Index to the Distributions of Mathematical Statistics

Frank A. Haight*

(February 15, 1960)

A fairly complete index of references to results on statistical distributions published before January 1958 is presented. The material given for each distribution is a list of references relating to: (a) functions and constants which characterize the distribution, (b) derived distributions, (c) estimation, (d) testing statistical hypotheses, (e) miscellaneous. The distributions covered are characterized as normal, type III, binomial, discrete, distributions over (a,b), distributions over (a,∞) , distributions over $(-\infty,\infty)$, miscellaneous univariate, miscellaneous bivariate, and miscellaneous multivariate. The number of entries varies from one or two for less well-known distributions to several hundred for the normal distribution. This index should serve to eliminate unnecessary derivation of results already in the literature.

I. Introduction

1. Background

The author began this index in April 1954 with the limited intention of supplying his students at Auckland University College, New Zealand, with a small reference pamphlet. It appeared that no textbook of mathematical statistics contained a complete treatment of all the distributions that a student might encounter. Thus an index was needed to facilitate selection of the appropriate book. In 1955 the collected results were mimeographed, and during the next three years several hundred copies of this early version were sent out in response to

Then, at the invitation of the National Bureau of Standards, the author spent the summer of 1958 at the Bureau's Statistical Engineering Laboratory supplementing and editing the index for publication

in the present form.

In the course of this work, a number of additional sources have been included and the journal coverage has been extended through 1957. Information supplied by readers of the original version has been incorporated, and various mistakes have been corrected.

2. Organization

The material given under each distribution consists of a number of *entries*, most of which are provided with one or more references. In the case of the normal distribution with mean m and variance v (No. 1.1) the number of entries is fairly large, and therefore the standard order is most easily seen:

- A. Functions and parameters
- B. Derived distributions
 - (a) of linear quantities
 - (b) of quadratic quantities

C. Estimation (a) point

- (b) interval
- D. Testing statistical hypotheses
 - (a) by linear statistics
 - (b) by quadratic statistics
- E. Miscellaneous

These categories are by no means always used for less important distributions. With the limited information available, a complete listing of the headings in such cases would be wasteful as the majority would be empty. Keeping in mind the above order, it should not be difficult to find the required entry.

Occasionally an entry will be indented; such an entry should be read as a continuation of the pre-

ceding one.

References

The references to the literature are of the following types:

A. Coded.

(a) Journals, e.g., [c]4:17, which refers to page 17 of the 4th volume of the journal designated as [c] in table 1.

(b) Books, e.g., [12]53, which refers to page 53

of the book designated as [12] in table 2.

B. Uncoded, e.g., Trans. Am. Math. Soc. 17:382, conforming to the usual volume and page reference style.

C. Reviews

(a) Mathematical Reviews is designated by MR,

(b) Zentralblatt für Mathematik is designated

MR and Z references will in no case offer a review of a paper appearing in coded journals and therefore may be considered to indicate publications in obscure (from the point of view of the present work) sources. Moreover, every effort has been made to avoid MR or Z references to an uncoded paper quoted and very few duplications of this sort should be found.

^{*}Present address: Institute of Transportation and Traffic Engineering, University of California, Los Angeles, Calif.

The choice between direct (i.e., coded or uncoded) and indirect (i.e., review) references is frequently available. The one that was actually inspected is given. All direct references were collected before the search of MR and Z. Consequently, each entry corresponding to a direct reference is based on the paper, and never its review, and each entry corresponding to an indirect reference is based on the review and never the paper.

As it is difficult to distinguish priority in a large number of references, a chronological table of the coded and review references is provided. This table also shows what volumes have been systematically

searched in the preparation of this index.

4. Criteria for Inclusion

A. Distributions. As a general principle, a distribution is included if its density (or probability) function is a known, explicit function. The following exceptions may be noted:

(a) Certain families of distributions are mentioned, e.g., Pearson and Koopman, whose densities

are specified only implicitly.

(b) Certain distributions are mentioned in terms of their cumulative probability function or characteristic function.

B. Entries. The general principle governing the selection of entries is that each entry must exhibit a property of the distribution in question. Exceptions to this rule generally take one of the following

(a) Historical information about well-known distributions, although not systematically sought, may in some circumstances be included.

(b) Important applications, such as those which led to the discovery of the distribution, are usually

supplied.

(c) Bibliographies.

Reference to tables has been excluded in almost

It is clear that applications must be severely limited. With a slight exaggeration, several whole branches of statistics may be considered applications of some particular distribution, as exhibited for example in the following table:

Distribution

Application

Binomial Normal Lognormal Poisson Deterministic

Quality control Analysis of variance Probit analysis Random processes Applied mathematics

5. Relationship Between Distributions

In some cases (such as 2.1 and 2.3) the relationship between two distributions is asserted in their designation. In others (such as 5.3 and 5.15) a very close connection is not pointed out. In most cases, however, known relationships are simply listed among the miscellaneous properties of both distributions. In choosing between these procedures, an attempt has been made to follow current statistical

usage and terminology.

Very similar principles have been used to decide for or against independent listing. If one distribution is relatively important and its equivalent much less so (for example Chi-square and Erlang), they are listed together. In other cases independent reputation seems to justify independent categories.

It must certainly be supposed that many of the trivial distributions of section 8 could be included in some larger category or even combined with each other. Such a systematic classification which would exhibit all connections, even if worth doing, is certainly removed from the purpose of this index,

and has hardly been attempted.

For example, it is well known that no. 8.1 contains as special cases all the distributions of sections 1 and 2; very likely it also contains dozens of others listed. Nevertheless, to indicate this situation by a system of subheadings, applied to all entries, would quickly undermine the utility of the whole work, since it is the special case, rather than the general principle, that occurs in statistical practice.

6. Notation and Terminology

In univariate distributions the stochastic variable is always denoted by x, in bivariate by x and y and in multivariate by x_1, \ldots, x_k , quite regardless of the domain of definition. This usage departs from that of certain authors in two respects:

(a) The letter n is not used for a discrete variable.

(b) The statistic obeying a particular distribution is not used in the density. For example in Student's "t" distribution, we write

$$\left(1 + \frac{x^2}{\nu}\right)^{-\frac{1}{2}(\nu+1)}$$

$$\left(1 + \frac{t^2}{\nu}\right)^{-\frac{1}{2}(\nu+1)}$$

rather than

$$\left(1+\frac{t^2}{\nu}\right)^{-\frac{1}{2}(\nu+1)}$$

This practice is justified not only by the need for uniformity but by the belief that the alternative is wasteful of the alphabet: t, F, z, D, Similarly we prefer to call distributions by the names of their discoverers (or reputed discoverers) rather than by the symbol used to denote some statistic found to satisfy them. Of course, all known designations are found in the final index.

In many books the expression f(x) is employed to denote a probability density. However f is commonly used in mathematics for an arbitrary function. D(x) has therefore been selected as a more distinctive means of representing this special

In the discrete case D(x) replaces the probability distribution, which is often written p_n . C(x) is the cumulative function.

When we come to the characteristic function the situation is a little more complicated. Using t for

the variable, statistical works generally have to define several symbols for characteristic functions of various quantities, for example:

 χ (t)=characteristic function of distribution of x

 ϕ (t)=characteristic function of distribution of $n\bar{x}$

 ξ (t)=characteristic function of distribution of \bar{x} , etc.

As we will be dealing with many different statistics and possibly their characteristic functions, it is more economical and systematic simply to abbreviate by the following system: Ch(x), $Ch(n\overline{x})$, $Ch(\overline{x})$, etc. Thus it is not necessary to select a new letter to denote the characteristic function of each new statistic.

However, this practice leads to equations like

$$Ch(x) = e^{-\frac{1}{2}vt}$$
,

which may be offensive to some, however clear the meaning. Such readers are advised to interpret the equality sign as an abbreviation for the verb "is."

This interpretation has another important connection with the notation being used. A variety of verbs has been employed to describe the relation between a stochastic variable and its distribution, for example:

x obeys the normal distribution with mean m

and variance v,

x follows the normal distribution with mean m and variance v,

x is a normal variable with mean m and variance v.

It seems equally felicitous to assert this relationship by the convenient abbreviation

$$D(x) = N(m,v)$$
,

which may, if preferred, be regarded not as a mathematical equation but as shorthand. In any case it makes possible an unambiguous condensation of the facts.

Similar remarks apply to the expressions MGF(x), FD(p) which are used to mean moment generating function of the distribution of x and fiducial dis-

tribution of the parameter p.

Another application of this use of the equality sign relates to the symbols C.—R.(p), MLE(p), MME(p), UMVUE(p), BANE(p), and is exemplified by the following:

$$C.-R.(\sigma) = v/2n$$

$$MLE(v) = s^2$$

$$UMVUE(v) = ns^2/(n-1).$$

For the meanings of these and other abbreviations, the reader is referred to the following list:

D(x)—Density or probability function of a stochastic variable x

C(x)—Cumulative distribution function of x

Ch(x)—Characteristic function of distribution of x

MGF(x)—Moment generating function of distribution of x

PGF(x)—Probability generating function of x

FD(p)—Fiducial distribution of a parameter p

m—Mean of a population

 \bar{x} —Mean of a sample

 $v = \sigma^2$ —Variance of a population

s²—Variance of a sample

(i.e.,
$$s^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 / n$$
)

 μ_k —kth central moment of a population

 α_k —kth moment about the origin for a population

K_k—kth cumulant

r—Correlation coefficient in a sample

 ρ —Correlation coefficient in a population

ξ—Median

GM—Geometric mean

HM—Harmonic mean

n—Number of items in a sample

 β —Slope of regression line in a population

b—Slope of regression line in a sample

 ${\sim}\text{--Asymptotic (=large sample)}$

 β_1, β_2 —Pearson's betas

C.—R.(p)—Cramér-Rao lower bound for variances of estimates of the parameter p

MLE(p)—Maximum likelihood estimate of the parameter p

MME(p)—Minimax estimate of the parameter p

 $M\chi^2E(p)$ —Minimum Chi-square estimate of the parameter p

UMVUE(p)—Uniformly minimum variance unbiased estimate of the parameter p

BANE(p)—Best asymptotically normal estimate of the parameter p

LR—Likelihood ratio

L—The likelihood function Π $D(x_j)$

Seq—Sequential

OC—Operating characteristic

BCR—Best critical region

Q—A quadratic form

E—Expectation

The author wishes to thank Churchill Eisenhart for arranging his visit to the National Bureau of Standards, and Lola S. Deming for helpful advice on the typescript and for invaluable assistance in readying final copy for printed publication. Also, he is grateful to Dean L. M. K. Boelter (acting on behalf of the Regents of the University of California) for granting two-months' leave from the Institute of Transportation and Traffic Engineering.

Finally, it is too much to hope that a work of this character and magnitude is entirely free from error. The author will welcome notification of necessary

corrections, and of important omissions.

II. Distributions

1. Normal

1.1. Normal (m, v)

A. Functions and Parameters

 $D(x) = (1/\sqrt{2\pi v}) e^{-(x-m)^2/2v}$: [6]108, [5]34, [4]57, [8]91, [9]243.

 $Ch(x) = \exp(-\frac{1}{2}vt^2 + mit)$: [1]211, [5]62.

 $MGF(x) = \exp(\frac{1}{2}vt^2 + tm)$: [6]112.

Derivatives etc. [d]2:181.

Transformations: [c]39:290.

Obtained from Pearson's differential equation: [4]72.

Called Type VII: [11]45.

Limit of binomial: [4]58.

Variance of \bar{x} and s: [3]42.

 $Var(m_3) = 6v^3n^{-1}$, $var(m_4) = 96v^4n^{-1}$ and many other constants: [2]224.

Calculation of constants and numerical examples: [11]88.

Mean deviation $E|x-m| = (2v/\pi)^{\frac{1}{2}} = .79788\sigma$:

Probable error = $.6745\sigma$: [4]58.

 $\alpha_{2k} = (2k-1)v^{k}$: [5]XII, [8]98.

Quasi-range: [d]24:603.

B. Derived Distributions

 $D(\overline{x}) = N(m, vn^{-1}):$ [9]270, [6]10.2, [2]243, [4]100, [w]1:93.

 $D(\bar{x}/s)$: [3]139.

D[$(n-1)^{\frac{1}{2}}s^{-1}(\overline{x}-m)$]=Student (n-1): [6]217,[5]98, [2]239, [4]112, [w]1:74.

D[s⁻¹(n-1) $\frac{1}{2}$ \bar{x}], where x_i are samples from N(m_i, σ); m_i not all equal: [d]19:406.

 $D[(\bar{x}-m)/range]: [d]22:469.$

D (range) etc.: MR13:762.

 $D(\Sigma k_1 X_1) = N(\Sigma k_1 m_1, \Sigma k_1^2 V_1)$: [4]99, [8]92.

 $[(\mathbf{x}-\mathbf{m}/\sigma)]^2$ is Chi-square, $(\mathbf{x}/\sigma)^2$ is noncentral Chi-square, $(\mathbf{x}-\mathbf{m})^2$ is Type III, product of normal variables is Bessel, quotient \sim normal for large \mathbf{m}/σ : [18]1–150.

$$D\left[\frac{m_1 - m_2(x_1/x_2)}{\sqrt{v_1 + v_2(x_1^2/x_2^2)}}\right] = N(0,1), \quad m_2 \gg \sigma_2: \qquad [2]253.$$

$$D(\overline{x}_1 \! - \! \overline{x}_2) \! = \! N(m_1 \! - \! m_2, \, v_1 \! / \! n_1 \! + \! v_2 \! / \! n_2) \! : \hspace{0.5cm} [4] 100.$$

$$D\begin{bmatrix} \overline{x}_{1} - \overline{x}_{2} \\ \overline{v}(\frac{1}{n_{1}} + \frac{1}{n_{2}}) \end{bmatrix} = N(0,1) \text{ when } m_{1} = m_{2} \text{ and } v_{1} = v_{2} = v:$$

$$[6] 263.$$

$$\begin{split} & D \bigg[\frac{(\overline{x}_1 - \overline{x}_2) - (m_1 - m_2)}{(n_1 s_1^2 + n_2 s_2^2)^{\frac{1}{2}}} \bigg(\frac{n_1 + n_2 - 2}{n_1^{-1} + n_2^{-1}} \bigg)^{\frac{1}{2}} \bigg] \\ &= Student \ (n_1 + n_2 - 2) \colon \ [4]112, \ [3]109, \ 112, \ [5]98, \\ & [c]29.350, \ [c]33.252, \ MR8.42. \end{split}$$

$$\begin{array}{l} D\bigg[\bigg(\frac{n_1+n_2-2}{2}\bigg)\bigg(\frac{n_1(\overline{x}_1-m_1)^2+n_2(\overline{x}_2-m_2)^2}{n_1s_1^2+n_2s_2^2}\bigg)\bigg]\\ = &\mathrm{Snedecor}\;(2,n{-}2),\,\mathrm{confidence\;ellipse} \colon\quad [4] 132. \end{array}$$

 $D(k^{th} \text{ value from top}):$ [1]374, [d]25:565.

D(smallest sample value)=No. 8.40: [g]42:408.

 $D[\frac{1}{2}v^{-1}(x-a)] = Gamma(\frac{1}{2}):$ [10]150.

D(HM): MR4:164.

 $D(\sqrt{x^2+y^2})$, $D(\sqrt{x^2+y^2+z^2})$ in special circumstances: MR16:377.

 $D(\Sigma x_i^2) \colon \hspace{1cm} [\mathit{l}] 3{:}353.$

$$D(\chi^2) = D\left(\sum \frac{x_1 - m_1}{\sigma_1}\right)^2 = \chi^2(n):$$
 [6]10.3.

 $D(s^2) = Type III (n/2v, \frac{1}{2} n): [d]5:281, [6]10.3.$

D[(1/n) Σ (x₁-x)²]=Type III [($\frac{1}{2}$ nv⁻¹, $\frac{1}{2}$ (n-1)]: [6]10.4.

D(s) for n=2,3: [c]11:277.

D(s/ \overline{x}), Coefficient of variation: [d]7:129, [a]94: 564, [a]95:695.

D(range/s): [d]17:366, [c]31:20.

D[$(2s^2)^{-\frac{1}{2}}$], "precision constant"=Type V, moments, etc.: [d]3:20, [a]97:132.

 $D(logs^2)$: [b]8:128.

 $D(ns^2v^{-1}) = \chi^2(n-1)$: [3]115

For unequal v,

 $\begin{array}{l} D[n_1(n_2-1)v_2s_1^2/n_2(n_1-1)v_1s_2^2] = Snedecor(n_1-1,\,n_2-1) \colon \\ [4]115,\,[10]197. \end{array}$

Testing and confidence intervals: [d]13:371.

Power function: [d]17:182.

For equal v

 $D(n_1s_1^2v^{-1}+n_2s_2^2v^{-1})=\chi^2(n_1+n_2-2),$

 $D\!\!\left(\frac{1}{2}\log\frac{n_1(n_2\!-\!1)s_1^2}{n_2(n_1\!-\!1)s_2^2}\!\right)\!\!=\!\!Fisher\ (n_1\!-\!1,\,n_2\!-\!1)\!:$ [10]198.

 $D(v^{-1}\Sigma (n_1-1)s_1^2) = \chi^2$: [4]116.

D(variance ratio): [k]11:136.

Distribution of various statistics from k normal populations with common variance: [e]17:2.

Ranking variances: [q]51:621.

Distribution of many quantities in a wide variety of J. Soc. Stat. Paris 96:262.

D(various Q): MR13:142.

[2]238. MR8:161. $D(\overline{x},s)$:

 $D(b_2)$ for n=4 is hypergeometric: [c]25:411.

 $D(b_1)$ for n=4 is hypergeometric: [c]25:207, [c]33:68.

[d]21:100.D(midrange):

D(range): [c]17:364, [c]18:173, [c]24:404, [c]39:130.

Quasi-range: [d]28:179.

D(r): [b]15:193.

[d]26:114. $D(\xi)$:

D(Q): MR22:60.

 $D(x_1x_2)$: [d]7:1, [d]18:265.

 $D(x_1, \ldots, x_n)$: [4]98.

 $FD(m) = N(\bar{x}, vn^{-1}): [c]30:401, 414, [p]17:231.$

 $FD[n^{\frac{1}{2}}s^{-1}(\overline{x}-m)] = Student(n-1):$

ests: [3]98, [e]33:173, [n]5:90, [d]9:279, [k]6:395. Tests:

 $FD(m, \sigma)$: [3]89, [k]6:395, [d]10:68.

 $FD(1/\sigma) = Helmert (n-1, 1/s\sqrt{n})$: [3]89.

A priori distributions of m and $1/\sigma$: MR9:48.

Ranking means: [t]7:131.

C. Estimation

 $C.-R.(m)=vn^{-1}$, i.e. \bar{x} efficient: [1]483, [4]135, [3]20, [y]11:182.

 $\operatorname{Var}(\overline{x}) \leq \operatorname{var}(\xi)$: [4]92.

 $UMVUE(m) = \overline{x}$: [3]51, [t]4:167.

 $\overline{\mathbf{x}}$ unbiased: [p]7:150.

Minimax estimates of m: [d]21:218, [d]22:28.

Best "density unbiased" estimate of m: [d]25:399.

~efficiency of ξ is $2/\pi = .6366$: [1]490, [u]22:706.

Estimation of m when it must be integral, etc: [b]12:192.

Mean of kth values from top and bottom has ∼efficiency zero: [1]490.

 $C - R \cdot (\sigma) = v(2n)^{-1}$, hence s is efficient:

Efficiency of estimates of σ : [c]37:182.

In estimating σ .

 $\sqrt{\frac{1}{2}n}\frac{\Gamma(\frac{1}{2}n)}{\Gamma[\frac{1}{2}(n+1)]}\sqrt{\frac{1}{n}\Sigma(x_t-m)^2}$ is more efficient than

[2]224.

$$\sqrt{\frac{1}{2}} \frac{\Gamma[\frac{1}{2}(n-1)]}{\Gamma(\frac{1}{2}n)} \text{ s:} \qquad [1]484.$$

C.-R. (σ/m) : [e]8:204.

 $[n/(n-1)]s^2$ unbiased for v: [p]7:152.

Estimation of σ for industrial quality control: [g]49:375.

Estimation of σ from percentiles: [i]40:85.

Estimation of v and σ : [d]18:584, [b]1:78.

 $C.-R.(v)=2v^2n^{-1}$, hence s^2 efficient:

 $MLE(v)=s^2$: [6]10.3.

MLE(v) depends on whether m known: [3]34.

Estimation of v: [e]12:57, [i]40:85.

In estimating v, \sim efficiency of $s^2 = +1$:

If m constant, s^2 not sufficient: [3]11, [4]136.

In estimating v, ~efficiency of mean deviation = .876: [3]7.

Unbiased estimates: A. M. S. Translation No. 98.

Closest estimates of m,v: [u]33:45.

Unbiased estimation of mean absolute deviation: MR13:367.

In estimating m,v ~variance-covariance matrix: [4]142.

 \bar{x} , s² are moments estimates of m,v: [1]498.

 \bar{x} , $[n/(n-1)]s^2$ are \sim efficient: [1]494.

 $MLE(v,m) = \overline{x}, s^2$: [1]504, [6]156, [3]20, 34, [4]132.

 \bar{x} , s² joint sufficient: [3]11, [4]136, [e]17:211, [i]38:181.

Estimation of m, σ : [d]17:386, [e]10:321, [e]8:12.

Estimation: [c]35:186.

Minimum χ^2 estimation: [c]11:262.

MLE from censored sample: [i]32:124.

Censored sample: [c]39:260, [c]43:225, MR14:569,MR15:241.

Estimation of m^2 : [u]45:214, [d]17:43

If v known, confidence regions for m are $\bar{x} \pm k_p v^{\frac{1}{2}} n^{-\frac{1}{2}}$, where k_p are the p% values of the normal: [1]514.

Confidence intervals for m: [4]130, [6]224, [10]189.

Seq. confidence intervals for m: [d]18:427, [b]19: 133.

Confidence intervals for v: [4]131, [6]226.

Interval estimation of v and σ : [e]6:117.

Confidence limits for v_1/v_2 : [4]131. Confidence limits for $m_1 - m_2$ with same v: [4]130. Interval estimation of m₁-m₂ (Behren's Problem): [3]91, [d]18:601, [d]14:35, [d]15:430, [d]20:616, [d]21: 507, [e]4:39, 108, [d]24:390 [p]7:232. Confidence limits on m and s: [e]2:13, [o]8:83.Confidence intervals for m, v: [6]227, [3]79.

Tolerance limits: [d]13:398, [d]17:208, (\sim) [d]17:238, [d]27:171, [t]1:164.

D. Testing

Testing $m_1 > m_2$: [d]14:149.

Tests on m: |6|259.

Unbiased regions for testing $m_1 = m_2$: [3]320.

Power function of $m \ge m_0$: [3]305.

Test of m using range in place of s: [d]17:71.

Hypotheses on m: [1]533, [4]149.

Tests based on (rectangular a priori) distributions of m and v: Z18:158.

Seq. tests on m: [d]16:171, [e]10:364, 368, [b]9:250,[c]37:334.

Control charts on m: [b]16:131.

Testing m_1 against m_2 and σ_0 against σ_1 by quick counting methods: [e]17:80.

Seq. hypotheses on m: [d]20:502, [g]40:303.

Student's hypothesis: [g]31:318.

Student's is best for testing $m_1=m_2$: [3]285, 291,[e]12:79.

LR test of $m=m_0$ is Student: [4]150.

[d]17:192.Power function for Student test:

Seq. Student test: [c]37:326.

[10]190, [c]38:252,Comparison of two means: [c]35:88, [o]4:31.

Comparison of k means: [t]?:1.

Testing whether variance is constant: [y]20:114. [y]23:22, Amster-Three decision seq. test of m: dam Mathematical Centre Stat. Dep. Rep SP34.

Testing whether many means are all zero: 70, [4]176.

Testing $\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2$: [i]29:21, [c]41:361. Testing $\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2$ without assuming $\mathbf{v}_1 = \mathbf{v}_2$: [d]9:201.[13]433.

Linear hypotheses: [c]27:161, [3]292, 300.

Joint tests: [t]6:25, 73.

Testing outlying observations: [e]17:67.

H: $\sigma = \sigma_0$: [3]287, [d]8:193.

OC for χ^2 test of $\sigma = \sigma_0$: [d]17:179.

Seq. test on σ : [e]10:369.

Seq. test on $\sigma_1 = \sigma_2$: [e]12:63, [b]11:101. Tests on v: [6]267. [3]289.

Fisher is best for testing $v_1 = v_2$: Testing homogeneity of variances: [c]31:250.

The most powerful test of

$$\left\{ \begin{aligned} & \text{H: } \sigma \!=\! \sigma_0, \text{ m} \\ & \text{Alt: } \sigma \!=\! \sigma_1, \text{ m} \!=\! m_1 \end{aligned} \right\} \text{ is } \Sigma(x_i \!-\! \overline{x})^2 \!\! \stackrel{>}{\sim} \!\! c.$$

Hypothesis of equality of many normal variances: [b]6:89, [c]29:124.

Significance of smallest of set of variances: [s]10:117.

Critical regions for m and v: [3]278.

Bibliography of testing equality of variances: [a]109:457.

[e]8:342.Seq. ratio test terminates:

[g]47:191.OC function:

Power functions of tests: [d]17:189.

Whether two samples are from the same normal population: [n]7:3, [k]17:302.

ests for normality: [c]28:295, [c]27:310, 333, [c]34:209, [o]1:125, [i]20:152, Z19:74. Tests for normality:

Tests of various composite hypotheses: [d]19:495,[e]9:30, [e]10:29.

Decision problems: [b]15:55.

E. Miscellaneous

Independence of x and s (Student-Fisher Theorem): [i]19:108, J. Math. Soc. Jap. 1:111, MR1:346.

 s^2 , \overline{x} independent: [4]108, MR14:775. Normality if and only if \overline{x} and s^2 independent: [d]13:91, [d]16:400, [d]13:91, NBS Rep. 2267, J. Math. Soc. Jap. 1:111.

Normality if and only if $D(\bar{x}, s) \equiv L. sn^{-2}$: |d|14:

Normality if $D(x) D(y) = \phi(\sqrt{x^2 + y^2})$: MR10:125. [e]13:359.Various characterizations of normality: Berkeley Symp. 2:195, MR16:1034.

Generalization of Student-Fisher theorem: [i]20:

Independence of quadratic forms: [0]1:83, Proc.Roy. Soc. Edin. 60:40, [u]30:178, [c]37:93, [c]14:195,[d]15:427, [d]20:119, MR12:509.

Bayes' theorem: [n]16-1:113. [4]107,68 Cochran's theorem: [d]11:100.More generally: History of normal: [c]16:402.

History of distribution of s: [c]23:416.

Distributions which converge to normality: [d]10:247.

Discrete analog: [c]44:365.

Regression of x and t, where $m=a-be^{-kt}$: [d]18:596.

Comparing percentage points of two normals: [d]19:93.

k samples: [3]295.

[d]23:237.Truncated sample:

Sampling from $N(\Sigma \ a_k m_k, \ v)$: $Max \ \Sigma x_i, \ min \ \Sigma x_i$: [c]40:35. [4]160.

Max 2x₁, min 2x₁: [c]40:59. See also: [d]25:389, [d]1:151, [d]6:197, [d]7:77, [d]10:365, [d]13:235, [d]17:483, [d]20:123, [d]21:362, [d]21:557, [d]22:596, [d]23:43, [d]23:384, [d]23:547, [d]25:16, [l]3:309, [e]9:6, [13]345, [e]10:522, [e]13:287, [e]16:239, [e]24:184, [a]79:455, [f]7:23, [e]31:238, [e]34:61, 98, [n]5:3, [n]12-3:65, [e]40:116, [e]32:226, 301, [a]48:550, [d]25:636, 698, [n]5:337, [a]51:88, Brit. [g]48:550, [d]25:636, 698, [v]5:337, [g]51:88, Brit. Assoc. Math Tables (3rd Ed.) v.I p. xxviii, N.B.S. Rep. 2545, C.R. Acad. Sci. Paris 238:444, [o]1:83, App. Sci. Research (Netherlands) Sect. A 3:297, J. Franklin Inst. 260:209, N.B.S. Rep. 2267, Am. J. Math. 57:821, Ann. Math. 35:312, Nat. Acad. Sci. 28:297, [y]24:2, Z18:225, MR16:52, MR14:1098, Z5:173, Z19:317, MR17:53, [w]7:193. 1.2. Normal: N (0, v)

 $D(x) = (2\pi v)^{-\frac{1}{2}} \exp(-\frac{1}{2} x^2 v^{-1})$: [10]50, [c]31:1.

 $Ch(x) = exp(-\frac{1}{2} vt^2)$: [2]94. $MGF(x) = \exp(\frac{1}{2} vt^2)$: [2]53.

C(x): [c]25:379.

 $\alpha_{2k} = \sigma^{2k}(2k)!/2^k k!$: [10]54.

2nd cumulant=v, others zero: [2]67.

Pearson type: [2]141. $D(\bar{x}) = N(0, v/n)$: [2]175, [n]10-3:90.

