Today's Quote -

EVERYTHING IS HARD **BEFORE IT** IS EASY.

Today's content

-> Rasics J 2-D array or matrices.

How to declare? rows: horizontal lines

int mat [4][5]

column: vertical lines

observation 1: If we move in jth. row

Col Changes [0 → M-1]

observation 2: If we move in j^{2h} - (ole observation 2) oow changes $[o \rightarrow N-i]$

(4) Liven mat (~][M], print row-wise Sum.

Liven mat (
$$NJ(M)$$
, print row-wise Sum.

Eg., mat [2][u]

 $\frac{1}{2}$
 $\frac{1}{3}$
 $\frac{1}{3$

airen mat [N] [M], print col wise sum {To.do} S Code in today's ? (doubt session) -G→ mat[3][4] ofp.→ 15 8

Di Ceiven Square mat [N][N]. point d'agonals — left to right

Eg: mat[4][4]

$$j=0$$
, $j=0$
while ($i \ge N$ & $j \le N$) $\{$
print ($mat(17CjJ)$)
 $i += 1$
 $j += 1$

T.(→ O(N), S.(→ O(1)

- -> All squares are rectangles.
- All rectangles are equale x

Q1 Given a mat [N][M], point all diagonals going from R-L. Of row or M-1th column. diagonals starting from mat [4][6] 0_r2 (0,4] F,2] [0,5] [1,3] (1/1) (1,5] 2,4 [1,4] 1,3 [2,2] (24) [23] [20] 2 [3,1] [3,3] 3 [3,2]

mat [3][5]

	0	1	2	ટ	Ч
0	1	2	3	4	ک
1	6	7	8	9	0)
2	ĮI.	12	13	14	15

output.

pseudo code

roid print Diagonale (mat [][], N, M) f

April all Diagonals storting from oth row.

for
$$(j \rightarrow 0 + 0 - 1)$$
 {

 $r = 0$, $c = j$

while $(r < N)$ && $c > = 0$) {

private (r) (c)

 $r + = 1$
 $c - = 1$

1/ print all Diagonals starting from Mit col

for $(i \rightarrow 1 \rightarrow 1 \rightarrow N-1)$ for $(i \rightarrow 1 \rightarrow N-1)$ for $(i \rightarrow 1 \rightarrow 1 \rightarrow N-1)$ for $(i \rightarrow 1 \rightarrow 1 \rightarrow N-1)$ for $(i \rightarrow 1 \rightarrow N-1)$ for $(i \rightarrow 1 \rightarrow 1 \rightarrow N-1$

F. (-> O(NAM), S. (-= O(1))

Swe are touching all elements }

once

Q1 Given matrix (NJ(N). Calculate transpose of mat[] with s.c. o(1).

Note-, get transpose in the given matrix itself.

mat [5][5]:

idea: Swap upper-half elements with lower half.

Yold take Transpose (and, N, M) {

for
$$(i \rightarrow 0 \text{ to } N-1)$$
 {

for $(j \rightarrow i+1 \text{ to } N-1)$ }

//swap arr(i)(j) with arr(j)(i)

temp: arr(i)(j)

qr(i)(j) = qor(j)(i)

arr(j)(i) = temp

Qui Civen a square matrix. Rotate 90' clockwise.

	O	1	2	3	4
Ò	1	2	3	Ч	ک
1	6	7	8	9	Ø
2	6	12	13	14	
3	16	17	. 18	19	20
	21	20	23	24	25

reverse of row of 21 +6 11 6 1

reverse 1st row 1 22 17 12 72

reverse 2nd row 2 23 18 12 8 2

reverse 3nd row 2 24 19 14 9 4

reverse 4th row 4 25 20 15 10 5

// step-2. Reverse every row.

Jor (i -> 0 to N-1) &

Left = 0 , right = N-1

while (left < right) f

// swap left element with right clement

temp = arr[i][left] = arr[i][right]

arr[i](left) = temp.

left += 1 , right -= 1

 $T\cdot C \to O(N^2) \qquad S\cdot C \to O(1)$

Rotate Rectangular matrix. I whe need to have extra space 3

Doubts :

9 to 11:30 = least solved problems till sub-arrays-Timings. - 9 pm to 11:30 pm.

Revision on weekly basis. [concepts]

B Questions that were not solved in 1st attempt.

2 3 4 5

top-boundary

12 13 14 15

18 9 20

bothom-boundary

22 23 24 25

left boundary

0 90 180 270,

n

infermediate. - basic idea nearly all D.S. arrays n strings.