



**Step 1**: Formulate Hypothesis



**Step 1**: Formulate Hypothesis

Step 2 : Calculate the t-statistic



**Step 1**: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 3: Cutoff values for the t-statistic



**Step 1**: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 3: Cutoff values for the t-statistic

Step 4: Check whether t-statistic falls in the rejection region



**Step 1**: Formulate Hypothesis

Step 2: Calculate the t-statistic

Step 3: Cutoff values for the t-statistic

Step 4: Check whether t-statistic falls in the rejection region

Interpret results of hypothesis test as applied to the particular business application



checking the claim that bottling unit puts in 200 ml of beverage in bottles



checking the claim that bottling unit puts in 200 ml of beverage in bottles

Null Hypothesis  $H_0$ :  $\mu = 200$ 

Alternate Hypothesis  $H_A$ :  $\mu \neq 200$ 





checking the claim that bottling unit puts in 200 ml of beverage in bottles

Null Hypothesis  $H_0$ :  $\mu = 200$ 

Alternate Hypothesis  $H_{\Delta}$ :  $\mu \neq 200$ 







checking the claim that bottling unit puts in 200 ml of beverage in bottles

Null Hypothesis  $H_0$ :  $\mu = 200$ Alternate Hypothesis  $H_A$ :  $\mu \neq 200$ 







checking the claim that bottling unit puts in 200 ml of beverage in bottles

Null Hypothesis  $H_0$ :  $\mu = 200$ Alternate Hypothesis  $H_A$ :  $\mu \neq 200$ 







### Single tail hypothesis test





### Single tail hypothesis test





### Single tail hypothesis test





### Example

A fuel additive manufacturer claims that through the use of its' fuel additive, automobiles in the small car category should achieve on average an increase of 3 miles or more per gallon of fuel.



### Example

A fuel additive manufacturer claims that through the use of its' fuel additive, automobiles in the small car category should achieve on average an increase of 3 miles or more per gallon of fuel.

Claim made: increase in fuel efficiency is 3 miles per gallon or more



### Example

A fuel additive manufacturer claims that through the use of its' fuel additive, automobiles in the small car category should achieve on average an increase of 3 miles or more per gallon of fuel.

Claim made: increase in fuel efficiency is 3 miles per gallon or more

#### To test the claim...

1) Random selection of 150 small cars



#### Example

A fuel additive manufacturer claims that through the use of its' fuel additive, automobiles in the small car category should achieve on average an increase of 3 miles or more per gallon of fuel.

Claim made: increase in fuel efficiency is 3 miles per gallon or more

#### To test the claim...

- 1) Random selection of 150 small cars.
- 2) Their fuel efficiency measured before and after the use of fuel additive.



#### Example

A fuel additive manufacturer claims that through the use of its' fuel additive, automobiles in the small car category should achieve on average an increase of 3 miles or more per gallon of fuel.

Claim made: increase in fuel efficiency is 3 miles per gallon or more

#### To test the claim...

- 1) Random selection of 150 small cars.
- 2) Their fuel efficiency measured before and after the use of fuel additive.
- 3) 150 measurements obtained for the increase in miles per gallon achieved.



### Example

A fuel additive manufacturer claims that through the use of its' fuel additive, automobiles in the small car category should achieve on average an increase of 3 miles or more per gallon of fuel.

Claim made: increase in fuel efficiency is 3 miles per gallon or more

#### To test the claim...

- 1) Random selection of 150 small cars.
- 2) Their fuel efficiency measured before and after the use of fuel additive.
- 3) 150 measurements obtained for the increase in miles per gallon achieved.

```
sample mean \overline{x} = 2.9 miles per gallon sample std deviation s = 1.35 miles per gallon
```

```
n = 150, \overline{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```



$$n = 150$$
,  $\overline{x} = 2.9 \text{ mpg}$ ,  $s = 1.35 \text{ mpg}$ 



$$n = 150$$
,  $\overline{x} = 2.9 \text{ mpg}$ ,  $s = 1.35 \text{ mpg}$ 



