Benchmarking SHA-2/ SHA-3 on MicroBlaze

By: Michael Rosales, Michael Yen, Nathaniel Case, and Noah Mendoza

What This Presentation Discusses

- **Purpose**: Benchmark SHA-2 and SHA-3 on MicroBlaze in constrained environments.
- Why MicroBlaze? Customizable, ideal for embedded systems.
- **Metrics**: Execution time, throughput, energy.
- Insights: Efficiency vs. security tradeoffs.
- **Impact**: Informs secure algorithm selection.

Motivations

- **Relevance**: SHA-2/SHA-3 ensure secure communication and data integrity.
- Need: Comparison driven by new cryptographic threats.
- Focus: Constrained systems like IoT and CubeSats.
- **MicroBlaze**: Customizable and ideal for benchmarking.
- Impact: Balances efficiency and security insights.

State of the Art Technology Relating to This

SHA-2: Efficient and widely used for secure communication, including digital signatures.

SHA-3: Enhanced security with sponge construction, resistant to physical attacks.

Bitcoin: SHA-256 is the primary hashing algorithm for mining and transactions.

IoT and Cloud Systems: SHA-3 is used in IoT devices, while SHA-2 and SHA-3 are integrated into cloud providers (AWS, Google Cloud, Azure).

MicroBlaze: Benchmarks provide insights into performance in constrained environments.

System and Setup

01

Hardware: Nexys A7-100T FPGA with MicroBlaze processor. 02

Processor Configuration:

- •32-bit architecture, clocked at 100 MHz.
- •Instruction and data caches enabled.
- •DDR2 SDRAM added for larger datasets.

03

Peripherals:

- •AXI UARTLite for input/output.
- •AXI Timer for measuring cycles.
- •GPIO for debugging.

04

Software:

- •Open-source SHA-2 and SHA-3 implementations.
- •Xilinx Vitis for development and benchmarking.

Performance Analytics

Test Cases: Functional tests, edge cases, and performance tests (1 KB and 1 MB inputs).

Execution time (clock cycles).

Throughput (bytes per second).

Energy consumption (microjoules).

Tools Used: AXI Timer for execution time and calculated energy based on system power.

Key Inputs: Validated with the string "1234567890" and other edge cases.

SHA 2-256 Vs. SHA 3-256

- **Execution Time**: SHA 2-256 is faster; SHA 3-256 is slower due to sponge construction.
- Throughput: SHA 2-256 achieves 12,288 bytes/s (1 KB), SHA 3-256 only 8,677 bytes/s.
- Energy: SHA 2-256 is more efficient; SHA 3-256 uses more energy for larger inputs.
- Conclusion: SHA 2-256 is better for efficiency, SHA 3-256 for stronger security.

	SHA 2-256			
Test Type	Elapsed Cycles	Execution Time (µs)	Throughput (bytes/s)	Energy Consumed (µJ)
Edge Test (Empty Input)	8332655	83326	0	92575
Performance Test (1KB)	8332791	83327	12288	92576
Performance Test (1MB)	550589815	5505898	109	6117052
Functional Test (1234567890)	8332615	83326	120	92575

	SHA 3-256			
Test Type	Elapsed Cycles	Execution Time (µs)	Throughput (bytes/s)	Energy Consumed (µJ)
Edge Test (Empty Input)	8436960	84369	0	16536
Performance Test (1KB)	11801316	118013	8677	23130
Performance Test (1MB)	509016809	5090168	118	997672
Functional Test (1234567890)	8436959	84369	118	16536

SHA 2-384 Vs. SHA 3-384

- **Execution Time**: SHA 2-384 is faster; SHA 3-384 slower for larger inputs.
- **Throughput**: SHA 2-384: 8,777 bytes/s (1 KB), SHA 3-384: 6,245 bytes/s.
- Energy: SHA 2-384 is more efficient; SHA 3-384 uses more energy.
- **Conclusion**: SHA 2-384 excels in efficiency, SHA 3-384 in security.

	SHA 2-384			
Test Type	Elapsed Cycles	Execution Time (µs)	Throughput (bytes/s)	Energy Consumed (µJ)
Edge Test (Empty Input)	11665804	116658	0	116658
Performance Test (1KB)	11665920	116659	8777	129608
Performance Test (1MB)	68690407 1	6869040	87	7631503
Functional Test (1234567890)	11665743	116657	85	129605

	SHA 3-384			
Test Type	Elapsed Cycles	Execution Time (µs)	Throughput (bytes/s)	Energy Consumed (µJ)
Edge Test (Empty Input)	11770011	117700	0	23069
Performance Test (1KB)	16394718	163947	6245	32133
Performance Test (1MB)	1966725523	19667255	30	3854781
Functional Test (1234567890)	11770032	117700	84	23069

SHA 2-512 Vs. SHA 3-512

- **Execution Time**: SHA 2-512 is faster; SHA 3-512 is slower.
- **Throughput**: SHA 2-512: 6,827 bytes/s; SHA 3-512: 4,489 bytes/s.
- **Energy**: SHA 2-512 uses less energy; SHA 3-512 uses more for large inputs.
- **Conclusion**: SHA 2-512 excels in efficiency; SHA 3-512 offers stronger security.

	SHA 2-512			
Test Type	Elapsed Cycles	Execution Time (µs)	Throughput (bytes/s)	Energy Consumed (µJ)
Edge Test (Empty Input)	14998762	149987	0	166635
Performance Test (1KB)	14998927	149989	6827	166637
Performance Test (1MB)	69026825 2	6902682	87	7668879
Functional Test (1234567890)	14998773	149987	66	166635

	SHA 3-512			
Test Type	Elapsed Cycles	Executio n Time (µs)	Throughput (bytes/s)	Energy Consumed (µJ)
Edge Test (Empty Input)	15103082	151030	0	29601
Performance Test (1KB)	22810932	228109	4489	44709
Performance Test (1MB)	422571709	4225717	142	828240
Functional Test (1234567890)	15103077	151030	66	29601

Edge Test and Functional Test

Performance Tests (1MB/1KB)

Performance Test (1KB) Results

Hash Length: SHA-2 and SHA-3 outputs:

256-bit: 64 chars, 384-bit: 96 chars, 512-bit: 128 chars.

Performance: SHA-2 is faster; SHA-3 offers stronger security.

Energy: SHA-2 is efficient for small inputs; SHA-3 for larger ones.

Trade-offs: SHA-2 suits constrained systems; SHA-3 fits high-security needs.

Future Works

Processor Comparison: Test algorithms on other processors, such as Intel Nios II or RISC-V.

Input Variability: Use larger, randomized, or real-world datasets (e.g., logs, sensor data).

Compiler Optimizations: Analyze performance using optimization flags like -O3.

Hardware Acceleration: Implement and compare hardware-accelerated versions on FPGA logic.

Power Profiling: Use precise tools to refine energy consumption analysis.