

Audio/system time alignment

Pierre Bossart 08/29/2012

1

TSC/Audio time alignment

- Audio time and TSC will drift by construction
- Recent evolution in Linux/PulseAudio and Android/HAL
 - Use system timer to refill ALSA buffers
 - Allows for dynamic latency changes
 - Lower power consumption
 - Need correlation between system time and audio time

Ethernet AVB time alignment

- PTP relies on hardware timestamping to align different machines on a network
- O(ns) accuracy! Yes NANOSECONDS!
- Opens door to synchronized playback/record on multiple devices
 - Car entertainment
 - Pro-Audio

30,000-ft Linux architecture

Two steps:

- Measurement: system, audio, network time
- Alignment: sample-rate conversion, PLL adjustment, etc

System/audio time observability

- System time
 - ALSA can be configured to take timestamp of monotonic time
 - Available to app by calling snd_pcm_status()
- Notion of trigger
 - Timestamp also taken after .trigger is completed
 - some delay between actual start and timestamp, no hardware atomic operation
- Audio time
 - Not a concept directly available to user-space
 - Only <u>indirect</u> calculation: samples written samples queued (snd_pcm_delay)
 - HDAudio:
 - LPIB or Wall Clock not directly accessible by user-space
 - Work-arounds for 'Position Fix' impact precision of audio time
 - Non-HDAudio
 - Hardware-pointer not available to user-space either
- Experiment: can we make audio time directly available to user-space?

Experiments with HDAudio

- LPIB only provides frame-level accuracy, 20us at best
- Order of magnitude higher than network synchronization
- Audio time measured with 24 MHz audio wallclock (47ns resolution)
 - Converted to ns for compatibility with system timestamps
- Practical issues
 - Wrap-around after 179s
 - Careful with overflow when converting cycles to ns (125/3 ratio)
 - Force use of SSYNC bits to take trigger_timestamp when transfers actually started
- Audio timestamp exposed along with system timestamps
- No ABI change, same STATUS ioctl
 - New field in pcm_runtime (taken from reserved bytes, no ABI change)
- New routine in ALSA-lib modified to extract audio timestamp from pcm_status structure
- Experiments with PulseAudio to align system time and audio timestamps
 - Audio time initialized to zero on start trigger
 - Relative drift = audio time / (system time trigger_timestamp)

Results

- More precision with wall clock than with sample counters
- Difference with system time is jitter-free and quasi-monotonic
- <20ppm difference estimated in less than a second
 - PulseAudio smoother works with 10s history smoother
- Offset between sample counts and system time due to 'PositionFix'
 - Up to 1ms offset between sample time and system time
 - 8us offset when forcing use of LPIB
 - Do we still need 'PositionFix' in no-interrupt mode?

Observations

- No global detection of audio/system time drift
 - Wall clock not available in D3
 - Wall clock only tracked when transfers active
- Audio timestamps exposed independently for each stream
 - If streams started at same time, application can estimate drift on a reference stream
 - If streams started at different time, need independent drift estimate on each stream
 - Not super elegant!
 - Drift should be same on all streams using same BCLK.
- Still open
 - Behavior in underflow conditions
 - Behavior with suspend
 - Currently audiotime only available for HDAudio
 - Might be useful to expose hw_pointer directly to userspace for all existing hardware
 - Actual time alignment
 - Need control on mixing granularity and ASRC group delay

