Functional programming, Seminar No. 3

Danya Rogozin Lomonosov Moscow State University, Serokell ÖÜ

Higher School of Economics Faculty of Computer Science

Intro

On the previous seminar, we

- studied the basic Haskell syntax
- introduced the notion of a weak head normal form to describe the operatonal semantics of Haskell
- analysed the regrettable cicrumstances according to which Haskell doesn't have the Church-Rosser property as a system of typed lambda calculus

Intro

On the previous seminar, we

- studied the basic Haskell syntax
- introduced the notion of a weak head normal form to describe the operatonal semantics of Haskell
- analysed the regrettable cicrumstances according to which Haskell doesn't have the Church-Rosser property as a system of typed lambda calculus

Today we

- investigate the Haskell type system more deeply and overview the advantages of parametric polymorphism
- take a look at bounded polymorphism and discuss type classes

Motivation

Let us recall the example of a higher order function from the previous seminar:

- $_{\scriptscriptstyle 1}$ changeTwiceBy :: $(\mathbf{Int} -> \mathbf{Int}) -> \mathbf{Int} -> \mathbf{Int}$
- changeTwiceBy operation value = operation (operation value)

It is clear that one may implement the function for Boolean values and strings that have the same behaviour as the function above:

- $_{\scriptscriptstyle 1}$ changeTwiceByBool :: (Bool -> Bool) -> Bool -> Bool
- changeTwiceByBool operation value = operation (operation value)
- changeTwiceByString :: (String -> String) -> String -> String
 - changeTwiceByString operation value = operation (operation value)

Motivation

Let us recall the example of a higher order function from the previous seminar:

- $_{ ext{t}}$ changeTwiceBy :: $(ext{Int} -> ext{Int}) -> ext{Int} -> ext{Int}$
- changeTwiceBy operation value = operation (operation value)

It is clear that one may implement the function for Boolean values and strings that have the same behaviour as the function above:

- changeTwiceByBool :: (Bool -> Bool) -> Bool -> Bool
- changeTwiceByBool operation value = operation (operation value)
- changeTwiceByString :: (String -> String) -> String -> String
- ${}_{\scriptscriptstyle{5}}\quad \text{changeTwiceByString operation value} = \text{operation (operation value)}$

One needs to have a way to avoid such a boilerplate.

Parametric polymorphism

The key idea of parametric polymorphism that the same function might be called on distinct data types. Here are the first polymorphic examples:

```
id :: a -> a
    id \times = \times
     const :: a \rightarrow b \rightarrow a
     const a b = a
     fst :: (a, b) \rightarrow a
    fst (a, b) = a
     snd :: (a. b) \rightarrow b
     \mathbf{snd} = "guess what"
11
12
     swap :: (a, b) -> (b, a)
     swap (a, b) = (b, a)
```

The meme time

The functions above in the GHCi session

```
Prelude> id 7
Prelude> id "strina"
"string"
Prelude> const 7 "string"
Prelude> const "string" 7
"string"
Prelude> fst (7, 'k')
Prelude> snd (7, 'k')
'k'
Prelude> fst (swap (7, 'k'))
'k'
```

A brief clarification

- In such signatures as $a \to b \to a$, a, b are type variables that range over arbitrary data types. In fact, a, b are bounded by universal quantifier that hidden under the carpet.
- In a matter of fact, the functions from the previous slide have the following signatures:

```
id :: forall a. a -> a
id x = x

const :: forall a b. a -> b -> a
const a b = a

fst :: forall a b. (a, b) -> a
fst (a, b) = a

swap :: forall a b. (a, b) -> (b, a)
swap (a, b) = (b, a)
```

Higher order functions and parametric polymorpism

```
infixr 9.
(.) :: (b -> c) -> (a -> b) -> a -> c
g = x - f(g x)
    flip :: (a -> b -> c) -> b -> a -> c
   flip f b a = f a b
   fix :: (a -> a) -> a
   fix f = f (fix f)
10
    curry :: ((a, b) -> c) -> a -> b -> c
    \operatorname{\mathbf{currv}} f \times v = f(x, v)
13
    uncurry :: (a -> b -> c) -> ((a, b) -> c)
    uncurry f p = f (fst p) (snd p)
```

