Hilbert's Nullstellensatz: Computation and Proof

David Snider

Directed Reading Program UNC Department of Mathematics

April 2022

About the Talk

- ► Why Give This Talk?
 - Expose undergraduates to an area of modern research
 - Gain an appreciation for algebra's applications

About the Talk

- ► Why Give This Talk?
 - Expose undergraduates to an area of modern research
 - Gain an appreciation for algebra's applications

- Agenda
 - ► Motivation / Basic Terms (V and I)
 - Computing I(P)
 - Proof of the Nullstellensatz

$$x^2 + y^2 = 1$$
, or

$$x^2 + y^2 = 1$$
, or $x^2 + y^2 - 1 = 0$

$$z^2 + x^2 - y^2 = 0$$
$$z - 1 = 0$$

$$\{z^2 + x^2 - y^2 = 0\} \cap \{z - 1 = 0\}$$

$$V(z^2 + x^2 - y^2, z - 1)$$

For k a field, $k[X_1,...,X_n]$ is a ring.

For k a field, $k[X_1,...,X_n]$ is a ring.

Eg.
$$p \in \mathbb{R}[X] \implies p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
, $a_i \in \mathbb{R}$

For k a field, $k[X_1,...,X_n]$ is a ring.

Eg.
$$p \in \mathbb{R}[X] \implies p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$
, $a_i \in \mathbb{R}$

$$p \in \mathbb{R}[X,Y] \implies p(x,y) = \sum_{i,j} a_{ij} x^i y^j$$
 (finite sum)

In $k[X_1,...,X_n]$, ideals are generated by a finite number of polynomials.

In $k[X_1,...,X_n]$, ideals are generated by a finite number of polynomials.

Eg.
$$(x^2+y^2-1)\subset \mathbb{R}[X,Y]$$

In $k[X_1,...,X_n]$, ideals are generated by a finite number of polynomials.

Eg.
$$(x^2 + y^2 - 1) \subset \mathbb{R}[X, Y]$$

 $\{(x^2 + y^2 - 1)r : r \in \mathbb{R}[X, Y]\}$

In $k[X_1,...,X_n]$, ideals are generated by a finite number of polynomials.

Eg.
$$(x^2 + y^2 - 1) \subset \mathbb{R}[X, Y]$$

 $(x^2 + y^2 - 1)r : r \in \mathbb{R}[X, Y]$

Eg.
$$(x^2 + y^2 - 1, x - y) \subset \mathbb{R}[X, Y]$$

In $k[X_1,...,X_n]$, ideals are generated by a finite number of polynomials.

Eg.
$$(x^2 + y^2 - 1) \subset \mathbb{R}[X, Y]$$

 $(x^2 + y^2 - 1)r : r \in \mathbb{R}[X, Y]$

Eg.
$$(x^2 + y^2 - 1, x - y) \subset \mathbb{R}[X, Y]$$

 $(x^2 + y^2 - 1)r_1 + (x - y)r_2 : r_1, r_2 \in \mathbb{R}[X, Y]$

Definition

Let I be an ideal in $k[X_1,...,X_n]=:R.$

Definition

Let I be an ideal in $k[X_1,...,X_n]=:R.$ Define $V(I):=\{x\in k^n:f(x)=0, \forall f\in I\}$

 $V(x^2 + y^2 - 1)$

$$V(z^2 + x^2 - y^2)$$
$$V(z-1)$$

$$V(z^2 + x^2 - y^2, z - 1)$$

Does V have an inverse?

Definition

Let $C \subset k^n$ and let $R = k[X_1, ..., X_n]$.

Definition

Let $C \subset k^n$ and let $R = k[X_1, ..., X_n]$.

Define $I(C) := \{ f \in R : f(x) = 0, \forall x \in C \}.$

Definition

Let $C \subset k^n$ and let $R = k[X_1, ..., X_n]$. Define $I(C) := \{ f \in R : f(x) = 0, \forall x \in C \}$.

This is indeed an ideal.

Definition

Let $C \subset k^n$ and let $R = k[X_1, ..., X_n]$.

Define $I(C) := \{ f \in R : f(x) = 0, \forall x \in C \}.$

This is indeed an ideal.

