

FCC Test Report

FCC ID : VQK-F04G

Equipment: Mobile Phone

Model No. : F-04G

Brand Name : FUJITSU

Applicant : FUJITSU LIMITED

Address : 1-1, Kamikodanaka 4-chome, Nakahara-ku,

Kawasaki 211-8588, Japan

Standard : 47 CFR FCC Part 15.247

Received Date : Dec. 17, 2014

Tested Date : Mar. 08 ~ Mar. 12, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

ilac MRA

TAF

Testing Laboratory

Report No.: FR4D1701AE Page: 1 of 37

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	8
1.5	Test Standards	g
1.6	Measurement Uncertainty	g
2	TEST CONFIGURATION	g
2.1	Testing Condition	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	11
3.1	Conducted Emissions	11
3.2	6dB and Occupied Bandwidth	16
3.3	RF Output Power	
3.4	Power Spectral Density	20
3.5	Unwanted Emissions into Restricted Frequency Bands	22
3.6	Unwanted Emissions into Non-Restricted Frequency Bands	34
4	TEST LABORATORY INFORMATION	37

Release Record

Report No.	Version	Description	Issued Date
FR4D1701AE	Rev. 01	Initial issue	Apr. 01, 2015

Report No.: FR4D1701AE Page: 3 of 37

Summary of Test Results

FCC Rules	Test Items	Measured	Result	
15.207	Conducted Emissions	[dBuV]: 0.567MHz 40.19 (Margin -5.81dB) - AV	Pass	
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 45.52MHz	Pass	
15.209	Radiated Effissions	33.77 (Margin -6.23dB) - PK	F 455	
15.247(b)(3)	Fundamental Emission Output Power	Power [dBm]: 1.11	Pass	
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass	
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass	
15.203	Antenna Requirement	Meet the requirement of limit	Pass	

Report No.: FR4D1701AE Page: 4 of 37

1 General Description

1.1 Information

1.1.1 Product Details

Product Name	Mobile Phone
Brand Name FUJITSU	
Model Name	F-04G
IMEI Code	357241060024329 / 357241060024287
H/W Version	v2.1.0
S/W Version	R21.5e

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information						
Frequency Range (MHz) Bluetooth Ch. Freq. (MHz) Channel Number Data Rate						
2400-2483.5 V4.1 LE 2402-2480 0-39 [40] 1 Mbps						
Note 1: Bluetooth LE	Note 1: Bluetooth LE (Low energy) uses GFSK modulation.					

1.1.3 Antenna Details

Type Gain (dBi)		Connector	Remark	
λ/4 Monopole	-6.48			

1.1.4 Power Supply Type of Equipment under Test (EUT)

Power Sunnly Tyne	AC adapter: (normal output rating) 5.0Vdc, 1.8A (quick charge output rating) 9.0Vdc, 1.8A Battery: 3.75Vdc
-------------------	--

1.1.5 Accessories

No.	Equipment	Description
1	Cradle	Brand Name: Fujitsu Limited Model Name: F50 Input rating: (quick charge) 9.0Vdc, 1.5A Output rating: (quick charge) 9.0Vdc, 1.5A
2	Battery (Unremovable)	Brand Name: NTT Docomo Model Name: CA54310-0061 Power Rating: 3.75Vdc, 3120mAh, 12Wh

Report No.: FR4D1701AE Page: 5 of 37

1.1.6 Channel List

	Frequency band (MHz)				2400~	2483.5	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
37	2402	9	2422	18	2442	28	2462
0	2404	10	2424	19	2444	29	2464
1	2406	38	2426	20	2446	30	2466
2	2408	11	2428	21	2448	31	2468
3	2410	12	2430	22	2450	32	2470
4	2412	13	2432	23	2452	33	2472
5	2414	14	2434	24	2454	34	2474
6	2416	15	2436	25	2456	35	2476
7	2418	16	2438	26	2458	36	2478
8	2420	17	2440	27	2460	39	2480

