Note	Matrix norms.	
(11016		<u> </u>
	· Vector norm: a function · : V → IR satisfying	
	· x1 > 0 2 x1 =0 6) x=1	0
	· 20+4 < 41 +114 ~	
	11 x 2011 = 1x1/1211 v	
	- An important class of vector norms is the class of	
	- An important class of vector norms is the class of p-norms defined for $p \ge 1$: $(x=(x_1,,x_n))$ $n=2$, $x=(x_1,x_2)$	
	$(x_{-}(x_{1},,x_{n}))$ $n=2$, $x=(\overline{x}_{1},x_{2})$	
	$ x _{\rho} = \left(\sum x_{i} ^{\rho}\right)^{\gamma} $ $ x _{1} = \sum x_{i} $ $ x _{2} = \sum x_{i} $	٠٧,
	(-1,0)	C), e
	Closed unit discs in some p-norms: $p_{=2}: x _2 = (\sum x_i ^2) = (x_1^2 + x_2^2)$. V.
-) _
	Defn: $\ x\ _{\infty} = \max\{ x \}$	
	$Defn: \ x\ _{\infty} = \max \{ x_i \}$ $(\infty-norm) i$ (1.0).	
	Another class: weighted p-norms p=0: x1 = max{ x1 , x1 }	
	x1 , := x for any	
	$ x _{\mathcal{W}} := \mathcal{W} \times _{p} \text{ for any}$ $ x _{\mathcal{W}} := \mathcal{W} \times _{p} \text{ for any}$ $ x _{\mathcal{W}} := \mathcal{W} \times _{p} \text{ for any}$ $ x _{\mathcal{W}} := \mathcal{W} \times _{p} \text{ for any}$ $ x _{\mathcal{W}} := \mathcal{W} \times _{p} \text{ for any}$ $ x _{\mathcal{W}} := \mathcal{W} \times _{p} \text{ for any}$ $ x _{\mathcal{W}} := \mathcal{W} \times _{p} \text{ for any}$ $ x _{\mathcal{W}} := \mathcal{W} \times _{p} \text{ for any}$	
	non-singular matrix W.	
	2.5 p < 10	
	Matrix norms-	
T.	Efn: A matrix norm is a function . : C mxn - R satisfying-	
	· A ≥0 +A 2 A =0 ← A = 0	
	· A + B < A + B /	
	· α A = α · A · desirable ppty, whenever · A B ≤ A · B (multiplication exists i.e.m=1	\
	multiplication exists 1.2. mil	$\frac{\gamma}{2}$
	Important examples -	
	J Induced matrix norms: Suppose A ∈ C ^{m×n} , Consider A: C ⁿ → C	М
(I.II. III	m
	The induced matrix norm $ A _{(m,n)}$ is the smallest scalar C such that - $ A _{(m,n)} \le C \cdot x _n$	_
	scalar C such that -	
	$ A \propto x _n$	
	· · · · · · · · · · · · · · · · · · ·	

'wis	ie. AxIII ie. AxIIII C. C is the maximum factor by which A can 'stretch' x.
	$ \alpha x = \alpha \cdot x , so A xx = \alpha \cdot Ax = Ax $ $ \alpha x = \alpha \cdot Ax = Ax $ $ \alpha x = \alpha \cdot Ax = Ax $
	so it is sufficient to consider vectors a of norm 1.
	$ A _{(m,n)} = \sup_{\substack{n \neq 0 \\ n \in \mathbb{C}^n}} A _{n}$
	= sup A ze m x \in n = 1
	We will denote the induced materix norm All_(P,P) simply by Allp.
	Example: $A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$. Estimate the Induced norms
	(A: R ² - 3 R ²). A ₁ , A ₂ and A _∞ Consider the action of A on unit discs in R ² :
Sup	1-norm: $(0,1)$ $A = \{x_1, x_2, x_3, x_4, x_5, x_6, x_6, x_6, x_6, x_6, x_6, x_6, x_6$
Sup x1 1=1.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{c c} 2-\text{norm}: & (2,\sqrt{1-x^2}) \\ \hline & (1,0) & A \end{array} $ $ \begin{array}{c c} (2,\sqrt{1-x^2}) & A \end{array} $ $ \begin{array}{c c} (1,0) & A \end{array} $ $ \begin{array}{c c} (1,0) & A \end{array} $
	ao-norm
	(Exercise).

Theorem	: Let A be a mxn matrix, A = (aij) 15 i ≤ m
	$1 \leq j \leq n$
	Let aj denote the jth column of A and ai denote the ith how of A.
	ai denote the ith how of A.
	(i) $ A _1 = \max_{1 \le j \le n} a_{ij} _1 = \max_{1 \le j \le n} \sum_{i=1}^{m} a_{ij} _1 = \max_{1 \le j \le n} a_$
	(ii) A 00 = max a; 00 = max \frac{n}{2} aij (maximum ron) 1 \(ii) A 00 = \text{max} a; 00 = \text{max} 00 = \text{max} 0
Proof:	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	[] [aij xj]
	(\Delta ineq.)
	= \(\sum \) \[\lambda \lambda_{ij} \cdot \lambda_{j} \]
	m
	$= \sum_{j=1}^{n} \alpha_{ij} \sum_{i=1}^{n} a_{ij} $
	, , ,
	jth column sum =: Cj
	$= \sum_{j=1}^{n} C_{j} x_{j} $
	- 20
	< (max c;) \(\frac{1}{2} \pi_j \)
	= (max cj) · x ₁ ·
	:. Ax , \le x , (max cj)
	: $ A _1 = \sup_{x \neq 0} \frac{ Ax _1}{ x _1} \le \max_{x \neq 0} \{\sum_{i=1}^m a_{ij} ^2\}$ Suppose max $\{\sum_{i=1}^m a_{ij} ^2\}$ is attained at $j=j_0$,
	So [aijo in the max.
_	To show that the bound is attained, we need to
	demonstrate a vector u such that IIAuII, equals the max.
	element \(\sum_{i=1}^{m} a_{ij} \).