0.1 Lecture 4

Definition (Sequence). We call a **sequence**, we mean a function f on the set \mathbb{N} .

- We can let $x_n = f(n)$. Then it is customary to denote the sequence f by $(x_n)_{n\geq 1}$ or x_1, x_2, \ldots
- Note that x_1, x_2, \ldots need not be distinct.
- If for all $n \in \mathbb{N}$, $x_n \in A$, then we say $(x_n)_{n \geq 1}$ is a sequence in A.
- Sometimes it is convenient to replace \mathbb{N} in the definition above with $\{0,1,2,\ldots\}$ or $\{-1,0,1,2,\ldots\}$.

Theorem. Every infinite subset of a countable set is countable.

Proof. Let A be a countable set. Let $E \subseteq A$ and E is infinite. Our goal is to show that E is countable. Since A is countable, there exists a bijective function $g: \mathbb{N} \to A$, so

$$A = \{g(n) : n \in \mathbb{N}\} = \{x_n : n \in \mathbb{N}\}$$

with $x_n = g(n)$ for all $n \in \mathbb{N}$. Now, let us construct the sequence n_1, n_2, \ldots as follows:

- (1) Let n_1 be the smallest positive integer such that $x_{n_1} \in E$.
- (2)

Remark.

Corollary.

Example 0.1.1 ($\mathbb{N} \times \mathbb{N}$ is countable).

Example 0.1.2 (\mathbb{Q} is countable).

Theorem. Countable union of at most countable sets is at most countable.

Corollary.

Corollary.

Theorem. Finite product of countable sets is countable.

Example 0.1.3 (\mathbb{Q} is countable).

Theorem. The collection of all binary sequences is uncountable.