

Test Report Serial No.:	033106TV9-T735	-S24G	Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 20	906	Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

RF EXPOSURE EVALUATION

SPECIFIC ABSORPTION RATE

SAR TEST REPORT

FOR

MEDICAL INTELLIGENCE TECHNOLOGIES INC.

WRIST-WORN PERSONAL LOCATION DEVICE

MODEL: COLUMBA

FCC ID: TV9-MICLM-C001

IC ID: 6387A-CLMBRA01

Test Report Serial No. 033106TV9-T735-S24G

Test Report Revision No.

Revision 1.2 - 3rd Release (Recalculated ERP for 300 kHz RBW)

Test Lab and Location

Celltech Compliance Testing & Engineering Lab (Celltech Labs Inc.) 1955 Moss Court Kelowna, BC Canada V1Y 9L3

Test Report Prepared By:

Cheri Frangiadakis Test Report Writer Celltech Labs Inc.

Cheri Franziadakia

Test Report Approved By:

Jonathan Hughes General Manager Celltech Labs Inc.

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	Medical
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	rsonal Loc	ation Device	IC ID:	6387A-CLMBRA01	Intelligence
2006 Celltech La	006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 1 of 36

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2	
Dates of Evaluation:	April 05-06, 20	906	Test Report Issue Date:	December 13, 2006	
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2	

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION

Test Lab and Location

CELLTECH LABS INC.

Testing and Engineering Services 1955 Moss Court

Kelowna, B.C. Canada V1Y 9L3

Phone: 250-448-7047
Fax: 250-448-7046
e-mail: info@celltechlabs.com
web site: www.celltechlabs.com

Company Information

MEDICAL INTELLIGENCE TECHNOLOGIES INC.

1170 Grande-Allée Ouest Québec (Quebec) G1S 1E5

Canada

FCC IDENTIFIER: TV9-MICLM-C001
IC IDENTIFIER: 6387A-CLMBRA01

Model(s): Columba

SAR Test Requirement(s): FCC 47 CFR §2.1093; Health Canada Safety Code 6
SAR Test Procedure(s): FCC OET Bulletin 65, Supplement C (Edition 01-01)

Industry Canada RSS-102 Issue 2

FCC Device Classification: PCS Licensed Transmitter worn on body (PCT)

IC Device Classification: 2 GHz Personal Communication Services (RSS-133 Issue 3)

Cellular Telephones Employing New Technologies (RSS-132 Issue 2)

Device Description: Dual-Band PCS/Cellular GSM/GPRS Wrist-Worn Personal Location Device

Transmit Frequency Range(s): 1850.2 - 1909.8 MHz (PCS GSM) 824.2 - 848.8 MHz (Cellular GSM)

Max. RF Output Power Tested: 30.66 dBm (1.16 W) EIRP (PCS GSM)

Max. Duty Cycle Tested: 22.57 dBm (180.79 mW) ERP (Cellular GSM)

24 % (Source-Based Time-Averaged)

Max. SBTA RF Output Power: 24.45 dBm (278.4 mW) EIRP (PCS GSM) 16.37 dBm (43.39 mW) ERP (Cellular GSM)

Data Transmission Type: GPRS Class B, Multislot Class 10
Antenna Type(s) Tested: Internal PCB Antenna

Power Source(s) Tested: External Power Supply (4.1 VDC)
Internal Battery Type(s): Lithium-Polymer (3.7 V, 570 mAh)

Max. SAR Level(s) Evaluated: Wrist: 0.033 W/kg (PCS); 0.00208 W/kg (Cellular) - 10g average

Body: 0.054 W/kg (PCS); 0.00321 W/kg (Cellular) - 1g average

Celltech Labs Inc. declares under its sole responsibility that this wireless device was compliant with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and Industry Canada RSS-102 Issue 2 for the General Population / Uncontrolled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

Test Report Approved By:

Sean Johnston SAR Lab Manager Celltech Labs Inc.

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	_6
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	rsonal Loc	ation Device	IC ID:	6387A-CLMBRA01	•

Test Report Serial No.:	033106TV9-T735	-S24G	Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 20	006	Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

TABLE OF CONTENTS					
1.0 INTRODUCTION	4				
2.0 DESCRIPTION of DEVICE UNDER TEST (DUT)	4				
3.0 SAR MEASUREMENT SYSTEM	5				
4.0 MEASUREMENT SUMMARY	6				
5.0 DETAILS OF SAR EVALUATION	8				
6.0 EVALUATION PROCEDURES	8				
7.0 SYSTEM PERFORMANCE CHECK	9				
8.0 SIMULATED EQUIVALENT TISSUES	10				
9.0 SAR SAFETY LIMITS	10				
10.0 ROBOT SYSTEM SPECIFICATIONS	11				
11.0 PROBE SPECIFICATION (ET3DV6)	12				
12.0 SAM PHANTOM V4.0C	12				
13.0 DEVICE HOLDER	12				
14.0 TEST EQUIPMENT LIST	13				
15.0 MEASUREMENT UNCERTAINTIES	14				
MEASUREMENT UNCERTAINTIES (Cont.)	15				
16.0 REFERENCES	16				
APPENDIX A - SAR MEASUREMENT DATA	17				
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	21				
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	26				
APPENDIX D - SAR TEST SETUP PHOTOGRAPHS	30				
APPENDIX E - SYSTEM VALIDATION	34				
APPENDIX F - PROBE CALIBRATION					
APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY	36				

	Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	Medi
I	DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	rsonal Loc	ation Device	IC ID:	6387A-CLMBRA01	Intellige
Ī	2006 Celltech La	abs Inc	This document is not to be reproduced in	whole or in pa	art without the prior	written permis	ssion of Celltech Labs Inc.	Page 3 of

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2	
Dates of Evaluation:	April 05-06, 20	906	Test Report Issue Date:	December 13, 2006	
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2	

1.0 INTRODUCTION

This measurement report demonstrates that the Medical Intelligence Technologies Inc. Model: Columba PCS/Cellular GSM/GPRS Wrist-Worn Personal Location Device FCC ID: TV9-MICLM-C001 complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]) and IC RSS-102 Issue 2 (see reference [4]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION of DEVICE UNDER TEST (DUT)

				FCC Rule	e Part	47 CFR §2	2.1093				
SAR Test Require	ement(s)					a Safety C					
2457 (5			FC	C OET Bulle	tin 65,	Suppleme	ent C (01-	01)			
SAR Test Proce	dure(s)			Industry C	anada	RSS-102	Issue 2				
FCC Device Class	ification	PCS	S Licensed Tran	smitter worn	on bo	ody (PCT)		Rule P	art 24E		
IO Davida Olasak	Cl = =4! =	2	GHz Personal	Communica	tion S	ervices		RSS 133	3 Issue 3		
IC Device Classif	rication	Cellu	ılar Telephone E	mploying No	ew Te	chnologies	3	RSS-132	2 Issue 2		
Device Descri	ption	Du	al-Band PCS/Ce	ellular GSM/	GPRS	Wrist-Wo	rn Person	al Location Dev	rice		
RF Exposure Ca	itegory		Gene	eral Populati	on / U	ncontrolle	d Environr	nent			
FCC IDENTIF	IER			ΤV	/9-MIC	CLM-C001					
IC IDENTIFI	ER			638	37A-C	LMBRA01					
Model(s)					Coli	umba					
Test Sample Seria	al No.(s)		None			Identical Prototype					
Transmit Frequency Range(s)		1	850.2 - 1909.8	MHz		PCS GSM Band					
Transmit Trequency	y italige(s)		824.2 - 848.8 M	1Hz			Cellu	ar GSM Band			
Mode(s) of Ope	ration				GSM	/GPRS			Tura Haliah Olata		
Data Transmission	on Type	GPRS	Class B	М	ultislo	t Class 10		Two Upl	ink Slots		
		30.94 dBm	1.24 W	Ch. 512	185	0.2 MHz	SBTA	24.74 dBm	298.0 mW		
	EIRP	30.66 dBm	1.16 W	Ch. 661	188	0.0 MHz	SBTA	24.45 dBm	278.4 mW		
Max. RF Output		26.05 dBm	0.403 W	Ch. 810	190	9.8 MHz	SBTA	19.86 dBm	96.72 mW		
Power Measured		19.99 dBm	99.69 mW	Ch. 128		1.2 MHz	SBTA	13.79 dBm	23.93 mW		
	ERP	22.57 dBm	180.79 mW	Ch. 190	<u> </u>	6.6 MHz	SBTA	16.37 dBm	43.39 mW		
		19.80 dBm	95.55 mW	Ch. 251		3.8 MHz	SBTA	13.60 dBm	22.93 mW		
Max. Duty Cycle Tested		24	1 %			l Time-Ave		Crest Fac	tor 1:4.16		
Antenna Type(s) Tested					nal P	CB Antenn	а				
Power Source(s) Tested		E	xternal Power S					4.1 VDC			
Internal Battery	Type(s)		Lithium-Polym	er			3.7	7 V, 570 mAh			
Configuration(s)	Tested		Wrist-Worn				Botto	m Side of DUT			

