Contents 6 Math 6.1 Berlekamp Massey 13 6.2 Characteristic Polyno-1 Basic 1.1 Template \dots 6.4 Discrete Logarithm . 6.5 Extgcd 1.2 Fast IO 6.6 Floor Sum . . 6.7 Factorial Mod P^k . . 6.8 Linear $\overline{}$ 1.3 vimrc 14 6.8 Linear Function Mod Min 14 2.1 2SAT (SCC) 6.9 MillerRabin PollardRho 15 2.2 VertexBCC 6.10Phi . 6.11Quadratic Residue . . 15 2.3 EdgeBCC . 6.12Sieve (With Mu) . . . 2.4 Centroid Decomposition 15 2.5 Count Cycles 16 2.6 DirectedMST 6.15NTT 2.7 Dominator Tree . . 6.16FWT 17 2.8 Heavy Light Decomposi-6.17Polynomial 6.17Polynomiai . . . 6.18Generating Functions 6 19Linear Programming 17 tion 18 2.9 Matroid Intersection 2.10Virtual Tree Construction 2.11Vizing 6.20Estimation 2.12Maximum Clique Dynamic 5 6.21 Theorem2.13Theory 6 7 Geometry 3 Data Structure 3.1 LiChao Tree 7.2 Convex Hull . . 19 3.2 Dynamic Line Hull . . 7.3 Dynamic Convex Hull . 3.3 Leftist Tree 7.4 Point In Convex Hull 19 3.4 Link Cut Tree 7.5 Point In Circle . . 3.5 Sparse Table 7.6 Half Plane Intersection 20 3.6 Splay Tree 7.7 Minkowski Sum 3.7 Treap 7.8 Polar Angle . . 7.9 Rotating Sweep Line . 7.10Segment Intersect . .7.11Circle Intersect With 4 Flow/Matching 8 4.1 Hopcroft Karp 4.2 Dinic 4.3 Min Cost Max Flow . . 7.13Tangent to Convex Hull 4.4 Min Cost Circulation 7.14Minimum Enclosing Circle 21 4.5 Kuhn Munkres 7.15Union of Stuff . . . 7.16Delaunay Triangulation 4.6 Stoer Wagner (Min-cut) 10 22 4.7 GomorvHu Tree 10 7.17Voronoi Diagram . . . 7.18Trapezoidalization . 4.8 General Graph Matching 10 4.9 Flow notes 23 String 11 5.1 AC Automaton 11 5.2 KMP 11 5.3 Manacher 12 5.4 Minimum Rotate 12 5.5 Palindrome Tree 12 5.6 Repetition 12 5.7 Suffix Array 12 5.8 SAIS (C++20) 13 5.9 Suffix Automaton 13 5.10Z Value 13 8.1 Cyclic Ternary Search 8.2 Mo's Algorithm 8.3 Mo's Algorithm On Tree 24 24 8.8 Tree Hash

Basic 1

1.1 Template

```
#include <bits/stdc++.h>
using namespace std;
typedef long long 11;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
typedef pair<double,double> pdd;
template<typename T> void _do(T x){cerr<<x<<"\n";}</pre>
template<typename T,typename ...U> void _do(T x,U ...y)
     {cerr<<x<<", ";_do(y...);}</pre>
#define dbg(...) cerr<<#__VA_ARGS__<<" = ";_do(
      _VA_ARGS__);
#define MottoHayaku ios::sync_with_stdio(false);cin.tie
    (0);
//#define int ll
#define rep(i,n) for(int i=0;i<n;i++)</pre>
#define rep1(i,n) for(int i=1;i<=n;i++)</pre>
#define F first
#define S second
#define pb push_back
#define uni(c) c.resize(distance(c.begin(),unique(c.
    begin(),c.end())))
#define unisort(c) sort(c.begin(),c.end()),uni(c)
```

8.9 Python

1.2 Fast IO

```
#pragma GCC optimize("Ofast,inline,unroll-loops")
#pragma GCC target("bmi,bmi2,lzcnt,popcnt,avx2")
#pragma GCC target("sse,sse2,sse3,sse4,popcnt,abm
    ,mmx,avx,tune=native")
#include<unistd.h>
char OB[65536]; int OP;
inline char RC() {
  static char buf[65536], *p = buf, *q = buf;
  return p == q && (q = (p = buf) + read(0, buf, 65536)
       ) == buf ? -1 : *p++;
inline int R() {
  static char c;
  while((c = RC()) < '0'); int a = c ^ '0';
  while((c = RC()) >= '0') a *= 10, a += c ^ '0';
  return a:
inline void W(int n) {
  static char buf[12], p;
  if (n == 0) OB[OP++]='0'; p = 0;
while (n) buf[p++] = '0' + (n % 10), n /= 10;
for (--p; p >= 0; --p) OB[OP++] = buf[p];
  if (OP > 65520) write(1, OB, OP), OP = 0;
1.3 vimrc
```

```
set ru nu rnu cul cin et bs=2 ls=2 so=8 sw=4 sts=4
   mouse=a
inoremap {<CR> {<CR>}<Esc>0
noremap <F9> <Esc>:w<CR>:!g++ "%:p" -o "%:p:r".out -std
    =c++14 -02 -Wall -Wextra -Wshadow -Wconversion -
    fsanitize=address,undefined<CR>
noremap <F10> <Esc>:!"%:p:r".out<CR>
map <F11> <F9><F10>
```

Graph

2.1 2SAT (SCC)

```
struct TwoSAT {
  // 0-indexed
  // idx i * 2 -> +i, i * 2 + 1 -> -i
  vector <vector <int>> adj, radj;
  vector <int> dfs_ord, idx, solution;
  vector <bool> vis;
  int n, nscc;
  TwoSAT () = default;
  TwoSAT (int _n) : n(_n), nscc(0) {
    adj.resize(n * 2), radj.resize(n * 2);
  void add_clause(int x, int y) {
    // (x or y) = true
    int nx = x ^ 1, ny = y ^ 1;
    adj[nx].push_back(y), radj[y].push_back(nx);
    adj[ny].push_back(x), radj[x].push_back(ny);
  void add_ifthen(int x, int y) {
    // if \bar{x} = true then y = true
    add_clause(x ^ 1, y);
  void add_must(int x) {
    // x = true
    int nx = x ^ 1;
    adj[nx].pb(x), radj[x].pb(nx);
  void dfs(int v) {
    vis[v] = true;
    for (int u : adj[v]) if (!vis[u])
      dfs(u);
    dfs_ord.push_back(v);
  void rdfs(int v) {
    idx[v] = nscc;
    for (int u : radj[v]) if (idx[u] == -1)
      rdfs(u);
  bool find_sol() {
```

```
vis.assign(n * 2, false), idx.assign(n * 2, -1),
     solution.assign(n, -1);
for (int i = 0; i < n * 2; ++i) if (!vis[i])</pre>
       dfs(i);
     reverse(dfs_ord.begin(), dfs_ord.end());
for (int i : dfs_ord) if (idx[i] == -1)
       rdfs(i), nscc++;
     for (int i = 0; i < n; i++) {
       if (idx[i << 1] == idx[i << 1 | 1])</pre>
          return false;
        if (idx[i << 1] < idx[i << 1 | 1])</pre>
          solution[i] = 0;
       else
          solution[i] = 1;
     return true;
  }
};
```

2.2 VertexBCC

```
struct BCC{ // 0-based, allow multi edges but not allow
   int n, m, cnt = 0;
   // n:|V|, m:|E|, cnt:#bcc
   // bcc i : vertices bcc_v[i] and edges bcc_e[i]
   vector<vector<int>> bcc_v, bcc_e;
vector<vector<pre>vectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvectorvector
   vector<pii> edges; // 0-based
   BCC(int _n, vector<pii> _edges):
      n(_n), m(SZ(_edges)), g(_n), edges(_edges){
          for(int i = 0; i < m; i++){</pre>
            auto [u, v] = edges[i];
             g[u].pb(pii(v, i)); g[v].pb(pii(u, i));
      }
   void make_bcc(){ bcc_v.pb(); bcc_e.pb(); cnt++; }
   // modify these if you need more information
   void add_v(int v){ bcc_v.back().pb(v); }
   void add_e(int e){ bcc_e.back().pb(e); }
   void build(){
      vector\langle int \rangle in(n, -1), low(n, -1), stk;
      vector<vector<int>> up(n);
      int ts = 0;
       auto _dfs = [&](auto dfs, int now, int par, int pe)
               -> void{
          if(pe != -1) up[now].pb(pe);
          in[now] = low[now] = ts++;
          stk.pb(now);
         for(auto [v, e] : g[now]){
             if(e == pe) continue;
             if(in[v] != -1){
                if(in[v] < in[now]) up[now].pb(e);</pre>
                low[now] = min(low[now], in[v]);
                continue;
             dfs(dfs, v, now, e);
            low[now] = min(low[now], low[v]);
          if((now != par && low[now] >= in[par]) || (now ==
                  par && SZ(g[now]) == 0)){
             make_bcc();
             for(int v = stk.back();; v = stk.back()){
                stk.pop_back(), add_v(v);
                for(int e : up[v]) add_e(e);
                if(v == now) break;
             if(now != par) add_v(par);
      }:
      for(int i = 0; i < n; i++)</pre>
          if(in[i] == -1) _dfs(_dfs, i, i, -1);
};
```

2.3 EdgeBCC

```
vector <int> adj[N];
struct EdgeBCC {
 // 0-indexed
 vector <int> newadj[N];
 vector <int> low, dep, idx, stk, par;
```

```
vector <bool> bridge; // edge i -> pa[i] is bridge ?
  int n, nbcc;
  EdgeBCC () = default;
  EdgeBCC (int _n) : n(_n), nbcc(0) {
    low.assign(n, -1), dep.assign(n, -1), idx.assign(n,
         -1);
    par.assign(n, -1), bridge.assign(n, false);
    for (int i = 0; i < n; ++i) if (dep[i] == -1) {
      dfs(i, -1);
    for (int i = 1; i < n; ++i) if (bridge[i]) {</pre>
      newadj[idx[i]].pb(idx[par[i]]);
      newadj[idx[par[i]]].pb(idx[i]);
    }
  }
  void dfs(int v, int pa) {
    low[v] = dep[v] = \sim pa ? dep[pa] + 1 : 0;
    par[v] = pa;
    stk.push_back(v);
    for (int u : adj[v]) if (u != pa) {
      if (dep[u] == -1) {
        dfs(u, v);
        low[v] = min(low[v], low[u]);
      } else {
        low[v] = min(low[v], low[u]);
      }
    if (low[v] == dep[v]) {
      if(~pa) bridge[v] = true;
      int x;
      do {
        x = stk.back(), stk.pop_back();
        idx[x] = nbcc;
      } while (x != v);
      nbcc++;
};
2.4
     Centroid Decomposition
```

```
vector <int> adj[N];
struct CentroidDecomposition {
  // 0-index
  vector <int> sz, cd_pa;
  int n;
  CentroidDecomposition () = default;
  CentroidDecomposition (int _n) : n(_n) {
    sz.assign(n, 0), cd_pa.assign(n, -2);
    dfs_cd(0, -1);
  void dfs_sz(int v, int pa) {
    sz[v] = 1;
    for (int u : adj[v]) if (u != pa && cd_pa[u] == -2)
      dfs_sz(u, v), sz[v] += sz[u];
  int dfs_cen(int v, int pa, int s) {
    for (int u : adj[v]) if (u != pa && cd_pa[u] == -2)
      if (sz[u] * 2 > s)
        return dfs_cen(u, v, s);
    return v;
  vector <int> block;
  void dfs_cd(int v, int pa) {
    dfs_sz(v, pa);
    int c = dfs_cen(v, pa, sz[v]);
    // centroid D&C
    for (int u : adj[c]) if (cd_pa[u] == -2) {
     dfs_ans(u, c);
     // do something
    for (int u : adj[c]) if (cd_pa[u] == -2) {
      dfs_cd(u, c);
  void dfs_ans(int v, int pa) {
    // calculate path through centroid
    // do something
    // remember delete path from the same size
    for (int u : adj[v]) if (u != pa && cd_pa[u] == -2)
```

2.5 Count Cycles

```
// ord = sort by deg decreasing, rk[ord[i]] = i
// D[i] = edge point from rk small to rk big
for (int x : ord) { // c3
    for (int y : D[x]) vis[y] = 1;
    for (int y : D[x]) for (int z : D[y]) c3 += vis[z];
    for (int y : D[x]) vis[y] = 0;
}
for (int x : ord) { // c4
    for (int y : D[x]) for (int z : adj[y])
        if (rk[z] > rk[x]) c4 += vis[z]++;
    for (int y : D[x]) for (int z : adj[y])
        if (rk[z] > rk[x]) --vis[z];
} // both are O(M*sqrt(M)), test @ 2022 CCPC guangzhou
```

2.6 DirectedMST

```
using D = int;
struct edge {
 int u, v; D w;
// 0-based, return index of edges
vector<int> dmst(vector<edge> &e, int n, int root) {
 using T = pair <D, int>;
 using PQ = pair <priority_queue <T, vector <T>,
      greater <T>>, D>;
 auto push = [](PQ &pq, T v) {
   pq.first.emplace(v.first - pq.second, v.second);
 auto top = [](const PQ &pq) -> T {
    auto r = pq.first.top();
    return {r.first + pq.second, r.second};
  auto join = [&push, &top](PQ &a, PQ &b) {
   if (a.first.size() < b.first.size()) swap(a, b);</pre>
    while (!b.first.empty())
      push(a, top(b)), b.first.pop();
 };
  vector<PQ> h(n * 2);
  for (int i = 0; i < e.size(); ++i)</pre>
 push(h[e[i].v], {e[i].w, i});
vector<int> a(n * 2), v(n * 2, -1), pa(n * 2, -1), r(
      n * 2);
 iota(a.begin(),a.end(), 0);
  auto o = [\&](int x) \{ int y;
    for (y = x; a[y] != y; y = a[y]);
    for (int ox = x; x != y; ox = x)
      x = a[x], a[ox] = y;
    return y;
 v[root] = n + 1;
 int pc = n;
  for (int i = 0; i < n; ++i) if (v[i] == -1) {
   for (int p = i; v[p] == -1 || v[p] == i; p = o(e[r[
        p]].u)) {
      if (v[p] == i) {
        int q = p; p = pc++;
        do {
          h[q].second = -h[q].first.top().first;
          join(h[pa[q] = a[q] = p], h[q]);
        } while ((q = o(e[r[q]].u)) != p);
      v[p] = i;
      while (!h[p].first.empty() && o(e[top(h[p]).
          second].u) == p)
        h[p].first.pop();
      r[p] = top(h[p]).second;
   }
  vector<int> ans;
  for (int i = pc - 1; i >= 0; i--)
    if (i != root && v[i] != n) {
      for (int f = e[r[i]].v; f != -1 && v[f] != n; f =
           pa[f]) v[f] = n;
```

```
ans.pb(r[i]);
}
return ans;
```

2.7 Dominator Tree

```
struct Dominator_tree {
  int n, id;
  vector <vector <int>> adj, radj, bucket;
  vector <int> sdom, dom, vis, rev, par, rt, mn;
Dominator_tree (int _n) : n(_n), id(0) {
    adj.resize(n), radj.resize(n), bucket.resize(n);
    sdom.resize(n), dom.resize(n, -1), vis.resize(n,
        -1);
    rev.resize(n), rt.resize(n), mn.resize(n), par.
         resize(n):
  void add_edge(int u, int v) {adj[u].pb(v);}
  int query(int v, bool x) {
    if (rt[v] == v) return x ? -1 : v;
    int p = query(rt[v], true);
    if (p == -1) return x ? rt[v] : mn[v];
    if (sdom[mn[v]] > sdom[mn[rt[v]]]) mn[v] = mn[rt[v
    rt[v] = p;
    return x ? p : mn[v];
  void dfs(int v) {
    vis[v] = id, rev[id] = v;
    rt[id] = mn[id] = sdom[id] = id, id++;
    for (int u : adj[v]) {
      if (vis[u] == -1) dfs(u), par[vis[u]] = vis[v];
      radj[vis[u]].pb(vis[v]);
    }
  }
  void build(int s) {
    dfs(s);
    for (int i = id - 1; ~i; --i) {
      for (int u : radj[i]) {
        sdom[i] = min(sdom[i], sdom[query(u, false)]);
      if (i) bucket[sdom[i]].pb(i);
      for (int u : bucket[i]) {
        int p = query(u, false);
        dom[u] = sdom[p] == i ? i : p;
      if (i) rt[i] = par[i];
    vector <int> res(n, -1);
    for (int i = 1; i < id; ++i) {
      if (dom[i] != sdom[i]) dom[i] = dom[dom[i]];
    for (int i = 1; i < id; ++i) res[rev[i]] = rev[dom[</pre>
        i]];
    res[s] = s;
    dom = res;
  }
};
```

