Содержание

1 Компоненты	
1.1 cmp_add_input_stream	4
1.2 cmp add output stream	5
1.3 cmp auth	6
1.3.1 Платформы	
1.3.2 Конфигурация	
1.3.2.1 Config	
•	
1.4 cmp_derive	
1.5 cmp_esp_adc	
1.6 cmp_esp_gpio	
1.6.1 Конфигурация	9
1.6.1.1 Config	9
1.7 cmp esp mqtt client	10
1.7.1 Платформы	
1.8 cmp esp nvs	
1.9 cmp_esp_nvs	
1.10 cmp_esp_wiii	
1.11 cmp_http_client	
1.12 cmp_http_client_wasm	
1.13 cmp_http_server	16
1.14 cmp_http_server_esp	17
1.15 cmp_influxdb	18
1.16 cmp inject periodic	19
1.17 cmp leptos	
1.17.2 Конфигурация	
1.17.2.1 Config	
1.17.3 Создание проекта	
1.17.3.1 .vscode/settings.json	
1.17.3.2 .zed/settings.json	
1.17.3.3 Tauri	
1.17.3.4 Tailwind	20
1.17.3.5 Material Theme	21
1.17.3.6 Iconify	
1.18 cmp plc	
1.19 cmp_telegram	
1.19.1 Платформы	
• •	
1.19.2 Конфигурация	
1.19.2.1 Config	
1.20 cmp_webstorage	
1.20.1 Платформы	25
1.20.2 Конфигурация	25
1.20.2.1 Config	25
2 Исполнитель	27
2.1 WASM (Leptos)	28
3 Внешние сервисы	
3.1 EMOX	
3.1.1 docker	
3.2 Go2rtc	
3.2.1 docker	
$3.2.2$./config_services/go2rtc/go2rtc.yaml	31
3.3 Grafana	32
3.3.1 docker	32
3.3.2 Файлы конфигурации	32
3.3.2.1 ./config_services/grafana/datasources/	
3.3.2.2 ./config_services/grafana/dashboards/	
3.4 InfluxDB (v2)	
3.4.1 docker	
3.5 InfluxDB (v3)	
3.6 Loki	
3.6.1 docker	
3.7 Portainer	37
3.7.1 docker	37
3.8 Redis	38
3.8.1 docker	

3.8.2 Файлы конфигурации	38
3.8.2.1 redis.conf	38
3.9 Rust	39
3.9.1 docker (бекенд)	39
3.9.1 docker (бекенд)	39
3.10 Sentryshot	40
3.10.1 docker	40
3.10.2 Файлы конфигурации	40
3.10.2.1 ./sentryshot/configs/sentryshot.toml	40
3.10.2.2 ./sentryshot/configs/monitors/	41
3.11 SurrealDB	
3.11.1 docker	42
3.12 SystemD	43
3.13 TimescaleDB	44
3.13.1 docker	44
3.13.2 postgresql.conf	44
3.13.3 pg_hba.conf	44
3.13.4 init.sql	

1 Компоненты

Клиентское подключение:

- [cmp_http_client_wasm](./cmp_http_client_wasm.md)
- [cmp_http_client](./cmp_http_client.md)
- [cmp_modbus_client](./cmp_modbus_client.md)
- [cmp_websocket_client_wasm](./cmp_websocket_client_wasm.md)
- [cmp_websocket_client](./cmp_websocket_client.md)

Сервера:

- [cmp_http_server_esp](./cmp_http_server_esp.md)
- [cmp_http_server](./cmp_http_server.md)
- [cmp_websocket_server](./cmp_websocket_server.md)

Брокеры сообщений:

- [cmp_esp_mqtt_client](./cmp_esp_mqtt_client.md)
- [cmp_mqtt_client](./cmp_mqtt_client.md)
- [cmp_redis_client](./cmp_redis_client.md)

Интерфейс пользователя:

- [cmp_leptos](./cmp_leptos.md)
- [cmp_slint](./cmp_slint.md)

Авторизация:

• [cmp_auth](./cmp_auth.md)

Сохранение данных:

- [cmp_esp_nvs](./cmp_esp_nvs.md)
- [cmp_influxdb](./cmp_influxdb.md)
- [cmp_surrealdb](./cmp_surrealdb.md)
- [cmp_timescaledb](./cmp_timescaledb.md)
- [cmp_webstorage](./cmp_webstorage.md)

