The stability of self-gravitating gaps

Min-Kai Lin John Papaloizou

DAMTP University of Cambridge

ASIAA, November 9, 2010

Outline

- Introduction
- Numerical simulations
- Vortices & spirals
- Disk-planet interactions
- Conclusion & future work

Disk stability

- Disks are ubiquitous in astrophysics.
- Instability is important: accretion, star formation, direct or indirect planet formation.
- Unstable because: magnetic fields, thermodynamics, disk structure, self-gravity.

Gaps in protoplanetary disks

- 490+ exo-planets discovered (October 2010).
- Planets form in disks. Sufficiently massive planets opens a gap (Papaloizou & Lin, 1984; Lin & Papaloizou, 1986).
- Dynamical instability at gap edges because of steep gradients.

Self-gravity

- Total gravitational potential: star, planet, disk.
- Usually ignore disk potential because $M_d \sim 0.01 M_*$.
- Massive disks needed for giant planet formation via GI, type III migration.
- How does SG affect gap stability?

Consider a series of disk-planet simulations with increasing M_d :

5 / 26

Self-gravity

- Total gravitational potential: star, planet, disk.
- Usually ignore disk potential because $M_d \sim 0.01 M_*$.
- Massive disks needed for giant planet formation via GI, type III migration.
- How does SG affect gap stability?

Consider a series of disk-planet simulations with increasing M_d :

Model equations

2D disc in polar co-ordinates centered on primary but non-rotating.

• Hydrodynamic equations with local isothermal equation of state:

$$\begin{split} & \frac{\partial \Sigma}{\partial t} + \nabla \cdot (\mathbf{u}\Sigma) = 0, \\ & \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\Sigma} \nabla P - \nabla \Phi + \frac{\mathbf{f}}{\Sigma}. \end{split}$$

• Viscous forces $f \propto \nu$, pressure $P = c_s^2 \Sigma$ with $c_s^2 = h^2 G M_* / r$ and potential Φ include star potential, indirect potentials and disk potential Φ_d :

$$\Phi_d = -\int \frac{G\Sigma(r',\phi')}{\sqrt{r^2 + r'^2 - 2rr'\cos(\phi - \phi') + \epsilon_g^2}} r'dr'd\phi'.$$

6 / 26

Linearized equations

- Simplify: $P = P(\Sigma)$, ignore indirect and planet potentials. Ignore viscosity.
- Perturb the system, e.g. $\Sigma \to \Sigma + \delta \Sigma(r) \exp i(\sigma t + m\phi)$. Linearize to get ODE in the form

$$L(S) = \delta \Sigma$$

$$S = c_s^2 \delta \Sigma / \Sigma + \delta \Phi$$

$$\delta \Phi = -G \int K_m(r, \xi) \delta \Sigma(\xi) \xi d\xi.$$

• L is a linear integro-differential operator

$$L(S) = \frac{mS}{r\bar{\sigma}(1-\bar{\nu}^2)}\frac{d}{dr}\left(\frac{1}{\eta}\right) + \cdots,$$

$$\bar{\sigma} = \sigma + m\Omega$$
, $\bar{\nu} = \bar{\sigma}/\kappa$ and

 $\eta = \kappa^2/2\Omega\Sigma$ is the vortensity.

Vortensity profile of gaps

- Disturbances associated with vortensity extrema. Take $\bar{\sigma} \simeq 0$ at $r = r_c$ such that $\eta'(r_c) \simeq 0$.
- Consider $\int rS^*L(S)dr = \int rS^*\delta\Sigma dr$. Assume on LHS: vortensity gradient term dominates and spatially localised near r_c .

Vortensity profile of gaps

• $\int rS^*L(S)dr=\int rS^*\delta\Sigma dr$ has dimensions of energy. Assumptions lead to:

$$\int \frac{m|S|^2}{\bar{\sigma}} \frac{d}{dr} \left(\frac{1}{\eta}\right) dr \sim \int c_s^2 \frac{|\delta \Sigma|^2}{\Sigma} dr - G \int \int r \xi K_m(r,\xi) \delta \Sigma^*(r) \delta \Sigma(\xi) dr d\xi$$

- Sign of $(1/\eta)''/\Omega'$ at r_c determine sign of LHS. $\Omega' < 0$.
- Insignificant SG: RHS > 0 so r_c is $\min(\eta) \to \mathsf{VORTICES}$.
- Significant SG: RHS < 0 so r_c is $\max(\eta) \to \mathsf{SPIRALS}.$

Note: Toomre $Q = \kappa c_s / \pi G \Sigma$. $\max(Q)$ coincides with $\max(\eta)$.

A nice result

Theorem

The perturbative effect of self-gravity through the linear response, $\delta \Phi$, is to stabilize vortex modes and de-stabilize spiral modes.

Proof.

- Consider marginally stable mode with real $\sigma = -m\Omega(r_c)$. $\eta'(r_c) = 0$.
- Change self-gravity via $G \rightarrow G + \delta G$.
- Perturb eigensolution: $\sigma \to \sigma + \delta \sigma$ with $\delta \sigma = \delta \sigma_R + i \gamma$; $S \to S + \delta S$; $\delta \Sigma \to \delta \Sigma + \delta \Sigma_1$. γ is assumed small negative.