2.8 Heavy Light Decomposition

```
vector <int> adj[N];
struct HLD {
  // 0-index
  vector <int> dep, pt, hd, idx, sz, par, vis;
  int n, _t;
  HLD () = default;
  HLD (int _n) : n(_n) {
    pt.assign(n,-1), hd.assign(n,-1), par.assign(n,-1);
    idx.assign(n,0), sz.assign(n,0), dep.assign(n,0),
        vis.assign(n,0);
     t = 0;
    for (int i = 0; i < n; ++i) if (!vis[i]) {</pre>
      dfs1(i, -1);
      dfs2(i, -1, 0);
  void dfs1(int v, int pa) {
    par[v] = pa;
    dep[v] = ~pa ? dep[pa] + 1 : 0;
    sz[v] = vis[v] = 1;
```

```
for (int u : adj[v]) if (u != pa) {
      dfs1(u, v);
      if (pt[v] == -1 || sz[pt[v]] < sz[u])
        pt[v] = u;
      sz[v] += sz[u];
    }
  void dfs2(int v, int pa, int h) {
    if (v == -1)
      return;
    idx[v] = _t++, hd[v] = h;
    dfs2(pt[v], v, h);
    for (int u : adj[v]) if (u != pa && u != pt[v]) {
      dfs2(u, v, u);
    }
  void modify(int u, int v) {
    while (hd[u] != hd[v])
      if (dep[hd[u]] < dep[hd[v]])</pre>
        swap(u, v);
      // range [idx[hd[u]], idx[u] + 1)
      u = par[hd[u]];
    if (dep[u] < dep[v])</pre>
      swap(u, v);
    // range [idx[v], idx[u] + 1)
  int query(int u, int v) {
    int ans = 0;
    while (hd[u] != hd[v]) {
      swap(u, v);
      // range [idx[hd[u]], idx[u] + 1)
      u = par[hd[u]];
    if (dep[u] < dep[v])</pre>
      swap(u, v);
    // range [idx[v], idx[u] + 1)
    return ans;
};
```

2.9 Matroid Intersection

```
Each matroid needs:
vector<bool> build_X(vector<bool> &I)
void build_exchange_graph(vector<vector<int> > &adj,
    vector<bool> &I)
exchange graph has to be opposite. i.e. one i->j one j
    ->i from two matroids
template <typename M1, typename M2>
struct MatroidIntersection {
 M1 m1;
 M2 m2;
 MatroidIntersection (M1 _m1, M2 _m2) : m1(_m1), m2(
      _m2) {}
  /* 1. build X1, X2
     2. If e \in X1 and e \in X2, add e
     3. Else build exchange graph
        m1 -> add edge from I to E \ I
        m2 -> add edge from E \setminus I to I
        weight: I -> w, E \setminus I -> -w
     4. find a minimum path (weight, number) from X1 to
          X2 (use bfs or SPFA) */
  vector <vector <int>> adj;
  vector <int> bfs(vector <bool> &X1, vector <bool> &X2
      ) {
    int n = X1.size();
    queue <int> q;
    vector <int> dis(n, -1), rt(n, -1);
    for (int i = 0; i < n; ++i) if (X1[i])</pre>
      q.push(i), dis[i] = 0;
    while (!q.empty()) {
      int v = q.front(); q.pop();
      for (int u : adj[v]) if (dis[u] == -1) {
        dis[u] = dis[v] + 1, rt[u] = v;
        q.push(u);
      }
    pair <int, int> mn = make_pair(1 << 30, -1);</pre>
```

```
for (int i = 0; i < n; ++i) if (X2[i] && dis[i] !=
      -1)
    mn = min(mn, make_pair(dis[i], i));
  int now = mn.second;
  if (now == -1)
   return {};
  vector <int> path = {now};
  while (rt[now] != -1) {
   now = rt[now], path.push_back(now);
  reverse(path.begin(), path.end());
  return path;
vector <bool> solve(int n) {
  vector <bool> I(n, false);
  while (true) {
    vector <bool> X1 = m1.build_X(I), X2 = m2.build_X
        (I);
    if (count(X1.begin(), X1.end(), 0) == n || count(
        X2.begin(), X2.end(), 0) == n)
      break;
    int add = -1;
    for (int i = 0; i < n; ++i) if (X1[i] && X2[i]) {
      add = i;
      break:
    if (add != -1) {
      I[add] = true;
      continue;
    adj.assign(n, vector <int>());
    m1.build_exchange_graph(adj, I);
    m2.build_exchange_graph(adj, I);
    vector <int> path = bfs(X1, X2);
    if (path.empty())
      break;
    for (int i : path)
      I[i] = !I[i];
  return I;
}
vector <int> SPFA(vector <bool> &X1, vector <bool> &
    X2, vector <bool> &I, vector <int> &weight) {
  int n = X1.size();
  queue <int> q;
  vector <pair <int, int>> dis(n, make_pair(1 << 30,</pre>
      -1));
  vector <int> rt(n, -1);
  vector <bool> vis(n, false);
  for (int i = 0; i < n; ++i) if (X1[i])</pre>
    q.push(i), dis[i] = make_pair(-weight[i], 0), vis
        [i] = true;
  while (!q.empty()) {
    int v = q.front(); q.pop();
    vis[v] = false;
    for (int u : adj[v]) {
      pair <int, int> nxt = make_pair(dis[v].first +
          (I[u] ? weight[u] : -weight[u]), dis[v].
           second + 1);
      if (dis[u] > nxt) {
        dis[u] = nxt, rt[u] = v;
        if (!vis[u])
          q.push(u), vis[u] = true;
      }
   }
  pair <pair <int, int>, int> mn = make_pair(
  make_pair(1 << 30, -1), -1);
for (int i = 0; i < n; ++i) if (X2[i])
   mn = min(mn, make_pair(dis[i], i));
  int now = mn.second;
  if (now == -1)
   return {};
  vector <int> path = {now};
  while (rt[now] != -1) {
   now = rt[now], path.push_back(now);
  reverse(path.begin(), path.end());
  return path;
vector <bool> solve_max_weight(vector <int> weight) {
  int n = weight.size();
```

```
vector <bool> I(n, false);
    while (true) {
      vector <bool> X1 = m1.build_X(I), X2 = m2.build_X
          (I);
      if (count(X1.begin(), X1.end(), 0) == n || count(
          X2.begin(), X2.end(), 0) == n)
        break;
      adj.assign(n, vector <int>());
      m1.build_exchange_graph(adj, I);
      m2.build_exchange_graph(adj, I);
      vector <int> path = SPFA(X1, X2, I, weight);
      if (path.empty())
        break;
      for (int i : path)
        I[i] = !I[i];
    }
    return I:
};
```

2.10 Virtual Tree

```
// need lca
vector <int>
              _g[N], stk;
int st[N], ed[N];
void solve(vector<int> v) {
 auto cmp = [&](int x, int y) {return st[x] < st[y];};</pre>
  sort(all(v), cmp);
 int sz = v.size();
 for (int i = 0; i < sz - 1; ++i)
   v.pb(lca(v[i], v[i + 1]));
 sort(all(v), cmp);
 v.resize(unique(all(v)) - v.begin());
  stk.clear(), stk.pb(v[0]);
 for (int i = 1; i < v.size(); ++i) {</pre>
   int x = v[i];
    while (ed[stk.back()] < ed[x]) stk.pop_back();</pre>
    _g[stk.back()].pb(x), stk.pb(x);
  // do something
  for (int i : v) _g[i].clear();
```

2.11 Vizing

```
namespace vizing { // returns edge coloring in adjacent
    matrix G. 1 - based
const int N = 105;
int C[N][N], G[N][N], X[N], vst[N], n;
void init(int _n) { n = _n;
  for (int i = 0; i <= n; ++i)
   for (int j = 0; j <= n; ++j)
     C[i][j] = G[i][j] = 0;
void solve(vector<pii> &E) {
 auto update = [&](int u)
  { for (X[u] = 1; C[u][X[u]]; ++X[u]); };
  auto color = [&](int u, int v, int c) {
    int p = G[u][v];
    G[u][v] = G[v][u] = c;
   C[u][c] = v, C[v][c] = u;
   C[u][p] = C[v][p] = 0;
   if (p) X[u] = X[v] = p;
    else update(u), update(v);
    return p;
  auto flip = [&](int u, int c1, int c2) {
   int p = C[u][c1];
    swap(C[u][c1], C[u][c2]);
    if (p) G[u][p] = G[p][u] = c2;
    if (!C[u][c1]) X[u] = c1;
    if (!C[u][c2]) X[u] = c2;
    return p;
  fill_n(X + 1, n, 1);
  for (int t = 0; t < E.size(); ++t) {
    int u = E[t].F, v0 = E[t].S, v = v0, c0 = X[u], c =
        c0, d;
    vector<pii> L;
    fill_n(vst + 1, n, 0);
    while (!G[u][v0]) {
     L.emplace_back(v, d = X[v]);
```

2.12 Maximum Clique Dynamic

```
const int N = 150;
struct MaxClique { // Maximum Clique
  bitset<N> a[N], cs[N];
  int ans, sol[N], q, cur[N], d[N], n;
  void init(int _n) {
    n = _n;
    for (int i = 0; i < n; i++) a[i].reset();</pre>
  void addEdge(int u, int v) { a[u][v] = a[v][u] = 1; }
  void csort(vector<int> &r, vector<int> &c) {
    int mx = 1, km = max(ans - q + 1, 1), t = 0,
        m = r.size();
    cs[1].reset(), cs[2].reset();
    for (int i = 0; i < m; i++) {
      int p = r[i], k = 1;
      while ((cs[k] & a[p]).count()) k++;
      if (k > mx) mx++, cs[mx + 1].reset();
      cs[k][p] = 1;
      if (k < km) r[t++] = p;
    c.resize(m);
    if (t) c[t - 1] = 0;
    for (int k = km; k \leftarrow mx; k++)
      for (int p = cs[k]._Find_first(); p < N;</pre>
           p = cs[k]._Find_next(p))
        r[t] = p, c[t] = k, t++;
  void dfs(vector<int> &r, vector<int> &c, int 1,
    bitset<N> mask) {
    while (!r.empty()) {
      int p = r.back();
      r.pop_back(), mask[p] = 0;
      if (q + c.back() <= ans) return;</pre>
      cur[q++] = p;
      vector<int> nr, nc;
      bitset<N> nmask = mask & a[p];
      for (int i : r)
        if (a[p][i]) nr.push_back(i);
      if (!nr.empty()) {
       if (1 < 4) {
  for (int i : nr)
            d[i] = (a[i] \& nmask).count();
          sort(nr.begin(), nr.end(),
            [\&](int x, int y) \{ return d[x] > d[y]; \});
        csort(nr, nc), dfs(nr, nc, l + 1, nmask);
      } else if (q > ans) ans = q, copy_n(cur, q, sol);
      c.pop_back(), q--;
    }
  int solve(bitset<N> mask = bitset<N>(
              string(N, '1'))) { // vertex mask
    vector<int> r, c;
    ans = q = 0;
    for (int i = 0; i < n; i++)
     if (mask[i]) r.push_back(i);
    for (int i = 0; i < n; i++)
      d[i] = (a[i] & mask).count();
    sort(r.begin(), r.end(),
```

[&](int i, int j) { return d[i] > d[j]; });

```
csort(r, c), dfs(r, c, 1, mask);
  return ans; // sol[0 ~ ans-1]
}
graph;
```

2.13 Theory

|Maximum independent edge set| = |V|-|Minimum edge cover| |Maximum independent set| = |V|-|Minimum vertex cover|

3 Data Structure

3.1 LiChao Tree

```
//C is range of x
//INF is big enough integer
struct Line {
  11 m,k;
  Line(ll _m=0, ll _k=0): m(_m), k(_k){}
  11 val(11 x){return m*x+k;}
struct LiChaoTree { //max y value
  Line st[C<<2];
  void init(int l,int r,int id) {
    st[id]=Line(0,0);
    if(l==r) return;
    int mid=(1+r)/2;
    init(l,mid,id<<1);</pre>
    init(mid+1,r,id<<1|1);
  void upd(int l,int r,Line seg,int id) {
    if(l==r) {
      if(seg.val(1)>st[id].val(1)) st[id]=seg;
      return;
    int mid=(1+r)/2;
    if(st[id].m>seg.m) swap(st[id],seg);
    if(st[id].val(mid)<seg.val(mid)) {</pre>
      swap(st[id],seg);
      upd(1,mid,seg,id<<1);
    } else upd(mid+1,r,seg,id<<1|1);</pre>
  11 qry(int 1,int r,ll x,int id) {
    if(l==r) return st[id].val(x);
    int mid=(1+r)/2;
    if(x<=mid) return max(qry(l,mid,x,id<<1),st[id].val</pre>
         (x));
    else return max(qry(mid+1,r,x,id<<1|1),st[id].val(x</pre>
         ));
  }
};
```

3.2 Dynamic Line Hull

```
struct Line {
  mutable 11 k, m, p;
  bool operator<(const Line& o) const { return k < o.k;</pre>
  bool operator<(11 x) const { return p < x; }</pre>
struct LineContainer : multiset<Line, less<>>> {
  static const 11 inf = LLONG_MAX;
  11 div(ll a, ll b) {
    return a / b - ((a ^ b) < 0 && a % b); }
  bool isect(iterator x, iterator y) {
    if(y == end()) return x \rightarrow p = inf, 0;
    if(x->k == y->k) x->p = x -> m > y->m ? inf : -inf;
    else x->p = div(y->m - x->m, x->k - y->k);
    return x->p >= y->p;
 }
  void add(ll k, ll m) {
    auto z = insert(\{k, m, 0\}), y = z++, x = y;
    while(isect(y, z)) z = erase(z);
    if(x != begin() \&\& isect(--x, y)) isect(x, y =
        erase(v));
    while((y = x) != begin() && (--x)->p >= y->p)
      isect(x, erase(y));
  11 query(ll x) {
```

```
assert(!empty());
auto 1 = *lower_bound(x);
return 1.k * x + 1.m;
};
```

3.3 Leftist Tree

```
struct node {
  11 rk, data, sz, sum;
  node *1, *r;
  node(11 k) : rk(0), data(k), sz(1), l(0), r(0), sum(k)
11 sz(node *p) { return p ? p->sz : 0; }
11 rk(node *p) { return p ? p->rk : -1; }
11 sum(node *p) { return p ? p->sum : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
  if (a->data < b->data) swap(a, b);
  a->r = merge(a->r, b);
  if (rk(a->r) > rk(a->l)) swap(a->r, a->l);
  a->rk = rk(a->r) + 1, a->sz = sz(a->l) + sz(a->r) +
  a \rightarrow sum = sum(a \rightarrow 1) + sum(a \rightarrow r) + a \rightarrow data;
  return a;
void pop(node *&o) {
  node *tmp = o;
  o = merge(o->1, o->r);
  delete tmp;
```

