Exploratory Data Analysis in Finance Using PerformanceAnalytics

Brian G. Peterson & Peter Carl

¹Diamond Management & Technology Consultants Chicago, IL brian@braverock.com

> ²Guidance Capital Chicago, IL peter@braverock.com

UseR! International User and Developer Conference, Ames, Iowa, 8-10 Aug 2007

Outline

Visualization

Methods

Summary

Appendix: Set Up PerformanceAnalytics

Overview

- Exploratory data analysis with finance data often starts with visual examination to:
 - examine properties of asset returns
 - compare an asset to other similar assets
 - compare an asset to one or more benchmarks
- Application of performance and risk measures can build a set of statistics for comparing possible investments
- Examples are developed using data for six (hypothetical) managers, a peer index, and an asset class index
- Hypothetical manager data was developed from real manager timeseries using accuracy and perturb packages to disguise the data while maintaining some of the statistical properties of the original data.

Draw a Performance Summary Chart.

- > charts.PerformanceSummary(managers[, c(manager.col, indexes.cols)],
- + colorset = rich6equal, 1wd = 2, ylog = TRUE)

Show Calendar Performance.

```
> t(table.CalendarReturns(managers[, c(manager.col, indexes.cols)]))
                                      2001
                                            2002 2003 2004 2005 2006
            1996 1997 1998 1999 2000
Jan
            1.0 1.8 -0.3
                            0.0 - 1.8
                                       0.1
                                                 -4.0
Feb
                      3.6
                           1.5
                                 0.2
                                       1.0
Mar
                  0.4
                      4.2
                            3.7 4.9
                                      -1.0
                                             1.1 2.9
                  1.6
                      0.1
                            5.3
                                       2.8
Apr
                 3.8 -2.0
May
                            1.2
                                 3.7
                                       4.9
                                            -0.6
                                                  2.9
Jun
                  2.9 0.3
                            3.8
                                1.2
                                                  3.9
Jul
                  2.2 - 2.8
                                 0.9
Aua
                 1.4 -8.9 -1.1
                                3.8
                                       1.2
                                             0.0
                                                  1.0
                                                      0.4
                     1.6 -0.3
                                 0.0
                                      -2.3
                                            -6.4
                                                  0.8
Sep
Oct
                      5.5
                            0.8 - 0.4
                                      -0.6
Nov
            1.5 1.7 1.9 0.5 1.7
                                       3.0
                                             7.5
                                                 1.8
                                                       4.2
Dec
                      1.9 1.4 -0.1
                                       6.4
                                            -3.0
HAM1
            16.1 17.8
                     4.4 18.3 16.2
                                     18.9
                                           -8.1 25.5 14.4 10.5 23.3
            NA 21.4 14.6 31.4 12.0
                                     -1.2 -6.4 19.3 8.6 11.3 10.1
EDHEC.LS.EQ
           23.0 33.4 28.6 21.0 -9.1 -11.9 -22.1 28.7 10.9 4.9 15.8
SP500.TR
```

Calculate Statistics.

> table.MonthlyReturns(managers[, c(manager.col, peers.cols)])

	HAM1	HAM2	HAM3	HAM4	HAM5	HAM6	
Observations	132.0000	125.0000	132.0000	132.0000	77.0000	64.0000	
NAs	0.0000	7.0000	0.0000	0.0000	55.0000	68.0000	
Minimum	-0.0895	-0.0429	-0.0738	-0.1800	-0.1386	-0.0402	
Quartile 1	0.0000	-0.0105	-0.0066	-0.0213	-0.0184	-0.0034	
Median	0.0132	0.0060	0.0107	0.0139	0.0045	0.0146	
Arithmetic Mean	0.0112	0.0138	0.0122	0.0105	0.0034	0.0121	
Geometric Mean	0.0109	0.0131	0.0115	0.0091	0.0025	0.0118	
Quartile 3	0.0231	0.0248	0.0312	0.0440	0.0298	0.0276	
Maximum	0.0750	0.1521	0.1774	0.1583	0.1660	0.0544	
SE Mean	0.0022	0.0033	0.0032	0.0047	0.0051	0.0030	
LCL Mean (0.95)	0.0069	0.0072	0.0058	0.0013	-0.0067	0.0062	
UCL Mean (0.95)	0.0156	0.0203	0.0186	0.0197	0.0136	0.0180	
Variance	0.0006	0.0014	0.0014	0.0029	0.0020	0.0006	
Stdev	0.0251	0.0369	0.0371	0.0536	0.0447	0.0238	
Skewness	-0.6871	1.4564	0.8091	-0.4198	-0.0131	-0.2312	
Kurtosis	2.4001	2.4099	2.3632	0.8703	2.1288	-0.5305	

Compare Distributions.

