مقدمه مقلامه الگوریتم های T LDL تغییریافته روش های جدید T LDL تغییر یافته الگوریتم های T LBL تغییر یافته روش T LBL ساندویر موسم روش T

الگوريتم هاي چولسكي تغيير يافته

رضا پیشکو

دانشگاه صنعتی شریف

ارائه سمینار محاسبات علمی ۱۲۰۲/۸

- ◄ A متقارن و احتمالا غير معين
- ▶ هدف : پیدا کردن A = A + E که مثبت معین باشد برای محاسبه E باید A = A + E خاصیت زیر برقرار باشند.
 - $E=\cdot$ اگر A به اندازه کافی مثبت معین باشد، آنگاه \bullet
 - $\inf ||\Delta A|| : A + \Delta A$ اگر A مثبت معین نبآشد، آنگاه ||E|| خیلی بزرگ تر از $A + \Delta A$: ||A| inf ||A|
 - ماتریس $\mathrm{A} + \mathrm{E}_{j}$ ماتریس ماتریس
 - هزینه الگوریتم فقط به اندازه یک ضریب کوچکی از n^{γ} بزرگ تر از فاکتورسازی استاندارد چولسکی $(n^{\gamma}+O(n^{\gamma}))$ باشد.

$$A=diag\left(d_1,d_7,\ldots,d_n\right)$$
 : تخمین مثبت معین ماتریس A را تعریف کنیم
$$A+E=diag\left(\hat{d}_1,\hat{d}_7,\ldots,\hat{d}_n\right)$$

$$\hat{d}_k = \max\{|d_k|, \delta\}$$

🕚 الگوريتم نوع ٢

$$\hat{d}_k = \max\{d_k, \delta\}$$

تجزیه های ماتریسی

- به طوری که D قطری باشد PAP $^{\mathrm{T}}=\mathrm{LDL}^{\mathrm{T}}$
- په طوری که B قطری_بلوکی با بلوک های ۱ یا ۲ بعدی PAP $^{\mathrm{T}}=\mathrm{LBL}^{\mathrm{T}}$ باشد
 - به طوری که T ماتریس سه قطری باشد. $ightharpoons PAP^T = LTL^T$

پیچیدگی محاسباتی

خاصیت ۴	الگوريتم	خاصیت ۴	الگوريتم
	LBL^{T}		LDL^{T}
$\leq O(n^r)$	MS۷٩	O(n ^r)	GMWA1
$\leq O(n^r)$	СН٩л	O(n ^r)	SE4 ·
	LTL^{T}	O(n ^r)	SEqq
O(n ^r)	LTL^{T} -MS79	O(n ^r)	GMW-I
O(n ^r)	LTL^{T} -CH98	O(n ^r)	GMW-II
		O(n ^r)	SE-I

$\mathrm{LDL^T}$ الگوريتم هاى $\mathrm{LDL^T}$ تغييريافته

ماتریس زیر تجزیه $\mathrm{LDL}^{\mathrm{T}}$ ندارد:

$$A = \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$$

ماتریس زیر تجزیه دارد اما تغییراتی که ایجاد می کنیم کران دار نیست.

$$\mathbf{A} = \begin{bmatrix} \epsilon & \mathbf{1} \\ \mathbf{1} & \boldsymbol{\cdot} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \boldsymbol{\cdot} \\ \mathbf{1}/\epsilon & \mathbf{1} \end{bmatrix} \begin{bmatrix} \epsilon & \boldsymbol{\cdot} \\ \boldsymbol{\cdot} & -\mathbf{1}/\epsilon \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{1}/\epsilon \\ \boldsymbol{\cdot} & \mathbf{1} \end{bmatrix}$$

