

CLIPPEDIMAGE= JP411025983A

PAT-NO: JP411025983A

DOCUMENT-IDENTIFIER: JP 11025983 A

TITLE: ACTIVE MATERIAL FOR LITHIUM BATTERY

PUBN-DATE: January 29, 1999

INVENTOR-INFORMATION:

NAME

KARIRU, AMIN

ASSIGNEE-INFORMATION:

NAME COUNTRY

JAPAN STORAGE BATTERY CO LTD N/A

APPL-NO: JP09215424

APPL-DATE: July 4, 1997

INT-CL_(IPC): H01M004/58; C01B025/45 ; H01M004/02 ; H01M010/40

ABSTRACT:

PROBLEM TO BE SOLVED: To provide high energy density and a high

voltage by

providing an olivine structure and using a compound having a specified composition.

SOLUTION: This compound is represented by

$\text{LiM}_{1-x}\text{Me}_x\text{XPO}_4$ (M:

CO, Ni, Mn; Me: Mg, Fe, Ni, Co, Mn, Zn, Ge, Cu, Cr; $0 \leq x \leq 0.5$).

Preferably, an olivine structure has an orthorhombic symmetry having an orthorhombic symmetry space group Pmnb. Also, when the values (a), (b) and (c)

of the unit cell parameter of an orthorhombic phase are

LiMnPO_4 ,

LiNiPO_4 , and LiCoPO_4 , these are preferably values within

specified different ranges. Preferably, the compound having the olivine

structure is included in an electrode as a positive electrode active material for a lithium battery, and preferably a negative electrode active material selected from this, electrolytic liquid, Li, and Li alloy, $\text{Li}_{\langle \text{SB} \rangle x} \text{SnO}_{\langle \text{SB} \rangle 2}$ and a carbon material is provided in the battery.

COPYRIGHT: (C)1999,JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平11-25983

(43) 公開日 平成11年(1999)1月29日

(51) Int.Cl.*

H 01 M 4/58
C 01 B 25/45
H 01 M 4/02

識別記号

F I

H 01 M 4/58
C 01 B 25/45
H 01 M 4/02

10/40

Z
C
D

10/40

Z

審査請求 未請求 請求項の数 6 FD 外国語出願 (全 22 頁)

(21) 出願番号

特願平9-215424

(22) 出願日

平成9年(1997)7月4日

(71) 出願人 000004282

日本電池株式会社

京都市京都市南区吉祥院西ノ庄猪之馬場町

1番地

(72) 発明者 カリル アミン

京都市南区吉祥院西ノ庄猪之馬場町1番地

日本電池株式会社内

(54) 【発明の名称】 リチウム電池用活物質

(57) 【要約】

【課題】高エネルギー密度で、高電圧なリチウム電池を可能とする正極活物質を提供する。

【解決手段】リチウムイオン電池系で正極活物質として使用可能な、カンラン石型構造を有する式 $\text{LiM}_{1-x}\text{M}_x\text{PO}_4$ ($M: \text{Co}, \text{Ni}, \text{Mn}$, $\text{Me}: \text{Mg}, \text{Fe}, \text{Ni}, \text{Co}, \text{Mn}, \text{Zn}, \text{Ge}, \text{Cu}, \text{Cr}$) ($0 \leq x \leq 0.5$) で表される活物質。

1

2

【特許請求の範囲】

【請求項1】オリビン構造を有し、式 $\text{LiM}_{1-x}\text{M}_x\text{PO}_4$ ($\text{M} : \text{Co, Ni, Mn}$) , ($\text{Me} : \text{Mg, Fe, Ni, Co, Mn, Zn, Ge, Cu, Cr}$) ($0 \leq x \leq 0.5$) で表されることを特徴とするリチウム電池用活物質。

【請求項2】前記オリビン構造が斜方晶型対称性を有することを特徴とする請求項1に記載のリチウム電池用活物質。

【請求項3】前記斜方晶型相の単位格子パラメータが、 LiMnPO_4 の場合には $a = 6.11 \pm 0.50 \text{ \AA}$ 、 $b = 10.46 \pm 0.50 \text{ \AA}$ 、 $c = 4.73 \pm 0.50 \text{ \AA}$ 、 LiNiPO_4 の場合には $a = 5.86 \pm 0.50 \text{ \AA}$ 、 $b = 10.07 \pm 0.20 \text{ \AA}$ 、 $c = 4.68 \pm 0.50 \text{ \AA}$ 、 LiCoPO_4 の場合には $a = 5.92 \pm 0.50 \text{ \AA}$ 、 $b = 10.21 \pm 0.50 \text{ \AA}$ 、 $c = 4.70 \pm 0.50 \text{ \AA}$ であることを特徴とする請求項2に記載のリチウム電池用活物質。

