Estimació de costos en un Projecte informàtic

GESI-EPSEVG-UPC Jordi Esteve 2009

Estimació de costos d'un P.I.

Definicions d'estimació:

- 1. És la predicció més optimista que té una probabilitat no nul·la d'arribar a ser certa.
- 2. És una predicció que té la mateixa probabilitat d'estar per sobre que d'estar per sota del resultat real.

Moment de l'estimació i grau d'exactitud

Etapa	Exactitud cost PI	Exactitud durada PI
Estudi d'oportunitat	25%-400%	60%-160%
Especificacions	59%-200%	80%-125%
Especificacions acabades	67%-150%	85%-115%
Disseny d'arquitectura acabat	80%-125%	90%-105%
Disseny de detall acabat	98%-115%	98%-102%
Producte acabat	100%	100%

Mètodes d'estimació possibles

Segons Barry W. Boehm (1981):

- 1. Utilització de models
- 2. Judici d'experts en el tipus de projecte
- 3. Analogia amb un altre projecte semblant
- 4. Utilitzar tots els recursos disponibles (Llei de Parkinson: El treball s'expandeix fins a ocupar tots els recursos disponibles).
- 5. Preu guanyador: Preu per ser oferta irresistible o per ser el primer en arribar al mercat, independent de si es pot acomplir.
- 6. Estimació global descendent (top-down)
- 7. Descomposició en activitats (WBS=Work Breakdown Structure) i estimació ascendent (botton-up)

El més operatiu és el 7è, que permet, a més, obtenir un desglossament del PI en activitats.

Models d'estimació de costos

- 1. Models de base històrica. Es basen en l'anologia amb altres projectes semblants i es fonamenten quasi exclusivament en l'experiència professional dels qui efectuen l'estimació. Subjectiu i molt sotmès a errors.
- 2. Models de base estadística. A partir de l'estudi de les dades reals disponibles mesurades en un conjunt de projectes ja acabats, obtenen fórmules que relacionen les diverses unitats de mesura del programari.
- 3. Models de base teòrica. A partir d'una sèrie d'idees generals sobre el procés de construcció de programari elaboren fórmules que relacionen diverses mètriques.
- **4. Models compostos**. Parteixen d'una sèrie de plantejaments teòrics i es complementen o corregeixen amb dades estadístiques obtingudes de projectes reals ja acabats.

Models empírics o estadístics

Es basen en la fòrmula:

$$E = (a + b \cdot L^{c}) \cdot m(x)$$

- E és l'esforç mesurat en persones-mes.
- L és la grandària estimada del projecte en KLOC.
- a, b i c són els coeficients que resulten de l'aproximació estadística de les dades disponibles.
- El terme addicional m(x) és un element d'ajust per a tenir en compte més dades que simplement la grandària del projecte expressada en KLOC.

Models empírics i estadístics (II)

El model de Walston i Felix (1977)

$$E = 5,2 \cdot L^{0,91}$$

- \circ D = 4,1 · L^{0,36} (durada)
- \circ P = 0,54 \cdot E^{0,6} (persones implicades)
- DOC = 40 · L^{1,01} (pàgines documentació)
- El model de Bailey Basili (1981)

$$E = 5.5 + 0.73 \cdot L^{1.16}$$

El model d'Albrecht i Gaffney (basat en punts de funció)
 E = -13,39 + 0,054 FP

Són obsolets pels canvis de tecnologies. Models posteriors com COCOMO han actualitzat les dades i les fórmules.

Models teòrics: Model de Putman (1978)

Putman, analitzant la corba de distribució esforços en el temps de Rayleigh/Norden extreu la fórmula:

$$L = C_k \cdot k^{(1/3)} \cdot t_D^{(4/3)}$$

on K és l'esforç en persones-any, L les línies de codi en KLOC) i t_D el temps total de desenvolupament del projecte en mesos.

 C_k és la **Constant tecnològica**, mesura de l'estat de la tecnologia que s'aplica al projecte. Putman indicava una sèrie discreta de vint valors de C_k que variaven entre 610 i 57.314.

$$C_{\nu} = P/B^{0,333}$$

P és el paràmetre de productivitat (que seria de 28.000 en el cas d'aplicacions de la informàtica de gestió) i B és un factor especial d'habilitat que s'incrementa lentament a mesura que creixen la necessitat d'integració, les proves, la garantia de qualitat, la documentació i altres exigències.

El model és prou correcte per a projectes molt grans, el resultat és molt més imprecís i dubtós en el cas de projectes petits i mitjans.