Взаимодействие с аппаратной частью

- [cmp_esp_adc](./cmp_esp_adc.md)
- [cmp_esp_gpio](./cmp_esp_gpio.md)
- [cmp_esp_wifi](./cmp_esp_wifi.md)
- [cmp_raspberrypi_gpio](./cmp_raspberrypi_gpio.md)

Логика исполнения

• [cmp_plc](./cmp_plc.md)

Систеная информация

• [cmp_system_info](./cmp_system_info.md)

Служебные компоненты:

- [cmp_add_input_stream](./cmp_add_input_stream.md)
- [cmp_add_output_stream](./cmp_add_output_stream.md)
- [cmp_derive](./cmp_derive.md)
- [cmp_external_fn_process](./cmp_external_fn_process.md)
- [cmp_inject_periodic](./cmp_inject_periodic.md)
- [cmp_logger](./cmp_logger.md)

1.1 cmp_add_input_stream

1.2 cmp_add_output_stream

1.3 cmp_auth

Компонент авторизации пользователей

1.3.1 Платформы

target triple	Поддержка
aarch64-linux-android	-
aarch64-unknown-linux-gnu	+
riscv32imc-esp-espidf	-
x86_64-linux-android	-
x86_64-unknown-linux-gnu	+
wasm32-unknown-unknown	-

1.3.2 Конфигурация

1.3.2.1 Config

```
secret_keyStringСекретный ключ для валидации токеновstoreХранилище данных доступаЛокальное сохранение:store: cmp_auth::ConfigStore::Local(vec![cmp_auth::ConfigStoreLocalItem { login: "admin".into(), password: "admin".into(), role: AuthPermissions::Admin, }]),
```

1.4 cmp_derive

1.5 cmp_esp_adc

1.6 cmp_esp_gpio

Компонент для работы с входами и выходами GPIO микроконтроллера ESP

target triple	Поддержка
aarch64-linux-android	-
aarch64-unknown-linux-gnu	-
riscv32imc-esp-espidf	+
x86_64-linux-android	-
x86_64-unknown-linux-gnu	-
wasm32-unknown-unknown	-

1.6.1 Конфигурация

1.6.1.1 Config

1.7 cmp_esp_mqtt_client
Клиент MQTT микроконтроллера ESP32

1.7.1 Платформы

target triple	Поддержка
aarch64-linux-android	-
aarch64-unknown-linux-gnu	-
riscv32imc-esp-espidf	+
x86_64-linux-android	-
x86_64-unknown-linux-gnu	-
wasm32-unknown-unknown	-

1.10 cmp_external_fn_process

1.11 cmp_http_client

1.12 cmp_http_client_wasm

1.13 cmp_http_server

1.14 cmp_http_server_esp

1.15 cmp_influxdb

1.16 cmp_inject_periodic

1.17 cmp_leptos

Компонент для интеграции веб-приложения на основе фреймворка [Leptos](https://leptos.dev).

1.17.1 Платформы

target triple	Поддержка
aarch64-linux-android	-
aarch64-unknown-linux-gnu	-
riscv32imc-esp-espidf	-
x86_64-linux-android	-
x86_64-unknown-linux-gnu	-
wasm32-unknown-unknown	+

1.17.2 Конфигурация

1.17.2.1 Config

body_component		Корневой компонент для монтирования
<pre>body_component: view! { <app></app> }</pre>		
hostname		Имя хоста, на котором развернуто веб-приложение

1.17.3 Создание проекта

@tailwind utilities;

```
1.17.3.1 .vscode/settings.json
  "rust-analyzer.cargo.target": "wasm32-unknown-unknown"
1.17.3.2 .zed/settings.json
{
  "lsp": {
    "rust-analyzer": {
      "initialization_options": {
       "check": {
          "command": "clippy"
       },
        "cargo": {
          "target": "wasm32-unknown-unknown"
 }
1.17.3.3 Tauri
cargo create-tauri-app --rc
# добавить поддержку Android
cargo tauri android init
1.17.3.4 Tailwind
Установить:
npm install -D tailwindcss
npm install -D @tailwindcss/forms
npx tailwindcss init
Создать файл tailwind.config.js:
/** @type {import('tailwindcss').Config} */
module.exports = {
 content: {
   files: [
     "*.html",
    "./src/**/*.rs",
    "../../rsiot/src/components/cmp_leptos/components/**/*.rs"
   ],
 },
 plugins: [require('@tailwindcss/forms'),],
Создать файл input.css в корне проекта:
@tailwind base;
@tailwind components;
```

```
Добавить в index.html:
```