Let $f_1, f_2 \in I(C)$.

Then $\forall x \in C$, $(f_1 + f_2)(x) = 0$. So $f_1 + f_2 \in I(C)$.

Definition

Let $C \subset k^n$ and let $R = k[X_1, ..., X_n]$.

Define $I(C):=\{f\in R: f(x)=0, \forall x\in C\}.$

This is indeed an ideal.

Let $f_1, f_2 \in I(C)$.

Then $\forall x \in C$, $(f_1 + f_2)(x) = 0$. So $f_1 + f_2 \in I(C)$.

Let $f \in I(C)$, $r \in R$.

Then $(fr)(x) := f(x)r(x) = 0, \forall x \in I(C)$. So $fr \in I(C)$.

Let $C=\{x\in\mathbb{R}^2:|x|=1\}.$

$$I(C) =$$

Let $C = \{x \in \mathbb{R}^2 : |x| = 1\}.$

$$I(C) = (x^2 + y^2 - 1).$$

Are V and I inverses of each other?

A Computation

 $V(X^2 + Y^2 - 1), V(Y - 1)$

A Computation

 $V(X^2 + Y^2 - 1, Y - 1)$

$$J = (X^2 + Y^2 - 1, Y - 1)$$
$$I(V(J)) = ?$$

$$I(\{(0,1)\}) = ?$$

```
I(\{(0,1)\}) = ?
Candidate ideal: (X, Y - 1).
```

```
I(\{(0,1)\})= ? Candidate ideal: (X,Y-1). Let f=p_1X+p_2(Y-1). f(0,1)=
```

```
I(\{(0,1)\})=? Candidate ideal: (X,Y-1). Let f=p_1X+p_2(Y-1). f(0,1)=0+0=0. So f\in I(\{(0,1)\})
```

```
I(\{(0,1)\})=? Candidate ideal: (X,Y-1). Let f=p_1X+p_2(Y-1). f(0,1)=0+0=0. So f\in I(\{(0,1)\}) Let f\not\in (X,Y-1). Then, f cannot be written p_1X+p_2(Y-1).
```

```
\begin{split} &I(\{(0,1)\}) = ?\\ &\text{Candidate ideal: } (X,Y-1).\\ &\text{Let } f = p_1X + p_2(Y-1). \ f(0,1) = 0 + 0 = 0. \ \text{So} \ f \in I(\{(0,1)\})\\ &\text{Let } f \not\in (X,Y-1). \ \text{Then, } f \text{ cannot be written } p_1X + p_2(Y-1).\\ &\text{Then, } f = p_1X + p_2(Y-1) + p_3, \text{ where } p_3 \text{ satisfies...} \end{split}
```

```
\begin{split} &I(\{(0,1)\}) = ?\\ &\text{Candidate ideal: } (X,Y-1).\\ &\text{Let } f = p_1X + p_2(Y-1). \ f(0,1) = 0 + 0 = 0. \ \text{So} \ f \in I(\{(0,1)\})\\ &\text{Let } f \not\in (X,Y-1). \ \text{Then, } f \text{ cannot be written } p_1X + p_2(Y-1).\\ &\text{Then, } f = p_1X + p_2(Y-1) + p_3, \text{ where } p_3 \text{ satisfies...}\\ &\text{Neither } X \text{ nor } (Y-1) \text{ divides } p_3. \end{split}
```

```
\begin{split} &I(\{(0,1)\}) = ?\\ &\text{Candidate ideal: } (X,Y-1).\\ &\text{Let } f = p_1X + p_2(Y-1). \  \, f(0,1) = 0 + 0 = 0. \  \, \text{So} \,\, f \in I(\{(0,1)\})\\ &\text{Let } f \not\in (X,Y-1). \  \, \text{Then, } f \,\, \text{cannot be written } p_1X + p_2(Y-1).\\ &\text{Then, } f = p_1X + p_2(Y-1) + p_3, \,\, \text{where } p_3 \,\, \text{satisfies...}\\ &\text{Neither } X \,\, \text{nor} \,\, (Y-1) \,\, \text{divides} \,\, p_3.\\ &p_3 = a_0 + a_1Y + \ldots + a_nY^n, \,\, \text{where } (Y-1) \,\, \text{does not divide} \,\, p_3. \end{split}
```

