Politechnika Wrocławska AiR ARR Projekt zespołowy

SENSGLOVE

Autorzy:
Beata Berajter
Dawid Brząkała
Dorota Gidel
Katarzyna Wądrzyk Ada Weiss
Małgorzata Witka-Jeżewska

Prowadzący: dr inż. Krzysztof Arent

Spis treści

1	Opi	Opis projektu					
	1.1	Wstęp	2				
	1.2	Założenia projektowe	2				
	1.3	Rozeznanie w dotychczasowych pracach	2				
2	Pla	n pracy	2				
	2.1	Poszczególne zdania	2				
	2.2	Kamienie milowe	4				
3	Doręczenie						
4	Budżet						
5	Zar	ządzanie	4				
	5.1	Zasady korzystania ze wspólnych zasobów	4				
	5.2	Rozwiązywanie konfliktów	5				
	5.3	Reguły przyznawania praw własności intelektualnej	5				
6	Zes	pół	5				

1 Opis projektu

1.1 Wstęp

Celem projektu jest zbudowanie stanowiska do zbierania Bazy Danych biosygnałów oraz sygnałów z rękawiczki sensorycznej wchodzącej w interakcję z przedmiotami. Podjęcie tej tematyki umożliwi dalsze prace nad protezami kończyn górnych, w szczególności dłoni. Wyniki projektu wspomogą prace prowadzone nad protezami rąk, które ułatwiają wykonywanie codziennych czynności osobom niepełnosprawnym. Ważnym jest, aby proteza przy poruszaniu się przypominała prawdziwą kończynę w jak największym stopniu. Osiągnąć to można poprzez tworzenie bazy danych gdzie umieszczane będą interakcje palców ręki z różnymi przedmiotami codziennego użytku. Badania te mogą zostać użyte nie tylko przy nowoczesnych protezach, lecz również przy budowie nowych, sprawniejszych robotów humanoidalnych.

Pierwszym krokiem przy realizacji projektu jest zapoznanie się z istniejącym już stanowiskiem do pomiarów, które umiejscowione jest na Politechnice Wrocławskiej, budynek C-3, sala 06. Po dogłębnym zaznajomieniu się z istniejącym już oprogramowaniem wykonamy nasze własne stanowisko badawcze, które składać się będzie z rękawiczki sensorycznej podłączonej poprzez mikrokontroler do karty, do której trafiają równocześnie pobierane biosygnały.

Efektem końcowym będzie stanowisko do poszerzania bazy danych zawierającej biosygnały oraz sygnały charakteryzujące interakcje palców protezy z przedmiotem.

Wyniki projektu będą upowszechniane przy pomocy strony internetowej (http://sensglove.happyrobotics.com/).

1.2 Założenia projektowe

W skład projektu wchodzą elementy takie jak:

- budowa rękawiczki z sensorami nacisku oraz ugięć
- budowa interfejsu sprzętowego do obsługi sensorów rękawiczki dostarczającego sygnały do karty pomiarowej
- oprogramowanie do akwizycji danych
- organizacja pomiarów prowadzących do utworzenia Bazy Danych
- program do przedstawienia danych z czujników na ekranie graficznym

1.3 Rozeznanie w dotychczasowych pracach

- \bullet Maciej Przydatek, $Wybrane\ metody\ przetwarzania\ biosygnałów$
- Damian Brański, Rejestracja i przetwarzanie sygnałów EMG i MMG
- Adam Krakowski, System sensoryczny dla cybernetycznej dłoni

Prace te odnoszą się do istniejących w laboratorium 06 C3 projektów, jednym z nich jest projekt badania biosygnałów, który podobnie do projektu który chcemy zrealizować bada sygnały z czujników. System ten został stworzony do badania sygnałów w przedramieniu. Projekt pragniemy zrealizować tak, aby możliwe było w przyszłoci połączenie tych dwóch systemów i uzależnienie sygnałów w przedramieniu od odczytów sensorów nacisku i zgięcia w dłoni.

2 Plan pracy

2.1 Poszczególne zdania

- 1. Zarządzanie projektem Małgorzata Witka-Jeżewska
- 2. Określenie wymagań użytkownika i kryteriów ewaluacji.

