Session 2: Exercise

Code for download: session2 start.tar.gz

Update login script:

To get the environment setup called automatically when a new terminal is open, you can add the commands for this setting in your login script, which is in our case in \$HOME/.bash_profile file. Open this file in your editor and add the following lines:

```
# Geant4 environment
export CMAKE_PREFIX_PATH=/usr/local/opt/qt5
. /usr/local/bin/geant4.sh
unset DYLD_LIBRARY_PATH
```

Exercise 2a:

The <u>picture</u> shows geometry which will be implemented in this session.

- Inspect the code of the implemented geometry and modify materials to correspond to the geometry description below. The code already present describes the geometry of the first arm detector.
 - Identify the code used for printing all materials.
- Implement geometry of a second arm described below.
 - *Get inspired by the code already present*
 - Proceed step by step. After adding each piece of geometry, recompile and test your application with visualization.
 - Note that the Second Arm detector has similar components as the First Arm detector.

Exercise 2b:

Explore implemented geometry:

- Add visualization attributes for added volumes in vis.mac macro
- Add axes on your scene to check your geometry
- Check your geometry with geometry tree browser and with tracking geantinos with tracking verbose level=1
- Add the run and event number in the viewer (use User Interface online help)

Geometry already implemented:

- Material Air defined using NIST manager
- World volume
 - represented as a box of hx=10.*m, hy=3.*m, hz=10.*m
 - of Air material
- Tube volume
 - of a tube shape with rmin = 0.*m, rmax=1.*m, hz=1.*m

- of Air material
- First arm detector:
 - represented as a box of hx=1.5*m, hy=1.0*m, hz=3.0*m
 - of Air material
 - placed in -5.*m in z-direction (in front of Tube (in blue colour).)
 - including:
 - 1. 5 Drift chambers (in green colour)
 - of a box shape with hx=1.*m, hy=30.*cm, hz=1.*cm
 - of Argon gas material
 - placed along z-axis with a distance of 0.5*m from each other with the middle one in the center of the parent volume
 - 2. Wire plane
 - of a box shape with hx=1.*m, hy=30.*cm, hz=0.1*mm
 - of Copper material
 - placed inside each drift chamber in its center.

Geometry to be implemented:

- Add following materials (using NIST manager): Argon gas (G4_Ar), CsI (G4_CESIUM_IODIDE) and Copper (G4_Cu) and update materials in First Arm detector
- Second arm detector
 - represented as a box of hx=1.5*m, hy=1.*m, hz=3.*m
 - of Air material
 - placed in 5.*m in z-direction (behind Tube (in blue colour)).
 - Including:
 - 1. 5 Drift chambers (in green colour)
 - of a box shape with hx=1.5*m, hy=30.*cm, hz=1.*cm
 - of Argon gas material
 - placed along z-axis with a distance of 0.5*m from each other with the middle one in the center of the parent volume.
 - 2. Wire plane
 - of a box shape with hx=1.5*m, hy=30.*cm, hz=0.1*mm
 - of Copper material
 - placed inside each drift chamber in its center
 - 3. EM calorimeter (in yellow colour)
 - of a box shape with hx=1.5*m, hy=30.*cm, hz=15.*cm
 - of csI material
 - placed at 2*m in z-direction from the center of its parent volume (Second Arm Detector).
 - 4. Fill the EM calorimeter with 15*cm layers along x-direction of the same material (CsI)

Solution: session2 solution.tar.gz