divides p_3 .

```
\begin{split} &I(\{(0,1)\}) = ?\\ &\text{Candidate ideal: } (X,Y-1).\\ &\text{Let } f = p_1X + p_2(Y-1). \ f(0,1) = 0 + 0 = 0. \ \text{So} \ f \in I(\{(0,1)\})\\ &\text{Let } f \not\in (X,Y-1). \ \text{Then, } f \text{ cannot be written } p_1X + p_2(Y-1).\\ &\text{Then, } f = p_1X + p_2(Y-1) + p_3, \text{ where } p_3 \text{ satisfies...}\\ &\text{Neither } X \text{ nor } (Y-1) \text{ divides } p_3.\\ &p_3 = a_0 + a_1Y + \ldots + a_nY^n, \text{ where } (Y-1) \text{ does not divide } p_3.\\ &\text{By a MATH 578 proof, we know } p_3 \text{ has a root at } y = 1 \text{ iff } y-1 \end{split}
```

```
I(\{(0,1)\}) = ? Candidate ideal: (X,Y-1).
 Let f = p_1X + p_2(Y-1). f(0,1) = 0 + 0 = 0. So f \in I(\{(0,1)\})
 Let f \not\in (X,Y-1). Then, f cannot be written p_1X + p_2(Y-1).
 Then. f = p_1X + p_2(Y-1) + p_3, where p_3 satisfies...
```

Neither X nor (Y-1) divides p_3 .

 $p_3 = a_0 + a_1 Y + ... + a_n Y^n$, where (Y - 1) does not divide p_3 .

By a MATH 578 proof, we know p_3 has a root at y=1 iff y-1 divides p_3 .

So $p_3(X,1) \neq 0$.

```
I(\{(0,1)\}) = ?
Candidate ideal: (X, Y - 1).
Let f = p_1 X + p_2 (Y - 1). f(0, 1) = 0 + 0 = 0. So f \in I(\{(0, 1)\})
Let f \notin (X, Y - 1). Then, f cannot be written p_1X + p_2(Y - 1).
Then, f = p_1X + p_2(Y - 1) + p_3, where p_3 satisfies...
```

Neither X nor (Y-1) divides p_3 .

 $p_3 = a_0 + a_1 Y + ... + a_n Y^n$, where (Y - 1) does not divide p_3 .

By a MATH 578 proof, we know p_3 has a root at y=1 iff y-1divides p_3 .

So $p_3(X,1) \neq 0$.

Thus, $f(0,1) = 0 + 0 + p_3(0,1) \neq 0$. So $f \notin I(\{(0,1)\})$.

So $J = (X^2 + Y^2 - 1, Y - 1)$. And I(V(J)) = (X, Y - 1).

So $J=(X^2+Y^2-1,Y-1).$ And I(V(J))=(X,Y-1). $I(V(J))\neq J$ by a similar proof.

So $J=(X^2+Y^2-1,Y-1)$. And I(V(J))=(X,Y-1). $I(V(J))\neq J$ by a similar proof.

I and V are not strict inverses of each other.

Likewise, if
$$J=(X^2)$$
, $V(J)=% {\displaystyle\int\limits_{-\infty}^{\infty}} \left({\displaystyle\int\limits_{-\infty}^{\infty}}$

Likewise, if
$$J=(X^2)$$
, $V(J)=$ the y-axis. $I(V(J))=$

Likewise, if
$$J=(X^2)$$
, $V(J)=$ the y-axis. $I(V(J))=(X)$.

Likewise, if
$$J=(X^2)$$
, $V(J)=$ the y-axis. $I(V(J))=(X)$. $X\in (X)$ but $X\not\in (X^2)$.

Let k be an algebraically closed field (such as \mathbb{C}).

Let k be an algebraically closed field (such as \mathbb{C}).

▶ a) Every maximal ideal of the polynomial ring $A = k[X_1,...X_n]$ is ... $I(\{(c_1,...,c_n)\})$ for some $(c_1,...,c_n) \in k^n$.

Let k be an algebraically closed field (such as \mathbb{C}).

