IN THE CLAIMS

Cancel claims 14 - 20.

Amend the claims as follows:

- 1. (Currently Amended) Preparing a plurality of plates which will define an interior tread pattern within a tire mold, said plates having an inner predetermined radius and an outer predetermined radius, comprising the steps of
- a) machining at least one discrete region to a shallow depth on at least one side of the plates from its inner radius part way toward its outer radius,
- b) stacking and securing the plates together and thereby producing first gaps at the discrete regions between the surfaces of adjacent plates, the <u>first</u> gaps extending outward from the inner radius,
- c) forming second gaps at a depth and width greater than the first gaps and in a predetermined alignment to the first gaps in the outer full thickness region of the plates, to form vent passages between adjacent plates in a depth range of approximately 0.060 inches (15.24 mm) and extending from the first gaps to the outer radius of the plates, and thus venting outward through the stacked plates to the back of the mold.
 - 2. (Currently Amended) The method defined in claim 1, wherein during

step (a) the discrete regions are machined to a depth in the order of 0.002 to 0.008 inches (5.00 to 22.86 mm).

- 3. (Currently Amended) The method defined in claim 1, wherein the majority of the plates are typically about 1.000 inch (2.54 mm) or less in thickness.
 - 4. (Canceled)
- 5. (Currently Amended) The method defined in claim [4] 2, wherein during step (a), the first gaps extend said at least one discrete region extends from the inner radius toward the outer radius for approximately 1.00 inch or less.
- 6. (Original) The method defined in claim 1 wherein during step (b), the plates are stacked one upon the other over alignment pins.
- 7. (Original) The method defined in claim 6 wherein during the step (b), the alignment pins have threaded ends receiving threaded flathead fasteners when the full complement of plates is assembled.
 - 8. (Previously Presented) The method defined in claim 1, wherein the

plates are stacked and joined as two separate cooperative parts of a claim-shell mold.

- 9. (Previously Presented) The method defined in claim 1, wherein the plates are stacked and joined as discrete parts of a segmented mold.
- 10. (Original) The method defined in claim 1 wherein the interior radius edges of the assembled plates are engraved with the pattern of a tire tread to be molded on a tire placed within the mold.
- 11. (Currently Amended) In a A mold for the formation of tread patterns on tires[,] a venting construction for passing gases to the mold exterior as the mold is filled with heated and unvulcanized rubber, said mold comprising

a plurality of mold sections each including a plurality of arcuate or annular plate-like parts assembled and secured face to face in a stack, the parts having substantially common inner and outer radii, the parts having a first set of machined regions in a minor portion of their faces defining a first set of gaps between adjacent plates of the assembled plate-like parts extending outward from the inner radius,

the plurality of plate-like parts also having a second set of machined

regions adjacent to and opening into the radially outward edges of the assembled plate-like parts defining radially extending vent passages between adjacent plates in the range of approximately 0.060 inches (15.24 mm) and extending from the first gaps to the outer radius of the plates, thereby providing outward venting of the stacked plates to the back of the mold, and

the radially inward edges of the assembled plate-like parts forming a surface having at least a portion of a tire tread mold formed thereon.

12. (Canceled)

13. (Currently Amended) A mold as defined in claim 11, wherein the depth of the first set of machined regions being in the range of approximately 0.002 to 0.008 inches (5.08 to 22.86 mm).

14 – 20. (Canceled)

- 21. (New) A method for preparing a plurality of plates which will define an interior tread pattern within a tire mold, said plates having an inner predetermined radius and an outer predetermined radius, comprising the steps of
 - a) machining at least one discrete region to a shallow depth on at

least one side of the plates from its inner radius part way toward its outer radius,

- b) stacking and securing the plates together and thereby producing first gaps at the discrete regions between the surfaces of adjacent plates, the first gaps extending outward from the inner radius,
- c) forming second gaps at a depth and width greater than the first gaps and in alignment to the first gaps, said second gaps extending from the first gaps to said outer radius to form vent passages between adjacent plates and thus venting outward through the stacked plates to the back of the mold.
- 22. (New) The method defined in claim 21, wherein during step (a) the discrete regions are machined to a depth in the order of 0.002 to 0.008 inches.
- 23. (New) The method defined in claim 22, wherein during step (a), said at least one discrete region extends from the inner radius toward the outer radius for 1.00 inch or less.
- 24. (New) The method defined in claim 21, wherein the majority of the plates are 1.000 inch or less in thickness.
 - 25. (New) The method defined in claim 21, wherein during step (b), the

plates are stacked one upon the other over alignment pins.

- 26. (New) The method defined in claim 25, wherein during the step (b), the alignment pins have threaded ends receiving threaded flathead fasteners when the full complement of plates is assembled.
- 27. (New) The method defined in claim 21, wherein the plates are stacked and joined as two separate cooperative parts of a clam-shell mold.
- 28. (New) The method defined in claim 21, wherein the plates are stacked and joined as discrete parts of a segmented mold.
- 29. (New) The method defined in claim 21 wherein the interior radius edges of the assembled plates are engraved with the pattern of a tire tread to be molded on a tire placed within the mold.