Повесть о родео и Джульетте

Содержание

1	Лекция 1. Вектороные пространства. Начало беды	3
	1.1 Векторные пространства	3
2	Лекция 2. Базисные войны	8
	2.1 Матрицы	9
	2.2 Линейные отображения	12
	2.3 Операции над подпространствами	14
3	Лекция 3. Ранги. Битва образа с ядром	14
	3.1 Матрица линейного отображения	16
	3.2 Матрица перехода	19
	3.3 Матрица линейного отображения при замене базиса	20
4	Лекция 4. Опасное приключение в перестановках столбцов	21
5	Лекция 5. Треуголки и подготовка к аду	26
	5.1 Треугольные матрицы	26
	5.2 Явные формулы линейной алгебры(определитель)	28
6	Лекция 6. Рождение det-a	30
7	Лекция 7. Восстановление в полях частных	35
	7.1 Локализация и поля частных	35
8	Лекция 8. Групповые группы	40
	8.1 Опять группы	40
9	Лекция 9. Групповые группы. Вторая битва	44
	9.1 Продолжаем группы	44
	9.2 Группы перестановок	46
	9.3 Действие групп на множествах	47

10 Лекция 10. Соавтор не придумал (соавтор в процессе додумки)	50
10.1 Действия в теории групп	51

1 Лекция 1. Вектороные пространства. Начало беды

1.1 Векторные пространства

Definition 1.1. Векторное пространство

Пусть K - поле, тогда в.п. над K называется тройка (V,+,*), где

- $1. \ V$ множество
- $2. +: V \times V \rightarrow V$
- $3. *: K \times V \rightarrow V$

Со следующими аксиомами

- 1-4) : (V, +) абелева группа $(\overline{0}$ нейтральный элемент)
 - 5) $(\lambda + \mu)v = \lambda v + \mu v$
 - 6) $\lambda(v+u) = \lambda v + \lambda u$
 - 7) $(\lambda \mu)v = \lambda(\mu v)$
 - 8) 1 * v = v

Элементы V - векторы, а элементы K - скаляры.

Reminder.
$$0 * v = \overline{0}, m.\kappa. (0+0)v = 0 * v (-1) * v = -v, m.\kappa. \overline{0} = 0 * v = (1-1)v$$

Exercise 1.1.

Аксиома v + u = u + v следует из остальных

Example 1.1.

 $Vect_2$ - вектора на плоскости. Откладываем направленные отрезки из точки 0. Задав систему координат получим биекцию между векторами и точками в \mathbb{R}^2 , где последнее рассматриваем как столбцы высоты 2. Мы получили, что векторные пространства $Vect_2$ и \mathbb{R}^2 изоморфны(определение будет ниже).

Definition 1.2. Арифметическое векторное пространство

Пусть K - поле. Арифметическое векторное простариство это

$$K^n = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} : x_i \in K \right\}$$

То есть множество столбцов высоты n с покомпонентными операциями. Тривочев все аксиомы выполнены(т.к. они выполнены для самого K). $\overline{0}$ - вектор из нулей.

3

Definition 1.3. Гомоморфизм в.п.

 V_1, V_2 - в.п. над K, тогда $f: V_1 \to V_2$ - гомоморфизм (линейное отображение), если

$$f(v_1 + v_2) = f(v_1) + f(v_2)$$
$$f(kv) = kf(v)$$
$$v \in V, k \in K$$

Definition 1.4. Изоморфизм в.п.

 $V_1,V_2,\,f:V_1\to V_2$ изоморфизм, если это биективный гомоморфизм. В этом случае V_1,V_2 называют изоморфными.

Example 1.2.

Пусть V=K[x] или $K[x]_n$ - многочлены $deg \leq n.$

Аксиомы выполнены как частные случаи аксиомы кольца многочленов.

$$f \in K[x], f = \sum a_i x^i, f = (a_i)_i.$$

В $K[x]_n$ очевидна биекция $f \iff \begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix}$ и это изоморфизм $K[x]_n$ и K^{n+1} .

Он не единственен. Можно сопоставить коэффициенты $f = \sum a_i'(x-1)^i$

Другой изоморфизм: зафиксируем $b_0, \dots b_n$ и будем сопоставлять $\begin{pmatrix} f(b_0) \\ \vdots \\ f(b_n) \end{pmatrix}$

Ещё: если $K=\mathbb{C},$ тогда $f=a\prod(x-x_i).$ Тогда можем закодировать $\begin{pmatrix} a\\ \vdots\\ x_n \end{pmatrix},$ но это

плохое соответствие, не гомоморфизм(даже не отображение)...

Example 1.3.

Рассмотрим $U = \{(x_1, x_2, \dots) \mid x_i \in \mathbb{R}, x_{i+2} = x_i + x_{i+1}\}$ - последовательности фибоначчиевого типа.

Понятно, что сумма двух последовательностей и умноженная на скаляр последовательность лежит в U. То есть это в.п. над \mathbb{R} .

При этом каждую последовательность определяют первые два члена, то есть имеем $F:U\to\mathbb{R}^2$, где $(x_1,x_2,\dots)\mapsto (x_1,x_2)$ - изоморфизм в.п.

Example 1.4.

 $K=\mathbb{Z}/2\mathbb{Z},\ M$ какое-то множетсво(конечное размера n). И $V=2^M$.

Зададим $1*N=N,\ 0*N=\emptyset.\ N_1+N_2=(N_1\cup N_2)\setminus (N_1\cap N_2)=N_1\Delta N_2$

Любое подмножество кодируется строкой из 0 и 1. (содержит или не содержит соответствующий элемент)

4

Имеем биекцию $V \to \mathbb{Z}/2\mathbb{Z}^n$ и это гомоморфизм.

Definition 1.5. Линейная комбинация

Пусть V - в.п. над K и есть $\{v_i\}_{i\in I}$ система векторов из V. (если I конечно, то можно считать v_1,\ldots,v_n).

Пусть $\{a_i\}_{i\in I}$ система элементов K т.ч. количество $a_i\neq 0$ конечно.

Тогда $\sum_{i\in I} a_i v_i$ называется линейной комбинацией векторов v_i с коэф. a_i .

Далее I конечно(но это не важно).

Definition 1.6. Линейная оболочка

Множество линейных комбинаций векторов v_1, \ldots, v_n называется их линейной оболочкой и обозначается $\langle v_1, \ldots, v_n \rangle = \{ \sum a_i x_i \mid a_i \in K \}.$

Remark 1.1.

- 1. $\langle v_1, \ldots, v_n \rangle$ является векторным пространством относительно тех же операций. Нужно проверить замкнутость относительно сложения и умножения на константу.
- 2. U подпространство V и $v_i \in U$, тогда $\langle v_1, \dots, v_n \rangle \subset U$ (лин.оболочка наименьшее такое подпространство, содержащее все v_i)

Example 1.5.

Рассмотрим $Vect_3$. $\langle v_1 \rangle$ - прямая через v_1 , $\langle v_1, v_2 \rangle$ - плоскость(или прямая, если они совпадают), натянутая на эти векторы.

Definition 1.7. Порождающий набор

V в.п., набор $\{v_i\}$ называется порождающим, если его лин.оболочка =V.

Definition 1.8. Конечномерное пространство

V называется конечномерным, если существует конечная порождающая система.

Example 1.6.

 $\mathbb{R}^n, K[x]_n$ конечномерные

K[x] нет. Пусть есть какой-то $\{f_i\}$ - порождающий, но тогда для любого $f=\sum a_i f_i\Rightarrow deg(f)\leq \max_i deg(f_i)$.

Definition 1.9. Линейная независимость

Система векторов v_i называется линейно независимой, если выполнено одно из двух равносильных условий

- 1. $\forall i, v_i \notin \langle \{v_j\}_{j \neq i} \rangle$
- 2. $\forall a_1, \dots, a_n \in K, \sum a_i v_i = 0 \Rightarrow \forall i \ a_i = 0$

Доказательство. Пусть $v_i \in \langle \{v_j\}_{j \neq i} \rangle \Rightarrow v_i = \sum_{j \neq i} a_j v_j \Rightarrow 0 = -v_i + \sum_{j \neq i} \Rightarrow 0 = -1$ из второго пункта.

5

Обратно. $\forall i \ v_i \notin \langle \{v_j\}_{j\neq i} \rangle$ и $\sum a_i v_i = 0$ и есть не нулевая a_i , тогда $v_i = -\frac{1}{a_i} (\sum a_j v_j)$ - противоречие.

Definition 1.10. Базис

V - в.п. над $K.\ v_1,\dots,v_n\in V$ называется базисом, если он порождающий и линейно независимый

Example 1.7. Стандартный базис

 $V=K^n,\,e_i$ - столбец из всех 0 кроме 1 на i-м месте. Тогда верно $egin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \sum a_i e_i$

Theorem 1.1. Эквивалентные определения базиса

Следующие условия равносильны:

- $1. \ v_1, \dots, v_n$ базис V
- 2. $\forall v \in V, \exists ! a_i : v = \sum a_i v_i$
- 3. v_i макс. лин.независимая система, то есть $\forall v \in V, v_1, \dots, v_n, v$ лин. завис.
- 4. v_1, \ldots, v_n мин. порождающая, то есть $\forall i \ v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n$ не порождающая

Доказательство. $1 \Rightarrow 2. \ v \in V, v = \sum a_i v_i$ т.к. $\{v_i\}$ порождающий. Если есть $v = \sum a_i v_i = \sum b_i v_i \Rightarrow \sum (a_i - b_i) v_i = 0 \Rightarrow a_i = b_i \forall i$.

- $2\Rightarrow 1.$ $\{v_i\}$ порождающий. $\sum a_iv_i=0=\sum 0*v_i\Rightarrow a_i=0.$
- $1\Rightarrow 4$. Пусть есть v_i , т.ч. без него все ещё порождающая, но тогда $v_i\in \langle v_j\rangle$ противоречие определению лин.нез
- $4 \Rightarrow 1$. Пусть она лин. зависима, т.е. есть $v_i = \sum a_j v_j$, тогда мы можем её выкинуть и все ещё получим порождающую систему. $(V = \langle x_i \rangle = \langle x_j, \ j \neq i \rangle)$

Остальное упр.

Theorem 1.2. Существование базиса

В любом конечномерном пространстве есть конечный базис.

Доказательство. Пусть

 $V = \langle v_i
angle$ - конечная порождающая система.

Будем выкидывать v_i из набора с сохранением свойства порождаимости. За конечное число шагов придем к минимальной порождающей, то есть к базису. \Box

Corollary. Пусть V - к-м. пространство, тогда $\exists n : V \cong K^n$.

Доказательство. Существует базис v_1,\ldots,v_n . Рассмотрим отображение $f:K^n\to V$, где

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \mapsto \sum a_i v_i.$$

Это очевидно гомоморфизм. (сумма раскрывается по дистрибутивности).

Это биекция по второму определению базиса.

Remark 1.2.

Если V - бесконечномерное, то базис всегда существует.

V = K[x], базис x^i

V = K[[x]], базис есть но предъявить нельзя..

 $V=\mathbb{R}$ как в.п. над \mathbb{Q} (или над \mathbb{R} , но тогда это одномерное пространство). Существует бесконечный базис, который не выражается...

Definition 1.11. Размерность

Пусть V конечномерное, его размерность $\dim V$ это такое n, что $V \cong K^n$.

Другое определение: $\dim V$ это количество векторов в базисе.

Пока не знаем, единственно ли такое n.

Theorem 1.3. Количество элементов в базисе

Если v_1, \ldots, v_n и u_1, \ldots, u_m - базисы, то m = n.

Lemma 1.1. О линейной зависимости линейных комбинаций (лкзк)

Пусть есть два набора u_1, \ldots, u_m и v_1, \ldots, v_n при этом n > m и $v_i \in \langle u_i \rangle$, тогда v_i линейно зависимы.

Доказательство. Если v_i, u_i - базисы и n > m, то т.к. u - порождающее по лемме v_i будут линейно зависимые, что противоречит определению базиса. Это доказывает теорему.

Сама лемма: Индукция по m. База m=0. $\langle ... \rangle = \{0\}$. Очев..

Переход $m \to m+1.$ $v_1, \ldots, v_n \in \langle u_1, \ldots, u_{m+1} \rangle, \ n > m+1.$

 $v_i = \sum a_{ij} u_j$. Посмотрим на $a_{i,m+1}$. Если все равны 0, тогда $v_1, \dots, v_n \in \langle u_1, \dots, u_m \rangle \Rightarrow$ по индукционному предположению v_i - лин. зависимы.

Пусть не все равны 0. Н.У.О. $a_{1,m+1} \neq 0$. Рассмотрим вектора $\widetilde{v}_2, \ldots, \widetilde{v}_n$ $\widetilde{v}_i = v_i - \frac{a_{i,m+1}}{a_{1,m+1}} v_1 = \sum_{j=1}^m (a_{ij} - \frac{a_{i,m+1}}{a_{1,m+1}} a_{1j}) u_j$. Сумма ровно до m т.к. коэф. при j = m+1 равен 0(мы так выбрали коэффициент).

Их n-1, по условию n>m+1, т.е. n-1>m. По индукции $\widetilde{v_i}$ лин. зависимы, тогда и v_i -е. $0=\sum b_i(v_i-\frac{a_{i,m+1}}{a_{1,m+1}}v_1)=\sum b_i'v_i$ - нетривиальная лин. комбинация.

Lemma 1.2.

 e_i - базис в $K^n\cong V.$ Тогда $f(e_i)$ - базис в V, где f - изоморфизм.

Доказательство. $v = \sum a_i e_i \Rightarrow f(v) = \sum a_i f(e_i) \Rightarrow V = \langle f(e_i) \rangle$ $v = \sum a_i f(e_i) = \sum b_i f(e_i)$. f - инъекция, значит $\sum a_i e_i = \sum b_i e_i$. А т.к. e_i базис следует равенство $a_i = b_i$.

Итого, для любого конечномерного V существует **единственное** n, т.ч. $V \cong K^n$. Т.к. $K^n \cong V \cong K^m \Rightarrow n = \dim V = m$.

2 Лекция 2. Базисные войны

Corollary. Любую линейно независимую систему можно дополнить до базиса.

Доказательство. Напоминание: v_i - базис $\iff v_i$ - макс. линейно независимая система.

Пусть dimV=N и $V=\langle u_i \rangle$ - базис. А v_1,\ldots,v_k - лин. независимы.

Если набор максимальный, то это уже базис. Иначе добавим v_{k+1} , чтобы набор v_1, \ldots, v_{k+1} тоже был линейно независим.

Повторяем процесс. Он точно закончится, когда k станет N.

Более точно: если набрали N+1 вектор, каждый лежит в $\langle u_i \rangle$, но тогда он линейно зависимы (по предыдущей лемме). Значит $\exists s \ v_1, \dots, v_s$ - базис. По однозначности размера базиса s=N.

Remark 2.1.

Пусть $v_1, \ldots, v_k \in V$, dimV = n. Тогда

- 1. v_i $\Pi H3 \Rightarrow k \leq n$
- 2. v_i порождающие $\Rightarrow k \geq n$
- 3. Есть их n и они линейно независимы \Rightarrow они базис
- 4. Их n и они порождающие \Rightarrow они базис.

Lemma 2.1. Размерность подпространства

V - в.п. над K, U - подпространство. Тогда $dim(U) \leq dim(V)$. Если равна, то U = V

Доказательство. Выберем базис $U-u_i, i=1\dots k$. Это линейно независимая система. По лемме её можно дополнить до базиса V.

Значит $k \leq n$. Если k=n, то мы дополнили 0 векторов, значит $U=\langle u_i \rangle = V$

Example 2.1. Числа Фибоначчи

Рассмотрим S - фиб. последвательности над \mathbb{R} .

Мы обсуждали ранее, что в нем есть базис $s_1=(1,0,1,1,2,3,\dots)$ и $s_2=(0,1,1,1,2,3,\dots).$

Рассмотрим $s_0=(1,1,2,3,\dots)\in S$. Хотим явную формулу для u_n - n-е число в s_0 . Рассмотрим другой базис. $f_1=(1,\varphi,\varphi^2,\dots)$ и $f_2=(1,(-\frac{1}{\varphi}),(-\frac{1}{\varphi})^2,\dots)$, где $\varphi,-\frac{1}{\varphi}$ - корни $x^2-x-1=0$.

 $f_1, f_2 \in S$ исходя из уравнения. При этом f_1, f_2 очевидно линейно независимы(одна возрастает, друга убывает, значит не могут отличаться на константу). Значит это базис S.

 $\exists a,b : s_0 = af_1 + bf_2$. Найдем коэф. из уравнений на u_1 .

$$\begin{cases} a+b=1=u_1\\ a\varphi-\frac{b}{\varphi}=1=u_2 \end{cases} \Rightarrow \text{находим } a,b$$

Example 2.2. Алгебраические числа

 $\sqrt[5]{3}$ - корень уравнения $x^5 - 3 \in \mathbb{Z}[x]$.

Целые алгебраические числа - корни многочленов из $\mathbb{Z}[x]$.

Что они образуют? Является ли сумма целых алгебраических таковым?

Утв: Алгебраические числа образуют кольцо.

Lemma 2.2.

Если α - алгебраическое, $p \in \mathbb{Z}[x]$, то $p(\alpha)$ тоже алгебраическое.

Доказательство. Рассмотрим $\mathbb C$ как в.п. над $\mathbb Q$. Пусть $\alpha\in\mathbb C_{\mathbb Q},\ q(\alpha)=0,\ q\in\mathbb Q[x]$ и deg(q)=n

Рассмотрим $V \leq \mathbb{C}_{\mathbb{Q}}, V = \langle 1, \alpha, \alpha^2, \dots, \alpha^{n-1} \rangle_{\mathbb{Q}}.$

Утв.: $\forall N \in \mathbb{N} : \alpha^N \in V$.

