$9_{26} (K9a_{15})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{23} + u^{22} + \dots - 2u^3 + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 23 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{23} + u^{22} + \dots - 2u^3 + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ -u^{3} + 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{6} - 3u^{4} + 2u^{2} + 1 \\ -u^{8} + 4u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{17} - 8u^{15} + 25u^{13} - 36u^{11} + 19u^{9} + 4u^{7} - 2u^{5} - 4u^{3} + u \\ -u^{19} + 9u^{17} - 32u^{15} + 55u^{13} - 43u^{11} + 9u^{9} + 4u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{10} + 5u^{8} - 8u^{6} + 3u^{4} + u^{2} + 1 \\ -u^{10} + 4u^{8} - 5u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{10} + 5u^{8} - 8u^{6} + 3u^{4} + u^{2} + 1 \\ -u^{10} + 4u^{8} - 5u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{20} + 36u^{18} 4u^{17} 132u^{16} + 32u^{15} + 244u^{14} 100u^{13} 220u^{12} + 144u^{11} + 60u^{10} 80u^9 + 24u^8 + 4u^6 12u^5 8u^4 + 20u^3 4u^2 + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{23} + u^{22} + \dots - 8u - 5$
c_2, c_6	$u^{23} - u^{22} + \dots + 2u - 1$
c_3, c_8, c_9	$u^{23} - u^{22} + \dots - 2u^3 - 1$
c_4	$u^{23} + 3u^{22} + \dots + 4u + 1$
c_5	$u^{23} + 11u^{22} + \dots - 2u^2 - 1$
c ₇	$u^{23} - 5u^{22} + \dots + 32u - 7$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{23} - 5y^{22} + \dots + 264y - 25$
c_{2}, c_{6}	$y^{23} + 11y^{22} + \dots - 2y^2 - 1$
c_3, c_8, c_9	$y^{23} - 21y^{22} + \dots - 6y^2 - 1$
c_4	$y^{23} - y^{22} + \dots + 4y - 1$
c_5	$y^{23} + 3y^{22} + \dots - 4y - 1$
C ₇	$y^{23} + 7y^{22} + \dots - 404y - 49$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.070060 + 0.182203I	-1.02537 + 3.60580I	1.11445 - 4.48858I
u = 1.070060 - 0.182203I	-1.02537 - 3.60580I	1.11445 + 4.48858I
u = -1.15018	1.95316	5.52610
u = 0.285113 + 0.703745I	-2.00141 + 7.02777I	0.43599 - 7.34039I
u = 0.285113 - 0.703745I	-2.00141 - 7.02777I	0.43599 + 7.34039I
u = 0.625021 + 0.336059I	-0.61995 - 3.26242I	3.19624 + 2.26815I
u = 0.625021 - 0.336059I	-0.61995 + 3.26242I	3.19624 - 2.26815I
u = -0.284234 + 0.630366I	0.22041 - 2.29224I	3.82667 + 3.81893I
u = -0.284234 - 0.630366I	0.22041 + 2.29224I	3.82667 - 3.81893I
u = 0.143415 + 0.670993I	-3.74248 - 0.30335I	-3.41146 - 0.40480I
u = 0.143415 - 0.670993I	-3.74248 + 0.30335I	-3.41146 + 0.40480I
u = -1.347540 + 0.251864I	0.95696 - 3.02476I	1.87787 + 2.21609I
u = -1.347540 - 0.251864I	0.95696 + 3.02476I	1.87787 - 2.21609I
u = -0.405548 + 0.414027I	1.014040 - 0.946726I	6.43633 + 4.33310I
u = -0.405548 - 0.414027I	1.014040 + 0.946726I	6.43633 - 4.33310I
u = 1.41968 + 0.16903I	6.78087 + 3.16234I	9.66460 - 3.46689I
u = 1.41968 - 0.16903I	6.78087 - 3.16234I	9.66460 + 3.46689I
u = -1.42608 + 0.11950I	5.64121 + 1.73636I	7.79313 - 2.46590I
u = -1.42608 - 0.11950I	5.64121 - 1.73636I	7.79313 + 2.46590I
u = 1.41107 + 0.24900I	5.63952 + 5.52406I	8.27222 - 3.52157I
u = 1.41107 - 0.24900I	5.63952 - 5.52406I	8.27222 + 3.52157I
u = -1.41586 + 0.27635I	3.43142 - 10.59580I	5.03092 + 7.47788I
u = -1.41586 - 0.27635I	3.43142 + 10.59580I	5.03092 - 7.47788I
·	·	<u> </u>

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{23} + u^{22} + \dots - 8u - 5$
c_{2}, c_{6}	$u^{23} - u^{22} + \dots + 2u - 1$
c_3,c_8,c_9	$u^{23} - u^{22} + \dots - 2u^3 - 1$
c_4	$u^{23} + 3u^{22} + \dots + 4u + 1$
<i>C</i> ₅	$u^{23} + 11u^{22} + \dots - 2u^2 - 1$
c_7	$u^{23} - 5u^{22} + \dots + 32u - 7$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{23} - 5y^{22} + \dots + 264y - 25$
c_2, c_6	$y^{23} + 11y^{22} + \dots - 2y^2 - 1$
c_3,c_8,c_9	$y^{23} - 21y^{22} + \dots - 6y^2 - 1$
c_4	$y^{23} - y^{22} + \dots + 4y - 1$
<i>C</i> ₅	$y^{23} + 3y^{22} + \dots - 4y - 1$
<i>C</i> ₇	$y^{23} + 7y^{22} + \dots - 404y - 49$