Applied Machine Learning Final Project: Home Credit Default Risk

Group 16

Aravind Reddy Sheru, Sai Charan Chintala, Seongbo Sim and Yun Joo An

Indiana University

December 2021

Contents

- Four P's
- Final Project: Home Credit Default Risk
 - Feature Selection
 - Hyperparameter Tuning
 - Results and Discussion
- Conclusion and next steps

Four P's

Past

- We started the HCDR Project, which predict whether borrowers are defaulters or not based on various financial and nonfinancial data.
- ▶ In the first phase, we collected the data, did EDA, and established the baseline model using logistic regression.
- ▶ The baseline model performed well with high accuracy on the test data.
- To improve the result, we tried to balance the data making the number of defaulters and non-defaulters even, but it was not successful.

Present

- ► First, we selected more relevant features, and filled missing values of them by imputation.
- ► To find the best model, we implemented new models of decision tree, lasso regression, ridge regression and XGBoost model.
- We tuned the hyperparameters of the models, and found the best parameters using Grid Search.
- ▶ In the steps above, we used the appropriate metrics for the each model to evaluate the models.

Cont'd

Planned

- ▶ In Phase 3, we will implement a deep learning model.
- We will build a multi-layer perception model in PyTorch for loan default classification.
- As a stretch goal, we will develop and implement and new multitask loss function in PyTorch.
- Finally, we will submit our results on Kaggle, and report our scores and rank.

Problems

- With the feature selection and imputation step, we could not improve the test accuracy or AUC of baseline model.
- Unlike regression models, we could not develop a classification model better than the baseline model.

Feature Selection

- Feature selection and imputation
 - We discarded features with missing values more than 30%, and dropped irrelevant features.
 - We filled the missing values of selected features.
 - e.g. CNT_SOCIAL_CIRCLE with 0 and CNT_FAM_MEMBERS with median.
- Adding more relevant data
 - We decided to add relevant features based on our prior knowledge.
 - e.g. AMT_CREDIT_TO_ANNUITY RATIO, Salary_to_credit.

Hyperparameter Tuning

- To find the best model, we train and evaluate several models.
 - ► Our models are "Logistic Regression", "Decision Tree Model", "Lasso Regression", "Ridge Regression", and "XGBoost".
 - We use different evaluation metrics to have a concrete evaluation of candidate models including "Accuracy", "AUC", and "negative MSE".
- Also, we tuned the hyperparameters with the help of "GridSearchCV".
 - For the "Logistic Regression" model, we used different C parameters to control the penalty strength.
 - ► For the "Decision Tree Model", we used different maximum depth and number of samples split.
 - For the "Lasso Regression", and "Ridge Regression", we used different α parameters to control the weighting of the penalty to the loss function.
 - ► For the "XGBoost", we used different maximum depth and the number of trees.

Results and Discussion

Results for baseline model

Model	Cross fold train accuracy	Test accuracy	Test MSE	AUC
Baseline (Logistic Regression)	91.9	92.0	-	0.504
Baseline with 79 inputs	91.9	91.9	-	0.506
Gridsearch Baseline with 79 inputs	91.9	92.0	-	0.500
Decision Tree Model	-	-	7.56	0.739
Lasso Regression	-	-	6.87	0.756
Ridge Regression	-	-	6.87	0.757
X G Boost	-	-	6.87	0.757

- ► Classification models built in Phase 2 could not win the baseline model.
- ► Among regression models, "Ridge Regression" model shows the best performance.

Conclusion and Next Steps

- In Phase 2,
 - ► We estimated several models including both classification and regression models.
 - Also, we conducted feature selection, data imputation, and hyperparameter tuning.
- In Phase 3,
 - We will implement a deep learning model.
 - We will build additional models in PyTorch.
 - Finally, we will submit our results on Kaggle, and report our scores and rank.