PROIECT SCPI

Reglarea automata a presiunii

Cuprins

1.	Introducere	2
2.	Identificare	3
	Regulator PID	
	Regulator RST	
	Concluzie	

1. Introducere

Scopul proiectului este reglarea automata a presiunii, in urma caruia vor fi obtinute doua regulatoare (un regulator de tip PID si un regulator RST).

Instalatia pe care se lucreaza poate fi observata in imaginea urmatoare:

Schema functionala a instalatiei poate fi observata in imaginea de mai jos:

Se lucreaza in urmatorul regim:

- Valvele V105, V107, V108 sunt inchise.
- Valva V103 este complet deschisa.
- Valva V109 este deschisa 60-70%.
- Valva pneumatica V106 controlata automat nu este folosita in cadrul proiectului, ramanand in permanenta deschisa.

2. Identificare

Prima etapa in cadrul proiectului este preluarea datelor experimentale. Dupa conectarea la platforma, se observa comportamentul sistemului la o intrare treapta u=150 si se salveaza iesirea din sistem. Aceasta achizitie de date se repeta de trei ori, iar rezultatele pot fi observate in graficul urmator:

Pentru a identifica functia de transfer a procesului se iau doua puncte de pe grafic si se noteaza rezultatele care sunt prelucrate:

La t1= 2s se inregistreaza un y1=70, la t2= 4s un y2=108, iar valoarea la care se stabilizeaza sistemul este K=132.

Avand in vedere ca atat pompa, cat si senzorul lucreaza cu valori intre 0 si 255, se convertesc toate datele obtinute in procente in vederea efectuarii calculelor.

Astfel, dupa aplicarea formulei:
$$Tf = \frac{(t2-t1)}{ln(\frac{y1-K}{y2-K})}$$

Se obtine un Tf = 2.1, functia de transfer obtinuta fiind Hf = $\frac{0.88}{2.1 \text{ s} + 1}$

Se observa ca raspunsul functiei de transfer obtinuta din calcul nu reprezinta o aproximare buna a raspunsului real. Astfel, dupa o ajustare a lui Tf si adaugarea unui pol cu o constanta de timp mult mai mica decat cea a procesului care sa simuleze timpul mort foarte mic care apare in raspunsul procesului real, s-a obtinut o functie de transfer: $Hf = \frac{Kf}{(2.34*s+1)*(0.2*s+1)}$

Se observa ca raspunsul functiei de transfer obtinute aproximeaza suficient de bine raspunsul procesului real.

Se discretizeaza functia de transfer obtinuta si se simuleaza raspunsul acesteia la treapta:

3. Regulator PID

Pentru obtinerea regulatorului PID se foloseste metoda poli-zerouri.

Pentru calculul indicilor de calitate se au invedere urmatoarele performante dorite:

- Suprareglaj <10 %
- Timp tranzitoriu < 5s
- Eroare stationara 0

Astfel se aleg un epsilon mai mare decat $\overline{\varepsilon} = \frac{ln(0.1)}{\sqrt{\prod^2 + (ln(0.1))^2}} \qquad \text{si un omega mai}$ mare decat $\omega n = -\frac{ln(0.05*\sqrt{1-\varepsilon^2})}{5*\varepsilon}$

Stiind functia de transfer pe calea directa $Hd = \frac{H0}{1-H0} \ ,$ putem afla regulatorul Hr=Hd/Hf.

Simularea comportamentului sistemului in timp continuu la intrearea treapta u=150, cu o perturbatie de e=100 la secunda 15:

Se poate observa ca regulatorul asigura performantele dorite. Acesta se discretizeaza, obtinand

In urma simularii sistemului in discret (de data aceasta cu o perturbatie e=-100) obtinem urmatorul comportament:

Observand ca regulatorul indeplineste performantele dorite si in discret, se testeaza regulatorul obtinut pe platforma.

Comportamentul regulatorului testat pe platforma pentru o referinta u=30:

Comportamentul regulatorului testat pe platforma pentru o referinta u=100:

Se oberva ca regulatorul reuseste sa atinga performantele dorite si pe platforma de lucru.

In cazul sistemului nostru, regulatorul cu care s-a lucrat este un regulator PI, componenta derivativa D lipsind. Motivul lipsei acestei componente este viteza de raspuns foarte mare, aproape instantanee a sistemului la semnalele de intrare, astfel nu este nevoie sa se faca predictia comportamentului.

4. Regulator RST

Pentru obtinerea regulatorului RST se urmareste algoritmul specific de calcul.

Functia de transfer obtinuta la identificare se discretizeaza (de data aceasta de mana, folosind metoda dreptunghiului înapoi), obtinandu-se $Hdisc = \frac{0.66}{1-1.286*z^{-1}+0.354*z^{-2}}$

Se identifica $A = [1 - 1.286 \ 0.354]$ si B = [0.06].

Pentru a asigura problema urmaririi referintei, in A se adauga un integrator, astfel A1 = [1.0000 -2.2860 1.6400 -0.3540].

Pentru anumite performanțe dorite (w=0.9 si ξ =0.75), am obținut polinomul P din discretizarea unei functii de transfer de ordin 2.

Se calculeaza gradele polinoamelor care satisfac ecuația lui Bezout si se obtin ns=0 si nr=2. Se obtin polinoamele S si R utilizand matricea Sylvester

T se afla utilizand T=P/sum(B). Astfel se obtin:

R=[11.2915 -16.1962 5.9000]

S = [1 - 1]

T= [16.6667 -26.8085 11.1372]

Pentru comportamentul urmaririi referintei dorit se va adauga si un generator de traiectorie. Generatorul de traiectorie se obtine alegand un alt omega, omega'=omega*tt, (tt reprezinta timpul tranzitoriu) si pastrand epsilon folosit anterior. Astfel se obtine o noua functie de gradul 2 impusa care, dupa discretizare, va fi folosita ca si generator de traiectorie:

Simularea comportamentului sistemului la intrearea treapta u=100, cu o perturbatie de e=-50 la secunda 15:

Observand ca regulatorul indeplineste performantele dorite si in discret, se testeaza regulatorul obtinut pe platforma.

Comportamentul regulatorului testat pe platforma pentru o referinta u=100:

Comportamentul regulatorului testat pe platforma pentru o referinta u=100 si comportamentul la eroare adaugata manual:

Se mentioneaza faptul ca eroarea a fost adaugata in sistem prin miscarea robitneului V103 (initial complet deschis) incepand cu secunda 9, ajundand ca spre finalul simularii (secunda 20) robinetul sa se afle in pozitia 1 (60-70% deschis).

5. Concluzie

In concluzie, in cadrul proiectului de reglare automata a presiunii, au fost realizati mai multi pasi: s-a realizat identificarea experimentala a datelor pe platforma si s-au calculat si testat, cu succes, regulatoarele de tip PI si RST. Ambele asigura atat o performanta inalta, cat si robustete si stabilitate in ceea ce priveste perturbatiile si variatiile din sistem.