Notes: bias-variance tradeoff

CSCI145/MATH166, Mike Izbicki

We generate data according to the process

$$t \sim f(\mathbf{x}) + \epsilon \tag{1}$$

where the \sim symbol should be read as "sampled from" or "has distribution." The f function is unknown, and our goal is to estimate it from a sample $D = \{(t_1, \mathbf{x}_1), ..., (t_n, \mathbf{x}_n)\}$ using a parametric family of functions y. This family is often defined to be linear

$$y(\mathbf{x}; \mathbf{w}) = \mathbf{x}^T \mathbf{w},\tag{2}$$

but it does not have to be. Our only assumption is that there exists some value of \mathbf{w} such that $f(\cdot) = y(\cdot; \mathbf{w})$. (This is sometimes called the **realizability assumption**.)

We measure the quality of our estimator y using the squared error, which is defined as

squared error =
$$(t - y(\mathbf{x}; D))^2$$
 (3)

where $y(\mathbf{x}; D) = y(\mathbf{x}; \hat{\mathbf{w}})$ and $\hat{\mathbf{w}}$ is the parameter estimate of \mathbf{w} on dataset D. The squared error of an estimator can be decomposed into three terms:

$$squared error = bias^2 + variance + noise, (4)$$

where each term is defined to be

bias =
$$\left| \mathbb{E}_{D} y(\mathbf{x}; D) - f(x) \right|$$
 (5)

variance =
$$\mathbb{E}_{D} \left(y(\mathbf{x}; D) - \mathbb{E}_{D} y(\mathbf{x}; D) \right)^{2} = \mathbb{E}_{D} y(\mathbf{x}; D)^{2} - (\mathbb{E}_{D} y(\mathbf{x}; D))^{2}$$
 (6)

$$noise = (t - f(x))^2 = \epsilon^2 \tag{7}$$

The definitions above are (slightly) different than the definitions in Bishop (Eq. 3.41-3.44). Bishop takes the expectation of everything with respect to \mathbf{x} and t (which I haven't done above) to get the *mean* squared error.

Theorem 1 (informal). For any "reasonable" maximum likelihood problem,

bias =
$$O(n^{-1})$$
 and variance = $\Theta(n^{-1})$. (8)

The bias may decay at a faster rate, and in particular may be zero. But for the variance, this rate is tight.

Problem 1. If n is large, which	h is larger: bias or variance?			
Problem 2. In the limit as n -	$\rightarrow \infty$, what does the squared error.	ror equal?		
Visualizing bias and var	sualizing bias and variance high variance		low variance	
high bias	. w *		\mathbf{w}^*	
low bias	. w*	. w*		
$egin{aligned} \operatorname{How} \ \operatorname{to} \ \operatorname{control} \ \operatorname{the} \ \operatorname{squa} \end{aligned}$		variance	noise	
adding more data				
more complex model				
stronger regularization/prior				
adding more features				