x-vector论文阅读和声纹项目进展

ADSPLAB 张皓然

2019/11/21

PKUSZ-SECE

Speaker recognition is the process of automatically recognizing who is speaking by using the speaker-specific information included in speech waves to verify identities being claimed by people accessing systems;

2018/6/28 Author: PKUSZ-SECE

Definition: Speaker verification (SV) is the task of authenticating the claimed identity of a speaker

Process: utterances are mapped directly to fixed-dimensional speaker embeddings and pairs of embeddings are scored using a PLDA-based backend

x-vector,它已经成为了几乎所有的Challenges和papers的新baseline,SRE18上主办方默认使用xvector作为基线(如果说话人识别任务的训练集并不是很充足时,x-vector一类的embedding很可能会过拟合)

美国国家标准技术署 (NIST) 主办的说话人识别技术评测 (Speaker Recognition Evaluation, SRE)

or:

训练思路: 阶段一(对神经网络的训练)

Layer	Layer context	Total context	Input x output
frame1	[t-2, t+2]	5	120x512
frame2	$\{t-2, t, t+2\}$	9	1536x512
frame3	$\{t-3, t, t+3\}$	15	1536x512
frame4	$\{t\}$	15	512x512
frame5	$\{t\}$	15	512x1500
stats pooling	[0, T)	T	1500Tx3000
segment6	{0}	T	3000x512
segment7	{0}	T	512x512
softmax	{0}	T	512x <i>N</i>

pooling层之前的结构是TDNN,pooling层之后接着两层全向连接层最后加一个softmax层为输出。输出的神经元个数和我们训练集中说话人个数保持一致。可以看到图中所写,输出是一个后验概率。

multiclass cross entropy

$$E = -\sum_{n=1}^{N} \sum_{k=1}^{K} d_{nk} ln(P(spkr_k \mid \mathbf{x}_{1:T}^{(n)}))$$

Layer	Layer context	Total context	Input x output
frame1	[t-2, t+2]	5	120x512
frame2	$\{t-2, t, t+2\}$	9	1536x512
frame3	$\{t-3, t, t+3\}$	15	1536x512
frame4	$\{t\}$	15	512x512
frame5	$\{t\}$	15	512x1500
stats pooling	[0, T)	T	1500Tx3000
segment6	{0}	T	3000x512
segment7	{0}	T	512x512
softmax	{0}	T	512x <i>N</i>

训练思路:阶段二 (PLDA)

去掉已经训练好的神经网络的softmax层 We do not consider the presoftmax affine layer because of its large size and dependence on the number of speakers 利用这些embeddings训练PLDA模型

nor:

实验:

Table 1: EER(%) on NIST SRE10

	10s-10s	5s	10s	20s	60s	full
ivector	11.0	9.1	6.0	3.9	2.3	1.9
embedding a	11.0	9.5	5.7	3.9	3.0	2.6
embedding b	9.2	8.8	6.6	5.5	4.4	3.9
embeddings	7.9	7.6	5.0	3.8	2.9	2.6
fusion	8.1	6.8	4.3	2.9	2.1	1.8

X-vector are better on the short duration conditions X-vector may be more robust to this domain mismatch

Table 3: EER(%) on NIST SRE16

	Cantonese	Tagalog	pool
ivector	8.3	17.6	13.6
embedding a	7.7	17.6	13.1
embedding b	7.8	17.4	13.1
embeddings	6.5	16.3	11.9
fusion	6.3	15.4	11.3

SRE16 presented the challenge of language mismatch between the predominantly English training data and the Cantonese and Tagalog evaluation.

