Ministério da Educação

Secretaria de Educação Profissional e Tecnológica

Instituto Federal de Educação, Ciência e Tecnologia de Goiás

Departamento das Áreas Acadêmicas – Campus Anápolis

Professor: Fabiana Pimenta de Souza

EXERCÍCIOS SOBRE MATRIZES E DETERMINANTES

1) Dada a matriz
$$\begin{bmatrix} 2 & 0 & 8 \\ 5 & -2 & 3 \\ 1 & 5 & 0 \end{bmatrix}$$
, calcule:
a) $a_{11} + a_{23} + a_{31}$ b) $a_{21}.a_{32}$

- c) $a_{13} + a_{33}$

- Construa as matrizes: 2)
 - a) $A = (a_{ii})_{3\times 2}$, tal que $a_{ii} = i + j$;
 - b) $A = (a_{ij})_{2\times 3}$, tal que $a_{ij} = i^2 + 2$;
 - c) $A = (a_{ij})_{4\times 2}$, tal que $a_{ij} = (i+j)^2 10$;
 - d) $A = (a_{ij})_{3\times 3}$, tal que $a_{ij} = \begin{cases} i+j, i=j\\ 10, i \neq j \end{cases}$;
 - e) $A = (a_{ij})_{3\times 3}$, tal que $a_{ij} = \begin{cases} 3i + 2j, i = j \\ i^2 2, i > j \end{cases}$
- Determine $x \in y$, tal que: 3)

a)
$$\begin{bmatrix} x^2 & y \\ 1 & x \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 1 & 2 \end{bmatrix}$$

b)
$$\begin{bmatrix} x+y & 2x \\ 1 & -1 \end{bmatrix} + \begin{bmatrix} 3 & 1 \\ 1 & -2x \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 2 & 0 \end{bmatrix}$$

c)
$$\begin{bmatrix} x+y \\ 2x-3y \end{bmatrix} - \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 9 \\ 0 \end{bmatrix}$$

d)
$$\begin{bmatrix} x^2 & 5y \\ 2x & 6 \\ x & y-1 \end{bmatrix} - \begin{bmatrix} 4 & x \\ y & 4 \\ 1 & 2y \end{bmatrix} = \begin{bmatrix} 0 & 33 \\ -3 & 2 \\ 1 & -8 \end{bmatrix}$$

R.:
$$x = 2 \text{ e } y = 7$$

4) Sabendo que
$$A = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$
 e $B = \begin{bmatrix} -5 \\ 4 \\ -1 \end{bmatrix}$, calcule X , de modo que $X - 3A + B = 0$.

$$\mathbf{R.:} \quad X = \begin{bmatrix} 14 \\ -10 \\ 4 \end{bmatrix}$$

5) Dados
$$A = \begin{bmatrix} 1 & 3 \\ 5 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix}$ e $C = \begin{bmatrix} 0 & -3 \\ 1 & -2 \end{bmatrix}$, calcule a matriz X , de

$$X - 2A = B$$

a)
$$X-2A=B$$

$$\mathbf{R.:} \ X = \begin{bmatrix} 5 & 4 \\ 14 & -1 \end{bmatrix}$$
b) $2X-A=3B-C$

$$\mathbf{R.:} \ X = \begin{bmatrix} 5 & 0 \\ 8 & 2 \end{bmatrix}$$

b)
$$2X - A = 3B - C$$

R.:
$$X = \begin{bmatrix} 5 & 0 \\ 8 & 2 \end{bmatrix}$$

$$c) 2X - 2B = X - C$$

R.:
$$X = \begin{bmatrix} 6 & -1 \\ 7 & 4 \end{bmatrix}$$

$$X + 2C = B - \frac{1}{2}A$$

6) Dados
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$
 e $B = \begin{bmatrix} 6 & -2 \\ 2 & -6 \end{bmatrix}$, resolva o sistema:
$$\begin{cases} X - 2Y = 3A - 2B \\ 2X + Y = A + B \end{cases}$$