1.17.3.5 Material Theme

Создаем тему в <u>Material Theme Builder</u>. Скачиваем набор файлов css, распаковываем в папку material-theme. В начале файла input.css прописываем:

```
/* Material theme */
@import "./material-theme/dark.css";
@import "./material-theme/dark-hc.css";
@import "./material-theme/dark-mc.css";
@import "./material-theme/light.css";
@import "./material-theme/light-hc.css";
@import "./material-theme/light-mc.css";
Прописать секцию theme в tailwind.config.json:
module.exports = {
  content: {
    files: [...],
  plugins: [...],
  theme: {
    extend: {
      colors: {
        primary: "var(--md-sys-color-primary)",
        "surface-tint": "var(--md-sys-color-surface-tint)",
        "on-primary": "var(--md-sys-color-on-primary)",
        "primary-container": "var(--md-sys-color-primary-container)",
        "on-primary-container": "var(--md-sys-color-on-primary-container)",
        secondary: "var(--md-sys-color-secondary)",
        "on-secondary": "var(--md-sys-color-on-secondary)",
        "secondary-container": "var(--md-sys-color-secondary-container)",
        "on-secondary-container": "var(--md-sys-color-on-secondary-container)",
        tertiary: "var(--md-sys-color-tertiary)",
        "on-tertiary": "var(--md-sys-color-on-tertiary)",
        "tertiary-container": "var(--md-sys-color-tertiary-container)",
        "on-tertiary-container": "var(--md-sys-color-on-tertiary-container)",
        error: "var(--md-sys-color-error)",
        "on-error": "var(--md-sys-color-on-error)",
        "error-container": "var(--md-sys-color-error-container)",
        "on-error-container": "var(--md-sys-color-on-error-container)",
        background: "var(--md-sys-color-background)",
        "on-background": "var(--md-sys-color-on-background)",
        surface: "var(--md-sys-color-surface)",
        "on-surface": "var(--md-sys-color-on-surface)",
        "surface-variant": "var(--md-sys-color-surface-variant)",
        "on-surface-variant": "var(--md-sys-color-on-surface-variant)",
        outline: "var(--md-sys-color-outline)",
        "outline-variant": "var(--md-sys-color-outline-variant)",
        shadow: "var(--md-sys-color-shadow)",
        scrim: "var(--md-sys-color-scrim)",
        "inverse-surface": "var(--md-sys-color-inverse-surface)",
        "inverse-on-surface": "var(--md-sys-color-inverse-on-surface)",
        "inverse-primary": "var(--md-sys-color-inverse-primary)",
        "primary-fixed": "var(--md-sys-color-primary-fixed)",
        "on-primary-fixed": "var(--md-sys-color-on-primary-fixed)",
        "primary-fixed-dim": "var(--md-sys-color-primary-fixed-dim)",
        "on-primary-fixed-variant": "var(--md-sys-color-on-primary-fixed-variant)"
        "secondary-fixed": "var(--md-sys-color-secondary-fixed)",
        "on-secondary-fixed": "var(--md-sys-color-on-secondary-fixed)",
        "secondary-fixed-dim": "var(--md-sys-color-secondary-fixed-dim)",
        "on-secondary-fixed-variant": "var(--md-sys-color-on-secondary-fixed-variant)",
        "tertiary-fixed": "var(--md-sys-color-tertiary-fixed)",
        "on-tertiary-fixed": "var(--md-sys-color-on-tertiary-fixed)",
        "tertiary-fixed-dim": "var(--md-sys-color-tertiary-fixed-dim)",
        "on-tertiary-fixed-variant": "var(--md-sys-color-on-tertiary-fixed-variant)",
        "surface-dim": "var(--md-sys-color-surface-dim)",
        "surface-bright": "var(--md-sys-color-surface-bright)",
        "surface-container-lowest": "var(--md-sys-color-surface-container-lowest)",
        "surface-container-low": "var(--md-sys-color-surface-container-low)",
        "surface-container": "var(--md-sys-color-surface-container)",
        "surface-container-high": "var(--md-sys-color-surface-container-high)",
        "surface-container-highest": "var(--md-sys-color-surface-container-highest)",
```

```
"green-color": "var(--md-extended-color-green-color)",
        "green-on-color": "var(--md-extended-color-green-on-color)",
        "green-color-container": "var(--md-extended-color-green-color-container)",
        "green-on-color-container": "var (--md-extended-color-green-on-color-container)",
        "yellow-color": "var(--md-extended-color-yellow-color)",
        "yellow-on-color": "var(--md-extended-color-yellow-on-color)",
        "yellow-color-container": "var(--md-extended-color-yellow-color-container)",
        "yellow-on-color-container": "var(--md-extended-color-yellow-on-color-container)",
     },
    },
 },
Для выбора темы применяем класс к элементу html.body:
<body class="dark"></body>
Допустимые классы:

    dark-high-contrast

• dark-medium-contrast
```

- dark
- light-high-contrast
- light-medium-contrast
- light

Добавить в файл input.css:

```
:root {
  --md-ref-typeface-brand: "Roboto";
 --md-ref-typeface-plain: system-ui;
```

Material theme builder почему-то не экспортирует настройки шрифтов. Когда пофиксят - пересмотреть.