EER(equal error rate):调整阈值,使得误拒绝率(False Rejection Rate, FRR)等于误接受率(False Acceptance Rate, FAR),此时的FAR与FRR的值称为等错误率。

X-VECTORS: ROBUST DNN EMBEDDINGS FOR SPEAKER RECOGNITION

				CITW Com			DE16 Conton	202	
			SITW Core				SRE16 Cantonese		
			EER(%)	$DCF10^{-2}$	$DCF10^{-3}$	EER(%)	$DCF10^{-2}$	$DCF10^{-3}$	
4.1	Original systems	i-vector (acoustic) i-vector (BNF) x-vector	9.29 9.10 9.40	0.621 0.558 0.632	0.785 0.719 0.790	9.23 9.68 8.00	0.568 0.574 0.491	0.741 0.765 0.697	
4.2	PLDA aug.	i-vector (acoustic) i-vector (BNF) x-vector	8.64 8.00 7.56	0.588 0.514 0.586	0.755 0.689 0.746	8.92 8.82 7.45	0.544 0.532 0.463	0.717 0.726 0.669	
4.3	Extractor aug.	i-vector (acoustic) i-vector (BNF) x-vector	8.89 7.27 7.19	0.626 0.533 0.535	0.790 0.730 0.719	9.20 8.89 6.29	0.575 0.569 0.428	0.748 0.777 0.626	
4.4	PLDA and extractor aug.	i-vector (acoustic) i-vector (BNF) x-vector	8.04 6.49 6.00	0.578 0.492 0.488	0.752 0.690 0.677	8.95 8.29 5.86	0.555 0.534 0.410	0.720 0.749 0.593	
4.5	Incl. VoxCeleb	i-vector (acoustic) i-vector (BNF) x-vector	7.45 6.09 4.16	0.552 0.472 0.393	0.723 0.660 0.606	9.23 8.12 5.71	0.557 0.523 0.399	0.742 0.751 0.569	

Daniel Povey

Detection cost function (DCF) =

• P(FR) C(FR) P(target) + P(FA) C(FA) (1-P(target))

				SITW Core		SRE16 Cantone		ese
			EER(%)	$DCF10^{-2}$	$DCF10^{-3}$	EER(%)	$DCF10^{-2}$	$DCF10^{-3}$
4.1	Original systems	i-vector (acoustic) i-vector (BNF) x-vector	9.29 9.10 9.40	0.621 0.558 0.632	0.785 0.719 0.790	9.23 9.68 8.00	0.568 0.574 0.491	0.741 0.765 0.697
4.2	PLDA aug.	i-vector (acoustic) i-vector (BNF) x-vector	8.64 8.00 7.56	0.588 0.514 0.586	0.755 0.689 0.746	8.92 8.82 7.45	0.544 0.532 0.463	0.717 0.726 0.669
4.3	Extractor aug.	i-vector (acoustic) i-vector (BNF) x-vector	8.89 7.27 7.19	0.626 0.533 0.535	0.790 0.730 0.719	9.20 8.89 6.29	0.575 0.569 0.428	0.748 0.777 0.626
4.4	PLDA and extractor aug.	i-vector (acoustic) i-vector (BNF) x-vector	8.04 6.49 6.00	0.578 0.492 0.488	0.752 0.690 0.677	8.95 8.29 5.86	0.555 0.534 0.410	0.720 0.749 0.593
4.5	Incl. VoxCeleb	i-vector (acoustic) i-vector (BNF) x-vector	7.45 6.09 4.16	0.552 0.472 0.393	0.723 0.660 0.606	9.23 8.12 5.71	0.557 0.523 0.399	0.742 0.751 0.569

4.1. Original systems

This echoes recent studies that have found that the large gains achieved by BNFs in English speech are not necessarily transferable to non-English data

