ON DOMINANT CONTRACTIONS AND A GENERALIZATION OF THE ZERO-TWO LAW

FARRUKH MUKHAMEDOV

ABSTRACT. Zaharopol proved the following result: let $T, S : L^1(X, \mathcal{F}, \mu) \to L^1(X, \mathcal{F}, \mu)$ be two positive contractions such that $T \leq S$. If ||S - T|| < 1 then $||S^n - T^n|| < 1$ for all $n \in \mathbb{N}$. In the present paper we generalize this result to multi-parameter contractions acting on L^1 . As an application of that result we prove a generalization of the "zero-two" law.

Keywords: dominant contraction, positive operator, "zero-two" law.

AMS Subject Classification: 47A35, 17C65, 46L70, 46L52, 28D05.

1. Introduction

Let (X, \mathcal{F}, μ) be a measure space with a positive σ -additive measure μ . In what follows for the sake of shortness by L^1 we denote the usual $L^1(X, \mathcal{F}, \mu)$ space associated with (X, \mathcal{F}, μ) . A linear operator $T: L^1 \to L^1$ is called a positive contraction if $Tf \geq 0$ whenever $f \geq 0$ and $||T|| \leq 1$.

In [9] it was proved so called "zero-two" law for positive contractions of L^1 -spaces:

Theorem 1.1. Let $T: L^1 \to L^1$ be a positive contraction. If for some $m \in \mathbb{N} \cup \{0\}$ one has $||T^{m+1} - T^m|| < 2$, then

$$\lim_{n \to \infty} ||T^{n+1} - T^n|| = 0.$$

In [2] it was proved a "zero-two" law for Markov processes, which allowed to study random walks on locally compact groups. Other extensions and generalizations of the formulated law have been investigated by many authors [7, 4, 5].

Using certain properties of L^1 -spaces Zaharopol [10] by means of the following theorem reproved Theorem 1.1.

Theorem 1.2. Let $T, S : L^1 \to L^1$ be two positive contractions such that $T \leq S$. If ||S - T|| < 1 then $||S^n - T^n|| < 1$ for all $n \in \mathbb{N}$

In the paper we provide an example (see Example 2) for which the formulated theorem 1.2 can not be applied. Therefore, we prove a generalization of Theorem 1.2 for multi-parameter contractions acting on L^1 . As a consequence

of that result we shall provide a generalization of the "zero-two" law. Similar generalization has been considered in [5].

2. Dominant operators

Let $T, S: L^1 \to L^1$ be two positive contractions. We write $T \leq S$ if S-T is a positive operator. In this case we have

$$||Sx - Tx|| = ||Sx|| - ||Tx||,$$

for every $x \ge 0$. Moreover, for positive operator $T: L^1 \to L^1$ one can prove the following equality

(2.2)
$$||T|| = \sup_{\|x\|=1} ||Tx|| = \sup_{\|x\|=1, x \ge 0} ||Tx||.$$

The main result of this section is the following

Theorem 2.1. Let $T_1, T_2, S_1, S_2 : L^1 \to L^1$ be positive contractions such that $T_i \leq S_i$, i = 1, 2 and $S_1S_2 = S_2S_1$. If there is an $n_0 \in \mathbb{N}$ such that $||S_1S_2^{n_0} - T_1T_2^{n_0}|| < 1$. Then $||S_1S_2^{n_0} - T_1T_2^{n_0}|| < 1$ for every $n \geq n_0$.

Proof. Let us assume that $||S_1S_2^n - T_1T_2^n|| = 1$ for some $n > n_0$. Therefore, denote

$$m = \min\{n \in \mathbb{N} : ||S_1 S_2^{n_0 + n} - T_1 T_2^{n_0 + n}|| = 1\}.$$

It is clear that $m \geq 1$. The inequalities $T_1 \leq S_1$, $T_2 \leq S_2$ imply that $S_1 S_2^{n_0+n} - T_1 T_2^{n_0+n}$ is a positive operator. Then according to (2.2) there exists a sequence $\{x_n\} \in L^1$ such that $x_n \geq 0$, $\|x_n\| = 1$, $\forall n \in \mathbb{N}$ and

(2.3)
$$\lim_{n \to \infty} \| (S_1 S_2^{n_0 + n} - T_1 T_2^{n_0 + n}) x_n \| = 1.$$

