Práctica en Clase 1

Integrantes: Mendoza Bryan, Romero David

 Usando lógica descriptiva modelar los siguientes conceptos. Determine los conceptos y roles necesarios en cada caso

Restricciones: Los jóvenes no son adultos, y los adultos no son jóvenes $(Joven \cap Adulto \subseteq \perp)$

Bicicletas, autobuses, automóviles, camiones y furgonetas son vehículos.
Hay varios tipos de empresas: empresas de autobuses y empresas de transporte.

Conceptos: Bicicletas, Autobuses, Automóviles, Camiones, Furgonetas, EmpresasAutobuses, EmpresasTransporte

 $Bicicleta \subseteq Vehículo$

*Autob*ús ⊆ *Veh*ículo

 $Autom {o}vil \subseteq Veh {i}culo$

Camión ⊆ Vehículo

 $Furgoneta \subseteq Vehículo$

 $EmpresasAutobuses \subseteq Empresa$

 $EmpresaTransporte \subseteq Empresa$

Una persona mayor debe ser adulta.

Conceptos: Persona, Adulto

 $PersonaMayor \equiv Persona \cap Adulto$

• Un niño es (exactamente) una persona que es joven.

Conceptos: Persona, Joven, Adulto

Nino $\equiv Persona \cap Joven$

Un hombre es una persona que es masculino y es adulto.

Conceptos: Masculino, Adulto

Roles: tieneGenero

 $Hombre \equiv \forall tiene Genero. Masculino \cap Adulto$

• Una mujer es una persona que es femenino y es adulta.

Conceptos: Femenino, Adulta

Roles: tieneGenero

 $Mujer \equiv \forall tiene Genero. Femenino \cap Adulta$

• Una persona madura es una persona que es un adulto.

Conceptos: Persona, Adulto

 $PersonaMadura \equiv Persona \cap Adulto$

• Una anciana es una persona adulto mayor y femenino.

Conceptos: Femenino, AdultoMayor

Roles: tieneGenero

 $Anciana \equiv \forall tiene Genero. Femenino \cap Adulto Mayor$

 Una anciana debe tener algún animal como mascota y todas sus mascotas son gatos.

Conceptos: Mascota, Gato

Rol: tieneMascota, tieneAnimal

 $Anciana \equiv \exists tieneAnimal. (\forall tieneMascota. Gato)$

- Exprese los siguientes conceptos en Lógica Descriptiva usando los conceptos atómicos Animal y Pescado; los roles tieneCola, tienePierna y come; y el individuo Mimi. Identifique aquellos enunciados que no es posible expresar usando ALC
 - Un animal que tiene cola

 $Animal \cap \exists tieneCola. Animal$

Un animal que tiene cola y cuatro patas

No se puede expresar usando ALC porque no se puede expresar específicamente que tenga 4 patas

• Un animal que solo come pescado

Animal $\cap \exists come. Pescado$

• Mimi es un gato que solo come pescado

Definiendo que Gato es un concepto

 $Gato \cap \forall come. Pescado(Mimi)$

3. Traducir las siguientes sentencias a lógica descriptiva

Conceptos: Perro, Mamífero, MamíferoPlacentario, Lobo, Persona, Padre

Roles: tieneDueño

Cada perro es un mamífero.

 $Perro \subseteq Mamifero$

• Un perro es lo mismo que un mamífero placentario.

 $Perro \equiv MamiferoPlacentario$

• Cada lobo no es una persona

 $Lobo \subseteq \neg Persona$

• Un perro que tiene un dueño que es padre

Perro ∩ ∃tieneDueño. Padre

- 4. Considere la interpretación $I = (\Delta I, ... I)$ donde
 - $\bullet \quad \Delta^{|} = \{x; \ y; \ z\}$
 - $\bullet \quad Ana^{\mathsf{I}} = x$
 - $Juan^{\mid} = y$
 - $Persona^{\dagger} = \{x, y\}$
 - $Padre^{\mid} = \{y\}$
 - $tieneMascota^{\dagger} = \{(x, z); (y, z)\}$

• $tienePropietario^{\dagger} = \{(z, x)\}$

• Dibuje la Interpretación I

• Determine (∀tieneMascota.∃tienePropiterio.Padre)I.

 \forall tieneMascota. \exists tienePropietario. $\{y\}$

 $\forall tieneMascota. \{\} \equiv \{z\}$

• Determine (Padre □ ∃ tienePropitario.T)I.

$$\{y\} \cup \{z\} = \{y, z\}$$

Determine (∃ tieneMascota. ∀ tienePropietario.¬Padre)I.

 $\exists tieneMascota. \forall tienePropietario. \{x, z\} \equiv \exists tieneMascota. \{x, y, z\} \equiv \{x, y\}$

• Determine si I ⊨ Ana ⊆ Padre

 $x \subseteq \{y\}$ una instancia no puede ser subconjunto de un conjunto

 $\therefore I \bowtie Ana \subseteq Padre$

Una instancia no puede ser subconjunto de un conjunto, entonces I no satisface a la expresión Ana \subseteq Padre.

Determine si I ⊨ Juan ∈ ∀ tieneMascota.T

$$y \in \forall tieneMascota. \{x, y, z\} \equiv y \in \{x, y, z\} :: I \models Juan \in \forall tieneMascota. T$$

La interpretación I satisface a $Juan \in \forall tiene Mascota. T$ porque Juan si está en el conjunto de las personas que tienen mascota.

- Determine si I ⊨ Padre ⊆ ∃ tieneMascota. ∃ tienePropietario.T
 - $\{y\} \subseteq \exists tieneMascota. \exists tienePropietario. \{x, y, z\} =$
 - $\{y\} \subseteq \exists tieneMascota. \{z\}$
 - $\{y\} \subseteq \{\} :: I \bowtie Padre \subseteq \exists tieneMascota. \exists tienePropietario. T$

La interpretación I no satisface $Padre \subseteq \exists tiene Mascota. \exists tiene Propietario. T$ porque los padres no pertenecen a las personas que son propietarios de alguna mascota

- Determine si I ⊨ Padre ≡ ∃ tieneMascota. ∃ tienePropietario.T
 - $\{y\} \equiv \exists tieneMascota. \exists tienePropietario. \{x, y, z\}$
 - $\{y\} \equiv \exists tieneMascota. \{z\}$
 - $\{y\} \equiv \{x, y\} :: I \Vdash Padre \equiv \exists tieneMascota. \exists tienePropietario. T$

La interpretación I no satisface a la expresión $Padre \equiv \exists tieneMascota. \exists tienePropietario. T$ porque el conjunto padre no es equivalente a las personas que son propietarios de alguna mascota.

• Determine si I ⊨ ∀tienePropietario.T ⊆ ¬Padre

$$\{x, y, z\} \subseteq \neg Padre$$

$$\{x, y, z\} \subseteq \{x, z\} : I \bowtie \forall tiene Propietario. T \subseteq \neg Padre$$

La interpretación I no satisface a la expresión $\forall tiene Propietario. T \subseteq \neg Padre$ porque no todos los propietarios de una mascota no son padres.

- 5. Transformar desde lógica descriptiva a lógica de predicados
 - Animal $\cap \forall tienePadre. Mono$

$$Animal(x) \ \land \ \forall y \ (tienePadre(x,y) \rightarrow Mono(y))$$

• $Animal \subseteq SerVivo$

$$\forall x \ (Animal(x) \rightarrow SerVivo(x))$$