LIF11 - TD2 Correction

Exercice 1:

Pour chacune des fonctions f_1 et f_2 , donner une formule qui la réalise. On pourra éventuellement pour cela suivre la méthode suggérée à travers la démonstration du fait que $\{\top, \bot, \neg, \wedge, \Rightarrow, \lor\}$ est fonctionnellement complet.

x	y	z	$f_1(x,y,z)$	$f_2(x,y,z)$
1	1	1	1	0
1	1	0	1	0
1	0	1	0	0
1	0	0	1	1
0	1	1	0	0
0	1	0	0	1
0	0	1	1	0
0	0	0	0	0

Correction: On décompose f_1 en deux fonctions à 2 arguments $f_1^1(y,z)=f_1(V,y,z)$ et $f_1^2(y,z)=f_1(F,y,z)$. On recommence l'opération avec f_1^1 décomposée en f_1^{11} et f_1^{12} et f_1^1 décomposée en f_1^{21} et f_1^{22} . On en donne également une version simplifiée obtenue en utilisant à chaque étape des équivalences remarquables. On procède de la même manière pour f_2

Fonction	Formule	Formule simplifiée
f_1^{11}	$(p_z \Rightarrow \top) \land (\neg p_z \Rightarrow \top)$	Т
f_1^{12}	$(p_z \Rightarrow \bot) \land (\neg p_z \Rightarrow \top)$	$\neg p_z$
f_1^{21}	$(p_z \Rightarrow \bot) \land (\neg p_z \Rightarrow \bot)$	Τ
f_1^{21}	$(p_z \Rightarrow \top) \land (\neg p_z \Rightarrow \bot)$	p_z
$\begin{array}{c}f_1^1\\f_1^2\end{array}$	$(p_y \Rightarrow \top) \land (\neg p_y \Rightarrow \neg p_z)$	$p_z \Rightarrow p_y$
f_1^2	$(p_y \Rightarrow \bot) \land (\neg p_y \Rightarrow p_z)$	$\neg(p_z \Rightarrow p_y)$
f_1	$(p_x \Rightarrow (p_z \Rightarrow p_y)) \land (\neg p_x \Rightarrow \neg (p_z \Rightarrow p_y))$	$p_x \Leftrightarrow (p_z \Rightarrow p_y)$
$\begin{array}{c} f_2^{11} \\ f_2^{12} \\ f_2^{21} \\ f_2^{21} \end{array}$	$(p_z \Rightarrow \bot) \land (\neg p_z \Rightarrow \bot)$	Τ
f_2^{12}	$(p_z \Rightarrow \bot) \land (\neg p_z \Rightarrow \top)$	$\neg p_z$
f_2^{21}	$(p_z \Rightarrow \bot) \land (\neg p_z \Rightarrow \top)$	$\neg p_z$
f_2^{21}	$(p_z \Rightarrow \bot) \land (\neg p_z \Rightarrow \bot)$	Τ
$\begin{array}{c}f_2^1\\f_2^2\end{array}$	$(p_y \Rightarrow \bot) \land (\neg p_y \Rightarrow \neg p_z)$	$\neg p_y \wedge \neg p_z$
f_{2}^{2}	$(p_y \Rightarrow \neg p_z) \land (\neg p_y \Rightarrow \bot)$	$p_y \wedge \neg p_z$
f_2	$(p_x \Rightarrow (\neg p_y \land \neg p_z)) \land (\neg p_x \Rightarrow (p_y \land \neg p_z))$	$\neg p_x \wedge \neg (p_x \Leftrightarrow p_y)$

Exercice 2: Additionneur binaire

Un additionneur binaire est un circuit électronique permettant de réaliser des additions sur des entier positifs écrit en base 2. Un additionneur additionnant des nombres codés sur n bits possède $2 \times n$ entrées et n+1 sorties (en effet, en binaire 10+10=100).

On souhaite vérifier un additionneur binaire en contrôlant ses sorties en fonction de ses entrées. L'additionneur est représenté par n+1 formules A_1,\ldots,A_{n+1} ayant 2n variables représentant les entrées du circuit et telle que valeur de vérité de A_k correpond à la valeur de la k^{ieme} sortie.

- 1. Donner la table de vérité de deux fonctions pour l'addition de 3 bits:
 - la première calcule la somme des 3 bits sans retenue (i.e. $1+1+1 \mapsto 1$);
 - la seconde calcule la retenue de cette somme.

Correction:

р	q	r	somme	retenue
1	1	1	1	1
1	1	0	0	1
1	0	1	0	1
1	0	0	1	0
0	1	1	0	1
0	1	0	1	0
0	0	1	1	0
0	0	0	0	0

2. Donner deux formules réalisant ces fonctions.

Correction:

- somme: $S = p \Leftrightarrow (q \Leftrightarrow r)$ (qui est équivalent à p xor q xor r)
- retenue: $R = (p \Rightarrow (q \lor r)) \land (\neg p \Rightarrow (q \land r))$ (qui est équivalent à $(p \land q) \lor (q \land r) \lor (r \land p)$)
- 3. En déduire les formules spécifiant les sorties d'un additionneur 2 bits. On considère que les entier sont représentés avec le bit de poids faible ayant le plus petit indice, que le premier entier est représenté par p_1, p_2 et que le second est représenté par q_1, q_2 .

