

Finding TPMFP in BTD

Ziyang Ch

Overview

ney Properitie

Finding Time Period-Based Most Frequent Path in Big Trajectory Data¹

Ziyang Chen

Fudan University

13307130148@fudan.edu.cn

December 22, 2014

¹powered by X=ATEX

Summary

Finding TPMFP in BTD

Ziyang Ch

Overview

ney Properitie

Overview

2 Key Properities

Overview

TPMFP in BTD Ziyang Cher

Overview

ney Properitie

- The main task: find the most frequent(MFP) during user-specified time periods in large-scale historical trajectory data.
- They refer to this query as time period-based MFP(TPMFP).
- Specifically, given a time peroid T, a source v_s and a destination v_d , TPMFP searchs the MFP from v_s to v_d during T.

Overview

BTD
Ziyang Che

Finding TPMFP in

Overview

Properitie

- None of the previous work can well reflect people's common sense notion which can be described by the following key properties:
 - suffix-optimal
 - length-insensitive
 - bottleneck-free
- The first task is to give a TPMFP definition that satisfies the above three properties.
- The next task is to find TPMFP over huge amount of trajectory data efficiently.(over 11,000,000 trajectories.)

Summary

Finding TPMFP in BTD

Ziyang Ch

Overvie

Rey Properities

Overview

2 Key Properities

Key Properities

TPMFP in BTD

Finding

Overvie

Key Properities

Property (Suffix-Optimal)

Let P^* denote the v_S-v_d MFP. For any vertex $u\in P^*$, the sub-path (suffix) of P^* from u to v_d should be the $u\!-\!v_d$ MFP.

Property (Length-Insensitive)

The length of any path should not be a deciding factor of whether it is the $v_s - v_d$ MPF.

PROPERTY (BOTTLENECK-FREE)

The MPF P^* should not contain infrequent edges(i.e., bottlenecks).