

CITY UNIVERSITY OF HONG KONG STUDENTS' UNION Name: CHAN king Yeung http://www.cityusu.net/

C	TIL	T 1	005	
_	H	14	000	

Assignment 4

nttp://www.cityusu.net/ sib = ussn	\$		
Question (a) $at = I \cdot 0.141^{\circ} at + i$		
a) from .R, we have	$Cov(e_{20}(k), e_{20}(\ell)) = \sigma^2 \sum_{i=0}^{\ell-1} (0.141)^i (0.141)^{i+k-\ell}$		
1/2 = at + 0.5806 at-1 - 0.4194 at-2, at ~ WN(0,0.5061)	$= (0.7276) (0.141)^{k-2} \left(\frac{1-0.141^{22}}{1-0.141^{2}} \right)$		
$a_{19} = 1.6554$ $a_{20} = 0.0447$, assuming $a_{-1} = a_{1} = 0$	\$ 0.7424 (0.141 R-2 - 0.141 R+2)		
=> 1-step ahead			
$\begin{cases} 20 \\ 21 \end{cases} = 0.5806(0.0447) - 0.4194(1.6554) \qquad e_{20}(1) = a_{21}$	e) from . R, we have		
	Yt = -0.3883 Yt-1 + at + at-1, at ~ WN (0, 0.5254)		
CI0.6683 ± 1.96 \ 0.5061	$a_{20} = 1.4876$, assuming $a_1 = 0$		
≈[-2.0627, 0.726]]	⇒ 1-step ahead		
=> 2 - step ahead	$\gamma_{21}^{20} = -0.3883(1.43) + 1.4876$ $e_{20}(1) = a_{21}$		
$\binom{20}{22} = -0.4194(0.0447)$ $e_{20}(2) = a_{22} + 0.5806a_{21}$	≈ 0.9323 $P_{21}^{20} = 0.5254$		
≈-0.0187 P22 ≈ 0.6767	CI: 0.9323±1.86 J0.5254		
CI =-6.0187 ± 1.96 \ \oldsymbol{0.6767}	≈[-0.4884, Q.353]		
≈[-1.631, 1.5 P36]	=> 2-step ahead		
=> K-step ahead , K>3	$Y_{22}^{20} = -0.3883(0.9323)$ $e_{20}(2) = a_{21} - 0.61 7a_{21}$		
$Y_{20+K}^{20} = 0$ $e_{20}(k) = a_{20+K} + 0.5806 a_{20+K-1} - 0.4194 a_{20+K}$			
P20+K ≈ 0.7657	CI = -0.362 ± 1.96 \(\oldsymbol{0.722} \)		
CI = ±1.96 10.7657	≈ [-2.0274, 1.3034]		
≈[-1.7151, 1.7151]			
	f) from .R, we have		
b) $r(0) = 1.513\sigma^2$ $r(1) = 0.33716^2$ $r(2) = -0.4194\sigma^2$	Yt (1-B) = -0.2673 Yz-1 (1-B)+at, atriUN(0,1.106)		
$\rho(1) \approx 0.2228$ $\rho(2) \approx -0.2772$ $\rho(K) = 0 \forall K > 0.2772$			
$-0.2772 - (0.2228)^{2} \qquad (0.2228)^{2} + (0.2228)$	(-0.2712)^2-2(0.2228)(-62713) 172)-2(0.2228)2-(-0.27127+1 => -step ahead		
≈ -0.3439 ≈ 0.1905	$Y_{21}^{20} = 1.43 - 0.2673(1.43 - 0.57)$ $e_{20}(1) = a_{21}$		
	$z .2001$ $ \frac{20}{21} = 1.106$		
c) from . R, we have	CI= 1,2001±1.96 11.106		
$Y_t = 0.141 Y_{t-1} + a_t$, $a_t \sim WN(0, 0.7276)$	α[-0.8612, 3.2614]		
=> K-step ahead, K>1	\$ 2-step cheed		
$Y_{201K}^{20} = (0.141)^{K} (1.43)$ $e_{20}(K) = \sum_{i=1}^{K} (0.141)^{K-i} a_{20+i}$	$7^{20}_{22} = 1.2001 - 0.2673(1.2001 - 1.43)$		
$P_{20+k}^{20} = 0.7276 \left(\frac{1 - 0.141^{2k}}{1 - 0.141^{2}} \right)$	≈1.2616		
$C1 = (0.141)^{k} (1.43) \pm 1.96 \sqrt{0.7276} \left(\frac{1-0.141^{2k}}{1-0.441^{2}} \right)$	$e_{20}(2) = a_{22} + 0.7327a_{21}$		
$\approx (0.141)^{k}(1.43) \pm 1.6887 \sqrt{1 - 0.141^{2k}}$ $\approx (0.141)^{k}(1.43) \pm 1.6887 \sqrt{1 - 0.141^{2k}}$	· ·		
~ (0.171) (1.43) I 1.0001 VI - 0.141	P ²⁰ ≈ 1.6998		
	CI = 1.2616 ± 1.96 17.6888		
	æ[-1.293, 3.8162]		

```
Question 2
```

