RNA-sequencing

Tissue, analyte and context ...

	Healthy individuals	Primary cancer		Metastatic disease & Death
	Screening, curable disease	Diagnosis	Adjuvant setting	Diagnosis
	 Decades		Years	Year(s)
Tumor tissue				
DNA - somatic _		X		XX
RNA				X
DNA - epigenetics	5	X		(X)
Cell-free DNA				
DNA - somatic	(X)	(X)	X	X
DNA - epigenetics	X			(X)
Circulating tumor cells				
DNA				(X)
RNA				<u>(x)</u>

RNA-seq, epigenetic analysis and diagnostic relevance

- RNA-seq in cancer
 - High dimensional data
 - Classification
 - Prognostication
 - · Prediction modelling
 - Research
 - Splicing
 - Neoantigen expression
 - Differential gene expression
 - Direct diagnostic relevance
 - · Outlier kinase expression
 - Fusion calling
 - Classification of cancer of unknown primary

RNA-seq based classification of BC clinical biomarkers

Sequencing-based breast cancer diagnostics as an alternative to routine biomarkers, Sci Rep 2016

RNA-seq strategies

Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud, PLOS Computational Biology 2015

- MultiQC will summarize
 - Adapter contamination
 - Ribosomal RNA fraction
 - Problems with library length
 - Fraction aligned reads etc
- Power of QC is having a background distribution

In the course you will test:

- Kallisto
 - Reference only analysis
- HISAT
 - Transcript guided analysis

Expression levels vary a lot (10⁵ – 10⁷ times)

We will use TPM (Transcript per Kilobase Million) to assess expression:

- 1) Divide each gene/transcript fragment count by length of each gene/transcript in kilobases
 - Fragments per kilobase, FPK
- 2) Sum all FPK values for the sample and divide by 1,000,000
 - "per million" scaling factor
- 3) Divide #1 by #2 (TPM)

The sum of all TPMs in each sample is the same.

Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud, PLOS Computational Biology 2015

Clinical Cancer Genomics – vt 2022

Normalization required.

Spike ins might help.

. . .

Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud, PLOS Computational Biology 2015

Clinical Cancer Genomics – vt 2022

RNAseq paper from ICGC

- 1188 cases with RNAseq + WGS
- Copy-number alterations were the major drivers of variations in total gene and allele-specific expression.
- 82% of gene fusions were associated with structural variants

Clinical impact of comprehensive DNA and RNA sequencing

- The Michigan Oncology Sequencing Program
 - Tumor biopsy sequencing with paired gDNA
 - Whole-exome or targeted capture
 - RNA-sequencing
 - Fusion detection
 - Classification of Cancer Of Unknown Primary (CUP)
 - Inclusion of 1138 advanced/metastatic patients between 2011-2018
 - Clinical benefit rate from NGS-directed therapy

Research

JAMA Oncology | Original Investigation

Assessment of Clinical Benefit of Integrative Genomic Profiling in Advanced Solid Tumors

Erin F. Cobain, MD; Yi-Mi Wu, PhD; Pankaj Vats, PhD; Rashmi Chugh, MD; Francis Worden, MD; David C. Smith, MD; Scott M. Schuetze, MD, PhD; Mark M. Zalupski, MD; Vaibhav Sahai, MD; Ajjai Alva, MD; Anne F. Schott, MD; Megan E. V. Caram, MD; Daniel F. Hayes, MD; Elena M. Stoffel, MD; Michelle F. Jacobs, MS, CGC; Chandan Kumar-Sinha, PhD; Xuhong Cao, MS; Rui Wang, MS; David Lucas, MD; Yu Ning, MS; Erica Rabban, BS; Janice Bell, AS; Sandra Camelo-Piragua, MD; Aaron M. Udager, MD, PhD; Marcin Cieslik, PhD; Robert J. Lonigro, PhD; Lakshmi P. Kunju, MD; Dan R. Robinson, PhD; Moshe Talpaz, MD; Arul M. Chinnaiyan, MD, PhD

What can we hope to achieve with iPCM/clinical implementation?

Figure 1. CONSORT Diagram of Patients in the MET1000 Cohort

What can we hope to achieve with iPCM/clinical implementation?

- 713 patients (70.2%) carried a potentially actionable somatic alteration
- 80.5% carried a clinically relevant alteration
 - 95% were identified by DNA sequencing
 - 63.5% were identified by RNA sequencing

- Sequencing-directed therapy was initiated in 132 patients
 - 49 experienced clinical benefit
 - 26 received therapy 12 months or longer
 - DDR-
 - MSI+
 - Gene fusion carriers
 - Hotspot mutations
 - Amplifications
- 169 pathogenic germline variants were detected
 - 155 were unknown
- 55 patients with cancer of unknown origin
 - 28 were re-classified

• The End