

DEPARTAMENTO	COMPUTACIÓN Y TECNOLOGÍA DE LA INFORMACIÓN			
ASIGNATURA	CI3825 SISTEMAS DE OPERACIÓN			
HORAS/SEMANA	T:3	P:1	L:3	U:5
REQUISITOS	Cl3621, EC2712			

PROGRAMA

OBJETIVO GENERAL DEL CURSO

Introducir al estudiante los conceptos básicos de los sistemas de operación informáticos, con énfasis en los sistemas multiusuarios basados en UNIX.

OBJETIVOS ESPECÍFICOS

- 1. Conocer las técnicas mediante las cuales es posible compartir un CPU mediante la multiprogramación y concurrencia con procesos y "threads".
- 2. Identificar las políticas y mecanismos de despacho de programas.
- 3. Conocer las técnicas mediante las cuales es posible compartir la memoria principal de un computador
- 4. Lograr un dominio en el uso de los registros base y límite, así como el manejo de la memoria virtual a través de las políticas y mecanismos de paginación y segmentación.
- 5. Conocer las técnicas mediante las cuales es posible compartir la memoria secundaria de un computador.
- 6. Familiarizrse con el uso de los sistemas de archivos lógicos y físicos, así como de los sistemas de nombres (directorio) y los esquemas de protección de archivos.
- 7. Manejar los interbloqueos e inanición.

CONTENID

0

- 1. Introducción. Estructura de un sistema de computación. Definición de sistema de operación. Perspectiva histórica de los sistemas de operación. Componentes de un sistema de operación. Servicios de un sistema de operación.
- 2. Estructura de los sistemas de computación. Estructura básica. Estructura de la E/S. Estructura DMA. Necesisdades de protección. Llamadas al sistema.

- 3. Procesos. Definición de procesos. Modelo de procesos. Cambio de contexto. Operaciones sobre procesos. Procesos cooperantes. Threads.
- 4. Planificación de procesos ("scheduling"). Colas de "scheduling". Niveles de "scheduling". Estructura de "scheduling". Algoritmos de "scheduling".
- 5. Coordinación de procesos: Procesos cooperantes. Relación entre procesos. Procesos concurrentes. Threads. Condiciones de carrera, exclusión mutua y secciones críticas. Mecanismos de exclusión mutua y sincronización.
- Interbloqueo ("deadlock"): Modelo del sistema. Caracterización de deadlocks. Métodos de prevención de deadlocks. Métodos para evitar deadlocks. Métodos de detección de deadlocks.
- 7. Memoria principal. Espacio de direcciones virtuales y espacio de direcciones físicas. Particiones múltiples fijas. Particiones múltiples de tamaño variable. Paginación. Segmentación.
- 8. Memoria virtual: Paginación. Segmentación. Reemplazo de páginas. Algoritmos de reemplazo de páginas. Thrashing. Working set.
- Sistemas de archivo: Archivos. Directorios. Protección de acceso. Implementación de archivos. Implementación de directorios. Eficiencia y desempeño en los sitemas de archivos. Confiabilidad en los sistemas de archivos.
- 10. Administración de memoria secundaria: Estructura de disco, organización y direcciones. Administración del espacio libre. Planificación del disco.
- 11. Diseño de Sistemas de Operación: monolíticos, microkernel, por capas, máquinas virtuales, orientado por objetos, cliente-servidor. Definición y uso de upcalls.

ESTRATEGIAS METODOLÓGICAS

La estrategia metodológica para la ejecución del curso es la de charlas magistrales con ciclos de preguntas y respuestas y discusión colectiva, consulta individual, apoyo audiovisual y talleres semanales para la ejecución de prácticas guiadas con ejercicios bajo ambiente UNIX.

ESTRATEGIAS DE EVALUACIÓN

Las estrategias de evaluación consisten en una combinación de evaluaciones de tipo escrito, tareas escritas, examenes cortos de laboratorio y entrega de proyectos.

PRÁCTICAS DE LABORATORIO

- Lenguaje de programación C (repaso).
- 2. Intro a Unix . Comandos básicos.
- 3. Procesos-fork, wait, exec, init, procesos zombie, exit.
- 4. "Threads".
- 5. Comunicación entre procesos: "Pipes" y Señales.

- 6. Sistema de Archivos. Tabla de archivos abiertos, Tabla de descriptores. I-nodos. Directorio.
- 7. "Shell scripts".

FUENTES DE INFORMACIÓN

- 1. Stalling W. "Operating Systems Internals and Design Principles". 6/E. Prentice- Hall. 2008.
- 2. Silberschatz, A. Galvin, Gagne G.. Operating System Concepts. 8/E. John Wiley 2009.
- 3. Tanenbaum A. Modern Operating Systems 2/E. Prentice Hall 2001.