

Q-DELOREAN

engineering of a QNLP pipeline for software requirements classification

Marco Calenda - 0522501165

Prof. Fabio Palomba

Introduction: Compositional and Distributional semantics

Compositional semantics

- Focuses on how the meaning of a complex expression is derived from the meaning of its constituents.
- Less success in real application.
- Closer view to a real human cognitive process, steps towards a grammar-informed NLP.

Distributional semantics

- Examines the relationships between words based on their co-occurrence patterns in a Corpus.
- Exploited by Big Data, is the current pivot of state-of-the-art NLP solutions (GPT-4, BERT).

Introduction: Compositional and Distributional semantics

Compositional semantics

- Focuses on how the meaning of a complex expression is derived from the meaning of its constituents.
- Less success in real application.
- Closer view to a real human cognitive process, steps towards a grammar-informed NLP.

 The de facto compositional framework used to model natural language is the model of Coecke et al. often dubbed as DisCoCat. It allows encoding sentences as string diagrams and monoidal categories:

• The underpinning mathematical are suitable for a translation into **quantum circuits** able to exponentially speed up the process (Quantum Natural Language Processing, QNLP).

Introduction: Requirements classification with QNLP

- Individuation of Non-Functional Requirements (NFRs):
 - Time-consuming and experienced task.
 - They are not always explicit and concealed into ambiguous or imprecise sentences.
 - The lack of knowledge of NFRs in the early stages has a huge impact on the total cost and the failure rate of IT projects.
- By applying a so-called quantum-inspired approach, namely a solution trained and tested on classical hardware yet quantum-ready, we explore the QNLP potential applied into a quasi-real scenario task of binary classification of FRs/NFRs.

Research Questions

- RQ1. To what extent can the proposed tool classify FRs and NFRs?
- RQ2. How does the DisCoCat framework compared to other compositional models?

- RQ3. How does the proposed tool compared to classical NLP models?
 - TF-IDF & Naïve Bayes
 - Word2Vec & Feed-Forwarded Neural Network

PROMISE NFR dataset

Manual Filtering

- Large requirements description
- Sentences with a complex grammatical structure
- Data Balancing with Undersampling

Data Collection

Q-DELOREAN

Grid Search & Cross-Validation

Learning Rate	Batch Size	Hidden Layers Size	Training Accuracy	Validation Accuracy
0.07	32	32	90.9%	81.3%
0.07	32	8	97.4%	86.0%
0.03	16	16	87.1%	79.2%
0.1	16	16	78.2%	70.8%

Results: Readers Comparison

	Reader	Training Accuracy	Test Accuracy
4-Dim	Stairs	80.0%	68.8%
	Cups	84.9%	76.3%
	Tree	90.2%	83.9%
	DisCoCat	97.4%	87.6%
2-Dim	Spiders	93.8%	69.2%

Results: Models Comparison - 1

Model	No. of parameters	Test Accuracy	Training time (15 epochs)	Inference time (100 sentences)
Q-DELOREAN	58	87.6%	1.3 min	5 s
TF-IDF Naïve Bayes	0	75.2%	-	-
Word2Vec NN	23k	88.2%	30 s	2 s

Results: Models Comparison - 2

Model	Emissions (CO ₂ kg)	GPU Energy Consumed (kW)	RAM Energy Consumed (kW)	Total Energy (CPU+GPU+RAM)
Q-DELOREAN	2.35 e+12	5.79 e+14	2.03 e+14	16.94 e+14
TF-IDF Naïve Bayes	1.02 e+11	1.78 e+9	9.04 e+7	5.27 e+7
Word2Vec NN	1.84 e+12	1.61 e+14	9.17 e+14	3.77 e+14

Conclusions and future works

- Our study demonstrates the effectiveness of Q-DELOREAN in classifying requirements obtaining overall promising results.
- The findings of this study open up several avenues for future research:
 - Further exploration can be done to enhance the performance of the Linear Readers by incorporating additional linguistic features and/or ad-hoc classifiers.
 - Extending this approach to other types of languages, e.g. programming languages, could prove to be effective since their fixed and limited grammar makes them wellsuited for compositional modeling techniques like the one employed in our study.

Thanks for the attention!