Correction:

- $B_1 = p_1 \Leftrightarrow \neg q_1$ (obtenue à partir de la formule pour la somme en replaçant r par \bot).
- On pose $R_1 = p_1 \wedge q_1$ (obtenue à partir de la formule pour la retenue en replaçant r par \perp). On a alors $B_2 = S[p_2/p, q_2/q, R_1/r] = p_2 \Leftrightarrow (q_2 \Leftrightarrow (p_1 \wedge q_1))$.
- $B_3 = R[p_2/p, q_2/q, R_1/r] = (p_2 \Rightarrow (q_2 \lor (p_1 \land q_1))) \land (\neg p_2 \Rightarrow (q_2 \land p_1 \land q_1)).$
- 4. Généraliser la construction précédente pour donner une manière de construire les formules de spécification des sorties d'un additionneur n bits.

Correction: On construit itérativement les formules B_k et R_k selon le schéma suivant:

- $B_1 = p_1 \Leftrightarrow \neg q_1$
- $R_1 = p_1 \wedge q_1$
- $B_k = S[p_k/p, q_k/q, R_{k-1}/r]$ pour $2 \le k \le n$
- $R_k = R[p_k/p, q_k/q, R_{k-1}/r]$ pour $2 \le k \le n+1$
- $\bullet \ B_{n+1} = R_{n+1}$
- 5. Expliquer comment on peut utiliser ces formules avec les formules A_1, \ldots, A_{n+1} afin de vérifier que l'additionneur est correct.

Correction: Il suffit de vérifier que $A_i \equiv B_i$ pour $1 \le i \le n+1$.

Exercice 3:

Pour chacune des formules *motif*, dire quelles sont les formules *candidat* qui en sont des instances et avec quelle substitution. Lorsqu'une formule candidat n'est pas une instance d'une formule motif, indiquer l'endroit où il y a non-correspondance.

$$\begin{array}{c} \text{motifs} & \text{candidats} \\ \hline p \Rightarrow q \wedge r & & u \Rightarrow (s \vee t) \wedge s \\ p \vee q \Rightarrow r & u \vee t \Rightarrow u \wedge (u \vee t) \\ p \Rightarrow p \wedge q & & \bot \vee u \Rightarrow (\bot \vee u) \wedge s \\ \hline p \vee q \Rightarrow p \wedge (r \vee q) & & \bot & & \end{array}$$

Correction:

	$u \Rightarrow (s \lor t) \land s$	$u \lor t \Rightarrow u \land (u \lor t)$	$\bot \lor u \Rightarrow (\bot \lor u) \land s$
$p \Rightarrow q \wedge r$	$[u/p, {}^{s\vee t}/q, {}^{s}/r]$	$\begin{bmatrix} u \lor t/p, u/q, u \lor t/r \end{bmatrix}$	$\left[\frac{\bot \lor u/_p, \bot \lor u/_q, ^s/_r}{} \right]$
$p \lor q \Rightarrow r$	non: u pour $p \vee q$	$\left[{^{u}/_{p}}, {^{t}/_{q}}, {^{u \wedge (u \vee t)}/_{r}} \right]$	$\left[\frac{\bot/p, u/q, (\bot \lor u) \land s/r}{} \right]$
$p \Rightarrow p \wedge q$	non: u vs $s \lor t$ pour p	non: $u \vee t$ vs u pour p	$[^{\perp \vee u/p}, ^s/q]$
$p \lor q \Rightarrow p \land (r \lor q)$	non: u pour $p \vee q$	$[^{u}/_{p},^{t}/_{q},^{u}/_{r}]$	$non: \perp vs \perp \vee u pour p$

Exercice 4:

Démontrer que les séquents suivants sont corrects en utilisant le système \mathcal{G} :

- $(p \Rightarrow q) \land p \vdash q$
- $\bullet \vdash ((p \Rightarrow q) \Rightarrow p) \Rightarrow p$
- $\bullet \ p \Rightarrow q, q \Rightarrow r \vdash p \Rightarrow r$
- $\bullet \vdash p \lor (q \land r) \Rightarrow (p \lor q) \land (p \lor r)$

Correction:

• $(p \Rightarrow q) \land p \vdash q$

$$\frac{\overline{p \vdash q, p}(Axiome)}{\frac{p \Rightarrow q, p \vdash q}{(p \Rightarrow q) \land p \vdash q}} \overset{\overline{p, q \vdash q}}{(\land G)} (Axiome)$$

