Lógica Computacional

Tarea 2

PCIC - UNAM

12 de marzo de 2020

Diego de Jesús Isla López

(dislalopez@gmail.com)

(diego.isla@comunidad.unam.mx)

Problema 4.3

Simplificar los siguientes conjuntos de cláusulas. Esto es, para cada conjunto S, encontrar un conjunto más simple S' tal que S' es satisfactible sii S es satisfactible.

1. $p\bar{q}, q\bar{r}, rs, p\bar{s}$:

$$= p\bar{r}, rs, p\bar{s}$$

$$= ps, p\bar{s}$$

$$= p$$

2. $pqr, \bar{q}, p\bar{r}s, qs, p\bar{s}$:

$$= pr, p\bar{r}s, qs, p\bar{s}$$

$$= ps, qs, p\bar{s}$$

$$= p, qs$$

3. $pqrs, \bar{q}rs, \bar{p}rs, qs, \bar{p}s$:

$$= prs, \bar{p}rs, qs, \bar{p}s$$

$$= rs, qs, \bar{p}s$$

4. $pq,qrs,\bar{p}\bar{q}rs,\bar{r},q$:

$$= pq, qrs, \bar{p}rs, \bar{r}$$

$$= pq, qrs, \bar{p}s$$

$$= qs, qrs$$

Problema 4.4

Dado el conjunto de cláusulas $\{\bar{p}\bar{q}r, pr, qr, \bar{r}\}$, construir dos refutaciones: una resolviendo las literales en el orden $\{p,q,r\}$ y otra en el orden $\{r,q,p\}$.

1. $\{\bar{p}\bar{q}r(1), pr(2), qr(3), \bar{r}(4)\}$:

$5.\bar{q}r$	1,2
6. <i>r</i>	3,5
7.□	4,6

2. $\{\bar{r}(1), r\bar{q}\bar{p}(2), rp(3), rq(4)\}$:

$5.ar{q}ar{p}$	1,2
6. <i>p</i>	1,3
7.q	1,4
$8.ar{p}$	5,7
9.□	6,8

Problema 4.5

Transformar el conjunto de fórmulas $\{p,p \to ((q \lor r) \land \neg (q \land r)), p \to ((s \lor t) \land \neg (s \land t)), s \to q, \neg r \to t, t \to s\}$ a CNF y refutarla usando resolución.

Haciendo la transformación, tenemos:

$$\{p(1), \bar{p}qr(2), \bar{p}\bar{q}\bar{r}(3), \bar{p}st(4), \bar{p}\bar{s}\bar{t}(5), \bar{s}q(6), rt(7), \bar{t}s(8)\}$$

Aplicando el algoritmo:

9. <i>st</i>	1,4
10. <i>s</i>	8,9
11. <i>q</i>	10,6
12.qr	1,2
$13.ar{q}ar{r}$	1,3
$14.\bar{s}\bar{t}$	1,5
$15.\bar{t}$	14,8
16. <i>r</i>	15,7
$17.ar{q}$	16,13
18.□	11,17

Problema 4.13

Demostrar el teorema 4.13 sobre la correctitud del algoritmo CNF-a-3CNF.

Teorema. Sea A una fórmula en CNF y sea A' la fórmula en 3CNF construida a partir de A. Entonces A es satisfactible sii A' es satisfactible. La longitud de A' es un polinomio en la longitud de A.

Demostración. Sea A un conjunto de literales tal que |A| = k para k >= 1. La demostración procede por casos según la longitud de A y el resultado del algoritmo.

- Caso 1 (k = 1): Entonces, $A = \{x_1\}$ y $A' = \{\{x_1, y, z\}, \{x_1, \bar{y}, z\}, \{x_1, y, \bar{z}\}, \{x_1, \bar{y}, \bar{z}\}\}$. Dado que A consta de una sola literal, si esta se satisface, entonces todas las cláusulas de A' se satisfacen.
- Caso 2 (k = 2): Entonces, $A = \{x_1, x_2\}$ y $A' = \{\{x_1, x_2, z\}, \{x_1, x_2, \overline{z}\}\}$. Dado que A consta de dos literales, basta con que alguna de ellas se satisfaga para que las cláusulas de A' se satisfagan.
- Caso 3 (k > 3): Entonces, $A = \{x_1, x_2, x_3, ..., x_k\}$. Tomemos $x_m = 1$ para alguna m tal que 2 < m < k 1. Tomemos $z_i = 1$ para toda $i \le m 2$ y $z_j = 0$ para toda $j \ge m 1$. Sea $A'_m \in A'$ la cláusula que contiene a x_m . Todas las cláusulas a la

izquierda de A'_m tendrán una tercera literal $z_i=1$; a su vez, todas las cláusulas a la derecha de A'_m tendrán una primera literal $\bar{z_j}=1$. De este modo, todas las cláusulas de A' se satisfacen.