than the students who received cash immediately? If so, by how much?

Even we were surprised by the results: The participants in the first group (who had no way to cheat) solved an average of 3.5 questions correctly (they were our control group).

The participants in the second group, who tore up their worksheets, claimed to have correctly solved an average of 6.2 questions. Since we can assume that these students did not become smarter merely by tearing up their worksheets, we can attribute the 2.7 additional questions they claimed to have solved to cheating.

But in terms of brazen dishonesty, the participants in the third group took the cake. They were no smarter than the previous two groups, but they claimed to have solved an average of 9.4 problems—5.9 more than the control group and 3.2 more than the group that merely ripped up the worksheets.

This means that when given a chance to cheat under ordinary circumstances, the students cheated, on average, by 2.7 questions. But when they were given the same chance to cheat with nonmonetary currency, their cheating increased to 5.9—more than doubling in magnitude. What a difference there is in cheating for money versus cheating for something that is a step away from cash!

If that surprises you, consider this. Of the 2,000 participants in our studies of honesty (described in the previous chapter), only four ever claimed to have solved all the problems. In other words, the rate of "total cheating" was four in 2,000.*

^{*}Theoretically, it is possible that some people solved all the problems. But since no one in the control conditions solved more than 10 problems, the likelihood that four of our participants truly solved 20 is very, very low. For this reason we assumed that they cheated.