1.) The source of Figure 1 delivers an apparent power of 100 VA with a power factor of 0.8 leading. Find the unknown impedance **Z**.

Figure 1

2.) Determine values of R and L for the circuit shown in Figure 2 that causes maximum power transfer to the load.

Figure 2

3.) The source voltage of the circuit shown in Figure 3 is $v_s = 20 \cos(20t)$ V. Determine the average power absorbed by resistors and the complex power supplied by the source voltage.

Figure 3

4.) Determine the mesh currents for the circuit shown in Figure 4.

Figure 4

5.) Determine the mesh currents and the complex power absorbed by each element in the circuit shown in Figure 5. Verify conservation of complex power.

Figure 5

6.) The source voltage of the circuit shown in Figure 6 is $v_s = 20 \cos(20t)$ V. Determine $i_1(t)$ and $i_2(t)$.

7.) Find V_1 , V_2 , I_1 , and I_2 for the circuit of Figure 7, when n = 20.

Figure 7

8.) Find the Thévenin equivalent at terminals a—b for the circuit of Figure 3 when

 $v = 16 \cos(9t) \text{ V}.$

Figure 8

9.) Determine v_2 and i_2 for the circuit shown in Figure 4 when n = 10. Note that i_2 does not enter the dotted terminal.

Figure 9