Suites numériques

Christophe ROSSIGNOL*

Année scolaire 2007/2008

Table des matières

Not	ion de suite numérique	2		
1.1	Définition	2		
1.2	Modes de génération d'une suite	2		
1.3	Sens de variation d'une suite	3		
Suit	tes arithmétiques	4		
2.1	Définition, exemples	4		
2.2				
2.3	Somme de termes consécutifs	5		
3 Suites géométriques				
3.1	Définition, exemples	6		
3.2	Expression en fonction de n	7		
3.3	Somme de termes consécutifs	7		
	1.1 1.2 1.3 Suit 2.1 2.2 2.3 Suit 3.1 3.2	1.2 Modes de génération d'une suite 1.3 Sens de variation d'une suite Suites arithmétiques 2.1 Définition, exemples 2.2 Expression en fonction de n 2.3 Somme de termes consécutifs Suites géométriques 3.1 Définition, exemples 3.2 Expression en fonction de n		

^{*}Ce cours est placé sous licence Creative Commons BY-SA http://creativecommons.org/licenses/by-sa/2.0/fr/

En préliminaire au cours :

- Test A page 198 [Déclic] : Puissances.
- Test C page 198 [Déclic] : Évolutions successives.
- Activité 1 page 199 [Déclic] : Des chiffres et leur place.
- Activité 2 page 199 [Déclic] : Des nombres obtenus par un procédé.

1 Notion de suite numérique

1.1 Définition

Définition: Une suite numérique est une liste indexée de nombres.

Elle a un premier terme, un deuxième terme, etc.

Exemple : Dans l'activité 1 page 199, à chaque entier naturel, on associe un nombre suivant sa place dans la liste donnée. Ainsi :

$$u\left(0\right) = 8$$

$$u\left(1\right) = 6$$

$$u\left(2\right) = 9$$

$$u\left(3\right) = 2$$

$$u(4) = 2$$

Plus généralement, le terme u(n) correspond au $(n-1)^{\text{ième}}$ terme de la liste de nombres donnée.

Remarque : Une suite numérique est donc une fonction qui, à tout entier naturel n, associe un nombre, noté u(n), ou, plus souvent, u_n .

Notations:

- On utilise généralement les lettres u, v, w, \ldots pour caractériser une suite.
- $-u_n$ est appelé terme d'indice n (ou de rang n) de la suite.
- La suite dans sa globalité est notée u ou (u_n) .

Remarque : Attention! Il ne faut pas confondre le terme d'indice n de la suite et le $n^{i\text{\`e}me}$ terme de la suite. Voir exemple précédent.

Exercices: 11 page 211¹ [Déclic]

1.2 Modes de génération d'une suite

Exemple 1: A l'aide d'une formule explicite

Soit (u_n) la suit définie par : $u_n = -n^2 + n - 2$.

On a:
$$u_0 = -0^2 + 0 - 2 = 2$$
; $u_1 = -1^2 + 1 - 2 = -2$; $u_2 = -2^2 + 2 - 2 = -4$; $u_5 = -5^2 + 5 - 2 = -22$; ota

Remarque: La suite est donc de la forme $u_n = f(n)$, où f est une fonction.

Pour calculer des termes de la suite, on peut donc utiliser les tableaux de valeurs de la calculatrice.

Exemple 2 : A l'aide d'un procédé

Soit (v_n) la suite de premier terme $v_0 = 5$ et dont le terme suivant est obtenu en ajoutant 3 puis en divisant par 2.

On a :
$$v_1 = \frac{v_0+3}{2} = \frac{5+3}{2} = 4$$
; $v_2 = \frac{v_1+3}{2} = \frac{4+3}{2} = \frac{7}{2}$; $v_3 = \frac{v_2+3}{2} = \frac{\frac{7}{2}+3}{2} = \frac{13}{4}$ et, plus généralement $v_{n+1} = \frac{v_n+3}{2}$.

