2.2 Complex Machine Learning Models & Keras Part 1

I used a CNN model due to its computational efficiency with large datasets and its ability to extract local temporal patterns via convolutional layers. While CNNs are typically employed for spatial data (e.g. image recognition), this experiment tested their suitability for time-series classification — specifically, for identifying weather stations from sequences of atmospheric readings. A key reason for choosing CNNs was that they run faster and require less memory compared to RNNs, making them more appropriate for my system, which otherwise struggles with heavier models like LSTMs (e.g. freezing or crashing during training). The final layer used a softmax activation function, appropriate for this multi-class classification task, as it outputs a probability distribution over the 15 mutually exclusive station classes. Three trials were conducted, varying hyperparameters including the number of epochs (5, 30, 50), batch sizes (16, 8), and hidden layer sizes (8, 32, 64):

- Trial 1 (epochs=5, hidden size=8) achieved an accuracy of 9.15%, missing 2 stations (*Stockholm* and *Sonnblick*). Despite low performance, this trial showed relatively more stable behaviour, with less divergence and more consistent loss trends, making it the most suitable baseline.
- Trial 2 (epochs=30, hidden size=32) performed worse, with accuracy dropping to 5.04%, and 3 stations (*Deblit*, *Ljubljana*, and *Maastricht*) completely unrecognised. Training was unstable, with both losses increasing and accuracy fluctuating erratically.
- Trial 3 (epochs=50, hidden size=64) showed severe divergence but surprisingly achieved the highest accuracy of 19.34%, despite failing to recognise 3 stations (*Budapest, Sonnblick*, and *Maastricht*). This apparent improvement likely reflects overfitting or collapse into a few dominant classes, rather than genuine learning.

These results suggest that increasing model capacity and training duration in this setup led to instability rather than improved learning, likely due to overfitting, poor weight updates, or an unsuitable learning rate. Despite none of the trials achieving satisfactory performance, Trial 1 remains the most stable configuration, offering a reasonable foundation for future tuning or alternative architectures.

Despite extensive experimentation, none of the CNN-based configurations delivered satisfactory results. A likely explanation is that the sequential nature of atmospheric data — where the temporal order of inputs is meaningful — makes it more suitable for models designed to handle sequences. In particular, Recurrent Neural Networks (RNNs) or their variants like LSTMs may be better suited for this task, as they are specifically designed to capture long-range dependencies and learn patterns over time. These architectures could provide better generalisation and learning dynamics for time-dependent classification problems like weather station recognition.

Trial 1

Input:

Output:

Comment:

The model is struggling to learn effectively. Training loss grows dramatically over epochs, indicating the model is diverging rather than converging. Training accuracy shows a slight increase but remains very low overall (\sim 14-15%). Validation accuracy rises briefly early on but then falls off, demonstrating poor generalisation. These trends suggest the model is unable to capture meaningful patterns from the data and fails to improve its predictive performance over time.

Confusion Matrix

						Confu	usion M	latrix (Startin	g - Ran	dom G	uess)				
	BASEL -	239	246		228				266	278	245	234	226	242		280
	BELGRADE -	89	72	69	64	78	65	71	63	95	70	79	71	62	71	73
	BUDAPEST -	10	10	14	16	16	8	9	13	15	12	21	21	15	20	14
	DEBILT -	7	3	6	6	3	7	5	4	3	5	5	6	6	7	9
D	USSELDORF -	3	2	3	2	4	1	5	0	1	1	1	1	3	2	0
	HEATHROW -	6	10	8	4	6	4	4	5	3	5	3	4	8	10	2
	KASSEL -	1	0	1	0	1	1	2	0	0	2	0	1	2	0	0
True	LJUBLJANA -	2	3	4	1	1	5	6	2	10	5	2	4	8	6	2
P	IAASTRICHT -	0	1	0	0	1	0	1	1	1	1	1	2	0	0	0
	MADRID -	24	24	22	35	24	27	43	38	34	27	29	28	40	33	30
	MUNCHENB -	1	2	1	0	0	1	1	0	1	0	1	0	0	0	0
	OSLO -	0	0	0	1	0	0	0	2	0	0	0	0	1	0	1
	SONNBLICK -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
:	БТОСКНОLМ -	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0
	VALENTIA -		0	0	0	0	0	0	0	0	0	0	0	1	0	0
	Øb.	SEL BELGR	NADE BUDA	2ES1 0	DUSSELF DUSSELF	JORE HEATH	ROW 45	SEL JUBI	AMA STR	CHT MA	DRID MUNC	ENB	SIO SIN	stock	OLM BLE	MILA
		8c.	₩.		diss	HEM		70	en Predicted		MUL		201	Stor	21	

