On the Influence of the Key Scheduling on Linear Approximations

6. April 2016

CITS Oberseminar

Friedrich Wiemer

RUB

- 1 Motivation
- 2 Introduction
- 3 Experiments
- 4 Results
- 5 Future Work

Assumptions made in Block Cipher DesignsMotivation

Independent Round Keys and Key Schedule Behaviour

Hypothesis of Stochastic Equivalence

Cipher behaves the same when instantiated with

- independent round keys, or
- round keys generated by key schedule.

SMALLPRESENT

Introduction

- SPN
- PRESENT'S 4 bit S-box
- Blocksize is 4 · n
- last round omits permutation
- standard PRESENT: n = 16

4 bit S-boxes

Introduction

Representatives of Serpent-type Equivalence Classes

χ	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$R_0(x)$	0	3	5	6	7	10	11	12	13	4	14	9	8	1	2	15
$R_1(x)$	0	3	5	8	6	9	10	7	11	12	14	2	1	15	13	4
$R_2(x)$	0	3	5	8	6	9	11	2	13	4	14	1	10	15	7	12
:																÷

- all 4 bit S-boxes are classified
- 16 optimal and 20 Serpent-type equivalence classes

Linear Cryptanalysis (LC)

Introduction

- invented by Matsui 1993–1994
- broke DES
- together with Differential Cryptanalysis (DC) most used attack on block ciphers

- advanced techniques: multidimensional LC, zero-correlation LC,...
- links to DC

lmage: http://www.isce2009.ryukoku.ac.jp/eng/keynote_address.html

RUB

Linear ApproximationsIntroduction

■ We want to linear approximate a function $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$

Linear Approximations

Introduction

 \blacksquare We want to linear approximate a function $F:\mathbb{F}_2^n\to\mathbb{F}_2^n$

Dot-Product

$$\langle \alpha, x \rangle = \bigoplus_{i=0}^{n-1} \alpha_i x_i$$

Linear Approximations

Introduction

 \blacksquare We want to linear approximate a function $F:\mathbb{F}_2^n\to\mathbb{F}_2^n$

Dot-Product

$$\langle \alpha, x \rangle = \bigoplus_{i=0}^{n-1} \alpha_i x_i$$

Mask

Let $\alpha,\beta,x\in\mathbb{F}_2^n$ and

$$\langle \alpha, x \rangle = \langle \beta, F(x) \rangle$$
 (1)

- We say α is an *input mask* and β is an *output mask*.
- Equation 1 does not hold for every input/output masks.

Linear Approximations Introduction

■ We want to linear approximate a function $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$

Dot-Product

$$\langle \alpha, x \rangle = \bigoplus_{i=0}^{n-1} \alpha_i x_i$$

Mask

Let $\alpha,\beta,x\in\mathbb{F}_2^n$ and

$$\langle \alpha, x \rangle = \langle \beta, F(x) \rangle$$
 (1)

- We say α is an *input mask* and β is an *output mask*.
- Equation 1 does not hold for every input/output masks.
- It is *correlated*, i.e., $\Pr[\langle \alpha, x \rangle = \langle \beta, F(x) \rangle] = \frac{c(\alpha, \beta) 1}{2}$.

LC Example: SMALLPRESENT

Introduction

SMALLPRESENT-[4] over 3 Rounds S k_3

LC Example: SMALLPRESENT

Introduction

SMALLPRESENT-[4] over 3 Rounds

Basically approximate:

- the S-box
- the linear layer

RUB

LC Example: SMALLPRESENT

Introduction

SMALLPRESENT-[4] over 3 Rounds

Basically approximate:

- the S-box
- the linear layer

RUB

LC Example: SMALLPRESENT

Introduction

SMALLPRESENT-[4] over 3 Rounds

Basically approximate:

- the S-box
- the linear layer
- the linear layer 'is easy'
- for the S-boxes use Linear Approximation Table (LAT)

LC Example: SMALLPRESENT

Introduction

LAT

$\frac{\alpha}{\beta}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1					-8		-8						-8		8
2		4	4	-4	-4			4	-4		8		8	-4	-4
3		4	4	4	-4	-8		-4	4	-8				-4	4
4		-4	4	-4							-8			-4	
5		-4	4	-4	4			4	4	-8		8		4	
6 7			-8			-8			-8			8			-4
7			8	8					-8					8	-4
8			-4			-4	4	-4				-4	4	8	-4
9	8	-4	-4			4	-4	-4	-4	-8		-4	4		4
10		8		4	4	4	-4				-8	4	4	-4	8
11 -	-8			-4	-4	4	-4	-8				4	4	4	
12				-4	-4	-4	-4					-4	4	4	4
13	8	8		-4								4	-4	4	4
14		4	4	-8	8	-4	-4		-4			-4	-4		
15	8	4	-4	4	4			8		4	-4	-4	-4		

Linear Hull

Introduction

- Our example exhibits more than one trail for $(\alpha, \beta) = (15, 15)$
- Key dependency

Linear Hull

Introduction

- Our example exhibits more than one trail for $(\alpha, \beta) = (15, 15)$
- Key dependency

Linear Hull

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a block cipher over r rounds, and $E: \mathbb{F}_2^m \to (\mathbb{F}_2^n)^{r+1}$ a key schedule. The *linear hull* $c_F^k(\alpha, \beta)$ is

$$c_{\text{F}}^{k}(\alpha,\beta) := \sum_{\theta \mid \theta_0 = \alpha, \theta_r = \beta} (-1)^{\langle \theta, \text{E(k)} \rangle} c_{\theta}$$

DistributionsIntroduction

■ Attack complexity of linear cryptanalysis is proportional to $(c_{\theta})^{-2}$.