```
n = 150, \overline{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

#### **Step 1**: Formulate Hypothesis

Null Hypothesis  $H_0$ :  $\mu \ge 3.0$ 

Alternate Hypothesis  $H_A$ :  $\mu$  < 3.0



```
n = 150, \bar{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

#### **Step 1**: Formulate Hypothesis

```
→ Null Hypothesis H_0: \mu \ge 3.0
```

Alternate Hypothesis  $H_A$ :  $\mu$  < 3.0



```
n = 150, \bar{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

#### **Step 1**: Formulate Hypothesis

```
Null Hypothesis H_0: \mu \ge 3.0
```

 $\rightarrow$  Alternate Hypothesis  $H_A$ :  $\mu$  < 3.0



n = 150,  $\bar{x} = 2.9 \text{ mpg}$ , s = 1.35 mpg

### **Step 1**: Formulate Hypothesis

Null Hypothesis  $H_0$ :  $\mu \ge 3.0$ Alternate Hypothesis  $H_A$ :  $\mu < 3.0$ 





```
n = 150, \overline{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

#### **Step 1**: Formulate Hypothesis

Null Hypothesis  $H_0$ :  $\mu(2)3.0$ Alternate Hypothesis  $H_A$ :  $\mu < 3.0$ 





```
n = 150, \bar{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

#### **Step 1:** Formulate Hypothesis

Null Hypothesis  $H_0$ :  $\mu \ge 3.0$ 

Alternate Hypothesis  $H_A$ :  $\mu$  < 3.0



Reject Null hypothesis if  $\overline{x}$  is way below 3.0



```
n = 150, \bar{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

#### Step 1: Formulate Hypothesis

Null Hypothesis  $H_0$ :  $\mu \ge 3.0$ Alternate Hypothesis  $H_A$ :  $\mu < 3.0$ 



Reject Null hypothesis if  $\overline{x}$  is way below 3.0



Reject Null hypothesis if t-statistic is way below 0



```
n = 150, \bar{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

#### Step 1: Formulate Hypothesis

Null Hypothesis  $H_0$ :  $\mu \ge 3.0$ Alternate Hypothesis  $H_A$ :  $\mu < 3.0$ 



Reject Null hypothesis if  $\overline{x}$  is way below 3.0

=

Reject Null hypothesis if t-statistic is way below 0

Only one rejection region on the Left-Hand-Side



Single tail hypothesis test with rejection region on the L.H.S.

 $H_0$ :  $\mu \ge ...$ 

 $H_A$ :  $\mu$  < ...



Single tail hypothesis test with rejection region on the L.H.S.

$$H_0: \mu \ge ...$$
  
 $H_A: \mu < ...$ 

Single tail hypothesis test with rejection region on the R.H.S.

```
H_0: \mu \le ...

H_A: \mu > ...
```



Single tail hypothesis test with rejection region on the L.H.S.

 $H_0: \mu \ge ...$  $H_{\Delta}: \mu < ...$ 

Single tail hypothesis test with rejection region on the R.H.S.

 $H_0: \mu(\underline{\zeta})...$   $H_A: \mu > ...$ 



Single tail hypothesis test with rejection region on the L.H.S.

$$H_0$$
:  $\mu(\Sigma)$ ...  $H_{\Delta}$ :  $\mu \leftarrow ...$ 

Single tail hypothesis test with rejection region on the R.H.S.

```
H_0: \mu \le ...

H_A: \mu > ...
```



Single tail hypothesis test with rejection region on the L.H.S.

**H**<sub>0</sub>: *µ* ≥ ...

 $H_A$ :  $\mu < ...$ 

Single tail hypothesis test with rejection region on the R.H.S.

 $H_0: \mu(\underline{\varsigma})$ 

 $H_A: \mu > ...$ 

Single tail hypothesis test with rejection region on the L.H.S.