- ▶ a) Every maximal ideal of the polynomial ring $A = k[X_1,...X_n]$ is ... $I(\{(c_1,...,c_n)\})$ for some $(c_1,...,c_n) \in k^n$.
- ▶ b) Let $J \subset A$ be an ideal, $J \neq (1)$; then $V \neq \emptyset$.
 - Weak Nullstellensatz

Let k be an algebraically closed field (such as \mathbb{C}).

- ▶ a) Every maximal ideal of the polynomial ring $A = k[X_1,...X_n]$ is ... $I(\{(c_1,...,c_n)\})$ for some $(c_1,...,c_n) \in k^n$.
- ▶ b) Let $J \subset A$ be an ideal, $J \neq (1)$; then $V \neq \emptyset$.
 - Weak Nullstellensatz
- ightharpoonup c) For any $f \in I(V(J))$, $\exists n \in \mathbb{N}$ such that $f^n \in J$.
 - Strong Nullstellensatz

Reid, p. 63

In an algebraically closed field,

- ▶ If a polynomial is non-constant, then it has a zero (FTA).
- ▶ If the ideal generated by a set of polynomials is not the ideal of a constant, then the vanishing set of those polynomials is nonempty (Weak NSS).

- (a) Every maximal ideal of the polynomial ring $A=k[X_1,...X_n]$ is ... $I(\{(c_1,...,c_n)\})$ for some $(c_1,...,c_n)\in k^n$.
 - ▶ Given M, use $\phi: k \to k[X_1,...,X_n] \to k[X_1,...,X_n]/M$

- (a) Every maximal ideal of the polynomial ring $A = k[X_1,...X_n]$ is ... $I(\{(c_1,...,c_n)\})$ for some $(c_1,...,c_n) \in k^n$.
 - ▶ Given M, use $\phi: k \to k[X_1, ..., X_n] \to k[X_1, ..., X_n]/M$
 - ▶ Hard Fact: ϕ is an isomorphism.

- (a) Every maximal ideal of the polynomial ring $A = k[X_1,...X_n]$ is ... $I(\{(c_1,...,c_n)\})$ for some $(c_1,...,c_n) \in k^n$.
 - ▶ Given M, use $\phi: k \to k[X_1, ..., X_n] \to k[X_1, ..., X_n]/M$
 - \blacktriangleright Hard Fact: ϕ is an isomorphism.
 - $X_i \mapsto b_i$. Let $a_i = \phi^{-1}(b_i)$. Then $X_i a_i \in \ker f_2 = M$.

- (a) Every maximal ideal of the polynomial ring $A = k[X_1,...X_n]$ is ... $I(\{(c_1,...,c_n)\})$ for some $(c_1,...,c_n) \in k^n$.
 - ▶ Given M, use $\phi: k \to k[X_1, ..., X_n] \to k[X_1, ..., X_n]/M$
 - \blacktriangleright Hard Fact: ϕ is an isomorphism.
 - $ightharpoonup X_i \mapsto b_i$. Let $a_i = \phi^{-1}(b_i)$. Then $X_i a_i \in \ker f_2 = M$.
 - ▶ Thus, $(X_1 a_1, ..., X_n a_n) \subset M$, and thus = M.

(b) Let $J\subset A$ be an ideal, $J\neq (1)$; then $V\neq \emptyset$. (Weak Nullstellensatz)

 $\blacktriangleright \ \ J \neq R \implies \exists M \ \text{maximal ideal w} / \ J \subset M.$

- (b) Let $J \subset A$ be an ideal, $J \neq (1)$; then $V \neq \emptyset$. (Weak Nullstellensatz)
 - ▶ $J \neq R \implies \exists M \text{ maximal ideal w} / J \subset M$.
 - $ightharpoonup V(M) = \{P\}, \text{ and } J \subset M, \text{ so } V(J) \ni P.$

- (c) For any $J\subset A$, $I(V(J))=\sqrt{J}$. (Strong Nullstellensatz)
 - ► Rabinowitsch Trick
 - Look it up on Wikipedia!

Thank You!

Acknowledgements:

- ► Hunter Dinkins, my DRP Mentor
- ► The DRP Committee

Citation

Miles Reid. *Undergraduate Algebraic Geometry*. Cambridge University Press, Cambridge, 1989.