More lepton MVA studies

Intro & Outline

- Checklist of some LepMVA studies:
 - Test new PtRatio & PtRel definitions
 - Study interplay of the Pt usage in category definition, lepMVA, and signal extraction MVA
- We don't yet have the final lepMVA nor the final signal extraction, but don't expect those to change the outcome of the checks

Lep MVA input tests

- Compare two trainings of the LepMVA using:
 - Lepton pT, without any reweighting
 - miniRelIso, split in charged and neutral parts
 - sip3D, dxy, dz, jet b-tag discriminator
 - PtRatio & PtRel with old (v1) or new (v2) def
- Training samples: powheg ttH(nobb) vs powheg TT inclusive.

Input p_T distributions (muons)

28/09/15

CMS Preliminary

2

density/bin 0.40 0.35 density/bir 0.30 b-jets (tt) b-jets (tt) nput PtRatio, PtRe c-jets (tt) 0.30 c-jets (tt) 0.25 I-jets (tt) - I-jets (tt) - fakes (tt) fakes (tt) 0.25 0.20 0.20 0.15 0.15 0.10 0.10 0.05 0.05 0.00 0.00 0.6 0.8 1 1.1 lepton p_T(I)/p_T(jet) 0.2 0.4 0.2 0.4 **CMS Preliminary CMS Preliminary** $\sqrt{s} = 13 \text{ TeV}, L = 19.7 \text{ fb}^{-1}$ density/bin 0.20 0.18 0.16 density/bin ttH, t→lvb 0.45ttH, H→WW ttH, H→ZZ 0.40 -ttH, H→ττ ttH, H→ττ b-jets (tt) b-jets (tt) 0.35 --- c-jets (tt) - c-jets (tt) 0.14 I-jets (tt) I-jets (tt) 0.30 - fakes (tt) fakes (tt) 0.12 0.25 0.10 0.20 0.08 0.15 0.06 0.10 🗏 0.04 0.05 0.02 0.00 0.00

 $\frac{1}{1}$ 6 8 10 12 lepton $p_{_{\mathrm{T}}}^{\mathrm{rel}}(l)$ wrt jet, v1

G. Petrucciani (CERN)

CMS Preliminary

2

 $\frac{1}{4}$ 0.6 0.8 1 1.3 lepton $p_{T}(I)/p_{T}(jet)$, v2

8 10 12 14 16 18 20 lepton p_T^{rel}(I) wrt jet, v2

 \sqrt{s} = 13 TeV, L = 19.7 fb⁻¹

P_T usage in LepMVA

- Brief recap from past presentation (31/08):
 - Including p_T in lepMVA improves discrimination
 - efficiency strongly but smoothly p_T -dependent, can be modulated with p_T -dependent cut
- Things we wanted to check:
 - how reweighting p_T changes p_T dependency
 - if the gain from using p_T in lepMVA remains after we use $p_T(\ell_2)$ in the final MVA

p_T re-weighting test

- Apply approximate weight to make p_T spectrum of true leptons (ttH) and fakes (tt) more similar in the 10-30 GeV range
- Compare weighted vs unweighted training

Efficiency and fake rate

Compare: old, new, new w/ p_T, new w/ p_T wgt

(new = using minilso & ptRel; old = using rellso)

ROCs in p_T bins

Compare: old, new, new w/ p_T, new w/ p_T wgt

(new = using minilso & ptRel; old = using rellso)

ROCs per event

Full selection, ttH signal vs tt fake background

Combining lepMVA & final MVA

- Test interplay of p_T cuts, lepMVA, finalMVA:
 - Train final MVA, using run 1 vars including $p_{T}(\ell 2)$
 - do ROCs for a 2D cut on (lepMVA, finalMVA)
- See effect of two possible changes:
 - Adding p_T 30/5 category on top of 20/15 one
 - Using weighted lepMVA training
- Note: to be redone including ttW, ttZ backgrounds, not just ttbar

Per event ROCs

Compare:

- p_T cuts before lepton MVA (black, red)
- p_T cuts including lepton MVA (green, blue, pink)
- 2D cut on lepton MVA + final MVA (curves)

Summary

- New PtRatio & PtRel variables work on in the lepton MVA → will use them
- Reweighting lepton p_T in the lepMVA training can increase efficiency, but overall performance is worse also after combining with the final MVA
- Low p_T category brings in some ~5% gain in efficiency for the same background.
- The two latter points will benefit from further study with the full analysis