#### **ICSPIS 2022**

8rd Iranian Conference on Signal Processing and Intelligent Systems 28 – 29 December 2022

University of Science and Technology of Mazandaran, Behshahr, Iran



# Adaptive Frame Selection In Two Dimensional Convolutional Neural Network Action Recognition

Alireza Rahnama

Kharazmi University Tehran, Iran Alireza Esfahani

University of Science and Technology of Mazandaran Behshahr, Iran **Azadeh Mansouri** 

Kharazmi University
Tehran, Iran



## Introduction

- Video is the most important part of this contemporary society:
  - the majority of internet traffic
- ► Video usage :
  - Action recognition
  - Object detection
  - NLP
- Why do we use frame selection:
  - Redundancy
  - The large volume of data
  - Additional and unusable data
  - Less process



## Introduction

#### An overview of the framework

- Dataset
- ► Frame-Selection
- Spatial feature extractor
- ► Temporal feature extractor
- ► Classification





## **Algorithm**

#### **Adaptive Frame-Selection**

- Read full video
- 2. Select the first frame
- 3. FS = Calculate the similarity frame of the last selected frame and the current frame with algorithm<sup>1</sup>



- 4. SFS = Calculate the average of the similarity frame
- 5. Check the current SFS with an average<sup>2</sup> of the SFS of all selected frames
- 6. If SFS  $_i$  <  $^2$ Mean of the window:
  - Select the current frame and add SFS in the window array \_\_\_\_\_
- 7. Selected frames are used for feature extraction

► <sup>1</sup>Frame – Similarity = 
$$\frac{2 \times F_i \times SF_i}{F_i^2 + SF_i^2 + a}$$

▶ <sup>2</sup> Mean of window = 
$$\frac{\sum_{i=0}^{n} SFS_i}{n}$$



# **Algorithm**

#### **Adaptive Frame-Selection**

► <sup>1</sup>Frame – Similarity = 
$$\frac{2 \times F_i \times SF_i}{F_i^2 + SF_i^2 + a}$$

▶ <sup>2</sup> Mean of window =  $\frac{\sum_{i=0}^{n} SFS_i}{n}$ 





## **Feature Extraction**

#### Spatio-Temporal pooling

- Spatial features:
  - Transfer learning
  - Pre-trained models:
    - ResNet-50
    - MobileNet
- ► Temporal pooling
  - Extract the maximum feature of the video
  - Data augmentation







## Model

- ► Layers of Model:
  - Based on the feature vector size





# Results

### Algorithm

#### COMPARISON OF TWO SCENARIOS: WITH OR WITHOUT FRAME SELECTION

| Measurements                     | Selected frames | All frames  |
|----------------------------------|-----------------|-------------|
| Total Frames                     | 732,477         | 2,465,430   |
| Time Spend Average               | 12.1650 Sec     | 37.3013 Sec |
| Selected Frames<br>Average       | 55.1831         | 186.5065    |
| percentage of the selected frame | 31.2048 %       | 100%        |





## **Results**

#### Train&Test

RESULTS WITH A DIFFERENT PRE-TRAINED MODEL ON UCF101

| Pre-trained models | All frames | Selected frames |
|--------------------|------------|-----------------|
| ResNet-50          | 98.37%     | 98.05%          |
| MobileNet          | 97.68%     | 97.70%          |





## **Conclusion and future work**

- Process in a shorter time
- Use data in compressed domain
  - Less process
  - Short time



# **Extra Result**

**Confusion Matrix** 





ResNet-50



# Thanks for your attention

Email: Alireza.rahnama@khu.ac.ir

