Structural Studies of the Palladium-Hydrogen System

A Thesis submitted for the Degree of Doctor of Philosophy

By

Keith Gordon McLennan

School of Science Griffith University

August 2005

Statement

The thesis herein contains no material which has been submitted for a degree or diploma in any university, and to the best of my knowledge contains no material previously published or written by another person, except where due acknowledgment is made.

Keith M^cLennan

Acknowledgements

Without whom, etc

The work in this thesis was begun in January 2000, and in the intervening five and half years I have received much help from colleagues, family and friends. I am convinced that completion of this thesis would have been much more difficult, if not impossible, without this help and so I set about now to thank them all.

I wish to thank my principal supervisor Associate Professor Evan Gray for guidance and help in all aspects of this work. Evan has taught me much about experimental methods and has provided good council over the years. He also has a good nose for restaurants, a much needed diversion in the middle of experimental runs.

Professor John Dobson, my co-supervisor, provided help with the Density Functional Theory parts, especially in organising access to computer resources.

I would like to thank both Evan and John for organizing a Griffith University School of Science Postgraduate Scholarship near the end of my tenure when it was much needed

My colleagues Dr Tomasz Blach and Dr Mark Pitt have both been a great help to me when preparing for experiments, especially early on during my transformation from theoretician to experimenter. They have also provided much-needed company during those long beam-time runs. Thanks specifically to Tom for showing me the fine art of "power sight-seeing", and to Mark for introducing the operation of the Rietica computer program to me

During the course of this research, I held an Australian Postgraduate Research award, supplemented with an Australian Institute of Nuclear Science and Engineering award I wish to thank my AINSE co-supervisor Dr Shane Howard for insightful help into some of the subtleties of Rietveld refinement. I thank AINSE for the financial support and for providing access to the HIFAR diffraction instruments.

In-situ diffraction studies are difficult experiments to perform successfully, and I need to thank all of the instrument scientists who have helped me complete mine. They are, in no particular order, Dr Brett Hunter and Dr Andrew Studer of the Bragg Institute at ANSTO, Dr Peter Fischer (retired) of the SINQ facility at the Paul Scherrer Institute and Kevin Knight of the ISIS facility at the Rutherford Appleton Laboratory. All of these

gentlemen have provided highly professional support during various experiments and their help was invaluable.

I would like to thank both Dr Erich Kisi and Dr Klaus Yvon for helping to improve my understanding of crystallography

Dr Chris Brown was very helpful in providing computer resources when they were most needed

Finally, I need to thank my partner, Julie, and daughter, Lydia, for so much patience over the last few years. They have put up with my distractions, workload and many absences with good grace and courage. This thesis is dedicated to them.

and Sales and Sales of

Abstract

In this work the palladium-hydrogen system has been studied using experimental and computational techniques. The experimental technique used was in-situ neutron powder diffraction. The in-situ methodology, in which diffraction data are collected from a sample loaded to a known hydrogen concentration, provides an independent measure of the hydrogen occupation of interstitial lattice sites.

Theoretical modeling with the ADF-BAND software was done to calculate lattice parameters and investigate interstitial occupancy

An important driver for this work was a new report of occupation of tetrahedral interstices near the thermodynamic critical temperature, above which the hydriding phase transformation is continuous. The two-pronged approach was adopted to provide experimental input to the modeling and theoretical understanding of the experiments.

The focus of the work carried out was the peri-critical region of the palladium-hydrogen system. While raising significant technical challenges to the experiments, this meant that modeling was made easier, as the system is single-phase above the critical temperature. Fairly direct comparisons of theory and experiment were therefore possible.

The experiments performed have revealed much new information about the previously well studied palladium-hydrogen system. Differences have been identified in some thermodynamic properties of this system based upon the bulk form of the palladium, whether solid sheet or finely divided. The two forms have different shapes to their pressure-composition isotherms, the form of the hysteresis is different and they display markedly different thermodynamic critical temperatures.

