Lecture Notes for

Neural Networks and Machine Learning

Multi-Task and Demo

Logistics and Agenda

- Logistics
 - Schedule Updated!
- Agenda
 - Multi-Task Examples
 - Multi-Task Demos
 - Multi-Task Town Hall
 - if time: AlphaCode
- Next Time
 - Circuits

Remaining Presentations

Student							
	Total		Data	Group	Perceptual	Radford	
	Assigned	Responded?	Augmentation	Normalization	Losses	GANs	AlphaFold
Barajas, Cynthia pussseet 4	_	1	×		х		
Canter, Austin Dussseet 4	_	1			1	, u	
Collins, Joel pussseet 4	_	1					1
Du, Jinyu cussseet o	_	1	1				
Ebrahimian, Jonathan pussseet P	_	1				1	
Emami, Hessam cusssed a	_	1	1				
Gage, Nathan pusswern	_	1					
Gao, Qing pusswera	_	1	1				
Geng, Zicheng bussset o	_	1	1			0	
Havard, Andrew pusseed P	_	1				1	
Hu, Yvon pusssect o	_	1	0				
Klinkert, Jake pusssed o	_	1		1			
Larsen, Nicholas pusssent 4	_	1					
Larsen, Steven Cusssect 4		1					
Lezero, Irvin pussisect 4	_		×		ж		
Lu, Vifan pussseet 4	_	1	0	1			
vage, Ayesh Madushanka pussseet o	_	1					1
McNitt, Troy cussseet P	_	1					
Moros, Jonas Pussseet 0	_	1					
Rajapandian, Khoushik cussseet 4	_	1				x	к
Rosenblatt, Jack pusseet of		1	0				1
Srirama, Nathan pusswere	_	1	0				
Tsai, Amor pusswern	_	1	0				
Wall, Nick 1321 Sect 0	· 0	0					
Wang, Kuo bussisect o	1	1					
Yang, Chenyu Cusssect 4	_	1	х				
Yassien, Sam 1321 Sect 0	1	1			1		
Yu, Hongjin pusssect o	1	1			0	0	
Zepeda, Juan pusssect 4	. 0	1	×	×			
		Num					
		Assigned	4	2	2	2	3

Last Time

- Early Fusion: Merge sensor layers early in the process
- Assumption: there is some data redundancy, but modes are conditionally independent
- Problem: architecture parameter explosion
 - Need dimensionality reduction

Culput

Model

Data Fusion

PCA

- Late Fusion: Merge sensor layers right before flattening
- Use Decision Fusion on outputs.
- Assumption: little redundancy or conditional independence—just an ensemble architecture
- Problem: just separate classifiers, limited interplay

BC

Neural Architecture Search for Mode Fusion

- Latent Space Transfer (universality)
 - From another domain, map to a similar latent space for the same task
 - Useful for unifying data based upon a new input mode when old mode is well understood
 - for example, biometric data.
 - I have never seen a research paper on this...

Multi-Task Models

Multi-task learning overview

- For deep networks, simple idea: share parameters in early layers
- Used shared parameters as feature extractors

Train separate, unique layers for each task

Multi-task Learning Parameter Sharing

Task 1

Task One Loss

Pool Losses
Over Multiple Batches
From Multiple Tasks,
Update via BackProp

Pool Losses
Over Multiple Batches
From Multiple Tasks,
Add Intra-Network
Similarity Loss
Update via BackProp

1

Network N

Multi-task Optimization

Multi-Label per Input

Measure Loss for each label simultaneously Back propagate everything at one for a given batch

Multi-task Optimization

Single Task Label per Input

Multi-Task Learning in Keras with Multi-Label Data

Fashion week, colors and dresses

Follow Along: https://www.pyimagesearch.com/2018/06/04/keras-multiple-outputs-and-multiple-losses/

Multi-Task Learning

School Data, Computer Surveys

Traian Pop

Luke Wood

Follow Along: LectureNotesMaster/ 03 LectureMultiTask.ipynb

Multi-Task Model Examples

He uses statistics like a drunken man uses a lamp post, more for support than illumination.

-- Andrew Lang

Multi-task: Deep Relationship Networks

- Start training traditionally (CCE)
- Minimize Kroenecker Product of fully connected task specific layers (here matrices are vectorized and therefore it is an outer product)
 - intuitively: make Covariances between tasks close to a given prototype Covariance
 - encourages feature maps in each task to be less
 correlated to feature maps of another task

Multi-task: Adaptive Feature Sharing

- Trair
- Rep
 - 0

$$A^{\star}, \omega^{\star}(l) = \underset{A \in \mathbb{R}^{d \times d'}, |\omega| = d'}{\arg \min} ||W^{p,l} - AW^{p,l}_{\omega:}||_F, \qquad (2)$$

where $W_{\omega}^{p,l}$ is a truncated weight matrix that only keeps the rows indexed by the set ω . This problem is NP-hard, however, there exist approaches based on convex relaxation

- Cut weights and retrain (fine tune) network
- Decrement current layer index

Multi-task: Cross Stitch Networks

- Only works for simultaneous multi-label problems
 - like semantic segmentation and surface normal segmentation (clustering similarly facing objects)
- Take a learned weighted sum of the activations
- Works a little better than single task, but no worse

Current Multi-task Research

- Incredibly diverse sets of solutions
- Mostly not evaluated on similar datasets
- Reasoning given is mostly ad-hoc...
- Theory is wildly under developed
 - because the problem is incredibly difficult
- Neural architecture search is an option...

Lab One Town Hall

Multi-Task Networks
Multi-Modal Networks

Lecture Notes for

Neural Networks and Machine Learning

Demo Multi-Task

Next Time:

Circuits

Reading: Chollet 8.1-8.5

