

MRT Technology (Suzhou) Co., Ltd

Phone: +86-512-66308358 Fax: +86-512-66308368 www.mrt-cert.com

Report No.: 1404RSU01301 Report Version: V01 Issue Date: 05-05-2014

MEASUREMENT REPORT

FCC PART 15.231(e)

FCC ID: TTE3625

APPLICANT: Suzhou Sate Auto Electronic Co., Ltd.

Application Type: Certification

Product: Booster

Brand Name: SATE

Model No.: #3625, TBS03-DL, TBS03-D1L, 360PR, TBS09

FCC Classification: FCC Part 15 Remote Control/Security Device

Transmitter(DSR)

FCC Rule Part(s): Part 15.231(e)

Test Procedure(s): ANSI C63.10-2009

Test Date: April 15 ~ 27, 2014

Reviewed By : Robin Wu (Robin Wu)

Approved By : Marlinchen

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2009. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: TTE3625 Page Number: 1 of 26

Revision History

Report No.	Version	Description	Issue Date
1404RSU01301	Rev. 01	Initial report	05-05-2014

FCC ID: TTE3625 Page Number: 2 of 26

CONTENTS

De	scriptio	on	Page
1.	INTR	ODUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROI	DUCT INFORMATION	7
	2.1.	Equipment Description	7
	2.2.	Test Standards	
	2.3.	Test Methodology	
	2.4.	EUT Setup and Test Mode	
3.	ANTE	ENNA REQUIREMENTS	9
4.	TEST	EQUIPMENT CALIBRATION DATA	10
5.	MEAS	SUREMENT UNCERTAINTY	11
6.	TEST	TRESULT	12
	6.1.	Summary	12
	6.2.	Radiated Emissions	13
	6.2.1.	Standard Applicable	13
	6.2.2.	Test Procedure	13
	6.2.3.	Test Setup	14
	6.2.4.	Test Results	15
	6.3.	20dB Bandwidth	19
	6.3.1.	Standard Applicable	19
	6.3.2.	Test Procedure	19
	6.3.3.	Test Setup	19
	6.3.4.	Test Result	20
	6.4.	Transmission Time	21
	6.4.1.	Standard Applicable	21
	6.4.2.	Test Procedure	21
	6.4.3.	Test Setup	21
	6.4.4.	Test Result	22
	6.5.	Duty Cycle	24
	6.5.1.	Standard Applicable	24
	6.5.2.	Test Procedure	24
	6.5.3.	Test Setup	24
	6.5.4.	Test Result	25

§2.1033 General Information

Applicant:	Suzhou Sate Auto Electronic Co., Ltd.			
Applicant Address:	No.36 Building, Yangtai Road, Suzou Industrial Park, Suzhou, Jiangsu,			
	P.R.China			
Manufacturer:	Suzhou Sate Auto Electronic Co., Ltd.			
Manufacturer Address:	No.36 Building, Yangtai Road, Suzou Industrial Park, Suzhou, Jiangsu,			
	P.R.China			
Test Site:	MRT Technology (Suzhou) Co., Ltd			
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong			
	Economic Development Zone, Suzhou, China			
MRT Registration No.:	809388			
FCC Rule Part(s):	Part 15.231(e)			
Model No.	#3625, TBS03-DL, TBS03-D1L, 360PR, TBS09			
FCC ID:	TTE3625			
Test Device Serial No.:	N/A ☐ Production ☐ Pre-Production ☐ Engineering			
FCC Classification:	FCC Part 15 Remote Control/Security Device Transmitter(DSR)			
Method/System:	FSK			
Date(s) of Test:	April 15 ~ 27, 2014			
Test Report S/N:	1404RSU01301			

FCC ID: TTE3625 Page Number: 5 of 26

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.

FCC ID: TTE3625 Page Number: 6 of 26

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	Booster
Model No.	#3625, TBS03-DL, TBS03-D1L, 360PR, TBS09
Bluetooth Frequency	434.1 MHz
Type of modulation	FSK
Antenna Type	Integral Antenna
Antenna Gain	0dBi
Device Category	Fixed Device

Note: All models of the product have the same hardware structures, and just some parts of software function are different.