The determination of the thermodynamic critical temperature was also focused on The classical method of determining critical temperature by the disappearance of the hysteresis in the pressure-composition-temperature (p-c-T) curves has proved to be inaccurate. Above the critical temperature, but still in the peri-critical region, where the hysteresis in the p-c-T curves proves undetectable, it is possible to distinguish two phases via diffraction pattern refinement. The nature of these phases is slightly different to the typical α and β phases located well below the critical temperature where the phases behave very differently. In the peri-critical region the two phases are very similar and each follows the Vegard telationship independently.

the se

A significant part of the research was directed at the location of deuterium atoms in the palladium face centered cubic (FCC) lattice. Two sites in the FCC lattice are available to the deuterium, the tetrahedral site and the octahedral site, and traditionally it is thought that only the octahedral site is occupied. Based on fundamental calculations on peak heights, as well as on full Rietveld refinement, it has been shown that there is now compelling evidence for tetrahedral occupation in the peri-critical region of palladium-deuterium

The theoretical calculations performed accurately estimated the lattice parameters for the range of palladium-hydrogen stoichiometries. By enlarging the modeled unit cell, several hydrogen concentrations could be represented. These calculations provided support for the idea of tetrahedral site occupation by hydrogen of the palladium FCC lattice, and predicted the experimentally observed trend to higher tetrahedral occupancy in the middle of the concentration range Pd to PdH.

Table of Contents

	Statement		1
	Acknowledgemen	ts	II
	Abstract		IV
	Table of Contents	,	VI
	List of Figures		XI
	Chapter One	Thesis Overview	
	•		
1.1 T	he Hydrogen Econor	my	2
1.2 T	he Problem of Hydro	ogen Storage	3
1.3 T	he Study of Palladiun	n-Hydrogen	4
1.4 T	hesis Structure		5
Refere	ences		7
	Chapter Two	Materials and Methods	
2.1 In	troduction		9
2 2 Pa	ılladium		9
23 H	ydrogen		10
2.4 Pa	ılladium-Hydrogen S	ystem	10
2.4 1	Characteristics of the	he Palladium Hydrogen System	11
24 2	The Palladium-Hyd	lrogen Phase Diagram	11
2.4 3	The Palladium-Hyd	lrogen Critical Temperature	12
2.4.4	Palladium and the S	Storage of Hydrogen	13
2.45	Palladium and the S	Separation of Hydrogen	14
25 M		ing Hydrogen-to-Metal Ratios	15
			16
2 5.1	The Gravimetric To	ecmaque	10

2.5.2	The Sieverts Technique	16
2 5.3	The Compressibility of Deuterium	19
2.5.4	The Hot-Cold Volume Model	21
2.6 Ne	utron-Beam Diffraction Instruments	22
2 6.1	The HIFAR MRPD Instrument	23
2.6.2	The HIFAR HRPD Instrument	23
2.6.3	The SINQ HRPT Instrument	25
2.64	The ISIS HRPD Instrument	26
2.7 De	nsity Functional Theory	27
Referen	aces	28
	Chapter Three In-situ Neutron-beam Diffraction Stud	
	Palladium-Deuterium System: Macroso Properties	copic
3.1 Inti	·	copic 31
	Properties	
3.2 San	Properties	31
3.2 San	Properties coduction apple Preparation	31 31
3.2 San 3.3 HII	Properties coduction apple Preparation FAR MRPD October 2001	31 31 33
3.2 San3.3 HII3.3.1	Properties coduction inple Preparation FAR MRPD October 2001 Manometrics: Supercritical Isotherm	31 31 33 34
3.2 San3.3 HII3.3.13.3.2	Properties coduction coduction column apple Preparation FAR MRPD October 2001 Manometrics: Supercritical Isotherm Manometrics: Critical Isotherm	31 31 33 34 35
3.2 San 3.3 HII 3.3.1 3.3.2 3.3.3 3.3.4	Properties coduction inple Preparation FAR MRPD October 2001 Manometrics: Supercritical Isotherm Manometrics: Critical Isotherm Manometrics: Subcritical Isotherm	31 33 34 35 37
3.2 San 3.3 HII 3.3.1 3.3.2 3.3.3 3.3.4	Properties coduction apple Preparation EAR MRPD October 2001 Manometrics: Supercritical Isotherm Manometrics: Critical Isotherm Manometrics: Subcritical Isotherm The Peri-critical Region of the Palladium-Deuterium System	31 33 34 35 37 38
3.2 San 3.3 HII 3.3.1 3.3 2 3.3 3 3.3 4 3.4 SIN 3.4 1	Properties coduction inple Preparation FAR MRPD October 2001 Manometrics: Supercritical Isotherm Manometrics: Critical Isotherm Manometrics: Subcritical Isotherm The Peri-critical Region of the Palladium-Deuterium System NQ HRPT May 2002	31 33 34 35 37 38 39
3.2 San 3.3 HII 3.3.1 3.3 2 3.3 3 3.3 4 3.4 SIN 3.4 1	Properties coduction Table Preparation FAR MRPD October 2001 Manometrics: Supercritical Isotherm Manometrics: Critical Isotherm Manometrics: Subcritical Isotherm The Peri-critical Region of the Palladium-Deuterium System IQ HRPT May 2002 Manometrics	31 33 34 35 37 38 39