3.4 Link Cut Tree

```
// weighted subtree size, weighted path max
struct LCT {
  int ch[N][2], pa[N], v[N], sz[N], sz2[N], w[N], mx[N
      ], _id;
  // sz := sum of v in splay, sz2 := sum of v in
      virtual subtree
  // mx := max w in splay
  bool rev[N];
  LCT() : _id(1) {}
  int newnode(int _v, int _w) {
    int x = _id++;
ch[x][0] = ch[x][1] = pa[x] = 0;
    v[x] = sz[x] = _v;
    sz2[x] = 0;
    w[x] = mx[x] =
    rev[x] = false;
    return x;
  void pull(int i) {
    sz[i] = v[i] + sz2[i];
    mx[i] = w[i];
    if (ch[i][0])
      sz[i] += sz[ch[i][0]], mx[i] = max(mx[i], mx[ch[i])
          ][0]]);
    if (ch[i][1])
      sz[i] += sz[ch[i][1]], mx[i] = max(mx[i], mx[ch[i])
          ][1]]);
  void push(int i) {
    if (rev[i]) reverse(ch[i][0]), reverse(ch[i][1]),
        rev[i] = false;
  void reverse(int i) {
    if (!i) return;
    swap(ch[i][0], ch[i][1]);
    rev[i] ^= true;
  bool isrt(int i) {// rt of splay
    if (!pa[i]) return true;
    return ch[pa[i]][0] != i && ch[pa[i]][1] != i;
  void rotate(int i) {
    int p = pa[i], x = ch[p][1] == i, c = ch[i][!x], gp
         = pa[p];
    if (ch[gp][0] == p) ch[gp][0] = i;
    else if (ch[gp][1] == p) ch[gp][1] = i;
    pa[i] = gp, ch[i][!x] = p, pa[p] = i;
```

```
struct Splay {
    ch[p][x] = c, pa[c] = p;
    pull(p), pull(i);
                                                               int pa[N], ch[N][2], sz[N], rt, _id;
                                                               11 v[N];
  void splay(int i) {
                                                               Splay() {}
    vector<int> anc;
                                                               void init() {
                                                                 rt = 0, pa[0] = ch[0][0] = ch[0][1] = -1;
    anc.push_back(i);
    while (!isrt(anc.back())) anc.push_back(pa[anc.back
                                                                 sz[0] = 1, v[0] = inf;
        ()1);
                                                               int newnode(int p, int x) {
    while (!anc.empty()) push(anc.back()), anc.pop_back
        ();
                                                                 int id = _id++;
                                                                 v[id] = x, pa[id] = p;
ch[id][0] = ch[id][1] = -1, sz[id] = 1;
    while (!isrt(i)) {
      int p = pa[i];
      if (!isrt(p)) rotate(ch[p][1] == i ^ ch[pa[p]][1]
                                                                  return id;
           == p ? i : p);
                                                               void rotate(int i) {
      rotate(i);
    }
                                                                 int p = pa[i], x = ch[p][1] == i, gp = pa[p], c =
  }
                                                                      ch[i][!x];
  void access(int i) {
                                                                  sz[p] -= sz[i], sz[i] += sz[p];
                                                                  if (~c) sz[p] += sz[c], pa[c] = p;
    int last = 0:
    while (i) {
                                                                 ch[p][x] = c, pa[p] = i;
      splay(i);
                                                                 pa[i] = gp, ch[i][!x] = p;
      if (ch[i][1])
                                                                 if (~gp) ch[gp][ch[gp][1] == p] = i;
        sz2[i] += sz[ch[i][1]];
      sz2[i] -= sz[last];
                                                               void splay(int i) {
      ch[i][1] = last;
                                                                 while (~pa[i]) {
      pull(i), last = i, i = pa[i];
                                                                   int p = pa[i];
    }
                                                                    if (~pa[p]) rotate(ch[pa[p]][1] == p ^ ch[p][1]
                                                                        == i ? i : p);
  }
  void makert(int i) {
                                                                   rotate(i);
    access(i), splay(i), reverse(i);
                                                                 }
                                                                 rt = i;
  void link(int i, int j) {
    // assert(findrt(i) != findrt(j));
                                                               int lower_bound(int x) {
                                                                 int i = rt, last = -1;
    makert(i);
                                                                 while (true) {
    makert(j);
                                                                   if (v[i] == x) return splay(i), i;
    pa[i] = j;
    sz2[j] += sz[i];
                                                                    if (v[i] > x) {
    pull(j);
                                                                     last = i;
                                                                      if (ch[i][0] == -1) break;
  void cut(int i, int j) {
                                                                      i = ch[i][0];
    makert(i), access(j), splay(i);
// assert(sz[i] == 2 && ch[i][1] == j);
                                                                   }
                                                                   else {
   if (ch[i][1] == -1) break;
    ch[i][1] = pa[j] = 0, pull(i);
                                                                     i = ch[i][1];
  int findrt(int i) {
                                                                   }
    access(i), splay(i);
                                                                 }
    while (ch[i][0]) push(i), i = ch[i][0];
                                                                 splay(i);
    splay(i);
                                                                 return last; // -1 if not found
    return i;
                                                               void insert(int x) {
 }
};
                                                                 int i = lower_bound(x);
                                                                 if (i == -1) {
3.5 Sparse Table
                                                                    // assert(ch[rt][1] == -1);
                                                                    int id = newnode(rt, x);
                                                                   ch[rt][1] = id, ++sz[rt];
template <typename T>
                                                                    splay(id);
struct SparseTableMin {
  // 0-indexed, [1, r)
                                                                 else if (v[i] != x) {
  vector <vector <T>> table;
                                                                    splay(i);
  SparseTableMin () = default;
                                                                   int id = newnode(rt, x), c = ch[rt][0];
  SparseTableMin (vector <T> a) {
                                                                   ch[rt][0] = id;
    int n = a.size();
                                                                   ch[id][0] = c;
```

3.6 Splay Tree

if (~c) pa[c] = id, sz[id] += sz[c];

++sz[rt];
splay(id);

};

```
if (tr) tr->out();
  }
};
void print(Treap *t) {
  t->out();
  cout << endl;</pre>
Treap* merge(Treap *a, Treap *b) {
 if (!a || !b) return a ? a : b;
  if (a->pri < b->pri) {
    a->tr = merge(a->tr, b);
    a->pull();
    return a;
  } else {
    b->tl = merge(a, b->tl);
    b->pull();
    return b:
void split(Treap* t, int k, Treap* &a, Treap* &b) {
  if (!t) a = b = NULL;
  else if ((t->tl ? t->tl->sz : 0) + 1 <= k) {
    a = t:
    split(t->tr, k - (t->tl ? t->tl->sz : 0) - 1, a->tr
    a->pull();
  } else {
    b = t;
    split(t->tl, k, a, b->tl);
    b->pull();
}
```

4 Flow/Matching

4.1 Hopcroft Karp

```
struct HopcroftKarp {
  const int INF = 1 << 30;</pre>
  vector<int> adj[N];
  int match[N], dis[N], v, n, m;
  bool matched[N], vis[N];
  bool dfs(int x) {
    vis[x] = true;
    for (int y : adj[x])
      if (match[y] == -1 \mid | (dis[match[y]] == dis[x] +
          1 && !vis[match[y]] && dfs(match[y]))) {
        match[y] = x, matched[x] = true;
        return true;
      }
    return false;
  bool bfs() {
    memset(dis, -1, sizeof(int) * n);
    queue<int> q;
    for (int x = 0; x < n; ++x) if (!matched[x])
      dis[x] = 0, q.push(x);
    int mx = INF;
    while (!q.empty()) {
      int x = q.front(); q.pop();
      for (int y : adj[x]) {
        if (match[y] == -1) {
          mx = dis[x];
          break;
        } else if (dis[match[y]] == -1)
          dis[match[y]] = dis[x] + 1, q.push(match[y]);
      }
    return mx < INF;</pre>
  int solve() {
    int res = 0;
    memset(match, -1, sizeof(int) * m);
    memset(matched, 0, sizeof(bool) * n);
    while (bfs()) {
      memset(vis, 0, sizeof(bool) * n);
      for (int x = 0; x < n; ++x) if (!matched[x])
        res += dfs(x);
    return res;
```

```
void init(int _n, int _m) {
    n = _n, m = _m;
    for (int i = 0; i < n; ++i) adj[i].clear();
}
void add_edge(int x, int y) {
    adj[x].pb(y);
}
};</pre>
```

4.2 Dinic

```
struct Dinic {
  const int INF = 1 << 30;</pre>
  struct edge {
    int v, f;
    edge (int _v, int _f) : v(_v), f(_f) {}
  };
  vector <vector <int>> adj;
  vector <edge> E;
  vector <int> level;
  int n, s, t;
  Dinic (int _n, int _s, int _t) : n(_n), s(_s), t(_t)
      {adj.resize(n);}
  void add_edge(int u, int v, int f) {
    adj[u].pb(E.size()), E.pb(edge(v, f));
    adj[v].pb(E.size()), E.pb(edge(u, 0));
  bool bfs() {
    level.assign(n, -1);
    queue <int> q;
    level[s] = 0, q.push(s);
    while (!q.empty()) {
      int v = q.front(); q.pop();
      for (int id : adj[v]) if (E[id].f > 0 && level[E[
           id].v] == -1) {
        level[E[id].v] = level[v] + 1;
        q.push(E[id].v);
      }
    return level[t] != -1;
  int dfs(int v, int minf) {
    if (v == t) return minf;
    int ans = 0:
    for (int id : adj[v]) if (E[id].f > 0 && level[E[id
        ].v] == level[v] + 1) {
      int nxtf = dfs(E[id].v, min(minf, E[id].f));
      minf -= nxtf, E[id].f -= nxtf;
      ans += nxtf, E[id ^ 1].f += nxtf;
      if (!minf) return ans;
    if (!ans) level[v] = -1;
    return ans;
  int runFlow() {
    int ans = 0;
    while (bfs()) ans += dfs(s, INF);
    return ans;
  }
};
```

4.3 Min Cost Max Flow

```
rt.assign(n, -1), dis.assign(n, INF);
vector <bool> vis(n, false);
    queue <int> q;
    q.push(s), dis[s] = 0, vis[s] = true;
    while (!q.empty()) {
      int v = q.front(); q.pop();
      vis[v] = false;
      for (int id : adj[v]) if (E[id].f > 0 && dis[E[id]]
           ].v] > dis[v] + E[id].c + pot[v] - pot[E[id].
           v]) {
         dis[E[id].v] = dis[v] + E[id].c + pot[v] - pot[
             E[id].v], rt[E[id].v] = id;
         if (!vis[E[id].v]) vis[E[id].v] = true, q.push(
             E[id].v);
      }
    }
    return dis[t] != INF;
  bool dijkstra() {
    rt.assign(n, -1), dis.assign(n, INF);
    priority_queue <pair <int, int>, vector <pair <int,
    int>>, greater <pair <int, int>>> pq;
    dis[s] = 0, pq.emplace(dis[s], s);
    while (!pq.empty()) {
      int d, v; tie(d, v) = pq.top(); pq.pop();
      if (dis[v] < d) continue;</pre>
           (int id : adj[v]) if (E[id].f > 0 && dis[E[id
           ].v] > dis[v] + E[id].c + pot[v] - pot[E[id].
           v]) {
         dis[E[id].v] = dis[v] + E[id].c + pot[v] - pot[
             E[id].v], rt[E[id].v] = id;
        pq.emplace(dis[E[id].v], E[id].v);
      }
    }
    return dis[t] != INF;
  }
  pair <int, int> runFlow() {
    pot.assign(n, 0);
    int cost = 0, flow = 0;
    bool fr = true;
    while ((fr ? SPFA() : dijkstra())) {
      for (int i = 0; i < n; i++) {
         dis[i] += pot[i] - pot[s];
      int add = INF;
      for (int i = t; i != s; i = E[rt[i] ^ 1].v) {
        add = min(add, E[rt[i]].f);
      for (int i = t; i != s; i = E[rt[i] ^ 1].v) {
         E[rt[i]].f -= add, E[rt[i] ^ 1].f += add;
      flow += add, cost += add * dis[t];
      fr = false;
      swap(dis, pot);
    return make_pair(flow, cost);
  }
};
```

4.4 Min Cost Circulation

```
template <typename F, typename C>
struct MinCostCirculation {
  struct ep { int to; F flow; C cost; };
 int n; vector<int> vis; int visc;
 vector<int> fa, fae; vector<vector<int>> g;
 vector<ep> e; vector<C> pi;
 MinCostCirculation(int n_) : n(n_), vis(n), visc(0),
      g(n), pi(n) {}
 void add_edge(int u, int v, F fl, C cs) {
   g[u].emplace_back((int)e.size());
   e.emplace_back(v, fl, cs);
   g[v].emplace_back((int)e.size());
   e.emplace_back(u, 0, -cs);
 C phi(int x) {
   if (fa[x] == -1) return 0;
   if (vis[x] == visc) return pi[x];
   vis[x] = visc;
   return pi[x] = phi(fa[x]) - e[fae[x]].cost;
 int lca(int u, int v) {
```

```
for (; u != -1 || v != -1; swap(u, v)) if (u != -1)
       if (vis[u] == visc) return u;
       vis[u] = visc; u = fa[u];
     return -1;
  void pushflow(int x, C &cost) {
     int v = e[x ^ 1].to, u = e[x].to; ++visc;
     if (int w = lca(u, v); w == -1) {
       while (v != -1)
         swap(x ^= 1, fae[v]), swap(u, fa[v]), swap(u, v)
     } else {
      int z = u, dir = 0; F f = e[x].flow;
       vector<int> cyc = {x};
       for (int d : {0, 1})
         for (int i = (d ? u : v); i != w; i = fa[i]) {
           cyc.push_back(fae[i] ^ d);
           if (chmin(f, e[fae[i] ^ d].flow)) z = i, dir
        }
       for (int i : cyc) {
         e[i].flow -= f; e[i ^ 1].flow += f;
        cost += f * e[i].cost;
       if (dir) x ^= 1, swap(u, v);
       while (u != z)
         swap(x ^= 1, fae[v]), swap(u, fa[v]), swap(u, v
  void dfs(int u) {
    vis[u] = visc;
     for (int i : g[u])
       if (int v = e[i].to; vis[v] != visc and e[i].flow
         fa[v] = u, fae[v] = i, dfs(v);
  C simplex() {
    fa.assign(g.size(), -1); fae.assign(g.size(), -1);
     C cost = 0; ++visc; dfs(0);
     for (int fail = 0; fail < ssize(e); )</pre>
       for (int i = 0; i < ssize(e); i++)</pre>
         if (e[i].flow and e[i].cost < phi(e[i ^ 1].to)</pre>
              phi(e[i].to))
           fail = 0, pushflow(i, cost), ++visc;
         else ++fail;
    return cost:
  }
};
```

4.5 Kuhn Munkres

```
template <typename T>
struct KM { // 0-based
  const T INF = 1 << 30;</pre>
  T w[N][N], h1[N], hr[N], slk[N];
  int fl[N], fr[N], pre[N], n;
  bool v1[N], vr[N];
  queue <int> q;
  KM () {}
  void init(int _n) {
    for (int i = 0; i < n; ++i)
      for (int j = 0; j < n; ++j) w[i][j] = -INF;</pre>
  void add_edge(int a, int b, T wei) { w[a][b] = wei; }
  bool check(int x) {
    if (vl[x] = 1, \sim fl[x])
      return q.push(fl[x]), vr[fl[x]] = 1;
    while (\sim x) swap(x, fr[fl[x] = pre[x]]);
    return 0;
  void bfs(int s) {
    fill(slk, slk + n, INF), fill(vl, vl + n, 0);
    fill(vr, vr + n, 0);
    while (!q.empty()) q.pop();
    q.push(s), vr[s] = 1;
    while (true) {
      T d;
      while (!q.empty()) {
```

```
int y = q.front(); q.pop();
        for (int x = 0; x < n; ++x)
          if (!vl[x] \&\& slk[x] >= (d = hl[x] + hr[y] -
              w[x][y])
            if (pre[x] = y, d) slk[x] = d;
            else if (!check(x)) return;
      d = INF;
      for (int x = 0; x < n; ++x)
        if (!v1[x] && d > s1k[x]) d = s1k[x];
      for (int x = 0; x < n; ++x) {
        if`(v1[x]) h1[x] += d;
        else slk[x] -= d;
        if (vr[x]) hr[x] -= d;
      for (int x = 0; x < n; ++x)
        if (!v1[x] && !slk[x] && !check(x)) return;
  T solve() {
    fill(fl, fl + n, -1), fill(fr, fr + n, -1);
    fill(hr, hr + n, 0);
    for (int i = 0; i < n; ++i)
      hl[i] = *max_element(w[i], w[i] + n);
    for (int i = 0; i < n; ++i) bfs(i);</pre>
    T res = 0;
    for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
    return res;
 }
};
```

4.6 Stoer Wagner (Min-cut)

```
struct SW {
  int g[N][N], sum[N], n;
  bool vis[N], dead[N];
  void init(int _n) {
    n = n;
    for (int i = 0; i < n; ++i) fill(g[i], g[i] + n, 0)
    fill(dead, dead + n, false);
  }
  void add_edge(int u, int v, int w) {
    g[u][v] += w, g[v][u] += w;
  int run() {
    int ans = 1 << 30;
    for (int round = 0; round + 1 < n; ++round) {</pre>
      fill(vis, vis + n, false), fill(sum, sum + n, 0);
      int num = 0, s = -1, t = -1;
      while (num < n - round) {</pre>
        int now = -1;
        for (int i = 0; i < n; ++i) if (!vis[i] && !</pre>
             dead[i]) {
          if (now == -1 || sum[now] < sum[i]) now = i;</pre>
        s = t, t = now;
        vis[now] = true, num++;
         for (int i = 0; i < n; ++i) if (!vis[i] && !
             dead[i]) {
           sum[i] += g[now][i];
      ans = min(ans, sum[t]);
      for (int i = 0; i < n; ++i) {
        g[i][s] += g[i][t];
        g[s][i] += g[t][i];
      dead[t] = true;
    return ans:
};
```

4.7 GomoryHu Tree

```
vector <array <int, 3>> GomoryHu(vector <vector <pii>>> adj, int n) {
// Tree edge min -> mincut (0-based)
Dinic flow(n);
for (int i = 0; i < n; ++i) for (auto [j, w] : adj[i]
])</pre>
```

```
flow.add_edge(i, j, w);
  flow.record();
  vector <array <int, 3>> ans;
  vector <int> rt(n);
  for (int i = 0; i < n; ++i) rt[i] = 0;</pre>
  for (int i = 1; i < n; ++i) {
    int t = rt[i];
    flow.reset(); // clear flows on all edge
    ans.push_back({i, t, flow.solve(i, t)});
    flow.runbfs(i);
    for (int j = i + 1; j < n; ++j) if (rt[j] == t &&
        flow.vis[j]) {
      rt[j] = i;
    }
  }
  return ans;
}
```

