Westfälische Wilhelms-Universität Münster Übungen zur Vorlesung "Datenstrukturen und Algorithmen" im SoSe 2017

Prof. Dr. Klaus Hinrichs Aaron Scherzinger Blatt 1

Abgabe im Learnweb bis zum 04.05.2017 um 10 Uhr

Aufgabe 1: (3 Punkte) Beweisen Sie, dass es genau 16 Boolesche Funktionen f von der Form $f(x,y): \{0,1\} \times \{0,1\} \to \{0,1\}$ gibt.

Aufgabe 2: (10 Punkte) Beweisen Sie, dass jede der beiden Booleschen Funktionen nand und nor universell im folgenden Sinne ist: Jede Boolesche Funktion $f(x,y):\{0,1\}\times\{0,1\}\to\{0,1\}$ kann als geschachtelter Ausdruck, bestehend nur aus nand 's oder nur aus nor 's dargestellt werden.

Aufgabe 3: (8 Punkte) Beweisen Sie, dass *jede* Strategie für das Splitten im logarithmischen Bitsummen-Algorithmus (also nicht nur die Halbierung) n-1 Additionen erfordert.

Aufgabe 4: (10+4=14 Punkte) Das kleinste gemeinsame Vielfache lcm(a,b) (least common multiple) zweier Zahlen $a,b \in \mathbb{N}_{>0}$ ist die kleinste Zahl $c \in \mathbb{N}_{>0}$, die ein jeweils ganzzahliges Vielfaches sowohl von a als auch von b ist. Der größte gemeinsame Teiler gcd(a,b) (greatest common divisor) ist die größte Zahl $d \in \mathbb{N}_{>0}$, die sowohl a als auch b ohne Rest teilt, d.h. für die gilt: $a/d \in \mathbb{N}$ und $b/d \in \mathbb{N}$.

- (a) Beweisen Sie die Identität $lcm(a, b) = (a \cdot b)/gcd(a, b)$.
- (b) Schreiben Sie in JAVA eine Methode, die für gegebene Zahlen $a, b \in \mathbb{N}_{>0}$ ihr kleinstes gemeinsames Vielfaches bestimmt.

Hinweis: Betrachten Sie für den ersten Aufgabenteil die *Multimengen-Darstellung* der Primfaktorenzerlegung von a bzw. b. Eine Multimenge kann im Gegensatz zu einer Menge auch Duplikate von Elementen enthalten. Die Primfaktorenzerlegung für $18 = 2 \cdot 3 \cdot 3$ hat die Multimengen-Darstellung $PD_m(18) = \{2, 3, 3\}$, die Mengen-Darstellung dieser Primfaktorenzerlegung ist jedoch $PD(18) = \{2, 3\}$.