

MEPS-HC: Using Longitudinal Files & Pooling multiple years of data

Philippe Gwet, PhD

Cross-sectional vs. Longitudinal Analysis

Cross-sectional Analysis

- A snapshot of the US population at a given point in time
- Example: The 2021 mean annual expense for the elderly (65+) with any healthcare expenses is \$14,683 (SE=\$527)

Longitudinal Analysis

- Quantifies gross changes in the US population over 2 or more years.
- Example: 4.9% of the US population had no insurance throughout 2020-2021

Overview

Longitudinal Analysis / Panel Files

- Structure of the longitudinal files
- Available variables
- Types of analyses supported
- Survey design variables to use
- Using with other MEPS data files

Pooling Multiple Years of MEPS Data

Full-year consolidated files

File Types

Full-Year (FY) Consolidated File

- Person-level files
- FY2021 based on 4 MEPS panels, FY2020 based on 3 panels,
 FY2019 and prior are based on 2 panels.
- Used to generate annual estimates for a given year
- Used to examine trends over time / net changes
- Cannot be used to evaluate person-level changes over time

Longitudinal (Panel) Files

- Person-level files
- Respondent data for 2 years or more in one file.
- Useful for examining person-level changes over time / net changes

Longitudinal Analysis using Panel Files

MEPS Longitudinal Weight Files

MEPS Panel	Years Covered	PUF Number
25	2020-21	HC-234
24	2019-21	HC-235
24	2019-20	HC-225
23	2018-21	HC-236
23	2018-20	HC-226
23	2018-19	HC-217
22	2017-18	HC-210
1	1996-97	HC-080

MEPS Panel Design

Available Variables

Insurance coverage

Monthly indicators (24 measures per person)
 Examples:

COV BY MEDICAID OR SCHIP IN JUN20 COV BY MEDICAID OR SCHIP IN JUN21

Annual summary (2 measures per person)Examples:

COV BY MEDICAID OR SCHIP - 12/31/20 COV BY MEDICAID OR SCHIP - 12/31/21

Access to Care

– 2+ variables per person (Rounds 2, 4, …) Examples:

AFRDCA2: COULD NOT AFFORD MED CARE-R2 AFRDCA4: COULD NOT AFFORD MED CARE-R4

Available variables

Health status

- Each round (5+ measures for perceived general/mental health)
 Example: MNHLTH1: Perceived Mental Health Status-Rd 1
- Rounds 1,3... (2+ measures activities of daily living)
 Example: LFTDIF1: Difficulty Lifting 10 Pounds-Rd 1
- Rounds 2,4,... (2+ measures hearing, vision, & disability)
 Example. DFHEAR42=Serious Difficulty Hearing-Rd 4/2

Use and expenditures

Annual (2+ measures per person)

Examples:

OBVEXPY1: 2020 Total Office-Based Expenditures OBVEXPY2: 2021 Total Office-Based Expenditures OBTOTVY1: # 2020 Office-Based Provider Visits OBTOTVY2: # 2021 Office-Based Provider Visits

Available Variables: Case Selection

Variable	Description
YEARIND	Example (2020-2021, Panel 25): 1=both years, 2=in Year 1 only, and 3=in Year 2 only
ALL5RDS (Panel 25) (2020-2021)	In-scope and data collected in all 5 rounds (0=no, 1=yes)
ALL7RDS (Panel 24) (2019-2021)	In-scope and data collected in all 7 rounds (0=no, 1=yes)
ALL9RDS (Panel 23) (2018-2021)	In-scope and data collected in all 7 rounds (0=no, 1=yes)
SAQELIY1	Year 1 SAQ Eligibility Status
SAQELIY2	Year 2 SAQ Eligibility Status
SAQRDS24	SAQ Respondent in Both Rounds 2 and 4

Self-Administered Questionnaire (SAQ) includes core questions about health status, health care quality & preventive health care measures of adults.

Available Variables: Case Selection

Variable	Description
YEARIND	Example (2020-2021, Panel 25): 1=both years, 2=in Year 1 only, and 3=in Year 2 only
DIED	Died during the two-year survey period (0=no, 1=yes)
INST	Institutionalized during the survey period (0=no, 1=yes)
MILITARY	Active-duty military for some time during the two-year survey period (0=no, 1=yes)
ENTRSRVY	Entered survey after it began
LEFTUS	Moved out of the country after beginning of panel (0=no, 1=yes)
OTHER	Not identified in any of the above analytic groups (0=no, 1=yes)

Types of Analyses Supported

- National estimates of person-level changes over 2-year, 3-year, 4-year periods
- Examination of characteristics associated with changes over time
- Analysis of variables from the Self-Administered Questionnaire (SAQ)
 Example

ADSAD2: How often felt sad, R2

ADSAD4: How often felt sad, R4

Conducting Longitudinal Analysis

- Identify the Correct Longitudinal Dataset
- Select Analytic Variables of Interest
- Find the Correct Weight Variable:
 - LONGWT: Longitudinal Weight
 - LSAQWT: Longitudinal SAQ Weight
 Weighting to obtain unbiased estimates
- Identify the Design Variables
 - 2 Design Variables needed for Standard Error calculation
 - Stratum Variable: VARSTR. PSU Variable: VARPSU

Using Longitudinal Weights

• Why LONGWT and LSAQWT?