				SITW Core		S	RE16 Canton	ese
			EER(%)	DCF10 ⁻²	DCF10 ⁻³	EER(%)	DCF10 ⁻²	$DCF10^{-3}$
4.1	Original systems	i-vector (acoustic) i-vector (BNF) x-vector	9.29 9.10 9.40	0.621 0.558 0.632	0.785 0.719 0.790	9.23 9.68 8.00	0.568 0.574 0.491	0.741 0.765 0.697
4.2	PLDA aug.	i-vector (acoustic) i-vector (BNF) x-vector	8.64 8.00 7.56	0.588 0.514 0.586	0.755 0.689 0.746	8.92 8.82 7.45	0.544 0.532 0.463	0.717 0.726 0.669
4.3	Extractor aug.	i-vector (acoustic) i-vector (BNF) x-vector	8.89 7.27 7.19	0.626 0.533 0.535	0.790 0.730 0.719	9.20 8.89 6.29	0.575 0.569 0.428	0.748 0.777 0.626
4.4	PLDA and extractor aug.	i-vector (acoustic) i-vector (BNF) x-vector	8.04 6.49 6.00	0.578 0.492 0.488	0.752 0.690 0.677	8.95 8.29 5.86	0.555 0.534 0.410	0.720 0.749 0.593
4.5	Incl. VoxCeleb	i-vector (acoustic) i-vector (BNF) x-vector	7.45 6.09 4.16	0.552 0.472 0.393	0.723 0.660 0.606	9.23 8.12 5.71	0.557 0.523 0.399	0.742 0.751 0.569

4.2. PLDA augmentation

4.3. Extractor augmentation

We use a 3-fold augmentation that combines the original "clean" training list with two augmented copies. To augment a recording, we choose between one of the following randomly:

- babble: Three to seven speakers are randomly picked from MUSAN speech, summed together, then added to the original signal (13-20dB SNR).
- music: A single music file is randomly selected from MU-SAN, trimmed or repeated as necessary to match duration, and added to the original signal (5-15dB SNR).
- noise: MUSAN noises are added at one second intervals throughout the recording (0-15dB SNR).
- reverb: The training recording is artificially reverberated via convolution with simulated RIRs.

				SITW Core		S	RE16 Canton	iese
			EER(%)	$DCF10^{-2}$	DCF10 ⁻³	EER(%)	$DCF10^{-2}$	$DCF10^{-3}$
4.1	Original systems	i-vector (acoustic) i-vector (BNF) x-vector	9.29 9.10 9.40	0.621 0.558 0.632	0.785 0.719 0.790	9.23 9.68 8.00	0.568 0.574 0.491	0.741 0.765 0.697
4.2	PLDA aug.	i-vector (acoustic) i-vector (BNF) x-vector	8.64 8.00 7.56	0.588 0.514 0.586	0.755 0.689 0.746	8.92 8.82 7.45	0.544 0.532 0.463	0.717 0.726 0.669
4.3	Extractor aug.	i-vector (acoustic) i-vector (BNF) x-vector	8.89 7.27 7.19	0.626 0.533 0.535	0.790 0.730 0.719	9.20 8.89 6.29	0.575 0.569 0.428	0.748 0.777 0.626
4.4	PLDA and extractor aug.	i-vector (acoustic) i-vector (BNF) x-vector	8.04 6.49 6.00	0.578 0.492 0.488	0.752 0.690 0.677	8.95 8.29 5.86	0.555 0.534 0.410	0.720 0.749 0.593
4.5	Incl. VoxCeleb	i-vector (acoustic) i-vector (BNF) x-vector	7.45 6.09 4.16	0.552 0.472 0.393	0.723 0.660 0.606	9.23 8.12 5.71	0.557 0.523 0.399	0.742 0.751 0.569

PLDA and extractor augmentation

On SITW the x-vectors are now 10-25% better than i-vector (acoustic) and are slightly better than i-vector (BNF) at all operating points. On SRE16 Cantonese, the x-vectors continue to maintain the large lead over the i-vector systems established in Section

