

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

7729284444

FURTHER MATHEMATICS

9231/22

Paper 2 Further Pure Mathematics 2

October/November 2020

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Blank pages are indicated.

		•••••	••••••	•••••	•••••	••••••
•••••						
		•	•••••	•••••		
	•••••	•••••				
Find, in terms	of π and e, the	$ \cosh x $, for $0 \le $ the area of the s	$x \le \frac{1}{2}$. Surface generate	d when the curv	ve is rotated thr	ough 2π ra
	of π and e, the		_	d when the curv	ve is rotated thro	ough 2π ra
Find, in terms	of π and e, the		_	d when the curv	ve is rotated thr	ough 2π ra
Find, in terms	of π and e, the		_	d when the curv	ve is rotated thr	ough 2π ra
Find, in terms	of π and e, the		_	d when the curv	ve is rotated thr	ough 2π ra
Find, in terms	of π and e, the		_	d when the curv	ve is rotated thre	ough 2π ra
Find, in terms	of π and e, the		_	d when the curv	ve is rotated thr	ough 2π ra
Find, in terms	of π and e, the		_	d when the curv	ve is rotated thr	ough 2π ra
Find, in terms	of π and e, the		_	d when the curv	ve is rotated thr	ough 2π ra
Find, in terms	of π and e, the		_	d when the curv	ve is rotated thr	ough 2π ra
Find, in terms	of π and e, the		_	d when the curv	ve is rotated thr	ough 2π ra
Find, in terms	of π and e, the		_	d when the curv	ve is rotated three	ough 2π ra
Find, in terms	of π and e, the		_	d when the curv	ve is rotated three	ough 2π ra
Find, in terms	of π and e, the		_	d when the curv	ve is rotated three	ough 2π ra
Find, in terms	of π and e, the		_	d when the curv	ve is rotated three	ough 2π ra
Find, in terms	of π and e, the		_	d when the curv	ve is rotated three	ough 2π ra

Find all the roots of the equation $(w+1)^6 = 1$, giving your answers in the form $x+iy$ where x ar real and exact.							
Find all the roots of the equation $(w+1)^6 = 1$, giving your answers in the form $x+iy$ where x are real and exact.							
Find all the roots of the equation $(w+1)^6 = 1$, giving your answers in the form $x+iy$ where x are real and exact.	•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
eal and exact.	•••••						
eal and exact.							
eal and exact.	• • • • • • • • • • • • • • • • • • • •		•••••				
eal and exact.							
eal and exact.	•••••		••••••		• • • • • • • • • • • • • • • • • • • •	•••••	
eal and exact.							
real and exact.							
real and exact.			•••••			•••••	
eal and exact.							
real and exact.						•	
real and exact.							
real and exact.							
real and exact.			•••••				
real and exact.							
real and exact.		•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	
real and exact.							
real and exact.							
	icai and exact.						
	ear and exact.						
	cai and exact.						
	cai and exact.						
	cai and exact.						

1	Find	the co	dution	of the	differential	equation
4	rına	the so	oiuuon	or the	amerenuai	equation

dy	. 2	_	₂ X
$x \frac{d}{dx}$	+2y	=	e

for which $y = 3$ when $x = 1$. Give your answer in the form $y = f(x)$.	[8]

		5	
5	The	curve C has equation	
		$y^2 + (xy+1)^2 = 5.$	
	(a)	Show that, at the point (1,1) on C, $\frac{dy}{dx} = -\frac{2}{3}$.	[3
			•••••
	(b)	Find the value of $\frac{d^2y}{dx^2}$ at the point (1,1).	[5

	$\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 15x = 102\cos 3t,$
given that, when $t = 0$, $x = 1$ and	$\frac{\mathrm{d}x}{\mathrm{d}t} = 0.$

Show that $\sum_{r=1}^{\infty} z^{2r} = \frac{z^{2n+1} - z}{z - z^{-1}}$, for $z \neq 0, 1, -1$.	

$1 + 2\sum_{r=1}^{n} \cos\left(2r\theta\right)$	$=\frac{\sin(2n+1)\theta}{\sin\theta}.$	

8

The diagram shows the curve $y = \frac{1}{\sqrt{x^2 + x + 1}}$ for $x \ge 0$, together with a set of *n* rectangles of unit width. By considering the sum of the areas of these rectangles, show that

$\sum_{r=1}^{n} \frac{1}{\sqrt{r^2 + r + 1}} < \ln\left(\frac{1}{3} + \frac{2}{3}n + \frac{2}{3}\sqrt{n^2 + n + 1}\right).$	[10]
	,

 	 	•••••
 •••••	 	•••••

- 9 It is given that a is a positive constant.
 - (a) Show that the system of equations

$$ax + (2a+5)y + (a+1)z = 1,$$

 $-4y = 2,$
 $3y-z = 3,$

has a unique solution and interpret this situation geometrically.	[3]

The matrix \mathbf{A} is given by

$$\mathbf{A} = \begin{pmatrix} a & 2a+5 & a+1 \\ 0 & -4 & 0 \\ 0 & 3 & -1 \end{pmatrix}.$$

(b)	Show that the eigenvalues of A are a , -1 and -4 .	[2]
(c)	Find a matrix P such that	
	$\begin{pmatrix} a & 0 & 0 \end{pmatrix}$	
	$\mathbf{A} = \mathbf{P} \begin{pmatrix} a & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -4 \end{pmatrix} \mathbf{P}^{-1}.$	[5]
	(V V I)	
		,

Additional Page

must be	clearly showr	1.			(s), the question	
		•••••				
	••••••	•••••	••••••	 		
		•••••		 		
••••••				 		•••••
	•••••			 		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.