathbb{N} \text{ s.t. for any } n_1, n_2 \geq m, \, d\left(x, x_{n_1}\right) \leq \epsilon/2, \, \text{and } d\left(x, x_{n_2}\right) \leq \epsilon/2, \, \text{so } d\left(x_{n_1}, x_{n_2}\right) \leq d\left(x_{n_1}, x\right) + d\left(x, x_{n_2}\right) \leq \epsilon, \, \text{so } (x_i) \text{ is Cauchy.} \end{array}$

Definition 3.3 (totally bounded). If (X, d) is a metric space, a set $A \subset X$ is called totally bounded if for every $\epsilon > 0$, A can be covered by finitely many balls of radius ϵ .

A set A is said to be bounded if there is $M \ge 0$ s.t. $d(x,y) \le M$ for all $x,y \in A$.

Notice that a totally bounded set is bounded but a bounded set may not be totally bounded.

Definition 3.4 (sequentially compact). A set $A \subset X$ is said to be sequentially compact if every sequence in A has a subsequence that converges to a point $x \in A$.

Also, A is said to have **Bolzano-Weierstrass** property if every infinite subset of A has accumulation point in A.

Theorem 3.3. If A is a subset of a metric space (X,d), the following are equivalent:

- A is compact.
- A is sequentially compact.
- A is complete and totally bounded.
- A has the Bolzano-Weierstrass property.

Proof. We will give a proof from $1 \implies 2$:

• 1 \implies 2: Let (x_i) be a sequence in A. Assume that (x_i) 's range is infinite, and suppose (x_i) has no convergent subsequence. Let E denotes the range of (x_i) .

Notice that every subsequence of (x_i) does not converge, so every point $x \in E$, there exists a r_x s.t. $B_r(x) \cap E = \{x\}$. Then as $\overline{E} = E \cup E^*$ where E^* denotes the set of accumulation point of E which is empty, so $\overline{E} = E \implies E \text{ is closed.}$

A is compact and E is closed and $E \subset A$, so E is compact. However, E contains infinite points and every point is isolated, so the open cover $\{B_r(x): r=r_x\}$ cant have a finite subcover that leads to a contradiction.

• 2 \implies 3: First we need to show that if a subsequence of a Cauchy

sequence converges, then the whole sequence converges. Let (x_i) be a Cauchy sequence and let $(x_{i(k)})_{k=1}^{\infty}$ be a subsequence of (x_i) s.t. $(x_{i(k)}) \to x$ which means give a $\epsilon > 0$ there exists a $m(k) \in \mathbb{N}$ for all $k \geq m(k)$, $d(x_{i(k)}, x) \leq \epsilon/2$. Note that every subsequence of a Cauchy sequence is Cauchy, so there exists a $n(k) \in \mathbb{N}$ for all $k_1, k_2 \geq$ $n(k), d\left(x_{i(k_1)}, x_{i(k_2)}\right) \leq \epsilon/2$, pick $s = i\left(\max\left(m(k), n(k)\right)\right)$, when $i \geq s$, $d(x_i, x) \le \epsilon$.

So A must be complete, if not there must be a Cauchy sequence (x_i) in A s.t. there exists a subsequence of (x_i) converges but (x_i) does not converge, which leads to a contradiction of the proposition above.

About the totally bounded, suppose that A is not totally bounded and there exists a $\epsilon > 0$ s.t. A cannot be covered by finitely many balls of radius ϵ . Then we can choose a sequence in A as follows:

Pick $x_1 \in A$, Then, since $A - B_{\epsilon}(x_1) \neq \emptyset$, we can choose $x_2 \in A - B_{\epsilon}(x_2)$. Note that $d(x_1, x_2) \ge \epsilon$, then similarly we choose

$$x_i \in A - \bigcup_{j=1}^{i-1} B_{\epsilon} \left(x_j \right)$$

Then as the cover cannot be finite, so (x_i) is a sequence in A with $d(x_i, x_i) \geq \epsilon$ when $i \neq j$ so clearly (x_i) does not have any convergent subsequence.