الگوريتم هاي $\mathrm{LDL^T}$ تغييريافته

$$E = diag(\delta_1, \delta_7, \dots, \delta_n)$$

مكمل shur در قدم k ام:

$$egin{align} A_k &= egin{bmatrix} a_k & c_k^T \ c_k & ar{A}_k \end{bmatrix} \ L(k+1:n,k) &= rac{c_k}{a_k+\delta_k}, D(k,k) = a_k+\delta_k \quad \text{(number of } A_{k+1}) &= ar{A}_k - rac{c_k c_k^T}{a_k+\delta_k} \end{aligned}$$

GMW81(Gill et al. (1981))

$$a_k + \delta_k = \max\left\{\delta, |a_k|, \frac{\|c_k\|_\infty^{\boldsymbol{\gamma}}}{\beta^{\boldsymbol{\gamma}}}\right\}; \delta = \epsilon_M$$

كه نتيجه مىدهد:

$$\|\mathbf{E}\|_{\Upsilon} = \mathbf{o}(\mathbf{n}^{\Upsilon})$$

تعریف (شعاع Gerschgorin)

شعاع Gerschgorin ماتریس A برابر است با:

$$R_i(A) = \sum_{j \neq i} |a_{i,j}| and C_i(A) = \{z: \|z-a_{i,i}\| \leq R_i(A)\}$$

قضیه Gerschgorin نشان می دهد که مقادیر ویژه در اجتماع دایره های Gerschgorin هستند. (Horn and Johnson, (1985))

- اگر قرار دهیم $\delta_{\mathbf{k}} = \max\{ullet, -a_{\mathbf{k}} + \|c_{\mathbf{k}}\|_1\}$ مقادیر ویژه مثبت خواهند بود.
 - ◄ اين روش ويژگى اول را ندارد. بنابراين يك الگوريتم دو فازى ارائه مىكنيم.

Algorithm 1 Phase 1 of a 2-Phase Strategy.

{Given a symmetric
$$A \in \mathbb{R}^{n \times n}$$
 and a small tolerance $\delta > 0$.} $A_1 := A, k := 1$

Pivot on the maximum diagonal element of A_1 .

{Denote
$$A_k = \begin{bmatrix} a_k & c_k^T \\ c_k & A_k \end{bmatrix}$$
, then Diag $(\bar{A}_k) \leq a_k I_{n-k}$ after pivoting.}

if $a_1 \geq \delta$ then

while
$$\operatorname{Diag}(\bar{A}_k - \frac{c_k c_k^T}{a_k}) \ge \delta I_{n-k}$$
 and $k < n$ do

$$A_{k+1} := \bar{A}_k - \frac{c_k c_k^T}{a_k}$$

$$k := k+1$$

Pivot on maximum diagonal of A_k .

end while end if

فاز یک برای برخی ماتریس ها $\|E\|$ بزرگی دارد. بنابراین فاز یک ریلکس شده را انجام میدهیم.

Algorithm 2 Relaxed Phase 1 of a 2-Phase Strategy.

{Given a symmetric $A \in \mathbb{R}^{n \times n}$, $\delta > 0$ and $0 < \mu \le 1$.}

 $\eta := \max_{1 \le i \le n} |A_{ii}|$

if $\operatorname{Diag}(A) \geq -\mu \eta I_n$ then

 $A_1 := A, k := 1$ Pivot on the maximum diagonal element of A_1 .

{Denote
$$A_k = \begin{bmatrix} a_k & c_k^T \\ c_k & A_k \end{bmatrix}$$
, then $\operatorname{Diag}(\bar{A}_k) \leq a_k I_{n-k}$ after pivoting.}

while
$$a_k \geq \delta$$
 and $\operatorname{Diag}(A_k) \geq -\mu a_k I_{n-k+1}$ and $\operatorname{Diag}(\bar{A}_k - \frac{c_k c_k^T}{a_k}) \geq -\mu \eta I_{n-k}$ and $k < n$ do

$$A_{k+1} := \bar{A}_k - \frac{c_k c_k^T}{a_k}$$

$$k := k+1$$

Pivot on maximum diagonal of A_k .

