Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра вычислительных методов

ЧИСЛЕННЫЕ МЕТОДЫ МЕХАННИКИ СПЛОШНОЙ СРЕДЫ

Содержание

Лекци	я 1
1.1	Уравнение конвекции с диффузией
1.2	Модельная задача
1.3	Решение разностной задачи (центральные разности)
Лекци	я 2
2.1	Схема А.А.Самарского
2.2	Экспоненциальная схема
2.3	Схема Сполдинга
2.4	Схема Патанкара
2.5	Разностная схема на расширенных шаблонах
Лекци	
3.1	Нестационарные задачи
3.2	Решение модельной задачи
	3.2.1 Направленные разности
	3.2.2 Центральные разности
3.3	Диффузия и дисперсия
3.4	Дифференциальное представление разностных схем
3.5	Дифференциально приближение для схемы с направленными разностями 1
Лекци	я 4 — — — — — — — — — — — — — — — — — — —
4.1	Устойчивость разностных схем. Метод Неймана (Метод гармоник.)
	4.1.1 Явная схема с направленными разностями
4.2	Изменение амплитуды волны
	4.2.1 Коротко про устойчивость схемы с центральными разностями 1
Лекци	я 5
5.1	Уравнение движения вязкой несжимаемой жидкости
Лекци	я 5
6.1	Переинтерполяции
	6.1.1 Переинтерполяция 1
	6.1.2 Переинтерполяция 2
	6.1.3 Первый способ применение
6.2	Баланс кинетической энергии

Лекция 1

1.1 Уравнение конвекции с диффузией

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x}(uQ) = \frac{\partial}{\partial x}(\mathcal{D}\frac{\partial Q}{\partial x}); t > 0; x \in [-L, L]$$

Уравнение конвекции с диффузией.

$$Pe = \frac{UL}{D}$$

- число Пекле

$$\frac{L}{U} = t_{\text{kohb}}$$

$$\frac{L^2}{\mathcal{D}} = t_{\text{дифузионная}}$$

$$\frac{t_{\text{диф}}}{t_{\text{конв}}} = \frac{LU}{\mathcal{D}}$$

почти дифф процесс

почти конв процесс

Сначала будем рассматривать стационарное уравнение.

$$\frac{d}{dx}(uQ) - \frac{d}{dx}(\mathcal{D}\frac{dQ}{dx}) = 0$$

На отрезке вводится разностная сетка

$$\Omega_n(x_{i-1}, x_i, x_{i+1})$$

Потоковые точки - точки с полуцелые точки

$$xi + \frac{1}{2} = \frac{x_i + x_{i+1}}{2}$$

- потоковые узлы

$$h_{i+\frac{1}{2}} = x_{i+1} - x_i$$

$$h_i = \frac{h_{i+\frac{1}{2}} - h_{i-\frac{1}{2}}}{2}$$

Вводим сеточные функции.

$$Q_i = (x_{i+\frac{1}{2}}; x_{i-\frac{1}{2}})$$

константа на отрезке

$$[x_{i+\frac{1}{2}} \operatorname{Д} o x_{i-\frac{1}{2}}]$$

D - константа в полуцелых точках (от x_i до x_{i+1} константа) Считаем скорость и тепло в потоковых точках, где диффузия постоянна

$$Q_{x} = \frac{Q_{i+1}i = Q_{i}}{h_{i+\frac{1}{2}}}$$

$$Q_{\overline{x}} = \frac{Q_{i} - Q_{i-1}}{h_{i-\frac{1}{2}}}$$

$$Q_{\widehat{x}} = \frac{Q_{i+\frac{1}{2}} - Q_{i-\frac{1}{2}}}{h_{i}}$$

Между потоковыми точками интегрируем получаем формулу.

$$\int_{x_{i}+\frac{1}{2}}^{x_{i}+\frac{1}{2}} \frac{d}{dx} \left[uQ - \mathcal{D}\frac{dQ}{dx} \right] dx =$$

$$= \left[uQ - \mathcal{D}\frac{dQ}{dx} \right]_{x_{i}-\frac{1}{2}}^{x_{i}+\frac{1}{2}} =$$

$$W_{i+\frac{1}{2}}^{tot}$$

$$W_{i-\frac{1}{2}}^{tot} = U_{i+\frac{1}{2}}Q_{i+\frac{1}{2}} = W_{i+\frac{1}{2}}^D - W_{i-\frac{1}{2}}^D$$

$$W_{i+\frac{1}{2}}^{D} = -D_{i+\frac{1}{2}} \frac{dQ}{dx} |_{i+\frac{1}{2}}$$

$$U_{i}i + 1/2Q_{i+1/2} - D_{i+1/2} \frac{Q_{i+1} - Q_{i}}{h_{i+\frac{1}{2}}} - [U_{i}i - 1/2Q_{i-1/2} - D_{i-1/2}Q_{\overline{x}_{i-1/2}}] = 0$$

$$\frac{U_{i+1/2}Q_{i+1/2} - U_{i-1/2}Q_{i-1/2}}{\overline{h_i}} - \frac{D_{i+1/2}Q_x - D_{i-1/2}Q_{\overline{x}}}{\overline{h_i}} = 0$$

Интерполируем Q в полуцелые точки.

$$Q_{i+1/2} = \Theta_{i+1/2}Q_i + (1 - Q_{i+1/2})\Theta_{i+1}$$

1.

$$\Theta = 1/2$$

$$W = \dots$$

Получится схема с центральными разностями

$$uQ_x - DQ_{xwithlintx} = 0$$

2.

$$\Theta_{i+1/2} = 1/2(1 + \frac{|u_{i+1/2}|}{U_{i+1/2}})$$

$$W_{i+1/2} = u_{i+1/2}^+ Q_i - \overline{U}_{i+1/2} Q_{i+1}$$

$$U'_{i+1/2} = \frac{1}{2}(U_{i+1/2} + |U_{i+1/2}|)$$

$$Uwith lin_{i+1/2} = \frac{1}{2}(U_{i+1/2} - |U_{i+1/2}|)$$

$$(u_{i+1/2}^+Q_i + \overline{u}_{i+1/2}^+Q_i + 1) - DQ_{\widehat{x}\widehat{x}} = 0$$

1.2 Модельная задача

$$\frac{d(UQ)}{dx} - D\frac{d^2Q}{dx^2} = 0$$

При увеличении числа Пекле график прижимается к координатам снизу.