Remarques:

- 1. Dans ce cas, le terme d'indice n est calculé à partir du terme précédent. On calcule donc les termes de (v_n) de proche en proche (avant de calculer v_5 , il faut déjà avoir calculé v_4 , v_3 , etc.). Une telle relation est appelée formule de récurrence.
- 2. On notera la suite (v_n) de la façon suivante :

$$\begin{cases} v_0 = 5 \\ v_{n+1} = \frac{v_n + 3}{2} \end{cases}$$

3. On peut aussi utiliser la calculatrice pour calculer les premiers termes de suites définies par récurrence. Voir page 201 [Déclic] pour une explication du procédé.

 $^{^{1}\}mathrm{QCM}.$

Exercices: 12, 13 page $211^2 - 17$, 18 page 211 et 20, 21 page $212^3 - 31$ page 212 et 32, 34 page $213^4 - 35$, 36 page 213⁵ [Déclic]

Sens de variation d'une suite 1.3

Définition:

- Une suite (u_n) est croissante si, pour tout entier naturel n, on a $u_{n+1} \geq u_n$.
- Une suite (u_n) est décroissante si, pour tout entier naturel n, on a $u_{n+1} \leq u_n$.

Remarque: On peut aussi définir une suite strictement croissante, strictement décroissante ou constante.

Propriété 1 : Pour étudier les variations de la suite (u_n) , il suffit d'étudier le signe de $u_{n+1} - u_n$:

- Si pour tout n, $u_{n+1} u_n \ge 0$ alors (u_n) est croissante. Si pour tout n, $u_{n+1} u_n \le 0$ alors (u_n) est décroissante.

Exemples:

1. Soit (u_n) la suite définie par $u_n = \frac{3}{n+2}$.

On a :

$$u_{n+1} = \frac{3}{(n+1)+2} = \frac{3}{n+3}$$

par suite:

$$u_{n+1} - u_n = \frac{3}{n+3} - \frac{3}{n+2}$$

$$= \frac{3(n+2) - 3(n+3)}{(n+3)(n+2)}$$

$$= \frac{3n+6-3n-9}{(n+3)(n+2)} = -\frac{3}{(n+3)(n+2)}$$

De plus, comme n est un entier positif, n+2>0 et n+3>0. Par suite, pour tout n, $u_{n+1} - u_n < 0$ donc la suite (u_n) est décroissante.

2. Soit (v_n) la suite définie par $v_n = \frac{3^n}{4^{n+2}}$.

On a:

$$v_{n+1} = \frac{3^{n+1}}{4^{(n+1)+2}} = \frac{3^n \times 3^1}{4^{(n+2)+1}} = \frac{3^n \times 3}{4^{n+2} \times 4} = \frac{3^n}{4^{n+2}} \times \frac{3}{4}$$

par suite:

$$v_{n+1} - v_n = \frac{3^n}{4^{n+2}} \times \frac{3}{4} - \frac{3^n}{4^{n+2}}$$
$$= \frac{3^n}{4^{n+2}} \left(\frac{3}{4} - 1\right)$$
$$= \frac{3^n}{4^{n+2}} \times \left(-\frac{1}{4}\right)$$

De plus, comme n est un entier positif, $3^n > 0$ et $4^{n+2} > 0$. Par suite, pour tout n, $u_{n+1} - u_n < 0$ donc la suite (u_n) est décroissante.

Exercices: 40 page 213⁶ - 22, 23, 25 page 212⁷ [Déclic]

²QCM – Vrai ou faux.

 $^{^3{\}rm Calculs}$ de termes à la main ou à la calculatrice.

 $^{^4}$ Détermination d'une formule de récurrence.

⁵Calculs sur les termes d'une suite.

⁶Étude graphique.

⁷Détermination du sens de variation par calcul de $u_{n+1} - u_n$.

Propriété 2 : Soit (u_n) une suite définie par $u_n = f(n)$.

- Si la fonction f est croissante sur $[0; +\infty[$, alors la suite (u_n) est croissante.
- Si la fonction f est décroissante sur $[0; +\infty[$, alors la suite (u_n) est décroissante.