	Confusion Matrix (Final Model)																	
	BASEL -	176	137	1758	173	206	2	319	333	55	300	40	176	0	0	7		
	BELGRADE -	6	44	920	9	32	0	1	12	3	62	0	3	0	0	0		1600
	BUDAPEST -	4	6	163	2	17	0	0	2	0	19	0	1	0	0	0		
	DEBILT -	1	1	55	3	12	0	0	0	2	7	0	1	0	0	0		- 1400
C	DUSSELDORF -	0	0	22	2	2	0	0	2	0	1	0	0	0	0	0		- 1200
	HEATHROW -	2	0	42	3	12	0	0	1	2	15	0	5	0	0	0		
	KASSEL -	1	0	9	0	1	0	0	0	0	0	0	0	0	0	0		- 1000
True	LJUBLJANA -	0	4	53	0	0	0	0	1	0	3	0	0	0	0	0		
1	MAASTRICHT -	1	0	2	0	0	0	0	3	2	1	0	0	0	0	0		- 800
	MADRID -	23	2	215	10	32	0	2	8	9	134	0	23	0	0	0		- 600
	MUNCHENB -	0	0	3	0	1	0	0	3	0	0	0	1	0	0	0		
	OSLO -	1	0	4	0	0	0	0	0	0	0	0	0	0	0	0		- 400
	SONNBLICK -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	STOCKHOLM -	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0		- 200
	VALENTIA -		0	0	0	0	0	0	0	0	1	0	0	0	0	0		
	♦ºp	SEL BELGS	BUDA	gest of	BUT DUSSELF	ORF HEATH	to _{th} t	SSEL JUBI	AMA STR	CHT MA	DRID MUNCH	EMB	SOMME	Slock,	OLPA VALE	MTIA		- 0

Comment

The model was unable to recognise all 15 stations, as both *Stockholm* and *Sonnblick* were missing from its predictions. Additionally, the overall accuracy was relatively low at just 9.15%.

Trial 2

Input:

```
# Define key parameters for improved model
epochs = 30  # Increase epochs for better learning
batch_size = 16  # Keep batch size reasonable
n_hidden = 32  # Increase hidden layer size based on previous results

# Define dimensions (keep as before)
timesteps = len(X_train[0])  # 15 time steps (stations)
input_dim = len(X_train[0][0])  # 9 features per timestep
n_classes = len(y_train[0])  # 15 stations

# Build model
model = Sequential()
model.add(Conv1D(n_hidden, kernel_size=2, activation='relu', input_shape=(timesteps, input_dim)))
model.add(Dense(8, activation='relu'))  # Smaller dense layer after conv
model.add(Flatten())
model.add(Clatten())
model.add(Dense(n_classes, activation='softmax'))  # Output layer: softmax for multi-class classification
```

