Which of the following kernels can detect vertical edges in a grayscale image? [[2,-2]]	Cross-correlation of a single channel image X with a kernel K is equivalent to the convolution of X with which of the following kernels? kernel K flipped both horizontally and vertically kernel K flipped horizontally kernel K flipped vertically kernel K itself
What can we do to enlarge the receptive field of an element of a feature map? Make the network deeper Make the network shallower Make the network denser Add dropout layers to the network	Alice generates output Y by computing corr2d(X, K) for an image X and kernel K. She gives the image X and output Y to Bob but doesn't tell him what K she used. What function should Bob run gradient descent on to approximately recover K? With respect to which variable should gradients be taken during gradient descent? loss(corr2d(X, K), Y) w.r.t. K loss(corr2d(X, K), Y) w.r.t. Y corr2d(X, K) w.r.t. K
S If I have a 100x100 image and I use a kernel of shape 5x5 with a padding of 4 along both height and width dimensions, what will be the shape of the output? 100x100	Alice had a grayscale image X to which she applied a kernel a size 5x5 (no padding) and a stride of 2 to get an output of shape 10x10. What was the shape of X? 20x20 24x24 25x25 shape of X cannot be uniquely determined from the given information
I have a 100x100 image and a kernel of shape 5x5. If I use padding of 4 and stride of 2 along both height and width dimensions, what will be the shape of the output? 200x200 50x50 49x49 48x48 $(10x+4-5+1) \times (10x+4-5+1)$ $= 50 \times 50$	Ignore biases for this question. Suppose you have a convolution layer whose input is a 1000x1000 RGB color image and you want to have 10 channels in your output. If your kernel has width 5 and height 2, then what is the total number of trainable parameters in this layer? 10 30 30 106 X10

9	
Wha	t does setting padding='same' do when creating a conv2D layer in Keras?
	Applies the same amount of padding on all sides of the input image
0	Create an output of the same spatial dimensions as the input image
	Makes all trainable parameters have the same value in that layer
	Uses the same amount of padding as in the previous layer
	x-1 + (2x-1)+
10	$(\frac{\lambda_{1}}{\lambda_{2}}) \times (\frac{\lambda_{1}}{\lambda_{2}})$
What does setting strides=(2, 2) do when creating a conv2D layer in Keras?	
0	Spatial dimensions of output will be smaller than those of the input
- 0	Spatial dimensions of output will be larger than those of the input
- 0	Number of channels in output will be smaller than those in the input
- 0	Number of channels in output will be larger than those in the input