

University of Applied Sciences

Master Regenerative Energien Regenerative Wärmetechnik

4. Vergleich verschiedener Wärmebereitstellungsmethoden

Wärmebereitstellung - Überblick

Kraft-Wärme-Kopplung (KWK)

- effiiziente Erzeugung von Heizwärme
- Strom als Koppelprodukt
- Vergleichsszenario: "getrennte Erzeugung"
 Heizwärmebereitstellung durch Verbrennung (fossile oder regenerative Brennstoffe)
- Stromerzeugung aus KWK sollte stets nur fossil erzeugten Strom aus dem Netz verdrängen, deshalb Vergleich für Stromerzeugung auf Basis fossiler Brennstoffe
- Wärmespeicher und Stromeinspeisung sind Möglichkeiten zur Flexibilisierung der KWK
- KWK sollte wärmegeführt, aber mit Flexibilität für den Strommarkt ausgelegt sein (Wärmespeicher und ggf. Power to Heat)
- Saisonale Wärmebedarfsschwankung (fehlender Heizwärmebedarf im Sommer) ist besonders zu berücksichtigen

Stromkennzahl der KWK

Verbraucherkennzahl

$$\sigma = \frac{w_{el}}{q_{Nutz}} = \frac{P_{el}}{\dot{Q}_{Nutz}}$$

$$S = \frac{P_{el,V}}{\dot{Q}_{Nutz,V}}$$

Wärmebereitstellung im Heizkessel bzw. Heiznetz Wirkungsgrad und Primärenergiefaktor

Wirkungsgrad Wärmebereitstellung (Kesselwirkungsgrad)

$$\dot{m{\mathsf{Q}}}_{\mathsf{Nutz}} = \eta_{\mathsf{K}} \, \dot{m{\mathsf{Q}}}_{\mathsf{B},\mathsf{Q}}$$

Primärenergiefaktor

$$f_P = \frac{PE}{E} = \frac{\text{aufgewendete vorgelagerte Prozesskette}}{\text{Energie einschließlich Umwandlung und Verteilung verbrauchte Energie}}$$

Primärenergiefaktor Wärmebereitstellung

$$\dot{Q}_{Nutz} = \eta_K \, \eta_{VN} \, \dot{Q}_{B,Q} \qquad \qquad f_Q = \frac{PE_{Q_B}}{\dot{Q}_{Nutz}} = \quad \frac{f_B \dot{Q}_{B,Q}}{\eta_K \, \eta_{VN} \, \dot{Q}_{B,Q}} \quad = \quad \frac{f_B}{\eta_K \, \eta_{VN}}$$

Wärmebereitstellung Primärenergiefaktoren Brennstoff und Fernwärme

Primärenergiefaktor Heizwärme

$$f_Q = \frac{PE}{\dot{Q}_{Nutz}} = \frac{f_B}{\eta_K \eta_{VN}}$$

Energieträger	Primärenergiefaktoren $f_{\mathfrak{p}}$			
		insgesamt	nicht erneuerbarer Anteil	
		Α	В	
	Heizöl EL	1,1	1,1	
	Erdgas H	1,1	1,1	
	Flüssiggas	1,1	1,1	
	Steinkohle	1,1	1,1	
Fossile Brennstoffe	Braunkohle	1,2	1,2	
	Biogas	1,5	0,5	
	Bioöl	1,5	0,5	
Biogene Brennstoffe	Holz	1,2	0,2	
	Solarenergie	1,0	0,0	
	Erdwärme, Geothermie	1,0	0,0	
	Umgebungswärme	1,0	0,0	
Umweltenergie	Umgebungskälte	1,0	0,0	
Abwärme innerhalb des Gebäudes	aus Prozessen, siehe 3.1.32	1,0	0,0	
	fossiler Brennstoff	1,3	1,3	
Nah-/Fernwärme aus Heizwerken	erneuerbarer Brennstoff	1,3	0,1	

- Primärenergiefaktoren sind ein politisches Steuerungsinstrument und spiegeln die technischen Gegebenheiten nur begrenzt wieder.
- Pauschale Bewertung mit PE-Faktoren und individuelle Bilanzierung können sich unterscheiden

Wärmebereitstellung mit Heißwasser, Heizdampf oder Frischdampf

$$\dot{Q}_{Nutz} = \eta_K \, \dot{m}_B \, H_i = \dot{m} \, \Delta h$$

Heißwassererzeugung

$$\dot{Q}_{Nutz} = \dot{m}_{HW} \left(h_{Vor} - h_{R\"{u}ck} \right)$$

$$= \dot{m}_{HW} c_{\rho W} \left(T_{Vor} - T_{R\"{u}ck} \right)$$

Sattdampferzeugung

$$\dot{\mathbf{Q}}_{Nutz} = \dot{m}_{SD} (h'' - h')$$

$$\dot{\mathbf{Q}}_{Nutz} = \dot{m}_{FD} (h_{FD} - h')$$

$$\dot{m}_{B} = \frac{\dot{Q}_{Nutz}}{\eta_{K}H_{i}} = \frac{\dot{m} \Delta h}{\eta_{K}H_{i}}$$

Die aufzuwendende Brennstoffmenge wird nur durch den Kesselwirkungsgrad, nicht durch die Art des Wärmeträgers (Heizmedium) bestimmt.

