Machine Learning

Lecture 01-1: Basics of Probability Theory

Nevin L. Zhang lzhang@cse.ust.hk

Department of Computer Science and Engineering The Hong Kong University of Science and Technology

Outline

- 1 Basic Concepts in Probability Theory
- 2 Interpretation of Probability
- 3 Univariate Probability Distributions
- 4 Multivariate Probability
 - Bayes' Theorem
- 5 Parameter Estimation

Random Experiments

- Probability associated with a random experiment a process with uncertain outcomes
- Often kept implicit

Tail

Head

Random Experiments

- Probability associated with a random experiment a process with uncertain outcomes
- Often kept implicit

Tail

Head

In machine learning, we often assume that data are generated by a hypothetical process (or a model), and task is to determine the structure and parameters of the model from data.

Sample Space

- **Sample space (aka population)** Ω : Set of possible outcomes and a random experiment.
- Example: Rolling two dices.

Ω

Sample Space

- **Sample space (aka population)** Ω : Set of possible outcomes and a random experiment.
- Example: Rolling two dices.

Elements in a sample space are outcomes.

Events

Event: A subset of the sample space.

Example: The two results add to 4.

Probability Weight Function

■ A **probability weight** $P(\omega)$ is assigned to each outcome.

 $$\Omega$$ Probability of each outcome 1/36

Probability Weight Function

■ A **probability weight** $P(\omega)$ is assigned to each outcome.

In Machine Learning, we often need to determine the probability weights, or related parameters, from data.

Probability Weight Function

■ A **probability weight** $P(\omega)$ is assigned to each outcome.

In Machine Learning, we often need to determine the probability weights, or related parameters, from data. This task is called **parameter learning**.

■ Probability P(E) of an event E: $P(E) = \sum_{\omega \in E} P(\omega)$

- Probability P(E) of an event E: $P(E) = \sum_{\omega \in E} P(\omega)$
- A probability measure is a mapping from the set of events to [0, 1]

$$P:2^\Omega\to [0,1]$$

- Probability P(E) of an event E: $P(E) = \sum_{\omega \in E} P(\omega)$
- A probability measure is a mapping from the set of events to [0, 1]

$$P:2^\Omega\to [0,1]$$

- Probability P(E) of an event E: $P(E) = \sum_{\omega \in E} P(\omega)$
- A probability measure is a mapping from the set of events to [0, 1]

$$P:2^\Omega\to [0,1]$$

1
$$P(\Omega) = 1$$
.

- Probability P(E) of an event E: $P(E) = \sum_{\omega \in E} P(\omega)$
- A probability measure is a mapping from the set of events to [0, 1]

$$P:2^\Omega\to [0,1]$$

- **1** $P(\Omega) = 1$.
- $P(A) \geq 0 \ \forall A \subseteq \Omega$

- Probability P(E) of an event E: $P(E) = \sum_{\omega \in E} P(\omega)$
- A probability measure is a mapping from the set of events to [0, 1]

$$P:2^\Omega\to [0,1]$$

- **1** $P(\Omega) = 1$.
- $P(A) \ge 0 \ \forall A \subseteq \Omega$
- **3** Additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.

- Probability P(E) of an event E: $P(E) = \sum_{\omega \in E} P(\omega)$
- A probability measure is a mapping from the set of events to [0, 1]

$$P:2^\Omega\to [0,1]$$

- **1** $P(\Omega) = 1$.
- $P(A) \ge 0 \ \forall A \subseteq \Omega$
- **3** Additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.

- Probability P(E) of an event E: $P(E) = \sum_{\omega \in E} P(\omega)$
- A probability measure is a mapping from the set of events to [0, 1]

$$P:2^\Omega\to [0,1]$$

that satisfies Kolmogorov's axioms:

- **1** $P(\Omega) = 1$.
- $P(A) \geq 0 \ \forall A \subseteq \Omega$
- **3 Additivity**: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.

In a more advanced treatment of Probability Theory, we would start with the concept of probability measure, instead of probability weights.

Random Variables

- A random variable is a function over the sample space.
 - Example: X = sum of the two results. X((2,5)) = 7; X((3,1)) = 4)

■ Why is it random?

Random Variables

- A random variable is a function over the sample space.
 - **Example:** X = sum of the two results. X((2,5)) = 7; X((3,1)) = 4)

■ Why is it random? The experiment.

Random Variables

- A random variable is a function over the sample space.
 - **Example:** X = sum of the two results. X((2,5)) = 7; X((3,1)) = 4)

- Why is it random? The experiment.
- **Domain** of a random variable: Set of all its possible values.

$$\Omega_X = \{2, 3, \dots, 12\}$$

Random Variables and Event

• A random variable X taking a specific value x is an event:

$$\Omega_{X=x} = \{\omega \in \Omega | X(\omega) = x\}$$

Probability Mass Function (Distribution)

Probability mass function P(X): $\Omega_X \to [0,1]$

$$P(X = x) = P(\Omega_{X = x})$$

Probability Mass Function (Distribution)

■ Probability mass function P(X): $\Omega_X \to [0,1]$

$$P(X = x) = P(\Omega_{X=x})$$

 $P(X=4) = P(\{(1,3),(2,2,)(3,1)\}) = \frac{3}{36}.$

Probability Mass Function (Distribution)

■ Probability mass function P(X): $\Omega_X \to [0,1]$

$$P(X = x) = P(\Omega_{X=x})$$

- $P(X = 4) = P(\{(1,3),(2,2,)(3,1)\}) = \frac{3}{36}.$
- If X is continuous, we have a **density function** p(X).

Outline

- 1 Basic Concepts in Probability Theory
- 2 Interpretation of Probability
- 3 Univariate Probability Distributions
- 4 Multivariate Probability
 - Bayes' Theorem
- 5 Parameter Estimation

- Probabilities are long term relative frequencies.
- Example:
 - *X* is result of coin tossing. $\Omega_X = \{H, T\}$

- Probabilities are long term relative frequencies.
- Example:
 - *X* is result of coin tossing. $\Omega_X = \{H, T\}$
 - P(X=H) = 1/2 means that

- Probabilities are long term relative frequencies.
- Example:
 - *X* is result of coin tossing. $\Omega_X = \{H, T\}$
 - P(X=H) = 1/2 means that
 - the relative frequency of getting heads will almost surely approach 1/2 as the number of tosses goes to infinite.

- Probabilities are long term relative frequencies.
- Example:
 - *X* is result of coin tossing. $\Omega_X = \{H, T\}$
 - P(X=H) = 1/2 means that
 - the relative frequency of getting heads will almost surely approach 1/2 as the number of tosses goes to infinite.
 - Justified by the Law of Large Numbers:

- Probabilities are long term relative frequencies.
- Example:
 - *X* is result of coin tossing. $\Omega_X = \{H, T\}$
 - P(X=H) = 1/2 means that
 - the relative frequency of getting heads will almost surely approach 1/2 as the number of tosses goes to infinite.
 - Justified by the Law of Large Numbers:
 - X_i : result of the i-th tossing; 1 H, 0 T

- Probabilities are long term relative frequencies.
- Example:
 - X is result of coin tossing. $\Omega_X = \{H, T\}$
 - P(X=H) = 1/2 means that
 - the relative frequency of getting heads will almost surely approach 1/2 as the number of tosses goes to infinite.
 - Justified by the Law of Large Numbers:
 - X_i : result of the i-th tossing; 1 H, 0 T
 - Law of Large Numbers:

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} X_i}{n} = \frac{1}{2} \quad \text{with probability 1}$$

- Probabilities are long term relative frequencies.
- Example:
 - *X* is result of coin tossing. $\Omega_X = \{H, T\}$
 - P(X=H) = 1/2 means that
 - the relative frequency of getting heads will almost surely approach 1/2 as the number of tosses goes to infinite.
 - Justified by the Law of Large Numbers:
 - X_i : result of the i-th tossing; 1 H, 0 T
 - Law of Large Numbers:

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} X_i}{n} = \frac{1}{2}$$
 with probability 1

■ The frequentist interpretation is meaningful only when experiment can be repeated under the same condition.

Bayesian interpretation

Probabilities are logically consistent degrees of beliefs.

Bayesian interpretation

- Probabilities are logically consistent degrees of beliefs.
- Applicable when experiment not repeatable.

Bayesian interpretation

- Probabilities are logically consistent degrees of beliefs.
- Applicable when experiment not repeatable.
- Depends on a person's state of knowledge.

- Probabilities are logically consistent degrees of beliefs.
- Applicable when experiment not repeatable.
- Depends on a person's state of knowledge.
- Example: "probability that Suez canal is longer than the Panama canal".

- Probabilities are logically consistent degrees of beliefs.
- Applicable when experiment not repeatable.
- Depends on a person's state of knowledge.
- Example: "probability that Suez canal is longer than the Panama canal".
 - Doesn't make sense under frequentist interpretation.

- Probabilities are logically consistent degrees of beliefs.
- Applicable when experiment not repeatable.
- Depends on a person's state of knowledge.
- Example: "probability that Suez canal is longer than the Panama canal".
 - Doesn't make sense under frequentist interpretation.
 - Subjectivist: degree of belief based on state of knowledge

- Probabilities are logically consistent degrees of beliefs.
- Applicable when experiment not repeatable.
- Depends on a person's state of knowledge.
- Example: "probability that Suez canal is longer than the Panama canal".
 - Doesn't make sense under frequentist interpretation.
 - Subjectivist: degree of belief based on state of knowledge
 - Primary school student: 0.5
 - Me: 0.8
 - Geographer: 1 or 0
- Arguments such as **Dutch book** are used to explain why one's probability beliefs must satisfy Kolmogorov's axioms.

