MS 221 — Homework Set (8)

(Integration Along Curves)

QUESTION 1

If the curve \mathcal{C} in \mathbb{R}^3 is **parametrized** by $\gamma:[0,1]\to\mathbb{R}^3:t\mapsto\begin{bmatrix}1\\2t\\3t^2\end{bmatrix}$, calculate the line integral $\int_{\mathcal{C}}xy\,dz$

QUESTION 2

If \mathcal{C} is the straight line in \mathbb{R}^3 which joins the point $\mathbf{p} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ to the point $\mathbf{q} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ calculate the line integral $\int_{\mathcal{C}} xy \, dz$.

QUESTION 3

Evaluate the line integral $\int_{\mathcal{C}} 3x \, dx - y^2 \, dy + dz$ where the curve \mathcal{C} in \mathbb{R}^3 is parametrized by

$$\gamma: [1, 3] \to \mathbf{R}^3: t \mapsto \left[egin{array}{c} 2t \\ 1-t \\ 2+t^2 \end{array} \right],$$

QUESTION 4

If the vector field $F: \mathbb{R}^3 \to \mathbb{R}^3$ and the curve C in \mathbb{R}^3 , which is parametrized by $\gamma: [-1, 1] \to \mathbb{R}^3: t \mapsto \gamma(t)$, are determined by the formulae

$$\mathbf{F}(x, y, z) = \begin{bmatrix} x - y^2 \\ -z \\ xyz^2 \end{bmatrix}$$
 and $\gamma(t) = \begin{bmatrix} t^2 \\ 2 - t \\ 4 \end{bmatrix}$

find the work done by F over the curve C.

QUESTION 5

If the vector field $\mathbf{F}: \mathbf{R}^3 \to \mathbf{R}^3$ and the curve \mathbf{C} in \mathbf{R}^3 , which is parametrized by $\gamma: [-3, 3] \to \mathbf{R}^3: x \mapsto \gamma(x)$, are determined by the formulae

$$\mathbf{F}(x, y, z) = \begin{bmatrix} xy \\ -yz \\ zx \end{bmatrix}$$
 and $\gamma(x) = \begin{bmatrix} x \\ \sqrt{9-x^2} \\ 2 \end{bmatrix}$

find the work done by F over the curve C.

Hint: You might consider reparametrizing the curve \mathcal{C} .

QUESTION 6

Consider the scalar field $\varphi: \mathbf{R}^3 \to \mathbf{R}: (x, y, z) \mapsto \varphi(x, y, z) := x(y^2 + z^2)$ and let $\mathbf{F}: \mathbf{R}^3 \to \mathbf{R}^3$ be the vector field $\mathbf{F} = \nabla \varphi$. If the curve \mathbf{C} in \mathbf{R}^3 is parametrized by

$$\gamma: [0, 1] \to \mathbf{R}^3: t \mapsto \left[\begin{array}{c} \cos \pi t^2 \\ \left(\frac{1}{1 + \sin^2 \pi t}\right) \\ t \end{array} \right]$$

find the work done by F over the curve C.

Hint: THINK before you rush off to calculate a line integral!

QUESTION 7

Evaluate the **iterated integral** $\int_0^1 \int_{y^2}^y 2xy \ dx \ dy$.

QUESTION 8

Sketch the region $\Omega := \{(x, y) \in \mathbb{R}^2\}$ which is determined by the inequalities:

$$x-2 \le y \le 2x-x^2$$

and hence write $\int \int_{\Omega} f(x, y) dA$ as an **iterated integral**.

QUESTION 9

Sketch the region $\Omega := \{(x, y) \in \mathbb{R}^2\}$ which is determined by the inequalities:

$$\frac{1}{x} \le y \le 1 - \frac{1}{x}$$

2

and hence **evaluate** $\int \int_{\Omega} \frac{2y}{x^2} dA$.