Для термобурения, проводившегося 15-21 июля в средней части ледника Давыдова (см. рис. 1), использовалась термобуровая игла ТБИ-70-П диаметром 70 мм. разработанная в Ленинградском горном институте им. Г.В.Плеханова.

До глубины 102 м средняя скорость чистого бурения составляла 3 м/час. Ниже.до глубины 108 м, она уменьшилась и на уровне 109 м продвижение иглы прекратилось. Плавное понижение скорости проходки позволяет предположить, что остановка термоиглы связана не со случайным препятствием, например камнем, а с резким увеличением концентрации моренно-обломочного материала в придонной части ледника. Одновременно с бурением до глубины 40 м регулярно проводилась откачка наплавленной воды, поскольку в интервале 0-15 м периодически происходили прихваты бурового снаряда из-за намерзания льда на стенке скважины. Глубже такие прихваты не наблюдались.

Исследования скважины были начаты сразу же после окончания бурения. Результаты инклинометрии показали, что скважина проходит практически вертикально: максимальный наклон не превышает 2°. Следовательно, с учетом угла наклона поверхности ледника в месте заложения скважины $(3-5^{\circ})$, можно считать, что толщина льда, включая и загрязненную придонную толщу, составляет элесь не менее 110 м.

Для измерения температуры льда в скважине была установлена 30метровая коса с 11 датчиками термисторами МТ-54.При этом скважина томпонировалась войлочными пробками и в устье, и на глубинах 5, 10, 15, 20 м. Температура измерялась 23-24 июля по мостовой схеме в интервале 0-30 м, погрешность не превышала +0.10С.

Результаты термометрии скважины на леднике Давыдова в июле 1985 г.

Таблица 1

Глуби- на, м	Значения температуры льда, ^О С, за сроки наблю дений			
	23, 14 wac.	23. 17 wac.	24.21 yac.	24.10 час. 30 мин
1,2 2,7 4,25 5,75 7,25 8,75 9,75 14,8 19,8 24,8 29,8	0,0 -3,2 -4,5 -5,0 -4,7 -3,9 -2,5 -1,8 -0,25	+0,2 -1,8 -4,8 -5,6 -5,2 -4,0 -2,6 -1,5 -0,25	0,0 -2,5 -4,8 -5,8 -5,2 -4,7 -3,9 -2,6 -1,6 -0,8	-0,25 -3,0 -4,9 -5,8 -5,2 -4,7 -4,0 -2,6 -1,6 -0,8 -0,2

Результаты термометрии, представленные в табл.1 и на рис.4, показывают, что интервал глубин 0-6 м характеризуется резким понижением температуры до -5,8⁰C.Глубина около 6 м соответствует максимуму проникновения "волны холода" предыдущей зимы. Однако ниже температура повышается и на уровне 30 м достигает -0.2°C. До глубины здесь располагается зона сезонных колебаний температуры.