Rec'd PCT/PTO 04 RF 2004/005482

10/552284 15. 7. 2004

日本国特許庁 JAPAN PATENT OFFICE

REC'D 0 2 SEP 2004

WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 4月17日

出願番号 Application Number:

人

特願2003-113346

[ST. 10/C]:

[JP2003-113346]

出 願
Applicant(s):

三菱鉛筆株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 8月19日

小 川

【書類名】

特許願

【整理番号】

1033672

【提出日】

平成15年 4月17日

【あて先】

特許庁長官 太田 信一郎 殿

【国際特許分類】

B43K 7/02

【発明の名称】

非水系ボールペン用フォロワーおよび非水系ボールペン

【請求項の数】

4

【発明者】

【住所又は居所】 神奈川県横浜市神奈川区入江2-5-12 三菱鉛筆株

式会社 横浜事業所内 横浜研究開発センター

【氏名】

猪飼 敬幸

【発明者】

【住所又は居所】 神奈川県横浜市神奈川区入江2-5-12 三菱鉛筆株

式会社 横浜事業所内 横浜研究開発センター

【氏名】

市川 秀寿

【特許出願人】

【識別番号】

000005957

【氏名又は名称】 三菱鉛筆株式会社

【代理人】

【識別番号】

100099759

【弁理士】

【氏名又は名称】 青木 篤

【電話番号】

03-5470-1900

【選任した代理人】

【識別番号】 100077517

【弁理士】

【氏名又は名称】 石田 敬

【選任した代理人】

【識別番号】 100087413

【弁理士】

【氏名又は名称】 古賀 哲次

【選任した代理人】

【識別番号】 100082898

【弁理士】

【氏名又は名称】 西山 雅也

【手数料の表示】

【予納台帳番号】 209382

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9506111

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 非水系ボールペン用フォロワーおよび非水系ボールペン 【特許請求の範囲】

【請求項1】 40 Cにおける粘度が200 mPa・s以上の合成油であるポリー α -オレフィンを1種または2種以上含有し、その総量が全成分の80 質量%以上であり、40 Cにおける粘度が1000 ~ 3000 mPa・s、剪断速度1 ~ 10 /sにおける剪断減粘指数が0.95 以上であることを特徴とする非水系ボールペン用フォロワー。

【請求項2】 40 ℃における粘度が1000 mPa·s以上の合成油であるポリー α ーオレフィンを1 種または2 種以上含有し、その総量が全成分の90 質量%以上であることを特徴とした請求項1 に記載の非水系ボールペン用フォロワー

【請求項4】 20℃での蒸気圧が0.2~50mHgのアルコール類、グリコールモノエーテル類からなる溶剤がインキ溶剤の10~100質量%を占める非水系ボールペンインキと、請求項1~3いずれかに記載の非水系ボールペン用フォロワーを含み、且つ、インキ収容管の内径が2.8m以下である非水系ボールペン。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、インキ収容管内に直接収容する非水系ボールペン用インキの尾端部 に使用するフォロワーおよびそれを用いた非水系ボールペンに関する。

[0002]

【従来の技術】

従来、油性ボールペン用のフォロワーとしてはグリースの使用が見られるが、

高温下や長時間の保存で離油が見られたり、インキと相溶する等品質的に不十分なばかりでなく、不透明なためインキとの区別がつき難く使用者がインキが残っているのに筆記できなくなったとの印象を持つ等の欠点がある。

[0003]

しかし、従来の一般的な油性ボールペンにおいては、溶剤分の90%以上が2 一フェノキシエタノール及び/又はベンジルアルコールで構成されており、これ ら溶剤の20℃における蒸気圧が0.2mmHg以下であることからペン後端部から の溶剤の揮発は問題にならない。

加えて25℃におけるインキ粘度が3000~2000 mPa·sであることから衝撃による飛散もしにくい。

[0004]

従って、従来の油性ボールペンでは、インキ収容管の内径が2.8m以下のものは、ペン先を上ないし横向きに放置した場合でも管抵抗が強く、表面張力の影響でインキが後端部から漏れ出さないため、必ずしもフォロワーを必要としなかった。

[0005]

仮に、インキ収容管の内径が2.8m以下のものにフォロワーを使用した場合は、管抵抗が強くなるため、低温時や速書時にフォロワーの追従不良によるカスレが発生し易くなり、流動性の良いフォロワーの使用が望まれる。

[0006]

しかし、流動性の良いフォロワーを使用した場合には、落下衝撃によりフォロワーが飛散し易くなる。

更に、ペン先が上向きで放置された際、放置環境によっては、インキとフォロワーが逆転し易くなるという問題が発生し易くなったり、インキ収容管壁面をフォロワーが経時的に拡張濡れをし、重力の影響と重なり、インキ収容管壁面を伝い垂れインキ後端部のフォロワー量が減少する現象(垂れ)が起こり易くなる。

[0007]

また、上向き放置時における逆転やフォロワーの垂れを良好にするためフォロワーに擬塑性を付与し、静置下における見かけ粘度を高くし流動性を低下させた

場合は、インキ消費時にフォロワーが壁面に付着する量が多くなり、インキ消費 と共にインク後端部に存在するフォロワー量が著しく減少し、極端な場合はフォ ロワーが後端部からなくなってしまう場合がある。

[0008]

更に、上記した通り、低剪断速度領域における見かけ粘度が高いため、低温時 や速書時にフォロワーの追従不良によるカスレが発生し易くなる。

加えて、リフィール内部に気泡が残存もしくは発生した場合は、低剪断速度領域における見かけ粘度が高いために、気泡がフォロワー後端部より、抜けることが不可能となり、カスレ等の問題の原因となる。更に、気泡の成長やペン体が高温下におかれた際には、気泡の体積増加により、フォロワーがインク収容管後端部より漏れだす場合がある。

[0009]

つまり、インキ収容管の内径が2.8m以下のものにフォロワーを使用した場合は、低温時や速書性におけるフォロワーの追従性と落下耐性、上向き逆転性、 垂れ性のバランスを取ることが困難な問題となってくる。

更にインキ消費に伴うインキ後端部のフォロワー量の減少や気泡の残存に関する不具合に対しても対策を要する。

[0010]

ボールペンのインク収容管の内径は、ボールペンチップのインク吐出量、筆記 距離、外観上のインク充填長さからの見栄え、ペンのデザイン等、様々なバラン スで設定される場合が多く、フォロワーが必要となる場合は、設定されたインク 収容管内径に適切な物性を有したフォロワーが必要となる。

[0011]

一方、水系のボールペン用としては、特公平6-33024号公報、特許第2859068号、特許第3016749号、特開平7-216285号公報、特開平8-183286号公報、特開平9-76687号公報、特開平11-42882号公報、特開2001-63272、特開平6-336584、特開200-177288、特開平7-266780に、インキ収容管に直接インキを収容せしめる水系ボールペンに具備されたフォロワーが開示されている。これら