1.1.7 Test Tool and Duty Cycle

Test tool	QRCT, version 3.0.54.0
Duty cycle of test signal (%)	67.28%
Duty Factor (dB)	1.72

1.1.8 Power Setting

Modulation Mode	Test Frequency (MHz)			
Wodulation Wode	2402	2440	2480	
GFSK/1Mbps	Default Default Default			

Report No.: FR4D1701AE Page: 6 of 37

1.2 Local Support Equipment List

Support Equipment List								
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)		
1	Adapter	NTT docomo	AC Adaptor 05					
2	Earphone	APPLE	MD827FE/A	6		1.2m non-shielded w/o core		

Note: Item 1 was provided by client.

1.3 Test Setup Chart

Report No.: FR4D1701AE Page: 7 of 37

1.4 The Equipment List

Test Item	RF Conducted						
Test Site	(TH01-WS)						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016		
Power Meter	Anritsu	ML2495A	1241002	Sep. 29, 2014	Sep. 28, 2015		
Power Sensor	Anritsu	MA2411B	1207366	Sep. 29, 2014	Sep. 28, 2015		
Measurement Software Sporton Sporton_1 1.3.30 NA NA							
Note: Calibration Interval of instruments listed above is one year.							

Test Item	Radiated Emission							
Test Site	966 chamber 3 / (030	CH03-WS)						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
Spectrum Analyzer	Agilent	N9010A	MY53400091	Sep. 16, 2014	Sep. 15, 2015			
Receiver	Agilent	N9038A	MY53290044	Oct. 21, 2014	Oct. 20, 2015			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-562	Jan. 19, 2015	Jan. 18, 2016			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Feb. 03, 2015	Feb. 02, 2016			
Horn Antenna 18G-40G	I SCHWAD BELOK I BRHA 01 /0		BBHA 9170517	Nov. 10, 2014	Nov. 09, 2015			
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 10, 2014	Nov. 09, 2015			
Preamplifier	EMC	EMC02325	980187	Sep. 26, 2014	Sep. 25, 2015			
Preamplifier	Agilent	83017A	MY53270014	Sep. 17, 2014	Sep. 16, 2015			
Preamplifier	EMC	EMC184045B	980192	Aug. 26, 2014	Aug. 25, 2015			
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Feb. 09, 2015	Feb. 08, 2016			
RF cable-8M	HUBER+SUHNER	SUCOFLEX104	MY22601/4	Feb. 09, 2015	Feb. 08, 2016			
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Feb. 09, 2015	Feb. 08, 2016			
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800-001	Feb. 09, 2015	Feb. 08, 2016			
LF cable-3M	EMC	EMC8D-NM-NM-3000	131103	Feb. 09, 2015	Feb. 08, 2016			
LF cable-13M	EMC	EMC8D-NM-NM-13000	131104	Feb. 09, 2015	Feb. 08, 2016			
Measurement Software	AUDIX	e3	6.120210g	NA	NA			
Note: Calibration Int	erval of instruments lis	sted above is one year.						

Test Item	Conducted Emission								
Test Site	Conduction room 1 / (Conduction room 1 / (CO01-WS)							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until				
EMC Receiver	R&S	ESCS 30	100169	Oct. 17, 2014	Oct. 16, 2015				
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 17, 2014	Nov. 16, 2015				
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 31, 2014	Dec. 30, 2015				
Measurement Software AUDIX e3 6.120210k NA NA NA									

Report No.: FR4D1701AE Page: 8 of 37

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013 FCC KDB 558074 D01 DTS Meas Guidance v03r02

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty						
Parameters	Uncertainty					
Bandwidth	±34.134 Hz					
Conducted power	±0.808 dB					
Power density	±0.463 dB					
Conducted emission	±2.670 dB					
AC conducted emission	±2.92 dB					
Radiated emission ≤ 1GHz	±3.99 dB					
Radiated emission > 1GHz	±5.52 dB					

