Estimating $P(\beta_j \neq 0|y)$ in a Linear Regression Model

We use the algorithm at the bottom of p. 167 and the top of p. 168 in Hoff.

We use the notation as in class: $z=(z_1,\ldots,z_p)$ is a vector of 0s and 1s. If z_j is 1, then variable x_j is included in the model; otherwise it is not. The notation z_{-j} denotes a vector of length p-1 containing all components of z except z_j .

Outline of the algorithm

We use Gibbs sampling to draw samples from the *marginal* posterior distribution of z given the data.

Since each z_j is binary, it is obvious that the full conditional of z_j given z_{-j} is Bernoulli. We just need to figure out the Bernoulli success probability of each full conditional.

We have $P(z_j = 1 | y, z_{-j}) = o_j/(1 + o_j)$, where o_j is defined in the middle of p. 167 of Hoff.

So, in doing the Gibbs sampling, component z_j is updated by generating one value from the Bernoulli distribution with success probability $o_j/(1+o_j)$.

Once all the components of z have been updated, one draws (β, σ^2) from the posterior distribution $p(\beta, \sigma^2 | y, z)$, where z is the updated model.

In the R program at eCampus, I have used a g-prior (g = n) for the regression coefficients of each model, as defined at the top of p. 165.

As prior for σ^2 given model z, I use inverse-gamma(1/2, $s_z^2/2$), where s_z^2 is the estimated error variance for model z.

For the regression model with normal errors, these priors imply that σ^2 given (y,z) is inverse-gamma with parameters (n+1)/2 and $(s_z^2 + \text{SSR}_n^z)/2$, where SSR_n^z is defined in the middle of p. 165.

The posterior of β given (σ^2, y, z) is multivariate normal with mean vector

$$\frac{n}{n+1}(\boldsymbol{X}_{\boldsymbol{z}}^T\boldsymbol{X}_{\boldsymbol{z}})^{-1}\boldsymbol{X}_{\boldsymbol{z}}^T\boldsymbol{y}$$

and covariance matrix

$$\frac{n}{n+1}\sigma^2(\boldsymbol{X}_{\boldsymbol{z}}^T\boldsymbol{X}_{\boldsymbol{z}})^{-1}.$$

Summary of Output for Exercise 9.2(b)

The following results are based on 10,000 replications.

Variable	$P(\beta_j \neq 0 \boldsymbol{y})$
npreg	0.1026
bp	0.1636
skin	0.0955
bmi	0.9826
ped	0.6823
age	1.0000

	95% credible
Variable	interval for β_j
npreg	[-1.05, 0.00]
bp	[0.00, 0.32]
skin	[0.00, 0.36]
bmi	[0.40, 1.33]
ped	[0.00, 17.16]
age	[0.49, 1.02]

Posterior of error standard deviation