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	Medical
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	rsonal Loc	ation Device	IC ID:	6387A-CLMBRA01	Intelligence
2006 Celltech La	abs Inc.	s Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 4 of 36

Test Report Serial No.:	033106TV9-T735	-S24G	Test Report Revision No.:	Revision 1.2		
Dates of Evaluation:	April 05-06, 20	906	Test Report Issue Date:	December 13, 2006		
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2		

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 Measurement System with SAM Phantom and validation dipole

DASY4 SAR Measurement System with SAM phantom and device holder

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	Medical
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	rsonal Loc	ation Device	IC ID:	6387A-CLMBRA01	Intelligence
2006 Celltech La	06 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 5 of 36

Test Report Serial No.:	033106TV9-T735	-S24G	Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 20	906	Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

4.0 MEASUREMENT SUMMARY

			W	RIST-W	ORN	SAR	EVALU	ATION	I RES	ULTS	- PCS	/Cellula	r GPRS					
Freq.	Chan.	Test	Mode	Power Supply		enna	DUT Position to Planar	Dist to P	ration ance lanar	EIRF	Power P/ERP Bm)	SAR Drift During	Body 1g (W		Wrist			
(12)				Cuppiy			Phantom	Pha	ntom m)	Meas.	SBTA	Test (dB)	Measured	Scaled	Measured	Scaled		
1880.0	661	PCS GPRS	2 Slots	4.1 VDC	Inte	ernal	Bottom Side	0	0.0		24.45 EIRP	-0.969 ⁴	0.051	0.054 ³	0.031	0.033 ³		
836.6	190	Cellular GPRS	2 slots	4.1 VDC	Inte	ernal	Bottom Side		.0	22.57 ERP	16.37 ERP	0.861 ⁴	0.00321		0.00208			
ANSI / IEEE C95.1 1999 WRIST: 4.0 W/kg BODY: 1.6 W/kg Spatial Peak SAFETY LIMIT (averaged over 10 grams) (averaged over 1 gram) Uncontrolled Exposure / General Po							ılation											
Test	Date(s)		April 0	5, 2006			April 0	6, 2006		Me	asured F	luid Type	1880	MHz	835 MHz	Unit		
Diel	ectric		1880 M	Hz Body			835 MI	Hz Body		R	elative H	lumidity	30)	30	%		
Con	ıstant ε _r	IEEE	Target	Meas.	Dev.	IEEE	Target	Meas.	Dev.	Atm	ospheri	Pressure	101	.1	101.3	kPa		
	€r	53.3	± 5%	50.9	-4.5%	55.2	± 5%	54.3	-1.6%	Am	bient Te	mperature	25.1		25.1		24.8	°C
			1880 MI	Hz Body			835 MI	Hz Body		FI	uid Tem	perature	23.	23.8		°C		
	uctivity ho/m)	IEEE	Target	Meas.	Dev.	IEEE	Target	Meas.	Dev.		Fluid D	epth	≥ 15		≥ 15	cm		
		1.52	± 5%	1.51	-0.7%	0.97	± 5%	0.98	+1.0%		ρ (Kg /	/m³)			1000			
		1.											ons descri re reportec			Detailed		
		2.													evaluation for erence [3]).	r the low		
		3.	in the S		based	l on th	e differen								n estimated i channel (see			
No	te(s)	4.	The power drifts reported were measured at the reference point of the planar phantom with low SAR. The drift values reported are inaccurate due to the SAR value at the reference point is close to the measurement noise floor.															
		5.											fluid dielec rement pe		meter check	s and		
		6.	The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using an ALS-PR-DIEL Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C).															
		7.	The SA	The SAR measurements were performed within 24 hours of the system performance check.														

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	Medical
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	rsonal Loc	IC ID:	6387A-CLMBRA01	Intelligence www.medcalintelligence.com	
2006 Celltech La	abs Inc.	This document is not to be reproduced in	Page 6 of 36				

Test Report Serial No.:	033106TV9-T735	-S24G	Test Report Revision No.:	Revision 1.2		
Dates of Evaluation:	April 05-06, 20	906	Test Report Issue Date:	December 13, 2006		
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2		

MEASUREMENT SUMMARY (Cont.)

Celltech

Project Number: 735

 Company:
 Medical Intelligence
 Test Start Date:
 3-Apr-06

 Product:
 Columba
 Test End Date:
 3-Apr-06

					EI	RP Me	asurement	Results - P	CS Band				
Configuration				Frequency Field Strength (uncorrected) SA Signal Level Applied to Antenna Gain Measured Measured						Measured EIRP	Carrier Level		
DUT#	Orientation	Power Source	Accessory		m	O	MHz	dBuV/m	dBuV	dBm	dBi	dBm	milliWatts
1	Long Edge Up	4.1 VDC P/S	none	Н	3	512	1850.2000	117.96	85.64	21.94	9.00	30.94	1241.77
1	Long Edge Up	4.1 VDC P/S	none	>	3	512	1850.2000	112.67	80.35	15.51	9.00	24.51	282.51
1	Long Edge Up	4.1 VDC P/S	none	I	3	661	1880.0000	117.29	84.83	21.60	9.06	30.66	1164.13
1	Long Edge Up	4.1 VDC P/S	none	٧	3	661	1880.0000	109.70	77.24	12.34	9.06	21.40	138.04
1	Long Edge Up	4.1 VDC P/S	none	Н	3	810	1909.8000	112.51	79.93	16.93	9.12	26.05	402.68
1	Long Edge Up	4.1 VDC P/S	none	٧	3	810	1909.8000	110.13	77.55	13.17	9.12	22.29	169.42

Measurement made at a 3 meter distance, with the EUT placed 1 meter above the ground plane

Celltech Testra ard Engineerin Services Lat

Project Number: 755

 Company:
 Medical Intelligence
 Test Start Date:
 3-Apr-06

 Product:
 Columba
 Test End Date:
 3-Apr-06

					ERP I	Measu	rement Res	ults - Cell	ular Band					
Configuration Let by Configuration Configuration Configuration Configuration Configuration Configuration Frequency Field Strength Strength							Power Applied to Antenna	Antenna Gain	RBW Correction Factor		red ERP er Level			
DUT#	Orientation	Power Source	Accessory		m	J	MHz	dBuV/m	dBuV	dBm	dBd	dB	dBm	milliWatts
1	Short Edge Up	4.1 VDC P/S	none	Н	3	128	824.2000	97.77	70.21	12.40	2.82	4.77	19.99	99.69
1	Short Edge Up	4.1 VDC P/S	none	٧	3	128	824.2000	96.45	68.89	11.82	2.82	4.77	19.41	87.23
1	Short Edge Up	4.1 VDC P/S	none	Н	3	190	836.6000	100.12	72.70	14.70	3.10	4.77	22.57	180.79
1	Short Edge Up	4.1 VDC P/S	none	V	3	190	836.6000	98.15	70.73	13.54	3.10	4.77	21.41	138.41
1	Short Edge Up	4.1 VDC P/S	none	Н	3	251	848.8000	97.71	70.41	11.65	3.38	4.77	19.80	95.55
1	Short Edge Up	4.1 VDC P/S	none	٧	3	251	848.8000	95.57	68.27	11.11	3.38	4.77	19.26	84.38

Measurement made at a 3 meter distance, with the EUT placed 1 meter above the ground plane RBW Correction Factor = 10*LOG(300/100) = 4.77dB based on a correction from a 100kHz RBW used for the measurement to 300 kHz RBW to encompass the 99% EBW of 285 kHz

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	<u> </u>		
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	ular GSM/GPRS Wrist-Worn Personal Location Device						
2006 Celltech La	ahs Inc	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

Test Report Serial No.:	033106TV9-T735	-S24G	Test Report Revision No.:	Revision 1.2		
Dates of Evaluation:	April 05-06, 20	006	Test Report Issue Date:	December 13, 2006		
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2		

5.0 DETAILS OF SAR EVALUATION

The Medical Intelligence Technologies Inc. Model: Columba PCS/Cellular GSM/GPRS Wrist-Worn Personal Location Device FCC ID: TV9-MICLM-C001 has demonstrated compliance for localized Specific Absorption Rate (Uncontrolled Exposure) based on the test provisions and conditions described below. The detailed test setup photographs are shown in Appendix D.