Output:

```
Epoch 1/30
1076/1076

    3s 2ms/step - accuracy: 0.1058 - loss: 4045.2676 - val accuracy: 0.2142 - val loss: 14689.9082

Epoch 2/30
1076/1076
                              — 3s 2ms/step - accuracy: 0.1238 - loss: 39338.9531 - val_accuracy: 0.1131 - val_loss: 66420.1484
                               - 2s 2ms/step - accuracy: 0.1273 - loss: 122024.8281 - val accuracy: 0.1384 - val loss: 176306.9688
                              — 2s 1ms/step - accuracy: 0.1348 - loss: 265929.0000 - val accuracy: 0.1598 - val loss: 338595.8125
1076/1076
Epoch 5/30
1076/1076
                             — 2s 2ms/step - accuracy: 0.1348 - loss: 480610.9688 - val_accuracy: 0.1046 - val_loss: 552676.1875
Epoch 6/3
1076/1076
                            2s 2ms/step - accuracy: 0.1343 - loss: 749638.6875 - val_accuracy: 0.2409 - val_loss: 849660.8125
Epoch 7/30
1076/1076
                               - 2s 1ms/step - accuracy: 0.1298 - loss: 1108540.6250 - val_accuracy: 0.1039 - val_loss: 1214760.5000
1076/1076 -
                             — 2s 1ms/step - accuracy: 0.1305 - loss: 1534140.2500 - val accuracy: 0.0896 - val loss: 1622778.8750
1076/1076
                             — 2s 2ms/step - accuracy: 0.1318 - loss: 2069387.3750 - val_accuracy: 0.0934 - val_loss: 2115079.7500
                             — 2s 2ms/step - accuracy: 0.1267 - loss: 2621316.0000 - val_accuracy: 0.0342 - val_loss: 2724947.2500
                              — 2s 2ms/step - accuracy: 0.1293 - loss: 3300527.5000 - val_accuracy: 0.0483 - val_loss: 3342549.5000
1076/1076
Epoch 12/30
                             — 2s 2ms/step - accuracy: 0.1289 - loss: 4070323.5000 - val accuracy: 0.0486 - val loss: 4081891.2500
1076/1076
Epoch 13/30
1076/1076 —
Epoch 14/30
1076/1076 —
                           2s 2ms/step - accuracy: 0.1301 - loss: 4932608.0000 - val_accuracy: 0.0610 - val_loss: 4918520.0000
                               - 2s 2ms/step - accuracy: 0.1272 - loss: 5866342.0000 - val_accuracy: 0.1868 - val_loss: 5832372.0000
Epoch 15/30
                              — 2s 2ms/step - accuracy: 0.1275 - loss: 6889095.5000 - val accuracy: 0.1809 - val loss: 6805226.5000
1076/1076
Epoch 16/30
1076/1076
                             — 2s 2ms/step - accuracy: 0.1299 - loss: 8043191.5000 - val_accuracy: 0.0722 - val_loss: 7871001.0000
                              — 2s 2ms/step - accuracy: 0.1299 - loss: 9256482.0000 - val_accuracy: 0.1025 - val_loss: 9050047.0000
Epoch 18/30
1076/1076 -
                              — 2s 2ms/step - accuracy: 0.1283 - loss: 10579538.0000 - val_accuracy: 0.0516 - val_loss: 10321046.0000
Epoch 19/30
                              — 2s 2ms/step - accuracy: 0.1236 - loss: 12030875.0000 - val_accuracy: 0.0619 - val_loss: 11766686.0000
1076/1076
Epoch 20/30
1076/1076 —
Epoch 21/30
1076/1076 —
     20/30
                          _____ 2s 2ms/step - accuracy: 0.1267 - loss: 13605297.0000 - val_accuracy: 0.1333 - val_loss: 13229866.0000
                               - 2s 2ms/step - accuracy: 0.1283 - loss: 15299558.0000 - val_accuracy: 0.1514 - val_loss: 14784237.0000
Epoch 22/30
                              — 2s 2ms/step - accuracy: 0.1250 - loss: 17087696.0000 - val accuracy: 0.2100 - val loss: 16526997.0000
1076/1076
Epoch 23/30
1076/1076
                              — 2s 2ms/step - accuracy: 0.1250 - loss: 18986990.0000 - val_accuracy: 0.0837 - val_loss: 18445468.0000
                              — 2s 2ms/step - accuracy: 0.1269 - loss: 21166404.0000 - val_accuracy: 0.0565 - val_loss: 20267444.0000
Epoch 25/30
1076/1076 -
                              — 2s 2ms/step - accuracy: 0.1274 - loss: 23350542.0000 - val_accuracy: 0.0601 - val_loss: 22300368.0000
Epoch 26/30
                              — 2s 2ms/step - accuracy: 0.1214 - loss: 25668788.0000 - val_accuracy: 0.1358 - val_loss: 24567320.0000
1076/1076
Epoch 27/30
1076/1076 —
Epoch 28/30
1076/1076 —
      27/30
                               — 3s 2ms/step - accuracy: 0.1270 - loss: 28131624.0000 - val_accuracy: 0.0889 - val_loss: 26941016.0000
                               - 3s 2ms/step - accuracy: 0.1231 - loss: 30878572.0000 - val_accuracy: 0.0870 - val_loss: 29426672.0000
      29/30
                               - 2s 2ms/step - accuracy: 0.1238 - loss: 33669876.0000 - val_accuracy: 0.2046 - val_loss: 32150724.0000
1076/1076
1076/1076

    3s 3ms/step - accuracy: 0.1272 - loss: 36649704.0000 - val_accuracy: 0.0500 - val_loss: 34990548.0000
```

Comment:

The model's performance is consistently poor. Both training and validation losses increase sharply across all epochs, indicating divergence and failure to learn. Training accuracy remains very low and relatively flat (around 12-13%), showing little to no improvement. Validation accuracy is erratic, fluctuating without a clear upward trend and occasionally spiking, which suggests unstable generalisation. Overall, the model neither converges nor reliably recognises all classes, pointing to issues with model design, training process, or data representation.