D(x/y) = Cauchy: [18]1-150, [w]1:74. $D(x^2) = Type III:$ [i]26:212.

 $D(x^2) = Type III:$

 $D(s^2)$: [2]246, [u]28:456, Z15:118.

 $D(\Sigma x_i^2/2v) = Gamma(\frac{1}{2}n)$.

 $D(\Sigma x_i^2)$ etc: [c]35:47.

 $D(\Sigma x_i^2)$, $D(Q_1/Q_2)$: [w]1:74. $D(Q/v) = \chi^2(r)$, Q of rank $r; \neq 0$ eigenvalues all +1:[d]9:43, [c]25:122. Z19:357 [c]30:407. $Ch(Q) = [\Pi(1-2itvk_1)^{\frac{1}{2}}]^{-1}$.

[i]29:13.

 $D[x \ n^{\frac{1}{2}} \ (\Sigma x_{i}^{2})^{-\frac{1}{2}}] = Type \ II : [i]29:13.$ D(x) assuming v is Type III : [d]28:510.

D(x/s) = Student (testing): [c]37:65.

D(range) for n=3, unbiased critical region: [3]

FD(v)=Type V[$\Sigma x_i^2/(n-2), \frac{1}{2}(n-2)$]: C.-R. (v)= $2n^{-1}v^2$: [1]484, [p]7:159. [p]7:226.

[1]484, [p]7:159.If D(n) = No. 3.5: MR14:391.

 $MLE(v) = n^{-1}\Sigma x_i^2$: [4]141.

 s^2 UMVUE of v, but s not of σ : [3]52,54.

[c]20:Neyman-Pearson on hypothesis testing: 178.

Most powerful test of $\left\{ \begin{array}{l} \mathrm{H} \colon \sigma = \sigma_0 \\ \mathrm{Alt} \colon \sigma = \sigma_1 \end{array} \right\} \quad \text{is } \overline{\mathrm{x}}^2 + \mathrm{s}^2 \lesssim \mathrm{c} \colon$

[3]275.

Completeness: [e]10:313.

Unbiased critical regions:

Testing s_1^2/s_2^2 etc: [e]5:157.

Testing serial correlation: [i]31:103.

Various devices for showing area =+1: [d]5:136.

Inference: [b]15:52.

As "Maxwell-Bolzmann" distribution: [12]39. Variance of Gini's mean difference is $\sim vn^{-1}(.8068)^2$:

[2]217.Mean difference: [c]28:432.

Properties of f(x), where x is N(0,v): [c]17:211.

See also: [d]12:239, [c]3:311, [g]26:178, [c]31: 260, [n]13-1:51, [u]30:330, MR9:364, MR3:2, [a]83: 127.

1.3. Normal: N(m, l)

 $\begin{array}{l} D(x)\!=\!(2\pi)^{-\frac{1}{2}}\exp[-\frac{1}{2}(x\!-\!m)^2].\\ E(x_1^2\!+\!x_2^2)\!=\!(\frac{1}{2}\pi)^{\frac{1}{2}}, Var(x_1^2\!+\!x_2^2)\\ =\!2\!-\!\frac{1}{2}\pi, \, E|x|\!=\!(2/\pi)^{\frac{1}{2}}, \, E(e^{ax}) \end{array}$ $=e^{\frac{1}{2}a^2}$, $var(e^{ax}) = e^{2a^2} - e^{a^2}$: [8]120.

 $D(\bar{x}): [3]2.$

 $D(x^2), D(x_1^2+x_2^2), D(x_1^2+x_2^2)^{\frac{1}{2}}$: [8]95.

D(xy) = Bessel: MR10:200.

 $FD(m) = N(\bar{x}, n^{-1}) : [3]85.$

Bayes' distribution (m): [3]91.

[3]8, [e]17:211, [p]7:161.x sufficient:

 $\bar{\mathbf{x}}$ is consistent: [3]3,26.

 \bar{x} is MLE: [4]140, [c]33:125.

 \bar{x} is minimax.

Efficiency of $\xi = .637$: [3]6.

Confidence intervals for m: [3]63,70, [p]7:222.

MLE for χ^2 test: [d]25:580.

Remarks on testing: [d]13:62.

Most powerful test of $\{ \begin{matrix} H \colon m \leq m_0 \\ Alt \colon m = m_1 m_0 \end{matrix} \}$

is $\bar{x} > c$: [3]274.

UMP test of m=0: [13]452.

Seq. test: [c]43:452.

Completeness: [e]10:313.

Unbiased critical regions: [3]311.

Testing equality of several means: [e]8:69.

Testing; called "Laplace": [v]2:251.

Peculiar composite hypothesis on m: [3]306.

Inference: [b]15:52.

Pitman's method: [3]324.

Range: [c]38:463.

See also: [c]27:466, [c]31:202, [c]36:460, [g]7:95 3rd Berkeley Symposium 1:197.

1.4. Normal: N (0, 1) (Gaussian)

 $D(x) = (2\pi)^{-\frac{1}{2}} \exp(-\frac{1}{2}x^2)$: [7]129.

General expose: Acta Math 77:1.

C(x) as continued fraction: [2]130.

C(x) as a series: [c]19:13.

Bounds on C(x): [c]42:263.

Math. Zeit 41:405. Property of C(x):

C(x): MR10:267.

 $\sim C(x)$: MR16:628.

 $MGF(x) = \exp(\frac{1}{2}t^2)$.

 $Ch(x) = \exp(-\frac{1}{2}t^2)$: [8]164, [1]100.

 $\alpha_{2k} = (2k)!/2^{k}k!$: [d]5:32, [d]11:353, [h]1:13,193,[1]208.

Absolute moments: Z1:26.

Median and quartiles: [c]25:79.

 $D(n\bar{x}) = Normal$: [c]19:227.

 $D(s^2)$: [e]5:138.

 $D(x^2)$: [d]1:340, [e]5:138.

 $D(\Sigma x_i^2) = \chi^2(n)$: [2]231, [4]103, [9]331.

 $D(\Sigma k_i x_i)$: [d]13:17.

 $C(n^{\frac{1}{2}}s^{-1}\bar{x}) = Student:$ [9]336. $D(Q), D(Q_1/Q_2)$: [e]17:37.

 $D[\Sigma(x_1-\bar{x})^2] = \chi^2(n-1)$: [9]333.

C(r) expressed as an integral: [9]339.

 $D(x_1x_2)$ by Mellin transformation: [d]19:375.

 $D(x_1/x_2) = Cauchy$: [d]19:375.

 $D(\bar{x},s)$: [o]7:65.

D(range) for n=3, \sim D(range): [c]34:111.[c]5:313, [o]8:155, [c]36:142.

Moments of sample median: [d]26:600.

D(extreme deviate): [c]35:120.

C(range): [c]32:341.

 $D(\Sigma x_i^2/\Sigma v_i^2) = \text{Snedecor}$: [d]19:378.

Ch fcns of estimates of v: [d]19:257.

Generating functions: Z2:200.

Estimation of dispersion: [c]36:96.

[c]33:254, [c]35:304.Estimation of mean deviation:

Variance of median: [c]23:361.

Testing N(0,1) against various alternatives: [c]30:139.

Multivariate analysis: [3]XXVIII.

Limit of binomial: [7]134.

Central limit theorem: [i]27:139, [i]29:206

Kth value from the top: [1]374.

Censored samples: [c]41:230.

Ordered samples: [e]11:23.

Stratified sampling: [d]5:138.

Variance in two samples: [n]13-3:49.

Ratio of two ranges: [d]21:112.

Tetrachloric functions: [c]14:157.Approximations: [d]17:363.

Sheppard's tables: [c]2:174.

Grouping: [i]32:135.

Moments of order statistics: [d]41:200.

Occasionally called Laplace-Gauss, or even Laplace: Acta Math. 77:1, C. R. Acad. Sci. Paris 232:1999.

[d]4:109, [d]17:350, [d]22:425, [d]24:See also: [a]4:109, [a]17:350, [a]22:425, [a]24:133, [d]24:297, [13]63, [c]18:395, [c]24:98, [c]24:280, [c]25:195, [i]6:209, [17]No. 41, [m]6:120, [d]22:418, [y]24:22, [u]29:231, Z4:66, Z8:266, Z20:39, 145, MR12:191, Z18:412, MR17:756, C. R. Acad. Sci. Paris 238:444, Phil. Trans. Roy. Soc. London A237: 231, MR7:18, Z5:366, [y]4:189.

1.5. Truncated Normal

C(x): [1]248, [6]243.

Introduction, estimation, examples: [15]144.

 $D(\Sigma x_i)$: [b]8:223.

Fitting: [c]39:252. Estimating m and v: [g]44.518, [g]47.457, [f]9.489,[o]3:37, MR7:461 [c]40:52.

Distribution of estimate of σ : [15]316.

Censored sample: [c]42:516.

MLE: [i]32:119.

See also: [d]9:66, [d]20:458, [g]47:379, Brit.Assoc. Math. Tables (3rd Ed.) v. 1 p. xxxv, MR2:231.

1.6. Generalized Normal (Kapetyn)

 $(2\pi v)^{-\frac{1}{2}} \exp \left[-\frac{1}{2}v^{-1}(f(x)-m)^{2}\right]df(x)$: [5]93.

C.-R.(m) = v/n, $C.-R.(v) = 2v^2/n$: [5]139. $MLE(\sigma) = [n^{-1}\Sigma(f(x_1) - m^2)]^{\frac{1}{2}},$

 $MLE(m) = n^{-1}\Sigma f(x_i)$.

See also: [c]5:168.

1.7. Normals Added

 $D(x) = (l+k)^{-1} \{(2\pi)^{-\frac{1}{2}} \exp(-\frac{1}{2}(x+m_1)^2 + kv^{-\frac{1}{2}}(2\pi)^{-\frac{1}{2}})\}$ $\exp -\frac{1}{2}(x-m_2)v^{-1}$: [d]2:340, [h']2:63.

Var $(x) = (1+k)^{-1}[1+m_1^2+k(v+m_2^2)].$

Method for partition with example: [s]5:47.

Semi-invariants: [i]17:1.

 $D(\bar{x})$: [d]11:219.

Three normals added: [d]5:237.

More generally: [d]3:1, [d]5:230, [c]3:85, MR14:485.

Sampling theory: [n]8-3:67.

Many normals added: [c]37:429.

Called "compound normal": [i]32:180.

Bivariates: [f]8:328.

> See also: [c]40:460, [e]14:369, MR11:258, MR171102.

1.8. Lognormal (a, m, v)

 $D(x) = (x-a)^{-1}(2\pi v)^{-\frac{1}{2}} \exp\left[-\frac{1}{2}v^{-1}(\log(x-a)-m)^2\right],$ parameters and moments: [15]160, [5]121, [d]3:45. [1]258, [c]4:194.

Graphical determination of parameters: [w]9:102.

Mean= $a+e^{m+\frac{1}{2}v}$, $var=e^{2m+v}(e^v-1)$.

Another form

$$D(x) = \frac{1}{\sqrt{2}c(x-a)} \exp \left\{-\frac{1}{2c^2} \left[\log \frac{x-a}{b}\right]^2\right\}$$

 $m = be^{\frac{1}{2}c^2} + a$, $mode = be^{-c^2} + a$, $GM = \xi$ =a+b, moments, tables, regression, examples, bibliography: [d]4:30, [b]7:155.

Moments, transformations: [w]7:152, [w]8:83.

Complete treatment with bibliography: son, J. and Brown, J. A. C., "The Lognormal Distribution" Cambridge, 1957 (MR18:957).

Estimation of m: [e]10:341.

MLE: [g]46:206, Intl. Congr. Math (1950) 1:581. Regression: [d]7:196.

 \sim Tests on m: [d]28:1044, [d]27:670.

Called "Galton-Macalister": [c]32:239.

Called Gibrat: Kendall and Buckland, "A dictionary of Stat. terms."

Used to approximate Fisher distribution: [d] 12:448.

Deduced from hypothesis about errors, etc.: [i] 28:141.

(x-a)/(b-x) lognormal: [17]No.46.

Transformation: [c]36:155.

Versus normal: Geochimica et Cosmochimica Acta 8:53.

Discrete lognormal: [c]37:362.

Compared with normal by means of Galton-Kapetyn apparatus: [s]4:129.

Truncated lognormal: [i]28:150, [c]38:414.

Lognormal (0, 0, 1), $E(x)=e^{\frac{1}{2}}$, $v=e^{2}-e$: [8]120, 176, [17]No. 45, [c]22:109, [d]4:30.

See also: [d]14:120, [1]13:161, [e]12:121, [b]6: 174, [b]11:19, [d]15:182, [c]4:179, [c]22:146, [g]34: 762, [g]36:493, [f]1:57, [c]36:155, [c]38:427, [g]48: 600, J. Franklin Inst., 244:471, 250:339, 250:419, 251: 499, 251:617, [g]50:904, [c]43:404, [a]119:157, 185, 250:339, Ind. and Eng. Chem. 40:2289, J. Roy. Soc. (A)216:309, J. Phys. Chem., 56:442, [y]13:29, J. Hygiene 42:328, Z10: 173, MR3:4, Nature 156:463.

1.9. Wrapped-up Normal

D(x)=kΣe^{-c(x+j)²}: Bull. Soc. Math. France 66: 32, 67:1, C. R. Soc. Math. France (1938) p 34, Ann. Ecole. Norm. Sup. 45:1 [t] 55:335, [d]18:589, Handbuch der Physik, Berlin, Springer 3:477.

1.10. Gram-Charlier

Two-term D(x) = $(2\pi)^{-\frac{1}{2}}$ [1-k/6(3x-x²)] exp(- $\frac{1}{2}$ x²): [3]103, 137.

General Gram-Charlier: [4]77.

 $D(\overline{x})$: [d]1:199, [d]2:99.

 $D(x^2)$: [i]26:212.

D(s): [d]6:127.

t-test: [i]26:210.

D(x) = f(x)N(m,v): [d]23:467, [g]26(P):233.

D(various statistics): [g]4:1.

Log Gram-Charlier: [i]28:145.

Type B Gram-Charlier: [d]8:183

Type B Gram-Charlier: [d]8:183, [d]18:574, $Trans.\ Amer.\ Math.\ Soc.\ 67:206$, [d]20:376, [i]5:17.

MGF factorial moments: Z5:213.

See also: [a]88:576, [a]89:129, [c]33:126, [c]36:427, [c]38:58, 87, [c]39:425, [i]7:147, [l]23:283, T.A.M.S. 67:206, Z18:320, Z22:243, Z2:43

1.11. Bivariate Normal N $\begin{pmatrix} \mathbf{m}_1, \ \mathbf{v}_1 \\ \mathbf{m}_2, \ \mathbf{v}_2 \end{pmatrix}$

 $\begin{array}{l} D(x,y)\!=\![2\pi\sigma_{1}\sigma_{2}(1\!-\!\rho^{2})^{\frac{1}{2}}]^{-1} & \exp\{-\frac{1}{2}[v_{1}v_{2}(1\!-\!\rho^{2})]^{-1} \\ [(x\!-\!m_{1})^{2}v_{2}\!-\!2\rho\sigma_{1}\sigma_{2}(x\!-\!m_{1})(y\!-\!m_{2})\!+\!(y\!-\!m_{2})^{2}v_{1}]\} \\ [6]165,[5]89,[4]60. \end{array}$

Introduction, properties, examples: [15]585.

Another form (Koopman-Darmois): [e]8:322.

Ch(x,y) = exp{i(m₁s+m₂t) - $\frac{1}{2}$ (v₁s²+2 $\rho\sigma_1\sigma_2$ st+v₂t)}: [1]287.

MGF: [6]167.

 $D(\overline{x}_1, \overline{x}_2) = Normal bivariate:$ [4]101.

 $D(\overline{x}-\overline{y}): [c]2:379.$

D(y/x): [c]24:428.

D(xy) and D(x/y): [18]1–151, Am. Math. Monthly 49:26.

Ch(xy): [a]42:82.

D(r): [4]120.

If $\rho = 0$, $D(r^2) = B(1, n-2)$: [10]160, 178.

If $\rho = 0$, D(b)=B(1, n-1): [10]180.

D(correlation ratio) = No. 5.3: [10]181.

 \sim D(r): [c]10:507.

 $D(rs_1s_2, s_1^2, s_2^2)$: [u]29:264.

Distribution of various statistics: [e]17:21.

MLE $(m_1, m_2, v_1, v_2, \rho \sigma_1 \sigma_2) = \overline{x}, \overline{y}, s_1^2, s_2^2, rs_1 s_2$: [3]37.

 $\begin{array}{l} \operatorname{Var}(\overline{\mathbf{x}}) \!=\! \mathbf{v}_1/\mathbf{n}, \, \operatorname{var}(\mathbf{s}_1^2) \!=\! \mathbf{v}_1/2\mathbf{n}, \, \operatorname{var}(\mathbf{r}) \!=\! \mathbf{n}^{-1}(1-\rho^2)^2, \\ \operatorname{cov} \ \, (\mathbf{s}_1, \mathbf{s}_2) \!=\! \rho^2 \sigma_1 \sigma_2/2\mathbf{n}, \, \, \operatorname{cov}(\mathbf{r}, \, \, \mathbf{s}_1) \!=\! \rho \sigma_1 (1-\rho^2)/2\mathbf{n}, \\ \operatorname{cov} \ \, (\overline{\mathbf{x}}, \overline{\mathbf{y}}) \!=\! \rho \sigma_1 \sigma_2/\mathbf{n} \colon \quad [3]38. \end{array}$

MLE from fragmentary information: [d]3:163.

 \overline{x} , \overline{y} are joint efficient in estimating m_1 and m_2 ; \overline{x} , \overline{y} , $\frac{ns_1^2}{n-1}$, $\frac{ns_2^2}{n-1}$, $\frac{n}{n-1}$ rs₁s₂ have joint efficiency $(n-1/n)^3$: [1]495-6.

 $\begin{array}{l} [(x-m_1)/\sigma_1] + [(y-m_2)/\sigma_2] \, \text{and} \, [(x-m_1)/\sigma_1] \\ - [(y-m_2)/\sigma_2] \, \, \text{are independent and} \, \, N(0,2(1+\rho)), \\ N(0,2(1-\rho)) \, \, \text{respectively:} \qquad [\theta] \text{217}. \end{array}$

Estimation: [d]17:395, [e]8:322.

Estimation, testing: [15]606, [g]50:884.

Censored samples: [x]6:83.

Distribution ratio standard deviations: [x]6:93

Confidence limits for r: [c]29:157, J. Nat. Inst. Personnel Res. 6:153.

Confidence limits for m_1/m_2 : [d]13:440, MR13: 962.

Sufficient statistics: [e]17:212.

Comparison of two correlations: [10]203.

Tests of seven hypotheses on the parameters: [d]11:410.

Testing equality of two r's: [d]12:279.

Some tests: [w]7:46.

Testing equality of variances: [e]1:13, (bibliography), [a]109:462.

 r_1-r_2 : [c]25:102.

Sequential tests of ρ : [w]8:202.

Truncation: MR2:231.

Fisher's original work on r and ρ : [n]1-4:1.

Sufficient conditions for normal bivariate: [e]6: 399, MR15:805.

k samples: [c]27:145, 227.

 $x/\sigma_1+y/\sigma_2$ and $x/\sigma_1-y/\sigma_2$ are independent normal variables: $[e]\mathcal{3}1:\mathcal{9}.$

If $\rho = 0$ then $(v_1/v_2)/[(v_1/v_2) + (s_1^2/s_2^2)]$ is Beta: [c]31:10,

Called Bravais distribution: [i]19:3

Properties: Z15:310, MR1:246.

See also: [d]4:196, [d]14:141, [c]7:260, [g]26:129, [c]22:1, [c]25:356, [c]25:392, [f]8:328, [n]9-3:90, [c]39:238, [i]27:221, [6]218, [v]5:311, [d]27:1075, [c]44:289, [x]4:85, $Harvard\ Ed.\ Rev.\ 1946$, $p.\ 52$, MR4:280, MR8:283, MR14:1102, MR7:212, $[y]1(No.\ 4)\ 20$.

1.12. Bivariate Normal N $\begin{pmatrix} 0, v_{1}, \rho \\ 0, v_{2}, \rho \end{pmatrix}$

$$\begin{split} &D(\mathbf{x},\mathbf{y}) = (2\pi \mathbf{M}^{\frac{1}{2}})^{-1} \, \exp[-\frac{1}{2}\mathbf{M}^{-1}(\mathbf{x}^2\mathbf{v}_2 - 2\rho\sigma_1\sigma_2\mathbf{x}\mathbf{y} + \mathbf{y}^2\mathbf{v}_1)] \\ &\text{where } \, \mathbf{M} = \begin{vmatrix} \mathbf{v}_1 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \mathbf{v}_2 \end{vmatrix} = \mathbf{v}_1\mathbf{v}_2(1-\rho^2) \, ; \quad \mathrm{Ch}(\mathbf{x},\mathbf{y}) \\ &= \exp(-\frac{1}{2}\mathbf{n}^{-1}(\mathbf{v}_1\mathbf{s}^2 + 2\rho\sigma_1\sigma_2\mathbf{s}\mathbf{t} + \mathbf{t}^2\mathbf{v}_2)] \colon \quad [9]308, \quad [2]\\ 22, \quad 334, \quad [4]60, \quad [8]116, \quad [15]588, \quad [10]95, \quad 106, \quad [c]30.8.\\ \alpha_{40} = 3\mathbf{v}_1^2, \quad \alpha_{31} = 3\rho\sigma_1^3\sigma_2, \quad \alpha_{22} = (1+2\rho^2)\mathbf{v}_1\mathbf{v}_2 \colon \quad [2]80, \\ [4]60. \end{split}$$

Moments: [0]3:2, [c]12:177.

Central moments: [h']4:73.

Incomplete moments: [c]13:401, [c]40:22.

Product-moments: [c]12:86.

As limit of binomial: [a]91:548.

If $\rho = 0$, $\sigma_1 = \sigma_2$ called "circular normal," D(r), properties: [c]29:137.

C(x,y) with other properties: [e]33:59, [e]38:475. Cumulants in terms of moments: [2]89.

 $Var(r) = n^{-1}(1-\rho^2)^2$: [2]336.

 $Var(b) = n^{-1}v_1^{-1}v_2(1-\rho^2)$: [2]337.

Marginal and conditional distributions: [4]62.

Regression: [3]144.

Correlation and regression with generalization: [i]24:1.

Contour ellipses: [s]1:203.

Bilinear forms: [0]1:103, [d]18:565.

Quadratic forms: [d]14:195.

 $Ch(x^2,y^2)$: [2]336.

D(variance-covariance)=Wishart: [2]340, [1]29.6. | Moments:

D(r): [2]342.

D(r) for n=4: [u]26:536.

D(b)=Type VII: [1]402.

 $D(s_1/s_2) = No. 8.3 \text{ if } \sigma_1 = \sigma_2: [e] 2:65, [c] 31:9.$

 $D(e^{x},e^{y}): [w]2:155.$

When, further, $\rho=0$ generalized Student: [c] 30:190.

Simple function of x/y is normal: [a]93:442.

D(y/x): [c]32:16, [i]20:61.

D(xy), D(x/y): MR3:171.

Joint distribution of Pearson betas: [c]7:386.

 $D(s_1^2, s_2^2, rs_1s_2)$ etc: [d]5:283.

 $D(s_1^2, s_2^2)$: [e]5:139, [c]25:126.

$$\hspace{-0.5cm} \hspace{-0.5cm} \hspace{-0$$

$$D\left(\frac{(n-2)^{\frac{1}{2}}(b-\beta)s_1}{\sqrt{v_2-bv_1}}\right) = Student \cdot (n-2): \qquad [9]5.13, [2]$$
348, [3]156.

Moments of dist. of covariance from

 $N\begin{pmatrix} 0, & 1 \\ 0, & 1, & \rho \end{pmatrix}$: [3]334.

D(radial standard deviation)=D[$n^{-1}\Sigma(x_1-\overline{x})^2 + \Sigma(y_1-\overline{y})]^{\frac{1}{2}}$: [d]15:75.

D(sample covariance): [3]359, [10]138.

 $MLE(\rho)$: [3]33.

Confidence intervals for ρ : [3]81

MLE (v_1, v_2, ρ) : [2]339.

Estimation of ρ when $v_1 = v_2$: [d]9:149.

Estimation of ρ by rank correlation: [d]7:40, [c]40:419.

Truncation: [d]21:272.

and estimation: [e]12:277, MR16:498.

Testing v_1/v_2 : [3]138.

Testing σ_1/σ_2 and ρ : [e]5:151.

Test whether two samples are from same population: [3]140.

Hotelling's generalized T applied to tolerance limits: [d]14:90.

Odd fact for $\rho = 0$: [d]18:442.

See also: [o]12:90, [c]2:369, [c]4:498, [c]17:176, [c]20:295, [g]27:254, [a]83:128, [c]29:74, [n]2:640, [n]7:6, [c]32:196, [c]38:371, [i]7:220, [i]24:17, [n]13-1:21, 65, [u]28:457, Z12:267.

1.13. Trivariate Normal

D(x): [10]255,260.

Ioments: [o]4:15, [c]40:23.

Correlation: [i]14:158.

Partial correlation: [c]10:391.

Yielding $2\times2\times2$ table: |e|10:272.

Student test for partial correlation: [10]256.

Snedecor test for multiple correlation: [10]257.

See also: [d]8:179, [d]12:94, [n]1-1:151, [u]44:342, MR15:805.

1.14. Multivariate Normal

 $\begin{array}{l} D\left(x\right) \! = \! Ce^{-Q} \! = \! [(2\pi)^{\frac{1}{2}n}\sigma_1\ldots\sigma_n]^{-1}(|A|^{\frac{1}{2}})\exp\left\{-\frac{1}{2}\Sigma\Sigma(a_{ij}/\sigma_i)(x_i\! -\! m_i)(x_j\! -\! m_j)\right\} \text{ where } A \! = \! ||a_{ij}|| \! = \! ||\rho_{ij}||^{-1} \\ = \! \text{inverse of correlation matrix:} \quad [6]177, [2]376, \\ [4]63. \end{array}$

C(x): [c]40:458, [c]41:351.

 $Ch(x) = \exp\{i\Sigma m_i t_i - \frac{1}{2}\Sigma \Sigma \rho_{ij} \sigma_i \sigma_j t_i t_j\}.$

Moments: [c]40:20, MR5:42.

Marginal distributions, conditional distributions, regression: [4]70.

Independence of quadratic forms: [o]1:83.

Distributions of moments, partial and multiple correlations: [i]24:185, [i]27:235, [i]28:20.

 $\begin{array}{lll} {\rm D(product\ moment)\!=\!Wishart\!:} & \ \ [c]20{:}32, \ \ [i]20{:}\\ 218, \ \ [u]35{:}336, \ \ [u]29{:}260, \ \ 271, \ \ MR10{:}387, \ \ [b]17{:}82. \end{array}$

Cumulants of logarithmic generalized variance: [i]38:17.

Independence of distribution of means and second order moments: [4]233.

D(multiple correlation): [d]3:196.

Fiducial distribution: [u]34:41.

Multiple and partial correlation: [c]19:100.

Linear regression theory: [4]245.

 $D(Q) = \chi^2$: [4]104.

D(various Q): *MR13:142*.

D(vector correlation): [c]28:353.

Sampling: [4]XI, [d]6:202.

 $MLE(m_1, ..., m_n) = (\overline{x}_1, ..., \overline{x}_n):$ [6]187.

Hotelling's generalized Student test: [4]234, [d]9:240.

LR test for variances equal and correlations zero: [d]11:204.

LR test for independence of variables: [d]11:17.

Characterization: [e]14:367.

Hypothesis of equality of means: [4]238.

Independence of sets of variables: [4]242.

Probability that all n variables are positive: [d]26: 484.

Tolerance regions: [d]27:174.

Testing variance-covariance homogeneity: [c]31: 31, [c]34:311.

Truncation: [x]5:17.

Various tests: [d]17:257, [d]21:293.

Quadrivariate: [c]43:206.

Bibliography of tests of hypothesis of equality of variances called 'Bipolar' distribution: [e]14:61.

Variables separated into two sets: [c]30:295.

Many samples: [c]31:221.

Seq. analysis: [e]12:328.

Central limit theorem: [i]28:109.

Generalizations of N(m,v) theorems: [e]17:221.

See also: [d]8:149, [d]17:344, [d]19:447, [d]21: 445, [e]3:273, [e]12:99, [e]6:35, [a]90:136, [c]6:59, [c]15:192, [c]35:58, [o]1:79, [b]18:70, [e]43:212, [x]1:59, [t]6:181, [g]52:200, MR13:366, MR17: 278, MR12:345, MR15:141, MR6:159, Z10:406, Z15:220, MR10:312, Trans. Am. Math. Soc. 24:135.

2. Type III Distributions

2.1. Type III (p, q)

$$D(x) = \frac{p^q}{\Gamma(q)} \, x^{q-1} e^{-px}, \, (0, \, \infty)$$

$$D(x) = \frac{X^b e^{-x/a}}{b! a^{b+1}} (\text{"gamma"});$$
 [6]112.

