

Física Computacional

Escuela de Física

M.R.Fulla¹

 $^{\rm I}$ Escuela de Física, Universidad Nacional de Colombia Sede Medellín

marlonfulla@yahoo.com- Oficina:21-408

https://sites.google.com/view/fiscomunalmed/

October 24, 2023

Derivada por Método de Tres Puntos

$$(x_{-1} = x - h, x_0 = x, x_1 = x + h)$$
:

$$f'(x) = \frac{f_1 - f_{-1}}{2h} = \frac{f(x+h) - f(x-h)}{2h} \tag{1}$$

Derivada por Método de dos Puntos $(x_{-1} = x - h, x_0 = x, y x_0 = x, x_1 = x + h)$:

$$f'(x) = \frac{f_1 - f_0}{h} = \frac{f(x+h) - f(x)}{h} \quad Adelante \tag{2}$$

$$f'(x) = \frac{f_0 - f_{-1}}{h} = \frac{f(x) - f(x - h)}{h} \quad Atr\'{a}s$$
 (3)

Derivada por el Método de 5 puntos:

$$f'(x) = \frac{1}{12h} [f_{-2} - 8f_{-1} + 8f_1 - f_2] = \frac{1}{12h} [f(x - 2h) - 8f(x - h) + 8f(x + h) - f(x + 2h)]$$
(4)

Derivada de Segundo Orden Por Método de 3 Puntos

$$f''(x) = \frac{f_1 - 2f_0 + f_{-1}}{h^2} = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$
 (5)

Otras fórmulas para derivadas de primer, segundo y tercer orden por los métodos de 4 y 5 puntos:

4 Puntos		5 Puntos		
hf'	$\pm \frac{1}{6}(-2f_{\mp 1} - 3f_0 + 6f_{\pm 1} - f_{\pm 2})$	$\frac{1}{12}(f_{-2}-8f_{-1}+8f_1-f_2)$		
h^2f''	$f_{-1} - 2f_0 + f_1$	$\frac{1}{12}(-f_{-2}+16f_{-1}-30f_0+16f_1-f_2)$		
$h^3f^{\prime\prime\prime}$	$\pm(-f_{\mp 1}+3f_0-3f_{\pm 1}+f_{\pm 2})$	$\frac{1}{2}(-f_{-2}+2f_{-1}-2f_1+f_2)$		

Nota: para valores de x cualquiera, realizar la traslación

Ejemplo <math>f(x) = sen(x)


```
PROGRAM diff
                                               REAL FUNCTION f(x)
IMPLICIT NONE
                                               IMPLICIT NONE
REAL, PARAMETER::PI=4.0*atan(1.0)
                                               REAL::x
REAL::xini,xend,xstep,x,h,f,fp3p
                                               f=sin(x)
                                               END FUNCTION
INTEGER PARAMETER::nx=200
                                               REAL FUNCTION fp3p(x,h)
h=0.01
                                               IMPLICIT NONE
xini=-pi
                                               REAL::x,h,f
xend=pi
                                               fp3p=(f(x+h)-f(x-h))/(2*h)
xstep=(xend-xini)/nx
                                               END FUNCTION
OPEN(UNIT=1,FILE="der.txt")
DO i=1,nx
                                               REAL FUNCTION f2p3p(x,h)
x=xini+xstep*(i-1)
                                               IMPLICIT NONE
WRITE(1,*) x, f(x), fp3p(x,h), f2p3p(x,h)
                                               REAL::x,h,f
                                               f2p3p=(f(x+h)-2*f(x)+f(x-h))/h**2
WRITE(*,*) "Programa Ejecutado..."
                                               END FUNCTION
END PROGRAM
```



```
PROGRAM diff
                                               REAL FUNCTION f(x)
IMPLICIT NONE
                                               TMDI TCTT NONE
REAL, PARAMETER::PI=4.0*
                            (1.0)
REAL::xini,xend,xstep,x,h,f,fp3p
                                               f=sin(x)
REAL::hini,hend,hstep
                                               END FUNCTION
INTEGER PARAMETER::nx=100.nh=10
                                               REAL FUNCTION fp3p(x,h)
REAL, DIMENSION(nx, nh+1)::res
                                               TMPLTCTT NONE
                                               REAL::x,h,f
hini=0.02
                                               fp3p=(f(x+h)-f(x-h))/(2*h)
hend=0.2
                                               END FUNCTION
hstep=(hend-hini)/nh
xini=-pi
xend=pi
xstep=(xend-xini)/nx
OPEN(UNIT=1.FILE="der.txt")
DO j=2,nh+1
h=hini+(j-1)*hstep
DO i=1,nx
x=xini+xstep*(i-1)
res(i,1)=x
res(i,j)=fp3p(x,h)
DO i=1.nx
WRITE(1,2)(res(i,j),j=1,nh+1)
2 FORMAT(11F12.5)
WRITE(*,*) "Programa Ejecutado..."
END PROGRAM
```