DUT Test Configuration

1. The DUT was tested for wrist-worn SAR with the bottom side placed parallel to, and touching, the outer surface of the SAM phantom (planar section).

DUT Test Mode(s) & Power Setting(s)

- 2. The RF conducted output power of the DUT could not be measured by Celltech Labs due to an internal antenna. The DUT was evaluated for SAR at the maximum RF conducted output power level preset by the manufacturer.
- 3. The DUT was evaluated at the maximum EIRP and ERP levels measured prior to the SAR evaluations at Celltech Labs' 3-meter Open Area Test Site using the signal substitution method in accordance with ANSI/TIA-603-C-2004 measurement procedures (see reference [7]).
- 4. The DUT was placed in test mode using a communications test set (Wavetek 4202S). The SAR evaluation was performed with the DUT transmitting continuously in GPRS mode at maximum power in 2 time slots (Crest factor: 4.16).
- 5. The DUT was evaluated for SAR using an external DC power supply. The internal battery was disconnected and power leads were soldered onto the external power connector of the device. The device was unable to be tested from the internal battery power source.

Test Conditions

- The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter checks and the SAR evaluations. The temperatures reported were consistent for all measurement periods.
- 7. The dielectric parameters of the simulated tissue mixtures were measured prior to the SAR evaluations using an ALS-PR-DIEL Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C).
- 8. The SAR measurements were performed within 24 hours of the system performance check.

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
 - An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 - A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Company:	Medica	al Intelligence Technologies Inc.	Technologies Inc. Model: Columba FCC ID:				Medical	
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	rsonal Loc	IC ID:	6387A-CLMBRA01	Intelligence		
2006 Celltech La	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

Test Report Serial No.:	033106TV9-T735	-S24G	Test Report Revision No.:	Revision 1.2		
Dates of Evaluation:	April 05-06, 20	906	Test Report Issue Date:	December 13, 2006		
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2		

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations, system checks were performed at the planar section of the SAM phantom using a 1900MHz dipole and an 835MHz dipole (see Appendix E for system validation procedures). The dielectric parameters of the simulated tissue mixtures were measured prior to the system performance checks using an ALS-PR-DIEL Dielectric Probe Kit and an HP 8753ET Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of $\pm 10\%$ (see Appendix B for system performance check test plots). For the 835 MHz system performance check evaluated in body tissue simulant please refer to table 1 below for the SAR system manufacturer's reference body SAR values from the DASY4 Operation Manual (see reference [6]).

	SYSTEM PERFORMANCE CHECK EVALUATIONS															
Test	Tissue	sue SAR 1g (W/kg)			Dielectric Constant ε _r			Conductivity σ (mho/m)			0	Amb.	Fluid	Fluid	Humid.	Barom.
Date	MHz	Target	Meas.	Dev.	IEEE Target	Meas.	Dev.	IEEE Target	Meas.	Dev.	(Kg/m³)	Temp. (°C)	Temp. (°C)	Depth (cm)	(%)	Press. (kPa)
4/5/06	1900 Brain	9.93 ±10% IEEE	10.5	+5.7%	40.0 ±5%	39.0	-2.5%	1.40 ±5%	1.33	-5.0%	1000	25.1	23.8	≥ 15	101.1	30
4/6/06	835 2.43 ±10%		2.51	+3.3%	55.2 ±5%	54.3	-1.6%	0.97 ±5%	0.98	+1.0%	1000	23.5	22.5	> 15	101.2	30
0. 0 0	Body	Sys. Manuf.	2.51		00.2.2070	00		U.97 ±5%	0.96	+1.0%	.000			0		
Not	Note(s) The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the system performance check. The temperatures listed in the table above were consistent for all measurement periods.															

Figure 1. System Performance Check Setup Diagram

Dipole	Distance	Frequency	SAR (1g)	SAR (10g)	SAR (peak)
Type	[mm]	[MHz]	[W/kg]	[W/kg]	[W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to $1~\mathrm{W}$ forward power.

Table 1. SAR system manufacturer's reference body SAR values

1900MHz Dipole Setup

835MHz Dipole Setup

Company:	Medica	al Intelligence Technologies Inc.	Columba	FCC ID:	TV9-MICLM-C001	Medical	
DUT Type:	PCS/C	CS/Cellular GSM/GPRS Wrist-Worn Personal Location Device				6387A-CLMBRA01	Intelligence
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior				written permi	ssion of Celltech Labs Inc.	Page 9 of 36	

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2	
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006	
Type of Evaluation:	RF Exposure SAR		FCC 47 CFR §2.1093	IC RSS-102 Issue 2	

8.0 SIMULATED EQUIVALENT TISSUES

The 1880/1900MHz simulated equivalent tissue mixtures consisted of Glycol-monobutyl, water, and salt. The 835MHz simulated tissue mixture consist of a viscous gel saline solution. Preservation with a bactericide is added and visual inspection is made to ensure air bubbles are not trapped during the mixing process. The fluids were prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

1880/1900MHz TISSUE MIXTURE							
INGREDIENT	1900 MHz Brain	1880 MHz Body					
	System Performance Check	DUT Evaluation					
Water	55.85 %	69.85 %					
Glycol Monobutyl	44.00 %	29.89 %					
Salt	0.15 %	0.26 %					

835MHz TISSUE MIXTURE							
INGREDIENT	835 MHz Body	835 MHz Body					
	System Performance Check	DUT Evaluation					
Water	53.79 %	53.79 %					
Sugar	45.13 %	45.13 %					
Salt	0.98 %	0.98 %					
Bactericide	0.10 %	0.10 %					

9.0 SAR SAFETY LIMITS

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Company:	Medica	al Intelligence Technologies Inc.	FCC ID:	TV9-MICLM-C001	Medical	
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	IC ID:	6387A-CLMBRA01	Intelligence www.medicilintelligence.com	
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior				written permis	ssion of Celltech Labs Inc.	Page 10 of 36

Test Report Serial No.:	033106TV9-T735	-S24G	Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure SAR		FCC 47 CFR §2.1093	IC RSS-102 Issue 2

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

POSITIONER: Stäubli Unimation Corp. Robot Model: RX60L

Repeatability: 0.02 mm

No. of axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: AMD Athlon XP 2400+

Clock Speed: 2.0 GHz

Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: Measurement: DASY4, V4.6 Build 19

Postprocessing: SEMCAD, V1.8 Build 159

Connecting Lines: Optical downlink for data and status info. Optical uplink for commands and clock

DASY4 Measurement Server

Function: Real-time data evaluation for field measurements and surface detection

Hardware: PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM **Connections:** COM1, COM2, DAE, Robot, Ethernet, Service Interface

E-Field Probe

Model: ET3DV6 Serial No.(s): 1387

Construction: Triangular core fiber optic detection system

Frequency: 10 MHz to 6 GHz

Linearity: $\pm 0.2 \text{ dB } (30 \text{ MHz to } 3 \text{ GHz})$

Phantom(s)

Type: SAM V4.0C
Shell Material: Fiberglass
Thickness: 2.0 ±0.1 mm
Volume: Approx. 25 liters

Test Report Serial No.:	033106TV9-T735	-S24G	Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure SAR		FCC 47 CFR §2.1093	IC RSS-102 Issue 2

11.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g. glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy \pm 8%)

Frequency: 10 MHz to >6 GHz; Linearity: ± 0.2 dB

(30 MHz to 3 GHz)

Directivity: ± 0.2 dB in brain tissue (rotation around probe axis)

 ± 0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range: 5 μ W/g to >100 mW/g; Linearity: \pm 0.2 dB

Surface Detection: ± 0.2 mm repeatability in air and clear liquids over

diffuse reflecting surfaces Overall length: 330 mm

Dimensions: Overall length: 330 mm
Tip length: 16 mm

Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz

Compliance tests of portable devices

ET3DV6 E-Field Probe

12.0 SAM PHANTOM V4.0C

The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix G for specifications of the SAM phantom V4.0C).

