Física

CORRENTE ELÉTRICA, RESISTÊNCIA ELÉTRICA E POTÊNCIA ELÉTRICA

Prof. Me. Gustavo Neves

CORRENTE ELÉTRICA

É importante compreender o comportamento dos materiais condutores e isolantes.

- Condutores
 - o Os elétrons fluem livremente através desses materiais
 - Ex.: Metais, grafite, água do mar.
- Isolantes
 - Se opõem ao fluxo de elétrons de modo a não permitir a passagem de corrente elétrica por ele.
 - Ex.: borracha, isopor, madeira (seca), plástico, papel, vidro, vácuo.

CORRENTE ELÉTRICA

- As cargas em movimento em determinada direção e sentido é chamada de corrente elétrica (movimento ordenado das cargas elétricas)
- Ela ocorre por meio de uma tensão elétrica, diferença de potencial, aplicada entre dois pontos, distintos ou extremidades.

FONTE: https://theengineeringmindset.com/how-electricity-works/electrical-current-flow-in-circuit/

CORRENTE ELÉTRICA

• O sentido convencional da corrente elétrica é contrário ao sentido do fluxo de cargas elétricas

INTENSIDADE DA CORRENTE ELÉTRICA

- Corrente Elétrica: A quantidade de carga elétrica que atravessa uma secção transversal de um condutor em um intervalo de tempo.
- A intensidade da corrente elétrica (i) é medida em ampère [A]:

1) Pela secção reta de um condutor de eletricidade passam 12,0C a cada minuto. Nesse condutor a intensidade da corrente elétrica, em ampères, é de?

$$i_{m} = \Delta Q / \Delta t$$

 $i_{m} = 12/60 = 0,2 A$

RESISTÊNCIA ELÉTRICA

- A resistência elétrica é efeito associado a oposição do fluxo de carga em um determinado circuito elétrico
- 0 elemento eletroeletrônico que cuja função é adicionar resistência elétrica ao circuito é denominado de resistor
- O resistor durante o processo de oposição da corrente elétrica também é capaz de transformar em calor, conhecido como efeito Joule.

RESISTÊNCIA ELÉTRICA

• Alguns fatores podem influenciar na resistência elétrica de um corpo:

Comprimento: Mantendo a mesma secção transversal, porém diferentes comprimentos

Secção transversal: Mantendo o mesmo comprimento, com áreas de de corte transversal diferentes.

2^a LEI DE OHM

 A segunda lei de Ohm estabelece a equação básica para o cálculo de resistividade de um material:

$$R = \rho \cdot \frac{l}{A} \quad [\Omega] \quad \text{(Ohm)}$$

 $R = \rho \frac{l}{l}$

 ρ

R: resistência

O: resistividade elétrica do material

l: comprimento do corpo

A: área da secção transversal

Material	Resistividade (□.m)
Cobre	1,72x10 ⁻⁸
Alumínio	2,82x10 ⁻⁸
Ferro	13x10 ⁻⁸
Carbono	3,5x10 ⁻⁸

1^a LEI DE OHM

ullet A primeira lei de Ohm relaciona tensão (V - volts), corrente (A - Ampère) e resistência (Ω - ohm).

 $V = R \cdot I \rightarrow \text{Temos uma fórmula para encontrar a tensão do circuito.}$

• A partir dessa fórmula, obtém-se as demais:

$$I = \frac{V}{R}$$
 \rightarrow Cálculo da corrente elétrica.

$$R = \frac{V}{I}$$
 \rightarrow Cálculo da resistência elétrica.

RESISTORES

- Resistor → o seu efeito é a resistência elétrica.
 - Simbologia **├**
 - Exemplos com aplicações com resistores:
 - Lâmpada incandescente
 - Chuvério elétrico
 - Ferro de passar roupa
 - Forno elétrico
 - Obs. Além do efeito joule, também é utilizado para limitar a passagem da corrente elétrica.

2) Um resistor de valor igual a 3,0Ω foi submetido a uma diferença de potencial de 9,0V. Qual a intensidade de corrente elétrica e a potência através desse resistor?

POTÊNCIA ELÉTRICA

- A potência demonstra a quantidade de energia que poderá ser convertida em um determinado período de tempo
- Na presença de um campo elétrico em um condutor, os elétrons livres ganham energia cinética, e parte dessa energia, pela interação entre os elétrons livres e os íons do material, é dissipada em calor (efeito Joule)
- $P=IV \rightarrow Medida$ em watts, onde I está em ampéres, e V em volts
- $P = IV = I^2R = V^2/R \rightarrow POTÊNCIA ENTREGUE A UM RESISTOR$
- Obs.: Considerando uma tensão contínua e uma carga puramente resistiva

3) Um aquecedor opera na tensão de 130V e corrente elétrica de 10A. Qual a potência desse forno em KW?

Energia Elétrica Mensal

• Energia Elétrica:

```
\circ \Delta E = P.\Delta t [Kwh] (Quilowatts-hora)
```

$$P = \frac{\Delta E}{\Delta t}$$

4) Em uma residência há quatro lâmpadas de 25W/120V, cada uma permanece acesa durante 10h por dia. Considerando o mês de 30 dias, qual o consumo mensal, em kWh, dessas quatro lâmpadas?

5) Você acaba de ganhar chuveiro elétrico de 6050W/220V. Para que esse chuveiro forneça a mesma potência na sua instalação de 110V, você deve mudar sua resistência para o qual valor, em ohms?