Remarque : La réciproque de cette propriété est fausse. Voir l'exercice 40 page 213 [Déclic] pour un contreexemple.

Exemple : Soit (u_n) la suite définie par $u_n = \frac{120}{n+1}$.

On a $u_n = f(n)$ avec $f(x) = \frac{120}{x+1}$.

La fonction f s'obtient à partir de la fonction inverse par multiplication par 120 et translation de vecteur $-\vec{\imath}$. Son tableau de variations est donc :

x	$-\infty$		-1		$+\infty$
f(x)		/		/	
A .	т —	• . /	1	1	1/

Par suite, f est décroissante sur $[0; +\infty[$. La suite (u_n) est donc décroissante.

Exercice: 26 page 212⁸ [Déclic]

2 Suites arithmétiques

2.1 Définition, exemples

Définition : On dit qu'une suite (u_n) est **arithmétique** si on passe d'un terme au suivant en ajoutant toujours le même nombre réel r. On a donc :

$$u_{n+1} = u_n + r$$

Le réel r est alors appelé **raison** de la suite.

Exemples:

- 1. La suite : $1, 6, 11, 16, 21, \ldots$ est arithmétique de raison 5.
- 2. La suite définie par :

$$\begin{cases} u_0 = 10 \\ u_{n+1} = u_n - 3 \end{cases}$$

est arithmétique de raison (-3).

- 3. La suite des entiers naturels : 0, 1, 2, 3,4, 5, ... est arithmétique de raison 1.
- 4. La suite des entiers naturels impairs est arithmétique de raison 2.

Propriété : Une suite (u_n) est arithmétique si et seulement si la différence $u_{n+1} - u_n$ est constante pour tout entier n.

Dans ce cas, la constante trouvée est la raison de la suite.

Exemples:

1. Soit u la suite définie par $u_n = 3n - 2$.

$$u_{n+1} - u_n = 3(n+1) - 2 - (3n-2)$$

= $3n + 3 - 2 - 3n + 2 = 3$

La suite est donc arithmétique de raison 3 et de premier terme $u_0 = -2$.

2. Soit v la suite définie par $v_n = n^2$.

$$v_{n+1} - v_n = (n+1)^2 - n^2$$

= $n^2 + 2n + 1 - n^2 = 2n + 1$

Le résultat dépend de n, la suite n'est donc pas arithmétique.

⁸Sens de variation d'une suite en utilisant une fonction.

3. Soit w la suite définie par :

$$\begin{cases} w_0 = -1\\ w_{n+1} = w_n + \sqrt{2} \end{cases}$$

Par définition, la suite est arithmétique de raison $\sqrt{2}$.

Exercices: 42, 43 page 214⁹ [Déclic]

Théorème : Soit (u_n) une suite arithmétique de raison r.

- Si r > 0, alors la suite (u_n) est croissante.
- Si r < 0, alors la suite (u_n) est décroissante.

2.2 Expression en fonction de n

Soit (u_n) une suite arithmétique de raison r. On a :

$$u_1 = u_0 + r$$
 $u_2 = u_1 + r = (u_0 + r) + r = u_0 + \frac{2r}{r}$ $u_3 = u_2 + r = (u_0 + 2r) + r = u_0 + \frac{3r}{r}$

Plus généralement, on a le résultat suivant :

Théorème : Soit (u_n) une suite arithmétique de raison r. Alors :

$$u_n = u_0 + nr$$

Remarques:

- 1. En particulier, la représentation graphique d'une suite arithmétique est formée de points alignés.
- 2. Plus généralement, si (u_n) est une suite arithmétique de raison r et si n et p sont deux entiers naturels, on a : $u_n = u_p + (n-p) r$.

Exemple: Soit (u_n) la suite arithmétique de premier terme $u_0 = 7$ et de raison (-2).

On a: $u_n = u_0 + nr = 7 + n \times (-2) = 7 - 2n$.

