

Inteligência Artificial

Aula 02 – Agentes Inteligentes

Prof

Ms Gustavo Molina

msc.gustavo.unip@gmail.com

Agentes Inteligentes

 Um agente é algo capaz de perceber seu ambiente por meio de sensores e de agir sobre esse ambiente por meio de atuadores.

Exemplos

Agente humano

- Sensores: Olhos, ouvidos e outros órgãos.
- Atuadores: Mãos, pernas, boca e outras partes do corpo.

Agente robótico

- Sensores: câmeras e outros sensores.
- Atuadores: vários motores.

Agente de software

- Sensores: entrada do teclado, conteúdo de arquivos e pacotes vindos da rede.
- Atuadores: tela, disco rígido, envio de pacotes pela rede.

Agentes Inteligentes

 Agentes são diferente de meros programas, pois operam sob controle autônomo, percebem seu ambiente, adaptam-se a mudanças e são capazes de assumir metas.

Mapeando Percepções em Ações

 O comportamento de um agente é dado abstratamente pela função do agente:

$$f = P \rightarrow A$$

onde é a P é uma sequência de percepções e A é uma ação.

 Sequência de percepções: histórico completo de tudo que o agente percebeu.

Exemplo: O Mundo do Aspirador de Pó

- Percepções: Local e conteúdo.
 - Exemplo: [A, sujo]
- Ações: Esquerda, Direita, Aspirar, NoOp

Exemplo: O Mundo do Aspirador de Pó

Sequência de Percepções	Ação
[A, Limpo]	Direita
[A, Sujo]	Aspirar
[B, Limpo]	Esquerda
[B, Sujo]	Aspirar
[A, Limpo], [A, Limpo]	Direita
[A, Limpo], [A, Sujo]	Aspirar
[A, Limpo], [A, Limpo], [A, Limpo]	Direita
[A, Limpo], [A, Limpo], [A, Sujo]	Aspirar

Comportamento do Agente: Se o quadrado atual estiver sujo, então aspirar, caso contrário mover para o outro lado.

Medindo o Desempenho do Agente

- O agente deve sempre executar a ação "correta" baseado no que ele percebe para ter sucesso.
 - O conceito de sucesso do agente depende uma medida de desempenho objetiva.
 - **Exemplos:** quantidade de sujeira aspirada, gasto de energia, gasto de tempo, quantidade de barulho gerado, etc.
 - A medida de desempenho deve refletir o resultado realmente desejado.

Agentes Racionais

Agente racional:

- Para cada sequência de percepções possíveis deve-se selecionar uma ação que espera-se que venha a maximizar sua medida de desempenho, dada a evidência fornecida pela sequência de percepções e por qualquer conhecimento interno do agente.
- Qual seria a medida de desempenho ideal para o agente aspirador de pó racional?

Agentes Racionais

- Os agentes podem (e devem!) executar ações para coleta de informações.
 - Um tipo importante de coleta de informação é a exploração de um ambiente desconhecido.
- Os agentes também podem (e devem!) aprender, ou seja, modificar seu comportamento dependendo do que ele percebe ao longo do tempo.
 - Nesse caso o agente é chamado de autônomo.
 - Um agente que aprende pode ter sucesso em uma ampla variedade de ambientes.

Modelagem de um Agente

- O processo de modelagem de um agente envolve a definição de:
 - Medida de Desempenho
 - Ambiente
 - Atuadores
 - Sensores

Exemplo - Motorista de Táxi Automatizado

- Medida de desempenho: viagem segura, rápida, sem violações às leis de trânsito, confortável para os passageiros, maximizando os lucros.
- Ambiente: ruas, estradas, outros veículos, pedestres, clientes.
- Atuadores: direção, acelerador, freio, embreagem, marcha, seta, buzina.
- **Sensores:** câmera, sonar, velocímetro, GPS, acelerômetro, sensores do motor, teclado ou microfone.

Exemplo - Sistema de Diagnóstico Médico

- Medida de desempenho: paciente saudável, minimizar custos, processos judiciais.
- Ambiente: paciente, hospital, equipe.
- Atuadores: exibir perguntas na tela, testes, diagnósticos, tratamentos.
- Sensores: entrada pelo teclado para sintomas, descobertas, respostas do paciente.

Exemplo - Robô de seleção de peças

- Medida de desempenho: porcentagem de peças em bandejas corretas.
- Ambiente: correia transportadora com peças; bandejas.
- Atuadores: braço e mão articulados.
- **Sensores:** câmera, sensores angulares articulados.

Completamente observável:

 As informações que descrevem o estado atual são totalmente observáveis e acessíveis.

Parcialmente observável:

 Somente parte ou nenhuma das informações que descrevem o estado atual são observáveis e acessíveis.

Determinístico:

 O próximo estado do ambiente é completamente determinado pelo estado atual e pela ação executada pelo agente.

Não-Determinístico:

 O próximo estado do ambiente é desconhecido. Não se tem certeza do que pode acontecer com o ambiente ao executar uma ação.