1.17.3.6 Iconify

```
npm i -D @iconify/tailwind
npm i -D @iconify/json
Добавить в файл tailwind.config.js:
const { addIconSelectors } = require("@iconify/tailwind");
module.exports = {
 plugins: [addIconSelectors(["mdi", "material-symbols"])],
```

Добавить в параметры addIconSelectors семейства иконок.

Далее в проекте иконки можно вставлять:

```
<span class="iconify material-symbols--menu-rounded h-5 w-5"></span>
```

1.18 cmp_plc

Шаблон конфигурации ПЛК:

```
use std::time::Duration;
use rsiot::{components::cmp_plc, message::Message};
pub fn config() -> cmp_plc::Config<Custom, fb_main::I, fb_main::Q, fb_main::S> {
    cmp_plc::Config {
        fn_cycle_init,
        fn_input,
        fn_output,
        fb_main: fb_main::FB::new(),
        period: Duration::from_millis(200),
        retention: None,
}
fn fn_cycle_init(input: &mut fb_main::I) {}
fn fn_input(input: &mut fb_main::I, msg: &Message<Custom>) {}
\begin{tabular}{ll} fn & fn_output(output: \&fb_main::Q) -> Vec<Message<Custom>> \{ \end{tabular} \label{fig:cutput}
    let msgs = vec![];
    msgs.into_iter()
         .map(|m| Message::new_custom(Custom::ExampleGroup(m)))
         .collect()
}
```

1.19 cmp_telegram

Компонент для рассылки сообщений через телеграм.

1.19.1 Платформы

target triple	Поддержка
aarch64-linux-android	-
aarch64-unknown-linux-gnu	+
riscv32imc-esp-espidf	-
x86_64-linux-android	-
x86_64-unknown-linux-gnu	+
wasm32-unknown-unknown	-

1.19.2 Конфигурация

1.19.2.1 Config

bot_token	String	Токен бота. Определяется при создании бота через BotFather
<pre>bot_token: "token".into(),</pre>		
chat_id	i64	Идентификатор чата, в который бот будет отправлять сообщения. Определить идентификатор можно разными способами. Один из способов - через телеграм бот <u>usinfbot</u> . Нужно переслать сообщение из канала в данный бот, в ответе будет идентификатор канала.
chat_id: -1002220119164,		

1.20 cmp_webstorage

Хранение и загрузка сообщений используя LocalStorage или SessionStorage браузера. Подробнее на MDN.

Используется модуль storage библиотеки gloo.

1.20.1 Платформы

target triple	Поддержка
aarch64-linux-android	1
aarch64-unknown-linux-gnu	-
riscv32imc-esp-espidf	-
x86_64-linux-android	-
x86_64-unknown-linux-gnu	-
wasm32-unknown-unknown	+

1.20.2 Конфигурация

1.20.2.1 Config

```
kind
               Вид хранилища - localstorage или sessionStorage
Тип - StorageKind
• LocalStorage - Сохраняет данные при перезапуске браузера
• SessionStorage - Сохраняет данные. При перезапуске браузера данные теряются
kind: cmp_webstorage::ConfigKind::SessionStorage,
               Сохранение сообщений в хранилище
fn_input
T\text{M}\Pi - type \text{TFnInput}<\text{TMsg}> = \text{fn}(\text{Message}<\text{TMsg}>) -> \text{Result}<\text{Option}<\text{ConfigWebstorageItem}>, anyhow::\text{Error}>;
Сохранять все сообщения:
fn_input: |msg| {
    let key = msg.key.clone();
    let value = msg.serialize()?;
    let item = ConfigWebstorageItem { key, value };
    Ok(Some(item))
},
Сохранять некоторые сообщения:
fn_input: |msg| {
    let Some(msg_custom) = msg.get_custom_data() else {
        return Ok(None);
    };
    let item = match msg_custom {
        Custom::ValueInstantString(value) => cmp_webstorage::ConfigWebstorageItem {
            key: "save_item".into(),
            value: value.to_string(),
        },
        _ => return Ok(None),
    };
    Ok(Some(item))
               Загрузка сообщений из хранилища
T\text{M}\Pi - \text{type TFnOutput} < TMsg> = fn(ConfigWebstorageItem) -> Result<Option<Message<TMsg>>, anyhow::Error>;
Ничего не загружать:
fn_output: |_| Ok(None),
Загружать некоторые сообщения:
fn_output: |item| {
   let data = match item.key.as_str() {
        "save_item" => Custom::ValueInstantString(item.value),
        _ => return Ok(None),
    };
    let msg = Message::new_custom(data);
    Ok(Some(msg))
default items | Значения по-умолчанию, когда хранилище пустое
Нет значений по-умолчанию:
default_items: vec![],
Есть значения по-умолчанию:
default_items: vec![ConfigWebstorageItem {
    key: "save_item".into(),
```