Positivity of $S_1 S_2^{n_0+n} - T_1 T_2^{n_0+n}$ and $x_n \ge 0$ together with (2.1) imply that

$$(2.4) ||(S_1 S_2^{n_0+n} - T_1 T_2^{n_0+n}) x_n|| = ||S_1 S_2^{n_0+m} x_n|| - ||T_1 T_2^{n_0+m} x_n||$$

for every $n \in \mathbb{N}$. It then follows from (2.3),(2.4) that

(2.5)
$$\lim_{n \to \infty} ||S_1 S_2^{n_0 + m} x_n|| = 1,$$

(2.6)
$$\lim_{n \to \infty} ||T_1 T_2^{n_0 + m} x_n|| = 0.$$

Thanks to the contractivity of S, Z and $S_1S_2 = S_2S_1$ one gets

$$||S_1 S_2^{n_0+m} x_n|| = ||S_2 (S_1 S_2^{n_0+m-1} x_n)|| \le ||S_1 S_2^{n_0+m-1} x_n|| \le ||S_2^m x_n||$$

which with (2.5) yields

(2.7)
$$\lim_{n \to \infty} ||S_1 S_2^{n_0 + m - 1} x_n|| = 1, \quad \lim_{n \to \infty} ||S_2^m x_n|| = 1.$$

Moreover, the contractivity of S_i , T_i (i = 1, 2) implies that $||T_1T_2^{n_0+m-1}x_n|| \le 1$, $||T_2^mx_n|| \le 1$ and $||S_1S_2^{n_0}T^mx_n|| \le 1$ for every $n \in \mathbb{N}$. Therefore, we may

choose a subsequence $\{y_k\}$ of $\{x_n\}$ such that the sequences $\{\|T_1T_2^{n_0+m-1}y_k\|\}$, $\{\|T_2^my_k\|\}$, $\{\|S_1S_2^{n_0}T^mx_k\|\}$ converge. Put

(2.8)
$$\alpha = \lim_{k \to \infty} ||T_1 T_2^{n_0 + m - 1} y_k||,$$

(2.9)
$$\beta = \lim_{k \to \infty} ||S_1 S_2^{n_0} T^m y_k||,$$

(2.10)
$$\gamma = \lim_{k \to \infty} ||T_2^m y_k||.$$

The inequality $||S_1S_2^{n_0+m-1}-T_1T_2^{n_0+m-1}|| < 1$ with (2.7) implies that $\alpha > 0$. Hence we may choose a subsequence $\{z_k\}$ of $\{y_k\}$ such that $||T_1T_2^{n_0+m-1}z_k|| \neq 0$ for all $k \in \mathbb{N}$.

From $||T_1T_2^{n_0+m-1}z_k|| \leq ||T_2^mz_k||$ together with (2.8), (2.10) we find $\alpha \leq \gamma$, and hence $\gamma > 0$.

Using (2.1) one gets

$$||S_{1}S_{2}^{n_{0}}T_{2}^{m}z_{k}|| = ||S_{1}S_{2}^{n_{0}+m}z_{k} - (S_{1}S_{2}^{n_{0}+m}z_{k} - S_{1}S_{2}^{n_{0}}T_{2}^{m}z_{k})||$$

$$= ||S_{1}S_{2}^{n_{0}+m}z_{k}|| - ||S_{1}S_{2}^{n_{0}+m}z_{k} - S_{1}S_{2}^{n_{0}}T_{2}^{m}z_{k}||$$

$$\geq ||S_{1}S_{2}^{n_{0}+m}z_{k}|| - ||S_{2}^{m}z_{k} - T_{2}^{m}z_{k}||$$

$$= ||S_{1}S_{2}^{n_{0}+m}z_{k}|| - ||S_{2}^{m}z_{k}|| + ||T_{2}^{m}z_{k}||$$

$$(2.11)$$

Due to (2.5),(2.7) we have

$$\lim_{k \to \infty} ||S_1 S_2^{n_0 + m} z_k|| - ||S_2^m z_k|| = 0;$$

which with (2.11) implies that

$$\lim_{k \to \infty} \|S_1 Z S_2^{n_0} T_2^m z_k\| \ge \lim_{k \to \infty} \|T_2^m z_k\|,$$

therefore, $\beta \geq \gamma$.

