Лекция 3

Алгоритмы безусловной нелинейной оптимизации. Методы первого и второго порядка

Анализ и разработка алгоритмов

Содержание

- Термины
- 2 Градиентный спуск
- ③ (Нелинейный) метод сопряженных градиентов
- 4 Метод Ньютона
- 5 Алгоритм Левенберга-Марквардта

Термины

Проблема

 $f: \mathbb{R}^n \to \mathbb{R}$ — выпуклая; $f = f(\mathbf{x})$, где $\mathbf{x} = (x_1, \dots, x_n)^\mathsf{T}$ — вектор-столбец Решить проблему оптимизации $f(\mathbf{x}) \to \min_{\mathbf{x} \in Q}$ означает найти $\mathbf{x}^* \in Q$, где Q — область допустимых значений, такое, что f достигает минимального значения в \mathbf{x}^* . Обозначение: $\mathbf{x}^* = \arg\min_{\mathbf{x} \in Q} f(\mathbf{x})$.

Замечание. Погрешность приближения задана через $\varepsilon > 0$. В приведенных ниже итерационных алгоритмах остановка происходит, если $\|\mathbf{a}_n - \mathbf{a}_{n-1}\| < \varepsilon$; при этом полагаем, что $\mathbf{x}^* \approx \frac{1}{2}(\mathbf{a}_n + \mathbf{a}_{n-1})$ с погрешностью ε .

Вспомним:

- Производные первого и второго порядка функции одного переменного
- Градиент
- Гессиан
- Ряд Тейлора

Найдите производные первого и второго порядка для функций

Алгоритмы Лекция 3

Градиент

Градиент – это обобщение первой производной на случай функции многих переменных

Градиент дифференцируемой функции $f(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$ в точке \mathbf{a} — это вектор-**столбец** (-строка), элементами которого являются частные производные функции f в точке \mathbf{a} :

$$\nabla_{\mathbf{a}} f = \left(\frac{\partial f}{\partial x_i} \bigg|_{\mathbf{a}} \right)_{i=1}^n.$$

Пример: $f(\mathbf{x}) = 2x_1 + 3x_2^2$, $\nabla f = \begin{pmatrix} 2 & 6x_2 \end{pmatrix}^\mathsf{T}$, $\nabla_{\mathbf{a}} f = \begin{pmatrix} 2 & 6 \end{pmatrix}^\mathsf{T}$ при $\mathbf{a} = \begin{pmatrix} 0 & 1 \end{pmatrix}$.

Если в точке **а** градиент функции не является нулевым вектором, то он указывает направление **наибольшего возрастания** этой функции в точке **а**.

Гессиан и ряд Тейлора

Матрица Гессе или **Гессиан** – это квадратная матрица, элементами которой являются вторые частные производные, которая описывает локальную кривизну функции и является обобщением второй производной на функции нескольких переменных.

Если все вторые частные производные $f=f(\mathbf{x})$ существуют и непрерывны, то Гессиан $\mathbf{H_a} f$ функции f в точке \mathbf{a} – это матрица размера $n \times n$ с элементами

$$\mathbf{H}_{i,j} = \left. \frac{\partial^2 f}{\partial x_i \partial x_j} \right|_{\mathbf{a}}, \qquad i,j = 1, \dots, n.$$

Ряд (разложение) Тейлора (бесконечно) дифференцируемой функции $f:\mathbb{R} \to \mathbb{R}$ в точке a имеет вид

$$T_f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots$$

Обобщение на функцию многих переменных $f:\mathbb{R}^n o\mathbb{R}$ в точке ${f a}$ имеет вид

$$T_f(\mathbf{x}) = f(\mathbf{a}) + (\mathbf{x} - \mathbf{a})^\mathsf{T} \nabla_{\mathbf{a}} f + \frac{1}{2!} (\mathbf{x} - \mathbf{a})^\mathsf{T} \mathbf{H}_{\mathbf{a}} f (\mathbf{x} - \mathbf{a}) + \dots$$

Напомним, что ${f x}$, ${f a}$ и $abla_{f a} f$ являются векторами-столбцами по определению, ${f x}$

Алгоритмы Лекция 3 6 /

Градиентный спуск (Наискорейший спуск)

