Expectations

Chrysafis Vogiatzis

Department of Industrial and Enterprise Systems Engineering University of Illinois at Urbana-Champaign

Lecture 9a

ISE | Industrial & Enterprise Systems Engineering GRAINGER COLLEGE OF ENGINEERING

©Chrysafis Vogiatzis. Do not distribute without permission of the author

Last time...

- Finished with continuous random variables.
- We discussed:
 - Uniform;
 - Exponential;
 - Gamma and Erlang;
 - Normal.
- Recall that the normal distribution required two parameters, referred to as μ and σ^2 ...

Last time..

- Finished with continuous random variables.
- We discussed:
 - Uniform;
 - Exponential;
 - Gamma and Erlang;
 - Normal.
- Recall that the normal distribution required two parameters, referred to as μ and σ^2 ...

Today, we will discuss expectations and variances.

Parameters of a distribution

DISCRETE

Name	Parameters	Values	pmf
Bernoulli	0 < p < 1	{0,1}	p(0) = 1 - p $p(1) = p$
Binomial	0	$\{0, 1, \ldots, n\}$	$p(x) = \binom{n}{x} p^{x} \cdot (1-p)^{n-x}$
Geometric	0 < p < 1	$\{1,2,\ldots\}$	$p(x) = (1-p)^{x-1} \cdot p$
Hypergeometric	$N, K, n \geq 0$	{1,2,}	$p(x) = \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}}$
Poisson	$\lambda > 0$	{0,1,}	$p(x) = e^{-\lambda} \frac{\lambda^x}{x!}$
Uniform	-	[a, b]	$p(x) = \frac{1}{b-a+1}$

Parameters of a distribution

CONTINUOUS

Name	Parameters	Values	pdf
Uniform	-	[a, b]	$f(x) = \frac{1}{b-a}$
Exponential	$\lambda > 0$	$[0,+\infty)$	$f(x) = \lambda \cdot e^{-\lambda x}$
Gamma	$\lambda > 0, k > 0$	$[0,+\infty)$	$f(x) = \frac{\lambda^k \cdot x^{k-1} \cdot e^{-\lambda x}}{\Gamma(k)}$
Erlang	$\lambda > 0$, integer $k > 0$	$[0,+\infty)$	$f(x) = \frac{\lambda^k \cdot x^{k-1} \cdot e^{-\lambda x}}{(k-1)!}$
Normal	μ, σ^2	$(-\infty,+\infty)$	$f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}}$

Questions

- What do the parameters reveal about the shape of the distribution?
- 2 Knowing the parameters, can we answer questions about what we should expect will happen?
- Is Knowing the parameters, can we answer questions about how far from the expectation we may find ourselves?

Mean, variance, standard deviation

Specifically, in this class we will provide definitions for:

- Mean (or expectation, or expected value) is a measure of the "center" of the probability distribution, usually denoted by E[X] or μ .
- **Variance** is a measure of the variability of the probability distribution, denoted by Var[X] or σ^2 .
- Standard deviation is another measure of variability, and is defined as the square root of the variance, denoted by SD[X] or σ.
 - It is called "standard" as it standardizes variability to the same unit of the original random variable.

We separate our discussion between expected values for:

- Discrete random variables:
- Continuous random variables:

We separate our discussion between expected values for:

■ Discrete random variables:

Definition

Let X be a numerically-valued discrete random variable with sample space S and probability mass function p(x). Then, the expected value of X is written as E[X] and is calculated as:

$$E[X] = \sum_{x \in S} x \cdot p(x).$$

The expected value is commonly referred to as the *mean* and is also written as μ .

Continuous random variables:

We separate our discussion between expected values for:

■ Discrete random variables:

$$E[X] = \sum_{x \in S} x \cdot p(x).$$

■ Continuous random variables:

We separate our discussion between expected values for:

Discrete random variables:

$$E[X] = \sum_{x \in S} x \cdot p(x).$$

Continuous random variables:

Definition

Let X be a numerically-valued real random variable defined over $(-\infty, +\infty)$ and probability density function f(x). Then, the expected value of X is written as E[X] and is calculated as:

$$E[X] = \int_{-\infty}^{+\infty} x \cdot f(x) dx.$$

The expected value is commonly referred to as the *mean* and is also written as μ .