SAM Phantom V4.0C

13.0 DEVICE HOLDER

2006 Celltech Labs Inc.

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65° . The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Company:	Medical Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	
DUT Type:	PCS/Cellular GSM/GPRS Wrist-Worn Pe	PCS/Cellular GSM/GPRS Wrist-Worn Personal Location Device				

Page 12 of 36

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure SAR		FCC 47 CFR §2.1093	IC RSS-102 Issue 2

14.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE		CALIBRATION
USED	DESCRIPTION	ACCET NO.	OLIVIAL NO.	CALIB	RATED	DUE DATE
х	Schmid & Partner DASY4 System	-	-		-	-
х	-DASY4 Measurement Server	00158	1078	N	I/A	N/A
х	-Robot	00046	599396-01	N/A		N/A
х	-DAE4	00019	353	15Jun05		15Jun06
	-DAE3	00018	370	08F	eb06	08Feb07
х	-ET3DV6 E-Field Probe	00016	1387	16N	1ar06	16Mar07
	-ET3DV6 E-Field Probe	00017	1590	20N	lay05	20May06
	-EX3DV4 E-Field Probe	00125	3547	14F	eb06	14Feb07
	-300MHz Validation Dipole	00023	135	250	Oct05	25Oct06
	-450MHz Validation Dipole	00024	136	250	Oct05	25Oct06
	-835MHz Validation Dipole	00022	411	Brain	28Mar06	28Mar07
х	-035WHIZ Validation Dipole	00022	411	Body	27Mar06	27Mar07
	-900MHz Validation Dipole	00020	054	Brain	10Jun05	10Jun06
	-900WHIZ Validation Dipole	00020	034	Body	10Jun05	10Jun06
	-1800MHz Validation Dipole	00021	247	Brain	14Jun05	14Jun06
	- 1800IVIHZ Validation Dipole	00021	247	Body	14Jun05	14Jun06
х	1000MHz Validation Dinals	00032	151	Brain	17Jun05	17Jun06
	-1900MHz Validation Dipole	00032	151	Body	22Apr05	22Apr06
	2450MHz Validation Dipole	00025	150	Brain	20Sep05	20Sep06
	-2450MHz Validation Dipole	00025	150	Body	22Apr05	22Apr06
	-5800MHz Validation Dipole	00126	1031	Brain	15Mar06	15Mar07
х	-SAM Phantom V4.0C	00154	1033	N	I/A	N/A
	-Barski Planar Phantom	00155	03-01	N	I/A	N/A
	-Plexiglas Side Planar Phantom	00156	161	N	I/A	N/A
	-Plexiglas Validation Planar Phantom	00157	137	N	I/A	N/A
х	ALS-PR-DIEL Dielectric Probe Kit	00160	260-00953	N	I/A	N/A
	Gigatronics 8652A Power Meter	00110	1835801	16A	pr05	16Apr06
	Gigatronics 8652A Power Meter	00007	1835272	03F	eb06	03Feb07
х	Gigatronics 8652A Power Meter	80000	1835267	294	pr05	29Apr06
	Gigatronics 80701A Power Sensor	00011	1833542	03F	eb06	03Feb07
х	Gigatronics 80701A Power Sensor	00012	1834350	128	ep05	12Sep06
	Gigatronics 80701A Power Sensor	00013	1833713	03F	eb06	03Feb07
	Gigatronics 80701A Power Sensor	00014	1833699	078	ep05	07Sep06
х	Gigatronics 80701A Power Sensor	00109	1834366	16A	pr05	16Apr06
х	HP 8753ET Network Analyzer	00134	US39170292	04N	lay05	04May06
х	HP 8648D Signal Generator	00005	3847A00611	29A	pr05	29Apr06
х	HP E3611A DC Power Supply	00201	KR83015294	N	I/A	N/A
	Rohde & Schwarz SMR40 Signal Generator	00006	100104	12A	pr05	12Apr06
х	Amplifier Research 5S1G4 Power Amplifier	00106	26235	N	I/A	N/A

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	Medical
DUT Type:	PCS/C	PCS/Cellular GSM/GPRS Wrist-Worn Personal Location Device			IC ID:	6387A-CLMBRA01	Intelligence www.medcaliteligence.com
2006 Celltech La	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 13 of 36	

Test Report Serial No.:	033106TV9-T735	-S24G	Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

15.0 MEASUREMENT UNCERTAINTIES

U	NCERTAINT	Y BUDGET FOR	R DEVICE EVAL	UATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (900 MHz)	5.5	Normal	1	1	5.5	∞
Probe calibration (1925 MHz)	3.5	Normal	1	1	3.5	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	0.7	1.9	∞
Spherical isotropy of the probe	9.6	Rectangular	1.732050808	0.7	3.9	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	∞
Boundary effects	1	Rectangular	1.732050808	1	0.6	∞
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞
Detection limit	1	Rectangular	1.732050808	1	0.6	∞
Readout electronics	0.3	Normal	1	1	0.3	∞
Response time	0.8	Rectangular	1.732050808	1	0.5	∞
Integration time	2.6	Rectangular	1.732050808	1	1.5	∞
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Test Sample Related						
Device positioning	2.9	Normal	1	1	2.9	12
Device holder uncertainty	3.6	Normal	1	1	3.6	8
Power drift	5	Rectangular	1.732050808	1	2.9	∞
Phantom and Setup		_				
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid conductivity (measured)	2.5	Normal	1	0.64	1.6	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	2.5	Normal	1	0.6	1.5	∞
Combined Standard Uncertain	<u> </u>		•			
	_	MHz			10.58	
) MHz			9.69	
Expanded Uncertainty (k=2)	1000				0.00	
(i. Z)	835	MHz			21.16	
) MHz			19.39	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	Medical
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	rsonal Loc	ation Device	IC ID:	6387A-CLMBRA01	Intelligence www.medcalintallgence.com
2006 Celltech La	abs Inc.	bs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2	
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006	
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2	

MEASUREMENT UNCERTAINTIES (Cont.)

UN	ICERTAINT	/ BUDGET FOR	SYSTEM VALI	DATION		
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	Uncertainty Value ±% (1g)	V _i or V _{eff}
Measurement System						
Probe calibration (900 MHz)	5.5	Normal	1	1	5.5	∞
Probe calibration (1925 MHz)	3.5	Normal	1	1	3.5	∞
Axial isotropy of the probe	4.7	Rectangular	1.732050808	1	2.7	∞
Spherical isotropy of the probe	0	Rectangular	1.732050808	1	0.0	∞
Spatial resolution	0	Rectangular	1.732050808	1	0.0	∞
Boundary effects	1	Rectangular	1.732050808	1	0.6	∞
Probe linearity	4.7	Rectangular	1.732050808	1	2.7	∞
Detection limit	1	Rectangular	1.732050808	1	0.6	∞
Readout electronics	0.3	Normal	1	1	0.3	∞
Response time	0	Rectangular	1.732050808	1	0.0	∞
Integration time	0	Rectangular	1.732050808	1	0.0	∞
RF ambient conditions	3	Rectangular	1.732050808	1	1.7	∞
Mech. constraints of robot	0.4	Rectangular	1.732050808	1	0.2	∞
Probe positioning	2.9	Rectangular	1.732050808	1	1.7	∞
Extrapolation & integration	1	Rectangular	1.732050808	1	0.6	∞
Dipole						
Dipole Positioning	2	Normal	1.732050808	1	1.2	∞
Power & Power Drift	4.7	Normal	1.732050808	1	2.7	∞
Phantom and Setup						
Phantom uncertainty	4	Rectangular	1.732050808	1	2.3	∞
Liquid conductivity (target)	5	Rectangular	1.732050808	0.64	1.8	∞
Liquid conductivity (measured)	2.5	Normal	1	0.64	1.6	∞
Liquid permittivity (target)	5	Rectangular	1.732050808	0.6	1.7	∞
Liquid permittivity (measured)	2.5	Normal	1	0.6	1.5	∞
Combined Standard Uncertaint	у					
	835	MHz			8.79	
	1900) MHz			7.69	
Expanded Uncertainty (k=2)						
	835	MHz			17.57	
	1900	MHz			15.39	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	Medical
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	6387A-CLMBRA01	Intelligence			
2006 Celltech La	abs Inc.	This document is not to be reproduced in	Page 15 of 36				

Test Report Serial No.:	033106TV9-T735	-S24G	Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

16.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Health Canada "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6: 1999.
- [3] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada "Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 2: November 2005.
- [5] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] Schmid & Partner Engineering AG "DASY4 Manual", V4.5 March 2005.
- [7] ANSI/TIA-603-C "Land Mobile FM or PM Communications Equipment Measurement and Performance Standards": December 2004.