ÜA 3.KWK / A1

1. Wärmebereitstellung mit Sattdampf oder Heizdampf

Ein Verbraucher benötigt einen Wärmestrom Q = 150 MW mit einer Mindesttemperatur von $t_D = 200$ °C Dampf (entsprechend $p_D = 1,555$ MPa).

- a) Welcher Massenstrom Dampf muss zur Verfügung gestellt werden, wenn der Dampf mit Sattdampfparametern in einem Dampfkessel erzeugt wird?
- b)Welcher Brennstoffmassenstrom ($H_i = 18 \text{ MJ/kg}$) wird benötigt, wenn der Kessel mit einem Wirkungsgrad $\eta_K = 0.92$ arbeitet?
- c) Wie ändern sich Dampfstrom und Brennstoffaufwand, wenn der Verbraucher durch gedrosselten Frischdampf ($p_I = 10 \text{ MPa}$ und $t_I = 450 \,^{\circ}\text{C}$) aus dem Dampferzeuger eines Kraftwerks mit gleichem Wirkungsgrad versorgt wird?

Wasserdampftafel Zustandsgrößen auf der Siede- und Taulinie

Tabelle 5.22. Thermodynamische Eigenschaften von Wasser und Wasserdampf im Sättigungszustand (Temperaturtafel) /3/

t	р	v	Λ.,	h'	h"	s'	s"
o_	MPa	m3 · kg * 1	m3 - kg - 1	kJ·k	g-1	kJ·kg ⁻¹	. K-1
0,01	0,0006112	0,00100022	206,175	0,000614	2501,0	-0,0002	9,1562
5	0,0008719	0,001000	147,167	21,01	2510,2	0,0762	9,0258
10	0,0012271	0,0010003	106,419	41,99	2519,4	0,1510	8,9009
15	0,0017041	0,0010008	77,97	62,94	2528,6	0,2243	8,7815
20	0,0023368	0,0010017	57,833	83,86	2537,7	0,2963	8,6674
25	0,0031663	0,0010029	43,399	104,77	2546,8	0,3670	8,5583
30	0,0042417	0,0010043	32,929	125,66	2555,9	0,4365	8,4537
35	0,0056217	0,0010060	25,246	146,56	2565,0	0,5049	8,3536
40	0,0073749	0,0010078	19,548	167,45	2574,0	0,5721	8,2576
4.5	0,0095817	0,0010099	15,278	188,35	2582,9	0,6383	8,1655
50	0,012335	0,0010121	12,048	209,26	2591,8	0,7035	8,0771
55	0,015740	0,0010145	9,5812	230,17	2600,7	0,7677	7,9922
60	0,019919	0,0010171	7,6807	251,09	2609,5	0,8310	7,9106
65	0,025008	0,0010199	6,2042	272,02	2618,2	0,8933	7,8320
70	0,031161	0,0010228	5,0479	292,97	2626,8	0,9548	7,7565
75	0,038448	0,0010259	4,1356	313,94	26,35,3	1,0154	7,6837
80	0,047359	0,0010292	3,4104	334,92	2643,8	1,0752	7,6135
85	0,057803	0,0010326	2,8300	355,92	2652,1	1,1343	7,5459
90	0,070108	0.0010361	2,3624	376,94	2660,3	1,1925	7,4805
95	0,084525	0,0010398	1,9832	397,99	2668,4	1,2500	7,4174
00	0,101325	0,0010437	1,6738	419,06	2676,3	1,3069	7,3564
10	0,14326	0,0010519	1,2106	461,32	2691.8	1,4185	7,2402
20	0,19854	0,0010606	0,89202	503,7	2706,6	1,5276	7,1310
30	0,27012	0,0010700	0,66851	546,3	2720,7	1,6344	7,0281
40	0,36136	0,0010801	0,50875	589,1	2734,0	1,7390	6,9307
50	0,47597	0,0010908	0,39263	632,2	2746,3	1,8416	6,8381
60	0,61804	0,0011022	0,30689	675,5	2757,7	1,9425	6,7498
70	0,79202	0.0011145	0,24259	719,1	2768.0	2.0416	6,6652
80	1,0027	0,0011275	0,19381	763,1	2777,1	2,1393	6,5838
90	1,2552	0,0011415	0,15631	807,5	2784,9	2,2356	6,5052
00	1,5551	0,0011565	0,12714	852,4	2791,4	2,3307	6,4289
10	1,9079	0,0011726	0,10422	897,8	2796,4	2,4247	6,3546
20	2,3201	0,0011900	0,08602	943.7	2799,9	2,5178	5,2819
30	2,7979	0,0012087	0,07143	990,3	2801,	7 2,6102	6,2104
40	3,3480	0,0012291	0,05964	1037,5	2801,6	2,7021	6,1397
:50	3,9776	0,0012513	0,05002	1085,8	2799,5	2,7930	6,0693
60	4,6940	0,0012756	0,04212	1135,0	2795,2	2,8850	5,9989
270	5,5051	0,0013025	0,03557	1185,4	2788,3	2,9766	5,9278
280	6,4191	0,0013324	0,03010	1237,0	2778,6	3,0687	5,855
290	7,4448	0,0013659	0,02551	1290,3	2765,4	3,1616	5,781
500	8,5917	0,0014041	0,02162	1345,4	2748,4	3,2559	5,703
310	9,8697	0,0014480	0,01829	1402,9	2726,8	3,3522	5,622
320	11,290	0,0014995	0,01544	1463,4	2699,6	3,4513	5,535
330	12.865	0,0015614	0,01296	1527,5	2665,5		5,441
340	14,608	0,0016390	0,01078	1596,8	2622,3	-	5,336
350	16,537	0,0017407	0,00882	1672,9	2566,1	3,7816	5.214
360	18,674	0,0018930	0,006970		2485,7		
370	21,053	0,0022310	0,004958		2335,7		

