理论课 9 § 4.3-4.3 泰勒级数

- 2019/10/29
- I 组织教学
 - 1、集中学生注意力;
 - 2、清查学生人数:
 - 3、维持课堂纪律;
- 互动提问
- II 复习导入及主要内容
 - 1、上次作业讲评;
 - 2、本次主要内容:
 - 3、重点: 如何将解析函数展开成泰勒级数; 解析函数的重要性质。
 - 4、难点: 泰勒级数的应用.
- III 教学内容及过程
- ー、 泰勒 (Taylor) 级数
- 1、解析函数的泰勒展开法

定理 .28

设函数 f(z) 在圆域 $D: |z-z_0| < R$ 内解析, 则在 D 内 f(z) 可以展开成幂级数

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n,$$
 (30)

其中 $c_n=\frac{1}{2\pi i}\oint_C \frac{f(z)}{(z-z_0)^{n+1}}dz=\frac{f^{(n)}(z_0)}{n!}, (n=0,1,2,\cdots)$,C 为任意圆周 $|z-z_0|=\rho < R$,并且这个展开式是唯一的.

证 设 z 是 D 内任意一点, 在 D 内作一圆周 $C: |\zeta - z| = \rho < R$, 使得 $|z - z_0| < \rho$, 则由柯西积分公式, 得

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} d\zeta. \tag{31}$$

因为 $|z-z_0| < \rho$, 即 $\left| \frac{z-z_0}{\zeta-z_0} \right| = q < 1$, 所以

$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - z_0) - (z - z_0)} = \frac{1}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}}$$
$$= \frac{1}{\zeta - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0}\right)^n = \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}}.$$

将此式代入(31)式, 由幂级数的性质, 得

$$f(z) = \frac{1}{2\pi i} \oint_{c} \left[f(\zeta) \sum_{n=0}^{\infty} \frac{(z - z_{0})^{n}}{(\zeta - z_{0})^{n+1}} \right] d\zeta$$

$$= \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \oint_{c} \frac{f(\zeta)}{(\zeta - z_{0})^{n+1}} d\zeta \right] (z - z_{0})^{n}$$

$$= \sum_{n=0}^{\infty} c_{n} (z - z_{0})^{n},$$
(32)

其中 $c_n = \frac{1}{2\pi i} \oint_c \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta = \frac{f^{(n)}(z_0)}{n!}, (n = 0, 1, 2, \cdots).$

设 f(z) 在 D 内又可以展成 $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$,对式(33)求各阶导数,得 $f^{(n)}(z) = n!c_n + (n+1)!c_{n+1}(z-z_0) + \cdots$.

当 $z=z_0$ 时, 得 $f^{(n)}(z_0)=n!c_n$, 即 $c_n=\frac{f^{(n)}(z_0)}{n!}(n=0,1,2,\cdots)$, 这就是将函数 f(z) 在 z_0 的邻域内展开成收敛的幂级数时的系数公式.

同时, 可以证明 $f(z) = \sum_{i=1}^{n} C_n (z - z_0)^n$ 的展开式是唯一的.

应当指出, 若函数 f(z) 在 D 内有奇点, 则 f(z) 在 z_0 的泰勒 级数的收敛半径等于收敛圆的中心点 z_0 到 f(z) 的离 z_0 最近的一个奇点 α 之间的距离, 即 $R = |\alpha - z_0|$.

定理 .29

函数在一点处的邻域内可以展成幂级数的充分必要条件是函数在该邻域内解析.

共有 4 个等价的解析函数的慨念刻画. 若函数 f(z) 在区域 D 内满足下列条件之一,则它就是 D 内的一个解析函数:

- **(1)** f(z) 在 D 内处处可微;
- (2) f(z) = u(x,y) + iv(x,y) 的实部 u 与虚部 v 在 D 内可 微, 且它们的偏导函数满足柯西—黎曼条件 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y};$
- (3) f(z) 在 D 内连续, 且对 D 内任意一条逐段光滑的闭曲 线 C, 都有 $\oint_C f(z)dz = 0$;
- (4) 对于 D 内任意一点, 都存在一个邻域, f(z) 在这个邻域 内能展开成幂级数.
- 2、 初等函数的泰勒展开式
 - 1) $e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots + \frac{z^n}{n!} + \dots = \sum_{i=1}^{\infty} \frac{z^n}{n!}, |z| < \infty$

