V. Limouzy

9 novembre 2020

Introduction

Couplages parfaits dans les graphes bipartis

Couplage maximum d'un biparti avec les flots

Couverture d'arête

Definition (Couplage)

Un couplage M d'un graphe non orienté G=(V,E) est un sous-ensemble d'arêtes de E tel que pour toutes paires d'arêtes m_i,m_j $(i\neq j)$ de M n'ont aucun sommet communs.

Definition (Couplage)

Un couplage M d'un graphe non orienté G=(V,E) est un sous-ensemble d'arêtes de E tel que pour toutes paires d'arêtes m_i,m_j $(i\neq j)$ de M n'ont aucun sommet communs.

Definition (Couplage)

Un couplage M d'un graphe non orienté G=(V,E) est un sous-ensemble d'arêtes de E tel que pour toutes paires d'arêtes $m_i, m_j \ (i \neq j)$ de M n'ont aucun sommet communs.

Definition (Couplage)

Un couplage M d'un graphe non orienté G=(V,E) est un sous-ensemble d'arêtes de E tel que pour toutes paires d'arêtes $m_i, m_j \ (i \neq j)$ de M n'ont aucun sommet communs.

Definition (Couplage)

Un couplage M d'un graphe non orienté G=(V,E) est un sous-ensemble d'arêtes de E tel que pour toutes paires d'arêtes $m_i, m_j \ (i \neq j)$ de M n'ont aucun sommet communs.

Couplages : Applications

Affectation de tâches

Soient:

- $T = \{t_1, t_2, \dots, t_l\}$ un ensemble de tâche à effectuer.
- ▶ $P = \{p_1, p_2, ..., p_k\}$ un ensemble de personnes.

On peut associer à ces deux ensembles un **graphe de compatibilité** où les sommets représentent les personnes et les tâches. Et on ajoute une arête p_i, t_j si la personne p_i est compétente pour effectuer la tâche t_j .

Couplages: Applications

Affectation de tâches

Soient:

- $T = \{t_1, t_2, \dots, t_l\}$ un ensemble de tâche à effectuer.
- ▶ $P = \{p_1, p_2, ..., p_k\}$ un ensemble de personnes.

On peut associer à ces deux ensembles un **graphe de compatibilité** où les sommets représentent les personnes et les tâches. Et on ajoute une arête p_i , t_j si la personne p_i est compétente pour effectuer la tâche t_i .

Objectif

On cherche à affecter à chaque personne une tâche, et que le plus de tâches soient effectuées.

Couplages parfaits/Couplages Maximum

Definition (Couplage parfait)

Un couplage M est parfait si M recouvre l'ensemble des sommets du graphe.

Couplages parfaits/Couplages Maximum

Definition (Couplage parfait)

Un couplage M est parfait si M recouvre l'ensemble des sommets du graphe.

Objectifs

- 1. On cherche à trouver un couplage maximum.
- 2. Déterminer si le graphe contient un couplage parfait.
- On cherche des conditions nécessaires suffisantes pour l'existence d'un couplage parfait.

Graphe sans couplage parfait

Graphe sans couplage parfait

Couplage Parfait : Condition nécessaire

Pour qu'un graphe admette un **couplage parfait** il doit avoir un **nombre pair** de sommets.

Chemin Alternant

Definition (Chemin M-alternant.)

Soit G = (V, E) un graphe non orienté et soit M un couplage de G. Un chemin P de G est dit M-alternant si les arêtes du chemin **alternent** successivement entre celles du couplages et celle du graphe qui ne sont pas dans M.

Chemin Alternant

Definition (Chemin *M*-alternant.)

Soit G = (V, E) un graphe non orienté et soit M un couplage de G. Un chemin P de G est dit M-alternant si les arêtes du chemin **alternent** successivement entre celles du couplages et celle du graphe qui ne sont pas dans M.

Exemple

Chemins alternants

Chemin Augmentant

Definition (Chemin *M*-augmentant.)

Un chemin M-augmentant est un chemin alternant où la première arête et la dernière arête n'appartiennent pas au couplages.

Chemin Augmentant

Definition (Chemin *M*-augmentant.)

Un chemin M-augmentant est un chemin alternant où la première arête et la dernière arête n'appartiennent pas au couplages.

Chemin Augmentant

Definition (Chemin *M*-augmentant.)

Un chemin M-augmentant est un chemin alternant où la première arête et la dernière arête n'appartiennent pas au couplages.

Augmentation

Pour augmenter un couplage à l'aide d'un chemin augmentant il suffit d'échanger sur ce chemine les arêtes qui appartiennent au couplage et celles qui n'y appartiennent pas encore.