On the other hand, by $||S_1S_2^{n_0}T_2^mz_k|| \le ||T_2^mz_k||$ one gets $\gamma \ge \beta$, hence $\gamma = \beta$. Now set

$$u_k = \frac{T_2^m z_k}{\|T_2^m z_k\|}, \quad k \in \mathbb{N}.$$

Then using the equality $\gamma = \beta$ and (2.6) one has

$$\lim_{k \to \infty} ||S_1 S_2^{n_0} u_k|| = \lim_{k \to \infty} \frac{||S_1 S_2^{n_0} T_2^m z_k||}{||T_2^m z_k||} = 1,$$

$$\lim_{k \to \infty} ||T_1 T_2^{n_0} u_k|| = \lim_{k \to \infty} \frac{||T_1 T^{n_0 + m} z_k||}{||T_2^m z_k||} = 0.$$

So, owing to (2.1) and positivity of $S_1S_2^{n_0} - T_1T_2^{n_0}$, we get

$$\lim_{k \to \infty} \|(S_1 S_2^{n_0} - T_1 T_2^{n_0}) z_k\| = 1.$$

Since $||u_k|| = 1, u_k \ge 0, \forall k \in \mathbb{N}$ from (2.2) one finds $||S_1S_2^{n_0} - T_1T_2^{n_0}|| = 1$, which is a contradiction. This completes the proof.

Corollary 2.2. Let $Z, T, S : L^1 \to L^1$ be positive contractions such that $T \leq S$ and ZS = SZ. If there is an $n_0 \in \mathbb{N}$ such that $||Z(S^{n_0} - T^{n_0})|| < 1$. Then $||Z(S^n - T^n)|| < 1$ for every $n \geq n_0$.

Assume that Z = Id. If $n_0 = 1$, then from Corollary 2.2 we immediately get the Zaharopol's result (see Theorem 1.2). If $n_0 > 1$ then we obtain a main result of [8].

Let us provide an example of Z, S, T positive contractions for which statement of Corollary 2.2 is satisfied.

Example 1. Consider \mathbb{R}^2 with a norm $\|\mathbf{x}\| = |x_1| + |x_2|$, where $\mathbf{x} = (x_1, x_2)$. An order in \mathbb{R}^2 is defined as usual, namely $\mathbf{x} \geq 0$ if and only if $x_1 \geq 0$, $x_2 \geq 0$. Now define mappings $Z : \mathbb{R}^2 \to \mathbb{R}^2$, $T : \mathbb{R}^2 \to \mathbb{R}^2$ and $S : \mathbb{R}^2 \to \mathbb{R}^2$, respectively, by

$$(2.12) Z(x_1, x_2) = (ux_1 + vx_2, ux_2),$$

(2.13)
$$S(x_1, x_2) = \left(\frac{x_1 + x_2}{2}, \frac{x_2}{2}\right),$$

$$(2.14) T(x_1, x_2) = (\lambda x_2, 0).$$

The positivity of Z,S and T implies that $u,v,\lambda \geq 0$. It is easy to check that $T \leq S$ holds if and only if $2\lambda \leq 1$.

One can see that

$$||Z|| = \sup_{\|\mathbf{x}\|=1 \atop \mathbf{x} \ge 0} ||Z\mathbf{x}|| = \max_{\substack{x_1 + x_2 = 1 \\ x_1, x_2 \ge 0}} \{ux_1 + (u+v)x_2\}$$
$$= \max_{0 \le x_2 \le 1} \{u + vx_2\}$$
$$= u + v$$

Hence, contractivity of Z implies that u + v = 1. Similarly, we find that ||S|| = 1 and $||T|| = \lambda$. From (2.12) and (2.13) one gets that ZS = SZ.

By means of (2.12),(2.13),(2.14) one finds Similarly, one gets

$$||Z(S-T)|| = \sup_{\substack{\|\mathbf{x}\|=1\\\mathbf{x}\geq 0}} ||Z(S-T)\mathbf{x}|| = \max_{\substack{x_1+x_2=1\\x_1,x_2\geq 0}} \left\{ \frac{1}{2} \left(ux_1 + x_2 + ux_2 - 2\lambda ux_2 \right) \right\}$$

$$= \frac{1 + u(1-2\lambda)}{2}.$$

The condition $2\lambda \leq 1$ yields that ||Z(S-T)|| < 1. Consequently, Corollary 2.2 implies $||Z(S^n-T^n)|| < 1$ for all $n \in \mathbb{N}$.

Now let us formulate a multi-parametric version of Theorem 1.1.

