Esame di Elettronica I per Ingegneria Elettronica e delle Telecomunicazioni (sede di Latina)

Proff. F. Centurelli, G. de Cesare

Studente:		
Cognome	Nome	N. Mat

- a) Dato il circuito di figura, supponendo V_S segnale sinusoidale a valor medio nullo, determinare la resistenza R_E per avere $I_C = 1 \text{mA}$.
 - b) Trovare il massimo valore di R_C perché il transistore risulti in zona attiva.
 - c) Determinare il guadagno di tensione v_o/v_s con $R_C=2$ $K\Omega$.

- 2) Definire, sulle caratteristiche di uscita, le zone di funzionamento di un transistore NMOS a svuotamento, esplicitandone le relazioni corrente-tensione.
 - 3) Disegnare l'andamento di densità di carica, portatori liberi, campo elettrico e potenziale per una giunzione brusca asimmetrica, all'equilibrio, con $N_A >> N_D$.

ELETTRONICA I

Ingegneria Informatica Sede di Latina Prof. de Cesare

Matricola	Cognome	Nome:

1) Disegnare l'andamento temporale della tensione di uscita V_{out} del circuito in figura, quando è applicata in ingresso la tensione $V_{\rm I}$. Specificare sul grafico i punti significativi.

2) Definire, sulle caratteristiche di uscita, le zone di funzionamento di un transistore NMOS a svuotamento, esplicitandone le relazioni corrente-tensione.

3) Commentare il dimensionamento geometrico dei due transistori in un inverter CMOS.

Esame di Elettronica I per Ingegneria dell'Informazione (sede di Latina) Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

- a) Dato il circuito di figura, supponendo V_S segnale sinusoidale a valor medio nullo, determinare la resistenza R_E per avere $I_C=1 \text{mA}$.
 - b) Trovare il massimo valore di R_C perché il transistore risulti in zona attiva.
 - c) Determinare il guadagno di tensione v_o/v_s con $R_C=2$ $K\Omega$.

- 2) Definire, sulle caratteristiche di uscita, le zone di funzionamento di un transistore NMOS a svuotamento, esplicitandone le relazioni corrente-tensione.
- 3) Quale delle due configurazioni dell'amplificatore operazionale (invertente o non invertente) è più adatta per un amplificatore di tensione. Perché?

.

Esame di Elettronica I per Ingegneria Elettronica e delle Telecomunicazioni (sede di Latina)

Proff. F. Centurelli, G. de Cesare

Studente:		
Cognome	Nome	N. Mat

1) Dato il circuito in figura, dove V_{DD} =5V R_A =40 $K\Omega$ R_B =60 $K\Omega$ C = ∞ $Q1 \rightarrow V_T$ =1V K=4 mA/V^2 , determinare quanto deve valere R_S per avere I_D =1mA. Determinare il guadagno v_{out}/v_s con R_B =50 Ω R_D =2 $K\Omega$ R_L =2 $K\Omega$

2) Struttura e principio di funzionamento del transistore bipolare.

3) Disegnare un rettificatore a ponte di diodi e dimensionare la capacità del filtro in uscita in modo da avere su un carico R_L =10 $K\Omega$ un ripple di tensione pari a 100 mV per un ingresso a 50Ω (Vg=0,7V).

Esame di Elettronica I per Ingegneria INFORMATICA (sede di Latina) Prof. G. de Cesare

Studente:			
Cognome	Nome	N. Mat	

2) Dato il circuito in figura, dove V_{DD} =5V R_A =40K Ω R_B =60K Ω C = ∞ $Q1 \rightarrow V_T$ =1V K=4mA/ V^2 , determinare quanto deve valere R_S per avere I_D =1mA. Determinare il guadagno v_{out}/v_s con R_B =50 Ω R_D =2 K Ω R_L =2 K Ω

2) Schema e funzionamento di un circuito integratore con amplificatore operazionale

3) Dimostrare che in un inverter logico, la potenza dissipata dinamicamente è pari a fCV_{DD}^{2} .

