Econ 103 – Quiz 4

Name:		
· valiic.		

Instructions: This is closed-book, closed-notes quiz. Please write your answers in the blanks provided. Non-programmable calculators are permitted.

1. (2 points) What is the bias of the estimator $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$? Note that it is an estimator for population variance σ^2 . (Hint: $E[\sum_{i=1}^n (X_i - \bar{X})^2] = (n-1)\sigma^2$.)

- 2. (1 points) True or false? Consistency of an estimator is related to mean-squared error when the sample size is fixed.
- 3. (4 points) Let $X_1, X_2, \ldots, X_n \sim i.i.d$. with mean μ and variance σ^2 . You have two estimators of population mean μ . The first estimator is $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. The other estimator is X_{max} , which is the maximum value of the sample. Which estimator do you prefer according to mean-squared error (MSE)? (Hint: The maximum value is one data point in the sample.)

Į.	(13 points) Assume that we have a random i.i.d. sample from a normal distribution with unknown mean but $known$ variance. Suppose that we have 100 observations, the sample mean is 5, and the population variance is 16. (If necessary, use R command in your answer.)
	a. (2 points) Construct a 95% confidence interval.
	b. (2 points) Compute the margin of error (ME) of the above CI.
	c. (2 points) Compute the length of the above CI.
	d. (2 points) Construct a 80% confidence interval.
	e. (2 points) What happens to the confidence interval if the sample size increases? (Does CI become wider or tighter?)
	f. (3 points) Consider the same setup as above except that we do not know the population variance. Instead, the sample standard deviation is 5. Construct a 95% confidence interval in this case.