value: "default".into(),
}],

2 Исполнитель

2.1 WASM (Leptos)

```
use leptos::*;
use tokio::task::LocalSet;
use crate::components::cmp_leptos;
fn main() -> anyhow::Result<()> {
   #[component]
   fn App() -> impl IntoView {
      view! {}
   }
   console_error_panic_hook::set_once();
   configure_logging("info").unwrap();
   // cmp_leptos -----
   let config_leptos = cmp_leptos::Config {
      body_component: || view! { <App/> },
      hostname: "localhost".into(),
   };
   // config_executor -----
   let config_executor = ComponentExecutorConfig {
      buffer_size: 100,
      service: Services::frontend,
      fn_auth: |msg, _| Some(msg),
   };
   // executor -----
   let context = LocalSet::new();
   context.spawn_local(async move {
      ComponentExecutor::<Custom>::new(config_executor)
         .add_cmp(cmp_leptos::Cmp::new(config_leptos))
         .wait_result()
         .await?;
      0k(()) as anyhow::Result<()>
   });
   spawn_local(context);
   0k(())
}
```

3 Внешние сервисы

Конфигурация различных внешних сервисов.

3.1 EMQX

MQTT-брокер

3.1.1 docker

```
services:
  emqx:
    container_name: emqx
   healthcheck:
      test: ["CMD", "/opt/emqx/bin/emqx", "ctl", "status"]
     interval: 5s
     timeout: 25s
     retries: 5
    hostname: emqx
    image: emqx:5.7.2 # https://hub.docker.com/_/emqx
    networks:
     network_internal
    ports:
     - 1883:1883
     - 8083:8083
     - 8084:8084
     - 8883:8883
     - 18083:18083
    profiles:
      - dev
      - target
    volumes:
      - emqx_volume:/opt/emqx/data
networks:
  network_internal:
volumes:
  emqx_volume:
    name: emqx_volume
```

3.2 Go2rtc

Сервис конвертирования видеопотока с видеокамеры.

3.2.1 docker

```
services:
 go2rtc:
    container_name: go2rtc
    hostname: go2rtc
    image: alexxit/go2rtc
    network_mode: host
    privileged: true
    restart: unless-stopped
    profiles:
     - target
     - dev
    volumes:
      - "./config_services/go2rtc:/config"
3.2.2 ./config_services/go2rtc/go2rtc.yaml
streams:
  tapo: rtsp://administrator:Admin123!@10.0.6.3:554/stream1
api:
 origin: "*"
 listen: ":8003"
```