1.3 Решение разностной задачи (центральные разности).

$$U\frac{Q_{i+1} - Q_{i-1}}{2h} - \frac{Q_{i+1} - 2Q_i - Q_{i-1}}{h^2} = 0$$

$$Q_i = a + bq^i$$

$$U\frac{Q_{i+1} - Q_i}{2h} - \frac{Q_{i+1} - 2Q_i - Q_{i-1}}{h^2} = 0$$

Подставляем

$$\frac{U}{2h}b(q^{i+1}-q^{i-1})-Db\frac{q^{i+1}-2q^{i}+q^{i-1}}{h^2}=0$$

$$\frac{u}{2}(q^2 - 1) - \frac{D}{h}(q^2 - 2q + 1) = 0$$

Лекция 2

Точное решение

$$Q(x) = \frac{1 - e^{\frac{Ux}{D}}}{1 - e^{\frac{U}{D}}} =$$

$$Q(x) = \frac{1 - e^{Pe \cdot i}}{1 - e^{Pe_n N}} =$$

$$Q(x) = \frac{1 - \overline{q}^i}{1 - \overline{q}^N}$$

$$\overline{q} = e^{Pe_N} = 1 + \frac{Pe_n + Pe_n^2}{2}$$

Сеточная функция (Центральные разности)

$$q = \frac{1 + \frac{Pe}{2}}{1 - \frac{Pe}{2}} =$$

$$(1 + \frac{Pe_N}{2}(1 + \frac{1}{2}Pe_n + \frac{1}{4}Pe_n^2 + \dots)) =$$

$$1 + Pe_n + \frac{Pe_n^2}{2}$$

Но число пекре должно быть меньше 2 Направленные разности

$$q + Pe_n$$

Для схемы с центральными разностями

$$U\frac{Q_{i+1} - Q_i}{2h} - \frac{Q_{i+1} - 2Q_i - Q_{i-1}}{h^2} = 0$$

$$Q_{i+1}(\frac{u}{2h} - \frac{1}{h^2}) + Q_i(\frac{2}{h^2}) + Q_{i-1}(-\frac{u}{2h} - \frac{1}{h^2}) = 0$$

$$-Q_{i+1}(1 - \frac{1}{2}\mathcal{D}) + 2Q_i - Q_{i-1}(1 - \frac{1}{2}Pe_n) = 0$$

Для схеммы с направленными разностями

$$\begin{split} &U\frac{Q_{i}-Q_{i-1}}{h}-\mathcal{D}\frac{Q_{i+1}-2Q_{i}+Q_{i-1}}{h^{2}}=0\\ &Q_{i-1}(-\frac{u}{h}-\frac{\mathcal{D}}{h^{2}})+Q_{i}(\frac{u}{h}-\frac{2\mathcal{D}}{h^{2}})+Q_{i}(-\frac{\mathcal{D}}{h^{2}})=0\\ &-Q_{i-1}(1+Pe_{n})... \end{split}$$

Попробуем предсказать поведение вышеописанных схем

$$Q_{i-1} = Q_i - h \frac{\partial q}{\partial x}|_i + \frac{h^2}{2!} \frac{\partial^2 q}{\partial x} - \frac{h^3}{3!} \frac{\partial^3 Q}{\partial x^3} + \dots$$

$$Q_{i+1} = Q_i + h \frac{\partial q}{\partial x}|_i + \frac{h^2}{2!} \frac{\partial^2 q}{\partial x} + \frac{h^3}{3!} \frac{\partial^3 Q}{\partial x^3} + \dots$$

Первое слагаемое

$$\frac{U}{h}\big(\frac{\partial Q}{\partial x}\big)_i - \frac{h^2}{2}\frac{\partial^2 Q}{\partial x^2} + \frac{h^3}{3!}\frac{\partial^3 Q}{\partial x^3}...$$

$$U\frac{\partial Q}{\partial x}|_{i} - \frac{1}{2}Uh\frac{\partial^{2}Q}{\partial x^{2}} - \mathcal{D}\frac{\partial^{2}}{\partial x^{2}}|_{i}/... = 0$$

$$U\frac{\partial Q}{\partial x}|_{i} - \mathcal{D}(1 + \frac{1}{2}Pe_{n})\frac{\partial^{2}Q}{\partial x^{2}}|_{i}$$

ДЛя того чтобы коэф диффузии был похож на то что было в исходном уравнении $\frac{Pe_n}{2}$ « 1

2.1 Схема А.А.Самарского

$$U^{+}Q_{\overline{x}} + U^{-}Q_{x} - \frac{\mathcal{D}}{1 + \frac{Pe_{n}}{2}}Q_{\overline{x}x} = 0$$

$$\overline{D} = \frac{\mathcal{D}}{1 + \frac{Pe_n}{2}} = \mathcal{D}(\infty - \frac{|\mathcal{P}| / |\epsilon|}{\infty + \frac{|\mathcal{P}| / |\epsilon|}{\epsilon}})$$

$$u^+Q_{\overline{x}} - u^-Q_x = uQ_{x0} - \frac{|U|_h}{2}Q_{\overline{x}x}$$

$$UQ_{x0} - \mathcal{D}\left[\frac{1}{1 + \frac{|Pe|}{2}} + \frac{Pe_n}{2}\right]Q_{\overline{x}x} = 0$$