Augmentation

Theorem (Berge 1959)

Soit G = (V, E) un graphe et soit M un couplage. Le couplage M est maximum si et seulement si G ne contient pas de chemin M-augmentant.

Theorem (Berge 1959)

Soit G = (V, E) un graphe et soit M un couplage. Le couplage M est maximum si et seulement si G ne contient pas de chemin M-augmentant.

Différence symétrique

Soient A et B deux sous-ensembles d'un ensemble X.

$$A\Delta B = A \cup B \setminus A \cap B$$

Theorem (Berge 1959)

Soit G = (V, E) un graphe et soit M un couplage. Le couplage M est maximum si et seulement si G ne contient pas de chemin M-augmentant.

Différence symétrique

Soient A et B deux sous-ensembles d'un ensemble X.

$$A\Delta B = A \cup B \setminus A \cap B$$

Démonstration

 \Rightarrow (Par contraposée) Soit M un couplage et soit P un chemin M-augmentant de G. Construisons un couplage $M' = M\Delta E(P)$. Alors |M'| = |M| + 1. Donc M n'est pas maximum.

Démonstration (suite)

Démonstration (suite)

Leftarrow (Contraposée) Supposons que M ne soit pas un couplage maximum. Et soit M^* un couplage tel que $|M^*| > |M|$.

▶ On construit le graphe $H = G[M\Delta M^*]$.

Démonstration (suite)

- ▶ On construit le graphe $H = G[M\Delta M^*]$.
- ► Chaque sommet de *H* a degré 1 ou 2.

Démonstration (suite)

- ▶ On construit le graphe $H = G[M\Delta M^*]$.
- ► Chaque sommet de *H* a degré 1 ou 2.
- Chaque composante connexe de H est soit un chemin soit un cycle.

Démonstration (suite)

- ▶ On construit le graphe $H = G[M\Delta M^*]$.
- ► Chaque sommet de *H* a degré 1 ou 2.
- Chaque composante connexe de H est soit un chemin soit un cycle.
- ▶ Si *H* contient des cycles : ils ne nous intéressent pas.

Démonstration (suite)

- ▶ On construit le graphe $H = G[M\Delta M^*]$.
- ► Chaque sommet de *H* a degré 1 ou 2.
- Chaque composante connexe de H est soit un chemin soit un cycle.
- Si H contient des cycles : ils ne nous intéressent pas.
- Considérons les chemins.

Démonstration (suite)

- ▶ On construit le graphe $H = G[M\Delta M^*]$.
- ► Chaque sommet de *H* a degré 1 ou 2.
- Chaque composante connexe de H est soit un chemin soit un cycle.
- Si H contient des cycles : ils ne nous intéressent pas.
- Considérons les chemins.
- ► Comme $|M^*| > |M|$ on a au moins un chemin de H qui est augmentant.

Graphes Bipartis

Graphe Biparti : rappel

Un graphe G = (V, E) est biparti si on peut partitionner l'ensemble des sommets V en X et Y tels que

- $X \cap Y = \emptyset$.
- \triangleright $X \cup Y = V$.
- ▶ G[X] est un stable.
- ▶ G[Y] est un stable.

Graphes Bipartis

Graphe Biparti: rappel

Un graphe G = (V, E) est biparti si on peut partitionner l'ensemble des sommets V en X et Y tels que

- $X \cap Y = \emptyset$.
- \triangleright $X \cup Y = V$.
- ▶ G[X] est un stable.
- ▶ G[Y] est un stable.

Couplages parfaits dans les bipartis : CNS

Dans les graphe bipartis on a une caractérisation pour l'existence d'un couplage parfait.

Theorem (Hall - 1935)

Soit G = (X, Y, E) un graphe biparti non orienté. Le graphe G admet un couplage qui couvre tous les sommets de X si et seulement si $\forall S \subseteq X$ on a $|S| \leq |N(S)|$.

Theorem (Hall - 1935)

Soit G = (X, Y, E) un graphe biparti non orienté. Le graphe G admet un couplage qui couvre tous les sommets de X si et seulement si $\forall S \subseteq X$ on a $|S| \leq |N(S)|$.

Preuve

 \Rightarrow Si G admet un couplage M qui couvre tous les sommets de X.

Theorem (Hall - 1935)

Soit G = (X, Y, E) un graphe biparti non orienté. Le graphe G admet un couplage qui couvre tous les sommets de X si et seulement si $\forall S \subseteq X$ on a $|S| \leq |N(S)|$.

Preuve

 \Rightarrow Si G admet un couplage M qui couvre tous les sommets de X.

Y

X

Theorem (Hall - 1935)

Soit G = (X, Y, E) un graphe biparti non orienté. Le graphe G admet un couplage qui couvre tous les sommets de X si et seulement si $\forall S \subseteq X$ on a $|S| \leq |N(S)|$.