Градиентный спуск основан на том, что если $f(\mathbf{x})$ определена и дифференцируема в точке \mathbf{a} , то $f(\mathbf{x})$ быстрее всего убывает в окрестности точки \mathbf{a} в направлении $-\nabla f(\mathbf{a})$. Получается следующая формула:

$$\mathbf{a}_{n+1} = \mathbf{a}_n - \gamma \nabla f(\mathbf{a}_n)$$

для $\gamma \in \mathbb{R}_+$ достаточно малой для того, чтобы $f(\mathbf{a}_n) \geq f(\mathbf{a}_{n+1})$. Используя это и начальное приближение \mathbf{a}_0 для локального минимума f, строим последовательность $\{\mathbf{a}_n\}$ такую, что

$$\mathbf{a}_{n+1} = \mathbf{a}_n - \gamma_n \nabla F(\mathbf{a}_n), \ n \ge 0,$$

где значение γ_n может быть не фиксирован и может меняться на каждой итерации для достижения сходимости (существует много способов выбора).

Алгоритмы Лекция 3 7

Алгоритмы

(Нелинейный) метод сопряженных <u>градиентов</u>

Для заданной функции $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^n$, и начального приближения \mathbf{a}_0 , начинаем как в методе градиентного спуска:

$$\Delta \mathbf{a_0} = -\nabla_{\mathbf{a_0}} f.$$

Находим шаг $\alpha_0 := \arg\min_{\alpha} f(\mathbf{a}_0 + \alpha \Delta \mathbf{a}_0)$ и следующую точку ${f a}_1 = {f a}_0 + lpha_0 \Delta {f a}_0$. После этой итерации следующие шаги образуют итерацию для движения в направлении сопряженного градиента s_n , где $s_0 = \Delta \mathbf{a}_0$:

- Вычисляем направление антиградиента $\Delta \mathbf{a}_n = -\nabla_{\mathbf{a}_n} f$.
- Вычисляем β_n по опеределенным формулам (см. ниже).
- Обновляем направление движения $s_n = \Delta a_n + \beta_n s_{n-1}$.
- Находим $\alpha_n = \arg\min_{\alpha} f(\mathbf{a}_n + \alpha s_n)$.
- Обновляем точку $\mathbf{a}_{n+1} = \mathbf{a}_n + \alpha_n s_n$.

Выбор β_n согласно Флетчеру-Ривсу:

$$\beta_n^{FR} = \frac{\Delta \mathbf{a}_n^T \Delta \mathbf{a}_n}{\Delta \mathbf{a}_{n-1}^T \Delta \mathbf{a}_{n-1}}.$$

Выбор β_n согласно Полаку-Рибьере:

$$\beta_n^{PR} = \frac{\Delta \mathbf{a}_n^T (\Delta \mathbf{a}_n - \Delta \mathbf{a}_{n-1})}{\Delta \mathbf{a}_n^T \Delta \mathbf{a}_n}$$

Алгоритмы

10 / 18

Метод Ньютона. Случай одной переменной

Пусть $f:\mathbb{R}\to\mathbb{R}$ – выпуклая и дважды дифференцируемая функция. Найдем нули функции f' путем построения последовательности a_n из начального приближения a_0 такую, что $a_n\to x^*$ при $n\to\infty$, где $f'(x^*)=0$, т.е. x^* является **стациональной** точкой f.

Из разложения Тейлора для f в окрестности a_n (считаем, что $x^*pprox a_n+\Delta a$),

$$f(a_n + \Delta a) \approx T_f(\Delta a) := f(a_n) + f'(a_n)\Delta a + \frac{1}{2}f''(a_n)(\Delta a)^2.$$

Используем эту квадратичную функцию как аппроксимацию f в окрестности a_n и найдем ее точки минимума (учтем, что $f''(x) \geqslant 0$ (почему?)):

$$0 = \frac{dT_f(\Delta a)}{d\Delta a} = f'(a_n) + f''(a_n)\Delta a \quad \Rightarrow \quad \Delta a = -\frac{f'(a_n)}{f''(a_n)}.$$

Изменением a_n на Δa получаем точку ближе к x^* :

$$a_{n+1}=a_n+\Delta a=a_n-\frac{f'(a_n)}{f''(a_n)}.$$

Доказано, что для выбранного класса функций f имеем $a_n o x^*$ при $n o \infty$

Алгоритмы Лекция 3 11/

Вопрос: в чем проблема с этой иллюстрацией из интернета?