Theorem 2.3. Let $T_i, S_i : L^1 \to L^1, i = 1, ..., N$ be positive contractions such that $T_i \leq S_i$ with

(2.16)
$$T_i T_j = T_j T_i, \quad S_i S_j = S_j S_i \quad \text{for every } i, j = 1, \dots, N.$$

If there are $n_{i,0} \in \mathbb{N}$, i = 1, ..., N such that

Then

$$||S_1^{m_1} \cdots S_N^{m_N} - T_1^{m_1} \cdots T_N^{m_N}|| < 1$$

for all $m_i \ge n_{i,0}, i = 1, ..., N$.

Proof. Let us fix the first N-1 operators in (2.17), i.e. for a moment we denote

(2.19)
$$\mathbf{S}_{N-1} = S_1^{n_{1,0}} \cdots S_{N-1}^{n_{N-1,0}} \quad \mathbf{T}_{N-1} = T_1^{n_{1,0}} \cdots T_{N-1}^{n_{N-1,0}},$$

then (2.17) can be written as follows

$$\|\mathbf{S}_{N-1}S_N^{n_{N,0}} - \mathbf{T}_{N-1}T_N^{n_{N,0}}\| < 1.$$

After applying Theorem 2.1 to the last inequality we find

for all $m_N \ge n_{N,0}$. Now taking into account (2.19) and (2.16) we rewrite (2.20) as follows

Now again applying the same idea as above to (2.21) we get

$$||S_N^{m_N}S_1^{n_{1,0}}\cdots S_{N-1}^{m_{N-1}}-T_N^{m_N}T_1^{n_{1,0}}\cdots T_{N-1}^{m_{N-1}}||<1,$$

for all $m_{N-1} \ge n_{N-1,0}, m_N \ge n_{N,0}$. Hence, continuing this procedure N-2 times we obtain the desired inequality.

Remark 3.1. It should be noted the following:

- (i) Since the dual of L^1 is L^{∞} then due to the duality theory the proved Theorems 2.1 and 2.3 holds true if we replace L^1 -space with L^{∞} .
- (ii) Unfortunately, that the proved theorems and its corollaries are not longer true if one replaces L^1 -space by an L^p -space, $1 . Indeed, consider <math>X = \{1,2\}$, $\mathcal{F} = \mathcal{P}(\{1,2\})$ and the measure μ is given by $\mu(\{1\}) = \mu(\{2\}) = 1/2$. In this case, L^p is isomorphic to the Banach lattice \mathbb{R}^2 (here an order is defined as usual, namely $\mathbf{x} \geq 0$ if and only if $x_1 \geq 0$, $x_2 \geq 0$) with the norm $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p)^{1/p}/2$, where $\mathbf{x} = (x_1, x_2)$. Define two operators by

$$S(x_1, x_2) = \left(\frac{x_1 + x_2}{2}, \frac{x_1 + x_2}{2}\right), \quad T(x_1, x_2) = \left(0, \frac{x_1}{2}\right)$$

Then it is shown (see [10]) that ||S - T|| < 1, but $||S^2 - T^2|| = 1$.

(iii) It would be better to note that certain ergodic properties of dominant positive operators has been studied in [3]. In general, a monograph [6] is devoted to dominant operators.

Let us give another example, for which conditions of Theorem 1.2 does not hold, but Theorem 2.1 can be applied.

Example 2. Let us consider \mathbb{R}^2 as in Example 1. Now define mappings $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ as follows

(2.22)
$$S(x_1, x_2) = \left(\frac{1}{2}x_1 + \frac{1}{3}x_2, \frac{1}{2}x_1 + \frac{1}{3}x_2\right),$$

(2.23)
$$T(x_1, x_2) = \left(\frac{1}{4}x_2, 0\right).$$

It is clear that S and T are positive and $T \leq S$.

One can see that ||S|| = 1, ||T|| = 1/4. From (2.22),(2.23) one gets

(2.24)
$$||S - T|| = \sup_{\substack{\|\mathbf{x}\| = 1 \\ \mathbf{x} > 0}} ||(S - T)\mathbf{x}|| = \max_{0 \le x_1 \le 1} \left\{ \frac{7x_1 + 5}{12} \right\} = 1$$

$$(2.25) ||S^2 - T^2|| = \sup_{\substack{\|\mathbf{x}\| = 1 \\ \mathbf{x} > 0}} ||(S^2 - T^2)\mathbf{x}|| = \max_{0 \le x_1 \le 1} \left\{ \frac{5x_1 + 10}{18} \right\} = \frac{15}{18}$$

Consequently, we have positive contractions T and S with $S \geq T$ such that $||S - T|| = 1, ||S^2 - T^2|| < 1$. This shows that the condition of Theorem 1.2 is not satisfied, but due to Corollary 2.2 with Z = id we have $||S^n - T^n|| < 1$ for all $n \geq 2$. Therefore the proved Theorem 2.2 is an extension of the Zaharopol's result.

