Cálculo Diferencial e Integral 3 Prof. Fernando R. L. Contreras Lista 2 - Séries

Nos problemas de 1 a 29, determine se a série infinita dada converge ou diverge. Se converge, determine sua soma

1.
$$1 + \frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{3^n} + \dots$$

2.
$$1+e^{-1}+e^{-2}+...+e^{-n}+...$$

3.
$$1+3+5+7+...+(2n-1)+....$$

4.
$$\frac{1}{2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt[3]{2}} + \dots + \frac{1}{\sqrt[n]{2}} + \dots$$

5.
$$1-2+4-8+...+(-2)^n+....$$

6.
$$1 - \frac{1}{4} + \frac{1}{16} - \dots + (-\frac{1}{4})^n + \dots$$

7.
$$4 + \frac{4}{3} + \frac{4}{9} + \frac{4}{27} + \dots + \frac{4}{3^n} + \dots$$

8.
$$\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \dots + \frac{2^{n-1}}{3^n} + \dots$$

9.
$$1 + (1.01) + (1.01)^2 + (1.01)^3 + ... + (1.01)^n + ...$$

10.
$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt[3]{3}} + \dots + \frac{1}{\sqrt[n]{n}} + \dots$$

11.
$$\sum_{n=0}^{\infty} \frac{(-1)^n n}{n+1}$$
.

12.
$$\sum_{n=1}^{\infty} (\frac{e}{10})^n$$

13.
$$\sum_{n=0}^{\infty} (-1)^n (\frac{3}{e})^n$$

14.
$$\sum_{n=0}^{\infty} \frac{3^n - 2^n}{4^n}$$

15.
$$\sum_{n=1}^{\infty} (\sqrt{2})^{1-n}$$

16.
$$\sum_{n=1}^{\infty} (\frac{1}{2} - \frac{1}{2^n})$$

17.
$$\sum_{n=1}^{\infty} \frac{n}{10n+17}$$

18.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\ln(n+1)}$$

19.
$$\sum_{n=1}^{\infty} (5^{-n} - 7^{-n})$$

20.
$$\sum_{n=1}^{\infty} (\frac{e}{\pi})^n$$

21.
$$\sum_{n=1}^{\infty} (\frac{\pi}{e})^n$$

22.
$$\sum_{n=0}^{\infty} (\frac{100}{99})^n$$

23.
$$\sum_{n=0}^{\infty} (\frac{99}{100})^n$$

24.
$$\sum_{n=0}^{\infty} \frac{1+2^n+3^n}{5^n}$$

25.
$$\sum_{n=0}^{\infty} \frac{1+2^n+5^n}{3^n}$$

26.
$$\sum_{n=0}^{\infty} \frac{7 \times 5^n + 3 \times 11^n}{13^n}$$

27.
$$\sum_{n=1}^{\infty} \sqrt[n]{2}$$

28.
$$\sum_{n=1}^{\infty} \left[\left(\frac{7}{11} \right)^n - \left(\frac{3}{5} \right)^n \right]$$

29.
$$\sum_{n=0}^{\infty} \frac{1}{1+(\frac{1}{10})^n}$$

- 25. Mostre que: se $\sum a_n$ diverge e c é uma constante distinto de zero, então $\sum ca_n$ diverge.
- 26. Suponha que $\sum a_n$ converge e que $\sum b_n$. Mostre que $\sum (a_n + b_n)$ diverge.
- 27. Sejam S_n e T_n a n-ésima soma parcial de $\sum a_n$ e $\sum b_n$ respectivamente. Suponha que $a_n=b_n$ para todo n>k. Mostre que $S_n-T_n=S_k-T_k$ se n>k.