のフォロワーは、後端部からの水の揮発、ペンを上ない。し横向きに放置した場合 に生じてしまうインキの漏れ出し、衝撃によるインキの飛散を抑制する働きがあ る。

[0012]

【特許文献1】

特公平6-33024号公報

【特許文献2】

特許第2859068号明細書

【特許文献3】

特許第3016749号明細書

【特許文献4】

特開平7-216285号公報

【特許文献5】

特開平8-183286号公報

【特許文献6】

特開平9-76687号公報

【特許文献7】

特開平11-42882号公報

【特許文献8】

特開2001-63272公報

【特許文献9】

特開平6-336584公報

【特許文献10】

特開2000-177288公報

【特許文献11】

特開平7-266780公報

[0013]

【発明が解決しようとする課題】

上記の水系ボールペン用に開示されているフォロワーは、確かに水系ボールペ

ン用としては使用可能である。

[0014]

また、上記開示されているフォロワーは内径2.8mm以上のインキ収容管に充填することが想定されており、そのためか、その殆どに剪断減粘性を付与するゲル化剤が必須成分となっている。

内径が2.8mm以下の管抵抗が強いインキ収容管を使用した場合は、ゲル化剤の 影響により、低温時や速書時にフォロワーの追従不良によるカスレが発生し易く なり、インキ消費時にフォロワーが壁面に付着する量が多くなり、インキ消費と 共にインク後端部に存在するフォロワー量が著しく減少する不具合が発生する。

[0015]

本発明者らは、従来の油性ボールペンとは異なり蒸気圧の高い溶剤を使用した 非水系ボールペンを開発しているが、そのような蒸気圧の高い溶剤を使用した非 水系ボールペン用インキにはフォロワーが必要であることが明らかになった。

また、上述した理由より、インキ収容管の内径が2.8m以下のインク収容管に対して適切な物性を有するフォロワーが必要となった。

そこで、上記の従来開示されかつ普通に使用されている水系ボールペン用フォロワーを開発中の蒸気圧の高い溶剤を使用した非水系ボールペンに使用したところ、そのままでは使用できなかった。

[0016]

本発明は、上記のような事情に鑑みて、上記の問題を解決し、蒸気圧の高い溶剤を使用した非水系ボールペンにも使用可能で、高温下や長期の保存においても離油することなく安定であり、インキと外気を遮断してインキの揮発を防止し、更に内径が2.8mm以下の管抵抗が強いインキ収容管にフォロワーを搭載した際でも、低温時や速書性におけるフォロワーの追従性に問題がなく、落下衝撃に対する耐性を確保し、ペン先が上向きで放置された際、比重差によりインキとフォロワーが逆転しにくく、インキ収容管壁面をフォロワーが経時的に伝い垂れる現象(垂れ)が起こり難く、インキ消費に伴うインキ後端部のフォロワー量の減少が少ない、非水系ボールペン用フォロワーおよびそのようなフォロワーを含む非水系ボールペンを提供することを目的とする。

[0017]

【課題を解決するための手段】

上記課題を達成するために鋭意検討した結果、本発明者は、以下に示す点を特徴とすることにより課題を解決できることを見いだし、本発明を完成した。

(1) 40 ℃における粘度が200 mPa·s以上の合成油であるポリー α ーオレフィンを1 種または2 種以上含有し、その総量が全成分の80 質量%以上であり、40 ℃における粘度が1000 ~ 3000 mPa·s、剪断速度1 ~ 10 /sにおける剪断減粘指数が0.95 以上であることを特徴とする非水系ボールペン用フォロワー。

[0018]

(2) 40 ℃における粘度が1000 mPa·s以上の合成油であるポリー α - オレフィンを1 種または2 種以上含有し、その総量が全成分の90 質量%以上であることを特徴とした(1)に記載の非水系ボールペン用フォロワー。

[0019]

(3) 40℃における粘度が5000mPa・s以上の合成油であるポリーαーオレフィンを1種または2種以上含有し、その総量が全成分の50質量%以上であることを特徴とした(1)または(2)に記載の非水系ボールペン用フォロワー・

[0020]

(4) 20℃での蒸気圧が0. 2~50mHgのアルコール類、グリコールモノエーテル類からなる溶剤がインキ溶剤の10~100質量%を占める非水系ボールペンインキと、(1)~(3)いずれかに記載の非水系ボールペン用フォロワーを含み、且つ、インキ収容管の内径が2.8mm以下である非水系ボールペン。

[0021]

【発明の実施の形態】

本発明者らは、従来とは異なり蒸気圧の高い溶剤を使用した非水系ボールペン において、従来技術の欄で記載したように従来の水系ボールペンインキ用フォロ ワーをそのままでは使用できない理由について、鋭意検討した結果、次のような 理由を見出した。

[0022]

即ち、水系ボールペンインキ溶剤の水と比較して、非水系ボールペンインキに使用される溶剤は、フォロワー溶剤との親和性が強すぎるのである。つまり、非水系ボールペンインキに使用される溶剤とフォロワー溶剤との界面張力が水とフォロワー溶剤の界面張力と比較して低いのである。親和性が強い溶剤同士の影響により、インキとフォロワーの界面で界面を消失させようとする力が発生するばかりではなく、フォロワーのゲル構造を破壊し離油を促進したり、フォロワーのゲル構造が破壊され経時的に物性が変化したり、フォロワーとチューブ壁面の固液界面にインキが入り込もうとしたり、また、揮発性のある溶剤は、フォロワーを透過して揮発するなど様々な悪影響が発生する。また、非水系ボールペンインキに使用される色剤、樹脂、添加剤も当然のことながら水系ボールペンインキに使用されるものよりフォロワー溶剤に対して親和性が強いため、フォロワー側に移行し不具合の原因となる。特に高温下に放置された際は、このような不具合が顕著に現れる。

従って、フォロワーに使用する原材料は適正な化学的性質と物理的性質(物性 値)を有するものを使用することが必要である。

[0023]

本発明者は、検討を進めた結果、フォロワーを特定の粘度のポリーαーオレフィンを用いて構成することで、より具体的には、ポリーαーオレフィンを用いかつ40℃における粘度を1000~3000mPa·s、剪断速度1~10/sにおける剪断減粘指数を0.95以上に構成することで、上記の目的とする非水系ボールペン用フォロワーおよびそのようなフォロワーを含む非水系ボールペンを提供できることを見出した。

[0024]

本発明のフォロワーに用いる基油には、ポリー α ーオレフィン、特には40 における粘度が200mPa・s以上の合成油であるポリー α ーオレフィンを使用する。40 における粘度が200mPa・s以上の合成油であるポリー α ーオレフィンは、単一で使用しても、40 における粘度が200mPa・s以上であり粘度の異なるグレードのものを2 種以上混合して使用してもよい。

[0025]