- Коэфф диффузии

$$\mathcal{D}\left[\frac{1}{1+\frac{|Pe|}{2}} + \frac{Pe_n}{2}\right] = \mathcal{D}^*$$

$$Pe_n^* = rac{Uh}{\mathcal{D}}$$
 - эффективное число Пикле

$$f = Pe^*(Pe)$$

$$\mathcal{D}^* = \mathcal{D}\frac{1 + \frac{|Pe_n|}{2} + \frac{|Pe_n|^2}{4}}{1 + \frac{|Pe_n|}{2}}$$

$$Pe^* = \frac{Uh}{D} \frac{1 + \frac{|Pe_n|}{2}}{1 + \frac{|Pe_n|}{2} + \frac{|Pe_n|^2}{4}}$$

$$Pe_n \to 0; Pe_n^* \to Pe_n$$

$$Pe_n \to \inf; Pe_n^* \to 2$$

$$|Pe*n| = \frac{Pe_n^2(\frac{1}{2} + \frac{1}{|Pe_n|})}{Pe_n^2(\frac{1}{4} + \frac{1}{2|Pe_n|} + \frac{1}{|Pe_n|^2})}$$

2.2 Экспоненциальная схема

$$u\frac{dQ}{dx} - \mathcal{D}\frac{d^2Q}{dx^2} = 0$$

$$Q(x) = Q_i + (Q_{i+1} - Q_i) \frac{exp(Pe_{n,i+\frac{1}{2}} \frac{x - x_i}{h_{i+\frac{1}{2}}})}{exp(Pe_{n,i+\frac{1}{2}}) - 1}$$

$$W^{tot} = u_{i+\frac{1}{2}}Q_{i+\frac{1}{2}} - \mathcal{D}\frac{dQ}{dx}|_{i+\frac{1}{2}} =$$

$$=u_{i+\frac{1}{2}}Q_i+u_{i+\frac{1}{2}}(Q_{i+\frac{1}{2}}Q_i)\frac{exp(\frac{Pe_{i+\frac{1}{2}}}{2}-1)}{exp(Pe_{n,i+\frac{1}{2}}-1)}-$$

$$-u_{i+\frac{1}{2}}(Q_{i+1}-Q_i)\frac{exp(\frac{Pe_{i+\frac{1}{2}}}{2})}{exp(Pe_{n,i+\frac{1}{2}})-1}$$

$$\frac{W_{i+\frac{1}{2}}-W_{i-\frac{1}{2}}}{h_i}=uQ_{\overline{x}}+uh\frac{e^P\frac{Pe_N}{2}-1}{e^{Pe_N}-1}Q_{\overline{x}x}-uh\frac{e^P\frac{Pe_n}{2}}{e^{Pe_n}-1}Q_{\overline{x}x}=0$$

$$uQ_{\overline{x}} = uQ_{x0} - \mathcal{D}\frac{Pe}{2}Q_{\overline{x}x}$$

$$uQ_{x0} - \mathcal{D}^2 Q_{\overline{x}x} = 0$$

$$\mathcal{D}^* = \mathcal{D}(\frac{Pe_N}{2} \frac{e^{Pe} + 1}{e^{Pe} - 1}) = \mathcal{D}\frac{Pe_n}{2} \coth \frac{Pe}{2}$$

$$Pe_n = \frac{Uh}{D} = 2th\frac{Pn_n}{2}$$

2.3 Схема Сполдинга

$$Pe_{h,i+\frac{1}{2}}^* = Pe_{h,i+\frac{1}{2}}, Pe_h \le 2$$

= 2, $Pe_h > 2$

$$\Theta_{i+\frac{1}{2}} = \Theta_{i+\frac{1}{2}}Q_i + (1 - \Theta_{i+\frac{1}{2}}Q_{i+1})$$

$$\Theta_{i+\frac{1}{2}} = \frac{1}{Pe_{n}, i+\frac{1}{2}} [Pe_{n,\frac{1}{2}} - 1 + \max(-Pe_{n,i+\frac{1}{2}}, 1 - \frac{Pe_{n,i+\frac{1}{2}}}{2}, 0)]$$

1.

$$|Pe_{n,i+\frac{1}{2}}| \le 2$$

$$\Theta_{i+\frac{1}{2}} = \frac{1}{2} \Rightarrow$$

буквально схема с центральными разностями.

2.

$$|Pe_{n,i+\frac{1}{2}}|>2$$

(a)
$$Pe_n > 2$$

$$\Theta_{i+\frac{1}{2}} = \frac{1}{Pe_{n,i+\frac{1}{2}}} [Pe_{n+\frac{1}{2}} - 1 + 0] = 1 - \frac{1}{Pe}$$

(b)
$$Pe_n < -2$$

$$\Theta_{i+\frac{1}{2}} = \frac{1}{Pe_{n,i+\frac{1}{2}}} [Pe_{n+\frac{1}{2}} - 1 - Pe_n] = -\frac{1}{Pe_n}$$

Или оба варианта в одной формуле

$$\frac{1}{2}(1+\frac{|Pe_n|}{Pe_n})-\frac{1}{Pe_n}$$

Подставляем Θ

$$Q_{i+\frac{1}{2}} = \left[\frac{1}{2}\left(1 + \frac{|Pe_n|}{Pe_n}\right) = \frac{1}{Pe_n}\right]Q_i + \left[\frac{1}{2}\left(1 - \frac{|Pe_n|}{Pe_n} + \frac{1}{Pe_n}\right)\right]Q_{i+\frac{1}{2}}$$

$$W_{i+\frac{1}{2}} = uQ_{i+\frac{1}{2}} = U_{i+\frac{1}{2}}^{+}Q_i + U_{i+\frac{1}{2}}^{-}Q_i + 1 + DQ_x$$

$$\frac{d}{dx}uQ - D\frac{d^2Q}{dx^2} = 0$$

$$W_{i+\frac{1}{2}} - W_{i-\frac{1}{2}} = U^+Q_{\overline{x}} + \overline{u}Q_x + DQ_{\overline{x}x}$$

Таких схем множество, но суть такова, что до определенного момента рассматривается направленные разности, а потом переходят на константу

2.4 Схема Патанкара

Надо разобрать к экзамену! Есть в презентации.

$$\Theta_{i+\frac{1}{2}} = \frac{1}{Pe_{n,i\frac{1}{2}}} \left[Pe_{n,i+\frac{1}{2}} - 1 + \max(0, Pe_n) + \max(0, (1 - 0.1|Pe_n|)^5) \right]$$

Теперь нужно определить в полуцелых точках.

