13 Problems: Elementary Matrices and Determinants II

1. Let
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $N = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$. Compute the following:

- (a) $\det M$.
- (b) $\det N$.
- (c) $\det(MN)$.
- (d) $\det M \det N$.
- (e) $\det(M^{-1})$ assuming $ad bc \neq 0$.
- (f) $\det(M^T)$
- (g) $\det(M+N) (\det M + \det N)$. Is the determinant a linear transformation from square matrices to real numbers? Explain.

2. Suppose $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is invertible. Write M as a product of elementary row matrices times $\mathrm{RREF}(M)$.

3.	Find the inverses of e matrix times its inverse	each of the elementary matrice see is actually the identity.	es, $E_j^i, R^i(\lambda), S_j^i(\lambda)$.	Make sure to show	that the elementary