# Predicting Phonon Properties of Defected Systems using the Spectral Energy Density

Jason Larkin
Alan McGaughey
http://ntpl.me.cmu.edu/
5/24/2011



## Dielectric Thermal Conductivity

• <u>Dielectric crystal = Electrical Insulator</u>

- Ex: Si, Ge

$$\vec{q} = -\kappa \nabla T$$

• Dielectric Thermal Conductivity:

$$\kappa_{total} = \kappa_{phonon} + \kappa_{elec}$$

- Phonons are lattice vibrations...



### **Phonons**

#### **Lattice vibrations (Phonons) are travelling waves:**



$$F \propto kx + \varepsilon x^3 + \dots$$

- Non-linear springs cause phonons to interact.

# Thermal Conductivity Phonon Gas

## **Kinetic Theory Phonon Gas:**

- If system L >>  $\Lambda$  :

$$\kappa = \frac{1}{3} \rho c_{v} v_{g} \Lambda$$

-Phonons interact: with each other, defects, boundaries, etc.

$$\kappa = \frac{1}{3} \rho c_v v_g \Lambda \qquad \qquad \kappa = \frac{1}{V} \sum_i c_v(\omega_i) v_g^2(\omega_i) \tau_i(\omega_i)$$

**Phonons interact** 



## Molecular Dynamics and Spectral Energy Density

### Molecular Dynamics

- Lennard-Jones:

$$V(r) = 4\varepsilon \left( \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^{6} \right)$$



#### Spectral Energy Density

- Frequency, group velocity and lifetimes of phonons from Molecular Dynamics.

$$\vec{r}(t), \vec{p}(t) \longrightarrow \omega_i, \tau_i(\omega_i), v_g(\omega_i)$$
Mechanical Engineering

# **Spectral Energy Density**

$$\Phi(\boldsymbol{\omega}, \boldsymbol{\kappa}) = 2 \sum_{v}^{3n} \sum_{\alpha,b}^{3,n} \langle T(\mathbf{k} \mid b; \boldsymbol{\omega}) \rangle$$

$$= \frac{1}{4\pi\tau_0 N} \sum_{b}^{n} m_b \sum_{\alpha}^{3} \left| \int_{-\tau_0}^{\tau_0} \sum_{l}^{N} \dot{u}_{\alpha}(\mathbf{k} \mid t) \exp[i\boldsymbol{\kappa} \cdot \mathbf{r}_0(\mathbf{k} \mid t)] dt \right|^2$$
mass velocity allowed wavevectors and equil. positions

- No phonon knowledge required a priori.
- Can measure:

$$\omega_i, \tau_i(\omega_i), v_g(\omega_i)$$





## Spectral Energy Density Pure System

- <u>Spectral Energy Density (SED)</u>: system energy in frequency and wavevector space.



Broad peak = short lifetime

$$\omega_i, \tau_i(\omega_i), v_g(\omega_i)$$



## Spectral Energy Density of Defected System

**Defect = Disorder = non-**

periodic

 $m1_{1-x}m2_x$ 

**m1**=1.0 **m2**=3.0

Phonon picture still valid?



## **Bulk Thermal Conductivity Prediction**

$$\kappa = \frac{1}{V} \sum_{i} c_{v}(\omega_{i}) v_{g}^{2}(\omega_{i}) \tau_{i}(\omega_{i})$$

- Predict thermal
   conductivity up to x=0.1
   (weakly perturbed)
- Typically:

$$0.9\kappa_{alloy}^{0.1} \approx \kappa_{alloy}^{0.5}$$

 $- m1/m2 = 3 (m_{Si}/m_{Ge} \approx 3)$ 



PRL 106, 045901 (2011)



# Thermal Conductivity of Thin Films



$$\kappa = \frac{1}{V} \sum_{i} c_{v}(\omega_{i}) v_{g}(\omega_{i}) \Lambda_{i}(\omega_{i})$$



 $Lpprox \Lambda$ 



# Thermal Conductivity Amorphous (Heavily Disordered) Materials



$$\kappa_{total} = \kappa_{phonon} + \kappa_{disorder}$$





#### Discussion

 Dielectric thermal conductivity can be described by Kinetic Theory (bulk system).



 Molecular Dynamics and Spectral Energy Density can measure phonon properties.



 Phonon properties can be predicted for "weakly" perturbed systems, analyzed on mode by mode basis.

$$\omega_i, \tau_i(\omega_i), v_g(\omega_i)$$



# Questions



## **Phonon Gas**





#### Phonons vs. Photons:

$$F \propto kx + \varepsilon x^3 + \dots$$



- Non-linear springs
- Phonons interact with each other
- Interacting Gas...



## Dispersion of Disordered System

## - Quasi-Harmonic Lattice

## **Dyanmics:**





#### -Virtual Crystal Approximation:

$$m_{x=0.1} = (0.9m1+0.1m2) = 1.2$$