Models compostos: Models COCOMO

El COCOMO clàssic de 1981 (Barry W. Boehm):

- 1. El **COCOMO bàsic**: Estimació ràpida de l'esforç segons la grandària (KLOC) a l'inici del projecte.
- 2. El COCOMO intermedi afegeix l'efecte d'uns atributs que influeixen en el cost (CDA), amb els quals es vol tenir en compte el tipus d'aplicació i tecnologia, les qualificacions i l'experiència del persona, l'entorn de disseny i programació i les eines de què disposa, etc.
- 3. El **COCOMO** avançat té en compte diversos CDA per a cada fase de la construcció del programari.

Les equacions del model COCOMO:

- $E = a \cdot L^b \cdot CDA$
- \bullet T = c \cdot E^d

on E és l'esforç (persones-mes), L són les línies de codi (KLOC), T és el temps de desenvolupament del projecte (mesos) i CDA són els Cost Driven Attributes.

Models compostos: Models COCOMO (2)

Tipus de projecte:

- Orgànic: Petit, senzill, poca innovació tecnològica. Únic equip.
- Semiacoblat: Nivell intermedi en complexitat. Varis equips.
- Encastat: Grandària i complexitat elevada. Varis equips.

Coeficients del model COCOMO bàsic

		•		1
ப	roj		\frown 1	
	ı		l . I	
•	. 🔾		<u> </u>	
	•	,		

Coeficients

	a	b	С	d
Orgànic	2,4	1,05	2,5	0,38
Semiacoblat	3,0	1,12	2,5	0,35
Encastat	3,6	1,20	2,5	0,32

Models compostos: Models COCOMO (3)

Coeficients del model COCOMO intermedi

Projecte

Coeficients

	а	b	С	d
Orgànic	3,2	1,05	2,5	0,38
Semiacoblat	3,0	1,12	2,5	0,35
Encastat	2,8	1,20	2,5	0,32

Models compostos: Models COCOMO (4)

COCOMO intermedi: atributs que influeixen en els cost (CDDA)

Valors

	Molt baix	Baix	Nominal	Alt	Molt alt	Extraalt
Atributs del producte						
RELY / Fiabilitat requerida	0,75	0,88	1,00	1,15	1,40	_
DATA / Volum de la base de dades	-	0,94	1,00	1,08	1,16	_
CPLX / Complexitat	0,70	0,85	1,00	1,15	1.30	1,65
Atributs de l'ordinador						
TIME / Limitacions de temps d'execució	_	1	1,00	1,11	1,30	1,65
STOR / Limitacions de volum de memòria	1	ĺ	1,00	1,06	1,21	_
VIRT / Volatilitat de la màquina virtual	_	0,87	1,00	1,15	1,30	_
TURN / Temps de resposta	_	0,87	1,00	1,07	1,15	1,65

Models compostos: Models COCOMO (5)

COCOMO intermedi: atributs que influeixen en els cost (CDDA) (continuació)

Valors

	Molt baix	Baix	Nomina I	Alt	Molt alt	Extraalt
Atributs del personal						
ACAP / Capacitat d'anàlisi	1,46	1,19	1,00	0,86	0,71	1,65
AEXP / Experiència en l'aplicació	1,29	1,13	1,00	0,91	0,82	1,56
PCAP / Capacitat de programació	1,42	1,17	1,00	0,86	0,70	_
VEXP / Experiència en la màquina virtual	1,21	1,10	1,00	0,90	_	_
LEXP / Experiència en els llenguatges de programació	1,14	1,07	1,00	0,95	_	-
Atributs del projecte						
MODP / Ús de pràctiques modernes	1,24	1,10	1,00	0,91	0,82	_
TOOL / Ús d'eines de programari	1,24	1,10	1,00	0,91	0,83	_
SCED / Exigències de planificació	1,23	1,08	1,00		1,10	_

Hipòtesis del model COCOMO

- No es tenen en compte els comentaris en el recompte de les KLOC.
- S'admet l'equivalència següent: 1 mes-home són 152 hores de feina.
- Es considera que els requeriments són estables.
- S'accepta que el projecte està ben gestionat.

El model COCOMO de Boehm és el més seriós i complert que hi ha, tot i que els resultats poden haver quedat obsolets per l'evolució de la informàtica en els darrers 20 anys.