Now both interpretations are accepted. In practice, subjective beliefs and statistical data complement each other.

- Now both interpretations are accepted. In practice, subjective beliefs and statistical data complement each other.
 - We rely on subjective beliefs (prior probabilities) when data are scarce.

- Now both interpretations are accepted. In practice, subjective beliefs and statistical data complement each other.
 - We rely on subjective beliefs (prior probabilities) when data are scarce.
 - As more and more data become available, we rely less and less on subjective beliefs.

- Now both interpretations are accepted. In practice, subjective beliefs and statistical data complement each other.
 - We rely on subjective beliefs (prior probabilities) when data are scarce.
 - As more and more data become available, we rely less and less on subjective beliefs.
 - Often, we also use **prior probabilities** to impose some **bias** on the kind of results we want from a machine learning algorithm.

- Now both interpretations are accepted. In practice, subjective beliefs and statistical data complement each other.
 - We rely on subjective beliefs (prior probabilities) when data are scarce.
 - As more and more data become available, we rely less and less on subjective beliefs.
 - Often, we also use **prior probabilities** to impose some **bias** on the kind of results we want from a machine learning algorithm.

- Now both interpretations are accepted. In practice, subjective beliefs and statistical data complement each other.
 - We rely on subjective beliefs (prior probabilities) when data are scarce.
 - As more and more data become available, we rely less and less on subjective beliefs.
 - Often, we also use **prior probabilities** to impose some **bias** on the kind of results we want from a machine learning algorithm.
- The subjectivist interpretation makes concepts such as conditional independence easy to understand.

Outline

- 1 Basic Concepts in Probability Theory
- 2 Interpretation of Probability
- 3 Univariate Probability Distributions
- 4 Multivariate Probability
 - Bayes' Theorem
- 5 Parameter Estimation

Binomial and Bernoulli Distributions

■ Suppose we toss a coin n times. At each time, the probability of getting a head is θ .

Binomial and Bernoulli Distributions

- Suppose we toss a coin n times. At each time, the probability of getting a head is θ .
- Let X be the number of heads. Then X follows the **binomial** distribution, written as $X \sim Bin(n, \theta)$:

$$Bin(X = k|n, \theta) = \begin{cases} \binom{n}{k} \theta^k (1 - \theta)^{n-k} & \text{if } 0 \le k \le n \\ 0 & \text{if } k < 0 \text{ or } k > n \end{cases}$$

Binomial and Bernoulli Distributions

- Suppose we toss a coin n times. At each time, the probability of getting a head is θ .
- Let X be the number of heads. Then X follows the **binomial** distribution, written as $X \sim Bin(n, \theta)$:

$$Bin(X = k|n, \theta) = \begin{cases} \binom{n}{k} \theta^k (1 - \theta)^{n-k} & \text{if } 0 \le k \le n \\ 0 & \text{if } k < 0 \text{ or } k > n \end{cases}$$

■ If n = 1, then X follows the **Bernoulli distribution**, written as $X \sim Ber(\theta)$

$$Ber(X = x | \theta) = \begin{cases} \theta & \text{if } x = 1\\ 1 - \theta & \text{if } x = 0 \end{cases}$$

Multinomial Distribution

■ Suppose we toss a K-sided die n times. At each time, the probability of getting result j is θ_i . Let $\boldsymbol{\theta} = (\theta_1, \dots, \theta_K)^\top$.

Multinomial Distribution

- Suppose we toss a K-sided die n times. At each time, the probability of getting result j is θ_i . Let $\boldsymbol{\theta} = (\theta_1, \dots, \theta_K)^\top$.
- Let $\mathbf{x} = (x_1, ..., x_K)$ be a random vector, where x_j is the number of times side j of the die occurs. Then \mathbf{x} follows the **multinomial distribution**, written as $\mathbf{x} \sim Multi(n, \boldsymbol{\theta})$

$$Multi(\mathbf{x}|n, \boldsymbol{\theta}) = \binom{n}{x_1, \dots, x_K} \prod_{j=1}^K \theta_k^{x_j},$$

where
$$\binom{n}{x_1, \dots, x_K} = \frac{n!}{x_1! \dots x_K!}$$
 is the multinomial coefficient

Categorical Distribution

- In the previous slide, if n = 1, $\mathbf{x} = (x_1, ..., x_K)$ has one component being 1 and the others are 0. In other words, it is a **one-hot** vector.
- In this case, \mathbf{x} follows the **categorical distribution**, written as $\mathbf{x} \sim \textit{Cat}(\theta)$

$$Cat(\mathbf{x}|\theta) = \prod_{j=1}^{K} \theta_j^{\mathbf{1}(x_j=1)},$$

where $\mathbf{1}(x_j = 1)$ is the indicator function, whose value is 1 when $x_j = 1$ and 0 otherwise.

Gaussian (Normal) Distribution

- The most widely used distribution in statistics and machine learning is the Gaussian or normal distribution.
- Its probability density is given by

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

Here $\mu = E[X]$ is the mean (and mode), and $\sigma^2 = var[X]$ is the variance

Outline

- 1 Basic Concepts in Probability Theory
- 2 Interpretation of Probability
- 3 Univariate Probability Distributions
- 4 Multivariate Probability
 - Bayes' Theorem
- 5 Parameter Estimation

$$P(X):\Omega_X\to [0,1]$$

$$P(X):\Omega_X\to[0,1]$$

$$P(X = x) = P(\Omega_{X = x}).$$

■ **Probability mass function** of a random variable *X*:

$$P(X): \Omega_X \rightarrow [0,1]$$

$$P(X = x) = P(\Omega_{X=x}).$$

■ Suppose there are *n* random variables $X_1, X_2, ..., X_n$.

$$P(X):\Omega_X\to[0,1]$$

$$P(X = x) = P(\Omega_{X=x}).$$

- Suppose there are n random variables X_1, X_2, \ldots, X_n .
- A joint probability mass function, $P(X_1, X_2, ..., X_n)$, over those random variables is:

$$P(X): \Omega_X \rightarrow [0,1]$$

$$P(X = x) = P(\Omega_{X=x}).$$

- Suppose there are *n* random variables X_1, X_2, \ldots, X_n .
- A **joint probability mass function**, $P(X_1, X_2, ..., X_n)$, over those random variables is:
 - a function defined on the Cartesian product of their state spaces:

$$\prod_{i=1}^n\Omega_{X_i}\to [0,1]$$

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = P(\Omega_{X_1 = x_1} \cap \Omega_{X_2 = x_2} \cap \dots \cap \Omega_{X_n = x_n}).$$

■ Example:

- Example:
 - Population: Apartments in Hong Kong rental market.

- Example:
 - Population: Apartments in Hong Kong rental market.
 - Random variables: (of a random selected apartment)

- Example:
 - Population: Apartments in Hong Kong rental market.
 - Random variables: (of a random selected apartment)
 - Monthly Rent: {low ($\leq 1k$), medium ((1k, 2k]), upper medium((2k, 4k]), high (\geq 4k)},

- Example:
 - Population: Apartments in Hong Kong rental market.
 - Random variables: (of a random selected apartment)
 - Monthly Rent: $\{low (\leq 1k), medium ((1k, 2k]), upper medium((2k, 4k]), high (<math>\geq$ 4k) $\}$,
 - Type: {public, private, others}

- Example:
 - Population: Apartments in Hong Kong rental market.
 - Random variables: (of a random selected apartment)
 - Monthly Rent: $\{low (\leq 1k), medium ((1k, 2k]), upper medium((2k, 4k]), high (<math>\geq$ 4k) $\}$,
 - Type: {public, private, others}
 - Joint probability distribution *P*(Rent, Type):

Example:

- Population: Apartments in Hong Kong rental market.
- Random variables: (of a random selected apartment)
 - Monthly Rent: $\{low (\leq 1k), medium ((1k, 2k]), upper medium((2k, 4k]), high (<math>\geq$ 4k) $\}$,
 - Type: {public, private, others}
- Joint probability distribution *P*(Rent, Type):

	public	private	others
low	.17	.01	.02
medium	.44	.03	.01
upper medium	.09	.07	.01
high	0	0.14	0.1

Multivariate Gaussian Distributions

■ For continuous variables, the most commonly used joint distribution is the multivariate Gaussian distribution: $\mathcal{N}(\mu, \Sigma)$

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^D |\boldsymbol{\Sigma}|}} exp\left[-\frac{(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}{2} \right]$$

- D: dimensionality.
- **x**: vector of *D* random variables, representing data
- lacksquare μ : vector of means
- lacksquare Σ : covariance matrix. $|\Sigma|$ denotes the determinant of Σ .

Multivariate Gaussian Distributions

- A 2-D Gaussian distribution.
- $\blacksquare \mu$: center of contours
- \blacksquare Σ : orientation and size of contours

Marginal probability

What is the probability of a randomly selected apartment being a public one?

