Strassen-Matrix-Multiplication

multiplication of $(n \times n)$ -matrices with $0(n^{\log 7}) = O(n^{2,8\dots})$ arithmetic operations

rings

Here

$$\mathbb{N} = \{1, 2, \ldots\}$$

Ring R = (S, +, *, 0, 1)

- *S*: set
- $+,*: S \times S \rightarrow S$ operations
- + associative and commutative, * associative

$$(a+b)+c = (a+(b+c))$$
 , $a+b=b+a$, $(a*b)*c = a*(b*c)$

distributivity laws from both sides

$$a*(b+c) = a*b+a*c$$
 , $(b+c)*a = b*a+c*a$

• 0 and 1 are neutral elements of + and *

$$r+0=0+r=r$$
 , $r*1=1*r=r$

• elements $r \in S$ have inverse elements (-r) with respect to +

$$r + (-r) = 0$$

define

$$a - b = a + (-b)$$

rings

Here

$$\mathbb{N} = \{1, 2, \ldots\}$$

Ring R = (S, +, *, 0, 1)

- *S*: set
- $+,*: S \times S \rightarrow S$ operations
- + associative and commutative, * associative

$$(a+b)+c = (a+(b+c))$$
 , $a+b=b+a$, $(a*b)*c = a*(b*c)$

distributivity laws from both sides

$$a*(b+c) = a*b+a*c$$
 , $(b+c)*a = b*a+c*a$

• 0 and 1 are neutral elements of + and *

$$r+0=0+r=r$$
 , $r*1=1*r=r$

• elements $r \in S$ have inverse elements (-r) with respect to +

$$r + (-r) = 0$$

define

$$a - b = a + (-b)$$

examples

integers

$$(\mathbb{Z}, +, -, 0, 1)$$

• integers mod *m*

$$\mathbb{Z}_m = ([0: m-1], + \mod m, \cdot \mod m, 0, 1)$$

ring homomorphisms

rings

$$R = (S, +, *, 0, 1)$$

 $R' = (S', +', *', 0', 1')$

def:

$$h: S \to S'$$

with

$$h(a+b) = h(a) +' h(b)$$

$$h(a*b) = h(a) *' h(b)$$

is called *ring homomorphism*

Figure 1: commutative diagram illustrating ring homorphism h with $o \in \{+, *\}$

ring homomorphisms

rings

$$R = (S, +, *, 0, 1)$$

 $R' = (S', +', *', 0', 1')$

def:

$$h: S \to S'$$

with

$$h(a+b) = h(a) +' h(b)$$

$$h(a*b) = h(a) *' h(b)$$

is called *ring homomorphism*

Figure 1: commutative diagram illustrating ring homorphism h with $o \in \{+, *\}$

Example

$$R = (\mathbb{Z}, +, *, 0, 1)$$

$$R' = (\mathbb{B}, \oplus, \wedge, 0, 1)$$

$$h(a) = (a \mod 2)$$

rings of matrices

$$R = (S, +, -, 0, 1)$$
 Ring

def: $n \times n$ Matrices with elements in S

$$S_n = \{a : [1 : n]^2 \to S \mid a(i, j) \in S \text{ for all } i, j\}$$

def: zero and indentity matrix

$$0_n(i,j) = 0$$
 for all i,j

$$I_n(i,j) = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}$$

Figure 2: zero matrix (left) and identity matrix (right)

rings of matrices

$$R = (S, +, -, 0, 1)$$
 Ring

def: $n \times n$ Matrices with elements in S

$$S_n = \{a : [1 : n]^2 \to S \mid a(i, j) \in S \text{ for all } i, j\}$$

def: zero and indentity matrix

$$0_n(i,j) = 0$$
 for all i,j

$$I_n(i,j) = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}$$

def: matrix addition and multiplication for $a, b \in S_n$

$$(a +_n b)(i, j) = a(i, j) + b(i, j)$$
 (add component wise)
 $(a *_n b)(i, j) = \sum_{k=1}^n a(i, k) *_k b(k, j)$ (scalar product)

Figure 2: zero matrix (left) and identity matrix (right)