Preuve

 \Rightarrow Si G admet un couplage M qui couvre tous les sommets de X.

Y

X

Pour chaque sommet x de X on peut luis associer de manière unique un sommet y de Y auquel il est relié par M. Par conséquent quel que soit le sous-ensemble S de X qu'on considère on sait que $|S| \leq |N(S)|$.

Preuve (suite)

 \leftarrow (par contraposée) Soit G un graphe biparti qui n'admet aucun couplage qui couvre tous les sommets de X. Soit M^* un couplage maximum de G.

- \Leftarrow (par contraposée) Soit G un graphe biparti qui n'admet aucun couplage qui couvre tous les sommets de X. Soit M^* un couplage maximum de G.
 - ▶ Soit u un sommet de X non couvert par M^* .

- \Leftarrow (par contraposée) Soit G un graphe biparti qui n'admet aucun couplage qui couvre tous les sommets de X. Soit M^* un couplage maximum de G.
 - ▶ Soit u un sommet de X non couvert par M^* .
 - Soit Z l'ensemble des sommets accessibles par un chemin M*-alternant à partir de u.

 \Leftarrow (par contraposée) Soit G un graphe biparti qui n'admet aucun couplage qui couvre tous les sommets de X. Soit M^* un couplage maximum de G.

- ▶ Soit u un sommet de X non couvert par M^* .
- Soit Z l'ensemble des sommets accessibles par un chemin M*-alternant à partir de u.
- Comme M* est maximum u est le seul sommet non couvert de Z.

 \Leftarrow (par contraposée) Soit G un graphe biparti qui n'admet aucun couplage qui couvre tous les sommets de X. Soit M^* un couplage maximum de G.

- ▶ Soit u un sommet de X non couvert par M^* .
- Soit Z l'ensemble des sommets accessibles par un chemin M*-alternant à partir de u.
- Comme M^* est maximum u est le seul sommet non couvert de Z.
- ▶ On note $R = Z \cap X$ et $B = Z \cap Y$.

Par définition de Z tous les sommets de R sauf u sont touchés par M[∗].

- Par définition de Z tous les sommets de R sauf u sont touchés par M^* .
- chaque sommet de sommet de R (sauf u) est en correspondance avec un sommet de B.

- Par définition de Z tous les sommets de R sauf u sont touchés par M[∗].
- chaque sommet de sommet de R (sauf u) est en correspondance avec un sommet de B.
- ▶ Donc |B| = |R| 1.

▶ On a N(R) = B. car définit comme accessible à partir de u. (Sinon on aurait un chemin augmentant).

- On a N(R) = B. car définit comme accessible à partir de u. (Sinon on aurait un chemin augmentant).
- ▶ en prenant S = R on a un ensemble S tel que |S| > |N(S)|.

- ▶ On a N(R) = B. car définit comme accessible à partir de u. (Sinon on aurait un chemin augmentant).
- en prenant S = R on a un ensemble S tel que |S| > |N(S)|.

Corollary

Un graphe biparti G = (X, Y, E) admet un couplage parfait si et seulement si |X| = |Y| et $|N(S)| \ge |S| \ \forall S \subseteq X$.

Dans le cas des graphes biparti on peut résoudre le problème en le modélisant comme un flot. Soit G = (X, Y, E) un graphe biparti, la transformation est la suivante :

1. On créé un graphe orienté $G_{s,t} = (X', Y', E')$.

- 1. On créé un graphe orienté $G_{s,t} = (X', Y', E')$.
- 2. $X' = X \cup \{s\}$ et $Y' = Y \cup \{t\}$.

- 1. On créé un graphe orienté $G_{s,t} = (X', Y', E')$.
- 2. $X' = X \cup \{s\}$ et $Y' = Y \cup \{t\}$.
- 3. On ajoute tous les arcs de s vers les sommets de X.

- 1. On créé un graphe orienté $G_{s,t} = (X', Y', E')$.
- 2. $X' = X \cup \{s\} \text{ et } Y' = Y \cup \{t\}.$
- 3. On ajoute tous les arcs de s vers les sommets de X.
- 4. On ajoute tous les arcs des sommets de y vers t.

- 1. On créé un graphe orienté $G_{s,t} = (X', Y', E')$.
- 2. $X' = X \cup \{s\} \text{ et } Y' = Y \cup \{t\}.$
- 3. On ajoute tous les arcs de s vers les sommets de X.
- 4. On ajoute tous les arcs des sommets de y vers t.
- 5. On oriente les arêtes de E de X vers Y.