We separate our discussion between expected values for:

■ Discrete random variables:

$$E[X] = \sum_{x \in S} x \cdot p(x).$$

Continuous random variables:

$$E[X] = \int_{-\infty}^{+\infty} x \cdot f(x) dx.$$

We separate our discussion between expected values for:

■ Discrete random variables:

$$E[X] = \sum_{x \in S} x \cdot p(x).$$

Continuous random variables:

$$E[X] = \int_{-\infty}^{+\infty} x \cdot f(x) dx.$$

Recall that:

$$\blacksquare \sum_{x \in S} p(x) = 1.$$

$$\blacksquare \int_{-\infty}^{+\infty} f(x) dx = 1.$$

Discrete random variables:

$$E[X] = \sum_{x \in S} x \cdot p(x).$$

■ Continuous random variables:

$$E[X] = \int_{-\infty}^{+\infty} x \cdot f(x) dx.$$

Example

A (discrete) random variable is distributed with $p(x) = x^2/c, x = 1, 2, 3, 4$.

■ What is the mean value?

$$\sum_{x=1}^{4} x \cdot p(x) = \sum_{x=1}^{4} \frac{x^3}{c} = \frac{100}{c}.$$

From
$$\sum_{x=1}^{4} p(x) = 1$$
, we get that $c = 30$.

$$\int_{x=1}^{4} x \cdot f(x) = \int_{x=1}^{4} \frac{x^3}{c} = \left. \frac{x^4}{4c} \right|_{1}^{4} = \frac{63.75}{c}.$$

From
$$\int_{x=1}^{4} f(x) = 1$$
, we get that $c = 21$

Discrete random variables:

$$E[X] = \sum_{x \in S} x \cdot p(x).$$

■ Continuous random variables:

$$E[X] = \int_{-\infty}^{+\infty} x \cdot f(x) dx.$$

Example

A (discrete) random variable is distributed with $p(x) = x^2/c$, x = 1, 2, 3, 4.

- What is the mean value?
- What if the random variable is continuous in [1,4]?

$$\sum_{x=1}^{4} x \cdot p(x) = \sum_{x=1}^{4} \frac{x^3}{c} = \frac{100}{c}$$

$$\int_{x=1}^{4} x \cdot f(x) = \int_{x=1}^{4} \frac{x^3}{c} = \left. \frac{x^4}{4c} \right|_{1}^{4} = \frac{63.75}{c}$$

From
$$\sum_{x=1}^{4} p(x) = 1$$
, we get that $c = 30$.

From
$$\int_{x=1}^{4} f(x) = 1$$
, we get that $c = 21$

■ Discrete random variables:

$$E[X] = \sum_{x \in S} x \cdot p(x).$$

■ Continuous random variables:

$$E[X] = \int_{-\infty}^{+\infty} x \cdot f(x) dx.$$

Example

A (discrete) random variable is distributed with $p(x) = x^2/c$, x = 1, 2, 3, 4.

- What is the mean value?
- What if the random variable is continuous in [1,4]?

$$\sum_{x=1}^{4} x \cdot p(x) = \sum_{x=1}^{4} \frac{x^3}{c} = \frac{100}{c}.$$

$$\int_{x=1}^{4} x \cdot f(x) = \int_{x=1}^{4} \frac{x^3}{c} = \left. \frac{x^4}{4c} \right|_{1}^{4} = \frac{63.75}{c}$$

From
$$\sum_{x=1}^{4} p(x) = 1$$
, we get that $c = 30$.

From
$$\int_{x=1}^{4} f(x) = 1$$
, we get that $c = 21$

Discrete random variables:

$$E[X] = \sum_{x \in S} x \cdot p(x).$$

■ Continuous random variables:

$$E[X] = \int_{-\infty}^{+\infty} x \cdot f(x) dx.$$

Example

A (discrete) random variable is distributed with $p(x) = x^2/c$, x = 1, 2, 3, 4.

