Convolutional Neural Networks - A breakthrough in Computer Vision

by

Paresh Kamble & Rucha Gole
PhD Student MTech Student
Department of Electronics and Communication Engineering,
VNIT, Nagpur, Maharashtra, India.

Introduction

- Pre-requisite: i) Linear Algebra, ii) Neural Network
- Ted talk Fei Fei Li How we teach computers to understand pictures
- Buzz about Deep Learning and CNN
- Applications of CNN Image recognition, video analysis, medical imaging, Games, etc.
- Companies that use CNN Google, Facebook, Twitter, Instagram, IBM,
 Intel, etc.
- Disclaimer The presentation is loosely based on Coursera Deep Learning Specialization and CS231n course of Stanford University.

Common problems in Computer Vision

Traditional Neural Network vs. Convolutional Neural Network

Traditional Neural Network vs. Convolutional Neural Network

Traditional Neural Network vs. Convolutional Neural Network

Salient points:

- Spatial relation between features in image is not considered in NN.
- NN needs huge data to prevent overfitting!
- NN is not feasible for large images!
- In order to perform Computer Vision operations on large images, convolution operation plays an important role.
- Thus, CNNs are fundamentally important.

Stages of feature extraction by CNN

Edge Detection

Edge Detection Vertical edges Horizontal edges

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

-1	0	1
-1	0	1
-1	0	1

3 -1	0 °	1	2	7	4
1 -1	5°	8 1	9	3	1
2 -1	7 °	2 1	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

-1	0	1
-1	0	1
-1	0	1

5		

3	0 -1	1 °	2 1	7	4
1	5	8 °	9	3	1
2	7 -1	2 °	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

-1	0	1
-1	0	1
-1	0	1

5	4	

3	0	1	2 °	7 1	4
1	5	8 -1	9	3	1
2	7	2 -1	5°	1 1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

-1	0	1
-1	0	1
-1	0	1

5	4	0	

3	0	1	2 -1	7 °	4
1	5	8	9 -1	3 °	1
2	7	2	5	1 °	3 1
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

_	1	0	1
-	1	0	1
-	1	0	1

5	4	0	-8

3	0	1	2	7	4
1 -1	5°	8 1	9	3	1
2 -1	7 °	2 1	5	1	3
0 -1	1 °	3 1	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

_	1	0	1
-	1	0	1
-	1	0	1

5	4	0	-8
10			

3	0	1	2	7	4
1	5	8 °	9 1	3	1
2	7 -1	2 °	5 1	1	3
0	1 -1	3 °	1 1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2		

3	0	1	2	7	4
1	5	8 -1	9	3 1	1
2	7	2 -1	5°	1 1	3
0	1	3 -1	1 °	7 1	8
4	2	1	6	2	8
2	4	5	2	3	9

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2	2	

3	0	1	2	7	4
1	5	8	9 -1	3 °	1 1
2	7	2	5 -1	1 °	3 1
0	1	3	1 -1	7 °	8 1
4	2	1	6	2	8
2	4	5	2	3	9

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2	2	-3

3	0	1	2	7	4
1	5	8	9	3	1
2 -1	7 °	2 1	5	1	3
0 -1	1 °	3 1	1	7	8
4 -1	2 °	1 1	6	2	8
2	4	5	2	3	9

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2	2	-3
0			

3	0	1	2	7	4
1	5	8	9	3	1
2	7 -1	2 °	5 1	1	3
0	1 -1	3 °	1 1	7	8
4	2 -1	1 °	6 ¹	2	8
2	4	5	2	3	9

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2	2	<u>ფ</u>
0	2		

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2 -1	5 °	1 1	3
0	1	3 -1	1 °	7 1	8
4	2	1 -1	6 °	2 1	8
2	4	5	2	3	9