Tabelle 5.23. Thermodynamische Eigenschaften von Wasser und Wasserdampr im Sättigungszustand (Drucktafel) /3/

		v. 103	V"	h!	h*	s'	s*
MPa	<u>-</u>	m3 · kg · 1	m3 · kg · 1	kc-kg-1	kJ·kg·1	kJ·kg·1·K·1	kJ·kg-1-K-1
	- °C	mkg -	m kg	Kt	no ng	no ng	AD NG N
0,001	6,98	1,0001	129,208	29,33	2513,8	0,1060	8,9756
0,002	17,51	1,0012	67,006	73,45	2533,2	0,2606	8,7236
0,003	24,09	1,0027	45,668	101,00	2545,2	0,3543	8,5776
0,004	28,98	1,0040	34,803	121,41	2554,1	0,4224	8,4747
0,005	32,90	1,0052	28,196	157,77	2561,2	0,4762	8,3952
0,006	36,18	1,0064	23,742	151,50	2567,1	0,5209	8.3305
0,007	39,02	1,0074	20,532	163,38	2572,2	0,5591	8,2760
0,008	41,53	1,0084	18,106	173.87	2576,7	0,5926	8,2289
0,009	43,79	1,0094	16,206	183,28	2580,8	0,6224	8,1875
. 0,01	45,83	1,0102	14,676	191,84	2584,4	0,6493	8,1505
0,02	60,09	1,0172	7,6515	251,46	2609,6	0,8321	7,9092
0,03	69,12	1,0223	5,2308	289,31	2625,3	0,9441	7,7695
0,04	75,89	1,0265	3,9949	317,65	2636,8	1,0261	7,6711
0,05	81,35	1,0301	3,2415	340,57	2646,0	1,0912	7,5951
0,06	85,95	1,0333	2,7329	359,93	2653,6	1,1454	7,5332
0,07	89,96		2,3658	376,77	2660,2	1,1921	7,4811
0,08	93,51		2,0789	391,72	2666,0	1,2330	7,4360
0,09	96,71	1,0412	1,8701	405,21	2671,1	1,2796	7,3963
0,10	99,63	1,0434	1,6946	417,51	2675,7	1,3027	7,3608
0,15	111,37	1,0530	1,1597	467,13	2693,9	1,4336	7,2243
0,20	120,23	1,0608	0,88597	504,7	2706,9	1,5301	7,1286
0,25	127,43	1,0675	0,7188	535,4	2717,2	1,6072	7,0540
0,30	133,54	1,0735	0,60586	561,4	2725,5	1,6717	6,9930
0,35	138,88	1,0789	0,5242	5 584,3	2732,5	1,7273	6,9414
0,40	143,62	1,0839	0,4624	2 604,7	2738,5	1,7764	6,8966
0,45	147,92	1,0885	0,4139	2 623,3	2743,8	1,8204	6,8570
0,50	151,85	1,0928	0,3748	1 640,1	2748,5	1,8604	6,8215
0,5	158,84	1,1009	0,3155	6 670,4	2756,4	1,9308	6,7598
0,7	164,96	1,1082	0,2727	4 697,1	2762,9	1,9918	6,7074
0,8	170,42	2 1,1150	0,2403	0 720,9		2,0457	6,6618
0,9	175,36			4 742,6			6,6212
1,0	179,88						6,5847
2,0	212,3						6,3373
3,0	233,84						6,1832
4,0	250,3						6,0670
5,0	263,9			_			5,9712
6,0	275,5						5,8878
8,0	294,9						5,7430
10	310,9	-	-				5,6143.
12	324,6						5,4930
14	336,6		•				5,3737
16	347,3						5,2495
18	356,9						5,1135
20	365,7						4,9338
22	373,6	8 2,6750	0,0037	6 2007,	7 2192,5	7,6091	7,3/40

Ausführliche Wasserdampftafel Zustandsgrößen im gesamten Zustandsgebiet nach Isobaren geordnet

Tables of the Properties of Water and Steam

229

Table 3	Single-phase region	 Continued
	(0 °C to 800 °C)	

