

Pipe-BD: Pipelined Parallel Blockwise Distillation

Hongsun Jang, Jaewon Jung, Jaeyong Song, Joonsang Yu, Youngsok Kim, and Jinho Lee

Pipe-BD

Accelerated

Intelligent

1. Teacher Relaying (TR)

- Teacher's intermediate activations are relayed between GPUs.
 - Increasing GPU resource utilization
 - Eliminating data redundancies and teacher redundancies

Better resource utilization

2. Decoupled Parameter Update (DPU)

- The parameters of student blocks are updated w/o waiting for other devices.
 - 1) Using special characteristic of BD (No weight dependency between blocks!)
 - 2) Translating removed redundancies to throughput

3. <u>Automatic Hybrid Distribution (AHD)</u>

- Batch-level degree of freedom is provided for workload scheduling.
- A schedule is automatically decided based on online profiling. Step 1. Measure each block execution time on feasible batch sizes.

Step 2. Find optimal schedule with exhaustive search.

Evaluation

Pipe-BD has overall speedup 2.37X to 7.38X compared to baselines.

Automatically decided schedules under two environments (2080Ti, A6000)

LS TR/TR+DPU X TR+DPU+AHD Memory overhead Maximum Memory Consumption (GB) Pipe-BD requires minor 8.7% and 21.3% additional memory overheads 21.3% over baseline. Cifar10 ImageNet

Introduction

- The existing SOTA methods for parallelizing blockwise distillation
- -> Relying on traditional data-parallelism, exhibiting low resource utilization and redundancies caused by not fully exploiting independent nature of the blocks.
- We suggest novel parallel training method for blockwise distillation, Pipe-BD.
- **Pipe-BD** can automatically make all scheduling decisions for high throughput.

Background

1. Knowledge Distillation (KD)

KD trains student model with **pretrained** teacher's output.

Trained teacher Minimize loss Input data Student

BD splits models into smaller blocks and uses KD in blockwise manner.

2. Blockwise Distillation (BD)

3. Baseline Parallelization of Blockwise Distillation

Layer-wise parallelism (LS): Similar to task parallelism

Comparison table among baselines and Pipe-BD

	Teacher redundancy	Data redundancy	Low utilization	Workload imbalance	Scheduling decision
Baseline (DP)	0	0	0	X	X
Baseline (LS)	O	0	X	O	Bin packing, work stealing
Pipe-BD (TR)	0	Δ	X	0	Manual
Pipe-BD (DPU)	X	X	X	0	Manual
Pipe-BD (AHD)	X	X	X	Δ	Auto

Motivation

Baseline approach (DP) suffers from three significant inefficiencies.

(1) Low resource utilization (2) Teacher redundancy (3) Data redundancy

Pipe-BD: Successfully handles (1), (2), (3) almost close to ideal case.

Conclusion

- Pipe-BD provides multi-fold speedup without any modifying mathematical formulation of blockwise distillation.
- We open-source Pipe-BD at https://github.com/hongsunjang/Pipe-BD.