 \mathcal{A} оказательство. Степени $\leq n-1$ по определению там. $q(\alpha)=\sum_{i=0}^n b_i\alpha^i=0$. Значит $\alpha^n=-\sum_{i=0}^{n-1} \frac{b_i}{b_n}\alpha^i\in V(b_n\neq 0)$ из-за степени).

Далее $\alpha^{n+1} = \alpha * \alpha^n = -\sum \frac{b_i}{b_n} \alpha^{i+1} \in V$ так как $i+1 \leq n$ и все они уже лежат. И так далее.

Мы поняли, что если мы возьмем $\langle 1, \alpha, \alpha^2, \dots \rangle = V$.

Пусть $p \in \mathbb{Q}[x]$. Рассмотрим $1, p(\alpha), p(\alpha)^2, \dots, p(\alpha)^n \in V$, dim(V) = n. Их n+1, значит они линейно зависимы над \mathbb{Q} , то есть $\exists c_i \in \mathbb{Q}$ т.ч. $\sum c_i p(\alpha)^i = 0$.

Значит $p(\alpha)$ - корень $\sum c_i x^i \in \mathbb{Q}[x]$.

Remark 2.2.

Если является корнем многочлена из $\mathbb{Q}[x]$, то и многочлена из $\mathbb{Z}[x]$.(умножим на общий знаменатель коэффициенты)

2.1 Матрицы

Reminder. Каждому вектору $v \in V$ соответствует $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$ - координаты в базисе v_i .

Координаты зависят от базиса.

Рассмотрим K^n . Пусть зафиксированы $v_1,\ldots,v_m\in K^n$, их компоненты $v_i=\begin{pmatrix}a_{1i}\\\vdots\\a_{ni}\end{pmatrix}$

Пусть $b \in K^n$, $b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$ Что значит, что $b \in \langle v_i \rangle$?

 $\sum x_i v_i = b$. Приравняем все координаты. Получим систему n линейных уравнений и m неизвестных.

9

$$\begin{cases} \sum a_{1j}x_j = b_1 \\ \vdots \\ \sum a_{nj}x_j = b_n \end{cases}$$

To есть $b \in \langle v_i \rangle \iff$ система имеет решение.

Definition 2.1. Матрица

Пусть R - кольцо. Матрица над R это отображение

$$I \times J \to R$$

где I, J индексирующие множества.

У нас обычно R - поле, I, J - конечные и $I = \{1, 2, \dots, n\}$ и $J = \{1, 2, \dots, m\}$

Множество таких матриц будем обозначать $M_{n,m}(R)$ - матрицы размера n на m.

R = K - поле. Зададим на $M_{n,m}(K)$ структуру в.п. покомпонентно.

$$(a_{ij})_{ij} + (b_{ij})_{ij} = (a_{ij} + b_{ij})_{ij}$$

 $k * (a_{ij})_{ij} = (k * a_{ij})_{ij}$

Получили (очев) в.п. над K.

Частный случай m=1. Тогда возникает канонический изоморфизм $M_{n,1}(K)\cong K^n$, а если n = 1, то $M_{1,m} \cong {}^m K$ - строки длины m.

 $dim M_{n,m}(K)=m*n.$ Базис e_{ij} - матрица с 1 на пересечении i-й строки и j-го столбца и 0иначе(матричные единички).

Зададим операции:

1. Можем задать операцию
$${}^nK \times K^n \to K$$
: $(x_1,\dots,x_n)*\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \sum x_i y_i$

2.
$$M_{m,n}(K) \times K^n \to K^m$$
.

$$A\in M_{m,n}(K)$$
. Представим её как $A=egin{pmatrix} r_1 \\ \vdots \\ r_m \end{pmatrix}$, где r_i - строки длины $n.\ B\in K^n$

$$A \in M_{m,n}(K)$$
. Представим её как $A = \begin{pmatrix} r_1 \\ \vdots \\ r_m \end{pmatrix}$, где r_i - строки длины $n.$ $B \in K^n$ Тогда зададим $A \cdot b = \begin{pmatrix} r_1 * b \\ \vdots \\ r_m * b \end{pmatrix}$ (внутри произведение из предыдущего пункта)

Поэтому СЛУ записывается как Ax = B, где A - матрица коэф., x - столбец x_i , а b столбец правой части системы.

3. $M_{m,n}(K) \times M_{n,k}(K) \to M_{m,k}(K)$

$$A \cdot C = A \cdot (c_1|c_2|\dots|c_k) = (A \cdot c_1|\dots|A \cdot c_k)$$

где c_i - столбцы матрицы C длины n.

Другими словами: формула свертки $(a_{ij}) \cdot (b_{ij}) = (c_{ij})$, где $c_{ij} = \sum_{l=1}^n a_{il} * b_{lj}$.

Свойства операций:

- 1 A(X+Y) = AX + AY
- 2 A(kX) = kAX, где $k \in K$

Это следует из дистрибутивности в поле.

3 Ассоциативность A(BC) = (AB)C, если все произведения существуют: то есть $A \in M_{k,l}$, $B \in M_{l,m}$, $C \in M_{m,n}$

Доказательство. Если верим в свойства 1-2, то достаточно проверять ассоциативность на базисе:

 $(e_{ij} * \hat{e}_{kl})\tilde{e}_{mn} = e_{ij}(\hat{e}_{kl} * \tilde{e}_{mn})$ где e-шки матричные единицы из соответствующих пространств. Равенство левых и правых частей проверяется прямым вычислением.

Частный случай m=n=k. Тогда $M_n(K)$ - кольцо квадратных матриц. Кольцо так как можем умножать. Нулевая матрица - матрица из нулей. $-A=(-a_{ij})$. Единица E - 1 на диагонали и 0 вне.

При этом $M_n(K)$ - не коммутативное кольцо.(при n > 1 почти никакие две не коммутируют $(n = 1 \Rightarrow M_1(K) = K)$).

Definition 2.2. Однородная система уравнений

Ax = 0 - однородная система уравнений.

Очевидное свойство - столбец из 0 всегда решение(тривиальное).

Существует нетривиальное решение $\iff \exists x_i$ не все 0, т.ч. Ax = 0, то есть

$$(c_1|\dots|c_m)$$
 $\begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$

То есть есть нетривиальное решение $\sum x_i c_i = 0 \iff$ столбцы линейно зависимы.

ЛЗЛК говорит, что если $m>n,\,c_1,\ldots c_m\in K^n,$ то c_i - лин.зависимы.

Другими словами: если m > n (переменных больше, чем уравнений), то однородная система имеет нетривиальное решение.

Lemma 2.3.

Множество решений Ax = 0 - векторное пространство (подпространство в K^m).

Доказательство. $Ax=0,\ Ay=0\Rightarrow A(x+y)=0$ и A(kx)=kA(x)=0

2.2 Линейные отображения

Definition 2.3. Линейное отображение

Если U, V - в.п. над K.

$$\varphi:U\to V$$

называется линейным отображением (или гомоморфизмом) если

$$\varphi(u_1 + u_2) = \varphi(u_1) + \varphi(u_2)$$
$$\varphi(ku) = k\varphi(u)$$

Example 2.3.

Пусть $A \in M_{m,n}(K)$. Она задает $\mathcal{A}: K^n \to K^m$, т.ч. $\mathcal{A}(X) = A \cdot X$

Частный случай, когда m=1.

Отображение $\mathcal{A}:V_K \to K$ - линейный функционал.

Если
$$V_K = K^n$$
. $A = (a_1, \dots, a_n)$. То $\mathcal{A} : K^n \to K$ т.ч. $\begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \mapsto \sum a_i x_i$

Любое линейное отображение из K^l в K^n это умножение на матрицу

Example 2.4.

 $\mathcal{A}: Vect_2 \to Vect_2.$

 $\mathcal{A}=r_{\alpha}$ - поворот вокруг 0 на α или $\mathcal{A}=S_{e}$ - сим. относительно прямой e(проходящая через 0).

Lemma 2.4. Простейшие свойства

- 1. $\mathcal{A}(0) = 0 \ (\mathcal{A}(0) = \mathcal{A}(0+0) = \mathcal{A}(0) + \mathcal{A}(0))$
- 2. Если v_i линейно зависимы $\Rightarrow \mathcal{A}(v_i)$ тоже.

$$\sum a_i v_i = 0 \Rightarrow A(0) = 0 = A(\sum a_i v_i) = \sum a_i A(v_i).$$

При этом линейная независимость не обязательно сохраняется (можем взять отображение, все отправляющее в 0).

12

Definition 2.4. Ядро и образ

Пусть $\mathcal{A}: V_1 \to V_2$ — линейное отображение.

$$Ker(\mathcal{A}) = \{v \in V_1 \mid \mathcal{A}(v) = 0\} \subset V_1$$
 - ядро

 $Im(\mathcal{A})=\{v\in V_2\mid v=\mathcal{A}(u)$ для некоторого u из $V_1\}\subset V_2$ - образ.

Lemma 2.5. Свойства ядра и образа

- 1. $Ker(\mathcal{A}), Im(\mathcal{A})$ подпространства
- 2. $Im(\mathcal{A})=V_2\iff \mathcal{A}$ сюръективно $Ker(\mathcal{A})=\{0\}\iff \mathcal{A}$ инъективно

Доказательство. 1) $x,y \in Ker(\mathcal{A})$. По линейности $\mathcal{A}(x+y) = \mathcal{A}(x) + \mathcal{A}(y) = 0$ и $\mathcal{A}(kx) = k\mathcal{A}(x) = 0$.

 $x,y\in Im(\mathcal{A})$. Значит $x=\mathcal{A}(u),y=\mathcal{A}(v)$. По линейности $x+y=\mathcal{A}(u+v)\Rightarrow x+y\in Im(\mathcal{A})$ и аналогично kx.

2) Про образ очевидно по определению.

Пусть \mathcal{A} - инъективно и $\mathcal{A}(x) = 0$. Мы знаем, что $\mathcal{A}(0) = 0$. Но тогда по инъективности x = 0. Обратно: пусть ядро тривиально и $\mathcal{A}(x) = \mathcal{A}(y) \Rightarrow \mathcal{A}(x-y) = 0 \Rightarrow x-y = 0$.

Lemma 2.6.

Пусть V_1, V_2 - в.п. над K и в первом пространстве зафиксировали базис v_i . А в V_2 зафиксировали столько же случайных векторов v_i' .

Тогда существует единственное линейное отображение $\mathcal{A}: V_1 \to V_2$ т.ч. $\mathcal{A}(v_i) = v_i'$.

Доказательство. Существование: $\forall v \in V_1 \; \exists ! a_i \in K \; \text{такие что} \; \sum a_i v_i = v. \; \Pi$ оложим $\mathcal{A}(v) = \sum a_i v_i'$.

В частности $\mathcal{A}(v_i) = \mathcal{A}(0 * v_1 + \dots + 1 * v_i + \dots + 0 * v_n) = v_i'$.

Если $v = \sum a_i v_i$, а $u = \sum b_i v_i$, то $v + u = \sum (a_i + b_i) v_i$ и $\mathcal{A}(v + u) = \sum (a_i + b_i) v_i' = \mathcal{A}(v) + \mathcal{A}(u)$.

Аналогично при kv.

 $E\partial uнственность: Пусть <math>A$ - линейно и $A(v_i) = v_i'$.

Тогда
$$\mathcal{A}(v) = \mathcal{A}(\sum a_i v_i) = \sum_{\text{линейность}} \sum a_i \mathcal{A}(v_i) = \sum a_i v_i'$$
 - та же формула.

Example 2.5.

- 1. Пусть $\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}^2$ т.ч. $\mathcal{A}(x) = 0 \ \forall x$. Тогда $Ker(\mathcal{A}) = \mathbb{R}^2$ и $Im(\mathcal{A}) = \{0\}$.
- 2. Пусть $\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}^2$ т.ч. \mathcal{A} поворот. Тогда $Ker(\mathcal{A}) = \{0\}$ и $Im(\mathcal{A}) = \mathbb{R}^2$.
- 3. Пусть \mathcal{A} проекция на Ox. Тогда $Im(\mathcal{A})$ ось Ox, а $Ker(\mathcal{A})$ ось Oy.

Theorem 2.1. Теорема о размерности ядра и образа

Пусть $\mathcal{A}:V_1 o V_2$ - лин. отображение. Тогда

- 1. \exists базис v_1,\ldots,v_n пространства V_1 т.ч. v_1,\ldots,v_k это базис $Ker(\mathcal{A})$ и $\mathcal{A}(v_{k+1}),\ldots,\mathcal{A}(v_n)$ базис V_2 .
- 2. $dimKer(A) + dimIm(A) = dim(V_1)$

Доказательство. $1 \Rightarrow 2$. В условиях пункта 1. $dimKer \mathcal{A} = k$, $dimIm \mathcal{A} = n - k$.

 $k + n - k = n = dim(V_1)$

1. Выберем базис $Ker(\mathcal{A})$: v_1, \dots, v_k . И дополним до базиса всего пространства.

Докажем, что $\mathcal{A}(v_{k+1}), \ldots \mathcal{A}(v_n)$ - базис образа.

Они линейно независимы. Пусть $\sum_{i=1}^{n-k} a_{k+i} \mathcal{A}(v_{k+i}) = 0 \Rightarrow \sum_{i=1}^{n-k} a_{k+i} v_{k+i} \in Ker(\mathcal{A}) \Rightarrow \sum_{i=1}^{n-k} a_{k+i} v_{k+i} = \sum_{i=1}^{k} (-a_i) v_i \Rightarrow \sum_{i=1}^{n} a_i v_i = 0$. А раз v_i базис, то все $a_i = 0$.

Ещё надо проверить, что $\mathcal{A}(v_{k+1}), \ldots, \mathcal{A}(v_n)$ порождают $Im\mathcal{A}$.

Пусть $u \in Im(\mathcal{A})$. Значит $u = \mathcal{A}(v)$. $v = \sum a_i v_i$.

$$\mathcal{A}(v) = \mathcal{A}(\sum_{i=1}^{k} a_i v_i + \sum_{i=1}^{n-k} a_{k+1} v_{k+1}) = \sum_{i=1}^{n-k} a_{k+i} \mathcal{A}(v_{k+i})$$

2.3 Операции над подпространствами

V - в.п. над K. $\mathcal{V} = \{U \leq V\}$ - множество подпространств V. На 2^V есть \cup и \cap , а на \mathcal{V} ?

Lemma 2.7. Пересечение подпространств

 $V_1, V_2 \leq V \Rightarrow V_1 \cap V_2$ тоже (док-во - очев)

Remark 2.3.

Объединение как правило не подпространство.

Пример - 2 прямые на плоскости. Их объединение не содержит суммы векторов.

Definition 2.5. Сумма подпространств

 V_1, V_2 - подпространства V.

 $V_1 + V_2 = \{v_1 + v_2 \mid v_1 \in V_1, v_2 \in V_2\}$ - сумма подпространств.

И это тоже подпространство!

Доказательство.

$$(x_1 + y_1) + (x_2 + y_2) = (x_1 + x_2) + (y_1 + y_2) \in V_1 + V_2$$

Для $k(x_1 + y_1)$ аналогично.

Definition 2.6. Прямая сумма

Пусть V_1, V_2 какие-то в.п. над K. Тогда определим $V_1 \oplus V_2 = \{(v_1, v_2) | v_1 \in V_1, v_2 \in V_2\}$ с покоординатными операциями.

Remark 2.4.

 v_i - базис $V,\,u_i$ - базис U. Тогда $(v_i,0),(0,u_i)$ - базис $V\oplus U.$

Поэтому $dim(V \oplus U) = dim(V) + dim(U)$

Lemma 2.8. Формула Грассмана

V - в.п. над K. $V_1, V_2 \leq V$, тогда $dim(V_1 + V_2) = dim(V_1) + dim(V_2) - dim(V_1 \cap V_2)$.

3 Лекция 3. Ранги. Битва образа с ядром

Доказательство. Рассмотрим очевидно линейное отображение $\mathcal{A}: V_1 \oplus V_2 \to V$. $\mathcal{A}((v_1, v_2)) = v_1 + v_2$. \mathcal{A} .

Применим теорему о размерности ядра и образа.

$$dimKer(\mathcal{A}) + dimIm(\mathcal{A}) = dim(V_1 \oplus V_2) = dim(V_1) + dim(V_2)$$

При этом по определению $Im(\mathcal{A}) = V_1 + V_2$, то есть $dim Im(\mathcal{A}) = dim(V_1 + V_2)$. Осталось доказать, что $dim Ker(\mathcal{A}) = dim(V_1 \cap V_2)$.

$$Ker(\mathcal{A}) = \{(v_1, v_2) \in V_1 \times V_2 \mid v_1 + v_2 = 0\} = \{(v, -v) \in V_1 \times V_2\}$$

Последнее значит, что $v \in V_1, -v \in V_2 \iff v \in V_1 \cap V_2$.

Следовательно существует изоморфизм $f: V_1 \cap V_2 \to Ker(\mathcal{A})$, т.ч. f(v) = (v, -v). Это биекция по предыдущей строчке и очевидно линейное отображение.

Итого
$$dim(V_1 \cap V_2) + dim(V_1 + V_2) = dim(V_1) + dim(V_2)$$

Рассмотрим следующую ситуацию: $U = K^n, V = K^m, A : U \to V : A(x) = Ax, A \in M_{m,n}(K)$. Что такое ядро и образ?

$$Ker(\mathcal{A}) = \{x : Ax = 0\}$$
 — множество решений однородной системы с матрицей A

А образ? Образ это такие $b \in K^n$, что Ax = b имеет решение.

Выберем стандартный базис в K^n . Запишем матрицу столбцами столбцы $A=(c_1|\dots|c_n)$. $A(e_i)=c_i$. Другими словами

$$Im(\mathcal{A}) = \langle A(e_i) \rangle = \langle c_i \rangle$$
 — линейная оболочка столбцов

Definition 3.1. Столбцовый ранг

 $dim Im(\mathcal{A}) = dim \langle c_i \rangle = rg(A)$ - столбцовый ранг матрицы A (максимальное количество линейно независимых столбцов матрицы). $dim Ker(\mathcal{A}) = n - rg(A)$ - дефект матрицы.