 $H_0$ :  $\mu \geq ...$ 

 $H_A$ :  $\mu < ...$ 

Single tail hypothesis test with rejection region on the R.H.S.

 $H_0$ :  $\mu \leq ...$ 

 $H_{\Delta}$ :  $\mu$  > ...

Two tail hypothesis test with rejection regions on both sides

H<sub>0</sub>: μ(Ξ)...

H<sub>A</sub>: *μ* ≠ ...



```
n = 150, \bar{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

#### Step 1: Formulate Hypothesis

Null Hypothesis 
$$H_0$$
:  $\mu \ge 3.0$   
Alternate Hypothesis  $H_A$ :  $\mu < 3.0$ 

#### Step 2: Calculate the t-statistic

t-statistic = 
$$\frac{\overline{x} - \mu}{s / \sqrt{n}}$$



$$n = 150$$
,  $\bar{x} = 2.9 \text{ mpg}$ ,  $s = 1.35 \text{ mpg}$ 

#### Step 1: Formulate Hypothesis

Null Hypothesis 
$$H_0$$
:  $\mu \ge 3.0$   
Alternate Hypothesis  $H_{\Delta}$ :  $\mu < 3.0$ 

#### Step 2: Calculate the t-statistic

t-statistic = 
$$\frac{\overline{x} - \mu}{s / \sqrt{n}}$$
 = -0.9072



```
n = 150, \bar{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

Step 1 : Formulate Hypothesis  $H_0$ :  $\mu \ge 3.0$   $H_A$ :  $\mu < 3.0$ 

Step 2 : Calculate the t-statistic = -0.9072

Step 3: Cutoff values for the t-statistic



```
n = 150, \bar{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

Step 1 : Formulate Hypothesis  $H_0$ :  $\mu \ge 3.0$   $H_A$ :  $\mu < 3.0$ 

Step 2 : Calculate the t-statistic = -0.9072

```
n = 150, \bar{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

Step 1 : Formulate Hypothesis  $H_0$ :  $\mu \ge 3.0$   $H_A$ :  $\mu < 3.0$ 

Step 2 : Calculate the t-statistic = -0.9072



```
n = 150, \overline{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

Step 1 : Formulate Hypothesis  $H_0$ :  $\mu \ge 3.0$   $H_A$ :  $\mu < 3.0$ 

Step 2 : Calculate the t-statistic = -0.9072



```
n = 150, \overline{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

Step 1 : Formulate Hypothesis  $H_0$ :  $\mu \ge 3.0$   $H_A$ :  $\mu < 3.0$ 

Step 2 : Calculate the t-statistic = -0.9072



```
n = 150, \bar{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

Step 1 : Formulate Hypothesis  $H_0$ :  $\mu \ge 3.0$   $H_A$ :  $\mu < 3.0$ 

Step 2 : Calculate the t-statistic = -0.9072



```
n = 150, \bar{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

Step 1 : Formulate Hypothesis  $H_0$ :  $\mu \ge 3.0$   $H_A$ :  $\mu < 3.0$ 

Step 2 : Calculate the t-statistic = -0.9072





```
n = 150, \bar{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

Step 1 : Formulate Hypothesis  $H_0$ :  $\mu \ge 3.0$   $H_{A}$ :  $\mu < 3.0$ 

Step 2 : Calculate the t-statistic = -0.9072





```
n = 150, \bar{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

Step 1 : Formulate Hypothesis  $H_0$ :  $\mu \ge 3.0$   $H_A$ :  $\mu < 3.0$ 

Step 2 : Calculate the t-statistic = -0.9072





```
n = 150, \bar{x} = 2.9 \text{ mpg}, s = 1.35 \text{ mpg}
```

Step 1 : Formulate Hypothesis  $H_0$ :  $\mu \ge 3.0$   $H_{\wedge}$ :  $\mu < 3.0$ 

Step 2 : Calculate the t-statistic = -0.9072

