Case study on Energy Storage: Piezoelectric

Dr. Kashfull Orra, Assistant Professor Department of Mechanical Engineering, IIITDM Kancheepuram, Chennai-600127

Lecturer notes on topic "Case study on Energy Storage: Piezoelectric" prepared from the following sources:

- J Li, Microstructure and Piezoelectric Properties, Materials, 15, 2-17, 2022
- T Lusiola, A Soppelsa et al., The impact of microstructure in (K,Na)NbO3-based lead-Free piezoelectric fibers: From processing to device production for structural health monitoring, Journal of the European ceramic society, 36, 2745-2754, 2016.
- W. G. Cady, Piezoelectricity, Dover Publications, New York, (1964) and McGraw-HillBook Co., (1946)
- o M F ashby, "Materials Slection in Mechanical Design", 4th Edition, Butterworth-Heinemann 2011
- NPTEL lecture notes
- Internet open source

Case study on Energy Storage: Piezoelectric

History: Piezoelectricity

- Piezoelectricity: Electricity form mechanical pressure discovered in the year 1880 by two great named Pierre and P J Curie
- Contemporary: Contact electricity-static electricity generated from friction
- Pyro electricity: Electricity generated from crustal while heating. For example: Sugar crystal and Salt are naturally occurring piezo electric material

Pierre Curie (1859-9016) Noble prize (1903)

Paul Jacques Curie (1856-1941)

Gabriel Lippmann (1845-1921) Noble prize (1908)

Piezoelectricity in Perovskites

Perovskite: A ternary (3 component structure)

For Example: BaTiO3 a common piezoelectricity

material

Other materials: PZT family, LiNb family, PbNb family, YMn family, NH4-Cd family

Tetragonal symmetry with dipole moment below curie temperature

electric field removed

Polarization of Piezoelectric material

electric field

Random orientation of polar domains prior to polarization

$$D = dX + \varepsilon^X E$$

$$x = S^E X + dE$$

Electric/magnetic/thermal stimulus

Reverse effect

Strain

Superscripts denote the measurement of permittivity at constant stress and compliance at constant electric field intensity

Where,

X is stress (N/m²)

X is strain

D is eclectic displacement/flux density (C/m2)

S is compliance (m2/N)

E is electric field intensity (V/m or N/C)

ε is permittivity (F/m)

D is piezoelectric constant (C/N or m/V)

Email: orra@iiitdm.ac.in, Department of Mechanical Engineering, IIITDM Kancheepuram, Chennai

Reverse/converse piezoelectric effect

Piezoelectric constant

$$d_{ki}^{d} = \frac{\text{charge generated in k-direction}}{\text{mechanical stress applied in i-direction}} \text{ C/N}$$

Electric/magnetic/thermal Strain
stimulus Reverse effect

 $d_{ik}^{c} = \frac{\text{charge generated in i-direction}}{\text{mechanical stress applied in k-direction}} \text{ m/V}$

For most practice purpose d^d and $d^c = d^T$, T is transpose of the matrix, thus m/V is equivalent to C/N

$$k_{ij} = \sqrt{\frac{\text{Mechanical energy stored in direction j}}{\text{Electrical energy applied in direction i}}}$$

Electro mechanical coupling coefficient

$$k_{ij} = \sqrt{\frac{\text{Electrical energy stored in direction i}}{\text{Mechanical energy applied in direction j}}}$$

How to prepare a piezoceramic actuator

> Start with fine powders of metal oxides (PZT/Barium Titanate), for example: PZT

PbO, ZrO₂ and TiO₂ powders

- Mix them in a fixed proportions
- > Use an organic binder
- > Form into specific shape
- ➤ Heat for a specific time and specified temperature 650° C to 800°C
- Cool-apply electrode (sputtering)
- > Polarize the sensor or actuator using a DC electric field

Powder processing steps

Commercial piezoelectric material property set

Unit	BaTiO ₃	PZT-A	PZT-B	PbNb ₂ O ₆	LiNbO ₃	PbTiO ₃
Mg/m ³	5.7	7.9	7.7	5.9	4.6	7.1
	0.21	0.33	0.39	0.04	0.02	0.05
	0.49	0.68	0.72	0.38	0.17	0.35
pCN-1	79	119	234	11	.85	7.4
μm²/N	8.6	12.2	14.5	29	5.8	11
	Mg/m³	Mg/m³ 5.7 0.21 0.49 pCN-¹ 79	Mg/m³ 5.7 7.9 0.21 0.33 0.49 0.68 pCN-¹ 79 119	Mg/m³ 5.7 7.9 7.7 0.21 0.33 0.39 0.49 0.68 0.72 pCN-¹ 79 119 234	Mg/m³ 5.7 7.9 7.7 5.9 0.21 0.33 0.39 0.04 0.49 0.68 0.72 0.38 pCN-¹ 79 119 234 11	Mg/m³ 5.7 7.9 7.7 5.9 4.6 0.21 0.33 0.39 0.04 0.02 0.49 0.68 0.72 0.38 0.17 pCN-¹ 79 119 234 11 .85

Observation

> PZT family has highest piezoelectric coupling

> Curie point: PZT family 220 °C to 315 °C and Li family 600 °C to 1200 °C

 \triangleright Instead of polycrystalline piezo ceramics, a single cut PMN could give $k_{33} = 0.92$ and $d_{33} = 2070$ pC/N

Piezoelectric polymer

- ➤ PVDF (Poly Vinyledene Fluoride) a semi-crystallanie polymer consist of long-chain molecules with the repeat unit of CF₂CH₂
- > PVDF (all transition) shows all chain oriented parallel to the axis of the unit cell and the dipoles pointing in the same direction
- \rightarrow d₃₁: 4.2 19 pC/N (for PZT 234)
- \succ K₃₁: 3 14.7 %
- ➤ E: 1.6 3.8 GPa

Piezoelectric composite

- Composite made of a polymer and PZT
- Polymer phase lower density, permittivity and increased elastic compliance
- ➤ Smaller PZT particle (5 10 micron) in polyurethane (PU) matrix
- Larger 120 micron particle in a silicon rubber matrix.

Smaller particles generate series connectivity, while larger generate parallel

connectivity

Applications: Bimorph

Piezostack