2.5 Разностная схема на расширенных шаблонах

$$Q_{i+\frac{1}{2}} = \frac{1}{2}(Q_{i+1} + Q_i) - \eta(Q_{i+1} - 2Q_i + Q_{i-1})$$

1.

$$u\frac{d}{dx} = uQ_{x^0} - \frac{Uh}{2}(Q_x\overline{x} - Q_{xx})\frac{1}{2}h^2Q_{\overline{x}\overline{x}}$$

2.

$$\eta=\frac{1}{2}$$
 - схема с направленными разностями

3.

$$\eta = \frac{1}{4}$$
 — схема Фрома

4.

$$\eta = \frac{1}{6}$$
 — схема с искуственной дисперсией

5.

$$\eta = \frac{1}{8} - \text{ cxema QUICK}$$

Лекция 3

3.1 Нестационарные задачи

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x}(uQ) = \mathcal{D}\frac{\partial^2 Q}{\partial x^2}$$

$$u = const, Pe = \frac{UL}{D} >> 1$$

Сетка вводится аналогично стационарной задаче.

 $t_k = \tau_k$

$$\int_{t_k}^{t_{k+1}} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \frac{\partial Q}{\partial t} dx dt + \int_{t_k}^{t_{k+1}} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \frac{\partial}{\partial x} (uQ) dx dt = \int_{t_k}^{t_{k+1}} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \frac{\partial}{\partial x} (\mathcal{D} \frac{\partial Q}{\partial x}) dx dt$$

По слагаемым

1. Выносим, так как не зависит от t, по x константа на отрезке интегрирования

$$h_i \cdot (Q_i^{k=1} - Q_i^k)$$

2.

$$\int_{t_k}^{t_{k+1}} (W_{i+\frac{1}{2}} - W_{i-\frac{1}{2}} dt)$$

Воспользуемся квадратурной формулой

$$=\tau(W^\sigma_{i+\frac{1}{2}}+W^\sigma_{i-\frac{1}{2}})$$

$$f^{(\sigma)} = \sigma f^{t_k+1} + (1-\sigma)f^{t_k} = \sigma \hat{f} + (1-\sigma)f$$

Возникает ровно та же проблема определения W в полуцелых точках

3.

$$\int_{t_k}^{t_{k+1}} \left[\mathcal{D} \frac{\partial Q}{\partial x} \Big|_{i+\frac{1}{2}} - \mathcal{D} \frac{\partial Q}{\partial x} \Big|_{i-\frac{1}{2}} \right] dt =$$

$$\tau \left[\left(\mathcal{D} \frac{\partial Q}{\partial x} \right)_{i+\frac{1}{2}}^{(\sigma)} - \left(\mathcal{D} \frac{\partial Q}{\partial x} \right)_{i-\frac{1}{2}}^{(\sigma)} \right]$$

3.2 Решение модельной задачи

Отрезок от -L до L. Начальные данные: 1 при отрицательных значений, 0 при положительных.

$$\frac{\partial Q}{\partial t} + u \frac{\partial Q}{\partial x} = \mathcal{D} \frac{\partial^2 Q}{\partial x^2}$$

$$S = t, y = x - ut$$

$$Q(x,t) = Q(y(x,t),S(t))$$

$$\frac{\partial Q}{\partial t} = \frac{\partial Q}{\partial S} \frac{Q}{\partial t} + \frac{\partial Q}{\partial u} \frac{\partial y}{\partial t} = \frac{\partial Q}{\partial S} - \frac{\partial Q}{\partial u}$$

$$\frac{\partial Q}{\partial y} - u \frac{\partial Q}{i \partial y} + u \frac{\partial Q}{\partial y} \mathcal{D} \frac{\partial^Q}{\partial y^2}$$

$$\frac{\partial Q}{\partial S} = \mathcal{D} \frac{\partial^2 Q}{\partial u^2} \Rightarrow$$

интеграл Пуассона

$$Q = \frac{1}{\sqrt{\pi}} \left[\frac{\sqrt{\pi}}{2} - \int_{0}^{\frac{y}{2 sqrtDS}} e^{-z^{2}} dz \right] =$$

$$\frac{1}{\sqrt{\pi}} \left[\frac{\sqrt{\pi}}{2} - \int_0^{\frac{x-ut}{2\sqrt{Dt}}} e^{-z^2} dz \right]$$

Подставить это дома и убедиться, что оно является решением уравнения.

3.2.1 Направленные разности.

рисунок фронта

Самое большое размытие при использовании чисто неявной схемы ($\sigma = 1$)

Меньше всего размывается явная схема ($\sigma = 0$).