• 3 \Longrightarrow 4: Let $A \subset X$ be an infinite subset. Notice that A can be covered by a finite number of balls of radius 1, and there is a B_1 of those balls contains infinite points in A. Let x_1 be one of them. Similarly, there is a ball B_2 of radius 1/2 s.t. $A \cap B_1 \cap B_2$ has infinitely many points, then pick $x_2 \neq x_1$ in it. Then we choose the ball B_i of radius 1/i and pick distinct x_k from:

$$\bigcap_{i=1}^k A \cap B_i$$

then the sequence (x_k) is Cauchy, then it converges as the completeness, then there is at least one accumulation point of A in A.

• $4 \implies 1$: Omission.

Corollary 3.1 (Heine-Borel Theorem). A compact subset $A \subset \mathbb{R}^n$ is compact iff A is closed and bounded.

Proof. First, compact means totally bounded thus bounded. And a compact subset of Hausdorff space is closed.

For the converse, if A is closed, it is complete. To show this, use the definition of Cauchy sequence and for any closed subset A, $A = \overline{A} = A \cup A^*$ where A^* denotes the set of the accumulation point of A.

Meanwhile, in \mathbb{R}^n , bounded means totally bounded. (So, when bounded means totally bounded? Why \mathbb{R}^n ?).

Lemma 3.2 (Lebesgue number). Let (X,d) be a compact metric space, and let $\{V_i\}_{i\in I}$ be an open cover of X, then there exists some $\delta>0$, called the **Lebesgue number** of the cover, s.t. for each $x\in X$ we have $B_{\delta}(x)\subset V_i$ for some $i\in I$.

Proof. Assume that there is not any $\delta > 0$ satisfies.

Then for each n there exists some $x_n \in X$ s.t. $B_{1/n}(x_n) \cap V_i^c \neq \emptyset$ for each $i \in I$. If x is the limit point of some subsequence of (x_n) , and $x \in X$, then $B_r(x) \ni x_i$ for some i for all r > 0 and also $B_r(x) \ni x_j$ where x_j in this subsequence and $j \ge i$. This means give r > 0, we can find $1/i \le \epsilon \le r/2$ s.t. $x \in B_\epsilon(x_i)$ for some i. Then $B_\epsilon(x_i) \subset B_r(x)$ which means $B_r(x)$ intersects V_i^c for all $i \in I$. Notice that V_i^c is closed, so $\overline{V_i^c} = V_i^c$ and x is the accumulation point of all the V_i^c , so $x \in \bigcap_{i \in I} V_i^c = \left(\bigcup_{i \in I} V_i\right)^c = \emptyset$ which leads to a contradiction.

Theorem 3.4 (Tychonoff product theorem). If $\{X_{\alpha} : \alpha \in A\}$ is a family of compact topological spaces and $X = \prod_{\alpha \in A} X_{\alpha}$ with the **product topology**, then X is compact.

Chapter 4

Continuous Function and Continuous Function Space

4.1 Continuous Function

Definition 4.1 (oscillation). If $f:(X,d)\to (Y,\rho)$ is an arbitrary mapping, then the oscillation of f on a ball $B(x_0)$ is defined by:

$$osc(f, B_r(x_0)) = \sup \{ \rho(f(x), f(y)) : x, y \in B_r(x_0) \}$$

Notice that the oscillation is non-decreasing corresponding to r on each x_0 .

Proposition 4.1. A function $f: X \to Y$ is continuous at x_0 iff

$$\lim_{r \to 0} osc(f, B_r(x_0)) = 0$$

Theorem 4.1. Let $f: X \to Y$ be an arbitrary function. Then the set of points at which f is continuous is a G_{δ} set.

Proof. Let

$$G_i = \left\{x \in X : \inf_{r>0} \operatorname{osc}(f, B_r(x)) < \frac{1}{i}\right\}$$

so the set that f is continuous is given by:

$$A = \bigcap_{i=1}^{\infty} G_i$$

Now we need to prove that G_i is open. Observe that $x \in G_i$ there exists r>0 s.t. $\operatorname{osc}(f,B_r(x_0))<1/i$. Give $y \in B_r(x)$, there exists t>0 s.t. $B_t(y) \subset B_r(x)$, so

$$\operatorname{osc}(f, B_n(t)) \le \operatorname{osc}(f, B_r(x)) \le 1/i$$

which means each point $y \in B_r(x)$ is an element of G_i , that is $B_r(x) \subset G_i$, as the arbitrary picking of x, G_i is thus a open set.