• Estático:

O ambiente não muda enquanto o agente pensa.

• Dinâmico:

 O ambiente pode mudar enquanto o agente pensa ou está executando uma ação.

Discreto:

 Um número limitado e claramente definido de percepções, ações e estados.

Contínuo:

Um número possivelmente infinito de percepções, ações e estados.

Agente Único:

Um único agente operando sozinho no ambiente.

Multi-Agente

- Vários agentes interagindo ambiente.
- Multi-agente cooperativo
- Multi-agente competitivo

Exemplos

	Xadrez	Taxista Automático	Poker	Diagnostico Medico
Completamente observável	Sim	Não	Não	Não
Determinístico	Sim	Não	Não	Não
Estático	Sim	Não	Sim	Não
Discreto	Sim	Não	Sim	Não
Agente único	Não	Não	Não	Sim

Tipos Básicos de Agentes

- Existem cinco tipos básicos de agentes:
 - Agentes reativos simples.
 - Agentes reativos baseados em modelos.
 - Agentes baseados em objetivos.
 - Agentes baseados na utilidade.
 - Agentes com aprendizagem.

Agente Reativo Simples

Agentes reativos selecionam ações com base somente na percepção atual.

```
function SIMPLE-REFLEX-AGENT(percept) returns action
static:rules, a set of condition action rules
```

```
state ← INTERPRET-INPUT(percept)
rule ← RULE-MATCH(state, rules)
action ← RULE-ACTION(rule)
```

return action

Agente Reativo Simples

Agente Reativo Simples

 O funcionamento do agente reativo é baseado em regras de condição-ação: if condição then ação.

- São simples, porém limitados:
 - Funcionará somente se a decisão correta puder ser tomada com base apenas na percepção atual.
 - A tabela de regras condição-ação pode se tornar muito grande em problemas complexos.
 - Ambiente completamente observável.

- Um agente reativo baseado em modelo pode lidar com ambientes parcialmente observáveis.
 - O agente deve controlar as partes do mundo que ele não pode ver.
- O agente deve manter um estado interno que dependa do histórico de percepções e reflita os aspectos não observados no estado atual.
- Agente baseado em modelo é um agente que usa um modelo de mundo.
 - Como o ambiente evoluí independente do agente?
 - Como as ações do próprio agente afetam o mundo?

• De uma forma mais genérica, podemos definir o comportamento de um agente reativo baseado em modelo da seguinte forma:

return action

 Conhecer um modelo do mundo nem sempre é suficiente para tomar uma boa decisão.

Exemplo:

- Um agente Motorista de Táxi chega a um cruzamento com três caminhos, qual direção tomar?
 - Simplesmente reagir? mas existem três reações possíveis.
 - Examinar o modelo de mundo? não ajuda a decidir qual o caminho.
 - A decisão depende de onde o táxi está tentando chegar.

- Agentes baseados em objetivos expandem as capacidades dos agentes baseados em modelos através de um "objetivo".
- O objetivos descreve situações desejáveis.
 - Exemplo: estar no destino
- A seleção da ação baseada em objetivo pode ser:
 - Direta: quando o resultado de uma única ação atinge o objetivo.
 - Mais complexa: quando será necessário longas sequências de ações para atingir o objetivo.

- Para encontrar sequências de ações que alcançam os objetivos são utilizados algoritmos de Busca e Planejamento.
- A tomada de decisão envolve a **consideração do futuro**, o que não acontece com o uso de regras de condição-ação.
 - "O que acontecerá se eu fizer isso ou aquilo?"
 - "O quanto isso me ajudará a atingir o objetivo?"

 O agente que funciona orientado a objetivos é mais flexível do que um agente reativo.

 Entretanto, o objetivo não garante o melhor comportamento para o agente, apenas a distinção entre estados objetivos e não objetivos.

Agentes Baseados na Utilidade

- Agentes baseados na utilidade buscam definir um grau de satisfação com os estados. O quanto "bom" é para o agente um determinado estado.
- Se um estado do mundo é mais desejável que outro, então ele terá maior utilidade para o agente.
- Utilidade é uma função que mapeia um estado para um número real que representa o grau de satisfação com este estado.

Agentes Baseados na Utilidade

Agentes com Aprendizagem

 Agentes com aprendizado podem atuar em ambientes totalmente desconhecidos e se tornar mais eficientes do que o seu conhecimento inicial poderia permitir.

• Em agentes sem aprendizagem, tudo o que o agente sabe foi colocado nele pelo projetista.

Agentes com Aprendizagem

Exercícios

 Defina uma medida de desempenho, o ambiente, os atuadores e os sensores para os seguintes casos:

- a) Agente para uma livraria online.
- b) Assistente matemático para prova de teoremas.

Leitura Complementar

 Russell, S. and Norvig, P. Artificial Intelligence: a Modern Approach, 3nd Edition, Prentice-Hall, 2009.

• Capítulo 2: Agentes Inteligentes

