Mailbox Types for Unordered Interactions

Ugo de'Liguoro <u>Luca Padovani</u>

Dipartimento di Informatica, Università di Torino, Italy

Introduction

Static Analysis of Unordered Interactions

A popular communication model...

- many-to-one communications
- · selective input
- used by **actors** (Akka, Erlang, CAF, ...)

...calling for a type system such that

- well-typed processes interact safely
- don't receive unexpected messages
- · don't leave garbage behind
- don't deadlock

Example: Bank Transactions in Scala

```
class Account(var balance: Double) extends ScalaActor[AnyRef] {
  override def process(msg: AnyRef) {
    msg match {
      case dm: DebitMessage =>
        balance += dm.amount
        sender.send(new ReplyMessage())
      case cm: CreditMessage =>
        balance -= cm.amount
        recipient.send(new DebitMessage(self, cm.amount))
        receive {
          case rm: ReplyMessage =>
            sender.send(new ReplyMessage())
      case _: StopMessage => exit()
      case message =>
        val ex = new IllegalArgumentException("Unsupported_message")
        ex.printStackTrace(System.err)
```

Pitfalls

Protocol Violations

• ReplyMessage should be sent only during a transaction

Unprocessed Messages

 StopMessage should be sent only if no more DebitMessage and CreditMessage are guaranteed to arrive

Deadlocks

 a mediator (the bank) is necessary to successfully perform transactions between two accounts

Key Ideas

1. Types describe **mailboxes** (not processes)

2. Subtyping embodies the **unordered** nature of mailboxes

3. Well-typed processes break even

Mailbox Calculus

Syntax of the Mailbox Calculus

Process

Asynchronous π -calculus + tagged messages + fail/free

P, Q := done

(termination)

Reduction Semantics

Tags used to select received messages

$$a ! m[\overline{c}] \mid a?m(\overline{x}) . P + G \rightarrow P\{\overline{c}/\overline{x}\}$$

Empty mailboxes are explicitly deallocated

$$(\nu a)(\mathtt{free}\ a.P+G) o P$$

Example: Locks

 $Busy(lock) \triangleq lock?release.Idle[lock]$

- · a lock is either idle or busy
- an idle lock can be acquired, but cannot be released
- a busy lock must be released

Properties

Definition

P is mailbox conformant if $P \rightarrow^* C[fail a]$

Example (non-conformant process)

Idle(lock) | lock!release

Definition

P is deadlock free if $P \rightarrow^* Q \Rightarrow$ implies $Q \equiv$ done

Example (conformant but deadlocking process)

```
Idle(lock) | lock!acquire[user] | lock!acquire[user]
| user?reply(l<sub>1</sub>).user?reply(l<sub>2</sub>).(l<sub>1</sub>!release | l<sub>2</sub>!release)
```

Mailbox Types

Syntax of Mailbox Types

```
type 	au:= \dagger E capability \dagger ::= ? \mid ! pattern E ::= 0 \mid 1 \mid \mathbf{m}[\overline{\tau}] \mid E + F \mid E \cdot F \mid E^*
```

Capabilities

- ? = mailbox with **negative** balance (used for **inputs**)
- ! = mailbox with **positive** balance (used for **outputs**)

Patterns

- commutative Kleene algebra over message types $\mathbf{m}[\overline{\tau}]$
- describe the content of the mailbox

Examples

 $Busy(lock) \triangleq lock?release.Idle[lock]$

Example (mailbox of an idle lock)

?acquire[!reply[!release]]*

Example (mailbox of a busy lock)

?(release · acquire[!reply[!release]]*)

Typing Judgments

 $\Gamma \vdash P$

Intuition

• Γ = messages **produced** by P - messages **consumed** by P

Consequences

- all mailboxes in Γ are **empty** \iff *P* **breaks even**
- types in Γ are **preserved** by reductions

Typing Rules for Input/Output

$$u: !m \vdash u!m$$

$$\frac{\Gamma, u : ?E \vdash P}{\Gamma, u : ?(\mathbf{m} \cdot E) \vdash u?\mathbf{m} \cdot P}$$

Typing Rules for Guards

$$\Gamma, u : ?0 \vdash \mathsf{fail}\ u$$

$$\frac{\Gamma \vdash P}{\Gamma, u : ?1 \vdash \mathsf{free}\, u.P}$$

$$\frac{\Gamma, u: ?E \vdash G \qquad \Gamma, u: ?F \vdash H}{\Gamma, u: ?(E+F) \vdash G+H} \quad \diamondsuit$$

Tricky Cases for External Choices

$$?(\mathsf{A}\cdot\mathsf{B}+\mathsf{B}\cdot\mathsf{C})$$

$$?(A \cdot B + C \cdot B)$$

$$\odot$$

Parallel Composition

$$\frac{u: !E \vdash P \qquad u: !F \vdash Q}{u: !(E \cdot F) \vdash P \mid Q}$$

$$\frac{u: !E \vdash P \qquad u: ?(E \cdot F) \vdash Q}{u: ?F \vdash P \mid Q}$$

parallel inputs are forbidden

Subtyping

$$\frac{\Gamma, u : \sigma \vdash P}{\Gamma, u : \tau \vdash P} \quad \tau \leqslant \sigma$$

Example (output contravariance)

$$\frac{\Gamma, u : !E \vdash P}{\Gamma, u : !(E+F) \vdash P}$$

Example (order irrelevance)

$$\frac{\Gamma, u : \dagger(E \cdot F) \vdash P}{\Gamma, u : \dagger(F \cdot E) \vdash P}$$