То есть неявная схема ухудшает проблемы направленных разностей

3.2.2 Центральные разности

**рисунок фронта

Чисто неявная схема снова размывает сильнее.

$$(\sigma = 0.5)$$

3.3 Диффузия и дисперсия

Дисперсия - скорость убывания волны зависит от амплитуды.

$$\frac{\partial Q}{\partial t} + u \frac{\partial Q}{\partial x} = \mathcal{D} \frac{\partial^2 Q}{\partial x^2} + \beta \frac{\partial^3 Q}{\partial x^3} + \gamma \frac{\partial^4 Q}{\partial x^4}$$

$$Q(t,x) = e^{-P(m)t}e^{im(x-q(m)t)}$$

m - волновое число, P(m) - скорость убывания амплитуды, q(m) - скорость распространения волны, $i^2 = -1$.

$$Q = e^{-Pt}e^{im(x-qt)}$$

$$\frac{\partial Q}{\partial t} + u \frac{\partial Q}{\partial x} = \mathcal{D} \frac{\partial^2 Q}{\partial x^2} + \beta \frac{\partial^3 Q}{\partial x^3} + \gamma \frac{\partial^4 Q}{\partial x^4}$$

Подставим Q и посмотрим каими должны быть P и m, для того чтобы оно удовлетворяло уравнениям.

$$-P - imq + Uim = -\mathcal{D}m^2 - im^3p + \gamma m^4$$

$$P = \mathcal{D}m^2 - \gamma m^4$$

- скорость убывания

$$q = u + M^2 \beta$$

- скорость волны

На амплитуду влияют четные производные (но они чередуются уменьшает-увеличивает-уменьшает-...)

скорость движения от третьей производной (нечетныепроизводные) проверить с каким зна-ком.

3.4 Дифференциальное представление разностных схем

L(Q) = 0 Дифференциальное уравнение

$$L_h^{ au}(Q, au,h)=0$$
 - Разностная схема

$$L_H^{ au}(Q) = L(Q) + \epsilon(Q, au, h) = 0$$
 - Погрешность аппроксимации

Не будем убирать погрешность и будем его рассматривать как бесконечный ряд.

$$L_h^{\tau}(Q) = L(Q) + \sum_{i=0}^{\infty} \alpha_i \frac{\partial Q}{\partial x^i} = 0$$

Процедура по созданию подобного представления (в общих чертах):

3.5 Дифференциально приближение для схемы с направленными разностями.

$$Q_t + uQ_{\overline{x}}^{(\sigma)} - \mathcal{D}Q_{\overline{x}}^{(\sigma)}x = 0$$

$$Q^{(\sigma)} = Q^{0.5} + (\sigma - 0.5)\tau Q_t = \frac{\hat{Q} + Q}{2} + (\sigma - 0.5)(\hat{Q}Q)$$

$$Q_t + uQ_{\overline{x}}^{(0.5)} - \mathcal{D}Q_{\overline{x}x}^{(0.5)} + u(\sigma - 0.5)\tau Q_{t\overline{x}} - \mathcal{D}(\sigma - 0.5)Q_{t\overline{x}x}$$

Разложим в точке $(t_k + \frac{\tau}{2}, x_i Q(t_k + \frac{\tau}{2}) Q^{(0.5)})$

$$Q_t = \frac{\partial \overline{Q}}{\partial t} + \frac{t^2}{2} \frac{\partial^3 \overline{Q}}{\partial t^3} + \dots$$

$$Q^{(0.5)} = \overline{Q} + \frac{\tau^2}{8} \frac{\partial^2 Q}{\partial r^2} + \dots$$

и тд.

Как избавиться от высоких производных и смешанных производных по t и х. Метод дифференциального представления.

Лекция 4

4.1 Устойчивость разностных схем. Метод Неймана (Метод гармоник.)

$$Q(t,x)=e^{-p(m)t}e^{Im(x-qt)}$$
 - Бегущая волна $=a(t)e^{Imx}$

$$a(t)=e^{-t[p(m)+Iqm]}$$
 Комплексная амплитуда

$$p(m) = \mathcal{D}m^2, q = u$$
 Для нашего конкретного уравнения

$$Q(t+\tau, x) = e^{-t+\tau} [\mathcal{D}m^2 + (Imq)]e^{Imx} = GQ(t, x)$$

G - Множитель перехода

$$G = e^{-\tau(\mathcal{D}m^2 = Imu)}$$

4.1.1 Явная схема с направленными разностями

$$Q_i^{k+1} = Q_i^k - c(Q_i^k - Q_{i-1}^k) + S(Q_{i+1}^k - 2Q_i^k + Q_{i-1}^k)$$

$$c=rac{u au}{h}$$
 - число Куррента , $S=rac{\mathcal{D} au}{h^2}$ - Тепловое число Куррента

$$Q_i^k = Q(t_k, x_i) = e^{-pt_k} e^{Im[x_i - qt_k]} =$$

$$= e^{\tau k[p - Imq]} e^{Imhi} =$$

$$= a_k e^{I\Theta i}$$

$$\tau k = t_k, ih = x_i, \Theta = mh$$

Надо выяснить при каких P и Q при подстановке бегущей волны данное уравнение является решением нашего уравнения.

$$a_{k+1}e^{I\Theta i} = a_k e^{I\Theta i} - ca_k (e^{I\Theta(i-1)}) + Sa_k (e^{I\Theta(i-1)} - 2e^{I\Theta i}) + e^{I\Theta(i+1)}$$

$$e^{emi}; a_{k+1} = a_k G$$

$$G = 1 - c(1 - e^{-I\Theta}) + S(e^{I\Theta} - 2 + e^{-I\Theta})$$

$$c(1 - e^{-I\Theta}) = 1 - \cos\Theta + i\sin\Theta$$

$$(e^{I\Theta} - 2 + e^{-I\Theta}) = 2\cos\Theta - 2$$

Напоминание:

$$e^{i\phi}=\cos\phi+i\sin\phi$$

$$e^{-i\phi} = \cos\phi - i\sin\phi$$

$$\ref{eq:condition} ?? = 1 - (c + 2S)(1 - cos\Theta) + Icsin\Theta$$
 Множитель перехода со слоя на слой

