Geometry, Groups, Geode sics

Free group

Fundamental group

a group is free iff The (bouquet of S')

acts freely on a tree = universal cover of bonquet of S'

$$\mathbb{S}^{\mathsf{I}} \vee \mathbb{S}^{\mathsf{I}} \overset{\sim}{\longrightarrow} \mathbb{T}^{\mathsf{Z}} \overset{\mathsf{L}}{\hookrightarrow} \mathbb{T}^{\mathsf{Z}} \equiv \mathbb{S}^{\mathsf{I}} \times \mathbb{S}^{\mathsf{I}}$$

ker $\hookrightarrow \#_1(\mathbb{T}^2) \Rightarrow_{\mathbb{T}_1}(\mathbb{T}^2)$

Representation variety

Example lathces in IR2 IE2 $\mathbb{R}^2 \hookrightarrow G = |_{Som}^+ \mathbb{R}^2 \rightarrow SO(2)$ T, x+>x+v R_c 21 +> R₂× $R_6 \circ T_v \circ R_6^{-1}(x) = x + R_6 \overrightarrow{v}$ Quotient spaces $\lceil = \langle \vee_1, \vee_2 \rangle$, $|\vee_1 \wedge \vee_2| = 1$ isometric up to isometry 1E/T mly depends on the orbit of [under onjugation by G 2(E2) C> G×G//G moduli = fns on the space dimensions 3+3-3=3 $|v_1 \wedge v_2| = volume of |E^2/\Gamma| \frac{sys}{|v_2|} = Hermite$ $|v_1 \wedge v_2| = volume of |E^2/\Gamma| \frac{sys}{|v_2|} = Hermite$ $|v_1 \wedge v_2| = volume of |E^2/\Gamma| \frac{sys}{|v_2|} = Hermite$ 2/ sys() = inf ||v|| UET $0 < \frac{sys}{Jvol} \le 2/JT < 2/JS = (4/3)^{\frac{1}{2}}$ 3/ in fact $||V_1||$, $||V_2||$, $|V_1||V_2|$ are parcimeters $\|V_{2}-V_{1}\|$ these ove the side lengths of a Δ

Ex
$$\mathbb{Z} * \mathbb{Z} \stackrel{\rho}{\hookrightarrow} SL_{2}(\mathbb{R})$$

Hom() - 6 d

 χ () $\hookrightarrow \mathbb{R}^{3}$
 $(a,b,ab) \mapsto (\text{tr } a, \text{tr } b, \text{tr } ab)$

Lemme $A_{1}B \in SL_{2}(\mathbb{R})$
 $\text{tr } AB + \text{tr } A_{1}B = \text{tr } A \text{ tr } B$
 $\text{tr } AB + \text{tr } AB^{-1} = \text{tr } A \text{ tr } B$

CH $A^{2} - \text{tr } AA + \text{det } A \text{ } I_{2} = O_{2}$
 $AB - \text{tr } AB + A^{-1}B = O_{2}$

Cov $\text{tr } A^{2} = (\text{tr } A)^{2} - 2$
 $\text{tr } ABA^{1}B^{-1} = (\text{tr } A)^{2} + -2$
 $= (ABA^{-1})B^{-1} - ABA^{-1}B$
 $= n - (AB)(A^{-1}B) + ABB^{-1}A$
 $= \text{tr } B^{2} - \text{tr } AB (\text{tr } A + \text{rr } B - \text{tr } AB) + \text{tr } A^{2}$
 $(x - \text{tr } AB + x - \text{tr } AB) + \text{tr } AB + x - \text{tr }$