Razonamiento Probabilista

Redes de Márkov

Verónica E. Arriola-Rios

Facultad de Ciencias, UNAM

9 de agosto de 2021

Redes de Márkov por pares

- Redes de Márkov por pares
- Distribución de Gibbs General

- Redes de Márkov por pares
 - Definición
 - Flujo de influencia probabilista

Redes de Márkov por pares

Definición

Una $red\ de\ M\'{a}rkov\ por\ pares$ es una gráfica no dirigida cuyos nodos son las variables aleatorias $X_1,...,X_n$ y cada arista X_i-X_j se encuentra asociada con un factor (llamado **potencial**) $\varphi_{ij}(X_i,X_j)$

- Las redes de Márkov son especialmente útiles para modelar fenómenos donde no se puede atribuir la relación entre dos variables a un principio de causalidad, por lo que no se puede asociar una dirección.
- Los valores asociados en el factor reflejan la *afinidad* entre asignaciones de valores por pares, también llamada *compatibilidad* o *restricciones suaves* (*affinity*, *compatibility*, *soft constraints*).

2016)

Ejemplo: amigos estudiando

 Los siguientes pares de amigos suelen estudiar juntos, pero algunos tienden a estar de acuerdo, mientras que otros suelen pelear y elegir opiniones opuestas. (Koller

 La distribución de probabilidad conjunta completa para este sistema es por definición:

$$\begin{split} \tilde{P}(A,B,C,D) &= \varphi_1(A,B) \times \varphi_2(B,C) \times \varphi_3(C,D) \times \varphi_4(A,D) \\ P &= \frac{\tilde{P}(A,B,C,D)}{\sum_{A,B,C,D} \tilde{P}(A,B,C,D)} = \frac{1}{Z} \tilde{P}(A,B,C,D) \end{split}$$

 A partir de esta tabla es posible obtener cualquier otra distribución de probabilidad mediante las operaciones de marginalización, reducción y normalización.

P(D,A)					P(A,B)			
$\mathbb{A} = \{Daniela, Alicia\}$					$\mathbb{A} = \{Alicia, Bob\}$			
Daniela	Alicia	P(D, A)	Influencia		Alicia	Bob	P(A,B)	Influencia
correcto	correcto	0.78	100	Alicia	correcto	correcto	0.12	30
correcto	error	0.04	1		correcto	error	0.69	5
error	correcto	0.01	1		error	correcto	0.14	1
error	error	0.17	100		error	error	0.04	10
			Daniela	-\ /	Bob		D. C.	
P(C,D)					P(B,C)			
$\mathbb{A} = \{Carlos, Daniela\}$				_ /	$\mathbb{A} = \{Bob, Carlos\}$			
Carlos	Daniela	P(C,D)	Influencia		Bob	Carlos	P(B,C)	Influencia
correcto	correcto	0.04	1	Carlos	correcto	correcto	0.22	100
correcto	error	0.19	100		correcto	error	0.04	1
error	correcto	0.75	100		error	correcto	0.01	1
error	error	0.01	1		error	error	0.72	100

- Redes de Márkov por pares
 - Definición
 - Flujo de influencia probabilista

Ruta activa

Definición (Ruta activa)

Una *ruta* $X_1 - ... - X_n$ se encuentra *activa* dado el conjunto de variables observadas Z si ninguna X_i se encuentra en Z.

Figura: Habiendo sido observada C, todos los caminos que pasan por ahí están inactivos.

Distribución de Gibbs General

- Redes de Márkov por pares
- Distribución de Gibbs General

- Distribución de Gibbs General
 - Factores generales
 - Distribución de Gibbs
 - Red de Márkov inducida

Factores generales

- Los factores generales $\phi_i(\vec{D}_i)$ pueden describir las interacciones entre un subconjunto de k variables aleatorias en \vec{D} (el alcance del factor ϕ_i).
- Estos factores **inducen** una red de Márkov H_{Φ} donde se agrega una arista $X_i X_j$ por cada par (X_i, X_j) tal que $X_i, X_j \in \vec{D}_i$.

- 2 Distribución de Gibbs General
 - Factores generales
 - Distribución de Gibbs
 - Red de Márkov inducida

Distribución de Gibbs

• Dado el conjunto de factores:

$$\Phi = \{ \phi_1(\vec{D}_1), ..., \phi_k(\vec{D}_k) \}$$

Sea la medida no normalizada

$$\tilde{P}_{\Phi}(X_1,...,X_n) = \prod_{i=1}^k \varphi_i(\vec{D_i})$$

• Y la función de partición Z, la constante de normalización:

$$Z_{\Phi} = \sum_{X_1,...,X_n} \tilde{P}_{\Phi}(X_1,...,X_n)$$

• La *distribución de Gibbs* representa una distribución de probabilidad como el producto de factores normalizado:

$$P_{\Phi}(X_1, ..., X_n) = \frac{1}{Z_{\Phi}} \tilde{P}_{\Phi}(X_1, ..., X_n)$$
 (1)

- 2 Distribución de Gibbs General
 - Factores generales
 - Distribución de Gibbs
 - Red de Márkov inducida

Red de Márkov inducida

 En general, existen varios conjuntos de factores generales que pueden inducir la misma red de Márkov. Ejemplo:

•
$$\phi_1(A, B, D), \phi_2(A, C, D)$$

•
$$\phi_1(A, B), \phi_2(B, D), \phi_3(D, C), \phi_4(C, A), \phi_5(A, D)$$

•
$$\phi_1(A, B, D), \phi_2(A, C), \phi_3(C, D)$$

Ojo, esta otra agregaría una arista más:

 Queda abierto el problema de definir, para un problema dado, cuál es el conjunto de factores que describirá correctamente el comportamiento del sistema modelado con la red de Márkov, es decir, cuál factoriza la distribución P.

Facultad de Ciencias, UNAM

Referencias I

Verónica E. Arriola-Rios

//www.coursera.org/specializations/probabilistic-graphical-models.

Licencia

Creative Commons Atribución-No Comercial-Compartir Igual

