Shelter Animal Outcomes

Imelda Flores Kristen Marenco

Introduction

"Every year, approximately 7.6 million companion animals end up in US shelters. Many animals are given up as unwanted by their owners, while others are picked up after getting lost or taken out of cruelty situations. Many of theses animals find forever families to take them home, but just as many are not so lucky. 2.7 million dogs and cats are euthanized in the US every year "

Source: https://www.kaggle.com/c/shelter-animal-outcomes

Goal

The goal of this project is to predict shelter animal outcomes such as:

- Adoption
- Transfer
- Euthanasia
- Died
- Return to owner

Dataset

- 1. Animal ID
- 2. Name
- 3. DateTime
- 4. OutcomeType
- 5. OutcomeSubtype

- 6. AnimalType
- 7. SexuponOutcome
- 8. AgeuponOutcome
- 9. Breed
- 10. Color

	AnimalID	Name	Date Time	Outcome Type	Outcome Subtype	AnimalType	SexuponOutcome	AgeuponOutcome	Breed	Color
0	A671945	Hambone	2014-02-12 18:22:00	Return_to_owner	NaN	Dog	Neutered Male	1 year	Shetland Sheepdog Mix	Brown/White
1	A656520	Emily	2013-10-13 12:44:00	Euthanasia	Suffering	Cat	Spayed Female	1 year	Domestic Shorthair Mix	Cream Tabby
2	A686464	Pearce	2015-01-31 12:28:00	Adoption	Foster	Dog	Neutered Male	2 years	Pit Bull Mix	Blue/White
3	A683430	NaN	2014-07-11 19:09:00	Transfer	Partner	Cat	Intact Male	3 weeks	Domestic Shorthair Mix	Blue Cream
4	A667013	NaN	2013-11-15 12:52:00	Transfer	Partner	Dog	Neutered Male	2 years	Lhasa Apso/Miniature Poodle	Tan

Source: <u>Austin Animal Center</u> - 26,000 samples

Changes to Dataset

DateTime:

Hour, Day, Month, Year columns

OneHotEncoding:

Hour, AnimalType, SexuponOutcome, Breed, Color

Units converted to days:

AgeuponOutcome

Boolean:

Name: True if animal has name

False if animal does not have name

New Dataset

1.	Name	12.	IntactFemale	23.	DomesticMediumHair
2.	AgeinDaysUponOutcome	13.	IntactMale	24.	DomesticLonghair
3.	Day	14.	NeuteredMale	25.	Siamese
4.	Month	15.	SpayedFemale	26.	Other Breed
5.	Year	16.	UnknownSex	27.	Black
6.	Hour0	17.	Pit Bull	28.	Brown
7.	Hour1	18.	Chihuahua	29.	White
8.	Hour2	19.	Shepherd	30.	Tan
9.	Hour3	20.	Retriever	31.	Blue
10.	Cat	21.	Terrier	32.	Tabby
11.	Dog	22.	DomesticShorthair	33.	Other Color

Label: OutcomeType

Predictive Models

Imelda Flores

- 1. Support Vector Machine (SVM)
- 2. GridSearchCV
- 3. Gradient Boosting Classifier

Kristen Marenco

- 1. Random Forest
- 2. XGBoost

SVM

• Why SVM?

SVM was chosen because it does some extremely complex data transformations, since it converts not separable problem to separable problem, these functions are called kernels.

Accuracy: 64.03%

SVM with Cross Validation:

Accuracy: 64.20%

SVM Continued

Feature Selection:

- features: ['Name', 'Unknown Sex', 'NeuteredMale', 'Terrier', 'SpayedFemale']
- Accuracy: 60.82%

SVM and GridSearchCV

Why GridSearch?

GridSearch will try the possible combinations with the given parameters and return the highest accuracy found. GridSearch can be slow since it has to execute a large amount of combinations.

SVM and GridSearch accuracy 63.645%

SVM Continued

	y_test	prediction	probability outcome 0	probability outcome 1	probability outcome 2	rbprobability outcome 3	probability outcome 4
12015	Adoption	Adoption	0.699623849	0.002900704	0.009707356	0.062823872	0.224944219
15273	Adoption	Adoption	0.708450336	0.003387005	0.00893011	0.069757964	0.209474584
21964	Adoption	Adoption	0.621004624	0.009756046	0.033604853	0.119075012	0.216559466
12191	Adoption	Adoption	0.467325005	0.001690239	0.017543148	0.369058099	0.144383509
12615	Adoption	Adoption	0.717825263	0.003232484	0.012053756	0.051662429	0.215226068
6079	Transfer	Adoption	0.714347586	0.002587069	0.008544435	0.045066644	0.229454266
6521	Transfer	Transfer	0.040985966	0.020383355	0.08025789	0.010722733	0.847650056
21862	Transfer	Adoption	0.717441799	0.00265573	0.008366085	0.041381953	0.230154433
15582	Transfer	Return_to_o	0.170428127	0.012496189	0.162217912	0.483338941	0.171518832
11268	Adoption	Adoption	0.520742336	0.001688177	0.011982983	0.316010132	0.149576372

Gradient Boosting Classifier

Why?