- > chart.Boxplot(managers[trailing36.rows, c(manager.col, peers.cols,
- + indexes.cols)], main = "Trailing 36-Month Returns")

Trailing 36-Month Returns

Compare Distributions.

```
> layout(rbind(c(1, 2), c(3, 4)))
> chart.Histogram(managers[, 1, drop = F], main = "Plain", methods = NULL)
> chart.Histogram(managers[, 1, drop = F], main = "Density", breaks = 40,
+ methods = c("add.density", "add.normal"))
> chart.Histogram(managers[, 1, drop = F], main = "Skew and Kurt",
+ methods = c("add.centered", "add.rug"))
> chart.Histogram(managers[, 1, drop = F], main = "Risk Measures",
+ methods = c("add.risk")
```


Show Relative Return and Risk.

```
> chart.RiskReturnScatter(managers[trailing36.rows, 1:8], rf = 0.03/12,
+ main = "Trailing 36-Month Performance", colorset = c("red",
+ rep("black", 5), "orange", "green"))
```

Trailing 36-Month Performance

Examine Performance Consistency.

Display Relative Performance.

```
> chart.RelativePerformance(managers[, manager.col, drop = FALSE],
+ managers[, c(peers.cols, 7)], colorset = tim8equal[-1], lwd = 2,
+ legend.loc = "topleft"]
```

Relative Performance

Compare to a Benchmark.

```
> chart.RelativePerformance(managers[, c(manager.col, peers.cols)],
+ managers[, 8, drop = F], colorset = rainbow8equal, 1wd = 2,
+ legend.loc = "topleft"]
```

Relative Performance

Compare to a Benchmark.

```
> table.CAPM(managers[trailing36.rows, c(manager.col, peers.cols)],
      managers[trailing36.rows, 8, drop = FALSE], rf = managers[trailing36.rows,
          Rf.col, drop = F1)
                    HAM1 to SP500.TR HAM2 to SP500.TR HAM3 to SP500.TR
Alpha
                               0.0061
                                                0.0006
                                                                  0.0015
Beta
                               0.6713
                                                0.4178
                                                                  0.7349
R-squared
                               0.4397
                                                0.1715
                                                                  0.5907
Annualized Alpha
                               0.0755
                                                0.0076
                                                                  0.0180
Correlation
                               0.6631
                                                0.4142
                                                                  0.7686
Correlation p-value
                               0.0000
                                                0.0120
                                                                  0.0000
Tracking Error
                               0.0868
                                                0.0601
                                                                  0.0021
Active Premium
                               0.0538
                                               -0.0359
                                                                 -0.0010
Information Ratio
                               0.6201
                                               -0.5974
                                                                 -0.4973
Treynor Ratio
                               0.1870
                                                0.0857
                                                                  0.0962
                     HAM4 to SP500 TR HAM5 to SP500 TR HAM6 to SP500 TR
Alpha
                               0.0005
                                                0.0015
                                                                  0.0033
Beta
                               1.1570
                                                0.8442
                                                                  0.8574
R-squared
                               0.3697
                                                0 4887
                                                                  0.4830
Annualized Alpha
                               0.0059
                                                0.0181
                                                                  0.0399
                                                0.6991
                                                                  0.6950
Correlation
                               0.6080
Correlation p-value
                                                0.0000
                                                                  0.0000
Tracking Error
                               0.0302
                                                0.0119
                                                                  0.0508
Active Premium
                               0.0120
                                                0.0061
                                                                  0.0299
Information Ratio
                                                0.5148
                                                                  0.5889
                               0.3984
Treynor Ratio
                               0.0724
                                                0.0922
                                                                  0.1186
```

Calculate Returns.