- 2) $\sin z = z \frac{z^3}{3!} + \frac{z^5}{5!} + \dots + (-1)^n \frac{z^{2n+1}}{(2n+1)!} + \dots, |z| < \infty$
- 3) $\cos z = 1 \frac{z^2}{2!} + \frac{z^4}{4!} + \dots + (-1)^n \frac{z^{2n}}{(2n)!} + \dots, |z| < \infty$
- 4) $\frac{1}{1\mp z} = 1 \pm z + z^2 \pm z^3 + z^4 \pm \cdots, |z| < 1.$
- 5) $\ln(1+z) = z \frac{z^2}{2} + \frac{z^3}{3} + \dots + (-1)^n \frac{z^{n+1}}{n+1} + \dots, |z| < 1$
- 6) $(1+z)^{\alpha} = 1 + \alpha z + \frac{\alpha(\alpha-1)}{2!} z^2 + \dots + \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!} z^n + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n)}{(n+1)!} z^{n+1} + \dots , |z| < 1 (\alpha 为复数).$
- 3、 代换法

例 .1

把函数 $f(z) = \frac{1}{(z+2)^2}$ 展开成 z-1 的幂级数, 并指出它的收敛半径.

解: 因为 $f(z)=\frac{1}{(z+2)^2}=\frac{1}{[3+(z-1)]^2}=\frac{1}{9}\cdot\frac{1}{\left[1+\frac{z-1}{3}\right]^2},$ 令 $q(z)=\frac{z-1}{3},$ 那么当 |q(z)|<1 时,即 |z-1|<3 时,我们即可利用公式 6) 将上式右端展开. 以 $q(z)=\frac{z-1}{3}$ 代入 6) 中的 z,再由

$$\frac{1}{1 + \frac{z-1}{3}} = \sum_{n=0}^{\infty} (-1)^n \left(\frac{z-1}{3}\right)^n,$$

逐项求导可得

$$-\frac{1}{3} \frac{1}{\left[1 + \frac{z-1}{3}\right]^2} = \sum_{n=1}^{\infty} (-1)^n \frac{n}{3} \left(\frac{z-1}{3}\right)^{n-1},$$

也即

$$\frac{1}{\left[1 + \frac{z-1}{3}\right]^2} = \sum_{n=1}^{\infty} (-1)^{n+1} n \left(\frac{z-1}{3}\right)^{n-1},$$

则得 f(z) 的表达式

$$f(z) = \frac{1}{9} \left[1 - 2\left(\frac{z-1}{3}\right) + \frac{2 \cdot 3}{2!} \left(\frac{z-1}{3}\right)^2 - \frac{2 \cdot 3 \cdot 4}{3!} \left(\frac{z-1}{3}\right)^3 + \cdots \right]$$

= $\frac{1}{9} \left[1 - \frac{2}{3} (z-1) + \frac{1}{3} (z-1)^2 - \frac{4}{27} (z-1)^3 + \cdots \right], |z-1| < 3.$

这就是所求的展开式,它右端的幂级数的收敛半径为3.

教案 纸

将函数 $\frac{1}{(1+z)^2}$ 展开成 z 的幂级数.

解:由于函数 $\frac{1}{(1+z)^2}$ 在单位圆周 |z|=1 上有一个奇点 z=-1, 而在 |z| < 1 内处处解析, 所以它在 |z| < 1 内可以展开成 z 的幂

$$\frac{1}{1+z} = \sum_{n=0}^{\infty} (-z)^n = 1 - z + z^2 - \dots + (-1)^n z^n + \dots, |z| < 1.$$
(34)

把上面两边逐项求导,即

$$-\frac{1}{(1+z)^2} = -\sum_{n=1}^{\infty} n(-z)^{n-1}, |z| < 1.$$
 (35)

得到 $\frac{1}{(1+z)^2}$ 展开的幂级数

$$\frac{1}{(1+z)^2} = 1 - 2z + 3z^2 - 4z^3 + \dots + n(-1)^{n-1}z^{n-1} + \dots$$
$$= \sum_{n=1}^{\infty} n(-1)^{n-1}z^{n-1}, |z| < 1.$$
(36)

4、 用微分方程求系数

· 例 .3 把 $e^{\frac{1}{1-z}}$ 在 z=0 点展开成幂级数.