Figure 3: (a*b)(i,j) is computed as scalar product of row i of a with column j of b

rings of matrices

$$R = (S, +, -, 0, 1)$$
 Ring

def: $n \times n$ Matrices with elements in S

$$S_n = \{a : [1 : n]^2 \to S \mid a(i, j) \in S \text{ for all } i, j\}$$

def: zero and indentity matrix

$$0_n(i,j) = 0$$
 for all i,j

$$I_n(i,j) = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}$$

def: matrix addition and multiplication for $a, b \in S_n$

$$(a +_n b)(i, j) = a(i, j) + b(i, j)$$
 (add component wise)
 $(a *_n b)(i, j) = \sum_{k=1}^n a(i, k) *_k b(k, j)$ (scalar product)

Lemma 1. $R_n = (S_n, +_n, *_n, 0_n, I_n)$ is a ring

Proof. exercise

Figure 2: zero matrix (left) and identity matrix (right)

Figure 3: (a*b)(i,j) is computed as scalar product of row i of a with column j of b

$$n=2^k$$

consider 4 rings

matrix elements

$$R = (S, +, *, 0, 1)$$

• $(n \times n)$ -matrices with elements in R

$$R_n = (S_n, +_n, *_n, 0_n, I_n)$$

• $(n/2 \times n/2)$ -matrices with elements in R where n/2 is reduced problem size.

$$R_{n/2} = (S_{n/2}, +_{n/2}, *_{n/2}, 0_{n/2}, I_{n/2})$$

• (2×2) -matrices with elements in $S_{n/2}$

$$R_{n/2,2} = (S_{n/2,2}, +_{n/2,2}, *_{n/2,2}, 0_{n/2,2}, I_{n/2})$$

$$n=2^k$$

consider 4 rings

matrix elements

$$R = (S, +, *, 0, 1)$$

• $(n \times n)$ -matrices with elements in R

$$R_n = (S_n, +_n, *_n, 0_n, I_n)$$

• $(n/2 \times n/2)$ -matrices with elements in R where n/2 is reduced problem size.

$$R_{n/2} = (S_{n/2}, +_{n/2}, *_{n/2}, 0_{n/2}, I_{n/2})$$

• (2×2) -matrices with elements in $S_{n/2}$

$$R_{n/2,2} = (S_{n/2,2}, +_{n/2,2}, *_{n/2,2}, 0_{n/2,2}, I_{n/2})$$

Figure 4: Interpreting $(n \times n)$ -matrices as (2×2) -matrices of $(n/2 \times n/2)$ -matrices

$$n=2^k$$

consider 4 rings

matrix elements

$$R = (S, +, *, 0, 1)$$

• $(n \times n)$ -matrices with elements in R

$$R_n = (S_n, +_n, *_n, 0_n, I_n)$$

• $(n/2 \times n/2)$ -matrices with elements in R where n/2 is reduced problem size.

$$R_{n/2} = (S_{n/2}, +_{n/2}, *_{n/2}, 0_{n/2}, I_{n/2})$$

• (2×2) -matrices with elements in $S_{n/2}$

$$R_{n/2,2} = (S_{n/2,2}, +_{n/2,2}, *_{n/2,2}, 0_{n/2,2}, I_{n/2,2})$$

Figure 4: Interpreting $(n \times n)$ -matrices as (2×2) -matrices of $(n/2 \times n/2)$ -matrices

$$h: S_n \to (S_{n/2})_2$$

$$h(a) = \begin{pmatrix} a'(1,1) & a'(1,2) \\ a'(2,1) & a'(2,2) \end{pmatrix}$$

$$a'(1,1)(i,j) = a(i,j)$$

$$a'(1,2)(i,j) = a(i,n/2+j)$$

$$a'(2,1)(i,j) = a(i+n/2,j)$$

$$a'(2,2)(i,j) = (a(i+n/2,j+n/2))$$

Figure 4: Interpreting $(n \times n)$ -matrices as (2×2) -matrices of $(n/2 \times n/2)$ -matrices

$$h: S_n \to (S_{n/2})_2$$

$$h(a) = \begin{pmatrix} a'(1,1) & a'(1,2) \\ a'(2,1) & a'(2,2) \end{pmatrix}$$

$$a'(1,1)(i,j) = a(i,j)$$

$$a'(1,2)(i,j) = a(i,n/2+j)$$

$$a'(2,1)(i,j) = a(i+n/2,j)$$

$$a'(2,2)(i,j) = (a(i+n/2,j+n/2))$$

Lemma 2. h is bijective.