En particulier : $u_{50} = 7 - 2 \times 50 = 7 - 100 = -93$.

Exercices: 45, 46, 47 page $214^{10} - 49$ page $214^{11} - 56$ page 215^{12} [Déclic]

2.3 Somme de termes consécutifs

Théorème: Soit (u_n) une suite arithmétique de raison r. On note S_n la somme des (n+1) premiers termes de la suite (u_n) , c'est-à-dire :

$$S_n = u_0 + u_1 + u_2 + \dots + u_n$$

Alors, on a:

$$S_n = (n+1) \, \frac{(u_0 + u_n)}{2}$$

En effet:

⁹Reconnaissance de suites arithmétiques.

 $^{^{10}\}mathrm{Calculs}$ de termes.

 $^{^{11}\}mathrm{Utilisation}$ de la représentation graphique.

 $^{^{12}}$ Application concrète.

De plus:

$$u_0 + u_n = u_0 + u_0 + nr = 2u_0 + nr$$

$$u_1 + u_{n-1} = (u_0 + r) + (u_0 + (n-1)r) = u_0 + r + u_0 + nr - r = 2u_0 + nr = u_0 + u_n$$

et, plus généralement, pour tout k, $u_k + u_{n-k} = u_0 + u_n$.

On a donc:

$$2S_n = \underbrace{(u_0 + u_n) + (u_0 + u_n) + \dots + (u_0 + u_n)}_{(n+1) \text{ termes}}$$

On a donc:

$$2S_n = (n+1)(u_0 + u_n)$$

soit, en divisant par 2:

$$S_n = (n+1) \frac{(u_0 + u_n)}{2}$$

Remarque: Il est plus facile de retenir cette formule sous la forme suivante :

$$S = (\text{nombre de termes}) \times \frac{\text{premier terme} + \text{dernier terme}}{2}$$

Exercices: 50 page 214 et 52, 54, 55 page 215¹³ – 58, 61 page 215 et 63 page 216¹⁴ [Déclic]

3 Suites géométriques

3.1 Définition, exemples

Définition : On dit qu'une suite (u_n) est **géométrique** si on passe d'un terme au suivant en multipliant toujours par le même nombre réel q. On a donc :

$$u_{n+1} = q \times u_n$$

Le réel q est alors appelé **raison** de la suite.

Exemples:

- 1. La suite : 1, 2, 4, 8, 16, ... est géométrique de raison 2.
- 2. La suite définie par :

$$\begin{cases} u_0 = 3 \\ u_{n+1} = -\frac{1}{2}u_n \end{cases}$$

est arithmétique de raison $\left(-\frac{1}{2}\right)$.

- 3. La suite définie par $u_n = (-1)^n$ est géométrique de raison (-1).
- 4. On augmente tous les ans une quantité de 5%. La suite obtenue est $u_{n+1} = 1,05u_n$. C'est donc une suite géométrique de raison 1,05.

Propriété : Une suite (u_n) est géométrique si et seulement si le quotient $\frac{u_{n+1}}{u_n}$ est constante pour tout entier n. Dans ce cas, la constante trouvée est la raison de la suite.

Exemples:

1. Soit u la suite définie par $u_n = 5 \times 3^{n+2}$.

$$\frac{u_{n+1}}{u_n} = \frac{5 \times 3^{n+3}}{5 \times 3^{n+2}} = 3^{n+3-n-2} = 3$$

La suite est donc géométrique de raison 3 et de premier terme $u_0 = 5 \times 3^2 = 45$.

¹³Calcul de sommes.

 $^{^{14}}$ Applications concrètes.

2. Soit v la suite définie par $v_n = \frac{3^n}{4^{n+1}}$

$$\frac{v_{n+1}}{v_n} = \frac{\frac{3^{n+1}}{4^{n+2}}}{\frac{3^n}{4^{n+1}}} = \frac{3^{n+1}}{4^{n+2}} \times \frac{4^{n+1}}{3^n} = \frac{3^{n+1-n}}{4^{n+2-n-1}} = \frac{3}{4}$$

La suite est donc géométrique de raison $\frac{3}{4}$ et de premier terme $v_0 = \frac{3^0}{4^1} = \frac{1}{4}$.

