Let A be an $n \times n$ matrix (where $n \ge 2$). A_{ij} denotes the $n-1 \times n-1$ submatrix formed by deleting the i-th row and j-th column of A, for 1 < i, j < n.

Definition

For $n \geq 2$, the determinant of an $n \times n$ matrix $A = (a_{ij})$ is the sum of n terms of the form $\pm a_{1j}$ det A_{1j} , with plus and minus signs alternating, where the entries $a_{11}, a_{12}, \ldots, a_{1n}$ are from the first row of A. In symbols,

$$\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + (-1)^{1+n} a_{1n} \det A_{1n}$$

$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j}$$

The determinant of a 1×1 matrix is the single entry of that matrix.

Definition

Let $A = (a_{ij})$ be an $n \times n$ matrix (where $n \ge 2$). The (i,j)-cofactor of A is the number C_{ij} given by

 $C_{ij} = (-1)^{i+j} \det A_{ij}$

The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column. The expansion across the i-th row using the cofactors is $\det A = a_{i1} C_{i1} + a_{i2} C_{i2} + \cdots + a_{in} C_{in}$ The cofactor expansion down the j-th column is $\det A = a_{1j} C_{1j} + a_{2j} C_{2j} + \cdots + a_{nj} C_{nj}.$ A little group theory (namely the fact that S_n is generated by transpositions), and some induction can be used to establish that $\gamma_1, \ldots, \gamma_n$

 \longrightarrow det $A = \sum \operatorname{sign}(\pi)$

mula _ det A = a1, C11 + 0,2 (12 + ... - + air (1n

Theorem

If A is a triangular matrix, then det A is the product of the entries on the main diagonal of A.

Idea: Use definition and induction - lower triangular case.

For the upper triangular case, expand along first column instead.

Proof: For
$$v = 2$$
,

det $\begin{bmatrix} a_{11} & 0 \\ 0_{21} & 0_{22} \end{bmatrix} = a_{11}a_{22} - 0.0_{21}$

Assume that the vesult $\gamma = \beta > 2.$ holds true We show that the result holds true when N = k+1. A OF

Mpen trianghan similar. () Ri->cRi

Proposition

Let E be an $n \times n$ elementary matrix. Then

- 1 det E = c, when E corresponds to scaling a row by a nonzero scalar c
- 2 $\det E = 1$, when E corresponds to a row replacement operation
- 3 det E=-1, when E corresponds to a row interchange operation

In case of row replacement or row scaling, E is triangular ...

We show that $\det E = -1$, when E corresponds to a row interchange, using induction on n.

Base case .. what is n?

1) if Rti, lty
and R=1 Or ef R= i and l= j

Onewi det l= en det en - en det tiz

+ - - + + tenth

Back to eatien proof. Bast cast: n=2.
only pensibility: intendrough R, and R2 Traduction hypomis: Armine
that the rent toolds for $2 \le n < R$. We show that the Cypothesis Wels for h= K.

Assume that the induction hypothesis is true for $2 \le k < n$. We show that it holds when n = k.

Main idea: Expand along a now which is not involved in the now interchange.

intendange is Rich He the then we expand along now! Where Itiand Iti. $\frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1} = \frac{1}$

Mu matrix (Ell) also ar ofunction matrix whire convers foods to a war interchange.

. - By induction hypothesis.

det E₁₁ = -1.

... Set = -1.

Suppose E corresponds to $R_i \leftrightarrow R_j$. We expand the determinant along row I, where $I \neq i, I \neq j$. Let $E = (a_{ij})$. Then

$$\det E = \det E_{II}$$

Since E_{ll} is an $k-1 \times k-1$ elementary matrix corresponding to a row interchange operation, it follows by the induction hypothesis that

$$\det E_{II} = -1.$$

Therefore det E = -1.

Proposition

Let A be an $n \times n$ matrix having two identical rows. Then the determinant of A is zero.

Idea(s) behind proof:

First consider the case where the identical rows are adjacent. $\ensuremath{\mathsf{Expand}}.$

Next consider the non-adjacent case. Use induction.

Ovoida He care where Ri, Riti an identical. Expanding along the ith now, $\frac{1}{2} \int_{A}^{A} dt \int_{A}^{A} f = (-1)^{A} \int_{A}^{A} dt \int_{A}^{A} f + \cdots + (-1)^{A} \int_{A}^{A} f + \cdots + (-1$ Clewy Aij - Aitij

 $\frac{1}{2}$

det A -- det A

-i Alt <math>A = 0.