

DISTA

Corso: Analisi Numerica Docente: Roberto Piersanti

Risoluzione di sistemi lineari Lezione 2.6b

Tecniche di Pivotazione

Risoluzione di sistemi lineari (Pivotazione Parziale)

- > Pivotazione Parziale: serve per <u>evitare</u> $a_{kk}^{(k)} = 0$,
- ightharpoonup Prima del passaggio da $A^{(k)} o A^{(k+1)}$ si cerca $r \ge k$ t.c.

$$|a_{rk}^{(k)}| = \max_{k \le s \le n} |a_{sk}^{(k)}|$$

ightharpoonup Si scambiano tra loro le righe r-esima e k-esima

Risoluzione di sistemi lineari (Pivotazione Totale)

- > **Pivotazione Totale:** coinvolge <u>le righe e le colonne</u>
- ightharpoonup Prima del passaggio da $A^{(k)} o A^{(k+1)}$ si cercano $r,q \ge k$ t.c.

$$|a_{rq}^{(k)}| = \max_{s>k,p \le n} |a_{sp}^{(k)}|$$

 \blacktriangleright Si scambiano tra loro le righe r e k + le colonne q e k

 $|a_{rq}^{(k)}|$ Elemento di modulo massimo su tutta la sotto-matrice

Risoluzione di sistemi lineari (La matrice di Permutazione)

- > Come la Pivotazione (parziale) modifica l'algebra del MEG (e la LU)
- \blacktriangleright Lo scambio di righe i e j equivale a moltiplicare a sx di A per P

▶ P è chiamata Matrice di Permutazione

 $PA \Rightarrow \mathsf{scambia} \; \mathsf{le} \; \mathsf{righe} \; i \; \mathsf{e} \; j \; \mathsf{della} \; \mathsf{matrice} A$

Risoluzione di sistemi lineari (MEG modificato)

- > Come la **Pivotazione parziale** modifica l'algebra del MEG (e la LU)
- ightharpoonup Introduciamo $P^{(k)}$ la matrice di permutazione al passo k

Passo 1 del MEG
$$P^{(1)}A \to M^{(1)}P^{(1)}A$$

Passo 2 del MEG $P^{(2)}A^{(1)} \to M^{(2)}P^{(2)}M^{(1)}P^{(1)}A$

ightharpoonup Ricorsivamente, completando tutti gli n-1 passi del MEG

$$U = M^{(n-1)}P^{(n-1)}\dots M^{(1)}P^{(1)}A$$

> Ponendo
$$P = P^{(n-1)} \dots P^{(1)}$$

$$\longrightarrow L = P\left(M^{(n-1)}P^{(n-1)} \dots M^{(1)}P^{(1)}\right)^{-1}$$

$$LU = PA$$

Risoluzione di sistemi lineari (MEG modificato)

> Per risolvere

$$A\mathbf{x} = \mathbf{b}$$

Utilizzando il MEG modificato con la Pivotazione parziale

$$PA = LU$$

Abbiamo

$$PA\mathbf{x} = P\mathbf{b} \Rightarrow LU\mathbf{x} = P\mathbf{b} = \mathbf{c}$$

$$LU\mathbf{x} = \mathbf{c}$$
 \Longrightarrow $\begin{cases} L\mathbf{y} = \mathbf{c} & \textit{Sostituzioni in avanti} \\ U\mathbf{x} = \mathbf{y} & \textit{Sostituzioni all'indietro} \end{cases}$