3. A GENERALIZATION OF THE ZERO-TWO LAW

In this section we are going to prove a generalization of the zero-two law for positive contractions on L^1 . Before formulate the main result we prove some auxiliary facts.

First note that for any $x, y \in L^1$ one defines

(3.1)
$$x \wedge y = \frac{1}{2}(x + y - |x - y|).$$

It is well known (see [1]) that for any mapping S of L^1 one can define its modulus by

(3.2)
$$|S|x = \sup\{Sy : |y| \le x\}, x \in L^1, x \ge 0.$$

Hence, similarly to (3.1) for given two mappings S, T of L^1 we define

(3.3)
$$(S \wedge T)x = \frac{1}{2}(Sx + Tx - |S - T|x), \quad x \in L^1.$$

A linear operator $Z:L^1\to L^1$ is called a lattice homomorphism whenever

$$(3.4) Z(x \lor y) = Zx \lor Zy$$

holds for all $x, y \in L^1$. One can see that such an operator is positive. Note that such homomorphisms were studied in [1].

Recall that a net $\{x_{\alpha}\}$ in L^1 is order convergent to x, denoted $x_{\alpha} \to^o x$ whenever there exists another net $\{y_{\alpha}\}$ with the same index set satisfying $|x_{\alpha} - x| \leq y_{\alpha} \downarrow 0$. An operator $T: L^1 \to L^1$ is said to be order continuous, if $x_{\alpha} \to^o 0$ implies $Tx_{\alpha} \to^o 0$.

Lemma 3.1. Let S, T be positive contractions of L^1 , and Z be an order continuous lattice homomorphism of L^1 . Then one has

$$(3.5) Z|S - T| = |Z(S - T)|.$$

Moreover, we have

$$(3.6) Z(S \wedge T) = ZS \wedge ZT.$$

Proof. From (3.2) we find that

$$Z|S - T|x = Z(\sup\{(S - T)y : |y| \le x\})$$

$$= \sup\{Z(S - T)y : |y| \le x\})$$

$$= |Z(S - T)|x,$$

for every $x \in L^1, x > 0$.

The equality (3.3) yields that

(3.8)
$$Z|S - T| = ZS + ZT - 2Z(S \wedge T),$$
$$|Z(S - T)| = ZS + ZT - 2(ZS \wedge ZT),$$

which with (3.7) imply that

$$Z(S \wedge T) = ZS \wedge ZT.$$

In what follows, an order continuous lattice homomorphism $Z:L^1\to L^1$ with $\|Z\|\leq 1$, is called a lattice contraction.

Now we have the following

Lemma 3.2. Let Z be a lattice contraction and T be a positive contraction of L^1 such that ZT = TZ. If for some $m \in \mathbb{N} \cup \{0\}$, $k \in \mathbb{N}$ one has $\|Z(T^{m+k} - T^m)\| < 2$, then $\|Z(T^{m+k} - T^{m+k} \wedge T^m)\| < 1$.

Proof. According to the assumption there is $\delta > 0$ such that $||Z(T^{m+k}-T^m)|| = 2(1-\delta)$. Let us suppose that $||Z(T^{m+k}-T^{m+k}\wedge T^m)|| = 1$. Then thanks to (2.2) there exists $x \in L^1$ with $x \geq 0$, ||x|| = 1 such that

$$||Z(T^{m+k} - T^{m+k} \wedge T^m)x|| > 1 - \frac{\delta}{4},$$

which with (2.1) implies that $||ZT^{m+k}x|| > 1 - \delta/4$ and $||Z(T^{m+k} \wedge T^m)x|| < \delta/4$. The commutativity T and Z yields that $||ZT^mx|| > 1 - \delta/4$.