end while

end if

• فاز ۲:

$$\delta_{k} = \max \{ \delta_{k-1}, -a_{k-1} + \max \| c_{k} \|_{1}, \delta \}$$
 (1)

الگوريتم GMW-I

 ◄ از فاز اول SE۹۹ (ریکلس شده) و فاز دوم GMW۸۱ استفاده می کند و قرار می دهد

$$\delta_k = \cdot \quad ; \quad k = 1, \Upsilon, \dots, K$$

◄ خواهيم داشت:

$$\|E\|_{\Upsilon} \le o(n)$$

الگوريتم GMW-II

▼ نسخه نوع دوم از الگوریتم GMW۸۱:

$$\mathbf{a}_k + \delta_k = \max\left\{\delta, \mathbf{a}_k + \delta_{k-1}, \frac{\|\mathbf{c}_k\|_\infty^{\mathbf{Y}}}{\beta^{\mathbf{Y}}}\right\}$$

◄ خواهيم داشت:

$$\|E\|_{\Upsilon} = O(n^{\Upsilon})$$

- ◄ مىتوانيم الگوريتم ريلكس شده دو فازى را در GMW-II نيز به كار ببريم.
 - ◄ خواهيم داشت:

$$\|\mathbf{E}\|_{\Upsilon} = \mathbf{O}(\mathbf{n})$$

◄ برای ماتریس A متقارن:

$$A = LBL^T$$

اگر
$$\cdot < \Delta B = B + \Delta$$
 داریم:

$$P(A+E)P^{T} = L\hat{B}L^{T} > \bullet$$

رضا پيشكو

روش Moré و Sorensen (MSv۹)

◄ برای هر بلوک ۱ × ۱ در B:

$$\hat{d} = \max\{\delta, |d|\}$$

$$:$$
D = U $\begin{bmatrix} \lambda_1 & \cdot \\ \cdot & \lambda_1 \end{bmatrix}$ \mathbf{U}^{T} که $\mathbf{Y} \times \mathbf{Y}$ که \blacksquare

$$\hat{\lambda_i} = \max\{\delta, |\lambda_i|\}$$

$$\delta = \epsilon_{\rm M}$$

روش Cheng و CH۹۸) (CH۹۸)

◄ برای هر بلوک ۱ × ۱ در B:

$$\hat{d} = \max\{\delta, d\}$$

$$:$$
D = U $egin{bmatrix} \lambda_1 & \ddots \\ \ddots & \lambda_T \end{bmatrix}$ \mathbf{U}^{T} که ۲ × ۲ که $lacktrian$

$$\hat{\lambda_i} = \max\{\delta, \lambda_i\}$$

$$\delta = \sqrt{u} \|A\|_{\infty}$$

Table 4 Comparison costs of various pivoting strategies for the LBL^T factorization

Symmetric matrix	General		Tridiagonal	Tridiagonal	
Case	Worst	Best	Worst	Best	
BP	0((n^3)	O(1	n^2)	
FBP	$O(n^3)$	$O(n^2)$	$O(n^2)$	O(n)	
BBK	$O(n^3)$	$O(n^2)$	$O(n^2)$	O(n)	

$$PAP^T = LTL^T \\$$

lacktriangle به طوری که T ماتریسی متقارن و سه قطری است و L پایین مثلثی واحد است.

رضا پيشكو

- ◄ درایه های غیر قطری L از یک کمتر هستند.
 - ◄ ستون اول L صفر است.

روش $\overline{\mathrm{LBL^T}}$ ـا $\mathrm{LBL^T}$ ساندویچی

$$\hat{T} = T + \Delta T$$
 ; $\hat{T} > \cdot$

◄ به طور معادل

$$\begin{split} \hat{A} &= P(A+E)P^T = L\hat{T}L^T \\ \hat{A} &> \boldsymbol{\cdot} \Leftrightarrow \hat{T} > \boldsymbol{\cdot} \end{split}$$

روش LBL^T _L TL^T ساندویچی

- $PAP^T = LTL^T$ را محاسبه می کنیم. LTL^T را محاسبه می کنیم.
- ▶ یکی از الگوریتم های LDL^T یا LBL^T را روی T اعمال می کنیم. در اینصورت خاصیت ۱ برقرار است.