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2	2	<u>ფ</u>
0	2	4	

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5 -1	1 °	3 ¹
0	1	3	1 -1	7 °	8 1
4	2	1	6 -1	2 °	8 1
2	4	5	2	3	9

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2	2	-3
0	2	4	7

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0 -1	1 °	3 1	1	7	8
4 -1	2 °	1 1	6	2	8
2 -1	4 °	5 1	2	3	9

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2	2	-3
0	2	4	7
3			

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1 -1	3 °	1 ¹	7	8
4	2 -1	1 °	6 ¹	2	8
2	4 -1	5 °	2 1	3	9

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2	2	-3
0	2	4	7
3	2		

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3 -1	1 °	7 1	8
4	2	1 -1	6 °	2 1	8
2	4	5 -1	2 °	3 1	9

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2	2	-3
0	2	4	7
3	2	3	

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1 -1	7 °	8 1
4	2	1	6 -1	2 °	8 1
2	4	5	2 -1	3 °	9 1

-1	0	1
-1	0	1
-1	0	1

5	4	0	-8
10	2	2	-3
0	2	4	7
3	2	3	16

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Vertical Edge Detection

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

1	0	-1
1	0	-1
1	0	-1

*

0	-30	-30	0
0	-30	-30	0
0	-30	-30	0
0	-30	-30	0

Vertical & Horizontal Edge Detection

1	1	1
0	0	0
-1	-1	-1

1	0	-1
1	0	-1
1	0	-1

1	0	-1
2	0	-2
1	0	-1

Vertical & Horizontal Edge Detection

1	1	1
0	0	0
-1	-1	-1

1	0	-1
1	0	-1
1	0	-1

1	0	-1
2	0	-2
1	0	-1

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

w1	w2	w3
w4	w5	w6
w7	w8	w9

Learning the filter weights!

Padding

```
Image * Filter = Output Image

6 \times 6 3 \times 3 4 \times 4

n * n f * f nout * nout

using nout = n - f + 1
```

Shortcoming of this technique:

- 1) Output goes on shrinking as the number of layers increase.
- 2) Information from boundary of the image remains unused.

Solution is Zero padding around the edges of the image!

Padding

If Image is 6 x 6

$$nout = n - f + 1$$

= 6 - 3 + 1
= 4

Thus, Output Image = 4×4

Padding

0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0

If
$$p = 1$$

$$nout = n + 2p - f + 1$$

$$= 6 + (2 * 1) - 3 + 1$$

$$= 6$$

Thus, Output Image = 6×6

Padding

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0							0	0
0	0							0	0
0	0							0	0
0	0							0	0
0	0							0	0
0	0							0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

If
$$p = 2$$

$$nout = n + 2p - f + 1$$

$$= 6 + (2 * 2) - 3 + 1$$

$$= 6 + 4 - 3 + 1$$

$$= 8$$
Thus Output Image = 8 x 8

Thus, Output Image = 8×8

Padding

How much to pad?

1) Valid = no padding.

Follows the formula nout = n - f + 1.

2) Same = Output dimension is Same as input.

Follows the formula nout = n + 2p - f + 1.

To keep Output size same as input size: n = n + 2p - f + 1

$$p = \frac{(f-1)}{2}$$
 Thus, filters are generally odd.

• Strided Convolution: Shifting of filter by s pixels during convolution. Here, s = 2.

3	0 °	1	2	7	4	2
1	°	8	9	3	1	1
2 -1	7°	2	5	1	3	5
0	1	3	1	7	8	4
4	2	1	6	2	8	3
2	4	5	2	3	9	8
2	3	6	4	2	0	1

-1	0	1
-1	0	1
-1	0	1

5	

3	0	1	2 0	7	4	2	
1	5	8 ⁻¹	9°	3	1	1	
2	7	2 ⁻¹	5°	1 1	3	5	*
0	1	3	1	7	8	4	
4	2	1	6	2	8	3	
2	4	5	2	3	9	8	
2	3	6	4	2	0	1	

