Eletricidade e Circuitos para Computação I 10ª. Lista de Exercícios

Resposta Completa de Circuitos RC e RL

- 1. Para o circuito abaixo, a chave foi fechada em t = 0 depois de permanecer aberta por um longo tempo. Determine:
 - a. $i_0(0^-)$;
 - b. $i_0(\infty)$;
 - c. A constante de tempo do circuito;
 - d. A expressão de $i_0(t)$ para $t \ge 0^+$.

- 2. Para o circuito abaixo, a chave é aberta em t = 0 depois de permanecer fechada por um longo tempo.
 - a. Determine $i_0(t)$ para $t \ge 0^+$;
 - b. Determine $v_0(t)$ para $t \ge 0^+$.

- 3. Para o circuito abaixo, a chave foi aberta em t = 0 depois de permanecer aberta por um longo tempo.
 - a. Determine $v_L(0^-)$ e $v_L(0^+)$;
 - b. Determine $v_0(0^-)$ e $v_0(0^+)$;
 - c. Explique por que $i_L(0^-) = i_L(0^+)$;
 - d. Determine $i_L(t)$ para $t \ge 0$;
 - e. Desenhe o gráfico da resposta de $i_L(t)$.

- 4. Para o circuito abaixo, a chave foi colocada na posição b em t=0 depois de permanecer por um longo tempo na posição a.
 - a. Determine $i_0(t)$ para $t \ge 0$;
 - b. Determine $v_0(t)$ para $t \ge 0^+$.

5. Para o circuito abaixo, a chave foi fechada em t = 0 depois de permanecer aberta por um longo tempo. Determine $i_0(t)$ para $t \ge 0$.

- 6. Para o circuito abaixo, a chave foi fechada em t = 0 depois de permanecer aberta por um longo tempo.
 - a. Determine a corrente que circula no indutor para t = 0;
 - b. Determine a constante de tempo do circuito;
 - c. Determine $v_0(t)$ para $t \ge 0^+$.

- 7. A chave foi colocada na posição b em t=0 depois de permanecer por um longo tempo na posição a.
 - a. Determine $v_0(t)$ para $t \ge 0^+$;
 - b. Determine $i_1(t)$ para $t \ge 0^+$;
 - c. Determine $i_2(t)$ para $t \ge 0^+$.

8. Para o circuito abaixo, a chave foi fechada em t = 0 depois de permanecer aberta por um longo tempo. Determine $v_0(t)$ para $t \ge 0$.

- 9. Para o circuito abaixo, a chave foi aberta em t = 0 depois de permanecer fechada por um longo tempo.
 - a. Determine $v_0(t)$ para $t \ge 0^+$;
 - b. Determine $i_0(t)$ para $t \ge 0^+$;
 - c. Determine $i_2(t)$ para $t \ge 0^+$.

10. O circuito abaixo esteve em funcionamento por um longo tempo. Em t = 0, a fonte de tensão cai de 100 V para 25 V e a fonte de corrente inverte o sentido. Determine $v_0(t)$ para $t \ge 0$.

11. A corrente e a tensão nos terminais do circuito da figura abaixo são dadas por:

$$i(t) = 50e^{-2500t} (mA)$$
 $t \ge 0$
 $v(t) = (80-80 e^{-2500}) (V)$ $t \ge 0$

Determine os valores numéricos de I_s , V_0 , R, C e da constante de tempo (τ) .

- 12. A chave foi colocada na posição b em t=0 depois de permanecer por um longo tempo na posição a.
 - a. Determine $v_c(0^+)$;
 - b. Determine $v_c(\infty)$;
 - c. Determine a constante de tempo (τ)
 - d. Determine $i(0^+)$;
 - e. Determine $v_c(t)$ para $t \ge 0^+$;
 - f. Determine i(t) para $t \ge 0^+$;

- 13. A chave foi colocada na posição b em t=0 depois de permanecer por um longo tempo na posição a.
 - a. Determine $v_c(0^+)$;
 - b. Determine $v_c(\infty)$;
 - c. Determine a constante de tempo (τ)
 - d. Determine $v_c(t)$ para $t \ge 0^+$;
 - e. O tempo necessário (em μ *s*) para a tensão no capacitor se anular, depois que a chave passar para a posição *b*.

- 14. Para o circuito abaixo, a chave foi fechada em t = 0 depois de permanecer aberta por um longo tempo.
 - a. Determine $i_c(0^+)$;
 - b. Determine $i_c(\infty)$;
 - c. Determine a constante de tempo (τ)
 - d. Determine $i_c(0^+)$;
 - e. Determine $v_c(t)$ para $t \ge 0^+$.

- 15. A chave foi colocada na posição b em t=0 depois de permanecer por um longo tempo na posição a.
 - a. Determine $v_0(t)$ para $t \ge 0^+$;
 - b. Determine $i_0(t)$ para $t \ge 0^+$;
 - c. Determine $v_g(t)$ para $t \ge 0^+$;
 - d. Determine $v_q(0^+)$;

- 16. A chave foi colocada na posição b em t=0 depois de permanecer por um longo tempo na posição a.
 - a. Determine $v_0(t)$ para $t \ge 0^+$;
 - b. Determine $i_0(t)$ para $t \ge 0^+$;

17. A chave 1 foi colocada na posição b em t=0 depois de permanecer por um longo tempo na posição a. No instante em que a chave 1 faz contato com o terminal b, a chave 2 se abre. Determine $v_0(t)$ para $t \ge 0^+$.

