faithful on p_r^{Mp} and consists of $T^{(r)}$ -invariant elements, it follows that:

- (i) $P\sigma(A) \cap i\mathbb{R} = P\sigma(A^{(r)}) \cap i\mathbb{R}$.
- (ii) $\ker(i\alpha A) \subset p_r M_* p_r$ for all $\alpha \in \mathbb{R}$.
- (iii) The semigroup $T^{(r)}$ is relatively compact in the weak operator topology and therefore strongly ergodic.
- (c) Similarly, let R be an identity preserving pseudo-resolvent with values in M_\star on D = $\{\lambda \in \mathbb{C} : \operatorname{Re}(\lambda) > 0\}$ which is of Schwarz type. It follows as in (b) that $\operatorname{Fix}((\lambda \mathrm{i}\alpha) \operatorname{R}(\lambda))$ is contained in $\operatorname{p_r} M_\star \operatorname{p_r}$ for all $\lambda \in D$ and $\alpha \in \mathbb{R}$, where $\operatorname{p_r}$ is the associated recurrent projection.

We now give a characterization of strong ergodicity of semigroups which are identity preserving and of Schwarz type. For this we need that the Cesàro means $\,C(s)\,$, where

$$C(s)x = \frac{1}{s} \int_{0}^{s} T(t)xdt$$
 (x \in M, 0 < s \in R)

are Schwarz maps. We omit the simple calculation (compare D-I, Thm. 2.1).

<u>Proposition</u> 3.3. Let \mathcal{T} be an identity preserving semigroup of Schwarz type on the predual of a W*-algbra M . Then the following assertions are equivalent:

- (a) T is strongly ergodic on M_{\star} .
- (b) $\sigma(M,M_*)-\lim_{s\to\infty} C(s)'p_r = 1$.
- (c) $s*(M,M_*)-lim_{s\to\infty} C(s)'p_r = 1$.

<u>Proof.</u> Suppose that (a) holds. Since Fix(T) separates Fix(T') (see [Krengel (1985), Chap.2,Thm.1.4]), the fixed space of T' is non trivial, hence $p_r \neq 0$. Let $0 \leq \psi \in M_\star$, then

$$\psi_{\mathcal{O}} := \lim_{s \to \infty} C(s) \psi \in Fix(T)$$

and $s(\psi_0) \leq p_r$.