Bonus Assignment, Galois Correspondence Solutions

1

Claim: Let $f(x) = x^3 - 2$ in $\mathbb{Q}[x]$, and let $\omega = e^{2\pi i/3}$. Then for σ , $\tau \in \operatorname{Gal}(\mathbb{Q}[2^{1/3}, \omega 2^{1/3}, \omega^2 2^{1/3}]/\mathbb{Q})$ where $\sigma: 2^{1/3} \to \omega 2^{1/3}$, $\omega \to \omega$ and $\tau: 2^{1/3} \to 2^{1/3}$, $\omega \to \omega^2$, the fixed field of σ is $\mathbb{Q}[\omega^2 2^{1/3}]$ and that of σ is $\mathbb{Q}[\omega^2 2^{1/3}]$.

Proof. For the subgroup $\langle \sigma \tau \rangle$, we have

$$\sigma\tau(\omega^2 2^{1/3}) = \sigma(\omega^4 2^{1/3})$$
$$= \sigma(\omega\omega^3 2^{1/3})$$
$$= \sigma(\omega 2^{1/3})$$
$$= \omega^2 2^{1/3},$$

The base field is \mathbb{Q} , so $\sigma\tau$ acts as an identity permutation on $\mathbb{Q}[\omega^2 2^{1/3}]$. The subgroup is generated by $\sigma\tau$ so each $a \in <\sigma\tau>$ is of the form $a=(\sigma\tau)^k$ for some $k\in\mathbb{Z}$, and a acts as a product of identity permutations on $\mathbb{Q}[\omega^2 2^{1/3}]$ and thus fixes the field.

For the subgroup $\langle \sigma^2 \tau \rangle$, we have

$$\begin{split} \sigma^2 \tau(\omega 2^{1/3}) &= \sigma^2(\omega^2 2^{1/3}) \\ &= \sigma(\omega^2 \omega 2^{1/3}) \\ &= \omega^2 \omega \omega 2^{1/3} \\ &= \omega^3 \omega 2^{1/3} \\ &= \omega^{1/3}. \end{split}$$

Again, the base field is \mathbb{Q} , and $\sigma^2 \tau$ acts as an identity permutation on $\mathbb{Q}[\omega 2^{1/3}]$. Using an argument similar to that used for $\langle \sigma \tau \rangle$, we have that the subgroup $\langle \sigma^2 \tau \rangle$ fixes $\mathbb{Q}[\omega 2^{1/3}]$.

Let $f(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ and let $\omega = e^{2\pi i/7}$ be a 7th root of unity. The polynomial $x^7 - 1$ has ω as a root, so must have x - 1 as a factor. We then have

$$\frac{x^7 - 1}{x - 1} = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1.$$

Let $a = \omega^6 + \omega$. Then $a^2 = \omega^5 + \omega^2 + 2$ and $a^3 = \omega^4 + \omega^3 + 3\omega^6 + 3\omega$. We can rewrite this into the form $a^3 + a^2 - 2a - 1 = 0$, which has no rational roots in \mathbb{Q} , so is not reducible in \mathbb{Q} . So the minimal polynomial has degree 6 and must be the above polynomial.

The degree of f(x) is 6, so it must have 6 roots. Define $\sigma \in \operatorname{Gal}\mathbb{Q}[\omega]$ as $\sigma(\omega) = \omega^3$. Then $\sigma(\omega) = \omega^3$; $\sigma(\omega^3) = \omega^9 = \omega^2$; $\sigma(\omega^2) = \omega^6$; $\sigma(\omega^6) = \omega^{18} = \omega^4$; $\sigma(\omega^4) = \omega^{12} = \omega^5$; $\sigma(\omega^5) = \omega^{15} = \omega$. So σ generates all roots of the polynomial.

We also have $\sigma^3(\omega) = \omega^{27} = \omega^6$ and $\sigma^3(\omega^6) = \sigma^2(\omega^4) = \sigma(\omega^5) = \omega$, so $\sigma^3 > 0$ is a proper subgroup of order 2 of $\sigma^2 > 0$, and $\sigma^2(\omega) = \omega^9 = \omega^2$, $\sigma^2(\omega^2) = \omega^4$, and $\sigma^2(\omega^4) = \omega$ so $\sigma^2 > 0$ is a proper subgroup of order 3 of $\sigma^2 > 0$.

We permute $\omega^6 + \omega$ by σ^3 to get $\sigma^3(\omega^6 + \omega) = \sigma^3(\omega^6) + \sigma^3(\omega) = \omega + \omega^6$. \mathbb{Q} is the base field and is fixed by σ , so $\mathbb{Q}[\omega^6 + \omega]$ is fixed by σ^3 .

Similarly, we permute $\omega^4 + \omega^2 + \omega$ by σ^2 to get $\sigma^2(\omega^4 + \omega^2 + \omega) = \sigma^2(\omega^4) + \sigma^2(\omega^2) + \sigma^2(\omega) = \omega + \omega^4 + \omega^2$. Again, σ fixes the base field \mathbb{Q} , so $\mathbb{Q}[\omega^4 + \omega^2 + \omega]$ is fixed by σ^2 .