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

APPENDIX A - SAR MEASUREMENT DATA

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	Medic
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	rsonal Loc	ation Device	IC ID:	6387A-CLMBRA01	Intelliger
2006 Celltech La	abs Inc.	This document is not to be reproduced in	whole or in pa	art without the prior	written permi	ssion of Celltech Labs Inc.	Page 17 of

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

Date Tested: 04/05/2006

Wrist-Worn SAR - Bottom Side of DUT - PCS GPRS - 1880.0 MHz - Channel 661

DUT: Medical Intelligence Columba; Type: Dual-Band GSM/GPRS Wrist-Worn Personal Location Device; Serial: None

Ambient Temp: 25.1 °C; Fluid Temp: 23.8 °C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Power Supply: 4.1 VDC External RF Output Power: 30.66 dBm (EIRP)

Communication System: PCS GPRS (2 Time Slots) Frequency: 1880.0 MHz; Channel 661; Duty Cycle: 1:4.16 Medium: M1880 (σ = 1.51 mho/m; ϵ_r = 50.9; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1387; ConvF(4.7, 4.7, 4.7); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 15/06/2005
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

Wrist-Worn SAR - PCS Band - Bottom Side of DUT Touching Planar Phantom - Mid Channel Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Wrist-Worn SAR - PCS Band - Bottom Side of DUT Touching Planar Phantom - Mid Channel

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.69 V/m; Power Drift = -0.969 dB

Peak SAR (extrapolated) = 0.094 W/kg

SAR(1 g) = 0.051 mW/g; SAR(10 g) = 0.031 mW/g

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	Medical
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	rsonal Loc	ation Device	IC ID:	6387A-CLMBRA01	Intelligence www.medcelbrieligence.com
2006 Celltech La	6 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 18 of 36

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

Date Tested: 04/06/2006

Wrist-Worn SAR - Bottom Side of DUT - Cellular GPRS - 836.6 MHz - Channel 190

DUT: Medical Intelligence Columba; Type: Dual-Band GSM/GPRS Wrist-Worn Personal Location Device; Serial: None

Ambient Temp: 24.8 °C; Fluid Temp: 22.5 °C; Barometric Pressure: 101.3 kPa; Humidity: 30%

Power Supply: 4.1 VDC External RF Output Power: 22.57 dBm (ERP)

Communication System: Cellular GPRS (2 Time Slots) Frequency: 836.6 MHz; Channel 190; Duty Cycle: 1:4.16 Medium: M835 (σ = 0.98 mho/m; ϵ_r = 54.3; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1387; ConvF(6.04, 6.04, 6.04); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 15/06/2005
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

Wrist-Worn SAR - Cellular Band - Bottom Side of DUT Touching Planar Phantom - Mid Channel Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Wrist-Worn SAR - Cellular Band - Bottom Side of DUT Touching Planar Phantom - Mid Channel

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.36 V/m; Power Drift = 0.861 dB

Peak SAR (extrapolated) = 0.007 W/kg

SAR(1 g) = 0.00321 mW/g; SAR(10 g) = 0.00208 mW/g

Company:	Medical Intelligence Technologies Inc.		ledical Intelligence Technologies Inc. Model: Columba		FCC ID:	TV9-MICLM-C001	Medical
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Personal Location Device		IC ID:	6387A-CLMBRA01	Intelligence www.medicalintelligence.com	
2006 Celltech La	006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior				written permis	ssion of Celltech Labs Inc.	Page 19 of 36

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

Fluid Depth (>15cm)

Planar Section

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure SAR		FCC 47 CFR §2.1093	IC RSS-102 Issue 2

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	Medica
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	Iular GSM/GPRS Wrist-Worn Personal Location Device		IC ID:	6387A-CLMBRA01	Intelligence
2006 Celltech La	abs Inc.	This document is not to be reproduced in	whole or in pa	art without the prior	written permi	ssion of Celltech Labs Inc.	Page 21 of 36

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

Date Tested: 04/05/2006

System Performance Check (Brain) - 1900 MHz Dipole

DUT: Dipole 1900 MHz; Model: D1900V2; Type: System Performance Check; Serial: 151; Calibrated: 06/17/2005

Ambient Temp: 25.1 °C; Fluid Temp: 23.8 °C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 (σ = 1.33 mho/m; ϵ_r = 39.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1387; ConvF(5, 5, 5); Calibrated: 16/03/2006 Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 15/06/2005
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

1900 MHz Dipole - System Performance Check/Area Scan (5x8x1):

Measurement grid: dx=15mm, dy=15mm

1900 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.3 V/m; Power Drift = -0.023 dB

Peak SAR (extrapolated) = 23.2 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.28 mW/g

Company:	Medica	dical Intelligence Technologies Inc. Model: Columba F				TV9-MICLM-C001	Medical
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Personal Location Device				6387A-CLMBRA01	Intelligence www.medceBriteRgence.com
2006 Celltech La	Labs Inc. This document is not to be reproduced in whole or in part without the prior				written permis	ssion of Celltech Labs Inc.	Page 22 of 36

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

Z-Axis Scan

Test Report Serial No.:	033106TV9-T735	-S24G	Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

Date Tested: 04/06/2006

System Performance Check (Body) - 835 MHz Dipole

DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411; Calibrated: 03/27/2006

Ambient Temp: 23.5 °C; Fluid Temp: 22.5 °C; Barometric Pressure: 101.2 kPa; Humidity: 30%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 (σ = 0.98 mho/m; ε_r = 54.3; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1387; ConvF(6.04, 6.04, 6.04); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 15/06/2005Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

835 MHz Dipole - System Performance Check/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm

835 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.8 V/m; Power Drift = -0.024 dB Peak SAR (extrapolated) = 3.64 W/kg

SAR(1 g) = 2.51 mW/g; SAR(10 g) = 1.65 mW/g

Company:	Medica	Medical Intelligence Technologies Inc. Model: Columba F				TV9-MICLM-C001	Medical	
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Personal Location Device				6387A-CLMBRA01	Intelligence www.nedcelintellgence.com	
2006 Celltech La	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior				written permi	ssion of Celltech Labs Inc.	Page 24 of 36	

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure SAR		FCC 47 CFR §2.1093	IC RSS-102 Issue 2

Z-Axis Scan

Test Report Serial No.:	033106TV9-T735	-S24G	Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 20	906	Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure SAR		FCC 47 CFR §2.1093	IC RSS-102 Issue 2

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	Mec
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	ular GSM/GPRS Wrist-Worn Personal Location Device				Intelli
2006 Celltech La	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 26

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure SAR		FCC 47 CFR §2.1093	IC RSS-102 Issue 2

1900 MHz System Performance Check (Brain)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Wed 05/Apr/2006 Frequency(GHz)

FCC_eHFCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC OET 65 Supplement C (June 2001) Limits for Head Sigma

Test_e Epsilon of UIM
Test_s Sigma of UIM

******		*****	******	******
Freq	FCC_eH	FCC_sh	lTest_e	Test_s
1.8000	40.00	1.40	39.31	$1.2\overline{4}$
1.8100	40.00	1.40	39.33	1.25
1.8200	40.00	1.40	39.31	1.26
1.8300	40.00	1.40	39.28	1.27
1.8400	40.00	1.40	39.18	1.28
1.8500	40.00	1.40	39.09	1.29
1.8600	40.00	1.40	39.11	1.31
1.8700	40.00	1.40	39.04	1.32
1.8800	40.00	1.40	38.99	1.32
1.8900	40.00	1.40	38.95	1.34
1.9000	40.00	1.40	39.01	1.33
1.9100	40.00	1.40	38.92	1.34
1.9200	40.00	1.40	38.85	1.35
1.9300	40.00	1.40	38.85	1.36
1.9400	40.00	1.40	38.67	1.37
1.9500	40.00	1.40	38.76	1.38
1.9600	40.00	1.40	38.60	1.38
1.9700	40.00	1.40	38.59	1.40
1.9800	40.00	1.40	38.61	1.41
1.9900	40.00	1.40	38.65	1.41
2.0000	40.00	1.40	38.59	1.43

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure SAR		FCC 47 CFR §2.1093	IC RSS-102 Issue 2

