

Machien Learning and Inductive Inference [H02C1a] Xinhai Zou (r0727971)

Contents

1	Lecture 1: Introduction, Version spaces	1
	1.1 Some ML examples in practice	1
	1.2 Machine Learning	1
	1.3 Machine Learning learning landscape	1
	1.4 Some basic concepts and terminology	2
	1.5 Input formats (predictive learning)	3
	1.6 Output formats, methods (predictive learning)	4
2	Lecture 2: Induction of decision tree	5
	2.1 Overview of DT	5
	2.2 Learn trees from data	6
3	Lecture 3: Learning sets of rules	6
4	Lecture 4: Instance-based learning, Clustering	6
5	Lecture 5: Evaluating hypotheses	6
6	Lecture 6: Numerical approaches (ANN, SVM), Computational	
	learning theory	6
7	Lesture 7. Duchabilistic annuaches Engambles	6
1	Lecture 7: Probabilistic approaches, Ensembles	U
8	Lecture 8: Reinforcement learning	6
9	Lecture 9-10: Inductive logic programming	6

1 Lecture 1: Introduction, Version spaces

1.1 Some ML examples in practice

- 1. Autonomous cars
- 2. The Robosail project
- 3. The Robot Scientist
- 4. Infra Watch, "Hoolandse brug" the bridge
- 5. Language learning
- 6. Automating manual tasks

1.2 Machine Learning

Definition of machine learning: it is the study of how to make programs improve their performance on certain tasks from own (experience). In this case:

- "performance" = speed, accuracy
- "experience" = earlier observations

Machine Learning vs. other AI

In **machine learning**, the key is **data**, examples of questions and their answer; observations of earlier attempts to solve the problem

In inductive inference, it is reasonsing from specific to general, statistics: sample -> population; from concrete observations -> general theory

1.3 Machine Learning learning landscape

- tasks
 - clustering
 - classification
 - regression
 - reinforcement learning
- techniques
 - Convex optimization
 - Matrix factorization
 - Transfer learning
 - Learning theory
 - Greedy search

• models

- automata
- neural network
- deep learning
- statistical relational learning
- decision trees
- support vector machines
- nearest neighbors
- rule learners
- bayesian learning
- probabilisite graphical models

• applications

- natural language processing
- vision
- speech

• related courses

- neural computing
- support vector machine
- uncertainty in AI
- data mining
- genetic algorithms and evolutionary computing

1.4 Some basic concepts and terminology

• Predictive learning

- Definition: learn a model that can predict a particular property/ attribute/ variable from inputs
- Binary classification: distinguish instances of class C from other instances
- Classification: assign a class C (from a given set of classes) to an instances
- Regression: assign a numerical value to an instance
- multi-label classification: assign a set of labels (from a given set) to an instance
- multivariate regression: assign a vector of numbers to an instances

multi-target prediction: assign a vector of values (numerical, categorical) to an instances

• Descriptive learning

 Definition: given a dataset, describe certain patterns in the dataset, or in the population it is drawn from

• Typical tasks in ML

- function learning: learn a function X->Y taht fits the given data
- distribution learning: distribution learning
 - * parametric: the function family of the distribution is known, we only need to estimate its parameters
 - * non-parametric: no specific function family assumed
 - * generative: generate new instances by random sampleing from it
 - * discriminative: conditional probability distribution

• Explainable AI (XAI)

- Definition: means that the decisions of an AI system can be explained
- Two different levels:
 - * We understand the (learned) model
 - * We understand the individual decision

1.5 Input formats (predictive learning)

- Set
 - training set: a set of examples, instance descriptions that include the target property (a.k.a. labeled instances)
 - prediction set: a set of instance descriptions that do not include the target property ('unlabeled' instances)
 - prediction task: predict the label of the unlabeled instances

• Outcome of learning process

- transductive learning: the predictions themselves
- inductive learning: a function that can predict the label of any unlabeled instance

• Explainable AI

- interpretable: can be interpred
- black-box: non-interpretable

• Learning

- Supervised learning: from labeled
- Unsupervised learning: from unlabeled
- Semi-supervised learning: from a few labeled and many unlabeled
- Format of input data
 - input is often assumed to be a set of instances that are all described using the same variables (features, attributes)
 - i.i.d.: independent and identically distributed
 - * tabular data (NN)
 - * sequences
 - * trees
 - * graph
 - * raw data: learning meaningful feaures from raw data
 - * knowledge: inductive logic programming

1.6 Output formats, methods (predictive learning)

The **output** of a learning system is a model.