 $Busy(lock) \triangleq lock?release.Idle[lock]$

where

- idle lock: ?acquire[...]*
- busy lock: ?(release · acquire[···]*)

 $\texttt{Busy}(\textit{lock}) \triangleq \textit{lock}? \texttt{release.Idle}[\textit{lock}]$

where

- idle lock: ?acquire $[\cdots]^*$ = ?(1 + acquire $[\cdots]$ • acquire $[\cdots]^*$ + release • 0)
- busy lock: ?(release · acquire[···]*)

?1

 $Busy(lock) \triangleq lock?release.Idle[lock]$

where

```
• idle lock: ?acquire[\cdots]^*
= ?(1 + acquire[\cdots] • acquire[\cdots]^* + release • 0)
```

busy lock: ?(release · acquire[···]*)

```
?(acquire[...] · acquire[...]*)

rule(lock) = r ee lock.uone

+ lock?acquire(user).(user!reply[lock] | Busy[lock])

+ lock?release.fail lock
```

```
\texttt{Busy}(\textit{lock}) \triangleq \textit{lock}? \texttt{release.Idle}[\textit{lock}]
```

where

- idle lock: ?acquire $[\cdots]^*$ $= ?(\mathbb{1} + acquire[\cdots] \cdot acquire[\cdots]^* + release \cdot 0)$
- busy lock: ?(release · acquire[···]*)

 $Busy(lock) \triangleq lock?release.Idle[lock]$

where

- idle lock: ?acquire $[\cdots]^*$ = ?(1 + acquire $[\cdots]$ · acquire $[\cdots]^*$ + release · 0)
- busy $lock : ?(release \cdot acquire[\cdots]^*)$

Properties of Well-Typed Processes

Theorem (conformance) If $\Gamma \vdash P$, then P is mailbox conformant

Lemma (type preservation) If $\Gamma \vdash P$ and $P \rightarrow Q$, then $\Gamma \vdash Q$

Dependency Graphs

Mailbox Dependencies

$$(\nu a)(\nu b)(a?m.free a.b!m | b?m.free b.a!m) \rightarrow$$

Remark

• this process is mailbox conformant but also deadlocked

Definition (mailbox dependency)

There is a **dependency** between mailboxes u and v if either

- v occurs in the continuation of a process blocked on u
- v occurs in a message stored in u

Typing Judgments, Refined

Dependency Graphs

$$\varphi ::= \emptyset \mid \{u, v\} \mid \varphi \sqcap \varphi \mid (\nu a) \varphi$$

Typing Judgments with Dependencies

$$\Gamma \vdash P :: \varphi$$
 where φ is acyclic

Example (refined rule for inputs)

$$\frac{\Gamma, u : ?E \vdash P :: \varphi}{\Gamma, u : ?(\mathbf{m} \cdot E) \vdash u ?\mathbf{m} \cdot P :: \bigcap_{\mathbf{v} \in \mathsf{dom}(\Gamma)} \{u, \mathbf{v}\}}$$

Properties of Well-Typed Processes

Theorem (deadlock freedom)

If $\Gamma \vdash P :: \varphi$, then P is deadlock free

Definition (finitely unfolding process)

P is **finitely unfolding** if every maximal reduction of P invokes recursive processes finitely many times

Theorem (fair termination)

If $\Gamma \vdash P :: \varphi$ for P finitely unfolding, then $P \to^* Q$ implies $Q \to^*$ done

Corollary (no garbage)

In a finitely unfolding process every message can be consumed

Concluding Remarks

Summary

Mailbox Calculus

- processes that communicate through first-class mailboxes
- · subsumes the actor model

Mailbox Types

- simple and intuitive semantics and typing rules
- · mailbox conformance + mailbox bounds

In the paper (ECOOP'18, draft on my home page)

- formal definitions and proofs
- · more examples, encoding of binary sessions

Further Developments

Application to real-world languages

• Java + annotations

Relation with linear logic?

- similarities between mailbox types and LL formulas
- most (but not all...) typing rules taken directly from LL

Relating Mailbox Types to Linear Logic

Interpretation of types

Ε	Î E	?̂E
0	0	Т
1	1	
m	m	m [⊥]
E + F	$\widehat{!E} \oplus \widehat{!F}$	ŶE & ŶF
$E \cdot F$	$\widehat{!E} \otimes \widehat{!F}$	ŶE ⊗ ŶF

Simple facts

- ?E and !E have dual interpretations
- $\sigma \leq \tau$ implies $\vdash \widehat{\tau}^{\perp}, \widehat{\sigma}$ derivable in (one sided) LL

Relating Mailbox Types to Linear Logic

judgement	behavior	choice	LL
$u: ?(A \cdot B) \vdash P$	P receives both A and B	internal	8
$u: !(A \cdot B) \vdash P$	P sends both A and B	external	\otimes
$u:?(A+B)\vdash P$	P receives either A or B	external	&
$u: !(A + B) \vdash P$	P sends either A or B	internal	\oplus

Relating Mailbox Types to Linear Logic

judgement	behavior	LL
u : ?1 ⊢ P	P deallocates u	\perp
u : !1 ⊢ P	P discards u	1
u : ?0 ⊢ P	P fails	Т
u : ! 0 ⊢ P	_	0