D(x)=Type III (k/a, k) ("Erlang"): [d]24:339

D(x)=Type III (p/q, p) ("Eulerian"): [c]35:6.

 $Ch(x) = (1-it/p)^{-q}$: [2]55, [1]126.

 $MGF(x) = (1-at)^{-b-1}$: [6]115, [4]74.

 $\alpha_1 = q/p, \ \alpha_2 = p^{-2}q(q+1), \ \alpha_3 = p^{-3}(q+1)(q+2):$ [2]

 $E(x)=a(b+1), v=a^2(b+1)$

 r^{th} cumulant=q(r-1)! p^{-r} [2]67.

 $\mu_2 = \sigma^2 = qp^{-2}, \mu_3 = 2qp^{-3}, \mu_4 = 3q(q+2)p^{-4}$: [2]433.

Arithmetic, geometric means: Math. Student 13: 11.

C(x): [c]25:379.

D(x/(x+y)) = Beta: [14]41.

 \sim C(x): MR13:553.

Transformations $y=x^n$, $y=e^x$: [d]9:176.

Normalizing transform: Proc. Pak. Stat. Assoc. 5:120.

Transformation $y = (x+k)^{\frac{1}{2}}$: [d]14:115.

Moments, Ch(x), cumulants when x=y-c: [18] 1-136, 1-144.

Type III (p, p+1): [e]5:176.

 $D(\overline{x}) = Type III (np, nq):$ [2]244, [c]18:335, [w] 1:73.

D[(nq-1)n⁻¹ $\overline{\mathbf{x}}^{-1}$]=Reciprocal Type III(p,nq-1): \sim D($\sqrt[3]{\mathbf{x}}$): [c]35:297.

D(x/y)=Beta of second kind (p=q): [w]1:74.

 $FD(p^{-1}) = Type \ V \ (n\overline{x}/nq-1, \ nq-1): \ [3]87, [c] 30:408.$

Bayes $D(p^{-1}) = Rectangular$: [3]91.

D(xy) where x is Type III and y is Type V: [i]39:64.

D(x-y)=No. 8.92, where D(x)=Type III (λ , N) and D(y)=Type III (μ , 1)

D(HM): MR4:164.

D(xy), Ch(xy): *MR16:377*.

D(xy)=Bessel, D(xyz): Studies Presented to Richard von Mises, p. 301, Acad. Press, 1954.

MLE (p)=Moment estimate (p)= q/\overline{x} , correcting for bias= $(nq-1)/n\overline{x}$, sufficient, \sim efficient, not efficient: [3]26.

 $Var((nq-1)/n\overline{x}) = p^2(nq-2)^{-1}$: [1]505, [u]45:214.

 $MLE(1/p) = \overline{x}/q$: [3]21.

 $\operatorname{Var}(\overline{\mathbf{x}}/\mathbf{q}) = \mathbf{p}^{-2}\mathbf{n}^{-1}\mathbf{q}^{-1}$, sufficient: [3]21.

Sufficient statistics for p: [e]17:212,219.

Ordered LSE is MLE for 1/p: [d]25:315.

MLE (p,q), variance-covariance of estimates: [b] 14:187, [c]42:22, [r]1:18.

 $UMVUE(1/p) = \overline{x}/q$, with $Var = p^{-2}n^{-1}q^{-1}$: [3]53.

There is a sufficient estimate of q: [3]26.

Estimation: [e]8:324.

Minimax: [16]64, [e]14:57.

Gauging: [e]15:192.

Closest estimate: [u]33:217.

Testing n such populations: [3]325.

Slippage tests for p: Koninkl. Nederl. Akad. (A) 59:329.

Testing equality of 1/p: [c]31:205.

Confidence intervals for 1/p: [3]74, [e]6:113, MR5:128.

Truncated distribution: [g]45:411.

Estimation from truncated Type III: [d]26:659, [d]27:498.

Truncated samples: [c]40:52.

D (gap between events)=generalized Poisson: [o] 3:123, [o]11:101.

Characterized by independence of sum and quotient: [d]26:319.

Discrete Type III: [c]44:365.

Mills ratio: [d]24:309.

Normal limit: Am. Math. Monthly 50:98.

Renewal theory: [d]11:448.

Trivariate: [d]21:550.

See also: [d]7:95, [d]8:17, [d]24:407, [e]2:150, [b]11:101, [e]21:263, [d]25:640, [e]24:300, [v]2:330, [g]50:904, [i]39:171, [q]7:95, Am. Math. Monthly50:98, MR17:756.

2.2. Type III (p, 1)

 $D(x) = pe^{-px}$, "negative exponential" [5]34.

Type X.

 $\alpha_1 = 1/p$: [5]59, [2]48.

 $v = p^{-2}$: [5]67.

Moments: [2]142, [8]100, [10]18.

Characterization: [t]7:60, 3d Berkeley Symp. 2: 195.

Cumulants: [2]87, [10]40.

C(x): [c]25:379.

Mean difference: [c]28:432.

 $MGF(x) = (1-t/p)^{-1}$: [10]37.

MGF($\log x$): [v]7:296.

Grouping corrections: [c]39:433.

A priori distributions of p: [i]27:36.

D(x+y): [8]95.

If $D(x) = pe^{-px}$, $D(y) = Pe^{-Py}$,

then
$$D(x-y) = Ae^{-p(x-y)}, x>y$$
 $Ae^{p(x-y)}, x< y$

where A(p+P)=pP:

Examples and applications: [8]29,79,83, [j]20:366, [c]39:168.

 $D(\bar{x})$: [c]39:168.

 $D(\xi) = \text{No. } 8.9, \text{ MGF}(\xi): [p]7:153.$

 Σx_i where x_i is Type III $(p_1, 1)$: MR5:42

Rank variates: [c]24:210,271, [r]4:153.

Estimation: [c]35:187, [g]48:493, [s]10:167, [o]8: 15, [p]7:152.

Censored sample: [c]41:230, [d]23:237.

Moments of D(s): [c]22:53.

Variance of mean deviation $\simeq 4/3$ np²: [2]217.

Testing $p = p_0$: [d]9:84.

Sequential test: [c]41:252, [d]27:460.

Testing against four other possible dist: [c]43:253.

Confidence intervals: [3]84

Estimation from truncated exponential: [d]26:498

Relation with Poisson, D. L. Gerlough and A. Schuhl, *Poisson and Traffic*, The ENO Foundation, 1955: [0]2:13.

See also: [d]7:19, [d]25:555, [g]48:488, [g]50:904.

If x=y-c, Mean= $c+\frac{1}{p}$, $var=\frac{1}{p^2}$, skewness=2, kurto-

sis = 6, Ch(x), cumulants: [18]1-136, 1-144.

MLE: [k]8:52.

LR test for hypothesis that n such populations are identical, etc: [3]305.

k samples: Z14:269.

Best linear estimates of m and σ : [d]25:320.

$$D\left\{\frac{1}{n-1}\sum_{i=1}^{n-1}|x_{i+1}-x_i|\right\}: \quad [v]6:133.$$

Life testing: [d]25:373.

Original Neyman-Pearson paper on hypothesis testing: [c]20:221.

Censored samples: [g]52:58.

Estimation by order statistics: [d]26:585.

Quasi-range: [d]28:179.

LR tests: [d]12:301. Seq. testing: [x]2:86.

Confidence intervals: MR5:43.

$$\begin{cases} H: p = p_0, c = c_0 \\ Alt: p = p_1, c = c_1 \end{cases}$$
 [3]304.

See also: [d]25:409, [d]24:458, [e]30:402,416, [e]24:279.

Maxwell-Bolzmann.

 x^2 is Type III (p, 3/2): [5]39,60, [s]1:304.

Connection with N(0, v): [12]40.

 $D(\bar{x})$: [n]10-3:90.

See also: [n]17-1:125.

2.3. Type III (1, q)

 $D(x) = \frac{1}{\Gamma(q)} e^{-x} x^{q-1}$, "Gamma": [10]149.

 $\alpha_{\rm r} = \Gamma(q+r)/\Gamma(q)$: [10]150,163.

 $k_r = q(r-1)!$: [2]96,153.

 $Ch(x) = (1-it)^{-q}$: [17]No. 34.

Skewness= $q^{-\frac{1}{2}}$: [10]161.

HM = q - 1: [10]163.

 ${\bf D}({\bf n}{\bf \bar{x}})\!=\!{\bf Type}\ {\bf III}\ (1,\!{\bf nq})\!:\qquad [c]19{:}228,\ [n]10\!-\!3{:}91.$

 $D(\Pi x_i)$: [c]24:474.

 $D(x_1 - x_2) \colon \qquad [2] 252, \, [c] 24 \hbox{:} 293.$

 $D(x_1+x_2) = Type III (1,q_1+q_2):$ [10]151, [p]7:101.

D(GM) as a series: [2]251.

With generalization: [d]5:277.

 $D[x_1/(x_1+x_2)]=B(\frac{1}{2}q_1,\frac{1}{2}q_2):$ [10]153.

D(x_1/x_2)=Beta of second kind: [10]158, 160, [p]7: 102.

 $D(x_1-x_2)$ involves a Bessel function if x_1 and x_2 are from two separate distributions and $D(x_1/x_2)$ is Fisher: [d]?:51.

 $\sim D(\bar{x})$: [d]25:636.

 $D(\overline{x}, GM/\overline{x}) = D(\overline{x}) D(GM/\overline{x}):$ [c]30:287.

 $\overline{\mathbf{x}}$ is moments estimate of q, not sufficient.

Closest estimate: [u]33:216.

MLE(q) = log GM: [p]7:169.

 $E(\overline{x}) = q$, $var(\overline{x}) = q/n$, efficiency $(\overline{x}) \rightarrow 0$: [1]504,5.

 \sim D(log GM)=Normal: [1]505.

Confidence intervals: [p]7:224.

Mellin transform: [d]19:373.

Log log (1/x): [v]8:71.

 $A + B \log x$: [c]36:165.

Multivariate generalization: [d]22:549.

Tetrachoric functions: [c]14:161.

Fermi-Dirac, x-c is Type III (3/2,const.): [12] 42, [j]8:701, [s]1:304.

See also: [d]25:401, [10]161, [d]22:425, [c]24:281, [c]27:409, [c]30:415, [c]36:165, [d]25:784, [e]10:314, [g] 51:467, [c]44:265, [d]22:418, Can. J. Math. 3:140.

2.4. Type III (1, 1)

 $D(x) = e^{-x}$, "exponential": [6]217.

Ch(x) = 1/(1-it): [17]No. 33.

 $D(\overline{x},s)$: [d]3:128, [d]4:133, [d]4:139,142.

x=y-c, Type X, confidence intervals: [b]17:90.

 $D(\Sigma x_1) = \text{Type III by convolutions}: [d]5:13.$

 $D(\Sigma x_i/i) = D(\max x_i)$: [b]14:43.

Doubly truncated, Ch(x): [n]10:3, [17]No. 32.

Ratio of two ranges: [d]21:112.

C.—R. theorem false for x=y-c: [1]485, [3]47.

See also: [d]22:425, [i]36:152, [m]6:120, [d]22:418.

2.5. Chi-Square (k)

 $\begin{array}{lll} D(\mathbf{x})\!=\![1/2^{\frac{1}{2}\mathbf{k}}\Gamma(\frac{1}{2}\mathbf{k})]\mathbf{x}^{\frac{1}{2}\mathbf{k}-1}\mathbf{e}^{-\frac{1}{2}\mathbf{x}}; & [5]96, \ [10]164, \ [2]17, \\ [4]102, \ [8]134, \ MR8:161, \ [1]3:353, \ [18]1-161. \end{array}$

Type III $(\frac{1}{2}, \frac{1}{2}k)$:

 $\alpha_1 = k$, v = 2k: [1]234, [4]103.

 $\alpha_s = k(k+2) \dots (k+2s-2)$: [1]234.

 $\mu_2 = 2k$, $\mu_3 = 8k$, $\mu_4 = 48k + 12k^2$, $\mu_5 = 32k(5k + 12)$: [2]292.

Cumulants: [c]31:216.

 $Ch(x) = (1-2it)^{-\frac{1}{2}k}$: [v]4:8.

C(x), relation with Poisson: [l]3:357, [c]37:313.

Introduction, properties, examples: [15]253.

Obtained as dist. of normal variance: [3]104, Z23: 148, [p]7:98.

 $D(x_1+x_2)$: [e]7:27.

 $D(\log x): [c]34:170.$

 $D(2\sqrt{xy}) = Chi \text{ square}(2n-2) \text{ if } D(x) = chi \text{-square}(n)$ and D(y) = chi -square(n-1).

 $D(\bar{x},s)$ for k=2,3,4, n=3,4: MR12:345.

 $D(x_1/x_2) = Beta \text{ of second kind } (\frac{1}{2}k_1, \frac{1}{2}k_2):$ [10]177.

 $D[x_1/(x_1+x_2)]=Beta(k_1, k_2):$ [10]177.

Obtained as $D(\Sigma x_i^2)$: [10]169.

 $\begin{array}{l} \sim \! D[(x\!-\!k)(2k)^{-\frac{1}{2}}] \! \! = \! N[k,\!(2k)^{-\frac{1}{2}}], \ \sim \! D(2x)^{\frac{1}{2}} \\ = \! N[(2k)^{\frac{1}{2}}, \ 1] \colon \ [\mathit{1}] 2\mathit{51}. \end{array}$

 $\sim\!\mathrm{D}(-2\,\log\,\mathrm{LR})\!:\qquad [d]9\text{:}60.$

Reproductive property: [4]105, [10]177.

Normal approximation: [d]17:216, [d]27:786.

Large parameter: [c]43:92, Proc. A.M.S. 6th Symp. in Appl. Math., p. 251.

Convolution for a pair of Chi-square variables: [8] 134.

Percentage points: [c]41:313, [i]33:168.

 \sim Significance levels: [d]14:57,93.

Elderton's tables: [c]1:155.

Minimax estimation: [16]17.

Connection between χ^2 test and χ^2 distribution: [c]19:215.

Original Neyman-Pearson paper on hypothesis testing: [c]20:263.

Queueing: [b]16:82

Approximation for small sample: [d]9:158.

See also: [d]18:89, [g]29:372, [c]22:298, [a]85:87,95, [a]87:442, [c]29:133, [c]29:389, [c]31:346, [c]34:368, [c]32:268, [c]40:421, [p]7:98.

2.6. Non-Central Chi-Square

$$D(x) = e^{-\frac{1}{2}x}e^{-\frac{1}{2}k}2^{-\frac{1}{2}n}\sum_{j=0}^{\infty} \frac{X^{\frac{1}{2}n+j-1}k^{j}}{\Gamma(\frac{1}{2}n+j)2^{2j}j!} : \qquad [c]36:204.$$

$$\mathrm{Ch}(\mathbf{x}) = \frac{\exp[\mathrm{kit}/(1-2\mathrm{it})]}{(1-2\mathrm{it})^{n/2}},$$

 $k_r = 2^{r-1}(r-1)!(n+rk), \sim form:$ [18]1-162.

Logarithmic noncentral Chi-square: [o]7:57.

See also: [i]34:57, [c]41:538, [i]36 (supplement): 18, [d]28:678 [c]44:528.

2.7. Helmert (p, q)

$$D(x) = \frac{(x/q)^{p-1}e^{-\frac{1}{2}x^2/q^2}}{q\Gamma(\frac{1}{2}p)2^{\frac{1}{2}(p-2)}} : \qquad [5]94$$

For $2q^2=k$, p=2, called Rayleigh: [12]39.

 $D(x^2/q^2)$ = Chi-square:

Called seminormal: [i]20:61.

Refs, Ch(x): [17]No. 42.

$$\alpha_{\!1}\!\!=\!\!\!\frac{[\frac{1}{2}(p\!-\!1)]!}{[\frac{1}{2}(p\!-\!2)]!}2^{\frac{1}{2}}q,\!v\!=\!pq^2\!-\!\alpha_{\!1}^2$$

Non-central: [d]23:467.

See also: [c]23:418, Elec. Eng., Nov. 1954, p. 1004, MR8:161, J. Appl. Phys. 23:137.

2.8. Reciprocal Type III (p, q)

$$D(x)\!=\!\!\frac{p^{q+1}q^{q+1}}{\Gamma\left(q+1\right)}x^{-q-2}e^{-pq/x},\!pq\!>\!0,$$

$$Mean {=} p, \, var = \!\! \frac{p^2}{q-1}, \, Type \, V,$$

 $\alpha_{\rm r} = (pq)^{\rm r} \Gamma(q-r+1)/\Gamma(q+1)$: [2]86, 142.

Obtained from Pearson equation: [11]45.

Various constants, with an example: [11]78, [d]3:20.

Ch(x) in special case: [17]No. 47.

If $q = -\frac{1}{2}$, p = -1, Ch(x) = exp $[(-1+i) \ \sqrt{t}]$: [s]208:318, [17]No. 49.

More generally: [d]7:25.

MLE: [r]1:19.

As distribution of precision constant in normal sample: [a]97:132.

C(x): [c]25:379.

See also: [c]26:388, [c]36:165, [o]8:55.

2.9. Generalized Type III

 $D(x) = C(1+x/a)^{pa}e^{-px}$, with moments of D(s): [c]22:52.

 $D(x) = [p^p e^{-p}/q^p \Gamma(p)](q+x)^{p-1} e^{-px/q}$, with semi-invariants, $D(\overline{x})$ etc: [c]21:287, [c]24:293.

 $\mathrm{Ch}(\mathbf{x}) = \mathrm{e}^{-\mathrm{a}\mathrm{i}\mathbf{x}}[1-(\mathrm{i}\mathbf{x}/\mathrm{p})]^{-\mathrm{a}\mathrm{p}-1}$: [17]No. 35.

 $D(x)\!=\![1/p\Gamma(q)][(x\!-\!c)/p]^{q-1}exp[(c\!-\!x)/p],\!c\!\leq\!x\!<\!\infty\,.$

 $MLE(c,p,q): \qquad [3]39.$

Variance of estimates: [3]42.

Tables: [d]1:191.

Estimation: [g]48:336.

D(x)= $[e^{-ba}b^p/\Gamma(p)]e^{-bx}(x+a)^{p-1}$ from Pearson's equation: [4]74, [2]124, [11]65,

 $D(\bar{x}): [n]10-3:91.$

 $D(x) = A(x-c)^{q-1}e^{-p(x-c)}, x>c, p>0, q>0$:

Various constants, with an example: [11]66.

One root of quadratic in Pearson equation is ∞ : [11]44.

 $D(x_1/x_2)$ where each is Generalized Type III, or one is Generalized Type III and the other N(m,v): [2]253.

Bayes' Theorem: [n]16-1:114.

Counting radioactive particles: [d]18:260.

Two Generalized Type III distributions added: [n]8-3:76.

See also: [d]1:150, [d]1:191, [d]7:18, [c]1:293, [c]3:311, [c]5:173, [c]13:13, [c]16:114, [n]1-3:88, [c]32:294, [u]46:284.

2.10. Wishart Univariate

$$\begin{split} \mathbf{D}(\mathbf{x}) \! = \! & \frac{\mathbf{a}^{\frac{1}{2}(\mathbf{n}-1)}}{\Gamma[\frac{1}{2}(\mathbf{n}-1)]} \! \mathbf{x}^{\frac{1}{2}(\mathbf{n}-3)} \mathbf{e}^{-\mathbf{a}\mathbf{x}}, \, \mathbf{Type} \, \, \mathbf{III}[\mathbf{a}, \, \frac{1}{2}(\mathbf{n}-1)]; \\ \text{[1]391.} \end{split}$$

3. Binomial Distributions

3.1. Binomial (k, p)

 $D(x) = \binom{k}{x} p^{x} (1-p)^{k-x}, x=0,1, \dots, k,$ "Bernoulli": [4]47, [10]46, [5]106, [d]1:118.

 $\mu_{r+1} = pq(kr\mu_{r-1} + d\mu_r/dp)$: [2]118

 $\beta_1 = (q-p)/\sqrt{kpq}, \quad \beta_2 = 3 + (1-6pq)/kpq.$

Factorial moments $\alpha_{[i]} = \kappa^{[i]} p^i$, where $k^{[i]} = k(k-1)$... (k-i+1): [1]257, Nature 164:282, [2]87.

Long introductory article: [15]23.

Moments: [d]6:96, [v]3:325, Z9:28.

Cumulants $\kappa_{r+1} = pq(d\kappa_r/dp)$: [2]135, [e]31:392 [18]1-144, [d]2:196.

Mean deviation: [c]44:532, MR7:128.

Several formulas for moments about the mean: [d]7:191, [c]15:410, Z9:220.

C(x): [c]38:423.

C(x) as a Beta integral: [6]235, [18]1-152. Recursion formula for moments: [14]33.

Moments in general: [d]8:103, [d]11:106, [c]17:165 [c]26:262, MR7:461, [c]30:11, Bull. Am. Math. Soc. 40:262, 41:857.

Moments and series: [i]14:168.

Arcsin transform: [14]210.

Another form of D(x): [d]8:116.

 $\beta_1 = (q-p)^2/kpq$, $\beta_2 = [1+3pq(k-2)]/kpq$, etc.: [12]52, [d]4:216.

 $kp-q \le mode \le kp+p$: [6]57.

 $Ch(x) = (pe^{it} + 1 - p)^{k}$: [5]62, [2]55,103.

 $MGF(x) = (q + pe^{t})^{k}$: [4]48, [10]38.

 $PGF = (q + pt)^{k}$: [18]1-146.

 $\sim C(x)$: [j]8:99.

E(1/x): [g]49:169.

 $D(n\overline{x}) = Binomial(nk,p):$ [2]243.

 $D(s^2)$: [c]44:262.

FD(p): [c]37:117.

D(x-y) in terms of Legendre functions: MR14:566.

Reproductive property by convolutions: [7]216.

A convolution with respect to p: [w]6:165.

C.-R.(p) = pq/kn: [5]141, [15]207, [p]7:160.

 $\overline{\mathbf{x}}$ is sufficient: [p]7:162.

 $(\mathrm{kn})^{-1}\Sigma x_1$ is efficient and unbiased: [5]141, [1]487.

Is MLE: [5]144.

 \sim BCR for k=k₀: [d]18:556.

Minimax and Bayes: [d]23:404.

Minimax estimation: [16]18, [d]21:190.

Modified Bayes: MR11:42.

BANE(p): [d]21:402.

Biased and unbiased statistics: [t]5:149.

MLE(k,p): [k]18:117.

Estimation of p based on runs: MR14:1102.

LR comparison of two binomials: [c]37:140.

Confidence intervals: [w]2:171, [c]41:275, [c]33: 181, [w]5:94, [d]9:174, [y]21:17, [4]129, [w]19:130, [w]2:171, [c]41:308.

Tables: [3]81, [c]44:436, [o]8:85.

Sequential: [d]17:288, 489, [d]18:131, [b]8:98, [c]41:252.

Acceptance inspection: [b]12:301, MR15:727.

Chi-square test: [k]7:207.

UMP test: [c]43:465.

Sampling inspection: [j]8:626.

Multiple sampling: [d]14:363.

Analysis of variance: [d]11:335.

Order statistics: MR16:729, [s]8:62.

Approximate formulas: [8]172, [d]19:592, [n]18No. 1–2:123.

Normal approximation: [9]131, [d]16:319, [c]4: 190, [c]29:402, [r]4:47, Proc. Koninkl. Nederl. Akad. (A)57:513, MR10:131.

Using generating functions: Proc. 5th Intl. Cong. Math 2:441, [w]1:41.

Inequalities for tails: [7]126.

Asymptotic behavior: MR15:138.

Convergent sequences of binomials: Am. Math. Monthly, 50:96.

n binomials: [e]8:11.

Normalizing transform $y = k^{\frac{1}{2}} \sin^{-1}(x + a/k)$ and other transforms: [d]14:116, [f]3:52, [c]35:248.

 $\log x/(1-x)$, $-2 \tanh^{-1}x$: [v]8:73.

Other transforms: [x]2:94.

Choosing between several binomials: [j]36:537.

If p not constant (cf. "Lexian"): [k]16:1.

Transformations, approximations, applications: [15]668.

Chain binomials: [c]40:279.

Gambler's ruin: [i]24:52.

Connection with Beta distribution: [c]41:304, [n]18:121.

Actuarial application: [i]35:11.

Binomials added: MR17:862, [w]5:73.

Generalization: [d]20:311.

Generalized binomial

 $Ch(x) = \Pi(q_1 + p_1^{eix}):$ [2]122.

A modification: [e]15:237, 251.

See also: [d]6:27, [d]17:13, [d]21:247, [d]22:129, [e]12:248, [b]14:115, [j]8:364, [e]11:269, [e]16:165, 202, [f]12:276, [f]13:225, [r]1:15, 32, Bull. Am. Math. Soc. 1935, p. 857, 11th Skand. Math-Kongress p. 210,

 $Z5:212,\ Z18:31,\ MR6:234,\ MR11:604,\ MR12:509,\ MR9:450,\ Z3:18,\ [w]1:9,\ [g]33:390,\ [a]83:277,\ [e]33:222,\ [g]49:169,\ [i]7:153,\ [i]6:77,\ [i]20:77,\ [i]22:23,\ [i]26:22,\ [i]31:8,\ [i]32:188,\ [d]25:770,\ [e]44:364,\ J.\ Proc.\ Roy.\ Soc.\ N.S.W.\ 81:38,\ Z19:316,\ Proc.\ Intl.\ Cong.\ Math.\ (1924)\ 2:801,\ [y]3:282,\ [w]8:23.$

3.2. Binomial (1, p)

 $D(x) = p^x(1-p)^{1-x}, x=0,1.$

 $D(n\overline{x}) = Binomial(n,p): [6]207, [w]1:73.$

Chi-square test: [e]13:3.

Confidence intervals for p: [6]233.

Completeness: [e]10:315.

UMVUE (p)= \overline{x} , UMVUE (pq)= $n\overline{x}(1-\overline{x})/(n-1)$.

See also: [v]3:324, [w]1:9.

3.3 Truncated Binomial (k, p)

 $D(x) = \binom{k}{x} (p^x q^{k-x}/(1-q^k)), \quad x=1,\ldots,k$: [6]162.

 $\begin{array}{ccc} E(x)\!=\!kp/(1\!-\!q^{k}), & v\!=\!kpq/(1\!-\!q^{k}), \\ \text{moments of } x^{-\mathfrak{p}}\!: & [d] \textit{16:50}. \end{array}$

Estimation: [q]50:877.

Tables: [a]49:169,

With an application: [k]14:321.

See also: [b]11:2, MR15:969.

3.4. Negative Binomial (k, p)

		and the second			
D(x)	p	q = 1 - p	Mean	Variance	Reference
$\left(\frac{-\mathbf{k}}{\mathbf{x}}\right)p^{\mathbf{x}}(1-p)^{-\mathbf{k}-\mathbf{x}}$	p	1-p	-kp	$-\mathrm{kpq}$	-
$\left(\frac{a}{1+a}\right)^k \left(\frac{-k}{x}\right) \frac{(-1)^x}{(1+a)^x}$	-1/a	$\frac{a+1}{a}$	k/a	k/a+k/a ²	[1]259, [a]83:255
coefficient of t^x in $\left(\frac{a}{1+a}\right)^k \left(1 - \frac{t}{1+a}\right)^{-k}$	—1/a	$\frac{a+1}{a}$	k/a	k/a+k/a ²	[2]125
$p^{k} {x+k-1 \choose k-1} (1-p)^{x}$	<u>p-1</u>	1/p	qk/p	$ m qk/p^2$	[d]17:53, [6]61, [18]1-158, [17] No. 6, [7]218
$ \binom{x+k-1}{k-1} \frac{p^x}{(1+p)^{k+x}} $	-р	1+p	p	$p+p^2$	[f]9:176, [4]54
$\left(\frac{m}{1+bm}\right)^{x} (1+bm)^{-1/b} \frac{1}{x!} \prod_{j=1}^{x-1} (1+jb)$	-bm	1+bm	m	m(1+bm)	[5]32
$\left(\frac{n}{n+km}\right)^n \binom{x+n-1}{n-1} \left(\frac{km}{n+km}\right)^x$	-km/n	$\frac{n+km}{n}$	km	$km + \frac{k^2m^2}{n}$	[c]41:78

If Qp=1, Q(1-p)=P, then $\beta_1 = (P+Q)/\sqrt{kPQ}$, $\beta_2 = 3 + (1+6PQ)/kPQ$.

Obtained by assuming a Poisson parameter to be Type III: [1]259, [2]125, [c]41:78, [a]110:132, [f]5:162.

Some derivations, with interesting properties: [18]1-159, [c]44:530.

If k=h/p, called Polya-Eggenburger: [4]55.

Ch(x): [17]No. 7, extension, Mem. Fac. Sci. Kyushu Imp. Univ. (Ser A) 1:178.

A "contagious" distribution: [7]83, 101, [13]413, [7]128.

Skewness, kurtosis, cumulants: [18]1–136, 1–144.

 $C(x) = (p+q)^{-n}$: [c]37:209.

 $Ch(x) = [1 + bm(1 - e^{it})]^{-1/b}$: [5]62.

Called compound Poisson: [15]727.