Theorem 4.2. Let f be an arbitrary function defined on [0,1] and let

$$E = \{x \in [0,1]: f \text{ is continuous at } x\}$$

Then E cannot be the set of rational numbers in [0,1].

Proof. Observe that if E is the set of rational numbers, then the set of rational numbers in [0,1] is a G_{δ} set which implies that the irrational numbers in [0,1] is a F_{σ} set.

Notice that the rational numbers are the countable union of closed set (singletons). And since the rational numbers are dense in [0,1], so if the irrational number set is F_{σ} , then every closed set in this family cannot have any interiors which means the whole [0,1] is a F_{σ} set with a family of nowhere dense set, which is contrary with the Baire category theorem.

Theorem 4.3. A continuous functions carries a compact subset into a compact subset.

Proof. Let X, Y be two topological space and $f: X \to Y$ is continuous, now we prove that if $K \subset X$ is compact, then $f(K) \subset Y$ is compact too.

Notice that $f\mid_K$ is surjective, so $f(f^{-1}(U))=U$. Then consider a open cover $\mathcal F$ of f(K), then the set $\mathcal E=\{f^{-1}(U):U\in\mathcal F\}$ is a open cover of K, then there exists a finite open subcover $\{V_1,\dots,V_n:V_i\in\mathcal E\}$ s.t. $\bigcup_{i=1}^nV_i\supset K$ where $V_i,i=1,\dots,n$ is $f^{-1}(U_i)$ for some $U_i\in\mathcal F$, so there exists some i s.t. $\bigcup_{i=1}^nf^{-1}(U_i)\supset K$, then

$$f\left(\bigcup_{i=1}^n f^{-1}(U_i)\right) = \bigcup_{i=1}^n f\left(f^{-1}(U_i)\right) = \bigcup_{i=1}^n U_i$$

Notice that

$$f\left(\bigcup_{i=1}^n f^{-1}(U_i)\right)\supset f(K)$$

so $f(K) \subset \bigcup_{i=1}^n U_i$.

Definition 4.2 (uniformly continuous). A function $f:(X,d)\to (Y,\rho)$ is said to be uniformly continuous on X if for each $\epsilon>0$, there exists $\delta>0$ s.t. when $d(x,y)\leq \delta,\ \rho(f(x),f(y))\leq \epsilon$ for all $x,y\in X$.

An equivalent formulation of uniform continuity can be stated in oscillation. For each r > 0, let

$$\omega_f(r) = \sup_{x \in X} \operatorname{osc}\left(f, B_r(x)\right)$$

The function ω_f is called the modulus of continuity of f. Observe that f is uniformly continuous if

$$\lim_{r\to 0}\omega_f(r)=0$$

Proof. Give a $\epsilon > 0$, there exists a $\delta > 0$, when $r \leq \delta$, $\omega_f(r) \leq \epsilon$. Then

$$\sup_{x \in X} \operatorname{osc}(f, B_r(x)) \leq \epsilon$$

so when $d(x,y) \le r \le \delta$, $\sup_{x \in X} \rho(f(x),f(y)) \le \epsilon$ which means uniform continuity.

Theorem 4.4. Let $f: X \to Y$ be a continuous mapping. If X is compact, then f is uniformly continuous on X.

Proof. From $\ref{eq:proof.}$ we notice that if $\lim_{r\to 0}\omega_f(r)=0,$ then f is uniformly continuous.

Choose $\epsilon > 0$, the collection

$$\mathcal{F} = \left\{ f^{-1}(B_{\epsilon/2}(y))) : y \in Y \right\}$$

is a open cover of X, then there exists a Lebesgue number $\delta>0$ s.t. $B_{\delta}(x)\subset f^{-1}(B_{\epsilon/2}(y))$ for all $x\in X$ follows from $\ref{eq:theta}$?

