

FPGA-BASED FLIGHT CONTROLLER

Project Guide *Mr. Jagadeesh Kumar P*

Group 8

Athul John Kurian (14) Medha Lakshman Rao (36) Omar Bin Shafi (45) Sebastian James (55)

CONTENTS

- 1. Introduction
- 2. Literature Review
- 3. Motivation & Objectives
- 4. Novelty
- 5. Block diagram
- 6. Methodology
- 7. Feasibility Study
- 8. Work Schedule
- 9. Work done
- 10. Conclusion
- 11. References

INTRODUCTION

AIM

- Main idea: To design a flight controller (FC) system on an FPGA board using Verilog to program the FPGA.
- Further extension: implement machine learning for stability.
- To deploy the code in Xilinx Virtex 6 FPGA development board to tune the flight parameters to achieve stable flight using a radio transmitter/similar manual input.
- To convert this project into a product.

INTRODUCTION

SCOPE & RELEVANCE

- Can be used for UAV flight stability.
- Faster response of flight controller parallel processing capability of FPGA.
- From entertainment to military purposes, drones are used in various applications and the scope of drone technology is limitless.
- Lots of scope for FPGA-based flight controllers considering the innumerable application of the drones.

LITERATURE REVIEW

SL NO	YEAR	TITLE & SOURCE	OBJECTIVES	METHODOLOGY	RESULT	LIMITATIONS			
1	2016	TITLE Design, development and implementation of a UAV flight controller based on a state machine approach using a FPGA embedded system. SOURCE DASC	Fast Real time processing of inputs Sensor Interfacing With FPGA Combining Various Sensor inputs	Parallel processing and having large numbers of gates on a single chip And also provides a cost saving platform. Sensors measure the air vehicle's altitude and other functions and compare it to the desired states and the error signal is eliminated	Parallel Processing	Noise From Sensors Affect stability			

LITERATURE REVIEW

SL NO	YEAR	TITLE & SOURCE	OBJECTIVES	METHODOLOGY	RESULT	LIMITATIONS
2	2016	TITLE An analytical review on FPGA based autonomous flight control system for small UAVs SOURCE ICEEOT	To smoothen out MPU 6050 Output using filters. To generate PWM motor Signals corresponding to roll and pitch from the sensors	Kalman Filter and PID Controller offers short transition, good stability, anti-disturbance, good control and fulfills the requirement of real-time and accurate control. FCS The goal of the FCS is to help the user with automatic compensation in all the maneuvers of the aircraft in case of any disturbance.	Timing and Control of FPGA input signals from sensors. Synchronization of signals. Generation of output PWM signals for controlling the motors	PID - limited stability

LITERATURE REVIEW

SL NO	YEAR	TITLE & SOURCE	OBJECTIVES	METHODOLOGY	RESULT	LIMITATIONS
3	2018	TITLE Design and Implementation of FPGA Based Quadcopter SOURCE IJETSR	PWM encoder/decoder Design Study Basic Block diagram of the FC Mapping unit to produce output for motors from roll,pitch,yaw,thro ttle	FPGA Block Diagram PWM encoder PWM signal generator PWM decoder Mapping unit	Relation between the Motor output, Throttle Roll, pitch and yaw required.	No PPM encoder/deco der is implemented.

MOTIVATION & OBJECTIVES

- UAVs have become very popular in recent years and can be used for several applications.
- A flight controller is the core of any UAV and its feasibility depends on the efficiency of the flight controller.
- The motive is to build a well effective and efficient flight controller system.

The main objectives are:

- Testing and interfacing MPU-6050 (I2C) with FPGA board.
- Implementing PID loop and PWM encoder in the FPGA.
- Direct the input of ESC to control RPM of each motor in response to input into PID from MPU and RC transmitter

NOVELTY

- Different implementations other than PID
 - Kalman filter
 - Finite State Machine
 - Fuzzy based
- Convert to a minimum viable product (MVP).
- Integration of more sensors like barometer, ultrasonic to improve stability.
- Implementation of the project in VHDL / SystemVerilog as well, apart from Verilog, to portrait the benefits.

BLOCK DIAGRAM

METHODOLOGY

PPM DECODER

- Each pulse signifies each channel from the RC
- Time interval between each pulse is measured
- This is manipulated to the appropriate channels in the output

12C COMMUNICATION

• I2C - master reading from slave using SDA and SCL pins

I2C data flow

- Filter design for gyro and accelero data from MPU-6050 [Complementary Filter]
 - The Gyro drifts off over the course of time not suitable for long term measurements.
 - Accelerometer is more susceptible to vibrations so values over short time are not suitable
 - A Combination of both filters are used.