3.3 Grafana

```
3.3.1 docker
services:
  grafana:
    container_name: grafana
    hostname: grafana
    image: grafana/grafana:10.2.3 # https://hub.docker.com/r/grafana/grafana/tags
      - GF_PATHS_PROVISIONING=/etc/grafana/provisioning
      - GF_AUTH_ANONYMOUS_ENABLED=true
      - GF_AUTH_ANONYMOUS_ORG_ROLE=Admin
      - GF_SECURITY_ALLOW_EMBEDDING=true
        # настройки источника - TimescaleDB
      - TIMESCALEDB_HOST=timescaledb
      - TIMESCALEDB_PORT=5432
      - TIMESCALEDB_DB_DATA=db_data
        # настройки источника - логгер loki
      - LOKI_HOST=loki
      - LOKI_PORT=3100
        # настройки источника - InfluxDB
      - INFLUXDB_HOST=influxdb
      - INFLUXDB_PORT=8086
      - INFLUXDB_ORG=org
      - INFLUXDB_BUCKET=bucket
      - INFLUXDB_TOKEN=token
    ports:
      - "3000:3000"
    profiles:
      - dev
      - target
    volumes:
      - ./config_services/grafana/datasources:/etc/grafana/provisioning/datasources
      - ./config_services/grafana/dashboards:/etc/grafana/provisioning/dashboards
      - /etc/timezone:/etc/timezone:ro
      - /etc/localtime:/etc/localtime:ro
    networks:
      network_internal
networks:
  network_internal:
3.3.2 Файлы конфигурации
3.3.2.1 ./config_services/grafana/datasources/
В папке хранятся файлы для настройки источников данных.
influxdb.yaml:
apiVersion: 1
datasources:
  - name: InfluxDB
    type: influxdb
    access: proxy
    url: http://${INFLUXDB_HOST}:${INFLUXDB_PORT}
    jsonData:
      version: Flux
      organization: ${INFLUXDB_ORG}
      defaultBucket: ${INFLUXDB_BUCKET}
      tlsSkipVerify: true
    secureJsonData:
      token: ${INFLUXDB_TOKEN}
loki.yaml:
apiVersion: 1
datasources:
  - name: loki
    type: loki
    access: proxy
    orgId: 1
    url: http://${LOKI_HOST}:${LOKI_PORT}
    basicAuth: false
    isDefault: true
    version: 1
    editable: false
```

apiVersion: 1

timescaledb.yaml:

```
datasources:
 name: timescaledb
    type: postgres
    url: ${TIMESCALEDB_HOST}:${TIMESCALEDB_PORT}
    user: postgres
   secureJsonData:
     password: "postgres"
    jsonData:
     database: ${TIMESCALEDB_DB_DATA}
     sslmode: "disable" # disable/require/verify-ca/verify-full
     maxOpenConns: 100 # Grafana v5.4+
     maxIdleConns: 100 # Grafana v5.4+
     maxIdleConnsAuto: true # Grafana v9.5.1+
      connMaxLifetime: 14400 # Grafana v5.4+
     postgresVersion: 1500 # 903=9.3, 904=9.4, 905=9.5, 906=9.6, 1000=10
      timescaledb: true
    editable: false
```

${\bf 3.3.2.2~./config_services/grafana/dashboards/}$

В папке хранятся все дашбоарды. Структура папок переносится в структуру дашбоардов. В корне папки нужно разместить файл config.yaml:

```
apiVersion: 1

providers:
    - name: dashboards
    type: file
    updateIntervalSeconds: 5
    options:
        path: /etc/grafana/provisioning/dashboards
        foldersFromFilesStructure: true
```

3.4 InfluxDB (v2)

3.4.1 docker

```
services:
 influxdb:
    container_name: influxdb
    environment:
     - DOCKER_INFLUXDB_INIT_MODE=setup
     - DOCKER_INFLUXDB_INIT_USERNAME=admin
      - DOCKER_INFLUXDB_INIT_PASSWORD=Admin123!
      - DOCKER_INFLUXDB_INIT_ORG=org
      - DOCKER_INFLUXDB_INIT_BUCKET=bucket
      - DOCKER_INFLUXDB_INIT_ADMIN_TOKEN=token
    hostname: influxdb
    image: influxdb:2.7.6 # https://hub.docker.com/_/influxdb
    networks:
      network_internal
    ports:
     - "8086:8086"
    volumes:
      - influxdb_data:/var/lib/influxdb2
      - /etc/timezone:/etc/timezone:ro
      - /etc/localtime:/etc/localtime:ro
networks:
  network_internal:
volumes:
 influxdb_data:
   name: influxdb_data
# TODO - healhcheck
```

3.5 InfluxDB (v3)

3.6 Loki

Для проверки запуска можно открыть в браузере:

- http://localhost:3100/metrics
- http://localhost:3100/ready

3.6.1 docker

```
services:
  loki:
    command: -config.file=/etc/loki/local-config.yaml
    container_name: loki
    healthcheck:
      test: wget --spider http://localhost:3100/ready
     interval: 10s
     timeout: 20s
      retries: 15
    hostname: loki
    image: grafana/loki:2.9.2 # https://hub.docker.com/r/grafana/loki/tags?page=1&name=2.
    networks:
     network_internal
    ports:
     - "${LOKI_PORT}:3100"
    profiles:
      - dev
      - target
    volumes:
      - loki_data:/loki
      - /etc/timezone:/etc/timezone:ro
      - /etc/localtime:/etc/localtime:ro
volumes:
  loki_data:
    name: loki_data
networks:
  network_internal:
```