				p = 100 bar				
t	v	h	S	Cp	w	ĸ	η	λ
[°C]	$[m^3 kg^{-1}]$	[kJ kg ⁻¹]	$[kJ kg^{-1} K^{-1}]$	[kJ kg ⁻¹ K ⁻¹]	[m s ⁻¹]	[-]	[10 ⁻⁶ Pas]	[10 ⁻³ W m ⁻¹ K ⁻¹]
250	0.00124116	1085.72	2.7791	4.7883	1180.0	112.19	108.0	625.5
260	0.00126534	1134.13	2.8708	4.8972	1136.3	102.03	103.4	613.0
270	0.00129228	1183.74	2.9629	5.0293	1089.4	91.840	98.99	599.2
280	0.00132264	1234.82	3.0561	5.1931	1038.9	81.605	94.76	584.0
290	0.00135739	1287.75	3.1510	5.4023	983.78	71.300	90.60	567.0
300	0.00139804	1343.10	3.2484	5.6816	922.76	60.905	86.43	548.1
310	0.00144710	1401.77	3.3498	6.0782	854.92	50.507	82.16	526.8
$t_{\rm S} = 310$	999 °C			Saturation				
Liquid	0.00145262	1407.87	3.3603	6.1275	847.74	49.474	81.72	524.5
Vapour	0.0180336	2725.47	5.6159	7.1472	472.44	1.2377	20.19	78.97
320	0.0192716	2782.66	5.7131	5.7468	491.71	1.2546	20.66	74.68
330	0.0204462	2835.67	5.8017	4.9228	508.20	1.2632	21.18	71.67
340	0.0214897	2882.06	5.8780	4.3885	522.16	1.2688	21.68	69.76
350	0.0224422	2923.96	5.9458	4.0118	534.45	1.2728	22.18	68.55
360	0.0233274	2962.61	6.0073	3.7324	545.52	1.2757	22.67	67.72
370	0.0241605	2998.82	6.0641	3.5174	555.64	1.2779	23.15	66.85
380	0.0249522	3033.11	6.1170	3.3471	565.02	1.2794	23.62	66.67
390	0.0257099	3065.87	6.1668	3.2092	573.79	1.2806	24.09	66.91
400	0.0264393	3097.38	6.2139	3.0958	582.04	1.2813	24.55	67.25
410	0.0271447	3127.85	6.2589	3.0013	589.86	1.2818	25.01	67.72
420	0.0278294	3157.45	6.3019	2.9217	597.31	1.2820	25.46	68.30
430	0.0284963	3186.32	6.3432	2.8542	604.44	1.2821	25.91	68.98
440	0.0291475	3214.57	6.3831	2.7965	611.28	1.2820	26.36	69.74
450	0.0297850	3242.28	6.4217	2.7470	617.87	1.2817	26.80	70.56
460	0.0304102	3269.53	6.4591	2.7043	624.24	1.2814	27.24	71.43
470	0.0310246	3296.38	6.4955	2.6674	630.41	1.2810	27.68	72.36
480	0.0316292	3322.89	6.5310	2.6354	636.39	1.2804	28.11	73.32
490	0.0322250	3349.11	6.5655	2.6076	642.21	1.2799	28.54	74.31
500	0.0328129	3375.06	6.5993	2.5833	647.89	1.2792	28.97	75.34
510	0.0333935	3400.78	6.6324	2.5622	653.42	1.2786	29.39	76.39
520	0.0339675	3426.31	6.6648	2.5437	658.83	1.2779	29.81	77.47
530 540	0.0345355	3451.67	6.6965	2.5275	664.12	1.2771	30.23	78.57
	0.0350979	3476.87	6.7277	2.5134	669.31	1.2764	30.65	79.69

Zustandsgleichung

 $h(10MPa, 450^{\circ}C) = 3242, 3 kJ / kg$

 $s(10MPa, 450^{\circ}C) = 6,422 \, kJ / (kg \, K)$

h,s-Diagramm für Wasser

 $h(10MPa, 450^{\circ}C) = 3242, 3 kJ / kg$

 $s(10MPa, 450^{\circ}C) = 6,422 \, kJ / (kg \, K)$

Basistechnologien für Strombereitstellung

Kraftwerk

(fossil = Verdrängungsstrom)

Entwicklung der spez. CO2-Emissionen ... https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-04-10_cc_10-2019_strommix_2019.pdf

(getrennte Erzeugung, fossile Brennstoffe)

Tabelle 2: CO₂-Emissionsfaktoren fossiler Brennstoffe im Vergleich mit dem CO₂-Emissionsfaktor des deutschen Strommix 2017*

	CO ₂ -Emissionsfaktor bezogen auf den Brennstoffeinsatz [g/k W h]	Brennstoffaus- nutzungsgrad netto bezogen auf den Stromverbrauch [%]	auf den Stromverbrauch	Vergleich CO ₂ - Emissionsfaktor Strommix [g/kWk]
Erdgas	201	54	374	
Steinkohle	336	41	815	486
Braunkohle	407	36	1.142	
Maria	'		Quellen: Umweltbundesamt	eigene Berechnungen März 201

$$\eta_{\mathit{el}} = rac{P_{\mathit{el},f}}{\dot{Q}_{\mathit{B},P}}$$

$$\eta_{el \oslash f} = 0.375$$
 Quelle: eigene Berechnungen Umweltbundesamt März 2019

Mit Anteilen der fossilen Primärenergieträger gewichteter durchschnittlicher Wirkungsgrad

$$f_{P,f} = \frac{\dot{Q}_B}{P_{e/f}} = \frac{1}{\eta_{e\varnothing}} = 2,67$$

Primärenergiefaktor (brennstoffbezogen)

$$f_{P,f} = \frac{PE}{P_{el,f}} = \frac{f_B \dot{Q}_B}{P_{el,f}} = \frac{f_B}{\eta_{el\varnothing}} = \frac{1,1}{0,375} = 2,94$$

Primärenergiefaktor mit Vorkette der Brennstoffe

Energieträger			rgiefaktoren $m{f}_{\scriptscriptstyle m p}$	Entspricht einem reg.
		insgesamt	nicht erneuerbarer	Anteil am Strom von
		Α	В	ca. 55%
	allgemeiner Strommix	2,8	2,4	ab 2016: 1,8
Strom	Verdrängungsstrommix	2,8	2,8	