Marginal probability

What is the probability of a randomly selected apartment being a public one? (Law of total probability)

```
P(Type=pulic) = P(Type=public, Rent=low)+
```

```
P(Type=pulic) = P(Type=public, Rent=low)+P(Type=public, Rent=medium)+
```

```
P(Type=pulic) = P(Type=public, Rent=low)+P(Type=public, Rent=medium)+ P(Type=public, Rent=upper medium)+
```

```
 \begin{array}{ll} P(\mathsf{Type=pulic}) = & P(\mathsf{Type=public}, \ \mathsf{Rent=low}) + P(\mathsf{Type=public}, \\ & \mathsf{Rent=medium}) + P(\mathsf{Type=public}, \ \mathsf{Rent=upper} \ \mathsf{medium}) + \\ & P(\mathsf{Type=public}, \ \mathsf{Rent=high}) \end{array}
```

```
 \begin{array}{ll} P(\mathsf{Type=pulic}) = & P(\mathsf{Type=public}, \ \mathsf{Rent=low}) + P(\mathsf{Type=public}, \\ & \mathsf{Rent=medium}) + P(\mathsf{Type=public}, \ \mathsf{Rent=upper} \ \mathsf{medium}) + \\ & P(\mathsf{Type=public}, \ \mathsf{Rent=high}) = .7 \end{array}
```

```
 \begin{array}{ll} P(\mathsf{Type=pulic}) = & P(\mathsf{Type=public}, \ \mathsf{Rent=low}) + P(\mathsf{Type=public}, \ \mathsf{Rent=medium}) + P(\mathsf{Type=public}, \ \mathsf{Rent=upper} \ \mathsf{medium}) + \\ & P(\mathsf{Type=public}, \ \mathsf{Rent=high}) = .7 \\ P(\mathsf{Type=private}) = & P(\mathsf{Type=private}, \ \mathsf{Rent=low}) + P(\mathsf{Type=private}, \ \mathsf{Rent=medium}) + P(\mathsf{Type=private}, \ \mathsf{Rent=upper} \ \mathsf{medium}) + \\ & P(\mathsf{Type=private}, \ \mathsf{Rent=high}) \\ \end{array}
```

```
 \begin{array}{ll} P(\mathsf{Type=pulic}) = & P(\mathsf{Type=public}, \ \mathsf{Rent=low}) + P(\mathsf{Type=public}, \ \mathsf{Rent=medium}) + P(\mathsf{Type=public}, \ \mathsf{Rent=upper} \ \mathsf{medium}) + \\ & P(\mathsf{Type=public}, \ \mathsf{Rent=high}) = .7 \\ P(\mathsf{Type=private}) = & P(\mathsf{Type=private}, \ \mathsf{Rent=low}) + P(\mathsf{Type=private}, \ \mathsf{Rent=medium}) + P(\mathsf{Type=private}, \ \mathsf{Rent=upper} \ \mathsf{medium}) + \\ & P(\mathsf{Type=private}, \ \mathsf{Rent=high}) = .25 \\ \end{array}
```

```
 \begin{array}{ll} P(\mathsf{Type=pulic}) = & P(\mathsf{Type=public}, \ \mathsf{Rent=low}) + P(\mathsf{Type=public}, \ \mathsf{Rent=medium}) + \ P(\mathsf{Type=public}, \ \mathsf{Rent=upper} \ \mathsf{medium}) + \ P(\mathsf{Type=public}, \ \mathsf{Rent=high}) = .7 \\ P(\mathsf{Type=private}) = & P(\mathsf{Type=private}, \ \mathsf{Rent=low}) + P(\mathsf{Type=private}, \ \mathsf{Rent=medium}) + P(\mathsf{Type=private}, \ \mathsf{Rent=upper} \ \mathsf{medium}) + \ P(\mathsf{Type=private}, \ \mathsf{Rent=high}) = .25 \\ \end{array}
```

	public	private	others	P(Rent)
low	.17	.01	.02	.2
medium	.44	.03	.01	.48
upper medium	.09	.07	.01	.17
high	0	0.14	0.1	.15
P(Type)	.7	.25	.05	

 What is the probability of a randomly selected apartment being a public one? (Law of total probability)

```
P(Type=pulic) = P(Type=public, Rent=low)+P(Type=public, Rent=medium)+ P(Type=public, Rent=upper medium)+ P(Type=public, Rent=high) = .7
P(Type=private) = P(Type=private, Rent=low)+ P(Type=private, Rent=medium)+ P(Type=private, Rent=upper medium)+ P(Type=private, Rent=high)= .25
```

	public	private	others	P(Rent)
low	.17	.01	.02	.2
medium	.44	.03	.01	.48
upper medium	.09	.07	.01	.17
high	0	0.14	0.1	.15
P(Type)	.7	.25	.05	

Called marginal probability because written on the margins.

$$P(A|B) = \frac{P(A,B)}{P(B)} \left(= \frac{P(A \cap B)}{P(B)}\right)$$

■ For events A and B:

$$P(A|B) = \frac{P(A,B)}{P(B)} \left(= \frac{P(A \cap B)}{P(B)}\right)$$

Meaning:

$$P(A|B) = \frac{P(A,B)}{P(B)} \left(= \frac{P(A \cap B)}{P(B)}\right)$$

- Meaning:
 - P(A): My probability on A (without any knowledge about B)

$$P(A|B) = \frac{P(A,B)}{P(B)} (= \frac{P(A \cap B)}{P(B)})$$

- Meaning:
 - \blacksquare P(A): My probability on A (without any knowledge about B)
 - P(A|B): My probability on event A assuming that I know event B is true.

$$P(A|B) = \frac{P(A,B)}{P(B)} (= \frac{P(A \cap B)}{P(B)})$$

- Meaning:
 - P(A): My probability on A (without any knowledge about B)
 - P(A|B): My probability on event A assuming that I know event B is true.
- What is the probability of a randomly selected private apartment having "low" rent?

$$P(A|B) = \frac{P(A,B)}{P(B)} (= \frac{P(A \cap B)}{P(B)})$$

- Meaning:
 - \blacksquare P(A): My probability on A (without any knowledge about B)
 - P(A|B): My probability on event A assuming that I know event B is true.
- What is the probability of a randomly selected private apartment having "low" rent?

$$P(Rent=low|Type=private)$$

= $\frac{P(Rent=Low, Type=private)}{P(Type=private)}$ = .01/.25=.04

■ For events A and B:

$$P(A|B) = \frac{P(A,B)}{P(B)} \left(= \frac{P(A \cap B)}{P(B)}\right)$$

- Meaning:
 - \blacksquare P(A): My probability on A (without any knowledge about B)
 - P(A|B): My probability on event A assuming that I know event B is true
- What is the probability of a randomly selected private apartment having "low" rent?

$$P(Rent=low|Type=private)$$

= $\frac{P(Rent=Low, Type=private)}{P(Type=private)}$ = .01/.25=.04

In contrast:

$$P(Rent=low) = 0.2.$$

■ Two random variables *X* and *Y* are marginally independent,

■ Two random variables X and Y are marginally independent, written $X \perp Y$, if

- Two random variables X and Y are marginally independent, written $X \perp Y$, if
 - for any state x of X and any state y of Y,

$$P(X=x|Y=y) = P(X=x)$$
, whenever $P(Y=y) \neq 0$.

Meaning:

- Two random variables X and Y are marginally independent, written $X \perp Y$, if
 - for any state x of X and any state y of Y,

$$P(X=x|Y=y) = P(X=x)$$
, whenever $P(Y=y) \neq 0$.

Meaning: Learning the value of Y does not give me any information about X and vice versa.

- Two random variables X and Y are marginally independent, written $X \perp Y$, if
 - for any state x of X and any state y of Y,

$$P(X=x|Y=y) = P(X=x)$$
, whenever $P(Y=y) \neq 0$.

■ Meaning: Learning the value of *Y* does not give me any information about *X* and vice versa. *Y* contains no information about *X* and vice versa.

- Two random variables X and Y are marginally independent, written $X \perp Y$, if
 - for any state x of X and any state y of Y,

$$P(X=x|Y=y) = P(X=x)$$
, whenever $P(Y=y) \neq 0$.

- Meaning: Learning the value of Y does not give me any information about X and vice versa. Y contains no information about X and vice versa.
- Equivalent definition:

$$P(X=x, Y=y) = P(X=x)P(Y=y)$$

- Two random variables X and Y are marginally independent, written $X \perp Y$, if
 - for any state x of X and any state y of Y,

$$P(X=x|Y=y) = P(X=x)$$
, whenever $P(Y=y) \neq 0$.

- Meaning: Learning the value of Y does not give me any information about X and vice versa. Y contains no information about X and vice versa.
- Equivalent definition:

$$P(X=x, Y=y) = P(X=x)P(Y=y)$$

Shorthand for the equations:

- Two random variables X and Y are marginally independent, written $X \perp Y$, if
 - for any state x of X and any state y of Y,

$$P(X=x|Y=y) = P(X=x)$$
, whenever $P(Y=y) \neq 0$.

- Meaning: Learning the value of Y does not give me any information about X and vice versa. Y contains no information about X and vice versa.
- Equivalent definition:

$$P(X=x, Y=y) = P(X=x)P(Y=y)$$

Shorthand for the equations:

$$P(X|Y) = P(X), P(X,Y) = P(X)P(Y).$$

■ Examples:

- Examples:
 - X:result of tossing a fair coin for the first time,
 Y: result of second tossing of the same coin.

Examples:

- X:result of tossing a fair coin for the first time,
 - Y: result of second tossing of the same coin.
- X: result of US election, Y: your grades in this course.