Report No.: FR4D1701AE Page: 9 of 37

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	18°C / 76%	Peter Lin
Radiated Emissions	03CH03-WS	20°C / 64-65%	Aska Huang
RF Conducted	TH01-WS	22°C / 65%	Brad Wu

➤ FCC site registration No.: 390588➤ IC site registration No.: 10807C-1

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data rate (Mbps)	Test Configuration
AC Power Line Conducted Emissions	BT LE	2402	1Mbps	1, 2
Radiated Emissions ≤ 1GHz	BT LE	2402	1Mbps	1, 2
Radiated Emissions > 1GHz	BT LE	2402, 2440, 2480	1Mbps	1
Fundamental Emission Output Power				
6dB bandwidth	BT LE	2402, 2440, 2480	1Mbps	1
Power spectral density				

NOTE:

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.
- 2. The EUT had been tested by following test configurations for radiated emission below 1GHz.
 - 1) Configuration 1 : Adapter mode
 - 2) Configuration 2: Cradle mode
- Adapter and cradle mode had been pretested for radiated emission above 1GHz and found that the adapter mode was the worst case and was selected for final test.

Report No.: FR4D1701AE Page: 10 of 37

3 Transmitter Test Results

3.1 Conducted Emissions

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit							
Frequency Emission (MHz) Quasi-Peak Average							
0.15-0.5 66 - 56 * 56 - 46 *							
0.5-5	56	46					
5-30 60 50							
Note 1: * Decreases with the logarithm of the frequency.							

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR4D1701AE Page: 11 of 37

3.1.4 Test Result of Conducted Emissions

Report No.: FR4D1701AE Page: 12 of 37

Modulation	GFSK	Test Freq. (MHz)	2440
Power Phase	Neutral	Test Configuration	1
80 Level (dB 70 60	uV)		SPR/CNS/VCCI-B R/CNS/VCCI-B AV
40 30 20		THE	Martin Ma
0.150.2	0.5 1 Frequ	2 5 10 ency (MHz)	20 30
Free MH: 1 0.27	z dBuV dBuV dB dBuV	LISN cable factor loss Remark dB dB 0.19 0.10 Average	
2 0.27 3* 0.56	42.18 61.12 -18.94 41.89	0.19 0.10 Average 0.19 0.10 QP 0.18 0.13 Average	
4 0.56 5 2.19 6 2.19 7 2.73 8 2.73 9 3.43 10 3.43 11 3.88 12 3.88	7 47.45 56.00 -8.55 47.14 0 26.97 46.00 -19.03 26.43 0 37.91 56.00 -18.09 37.37 29.18 46.00 -16.82 28.45 6 40.49 56.00 -15.51 39.76 6 29.00 46.00 -17.00 28.08 37.82 56.00 -18.18 36.90 1 30.61 46.00 -15.39 29.58	0.18 0.13 QP 0.29 0.25 Average 0.29 0.25 QP 0.46 0.27 Average 0.46 0.27 QP 0.63 0.29 Average 0.63 0.29 QP 0.72 0.31 Average 0.72 0.31 QP	
Note 1: Level (dBuV) = Ro	ead Level (dBuV) + LISN Fac	tor (dB) + Cable Loss (dB).	

