${\bf Contents}$

1 Step 4 Machine learning						
	1.1	Step 0: Look at and Modify the dataset	1			
	1.2	Step 1: Explore the dataset	4			
	1.3	Step 2: Split sets, train a Machine Learning Model and Evaluate performance	5			
	1.4	Step 3: Plot results	8			
	1.5	Step 4: Improve models by changing the dataset	10			

1 Step 4 Machine learning

1.1 Step 0: Look at and Modify the dataset

So, I am curious. Can I predict vaccination data?

I will work with the South West's vaccination data.

	First	Second	Third
2022-01-26	986	2520	4034
2022-01-25	899	1845	4283
2022-01-24	723	1445	3441
2022-01-23	1035	3007	3439
2022-01-22	1822	4709	5896

As we can see, there are waves. So, the count of jabs depends on dates.

Let's get features: 1) Year 2) Month 3) Day etc.

	First	Second	Third	Year	Month	Day	DayOfYear	Weekday	Quarter	IsMonthStart	IsMonthEnd
2022-01-26	986	2520	4034	2022	1	26	26	2	1	FALSE	FALSE
2022-01-25	899	1845	4283	2022	1	25	25	1	1	FALSE	FALSE
2022-01-24	723	1445	3441	2022	1	24	24	0	1	FALSE	FALSE
2022-01-23	1035	3007	3439	2022	1	23	23	6	1	FALSE	FALSE
2022-01-22	1822	4709	5896	2022	1	22	22	5	1	FALSE	FALSE

1.2 Step 1: Explore the dataset

1.2.1 Weekdays

As you remember, I have a question.

Let's answer.

So, most of South West's people prefer to get a jab on Saturdays.

1.2.2 Missing values

Calculate a count of dates in the dataset.

415

Calculate a count of dates between maximum and minimum dates.

415

There are no missing dates.

1.3 Step 2: Split sets, train a Machine Learning Model and Evaluate performance

Define necessary variables

Prepare sets and train models using parameters.

Compare the score with the mean value of the column that we predicted.

0.719657929335243

0.774580856609961

0.7445280765098062

0.8144473412230163

Look at the tree

1.4 Step 3: Plot results

1.5 Step 4: Improve models by changing the dataset

I am going to work with features.

Define necessary variables

Prepare sets and Train models

Compare the score with the mean value of the column that we predicted.

0.7248630326024768

0.7837038702898657

0.7692636418171874

0.8318561653086721

Plot the result.

A combination of the following features give us the best result: * Weekday, * Year, * DayOfYear