Stromerzeugung im Kondensations-Dampfkraftwerk

$$P = \dot{m}_D w_{KP}$$

$$\dot{Q}_{zu} = \dot{m}_D \ q_{zu}$$

$$\overline{oldsymbol{\eta}_{th} = rac{ig|Pig|}{\dot{Q}_{zu}} = rac{ig|w_{KP}ig|}{oldsymbol{q}_{zu}}}$$

Irreversible Turbinenentspannung

adiabat und reversibel:

$$ds = \frac{dq}{T} + \frac{dw_{Diss}}{T} = 0$$

$$W_{trev} = h_{2is} - h_1$$

adiabat, irreversibe Entspannung:

$$ds = \frac{dw_{Diss}}{T} = ds_{irr} > 0$$

$$\boldsymbol{W}_t = \boldsymbol{h}_2 - \boldsymbol{h}_1$$

Isentropenwirkungsgrad, innerer Wirkungsgrad

$$\eta_{is,E} = \frac{W_t}{W_{t,rev}} = \frac{h_2 - h_1}{h_{2is} - h_1}$$

$$h_2 = h_1 - \eta_{is,E}(h_1 - h_{2,rev})$$

2. Kondensationskraftwerk

Ein Verbraucherschwerpunkt benötigt eine elektrische Leistung von P = 30 MW, die mit einem DKP bereitgestellt wird.

Der Dampfkessel hat einen Wirkungsgrad von η_K = 0,92, er Frischdampf für die Turbinen wird mit p_I = 10 MPa und t_I = 450 °C erzeugt. Die Turbine arbeitet mit einem Isentropenwirkngsgrad von η_{ii} = 0,88. Der Kondensatordruck beträgt p_K = 4 kPa.

Als Brennstoff dient Biomasse mit einem Heizwert H_U = 18 MJ/kg.

Bestimmen Sie die Enthalpien h₁₋₃, berechnen Sie den thermischen Wirkungsgrad und den benötigten Dampf- und Brennstoffmassenstrom.

Brennstoffaufwand für Vergleichsprozess "Getrennte Erzeugung"

Wirkungsgrad

Brennstoffaufwand

 $\eta_{\scriptscriptstyle K} = rac{oldsymbol{Q}_{\scriptscriptstyle extit{Nutz}}}{\dot{oldsymbol{Q}}_{\scriptscriptstyle B,Q}}$

$$\dot{oldsymbol{Q}}_{\!\scriptscriptstyle B,Q} = rac{\dot{oldsymbol{Q}}_{\!\scriptscriptstyle Nutz}}{\eta_{\scriptscriptstyle arksymbol{arksymbol{arksymbol{Q}}}}$$

$$\eta_{\scriptscriptstyle extstyle el arphi} = rac{P_{\scriptscriptstyle extstyle el}}{\dot{\mathsf{Q}}_{\scriptscriptstyle B.P}}$$

$$\dot{\mathsf{Q}}_{\!\scriptscriptstyle B,P} = rac{\mathsf{P}_{\!\scriptscriptstyle \mathsf{e}\prime}}{\eta_{\scriptscriptstyle \mathsf{e}\primearphi}}$$

Gesamt-Brennstoffaufwand bei Erzeugung von Strom und Wärme

Brennstoffaufwands-Kennzahl bezogen auf Q_{Nutz}

$$\dot{m{Q}}_{\!\scriptscriptstyle B} = \dot{m{Q}}_{\!\scriptscriptstyle B,Q} + \dot{m{Q}}_{\!\scriptscriptstyle B,P} = rac{\dot{m{Q}}_{\!\scriptscriptstyle Nutz}}{\eta_{\scriptscriptstyle K}} + rac{m{P}_{\!\scriptscriptstyle el}}{\eta_{\scriptscriptstyle el \, Kond}}$$

$$\left(rac{\dot{Q}_{B}}{\dot{Q}_{Nutz}}
ight)_{getrennt} = rac{1}{\eta_{K}} + rac{S}{\eta_{eoldsymbol{arphi}}}$$

$$S = \frac{P_{el,V}}{\dot{Q}_{Nutz,V}} = \frac{W_{el,V}}{Q_{Nutz,V}}$$

Ein Verbraucherschwerpunkt benötigt eine elektrische Leistung von P = 30 MW und einen

Wärmestrom $\dot{\mathbf{Q}} = 147$ MW (Satt-Dampf mit einer Kondensationstemperatur t = 200 °C, $p_D = 1,555$ MPa).

Berechnen Sie Dampf- und Brennstoffbedarf

a) bei getrennter Erzeugung in einem Heizkessel und einem Kondensationskraftwerk.

Die Dampfkessel haben einen Wirkungsgrad von $\eta_K = 0.92$.

Die Turbine haben Isentropenwirkungsgrade $\eta_{is} = 0.88$ (η_{mech} , η_{Gen} vernachlässigen).

Der Frischdampf für die Turbinen wird mit $p_1 = 10$ MPa und $t_1 = 450$ °C erzeugt.

Der Kondensatordruck beträgt $p_K = 4$ kPa., die Umgebungstemperatur $t_U = 20$ °C.

Die Speisepumpenarbeit kann vernachlässigt werden.

Als Brennstoff dient Holz mit einem Heizwert $H_i = 18$ MJ/kg und einer spezifischen Exergie $e_B \sim H_i$.