解: 因为函数 $e^{\frac{1}{1-z}}$ 有一个奇点 z=1, 则 f(0)=e, 所以可 以在 |z| < 1 内展开成 z 的幂级数. 令 $f(z) = e^{\frac{1}{1-z}}$, 求导得 $f'(z) = e^{\frac{1}{1-z}} \cdot \frac{1}{(1-z)^2} = f(z) \cdot \frac{1}{(1-z)^2}, \ \mathbb{P}(1-z)^2 f'(z) - f(z) = 0.$

把上面的微分方程逐次对变量 z 求导, 得

$$(1-z)^2 f''(z) + (2z-3)f'(z) = 0,$$

$$(1-z)^2 f'''(z) + (4z-5)f''(z) + 2f'(z) = 0,$$

由于 f(0) = e, 所以从上面各微分方程, 依次可求得

$$f'(0) = e, f''(0) = 3e, f'''(0) = 13e, \cdots$$

从而有 $e^{\frac{1}{1-z}}$ 的展开式

$$e^{\frac{1}{1-z}} = e\left(1+z+\frac{3}{2!}z^2+\frac{13}{3!}z^3+\cdots\right), |z|<1.$$

5、 乘法

例 .4

把 $e^z \sin z$ 展开成 z 的幂级数.

M: $e^z = 1 + z + \frac{1}{2!}z^2 + \frac{1}{3!}z^3 + \cdots$, $\sin z = z - \frac{1}{3!}z^3 + \frac{1}{5!}z^5 - \cdots$

$$e^{z} \sin z = \left(1 + z + \frac{1}{2!}z^{2} + \frac{1}{3!}z^{3} + \cdots\right) \left(z - \frac{1}{3!}z^{3} + \frac{1}{5!}z^{5} - \cdots\right)$$
$$= z + z^{2} + \frac{1}{3}z^{3} + \cdots, |z| < \infty.$$

6、 待定系数法

例 .5

将 tan z 展开成 z 的幂级数.

 \Diamond

 $\begin{array}{ccc}
\bullet & \tan z & -\\
\tan(-z) & =\\
2\tan z = \dots
\end{array}$

解: 因为 $\tan z$ 的展开中心在 z=0,最近的一个奇点是 $\frac{\pi}{2}$,所以我们可以在区域 $|z|<\frac{\pi}{2}$ 内,将 $\tan z$ 展开成 z 的幂级数.

设 $\tan z = a_0 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + a_5z^5 + \cdots$,而 $\tan(-z) = a_0 - a_1z + a_2z^2 - a_3z^3 + a_4z^4 - a_5z^5 - \cdots$,因为 $\tan z$ 为奇函数, $\tan(-z) = -\tan z$,再比较上述两式 z 的同次幂的系数,可得 $a_0 = 0, a_2 = 0, a_4 = 0, \cdots$ (或者使用 $2\tan z = 2a_1z + 2a_3z^3 + 2a_5z^5 + \cdots$),所以

$$\tan z = a_1 z + a_3 z^3 + a_5 z^5 + a_7 z^7 + \cdots,$$

而

$$\sin z = \tan z \cdot \cos z = z - \frac{1}{3!}z^3 + \frac{1}{5!}z^5 - \frac{1}{7!}z^7 + \cdots$$
$$= (a_1 z + a_3 z^3 + a_5 z^5 + a_7 z^7 + \cdots) \cdot \left(1 - \frac{1}{2!}z^2 + \frac{1}{4!}z^4 - \frac{1}{6!}z^6 + \cdots\right),$$

将上式的右端相乘,再比较两端同次幂系数,有

1 =
$$a_1$$
,
 $-\frac{1}{3!}$ = $-\frac{1}{2!}a_1 + a_3$,
 $\frac{1}{5!}$ = $\frac{1}{4!}a_1 - \frac{1}{2!}a_3 + a_5$,
 $\frac{1}{7!}$ = $-\frac{1}{6!}a_1 + \frac{1}{4!}a_3 - \frac{1}{2!}a_5 + a_7$,
...

