Multiplicative operators in the spaces of Schwartz families

David Carfi

Abstract

In this paper we introduce and study the multiplication among smooth functions and Schwartz families. This multiplication is fundamental in the formulation and development of a spectral theory for Schwartz linear operators in distribution spaces, to introduce efficiently the Schwartz eigenfamilies of such operators and to build up a functional calculus for them. The definition of eigenfamily is absolutely natural and this new operation allows us to develop a rigorous and manageable spectral theory for Quantum Mechanics, since it appears in a form extremely similar to the current use in Physics.

1 Introduction

In the Spectral Theory of ${}^{\mathcal{S}}$ linear operators, the eigenvalues corresponding to the elements of certain ${}^{\mathcal{S}}$ families have fundamental importance. If L is an ${}^{\mathcal{S}}$ linear operator and v is an ${}^{\mathcal{S}}$ family, the family v is defined an eigenfamily of the operator L if there exists a real or complex function l - defined on the set of indices of the family v - such that the relation

$$L(v_p) = l(p)v_p$$

holds for every index p of the family v. As we already have seen, in the context of ^Slinear operators, it is important how the operator L acts on the entire family v. Taking into account the above definition, it is natural to consider the image family L(v) as the product - in pointwise sense - of the family v by the function l, but:

- is the pointwise multiplication an operation in the space of Sfamilies?
- what kind of properties are satisfied by this product?

In this chapter we define and study the properties of such product.

$\mathbf{2}$ \mathcal{O}_{M} Functions

We recall, for convenience of the reader, some basic notions from theory of distributions.

Definition (of slowly increasing smooth function). We denote by $\mathcal{O}_M(\mathbb{R}^n,\mathbb{K})$, or more simply by $\mathcal{O}_M^{(n)}$, the subspace of all smooth functions f, belonging to the space $\mathcal{C}^{\infty}(\mathbb{R}^n,\mathbb{K})$, such that, for every test function $\phi \in \mathcal{S}_n$ the product ϕf lives in \mathcal{S}_n . The space $\mathcal{O}_M(\mathbb{R}^n,\mathbb{K})$ is said to be the space of smooth functions from \mathbb{R}^n into the field \mathbb{K} slowly increasing at infinity (with all their derivatives).

In other terms, the functions f belonging to the space $\mathcal{O}_M^{(n)}$ are the only smooth functions which can generate a multiplication operator

$$M_f: \mathcal{S}_n \to \mathcal{S}_n$$

of the space S_n into the space S_n itself, (obviously) by the relation

$$M_f(g) = fg$$
.

This is the motivation of the importance of these functions in Distribution Theory, and the symbol itself \mathcal{O}_M depends on this fact (\mathcal{O}_M stands for multiplicative operators).

Let us see a first characterization.

Proposition. Let $f \in \mathcal{E}_n$ be a smooth function. Then the following conditions are equivalent:

1) for all multi-index $p \in \mathbb{N}_0^n$ there is a polynomial P_p such that, for any point $x \in \mathbb{R}^n$, the following inequality holds

$$|\partial^p f(x)| \leq |P_p(x)|;$$

- 2) for any test function $\phi \in \mathcal{S}_n$ the product ϕf lies in \mathcal{S}_n ;
- 3) for every multi-index $p \in \mathbb{N}_0^n$ and for every test function $\phi \in \mathcal{S}_n$ the product $(\partial^p f) \phi$ is bounded in \mathbb{R}^n .

2.1 Topology

The standard topology of the space $\mathcal{O}_M^{(n)}$ is the locally convex topology defined by the family of seminorms