3.7 Portainer

3.7.1 docker

```
services:
 portainer:
    container_name: portainer
    hostname: portainer
    image: portainer/portainer-ce:latest
     - "${PORTAINER_PORT}:9000"
    profiles:
     - target
    restart: always
    volumes:
     - portainer_data_volume:/data
     - /var/run/docker.sock:/var/run/docker.sock
      - /etc/timezone:/etc/timezone:ro
      - /etc/localtime:/etc/localtime:ro
volumes:
  portainer_data_volume:
   name: portainer_data_volume
```

3.8 Redis

3.8.1 docker

```
services:
 redis:
    container_name: redis
   healthcheck:
     test: redis-cli --raw incr ping
     interval: 5s
     timeout: 5s
     retries: 5
    hostname: redis
    image: redis/redis-stack:latest
    networks:
      network_internal
    ports:
      - "${REDIS_PORT}:6379" # порт Redis
      - "${REDIS_PORT_UI}:8001" # порт UI
    volumes:
      - redis_data:/data # для сохранения данных
      - ./services/redis/redis.conf:/redis-stack.conf # путь к файлу конфигурации
      - /etc/timezone:/etc/timezone:ro
      - /etc/localtime:/etc/localtime:ro
networks:
  network_internal:
volumes:
  redis_data:
   name: redis_data
```

3.8.2 Файлы конфигурации

3.8.2.1 redis.conf

Для сохранения сообщений при перезапуске:

appendonly yes

3.9 Rust

Запуск программ на rust в контейнерах docker

3.9.1 docker (бекенд)

```
docker-compose.yml:
services:
  backend:
    command: ./backend
    container_name: backend
    depends_on:
      redis:
        condition: service_healthy
        restart: true
      loki:
        condition: service_healthy
        restart: true
    hostname: backend
    image: ubuntu:noble
    networks:
      network_internal
    environment:
     - RUST_LOG=info
    profiles:
     - target
    volumes:
     - ./backend:/backend
      - ./.env:/.env
      - /etc/timezone:/etc/timezone:ro
      - /etc/localtime:/etc/localtime:ro
networks:
  network_internal:
3.9.2 docker (cmp_leptos)
docker-compose.yml:
services:
 frontend:
    container_name: frontend
    hostname: frontend
    image: nginx
    networks:
     network_internal
    ports:
     - "8000:80"
    profiles:
     - target
    volumes:
      - ./frontend/dist:/usr/share/nginx/html
      - ./frontend/nginx.conf:/etc/nginx/conf.d/default.conf
networks:
  network_internal:
# TODO - healtcheck
nginx.conf:
server {
    listen 80;
    listen [::]:80;
    server_name localhost;
    location / {
       root /usr/share/nginx/html;
        index index.html;
       try_files $uri $uri/ /index.html =404;
   }
}
```

3.10 Sentryshot

Сохранение потока с видеокамеры. Ссылка на репозиторий.

3.10.1 docker

```
services:
  sentryshot:
    shm_size: 500m
    image: codeberg.org/sentryshot/sentryshot:v0.2.17
   ports:
     - 2020:2020
    environment:
     - TZ=Europe/Minsk
    profiles:
     - target
    volumes:
      - ./config_services/sentryshot/configs:/app/configs
      - ./config_services/sentryshot/storage:/app/storage
```

Проверить версию - https://codeberg.org/SentryShot/sentryshot/releases.

3.10.2 Файлы конфигурации

enable = false

```
3.10.2.1 ./sentryshot/configs/sentryshot.toml
Проверить max_disk_usage.
# Port app will be served on.
port = 2020
# Directory where recordings will be stored.
storage_dir = "/app/storage"
# Directory where configs will be stored.
config dir = "/app/configs"
# Directory where the plugins are located.
plugin_dir = "/app/plugins"
# Maximum allowed storage space in GigaBytes.
# Recordings are delete automatically before this limit is exceeded.
max_disk_usage = 100
# PLUGINS
# Authentication. One must be enabled.
# Basic Auth.
[[plugin]]
name = "auth_basic"
enable = false
# No authentication.
[[plugin]]
name = "auth_none"
enable = true
# Motion detection.
# Documentation ./plugins/motion/README.md
[[plugin]]
name = "motion"
enable = false
# TFlite object detection.
# Enabling will generate a `tflite.toml` file.
[[plugin]]
name = "tflite"
enable = false
# Thumbnail downscaling.
# Downscale video thumbnails to improve page load times and data usage.
[[plugin]]
name = "thumb_scale"
```