Схема устойчива тогда, когда |G| > 1

$$\Theta = mh$$

$$\lambda_{min}=2h=rac{2\pi}{m}$$
 - минимальная длинна волны

 $\Rightarrow mh = \pi$ Короткие волны

mh o 0 - Длинные волны

$$1 - (c + 2S)(1 - \cos\Theta) - Ic\sin\Theta$$

$$|G|^{2} = 1 - 4(c+2S)sim^{2}\frac{\Theta}{2} + (c+2S)^{2} \cdot 4sin^{4}\frac{\Theta}{2} + 4c^{2}sin^{2}\frac{\Theta}{2}cos^{2}\frac{\Theta}{2} < 1$$

$$-(c+2S) + (c+2S)^{2} \sin^{2} \frac{\Theta}{2} + c^{2} \cos^{2} \frac{\Theta}{2} < 0$$

$$-(c+2S)(sin^2\frac{\Theta}{2}+cos^2\frac{\Theta}{2})+(c+2S)^2sin^2\frac{\Theta}{2}+c^2cos^2\frac{\Theta}{2}<0$$

$$(c+2S)[(c+2S)-1]sin^{2}\frac{\Theta}{2} + [c^{2} - (c+2S)]cos^{2}\frac{\Theta}{2} < 0; \forall \Theta \in [0,\pi]$$

$$c+2S-1<0; c^2-(c+2S)<0$$
 - Условия устойчивости

Метод Неймана дает необходимое условие устойчивости, но вообще говоря не достаточное.

4.2 Изменение амплитуды волны.

$$|G|^2 = 1 + 4(c+2S)\sin^2\frac{\Theta}{2} = 4(c+2S)^2\sin^2\frac{\Theta}{2}\cos^2\frac{\Theta}{2}$$

Для волны $\Theta = mh \to 0$

$$|G|^{2} = 1 - 4(c + 2S)\frac{(mh)^{2}}{4} + 4(c + 2S)^{2}\frac{(mh)^{4}}{2} + 4c^{2}\frac{(mh)^{2}}{4} = 1 + (mh)^{2}[c^{2} - (c + 2S)] =$$

$$= 1 - (mh)^{2}[c + 2S - c^{2}]$$

$$|G| = 1 - (mh)^{2}(S + \frac{1}{2}c(1 - c))$$

$$|G| = 1 - (m^2 h^2) \left(\frac{\mathcal{D}\tau}{h^2} + \frac{1}{2}c(1-c)\right) =$$

$$= 1 - m^2 \tau \mathcal{D} - \frac{1}{2}m^2 h^2 c(1-c)$$

 $1-m^2 au\mathcal{D}$ То как убывает волна в исх уравнении

$$\frac{1}{2}m^2h^2c(1-c)$$
 Добавка разностной схемы

$$|G| = e^{-\tau \mathcal{D}m^2} = 1 - \tau \mathcal{D}m^2$$

4.2.1 Коротко про устойчивость схемы с центральными разностями

$$\begin{split} Q_t + uQ_{x^0\mathcal{D}Q_{\overline{x}x}} \\ Q_i^{k+1} &= Q_i^k - \frac{1}{2}c(Q_{i_k}^k - Q_{i-1}^k) + S(Q_{i-1}^k - 2Q_i^k + Q_{i+1}^k) \\ G &= 1 - \frac{c}{2}(e^{I\Theta} - e^{-I\Theta}) + S(e^{-I\Theta} - 2 + e^{I\Theta}) = \\ &= 1 - 4Ssin^2\frac{\Theta}{2} - 2cIsin\frac{\Theta}{2}cos\frac{\Theta}{2} \\ \\ |G|^2 &= 1 - 8Ssin^2\frac{\Theta}{2} + 16S^2sin^4\frac{\Theta}{2} + 4c^2sin^2\frac{\Theta}{2}cos^2\frac{\Theta}{2} < 1 \\ \\ -2S + 4S^2sin^2\frac{\Theta}{2} + c^2cos^2\frac{\Theta}{2} < 0 \end{split}$$

$$sin^2\frac{\Theta}{2}[4S^2-2S]+cos^2\frac{\Theta}{2}[c^2-2S]<0$$

$$2S^2 - S < 0; c^2 - 2S < 0$$
 - Условие устойчивости

Рассмотрим для длинных волн

$$|G|^2 = 1 - 8Ssin^2\frac{\Theta}{2} + 16S^2sin^4\frac{\Theta}{2} + 4c^2sin^2\frac{\Theta}{2}cos^2\frac{\Theta}{2} < 1$$

$$\approx 1 - 8S \frac{(mh)^2}{4} + 4c^2 \frac{(mh)^2}{4} =$$

$$= 1 - (mh)^2 (2S - c^2)$$

$$|G| \approx 1 - (mh)^2 S + (mh)^2 \frac{c^2}{2} =$$

$$1 - \frac{m^2 h^2 \mathcal{D}\tau}{h^2} + m^2 h^2 \frac{c^2}{2}$$

Длинные волны убывают медленнее чем в дифференциальном случае. (В прошом примере было наоборот)

дз решить задачи из таблицы (хотя бы некоторые), позже возможно следует ей прислать.

Лекция 5

5.1 Уравнение движения вязкой несжимаемой жидкости

$$\rho\left[\frac{\partial V}{\partial t} + (v \cdot \nabla)v\right] = -\nabla p + \chi \triangle V = g\rho \tag{1}$$

$$divV = (\nabla \cdot v) = 0 \tag{2}$$

$$\rho = \rho(p, t) = \rho_0(1 + \beta T) \tag{3}$$

V - вектор скорости р - Давление χ - коэффициент вязкости

$$\frac{D\rho}{Dx} = \{ \text{ Полная производная } \} = \frac{\partial\rho}{\partial t} + V_x \frac{\partial\rho}{\partial x} + V_y \frac{\partial\rho}{\partial y} + V_z \frac{\partial\rho}{\partial z}$$

$$\frac{D\rho}{Dx} + \rho divV = 0$$

$$= \frac{\partial \rho}{\partial t} + V_x \frac{\partial \rho}{\partial x} + V_y \frac{\partial \rho}{\partial y} + V_z \frac{\partial \rho}{\partial z} + \rho div V = 0$$

Жидкость несжимаема тоже самое, что полная производная равна 0, это одновременно означает что дивергенция равна 0.

$$\frac{D\rho}{Dt} = 0 \Rightarrow divV = 0$$

Перепишем уравнение 1 в виде:

$$\frac{\partial V}{\partial t} + (V \cdot \nabla)V = -\nabla \frac{p}{\rho_0} + \nu \triangle V + F$$

$$\eta = \frac{\chi}{\rho_0} -$$
 Кинетическая вязкость (4)

Из 4 Исключаем давление.