- Examples:
 - X:result of tossing a fair coin for the first time,
 - *Y*: result of second tossing of the same coin.
 - X: result of US election, Y: your grades in this course.
- Counter example:

- Examples:
 - X:result of tossing a fair coin for the first time,
 - Y: result of second tossing of the same coin.
 - X: result of US election, Y: your grades in this course.
- Counter example:X oral presentation grade , Y project report grade.

■ Two random variables *X* and *Y* are **conditionally independent** given a third variable *Z*,

■ Two random variables X and Y are **conditionally independent** given a third variable Z,written $X \perp Y | Z$, if

$$P(X=x|Y=y,Z=z) = P(X=x|Z=z)$$
 whenever $P(Y=y,Z=z) \neq 0$

■ Meaning:

$$P(X=x|Y=y,Z=z) = P(X=x|Z=z)$$
 whenever $P(Y=y,Z=z) \neq 0$

- Meaning:
 - If I know the state of Z already, then learning the state of Y does not give me additional information about X.

$$P(X=x|Y=y,Z=z) = P(X=x|Z=z)$$
 whenever $P(Y=y,Z=z) \neq 0$

- Meaning:
 - If I know the state of Z already, then learning the state of Y does not give me additional information about X.
 - Y might contain some information about X.

$$P(X=x|Y=y,Z=z) = P(X=x|Z=z)$$
 whenever $P(Y=y,Z=z) \neq 0$

- Meaning:
 - If I know the state of Z already, then learning the state of Y does not give me additional information about X.
 - Y might contain some information about X.
 - However all the information about X contained in Y are also contained in Z.

$$P(X=x|Y=y,Z=z) = P(X=x|Z=z)$$
 whenever $P(Y=y,Z=z) \neq 0$

- Meaning:
 - If I know the state of Z already, then learning the state of Y does not give me additional information about X.
 - Y might contain some information about X.
 - However all the information about X contained in Y are also contained in Z.

$$P(X=x|Y=y,Z=z) = P(X=x|Z=z)$$
 whenever $P(Y=y,Z=z) \neq 0$

- Meaning:
 - If I know the state of Z already, then learning the state of Y does not give me additional information about X.
 - Y might contain some information about X.
 - However all the information about X contained in Y are also contained in Z.
- Shorthand for the equation:

$$P(X|Y,Z) = P(X|Z)$$

Conditional independence

■ Two random variables X and Y are **conditionally independent** given a third variable Z,written $X \perp Y | Z$, if

$$P(X=x|Y=y,Z=z) = P(X=x|Z=z)$$
 whenever $P(Y=y,Z=z) \neq 0$

- Meaning:
 - If I know the state of Z already, then learning the state of Y does not give me additional information about X.
 - Y might contain some information about X.
 - However all the information about X contained in Y are also contained in Z.
- Shorthand for the equation:

$$P(X|Y,Z) = P(X|Z)$$

Equivalent definition:

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

■ There is a bag of 100 coins.

■ There is a bag of 100 coins. 10 coins were made by a malfunctioning machine and are biased toward head.

■ There is a bag of 100 coins. 10 coins were made by a malfunctioning machine and are biased toward head. Tossing such a coin results in head 80% of the time. The other coins are fair.

- There is a bag of 100 coins. 10 coins were made by a malfunctioning machine and are biased toward head. Tossing such a coin results in head 80% of the time. The other coins are fair.
- Randomly draw a coin from the bag and toss it a few time.

- There is a bag of 100 coins. 10 coins were made by a malfunctioning machine and are biased toward head. Tossing such a coin results in head 80% of the time. The other coins are fair.
- Randomly draw a coin from the bag and toss it a few time.
- X_i : result of the *i*-th tossing, Y: whether the coin is produced by the malfunctioning machine.

- There is a bag of 100 coins. 10 coins were made by a malfunctioning machine and are biased toward head. Tossing such a coin results in head 80% of the time. The other coins are fair.
- Randomly draw a coin from the bag and toss it a few time.
- X_i : result of the i-th tossing, Y: whether the coin is produced by the malfunctioning machine.
- The X_i 's are not marginally independent of each other:

- There is a bag of 100 coins. 10 coins were made by a malfunctioning machine and are biased toward head. Tossing such a coin results in head 80% of the time. The other coins are fair.
- Randomly draw a coin from the bag and toss it a few time.
- X_i : result of the *i*-th tossing, Y: whether the coin is produced by the malfunctioning machine.
- The X_i 's are not marginally independent of each other:
 - If I get 9 heads in first 10 tosses, then the coin is probably a biased coin.

- There is a bag of 100 coins. 10 coins were made by a malfunctioning machine and are biased toward head. Tossing such a coin results in head 80% of the time. The other coins are fair.
- Randomly draw a coin from the bag and toss it a few time.
- X_i : result of the *i*-th tossing, Y: whether the coin is produced by the malfunctioning machine.
- The X_i 's are not marginally independent of each other:
 - If I get 9 heads in first 10 tosses, then the coin is probably a biased coin. Hence the next tossing will be more likely to result in a head than a tail.
 - Learning the value of X_i gives me some information about

- There is a bag of 100 coins. 10 coins were made by a malfunctioning machine and are biased toward head. Tossing such a coin results in head 80% of the time. The other coins are fair.
- Randomly draw a coin from the bag and toss it a few time.
- X_i : result of the i-th tossing, Y: whether the coin is produced by the malfunctioning machine.
- The X_i 's are not marginally independent of each other:
 - If I get 9 heads in first 10 tosses, then the coin is probably a biased coin. Hence the next tossing will be more likely to result in a head than a tail.
 - Learning the value of X_i gives me some information about whether the coin is biased,

- There is a bag of 100 coins. 10 coins were made by a malfunctioning machine and are biased toward head. Tossing such a coin results in head 80% of the time. The other coins are fair.
- Randomly draw a coin from the bag and toss it a few time.
- X_i : result of the i-th tossing, Y: whether the coin is produced by the malfunctioning machine.
- The X_i 's are not marginally independent of each other:
 - If I get 9 heads in first 10 tosses, then the coin is probably a biased coin. Hence the next tossing will be more likely to result in a head than a tail.
 - Learning the value of X_i gives me some information about whether the coin is biased, which in term gives me some information about X_i .

 \blacksquare However, they are conditionally independent given Y:

- $lue{}$ However, they are conditionally independent given Y:
 - If the coin is not biased, the probability of getting a head in one toss is 1/2 regardless of the results of other tosses.

- \blacksquare However, they are conditionally independent given Y:
 - If the coin is not biased, the probability of getting a head in one toss is 1/2 regardless of the results of other tosses.
 - If the coin is biased, the probability of getting a head in one toss is 80% regardless of the results of other tosses.

- $lue{}$ However, they are conditionally independent given Y:
 - If the coin is not biased, the probability of getting a head in one toss is 1/2 regardless of the results of other tosses.
 - If the coin is biased, the probability of getting a head in one toss is 80% regardless of the results of other tosses.
 - If I already knows whether the coin is biased or not,

- $lue{}$ However, they are conditionally independent given Y:
 - If the coin is not biased, the probability of getting a head in one toss is 1/2 regardless of the results of other tosses.
 - If the coin is biased, the probability of getting a head in one toss is 80% regardless of the results of other tosses.
 - If I already knows whether the coin is biased or not, learning the value of X_i does not give me additional information about X_i .

- \blacksquare However, they are conditionally independent given Y:
 - If the coin is not biased, the probability of getting a head in one toss is 1/2 regardless of the results of other tosses.
 - If the coin is biased, the probability of getting a head in one toss is 80% regardless of the results of other tosses.
 - If I already knows whether the coin is biased or not, learning the value of X_i does not give me additional information about X_j .
- Here is how the variables are related pictorially. We will return to this picture later.

- However, they are conditionally independent given *Y*:
 - If the coin is not biased, the probability of getting a head in one toss is 1/2 regardless of the results of other tosses.
 - If the coin is biased, the probability of getting a head in one toss is 80% regardless of the results of other tosses.
 - If I already knows whether the coin is biased or not, learning the value of X_i does not give me additional information about X_i .
- Here is how the variables are related pictorially. We will return to this picture later.

Outline

- 1 Basic Concepts in Probability Theory
- 2 Interpretation of Probability
- 3 Univariate Probability Distributions
- 4 Multivariate Probability
 - Bayes' Theorem
- 5 Parameter Estimation

■ Three important concepts in Bayesian inference.

- Three important concepts in Bayesian inference.
- With respect to a piece of evidence: *E*

- Three important concepts in Bayesian inference.
- With respect to a piece of evidence: E
- **Prior probability** P(H):

- Three important concepts in Bayesian inference.
- With respect to a piece of evidence: E
- **Prior probability** P(H): belief about a hypothesis before observing evidence.

- Three important concepts in Bayesian inference.
- With respect to a piece of evidence: E
- **Prior probability** P(H): belief about a hypothesis before observing evidence.
 - Example: Suppose 10% of people suffer from Hepatitis B. A doctor's prior probability about a new patient suffering from Hepatitis B is 0.1.
- **Posterior probability** P(H|E):

- Three important concepts in Bayesian inference.
- With respect to a piece of evidence: E
- **Prior probability** P(H): belief about a hypothesis before observing evidence.
 - Example: Suppose 10% of people suffer from Hepatitis B. A doctor's prior probability about a new patient suffering from Hepatitis B is 0.1.
- **Posterior probability** P(H|E): belief about a hypothesis after obtaining the evidence.