У нулевой матрицы ранг 0, а у единичной n.

Пусть $A \in M_{m,n}(K)$. Это система линейных уравнений с m уравнениями и n неизвестными.

 $\mathcal{A}: K^n \to K^m$. И знаем, что $dimKer(\mathcal{A}) = n - dimIm(\mathcal{A}) \geq n - m$, т.к. образ не более чем m-мерный(если $n \geq m$).

То есть пространство решений однородной линейной системы с m уравнениями и n неизвестными хотя бы n-m мерно(если $n\geq m$).

Theorem 3.1. Дирихле для к-м пространств

Пусть $\mathcal{A}:U o U$ - линейное, U - конечномерное.

Тогда \mathcal{A} — инъективно $\iff \mathcal{A}$ — сюръективно.

Доказательство. \mathcal{A} - инъективно \iff $Ker(\mathcal{A})=0$ \iff $dimIm(\mathcal{A})=n$ \iff \mathcal{A} - сюръективно.

Proposition 3.1.

Пусть есть система линейных уравнений, n уравнений и неизвестных с матрицей A и произвольной правой частью.

- 1. Если о.с.л.у. Ax = 0 имеет единственное решение, то при любом b, Ax = b тоже имеет единственное решение.
 - Т.к. иънекция \Rightarrow сюръекция \Rightarrow биекция, то есть $\forall b \; \exists !$ прообраз относительно A
- 2. Если Ax = 0 имеет не единственное решение. Тогда $\forall b, Ax = b$ имеет либо 0, либо много($\geq |K|$) решений.

Т.к. $dimKer(\mathcal{A}) > 0 \Rightarrow dimIm(\mathcal{A}) < n$, значит $\exists b \notin Im(\mathcal{A})$ - для них нет решений. Пусть $b \in Im(A)$. То есть $\exists x_0 : Ax_0 = b$. Тогда $Ax = b \iff A(x - x_0) = 0 \Rightarrow$ $x-x_0 \in Ker(\mathcal{A}) \Rightarrow x = x_0 + Ker(\mathcal{A})$ - сдвинутое подпространство решений не нулевой размерности.

Example 3.1.

$$\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}^2$$

Пусть $dimKer(A) = 1 \Rightarrow dimIm(A) = 1$. Ядро - какая-то прямая, проходящая через 0. Возьмем произвольный вектор v, проведем прямую $v + Ker(\mathcal{A})$ - это все пробразы A(v). В итоге вся плоскость поделится на прямые.

3.1 Матрица линейного отображения.

Пусть $\mathcal{A}: U \to V$ - линейное. Зафиксируем базисы $\{u_i\}_{i=1}^n, \{v_i\}_{i=1}^m$.

Знаем, что задать \mathcal{A} это то же самое, что и задать $\mathcal{A}(u_1), \dots \mathcal{A}(u_n) \in V$.

Знаем, что задать
$$\mathcal{A}$$
 это то же самое, что и задать $\mathcal{A}(u_1), \dots \mathcal{A}(u_n) \in V$.

Запишем $\forall i : \mathcal{A}(u_i) = \sum_{j=1}^m a_{ji} v_j$. Другими словами $\begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix}$ - координаты $\mathcal{A}(u_i)$ в базисе v_i .

Тогда $(a_{ij})=(\mathcal{A}(u_1)_{\{v_i\}}|\dots|\mathcal{A}(u_n)_{\{v_i\}})$ называется матрицей линейного отображения \mathcal{A} в базисах $\{u_i\}, \{v_i\}.$

Обозначим $A = [A]_{\{u_i\},\{v_i\}}$

Lemma 3.1.

В обозначениях выше:

Пусть $u \in U, x_u \in K^n$ - координаты u в базисе u_1, \ldots, u_n . Тогда, $A \cdot x_u \in K^m$ - координаты $\mathcal{A}(u)$ в базисе v_1,\ldots,v_m .

Доказательство. Пусть
$$x_u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
. То есть $u = \sum x_i u_i$. Тогда $\mathcal{A}(u) = \mathcal{A}(\sum x_i u_i) = \sum x_i \mathcal{A}(u_i) = \sum_{i=1}^n x_i (\sum_{j=1}^m a_{ji} v_j) = \sum_{j=1}^m v_j (\sum_{i=1}^n a_{ji} x_i)$. Итого, получили, что $\mathcal{A}(u) = \begin{pmatrix} \sum_i a_{1i} x_i \\ \vdots \\ \sum_i a_{mi} x_i \end{pmatrix}$ - ровно умножение матрицы A на столбец x_u .

Remark 3.1.

U, V - в.п. над K. $u_1, \ldots, u_n, v_1, \ldots, v_m$ - базисы.

 $A \in M_{m,n}(K)$. Тогда отображение $x_u \mapsto Ax_u$, где x_u - координаты $u \in U$ задает линейное отображение $\mathcal{A}: U \to V$.

Definition 3.2. Пространство линейных отображений

U, V - в.п. над K. Обозначим Lin(U, V) - множество линейных отображений из U в V. Зададим $(f+q)(u) \stackrel{\text{def}}{=} f(u) + q(u)$ и $(k \cdot f)(u) \stackrel{\text{def}}{=} k * f(u)$.

Очевидно, что сумма линейных - линейна и линейное, умноженное на скаляр, тоже! То есть Lin(U,V) - векторное пространство над K.

Theorem 3.2. Изоморфизм матриц и линейных отображений

В предыдущих обозначениях

$$C: Lin(U,V) \to M_{m,n}(K)$$

т.ч. $\mathcal{A} \mapsto [A]_{u_i,v_i}$ является изоморфизмом векторных пространств.

Итак, $Lin(U,V) \cong M_{m,n}(K)$. В частности dimLin(U,V) = mn. (изоморфизм зависит от выбора базиса и каждый выбор дает новый изоморфизм)

Remark 3.2.

Композиция линейных отображений тоже линейна!

Lemma 3.2.

Пусть $U \underset{\mathcal{A}}{\to} V \underset{\mathcal{B}}{\to} W - U, V, W$ - в.п. над $K, \mathcal{A}, \mathcal{B}$ - линейные. И в каждом выбран базис(размеры n, m, k соответственно).

 $[\mathcal{A}]_{u_i,v_i} \in M_{m,n}(K), [\mathcal{B}]_{v_i,w_i} \in M_{k,m}(K), [\mathcal{B} \circ \mathcal{A}]_{u_i,w_i} \in M_{k,n}(K).$ Тогда $[\mathcal{B} \circ \mathcal{A}] = [\mathcal{B}] \cdot [\mathcal{A}].$

Доказательство. Пусть $[\mathcal{A}] = A, [\mathcal{B}] = B. \ u \in U, \ x_u \in K^n$ - координаты u в выбранном базисе. Тогда Ax_u - координаты $\mathcal{A}(u)$ в базисе v_i .

Значит $B(A(x_u))$ - координаты $\mathcal{B}(\mathcal{A}(u))$ в базисе w_i . Мы знаем ассоциативность умножения матриц. $B(A(x_u)) = (BA)(x_u)$.

Итого матрица BA переводит координаты x по базису u_i в координаты $\mathcal{B}(\mathcal{A}(x))$ по базису w_i . Что и значит, что BA - матрица $\mathcal{B} \circ \mathcal{A}$ в соответствующих базисах.

Definition 3.3. Кольцо линейных операторов

Пусть U = V. Lin(V, V) = End(V) - кольцо эндоморфизмов(гомоморфизм в себя) V или линейных операторов(отображений в себя) на V.

При этом выбираем один базис v_1, \dots, v_n . И сопоставляем $\mathcal{A} \to [A]_{v_i,v_i}$ (один базис нужен для корректного определения композиции).

Тогда

- 1. End(V) кольцо относительно сложения и композиции
- 2. $End(V) \cong M_n(K)$, где n = dim(V).

Доказательство. Знаем, что $End(V) \cong M_n(K)$ как в.п(теорема выше). В частности сложение переходит в сложение.

А из прошлого утверждения композиция соответствует умножению матриц. Значит сохраняется и сложение и композиция. Если C - изомофризм из теоремы, то

$$C(A + B) = C(A) + C(B)$$
 if $C(A \cdot B) = C(A) \cdot C(B)$.

И
$$C(Id) = E_n$$
. Потому что $[Id]_{u_i,u_i} = E$, т.к. $Id(u_i) = u_i = 0u_1 + \dots + 1 * u_i + \dots 0 * u_n$.

Definition 3.4. Полная линейная группа

 $End(V)\cong M_n(K)$. Рассмотрим группу биективных операторов $GL(V)\stackrel{\mathrm{def}}{=} End(V)^*\cong M_n(K)^*\stackrel{\mathrm{def}}{=} Gl(n,K)$ - группа обратимых матриц(полная линейная группа).

Example 3.2.

Пусть
$$n=2$$
. $\mathcal{A}:\begin{pmatrix}1\\0\end{pmatrix}\mapsto\begin{pmatrix}a\\c\end{pmatrix}$ и $\begin{pmatrix}0\\1\end{pmatrix}\mapsto\begin{pmatrix}b\\d\end{pmatrix}$

$$\mathcal{A}$$
 - изоморфизм $\iff dim\langle \begin{pmatrix} a \\ c \end{pmatrix}, \begin{pmatrix} b \\ d \end{pmatrix} \rangle = 2 \iff ad \neq bc.$

То есть матрица
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in Gl(2,K) \iff ad-bc \neq 0$$

Example 3.3. Комплексные числа

Пусть $K=\mathbb{R}$. Рассмотрим $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ - обратима, если $a^2+b^2\neq 0\iff a\neq 0 \lor b\neq 0$. То есть они все в Gl(2,K).

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -(b+d) & a+c \end{pmatrix}$$
$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \cdot \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} ac-bd & ad+bc \\ -(bc+ad) & ac-bd \end{pmatrix}$$

Умножение как у комплексных чисел. Значит мы нашли в $Gl(2,\mathbb{R})$ копию комплексных чисел.

$$\left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\} \cong \mathbb{C}$$

3.2 Матрица перехода.

Definition 3.5. Матрица перехода

Пусть V - в.п. над K. u_i - базис V. v_i - другой базис V. Матрицей перехода от базиса u_i к базису v_i называется $[Id]_{u_i,v_i}$.

Другими словами $u_j = \sum_i a_{ij} v_i$. Тогда $C = (a_{ij})$ - матрица перехода (обозначаем $C_{u_i \to v_i}$). То есть столбцы матрицы перехода это старый базис, разложенный по новому.

Знаем:
$$u \in U$$
. $x_u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ - координаты в базисе u_i .

Координаты
$$Id(u)=u$$
 в базисе v_i - это $Cx_u=\begin{pmatrix} x_1'\\ \vdots\\ x_n' \end{pmatrix}$

То есть формула замены координат при изменении базиса: $\begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} = C \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, где C - матрица перехода.

Свойства матрицы перехода:

- $1. C_{u_i \to u_i} = E_n$
- 2. Пусть есть 3 базиса u_i, v_i, w_i . Тогда $C_{v_i \to w_i} \cdot C_{u_i \to v_i} = C_{u_i \to w_i}$.
- 3. Обозначим $C_{u_i \to v_i} = C$, тогда $C_{v_i \to u_i} = C^{-1}$.

Corollary. $Mampuuu nepexoda = Gl_n(K)$.

Доказательство. По предыдущему пункту, если $C = C_{u_i \to v_i}$, то существует обратная, значит $C \in Gl_n(K)$.

Пусть $C \in Gl_n(K)$. Возьмем какой-то базис u_i . В качестве $(v_1, \ldots, v_n) = (u_1, \ldots, u_n) \cdot C$, то есть C - матрица перехода $C_{v_i \to u_i}$.

Осталось понять, что v_i - базис.

 $(v_1, \ldots, v_n) = (u_1, \ldots, u_n) \cdot C \Rightarrow (v_1, \ldots, v_n)C^{-1} = (u_1, \ldots, u_n)$. То есть u_i - линейные комбинации v_i , значит v_i - порождающая система \Rightarrow базис.

3.3 Матрица линейного отображения при замене базиса

Пусть U, V - в.п. над K. u_i - базис U, v_i - базис V и $\mathcal{A}: U \to V$ - линейное отображение, A - его матрица в базисах u_i, v_i .

Пусть u'_i , v'_i другие базисы U, V соответственно.

Как устроена $[A]_{u'_i,v'_i} = A'$?

$$U_{u_i'} \xrightarrow{Id_u} U_{u_i} \xrightarrow{\mathcal{A}} V_{v_i} \xrightarrow{Id_v} V_{v_i'}$$

Тогда $A' = [Id_v \circ \mathcal{A} \circ Id_u] = [Id_v] \cdot A \cdot [Id_u] = D \cdot A \cdot C^{-1}$, где D- матрица перехода $v_i \to v_i'$, а C- матрица перехода $u_i \to u_i'$.

Частный случай $\mathcal{A} \in End(V)$. Есть базис v_i , A - матрица \mathcal{A} в базисе v_i .

Тогда если v_i' - новый базис с матрицей перехода C, тогда $A' = C \cdot A \cdot C^{-1}$

Вопрос на будущее: Пусть есть $\mathcal{A} V \to V$. Как найти базис v_i , такой что матрица A была бы nonpowe?

Другая задача:

Дана A. Хотим к*ак можно более простую CAC^{-1}*.

 $\mathcal{A}: U \to V$. Хотим базисы u_i, v_i , что A была бы попроще...

Theorem 3.3. Канонический вид линейного отображения

 $\forall \mathcal{A}: U \to V$ существует базис u_i и базис v_i т.ч. матрица \mathcal{A} является *полуединичной*. То есть имеет вид $\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$ - единичная матрица и все остальное нули. Где $r = rg\mathcal{A}$.

Доказательство. Мы знаем, что существует базис U, такой, что u_1, \ldots, u_k - базис ядра, а $\mathcal{A}(u_{k+1}), \ldots, \mathcal{A}(u_n)$ - базис образа. Перенумеруем в обратном порядке. То есть $\mathcal{A}(w_1), \ldots, \mathcal{A}(w_{n-k})$ - базис образа, а остальные базис ядра.

Дополним $\mathcal{A}(w_1), \ldots, \mathcal{A}(w_{n-k})$ до базиса V (обозначим v_i). Получим искомую матрицу т.к. $\mathcal{A}(w_i) = v_i, i \leq n-k, \, \mathcal{A}(w_i) = 0$ иначе.

4 Лекция 4. Опасное приключение в перестановках столбцов

Proposition 4.1.

 $A, \tilde{A} \in M_{m,n}(K)$. Они являются матрицами одного и того же отображения, записанные в разных базисах, если существует обратимые C, D, т.ч. $\tilde{A} = CAD$

Можно завести эквивалентность: $A \sim \tilde{A}$, если выполнено условие выше.

Мы доказали, что в каждом классе эквивалентности есть представитель вида $\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$

Remark 4.1.

Если
$$\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} \sim \begin{pmatrix} E_s & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow s = r.$$
 Т.к. $s=r=dimIm$

Definition 4.1. Строчный ранг

 $rk_r(A)$ - максимальное количество линейно независимых строк матрицы A.

Theorem 4.1. Равенство строчного и столбцового ранга

 $rk(A) = rk_r(A)$ (докажем позже)

Definition 4.2. Транспонирование

Пусть $A = (a_{ij}) \in M_{m,n}(K)$. Тогда транспонированная к $A - A^T = (b_{ij}) \in M_{n,m}(K)$, где $b_{ij} = a_{ji}$.

Remark 4.2.

 $^T: M_{m,n}(K) o M_{n,m}(K)$ т.ч. $(A+B)^T = A^T + B^T$ и $(kA)^T = kA^T$.

То есть транспонирование - изоморфизм в.п.

Remark 4.3.

Пусть $A \in M_{m,n}(K)$, $B \in M_{n,l}(K)$. Тогда $(AB)^T = B^T A^T$ (очев проверяется прямым вычислением).

Lemma 4.1. Свойства ранга

- 1. $rk(A+B) \le rk(A) + rk(B)$, где $A, B \in M_{m,n}$.
- 2. $rk(AB) \leq \min(rkA, rkB)$, где $A \in M_{m,n}, \ B \in M_{n,l}$
- 3. Пусть $A, B \in M_n(K)$ и $B \in GL_n(K)$ (обратима). Тогда rk(AB) = rk(BA) = rk(A).
- 4. $A \in M_n(K)$, to $rk(A) = rk(A^T) \iff rk(A) = rk_r(A)$.

Remark 4.4.

$$AA^{-1} = E \Rightarrow (AA^{-1})^T = E^T = E \Rightarrow (A^{-1})^T A^T = E.$$

То есть A^T - обратима \iff A оборатима

Доказательство.

