TD de MTH101 N° 2: Matrices

- 1. Pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$, on appelle trace de A, notée tr(A), la somme des éléments diagonaux de A.
 - (a) Montrer que tr est une forme linéaire de $\mathcal{M}_n(\mathbb{K})$.
 - (b) Montrer que pour toutes matrices $A, B \in \mathcal{M}_n(\mathbb{K})$: tr(AB) = tr(BA).
 - (c) Soient X et Y deux matrices de $\mathcal{M}_n(\mathbb{K})$ représentant le même endomorphisme de \mathbb{K}^n par rapport à des basses de des bases différentes. Montrer que tr(X) = tr(Y).
- 2. Ecrire les matrices des applications linéaires dans les bases canoniques:
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}^3$, $(x, y) \mapsto (x + y, x y, 2x)$.
 - (b) $g: \mathbb{R}^4 \to \mathbb{R}^2$, $(x, y, z, t) \mapsto (x + y + 2z t, x y z + 2t)$.
 - (c) $h: \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto [(m+2)x y + z, -x + (m+2)y + z, x y + (m+2)z]$.

3. Calculer les inverses des matrices suivnates:
$$M = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, N = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 0 \end{pmatrix}, L = \begin{pmatrix} 1 & -\sqrt{3} & 0 \\ \sqrt{3} & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

4. Soit *M* la matrice $\begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$

Calculer $(M-I_3)(M+3I_3)$, en déduire que M est inversible et calculer M^{-1} . En déduire qu'il existe deux suites $(u_k)_{k\in\mathbb{N}}$ et $(v_k)_{k\in\mathbb{N}}$ uniques telles que : $\forall k\in\mathbb{N},\ M^k=u_kI_3+v_kM$. On exprimera u_k et v_k , puis M^k explicitements en fonction de k pour tout $k \in \mathbb{N}$.

5. Dans l'espace vectoriel \mathbb{R}^3 muni de la base canonique $\mathcal{B}=(e_1,e_2,e_3)$, on considère l'endomorphisme udont la matrice M par rapport à \mathcal{B} est: $M = \begin{pmatrix} 2 & 1 & 0 \\ -3 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$.

Calculer M^2 et vérifier que $M^3=0$ puis calculer $(I-M)(I+M+M^2)$. En déduire que I-M est inversible et préciser son inverse. Quelle est la dimension du noyau de u?

Quel est le rang de u? On pose $e'_1 = u^2(e_3)$, $e'_2 = u(e_3)$, $e'_3 = e_3$. Montrer que la famille $\mathcal{B}' = (e'_1, e'_2, e'_3)$ est une base de \mathbb{R}^3 .

Donner la matrice P de passage de \mathcal{B} à \mathcal{B}' , Calculer P^2 et en déduire P^{-1} . Donner la matrice M' de udans la base \mathcal{B}' .

6. Soit $E = \left\{ M_{abc} = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}, a, b, c \in \mathbb{R} \right\}$

Trouver trois matrices I, J et K telles que $M_{abc} = aI + bJ + cK$. Calculer JK et J^{-1} . On considère les Trouver trois matrices I_n et $L = M_{011}$. Calculer H^n , $n \in \mathbb{N}^*$. On pose $L^n = x_n I + y_n L$. On considère les éléments $H = M_{111}$ et $I_n = M_{111$ écrire x_{n+1} et y_{n+1} en fonction de x_n et y_n . En déduire L^2 et L^3 .

- 7. A et B sont deux matrices. I désigne la matrice identité. Parmi les affirmations suivantes, dire lesquelles sont vraies:
 - (a) Si le produit AB existe, alors le produit BA existe
 - (b) Si la somme A + B existe, alors le prdoduit AB existe
 - (c) Si le produit AB existe alors le produit B^TA^T existe
 - (d) Si la somme A + B existe alors le produit AB^T existe
 - (e) Si rg(A) = 2 alors $rg(A^2) = 2$
 - (f) Si $rg(A^2) = 2$ alors rg(A) = 2
- Soft la matrice $B = \begin{pmatrix} 0 & 2 & -1 & 1 \\ 0 & -1 & -1 & 0 \end{pmatrix}$. Indiquer le rang de cette matrice

- (a) 1
- (b) 2
- (c) 4
- (d) 8
- 9. Solent $E=\mathbb{R}^2$ muni sa base canonique $\mathcal B$ et f un endomorphisme de E. Dire si chacune des propositions suivantes est vrale ou fausse.
 - (a) La matrice $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ est inversible.
 - (b) La matrice de f par rapport à \mathcal{B} donnée par $M_f = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ permet d'affirmer que f set un isomorphisme
 - (c) Le vecteur v = (-1, 1, -1) est dans le noyau de f.
 - (d) Le vecteur v = (-1, 1, -1) est dans l'image de f.
- 10. Soit E un espace vectoriel muni d'une base $\mathcal{B} = (e_1, e_2, e_3)$. On définit les vecteurs $v_1 = e_1 + e_2 + e_3$, $v_2 = e_1 - e_3$ et $v_3 = e_2 + e_3$ et f l'endomorphisme de E tel que: $f(e_1) = 2e_1 - 3e_2 + e_3$, $f(e_2) = -e_1 + e_2 - 3e_3$ et $f(e_3) = e_1 - e_3$. Dans les questions suivantes indiquer les propositions vraies ou fausses.
 - Q_1) La matrice de f par rapport à \mathcal{B} est:

$$A: \left(\begin{array}{ccc} 2 & -3 & 1 \\ -1 & 1 & -3 \\ 1 & 0 & -1 \end{array}\right) \qquad B: \left(\begin{array}{ccc} 2 & -2 & 1 \\ -1 & 1 & -3 \\ 1 & -1 & 0 \end{array}\right) \qquad C: \left(\begin{array}{ccc} 2 & -1 & 1 \\ -3 & 1 & 0 \\ 1 & -3 & -1 \end{array}\right) \qquad D: \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{array}\right).$$

 Q_2) L'image par f de v_1 a pour coordonnées:

$$A: {}^{t}(2,-2,-3)$$
 $B: {}^{t}(2,-3,-2)$ $C: {}^{t}(0,-3,0)$

 Q_3) La matrice de passage de $\mathcal B$ à $\{v_1,v_2,v_3\}$ est :

- 11. Quelles sont les définitions correctes?
 - A : Une matrice est dite carrée si chacun de ses coefficients est un carré.
 - B: La matrice inverse de la matrice $A=(a_{ij})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}}$ est définie si chacun des a_{ij} est non nul; c'est la

matrice
$$\left(\frac{1}{a_{ij}}\right)_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant p}}$$

12. Soit
$$M$$
 la matrice $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. Que vaut M^{2018} ?
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$E = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$