<u>Механика</u>

Кинематика

2004	Есенно	1	Две топчета (MA). Приятна задача, която се решава само със записване на закон за движението, избирайки фиксирана положителна посока.		
2020	Есенно	1	Падащ пясък (ВИ). Задача, изискваща внимателна работа. Има няколко начина за решаване на втората подточка – помислете как се събират най-лесно хармонични трептения с еднаква честота и различна фаза.		
			Статика		
2015	Есенно	1	Механика на тежък шнур (ВИ). Задача с няколко независими части, само първата от които е статика. Третата част е върху приближен модел на сложно явление и е повторена на EuPhO 2017-1.		
2025	Пролетно	1	Чаша със сламка (MA). Стандартна задача. Има значително полесен начин на решаване от авторския, ако се използват някои геометрични факти за окръжностите.		
2022	Пролетно	1	Пирамида от топки (MA). Триизмерна задача за триене. Знания по стереометрия биха били полезни. Много алгебра.		
2012	Пролетно	1	Пирамида от цилиндри (MA). По-труден вариант на предната задача, но само в две измерения.		
2011	Есенно	1	Бордюр (ВИ). Сложна задача, изискваща доста предварителни знания и мислене. Въртящият момент от двигателя може да се разглежда като момент без съответната му сила, тоест малка сила с безкрайно рамо. Прилагането му върху дадена ос създава там сила на триене, която поражда същия момент наобратно, така че върху колелото да няма резултантен момент от двете. Също – да няма буксуване означава търкаляне без хлъзгане. Също – понеже гледаме граничния случай на изкачване, той става безкрайно бавно, т.е. задачата е за статика.		
Постъпателно движение					
1999	_	1	Удар между клин и топче (ММ). Задача за непряк удар. Помислете върху действието на всяка от силите по време на удара, за да запишете законите за запазване по правилен начин. В б) заместете числените стойности предварително.		
2002	Пролетно	1	Катер (ВИ). Средно трудна задача за импулс. Под минимална мощност се разбира тази, която точно съответства на работата, нужна за поддържане на движението.		

Въртеливо движение

2007	Есенно	1	Спиране на автомобил (МА). Задача със странно предположение, изискващо внимателно прочитане на условието.
2007	Пролетно	2	Двоен удар (ВИ). Полезно въведение в момент на импулса.
2024	Есенно	1	Последователни удари (ВИ). Много сходна на предишната задача. Хитра втора част.
2014	Есенно	3	Билярдна топка (?). Отново става дума за общи промени в импулса и момента на импулса. Също въвежда в условията за търкаляне и за хлъзгане.
2023	Пролетно	1	Търкаляне на цилиндър (MA). Като предишната задача, но некоректно зададено и с повече блъскане.
2011	Пролетно	2	Йо-йо (?). Отново търкаляне, но във вертикална посока. Може да се реши с взимане на моменти спрямо ЦМ, но става много по-бързо, ако се работи спрямо моментната ос на въртене.
2002	Есенно	1	Макара (ТТ). Техническа задача върху сложна Атвудова машина. Най-лесно се решава, ако макарата се представи като суперпозиция на положителна и отрицателна маса. Означете $\angle O'OO'_o \equiv \varphi$ и го използвайте в отговорите си. Като пояснение, M е масата на диска $cned$ като от него е изрязано малкото кръгче. В решението има грешка, отговорите трябва да са
			$a = \frac{(m_1 - m_2) - \frac{1}{12}M\sin\varphi}{\frac{1}{2}M + (m_1 + m_2)}g; \varepsilon = \frac{a}{R};$
			$a = -\frac{1}{18}g\sin\varphi; T_{1,2} = \frac{Mg}{2}\left(1 \pm \frac{1}{18}\sin\alpha\right); T = 2\pi\sqrt{\frac{18R}{g}}$
2010	Есенно	1	Размотаване на нишка (?). Елегантна класическа задача, изпол- зваща закони за запазване и геометрия.
2015	Пролетно	1	Падаща стълба (MA). Класическа задача с геометрично съображение и разсъждения върху център на масите.
2023	Есенно	1	Превъртане на пръчка (ВИ). Хубава задача, обединяваща много концепции – център на масите, закони за запазване, инерчен момент, сила на триене.
			Сили на съпротивление
2019	Есенно	2.2	Капка (СИ). Лесна откъм физика задача за сила $\propto v$.
2019	Пролетно	2.1	Футболна топка (HT). Лесна откъм физика задача за сила $\propto v^2$. Обърнете внимание на математическата подсказка.
2017	Пролетно	1	Спътник (ДА). Падане под действие на съпротивление на въздуха. Блъскаческа задача с гравитация и метод на размерностите.