 The single-period arithmetic return, or simple return, can be calculated as

$$R_t = \frac{P_t}{P_{t-1}} - 1 = \frac{P_t - P_{t-1}}{P_{t-1}} \tag{1}$$

Simple returns, cannot be added together. A multiple-period simple return is calculated as:

$$R_t = \frac{P_t}{P_{t-k}} - 1 = \frac{P_t - P_{t-k}}{P_{t-k}} \tag{2}$$

The natural logarithm of the simple return of an asset is referred to as the continuously compounded return, or log return:

$$r_t = ln(1 + R_t) = ln\frac{P_t}{P_{t-1}} = p_t - p_{t-1}$$
 (3)

Calculating log returns from simple gross return, or vice versa:

$$r_t = ln(1 + R_t), R_t = exp(r_t) - 1.$$
 (4)

 Return.calculate or CalculateReturns (now deprecated) may be used to compute discrete and continuously compounded returns for data containing asset prices.

table.CAPM underlying techniques

Return.annualized — Annualized return using

$$prod(1 + R_a)^{\frac{scale}{n}} - 1 = \sqrt[n]{prod(1 + R_a)^{scale}} - 1$$
 (5)

▶ TreynorRatio — ratio of asset's Excess Return to Beta β of the benchmark

$$\frac{(\overline{R_a - R_f})}{\beta_{a,b}} \tag{6}$$

- ActivePremium investment's annualized return minus the benchmark's annualized return
- Tracking Error A measure of the unexplained portion of performance relative to a benchmark, given by

TrackingError =
$$\sqrt{\sum \frac{(R_a - R_b)^2}{len(R_a)\sqrt{scale}}}$$
 (7)

InformationRatio — ActivePremium/TrackingError

Compare to a Benchmark.

> charts.RollingRegression(managers[, c(manager.col, peers.cols),
+ drop = FALSE], managers[, 8, drop = FALSE], rf = 0.03/12,
+ colorset = redfocus, 1wd = 2)

Calculate Downside Risk.

> table.DownsideRisk(managers[, 1:6], rf = 0.03/12)

		HAM1	HAM2	HAM3	HAM4	HAM5	HAM6
Semi Deviation		0.0188	0.0203	0.0239	0.0397	0.0320	0.0173
Gain Deviation		0.0164	0.0347	0.0296	0.0314	0.0298	0.0157
Loss Deviation		0.0209	0.0099	0.0187	0.0371	0.0321	0.0132
Downside Deviation	(MAR=10%)	0.0175	0.0168	0.0218	0.0386	0.0346	0.0152
Downside Deviation	(rf=3%)	0.0151	0.0133	0.0188	0.0357	0.0316	0.0125
Downside Deviation	(0%)	0.0142	0.0119	0.0176	0.0345	0.0303	0.0114
Maximum Drawdown		-0.1573	-0.2240	-0.2786	-0.2913	-0.3775	-0.0707
VaR (99%)		0.0696	0.0996	0.0985	0.1352	0.1075	0.0674
Beyond VaR		0.0704	0.1010	0.0997	0.1366	0.1078	0.0682
Modified VaR (99%)		0.0827	0.0804	0.0788	0.1282	0.0989	0.0523

Semivariance and Downside Deviation

 Downside Deviation as proposed by Sharpe is a generalization of semivariance which calculates bases on the deviation below a Minimumn Acceptable Return(MAR)

$$\delta_{MAR} = \sqrt{\frac{\sum_{t=1}^{n} (R_t - MAR)^2}{n}}$$
 (8)

- Downside Deviation may be used to calculate semideviation by setting MAR=mean(R) or may also be used with MAR=0
- Downside Deviation (and its special cases semideviation and semivariance) is useful in several performance to risk ratios, and in several portfolio optimization problems.

Value at Risk

- Value at Risk (VaR) has become a required standard risk measure recognized by Basel II and MiFID
- Traditional mean-VaR may be derived historically, or estimated parametrically using

$$z_c = q_p = qnorm(p) (9)$$

$$VaR = \bar{R} - z_c \cdot \sqrt{\sigma} \tag{10}$$

- Even with robust covariance matrix or Monte Carlo simulation, mean-VaR is not reliable for non-normal asset distributions
- For non-normal assets, VaR estimates calculated using GPD (as in VaR.GPD) or Cornish Fisher perform best
- Modified Cornish Fisher VaR takes higher moments of the distribution into account:

$$z_{cf} = z_c + \frac{(z_c^2 - 1)S}{6} + \frac{(z_c^3 - 3z_c)K}{24} + \frac{(2z_c^3 - 5z_c)S^2}{36}$$
(11)

$$modVaR = \bar{R} - z_{cf}\sqrt{\sigma}$$
 (12)

