Decision Rule

Decision Rule

- 2. OneR
- 3. Sequential Covering
- 4. Bayesian Rule List
- 5. 장단점
- 6. 실습

1) 개념

- ✓ 의사결정 규칙이란?
 - ✓ IF-THEN 문
 - ✓ 조건-예상
 - ✓ IF (오늘 비가온다) AND (오늘이 4월이다) THEN 내일 비가 온다.

1) 의사결정 규칙이란?

- ✓ IF-THEN 문
- ✓ 조건 예상
- ✓ 예시
 - ✓ IF (오늘 비가온다) AND (오늘이 4월이다) THEN (내일 비가 온다.)
 - ✓ IF (100평 이상이다) AND (정원이 있다) THEN (집값이 비싸다.)
- ✓ 유용한 결정규칙은 "Support(지지도)"와 "Accuracy(정확도)"로 요약가능

2) 지지도란?

- ✓ 규칙이 적용되는 인스턴스의 비율
- ✓ 예시
 - ✓ IF (size=BIG) AND (location=GOOD) THEN (value=HIGH)
 - ✓ 1,000가구의 집 중 100채가 IF에 해당하며, 84가구가 정말로 (value=HIGH)이다.

- ✓ 특징
 - ✓ 실제로 (value=HIGH)인지는 관심이 없음

3) 정확도란?

- ✓ 규칙이 얼마나 정확한가
- ✓ 예시
 - ✓ IF (size=BIG) AND (location=GOOD) THEN (value=HIGH)
 - ✓ 1,000가구의 집 중 100채가 IF에 해당하며, 84가구가 정말로 (value=HIGH)이다.
 - => 정확도 = 84/100 = 84%

4) 지지도 & 정확도

- ✓ Trade-Off 관계
 - ✓ 한쪽이 올라가면 다른 한쪽이 떨어지는 관계
 - ✓ 지지도를 높이기 위해 조건을 간단히 하면 정확도가 떨어지고 정확도를 높이기 위해 조건을 복잡히 하면 지지도가 떨어지는 관계

- => "절충안"이 필요
 - ✓ 높은 정확도를 유지하면서 지지도도 가지고 있어야 함.

4) 지지도 & 정확도

- ✓ 절충안을 만드는 중 발생할 수 있는 문제
 - ✓ 규칙이 겹치는 경우
 - ✓ 집 값을 예측하기 위해 2개 이상의 규칙이 적용되었을 때, 모순된 예측을 한다면? => Decision List, Decision Set
 - ✓ 적용되는 규칙이 없는 경우
 - ✓ 어떠한 규칙도 없을 때는 어떤 예측 결과를 내야하지?
 - => Default Rule

- ✓ 규칙이 겹칠 수 있다.
 - ✓ 2개 이상의 규칙이 적용되었을 때, 서로 모순된 예측
 - ✓ 해결: Decision List, Decision Set
- ✓ 적용되는 규칙이 없을 수 있다.
 - ✓ 개념: 어떠한 규칙도 없을 때의 예측 결과
 - ✓ 해결 : Default Rule

- ✓ 규칙이 겹칠 수 있다.
 - ✓ 2개 이상의 규칙이 적용되었을 때, 서로 모순된 예측
 - ✓ 해결: Decision List, Decision Set
- ✓ 적용되는 규칙이 없을 수 있다.
 - ✓ 개념: 어떠한 규칙도 없을 때의 예측 결과
 - ✓ 해결 : Default Rule

- ✓ Decision List
 - ✓ 개념 : 의사결정 규칙에 순서를 부여
 - ✓ 예시 :
 1번 규칙 True => 1번 규칙 사용
 1번 규칙 False => 2번 규칙 True => 2번 규칙 사용
 1번 규칙 False => 2번 규칙 False => 3번 규칙 True => 3번 규칙 사용
 - ✓ 특징 : 과거 문제 중 "중복 규칙 문제" 해결

- ✓ Decision Set
 - ✓ 개념 :의사결정 규칙에 가중치 부여
 - ✓ 특징:

 해석할 때 잠재적인 어려움이 있음

 과거 문제 중 "중복 규칙 문제" 해결

- ✓ Default Rule
 - ✓ 개념 :아무런 규칙이 없을 때 적용 가능한 규칙 가장 빈번한 클래스를 사용

6) 그 외의 3가지 대표 의사결정 규칙

- ✓ OneR
 - ✓ 개념 :단일 특성 값에서 규칙을 학습단순성, 해석력이 좋아 벤치마크로 사용
- ✓ Sequential Covering(순차적 적용)
 - ✓ 개념 :
 새로운 규칙에서 배우는 데이터 포인트 제거하며
 규칙을 반복적으로 학습
- ✓ Bayesian Rule Lists (베이즈 규칙 목록)
 - ✓ 개념 : 미리 알아낸 자주 나오는 패턴을 Bayeisan 통계를 사용하여 의사결정 목록으로 결합