$$\gamma_{\phi,p}(\phi) = \sup_{x \in \mathbb{R}^n} |\phi(x)\partial^p f(x)|$$

with $\phi \in \mathcal{S}_n$ and $p \in \mathbb{N}_0^n$. This topology does not have a countable basis. Also, it can be shown that the space $\mathcal{O}_M^{(n)}$ is a complete space. A sequence $(f_j)_{j\in\mathbb{N}}$ converges to zero in $\mathcal{O}_M^{(n)}$ if and only if for every test function $\phi \in \mathcal{S}_n$ and for every multi-index $p \in \mathbb{N}_0^n$, the sequence of functions $(\phi \partial^p f_j)_{j\in\mathbb{N}}$ converges to zero uniformly on \mathbb{R}^n ; or, equivalently, if, for every test function $\phi \in \mathcal{S}_n$, the sequence $(\phi f_j)_{j\in\mathbb{N}}$ converges to zero in \mathcal{S}_n . A filter F on $\mathcal{O}_M^{(n)}$ converges to zero in $\mathcal{O}_M^{(n)}$ if and only if for every test function $\phi \in \mathcal{S}_n$, the filter ϕF converges to zero in \mathcal{S}_n .

2.2 Bounded sets in $\mathcal{O}_{M}^{(n)}$

A subset B of $\mathcal{O}_M^{(n)}$ is bounded (in the topological vector space $\mathcal{O}_M^{(n)}$) if and only if, for all multi-index $p \in \mathbb{N}_0^n$, there is a polynomial P_p such that, for any function $f \in B$, the following inequality holds true

$$|\partial^p f(x)| \le P_p(x),$$

for any point $x \in \mathbb{R}^n$.

2.3 Multiplication in S_n by $\mathcal{O}_M^{(n)}$ functions

The bilinear map

$$\Phi: \mathcal{O}_M^{(n)} \times \mathcal{S}_n \to \mathcal{S}_n: (\phi, f) \mapsto \phi f$$

is separately continuous with respect to the usual topologies of the spaces $\mathcal{O}_M^{(n)}$ and \mathcal{S}_n . It follows immediately that the multiplication operator M_f , associated with an \mathcal{O}_M function f, is continuous (with respect to the standard topology of the Schwartz space \mathcal{S}_n). Moreover, the transpose of the operator M_f is the operator

$${}^tM_f:\mathcal{S}'_n\to\mathcal{S}'_n$$

defined by

$${}^{t}M_{f}(u)(g) = u(M_{f}(g)) =$$

$$= u(fg) =$$

$$= fu(g),$$

for every u in \mathcal{S}'_n and for every g in \mathcal{S}_n . So that, the transpose of the multiplication M_f is the multiplication on \mathcal{S}'_n by the function f. Indeed, the multiplication of a tempered distribution by an \mathcal{O}_M function is defined by the transpose of M_f , since this last operator is self-adjoint with respect to the canonical bilinear form on $\mathcal{S}_n \times \mathcal{S}_n$. In fact, obviously, we have

$$\langle M_f(g), h \rangle = \langle g, M_f(h) \rangle,$$

for every pair (g, h) in that Cartesian product $S_n \times S_n$. So we can use the standard procedure to extend regular operators (operators admitting an adjoint with respect to the standard bilinear form) from their domain S_n to the entire space S'_n .

2.4 SFamily of the multiplication operator M_f

Since the multiplication operator $M_f: \mathcal{S}_n \to \mathcal{S}_n$ is continuous, we can associate with it an $^{\mathcal{S}}$ family v, in the canonical way. We have

$$\begin{array}{rcl} v_p & = & (M_f^{\vee})_p = \\ & = & \delta_p \circ M_f = \\ & = & {}^tM_f(\delta_p) = \\ & = & f\delta_p = \\ & = & f(p)\delta_p, \end{array}$$

for every p in \mathbb{R}^n . In the language of Schwartz matrices we can say that to the operator M_f is associated the Schwartz diagonal matrix $f\delta$.

3 Product in $\mathcal{L}(\mathcal{S}_n, \mathcal{S}_m)$ by \mathcal{O}_M functions

The basic remark is the following.

Proposition. Let $A \in \mathcal{L}(\mathcal{S}_n, \mathcal{S}_m)$ be a continuous linear operator and let f be a function of class $\mathcal{O}_M^{(m)}$. Then, the mapping

$$fA: \mathcal{S}_n \to \mathcal{S}_m: \phi \mapsto fA(\phi)$$

is a linear and continuous operator too; it is indeed the composition

$$M_f \circ A$$
,

where M_f is the multiplication operator on S_m by the function f.