3.10.2.2 ./sentryshot/configs/monitors/

В папке хранятся файлы конфигурации для каждой камеры. Пример файла для камеры RTSP:

```
"alwaysRecord": true,
"enable": true,
"id": "tapo",
"name": "tapo",
"source": "rtsp",
"sourcertsp": {
    "mainStream": "rtsp://administrator:Admin123!@192.168.31.3:554/stream1",
    "protocol": "tcp"
},
"videoLength": 15
}
```

3.11 SurrealDB

3.11.1 docker

```
services:
 surrealdb:
   command: start --user root --pass root file:/data/database.db
    container_name: surrealdb
   hostname: surrealdb
    image: surrealdb/surrealdb:latest
    networks:
     network_internal
    ports:
     - "${SURREALDB_PORT}:8000"
    user: root
    volumes:
     - surrealdb_data:/data
networks:
 network_internal:
volumes:
  surrealdb_data:
   name: surrealdb_data
# TODO - healtcheck
```

3.12 SystemD

Пример создания файла для автозапуска сервисов с помощью SystemD

Файл_PROJECT_.service:

[Unit]
Description=PROJECT_DESC
Requires=docker.service
After=docker.service

[Service]
Type=oneshot
RemainAfterExit=yes
WorkingDirectory=/home/user/PROJECT_FOLDER
ExecStart=/home/user/.cargo/bin/nu scripts/target-start.nu
ExecStop=/home/user/.cargo/bin/nu scripts/target-stop.nu
TimeoutStartSec=0

[Install]

WantedBy=multi-user.target

Установить сервис на целевой машине:

sudo mv _PROJECT_.service /etc/systemd/system
sudo systemctl daemon-reload
sudo systemctl enable _PROJECT_
sudo systemctl start _PROJECT_

3.13 TimescaleDB

3.13.1 docker

```
services:
  timescaledb:
    command: postgres
      -c config_file=/etc/postgresql/postgresql.conf
      -c hba_file=/etc/postgresql/pg_hba.conf
    container_name: timescaledb
    healthcheck:
      test: pg_isready -d db_prod
      interval: 30s
      timeout: 60s
      retries: 5
      start_period: 80s
    hostname: timescaledb
    image: timescale/timescaledb:2.12.2-pg15
    networks:
      network_internal
    environment:
      - POSTGRES_USER=postgres
      - POSTGRES_PASSWORD=postgres
    ports:
      - "5432:5432"
    profiles:
      - dev
      - target
    volumes:
      - ./timescaledb/postgresql.conf:/etc/postgresql/postgresql.conf
      ./timescaledb/pg_hba.conf:/etc/postgresql/pg_hba.conf
      - ./timescaledb/init.sql:/docker-entrypoint-initdb.d/init.sql
      - /etc/timezone:/etc/timezone:ro
      - /etc/localtime:/etc/localtime:ro
networks:
  network_internal:
3.13.2 postgresql.conf
listen_addresses = '*'
max_locks_per_transaction = 10000
3.13.3 pg_hba.conf
local all all trust
host all all 0.0.0.0/0 trust
3.13.4 init.sql
CREATE DATABASE db_conf;
CREATE DATABASE db_data;
\c db_data
CREATE EXTENSION IF NOT EXISTS timescaledb;
-- enum agg_type
CREATE TYPE agg_type AS ENUM (
    'curr',
    'first',
    'inc',
    'sum',
    'mean',
    'min',
    'max'
);
-- table raw
CREATE TABLE raw (
                TIMESTAMPTZ
    ts
                                    NOT NULL,
                TEXT
                                    NOT NULL,
    entity
    attr
                TEXT
                                    NOT NULL,
                                    NULL,
                DOUBLE PRECISION
    value
                AGG_TYPE
                                    NOT NULL,
    agg
                TIMESTAMPTZ
                                    NULL,
    aggts
    aggnext
                AGG_TYPE[]
                                    NULL,
    UNIQUE (ts, entity, attr, agg)
);
SELECT create_hypertable(
    'raw', 'ts',
    chunk_time_interval => INTERVAL '24 hours'
ALTER TABLE raw SET (
```

```
timescaledb.compress,
   timescaledb.compress_segmentby='entity, attr, agg'
);
SELECT add_compression_policy('raw', INTERVAL '100000 hours');
-- agg_30min
CREATE TABLE agg_30min (LIKE raw);
-- create databases for test
CREATE DATABASE db_data_test WITH TEMPLATE db_data;
CREATE DATABASE db_conf_test WITH TEMPLATE db_conf;
```