CS282K: Numerical Methods for Scientific Computing and Machine Learning

Homework 1

Issued: August 28

Due: September 8 (11:59PM, Beijing time)

Please submit the PDF file of your solution to the "Drop Box" on Sakai.

Problem 1: Ordinary Differential Equation (ODE)

Use backward Euler to solve the following ordinary differential equation (ODE):

$$\dot{x} = -x$$

$$x(t=0) = 1$$
(1)

Assume that the step size is Δt for numerical integration. Derive the closed-form expression for the solution $x(t_n)$, i.e., the response at $t = t_n$. Set $\Delta t = 0.01$ and plot the response x(t) using MATLAB. Print out your MATLAB code and plot and submit them as part of your solution.

Hint: We already show the closed-form expression for $x(t_n)$ in Lecture. In this homework, we expect you to show the mathematical equations to derive that answer and then plot the response.

Problem 2: Partial Differential Equation (PDE)

$$T_1$$
 T_2 T_3 T_4 T_5

Fig. 1 A 1-D rod discretized into 4 segments

Consider the 1-D rod that is discretized into 4 segments, as shown in Fig. 1. We are interested in the temperature at different locations of the rod, i.e., T_1 , T_2 , T_3 , T_4 , and T_5 . The 1-D thermal equation and the boundary condition are:

$$\rho \cdot C_p \cdot \frac{\partial T(x,t)}{\partial t} = \kappa \cdot \frac{\partial^2 T(x,t)}{\partial x^2}$$

$$T_1 = 30$$

$$T_5 = 100$$
(2)

where we assume no heat source in the system. Given the above setup, derive a set of linear equations for steady-state thermal analysis. Once you derive the linear equations, use the backslash "\" in

MATLAB to solve these equations and find the unknown temperatures T_2 , T_3 and T_4 . Report the values of T_2 , T_3 and T_4 .