Yale University Department of Statistics and Data Science

STATISTICS 365/565

Issued: 04/12/2021 Due: 04/27/2021

Notation: $[k] = \{1, 2, ..., k\}$. For a matrix $A \in \mathbb{R}^{m \times n}$ we will let $A_{(i,\cdot)}$ denote the i^{th} row and $A_{(\cdot,j)}$ denote the j^{th} column. Both will be treated as column vectors.

1 PCA

Suppose that we have data with covariance matrix $\Sigma = vv^T + \sigma^2 I$ for $v \in \mathbb{R}^p$.

Problem 1: Prove that the largest singular value of Σ is $||v||_2^2 + \sigma^2$. Some suggested ways to approach this, but no need to do the problem like this.

Part 1: The SVD is written as $\Sigma = VDV^T = \sum_{i=1}^p d_i v_i v_i^T$, since Σ is symmetric and PSD so $d_i \geq 0$. Let's just guess that one of the singular vectors is $\tilde{v}_1 = \frac{v}{\|v\|_2}$. Then from that we know we can build a set of p-1 orthogonal vectors \tilde{v}_i for $i \in [2,p]$. So, all of the \tilde{v}_i are orthogonal unit vectors. Let's put them into a matrix $V \in \mathbb{R}^{p \times p}$ so that the i^{th} column is \tilde{v}_i . Show that $\sigma^2 I = \sigma^2 \sum_{i=1}^p \tilde{v}_i \tilde{v}_i^T$

Part 2: Using the above, now show that $vv^T + \sigma^2 I = ||v||_2^2 \tilde{v}_1 \tilde{v}_1^T + \sigma^2 \sum_{i=1}^p \tilde{v}_i \tilde{v}_i^T$.

Part 3: Now show that

$$\Sigma = (\|v\|_2^2 + \sigma^2)\tilde{v}_1\tilde{v}_1^T + \sigma^2 \sum_{i=2}^p \tilde{v}_i\tilde{v}_i^T$$

To conclude that $\Sigma = VDV^T$ where $D_{11} = ||v||_2^2 + \sigma^2$ and all other $D_{ii} = \sigma^2$.

Problem 2: Prove that the top left (and right since Σ is symmetric) singular vector is $v/\|v\|_2$.

Problem 3: Suppose that data $x_i = vy_i + w_i$ where $y_i \sim N(0,1)$ and $w_i \sim N(0,\sigma^2 I)$ where we assume that y_i and w_i are uncorrelated. Show that the covariance of x_i is Σ above. In a few sentences explain intuitively why it makes sense for $\frac{v}{\|v\|_2}$ to correspond to the largest singular vector of Σ (that is the singular vector associated with the largest singular value). You can do so by connecting this interpretation to any of the interpretations presented in lecture.

2 SVD

Finding the singular values and vectors of a matrix is important as we have discussed. One famous method of doing so is via the **power iteration method**. To find the top left and right singular vectors as well as the singular value we can perform the following algorithm. Consider our matrix $X \in \mathbb{R}^{p \times n}$. For all problems below we take $X = USV^T = \sum_{j=1}^{p \wedge n} u_j v_j^T \sigma_j$ where u_j and v_j are the left (resp. right) singular vectors while σ_j are the singular values sorted in decreasing order.

Initialize $v \sim N(0, I_n)$ and $u \sim N(0, I_p)$.

- Let $u = Xv/\|Xv\|_2$
- Let $v = X^T u / \|X^T u\|_2$
- Repeat until convergence

Problem 4: Suppose that $X = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T$ with $\sigma_1 > \sigma_2 > 0$ is the SVD of X. So the u_i and v_i are unit vectors and $u_1^T u_2 = 0$ and $v_1^T v_2 = 0$. Suppose that we have a unit norm v such that $\alpha_1 = v^T v_1 > 0$ and $\alpha_2 = v^T v_2 > 0$. Let $u = Xv/\|Xv\|_2$. Let $v' = X^T u/\|X^T u\|_2$. Let $u' = Xv'/\|Xv'\|_2$. Show that $[u']^T u_1 > u^T u_1$. That is, after one step of the power method, u' is now more aligned with u_1 than the initial estimate u was.

We show this in parts

Part 1: Show that the following way to produce u' is equivalent to the one written in the previous paragraph.

- $\tilde{u} = Xv$
- $\tilde{v}' = X^T \tilde{u}$
- $\bullet \ u' = X\tilde{v}'/\|X\tilde{v}'\|_2$

That is, we only have to do the renormalization at the last step.

Part 2: Show the following equalities.

$$u = \frac{u_1 + \frac{\alpha_2 \sigma_2}{\alpha_1 \sigma_1} u_2}{\sqrt{1 + \frac{\alpha_2^2 \sigma_2^2}{\alpha_1^2 \sigma_1^2}}}$$
$$u' = \frac{u_1 + \frac{\alpha_2 \sigma_2^3}{\alpha_1 \sigma_1^3} u_2}{\sqrt{1 + \frac{\alpha_2^2 \sigma_2^6}{\alpha_1^2 \sigma_1^6}}}$$

Part 3: Finally, show the result.

Extra credit: Show that for the SVD $X = USV^T$ we have

$$\sigma_1 = \max_{\|u\|_2 \le 1, \|v\|_2 \le 1} u^T X v$$