The functions above in the GHCi session. The composition examples

```
incNegate :: Int -> Int
incNegate x = negate (x + 1)

incNegate x = negate $ x + 1

incNegate x = (negate . (+1)) x

incNegate x = negate . (+1) $ x

incNegate x = negate . (+1)
```

The functions above in the GHCi session. curry and uncurry

```
Prelude> uncurry (+) (3,4)
Prelude> curry fst 3 4
Prelude> curry snd 3 4
Prelude> curry id 3 4
(3,4)
Prelude> uncurry const (3,4)
Prelude> uncurry (flip const) (3,4)
```

The functions above in the GHCi session. The flip example

```
show2 :: Int -> Int -> String
show2 x y = show x ++ " and " ++ show y

showSnd, showFst, showFst' :: Int -> String
showSnd = show2 1
showFst = flip show2 2
showFst' = ('show2' 2)
```

The functions above in the GHCi session. The flip example

```
show2 :: Int -> Int -> String
show2 x y = show x ++ " and " ++ show y

showSnd, showFst, showFst' :: Int -> String
showSnd = show2 1
showFst = flip show2 2
showFst' = ('show2' 2)
```

Prelude> showSnd 10
"1 and 10"
Prelude> showFst 10
"10 and 2"
Prelude> showFst' 42
"42 and 2"

Bye-bye boilerplate!

All these functions

```
changeTwiceBy :: (Int -> Int) -> Int -> Int
  changeTwiceBy operation value = operation (operation value)
  changeTwiceByBool :: (Bool -> Bool) -> Bool -> Bool
  changeTwiceByBool operation value = operation (operation value)
  changeTwiceByString :: (String -> String) -> String -> String
  changeTwiceByString operation value = operation (operation value)
might be replaced to the following ones:
  applyTwice :: (a -> a) -> a -> a
  applyTwice f a = f (f a)
  applyTwice' :: (a -> a) -> a -> a
  applyTwice' f a = f \cdot f  a
  applyTwice'' :: (a -> a) -> a -> a
  applyTwice" f = f \cdot f
```

HOF, polymorpism, and lists

HOF, polymorpism, and lists

```
1 map :: (a -> b) -> [a] -> [b]
3 filter :: (a -> Bool) -> [a] -> [a]
4 zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
6 length :: [a] -> Int
```

We discuss their implementations closely on the next seminar. Here we just take a look at their behaviour.

The composition examples + list functions

```
foo, bar :: [Int] -> Int
foo patak =
length $ filter odd $
map (div 2) $ filter even $ map (div 7) patak

bar =
length . filter odd .
map (div 2) . filter even . map (div 7)

zip :: [a] -> [b] -> [(a, b)]
zip = zipWith (,)
```

The composition examples + list functions

```
stringsTransform :: [String] -> [String]
stringsTransform | = map (\s -> map toUpper s) (filter (\s -> length s == 5) |)

stringsTransform | = map (\s -> map toUpper s) $ filter (\s -> length s == 5) |

stringsTransform | = map (map toUpper) $ filter ((== 5) . length) |

stringsTransform = map (map toUpper) . filter ((== 5) . length)
```

Bounded polymorphism and type classes

The idea of bounded (ad hoc) polymorphism is that one has a general interface with instances for each concrete data type.

Bounded polymorphism and type classes

The idea of bounded (ad hoc) polymorphism is that one has a general interface with instances for each concrete data type.

```
Prelude> 9
Prelude> 9 :: Int
Prelude> 9 :: Integer
Prelude> 9 :: Float
9.0
Preludes 9 :: Double
9.0
Prelude> 9 :: Rational
9 % 1
Preludes 9 :: Char
<interactive>:7:1: error:
   • No instance for (Num Char) arising from the literal '9'
   • In the expression: 9 :: Char
     In an equation for 'it': it = 9:: Char
```

• Let us take a look a the following function

```
elem :: a \rightarrow [a] \rightarrow Bool
```

$$elem [] = False$$

elem
$$\times$$
 (y:ys) = x == y || elem x ys

• Let us take a look a the following function

```
elem :: a \rightarrow [a] \rightarrow Bool
```

- elem [] = False
- elem \times (y:ys) = x == y || elem x ys
- Is a type a arbitrary?