 $\Delta V = -rotrotV$:

$$(V \cdot \nabla)V = rotV \times V + \nabla(\frac{V^22}{2}) \Rightarrow$$

$$\frac{\partial V}{\partial t} + rotV \times V = -\nabla \left(\frac{p}{\rho_0} + \frac{V^2}{2}\right) - \nu rot rot V + F \tag{5}$$

Применим ротор к 5

$$\frac{\partial\Omega}{\partial t} + (V \cdot \nabla)V = \nu u \triangle + rot F \tag{6}$$

пусть
$$V = (V_x(t, x, y))$$

Лекция 5

$$\frac{\partial \omega}{\partial t} + \frac{\partial}{\partial x}(u\omega) + \frac{\partial}{\partial y}(V\omega) = \nu \Delta \omega$$

$$(u\omega) = W^x$$

$$(V\omega) = W^y$$

$$u = \frac{\partial \psi}{\partial u}, V = -\frac{\partial \psi}{\partial x}$$

$$divV = 0$$

$$\triangle \psi = -\omega$$

$$\psi,\omega$$
 в узлах сетки , $u(i,j+rac{1}{2}),V(i+rac{1}{2},j)$

Тогда дивергенция по ячейке автоматически равна нулю. Ячейки называются нулю.

$$divV|_{S_{i+\frac{1}{2},j+\frac{1}{2}}}$$

Ячейка с центром в U $S(i,j+\frac{1}{2})$ Ячейка с центром в V $S(i+\frac{1}{2},j)$ Аппроксимация производной по ω

 $\frac{\partial \omega}{\partial t}$

$$\int_{S_{i,j}} \frac{\partial \omega}{\partial t} dx dy + \int_{S_{i,j}} (W^x + \frac{\partial}{\partial y} W^y) dx dy = \mu \int_{S_{i,j}} \triangle \omega dx dy$$

 \overline{S} означает площадь

$$\frac{\partial}{\partial t} [\omega_{ij}] \overline{S_{ij}} = \frac{\partial}{\partial t} \omega_{ij} \overline{h_i^x h_i^y}$$

$$W = (W^x, W^y)$$

$$I_{2} = \int_{S_{ij}} \left(\frac{\partial}{\partial x} W^{x} + \frac{\partial}{\partial y} W^{y}\right) dx dy = \int_{\partial S_{ij}} (w, n) dl =$$

$$= W_{i+\frac{1}{2}, j}^{x} \overline{h}_{i}^{y} + W_{ij+\frac{1}{2}\overline{h}_{i}^{x}}^{y} - W_{i-\frac{1}{2}, j}^{x} \overline{h}_{i}^{y} - W_{ij-\frac{1}{2}\overline{h}_{i}^{x}}^{y}$$

Делим на $\frac{1}{\overline{h_i^x h_i^y}}$

$$\frac{W_{i+\frac{1}{2}}^x - W_{i-\frac{1}{2}}^y}{\overline{h_i}}$$

$$u_i j = \frac{h_{i,j+\frac{1}{2}}^y u_{ij+\frac{1}{2}} + h_{ij-\frac{1}{2}}^y u_i, j - \frac{1}{2}}{2h_j^y}$$

$$V_{i}j = \frac{h_{i+\frac{1}{2},j}^{x} V_{i+\frac{1}{2},j} + h_{i-\frac{1}{2},j}^{x} V_{i,j-\frac{1}{2}}}{2h_{j}^{y}}$$

$$u_{ij} = \psi_{y^0} = \frac{\psi_{i,j+1-\psi_{i,j-1}}}{2\overline{h}_j^y}, V_{ij} = \psi_{x^0} = \frac{\psi_{i+1,j-\psi_{i-1,j}}}{2\overline{h}_j^x}$$

$$W^x_{i+\frac{1}{2},j}=(u\omega)_{i\frac{1}{2},j}$$

6.1 Переинтерполяции

6.1.1 Переинтерполяция 1

$$W_{i+\frac{1}{2}}^{x} = \frac{1}{2}(u_{i+1,j}\omega_{i+1,j} + u_{i,j} + \omega_{i,j})$$

$$W_{ij+\frac{1}{2}}^{y} = \frac{1}{2}(V_{ij+1}\omega_{ij+1} + V_{ij}\omega_{ij})$$

6.1.2 Переинтерполяция 2

$$W_{i+\frac{1}{2}j}^{x} = \frac{u_{i+1,j} + u_{ij}}{2} + \frac{\omega_{i+1,j}\omega_{ij}}{2}$$

$$W_{i+\frac{1}{2}j}^{y} = \frac{V_{i,j+1} + V_{ij}}{2} + \frac{\omega_{i,j+1}\omega_{ij}}{2}$$

6.1.3 Первый способ применение

Начнем с первого способа.