Confusion Matrix

Confusion Matrix (Starting - Random Guess)																
	BASEL -	238	238			269	241		286	245	263	241			247	246
	BELGRADE -	63	63	75	78	54	74	77	70	63	91	74	75	80	72	83
	BUDAPEST -	14	11	11	13	9	16	18	20	16	17	16	15	14	10	14
	DEBILT -	3	3	4	6	9	4	7	1	8	9	10	5	80 72 8 14 10 1 6 4 3 1 4 6 5 0 2 3 2 5 6 0 0 0 6 1 0 0 6 0 0 0 0	3	
DI	JSSELDORF -	2	2	3	3	3	0	3	2	1	2	0	2	1	4	1
	HEATHROW -	9	4	6	5	3	12	5	6	3	4	1	9	4	6	5
	KASSEL -	0	1	0	1	2	2	0	0	1	1	0	0	0	2	1
True	LJUBLJANA -	4	5	4	5	4	3	9	4	5	4	3	4	2	5	0
М	AASTRICHT -	0	0	0	1	0	1	1	1	0	1	1	3	0	0	0
	MADRID -	25	31	23	34	36	23	27	22	40	34	27	25	49	30	32
	MUNCHENB -	1	0	0	2	0	0	0	2	0	0	1	1	1	0	0
	OSLO -	0	1	0	1	0	0	1	1	0	0	1	0	0	0	0
	SONNBLICK -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S	ТОСКНОІМ -	0	0	0	0	1	1	0	0	0	1	0	0	0	0	1
	VALENTIA -		0	0	0	0	1	0	0	0	0	0	0	0	0	0
	&Þ.	SEL BELGE	ADE BUDA	est of	EBILT SELF	JORE HEATH	ROM LA	SEL JUBI	ANA STR	CHT MA	DRID NINC	ENB (SLO SINE	MCF CRA	OLM BLE	NIA
		Pr	₽ _D		DIRE	HER		120	MAA.Predicted		MUL		501°	Stor	11	

Comment

The model was unable to recognise all 15 stations, as *Deblit, Ljubljana*, and *Maastricht* were missing from its predictions. Additionally, the overall accuracy was even lower at 5.04%.

Trial 3

Input

```
# Define key parameters
epochs = 50  # Increase further to allow more learning
batch_size = 8  # Smaller batch size may help model generalise better
n_hidden = 64  # Increase model capacity to learn more complex patterns

# Build model
model = Sequential()
model.add(Conv1D(n_hidden, kernel_size=2, activation='relu', input_shape=(timesteps, input_dim)))
model.add(Dense(8, activation='relu'))  # Smaller dense layer after conv
model.add(MaxPooling1D())
model.add(Flatten())
model.add(Flatten())
model.add(Dense(n_classes, activation='softmax'))  # Output layer: softmax for multi-class classification
```