- Three important concepts in Bayesian inference.
- With respect to a piece of evidence: E
- **Prior probability** P(H): belief about a hypothesis before observing evidence.
 - Example: Suppose 10% of people suffer from Hepatitis B. A doctor's prior probability about a new patient suffering from Hepatitis B is 0.1.
- Posterior probability P(H|E): belief about a hypothesis after obtaining the evidence.
 - If the doctor finds that the eyes of the patient are yellow, his belief about patient suffering from Hepatitis B would be > 0.1.

■ Suppose a patient is observed to have yellow eyes (E).

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)
- \blacksquare Obviously, H_1 is a better explanation because

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$.

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,
- 2 The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$. To state it another way, we say that H_1 is more **likely** than H_2 given E.

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - **1** The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$. To state it another way, we say that H_1 is more **likely** than H_2 given E.
- In general, the **likelihood** of a hypothesis *H* given evidence *E* is a measure of how well *H* explains *E*.

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - **1** The patient has Hepatitis B (H_1) ,
- 2 The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$. To state it another way, we say that H_1 is more **likely** than H_2 given E.
- In general, the **likelihood** of a hypothesis *H* given evidence *E* is a measure of how well *H* explains *E*. Mathematically, it is

$$L(H|E) = P(E|H)$$

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$. To state it another way, we say that H_1 is more **likely** than H_2 given E.
- In general, the **likelihood** of a hypothesis *H* given evidence *E* is a measure of how well *H* explains *E*. Mathematically, it is

$$L(H|E) = P(E|H)$$

• In Machine Learning, we often talk about the likelihood of a model M given data D.

Prior, posterior, and likelihood

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$. To state it another way, we say that H_1 is more **likely** than H_2 given E.
- In general, the **likelihood** of a hypothesis *H* given evidence *E* is a measure of how well *H* explains *E*. Mathematically, it is

$$L(H|E) = P(E|H)$$

■ In Machine Learning, we often talk about the likelihood of a model M given data D. It is a measure of how well the model M explains the data D.

Prior, posterior, and likelihood

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - 1 The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$. To state it another way, we say that H_1 is more **likely** than H_2 given E.
- In general, the **likelihood** of a hypothesis *H* given evidence *E* is a measure of how well *H* explains *E*. Mathematically, it is

$$L(H|E) = P(E|H)$$

■ In Machine Learning, we often talk about the likelihood of a model M given data D. It is a measure of how well the model M explains the data D. Mathematically, it is

$$L(M|D) = P(D|M)$$

Prior, posterior, and likelihood

- Suppose a patient is observed to have yellow eyes (E).
- Consider two possible explanations:
 - **1** The patient has Hepatitis B (H_1) ,
 - **2** The patient does not have Hepatitis B (H_2)
- Obviously, H_1 is a better explanation because $P(E|H_1) > P(E|H_2)$. To state it another way, we say that H_1 is more **likely** than H_2 given E.
- In general, the **likelihood** of a hypothesis *H* given evidence *E* is a measure of how well *H* explains *E*. Mathematically, it is

$$L(H|E) = P(E|H)$$

■ In Machine Learning, we often talk about the likelihood of a model M given data D. It is a measure of how well the model M explains the data D. Mathematically, it is

$$L(M|D) = P(D|M)$$

■ Bayes' Theorem:

Bayes' Theorem: relates prior probability, likelihood, and posterior probability:

$$P(H|E) = \frac{P(H)P(E|H)}{P(E)}$$

 Bayes' Theorem: relates prior probability, likelihood, and posterior probability:

$$P(H|E) = \frac{P(H)P(E|H)}{P(E)} \propto P(H)L(H|E)$$

Bayes' Theorem: relates prior probability, likelihood, and posterior probability:

$$P(H|E) = \frac{P(H)P(E|H)}{P(E)} \propto P(H)L(H|E)$$

where P(E) is normalization constant to ensure $\sum_{h \in \Omega_H} P(H = h|E) = 1$.

Bayes' Theorem: relates prior probability, likelihood, and posterior probability:

$$P(H|E) = \frac{P(H)P(E|H)}{P(E)} \propto P(H)L(H|E)$$

where P(E) is normalization constant to ensure $\sum_{h \in \Omega_H} P(H = h|E) = 1$.

Bayes' Theorem: relates prior probability, likelihood, and posterior probability:

$$P(H|E) = \frac{P(H)P(E|H)}{P(E)} \propto P(H)L(H|E)$$

where P(E) is normalization constant to ensure $\sum_{h \in \Omega_H} P(H = h|E) = 1$.

That is: $posterior \propto prior \times likelihood$

Outline

- 1 Basic Concepts in Probability Theory
- 2 Interpretation of Probability
- 3 Univariate Probability Distributions
- 4 Multivariate Probability
 - Bayes' Theorem
- 5 Parameter Estimation

■ Let X be the result of tossing a thumbtack and $\Omega_X = \{H, T\}$.

- Let X be the result of tossing a thumbtack and $\Omega_X = \{H, T\}$.
- Data instances:

$$D_1 = H, D_2 = T, D_3 = H, ..., D_m = H$$

- Let X be the result of tossing a thumbtack and $\Omega_X = \{H, T\}$.
- Data instances:

$$D_1 = H, D_2 = T, D_3 = H, ..., D_m = H$$

■ Data set: $\mathcal{D} = \{D_1, D_2, D_3, \dots, D_m\}$

- Let X be the result of tossing a thumbtack and $\Omega_X = \{H, T\}$.
- Data instances:

$$D_1 = H, D_2 = T, D_3 = H, ..., D_m = H$$

- Data set: $\mathcal{D} = \{D_1, D_2, D_3, \dots, D_m\}$
- Task: To estimate parameter $\theta = P(X=H)$.

X: result of tossing a thumbtack

■ Data: $\mathcal{D} = \{H, T, H, T, T, H, T\}$

- Data: $\mathcal{D} = \{H, T, H, T, T, H, T\}$
- As possible values of θ , which of the following is the most likely? Why?
 - $\theta = 0$
 - $\theta = 0.01$
 - $\theta = 0.5$
- $\theta = 0$ contradicts data because $P(\mathcal{D}|\theta = 0) = 0$.

- Data: $\mathcal{D} = \{H, T, H, T, T, H, T\}$
- As possible values of θ , which of the following is the most likely? Why?
 - $\theta = 0$
 - $\theta = 0.01$
 - $\theta = 0.5$
- $m{\theta}=0$ contradicts data because $P(\mathcal{D}|m{\theta}=0)=0.$ It cannot explain the data at all.

- Data: $\mathcal{D} = \{H, T, H, T, T, H, T\}$
- As possible values of θ , which of the following is the most likely? Why?
 - $\theta = 0$
 - $\theta = 0.01$
 - $\theta = 0.5$
- $m{\theta}=0$ contradicts data because $P(\mathcal{D}|\theta=0)=0.$ It cannot explain the data at all.
- $\theta = 0.01$ almost contradicts with the data. It does not explain the data well.

However, it is more consistent with the data than $\theta=0$ because $P(\mathcal{D}|\theta=0.01)>P(\mathcal{D}|\theta=0)$.

- Data: $\mathcal{D} = \{H, T, H, T, T, H, T\}$
- As possible values of θ , which of the following is the most likely? Why?
 - $\theta = 0$
 - $\theta = 0.01$
 - $\theta = 0.5$
- $m{\theta}=0$ contradicts data because $P(\mathcal{D}|\theta=0)=0.$ It cannot explain the data at all.
- $\theta = 0.01$ almost contradicts with the data. It does not explain the data well.
 - However, it is more consistent with the data than $\theta = 0$ because $P(\mathcal{D}|\theta = 0.01) > P(\mathcal{D}|\theta = 0)$.
- So $\theta = 0.5$ is more consistent with the data than $\theta = 0.01$ because

- Data: $\mathcal{D} = \{H, T, H, T, T, H, T\}$
- As possible values of θ , which of the following is the most likely? Why?
 - $\theta = 0$
 - $\theta = 0.01$
 - $\theta = 0.5$
- $m{\theta}=0$ contradicts data because $P(\mathcal{D}|\theta=0)=0.$ It cannot explain the data at all.
- $\theta = 0.01$ almost contradicts with the data. It does not explain the data well.
 - However, it is more consistent with the data than $\theta = 0$ because $P(\mathcal{D}|\theta = 0.01) > P(\mathcal{D}|\theta = 0)$.
- So $\theta=0.5$ is more consistent with the data than $\theta=0.01$ because $P(\mathcal{D}|\theta=0.5)>P(\mathcal{D}|\theta=0.01)$ It explains the data the best, and is hence the most likely.

■ In general, the larger $P(\mathcal{D}|\theta)$ is,

■ In general, the larger $P(\mathcal{D}|\theta)$ is, the more likely the value θ is.

- In general, the larger $P(\mathcal{D}|\theta)$ is, the more likely the value θ is.
- Likelihood of parameter θ given data set:

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

- In general, the larger $P(\mathcal{D}|\theta)$ is, the more likely the value θ is.
- Likelihood of parameter θ given data set:

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

■ The maximum likelihood estimation (MLE) θ^* is

- In general, the larger $P(\mathcal{D}|\theta)$ is, the more likely the value θ is.
- Likelihood of parameter θ given data set:

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

■ The maximum likelihood estimation (MLE) θ^* is

$$L(\theta^*|\mathcal{D}) = \arg\max_{\theta} L(\theta|\mathcal{D}).$$

- In general, the larger $P(\mathcal{D}|\theta)$ is, the more likely the value θ is.
- **Likelihood** of parameter θ given data set:

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

■ The maximum likelihood estimation (MLE) θ^* is

$$L(\theta^*|\mathcal{D}) = \arg\max_{\theta} L(\theta|\mathcal{D}).$$

MLE best explains data or best fits data.