水系インキ用フォロワーでは、炭化水素以外にSP値(溶解度パラメータ値)の低いアルコール、エステル、有機酸、シリコーンオイル等も基油として使用可能であるが、これらはいずれも非水系インキ用フォロワーの少なくとも基油あるいはその主成分としては使用できない。SP値の低いアルコール、エステル、有機酸等は、非水系インキ溶剤と親和性が強く、界面が見づらくなったり、インキに使用される色剤、樹脂、添加剤等も移行し不具合の原因となる。シリコーンオイルは、インキ溶剤が透過しやすいため経時的にインキの物性が変化してしまうため好ましくないからである。

[0026]

ポリーαーオレフィンは、炭化水素化合物であり、同じ炭化水素に属する鉱油、ポリプテンと比較した場合、40℃における同一粘度品は、比較的低SP値を示す物質との相溶性、溶解性が弱い傾向にあった。このことからも特にインキの溶剤及び原材料との親和性が炭化水素の部類の中でも特に弱いと考えられる。そのため、上述したインキとの親和性から起こると考えられるような不具合が他の部類の炭化水素と比較した場合、特に起こりにくい。

ポリー α ーオレフィンは、 α ーオレフィンを重合した合成油であり、反応開始物質である α ーオレフィンには代表的なもので1ーオクテン、1ーデセン等がある。工業的には、1ーデセンの重合体が主に使用されている。本発明に使用するポリー α ーオレフィンの反応開始物質は、特に限定されるものではないが、 α ーオレフィンの炭素数が小さくなると高温下で上向き放置した際の特性が優れないので、炭素数8以上が好ましく、より好ましくは炭素数8~20を主とするものである。

[0027]

本発明のフォロワーに基油として用いるポリーαーオレフィンの粘度は、40 ℃での粘度が200ma・s以上であることが好ましく、さらには500ma・s 以上であることが好ましく、1000~50000ma・sがより好ましく、15 00~20000ma・sが更に好ましい。ポリーαーオレフィンであっても、4 0℃での粘度が200ma・s未満のものを一定量以上用いると、高温下で上向き

放置した際の逆転が起こりやすくなる。粘度が低くなるにつれて、ポリーαーオレフィンは一般的に分子量が小さくなり、分子量が小さくなるにつれて、高温下では分子運動が激しく起こるようになり、更にインキ原材料との親和性が増しインキと混ざろうとする力が大きく(インキ溶剤とフォロワー溶剤の界面張力が低く)なるため、高温下で上向き放置した際に逆転が起こりやすくなる。

[0028]

ポリー α -オレフィンの分子量が大きくなるにつれて、高温下でも原材料との親和性が弱まり、高温下で上向き放置の際に逆転が起こりにくくなる。例えば、40 ℃における粘度が5000 mPa・s以上であるポリー α -オレフィンの総量が全成分の50 質量%以上であることが好ましく、さらに40 ℃における粘度が5000 mPa・s以上であるポリー α -オレフィンをその総量で、全成分の60 質量%以上含むことがより好ましく、更に好ましくは70 質量%以上である。40 ℃における粘度が5000 mPa・s以上であるポリー α -オレフィンが50 質量%以上であると、上記の高温下でも原材料との親和性が弱まり、高温下で上向き放置の際に逆転が起こりにくくなる効果が大きくなり、また、インキ消費時にフォロワーが壁面に付着する量が顕著に少なくなる。また40 ℃における粘度が500 00 mPa・s以上であるポリー α -オレフィンは、分子の凝集力が強くなり表面張力が高くなるため、その総量が全成分の50 質量%以上としたものは、インキ収容管壁面をフォロワーが経時的に伝い垂れる現象(垂れ)が起こり難くなる効果がある。

[0029]

本発明のフォロアーは、普通にはまた望ましくは、40 ℃における粘度が20 0 mPa·s以上の合成油であるポリー α ーオレフィンを1 種または2 種以上で構成され、その合計量は100 質量%にされるが、本発明のフォロアーとしては、その合計量は80 質量%以上含まれればよい。即ち、本発明のフォロワーでは、40 ℃での粘度が200 mPa·s以上であるポリー α ーオレフィンをその総量で全成分の80 質量%以上含む。より好ましくは40 ℃での粘度が200 mPa·s以上であるポリー α ーオレフィンを90 質量%以上、更に好ましくは98 質量%以上、最も好ましくは99.5 質量%を超え、特に100 質量%である。ポリー α

ーオレフィン以外の原材料の添加量が多くなると、その物質の性質が反映されるようになり、その物質がインキ原材料との親和性が強い場合は、高温下で上向き放置した際の逆転が起こりやすくなる。また、ポリーαーオレフィン以外の原材料の表面張力が低い場合は、その物質の影響が強くなるため、フォロワー自体の表面張力が低くなり、インキ収容管壁面をフォロワーが経時的に伝い流れる現象(垂れ)が起こる場合もある。ポリーαーオレフィンの総量が全成分の80質量%以下となった場合は、それ以外の原材料の影響が大きくなりすぎるため好ましくない。

[0030]

本発明のフォロワーに用いる上記の如きポリー α ーオレフィンとしては、例えば、バーレルプロセス油P-380 (松村石油社)、バーレルプロセス油P-1500 (松村石油社製)、バーレルプロセス油P-2200 (松村石油社製)、バーレルプロセス油P-1200 (松村石油社製)、バーレルプロセス油P-1000 (松村石油社製)、バーレルプロセス油P-37500 (松村石油社製)、ExxonMobil SHF-403 (エクソンモービル化学社製)、ExxonMobil SHF-1003 (エクソンモービル化学社製)、SuperSyn 2150 (エクソンモービル化学社製)、SuperSyn 2300 (エクソンモービル化学社製)、SuperSyn 21000 (エクソンモービル化学社製)、SuperSyn 23000 (エクソンモービル化学社製)などがある。これらの市販のポリー α ーオレフィンの多くは主に1ーデセンのポリマーである。

[0031]

ポリー α ーオレフィンは合成油であるため、合成後には分子量分布を持ったものの混合物として得られる。本発明のフォロワーの基油に用いるポリー α ーオレフィンとしては、数平均分子量(Mn)が1000以上、更に好ましくは30000~20000のものが好ましい。また、分子量分布は重量平均分子量(Mw)と数平均分子量(Mn)の比で評価され、Mw/Mnの値が目安となる。分子量分布の広いものは値が大きくなり、分子量分布の狭いものは、1に近い値となる。合成油のポリー α ーオレフィンは鉱油等と比較して分子量分布が一般的狭いといわれている。本発明のフォロワーの基油に用いるポリー α ーオレフィンは、分子量の低いものが上記のように悪影響を与えるため、Mw/Mnの値は1に近い

ものが好ましい。本発明のフォロワーの基油に用いるポリー α ーオレフィンのM w / M n の値としては、 2 . 5 以下が好ましく、更に好ましくは 2 . 0 以下である。

[0032]

Mw、Mnの測定値はゲルパミッションクロマトグラフィー等の測定により得られる。Mw、Mnはそれぞれ下記式で表される(式中、Miは或る分子量を表し、Niはその分子量Miを持つポリマーの数を表す)。

 $Mw = \Sigma (Mi^2Ni) / \Sigma (MiNi)$

-式(1)

