Θ2.04: Θεωρία Αναπαραστάσεων και Συνδυαστική Φυλλάδιο Ασκήσεων 1

Σε ότι ακολουθεί n είναι ένα θετικός ακέραιος και όπου δεν αναφέρεται διαφορετικά οι διανυσματικοί χώροι είναι υπέρ ενός αυθαίρετου σώματος \mathbb{F} .

Άσκηση 1.1. (Διεδρική ομάδα)

Έστω D_{2n} η διεδρική ομάδα, δηλαδή η ομάδα συμμετρίας του κανονικού n-γώνου, με παράσταση

$$D_{2n} = \langle r, s \mid r^n = s^2 = \epsilon, rsr = s \rangle,$$

όπου ϵ είναι το ταυτοτικό στοιχείο και έστω $\theta = 2\pi/n$. Να δείξετε τα εξής.

(1) Η στροφή κατά θ ως προς την αρχή των αξόνων, με τη φορά του ρολογιού στη συνήθη βάση του \mathbb{R}^2 δίνεται από τον πίνακα

$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

(2) Το ζεύγος (ρ, \mathbb{R}^2) , όπου η $\rho: D_{2n} \to GL_2(\mathbb{R})$ ορίζεται θέτοντας

$$\rho(r) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \quad \kappa \alpha \iota \quad \rho(s) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

είναι αναπαράσταση της D_{2n} .

(3) Η αναπαράσταση του Ερωτήματος (2) είναι πιστή, δηλαδή η ρ είναι 1-1 ή ισοδύναμα

$$\operatorname{Ker}(\rho) := \left\{ g \in \mathcal{D}_{2n} : \rho(g) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\} = \{ \epsilon \}.$$

(4) Η αναπαράσταση του Ερωτήματος (2) είναι ανάγωγη για κάθε $n \geq 3$, είτε πάνω από το \mathbb{R} , είτε πάνω από το \mathbb{C} .

Υπόδειξη: Λύστε την άσκηση πρώτα για n=4, όπου $\theta=\pi/2$ και D_8 είναι η ομάδα συμμετρίας του τετραγώνου και έπειτα γενικεύστε. Για το Ερώτημα (4), ποιές είναι οι ιδιοτιμές του πίνακα του Ερωτήματος (1); Τι κάνει η δράση στους αντίστοιχους ιδιόχωρους;

Άσκηση 1.2. (Αριστερές vs δεξιές δράσεις)

Έστω \mathfrak{S}_n η συμμετρική ομάδα του [n]. Να δείξετε τα εξής.

(1) Η απεικόνιση $\mathfrak{S}_n \times \mathbb{R}^n \to \mathbb{R}^n$ που ορίζεται από

$$\pi \cdot (v_1, v_2, \dots, v_n) = (v_{\pi_1}, v_{\pi_2}, \dots, v_{\pi_n}),$$

για κάθε $\pi \in \mathfrak{S}_n$ και $v = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ δεν είναι δράση της \mathfrak{S}_n στον \mathbb{R}^n . Πιο συγκεκριμένα, να δείξετε ότι $\pi \cdot (\sigma \cdot v) = (\sigma \pi) \cdot v$, για κάθε $\pi, \sigma \in \mathfrak{S}_n$ και $v \in \mathbb{R}^n$.

Ημερομηνία: 9 Οκτωβρίου 2025.

(2) Η απεικόνιση $\mathfrak{S}_n \times \mathbb{R}^n \to \mathbb{R}^n$ που ορίζεται από

$$\pi \cdot (v_1, v_2, \dots, v_n) = (v_{\pi_1^{-1}}, v_{\pi_2^{-1}}, \dots, v_{\pi_n^{-1}}),$$

για κάθε $\pi \in \mathfrak{S}_n$ και $v = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$ είναι δράση της \mathfrak{S}_n στον \mathbb{R}^n .

Υπόδειξη: Θυμηθείτε πως πολλαπλασιάζουμε τις μεταθέσεις: από το δεξιά προς τα αριστερά.

Άσκηση 1.3. (Το Θεώρημα του Maschke παύει να ισχύει για άπειρες ομάδες) Να δείξετε ότι η αναπαράσταση (ρ, \mathbb{R}^2) της \mathbb{Z} με ρ : $\mathbb{Z} \to \mathrm{GL}(\mathbb{R}^2)$ που ορίζεται θέτοντας

$$\rho(n) = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$$

για κάθε $n \in \mathbb{Z}$, δεν είναι πλήρως αναγωγική.

Υπόδειξη: Υπάρχει ένας Ζ-αναλλοίωτος υπόχωρος διάστασης 1 (ποιός;). Μπορεί να υπάρξει και άλλος; Επιχειρηματολογήστε με εις άτοπο απαγωγή.

Άσκηση 1.4. (Ομομορφισμοί μεταξύ προτύπων)

Έστω G μια ομάδα, V, W δυο G-πρότυπα και $\operatorname{Hom}(V,W)$ το σύνολο των γραμμικών απεικονίσεων $V \to W$. Να δείξετε τα εξής.

(1) Η G δρα στο Hom(V, W) θέτοντας

$$(g \cdot \varphi)(v) := g\varphi(g^{-1}v)$$

για κάθε $g \in G$, $\varphi \in \text{Hom}(V, W)$ και $v \in V$, μετατρέποντάς το σε G-πρότυπο.

(2) Ισχύει ότι

$$\operatorname{Hom}_G(V, W) = \operatorname{Hom}(V, W)^G := \{ \varphi \in \operatorname{Hom}(V, W) : g \cdot \varphi = \varphi \}.$$

Άσκηση 1.5. Έστω G ομάδα, \mathbb{F} ένα αλγεβρικά κλειστό σώμα και

$$Z(G) := \{g \in G : gh = hg, \text{ για κάθε } h \in G\}$$

το κέντρο της G. Αν (ρ, V) είναι μια ανάγωγη αναπαράσταση του G και $g \in \mathbf{Z}(G)$, να δείξετε ότι

$$\rho(g) = c \operatorname{id}_V$$

για κάποιο $c ∈ \mathbb{F}$, όπου $id_V : V \to V$ είναι η ταυτοτική απεικόνιση.

Υπόδειξη: Χρησιμοπιήστε το Λήμμα του Schur.

Άσκηση 1.6. (Ανάγωγες αναπαραστάσεις της κυκλικής ομάδας)

Έστω C_n η κυκλική ομάδα τάξης n που παράγεται από το g, δηλαδή $C_n = \{\epsilon, g, g^2, \dots, g^{n-1}\}$, όπου ϵ είναι το ταυτοτικό στοιχείο.

(1) Να δείξετε ότι το ζεύγος (ρ, \mathbb{C}) , όπου η $\rho: \mathbb{Z}_n \to \mathrm{GL}_1(\mathbb{C})$ ορίζεται θέτοντας

$$\rho(g) = \zeta$$

όπου ζ είναι μια n-οστή ρίζα της μονάδας, είναι αναπαράσταση της C_n .

- (2) Να δείξετε ότι κάθε αναπαράσταση της C_n διάστασης 1, και κατά συνέπεια κάθε ανάγωγη αναπαραστάση, είναι της μορφής του Ερωτήματος (1).
- (3) Πόσες μη ισόμορφες ανάγωγες αναπαραστάσεις της C_n υπάρχουν;
- (4) Υπολογίστε την ισοτυπική διάσπαση της κανονικής αναπαράστασης της C_n .