Models compostos: COCOMO II

- El COCOMO II dels anys 90 i els 2000
- 1. Model de composició d'aplicacions: Inclou l'ús de prototips per a disminuir els riscos potencials que sorgeixen amb les interfícies gràfiques d'usuari típiques d'eines RAD u altres eines actuals de productivitat i de l'orientació a objectes. En aquest model es defineixen uns punts objecte, adaptació i modernització dels punts de funció d'Albrecht.
- 2. Model de disseny primerenc: Intenta obtenir una primera aproximació en les fases inicials del cicle de vida. Utilitza com a primitives de sortida tant les línies de codi com els clàssics punts de funció d'Albrecht sense ajustar (TUFP).
- 3. Model de postarquitectura: S'aplica quan es considera que el projecte disposa ja de requeriment estables. També fa servir com a primitives de sortida les línies de codi i els punts de funció d'Albrecht sense ajustar (TUFP) i té en compte indicador de la reutilització de programari, cinc factors d'escala i fins a disset factors específics diferents.

Estàndards de productivitat propis

Per a tenir estàndards de productivitat propis cal recollir dades de projectes anteriors de la mateixa instal·lació i establir quin és l'esforç que correspon a les diverses activitats que poden formar part del procés de construcció del programari. Per a fer l'estimació de projectes nous es parteix d'aquestes dades convertides en estàndard de referència.

Procés:

- 1. Quantificar diverses unitats de mesura que tinguin o que semblin tenir una certa relació amb l'esforç (el nombre de formularis de pantalla, el nombre de taules de la base de dades, el nombre i la complexitat dels tractaments, etc.)
- Disposar d'una llarga sèrie d'activitats tipus habituals en el procés de construcció de programari de les quals sabem cost.

Recomenacions pràctiques a cop d'ull

Equivalències pràctiques segons Carper T. Jones:

- 1 FP = 100 LOC.
- FP elevat a 0,4 = mesos de desenvolupament.
- FP/150 = nombre de persones que calen per al desenvolupament.
- FP/500 = nombre de persones que calen per al manteniment futur.
- FP elevat a 1,15 = nombre de pàgines de documentació.
- FP elevat a 1,2 = nombre de casos de prova que es fan.
- FP elevat a 1,25 = potencial d'errors (en projectes nous).
- FP elevat a 0,25 = nombre d'anys que seguirà en ús l'aplicació.

Recomenacions pràctiques a cop d'ull

Recomanacions més generals:

- Vigilar requeriments creixents: Aquests augmenten l'1% cada mes de desenvolupament del PI (en un projecte de dos anys hi ha el 24% més de requeriments).
- Cada inspecció o control d'errors troba i també corregeix el 30% dels errors que hi ha.
- Els projectes inverteixen aproximadament el 18% del seu esforç total a determinar els requeriments i fer les especificacions, un 19% en el disseny, un 34% en la codificació i un 29% en les proves.
- Es gasten dues o tres vegades més d'esforç a mantenir i millorar el programari que el que es gasta a crear-lo.
- Hi ha aproximadament un defecte sense detectar per cada deu que se'n troben a les proves abans de distribuir una versió del programari.

Descomposició d'un Pl

Maneres de descompondre un PI:

- WBS (Work Breakdown Structure), descomposició estructural, la llista estructurada de totes les activitats i tasques d'un projecte.
- PBS (Product Breakdown Structure), descomposició en parts del producte final, taules de la base de dades, formularis, porgrames, mòduls, transaccions, etc.
- OBS (Organization Breakdown Structure), descomposició de l'organització per a atendre totes les tasques que componen la WBS. Cada element terminal de l'OBS (cadascun dels professionals que intervenen en el projecte) ha de quedar encarregat d'una o més tasques, les quals formen els elements finals de la WBS.

Descomposició d'un PI. Exemple

Llista estructura de en forma jeràrquica per a un a teòrica WBS:

Grup de tasques 1
Subgrup de tasques 1.1
Tasca 1.1.1
Tasca 1.1.2
Tasca 1.1.3

Subgrup de tasques 1.2

Tasca 1.2.1

Tasca 1.2.2

Grup de tasques 2

Subgrup de tasques 2.1

Tasca 2.1.1

Tasca 2.1.2

En la pràctica, l'estimació de costos d'un projecte informàtic s'efectua a partir d'una descomposició del projecte en les diverses tasques o activitats que cal fer (WBS), seguida de l'estimació individual de l'esforç que costa cada tasca concreta.

