Technische Universität München

Ferienkurs Lineare Algebra 1

Mengenlehre, Aussagen, Relationen und Funktionen

Aufgaben

21. März 2011

Tanja Geib

Geben Sie zu $B = \{0, 2, 4\}$ und $C = \{0, 2\}$ explizit die folgende Menge an:

$$E = (B \times C) \cap (C \times B)$$

Aufgabe 2

Bestimmen Sie jeweils das Komplement:

(a)
$$A = \{x = (x_1, x_2) : x_1 > x_2\} \ bzgl \ \mathbb{R}^2$$

(b)
$$B = \{..., -6, -3, 0, 3, 6, ...\}$$
 bzgl \mathbb{Z}

Aufgabe 3

Seien M und N in der Grundmenge X. Zeigen Sie:

$$(M \subseteq N) \Leftrightarrow (\mathcal{C}N \subseteq \mathcal{C}M)$$

Aufgabe 4

A, B und C seinen Teilmengen einer Grundmenge G. Die folgenden Aussagen sind entweder wahr oder falsch. Geben Sie einen Beweis an für die wahren bzw ein Gegenbeispiel für die falschen Aussagen.

- (a) Wenn $B = \emptyset$ ist, dann ist $A \setminus B = A$.
- (b) Wenn $A \setminus B = A$, dann ist $B = \emptyset$.
- (c) $A \setminus B$ und $B \setminus C$ sind immer disjunkt, dh $(A \setminus B) \cap (B \setminus C) = \emptyset$.

Aufgabe 5

Zeigen Sie bezüglich einer beliebigen Grundmenge M:

$$((A \cup B)^{\mathcal{C}} \cap C)^{\mathcal{C}} \cup (D \cap A) = A \cup B \cup C^{\mathcal{C}}$$

Aufgabe 6

Seien $f:X\to Y$ eine Funktion und $A,\ B\subseteq X$ und $U,\ V\subseteq Y.$ Beweisen Sie folgende Rechenregeln zu Bild- und Urbildmengen:

(a)
$$f(A \cap B) \subseteq f(A) \cap f(B)$$
;

(b)
$$f(A \cup B) = f(A) \cup f(B)$$
;

(c)
$$f^{-1}(U) \subseteq f^{-1}(V)$$
 für $U \subseteq V$;

(d)
$$f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$$
.

Es sei $a_1 = 3$, $a_{n+1} = 4 - \frac{1}{a_n}$. Zeigen Sie durch Induktion, dass $a_n \in [3, 4]$.

Aufgabe 8

Gegeben sei eine binäre Relation auf $\mathbb{Z} \times \mathbb{Z}$, die durch folgende Eigenschaft definiert wird:

$$a|b:\Leftrightarrow \exists c\in\mathbb{Z}:\ ac=b.$$

Diese Relation heißt Teilbarkeitsrelation, wobei a|b als "a teilt b" zu lesen ist. Untersuchen Sie, ob die Teilbarkeitsrelation reflexiv, symmetrisch und/ oder transitiv ist.

Aufgabe 9

Seien $f: X \to Y, g: Y \to Z$ Abbildungen und sei $g \circ f: X \to Z$ die Komposition von f und g. Zeigen Sie:

- (a) Sind f und g injektiv, so ist auch $g \circ f$ injektiv;
- (b) Sind f und g surjektiv, so ist auch $g \circ f$ surjektiv.

Aufgabe 10

Man untersuche die folgenden Abbildungen auf Injektivität und Surjektivität:

(a)
$$g: \mathbb{R}^2 \to \mathbb{R}, (x, y) \mapsto xy$$
,

(b)
$$h: \mathbb{R} \to \mathbb{R}^2$$
, $x \mapsto (x^2 + 1, (x+1)^2)$.

Aufgabe 11

Seien M, N, P Mengen und $f:M\to N,\,g:N\to P$ bijektive Abbildungen. Man zeige, dass $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$ ist.

Es ist anhand einer Wahrheitstabelle zu beweisen, dass folgende Aussage allgemeingültig ist:

$$(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P)$$

Aufgabe 13

Es seien A, B und C Mengen. Man beweise die folgenden Distributivgesetze:

$$(a) (A \cap B) \cup C = (A \cup B) \cap (B \cup C)$$

(b)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Aufgabe 14

Gegeben ist die Menge $M := \{0, 0, \Delta\}$. Bilden Sie die Menge $\mathcal{P}(M)$ aller Teilmengen (Potenzmenge) von M. Bilden Sie das kartesiche Produkt $M \times M$.

Aufgabe 15

Auf $\mathbb{R} \times \mathbb{R}$ werden durch

$$(x_1, x_2)R_1(y_1, y_2) :\Leftrightarrow x_1 = y_1$$

$$(x_1, x_2)R_2(y_1, y_2) :\Leftrightarrow x_1 < y_1$$

Relationen definiert. Untersuchen Sie diese auf Reflexivität, Symmetrie und Transitivität.

Aufgabe 16

A, B seien Mengen mit $a \in A$ und $b \in B$. Durch $a \mapsto b = f(a)$ wird im folgenden jeweils eine Abbildung $f: A \to B$ definiert. Geben Sie jeweils an, ob f surjektiv, injektiv, bijektiv ist. mit Begründung!

(a)
$$f_1: A = \mathbb{R}, B = \mathbb{R}^2, a \mapsto (a+1, a-1)$$

(b)
$$f_2: A = \mathbb{R}^2, B = \mathbb{R}, a = (a_1, a_2) \mapsto (a_1 + a_2)$$

(b)
$$f_3: A = B = \mathbb{R}^2, a = (a_1, a_2) \mapsto (a_2, 3)$$

Es werden nun die Kompositionen der Abbildungen aus Aufgabe 16 gebildet. Geben Sie jeweils Definitionsmenge, Bildmenge und Abbildungsvorschrift an.

- (a) $f_1 \circ f_2$
- (b) $f_2 \circ f_1$

Aufgabe 18

f, g, h seien Abbildungen $\mathbb{N} \to \mathbb{N},$ definiert durch

$$f: x \mapsto x + 1, \ g: x \mapsto x^2, \ h: x \mapsto x^3$$

Gilt
$$(1)f \circ g = g \circ f$$
, $(2)f \circ h = h \circ f$, $(3)g \circ h = h \circ g$?