Report No.: FR4D1701AE Page: 13 of 37

Modulation	GFSK			Test F	req. (N	1Hz)	2440
Power Phase	Line			Test C	onfigu	ıration	2
80 Level (dE	RuV)						
80							
70							
60							CISPR/CNS/VCCI-B
00						CIE	PR/CNS/VCCI-B AV
50						CIS	PR/CNS/VCCI-BAV
40	1411						
ili. M. Jahan		MM NAALI LILAA	li. maalabii				
30				# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 9 1 1	THE WASHINGTON THE PROPERTY OF THE PARTY OF	MANAGA PARAMA
20			<u>'' '</u>			i dilininali.	1177/111/14
							' "Mww ^W
10							- III
0							
0.150.2		0.5 1	Frequ	2 ency (MH		5 10	20 30
Fre	q Level	Limit Over	Read	LISN	cable		
MF	ız dBuV	Line Limit dBuV dB	Level dBuV	factor dB	loss dB	Remark	
1 0.15 2 0.15		55.82 -20.98 65.82 -20.80	33.88 44.06	0.88	0.08	Average QP	
3 0.26	33.42	51.29 -17.87	33.10	0.22	0.10	Average	
4 0.26 5* 0.55		61.29 -19.70 46.00 -6.90	41.27 38.82	0.22	0.10 0.13	QP Average	
6 0.55	2 42.63	56.00 -13.37	42.35	0.15	0.13	QP	
7 3.19 8 3.19		46.00 -16.18 56.00 -23.34	29.15 31.99	0.38	0.29		
9 3.43		46.00 -17.66	27.71	0.34	0.29		
10 3.43	35.68	56.00 -20.32	35.05	0.34	0.29	QP	
11 3.90 12 3.90		46.00 -15.97 56.00 -19.85	29.45	0.27 0.27	0.31	Average	
12 3.90	36.13	36.00 -19.63	33.37	0.27	0.31	QP	

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV)