 $Mn = \Sigma (MiNi) / \Sigma Ni$

-式(2)

本発明のフォロワーでは、上記の如きポリーαーオレフィンを用いるが、40 ℃における粘度を1000~3000mPa·s、かつ剪断速度1~10/sに おける剪断減粘指数を0.95以上にすることが必要である。

[0033]

本発明のフォロワーは、40℃における粘度が1000~30000mPa・sであり、好ましくは1500~15000mPa・s、更に好ましくは3000~1000mPa・sである。40℃における粘度が1000mPa・s未満のフォロワーは、粘度が低く分子運動が激しく起こるため、分子量の低い物質の影響が著しく現れ、また、フォロワーの凝集力が弱くなりインキ溶剤とフォロワー溶剤の界面張力も低下する為、高温下で上向き放置した際の逆転が起こりやすくなる。更に、フォロワーの凝集力が弱くなり表面張力が低くなるため、インキ収容管壁面をフォロワーが経時的に伝い垂れる現象(垂れ)が起こり易くなる。更に、分子量の低い物質の影響が著しく現れ、インキ原材料との親和性も増し、インキ原材料がフォロワー中に拡散したり、インキをフォロワーの界面が見づらくなる現象が起こる場合もある。更に、粘度が低いため、インキ原材料のフォロワー中への拡散もいち早く起こる傾向にある。また、40℃における粘度が500mPa・s以下のフォロワーは、ペン体とした際に、室温下でペンを落下する落下衝撃に対して耐性が弱くなり、落下した際にフォロワーが飛散してしまう。

40℃における粘度が3000mPa·sを越えるフォロワーは、速書時や5℃ 以下の低温下で筆記した際にフォロワーの追従不良によるカスレを起こしてしま

う。

[0034]

さらに、本発明のフォロワーは、40 Cにおける粘度を $1000\sim30000$ mPa·sでありかつ、剪断速度 $1\sim10/s$ における剪断減粘指数が0.95以上のものでなければならず、より好ましくは上記剪断減粘指数が0.97以上である。

ここでいう剪断減粘指数とは、剪断速度を変化させた際に、見掛け粘度が変化した度合いをいい、剪断減粘指数n、ずり応力 τ 、ずり速度D、見掛け粘度 η を用いると、下記式(1)ような関係が得られるものである。

[0035]

 $\tau = \eta D^{\text{n}}$ —式(3)

剪断減粘指数が0.95未満となった場合は、フォロワーの粘度により程度の差が大きく生じるが、インキ消費時にフォロワーが壁面に付着する量が多くなり、インキ消費と共にインク後端部に存在するフォロワー量が減少する不具合が起こり始める。また、低温時や速書性におけるフォロワーの追従性も低下し、カスレの原因となる。更に、剪断減粘指数が0.80以下となると、フォロワーの粘度により程度の差が大きく生じるが、リフィール内に気泡が残存した場合、ペン先を下向きに放置した際でも気泡がフォロワー内を通過しにくい状況になり、気泡の影響による不具合が発生する。

[0036]

本発明のフォロワーは、2.8m以下の管抵抗が強いインキ収容管にフォロワーを搭載した際でも、低温時や速書性におけるフォロワーの追従性に問題を起こさないように、剪断減粘指数が0.95以上であるような流動性の良いフォロワーを提供し、そのため剪断減粘性付与剤を基本的に含まないことを一つの特徴とする。流動性の良いフォロワーは上向き放置した際に保管条件によっては、インキとの比重差により逆転し易くなるが、本発明のフォロワーでは、この上向き放置による逆転の課題を、剪断減粘性付与剤を使用することなく、インキとフォロワーが混ざらないでおこうとする力(界面張力)、フォロワーの表面張力、及び、インキ収容管の管抵抗をもっぱら利用して解決されている。これは従来のフォ

ロワーにはない新規な技術思想である。

[0037]

従来、フォロワーを高粘度にするために所謂増粘剤が用いられるが、従来用いられている増粘剤は剪断減粘性を示し、そのようなフォロワーは2.8 m以下の管抵抗が強いインキ収容管にフォロワーを搭載すると、低温時や速書時におけるフォロワーの追従性に問題があり、本発明のフォロワーには少なくとも実質的な量では使用できない。

[0038]

本発明のフォロワーでは、上記の如きポリーオレフィンを選択して40℃における粘度を1000~3000mPa・sになるように構成すれば、一般的には、剪断減粘指数は0.95以上になる。即ち、本発明のフォロワーにおける剪断速度1~10/sでの剪断減粘指数が0.95以上ということは、従来タイプの増粘剤(剪断減粘性を付与するタイプ)を用いて増粘するのではなく、少なくとも主たる粘度調整成分として適当な粘度のポリーαーオレフィンを用いることで、フォロワーの粘度を上記の如く調整することを意味する。

[0039]

従来用いられている剪断減粘性を付与する増粘剤あるいはゲル化剤の例としては、金属石鹸、有機ベントナイト、無機金属微粒子、ワックス類、熱可塑性エラストマー等がある。本発明では、これらの剪断減粘性を付与する増粘剤あるいはゲル化剤は、基本的に使用しない。ただし、フォロワーの剪断速度1~10/sにおける剪断減粘指数を0.95未満にしない範囲であれば使用してよいが、剪断速度1~10/sにおける剪断減粘指数が0.95未満となる実質的な量で添加すると、上記の如き不具合が発生し、本発明の範囲外である。

[0040]

本発明のフォロワーに用いる基油は、常温で難揮発性及び/又は不揮発性であることが望ましい。溶剤が揮発性であると、蒸発ロスが多くなり、フォロワーとして機能できないからである。98℃、5時間の条件下で蒸発ロスが0.4質量%以下であることが好ましい。蒸発ロスが0.4質量%超のとき、フォロワー基油の揮発が無視できなくなり、経時的にフォロワー物性が変化してしまうからで

ある。

[0041]

本発明のフォロアーは、上記の如く、40 ℃における粘度が200 mPa·s以上の合成油であるポリー α ーオレフィンを1 種または2 種以上含有したもので構成されるが、上記した粘度及び剪断減粘指数を満たし、フォロワー性能に悪影響を与えないものであれば、その他の油、樹脂、増粘剤及び添加剤を添加することができる。その他の油、樹脂、増粘剤及び添加剤には、例えば、鉱油、ポリブテン、テルペン樹脂、界面活性剤、シリコーンオイル等がある。例えば、40 ℃における粘度が100 mPa·s未満であるポリー α -オレフィンを使用する際に、何らかの増粘剤を用いてもよい。ただし、その場合にも、増粘剤にはインク原材料との親和性を増すような物質は使用せず、できるだけインク原材料との親和性が弱い物質で増粘するのが好ましい。

[0042]