FCC ID: TTE3625 Page Number: 7 of 26

2.2. Test Standards

The following report is prepared on behalf of the Suzhou Sate Auto Electronic Co., Ltd. in accordance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which results in lowering the emission/immunity, should be checked to ensure compliance has been maintained.

2.3. Test Methodology

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2009).

Deviation from measurement procedure......None

2.4. EUT Setup and Test Mode

The EUT was operated at continuous transmitting mode that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

Test Mode List					
Test Mode	Description	Remark			
Mode 1	Transmitting	With modulation			

Special Cable List and Details						
Cable Description	Length (m)	Shielded / Unshielded	With / Without Ferrite			
N/A	N/A	N/A	N/A			

Auxiliary Equipment List and Details						
Description	Manufacturer	Model	Serial Number			
N/A	N/A	N/A	N/A			

FCC ID: TTE3625 Page Number: 8 of 26

3. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the Booster is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The Booster FCC ID: TTE3625 unit complies with the requirement of §15.203.

FCC ID: TTE3625 Page Number: 9 of 26

4. TEST EQUIPMENT CALIBRATION DATA

Radiated Emission

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cal. Due. Date
Spectrum Analyzer	Agilent	E4447A	MY45300136	1 year	2014/11/08
Preamplifier	MRT	AP01G18	1310002	1 year	2014/10/07
TRILOG Antenna	Schwarzbeck	VULB9162	9162-047	1 year	2014/11/24
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1167	1 year	2014/11/24
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2014/11/15

20dB Bandwidth

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cal. Due. Date
Spectrum Analyzer	Agilent	E4447A	MY45300136	1 year	2014/11/08
TRILOG Antenna	Schwarzbeck	VULB9162	9162-047	1 year	2014/11/24
Preamplifier	MRT	AP01G18	1310002	1 year	2014/10/07
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2014/11/15

Transmission Time

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cal. Due. Date
Spectrum Analyzer	Agilent	E4447A	MY45300136	1 year	2014/11/08
TRILOG Antenna	Schwarzbeck	VULB9162	9162-047	1 year	2014/11/24
Preamplifier	MRT	AP01G18	1310002	1 year	2014/10/07
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2014/11/15

Duty Cycle

Instrument	Manufacturer	Type No.	Serial No.	Cali. Interval	Cal. Due. Date
Spectrum Analyzer	Agilent	E4447A	MY45300136	1 year	2014/11/08
TRILOG Antenna	Schwarzbeck	VULB9162	9162-047	1 year	2014/11/24
Preamplifier	MRT	AP01G18	1310002	1 year	2014/10/07
Temperature/Humidity Meter	Anymetre	TH101B	AC1-01	1 year	2014/11/15

FCC ID: TTE3625 Page Number: 10 of 26

5. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Radiated Emission Measurement

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

9kHz ~ 1GHz: ± 4.18dB 1GHz ~ 40GHz: ± 4.76dB

FCC ID: TTE3625 Page Number: 11 of 26

6. TEST RESULT

6.1. Summary

Company Name: <u>Suzhou Sate Auto Electronic Co., Ltd.</u>

FCC ID: TTE3625

FCC Part Section(s)	Test Description	Test Condition	Test Result	
15.205	Radiated Spurious		Pass	
15.231(e)	Emissions		Pass	
15.231(c)	20dB Bandwidth	Radiated	Pass	
15.231(e)	Transmission Time		Pass	
15.231(e)	Duty Cycle		Pass	

Notes:

- All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

FCC ID: TTE3625 Page Number: 12 of 26

6.2. Radiated Emissions

6.2.1. Standard Applicable

According to §15.231(e), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements start below or at the lowest crystal frequency.

Compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

6.2.2. Test Procedure

The setup of EUT is according with per ANSI C63.10-2009 measurement procedure. The specification used was with the FCC Part 15.231(e) and FCC Part 15.209 Limit.

