CLAIMS

What is claimed is as follows:

17	comprises a colored material.
16 5.	The method of claim 1 wherein the non-black, optically transmissive material
15	radiation.
14	internal marking indicia provided by reflections of the electromagnetic
13	reading the internal marking indicia in response to images of the
□12 □	through the non-black optically transmissive material and
11	directing electromagnetic radiation upon the internal marking indicia
0 7 0 0 8 3. 0 0 9 0 10 4. 11 0 12	The method of claim 2 including the steps of:
7 '	is used for environmental protection and handling of the silicon devices.
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	The method of claim 1 wherein the non-black, optically transmissive material
5 7	comprises a non-black, transparent or semi-transparent material.
6 2.	The method of claim 1 wherein the non-black, optically transmissive material
. 5	marking location on the one exterior surface of the chip.
4	forming a non-black, optically transmissive material over at least the
3	exterior surface of the chip for identification of the chip, and
<i>v</i> 1/ ₂	forming internal marking indicia on a marking location upon an
() 1 1.	A method of marking a chip having surfaces comprising the following steps:

The method of claim 1 wherein the non-black, optically transmissive material prevents remarking indicia or identification marks on the device.

19

20

21

1 7	The method of claim 1 wherein the non-black, optically transmissive material					
2	prevents remarking silicon for a semiconductor package and the optically					
3	transmissive material is a transparent material.					
4 8	3. The method of claim 7 including the steps of:					
5	directing electromagnetic radiation upon the internal marking indicia					
6	through the non-black optically transmissive material, and					
7	reading the internal marking indicia in response to images of the					
8	internal marking indicia provided by reflections of the electromagnetic					
9	radiation.					
U U						
	9. A method of marking an electronic integrated circuit chip having surfaces					
11	comprising the following steps:					
⊕ 12	forming a semiconductor, integrated circuit chip having surfaces					
1 3	including a planar front surface, a planar back surface and edges of the					
13 14 15 16	chip between the planar surfaces with at least one electrical contact site on					
<u>4</u> 15	on a surface,					
□ 16	forming internal marking indicia upon an exterior marking portion of a					
17	surface of the chip for identification of the chip, and					
18	forming a non-black layer covering the exterior surface of the chip at					

whereby the indicia are visible through the non-black layer.

the indicia on the exterior marking surface of the chip,

least at the exterior marking portion thereof, the non-black layer being

composed, of a colored, optically transmissive material preventing remarking

1	10.	The method of claim 9 including the steps of:
2		directing electromagnetic radiation upon the internal marking indicia
3		through the non-black optically transmissive material and
4		reading the internal marking indicia in response to images of the
5		internal marking indicia provided by reflections of the electromagnetic
6		radiation.
7	11.	A method of marking a chip having surfaces comprising:
8		forming a non-black, colored material layer over at least an exterior
9		surface of the chip wherein the particular color indicates the identification
L O		of the chip.
		·
ļ 1	12.	A method of marking a chip having surfaces domprising:
L 2		forming internal marking indicia on a marking location upon an exterior
L3		surface of the chip, and
L 4		forming a non-black, optically transparent material colored with a
L 5		particular color over at least the marking location on that exterior surface of
L 6		the chip wherein the particular color together with the marking indicia
L 7		represents identification of the chip.
18	13.	A chip comprising:
19		the chip having exterior surfaces,
20		internal marking indicia formed on a marking location upon an exterior
21		surface of the chip for identification of the chip, and
22		a non-black, optically transmissive material formed over at least the
23		marking location on the one exterior surface of the chip.

- The device of claim 13 wherein the non-black, bptically transmissive material
- 2 comprises a non-black, transparent or semi-transparent material.
- 3 15. The device of claim 13 wherein the non-black, optically transmissive material
- 4 comprises a colored material.
- The device of claim 13 wherein the non-black, optically transmissive material 5 16.
- 6 prevents remarking indicia or identification marks on the device.
- 7 17. The device of claim 13 wherein the non-black, optically transmissive material
- ₫ 8 prevents remarking silicon for a semiconductor package and the optically
- Ū U 9 transmissive material is a transparent material.
- 18. The device of claim 13 wherein:
 - illumination means are provided for directing electromagnetic radiation
- ___11 ₩12 upon the internal marking indicia through the non-black optically
- ^Ш13 transmissive material and

Ų

- □ 14 reading means are provided for reading the internal marking indicia in
 - 15 response to images of the internal marking indicia provided by reflections of
 - the electromagnetic radiation. 16
 - The device of claim/13 wherein the non-black, optically transmissive material 17 19.
 - 18 is used for environmental protection and handling of the silicon devices.

1	20.	The device of claim 14 wherein:					
2		illumination means are provided for directing electromagnetic radiation					
3		upon the internal marking indicia through the non-black optically					
4		transmissive material and					
5		reading means are provided for reading the internal marking indicia in response to images of the internal marking indicia provided by reflections of					
6							
7		the electromagnetic radiation.					
8	21.	The device of claim 17 wherein:					
9		illumination means are provided for directing electromagnetic radiation					
		upon the internal marking indicia through the non-black optically					
Մ 11		transmissive material and					
∭ ∰12		reading means are provided for reading the internal marking indicia in					
© □13		response to images of the internal marking indicia provided by reflections of					
		the electromagnetic radiation.					
14 U H							
₩15	22.	An electronic integrated circuit chip comprising:					
□ □16		a semiconductor, integrated circuit chip having surfaces including a					
17		planar front surface, a planar back surface and edges of the chip between					
18		the planar surfaces with at least one electrical contact site on a surface,					
19		indicia marked upon an exterior marking portion of a surface of the					
20		chip for identification of the chip,					
21		a non-black layer covering the exterior surface of the chip at least at					
22		the exterior marking portion thereof, the non-black layer being composed,					
23		of a colored, optically transmissive material preventing remarking the indicia					
24		on the exterior marking surface of the chip, and					
25		the indicia being visible through the non-black layer.					

1 23. The device of claim 22 wherei	1	The	23.	device	\mathbf{of}	claim	22	where	ir	1	:
-------------------------------------	---	-----	-----	--------	---------------	-------	----	-------	----	---	---

- 2 illumination means are provided for directing electromagnetic radiation
- 3 upon the internal marking indicia through the non-black optically
- 4 transmissive material and
- 5 reading means are provided for reading the internal marking indicia in
- 6 response to images of the internal marking indicia provided by reflections of
- 7 the electromagnetic radiation.
- 8 24. A chip with a non-black, colored material layer over at least an exterior
- 9 surface the chip wherein the particular color indicates the identification
- of the chip.

17

- 1 25. A chip comprising:
 - internal marking indicia formed on a marking location upon an exterior surface of the chip, and
 - a non-black, optically transparent material colored with a particular color formed over at least the marking location on that exterior surface of the chip wherein the particular color together with the marking indicia represents identification of the chip.