AULA 2

Software for Algebra and Geometry Experimentation - SAGE

Limit of a variable:

Limiting Value of a Function

The notation $\lim_{x\to x_0} f(x) = \ell$ is used to denote the limiting value of a function f(x) as x approaches the value x_0 , but $x \neq x_0$. Note that the limit statement $\lim_{x\to x_0} f(x)$ is dependent upon values of f(x) for x near x_0 , but not for $x = x_0$. One must examine the values of f(x) both for x_0^+ values (values of x slightly greater than x_0) and for x_0^- values (values of x slightly less than x_0). These type of limiting statements are written

$$\lim_{x \to x_0^+} f(x) \qquad \text{and} \qquad \lim_{x \to x_0^-} f(x)$$

and are called **right-hand and left-hand limits** respectively. There may be situations where (a) $f(x_0)$ is not defined (b) $f(x_0)$ is defined but does not equal the limiting value ℓ (c) the limit $\lim_{x\to x_0} f(x)$ might become unbounded, in which case one can write a statement stating that "no limit exists as $x\to x_0$ ".

Consider the series

$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + (\frac{-1}{2})^k + \dots$$
 (2.1)

The sum of any even number (2n) of the first terms of this series is

$$S_{2n} = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \frac{1}{2^{2n-2}} - \frac{1}{2^{2n-1}}$$

$$= \frac{\frac{1}{2^{2n}} - 1}{-\frac{1}{2} - 1}$$

$$= \frac{2}{3} - \frac{1}{3 \cdot 2^{2n-1}},$$

$$S_{2n+1} = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots - \frac{1}{2^{2n-1}} + \frac{1}{2^{2n}}$$

$$= \frac{-\frac{1}{2^{2n+1}} - 1}{-\frac{1}{2} - 1}$$

$$= \frac{2}{3} + \frac{1}{3 \cdot 2^{2n}},$$
(2.3)

Consider the series

$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + (\frac{-1}{2})^k + \dots$$
 (2.1)

The sum of any even number (2n) of the first terms of this series is

$$S_{2n} = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \frac{1}{2^{2n-2}} - \frac{1}{2^{2n-1}}$$

$$= \frac{\frac{1}{2^{2n}} - 1}{-\frac{1}{2} - 1}$$

$$= \frac{2}{3} - \frac{1}{3 \cdot 2^{2n-1}},$$

$$S_{2n+1} = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots - \frac{1}{2^{2n-1}} + \frac{1}{2^{2n}}$$

$$= \frac{-\frac{1}{2^{2n+1}} - 1}{-\frac{1}{2} - 1}$$

$$= \frac{2}{3} + \frac{1}{3 \cdot 2^{2n}},$$
(2.3)

Writing (2.2) and (2.3) in the forms

$$\frac{2}{3} - S_{2n} = \frac{1}{3 \cdot 2^{2n-1}}, \quad S_{2n+1} - \frac{2}{3} = \frac{1}{3 \cdot 2^{2n}}$$

we have

$$\lim_{n \to \infty} \left(\frac{2}{3} - S_{2n} \right) = \lim_{n \to \infty} \frac{1}{3 \cdot 2^{2n-1}} = 0,$$

and

$$\lim_{n \to \infty} \left(S_{2n+1} - \frac{2}{3} \right) = \lim_{n \to \infty} \frac{1}{3 \cdot 2^{2n}} = 0.$$

```
sage: S = lambda n: add([(-1)^i*2^(-i) for i in range(n)])
sage: S
<function <lambda> at 0x6fecde0cc80>
sage: RR(S(1)); RR(S(2)); RR(S(5)); RR(S(10)); RR(S(20))
1.00000000000000
0.5000000000000
0.687500000000000
0.666015625000000
0.666666630883789
You can see from the Sage example that the limit does indeed seem to approach 2/3.
```

Division by zero:

$$\frac{0}{0}$$
 = INDETERMINADO

Care should be taken not to divide by zero inadvertently. The following fallacy is an illustration. Assume that

$$a=b$$
.

Then evidently

$$ab = a^2$$
.

Subtracting b^2 ,

$$ab - b^2 = a^2 - b^2.$$

Factoring,

$$b(a-b) = (a+b)(a-b).$$

Dividing by a - b,

$$b = a + b$$
.

