

Figure 2

2. b.

V _A (V)	V _B (V)	V _o (V)
0	0	3.6
0	3.6	0.2
3.6	0	0.2
3.6	3.6	0.2

Since logic 'LOW' = 0.2V and logic 'HIGH" = 3.6V

Let's consider logic '0' = 0.2V and logic '1' = 3.6V

V _A (V)	V _B (V)	V ₀ (V)
0	0	1
0	1	0
1	0	0
1	1	0

So according to the tables we can say that this RTL circuit is performing according to the NOR gate.

3.

Figure 4

a. So according to the schematic diagram,

$$logic\ LOW=\ 0.198535V\approx 0.2V$$

 $logic\ HIGH = 1.14521V \approx 1.15V$

- b. i) When output is at logic 'LOW' $I_c = 5.31 mA$ ${\rm Power\ drawn\ by\ the\ circuit} = {\rm 3.6} \times {\rm 5.31} = {\rm 19.116 mw}$
 - ii) When output is at logic 'HIGH' $I_c=3.84mA$ Power drawn by the circuit = 3.6 \times 3.84 = 13.824mw

c. Low level noise margin $\Delta L = V_{IL} - V_{OL}$ Assume cut in voltage of a transistor = 0.5V

$$\Delta L = 0.5 - 0.2 = 0.3V$$

 $I_c(max) = 5.31mA$ that can flow through the circuit

In saturation $I_c < \beta I_B$

Since β = 30

$$I_B > \frac{5.31}{30} = 0.177 mA$$

$$I_B(min) = 0.177mA$$

$$V_{IH} = I_B(min)R_B + V_{BE,sat}$$

$$V_{IH} = 0.177 \times 10^{-3} \times 450 + 0.8$$

$$V_{IH}=0.88V$$

High level noise margin $\Delta H = V_{OH} - V_{IH}$

$$\Delta H = 1.14 - 0.88 = 0.26V$$

4. a.

Steps	Steps Resistance (Ω) LOW (V)		HIGH (V)	
0	-	0.09	3.6	
5	90	0.2	1.15	
10	45	0.27	0.98	
15	30	0.33	0.93	
20	22.5	0.38	0.895	
25	18	0.42	0.88	
30	15	0.45	0.86	
35	12.857	0.48	0.855	
40	11.25	0.5	0.848	
45	10	0.52	0.84	
50	9	0.54	0.839	

Steps	Resistance (Ω)	$\Delta L = V_{IL} - V_{OL} $ (V)	$\Delta H = V_{OH} - V_{IH} $ (V)	I _c (mA)
0	-	0.41	2.72	5.47
5	90	0.3	0.27	5.31
10	45	0.23	0.102	5.2
15	30	0.17	0.0535	5.1
20	22.5	0.12	0.0195	5.03
25	18	0.08	5.45 × 10 ⁻³	4.97
30	15	0.05	-0.0138	4.92
35	12.857	0.02	-0.0182	4.88
40	11.25	0	-0.0246	4.84
45	10	-0.02	-0.03215	4.81
50	9	-0.04	-0.0327	4.78