Report No.: FR4D1701AE Page: 14 of 37

Modulation	GFSK	Test Freq. (MHz)	2440
Power Phase	Neutral	Test Configuration	2

Line Limit Level factor loss Remark MHz dBuV dBuV dB dBuV dB dB dB		Freq	Level	Limit	Over	Read	LISN	cable	
1 0.277 26.26 50.90 -24.64 25.97 0.19 0.10 Average 2 0.277 38.80 60.90 -22.10 38.51 0.19 0.10 QP 3* 0.566 39.14 46.00 -6.86 38.83 0.18 0.13 Average 4 0.566 45.92 56.00 -10.08 45.61 0.18 0.13 QP 5 2.261 28.87 46.00 -17.13 28.31 0.31 0.25 Average 6 2.261 35.74 56.00 -20.26 35.18 0.31 0.25 QP 7 2.594 27.11 46.00 -18.89 26.43 0.41 0.27 Average 8 2.594 38.73 56.00 -17.27 38.05 0.41 0.27 QP 3 3.090 31.85 46.00 -14.15 31.02 0.55 0.28 Average 10 3.090 39.10 56.00 -16.90 38.27 0.55 0.28 QP 11 3.509 29.87 46.00 -16.13 28.93 0.64 0.30 Average				Line	Limit	Level	factor	loss	Remark
2 0.277 38.80 60.90 -22.10 38.51 0.19 0.10 QP 3* 0.566 39.14 46.00 -6.86 38.83 0.18 0.13 Average 4 0.566 45.92 56.00 -10.08 45.61 0.18 0.13 QP 5 2.261 28.87 46.00 -17.13 28.31 0.31 0.25 Average 6 2.261 35.74 56.00 -20.26 35.18 0.31 0.25 QP 7 2.594 27.11 46.00 -18.89 26.43 0.41 0.27 Average 8 2.594 38.73 56.00 -17.27 38.05 0.41 0.27 QP 9 3.090 31.85 46.00 -14.15 31.02 0.55 0.28 Average 10 3.090 39.10 56.00 -16.90 38.27 0.55 0.28 QP 11 3.509 29.87 46.00 -16.13 28.93 0.64 0.30 Average		MHz	dBu∀	dBu∀	dB	dBu∀	dB	dB	
2 0.277 38.80 60.90 -22.10 38.51 0.19 0.10 QP 3* 0.566 39.14 46.00 -6.86 38.83 0.18 0.13 Average 4 0.566 45.92 56.00 -10.08 45.61 0.18 0.13 QP 5 2.261 28.87 46.00 -17.13 28.31 0.31 0.25 Average 6 2.261 35.74 56.00 -20.26 35.18 0.31 0.25 QP 7 2.594 27.11 46.00 -18.89 26.43 0.41 0.27 Average 8 2.594 38.73 56.00 -17.27 38.05 0.41 0.27 QP 9 3.090 31.85 46.00 -14.15 31.02 0.55 0.28 Average 10 3.090 39.10 56.00 -16.90 38.27 0.55 0.28 QP 11 3.509 29.87 46.00 -16.13 28.93 0.64 0.30 Average									
3* 0.566 39.14 46.00 -6.86 38.83 0.18 0.13 Average 4 0.566 45.92 56.00 -10.08 45.61 0.18 0.13 QP 5 2.261 28.87 46.00 -17.13 28.31 0.31 0.25 Average 6 2.261 35.74 56.00 -20.26 35.18 0.31 0.25 QP 7 2.594 27.11 46.00 -18.89 26.43 0.41 0.27 Average 8 2.594 38.73 56.00 -17.27 38.05 0.41 0.27 QP 9 3.090 31.85 46.00 -14.15 31.02 0.55 0.28 Average 10 3.090 39.10 56.00 -16.90 38.27 0.55 0.28 QP 11 3.509 29.87 46.00 -16.13 28.93 0.64 0.30 Average	1	0.277	26.26	50.90	-24.64	25.97	0.19	0.10	Average
4 0.566 45.92 56.00 -10.08 45.61 0.18 0.13 QP 5 2.261 28.87 46.00 -17.13 28.31 0.31 0.25 Average 6 2.261 35.74 56.00 -20.26 35.18 0.31 0.25 QP 7 2.594 27.11 46.00 -18.89 26.43 0.41 0.27 Average 8 2.594 38.73 56.00 -17.27 38.05 0.41 0.27 QP 9 3.090 31.85 46.00 -14.15 31.02 0.55 0.28 Average 10 3.090 39.10 56.00 -16.90 38.27 0.55 0.28 QP 11 3.509 29.87 46.00 -16.13 28.93 0.64 0.30 Average	2	0.277	38.80	60.90	-22.10	38.51	0.19	0.10	QP
5 2.261 28.87 46.00 -17.13 28.31 0.31 0.25 Average 6 2.261 35.74 56.00 -20.26 35.18 0.31 0.25 QP 7 2.594 27.11 46.00 -18.89 26.43 0.41 0.27 Average 8 2.594 38.73 56.00 -17.27 38.05 0.41 0.27 QP 3.090 31.85 46.00 -14.15 31.02 0.55 0.28 Average 10 3.090 39.10 56.00 -16.90 38.27 0.55 0.28 QP 11 3.509 29.87 46.00 -16.13 28.93 0.64 0.30 Average	3*	0.566	39.14	46.00	-6.86	38.83	0.18	0.13	Average
6 2.261 35.74 56.00 -20.26 35.18 0.31 0.25 QP 7 2.594 27.11 46.00 -18.89 26.43 0.41 0.27 Average 8 2.594 38.73 56.00 -17.27 38.05 0.41 0.27 QP 9 3.090 31.85 46.00 -14.15 31.02 0.55 0.28 Average 10 3.090 39.10 56.00 -16.90 38.27 0.55 0.28 QP 11 3.509 29.87 46.00 -16.13 28.93 0.64 0.30 Average	4	0.566	45.92	56.00	-10.08	45.61	0.18	0.13	QP
7 2.594 27.11 46.00 -18.89 26.43 0.41 0.27 Average 8 2.594 38.73 56.00 -17.27 38.05 0.41 0.27 QP 9 3.090 31.85 46.00 -14.15 31.02 0.55 0.28 Average 10 3.090 39.10 56.00 -16.90 38.27 0.55 0.28 QP 11 3.509 29.87 46.00 -16.13 28.93 0.64 0.30 Average	5	2.261	28.87	46.00	-17.13	28.31	0.31	0.25	Average
8 2.594 38.73 56.00 -17.27 38.05 0.41 0.27 QP 9 3.090 31.85 46.00 -14.15 31.02 0.55 0.28 Average 10 3.090 39.10 56.00 -16.90 38.27 0.55 0.28 QP 11 3.509 29.87 46.00 -16.13 28.93 0.64 0.30 Average	6	2.261	35.74	56.00	-20.26	35.18	0.31	0.25	QP
9 3.090 31.85 46.00 -14.15 31.02 0.55 0.28 Average 10 3.090 39.10 56.00 -16.90 38.27 0.55 0.28 QP 11 3.509 29.87 46.00 -16.13 28.93 0.64 0.30 Average	7	2.594	27.11	46.00	-18.89	26.43	0.41	0.27	Average
10 3.090 39.10 56.00 -16.90 38.27 0.55 0.28 QP 11 3.509 29.87 46.00 -16.13 28.93 0.64 0.30 Average	8	2.594	38.73	56.00	-17.27	38.05	0.41	0.27	QP
11 3.509 29.87 46.00 -16.13 28.93 0.64 0.30 Average	9	3.090	31.85	46.00	-14.15	31.02	0.55	0.28	Average
	10	3.090	39.10	56.00	-16.90	38.27	0.55	0.28	QP
12 3.509 38.22 56.00 -17.78 37.28 0.64 0.30 QP	11	3.509	29.87	46.00	-16.13	28.93	0.64	0.30	Average
	12	3.509	38.22	56.00	-17.78	37.28	0.64	0.30	QP