- In-scope nonrespondents are excluded for the file.
- The LONGWT and LSAQWT must adjust FY weights for nonresponse/attrition
- LONGWT and LSAQWT yield national estimates of gross changes in 2+ consecutive years

For Panel 25 (2020-2021)

Weight	Weight > 0	Weight=0	All 5 Rounds	
LONGWT	6,078 (100.0%)	0	5,681 (93.5%)	
LSAQWT	3,455 (56.8%)	2,623 (43.2%)		

Examples: Longitudinal Estimates

- 72.2% of those without insurance in 2021 were uninsured in 2020 (SE=2.8%).
- An estimated 4.9% (SE=0.5%) of the population had no insurance throughout 2020-2021.
- Of those with no healthcare expenses in 2020, an estimated 53.4% (SE=3.0%) had some expenses in 2021.
- 32.2% of the top 5% with the highest healthcare expenses in 2021, had that position in 2020.

Linking Longitudinal & Other MEPS Data Files

- Longitudinal Files Provide Various Total Annual Expenditures for each Individual Respondent
- No Disease-Specific Expenditures
 - Example:
 - A patient has \$5,000 of annual office-based visit expenditures in 2021. What portion of it can be attributed to the treatment of mental illness?
- Use the Condition-Event Link File (or CLNK File)
- Use the PMED-Event Link File (or RXLK File)

Linking Longitudinal & Other MEPS Data Files

Medical Conditions files

- Can be used to identify persons with specific conditions of interest
 - (e.g.: Arthritis, Asthma, High Cholesterol, ...)
- Directly linkable to Longitudinal files via DUPERSID

Event-Level Files

- Payment amounts/sources already "rolled-up" on longitudinal files
- Other event characteristics can be obtained (e.g., number of office-based visits involving labs, prescribed medicines, etc.)
- Directly linkable to Longitudinal files via DUPERSID

IDs used to Link MEPS Files

- Longitudinal files (DUPERSID)
- Medical Conditions files (DUPERSID, CONDIDX)
- Event files (DUPERSID, EVNTIDX)
- CLNK (DUPERSID, CONDIDX, EVNTIDX)

 CLNK files link Condition files to Event files
- RXLK (DUPERSID, LINKIDX, EVNTIDX)
 PMED-event link files: Link Prescribed Medicines Event Files to other MEPS event files

Example of generalized linking process

Examine healthcare utilization/expenditures for persons with asthma over a two-year period

- ID persons w/ asthma in Medical conditions files (2 years needed)
- If data on Longitudinal files is sufficient merge asthma indicators directly onto the file (DUPERSID)
- If need event-level info (e.g., expenditures for services related to asthma), merge CLNK (CONDIDX) then desired event-level data (EVNTIDX; 2 years)
- Prescribed medicine events are not directly linked to conditions
 Link PMED event file to RXLK file (LINKIDX)
 Link to conditions/other event files via CLNK (EVNTIDX/CONDIDX)

NOTES: With all file merges, be sure to only keep the Panel of interest.

See CLNK/RXLK doc for SAS and STATA programing examples.

Pooling Longitudinal Files

- Options for pooling multiple panels to increase the sample size are limited
 - –2019-2020 (2 years) longitudinal analysis can be based on data from panels 23 and 24
 - –2019-2021 (3 years) longitudinal analysis can be based on data from panels 23 and 24
 - -2020-2021 (2 years) longitudinal analysis can be based on data from 3 panels 23, 24, and 25
- Pooling leads to more accurate estimates

Extending the Longitudinal Period: MEPS-NHIS

- MEPS-HC is a nationally representative subsample of responding households from the previous year's NHIS
 - Prior-year NHIS data available for many MEPS respondents
 - Linking MEPS-NHIS expands the analytic capabilities
- MEPS / NHIS link file
 - Crosswalk to merge MEPS data to NHIS person-level public use data
 - Crosswalk file not public use; available in AHRQ Data Center

MEPS/NHIS Linked files, weighting, and Estimation

Not all MEPS respondents link (birth, marriage, etc.)

- Since 2019 NHIS collects data only on a sample adult (18+) and a sample child (17-)
- Since 2019, no more NHIS family questionnaire completed by one family member.