Proof. It is absolutely straightforward. First of all we note that the product fA is well defined. In fact, we have

$$(fA)(\phi) = fA(\phi),$$

and the right-hand function lies in the space \mathcal{S}_m because the function f lies in the space $\mathcal{O}_M^{(m)}$ and the function $A(\phi)$ lies in the space \mathcal{S}_m . Moreover, the bilinear application

$$\Phi: \mathcal{O}_M^{(m)} \times \mathcal{S}_m \to \mathcal{S}_m: (f, \psi) \mapsto f\psi$$

is separately continuous and we have

$$(fA)(\phi) = fA(\phi) =$$

$$= \Phi(f, A(\phi)) =$$

$$= M_f(A(\phi)),$$

i.e.,

$$fA = \Phi(f, \cdot) \circ A =$$
$$= M_f \circ A,$$

hence the operator fA is the composition of two linear continuous maps and then it is a linear and continuous operator.

Definition. Let $A \in \mathcal{L}(\mathcal{S}_n, \mathcal{S}_m)$ and $f \in \mathcal{O}_M^{(m)}$. The operator

$$fA: \mathcal{S}_n \to \mathcal{S}_m: \phi \mapsto fA(\phi)$$

is called the product of the operator A by the function f.

Proposition. Let $A, B \in \mathcal{L}(S_n, S_m)$ be two continuous linear operators and f, g be two functions in $\mathcal{O}_M^{(m)}$. Then, we have

- 1) (f+g)A = fA + gA; f(A+B) = fA + fB; $1_{\mathbb{R}^m}A = A$, where the function $1_{\mathbb{R}^m}$ is the constant function of \mathbb{R}^m into \mathbb{K} with value 1;
- 2) the map

$$\Phi: \mathcal{O}_{M}^{(m)} \times \mathcal{L}(\mathcal{S}_{n}, \mathcal{S}_{m}) \to \mathcal{L}(\mathcal{S}_{n}, \mathcal{S}_{m}): (f, A) \mapsto fA$$

is a bilinear map.

Proof. It's a straightforward computation.

The above bilinear application is called multiplication of operators by \mathcal{O}_M functions.

3.1 The algebra $\mathcal{O}_M^{(m)}$

It's easy to see that the algebraic structure $(\mathcal{O}_M^{(m)}, +, \cdot)$ is a commutative ring with identity, with respect to the usual pointwise addition and multiplications. For instance, the multiplication is the operation

$$\cdot : \mathcal{O}_{M}^{(m)} \times \mathcal{O}_{M}^{(m)} \to \mathcal{O}_{M}^{(m)} : (f,g) \mapsto fg,$$

where, obviously, if $f,g \in \mathcal{O}_M^{(m)}$, then the pointwise product fg still lies in $\mathcal{O}_M^{(m)}$. The identity of the ring is the function $1_m := 1_{\mathbb{R}^m}$. Moreover, we have that the subspace \mathcal{S}_m of the space $\mathcal{O}_M^{(m)}$ is an ideal of the ring $\mathcal{O}_M^{(m)}$. The subring of $\mathcal{O}_M^{(m)}$ formed by the invertible elements of $\mathcal{O}_M^{(m)}$ is exactly the multiplicative subgroup of those elements f such that the multiplicative inverse f^{-1} belongs to the space $\mathcal{O}_M^{(m)}$ too.

So that, the space $\mathcal{O}_M^{(m)}$ is a locally convex topological algebra with unit element.

3.2 The module $\mathcal{L}(\mathcal{S}_n, \mathcal{S}_m)$

Proposition. Let \cdot be the multiplication by $\mathcal{O}_M^{(m)}$ functions defined in the above theorem. Then, the algebraic structure $(\mathcal{L}(\mathcal{S}_n, \mathcal{S}_m), +, \cdot)$ is a left module over the ring $(\mathcal{O}_M^{(m)}, +, \cdot)$.

