Understanding Scheduling and Checkpointing

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

FIFO and Fair scheduling

RDD lineage and recovery from node crashes

Fault tolerance semantics

Checkpointing and write-ahead logs

Scheduling in Spark

Spark 2.x Architecture

Driver application runs separate process to execute commands

- creates SparkContext
- contains various schedulers

SparkContext in turn

- schedules job executions
- interacts with cluster manager

Spark Driver contains

- DAG Scheduler
- Task Scheduler
- Scheduler Backend

Executors in turn run tasks scheduled by driver

DAG Scheduler

Creates a Directed Acyclic Graph of stages for each job

Submits to the TaskScheduler

Determines preferred locations for tasks

Based on cache status and file locations

Determines schedule to run jobs

Task Scheduler

Executes tasks on the cluster
Retries tasks in case of failures
Handles slow-running tasks

Scheduler Backend

Backend interface for scheduling systems

Allows plugging in different cluster managers

YARN, Mesos, Standalone, Kubernetes

FIFO and Fair Scheduling

The FIFO scheduler can result in very long wait times

Fair Scheduler

Resources are always proportionally allocated to all jobs

Zero wait time for any job

Can also specify job priorities

Priorities used as weights to allocate cluster resources

Fair Scheduler

Organizes jobs into pools

Divides resources fairly between pools

Separate pool for each user

Allocates minimum shares to pools

Fair Scheduler

Fair Scheduler

Fair Scheduler

Fair Scheduler

Fair Scheduler

RDDs and Fault Tolerance

Mechanism for Fault Tolerance in Spark 2.x is essentially unchanged from Spark 1.x

RDDs are still the fundamental building blocks of Spark

Characteristics of RDDs

Partitioned

RDDs are split across nodes in a cluster

Immutable

RDDs, once created, cannot be changed

Resilient

Can be reconstructed on node crashes

Characteristics of RDDs

Partitioned

RDDs are split across nodes in a cluster Immutable

RDDs, once created, cannot be changed

Resilient

Can be reconstructed on node crashes

RDDs can be created in 2 ways

Reading a file

Transforming another RDD

Reading a file

Transforming another RDD

Every RDD keeps track of where it came from

It tracks every transformation which led to the current RDD

This is the RDD's lineage

RDDs Are Resilient

None of the transformations are applied till we access the results

Lineage

Allows RDDs to be reconstructed when nodes crash

Allows RDDs to be lazily instantiated (materialized) when accessing the results

Receivers for Input Streams

Received data is replicated among multiple executors in the cluster

Data received and replicated:

 node crashes means the replicated copy of node can be used

Data received and not replicated:

- data needs to be replayed from the source

Fault Tolerance Semantics

Fault Tolerance

Types of guarantees

- At most once
- At least once
- Exactly once

For a streaming app to provide an exactly-once guarantee, each step must provide an exactly-once guarantee

Fault Tolerance

Steps in processing streaming data

- Receiving data
- Transforming data
- Pushing out data

Semantics of Receiving Data

Receivers can be reliable receivers

Acknowledge reliable sources only when data has been replicated

If receiver is restarted un-replicated data will be resent by the source

Semantics of Receiving Data

Receivers can be unreliable receivers

Do not send acknowledgements to the source

Data loss possible

To ensure recovery from job crashes input sources should be replayable

Semantics of Receiving Data

Semantics depend on receiver

Files, Kafka sources provide exactlyonce guarantee

Unreliable receiver with Driver failure has undefined behavior

Worst-case outcome

Write Ahead Logging

Important mechanism used to provide fault tolerance

- Introduced in Spark 1.2

Involves saving received data to reliable storage e.g. HDFS

Write Ahead Logging

Avoids loss of past received data

- If enabled, provides at least once guarantee in almost all scenarios*
- *Except unreliable receiver with driver failure

Semantics of Transforming Data

Transformations are internal to Spark
RDDs provide exactly-once guarantee
Any data received exactly once will
be processed exactly once

Semantics of Pushing Out Data

Output operations have at-least once semantics

Need additional processing to get exactly-once semantics

Two approaches possible

- Idempotent updates
- Transactional updates

Checkpointing

Checkpointing in Spark

Streaming applications need to be resilient to external failures

Spark Streaming uses checkpointing to maintain intermediate state

 Intermediate state must be saved to reliable storage e.g. HDFS

Helps recover from failures and ensure fault-tolerance

Checkpointing in Spark

Can configure query with checkpoint location on reliable storage

Recover previous progress and state of query, and resume

Thus, checkpointing and write ahead logging help recover from failures

Checkpointing in Spark

Metadata checkpointing

Needed to recover from driver failures

Data checkpointing

- Needed whenever stateful transformations are used
- Stateful transformations combine data across batches

Incremental Checkpointing

Only key-value pairs that are changed are committed or aborted

(Other, unchanged key-value pairs are not touched)

Incremental Checkpointing is based on StateStore objects

StateStore

Abstraction for key-value pairs used in managing state in stateful stream processing; supports incremental checkpointing.

Demo

Recovering from failures using checkpoints

Summary

FIFO and Fair scheduling

RDD lineage and recovery from node crashes

Fault tolerance semantics

Checkpointing and write-ahead logs

Up Next:

Configuring Processing Models