- 1. Пусть u_1, \ldots, u_n столбцы A, v_1, \ldots, v_n столбцы $B, u_i + v_i$ столбцы A + B. Пусть $U = \langle u_i \rangle = \langle u_{i_1}, \ldots, u_{i_k} \rangle$ и $V = \langle v_i \rangle = \langle v_{i_1}, \ldots, v_{i_l} \rangle$. Тогда $u_i + v_i \in U + V = \langle u_{i_1}, \ldots, v_{i_l} \rangle$. При этом $dim(U + V) \leq k + l$. Значит $rk(A + B) \leq k + l = rk(A) + rk(B)$.
- 2. Хотим доказать, что $dim Im(\mathcal{A} \circ \mathcal{B}) \leq min(dim Im(\mathcal{A}), dim Im(\mathcal{B}))$. Заметим, что $Im(\mathcal{A} \circ \mathcal{B}) = \{\mathcal{A}(\mathcal{B}(u))\} \subset \{A(v)\} = Im(\mathcal{A})$, значит $dim Im(\mathcal{A} \circ \mathcal{B}) \leq dim Im(\mathcal{A})$. $Im(\mathcal{A} \circ \mathcal{B}) = \{\mathcal{A}\mathcal{B}(u)\} = \{A(v) \mid v \in Im(\mathcal{B})\} = Im(\mathcal{A}_{\mid Im(\mathcal{B})})$ (сужение на образ \mathcal{B}). $dim Im(\mathcal{A}_{\mid Im(\mathcal{B})}) = dim Im(\mathcal{B}) - Ker(\mathcal{A}_{\mid Im(\mathcal{B})}) \leq dim Im(\mathcal{B})$.
- 3. $B \in GL_n(K)$. $rk(AB) \le rk(A)$ по п.2. Но $rk(A) = rk((AB)B^{-1}) \le rk(AB)$. Аналогично с умножением на B слева.
- 4. $A \in M_n$. Мы знаем, что $\exists C, D$, что $CAD = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$ и $C, D \in GL_n(K)$. По предыдущему пункту $rk(A) = rk(CAD) = r = rk((CAD)^T)$, т.к. матрица и её транспонированная равны. То есть $rk(A) = rk((CAD)^T) = rk(D^TA^TC^T) = rk(A^T)$ т.к. $D^T, C^T \in GL_n(K)$.

Вопрос: есть группа $GL_n(K)$. Хотим для неё придумать какую-нибудь порождающую систему из простых матриц.

Definition 4.3. Трансвекция

Трансвекция $t_{ij}(a) \in M_n(K)$, где $i \neq j \in [1, ..., n]$, $a \in K$ это матрица $E + ae_{ij}$ (единички на диагонали, a в позиции i, j и 0 иначе).

Действует она так: $t_{ij}(a) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_i + ax_j \\ \vdots \\ x_n \end{pmatrix}$ — прибавление j к i с коэф. a.

Это называется элементарное преобразование первого типа.

Remark. Ясно, что $t_{ij}(a) \in GL_n(K)$, т.к. существует обратная : $t_{ij}(-a)$.

Definition 4.4. Дилатация

Дилатация $i \in [1, ..., n]$, $a \in K^*$. Тогда $m_i(a) = E + (a-1)e_{ii}(a$ на позиции ii, 1 на диагонали, иначе 0).

$$m_i(a) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ ax_i \\ \vdots \\ x_n \end{pmatrix}$$
 — умножение i на a .

Это - элементарное преобразование второго рода.

Remark. Ясно, что $m_i(a) \in GL_n(K)$, т.к. существует обратная : $m_i(a^{-1})$.

Definition 4.5. Транспозиция

Элементарное преобразование третьего рода: транспозиция (меняем местами i, j)

$$\begin{pmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_j \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_j \\ \vdots \\ x_i \\ \vdots \\ x_n \end{pmatrix}$$

$$s_{ij} = E - e_{ii} - e_{jj} + e_{ij} + e_{ji}.$$

Remark 4.5.

Третий тип не нужен, так как он выражается через первые два.

$$\begin{pmatrix} a \\ b \end{pmatrix} \underset{t_{12(1)}}{\rightarrow} \begin{pmatrix} a+b \\ b \end{pmatrix} \underset{t_{21}(-1)}{\rightarrow} \begin{pmatrix} a+b \\ -a \end{pmatrix} \underset{t_{12}(1)}{\rightarrow} \begin{pmatrix} b \\ -a \end{pmatrix} \underset{m_2(-1)}{\rightarrow} \begin{pmatrix} b \\ a \end{pmatrix}$$

То есть $s_{ij} = m_2(-1)t_{ij}(1)t_{ji}(-1)t_{ij}(1)$

Действие $t_{ij}(a), m_i(a)$ на матрицы.

 $t_{ij}(a) \cdot A$ - матрица, получающаяся из A, прибавлением j-й строки, умноженной на a к i-й.

 $m_i(a) \cdot A$ - матрица, получающаяся из A, умножением i-й строки на a.

Что будет, если умножаем справа?

 $A \cdot m_i(a) = ((A \cdot m_i(a))^T)^T = (m_i(a)A^T)^T$ - умножили i-й столбец на a.

 $A \cdot t_{ij}(a)$ - матрица, полученная из A, прибавлением i-го столбца, умноженного на a к j-му(т.к. $t_{ij}(a)^T = t_{ji}(a)$).

 s_{ij} меняет i и j строку, если умножаем слева и столбцы, если справа.

Все эти элементарные матрицы обратимы, значит умножение на них с любой стороны не меняет ранга(то есть и элементарные преобразования не меняют ранга).

Метод Гаусса в наших терминах берет A, делает какие-то элементарные преобразования и получает матрицу трапецевидного вида, которую можно привести к полуединичной.

Получили алгоритмическое определение ранга - количество ненулевых строк после алгоритма Гаусса.

Remark. Для не квадратных матриц все в силе!

Theorem 4.2.

- 1. Пусть $A \in M_{m,n}(K)$, тогда \exists элементарные матрицы e_1, \ldots, e_k , т.ч. $e_1 \ldots e_k A$ имеет треугольный вид(под главной диагональю 0).
- 2. Пусть $A \in GL_n(K)$, тогда \exists элементарные e_i , т.ч. $e_1 \dots e_n A = E$.
- 3. Пусть $A \in GL_n(K)$, тогда \exists элементарные f_i , т.ч. $A = f_1 \dots f_l$.
- 4. Пусть $A \in M_{m,n}(K)$. Тогда \exists элементарные $e_1, \ldots, e_k \in GL_m, f_1, \ldots, f_l \in GL_n$ т.ч. $e_1 \ldots e_k A f_1 \ldots f_l$ полуединичная матрица

Example 4.1.

Рассмотрим $A = \begin{pmatrix} 1 & 2 & \dots & n \\ 0 & 0 & \dots & 0 \end{pmatrix}$ - никак не упростить преобразованиями над строками, а если добавить преобразования над столбцами, то получим 1 в 1 клетке и 0 иначе.

Если $e_1 \dots e_n A = E$. Домножим на $e_n^{-1} \dots e_1^{-1}$. Получим $A = e_n^{-1} \dots e_1^{-1} = f_1 \dots f_k$. $2 \Rightarrow 4$. $\forall A \exists C, D \in GL$, т.ч. CAD - полуединичная, но $C = e_1 \dots e_k$ и $D = f_1 \dots f_m$.

Доказательство 1). Индукция по n. База n=1. Матрица имеет вид $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$. Либо все 0, тогда

все хорошо. Иначе существует a_i не 0. Применим s_{1i} . В этом случае можем привести к виду

 $\begin{pmatrix} a_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ операциями $t_{i1}(-\frac{a_j}{a_1})$ - элементарные матрицы.

Переход: $n-1 \to n$. Посмотрим на первый столбец $\begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix}$. Делаем то же, что и в базе.

Получим $\begin{pmatrix} x_1 \\ \vdots \\ 0 \end{pmatrix}$. По индукционному предположению оставшуюся часть матрицы (\tilde{A}) сможем привести к треугольному виду.

2) Пусть A - обратима. По пункту 1 приведем к треугольному виду \tilde{A} . \tilde{A} - обратима как произведение обратимых.

Lemma 4.2.

Если есть треугольная матрица, то она обратима $\iff \forall i \ a_i \neq 0.$

Доказательство. \Rightarrow Пусть есть $a_i = 0$. $A = (c_1 | \dots | c_n)$, то $c_1, \dots, c_i \in \langle e_{11}, \dots, e_{i-1,i-1} \rangle$. Значит они линейно зависимы, то есть и все столбцы линейно зависимы.

$$rk(A) < n \Rightarrow n = rk(E) = rk(AA^{-1}) < n$$
 - противоречие.

Итак, у нас \tilde{A} треугольная и все a_i не 0. Применим $\prod m_i(\frac{1}{a_i})$. Получим треугольную с 1 на диагонали.

Делаем метод гаусса в обратную сторону. Сначала для последнего столбца занулим все кроме послнеднего. То есть применим $t_{in}(-a_{in})$. Это даст нам последний столбец - 1 на n-м месте и 0 иначе. И так далее.

Theorem 4.3.

Следующие условия для $A \in M_n(K)$ равносильны:

- 1. $A \in GL_n(K)$
- 2. строки A линейно независимы
- 3. столбцы A линейно независимы
- 4. rk(A) = n
- 5. Любая система с матрицей A имеет единственное решение
- 6. A является матрицей отображения A, где A изоморфизм
- 7. \exists элементарные преобразования, т.ч. $A \to$ треугольную с не нулями на диагонали.
- 8. \forall элементарных преобразований, т.ч. они превращают A в треугольную все a_i не 0.

Доказательство. 2) $rk_r(A) = n$, 3) rk(A) = n, мы знаем $rk(A) = rk_r(A)$.

- 1) \Rightarrow 4) т.ч. $AA^{-1}=E\Rightarrow n=rk(E)\leq rk(A)\leq n.$
- $4) \Rightarrow 1)$ Существует $e_1 \dots e_m$, что $e_1 \dots e_m A$ треугольная \tilde{A} . При e_i обратимы, значит $rk(\tilde{A}) = n$. Из доказательства леммы все диагональные элементы не 0. Значит \tilde{A} приводится к E обратима, то есть и A обратима.

Remark 4.6. Алгоритм поиска обратной матрицы

Пусть $A \in M_n(K)$ и она обратима. То есть $\exists e_1, \dots, e_k : e_1 \dots e_k A = E$. Значит $A^{-1} = e_1 \dots e_k$.

Алгоритм: напишем матрицу (A|E). Применяем расширенного (приводим к E) Гаусса к A. Будем применять элементарные преобразования к строкам (A|E).

Таким образом получим $(e_1 \dots e_k A | e_1 \dots e_k)$.

Если слева стоит E, тогда справа стоит A^{-1} .

5 Лекция 5. Треуголки и подготовка к аду

5.1 Треугольные матрицы

Definition 5.1.

 $A \in M_n(K)$. Называется верхнетреугольной $(A \in UT_n)$, если $a_{ij} = 0$ при i > j.

Строго верхнетреугольной, если при $i \geq j$.

Унитреугольной, если A - верхнетреугольная и $a_{ii}=1$.

Аналогично нижнетреугольная (LT_n) , если $a_{ij} = 0$ при i < j и так далее...

Remark. Для нижнетреугольных тоже все верно, так как они транспонированные к верхнетреугольным...

Lemma 5.1.

- 1. UT_n подкольцо в $M_n(K)$
- 2. $A, B \in UT_n$. $A \cdot B$ имеет на диагонали произведения диагональных элементов A, B.
- 3. $A \in UT_n^* \iff \forall a_{ii} \neq 0$
- 4. $A \in UT_n$ нильпотентна $(\exists n : A^n = 0) \iff A$ строго верхнетреугольная
- 5. $A \in UT_n \iff A(\langle e_1, \dots, e_k \rangle) \subset \langle e_1, \dots, e_k \rangle \, \forall k$.

Доказательство. 1) Замнкутость по сложению очев. 0, E очевидно верхнетреугольные.

Замкнутность относительно умножения. Пусть $(a_{ij}) = A, B = (b_{ij})$ - верхнетреугольные. C = AB.

Пусть i>j. Тогда $\forall k$ либо i>k либо k>j, значит $a_{ik}=0 \lor b_{kj}=0$, поэтому

$$c_{ij} = \sum_{k} a_{ik} b_{kj} = 0$$

2) Если i=j, тогда $c_{ii}=\sum_k a_{ik}b_{ki}=a_{ii}b_{ii}$ т.к. если k< i, то $a_{ik}=0$, или k>i то $b_{ki}=0$.

5)
$$a_{ij}=0$$
 при $i>j$ то есть j -й столбец
$$\begin{pmatrix}c_1\\ \dots\\ c_j\\ 0\\ \dots\\ 0\end{pmatrix}$$

To есть $Ae_j \in \langle e_1, \dots, e_j \rangle$.

Таким образом верхнетреугольные матрицы сохраняют цепочку вложенных друг в друга подпространств $\langle e_1 \rangle \subset \langle e_1, e_2 \rangle \subset \langle e_1, e_2, e_3 \rangle \dots$

4) Пусть A не строго верхнетреугольная, то есть $\exists a_{ii} \neq 0$. По предыдущему пункту A^N имеет ненулевой элемент на диагонали, значит не нильпотентная.

Пусть строго верхнетреугольная. $A(e_k) \in \langle e_1, \dots, e_{k-1} \rangle \ \forall k$.

Значит $A^2(e_k) \in \langle Ae_1, \dots, Ae_{k-1} \rangle \subset \in \langle e_1, \dots, e_{k-2} \rangle$

Так получим $A^k(e_k) = 0$.

Другими словами: $A^n = (b_{ij}).$ $b_{ij} = \sum a_{i,i_1} a_{i_1,i_2} \dots a_{i_{n-1},j}$. Каждое слагаемое не 0, если последовательность индексов $i, i_1, \dots, i_{n-1}, j$ строго возрастающая. Но их n+1. Значит все нули.

(при возведении в квадрат появится ещё одна нулевая диагональ, выше диагональной...)

Proposition 5.1.

Пусть A - верхнетреугольная с ненулевой диагональю. Рассмотрим $B=(b_{ij}),$ где $b_{ii}=\frac{1}{a_{ii}}$.

 \ddot{A} - обратима $\iff BA$ - обратима

BA - унитреугольная, то есть BA = E + N, где N - нильпотентна.

E + N - обратима, т.к. если $N^k = 0$, то

$$(E+N)(E-N+N^2-\cdots \pm N^{k-1}) = E^K \pm N^k = E$$

Lemma 5.2. LU-разложение

Итак, UT_n, LT_n - подкольца. $UT_n \cap LT_n = D_n$ - диагональные $(D_n \cong K^n)$ как кольцо) Мы знаем, что если $A \in M_n(K)$, то существуют элементарные e_i , что $e_1 \dots e_k A$ - верхнетреугольная.

Обычно мы делали: $e_l = t_{ij}(a)$, где i > j. Игогда $e_l = s_{ij}$.

Предположим, что не было s_{ij} . Тогда все $e_i \in LT_n(K)$. Значит их произведение тоже. То есть существует $C \in LT_n^*$ т.ч. $CA = B \in UT_n$. То есть $A = C^{-1}B$, где $B \in UT_n$, а $C^{-1} \in LT_n$.

Последнее верно, так как $C = e_k^{-1} \dots e_1^{-1}$ - тоже все нижнетреугольные.

Lemma 5.3.

Пусть $A \in GL_n(K)$. Рассмотрим $A_k = (a_{ij})_{i,j=1,\dots k}$ (левый верхний угол размера k) И пусть A т.ч. A_1,\dots,A_n - обратимы, тогда в Гауссе можно использовать, только $t_{ij}(a)$, где i>j.

Доказательство. Рассмотрим $\langle r_1^k, \dots, r_k^k \rangle$ - пространство строк матрицы A_k .

Пока применяем t_{ij} с i>j это пространство не меняется(если r_i заменяем на r_i+ar_j то оболочка не меняется).

Индукция по k. A можно привести к верхнетреугольному виду, только с t_{ij} , где i>j.

База $a_{11} \neq 0$ (т.к. A_1 - оборатима), значит можем получить нули в первом столбце под a_{11} ничего не переставляя.

Переход $k-1 \to k$. Пусть получили нолики под диагональю в первых k-1 столбцах. Надо, чтобы $a_{kk} \neq 0$. Но если она 0, тогда первые k строк A_k линейно зависимы — противоречие с обратимостью. Значит не 0, то есть сможем под ним получить нолики с помощью трансвекций.

Lemma 5.4.

Пусть A - обратима. Тогда можно переставить строки так, что для новой матрицы \tilde{A} будет выполнено условие прошлой леммы.

Доказательство. Индукция: можно переставить так, чтобы первые k были обратимы. База: k=1.

A - обратима, значит первый столбец не нулевой ($\exists a_{j1} \neq 0$). Тогда переставим первую строку с j-й.

Переход: A_1, \ldots, A_k - обратимы. Посмотрим на строки r_i первых k+1 столбцов.

B - матрица из первых k+1 столбцов.

rkB = k + 1, иначе первые k + 1 столбцов линейнозависимы(у матрицы A, а она обратима).

Значит $dim\langle r_1,\ldots,r_n\rangle=k+1$. Значит, что $\exists l>k\ r_l\not\in\langle r_1,\ldots,r_k\rangle$. Тогда сделаем перестановку $s_{k+1,l}$.

Теперь они линейно независимы, значит A_{k+1} обратима.

Theorem 5.1.

Пусть $A \in GL_n(K)$. s_1, \ldots, s_k перестановки, т.ч. $\underbrace{s_1 \ldots s_k}_{p} A$ удовлетворяет первой лемме.

Тогда PA приводится к верхнетреугольному виду нижнетреугольными преобразованиями. То есть $\exists L \in LT_n^*$, что $LPA = U \in UT_n$

Или $A = P^{-1}L^{-1}U$, где $U \in UT_n, L \in LT_n, P$ - матрица перестановки строк.

Remark. Матрица перестановки $P = (p_{ij}), \exists \pi \in S_n, m.ч. P_{i\pi(i)} = 1 \ u \ 0 \ u$ наче.

5.2 Явные формулы линейной алгебры(определитель)

В чем смысл ad-bc для матрицы $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$?

ad-bc площадь параллелограмма, натянутого на $\begin{pmatrix} a \\ c \end{pmatrix}$ и $\begin{pmatrix} b \\ d \end{pmatrix}$

Аксиомы "площади" $(v_1, v_2) \to S(v_1, v_2)$

$$S(kv_1,v_2)=kS(v_1,v_2), k>0$$
 — однородность по 1-му(2-му) аргументу
$$S(v_1,v_1)=0$$
 — кососимметричность
$$S(v_1+v_1',v_2)=S(v_1,v_2)+S(v_1',v_2)$$
— аддитивность по 1-му(2-му) аргументу
$$S(e_1,e_2)=1$$

Аддитивность + однородность = линейность.

