

Introduction

- M/EEG data are very noisy (SNR=1)
- it is thus customary to make **several repeti- tions** of the same experiment
- in order to average the signals and increase the signal to noise ratio

Real EEG data

• # of repetitions 5 (top), 10 (middle), 50 (bot-

• M/EEG data are contaminated with correlated Gaussian noise:

Model and notations

Linear Multi-Task setting with correlated Gaussian noise:

- n: # of sensors
- p: # of features
- q: # of tasks/time points
- $X \in \mathbb{R}^{n \times p}$: design matrix
- $\bullet \, \mathsf{B} \in \mathbb{R}^{p \times q}$: regression coefficients
- $S \in \mathbb{R}^{n \times n}$: sqrt of the covariance matrix
- $E^{(l)} \in \mathbb{R}^{n \times q}$ noise with i.i.d. normal entries
- $Y^{(l)} \in \mathbb{R}^{n \times q}$: signals

Model: $Y^{(I)} = XB^* + S^*E^{(I)}$, $\forall I \in [r]$

• $\overline{Y} = \frac{1}{r} \sum_{l} Y^{(l)} \in \mathbb{R}^{n \times n}$ mean of the signals

Handling correlated and repeated measurements with the smoothed multivariate square-root Lasso

Q. Bertrand¹ M. Massias¹ A. Gramfort¹ J. Salmon²

¹Inria, Univ. Paris Saclay, ²IMAG, Univ. Montpellier, CNRS

We propose a **convex** concomitant estimator to **jointly** estimate the regression coefficients and the covariance matrix in **high dimensional** linear regression with **correlated Gaussian noise**.

Our estimator performs better than existing ones on synthetic and real data.

Real data, auditory stimulation

CLaR (ours) SGCL MLER MLE MRCER MTL

Take a picture to download the full paper

Our approach: use repetitions

Concomitant Lasso with Repetitions (CLaR)

$$(\hat{\mathsf{B}}, \hat{\mathcal{S}}) \in \underset{S \in \mathbb{S}_{++}^{n}, S \succeq \sigma}{\operatorname{arg\,min}} \frac{\sum_{l=1}^{r} \| \mathbf{Y}^{(l)} - \mathbf{X} \mathbf{B} \|_{S^{-1}}^{2}}{2nqr} + \frac{\operatorname{Tr}(S)}{2n} + \lambda \| \mathbf{B} \|_{2, S^{-1}}$$

Prev.: use the mean

Multi-Task Lasso (MTL, [1])

$$\hat{\mathsf{B}} \in \arg\min_{\mathsf{B} \in \mathbb{R}^{p \times q}} \frac{1}{2nq} \left\| \overline{\mathsf{Y}} - \mathsf{X} \mathsf{B} \right\|^2 + \lambda \left\| \mathsf{B} \right\|_{2,1}$$

• SGCL ([2])

$$(\hat{\mathsf{B}}, \hat{S}) \in \underset{S \in \mathbb{S}^n}{\text{arg min}} \quad \frac{\|\bar{Y} - X\mathsf{B}\|_{S^{-1}}^2}{2nq} + \frac{\mathsf{Tr}(S)}{2n} + \lambda \|\mathsf{B}\|_2$$

More experiments

Ref. and acknowledgements

Code: https://github.com/QB3/CLaR ERC Starting Grant SLAB ERC-YStG-676943.

*

References

[1] G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint subspace selection for multiple classification problems.

[2] M. Massias, O. Fercoq, A. Gramfort, and J. Salmon. Generalized concomitant multitask lasso for sparse multimodal regression.