-1	0	1
-1	0	1
-1	0	1

5	0	

3	0	1	2	7 ⁻¹	4°	2	
1	5	8	9	3	1°	1	
2	7	2	5	1	°3	5	*
0	1	3	1	7	8	4	
4	2	1	6	2	8	3	
2	4	5	2	3	9	8	
2	3	6	4	2	0	1	

-1	0	1
-1	0	1
-1	0	1

5	0	-3

3	0	1	2	7	4	2
1	5	8	9	თ	1	1
2 -1	7 °	2 1	5	1	თ	5
0 -1	1 °	3 1	1	7	8	4
4 -1	2 °	1 1	6	2	8	3
2	4	5	2	3	9	8
2	3	6	4	2	0	1

7	0	1
1	0	1
-1	0	1

5	0	-3
0		

3	0	1	2	7	4	2
1	5	8	9	3	1	1
2	7	2 ⁻¹	5°	1 1	3	5
0	1	3 ⁻¹	1 °	71	8	4
4	2	1 -1	6°	21	8	3
2	4	5	2	3	9	8
2	3	6	4	2	0	1

-1	0	1
-1	0	1
-1	0	1

5	0	-3
0	4	

3	0	1	2	7	4	2	
1	5	8	9	3	1	1	
2	7	2	5	1-1	3°	5 ¹	*
0	1	3	1	7 ⁻¹	8°	4 ¹	
4	2	1	6	2 ⁻¹	8°	3 ¹	
2	4	5	2	3	9	8	
2	3	6	4	2	0	1	

-1	0	1
-1	0	1
-1	0	1

5	0	-3
0	4	2

3	0	1	2	7	4	2	
1	5	8	9	3	1	1	
2	7	2	5	1	3	5	*
0	1	3	1	7	8	4	
4 -1	2 °	1 1	6	2	8	3	
2 -1	4 °	5 ¹	2	3	9	8	
2 -1	3 °	6 ¹	4	2	0	1	

1	0	1
-1	0	1
-1	0	1

5	0	-3
0	4	2
4		

3	0	1	2	7	4	2	
1	5	8	9	3	1	1	
2	7	2	5	1	3	5	*
0	1	3	1	7	8	4	
4	2	1 -1	6°	21	8	3	
2	4	5-1	2 º	3 ¹	9	8	
2	3	6-1	4°	2 ¹	0	1	

-1	0	1
-1	0	1
-1	0	1

5	0	-3
0	4	2
4	- 5	

3	0	1	2	7	4	2	
1	5	8	9	3	1	1	
2	7	2	5	1	3	5	*
0	1	3	1	7	8	4	
4	2	1	6	2 ⁻¹	8°	3 ¹	
2	4	5	2	3-1	9°	8 ¹	
2	3	6	4	2 ⁻¹	0°	1 ¹	

-1	0	1
-1	0	1
-1	0	1

5	0	-3
0	4	2
4	-5	5

Strided Convolution

3	0	1	2	7	4	2
1	5	8	9	3	1	1
2	7	2	5	1	3	5
0	1	3	1	7	8	4
4	2	1	6	2 ⁻¹	8°	3 ¹
2	4	5	2	3 ⁻¹	9°	8 ¹
2	3	6	4	2 ⁻¹	0 °	1 ¹

-1	0	1
-1	0	1
-1	0	1

5	0	-3
0	4	2
4	-5	5

Here, Stride(S)=2,
Thus,
$$nout = \left[\frac{n+2p-f}{s} + 1\right] = \left[\frac{7+2*0-3}{2} + 1\right] = \left[\frac{4}{2} + 1\right]$$

$$= \left|\frac{4}{2} + 1\right| = 3$$

If input image is 6x6 then Output Image will be?