Proof. Recalling the preceding theorem, we have to prove only the pseudo-associative law, i.e. we have to prove that for every couple of functions $f, g \in \mathcal{O}_M^{(m)}$ and for every linear continuous operator $A \in \mathcal{L}(\mathcal{S}_n, \mathcal{S}_m)$, we have

$$(fg)A = f(gA).$$

In fact, for each $\phi \in \mathcal{S}_n$, we have

$$\begin{aligned} [(fg)A](\phi) &= (fg)A(\phi) = \\ &= f(gA(\phi)) = \\ &= f(gA)(\phi)) = \\ &= [f(gA)](\phi), \end{aligned}$$

as we desired.

4 Products of ${}^{\mathcal{S}}$ families by ${}^{\mathcal{O}_M}$ functions

The central definition of the chapter is the following.

Definition (product of Schwartz families by smooth functions). Let $v \in \mathcal{S}(\mathbb{R}^m, \mathcal{S}'_n)$ be an ^Sfamily of distributions and let $f \in \mathcal{C}^{\infty}(\mathbb{R}^m, \mathbb{K})$ be a smooth function. The product of the family v by the function f is the family

$$fv := (f(p)v_p)_{p \in \mathbb{R}^m}.$$

Theorem. Let $v \in \mathcal{S}(\mathbb{R}^m, \mathcal{S}'_n)$ be an \mathcal{S} family and $f \in \mathcal{O}_M^{(m)}$. Then, the family fv lies in $\mathcal{S}(\mathbb{R}^m, \mathcal{S}'_n)$. Moreover, we have

$$(fv)^{\wedge} = f\widehat{v}.$$

Consequently, concerning the superposition operator of the family fv, since $f\hat{v} = M_f \circ \hat{v}$, we have

$${}^{t}(fv)^{\wedge} = {}^{t}\widehat{v} \circ {}^{t}M_{f},$$

or equivalently, in superposition form

$$\int_{\mathbb{R}^m} a(fv) = \int_{\mathbb{R}^m} (fa)v,$$

for every coefficient distribution a in \mathcal{S}'_m .

Proof. Let $\phi \in \mathcal{S}_n$ be a test function, we have

$$(fv)(\phi)(p) = (fv)_p(\phi) =$$

$$= (f(p)v_p)(\phi) =$$

$$= f(p)v_p(\phi) =$$

$$= f(p)\hat{v}(\phi)(p)$$

and hence the function $(fv)(\phi)$ equals $f\widehat{v}(\phi)$, which lies in \mathcal{S}_m . Thus, the product fv lies in the space of Schwartz families $\mathcal{S}(\mathbb{R}^m, \mathcal{S}'_n)$. For any test function $\phi \in \mathcal{S}_n$, by the above consideration, we deduce

$$(fv)^{\wedge}(\phi) = f\widehat{v}(\phi),$$

that is, the equality of operators

$$(fv)^{\wedge} = f\widehat{v},$$

where $f\hat{v}$ is the product of the operator \hat{v} by the function f, product which belongs to the space $\mathcal{L}(\mathcal{S}_m, \mathcal{S}_n)$. Moreover, concerning the superposition operator of the family fv, we obtain

$$\int_{\mathbb{R}^m} a(fv) = {}^t(fv)^{\wedge}(a) =$$

$$= {}^t(f\widehat{v})(a) =$$

$$= {}^t(M_f \circ \widehat{v})(a) =$$

$$= ({}^t\widehat{v} \circ {}^tM_f)(a) =$$

$$= {}^t\widehat{v}({}^tM_f(a)) =$$

$$= {}^t\widehat{v}(fa) =$$

$$= \int_{\mathbb{R}^m} (fa)v,$$

for every distribution a in \mathcal{S}'_m .

Theorem. Let f, g two functions in the space $\mathcal{O}_M^{(m)}$ and v, w two Schwartz families in the space $\mathcal{S}(\mathbb{R}^m, \mathcal{S}'_n)$. Then, we have:

- 1) (f+g)v = fv + gv, f(v+w) = fv + fw and $1_mv = v$;
- 2) the map

$$\Phi: \mathcal{O}_M^{(m)} \times \mathcal{S}(\mathbb{R}^m, \mathcal{S}_n') \to \mathcal{S}(\mathbb{R}^m, \mathcal{S}_n') : (f, v) \mapsto fv$$

is a bilinear map.

