Proposition 0.1 $f(x) = a_n x^n + ... + a_0 \in \mathbb{Z}[x]$ p = prime.

Assume that $p|a_n, p|a_0, a_{n-1}$ and $p^2 |/a_0|$

Then f(x) is irred over \mathbb{Q}

Proof: Suppose for a contradicition $a \cdot nx \cdot n + ... \cdot a \cdot 0 = (b \cdot rx \cdot r \cdot ... + b \cdot 0)(c \cdot sx \cdot s + ... + x \cdot 0)$, with r, s < n.

By Gauss's lemma it is enough to assume that $b_i, c_i \in \mathbb{Z}$.

 $a_0 = b_0 c_0$.

 $\therefore p|b_0$ (say) and $p|c_0$.

 $a_1 = b_1c_1 + b_1c_0$. pdiv .. pdiv pnot div c'0

 $\therefore p|b_1$

 $\therefore a_{n-1} = b_{n-1}c_o + \dots + b_o c_{n-1}$

 $\therefore p|b_{n-1}$

But r < s

 $\therefore p|b_r$

 $\therefore p|b_rc_s=a_n$

Contradiction!. $\therefore f(x)$ irred.

Aside: $x^4 + 1$ is red over \mathbb{F}_p for all p, but irred over \mathbb{Q} .

Proposition 0.2 p prime, then $x^{p-1} + x^{p-2} + ... + x + 1$ is irreducible over \mathbb{Q} . More generally $\frac{x^{p^n}}{x^{p^{n-1}}} = x^{p^{n-1}(p-1)} + x^{p^{n-1}(p-2)} + ... + 1$ is irred over \mathbb{Q} .

First, two tricks.

 $\forall c \in F$

f(x) is irreducible $\iff f(x+c)$ is irreducible.

Eisenstein's property

 $f(x) = \lambda x^n \mod p$ $f(0) \not\cong 0 \mod p^2$

Translated version: g(x) = f(x - c). $c \in Z$

 $g(x) == \lambda (x - c)^n \text{ mod p.}$

 $g(c) \neq = 0 mod p^2$

Proof technique: f(x) is Eisenstein wrt p "at x=1"

i.e. f(x+1) is Eisenstein w.r.t p.

Important facts:

1. p prime $\implies p|\binom{p}{k}$, for k=1,...,p-1

2. $(x+y)^p = x^p + px^{p-1}y + \cdots + pxy^{p-1} + y^p = x^p + y^p \mod p$, as middle terms have p as a factor.

3. If R is a Ring of char p, then $F: R \to R, F(x) = x^p$ is a ring homomorphism (Frobenius homo)

4.
$$(x-y)^p == x^p - y^p \mod p$$

Proof: g(x)? = f(x+1) is Eisenstein wrt p.

$$g(x)$$
? = $x^{p^{n-1}p-1} \mod p$.

$$g(0)? \neq 0 \mod p$$

i.e. we need

$$f(x+1)$$
? = $xp^{n-1}(p-1) \mod p$.

$$f(1) = 0$$
, mod p²

Recall
$$f(x) = \frac{x^{p^n} - 1}{x^{p^{n-1}} - 1} = 1 + x^{p^{n-1}} + \dots + x^{p^{n-1}(p-1)}$$

$$\therefore f(1) = p \neq 0 \bmod p^2$$

$$x^{p^n} - 1 = (x^{p^{n-1}} - 1) f(x).$$

Working mod p,

$$(x-1)^{p^n} == (x-1)^{p^{n-1}} f(x).$$

I.e.
$$\mathbb{F}_p[x]$$
, $(x-1)^{p^n} = (x-1)^{p^{n-1}} \bar{f}(x)$

We get f(x) = x - 1 i.e $f(x) = x - 1 \mod p$ f(x + 1) is Eisenstein w.r.t p.

 $\therefore f(x)$ is irred $/ \mathbb{Q}$.

Ex: Prove f(x+1) is Eisenstein directly.

Cor. f(x) is the minimal polynomial over Q of $\zeta_p^n = e^{\frac{2\pi i}{p^n}}$

Cor.
$$[\mathbb{Q}(\zeta_p^n):\mathbb{Q}]=p^{n-1}(p-1)$$

$$[\mathbb{Q}(\zeta_p):\mathbb{Q}] = p - 1$$

Later :
$$[\mathbb{Q}(\zeta_m) : \mathbb{Q}] = \phi(m)$$