Esame di Elettronica I per Ingegneria dell'INFORMAZIONE (sede di Latina) Prof. G. de Cesare

Studente:			
Cognome	Nome	N. Mat	

3) Dato il circuito in figura, dove V_{DD} =5V R_A =40K Ω R_B =60K Ω C = ∞ $Q1 \rightarrow V_T$ =1V K=4mA/ V^2 , determinare quanto deve valere R_S per avere I_D =1mA. Determinare il guadagno v_{out}/v_s con R_B =50 Ω R_D =2 K Ω R_L =2 K Ω

2) Struttura e principio di funzionamento del transistore bipolare.

3) Schema e funzionamento di un circuito integratore con amplificatore operazionale.

Esame di Elettronica I per Ingegneria informatica Gruppo M-Z Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

1) Calcolare la resistenza R_S per avere una corrente I_D = 1mA; con il valore trovato calcolare il guadagno di tensione V_{out}/V_S .

2) Circuito e funzionamento dell'integratore invertente con amplificatore operazionale.

3) Potenza dissipata, statica e dinamica, di un inverter CMOS.

Corso di ELETTRONICA (I mod) Ingegneria Elettronica Ingegneria delle Telecomunicazioni Proff. F. Centurelli / G. de Cesare

Matricola	Cognome	Nome

a) Dato il circuito di figura, disegnare la curva di trasferimento Vout/ Vs nell'intervallo dei valori 0<Vs<5V

T:
$$\beta$$
=100, V_{be} =0,7V, V_{cesat} =0,2V
Q: k =0,1 mA/ V^2 , V_T = 2V
 R_B = 1KΩ, R_E = 1KΩ, R_D = 100KΩ, V_{DD} = 10V

- 2) Disegnare il circuito di un raddrizzatore con filtro capacitivo, e spiegarne il funzionamento.
 - 3) Disegnare il circuito equivalente per piccoli segnali del Transistore Bipolare, e ricavare le espressioni dei singoli componenti dal modello per grandi segnali.

Corso di ELETTRONICA (I mod) Ingegneria Elettronica Ingegneria delle Telecomunicazioni Sede di Latina Proff. F. Centurelli / G. de Cesare

Matricola	Cognome	Nome:

a) Dato il circuito di figura, calcolare il punto di polarizzazione dei due transistori e il valore della tensione di uscita v_{out}.

$$\begin{split} &T: \, \beta \text{=} 99, \, V_{be} \text{=} 0.7 V, \ \, V_{cesat} \text{=} 0.2 V \\ &Q: \, k \text{=} 0.5 \, \, \text{mA/V}^2, \, V_T \text{=} 2 V \\ &R_1 \text{=} \, R_2 \text{=} \, 5 \, K \Omega, \qquad R_E \text{=} \, 1 \, K \Omega, \, \, R_D \text{=} \, 2 \, K \Omega, \\ &V_{DD} \text{=} \, 10 V \end{split}$$

2) Disegnare uno stadio di amplificazione a collettore comune e calcolarne i parametri di amplificazione: A_V , R_I , R_O :

3) Cosa è "l'effetto body" in un transistore MOS e come si modifica il circuito equivalente per piccoli segnali.

ELETTRONICA Ingegneria Informatica LATINA Prof. G. de Cesare

Cognome	Nome	
Matricola		

5) a) Dato il circuito di figura, disegnare la curva di trasferimento Vout/ Vs nell'intervallo dei valori 0<Vs<5V

Q:
$$k=1 \text{ mA/V}^2$$
, $V_T = 1V$
 $R_D = 1K\Omega$,

2) Dimostrare che il prodotto banda x guadagno di un amplificatore controreazionato è costante.

3) Commentare il dimensionamento geometrico dei due transistori in un inverter CMOS.

Corso di ELETTRONICA Ingegneria Informatica Sede di Latina Prof. G. de Cesare

Matricola	Cognome	Nome:
		•

a) Dato il circuito di figura, con il segnale a gradino della tensione di ingresso indicato, graficare l'andamento nel tempo della tensione di uscita v_{out} .

