Creating Polynomial Equations Given a Graph

Do Now:

Sketch the graph of the function $f(x) = (x-4)(x+3)(x-1)^2$

X = 4 X = -3 X = 1M=1 M=1 M=2

Degree: 4

Which of the following is true about the graph of f(x)?

(1) as
$$x \to \infty$$
, $f(x) \to \infty$ (3) as $x \to \infty$, $f(x) \to \infty$ as $x \to -\infty$, $f(x) \to \infty$

(3) as
$$x \to \infty$$
, $f(x) \to \infty$ as $x \to -\infty$, $f(x) \to -\infty$

(2) as
$$x \to \infty$$
, $f(x) \to -\infty$ (4) as $x \to \infty$, $f(x) \to -\infty$ as $x \to -\infty$, $f(x) \to -\infty$

as
$$x \to \infty$$
, $f(x) \to -\infty$ (4) as $x \to \infty$, $f(x) \to -\infty$ as $x \to -\infty$, $f(x) \to -\infty$

a) What could be a possible equation

for
$$f(x)$$
?

$$f(x) = (x+a)(x-1)(x-4)^{2}$$

b) Determine the equation of the function if it passes through the point (3, 30).

$$30 = a(3+a)(3-i)(3-4)^{2}$$

$$30 = a(5)(2)(-1)^{2}$$

$$30 = a(5)(2)(-1)^{2}$$

$$30 = a(5)(2)(-1)^{2}$$

$$f(x) = 3(x+a)(x-1)(x-4)^{2}$$

c) Determine the equation of the function if it passes through the point (-4, 160)

$$160 = a(-4+2)(-4-1)(-4-4)^{2}$$

$$160 = a(-a)(-5)(-8)^{2}$$

$$160 = a \cdot 640$$

$$640 = 640$$

$$0 = .35 = \frac{1}{4}$$

$$f(x) = \frac{1}{4}(x+2)(x-1)(x-4)^{2}$$

Example #2: Given the following polynomial graph, answer the following:

- a) The degree of the polynomial is EVEN or ODD
- b) The leading coefficient is **POSITIVE** or **NEGATIVE**
- c) There is an absolute MAXIMUM, MINIMUM, or NEITHER
- d) Write a possible equation: $f(x) = \frac{X(X+3)^2(X-4)}{(X-4)^2}$
- e) Write an equation if the function passes through the point (2, -10)

$$f(x) = \frac{1}{10} \times (x+3)^{2} (x-4)$$

Example #3: Given the following polynomial graph, answer the following:

- b) The leading coefficient is **POSITIVE** or **NEGATIVE**
- c) There is an absolute MAXIMUM, MINIMUM, or NEITHER
- d) Write a possible equation: $f(x) = \frac{-(x+a)^2(x+b)(x-c)}{(x+b)^2(x+b)(x-c)}$

don't forget the negative

Example #4: Given the following polynomial graph, answer the following:

- a) The degree of the polynomial is **EVEN** or **ODD**
- b) The leading coefficient is **POSITIVE** or **NEGATIVE**
- c) There is an absolute MAXIMUM, MINIMUM, or NEITHER
- d) Write a possible equation: f(x) = -(X+Q)(X-b)(X-c)

Directions: Match each polynomial function with its potential graph.

$$\sqrt{f(x)} = -(x+a)^2(x+b)(x-c)$$

$$\int g(x) = -(x-a)^2(x+b)$$

$$\int h(x) = (x-a)^2 (x+a)^2$$

$$\int k(x) = -(x+a)^2(x-b)$$

$$\int m(x) = x^2(x-a)(x+a)$$

$$\int n(x) = (x-a)(x-b)^2(x+c)^2$$

$$\int p(x) = (x+a)^2(x-b)(x-c)$$

$$\int q(x) = (x-a)^2 (x+b)^2$$

1) $m(x) = x^{2}(x-a)(x+a)$ 2) $K(x) = -(x+a)^{2}(x-b)$

3) $p(x) = (x+a)^2(x-b)(x-c)$ $f(x) = -(x+a)^2(x+b)(x-c)$

5) $h(x) = (x-a)^2 (x+a)^2$ 6) q(x)

7) $g(x) = -(x-a)^2(x+b) 8) n(x) = (x-a)(x-b)^2(x+c)^2$