Now using (3.8) and (3.6) one finds

$$\begin{aligned} \left\| |Z(T^{m+k} - T^m)|x \right\| &= \|ZT^{m+k}x\| + \|ZT^mx\| - 2\|Z(T^{m+k} \wedge T^m)x\| \\ &> 1 - \frac{\delta}{4} + 1 - \frac{\delta}{4} - 2 \cdot \frac{\delta}{4} \\ &= 2\left(1 - \frac{\delta}{2}\right). \end{aligned}$$

This with the equality

$$|||Z(T^{m+k} - T^m)||| = ||Z(T^{m+k} - T^m)||,$$

contradicts to $||Z(T^{m+k} - T^m)|| = 2(1 - \delta/2)$.

Lemma 3.3. Let Z be a lattice contraction and T be a positive contraction of L^1 such that ZT = TZ. If for some $m \in \mathbb{N} \cup \{0\}$, $k \in \mathbb{N}$ one has $\|Z(T^{m+k} - T^{m+k} \wedge T^m)\| < 1$, then for any $\varepsilon > 0$ there are $d, n_0 \in \mathbb{N}$ such that

$$||Z^d(T^{n+k}-T^n)|| < \varepsilon \quad \text{ for all } n \ge n_0$$

Proof. It is known that (see [11], p. 310) for any contraction T on L^1 there is $\gamma > 0$ such that

(3.9)
$$\left\| \left(\frac{I+T}{2} \right)^{\ell} - T \left(\frac{I+T}{2} \right)^{\ell} \right\| \leq \frac{\gamma}{\sqrt{\ell}}.$$

Then for given $k \in \mathbb{N}$, using (3.9) one easily finds that

(3.10)
$$\left\| \left(\frac{I+T}{2} \right)^{\ell} - T^k \left(\frac{I+T}{2} \right)^{\ell} \right\| \le \frac{k\gamma}{\sqrt{\ell}}.$$

Let $\varepsilon > 0$ and fix $\ell \in \mathbb{N}$ such that $k\gamma/\sqrt{\ell} < \varepsilon/4$.

Then according to Corollary 2.2 from the assumption of the lemma we have

(3.11)
$$||Z(T^{\ell(m+k)} - (T^{m+k} \wedge T^m)^{\ell})|| < 1.$$

Hence,

$$\left\| Z \left(T^{\ell(m+k)} - \left(\frac{I+T}{2} \right)^{\ell} (T^{m+k} \wedge T^{m})^{\ell} \right) \right\| = \\
= \left\| Z \left(T^{\ell(m+k)} - \frac{1}{2^{\ell}} \sum_{i=0}^{\ell} C_{\ell}^{i} T^{i} (T^{m+k} \wedge T^{m})^{\ell} \right) \right\| \\
\leq \sum_{i=0}^{\ell} \frac{C_{\ell}^{i}}{2^{\ell}} \left\| Z (T^{\ell(m+k)} - T^{i} (T^{m+k} \wedge T^{m})^{\ell}) \right\| \\
\leq \frac{1}{2^{\ell}} \left\| Z (T^{\ell(m+k)} - (T^{m+k} \wedge T^{m})^{\ell}) \right\| + \sum_{i=0}^{\ell} \frac{C_{\ell}^{i}}{2^{\ell}} \\
\leq \frac{1}{2^{\ell}} + \sum_{i=1}^{\ell} \frac{C_{\ell}^{i}}{2^{\ell}} = 1.$$
(3.12)

Define

$$Q_{\ell} := T^{\ell(m+k)} - \left(\frac{I+T}{2}\right)^{\ell} (T^{m+k} \wedge T^m)^{\ell}$$

and put $V_{\ell}^{(1)} = (T^{m+k} \wedge T^m)^{\ell}$. Then one can see that

$$T^{\ell(m+k)} = \left(\frac{I+T}{2}\right)^{\ell} V_{\ell}^{(1)} + Q_{\ell}.$$

Now for every $d \in \mathbb{N}$, define

$$V_{\ell}^{(d+1)} = T^{\ell(m+k)} V_{\ell}^{(d)} + V_{\ell}^{(1)} Q_{\ell}^{d}.$$

Then by induction one can establish [11] that

(3.13)
$$T^{d\ell(m+k)} = \left(\frac{I+T}{2}\right)^{\ell} V_{\ell}^{(d)} + Q_{\ell}^{d}$$

for every $d \in \mathbb{N}$.

Due to Proposition 2.1 [10] one has

$$||V_{\ell}^{(d)}|| \le 2$$

for all $d \in \mathbb{N}$.