4.8 General Graph Matching

```
struct Matching { // O-based
  int fa[N], pre[N], match[N], s[N], v[N], n, tk;
  vector <int> g[N];
  queue <int> q;
  int Find(int u) {
    return u == fa[u] ? u : fa[u] = Find(fa[u]);
  int lca(int x, int y) {
    tk++;
    x = Find(x), y = Find(y);
    for (; ; swap(x, y)) {
      if (x != n) {
        if (v[x] == tk) return x;
        v[x] = tk;
        x = Find(pre[match[x]]);
      }
    }
  void blossom(int x, int y, int 1) {
    while (Find(x) != 1) {
      pre[x] = y, y = match[x];
      if (s[y] == 1) q.push(y), s[y] = 0;
      if (fa[x] == x) fa[x] = 1;
      if (fa[y] == y) fa[y] = 1;
      x = pre[y];
    }
  bool bfs(int r) {
    for (int i = 0; i <= n; ++i) fa[i] = i, s[i] = -1;
    while (!q.empty()) q.pop();
    q.push(r);
    s[r] = 0;
    while (!q.empty()) {
      int x = q.front(); q.pop();
      for (int u : g[x]) {
        if (s[u] == -1) {
          pre[u] = x, s[u] = 1;
          if (match[u] == n) {
            for (int a = u, b = x, last; b != n; a =
                last, b = pre[a])
              last = match[b], match[b] = a, match[a] =
                   b;
            return true;
          q.push(match[u]);
          s[match[u]] = 0;
        } else if (!s[u] && Find(u) != Find(x)) {
          int l = lca(u, x);
          blossom(x, u, 1);
          blossom(u, x, 1);
        }
     }
    }
    return false;
  int solve() {
    int res = 0;
```

for (int x = 0; x < n; ++x) {

return res;

if (match[x] == n) res += bfs(x);

```
National Taiwan University PCkomachi
   void init(int _n) {
      n = _n, tk = 0;
for (int i = 0; i <= n; ++i) match[i] = pre[i] = n;</pre>
      for (int i = 0; i < n; ++i) g[i].clear(), v[i] = 0;</pre>
   void add_edge(int u, int v) {
      g[u].push_back(v), g[v].push_back(u);
};
4.9 Flow notes
    • Bipartite Matching Restore Answer
       runBfs(); Answer is \{!vis[x]|x\in L\}\cup \{vis[x]|x\in R\}
    • Bipartite Minimum Weight Vertex Covering
       S 
ightarrow \{x | x \in L\}, cap = weight of vertex x
        \begin{cases} x|x\in L\} \to \{y|y\in R\} \text{, cap = } \infty \\ \{y|y\in R\} \to T \text{, cap = weight of vertex } y \end{cases} 
       For general version, change Dinic to MCMF and:
      S \to \{x|x \in L\} , cap = weight of vertex x , cost = 0 \{x|x \in L\} \to \{y|y \in R\} , cap = \infty , cost = -w \{y|y \in R\} \to T , cap = weight of vertex y , cost = 0
    • Useful Lemma
       (Bipartite Maximum Weight Independent Set) +
       (Bipartite Minimum Weight Vertex Covering) = weight sum
    • Min Cut Model
```

choose A but not choose B cost $x\colon\ A\to B$, cap = x $\begin{array}{l} \text{choose } A \text{ cost } x \colon A \to T \text{, cap = } x \\ \text{not choose } A \text{ cost } x \colon S \to A \text{, cap = } x \\ \text{choose } A \text{ gain } x \implies \text{not choose } A \text{ cost } x \text{, } tot+=x \end{array}$ choose A and choose B cost x: NO!!! Bipartite: can flip one side

• Min Cut Restore Answer

runBfs(); Answer is $\{vis[x]|x\in V\}$

• Maximum/Minimum flow with lower bound / Circulation problem

- 1. Construct super source S and sink T. 2. For each edge (x,y,l,u), connect $x\to y$ with capacity u-l. 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing
- lower bounds. 4. If in(v)>0, connect $S\to v$ with capacity in(v), otherwise, connect $v \to T$ with capacity -in(v).
 - To maximize, connect $t \to s$ with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the maximum flow from s to t is the answer.
 - To minimize, let f be the maximum flow from S to TConnect $t \to s$ with capacity ∞ and let the flow from S to T be f'. If $f+f' \neq \sum_{v \in V, in(v)>0} in(v)$, there's no solution. Otherwise, f' is the answer.
- 5. The solution of each edge e is l_e+f_e , where f_e corresponds to the flow of edge e on the graph.
- \bullet Construct minimum vertex cover from maximum matching M on bipartite graph (X, Y)
 - 1. Redirect every edge: $y \to x$ if $(x,y) \in M$, $x \to y$ otherwise. 2. DFS from unmatched vertices in X. 3. $x \in X$ is chosen iff x is unvisited. 4. $y \in Y$ is chosen iff y is visited.
- Maximum density induced subgraph

 - 1. Binary search on answer, suppose we're checking answer T 2. Construct a max flow model, let K be the sum of all weights 3. Connect source $s \to v$, $v \in G$ with capacity K 4. For each edge (u,v,w) in G, connect $u \to v$ and $v \to u$ with

 - capacity w5. For $v \in G$, connect it with sink $v \to t$ with capacity $K+2T-(\sum_{e \in E(v)} w(e))-2w(v)$
- Minimum weight edge cover 1. For each $v \in V$ create a copy v' , and connect $u' \to v'$ with weight w(u,v). 2. Connect v o v' with weight $2\mu(v)$, where $\mu(v)$ is the cost of

 - the cheapest edge incident to v. 3. Find the minimum weight perfect matching on $G^\prime.$
- Project selection problem

 1. If $p_v > 0$, create edge (s,v) with capacity p_v ; otherwise, create edge (v,t) with capacity $-p_v$.

 2. Create edge (u,v) with capacity w with w being the cost of choosing u without choosing v.

 3. The mincut is equivalent to the maximum profit of a subset of projects.
 - of projects.

• 0/1 quadratic programming
$$\sum_x c_x x + \sum_y c_y \bar{y} + \sum_{xy} c_{xy} x \bar{y} + \sum_{xyx'y'} c_{xyx'y'} (x\bar{y} + x'\bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge $\left(x,t\right)$ with capacity c_{x} and create edge $\left(s,y\right)$ with capacity c_y . Create edge (x,y) with capacity c_{xy} . Create edge (x,y) and edge (x',y') with capacity $c_{xyx'y'}$.

String

5.1 AC Automaton

```
struct AC {
   int ch[N][26], to[N][26], fail[N], sz;
   vector <int> g[N];
   int cnt[N];
   AC () {sz = 0, extend();}
   void extend() {fill(ch[sz], ch[sz] + 26, 0), sz++;}
   int nxt(int u, int v) {
     if (!ch[u][v]) ch[u][v] = sz, extend();
     return ch[u][v];
   int insert(string s) {
     int now = 0;
     for (char c : s) now = nxt(now, c - 'a');
     cnt[now]++;
     return now;
   void build_fail() {
     queue <int> q;
     for (int i = 0; i < 26; ++i) if (ch[0][i]) {
       to[0][i] = ch[0][i];
       q.push(ch[0][i]);
       g[0].push_back(ch[0][i]);
     while (!q.empty()) {
       int v = q.front(); q.pop();
for (int j = 0; j < 26; ++j) {</pre>
         to[v][j] = ch[v][j] ? ch[v][j] : to[fail[v]][j]
       for (int i = 0; i < 26; ++i) if (ch[v][i]) {
         int u = ch[v][i], k = fail[v];
         while (k \&\& !ch[k][i]) k = fail[k];
         if (ch[k][i]) k = ch[k][i];
         fail[u] = k;
         cnt[u] += cnt[k], g[k].push_back(u);
         q.push(u);
     }
   int match(string &s) {
     int now = 0, ans = 0;
     for (char c : s) {
       now = to[now][c - 'a'];
if (ch[now][c - 'a']) now = ch[now][c - 'a'];
       ans += cnt[now];
     return ans;
  }
};
```

5.2 KMP

```
vector <int> build_fail(string &s) {
  vector <int> f(s.length() + 1, 0);
  int k = 0;
  for (int i = 1; i < s.length(); ++i) {</pre>
    while (k && s[k] != s[i])
  k = f[k];
    if (s[k] == s[i])
      k++;
    f[i + 1] = k;
  }
  return f;
int match(string &s, string &t) {
  vector <int> f = build_fail(t);
  int k = 0, ans = 0;
  for (int i = 0; i < s.length(); ++i) {</pre>
    while (k \&\& s[i] != t[k])
      k = f[k];
    if (s[i] == t[k])
      k++;
    if (k == t.length())
      ans++, k = f[k];
  return ans;
```

5.3 Manacher

5.4 Minimum Rotate

```
string mcp(string s) {
  int n = s.size(), i = 0, j = 1;
  s += s;
  while (i < n && j < n) {
    int k = 0;
    while (k < n && s[i + k] == s[j + k]) k++;
    if (s[i + k] <= s[j + k]) j += k + 1;
    else i += k + 1;
    if (i == j) j++;
  }
  int ans = (i < n ? i : j);
  return s.substr(ans, n);
}</pre>
```

5.5 Palindrome Tree

```
struct PAM {
  int ch[N][26], cnt[N], fail[N], len[N], sz;
  string s;
  // 0 -> even root, 1 -> odd root
  PAM () {}
  void init(string s) {
    sz = 0, extend(), extend();
    len[0] = 0, fail[0] = 1, len[1] = -1;
    int lst = 1;
    for (int i = 0; i < s.length(); ++i) {</pre>
      while (s[i - len[lst] - 1] != s[i])
        lst = fail[lst];
      if (!ch[lst][s[i] - 'a']) {
        int idx = extend();
        len[idx] = len[lst] + 2;
        int now = fail[lst];
        while (s[i - len[now] - 1] != s[i])
          now = fail[now];
        fail[idx] = ch[now][s[i] - 'a'];
        ch[lst][s[i] - 'a'] = idx;
      lst = ch[lst][s[i] - 'a'], cnt[lst]++;
    }
  }
  void build_count() {
    for (int i = sz - 1; i > 1; --i)
      cnt[fail[i]] += cnt[i];
  int extend() {
    fill(ch[sz], ch[sz] + 26, 0), sz++;
    return sz - 1;
  }
};
```

5.6 Repetition

```
int to_left[N], to_right[N];
vector <array <int, 3>> rep; // l, r, len.
// substr( [l, r], len * 2) are tandem
void findRep(string &s, int l, int r) {
  if (r - l == 1) return;
  int m = l + r >> 1;
  findRep(s, l, m), findRep(s, m, r);
  string sl = s.substr(l, m - l);
  string sr = s.substr(m, r - m);
  vector <int> Z = buildZ(sr + "#" + sl);
```

```
for (int i = 1; i < m; ++i)
 to_{right[i]} = Z[r - m + 1 + i - 1];
reverse(all(sl));
Z = buildZ(sl);
for (int i = 1; i < m; ++i)</pre>
  to_left[i] = Z[m - i - 1];
reverse(all(sl));
for (int i = 1; i + 1 < m; ++i) {
  int k1 = to_left[i], k2 = to_right[i + 1];
  int len = m - i - 1;
  if (k1 < 1 \mid | k2 < 1 \mid | len < 2) continue;
  int t1 = max(1, len - k2), tr = min(len - 1, k1);
  if (tl <= tr) rep.pb({i + 1 - tr, i + 1 - tl,len});</pre>
Z = buildZ(sr);
for (int i = m; i < r; ++i) to_right[i] = Z[i - m];</pre>
reverse(all(sl)), reverse(all(sr));
Z = buildZ(sl + "#" + sr);
for (int i = m; i < r; ++i)
 to_left[i] = Z[m - l + 1 + r - i - 1];
reverse(all(s1)), reverse(all(sr));
for (int i = m; i + 1 < r; ++i) {
  int k1 = to_left[i], k2 = to_right[i + 1];
  int len = i - m + 1;
  if (k1 < 1 || k2 < 1 || len < 2) continue;</pre>
  int tl = max(len - k2, 1), tr = min(len - 1, k1);
  if (tl <= tr)</pre>
    rep.pb({i + 1 - len - tr, i + 1 - len - tl,len});
Z = buildZ(sr + "#" + sl);
for (int i = 1; i < m; ++i)</pre>
  if (Z[r - m + 1 + i - 1] >= m - i)
    rep.pb({i, i, m - i});
```

5.7 Suffix Array

```
int sa[N], tmp[2][N], c[N], rk[N], lcp[N];
void buildSA(string s) {
  int *x = tmp[0], *y = tmp[1], m = 256, n = s.length()
  for (int i = 0; i < m; ++i) c[i] = 0;
  for (int i = 0; i < n; ++i) c[x[i] = s[i]]++;
  for (int i = 1; i < m; ++i) c[i] += c[i - 1];
  for (int i = n - 1; \sim i; --i) sa[--c[x[i]]] = i;
  for (int k = 1; k < n; k <<= 1) {
    for (int i = 0; i < m; ++i) c[i] = 0;
    for (int i = 0; i < n; ++i) c[x[i]]++;
    for (int i = 1; i < m; ++i) c[i] += c[i - 1];</pre>
    int p = 0;
     for (int i = n - k; i < n; ++i) y[p++] = i;
    for (int i = 0; i < n; ++i) if (sa[i] >= k) y[p++]
         = sa[i] - k;
     for (int i = n - 1; \sim i; --i) sa[--c[x[y[i]]]] = y[i]
    y[sa[0]] = p = 0;
     for (int i = 1; i < n; ++i) {
      int a = sa[i], b = sa[i - 1];
       if (!(x[a] == x[b] \&\& a + k < n \&\& b + k < n \&\& x)
           [a + k] == x[b + k])) p++;
      y[sa[i]] = p;
    if (n == p + 1) break;
     swap(x, y), m = p + 1;
  }
}
void buildLCP(string s) {
  // lcp[i] = LCP(sa[i - 1], sa[i])
  // lcp(i, j) = min(lcp[rk[i] + 1], lcp[rk[i] + 2],
       ..., lcp[rk[j]])
  int n = s.length(), val = 0;
  for (int i = 0; i < n; ++i) rk[sa[i]] = i;</pre>
  for (int i = 0; i < n; ++i) {
    if (!rk[i]) lcp[rk[i]] = 0;
    else {
       if (val) val--;
       int p = sa[rk[i] - 1];
       while (val + i < n \&\& val + p < n \&\& s[val + i]
          == s[val + p]) val++;
       lcp[rk[i]] = val;
    }
  }
```

|}

```
5.8 SAIS (C++20)
auto sais(const auto &s) {
  const int n = SZ(s), z = ranges::max(s) + 1;
  if (n == 1) return vector{0};
  vector<int> c(z); for (int x : s) ++c[x];
  partial_sum(ALL(c), begin(c));
  vector<int> sa(n); auto I = views::iota(0, n);
  vector<bool> t(n, true);
for (int i = n - 2; i >= 0; --i)
    t[i] = (s[i] == s[i + 1] ? t[i + 1] : s[i] < s[i +
        1]);
  auto is_lms = views::filter([&t](int x) {
    return x && t[x] && !t[x - 1];
  });
  auto induce = [&] {
    for (auto x = c; int y : sa)
      if (y--) if (!t[y]) sa[x[s[y] - 1]++] = y;
    for (auto x = c; int y : sa | views::reverse)
      if (y--) if (t[y]) sa[--x[s[y]]] = y;
  vector<int> lms, q(n); lms.reserve(n);
for (auto x = c; int i : I | is_lms)
    q[i] = SZ(lms), lms.pb(sa[--x[s[i]]] = i);
  induce(); vector<int> ns(SZ(lms));
  for (int j = -1, nz = 0; int i : sa | is_lms) {
    if (j >= 0) {
      int len = min({n - i, n - j, lms[q[i] + 1] - i});
      ns[q[i]] = nz += lexicographical_compare(
          begin(s) + j, begin(s) + j + len,
          begin(s) + i, begin(s) + i + len);
    j = i;
  }
  fill(ALL(sa), 0); auto nsa = sais(ns);
  for (auto x = c; int y : nsa | views::reverse)
    y = lms[y], sa[--x[s[y]]] = y;
  return induce(), sa;
// sa[i]: sa[i]-th suffix is the i-th lexicographically
     smallest suffix.
// hi[i]: LCP of suffix sa[i] and suffix sa[i - 1].
struct Suffix {
  int n; vector<int> sa, hi, ra;
  Suffix(const auto &_s, int _n) : n(_n), hi(n), ra(n)
    vector<int> s(n + 1); // s[n] = 0;
    copy_n(_s, n, begin(s)); // _s shouldn't contain 0
    sa = sais(s); sa.erase(sa.begin());
    for (int i = 0; i < n; ++i) ra[sa[i]] = i;
    for (int i = 0, h = 0; i < n; ++i) {
      if (!ra[i]) { h = 0; continue; }
      for (int j = sa[ra[i] - 1]; max(i, j) + h < n &&
           s[i + h] == s[j + h];) ++h;
      hi[ra[i]] = h ? h-- : 0;
  }
};
```

Suffix Automaton

```
struct SAM {
 int ch[N][26], len[N], link[N], pos[N], cnt[N], sz;
  // node -> strings with the same endpos set
 // length in range [len(link) + 1, len]
 // node's endpos set -> pos in the subtree of node
  // link -> longest suffix with different endpos set
 // len -> longest suffix
 // pos -> end position
  // cnt
         -> size of endpos set
 SAM () \{len[0] = 0, link[0] = -1, pos[0] = 0, cnt[0]
      = 0, sz = 1;
  void build(string s) {
    int last = 0;
    for (int i = 0; i < s.length(); ++i) {</pre>
      char c = s[i];
      int cur = sz++;
     len[cur] = len[last] + 1, pos[cur] = i + 1;
      int p = last;
     while (~p && !ch[p][c - 'a'])
```

```
ch[p][c - 'a'] = cur, p = link[p];
       if (p == -1) link[cur] = 0;
         int q = ch[p][c - 'a'];
         if (len[p] + 1 == len[q]) {
           link[cur] = q;
         } else {
           int nxt = sz++;
           len[nxt] = len[p] + 1, link[nxt] = link[q];
           pos[nxt] = pos[q];
           for (int j = 0; j < 26; ++j)
             ch[nxt][j] = ch[q][j];
           while (~p && ch[p][c - 'a'] == q)
  ch[p][c - 'a'] = nxt, p = link[p];
           link[q] = link[cur] = nxt;
       cnt[cur]++;
       last = cur;
    }
     vector <int> p(sz);
     iota(all(p), 0);
     sort(all(p),
       [&](int i, int j) {return len[i] > len[j];});
     for (int i = 0; i < sz; ++i)</pre>
       cnt[link[p[i]]] += cnt[p[i]];
} sam;
```