1880 MHz DUT Evaluation (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Wed 05/Apr/2006

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM

Test_s Sigma of UIM

*****	******		******	******
Freq	FCC_eB	FCC_sl	B Test_e	Test_s
1.8000	53.30	1.52	51.17	1.43
1.8100	53.30	1.52	51.09	1.43
1.8200	53.30	1.52	51.06	1.45
1.8300	53.30	1.52	51.03	1.46
1.8400	53.30	1.52	51.01	1.46
1.8500	53.30	1.52	50.94	1.47
1.8600	53.30	1.52	50.93	1.49
1.8700	53.30	1.52	50.86	1.50
<mark>1.8800</mark>	53.30	1.52	50.90	1.51
1.8900	53.30	1.52	50.90	1.52
1.9000	53.30	1.52	50.79	1.53
1.9100	53.30	1.52	50.81	1.54
1.9200	53.30	1.52	50.81	1.54
1.9300	53.30	1.52	50.74	1.57
1.9400	53.30	1.52	50.83	1.57
1.9500	53.30	1.52	50.67	1.57
1.9600	53.30	1.52	50.73	1.59
1.9700	53.30	1.52	50.71	1.60
1.9800	53.30	1.52	50.62	1.61
1.9900	53.30	1.52	50.63	1.64
2.0000	53.30	1.52	50.49	1.64

Company:	Medica	al Intelligence Technologies Inc.	nc. Model: Columba FCC ID: TV9-MICLM			TV9-MICLM-C001	Medical
DUT Type: PCS/Cellular GSM/GPRS Wrist-Worn Personal Location			ation Device	IC ID:	6387A-CLMBRA01	Intelligence www.medicalmicalgon	
2006 Celltech La	ahs Inc	This document is not to be reproduced in	whole or in na	art without the prior	written nermis	ssion of Celltech Labs Inc	Page 28 of 36

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure SAR		FCC 47 CFR §2.1093	IC RSS-102 Issue 2

835 MHz System Performance Check & DUT Evaluation (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Thu 06/Apr/2006

Frequency(GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sDE

Test_e Epsilon of UIM Test s Sigma of UIM

******	******		******	******
Freq	FCC_eB	FCC_sl	3 Test_e	Test_s
0.7350	55.59	0.96	55.09	0.88
0.7450	55.55	0.96	55.00	0.89
0.7550	55.51	0.96	54.97	0.90
0.7650	55.47	0.96	54.87	0.91
0.7750	55.43	0.97	54.76	0.92
0.7850	55.39	0.97	54.65	0.92
0.7950	55.36	0.97	54.48	0.93
0.8050	55.32	0.97	54.56	0.94
0.8150	55.28	0.97	54.47	0.95
0.8250	55.24	0.97	54.41	0.96
0.8350	55.20	0.97	54.30	0.98
0.8450	55.17	0.98	54.17	0.97
0.8550	55.14	0.99	53.98	0.99
0.8650	55.11	1.01	54.00	1.00
0.8750	55.08	1.02	53.91	1.01
0.8850	55.05	1.03	53.65	1.02
0.8950	55.02	1.04	53.65	1.03
0.9050	55.00	1.05	53.58	1.04
0.9150	55.00	1.06	53.59	1.05
0.9250	54.98	1.06	53.56	1.05
0.9350	54.96	1.07	53.46	1.06

	Company:	Medica	Medical Intelligence Technologies Inc. Model: Colum				TV9-MICLM-C001	
	DUT Type:	PCS/Cellular GSM/GPRS Wrist-Worn Personal Location Devic			ation Device	IC ID:	6387A-CLMBRA01	4
2006 Celltech Labe Inc. This document is not to be reproduc			This document is not to be reproduced in	whole or in no	art without the prior	writton normic	esion of Colltoch Labs Inc	Dago

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

APPENDIX D - SAR TEST SETUP PHOTOGRAPHS

Company:	Medica	Medical Intelligence Technologies Inc. Model: Columba		Columba	FCC ID:	TV9-MICLM-C001	Medical
DUT Type:	DUT Type: PCS/Cellular GSM/GPRS Wrist-Worn Per			ation Device	IC ID:	6387A-CLMBRA01	Intelligence
2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior writ				written permis	ssion of Celltech Labs Inc.	Page 30 of 36	

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure SAR		FCC 47 CFR §2.1093	IC RSS-102 Issue 2

WRIST-WORN SAR TEST SETUP PHOTOGRAPHS Bottom Side of DUT Touching Planar Phantom

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	4
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Personal Location Device			IC ID:	6387A-CLMBRA01	
2006 Celltach Labs Inc. This document is not to be reproduced in whole or in part without the price		art without the prior	written nermis	ssion of Calltach Labs Inc			

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

DUT PHOTOGRAPHS

Top Side of DUT

Bottom Side of DUT

Top Side of DUT

Bottom Side of DUT

Company:	Medica	Medical Intelligence Technologies Inc. Model: Columba		FCC ID:	TV9-MICLM-C001	Medical	
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Personal Location Device		IC ID:	6387A-CLMBRA01	Intelligence www.medic@riteligence.com	
2006 Celltech La	abs Inc.	This document is not to be reproduced in	whole or in pa	rt without the prior written permission of Celltech Labs Inc.			Page 32 of 36

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

DUT PHOTOGRAPHS

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001	Medical Intelligence
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	rsonal Loc	ation Device	IC ID:	6387A-CLMBRA01	Intelligence
2006 Celltech La	abs Inc.	This document is not to be reproduced in	whole or in pa	whole or in part without the prior written permission of Celltech Labs Inc.			

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2

APPENDIX E - SYSTEM VALIDATION

Company:	Medical Intelligence Technologies Inc.		Model:	Columba	FCC ID:	TV9-MICLM-C001	Medical
DUT Type:	PCS/C	ellular GSM/GPRS Wrist-Worn Pe	rsonal Loc	ation Device	IC ID:	6387A-CLMBRA01	Intelligence
2006 Celltech L	abs Inc.	This document is not to be reproduced in	is document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 34 of 36

835 MHz SYSTEM VALIDATION DIPOLE

Type:	835 MHz Validation Dipole
Asset Number:	00022
Serial Number:	411
Place of Validation:	Celltech Labs Inc.
Date of Validation:	March 27, 2006

Celltech Labs Inc. hereby certifies that the 835 MHz System Validation (Body) was performed on the date indicated above.

Performed by:	Sean Johnston
Approved by:	Spencer Watson

Date of Evaluation:	March 27, 2006	Document Serial No.:	t Serial No.: SV835B-032706-R	
Evaluation Type:	System Validation	Validation Dipole:	835 MHz	Body

1. Validation Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 835MHz $Re{Z} = 47.627\Omega$

 $Im{Z} = -0.67188\Omega$

Return Loss at 835MHz -31.954dB

Date of Evaluation:March 27, 2006Document Serial No.:SV835B-032706-R1Evaluation Type:System ValidationValidation Dipole:835 MHzBody

2. Validation Dipole VSWR Data

Date of Evaluation: March 27, 2006		Document Serial No.: SV835B-0327		2706-R1
Evaluation Type: System Validation		Validation Dipole:	835 MHz	Body

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 25 liters

Dimensions: 50 cm (W) x 100 cm (L)

5. 835 MHz System Validation Setup

Body

Date of Evaluation:	on: March 27, 2006 Document Serial No.:		SV835B-032706-R1	
Evaluation Type:	System Validation	Validation Dipole:	835 MHz	Body

6. 835 MHz Validation Dipole Setup

Date of Evaluation:	March 27, 2006	27, 2006 Document Serial No.:		SV835B-032706-R1	
Evaluation Type: System Validation		Validation Dipole:	835 MHz	Body	

7. Measurement Conditions

The SAM phantom was filled with 835 MHz body tissue simulant with the following parameters:

Relative Permittivity: 53.7 (-2.7% from target)

Conductivity: 0.94 mho/m (-3% from target)

Fluid Temperature: 20.8 °C Fluid Depth: \geq 15.0 cm

Environmental Conditions:

Ambient Temperature: $22.6 \,^{\circ}\text{C}$ Barometric Pressure: $101.8 \,\text{kPa}$ Humidity: $30 \,^{\circ}\text{M}$

The 835 MHz body tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight
Water	53.79%
Sugar	45.13%
Salt	0.98%
Dowicil 75	0.10%
Target Dielectric Parameters at 22 °C	ε _r = 55.2 (+/- 5%) σ = 0.97 S/m (+/- 5%)

Date of Evaluation: March 27, 2006		Document Serial No.: SV835B-032706		2706-R1
Evaluation Type: System Validation		Validation Dipole:	835 MHz	Body

8. SAR Measurement

Measurements were made at the planar section of the SAM phantom using a dosimetric E-field probe ET3DV5 (S/N: 1590, conversion factor 6.47). The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

Date of Evaluation: March 27, 2006 Doc		Document Serial No.:	SV835B-032706-R1		
Evaluation Type:	Evaluation Type: System Validation		835 MHz	Body	

9. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value (W/kg).