- What is the mean value?
- What if the random variable is continuous in [1,4]?

Answer:

$$\sum_{x=1}^{4} x \cdot p(x) = \sum_{x=1}^{4} \frac{x^3}{c} = \frac{100}{c}.$$

$$\int_{x=1}^{4} x \cdot f(x) = \int_{x=1}^{4} \frac{x^3}{c} = \left. \frac{x^4}{4c} \right|_{1}^{4} = \frac{63.75}{c}.$$

From
$$\sum_{x=1}^{4} p(x) = 1$$
, we get that $c = 30$.

From $\int_{x=1}^{4} f(x) = 1$, we get that c = 21

Discrete random variables:

$$E[X] = \sum_{x \in S} x \cdot p(x).$$

■ Continuous random variables:

$$E[X] = \int_{-\infty}^{+\infty} x \cdot f(x) dx.$$

Example

A (discrete) random variable is distributed with $p(x) = x^2/c$, x = 1, 2, 3, 4.

- What is the mean value?
- What if the random variable is continuous in [1,4]?

$$\sum_{x=1}^{4} x \cdot p(x) = \sum_{x=1}^{4} \frac{x^3}{c} = \frac{100}{c}.$$

From
$$\sum_{x=1}^{4} p(x) = 1$$
, we get that $c = 30$.

$$\int_{c=1}^{4} x \cdot f(x) = \int_{x=1}^{4} \frac{x^3}{c} = \left. \frac{x^4}{4c} \right|_{1}^{4} = \frac{63.75}{c}.$$

From
$$\int_{x=1}^{4} f(x) = 1$$
, we get that $c = 21$

Discrete random variables:

$$E[X] = \sum_{x \in S} x \cdot p(x).$$

■ Continuous random variables:

$$E[X] = \int_{-\infty}^{+\infty} x \cdot f(x) dx.$$

Example

A (discrete) random variable is distributed with $p(x) = x^2/c$, x = 1, 2, 3, 4.

- What is the mean value?
- What if the random variable is continuous in [1,4]?

$$\sum_{x=1}^{4} x \cdot p(x) = \sum_{x=1}^{4} \frac{x^3}{c} = \frac{100}{c}.$$

$$\int_{x=1}^{4} x \cdot f(x) = \int_{x=1}^{4} \frac{x^3}{c} = \left. \frac{x^4}{4c} \right|_{1}^{4} = \frac{63.75}{c}.$$

From
$$\sum_{x=1}^{4} p(x) = 1$$
, we get that $c = 30$.

From
$$\int_{x=1}^{4} f(x) = 1$$
, we get that $c = 21$

Discrete random variables:

$$E[X] = \sum_{x \in S} x \cdot p(x).$$

■ Continuous random variables:

$$E[X] = \int_{-\infty}^{+\infty} x \cdot f(x) dx.$$

Example

A (discrete) random variable is distributed with $p(x) = x^2/c$, x = 1, 2, 3, 4.

- What is the mean value?
- What if the random variable is continuous in [1,4]?

$$\sum_{x=1}^{4} x \cdot p(x) = \sum_{x=1}^{4} \frac{x^3}{c} = \frac{100}{c}.$$

$$\int_{x-1}^{4} x \cdot f(x) = \int_{x-1}^{4} \frac{x^3}{c} = \left. \frac{x^4}{4c} \right|_{1}^{4} = \frac{63.75}{c}.$$

From
$$\sum_{x=1}^{4} p(x) = 1$$
, we get that $c = 30$.

From
$$\int_{x=1}^{4} f(x) = 1$$
, we get that $c = 21$.

■ Bernoulli with probability *p* (assume failure=0 & success=1):

$$E[X] = 1 \cdot p + 0 \cdot (1 - p) = p.$$

■ Binomial with parameters *p* and *n*:

$$E[X] = n \cdot p.$$

Example

Students accepted in a certificate program graduate with probability p=0.75. This year, the certificate program has accepted 300 students. How many are expected to successfully finish the program?