But a = b, therefore b = 2b, or, 1 = 2. The result is absurd, and is caused by the fact that we divided by a - b = 0, which is illegal.

Infinitesimal:

Definition 2.3.1. A variable v whose limit is zero is called an infinitesimal

This is written

$$\lim_{v=0}, \text{ or, } \lim_{v\to 0},$$

The concept of infinity (∞)

$$\lim_{v=+\infty}, \text{ or, } \lim_{v\to+\infty}, \text{ or, } v\to+\infty.$$

$$\lim_{v=-\infty}$$
, or, $\lim_{v\to-\infty}$, or, $v\to-\infty$.

$$\lim_{v=\infty}$$
, or, $\lim_{v\to\infty}$, or, $v\to\infty$.

Infinitesimal:

```
sage: 0/0
```

ZeroDivisionError: rational division by zero

The concept of infinity (∞) $\lim_{t=\infty} 1/t = \lim_{t=-\infty} 1/t = 0$.

```
sage: t=var('t')
sage: limit(1/t, t=infifnity)
NameError Traceback (most recent call last)
<ipython-input-8-0065da7a6b0a> in <module>()
---> 1 limit(Integer(1)/t, t=infifnity)
NameError: name 'infifnity' is not defined
sage: limit(1/t, t=Infifnity)
NameError Traceback (most recent call last)
<ipython-input-9-5e7008034e96> in <module>()
---> 1 limit(Integer(1)/t, t=Infifnity)
NameError: name 'Infifnity' is not defined
sage: limit(1/t, t=Infinity)
sage: limit(1/t, t=-Infinity)
```

Limiting value of a function

$$\lim_{x \to a} f(x) = A.$$

$$f(x) = \frac{x^2 + 2}{3 + \sqrt{x^2 + 1}}$$

```
sage: limit((x^2+1)/(3+sqrt(x^2+1)), x=2)
5/(sqrt(5) + 3)
sage: limit((x^2+1)/(3+sqrt(x^2+1)), x=Infinity)
+Infinity
```

$$f(x) = \frac{x^2 + 1}{2 + x + 3x^2}$$

```
sage: limit((x^2+1)/(2+x+3*x^2),x=2)
5/16
sage: limit((x^2+1)/(2+x+3*x^2),x=infinity)
1/3
sage: limit((x^2+1)/(2+x+3*x^2),x=Infinity)
1/3
```

CONTINUOUS AND DISCONTINUOUS FUNCTIONS: the graph of a continuous function can have no "breaks."

The function is said to be *discontinuous* for x=a if this condition is not satisfied. For example, if

$$\lim_{x \to a} f(x) = \infty,$$

the function is discontinuous for x = a.

O cálculo diferencial e seus conceitos principais. CONTINUOUS AND DISCONTINUOUS FUNCTIONS:

```
sage: t = var('t')
sage: P1 = plot(1/t, (t, -5, -0.1))
sage: P1
Launched png viewer for Graphics object consisting of 1
graphics primitive
sage: P2 = plot(1/t, (t, 0.1, 5))
                               Traceback (most recent
NameError
call last)
<ipython-input-22-09e8d0db1c51> in <module>()
----> 1 p2
NameError: name 'p2' is not defined
sage: P2
Launched png viewer for Graphics object consisting of 1
graphics primitive
sage: show(P1+P2, aspect_ratio=1)
Launched png viewer for Graphics object consisting of 2
graphics primitives
sage: limit(1/t,t=0,dir="plus")
+Infinity
sage: limit(1/t,t=0,dir="minus")
-Infinity
sage: limit((x^2-4)/(x-2), x = 1)
sage: \lim_{x \to 2-4} /(x-2), x = 2
```


CONTINUOUS AND DISCONTINUOUS FUNCTIONS:

