```
from sklearn.datasets import load_breast_cancer
breast = load_breast_cancer()
breast
breast_data = breast.data
breast_data
breast_data.shape
breast_data
breast_labels = breast.target
breast labels
breast_labels.shape
(569,)
import numpy as np
labels = np.reshape(breast_labels,(569,1))
labels
Show hidden output
final_breast_data = np.concatenate([breast_data,labels],axis=1)
final_breast_data.shape
(569, 31)
final_breast_data
array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 4.601e-01, 1.189e-01,
        0.000e+00],
       [2.057e+01, 1.777e+01, 1.329e+02, ..., 2.750e-01, 8.902e-02,
        0.000e+00],
       [1.969e+01, 2.125e+01, 1.300e+02, ..., 3.613e-01, 8.758e-02,
        0.000e+00],
       [1.660e+01, 2.808e+01, 1.083e+02, ..., 2.218e-01, 7.820e-02,
        0.000e+00],
       [2.060e+01, 2.933e+01, 1.401e+02, ..., 4.087e-01, 1.240e-01,
       0.000e+00],
       [7.760e+00, 2.454e+01, 4.792e+01, ..., 2.871e-01, 7.039e-02,
        1.000e+00]])
import pandas as pd
breast_dataset = pd.DataFrame(final_breast_da par
```

```
breast_dataset
               1
                      2
                              3
                                                       6
                                                                               9 ...
                                                                                         21
                                                                                                 22
                                                                                                        23
                                                                                    ... 17.33 184.60 2019.0
     17.99 10.38 122.80 1001.0 0.11840 0.27760 0.30010 0.14710 0.2419 0.07871
     20.57 17.77 132.90
                         1326.0 0.08474 0.07864 0.08690 0.07017 0.1812 0.05667
                                                                                       23.41
                                                                                             158.80 1956.0
 2
     19.69 21.25 130.00
                         1203.0 0.10960 0.15990 0.19740 0.12790 0.2069
                                                                          0.05999
                                                                                       25.53
                                                                                             152.50
                                                                                                    1709.0
     11.42 20.38
                   77.58
                          386.1 0.14250 0.28390 0.24140 0.10520 0.2597
                                                                          0.09744
                                                                                       26.50
                                                                                              98.87
                                                                                                      567.7
     20.29 14.34 135.10 1297.0 0.10030 0.13280 0.19800 0.10430 0.1809
                                                                          0.05883
                                                                                       16.67
                                                                                             152.20 1575.0
     21.56 22.39 142.00 1479.0 0.11100 0.11590 0.24390 0.13890 0.1726
                                                                          0.05623
                                                                                       26.40 166.10 2027.0
564
    20.13 28.25 131.20 1261.0 0.09780 0.10340 0.14400 0.09791 0.1752
                                                                         0.05533
                                                                                       38.25 155.00 1731.0
565
     16.60 28.08 108.30
                          858.1 0.08455 0.10230 0.09251 0.05302 0.1590
                                                                         0.05648
                                                                                       34.12 126.70 1124.0
566
     20.60 29.33 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397
                                                                          0.07016
                                                                                       39.42 184.60 1821.0
568
      7.76 24.54
                   47.92
                          181.0 0.05263 0.04362 0.00000 0.00000 0.1587
                                                                          0.05884
                                                                                       30.37
                                                                                              59.16
                                                                                                      268.6
569 rows × 31 columns
```

```
final_breast_data

array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 4.601e-01, 1.189e-01, 0.000e+00],
        [2.057e+01, 1.777e+01, 1.329e+02, ..., 2.750e-01, 8.902e-02, 0.000e+00],
        [1.969e+01, 2.125e+01, 1.300e+02, ..., 3.613e-01, 8.758e-02, 0.000e+00],
        ...,
        [1.660e+01, 2.808e+01, 1.083e+02, ..., 2.218e-01, 7.820e-02, 0.000e+00],
        [2.060e+01, 2.933e+01, 1.401e+02, ..., 4.087e-01, 1.240e-01, 0.000e+00],
        [7.760e+00, 2.454e+01, 4.792e+01, ..., 2.871e-01, 7.039e-02, 1.000e+00]])
```

features = breast.feature_names

```
features_labels = np.append(features, 'label')

breast_dataset.columns = features_labels
```

breast_dataset.head()

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	•••
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871	
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667	
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999	
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744	
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883	
5 rc	ws × 31 c	columns									

breast_dataset['label'].replace(0, 'Benign',inplace=True)
breast_dataset['label'].replace(1, 'Malignant',inplace=True)