Answer: Binomial with n=300, p=0.75, hence $\mu=n\cdot p=225$ students

■ Bernoulli with probability *p* (assume failure=0 & success=1):

$$E[X] = 1 \cdot p + 0 \cdot (1 - p) = p.$$

■ Binomial with parameters *p* and *n*:

$$E[X] = n \cdot p.$$

Example

Students accepted in a certificate program graduate with probability p=0.75. This year, the certificate program has accepted 300 students. How many are expected to successfully finish the program?

Answer: Binomial with n = 300, p = 0.75, hence $\mu = n \cdot p = 225$ students

■ Bernoulli with probability *p* (assume failure=0 & success=1):

$$E[X] = 1 \cdot p + 0 \cdot (1 - p) = p.$$

■ Binomial with parameters *p* and *n*:

$$E[X] = n \cdot p.$$

Example

Students accepted in a certificate program graduate with probability p=0.75. This year, the certificate program has accepted 300 students. How many are expected to successfully finish the program?

Answer: Binomial with n=300, p=0.75, hence $\mu=n\cdot p=225$ students.

Derivation of mean for binomial

From the definition of expectations for discrete random variables:

$$E[X] = \sum_{x} x \cdot p(x) = \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x} =$$

$$= \sum_{x=0}^{n} x \frac{n!}{x! \cdot (n-x)!} p^{x} (1-p)^{n-x} =$$

$$= \sum_{x=0}^{n} \frac{n \cdot (n-1)!}{(x-1)! \cdot (n-x)!} p \cdot p^{x-1} \cdot (1-p)^{n-x} =$$

$$= np \sum_{x=1}^{n} \binom{n-1}{x-1} p^{x-1} (1-p)^{n-x} =$$

$$= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^{k} (1-p)^{n-k-1} = (k = x-1)$$

$$= np \sum_{k=0}^{m} \binom{m}{k} p^{k} (1-p)^{m-k} = (m = n-1)$$

$$= np.$$

■ Geometric with parameter p

$$E[X] = \frac{1}{p}$$

Example

A kid learning basketball is shooting free throws with a probability of scoring equal to 25%. What are the expected free throws the kid has to attempt until scoring for the first time?

Answer: Geometric with p = 0.25, hence $\mu = \frac{1}{p} = 4$ free throws.

■ Hypergeometric with parameters N, K, n:

$$E[X] = n\frac{K}{N}.$$

Example

A trick-or-treat package contains 100 items, 20 of them are chocolate bars. A kid picks 10 items at random; how many chocolate bars should they expect?

■ Geometric with parameter p:

$$E[X] = \frac{1}{p}.$$

Example

A kid learning basketball is shooting free throws with a probability of scoring equal to 25%. What are the expected free throws the kid has to attempt until scoring for the first time?

Answer: Geometric with p = 0.25, hence $\mu = \frac{1}{p} = 4$ free throws.

 \blacksquare Hypergeometric with parameters N, K, n:

$$E[X] = n\frac{K}{N}.$$

Example

A trick-or-treat package contains 100 items, 20 of them are chocolate bars. A kid picks 10 items at random; how many chocolate bars should they expect?

■ Geometric with parameter p:

$$E[X]=\frac{1}{p}.$$

Example

A kid learning basketball is shooting free throws with a probability of scoring equal to 25%. What are the expected free throws the kid has to attempt until scoring for the first time?

Answer: Geometric with p = 0.25, hence $\mu = \frac{1}{p} = 4$ free throws.

 \blacksquare Hypergeometric with parameters N, K, n:

$$\Xi[X] = n\frac{K}{N}.$$

Example

A trick-or-treat package contains 100 items, 20 of them are chocolate bars. A kid picks 10 items at random; how many chocolate bars should they expect?

■ Geometric with parameter p:

$$E[X]=\frac{1}{p}.$$

Example

A kid learning basketball is shooting free throws with a probability of scoring equal to 25%. What are the expected free throws the kid has to attempt until scoring for the first time?