3.6 HI	FAR HRPD October 2003	44
3.6.1	Manometrics	44
3 7 ISI	S HRPD Match/April 2004	46
3.7.1	Issues Affecting the Proposed Beam-Time	46
372	Manometrics	47
373	The Pre-Dislocation 310°C Isotherm	52
3.74	The 120°C Isotherm	5.3
3 7.5	The Annealing Temperature Scans	54
376	The Post-Annealing 310°C Isotherm and Quench	55
3.8 Co	nclusions and Discussion	57
Referen	nces	59
	Chapter Four In-situ Neutron-beam Diffraction S	Studies of the
	Palladium-Deuterium System: Latt	
4.1 Int	-	
	Palladium-Deuterium System: Latt	ice Parameters
42 Rie	Palladium-Deuterium System: Latt	ice Parameters 62
42 Rie	Palladium-Deuterium System: Latteroduction etveld Analysis	ice Parameters 62 64
4 2 Rie	Palladium-Deuterium System: Latteroduction etveld Analysis FAR MRPD October 2001	 62 64 65
4.2 Rie 4.3 HI 4.3.1	Palladium-Deuterium System: Latteroduction etveld Analysis FAR MRPD October 2001 Introduction	62 64 65 65
4.2 Rie 4.3 HI 4.3.1 4.3.2	Palladium-Deuterium System: Latteroduction etveld Analysis FAR MRPD October 2001 Introduction Refinement Problems	62 64 65 65 65
4.2 Rice 4.3 HI 4.3.1 4.3.2 4.3.3	Palladium-Deuterium System: Latteroduction etveld Analysis FAR MRPD October 2001 Introduction Refinement Problems The Super-Critical Isotherm	62 64 65 65 65
4.2 Rie 4.3 HI 4.3.1 4.3.2 4.3.3 4.3.4	Palladium-Deuterium System: Latteroduction etveld Analysis FAR MRPD October 2001 Introduction Refinement Problems The Super-Critical Isotherm The Critical Isotherm	62 64 65 65 65 67
4.2 Rice 4.3 HI 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6	Palladium-Deuterium System: Latt roduction Etveld Analysis FAR MRPD October 2001 Introduction Refinement Problems The Super-Critical Isotherm The Critical Isotherm The Sub-Critical Isotherm	62 64 65 65 65 67 68
4.2 Rice 4.3 HI 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6	Palladium-Deuterium System: Latt roduction Etveld Analysis FAR MRPD October 2001 Introduction Refinement Problems The Super-Critical Isotherm The Critical Isotherm The Peri-Critical Region Lattice Parameters	ice Parameters 62 64 65 65 65 67 68 69

45	HIFAR HRPD July 2002	71
4.5.	1 Introduction	71
45	2 Refinement Problems	71
45	4.5 3 Lattice Parameters	
4.6	HIFAR HRPD October 2003	73
4 7	ISIS HRPD March/April 2004	74
4 7	1 Introduction	74
4.7	The Lattice Parameters of the Pre-Dislocation 310°C Isotherm	75
47	The Lattice Parameters of the 120°C Isotherm	76
47	The Annealing Temperature Scan Patterns	77
4.7	5 The Post-Annealing Lattice Parameters	82
4 7	6 All ISIS HRPD Results	83
4.8	Comparison of All Results	84
49	Conclusions and Discussions	85
Ref	erences	89
	Chapter Five In-situ Neutron-beam Diffraction Studi Palladium-Deuterium System: Deuteriu Occupation of the Tetrahedral Site	
5.1	Introduction	91
5.2	Structure Factor Rules Governing the Octahedral and Tetrahedral Site Occupation of the FCC Lattice	93
5.3	A Comparison of the Calculated Peak Heights and the Experimentally Measured Peak Heights	102
5.4	Procedure for Analysing High Resolution Data	108
5.5	Refined Occupations	109
56	Conclusions and Discussions	113
Ref	erences	115

Chapter Six

Soft Cohesive Forces

A Computational Study of the Peri-Critical Region of the Palladium-Hydride System Using Density Functional Theory Techniques

