FUNDAMENTOS DA COMPUTAÇÃO

Representação de binários negativos

Vantagens e desvantagens

Formalização

Comparação com unsigned

Noção intuitiva

Sinal/Magnitude

É a notação mais simples e intuitiva:

```
- MSB = sinal

0 = positivo

1 = negativo
```

- Outros n - 1 bits: interpretar como unsigned, representando o valor (magnitude) 00011011

10011011

Exemplo com números de 4 bits:

Decimal	Sinal/Magnitude				
0	0000				
1	0001				
2	0010				
3	0011				
4	0100				
5	0101				
6	0110				
7	0111				
- 0	1000				
- 1	1001				
- 2	1 010				
- 3	1 011				
- 4	1 100				
- 5	1 101				
- 6	1110				
- 7	1111				

Vantagens:

- simples e intuitiva
- semelhante ao modo como escrevemos
- "simétrica": mesma quantidade de números positivos e negativos

Desvantagens:

- duas representações para o zero: +0 e -0
- dificulta cálculos, por ex.: adição binária não funciona

- dificulta comparação:

$$+0 = -0$$
 (?)

Formalização:

Seja x um número inteiro binário formado por n algarismos, em notação **sinal/magnitude**. Representaremos o vetor de algarismos desse número por \vec{x} , ou então por $[x_{n-1}, x_{n-2}, \ldots, x_0]$ para denotar os algarismos individuais dentro do vetor. A posição que um determinado algarismo ocupa em \vec{x} será denominada por i (contada da direita para esquerda, iniciando em 0), e a notação $\stackrel{\text{def}}{=}$ significa "é definido por". Assim, a conversão $B_{s/m}D$ (binário em sinal/magnitude para decimal) de um vetor binário \vec{x} com tamanho n é dada por:

$$B_{s/m}D(\vec{x}_n) \stackrel{\text{def}}{=} (-1)^{x_{n-1}} \times \left(\sum_{i=0}^{n-2} x_i 2^i\right)$$

Total: 2^n (?)

Faixa:
$$[-2^{n-1} + 1 ; 2^{n-1} - 1]$$

Comparação com unsigned, binários de 4 bits:

Decimal
Unsigned
Sinal/Magnitude

É uma notação mais complexa, que utiliza o complemento bit a bit para representar os números negativos e o sinal.

```
- MSB: sinal e peso ponderado
0 = positivo
1 = negativo
```

- Outros n - 1 bits:
interpretar como unsigned representando o valor
(magnitude) a ser somado com o peso ponderado
do sinal.

Complemento:

$$0 \rightarrow 1$$

Complemento bit a bit (complemento de 1):

00110101
$$x \ \vec{x}$$
 11001010 $\overline{x} \ \overline{\vec{x}}$

Exemplo com números de 4 bits:

Decimal	Complemento de 1				
0	0000				
1	0001				
2	0010				
3	0011				
4	0100				
5	0101				
6	0110				
7	0111				
- 0	1 111				
- 1	1 110				
- 2	1 101				
- 3	1100				
- 4	1 011				
- 5	1 010				
- 6	1 001				
- 7	1 000				

Vantagens:

- "simétrica": mesma quantidade de números positivos e negativos
- fácil de encontrar os valores pelo complemento

1101

Desvantagens:

- mais complexa que sinal/magnitude
- duas representações para o zero: +0 e -0
- dificulta cálculos, por ex.: adição binária não funciona

- dificulta comparação:

$$+0=-0 \qquad (?)$$

Formalização:

Seja x um número inteiro binário formado por n algarismos, em notação **complemento de 1**. Representaremos o vetor de algarismos desse número por \vec{x} , ou então por $[x_{n-1}, x_{n-2}, \ldots, x_0]$ para denotar os algarismos individuais dentro do vetor. A posição que um determinado algarismo ocupa em \vec{x} será denominada por i (contada da direita para esquerda, iniciando em 0), e a notação $\stackrel{\text{def}}{=}$ significa "é definido por". Assim, a conversão $B_{c1}D$ (binário em complemento de 1 para decimal) de um vetor binário \vec{x} com tamanho n é dada por:

$$B_{c1}D(\vec{x}_n) \stackrel{\text{def}}{=} -(2^{n-1}-1)x_{n-1} + \left(\sum_{i=0}^{n-2} x_i 2^i\right)$$

Total: 2^n (?)

