ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIÓ

EMISSORS I RECEPTORS

Control. Quadrimestre Primavera. Maig 2007.

Problema 1 (6 punts)

Considereu un sistema de comunicacions format per un emissor que transmet amb una potència de 33 dBm, i el receptor superheterodí de conversió simple mostrat a la figura:

En propagar-se el senyal per l'interfaç aire pateix les següents pèrdues en funció de la distància a la que es troben emissor i receptor:

$$L_p(dB) = 128.1 + 37.6 \log d(Km)$$

El sistema treballa amb 40 canals de 400 kHz ubicats en el marge de freqüències de 840 MHz a 856 MHz, i el senyal modulat té un ample de banda de 200 kHz.

Els paràmetres que caracteritzen el receptor són:

- Freqüència intermitja: f_{FI} = 9 MHz
- Temperatura equivalent de soroll de l'antena: T_A= T_o= 290 K
- Temperatura física del receptor: T_o= 290 K
- $K=1.38 \ 10^{-23} \ J/K$
- Amplificador de RF: $G_{RF} = 20$ dB, $NF_{RF} = 3$ dB, $IP_{i,RF} = 20$ dBm (productes de 3r ordre)
- Filtre Passa Banda centrat a 848 MHz: B_{filtre 1}= 16 MHz, L_{filtre 1}= 3 dB
- Mesclador: $G_m = -10 \text{ dB}$, $NF_m = 9 \text{ dB}$, $IP_{i,m} = 30 \text{ dBm}$ (productes de 3r ordre)
- Amplificador de FI: NF_{FI}= 13 dB, IP_{i,FI}= -20 dBm (productes de 3r ordre)
- Distorsió per llei cúbica

La funció de transferència del filtre de FI és la següent:

- a) Dissenyar les frequències f₀, f_A, f_B, f_C, i f_D del filtre de FI per tal que elimini els senyals dels canals adjacents i deixi passar el senyal útil. (Nota: als 40 canals s'usa la mateixa modulació).
- b) Calcular la màxima distància a la que es pot col·locar l'emissor per obtenir una SNR de 15 dB a la sortida del receptor.
- c) Dissenyar el paràmetre C del filtre de FI sabent que es vol un rebuig a l'entrada (referit a la sensibilitat) pels productes de 3r ordre ocasionats pels canals adjacents superior a 70 dB.
- d) Si el receptor augmenta la seva temperatura física a 2900 K, calcular el nou valor de sensibilitat necessari per garantir la SNR de 15 dB a la sortida del receptor.
- e) En aquesta nova situació, calcular el marge dinàmic lliure d'espuris pels productes d'intermodulació de 3r ordre.