Answer: Geometric with p = 0.25, hence $\mu = \frac{1}{p} = 4$ free throws.

■ Hypergeometric with parameters N, K, n:

$$E[X] = n\frac{K}{N}$$

Example

A trick-or-treat package contains 100 items, 20 of them are chocolate bars. A kid picks 10 items at random; how many chocolate bars should they expect?

11 / 16 Chrysafis Vogiatzis Expectations

■ Geometric with parameter p:

$$E[X]=\frac{1}{p}.$$

Example

A kid learning basketball is shooting free throws with a probability of scoring equal to 25%. What are the expected free throws the kid has to attempt until scoring for the first time?

Answer: Geometric with p=0.25, hence $\mu=\frac{1}{p}=4$ free throws.

■ Hypergeometric with parameters N, K, n:

$$E[X] = n\frac{K}{N}.$$

Example

A trick-or-treat package contains 100 items, 20 of them are chocolate bars. A kid picks 10 items at random; how many chocolate bars should they expect?

■ Geometric with parameter p:

$$E[X]=\frac{1}{p}.$$

Example

A kid learning basketball is shooting free throws with a probability of scoring equal to 25%. What are the expected free throws the kid has to attempt until scoring for the first time?

Answer: Geometric with p=0.25, hence $\mu=\frac{1}{p}=4$ free throws.

■ Hypergeometric with parameters N, K, n:

$$E[X] = n\frac{K}{N}$$
.

Example

A trick-or-treat package contains 100 items, 20 of them are chocolate bars. A kid picks 10 items at random; how many chocolate bars should they expect?

■ Geometric with parameter p:

$$E[X]=\frac{1}{p}.$$

Example

A kid learning basketball is shooting free throws with a probability of scoring equal to 25%. What are the expected free throws the kid has to attempt until scoring for the first time?

Answer: Geometric with p=0.25, hence $\mu=\frac{1}{p}=4$ free throws.

■ Hypergeometric with parameters N, K, n:

$$E[X] = n\frac{K}{N}.$$

Example

A trick-or-treat package contains 100 items, 20 of them are chocolate bars. A kid picks 10 items at random; how many chocolate bars should they expect?

■ Poisson with parameter λ :

$$E[X] = \lambda.$$

Note: when interested in finding the expected number of events given a rate λ during a period t, we can find that as $\lambda \cdot t$.

Example

A transportation engineer has installed a sensor to measure the number of vehicles passing through an intersection. The number of vehicles is Poisson distributed with rate $\lambda=60/hour$. What is the expected number of vehicles in 1 hour? What is the expected number of vehicles in 3 hours?

Answer: Poisson with rate $\lambda = 60/hour$, hence $\mu = \lambda = 60$ vehicles. When t = 3 hours, we should expect $\mu = \lambda \cdot t = 180$ vehicles.

■ Poisson with parameter λ :

$$E[X] = \lambda.$$

Note: when interested in finding the expected number of events given a rate λ during a period t, we can find that as $\lambda \cdot t$.

Example

A transportation engineer has installed a sensor to measure the number of vehicles passing through an intersection. The number of vehicles is Poisson distributed with rate $\lambda = 60/\text{hour}$. What is the expected number of vehicles in 1 hour? What is the expected number of vehicles in 3 hours?

Answer: Poisson with rate $\lambda=60/hour$, hence $\mu=\lambda=60$ vehicles. When t=3 hours, we should expect $\mu=\lambda\cdot t=180$ vehicles.

Means of continuous random variables

■ Uniform between α and β

$$E[X] = \frac{\alpha + \beta}{2}.$$

Example

If the next bus arrives uniformly in the next 10 minutes, then the next bus is expected to arrive in E[X] = 5 minutes.

■ Normal with parameters μ , σ^2 :

$$E[X] = \mu.$$

Example

If grades are normally distributed with $\mathcal{N}(80, 12)$, then the expected grade of a student in the class is E[X] = 80.