FILTER DATAFLOW

PWM DATAFLOW

PID CONTROLLER LOOP

FEASIBILITY STUDY

		Hard	Hardware/Software selection					
SI. No	Requirement in the project	Name	Features relevant to the project	Cost (₹)/ License	· · · · ·			
			project	LICEIISE	Name	Reason	Cost (₹)	
	FPGA	Xilinx Virtex - 6	Performance, Scalability	20000	Virtex - 6	.Cost .Optimal	20000	
1	Development board	Xilinx Zynq 7000	SoC, High Scalability	80000				
		Altera Cyclone V	SoC	25000				
2	IMU	MPU-6050	6-axis IMU, I2C	100	MPU -	.Optimal	100	
2		MPU-6500	6-axis IMU, DMP, I2C	200	6050			
3	IDE	Xilinx Vivado	For Xilinx boards	Free	Xilinx Vivado	.Virtex - 6	Free	
J		Quartus Prime	For Altera boards	Free			20	

FEASIBILITY STUDY

CI	De avisson ant	Hardware/Software available			Hardware/Software selection		
SI. No	Requirement in the project	Name	Features relevant to the project	Cost (₹)/ License	Name	Reason	Cost (₹)
		VHDL	Non-C Syntax, HDL	-	Verilog	.Feasible	-
4	Language	Verilog	C Syntax, Compact, HDL	-			
		SystemVerilog	C++ Syntax, HDL, HVL	-			
5	Control System	PID	Basic control system	-	DID	.Viability	-
5		ML	Complex	-	PID		
	Motor (4)	Coreless	Low cost, compact	500	- KII)(.Efficiency	2000
6		BLDC	Efficiency, Large torque	2000		.Durability	2000

WORK SCHEDULE

- Athul Integrate PPM into PID
- Medha Integrate PWM into PID
- Omar Filter for MPU6050 and I2C protocol for MPU6050
- Sebastian Implement Kalman filter
- Integrate the above into the PID together

Work Done and Schedule

_	B C	D	E	F	G	Н	1	J	
1	PROJE	CT TITLE	FPGA FLIGHT CONTROLLER						
2	PROJEC	PROJECT GUIDE Mr. Jagadeesh Kumar P						ĵ	
3	GROUP M	EMBERS	Athul John Kurian (AJK),Medha Lakshman Rao(MLR),Omar Bin Shafi(OBS),Sebastian James (SJ)						
4		DATE	7th Jan 2021						
5									
6 7		SL. NUMB ER	TASK TITLE	TASK OWNER	START DATE	DUE	DURATION	COMPLETE	
8		1	Project Conception and Initiation						
9		1.1	Topic Selection	OBS, AJK, SJ, MLR	30th July			100%	
10		1.2	Literature Review	OBS, AJK, SJ	25th Aug			6o%	
11		1.3	Feasibility Study	MLR,OBS,SJ	3rd Nov			7096	
12		1.4	Project Planning	OBS, AJK, SJ, MLR	12th Aug			90%	
13		1.5	Project Initiation	OBS, AJK, MLR	14th Nov			45%	
4		1.6	Scope & Goal Setting	SJ,AJK,MLR	1st Nov	c .		8596	
15		1.7	Budget	MLR, AJK	30th Nov			4096	
16		1.8	Background study	SJ	7th Sept			6596	
7									
8		2	Work Schedule					Ų.	
9		2.1	Software installations	OBS, MLR, AJK, SJ	14th Sept			100%	
0.0		2.2	Getting to know the software	OBS, MLR, AJK, SJ	5th Oct			100%	
1.		2.3	PPM Decoder	AJK	3oth Nov			8096	
22		2.4	I2C Communication, filter	OBS, SJ	27th Oct			8596	
23		2.5	PID Loop	OBS, AJK	18th Sept				
24		2.6	PWM Encoder	MLR	22th Nov			90%	
25		2.7	Simulation	AJK, MLR, OBS		15th Mar			
6		2.8	Component Testing			10th Apr			
27		2. 10	Debugging			20th Apr			
28		2.11	Finalising the project	SJ, AJK					
9		2.12	Novelty	SJ, AJK	3oth Nov			90%	
30									

WORK DONE

Athul

- Familiarised with Vivado ISE; implemented gates, adders, clocks.
- Learned basics of PID, learned PPM decoding.
- Completed PPM decoding in Verilog, hardware implementation pending.

Medha

- Familiarised with Vivado ISE; implemented gates, adders.
- Learned basics of PWM and implemented PWM encoding.

Omar

- Familiarised with Vivado ISE; implemented gates, adders, clocks.
- Learned filter design, started to implement filter.
- Implemented I2C protocol.

Sebastian

- Learned the basics of FPGA from Coursera; familiarized with Quartus Prime.
- Read the reference papers; 5 chapters from 3 texts.
- Learned I2C implementation in detail.

CONCLUSION

- Implement FC on FPGA
- PID to provide stability
- Integrate various sensors and Kalman filter to improve stability
- Incorporate ML/FSM
- Develop an MVP from the project

REFERENCES

[1] N. Monterrosa, J. Montoya, F. Jarquín and C. Bran, "**Design, development and implementation of a UAV flight controller based on a state machine approach using a FPGA embedded system,**" 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), Sacramento, CA, 2016, pp. 1-8, doi: 10.1109/DASC.2016.7778069.

[2] B. L. Sharma, N. Khatri and A. Sharma, "An analytical review on FPGA based autonomous flight control system for small UAVs," 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, 2016, pp. 1369-1372, doi: 10.1109/ICEEOT.2016.7754907.

[3] Gadde, Premkumar & Rajmohan, Jayalakshmi. (2018). "**Design and Implementation of FPGA Based Quadcopter**", International Journal of Engineering Technology Science and Research, ISSN 2394 – 3386., 2018, Volume 5, Issue 3.

Thank You:)