• Let us take a look a the following function

```
elem :: a \rightarrow [a] \rightarrow Bool
```

- $elem _[] = False$
- elem \times (y:ys) = \times == y || elem \times ys
- Is a type a arbitrary? Yes and no. a is an arbitrary type for which equality is defined.

As we observed, type variables in polymorphic function are bounded via universal quantifier. In ad hoc polymorphism, type variables are also bounded via \forall but with the additional condition. Such a quantification is called bounded.

- elem :: forall a. Eq a => a -> [a] -> Bool
- elem [] = False
- elem x (y:ys) = x == y || elem x ys

The notion of a type class

• A type class is a collection of functions with type signatures with a common type parameter. The example given:

```
class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
```

• A type class name introduce a constraint called *context*:

```
elem :: Eq a => a -> [a] -> Bool
elem _ [] = False
elem \times (y:ys) = \times == y || elem \times ys
```

The notion of a type class

 A type class is a collection of functions with type signatures with a common type parameter. The example given:

```
class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
```

A type class name introduce a constraint called context:

```
elem :: Eq a => a -> [a] -> Bool
elem _ [] = False
elem x (y:ys) = x == y || elem x ys
```

• The definition above without a context yields a type error:

```
<interactive>:6:20: error:
    No instance for (Eq a) arising from a use of '=='
    Possible fix:
    add (Eq a) to the context of
        the type signature for:
        elem' :: forall a. a -> [a] -> Bool
    In the first argument of '(|||)', namely 'x == y'
    In the expression: x == y || elem x ys
    In an equation for 'elem'': elem' x (y : ys) = x == y || elem x ys
```

4□→ 4□→ 4□→ **4**□→ **3 9**00

Instance declarations

A given data type a has the *instance* of a type class if every function of that class is implemented for a. The example:

```
instance Eq Bool where
True == True = True
False == False = True
== = False

x /= y = neg (x == y)
```

Polymorphism + instance declarations

A type parameter in an instance declaration might be polymorphic itself:

• Without the context Eq a =>, this definition yields type error since we don't know how to perform equality comparison of element from a

Some the Eq instances

- The Eq type class has the following instances (some of them)
 - instance Eq a = > Eq [a]
 - ² instance Eq Ordering
 - 3 instance Eq Int
 - instance Eq Float
 - 5 instance Eq Double
 - 6 instance Eq Char
- 7 instance Eq Bool
- See the standard library source code to take a look at the instances implementation.

The Show type class

The Show type class allows one to represent a value as a string:

```
class Show a where
showsPrec :: Int -> a -> ShowS
show :: a -> String
showList :: [a] -> ShowS
{-# MINIMAL showsPrec | show #-}
```

• One needs to have a Show instance to display a value of a given type on a console.

Some of the Show instances

Here are some of the Show instances:

- instance Show Integer
- instance Show Int
- 3 instance Show Char
- 4 instance Show Bool
- instance (Show a, Show b) => Show (a, b)

Ordering. Motivation

• Let us take a look at the following quicksort function:

```
quicksort :: [a] \rightarrow [a]
quicksort [] = []
quicksort (x:xs) = quicksort small ++ (x : quicksort large)
where
small = [y | y <- xs, y <= x]
large = [y | y <- xs, y > x]
```

Ordering. Motivation

• Let us take a look at the following quicksort function:

```
quicksort :: [a] \rightarrow [a]
quicksort [] = []
quicksort (x:xs) = quicksort small ++ (x : quicksort large)
where
small = [y | y \leftarrow xs, xs, y \leftarrow xs, xs, y \leftarrow xs, xs, x \leftarrow xs, xs, x \leftarrow xs, xs, x \leftarrow xs, xs, x \leftarrow xs,
```

 Here we have the same story as in the case of equality. A type a is an arbitrary type for which comparison is defined. The definition of quicksort as above is wrong. There exists a type element of which are incomparable, complex numbers, e.g.