Следствие из аксиом: $S(v_1 + kv_2, v_2) = S(v_1, v_2)$.

С помощью аксиом любой параллелограмм можем превратить в квадрат 1 на 1.

$$S(\begin{pmatrix} a \\ c \end{pmatrix}, \begin{pmatrix} b \\ d \end{pmatrix}) = S(\begin{pmatrix} a \\ c \end{pmatrix}, \begin{pmatrix} 0 \\ d - \frac{bc}{a} \end{pmatrix}) = a*(d - \frac{bc}{a}) \\ S(\begin{pmatrix} 1 \\ \frac{c}{a} \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}) = (ad - bc) \\ S(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\$$

Definition 5.2. Полилинейное отображение

 V_1,\dots,V_k - в.п. над K. Тогда $f:V_1\times\dots\times V_k\to K$ называется полилинейным, если

$$\forall i \ f(v_1, \dots, v_i' + v_i'', \dots, v_k) = f(v_1, \dots, v_i', \dots, v_k) + f(v_1, \dots, v_i'', \dots, v_k)$$

И константа выносится.

То есть если зафиксировать все аргументы кроме одного, то будет линейная функция.

Example. Билинейность: f(u' + ku'', v) = f(u', v) + kf(u'', v) u f(u, v' + kv'') = f(u, v') + kf(u, v'')

Definition 5.3.

Пусть f - полилинейное, тогда f называется кососиметричным, если $\forall i, j, v_1, \ldots, v_n$ т.ч. если $v_i = v_j \Rightarrow f(v_1, \ldots, v_n) = 0$.

Lemma 5.5.

Пусть f - кососимметрично, тогда

$$f(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_n) = -f(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_n)$$

Доказательство. Пусть n=2 для удобства записи.

$$f(v_1 + v_2, v_1 + v_2) = 0 = f(v_1, v_1) + f(v_1, v_2) + f(v_2, v_1) + f(v_2, v_2) = f(v_1, v_2) + f(v_2, v_1) = 0$$

Обратное верно в поле характеристики не 2.

Как задать полилинейное отображение?

Пусть теперь $V_i = K^n$, а V = K. То есть рассматриваем полилинейные отображения $(K^n)^n \cong M_n(K) \to K$

Theorem 5.2.

Пусть $f_1, f_2: (K^n)^n \to K$ - полилинейные, кососимметричные и оба не тождественные нули.

Тогда $\exists c \in K^* : f_2 = cf_1.$

Доказательство. Рассмотрим $v_1, \ldots, v_n \in K^n$ и зафиксируем базис e_1, \ldots, e_n . $v_i = \sum a_{ij}e_j$.

Тогда
$$f(v_1,\ldots,v_n)=\sum_{j_1,\ldots,j_n}a_{1j_1}\ldots a_{n,j_n}f_1(e_{j_1},\ldots,e_{j_n})=\sum_{\{j_1,\ldots,j_n\}=\{1,\ldots,n\}}(\prod a_{i,j_i})f(e_{j_1,\ldots,j_n})=\sum_{\{j_1,\ldots,j_n\}=\{1,\ldots,n\}}\pm(\prod_i a_{i,j_i})f_1(e_{1},\ldots,e_{n})$$

Причем знак не зависит от f_1 . Аналогично с f_2 .

Ясно, что раз $f_1, f_2 \neq 0 \Rightarrow f_i(e_1, \dots, e_n) \neq 0$.

To есть
$$f_2(e_1, \ldots, e_n) = c f_1(e_1, \ldots, e_n)$$

Definition 5.4. Определитель

Определителем называется полилинейное, кососимметричное отображение

$$det: (K^n)^n \to K$$

т.ч. $det(e_1, \dots, e_n) = 1$, где e_i - стандартный базис.

Мы доказали, что существует не более одной такой функции.

Definition 5.5. Знак перестановки

Пусть S_n - группа перестановок — биекций из $[1,\ldots,n] \to [1,\ldots,n]$. Тогда существует единтсвенный гомоморфизм групп sign $: S_n \to \{1,-1\}$ т.ч. sign(t) = -1, где t - транспозиция $(\exists i,j:t(i)=j,t(j)=i,t(k)=k$ иначе).

Доказательство позже.

Theorem 5.3.

Определитель существует $\forall n \in \mathbb{N}$

Доказательство. $v_1, \dots, v_n \to (a_{ij}) = A$. Определим $det(A) = \sum_{\pi \in S_n} \mathrm{sign}(\pi) a_{1,\pi(1)} \dots a_{n,\pi(n)}$ Проверим, что все хорошо.

$$det(E) = sign(Id) \prod_{i} a_{i,i} = 1.$$

Полилинейность:
$$c_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{ni} \end{pmatrix} = \begin{pmatrix} a'_{1i} \\ \vdots \\ a'_{ni} \end{pmatrix} + k \begin{pmatrix} a''_{1i} \\ \vdots \\ a''_{ni} \end{pmatrix}$$

Тогда $\exists ! l = \pi^{-1}(i)$

$$det(A) = \sum_{\pi \in S_n} sign(\pi) a_{1,\pi(1)} \dots (a'_{li} + k a''_{li}) \dots a_{n,\pi(n)} = det(c_1, \dots, c'_i, \dots, c_n) + k det(c_1, \dots, c''_i, \dots, c_n)$$

6 Лекция 6. Рождение det-a

Definition 6.1. Аксиоматическое определение определителя

 $det: M_n(K) \to K$ — полилинейное по столбцам, кососимметричное отображение, т.ч. det(E) = 1.

Lemma 6.1.

 $det(A) = \sum_{\pi \in S_n} \operatorname{sign}(\pi) \prod_i a_{i,\pi(i)}$ удовлетворяет аксиомам.

Доказательство. Кососимметричность: $A = (c_1 | \dots | c_n), c_i = c_j \Rightarrow det(A) = 0.$

Имеем $\forall k = 1, \dots, n \ a_{k,i} = a_{k,j}$. Разобъём перестановки на пары:

Рассмотрим перестановку $\pi:a_{1,\pi(1)}\dots a_{\pi^{-1}(i),i}\dots a_{\pi^{-1}(j),j}\dots a_{n,\pi(n)}$ и

 $\tilde{\pi}$: $a_{1,\pi(1)} \dots a_{\pi^{-1}(j),i} \dots a_{\pi^{-1}(i),j} \dots a_{n,\pi(n)}$. На самом деле $a_{\pi^{-1}(i),j} = a_{\pi^{-1}(i),i}$ и $a_{\pi^{-1}(j),i} = a_{\pi^{-1}(j),j}$. То есть произведение в этих слагаемых равны, но знак разный.

Проверим, что $sign(\pi) = -sign(\tilde{\pi})$. Это верно, так как $\tilde{\pi} = (ij) \circ \pi$, a sign(ij) = -1.

Theorem 6.1. Существование знака

Существует гомоморфизм sign : $S_n \to \{-1,1\}$ т.ч. $\mathrm{sign}(ij) = -1 \ \forall i,j.$

Доказательство. Пусть $\pi:\begin{pmatrix}1&2&\dots&n\\\pi(1)&\pi(2)&\dots&\pi(n)\end{pmatrix}$.

Определим $inv(\pi) = \{(i,j) | i < j \land \pi(i) > \pi(j) \}$. Пусть $sign(\pi) = (-1)^{|inv(\pi)|}$.

Lemma 6.2.

Если t - транспозиция, тогда $\mathrm{sign}(t \circ \pi) = -\mathrm{sign}(\pi)$

Доказательство. Пусть π : $\begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix}$. Пусть $t = (\pi(i), \pi(j))$.

Тогда $t \circ \pi$ - мы поменяли местами $\pi(i)$ и $\pi(j)$ в таблице.

Как меняется множество inv? Достатно рассмотреть фрагмент $\pi(i), a_1, \ldots, a_k, \pi(j)$, так как остальные инверсии остались.

Рассмотрим следующую последовательность преобразований

$$\pi(i), a_1, \dots, a_k, \pi(j) \to a_1, \pi(i), \dots, a_k, \pi(j) \to \dots \to a_1, \dots, a_k, \pi(i), \pi(j)$$

$$a_1, \ldots, a_k, \pi(j), \pi(i) \rightarrow \cdots \rightarrow \pi(j), a_1, \ldots, a_k, \pi(i)$$

При каждой операции размер inv изменяется на единицу. А таких операций 2k+1.

To есть транспозиция поменяла четность |inv|.

Lemma 6.3.

Любая перестановка является композицией транспозиций.

Доказательство. очев точка (сначала на первое место ставим нужный элемент транспозицией, потом второй на нужный и так далее...)

Возвращемся к теореме. $\pi = t_1 \circ \cdots \circ t_k$. По первой лемме $sign(\pi) = (-1)^k sign(Id) = (-1)^k$. В частности если sign(t) = -1. $sign(\pi_1 \circ \pi_2) = sign(t_1 \dots t_l) = (-1)^{k+l} = (-1)^k * (-1)^l = sign(\pi_1) * sign(\pi_2)$

Пусть $\pi = t_1 \dots t_k = t_1 \dots t_l \Rightarrow k \equiv_2 l$ т.к. это все сравнимо с четностью перестановки. Значит наше определение корректно!

Remark. $sign(\pi)$ не зависит от нумерации переставляемых элементов.

Lemma 6.4.

$$\operatorname{sign}(\pi) = \operatorname{sign}(\pi^{-1})$$

Доказательство. $1 = \text{sign}(Id) = \text{sign}(\pi) * \text{sign}(\pi^{-1})$

Theorem 6.2.

$$det(A) = det(A^T)$$

Доказательство. Пусть a' - элементы A^T .

$$det(A) = \sum_{\pi \in S_n} sign(\pi) \prod_i a_{i,\pi(i)} = \sum_{\pi \in S_n} sign(\pi^{-1}) \prod_i a_{\pi^{-1}(i),i} =$$

$$= \sum_{\pi \in S_n} sign(\pi^{-1}) \prod_i a'_{i,\pi^{-1}(i)} = \sum_{\sigma \in S_n} sign(\sigma) \prod_i a'_{i,\sigma(i)} = det(A^T)$$

Proposition 6.1.

det - полилинеен и кососимметричен по строкам

Доказательство. Кососимметричность: транспонируем строки — получаем столбцы

$$det\begin{pmatrix} r_1 \\ \vdots \\ r_i \\ \vdots \\ r_i \\ \vdots \\ r_n \end{pmatrix} = det(r_1|\dots|r_i|\dots|r_i|\dots|r_n) = 0$$

Полилинейность аналогично.

Theorem 6.3.

- 1. $det(t_{ij}(a)A) = det(A) = det(At_{ij}(a))$
- 2. $det(m_i(a)A) = a * det(A) = det(Am_i(a))$
- 3. $det(s_{ij}A) = -det(A) = det(As_{ij})$

Доказательство. Достаточно проверить для столбцов.

- 2) из определения полилинейности.
- 3) кососимметричность

1)
$$det(a_1|...|a_i+aa_j|...|a_j|...|a_n) = det(a_1|...|a_i|...|a_j|...|a_n) + a*det(a_1|...|a_j|...|a_j|...|a_n) = det(A) + a*0 = det(A)$$

Proposition 6.2.

Пусть $A \in M_n(K)$. Мы знаем, что существуют трансвекции e_1, \ldots, e_k - т.ч. $e_1 \ldots e_k A$ имеет треугольный вид.

Тогда det(A) = det(треугольной) =произведение диагональных элементов, так как это единственное произведение без нулей.

Theorem 6.4.

 $A \in M_n(K)$. A - обратима $\iff det(A) \neq 0$.

 \tilde{A} обратима \iff на диагонали $\prod a_{ii} \neq 0 \iff det(\tilde{A}) \neq 0 \iff det(A) \neq 0.$

Theorem 6.5.

 $det: M_n(K) \to K$ — гомоморфизм групп по умножению: $det(AB) = det(A)det(B), \ det(E) = 1, \ det(A^{-1}) = \frac{1}{det(A)}$

Доказательство. $B=(c_1|\ldots|c_n)$. Тогда $AB=(Ac_1|\ldots|Ac_n)$

Рассмотрим $f: B \mapsto det(AB)$. Докажем, что f полилинейно по столбцам и кососимметрично. Пусть $c_1 = c_1' + c_1''$

$$det(AB) = det(A(c'_1 + c''_1)|Ac_2| \dots |Ac_n)) = det(A(c'_1)|Ac_2| \dots |Ac_n) + det(A(c''_1)|Ac_2| \dots |Ac_n)) = det(AB') + det(AB'').$$

Кососимметричность аналогично.

Итак, $B \to det(AB)$ - полилинейно и кососимметрично. Значит f(B) = c * det(B). Подставим B = E, тогда f(E) = det(A) = c * det(E) = c.

Значит
$$f(B) = det(A)det(B)$$
.

Theorem 6.6.

Пусть $A = \begin{pmatrix} B & D \\ 0 & C \end{pmatrix} (B, C, D$ - матрицы). Тогда det(A) = det(B) * det(C).

Corollary. Для произвольной блочно-треугольной матрицы $det = \prod_i det(A_i)$, где A_i - матрицы на диагонали..

Доказательство. Случай 1. $det(\begin{pmatrix} E & D \\ 0 & E \end{pmatrix})$. Элементарными преобразованиями приведем к $\begin{pmatrix} E & 0 \end{pmatrix}$..

виду $\begin{pmatrix} E & 0 \\ 0 & E \end{pmatrix}$, её определитель 1.

Случай 2. Пусть $\begin{pmatrix} A & D \\ 0 & E \end{pmatrix}$. Фиксируем D. $A = (c_1|\dots|c_k)$. Тогда $f: A \mapsto det(\begin{pmatrix} A & D \\ 0 & E \end{pmatrix})$ аналогично предыдущей теореме полилинейная, кососимметричная функция от c_i . Значит $det(\begin{pmatrix} A & D \\ 0 & E \end{pmatrix}) = c*det(A)$. Подставляем A = E. Получаем, что c = 1.

Общий случай. Фиксируем A, D. Тогда функция $C \mapsto \begin{pmatrix} A & D \\ 0 & C \end{pmatrix}$ полилинейна и кососимметрична.

Тогда $det(\begin{pmatrix} A & D \\ 0 & C \end{pmatrix}) = c*det(C)$. Подставляем C=E. Получим, что c=det(A).

Значит
$$det(\begin{pmatrix} A & D \\ 0 & C \end{pmatrix}) = det(A)*det(C)$$

Theorem 6.7. Разложение по строке/столбцу

Пусть $A \in M_n(K)$. $A = (a_{ij})$. Обозначим A_{ij} - определитель матрицы без i-й строки и j-го столбца.

Тогда $\forall i \ det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} A_{ij}$ - разложение по строке. И $\forall j \ det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} A_{ij}$ - по столбцу.

Доказательство. Для солбцов аналогично.

Пусть i-я строка $(a_{i1},\ldots,a_{in})=\sum_j a_{ij}e_j$. Тогда по полилинейности определителя

 $det(A) = \sum_{i} a_{ij} det(\tilde{A}_{j})$, где \tilde{A}_{j} - матрица A, но вместо i-й строки стоит e_{i} .

Переставим строки и столбцы так, чтобы i-я строка стала первой и j-й столбец первым, а остальные сохранили порядок: свайпаем i с i-1, i-1 с i-2 и так далее.

 $\begin{pmatrix} 1 & 0 \\ * & B \end{pmatrix}$. Её определитель отличается от $det(\tilde{A})$ на $(-1)^{i+j-2}$.

По теореме о блочной матрице $det\begin{pmatrix} 1 & 0 \\ 0 & B \end{pmatrix} = det(B) = det(A_{ij}).$

To есть $det(A) = \sum_{i} (-1)^{i+j-2} a_{ij} A_{ij}$.

Definition 6.2. Алгебраическое дополнение

 $(-1)^{i+j}A_{ij}$ - алгебраическое дополнение элемента a_{ij}

Lemma 6.5.

 $\sum_{j}(-1)^{i+j}a_{kj}A_{ij}=0$, если $k\neq i$.

Доказательство. Заменим в A строчку r_i на r_k . Пусть новая матрица B. A_{ij} не изменился.

$$\sum (-1)^{i+j} a_{kj} A_{ij} = \det(B) = 0$$

Lemma 6.6. Явная формула обратной матрицы

 $a'_{ij} \stackrel{\text{def}}{=} (-1)^{i+j} A_{ji}$. Тогда по теореме и следствию

$$\sum_{k} a_{ik} a'_{kj} = \sum_{k} a_{ik} (-1)^{k+j} A_{jk} = \begin{cases} 0, & i \neq j \\ \det(A), & i = j \end{cases}$$

То есть $(a_{ij}) * (a'_{ij}) = det(A) * E$. Пусть $det(A) \neq 0$. Тогда $\frac{1}{det(A)} * (a'_{ij}) = A^{-1}$.

Theorem 6.8. Формула Крамера

Пусть дана СЛУ Ax = b, где $A \in M_n(K)$. Пусть $det(A) \neq 0$. Тогда $\forall i \ x_i = \frac{\Delta_i}{\Delta}, \ \text{где } \Delta = det(A), \ \Delta_i = det(c_1|\dots|b_i|\dots|c_n)$

Доказательство. $det(A) \neq 0$, значит $x = A^{-1}b = \frac{(a'_{ij})b}{det(A)}$

То есть $x_i = (i$ -я строка $A^{-1}) * b = \frac{1}{\det(A)} * \sum_i b_i * (a'_{ij})$

$$x_i = \frac{1}{\det(A)} \sum_{j} b_j (-1)^{i+j} A_{ji} = \frac{\Delta_i}{\Delta}$$

Мотивирующий вопрос:

Пусть есть $\{A_n\}$, $A_n \in M_k(\mathbb{R})$. И $A_n \to A$. Существуют A_n^{-1} . Верно ли, что существует ли $A_n^{-1} \to A^{-1}$.

