SISTEMAS DIGITAIS

PARTE 3

OPERAÇÕES LÓGICAS BINÁRIAS

Transistor

Julius Edgar Lilienfeld

Patenteou o transistor de efeito de campo em 1926.

Por Federal employee - https://clintonwhitehouse4.archives.gov/Initiatives/Millennium/capsule/mayo.html, Domínio público, https://commons.wikimedia.org/w/index.php?curid=554340

Transistor

Em 1947, John Bardeen e Walter Brattain da Bell Labs da AT&T conseguiram implementar o primeiro transistor, ganharam o Nobel de Física (em 1956).

William Shockley (sentado, era líder de inovação da Bell Labs)

Por Federal employee - https://clintonwhitehouse4.archives.gov/Initiatives/Millennium/capsule/mayo.html, Domínio público, https://commons.wikimedia.org/w/index.php?curid=554340

ELEMENTOS DIGITAIS FUNDAMENTAIS PARA A LÓGICA
EMBARCADA NO HARDWARE

NOT

"Negação" – inverte o valor binário 1 (verdadeiro) passa a ser o (falso) e o (falso) passa a ser 1 (verdadeiro).

ENTRAD A	SAÍDA
A	Z
0	1
1	0

"E" – A resposta é 1 (verdadeiro) apenas quando todas as entradas são 1(verdadeiras).

ENTR	ADAS	SAÍDA
A	В	Z
0	0	0
0	1	0
1	0	0
1	1	1

OR

"OU" – A resposta é 1 (verdadeiro) sempre que alguma entrada seja 1(verdadeira).

ENTR	ADAS	SAÍDA
A	В	Z
0	0	0
0	1	1
1	0	1
1	1	1

NAND

Charles Sanders Peirce

NAND = Conectivo de Sheffer

Em 1886, ele viu que operações lógicas poderiam ser realizadas por circuitos elétricos de comutação; a mesma ideia foi usada décadas depois para produzir computadores digitais.

Descobriu (1882) que todos os operadores comuns da lógica proposicional (não (not), e (and), ou (or), implicação, e os demais), podem ser expressos em termos do NAND

NAND

Henry Maurice Sheffer

Matemático especializado em lógica

NAND = Conectivo de Sheffer

Documentou (1913) que todos os operadores comuns da lógica proposicional (não (not), e (and), ou (or), implicação, e os demais), podem ser expressos em termos do NAND

NAND

"NÃO E" – A resposta é o (falsa) apenas quando todas as entradas são 1(verdadeiras).

ENTR	ADAS	SAÍDA
A	В	Z
0	0	1
0	1	1
1	0	1
1	1	0

NOR

"NÃO OU" – A resposta é 1 (verdadeira) apenas quando todas as entradas são o (falsas).

Tabela verdade

ENTR	ADAS	SAÍDA
A	В	Z
0	0	1
0	1	0
1	0	0
1	1	0

COMPONENTES LÓGICOS DE MAIOR COMPLEXIDADE

OUTROS ELEMENTOS DIGITAIS PARA A LÓGICA EMBARCADA
NO HARDWARE

XOR

"OU Exclusivo" – A resposta é o (falsa) sempre quando as entradas são todas iguais entre si.

Tabela verdade

ENTRADAS		SAÍDA
A	В	Z
0	0	0
0	1	1
1	0	1
1	1	0

"Coincidência" – A resposta é 1 (verdadeira) sempre que as entradas são todas iguais entre si.

Tabela verdade

ENTR	ADAS	SAÍDA
A	В	Z
0	0	1
0	1	0
1	0	0
1	1	1

Monte a tabela verdade para o circuito:

Monte a tabela verdade para o circuito:

ENTRADAS		SAÍDA
A	В	Z
0	0	
0	1	
1	0	
1	1	

ENTRADAS		SAÍDA
A	В	Z
0	0	
0	1	
1	0	
1	1	

• Complete a tabela verdade para o circuito:

ENTR	ADAS	SAÍDA
A	В	Z
0	0	
0	1	
1	0	
1	1	

• Complete a tabela verdade para o circuito:

ENTR	ADAS	SAÍDA
A	В	Z
0	0	
0	1	
1	0	
1	1	

• Desenhe os circuitos para as tabelas-verdade

ENTR	ADAS	SAÍDA
A	В	Z
0	0	1
0	1	0
1	0	0
1	1	0

CIRC_001

ENTR	ADAS	SAÍDA
A	В	Z
0	0	1
0	1	1
1	0	1
1	1	0

CIRC_002

ENTR	ADAS	SAÍDA
A	В	Z
0	0	0
0	1	0
1	0	1
1	1	1

CIRC_003

ENTR	ADAS	SAÍDA
A	В	Z
0	0	1
0	1	0
1	0	0
1	1	1

CIRC_004

ENTRADAS		SAÍDA
A	В	Z
0	0	0
0	1	0
1	0	1
1	1	0

CIRC_005

• Desenhe os circuitos para as tabelas-verdade

ENTRADAS		SAÍDA
A	В	Z
0	0	1
0	1	0
1	0	0
1	1	0

CIRC_001

ENTR	ADAS	SAÍDA
A	В	Z
0	0	1
0	1	1
1	0	1
1	1	0

CIRC_002

ENTR	ENTRADAS	
A	В	Z
0	0	0
0	1	0
1	0	1
1	1	1

CIRC_003

ENTRADAS		SAÍDA
A	В	Z
0	0	1
0	1	0
1	0	0
1	1	1

CIRC_004

ENTRADAS		SAÍDA
A	В	Z
0	0	0
0	1	0
1	0	1
1	1	0

CIRC_005

• Componha a tabela verdade para o circuito a seguir

• Desenhe os circuitos para as tabelas-verdade

ENTRADAS		SAÍDA
A	В	Z
0	0	1
0	1	0
1	0	1
1	1	1

CIRC_006

ENTRADAS		SAÍDA
A	В	Z
0	0	0
0	1	1
1	0	0
1	1	0

CIRC_007