Q: k=1 mA/V²,
$$V_T = 1V$$

 $R_S = 1 K\Omega$
 $C = 0.1 \mu F$
 $V_{DD} = 5V$

2) Spiegare perché si definisce: "corto circuito virtuale" l'ingresso di un amplificatore operazionale.

3) Disegnare il circuito di un Flip-flop SR sincrono in tecnologia NMOS.

Esame di Elettronica I per Ingegneria dell'Informazione (sede di Latina) Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

7) a) Dato il circuito di figura, disegnare la curva di trasferimento Vout/ Vs nell'intervallo dei valori 0<Vs<5V

T:
$$\beta$$
=100, V_{be}=0,7V, V_{cesat}=0,2V
R_B = 1KΩ, R_E = 1KΩ,

2) Disegnare il circuito di un raddrizzatore con filtro capacitivo, e spiegarne il funzionamento.

3) Dimostrare che il prodotto banda x guadagno di un amplificatore controreazionato è costante.

Corso di ELETTRONICA (I mod) Ingegneria dell'Informazione Sede di Latina Prof. G. de Cesare

Matricola	Cognome	Nome:
'		•

8) a) Dato il circuito di figura, calcolare il punto di polarizzazione dei due transistori e il valore della tensione di uscita v_{out}.

T: β=99,
$$V_{be}$$
=0,7V, V_{cesat} =0,2V
Q: k =0,5 mA/ V^2 , V_T = 2V
 R_1 = R_2 = 5 KΩ, R_E = 1 KΩ, R_D = 2 KΩ, V_{DD} = 10V

- 2) Spiegare perché si definisce: "corto circuito virtuale" l'ingresso di un amplificatore operazionale.
- 3) Disegnare il circuito equivalente per piccoli segnali del Transistore Bipolare, e ricavare le espressioni dei singoli componenti dal modello per grandi segnali.

Esame di Elettronica I per Ingegneria informatica Gruppo M-Z Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

9) Dato il circuito di figura, disegnare la curva di trasferimento $V_{OUT}/\ V_{IN}$ nell'intervallo dei valori $0{<}V_{IN}{<}5V$

Q:
$$k=1 \text{ mA/V}^2$$
, $V_T = 2V$
 $R_1 = R_2 = R_D = 1K\Omega$,
 $V_{DD} = 15 \text{ V}$

2) Definire i margini di rumore alto e basso di un inverter logico.

3) Disegnare un inverter CMOS, confrontare tra loro i tempi di ritardo H-L e L-H utilizzando il luogo dei punti di lavoro del circuito nelle due commutazioni.

Esame di Elettronica Ingegneria Informatica Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

10) a) Dato il circuito di figura, disegnare la curva di trasferimento V_{out}/V_{in} nell'intervallo dei valori $0{\le}V_S{\le}5V$

Q:
$$k=1\text{mA/V}^2$$
, $V_T=1V$
 $R_G = 1K\Omega$,

2) Dimostrare che il prodotto banda x guadagno di un amplificatore controreazionato è costante.

3) Disegnare il circuito di un inverter CMOS e commentare il suo consumo di potenza statica e dinamica.

Esame di Elettronica I per Ingegneria informatica Gruppo M-Z Prof. G. de Cesare

Studente:		
Cognome	Nome	N. Mat

11) Dato il circuito di figura, calcolare e graficare l'andamento della tensione di uscita (V_{out}) in funzione del tempo, in presenza del segnale a gradino in ingresso (V_{in}) , e considerando che l'interruttore S si chiude all'istante t_S =10ms.

2) Calcolare il guadagno di tensione per piccoli segnali di un amplificatore NMOS con carico a svuotamento, (disegnare il circuito equivalente dell'amplificatore).

3) Disegnare il circuito delle porte NAND e NOR in tecnologia CMOS a tre ingressi, e commentarne le caratteristiche di occupazione d'area.