Brain Tumor Classification Using CNNs and Grad-CAM

AIGC 5502 - Image Processing Midterm Report

July 1, 2025

Click Here for the Video Presentation

Abstract

This project developed an accurate (94%) and interpretable CNN model for brain tumor classification using a publicly available dataset of MRI scans as our images to create training and test sets.

- Evaluate model performance with metrics such as accuracy, precision, recall, and F1-score.
- Incorporate Grad-CAM to visualize regions contributing to predictions, ensuring clinical explainability.

1. Introduction

Brain tumor classification from MRI scans is a critical task in medical imaging, aiding clinicians in accurate diagnosis and treatment planning. This project presents a deep learning workflow using Convolutional Neural Networks (CNNs) to classify brain tumors from MRI images into four categories: glioma,

meningioma, pituitary, and no tumor. The pipeline includes data preprocessing, model development, evaluation, and interpretability via Grad-CAM (Gradient-weighted Class Activation Mapping).

Objectives:

- Develop an automated CNN model for accurate brain tumor classification.
- Enhance image interpretability using CLAHE (Contrast Limited Adaptive Histogram Equalization).

2. Dataset Description

Data Source:

The dataset consists of MRI scans from Kaggle, organized into:

- Training Set: Contains labeled images (5,712 samples) across four categories.
- **Testing Set**: Contains 1,311 images for validation.

Classes:

- **Glioma**: Tumors arising from glial cells.
- Meningioma: Tumors originating in the meninges.
- Pituitary: Tumors in the pituitary gland.
- No Tumor: Normal brain scans.

Sample Visualization:

Training Set Samples

Figure: Example MRI scans from each

class.

Data Distribution:

Class	Training Samples	Testing Samples
Glioma	1,321	300
Meningioma	1,339	306
No Tumor	1,595	405
Pituitary	1,457	300

Training Set Sample Images

glioma

3. Model Architecture

CNN Structure:

The CNN consists of the following layers:

1. Convolutional Blocks:

- Three blocks of Conv2D +
 MaxPooling + Dropout for feature extraction.
- \circ Filters: 32 \rightarrow 64 \rightarrow 128.
- o ReLU activation.

2. Dense Layers:

- Flatten layer to transition from spatial to dense features.
- Fully connected layers (128 neurons) with Dropout (0.5) for regularization.
- Softmax output for 4-class classification.

Loss Function:

sparse_categorical_crossentropy

Optimizer: Adam
Metrics: Accuracy

4. Methodology

Preprocessing Steps:

- Grayscale Conversion: RGB → Single-channel for efficiency.
- 2. **Resizing:** All images standardized to **150×150 pixels**.
- 3. **CLAHE Enhancement:** Adaptive contrast improvement.
- 4. **Normalization:** Pixel values scaled to [0, 1].

Model Training:

• **Epochs:** 10

• Batch Size: 32

• Validation Split: 20% held-out for validation.

5. Results

Training Performance:

Epoch	Training Accuracy	Validation Accuracy	Training Loss	Validation Loss
1	54.12%	68.73%	1.0588	0.6899
10	95.78%	93.59%	0.1186	0.1685

Final Test Metrics:

• Overall Accuracy: 94%

• Precision (Macro Avg): 0.94

• Recall (Macro Avg): 0.93

• F1-Score (Macro Avg): 0.93

Class-Specific Performance:

Class	Precision	Recall	F1-Score	Support
Glioma	0.95	0.92	0.93	300
Meningioma	0.92	0.81	0.86	306
No Tumor	0.93	1.00	0.96	405
Pituitary	0.96	0.99	0.97	300

Confusion Matrix:

Confusion Matrix

• **Key Observation:** Meningioma had lower recall (81%), with some confusion with glioma and no-tumor classes.

6. Visualizations

Accuracy & Loss Curves:

Training Curves

 No Overfitting: Validation accuracy closely follows training accuracy.

Grad-CAM Interpretability:

Grad-CAM Output

- The model accurately identifies tumor-localized regions.
- Highlights model transparency in clinical decision-making.

7. Interpretation and Discussion

Key Findings:

- The CNN achieved 94% accuracy, demonstrating strong generalization.
- Grad-CAM confirmed that the model focuses on medically relevant regions for classification.
- Meningioma misclassifications suggest potential areas for improvement.

Challenges & Solutions:

Challenge	Solution
Low contrast in MRI scans	CLAHE enhancement improved feature visibility.
Class imbalance	Future work could incorporate weighted loss or augmentation.
Model explainability	Grad-CAM helps build clinician trust.

8. Conclusion

This project developed an **accurate (94%) and interpretable** CNN model for brain tumor classification. Key contributions include:

- **Preprocessing with CLAHE** for improved image quality.
- Robust CNN architecture with regularization to prevent overfitting.
- Grad-CAM explanations for clinical interpretability.

Future Work:

- **Data Augmentation** for better meningioma recall.
- Transfer Learning with ResNet/VGG for higher accuracy.
- Larger, multi-center datasets for improved generalizability.

9. References

- 1. Selvaraju, R. R., et al. "Grad-CAM: Visual Explanations from Deep Networks." *ICCV 2017*.
- 2. CLAHE:
 https://docs.opencv.org/3.4/d5/d
 af/tutorial_py_histogram_equaliza
 tion.html
- Dataset Source: Kaggle Brain Tumor MRI Dataset. https://www.kaggle.com/datasets /masoudnickparvar/brain-tumormri-dataset\

10. Group Member Contributions

Group #1

Jawwad Khalil Ahmed Eric Efon Daniel Mehta Thomas Nash Jeffrey Ng

All team members provided equal contributions to the technical coding, report and presentation components of the project.