HE BEPHO $A_n = \frac{1}{n}E$.

А предел необратимых необратим, так как det - непрерывная фукнция (многочлен от элементов матрицы).

Условие rkA < n задается уравнением det(A) = 0.

Утв: условие rkA < k задается системой полиномиальных уравнений

Lemma 6.7. Ранг матрицы через миноры

 $rkA = max\{k \mid \exists$ подматрица размера k т.ч. её $det \neq 0$ }

То есть все миноры порядка < k нулевые (матрица из любых k строчек и столбцов имеет нулевой определитель).

7 Лекция 7. Восстановление в полях частных

7.1 Локализация и поля частных

Вопрос: верно ли, что для любого кольца R существует поле K, т.ч. $R \subset K$.

Аксиомы для такого кольца:

- 1. R коммутативно и с 1.
- $2. \ R$ без делителей нуля.

Example 7.1.

Факт: \forall ассоц. коммут. кольца без делителя 0 (область целостности) можно вложить в поле, и при том универсальным образом

Definition 7.1. Мультипликативня система

Пусть R кольцо, $S\subset R$ - мультипликативная система, если она замкнута относительно умножения и $0\notin S$

Example 7.2.

 $x \in \mathbb{Z} \setminus \{0\}$: $\{x, x^2, x^3, \ldots\}$ - мультипликативная система

Example 7.3.

Пусть R - область целостности, тогда $S=R\setminus\{0\}$ - мультипликативная система.

Хотим выполнение универсальное свойство:

Построить кольцо K(R) и инъект. гомоморфизм $i:R\to K(R)$ т.ч.

- 1. $\forall s \in S \Rightarrow i(S) \in K(R)^*$
- 2. Если $j:R\to R'$ инъективный гомоморфизм, т.ч $j(s)\in R^*\Rightarrow \exists !h$ гомоморфизм: $j=h\circ i$

Example 7.4.

Рассмотрим другую универсальную задачу:

Хотим гомоморфзим $f: R \to K, K$ - поле, т.ч. \forall гомоморфизма $f': R \to K', K'$ - поле пропускается через f то есть существует $h: f' = h \circ f$

Существует ли такой f? Не всегда:

$$R = \mathbb{Z}$$

$$\mathbb{Z} \to \mathbb{Q}$$
 и $\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$

Но гомоморфизмов между \mathbb{Q} и $\mathbb{Z}/2\mathbb{Z}$ не существует.

Нет универсального гомоморфизма из \mathbb{Z} в поле(но есть универсальный инъективный гомоморфизм).

Theorem 7.1. Построение поля частных

Пусть R - кольцо, S - мультипликативная система. Тогда унив. задача выше имеет решения.

Доказательство. Для случа R — области целостности $S=R\setminus\{0\},$ построим $i:R\to K,$ K - поле, i - вложение

Рассмотрим $\kappa apmu+\kappa u$ вида $\frac{a}{b},\ a,b\in R,\ b\neq 0.$

Рассмотрим $R \times (R \setminus \{0\}) \stackrel{\text{def}}{=} \widetilde{K}$ и зададим на \widetilde{K} отношение: $(a,b) \sim (c,d) \iff ad = bc$. Это отношение эквивалентности.

Очев (для всех, кроме автора)

- 1. $(a,b) \sim (a,b)$ т.к. ab=ab
- 2. $(a,b) \sim (c,d) \iff ab = cd \iff cb = da \iff (c,d) \sim (a,b)$
- 3. $\begin{cases} (a,b) \sim (c,d) \\ (c,d) \sim (e,f) \end{cases} \Rightarrow \begin{cases} ad = bc \\ cf = de \end{cases} \Rightarrow adcf = bcde \Rightarrow \text{мы в области целостности} \quad af = be \text{ т.e. } (a,b) \sim (e,f).$ Если $c \neq 0$. Если c = 0 очев.

Пусть $K = \widetilde{K} / \sim$.

Зададим на K + , *.

$$\overline{(a,b)}*\overline{(c,d)}=\overline{(ac,bd)},bd\neq 0$$
 т.к. область целостности
$$\overline{(a,b)}+\overline{(c,d)}=\overline{(ad+bc,bd)}$$

Надо проверить корректность операций.

$$(a,b) \sim (a',b') \Rightarrow ab' = a'b \Rightarrow b'dac = a'cbd \Rightarrow (a,b) * (c,d) = (a',b') * (c,d)$$

Для сложения аналогично.

Проверим(нет), что K это поле!

$$0 = \overline{(0,1)}, 1 = \overline{(1,1)}.$$

Ассоциативность, коммутативность умножения очев.

Коммутативность сложения очев.

$$\overline{(a,b)} + \overline{(-a,b)} = \overline{(ab-ba,b^2)} = \overline{(0,b^2)} = \overline{(0,1)} = 0$$
. То есть у любого есть противоположный.

Ассоциативность:

$$(\overline{(a,b)}+\overline{(c,d)})+\overline{(e,f)}=\overline{(ad+bc,bd)}+\overline{(e,f)}=\overline{(adf+bcd+bde,bdf)}=\cdots=\overline{(a,b)}+(\overline{(c,d)}+\overline{(e,f)})$$

Дистрибутивность:
$$\overline{(a,b)}(\overline{(c,d)}+\overline{(e,f)})=\overline{(a,b)}\cdot\overline{(cf+de,df)}=\overline{(acf+ade,bdf)}$$
 $\overline{(a,b)}\cdot\overline{(c,d)}+\overline{(a,b)}\cdot\overline{(e,f)}=\overline{(ac,bd)}+\overline{(ae,bf)}=\overline{(acbf+bdae,bdbf)}\sim\overline{(acf+ade,bdf)},$ т.к. $(acf+ade)\cdot bdbf=(acbf+bdae)\cdot bdf$

Пусть $a \neq 0 \in R$, тогда $\overline{(a,b)} * \overline{(b,a)} = \overline{(ab.ab)} = \overline{(1,1)}$. То есть существует $\overline{(a,b)}^{-1}$.

Если a = 0, то $\overline{(0,b)} = \overline{(0,1)} = 0$.

Построим $i: R \to K$, т.ч. $a \mapsto \overline{(a,1)}$.

i - инъективно: $\overline{(a,1)} = \overline{(b,1)} \Rightarrow a = b$.

i - гомоморфизм $i(a+b)=\overline{(a+b,1)}=\overline{(a,1)}+\overline{(b,1)},$ для умножения аналогично.

Универсальность: Пусть $j:R\to R'$ - гомоморфизм, т.ч. $\forall r\in R\setminus\{0\},\ j(r)$ - обратим. Хотим построить h:

 $h \circ i = j$. То есть $h(\overline{(r,1)}) = j(r)$.

 $h(\overline{(1,1)}) = 1_B$, а значит $h(\overline{(1,r)}) = j(r)^{-1}$.

А тогда $\forall a,b,\ h(\overline{(a,b)})=j(a)\cdot j(b)^{-1}.$ С другой стороны формула $h(\overline{(a,b)})=j(a)\cdot j(b)^{-1}$ корректно задает гомоморфизм.

 $\overline{(a,b)} = \overline{(a',b')} \Rightarrow ab' = ba' \Rightarrow j(ab') = j(ba') \Rightarrow j(a) \cdot j(b)^{-1} = j(a') \cdot j(b')^{-1}$. Значит h не зависит от выбора представителя.

Definition 7.2. Поле частных

K называется полем частных кольца R и элементы записывают $\frac{a}{b}\stackrel{\mathrm{def}}{=}\overline{(a,b)}$

Remark. В общем случае (R, S) доказательство такое же.

Example 7.5.

 $R=K[x],\,S=\{x,x^2,\dots\}.$ Тогда получим $R\to R[S^{-1}]=\{rac{a_n}{x^n}+\dots+rac{a_1}{x}+a_0+rac{b_1}{x}+rac{b_n}{x^n}\}=K[x,rac{1}{x}]$ - многочлены Лорана.

Example 7.6.

Пусть $R=\mathbb{Z},\,S=\{x:p\nmid x\},\,p$ - простое. Тогда $R[S^{-1}]=\{\frac{a}{b}:b\nmid p\}$ - здесь единственное простое число p.

Remark 7.1.

Пусть R - факториальное кольцо, K - поле частных. Тогда $\forall x \in K \ \exists (a,b)$ с точностью до ассоциированности, т.ч. $x = \frac{a}{b}$ и $\gcd(a,b) = 1$ (т.к. в факториальном кольце есть нод, на который можем сократить).

Definition 7.3.

Поле частных кольца K[x] называется полем дробно рациональных функций

$$K(x) = \{ \frac{p}{q} : p, q \in K[x], q \neq 0 \}$$

можно считать, что (p,q)=1 и q - унитарный (старший коэф - 1).

Ясно, что $K(x)^* = \langle c, p \mid c \in K, p$ – унитарный \rangle

Вопрос: K(x) - векторное пространство над K. Какой у него базис?

Lemma 7.1.

- 1. $U = \{\frac{f}{g} \mid deg(f) < deg(g) \vee f = 0\}$ подпространство K(x).
- 2. $K(x) = U \oplus K[x]$.

Доказательство. 1) Корректность определения. Пусть $\frac{f}{g} = \frac{f'}{g'} \Rightarrow fg' = f'g \Rightarrow deg(f) + deg(g') = deg(f') + deg(g)$, тогда $deg(f) < deg(g) \iff deg(f') < deg(g')$

 $deg(f_i) < deg(g_i) \Rightarrow deg(f_1g_2 + f_2g_1) \leq max(deg(f_1g_2), deg(f_2g_1)) = max(deg(f_1) + deg(g_2), deg(f_2) + deg(g_1)) \leq deg(g_1) + deg(g_2) \Rightarrow \frac{f_1g_2 + f_2g_1}{g_1g_2}$ — правильная

2) $U \cap K[x] = \{0\}$. Достаточно доказать, что $\forall f \in K(x)$: $f = p + g, \ p = U, \ g \in K[x]$.

Пусть $f=rac{s}{h}.$ s=hq+r. Тогда $f=q+rac{r}{h}.$ По определению деления с остатком $rac{r}{h}$ - правильная.

Corollary. Базис K(x) можно искать в виде $\{$ базис $U\} + \{$ базис $K[x]\}$

Definition 7.4. Примарная дробь

 $f\in K[x],\, f$ называется примарный, если $f=\frac{p}{q^k},$ где q - неприводим.

Lemma 7.2.

Любую правильную дробь можно разложить в сумму правильных примарных.

Доказательство. $f \in K(x) \Rightarrow f = \frac{p}{q_1^{a_1} \dots q_k^{a_k}}, q_i$ — неприводимые и $(q_i^{a_i}, q_j^{a_j}) = 1$.

Достаточно доказать:

Если f - правильная дробь, $f=\frac{p}{s_1s_2}$, где $\gcd(s_1,s_2)=1$, то: $f=\frac{p_1}{s_1}+\frac{p_2}{s_2}$, где $\frac{p_i}{s_i}$ — правильные.

Доказательство. $\exists h_1, h_2 \in K[x] : h_1 s_1 + h_2 s_2 = 1.$

Доказательство.
$$\exists h_1, h_2 \in K[x]: h_1s_1 + h_2s_2 = 1.$$

 Тогда $f = \frac{p}{s_1 \cdot s_2} = \frac{(h_1s_1 + h_2s_2)p}{s_1 \cdot s_2} = \frac{h_1s_1p}{s_1s_2} + \frac{h_2s_2p}{s_1s_2} = \frac{h_1p}{s_2} + \frac{h_2p}{s_2} = (p_1 + \frac{t_2}{s_2}) + (p_2 + \frac{t_1}{s_2}) = (p_1 + p_2) + \frac{t_2}{s_2} + \frac{t_1}{s_1} \Rightarrow p_1 + p_2 = f - \frac{t_2}{s_2} - \frac{t_1}{s_1}$, это равентсво $0 = 0$, т.к. слева многочлены, а справа правильные дроби $\Rightarrow p_1 + p_2 = 0$

Применим это
$$k$$
 раз $f = \frac{p_1}{q_1^{a_1}} + \frac{p_2}{q_2^{a_2} \dots q_k^{a_k}} = \dots = \sum \frac{p_i}{q_i^{a_i}}$

Итак $U = \langle \frac{p}{q^k} \mid deg(p) < deg(q^k), q$ — неприводим \rangle

Definition 7.5. Простейшая дробь

 $f \in K(x)$ - простейшая, если $f = \frac{p}{q^k}$, q - неприводим и deg(p) < deg(q).

Lemma 7.3.

∀ правильная примарная дробь — сумма простейших

 Доказательство. Пусть f - такая дорбь. Тогда $f=\frac{p}{q^k},\,q$ - неприводим. Индукция по k. База $k=1,\,f=rac{p}{q}$ – очевидно простейшая.

Переход. $k \to k+1$. $\exists h, r: p = q \cdot h + r, deg(r) < deg(q)$.

 $f=rac{p}{q^{k+1}}=rac{qh+r}{q^{k+1}}=rac{h}{q^k}+rac{r}{q^{k+1}}.$ По предположению $rac{h}{q^k}$ — сумма простейших, вторая и так простейшая $\Rightarrow f$ — сумма простейших

Lemma 7.4.

$$\forall f \in K(x): \ f = p + \sum rac{p_i}{q_i}, \ p \in K[x], \ rac{p_i}{q_i}$$
 - простейшие

Доказательство.
$$f = p + u = p + (u_1 + u_2 + ... + u_k) = p + \text{сумма простейших}$$

Example 7.7.

Пусть $K=\mathbb{C}.$ Если p - неприводим, то p=x-z. Простейшая дробь $\frac{c}{(x-a)^k},\ c\in\mathbb{C}.$ To есть $f \in K(x) \Rightarrow f = \sum \frac{c_i}{(x-a_i)^{k_i}}$

Если $K=\mathbb{R},$ то p - неприводим, если p=x-a или $x^2-px+q,$ где $p^2-4q<0.$

Тогда $f \in K(x) \Rightarrow f = \sum_{i=1}^{\infty} \frac{c_i}{(x-a)^{k_i}} + \sum_{i=1}^{\infty} \frac{b_i x + c_i}{(x^2 - p_i x + q_i)^{k_i}}$ Частные случаи: Пусть $f = \frac{p}{\prod\limits_{i=1}^{n} (x-a_i)}, \ deg(p) < n$. Тогда $f = \sum_{i=1}^{\infty} \frac{c_i}{x-a_i}$.

Была формула $p = \sum p(a_i) \frac{\prod_i (x-a_i)}{\prod (a_i-a_j)}$. Поделим на $\prod (x-a_i)$. Тогда получим $\frac{p}{\prod (x-a_i)} =$ $\sum_{i} \frac{p(a_i)}{(x-a_i) \prod_{\underline{j}} (a_i - a_j)}$

Если $q = \prod_i (x - a_i)$, тогда $q' = \sum_i \prod_{j \neq i} (x - a_j)$. Значит $q'(a_{i_0}) = \prod_{j \neq i_0} (a_{i_0} - a_j)$.

Таким образом $f = \frac{p}{q} = \sum_{i} \frac{p(a_i)}{q'(a_i)(x-a_i)}$ Если $f = \frac{p}{(x-a)^n}$, тогда $f = \sum_{i} \frac{\frac{p(k)}{q'(a_i)}(x-a_i)}{\frac{k!}{(x-a)^{n-k}}}$.

8 Лекция 8. Групповые группы

8.1 Опять группы

Фан факты:

Пусть G - конечная абелева группа, тогда $G \cong \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}$.

Если G - произвольная, то очень сложно!!!

Самые важные группы:

- 1. Конечные: S_n группа перестановок
- 2. "Алгебраические": $GL_n(K)$ обратимые матрицы над полем K, что есть группа преобразований *п*-мерного пространства.

Remark. Можно считать, что $S_n \subset GL_n(K)$. Если зафиксируем базис $V-e_i$. Каждой перестановке π сопоставим отображение $\pi(e_i) = e_{\pi(i)}$. Её матрица имеет вид $a_{i,\pi(i)} = 1$ uначе 0.

Theorem 8.1. Теорема Кэли

Пусть G - конечная группа, тогда $\exists n, i : G \rightarrow S_n$ — инъективный гомомофризм(вложение). То есть G можно рассматривать как подгруппу в S_n .

Доказательство. Возьмем $n = |G|, g \in G$. Сопоставим ему следующую функцию $f_g(x) =$ $gx, f: G \to G$. Она очевидно биекция, потому что существует обратная $f_{q^{-1}}$. То есть $f \in S(G)$ - группа преобразований множества G.

Понятно, что $S(G) \cong S_n$.

Построим $i: G \to S(G), g \mapsto f_g$. i - инъекция, так как если $f_g = f_g' \Rightarrow f_g(e) = f_g'(e) \Rightarrow g = g'$. i - гомоморфизм. Так как $(i(g_1)\circ i(g_2))(x)=g_1*(g_2*x)=(g_1*g_2)*x=i(g_1*g_2)$ из ассоциативности.

Remark. Takue n, i concern не единственные (ynp).

Было в \mathbb{Z} , $a \sim b \iff a - b : n$. Получили новую группу $\mathbb{Z}/n\mathbb{Z}$.

Другими словами $a \sim b \iff a - b \in \langle n \rangle$ - подгруппа.

Можно ли в этой конструкции заменить $(\mathbb{Z},\langle n\rangle)$ на (G,H), где G - любая группа, а H - подгруппа.

Example 8.1. Аналогичные конструкции

Пусть $G = (K^2, +)$. $v_0 \in K^2$. Рассмотрим $\langle v_0 \rangle$. Положим $v_1 \sim v_2 \iff v_1 - v_2 = kv_0$. Какой у этого смысл? Класс эквивалентности v_1 это прямая, параллельная v_0 из конца v_1 . Вся наша плоскость расслоилась в объединение непересекающихся прямых, параллельных v_0 - классы по модулю v_0 .