Proof. 1) For all $p \in \mathbb{R}^m$, we have

$$\begin{aligned} [(f+g)\,v]\,(p) &=& (f+g)(p)v_p = \\ &=& (f(p)+g(p))v_p = \\ &=& f(p)v_p + g(p)v_p = \\ &=& (fv)_p + (gv)_p, \end{aligned}$$

i.e. (f+g)v = fv + gv. For all $p \in \mathbb{R}^m$, we have

$$\begin{aligned} [f(v+w)](p) &= f(p)(v+w)_p = \\ &= f(p)(v_p + w_p) = \\ &= f(p)v_p + f(p)w_p = \\ &= (fv)_p + (fw)_p, \end{aligned}$$

i.e. f(v+w) = fv + fw. For all $p \in \mathbb{R}^m$, we have

$$(1_{\mathbb{R}^m}v)(p) = 1_{\mathbb{R}^m}(p)v_p = v_p;$$

i.e. $1_{\mathbb{R}^m}v = v$. 2) follows immediately by 1).

The bilinear application of the point 2) of the preceding theorem is called multiplication of Schwartz families by \mathcal{O}_M functions.

Theorem (of structure). Let \cdot the operation defined above. Then, the algebraic structure $(\mathcal{S}(\mathbb{R}^m, \mathcal{S}'_n), +, \cdot)$ is a left module over the ring $(\mathcal{O}_M^{(m)}, +, \cdot)$.

Proof. It's analogous to the proof of the corresponding proposition for operators. \blacksquare

Theorem (of isomorphism). The application

$$(\cdot)^{\wedge}: \mathcal{S}(\mathbb{R}^m, \mathcal{S}'_n) \to \mathcal{L}(\mathcal{S}_n, \mathcal{S}_m)$$

is a module isomorphism.

Proof. It follows easily from the above theorem.

5 \mathcal{O}_M Functions and Schwartz basis

In this section we study some important relations among a Schwartz family w and its multiples fw.

Theorem. Let $w \in \mathcal{S}(\mathbb{R}^m, \mathcal{S}'_n)$ be a Schwartz family and let $f \in \mathcal{O}_M^{(m)}$. Then, the hull ${}^{\mathcal{S}}\operatorname{span}(w)$ of the family w contains the hull ${}^{\mathcal{S}}\operatorname{span}(fw)$ of the multiple family fw. Moreover, if a distribution a represents the distribution w with respect to the family fw (that is, if w = a.(fw)) then the distribution fa represents the distribution w with respect to the family w (that is, if w = (fa).w).

Proof. 1) Let u be a vector of the ^Slinear hull ^Sspan(fw). Then, there exists a coefficient distribution $a \in \mathcal{S}'_m$ such that

$$u = \int_{\mathbb{D}^m} a(fw),$$

and this is equivalent (as we already have seen) to the equality

$$u = \int_{\mathbb{R}^m} (fa)w;$$

hence the vector u belongs also to the ^Slinear hull ^Sspan(w). Hence the ^Slinear hull ^Sspan(fw) is contained in the ^Slinear hull ^Sspan(w).

Theorem. Let $w \in \mathcal{S}(\mathbb{R}^m, \mathcal{S}'_n)$ be a Schwartz family and let $f \in \mathcal{O}_M^{(m)}$ be a function different from 0 at every point of its domain. Then, the following assertions hold true:

- 1) if the family w is $^{\mathcal{S}}$ linearly independent, the family fw is $^{\mathcal{S}}$ linearly independent too;
- 2) the Schwartz linear hull ${}^{\mathcal{S}}\operatorname{span}(w)$ contains the hull ${}^{\mathcal{S}}\operatorname{span}(fw)$;
- 3) if the family w is ^Slinearly independent, for each vector u in the hull ${}^{S}\operatorname{span}(fw)$, we have

$$[u \mid w] = f[u \mid fw],$$

where, as usual, by [u|v] we denote the Schwartz coordinate system of a distribution u (in the Schwartz linear hull of v) with respect to a Schwartz linear independent family v;

4) if the family w is an $^{\mathcal{S}}$ basis of a subspace V, then fw is an $^{\mathcal{S}}$ basis of its $^{\mathcal{S}}$ linear hull $^{\mathcal{S}}$ span(fw) (that in general is a proper subspace of the hull $^{\mathcal{S}}$ span(w)).

