ASSIGNMENT #3

An online store wants to predict whether a visitor will purchase a product (y=1) or leave without buying (y=0). We collect two features about each customer:

- x_1 = time spent browsing the website (minutes)
- x₂ = number of product pages viewed
- y = purchase outcome (1= purchase, D=no purchase)

DATASET

CUSTOMER	TIME ON SITE (XI)	PAGES VIEWED (X2)	Purchase (y)
A	1	4	D
В	2	3	0
C	3	7	1
D	5	2	1
E	6	6	1

Initial model parameters:

- m, = 0.8
- $m_2 = 0.4$
- b = -4.0

TASKS

- Compute probabilities
- · Compute average loss
- Update the Slope and intercept using Gradient Descent
- · Compute new probabilities using the new slopes and intercept
- Compute new average loss

COMPUTE PROBABILITIES

CUSTOMER	X,	Xz	y	ŷ
A	1	4	0	0.168
В	2	3	0	0.231
С	3	7	1	0.769
D	5	2	1	0.690
E	6	6	1	0.961

$$y = \frac{1}{1 + e^{-(m_1(x_1) + (m_2)(x_2) + b}}$$

$$y = \frac{1}{1 + e^{-(m_1(x_1) + (m_2)(x_2) + b}}$$

$$Z = 0.8(1) + 0.4(4) + (-4.0) = -1.6$$

$$y = \frac{1}{1 + e^{-(-1.6)}} = 0.163$$

LEON MARCO A. DEVELA **CDM232**

C = 0.8(3) + 0.4(7) + (-4.0) = 1.2

CCMACLRL $D \log = -(1 \times \ln(0.690) + (1-1) \times \ln(1-0.690))$

D
$$Z = 0.8(5) + 0.4(2) + (-4.0) = 0.8$$
 $\hat{y} = \frac{1}{1 + e^{-0.8}} = 0.690$
E $Z = 0.8(6) + 0.4(6) + (-4.0) = 3.2$ $\hat{y} = \frac{1}{1 + e^{-0.8}} = 0.690$

1055 = 0.0398 AVERAGE LOSS: 0.2240

 $loss = -(1 \times ln(0.961) + (1-1) \times ln(1-0.961))$

1055 = 0.3711

UPD/

MPI	UTE AVERAG	E LOSS					
	CUSTOMER	X,	X ₂	y	ŷ	loss	
	A	1	4	D	0.168	0.1839	
	В	2	3	O	0.231	0.2627	
	C	3	7	1	0.769	0.2627	
	D	5	2	1	0.690	0.3711	
			_	4	2061	0.0200	

TE THE SLOPE	AND	INTERC	EPT U	sing gra	DIENT DE	SCENT
CUSTOMER	X,	Xz	y	ŷ	ŷ-y	
A	1	4	D	0.168	0.168	
В	2	3	0	0.231	0.231	
С	3	7	1	0.769	-0.231	
D	5	2	1	0.690	-0.310	
E	6	G	1	0.961	-0.039	
					-D. 181	

		A	1	4	O	0.168	0.1839
		В	2	3	0	0.231	0.2627
		C	3	7	1	0.769	0.2627
		D	5	2	1	0.690	0.3711
		E	6	6	1	0.961	0.0398
		loss = -	(yi × li	n(ŷi)+	(1-yi)	× In(1-4;))
	loss	$=-(0 \times ln(0.$	168)+(1-0)x	In(1-	0.168))	
	loss	= 0.1839					
3	loss	$=-(0 \times ln(0.5)$	231)+(1-0) x	In(1-	0.231))	

C	3	7	1	0.769	-0.231
D	5	2	1	0.690	-0.310
E	6	G	1	0.961	-0.039
					-0.181
CUSTOMER	X,	Xz	y	ŷ	(ŷ-y)*x,
A	1	4	D	0.168	0.168
В	2	3	0	0.231	0.462
C	3	7	1	0.769	-0.693
D	5	2	1	0.690	-155
F	6	G	1	0961	-D.234

loss = 0.2627

 $\log = -(1 \times \ln(0.769) + (1-1) \times \ln(1-0.769)$ loss = 0.2627

-1.847

ASSIGNMENT #3

CUSTOMER	X,	X ₂	y	ŷ	(ŷ-y)*X ₂
A	1	4	D	0.168	0.672
В	2	3	0	0.231	0.693
C	3	7	1	0.769	-1.617
D	5	2	1	0.690	-0.620
E	6	6	1	0.961	-0.234
					-1.106

$$\frac{d \log s}{d b} = \frac{1}{5} (-0.181) = -0.0362$$

$$\frac{d \log s}{d m_1} = \frac{1}{5} (-1.847) = -0.3694$$

$$\frac{d \log s}{d m_2} = \frac{1}{5} (-1.106) = -0.2212$$

$$\text{new } b = -4.0 - 0.1 \times (-0.0362) = -3.996$$

$$\text{new } m_1 = 0.8 - 0.1 \times (-0.3694) = 0.8369$$

$$\text{new } m_2 = 0.4 - 0.1 \times (-0.2212) = 0.4221$$

COMPUTE NEW PROBABILITIES USING THE NEW SLOPES

100	II CREEF				
	CUSTOMER	X,	Xz	y	new ŷ
	A	1	4	D	0.187
	В	2	3	0	0.258
	C	3	7	1	0.813
	D	5	2	1	0.737
	E	6	6	1	0.972
		1			

 $y = \frac{1}{1 + e^{-(m_1(x_1) + (m_2)(x_2) + b}}$ e = 2.718

A
$$z = 0.8369(1) + 0.4221(4) + (-3.996) = -1.4707$$

$$\hat{y} = \frac{1}{1 + e^{-(-1.4707)}} = 0.187$$

$$\hat{y} = \frac{1}{1 + e^{-(-1.0559)}} = 0.258$$

$$C_{Z} = 0.8369(3) + 0.4221(7) + (-3.996) = 1.4694$$

$$\dot{y} = \frac{1}{1 + e^{-1.4694}} = 0.813$$

•
$$m_2 = 0.4221$$

 $D_{z} = 0.8369(5) + 0.4221(2) + (-3.996) = 1.0327$

 $E_{7} = 0.8369(6) + 0.4221(6) + (-3.996) = 3.558$

 $\hat{y} = \frac{1}{1 + e^{-3.558}} = 0.972$

 $y = \frac{1}{1 + e^{-1.0327}} = 0.737$

COSTORICK	7.1	7.2	7	tiem D	tiem 1033
A	1	4	D	0.187	0.207
В	2	3	0	0.258	0.298
С	3	7	1	0.813	0.207
D	5	2	1	0.737	0.305
E	6	G	1	0.972	0.028

loss = 0.207

loss = 0.298

loss = 0.207

CDM232

 $loss = -(y_i \times ln(\hat{y}_i) + (1-y_i) \times ln(1-\hat{y}_i))$ A $loss = -(0 \times ln(0.187) + (1-0) \times ln(1-0.187))$

C loss = -(1 x ln (0.813)+(1-1) x ln (1-0.813))

COMPUTE NEW AVERAGE LOSS

ASSIGNMENT #3

CCMACLRL

 $D \log = -(1 \times \ln(0.737) + (1-1) \times \ln(1-0.737))$

 $\log = -(1 \times \ln(0.972) + (1-1) \times \ln(1-0.972))$

loss = 0.305

loss = 0.028 AVERAGE LOSS : D.209