a)
$$X_{t+1}^2 = S_{t+1}^2 \mathcal{E}_{t+1}^2$$

= $(\alpha_0 + \alpha_1 X_t^2 + \beta_1 S_t^2) \mathcal{E}_{t+1}^2$
 $X_{t+1} = \sqrt{(\alpha_0 + \alpha_1 X_t^2 + \beta_1 S_t^2) \mathcal{E}_{t+1}^2}$

$$\begin{aligned} X_{t+2}^{2} &= S_{t+2}^{2} \mathcal{E}_{t+2}^{2} \\ &= \left(d_{0} + d_{1} X_{t+1}^{2} + \beta_{1} S_{t+1}^{2} \right) \mathcal{E}_{t+2}^{2} \\ &= \left[d_{0} + \left(d_{1} \mathcal{E}_{t+1}^{2} + \beta_{1} \right) \left(d_{0} + d_{1} X_{t}^{2} + \beta_{1} S_{t}^{2} \right) \right] \mathcal{E}_{t+2}^{2} \\ X_{t+2}^{2} &= \left[\left[d_{0} + \left(d_{1} \mathcal{E}_{t+1}^{2} + \beta_{1} \right) \left(d_{0} + d_{1} X_{t}^{2} + \beta_{1} S_{t}^{2} \right) \right] \mathcal{E}_{t+2}^{2} \end{aligned}$$

b)
$$L(\alpha_1, \beta_1; \mathbf{x}) = f(\mathbf{x}, |\mathbf{s}_1^2) f(\mathbf{x}_1 | \mathbf{x}_1, \mathbf{s}_1^2) f(\mathbf{x}_3 | \mathbf{x}_2, \mathbf{x}_1, \mathbf{s}_1^2)$$

$$= \frac{1}{\sqrt{2\pi \sigma_1^2}} e^{-\frac{\mathbf{x}_1^2}{2\sigma_1^2}} \frac{1}{\sqrt{2\pi \sigma_2^2}} e^{\frac{\mathbf{x}_2^2}{2\sigma_2^2}} \cdot \frac{1}{\sqrt{2\pi \sigma_3^2}} e^{-\frac{\mathbf{x}_3^2}{2\sigma_3^2}}$$

$$= \frac{1}{\sqrt{(2\pi \sigma_1^2)^3 \sigma_1^2 \sigma_2^2 \sigma_3^2}} e^{-\frac{\mathbf{x}_2^2}{2\sigma_2^2}} e^{-\frac{\mathbf{x}_2^2}{2\sigma_2^2}} e^{-\frac{\mathbf{x}_2^2}{2\sigma_2^2}}$$

$$= \frac{1}{\sqrt{(2\pi \sigma_1^2)^3 \sigma_1^2 \sigma_2^2 \sigma_3^2}} e^{-\frac{\mathbf{x}_2^2}{2\sigma_2^2}} e^{-\frac{\mathbf{x}_2^2}{2\sigma_2^2}} e^{-\frac{\mathbf{x}_2^2}{2\sigma_2^2}}$$

$$= \frac{1}{\sqrt{(2\pi \sigma_1^2)^3 \sigma_1^2 \sigma_2^2 \sigma_3^2}} e^{-\frac{\mathbf{x}_2^2}{2\sigma_2^2}} e^{-\frac{\mathbf{x}_2^2}{2\sigma_2^2}} e^{-\frac{\mathbf{x}_2^2}{2\sigma_2^2}} e^{-\frac{\mathbf{x}_2^2}{2\sigma_2^2}}$$

$$= \frac{1}{\sqrt{(2\pi \sigma_1^2)^3 \sigma_1^2 \sigma_2^2 \sigma_3^2}} e^{-\frac{\mathbf{x}_2^2}{2\sigma_2^2}} e$$

Question 3