Means of continuous random variables

■ Uniform between α and β :

$$E[X] = \frac{\alpha + \beta}{2}.$$

Example

If the next bus arrives uniformly in the next 10 minutes, then the next bus is expected to arrive in E[X] = 5 minutes.

Normal with parameters μ, σ^2 :

$$E[X] = \mu$$

Example

If grades are normally distributed with $\mathcal{N}(80, 12)$, then the expected grade of a student in the class is E[X] = 80.

Means of continuous random variables

■ Uniform between α and β :

$$E[X] = \frac{\alpha + \beta}{2}.$$

Example

If the next bus arrives uniformly in the next 10 minutes, then the next bus is expected to arrive in E[X] = 5 minutes.

■ Normal with parameters μ , σ^2 :

$$E[X] = \mu$$
.

Example

If grades are normally distributed with $\mathcal{N}(80, 12)$, then the expected grade of a student in the class is E[X] = 80.

Exponential with rate λ

$$E[X] = \frac{1}{\lambda}.$$

Example

If cars pass through an intersection with rate $\lambda = 60/\text{hour}$, then the next car will pass in $E[X] = \frac{1}{\lambda} = 1$ minute.

■ Gamma/Erlang with parameters λ and k

$$E[X] = \frac{k}{\lambda}.$$

Example

If cars pass through an intersection with rate $\lambda=60/hour$, then the k=30-th car is expected to pass in $E[X]=\frac{k}{\lambda}=\frac{30}{60/hour}=0.5$ hours.

Exponential with rate λ :

$$E[X] = \frac{1}{\lambda}.$$

Example

If cars pass through an intersection with rate $\lambda = 60/hour$, then the next car will pass in $E[X] = \frac{1}{\lambda} = 1$ minute.

■ Gamma/Erlang with parameters λ and k:

$$E[X] = \frac{k}{\lambda}.$$

Example

If cars pass through an intersection with rate $\lambda=60/hour$, then the k=30-th car is expected to pass in $E[X]=rac{k}{\lambda}=rac{30}{60/hour}=0.5$ hours.

Exponential with rate λ :

$$E[X] = \frac{1}{\lambda}.$$

Example

If cars pass through an intersection with rate $\lambda = 60/\text{hour}$, then the next car will pass in $E[X] = \frac{1}{\lambda} = 1$ minute.

■ Gamma/Erlang with parameters λ and k:

$$E[X] = \frac{k}{\lambda}.$$

Example

If cars pass through an intersection with rate $\lambda = 60/hour$, then the k = 30-th car is expected to pass in $E[X] = \frac{k}{\lambda} = \frac{30}{60/hour} = 0.5$ hours.

Properties

Let α, β be real numbers and X, Y random variables. Then:

- **1.** $E[\alpha] = \alpha$.
- **2.** $E[\alpha \cdot X] = \alpha \cdot E[X]$.
- **3.** E[X + Y] = E[X] + E[Y].
 - Generalizes to $E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E\left[X_i\right]$.
- **4.** $E\left[\sum_{i=1}^{n} \alpha_i \cdot X_i\right] = \sum_{i=1}^{n} \alpha_i \cdot E\left[X_i\right]$
- **5.** $E[a \cdot X + b] = a \cdot E[X] + b$.

Expected values of functions of random variables (g(X)):

- discrete: $E[g(X)] = \sum_{x:p(x)>0} g(x) \cdot p(x)$.
- continuous: $E[g(X)] = \int_{-\infty}^{+\infty} g(x) \cdot f(x) dx$.

Example

A company makes \$2,000 if they sell 4 units, \$1,800 if they sell 3 units, \$1,200 if they sell 2 units, lose \$1,000 if they sell 1 unit, and lose \$3,000 if they sell no units. Each event from 0 to 4 customers is equally probable. How much should they expect to make?

