PHY2004: Electromagnetism and Optics

Lecture 2:

Fundamental principles of electrostatics

The Coulomb force

- It is an **empirical** fact that two charged objects at rest experience a mutual force of the kind:

$$\vec{F} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{|\vec{r}|^2} \hat{r} + q_2$$

$$+q_1 \hat{r}$$

- Where:

F is the experienced force (in Newton) q_1 and q_2 are the charges (in Coulomb) r is the distance between the two charges ϵ_0 is a constant (8.85x10⁻¹² Fm⁻¹)

Strength and range of the electrostatic force

- How "strong" is the electromagnetic force?

Interaction	Current theory	Field particle	Charge	Particle mass	Strength	Range
Strong	Quantum Chromodynamics	gluons	colour	0	10^{2}	10^{-15} m
Weak	Electroweak theory	$\mathrm{W}^{\pm},\mathrm{Z}^{0}$	/	$80.4, 91.2 \text{ GeV/c}^2$	10^{-11}	10^{-18} m
Electromagnetic	Quantum Electrodynamics	photons	el. charge	0	1	∞
Gravitation	General Relativity	(graviton)	mass	(0)	10^{-36}	∞

- If we exclude the strong force (effective only over extremely short distances), the electromagnetic force is the strongest force in Nature.
- It has infinite range and it is 36 orders of magnitude stronger than gravity!

The electrostatic force is linear

- If we have more than one charge involved, the resulting force is simply the sum of the forces exerted by every single charge:

- This is sometimes called the **superposition principle**

The concept of electric field

- The Coulomb force depends on both the external charge and the one experiencing it. It thus appears as if a charge placed in space creates a "disturbance" that is felt by any charge nearby.
- This observation justifies the definition of **electric field:**

$$\mathbf{E} = \left(\frac{\mathbf{F}}{\mathbf{q}}\right)_{\mathbf{as}}$$
 it is, technically, the force felt by a test particle of infinitesimally small charge.

- The electric field generated by a point charge at rest (q) is then:

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\vec{r}|^2} \hat{r}$$

Charge distribution

- The superposition principle allows to extract a simple formula to calculate the electric field generated by a **distribution of charges**
- Volumetric charge density: $\rho = Q/Volume$ \rightarrow $\rho = dQ/dV$
- Areal charge density: $\sigma = Q / Area$
- Linear charge density:

$$\sigma = Q / Area$$
 $\rightarrow \sigma = dQ / dA$

$$\lambda = Q / Length$$
 \rightarrow $\lambda = dQ / dL$

$$\underline{\mathbf{E}}_{p} = \frac{1}{4\pi\varepsilon_{0}} \int_{\text{all space}} \frac{\rho dV}{r^{2}} \hat{\mathbf{r}}$$

Gauss' law

- Is there a simpler way to express the electrostatic field? Let us assume a charge enclosed in a surface.

a is an infinitesimal portion of the surface E is the electric field generated by q n is the vector normal to a

Normal component of E times
$$da = \vec{E} \cdot \vec{n} \ da = \frac{q}{4\pi\varepsilon_0} \frac{\cos\theta}{r^2} da$$

However, $\cos\theta \ da = r^2 d\Omega$ ($d\Omega$ is the solid angle under the surface da)

If we take that into account and integrate over the whole surface we get:

$$\oint_{S} \vec{E} \cdot \vec{n} \ da = \begin{cases} q/\varepsilon_{0} & \text{if q lies inside S} \\ 0 & \text{if q lies outside S} \end{cases} \implies \oint_{S} \vec{E} \cdot \vec{n} \ da = \frac{1}{\varepsilon_{0}} \int_{V} \rho \, dV$$

Gauss' law in differential form

- Let's recall the divergence theorem: $\oint_S \vec{A} \cdot \vec{n} \ da = \int_V \nabla \cdot \vec{A} \ dV$
- This theorem is **general**, valid for any A, S, and V.
- We can then write the previous equation as:

$$\int_{V} \nabla \cdot \vec{E} \ dV = \frac{1}{\varepsilon_0} \int_{V} \rho \ dV$$

- The two integrals must be equal, regardless of the choice of V, implying that the two integrands are exactly the same:

$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
 First Maxwell's equation

Homework

Charges +q, +2q and -q are placed at three corners of a square of side a as shown. What is the magnitude and direction of the electric field at the forth?