Output

```
Epoch 1/50
2152/2152

    5s 2ms/step - accuracy: 0.1204 - loss: 57953.4180 - val accuracy: 0.0955 - val loss: 177353.5312

Epoch 2/50
2152/2152
                               4s 2ms/step - accuracy: 0.1218 - loss: 579714.8750 - val_accuracy: 0.2062 - val_loss: 986685.0625
                               4s 2ms/step - accuracy: 0.1177 - loss: 1830556.3750 - val_accuracy: 0.1957 - val_loss: 2525237.2500
Epoch 4/50
2152/2152
                              3s 1ms/step - accuracy: 0.1240 - loss: 3882455.2500 - val_accuracy: 0.0406 - val_loss: 4776302.5000
2152/2152
                              — 3s 1ms/step - accuracy: 0.1221 - loss: 6867038.5000 - val_accuracy: 0.1009 - val_loss: 7995113.5000
2152/2152
                            — 3s 1ms/step - accuracy: 0.1219 - loss: 10929442.0000 - val_accuracy: 0.0289 - val_loss: 12367472.0000
Epoch 7/50
2152/2152
                               - 3s 1ms/step - accuracy: 0.1245 - loss: 16404688.0000 - val_accuracy: 0.1399 - val_loss: 17929178.0000
Epoch 8/50
2152/2152
                               - 3s 1ms/step - accuracy: 0.1211 - loss: 23286850.0000 - val accuracy: 0.0843 - val loss: 24822516.0000
      9/50
2152/2152
                               4s 2ms/step - accuracy: 0.1213 - loss: 31293902.0000 - val_accuracy: 0.1738 - val_loss: 33160008.0000

    4s 2ms/step - accuracy: 0.1226 - loss: 41643760.0000 - val_accuracy: 0.1162 - val_loss: 43307240.0000

Epoch 11/50
2152/2152
                               4s 2ms/step - accuracy: 0.1240 - loss: 53448124.0000 - val_accuracy: 0.0366 - val_loss: 55064424.0000
Epoch 12/50
2152/2152

    3s 2ms/step - accuracy: 0.1217 - loss: 67005360.0000 - val accuracy: 0.0701 - val loss: 68518744.0000

      13/50
2152/2152 —
Epoch 14/50
2152/2152 —
                               — 3s 2ms/step - accuracy: 0.1272 - loss: 83272144.0000 - val_accuracy: 0.0596 - val_loss: 84308080.0000
                               - 3s 2ms/step - accuracy: 0.1229 - loss: 101533008.0000 - val_accuracy: 0.0178 - val_loss: 102451896.0000
  och 15/50
2152/2152

    3s 2ms/step - accuracy: 0.1238 - loss: 122251040.0000 - val accuracy: 0.0211 - val loss: 122827896.0000

Epoch 16/50
2152/2152
                              — 3s 1ms/step - accuracy: 0.1233 - loss: 146217024.0000 - val accuracy: 0.0976 - val loss: 145742144.0000
                              — 3s 1ms/step - accuracy: 0.1219 - loss: 172514704.0000 - val accuracy: 0.0511 - val loss: 170102896.0000
Epoch 18/50
2152/2152 -
                              — 3s 2ms/step - accuracy: 0.1238 - loss: 201111312.0000 - val accuracy: 0.1325 - val loss: 198021744.0000
Epoch 19/50
2152/2152

    4s 2ms/step - accuracy: 0.1231 - loss: 234306608.0000 - val accuracy: 0.0300 - val loss: 229908736.0000

      20/50
2152/2152 —
Epoch 21/50
2152/2152 —
                               — 3s 2ms/step - accuracy: 0.1213 - loss: 268599776.0000 - val_accuracy: 0.0230 - val_loss: 264827968.0000
                               - 3s 2ms/step - accuracy: 0.1202 - loss: 309054848.0000 - val_accuracy: 0.0612 - val_loss: 300316768.0000
Epoch 22/50
2152/2152
                              — 3s 1ms/step - accuracy: 0.1242 - loss: 349452992.0000 - val accuracy: 0.2844 - val loss: 341582784.0000
Epoch 23/50
2152/2152
                              — 3s 2ms/step - accuracy: 0.1236 - loss: 395182080.0000 - val_accuracy: 0.0437 - val_loss: 384763936.0000
Epoch 24/50
2152/2152
                              — 4s 2ms/step - accuracy: 0.1294 - loss: 444598272.0000 - val_accuracy: 0.0427 - val_loss: 432082336.0000
Epoch 25/50
2152/2152 -
                              — 3s 2ms/step - accuracy: 0.1207 - loss: 499962144.0000 - val_accuracy: 0.0108 - val_loss: 482573888.0000
Epoch 26/50
2152/2152
                               4s 2ms/step - accuracy: 0.1222 - loss: 556852352.0000 - val_accuracy: 0.1284 - val_loss: 536408928.0000
      27/50
2152/2152
                             4s 2ms/step - accuracy: 0.1283 - loss: 619043392.0000 - val_accuracy: 0.0155 - val_loss: 595523840.0000
Epoch 28/50
2152/2152
                               - 4s 2ms/step - accuracy: 0.1244 - loss: 685511616.0000 - val accuracy: 0.0673 - val loss: 659875072.0000
  och 29/50

    3s 2ms/step - accuracy: 0.1249 - loss: 754959104.0000 - val accuracy: 0.0514 - val loss: 724592448.0000

2152/2152
Epoch 30/50
2152/2152
                              — 3s 2ms/step - accuracy: 0.1254 - loss: 833662272.0000 - val_accuracy: 0.0776 - val_loss: 796311616.0000
      31/50
2152/2152
                              — 4s 2ms/step - accuracy: 0.1286 - loss: 909434944.0000 - val_accuracy: 0.0572 - val_loss: 872235200.0000
Epoch 32/50
2152/2152 -
                               - 4s 2ms/step - accuracy: 0.1269 - loss: 997557056.0000 - val_accuracy: 0.1338 - val_loss: 950890944.0000
```

Comment

The model's performance clearly indicates severe divergence and failure to learn. Training and validation losses increase dramatically and continuously across epochs, reaching extremely high values, showing that the model is not minimising the loss but diverging instead. Although there are occasional spikes in validation accuracy, both training and validation accuracies remain consistently low and unstable throughout training, without meaningful improvement. This

pattern strongly suggests fundamental issues with the model architecture, learning rate, or data preprocessing that prevent effective learning and generalisation.

