TEAM ID PNT2022TMID14907

import numpy #for numerical analysis

```
import tensorflow #open source ml tool by google
from tensorflow.keras.datasets import mnist #mnist dataset
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.layers import Conv2D
from tensorflow import keras
from tensorflow.keras.optimizers import Adam
from keras.utils import np_utils
LOADING DATASET
(x_train,y_train),(x_test,y_test)=mnist.load_data()
print(x_train.shape)
print(y_train.shape)
     (60000, 28, 28)
     (60000,)
print(x_test.shape)
print(y_test.shape)
     (10000, 28, 28)
     (10000,)
ANALYZE THE DATA
```

x_train[3]

```
0],
0,
                                  0,
     0,
           0,
                 0,
                                        0,
                                              0,
                                                    0,
                                                          0,
                                                                     0,
                       0,
                            0,
          60, 228, 251, 251,
                                 94,
     0],
                                        0,
                                                    0,
0,
     0,
           0,
                 0,
                       0,
                            0,
                                              0,
                                                               0,
                                                                     0,
     0, 155, 253, 253, 189,
                                        0,
     0],
0,
                                  0,
                                        0,
                                                    0,
                       0,
           0,
                 0,
                                              0,
     0,
                             0,
                                                                     0,
    20, 253, 251, 235,
     0],
0,
                             0,
                                        0.
                                              0,
```

				SPRINT2 PNT2022TMID14907.ipynb - Colaboratory										
	32, 0,	205, 2 0],	53,	251,	126,	0,	0,	0,	0,	0,	0,	0,	0,	
Г	-	0 _] ,	0.	۵.	0.	0,	0,	0,	0.	0,	0,	0,	0,	
							-						-	
Τ,	04, 0,	251, 2 0],	.53,	184,	15,	0,	0,	0,	0,	0,	0,	0,	0,	
[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	80,	
		251, 1			0,	0,	0,	0,		0,	0.	0,	0.	
	0,	0],												
		0,			0,	0,	0,	0,	-			32,		
2	53, 0,	253, 1 0],	.59,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	
Γ		0,	0.	٥.	0,	0,	0,	0,	0,	0.	0.	151,	251.	
		251,				0,			-			0,		
۷.	0,	0],	<i>J J</i> ,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	
[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	48,	221,	251,	
2	51,	172,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	
	0,	0],												
_	0,	-				0,	-					251,		
	96, 0,	12, 0],	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	
	0,	0,	0,	0,	0.	0,	0,	0,	0.	0.	253.	251,	251.	
_	89,			0,		0,						0,		
	0,	0, 0],	Ο,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	
[0,	0,	0,	0,	0,	0,	0,	0,	0,	159,	255,	253,	253,	
_	31,	0,			0,		0,					0,		
	0,	0],												
[0,	0,	0,	0,	0,	0,	0,	0,	48,	228,	253,	247,	140,	
	8,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	
	0,	0],												
[ø,	0,	0.	٥.	0,	0.	0,	0.	64.	251.	253.	220,	0,	
L	0,	0,		0,			0,	-	-	-	-	0,	-	
	0,	0, 0],	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	
[-				0,									
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	
	0,	0],												
[0,	0,	0,	0,	0.	0,	0,	0,	24.	193.	253,	220,	0,	
-	0,	0,	-	-	_	_	0,	-	ø,					
	0,	0],	Ο,	٠,		Ο,	٠,	0,	0,				Ο,	
[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	
	0,	0],	-		-	-	-	-	-	-	-		-	
[0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	
L	-						_							
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	
_	0,	0],		_	_	_	_	_	_	_	_	_	_	
[0,	0,	0,			_	0,				-		0,	
	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	0,	
	0,	0]],	0]], dtype=uint8)											

y_train[3]

1

import matplotlib.pyplot as plt

plt.imshow(x_train[3])

RESHAPING THE DATA.

```
x_train=x_train.reshape(60000,28,28,1).astype('float32')
x_test=x_test.reshape(10000,28,28,1).astype('float32')
```

