Instituto Superior Técnico

MEEC

Machine Learning

Lab 3

Neural Networks

Group 9

Manuel Diniz, 84125 Alexandre Rodrigues, 90002

Turno: 4^af 11h00

Contents

1	Pre-processamento dos dados	2
2	Multilayer perceptron	3
3	Convolutional neural network	6
	3.1 Comparação de resultados	9

Chapter 1

Pre-processamento dos dados

De modo a melhor se enquadrarem ao tipo de redes neuronais a usar, os dados são alterados de forma a se obter valores para cada pixel de 0 a 1 em *floating point*, ao invés dos 0 a 255 em *uint8*. Valores normalizados adequam-se melhor a redes neuronais, pelo que se divide por 255. Para além disto converte-se a *label* de cada imagem para representação *one-hot*, um formato mais uma vez mais adequado para os modelos a usar.

Chapter 2

$Multilayer\ perceptron$

Primeiramente cria-se um modelo MLP, constituído por um $input \ layer$, dois hidden layers, o primeiro com 32 e o segundo com 64 neurons, e um $output \ layer$.

Um dos desafios ao treinar neural networks é saber quando parar. Treinar de menos significa que o modelo fique underfit e treinar demais pode levar a que o modelo fique overfit. O modelo é então corrido com early stopping, até um máximo de 200 epochs, para que este pare assim que a sua performance não melhore com o validation set.

Figure 2.1: MLP com Early Stopping

O validation set começa a estabilzar aproximadamente nas 30 epochs, altura em que a sua performance não melhora, sendo que a loss continua a diminuir.

O modelo tem uma accuracy de 0.8787 no conjunto de teste e produz a seguinte confusion matrix:

Label	T-shirt	Trouser	Pullover	Dress	Coat	Sandal	Shirt	Sneaker	Bag	Ankle boot
T-shirt	870	2	26	26	2	3	64	0	7	0
Trouser	2	970	4	17	3	0	3	0	1	0
Pullover	19	0	799	10	98	0	72	0	1	0
Dress	38	7	14	855	32	0	20	0	4	0
Coat	0	1	97	25	803	0	73	0	1	0
Sandal	0	0	0	0	0	950	0	28	1	21
Shirt	164	1	96	29	65	0	637	0	8	0
Sneaker	0	0	0	0	0	13	0	958	0	29
Bag	7	0	8	6	5	1	6	5	962	0
Ankle boot	0	0	0	0	0	11	1	35	0	953

De seguida testou-se o modelo, mas desta vez sem o early stopping.

Figure 2.2: MLP sem Early Stopping

O $validation\ loss$ aumenta ao longo das epochs. No entanto, a loss é menor que o modelo com $early\ stopping$, e continua a diminuir.

O modelo tem uma accuracy pior, 0.8642, e produz a seguinte confusion matrix:

Label	T-shirt	Trouser	Pullover	Dress	Coat	Sandal	Shirt	Sneaker	Bag	Ankle boot
T-shirt	800	4	14	34	4	0	136	0	9	0
Trouser	5	971	5	12	2	0	4	0	0	1
Pullover	22	1	771	15	97	1	88	0	5	0
Dress	29	11	17	880	24	2	29	0	7	1
Coat	4	0	91	37	880	1	56	0	4	0
Sandal	0	0	0	0	0	952	0	25	5	18
Shirt	109	1	81	28	72	0	698	0	11	0
Sneaker	0	0	0	0	0	31	0	927	0	42
Bag	9	0	5	5	8	6	9	3	955	0
Ankle boot	0	0	0	0	0	16	1	35	0	948

Como se pode verificar para ambos os casos, o modelo mlp funciona e obtém bons resultados na identificação das imagens. Existem alguns erros na identificação de T-shirts e Shirts, mas é algo que se espera, uma vez que são imagens parecidas.

Chapter 3

$Convolutional\ neural\ network$

É agora criado o modelo de uma *CNN*, com a arquitetura especificada. Este modelo é treinado por um máximo de 200 *epochs*, e programado para parar mais cedo se não existirem melhorias na aprendizagem.