Ch(x): [v]4:9.

Limit of contagious: [c]41:269.

Limited by Poisson and Pascal: [7]233.

PGF: [18]1–146.

Problem leading to Negative Binomial, with generalization: [d]17:53.

Generalization: MR16:602.

Paper by Fisher: [k]11:182.

Recurrence formula for cumulants: Aktuárské $V\acute{e}dy$ 5:182.

Moments: G. Dell Ist. Ital. degli Attuari 6:3, Z13:70.

Formulas for tails: [7]237.

MLE: [b]8:206, [c]37:114.

 $M\chi^2E$: [k]11:109.

UMVUE(p): [e]18:374.

Estimation: [d]24:409, Psychometrika 16:107.

Sequential: [f]6:59. Sampling: [c]37:358.

Fitting: [f]9:176.

Truncated: [g]50:877.

Moments, estimation, MLE: [c]42:58.

Bhattacharyya bounds: [d]27:1182.

Transformation $\sinh^{-1}x$: [f]3.52, [c]35.249.

Transformations: [e]41:315.

Called "Pascal," satisfies:

D(x+1) = [(1-p)(x+k)/(x+1)]D(x), etc.:

[i]14:176.

Accident proneness: [c]37:24.

Telephone traffic: [j]35:454.

Bibliography: [1]437.

See also: [7]236, [b]10:260, [f]5:165, [f]7:340, 411, [c]35:11, [c]39:178, 198, [c]40:203, [c]40:370, [c]44:364, [i]20:78, [i]22:25, [i]31:9, J.D'Analyse Math <math>1:331, Psych. Bull., 47:434, [u]45:364, Z6:69, Z18:265. Z13:409, Z14:29, MR17:944, [a]99:733, [w]8:23.

3.5. Negative Binomial (1, —m)

 $\begin{array}{l} D(x)\!=\![1/(1\!+\!m)][m/(1\!+\!m)]^x, \text{ ``Pascal,'' or ``Furry,''}\\ \text{ or ``Geometric'' }\alpha_1\!=\!m, \quad v\!=\!m^2\!+\!m,\\ \text{ Ch }(x)\!=\![1\!+\!m(1\!-\!e^{it})]^{-1}\!: \quad [5]31,60,66. \end{array}$

Cumulants: [18]1–144.

PGF: [18]1–148.

If $D\left(\frac{m}{1+m}\right)$ =Beta, then D(x)=No. 8.93

See also: [c]39:346, [7]59, [v]4:8, [c]36:165, [15]38, [c]44:265.

3.6. Discrete Lexian

 $D(x) = \Sigma f(p)$ $\binom{k}{x}$ p^x $(1-p)^{k-x}$, moments, etc.:

"Generalized Binomial".

Poisson-Lexian: [i]26:57.

 $Ch(x) = [p\phi(t) + q]^k$: [17] No. 69.

If a priori distribution of p is Beta: [i]27:39, Bull. Am. Math. Soc. 41:860.

3.7. Deterministic

$$D(x) = \begin{cases} 0, & x \neq c \\ 1, & x = c \end{cases}$$
: "casual" [1]192.

 $\mathrm{Ch}(x)\!=\!e^{\mathrm{i}\varepsilon t}; \qquad [8] 209, \ [5] 29, \ 62.$

For c=1: [2]96.

Bibliography: [17] No. 1.

Moments, cumulants, Ch(x), PGF: [18]1–136, 1-144, 1-146, [v]3:324.

See also: [c]44:366, Z9:363, [w]1:9.

3.8. Reciprocal Truncated Binomial

D(x): [n]18 No. 1-2:77.

4. Discrete Distributions

4.1. Poisson (m)

D(x)= $e^{-m}m^x/x!$, x=0, 1, ..., law of small numbers: [6]59, [5]30, [8]X, [7]72, 115, [10]47, 63, [15]119.

 ${\rm Ch}({\bf x})\!=\!\exp\,\left[{\bf m}({\bf e}^{{\bf i}\,{\bf t}}\!-\!1)\right]\!:\qquad [1]{\it 204},\,[5]{\it 62},\,[2]{\it 66}.$

 $\begin{array}{lll} MGF(x)\!=\!e^{-m}\exp\ (me^t)\!: & [6]101,\ [4]53,\ [m]2\text{:}46.\\ \alpha_1\!=\!m, & \alpha_2\!=\!m^2\!+\!m, & v\!=\!m\!: & [6]102,\ [5]57,\ 66,\\ [4]53. & & & \end{array}$

 $\alpha_3 = m[(m+1)^2 + m],$ $\alpha_4 = m(m^3 + 6m^2 + 7m + 1): [10]59.$ $\mu_2 = m$, $\mu_3 = m$, $\mu_4 = m(1+3m)$, $\mu_5 = m(1+10m)$, $\mu_6 = m(1+25+15m^2)$:

 $\mu_6 = m(1+25+15m^2)$: [d]1:119, [2]86.

Skewness, kurtosis: [18]1–136.

PGF: [18]1-146.

 $\mu_{r+1} = \text{rm} \mu_{r-1} + \text{m} (d\mu_r/dm):$ Math. Soc. 40:264, 41:857.[2]121, Bull. Am.

All cumulants=m: [2]66.

Factorial moments $\alpha_{[1]} = m^i$: [1]257.

Moments in general: [d]8:103, [i]14:173.

Recursion formula for moments, correction with multinomial, C(x) as a Γ integral: [14]36-8.

 $\beta_1 = 1/m$, $\beta_2 = 3 + 1/m$, $\gamma = 1/m$: [12]52.

C(x): [j]5:604, MR4:194, [c]37:313.

Transform $y = \sqrt{x}$: [14]209.

 $D(\overline{x}) = e^{-nm}(nm)^{n\overline{x}}/(n\overline{x})!$: [1]379, [2]243, [6]208, [15]219.

D(x+y): [10]59.

 $\sim D\left(\frac{x-m}{m}\right) = N(m, m^{\frac{1}{2}}):$ [1]250.

 $\mathbf{D}(\mathbf{x}-\mathbf{y})$: [2]251, MR14.566, [a]109:296, [a]100: 415, [v]7:175.

 $\sim D(x-y)$: *MR15:138*.

D(gap between two Poisson events)=exponential: [c]41:252, [g]49:255, MR14:293, Am. Math. Month-ly 64:719.

 $D[\overline{x}^{-1}\Sigma(x_1-\overline{x})]$, i.e., Chi-square test: [b]5:75, Z18:321.

D(Index of dispersion): [d]14:155, [c]40:225.

Various a priori distributions of m, in particular Type III: [i]27:33.

 $E(x^2) = E(x+1)$: [8]119.

E(1/x): [g]49:169.

Var $(x^{\frac{1}{2}})$: [a]106:143.

Reproductive property by convolutions: [7]216. by Ch. functions: [9]279.

C.-R. (m) = m/n: [1]487.

C.-R. $(m^2)=4m^3n^{-1}$.

BANE: [d]21:401.

Estimation when m must be integral: [b]12:213

Estimation: [d]24:406.

Estimation from censored samples: [g]49:158.

Estimation of bacteria population: [c]31:170.

Estimation of m or 1/m: [g]49:255.

 $M\chi^2E$: [3]56.

Approximation, estimation, application: [15]714.

MLE(m)= $\bar{\mathbf{x}}$: [4]141, [9]6.22, [5]144, [3]21, [p] 7:169.

 \bar{x} is sufficient: [4]136, [w]22:713.

 \bar{x} is efficient: [1]487.

 \bar{x} is unbiased: [3]142.

Completeness: [e]10:315.

Confidence intervals, tail: [c]41:312.

C.-R: [16]16.

Confidence intervals: [3]71, 81, [d]9:173, [c]28:437, [c]44:436, [e]14:25, [p]7:223.

Order statistics: MR16:729.

Approximate moments of ordered variables: [8] 8:78.

Testing whether two Poissons are the same: [3]127, [e]37:143.

Two Poissons, etc.: [c]40:447.

Whether k Poissons are the same: [d]16:362, Proc. Nat. Inst. Sci. India 3:297.

Analysis of variance: [d]11:335, J. Econ. Entom. 37:717.

Testing m: [c]31:314, [c]40:354, [g]49:255, [14]205.

Testing ratios of means: [0]4:45.

Chi-square test: [k]7:207.

Testing against contagious: [c]37:59.

Sequential testing m: [d]19:400.

Small sample tests: [f]12:264.

Monograph on Poisson testing and estimation: MR16:383.

Obtained from a difference equation analogous to Pearson's differential equation: [f]2:419.

Obtained from postulates: Z13:408.

Early discussion with numerical examples: [c] 10:36.

Transform $y=(x+k)^{\frac{1}{2}}$: [d]14:113, [f]3:52, [e] 35:247.

Transformations: [c]41:312.

Domain of attraction: MR3:2.

As limit of binomial: MR12:190, [4]52, [7]110, [i]6:78, [s]1:161.

Generalizations: [c]36:18, Operations Res. 3:198, [c]37:48.

A modification: [e]15:237, 251.

Convergent sequence of Poissons: Am. Math. Monthly 50:97.

Connection with hypergeometric: [c]25:300.

If m Poisson, called double Poisson: Kendall and Buckland, A Dictionary of Stat. Terms.

Normal approximation: [7]146, MR16:1034, MR10:613, [r]4:37.

Compounded with binomial: [7]128,221.

As approximation to Beta: [j]20:19.

An approximation: MR18:423.

Connection with Gram-Charlier: [2]154.

Connection with Type X: [o]2:13, D. L. Gerlough and A. Schuhl, Poisson and Traffic, The ENO Foundation, 1955.

Connection with Type III: [0]3:123.

Limiting theorems: [8]148.

Poisson if and only if $\sum_{1}^{a} xD(x) = m C(a-1)$

Characterization: [u]48:206, Proc. A.M.S. 1:813, C. R. Acad. Sci. Paris 239:1114, 3rd Berkeley Symp 2:145.

Generalizations: [d]13:410, [d]14:394, MR15:138, MR16:1034, [d]19:414, MR13:258.

Possibility of a continuous analog: [i]14:43.

Traffic control: [b]7:65.

Accident causation: [b]7:89, [a]90:487.

Poisson as a limiting distribution in five different ways, relation with multinomial, exponential: [18]1–156.

Accident proneness: [c]37:24.

Pedestrian delay: [c]38:383.

Insurance risk: [i]40:72.

Frequency of war: [a]107:242, [a]112:446.

Nomograph for acceptance inspection: [8]4:204.

Telephone switchboards: [5]30, [j]6:468.

An early treatment, with the famous example of the Prussian horse-kicks: Von Bortkewjtsch, L. Das Gesetz der Kleinen Zahlen, B. G. Teubner, Leipzig 1898.

Other applications: [7]119, [j]5:604.

See also: [d]14:155, [d]20:523, [d]22:94, [d]22:128 [13]405, [j]7:45, [c]11:267, [c]11:211, [c]26:108, [g] 33:390, [g]42:574, [a]83:255, [f]6:17, MR1:246, Z22:243, MR17:53, MR14:485, Z18:31, Z14:138, MR4:20, MR13:633, MR15:541, 634, MR7:310, [f]7:340, [c]27:272, [c]30:188, [c]36:250, [n]16-2:285, [k]9:406, [c]38:427, [c]39:346, [i]20:80, [i]22:25, [i] 25:158, [i]26:46, [i]31:9, Rio. Ital. di Demogr. e Stat 3:219, Proc. First Pakistan Stat. Conf. (1950) p. 59, Publ. Math. Debrecen 2:66, Annals of Applied Biology 9:325, Annales de l'Ecole Normalle Superiere 54:321, [v]2:330, [v]3:327, [d]26:147, [c]44:265, 365, Brit. Assoc. Math. Tables (3rd Ed.) V.1 p. xxxvi, Am. Math. Monthly 50:97, Annals of Math 37:357, Bull. Am. Math. Soc. 1935 p. 861, Am. J. Math 57:827, [u]45:219, Kungl. Lantbruk. Ann. 18:86, Z2:200, MR1:15, MR18:341, MR5:128, MR2:112, Z15:407, Z18:412, MR14:1098, MR13:958, [w]1:9, [s]1:93.

4.2. Truncated Poisson

 $D(x) = m^x e^{-m} / x! (1 - e^{-m}), x=1, 2, ...$: [f]8:275, [f]10:402, [f]11:387.

Estimation: [c]39:247, [c]40:171, [g]50:906, [i]39:19, [f]9:485.

UMVUE: [e]18:374.

Tables: [g]49:169, [11]158, [13]39:247.

Servicing machines: [b]13:71.

D(1/x): [n]18 No. 1-2:77.

Doubly truncated, D(x) etc: [g]49:160, Conn. Agric. Exp. Sta. Bull. No. 513.

4.3. Compound Poisson

 $D(x)\!=\!k_1(e^{-m}m^x\!/x!)\!+\!k_2(e^{-n}n^x\!/x!)\!:\!$ double Poisson: [5]151.

If $k_1 = k_2 = \frac{1}{2}$: [5]150, [g]42:407, [f]8:281.

Compound Poisson $D(x) = (1/x!) \Sigma m_1^x e^{-m_1} k_1$: [7] 237, MR17:862, R. D. Evans, The Atomic Nucleus, p. 766, MR13:633, MR14:770.

4.4. Uniform

D(x) = 1/k, x = 1, ..., k: [6]61.

Discrete rectangular.

MGF and moments: [d]11:324.

Sampling from: [c]21:126.

Estimation of range: [g]46:375.

Range and quotient of ranges: Int. Congr. Math. (1950) 1:583.

 $D(n\bar{x})$: [p]10:52, 255, 324.

See also: *MR16:376*.

4.5. Hypergeometric

 $D(x) = \left[\binom{m}{x} \binom{n}{r-x} \right] / \binom{m+n}{r} : [6]61, [7]33, [15]40.$

D(x) in another form, moments, etc: [2]126.

In the form of a hypergeometric series, asymptotic forms: [c]25:295, [c]26:59.

Various forms: J. Soc. Stat. Paris 96:262.

C(x) as a power series: [c]41:317.

Ch(x), refs: [17] No. 8.

 $E(x) = mr/(m+n), v = [mnr(m+n-r)]/[(m+n)^2 (m+n-1)]:$ [7]183, [6]98.

Difference equation, moments, etc: [i]14:178.

Factorial moments: [2]135, Nature 164:282, [i] 6:79.

Skewness: [18]1–136.

PGF: [18]1–146.

Moments in general: [d]8:103, [d]10:198, [e]16:157, [e]17:57, [e]26:264, [a]89:326, [v]3:326, GANITA~7:1.

Binomial and Poisson as limits: [15]690.

Binomial as limit: [7]47.

Poisson as limit: [7]114, [c]25:300.

Normal as limit: [7]146.

Normal, Poisson, binomial approximations: [18] 1-155, [d]27:471.

Minimax estimation: [d]21:191.

Completeness: [e]10:315.

"Confidence Limits for the Hypergeometric Distribution: Chung and DeLury Univ. of Toronto Press, 1950, reviewed, [a]115:286.

Generalization: [7]39, [c]41:266, see also No. 8.59, [b]18:202.

Satisfying difference equation

Linguistic application: [b]12:27.

Truncated hypergeometric, moments: [d]16:59.

[7]187, Koninkl. Nederl. Double hypergeometric: $Akad(A) \ 60:121.$

[d]1:113, [d]21:248, [e]11:153, [j]7:39,See also: [j]10:281, [f]8:287, [n]1-4:49, [c]37:140, [h]2:435, [i]22:26, [d]25:762, J. Proc. Roy. Soc. N.S.W. 81:38, N.B.S. Math. Table MT19, MR17:984,Z12:29, Z13:273, MR1:340, U. Calif. Pub. Stat 1, No. 7, MR13:962, MR14:775, [w]1:9.

4.6. Contagious

Obtained by considering f(Poisson) dF(m):

MR14:293, [d]14:389, [v]8:13.

F step function yields $D(x) = (1/x!) \sum p_i e^{-a_i} a_i^x$, (No.

7.3) F Type III yields Polya-Eggenberger

$$D(x)\!=\!\!\frac{1}{x!}\,\frac{\Gamma(x\!+\!h/\!d)}{\Gamma(h/\!d)}\,(1\!+\!d)^{-d/h}(1\!+\!d)^{-x}.$$

m itself also Poisson vields $D(x) = e^{-k} (c^x/x!) \Sigma(i^x/i!) (e^{-c}k)^i.$

[c]40:208.Nevman contagious Type A:

[f]11:149, F. N. David, Probability Theory for Statistical Methods, p. 68, Cambridge 1949.

Ch. fcns: [g]49:368.

Generalization:

[f]9:354.

Testing against Poisson: [c]37:59.

Rutherford contagious: [d]25:703.

 Σ_i (Poisson) $f_i(x)$, Ch(x), sp. cases: [17]Nos. 66-8.

Bivariate: MR15:138.

[13]411, [f]9:354, [c]36:450, [c]39:346,[c]40:186, [c]41:268, [d]10:35, J. Econ. Entom. 35: 536, MR1:251.

4.7. Pollaczek-Geiringer

D(x), Ch(x),

multiple occurrence of rare events: [17]No. 9.

4.8. Borel-Tanner

 $2\overline{14}:4\overline{52}$, [c]40:58, [c]47:143.

$$m = r/(1-\alpha), v = [\alpha r/(1-\alpha)^3].$$

If r=1, $MLE(\alpha)=(\bar{x}-1)/\bar{x}$.

 $PGF(x) = t^{r} \exp r \sum_{n=1}^{\infty} (n^{n-1} \alpha^{n} / n! e^{\alpha n}) (t^{n} - 1).$

4.9. Polva

$$D(x) = {N \choose x} \frac{\prod\limits_{i=0}^{x-1} (m+iR) \prod\limits_{j=0}^{N-x-1} (n-m+jR)}{\prod\limits_{k=0}^{N-1} (n+kR)} : \qquad [7]128,$$

Contains Polya-Eggenburger No. 3.4, and Exceedance No. 4.10.

4.10. Exceedance

$$D(x) {=} \frac{\binom{n}{m}m\binom{N}{x}}{(n{+}N)\binom{N{+}n{-}1}{m{+}x{-}1}}, \quad x {=} 0,\,1,\,\ldots,\,N {:}$$

[d]25:762, [w]6:164, [d]28:1021, [d]21:247.

Moments: [w]6:165.

4.11. Inverse Hypergeometric

$$D(x) = \frac{\binom{n}{m-1}\binom{N-n}{x-m}(n-m+1)}{\binom{N}{x-1}(N-x+1)}, \text{ estimation, trun-}$$

Kungl. Lantbuck. Ann. 18:123.

4.12. Generalized Poisson

$$D(x)\!=\!e^{-\lambda}\!\!\sum_{j=1}^{\alpha}\frac{\lambda^{\alpha x+j-1}}{(\alpha x\!+\!j\!-\!1)!}$$

Connected with Type III: [o]3:123, [o]11:101.

5. Distributions on (a, b)

5.1. Serial Correlation

Moments, called "Leipnik": [c]44:270. See also: [c]35:255, 261, [d]13:1, 14, [c]43:161, 169, [d]18:86, Cowles Commission Papers, New Series No. 42.

5.2. Type I

 $\begin{array}{l} D(x) \! = \! C(x \! - \! a)^{p-1} (b \! - \! x)^{q-1}, \\ a \! < \! x \! < \! b, \, p \! > \! 0, \, q \! > \! 0 \colon \\ [1] \textit{249, [17]} \textit{No. 22.} \end{array}$

Beta for a=0, b=1normal for $p=q=\frac{1}{2}b^2$, a=-b, $b\rightarrow \infty$: [2]139.

Type III for $b \rightarrow \infty$, $q = \alpha b$: [1]249.

Obtained by assuming roots in quadratic of Pearson differential equation real with different sign: [4]74, [11]43.

Relations of various constants: [11]53, [c]16:107.

Bayes' theorem: [n]16-1:115.

Fitting to observations: [a]96:306, [c]1:31, [c] 1: 292, [e]1:408, [c]4:474, [e]7:87.

Early volumes of [c] give many examples with $D(x) = C(1+x/a)^m(1-x/b)^n$.

See also: [d]1:148, [d]7:20, [d]8:17, [d]10:15, [c]3:311, [c]23:393, [c]26:386, [i] 16:53.

5.3. Beta (p, q)

 $\begin{array}{ll} D(x) \! = \! \frac{\Gamma[\frac{1}{2}(p \! + \! q)]}{\Gamma(\frac{1}{2}p)\,\Gamma(\frac{1}{2}q)} \;\; x^{\frac{1}{2}p-1}(1 \! - \! x)^{\frac{1}{2}q-1}, \;\; 0 \! < \! x \! < \! 1, \;\; p \! > \! -2, \\ q \! > \! -2 \! : \qquad [2]139, \; [17]No. \; 21, \; [1]243, \; [10]153. \end{array}$

Called Beta distribution of the first kind: [d]25: 401.

 $\begin{array}{ll} \alpha_1 \! = \! p/(p \! + \! q), \ v \! = \! pq/[(p \! + \! q)^2 \ (\frac{1}{2}p \! + \! \frac{1}{2}q \! + \! 1)] \colon & \text{[2]31}, \\ 41, \ [10]153, \ [14]42. \end{array}$

3d Moments: [2]419.

Mode = (p-2)/(p+q-4), etc.: [m]2:128.

 $\alpha_r = B(p+r, q)/B(p, q)$: [6]117, [b]4:126, [14]42.

HM = (p-2)/(p+q-2), [10]163.

 $GM = \exp \left\{ \left(\frac{\partial}{\partial \frac{1}{2}} \mathbf{p} \right) \left[\log \Gamma \left(\frac{1}{2} \mathbf{p} \right) - \log \frac{1}{2} (\mathbf{p} + \mathbf{q}) \right] \right\}.$

C(x): [d]20:451.

Moments: [3]211.

Obtained as a Pearson Type: [4]74.

From an example: [10]45.

C(x): [c]19:1, [c]25:379, [c]38:423, [c]37:208, [i] 38:192.

 $D(\bar{x})$: [2]251, [n]8-4:55.

When p = q: [c]19:230.

Special cases and variants: [2]26.

Beta (n-k, k): [1]409.

Beta (2n-2, 4) connected with tolerance limits: Hoel, Intro. to Math. Stat.

Correlation ratio in samples from uncorrelated bivariate normal is Beta (k-1, n-k): [2]352, [1]414, [c]21:1, [c]30:290, [10]181, 184.

D(1-x) = Beta(q,p)

If x is Beta (p,q), y is Type III (1, p+q) then xy is Type III (1,p): [10]156.

Standardized Beta variable is N(0,1) as $p \rightarrow \infty$, $q \rightarrow \infty$: [1]252.

D(xy): [e]9:365.

No sufficient statistic for $(\frac{1}{2}p-1)$: Proc. Roy. Soc. Lond. (Series A) 154:133.

Mellin transform: [d]19:373. more generally: [b]8:136.

 $\log \log \frac{1}{x}$, $\arcsin \sqrt{x}$,: [v]8:71.

Generalized: [c]43:237, [c]44:441.

Transform: [c]36:165.

Connection with Fisher and Snedecor: [2]419, [c] 21:350.

Noncentral Beta: [d]26:648.

Connection with binomial: [c]41:304, [n]18:121.

Fitting straight lines: [y]24:23.

Approximated by Poisson: [j]20:19.

Range of rectangular (0,a) is

 $D(x) = n(n-1)a^{-n}x^{n-2}(a-x)$: [4]93, [c]25:417.

In trivariate normal analysis: [3]341.

 $\begin{array}{lll} \mathrm{GM}\ (x_{\scriptscriptstyle 1},\ldots,x_{\scriptscriptstyle n})\ \mathrm{and}\ \mathrm{GM}\ (1-x_{\scriptscriptstyle 1},\ldots,\,1-x_{\scriptscriptstyle n})\\ \mathrm{are\ joint\ sufficient:} & [3]49. \end{array}$

In rank correlation: [2]418.

See also: [d]16:98, [d]17:325, [b]1:214, [c]22:284, [c]22:391, [c]23:143, [c]27:415, [10]154, [c]30:140, [c]33:178, [c]34:368, [c]35:19, [c]32:151, 271, [c]36:166, [k]5:75, [c]39:204, [c]37:219, [c]40:281, [g]48:831, [w]1:9.

5.4. Type II

 $\begin{array}{l} D(x)\!=\![1\!-\!(x\!-\!m)^2\!a^{-2}]^p\!/\![aB(\frac{1}{2},\!p\!+\!1)],\\ m\!-\!a\!\leq\! x\!\leq\! m\!+\!a\!:\! [2]141. \end{array}$

Properties: MR10:131.

Transform to Student: [c]28:308.

 $D(\bar{x}): [n]10-3:91.$

C(x): [c]19:12, [c]25:379.

~Dist. of rank correlation coefficient (Pitman): [c]30:259.

Called Thompson's distribution, relation with Student's, normal approximation: [a]27:784.

m location, a scaling, p shape, likelihood function: C.-R.(m) Tables. $v=a^2/(2p+3)$: [d]3:86.

If m=0
Distribution of Spearman

Distribution of Spearman's ρ for large n: [2]401.

A numerical example: [11]62.

Estimation of center: [t]4:33.

From Pearson system: [11]43.

See also: [c]4:174, [c]16:114, [c]21:263, [n]12-3:67.

5.5 Partial Correlation

$$D(x)\!=\!\pi^{-\frac{1}{2}}\frac{\Gamma[\frac{1}{2}(n\!-\!k\!+\!1)]}{\Gamma[\frac{1}{2}(n\!-\!k)]}\;(1\!-\!x^2)^{\frac{1}{2}(n-k-2)},$$

-1 < x < 1: [1]412, [i]24:198.

Type II with m=0, a=1, $p=\frac{1}{2}(n-k-2)$.

Ch(x): [17]No. 19.

If k=2, transform to Student: [5]99.

If corresponding population parameter is zero: [10]256.

As No. 5.1 with r=0: Cowles Commission Papers, New Series No. 10.

If population is non-normal: [i]36:16.

See also: [d]18:81, [n]2:684, [o]3:45, [a]92:580.

5.6. Parabolic

 $D(x) = \frac{[3(a^2-x^2)]}{4a^3}, -a < x < a, v = a^2/5$, grouping corrections: [c]39:432.

Estimation: [d]26:505, [m]6:120.

5.7. Type IX

$$D(x) = \frac{m+1}{a} (1+x/a)^m, -a \le x \le 0:$$
[2]142, [17]No. 16

See also: [d]7:26, [c]24:234,240,263.

Type VIII for negative m: [17]No. 23, MR4:21.

5.8. Type XII

$$\begin{split} \mathbf{D}(\mathbf{x}) = & (\mathbf{p}/\mathbf{q})^m \, \frac{(1+\mathbf{x}/\mathbf{p})^{\mathbf{m}} (1-\mathbf{x}/\mathbf{q})^{-\mathbf{m}}}{(\mathbf{p}+\mathbf{q}) \mathbf{B} (1+\mathbf{m}, \, 1-\mathbf{m})} \\ & |m| < 1, \, -p \le x \le q \text{:} \qquad [\mathcal{Z}] 143. \end{split}$$

See also: [d]7:27, [17]No. 24.

5.9. Correlation Determinant

$$\begin{split} D(x) &= \!\! \frac{\Gamma[\frac{1}{2}(n\!-\!1)]^{k-1} x^{\frac{1}{2}(n-k-2)}}{\pi^{\frac{1}{4}k(k-1)} \Gamma[\frac{1}{2}(n\!-\!2)] \cdot \ldots \cdot \Gamma[\frac{1}{2}(n\!-\!k)]} \\ \alpha_i &= (n\!-\!1)^{1-k} (n\!-\!2) (n\!-\!3) \ldots \ldots (n\!-\!k), \\ v &= \! k(k\!-\!1) n^{-2} \! + \! 0(n^{-3}) \colon \quad [1]411, \, [4]120. \end{split}$$

Downton calls this "Geometric," and mentions, in connection with LSE, the following special cases: [d]25:304.

I.
$$D(x)=px^{p-1}, 0 \le x < 1,$$

 $C(x)=x^p, \alpha_1=p/(p-1), v=p(p+2)^{-1}(p+1)^{-2}$

II.
$$D(x) = pb^{-p}(x+a)^{p-1}, -a \le x < b-a$$

$$\begin{split} \text{III.} \ \ D(x) = & p v^{-\frac{1}{2}} b^{-p} [(x-m)/v^{\frac{1}{2}} + a]^{p-1}, \\ m - a v^{\frac{1}{2}} \leq & x < m + (b-a) v^{\frac{1}{2}}, \ \alpha_1 = m, \\ a = & p^{\frac{1}{2}} (p+2)^{\frac{1}{2}}, \ b = & p^{-\frac{1}{2}} (p+1)^{3/2}, \ p \geq 1. \end{split}$$

 $\log \log (x)$: [v]8:70.

5.10. Triangular

D(x)=1-|1-x|, $D(\overline{x})$ from rectangular when n=2, D(range): [c]25:417, [y]24:22, MR 3:171.

$$D(x) = \frac{2x}{2k+1}$$
, $k \le x \le k+1$: [3]47, [8]32.