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV)

Report No.: FR4D1701AE Page: 15 of 37

3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

5.

3.2.3 Test Setup

Report No.: FR4D1701AE Page: 16 of 37

3.2.4 Test Result of 6dB and Occupied Bandwidth

Mode	Freq. (MHz)	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Limit of 6dB Bandwidth (kHz)
BT LE	2402	0.674	1.06	500
BT LE	2440	0.665	1.06	500
BT LE	2480	0.670	1.06	500

Report No.: FR4D1701AE Page: 17 of 37

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Con	duct	ed power shall not exceed 1Watt.							
\boxtimes	Antenna gain <= 6dBi, no any corresponding reduction is in output power limit.								
	Antenna gain > 6dBi								
		Non Fixed, point to point operations. The conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB							
		Fixed, point to point operations Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point Operations, maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.							
		Systems operating in the 5725–5850 MHz band that are used exclusively for fixed, point-to-point operations ,no any corresponding reduction is in transmitter peak output power							

3.3.2 Test Procedures

Maximum Peak Conducted Output Power

- 1. Set RBW = 1MHz, VBW = 3MHz, Detector = Peak.
- 2. Sweep time = auto, Trace mode = max hold, Allow trace to fully stabilize.
- 3. Use the spectrum analyzer channel power measurement function with the band limits set equal to the DTS bandwidth edges.

Nower meter

- A broadband Peak RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.
- Maximum Conducted Output Power (For reference only)

Nower meter

 A broadband Average RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.3.3 Test Setup

Report No.: FR4D1701AE Page: 18 of 37

3.3.4 Test Result of Maximum Output Power

Mode	Freq. (MHz)	Freq. (MHz) Peak Power (mW) Peak Power		Limit (dBm)
BT LE	2402	0.75	-1.23	30
BT LE	2440	1.29	1.11	30
BT LE	2480	1.06	0.25	30

Mode	Freq. (MHz)	Freq. (MHz) AV Power (mW) AV Power (Limit (dBm)
BT LE	2402	0.67	-1.73	30
BT LE	2440	1.15	0.59	30
BT LE	2480	0.89	-0.49	30