				SITW Core		S	RE16 Canton	ese
			EER(%)	$DCF10^{-2}$	DCF10 ⁻³	EER(%)	DCF10 ⁻²	DCF10 ⁻³
4.1	Original systems	i-vector (acoustic) i-vector (BNF) x-vector	9.29 9.10 9.40	0.621 0.558 0.632	0.785 0.719 0.790	9.23 9.68 8.00	0.568 0.574 0.491	0.741 0.765 0.697
4.2	PLDA aug.	i-vector (acoustic) i-vector (BNF) x-vector	8.64 8.00 7.56	0.588 0.514 0.586	0.755 0.689 0.746	8.92 8.82 7.45	0.544 0.532 0.463	0.717 0.726 0.669
4.3	Extractor aug.	i-vector (acoustic) i-vector (BNF) x-vector	8.89 7.27 7.19	0.626 0.533 0.535	0.790 0.730 0.719	9.20 8.89 6.29	0.575 0.569 0.428	0.748 0.777 0.626
4.4	PLDA and extractor aug.	i-vector (acoustic) i-vector (BNF) x-vector	8.04 6.49 6.00	0.578 0.492 0.488	0.752 0.690 0.677	8.95 8.29 5.86	0.555 0.534 0.410	0.720 0.749 0.593
4.5	Incl. VoxCeleb	i-vector (acoustic) i-vector (BNF) x-vector	7.45 6.09 4.16	0.552 0.472 0.393	0.723 0.660 0.606	9.23 8.12 5.71	0.557 0.523 0.399	0.742 0.751 0.569

Including VoxCeleb

the x-vector exploits the large increase in the amount of in-domain data better than the i-vector systems.

> PKUSZ-SECE **Author:**

conclusions

- We found that data augmentation is an easily implemented and effective strategy for improving their performance.
- More generally, it appears that x-vectors are now a strong contender for next-generation representations for speaker recognition.
- Our software framework has been made available in the Kaldi toolkit. An example recipe is in the main branch of Kaldi at https:
 //github.com/kaldi-asr/kaldi/tree/master/egs/
 sre16/v2 and a pretrained x-vector system can be downloaded from http://kaldi-asr.org/models.html.

AOTO_Speaker_Verification 验证 (BiGRU_DNN)

注册语音(zhr) -> deep feature1 (1x512)

deep feature 1 = {ndarray} [-4.63145995 16.28163576 16.49755669 7.97190905 3.70570898\n 10.8

测试语音(非zhr) -> deep_ feature2 (1x512)

deep feature $2 = \{ndarray\} [8.89405799 11.43006706 -11.15161753 -3.22878671 -4.29865265]$

Final Score is -0.030330123949945036 and threshold is 0.1959 Different Person

测试语音(zhr) -> deep_ feature2 (1x512)

Final Score is 0.5571417215548106 and threshold is 0.1959 Same Person 注册语音: 时长>3s, 采样率16000 测试语音: 时长>3s, 采样率16000

输入测试语音到输出结果耗时:

1.2009568214416504 s

SPKID(xvector)

Aoto speaker 数据描述: 145个说话人,每人6句语音(有缺失),文本相关('帮我开个门'), 2s~3s (50.6M)