- ✓ 개념
 - ✓ Holte(1993) 제언
 - ✓ 가장 단순한 규칙 유도 알고리즘
 - ✓ OneR = One Rule 이나, 사실 2개 이상의 규칙을 사용
- √ 방법
 - ✓ 적절한 간격을 선택해 연속된 Feature 값을 별개의 것으로 이산화
 - ✓ 각 Feature에 대해
 - ✓ Feature와 결과 사이의 Cross-Table을 만듦
 - ✓ Feature 값에 대해 특정 Feature가 있는 인스턴스의 가장 빈번한 Class를 예측하는 규칙을 만듦
 - ✓ Feature에 대한 오류 계산
 - ✓ 오류가 가장 낮은 특성 선택

2) 예시

location	size	pets	value
good	small	yes	high
good	big	no	high
good	big	no	high
bad	medium	no	medium
good	medium	only cats	medium
good	small	only cats	medium
bad	medium	yes	medium
bad	small	yes	low
bad	medium	yes	low
bad	small	no	low

✓ 적절한 간격을 선택해 연속된 Feature 값을 별개의 것으로 이산화

<location>

	value=low	value=medium	value=high
location=bad	3	2	0
location=good	0	2	3

<size>

	value=low	value=medium	value=high
size=big	0	0	2
size=medium	1	3	0
size=small	2	1	1

<pets>

	value=low	value=medium	value=high
pets=no	1	1	2
pets=only cats	0	2	0
pets=yes	2	1	1

✓ Feature와 결과 사이의 Cross-Table을 만듦

2) 예시

<location>

	value=low	value=medium	value=high
location=bad	3	2	0
location=good	0	2	3

<size>

	value=low	value=medium	value=high
size=big	0	0	2
size=medium	1	3	0
size=small	2	1	1

<pets>

	value=low	value=medium	value=high
pets=no	1	1	2
pets=only cats	0	2	0
pets=yes	2	1	1

- ✓ Feature 값에 대해 특정 Feature가 있는 인스턴스의 가장 빈번한 Class를 예측하는 규칙을 만듦
- ✓ Feature에 대한 오류 계산
- ✓ location
 - ✓ rule:
 if location = bad then value = low (3/5 acc)
 if location = good then value = high (3/5 acc)
 - ✓ error: 4/10
- ✓ size
 - ✓ rule:
 if size = big then value = high (2/2 acc)
 if size = medium then value = medium (3/4 acc)
 if size = small then value = low (2/4 acc)
 - ✓ error: 3/10
- ✓ pets
 - ✓ rule: ···
 - ✓ error: 4/10
- ✓ 최종 rule = size의 rule과 동일

3) 특징

<location>

	value=low	value=medium	value=high
location=bad	3	2	0
location=good	0	2	3

<size>

	value=low	value=medium	value=high
size=big	0	0	2
size=medium	1	3	0
size=small	2	1	1

<pets>

	value=low	value=medium	value=high
pets=no	1	1	2
pets=only cats	0	2	0
pets=yes	2	1	1

- ✓ Feature 값에 대해 특정 Feature가 있는 인스턴스의 가장 빈번한 Class를 예측하는 규칙을 만듦
- ✓ Feature에 대한 오류 계산
- ✓ location
 - ✓ rule:
 if location = bad then value = low (3/5 acc)
 if location = good then value = high (3/5 acc)
 - ✓ error: 4/10
- ✓ size
 - ✓ rule:
 if size = big then value = high (2/2 acc)
 if size = medium then value = medium (3/4 acc)
 if size = small then value = low (2/4 acc)
 - ✓ error: 3/10
- ✓ pets
 - ✓ rule: ···
 - ✓ error: 4/10
- ✓ 최종 rule = size의 rule과 동일

3) 특징

- ✓ level이 많으면 예측하기 좋기에 Feature로 선택될 가능성이 높음
 - => 과적합 문제로 연결
 - => Train-validation으로 검증하자.
- ✓ 두 특성 값이 동일할 때는 첫 번째 특성값 선택 or chi-square test의 p-value로 해결