R.:
$$X = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$
 e $Y = \begin{bmatrix} 4 & -2 \\ 2 & -10 \end{bmatrix}$

7) Dado
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$
, calcule:

a)
$$A^2$$

8) Determine
$$X$$
, tal que $\begin{bmatrix} 1 & 1 & 0 \\ 3 & -2 & 0 \\ 5 & 0 & 1 \end{bmatrix} X = \begin{bmatrix} 5 \\ 0 \\ 8 \end{bmatrix}$. **R.:** $X = \begin{bmatrix} 2 \\ 3 \\ -2 \end{bmatrix}$

R.:
$$X = \begin{bmatrix} 2 \\ 3 \\ -2 \end{bmatrix}$$

9) Dados
$$A = \begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix}$$
 e $B = \begin{bmatrix} -8 \\ -4 \end{bmatrix}$, determine a matriz X , tal que $AX = B$.

10) Calcule, caso exista,
$$A^{-1}$$
:

a)
$$A = \begin{pmatrix} 3 & 1 \\ 0 & 4 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$ c) $A = \begin{pmatrix} 4 & 2 \\ 6 & 3 \end{pmatrix}$

b)
$$A = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$$

c)
$$A = \begin{pmatrix} 4 & 2 \\ 6 & 3 \end{pmatrix}$$

11) Dado
$$A = \begin{pmatrix} 3 & -1 & 2 \\ -1 & 3 & 0 \\ 2 & 0 & 0 \end{pmatrix}$$
, determine A^{-1} . **R.:** $A^{-1} = \begin{pmatrix} 0 & 0 & 1/2 \\ 0 & 1/3 & 1/6 \\ 1/2 & 1/6 & -2/3 \end{pmatrix}$

12) Calcule
$$x$$
 e y , sabendo que $\begin{pmatrix} 3 & x \\ 5 & 2 \end{pmatrix}$ e $\begin{pmatrix} 2 & -1 \\ -5 & y \end{pmatrix}$ são matrizes inversas.

R.:
$$x = 1$$
 e $y = 3$

13) Seja
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}$$
 e $B = \begin{pmatrix} 2 & -1 \\ x & y \end{pmatrix}$ duas matrizes. Se B é inversa de A , calcule $x+y$.

14) Calcule
$$x \in y$$
, onde:

a)
$$\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 9 \\ 3 \end{pmatrix}$$

R.:
$$x = -7 \text{ e } y = -5$$

b)
$$\begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

15) Dadas as matrizes
$$A = \begin{bmatrix} 5 & -2 \\ -1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & -1 \\ 6 & -8 \end{bmatrix}$ e $C = \begin{bmatrix} -5 & 1 \\ 0 & -3 \end{bmatrix}$, calcule:

a)
$$2C - 3B$$

b)
$$(A+B)C$$

c)
$$A^tB$$

d)
$$(BC)^t$$

e)
$$B^2$$

f)
$$X$$
, de modo que $2X - A = 3C$

g)
$$X$$
, de modo que $BX = I$

h)
$$X$$
, de modo que $AX = B$

16) Dadas as matrizes
$$A = \begin{bmatrix} x+y & 3 \\ 0 & 2 \\ 2 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ x-y & 4 \end{bmatrix}$ e $C = \begin{bmatrix} 10 & 14 \\ 6 & 8 \\ 14 & 20 \end{bmatrix}$, determine

os valores de x e y para que AB = C.

- () Duas matrizes nulas são sempre iguais.
- () Existe elemento neutro na multiplicação de matrizes.
- ()Toda matriz possui inversa.

() Existe o produto
$$\begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 & 5 \\ 3 & -1 \end{pmatrix}$$
.

() A equação
$$\begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 não admite solução.

18) Seja
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, determine $(A + A^{-1})^3$.