Proof. trivial

Figure 4: Interpreting $(n \times n)$ -matrices as (2×2) -matrices of $(n/2 \times n/2)$ -matrices

$$h: S_n \to (S_{n/2})_2$$

$$h(a) = \begin{pmatrix} a'(1,1) & a'(1,2) \\ a'(2,1) & a'(2,2) \end{pmatrix}$$

$$a'(1,1)(i,j) = a(i,j)$$

$$a'(1,2)(i,j) = a(i,n/2+j)$$

$$a'(2,1)(i,j) = a(i+n/2,j)$$

$$a'(2,2)(i,j) = (a(i+n/2,j+n/2))$$

Lemma 2. h is bijective.

Proof. trivial

Lemma 3. *h is ring homomorphism*

Proof. exercise

$$a, b \in S_n \rightarrow h(a *_n b) = h(a) *_{n/2,2} h(b)$$

$$a *_n b = h^{-1}(h(a) *_{n/2,2} h(b))$$

Lemma 4. For arbitrary rings R we can compute the product of (2×2) -matrices $\in R_2$ with 7 multiplications and O(1) additions and subtractions in R

Figure 4: Interpreting $(n \times n)$ -matrices as (2×2) -matrices of $(n/2 \times n/2)$ -matrices

$$h: S_n \to (S_{n/2})_2$$

$$h(a) = \begin{pmatrix} a'(1,1) & a'(1,2) \\ a'(2,1) & a'(2,2) \end{pmatrix}$$

$$a'(1,1)(i,j) = a(i,j)$$

$$a'(1,2)(i,j) = a(i,n/2+j)$$

$$a'(2,1)(i,j) = a(i+n/2,j)$$

$$a'(2,2)(i,j) = (a(i+n/2,j+n/2))$$

Lemma 2. h is bijective.

Proof. trivial

Lemma 3. *h is ring homomorphism*

Proof. exercise

$$a, b \in S_n \rightarrow h(a *_n b) = h(a) *_{n/2,2} h(b)$$

$$a *_n b = h^{-1}(h(a) *_{n/2,2} h(b))$$

multiplication of (2×2) -matrices with 7 multiplications

Lemma 4. For arbitrary rings R we can compute the product of (2×2) -matrices $\in R_2$ with 7 multiplications and O(1) additions and subtractions in R

multiplication of (2×2) -matrices with 7 multiplications

Lemma 4. For arbitrary rings R we can compute the product of (2×2) -matrices $\in R_2$ with 7 multiplications and O(1) additions and subtractions in R

$$egin{aligned} M_1 &:= (A_{1,1} + A_{2,2}) \cdot (B_{1,1} + B_{2,2}) \ M_2 &:= (A_{2,1} + A_{2,2}) \cdot B_{1,1} \ M_3 &:= A_{1,1} \cdot (B_{1,2} - B_{2,2}) \ M_4 &:= A_{2,2} \cdot (B_{2,1} - B_{1,1}) \ M_5 &:= (A_{1,1} + A_{1,2}) \cdot B_{2,2} \ M_6 &:= (A_{2,1} - A_{1,1}) \cdot (B_{1,1} + B_{1,2}) \ M_7 &:= (A_{1,2} - A_{2,2}) \cdot (B_{2,1} + B_{2,2}) \end{aligned}$$

$$C_{1,1} = M_1 + M_4 - M_5 + M_7$$
 $C_{1,2} = M_3 + M_5$
 $C_{2,1} = M_2 + M_4$
 $C_{2,2} = M_1 - M_2 + M_3 + M_6$

multiplication of (2×2) -matrices with 7 multiplications

Lemma 4. For arbitrary rings R we can compute the product of (2×2) -matrices $\in R_2$ with 7 multiplications and O(1) additions and subtractions in R