Can show:

$$\gamma = \beta \left. \frac{d^2 \eta}{dr^2} \right|_{r_c} \times \delta G,$$

with $\beta > 0$ for Ω decreasing outwards. Vortex modes have $\eta''(r_c) > 0$. Need $\delta G < 0$ to de-stabilize them, i.e. increasing SG stabilizes them.

9 / 26

Stabilization of vortex modes

- Solve the linear problem numerically, with local isothermal equation of state.
- Also solved with $\delta \Phi = 0$.

Growth rate $|\gamma|$ as a function of azimuthal wave-number m:

Solid: with SG in response. Dotted: no SG in response.

Effect of SG via the background

Altering SG affect the gap profile set up by simulation:

 $Q_m \propto 1/M_d$. Deeper gaps with increasing SG \to more unstable. Effect diminishes with lowering m.

Getting more vortices

Now include SG all the way in linear problem.

Recall $Q_m \propto 1/M_d$.

- Higher m preferred with increasing SG.
- Loss of low m.

Effect of SG on vortex evolution

• Multiple-vortices configuration is sustained longer with increasing SG.

Effect of SG on vortex evolution

- Multiple-vortices configuration is sustained longer with increasing SG.
- \bullet Get α growth for intermediate range of disk mass.

Vortices as co-orbital planets

Vortices as co-orbital planets

Vortices as co-orbital planets

 \bullet SG imply minimum inter-vortex distance. If still larger than critical \to no merging.

Application to vortex-induced migration

Repeat ?'s fiducial case with SG.

Strong self-gravity

A case with $M_d=0.06M_*$. Co-rotation radius at $r\simeq 5.5$, local vortensity maximum. Confirms Meschiari & Laughlin (2008).

Strong self-gravity

An example with $M_d = 0.08 M_*$.

Requirement for edge modes

- Recall ODE: $L(S) = \delta \Sigma$, $S = c_s^2 \delta \Sigma / \Sigma + \delta \Phi$.
- Only keep vortensity gradient term in *L*. Get...

$$\lambda \mathcal{H}(r) = \int \mathcal{R}_m(r,\xi) \mathcal{H}(\xi) d\xi.$$

with $\lambda = 1$. $S \to \mathcal{H}$ (new eigenfunction); $K_m \to \mathcal{R}_m$ (new kernel).

ullet But there is a $\max(\lambda)$ for these equations. So if

$$\max(\lambda) < 1$$
 then no mode.

• Can show $\max(\lambda) < \Lambda$ and estimate Λ :

$$\Lambda \sim rac{2 \, G K_0 (m \epsilon_g / r_c)}{r_c} \left| rac{1}{\Omega'} \left(rac{2 \Omega \Sigma}{\kappa^2}
ight)''
ight| L_c.$$

 K_0 : Bessel function; L_c length-scale of edge. Approximations: thin edge, zero pressure.

Linear calculations of edge modes

Solve the ODE with and without SG in response. Background has SG.

Solid line is $1/\eta!$ NSG $r_c = 5.80$ and SG $r_c = 5.46$.

Linear calculations of edge modes

Here are the eigenfunctions:

Analogy with disk-planet system

- Edge disturbance acts as external forcing on smooth part of the disk.
- Edge disturbance is like a planet. Does its potential vary on global scale?

Analogy with disk-planet system

M-K. Lin (DAMTP)

- Edge disturbance acts as external forcing on smooth part of the disk.
- Edge disturbance is like a planet. Does its potential vary on global scale? Well, sort of.

19 / 26

Back to hydrodynamics

Eccentric gap

Viscosity

- Need low viscosity to get vortices ($\nu < 10^{-6}$ or $\alpha < 10^{-4}$).
- \bullet Standard viscosity $\alpha=10^{-3}$ can't kill edge modes.

22 / 26

Viscosity

- Need low viscosity to get vortices ($\nu < 10^{-6}$ or $\alpha < 10^{-4}$).
- Standard viscosity $\alpha = 10^{-3}$ can't kill edge modes.

- Lower viscosity \rightarrow higher m (sharper profiles).
- Eventually surpressed but because no local vortensity maximum.

Application to disk-planet interaction

Disk-planet torque for fiducial case:

Application to disk-planet interaction

Time-averaged disk-on-planet torques:

If unstable \rightarrow average torque more positive with increasing disk mass.

Diluting the outer torque

Stable disk.

Diluting the outer torque

Migration in massive disks

- Numerically difficult: lots of parameters.
- Need better set up.

Summary

- Self-gravity affects onset of instability at gap edge, higher m modes preferred as SG becomes important.
- Self-gravity delays vortex merging. Final configuration without SG is a single large vortex. With SG, final vortex is compact and has local scale.
- When self-gravity is strong, get different type of mode altogehter: m=2 global spirals. Sometimes have strong affects on planet migration.

References

Lin D. N. C., Papaloizou J., 1986, ApJ, 309, 846 Meschiari S., Laughlin G., 2008, ApJL, 679, L135 Papaloizou J., Lin D. N. C., 1984, ApJ, 285, 818

27 / 26