これらの増粘剤や添加剤の添加量は、積極的に添加するもの消極的に添加されるものを含み合計で、フォロアー全量基準で、20質量%未満、より好ましくは10質量%未満、更に好ましくは2質量%未満、最も好ましくは0.5%以下が好ましい。20質量%以上となった場合は、添加物の性質が強く反映されるようになり、インキ原材料との相互作用が強くなることによる悪影響等が起こりやすくなる恐れがある。また、特に極性が大きいような物質は、フォロワーとインキの親和性が著しく強くなってしまうため、フォロアー全量基準で、5質量%以上、更には3質量%以上、特に0.5質量%以上の添加は好ましくない。

[0043]

本発明のフォロワーは40 $\mathbb C$ における粘度が200 $\mathbb P$ a·s以上の合成油であるポリー α -オレフィンをそのまま使用するか2 種以上を混合して使用する。2 種以上混合する場合は、及び、その他の油、樹脂、増粘剤及び添加剤を配合する場合は、加熱撹拌しその後室温まで冷却する。撹拌温度は、フォロワー原材料が均一なれば特に制限はないが、 $50\sim200$ $\mathbb C$ 、より好ましくは $70\sim140$ $\mathbb C$ 、更に好ましくは、 $90\sim120$ $\mathbb C$ が好ましい。撹拌温度が50 $\mathbb C$ 以下の場合は、高粘性のポリー α -オレフィン混合する際に、均一な液が得られるまで時間を要

する。200℃以上の場合は、フォロワー原材料が酸化されやすく、撹拌時間により完成品の物性が大きく異なる。また、酸化物の濃度がフォロワー中に増えた場合、インキ原材料との親和性が強くなり、高温時の上向き逆転性に不具合が生じる場合もある。

[0044]

フォロワー原材料の酸化を防止するために窒素雰囲気下で撹拌を行っても良い

また、加熱撹拌後の冷却環境は、冷却後に得られるフォロワーが容器のいかなる部分でもほぼ同一な物性を示せば、どの様な環境で冷却してもかまわない。しかし、冷却条件をコントロールしなかった際に、得られるフォロワーが容器内で物性の異なる部分が生じる場合は、冷却速度をコントロールしたり、震度を与えたりして冷却条件をコントロールすることが好ましい。

[0045]

本発明のフォロワーは、非水系ボールペンインキ用に開発されたものである。 本発明において、非水系ボールペンインキとは、インキが本質的に水を含まない インキのことであるが、アルコールなどの非水系溶剤では、親水性があるので経 時的に自然に吸湿し、水を含んで平衡することがある。また、吸湿するインキの 物性変化を少なくするため製造時から適度な水を含ませることも行われる。しか し、水の濃度がインキの製造時から10質量%、好ましくは5質量%を超えることはない。

本発明のフォロワーは、インキ溶剤の揮発を防止することを一つの目的とするが、インキの吸湿を防ぐことも一つの目的である。

[0046]

アルコール類、グリコールモノエーテル類からなる溶剤は、比較的、空気中の水分を吸湿し易くインキが吸湿した結果、インキの物性が変化したり、原材料の溶解性が変化することにより、ボールペンの筆記性に悪影響を与える場合がある。これらの影響を抑制するためにフォロワーが必要となる。

本発明のフォロワーは、非水系ボールペンインキ、特に、20℃での蒸気圧が 0.2~50mHgのアルコール類、グリコールモノエーテル類からなる溶剤がイ

ンキ溶剤の10~100質量%を占めるボールペンインキ溶剤で形成された非水 系ボールペンインキと共に用いるときに、先に説明したような理由から好適であ る。

[0047]

20℃での蒸気圧が $0.2\sim50$ mmHgの溶剤としては、アルコール類としてはエタノール、1-プロパノール、2-プロパノール、1-プタノール、2-プタノール、1 s o ブチルアルコール、1-ペンタノール、1 s o ペンチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1 s o ペンチルアルコール、1 e r t ペンチルアルコール、3-メチルー2-プタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチルー1-ペンタノール、4-メチルー2-ペンタノール、2-エチルー1-プタノール、1-ヘプタノール、2-スプタノール、3-ヘプタノール等が挙げられる。

[0048]

グリコールモノエーテル類としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールターシャリーブチルエーテル、3ーメトキシブタノール、3ーメチル-3ーメトキシブタノール等が挙げられる。

また、グリコールモノエステル類もグリコールモノエーテル同様に使用することも可能である。

[0049]

以上に挙げられるような溶剤がインキ溶剤の $10\sim100$ 質量%、さらには $30\sim100$ 質量%、特に $50\sim100$ 質量%を占める場合は、後端部からのインキ溶剤の揮発が起こり、インキの品質が経時的に変化することを抑制するためフォロワーが必要となる。この目的に本発明のフォロワーは最適である。

[0050]

また、上記溶剤と組み合わせ、インキ溶剤の0~90質量%の範囲で不揮発性

の溶剤を補助溶剤として併用しても良い。

本発明のフォロワーを必要とする非水系ボールペンインキ組成物としては、上 記溶剤の他、必ず色材と樹脂を含む。色材としては顔料あるいは染料あるいは併 用により調整され、樹脂は非水系ボールペン性能を発揮できるもので、インキ中 の不安定要素でなければ特にどのようなものでもよい。

また、性能に応じて各種添加剤を使用することもできる。インキの粘度は、25℃での2000mPa·s 以下が望ましい。

[0051]

本発明のフォロワーは、上記の如く構成することにより、蒸気圧の高い溶剤を使用した非水系ボールペンにも使用可能で、高温下や長期の保存においても離油することなく安定であり、インキと外気を遮断してインキの揮発を防止し、更に内径が2.8m以下の管抵抗が強いインキ収容管にフォロワーを搭載した際でも、低温時や速書性におけるフォロワーの追従性に問題がなく、落下衝撃に対する耐性を確保し、ペン先が上向きで放置された際、比重差によりインキとフォロワーが逆転しにくく、インキ収容管壁面をフォロワーが経時的に伝い垂れる現象(垂れ)が起こり難く、インキ消費に伴うインキ後端部のフォロワー量の減少が少なく、リフィール内部に気泡が残存し難い非水系ボールペン用フォロワーおよびそのようなフォロワーを含む非水系ボールペンを提供することに成功した。

[0052]

本発明のフォロワーを搭載するインキ収容管内径は、2.8m以下が好ましく、より好ましくは1.5m~2.7m、更に好ましくは、1.6m~2.6mである。本発明のフォロワーは、管抵抗が高い内径が2.8m以下のインキ収容管でも良好な追従性、流動性を得ることを1つの目的としており、本発明のフォロワーの効果が顕著である。また、インキ収容管内径が1.5m未満の場合は、管抵抗が強くなり、フォロワーの有無に係わらず、速書時に追従不良によるカスレが発生する恐れがあり、望ましくない。

[0053]

本発明のフォロワーを搭載するインキ収容管の材質は、インキ溶剤やフォロワー溶剤の影響によりボールペンの品質を著しく損なうものでないもの、外界から

の影響によりボールペンの品質を著しく損なうものでないものでなければ、特に 限定されない。

[0054]