O calback de early stopping tem como objetivo evitar que o modelo fique overfit, pelo que é muito importante que este se baseie na métrica correta para decidir quando parar a aprendizagem e restaurar os melhores pesos. A métrica a escolher é claramente val_loss, ou loss de validação, isto porque é a métrica que dá uma avaliação da performance do modelo com dados com qual este não treinou. Se fosse usado, por exemplo, a métrica loss, que diz respeito aos dados de treino, o modelo iria tornar-se significativamente overfit.

Figure 3.1: Evolução das métricas ao longo dos epochs

Como se pode observar, a loss continua a diminuir muito depois da validation loss estabilizar.

Observa-se ainda uma pequena subida da validation loss junto aos últimos epochs, antes do early stopping ter parado a aprendizagem. Nesta altura o modelo estava a tornar-se overfit, melhorando a performance nos dados de treino ao custo da nos dados de validação.

A validação final com os dados de teste produz uma accuracy de 0.9016, e a $confusion\ matrix$ seguinte:

Label	T-shirt	Trouser	Pullover	Dress	Coat	Sandal	Shirt	Sneaker	Bag	Ankle boot
T-shirt	870	0	24	25	2	1	71	0	7	0
Trouser	1	971	1	21	2	0	2	0	2	0
Pullover	18	0	868	7	37	0	67	0	3	0
Dress	16	2	16	906	28	0	27	0	5	0
Coat	1	1	53	19	845	0	77	0	4	0
Sandal	0	0	0	0	0	971	0	21	0	8
Shirt	153	0	68	21	56	0	685	0	17	0
Sneaker	0	0	0	0	0	9	0	974	0	17
Bag	3	1	8	4	4	2	7	5	965	1
Ankle boot	1	0	0	0	0	4	0	34	0	961

Como se pode observar, o modelo é robusto na identificação dos objetos. O maior volume de enganos ocorre na identificação de peças de roupa semelhantes, como T-shirts e shirts, o que é razoável, tendo em conta que os seus formatos são parecidos.

Observando agora as ativações das camadas de convolução para uma imagem exemplo, obtém-se:

Figure 3.2: Imagem de teste

Figure 3.3: Ativação da primeira camada convolucional

Há uma certa dificuldade em tentar entender as features que cada canal capta, pois uma rede neuronal nem sempre opera do modo que imaginamos, e há uma certa tendência de impor a nossa lógica ou forma de pensar sobre o modelo, que pode não ser correto. No entanto, parece ser possível extrapolar que o canal 12 (começando a contar do 0) e talvez o 11 extraem, por exemplo, o formato geral do sapato.

Figure 3.4: Ativação da segunda camada convolucional

A segunda convolução já não permite, através de um olho humano, entender minimamente o processo que o modelo usa, ou que *features* está a identificar. Algumas ativações parecem realçar as bordas do objeto, mas é difícil dizer ao certo.

3.1 Comparação de resultados

Avaliando a validation loss, o modelo convolucional aparenta ter melhores resultados, mostrando mais "certeza" nas suas previsões. A accuracy resultante também é ligeiramente superior. A diferença não é drástica pois redes convolucionais são geralmente utilizadas para tornar o modelo independente quanto à posição do objeto em questão na imagem. Ora neste caso, o objeto encontra-se sempre centrado, sendo que a performance entre os modelos é semelhante.

Quanto aos parâmetros a optimizar, a CNN possui 15642, enquanto que o MLP possui 27882. Apesar de ter mais parâmetros, o MLP demora muito menos tempo a optimizar (pois o processo de convolução e o backpropagation necessário é computacionalmente complexo por comparação). Como a performance é comparável, assumindo que os dados a aplicar não diferem drasticamente dos usados no treino, o MLP aparenta ser suficiente se o tempo de treino for uma prioridade. Caso se queira a melhor performance possível, opta-se pelo CNN.