- 1. On créé un graphe orienté $G_{s,t} = (X', Y', E')$.
- 2. $X' = X \cup \{s\} \text{ et } Y' = Y \cup \{t\}.$
- 3. On ajoute tous les arcs de s vers les sommets de X.
- 4. On ajoute tous les arcs des sommets de *y* vers *t*.
- 5. On oriente les arêtes de E de X vers Y.
- 6. Toutes les capacités sont à 1.

Theorem

G admet un couplage de taille k si et seulement si il existe un flot de valeur k qui transite sur $G_{s,t}$.

Preuve

 \Rightarrow Si G admet un couplage M de taille k, alors dans $G_{s,t}$ on peut associer un flot en faisant transiter une quantité 1 sur les arcs associés aux arêtes du couplage. On peut étendre avec les arcs qui partent de s et aux arcs qui arrivent à t. La capacité des arcs n'est pas dépassée.

 \Leftarrow Si $G_{s,t}$ admet un flot de valeur k. Alors on sait qu'il existe un flot f de même valeur où les quantités qui transite sur chaque arc sont entières. Si l'on considère les arcs de X vers Y pour lesquels la quantité qui transite est à 1. Notons cet ensemble μ , alors les arêtes de μ forment un couplage, car par construction, pour toutes paires d'arcs qui arrivent sur un sommet y_j , un seul peut être retenu. De manière symétrique, pour toute paires d'arcs qui partent d'un sommet x_i un seul peut partir de x_i .

Definition (Couverture d'arête (Vertex Cover))

Soit G = (V, E) un graphe, un sous-ensemble sommets S de G est un ensemble couverture d'arêtes de G si toute arête de G a au moins une de ses extrémités dans S.

Definition (Couverture d'arête (Vertex Cover))

Soit G = (V, E) un graphe, un sous-ensemble sommets S de G est un ensemble couverture d'arêtes de G si toute arête de G a au moins une de ses extrémités dans S.

Exemple

On note $\beta(G)$ la taille du vertex cover minimum.

On note $\beta(G)$ la taille du vertex cover minimum.

Remarque

Soit S un vertex cover minimal. L'ensemble $V \setminus S$ est un stable maximal.

On note $\beta(G)$ la taille du vertex cover minimum.

Remarque

Soit S un vertex cover minimal. L'ensemble $V \setminus S$ est un stable maximal.

Remarque

Le problème de vertex cover est un problème difficile : pas d'algorithme polynomial connu.

Approximation

On peut approximer le vertex cover avec la taille du couplage maximum :

$$\beta(G) \leq 2 \cdot \alpha'(G)$$

Approximation

On peut approximer le vertex cover avec la taille du couplage maximum :

$$\beta(G) \leq 2 \cdot \alpha'(G)$$

Preuve

Soit M^* un couplage maximum. Si on considère les sommets du couplage, cela forme un vertex cover (car touches toutes les arêtes). Sinon on aurait une arête e avec aucune extrémité dans M^* , arête qu'on pourrait ajouter à M^* .

Vertex cover dans les bipartis

Dans les graphes bipartis on a une égalité entre les deux paramètres.

Vertex cover dans les bipartis

Dans les graphes bipartis on a une égalité entre les deux paramètres.

Theorem (König (1931) – Ergevary (1931)) Soit G = (X, Y, E) un graphe biparti, l'égalité suivante est vérifiée :

$$\alpha'(G) = \beta(G)$$

Preuve

Preuve

Soit M^* un couplage maximum. Soit U l'ensemble des sommets de X non couverts par M^* . On définit X' et Y' comme les sommets accessibles depuis un sommet de U par un chemin M^* -alternant.

Preuve

Preuve

Soit M^* un couplage maximum. Soit U l'ensemble des sommets de X non couverts par M^* . On définit X' et Y' comme les sommets accessibles depuis un sommet de U par un chemin M^* -alternant.

1. Tous les sommets de Y' sont couverts par ceux de X'.

- 1. Tous les sommets de Y' sont couverts par ceux de X'.
- 2. On a N(Y') = X'.

- 1. Tous les sommets de Y' sont couverts par ceux de X'.
- 2. On a N(Y') = X'.
- 3. $S = Y' \cup (X \setminus X')$.

- 1. Tous les sommets de Y' sont couverts par ceux de X'.
- 2. On a N(Y') = X'.
- 3. $S = Y' \cup (X \setminus X')$.
- 4. Toutes arêtes de G a une extrémité dans S.

- 1. Tous les sommets de Y' sont couverts par ceux de X'.
- 2. On a N(Y') = X'.
- 3. $S = Y' \cup (X \setminus X')$.
- 4. Toutes arêtes de G a une extrémité dans S.

5.
$$|S| = |M|$$
.

