Laboratório de Circuitos Elétricos - 02/2024 - Turma 05 **Experimento 2** 31/10/2024

Grupo 6:

Yuri Shumyatsky - 231012826 Vinicius de Melo Moraes - 231036274

1 Introdução

O presente estudo aborda a aplicação dos métodos de análise nodal e análise de malha para resolver circuitos elétricos, técnicas essenciais para entender o comportamento de circuitos compostos por resistores, fontes de tensão e corrente. Esses métodos são amplamente empregados na Engenharia Elétrica e em áreas relacionadas para o desenvolvimento de sistemas eletrônicos.

O experimento, realizado no contexto da disciplina de Laboratório de Circuitos Elétricos, visa consolidar o conhecimento teórico sobre os princípios de Kirchhoff e as técnicas de análise de circuitos. A análise nodal utiliza a Lei das Correntes de Kirchhoff (LKC) para determinar a tensão em cada nó do circuito, enquanto a análise de malha emprega a Lei das Tensões de Kirchhoff (LKT) para calcular as correntes em cada malha.

Para verificar a precisão e as limitações de cada método, foram implementados circuitos práticos em bancada, e os dados e resultados obtidos são analisados e discutidos neste relatório.

2 Materiais

- Multímetro Agilent 34410A
- Fonte DC Agilent E3631A
- Protoboard
- 1 resistor de 1,5k Ω
- 1 resistor de $1,2k\Omega$
- 1 resistor de $1k\Omega$
- 1 resistor de $1.8k\Omega$
- 1 resistor de $2,2k\Omega$

Montados na seguinte configuração:

Figura 1 – Esquemático do circuito utilizado neste experimento.

Para o grupo 6, foi definido que $R_1=1k\Omega,R_2=1,2k\Omega,R_3=1,5k\Omega,R_4=1,8k\Omega$ e $R_5=2,2k\Omega,V_{S1}=2V,V_{S2}=3V.$

3 Experimento

A primeira ação a ser tomada é verificar as resistências reais dos resistores, obtendo a Tabela 1.

Resistor	Valor Nominal	Valor medido	Erro (%)
R_1	$1k\Omega$	$0,999k\Omega$	0,1
R_2	$1,2k\Omega$	$1,179k\Omega$	1,75
R_3	$1,5k\Omega$	$1,491k\Omega$	0,6
R_4	$1,8k\Omega$	$1,813k\Omega$	0,72
R_5	$2,2k\Omega$	$2,177k\Omega$	1,05

Tabela 1

Em seguida serão calculadas as tensões em cada resistor e fonte, comparadas com os valores medidos experimentalmente.

Para conseguir os valores calculados das tensões, usamos as correntes encontradas com análise de malha, cujos cálculos serão expostos adiante.

Malha 1:

$$1kI_1 + 1, 2k(I_1 - I_2) = 2$$
$$2, 2kI_1 - 1, 2kI_2 = 2$$

Malha 2:

$$-1, 2k(I_1 - I_2) + 1, 5kI_2 + 1, 8k(I_2 - I_3) = -3$$
$$-1, 2kI_1 + 4, 5kI_2 - 1, 8kI_3 = -3$$

Malha 3:

$$-1,8k(I_2-I_3)+2,2kI_3$$

Com esse sistema, montamos a seguinte matriz:

$$\begin{bmatrix} 2,2k & -1,2k & 0 & 2 \\ -1,2k & 4,5k & -1,8k & -3 \\ 0 & -1,8k & 4,0k & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1k & 3,3k & -1,8k & -1 \\ 0 & 1,8k & -0,84k & -0,89 \\ 0 & 0 & 3,16k & 2,11 \end{bmatrix}$$

Com isso, obtemos as correntes das malhas, e usando a relação V=RI, calculamos as tensões em cada resistor.

Tensão	Valor calculado	Valor medido	Erro (%)
V_{R_1}	$0,\!805\mathrm{V}$	0,815V	1,24
V_{R_2}	1,186V	1,180V	0,51
V_{R_3}	-0.274V	-0,275V	0,36
V_{R_4}	-1,531V	-1,551V	1,31
V_{R_5}	1,469V	1,456V	0,88
V_{S_1}	2V	1,996V	0,20
V_{S_2}	3V	3,007V	0,23

Tabela 2

Em seguida, calcula-se as correntes em cada resistor: para R_1, R_3, R_5 , basta usar os valores das correntes de malha calculadas no passo anterior. Para R_2 e R_4 , basta fazer a soma apropriada das correntes de malha ($R_2 = I_1 - I_2$ e $R_4 = I_2 - I_3$).

Corrente	Valor calculado	Valor medido	Erro (%)
I_{R_1}	0.805 mA	0.734 mA	8,82
I_{R_2}	0,988 mA	0,905 mA	8,40
I_{R_3}	-0,183mA	-0,173mA	5,46
I_{R_4}	-0,851mA	-0,798mA	6,23
I_{R_5}	0,668 mA	0,630 mA	5,69

Tabela 3

Por fim, calcula-se as tensões nodais e as correntes de malha, sendo que as correntes já foram calculadas na análise de malha acima. Para as tensões, usando o nó 3 como referência e a LKC, sabemos que a tensão no ponto entre V_{S1} e R_1 tem V=2V, usamos $\frac{2-V_1}{1k}=I_1$, o que implica $V_1=1,195V$. De forma análoga para o nó 2, encontramos $\frac{V_1-V_2}{1,5k}=I_2$, o que implica $V_2=1,469V$

	Valor calculado	Valor medido	Erro (%)
Tensão do nó 1	1,195V	1,180V	1,26
Tensão do nó 2	1,469V	1,456V	0,88
Corrente laço 1	0.805 mA	0,734 mA	8,82
Corrente laço 2	-0,183mA	-0.173 mA	5,46
Corrente laço 3	0,668 mA	0,630 mA	5,69

Tabela 4

4 Conclusão

Os métodos de análise nodal e de malha mostraram-se eficazes para resolver e entender circuitos elétricos, oferecendo abordagens distintas para calcular tensões e correntes em circuitos complexos. Com a análise de circuitos, foi possível determinar tensões em diferentes pontos do circuito, além de facilitar o cálculo de correntes em laços fechados.

Os resultados experimentais mostraram boa concordância com os valores teóricos, validando a aplicabilidade dos métodos. Pequenas discrepâncias, possivelmente decorrentes de imprecisões nas medições ou tolerâncias dos componentes, destacam a importância de considerar fatores práticos e limitações dos equipamentos em laboratório.

Assim, o experimento reforça o entendimento prático dos conceitos teóricos e confirma a análise nodal e de malha como ferramentas essenciais para a solução de problemas.

5 Bibliografia

• HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física. 10. ed. v. 3. Rio de Janeiro: LTC, 2016.