Algorithmen und Wahrscheinlichkeit Lösung zu Theorie-Aufgaben 5

FS 2024

Lösung zu Aufgabe 1

(a) Zur Verdeutlichung benutzen wir den Buchstaben ${\bf S}$ für die durch den gegebenen Laplace-Raum (Ω,P) beschriebene Zufallsvariable.

Behauptung 1. Sei $u \in V$ beliebig, aber fest gewählt. Dann gilt $\Pr[u \in \mathbf{S}] = \Pr[u \notin \mathbf{S}] = \frac{1}{2}$. Sind $u, v \in V$, $u \neq v$, beliebig, aber fest gewählt, so sind die Ereignisse $E_u := u \in S$ und $E_v := v \in S$ unabhängig voneinander.

Beweis. Ω enthält genau $2^{|V|-1}$ Mengen S mit $u \in S$, und genau $2^{|V|-1}$ Mengen S mit $u \notin S$. Ausserdem enthält Ω genau $2^{|V|-2}$ Mengen S mit $u \in S, v \in S$, daher ist

$$Pr[E_u \cap E_v] = \frac{1}{4} = \Pr[E_u] \cdot \Pr[E_v].$$

Also sind E_u und E_v unabhängig.

Behauptung 2. $\mathbb{E}[X] = \frac{m}{2}$.

Beweis. Sei $(X_e)_{e\in E}$ die Familie von Zufallsvariablen mit

$$X_e = \begin{cases} 1 & \text{falls } e \in E(\mathbf{S}, V \setminus \mathbf{S}), \\ 0 & \text{sonst.} \end{cases}$$

Sei nun $e = \{u, v\} \in E$ eine fest gewählte Kante. Wir berechnen $\mathbb{E}[X_e]$ wie folgt:

$$\begin{split} \mathbb{E}[X_e] &= \Pr[u \in \mathbf{S}] \cdot \underbrace{\mathbb{E}[X_e | u \in \mathbf{S}]}_{\Pr[v \notin \mathbf{S} | u \in \mathbf{S}]} + \Pr[u \notin \mathbf{S}] \cdot \underbrace{\mathbb{E}[X_e | u \notin \mathbf{S}]}_{\Pr[v \in \mathbf{S} | u \notin \mathbf{S}]} \\ &= \frac{1}{2} \cdot \Pr[v \notin \mathbf{S} \mid u \in \mathbf{S}] + \frac{1}{2} \cdot \Pr[v \in \mathbf{S} \mid u \notin \mathbf{S}] \\ &\stackrel{E_u, E_v \text{ unabhängig }}{=} \frac{1}{2} \cdot \Pr[v \notin \mathbf{S}] + \frac{1}{2} \cdot \Pr[v \in \mathbf{S}] = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}. \end{split}$$

Mit $X = \sum_{e \in E} X_e$ und Linearität des Erwartungswertes folgt

$$\mathbb{E}[X] = \sum_{e \in E} \mathbb{E}[X_e] = \frac{m}{2}.$$

(b) Da $\mathbb{E}[X] = m/2$, gibt es ein Elementarereignis ω , so dass $X(\omega) \ge m/2$. Das heisst, es gibt eine Menge $S \subseteq V$, so dass der Schnitt $(S, V \setminus S)$ mindestens m/2 Kanten enthält.

Lösung zu Aufgabe 2

(i) Wir schreiben $B=(A\cap B)\uplus(\bar{A}\cap B).$ Daraus folgt

$$\Pr[B] = \Pr[A \cap B] + \Pr[\bar{A} \cap B].$$

Wir erhalten

$$\begin{split} \Pr[\bar{A} \cap B] &= \Pr[B] - \Pr[A \cap B] \\ &= \Pr[B] - \Pr[A] \cdot \Pr[B] \qquad \text{(Voraussetzung)} \\ &= \Pr[B] \cdot (1 - \Pr[A]) \\ &= \Pr[\bar{A}] \cdot \Pr[B]. \end{split}$$

- (ii) Folgt aus (i) durch Vertauschen der Rollen von ${\cal A}$ und ${\cal B}.$
- (iii) Folgt aus (i) und (ii).