Clase avanzadas 30 noviembre

Definimos la varianza como $Var = \left(\sum\limits_{i=1}^n a_i x_i
ight) = \sum\limits_{i=1}^n \sum\limits_{j=1}^n a_i \ a_j Cov(x_i,x_j)$

Consideramos n activar a_i, \ldots, a_n como $\theta = (\theta_1, \ldots, \theta_n)$

 $a_i = activoi - \acute{e}simo$

 $heta_i = catidad\ del\ actioi - \acute{e}simo$

 $Y_{ij} = costo\ por\ unidad\ del\ activo\ i - cute{e}simo\ al\ tiempo\ t = 0$

t=0 y t=T

 $V_{i,T}=\mathsf{El}$ costo de cada unidad del activo i-ésimo al tiempo t=T

 $w_i = rac{ heta_i \, V_{i,0}}{\sum\limits_{i=1}^n heta_j \, V_{i,0}}$ El porcentade de dinero invertido en el activo i-ésimo

De la defincion de w_i se tiene $\sum\limits_{i=1}^n w_i = 1$

Para calcular el retorno de la inversión tenemos la formula de la tasa de rendimiento, sin unidades: $R_i=rac{V_{i,T}-V_{i,0}}{V_{i,0}}$ la tasa de rendimiento del activo i-ésimo. Nos interesamos por $M_i=E(R_i)$ y por $\sigma_i^2=Var(R_i)$. Luego la tasa de rendimiento de todo el portafolio es $R=\sum\limits_{i=1}^n W_iR_i$

Definición: El rendimiento esperado de Iportafolio R_o es μ y su riesgo σ^2 Considerando un portafolio de 2 activos:

Sin perdida de generalidad asumimos que $0<\sigma_1\leq\sigma_2$. Si $p_{12}=0$, entonces

$$egin{aligned} \sigma^2 &= t^2 \sigma_1^2 + (1-t)^2 \sigma^2 \ &= t^2 \sigma_1^2 + (1-2t+t^2) \sigma_2^2 \ &= t^2 (heta_1^2 + \sigma_2^2) + \sigma_2^2 - wt \sigma_2^2 \end{aligned}$$

Luego $\frac{d}{dt}\sigma^2(t_{min})=0$ el t minimo debe cumplir:

$$2t(\sigma_1^2+\sigma_2^2)-2\sigma_2^2=0$$
 $t=rac{\sigma_2^2}{\sigma_1^2\sigma_2^2}$

Este resultado se aplica a varios activos, tomando muchos datos y numericamnte calculamos que tienen correlación a cero se invierte, por que se sabe el t de menor riesgo. La difícultad radica en

encontrar esos dos activos con correlación igual a 0

Caso general

De manera general cuando -1 tenemos

$$\mu = w_1 \mu_1 + w_2 \mu_2$$
 $\sigma^2 = w_1^2 \sigma_1^2 + w_2^2 2 \sigma_2^2 2 + 25 (1-5) \ p \ \sigma_1 \ \sigma_2 = (\sigma_1^2 + \sigma_2^2 - 2 \ \sigma_1 \ \sigma_2) S^2 - 2 \sigma_1 \ (\sigma_1 - p \ \sigma_2) s + \sigma_1^2$

Parametrizando:

$$w_1 = (1-S)$$
 $w_2 = S$

y
$$\sigma_1^2+\sigma_2^2-2~p~\sigma_1\sigma_2=(\sigma_1-\sigma_2)^2+2\sigma_1\sigma_2(1-p)$$
 y luego de esto $-2p\sigma_1\sigma_2>0$ $\sigma_1^2+\sigma_2^2>2~\sigma_1~\sigma_2>2~\rho~\sigma_1~\sigma_2$