Kraft- Wärme – Kopplung (KWK)

Gekoppelte (gleichzeitige) Erzeugung von Strom und Wärme

thermisch

feststehende Wärmenutzungstemperatur, Abgaswärme bleibt oft ungenutzt

Kennzahlen zur Bewertung

Wirkungsgrade:

$$\eta_{ges} = rac{P_{el} + \dot{Q}_{Nutz}}{\dot{Q}_{B}}$$
 $\eta_{el} = rac{P_{el}}{\dot{Q}_{B}}$ η_{th}

$$\eta_{ extit{ges,ex}} = rac{oldsymbol{P_{el}} + rac{T_{Heiz} - T_U}{T_{Heiz}} \dot{oldsymbol{Q}}_{ extit{Nutz}}}{\dot{oldsymbol{Q}}_{ extit{p}}} = \eta_{ extit{el}} + \eta_{ extit{exHK}}$$

DKP Dampfkraftprozess $Q_B \longrightarrow P_{el}$

Temperatur der Abwärme kann auf Verbraucher-bedürfnisse abgestimmt werden → veränderliche Verhältnisse zwischen Strom und Wärme, Abgasverluste ähnlich Heizkessel

Auch Brennstoffzellen können als KWK genutzt werden

Stromkennzahl:

Heizzahl:

$$\sigma = \frac{P_{el}}{\dot{Q}_{Nutz}} = \frac{1}{h}$$
 $h = \frac{\dot{Q}_{Nutz}}{P_{el}} = \frac{1}{\sigma}$

Abwärme Kreisprozess und Nutzwärme können sich unterscheiden

Kraft-Wärme-Kopplung (KWK) mit DKP

Reine Gegendruckturbine

$$W_{t,T} = h_2 - h_1$$
 $q_{Nutz} = h_3 - h_2$

$$\sigma = \frac{\boldsymbol{w}_{t,T}}{\boldsymbol{q}_{\text{Nutz}}} = \frac{\dot{\boldsymbol{m}}_{\text{D}} \left(\boldsymbol{h}_{\text{2}} - \boldsymbol{h}_{\text{1}}\right)}{\dot{\boldsymbol{m}}_{\text{D}} \left(\boldsymbol{h}_{\text{3}} - \boldsymbol{h}_{\text{2}}\right)} = \frac{\boldsymbol{P}_{\text{el}}}{\dot{\boldsymbol{Q}}_{\text{Nutz}}}$$

$$q_{zu} = h_1 - h_{4=3} = W_{t,T} + q_{Nutz}$$

$$\eta_{\mathit{KWK}} = \frac{W_{\mathit{t,T}} + q_{\mathit{Nutz}}}{q_{\mathit{zu}}} = 1$$
innerer Wirkungsgrad
der KWK

$$\eta_{ges} = \frac{P_{el} + \dot{Q}_{Nutz}}{\dot{Q}_{B}} = \eta_{K} < 1$$

$$\dot{Q}_{B} = \frac{\dot{m}_{D} (w_{t,T} + q_{Nutz})}{\eta_{ges=K}}$$

Gesamtwirkungsgrad, brennstoffbezogen

Arbeit und Wärme lassen sich nicht unabhängig voneinander einstellen.

$$\dot{Q}_{B} = \frac{\dot{m}_{D} (w_{t,T} + q_{Nutz})}{\eta_{ges=K}}$$

Beziehungen zwischen den Kennzahlen

(nur zwei Kennzahlen können unabhängig voneinander definiert werden)

DKP

Wirkungsgrade:

$$\eta_{ extit{ges}} = rac{oldsymbol{P}_{ extit{el}} + \dot{oldsymbol{Q}}_{ extit{Nutz}}}{\dot{oldsymbol{Q}}_{ extit{B}}} riangleq \eta_{ extit{K}}$$

$$\eta_{\scriptscriptstyle \mathsf{el}} = \frac{1}{\mathsf{G}}$$

Stromkennzahl:

$$\sigma = \frac{P_{\text{el}}}{\dot{Q}_{\text{Nutz}}} = \frac{P_{\text{el}}}{\eta_{\text{ges}}\dot{Q}_{\text{B}} - P_{\text{el}}} = \frac{\eta_{\text{el}}}{\eta_{\text{ges}} - \eta_{\text{el}}}$$

Abgasverluste ähnlich Heizkessel

$$\eta_{\kappa} = 0.9 \quad \eta_{el} = 0.4 \quad \sigma = 0.8$$

Stromkennzahlen steigen mir abnehmendem Gesamt- und thermischem Wirkungsgrad. Erwünscht sind aber hohe $\eta_{\rm el}$ und $\eta_{\rm qes}$

Bewertung von Heizkraftwerken (Fernwärme)

Arbeitsblatt AGFW FW 309 Teil 1

Energetische Bewertung von Fernwärme

- Bestimmung der spezifischen Primärenergiefaktoren für Fernwärmeversorgungssysteme -

Energy Performance of District Heating

- Determination of the specific primary energy factors in district heating supply -