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

Assume the data instances are identically distributed:

$$P(D_i = H) = \theta, P(D_i = T) = 1 - \theta$$
 for all i

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

Assume the data instances are identically distributed:

$$P(D_i = H) = \theta, P(D_i = T) = 1 - \theta$$
 for all i

(Note: i.i.d means independent and identically distributed)

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

Assume the data instances are identically distributed:

$$P(D_i = H) = \theta, P(D_i = T) = 1 - \theta$$
 for all i

(Note: i.i.d means independent and identically distributed)

Then

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

Assume the data instances are identically distributed:

$$P(D_i = H) = \theta, P(D_i = T) = 1 - \theta$$
 for all i

(Note: i.i.d means independent and identically distributed)

Then

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta) = P(D_1, \dots, D_m|\theta)$$

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

Assume the data instances are identically distributed:

$$P(D_i = H) = \theta, P(D_i = T) = 1 - \theta$$
 for all i

(Note: i.i.d means independent and identically distributed)

Then

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta) = P(D_1, \dots, D_m|\theta)$$
$$= \prod_{i=1}^m P(D_i|\theta)$$

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

Assume the data instances are identically distributed:

$$P(D_i = H) = \theta, P(D_i = T) = 1 - \theta$$
 for all i

(Note: i.i.d means independent and identically distributed)

Then

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta) = P(D_1, \dots, D_m|\theta)$$

$$= \prod_{i=1}^m P(D_i|\theta) = \theta^{m_h} (1-\theta)^{m_t}$$
(1)

where m_h is the number of heads and m_t is the number of tail.

■ Assume the data instances D_1, \ldots, D_m are independent given θ :

$$P(D_1,\ldots,D_m|\theta)=\prod_{i=1}^m P(D_i|\theta)$$

Assume the data instances are identically distributed:

$$P(D_i = H) = \theta, P(D_i = T) = 1 - \theta$$
 for all i

(Note: i.i.d means independent and identically distributed)

Then

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta) = P(D_1, \dots, D_m|\theta)$$

$$= \prod_{i=1}^m P(D_i|\theta) = \theta^{m_h} (1-\theta)^{m_t}$$
(1)

where m_h is the number of heads and m_t is the number of tail. Binomial likelihood.

Example of Likelihood Function

Example: $\mathcal{D} = \{D_1 = H, D_2T, D_3 = H, D_4 = H, D_5 = T\}$

Example of Likelihood Function

■ Example: $\mathcal{D} = \{D_1 = H, D_2T, D_3 = H, D_4 = H, D_5 = T\}$

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

Example of Likelihood Function

■ Example: $\mathcal{D} = \{D_1 = H, D_2T, D_3 = H, D_4 = H, D_5 = T\}$

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

= $P(D_1 = H|\theta)P(D_2 = T|\theta)P(D_3 = H|\theta)P(D_4 = H|\theta)P(D_5 = T|\theta)$

Example of Likelihood Function

■ Example: $\mathcal{D} = \{D_1 = H, D_2T, D_3 = H, D_4 = H, D_5 = T\}$

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

$$= P(D_1 = H|\theta)P(D_2 = T|\theta)P(D_3 = H|\theta)P(D_4 = H|\theta)P(D_5 = T|\theta)$$

$$= \theta(1-\theta)\theta\theta(1-\theta)$$

Example of Likelihood Function

Example: $\mathcal{D} = \{D_1 = H, D_2T, D_3 = H, D_4 = H, D_5 = T\}$

$$L(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)$$

$$= P(D_1 = H|\theta)P(D_2 = T|\theta)P(D_3 = H|\theta)P(D_4 = H|\theta)P(D_5 = T|\theta)$$

$$= \theta(1 - \theta)\theta\theta(1 - \theta)$$

$$= \theta^3(1 - \theta)^2.$$

■ A <u>sufficient statistic</u> is a function $s(\mathcal{D})$ of data that summarizing the relevant information for computing the likelihood.

■ A sufficient statistic is a function $s(\mathcal{D})$ of data that summarizing the relevant information for computing the likelihood. That is

$$s(\mathcal{D}) = s(\mathcal{D}') \Rightarrow L(\theta|\mathcal{D}) = L(\theta|\mathcal{D}')$$

■ A sufficient statistic is a function $s(\mathcal{D})$ of data that summarizing the relevant information for computing the likelihood. That is

$$s(\mathcal{D}) = s(\mathcal{D}') \Rightarrow L(\theta|\mathcal{D}) = L(\theta|\mathcal{D}')$$

Sufficient statistics tell us all there is to know about data.

■ A sufficient statistic is a function $s(\mathcal{D})$ of data that summarizing the relevant information for computing the likelihood. That is

$$s(\mathcal{D}) = s(\mathcal{D}') \Rightarrow L(\theta|\mathcal{D}) = L(\theta|\mathcal{D}')$$

- Sufficient statistics tell us all there is to know about data.
- Since $L(\theta|\mathcal{D}) = \theta^{m_h}(1-\theta)^{m_t}$,

■ A sufficient statistic is a function $s(\mathcal{D})$ of data that summarizing the relevant information for computing the likelihood. That is

$$s(\mathcal{D}) = s(\mathcal{D}') \Rightarrow L(\theta|\mathcal{D}) = L(\theta|\mathcal{D}')$$

- Sufficient statistics tell us all there is to know about data.
- Since $L(\theta|\mathcal{D}) = \theta^{m_h} (1-\theta)^{m_t}$, the pair (m_h, m_t) is a sufficient statistic.

■ Loglikelihood:

$$I(\theta|\mathcal{D}) = logL(\theta|\mathcal{D})$$

■ Loglikelihood:

$$I(\theta|\mathcal{D}) = log L(\theta|\mathcal{D}) = log \theta^{m_h} (1-\theta)^{m_t}$$

■ Loglikelihood:

$$I(\theta|\mathcal{D}) = logL(\theta|\mathcal{D}) = log\theta^{m_h}(1-\theta)^{m_t} = m_h log\theta + m_t log(1-\theta)$$

Loglikelihood:

$$I(\theta|\mathcal{D}) = logL(\theta|\mathcal{D}) = log\theta^{m_h}(1-\theta)^{m_t} = m_h log\theta + m_t log(1-\theta)$$

Maximizing likelihood is the same as maximizing loglikelihood. The latter is easier.

Loglikelihood:

$$I(\theta|\mathcal{D}) = log L(\theta|\mathcal{D}) = log \theta^{m_h} (1-\theta)^{m_t} = m_h log \theta + m_t log (1-\theta)$$

Maximizing likelihood is the same as maximizing loglikelihood. The latter is easier.

Loglikelihood:

$$I(\theta|\mathcal{D}) = log L(\theta|\mathcal{D}) = log \theta^{m_h} (1-\theta)^{m_t} = m_h log \theta + m_t log (1-\theta)$$

Maximizing likelihood is the same as maximizing loglikelihood. The latter is easier.

$$\theta^* = \frac{m_h}{m_h + m_t} = \frac{m_h}{m}$$

Loglikelihood:

$$I(\theta|\mathcal{D}) = log L(\theta|\mathcal{D}) = log \theta^{m_h} (1-\theta)^{m_t} = m_h log \theta + m_t log (1-\theta)$$

Maximizing likelihood is the same as maximizing loglikelihood. The latter is easier.

■ Taking the derivative of $\frac{dI(\theta|\mathcal{D})}{d\theta}$ and setting it to zero, we get

$$\theta^* = \frac{m_h}{m_h + m_t} = \frac{m_h}{m}$$

MLE is intuitive.

Loglikelihood:

$$I(\theta|\mathcal{D}) = log L(\theta|\mathcal{D}) = log \theta^{m_h} (1-\theta)^{m_t} = m_h log \theta + m_t log (1-\theta)$$

Maximizing likelihood is the same as maximizing loglikelihood. The latter is easier.

$$\theta^* = \frac{m_h}{m_h + m_t} = \frac{m_h}{m}$$

- MLE is intuitive.
- It also has nice properties:

Loglikelihood:

$$I(\theta|\mathcal{D}) = log L(\theta|\mathcal{D}) = log \theta^{m_h} (1-\theta)^{m_t} = m_h log \theta + m_t log (1-\theta)$$

Maximizing likelihood is the same as maximizing loglikelihood. The latter is easier.

$$\theta^* = \frac{m_h}{m_h + m_t} = \frac{m_h}{m}$$

- MLE is intuitive.
- It also has nice properties:
 - E.g. Consistence:

Loglikelihood:

$$I(\theta|\mathcal{D}) = log L(\theta|\mathcal{D}) = log \theta^{m_h} (1-\theta)^{m_t} = m_h log \theta + m_t log (1-\theta)$$

Maximizing likelihood is the same as maximizing loglikelihood. The latter is easier.

$$\theta^* = \frac{m_h}{m_h + m_t} = \frac{m_h}{m}$$

- MLE is intuitive.
- It also has nice properties:
 - **E**.g. **Consistence**: θ^* approaches the true value of θ with probability 1 as m goes to infinity.

- Thumbtack tossing:
 - $(m_h, m_t) = (3, 7)$. MLE: $\theta = 0.3$.

