

lass="header

neader-top__item"> header-top__
dér diòp-list"><sectionheader-top-list">
lass="header-top"> class="header-top">
 class="header-top">
="header_top wild-sand-bg"> <div class="cl

<itcamp>

```
/div> <ul ИНТЕЛЛЕКТУАЛЬНАЯ СИСТЕМА ТОКОВОЙ, ДИАГНОСТИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ СТОВОВ В SETT CONTROL CONTR
```

Предлагаем ознакомиться с нашими материалами по QR-коду

ИНТЕЛЛЕКТУАЛЬНАЯ СИСТЕМА ТОКОВОЙ ДИАГНОСТИКИ ЭЛЕКТРОДВИГАТЕЛЕЙ

ТАИСЬЯ
БАРАНОВА

РУКОВОДИТЕЛЬ ПРОЕКТА, ФИНАНСОВЫЙ АНАЛИТИК

Координация работы, расчет экономической эффективности

СЕРГЕЙ ОСТАЕВ

UX/UI ДИЗАЙНЕР

Создание интерфейса системы

ВЛАДИМИР ДЮЖЕВ

APXUTEKTOP

Разработка архитектуры инфраструктуры

АЛЕКСАНДР РУДНЕВ

РАЗРАБОТЧИК, СПЕЦИАЛИСТ ИБ

Проектирование и разработка системы

АНДРЕЙ МАШАРИН

ML-РАЗРАБОТЧИК

Обучение модели, разработка системы

AHHA NHSHRN

АНАЛИТИК, ДИЗАЙНЕР

Анализ рынка, дизайн презентации

НИКИТА БОРИСОВ

БИЗНЕС-АНАЛИТИК

Проработка требований (ФТ, НФТ, БТ), рискменеджмент

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ ПРОТИВ ВНЕПЛАНОВЫХ ПРОСТОЕВ: РАЗРАБОТКА ИНТЕЛЛЕКТУАЛЬНОЙ СИСТЕМЫ **ДИАГНОСТИКИ**

ОПИСАНИЕ ПРОЕКТА

Система предиктивного мониторинга оборудования на основе анапиза токовых сигнапов.

ПРОБЛЕМАТИКА

- Внезапные отказы электрического и динамического оборудования
- Высокая стоимость оснащения динамического оборудования системами вибродиагностики и вибромониторинга
- Отсутствие полного контроля за оборудованием

ОРГАНИЗАЦИОННЫЙ ОБЪЕМ

Промышленные организации, нуждающиеся в оценке технического состояния динамического оборудования

РЕСУРСЫ

44,1 млн руб. на реализацию

ТЕКУЩИЙ СТАТУС

Прототипирование

MVP

03.07.2025

29.08.2025

видов дефектов выявляет система: (дефект наружного кольца подшипника, дефект внутреннего кольца подшипника, дефект тел качения, дефект сепаратора, дисбаланс, расцентровка)

точность прогнозирования отказа оборудования

доступность внедрения системы оборудования за счет использования токовой диагностики

ЦА И ТРЕБОВАНИЯ

Специалист ТОиР ЦЕЛЬ: снижение внеплановых простоев

Эксперт-аналитик по мониторингу оборудования ЦЕЛЬ: предупреждение внеплановых простоев

Импорт данных мониторинга электродвигателя

Автоматизированный анализ с помощью ML-модели

Оперативное оповещение о инцидентах

Формирование аналитических отчетов для принятия решений

AS IS TO BE

Низкий % оснащения оборудования системами мониторинга. Сложность и дороговизна установки датчиков вибрации

Следствия:

- Внезапные отказы оборудования из-за отсутствия систем мониторинга
- Дороговизна и сложность внедрения вибродиагностики
- Риск простоев из-за отсутствия предиктивной диагностики

КАК БУДЕТ

Автоматизированная система токовой диагностики электродвигателей обеспечивает полный охват оборудования для обнаружения дефектов и прогнозирования рисков

Эффекты:

- Модель ML, детектирующая дефекты с точностью ≥45%
 на этапе MVP
- ⊙ Прогнозирование остаточного срока службы