Now from (3.12) we find $||ZQ_{\ell}|| < 1$, therefore there exists $d \in \mathbb{N}$ such that $||(ZQ_{\ell})^d|| < \varepsilon/4$. So, commutativity Z and T implies that $ZQ_{\ell} = Q_{\ell}Z$, which yields that $||Z^dQ_{\ell}^d|| < \varepsilon/4$.

Put $n_0 = d\ell(m+k)$, then from (3.13) with (3.10),(3.14) we get

$$||Z^{d}(T^{n_0+k} - T^{n_0})|| = ||Z^{d}\left(T^{k}\left(\frac{I+T}{2}\right)^{\ell} - \left(\frac{I+T}{2}\right)^{\ell}\right)V_{\ell}^{(d)} + Z^{d}(T^{k}Q_{\ell}^{d} - Q_{\ell}^{d})||$$

$$\leq ||\left(T^{k}\left(\frac{I+T}{2}\right)^{\ell} - \left(\frac{I+T}{2}\right)^{\ell}\right)V_{\ell}^{(d)}||$$

$$+||Z^{d}Q_{\ell}^{d}(T-1)||$$

$$\leq 2 \cdot \frac{k\gamma}{\sqrt{\ell}} + 2 \cdot \frac{\varepsilon}{4} < \varepsilon.$$

Take any $n \ge n_0$, then from the last inequality one finds

$$||Z^d(T^{n+k}-T^n)|| = ||T^{n-n_0}Z^d(T^{n_0+k}-T^{n_0})|| \le ||Z^d(T^{n_0+k}-T^{n_0})|| < \varepsilon$$
 which completes the proof.

Now we are ready to formulate the main result of this section.

Theorem 3.4. Let Z, T be two positive contractions of L^1 such that TZ = ZT. If for some $m \in \mathbb{N} \cup \{0\}$, $k \in \mathbb{N}$ one has $||Z(T^{m+k} - T^m)|| < 2$, then for any $\varepsilon > 0$ there are $d, n_0 \in \mathbb{N}$ such that

$$||Z^d(T^{n+k}-T^n)|| < \varepsilon \quad \text{ for all } n \ge n_0$$

The proof of this theorem immediately follows from Lemmas 3.2 and 3.3.

Remark. Note that if we take as Z = I, k = 1 then we obtain Theorem 1.1 as a corollary of Theorem 3.4.

References

- [1] C.D. Aliprantis, O. Burkinshaw, *Positive operators*, Springer, 2006.
- [2] Y. Derriennic, Lois "zéro ou deux" pour les processes de Markov. Applications aux marches aléatoires. Ann. Inst. H. Poincaré Sec. B 12(1976), 111–129.
- [3] E.Ya. Eemel'yanov, Non-spectral asymptotic analysis of oneparameter operator semigroups. In: Operator Theory: Advances and Applications, 173. Basel. Birkhauser Verlag. 2007.
- [4] S. R. Foguel, On the zero-two law, Israel J. Math. 10(1971), 275–280.
- [5] S. R. Foguel, A generalized 0-2 law, Israel J. Math. 45(1983), 219–224.
- [6] A.G. Kusraev, *Dominated operators*. In: Mathematics and its Applications, V. 519. Dordrecht: Kluwer Academic Publishers 2000.
- [7] M. Lin, On the 0–2 law for conservative Markov operators, Z. Wahrscheinlichkeitstheor. Verw. Geb. 61 (1982), 513–525.
- [8] F. Mukhamedov, S. Temir, H. Akin, A note on dominant contractions of Jordan algebras, Turk. J. Math. 34,(2010), 85–93.
- [9] D. Ornstein, L. Sucheston, An operator theorem on L_1 convergence to zero with applications to Markov operators, Ann. Math. Statist. 41(1970) 1631–1639.

- [10] R. Zaharopol, On the 'zero-two' law for positive contraction, *Proc. Edin. Math. Soc.* **32**,(1989), 363–370.
- [11] R. Zaharopol, The modulus of a regular linear operator and the 'zero-two' law in L^p -spaces (1 , Jour. Funct. Anal.**68**,(1986), 300–312.

FARRUKH MUKHAMEDOV, DEPARTMENT OF COMPUTATIONAL & THEORETICAL SCIENCES, FACULTY OF SCIENCE, INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA, P.O. BOX, 141, 25710, KUANTAN, PAHANG, MALAYSIA

E-mail address: far75m@yandex.ru farrukh_m@iiu.edu.my