

SMPS MOSFET

IRF7413

HEXFET® Power MOSFET

Applications

• High frequency DC-DC converters

V _{DSS}	$R_{DS(on)} max(m\Omega)$	I _D
30V	11@V _{GS} = 10V	12A

Benefits

- Low Gate to Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	12	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	9.6	A
I _{DM}	Pulsed Drain Current ①	96	
P _D @T _A = 25°C	Power Dissipation®	2.5	W
	Linear Derating Factor	0.02	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery dv/dt ®	1.0	V/ns
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

Symbol	Symbol Parameter		Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead		20	
$R_{\theta JA}$	Junction-to-Ambient @		50	°C/W

Static @ $T_J = 25$ °C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.03		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			11	$m\Omega$	V _{GS} = 10V, I _D = 7.2A ③
1 (DS(on)				18	11122	$V_{GS} = 4.5V, I_D = 6.0A$
V _{GS(th)}	Gate Threshold Voltage	1.0			V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 24V, V_{GS} = 0V$
טיטו				25	μΛ	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	^	V _{GS} = 20V
1.000	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V

Dynamic @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
g _{fs}	Forward Transconductance	16			S	$V_{DS} = 10V, I_D = 7.2A$
Qg	Total Gate Charge		44	66		I _D = 7.2A
Q _{gs}	Gate-to-Source Charge		7.9		nC	$V_{DS} = 24V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		9.2			$V_{GS} = 10V$,
t _{d(on)}	Turn-On Delay Time		8.8			V _{DD} = 100V
t _r	Rise Time		8.0		ns	$I_D = 7.2A$
t _{d(off)}	Turn-Off Delay Time		35		110	$R_G = 6.2\Omega$
tf	Fall Time		14			V _{GS} = 10V ③
C _{iss}	Input Capacitance		1670			$V_{GS} = 0V$
C _{oss}	Output Capacitance		670			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		100		pF	f = 1.0MHz
Coss	Output Capacitance		2290			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		680			$V_{GS} = 0V, V_{DS} = 24V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		1020			V _{GS} = 0V, V _{DS} = 0V to 24V ⑤

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		120	mJ
I _{AR}	Avalanche Current①		7.2	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current (Body Diode)			3.1		MOSFET symbol showing the	
I _{SM}	Pulsed Source Current (Body Diode) ①			96	A	integral reverse p-n junction diode.	
V _{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 7.2A$, $V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		50	75	ns	$T_J = 25^{\circ}C, I_F = 7.2A$	
Q _{rr}	Reverse RecoveryCharge		74	110	nC	di/dt = 100A/µs ③	

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

IRF7413

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International

TOR Rectifier

IRF7413

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

IRF7413 International Internat

Fig 12. On-Resistance Vs. Drain Current

Fig 14a&b. Basic Gate Charge Test Circuit and Waveform

Fig 15a&b. Unclamped Inductive Test circuit and Waveforms

6

Fig 15c. Maximum Avalanche Energy Vs. Drain Current

IRF7413

SO-8 Package Details

DIM	INC	HES	MILLIM	ETERS
DIIVI	MIN	MAX	MIN	MAX
Α	.0532	.0688	1.35	1.75
A1	.0040	.0098	0.10	0.25
b	.013	.020	0.33	0.51
С	.0075	.0098	0.19	0.25
D	.189	.1968	4.80	5.00
Ε	.1497	.1574	3.80	4.00
е	.050 B	ASIC	1.27 B.	ASIC
e1	.025 B	ASIC	0.635 E	BASIC
Τ	.2284	.2440	5.80	6.20
K	.0099	.0196	0.25	0.50
L	.016	.050	0.40	1.27
у	0°	8°	0°	8°

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

IRF7413

International IOR Rectifier

SO-8 Tape and Reel

NOTES:

- CONTROLLING DIMENSION: MILLIMETER.
 ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:
1. CONTROLLING DIMENSION: MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 4.4mH $R_G = 25\Omega$, $I_{AS} = 7.2A$.
- When mounted on 1 inch square copper board
- $\ensuremath{\mathbb{G}}$ C_{oss} eff. is a fixed capacitance that gives the same charging time as $C_{oss}\,\text{while}\,\,V_{DS}\,\text{is rising from 0 to 80\%}\,\,V_{DSS}$
- $\textcircled{6} \ \ I_{SD} \leq 7.2A, \ di/dt \leq 120A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\$ $T_J \le 150$ °C

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.3/02