【請求項4】前記斜方晶型対称性が空間群 $Pmn\bar{b}$ を有することを特徴とする請求項2に記載のリチウム電池用活物質。

【請求項5】請求項1記載のリチウム電池用活物質をリチウム電池用正極活物質として含有する電極。

【請求項6】請求項5記載の電極と、電解液、 Li 、 Li -合金、 $\text{Li}_{x}\text{SnO}_2$ 、及び炭素材料である負極活物質とを備えた電池。

【発明の詳細な説明】

【発明の属する技術分野】本発明は、リチウム電池の改良に関するものである。

【従来の技術】エレクトロニクスの急速な進歩と小型化に伴って、信頼性があり、軽量で、かつ高エネルギー密度を有する電池が必要となっている。この点に関してリチウム電池が有望である。なぜなら、リチウム電池は、高い電圧及びエネルギー密度を有しており、かつ耐用年数が長いからである。しかしながら、金属 Li アノードが呈するほとんどの非水電解液との化学的反応性、並びに金属 Li に関連する安全性の問題のために、充電可能リチウム電池の開発が数年間妨げられてきた。最近、二次リチウム電池に新たな関心が寄せられている。これは、金属 Li の代わりに Li 挿入化合物をアノードとして利用することによって「リチウムイオン」電池を作製するということに関連したものである。しかしながら、この系では、カソードホスト及びアノードホストの選択に注意を払う必要がある。層状 LiMO_2 ($\text{M} : \text{Co, Ni}$) [Mat. Res. Bull. 15 (1980) 783, J. Appl. Phys. 19 (1980) 305] 及び三次元スピネル型酸化物 LiMn_2O_4 [Mat. Res. Bull. 11. 18 (1983) 461, Mat. Res. Bull. 19 (1984) 179] は放電中間電圧がリチウムに対して約4Vの位置にあり、リチウムイオン電池用の魅力的なカソードとなっている。更に最近になって、他の型のカソード材料がリチウムイオン系で使用できるかの研究がなされた。これらの化合物は、 $\text{Li}_x\text{M}_2(\text{PO}_4)_3$ ($\text{M} : \text{Ti, V, Fe}$) 及び $\text{M}_2(\text{SO}_4)_3$ ($\text{M} : \text{Ti, Fe}$) [Solid State Ionic 92 (1996) 1] など

のNasicon関連3D骨格から構成されている。

【発明が解決しようとする課題】本発明の課題は、従来の正極活物質では達成されなかつた、高エネルギー密度で高電圧を得ることが可能なリチウム電池用活物質を提供することである。

【課題を解決するための手段】本発明の要旨は、リチウム二次電池用の正極活物質として使用可能な式 $\text{LiM}_{1-x}\text{M}_x\text{PO}_4$ ($\text{M} : \text{Co, Ni, Mn}$) , ($\text{Me} : \text{Mg, Fe, Ni, Co, Mn, Zn, Ge, Cu, Cr}$) ($0 \leq x \leq 0.5$) で表され、これらは、斜方晶型対称性及び空間群 $Pmn\bar{b}$ を有するオリビン構造を呈することを特徴とすることである。

【発明の実施の形態】

【実施例】次に、本発明者が行った実験を参照して、また添付の図面を参照して、実施例により本発明を説明するが、これに限定されるものではない。

【実施例1】 Li_2CO_3 、 MnCO_3 、及び $(\text{NH}_4)_2\text{HPO}_4$ から成る化学量論比の混合物を用いた一段反応によって、本発明の LiMnPO_4 を調製した。この混合物を最初にめのう乳鉢ですりつぶし、 400 kgf/cm^2 で加圧してペレットにし、次に 450°C において空気中で4時間か焼し、その後、 800°C において24時間加熱した。

【実施例2】 Li_2CO_3 、 MnCO_3 、 $(\text{NH}_4)_2\text{HPO}_4$ 、並びに次のうちのいずれか一つ、即ち、鉄供給源として FeC_2O_4 、 $2\text{H}_2\text{O}$ 、マグネシウム供給源として MgO 、コバルト供給源として Co_3O_4 、又はニッケル供給源として NiO から成る化学量論比の混合物を用いた一段反応によって、本発明の $\text{LiM}_{1-x}\text{M}_x\text{PO}_4$ ($\text{Me} : \text{Mg, Ni, Co, Fe}$) を調製した。この混合物を最初にめのう乳鉢ですりつぶし、 400 kgf/cm^2 で加圧してペレットにし、次に 450°C において空気中で4時間か焼し、その後、 800°C において24時間加熱した。

【実施例3】 Li_2CO_3 、 NiO 、及び $(\text{NH}_4)_2\text{HPO}_4$ から成る化学量論比の混合物を用いた一段反応によって、本発明の LiNiPO_4 を調製した。この混合物を最初にめのう乳鉢ですりつぶし、 400 kgf/cm^2 で加圧してペレットにし、次に 350°C において窒素流動下で8時間か焼し、その後、 750°C において15時間加熱した。

