COLUMBIA UNIVERSITY Department of Economics

Mathematical Methods for Economists (Ph.D.)

ECON G6410 Satyajit Bose sgb2@columbia.edu Fall 2016 2929 Broadway, 5th Fl 212 851 9425

Problem Set 10

1. For each of the following dynamical systems (X, f), describe all the sets $S \subseteq X$ which are invariant under f, list all its fixed points, and describe the stable set of each fixed point.

(a)
$$X = \mathbb{R}, f(x) = x$$

(b)
$$X = \mathbb{R}, f(x) = -x$$

(c)
$$X = \mathbb{R}, f(x) = x + 1$$

(d)
$$X = \mathbb{R}, f(x) = x/2$$

(e)
$$X = \mathbb{R}_+, f(x) = 1.2x$$

(f)
$$X = \mathbb{R}_+, f(x) = 0.2\sqrt{x} + 0.8x$$

2. Consider the dynamic system of $x=\begin{bmatrix}p\\q\\r\end{bmatrix}$ in the space \mathbb{R}^3 , which is implicitly defined by the following system of equations:

$$p_t + q_t = -2p_{t-1} - q_{t-1} + 3.5r_{t-1}$$

$$q_t = -p_{t-1} + 1.5r_{t-1}$$

$$q_t + r_t = -4p_{t-1} - q_{t-1} + 5.5r_{t-1}$$

for any $t \in \mathbb{N}$.

- (a) Express the system of equations as $Bx_t = Cx_{t-1}$, where B and C are 3×3 matrices. Write down B and C explicitly.
- (b) Find the transition matrix A of this linear dynamic system, i.e. find A s.t. $x_t = Ax_{t-1}$.

- (c) Find the three eigenvalues of A.
- (d) Diagonalize the matrix A (in the general sense), i.e. find an invertible **real** matrix P s.t.

$$P^{-1}AP = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & -\beta & \alpha \end{bmatrix}$$

Be specific about the matrix P you find, as well as the value of λ , α , and β .

- (e) Prove that the zero vector $x^* = 0$ is the unique fixed point of this dynamic system.
- (f) Prove that the fixed point $x^* = 0$ is not globally asymptotically stable, by finding one $x_0 \in \mathbb{R}^3$ s.t. $x_t := A^t x_0 \not\to 0$.
- (g) Find one $\hat{x}_0 \neq 0$ s.t. $\hat{x}_t := A^t \hat{x}_0 \rightarrow 0$.
- 3. Prove that $f(x) = 2x^2 1$ on [-1, 1] is conjugate to $g(x) = x^2 2$ on [-2, 2]
- 4. Consider the Hénon map defined by

$$x_n = a - x_{n-1}^2 + by_{n-1}$$

$$y_n = x_{n-1}$$

Let a = 1.4 and b = 0.3.

- (a) Using a program, calculate the dynamics over 5000 periods, and plot x_t against t. Use a seed of $(x_0, y_0) = (0, 0)$. Plot y_n against x_n .
- (b) Plot a histogram of the trajectory of x_t with 40 bins.
- (c) Redo (a) and (b) with a perturbed seed of $(x'_0, y'_0) = (0 + 10^{-8}, 0 + 10^{-8})$. How different is the trajectory of the perturbed seed from the initial seed?
- (d) Plot the difference in trajectories $\Delta_n = \ln|x_n x_n'|$ against t. What would you say this plot tells you about the dependence of future behaviour of the system on initial conditions?