解上述方程, 可得 $a_1=1, a_3=\frac{1}{3}, a_5=\frac{2}{15}, a_7=\frac{17}{315}, \cdots, |z|<\frac{\pi}{2}.$ 所以

$$\tan z = z + \frac{1}{3}z^3 + \frac{2}{15}z^5 + \frac{17}{315}z^7 + \dots, |z| < \frac{\pi}{2}.$$

例 .6

求对数函数 $\ln(1+z)$ 在 z=0 处的泰勒展开式.

解: 我们知道, $\ln(1+z)$ 在从 -1 向左沿着负实轴剪开的平面内是解析的, 而 -1 是它的一个奇点, 所以它在 |z| < 1 内可以展开成 z 的幂级数 (图 39).

因为 $\ln'(1+z) = \frac{1}{1+z}$, 而幂级数 $\frac{1}{z+1} = \sum_{n=0}^{\infty} (-z)^n$, 其中 (|z| < 1). 在展开式的收敛圆 |z| < 1 内, 任取一条从 0 到 z 的积分路线 C, 把(34)式的两端沿积分路线 C 逐项积分, 得

$$\int_{C} \frac{1}{1+z} dz = \int_{C} \sum_{n=0}^{\infty} (-z)^{n} dz$$

$$= \int_{C} dz - \int_{C} z dz + \dots + \int_{0}^{z} (-1)^{n} z^{n} dz + \dots,$$

纸

图 39: ln(1+z) 的泰勒展开式

即

$$\ln(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \dots + (-1)^n \frac{z^{n+1}}{n+1} + \dots, |z| < 1.$$
(37)

例 .7

求幂函数 $(1+z)^{\alpha}(\alpha$ 为复数) 的主值支:

$$f(z) = e^{\alpha \ln(1+z)}, f(0) = -1,$$

 \bigcirc

在 z=0 处的泰勒级数.

解: 设 $\phi(z)=\ln(1+z),\ 1+z=e^{\phi(z)}\Rightarrow\frac{1}{1+z}=e^{-\phi(z)},$ 所以 $f(z)=e^{\alpha\phi(z)}.$ 求导得

$$f'(z) = e^{\alpha\phi(z)}\alpha\phi'(z) = e^{\alpha\phi(z)}\frac{\alpha}{1+z} = \alpha e^{(\alpha-1)\phi(z)},$$

依次求导,得

$$f''(z) = \alpha(\alpha - 1)e^{(\alpha - 2)\phi(z)},$$

:

$$f^{(n)}(z) = \alpha(\alpha - 1) \cdots (\alpha - n + 1)e^{(\alpha - n)\phi(z)}.$$

令 z = 0, 则 $\phi(0) = 0$, 由此得

$$f(0) = 1, f'(0) = \alpha, f''(0) = \alpha(\alpha - 1), \dots,$$

 $f^{(n)}(0) = \alpha(\alpha - 1) \dots (\alpha - n + 1).$

于是

$$(1+z)^{\alpha} = 1 + \alpha z + \frac{\alpha(\alpha-1)}{2}z^2 + \cdots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}z^n + \cdots, |z| < 1.$$

例 .8

把函数 $\arctan z$ 展开成 z=0 的幂级数.

因为

$$\arctan z = \int_0^z \frac{dz}{1+z^2},$$

且

$$\frac{1}{1+z^2} = \sum_{n=0}^{\infty} (-z^2)^n = \sum_{n=0}^{\infty} (-1)^n \cdot (z^2)^n, |z| < 1$$

所以

$$\arctan z = \int_0^z \frac{dz}{1+z^2} = \int_0^z \sum_{n=0}^\infty (-1)^n \cdot (z^2)^n dz$$
$$= \sum_{n=0}^\infty (-1)^n \frac{z^{2n+1}}{2n+1}, |z| < 1.$$

例 .9

把函数 $\cos^2 z$ 展开成幂级数.