Weighting adjustment for non-linkage is recommended

- Necessary since NHIS move to sample adult & child
- Reference:

2013 Federal Committee on Statistical Methodology proceedings paper, by Mirel & Machlin.

https://s3.amazonaws.com/sitesusa/wp-content/uploads/sites/242/2014/05/H2 Mirel 2013FCSM.pdf

Pooling Multiple Years of MEPS Data in Cross Sectional Analysis

Reasons for pooling

- Increase sample size
- Reduce standard errors of estimates

 Enhance ability to analyze small subgroups

FY Consolidated Data Files

Year	File Number	Number of Persons
2021	HC-233	28,336
2020	HC-224	27,805
2019	HC-216	28,512
2018	HC-209	30,461
2017	HC-201	31,880
2016	HC-192	34,655
2015	HC-181	35,427
2014	HC-171	34,875
2013	HC-163	36,940
2012	HC-155	38,974
2011	HC-147	35,313

Example of pooling FY files 2019 and 2020

Example of Pooling FY files 2020 and 2021

Things to be Mindful of when Pooling

- Persons in the common panel are included twice
- Although correlated, data for the same person usually differ from year to year
- Each year represents nationally representative sample for that year
- Lack of independence diminishes the gain in precision from pooling

Accounting for lack of independence

- Repeated observations for the same persons does not affect the validity of variance estimates.
- Specify the stratum variable (VARSTR) and the PSU variable (VARPSU) when computing variances
- For more on this topic, read the document:
 https://meps.ahrq.gov/survey comp/hc clustering faq.pdf

Example of Pooled Sample Sizes

Adults 18-64 years old w/ diabetes, by insurance status

Year	Sample Size		
	Privately Insured	Publicly Insured	Uninsured (all year)
2019	758	504	97
2020	777	588	120
2021	772	603	105
2019-21 (Pooled)	2,307 person-years	1,695 person-years	322 person-years

Example of Pooled RSEs of mean annual expenditures Adults 18-64 years old w/ diabetes, by insurance status

Voor	Relative Standard Error (RSE) (Standard error / Point estimate)		
Year	Privately Insured	Publicly Insured	Uninsured (all year)
2019	8.5%	7.3%	26.4%
2020	9.0%	9.3%	33.0%
2021	8.1%	8.9%	56.9%
2019-21 (Pooled)	6.0%	6.4%	34.7%

Caveat to Computing Standard Errors from Pooled Files

- Variance structure not standardized for all years
- Pooled Estimation Linkage File (HC-036)
 - Contains standardized stratum and PSU
 - Stratum and PSU variables obtained from HC-036 for 1996-2021
 STRA9621, PSU9621
 - Documentation for HC-036 provides instructions on how to properly create pooled analysis file
- Need to be mindful of what years you intend to pool and understand which stratum and PSU variables to use

Caveat to Computing Standard Errors from Pooled Files

\cdot 1996 - 2001

- Stratum/PSU variables are not standardized across range or with later years
- Must always use standardized stratum/PSU identifiers from HC-036

$\cdot 2002 - 2018$

- Stratum/PSU variables on annual files are standardized across range, but <u>not with</u> <u>preceding years or 2019 and 2020</u>
- When pooling restricted to these years use stratum/PSU variables from annual files
- When pooling with any years prior to 2002 or with 2019-2020 use standardized stratum and PSU identifiers from Pooled Estimation Linkage File (HC-036)

· 2019-2021

- Stratum and PSU variables on annual files are standardized between these two years, but not with preceding years
- When pooling 2019-2021 use stratum and PSU variables from annual files.
- When pooling 2019-2020 with any preceding year, use HC-036

Steps for Creating FY Pooled Files

- 1) Rename analytic and weight variables from different years to common names. For example,
 - Expenditures: TOTEXP19, TOTEXP20 & TOTEXP21 = TOTEXP
 - Weights: PERWT19F, PERWT20F & PERWT21F = POOLWT
- 2) Concatenate annual files
- 3) Divide weight by number of years pooled to produce estimates for "an average year" during the period.
 - Keep original weight if estimating total for the period
- 4) Merge variance estimation variables from HC-036 onto file if necessary
 - see previous slide / documentation for guidance

Estimation from Pooled Files

- Produce estimates as for individual years
- Estimates interpreted as "average annual" for pooled period

For example, the average annual per capita health care expenses in 2019-21 was \$6,486.

Note: Per capita expenses were \$6,252 in 2019, \$6,266 in 2020, and \$6,934 in 2021.

 Adjust expenditure/income estimates with a price index for comparison across multiple years. For more information:

http://www.meps.ahrq.gov/mepsweb/about_meps/Price_Index.shtml

Thank you!

kilem.gwet@ahrq.hhs.gov