 $K^2/v_0 = \{kv_3\}$ - для любой прямой не коллинеарной v_0 получим единственное пересечение с каждым классом.

Example 8.2.

Пусть $G = (\mathbb{Z}/p\mathbb{Z})^*$, $H = \langle x^2 | x \in (\mathbb{Z}/p\mathbb{Z})^* \rangle$. То есть $a \sim b \iff a = x^2b$.

Получим два класса эквивалентности - квадраты и не квадраты. $G/H \cong \mathbb{Z}/2\mathbb{Z}$, так как такая же таблица умножения! Квадрат*квадрат=квадрат и т.д.

Общая конструкция: $H \leq G, \ a \sim b \iff ab^{-1} \in H.$ (или $b^{-1}a \in H$)

Можно рассматривать два разных отношения. Если $\sim_1=\sim_2$, тогда $\overline{a\circ b}=\overline{a}\circ \overline{b}$ превращает G/\sim в новую группу.

Lemma 8.1.

G - группа, H - подгруппа, $a \sim_1 b \iff ab^{-1} \in H, \ a \sim_2 b \iff b^{-1}a \in H$. Тогда \sim_1, \sim_2 - отношения эквивалентности и $\overline{a}_1 = \{ha, \ h \in H\} = Ha, \ \overline{a}_2 = \{ah, \ h \in H\} = aH$.

Доказательство. Рефлексивность: $aa^{-1} = e \in H$.

Симметричность: $ab^{-1} \in H$, тогда $ba^{-1} = (ab^{-1})^{-1} \in H$.

Транзитивность: $ab^{-1} \in H, bc^{-1} \in H \Rightarrow ab^{-1}bc^{-1} = ac^{-1} \in H.$

Везде пользуемся, что H - подгруппа.

Пусть a - фикс, тогда $ab^{-1}=h\in H$, если $a\sim b$, тогда $a=hb\iff h^{-1}a=b$, то есть все подходящие b имеют вид ha.

Для \sim_2 аналогично.

Definition 8.1. Классы смежности

aH, Ha - классы смежности. Один из них левый, другой - правый. Будем считать Ha - левым.

Remark. Смежные классы непересекаются или совпадают, так как это классы эквивалентности.

To ecmb $G = \bigsqcup_i Ha_i \ u \ Ha_i \cap Ha_j = \varnothing$.

Частный случай, если $n=|G|<\infty$, тогда $m=|H|<\infty$. При этом $\forall a, |Ha|=m$ (т.к. $h_1a\neq h_2a\iff h_1\neq h_2$). Следовательно $n\stackrel{.}{:}m$ и $\frac{n}{m}$ - количество смежных классов.

 $\frac{n}{m} \stackrel{\mathrm{def}}{=} |G:H|$ - индекс G по H.

Theorem 8.2. Теорема Лагранжа

G - конечна, $H \leq G \Rightarrow |G| : |H|$ и $|G| = |H| \cdot |G:H|$.

Частный случай: $H = \langle h \rangle \Rightarrow |G| : ord(h)$ - было в первом модуле!

Обозначаем G/H - множество правых смежных классов $(H\backslash G$ - левых).

Можем рассматривать разбиение $G = \bigsqcup_i Ha_i = \bigsqcup_i b_i H$.

Theorem 8.3.

Пусть G - группа, $H \leq G$. Следующие условия равносильны

- 1. $(aH) \cdot (bH) \stackrel{\text{def}}{=} abH$ корректно задает структуру группы на G/H.
- 2. То же самое на левых
- 3. $\sim_1 = \sim_2$
- 4. $\forall a \, aH = Ha$
- 5. $\forall h \in H, q \in G : q^{-1}hq \in H$.

Доказательство. $3\iff 4$ т.к. $a\sim_1 b\iff b\in aH,\ a\sim_2 b\iff b\in Ha.$

 $3 \iff 5 \Rightarrow$

Пусть $g \in G$, $h \in H$. $a = g^{-1}hg \in G \Rightarrow ga = hg$.

$$ga = hg \sim_1 g \Rightarrow ga \sim_2 g \Rightarrow ga = g\tilde{h} \Rightarrow a \in H$$

 \Leftarrow Пусть $g_1 \sim_1 g_2 \Rightarrow g_2 = g_1 h, h \in H.$

 $g_2g_1^{-1} = g_1hg_1^{-1} \in H \Rightarrow g_2 \sim_2 g_1.$

 $3,5\Rightarrow 1.$ Надо показать, что такое определение не зависит от выбора представителя.

 $a_1 = ah_1, b_1 = bh_2.$

$$(a_1H)(b_1H) = (a_1b_1H) = (ah_1bh_2H)$$

Т.к. bH = Hb, то $h_1b = bh'_1 \Rightarrow (abh'_1h_2H) = (abH)$.

Мы использовали, что $(ahH) = \{ahh_1 \mid h_1 \in H\} = \{ah' \mid h' \in H\}$, так как умножение на h -биекция.

Получилась группа:

$$((aH)(bH))(cH) = ((ab)cH) = (a(bc)H) = (aH)((bH)(cH)).$$

$$eH = H$$
 - нейтральный элемент. $(aH)^{-1} = a^{-1}H$.

Definition 8.2. Факторгруппа

Группа из предыдущей теоремы обозначается G/H и называется факторгруппа G по H.

Definition 8.3. Нормальная подгруппа

H удовлетворяющая условиям теоремы называется нормальной подгруппой и обозначается $H \lhd G$.

Example 8.3.

G - абелева, то любая подгруппа нормальная!

Рассмотрим S_3 , $H = \langle (1,2) \rangle = \{e, (1,2)\}.$

Пусть g = (1,3). Тогда $gH = \{(13), (123)\}, Hg = \{(13), (132)\}$ - ненормальная.

 $H_1 = \langle (123) \rangle$ нормальная.

Делаем это затем, чтобы получить из G более $npocmy \omega$ группу. Как её интерпретировать?

Definition 8.4. Ядро и образ

Пусть $f:G \to H$ - гомоморфизм групп. Определим его ядро и образ

$$Im(f) = \{f(g) | g \in G\}, ker(f) = \{g | f(g) = e_H\}$$

Lemma 8.2.

 $Im(f) \le H, ker(f) \le G.$

f - сюръективен, если Im(f) = H. Инъективен, если $ker(f) = \{e_G\}$.

Доказательство. Почти все как в линейной алгебре. Например:

$$ker(f) = e_H \Rightarrow f(g_1) = f(g_2) \Rightarrow f(g_1g_2^{-1}) = e \Rightarrow g_1 = g_2.$$

Нормальность ядра:

$$g \in G, h \in ker(f) \Rightarrow f(g^{-1}hg) = f(g^{-1})f(h)f(g) = f(g^{-1})f(g) = f(e) = e$$

Остальное упр.

Theorem 8.4. О гомоморфизме

Пусть G, H - группы, $f: G \to H$ - гомоморфизм, тогда $Im(f) \cong G/ker(f)$.

Remark. Хотим интерпретацию для G/G_1 , где $G_1 \subseteq G$. Можем придумать гомоморфизм и группу $f: G \to H$, т.ч. $ker(f) = G_1 \Rightarrow G/G_1 \cong Im(H)$.

Доказательство. Построим изоморфизм: $i: G/ker(f) \to Im(f)$.

$$\overline{g} \in G/ker(f) \Rightarrow i(\overline{g}) = f(g).$$

Проверим корректность и изоморфизм.

Корректность: $f(g) \in Im(f)$. Пусть $g_1 \sim g \iff g_1 = gh$, где $h \in ker(f)$.

$$i(g_1) = f(gh) = f(g)f(h) = f(g)e = i(g)$$

Гомоморфность:

Сюръективность: g - произвольный, поэтому Im(i) = Im(f).

Инъективность: $i(\overline{g}) = f(g) = e \Rightarrow g \in ker(f) \Rightarrow g = \overline{e} \Rightarrow ker(i) = {\overline{e}}$

Example 8.4.

Пусть $G = S_n$. $sign(\pi)$ - гомоморфизм групп.

Что такое $ker(\mathrm{sign}) = \{\pi \mid \mathrm{sign}(\pi) = 1\}$ - четные перестановки. Они образуют подгруппу A_n .

 $A_n \leq S_n$, t.k. $A_n = ker(\text{sign})$.

Значит $S_n/A_n \cong \mathbb{Z}/2\mathbb{Z}$.

Example 8.5.

Пусть $f(\mathbb{Z},+) \to (\mathbb{C},*)$, т.ч. $f(k) = e^{\frac{2\pi i k}{n}}$.

Очевидно гомоморфизм. Im(f) - корни n степени из единицы. ker(f) - числа кратные n.

Получим по теореме $\mathbb{Z}/n\mathbb{Z} \cong \mu_n(\mathbb{C})$

Example 8.6. Тривиальный

Рассмотрим $G = G_1 \times G_2$ и гомоморфизм $f : G \to G_2, f(g_1, g_2) \to g_2.$

 $Im(f) = G_2, ker(f) = \{(g_1, e)\} \cong G_1.$

Получим $G/G_1 \cong G_2$.

Remark. Пусть G - какая-то(большая) группа. Хотим её изучить. Попробуем найти в ней нетривиальную нормальную подгруппу.

Можем рассмотреть её факторгруппу. И думать вместо G о двух группах(nоменьше)(H,G/H).

Верно ли, что по H, G/H однозначно восстанавливается G? HET.

Так как любая группа может быть получена тривиальным гомоморфизмом.

9 Лекция 9. Групповые группы. Вторая битва

9.1 Продолжаем группы

H — нормальная подгруппа G, условие нормальности: $\forall h \in H, \ g \in G: g^{-1}hg \in H,$ тогда \exists факторгруппа $G/H.\ G \to (H,\ G/H)$

$$G = G_1 \times G_2 \Rightarrow G \rightarrow G_2 \text{ if } (G)/G_1 \cong G_2. (G_1 \times G_2) \rightarrow (G_1, G_2).$$

Внешнее прямое произведение: на декартовом произведение задаем покомпонентные операции

Внутреннее прямое произведение: $G_1, G_2 \leq G$ и хотим понять, что $G \cong G_1 \times G_2$.

Theorem 9.1.

 $G_1,G_2\leq G$. Рассмотрим отображение $i:G_1\times G_2\to G$, т.ч. $(g_1,g_2)\mapsto g_1\circ g_2$.

Тогда i - изоморфизм \iff

- 1. $\forall g \in G, \exists g_1, g_2 : g = g_1 * g_2.$
- 2. $G_1 \cap G_2 = \{e\}$
- 3. $\forall g_1 \in G_1, g_2 \in G_2 \Rightarrow g_1g_2 = g_2g_1$

Доказательство. ←. i - гомоморфизм.

$$i((g_1g'_1, g_2g'_2)) = g_1g'_1g_2g'_2 = g_1g_2g'_1g'_2 = i((g_1, g_2)) * i((g'_1g'_2))$$

Среднее равенство верно по пункту 3.

i - сюръекция по 1.

Инъективность $\iff Ker(i) = \{e\}$. Пусть $(g_1, g_2) \in Ker(i) \Rightarrow g_1g_2 = e \Rightarrow g_1 = g_2^{-1} \Rightarrow g_1 \in G_1 \cap G_2 = \{e\} \Rightarrow g_1 = e = g_2$.

Обратно УПР.

Exercise 9.1.

Вместо условия 3 можно потребовать $G_1, G_2 \leq G$.

Вопрос: как что-то доказать или классифицировать про группы? Например про конечные... Идея такая: Индукция по порядку группы. Реализация: Пусть |G|=n. Доказали что-то для всех меньших n. Тогда рассмотрим $H \le G$, к H и G/H применяем индукцию и потом доказываем для G.

Не работает, если у G нет нетривиальных нормальных подгрупп.

Definition 9.1. Простая группа

Группа G называется простой, если $\forall H \subseteq G \Rightarrow H = G \lor H = \{e\}$.

Одна из главных задач - классификация простых групп.

Example 9.1.

 $\mathbb{Z}/p\mathbb{Z}$ - нет нетривиальных подгрупп.

 $A_n \leq S_n$ - четные перестановки (теорема Галуа говорит, что A_n проста при $n \geq 5$).

GL(n,K) - не проста. Рассмотрим $SL(n,K) \leq GL(n,K)$ - матрицы с определителем 1. (нормальность: $det(A) = 1 \Rightarrow det(CAC^{-1}) = det(A) = 1$).

 $GL(n,K)/SL(n,K) \cong K^*$ по теореме о гомоморфизме: $det: GL_n(K) \to K$. Его ядро это $SL_n(K)$, а образ все K^* .

То есть $GL(n,K)\cong SL(n,K)\times K^*.$ K^* - абелева группа, тут все просто...

А SL(n,K)? Тоже нет! Есть подгруппа $Z(SL(n,K)) = \{kE \mid det(kE) = 1\}$. Она нормальная. Соответствующая факторгруппа называется PSL(n,K) - обычно уже проста.

Theorem 9.2. Классификация конечных простых групп

Пусть G - конечная простая группа. Тогда

- 1. $G \cong \mathbb{Z}/p\mathbb{Z}$
- 2. $G \cong A_n, n \geq 5$
- 3. $G \cong PSL(n,K), K$ конечное поле
- 4. G принадлежит одной из 15 серий, аналогичных пункту 3. (серия подгруппа в GL(n,K) с некоторым свойством).
- 5. G одна из 26 исключительных простых групп.

9.2 Группы перестановок

Рассматриваем S_n - симметрическую группу.

Базовые элементы: $t_{i,j}$ - транспозиция (ij).

Theorem 9.3.

 S_n порождена $t_{i,j}$.

Более точно: S_n порождается $t_{k,k+1}$. (любую перестановку получим из тождественной свапая элементы в нужное место через соседние)

На самом деле $S_n = \langle (12), (123 \dots n) \rangle$. Где $t_{12} = (12), (123 \dots n) = \pi$, т.ч. pi(i) = i + 1.

Как работать с t_{ij} ? Есть базовые соотношения:

 $s_i = t_{i,i+1}$. Есть s_1, \ldots, s_{n-1} . Они обладают следующими свойствами. $s_i^2 = e$. Почти всегда $s_i s_j = s_j s_i$ (или $(s_i s_j)^2 = e$). Точно равно, когда они непересекаются (|i-j| > 1) или равны... $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \iff (s_i s_{i+1})^3 = e$. (упр для настоящих гулей (c) со-автор)

Theorem 9.4.

Любое соотношение между s_i следует из базовых.

Цикловое разложение перестановки

Цикл (i_1,\ldots,i_k) это перестановка π т.ч. $\pi(i_l)=i_{l+1},\,\pi(i_k)=i_1$ и $\pi(i)=i$ иначе.

Частный случай - транспозиция - цикл длины 2.

Lemma 9.1.

Любая перестановка однозначно раскладывается на произведение независимых (попарно непересекающихся) циклов длины > 1.

Доказательство. Существование разложения: индукция по количеству i т.ч. $\pi(i) \neq i$ (подвижных точек).

База: $\pi(i) = id$ - пустое произведение циклов.

Переход: $\to n \neq 0$. Пусть $\pi(x) \neq x$. Положим $x_1 = x, x_{i+1} = \pi(x_i)$. Тогда $\exists k, l \ x_k = x_l \Rightarrow x_{k-1} = x_{l-1} \Rightarrow x_m = x_1$. Теперь рассмотрим перестановку $\tilde{\pi} = (x_1 \dots x_m)^{-1} \pi$. Она $\tilde{\pi}(x_i) = x_i$ и $\tilde{\pi}(x) = \pi(x)$.

Это перестановка на меньшем множестве неподвижных точек $\{1, 2, \ldots, n\} \setminus \{x_1, \ldots, x_m\}$. По индукции получаем $\tilde{\pi} = c_1 \ldots c_k \Rightarrow \pi = (x_1, \ldots, x_m)c_1 \ldots c_k$.

Definition 9.2. Цикловой тип

Цикловой тип перестановки равен $a_1+a_2+\cdots+a_m$, если $\pi=c_1\ldots c_m$, где c_i - независимые циклы длины a_i .

Example. Транспозиция: перестановка типа 2.

Что значит, что у двух перестановок одинаковый цикловой тип?

Это значит, что можно перенумеровать элементы множества $\{1,2,...,n\}$ так, чтобы $\pi_1 \mapsto \pi_2$

$$x \to "y" \iff \exists \tau : \pi_2 = \tau \circ \pi_1 \tau^{-1}$$

У соавтора садится ноутбук, бб читатель =(

Definition 9.3.

Элементы g и ugu^{-1} называются сопряженными.

Lemma 9.2.

 g_1 и g_2 сопряжены в $S_n \iff$ имеют одинаковый цикловой тип

Exercise 9.2. Сопряженные элементы

Сопряженность это отношение эквивалентости

Remark 9.1.

H - нормальная подгруппа $\iff H \leq G$ и H состоит из классов сопряженности.

H - проста: никакой набор классов сопряженности не образуюет нетривиальную подгруппу.

Remark 9.2.

H -абелева, тогда класс сопряженности состоят из самого элемента.

9.3 Действие групп на множествах

Definition 9.4.

Действие группы G на множестве M это бинарная операция $f:G\times M\to M$, т.ч. $(g,m)\mapsto g\cdot m$. Такая что

- 1. $e \cdot m = m$
- 2. $(g_1g_2) \cdot m = g_1 \cdot (g_2 \cdot m)$

Другими словами определим $f_g(m) = g \cdot m$ - отображение $M \to M$. Задать действие = задать f_g . Аксиомы превращаются в

- 1. $f_e = id_M$
- $2. \ f_{g_1g_2} = f_{g_1} \circ f_{g_2}$

Итого отображение $G \to S(M), g \mapsto f_g$ это гомоморфизм групп.

Задано перестановочное представление группы G. В частности $f_g \in S(M)$, т.е. f_g - биекция, т.к. существует $f_{g^{-1}}$.

Обозначаем $G \curvearrowright M$

Всем ку от соавтора =)

Example 9.2.