インキ溶剤やフォロワー溶剤と接触するインキ収容管の材質は、ポリプロピレン、ポリエチレン、金属等が使用される。

本発明のフォロワーは、非水系ボールペン以外にもインキ収容管に直接インキ を収容する水系ボールペン用の水系インキなど他のインキに使用することを妨げ るものではない。

[0055]

図1のボールペンリフィールの1例の構造を模式的に示す。金属製であるボールペンチップ1は透明プラスチック製インキ収容管2の一方の端部に液密に接続されている。チップ1の構造はいろいろであるが、その最先端に金属製やセラミック製のボール(図示せず)が存在し、インキ収容管2内のインキ3はチップ1の内部をとおり最先端のボールで筆記される。インキ収容管2内のインキ3の後方にフォロワー4が搭載され、インキ3が減るとフォロワー4はインキ3の後端部の移動に追従する。

[0056]

本発明の特定のフォロワーを使用した非水系ボールペン、特に揮発性の高いインキ溶剤を用いた非水系ボールペンは新規なものであり、特にこのフォロワーを使用することによりはじめて揮発性の高いインキ溶剤を用いた非水系ボールペンは実用化が可能になるものである。

[0057]

【実施例】

次に実施例により本発明を詳細に説明するが、本発明はこの実施例によって限 定されるものではない。

実施例及び比較例で使用した原材料の説明を下記に示す。

- (1) バーレルプロセス油P2200
- :ポリーαーオレフィン。40℃粘度2000mPa・s(剪断速度3. 8/s)
- (2) バーレルプロセス油P37500

(3)バーレルプロセス油P10000

:ポリーαーオレフィン。40℃粘度8900mPa・s(剪断速度3.8/s)

(4)バーレルプロセス油P1500

:ポリーαーオレフィン。40℃粘度1300mPa・s(剪断速度3.8/s)

(5) ExxonMobil SHF-403

:ポリーαーオレフィン。40℃粘度350mPa・s(剪断速度3.8/s)

[0058]

- (6) ダイアナプロセスオイル PW-90
- :鉱物油。 4 0 ℃粘度 9 0 mPa·s(剪断速度 3. 8 /s)
- (7)出光PAO5006
- :ポリーαーオレフィン。40℃粘度27mPa・s(剪断速度3.8/s)
- (8) ダイアナプロセスオイル PW-8
- :鉱物油。40℃粘度8mPa・s(剪断速度3.8/s)
- (9)出光ポリブテン2000H
- :ポリプテン。40℃粘度230000mPa・s(剪断速度3.8/s)
- (10)アエロジルR-972
- :微粒子シリカ。剪断減粘性付与剤
- : テルペン樹脂。増粘剤。

[0059]

(実施例1)

バーレルプロセス油P-2200(松村石油社製) 100.0質量% この材料そのままフォロワーに使用した。ここで、40 Cにおけるの粘度は200 00 mPa·s(剪断速度3.8/s)、剪断速度 $1\sim10/s$ における剪断減粘指数は1.00 であった。

(実施例2)

バーレルプロセス油P-2200 (松村石油社製) 80.0質量% バーレルプロセス油P-37500 (松村石油社製) 20.0質量%

これらの材料を90℃で30分加熱撹拌した後、室温まで放冷し50gのフォ ロワーを得た。

得られた40℃におけるフォロワーの粘度は4100ma·s(剪断速度3. 8/s)、剪断速度1~10/sにおける剪断減粘指数は0.99であった。

[0060]

(実施例3)

バーレルプロセス油P-2200(松村石油社製)

40.0質量%

バーレルプロセス油P-10000(松村石油社製)

60.0質量%

これらの材料を90℃で30分加熱撹拌した後、室温まで放冷し50gのフォ ロワーを得た。

得られた40℃におけるフォロワーの粘度は5400mPa·s(剪断速度3.8/s)、剪断速度1~10/sにおける剪断減粘指数は1.00であった。

[0061]

(実施例4)

バーレルプロセス油P-1500(松村石油社製)

20.0質量%

バーレルプロセス油P-10000(松村石油社製) 80.0質量%

これらの材料を90℃で30分加熱撹拌した後、室温まで放冷し50gのフォ ロワーを得た。

得られた40℃におけるフォロワーの粘度は6700mPa・s(剪断速度3.8/s)、剪断速度1~10/sにおける剪断減粘指数は1.01であった。

[0062]

(実施例5)

ExxonMobil SHF-403(エクソンモービル化学社製)

25.0質量%

バーレルプロセス油P-10000(松村石油社製)

75.0質量%

これらの材料を90℃で30分加熱撹拌した後、室温まで放冷し50gのフォ ロワーを得た。

得られた40℃におけるフォロワーの粘度は4600ma·s(剪断速度3.8/s)、剪断速度1~10/sにおける剪断減粘指数は0.99であった。

[0063]

(実施例6)

バーレルプロセス油P-10000(松村石油社製) 80.0質量%

バーレルプロセス油P-37500(松村石油社製)

20.0質量%

これらの材料を90℃で30分加熱撹拌した後、室温まで放冷し50gのフォ ロワーを得た。

得られた40℃におけるフォロワーの粘度は12600mPa·s(剪断速度3.8 /s)、剪断速度 $1\sim1$ 0/sにおける剪断減粘指数は0. 98であった。

[0 0 6 4]

(比較例1)

バーレルプロセス油Pー2200(松村石油社製)

40.0質量%

バーレルプロセス油P-37500(松村石油社製)

35.0質量%

ダイアナプロセスオイルPW-90(出光興産社製)

25.0質量%

これらの材料を90℃で30分加熱撹拌した後、室温まで放冷し50gのフォロ ワーを得た。

得られた40℃におけるフォロワーの粘度は3800mPa·s(剪断速度3.8 /s)、剪断速度1~10/sにおける剪断減粘指数は1.00であった。

[0065]

(比較例2)

バーレルプロセス油P-10000(松村石油社製)

75.0質量%

出光PAO5006(出光石油化学社製)

25.0質量%

これらの材料を90℃で30分加熱撹拌した後、室温まで放冷し50gのフォロ ワーを得た。

得られた40℃におけるフォロワーの粘度は2700mPa·s(剪断速度3.8 /s)、剪断速度1~10/ s における剪断減粘指数は0.99であった。

[0066]

(比較例3)

バーレルプロセス油P-2200 (松村石油社製) 82.0質量%

ダイアナプロセスオイルPW-8(出光興産社製)

18.0質量%

これらの材料を90℃で30分加熱撹拌した後、室温まで放冷し50gのフォ

ロワーを得た。

得られた40℃におけるフォロワーの粘度は850mPa·s(剪断速度3.8/s) 、剪断速度1~10/sにおける剪断減粘指数は0.99であった。

[0067]

(比較例4)

バーレルプロセス油P-1500(松村石油社製)

93.0質量%

ダイアナプロセスオイル PW-8 (出光興産社製)

7.0質量%

これらの材料を90℃で30分加熱撹拌した後、室温まで放冷し50gのフォロ ワーを得た。

得られた40℃におけるフォロワーの粘度は900ma·s(剪断速度3.8/s)、剪断速度1~10/sにおける剪断減粘指数は0.99であった。

[0068]

(比較例5)

バーレルプロセス油P-37500(松村石油社製) 91.0質量%

出光ポリブテン2000H(出光石油化学社製)

9.0質量%

これらの材料を90℃で30分加熱撹拌した後、室温まで放冷し50gのフォロ ワーを得た。

得られた40℃におけるフォロワーの粘度は39500mPa·s(剪断速度3.