The classifier calculates error and update the weights to minimize the error. A tree is added to reduce the loss and recalculated after it's added. When the loss is at a level that no longer improves with the dataset then a fixed number of trees is added or the training stops.

Accuracy: 63.92%

Gradient Boosting with Cross Validation:

Accuracy: 64.95%

Gradient Boosting Classifier Continued

Feature Selection:

features: ['AgeinDaysUponOutcome', 'NeuteredMale', 'IntactFemale', 'SpayedFemale', 'Name']

Accuracy: 62.42%

Gradient Boosting Classifier Continued

	y_test	prediction	probability outcome 0	probability outcome 1	probability outcome 2	probability outcome 3	probability outcome 4
12015	Adoption	Adoption	0.637530346	0.020465234	0.037244679	0.056673026	0.248086714
15273	Adoption	Adoption	0.903308118	0.011092657	0.017623222	0.023859144	0.04411686
21964	Adoption	Adoption	0.707741913	0.016209736	0.031147532	0.047755968	0.197144851
12191	Adoption	Return_to_owner	0.315587039	0.017331073	0.041191372	0.431634305	0.19425621
12615	Adoption	Adoption	0.906966733	0.010798918	0.017735615	0.021574172	0.042924562
6079	Transfer	Adoption	0.803042517	0.012783407	0.020309366	0.026877234	0.136987475
6521	Transfer	Transfer	0.033129606	0.017864579	0.055008168	0.017450365	0.876547282
21862	Transfer	Adoption	0.850864679	0.009515465	0.015627735	0.018582433	0.105409689
15582	Transfer	Return_to_owner	0.281495586	0.021707009	0.166630825	0.315885365	0.214281214
11268	Adoption	Return_to_owner	0.346255827	0.017779587	0.04225737	0.39442382	0.199283396

Random Forest

Why Choose Random Forest?

Generally produces a good predictive model, avoids overfitting, uses bagging, and a diverse set of decision trees.

10- Fold Cross Validation Accuracy of Random Forest:

62.50%

Random Forest Continued

Random Forest Continued

Random Forest Continued

	Y_test -	Random Forest Prediction	Probabilty Outcome 0	Probability Outcome 1	Probability Outcome 2	Probabilty Outcome 3	Probability Outcome 4
1104	40 ()	4 19%	0%	0%	0%	81%
2272	26 0		0 87%	0%	0%	0%	13%
2242	26 3	}	3 19%	0%	6%	52%	23%
926	51 ()	0 97%	0%	0%	3%	0%
1843	37 3	}	0 55%	0%	0%	13%	32%
358	B5 C)	3 32%	0%	13%	39%	16%
1234	47 3	}	3 3%	0%	13%	61%	23%
737	74 (0 97%	0%	0%	0%	3%
2652	26 3	}	4 19%	0%	0%	32%	48%
1847	70 3	}	2 3%	0%	42%	32%	23%

XGBoost

Why Choose XGBoost?

Boosts a set of decision trees considered to be weak learners into strong learners, using continued training and voting.

10- Fold Cross Validation Accuracy of XGBoost:

65.75%

XGBoost Continued

XGBoost Continued

XGBoost Continued

5	Y_test	XG_Model Prediction	 Probability Outcome 	0 💌 Probability C	Outcome 1 💌 Probabilit	y Outcome 2 🔻 Probability	Outcome 3 💌 Probabi	lity Outcome 4 💌
2555	3	3	0	39%	1%	5%	21%	35%
1985	8	0	0	91%	0%	0%	1%	8%
1572	2	0	0	87%	0%	1%	1%	10%
2298	7	3	0	46%	0%	2%	32%	20%
1393	0	0	0	87%	0%	1%	1%	11%
1433	2	0	0	39%	0%	3%	38%	20%
1585	8	0	0	56%	0%	1%	19%	24%
2002	6	3	3	29%	0%	1 5%	37%	19%
143	5	0	0	41%	0%	13%	28%	18%
1332	0	0	3	30%	0%	16%	32%	22%

Team Results

Conclusion

Why was the accuracy so low?

- Datetime was considered data leakage, however Kaggle still advised to to include the column in training.
- The Color column was jumbled up with values and was difficult to include all values.
- Outcome Type 1 only made up 0.7% of the dataset, not providing enough samples to classify the type correctly.
- Too many overlapping features, there were not enough distinguishable features in the dataset for models to distinguish between outcomes.

Q&A