Otro ejemplo: cálculo de $f'(1) = \frac{d}{dx}(sen(x))|_{x=1}$ (f(x) = sen(x))

Otro ejemplo: cálculo de $f'(1) = \frac{d}{dx}(sen(x))|_{x=1}$ $(f(x) = \overline{sen(x)})$

Otro ejemplo: cálculo de $f'(1) = \frac{d}{dx}(sen(x))|_{x=1}$ (f(x) = sen(x))

Otro ejemplo: cálculo de $f'(0) = \frac{d}{dx}(sen(x))|_{x=0}$ (f(x) = sen(x))

	A(X)	B(Y)	C(Y)	D(Y)	E(Y)
Long Name					
Units					
Comments		fp2patr	fp2pade	fp3p	fp5p
Sparklines				_	-
					/
1	1E-5	- 1	- 1	1	- 1
2	5.0995E-4	- 1	- 1	1	- 1
3	0.00101	1	1	1	1
4	0.00151	- 1	- 1	- 1	- 1
5	0.00201	- 1	1	1	1
6	0.00251	- 1	1	1	1
7	0.00301	- 1	- 1	- 1	1
8	0.00351	- 1	1	1	1
9	0.00401	- 1	1	- 1	1
10	0.00451	- 1	1	1	- 1
11	0.00501	1	1	1	1
12	0.00551	0.99999	0.99999	0.99999	- 1
13	0.00601	0.99999	0.99999	0.99999	1
14	0.00651	0.99999	0.99999	0.99999	1
15	0.00701	0.99999	0.99999	0.99999	- 1
16	0.00751	0.99999	0.99999	0.99999	1
17	0.00801	0.99999	0.99999	0.99999	1
18	0.00851	0.99999	0.99999	0.99999	1
19	0.00901	0.99999	0.99999	0.99999	1
20	0.00951	0.99998	0.99998	0.99998	- 1
21	0.01001	0.99998	0.99998	0.99998	1
22	0.01051	0.99998	0.99998	0.99998	1
23	0.01101	0.99998	0.99998	0.99998	1
24	0.01151	0.99998	0.99998	0.99998	1
25	0.01201	0.99998	0.99998	0.99998	- 1
26	0.01251	0.99997	0.99997	0.99997	- 1
27	0.01301	0.99997	0.99997	0.99997	1
28	0.01351	0.99997	0.99997	0.99997	- 1

Problema: resolver la integral $\int_a^b f(x)dx$

Podemos crear una red de puntos con un número par de espacios:

$$N = \frac{b - a}{h} \tag{6}$$

Podemos aproximar a f en el intervalo [-h,h] e integrar \overline{y} posteriormente extender el resultado así:

$$\int_{a}^{b} f(x)dx = \int_{a}^{a+2h} f(x)dx + \int_{a+2h}^{a+4h} f(x)dx + \dots + \int_{b-2h}^{b} f(x)dx$$
(7)