5.10 Z Value

```
vector <int> build(string s) {
  int n = s.length();
  vector <int> Z(n);
  int 1 = 0, r = 0;
  for (int i = 0; i < n; ++i) {
   Z[i] = max(min(Z[i - 1], r - i), 0);</pre>
     while (i + Z[i] < s.size() \&\& s[Z[i]] == s[i + Z[i]]
         ]]) {
       l = i, r = i + Z[i], Z[i]++;
    }
  }
  return Z;
```

Math

6.1 Berlekamp Massey

```
const int MOD=998244353;
vector <1l> BerlekampMassey(vector <1l> a) {
 // find min |c| such that a_n = sum c_j * a_{n - j -
      1}, 0-based
  // O(N^2), if |c| = k, |a| >= 2k sure correct
  auto f = [&](vector<ll> v, ll c) {
   for (11 & x : v) x = x * c % MOD;
   return v;
 };
 vector <11> c, best;
 int pos = 0, n = a.size();
 for (int i = 0; i < n; ++i) {
   ll error = a[i];
   if (error == 0) continue;
   11 inve = inv(error, MOD);
   if (c.empty()) {
     c.resize(i + 1);
     pos = i;
     best.pb(inve);
   } else {
     vector <11> fix = f(best, error);
     fix.insert(fix.begin(), i - pos - 1, 0);
     if (fix.size() >= c.size()) {
       best = f(c, inve > 0 ? MOD-inve : 0);
       best.insert(best.begin(), inve);
       pos = i;
       c.resize(fix.size());
     for (int j = 0; j < fix.size(); ++j) c[j] = (c[j]</pre>
          + fix[j]) % MOD;
```

6.2 Characteristic Polynomial

```
#define rep(x, y, z) for (int x=y; x < z; x++)
using VI = vector<int>; using VVI = vector<VI>;
void Hessenberg(VVI &H, int N) {
  for (int i = 0; i < N - 2; ++i) {
    for (int j = i + 1; j < N; ++j) if (H[j][i]) {
      rep(k, i, N) swap(H[i+1][k], H[j][k]);
      rep(k, 0, N) swap(H[k][i+1], H[k][j]);
      break;
    if (!H[i + 1][i]) continue;
    for (int j = i + 2; j < N; ++j) {
      int co = mul(modinv(H[i + 1][i]), H[j][i]);
      rep(k, i, N) subeq(H[j][k], mul(H[i+1][k], co));
      rep(k, 0, N) addeq(H[k][i+1], mul(H[k][j], co));
    }
  }
VI CharacteristicPoly(VVI A) {
  int N = (int)A.size(); Hessenberg(A, N);
  VVI P(N + 1, VI(N + 1)); P[0][0] = 1;
  for (int i = 1; i <= N; ++i) {
    rep(j, 0, i+1) P[i][j] = j ? P[i-1][j-1] : 0;
    for (int j = i - 1, val = 1; j >= 0; --j) {
  int co = mul(val, A[j][i - 1]);
      rep(k, 0, j+1) subeq(P[i][k], mul(P[j][k], co));
      if (j) val = mul(val, A[j][j - 1]);
    }
  if (N & 1) for (int &x: P[N]) x = sub(0, x);
  return P[N]; // test: 2021 PTZ Korea K
}
```

6.3 Determinant

```
11 findDet(vector <vector <11>>> a) {
  int n = a.size();
  assert(n == a[0].size());
  ll det = 1;
  for (int i = 0; i < n; ++i) {
    if (!a[i][i]) {
      det = mod - det;
      bool is = false;
      for (int j = i + 1; j < n; ++j) if (a[j][i]) {</pre>
        swap(a[j], a[i]);
        is = true;
        break;
      if (!is) return 0;
    det = det * a[i][i] % mod;
    ll mul = fpow(a[i][i], mod - 2, mod);
    for (int j = 0; j < n; ++j)
      a[i][j] = a[i][j] * mul % mod;
    for (int j = 0; j < n; ++j) if (i ^ j) {
      int mul = a[j][i];
for (int k = 0; k < n; ++k) {</pre>
        a[j][k] -= a[i][k] * mul \% mod;
        if (a[j][k] < 0) a[j][k] += mod;
    }
  return det;
```

6.4 Discrete Logarithm

```
int DiscreteLog(int s, int x, int y, int m) {
   constexpr int kStep = 32000;
   unordered_map<int, int> p;
   int b = 1;
   for (int i = 0; i < kStep; ++i) {
      p[y] = i;
      y = 1LL * y * x % m;
      b = 1LL * b * x % m;
}</pre>
```

```
for (int i = 0; i < m + 10; i += kStep) {
    s = 1LL * s * b % m;
    if (p.find(s) != p.end()) return i + kStep - p[s];
}
return -1;
}
int DiscreteLog(int x, int y, int m) {
    if (m == 1) return 0;
    int s = 1;
    for (int i = 0; i < 100; ++i) {
        if (s == y) return i;
        s = 1LL * s * x % m;
    }
    if (s == y) return 100;
    int p = 100 + DiscreteLog(s, x, y, m);
    if (fpow(x, p, m) != y) return -1;
    return p;
}</pre>
```

```
//a * p.first + b * p.second = gcd(a, b)
pair<ll, ll> extgcd(ll a, ll b) {
  pair<11, 11> res;
  if (a < 0) {
    res = extgcd(-a, b);
    res.first *= -1;
    return res:
  if (b < 0) {
    res = extgcd(a, -b);
    res.second *= -1;
    return res:
  if (b == 0) return {1, 0};
  res = extgcd(b, a % b);
  return {res.second, res.first - res.second * (a / b)
      };
}
```

6.6 Floor Sum

6.7 Factorial Mod P^k

```
// O(p^k + log^2 n), pk = p^k
ll prod[MAXP];
ll fac_no_p(ll n, ll p, ll pk) {
  prod[0] = 1;
  for (int i = 1; i <= pk; ++i)
    if (i % p) prod[i] = prod[i - 1] * i % pk;
    else prod[i] = prod[i - 1];
ll rt = 1;
  for (; n; n /= p) {
    rt = rt * mpow(prod[pk], n / pk, pk) % pk;
    rt = rt * prod[n % pk] % pk;
  }
  return rt;
} // (n! without factor p) % p^k</pre>
```

6.8 Linear Function Mod Min

```
for (11 nn, nm, na, nb; a; n = nn, m = nm, a = na, b
      = nb) {
    if (a <= m - a) {
      nn = (a * (n - 1) + b) / m;
      if (!nn) break;
      nn += (b < a);
      nm = a, na = topos(-m, a);
      nb = b < a ? b : topos(b - m, a);
    } else {
      11 lst = b - (n - 1) * (m - a);
      if (lst >= 0) {b = lst; break;}
      nn = -(1st / m) + (1st % m < -a) + 1;
      nm = m - a, na = m % (m - a), nb = b % (m - a);
   }
 }
 return b;
//\min \text{ value of ax + b (mod m) for x \in [0, n - 1],}
    also return min x to get the value. O(log m)
//{value, x}
pair<ll, 11> min_rem_pos(11 n, 11 m, 11 a, 11 b) {
 a = topos(a, m), b = topos(b, m);
 ll mn = min_rem(n, m, a, b), g = __gcd(a, m);
  //ax = (mn - b) \pmod{m}
 11 x = (extgcd(a, m).first + m) * ((mn - b + m) / g)
      % (m / g);
 return {mn, x};
```

6.9 MillerRabin PollardRho

```
ll mul(ll x, ll y, ll p) {return (x * y - (ll)((long
double)x / p * y) * p + p) % p;}
vector<ll> chk = {2, 325, 9375, 28178, 450775, 9780504,
     1795265022};
ll Pow(ll a, ll b, ll n) {ll res = 1; for (; b; b >>=
    1, a = mul(a, a, n)) if (b & 1) res = mul(res, a, n
    ); return res;}
bool check(ll a, ll d, int s, ll n) {
  a = Pow(a, d, n);
  if (a <= 1) return 1;</pre>
  for (int i = 0; i < s; ++i, a = mul(a, a, n)) {</pre>
    if (a == 1) return 0;
    if (a == n - 1) return 1;
  }
  return 0;
bool IsPrime(ll n) {
  if (n < 2) return 0;</pre>
  if (n % 2 == 0) return n == 2;
  11 d = n - 1, s = 0;
  while (d % 2 == 0) d >>= 1, ++s;
  for (11 i : chk) if (!check(i, d, s, n)) return 0;
  return 1;
const vector<ll> small = {2, 3, 5, 7, 11, 13, 17, 19};
11 FindFactor(ll n) {
  if (IsPrime(n)) return 1;
  for (ll p : small) if (n % p == 0) return p;
  11 x, y = 2, d, t = 1;
  auto f = [&](11 a) {return (mul(a, a, n) + t) % n;};
  for (int 1 = 2; ; 1 <<= 1) {
    x = y;
    int m = min(1, 32);
    for (int i = 0; i < 1; i += m) {</pre>
      d = 1;
      for (int j = 0; j < m; ++j) {</pre>
        y = f(y), d = mul(d, abs(x - y), n);
      ll g = \_gcd(d, n);
      if (g == n) {
        1 = 1, y = 2, ++t;
        break;
      if (g != 1) return g;
    }
  }
map<ll. int> PollardRho(ll n) {
 map<ll, int> res;
  if (n == 1) return res;
  if (IsPrime(n)) return ++res[n], res;
```

```
11 d = FindFactor(n);
res = PollardRho(n / d);
auto res2 = PollardRho(d);
for (auto [x, y] : res2) res[x] += y;
return res;
}
```

6.10 Phi

```
const int N=1e6+1;
int phi[N];
void build_phi(int n) {
  for(int i=0;i<=n;i++) phi[i]=i;
  for(int i=2;i<=n;i++) if(phi[i]==i) {
     for(int j=i;j<=n;j+=i)
         phi[j]-=phi[j]/i;
  }
}</pre>
```

6.11 Quadratic Residue

```
int Jacobi(int a, int m) {
  int s = 1;
  for (; m > 1; ) {
    a \%= m;
    if (a == 0) return 0;
    const int r = __builtin_ctz(a);
if ((r & 1) && ((m + 2) & 4)) s = -s;
    if (a \& m \& 2) s = -s;
    swap(a, m);
  return s;
int QuadraticResidue(int a, int p) {
  if (p == 2) return a & 1;
  const int jc = Jacobi(a, p);
  if (jc == 0) return 0;
  if (jc == -1) return -1;
  int b, d;
  for (; ; ) {
    b = rand() % p;
d = (1LL * b * b + p - a) % p;
    if (Jacobi(d, p) == -1) break;
  int f0 = b, f1 = 1, g0 = 1, g1 = 0, tmp;
  for (int e = (1LL + p) >> 1; e; e >>= 1) {
    if (e & 1) {
      tmp = (1LL * g0 * f0 + 1LL * d * (1LL * g1 * f1 %
            p)) % p;
      g1 = (1LL * g0 * f1 + 1LL * g1 * f0) % p;
    tmp = (1LL * f0 * f0 + 1LL * d * (1LL * f1 * f1 % p)
        )) % p;
    f1 = (2LL * f0 * f1) % p;
    f0 = tmp;
  }
  return g0;
```

6.12 Sieve (With Mu)

6.13 Simplex

typedef complex<double> cp;

```
struct FFT
// by LittleCube8152. using N + 2M variables
                                                              {
const int mxM = 25;
                                                                // n has to be same as a.size()
const int mxN = 25 + 2 * mxM;
                                                                int n,rev[N];
struct simplex {
                                                                cp omega[N],iomega[N];
  const double inf = 1 / .0, eps = 1e-9;
int n, m, k, var[mxN], inv[mxN], art[mxN];
                                                                void init(int _n) {
                                                                  n=_n;
  double A[mxM][mxN], B[mxM], x[mxN];
                                                                  for(int i=0;i<n;i++) {</pre>
  void init(int _n) { n = _n, m = 0; }
                                                                     omega[i]=cp(cos(2*pi/n*i),sin(2*pi/n*i));
  void equation(vector<double> a, double b) {
                                                                     iomega[i]=conj(omega[i]);
    for (int i = 0; i < n; i++) A[m][i] = a[i];</pre>
    B[m] = b, var[m] = n + m, ++m;
                                                                  int k=log2(n);
                                                                  for(int i=0;i<n;i++) {</pre>
  void pivot(int r, int c, double bx) {
                                                                    rev[i]=0;
    for (int i = 0; i <= m + 1; i++)
                                                                     for(int j=0;j<k;j++) if(i&(1<<j))</pre>
      if (i != r && abs(A[i][c]) > eps) {
                                                                       rev[i]|=(1<<(k-j-1));
        x[var[i]] -= bx * A[i][c] / A[i][var[i]];
        double f = A[i][c] / A[r][c];
        for (int j = 0; j <= n + m + k; j++)
A[i][j] -= A[r][j] * f;
                                                                void tran(vector<cp> &a,cp* xomega)
        B[i] -= B[r] * f;
                                                                  for(int i=0;i<n;i++) if(i<rev[i])</pre>
      }
                                                                    swap(a[i],a[rev[i]]);
                                                                   for(int len=2;len<=n;len<<=1) {</pre>
  double phase(int p) {
                                                                    int mid=len>>1,r=n/len;
    while (true) {
                                                                     for(int j=0;j<n;j+=len) {</pre>
      int in = min_element(
                                                                       for(int i=0;i<mid;i++) {</pre>
                  A[m + p], A[m + p] + n + m + k + 1) -
                                                                         cp t=xomega[r*i]*a[j+mid+i];
        A[m + p];
                                                                         a[j+mid+i]=a[j+i]-t;
      if (A[m + p][in] >= -eps) break;
                                                                         a[j+i]+=t;
      double bx = inf;
      int piv = -1;
                                                                    }
      for (int i = 0; i < m; i++)</pre>
                                                                  }
        if (A[i][in] > eps && B[i] / A[i][in] \leftarrow bx)
                                                                }
          piv = i, bx = B[i] / A[i][in];
                                                                void fft(vector<cp> &a) {tran(a,omega);}
      if (piv == -1) return inf;
                                                                void ifft(vector<cp> &a) {
      int out = var[piv];
                                                                     tran(a,iomega);
      pivot(piv, in, bx);
                                                                     for(int i=0;i<n;i++) a[i]/=n;</pre>
      x[out] = 0, x[in] = bx, var[piv] = in;
                                                                }
                                                              };
    return x[n + m];
  }
                                                              6.15 NTT
  double solve(vector<double> c) {
    auto invert = [&](int r) {
                                                              //needs fpow
      for (int j = 0; j <= n + m; j++) A[r][j] *= -1;
                                                              //needs inv
      B[r] *= -1;
    };
                                                              //(2^16)+1, 65537, 3
    k = 1:
                                                              //7*17*(2^23)+1, 998244353, 3
    for (int i = 0; i < n; i++) A[m][i] = -c[i];</pre>
                                                              //1255*(2^20)+1, 1315962881, 3
    fill(A[m + 1], A[m + 1] + mxN, 0.0);
                                                              //51*(2^25)+1, 1711276033, 29
    for (int i = 0; i <= m + 1; i++)
                                                              template<int MAXN, 11 P, 11 RT> //MAXN must be 2^k
      fill(A[i] + n, A[i] + n + m + 2, 0.0),
                                                              struct NTT {
        var[i] = n + i, A[i][n + i] = 1;
                                                                11 w[MAXN];
                                                                11 mpow(ll a, ll n);
    for (int i = 0; i < m; i++) {
                                                                11 minv(ll a) { return mpow(a, P - 2); }
      if (B[i] < 0) {
                                                                NTT() {
                                                                  11 dw = mpow(RT, (P - 1) / MAXN);
        for (int j = 0; j <= n + m; j++)</pre>
                                                                  w[0] = 1;
          A[m + 1][j] += A[i][j];
                                                                  for (int i = 1; i < MAXN; ++i) w[i] = w[i - 1] * dw
        invert(i);
                                                                        % P;
        var[i] = n + m + k, A[i][var[i]] = 1,
        art[var[i]] = n + i;
                                                                void bitrev(ll *a, int n) {
                                                                  int i = 0;
      x[var[i]] = B[i];
                                                                   for (int j = 1; j < n - 1; ++j) {
                                                                    for (int k = n >> 1; (i ^= k) < k; k >>= 1);
                                                                    if (j < i) swap(a[i], a[j]);</pre>
    phase(1);
                                                                  }
    if (*max_element(
          x + (n + m + 2), x + (n + m + k + 1)) > eps)
                                                                void operator()(ll *a, int n, bool inv = false) { //0
      return .0 / .0;
                                                                      \langle = a[i] \langle P
    for (int i = 0; i <= m; i++)
                                                                  bitrev(a, n);
      if (var[i] > n + m)
                                                                   for (int L = 2; L <= n; L <<= 1) {
        var[i] = art[var[i]], invert(i);
                                                                    int dx = MAXN / L, dl = L >> 1;
    k = 0;
                                                                     for (int i = 0; i < n; i += L) {
    return phase(0);
                                                                       for (int j = i, x = 0; j < i + dl; ++j, x += dx
                                                                           ) {
} lp;
                                                                         11 \text{ tmp} = a[j + d1] * w[x] % P;
                                                                         if ((a[j + d1] = a[j] - tmp) < 0) a[j + d1]
6.14 FFT
                                                                         if ((a[j] += tmp) >= P) a[j] -= P;
const double pi=acos(-1);
                                                                      }
```