Exercices : 67, 69 page 216^{15} [Déclic]

Théorème: Soit (u_n) une suite géométrique de raison q et de premier terme u_0 positif.

- Si q > 1, alors la suite (u_n) est croissante.
- Si 0 < q < 1, alors la suite (u_n) est décroissante.

3.2 Expression en fonction de n

Soit (u_n) une suite géométrique de raison q. On a:

$$u_1 = u_0 \times q$$
 $u_2 = u_1 \times q = (u_0 \times q) \times q = u_0 \times q^2$ $u_3 = u_2 \times q = (u_0 \times q^2) \times q = u_0 \times q^3$

Plus généralement, on a le résultat suivant :

Théorème : Soit (u_n) une suite géométrique de raison q. Alors :

$$u_n = u_0 \times q^n$$

Remarque : Plus généralement, si (u_n) est une suite géométrique de raison q et si n et p sont deux entiers naturels, on a : $u_n = u_p \times q^{n-p}$.

Exemple : Soit (u_n) la suite arithmétique de premier terme $u_0 = 3$ et de raison 2.

On a : $u_n = u_0 \times q^n = 3 \times 2^n$. En particulier : $u_{10} = 3 \times 2^{10} = 3072$.

Exercices: 64, 65 page $216^{16} - 70$, 71 page 216^{17} [Déclic]

Somme de termes consécutifs 3.3

Théorème: Soit (u_n) une suite géométrique de raison q (avec $q \neq 1$). On note S_n la somme des (n+1)premiers termes de la suite (u_n) , c'est-à-dire :

$$S_n = u_0 + u_1 + u_2 + \dots + u_n$$

Alors, on a:

$$S_n = u_0 \frac{1 - q^{n+1}}{1 - q}$$

En effet, si on note $S = 1 + q + q^2 + \cdots + q^n$:

¹⁵Reconnaissance de suites géométriques.

 $^{^{16}\}mathrm{Calculs}$ de termes.

 $^{^{17}\}mathrm{Applications}$ concrètes.

On a donc :

$$S - qS = 1 - q^{n+1}$$

 $(1 - q) S = 1 - q^{n+1}$

et, comme $q \neq 1$, $1 - q \neq 0$. D'où :

$$S = \frac{1 - q^{n+1}}{1 - q}$$

De plus:

$$S_n = u_0 + u_1 + u_2 + \dots + u_n$$

$$= u_0 + u_0 q + u_0 q^2 + \dots + u_0 q^n$$

$$= u_0 (1 + q + q^2 + \dots + q^n)$$

$$= u_0 \times S$$

Par suite :

$$S_n = u_0 \frac{1 - q^{n+1}}{1 - q}$$

 $\bf Remarque:$ Il est plus facile de retenir cette formule sous la forme suivante :

$$S = (\text{premier terme}) \times \frac{1 - (\text{raison})^{\text{nbre de termes}}}{1 - \text{raison}}$$

Exercices: 75, 76, 78 page 217^{18} – 72 page 216 et 73, 79, 81, 82 page 217^{19} [Déclic]

Exercices de synthèse : 89, 90 page $218^{20} - 91$, 92, 94 page $219^{21} - 97$ page 219 et 102, 104, 105 page 220^{22} [Déclic]

Références

[Déclic] Déclic 1re ES, Hachette éducation (édition 2005)

2, 3, 4, 5, 6, 7, 8

 $^{^{18}\}mathrm{Calcul}$ de sommes.

 $^{^{19}\}mathrm{Applications}$ concrètes.

²⁰Comparaison de suites.

 $^{^{21} \}mathrm{Placements}$ à intérêts simples ou composés.

 $^{^{22} {\}rm Applications}.$