МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Лабораторная работа № 3.3.4 Эффект Холла в полупроводниках

> Климова Екатерина Группа Б01-108

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с регулируемым источником питания; вольтметр; амперметр; миллиамперметр; реостат; милливеберметр; источник питания (1.5 В); образцы легированного германия.

1 Аннотация

В работе изучаются особенности проводимости полупроводников в геометрии мостика Холла. Ток пропускается по плоской полупроводниковой пластинке, помещенной в перпендикулярное пластинке магнитное поле. Измеряется разность потенциалов между краями пластинки в поперечном току направлении. По измерениям определяется константа Холла $R_{\rm H}$, тип проводимости (электронный или дырочный) и на основе соотношения $R_{\rm H}=\frac{1}{nq}$ вычисляется концентрация основных носителей заряда.

2 Теоретические сведения

2.1 Движение носителей заряда в полупроводниках

Проводимость большинства твердых тел связана с движением электронов. Электроны входят в состав атомов всех тел, однако одни тела не проводят электрический ток (диэлектрики), а другие являются хорошими проводниками. Причина различия заключается в особенностях энергетического состояния внешних электронов в атомах этих веществ.

При объединении атомов в твердое тело — кристалл — внешние (валентные) электроны теряют связь со своими атомами и становятся принадлежностью всего кристалла. Каждый уровень энергии электрона одиночного атома в кристалле расщепляется в группу близких уровней в кристалле, сливающихся в непрерывную зону. Число доступных состояний электрона при образовании зоны остается неизменным — оно равно числу мест на соответствующем атомном уровне, умноженному на число атомов в кристалле, и определяет максимальное число электронов, которое может разместиться в зоне. В промежутках между зонами допустимых состояний электронов нет — эти области называют запрещенными зонами.

Если одна из зон полностью заполнена электронами, а следующая пуста, то под действием слабого внешнего электрического поля электроны не могут изменить свое состояние, а значит, и не могут прийти в упорядоченное движение. Тогда вещество называется ∂ иэлектриком, а верхняя из заполненных зон — валентной зоной.

Если в кристалле есть зона, частично заполненная электронами, внешнее электрическое поле может изменить распределение электронов по уровням энергии и вызвать их упорядоченное движение. Частично заполненная зона называется зоной проводимости. Такая зона есть у всех твердых nposodhukos электрического тока.

Если ширина запрещенной зоны не слишком велика по сравнению с тепловой энергией, тепловое движение перебрасывает часть электронов из валентной зоны в свободную зону проводимости над ней. При этом в зоне проводимости появляются электроны, а в валентной зоне — вакантные места — дырки. Как электроны в зоне проводимости, так и дырки в валентной зоне участвуют в переносе заряда. Такие вещества называют полупроводниками. Для чистых полупроводников характерно одновременное наличие двух типов носителей. В легированных проводниках (содержащих примеси) может доминировать один из типов носителей — электроны (полупроводники п-типа) или дырки (полупроводники р-типа).

Рис. 1. Структура состояний а) проводника, б) полупроводника, в) диэлектрика

2.2 Закон Ома

При наложении внешнего электрического поля E носители заряда начинают двигаться ускоренно. Однако после некоторого свободного пробега происходит взаимодействие с решеткой: частица теряет приобретенный импульс и процесс ускорения начинается заново. В результате баланса ускоряющей силы и трения о решетку частица приобретает некоторую среднюю установившуюся скорость дрейфа, пропорциональную приложенному полю:

$$\boldsymbol{u}_{\mathrm{pp}} = \mu \boldsymbol{E}.\tag{1}$$

Коэффициент μ называется nodeuxностью носителя тока. Его знак определяется знаком зарядов (у электронов подвижность отрицательна, у дырок — положительна). Усредненное взаимодействие носителя заряда с кристаллической решеткой можно моделировать действующей на него постоянной силой трения, пропорциональной средней средней скорости u его движения:

$$\mathbf{F}_{\mathrm{TP}} = -\frac{q\mathbf{u}}{\mu}.\tag{2}$$

При концентрации носителей n плотность тока равна

$$\mathbf{j} = qn\mathbf{u} = qn\mu\mathbf{E}.\tag{3}$$

Коэффициент пропорциональности между \boldsymbol{j} и \boldsymbol{E} называют npoводимостью среды. Соответствующую связь

$$\mathbf{j} = \sigma \mathbf{E} \tag{4}$$

называют законом Ома в дифференциальной форме. Видно, что проводимость связана с подвижностью как $\sigma = qn\mu$.