Note: Average power is for reference only

Report No.: FR4D1701AE Page: 19 of 37

3.4 Power Spectral Density

3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

- Maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - Set the RBW = 3kHz, VBW = 10kHz.
 - Detector = Peak, Sweep time = auto couple.
 - 3. Trace mode = max hold, allow trace to fully stabilize.
 - 4. Use the peak marker function to determine the maximum amplitude level.
- Maximum (average) conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - 1. Set the RBW = 10kHz, VBW = 30kHz.
 - 2. Detector = RMS, Sweep time = auto couple.
 - 3. Set the sweep time to: ≥ 10 x (number of measurement points in sweep) x (maximum data rate per stream).
 - 4. Perform the measurement over a single sweep.
 - 5. Use the peak marker function to determine the maximum amplitude level.\

3.4.3 Test Setup

Report No.: FR4D1701AE Page: 20 of 37

3.4.4 Test Result of Power Spectral Density

Mode	Freq. (MHz)	Limit (dBm/3kHz)		
BT LE	2402	-16.13	8	
BT LE	2440	-15.75	8	
BT LE	2480	-14.86	8	

Report No.: FR4D1701AE Page: 21 of 37

3.5 Unwanted Emissions into Restricted Frequency Bands

3.5.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit									
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)						
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300						
0.490~1.705	24000/F(kHz)	33.8 - 23	30						
1.705~30.0	30	29	30						
30~88	100	40	3						
88~216	150	43.5	3						
216~960	200	46	3						
Above 960	500	54	3						

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR4D1701AE Page: 22 of 37

3.5.3 Test Setup

Report No.: FR4D1701AE Page: 23 of 37

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR4D1701AE Page: 24 of 37

Modulation	GFSK	Test Freq. (MHz)	2440		
Polarization	Vertical	Test Configuration	on 1	1	
90 Level (dB 80 70 60 50 40 1 30 2		5	FCC CLA	.SS-B	
10 0 30 100	. 200. 300. 400.	500. 600. 700). 800. 900.	1000	
30 100	. 200. 300. 400.	Frequency (MHz)	. 600. 900.	1000	
I	Freq. Emission Limit / level MHz dBuV/m dBuV/m	reading	Remark ANT High cm	Turn Table deg	
1		6.23 46.60 -12.83			
	103.72 22.33 43.50 -2 199.75 22.93 43.50 -2				
	318.09 22.05 46.00 -2				
	596.48 25.20 46.00 -2				
6	780.78 35.42 46.00 -3	0.58 38.22 -2.80	Peak		

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR4D1701AE Page: 25 of 37

Modulation	GFSK	Test Freq. (MHz)	2440
Polarization	Horizontal	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	46.49	24.15	40.00	-15.85	37.00	-12.85	Peak		
2	62.98	25.42	40.00	-14.58	40.13	-14.71	Peak		
3	111.48	22.89	43.50	-20.61	39.37	-16.48	Peak		
4	268.62	31.49	46.00	-14.51	45.41	-13.92	Peak		
5	353.01	30.49	46.00	-15.51	41.85	-11.36	Peak		
6	779.81	34.27	46.00	-11.73	37.08	-2.81	Peak		

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR4D1701AE Page: 26 of 37

Modulation	GFSK	Test Freq. (MHz)	2440
Polarization	Vertical	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	62.01	28.35	40.00	-11.65	42.91	-14.56	Peak		
2	215.27	21.53	43.50	-21.97	37.74	-16.21	Peak		
3	264.74	30.29	46.00	-15.71	44.41	-14.12	Peak		
4	307.42	28.61	46.00	-17.39	41.07	-12.46	Peak		
5	579.99	26.31	46.00	-19.69	32.57	-6.26	Peak		
6	780.78	33.36	46.00	-12.64	36.16	-2.80	Peak		

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR4D1701AE Page: 27 of 37

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)