Confusion Matrix

						Confu	usion M	latrix (Startin	g - Ran	dom G	uess)				
BAS	EL - 23	88		256	250	260	254		249	276	236	238	266		264	
BELGRA	DE - 8	0	70	57	70	78	64	83	68	76	77	89	76	70	59	75
BUDAPE	ST - 1	5	17	14	13	10	8	16	18	15	21	15	23	6	13	10
DEB	ILT - 6	5	0	9	11	1	5	3	5	7	8	3	7	8	4	5
DUSSELDO	RF- 0)	2	5	2	1	1	3	1	2	2	1	2	0	4	3
HEATHRO	W - 1	L	7	5	7	2	6	10	5	10	6	2	7	5	5	4
KASS	EL- 0)	0	0	0	1	1	0	0	1	1	0	0	2	2	3
를 LJUBLJA	NA - 5	i i	4	5	5	7	5	2	7	1	1	3	2	2	5	7
MAASTRIC	HT - 0)	0	0	1	1	0	3	0	0	0	2	0	0	1	1
MADE	ID - 2	3	33	33	31	28	40	33	24	25	33	27	30	36	31	31
MUNCHE	NB - 1	L	0	1	0	1	0	1	0	1	0	0	1	0	1	1
os	LO - 1	L	0	0	0	0	0	0	0	2	0	0	0	1	0	1
SONNBLI	CK- 0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
STOCKHO	LM - 0)	1	0	0	0	0	0	1	0	0	0	0	0	1	1
VALENT	TIA - C		0	0	0	0	1	0	0	0	0	0	0	0	0	0
	BASEL	. GRA	DE BUDA	REST OF	BILL	JORE HEATH	ROW D	SEL JUBI	ANA STR	CHT MA	DRID NUMC	ENB (SIO MAR	nct de	OLM	MILA
	4	Ser	BIJL		DUSSE	HEA	·	M.	MAAS Predicted		MULA		20pg	Slow	1/4	

							Conf	usion M	atrix (Final M	lodel)						_
	BASEL -	1053	64	0	220	10	694	1358	41	0	13	219	4	0	1	5	
ı	BELGRADE -	450	11	0	6	0	73	540	0	0	1	11	0	0	0	0	- 1200
1	BUDAPEST -	73	1	0	7	0	32	100	0	0	0	1	0	0	0	0	
	DEBILT -	5	0	0	6	0	20	51	0	0	0	0	0	0	0	0	- 1000
DU	SSELDORF -	6	0	0	1	0	6	16	0	0	0	0	0	0	0	0	1000
н	EATHROW -	15	0	0	4	0	33	30	0	0	0	0	0	0	0	0	
	KASSEL -	4	0	0	0	0	1	6	0	0	0	0	0	0	0	0	- 800
True	LJUBLJANA -	34	0	0	0	0	13	14	0	0	0	0	0	0	0	0	
МА	ASTRICHT -	1	0	0	0	0	3	5	0	0	0	0	0	0	0	0	- 600
	MADRID -	193	1	0	18	0	148	94	0	0	1	3	0	0	0	0	
М	IUNCHENB -	6	0	0	0	0	1	1	0	0	0	0	0	0	0	0	- 400
	OSLO -	4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
S	ONNBLICK -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 200
ST	оскногм -	1	0	0	0	0	1	2	0	0	0	0	0	0	0	0	
	VALENTIA -		0	0	0	0	1	0	0	0	0	0	0	0	0	0	
	♦Þ	SEL BELGR	ADE BUDAR	5	DUSSELD	JORE HERTH	ROW 45	55EL LIVEL	ANA STR	ECHT MA	DRID	ENB	SIO	Stock,	OLIA	MILA	- 0
								P	redicted	1							

Comment

The model was unable to recognise all 15 stations, as *Budapest*, *Sonnblick*, and *Maastricht* were missing from its predictions. However, the overall accuracy was at its greatest at 19.34%.