6.1 In	troduction	117
6.1.1	Density Functional Theory	118
6.1.2	The Hartree Approximation	118
6.1.3	Exchange and Correlation	119
6.2 Th	eory of ADF-BAND	119
6.3 Cc	omputational Technique	121
6.3.1	Unit Cells Used for Computations	122
6 3.2	Orbital Functions	125
6.4 Ca	lculated Lattice Parameters	129
6.5 Oc	ctahedral and Tetrahedral Site Occupation	131
6.5 1	General Palladium-Hydrogen System Calculations	131
6 5.2	Detailed Calculations of Pd ₈ H ₃	134
653	Energy Profile of the Cube Diagonals	136
6.6 Cc	inclusions and Discussions	140
Refere	nces	142
	Summary	143
	References	
	Appendix Published Works	A-I
	Prediction of Dispersion Forces: Is There a Problem?	
	An Equation of State for Deuterium gas to 1000 bar	

List of Figures

Fig 2.1	The face-centered-cubic crystal structure	Ò
Fig 2.2	Palladium-protium p-c-T relationships and the palladium- protium phase diagram	12
Fig 2 3	Schematic of hydrogen separation in a palladium membrane	15
Fig 2.4	Experimental setup of an in-situ diffraction study	facing 10
Fig 2.5	The HRPD diffractometer	24
Fig 2 6	SINQ HRPT sample table	25
Fig 2.7	SINQ HRPT schematic	25
Fig 2.8	ISIS facility at RAL	26
Fig 3 1	Schematic of Sieverts apparatus used in October 2001	33
Fig 3.2	Pd-D Supercritical isotherm	35
Fig 3.3	Pd-D Supercritical diffraction patterns	35
Fig 3.4	Pd-D Critical isotherm	36
Fig 3 5	Pd-D Critical diffraction patterns	36
Fig 3.6	Pd-D Sub-critical isotherm	37
Fig 3 7	Pd-D Sub-critical diffraction patterns	37
Fig 3.8	The peri-critical region of palladium-deuterium	38
Fig 3.9	Pressure-composition isotherms for the palladium-deuterium bulk sheet sample	facing 39
Fig 3 10	Schematic of Sieverts apparatus used in May 2002 on SINQ HRPI	39

Fig 3.11 Neutron diffraction patterns from palladium-deuterium	40
Fig 3.12 Schematic of Sieverts apparatus used in July 2002 on HIFAR MRPD	41
Fig 3.13 Room temperature p-c-T diagram for palladium- deuterium	42
Fig 3 14 Room temperature neutron diffraction patterns of palladium-deuterium	42
Fig 3.15 Detail of diffraction patterns of palladium-deuterium collected on HIFAR MRPD July 2002	43
Fig 3.16 Schematic of Sieverts apparatus used on HIFAR HRPD October 2003	44
Fig 3.17 p-c-T diagram for palladium-deuterium	45
Fig 3 18 Diffraction patterns collected for palladium-deuterium or HIFAR HRPD October 2003	a 45
Fig 3.19 Schematic of Sieverts apparatus used on ISIS HRPD May 2004	47
Fig 3 20 Pressure-composition-temperature graph of palladium- deuterium	48
Fig 3.21 Palladium-deuterium isotherms	facing 49
Fig 3 22 Neutron-beam diffraction patterns from palladium collected on ISIS HRPD	51
Fig 3.23 Palladium-deuterium isotherm at 310°C	52
Fig 3 24 Palladium-deuterium neutron diffraction patterns for 310°C isotherm collected on ISIS HRPD	52
Fig 3.25 Palladium-deuterium isotherm at 120°C	53

Fig 3.26	Palladium-deuterium neutron diffraction patterns	
	collected ISIS HRPD, sample at 120°C	53
Fig 3.27	Palladium annealing temperature neutron diffraction patterns ISIS HRPD	55
Fig 3.28	Palladium annealing temperature neutron diffraction patterns ISIS HRPD (detail)	55
Fig 3.29	Palladium-deuterium 310°C isotherm and quench step	56
Fig 3 30	Palladium-deuterium neutron diffraction patterns collected ISIS HRPD	56
Fig 4.1	Supercritical isotherm (300°C), refined lattice parameter vs. deuterium content, absorption isotherm only	66
Fig 4 2	Critical isotherm (280°C), refined lattice parameter vs. deuterium content, absorption and desorption isotherms	67
J	Sub-critical isotherm (250°C), refined lattice parameter vs deuterium content, absorption and desorption isotherms	68
	Lattice parameters of the palladium-deuterium system near the peri-critical region	facing 69
	Refined lattice parameters vs. deuterium concentration at 295-320°C	facing 70
	Refined lattice parameters from room-temperature palladium-deuterium	facing 71
_	Comparison of lattice parameters refined from experiments of October 2001 and July 2002	72
	Refined lattice parameters of palladium-deuterium on HRPD HIFAR October 2003	73
	Refined palladium-deuterium lattice parameters for 310°C isotherm	75