训练集:每人5条语音测试集:每人1条语音

epoch 0, loss tr=12.058552 err tr=1.000000 loss te=4.946517 err te=0.950021 err te snt=0.946154 epoch 1, loss tr=9.243673 err tr=0.997500 loss te=4.926078 err te=0.875500 err te snt=0.869231 epoch 2, loss tr=6.998516 err tr=0.972187 loss te=4.903053 err te=0.786025 err te snt=0.761538 epoch 3, loss tr=4.971113 err tr=0.863437 loss te=4.887064 err te=0.780013 err te snt=0.769231 epoch 4, loss tr=3.565307 err tr=0.712187 loss te=4.869194 err te=0.721533 err te snt=0.676923 epoch 5, loss tr=2.406699 err tr=0.513750 loss te=4.860543 err te=0.710446 err te snt=0.692308 epoch 6, loss tr=1.651469 err tr=0.331562 loss te=4.851987 err te=0.685518 err te snt=0.669231 epoch 7, loss tr=1.216467 err tr=0.229375 loss te=4.836324 err te=0.635470 err te snt=0.630769 epoch 8, loss tr=0.804816 err tr=0.126562 loss te=4.844227 err te=0.666138 err te snt=0.661538 epoch 9, loss tr=0.685921 err tr=0.099687 loss te=4.840653 err te=0.636263 err te snt=0.615385 epoch 10, loss tr=0.496485 err tr=0.063437 loss te=4.825949 err te=0.632245 err te snt=0.615385 epoch 11, loss tr=0.403659 err tr=0.051562 loss te=4.838764 err te=0.673383 err te snt=0.653846 epoch 12, loss tr=0.384862 err tr=0.045937 loss te=4.824498 err te=0.640017 err te snt=0.630769 epoch 13, loss tr=0.327981 err tr=0.037187 loss te=4.822965 err te=0.610876 err te snt=0.600000 epoch 14, loss tr=0.309444 err tr=0.034063 loss te=4.822235 err te=0.633240 err te snt=0.623077 epoch 15, loss tr=0.295286 err tr=0.033750 loss te=4.818516 err te=0.641127 err te snt=0.607692 epoch 16, loss tr=0.216414 err tr=0.020625 loss te=4.806367 err te=0.634496 err te snt=0.615385 epoch 17, loss tr=0.187519 err tr=0.021250 loss te=4.799305 err te=0.616913 err te snt=0.600000 epoch 18, loss tr=0.282146 err tr=0.039375 loss te=4.819955 err te=0.627702 err te snt=0.607692 epoch 19, loss tr=0.197313 err tr=0.020312 loss te=4.810517 err te=0.605578 err te snt=0.592308 epoch 20, loss tr=0.189448 err tr=0.022187 loss te=4.806847 err te=0.618051 err te snt=0.607692

预想计划:使用aishell数据集进行与训练,再用aoto数据集fine-tune

VGGVox speaker identification

Layer	Support	Filt dim.	# filts.	Stride	Data size
conv1	7×7	1	96	2×2	254×148
mpool1	3×3	-	-	2×2	126×73
conv2	5×5	96	256	2×2	62×36
mpool2	3×3	-	-	2×2	30×17
conv3	3×3	256	384	1×1	30×17
conv4	3×3	384	256	1×1	30×17
conv5	3×3	256	256	1×1	30×17
mpool5	5×3	-	-	3×2	9×8
fc6	9×1	256	4096	1×1	1×8
apool6	$1 \times n$	-	-	1×1	1×1
fc7	1×1	4096	1024	1×1	1×1
fc8	1×1	1024	1251	1×1	1×1

test_file	test_speaker	1	2	3	result	correct
data/wav/test/1- 3.wav	1	0.782583	0.891363	0.805392	1	1
data/wav/test/2- 3.wav	2	0.963036	0.459733	0.713374	2	1
data/wav/test/3- 3.wav	3	0.553141	0.590193	0.496234	3	1

工作预想:使用aoto数据微调VGGVox模型参数 使用kaldi

VoxCeleb1(40G) VoxCeleb2(80G)

Dataset	VoxCeleb1	VoxCeleb2
# of POIs	1,251	6,112
# of male POIs	690	3,761
# of videos	22,496	150,480
# of hours	352	2,442
# of utterances	153,516	1,128,246
Avg # of videos per POI	18	25
Avg # of utterances per POI	116	185
Avg length of utterances (s)	8.2	7.8

7,000 +

speakers

VoxCeleb contains speech from speakers spanning a wide range of different ethnicities, accents, professions and ages.

1 million +

utterances

All speaking face-tracks are captured "in the wild", with background chatter, laughter, overlapping speech, pose variation and different lighting conditions.

2,000 +

hours

VoxCeleb consists of both audio and video. Each segment is at least 3 seconds long.

Thanks for your attention!