Stratified sampling: [c]13:48.

$$D(x) = (9\sigma)^{-1} \left[\frac{x-m}{\sigma} + 2\sqrt{2} \right]$$
, right triangular

$$m-2\sqrt{2}\sigma \le x < m+\sqrt{2}\sigma$$
: [d]4:256, [d]25:308.

$$\begin{split} \mathbf{D}(\mathbf{x}) = & 4\mathbf{R}^{-2}(\tfrac{1}{2}\mathbf{R} - |\mathbf{x} - \mathbf{m}|), \quad |\mathbf{x} - \mathbf{m}| \leq \tfrac{1}{2}\mathbf{R}, \text{ best linear} \\ \text{estimate of m and } \sigma \colon & [d] \text{25:318}. \end{split}$$

Testing: [d]25:695.

See also: [d]2:48, [d]28:179.

$$D(x) = \frac{1}{a} \left[1 + k - \frac{2k}{a(a-x)} \right], 0 \le x \le a,$$

$$-1 \le k \le 1. \text{ called "linear"}: [d]4:244.$$

[2]142, [17]No. 16
$$D(x) = \begin{cases} 1+x, & -1 \le x < 0 \\ 1-x, & 0 \le x < 1 \end{cases}$$
 called "Tine": [d]5:33.
$$Ch(x) = (2/t^2)(1-\cos t): [17] \text{ No. 14.}$$

$$D(x) = \frac{2}{a^2} (a-x)$$
, called "semi-triangular"

m=a/3, v=a²/18, grouping corrections: [c]39:432. Ch(x): [17] No. 13.

Triangular on (a, b). If x and y are extreme values of the sample, then

 $E[\frac{1}{2}(x+y)] = \frac{1}{2}(a+b),$

$$Var \ [\tfrac{1}{2}(x+y)] \! = \! \! \tfrac{4-\pi}{16n} \, (b\! - \! a)^2 \! + \! 0(n^{-2}),$$

$$\begin{split} E[(x-y)] = & \left[1 - \frac{\sqrt{\pi}}{2n} \right] (b-a) + 0(n^{-3/2}), \\ & \text{Var } (x-y) = \frac{4-\pi}{4n} (b-a)^2 + 0(n^{-2}). \end{split}$$

See also: [y]16:16.

5.11. Rectangular $(a-h_a a+h)$

$$D(x) = \frac{1}{2h}$$
, $a-h \le x \le a+h$; $D(x) = 0$ elsewhere

$$m=a, v=h^2/3:$$
 [1]244, [5]34.

Skewness=0, kurtosis=-6/5, K_{κ} , Ch(x): [18]1-136, 1-144.

 $Ch(x) = (\sin ht/ht)e^{ait}$: [1]259.

Special case of Type II: [2]142.

Ch(x), bibliography for rectangular over (a,b), [17] Nos. 11, 12. (-a, a):

 $C(x) = \frac{1}{2} + x/a$: [15]93.

If x and y are the kth values from the top and bottom of sample.

 $E(x)=a+h-\frac{k}{n+1}(2h); E[\frac{1}{2}(x+y)]=a;$ $E(x-y) = (1 - \frac{2k}{n+1})(2h)$:

 $Var (x) = \frac{k(n-k+1)}{(n+1)^2(n+2)} (2h)^2$

 $Var \left[\frac{1}{2}(x+y)\right] = \frac{4kh^2}{2(n+1)(n+2)}$

 $Var~(x{-}y){=}\frac{2k(n{-}2k{+}1)}{(n{+}1)^2(n{+}2)}~(2h)^2$

 $\sim D(\overline{x}) = N\left(0, \frac{h^2}{3n}\right), \sim D(c) = Laplace\left(0, \frac{h}{n}\right),$

where $c=\frac{1}{2}$ (max+min), n var (c)=6 var (x): [3]48.

 $\mathbf{D}(\xi)$: [d]26:115.

Moments of max and min: MR 4:21.

 $D(\overline{\mathbf{x}})$ given incorrectly: [n]10-3:91.

 $D(\overline{x}) = \text{No. } 5.16.$

 $D(-2\log \Pi x_i)$: [v]4:161.

[c]30:402.FD(a) = Rectangular(max-h, min+h):

D(qth ranking item)=Type I: [c]23:390.

Testing against simple unimodal distribution: [y]20:111.

[c]39:430.Grouping corrections:

Transformation to Cauchy: [15]101.

C.—R. theorem may not hold: [1]485.

MLE(a-h, a+h) = (max, min): [6]156, [3]28.

[d]25:308,317.Best linear estimate of m and σ :

Estimation: [d]17:355.

[u]33:221.Location and scaling, closest estimate:

Minimax estimate of "a": [d]22:37.

UMVUE: [14]142.

Bayes' theorem: [n]16-1:110.

Variance of estimates of "a": [g]36:410.

Testing "a": [d]25:157.

[3]280. Critical regions:

See also: Archiv. der Math. 3:3, MR 6:235.

5.12. Rectangular (0, a)

D(x) = 1/a, $Ch(x) = (e^{ait} - 1)/ait$: [2]245.

 $MGF(x) = (\sinh \frac{1}{2}at)/\frac{1}{2}at$: [10]38. $\alpha_{2r} = (\frac{1}{2}a)^{2r}/(2r+1)$: [10]14.

Cumulants: [10]41.

Var(mean deviation) $\simeq a^2/45n$: [2]217.

Mean difference: [c]28:432. $Ch(\Sigma x_i), C(\Sigma x_i)$: [9]278.

 $D(GM) = \frac{n^{n}x^{n-1}}{a^{n}\Gamma(n)} (\log a/x)^{n-1}; \qquad [2]246, [d]5:276.$

 $D(range) = n(n-1)a^{-n}x^{n-2}(a-x)$: [4]92, 123, [c]20A:210, [9]241.

 $D\left(\sum_{i=1}^{n} \log x_i\right) = \text{Type III:} \quad [v]7:296.$

 $D(\overline{x}, s)$ for n=2,3: [d]3:128.

[g]46:502.D(quotient of ranges):

 $D(max_1/max_2) = No. 8.63$: [g]50:1136.

 $FD(a) = k x^{-n-1}$: [c]30:408, [d]9:273.

MGF $\left(\log\log\frac{1}{x}\right)$, MGF $(\arcsin\sqrt{x})$: [v]8:69.

[e]10:314.Completeness:

Estimation by order statistics: [d]26:576.

Quasi-range: [d]28:179.

Best linear estimate: [d]14:88.

UMVUE (a) = $\left(1 + \frac{1}{n}\right)$ (max), max is sufficient: [14]142.

Sufficient statistics: [e]17:214.

Confidence intervals for a: [3]83, [b]17:88.

Example: [d]11:209.

Estimation of dispersion:

UMP test of a=1: [13].

[d]2:48, [d]2:66, [d]4:126, [d]4:139,See also: 142,255, [c]23:424.

5.13. Rectangular (0, 1)

 $D(x) = 1, \quad 0 \le x \le 1$

 $D(-\log x) = e^{-x}$, $Ch(-\log x) = (1-it)^{-1}$ $D(-\Sigma \log x_i) = Type III (l, k)$:

 $D(\Sigma x_{j}) = \frac{1}{(n-1)!} [x^{n-1} - \binom{n}{1}(x-1)^{n-1}$

 $+\binom{n}{2}(x-2)^{n-1}-\ldots$

"Irwin-Hall" distribution: [d]13:43, [1]245, [w]1:73, [2]240, 244, [c]19:234, MR 12:509, MR 15:42, MR 7:311, [c]19:240, [c]41:334.

Obtained by finite differences (Also for No. 4.4): [p]10:52, 255, 324.

Convolutions: MR 6:88.

Sheppard's corrections: [2]88.

 $D(q^{th} \ value \ from \ top \ of \ sample) = Type \ I, \ m = 1 - q/(n+1), \ v = q(n-q+1)/[(n+1)^2 \ (n+2)]: \ [2|218.$

Var $(\xi) = 1/4(n+2)$: [2]230.

 $\sim D(\overline{x})$: [d]25:636, MR 9:360.

Mellin transform: [d]19:373.

Order statistics: [c]24:260, [i]33:214.

D(range) = Type I: [c]25:417.

 $MGF(\log \log 1/x) = (1+t)$

 $MGF(\arcsin x) = 2(e^{\frac{1}{2}\pi t} + 1)/(t^2 + 4)$: [v]8:69.

Ratio of two ranges: [d]21:112, [x]7:179.

Moments of the range: Z 13:30, [c]20:217.

C.–R. theorem may not hold: [1]485.

Censored sample: [c]41:230.

Stratified sample: [d]13:44.

Significance levels for $\bar{\mathbf{x}}$: [t]3:172.

D(GM) = No. 8.12: [w]1:73.

Estimation of center, $D(\overline{x})$, $D(\xi)$: [c]33:126.

 $D(\max_1 \max_2) = No. 8.64:$ [g]50:1142.

Two rectangulars added: [n]8-3:74.

Hypothesis testing: [c]32:321.

See Also: [d]23:43, [c]25:203, [m]6:120, [d]22:418, [y]24:21, MR 7:310, Z 11:218, MR 16:602.

5.14. Correlation

$$\begin{split} D(\mathbf{x}) = & \frac{(1 - \mathbf{x}^2)^{\frac{1}{2}(\mathbf{n} - 4)}(1 - \rho^2)^{\frac{1}{2}(\mathbf{n} - 1)}2^{\mathbf{n} - 3}}{\pi(n - 3)!} \\ & \sum_{i=0}^{\infty} \frac{(2\mathbf{x}\rho)^i}{i!} \Gamma^{-} \left(\frac{\mathbf{n} + \mathbf{i} - 1}{2}\right) & \text{[1]398} \end{split}$$

$$\begin{split} D(\mathbf{x}) \!=\! \! \frac{(1\!-\!\rho^2)^{\frac{1}{2}(\mathbf{n}-1)}(1\!-\!\mathbf{x}^2)^{\frac{1}{2}(\mathbf{n}-4)}}{\pi(\mathbf{n}\!-\!2)!} \frac{\mathbf{d}^{\mathbf{n}-2}}{\mathbf{d}(\rho\mathbf{x})^{\mathbf{n}-2}} \! \left[\frac{\cos^{-1}(-\rho\mathbf{x})}{1\!-\!\rho^2\mathbf{x}^2} \right] \\ & [\mathcal{Z}]34\mathcal{Z}, [10]\mathcal{Z}00. \end{split}$$

Special cases n=2,3,4, moments: [2]345. n=4: [u]26:536.

C(x): [c]25:71.

 \sim D(x): [n]1-4:1, [c]38:236.

If $\rho = 0$, D(x) = No. 5.5: [6]314, [4]120, [g]26:129.

If $\rho = 0$, $D\left(\frac{x}{\sqrt{1-x^2}}\sqrt{n-2}\right) = Student(n-2)$:
[2]343.

Transform x=tanh z, ρ =tanh ζ : [10]200, [c]21: 358.

If $\rho = 0$, $D(x^2) = Beta \left[\frac{1}{4}, \frac{1}{4}(n-2)\right]$: [10]160, 192.

Bayes' distribution of ρ is No. 5.5(0,1): [3]91, [c]41:278.

Moments: [n]5:3.

Papers dealing with this distribution generally: [c]10:507, [c]11:328.

Interval estimation: [e]7:415.

Confidence limits for ρ : [c]29:157.

Stratified sampling: [i]36(Suppl.):87.

See also: [b]15:193, [c]21:164, [c]24:383; [o]3:1, Z21:41.

5.15. Multiple Correlation

$$D(x) \! = \! \frac{\gamma \; (1 \! - \! R^2)^{\frac{1}{2}(n-1)}}{B[\frac{1}{2}(n\! - \! k), \; (k \! - \! 1)]} x^{\frac{1}{2}(k-3)} (1 \! - \! x)^{\frac{1}{2}(n-k-2)}$$

where
$$\gamma = F\left(\frac{n-1}{2}, \frac{n-1}{2}, \frac{k-1}{2}, R^2x\right)$$
 and

$$F(a,\,b,\,c,\,x)\!=\!1\!+\!\frac{ab}{c}x\!+\!\frac{a(a\!+\!1)b(b\!+\!1)}{c(c\!+\!1)}\frac{x^2}{2!}\!+\!\cdot\;\cdot\;\cdot:$$

[14]65, [2]384, [d]3:196, [2]127.

If R = 0, $D(x^2) = Beta(k, n-k)$: [i]30:63, [2]381

Testing: [i]29:25

Another form: [2]387, [3]338.

Limiting form when $n \rightarrow \infty$: [2]387.

When R=0, D(x)=Snedecor: [10]257,252.

Mean, variance: [c]22:353.

Moments: *MR 14:189*.

More generally: [d]11:6.

See also: [e]9:352, [e]10:257, [a]92:445, [n]12-4:67, [i]24:199, [x]1:67,137, [x]4:88, Proc. Roy. Soc. (A) 121:654, [u]46:521.

5.16. Rectangular Mean

$$D(x) = \frac{1}{(n-1)!} \sum_{j=0}^{[x]} (-1)^{j} \binom{n}{j} (x-j)^{n-1}$$
 [1]245.

Generalization: [v]3:330.

Obtained by finite differences: [p]10:52, 255, 324.

Called Irwin-Hall, cf. No. 5.13 [*d*]13:43.

Compare No. 8.47 and No. 8.70:

See also: London P.O. Res. Rep. 13443, Archiv der Math. 3:3, Proc. Intl. Cong. Math. (1924) 2:795.

6. Distributions on $(0, \infty)$

6.1. Type VI

$$D(x) = C(x-a)^{p-1}(x-b)^{q-1}, x>b, a< b, q>0, p+q<1: [1]249.$$

If b=0,
$$C = \frac{a^{1-p-q}}{B(1-p-q, p)}$$
: [2]140.

Roots of quadratic in Pearson equation real and same sign: [11]45.

Truncation: [i]39:63, [i]40:18.

Various constants and an example: [11]83.

See also: [d]7:23, [c]23:143, [c]25:379, [17]No. 26, [v]4:167.

6.2. Snedecor (p, q)

$$D(x)\!=\!\frac{(p/q)^{\frac{1}{2}p}x^{\frac{1}{2}p-1}(1\!+\!px/q)^{-\frac{1}{2}(p+q)}}{B(\frac{1}{2}p,\frac{1}{2}q)},\!x\!>\!0\!:\qquad [5]100.$$

"F" distribution

m, v, $\kappa_3, \kappa_4, \beta_1, \beta_2$: [p]6:175.

Derivation, properties, examples: [15]374, [18]1-163.

Area unity if p,q both even: MR 12:509.

Obtained as distribution of ratio of two Chi-square variables: [6]10.5, [4]113.

$$\begin{split} 1 - C(x) = & \frac{\sum\limits_{0}^{n} c_{j} x^{j}}{(x+k)^{m}}, \quad \text{where } n = \frac{1}{2} p - 1, \\ m = & \frac{1}{2} \ (p+q) - 1, \ k = q/p, \ \text{and} \ c_{j} = (\ _{j} \) k^{m-j} \colon \\ [p] 10:62. \end{split}$$

 $D(\sqrt{x})$: [5]100.

$$D\left(\frac{px}{q+px}\right) = B(p-1, q-1):$$
 [4]115

Therefore called "inverted Beta": [c]33:73.

Various properties: [d]12:446.

$$m = \frac{q}{q-2}$$
: [10]198.

$$\alpha_r \!\!=\!\! \frac{\Gamma(\frac{1}{2}p\!+\!r)\Gamma(\frac{1}{2}q\!-\!r)}{\Gamma(\frac{1}{2}p)\Gamma(\frac{1}{2}q)}(q/p)^r \!\!: \qquad [4]114$$

$$Mode = \frac{pq - 2q}{pq + 2p}$$
: [10]197.

Approximated by normal distribution: [d]13:233.

If x, y each Snedecor (n-1, n), then $D(\sqrt{x/y}) =$ Snedecor (2n-2, 2n-2).

Testing: [d]13:371.

Used to test multiple correlation coefficient:

[10]257.

See also: [4]189, [d]6:204, [d]18:89, [c]21:350, [c]37:219, [q]7:96, J. Soc. Statist. Paris 96:262.

6.3. Beta of Second Kind (p, q)

$$\begin{split} D(x) = & \frac{x^{p-1}}{B(p, q)(1+x)^{p+q}}, \quad m = \frac{p}{q-1}, \\ v = & \frac{p(p+q-1)}{(q-1)^2(q-2)}, \quad mode = \frac{p-1}{q+1}, \quad HM = \frac{p-1}{q}. \end{split}$$

if
$$r < q$$
, $\alpha_r = \frac{p(p+1)...(p+r-1)}{(q-1)(q-2)...(q-r)}$

$$D(1/x)=No. 6.3(q,p), D(\frac{1}{1+x})=Beta:$$
[1]242, [10]156, 158, 163 [d]25:402.

 $p=q, x \ge 1$: [d]22:418.

Called Fisher's F: [w]1:9.

C(x): [p]7:102.

6.4. Hotelling

$$D(x) = \frac{2}{B[\frac{1}{2}(p-q), \frac{1}{2}q](p-1)^{\frac{1}{2}q}} \frac{x^{q-1}}{\left\lceil 1 + \frac{x^2}{p-1} \right\rceil^{\frac{1}{2}p}} : \quad \text{[4]238}.$$

For q=1, this is positive half of Student distribution, hence called generalized Student:

[1]409, [d]2:375.

 $D(x^2)$: [c]32:70.

Mellin transform: [d]19:373.

Percentage points, relation with Chi-square: [d]27:1091.

See also: [10]207, [c]25:399, [i]30:66, [d]9:235, [c]24:480, [c]4:174, [c]24:487, [t]7:82.

6.5. Pareto

$$D(x) = p/q(q/x)^{p+1}$$
: [8]120.

$$\alpha_1 = \frac{p}{p-1}q, \ \xi = 2^{1/p}q$$
: [1]248, [2]142.

More generally: [d]7:26.

Testing, location and dispersion: [t]7:115.

As Type XI: [c]39:178, [17]No. 25.

Ranking: [c]24:234, 241, 275.

Double Pareto: Kendall and Buckland, A Dictionary of Stat. Terms.

See also: [l]19:174, [h']1:149, [g]48:537, [i]8:76, [t]3:77, [y]13:30, MR13:962, Z23:63, C. R. Acad. $Sci.\ Paris\ 233:1421$, [l]25:591, [w]4:147.

6.6. Kendall

$$\begin{split} D(x) = & \frac{re^{-(x-r)/\alpha}(x-r)^{x-1}}{\alpha^{z}\Gamma(x+1)}, \quad 0 < r < x < \infty, \quad 0 \le \alpha \le 1, \\ m = & \frac{r}{1-\alpha}, \quad v = \frac{r\alpha^{2}}{(1-\alpha)^{3}}. \\ [b] \textit{19:211, (cf. Borel-Tanner)}. \end{split}$$

6.7. Inverse Gaussian

7. Distributions on $(-\infty, \infty)$

7.1. Type VII

$$D(x) = \frac{(1+x^2/a^2)^{-m}}{aB(\frac{1}{2}, m-\frac{1}{2})}, \quad m > \frac{1}{2}: \qquad [2]142.$$

Estimation: [c]36:412, [t]4:35.

See also: [c]15:401, [c]36:412, 167.

7.2. Student (v)

$$D(x) = \frac{\Gamma[\frac{1}{2}(\nu+1)]}{\Gamma(\frac{1}{2}\nu)(\pi\nu)^{\frac{1}{2}}} (1+x^2/\nu)^{-\frac{1}{2}(\nu+1)}; \qquad [5]97, [2]17, [6]$$

10.6, MR8:161, [14]47, [4]110, [10]186, [l]3:355, [18]1-162, [17]No. 29.

Introduction, properties, examples: [15]388.

 $\nabla = \nu/(\nu-2)$. [1]239.

Type VII with $m=\frac{1}{2} (\nu+1)$, $a^2=\nu$. "t" distribution.

$$\alpha_{2k} = \frac{1 \cdot 3 \cdot \ldots \cdot (2k-1)\nu^k}{(\nu-2)(\nu-4) \cdot \ldots \cdot (\nu-2k)}$$
: [1]239, [10]208.

Original paper in which this distribution was discovered: [c]6:1.

Ch(x), refs for $\nu = 3$: [17]No. 28.

Ch(x): [b]18:212.

Distribution of the ratio of a Chi-square variable to a normal variable: [1]387, [4]110, [10]187 [n]5: 102.

In bivariate normal samples

$$D\left(\frac{\sigma_{1}(n-1)^{\frac{1}{2}}}{\sigma_{2}(1-\rho^{2})^{\frac{1}{2}}}(b-\beta)\right) = Student \ (n-1): \qquad [1] 29.8.$$

$$D\left(\frac{s_1(n-2)^{\frac{1}{2}}}{s_2(1-\nu^2)^{\frac{1}{2}}}(b-\beta)\right) = Student \ (n-2): \qquad [1]29.8$$

if $\rho = 0$

$$D\left[(n-2)^{\frac{1}{2}} \frac{\nu}{(1-\nu^2)^{\frac{1}{2}}} \right] = Student \ (n-2): \qquad [1] 29.7.$$

C(x): [l]3:358, [c]25:389, [n]5:109, [c]37:168.

 $D(x^2) = Snedecor:$ [6]217, [4]115.

Transform to Type II: [c]28:308.

 $D(\bar{x})$: [n]8-4:92.

As $\nu \to \infty$, Student \to N(0,1): [1]252, [3]101, [a] 113:228, [d]27:783, Proc. A.M.S. 6th Symposium in Appl. Math. p. 251.

Approximations: [d]7:210, [d]9:87, [d]17:216.

 $D(\log x): [c]34:176.$

Two Student variables: [c]22:405, [c]23:1.

Used to test partial correlation: [10]256.

 \sim significance levels: [d]14:60.

Generalizations: [d]19:406, [d]25:162, [i]34:58.

See also: [d]10:265, [d]18:89, [e]11:37, [e]12:89, [j]8:632, [c]33:362, [n]5:90, [c]32:271,300, [c]24:56,296, [i]33:138, [c]44:264, Brit. Assoc. Math. Tables (3rd Ed.) V. 1 p xxxiii, J. Soc. Stat. Paris 92:262, MR18: 834, Z4:67, [u]21:482,655, [w]1:9, [p]8:42.

7.3. Normal Regression Slope

$$D(x) \! = \! \! \frac{[\sigma_1^2 \sigma_2^2 (1 \! - \! \rho^2)]^{\frac{1}{2}(n-1)} \Gamma(\frac{1}{2}n)}{\sqrt{\pi} \Gamma[\frac{1}{2}(n\! - \! 1)] \sigma_1^{n-2} \left(\sigma_2^2 \! - \! 2\rho\sigma_1\sigma_2x \! + \! \sigma_1^2x^2\right)^{\frac{1}{2}n}}\! \! : \! \!$$

[1]402.

$$v = \frac{1}{n-3} \frac{\sigma_2^2}{\sigma_1^2} (1-\rho^2)$$
: [2]365, [e]1:432.

For $\rho=0$, can use Student distribution to test x: [10]194.

Stratified sampling: [i]36:96.

7.4. Cauchy (p, q)

$$D(x) = \frac{1}{\pi} \frac{p}{p^2 + (x-q)^2}$$
: [1]246, [5]35, [18]1-36.

 $Ch(x) = \exp [qit - p|t|]:$ [5]60.

q is the mode and median; there is no mean, nor any moment: [5]58.

Quartiles are $q \pm p$: [5]67.

 \bar{x} is not a consistent estimate of q: [5]105.

 \bar{x} is a "density unbiased" estimate of q: [d]25:400.

There are no sufficient estimators: [3]48.

C.-R.(q), C.-R.(p), C.-R.(p/q): [e]8:205.

Distribution of t and F statistics: MR13:665.

Mean and variance of $\frac{1}{2}$ (x+y), where x and y are respectively the kth values from the top and bottom of the sample: [1]373. $\frac{1}{2}$ (x+y) is not a consistent estimate of q.

See also: [d]17:2, [d]21:133.

7.5. Cauchy (1, q)

$$D(x) = \frac{1}{\pi} \frac{1}{1 + (x - q)^2}$$
: [6]117.

q incorrectly asserted to be the mean: [p]7:165.

 $E(x), E(x^2), D(x+y): [14]43.$

C.-R. (q)=2/n: [1]490, [3]24, [p]7:159.

Var $(\xi) \simeq \pi^2/4$ n: $[\beta] \theta$.

 $D(\bar{x})=D(x)$, hence \bar{x} not consistent: [3]2, [1]490, [u]22:702.

 $D(\xi)$: [3]46.

MLE \neq minimax: [16]64.

MLE is solution of $\Sigma[2(x_1-q)]/[1+(x_1-q)^2]=0$: [3]24, [p]7:169.

Gaging: [e]15:194.

There is no sufficient estimator: [9]6:16, [3]27, [p]7:162.

There is no UMVUE: [3]51.

Information and estimation: [e]8:315.

Loss of information: [3]32.

Testing $m=m_0$: [d]9:83, [d]13:65.

Cauchys added: MR17:863.

See also: [b]9:61, [i]20:61, [g]51:641, [d]28:832, [w]1:9.

7.6. Cauchy (p, 0)

 $D(x) = (p/\pi)[1/(p^2+x^2)], Ch(x) = \exp(-p|t|): [9]275.$

Reproductive property: [9]276.

Information and estimation: [e]8:316.

Completeness: [e]10:314. $D(\bar{x}) = D(x)$: [n]10-3:91.

Truncated to (-p,p): [10]14.

7.7. Cauchy (1, 0)

 $D(x) = (1/\pi)[1/(1+x^2)]$ [8]167.

Ch(x) = exp - $|\mathbf{t}|$: [2]95, [8]167, [1]246, [9]243, [17] No. 27, [8]213:718, [i]5:133.

Sample median: [d]26:600.

 $D(\bar{x}) = D(x):$ [2]233,247, [w]1:73.

From an example: [8]33, [9]242.

Moments: [8]99.

As distribution of ratio of two normal variables: [10]159.

 $C(x) = \frac{1}{2} + (1/\pi) \tan^{-1}x$.

Censored sample: [c]41:230.

Wrapped-up Cauchy: [*d*]26:245.

See also: [d]22:425, [k]7:371, S. D. Poisson (1824) "Sur la Probabilité des résultats moyens des observations," Connaissance des Tems ou Des Mouvements Célestes a l'usage des astronomes et des Navigateurs, pour l'an 1827. Le Bureau des Longitudes, Paris. [d]22:418, MR3:232, MR9:235, MR5:124.

7.8. LaPlace (m, v)

D(x) = $(2v)^{-\frac{1}{2}} \exp[-|x-m|/\frac{1}{2}(2v)^{\frac{1}{2}}]$: [1]247, [5]35, 67, [18]1-136.

Ch(x) = exp (mit) $\cdot (1 + \frac{1}{2}vt^2)^{-1}$: [5]62.

Mean and variance of average of greatest and least sample values: [1]375.

A priori distributions of m,v: MR9:294.

"Best" estimates of m and σ are ξ and $(1/n)\Sigma|x_1-\xi|$, but ξ not sufficient: [5]147-8.

Distribution of smallest sample value: [g]43:408.

 $D(\xi)$: [d]26:115.

[9]6:16, [3]27, | Quasi-range: [d]28:179.

"Double exponential" distribution: Proc. Roy. Soc. Lond. (Series A) 154:124, [v]7:164.

Convolution, estimation, generalization: Sobre la Primera Ley de Errores de Laplace, F. A. Sales Vallés, Thesis, Barcelona 1947.

 $\begin{array}{l} Laplace~(0,~v),~also~called~``Poisson's~first~law~of\\ error,''~D(|\bar{x}|),~D(|x|-|y|),~D(log~|x|-log~|y|),\\ D(\Sigma x_1^2),~D(GM),~D(HM):~[d]6:102. \end{array}$

Laplace if $D(x)D(y) = \phi(|x| + |y|)$ MR10:125.

See also: [n]10-3:80.

Laplace (m,2), MLE: [3]45.

Laplace (0,1), $D(x) = e^{-|x|}$: [8]120, [9]279, [1]100.

Sample median: [d]26:599.

 $\alpha_{2k} = (2k)!$: [d]5:32.

D(range), quality control: [p]8.87.

See also: [d]22:425, [17] No. 38, Laplace (1774), "Memoire sur la Probabilité des causes par les évènemens."

7.9. Fisher (p, q)

$$D(x) = \frac{2p^{\frac{1}{2}p}q^{\frac{1}{2}q}e^{px}}{B(\frac{1}{2}p, \frac{1}{2}q)(q+pe^{2x})^{\frac{1}{2}(p+q)}}: \qquad [1]243, [2]249, \\ [14]48, MR8:161.$$

z distribution: [l]3:355.

C(x) as a power series: [l]3:360.

Cumulants: *MR9:48*, 735.

Moments, cumulants: [y]5:317.

Transform to Snedecor by $y=e^{2x}$; $x=\frac{1}{2}\log \frac{q\chi_1^2}{p\chi_2^2}$: [c]23:147.