La aproximación más simple considera los intervalos [-h,0] y [0,h] separadamente y asume que f es lineal:

Esto es expandir f en series de Taylor hasta la derivada de primer orden $(f = f_0 + f'x)$:

$$\int_{-h}^{h} f(x)dx = \int_{-h}^{0} (f_0 + f'x)dx + \int_{0}^{h} (f_0 + f'x)dx$$

usando (2) y (3):

$$\int_{-h}^{h} f(x)dx = \left[f_0 x + \frac{f_0 - f_{-1}}{h} \frac{x^2}{2} \right]_{-h}^{0} + \left[f_0 x + \frac{f_1 - f_0}{h} \frac{x^2}{2} \right]_{0}^{h}$$

de donde:

UNIVERSIDAD NACIONAL DE COLOMBIA

Regla Trapezoidal

$$\int_{h}^{h} f(x)dx = \frac{h}{2}[f_{-1} + 2f_0 + f_1]$$
 (8)

Expandiendo:

$$\int_{a}^{b} f(x)dx = \frac{h}{2}[f(a) + 2f(a+h) + f(a+2h)] + \frac{h}{2}[f(a+2h) + 2f(a+3h) + f(a+4h)] + \dots + \frac{h}{2}[f(b-2h) + 2f(b-h) + f(b)]$$

$$= \frac{h}{2}[f(a) + f(b) + 2\sum_{i=1}^{N-1} f(a+ih)]$$

Una mejor aproximación \rightarrow expansión de Taylor hasta la derivada de segundo orden:

$$\int_{-h}^{h} f(x)dx = \int_{-h}^{h} (f_0 + f'x + f''\frac{x^2}{2})dx$$
 (9)

Usando las ecuaciones (1) y (5)

$$\int_{-h}^{h} f(x)dx = \int_{-h}^{h} (f_0 + \frac{f_1 - f_{-1}}{2h}x + \frac{f_1 - 2f_0 + f_{-1}}{h^2}\frac{x^2}{2})dx \quad (10)$$

se obtiene la Regla de Simpson

$$\int_{-h}^{h} f(x)dx = \frac{h}{3}[f_{-1} + 4f_0 + f_1]$$
 (11)

Extendiendo el resultado:

$$\int_{a}^{b} f(x)dx = \frac{h}{3}[f(a) + 4f(a+h) + f(a+2h)] + \frac{h}{3}[f(a+2h) + 4f(a+3h) + f(a+4h)] + \dots + \frac{h}{3}[f(b-2h) + 4f(b-h) + f(b)]$$

$$= \frac{h}{3}[f(a) + f(b) + 2\sum_{i=1}^{N/2-1} f(a+2ih) + 4\sum_{i=1}^{N/2} f(a+(2i-1)h)]$$
(12)

 $\int_a^b f(x)dx$ se puede aproximar a:

$$= \frac{h}{2}[f(a) + f(b) + 2\sum_{i=1}^{N-1} f(a+ih)]$$

(Regla trapezoidal)

$$= \frac{h}{3}[f(a) + f(b) + 2\sum_{i=1}^{N/2-1} f(a+2ih) + 4\sum_{i=1}^{N/2} f(a+(2i-1)h)]$$

(Regla de Simpson)

Cuadratura Adaptativa:

 $\int_a^b f(x)dx$ se aproxima utilizando reglas de cuadratura estática en subintervalos refinados adaptativamente de la región de integración.

Generalmente, los algoritmos adaptativos son tan eficientes y eficaces como los algoritmos tradicionales para integrandos "bien comportados", pero también son eficaces para integrandos "mal comportados" en los que los algoritmos tradicionales pueden fallar.

Actividad: escribir un programa que realice una comparación de los métodos del trapecio y Simpson para realizar la integral:

$$\int_0^1 e^x dx$$

para ello, evalue el resultado de las integrales numéricas como una función del número de intervalos y realice un gráfico. Use el valor exacto como valor de referencia.