8.1 Introduction to integer programming

Integer programs (IPs) are defined analogously to linear programs with the only difference that all variables take integer values.

$$\max_{A \times \leq b} A \times \leq b$$

$$\times \in \mathbb{Z}^{n} \qquad (\mathbb{Z}_{\geq 0}^{n})$$

IP example: the eight queens puzzle

Goal: Place 8 queens on a chessboard s.t. no 2 queens threaten each other.

Modeling the problem as an IP

Interpretation:
$$x_{ij} = 1 \rightarrow \text{There is a queen on square (i,j)}.$$

$$x_{ij} = 0 \rightarrow \text{"no"} \text{"no"}.$$

$$\max \sum_{i=1}^{8} \sum_{j=1}^{8} x_{ij}$$

$$\leq 1$$
 queen per row $\sum_{j=1}^{8} x_{ij} \leq 1$ $\forall i \in [8]$

$$\leq 1$$
 queen per column $\sum_{i=1}^{8} \times_{ii} \leq 1$ $\forall j \in [8]$

$$\leq 1$$
 queen per
$$\sum_{\substack{i j \in [8] \\ i+j=k}} x_{ij} \leq 1 \qquad \forall k \in \{2,...,16\}$$

$$\leq 1$$
 queen per $\sum_{i,j \in [8]} x_{ij} \leq 1$ $\forall k \in \{-7,-6,\ldots,7\}$ $i-j=k$

8.2 Branch & bound

objective value, 2,

z = 113.837

X₂

 $33x_4$ $42x_4 \leq 875$ $53x_4 \leq 875$ $x \in \{0,1\}^4$ $\begin{bmatrix} 0,1 \end{bmatrix}^4$

Branching

← opt. solution to relaxation

Choose some fractional variable,

say X2, and consider

 $x_{2}=0, x_{2}=1.$

$x_2 = 0$
z = 110.85
$x_1 = 1.0$
$x_3 = 0.95$
$x_4 = 1.0$

×3

 $x_2 = 0$

 $\leftarrow 0 \text{ pt. sol. to LP with}$ above constraints and $\times \in [0,13^4, \text{ and}$ $\times_2 = 1.$

 $\begin{array}{c|ccc} 10 & x_2 = & 0 \\ x_3 = & 0 \\ \end{array}$ z = 108.0

 $\begin{array}{c|cccc}
3 & x_2 &=& 1 \\
x_1 &=& 1 \\
\hline
& z &= 100.64 \\
x_3 &=& 0.0 \\
x_4 &=& 0.595
\end{array}$

Bounding

Solution found in 5 has better objective value than opt value of LP relexation 8. Same for 10 and 10.

=) No need to further explore (B) or II).

´×3

 $\begin{array}{c|cccc} 6 & x_2 = & 1 \\ x_1 = & 1 \\ x_4 = & 0 \\ x_3 = & 1 \\ \hline & \text{infeasible} \end{array}$

Remarks on branch & bound

- · Best solution found so far is called the incumbent.
- Different branching rules can be applied

 => branch & bound tree is not unique.
- · Speed-ups can often be achieved by employing fast techniques to quickly find some good incumbent at the start of the procedure.
- · Speed-ups can often be achieved by using stronger relaxations.

8.3 Branch & cut

Enhancement of branch & bound using cutting planes.

Consider sub-problem in branch & bound procedure such that:

- (i) Its LP relaxation is feasible.
- (ii) Value of LP relaxation is strictly better than incumbent.
 (iii) Obtained optimal LP solution is not integral.

Instead of branching, one can add a cutting plane to strengthen the LP.

A cutting plane separates a given optimal and fractional LP solution from feasible solutions of considered problem.

Consider again:

Linear relaxation in canonical form:

Starting tableau:

	x_1	x_2	x_3	x_4	1
z	-75	-6	-3	-33	0
y_1	774	76	22	42	875
y_2	67	27	794	53	875
y_3	1	0	0	0	1
y_4	0	1	0	0	1
y_5	0	0	1	0	1
y_6	0	0	0	1	1

Simplex phase I leads to optimal tableau:

	y_3	y_1	y_2	y_6	1
\overline{z}	14.2289	0.0784	0.0016	29.623	113.8373
x_2	-10.2608	0.0133	-0.0004	-0.5386	0.506
x_3	0.2645	-0.0005	0.0013	-0.0484	0.9337
x_1	1	0	0	0	1
y_4	10.2608	-0.0133	0.0004	0.5386	0.494
y_5	-0.2645	0.0005	-0.0013	0.0484	0.0663
x_4	0	0	0	1	1

This corresponds to box
$$\square$$
 of previous branch ℓ bound tree.
$$1 \quad z = 113.837$$

$$x_1 = 1.0$$

$$x_2 = 0.506$$

$$x_3 = 0.934$$

$$x_4 = 1.0$$

$$\longrightarrow$$
 optimal basic solution: $(x_1^*, x_2^*, x_3^*, x_4^*) = (1, 0.506, 0.9337, 1)$.

Consider tableau row corresponding to one of the fractional variables, say X2:

$$x_2 - 10.2608 y_3 + 0.0133 y_1 - 0.0004 y_2 - 0.5386 y_6 = 0.506$$

$$\Rightarrow x_2 + [-10.2608]y_3 + [0.0133]y_1 + [-0.0004]y_2 + [-0.5386]y_6 \le 0.506$$

$$\rightarrow \quad \times_2 - 11y_3 - y_2 - y_6 \leq 0.506$$
.

Because all this coefficients are integral and all variables take integral values, we have that following constraint is valid for any feasible integral point:

- * $x_2 \|y_3 2y_2 y_6 \le \lfloor 0.506 \rfloor = 0$.
- This is a cutting plane for current optimal and fractional LP solution $(x_1^*, x_2^*, x_3^*, x_4^*)$.
- Instead of branching, we can add (*) as additional constraint and solve new LP relaxation.

max card. indep. set.

may
$$x(V)$$

$$x_{u}+x_{v} \leq 1 \qquad \forall \{u,v\} \in E$$

$$x \in \{0,1\}^{V}$$

$$(A) TSP$$

$$G = (V,A) \qquad \ell: A \rightarrow \mathbb{R}_{\geq 0}$$

$$m_{in} \sum_{\alpha \in A} x(\alpha) \cdot \ell(\alpha)$$

$$\times (\delta^{+}(v)) = 1 \quad \forall v \in V$$

$$\times (\delta^{-}(v)) = 1 \quad \forall v \in V$$

$$\forall u - y_{v} + |V| \cdot \times_{(u_{1}v)} \leq |V| - 1 \quad \forall (u_{1}v) \in A \setminus \delta^{-}(v)$$

$$\times \in \{0, 1\}^{A}$$

$$\forall e \in \{1, ..., |V|\}^{V}$$