### [CS304] Introduction to Cryptography and Network Security

Course Instructor: Dr. Dibyendu Roy Winter 2023-2024 Scribed by: Priyansh Vaishnav (202151120) Lecture 6 & 7 (Week 4)

LECTURE 6 Date: - 6th Feb 2024

### Subgroup:

H is called a proper subgroup of (G, \*) if:

 $(i)H \subseteq G$ 

(ii)H is itself a group with \* operation

1. If 
$$(G, *)$$
 is a group, then  $a^i = \underbrace{a * a * a * \dots * a}_{i \text{ times}} \in G$ 

### Cyclic Group:

A group G is cyclic if it has an element  $\alpha \in G$  such that all the elements in G can be represent as power of  $\alpha$ . Then  $\alpha$  is called as generator of G.

Or we can say that there is an element  $b \in G$  with integer i such that  $b = \alpha^i$ .

#### Order of an element:

O(a) is the order of element a, such that  $a^m = \varepsilon$  where  $\varepsilon$  is the identity element of G and m is the least positive integer.

#### Example:

 $(\mathbb{Z}_5, *_5)$  is the group, and the basic operation  $*_5$  is defined as  $x*_5y = (x \cdot y) \mod 5$ . Then, O(4) = 2.

- 1. Cyclic subgroup is denoted as  $\langle a \rangle$ .
- 2.  $|\langle a \rangle|$  is denoted as size of the subgroup.

# Lagrange's Theorem:

• If G is a finite group and H is a subgroup of G, then the order (number of elements) of H divides the order of G. Mathematically, if |G| is the order of G and |H| is the order of H, then |G|/|H| is an integer.

$$a \in G$$
 and order is  $O(a)$   
 $S = \{\varepsilon, a, a^2, a^3, \dots, a^{O(a)-1}\}$   
 $(S, *)$  is a subgroup of  $(G, *)$   
 $|S| \mid |G|$   
 $O(a) \mid |G|$ 

• If the order of  $a \in G$  is t then order of  $a^k$  will be  $\frac{t}{\gcd(t,k)}$ 

## Ring:

- We have one set and two binary operations denoted as  $(R, +_R, \times_R)$  where  $+_R$  is addition (non-standard) and  $\times_R$  is multiplication (non-standard).
- Properties of R:
  - 1.  $(R, +_R)$  is an abelian group with the identity element  $O_R$ .
  - 2. The operation  $\times_R$  is associative.
  - 3. There is a multiplication identity denoted by  $1_R$  with  $1_R \neq 0_R$ .
  - 4.  $\times_R$  is distributive over  $+_R$ .
- Distributive property:

$$(B +_R C) \times_R A = (B \times_R A) +_R (C \times_R A).$$

- Example:  $(\mathbb{Z}, +, \cdot)$  forms a ring.
- $(R, +_R, \times_R)$  is abelian ring if the second operation  $(\times_R)$  is abelian.
- An element a of a ring R is called **Unit** or an invertible element if these is an element  $b \in R$  such that  $a \times_R b = 1_R$ .
- Set of unit is a ring R forms a group under multiplication this is known as group of unit of R.

#### Field:

A non-empty set F together with two binary operations  $+_F$  and  $\times_F$  with the following properties. **Properties:** 

- 1. (F, +) is an abelian group.
- 2. If  $0_F$  denotes the addition identity element of (F, +), then  $(F \setminus \{0_F\}, \times)$  is an abelian group.
- 3. For all  $a, b, c \in F$ , we have  $a \times (b + c) = (a \times b) + (a \times c)$ .

#### Example:

 $\mathbb{F} = \{0, 1, 2, \dots, P - 1\}$ , where P is a prime number. Then,  $(\mathbb{F}_P, +_P, \times_P)$  is a field.

 $+_P:(x+y) \mod P$ 

 $\times_P : (x \cdot y) \mod P$ 

LECTURE 7 Date: - 9th Feb 2024

#### Field Extension:

- Suppose  $K_2$  is a field with operations + and \*.
- Suppose  $K_1 \subseteq K_2$  is closed under both operations such that  $K_1$  itself is a field with operations + and \*.
- $K_1$  is a subfield of  $K_2$ .
- $K_2$  is a field extension of  $K_1$ .
- 1.  $F(x) = \{a_0 + a_1x + a_2x^2 + \ldots + a_nx^{n-1}\}$  where  $a_i \in F$
- 1.  $\{F(x), +, *\} = a_0 + a_1x + a_2x^2 + \ldots + a_nx^{n-1} + b_0 + b_1x + b_2x^2 + \ldots + b_nx^{n-1}$ =  $(a_0 + b_0) + (a_1 + b_1)x + \ldots + (a_n + b_n)x^{n-1}$  where  $a_i + b_i$  represent the additive operation in the field F.
- 2.  $(a_0 + a_1x + a_2x^2 + \dots + a_nx^{n-1}) * (b_0 + b_1x + b_2x^2 + \dots + b_nx^{n-1})$ =  $(a_0b_0) + (a_0b_1 + a_1b_0) + \dots + (a_{n-1}b_{n-1})x^{2n-2}$

### Irreducible Polynomial

A polynomial  $p(x) \in F[x]$  of degree  $n \ge 1$  is called *irreducible* if it cannot be expressed in the form  $p_1(x) \cdot p_2(x)$ , where  $p_1(x)$  and  $p_2(x)$  are polynomials in F[x], and the degrees of  $p_1(x)$  and  $p_2(x)$  are both greater than or equal to 1.

- 1.  $I = \langle P(x) \rangle = \{q(x) \cdot p(x) \mid q(x) \in F(x)\}$  where  $(F(x), +, \cdot)$  is a Polynomial Ring. This I is called as Ideal Ring.
- 2. The set of F(x) modulo P(x), denoted as  $F(x)/\langle P(x)\rangle$  (where P(x) is an irreducible polynomial), is called a field under the operations + and  $\cdot$  defined modulo P(x). Here, q(x) can be any polynomial in F(x), and it can be expressed as  $q(x) = d(x) \cdot P(x) + r(x)$ , where d(x) is the quotient and r(x) is the remainder.

# Advanced Encryption Standard (AES):

AES is an iterated block cipher that uses a substitution-permutation network (SPN) structure. It operates on fixed-size blocks of data and supports key sizes of 128, 192, or 256 bits.

#### **AES-128:**

• Block Size: 128 bits

• Number of Rounds: 10

• Secret Key Size: 128 bits

### **AES-192:**

• Block Size: 128 bits

• Number of Rounds: 12

• Secret Key Size: 192 bits

### **AES-256:**

• Block Size: 128 bits

• Number of Rounds: 14

• Secret Key Size: 256 bits



Figure 1: AES-128 Image Source: Research Gate