Various properties: [d]12:429, [c]34:173.

$$\mathrm{Ch}(\mathbf{x}) = \left(\frac{\mathbf{q}}{\mathbf{p}}\right)^{\frac{1}{2}1t} \Gamma[\frac{1}{2}(\mathbf{q}-\mathrm{i}t)] \Gamma[\frac{1}{2}(\mathbf{p}+\mathrm{i}t)] / \Gamma(\frac{1}{2}\mathbf{p}) \Gamma(\frac{1}{2}\mathbf{q}):$$
 [3]116.

 \sim C(x): [d]28:504.

Obtained from two Chi-square variables: [2]249, [d]7:52, [g]26:173.

Approximate significance levels, transformation to normal: [d|11:93].

Normal limit: Am. Math. Monthly, 50:100.

Generalization: [i]34:58.

Noncentral: [o]7:57.

See also: [e]2:423, [b]1:31, [a]94:284, [c]21:350, (c)34:352, 359, [c]41:304, Am. Math. Monthly 50:100, 382. Proc. Intl. Cong. Math. (1920)805, Current Science 1941, p. 191, [w]5:30, [p]6:183.

7.10. Type IV

 $D(x) = C(1+x^2/a^2)^{-m} \exp(-p \tan^{-1} x/a)$: [11]69. $D(x-h) = Type \ IV$: [3]48.

Various constants with an example: [11]69.

Roots of quadratic in Pearson equation complex:

[11]44.

 $\alpha_{r} = [a/(2m-r-1)][(r-1)a\alpha_{r-2}-p\alpha_{r-1}]:$ [2]86, 140, 144.

a=1: [17]No. 52.

> See also: [d]7:21, [c]1:39, [c]3:312, [c]6:435, [c]7:74, [c]26:386.

8. Miscellaneous Univariate

8.1. Pearson

 $\frac{1}{\mathbf{D}(x)}\frac{d\mathbf{D}(x)}{dx}\!\!=\!\!\frac{a_0\!+a_1x}{b_0\!+b_1x\!+b_2x^2}\!,$

types listed with associated parameters: [d]2:394, [n]11-4:77.

Differential equation for Ch(x): MR8:393.

Ch(x): MR10:705.

Phil. Trans., 1895. Original paper:

First seven types treated in [11].

New classification: [d]7:16.

 $D(\bar{x})$: [d]18:111, [n]8-4:51.

Truncation, estimation: [d]22:256, [c]40:50.

Bivariate: MR9:363,452.

Flexes equidistant from mode, etc.: [d]6:1.

Bivariate generalization: [v]3:273.

Orthogonal Polynomials: Ann. Soc. Cien. Argentina 155:3.

Generalizations: [d]5:124, [c]26:129, (cf No. 8.52),MR10:386, MR17:1095, [d]21:289, J. Gakugei Tokushima Univ. Math. 5:29, [n]12-2:95.

Log Pearson distributions: Intl. Cong. Math. (1950)1:580.

Romanovsky's generalization: [c]17:106, [c]18: 221.

See also: [d]8:18, [d]8:206, [d]20:461, [e]6:415, [c]7:127, [c]16:106, [c]16:198, [c]18:264, [c]20:389, [g]26(P):288, [a]85:488, [c]35:113, [c]32:81, [c]36:151, [c]38:4, [i]25:141, MR17:169,272, Z9:314, Z6:268, Z19:73, MR14:755,977, Intl. Cong. Math. (1950) 1:585.

8.2. Bessel Function

Mahalanobis' Distribution ("D" distribution): [e] 2:143,385, [e]3:105, [e]4:19,373,535, [e]8:167, [k]8: 379, [14]246, MR4:23.

Wilk's distribution of dispersion determinant, etc.: [e]3:26.

 $D(\bar{x})$: MR5:42.

Distribution of vector correlation: [c]28:353.

D(x), Ch(x), Moments in a special case: MR14:

D(ratio Type III variables): Studies Presented to Richard von Mises. Academic Press, 1954.

Bivariate Gamma distribution: [e]5:140.

Distribution of the range: [d]18:384, [d]21:133.

Marginal total of Elfving's distribution: [c]36:142.

[e]6:175, [e]8:235, [a]97:125, [a]98:89,[b]16:96, [c]21:168, [c]24:441, [c]24:485,492, [d]18:392, [c]24:39, [c]24:293, [17]Nos. 10,60,61,62,63,64, with Ch(x), refs. [c]21:164, [c]24:293, [c]24:39, Several forms, J. Soc. Stat. Paris 96:262, [u]28:458, MR11: 607, MR16:152.

8.3. Variance Ratio

$$D(x)\!=\!\frac{2(1\!-\!\rho^2)^{\frac{1}{2}(n-1)}x^{n-2}(1\!-\!4\rho^2x^2(1\!+\!x^2)^{-2})^{-\frac{1}{2}n}}{B[\frac{1}{2}(n\!-\!1),\frac{1}{2}(n\!-\!1)](1\!+\!x^2)^{n-1}},$$

"Bose", [2]365, [e]2:65.

For $\rho = 0$, D[$(2n-3)x^2$]=Hotelling (2n-2,n-1).

[p]6:183, [p]7:98, [c]30:190, [c]31:9.

8.4. Kullbach

$$D(x) = \frac{nx^{np-1}}{\Gamma(n)[\Gamma(p)]^2} \sum_{j=0}^{\infty} (-1)^{n+nj+1} \left(\frac{d^{n-1}}{dt^{n-1}} \frac{x^{nt}}{\Gamma(t+1)} \right)_{t=j}$$

Distribution of GM from Type III (1.p): [2]251.

8.5. Noncentral Student

D(x): [c]31:362, [18]1-162, [v]4:173.307.

Multivariate: [v]4:331.

Application: [c]43:219.

[i]36(Suppl.):21, [r]1:28, J. Soc. Stat. Paris 96:262, MR15:46.

8.6. Continuous Lexian

 $D(x) = \int_0^1 f(p) \binom{n}{x} p^x (1-p)^{n-x} dp; \text{ parameters; if } f(p) \text{ is }$ Beta, D(x) is hypergeometric: [i]31:1, [i]34:197.

8.7. Noncentral Snadecor

D(x): [c]36:220, [18]1-163, [e]15:321.

See also: [c]38:112, [i]36(Suppl.):33, [r]3:33.

8.8. Fisher's Logarithmic Series

$$D(x) = \frac{k^x}{p \log \frac{1}{1 - k}}, x = 1, 2, \dots; \qquad \text{[e]35:6, [f]5:162.}$$

Distribution of difference of χ^2 variables: [d]7:51. Cf. negative binomial (1, -m), No. 3.5: [c]37:358.

$$\begin{split} D\left(\mathbf{x}\right) = & \frac{\mathbf{N}}{\sigma} \frac{\mathbf{n}!}{(\mathbf{q}-1)!(\mathbf{n}-\mathbf{q})!} \bigg[\exp{-\frac{\mathbf{x}}{\sigma}} \left(\mathbf{n} - \mathbf{q} + 1\right) \bigg] \\ & \times (1 - \mathrm{e}^{-\mathbf{x}/\sigma})^{\mathbf{q}-1} : \qquad [e] 24:231, 239, [e] 25:79. \end{split}$$

In special case called Yule's distribution, MLE: [c]42:23,425, [c]43:248.

A distribution of Type III median: [p]7:153.

8.10. Generalized Pareto

 $D(x) = ax^{-n}[1/(e^{b/x}-1)]:$ [l]6:184.

b=1, n=5, a=15/ π^4 , Planck's radiation function: [17]No. 56.

8.11. Ghosh

 $D(x) = \frac{2}{\Gamma([k]+1)} \; x^{[k]} e^{-x^2}, \text{ where } [k] \text{ is the largest integer} < k.$

Furnishes counterexample to theorem on similar regions: [e]8:330.

8.12. Rectangular Geometric Mean

8.13. Cauchy Median

8.14. Spearman's Rank Correlation

D(x): [c]30:256, [c]34:183, [c]38:131.

 \sim D(x)=Type II, moments: [c]40:409.

8.15. Circular Normal Correlation

 $\begin{array}{ll} D(x)\!=\!n(n\!-\!1)\ e^{-x^2/v}\ (1\!-\!e^{-x^2/2v})^{n-2}\ (x/\sigma)\!: & [e]39:139, \\ [g]48:496. \end{array}$

8.16. Koopman

D(x)=Q(k) R(x) exp k H(x), most general distribution admitting a sufficient estimate of k: [3]24, [d]23:403, [c]36:71, Trans Am. Math. Soc. 39:399, [p]7:162.

8.17. Von Mises

D(x)=C exp k cos (x-a): Physikal. Zeitschr 19:490.

'Circular Normal': [g]48:131, [g]49:53,268, [e]43: 344, [d]26:233, [e]43:344.

8.18.

Family of distributions having all moments equal: [d]11:402.

$$\begin{array}{ll} D(x)\!=\!\!\frac{1}{6}\,e^{-x^{\frac{1}{2}}}(1\!-\!p\,\sin\,x^{\frac{1}{4}}) & 0\!\leq\!x\!<\!\infty\,,0\!\leq\!p\!\leq\!1.\\ \alpha_k\!=\!\!\frac{1}{6}\,(4k\!+\!3)!. \end{array}$$

Family of distributions having all moments equal $D(x) = e^{-\frac{1}{4}} \pi^{-\frac{1}{2}} x^{-\log x} [1-p \sin(2\pi \log x)],$ $\alpha_k = \exp[\frac{1}{4}k(k+2)]: [d]11:402.$

8.20.

"Non-null t² distribution", involving a hypergeometric function: [14]48.

8.21

 $D(x) = \frac{\operatorname{sech}^{k-2} x}{B(1,k-2)}, \text{ the distribution of } \tanh^{-1} r \text{ in }$ samples from a bivariate normal distribution with zero means and zero correlation: [b]15:213, [b]9:61.

Ch(x), also special cases and refs: [17]Nos. 53-5. D(Σx_1) for k=3: Z9:219.

8.22

 $\begin{array}{l} D(x) = & \frac{1}{2a} \operatorname{sech}^2\left(\frac{x-m}{a}\right) \text{, connected with lognormal:} \\ \text{[e]} 12:122. \end{array}$

Called 'logistic', $Ch(x) = \pi x \operatorname{sech} \pi x$ when m = 0, a = 2: [v]7:163.

Called 'hyperbolic law of errors', properties, examples: [s]2.55.

Distribution of t and F statistics: MR 13:665.

8.23

Distribution of the correlation ratio, involving series: [a]97:121, [c]24:441.

8.24.

Various distributions of the form exp (-quartic polynomial): [d]4:1, [d]4:79, [d]19:589.

Giving an example where no minimum variance estimator exists: [e]12:43.

MLE: [c]31:188, [a]98:114.

8.25.

 $k(1+x^2)^{-m}$: [2]52.

Ch(x): [2]67.

8.26.

 $D(x) = b \sin 2(a + bx)$: [b]9:61.

8.27.

Normal multiplied by an eighth degree polynomial: [a]106:361.

8.28.

 $D(x) = (\frac{1}{4}h + \frac{1}{4}h^2|x|)e^{-h|x|}, D(\bar{x}):$ [n]10-3:90.

For h=1, Ch(x)= $\left(\frac{1}{1+x^2}\right)^2$: [n]10:75, [17]No. 39.

Miscellaneous distributions given in terms of C(x): [d]13:217, Math. Tables and Other Aids to Computation 5:109, [g]50:209.

8.30.

 $D(x) = \frac{1}{2}k(1+|x|)^{-k-1}$: [1]225 No. 2.

k negative: [c]33:126.

k=1+p: [c]36:93, [17] No. 17, generalization No. 18.

8.31.

 $D(x) = k \exp(-ax^p)[1 + q \sin(bx^p)]$: [2]106.

8.32.

Various distributions formed from rational functions of x, rational functions multiplied by $e^{-1/x}$, e^{-x} and $\exp (-\tan^{-1} x)$: [d]1:137.

8.33.

 $D(x) = (e^2 + |x|)^{-1} [\log (e^2 + |x|)]^{-2}$, having a pathologically long tail: [d]17:11.

8.34. Weibull

Moments of order statistics: [d]26:330.

8.35.

 $D(x) = k \sin^m x \cos^n x$: [c]30:182.

Phil. Mag. Ser. 7, n=0, value of k, $Ch(\cos x)$: 39:70.

8.36.

 $D(x) = 2h\pi^{-1}(1+h^2x^2)^{-2}$: [n]10-3:77.

8.37.

 $D(x) = 2h\pi^{-1}(e^{hx} + e^{-hx})^{-1}$, $D(\bar{x})$ called "Perks": [n]10-3:90, [d]26:153, [v]7:159, J. Inst. Actuar.63:12.

8.38.

 $D(x) = (2\pi)^{-\frac{1}{2}}(x/k)[\exp(-\frac{1}{2}(x-k)^2)]$ $-\exp(-\frac{1}{2}(x+k)^2)$: [2]387.

8.39.

Four distributions formed by multiplying the normal distribution by a polynomial, used to illustrate kurtosis: [g]40:259.

8.40. Extreme Value

 $D(x) = a \exp[-a(x-m)] \exp[-\exp(a(x-m)]$: [d]17:299.

Gumbel or Fisher-Tippett distribution.

Determination of constants: C.R. Acad. Sci. Paris 222:34.

Estimation, MLE: [d]24:282.

Bias: [d]27:758.

 $Ch(x) = \Gamma(1-ixa^{-1}) \exp(ixm)$ Cumulants (see reference): [18]1–144.

For m=0, a=1, $Ch(x) = \Gamma(1-ix)$, References: [17]No. 43, [u]24:180.

Connection with No. 2.3: [v]4:8, [g]50:518, [q]42:408.

Special cases: [r]1:4.

 \sim D(x): [u]24:180, [g]43:403, Studies presented to Richard von Mises. Academic Press, 1954 p. 346.

With slight modification $\sim D(x)$ is distribution of log survival time: J. Hygiene 42:328.

U.S. Dept. Agric. ARS 41:13, Ann. See also: Inst. Henri Poincaré 4:115, 5:115, J. de Physique Serie 7 Vol. 8, nos. 8, 11, Bull. Am. Meteor. Soc, 23:95, C.R. Acad. Sci. Paris 246:49, 237: 512, Nature 175:270, Cong. Intl. Math. 1936, 2:200, [a]99:732, [w]8:97 NBS Appl. Math. Ser. No. 33.

[17]No.30.

8.42.

D(x+y), where x and y obey various trivial dis-[d]5:16.tributions:

8.43.

 $D(x) = Cx^{-1}(1+p/x)^{-2}$: [d]6:106.

 $D(x) \! = \! \! \frac{a \! + \! 1}{2a} \, (1 \! - \! |x|^a), \, -1 \! < \! x \! < \! 1 \! : \qquad \textit{[17]No.15}.$

 $D(x) = \frac{\lambda^a}{\left(1 + \frac{c}{\lambda^b}\right)^n} \, e^{-\lambda x} x^{a-1} \, \sum_{j=0}^n \binom{n}{j} \frac{c^j x^{bj}}{\Gamma(bj+a)}, \ 0 < x < \infty \,,$

 $\lambda > 0$, $c \ge 0$, $b \ge 0$, a > 0, $n = 1, 2, \dots$ Ch(x), References: [17]No. 36.

8.46.

 $D(x) = (x-k)x^{n} e^{-ax}$: [g]42:572.

8.47. Stevens-Fisher

 $D(x) = \sum {n \choose j} (-1)^j (1-jx)^{n-1}$ [k]9:315, [k]10:14.

Compare No. 5.16 and No. 8.70.

8.49.

 $D(x) = C \exp[-a(b-x)^{-c}]$: [d]25:645.

$$D(\mathbf{x}) \! = \! \! \frac{\mathbf{a}}{2 \, \Gamma(1/\mathbf{a})} \, \mathrm{e}^{-|\mathbf{x}|^{\, \mathbf{a}}}, \! - \infty \! < \! \mathbf{x} \! < \! \infty \,, \; \mathbf{a} \! > \! 0 \qquad [i] 5 : \! 133, \! [g]$$

26(Suppl.-H)227,[17]No.40.

MLE: [u]45:542.

Distribution of non-normal correlation: [c]38:224.

$$D(x)\!=\!C\!\left[\!\frac{p\!-\!x^2}{q\!+\!x^2}\!\right]^{\frac{m}{p+q}}\!,\;-\sqrt{p}\!<\!x\!<\!\sqrt{p}$$

Value of C, references:

Hansmann's distributions, obtained from a generalized Pearson differential equation: $[c]2\tilde{6}:129.$

8.53.

$$D(x) = (k/x) \exp[-ax - (b/x)]:$$
 [17]No.48.

Called "Type Harmonique": C.R. Acad Sci. Paris 213:634.

$$D(x) = (a/\sqrt{\pi})e^{2a\sqrt{b}} \frac{1}{x^{3/2}} e^{-bx - \frac{a^2}{x}}; \qquad [i]2\beta:101.$$

$$Ch(x) = \exp[2a(\sqrt{b} - \sqrt{b - it})]: \qquad [17]No.50.$$

8.55.
$$D(x) = \frac{a^{p}|r|}{\Gamma(p)} x^{rp-1} e^{-ax^{r}}, \ 0 < x < \infty, \ a > 0, \ p > 0:$$
 [17]
$$No.51.$$

$$D(x) = (a-1)^2 (\log x)/x^a, 1 < x < \infty, 1 < a$$
: [17]

$$D(x) = -[L(b^{1-a})x^a \log x]^{-1}, \ b < x < \infty, \ a > 1, \ b > 1,$$
 and

and
$$L(\mathbf{u}) = \int_0^u \frac{d\mathbf{v}}{\log \mathbf{v}}, \mathbf{u} \ge 0.$$
 [17] No.58.

$$D(x) = -(a+1)^2 x^a \log x$$
, $0 < x < 1$, $a > -1$: [17]

8.59.

A generalization of the hypergeometric distribution based on the Whittaker function $x^{m+\frac{1}{2}} e^{-\frac{1}{2}x} {}_{1}F_{1}(m+\frac{1}{2}-k, 2m+x; x)$

D(x), Ch(x), references: [17]No.65.

8.60.

 $D(x) = C e^{-(x^2/2a^2)}/(b^2+x^2)$, moments, Ch(x), limiting cases (Cauchy, Normal): [v]2:293, [v]3:139.

8.61.

$$D(x) = (1/\pi)[(1-\cos x)/x^2]:$$
 [v]2:328.

8.62.

D(x) where A+Bf(x) is (a) normal, or (b) Laplace and f(x) is (i) $\log x$, (ii) $\log [x/(1-x)]$, (iii) arcsinh [c]36:149, [v]5:283.

$$D(x) = \begin{cases} 1 - e^{-\mu NT}, & x = N \\ (1 - e^{-\mu T}) \exp[-\mu T(x-1)], & x = N+1, \\ & N+2, \dots \end{cases}$$

Garwood's distribution of length of gaps in traffic: [b]7:65, [g]46:117, [c]38:384.

8.65. Matching

$$\begin{array}{c} D(x) = (1/x!)[1 - (1/1!) + (1/2!) - . . . + \\ (-1)^{n-x}/(n-x)!]: & [a]118:390, MR18:346. \end{array}$$

Generalization: [4]210.

8.66.

Cigarette card distribution: [a]118:391.

8.67.

Cubic polynomial over a finite range, estimation: [g]50:196, [d]26:505,591.

$$D(x) = \begin{cases} \frac{mn}{m+n} x^{m-1}, & 0 < x < 1 \\ \frac{mn}{m+n} x^{-n-1}, & 1 \le x < \infty \end{cases}$$

Moments, etc.: [g]50:1137.

$$D(x)\!=\!\left\{\begin{matrix} mn(m\!-\!n)^{-1}x^{n-1}(1\!-\!x^{m-n})\text{, }m\!\neq\!n\\ n^2x^{n-1}\log{(1/\!x)}\text{, }m\!=\!n\end{matrix}\right\}$$

$$D(x) {=} \frac{n^n}{(n{-}1)!} \sum_{j \leq nx} {(-1)^j \binom{n}{j} \binom{x - \frac{j}{n}}^{n-1}}, \, 0 \! \leq \! x \! \leq \! 1$$

[d]26:713.Compare Nos. 5.16 and 8.47:

8.71.

$$D(x) = \frac{(r-1)!(r-x)}{x! r^{r-x}}, x=0, 1, ..., (r-1)$$

Moments, approximations:

8.72. Arfwedson

$$D(x) = \sum_{j=0}^{\infty} (x-j)^{n} (-1)^{j} {x \choose j} \qquad [i]34:121.$$

8.73. Stevens-Craig

 $D(x) = C n^{(x)} \sigma_s^x$, σ_s^x being Stirling's number of second kind: [k]8:57, [c]40:173. Generalization: [w]7:203.

8.74.

$$D(x) = \frac{1}{4} + x^4, -1 < x < 1: [m]6:120.$$

8.75. Ising-Stevens

$$D(x) \!=\! \! \frac{\binom{m\!-\!1}{x\!-\!1}\binom{m\!+\!1}{x}}{\binom{m\!+\!n}{m}} \! \left. \begin{array}{l} \textit{Zeit. f. Physik 31:253,} \\ \textit{[k]9:10, [d]11:370,} \\ \textit{[t]4:171, [w]8:55.} \end{array} \right.$$

D(x)=
$$\frac{1}{\pi\sqrt{m^2-x^2}}$$
: 8.76. Ann. of Math. 27:18.

8.77.
$$D(x) = \frac{x^{-\frac{2}{3}}}{3\sqrt{2\pi}} \exp\left[-\frac{1}{2}(x^{\frac{1}{3}} - b)^{2}\right] \qquad Ann. of Math.$$

8.78. Negative Hypergeometric

$$D(x) = {n \choose x} \frac{B(p+x,q+n-x)}{B(p,q)}$$
: [b]10:257, Proc. Int'l. Stat. Conf. Rome 1953 paper 71.

Obtained by assuming binomial probability to obey Beta.

8.79.

$$D(x)=k(1+x)^{-2}$$
 over various ranges: [d]22:425.

8.80.

$$D(x)\!=\!(n\!-\!1)[1\!-\!(1/x)^{n\!-\!2}](1/x^2), \ x\!\geq\!1\!: \qquad [d]\mathcal{2}\mathcal{2}\!:\!\!4\mathcal{2}5.$$

8.81.

$$D(x)\!=\!-\!\log\,x^2\!/\pi^2(1\!-\!x^2),\quad -\!\infty\!<\!x\!<\!\infty:\quad [d] \text{22:425}.$$

$$\begin{array}{c} D(x) = \frac{a^{-(a-bx)^2/2cx}}{\sqrt{2\pi cx^3}} \quad \text{Called "inverse Gaussian":} \\ Nature \ 155:453, \ [u]43:41, \ Virginia \ J. \ Sci. \\ (new \ series) \ 7:160. \end{array}$$

Written

$$D(x) = \frac{\exp\left(\frac{-c(x-m)^2}{2m^2x}\right)}{\left(\frac{c}{2x^3}\right)^{\frac{1}{2}}} : \qquad [d] 28:362, \, 696.$$

 $D(x)=k x^n e^{-x^2+ax}$, called "Halphen,": Publ.Inst. Statist. Univ. Paris 4:38.

8.83.

$$D(x) = a(\alpha,\beta)/[\exp(\alpha^2x^2) - \beta]$$
: MR16:381.

8.84.

D(x)=a exp
$$[-k^2 \log^2 \rho]$$
 where $\rho = [(x-x_0)(x_2-x_1)]/[(x_2-x)(x_1-x_0)]$: Z10:313.

 $Ch(x) = 1/\cosh t$, $t/\sinh t$, $1/\cosh^2 t$: MR11:443.

8.86.

$$\begin{array}{ll} D(x)\!=\!2\lambda(\lambda\!+\!1)/(x\!+\!\lambda\!-\!1)(x\!+\!\lambda)(x\!+\!\lambda\!+\!1), \ \lambda >\!\!0, \\ x\!=\!1,\!2, \ \dots, \ m\!=\!1\!+\!\lambda, \ v\!=\!\infty: \quad [e] 18:\!\!353. \end{array}$$

$$D(x) = \frac{N!n!}{\prod_{i=0}^{n} x_i!(i!)^{x_i}} : [s]5:161.$$

$$D(x) = ce^{cx}/(1+e^{cx})^2$$
: [s]1:55, [s]3:133.

Hyperbolic Error distribution.

A discrete distribution from an urn model:

[d]22:452, [w]7:173.

$$\begin{split} D(x) = & \frac{e^{-\lambda x}}{\alpha x} \sum_{n=1}^{\infty} \frac{1}{[\Gamma(n)]^2} (\lambda x \alpha e^{-\alpha})^n n^{n-2}, \, 0 < x < \infty, \\ & 0 < \alpha < 1, \, \lambda > 0, \, m = \frac{1}{\lambda(1-\alpha)}, \, v = \frac{1-\alpha+\alpha^2}{\lambda^2(1-\alpha)^3}. \end{split}$$

$$D(x) = k^x \sum_{j=0}^{x-1} \frac{\binom{x-1}{j} p^j}{(x-j)!}, \quad x=0, 1, \dots$$

Called "Pólya-Aeppli": [c]40:206.

8.91.

$$D(x)\!=\!\!\frac{1}{x}\!\begin{pmatrix}2x\!-\!2\\x\!-\!1\end{pmatrix}\!k^{x-1}\!/\!(1\!+\!k)^{2x-1}\!,\quad\!x\!=\!1,\;2,\;\ldots$$

$$D(x) = \begin{cases} \left(\frac{\lambda}{\lambda + \mu}\right)^{N} (\mu e^{\mu x}) \Gamma (N, (\lambda + \mu)x) / \Gamma (N), & x > 0 \\ \left(\frac{\lambda}{\lambda + \mu}\right)^{N} (\mu e^{\mu x}), & x < 0 \end{cases}$$

D(y-z) where D(y)=Type III (\(\lambda\), D(z)=Type III (\(\lambda\), I)

$$\alpha_k \! = \! (-\mu)^{-k} k! \sum_{i=0}^k \binom{i+N-1}{i} \, (-\mu/\!\lambda)^2$$

$$\kappa_{\mathbf{k}} = (\mathbf{k} - 1)! \left[\frac{\mathbf{N}}{\mu^{\mathbf{k}}} + (-1)^{\mathbf{k}} / \lambda \right]$$

8 93 Miller

$$D(x) \! = \! (k \! + \! 1) \frac{(m \! + \! k \! + \! 1)!}{m!} \frac{(m \! + \! x \! - \! 1)!}{(m \! + \! k \! + \! x \! + \! 1)!}, \quad x \! = \! 0, 1, \dots$$

$$\alpha_1 {=} \frac{m {+} k {+} 1}{k}, \quad \sigma^2 {=} \frac{(m {+} k {+} 1) (k {+} 1) (m {+} 1)}{k^2 (k {-} 1)} \cdot$$

Obtained by assuming Pascal parameter to be Beta.

9. Miscellaneous Bivariate

9.1. Cauchy Bivariate

$$D(x, y) = (1/\pi) [1/(1+x^2+y^2)]^2$$
: [5]45

$$D(x, y) = \frac{1}{2\pi} (1 + x^2 + y^2)^{-3/2}$$
: [w]8:235.

9.2. Student Bivariate

$$D(x,\,y)\!=\!(2\pi)^{-1}(1\!-\!r^2)^{-\frac{1}{2}}\!\!\left(1\!+\!\frac{x^2\!-\!2rxy\!+\!y^2}{n(1\!-\!r^2)}\right)^{\!-\frac{1}{2}(n+2)}$$

Tables: [c]22:408, [c]41:154.

If x,y independent: [3]92.

9.3. Poisson Bivariate

Discussion: [2]136, [f]7:414, [c]39:196, Psych. Bull. $47:434, \overline{}^{\circ}Proc.$ Edin. Math. Soc. IIs 4:18. Special case obtained from binomial: [i]17:98.

9.4.

Lognormal bivariate: [c]22:130, [d]4:30.

9.5.

Normal-lognormal: [d]4:30.

9.6. Binomial Bivariate

$$Ch(x,y) = (a \exp (is+it) + be^{is} + ce^{it} + d)^n$$
: [2]133

If
$$a=0$$
, $D(x, y) = \frac{k!}{x! \ y! \ (k-x-y)!} p^x q^y (1-p-q)^{k-x-y}$, etc.: [i]17:92, [i]19:209.

See also: [i]36:74, MR14:995, Z18:154, MR13: 665.

9.7. Gamma Bivariate

$$MGF(x,y) = [(1+s)(1-t) - str^2]^{-p}$$
: [e]5:140, [e]25:158, MR3:171.

9.8. Gamma-Normal

$$\begin{split} & \text{MGF}(\mathbf{x},\ \mathbf{y}) \!=\! (1\!-\!\mathbf{s})^{-\frac{1}{2}} \exp\!\!\left[\!\!\left[\frac{1}{2} \mathbf{t}^2 \!\left(1\!+\!\frac{\mathbf{s}\mathbf{r}^2}{1\!-\!\mathbf{s}}\right)\right]\!\!\right]\!\!: \quad [e] 5:\!144. \\ & [e] 25:\!132. \end{split}$$

9.9. Hypergeometric Bivariate

$$D(x, y) = \frac{\binom{a}{x}\binom{b}{y}\binom{c}{k-x-y}}{\binom{a+b+c}{k}}, \text{ various properties:}$$

[i]17:104, [c]16:172, [c]22:140.