FCC ID: TTE3625 Page Number: 13 of 26

6.2.3. Test Setup

The setup of EUT is according with per ANSI C63.10-2009 measurement procedure. The specification used was with the FCC Part 15.231(e) and FCC Part 15.209 Limit.

30MHz ~ 1GHz Test Setup:

Above 1GHz Test Setup:

FCC ID: TTE3625 Page Number: 14 of 26

6.2.4. Test Results

Engineer: Roy Cheng					
Site: AC1	Time: 2014/04/23 - 10:07				
Limit: FCC_Part15.209_RE(3m)	Margin: 0				
Probe: VULB9162_0.03-8GHz	Polarity: Horizontal				
EUT: Booster	Power: DC 12V				
Note: Normal Operation					

No	Frequency	Reading	Factor	Dutycycle	Measure	Limit	Over	Ant	Table	Туре
	(MHz)	Level	(dB)	Factor	Level	(dBuV/m)	Limit	Pos	Pos	
		(dBuV)		(dB)	(dBuV/m)		(dB)	(cm)	(deg)	
1	434.005	59.343	16.643	N/A	75.986	92.872	-16.886	100	156	PK
	434.005	59.343	16.643	-9.00	66.986	72.872	-5.886	100	156	AV
2	868.080	37.984	23.065	N/A	61.049	72.872	-11.823	100	83	PK
	868.080	37.984	23.065	-9.00	52.049	52.872	-0.823	100	83	AV

FCC ID: TTE3625 Page Number: 15 of 26

Engineer: Roy Cheng					
Site: AC1	Time: 2014/04/23 - 10:11				
Limit: FCC_Part15.209_RE(3m)	Margin: 0				
Probe: VULB9162_0.03-8GHz	Polarity: Vertical				
EUT: Booster	Power: DC 12V				
Note: Normal Operation					

No	Frequency	Reading	Factor	Dutycycle	Measure	Limit	Over	Ant	Table	Туре
	(MHz)	Level	(dB)	Factor	Level	(dBuV/m)	Limit	Pos	Pos	
		(dBuV)		(dB)	(dBuV/m)		(dB)	(cm)	(deg)	
1	434.005	55.084	16.643	N/A	71.727	92.872	-21.145	100	201	PK
	434.005	55.084	16.643	-9.00	62.727	72.872	-10.145	100	201	AV
2	868.080	33.727	23.065	N/A	56.792	72.872	-16.08	100	45	PK
	868.080	33.727	23.065	-9.00	47.792	52.872	-5.08	100	45	AV

FCC ID: TTE3625 Page Number: 16 of 26

Engineer: Roy Cheng						
Engineer: Ney energ						
Site: AC1	Time: 2014/04/23 - 09:16					
Limit: FCC_Part15.209_RE(3m)	Margin: 0					
Probe: BBHA9120D_1-18GHz	Polarity: Horizontal					
EUT: Booster	Power: DC 12V					
Note: Normal Operation						

No	Frequency	Reading	Factor	Dutycycle	Measure	Limit	Over	Ant	Table	Туре
	(MHz)	Level	(dB)	Factor	Level	(dBuV/m)	Limit	Pos	Pos	
		(dBuV)		(dB)	(dBuV/m)		(dB)	(cm)	(deg)	
1	1736.400	46.615	-0.591	N/A	46.024	74	-27.976	100	58	PK
	1736.400	46.615	-0.591	-9.00	37.024	54	-16.976	100	58	AV
2	3038.700	52.693	3.414	N/A	56.107	74	-17.893	100	132	PK
	3038.700	52.693	3.414	-9.00	47.107	54	-6.893	100	132	AV
3	3906.900	49.335	4.337	N/A	53.672	74	-20.328	100	285	PK
	3906.900	49.335	4.337	-9.00	44.672	54	-9.328	100	285	AV