【実施例4】 Li_2CO_3 、 MnCO_3 、 $(\text{NH}_4)_2\text{HPO}_4$ 、並びに次のうちのいずれか一つ、即ち、鉄供給源として FeC_2O_4 、 $2\text{H}_2\text{O}$ 、マグネシウム供給源として MgO 、コバルト供給源として Co_3O_4 、又はマンガン供給源として MnCO_3 から成る化学量論比の混合物を用いた一段反応によって、本発明の $\text{LiNi}_{1-x}\text{M}_x\text{PO}_4$ ($0 \leq x \leq 0.5$) ($\text{Me} : \text{Mg, Mn, Co, Fe}$) を調製した。この混合物を最初にめのう乳鉢ですりつぶし、 400 kgf/cm^2 で加圧してペレットにし、次に 350°C において空気中で8時間か焼し、その後、 750°C において24時間加熱した。鉄をドーピングする際は、窒素流動下でか焼を行った。

【実施例5】 Li_2CO_3 、 Co_3O_4 、及び $(\text{NH}_4)_2\text{HPO}_4$ から成る化学量論比の混合物を用いた二段反応によって、本発明

のLiCoPO₄を調製した。この混合物を最初にめのう乳鉢ですりつぶし、400kgf/cm²で加圧してペレットにし、次に350°Cにおいて空気中で9時間か焼した。この物質を冷却し、すりつぶし、再び400kgf/cm²で加圧してペレットにし、その後、750°Cにおいて30時間加熱した。

【実施例6】Li₂CO₃、Co₃O₄、(NH₄)₂HPO₄、並びに次のうちのいずれか一つ、即ち、鉄供給源としてFeC₂O₄·2H₂O、マグネシウム供給源としてMgO、ニッケル供給源としてNiO、又はマンガン供給源としてMnCO₃から成る化学量論比の混合物を用いた一段反応によって、本発明のLiCo_{1-x}M_xPO₄ (0≤x≤0.5) (Me : Mg, Mn, Ni, Fe) を調製した。この混合物を最初にめのう乳鉢ですりつぶし、400kgf/cm²で加圧してペレットにし、次に350°Cにおいて空気中で8時間か焼し、その後、750°Cにおいて24時間加熱した。鉄をドーピングする際は、窒素流動下でか焼を行った。図1A, 1B, 1Cは、それぞれ本発明に従って得られた純粹なLiMnPO₄、LiNiPO₄、LiCoPO₄のX線回折パターンを表している。三つのX線回折パターンはいずれも、斜方晶型対称性及び空間群Pmn_bに帰属できる。LiMnPO₄のX線回折パターンの帰属後に導出されたLiMnPO₄の単位格子パラメータは、a=6.11±0.5Å、b=10.46±0.5Å、c=4.73±0.5Å；LiNiPO₄に対する単位格子パラメータは、a=5.86±0.5Å、b=10.07±0.2Å、c=4.68±0.5Å；LiCoPO₄に対する単位格子パラメータは、a=5.92±0.5Å、b=10.21±0.5Å、c=4.70±0.5Åである。図2は、LiCoPO₄のサイクリックボルタンメトリーの一例を表している。この物質は、5.1Vの位置に一つの酸化ピークを、また4.7Vの位置に一つの還元ピークを呈する。更に、もう一つの強い還元ピークが0.7V付近に観測されるが、対応する酸化ピークは観測されなかった。この場合は、6Vまで耐えることが知られているスルホランに溶解したLiPF₆を、電解液として使用した。図3は、本発明の物質LiCoPO₄の第一サイクルの充放電を表している。試験は、LiPF₆+スルホランを電解液として使用したテフロン製電槽中で0.1mA/cm²の電流密度において実施した。この電池は、負極（87%の本発明の活物質、5%のカーボンブラック、8%のPVDFの組成）、リチウム対極、及びリチウム参照電極を備えている。最初に、この電池を充電して本発明の物質からリチウムを抽出し、次に、放

電してリチウムイオンを挿入してもとに戻す。この電池は、放電中、4.7Vの位置に平坦部を呈し、容量は80mAh/gである。しかしながら、充電容量はわずかに高く、約105mAh/gである。この値は、1個のリチウムを抽出挿入する場合の理論容量167mAh/gよりも依然として低いが、調製条件を最適化することによって改良可能であることを示している。図4は、本発明の物質LiCoPO₄の第一サイクル目の充放電を表している。試験は、LiPF₆+スルホランを電解液として使用したタイプのテフロン電槽中で0.1mA/cm²の電流密度において実施した。この電池の充放電の電位範囲は、1≤V≤5.3であった。放電中、4.7Vの位置に平坦部が観測された他に、1V付近にもう一つの平坦部が観測された。全体としての容量は非常に高く、約350mAh/gである。

