

Things to Memorize: Motion in Two Dimensions

General Ideas:

- Motion in one dimension does not effect the motion in the other dimension.
 - Thus, kinematic equations can only be applied to one dimension at a time.
 - The only variable that can be applied to each dimension is time.
- Each Dimension (X, Y) has its own set of kinematic variables. Use a subscript to distinguish them, ie: v_{fx} and v_{fy} .
- Distances, Velocities, and Accelerations can be **combined as vectors** by using the Pythagorean Theorem.
- Distances, Velocities, and Accelerations can be **decomposed** (broken down) into component vectors by using trigonometric equations.

To Solve a Two-Dimensional Problem

- 1. Draw a diagram.
- 2. Define a positive X direction and a positive Y direction. Label those directions clearly with arrows: $\longrightarrow X$ and $\uparrow Y$
 - X and Y directions must be 90° to each other.
 - X and Y don't have to be right and up. Instead, choose directions that correspond with the motion described in the problem.
- 3. Indicate in words what portion of motion your are considering, (like "motion from launch to the peak of the flight.)
- 4. Fill out a chart, including signs and units, of the five kinematics variables for each direction. Remember time is the only varible that can be used in any dimension.

$d_x =$	$d_y =$
$v_{ix} =$	$v_{iy} =$
$v_{fx} =$	$v_{fy} =$
$a_x =$	$a_y =$
t =	

- 5. Pick an dimension (X, Y) that will allow you to use a kinematic equation that has only **ONE** unknown variable.
 - Remember: Do not mix X and Y variables in the same equation!
- 6. Manipulate the equation to isolate the unknown variable (if needed).

- 7. Plug in the numbers.
- 8. Write your answer with units. Add it to the table above.
- 9. Continue to solve for variables until you have determined the variable you want.

Projectiles Launched Horizontally

- A projectile launched horizontally has an initial vertical velocity of zero: $v_{iy} = 0$ m/s.
- Since gravity is the only force acting on the object while it is in free-fall, $a_y = 9.8 \ m/s^2$ downward, and $a_x = 0 \ m/s^2$
- Be sure to double-check your positive and negative signs to make sure they correspond with the diagram you drew.

Projectiles Launched at an Angle

- Use trigonometry to determine the initial X and Y velocities.
- Since gravity is the only force acting on the object while it is in free-fall, $a_y = 9.8 \ m/s^2$ downward, and $a_x = 0 \ m/s^2$
- Be sure to double-check your positive and negative signs to make sure they correspond with the diagram you drew.
- Determine the time to the top of the path first. At the top of a projectile's path, $v_y = 0$ m/s.
- Rarely, you will need to solve the equation $d = v_i t + \frac{1}{2}at^2$ for t when neither v_i nor a are zero.
 - This can be done by using the quadratic equation.
 - Alternately, the problem can be broken into a rising component and a falling component and the times can be added.