Mai 2014

A	Stromarbeit	MWh
f	Faktor	_
Q	Wärmearbeit	MWh
W	Brennstoffwärme	MWh_{Hi}

$$A = W_{el}$$
 $W_{Br} = Q_B = H_B = m_B H_{i/s}$
 $\dot{Q}_B = \dot{H}_B = \dot{m}_B H_{i/s}$
 $H_{i/s}$ - Heizwert/Brennwert

$$f_{P,FW} = \frac{(1+\sigma) \cdot \alpha_{KWK} \cdot f_{P,Br}}{\zeta_{ne,KWK} \cdot \zeta_{HN}} + \frac{(1-\alpha_{KWK}) \cdot f_{P,Br}}{\zeta_{ne,th} \cdot \zeta_{HN}} - \frac{(\sigma \cdot \alpha_{KWK} - \alpha_{HN}) \cdot f_{P,verdr}}{\zeta_{HN}}$$
 mit
$$\sigma \qquad \text{Stromkennziffer der KWK-Anlage}$$

$$\alpha_{KWK} \qquad \text{KWK-Deckungsanteil}$$

$$\alpha_{HN} \qquad A_{HN} / Q_{Bne} \text{ Hierfür ist 0,015 einzusetzen.}$$

$$\zeta_{HN} \qquad \text{Nutzungsgrad des Heiznetzes. Hierfür kann 0,90 eingesetzt werden.}$$

$$\zeta_{ne,KWK} \qquad \text{Nutzungsgrad der KWK-Anlage}$$

$$\zeta_{ne,th} \qquad \text{Nutzungsgrad der ungekoppelten Wärmeerzeugung}$$

Netzstrom und KWK-Strom haben unterschiedliche Wirkungsgrade

Wird KWK-Strom eingespeist, so wird bilanziell durch diesen Strom ausschließlich fossiler Strom ersetzt (Verdrängungsstrom)

Methoden zur Bestimmung von Primärenergiefaktoren der Kraft-Wärme-Kopplung

Arbeitswertmethode

Vergleich der KWK mit Kondkraftwerk (bei gleicher Stromerzeugung)

$$PE_Q = PE_{KWK} - PE_{P_{el},kond}$$

- Exergetische Methode (Carnot-Methode) Bewertung des Arbeitswertes der Wärme mit $\frac{T_m-T_U}{T_m}Q$ als "Stromverlust"
- Stromgutschriftenmethode

$$PE_Q = PE_{KWK} - f_{PX} P_{el,KWK}$$

Finnische Methode

Vergleich von gekoppelter Erzeugung mit getrennter Erzeugung Zwei Referenzsysteme notwendig, (Ergebnis wird stark vom Referenzsystem beeinflusst)

Kalorische Methode (Internationale Energie-Agentur-Methode)
 Brennstoffaufteilung prozentual zu Strom und Wärme,
 (eigentlich ungeeignet, nur sofern keine anderen Daten zur Verfügung stehen)

Gesamtbrennstoffaufwand Kraft - Wärme - Kopplung

$$\eta_{ ext{elKWK}} = rac{oldsymbol{P_{el}}}{\dot{oldsymbol{Q}_{B}}} \qquad \qquad \eta_{ ext{K}} = rac{oldsymbol{P_{el}} + \dot{oldsymbol{Q}_{Nutt}}}{\dot{oldsymbol{Q}_{B}}}$$

$$\dot{\mathbf{Q}}_{B} = \frac{P_{el}}{\eta_{elKWK}} = \frac{P_{el} + \dot{\mathbf{Q}}_{Nutz}}{\eta_{K}} = \frac{P_{el}}{\eta_{K}} + \frac{\dot{\mathbf{Q}}_{Nutz}}{\eta_{K}}$$

$$\left(\frac{\dot{Q}_{B}}{\dot{Q}_{Nutz}}\right)_{KWK} = \frac{\sigma}{\eta_{elKWK}} = \frac{\sigma}{\eta_{K}} + \frac{1}{\eta_{K}}$$

Vergleich Brennstoffaufwandskennzahlen

Kraft-Wärme-Kopplung mit Dampfkraftprozess

Ein Verbraucherschwerpunkt benötigt eine elektrische Leistung von P = 30 MW und einen

Wärmestrom $\dot{\mathbf{Q}} = 149,4$ MW (Satt-Dampf mit einer Kondensationstemperatur t = 200 °C, $p_D = 1,555$ MPa).

Vergleichen Sie Dampf- und Brennstoffbedarf

- a) bei getrennter Erzeugung in einem Heizkessel und einem Kondensationskraftwerk.,
- b) bei Verwendung einer reinen Gegendruckturbine.

Die Dampfkessel haben einen Wirkungsgrad von $\eta_K = 0.92$.

Die Turbine haben Isentropenwirkungsgrade $\eta_{is} = 0.88$ (η_{mech} , η_{Gen} vernachlässigen).

Der Frischdampf für die Turbinen wird mit $p_1 = 10$ MPa und $t_1 = 450$ °C erzeugt.

Der Kondensatordruck beträgt $p_K = 4$ kPa., die Umgebungstemperatur $t_U = 20$ °C.

Die Speisepumpenarbeit kann vernachlässigt werden.

Als Brennstoff dient Holz mit einem Heizwert $H_i = 18$ MJ/kg und einer spezifischen Exergie $e_B \sim H_i$.

- c) Wie ändern sich die Verhältnisse, wenn der Wärmebedarf nur $\dot{Q} = 60$ MW beträgt?
- d) Vergleichen Sie den Dampfbedarf für den verminderten Nutzwärmestrom bei Nutzung einer Entnahmekondensationsturbine und einer verbundenen Gegendruckturbine.

