

Improving CLIP Training with Language Rewrites

 ${\bf Lijie\ Fan^{1,2,*}\quad \ Dilip\ Krishnan^1\quad \ Phillip\ Isola^2\quad \ Dina\ Katabi^2\quad \ Yonglong\ Tian^{1,*}}$

¹Google Research, ²MIT CSAIL, *equal contribution

NeurIPS 2023

HUMANE Lab 박현빈

25.05.09

Background

- In CLIP Training, data augmentations are applied to image inputs to prevent overfitting
- However, text inputs remain unchanged
- Such asymmetry presents two issues
 - the language aspect provides less guidance to the image encoders
 - the text encoders repeatedly encounter the exact same texts in each epoch, which increases the risk of text overfitting
- Previous approaches focus on word-level treatments like replacement or masking, but these have less impact compared to image augmentations

Preliminary

$$L_I = -\sum_{i=1}^N \log \frac{\exp\left(\operatorname{sim}(f_I(\operatorname{aug}_I(x_I^i)), f_T(x_T^i))/\tau\right)}{\sum_{k=1}^N \exp\left(\operatorname{sim}(f_I(\operatorname{aug}_I(x_I^i)), f_T(x_T^k))/\tau\right)}$$

- *f* : normalization functions
- L_I : image-to-text loss
- L_T : text-to-image loss
- $L = (L_T + L_I)/2$

$$L_I = -\sum_{i=1}^N \log \frac{\exp\left(\text{sim}(f_I(\text{aug}_I(x_I^i)), f_T(\text{aug}_T(x_T^i)))/\tau\right)}{\sum_{k=1}^N \exp\left(\text{sim}(f_I(\text{aug}_I(x_I^i)), f_T(\text{aug}_T(x_T^i)))/\tau\right)}$$

Meta-Input-Output Text Pair Generation

• To harness ICL for text rewriting, generate several rewriting examples to be included in the prompt

Meta-Input-Output Text Pair Generation

Rewriting with Chatbots

- randomly sample texts from image-text datasets, and prompt ChatGPT and Bard web portals
- prompt: "Rewrite this caption of an image vividly, and keep it less than thirty words:"

MSCOCO Sampling

- within this dataset, each image is associated with five distinct text descriptions
- randomly select a subset of images
- choose one description as the meta-input text and another as the meta-output text

Human Rewriting

Language Rewriting

- A sentence that informs the LLM about the task
- Three examples sampled from the meta-input-output pairs
- The text sample that requires rewriting
- LLaMA-7B generates four distinct rewrites (ChatGPT, Bard, COCO, Human)

Language Rewriting

Original: Traffic jam on the road, a lot of cars which go towards each other and to the different directions

LLM ChatGPT: Traffic jam on the road, with a lot of cars moving in different directions, as well as towards each other.

LLM Bard: A lot of cars line the street, all heading toward the same intersection.

LLM MSCOCO: Traffic jam on the road with cars going in different directions, some cars are on the same lane, others are on different lanes.

LLM Human: A traffic jam on the road. There are a lot of cars and many of them are going in different directions.

LaCLIP (Language augmented CLIP)

$$\operatorname{aug}_T(x_T) \sim \operatorname{Uniform}([x_{T0}, x_{T1} \dots, x_{TM}])$$

 Randomly select a text sample from either original text or one of the generated rewrites

$$L_I = -\sum_{i=1}^N \log \frac{\exp\left(\operatorname{sim}(f_I(\operatorname{aug}_I(x_I^i)), f_T(\operatorname{aug}_T(x_T^i)))/\tau\right)}{\sum_{k=1}^N \exp\left(\operatorname{sim}(f_I(\operatorname{aug}_I(x_I^i)), f_T(\operatorname{aug}_T(x_T^i)))/\tau\right)}$$

• The additional text augmentation does not bring additional computation or parameter overheads

Experiments Setup

- Datasets
 - Training set: CC3M, CC12M, RedCaps, LAION-400M
 - Evaluation set: 15 common downstream datasets

- Training Parameters
 - CC3M, CC12M, RedCaps
 - ViT-B/16
 - 8,192 batch size
 - LAION-400M
 - ViT-B/32, ViT-B/16
 - 32,768 batch size