- ✓ 개념 전체 데이터 집합 규칙을 다루는 Decision List(set)을 만들기 위해 단일한 규칙을 반복적으로 학습하는 절차
- √ 방법
 - ✓ 빈 Decision List 생성
 - ✓ 규칙 r 학습
 - ✓ r을 list에 추가
 - ✓ r로 처리한 데이터 포인트 삭제
 - ✓ 남은 데이터로 r 학습
 - ✓ 중지 규칙 or 데이터가 없으면 중지

2) 예시

- √ 방법
 - 1. 의사결정 규칙의 조건으로 사용할 수 있는 frequent pattern 채굴
 - 2. 미리 지정된 규칙의 선택 항목에서 의사결정 목록을 학습

✓ 패턴 채굴

$$Support(x_{j} = A) = \frac{1}{n} \sum_{i=1}^{n} I(x_{j}^{(i)} = A)$$

A: feature

n: 데이터 포인트의 수

I: Indicator Function

즉, i번째 instance가 특정 Feature일 경우 1 아니면 0에 대한 평균

그 외에 Apriori, FP-Growth 등이 있음

✓ Apriori 패턴 채굴

itemsets	support
기저귀	3/4 = 75%
버터	1/4 = 25%
맥주	2/4 = 50%
빵	1/4 = 25%
떡	1/4 = 25%
사이다	1/4 = 25%

itemsets	support	Confidence
기저귀 → 맥주	2/4 = 50%	2/3 = 66.7%
맥주 → 기저귀	2/4 = 50%	2/2 = 100%

- ✓ BRL 학습 rule의 길이 (짧을수록 좋음) rule의 수 (적을수록 좋음)
- √ 방법
 - 1. 사전 분포에서 무작위로 추출한 최초 의사결정 목록 생성
 - 2. 규칙 추가, 전환 ,삭제를 통해 리스트 반복 수정 => 사후 분포를 따르도록 함
 - 3. 사후 분포에 따라 확률이 가장 높은 목록에서 의사결정 목록 선택

✓ BRL 학습

$$p(d|x, y, A, \alpha, \lambda, \eta)$$

 $\underbrace{p(d|x,y,A,\alpha,\lambda,\eta)}_{posteriori} \propto \underbrace{p(y|x,d,\alpha)}_{likelihood} \cdot \underbrace{p(d|A,\lambda,\eta)}_{priori}$

d: 의사결정 목록

x: feature

y: 사전 채굴 조건 집합

알파: (1,1)에서 가장 잘 고정된 양수 및 음수 클래스에 대한 사전 근사수

람다: 의사결정 목록의 이전 예상 길이

에타: 사전 예상 조건 수

=> 위의 모든걸 가지고 사후 분포로부터 특정 의사결정 목록 d를 샘플링 하겠다.

✓ BRL 학습

$$\underbrace{p(d|x,y,A,\alpha,\lambda,\eta)}_{posteriori} \propto \underbrace{p(y|x,d,\alpha)}_{likelihood} \cdot \underbrace{p(d|A,\lambda,\eta)}_{priori}$$

 $p(y|x,d,\alpha)$

d: 의사결정 목록

x: feature

y: 사전 채굴 조건 집합

알파: (1,1)에서 가장 잘 고정된 양수 및 음수 클래스에 대한 사전 근사수

=> 의미

y의 우도

y가 디리클레 다항분포에 의해 생성될 때, d가 데이터를 얼마나 잘 설명하는가.

✓ BRL 학습

$$p(d|A,\lambda,\eta)$$

 $p(d|x, y, A, \alpha, \lambda, \eta) \propto p(y|x, d, \alpha) \cdot p(d|A, \lambda, \eta)$ likelihood priori posteriori

d: 의사결정 목록

A: feature

람다: 의사결정 목록의 이전 예상 길이

에타: 사전 예상 조건 수

=> 의미 의사결정 목록의 사전 분포

✓ 즉, 의사결정 목록의 사전분포를 잘 따르고, 그에 따른 우도가 높으면 => 사후 확률이 높다. 이런 d를 고르자.

1) 장점

- ✓ IF-THEN 구조
 - ✓ 해석하기 쉽다.
 - ✓ 의사결정 나무처럼 표현할 수 있다.
- ✓ 빠르다.
- ✓ 단조로운 변화에 강력(Robust)함
- ✓ 이상치에 강력함

2) 단점

- ✓ IF-THEN 구조
 - ✓ 회귀 방법을 고려하지 않는다.
 - ✓ 특성값도 범주형 변수여야 함
 - ⇒ 데이터의 loss
- ✓ 과적합 되기 쉬움
- ✓ 선형 관계를 설명하기 어려움

https://colab.research.google.com/drive/1uxYTcx2G-S2Eo_LuTF01iloDUqkL4NM0?usp=sharing