Осцилации

2005	Есенно	1	Махало с променлива дължина (MA). Сравнително лесна задача върху закони за запазване и приближения. Последната подточка е решима не само с разглеждане на работата за издърпване при точката на окачване, а също и с използването на адиабатен инвариант (вж. Kevin Zhou M4).		
2006	Есенно	3	Свързани махала (МА). Въведение в нормалните модове, основна концепция с приложения в теоретичната физика. Първо напишете системата диференциални уравнения, след което въведете нови координати $q_1(\alpha_1, \alpha_2)$ и $q_2(\alpha_1, \alpha_2)$, така че уравненията да са еквивалентни на две прости хармонични осцилации (напр. $A\ddot{q}_1 + Bq_1 = 0$). Използването на такива <i>нормални координати</i> води до много по-бързо решение от авторското.		
2024	Пролетно	1	От "П" към "М" (MA). Твърде трудоемко, но все пак стандартно упражнение върху намиране на честота на осцилации с потенциална енергия и биномно приближение.		
2025	Есенно	1	Трептяща гира (ВИ). Приятна задача, илюстрираща ползата от работа в отправна система, свързана с центъра на масите.		
2008	Пролетно	3.2	Затихващо трептене (ВИ). Класическа задача за осцилации със сухо триене.		
2003	Пролетно	1	Трупче върху лента (ВИ). По-сложен вариант на предишната задача, в който има няколко режима на движение.		
2019	Пролетно	2.3	Футболна топка (HT). Много известна задача. Най-ранното място, където съм я виждал, е Съветската олимпиада от 1975.		
2013	Пролетно	1	Алпийски тролей (MA). Забавна задача за свойства на елипсата. На практика астрономия :).		
2018	Пролетно	1	Параболична купа (USAPhO 2011-B2). Хубава задача за осцилации в параболична купа със закони за запазване.		
2004	Пролетно	1	Тяло на пружина (ВИ). Стандартно упражнение върху теорията на принудените трептения, първо без съпротивление, а после със.		
Хидростатика					
2013	Есенно	1	Люлееща се шамандура (IPhO 1995-3). Обърнете внимание, че ефективната маса на шамандурата се променя. Това е защото Архимедовата сила произлиза от хидростатично налягане, но в задачата има движение, тоест е хидродинамика.		
2009	Есенно	1	Устойчивост при плаване (ВИ). Основна задача, въвеждаща център на водоизместимост и как той се отнася спрямо центъра на тежестта. Ужасни пресмятания във в). Там положете $h \equiv \frac{\rho}{\rho_0} H$ и дайте отговора си във вида $M = mg \cdot f(h, L, \theta)$. Проверявайте отговорите си с частни случаи.		
2005	Пролетно	1	Отскачане на камък от водна повърхност (ВИ). Стандартна, но практически полезна задача върху работа на сила на натиск.		

Гравитация

2014	Пролетно	1	Космическа станция (ВИ). Ужасно смятане на ъглови скорости за спътник. Не е сложна като физика.			
2009	Пролетно	1	Удар на метеорит с планета (MA). Дълго упражнение върху законите за запазване в гравитацията.			
2001	Пролетно	4	Орбитални параметри (ТТ). Дълга и сметкарска задача върху параметрите на елипса. Най-лесно става със ЗЗЕ, ЗЗМИ, после заместете едното в другото и ползвайте формули на Виет, за да намерите разстоянията в перицентър и апоцентър. От тях следват a и ε . Положете $\alpha \equiv GMm$. За $\mathbf B$) приемете $g=10\mathrm{m/s^2}$. В $\mathbf r$) условието е неясно и го давам преформулирано. Смисълът на v_∞ е скоростта относно Земята на голямо разстояние от Земята. Ако v_∞ е достатъчно за бягство от гравитационното поле на Слънцето, изразете v_∞ чрез u' и θ . Оценете третата космическа скорост, т.е. минималната скорост на изстрелване от Земята, при която се напуска гравитационното поле на Слънцето. Не отчитайте околоосното въртене на Земята.			
2015	Есенно	2	Изгаряне на метеорит в атмосферата (ВИ). Задача върху гравитация и топлинни явления. За в) използвайте, че отделената топлина при удар е еднаква за всички отправни системи, и изберете най-подходящата. В последната подточка се работи с метеорит, навлизащ под ъгъла от б). Заедно с предишната задача приличат на IPhO 2013-1.			
2006	Есенно	1	Точки на Лагранж (MA). Упражнение върху двойни системи с кръгови орбити. Много важно за астрофизици. Авторското решение е излишно трудно.			
2016	Пролетно	2	Гравитационна вълна (ВИ). Още една задача върху двойни системи, която упражнява и метод на размерностите. Последната подточка съдържа нелогична уловка, която е най-добре просто да се наизусти.			
2018	Есенно	1	Космонавти и космически кораб (MA). На теория не се иска да знаете неинерциални ОС, на практика се иска. Това е един от многото примери. Добро допълнително упражнение е IPhO 2016-1.			
Работа с експериментални данни						
2010	Пролетно	1	Топче за тенис на маса (МА). Кинематика с реално получени от Абрашев данни.			
2016	Пролетно	1	Механика на бадминтона (ВИ). Трудна кинематика с числени методи при наличие на сила на съпротивление. По-точни варианти на метода тук се използват за изследване на всякакви диференциални уравнения с компютър.			
2008	Есенно	1	Махало – нелинейност и затихване (MA). Въведение в уравнението на затихващи трептения.			