- output
 - parametrized functions
 - ocnjunctive concepts: a conjuntive concept is expressed as a set of conditions, all of which must be true
 - rule sets (if...then...else...)
 - decision trees
 - neural networks
 - probabilisite graphical models
- search methods
 - discrete spaces methods: hill-climbing, best-first
 - continuous spaces methods: gradient descent
- typically
 - model structure not fixed in advanced discrete
 - fixed model structure, tune numerical parameters continuous
- hypothesis space
 - definition: all possible instances
 - for robot example: $\{B,R,M,?\} \times \{S,T,?\} \times \{L,W,?\} \times \{1,2,?\}$

- Verson space
 - using candidate elimination
 - pros
 - * can be used for discrete hypothesis spaces
 - \ast search for all solutions, rather than just one, in an efficient manner
 - * importance of generality ordering
 - cons
 - * not robust to noise
 - * only conjunctive concepts

2 Lecture 2: Induction of decision tree

2.1 Overview of DT

- A decision tree represents a decision procedure where
 - you start with one question
 - the answer will determine the next question
 - and repeat, untill you reach a decision
- We will usually call the questions "tests" and the decision a "prediction"
- attribute
 - input attribute $X = \{X_1, X_2 ..., X_n\}$
 - target attribute Y
 - the tree represents a function f: $X \rightarrow Y$
- Example: Playing Tennis Tree
 - Outlook: $X_1 = \{Sunny, Overcast, Rainy\}$
 - Humidity: $X_2 = \{High, Normal\}$
 - Wind: $X_3 = \{Strong, Weak\}$
 - Tennis: $Y = \{Yes, No\}$
 - The tree represents a function Outlook x Humidity x Wind -> Tennis
- Boolean tree
- Continuous input attributes
 - We cannot make a different child node for each possible value!
 - Solution: use comparative test -> a finite number of possible outcomes

- Type of trees
 - target attribute Y is nomial -> classification tree
 - target attribute Y is numerical -> regression tree
- Advantages of Tree (Why tree?)
 - Learning and using tree is **efficient**
 - Tend to have **good predictive accuracy**
 - Tree is **interpretable**

2.2 Learn trees from data

- Two tasks for DT
 - Task 1: find the smallest tree T such that $\forall (x,f(x)) \in D: T(x)=f(x)$ (meaning that only fullfill current data set)
 - Task 2: find the tree T such that for x drawn from population D, T(x) is (on average) maximally similar to f(x) (T:model tree from data set D, f(x):true function in population D)
 - * loss function: l: $Y_1 \times Y_2 \rightarrow R$ (where Y_1 is predicted value, Y_2 is actual value)
 - * risk R of T, the expectation of loss function, is $E_{x\sim D}[l(T(x), f(x))]$, which is needed to be minimal.
- the basic principle
 - The approach is known as "Top-down induction of decision trees (TDIDT)", or "recursive partitioning"
 - * 1. start with the full data set D
 - * 2. find a test such that examples in D with the same outcome for the test tend to have the same value of Y
 - * 3. split D into subsets, one for each outcome of that test
 - * 4. repeat this procedure on each subset that is not yet sufficiently "pure" (meaning, not all elements have the same Y)
 - * 5. keep repeating until no further splits possible

- 3 Lecture 3: Learning sets of rules
- 4 Lecture 4: Instance-based learning, Clustering
- 5 Lecture 5: Evaluating hypotheses
- 6 Lecture 6: Numerical approaches (ANN, SVM), Computational learning theory
- 7 Lecture 7: Probabilistic approaches, Ensembles
- 8 Lecture 8: Reinforcement learning
- 9 Lecture 9-10: Inductive logic programming