- Thumbtack tossing:
 - $(m_h, m_t) = (3, 7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.

- Thumbtack tossing:
 - $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.

- Thumbtack tossing:
 - $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.

- Thumbtack tossing:
 - $(m_h, m_t) = (3, 7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.
 - Our experience (prior) suggests strongly that coins are fair, hence $\theta = 1/2$.

- Thumbtack tossing:
 - $(m_h, m_t) = (3, 7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.
 - Our experience (prior) suggests strongly that coins are fair, hence $\theta = 1/2$.
 - The size of the data set is too small to convince us this particular coin is biased.

- Thumbtack tossing:
 - $(m_h, m_t) = (3, 7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.
 - Our experience (prior) suggests strongly that coins are fair, hence $\theta = 1/2$.
 - The size of the data set is too small to convince us this particular coin is biased.
 - The fact that we get (3, 7) instead of (5, 5) is probably due to randomness
 - Case 2: $(m_h, m_t) = (30,000,70,000)$. MLE: $\theta = 0.3$.

- Thumbtack tossing:
 - $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.
 - Our experience (prior) suggests strongly that coins are fair, hence $\theta = 1/2$.
 - The size of the data set is too small to convince us this particular coin is biased.
 - The fact that we get (3, 7) instead of (5, 5) is probably due to randomness
 - Case 2: $(m_h, m_t) = (30,000,70,000)$. MLE: $\theta = 0.3$.
 - Reasonable.

- Thumbtack tossing:
 - $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.
 - Our experience (prior) suggests strongly that coins are fair, hence $\theta = 1/2$.
 - The size of the data set is too small to convince us this particular coin is biased.
 - The fact that we get (3, 7) instead of (5, 5) is probably due to randomness
 - Case 2: $(m_h, m_t) = (30,000,70,000)$. MLE: $\theta = 0.3$.
 - Reasonable.
 - Data suggest that the coin is after all biased, overshadowing our prior.

- Thumbtack tossing:
 - $(m_h, m_t) = (3, 7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.
 - Our experience (prior) suggests strongly that coins are fair, hence $\theta = 1/2$.
 - The size of the data set is too small to convince us this particular coin is biased.
 - The fact that we get (3, 7) instead of (5, 5) is probably due to randomness
 - Case 2: $(m_h, m_t) = (30,000,70,000)$. MLE: $\theta = 0.3$.
 - Reasonable.
 - Data suggest that the coin is after all biased, overshadowing our prior.
 - MLE does not differentiate between those two instances.

- Thumbtack tossing:
 - $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Reasonable. Data suggest that the thumbtack is biased toward tail.
- Coin tossing:
 - Case 1: $(m_h, m_t) = (3,7)$. MLE: $\theta = 0.3$.
 - Not reasonable.
 - Our experience (prior) suggests strongly that coins are fair, hence $\theta = 1/2$.
 - The size of the data set is too small to convince us this particular coin is biased.
 - The fact that we get (3, 7) instead of (5, 5) is probably due to randomness
 - Case 2: $(m_h, m_t) = (30,000,70,000)$. MLE: $\theta = 0.3$.
 - Reasonable.
 - Data suggest that the coin is after all biased, overshadowing our prior.
 - MLE does not differentiate between those two instances. It doe not take prior information into account.

MLE:

MLE:

lacksquare Assumes that heta is unknown but fixed parameter.

MLE:

- lacksquare Assumes that heta is unknown but fixed parameter.
- lacktriangle Estimates it using θ^* , the value that maximizes the likelihood function

MLE:

- lacksquare Assumes that heta is unknown but fixed parameter.
- Estimates it using θ^* , the value that maximizes the likelihood function
- Makes prediction based on the estimation: $P(D_{m+1} = H | \mathcal{D}) = \theta^*$

MLE:

- lacksquare Assumes that heta is unknown but fixed parameter.
- **E**stimates it using θ^* , the value that maximizes the likelihood function
- Makes prediction based on the estimation: $P(D_{m+1} = H | \mathcal{D}) = \theta^*$

Bayesian Estimation:

MLE:

- lacksquare Assumes that heta is unknown but fixed parameter.
- **E**stimates it using θ^* , the value that maximizes the likelihood function
- Makes prediction based on the estimation: $P(D_{m+1} = H | \mathcal{D}) = \theta^*$

Bayesian Estimation:

 \blacksquare Treats θ as a random variable.

MLE:

- lacksquare Assumes that heta is unknown but fixed parameter.
- **E**stimates it using θ^* , the value that maximizes the likelihood function
- Makes prediction based on the estimation: $P(D_{m+1} = H | \mathcal{D}) = \theta^*$

Bayesian Estimation:

- Treats θ as a random variable.
- Assumes a prior probability of θ : $p(\theta)$

MLE:

- lacksquare Assumes that heta is unknown but fixed parameter.
- **E**stimates it using θ^* , the value that maximizes the likelihood function
- Makes prediction based on the estimation: $P(D_{m+1} = H | \mathcal{D}) = \theta^*$

Bayesian Estimation:

- \blacksquare Treats θ as a random variable.
- Assumes a prior probability of θ : $p(\theta)$
- Uses data to get posterior probability of θ : $p(\theta|\mathcal{D})$

MLE:

- Assumes that θ is unknown but fixed parameter.
- **E**stimates it using θ^* , the value that maximizes the likelihood function
- Makes prediction based on the estimation: $P(D_{m+1} = H | \mathcal{D}) = \theta^*$

Bayesian Estimation:

- Treats θ as a random variable.
- Assumes a prior probability of θ : $p(\theta)$
- Uses data to get posterior probability of θ : $p(\theta|\mathcal{D})$

Bayesian Estimation:

■ Predicting D_{m+1}

$$P(D_{m+1} = H|\mathcal{D}) = \int P(D_{m+1} = H, \theta|\mathcal{D})d\theta$$

Bayesian Estimation:

■ Predicting D_{m+1}

$$P(D_{m+1} = H|\mathcal{D}) = \int P(D_{m+1} = H, \theta|\mathcal{D})d\theta$$
$$= \int P(D_{m+1} = H|\theta, \mathcal{D})p(\theta|\mathcal{D})d\theta$$

Bayesian Estimation:

■ Predicting D_{m+1}

$$P(D_{m+1} = H|\mathcal{D}) = \int P(D_{m+1} = H, \theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta, \mathcal{D})p(\theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta)p(\theta|\mathcal{D})d\theta$$

Bayesian Estimation:

■ Predicting D_{m+1}

$$P(D_{m+1} = H|\mathcal{D}) = \int P(D_{m+1} = H, \theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta, \mathcal{D})p(\theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta)p(\theta|\mathcal{D})d\theta$$

$$= \int \theta p(\theta|\mathcal{D})d\theta.$$

Full Bayesian: Take expectation over θ .

Bayesian Estimation:

■ Predicting D_{m+1}

$$P(D_{m+1} = H|\mathcal{D}) = \int P(D_{m+1} = H, \theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta, \mathcal{D})p(\theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta)p(\theta|\mathcal{D})d\theta$$

$$= \int \theta p(\theta|\mathcal{D})d\theta.$$

Full Bayesian: Take expectation over θ .

Bayesian Estimation:

■ Predicting D_{m+1}

$$P(D_{m+1} = H|\mathcal{D}) = \int P(D_{m+1} = H, \theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta, \mathcal{D})p(\theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta)p(\theta|\mathcal{D})d\theta$$

$$= \int \theta p(\theta|\mathcal{D})d\theta.$$

Full Bayesian: Take expectation over θ .

■ Bayesian MAP:

Bayesian Estimation:

■ Predicting D_{m+1}

$$P(D_{m+1} = H|\mathcal{D}) = \int P(D_{m+1} = H, \theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta, \mathcal{D})p(\theta|\mathcal{D})d\theta$$

$$= \int P(D_{m+1} = H|\theta)p(\theta|\mathcal{D})d\theta$$

$$= \int \theta p(\theta|\mathcal{D})d\theta.$$

Full Bayesian: Take expectation over θ .

Bayesian MAP:

$$P(D_{m+1} = H|\mathcal{D}) = \theta^* = \arg\max p(\theta|\mathcal{D})$$

Posterior distribution:

$$p(\theta|\mathcal{D}) \propto p(\theta)L(\theta|\mathcal{D})$$

Posterior distribution:

$$p(\theta|\mathcal{D}) \propto p(\theta)L(\theta|\mathcal{D})$$

= $\theta^{m_h}(1-\theta)^{m_t}p(\theta)$

where the equation follows from (1)

Posterior distribution:

$$p(\theta|\mathcal{D}) \propto p(\theta)L(\theta|\mathcal{D})$$

= $\theta^{m_h}(1-\theta)^{m_t}p(\theta)$

where the equation follows from (1)

■ To facilitate analysis, assume prior has **Beta distribution** $B(\alpha_h, \alpha_t)$

$$p(\theta) \propto \theta^{\alpha_h-1} (1-\theta)^{\alpha_t-1}$$

Posterior distribution:

$$p(\theta|\mathcal{D}) \propto p(\theta)L(\theta|\mathcal{D})$$

= $\theta^{m_h}(1-\theta)^{m_t}p(\theta)$

where the equation follows from (1)

■ To facilitate analysis, assume prior has **Beta distribution** $B(\alpha_h, \alpha_t)$

$$p(\theta) \propto \theta^{\alpha_h-1} (1-\theta)^{\alpha_t-1}$$

Then

$$p(\theta|\mathcal{D}) \propto \theta^{m_h + \alpha_h - 1} (1 - \theta)^{m_t + \alpha_t - 1} \tag{2}$$

■ The normalization constant for the Beta distribution $B(\alpha_h, \alpha_t)$

$$\frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)}$$

where $\Gamma(.)$ is the **Gamma** function. For any integer α , $\Gamma(\alpha) = (\alpha - 1)!$. It is also defined for non-integers.