Faixa:
$$[-2^{n-1} + 1 ; 2^{n-1} - 1]$$

Comparação com unsigned, binários de 4 bits:

Decimal
Unsigned
Complemento de 1

Por que esse nome?

Seja x um número inteiro binário formado por n algarismos. O **complemento bit a bit** desse número, chamado de **complemento de 1**, será representado por \overline{x} . Considere que DB é uma função que converte um número decimal em um número binário com n algarismos. Assim, o complemento bit a bit de x será dado por:

$$\overline{x} = DB(2^n - 1) - x$$

É uma notação mais complexa, onde o padrão de bits dos valores positivos e negativos de mesma magnitude são idênticos, quando lidos da direita para a esquerda, até (e incluindo) o primeiro algarismo 1, e, a partir daí, o padrão de bits é o complemento um do outro. O zero é um caso especial.

```
- MSB: sinal e peso ponderado

0 = positivo

1 = negativo

10110100

01111111
```

01001100

10000001

- Outros n - 1 bits:
interpretar como unsigned representando o valor
(magnitude) a ser somado com o peso ponderado
do sinal.

Exemplo com números de 4 bits:

Decimal	Complemento de 2			
0	0000			
1	0001			
2	0010			
3	0011			
4	0100			
5	0101			
6	0110			
7	0111			
- 1	1 111			
- 2	1110			
- 3	1 101			
- 4	1100			
- 5	1 011			
- 6	1 010			
- 7	1 001			
- 8	1 000			

Vantagens:

- fácil de encontrar os valores: "copia e complementa" ou "reverter o sinal"
- apenas uma representação para o zero: 0
- facilita comparações (0 = 0)
- facilita cálculos, por ex.: adição binária funciona

Desvantagens:

- mais complexa que complemento de 1
- "assimétrica": mais números negativos do que positivos (um a mais)

Formalização:

Seja x um número inteiro binário formado por n algarismos, em notação **complemento de 2**. Representaremos o vetor de algarismos desse número por \vec{x} , ou então por $[x_{n-1}, x_{n-2}, \ldots, x_0]$ para denotar os algarismos individuais dentro do vetor. A posição que um determinado algarismo ocupa em \vec{x} será denominada por i (contada da direita para esquerda, iniciando em 0), e a notação $\stackrel{\text{def}}{=}$ significa "é definido por". Assim, a conversão $B_{c2}D$ (binário em complemento de 2 para decimal) de um vetor binário \vec{x} com tamanho n é dada por:

$$B_{c2}D(\vec{x}_n) \stackrel{\text{def}}{=} -(2^{n-1})x_{n-1} + \left(\sum_{i=0}^{n-2} x_i 2^i\right)$$

Total: 2^n

Faixa: $[-2^{n-1}; 2^{n-1}-1]$

Comparação com unsigned, binários de 4 bits:

Decimal
Unsigned
Complemento de 2

Por que esse nome?

Seja x um número inteiro binário formado por n algarismos. Considere que DB é uma função que converte um número decimal em um número binário com n algarismos. O **complemento de 2** desse número, x_{c2} , será dado por:

$$x_{c2} = DB(2^n) - x$$

Existem duas formas "rápidas" para encontrar o complemento de 2 de um número:

- "copia e complementa"

01001100
10110100

- "reverter o sinal" (complementa e soma 1)

$$x_{c2} = DB(2^n) - x$$
$$= \overline{x} + 1$$

A subtração é feita através da adição com o complemento:

$$4-3 \rightarrow 4+(-3)$$

Overflow:

- adição de positivo com negativo nunca causa overflow.
- adição de dois positivos ou dois negativos pode causar overflow, que é indicado se o sinal do resultado estiver trocado.

$$\begin{array}{r}
4 + 3 \\
0100 \\
+ 0011 \\
\end{array}$$
 $\begin{array}{r}
4 - 3 \\
0100 \\
+ 1101
\end{array}$

Vantagens e desvantagens

Enviesada (excesso)

Formalização

Comparação com unsigned

É uma notação simples com as seguintes características:

- o número mais negativo só tem 0s: 000...000

- o número mais positivo só tem 1s:

- o zero, em geral, inicia com 1 e o resto são 0s: 100...000

- MSB: sinal

0 = negativo

1 = positivo

- Interpretação:
 - a interpretação não é direta, depende do viés (excesso) que está sendo considerado. Calcule o valor binário como se o número fosse unsigned (todos os bits), e depois subtraia o viés.
- O viés, em geral, depende da quantidade n de bits: $Viés = 2^{n-1}$

Exemplo com números de 4 bits:

Decimal	Enviesada		
- 8	0000		
- 7	0001		
- 6	0010		
- 5	0011		
- 4	0100		
- 3	0101		
- 2	0110		
- 1	0111		
0	1000		
1	1 001		
2	1 010		
3	1 011		
4	1 100		
5	1 101		
6	1110		
7	1111		

Viés (excesso): 8

Vantagens:

- mesmo com o viés, é uma notação relativamente simples
- apenas uma representação para o zero: 0
- facilita comparações (0 = 0)

Desvantagens:

- mais complexa que sinal magnitude
- "assimétrica": mais números negativos do que positivos (um a mais)
- dificulta cálculos, por ex.: adição binária não funciona

Formalização:

Seja x um número inteiro binário formado por n algarismos, em notação **enviesada** com viés 2^{n-1} . Representaremos o vetor de algarismos desse número por \vec{x} , ou então por $[x_{n-1}, x_{n-2}, \ldots, x_0]$ para denotar os algarismos individuais dentro do vetor. A posição que um determinado algarismo ocupa em \vec{x} será denominada por i (contada da direita para esquerda, iniciando em 0), e a notação $\stackrel{\text{def}}{=}$ significa "é definido por". Assim, a conversão BeD (binário em notação enviesada para decimal) de um vetor binário \vec{x} com tamanho n e viés dado por 2^{n-1} é dada por:

$$B_eD(\vec{x}_n) \stackrel{\text{def}}{=} \left(\sum_{i=0}^{n-1} x_i 2^i\right) - 2^{n-1}$$

Total: 2^n

Faixa: $[-2^{n-1}; 2^{n-1}-1]$

Comparação com unsigned, binários de 4 bits com viés de 8:

Viés: 8

Comparação entre as notações

Comparação

Comparação entre as notações

Comparação com binários de 4 bits:

Decimal
Unsigned
Sinal/Magnitude
Complemento de 1
Complemento de 2
Enviesada

Comparação entre as notações

Comparação com unsigned, binários de 4 bits:

Binário	Unsigned	Sinal/Magnitude	Complemento de 1	Complemento de 2	Enviesada
0000	0	0	0	0	- 8
0001	1	1	1	1	- 7
0010	2	2	2	2	- 6
0011	3	3	3	3	- 5
0100	4	4	4	4	- 4
0101	5	5	5	5	- 3
0110	6	6	6	6	- 2
0111	7	7	7	7	- 1
1000	8	- 0	- 7	- 8	0
1001	9	- 1	- 6	- 7	1
1010	10	- 2	- 5	- 6	2
1011	11	- 3	- 4	- 5	3
1100	12	- 4	- 3	- 4	4
1101	13	- 5	- 2	- 3	5
1110	14	- 6	- 1	- 2	6
1111	15	- 7	- 0	- 1	7

Viés: 8

Em resumo