8/s)、剪断速度 $1\sim10/s$ における剪断減粘指数は0.98であった。

[0069]

(比較例 6)

バーレルプロセス油P-2200(松村石油社製)

95.5質量%

アエロジルR-972 (日本アエロジル社製)

3.0質量%

クリアロンP-105 (出光興産社製)

1.5質量%

これらの材料を90℃で30分加熱撹拌した後、室温まで放冷し50gの攪拌 液を得た。

橙拌液を3本ロールミルにて混練し、フォロワーを得た。

得られた40℃におけるフォロワーの粘度は4200ma·s(剪断速度3.8/s)、剪断速度1~10/sにおける剪断減粘指数は0.84であった。

[0070]

(比較例7)

バーレルプロセス油P-2200(松村石油社製)

70.0質量%

バーレルプロセス油P-10000(松村石油社製)

18.0質量%

アエロジルR-972 (日本アエロジル社製)

8.0質量%

クリアロンP-105 (出光興産社製)

4. 0質量%

これらの材料を90℃で30分加熱撹拌した後、室温まで放冷し50gの攪拌 液を得た。

機拌液を3本ロールミルにて混練し、フォロワーを得た。

得られた40℃におけるフォロワーの粘度は17100mPa·s(剪断速度3.

8/s)、剪断速度 $1\sim10/s$ における剪断減粘指数は0.56 であった。

[0071]

(比較例8)

バーレルプロセス油P-1500(松村石油社製)

70.0質量%

ダイアナプロセスオイルPW-8 (出光興産社製)

30.0質量%

これらの材料を90℃で30分加熱撹拌した後、室温まで放冷し50gのフォロワーを得た。

得られた40 Cにおけるフォロワーの粘度は300 mPa·s(剪断速度3.8/s)、剪断速度 $1\sim10/$ sにおける剪断減粘指数は1.00 であった。

[0072]

(評価方法と結果)

以上の様な配合及び調整方法で得られたフォロワーを下記に示す非水系インキ と組み合わせ、下記評価テストにより評価し、表1のような結果を得た。

なお、インキ、フォロワーの充填後には、国産遠心機社製遠心分離器H-10 3N型遠心機を用い、ペンの尾端部からペン先方向に遠心力がかかるように毎分 2000回転で5分間遠心をかけた。

[0073]

実施例及び比較例は、内径が2.4 mm、内壁がポリプロピレン性のインキ収容管を使用し、継ぎ手とチップからなるペン先と組み合わせリフィールとした。こ

のリフィールを三菱鉛筆社製UM-100の軸に入れペン体とした。

非水系インキとフォロワーを組み合わせたペン体は、ボール径が1.0mmのチップを使用した。

<非水系インキ配合>

スピロンバイオレットC-RH (保土谷化学社製)18.0質量%スピロンイエローC-GNH (保土谷化学社製)7.0質量%ポリピニルブチラール BM-1 (積水化学社製)1.0質量%SKレジン (ヒュルス社製)1.0質量%活性剤9.0質量%3-メトキシ、3-メチル、1-ブタノール64.0質量%

[0074]

<評価テスト>

1) 上向き逆転性:

70℃環境下にてペン先を上向きにして10日放置し、インキとフォロワーの 逆転の有無を観察した。下記の基準で評価した。

逆転しなかったもの;○

1部が逆転したもの;△

大半が逆転したもの:×

[0075]

2) 垂れ性

70℃環境下にてインクを充填せず、フォロワーのみ充填を行い、ペン先を上向きにして10日放置し、フォロワーがチューブ壁面を垂れる(伝い流れる)度合いを観察した。下記の基準で評価した。

垂れがなかったもの;○

一部のフォロワーが垂れ、下方で溜まり、その後一体化して再度インキ収容管 全体をふさいでしまった。; △

かなりのフォロワーが垂れ、下方に移動してしまった。;×

[0076]

3)速書性:

PPC用紙に螺旋筆記(直径約5cm)し、かすれ度合いの観察した。下記の 基準で評価した。

かすれがほとんどないもの;○

かすれが多少あるもの;△

かすれがひどいもの;×

[0077]

4) 拡散性(i)

70℃環境下にてペン先を下向きにして10日放置し、インキとフォロワーと の界面での状態を観察した。下記の基準で評価した。

界面がはっきりしているもの;○

界面の境界が解りにくいもの;△

界面の境界がひどく解りにくいもの;×

[0078]

5) 拡散性(ii)

70℃環境下にてペン先を下向きにして10日放置し、フォロワー中への染料の拡散を観察した。下記の基準で評価した。

フォロワー中への染料の拡散が殆どないもの:〇

フォロワー中への染料の拡散が多少あるもの:△

フォロワー中への染料の拡散が著しいもの:X

[0079]

6)壁面へのへばりつき性

ペン体を、4.5m/minの速度で300m筆記し、筆記前後におけるインク後端部のフォロワー量を観察した。下記の基準で評価した。

フォロワー量がさほど変化していないもの;○

フォロワー量が多少変化しているもの;△

フォロワー量が著しく変化しているもの;×

[0800]

7) 落下衝撃による耐性

ペン体を約1mの高さから連続で5回落下させフォロワー後端部の状態を観察

変化なし;○

フォロワー後端部の界面が乱れ、フォロワーがチューブ壁面に飛散した;×

[0081]

事権値の	N SEC	0	0	0	0	0	0	0	
中特色の	大馬型の	0	0	0	0	0	Õ	0	
基基	米個別 4	0	0	0	0	0	0	0	
	米高河の	0	0	0	0	0	0	0	
١z	来陶例と	0	0	0	0	0	0	0	
7 144 147	実施 例 1	0	0	0	0	0	0	0	
	即有任正	上向き放置性	また	读事件	拡散性(1)	扩散体②	壁面へばりつき	離	
ŀ	評価化消	四百二	容面2	儿睡	儿垣	i∣E	1 進	ΙŒ	

_		_			_			_			_	_	_,	_	_	
りながた		>	3	>	Š	<u> </u>		<	1	<	1	C		>	· ·	
ŧ	LKW	<	1	()	,	×	*	4	0	0	>	<	G	כ	
	兄数初ら	_	4	(0		2		4	Ý	0	4	1	(O	
1	兄数忽り	ļ	2	ļ)		٥	ļ	0		0		×	•	O	
l	北数囱4		×		×		0		4		4	•	0		0	
	九較愈3		×		×		0		٥		٥		0	,	C)
	比較例2		٥		<		С	,	С)	4		C	,	C)
	工艺包工		き放置性		10		0		0		٥		0		0	
	部価用	I X			向き放置 垂れ性 读事件		ш			計	拡散性② デュニク		壁面へばりつき			
	部所古社		500年1	_	昭用の	<u> </u>	の単が用っ	3		+ 三 上		STIES O	Ħ	の見出	長江江コ	