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Max SAR @ 0.25W Input
Test 1	2.46	9.84	1.62	6.48	2.65
Test 2	2.46	9.84	1.62	6.48	2.66
Test 3	2.46	9.84	1.62	6.48	2.67
Test 4	2.47	9.88	1.62	6.48	2.68
Test 5	2.43	9.72	1.60	6.40	2.64
Test 6	2.43	9.72	1.59	6.36	2.63
Test 7	2.42	9.68	1.59	6.36	2.59
Test 8	2.46	9.84	1.62	6.48	2.64
Test 9	2.47	9.88	1.62	6.48	2.65
Test10	2.45	9.80	1.62	6.48	2.61
Average SAR	2.451	9.804	1.612	6.448	2.642

@ 1 W averag	IEEE Target SAR		att Input ed over	Measured SAR @ 1 Watt Input averaged over 10 grams (W/kg)	Deviation from Target (%)		
9.71	+/- 10%	9.804	+1.0%	6.38	+/- 10%	6.448	+1.1%

Dipole	Distance	Frequency	SAR (1g)	SAR (10g)	SAR (peak)
Type	[mm]	[MHz]	[W/kg]	[W/kg]	[W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.

Date of Evaluation:March 27, 2006Document Serial No.:SV835B-032706-R1Evaluation Type:System ValidationValidation Dipole:835 MHzBody

835 MHz Dipole System Validation (Body) - March 27, 2006

DUT: Dipole 835 MHz; Model: D835V2; Serial: 411; Calibrated: 03/27/2006

Ambient Temp: 22.6 °C; Fluid Temp: 20.8 °C; Barometric Pressure: 101.8 kPa; Humidity: 30%

Communication System: CW

Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 (σ = 0.94 mho/m; ε_r = 53.7; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.47, 6.47, 6.47); Calibrated: 20/05/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 15/06/2005
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.6 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 159

835 MHz Dipole System Validation/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

835 MHz Dipole System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.0 V/m; Power Drift = 0.027 dB

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.62 mW/g

Maximum value of SAR (measured) = 2.65 mW/g

835 MHz Dipole System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.8 V/m; Power Drift = 0.029 dB

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.62 mW/g

Maximum value of SAR (measured) = 2.66 mW/g

835 MHz Dipole System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.5 V/m; Power Drift = 0.075 dB

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.62 mW/g

Maximum value of SAR (measured) = 2.67 mW/g

835 MHz Dipole System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.9 V/m; Power Drift = 0.010 dB

SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g

Maximum value of SAR (measured) = 2.68 mW/g

835 MHz Dipole System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.0 V/m: Power Drift = -0.087 dB

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.6 mW/g

Maximum value of SAR (measured) = 2.64 mW/g

835 MHz Dipole System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.6 V/m; Power Drift = -0.017 dB

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.59 mW/g

Maximum value of SAR (measured) = 2.63 mW/g

835 MHz Dipole System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.1 V/m; Power Drift = -0.023 dB

SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.59 mW/g

Maximum value of SAR (measured) = 2.59 mW/g

835 MHz Dipole System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.6 V/m; Power Drift = -0.004 dB

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.62 mW/g

Maximum value of SAR (measured) = 2.64 mW/g

835 MHz Dipole System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.5 V/m; Power Drift = 0.012 dB

SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g

Maximum value of SAR (measured) = 2.65 mW/g

835 MHz Dipole System Validation/Zoom Scan 11 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.5 V/m; Power Drift = -0.005 dB

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.62 mW/g

Maximum value of SAR (measured) = 2.61 mW/g

1 g average of 10 measurements: 2.451 mW/g 10 g average of 10 measurements: 1.612 mW/g

Date of Evaluation:	March 27, 2006	7, 2006 Document Serial No.:		SV835B-032706-R1		
Evaluation Type:	Evaluation Type: System Validation		835 MHz	Body		

10. Measured Fluid Dielectric Parameters

835 MHz System Validation (Body)

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Mon 27/Mar/2006

Frequency(GHz)

FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM Test_s Sigma of UIM

*******	*****	******	******	******
Freq	FCC_eB	FCC_sB	Test_e	Test_s
0.7350	55.59	0.96	54.23	0.86
0.7450	55.55	0.96	54.00	0.87
0.7550	55.51	0.96	54.00	0.88
0.7650	55.47	0.96	54.04	0.89
0.7750	55.43	0.97	53.97	0.90
0.7850	55.39	0.97	54.01	0.90
0.7950	55.36	0.97	53.96	0.91
0.8050	55.32	0.97	53.85	0.92
0.8150	55.28	0.97	53.79	0.93
0.8250	55.24	0.97	53.69	0.94
0.8350	55.20	0.97	53.68	0.94
0.8450	55.17	0.98	53.35	0.95
0.8550	55.14	0.99	53.18	0.96
0.8650	55.11	1.01	53.25	0.98
0.8750	55.08	1.02	53.26	0.98
0.8850	55.05	1.03	53.11	0.99
0.8950	55.02	1.04	53.11	1.00
0.9050	55.00	1.05	52.96	1.01
0.9150	55.00	1.06	52.91	1.02
0.9250	54.98	1.06	52.93	1.03
0.9350	54.96	1.07	52.58	1.03

1900 MHz SYSTEM VALIDATION DIPOLE

Type:	1900 MHz Validation Dipole
Asset Number:	00032
Serial Number:	151
Place of Calibration:	Celltech Labs Inc.
Date of Calibration:	June 17, 2005
Celltech Labs Inc. hereby certifies that this dev	ice has been calibrated on the date indicated above
Calibrated by:	Suan Johns
Approved by:	Spenser Watson

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 1900MHz Re{Z} = 47.803Ω

 $\text{Im}\{Z\}=6.4002\Omega$

Return Loss at 1900MHz -23.205dB

2005 Celltech Labs Inc. 2 of 12

2. Validation Dipole VSWR Data

2005 Celltech Labs Inc. 3 of 12

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 25 liters

Dimensions: 50 cm (W) x 100 cm (L)

2005 Celltech Labs Inc. 4 of 12

5. 1900 MHz System Validation Setup

2005 Celltech Labs Inc. 5 of 12

1900 MHz System Validation Setup

2005 Celltech Labs Inc. 6 of 12

6. Measurement Conditions

The SAM phantom was filled with 1900 MHz brain simulating tissue.

Relative Permittivity: 38.4

Conductivity: 1.40 mho/m

Ambient Temperature: 23.4 °C

Fluid Temperature: 22.7 °C

Fluid Depth: \geq 15.0 cm

Barometric Pressure: 100.6 kPa

Humidity: 35%

The 1900 MHz tissue simulant consists of the following ingredients:

Ingredient	Percentage by weight		
Water	55.85%		
Glycol	44.00%		
Salt	0.15%		
Target Dielectric Parameters at 22 °C	$\epsilon_{\rm r} = 40.0$ $\sigma = 1.40 \; {\rm S/m}$		

2005 Celltech Labs Inc. 7 of 12

7. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 50dB below the forward power.

2005 Celltech Labs Inc. 8 of 12

8. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	9.97	39.88	5.20	20.80	17.7
Test 2	10.0	40.00	5.19	20.76	17.9
Test 3	10.1	40.40	5.21	20.84	18.1
Test 4	9.98	39.92	5.20	20.80	17.8
Test 5	9.96	39.84	5.19	20.76	17.7
Test 6	9.99	39.96	5.18	20.72	17.9
Test 7	9.89	39.56	5.16	20.64	17.5
Test 8	9.95	39.80	5.19	20.76	17.6
Test 9	9.96	39.84	5.20	20.80	17.6
Test 10	9.92	39.68	5.19	20.76	17.5
Average	9.972	39.888	5.191	20.764	17.73

The results have been normalized to 1W (forward power) into the dipole.