26.51

39.67

7.11

7.11

Average

Peak

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

4804.00 33.62 54.00 -20.38

4804.00 46.78 74.00 -27.22

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AE Page: 28 of 37

Report Version: Rev. 01

5

Modulation	GFSK	Test Freq. (MHz)	2402
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m		Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	1500.00	35.53	54.00	-18.47	39.36	-3.83	Average		
2	1500.00	48.94	74.00	-25.06	52.77	-3.83	Peak		
3	2390.00	37.18	54.00	-16.82	38.40	-1.22	Average		
4	2390.00	49.20	74.00	-24.80	50.42	-1.22	Peak		
5	4804.00	33.99	54.00	-20.01	26.88	7.11	Average		
6	4804.00	47.27	74.00	-26.73	40.16	7.11	Peak		

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AE Page: 29 of 37

Modulation	GFSK	Test Freq. (MHz)	2440
Polarization	Horizontal	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	2483.50	37.00	54.00	-17.00	37.89	-0.89	Average		
2	2483.50	49.43	74.00	-24.57	50.32	-0.89	Peak		
3	4880.00	33.16	54.00	-20.84	26.38	6.78	Average		
4	4880.00	46.00	74.00	-28.00	39.22	6.78	Peak		
5	7320.00	38.03	54.00	-15.97	27.05	10.98	Average		
6	7320.00	50.97	74.00	-23.03	39.99	10.98	Peak		

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AE Page: 30 of 37

Modulation	GFSK	Test Freq. (MHz)	2440
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	2483.50	37.12	54.00	-16.88	38.01	-0.89	Average		
2	2483.50	49.30	74.00	-24.70	50.19	-0.89	Peak		
3	4880.00	33.76	54.00	-20.24	26.98	6.78	Average		
4	4880.00	46.13	74.00	-27.87	39.35	6.78	Peak		
5	7320.00	38.56	54.00	-15.44	27.58	10.98	Average		
6	7320.00	50.16	74.00	-23.84	39.18	10.98	Peak		

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AE Page: 31 of 37

Modulation	GFSK	Test Freq. (MHz)	2480
Polarization	Horizontal	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	2483.50	37.27	54.00	-16.73	38.16	-0.89	Average		
2	2483.50	49.92	74.00	-24.08	50.81	-0.89	Peak		
3	4960.00	33.00	54.00	-21.00	26.54	6.46	Average		
4	4960.00	46.33	74.00	-27.67	39.87	6.46	Peak		
5	7440.00	38.46	54.00	-15.54	27.19	11.27	Average		
6	7440.00	51.49	74.00	-22.51	40.22	11.27	Peak		

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AE Page: 32 of 37

Modulation	GFSK	Test Freq. (MHz)	2480
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level dBuV/m		Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
	PHIZ	ubuv/III	ubuv/III	ub	ubuv	ub		CIII	ueg
1	2483.50	37.15	54.00	-16.85	38.04	-0.89	Average		
2	2483.50	49.81	74.00	-24.19	50.70	-0.89	Peak		
3	4960.00	33.21	54.00	-20.79	26.75	6.46	Average		
4	4960.00	46.27	74.00	-27.73	39.81	6.46	Peak		
5	7440.00	38.90	54.00	-15.10	27.63	11.27	Average		
6	7440.00	51.85	74.00	-22.15	40.58	11.27	Peak		

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR4D1701AE Page: 33 of 37

3.6 Unwanted Emissions into Non-Restricted Frequency Bands

3.6.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.6.2 Test Procedures

Reference Level Measurement

- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement

- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

3.6.3 Test Setup

Report No.: FR4D1701AE Page: 34 of 37

3.6.4 Unwanted Emissions into Non-Restricted Frequency Bands

Report No.: FR4D1701AE Page: 35 of 37

Report No.: FR4D1701AE Page: 36 of 37

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan,

R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan

Hsien 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

__END__

Report No.: FR4D1701AE Page: 37 of 37