Mole Concept

DPP-1 Solutions

Ashish BibyanB.Tech (IIT Delhi)

Referral Code: ABSIRLIVE

1.

Sol. ¹²C. The same standard is used for all atomic, molecular, and formula weights.

2. 781

Sol. $2 \times 23 + 32 = 78u$ or 78 g/mol

3. 45.0 g

Sol. 1 mol H_2O contains = 18g 2.5 mol H_2O contains = 45g

4. 1.10 mole

Sol. Molecular Mass of Cu $(C_2H_3O_2)_2 = 181.5$ g/mol 181.5g of Cu $(C_2H_3O_2)_2$ contains = 1 mol Cu 200g of Cu $(C_2H_3O_2)_2$ contains = 1.10 mol Cu.

5. 1.20×10^{24} molecules

Sol. 18g water contains = 6.02×10^{23} molecules 36g water contains = 1.20×10^{24} molecules

6. (a) 3 mol Fe, 4 mol O

(b) 1 mol As, 5 mol Cl

(c) 1 mol Mg, 4 mol C, 6 mol H, 4 mol O

(d) 1 mol Cu, 1 mol S, 9 mol O, 10 mol H

Sol. No solution

7. (a) 1 mol Fe and 2 mol S

(b) 8.33 moles Fe = 16.7 mol S

(c) 0.533 kg S

Sol. (a) No solution

(b) Molecular Mass of FeS₂ = 120 g/mol
 120g FeS₂ contains = 1 mol Fe
 1000g FeS₂ contains = 8.33 moles of Fe
 moles of S = 2 × moles of Fe = 16.7 moles

(c) 120g of FeS₂ contains = 64 g S

1000g of FeS₂ contains =
$$\frac{64}{120} \times 1000$$

= 533.33g

= 0.533 kg

8. (a) $1.66 \times 10^{-27} \text{kg/atom}$

(b) $2.672 \times 10^{-26} \text{kg/atom}$

(c) $3.9746 \times 10^{-25} \text{kg/atom}$

Sol. (a) One hydrogen atom weighs = 1.66×10^{-24} g = 1.66×10^{-27} kg

(b) One oxygen atom weighs = $16 \times 1.66 \times 10^{-24}$

 $= 2.672 \times 10^{-23} g$

 $= 2.672 \times 10^{-26} \text{kg}$

(c) One uranium atom weighs = $238 \times 1.66 \times 10^{-24}$

 $= 3.9746 \times 10^{-22} g$

 $= 3.9746 \times 10^{-25} \text{kg}$

9. 28.57g Ca

Sol. Molecular Mass of Ca(NO₃)₂ = 164g/mol
28g nitrogen is combining with = 40g Ca
20g nitrogen is combining with = 28.57g Ca

10. 0.25 moles

Sol. 6.02×10^{23} atoms of H means 1mol-atoms of hydrogen

So, 4 mol atoms of H are present in

= $1 \text{mol } C_2 H_4 O_2$

1 mol atoms of H are present in

= $0.25 \text{ mol } C_2H_4O_2$

11. (a) 0.72g (b) 1.44×10^{22} atoms

Sol. (a) Mass of 1 mol $C_6H_{12}O_6 = 180g$ Mass of 4×10^{-3} mol $C_6H_{12}O_6 = 0.72g$

(b) 1 mol $C_6H_{12}O_6$ has = $6 \times 6.02 \times 10^{23}$ atoms of C 4×10^{-3} mol $C_6H_{12}O_6$ has = 1.44×10^{22} atoms of C

12. 5.01×10^{24} atoms

Sol. 12g carbon contains = 6.02×10^{23} atoms 100g carbon contains = 5.01×10^{24} atoms Yes, Avogadro's No. is a fundamental physical constant

13. (i) 18u, (ii) 44u, (iii) 16u

Sol. (i) $(2 \times 1) + 16 = 18u$

(ii) $(12 \times 1) + (2 \times 16) = 44u$

 $(iii)(12 \times 1) + (4 \times 1) = 16u$

14. (i) 6, (ii) 18, (iii) 1.806 × 10²⁴ molecules

Sol. (i) 1 mol $C_2H_6 \equiv 2$ mol C atoms 3 mol $C_2H_6 \equiv 6$ mol C atoms

(ii) 1 mol $C_2H_6 \equiv 6$ mol H-atoms

 $3 \text{ mol } C_2H_6 \equiv 18 \text{ mol H-atoms}$

(iii) 1 mol $C_2H_6 = 6.02 \times 10^{23}$ molecules 3 mol $C_2H_6 = 1.806 \times 10^{24}$ molecules

15. 2.004×10^{-23} g

Sol. One 12 C atom weighs = 12 a.m.u

=
$$12 \times 1.66 \times 10^{-24}$$
g
= 2.004×10^{-23} g

- (i) 3.13 × 1025 atoms (ii) 13 atoms
 (iii) 7.826 × 10²⁴ atoms
- **Sol.** (i) $1 \text{mol Ar} = 6.02 \times 10^{23} \text{ atoms}$ $52 \text{ mol Ar} = 3.13 \times 10^{25} \text{ atoms}$
 - (ii) Atomic mass of He = 4u 4u = 1 atom of He 52u = 13 atoms of He
 - (iii) Atomic mass of He = 4g/mol $4g = 6.02 \times 10^{23}$ atoms of He $52g = 7.826 \times 10^{24}$ atoms of He
- 17. (b)
- **Sol.** 1 amu = 1.66×10^{-24} g, wt. of one uranium atom = 238 amu = $238 \times 1.67 \times 10^{-24}$ g = 3.97×10^{-22} g
- 18. (a
- Sol. (a) 18g $H_2O \equiv N_A$ molecules $36g \ H_2O \equiv 2N_A$ molecules
 - (b) 44g $CO_2 \equiv N_A$ molecules 28g $CO_2 \equiv 0.63 N_A$ molecules
 - (c) $32g CH_3OH = N_A molecues$ $46g CH_3OH = 1.4 N_A molecues$
 - (d) 108g $\rm N_2O_5 = N_A$ molecues $\rm 58g~N_2O_5 = 0.54~N_A$ molecues Hence $\rm 36g~H_2O$ has maximum molecues
- 19. (c)
- **Sol.** Mass of 1 molecule of CO_2 = 44 amu = 44 × 1.66 × 10⁻²⁴ g = 7.304 × 10⁻²³ g

- 20. (b)
- **Sol.** 4.6×10^{22} atoms weigh = 13.8 g 6.02×10^{23} atoms weigh = 180.6 g
- 21. (a)
- **Sol.** 32g $O_2 = N_A$ molecules $16g O_2 = 0.5 N_A$ molecules $28g N_2 = N_A$ molecules $14g N_2 = 0.5 N_A$ molecules
- 22. (c)
- **Sol.** 18g H_2O contains = 1 mol molecules 90g H_2O contains = 5 mol molecules
- 23. (b
- **Sol.** $17g \text{ NH}_3 \equiv 6.02 \times 10^{23} \text{ molecules}$ $4.25g \text{ NH}_3 \equiv 1.505 \times 10^{23} \text{ molecules}$
- 24. (d
- **Sol.** $197g \text{ Au} = 6.02 \times 10^{23} \text{ atoms}$ $19.7 \times 10^{3}g \text{ Au} = 6.02 \times 10^{25}$
- 25. (c
- **Sol.** $2g H_2 = 6.02 \times 10^{23}$ molecules $1g H_2 = 3.0125 \times 10^{23}$ molecules