

PhoneMD: Learning to Diagnose Parkinson's Disease from Smartphone Data

Patrick Schwab and Walter Karlen

Institute of Robotics and Intelligent Systems
ETH Zurich

Parkinson's Disease (PD)

- Slow degeneration of motor skills
- Hard to diagnose
 - Assessment of symptoms
 - Similar symptoms in other diseases
 - Symptom fluctuations
 - Only ~80% of diagnoses are accurate¹
 - ~7m (0.3%) affected, 120,000 deaths²

¹ Rizzo, G. et al. (2016) *Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis.* Neurology 86 (6).

² de Lau, LM and Breteler MM. (2006) *Epidemiology of Parkinson's disease.* Lancet Neurology 5 (6).

Wide Variety of Symptoms

Cognition

Speech

Dexterity

Movement

Motor Impairments

Rigidity

Tremor of Extremities

Shuffling Gait & Short Steps

The Idea

Can we use machine learning on long-term smartphone data to diagnose Parkinson's?

The Dataset

The mPower Study

- We use data collected in the mPower study¹
 - Openly available on Synapse²
- App users (with and without Parkinson's, n=1853)
 were asked to perform several tests regularly
 - Outcome: Prior clinical PD diagnosis

¹ Bot, B.M., et al. (2016) *The mPower study, Parkinson disease mobile data collected using ResearchKit*. Scientific data 3. ² Synapse Platform, https://www.synapse.org/#!Synapse:syn8717496 (Accessed: Nov 13, 2017)

Tests Overview

Tests Overview

Data Streams

- Accelerometer time series:
 - Acceleration
 - Rotation Rate
 - Attitude

Tests Overview

mPower Voice Test

Data Streams

- Voice recording
 - 44100 Hz
 - ~30 seconds

Tests Overview

mPower Tapping Test

¹ Bot, B.M., et al. (2016) *The mPower study, Parkinson disease mobile data collected using ResearchKit.* Scientific data 3.

Tests Overview

Tests Overview

spatial memory by asking you to repeat the order in which flowers light up.

same order they lit up.

To begin, tap Next, then watch closely.

¹ Bot, B.M., et al. (2016) The mPower study, Parkinson disease mobile data collected using ResearchKit. Scientific data 3.

Approach

Per-test Models: Specialised in each test type.

Per-test Models: Specialised in each test type.

Independent models

Evidence Aggregation Model (EAM):

Integrate available test data over time.

Evidence Aggregation Model (EAM):

Integrate available test data over time.

Any number of tests

Evidence Aggregation Model (EAM):

Integrate available test data over time.

Any number of tests

Final diagnostic score

Neural Soft Attention

• A **soft attention mechanism**¹ allows us to relate the **decisions** to the most relevant **(1) input segments**² and **(2) tasks**.

¹ Bahdanau, D. et al. (2014). *Neural Machine Translation by Jointly Learning to Align and Translate.* ICLR. ² Schwab, P., et al. (2017). *Beat by Beat: Classifying Cardiac Arrhythmias with Recurrent Neural Networks.* Computing in Cardiology.

Results & Discussion

Results on Test Set

Neural Attention

Neural Attention

Importance over tests

Importance within test

Importance within test

Neural Attention (Subject with PD)

Difficulty starting to move

Neural Attention (Subject with PD)

Neural Attention (Subject with PD)

Potential resting tremor

Conclusion

Conclusion

- We present an approach to diagnosing PD that ...
 - works based on multiple smartphone-based tests that cover a wide range of symptoms across long time frame
 - informs the clinician about the importance of tests and segments within those tests using neural attention
 - achieves strong performance in a representative cohort (n=1853) with an AUC of 0.85 (95% CI: 0.81, 0.89)
- We highlight potential of smartphones as accessible tools for gathering clinically relevant data in the wild

Future Work

¹ Matas Pocevicius (2018), Intelligent Decision-Support for Diagnosis and Monitoring of Parkinson's Disease. MSc Thesis, ETH Zurich

Questions?