Anpassung an Heizwärmebedarf

H < h

Auspuffbetrieb GD-Turbine

Verbraucher benötigt weniger Dampf, als zur Elektroenergiebereitstellung benötigt wird

 $S = \sigma$ H = h

Optimale Übereinstimmung KWK - Verbraucher

H > h

Spitzenlast-Kessel

Verbraucher benötigt mehr Dampf, als bei maximaler Last der Turbine angeboten wird

Anpassung von Strom – und Wärmebedarf

$$\dot{Q}_{DE} = \dot{m}_{FD} (h_1 - h_{6^*})$$
 $\dot{m}_{FD} h_6 = \dot{m}_{ND} h_3 + (\dot{m}_{FD} - \dot{m}_{ND}) h_{5^*}$

Mindestleistungsziffer der Wärmepumpe im Vergleich zum Heizkessel auf Brennstoffbasis

$$\varepsilon_{WP} = \frac{\dot{Q}_{Nutz}}{P_{el}}$$

$$\varepsilon_{el} = \frac{\dot{Q}_{Nutz}}{\dot{Q}_{Nutz}}$$

$$egin{aligned} egin{aligned} eta_{ extsf{el}} \ \dot{oldsymbol{\mathsf{Q}}}_{B,P} \end{aligned}$$

$$\eta_{K} = rac{\dot{\mathbf{Q}}_{Nutz}}{\dot{\mathbf{Q}}_{B}}$$

$$\left(\frac{\dot{Q}_{B}}{\dot{Q}_{Nutz}}\right)_{WP} = \frac{1}{\eta_{el\varnothing} \ \mathcal{E}_{WP}} \qquad \qquad \underbrace{\frac{1}{\eta_{K}} = \left(\frac{\dot{Q}_{B}}{\dot{Q}_{Nutz}}\right)_{Kess}}_{Wenn \ WP \ im \ Vorteil \ sein \ soll}$$

$$\frac{1}{\eta_{K}} = \left(\frac{\dot{\mathbf{Q}}_{B}}{\dot{\mathbf{Q}}_{Nutz}}\right)_{Kesse}$$

$$arepsilon \geq rac{\eta_K}{\eta_{e\varnothing}}$$

$$\mathcal{E} \geq \frac{\eta_{\mathcal{K}}}{\eta_{e\varnothing}}$$
 Mindestleistungsziffer $\mathcal{E}_{\min} = \frac{1}{0.33} = 3$ $\mathcal{E}_{\min} = \frac{1}{0.5} = 2$

Brennstoffaufwandsvergleich WP-KWK

$$\eta_{ges} = \eta_{\it K}$$

$$\dot{\mathsf{Q}}_{\mathsf{B}_{\mathsf{WP}}} = rac{\mathsf{Q}_{\mathsf{Nutz}}}{\eta_{\mathsf{el}\varnothing} \ \mathcal{E}_{\mathsf{WP}}}$$

$$\dot{Q}_{B} = rac{P_{el}}{\eta_{elKWK}} = rac{P_{el} + \dot{Q}_{Nutz}}{\eta_{K}} = rac{P_{el}}{\eta_{K}} + rac{\dot{Q}_{Nutz}}{\eta_{K}} \qquad \dot{Q}_{B_{ges}} = rac{\dot{Q}_{Nutz}}{\eta_{el\varnothing} \ arepsilon_{WP}} + rac{\dot{P}_{el}}{\eta_{el\varnothing}}$$

$$\left(\frac{\dot{Q}_{B}}{\dot{Q}_{Nutz}}\right)_{KWK} = \frac{\sigma}{\eta_{K}} + \frac{1}{\eta_{K}} = \frac{1}{\eta_{K} - \eta_{elKWK}}$$

$$rac{1}{\eta_{\scriptscriptstyle K} - \eta_{\scriptscriptstyle el \! K \! W \! K}} \;\;\; \geqq \;\; rac{\sigma}{\eta_{\scriptscriptstyle el \! arnothing}} + rac{1}{\eta_{\scriptscriptstyle el \! arnothing}} \;\;\;$$

$$\dot{Q}_{B_{P}} = \frac{P_{el}}{\eta_{eoldsymbol{arrho}}}$$

In KWK als Koppelprodukt anfallender Strom ist zusätzlich zu erzeugen

$$\left(\frac{\dot{Q}_{B}}{\dot{Q}_{Nutz}}\right)_{WP} = \frac{\sigma}{\eta_{el\varnothing}} + \frac{1}{\eta_{el\varnothing} \ \varepsilon_{WP}}$$

Wenn WP im Vorteil sein soll

Brennstoffaufwandsvergleich WP - KWK

$$rac{1}{\eta_{\scriptscriptstyle K} - \eta_{\scriptscriptstyle el \! K \! W \! K}} \;\;\; \geq \;\;\; rac{\sigma}{\eta_{\scriptscriptstyle el \! arnothing}} + rac{1}{\eta_{\scriptscriptstyle el \! arnothing}} \, arepsilon_{\scriptscriptstyle W \! P}$$

$$\sigma = rac{\eta_{ ext{elKWK}}}{\eta_{ ext{ges}} - \eta_{ ext{elKWK}}}$$

$$arepsilon_{ extit{WP}, ext{min}} = rac{\eta_{ extit{K}} - \eta_{ ext{elKWK}}}{\eta_{ ext{el} arnothing} - \eta_{ ext{elKWK}}}$$

Schon bei η_{KWK} > 30% ist die KWK effizienter als eine KWP