Proof. 1) Let $a \in \mathcal{S}'_m$ be such that

$$\int_{\mathbb{R}^m} a(fw) = 0_{\mathcal{S}'_n},$$

we have

$$0_{\mathcal{S}'_n} = \int_{\mathbb{R}^m} a(fw) =$$
$$= \int_{\mathbb{R}^m} (fa)w,$$

thus, because the family w is ${}^{\mathcal{S}}$ linearly independent we have $fa = 0_{\mathcal{S}'_n}$. Since f is different from 0 at every point, we can conclude $a = 0_{\mathcal{S}'_n}$.

2) Let u be a vector of the Schwartz linear hull ${}^{\mathcal{S}}\operatorname{span}(fw)$. Then, there exists a coefficient distribution $a \in \mathcal{S}'_m$ such that

$$u = \int_{\mathbb{R}^m} a(fw),$$

or equivalently such that

$$u = \int_{\mathbb{R}^m} (fa)w,$$

and hence the vector u belongs also to the hull ${}^{\mathcal{S}}\operatorname{span}(w)$. Hence the Schwartz linear hull ${}^{\mathcal{S}}\operatorname{span}(fw)$ is contained in the hull ${}^{\mathcal{S}}\operatorname{span}(w)$.

3) If the family w is ^Slinearly independent, from the above two equalities, we deduce $(u)_{fw} = a$ and $(u)_w = fa$, from which

$$\begin{array}{rcl}
(u)_w & = & fa = \\
 & = & f(u)_{fw},
\end{array}$$

as we claimed.

4) is an obvious consequence of the preceding properties.

6 \mathcal{O}_{M} Invertible functions and \mathcal{S} basis

We recall that an invertible element of $\mathcal{O}_M^{(m)}$ is any function f everywhere different from 0 and such that its multiplicative inverse f^{-1} lives in $\mathcal{O}_M^{(m)}$ too. The set of the invertible elements of the space $\mathcal{O}_M^{(m)}$ is a group with respect to the pointwise multiplication, and we will denote it by $\mathcal{G}_M^{(m)}$.

Theorem. Let $w \in \mathcal{S}(\mathbb{R}^m, \mathcal{S}'_n)$ be a Schwartz family and let $f \in \mathcal{G}_M^{(m)}$ be an invertible element of the ring $\mathcal{O}_M^{(m)}$ (in particular, it must be a function different form 0 at every point). Then, the following assertions hold true:

- the family w is ^Slinearly independent if and only if the multiple family fw is ^Slinearly independent;
- 2) the hull ${}^{\mathcal{S}}\operatorname{span}(w)$ coincides with the hull ${}^{\mathcal{S}}\operatorname{span}(fw)$;
- 3) if the family w is ^S linearly independent, then, for each vector u in the hull ^S span(w), we have

$$[u \mid fw] = (1/f)[u \mid w],$$

where, as usual, by [u|v] we denote the Schwartz coordinate system of a distribution u (in the Schwartz linear hull of v) with respect to a Schwartz linear independent family v;

4) the family w is an S basis of a subspace V if and only if its multiple fw is an S basis of the S linear hull S span(fw) (that in this case coincides with S span(w)).

Proof. 1) Let $a \in \mathcal{S}'_m$ be a distribution such that

$$\int_{\mathbb{R}^m} aw = 0_{\mathcal{S}'_n},$$

we have

$$0_{\mathcal{S}'_n} = \int_{\mathbb{R}^m} aw = \int_{\mathbb{R}^m} (f^{-1}a)(fw),$$

thus, because fw is ^Slinearly independent we have $f^{-1}a=0_{S'_n}$. Since f^{-1} is different form 0 at every point we can conclude $a=0_{S'_n}$.