Showing that $C_{i,j}$ form matrix product: exercise

$$egin{aligned} M_1 &:= (A_{1,1} + A_{2,2}) \cdot (B_{1,1} + B_{2,2}) \ M_2 &:= (A_{2,1} + A_{2,2}) \cdot B_{1,1} \ M_3 &:= A_{1,1} \cdot (B_{1,2} - B_{2,2}) \ M_4 &:= A_{2,2} \cdot (B_{2,1} - B_{1,1}) \ M_5 &:= (A_{1,1} + A_{1,2}) \cdot B_{2,2} \ M_6 &:= (A_{2,1} - A_{1,1}) \cdot (B_{1,1} + B_{1,2}) \ M_7 &:= (A_{1,2} - A_{2,2}) \cdot (B_{2,1} + B_{2,2}) \end{aligned}$$

$$C_{1,1} = M_1 + M_4 - M_5 + M_7$$
 $C_{1,2} = M_3 + M_5$
 $C_{2,1} = M_2 + M_4$
 $C_{2,2} = M_1 - M_2 + M_3 + M_6$

counting arithmetic operations

Lemma 4. For arbitrary rings R we can compute the product of (2×2) -matrices $\in R_2$ with 7 multiplications and O(1) additions and subtractions in R

$$egin{aligned} M_1 &:= (A_{1,1} + A_{2,2}) \cdot (B_{1,1} + B_{2,2}) \ M_2 &:= (A_{2,1} + A_{2,2}) \cdot B_{1,1} \ M_3 &:= A_{1,1} \cdot (B_{1,2} - B_{2,2}) \ M_4 &:= A_{2,2} \cdot (B_{2,1} - B_{1,1}) \ M_5 &:= (A_{1,1} + A_{1,2}) \cdot B_{2,2} \ M_6 &:= (A_{2,1} - A_{1,1}) \cdot (B_{1,1} + B_{1,2}) \ M_7 &:= (A_{1,2} - A_{2,2}) \cdot (B_{2,1} + B_{2,2}) \end{aligned}$$

$$C_{1,1} = M_1 + M_4 - M_5 + M_7 \ C_{1,2} = M_3 + M_5 \ C_{2,1} = M_2 + M_4 \ C_{2,2} = M_1 - M_2 + M_3 + M_6$$

Showing that $C_{i,j}$ form matrix product: exercise

counting basic ring operations *, +, -

$$M(1) = 1$$

 $M(n) = 7 \cdot M(n/2) + 18 \cdot (n/2)^2$

counting arithmetic operations

Lemma 4. For arbitrary rings R we can compute the product of (2×2) -matrices $\in R_2$ with 7 multiplications and O(1) additions and subtractions in R

$$M_1 := (A_{1,1} + A_{2,2}) \cdot (B_{1,1} + B_{2,2})$$

$$M_2 := (A_{2,1} + A_{2,2}) \cdot B_{1,1}$$

$$M_3:=A_{1,1}\cdot (B_{1,2}-B_{2,2})$$

$$M_4:=A_{2,2}\cdot (B_{2,1}-B_{1,1})$$

$$M_5 := (A_{1,1} + A_{1,2}) \cdot B_{2,2}$$

$$M_6 := (A_{2,1} - A_{1,1}) \cdot (B_{1,1} + B_{1,2})$$

$$M_7 := (A_{1,2} - A_{2,2}) \cdot (B_{2,1} + B_{2,2})$$

$$C_{1,1} = M_1 + M_4 - M_5 + M_7$$

$$C_{1,2} = M_3 + M_5$$

$$C_{2,1} = M_2 + M_4$$

$$C_{2,2} = M_1 - M_2 + M_3 + M_6$$

Showing that $C_{i,j}$ form matrix product: exercise

counting basic ring operations *, +, -

$$M(1) = 1$$

 $M(n) = 7 \cdot M(n/2) + 18 \cdot (n/2)^2$

(our) master theorem does not quite apply. Showing

$$M(n) = O(n^{\log 7}) = O(n^{2.8...})$$

exercise