$$\mathcal{K}_{h}(\psi,\omega)\overline{h}_{i}^{x}\overline{h}_{j}^{y} = (W_{i+\frac{1}{2}}^{x} - W_{i-\frac{1}{2},j}^{x})\overline{h}_{i}^{y} + (W_{ij+\frac{1}{2}}^{y} - W_{i,j-\frac{1}{2}}^{y})\overline{h}_{i}^{x}$$

$$u_{i+1,j} = \psi_{y^0}(+1_x); u_{ij} = \psi_{y^0}$$

$$W_{i+\frac{1}{2},j}^{x} = \frac{1}{2} [\psi_{y^{0}}(+1_{x})\omega_{i+1j} + \psi_{y^{0}}\omega_{ij}]$$

$$W_{i-\frac{1}{2},j}^{x} = \frac{1}{2} [\psi_{y^{0}} \omega_{i+1j} + \psi_{y^{0}} (-1_{x}) \omega_{i-1,j}]$$

$$W_{i+\frac{1}{2},j}^x - W_{i-\frac{1}{2},j}^x$$

$$\mathcal{K}_{h}(\psi,\omega)\overline{h}_{i}^{x}\overline{h}_{j}^{y} = (W_{i+\frac{1}{2}}^{x} - W_{i-\frac{1}{2},j}^{x})\overline{h}_{i}^{y} + (W_{ij+\frac{1}{2}}^{y} - W_{i,j-\frac{1}{2}}^{y})\overline{h}_{i}^{x} =$$

$$\frac{1}{2}[\psi_{y_0}(+1+x)\omega_{i+1j}-\psi_{y^0}\omega_{i-1,j}]\overline{h_i^y}-\frac{1}{2}[\psi_{x^0}(+1_y)\omega_{ij+1}-\psi_{x^0}-\psi_{x^0}(-1_y)\omega_{ij-1}]\overline{h_i^x}$$

$$\mathcal{K}_h(\psi,\omega) = (\psi_{y^0}\omega)_{x^0} - (\psi_x^0\omega)_{y^0}$$

Теперь осталось проинтегрировать оператор лапласа.

$$I = \nu \int (\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2}) dx dy = \int_{\partial S_{i,i}} ((grad\omega, n) dl)$$

Еще есть условие, его тоже надо аппроксимировать

$$\omega = -\Delta \psi$$

$$\int_{S_{ij}} \omega dx dy = -\int_{S_{ij}} \left(\frac{\partial^2 \psi}{\partial x^2}\right) \left(\frac{\partial^2 \psi}{\partial y^2}\right) dx dy = -\int_{\partial S_{ij}} (grad\psi, n) dl$$

$$=-[(\frac{\partial \psi}{\partial x})_{i+\frac{1}{2}}^y+(\frac{\partial \psi}{\partial y}_{ij+\frac{1}{2}\overline{h}_i^x})-(\frac{\partial \psi}{\partial x})_{i-\frac{1}{2}j}\overline{h}_i^y-(\frac{\partial \psi}{\partial y})_{i,j-\frac{1}{2}}\overline{h}_i^x]$$

$$\frac{\partial \psi}{\partial x}|_{i+\frac{1}{2},j} = \frac{\psi_{i+1,j} - \psi_{ij}}{h_{i+\frac{1}{2}}^x} \frac{\psi_{i,j+1} - \psi_{ij}}{h_{j+\frac{1}{2}}^y}$$

Но что происходит на границе?

$$\omega_{ij}S_{i0} = \left[\left(\frac{\partial \psi}{\partial x} \right)_{i+\frac{1}{2},0} \overline{h}_0^y + \frac{\partial \psi}{\partial y} \right]_{i\frac{1}{2}} \overline{h}_i^2 - \frac{\partial \psi}{\partial x} \right]_{i-\frac{1}{2},0} \overline{h}_0^h - \left(\frac{\partial \psi}{\partial y} \right)_{i,0} \overline{h}_i^x$$

$$S_{i0} = \overline{h}_{i}^{x} \overline{h}_{0}^{y}$$

$$\overline{h}_0^y = \frac{h_{\frac{1}{2}}^y}{2}$$

$$-[(\frac{\partial \psi}{\partial x})_{i+\frac{1}{2}}^y \overline{h}_0^y + (\frac{\partial \psi}{\partial y})_{ij+\frac{1}{2}} \overline{h}_i^x - (\frac{\partial \psi}{\partial x})_{i-\frac{1}{2}j} \overline{h}_i^y - (\frac{\partial \psi}{\partial y})_{i,j-\frac{1}{2}} \overline{h}_i^x]$$

 ψ на границе равно нулю \Rightarrow

$$\omega_{ij}\overline{h}_{i}^{x}\overline{h}_{0}^{y} = -(\frac{\partial\psi}{\partial u})_{i,j+\frac{1}{2}}\overline{h}_{i}^{x}$$

$$\omega_{ij} = -\frac{2}{h_{\frac{1}{2}}^y} \frac{(\psi_{i1} - \psi_{i0})}{h_{\frac{1}{2}}^y}$$

$$\omega_{Ij} = -\frac{2}{\left(h_{\frac{1}{2}}^y\right)^2} \psi_{i1}$$
 - итоговое граничное условие (условие Тома (Thom))

6.2 Баланс кинетической энергии

Переобозначим скалярные произведения

$$f(x_i, y_i) \to (f, g)^0 = \sum_{(i,j) \in \overline{I} \times \overline{J}} f_{ijg_{ij}S_{ij}} = \sum_{i=0}^{N_x} \sum_{j=0}^{N_y} f_{ij}g_{ij}\overline{h}_i^x\overline{h}_j^y$$

$$(f,g)_h^{(1)} = \sum_{i=0}^{N_x} \sum_{j=0}^{N_{y-1}} f_{ij+\frac{1}{2}} g_{ij+\frac{1}{2}} \overline{h}_i^x \overline{h}_j^y + \frac{1}{2}$$

$$(f,g)_h^{(2)} = \sum_{i=0}^{N_x - 1} \sum_{j=0}^{N_{y-1}} f_{i,j+\frac{1}{2}} g_{i+\frac{1}{2}} h_{i+\frac{1}{2}}^x \overline{h}_j^y$$