Zero-Shot(ZS) Evaluation

• The class text embeddings are used to compute distance with the image feature, and images are classified to class with the shortest distance

Data	Model	Food-101	CIFAR-10	CIFAR-100	SUN397	Cars	Aircraft	DTD	Pets	Caltech-101	Flowers	STL-10	EuroSAT	RESISC45	GTSRB	Country211	Average	ImageNet
						Mode	el Arch	itectu	re: ViT	T-B/32								
LAION-400M	CLIP LaCLIP	79.9 79.7	91.8 92.4							89.3 91.8							62.7 66.1	62.0 64.4
						Mode	el Arch	itectui	re: ViI	T-B/16								
CC3M	CLIP LaCLIP		54.9 57.1			0.8 1.6	1.4 1.6			43.3 52.7					6.9 6.4	0.6 1.0	20.6 24.6	15.8 21.5
CC12M	CLIP LaCLIP		64.9 75.1				2.4 5.6			77.4 83.3					7.3 12.7	5.1 8.9	38.8 46.2	40.2 48.4
	SLIP LaSLIP		80.7 82.0							77.6 82.4						5.7 9.2	40.6 46.1	42.1 49.7
RedCaps	CLIP LaCLIP		70.4 74.8				1.9 2.2			72.8 76.4						6.2 7.6	42.6 45.0	42.9 46.2
LAION-400M	CLIP LaCLIP		93.0 93.5														65.5 68.4	67.0 69.3

- LaCLIP outperform CLIP across various datasets
- LaCLIP is compatible with other techniques intended to enhance CLIP

Few-Shot(FS) Evaluation

• Perform 5-way 5-shot classification with Prototypical Network as classifier on top of the frozen features

Data	Model	Food-101	CIFAR-10	CIFAR-100	SUN397	Cars	Aircraft	DTD	Pets	Caltech-101	Flowers	STL-10	EuroSAT	RESISC45	GTSRB	Country211	Average
					Λ	Model 1	Archite	cture:	ViT-B	/32							
LAION-400M	CLIP LaCLIP	92.5 93.5	87.2 91.0	07.0	98.0 98.2	98.5 99.1	78.9 82.2	87.4 87.5		99.2 99.4	99.0 99.2		82.8 80.1	94.3 94.2	79.8 80.4	49.7 52.2	88.5 89.4
					Λ	Model .	Archite	cture:	ViT-B/	16							
ССЗМ	CLIP LaCLIP			73.6 76.8			46.1 49.2			93.3 95.2		84.6 89.5	81.4 81.1	87.1 85.5		37.3 37.3	73.1 75.0
CC12M	CLIP LaCLIP	87.0 89.9	77.5 81.3				62.0 68.1	83.3 84.9	91.1 93.4	98.2 98.9		92.6 95.9		91.2 92.4	70.6 76.4		83.3 85.8
CC12111	SLIP LaSLIP			83.0 86.6									84.9 84.0			43.0 45.4	82.1 84.5
RedCaps	CLIP LaCLIP	94.4 95.8		85.3 85.4			54.5 58.8		94.5 94.1				84.9 86.2			40.6 42.6	84.0 85.0
LAION-400M	CLIP LaCLIP	95.0 95.8	90.1 92.7	90.7 91.9	98.2 98.4	99.2 99.5		88.7 89.0	96.2 97.1			97.1 98.1	84.5 82.9	95.0 95.0	77.7 80.9		89.8 91.0