12 / 18

Алгоритмы Лекция 3

Метод Ньютона. Случай функций многих переменных

Пусть $f:\mathbb{R}^n \to \mathbb{R}$ является выпуклой и матрица Гессе $H_x f$ обратима при всех $\mathbf{x} \in \mathbb{R}^n$. Одномерная схема может быть обобщена на случай функций многих переменных заменой производной на градиент, ∇f , и второй производной на матрицу Гессе, $\mathbf{H} f$:

$$\mathbf{a}_{n+1} = \mathbf{a}_n - [\mathbf{H}_{\mathbf{a}_n} f]^{-1} \nabla_{\mathbf{a}_n} f, \ n \ge 0.$$

Метод Ньютона может быть модифицирован введением переменного шага $\gamma_n \in (0,1)$:

$$\mathbf{a}_{n+1} = \mathbf{a}_n - \gamma_n [\mathbf{H}_{\mathbf{a}_n} f]^{-1} \nabla_{\mathbf{a}_n} f, \ n \ge 0,$$

для достижения сходимости.

Замечание. Вычилять гессиан зачастую затруднительно. Методы, называемые **квази-ньютоновскими**, предлагают использовать аппрокимацию гессиана для упрощения метода

ightarrow Мы рассмотрим некоторые из этих методов в рамках курсовых проектов.

4□ > 4回 > 4 = > 4 = > = 900

Демонстрация для методов Ньютона и градиентного спуска

14 / 18

Алгоритмы Лекция 3

Алгоритм Левенберга-Марквардта (LMA)

Основное приложение LMA – решение задачи приближения функции **методом наименьших квадратов**: для данного набора данных $(x_i, y_i)_{i=1}^m$ найти вектор-столбец параметров β в модели $f(x, \beta)$ так, что сумма квадратов отклонений $S(\beta)$ была минимальной:

$$\arg\min_{\beta} S(\beta) \equiv \arg\min_{\beta} \sum_{i=1}^{m} [y_i - f(x_i, \beta)]^2$$
.

Начнем с начального приближения β . На каждой итерации вектор beta заменяется новым вектором $\beta+\Delta\beta$. Для определения $\Delta\beta$ функция $f\left(x_i,\beta+\Delta\beta\right)$ аппроксируется ее линейной частью:

$$f(x_i, \beta + \Delta \beta) \approx f(x_i, \beta) + J_i \Delta \beta, \qquad \mathbf{J}_i = (\nabla f(x_i, \beta))^T.$$

Сумма $S(\beta)$ достигает минимального значения в точке нулевого градиента относительно β . Указанная выше линейная аппроксимация функции $f(x_i, \beta + \Delta\beta)$ дает

$$S(\beta + \Delta \beta) \approx \sum_{i=1}^{m} [y_i - f(x_i, \beta) - \mathbf{J}_i \Delta \beta]^2,$$

4 □ ト 4 □ ト 4 豆 ト 4

или в векторной форме

$$S(\beta + \Delta \beta) \approx [\mathbf{y} - \mathbf{f}(\beta)]^{\mathrm{T}} [\mathbf{y} - \mathbf{f}(\beta)] - 2 [\mathbf{y} - \mathbf{f}(\beta)]^{\mathrm{T}} \mathbf{J} \Delta \beta + \Delta \beta^{\mathrm{T}} \mathbf{J}^{\mathrm{T}} \mathbf{J} \Delta \beta,$$

где ${\bf J}-$ якобиан (матрица Якоби), чьи i-е строки содержат ${\bf J}_i$, и где ${\bf f}(\beta)$ и ${\bf y}-$ векторы с i-ми компонентами $f(x_i,\beta)$ и y_i соответственно. Дифференцирование $S(\beta+\Delta\beta)$ по $\Delta\beta$ и приравнивание полученной производной к нулю приводит к равенству

$$\left(\mathbf{J}^{\mathrm{T}}\mathbf{J}\right)\Delta\beta=\mathbf{J}^{\mathrm{T}}\left[\mathbf{y}-\mathbf{f}\left(\beta\right)\right],$$

которое по сути имеет вид системы линейных уравнений относительно $\Delta \beta$. Указанное равенство может быть заменено на следующее:

$$(\mathbf{J}^{\mathrm{T}}\mathbf{J} + \lambda \mathbf{I}) \, \Delta \beta = \mathbf{J}^{\mathrm{T}} \left[\mathbf{y} - \mathbf{f} \left(\beta \right) \right],$$

где I – единичная матрица, дающая приращение $\Delta \beta$ вектору β .

Демонстрация

Алгоритмы Лекция 3 16/18

Блог по машинному обучению: 5 алгоритмов для обучения нейронных сетей

Спасибо за внимание!