19) Determine os valores de
$$m$$
, para os quais a matriz $M = \begin{pmatrix} 1 & m \\ m & 2 \end{pmatrix}$ não seja inversível. **R.:** $\pm \sqrt{2}$

20) Encontre os valores de
$$k$$
, para que a matriz $A = \begin{pmatrix} 1 & 0 & -1 \\ k & 1 & 3 \\ 1 & k & 3 \end{pmatrix}$ não seja inversível.

R.:
$$k = 1$$
 e $k = -4$

21) Mostre que
$$\begin{vmatrix} x & y-x \\ y & x-y \end{vmatrix} = x^2 - y^2 \pm \sqrt{2}$$
.

$$\begin{vmatrix} x & 0 \\ 0 & x \end{vmatrix} + \begin{vmatrix} 0 & y \\ y & 1 \end{vmatrix} = \begin{vmatrix} x & y+1 \\ y & x+1 \end{vmatrix}.$$

R.: y = x

23) Calcule
$$\begin{vmatrix} 2 & \log_5 5 & \log_5 5 \\ 5 & \log_5 125 & \log_5 25 \\ 8 & \log_3 27 & \log_3 243 \end{vmatrix}$$
. **R.:** 0

24) Resolva
$$\begin{vmatrix} x & -1 & 3 \\ -4 & x & 5 \\ 6 & -3 & 7 \end{vmatrix} = 0$$
. **R.:** $x = 2$ e $x = -11/7$

25) Calcule
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{vmatrix}$$
. **R.:** 1

26) Dado
$$A = \begin{vmatrix} 3 & 4 & 6 & 0 \\ 1 & 0 & 2 & 1 \\ 2 & -1 & 4 & 2 \\ 5 & 3 & 10 & 3 \end{vmatrix}$$
 e $B = \begin{vmatrix} 1 & 3 & 4 & 2 \\ 0 & -1 & 4 & 1 \\ 0 & 2 & -3 & 1 \\ -1 & -3 & -4 & 1 \end{vmatrix}$. Calcule $A + 2B$. **R.:** -30

27) Calcule
$$\begin{vmatrix} 1 & 1 & 0 & x \\ x & 1 & x & 0 \\ x & x & 1 & 0 \\ x & 1 & 0 & 1 \end{vmatrix}$$
. **R.:** $(x^3 - 1)(x - 1)$

28) Determine o cofator do elemento
$$a_{23}$$
 da matriz $A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$

29) Calcule detM, onde:

a)
$$M = \begin{pmatrix} 1 & 3 & 2 & 0 \\ 3 & 1 & 0 & 2 \\ 2 & 3 & 0 & 1 \\ 0 & 2 & 1 & 3 \end{pmatrix}$$
 R.: 48

b)
$$M = \begin{pmatrix} 0 & a & b & 1 \\ 0 & 1 & 0 & 0 \\ a & a & 0 & b \\ 1 & b & a & 0 \end{pmatrix}$$
 R.: $a^2 + b^2$

c)
$$M = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & a & 1 & 3 & 1 \\ 0 & 0 & b & 2 & 3 \\ 0 & 0 & 0 & c & 2 \\ 0 & 0 & 0 & 0 & d \end{pmatrix}$$

d)
$$M = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 2 & -2 & 1 \\ 3 & 3 & 4 & 1 \\ 4 & 5 & 7 & 6 \end{pmatrix}$$

30) Prove que:

a)
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & r & r^2 & r^3 \\ 1 & r^2 & r^3 & r^4 \\ 1 & r^3 & r^4 & r^5 \end{vmatrix} = 0$$
 b)
$$\begin{vmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{vmatrix} = a(b-a)(c-b)(d-c)$$

31) Assinale V ou F.

- () $\det(A+B)=\det A+\det B$.
- () $\det A^t = \det A$.
- () $(\det A).(\det A^{-1})=1.$
- () $\det(A.B) = \det A. \det B.$
- () $(\det A) \cdot (\det A^t) = (\det A)^2$.