APPLY ONE HOT ENCODING

```
no_of_classes=10
y_train=np_utils.to_categorical(y_train,no_of_classes)
y_test=np_utils.to_categorical(y_test,no_of_classes)

y_test[3]

array([1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)
```

CREATE THE MODEL

```
model=Sequential()

model.add(Conv2D(64,(3,3),input_shape=(28,28,1),activation='relu'))
model.add(Conv2D(32,(3,3),activation='relu'))

model.add(Flatten())
model.add(Dense(no_of_classes,activation='softmax'))
```

COMPILING THE MODEL

```
model.compile(loss='categorical_crossentropy',optimizer='Adam',metrics=['accuracy'])
```

TRAIN THE MODEL

METRICS ARE NOTED

```
metrics=model.evaluate(x_test,y_test,verbose=0)
print("metrics-score=>test loss & accuracy")
print(metrics)

metrics-score=>test loss & accuracy
[0.11036540567874908, 0.9764000177383423]
```

TEST THE MODEL

```
prediction=model.predict(x_test[:5])
print(prediction)
    [[6.25657795e-15 1.05156142e-18 1.22086008e-09 2.45196552e-09
      1.33981165e-17 9.07641993e-17 4.98111414e-19 1.00000000e+00
      2.75971468e-11 2.33391622e-11]
     [1.02854422e-12 5.58150123e-11 1.00000000e+00 9.26562091e-11
      2.58257417e-17 1.22140988e-20 3.76503646e-12 2.03179154e-18
      2.17259214e-11 2.70688090e-21]
     [2.85233637e-09 9.99993920e-01 5.40673739e-07 3.44808820e-10
      2.74280274e-06 1.12679146e-07 4.11499196e-10 7.90978660e-09
      2.64735422e-06 2.92728147e-10]
     [9.99999881e-01 5.13201010e-16 9.24923071e-08 8.89283981e-13
      1.56655305e-14 1.21902911e-12 6.39609754e-11 1.28959387e-12
      8.11355072e-09 2.94187679e-08]
     [8.81784663e-12 1.38155817e-13 5.78738706e-12 1.68293005e-10
      9.99999285e-01 4.03126352e-16 3.91080943e-18 3.06052591e-15
      4.98500893e-11 7.03791216e-07]]
```

import numpy as np

```
print(np.argmax(prediction,axis=1))

[7 2 1 0 4]

print(y_test[:5])

[[0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
      [0. 0. 1. 0. 0. 0. 0. 0. 0.]
      [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
      [1. 0. 0. 0. 0. 0. 0. 0. 0.]
      [0. 0. 0. 0. 0. 0. 0. 0. 0.]
```

SAVING THE MODEL

```
model.save('models/mnistcnn.h5')
```

TEST THE SAVED MODEL

```
print('x_train:' +str(x_train.shape))
print('y_train:' +str(y_train.shape))
print('x_test:' +str(x_test.shape))
print('y_test:' +str(y_test.shape))
from matplotlib import pyplot
for i in range(9):
    pyplot.subplot(330+1+i)
    pyplot.imshow(x_train[i],cmap=pyplot.get_cmap('gray'))
    pyplot.show()
```

x_train:(60000, 28, 28)

```
y_train:(60000,)
   x_test:(10000, 28, 28)
   y_test:(10000,)
     0
    10
    10
    20
     0
    10
    20
     0
    10
    20
     0
from tensorflow.keras.models import load_model
model=load_model('models/mnistcnn.h5')
from PIL import Image
for index in range(9):
 img=x_train[index].reshape((28,28))
 imgarray=np.array(img)
 imgarray=imgarray.reshape(1,28,28,1)
 y_pred=model.predict(imgarray)
 print(np.argmax(y_pred))
   1/1 [======] - 0s 58ms/step
   1/1 [======] - 0s 20ms/step
```

1/1 [=======] - 0s 22ms/step

```
1/1 [=======] - 0s 19ms/step 1
1/1 [=======] - 0s 17ms/step 3
1/1 [======] - 0s 18ms/step 1
```

Colab paid products - Cancel contracts here

✓ 0s completed at 10:16 PM

X