Eqn number (1)	Written in the form of limits $\lim_{x\to 0} \frac{c}{x} = \infty$	Abbreviated form often used ${c \atop 0} = \infty$
(2)	$\lim_{x\to\infty} cx = \infty$	$c\cdot\infty=\infty$
(3)	$\lim_{x o\infty}rac{x}{c}=\infty$	$rac{\infty}{c}=\infty$
(4)	$\lim_{x \to \infty} \frac{c}{x} = 0$	$\frac{c}{\infty} = 0$
(5)	$\lim_{x \to -\infty} a^x, = +\infty$, when $a < 1$	$a^{-\infty} = +\infty$
(6)	$\lim_{x\to+\infty} a^x = 0$, when $a < 1$	$a^{+\infty} = 0$
(7)	$\lim_{x\to-\infty}a^x=0$, when $a>1$	$a^{-\infty} = 0$
(8)	$\lim_{x\to+\infty}a^x=+\infty$, when $a>1$	$a^{+\infty}=+\infty$
(9)	$\lim_{x\to 0}\log_a x=+\infty$, when $a<1$	$\log_a 0 = +\infty$
(10)	$\lim_{x\to+\infty}\log_a\ x=-\infty$, when $a<1$	$\log_a(+\infty) = -\infty$
(11)	$\lim_{x\to 0} \log_a x = -\infty$, when $a > 1$	$\log_a 0 = -\infty$
(12)	$\lim_{x\to+\infty}\log_a\ x=+\infty$, when $a>1$	$\log_a(+\infty) = +\infty$

Show that $\lim_{x\to 0} \frac{\sin x}{x} = 1$

x	0.5000	0.2500	0.1250	0.06250	0.03125
$\frac{\sin(x)}{x}$	0.9589	0.9896	0.9974	0.9994	0.9998

```
sage: P = plot(sin(x)/x,-2,2)
sage: show(P)
Launched png viewer for Graphics object
consisting of 1 graphics primitive
sage: f = lambda x: sin(x)/x
sage: R = RealField(15)
sage: L = [1/2^i for i in range(1,6)]; L
[1/2, 1/4, 1/8, 1/16, 1/32]
sage: [R(x) for x in L]
[0.5000, 0.2500, 0.1250, 0.06250,
0.03125]
sage: [R(f(x)) for x in L]
[0.9589, 0.9896, 0.9974, 0.9994, 0.9998]
sage: limit(sin(x)/x,x=0)
32*sin(1/32)
sage: x = var('x')
sage: limit(sin(x)/x,x=0)
```


EXERCISES

$$\lim_{x \to -2} \frac{x^2 + 1}{x + 3} = 5.$$

$$\lim_{h\to 0} (3ax^2 - 2hx + 5h^2) = 3ax^2.$$

$$\lim_{x\to\infty} (ax^2 + bx + c) = \infty.$$

$$\lim_{k \to 0} \frac{(x-k)^2 - 2kx^3}{x(x+k)} = 1.$$

$$\lim_{x \to \infty} \frac{x^2 + 1}{3x^2 + 2x - 1} = \frac{1}{3}.$$

$$\lim_{x\to\infty} \frac{3+2x}{x^2-5x} = 0.$$

$$\lim_{\alpha \to \frac{\pi}{2}} \frac{\cos(\alpha - a)}{\cos(2\alpha - a)} = -\tan \alpha.$$

$$\lim_{x\to\infty} \frac{ax^2 + bx + c}{dx^2 + ex + f} = \frac{a}{d}.$$

$$\lim_{z \to 0} \frac{a}{2} (e^{\frac{z}{a}} + e^{-\frac{z}{a}}) = a.$$

$$\lim_{x\to 0} \frac{2x^3 + 3x^2}{x^3} = \infty.$$

References:

Granville, William; Joyner, David. **Differential Calculus and Sage**. Dispon[ivel em: https://wdjoyner.files.wordpress.com/2015/04/granville_calc1-sage_2009-08-15.pdf. Acesso em: 04 de ago. 2018.

SageMath, the Sage Mathematics Software System (Version 8.1), The Sage Developers, 2017, Dispon[ivel em: http://www.sagemath.org. Acesso em: 04 de ago. 2018.

Guidorizzi, H. L. . Um Curso de Cálculo, Volume 1. Editora LTC, Rio de Janeiro, 2001.

Stewart, James. Cálculo, Volume 1 e 2. São Paulo: Cengage Learning, 2016.

Thomas, G.B.; Finney, R. L.; Weir, M. D.; Giordano, F. R. Cálculo, Volumes 1 e 2. Editora Pearson Education do Brasil, São Paulo, 2002.

Piskunov. N. Cálculo Diferencial e Integral, Volumes 1 e 2. Editora livraria Lopes da Silva, Porto, 1986.