FCC ID: TTE3625 Page Number: 17 of 26

Engineer: Roy Cheng					
Site: AC1	Time: 2014/04/23 - 09:25				
Limit: FCC_Part15.209_RE(3m)	Margin: 0				
Probe: BBHA9120D_1-18GHz	Polarity: Vertical				
EUT: Booster	Power: DC 12V				
Note: Normal Operation					

No	Frequency	Reading	Factor	Dutycycle	Measure	Limit	Over	Ant	Table	Туре
	(MHz)	Level	(dB)	Factor	Level	(dBuV/m)	Limit	Pos	Pos	
		(dBuV)		(dB)	(dBuV/m)		(dB)	(cm)	(deg)	
1	1302.300	58.630	-1.642	N/A	56.988	74	-17.012	100	73	PK
	1302.300	58.630	-1.642	-9.00	47.988	54	-6.012	100	73	AV
2	1736.400	61.136	-0.591	N/A	60.545	74	-13.455	100	239	PK
	1736.400	61.136	-0.591	-9.00	51.545	54	-2.455	100	239	AV
3	3038.700	47.722	3.443	N/A	51.165	74	-22.835	100	211	PK
	3038.700	47.722	3.443	-9.00	42.165	54	-11.835	100	211	AV

Note1: Testing is carried out with frequency rang 9 kHz to the tenth harmonics. There is the ambient noise within frequency range 9 kHz ~ 30 MHz, the permissible value is not show in the report.

Note2: The fundamental frequency is 434.1MHz, so the fundamental and spurious emissions radiated limit base on the operating frequency 434.1MHz.

Note3: AV Measure Level = Peak Measure Level – Duty Cycle Factor.

FCC ID: TTE3625 Page Number: 18 of 26

6.3. 20dB Bandwidth

6.3.1. Standard Applicable

According to FCC Part 15.231(c), the bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

6.3.2. Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna, which was connected to the spectrum analyzer with the START, and STOP frequencies set to the EUT's operation band.

6.3.3. Test Setup

FCC ID: TTE3625 Page Number: 19 of 26

6.3.4. Test Result

Test Frequency (MHz)	'		Result
434.1	423.504	1085.25	Pass

Limit = Fundamental Frequency X 0.25% = 434.1 MHz X 0.25% = 1085.25 kHz

20dB Bandwidth Test Plot

FCC ID: TTE3625 Page Number: 20 of 26

6.4. Transmission Time

6.4.1. Standard Applicable

According to FCC 15.231(e), devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

6.4.2. Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 434.1MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

6.4.3. Test Setup

FCC ID: TTE3625 Page Number: 21 of 26

6.4.4. Test Result

Item	Measured Value	Limit	Result
Transmission Time(Ton)	0.036 s	1 s	Pass
Silent Time	12.87 s	10 s	Pass
Silent Time/Transmission Time	357.5	30	Pass

Silent Time

FCC ID: TTE3625 Page Number: 22 of 26

Transmission Time

FCC ID: TTE3625 Page Number: 23 of 26

6.5. Duty Cycle

6.5.1. Standard Applicable

According to FCC Part 15.231(e) and 15.35(c), for pulse operation transmitter, the averaging pulsed emissions are calculated by peak value of measured emission plus duty cycle factor.

6.5.2. Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 434.1MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

6.5.3. Test Setup

FCC ID: TTE3625 Page Number: 24 of 26

6.5.4. Test Result

Type of Pulse	Width of Pulse	Quantity of Pulse	Transmission Time	Total Time (Ton)
	(ms)	number	(ms)	(ms)
Pulse 1	35.5	1	35.5	35.5

Test Period (Tp)	Total Time (Ton)	Duty Cycle	Duty Cycle Factor
(ms)	(ms)	(%)	(dB)
100	35.5	35.5	-9.00

Note: Duty Cycle Factor = -20*Log(1/Duty Cycle).

Width of Pulse

FCC ID: TTE3625 Page Number: 25 of 26

7. CONCLUSION

The data collected relate only the item(s) tested and show that the **Booster FCC ID: TTE3625** is in compliance with FCC Part 15.231(e) of the FCC Rules.

FCC ID: TTE3625 Page Number: 26 of 26