Answer:
$$E[g(X)] = \sum_{x=0}^{4} g(x) \cdot p(x) = 2000 \cdot \frac{1}{5} + 1800 \cdot \frac{1}{5} + 1200 \cdot \frac{1}{5} - 1000 \cdot \frac{1}{5} - 3000 \cdot \frac{1}{5} = $1000.$$

Example

Let X be a continuous random variable measuring the current (in milliamperes, mA) in a wire with pdf f(x) = 0.05, for $0 \le x \le 20$. The heat produced from the current is given by the function $g(x) = 10 \cdot x$ (with x in milliamperes). What is the mean heat produced by the current?

$$E[g(X)] = \int_{x=0}^{20} g(x) \cdot f(x) dx = \int_{x=0}^{20} 10 \cdot x \cdot 0.05 dx = \int_{x=0}^{20} 0.5x dx = 100$$

Example

A company makes \$2,000 if they sell 4 units, \$1,800 if they sell 3 units, \$1,200 if they sell 2 units, lose \$1,000 if they sell 1 unit, and lose \$3,000 if they sell no units. Each event from 0 to 4 customers is equally probable. How much should they expect to make?

Answer:
$$E[g(X)] = \sum_{x=0}^{4} g(x) \cdot p(x) = 2000 \cdot \frac{1}{5} + 1800 \cdot \frac{1}{5} + 1200 \cdot \frac{1}{5} - 1000 \cdot \frac{1}{5} - 3000 \cdot \frac{1}{5} = $1000.$$

Example

Let X be a continuous random variable measuring the current (in milliamperes, mA) in a wire with pdf f(x) = 0.05, for $0 \le x \le 20$. The heat produced from the current is given by the function $g(x) = 10 \cdot x$ (with x in milliamperes). What is the mean heat produced by the current?

$$E[g(X)] = \int_{x=0}^{20} g(x) \cdot f(x) dx = \int_{x=0}^{20} 10 \cdot x \cdot 0.05 dx = \int_{x=0}^{20} 0.5x dx = 100$$

Example

A company makes \$2,000 if they sell 4 units, \$1,800 if they sell 3 units, \$1,200 if they sell 2 units, lose \$1,000 if they sell 1 unit, and lose \$3,000 if they sell no units. Each event from 0 to 4 customers is equally probable. How much should they expect to make?

Answer:
$$E[g(X)] = \sum_{x=0}^{4} g(x) \cdot p(x) = 2000 \cdot \frac{1}{5} + 1800 \cdot \frac{1}{5} + 1200 \cdot \frac{1}{5} - 1000 \cdot \frac{1}{5} - 3000 \cdot \frac{1}{5} = $1000.$$

Example

Let X be a continuous random variable measuring the current (in milliamperes, mA) in a wire with pdf f(x) = 0.05, for $0 \le x \le 20$. The heat produced from the current is given by the function $g(x) = 10 \cdot x$ (with x in milliamperes). What is the mean heat produced by the current?

$$E[g(X)] = \int_{x=0}^{20} g(x) \cdot f(x) dx = \int_{x=0}^{20} 10 \cdot x \cdot 0.05 dx = \int_{x=0}^{20} 0.5x dx = 100$$

Example

A company makes \$2,000 if they sell 4 units, \$1,800 if they sell 3 units, \$1,200 if they sell 2 units, lose \$1,000 if they sell 1 unit, and lose \$3,000 if they sell no units. Each event from 0 to 4 customers is equally probable. How much should they expect to make?

Answer:
$$E[g(X)] = \sum_{x=0}^{4} g(x) \cdot p(x) = 2000 \cdot \frac{1}{5} + 1800 \cdot \frac{1}{5} + 1200 \cdot \frac{1}{5} - 1000 \cdot \frac{1}{5} - 3000 \cdot \frac{1}{5} = $1000.$$

Example

Let X be a continuous random variable measuring the current (in milliamperes, mA) in a wire with pdf f(x) = 0.05, for $0 \le x \le 20$. The heat produced from the current is given by the function $g(x) = 10 \cdot x$ (with x in milliamperes). What is the mean heat produced by the current?

$$E[g(X)] = \int_{x=0}^{20} g(x) \cdot f(x) dx = \int_{x=0}^{20} 10 \cdot x \cdot 0.05 dx = \int_{x=0}^{20} 0.5x dx = 100.$$

