2013.11.07 模拟电子技术基础期中考试

学号 201201092

- 一、(本题 10 分)判断下列说法是否正确,对者打"√",错者打"×"。
- 1. 在 N 型半导体中, 掺入高浓度的五价磷元素, 可以改型为 P 型半导体。
- 2. 放大电路的特征是负载上获得比输入电压大得多的电压。
- 3. 放大电路的输出电阻与信号源内阻无关。
- 4. 放大电路中负载电阻所获得的能量取自于信号源。(
- 5. 阻容耦合放大电路只能放大交流信号,不能放大直流信号。(
- 6. 由 PNP 型管构成的单管共基放大电路的输出电压出现底部失真为截止失真。
- 7. 通常的 JFET 管在漏极和源极互换使用时,仍有正常的放大作用。(
- 8. 选用差分放大电路作为多级放大电路的第一级,主要是为了抑制温漂。()
- 9. 差分放大电路中的长尾电阻 R。对共模信号和差模信号都有负反馈作用,因此,这种 电路是靠牺牲差模电压放大倍数来换取对共模信号的抑制作用的。(
 - 10.有源负载可以增大放大电路的输出电流。

二、(本鹽 16 分)选择(可为单选或者多选)

1. 设如图 1 所示电路中二极管的正向导通压降为 0.7V, 选择填空:

(1) 二极管 VD₁处于_ 状态, VD₂处于_

A. 反向截止

B. 正向导通

(2) U。的值为___

A. 0.7V

B. -2.3V

C.-3V

D.6V

2. 电路如图 2 所示, $U_i=0.01\sin\omega t(V)$,当直流电源电压 V增大时,流过 Z 校管 VD

A. 保持不变

B. 增大

C. 减小

3. 设如图 3 所示电路中,已知稳压管稳定电压 U_Z =6V, R_L =2k Ω ,稳定电流 I_Z =5mA, R=500Ω,则 U。为 最大稳定电流 I_{ZM} =30mA。若 R=2k Ω ,则 U。为_

五。(本願 18 分)多级放大电路的分析

两级放大电路如图所示, 试说明在下列情况下第一、第二级组态(c.共射, d.共基, e. 八集, f.共源, 8.共漏), 以及选用哪种耦合方式(A.阻容耦合, i.直接耦合, j.变压器耦合), 将答案填入表中。设晶体管的8约为100, r_{cc} 约为 $1k\Omega$:场效应管 g_{m} 约为2mS; R_{c} (集电 极极电阻)。 R_D (獨极电阻)约为10kΩ。 R_c (发射极电阻)、 R_S (源极电阻)约为1kΩ。

1. 已知信号源的频率变化范围为 20Hz~10kHz, 要求当信号源内阻从 1kΩ 变到 100kΩ, 负载电阻从 $10k\Omega$ 变到 $1k\Omega$ 时, A_{ss} $> 10 且 <math>\Delta A_{ss}$ $/ A_{ss}$ < 20%。同时希望信号源和负载的 接入不影响放大电路的静态工作点,电路的重量体积还要尽可能小。

2. 已知信号源的频率变化范围为 0Hz-5MHz。信号源内阻和负载电阻均为 $1k\Omega$,要求 A_w > 10, 电路用双极型晶体管组成。第一级必须为共射接法

题号	第一级组态		第二级组态		输入、级间和输出耦合方式			
1	()	())	(). (.).()
2		c	()	(). () . ()

六、(本鹽 20 分)多级放大电路的估算

1. 电路如图所示,已知各级电路的静态工作点均合适,所有晶体管的电流放大系数 β 均为 100, T_1 和 T_2 的 b-e 间动态电阻 r_2 均为 5 k Ω : $R_L=5$ k Ω 。晶体管 T_i 的基极、集电极电 流分别用 /Bj、 icj 表示, j 为 1~9。填空:

(1) 第一级电流放大倍数的表达式近似为 $|A_n|\approx$,整个电路电流放大倍

(2) 电压放大倍数
$$|A| = \Delta u_0$$
 = ____ (先填表达式,后填得数)。
(3) T. 和 T. 等的作用 (3)

(3) T₅和 T₆管的作用

已知某放大电路的电压放大倍数的复数表达式为:

$$A_u = -\frac{200\left(j\frac{f}{30}\right)}{\left(1+j\frac{f}{30}\right)\left(1+j\frac{f}{10^5}\right)^2}$$
 (式中 f 的单位为 Hz)

频率 f_L 为_____ Hz,输入信号频率 $f=10^5$ Hz 时, A_u 的附加相移为_____。

七、(本鹽 10 分) 电路设计

现需设计一放大电路,对1kHz三角波电压进行线性放大,要求输出电压大于输入电压, 且输出无直流分量,某同学设计的放大电路如下图所示。

请指出图中的错误,并重新设计电路,画出电路图。