Moments: Ganiia 5:97, Koninkl. Nederl. Akad (A) 60:124.

9.10. Negative Binomial Bivariate

Various properties: [i]17:100.

$$D(x,\,y) \!=\! \frac{p^{\text{\tiny p}}}{(p\!+\!2m)p} \frac{1}{\Gamma(p)} \frac{\Gamma(x\!+\!y\!+\!p)}{\Gamma(x\!+\!1)\Gamma(y\!+\!1)} \bigg[\frac{m}{p\!+\!2m} \bigg]^{x+y}$$

correlation = $\frac{m}{p+m}$, regression etc.: [c]41:79.

Polya-Eggenberger: MR11:605.

9.11. Elfving

D(x,y)= $\frac{1}{2}$ x exp (-x cosh y), connected with ~D (range): [c]34:111, [c]36:142.

9.12.

 $D(x,y) = C e^{-ax-by} (1-x+y)^p (1+x-y)^q$: [e]14:

Rhodes surface: [c]22:134, [c]41:550.

9.13.

 $D(x,y) = (1+x/a)^m (1+y/b)^n [1-(x+y)/c]^q$, Filon-Isserlis surface: [c]15:222, [c]16:180.

9.14.

 $D(x,y) = (xy)^k (x-y)[(1-x) (1-y)]^n$: (c)31:226, [k]9:245.

9.15.

$$D(x,y) = \frac{x^{n-2}(1-y^2)^{\frac{1}{2}(n-4)}}{(1-2rxy+y^2)^{n-1}}; \qquad [2]365.$$

9.16.

$$\begin{array}{l} D(x,\!y)\!=\!n^{-2}\!\frac{n!}{[(k\!-\!1)!]^2(n\!-\!2k)!}\!(x\!/\!n)^{k\!-\!1}(y\!/\!n)^{k\!-\!1}(1\!-\!x\!/\!n\!-\!y\!/\!n)^{n\!-\!2k} \end{array}$$

$$x>0, y>0, x+y< n, 2k< n$$

As $n\to\infty$, $x,y\to independent$ Type III(1,k)
Special case, $k=0$: $[d]7:149$.

9.18

Uniform bivariate, triangular bivariate: [c]24:382, [v]5:322.

9.19.

Gram-Charlier bivariate: [c]36:177.

9.20

The fifteen constant surface, (quartic polynomial) e^{-Q} : [c]17:268.

9 21

Pearson's Student-like surfaces: [c]15:234, [c]18:229, [c]22:137.

9.22.

D(x,y)=x+y, D(x+y):

9.23.

Normal-negative binomial: [k]13:289.

9.24.

Edgeworth surface: [c]38:220, [c]17:314.

9.25.

Rayleigh bivariate: Electrical Engineering, November 1954, p. 1004.

9.26.

Discussion of "possible" bivariate distributions, Narumi's system; [c]15:77, 209, 222.

Generalization: [c]22:109.

9.27. Von Mises-Fisher Distribution

Generalization of No. 8.17: Proc. Roy. Soc. Lond. Ser. A 217:295, [c]43:344.

9.28

Beta bivariate: [v]2:261.

 $D(x,\!y)\!=\!k\frac{e^{-\frac{1}{2}(ax^2+2bxy+cy^2)}}{m^2\!+\!(ax^2\!+\!2bxy\!+\!cy^2)}\!:$ [v]3:153.

 $D(x,y)=k [1-a^2x^2-b^2y^2+2abrxy]^n, n+1>0, r^2<1$: [v]3:273.

9.31.

 $D(x,y) = k \exp [-Q(x,y)] \cdot [h^2 + Q(x,y)]^n$: [v]3:273.[v]5:323.

9.32.

Defined over (0.0) (0.1) (1.0) from urn model: [v]3:328.

9.33.

"Correlation by common factor" surface: [c]24:288.

9.34.

Johnson's system; ten surfaces obtained by trans-[c]36:297.lation:

9.35.

Nine surfaces with Pearson or Bessel marginal distributions: MR5:126

9.36.

 $D(x,y) = C[(x-1)!(h-x)!(y-1)!(k-y)!]^{-1}$: Hoel.Intro. to Math. Stat. 180.

9.37

Type III bivariate, with discussion and calculation of D(r): [e]7:159.

9.38.

 $D(x,y) = \frac{1}{4}(1+kxy), |k| \le 1, -1 \le x, y \le 1$: [w]8:234.

10. Miscellaneous Multivariate

10.1. Wishart Trivariate

 $D\left(x,\!y,\!z\right)\!=\!\!\frac{n^{n-1}(x\,y\!-\!z^2)^{\frac{1}{2}(n-4)}}{4\pi\,\Gamma(n\!-\!2)M^{\frac{1}{2}(n-1)}}\exp\!\left(-\frac{n}{2M}\left(v_2x\!-\!2\mu z\right)\right)$ $\mu = \rho \sigma_1 \sigma_2, M = v_1 v_2 (1 - \rho^2)$: [1]397,[3]330, [4]226.

$$\mathrm{Ch}(x,y,z)\!=\!\!\left(\!\frac{A}{A^*}\!\right)^{\!\!\frac{1}{2}n-1} \quad \text{where } A\!=\!\begin{vmatrix} \frac{n\mathbf{v}_2}{2M} & \frac{\mu\mathbf{n}}{2M} \\ \\ -\frac{\mu\mathbf{n}}{2M} & \frac{\mathbf{v}_1\mathbf{n}}{2M} \end{vmatrix} \text{ and }$$

$$\mathbf{A}^* = egin{array}{c} rac{\mathbf{n} \, \mathbf{v}_2}{2 \mathbf{M}} - \mathrm{i} \mathbf{s} & rac{\mu \mathbf{n}}{2 \mathbf{M}} - \mathrm{i} \mathbf{t} \\ -rac{\mu \mathbf{n}}{2 \mathbf{M}} - \mathrm{i} \mathbf{t} & rac{\mathbf{v}_1 \mathbf{n}}{2 \mathbf{M}} - \mathrm{i} \mathbf{u} \end{array}$$

Moments and cumulants: [3]334.

As distribution of normal bivariate variance-covar-[c]10:510, [c]21:164, [c]27:230.iance:

[k]9:243, [u] 44:295, J. Soc. Stat. Paris See also: 96:262, [u]29:264, [a]92:580.

10.2. Wishart Multivariate

$$\begin{array}{l} D(x_{1j})\!=\!K_{kn}A^{(n-1)}X^{(n-k-2)}exp(-\Sigma a_{1j}x_{1j}),\\ where \quad X\!=\!|x_{1j}|,\,A\!=\!|a_{1j}|\,and\\ K_{kn}\!=\!\pi^{\frac{1}{4}\kappa(k-1)}[\Gamma(\frac{1}{2}(n\!-\!1))\,\ldots\,\Gamma\,\left(\frac{1}{2}(n\!-\!k)\right)]^{-1}\\ Ch(x_{1j})\!=\!\!\left(\!\frac{A}{A^*}\!\right)^{\!\!\frac{1}{2}(n-1)}, \end{array}$$

where
$$A^*=|a_{ij}-i\epsilon_{ij}t_{ij}|$$
 and $\epsilon_{ij}=\begin{cases} 1, \ i=j\\ \frac{1}{2}, \ i\neq j \end{cases}$. [4]226, [3]331, [1] 391-4, [14]66, [i]30:151, [u]29:260, 271.

Reproductive property: [4]232.

Various properties: [c]20:32, [i]24:185.

Non-central Wishart: Proc. Roy. Soc. Lond. Ser. A. 229:364.

See also: [d]3:197, [d]15:345, [d]17:409, [d]19: 262, [e]3:25, [a]97:120, [c]24:476, [c]36:59, [k] ε :244, [c]38:470, [i]36:17, [u]35:336, MR10:387, [b]17:79.

10.3. Multinomial

$$\begin{array}{lll} D(x_1, \ldots, x_k) \! = \! [n! / \! \Pi(x_1!)] \! \Pi(p_1 x_1) \! : & [6] 58, \ [2] 290, \\ [7] 124, \ [18] 1 \! - \! 160. & \end{array}$$

$$MGF(x_1, ..., x_k) = (p_k e^{t_1} + ... + p_k e^{t_k})^n$$
: [4] 51.

$$E(x_1) = np_1, Var(x_1) = np_1(1-p_1):$$
 [4]52, [14]35.

Moments: Bull. Amer. Math. Soc. 41:857

Introductory article with applications: [15]36.

PGF: [18]1-146.

Chi-square test: [e]13:2, [c]36:118, [15]739.

Information and estimation: [e]8:325.

MLE: [e]18:139.

Distinguishing between two multinomials, asymptotic form: [e]7:401.

Trivariate: [7]146, [d]21:420.

Bivariate multinomial: [d]23:547, Rev. da Fac. de Ciencias de Lisboa 2 Serie (A) 2:197.

See also: [d]8:127, [d]21:416, [e]11:367, [d]25:772, [d]28:861, [f]13:451, [t]2:84, Am. Math. Monthly 53:59, Koninkl. Nederl. Akad. (A) 60:121, Z8:122, MR17:56, MR16:839, MR13:665.

10.4 Type X Multivariate

$$D(x_1, \dots, x_n) = C e^{-x/b} \text{ where } x = \Sigma x_i^2$$
: [c]41:54.

10.5

Gamma multivariate: [e]11:45.

10.6. Student Multivariate

$$D(x_1,\ldots,x_p) \! = \! \! \frac{A^{\frac{1}{2}}\Gamma[\frac{1}{2}(n \! + \! p)]}{(n\pi)^{\frac{1}{2}p}\Gamma(\frac{1}{2}n)} \! \left[1 \! + \! \frac{1}{n} \, \Sigma a_{1j} x_i x_j \right]^{\! - \frac{1}{2}(n + p)} \! , \; \left| \right. \;$$

Student for p=1: [c]41:153, MR16:602.

See also: [w]9:143.

10.7. Cauchy Multivariate

$$D(x_1, \ldots, x_n) = C_n \left(1 + \sum_{j=1}^n x_y^2\right)^{-\frac{1}{2}(n+1)}$$
: [w]8:235

10.8. Spherical

$$\begin{split} D(x_1, \ \dots, \ x_n) &= \\ (2\pi)^{-\frac{1}{2}n} \ r^{-\frac{1}{2}n+1} \int_{0}^{\infty} \!\! \rho^{\frac{1}{2}n} \ J_{\frac{1}{2}n-1}(r\rho) Ch(\rho) d\rho, \end{split}$$

where
$$r = \sqrt{\Sigma x_1^2}$$
, $\rho = \sqrt{\Sigma t_1^2}$: $[c]41:45$.

10.9. Poisson Multivariate

Derivation: [e]11:120, [d]28:466, [i]37:1.

Without correlation, multiple Poisson

10.10. Binomial Multivariate

$$\begin{array}{lll} MGF(x_1,\ \dots,x_n)\!=\!(1\!+\!\Sigma p_1t_1\!+\!\Sigma p_{1j}t_1t_j\!+\ \dots)^N\!:\\ \hbox{\it [e]11:119,\ Z12:113,\ 410.} \end{array}$$

D(x), etc., in special case: [i]18:271.

10.11.

Negative binomial multivariate: [i]18:274, [i]19: 211, Konikl. Nederl. Akad. (A)60:121.

10.12.

Multinomial multivariate: [c] 36:47.

10.13.

Hotelling multivariate: [k]9:258, [x]7:70.

10.14.

Multivariate distributions obtained from the normal multivariate: [i]27:235, [i]28:20.

10.15.

Generalization of No. 9.14: [k]9:245.

10.16.

Generalization of No. 8.3: [k]11:136.

10.17.

Generalization of No. 8.6, No. 9.29: [v]3:153.

Hypergeometric multivariate: [e]15:391, [f]13:488, MR17:634, MR12:722.

10.19.

Gram-Charlier multivariate: MR14:486.

10.20. Run Length

D(x): [d]11:367, [4]202, 206, [s]5:143.

10.21. Beta Multivariate

Tolerance limits: [4]94.

Trabajos de Estadistica

[w]

III. References

1. Journals

Journal of the Royal Statistical Society, Series A Journal of the Royal Statistical Society, Series B Biometrika Annals of Mathematical Statistics Sankhyā Biometrics Journal of the American Statistical Association Nordisk Statistisk Tidskrift Nordic Statistical Journal Skandinavisk Aktuarietidskrift Bell System Technical Journal Annals of Eugenics, Annals of Human Genetics Econometrica Applied Statistics Metron Annals of the Institute of Statistical Mathematics Journal of the Institute of Actuaries Students' Society Bulletin of Mathematical Statistics Reports of Statistical Application Research, Union of Japanese Scientists and Engineers Statistica (Neerlandica) Calcutta Statistical Association Bulletin

2. Books

Proceedings of the Cambridge Philosophical Society

Journal of the Indian Society of Agricultural Statistics Revue de l'Institut International de Statistique

Mitteilungsblatt fur Mathematische Statistik

[1]	Cramér, H., Mathematical methods of statistics (Prince-
	ton Univ. Press, Princeton, N.J., 1946).
[2]	Kendall, M. G., The advanced theory of statistics, vol. 1
	(Charles Griffin & Co., London, England, 1943).
[3]	Kendell M. C. The advanced theory of statistics, vol. 2

(Charles Griffin & Co., London, England, 1946).

[4] Wilks, S. S., Mathematical statistics (Princeton Univ. Press, Princeton, N.J., 1947).
[5] Arley, N. and Buch, K. R., Introduction to the theory of

probability and statistics (John Wiley & Sons, New York, N.Y., 1950).

[6] Mood, A. M., Introduction to the theory of statistics (McGraw-Hill Book Co., Inc., New York, N.Y., 1950).

[7] Feller, W., An introduction to probability theory and its

applications (John Wiley & Sons, New York, N.Y.,

[8] Munroe, M. E., Theory of probability (McGraw-Hill Book Co., Inc., New York, N.Y., 1951).

[9] Uspensky, J. V., Introduction to mathematical probability (McGraw-Hill Book Co., Inc., New York, N.Y., 1937).

[10] Weatherburn, C. E., A first course in mathematical statistics (Cambridge Univ. Press, Cambridge, England, 1946).

[11] Elderton, W. P., Frequency curves and correlation (Charles & Edwin Layton, London, England, c. 1906).

[12] Bell, D. A., Statistical methods in electrical engineering (Chapman and Hall, London, England, 1953). [13] Neyman, J., (editor) Proceedings of the Berkeley Sym-

posium on Mathematical Statistics and Probability (Univ. of Calif. Press, Berkeley, Calif., 1945). [14] Rao, C. R., Advanced statistical methods in biometric

research (John Wiley & Sons, New York, N.Y., 1952). [15] Hald, A., Statistical theory with engineering applications (John Wiley & Sons, New York, N.Y., 1952).
[16] Neyman, J., Proceedings of the Second Berkeley Sym-

posium on Mathematical Statistics and Probability (Univ. of Calif. Press, Berkeley, Calif., 1951).

[17] Haller, B. Verteilungsfunktionen und ihre Auszeichnung

[17] Haller, B. Verteilungsfunktionen und ihre Auszeichnung durch Funktionalgleichungen, Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker; 45 Band, Heft 1, (April 1945), pp. 97–163. Translated by R. E. Kalaba, and published by the RAND Corp. under the title, A Summary of Known Distribution Functions, T–27, (Jan. 1953).
[18] Eisenhart, C., and Zelen, M., Elements of probability, ch. 12, Handbook of Physics (McGraw-Hill Book Co., Inc. New York, N.Y., 1958).

Inc., New York, N.Y., 1958).

Index to Distributions IV.

Arfwedson distribution	5
Bayes' distribution	
Bayes' theorem	28, 37, 43, 45, 4
Behren's problem	2
Bernoulli distribution	3
Bessel distribution	26, 29, 35, No. 8.2, 50, 5 32, 33, 36, 39, 40, No. 5.3, 43, 46, 47, 50, 5
Beta distribution	32, 33, 36, 39, 40, No. 5.3, 43, 46, 47, 50, 5
Beta bivariate distribution	
Beta multivariate distribution	
Beta of the first kind distribution	4
Beta of the second kind distribution	35, 36, No. 6.3, 4
Bhattacharyya bounds	6, 32, No. 3.1, 37, No. 3.2, 38, 40, 41, 42,
Bionomial distribution 24, 26	6, 32, No. 3.1, 37, No. 3.2, 38, 40, 41, 42, 4
Binomial multivariate distribution	No. 10.10, 5
Bipolar distribution	
	No. 4.8, 42, 4
Bose distribution	No. 8.3, 5
Bravais distribution	
Cauchy distribution 29, 30, 45, No. 7.4,	48, No. 7.5, 48, No. 7.6, 49, No. 7.7, 49, 5
	No. 9.1, 5
Cauchy median distribution	No. 8.13, 5
Cauchy multivariate distribution	No. 10.7, 5 No. 3.7, 3 24, 26, No. 2.5, 35, 36, 47, 4
Causal distribution	No. 3.7, 3
Chi-square distribution	24, 26, No. 2.5, 35, 36, 47, 4
Cigarette card distribution	
Circular normal distribution	32, 5
	n
Cochran's theorem	2
Compound normal distribution	3
Compound Poisson distribution	No. 4.3, 4
Contagious distribution	39, No. 4.6, 4
Contagious bivariate distribution	4
	No. 8.6, 5
Correlation distribution	No. 5, 14, 4
	No. 5.9, 4
Correlation ratio distribution	5
	24, No. 3.7, 3
	No. 3.6, 3
Discrete lognormal distribution	
Discrete normal distribution	
Discrete rectangular distribution	
Discrete type III distribution	
Double exponential distribution Double hypergeometric distribution	4 4
Double Persta distribution	4
Double Pareto distribution	40, 4
Double Poisson distribution	40, 4
Edgeworth surface	
	50, No. 9.11, 5
	24, 3
Eulerian distribution	
	No. 4.10, 4
Exponential distribution	No. 2.4, 3
Extreme value distribution	No. 8.40, 5

F distribution Fermi-Dirac distribution	
Fifteen-constant surface Filon-Isserlis surface Fisher	No. 9.13, 5
Fisher distribution 27, 28	, 35, 43, No. 7.9, 4
Fisher's F distribution Fisher's logarithmic series distribution Furry distribution	No. 8.8, 5 No. 3.5, 3
Galton-Macalister distribution Gamma distribution Gamma bivariate distribution	3 26, 29, 33 , 3
Gamma-normal distribution	No. 9.8, 5
Garwood distribution Generalized binomial distribution	38 3
Jeneralized normal distribution Jeneralized Pareto distribution Jeneralized Poisson distribution	No. 1.6, 3 No. 8.10, 5
Peneralized Student distribution. Generalized type III distribution.	32, 4 No. 2, 9
Feometric distribution	39, 4
Jibrat distribution Gram-Charlier distribution Gram-Charlier multivariate distribution	41, 56, No. 1.10, 3
Fumbel distribution	
Halphen distribution Hansmann distribution Helmert distribution Hotelling Hyperbolic error distribution Hypergeometric bivariate distribution Hypergeometric distribution	5 5
Helmert distribution	27, No. 2.7, 3 33, No. 6.4, 47, 5
Ayperbolic error distribution	No. 9.9, 5
Hotelling multivariate distribution Hypergeometric distribution. 27, 40 Hypergeometric multivariate distribution.	, No. 4.5, 41, 50, 5
Hypergeometric multivariate distribution	
nverse Gaussian distribution Inverse hypergeometric	No. 4.11, 4
Inverse hypergeometric Inverted beta distribution Irwin-Hall distribution Ising-Stevens distribution	45, 4
ohnson's system	
Kapetyn distribution	No. 1.6, 3
Kapetyn distribution Kendall distribution Koopman distribution Koopman-Darmois distribution	No. 6.6, 4
Kullback distribution	No. 8.4, 5
Laplace distribution 29, 30 Laplace-Gauss distribution 29), 45, No. 7.8, 49, 5
Legendre functions Leipnik distribution	No. 5.1, 4
Logarithmic non-central Chi-square distribution	3
Legender functions Levinik distribution Lexian distribution Logarithmic non-central Chi-square distribution Logistic distribution Lognormal distribution Lognormal bivariate distribution Lognormal bivariate distribution	24, No. 1.8, 30, 5
bog i carson distribution	
	5
Mahalanobis distribution Matching distribution	No. 8.65, 5
Mahalanobis distribution Matching distribution Maxwell-Boltzmann distribution Mellin transformation	No. 8.65, 5
Matching distribution Maxwell-Boltzmann distribution Mellin transformation	No. 8.65, 5
Matching distribution Maxwell-Boltzmann distribution Mellin transformation	No. 8.65, 5
Matching distribution Maxwell-Boltzmann distribution Mellin transformation Mill's ratio Mill's ratio Miller distribution Multinomial distribution Multinomial bivariate distribution Multinomial multivariate distribution	No. 8.65, 5 39, 3 30, 35, 46, 4
Matching distribution Maxwell-Boltzmann distribution. Mellin transformation Mill's ratio. Miller distribution Multinomial distribution Multinomial bivariate distribution. Multinomial multivariate distribution Multinomial rivariate distribution Multinomial trivariate distribution Multipo distribution Multiple Poisson distribution Multiple Poisson distribution	No. 8.65. 5 39. 3 30, 35, 46, 4 No. 8, 93, 5 No. 10.3, 5 5 No. 5.15, 4
Matching distribution Maxwell-Boltzmann distribution. Mellin transformation Mill's ratio. Miller distribution Multinomial distribution Multinomial bivariate distribution Multinomial multivariate distribution Multinomial trivariate distribution Multinomial trivariate distribution Multiple correlation distribution Multiple Poisson distribution Varumi's system No. 3.4	No. 8.65. 5 39. 3 30. 35, 46, 4 No. 8. 93, 5 No. 10.3, 5 No. 5.15. 4 5 1, 38. No. 3.5, 39, 5
Matching distribution Maxwell-Boltzmann distribution. Mellin transformation Mill's ratio. Miller distribution Multinomial distribution Multinomial bivariate distribution Multinomial multivariate distribution Multinomial multivariate distribution Multiple correlation distribution Multiple Poisson distribution Multiple Poisson distribution Multiple Poisson distribution Negative binomial distribution Negative binomial distribution Negative binomial bivariate Negative binomial bivariate Negative binomial bivariate Negative binomial bivariate	No. 8.65. 5 39. 3 30. 35, 46, 4 3 No. 8, 93, 5 No. 10.3, 5 5 No. 5.15, 4 5 1, 38, No. 3.5, 39, 5 No. 9.10, 5
Matching distribution Maxwell-Boltzmann distribution Mellin transformation Mill's ratio Miller distribution Multinomial distribution Multinomial bivariate distribution Multinomial multivariate distribution Multinomial trivariate distribution Multiple correlation distribution Multiple Poisson distribution Multiple Poisson distribution Narumi's system Negative binomial distribution Negative binomial distribution Negative binomial distribution Negative exponential distribution Negative exponential distribution Negative by the programments distribution	No. 8.65. 5 39. 3 30. 35, 46, 4 3 No. 8, 93, 5 No. 10.3, 5 5 No. 5.15. 4 5 1, 38, No. 3.5, 39, 5 No. 9.10, 5 No. 2.2, 3
Matching distribution Maxwell-Boltzmann distribution Mellin transformation Mill's ratio Miller distribution Multinomial distribution Multinomial bivariate distribution Multinomial multivariate distribution Multinomial trivariate distribution Multiple correlation distribution Multiple Poisson distribution Multiple Poisson distribution Narumi's system Negative binomial distribution Negative binomial distribution Negative binomial distribution Negative exponential distribution Negative exponential distribution Negative by the programments distribution	No. 8.65. 5 39. 3 30. 35, 46, 4 3 No. 8, 93, 5 No. 10.3, 5 5 No. 5.15. 4 5 1, 38, No. 3.5, 39, 5 No. 9.10, 5 No. 2.2, 3
Matching distribution Maxwell-Boltzmann distribution. Mellin transformation Mill's ratio. Miller distribution Multinomial distribution Multinomial bivariate distribution. Multinomial multivariate distribution. Multinomial multivariate distribution. Multiple correlation distribution. Multiple Poisson distribution Multiple Poisson distribution. Varumi's system Negative binomial distribution Negative binomial bivariate Negative binomial multivariate distribution Negative binomial multivariate distribution Negative typergeometric distribution Negative hypergeometric distribution Neyman type A distribution Neyman-Pearson theory Noncentral Chi-square distribution Noncentral Fisher distribution	No. 8.65. 5 39, 3 30, 35, 46, 4 No. 8, 93, 5 No. 10.3, 5 5 No. 5.15. 4 5 1, 38, No. 3.5, 39, 5 No. 9.10, 5 No. 2.2, 3 No. 8.78, 5 29, 35, 3 No. 2.6, 4
Matching distribution Maxwell-Boltzmann distribution. Mellin transformation Mill's ratio. Miller distribution Multinomial distribution Multinomial bivariate distribution. Multinomial multivariate distribution Multinomial multivariate distribution Multiple correlation distribution. Multiple Poisson distribution. Multiple Poisson distribution Multiple Poisson distribution Negative binomial distribution Negative binomial bivariate Negative binomial bivariate Negative binomial distribution Negative exponential distribution Negative exponential distribution Negative hypergeometric distribution Neyman type A distribution Neyman-Pearson theory Noncentral Chi-square distribution Noncentral Helmert distribution Noncentral Helmert distribution Noncentral Spedecor distribution Noncentral Spedecor distribution Noncentral Spedecor distribution	No. 8.65. 5 39. 3 30, 35, 46, 4 3 No. 8, 93, 5 No. 10.3, 5 5 No. 5.15. 4 5 1, 38, No. 3.5, 39, 5 No. 2.2, 3 No. 8.78, 5 3 No. 2.6, 3 No. 2.6, 3 No. 8.78, 5 No. 8.78, 5 No. 8.78, 5 No. 8.78, 5
Matching distribution Maxwell-Boltzmann distribution Mellin transformation Mill's ratio Miller distribution Multinomial distribution Multinomial bivariate distribution Multinomial multivariate distribution Multinomial multivariate distribution Multiple correlation distribution Multiple Poisson distribution Multiple Poisson distribution Multiple Poisson distribution Negative binomial distribution Negative binomial distribution Negative binomial multivariate distribution Negative binomial multivariate Negative binomial distribution Negative typergeometric distribution Negative hypergeometric distribution Neymant type A distribution Neymant Pearson theory Noncentral Chi-square distribution Noncentral Fisher distribution Noncentral Helmert distribution Noncentral Beacecor distribution Noncentral Sudent distribution Noncentral Wishart distribution Noncentral Gistribution	No. 8.65. 5 39. 3 30. 35, 46, 4 30. 35, 46, 4 30. 10.3, 5 5 5 5 5 5 1, 38, No. 3.5, 39, 5 5 1, 38, No. 3.5, 39, 5 1, 38, No. 2.6, 3 1, 38, No. 3.5, 39, 5 1, 38, No. 3.5, 5 1, 38, No. 3.5, 5 1, 38, No. 8.7, 5
Matching distribution Maxwell-Boltzmann distribution Mellin transformation Mill's ratio Miller distribution Multinomial distribution Multinomial bivariate distribution Multinomial multivariate distribution Multinomial multivariate distribution Multiple correlation distribution Multiple Poisson distribution Multiple Poisson distribution Multiple Poisson distribution Negative binomial distribution Negative binomial distribution Negative binomial multivariate distribution Negative binomial multivariate Negative binomial distribution Negative typergeometric distribution Negative hypergeometric distribution Neymant type A distribution Neymant Pearson theory Noncentral Chi-square distribution Noncentral Fisher distribution Noncentral Helmert distribution Noncentral Beacecor distribution Noncentral Sudent distribution Noncentral Wishart distribution Noncentral Gistribution	No. 8.65. 5 39. 3 30. 35, 46, 4 30. 35, 46, 4 30. 10.3, 5 5 5 5 5 5 5 1, 38, No. 3.5, 39, 5 5 1, 38, No. 3.5, 39, 5 1, 38, No. 2.6, 3 1, 38, No. 3.5, 39, 5 1, 38, No. 3.5, 5 1, 38, No. 3.5, 5 1, 38, No. 8.7,
Matching distribution Maxwell-Boltzmann distribution Mellin transformation Mill's ratio Miller distribution Multinomial distribution Multinomial bivariate distribution Multinomial multivariate distribution Multinomial multivariate distribution Multinomial trivariate distribution Multiple correlation distribution Multiple Poisson distribution Multiple Poisson distribution Multiple Poisson distribution Negative binomial distribution Negative binomial bivariate Negative binomial distribution Negative binomial multivariate distribution Negative exponential distribution Negative exponential distribution Neyman-Pearson theory Norcentral Chi-square distribution Noncentral Fisher distribution Noncentral Helmert distribution Noncentral Suedecor distribution Noncentral Suedecor distribution Noncentral Suedecor distribution Noncentral Wishart distribution Noncentral Wishart distribution Noncentral Wishart distribution Noncentral Wishart distribution Noncentral Suedect distribution	No. 8.65. 5 39. 3 30, 35, 46, 4 No. 8, 93, 5 No. 10.3, 5 No. 5.15. 4 5 No. 5.15. 4 5 No. 2.2, 3 No. 8.78, 5 No. 2.6, 3 No. 2.6, 3 No. 8.78, 5 No. 2.6, 3 No. 8.7, 5 No. 8.7, 5 No. 8.20, 5 24, 25, No. 10, 12, 24, 34, 84, 5, 5, 11.12, 32, 43, 48, 5, 5
Mahalano bis distribution Matching distribution Maxwell-Boltzmann distribution. Mellin transformation Mill's ratio. Miller distribution Multinomial distribution Multinomial bivariate distribution Multinomial multivariate distribution Multinomial trivariate distribution Multiple correlation distribution Multiple Poisson distribution Negative binomial distribution Negative binomial distribution Negative binomial multivariate distribution Negative exponential distribution Negative exponential distribution Neyman-Pearson theory Noncentral Chi-square distribution Noncentral Fisher distribution Noncentral Helmert distribution Noncentral Helmert distribution Noncentral Suddent distribution Noncentral Wishart distribution Noncentral Wishart distribution Noncentral Singer distribution Nonmal distribution Normal distribution Normal bivariate distribution Normal multivariate distribution	No. 8.65. 5 39. 3 30, 35, 46, 4 No. 8, 93, 5 No. 10.3, 5 No. 5.15. 4 5 No. 5.15. 4 5 No. 8.78, 5 No. 2.2, 3 No. 8.78, 5 No. 2.6, 3 No. 8.7, 5 No. 1.12, 32, 43, 48, 5 No. 1.12, 32, 43, 48, 5 No. 1.14, 35
Matching distribution Maxwell-Boltzmann distribution Mellin transformation Mill's ratio. Miller distribution Multinomial distribution Multinomial bivariate distribution Multinomial bivariate distribution Multinomial multivariate distribution Multiple correlation distribution Multiple Poisson distribution Multiple Poisson distribution Multiple Poisson distribution Multiple Poisson distribution Negative binomial distribution Negative binomial distribution Negative binomial multivariate distribution Negative exponential distribution Negative typergeometric distribution Negative hypergeometric distribution Neyman-Pearson theory Noncentral Fisher distribution Noncentral Fisher distribution Noncentral Helmert distribution Noncentral Suedece distribution Normal distribution Normal distribution Normal distribution Normal ergession slope distribution Normal multivariate distribution Normal ergession slope distribution	No. 8.65. 5 39. 3 30. 35, 46, 4 No. 8. 93, 5 No. 10.3, 5 5 No. 5.15. 4 5 No. 5.15. 4 5 No. 9.10, 5 No. 2.6, 3 No. 2.6, 3 No. 2.6, 3 No. 8.78, 5 No. 1.14, 32, 43, 48, 5 No. 1.14, 33
Matching distribution Maxwell-Boltzmann distribution. Mellin transformation Mill's ratio. Miller distribution Multinomial distribution Multinomial bivariate distribution Multinomial multivariate distribution Multinomial multivariate distribution Multiple correlation distribution Multiple Poisson distribution Megative binomial distribution Negative binomial bivariate Negative binomial multivariate distribution Negative exponential distribution Negative exponential distribution Neyman-Pearson theory Noncentral Chi-square distribution Noncentral Fisher distribution Noncentral Fisher distribution Noncentral Suedecor distribution Noncentral Suedent distribution Noncentral Sudent distribution Noncentral Wishart distribution Noncentral Wishart distribution Noncentral Sindent distribution Nonmal distribution Normal distribution Normal distribution Normal distribution Normal distribution Normal multivariate distribution	No. 8.65. 5 39. 3 30. 35, 46, 4 3 No. 8, 93, 5 No. 10.3, 5 5 No. 5.15. 4 4 5 1, 38, No. 3.5, 39, 5 No. 2.2, 3 No. 8.78, 5 4 29, 35, 3 No. 2.6, 3 No. 8.7, 5 No. 8.7,