2.3 Эффект Холла

Во внешнем магнитном поле B на заряды действует сила Лоренца:

$$\mathbf{F} = qE + q\mathbf{u} \times \mathbf{B}.\tag{5}$$

Эта сила вызывает движение носителей, направление которого в общем случае не совпадает с **E**. Траектории частиц будут либо искривляться, либо возникнет дополнительное электрическое поле, компенсирующее магнитную составляющую силы Лоренца. Возникновение поперечного току электрического поля в образце, помещенном во внешнее магнитное поле, называют эффектом Холла.

Закон Ома можно записать в виде

$$\mathbf{j} = \hat{\sigma} \mathbf{E},\tag{6}$$

если под $\hat{\sigma}$ понимать *тензор проводимости*. В заданном базисе он представляется матрицей 3×3 . Тензорная связь между полем и током имеет место в общем случае, когда проводящая среда не является изотропной. В условиях эффекта Холла тензор проводимости становится недиагональным. *Тензор удельного сопротивления* $\hat{\rho}$ вводится как обратный к тензору проводимости. В условиях эффекта Холла тензор проводимости получается равен

$$\hat{\sigma} = \hat{\rho}^{-1} = \frac{\sigma_0}{1 + (\mu B)^2} \cdot \begin{pmatrix} 1 & \mu B & 0 \\ -\mu B & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$
 (7)

Безразмерному параметру μB соответствует отношение эффективной длины пробега частиц $l=\mu mu/q$ к ларморовскому радиусу кривизны их траектории $r_B=mu/qB$. Эту величину называют *параметром замагниченности*.

2.4 Мостик Холла

Мостик Холла используется для исследования зависимости проводимости среды от магнитного поля. В данной схеме (рис. 2) ток вынуждают течь по оси x вдоль поской пластинки (ширина пластинки a, толщина h, длина l). Сила Лоренца, действующая со стороны перпендикулярного пластинке магнитного поля, прибивает носители заряда к краям образца, что создает холловское электрическое поле, компенсирующее эту силу. Поперечное напряжение между краями пластинки (холловское напряжение) равно $U_{\perp} = E_y a$, где $E_y = \frac{j_x B}{nq}$.

Плотность тока, текущего через образец, равна $j_x = I/ah$, где I — полный ток, ah — поперечное сечение. Таким образом, для холловского напряжения имеем

$$U_{\perp} = \frac{B}{ngh} \cdot I = R_{\text{\tiny H}} \cdot \frac{B}{h} \cdot I, \qquad (8)$$

где константу $R_{\rm H}=\frac{1}{nq}$ называют константой Холла, ее знак определяется знаком носителей заряда.

Продольная напряженность электрического поля равна

Рис. 2. Мостик Холла

$$E_x = \rho_{xx} \cdot j_x = j_x/\sigma_0,$$

где $\sigma_0 = qn\mu$ — удельная проводимость среды в отсутствие B, и падение напряжения $U_{||} = E_x l$ вдоль пластинки определяется омическим сопротивлением образца $R_0 = l/(\sigma_0 ah)$:

$$U_{\parallel} = IR_0. \tag{9}$$

3 Экспериментальная установка

Экспериментальная установка показана на рисунке 3. В зазоре электромагнита создается постоянное магнитное поле, величину которого можно менять с помощью регулятора источника питания электромагнита. Ток питания электромагнита измеряется амперметром A_1 , направление тока в обмотках электромагнита меняется переключением разъема K_1 .

Градуировка магнита проводится при помощи милливеберметра.

Рис. 3. Схема установки для исследования эффекта Холла в полупроводниках

Образец из легированного германия подключается к батарее. При замыкании ключа K_2 вдоль длинной стороны образца течет ток, величина которого регулируется реостатом R и измеряется миллиамперметром A_2 . В образце с током, помещенном в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра. Контакты 3 и 4 вследствие неточности пайки не всегда лежат на одной эквипотенциале, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец. Можно исключить влияние омического падения напряжения, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остается неизменным, тогда ЭДС Холла:

$$\mathcal{E}_x = U_{34} \pm U_0. \tag{10}$$

По знаку \mathcal{E}_x можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала по формуле:

$$\sigma = \frac{I \cdot L_{35}}{U_{35} \cdot a \cdot l},\tag{11}$$

где L_{35} — расстояние между контактами 3 и 5, a — толщина образца, l — его ширина.