解: 因为 $\cos^2 z = \frac{1}{2}(1 + \cos 2z)$,

$$\cos 2z = 1 - \frac{(2z)^2}{2!} + \frac{(2z)^4}{4!} - \frac{(2z)^6}{6!} + \cdots$$
$$= 1 - \frac{2^2 z^2}{2!} + \frac{2^4 z^4}{4!} - \frac{2^6 z^6}{6!} + \cdots, |z| < \infty.$$

教 案 纸

所以

$$\cos^2 z = \frac{1}{2}(1 + \cos 2z) = 1 - \frac{2z^2}{2!} + \frac{2^3 z^4}{4!} - \frac{2^5 z^6}{6!} + \dots, |z| < \infty.$$

例 .10

将 <u>e^z</u> 展开成麦克劳林级数.

解: 因为 $\frac{e^z}{1+z}$ 的唯一奇点为 z=-1, 所以收敛半径 R=1, 函数可在 |z|<1 内进行展开.

令 $f(z) = \frac{e^z}{1+z}$, 对 f(z) 求导得 $f'(z) = \frac{ze^z}{(1+z)^2} = \frac{z}{1+z} f(z)$, 即得如下的微分方程

$$(1+z)f'(z) - zf(z) = 0.$$

对微分方程逐次求导得:

$$(1+z)f''(z) + (1-z)f'(z) - f(z) = 0$$

$$(1+z)f'''(z) + (2-z)f''(z) - 2f'(z) = 0$$

$$\vdots$$

由 f(0) = 1, f'(0) = 0, f''(0) = 1, f'''(0) = -2, ..., 所以 f(z) 的麦克劳林级数为

$$\frac{e^z}{1+z} = 1 + \frac{1}{2!}z^2 - \frac{2}{3!}z^3 + \cdots$$
$$= 1 + \frac{1}{2}z^2 - \frac{1}{3}z^3 + \cdots, |z| < 1.$$

例 .11

把函数 $f(z) = \frac{1}{3z-2}$ 展开成 z 的幂级数.

解:

$$\frac{1}{3z-2} = -\frac{1}{2} \cdot \frac{1}{1 - \frac{3z}{2}} = -\frac{1}{2} \left[1 + \frac{3z}{2} + \left(\frac{3z}{2} \right)^2 + \dots + \left(\frac{3z}{2} \right)^n + \dots \right]$$

$$= -\frac{1}{2} - \frac{3z}{2^2} - \frac{3^2 z^2}{2^3} - \dots - \frac{3^n z^n}{2^{n+1}} - \dots$$

$$= -\sum_{n=0}^{\infty} \frac{3^n z^n}{2^{n+1}},$$

其中,幂级数收敛需要 $\left|\frac{3z}{2}\right| < 1$, 即 $|z| < \frac{2}{3}$.

例 .12

将 $\frac{z}{(z+1)(+2)}$ 在 $z_0 = 2$ 处作泰勒展开,给出表达式并 z 收敛半径.

解: 由 $\frac{A}{z+1} + \frac{B}{z+2} = \frac{z}{(z+1)(+2)}$, 可得 A = -1, B = 2.

$$\frac{1}{z+1} = \frac{1}{(z-2)+3} = \frac{1}{3} \frac{1}{\frac{z-2}{3}+1}$$

$$= \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{z-2}{3}\right)^n, \left|\frac{z-2}{3}\right| < 1;$$

$$\frac{2}{z+2} = \frac{2}{(z-2)+4} = \frac{1}{2} \frac{1}{\frac{z-2}{4}+1}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z-2}{4}\right)^n, \left|\frac{z-2}{4}\right| < 1.$$

当 $\left|\frac{z-2}{3}\right|<1$ 且 $\left|\frac{z-2}{4}\right|<1$ 时, 收敛半径为 R=3 时, 泰勒展开式为

$$\frac{z}{(z+1)(+2)} = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z-2}{4}\right)^n - \frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{z-2}{3}\right)^n.$$

IV 课堂小结

通过本课的学习, 应理解泰勒展开定理, 熟记五个基本函数的 泰勒展开式, 掌握将函数展开成泰勒级数的方法, 能比较熟练的把一些解析函数展开成泰勒级数.

V 布置作业

1、教材习题四 P141: 6 1)、3); 8; 11 1)、2); 12 1)、2)、3)、4); 16; 19 1)、2)、3)、4).