 S_n действует на $I_n = \{1, 2, ..., n\}$. $\pi \cdot i = \pi(i)$.

 S_n действует на $I_n \times I_n \pi(a,b) = (\pi(a),\pi(b)).$

На неупорядоченных парах $\pi(\{x,y\}) = \{\pi(x), \pi(y)\}.$

На всех подмножествах 2^{I_n} . $\pi \cdot A = \pi(A)$.

На функции $I_n \to \mathbb{R}$: $f: I_n \to \mathbb{R}$, хотим задать $(\pi \circ f)(x) = f(\pi(x))$, тогда $(\pi_1 \cdot \pi_2 \cdot f)(x) = f(\pi(x))$

 $f(\pi_1\pi_2(x)), (\pi_1(\pi_2f))(x) = \pi_2f(\pi_1(x)) = f(\pi_2\pi_1(x)).$ Не выполнилась аксиома(.

Правильное определение $(\pi \circ f)(x) = f(\pi^{-1}(x))$. Тогда аксиомы будут выполняться.

Example 9.3.

Ещё один примерчик, их много не бывает =)

Рассмотрим $M=\mu_3(\mathbb{C})=\{1,w,w^2\}.$ $G=\mu_3(\mathbb{C}).$ Действует на \mathbb{C} умножением как обычные комплексные числа.

 f_w - поворот на $\frac{2\pi}{3}$.

 $G = \langle f_w, \overline{z} \rangle \leq S(\tilde{\mathbb{C}})$, где $\alpha(z) = \overline{z}$. Тогда $G \cong S_3$. $f_w(\mu_3) \in \mu_3$, $\alpha(\mu_3) \in \mu_3$. G действует на μ_3 .

 f_g - всевозможные перестановки μ_3 . Можно сказать, что G действует самосовмещениями треугольника, то есть движения плоскости, которые треугольник $1, w, w^2$ переходит сам в себя.

Example 9.4. Группа самосовмещений квадрата

 $D_4=\{f:\mathbb{R}^2 o\mathbb{R}^2\}$, т.ч. f - движение и f(K)=K, где K - квадрат.

 $|D_4|=8.\ id, r_{\frac{\pi}{2}}, r_{\pi}, r_{\frac{3\pi}{2}}$ и 4 осевых симметрии.

 D_4 действует на вершинах квадрата или на серединах сторон, или на самих сторонах.

Definition 9.5. Орбита и стабилизатор

Пусть G действует на M. $m \in M$. Орбита m это $G \cdot m = \{g \cdot m \mid g \in G\} \subset M$. Слабилизатор $G_m = \{g \in G \mid g \cdot m = m\}$.

Lemma 9.3.

- 1. G_m подгруппа G.
- 2. Любые две орбиты не пересекаются или совпадают.

Доказательство. 1) $e \cdot m = m$, $g_1 \cdot m = m \wedge g_2 \cdot m = m \Rightarrow g_1 g_2 \cdot m = m$.

- 2) Пусть $m_1 \sim m_2 \iff \exists g: gm_1 = m_2$. Это отношение эквивалентности.
 - 1. $em_1 = m_1$
 - 2. $gm_1 = m_2 \iff m_1 = g^{-1}m_2$
 - 3. $gm_1 = m_2, hm_2 = m_3 \Rightarrow hgm_1 = m_3$

Орбиты - классы эквивалентности.

Lemma 9.4.

Пусть G действует на M. И $|Gm| < \infty$. Пусть $n \in Gm \Rightarrow n = g_0m$. Как найти все g: n = gm.

 $n=gm\Rightarrow g_0^{-1}n=g_0^{-1}gm\iff m=g_0^{-1}gm\Rightarrow g_0^{-1}g\in G_m$. То есть g и g_0 действуют одинаково \iff они в одном классе смежности по G_m .

То есть имеется биекция между $Gm \to G/G_m$.

Если |G| конечна, то $|Gm| = |G/G_m| = \frac{|G|}{|G_m|}$.

Другими словами $|G| = |G_m||Gm|$.

Example 9.5.

В случае D_4 на вершины квадрата, то $GA = \{A, B, C, D\}$ - 4, $G_A = \{id, S_{AC}\}$. $G_{AC} = \{AC, BD\}$, $G_{AC} = \{id, S_{AC}, S_{BD}, r_{\pi}\}$.

Lemma 9.5. Лемма Бернсайда

Пусть G действует на M. Все конечно. $Fix(g)=\{m\in M\mid gm=m\}$. Тогда количество орбит(M/G) действия $G=\frac{1}{|G|}\sum_g|Fix(g)|$.

Доказательство. $N = \{(g, m) \mid gm = m\}$. Посчитаем его размер двумя способами.

С одной стороны $N = \sum_{q} \{(g, m) | gm = m\} = \sum_{q} |Fix(g)|.$

C другой $N = \sum_m \{g \ gm = m\} = \sum_m |G_m|$

Итого $\sum_{g} |Fix(g)| = \sum_{m} |G_{m}| = |G| \sum_{m} \frac{1}{|G_{m}|}$.

То есть $\frac{1}{|G|} \sum_g |Fix(g)| = \sum_m \frac{1}{|Gm|}.$

Пусть есть орбита |Gm|=k. Дает в правую часть вклад $\frac{1}{k}$, и таких k. Следовательно правая часть это просто число орбит.

10 Лекция 10. Соавтор не придумал (соавтор в процессе додумки)

Example 10.1.

Пусть на плоскости есть правильный n-угольник. G - его группа симметрий - такие движения, которые переводят многоугольник в себя.

Какой порядок G?

Пусть вершины - v_1, \ldots, v_n . G действует на множестве вершин.

Что такое орбита одной вершины? Это все вершины, так как можем повернуть на нужный угол. Значит длина орбиты n.

То есть порядок |G| - $n * |G_{v_1}|$. Что такое стабилизатор v_1 ? Движения, сохраняющие v_1 на месте.

Пусть v_2 соседняя. $G_{v_1}v_2$ это v_2 , v_n (так как v_2 соединена с v_1 , а она остается на месте. Можем только ничего не сделать и отразить симметрично прямой через v_1). Значит $|Gv_1| = |G_{v_1}v_2||G_{v_1,v_2}| = 2$.

При этом движений, сохраняющих две точки кроме тождественного нет. Поэтому верно последнее равенство.

Итого |G| = 2n

Exercise 10.1.

Посчитать такие же группы для куба и тетраэдра.

Example 10.2. т. Бернсайда

Он позволяет считать варианты с точностью до изоморфизма.

Пример: Сколько графов на n вершинах? Если вершины помечены, то ответ $2^{\binom{n}{2}}$ (любое ребро либо проведем, либо нет).

А если непомеченных (то есть с точностью до изоморфизма)? Это нерешенная задача... Для n=3 ответ 4. Они определяются количеством ребер. В общем случае примерно $\frac{2^{\binom{n}{2}}}{n!}$, но это не точно.

Example 10.3. Ожерелья

Рассмотрим ожерелья с n бусинами. Каждая бусина может быть черной или белой. Например n=12. Сколько существует ожерелий

- 1. с точностью до поворотов
- 2. с точностью до поворотов и симметрий

Решение:

1. Рассмотрим M - ожерелья "прибитые к столу" (позиции фиксированы). $|M|=2^{12}$. Действуем на неё поворотами $G=\langle \frac{\pi}{6} \rangle$. Хотим узнать количество орбит. Так как орбите соответствуют все ожерелья, равные с точностью до поворота.

 $\hat{\text{Mx}} = \sum_{g} \frac{|Fix(g)|}{|G|} = \frac{1}{12} \sum_{k=0}^{11} |Fix(r^k)|$, где r - поворот.

 $Fix(r^0) = M$ - все ожерелья сохраняются после тождественного преобразования. Fix(r) - такие расстановки, что $a_i = a_{i+1}$ - поворот на одно деление сохраняет расстановку. Таких ровно 2 - полностью черные/белые.

 $Fix(r^2)$ - расстановки $a_{i+2} = a_i$ - их 4(фиксируем 2 первых элемента).

 $Fix(r^3)$ - 8, $Fix(r^4)$ - 16.

 $Fix(r^5)$ - 2. Потому что (12,5)=1, то есть это опять одноцветные ожерелья.

 $Fix(r^6) - 64$, $Fix(r^7) - 2$, $Fix(r^8) - 16$, $Fix(r^9) - 8$, $Fix(r^{10}) - 4$, $Fix(r^{11}) - 2$.

Итого $\frac{1}{12}(2^{12}+2*4+4*2+8*2+16*2+64)=\frac{4224}{12}=352$ - число ожерелий с точностью до поворотов.

10.1 Действия в теории групп

Definition 10.1. Изоморфизм действий

 $G \curvearrowright M_1, \ G \curvearrowright M_2$ изоморфны, если существует биекция $M_1 \to M_2$, сохраняющее действие: f(gm) = gf(m).

1. $G \curvearrowright G$ сдвигами: $f_g(h) = gh, f_g \in S(G)$.

Что такое орбита и стабилизатор. $Gg = \{gg_1 | g_1 \in G\} = G, G_g = \{e\}$. Такое действие называется **регулярным** (одна орбита и тривиальный стабилизатор). Любое регулярные изоморфно такому...

2. Пусть $H \leq G$. Тогда есть G/H - множество смежных классов. $G \curvearrowright G/H$. $g(g'H) \stackrel{\text{def}}{=} (gg')H$ - перестановка смежных классов.

G(gH) = G/H по тем же причинам. А стабилизатор $G_{gH} = H,$ если H - нормальна, иначе ... - упр.

Действия с одной орбитой называются **транзитивными**. Любое транзитивное действие изоморфно такому...

Любое действие $G \curvearrowright M$ изоморфно такому: $G \curvearrowright G/H_1 \cup G/H_2 \cup \dots G/H_k$. H_k необязательно различные.

3. Действие сопряжениями. $G \curvearrowright G$: $g * g_1 = gg_1g^{-1}$.

Это действие: $(gh) * g_1 = ghg_1(gh)^{-1} = ghg_1h^{-1}g^{-1} = g*(hg_1g^{-1}) = g*(h*g_1).$

Более того $\forall g \colon f_g$ будет являться автоморфизмом(изоморфизм в себя):

$$f_g(xy) = gxyg^{-1} = gxg^{-1}gyg^{-1} = f_g(x)f_g(y)$$

Обозначение $g * x \stackrel{\text{def}}{=} {}^g x$.

Что такое орбита? $\{^g x \ g \in G\}$ - класс сопряженности элемента G(обозначаем C(g)).

Следвствие: |C(g)| - делитель |G|, так как это индекс стабилизатора.

 $X_g = \{g : gxg^{-1} = x\} = \{g : gx = xg\} = C(x)$ - элементы, коммутирующие с x - централизатор x.

Можно также рассмотреть действие сопряжениями $H \curvearrowright G$, где $H \le G$. Если H нормальная, то можем рассмотреть также $G \curvearrowright H$, так как сопряжение будет оставаться в H.

Можно рассмотретьи $G \curvearrowright$ подгруппы G.

Definition 10.2.

 $H \leq G$. G действует сопряжениями на подгруппы, то стабилизатор $G_H = \{g: gHg^{-1} = H\} = N_G(H)$ - нормализатор H. (если $N_G(H) = G \Rightarrow H$ - нормальна). Это самая большая подгруппа, в которой H - нормальна.

$\overline{\text{Example } 10.4.}$

Рассмотрим S_n , $H = \{x \mid x(1) = 1\}$ - стабилизатор 1 элемента. Что такое gH . Это $\{y \mid y(g(1)) = g(1)\}$, то есть стабилизатор g(1).

Exercise 10.2.

$$S_4, H = \langle (123) \rangle$$
. Тогда $C(123) = H. \ N_{S_4}(H) = S_3.$

Вопрос: $n \in \mathbb{N}$. Есть группа порядка n. Какие варианты у группы G?

Хотим описать с точностью до изоморфизма все группы порядка n.

Знаем: $g : ord(g) = n \Rightarrow |G| : n$. Если $H \leq G \Rightarrow |G| : |H|$.

Верно ли, что обратное верно? |G| : $n \Rightarrow \exists g \ ord(g) = n$ - нет. $\exists \ H \leq G, \ |H| = n$ - тоже нет.

Theorem 10.1. Теорема Коши

Пусть |G| \vdots p, p-простое $\Rightarrow \exists g \ ord(g) = p$.

Доказательство. Рассмотрим $M = \{g_1g_2 \dots g_p \mid g_1g_2 \dots g_p = e\}$ - последовательности длины p с произведением e.

Хотим $g^p = e, g \neq e$. То есть хотим найти строчку $gg \dots g \in M$.

 $g_1(g_2 \dots g_p) = e \iff (g_2 \dots g_p)g_1 = e$ (умножаем все на g_1^{-1} слева, потом на g_1 справа). То есть M замкнута относительно циклического сдвига. То есть $\mathbb{Z}/p\mathbb{Z} \curvearrowright M$. $k(g_1 \dots g_p) = g_{k+1} \dots g_p g_1 \dots g_k$.

 $|M| = |G|^{p-1}$: p - выбираем как угодно p-1, добавляем обратный к их произведению. Значит |M| : p.

 $\forall m \in M$ чему равна длина орбиты? Это делитель p, то есть либо 1 либо p.

M - объединение орбит. $|M| = \sum p + \sum 1$, значит количество орбит длины 1 делится на p.

То есть количество $g: g^p = e$ - делится на p. И их не 0, так как $e^p = e$.

Example 10.5.

|G|=35, значит есть элементы g порядка 7 и h - 5. При этом $\{g^ih^k\}=G$, так как их ровно 35 различных.

Если |G| : n. Существует подгруппа порядка n если $n=p^k$.

Definition 10.3. Силовская подгруппа

Пусть $|G|=n,\,v_p(n)=k.$ Тогда подгруппа $P\leq G,$ т.ч. $|P|=p^k$ называется силовской подгруппой.

Theorem 10.2. Теорема Силова

G - конечная

- 1. $\forall p \, \exists P \leq G$ силовская p-подгруппа, p простое
- 2. P_1, P_2 силовские p подгруппы, тогда $\exists g: g P_1 g^{-1} = P_2$
- 3. $P \leq G$, $|P| = p^l \Rightarrow \exists P'$ силовская p подгруппка, т.ч. $P \leq P'$.
- 4. Количество силовский *p*-подгрупп делитель $|G|, \equiv 1 (mod p)$.

Example 10.6.

Пусть |G|=35. Существует H_5, H_7 - подгруппы порядка 5 и 7(1 теорема Силова или Коши).

Третья теорема говорит, что количество подгрупп порядка 5 - 1. Порядка 7 тоже.

В G элементов порядка 5 - 4 и 6 элементов порядка 7. 1 элемент порядка 1. Значит у остальных по теореме лагранжа порядок 35. То есть G - циклическая.

Доказательство. 1) Рассмотрим M - всевозможные подмножества G порядка p^k , где $k = v_p(|G|)$. Тогда $G \curvearrowright M$ сдвигами $(g * \{a_i\} = \{ga_i\})$.

Lemma 10.1.

Порядок M не делится на p.

Доказательство. $n = p^k l$, $|M| = \binom{n}{p^k} = \frac{n(n-1)...(n-(p^k-1))}{1...p^k}$.

$$v_p(n) = v_p(p^k)$$
. Если $a < p^k$, то $v_p(a) = v_p(n-a) = min(v_p(n), v_p(a)) = v_p(a)$.

То есть в числителе p столько же, сколько в знаменателе.

|M| не делится на $p,\,M$ - объединение орбит, значит $\exists m\,:Gm$ не делится на p.

То есть $|G_m| = |G|/|Gm|$ делится на p^k . Но в m всего p^k элементов $(m_i$ -е). При этом $g \in G_m$ должен иметь вид $gm_1 = m_i \Rightarrow g = m_i m_1^{-1} \le p^k$ вариантов для g. Значит $|G_m| \le p^k$ элементов. Но тогда $|G_m| = p^k$.

Нашли силовскую подгруппу.

2) По 1 пункту существует P_1 - силовская порядка p^k . Пусть P_2 другая порядка p^m .

Рассмотрим $M = G/P_1$ - смежные классы. $P_2 \curvearrowright M$ сдвигами.

|M| = l - не делится на p. Значит есть орбита длины, не делящаяся на p. То есть $\exists g \in G: |P_2 * gP_1|$ не делится на p. Но это делитель $|P_2| = p^m$. Значит орбита состоит из 1 элемента.

То есть

$$\forall h \in P_2 \ hgP_1 = gP_1 \Rightarrow \forall h \in P_2 \ hge \in gP_1 \Rightarrow h = gpg^{-1} \Rightarrow g^{-1}hg \in P_1, \ \forall h \in P_2 \Rightarrow {}^gP_2 \subset P_1$$

Если $|P_2| = p^k$, значит достигается равенство.

Заметим, что мы доказали $P_2 \leq g P_1 g^{-1} = {}^g P_1$ - силовская p-подгруппа.

Мы использовали, что ${}^g H$ тоже подгруппа $(gxg^{-1}gyg^{-1}=gxyg^{-1}\in {}^g H)$.

3) $G \curvearrowright$ силовские подгруппы сопряжением. В нем одна орбита по 2 пункту. Следовательно количество силовских p подгрупп = длина орбиты = делитель |G|.

Пусть P одна из подгрупп. Рассмотрим $P \curvearrowright$ силовские подгруппы.

Длины орбит - дилители |P| - либо 1 либо p. Докажем, что есть единственная орбита длины 1.

Ясно, что $PPP^{-1} = P$ - одна орбита длины 1. Пусть есть другая $PP'P^{-1} = P'$.

Это значит $P \leq N_G(P')$. $P' \leq N_G(P')$ - очевидно. Значит они силовские подгруппы в $N_G(P')$. Значит они там сопряжены. Но это не так, потому что P' нормальна в $N_G(P')$. Противоречие! Других орбит длины 1 нет.