第

[0082]

実施例1~6は、いずれも問題ない結果となった。

ポリー α ーオレフィン以外の原材料にはパラフィン系の鉱油を使用したが、その物質の性質が反映されるようになり、その物質がインキ原材料との親和性が強いためか、高温下で上向き放置した際にフォロワーの1部に逆転が発生する結果となった。

また、インキ原材料との親和性が強いためか、フォロワー中に染料の拡散が見られた。

[0083]

比較例 2 は、全成分がポリー α ーオレフィンであるが、粘度が 2 0 0 m Pa·s 以上の合成油であるポリー α ーオレフィンの総量が全成分の 8 0 重量%以下のフォロワーである。

比較例1同様、粘度が200mPa・s以下の合成油であるポリーαーオレフィンの性質が反映されるようになり、その物質がインキ原材料との親和性が強いためか、高温下で上向き放置した際にフォロワーの1部に逆転が発生する結果となった。また、インキ原材料との親和性が強いためか、フォロワー中に染料の拡散が見られた。

更に、200mPa·s以下の合成油であるポリーαーオレフィンの影響により、表面張力が低くなるためか、インキ収容管壁面をフォロワーが経時的に伝い垂れる現象(垂れ)が観察された。

[0084]

比較例3、4は、40℃における粘度が1000mPa·s以下のフォロワーである。

ポリー α -オレフィン以外の原材料には粘度が低いパラフィン系の鉱油を使用した。

フォロワーの粘度が低く分子運動が激しく起こるためか、分子量の低い物質の影響が著しく現れ、インキ原材料と親和性が強くなってしまうためか、高温下で上向き放置した際の逆転が発生する結果となった。

また、分子の凝集力が弱くなり表面張力が低くなるためか、インキ収容管壁面

更に、分子量の低い物質の影響か、もしくは、粘度が低く拡散が起こり易かった為か、インキ原材料との親和性も増し、インキ染料のフォロワー中への拡散が観察され、また、インキとフォロワーの界面が見づらくなった。

[0085]

比較例 5 は、40℃における粘度が3000mPa·s以上のフォロワーである。

速書筆記した際にフォロワーの追従不良によるカスレが発生する結果が得られた。また、剪断減粘指数が 0.95以上ではあるがインキ消費時にフォロワーが 壁面に付着する量が多くなり、インキ消費と共にインク後端部に存在するフォロワー量が著しく減少する不具合が発生した。

[0086]

比較例 6 、 7 は、剪断速度 $1 \sim 1$ 0 / sにおける剪断減粘指数が 0 . 9 5 以下のフォロワーである。

インキ消費時にフォロワーが壁面に付着する量が多くなり、インキ消費と共にインク後端部に存在するフォロワー量が減少する不具合が起こる結果となった。

比較例 6 は、剪断減粘指数が比較的高く、粘度もそれほど高くないものである ためか、壁面に付着する量が多少、多くなり、インキ消費と共にインク後端部に 存在するフォロワー量が減少する不具合が発生した。

また、微粒子シリカであるアエロジルR 9 7 2 及びテルペン樹脂である P 1 0 5 がインキ原材料と親和性が強いためか、フォロワーの 1 部に逆転が発生する結果となった。

更に、微粒子シリカであるアエロジルR 9 7 2 及びテルペン樹脂である P 1 0 5 がインキ原材料と親和性が強いためか、インキとフォロワーの界面が見づらくなる現象が発生した。

[0087]

比較例7は、剪断減粘指数が比較的低く、粘度も比較的高いためか、壁面に付着する量が多くなり、インキ消費と共にインク後端部に存在するフォロワー量が著しく減少する不具合が発生した。

また、速書筆記した際にフォロワーの追従不良によるカスレが発生する結果が得られた。

更に、微粒子シリカであるアエロジルR972及びテルペン樹脂であるP105がインキ原材料と親和性が強いためか、フォロワーの1部に逆転が発生する結果となった。

また、微粒子シリカであるアエロジルR972及びテルペン樹脂であるP105がインキ原材料と親和性が強いためか、インキとフォロワーの界面が見づらくなる現象が発生した。

[0088]

比較例 8 は、40℃における粘度が300mPa·sと非常に低いフォロワーである。

比較例4,5の不具合に加え、落下衝撃によりフォロワーが飛散する結果が得られた。

以上の結果から明らかなように本発明の範囲となる実施例1~7の非水系ボールペン用フォロワーは、本発明の範囲外となる比較例1~8の非水系ボールペン用フォロワーに比べて上向き逆転性、垂れ性、速書性、拡散性、インキ収容管壁面へのへばりつき性、落下衝撃に対する耐性の点で非常に優れていることが判明した。

[0089]

【発明の効果】

本発明により、上向き逆転性、垂れ性、速書性、拡散性、インキ収容管壁面へのへばりつき性、落下衝撃に対する耐性の点で非常に優れた非水系ボールペン用フォロワーを提供することができた。特に、従来と異なり揮発性の高いインキ溶剤を用いた非水系ボールペンにおいて優れた非水系ボールペン用フォロワーを提供することができた。また同様にインキ収容管の内径が2.8 mm以下である揮発性の高いインキ溶剤を用いた非水系ボールペンも提供される。

--- -- --

【図面の簡単な説明】

【図1】

ボールペンリフィールの1例の模式図を示す。

1…チップ

2…インキ収容管

3…インキ

4…フォロワー

【書類名】

図面

【図1】

図 1

【書類名】 要約書

【要約】

【課題】 蒸気圧の高い溶剤を使用した非水系ボールペンにも使用可能で、更に 内径が2.8mm以下の管抵抗が強いインキ収容管にフォロワーを搭載した際でも 問題がない、非水系ボールペン用フォロワーを提供すること。

【解決手段】 40℃における粘度が200mPa・s以上の合成油であるポリーαーオレフィンを1種または2種以上含有し、その総量が全成分の80質量%以上であり、40℃における粘度が1000~30000mPa・s、剪断速度1~10/sにおける剪断減粘指数が0.95以上であることを特徴とする非水系ボールペン用フォロワー。この非水系ボールペン用フォロワーと、蒸気圧の高い溶剤を使用した非水系ボールペンインキとを含み、インキ収容管の内径が2.8mm以下である非水系ボールペン。

【選択図】 なし

特願2003-113346

出願人履歴情報

識別番号

" Per "

[000005957]

1. 変更年月日

1990年 8月21日

[変更理由]

新規登録

住 所

東京都品川区東大井5丁目23番37号

氏 名

三菱鉛筆株式会社