 $\bullet \vdash ((p \Rightarrow q) \Rightarrow p) \Rightarrow p$

$$\frac{\overline{p \vdash q, p}(Axiome)}{\vdash p \Rightarrow q, p}(\Rightarrow_D) \qquad \frac{}{p \vdash p}(Axiome)}$$
$$\frac{(p \Rightarrow q) \Rightarrow p \vdash p}{\vdash ((p \Rightarrow q) \Rightarrow p) \Rightarrow p}(\Rightarrow_D)$$

 $\bullet \ p \Rightarrow q, q \Rightarrow r \vdash p \Rightarrow r$

$$\frac{\frac{p,q\Rightarrow r\vdash r,p}{(Axiome)} \quad \frac{\overline{p,q\vdash r,q}(Axiome)}{p,q,q\Rightarrow r\vdash r} \underset{(\Rightarrow_G)}{\underbrace{p,q\Rightarrow r\vdash r}} (Axiome)}{\frac{p,p\Rightarrow q,q\Rightarrow r\vdash r}{p\Rightarrow q,q\Rightarrow r\vdash p\Rightarrow r}} (\Rightarrow_G)$$

$$\bullet \vdash p \lor (q \land r) \Rightarrow (p \lor q) \land (p \lor r)$$

$$\frac{\frac{p \vdash p, q}{p \vdash p \lor q}(Axiome)}{\frac{p \vdash p, r}{p \vdash p \lor q}(\lor_D)} \frac{\frac{\overline{q, r \vdash p, q}(Axiome)}{q, r \vdash p \lor q}(\lor_D)}{\frac{\overline{q, r \vdash p, r}(\lor_D)}{q, r \vdash p \lor q}(\lor_D)} \frac{\frac{\overline{q, r \vdash p, r}(Axiome)}{q, r \vdash p \lor r}(\lor_D)}{\frac{\overline{q, r \vdash p, r}(\lor_D)}{q, r \vdash p \lor r}(\lor_D)}}{\frac{\overline{q, r \vdash p, r}(\lor_D)}{q, r \vdash p \lor r}(\lor_D)}{\frac{\overline{q, r \vdash p, r}(\lor_D)}{q, r \vdash p \lor r}(\lor_D)}} \frac{\frac{\overline{q, r \vdash p, r}(\lor_D)}{q, r \vdash p \lor r}(\lor_D)}{\frac{\overline{q, r \vdash p, r}(\lor_D)}{q, r \vdash p \lor r}(\lor_D)}}$$

Exercice 5:

Montrer que la règle (\vee_D) du système \mathcal{G} et la règle (\Rightarrow_G) du système \mathcal{G} sont correctes.

Correction: On pose $\Gamma = \{\{A_1, \dots, A_n\}\}\$ et $\Delta = \{\{B_1, \dots, B_k\}\}\$. Remarque: les cas présentés ne sont pas toujours mutuellement exclusifs, mais ce n'est pas grave.

- (\vee_D) : Si $\Gamma \vdash \Delta, A, B$ est correct, alors $\models \bigwedge_{i=1}^n A_i \Rightarrow \bigvee_{i=1}^k B_i \vee A \vee B$. Alors $\models \bigwedge_{i=1}^n A_i \Rightarrow \bigvee_{i=1}^k B_i \vee (A \vee B)$ et donc $\Gamma \vdash \Delta, A, \vee B$ est correct.
- (\Rightarrow_G) : Si $\Gamma \vdash A, \Delta$ est correct, alors $\models \bigwedge_{i=1}^n A_i \Rightarrow A \lor \bigvee_{i=1}^k B_i$. Si $\Gamma, B \vdash \Delta$ est correct, alors $\models \bigwedge_{i=1}^n A_i \land B \Rightarrow \bigvee_{i=1}^k B_i$. On pose $C = \bigwedge_{i=1}^n A_i \land (A \Rightarrow B) \Rightarrow \bigvee_{i=1}^k B_i$. Pour toute interprétation I:
 - Soit $[\bigwedge_{i=1}^n A_i]_I = 0$, alors $[\bigwedge_{i=1}^n A_i \wedge (A \Rightarrow B)]_I = 0$ et $[C]_I = 1$.
 - Soit $[\bigvee_{i=1}^k B_i]_I = 1$, alors $[C]_I = 1$.
 - Soit $[A]_I = 1$ et $[B]_I = 0$. Alors $[A \Rightarrow B]_I = 0$, donc $[\bigwedge_{i=1}^n A_i \wedge (A \Rightarrow B)]_I = 0$, d'où $[C]_I = 1$.

Donc $\models \bigwedge_{i=1}^n A_i \land (A \Rightarrow B) \Rightarrow \bigvee_{i=1}^k B_i$, donc $\Gamma, A \Rightarrow B \vdash \Delta$ est correct.

Règles du système \mathcal{G}