Patrick Schwab

patrick.schwab@hest.ethz.ch

Institute for Robotics and Intelligent Systems
ETH Zurich

Schwab, Patrick and Karlen, Walter.

PhoneMD: Learning to Diagnose Parkinson's Disease with Smartphone Data.

AAAI 2019

Property	Training	Validation	Test
Subjects (#)	1314 (70%)	192 (10%)	347 (20%)
PD (%)	52.36	50.00	56.20
Female (%)	28.00	36.98	25.94
Age (years)	59.29 ± 9.40	59.53 ± 9.03	58.90 ± 9.24
Walking (#)	13.89 ± 35.07	15.58 ± 33.90	14.03 ± 45.20
Voice (#)	16.11 ± 40.21	19.47 ± 44.55	14.88 ± 45.12
Tapping (#)	15.20 ± 38.04	18.50 ± 43.12	14.78 ± 42.67
Memory (#)	14.01 ± 33.30	20.78 ± 35.92	17.58 ± 38.11
Usage (days)	24.27 ± 41.01	29.66 ± 45.73	25.43 ± 43.24

Table 3: Population statistics of the training, validation, and test set. Numbers (#) shown are mean \pm standard deviation.

Largest cohort to date

Property	Training	Validation	Test
Subjects (#)	1314 (70%)	192 (10%)	347 (20%)
PD (%)	52.36	50.00	56.20
Female (%)	28.00	36.98	25.94
Age (years)	59.29 ± 9.40	59.53 ± 9.03	58.90 ± 9.24
Walking (#)	13.89 ± 35.07	15.58 ± 33.90	14.03 ± 45.20
Voice (#)	16.11 ± 40.21	19.47 ± 44.55	14.88 ± 45.12
Tapping (#)	15.20 ± 38.04	18.50 ± 43.12	14.78 ± 42.67
Memory (#)	14.01 ± 33.30	20.78 ± 35.92	17.58 ± 38.11
Usage (days)	24.27 ± 41.01	29.66 ± 45.73	25.43 ± 43.24

Table 3: Population statistics of the training, validation, and test set. Numbers (#) shown are mean \pm standard deviation.

Nearly balanced

Property	Training	Validation	Test
Subjects (#)	1314 (70%)	192 (10%)	347 (20%)
PD (%)	52.36	50.00	56.20
Female (%)	28.00	36.98	25.94
Age (years)	59.29 ± 9.40	59.53 ± 9.03	58.90 ± 9.24
Walking (#)	13.89 ± 35.07	15.58 ± 33.90	14.03 ± 45.20
Voice (#)	16.11 ± 40.21	19.47 ± 44.55	14.88 ± 45.12
Tapping (#)	15.20 ± 38.04	18.50 ± 43.12	14.78 ± 42.67
Memory (#)	14.01 ± 33.30	20.78 ± 35.92	17.58 ± 38.11
Usage (days)	24.27 ± 41.01	29.66 ± 45.73	25.43 ± 43.24

Table 3: Population statistics of the training, validation, and test set. Numbers (#) shown are mean \pm standard deviation.

Property	Training	Validation	Test
Subjects (#)	1314 (70%)	192 (10%)	347 (20%)
PD (%)	52.36	50.00	56.20
Female (%)	28.00	36.98	25.94
Age (years)	59.29 ± 9.40	59.53 ± 9.03	58.90 ± 9.24
Walking (#)	13.89 ± 35.07	15.58 ± 33.90	14.03 ± 45.20
Voice (#)	16.11 ± 40.21	19.47 ± 44.55	14.88 ± 45.12
Tapping (#)	15.20 ± 38.04	18.50 ± 43.12	14.78 ± 42.67
Memory (#)	14.01 + 33.30	20.78 ± 35.92	17.58 + 38.11
Usage (days)	24.27 ± 41.01	29.66 ± 45.73	25.43 ± 43.24

Table 3: Population stat test set. Numbers (#) sh

Wide range of usage patterns