Strided Convolution

		_					
3	0	1	2	7	4	2	
1	5	8	9	3	1	1	
2	7	2	5	1	3	5	*
0	1	3	1	7	8	4	
4	2	1	6	2 ⁻¹	8°	3 ¹	
2	4	5	2	3 ⁻¹	9°	8 ¹	
2	3	6	4	2 ⁻¹	0°	1 ¹	

-1	0	1
-1	0	1
-1	0	1

5	0	-3
0	4	2
4	-5	5

Here, Stride(S)=2,
Thus,
$$nout = \left[\frac{n+2p-f}{s} + 1\right] = \left[\frac{7+2*0-3}{2} + 1\right] = \left[\frac{4}{2} + 1\right]$$

$$= \left|\frac{4}{2} + 1\right| = 3$$

If input image is 6x6 then Output Image will be still 2x2 if all other factors are constant.

Summary of Convolution

For an n * n image and filter f * f with padding p and a stride of s pixels, Output image dimension is given by:

$$\left| \frac{n+2p-f}{s} + 1 \right| * \left| \frac{n+2p-f}{s} + 1 \right|$$

Convolution vs. Cross-correlation

Convolution involves: flip on axes -> multiply -> sum

Cross-correlation involves: multiply -> sum

In CNNs, the process is *cross-correlation* but is referred to as *convolution* by convention.

Detect vertical edges in R-plane

Multiple Filters

6x6x**3** 3x3x**3** 4x4x**1**

Multiple Filters

Multiple Filters

Summary of Convolution with Multiple filters

For an n * n * c image and N filters each f * f * c with padding p and a stride of s pixels,

Output image dimension is given by:

$$\left| \frac{n+2p-f}{s} + 1 \right| * \left| \frac{n+2p-f}{s} + 1 \right| * N$$

Single Convolution Layer

Learnt filters and corresponding activations

Quiz 2

• No. of **Trainable parameters** (Weights + biases) in a one convolution layer?

No. of filters: 10

Volume of each filter: 3x3x3

Input volume: 32x32x3

Quiz 2

No. of Trainable parameters (Weights + biases) in a one convolution layer?

No. of filters: 10

Volume of each filter: 3x3x3

Input volume: 32x32x3

Solution: No need of input volume. It is a catch.

Total trainable parameters = (3x3x3 weight + 1 bias) of each filter x 10 filters

$$= (27+1) \times 10$$

$$= (28) \times 10$$

$$= 280.$$

CNN Example # 1 (Basic)

$$\frac{n+2p-f}{s} + 1 \qquad \frac{n+2p-f}{s} + 1$$

$$= \frac{39+2*0-3}{1} + 1 \qquad = \frac{37+2*0-5}{2} + 1$$

$$= 37 \qquad = 17$$

$$\frac{n+2p-f}{\frac{S}{2}}+1$$
=\frac{17+2*0-5}{2}+1
=7

Non-linear activation

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Purpose:

- 1) To reduce the size of the layer to speed up computation.
- 2) To retain robust features.

Types:

- 1) Max Pooling
- 2) Average Pooling

1	3	2	1		
3	6	8	9	Max	6
8	3	3	9		8
4	6	8	2		

			1	3	2	1			
3.25	5	Average	3	6	8	9	Max	6	9
5.25	5.5		8	3	3	9		8	9
			4	6	8	2			

Salient features:

- 1) Follows the process of convolution with filters of size f, stride s and padding p (not used much) as the hyperparameters.
- 2) Filters have no weights. So, no trainable parameters.
- 3) Pooling operation is carried out channel-wise. Thus, number of channels remain unchanged.