2) Let u be in ${}^{\mathcal{S}}\operatorname{span}(w)$. Then, there exists a distribution $a \in \mathcal{S}'_m$ such that

$$u = \int_{\mathbb{R}^m} aw.$$

Now, we have

$$u = \int_{\mathbb{R}^m} (f^{-1}a) (fw),$$

so the distribution u lies in ${}^{\mathcal{S}}\operatorname{span}(fw)$, and hence ${}^{\mathcal{S}}\operatorname{span}(w)$ is contained in ${}^{\mathcal{S}}\operatorname{span}(fw)$. Vice versa, let u be in ${}^{\mathcal{S}}\operatorname{span}(fw)$. Then, there exists a distribution $a \in \mathcal{S}'_m$ such that

$$u = \int_{\mathbb{R}^m} a(fw).$$

Now, we have (equivalently)

$$u = \int_{\mathbb{R}^m} (fa)w,$$

and hence u lies also in ${}^{\mathcal{S}}\operatorname{span}(w)$, hence ${}^{\mathcal{S}}\operatorname{span}(fw)$ is contained in ${}^{\mathcal{S}}\operatorname{span}(w)$ (as we already have seen in the general case). Concluding

$$^{\mathcal{S}}\operatorname{span}(w) = ^{\mathcal{S}}\operatorname{span}(fw).$$

3) For any distribution u in the Schwartz linear hull of the family w, we have

$$u = \int_{\mathbb{R}^m} \left[u \mid w \right] w,$$

hence

$$u = \int_{\mathbb{R}^m} (f^{-1}[u|w]) (fw),$$

as we desired.

4) It follows immediately from the above properties.

Theorem. Let $e \in \mathcal{B}(\mathbb{R}^m, \mathcal{S}'_n)$ be an $^{\mathcal{S}}$ basis of the space \mathcal{S}'_n and let $f \in \mathcal{O}_M^{(m)}$. Then the multiple fe is an $^{\mathcal{S}}$ basis of the space \mathcal{S}'_n if and only if the factor f is an invertible element of the ring $\mathcal{O}_M^{(m)}$.

Proof. We must prove that, if fe is an S-basis of S'_n , then f is an invertible element of the ring $\mathcal{O}_M^{(m)}$. First of all observe that, since fe is a basis, then fe is S-linearly independent and consequently linearly independent in the ordinary algebraic sense; consequently every distribution $f(p)e_p$ must be a non zero distribution and this implies that any value f(p) must be different from 0, so we can consider the multiplicative inverse f^{-1} . We now have to prove that the multiplicative inverse f^{-1} lives in $\mathcal{O}_M^{(m)}$, or equivalently that, for every test function g in S_m , the product $f^{-1}g$ lives in S_m . For, let g be in S_m , since fe is a basis, its associated operator from S_n into S_m is surjective, then there is a function f in f in f such that f in f into f into f into f into f into f into f in f into f into

$$fe(h) = g,$$

that is

$$f^{-1}g = e(h),$$

so that $f^{-1}g$ actually lives in the space S_m .

We can generalize the above result as it follows.

Theorem. Let $e \in \mathcal{B}(\mathbb{R}^m, V)$ be an $^{\mathcal{S}}$ basis of a (weakly*) closed subspace V of the space \mathcal{S}'_n and let $f \in \mathcal{O}_M^{(m)}$. Then the multiple family fe is an $^{\mathcal{S}}$ basis of the subspace V if and only if the factor f is an invertible element of the ring $\mathcal{O}_M^{(m)}$.