Linear-Probing(LP) Evaluation

• Train a linear classifier on top of the frozen features

Data	Model	Food-101	CIFAR-10	CIFAR-100	SUN397	Cars	Aircraft	DTD	Pets	Caltech-101	Flowers	STL-10	EuroSAT	RESISC45	GTSRB	Country211	Average	ImageNet
						Мос	lel Arc	hitectu	re: ViT	T-B/32								
LAION-400N	CLIP LaCLIP	85.8 85.1	95.8 96.2	83.6 84.2	75.1 75.6	89.2 90.1	54.3 56.1	79.7 79.6		94.5 94.8	96.8 97.7	97.9 98.4	96.3 95.8	93.5 93.6	88.6 88.6		82.7 83.2	74.6 75.3
						Mod	lel Arc	hitectu	re: ViT	T-B/16								
CC3M	CLIP LaCLIP	62.6 63.8	86.8 87.7	68.1 69.5	0.0		40.9 42.7	63.4 64.0	69.6 71.1				95.9 95.8		71.9 74.6			54.5 56.5
CC12M	CLIP LaCLIP	81.6 82.9	93.8 94.7	79.3 79.7		75.1 79.9	52.6 54.5	75.6 75.7				97.3 98.0			80.6 81.9		79.4 80.5	70.3 72.3
	SLIP LaSLIP	0	- ··-		73.5 75.1					92.7 93.7			96.8 96.8			20.6 21.1		73.2 74.4
RedCaps	CLIP LaCLIP	89.1 90.1		78.8 78.5	65.6 66.6		52.5 53.6					98.0 97.6				17.0 17.2		71.8 71.9
LAION-400N	CLIP LaCLIP	90.5 90.7	96.9 96.7	85.0 85.5	78.1 78.7		57.2 63.1			95.7 96.2	98.0 98.8		96.7 96.4			27.0 27.5		78.6 79.9

- Varying augmentation strategies
 - EDA: word-level synonym replacement
 - back translation: translate text to another language and then back to the original language

Augmont	Z	S	FS	LP			
Augment	DS	IN	гэ	DS	IN		
N/A (CLIP)	38.8	40.2	83.3	79.4	70.3		
EDA [58]	40.6	41.2	83.4	79.4	70.5		
Back Trans [50]	40.4	41.6	83.9	79.8	70.7		
LLM (Ours)	46.2	48.4	85.8	80.5	72.3		

Scaling with number of augmentations

- simpler augmentation strategies exhibit poor scalability because of there limited diversity
- conversely, LLM-based text augmentation consistently improves performance as more augmentations are added

• Different meta-input-output pair for ICL

Course	Z	S	FS	L	P
Source	DS	IN	гэ	DS	IN
ChatGPT	42.3	44.5	84.8	79.8	71.2
Bard	41.7	44.8	85.0	79.6	71.2
MSCOCO	42.1	44.6	84.8	79.8	71.3
Human	43.0	45.1	84.8	79.9	71.3

- with the model trained with augmentations using the Human pair slightly outperforming the others
- humans have the advantage of viewing the corresponding image, which allows them to generate more accurate and diverse rewrites

Comparison with Pre-trained Text Encoder

Mathad	Text E	ncoder	Z	S	EC	L	.P
Method	Pre-train	Freeze	DS	IN	FS	DS	IN
	×	×	38.8	40.2	83.3	79.4	70.3
CLIP	✓	×	42.1	42.9	83.6	79.5	70.4
	~	✓	24.5	23.2	80.3	74.9	66.0
LaCLIP	×	×	46.2	48.4	85.8	80.5	72.3

- fine-tuning based on the pre-trained text encoder exhibits some improvements
- LaCLIP outperforms all configurations, underscoring the benefit and necessity for text augmentation strategies

• LLaMA model size

(a) Zero-shot and Linear-probing Experiment Results

Model Size	Food-101	CIFAR-10	CIFAR-100	SUN397	Cars	Aircraft	DTD	Pets	Caltech-101	Flowers	STL-10	EuroSAT	RESISC45	GTSRB	Country211	Average	ImageNet
							Zer	o-shot									
N/A (CLIP)	50.8	64.9	38.5	44.7	24.1	2.4	19.4	64.1	77.4	33.2	91.0	20.1	38.9	7.3	5.1	38.8	40.2
7B 13B 33B 65B	55.4 56.7	71.5 76.0	39.3 37.7	51.2 51.3 52.0 51.6	29.6 31.2	3.9 4.0 4.5 4.1	26.4 24.3	65.7 60.7	80.8 80.7 80.9 79.0	36.0 35.4	93.8 94.4	17.0 26.7	38.7 40.4	10.1 9.0 11.6 15.0	6.9 7.6 7.0 7.4	42.3 41.7 42.6 43.1	44.5 44.8 44.4 44.4
						-	Linear	-Probi	ng								
N/A (CLIP)	81.6	93.8	79.3	72.0	75.1	52.6	75.6	86.2	92.2	95.3	97.3	96.7	93.1	80.6	19.7	79.4	70.3
7B 13B 33B 65B	82.1 81.8	93.7 94.1	78.2 79.4	73.0 73.3	77.6 78.6	55.6 54.1	74.6 75.0	87.4 86.4	92.7 92.4	96.0 96.1	97.4 97.3	96.3 96.6	93.2 93.1	81.3 82.5 81.5 82.5	20.0 19.8	80.0 80.0	71.2 71.2 71.4 71.3

