Natural Deduction Inference Rules for Propositional Logic

Basic Inference Rules

¬¬-elimination

∧-introduction

Derived Inference Rules

A Modus Tollens (MT)

$$\frac{(\alpha \to \beta) \quad (\neg \beta)}{(\neg \alpha)}$$

4 Λ-elimination

$$\frac{(\alpha \wedge \beta)}{(\alpha \wedge \beta)} \qquad \frac{(\alpha \wedge \beta)}{(\alpha \wedge \beta)} \qquad \frac{(\alpha \wedge \beta)}{(\beta \wedge \beta)}$$

B Law of Excluded Middle (LEM)

→-introduction

→-elimination

$$\frac{(\alpha \to \beta) \quad \alpha}{\beta}$$

C Double-Negation Introduction

v-introduction

¬-introduction

v-elimination

$$\frac{(\alpha_1 \ \mathbf{v} \ \alpha_2) \ [\beta]}{\beta}$$

¬-elimination (⊥-introduction)

Proof by Contradiction (PBC)

Depending on the assignment you may not always be allowed to use all derived rules!

Subproofs

All subproofs must be closed by the end of the proof

Soundness & Completeness

Soundness

"All formulae derived by ND are entailments"

$$\Sigma \vdash_{\mathsf{ND}} \varphi \Rightarrow \Sigma \vDash \varphi$$

$$\Sigma \not\models \varphi \Rightarrow \Sigma \not\vdash_{\mathsf{ND}} \varphi$$

Completeness

"All formulae that are entailments can be derived by ND"

$$\Sigma \models \phi \Rightarrow \Sigma \vdash_{ND} \phi$$