The Ord type class

The full definition of Ord is the following one:

```
class Eq a = > Ord a where
       compare :: a \rightarrow a \rightarrow Ordering
       (<), (<=), (>), (>=) :: a -> a -> Bool
       \max, \min :: a -> a -> a
       compare x y = if x == y then EQ
                 else if \times \le y then LT
                 else GT
       x \le y = \text{case compare } x y \text{ of } \{ GT -> \text{False}; -> \text{True } \}
10
11
       \max x y = if x \le y then y else x
12
13
       {-# MINIMAL compare | (<=) #-}
14
```

Some of the Ord instances

- The Ord instances
 - instance Ord Int
 - 2 instance Ord Float
 - 3 instance Ord Double
 - instance Ord Char
 - instance Ord Bool

The Num type class

- Num is a type class with the general interface of usual arithmetical operations.
- class Num a where
- (+), (-), (*) :: a -> a -> a
- \mathbf{negate} , \mathbf{abs} , \mathbf{signum} :: \mathbf{a} -> \mathbf{a}
- fromInteger :: Integer -> a
- $\{-\#$ MINIMAL (+), (*), abs, signum, fromInteger, (negate $\mid (-) \mid \# \}$

The Num type class

• Num is a type class with the general interface of usual arithmetical operations.

```
class Num a where
(+), (-), (*) :: a -> a -> a
negate, abs, signum :: a -> a
fromInteger :: Integer -> a
{-# MINIMAL (+), (*), abs, signum, fromInteger, (negate | (-)) #-}
```

• The instances of Num form a collection of numerical data types in Haskell

The Num type class

Num is a type class with the general interface of usual arithmetical operations.

```
class Num a where
(+), (-), (*) :: a -> a -> a
negate, abs, signum :: a -> a
fromInteger :: Integer -> a
\{-\# MINIMAL (+), (*), abs, signum, fromInteger, (negate | (-)) \#-\}
```

- The instances of Num form a collection of numerical data types in Haskell
- Note that we don't require the context Ord a since the set complex numbers is an
 instance of Num, but we don't have the instance Ord Complex, as you know.

Some of the Num instances

- The examples of Num instances are:
 - instance Num Integer
 - instance Num Int
 - 3 instance Num Float
 - 4 instance Num Double

The Enum and Bounded type classes

• The Enum is type class for type for which one may define an explicit enumeration.

```
class Enum a where
succ, pred :: a -> a
toEnum :: Int -> a
fromEnum :: a -> Int

enumFrom :: a -> [a] -- [n...]
enumFromThen :: a -> a -> [a] -- [n.m..]
enumFromTo :: a -> a -> [a] -- [n.m]
enumFromThenTo :: a -> a -> [a] -- [n,m..p]

-# MINIMAL toEnum, fromEnum #-}
```

 The Bounded type class is a type class for bounded types, i.e., types with minimal and maximal bounds

Some of the Enum instances

- The instances are the following ones:
 - instance Enum Integer
 - instance Enum Int
 - 3 instance Enum Char
 - 4 instance Enum Bool
 - 5 instance Enum Float
 - 6 instance Enum Double

Some of the Bounded instances

- The examples of bounded data types
 - instance Bounded Int
 - 2 instance Bounded Char
 - instance Bounded Bool

The Fractional type class

The Fractional type class is a general interface for numerical division

```
class Num a => Fractional a where

(/) :: a -> a -> a

recip :: a -> a

fromRational :: Rational -> a

{-# MINIMAL fromRational, (recip | (/)) #-}
```

- It is clear that such a type should be a numerical one. Thus, we require the Num a
 restriction.
- The Fractional instances:
 - instance Fractional Float
- 2 instance Fractional Double

Summary

On this seminar, we

- took a look at parametric polymorphism to see how to avoid boilerplate
- discussed type classes and ad hoc polymorphism
- studied such basic type classes as Eq, Show, etc

Summary

On this seminar, we

- took a look at parametric polymorphism to see how to avoid boilerplate
- discussed type classes and ad hoc polymorphism
- studied such basic type classes as Eq, Show, etc

On the next seminar, we

- delve into the variety of Haskell data types: algebraic data types, newtypes, type synonyms, etc
- feel the power of pattern matching
- discuss folds
- see how to enforce lazy evaluation in Haskell