 Modified VaR also meets the definition of a coherent risk measure per Artzner, et. al. (1997)

Risk/Reward Ratios in PerformanceAnalytics

 SharpeRatio — return per unit of risk represented by variance, may also be annualized by

$$\frac{\sqrt[n]{prod(1+R_a)^{scale}} - 1}{\sqrt{scale} \cdot \sqrt{\sigma}}$$
 (13)

 Sortino Ratio — improvement on Sharpe Ratio utilizing downside deviation as the measure of risk

$$\frac{(\overline{R_a - MAR})}{\delta_{MAR}} \tag{14}$$

- Calmar and Sterling Ratios ratio of annualized return (Eq. 1) over the absolute value of the maximum drawdown
- Sortino's Upside Potential Ratio upside semdiviation from MAR over downside deviation from MAR

$$\frac{\sum_{t=1}^{n} (R_t - MAR)}{\delta_{MAR}} \tag{15}$$

 Favre's modified Sharpe Ratio — ratio of excess return over Cornish-Fisher VaR

$$\frac{(\overline{R_a} - \overline{R_f})}{modVaR_{B_B}} \tag{16}$$

Summary

- Performance and risk analysis are greatly facilitated by the use of charts and tables.
- The display of your infomation is in many cases as important as the analysis.
- PerformanceAnalytics contains several tool for measuring and visualizing data that may be used to aid investment decision making.
- Further Work
 - Additional parameterization to make charts and tables more useful.
 - Pertrac or Morningstar-style sample reports.
 - Functions and graphics for more complicated topics such as factor analysis and optimization.

Install PerformanceAnalytics.

- ▶ As of version 0.9.4, PerformanceAnalytics is available in CRAN
- Version 0.9.5 was released at the beginning of July
- Install with:
 - > install.packages("PerformanceAnalytics")
- ► Required packages include Hmisc, zoo, and Rmetrics packages such as fExtremes.
- ▶ Load the library into your active R session using:
 - > library("PerformanceAnalytics").

Load and Review Data.

- > data(managers)
- > head(managers)

		HAM1	HAM2	HAM3	HAM4	HAM5	HAM6	EDHEC.LS.EQ	SP500.TR	US.10Y.TR
Jar	1996	0.0100	NA	0.0359	0.0208	NA	NA	NA	0.0340	0.00380
Feb	1996	0.0215	NA	0.0295	0.0231	NA	NA	NA	0.0093	-0.03532
Mai	1996	0.0226	NA	0.0253	-0.0053	NA	NA	NA	0.0096	-0.01057
Apı	1996	0.0008	NA	0.0478	0.0200	NA	NA	NA	0.0147	-0.01739
May	1996	0.0158	NA	0.0337	0.0122	NA	NA	NA	0.0258	-0.00543
Jur	1996	-0.0086	NA	-0.0293	-0.0089	NA	NA	NA	0.0038	0.01507
		US.3m.TF	2							
Jar	1996	0.00456	5							
Feb	1996	0.00398	3							
Mai	1996	0.00371	L							

Set Up Data for Analysis.

```
> dim(managers)
[1] 132 10
> managers.length = dim(managers)[1]
> colnames (managers)
 [1] "HAM1"
                  "HAM2"
                              "HAM3"
                                              "HAM4"
                                                            "HAM5"
[6] "HAM6"
                "EDHEC.LS.EQ" "SP500.TR"
                                           "US.10Y.TR" "US.3m.TR"
> manager.col = 1
> peers.cols = c(2, 3, 4, 5, 6)
> indexes.cols = c(7, 8)
> Rf.col = 10
> trailing12.rows = ((managers.length - 11):managers.length)
> trailing12.rows
 [1] 121 122 123 124 125 126 127 128 129 130 131 132
> trailing36.rows = ((managers.length - 35):managers.length)
> trailing60.rows = ((managers.length - 59):managers.length)
> frInception.rows = (length(managers[, 1]) - length(managers[,
     1|[!is.na(managers[, 1])]) + 1):length(managers[, 1])
```

Draw a Performance Summary Chart.

- $> \ charts. \texttt{PerformanceSummary} \, (\texttt{managers[, c(manager.col, indexes.cols)],} \\$
- + colorset = rich6equal, 1wd = 2, ylog = TRUE)

