Zifei Shan

Using Knowledge to Improve Optical Character Recognition

What will we talk about?

- An early-stage research project
- Show our initial analysis how to build a better OCR system
- Possible insights for other applications

Motivation

- Our system PaleoDeepDive use OCRs to process millions of scanned papers.
- OCRs have bad quality.
 - We improved them by Paleo-specific rules.
- We ask:
 - What kinds of knowledge can we use to improve domain-specific OCRs?
 - Can these knowledge be adopted to improve other computer-based tasks?

Current Knowledge Taxonomy

- We try to use knowledge to improve OCR:
 - Dictionary & corpus statistics
 - OCR-specific rules
 - Deep linguistic features (POS, NER, dependency..)
 - Knowledge base: entity linking, relation matching

Initial Error Analysis

- Tool: popular OCRs: Tesseract and Cuneiform
- Method: Hand-label OCR outputs
- Dataset: 3 documents from PaleoDeepDive
- Result:
 - Average OCR precision: 81% and 73%.
 - 63% and 45% on "dirty" document.
 - For 7.69% words both OCRs fail.

Initial Error Analysis: Takeaways

- We also labeled: what knowledge can solve each error
- Most errors are automatically solvable!
 - An ideal system with all these knowledge can fix 93.52% errors!
 - Most useful knowledge (with lesion):
 - Corpus statistics (1-gram of words) 34.7%
 OCR specific knowledge 17.1%
 Rules to generate candidates 15.5%
 - Knowledge base (entity linking)
 2.6% (avg), 5.2% (dirty)

Examples: Corpus Statistics

Correct	Incorrect	Knowledge
CO2	COz	1-gram
more than	more thin	2-gram
1907 and 1908	%07 and I908	3-gram
No.	No;	1-gram

Examples: OCR-specific Rules

Correct	Incorrect	Knowledge
ENTOPROCTA	ENToPRocTA	case-coherency
144	144	char-coherency
, limiting this group	. limiting this group	dot -> upper case
first	?rst	"fi -> ?" for Tesseract

Examples: Linguistic Features

Correct	Incorrect	Knowledge
(incomplete)	{incomplete)	dependency path
paper <i>is</i> based [VBZ]	paper 18 based [VBZ]	word-POS coherency
1982 [DATE]	lpsz [DATE]	word-NER coherency
S. Bur. [PERSON]	S. Bur, [PERSON]	person-dot

Examples: Knowledge base

Correct	Incorrect	Knowledge
Plesiechinus Itawkinsi Jesionek-Szymanska	Plesiechinus hawkinsi Jesionek-Szyma?ska	Entity linking (Freebase)
CALIFORNIA ACADEMY OF SCIENCES	CALIFORNIA ACADEMIA' OF SCIENCES	Entity linking (Freebase)
HETTANGIAN SINEMURIAN TOARCIAN	HETTANGIAN SINEMURIALAI TOARCIAN	Entity linking (PaleoDB Taxonomy)
Upper Miocene; Oeningen	Upper Miocene; Deningen	Relation matching

Examples: Generate Candidates

Existing Candidates	New candidates	Knowledge
Palaeontolngy, pslaeontolosy	Paleontology	Edit distance + corpus statistics
P. echimzta, P. ectzinata	P. echinata	Edit distance + knowledge base
has ulrezidy been, hila slready been	has already been	Edit distance + corpus statistics
identi?cation	identification	OCR-specific edit rules
Americo. A m e rican	American	combination
ofthese	of these	segmentation

Putting it together

- We are building an ensemble OCR system using DeepDive.
- Baseline: Ensemble of Tesseract & Cuneiform
- Improve: all useful knowledge above

Speech recognition?

- Adopt the lessons to speech recognition?
 - Corpus statistics
 - Linguistic features
 - Knowledge base
 - Generate candidates
 - Visual-based -> Audio based edit distance
- Distant Supervision?
 - Labeled corpus? Web? ...

Thanks!

