Homework 9 for MATH 104

Brief solutions to selected problems

Problem 1

(a) Suppose $f: \mathbb{R} \to \mathbb{R}$ is differentiable at $x \in \mathbb{R}$. Show that

$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h} = f'(x). \tag{*}$$

Solution. Assume $h_n \to 0$, $h_n \neq 0$. We have to show that

$$\lim_{n\to\infty}\frac{f(x+h_n)-f(x-h_n)}{2h_n}=f'(x).$$

We write

$$\frac{f(x+h_n)-f(x-h_n)}{2h_n} = \frac{f(x+h_n)-f(x)+f(x)-f(x-h_n)}{2h_n} = \frac{f(x+h_n)-f(x)}{2h_n} + \frac{f(x)-f(x-h_n)}{2h_n}.$$

Since $h_n \to 0$, $x + h_n \to x$ and $x - h_n \to x$. Since f' exists at x, it follows that

$$\lim_{n\to\infty}\frac{f(x+h_n)-f(x)}{2h_n}=\frac{f'(x)}{2}\quad\text{and}\quad \lim_{n\to\infty}\frac{f(x)-f(x-h_n)}{2h_n}=\frac{f'(x)}{2}.$$

Therefore,

$$\lim_{n\to\infty}\frac{f(x+h_n)-f(x-h_n)}{2h_n}=\frac{f'(x)}{2}+\frac{f'(x)}{2}=f'(x).$$

(b) Find an example of a function $g : \mathbb{R} \to \mathbb{R}$ such that the limit in (*) exists for some $x \in \mathbb{R}$ but g is not even continuous at x.

Solution. One can take any differentiable function f and make it non-continuous at some point z. For example, define

$$f(x) = \begin{cases} x & \text{if } x \neq 0, \\ 1 & \text{if } x = 0. \end{cases}$$

Problem 2

Consider the functions

$$f(x)=\sin(\tfrac{1}{x})\quad g(x)=x\sin(\tfrac{1}{x})\quad h(x)=x^2\sin(\tfrac{1}{x})\quad \text{for } x\neq 0,$$

and set g(0) = h(0) = 0.

(a) Show that f cannot be extended continuously to x = 0, i.e. show that there is no continuous function $\tilde{f} : \mathbb{R} \to \mathbb{R}$ such that $\tilde{f}(x) = f(x)$ for all $x \neq 0$.

Solution. By a theorem proved earlier, it suffices to show that f is not uniformly continuous on (0,1). Let $\varepsilon=1/2$. Given an arbitrary $\delta>0$, pick n such that $1/n<\delta$. Then $x=1/2n\pi$ and $y<1/(2n\pi+\pi/2)<\delta$. Hence

$$|x-y|<\delta\quad \text{but}\quad |f(x)-f(y)|=1>\epsilon.$$

(b) Show that g is continuous but not differentiable at x = 0.

Solution. Since $|g(x)| \le |x|$, it follows immediately that $\lim_{x\to 0} g(x) = 0$, hence g is continuous at 0.

Furthermore,

$$\frac{g(x)-g(0)}{x-0}=\sin(\tfrac{1}{x}).$$

But it follows from (a) that $\lim_{x\to 0}\sin(\frac{1}{x})$ does not exist.

(c) Show that h is differentiable at x = 0 but h' is not continuous at x = 0.

Solution. Differentiabilty of h follows from continuity of g at 0. Applying the product rule, we get $h'(x) = 2x \sin(\frac{1}{x}) + x^2 \cos(\frac{1}{x})(-\frac{1}{x^2})$ for $x \neq 0$. For x = 0, we have

$$h'(0)=\lim_{x\to 0}\frac{x^2\sin(\frac{1}{x})}{x}=0.$$

But is easy to see that $\lim_{x\to 0} h'(x)$ does not exist.

Problem 3

(a) Use the mean value theorem to show that

$$\sqrt{1+x}<1+\frac{x}{2}\quad \text{for all } x>0.$$

Solution. By the mean value theorem, there exists a 1 < y < 1 + x such that

$$\frac{1}{2\sqrt{u}} = \frac{\sqrt{1+x} - \sqrt{1}}{x}.$$

Hence, since y > 1,

$$\frac{x}{2}+1>\frac{x}{2\sqrt{y}}+1=\sqrt{x+1}.$$

(b) Suppose f that differentiable on \mathbb{R} , that $1 \leqslant f'(x) \leqslant 2$ for all $x \in \mathbb{R}$ and that f(0) = 0. Show that $x \leqslant f(x) \leqslant 2x$ for all $x \geqslant 0$.

Solution. If x > 0, then by the mean value theorem there exists a 0 < z < x such that

$$f'(z) = \frac{f(x)}{x}.$$

By the assumption on f' it follows that

$$x \leqslant f(x) \leqslant 2x$$
.

Problem 4

Let f be differentiable on \mathbb{R} with $a = \sup\{|f'(x)| : x \in \mathbb{R}\} < 1$. Select $s_0 \in \mathbb{R}$ and define $s_n = f(s_{n-1})$ for $n \ge 1$. Show that (s_n) converges.

[Hint: Prove the inequality $|s_{n+1} - s_n| \leqslant \alpha |s_n - s_{n-1}|$.]

Solution. Wlog we can assume that $s_{n+1} \neq s_n$ for all n (otherwise (s_n) converges, because the sequence is constant then from some n on).

We have $|s_{n+1} - s_n| = |f(s_n) - f(s_{n-1})|$. By the mean value theorem, there exists a z such that

$$f'(z) = \frac{f(s_n) - f(s_{n-1})}{s_n - s_{n-1}}.$$

Hence, by assumption,

$$|s_{n+1} - s_n| = |f(s_n) - f(s_{n-1})| = |f'(z)||s_n - s_{n-1}| \le \alpha |s_n - s_{n-1}|.$$

Now it follows from Homework 3, Problem 2 that (s_n) is a Cauchy sequence.