Syntactic and Statistical parsing

Syntactic & statistical Parsing

- ➤ What is Syntactic parsing,
- ➤ Ambiguity,
 - Attachment Ambiguity,
 - Coordination Ambiguity.
- > CKY Parsing
 - Conversion to Chomsky Normal Form,

- Probabilistic Context-Free Grammars,
- ➤ Probabilistic CFG Parsing
 - Ambiguity in CFG
 - Managing ambiguity in CFG

Syntactic Parsing (Constituency)

- It refers to the breaking down of a text or sentences into its constituents.
- Composed of:
- Terminals(words)
- Non-terminals(phrases/sentences)
- Parse trees are used in grammar checking while word processing.

Ambiguity

- <u>Structural ambiguity</u>: It is similar to the grammatical phrase structuring.
- It occurs when a sentence has a grammar that can be parsed more than once for e.g.

• The two types of ambiguity are:

Nominal → Nominal PP

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow Verb PP$

 $VP \rightarrow VP PP$

 $VP \rightarrow Verb NP PP$

 $PP \rightarrow Preposition NP$

- 1. Attachment ambiguity: Constituent or a part of a sentence that can be attached to a parse tree multiple times.
- 2. <u>Coordination ambiguity:</u> Conjunctions are used to join two different phrases. e.g. the thief shot the jeweler **and** the cop panicked.

$S \rightarrow NP VP$	Det \rightarrow that this a		
$S \rightarrow Aux NP VP$	Noun \rightarrow book flight meal money		
$S \rightarrow VP$	$Verb \rightarrow book \mid include \mid prefer$		
$NP \rightarrow Pronoun$	Pronoun \rightarrow I she me		
NP → Proper-Noun	Proper-Noun \rightarrow Houston TWA		
NP → Det Nominal	$Aux \rightarrow does$		
Nominal → Noun	Preposition → from to on near through		
Nominal → Nominal Noun			

CKY Parsing or Cocke-Kasami-Younger algorithm

Handles syntactic disambiguation with the help of dynamic programming.

Chomsky normal form

- At the beginning of the CKY algorithm we need to convert the CFGs to CNF.
- Unit productions are formed when there is a single non terminal towards the right.

$$S \rightarrow Aux NPVP$$

$$S \rightarrow XIVP$$

$$XI \rightarrow Aux NP$$

\mathscr{L}_1 Grammar	\mathscr{L}_1 in CNF $S o NP\ VP$		
$S \rightarrow NP VP$			
$S \rightarrow Aux NP VP$	$S \rightarrow X1 VP$		
	$XI \rightarrow Aux NP$		
$S \rightarrow VP$	$S o book \mid include \mid prefer$		
	$S \rightarrow Verb NP$		
	$S \rightarrow X2 PP$		
	$S \rightarrow Verb PP$		
	$S \rightarrow VPPP$		
$NP \rightarrow Pronoun$	$NP \rightarrow I \mid she \mid me$		
$NP \rightarrow Proper-Noun$	$NP \rightarrow TWA \mid Houston$		
$NP \rightarrow Det Nominal$	$NP \rightarrow Det Nominal$		
$Nominal \rightarrow Noun$	$Nominal \rightarrow book \mid flight \mid meal \mid money$		
$Nominal \rightarrow Nominal Noun$	$Nominal \rightarrow Nominal Noun$		
$Nominal \rightarrow Nominal PP$	$Nominal \rightarrow Nominal PP$		
$VP \rightarrow Verb$	$VP \rightarrow book \mid include \mid prefer$		
$VP \rightarrow Verb NP$	$VP \rightarrow Verb NP$		
$VP \rightarrow Verb NP PP$	$VP \rightarrow X2 PP$		
	$X2 \rightarrow Verb NP$		
$VP \rightarrow Verb PP$	$VP \rightarrow Verb PP$		
$VP \rightarrow VP PP$	$VP \rightarrow VP PP$		
$PP \rightarrow Preposition NP$	$PP \rightarrow Preposition NP$		

- 1. Copying all the conforming rules to a new grammar.
- 2. Conversion of terminals to non-terminals.
- 3. Conversion of unit products.
- 4. All the new rules are made binary and added to new grammar.

Statistical Constituency Parsing

- It is possible to build probabilistic parsers consisting of syntatic knowledge.
- PFGCs or probabilistic context-free grammar which is an enhancement of CFG.
- Aprobability is assigned to each rule.
- These are trained on treebank grammars.
- Non-terminals are made more specific or more general.
- Also known as Stochastic context-free grammar SCFG.
- Consists of N= non-terminal symbols, Σ =terminal symbols, R=rules or productions A \rightarrow $\beta[p]$, β =string of symbols (Σ UN)*, and p is a number between 0 and 1 P(β |A) and S= start symbol.
- R is augmented with a conditional probability:

$$A \rightarrow \beta[p]$$
 $P \rightarrow (A \rightarrow \beta)$
 $P \rightarrow (A \rightarrow \beta|A)$
 $P(RHS|LHS)$

Probabilistic CKY Parsing PCFGs

- The probabilistic CKY concludes that the PCFG is in the Chomsky normal form.
- Indices are assumed between each word.
 - Book ① the ② flight ③ through ④ Houston ⑤
- These are considered and each constituent in the CKY parse tree is encoded in a two dimensional matrix.
- The upper triangular portion of the matrix is used (n+1)x(n+1) matrix.
- Each cell table [i,j] contains a list of constituents that spans a sequence of words from i to j.
- The sentence "the flight includes a meal" is connected to chomsky normal form in order for the CKY algorithm to work on it and to handle the rule properties.
- Separate counts are needed for each constituents in the PCGs using the Inside-out algorithm.

Probabilistic CKY Parsing PCFGs

S	\rightarrow	NP VP	.80	Det	\rightarrow the	.40
NP	\rightarrow	Det N	.30	Det	$\rightarrow a$.40
VP	\rightarrow	V NP	.20	N	\rightarrow meal	.01
V	\rightarrow	includes	.05	N	\rightarrow flight	.02

Problems with PCFGs

- Poor independence assumptions: CFG rules impose an independence assumption on probabilities that leads to poor modeling of structural dependencies across the parse tree.
- Lack of lexical conditioning: CFG rules don't model syntactic facts about specific words, leading to problems with sub categorization ambiguities, preposition attachment, and coordinate structure ambiguities.

Probabilistic CFG Parsing

• Lexicalized grammar frameworks such as CFG pose problems for which the phrase based methods we've been discussing are not particularly well-suited.

$$X/Y Y \Rightarrow X$$

 $Y X \setminus Y \Rightarrow X$

Ambiguity in CFG

