Kjerneregelen

John Rognes

25. januar 2011

Kjerneregelen

La $G: A \to B$ og $F: B \to \mathbb{R}^k$ være to funksjoner, der $A \subset \mathbb{R}^n$ og $B \subset \mathbb{R}^m$:

$$A \stackrel{G}{\longrightarrow} B \stackrel{F}{\longrightarrow} \mathbb{R}^k$$

La $H: A \to \mathbb{R}^k$ være den sammensatte funksjonen gitt ved H(x) = F(G(x)).

Theorem

Anta at G er deriverbar i $a \in A$, og at F er deriverbar i $b = G(a) \in B$. Da er H deriverbar i a, med derivert

$$H'(a)=F'(b)G'(a)=F'(G(a))G'(a)\,.$$

Bevis (1/6)

At **G** er deriverbar i **a** betyr at

$$G(a+r) = G(a) + G'(a)r + \sigma(r)$$

der restleddet $\sigma({\bf r})$ går raskere mot ${\bf 0}$ enn ${\bf r}$, dvs. at $|\sigma({\bf r})|/|{\bf r}| \to 0$ når ${\bf r} \to {\bf 0}$.

At F er deriverbar i b = G(a) betyr at

$$\mathsf{F}(\mathsf{b}+\mathsf{s})=\mathsf{F}(\mathsf{b})+\mathsf{F}'(\mathsf{b})\mathsf{s}+\tau(\mathsf{s})$$

der restleddet au(s) går raskere mot 0 enn s, dvs. at $| au(s)|/|s| \to 0$ når $s \to 0$.

Bevis (2/6)

For å vise at $\mathbf{H} = \mathbf{F} \circ \mathbf{G}$ er deriverbar i \mathbf{a} må vi vise at $\mathbf{H}(\mathbf{a} + \mathbf{r}) = \mathbf{H}(\mathbf{a}) + \mathbf{H}'(\mathbf{a})\mathbf{r}$ pluss et restledd som går raskere mot $\mathbf{0}$ enn \mathbf{r} . Her er

$$\begin{aligned} H(a+r) &= F(G(a+r)) = F(G(a) + G'(a)r + \sigma(r)) \\ &= F(b+s) = F(b) + F'(b)s + \tau(s) \\ &= H(a) + F'(b)G'(a)r + F'(b)\sigma(r) + \tau(s) \end{aligned}$$

der $s = G'(a)r + \sigma(r)$. Restleddet er altså $F'(b)\sigma(r) + \tau(s)$.

Bevis (3/6)

Vi må vise at

$$|\mathbf{F}'(\mathbf{b})\boldsymbol{\sigma}(\mathbf{r}) + \boldsymbol{ au}(\mathbf{s})|/|\mathbf{r}| o 0$$

når r o 0, der $s = G'(a)r + \sigma(r)$.

Ved trekantulikheten er det nok å vise at

$$lacksquare |\mathbf{F}'(\mathbf{b})\sigma(\mathbf{r})|/|\mathbf{r}|
ightarrow 0$$
 når $\mathbf{r}
ightarrow \mathbf{0}$, og

2
$$| au(\mathbf{s})|/|\mathbf{r}| o 0$$
 når $\mathbf{r} o \mathbf{0}$.

Vi behandler de to tilfellene hver for seg.

Bevis (4/6)

Tilfelle 1:

Normen til Jacobi-matrisen $\mathbf{F}'(\mathbf{b}) = (\partial F_i/\partial u_p)_{i,p}$ er lik

$$\|\mathbf{F}'(\mathbf{b})\| = \left(\sum_{i,p} \frac{\partial F_i}{\partial u_p} (\mathbf{b})^2\right)^{1/2}.$$

Vi har at

$$0 \leq |\textbf{F}'(\textbf{b})\boldsymbol{\sigma}(\textbf{r})|/|\textbf{r}| \leq \|\textbf{F}'(\textbf{b})\||\boldsymbol{\sigma}(\textbf{r})|/|\textbf{r}| \rightarrow \|\textbf{F}'(\textbf{b})\| \cdot 0$$

når $r \rightarrow 0$, så venstresiden går mot 0 når $r \rightarrow 0$.

Bevis (5/6)

Tilfelle 2:

La $\epsilon>0$ være et vilkårlig, positivt tall. Siden $|m{ au}(\mathbf{s})|/|\mathbf{s}| o 0$ når $\mathbf{s} o \mathbf{0}$ vet vi at

$$| au(s)| \le \epsilon |s|$$

for alle tilstrekkelig små s. Siden $|\sigma({\sf r})|/|{\sf r}| o 0$ når ${\sf r} o {\sf 0}$ vil også

$$|\sigma(\mathsf{r})| \leq |\mathsf{r}|$$

for alle tilstrekkelig små r. Da er

$$|s| = |G'(a)r + \sigma(r)| \le |G'(a)r| + |\sigma(r)|$$

 $\le ||G'(a)|||r| + |r| = (||G'(a)|| + 1)|r|$

for alle tilstrekkelig små \mathbf{r} . Spesielt vil $\mathbf{s} \to \mathbf{0}$ når $\mathbf{r} \to \mathbf{0}$.

Bevis (6/6)

For alle tilstrekkelig små \mathbf{r} er da

$$| au(\mathsf{s})| \le \epsilon |\mathsf{s}| \le \epsilon (\|\mathsf{G}'(\mathsf{a})\| + 1)|\mathsf{r}|$$

slik at

$$0 \le | au(\mathsf{s})|/|\mathsf{r}| \le \epsilon(\|\mathsf{G}'(\mathsf{a})\|+1)$$
 .

Siden $\|\mathbf{G}'(\mathbf{a})\|$ er en konstant, og ϵ kan velges vilkårlig liten, impliserer dette at

$$|oldsymbol{ au}(\mathsf{s})|/|\mathbf{r}| o 0$$

når $\mathbf{r} \rightarrow \mathbf{0}$.

Dette viser at H er deriverbar i a, med derivert

H'(a) = G'(b)F'(a), som skulle vises.