const int N=(1<<17);</pre>

}

Poly X = Poly(*this, (n() + 1) / 2).Sqrt().isz(n())

```
return X.iadd(Mul(X.Inv()).isz(n())).imul(P / 2 +
    if (inv) {
                                                                          1);
       reverse(a + 1, a + n);
                                                                   }
       11 invn = minv(n);
                                                                   pair<Poly, Poly> DivMod(const Poly &rhs) const { // (
       for (int i = 0; i < n; ++i) a[i] = a[i] * invn %
                                                                       rhs.)back() != 0
                                                                     if (n() < rhs.n()) return {{0}, *this};</pre>
                                                                     const int m = n() - rhs.n() + 1;
  }
                                                                     Poly X(rhs); X.irev().isz(m);
                                                                     Poly Y(*this); Y.irev().isz(m);
};
                                                                     Poly Q = Y.Mul(X.Inv()).isz(m).irev();
                                                                     X = rhs.Mul(Q), Y = *this;
fi(0, n()) if ((Y[i] -= X[i]) < 0) Y[i] += P;</pre>
6.16 FWT
void fwt(vector <int> &a) {
                                                                     return {Q, Y.isz(max(1, rhs.n() - 1))};
  // and : a[j] += x;
                                                                   Poly Dx() const {
          : a[j] -= x;
         : a[j ^ (1 << i)] += y;
                                                                     Poly ret(n() - 1);
  // : a[j ^ (1 << i)] -= y;

// xor : a[j] = x - y, a[j ^ (1 << i)] = x + y;

// : a[j] = (x - y) / 2, a[j ^ (1 << i)] = (x + y)
                                                                     fi(0, ret.n()) ret[i] = (i + 1) * (*this)[i + 1] %
                                                                     return ret.isz(max(1, ret.n()));
       ) / 2;
  int n = __lg(a.size());
                                                                   Poly Sx() const {
  for (int i = 0; i < n; ++i) {
                                                                     Poly ret(n() + 1);
    for (int j = 0; j < 1 << n; ++j) if (j >> i & 1) {
  int x = a[j ^ (1 << i)], y = a[j];</pre>
                                                                     fi(0, n()) ret[i + 1] = ntt.minv(i + 1) * (*this)[i
                                                                         ] % P;
       // do something
                                                                     return ret:
  }
                                                                   Poly _tmul(int nn, const Poly &rhs) const {
                                                                     Poly Y = Mul(rhs).isz(n() + nn - 1);
                                                                     return Poly(Y.data() + n() - 1, Y.data() + Y.n());
6.17 Polynomial
                                                                   vector<ll> _eval(const vector<ll> &x, const vector<</pre>
NTT<131072 * 2, 998244353, 3> ntt;
#define fi(s, n) for (int i = (int)(s); i < (int)(n);
                                                                       Poly> &up) const {
                                                                     const int m = (int)x.size();
    ++i)
                                                                     if (!m) return {};
template<int MAXN, 11 P, 11 RT> // MAXN = 2^k
                                                                     vector<Poly> down(m * 2);
                                                                     // down[1] = DivMod(up[1]).second;
// fi(2, m * 2) down[i] = down[i / 2].DivMod(up[i])
struct Poly : vector<ll> { // coefficients in [0, P)
  using vector<11>::vector;
  int n() const { return (int)size(); } // n() >= 1
                                                                          .second;
                                                                     down[1] = Poly(up[1]).irev().isz(n()).Inv().irev().
  Poly(const Poly &p, int m) : vector<ll>(m) {
    copy_n(p.data(), min(p.n(), m), data());
                                                                          _tmul(m, *this);
                                                                     fi(2, m * 2) down[i] = up[i ^ 1]._tmul(up[i].n() -
  Poly& irev() { return reverse(data(), data() + n()),
                                                                          1, down[i / 2]);
       *this; }
                                                                     vector<11> y(m);
                                                                     fi(0, m) y[i] = down[m + i][0];
  Poly& isz(int m) { return resize(m), *this; }
  Poly& iadd(const Poly &rhs) { // n() == rhs.n()
                                                                     return y;
    fi(0, n()) if (((*this)[i] += rhs[i]) >= P) (*this)
[i] -= P;
                                                                   static vector<Poly> _tree1(const vector<ll> &x) {
    return *this;
                                                                     const int m = (int)x.size();
                                                                     vector<Poly> up(m * 2);
  Poly& imul(l1 k) {
                                                                     fi(0, m) up[m + i] = \{(x[i] ? P - x[i] : 0), 1\};
                                                                     for (int i = m - 1; i > 0; --i) up[i] = up[i * 2].
    fi(0, n()) (*this)[i] = (*this)[i] * k % P;
     return *this;
                                                                          Mul(up[i * 2 + 1]);
                                                                     return up;
  Poly Mul(const Poly &rhs) const {
                                                                   vector<ll> Eval(const vector<ll> &x) const { // 1e5,
    int m = 1;
    while (m < n() + rhs.n() - 1) m <<= 1;</pre>
                                                                     auto up = _tree1(x); return _eval(x, up);
    Poly X(*this, m), Y(rhs, m);
    ntt(X.data(), m), ntt(Y.data(), m);
                                                                   static Poly Interpolate(const vector<11> &x, const
    fi(0, m) X[i] = X[i] * Y[i] % P;
                                                                       vector<ll> &y) { // 1e5, 1.4s
    ntt(X.data(), m, true);
     return X.isz(n() + rhs.n() - 1);
                                                                     const int m = (int)x.size();
                                                                     vector<Poly> up = _tree1(x), down(m * 2);
vector<11> z = up[1].Dx()._eval(x, up);
  Poly Inv() const { // (*this)[0] != 0, 1e5/95ms
                                                                     fi(0, m) z[i] = y[i] * ntt.minv(z[i]) % P;
    if (n() == 1) return {ntt.minv((*this)[0])};
                                                                     fi(0, m) down[m + i] = {z[i]};
    int m = 1;
                                                                     for (int i = m - 1; i > 0; --i) down[i] = down[i *
     while (m < n() * 2) m <<= 1;
    Poly Xi = Poly(*this, (n() + 1) / 2).Inv().isz(m);
                                                                          2].Mul(up[i * 2 + 1]).iadd(down[i * 2 + 1].Mul(
                                                                          up[i * 2]));
    Poly Y(*this, m);
    ntt(Xi.data(), m), ntt(Y.data(), m);
                                                                     return down[1];
    fi(0, m) {
                                                                   Poly Ln() const { // (*this)[0] == 1, 1e5/170ms
  return Dx().Mul(Inv()).Sx().isz(n());
       Xi[i] *= (2 - Xi[i] * Y[i]) % P;
       if ((Xi[i] %= P) < 0) Xi[i] += P;</pre>
                                                                   Poly Exp() const { // (*this)[0] == 0, 1e5/360ms
    ntt(Xi.data(), m, true);
                                                                     if (n() == 1) return {1};
    return Xi.isz(n());
                                                                     Poly X = Poly(*this, (n() + 1) / 2).Exp().isz(n());
Poly Y = X.Ln(); Y[0] = P - 1;
  Poly Sqrt() const { // Jacobi((*this)[0], P) = 1, 1e5
                                                                     fi(0, n()) if ((Y[i] = (*this)[i] - Y[i]) < 0) Y[i]
       /235ms
     if (n() == 1) return {QuadraticResidue((*this)[0],
                                                                           += P:
         P)};
                                                                     return X.Mul(Y).isz(n());
```

// M := P(P - 1). If k >= M, k := k % M + M.

```
Poly Pow(ll k) const {
    int nz = 0;
    while (nz < n() && !(*this)[nz]) ++nz;
    if (nz * min(k, (11)n()) >= n()) return Poly(n());
    if (!k) return Poly(Poly {1}, n());
    Poly X(data() + nz, data() + nz + n() - nz * k);
    const ll c = ntt.mpow(X[0], k % (P - 1));
    return X.Ln().imul(k % P).Exp().imul(c).irev().isz(
        n()).irev();
  static ll LinearRecursion(const vector<ll> &a, const
      vector<ll> &coef, ll n) { // a_n = \sum c_j a_(n-
    const int k = (int)a.size();
    assert((int)coef.size() == k + 1);
    Poly C(k + 1), W(Poly \{1\}, k), M = \{0, 1\};
    fi(1, k + 1) C[k - i] = coef[i] ? P - coef[i] : 0;
    C[k] = 1;
    while (n) {
      if (n % 2) W = W.Mul(M).DivMod(C).second;
      n /= 2, M = M.Mul(M).DivMod(C).second;
    11 \text{ ret = 0};
    fi(0, k) ret = (ret + W[i] * a[i]) % P;
    return ret:
  vector<ll> chirp_z(ll c,int m){ // P(c^i) for i=0..m
     -1
    Poly B=(*this);
    int sz=max(n(),m);
    vector<ll> res(m);
    Poly C(sz * 2), iC(sz);
    11 ic = ntt.minv(c);
    fi(0, sz * 2) C[i] = ntt.mpow(c, 1LL * i * (i - 1)
        / 2 % (P - 1));
    fi(0, sz) iC[i] = ntt.mpow(ic, 1LL * i * (i - 1) /
        2 % (P - 1));
    fi(0, n()) B[i] = B[i] * iC[i] % P;
    B=B.irev().Mul(C);
    fi(0, m) res[i] = B[n()-1+i] * iC[i] % P;
    return res;
  Poly shift_c(ll c) \{ // P(x+c) \}
    11 \text{ tmp} = 1;
    Poly A(n()), B(n() + 1);
    fi(0, n()) {
    A[i] = (*this)[i] * fac[i] % P; // fac[i]=i!
      B[i] = tmp * in[i] % P; // in[i]=inv(i!)
      tmp = tmp * c % P;
    B.irev();
   Poly C = A.Mul(B);
    A.isz(n());
    fi(0, n()) A[i] = C[n() + i] * in[i] % P;
    return A;
 }
};
#undef fi
using Poly_t = Poly<131072 * 2, 998244353, 3>;
//template<> decltype(Poly_t::ntt) Poly_t::ntt = {};
```

6.18 Generating Functions

• Ordinary Generating Function $A(x) = \sum_{i \geq 0} a_i x^i$

```
 \begin{array}{l} -A(rx)\Rightarrow r^na_n\\ -A(x)+B(x)\Rightarrow a_n+b_n\\ -A(x)B(x)\Rightarrow \sum_{i=0}^na_ib_{n-i}\\ -A(x)^k\Rightarrow \sum_{i_1+i_2+\dots+i_k=n}a_{i_1}a_{i_2}\dots a_{i_k}\\ -xA(x)'\Rightarrow na_n\\ -\frac{A(x)}{1-x}\Rightarrow \sum_{i=0}^na_i \end{array}
```

• Exponential Generating Function $A(x) = \sum_{i>0} rac{a_i}{i!} x_i$

```
 - A(x) + B(x) \Rightarrow a_n + b_n 
 - A^{(k)}(x) \Rightarrow a_{n+k} 
 - A(x)B(x) \Rightarrow \sum_{i=0}^{k} \binom{n}{i} a_i b_{n-i} 
 - A(x)^k \Rightarrow \sum_{i_1+i_2+\dots+i_k=n}^{n} \binom{n}{i_1,i_2,\dots,i_k} a_{i_1} a_{i_2} \dots a_{i_k} 
 - xA(x) \Rightarrow na_n
```

• Special Generating Function

$$\begin{array}{ll} - & (1+x)^n = \sum_{i \geq 0} \binom{n}{i} x^i \\ - & \frac{1}{(1-x)^n} = \sum_{i \geq 0} \binom{n-1}{i} x^i \end{array}$$

6.19 Linear Programming Construction

Standard form: maximize $\mathbf{c}^T\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq 0$. Dual LP: minimize $\mathbf{b}^T\mathbf{y}$ subject to $A^T\mathbf{y} \geq \mathbf{c}$ and $\mathbf{y} \geq \mathbf{0}$. $\bar{\mathbf{x}}$ and $\bar{\mathbf{y}}$ are optimal if and only if for all $i \in [1,n]$, either $\bar{x}_i = 0$ or $\sum_{j=1}^m A_{ji}\bar{y}_j = c_i$ holds and for all $i \in [1,m]$ either $\bar{y}_i = 0$ or $\sum_{j=1}^n A_{ij}\bar{x}_j = b_j$ holds.

- 1. In case of minimization, let $c_i^\prime = -c_i$
- 2. $\sum_{1 \le i \le n} A_{ji} x_i \ge b_j \to \sum_{1 \le i \le n} -A_{ji} x_i \le -b_j$
- 3. $\sum_{1 \leq i \leq n} A_{ji} x_i = b_j$
 - $\sum_{1 \le i \le n} A_{ji} x_i \le b_j$ $\sum_{1 \le i \le n} A_{ji} x_i \ge b_j$
- 4. If x_i has no lower bound, replace x_i with $x_i x_i'$

6.20 Estimation

- The number of divisors of n is at most around 100 for n<5e4, 500 for n<1e7, 2000 for n<1e10, 200000 for n<1e19.
- The number of ways of writing n as a sum of positive integers, disregarding the order of the summands. 1,1,2,3,5,7,11,15,22,30 for $n=0\sim9$, 627 for n=20, $\sim2e5$ for n=50, $\sim2e8$ for n=100.
- Total number of partitions of n distinct elements: B(n)=1,1,2,5,15,52,203,877,4140,21147,115975,678570,4213597, 27644437,190899322,

6.21 Theorem

• Kirchhoff's Theorem

Denote L be a $n\times n$ matrix as the Laplacian matrix of graph G, where $L_{ii}=d(i)$, $L_{ij}=-c$ where c is the number of edge (i,j) in G.

- The number of undirected spanning in G is $|\det(ilde{L}_{11})|$.
- The number of directed spanning tree rooted at r in G is $|{\rm det}(\tilde{L}_{rr})|.$
- Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniformly at random) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

- Cayley's Formula
 - Given a degree sequence d_1, d_2, \dots, d_n for each labeled vertices, there are

$$\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$$

spanning trees.

- Let $T_{n,k}$ be the number of labeled forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.
- Erdős-Gallai Theorem

A sequence of non-negative integers $d_1 \geq d_2 \geq \ldots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1+d_2+\ldots+d_n$ is even and

$$\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min(d_i,k)$$

holds for all $1 \leq k \leq n$.