КОНКУРЕНТОСПОСОБНОСТЬ И ПЕРСПЕКТИВЫ ВНЕДРЕНИЯ

Наше решение: "Токовая диагностика + ИИ" + собственное ПО

КОНКУРЕНТОСПОСОБНОСТЬ И ПЕРСПЕКТИВЫ ВНЕДРЕНИЯ

><i:camp>

Реализация на 1 единицу оборудования

NPV	- 30,5 млн. р.
PI	0.3
IRR	- 19%
ROI	- 0,9
dtOK	27 лет

CAPEX

Реализация на 50 единиц оборудования

NPV	37,3 млн. р.
PI	1,7
IRR	42%
ROI	0,23
dtOK	3 года

Стоиомсть команды для разработки ПО

Аренда инфраструктуры и лицензий

Стоимость токовых датчиков, включая установку на оборудование

ИНТЕРФЕЙС

🗴 Не верный логин или пароль

УКЭП прошла авторизацию

><i:camp>

Демонстрация решения

«ПРОМТ»9

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

ВЫДЕЛЕНИЕ ПРИЗНАКОВ ДЕФЕКТОВ:

- спектральный анализ токовых фаз
- демодуляция огибающей
- вычисление признаков → классификация дефектов

2 ЯДРО АНАЛИЗА:

- НРF-фильтр центрированный
- Огибающая: преобразование Хилберта, амплитудный FFT огибающей, адаптивный выбор полосы с нормированным окном Ханна
- выявление признаков спектры, статистики
- классификация по семействам дефектов

3 КЛАССИФИКАЦИЯ ДЕФЕКТОВ:

SCORE ПО СЕМЕЙСТВАМ:

ENV MCSA

BPFI

BPFO

BSF

FTF

Проверка подшипника

Проверка ротор/дисбаланса

4 ИЗВЛЕЧЕНИЕ ПРИЗНАКОВ:

- окна 1с. (шаг 0,5 сек.)
- обработка по чанкам (10 сек.) интерполяция фаз
- адаптивная калибровка оценки дефекта

ИСПОЛЬЗОВАНИЕ ИНСТРУМЕНТОВ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

СХЕМА ВНЕШНЕГО СЕТЕВОГО ВЗАИМОДЕЙСТВИЯ

RTO	От 15 минут
RPO	До 15 минут

МОДЕЛЬ ПОТОКОВ

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ

В ПЕРВУЮ ОЧЕРЕДЬ ОПИРАЕМСЯ НА:

РИСКИ

Анализ вероятности и ущерба возникновения рисков

Название	Nº	Описание	Вероятность возниконовения	Группа ущерба	Ушерб возниконовения
1 - Архитектура	1.1	Нарушение интеграционных потоков и целостности данных	3	2	2
	1.2	Уязвимости в архитектуре	2	2	3
	2.1	Отказ оборудования ИТ-инфраструктуры	1	2	3
2 - Инфраструктура	2.2	Проблемы подключения к системам SIEM	2	2	2
3 - Данные	3.1	Ошибки в обработке данных (неправ. обработка признаков, ошибки в разметке)	2	1	3
	3.2	Недостаточно данных для обучения	2	1	2
4.1 4 - Пользователи 4.2	4.1	Отсутствие навыков работы пользователей в новой системе	3	2	2
	4.2	Халатное управление доступом / администрирование системы	2	2	3
5 - Поставщики	5.1	Срыв сроков поставок и внедрения	1	1	2
6 - Прочее	6.1	Репутационные риски	2	6	2

Мероприятия по управлению рисками

№ риск факторов	Мероприятия	Срок выполнения	Статус реализации
1.1 - 2	Реализация мониторинга и контроля качества данных, формализация процесса обмена данными	20.08.2025	Исполнено
1.2, 4.2 - 2	Обеспечение средствами защиты информации	15.11.2025	Исполнено
3.1, 3.2 - 1	Учитывание дисбаланса классов, правильное разделение на трен. и тест. множества	22.08.2025	Исполнено
4.1 - 2	Создание программы организационного изменения и обучение пользователей	01.12.2025	В ожидании ОПЭ

Ранжирование рисков

«Искусственный интеллект - это важнейший инструмент развития и один из наших приоритетов в сфере экономики и в других областях»

[Путин В. В.]