【発明の効果】本発明の、カンラン石型構造を有する式LiM_{1-x}Me_xPO₄ (M : Co, Ni, Mn, Me : Mg, Fe, Ni, Co, Mn, Zn, Ge, Cu, Cr) (0≤x≤0.5) で表される活物質は、リチウムイオン電池系で正極活物質として使用可能で、容量が170mAh/gと大きく、しかも電位が5Vと高い、20という優れた効果を有している。

【図面の簡単な説明】

【図1 A】本発明の物質LiMnPO₄のX線回折パターンを表している図である。

【図1 B】本発明の物質LiNiPO₄のX線回折パターンを表している図である。

【図1 C】本発明の物質LiCoPO₄のX線回折パターンを表している図である。

【図2】本発明の物質LiCoPO₄のサイクリックボルタンモグラムを表している図である。（走査速度は2mV/分であった）

【図3】リチウム対電極、リチウム参照電極、及び本発明の活物質LiCoPO₄から作られた電極を含んでなる電池の第一サイクル目の充放電曲線を表している。この場合は、この電池を5.3Vまで充電し、1.5Vまで放電させた。

【図4】リチウム対電極、リチウム参照電極、及び本発明の活物質LiCoPO₄から作られた電極を含んでなる電池の第一サイクルの充放電曲線を表している。この場合は、この電池を5.3Vまで充電し、1Vまで放電させた。

【図1 A】

【図1 B】

【図1 C】

【図2】

【図3】

【図4】

【外國語明細書】

1- Title :

" Active material for lithium batteries "

2- CLAIMS:

The following are claimed:

1- An active material of formula $\text{LiM}_{1-x}\text{Me}_x\text{PO}_4$ (M: Co, Ni, Mn ,
($\text{Me: Mg, Fe, Ni, Co, Mn, Zn, Ge, Cu, Cr}$) ($0 \leq x \leq 0.5$) having an
olivine structure for lithium batteries.

2- An active material in accordance with claim 1 where the olivine
structure has an orthorhombic symmetry

3-An active material in accordance with claim 2 in which the unit cell
parameters of the orthorhombic phase are: $a=6.11\pm0.50\text{\AA}$,
 $b=10.46\pm0.50\text{\AA}$ and $c=4.73\pm0.50\text{\AA}$ in the case of LiMnPO_4 ; $a=$

5.86±0.50Å, b=10.07±0.20Å and c=4.68± 0.50Å in the case of LiNiPO₄ and a = 5.92±0.50Å, b=10.21±0.50Å and c=4.70± 0.50Å in the case of LiCoPO₄.

4- An active material in accordance with claim 2 where the orthorhombic symmetry has a space group of Pmn_b

5- An electrode comprises a material in accordance with claim 1 as a positive active material for lithium batteries.

6- A cell comprising a positive active material in accordance with claim 5, an electrolyte and a negative active material which is Li, Li-alloy, Li_xSnO₂, carbon materials.

3- Detailed Description of Invention

3-1 Description of previous work

The rapid advance and miniaturization in electronics demand reliable, lightweight, high energy density batteries. Lithium batteries are promising in this regard as they offer higher voltage and energy density, and longer self-life. However, the chemical reactivity of a metallic Li anode with most non aqueous electrolytes as well as the safety problems associated with

metallic Li has hindered the development of rechargeable lithium batteries for several years. Recently secondary lithium batteries have received renewed interest with respect to employing a Li-insertion compound as anode instead of metallic Li to give the "lithium ion" batteries. This system, however, require careful selection of cathode and anode hosts. The layered LiMeO_2 (M: Co, Ni) [Mat. Res. Bull. 15 (1980) 783, J. Appl. Phys. 19 (1980) 305] and the three dimensional spinel oxide LiMn_2O_4 [Mat. Res. Bull. 18 (1983) 461, Mat. Res. Bull., 19 (1984) 179] having a mid discharge voltage at about 4V against lithium have become attractive cathode for lithium ion batteries. More recently, other type of cathode materials were investigated for a possible use in lithium ion system. These compounds are composed of Nasicon related 3D framework such as $\text{Li}_x\text{M}_2(\text{PO}_4)_3$, M(Ti, V, Fe) and $\text{M}_2(\text{SO}_4)_3$ (M: Ti, Fe) [Solid State Ionic 92 (1996) 1].

3-2 Summary of the invention

The invention relates to a new active material of formula $\text{LiM}_{1-x}\text{Me}_x\text{PO}_4$ (M: Co, Ni, Mn), (Me: Mg, Fe, Ni, Co, Mn, Zn, Ge, Cu, Cr) ($0 \leq x \leq 0.5$) which could be used as positive active material for lithium secondary batteries.