Bingyin Zhao

Email: bingviz@g.clemson.edu Google Scholoar: Bingyin Zhao Mobile: +1-585-748-1626

Summary

I am currently a PhD student working with Dr. Yingjie Lao at Clemson University. I have over five years of research experience in trustworthy AI, machine learning security and hardware-oriented machine learning system.

Academic Positions

Clemson University Clemson, SC Graduate Research Assistant (Advisor: Dr. Yingjie Lao) Jan. 2018 - Present

EDUCATION

Clemson, SC Clemson University

Ph.D. in Electrical Engineering; Jan. 2018 - Dec. 2023

Rochester Institute of Technology Rochester, NY Master of Science in Electrical Engineering;

East China University of Science and Technology Shanghai

Bachelor of Science in Electrical Engineering;

SKILLS SUMMARY

• Skills: Trustworthy AI, Deep Learning, Computer Vision, Adversarial Machine Learning, Model Compression, ASIC Design

• Language & Tools: Python, Pytorch, TensorFlow/Keras, Numpy, Scikit-learn, Pandas, Docker, Vim, Synopsys, HSPICE, VCS, Design Complier, Xilinx Vivado

Research Interest

My research interests include trustworthy AI, computer vision, adversarial machine learning, and hardware oriented machine learning systems.

Research Experience

Research Assistant Clemson, SC

Clemson University

Jan. 2018 - Present

Aug. 2012 - Sep. 2014

Sep. 2008 - Jun. 2012

- o Advisors: Prof. Yingjie Lao
- o Objective 1: Exploit new adversarial attacks on deep neural network systems, featuring the design of an algorithm-hardware collaborative backdoor attack.
- o Objective 2: Develop algorithms that incorporate the hardware aspect into defense for enhancing adversarial robustness against vulnerabilities in the untrusted semiconductor supply chain.
- o Objective 3: Model recovery strategies as an innovative approach to mitigate hardware-oriented fault attacks in the untrusted user-space.

Deep Learning Research and Software Intern

Remote May. 2022 - Feb. 2023

Nvidia Corporation

o Advisors: Dr. José M. Álvarez and Dr. Zhiding Yu

- o Objective 1: Explore new training paradigms to improve the robustness of vision transformers against out-of-distribution scenarios and natural corruptions.
- o Objective 2: Enhance the performance of foundation deep learning models to facilitate the reliability and safety of the perception systems of autonomous vehicles.

Research Projects

Robust Vision Transformers for Perception Systems

Pytorch/Python/Shell

May. 2022 — Mar. 2023

- Proposed a novel training paradigm that jointly incorporates self-emerging token labels and image-level labels and significantly enhanced clean accuracy and zero-shot robustness of Fully Attentional Networks on image classification and segmentation tasks.
- Achieved SOTA zero-shot robustness on ImageNet-A, ImageNet-R and Cityscape-C with model size of 77.3M.
- Experience with distributed training and parameter tuning of neural networks on GPU clustering such as NGC and Maglev.

Design for Deep Neural Networks Testing

Pytorch/Python Jan. 2022 — Feb. 2023

- Developed a novel defensive framework for detecting hardware-oriented fault attacks against deep neural networks and recovering the models.
- Achieve up to 94.76% detection success rate with only 140 test vectors on the CIFAR-10 dataset.

Machine Learning for Approximate Circuits Design

Verilog/Python/HSPICE

May. 2021 — Jan. 2023

• Proposed a new data-driven feature selection framework for approximate circuits design. The proposed method is applicable to both voltage over-scaling and approximate logic design and achieves a high compensated accuracy.

Robust DNNs against Poisoning Attacks

Pytorch/TensorFlow/Python

Sep. 2018 — May. 2022

- \circ Devised a general and scalable defensive framework against clean-label backdoor attacks towards image classification tasks. Achieved up to 100% detection rate and reduced attack success rate from ${\sim}90\%$ to 0% against three widespread attacks.
- Proposed a novel defense against poisoning attacks using gradual magnitude pruning. Analyzed the correlation between pruning and model robustness and improved the post-attack accuracy from 5% to over 50%.

Poisoning Attacks towards DNNs

Pytorch/TensorFlow/Python

Sep. 2018 — May. 2022

- Designed a generative adversarial net (GAN)-based framework for clean-label poisoned data generation that degrades the overall model accuracy.
- Built the framework using BigGAN architecture and devised a triplet loss function to improve the effectiveness and fidelity of poisoned data.
- Achieved 18% accuracy drop with only 20% poisoning ratio and 55% accuracy drop with full poisoning on modern neural networks such as ResNet, VGG and Inception-V3.
- Proposed an innovative poisoning attack that manipulates the predictions of neural networks on a per-class basis.
- Designed gradient-based and class-oriented algorithms to efficiently generate poisoned data at a large scale.

Publications

- [1] **Bingyin Zhao** and Yingjie Lao. Resilience of pruned neural network against poisoning attack. In 2018 13th International Conference on Malicious and Unwanted Software (MALWARE), pages 78–83. IEEE, 2018.
- [2] **Bingyin Zhao** and Yingjie Lao. Clpa: Clean-label poisoning availability attacks using generative adversarial nets. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pages 9162–9170, 2022.
- [3] **Bingyin Zhao** and Yingjie Lao. Towards class-oriented poisoning attacks against neural networks. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 3741–3750, 2022.
- [4] **Bingyin Zhao** and Yingjie Lao. Ultraclean: A simple framework to train robust neural networks against backdoor attacks. 2023.
- [5] **Bingyin Zhao**, Ling Qiu, and Yingjie Lao. Data-driven feature selection framework for approximate circuit design. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 2023.
- [6] Bingyin Zhao, Zhiding Yu, Shiyi Lan, Yutao Cheng, Anima Anandkumar, Jose Alvarez, and Yingjie Lao. Fully attentional networks with self-emerging token labeling. Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2023.
- [7] Antian Wang, **Bingyin Zhao**, Weihang Tan, and Yingjie Lao. Neural network fault attacks detection using gradient-based test vector generation. In *Proceedings of the 60th Annual Design Automation Conference*, 2023.