4 Ход работы

В работе предлагается исследовать зависимость ЭДС Холла от величины магнитного поля при различных токах через образец для определения константы Холла, определить знак носителей заряда и проводимость материала образца. Подготовим все приборы к работе согласно описанию на установке.

4.1 Градуировка электромагнита

Проведем калибровку электромагнита — определим связь между индукцией магнитного поля в зазоре электромагнита и током через обмотку магнита. Для этого снимем зависимость магнитного потока Φ , пронизывающего катушку в поле, от тока $I_{\rm M}$ и найдем величину магнитной индукции по формуле:

$$B = \frac{\Delta\Phi}{SN},$$

где $\Delta \Phi = \Phi - \Phi_0$ — разность между конечным и начальным значениями потока вектора индукции, который пронизывал пробную катушку, находившуюся в зазоре

электромагнита. Значение $(SN)-72~{
m cm}^2\cdot {
m But}$. Результаты занесем в таблицу 1, а также отобразим на графике полученную калибровочную кривую (рис. 4):

$I_{\text{\tiny M}}, A$	ΔФ, мВб	B, м T л	σB , м T л
0.00	0.20	27.78	0.28
0.26	1.60	222	2
0.50	3.00	417	4
0.75	4.30	597	6
1.00	5.50	764	8
1.25	6.60	917	9
1.50	7.30	1014	10
1.75	7.80	1083	11
1.96	8.20	1139	11
2.00	8.20	1139	11

Таблица 1. Исследование зависимости индукции магнитного поля от тока через обмотку

Рис. 4. График зависимости $B\left(I_{\scriptscriptstyle \mathrm{M}}\right)$

Уравнение полученной зависимости показано на рисунке. Нам достаточно знать конечный набор значений магнитного поля и проводить измерения U_{34} на них. Также зафиксируем погрешности некоторых измеряемых величин (таблица 2) и параметры установки (таблица 3).

	Ф, мВб	$I_{\scriptscriptstyle \mathrm{M}},\mathrm{A}$	U_{34} , мкВ	I, мА
Величина	1	1	50	0.5
Погрешность, σ	0.01	0.01	1	0.005
ε , %	1	1	2	1

Таблица 2. Погрешности некоторых измеряемых величин

L_{35} , MM	3.0
a, MM	1.5
l, mm	1.7

Таблица 3. Параметры установки

4.2 Измерение ЭДС Холла

Проведем измерение ЭДС Холла. Сначала вставим в зазор выключенного электромагнита образец, параметры которого зафиксированы в таблице 3, и определим напряжение U_0 между холловскими контактами 3 и 4 при минимальном токе через образец. Это напряжение вызвано несовершенством контактов 3, 4 и при фиксированном токе остается неизменным — примем его за начало отсчета.

Затем снимем зависимость напряжения U_{34} от тока электромагнита $I_{\rm M}$ при фиксированном токе I через образец. Повторим эти действия для различных токов через образец. Также каждое значение тока электромагнита мы можем сопоставить со значением индукции магнитного поля в зазоре электромагнита, измеренным при калибровке. При максимальном токе через образец проведем еще измерения при обратном направлении магнитного поля.

Результаты измерений занесем в таблицу 4, а также построим на одном графике семейство зависимостей ЭДС Холла от магнитного поля в электромагните при различных токах через образец.