• Burnside's Lemma

Let X be a set and G be a group that acts on X . For $g\in G$, denote by X^g the elements fixed by g :

$$X^g = \{ x \in X \mid gx \in X \}$$

Then

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

• Gale-Ryser theorem

A pair of sequences of nonnegative integers $a_1\geq\cdots\geq a_n$ and b_1,\ldots,b_n is bigraphic if and only if $\sum_{i=1}^n a_i=\sum_{i=1}^n b_i$ and $\sum_{i=1}^k a_i\leq a_i$

$$\sum_{i=1} \min(b_i, k)$$
 holds for every $1 \leq k \leq n$.

```
• Fulkerson-Chen-Anstee theorem
```

```
A sequence (a_1,b_1),\ldots,(a_n,b_n) of nonnegative integer pairs with a_1\geq\cdots\geq a_n is digraphic if and only if \sum_{i=1}^n a_i=\sum_{i=1}^n b_i and \sum_{i=1}^k a_i\leq\sum_{i=1}^k \min(b_i,k-1)+\sum_{i=k+1}^n \min(b_i,k) holds for every 1\leq k\leq n.
```

• Möbius inversion formula

```
- f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})

- f(n) = \sum_{n|d} g(d) \Leftrightarrow g(n) = \sum_{n|d} \mu(\frac{d}{n}) f(d)
```

• Spherical cap

```
- A portion of a sphere cut off by a plane. 
- r: sphere radius, a: radius of the base of the cap, h: height of the cap, \theta: \arcsin(a/r). 
- Volume = \pi h^2(3r-h)/3 = \pi h(3a^2+h^2)/6 = \pi r^3(2+\cos\theta)(1-\cos\theta)^2/3. 
- Area = 2\pi r h = \pi(a^2+h^2) = 2\pi r^2(1-\cos\theta).
```

• Chinese Remainder Theorem

```
\begin{array}{lll} \text{-} & x \equiv a_i \pmod{m_i} \\ \\ \text{-} & M = \prod m_i, M_i = M/m_i \\ \\ \text{-} & t_i M_i \equiv 1 \pmod{m_i} \\ \\ \text{-} & x = \sum a_i t_i M_i \pmod{M} \end{array}
```

7 Geometry

7.1 Basic

```
#define X first
#define Y second
typedef pair<double, double> Pt;
const double eps=1e-9;
Pt operator+(Pt a,Pt b){return Pt(a.X+b.X,a.Y+b.Y);}
Pt operator-(Pt a,Pt b){return Pt(a.X-b.X,a.Y-b.Y);}
Pt operator*(Pt a,double b){return Pt(a.X*b,a.Y*b);}
Pt operator/(Pt a,double b){return Pt(a.X/b,a.Y/b);}
double operator*(Pt a,Pt b){return a.X*b.X+a.Y*b.Y;}
double operator^(Pt a,Pt b){return a.X*b.Y-a.Y*b.X;}
double abs2(Pt a){return a*a;}
double abs(Pt a){return sqrt(a*a);}
int sign(double a){return fabs(a)<eps?0:a>0?1:-1;}
int ori(Pt a,Pt b,Pt c){return sign((b-a)^(c-a));}
bool collinear(Pt a,Pt b,Pt c){return sign((a-c)^(b-c))
    ==0;}
bool btw(Pt a,Pt b,Pt c){return !collinear(a,b,c)?0:
    sign((a-c)*(b-c)) <= 0; \}//is C between AB
Pt proj(Pt a,Pt b,Pt c)\{return (b-a)*((c-a)*(b-a)/abs2(
    b-a));}//ac projection on ab
double dist(Pt a,Pt b,Pt c){return abs((c-a)^(b-a))/abs
    (b-a);}//distance from C to AB
Pt perp(Pt p1){return Pt(-p1.Y, p1.X);}
struct Line{Pt a,b;};
struct Cir{Pt o;double r;};
struct Arc{Pt o,a,b;};//cross(oa,ob)>=0
```

7.2 Convex Hull

7.3 Dynamic Convex Hull

```
struct DynamicConvexHull {
  struct Up_cmp {
    bool operator()(const Pt a,const Pt b) {
      if(a.X==b.X) return a.Y<b.Y;</pre>
       return a.X<b.X;</pre>
  };
  struct Down_cmp {
    bool operator()(const Pt a,const Pt b) {
      if (a.X==b.X) return a.Y>b.Y;
       return a.X>b.X;
  };
  template <typename T>
  struct Hull {
    set<Pt,T> hull;
    bool chk(Pt i,Pt j,Pt k){return ((k-i)^{(j-i)})>0;}
     void insert(Pt x) {
      if(inside(x)) return;
      hull.insert(x);
       auto it=hull.lower_bound(x);
      if(next(it)!=hull.end()) {
         for(auto it2=next(it);next(it2)!=hull.end();++
             it2) {
           if(chk(x,*it2,*next(it2))) break;
           hull.erase(it2);
           it2=hull.lower_bound(x);
      it=hull.lower_bound(x);
       if(it!=hull.begin()) {
         for(auto it2=prev(it);it2!=hull.begin();--it2)
           if(chk(*prev(it2),*it2,x)) break;
           hull.erase(it2);
           it2=hull.lower_bound(x);
           if(it2==hull.begin()) break;
      }
    bool inside(Pt x) {
      if(hull.lower_bound(x)!=hull.end()&&*hull.
          lower_bound(x) == x)
         return true;
       auto it=hull.lower_bound(x);
       bool ans=false;
       if(it!=hull.begin()&&it!=hull.end()) {
         ans=!chk(*prev(it),x,*it);
      }
      return ans;
    }
  Hull<Up_cmp> up;
  Hull<Down cmp> down;
  void insert(Pt x){up.insert(x),down.insert(x);}
  bool inside(Pt x){return up.inside(x)&down.inside(x)
       ;}
};
```

7.4 Point In Convex Hull

7.5 Point In Circle

//is p4 in circumcircle of p1p2p3

7.6 Half Plane Intersection

```
pll area_pair(Line a, Line b)
{ return pll(cross(a.Y - a.X, b.X - a.X), cross(a.Y - a
     .X, b.Y - a.X)); }
bool isin(Line 10, Line 11, Line 12) {
  // Check inter(11, 12) strictly in 10
  auto [a02X, a02Y] = area_pair(10, 12);
  auto [a12X, a12Y] = area_pair(l1, l2);
  if (a12X - a12Y < 0) a12X *= -1, a12Y *= -1;
  return (__int128) a02Y * a12X - (__int128) a02X *
      a12Y > 0;
/* Having solution, check size > 2 */
/* --^-- Line.X --^-- Line.Y --^-- */
vector<Line> halfPlaneInter(vector<Line> arr) {
  sort(ALL(arr), [&](Line a, Line b) -> int {
    if (polarOri(a.Y - a.X, b.Y - b.X) != 0)
      return cmpPolar(a.Y - a.X, b.Y - b.X);
    return ori(a.X, a.Y, b.Y) < 0;</pre>
  deque<Line> dq(1, arr[0]);
  auto pop_back = [&](int t, Line p) {
    while (SZ(dq) >= t \&\& !isin(p, dq[SZ(dq) - 2], dq.
        back()))
      dq.pop_back();
  };
  auto pop_front = [&](int t, Line p) {
    while (SZ(dq) >= t \&\& !isin(p, dq[0], dq[1]))
      dq.pop_front();
  for (auto p : arr)
    if (polarOri(dq.back().Y - dq.back().X, p.Y - p.X)
         != 0)
      pop_back(2, p), pop_front(2, p), dq.pb(p);
  pop_back(3, dq[0]), pop_front(3, dq.back());
  return vector<Line>(ALL(dq));
}
```

7.7 Minkowski Sum

```
vector <Pt> Minkowski(vector <Pt> a, vector <Pt> b) {
  a = ConvexHull(a), b = ConvexHull(b);
  int n = a.size(), m = b.size();
  vector \langle Pt \rangle c = \{a[0] + b[0]\}, s1, s2;
  for(int i = 0; i < n; ++i)</pre>
    s1.pb(a[(i + 1) % n] - a[i]);
  for(int i = 0; i < m; i++)</pre>
    s2.pb(b[(i + 1) % m] - b[i]);
  for(int p1 = 0, p2 = 0; p1 < n || p2 < m;)
    if (p2 == m || (p1 < n && sign(s1[p1] ^ s2[p2]) >=
         0))
       c.pb(c.back() + s1[p1++]);
    else
       c.pb(c.back() + s2[p2++]);
  return ConvexHull(c);
| }
```

7.8 Polar Angle

```
| bool upper(Pt p) {
    return p.Y > 0 || (p.Y == 0 && p.X >= 0);
}
```

```
int polarOri(Pt p1, Pt p2) {    // p1 (-1 <)(0 =)(1 >) p2
    if(upper(p1) != upper(p2))    return upper(p1) ? -1 : 1;
    return -sign(p1 ^ p2);
}
bool cmpPolar(Pt p1, Pt p2) {    // 0...2pi CCW
    return polarOri(p1, p2) < 0;
}</pre>
```

7.9 Rotating Sweep Line

```
// pts: 1-indexed Pt array
int ord[MAXN + 10];
int rk[MAXN + 10];
void rotSwpline(int n, Pt* pts) {
  using E = pair<Pt, pii>;
  vector<E> ev; // dir, i, j: (i, j)=>(j, i)
rep1(i, n) rep1(j, i - 1) {
  Pt dir = pts[j] - pts[i];
    upper(dir) ? ev.pb({dir, {i, j}})
                : ev.pb({Pt(0, 0) - dir, {j, i}});
  sort(ev.begin(), ev.end(), [\&](E e1, E e2) {
    int pol = polarOri(e1.F, e2.F);
    return pol < 0 || (pol == 0 &&
        pll(e1.F * pts[e1.S.F], e1.F * pts[e1.S.S])
      < pll(e1.F * pts[e2.S.F], e1.F * pts[e2.S.S]));</pre>
  });
  iota(ord + 1, ord + n + 1, 1);
  sort(ord + 1, ord + n + 1, [&](int i, int j) {
    return cmpYx(pts[i], pts[j]);
  });
  rep1(i, n) rk[ord[i]] = i;
  // ...init with initial rank...
  int ne = (int)ev.size();
  rep(ie, ne) {
    int i, j; tie(i, j) = ev[ie].S;
    // ...do order update...
    rk[i]++; rk[j]--;
    ord[rk[i]] = i;
    ord[rk[i] - 1] = j;
    if(polarOri(ev[ie + 1].F, ev[ie].F) != 0
      || ie == ne - 1) ; // ...do answer update...
```

7.10 Segment Intersect

7.11 Circle Intersect With Any

```
double A = sqrt((c1.r + c2.r + d) * (c1.r - c2.r + d)
   * (c1.r + c2.r - d) * (-c1.r + c2.r + d));
Pt v = Pt(c1.o.y - c2.o.y, -c1.o.x + c2.o.x) * A / (2
         * d2);
   if (sign(v.X) == 0 \&\& sign(v.Y) == 0) return \{u\};
   return \{u + v, u - v\};
double _area(Pt pa, Pt pb, double r){//for poly-cir
  if (abs(pa) < abs(pb)) swap(pa, pb);</pre>
   if (abs(pb) < eps) return 0;</pre>
   double S, h, theta;
   double a = abs(pb), b = abs(pa), c = abs(pb - pa);
   double cosB = pb * (pb - pa) / a / c, B = acos(cosB);
   double cosC = (pa * pb) / a / b, C = acos(cosC);
   if (a > r) {
     S = (C / 2) * r * r;
     h = a * b * sin(C) / c;
     if (h < r && B < pi / 2) S -= (acos(h / r) * r * r
          - h * sqrt(r * r - h * h));
   } else if (b > r) {
     theta = pi - B - asin(sin(B) / r * a);
S = .5 * a * r * sin(theta) + (C - theta) / 2 * r *
   } else S = .5 * sin(C) * a * b;
  return S;
double area_poly_circle(vector<Pt> poly, Pt 0, double r
     ) {//poly-cir
   double S = 0; int n = poly.size();
   for (int i = 0; i < n; ++i)
S += _area(poly[i] - 0, poly[(i + 1) % n] - 0, r) *</pre>
           ori(0, poly[i], poly[(i + 1) % n]);
   return fabs(S);
| }
```

7.12 Tangents

```
vector<Line> tangent(Cir c, Pt p) {
  vector<Line> z;
  double d = abs(p - c.o);
  if (sign(d - c.r) == 0) {
    Pt i = rot(p - c.o, pi / 2);
    z.push_back({p, p + i});
  } else if (d > c.r) {
    double o = acos(c.r / d);
    Pt i = unit(p - c.o), j = rot(i, o) * c.r, k = rot(
        i, -o) * c.r;
    z.push_back({c.o + j, p});
    z.push_back({c.o + k, p});
  }
  return z;
vector <Line> tangent(Cir c1, Cir c2, int sign1) {
  // sign1 = 1 for outer tang, -1 for inter tang
  vector <Line> ret;
  double d_sq = abs2(c1.o - c2.o);
  if (sign(d_sq) == 0) return ret;
  double d = sqrt(d_sq);
  Pt v = (c2.0 - c1.0) / d;
  double c = (c1.r - sign1 * c2.r) / d;
  if (c * c > 1) return ret;
  double h = sqrt(max(0.0, 1.0 - c * c));
  for (int sign2 = 1; sign2 >= -1; sign2 -= 2) {
    Pt n = Pt(v.X * c - sign2 * h * v.Y, v.Y * c +
        sign2 * h * v.X);
    Pt p1 = c1.o + n * c1.r;
    Pt p2 = c2.o + n * (c2.r * sign1);
    if (sign(p1.X - p2.X) == 0 \& sign(p1.Y - p2.Y) ==
      p2 = p1 + perp(c2.o - c1.o);
    ret.pb({p1, p2});
  return ret;
}
```

7.13 Tangent to Convex Hull

```
/* The point should be strictly out of hull
  return arbitrary point on the tangent line */
pii get_tangent(vector<pll> &C, pll p) {
  auto gao = [&](int s) {
    return cyc_tsearch(SZ(C), [&](int x, int y)
```

```
{ return ori(p, C[x], C[y]) == s; });
};
return pii(gao(1), gao(-1));
} // return (a, b), ori(p, C[a], C[b]) >= 0
```

7.14 Minimum Enclosing Circle

```
Cir min enclosing(vector<Pt> &p) {
  random_shuffle(p.begin(), p.end());
  double r = 0.0;
  Pt cent = p[0];
  for (int i = 1; i < p.size(); ++i) {</pre>
    if (abs2(cent - p[i]) <= r) continue;</pre>
    cent = p[i];
    r = 0.0;
    for (int j = 0; j < i; ++j) {
      if (abs2(cent - p[j]) <= r) continue;</pre>
      cent = (p[i] + p[j]) / 2;
      r = abs2(p[j] - cent);
      for (int k = 0; k < j; ++k) {
        if (abs2(cent - p[k]) <= r) continue;</pre>
        cent = circenter(p[i], p[j], p[k]);
        r = abs2(p[k] - cent);
    }
  }
  return {cent, sqrt(r)};
```

7.15 Union of Stuff

```
//Union of Circles
vector<pair<double, double>> CoverSegment(Cir a, Cir b)
  double d = abs(a.o - b.o);
  vector<pair<double, double>> res;
  if (sign(a.r + b.r - d) == 0);
  else if (d <= abs(a.r - b.r) + eps) {</pre>
    if (a.r < b.r) res.emplace_back(0, 2 * pi);</pre>
  } else if (d < abs(a.r + b.r) - eps) {</pre>
    double o = acos((a.r * a.r + d * d - b.r * b.r) /
        (2 * a.r * d)), z = atan2((b.o - a.o).Y, (b.o - a.o))
         a.o).X);
    if (z < 0) z += 2 * pi;
    double l = z - o, r = z + o;
    if (1 < 0) 1 += 2 * pi;
    if (r > 2 * pi) r -= 2 * pi;
    if (1 > r) res.emplace_back(1, 2 * pi), res.
        emplace_back(0, r);
    else res.emplace_back(1, r);
  }
  return res;
double CircleUnionArea(vector<Cir> c) { // circle
    should be identical
  int n = c.size();
  double a = 0, w;
  for (int i = 0; w = 0, i < n; ++i) {
    vector<pair<double, double>> s = \{\{2 * pi, 9\}\}, z;
    for (int j = 0; j < n; ++j) if (i != j) {
      z = CoverSegment(c[i], c[j]);
      for (auto &e : z) s.push_back(e);
    sort(s.begin(), s.end());
    auto F = [&] (double t) { return c[i].r * (c[i].r *
         t + c[i].o.X * sin(t) - c[i].o.Y * cos(t)); };
    for (auto &e : s) {
      if (e.first > w) a += F(e.first) - F(w);
      w = max(w, e.second);
  }
  return a * 0.5;
// Union of Polygons
double polyUnion(vector <vector <Pt>> poly) {
  int n = poly.size();
  double ans = 0;
  auto solve = [&](Pt a, Pt b, int cid) {
    vector <pair <Pt, int>> event;
    for (int i = 0; i < n; ++i) {</pre>
```

int st = 0, sz = poly[i].size();

while (st < sz && ori(poly[i][st], a, b) != 1) st

```
if (st == sz) continue;
      for (int j = 0; j < sz; ++j) {
       Pt c = poly[i][(j + st) % sz], d = poly[i][(j + st) % sz]
             st + 1) % sz];
       if (sign((a - b) ^ (c - d)) != 0) {
         int ok1 = ori(c, a, b) == 1, ok2 = ori(d, a, b)
              b) == 1;
          if (ok1 ^ ok2) event.emplace_back(LinesInter
              ({a, b}, {c, d}), ok1 ? 1 : -1);
       } else if (ori(c, a, b) == 0 && sign((a - b) *
            (c - d)) > 0 && i <= cid) {
          event.emplace_back(c, -1);
          event.emplace_back(d, 1);
     }
    }
    sort(all(event), [&](pair <Pt, int> i, pair <Pt,</pre>
        int> j) {
      return ((a - i.first) * (a - b)) < ((a - j.first)
           * (a - b));
    });
    int now = 0;
    Pt lst = a;
    for (auto [x, y] : event) {
     now += y, lst = x;
   }
  };
  for (int i = 0; i < n; ++i) for (int j = 0; j < poly[
      i].size(); ++j) {
    solve(poly[i][j], poly[i][(j + 1) % int(poly[i].
       size())], i);
  }
  return ans / 2;
}
```

