Motion Analysis: Optical Flow

Finally: Motion and tracking

Tracking objects, video analysis, low level motion

Uses of motion

- Estimating 3D structure
- Segmenting objects based on motion cues
- Learning dynamical models
- Recognizing events and activities
- Improving video quality (motion stabilization)

Video

- A video is a sequence of frames captured over time
- Now our image data is a function of space (x, y) and time (t)

Lecture's goals

- Motion Analysis
 - Optical flow

Motion field

• The motion field is the projection of the 3D scene motion into the image

Optical Flow (Image Flow)

- Estimate velocity based on brightness pattern
- Originates from early psychological work on human vision
 - Cues used by pilots in landing aircraft.
- Local estimates of the velocity of the brightness field
 - Do not require image structure
 - Dense velocity maps

Motion of the Brightness Pattern

- · Motion field
 - Velocity vector at each point in the scene
- · Optical Flow
 - Apparent motion of the brightness pattern
 - Components u, v at each point on the image
- · Mostly they correspond

Image at t

Image at t+∆t

Correspondence Problem

The Optical Flow Equation

$$I(x, y, t) = I(x + dx, y + dy, t + dt)$$

Image structure doesn't change, just moves

$$I(x+dx, y+dy, t+dt) = I(x, y, t) + \frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt + (h.o.t)$$
Taylor expansion

$$\frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt = 0 \qquad \qquad \frac{\partial I}{\partial x}\frac{dx}{dt} + \frac{\partial I}{\partial y}\frac{dy}{dt} + \frac{\partial I}{\partial t} = 0$$

$$\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial t} = 0$$
 Optical Flow Equation

Solving Optical Flow

$$\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial t} = 0$$

$$\uparrow /$$
Image gradient

Rate of change of brightness with time

Equation of straight line

No unique solution for u and v

Constrained solution

- Smoothness
 - Should be small

$$u_x = \frac{\partial u}{\partial x}; \quad u_y = \frac{\partial u}{\partial y}$$

$$v = \frac{\partial v}{\partial x}$$
, $u_y = \frac{\partial v}{\partial y}$
 $v_y = \frac{\partial v}{\partial y}$

 $\begin{cases} u_x = \frac{\partial u}{\partial x}; & u_y = \frac{\partial u}{\partial y} & \text{x and y} \\ v_x = \frac{\partial v}{\partial x}; & v_y = \frac{\partial v}{\partial y} & \text{u and v} \end{cases}$

• Optical Flow constraint
$$\left(\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial t} = 0\right)$$

• Minimise

$$\sum \sum \left(\frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \frac{\partial I}{\partial x}\right)$$

Optical Flow Due to Camera Translation

Intervening frames

Focus of Expansion

Defines instantaneous direction of camera motion

Optical Flow

Focus of contraction

Panning

Motion-based segmentation. Camera panning left (following smaller boat) Larger boat moving right.

The Aperture Problem

- Using local information (e.g. derivatives) we can only measure velocity vector *normal to local image gradient*.
- Ned to apply further constraints
 - e.g. smoothness
 - Nearby points should have similar velocities

Optical Flow

When/where does this break down?

In what situations does the displacement of pixel patches not represent physical movement of points in space?

A uniform rotating sphere

Nothing seems to move, yet it is rotating

Changing directions or intensities of lighting can make things seem to move

For example, if the specular highlight on a rotating sphere moves.

Aperture Problem

Barber pole illusion

Tracking

- Identify significant points
- · Track from frame to frame
- Aperture problem avoided if we use identifiable structure.
- · Simplest to match structure using cross-correlation
- · No epipolar constraint
- · May be able to predict motion.