- 3. Specyfikacja funkcjonalności.
- 4. Dekompozycja problemu na komponenty, architektura i kryteria ewaluacji komponentów.
- 5. Projekt komponentów:
 - a) wybór sensorów i projekt ich rozmieszczenia
 - b) projekt interfejsu sprzętowego (schemat płytki + oprogramowanie układu z mikrokontrolerem)
 - c) projekt oprogramowania akwizycji danych
 - d) projekt bazy danych
 - e) projekt programu do wizualizacji danych z czujników oraz biosygnałów
- 6. Implementacja komponentów:
 - a) rękawiczka z zamontowanymi sensorami.
 - b) wydrukowanie płytki z mikrokontrolerem i interfejs sprzętowy
 - c) oprogramowanie akwizycji danych
 - d) przygotowanie bazy danych
 - e) przygotowanie programu do wizualizacji danych z czujników oraz biosygnałów
- 7. Ewaluacja komponentów a-e:
- 8. Integracja.
- 9. Ewaluacja systemu.
- 10. Upowszechnianie.

Rysunek 1: Diagram Gantt'a wraz z przypisaniem zadań do członków grupy

2.2 Kamienie milowe

- 28.03 oddanie raportu pierwszego
- 02.05 oddanie raportu drugiego
- 16.05 oddanie raportu trzeciego
- 20.06 oddanie ostatecznego raportu

3 Doręczenie

- raport pierwszy zawiera opisu projektu, specyfikację problemu, wyznaczone zadania i podział pracy raport prywatny
- raport drugi zawiera dokumentację połączenia sensorów do płytki, kod źródłowy oprogramowania odbierającego i analizującego sygnały, kod źródłowy wizualizacji raport prywatny
- raport trzeci zawiera raport z pierwszej ewaluacji zintegrowanego systemu raport prywatny
- raport ostateczny zawiera dokumentację całościową projektu raport publiczny

4 Budżet

numer	nazwa	ilość	cena jednostkowa [zł]	cena całościowa [zł]
1	czujnik ugięcia	6	30	180
2	dotykowy czujnik nacisku	1	80	80
3	rękawiczka	1	20	20
4	przewody	2	5	10
5	elementy płytki	1	60	60
6	opłata pracowników	6 [os]	27.15 / h	34 209 *
7	wynajęcie pomieszczenia	1	350/miesiąc	1050 **
			Suma[zł]	35 609

^{*} cana za wszystkich pracowników przez cały okres trwania projektu, zakładając pracę 15 godzin tygodniowo (3 godziny dziennie)

5 Zarządzanie

Rolę koordynatora projektu przyjęła Małgorzata Witka-Jeżewska. Każdy z członków zespołu otrzymuje zadanie, za które jest głównie odpowiedzialny oraz zadanie poboczne, w którym ma wspomóc osobę głównie odpowiedzialną za to zadanie. Koordynacja działań poszczególnych partnerów przeprowadzana jest poprzez program Redmine. Ponadto w piątki od 9:15 do 13:00 organizowane będą spotkania mające na celu podsumowanie wyników pracy poszczególnych osób. Repozytorium grupy projektowej znajduje się na platformie GitHub.

5.1 Zasady korzystania ze wspólnych zasobów

Każdy członek zespołu ma równe prawa dostępu do plików zamieszczanych w repozytorium. Dodatkowo każdy z członków zespołu ma prawo korzystać ze stanowiska pomiarowego biosygnałów.

^{*} cena wynajmu pomieszczenia za 3 miesiące

5.2 Rozwiązywanie konfliktów

Każda decyzja podejmowana jest poprzez głosowanie. Aby podjąć decyzję przynajmniej 4 osoby muszą opowiedzieć się za proponowanym rozwiązaniem. W przypadku podziału 3 za i 3 przeciw, głos koordynatora liczony jest podwójnie. Nie ma możliwości wstrzymania się od głosowania.

5.3 Reguły przyznawania praw własności intelektualnej

Projekt stanowi własność intelektualną każdego z członków grupy. Wszelkie decyzje podejmowane będą wg zasad opisanych w punkcie Rozwiązywanie konfliktów.

6 Zespół

 koordynator projektu: Małgorzata Witka-Jeżewska e-mail: 218634@student.pwr.wroc.pl
 Zadania: zarządzanie projektem, specyfikacja funkcjonalności, oprogramowanie.

Beata Berajter
 Zadania: określenie wymagań użytkownika, bazy danych.

 Dawid Brząkała Zadania: interfejs.

• Dorota Gidel Zadania: rękawiczka, wizualizacja, upowszechnianie, bazy danych.

 Katarzyna Wądrzyk Zadania: rękawiczka i sensory, wizualizacja.

Ada Weiss
 Zadania: dekompozycja, oprogramowanie, upowszechnianie.