• LLaMA model size

(b) Few-shot Experiment Results

Model Size	Food-101	CIFAR-10	CIFAR-100	SUN397	Cars	Aircraft	DTD	Pets	Caltech-101	Flowers	STL-10	EuroSAT	RESISC45	GTSRB	Country211
N/A (CLIP)	87.0±0.5	577.5±0	.682.1±0.	7 97.2 ±0	2 90.9 ±0.	.5 62.0 ±1.	083.3±0	.6 91.1 ±0	.5 98.2 ±0	.2 97.6 ±0	2 92.6 ±0	483.4±0	.5 91.2 ±0	0.4 70.6 ±0	844.3±0.7
7B											-				.845.6±0.7
13B	89.1±0.5	579.2±0	.682.8±0.	7 97.9 ±0.	294.0±0	.4 66.3 ±1.	0 84.1 ±0	.6 92.9 ±0	.4 98.5 ±0.	.2 98.2 ±0.	294.4±0	.3 83.2 ±0	.5 91.6 ±0	0.4 73.6 ±0	.845.7±0.7
33B	88.6±0.5	80.3±0	.6 83.6 ±0.	697.8±0	2 94.3±0 .	465.4±1.	0 84.7±0	.692.8±0	.4 98.6 ±0	.2 98.2 ±0.	294.5±0	384.2±0	.5 92.1 ±0	0.4 72.0 ±0	845.8±0.7
65B	88.8±0.5	79.2±0	.682.9±0.	6 97.8 ±0	2 94.1 ±0.	.4 66.6± 1.	084.3±0	.6 93.1 ±0	.498.6±0	.2 98.1 ±0	2 94.5±0	3 85.6 ±0	.591.9±0	0.472.5±0	.8 45.6 ±0.7

Multi-Text Training Loss with LaCLIP

• LaCLIP-MT, which incorporates a multi-positive contrastive training loss

$$L_{I*} = -\frac{1}{M} \sum_{i=1}^{N} \sum_{j=0}^{M} \log \frac{\exp \left(\text{sim}(f_I(\text{aug}_I(x_I^i)), f_T(x_{Tj}^i)) / \tau \right)}{\sum_{k=1}^{N} \exp \left(\text{sim}(f_I(\text{aug}_I(x_I^i)), f_T(x_{Tj}^k)) / \tau \right)}$$

• Final training loss: $L = (L_{I*} + L_T)/2$

	Method	Z	ZS .	FS	LP			
Dataset	Method	DS	IN	гэ	DS	IN		
CC12M	CLIP	38.8	40.2	83.3	79.4	70.3		
	LaCLIP	46.2	48.4	85.8	80.5	72.3		
	LaCLIP-MT	45.2	49.0	85.8	80.6	72.4		
RedCaps	CLIP	42.6	42.9	84.0	79.6	71.8		
	LaCLIP	45.0	46.2	85.0	80.0	71.9		
	LaCLIP-MT	46.1	48.1	85.3	80.3	72.4		

Conclusion

• Training CLIP with rewritten texts generated using the ICL capability of LLM can improve performance

My Review

- Enhancing Encoder Quality: Effectively improved the quality of both CLIP's text and image encoders by generating augmented texts via LLMs.
- **Effective Use of ICL:** create diverse meta-input-output pairs from sources like ChatGPT, Bard, MSCOCO, and Human annotators to leverage the ICL capabilities of LLMs.
- Missing Comparison with SimCSE: A comparison with the SimCSE was absent and would have been an insightful addition.

Open Question

• M or M+1

$$L_{I*} = -\frac{1}{M} \sum_{i=1}^{N} \sum_{j=0}^{M} \log \frac{\exp \left(\text{sim}(f_I(\text{aug}_I(x_I^i)), f_T(x_{Tj}^i)) / \tau \right)}{\sum_{k=1}^{N} \exp \left(\text{sim}(f_I(\text{aug}_I(x_I^i)), f_T(x_{Tj}^i)) / \tau \right)}$$