$I_{\scriptscriptstyle \mathrm{M}},~\mathrm{A}$	0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00
В, мТл	27.78	222	417	597	764	917	1014	1083	1139
$U_{34}(0.3\text{MA})$	-0.018	0.004	0.026	0.049	0.067	0.083	0.095	0.104	0.110
$U_{34}(0.4\text{MA})$	-0.023	0.005	0.036	0.066	0.091	0.114	0.130	0.140	0.148
$U_{34}(0.5\text{MA})$	-0.028	0.006	0.045	0.080	0.113	0.140	0.160	0.173	0.184
$U_{34}(0.6\text{MA})$	-0.035	0.010	0.055	0.097	0.136	0.170	0.194	0.210	0.223
$U_{34}(0.7\text{MA})$	-0.040	0.010	0.063	0.115	0.159	0.197	0.226	0.246	0.260
$U_{34}(0.8\text{MA})$	-0.047	0.010	0.072	0.133	0.183	0.228	0.258	0.281	0.297
$U_{34}(0.9\text{MA})$	-0.053	0.012	0.080	0.147	0.205	0.255	0.291	0.316	0.334
$U_{34}(1.0\text{MA})$	-0.059	0.016	0.091	0.164	0.230	0.283	0.324	0.352	0.374
$U_{34}(1.0\text{MA})$	-0.071	-0.140	-0.218	-0.292	-0.361	-0.423	-0.470	-0.497	-0.520

Таблица 4. Зависимость напряжения U_{34} [В] от тока электромагнита $I_{\scriptscriptstyle \rm M}$ при фиксированном токе I через образец

Построим график зависимости ЭДС Холла от величины магнитной индукции при разных значениях тока через образец I и определим угловые коэффициенты получившихся прямых. ЭДС Холла определяется по формуле (10).

Рис. 5. График зависимости ε_x (B)

Здесь самая верхняя прямая соответствует $I=1.0\mathrm{A}$, самая нижняя — $I=0.3\mathrm{A}$. Для каждой прямой рассчитаем значение коэффициента наклона по формуле $k=d\varepsilon_x/dB$ и построим график k(I):

Рис. 6. График зависимости k(I)

Рассчитаем размерность k: $k=\frac{\varepsilon_x}{B}$, где $[\varepsilon_x]=[\mathrm{B}]$, а $[B]=[\mathrm{Tn}]$, то есть $[k]=[\mathrm{B/Tn}]$. Коэффициент наклона последнего графика -K=0.391=k/I. Относительная погрешность определения этого коэффициента с учетом метода наименьших квадратов и систематических погрешностей получилась порядка 10%. Теперь можем найти значение *постоянной Холла* при помощи формулы (8).

$$R_{\text{H}} = \frac{\varepsilon_x \cdot a}{B \cdot I} = k \cdot \frac{a}{I} = K \cdot a = (0.665 \pm 0.080) \cdot 10^{-3} \text{ м}^3/\text{K}$$
л.

Рассчитаем концентрацию носителей тока:

$$n = \frac{1}{R_{\scriptscriptstyle \mathrm{H}} e} = (9.40 \pm 1.13) \cdot 10^{21} \; \mathrm{eд/m}^3.$$

4.3 Определение характера проводимости

Определим характер проводимости в образце. Направление тока через образец и направление магнитного поля показаны стрелками на рисунке 7:

Рис. 7. Установка

Зная направление магнитного поля в электромагните и тока через образец, можно определить, что носители тока заряжены отрицательно, то есть проводимость электронная.

4.4 Определение удельной проводимости

По формуле (11) рассчитаем удельную проводимость исследуемого образца. Для этого выключим источник питания электромагнита и удалим держатель с образцом из зазора. При токе через образец I=1мА измерим падение напряжения U_{35} и определим nposodumocmb:

$$\sigma = \frac{I \cdot L_{35}}{U_{35} \cdot a \cdot l} = (153.9 \pm 0.8) \frac{1}{\text{OM} \cdot \text{M}}.$$

Из полученных значений можно вывести подвиженость носителей тока (электронов):

$$b = \frac{\sigma}{ne} = \sigma R_{\text{H}} = (1446 \pm 245) \frac{\text{cm}^2}{\text{B} \cdot \text{c}}.$$

Табличное значение подвижности для электронной проводимости — $b_{\text{теор}} = 3800 \frac{\text{см}^2}{\text{B}\cdot\text{c}}$.

5 Вывод

В работе проводилось исследование эффекта Холла на примере полупроводника — легированного германия. Для него были определены постоянная Холла, концентрация холловских частиц, удельная проводимость и подвижность носителей зарядов. Полученные значения совпали с табличными хотя бы по порядку величины. Погрешность вычислений оказалась достаточно значительной, что может быть связано с вероятно большим количеством примесей в исследуемом веществе или с тем, что характер проводимости в исследуемом образце не чисто электронный, а электроннодырочный.