Fig 4.1	0 Refined lattice parameters from the 120°C isotherm	facing 76
Fig 4 1	1 Critical and sub-critical lattice parameters	77
Fig 4 1	2 Annealing temperature lattice parameters	78
Fig 4.1	3 All pure palladium lattice parameters	78
Fig 4.1	4 Refined thermal parameter B during annealing	79
Fig 4.1	5 Refined peak-shape parameter γ ₁ during annealing	79
Fig 4.10	6 Refined peak-shape parameter γ ₂ during annealing	80
Fig 4 1	7 Refined particle size parameter A_{size} during annealing	80
Fig 4.18	Palladium-deuterium annealing experiment peak-shape parameters	81
Fig 4 19	Lattice parameters of the palladium-deuterium 310°C isotherm and quench	82
Fig 4.20	All results from ISIS HRPD March/April 2004	83
Fig 4.21	The lattice parameters of PdH_x and PdD_x from neutron diffraction studies	84
Fig 5.1	Location of the tetrahedral and octahedral sites in the face centered cubic structure	91
Fig 5.2	Palladium deuterium calculated peak heights of the three lowest order peaks on a time-of-flight neutron diffractometer using an octahedral occupation only model	facing 103
Fig 5.3	Palladium deuterium relative peak heights of the three lowest order peaks for a time-of-flight neutron diffractometer using an octahedral occupation only model	104
Fig 5.4	Palladium deuterium relative peak heights of the three lowest order peaks for a constant-wavelength neutron diffractometer using an octahedral occupation only model	104

Fig 5.5	Relative peak height comparisons for a time-of flight	
	neutron diffractometer, expected and experimental	105
Fig 5 6	Relative peak height comparisons for a constant	
	wavelength neutron diffractometer, expected and	
	experimental	106
Fig 5.7	Relative peak height comparisons for a constant-	
	wavelength neutron diffractometer, expected and	
	experimental	107
Fig 5.8	Palladium-deuterium system. Deuterium octahedral site	
	and tetrahedral site occupation numbers near the system	
	critical temperature.	110
Fig 5.9	Palladium-deuterium system Single-phase deuterium	
	octahedral and tetrahedral site occupation numbers at	
	310°C	111
Fig 5.10	Thermal parameters of octahedral and tetrahedral located	
	deuterium in palladium at 310°C	112
Fig 6 1	Primitive basis set for generating FCC structure. Single	
	atom basis with rhombohedral translation axes	122
Fig 6 2	Cubic basis for generating the FCC structure Four atom	
	basis with cubic translation axes	123
Fig 6.3	Double-cubic basis set for generating FCC structure	
	Eight atom basis with rectilinear translation axes	124
Fig 6 4	Calculated lattice parameters for Pd _x H	129
Fig 6.5	Calculated lattice parameters for PdxH compared to	
	experimental results from this thesis	130
Fig 6 6	Palladium Hydride Energy of Formation - effect of	
	moving hydrogen atoms from octahedral to tetrahedral	
	-14	121

Fig 6 7	Palladium Hydride Fermi Energy - effect of moving	
	hydrogen atoms from octahedral to tetrahedral sites	133
Fig 68	Pd8H3 Energy of Formation – octahedral/tetrahedral site occupation comparison	134
Fig 6.9	Nearest neighbour considerations for 8-atom rectilinear	
	"double-cubic" unit cell	136
Fig 6 10	Energy of Formation Pd ₂ H	facing 137
Fig 6 11	Fermi Energy Pd ₂ H	facing 137
Fig 6.12	Energy of Formation Pd ₂ H	facing 137
Fig 6.13	Fermi Energy Pd ₂ H	facing 137
Fig 6 14	Energy of Formation Pd ₂ H – low symmetry configuration	138
Fig 6.15	Energy of Formation Pd ₄ H	facing 139
Fig 6.16	Fermi Energy Pd₄H	facing 139
Fig 6 17	Energy of Formation Pd ₄ H	facing 139
Fig 6.18	Fermi Energy Pd ₄ H	facing 139