■ The normalization constant for the Beta distribution $B(\alpha_h, \alpha_t)$

$$\frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)}$$

where $\Gamma(.)$ is the **Gamma** function. For any integer α , $\Gamma(\alpha) = (\alpha - 1)!$. It is also defined for non-integers.

■ Density function of prior Beta distribution $B(\alpha_h, \alpha_t)$,

$$p(\theta) = \frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)} \theta^{\alpha_h - 1} (1 - \theta)^{\alpha_h}$$

■ The normalization constant for the Beta distribution $B(\alpha_h, \alpha_t)$

$$\frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)}$$

where $\Gamma(.)$ is the **Gamma** function. For any integer α , $\Gamma(\alpha) = (\alpha - 1)!$. It is also defined for non-integers.

■ Density function of prior Beta distribution $B(\alpha_h, \alpha_t)$,

$$p(\theta) = \frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)} \theta^{\alpha_h - 1} (1 - \theta)^{\alpha_h}$$

■ The **hyperparameters** α_h and α_t can be thought of as "imaginary" counts from our prior experiences.

■ The normalization constant for the Beta distribution $B(\alpha_h, \alpha_t)$

$$\frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)}$$

where $\Gamma(.)$ is the **Gamma** function. For any integer α , $\Gamma(\alpha) = (\alpha - 1)!$. It is also defined for non-integers.

■ Density function of prior Beta distribution $B(\alpha_h, \alpha_t)$,

$$p(\theta) = \frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)} \theta^{\alpha_h - 1} (1 - \theta)^{\alpha_h}$$

- The **hyperparameters** α_h and α_t can be thought of as "imaginary" counts from our prior experiences.
- Their sum $\alpha = \alpha_h + \alpha_t$ is called equivalent sample size.

■ The normalization constant for the Beta distribution $B(\alpha_h, \alpha_t)$

$$\frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)}$$

where $\Gamma(.)$ is the **Gamma** function. For any integer α , $\Gamma(\alpha) = (\alpha - 1)!$. It is also defined for non-integers.

■ Density function of prior Beta distribution $B(\alpha_h, \alpha_t)$,

$$p(\theta) = \frac{\Gamma(\alpha_t + \alpha_h)}{\Gamma(\alpha_t)\Gamma(\alpha_h)} \theta^{\alpha_h - 1} (1 - \theta)^{\alpha_h}$$

- The hyperparameters α_h and α_t can be thought of as "imaginary" counts from our prior experiences.
- Their sum $\alpha = \alpha_h + \alpha_t$ is called equivalent sample size.
- The larger the equivalent sample size, the more confident we are in our prior.

■ Binomial Likelihood: $\theta^{m_h}(1-\theta)^{m_t}$

- Binomial Likelihood: $\theta^{m_h}(1-\theta)^{m_t}$
- Beta Prior: $\theta^{\alpha_h-1}(1-\theta)^{\alpha_t-1}$

- Binomial Likelihood: $\theta^{m_h}(1-\theta)^{m_t}$
- Beta Prior: $\theta^{\alpha_h-1}(1-\theta)^{\alpha_t-1}$

- Binomial Likelihood: $\theta^{m_h}(1-\theta)^{m_t}$
- Beta Prior: $\theta^{\alpha_h-1}(1-\theta)^{\alpha_t-1}$
- Beta Posterior: $\theta^{m_h+\alpha_h-1}(1-\theta)^{m_t+\alpha_t-1}$.

- Binomial Likelihood: $\theta^{m_h}(1-\theta)^{m_t}$
- Beta Prior: $\theta^{\alpha_h-1}(1-\theta)^{\alpha_t-1}$
- Beta Posterior: $\theta^{m_h+\alpha_h-1}(1-\theta)^{m_t+\alpha_t-1}$.
- Beta distributions are hence called a conjugate family for Binomial likelihood.

- Binomial Likelihood: $\theta^{m_h}(1-\theta)^{m_t}$
- Beta Prior: $\theta^{\alpha_h-1}(1-\theta)^{\alpha_t-1}$
- Beta Posterior: $\theta^{m_h+\alpha_h-1}(1-\theta)^{m_t+\alpha_t-1}$.
- Beta distributions are hence called a conjugate family for Binomial likelihood.
- Conjugate families allow closed-form for posterior distribution of parameters and closed-form solution for prediction.

■ We have

We have

$$P(D_{m+1} = H|\mathcal{D}) = \int \theta p(\theta|\mathcal{D}) d\theta$$

We have

$$P(D_{m+1} = H|\mathcal{D}) = \int \theta p(\theta|\mathcal{D})d\theta$$

= $c \int \theta \theta^{m_h + \alpha_h - 1} (1 - \theta)^{m_t + \alpha_t - 1} d\theta$

We have

$$P(D_{m+1} = H|\mathcal{D}) = \int \theta p(\theta|\mathcal{D}) d\theta$$

$$= c \int \theta \theta^{m_h + \alpha_h - 1} (1 - \theta)^{m_t + \alpha_t - 1} d\theta$$

$$= \frac{m_h + \alpha_h}{m + \alpha}$$

where c is the normalization constant, $m=m_h+m_t$, $\alpha=\alpha_h+\alpha_t$.

We have

$$P(D_{m+1} = H|\mathcal{D}) = \int \theta p(\theta|\mathcal{D}) d\theta$$

$$= c \int \theta \theta^{m_h + \alpha_h - 1} (1 - \theta)^{m_t + \alpha_t - 1} d\theta$$

$$= \frac{m_h + \alpha_h}{m + \alpha}$$

where c is the normalization constant, $m=m_h+m_t$, $\alpha=\alpha_h+\alpha_t$.

Consequently,

$$P(D_{m+1} = T|\mathcal{D}) = \frac{m_t + \alpha_t}{m + \alpha}$$

We have

$$P(D_{m+1} = H|\mathcal{D}) = \int \theta p(\theta|\mathcal{D}) d\theta$$

$$= c \int \theta \theta^{m_h + \alpha_h - 1} (1 - \theta)^{m_t + \alpha_t - 1} d\theta$$

$$= \frac{m_h + \alpha_h}{m + \alpha}$$

where c is the normalization constant, $m=m_h+m_t$, $\alpha=\alpha_h+\alpha_t$.

Consequently,

$$P(D_{m+1} = T|\mathcal{D}) = \frac{m_t + \alpha_t}{m + \alpha}$$

■ After taking data \mathcal{D} into consideration, now our **updated belief** on X = T is $\frac{m_t + \alpha_t}{m_t + \alpha_t}$.

• As m goes to infinity, $P(D_{m+1} = H|\mathcal{D})$ approaches the MLE $\frac{m_h}{m_h + m_t}$,

■ As m goes to infinity, $P(D_{m+1} = H | \mathcal{D})$ approaches the MLE $\frac{m_h}{m_h + m_t}$, which approaches the true value of θ with probability 1.

- As m goes to infinity, $P(D_{m+1} = H | \mathcal{D})$ approaches the MLE $\frac{m_h}{m_h + m_t}$, which approaches the true value of θ with probability 1.
- Coin tossing example revisited:

- As m goes to infinity, $P(D_{m+1} = H | \mathcal{D})$ approaches the MLE $\frac{m_h}{m_h + m_t}$, which approaches the true value of θ with probability 1.
- Coin tossing example revisited:
 - Suppose $\alpha_h = \alpha_t = 100$. Equivalent sample size: 200

- As m goes to infinity, $P(D_{m+1} = H|\mathcal{D})$ approaches the MLE $\frac{m_h}{m_h+m_t}$, which approaches the true value of θ with probability 1.
- Coin tossing example revisited:
 - Suppose $\alpha_h = \alpha_t = 100$. Equivalent sample size: 200
 - In case 1,

$$P(D_{m+1} = H|\mathcal{D}) = \frac{3+100}{10+100+100} \approx 0.5$$

Our prior prevails.

- As m goes to infinity, $P(D_{m+1} = H|\mathcal{D})$ approaches the MLE $\frac{m_h}{m_h + m_t}$, which approaches the true value of θ with probability 1.
- Coin tossing example revisited:
 - Suppose $\alpha_h = \alpha_t = 100$. Equivalent sample size: 200
 - In case 1,

$$P(D_{m+1} = H|\mathcal{D}) = \frac{3+100}{10+100+100} \approx 0.5$$

Our prior prevails.

■ In case 2,

$$P(D_{m+1} = H|\mathcal{D}) = \frac{30,000 + 100}{100,0000 + 100 + 100} \approx 0.3$$

Data prevail.

MLE vs Bayesian Estimation

Much of Machine Learning is about parameter estimation.

MLE vs Bayesian Estimation

- Much of Machine Learning is about parameter estimation.
- In all case, both MLE and Bayesian estimations can used, although the latter is harder mathematically.

MLE vs Bayesian Estimation

- Much of Machine Learning is about parameter estimation.
- In all case, both MLE and Bayesian estimations can used, although the latter is harder mathematically.
- In this course, we will focus on MLE.