7.16 Delaunay Triangulation

```
* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
triangulation such that no points will strictly
inside circumcircle of any triangle. */
struct Edge {
  int id; // oidx[id]
  list<Edge>::iterator twin;
  Edge(int _id = 0):id(_id) {}
struct Delaunay { // 0-base
  int n, oidx[N];
  list<Edge> head[N]; // result udir. graph
  pll p[N];
  void init(int _n, pll _p[]) {
    n = _n, iota(oidx, oidx + n, 0);
    for (int i = 0; i < n; ++i) head[i].clear();</pre>
    sort(oidx, oidx + n, [&](int a, int b)
    { return _p[a] < _p[b]; });
for (int i = 0; i < n; ++i) p[i] = _p[oidx[i]];
    divide(0, n - 1);
  void addEdge(int u, int v) {
    head[u].push_front(Edge(v));
    head[v].push_front(Edge(u));
    head[u].begin()->twin = head[v].begin();
    head[v].begin()->twin = head[u].begin();
  void divide(int 1, int r) {
    if (1 == r) return;
    if (1 + 1 == r) return addEdge(1, 1 + 1);
    int mid = (1 + r) \gg 1, nw[2] = \{1, r\};
    divide(l, mid), divide(mid + 1, r);
    auto gao = [&](int t) {
      pll pt[2] = {p[nw[0]], p[nw[1]]};
      for (auto it : head[nw[t]]) {
        int v = ori(pt[1], pt[0], p[it.id]);
if (v > 0 || (v == 0 && abs2(pt[t ^ 1] - p[it.
             id]) < abs2(pt[1] - pt[0])))
          return nw[t] = it.id, true;
      }
      return false;
    };
    while (gao(0) || gao(1));
```

```
addEdge(nw[0], nw[1]); // add tangent
     while (true) {
       pll pt[2] = {p[nw[0]], p[nw[1]]};
       int ch = -1, sd = 0;
       for (int t = 0; t < 2; ++t)
           for (auto it : head[nw[t]])
               if (ori(pt[0], pt[1], p[it.id]) > 0 && (
                    ch == -1 \mid | in_cc(\{pt[0], pt[1], p[ch]) \mid
                    ]}, p[it.id])))
       ch = it.id, sd = t;
if (ch == -1) break; // upper common tangent
       for (auto it = head[nw[sd]].begin(); it != head[
           nw[sd]].end(); )
         if (seg_strict_intersect(pt[sd], p[it->id], pt[
             sd ^ 1], p[ch]))
           head[it->id].erase(it->twin), head[nw[sd]].
                erase(it++);
         else ++it;
       nw[sd] = ch, addEdge(nw[0], nw[1]);
} tool;
```

7.17 Voronoi Diagram

7.18 Trapezoidalization

```
template<class T>
struct SweepLine {
 struct cmp {
    cmp(const SweepLine &_swp): swp(_swp) {}
    bool operator()(int a, int b) const {
      if (abs(swp.get_y(a) - swp.get_y(b)) <= swp.eps)</pre>
        return swp.slope_cmp(a, b);
      return swp.get_y(a) + swp.eps < swp.get_y(b);</pre>
   }
    const SweepLine &swp;
   cmp;
 T curTime, eps, curQ;
 vector<Line> base;
 multiset<int, cmp> sweep;
 multiset<pair<T, int>> event;
 vector<typename multiset<int, cmp>::iterator> its;
 vector<typename multiset<pair<T, int>>::iterator>
      eits;
 bool slope_cmp(int a, int b) const {
    assert(a != -1);
    if (b == -1) return 0;
    return sign(cross(base[a].Y - base[a].X, base[b].Y
        - base[b].X)) < 0;</pre>
 T get_y(int idx) const {
    if (idx == -1) return curQ;
    Line 1 = base[idx];
    if (1.X.X == 1.Y.X) return 1.Y.Y;
    return ((curTime - 1.X.X) * 1.Y.Y + (1.Y.X -
        curTime) * 1.X.Y) / (1.Y.X - 1.X.X);
 void insert(int idx) {
    its[idx] = sweep.insert(idx);
    if (its[idx] != sweep.begin())
      update_event(*prev(its[idx]));
    update_event(idx);
   event.emplace(base[idx].Y.X, idx + 2 * SZ(base));
 void erase(int idx) {
    assert(eits[idx] == event.end());
```

```
auto p = sweep.erase(its[idx]);
    its[idx] = sweep.end();
    if (p != sweep.begin())
      update_event(*prev(p));
  void update_event(int idx) {
    if (eits[idx] != event.end())
      event.erase(eits[idx]);
    eits[idx] = event.end();
    auto nxt = next(its[idx]);
    if (nxt == sweep.end() || !slope_cmp(idx, *nxt))
        return:
    auto t = intersect(base[idx].X, base[idx].Y, base[*
        nxt].X, base[*nxt].Y).X;
    if (t + eps < curTime || t >= min(base[idx].Y.X,
        base[*nxt].Y.X)) return;
    eits[idx] = event.emplace(t, idx + SZ(base));
  void swp(int idx) {
    assert(eits[idx] != event.end());
    eits[idx] = event.end();
    int nxt = *next(its[idx]);
    swap((int&)*its[idx], (int&)*its[nxt]);
    swap(its[idx], its[nxt]);
    if (its[nxt] != sweep.begin())
      update_event(*prev(its[nxt]));
    update_event(idx);
  // only expected to call the functions below
  SweepLine(T t, T e, vector<Line> vec): _cmp(*this),
      curTime(t), eps(e), curQ(), base(vec), sweep(_cmp
      ), event(), its(SZ(vec), sweep.end()), eits(SZ(
      vec), event.end()) {
    for (int i = 0; i < SZ(base); ++i) {</pre>
      auto &[p, q] = base[i];
      if (p > q) swap(p, q);
      if (p.X <= curTime && curTime <= q.X)</pre>
        insert(i);
      else if (curTime < p.X)</pre>
        event.emplace(p.X, i);
    }
  void setTime(T t, bool ers = false) {
    assert(t >= curTime);
    while (!event.empty() && event.begin()->X <= t) {</pre>
      auto [et, idx] = *event.begin();
      int s = idx / SZ(base);
      idx %= SZ(base);
      if (abs(et - t) <= eps && s == 2 && !ers) break;</pre>
      curTime = et;
      event.erase(event.begin());
      if (s == 2) erase(idx);
      else if (s == 1) swp(idx);
      else insert(idx);
    curTime = t;
  T nextEvent() {
    if (event.empty()) return INF;
    return event.begin()->X;
  int lower_bound(T y) {
    curQ = y;
    auto p = sweep.lower_bound(-1);
    if (p == sweep.end()) return -1;
    return *p;
};
7.19
        3D Basic
```

```
struct Point {
  double x, y, z;
  Point(double _x = 0, double _y = 0, double _z = 0): x
      (_x), y(_y), z(_z){}
 Point(pdd p) { x = p.X, y = p.Y, z = abs2(p); }
Point operator-(const Point &p1, const Point &p2)
{ return Point(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z);
Point operator+(const Point &p1, const Point &p2)
```

}

```
{ return Point(p1.x + p2.x, p1.y + p2.y, p1.z + p2.z);
Point operator/(const Point &p1, const double &v)
{ return Point(p1.x / v, p1.y / v, p1.z / v); }
Point cross(const Point &p1, const Point &p2)
{ return Point(p1.y * p2.z - p1.z * p2.y, p1.z * p2.x -
     p1.x * p2.z, p1.x * p2.y - p1.y * p2.x); }
double dot(const Point &p1, const Point &p2)
{ return p1.x * p2.x + p1.y * p2.y + p1.z * p2.z; }
double abs(const Point &a)
{ return sqrt(dot(a, a)); }
Point cross3(const Point &a, const Point &b, const
    Point &c)
{ return cross(b - a, c - a); }
double area(Point a, Point b, Point c)
{ return abs(cross3(a, b, c)); }
double volume(Point a, Point b, Point c, Point d)
{ return dot(cross3(a, b, c), d - a); }
Point masscenter(Point a, Point b, Point c, Point d)
\{ return (a + b + c + d) / 4; \}
pdd proj(Point a, Point b, Point c, Point u) {
// proj. u to the plane of a, b, and c
  Point e1 = b - a;
  Point e2 = c - a;
  e1 = e1 / abs(e1);
  e2 = e2 - e1 * dot(e2, e1);
  e2 = e2 / abs(e2);
  Point p = u - a;
  return pdd(dot(p, e1), dot(p, e2));
```

7.20 3D Convex Hull

```
struct convex_hull_3D {
struct Face {
 int a, b, c;
  Face(int ta, int tb, int tc): a(ta), b(tb), c(tc) {}
}; // return the faces with pt indexes
vector<Face> res;
vector<Point> P:
convex_hull_3D(const vector<Point> &_P): res(), P(_P) {
// all points coplanar case will WA, O(n^2)
  int n = SZ(P);
  if (n <= 2) return; // be careful about edge case</pre>
  // ensure first 4 points are not coplanar
  swap(P[2], *find_if(ALL(P), [&](auto p) { return sign
      (abs2(cross3(p, P[0], P[1]))) != 0; }));
  swap(P[3], *find_if(ALL(P), [&](auto p) { return sign
      (volume(P[0], P[1], P[2], p)) != 0; }));
  vector<vector<int>> flag(n, vector<int>(n));
  res.emplace_back(0, 1, 2); res.emplace_back(2, 1, 0);
  for (int i = 3; i < n; ++i) {
    vector<Face> next;
    for (auto f : res) {
     int d = sign(volume(P[f.a], P[f.b], P[f.c], P[i])
      if (d <= 0) next.pb(f);</pre>
     int ff = (d > 0) - (d < 0);
      flag[f.a][f.b] = flag[f.b][f.c] = flag[f.c][f.a]
    for (auto f : res) {
     auto F = [\&](int x, int y) {
       if (flag[x][y] > 0 \&\& flag[y][x] <= 0)
         next.emplace_back(x, y, i);
     F(f.a, f.b); F(f.b, f.c); F(f.c, f.a);
    res = next:
 }
bool same(Face s, Face t) {
 if (sign(volume(P[s.a], P[s.b], P[s.c], P[t.a])) !=
      0) return 0;
  if (sign(volume(P[s.a], P[s.b], P[s.c], P[t.b])) !=
      0) return 0;
  if (sign(volume(P[s.a], P[s.b], P[s.c], P[t.c])) !=
      0) return 0;
  return 1;
```

```
int polygon_face_num() {
  int ans = 0;
  for (int i = 0; i < SZ(res); ++i)</pre>
    ans += none_of(res.begin(), res.begin() + i, [&](
         Face g) { return same(res[i], g); });
  return ans;
double get_volume() {
  double ans = 0;
for (auto f : res)
    ans += volume(Point(0, 0, 0), P[f.a], P[f.b], P[f.c
         1);
  return fabs(ans / 6);
double get_dis(Point p, Face f) {
  Point p1 = P[f.a], p2 = P[f.b], p3 = P[f.c];
  double a = (p2.y - p1.y) * (p3.z - p1.z) - (p2.z - p1
    .z) * (p3.y - p1.y);
  double b = (p2.z - p1.z) * (p3.x - p1.x) - (p2.x - p1
       .x) * (p3.z - p1.z);
  double c = (p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1
       .y) * (p3.x - p1.x);
  double d = 0 - (a * p1.x + b * p1.y + c * p1.z);
return fabs(a * p.x + b * p.y + c * p.z + d) / sqrt(a
        * a + b * b + c * c);
};
```

8 Misc

8.1 Cyclic Ternary Search

```
/* bool pred(int a, int b);
f(0) ~ f(n - 1) is a cyclic-shift U-function
return idx s.t. pred(x, idx) is false forall x*/
int cyc_tsearch(int n, auto pred) {
   if (n == 1) return 0;
   int l = 0, r = n; bool rv = pred(1, 0);
   while (r - 1 > 1) {
      int m = (1 + r) / 2;
      if (pred(0, m) ? rv: pred(m, (m + 1) % n)) r = m;
      else l = m;
   }
   return pred(l, r % n) ? l : r % n;
}
```

8.2 Mo's Algorithm

```
struct MoAlgorithm {
  struct query {
    int 1, r, id;
    bool operator < (const query &o) {</pre>
      if (1 / C == o.1 / C)
        return (1 / C) & 1 ? r > o.r : r < o.r;
      return 1 / C < o.1 / C;</pre>
    }
  int cur_ans;
  vector <int> ans;
  void add(int x) {
    // do something
  void sub(int x) {
    // do something
  vector <query> Q;
  void add_query(int 1, int r, int id) {
    // [1, r)
    Q.push_back({1, r, id});
    ans.push_back(0);
  void run() {
    sort(Q.begin(), Q.end());
    int pl = 0, pr = 0;
    cur_ans = 0;
    for (query &i : Q) {
      while (pl > i.l) add(a[--pl]);
while (pr < i.r) add(a[pr++]);</pre>
      while (pl < i.l) sub(a[pl++]);</pre>
      while (pr > i.r) sub(a[--pr]);
      ans[i.id] = cur;
```

```
};;
```

8.3 Mo's Algorithm On Tree

}

```
Mo's Algorithm On Tree
Preprocess:
1) LCA
2) dfs with in[u] = dft++, out[u] = dft++
3) ord[in[u]] = ord[out[u]] = u
4) bitset<MAXN> inset
struct Query {
  int L, R, LBid, lca;
  Query(int u, int v) {
     int c = LCA(u, v);
    if (c == u || c == v)
       q.lca = -1, q.L = out[c ^ u ^ v], q.R = out[c];
    else if (out[u] < in[v])</pre>
       q.lca = c, q.L = out[u], q.R = in[v];
    q.lca = c, q.L = out[v], q.R = in[u];
q.Lid = q.L / blk;
  bool operator<(const Query &q) const {</pre>
    if (LBid != q.LBid) return LBid < q.LBid;</pre>
    return R < q.R;</pre>
  }
};
void flip(int x) {
    if (inset[x]) sub(arr[x]); // TODO
     else add(arr[x]); // TODO
    inset[x] = ~inset[x];
void solve(vector<Query> query) {
  sort(ALL(query));
  int L = 0, R = 0;
  for (auto q : query) {
    while (R < q.R) flip(ord[++R]);</pre>
    while (L > q.L) flip(ord[--L]);
    while (R > q.R) flip(ord[R--]);
while (L < q.L) flip(ord[L++]);</pre>
    if (~q.lca) add(arr[q.lca]);
    // answer query
    if (~q.lca) sub(arr[q.lca]);
}
```

8.4 PBDS

8.5 Random

```
auto SEED = chrono::steady_clock::now().
    time_since_epoch().count();
mt19937 rng(SEED);
```

8.6 SOS dp

```
//memory optimized, super easy to code.
for(int i = 0; i<(1<<N); ++i)
   F[i] = A[i];
for(int i = 0; i < N; ++i) for(int mask = 0; mask < (1<<
        N); ++mask){
   if(mask & (1<<i))
        F[mask] += F[mask^(1<<i)];
}</pre>
```

8.7 SMAWK

```
long long query(int 1, int r) {
 // ...
struct SMAWK {
  // Condition:
 // If M[1][0] < M[1][1] then M[0][0] < M[0][1]
  // If M[1][0] == M[1][1] then M[0][0] <= M[0][1]
  // For all i, find r_i s.t. M[i][r_i] is maximum ||
      minimum.
  int ans[N], tmp[N];
  void interpolate(vector <int> 1, vector <int> r) {
    int n = 1.size(), m = r.size();
    vector <int> nl;
    for (int i = 1; i < n; i += 2) {
     nl.push_back(l[i]);
    run(nl, r);
    for (int i = 1, j = 0; i < n; i += 2) {
      while (j < m && r[j] < ans[l[i]])</pre>
        j++;
      assert(j < m && ans[l[i]] == r[j]);
      tmp[l[i]] = j;
    for (int i = 0; i < n; i += 2) {
      int curl = 0, curr = m - 1;
      if (i)
        curl = tmp[l[i - 1]];
      if (i + 1 < n)
        curr = tmp[l[i + 1]];
      long long res = query(l[i], r[curl]);
      ans[l[i]] = r[curl];
      for (int j = curl + 1; j <= curr; ++j) {</pre>
        lli nxt = query(l[i], r[j]);
        if (res < nxt)</pre>
          res = nxt, ans[l[i]] = r[j];
      }
   }
  }
  void reduce(vector <int> 1, vector <int> r) {
    int n = 1.size(), m = r.size();
    vector <int> nr;
    for (int j : r) {
      while (!nr.empty()) {
        int i = nr.size() - 1;
        if (query(l[i], nr.back()) <= query(l[i], j))</pre>
          nr.pop_back();
        else
          break;
      if (nr.size() < n)</pre>
        nr.push_back(j);
    }
    run(1, nr);
  void run(vector <int> 1, vector <int> r) {
    int n = 1.size(), m = r.size();
    if (max(n, m) <= 2) {</pre>
      for (int i : 1) {
        ans[i] = r[0];
        if (m > 1) {
          if (query(i, r[0]) < query(i, r[1]))</pre>
            ans[i] = r[1];
        }
      }
    } else if (n >= m) {
      interpolate(1, r);
    } else {
      reduce(1, r);
 }
};
8.8
     Tree Hash
ull seed;
ull shift(ull x) {
```

```
ull seed;
ull shift(ull x) {
    x ^= x << 13;
    x ^= x >> 7;
    x ^= x << 17;
    return x;
}
ull dfs(int u, int f) {
```

```
ull sum = seed;
for (int i : G[u])
   if (i != f)
      sum += shift(dfs(i, u));
   return sum;
}
```

8.9 Python