CNN Example # 2 (Fully Loaded)

Computation of parameters

No	Layer Type	Input data dim.	Filter dim. (if any)	Output data dim.	Activation size	Weights	Biases	No. of learnable parameters
1	Input	-	-	32*32*3	3072			
2	Conv Layer 1	32*32*3	6 filters * 5*5*3	28*28*6	4704	450	6	456
3	ReLU 1	28*28*6	-	28*28*6	4704			
4	Maxpool 1	28*28*6	2*2*6	14*14*6	1176			
5	Conv Layer 2	14*14*6	16 filters * 5*5*6	10*10*16	1600	2400	16	2416
6	ReLU 2	10*10*16	-	10*10*16	1600			
7	Maxpool 2	10*10*16	2*2*16	5*5*16	400			
8	FC Layer 3	5*5*16 = 400	-	120	120	48000	1	48001
9	ReLU 3	120	-	120	120			
10	FC Layer 4	120	-	84	84	10080	1	10081
11	ReLU 4	84	-	84	84			
12	Softmax Output	84	-	10	10	840	1	841
	Total Learnable Parameters:							61,795

FC Neural Network

3072 * 4704

= **1**, **44**, **50**, **688** parameters

Conv. Neural Network

$$f = 5$$

$$s = 1$$

$$p = 0$$
6 filters

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0		

10	10	10	0	0	0		
10	10	10	0	0	0		1
10	10	10	0	0	0	*	1
10	10	10	0	0	0		1
10	10	10	0	0	0		
10	10	10	0	0	0		

	1	0	-1
*	1	0	-1
	1	0	-1

0	30	

Parameter Sharing: A feature detector that is useful in one part of the image may also be useful on another part of the same image.

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Parameter Sharing: A feature detector that is useful in one part of the image may also be useful on another part of the same image.

Sparcity of connections: In each layer, output depends only on small number of inputs.

Putting it altogether

$$Cost J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)} - y^{(i)})$$

Use gradient descent (or other optimization algorithms) to optimize parameters to reduce *J*.

A few important terms

- Forward pass: Process of passing the data from input layer to output layer.
- Cost Function: Difference between the predicted and true output of a NN.
- Backpropagation: The process of updating parameters of a network depending on the cost function (using optimization algorithms viz., Gradient Descent, SGDM, ADAGrad, etc.) to minimize the cost.
- Mini-batch: Number of images passing at once through the network.
- Learning Rate: Speed by which the parameters are updated.
- *Iteration*: A mini-batch performing a forward and a backward pass through the network is an iteration.
- Epoch: When the complete dataset undergoes a forward and a backward pass, an epoch is completed.

Transfer Learning

1) Train from scratch Train

Transfer Learning

Pretrained models of AlexNet, VGG-16, VGG-19, GoogleNet, ZFNet, etc. trained on (say) ImageNet dataset.

Transfer Learning

Parameters	Training from scratch	Transfer Learning
Method	Build CNN from scratch	Only last few layers need to be trained
Tuning	Need to tune large number of hyperparameters	Only a few hyperparameters need to be tuned
Computation	Large computation power is required (multiple GPUs)	Less computation power needed (can even work with CPUs)
Dataset	Huge dataset needed to avoid overfitting	A small dataset is enough
Training time	May take weeks or even months	May take hours to train

Popular Languages for Deep Learning

- Python
- Java
- R
- C++
- C
- Javascript
- Scala
- Julia

Popular Deep Learning Libraries

- TensorFlow
- Pytorch
- Caffe
- Keras
- Theano
- Deep Learning Toolbox Matlab
- MatConvNet

Popular Software / IDE for Deep Learning

- PyCharm
- Spyder
- Jupyter Notebook

- Matlab (Deep Learning toolbox) R2018b
- Anaconda (contains Sypder, Jupyter Notebook, numpy, scipy, etc.)
- Google CoLab (similar to Jupyter Notebook; gives K80 GPU for 12hrs at a time.)

Resources

- http://cs231n.github.io/convolutional-networks/
- https://www.coursera.org/learn/convolutional-neural-networks
- https://itunes.apple.com/us/app/flower/id1279174518?mt=8
- https://fossbytes.com/popular-top-programming-languages-machinelearning-data-science/

Thank you!

Any Queries?