Proof. We must prove that, if fe is an S basis of the subspace V, then f is an invertible element of the ring $\mathcal{O}_{M}^{(m)}$. First of all observe that, since fe is a basis, then fe is S linearly independent and consequently linearly independent in the ordinary algebraic sense; consequently every distribution $f(p)e_{p}$ must be a non zero distribution and this implies that any value f(p) must be different from 0. So we can consider its multiplicative inverse f^{-1} . We now have to prove that the multiplicative inverse f^{-1} lives in the space $\mathcal{O}_{M}^{(m)}$, or equivalently that, for every test function g in \mathcal{S}_{m} the product $f^{-1}g$ lives in \mathcal{S}_{m} . For, let g be in \mathcal{S}_{m} , since fe is an S basis of the topologically closed subspace V, its associated operator $(fe)^{\wedge}$ from \mathcal{S}_{n} into \mathcal{S}_{m} is surjective (this follows, by the closedness of V, from the Dieudonné-Schwartz theorem, since the transpose of the operator $(fe)^{\wedge}$ is the superposition operator of fe, which is injective since the family fe is Schwartz linearly independent). Hence, by surjectivity, there is a function h in \mathcal{S}_{n} such that $(fe)^{\wedge}(h) = g$, the last equality is equivalent to the following one

$$fe(h) = g,$$

that is

$$f^{-1}g = e(h),$$

so that the function $f^{-1}g$ actually lives in the space \mathcal{S}_m .

References

- [1] J. Barros-Neto, An Introduction to the theory of distributions, Marcel Dekker, Inc. NewYork, 1981
- [2] N. Boccara, Functional analysis, an introduction for physicists, Academic press, Inc. 1990
- [3] J. Horvath, *Topological Vector Spaces and Distributions* (Vol.I), Addison-Wesley Publishing Company, 1966
- [4] L. Schwartz, Théorie des distributions, Hermann, Paris 1966
- [5] J. Dieudonné, "La dualité dans les espaces vectoriels topologiques", Annales scietifiques de l'E.N.S. 3^e série, tome **59** p. 107 139, 1942. http://www.numdam.org
- [6] J. Dieudonné L. Schwartz, "La dualité dans les espaces (\mathcal{F}) and (\mathcal{LF}) ", Annales de l'institut Fourier, tome 1 p. 61 101, 1949. http://www.numdam.org
- [7] P. A. M. Dirac, *The principles of Quantum Mechanics*, Oxford Claredon press, 1930.
- [8] D. Carfi, "S-linear operators in quantum mechanics and in economics", (APPS), volume 6 pp.7-20, 2004. (no.1 electronic edition,) http://vectron.mathem.pub.ro/apps/v6/a6.htm
- [9] D. Carfi, "Dirac-orthogonality in the space of tempered distributions", Journal of computational and applied mathematics, vol. 153, pp.99-107, numbers 1-2, 1 april 2003.
- [10] D. Carfi, "S-diagonalizable operators in quantum mechanics", Glasnik Mathematicki, vol. 40 n.2, pp. 267-307, 2005.
- [11] D. Carfi, "On the Schodinger's equation associated with an operator...", Rendiconti del Seminario Matematico di Messina, n. 8 serie II, 2001.
- [12] D. Carfi, "Quantum statistical systems with a continuous range of states", series of Advances in Mathematics for Applied Sciences, vol. **69**, pp. 189 200, edited by World Scientific. 2005.
- [13] D. Carfi, "Dyson formulas for Financial and Physical evolutions in $\mathcal{S'}_n$ ", Proceedings of the "VIII Congresso SIMAI", Ragusa, Baia Samuele, 22 26 Maj 2006.
- [14] D. Carfi, "Prigogine approach to irreversibility for Financial and Physical applications", Supplemento Atti dell'Accademia Peloritana dei Pericolanti di Messina, Proceedings Thermocon'05, 2006. ISSN: 0365-0359. http://antonello.unime.it/atti/

- [15] D. Carfi, "S-convexity in the space of Schwartz distributions and applications", Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II Numero 77 pp. 107-122, Anno 2006,. ISSN: 0009-725X.
- [16] D. Carfi, "S-Linear Algebra in Economics and Physics", Applied Sciences (APPS), vol. 9, 2007, ISSN 1454-5101, forthcoming volume.

David Carfi

Faculty of Economics University of Messina davidcarfi71@yahoo.it