(Fang, O'Leary (2006) از (2.5) قضيه

تجزیه های ${
m LDL^T}$ و ${
m LBL^T}$ ساختار سه تایی را(triadic) حفظ می کنند. یعنی ماتریس های ${
m L,D,B}$ ماتریس هایی سه تایی هستند.

روش $\mathrm{LBL^T} ext{-}\mathrm{LTL^T}$ ساندویچی

Table 4 Comparison costs of various pivoting strategies for the LBL^T factorization

Symmetric matrix	General		Tridiagonal	
Case	Worst	Best	Worst	Best
BP	0((n^3)	O(i	n^2)
FBP	$O(n^3)$	$O(n^2)$	$O(n^2)$	O(n)
BBK	$O(n^3)$	$O(n^2)$	$O(n^2)$	O(n)

$$\delta = \epsilon_{\mathrm{M}}$$
 با $\mathrm{LTL^{T}} ext{-MS79}$

$$\delta = \epsilon_{\mathrm{M}}$$
 با $\mathrm{LTL^{T}}$ -MS79 روش $\delta = \sqrt[r]{\epsilon_{\mathrm{M}}^{\mathrm{Y}}}$ با $\mathrm{LTL^{T}}$ -CH98 روش

روش LBL^T لاويچى LBL^T

- $PAP^T = LTL^T$: را محاسبه کنیم ل TL^T را محاسبه کنیم \blacksquare
- $\tilde{P}T\tilde{P}^T = \tilde{L}\tilde{B}\tilde{L}^T$ را محاسبه کنیم: T تجزیه T تجزیه T
 - $PAP^T = L\tilde{P}^T\tilde{L}\tilde{B}\tilde{L}^T\tilde{P}L^T$ خواهیم داشت: lacktriangle
- $ilde{B} + \Delta ilde{B} > \cdot$ انحراف $\Delta ilde{B}$ را محاسبه می کنیم به طوری که
- $ilde{P}(T+\Delta T) ilde{P}^T= ilde{L}(ilde{B}+\Delta ilde{B}) ilde{L}^T$ تجزیه (T + ΔT) برابر است با
 - ▼ تجزیه LTL^T تغییر یافته برابر است با:

$$P(A+E)P^T = L\tilde{P}^T\tilde{L}(\tilde{B}+\Delta\tilde{B})\tilde{L}^T\tilde{P}L^T$$

معیار های بزرگی E

$$r_F = \frac{\frac{\|E\|_{\text{Y}}}{|\lambda_{\min}(A)|}}{\left(\sum_{\lambda_i(A)<.} \lambda_i(A)^{\text{Y}}\right)^{\frac{1}{\text{Y}}}} \blacktriangleleft$$

Algorithm	r_2	r_F	$\kappa_2(A+E)$
GMW81	2.733	2.674	4.50×10^{4}
GMW-I	3.014	2.739	4.51×10^4
GMW-II	2.564	2.489	1.64×10^{5}
SE90	2.78×10^{3}	3.70×10^{3}	8.858
SE99	1.759	1.779	1.04×10^{10}
SE-I	3.346	3.289	3.61×10^4
MS79	3.317	2.689	3.33×10^{4}
CH98	1.659	1.345	9.88×10^{7}
LTL ^T -MS79	3.317	2.689	3.33×10^4
LTL ^T -CH98	1.658	1.344	6.74×10^{10}

رضا پيشكو

معیار های بزرگی E

الگوريتم هاي نوع ١:

معیار های بزرگی E

الگوريتم هاي نوع ٢ :

O'Leary P. Dianne · Fang Haw-ren approaches new with catalog a algorithms: Cholesky Modified