Задача 4. Да се докаже, че за всеки три множества A , B и C е изпълнено, че $A\subseteq B\cup C\Leftrightarrow A\backslash B\subseteq C$.

Доказателство:

Нека A, B и C са произволни множества.

- (\subseteq) Нека $A\subseteq B\cup C$. Ще докажем, че $A\backslash B\subseteq C$. За целта нека $x\in A\backslash B$ е произволен елемент. Тогава $x\in A\backslash B\Rightarrow x\in A$ и $x\not\in B$. Но $A\subseteq B\cup C\Rightarrow x\in B\cup C$. Но $x\not\in B\Rightarrow x\in C$. Тъй като x беше произволно избран елемент, то с това доказахме, че ако $x\in A\backslash B$, то $x\in C$ (в случая когато $A\subseteq B\cup C$) $\Rightarrow A\backslash B\subseteq C$.
- (\supseteq) Нека $A \setminus B \subseteq C$. Ще докажем, че $A \subseteq B \cup C$. Нека $x \in A$ е произволен елемент. Ако $x \in B$, то твърдението $x \in B \cup C$ е тривиално, но ако $x \notin B$, то тъй като $x \in A$ ще имаме, че $x \in A \setminus B$. От друга страна сме в случая, в който $A \setminus B \subseteq C$ и следователно $x \in C \subseteq B \cup C$.

Следователно от (\subseteq) и (\supseteq) следва, че за всеки три множества A,B и C е изпълнено, че $A\subseteq B\cup C\Leftrightarrow A\backslash B\subseteq C$.