Exemple: Comptabilitat senzilla en un PC

Requeriments:

- L'aplicació ha de suportar un sistema de comptabilitat general per partida doble, susceptible d'incorporar també comptes corrents de clients, a partir de l'utilització del Pla General de Comptabilitat.
- Es faran servir uns codis de compte i subcompte de fins a vuit dígits, organitzats jeràrquicament en quatre nivells. Els nivells queden determinats respectivament per la primera xifra (grup), les dues primeres xifres (subgrup), les tres primeres xifres (comptes) i tot el codi (subcompte):

Pla General de Comptabilitat

Nivell	Codi	Concepte
Grup	4	Creditors i deutors per operacions de tràfic
Subgrup	43	Clients
Compte Compte	430 435	Clients Clients de cobrament dubtós
Subcompte	43512345	Joan Belloch Pi (client número 12345)

Exemple: Comptabilitat senzilla en un PC

- Els moviments afecten sempre els subcomptes (vuit dígits) i s'han de fer repercutir automàticament en piràmide als nivells d'ordre superior (tres, dos, i un dígits, respectivament).
- Els assentaments han de tenir l'opció de múltiples contrapartides fins a un màxim de deu línies per assentament.
- L'aplicació ha d'incloure necessàriament:
 - o Tractaments interactius:
 - Gestió de pla de comptes (alta, baixa, modificació i consulta).
 - Entrada de moviments comptables.
 - Consulta per pantalla del saldo i els moviments d'un subcompte determinat (extracte).
 - Tractaments diferits:
 - LListat del pla de comptes.
 - Llistat del diari.
 - Llistat del major (o d'uns comptes concrets).
 - Llistat mensual de Resultats de pèrdues i guanys.
 - Llistat mensual del Balanç de comprovació.
 - Llistat mensual del Balanç de situació.
 - Tancament del mes

Estimació de costos del projecte

Decomposició estructural de les tasques

Descomposició estructural de les tasques que cal fer (WBS) i, per cada tasca, l'estimació d'esforç en persones-dia.

 \cap D

Descomposició estructural de les tasques	CP	A	P
Gestió del projecte			
01 Estimació i planificació del projecte per primera vegada	1	0	0
02 Seguiment, control i requalificació del projecte (dos mesos)	3	0	0
Anàlisi i disseny d'arquitectura			
03 Anàlisi funcional i especificació	0	3	0
04 Disseny de la base de dades	0	1	0
05 Disseny de formularis i Ilistats	0	2	0
Tractament de gestió del pla de comptes			
06 Redaccció del quadern de càrregues	0	0,5	0
07 Programació	0	0	2
Tractament de l'entrada de moviments comptables			
08 Redacció del quadern de càrregues	0	1	0
09 Programació	0	0	4

Estimació de costos del projecte

Descomposició estructural en tasques	CP	Α	Р
Tractament de la consulta de saldo i moviments	de sul	ocom	otes
10 Redacció del quadern de càrregues	0	0,5	0
11 Programació	0	0	3
Tractament del llistat del pla de comptes			
12 Redacció del quadern de càrregues	0	0,5	0
13 Programació	0	0	2
Tractament del llistat de diari			
14 Redacció del quadern de càrregues	0	0,5	0
15 Programació	0	0	2
Tractament del llistat de major			
16 Redacció del quadern de càrregues	0	0,5	0
17 Programació	0	0	3
Tractament del llistat del compte de pèrdues i gu	anys		
18 Redacció del quadern de càrregues	0	1	0
19 Programació	0	0	3
Tractament del llistat de Balanç de comprovació			
20 Redacció del quadern de càrregues	0	1	0
21 Programació	0	0	3

Estimació de costos del projecte

Descomposició estructural en tasques	CP	Α	Р
Tractament del llistat de Balanç de situació			
22 Redacció del quadern de càrregues	0	0,5	0
23 Programació	0	0	2
Tractament del tancament del mes			
24 Redacció del quadern de càrregues	0	1	0
25 Programació	0	0	3
Prova d'integració del sistema			
26 Integració dels programes i prova general del			
sistema 0 5 5 Documentació			
27 Documentació general del sistema	0	3	0
28 Disseny del sistema d'ajudes (help)	0	2	0
29 Implementació del sistema d'ajudes (help)	0	0	4
Tancament del projecte			
30 Tancament del projecte i recollida final de dades	1	0	0
Total (dies)	5	23	36

Exercicis

- A partir dels anys noranta, què cal fer per utilitzar bé el modes teòric de Putman?
- El model COCOMO de Boehm, que data de 1981, és un exemple clàssic de model d'estimació històric?
- Són fiables els models algorísmics d'estimació de costos?
- Amb vista a la pràctica de la gestió d'un projecte informàtic, quin és el problema principal que plantegen els models tradicionals d'estimació?
- Un cop obtinguda una descomposició de tasques d'un projecte (WBS), es podrien utilitzar els models algorísmics per a fer l'estimació de costos de cada una de les tasques?