1g/10g Averaged	Average Measured SAR IEEE Targe @ 1W Input @ 1W In		Deviation (%)
1 gram	39.888	39.7	+ 0.474
10 gram	10 gram 20.764		+ 1.29

2005 Celltech Labs Inc. 9 of 12

1900 MHz System Validation - June 17, 2005

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 151

Ambient Temp: 23.4 °C; Fluid Temp: 22.7 °C; Barometric Pressure: 100.6 kPa; Humidity: 35%

Communication System: CW

Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900 (σ = 1.40 mho/m; ε_r = 38.4; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(5.44, 5.44, 5.44); Calibrated: 20/05/2005
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

1900 MHz System Validation/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

1900 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.6 V/m; Power Drift = -0.018 dB

Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = 9.97 mW/g; SAR(10 g) = 5.20 mW/g

1900 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.6 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 10.0 mW/g; SAR(10 g) = 5.19 mW/g

1900 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.1 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 18.1 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.21 mW/g

1900 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.8 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.98 mW/g; SAR(10 g) = 5.20 mW/g

1900 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.8 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = 9.96 mW/g; SAR(10 g) = 5.19 mW/g

1900 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.6 V/m; Power Drift = -0.081 dB

Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 9.99 mW/g; SAR(10 g) = 5.18 mW/g

1900 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.6 V/m; Power Drift = -0.019 dB

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.89 mW/g; SAR(10 g) = 5.16 mW/g

1900 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.0 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.95 mW/g; SAR(10 g) = 5.19 mW/g

1900 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.0 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 17.6 W/kg

SAR(1 g) = 9.96 mW/g; SAR(10 g) = 5.20 mW/g

1900 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.7 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 17.5 W/kg

SAR(1 g) = 9.92 mW/g; SAR(10 g) = 5.19 mW/g

2005 Celltech Labs Inc. 10 of 12

1 g average of 10 measurements: 9.972 mW/g 10 g average of 10 measurements: 5.191 mW/g

2005 Celltech Labs Inc.

2.0000

System Validation - 1900 MHz Dipole (Brain) Celltech Labs Inc. Test Result for UIM Dielectric Parameter Fri 17/Jun/2005 Frequency (GHz) FreqFCC eH FCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test_e Epsilon of UIM Test s Sigma of UIM ***************** FCC_eH FCC_sH Test_e Test_s 40.00 1.40 38.82 1.30 1.8000 40.00 1.40 38.66 1.32 1.8100 40.00 1.40 38.64 1.33 1.8200 40.00 1.40 38.60 1.33 1.8300 1.8400 40.00 1.40 38.57 1.34 40.00 1.8500 1.40 38.47 1.34 38.40 1.8600 40.00 1.40 1.36 1.8700 40.00 1.40 38.44 1.37 1.8800 40.00 1.40 38.34 1.38 1.8900 40.00 1.40 38.39 1.38 38.37 (1.40) 1.9000 40.00 1.40 1.40 1.9100 40.00 38.32 1.41 1.9200 40.00 1.40 38.34 1.42 1.9300 40.00 1.40 38.30 1.42 40.00 1.40 38.31 1.44 1.9400 1.9500 40.00 1.40 38.27 1.44 1.9600 40.00 1.40 38.20 1.46 1.9700 40.00 1.40 38.23 1.47 1.9800 40.00 1.40 38.11 1.49 1.9900 40.00 1.40 38.02 1.50

40.00 1.40 38.11

2005 Celltech Labs Inc. 12 of 12

1.52

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006
Type of Evaluation:	RF Exposure SAR		FCC 47 CFR §2.1093	IC RSS-102 Issue 2

APPENDIX F - PROBE CALIBRATION

Company: Medical Intelligence Technologies Inc.			Model:	Columba	FCC ID:	TV9-MICLM-C001	Medical
DUT Type: PCS/Cellular GSM/GPRS Wrist-Worn Personal Location Device				ation Device	IC ID:	6387A-CLMBRA01	Intelligence
2006 Celltech La	006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 35 of 36

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

C

S

Client Celitech Labs

Certificate No: ET3-1387_Mar06

CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1387

Calibration procedure(s) QA CAL-01.v5

Calibration procedure for dosimetric E-field probes

Calibration date: March 16, 2006

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41495277	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41498087	3-May-05 (METAS, No. 251-00466)	May-06
Reference 3 dB Attenuator	SN: S5054 (3c)	11-Aug-05 (METAS, No. 251-00499)	Aug-06
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-05 (METAS, No. 251-00467)	May-06
Reference 30 dB Attenuator	SN: S5129 (30b)	11-Aug-05 (METAS, No. 251-00500)	Aug-06
Reference Probe ES3DV2	SN: 3013	2-Jan-06 (SPEAG, No. ES3-3013_Jan06)	Jan-07
DAE4	SN: 654	2-Feb-06 (SPEAG, No. DAE4-654_Feb06)	Feb-07
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-05)	In house check: Nov 06
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	Mir llef
			1. 4
Approved by:	Niels Kuster	Quality Manager	1/2-

Issued: March 16, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z DCP diode compression point ϕ rotation around probe axis

Polarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6

SN:1387

Manufactured:

September 21, 1999

Last calibrated:

March 18, 2005

Recalibrated:

March 16, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1387_Mar06

Page 3 of 9

DASY - Parameters of Probe: ET3DV6 SN:1387

Sensitivity in Free	Diode C	ompression [®]	3		
NormX	1.62 ± 10.1%	μ V/(V/m) ²	DCP X	92 mV	
NormY	1.72 ± 10.1%	μ V/(V/m) ²	DCP Y	92 mV	

NormZ 1.72 ± 10.1% $\mu V/(V/m)^2$ DCP Z

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to	3.7 mm	4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	9.3	5.0
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

Sensor Offset

Probe Tip to Sensor Center

2.7 mm

92 mV

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.62	1.86	6.35 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.59	1.97	6.04 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1387
Place of Assessment:	Zurich
Date of Assessment:	March 18, 2006
Probe Calibration Date:	March 16, 2006

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1387

Conversion factor (± standard deviation)

	`	,	
$150 \pm 50 \text{ MHz}$	ConvF	$8.6 \pm 10\%$	$\varepsilon_r = 52.3 \pm 5\%$
			$\sigma = 0.76 \pm 5\% \text{ mho/m}$
			(head tissue)
$150 \pm 50 \text{ MHz}$	ConvF	$8.2 \pm 10\%$	$\varepsilon_{\rm r} = 61.9 \pm 5\%$
			$\sigma = 0.80 \pm 5\% \text{ mho/m}$
			(body tissue)
$300 \pm 50 \text{ MHz}$	ConvF	$7.8 \pm 9\%$	$\varepsilon_{\rm r} = 45.3 \pm 5\%$
			$\sigma = 0.87 \pm 5\% \text{ mho/m}$
			(head tissue)
$450 \pm 50 \text{ MHz}$	ConvF	$7.4 \pm 8\%$	$\varepsilon_r = 43.5 \pm 5\%$
			$\sigma = 0.87 \pm 5\% \text{ mho/m}$
			(head tissue)
$450 \pm 50 \text{ MHz}$	ConvF	$7.3 \pm 8\%$	$\varepsilon_r = 56.7 \pm 5\%$
			$\sigma = 0.94 \pm 5\% \text{ mho/m}$
			(body tissue)
$750 \pm 50 \text{ MHz}$	ConvF	$6.6 \pm 7\%$	$\varepsilon_r = 41.8 \pm 5\%$
			$\sigma = 0.89 \pm 5\% \text{ mho/m}$
			(head tissue)
$750 \pm 50 \text{ MHz}$	ConvF	$6.4 \pm 7\%$	$\varepsilon_r = 55.4 \pm 5\%$
			$\sigma = 0.96 \pm 5\% \text{ mho/m}$
			(body tissue)
$1925 \pm 50 \text{ MHz}$	ConvF	$5.0 \pm 7\%$	$\varepsilon_r = 39.8 \pm 5\%$
			$\sigma = 1.48 \pm 5\% \text{ mho/m}$
			(head tissue)
$1925 \pm 50 \text{ MHz}$	ConvF	$4.7 \pm 7\%$	$\varepsilon_r = 53.2 \pm 5\%$
			$\sigma = 1.60 \pm 5\% \text{ mho/m}$
			(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1. Please see also Section 4.7 of the DASY4 Manual.

Test Report Serial No.:	033106TV9-T735-S24G		Test Report Revision No.:	Revision 1.2	
Dates of Evaluation:	April 05-06, 2006		Test Report Issue Date:	December 13, 2006	
Type of Evaluation:	RF Exposure	SAR	FCC 47 CFR §2.1093	IC RSS-102 Issue 2	

APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY

Company:	Medica	al Intelligence Technologies Inc.	Model:	Columba	FCC ID:	TV9-MICLM-C001 Medi	
DUT Type:	PCS/C	Cellular GSM/GPRS Wrist-Worn Personal Location Device			IC ID:	6387A-CLMBRA01	Intelligence
2006 Celltech L	ech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.			Page 36 of 36			

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

18.11.2001

Signature / Stamp

Schmid & Partner Engineering AG

Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79

Fin Brubolt