DistributionsIntroduction

- Attack complexity of linear cryptanalysis is proportional to $(c_{\theta})^{-2}$.
- We assume the *Hypothesis of Stochastic equivalence*.
- Thus, distribution of linear biases follows a normal distribution.
- Its width is defined by the variance.

DistributionsIntroduction

- Attack complexity of linear cryptanalysis is proportional to $(c_{\theta})^{-2}$.
- We assume the *Hypothesis of Stochastic equivalence*.
- Thus, distribution of linear biases follows a normal distribution.
- Its width is defined by the variance.
- What happens with different key schedules?

SMALLPRESENT variants

Experiments

Independent Round Keys

$$k = (k_0, \dots, k_r) \in (\mathbb{F}_2^n)^{r+1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad k_0$$

$$\downarrow \qquad \qquad k_1 \longrightarrow \qquad k_1$$

$$\vdots \qquad \qquad \qquad \vdots$$

$$\downarrow \qquad \qquad k_1 \longrightarrow \qquad k_1$$

Constant Round Keys

S-boxes

choose $S \in \{R_0, ..., R_{19}\}$

Distributions

Results

SMALLPRESENT-[16] with R_0 , 10 rounds

DistributionsResults

SMALLPRESENT-[16] with R_1 , 10 rounds

Distributions

RUB

Results

SMALLPRESENT-[16] with R_2 , 10 rounds

Distributions

Results

RUB

More Distributions for R₁ Results

SMALLPRESENT-[16] with R₁, 10 rounds

More Distributions for R₁

Results

SMALLPRESENT-[16] with R_1 , 12 rounds

SMALLPRESENT-[16] with R_1 , 13 rounds

SMALLPRESENT-[16] with R_1 , 14 rounds

SMALLPRESENT-[16] with R_1 , 15 rounds

SMALLPRESENT-[16] with R_1 , 16 rounds

SMALLPRESENT-[16] with R_1 , 17 rounds

RUB

Results

SMALLPRESENT-[16] with R_1 , 18 rounds

More Distributions for R₁

Results

SMALLPRESENT-[16] with R_1 , 19 rounds

RUB

Results

SMALLPRESENT-[16] with R_1 , 20 rounds

Results

SMALLPRESENT-[16] with R_1 , 21 rounds

RUB

Results

SMALLPRESENT-[16] with R_1 , 22 rounds

Results

SMALLPRESENT-[16] with R_1 , 23 rounds

Results

SMALLPRESENT-[16] with R_1 , 24 rounds

RUB

Results

SMALLPRESENT-[16] with R_1 , 25 rounds

Behaviour over more rounds

Results

Min/Max correlation with S-box R₁, normalised to standard deviations

Induced Graph Besults

SMALLPRESENT-[4]

- adjacency matrix from ciphers round function
- each bit is a vertex
- each non-zero entry in the LAT is an edge

Induced Graph Results

RUB

S-box R₀

S-box R₂

A new (un-) secure PRESENT variant

Proposal

Future Work

- PRESENT with R₂ as S-box
- 31 encryption rounds
- Constant key schedule

A new (un-) secure PRESENT variant

Future Work

Proposal

- PRESENT with R₂ as S-box
- 31 encryption rounds
- Constant key schedule

Problem: Constant key schedule is suspicious

- Slide attacks
- Wider distribution is known

Invariant Subspaces (Inv. Subs) in Key Schedules

- Invariant subspaces can be equivalent to constant round keys.
- Can we construct functions with specific Inv. Subs?
- Is there an unsuspicious key schedule with an Inv. Sub?

Invariant Subspaces (Inv. Subs) in Key Schedules

- Invariant subspaces can be equivalent to constant round keys.
- Can we construct functions with specific Inv. Subs?
- Is there an unsuspicious key schedule with an Inv. Sub?

Hypothesis of Stochastic Equivalence

Find an explanation for observed behaviour.

Invariant Subspaces (Inv. Subs) in Key Schedules

- Invariant subspaces can be equivalent to constant round keys.
- Can we construct functions with specific Inv. Subs?
- Is there an unsuspicious key schedule with an Inv. Sub?

Hypothesis of Stochastic Equivalence

Find an explanation for observed behaviour.

Hypothesis of Wrong Key Randomisation

Scrutinise wrong key behaviour.

RUB

Questions?

Thank you for your attention!

Mainboard & Questionmark Images: flickr