Pareto distribution	No. 6.5, 4
Partial correlation distribution	No. 5.5. 4
Pascal distribution Pearson's differential equation 26, 2 Pearson distribution	20 36 40 43 46 50 5
Pearson distribution	24. No. 8.1, 50, 50
Pearson's Student-like surfaces	
Perks distribution	55
Pitman	29, 4
Planck's radiation function	39. No. 4.1. 39. 42. 4
Poisson bivariate distribution	No. 9.3, 5
Poisson-Lexian distribution Poisson multivariate distribution	
Poisson's first law of error Pollaczek-Geiringer distribution	No. 47 4
Polya Appli distribution	No. 8 90 5
Polya-Aeppli distribution Polya-Eggenburger distribution	39. 4
Polya distribution	No. 4.9, 4
Rank variate distribution	
Rayleigh distribution	3
Rayleigh bivariate distribution Reciprocal type III distribution	32 No. 2 8 3
Reciprocal type III distribution Reciprocal truncated binomial distribution	S3, No. 2.8, 3
Rectangular distribution 34, 43, No. 5.11, 44, No.	5.12, 45, No. 5.13, 4
Rectangular geometric mean distribution	No. 8.12, 5
Rectangular mean distribution Rectangulars added distribution	No. 5.16, 40
Rectangulars added distribution	40
Rhodes surface	
Romanovsky distribution Run length distribution	No. 10.20, 5
Run length distribution Rutherford contagious distribution	4:
Seminormal distribution	30
Semitriangular distribution Serial correlation distribution	No. 5.1 4
Sheppard	30 4
Sheppard Snedecor distribution 26, 30, 43, Snedecor test	46, No. 6.2, 47, 48, 4
Snedecor test	3
Spearman	4.
Spearman's rank correlation distribution	No. 8.14, 5
Spherical distribution Stevens-Craig distribution	No. 10.8, 5
Stevens-Fisher distribution	No. 8.47. 5
Stirlings number Student distribution 24, 26, 27, 28, 29, 32, 43, Student bivariate distribution.	5
Student distribution 24, 26, 27, 28, 29, 32, 43,	, 44, 46, 47, No. 7.2, 4
Student bivariate distribution	No. 9.2, 5
Student-Fisher theorem Student multivariate distribution	No. 10 6 5
Student multivariate distribution Student's hypothesis	2
Student test	3
t distribution	No. 7.9. 4
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution	No. 7.2, 4 4 No. 5.10, 4 5 No. 3.3, 3 34, 3
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution	No. 7.2, 4 4 No. 5.10, 4 5 No. 3.3, 3 34, 3
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution	No. 7.2, 4 4 No. 5.10, 4 5 No. 3.3, 3 34, 3
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution	No. 7.2, 4 4 No. 5.10, 4 5 No. 3.3, 3 34, 3
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution	No. 7.2, 4 4 No. 5.10, 4 5 No. 3.3, 3 34, 3
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution	No. 7.2, 4 4 No. 5.10, 4 5 No. 3.3, 3 34, 3
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution	No. 7.2, 4 4 No. 5.10, 4 5 No. 3.3, 3 34, 3
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution	No. 7.2, 4 4 No. 5.10, 4 5 No. 3.3, 3 34, 3
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated normal distribution Truncated normal distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type I distribution Type II distribution 29, No. 2.1, 33, No. 2.2, 34, No. 2.3, 35, No. 2	No. 7.2, 4 No. 5.10, 4 No. 3.1, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 24, 35, 39, 41, 43, 50, 5
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated normal distribution Truncated normal distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type I distribution Type II distribution 29, No. 2.1, 33, No. 2.2, 34, No. 2.3, 35, No. 2	No. 7.2, 4 No. 5.10, 4 No. 3.1, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 24, 35, 39, 41, 43, 50, 5
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated normal distribution Truncated normal distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type I distribution Type II distribution 29, No. 2.1, 33, No. 2.2, 34, No. 2.3, 35, No. 2	No. 7.2, 4 No. 5.10, 4 No. 3.1, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 24, 35, 39, 41, 43, 50, 5
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated normal distribution Truncated normal distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type I distribution Type II distribution 29, No. 2.1, 33, No. 2.2, 34, No. 2.3, 35, No. 2	No. 7.2, 4 No. 5.10, 4 No. 3.1, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 24, 35, 39, 41, 43, 50, 5
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated normal distribution Truncated normal distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type I distribution Type II distribution 29, No. 2.1, 33, No. 2.2, 34, No. 2.3, 35, No. 2	No. 7.2, 4 No. 5.10, 4 No. 3.1, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 24, 35, 39, 41, 43, 50, 5
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated normal distribution Truncated normal distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type I distribution Type II distribution 29, No. 2.1, 33, No. 2.2, 34, No. 2.3, 35, No. 2	No. 7.2, 4 No. 5.10, 4 No. 3.1, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 24, 35, 39, 41, 43, 50, 5
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated normal distribution Truncated normal distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type I distribution Type II distribution 29, No. 2.1, 33, No. 2.2, 34, No. 2.3, 35, No. 2	No. 7.2, 4 No. 5.10, 4 No. 3.1, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 24, 35, 39, 41, 43, 50, 5
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated normal distribution Truncated normal distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type I distribution Type II distribution 29, No. 2.1, 33, No. 2.2, 34, No. 2.3, 35, No. 2	No. 7.2, 4 No. 5.10, 4 No. 3.1, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 24, 35, 39, 41, 43, 50, 5
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated normal distribution Truncated normal distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type I distribution Type II distribution 29, No. 2.1, 33, No. 2.2, 34, No. 2.3, 35, No. 2	No. 7.2, 4 No. 5.10, 4 No. 3.1, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 24, 35, 39, 41, 43, 50, 5
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated normal distribution Truncated normal distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type I distribution Type II distribution 29, No. 2.1, 33, No. 2.2, 34, No. 2.3, 35, No. 2	No. 7.2, 4 No. 5.10, 4 No. 3.1, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 22, 4, 35, 39, 41, 43, 50, 5
t distribution Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated normal distribution Truncated normal distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type I distribution Type II distribution 29, No. 2.1, 33, No. 2.2, 34, No. 2.3, 35, No. 2	No. 7.2, 4 No. 5.10, 4 No. 3.1, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 22, 4, 35, 39, 41, 43, 50, 5
t distribution Thompson distribution The distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated binomial distribution Truncated lognormal distribution Truncated normal distribution Truncated Poisson distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type Harmonique distribution Type II distribution Type III trivariate distribution Type IV distribution Type IV distribution Type V distribution Type V distribution Type V distribution Type VIII distribution Type VIII distribution Type VIII distribution Type VIII distribution Type V distribution Type V distribution Type V distribution Type V distribution Type X distribution Type X distribution Type X distribution Type X I distribution Type X II distribution Type X II distribution Type X II distribution Type X II distribution	No. 7.2, 4 No. 5.10, 4 No. 5.10, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.14, 43, 44, 48, 5 26, 29, 34, No. 2.8, 3 No. 6.1, 4 26, 32, No. 7.1, 4 No. 5.7, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 No. 6.1, 4 No. 5.8, 4
t distribution. Thompson distribution Tine distribution. Triangular bivariate distribution Truncated binomial distribution Truncated binomial distribution Truncated exponential distribution Truncated normal distribution Truncated poisson distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type I Aistribution Type II distribution Type III distribution Type IV distribution Type IV distribution Type V distribution Type VI distribution Type VIII distribution Type VIII distribution Type IV distribution Type IX distribution Type X distribution Type X multivariate distribution Type X II distribution Type XII distribution Type XII distribution Type XII distribution Type XII distribution	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 5.10, 4 No. 15.13, 3 No. 15.3 No. 15.3 No. 4.2, 4 3 No. 5.4, 43, 44, 48, 50, 5 3 No. 7.10, 4 26, 29, 34, No. 2.8, 3 No. 6.1, 4 No. 5.8, 4 No. 10.4, 5 No. 5.8, 4 No. 5.8, 4
t distribution Thompson distribution The distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated binomial distribution Truncated lognormal distribution Truncated normal distribution Truncated Poisson distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type Harmonique distribution Type II distribution Type III trivariate distribution Type IV distribution Type IV distribution Type V distribution Type V distribution Type V distribution Type VIII distribution Type VIII distribution Type VIII distribution Type VIII distribution Type V distribution Type V distribution Type V distribution Type V distribution Type X distribution Type X distribution Type X distribution Type X I distribution Type X II distribution Type X II distribution Type X II distribution Type X II distribution	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 5.10, 4 No. 15.13, 3 No. 15.3 No. 15.3 No. 4.2, 4 3 No. 5.4, 43, 44, 48, 50, 5 3 No. 7.10, 4 26, 29, 34, No. 2.8, 3 No. 6.1, 4 No. 5.8, 4 No. 10.4, 5 No. 5.8, 4 No. 5.8, 4
t distribution Thompson distribution Tine distribution. Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated binomial distribution Truncated lognormal distribution Truncated rognormal distribution Truncated Poisson distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type Harmonique distribution Type II distribution Type III distribution 29, Type III distribution Type III distribution Type III distribution Type III distribution Type III trivariate distribution Type IV distribution Type IV distribution Type V distribution Type V distribution Type V distribution Type VIII distribution Type X distribution Type X distribution Type X I distribution Type X II distribution Uniform distribution Uniform bivariate distribution	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 3.3, 5 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.2, 4 No. 7.10, 4 26, 29, 34, No. 2.8, 3 No. 6.1, 4 No. 5.7, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 5 No. 6.1, 4 26, 32, No. 7.1, 4 No. 5.8, 4 No. 10.4, 5 No. 5.8, 4
t distribution. Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated binomial distribution Truncated lognormal distribution Truncated lognormal distribution Truncated Poisson distribution Truncated Poisson distribution Truncated type III distribution Type Harmonique distribution Type Harmonique distribution Type III bivariate distribution Type III trivariate distribution Type III trivariate distribution Type V distribution Type V distribution Type VI distribution Type VII distribution Type VII distribution Type VII distribution Type XI distribution Type X distribution Type XII distribution Type XII distribution Uniform distribution Uniform bivariate distribution	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 5.10, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4, 4 No. 5.4, 43, 44, 48, 50, 5 No. 5.4, 43, 44, 48, 50, 5 No. 5.4, 43, 14, 43, 50, 5 No. 7.10, 4 26, 29, 34, No. 2.8, 3 No. 7.11, 4 No. 5.8, 4
t distribution. Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated binomial distribution Truncated lognormal distribution Truncated lognormal distribution Truncated Poisson distribution Truncated Poisson distribution Truncated type III distribution Type Harmonique distribution Type Harmonique distribution Type III bivariate distribution Type III trivariate distribution Type III trivariate distribution Type V distribution Type V distribution Type VI distribution Type VII distribution Type VII distribution Type VII distribution Type XI distribution Type X distribution Type XII distribution Type XII distribution Uniform distribution Uniform bivariate distribution	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 5.10, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4, 4 No. 5.4, 43, 44, 48, 50, 5 No. 5.4, 43, 44, 48, 50, 5 No. 5.4, 43, 14, 43, 50, 5 No. 7.10, 4 26, 29, 34, No. 2.8, 3 No. 7.11, 4 No. 5.8, 4
t distribution Thompson distribution Tine distribution. Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated binomial distribution Truncated lognormal distribution Truncated rognormal distribution Truncated Poisson distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type Harmonique distribution Type II distribution Type III distribution 29, Type III distribution Type III distribution Type III distribution Type III distribution Type III trivariate distribution Type IV distribution Type IV distribution Type V distribution Type V distribution Type V distribution Type VIII distribution Type X distribution Type X distribution Type X I distribution Type X II distribution Uniform distribution Uniform bivariate distribution	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 5.10, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4, 4 No. 5.4, 43, 44, 48, 50, 5 No. 5.4, 43, 44, 48, 50, 5 No. 5.4, 43, 14, 43, 50, 5 No. 7.10, 4 26, 29, 34, No. 2.8, 3 No. 7.11, 4 No. 5.8, 4
t distribution. Thompson distribution Tine distribution Triangular distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated binomial distribution Truncated lognormal distribution Truncated lognormal distribution Truncated Poisson distribution Truncated Poisson distribution Truncated type III distribution Type Harmonique distribution Type Harmonique distribution Type III bivariate distribution Type III trivariate distribution Type III trivariate distribution Type V distribution Type V distribution Type VII distribution Type VII distribution Type VIII distribution Type VIII distribution Type X distribution Uniform distribution Uniform distribution Variance ratio distribution Von Mises-Fisher distribution	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 5.10, 4 No. 1.5, 3 No. 1.5, 3 No. 1.5, 3 No. 4.2, 4 3 No. 5.2, 4 No. 5.4, 43, 44, 48, 50, 5 3 No. 7.10, 4 26, 29, 34, No. 2.8, 3 No. 6.1, 4 No. 5.7, 4 No. 10.4, 5 No. 5.8, 4 No. 4.4, 5 No. 5.8, 4 No. 4.4, 5
t distribution Thompson distribution The distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated binomial distribution Truncated lognormal distribution Truncated lognormal distribution Truncated Poisson distribution Truncated Poisson distribution Truncated type III distribution Type harmonique distribution Type Harmonique distribution Type III distribution Type III distribution 29, No. 2.1, 33, No. 2.2, 34, No. 2.3, 35, No. 2 Type III distribution Type III distribution Type III distribution Type III distribution Type IV distribution Type V distribution Type V distribution Type V distribution Type VIII distribution Type VIII distribution Type X distribution Type X distribution Type X distribution Type X multivariate distribution Type XI distribution Type XI distribution Type X multivariate distribution Type XI distribution Type XI distribution Type XI distribution Type XI distribution Uniform distribution Uniform distribution Variance ratio distribution Variance ratio distribution Von Mises distribution Weibull distribution Weibull distribution	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 3.3, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 No. 7.10, 4 26, 29, 34, No. 2.8, 3 No. 6.1, 4 26, 32, No. 7.1, 4 No. 5.2, 4 No. 5.8, 4 No. 5.8, 4 No. 10.4, 5 No. 5.8, 4 No. 5.8, 4 No. 4.4, 5 No. 8.17, 5
t distribution Thompson distribution The distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated exponential distribution Truncated normal distribution Truncated rormal distribution Truncated rormal distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type III trivariate distribution Type IV distribution Type IV distribution Type IV distribution Type VI distribution Type VI distribution Type VI distribution Type VIII distribution Type VIII distribution Type X multivariate distribution Type XII distribution Type XII distribution Type XII distribution Type XII distribution Uniform distribution Uniform bivariate distribution Von Mises distribution Von Mises distribution Weibull distribution Weibull distribution Whittaker function	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 3.3, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 \$
t distribution Thompson distribution The distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated exponential distribution Truncated normal distribution Truncated rormal distribution Truncated rormal distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type III trivariate distribution Type IV distribution Type IV distribution Type IV distribution Type VI distribution Type VI distribution Type VI distribution Type VIII distribution Type VIII distribution Type X multivariate distribution Type XII distribution Type XII distribution Type XII distribution Type XII distribution Uniform distribution Uniform bivariate distribution Von Mises distribution Von Mises distribution Weibull distribution Weibull distribution Whittaker function	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 3.3, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 \$
t distribution Thompson distribution The distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated exponential distribution Truncated normal distribution Truncated rormal distribution Truncated rormal distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type III trivariate distribution Type IV distribution Type IV distribution Type IV distribution Type VI distribution Type VI distribution Type VI distribution Type VIII distribution Type VIII distribution Type X multivariate distribution Type XII distribution Type XII distribution Type XII distribution Type XII distribution Uniform distribution Uniform bivariate distribution Von Mises distribution Von Mises distribution Weibull distribution Weibull distribution Whittaker function	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 3.3, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 \$
t distribution Thompson distribution The distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated exponential distribution Truncated normal distribution Truncated rormal distribution Truncated rormal distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type III trivariate distribution Type IV distribution Type IV distribution Type IV distribution Type VI distribution Type VI distribution Type VI distribution Type VIII distribution Type VIII distribution Type X multivariate distribution Type XII distribution Type XII distribution Type XII distribution Type XII distribution Uniform distribution Uniform bivariate distribution Von Mises distribution Von Mises distribution Weibull distribution Weibull distribution Whittaker function	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 3.3, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 \$
t distribution Thompson distribution The distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated exponential distribution Truncated exponential distribution Truncated normal distribution Truncated rormal distribution Truncated rormal distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type III trivariate distribution Type IV distribution Type IV distribution Type IV distribution Type VI distribution Type VI distribution Type VI distribution Type VIII distribution Type VIII distribution Type X multivariate distribution Type XII distribution Type XII distribution Type XII distribution Type XII distribution Uniform distribution Uniform bivariate distribution Von Mises distribution Von Mises distribution Weibull distribution Weibull distribution Whittaker function	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 3.3, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 \$
t distribution. Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated binomial distribution Truncated exponential distribution Truncated normal distribution Truncated Poisson distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type I distribution Type II distribution Type III distribution Type III distribution Type III distribution Type III bivariate distribution Type III bivariate distribution Type III trivariate distribution Type IV distribution Type IV distribution Type VI distribution Type VI distribution Type VII distribution Type VII distribution Type VII distribution Type X distribution Type X distribution Type X distribution Type X multivariate distribution Type X multivariate distribution Type X multivariate distribution Type X distribution Type X distribution Type X distribution Type X distribution Von Mises distribution Von Mises distribution Von Mises-Fisher distribution Weibull distribution Whittaker function	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 3.3, 5 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 \$
t distribution. Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated binomial distribution Truncated exponential distribution Truncated rormal distribution Truncated rormal distribution Truncated rormal distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type pharmonique distribution Type III distribution. Type III distribution. Type III distribution. Type III distribution Type III distribution Type III distribution Type III distribution Type IV distribution Type IV distribution Type IV distribution Type IV distribution Type VI distribution Type VI distribution Type VI distribution Type VIII distribution Type X I distribution Type X II distribution Type XII distribution Type XII distribution Type XII distribution Von Mises distribution Von Mises distribution Weibull distribution Weibull distribution Wishart multivariate distribution Wispaped-up normal distribution Wrapped-up Cauchy distribution Wrapped-up Cauchy distribution	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 Solution of the state
t distribution. Thompson distribution Tine distribution. Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated binomial distribution Truncated lognormal distribution Truncated lognormal distribution Truncated Poisson distribution Truncated Poisson distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type harmonique distribution Type III distribution. Type III distribution. Type III distribution. Type III distribution Type III distribution Type III distribution Type III trivariate distribution Type IV distribution Type IV distribution Type IV distribution Type VI distribution Type VI distribution Type VI distribution Type VIII distribution Type VIII distribution Type X distribution Type X distribution Type X distribution Type X II distribution Von Mises distribution Von Mises distribution Von Mises-Fisher distribution Weibull distribution Wishart multivariate distribution Wishart distribution Wishart multivariate distribution Wishart multivariate distribution Wishart multivariate distribution Wishart distribution Wishart multivariate distribution Wishart multivariate distribution Wishart distribution Wishart distribution Wishart distribution Wishart distribution Wishart distribution	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 No. 7.10, 4 26, 29, 34, No. 2.8, 3 No. 6.1, 4 No. 5.4, 48, 44, 48, 5 No. 5.8, 4 No. 5.8, 4 No. 10.4, 5 No. 5.8, 4 No. 5.8, 4 No. 4.4, 5 No. 8.17, 5 No. 8.17, 5 No. 8.17, 5 No. 8.3, 5 No. 8.17, 5 No. 9.27, 5 No. 8.3, 5 No. 8.3, 5 No. 8.3, 5 No. 10.1, 5 No. 10.2, 5 No. 10.1, 5 No. 10.2, 5 No. 10.1, 5 No. 10.1, 5 No. 10.2, 5 No. 10.1, 5
t distribution. Thompson distribution Tine distribution Triangular distribution Triangular bivariate distribution Truncated binomial distribution Truncated binomial distribution Truncated exponential distribution Truncated rormal distribution Truncated rormal distribution Truncated rormal distribution Truncated type III distribution Truncated type III distribution Type harmonique distribution Type pharmonique distribution Type III distribution. Type III distribution. Type III distribution. Type III distribution Type III distribution Type III distribution Type III distribution Type IV distribution Type IV distribution Type IV distribution Type IV distribution Type VI distribution Type VI distribution Type VI distribution Type VIII distribution Type X I distribution Type X II distribution Type XII distribution Type XII distribution Type XII distribution Von Mises distribution Von Mises distribution Weibull distribution Weibull distribution Wishart multivariate distribution Wispaped-up normal distribution Wrapped-up Cauchy distribution Wrapped-up Cauchy distribution	No. 7.2, 4 No. 5.10, 4 No. 5.10, 4 No. 3.3, 3 No. 1.5, 3 No. 4.2, 4 No. 5.2, 4 No. 5.4, 43, 44, 48, 5 No. 7.10, 4 26, 29, 34, No. 2.8, 3 No. 6.1, 4 No. 5.4, 48, 44, 48, 5 No. 5.8, 4 No. 5.8, 4 No. 10.4, 5 No. 5.8, 4 No. 5.8, 4 No. 4.4, 5 No. 8.17, 5 No. 8.17, 5 No. 8.17, 5 No. 8.3, 5 No. 8.17, 5 No. 9.27, 5 No. 8.3, 5 No. 8.3, 5 No. 8.3, 5 No. 10.1, 5 No. 10.2, 5 No. 10.1, 5 No. 10.2, 5 No. 10.1, 5 No. 10.1, 5 No. 10.2, 5 No. 10.1, 5

V. Appendix. Chronological. Table

Year	[a]	[b]	[c]	[d]	[e]	[f]	[g] [[h] h']	[i]	[j]	[k]	[7]	[m]	[n]	[0]	[p]	[q]	[r]	[8]	[<i>t</i>]	[u]	[v]	[w]	[x]	[<i>y</i>]	MR	Z
1916	80 81 82		11 12 12						1-																		
1921	85 86 87		$14 - 15 \\ 16$				17 18 18 19 20	1 2 3 4	4- 5 6 7 8	1 2	1 -			- 1 - 2 - 3 - 3–4		4	2				21						
1926	90 91 92		20A, B				21 22 23 24 25	5 6 7 1 2	9 10 11 12 13	5 6 7 8 9	3			- 7 - 7 - 8			} 				23 24 25						
931	95 . 96 . 97	1 2	23 24 25 26 27		1		26 27 28 29 30		14 15 16 17 18	10 11 12 13 14	5		1 2 3	9-10 10-11		4 4 4					28 29 30				1 - 2 -		$\begin{array}{c} 2-4 \\ 5-7 \\ 8-10 \end{array}$
936 937 938 940	$100 \\ 101 \\ 102$	3 4 5 6 7	28 29 30 31 32	7 8 9 10 11	$\begin{array}{c} 3 \\ 3-4 \\ 4 \end{array}$		31 32 33 34 35		19 20 21 22 23	15 16 17 18 19	7-8 8 9		5	14		E E					33 - 34 - 35 -				5 -6 -	1 2	15–17 17–19 19–21
941 942 944 945	105 - 106 - 107 -		32 32 33 33 33	12 13 14 15 16	6	1	36 37 38 39 40		24 25 26 27 28	20 21 22 23 24	11 11 12 12 12		9 10 11 12 13								38 - 39 - 40 -				9 10 11 12 13	3 4 5	23–24
946 947 948 949 949 950 950	110 111 112	8 9 10 11 12	33 34 35 36 37	17 18 19 20 21	7 8 9 9 10	2 3 4 5 6	41 42 43 44 45		29 30 31 32 33	25 26 27 28 29	13 13–14 14 14 15		14 15 16 17 18	. 15	1	6–7 7–8	4		2 3	1 1 2 2–3	43 - 44 -				14 15 16 17 18	8	
951 952 953 954 955	115 116 117	13 14 15 16 17	38 39 40 41 42	22 23 24 25 26	$\begin{array}{c} 11\\ 12\\ 12-13\\ 13-14\\ 14-16 \end{array}$	7 8 9 10 11	46 47 48 49 50		34 35 36 37 38	31	$\begin{array}{c} 1516 \\ 1617 \\ 1718 \\ 1819 \\ 1920 \end{array}$		21 2 22 3		- 4 - 5 - 6	11		$1 \\ 1-2 \\ 2-3 \\ 3 \\ 4$	5 6 7 8 9	$\begin{array}{c} 3-4 \\ 4 \\ 4-5 \\ 5 \\ 6 \end{array}$	47 48 49 50 51	2 3 4 5 6	3 4 5 6 7	3 4 5 6 7	19 20 21 22 23	12 13 14 15 16	
956 957	$\frac{119}{120}$	18 19	43 44	27 28	17 18	12 13	51 52		39 40		20-21 21		24 5 25 6	18		13	6-7	$\begin{smallmatrix} 4\\4\end{smallmatrix}$	10 11	$\substack{6-7\\7}$	52 53	7 8	8 9	8	24 25	17 18	