So $f(B_{\delta}(x)) \subset B_{\epsilon/2}(y)$ for some $y \in Y$ which means $\omega_f(\delta) \leq \epsilon$ for arbitrary ϵ , so f is uniformly continuous.

Theorem 4.5. Let K be a compact topological space and let $(Y, \|\cdot\|_Y)$ be a normed vector space. Then $\mathcal{C}(K;Y)$ is a vector space with the norm $\|\cdot\|:\mathcal{C}(K;Y)\to\mathbb{R}$:

$$||f||_{\mathcal{C}} = \sup_{x \in K} ||f(x)||_Y$$

for each $f \in \mathcal{C}(K;Y)$. It is called the **sup-norm** on $\mathcal{C}(K;Y)$.

Proof. Notice that $(Y, \|\cdot\|)$ is a metric space and a compact subset in a metric space is bounded and closed.

- $\sup \|f(x)\|_Y < \infty$ and $\sup \|f(x)\|_Y \ge 0$ - $\sup \|\alpha f(x)\|_Y = |\alpha| \sup \|f(x)\|_Y$ - $\sup \|f + g\|_Y \le \sup \|f\|_Y + \sup \|g\|_Y$

Definition 4.3 (converge uniformly). A sequence $(f_n)_{n=1}^{\infty}$ of functions $f_n \in \mathcal{C}(K;Y)$ is said to **converge uniformly** if $\lim_{n\to\infty} \|f_n - f\|_{\mathcal{C}} = 0$. It means

$$\lim_{n \to \infty} \left(\sup_{x \in K} \|f_n(x) - f(x)\|_Y \right) = 0$$

Theorem 4.6. Let X be any set and let $(Y, \|\cdot\|_Y)$ be a normed vector space. Then the set $\mathcal{B}(X;Y)$ of all bounded mappings $f: X \to Y$ i.e. $f(X) \subset Y$ is a bounded subset in Y is a vector space and the function $\|\cdot\|_{\mathcal{B}}: \mathcal{B}(X;Y) \to \mathbb{R}$ defined by:

$$\|f\|_{\mathcal{B}} = \sup_{x \in X} \|f(x)\|_Y$$

is a norm on $\mathcal{B}(X;Y)$.

Proof. Notice that a bounded function f over \mathbb{K} , for any $\alpha \in \mathbb{K}$, αf is still bounded and for $f, g \in \mathcal{B}(X; Y)$, f + g is still bounded.

It is easy to show that $||f||_{\mathcal{B}}$ is truly a norm on $\mathcal{B}(X;Y)$.

Definition 4.4 (local uniform convergence). Let X be a topological space and Y be a normed vector space. Then a sequence $(f_n)_{n=1}^{\infty}$ of mappings $f_n: X \to Y$ is said to converge locally uniformly to a mapping $f: X \to Y$ as $n \to \infty$ if given any $x_0 \in X$ there exists a neighborhood $V(x_0)$ of x_0 s.t.

$$\lim_{n\to\infty} \bigg(\sup_{x\in V(x_0)} \|f_n(x) - f(x)\|_Y \bigg) = 0$$

Notice that local uniform convergence and uniform convergence implies the pointwise convergence.

Theorem 4.7. Let X is a topological space and Y be a normed vector space, let $(f_n)_{n=1}^{\infty}$ be a sequence of continuous mapping from X to Y that converges locally uniformly to a $f: X \to Y$, then f is continuous on X.

Moreover, if f_n continuous at x_0 and they locally uniformly convergence to f then f is continuous at x_0 .

Proof. Assume that f is continuous at x_0 which means give $\epsilon > 0$, there exists a neighborhood $V(x_0) \in \mathcal{N}_{x_0}$ s.t. for every $x \in V(x_0)$, $||f(x_0) - f(x)||_Y \le \epsilon$.

Now suppose that $\epsilon>0$ is given. As $(f_n)\to f$ locally uniformly. Then we can choose a $k\in\mathbb{N}$ s.t. for any $i\geq k$, we can find a neighborhood $V(x_0)$ s.t. for any $x\in V(x_0)$,

$$\sup_{x \in V(x_0)} \|f_i(x) - f(x)\|_Y \leq \epsilon/3$$