Презентация к лабораторной работе 4

Простейший шаблон

Ду нашсименту Висенте Феликс.

Докладчик

- Ду нашсименту Висенте Феликс
- Студент 3-го курса
- Группа НКНбд-01-20
- Российский университет дружбы народов
- 1032199092
- https://github.com/kpatocfelix

Актуальность

Техника и окружающий мир являются примерами того, что существуют такие процессы, которые повторяются через определенные промежутки времени, то есть периодически. Их называют колебательными.

Гармонические колебания — колебания, при которых физическая величина изменяется с течением времени по гармоническому (синусоидальному, косинусоидальному) закону.

• Чтобы перейти к гармоническим колебаниям, нам нужно описать величины, которые помогут нам эти колебания охарактеризовать. Любое колебательное движение можно описать величинами: период, частота, амплитуда, фаза колебаний.

Колебания делятся на два вида: свободные и вынужденные: - Свободные колебания-Это колебания, которые происходят под действием внутренних сил в колебательной системе.

- Вынужденные колебания-это колебания, которые происходят под действием внешней периодически меняющейся силы.
- Как установил в 1822 году Фурье, широкий класс периодических функций может быть разложен на сумму тригонометрических компонентов в ряд Фурье. Другими словами, любое периодическое колебание может быть представлено как сумма гармонических колебаний с соответствующими амплитудами, частотами и начальными фазами. Среди слагаемых этой суммы существует гармоническое колебание с наименьшей частотой, которая называется основной частотой, а само это колебание первой гармоникой или основным тоном, частоты же всех остальных слагаемых, гармонических колебаний, кратны основной частоте, и эти колебания называются высшими гармониками или обертонами первым, вторым и т.д.
- Для широкого класса систем откликом на гармоническое воздействие является гармоническое колебание (свойство линейности), при этом связь воздействия и отклика является устойчивой характеристикой системы. С учётом предыдущего свойства это позволяет исследовать прохождение колебаний произвольной формы через системы.

Объект и предмет исследования

- Модель гармонических колебаний
- Язык программирования Julia
- Система моделирования Openmodelica

Цели и задачи

- Научиться работать с OpenModelica
- Построить фазовый портрет гармонического осциллятора
- Решить уравнения гармонического осциллятора
- Получение новых знаний в ходе выполнения лабораторной работы

Задачи

Вариант № 23 Постройте фазовый портрет гармонического осциллятора и решение уравнения гармонического осциллятора для следующих случаев

- 1. Колебания гармонического осциллятора без затуханий и без действий внешней силы $\ddot{x}+1.5=0$
- 2. Колебания гармонического осциллятора с затуханием и без действий внешней силы $\ddot{x} + 0.8\dot{x} + 3x$ = 0
- 3. Колебания гармонического осциллятора с затуханием и под действием внешней силы $\ddot{x}+3.3\dot{x}+0.1x=0.1sin(3t)$ На интервале $t\in[0,46]$)шаг 0.05) с начальными условиями x_0 =0.1, y_0 = -1.1

Материалы и методы

- Язык программирования Julia
- Пакеты "Plots", "DifferentialEquations

Содержание исследования

- Использование julia и Openmodelica для выполнения лабораторных работ
- Решение уравнения гармонического осциллятора
- Описание код
- Создание markdown отчета
- Конвертация в pdf и docx посредствам Makefile
- фиксация результатов в репозитории GitHub.

Результаты

Мы научились работать в OpenModelica Научились решать уравнения гармонического осциллятора Научились строить фазовые портреты 1). Julia yпр.1 Julia yпр.1

```
model lab41
Real x:
Real v;
Real w = 1.5;
Real q = 0.0;
Real t = time;
initial equation
x = 0.1;
v = -1.1;
equation
der(x) = y;
der(y) = - w*x - g*y;
end lab41;
```

Open modelica упр.1

```
Real w = 3:
Real g = 0.8;
Real t = time:
initial equation
x = 0.1;
|y| = -1.1;
equation
der(x) = y;
der(y) = - w*x - g*y;
end lab42;
      Open modelica упр.2
```

model lab42

Real x;

Real v;

```
model lab43
Real x:
Real y;
Real w = 0.1;
Real q = 3.3;
Real t = time;
initial equation
x = 0.1;
y = -1.1;
equation
der(x) = y;
der(y) = - w*x - g*y + 0.1*sin(3*t);
end lab43;
```

Open modelica упр.3

Выводы

1.1)

Выводы julia yпр.1

Выводы julia упр.1

Выводы Open modelica упр.1

Выводы Open modelica упр.1

2.1)

Выводы julia yпр.2

Выводы julia упр.1

Выводы Open modelica упр.2

Выводы Open modelica упр.2

3.1)

Выводы julia yпр.3

Выводы julia упр.3

Выводы Open modelica упр.3

• СПАСИБО ЗА ВИНИМАНИЕ