<ipython-input-23-2c40a603cf26>:1: FutureWarning: A value is trying to be set on a copy of a DataFrame or S
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=T

breast_dataset['label'].replace(0, 'Benign',inplace=True)

breast_dataset.tail()

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	•
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623	
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533	
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648	
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016	
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884	

5 rows × 31 columns

from sklearn.preprocessing import StandardScaler

x = breast_dataset.loc[:, features].values

x = StandardScaler().fit_transform(x) # normalizing the features

x.shape

(569, 30)

np.mean(x), np.std(x)

(-6.826538293184326e-17, 1.0)

feat_cols = ['feature'+str(i) for i in range(x.shape[1])]

normalised_breast = pd.DataFrame(x,columns=feat_cols)

normalised_breast.head()

	feature0	feature1	feature2	feature3	feature4	feature5	feature6	feature7	feature8	feature9	
0	1.097064	-2.073335	1.269934	0.984375	1.568466	3.283515	2.652874	2.532475	2.217515	2.255747	
1	1.829821	-0.353632	1.685955	1.908708	-0.826962	-0.487072	-0.023846	0.548144	0.001392	-0.868652	
2	1.579888	0.456187	1.566503	1.558884	0.942210	1.052926	1.363478	2.037231	0.939685	-0.398008	
3	-0.768909	0.253732	-0.592687	-0.764464	3.283553	3.402909	1.915897	1.451707	2.867383	4.910919	
4	1.750297	-1.151816	1.776573	1.826229	0.280372	0.539340	1.371011	1.428493	-0.009560	-0.562450	
5 rc	ws × 30 colu	ımns									

normalised_breast.tail()

	feature0	feature1	feature2	feature3	feature4	feature5	feature6	feature7	feature8	feature9	
564	2.110995	0.721473	2.060786	2.343856	1.041842	0.219060	1.947285	2.320965	-0.312589	-0.931027	
565	1.704854	2.085134	1.615931	1.723842	0.102458	-0.017833	0.693043	1.263669	-0.217664	-1.058611	
566	0.702284	2.045574	0.672676	0.577953	-0.840484	-0.038680	0.046588	0.105777	-0.809117	-0.895587	
567	1.838341	2.336457	1.982524	1.735218	1.525767	3.272144	3.296944	2.658866	2.137194	1.043695	
568	-1.808401	1.221792	-1.814389	-1.347789	-3.112085	-1.150752	-1.114873	-1.261820	-0.820070	-0.561032	
5 rows	s × 30 colum	ns									

from sklearn.decomposition import PCA
pca_breast = PCA(n_components=2)

principalComponents_breast = pca_breast.fit_transform(x)

principal_breast_Df = pd.DataFrame(data = principalComponents_breast, columns = ['principal component 1',

principal breast Df.tail()

<pre>::pal_breast_D+.tail()</pre>	
principal component 1	principal component 2
6.439315	-3.576817
3.793382	-3.584048
1.256179	-1.902297
10.374794	1.672010
-5.475243	-0.670637
	principal component 1 6.439315 3.793382 1.256179 10.374794

principal_breast_Df

	principal component 1	principal component 2
0	9.192837	1.948583
1	2.387802	-3.768172
2	5.733896	-1.075174
3	7.122953	10.275589
4	3.935302	-1.948072
564	6.439315	-3.576817
565	3.793382	-3.584048
566	1.256179	-1.902297
567	10.374794	1.672010
568	-5.475243	-0.670637
569 ro	ws × 2 columns	

```
print('Explained variation per principal component: {}'.format(pca_breast.explained_variance_ratio_))
Explained variation per principal component: [0.44272026 0.18971182]
```

import matplotlib.pyplot as plt

```
plt.figure()
plt.figure(figsize=(10,10))
plt.xticks(fontsize=12)
plt.yticks(fontsize=14)

plt.xlabel('Principal Component - 1',fontsize=20)
plt.ylabel('Principal Component - 2',fontsize=20)
plt.title("Principal Component Analysis of Breast Cancer Dataset",fontsize=20)
targets = ['Benign', 'Malignant']
colors = ['r', 'g']
for target, color in zip(targets,colors):
    indicesToKeep = breast_dataset['label'] == target
    plt.scatter(principal_breast_Df.loc[indicesToKeep, 'principal component 1']
        , principal_breast_Df.loc[indicesToKeep, 'principal component 2'], c = color, s = 50)

plt.legend(targets,prop={'size': 15})
```

