

Algorithmen & Datenstrukturen

Backtracking

Wolfgang Auer

Motivation

- Für viele Probleme
 - gibt es keinen spezifischen Algorithmus, der das Problem löst
 - gibt es keinen Algorithmus, der für praxisnahe
 Problemgrößen in akzeptabler Zeit eine Lösung ergibt
- Versuche dennoch eine Lösung zu finden, beruhen auf dem *Trial and Error* Prinzip. D.h. man versucht durch Probieren eine Lösung zu finden!

Konzepte zu Backtracking

- Backtracking (Zurückverfolgung) ist eine
 - systematische Art der Suche
 - in einem vorgegebenen Lösungsraum

- Führt eine Teillösung in eine
 - Sackgasse, dann wird der
 - jeweils letzte Schritt rückgängig gemacht ("back-tracking")

Suchstrategien

Alternative Ansätze

Ebene für Ebene wird durchsucht ⇒

Breitensuche

Möglichst schnell in die Tiefe \Rightarrow

Tiefensuche

Backtracking ist Tiefensuche!

- Start
- Sackgasse
- Lösung

Weg aus einem Labyrinth (1)

Strategie

- Vom aktuellen Feld
 systematisch nach 1. oben,
 rechts, 3. unten und 4. links
 abzweigen
- Markiere die besuchten Felder
- In Sackgasse solange Züge zurücknehmen bis Zug auf ein nicht bereits besuchtes Feld möglich

Weg aus einem Labyrinth (2)

Weg aus dem Labyrinth Pseudo Code


```
global char labyrinth[][]
global Direction pfad []
qlobal int schritte //Anzahl der Schritte auf dem Pfad
findeLösung(√pos) {
   markiere labyrinth[pos] als besucht
   if (pos == Position eines Ausgangs) {
      return true //Lösung wurde gefunden
   while (es gibt noch unbesuchte Nachbarn von pos) {
      nPos = nächstes unbesuchtes Nachbarfeld in NOSW-Reihenfolge
      pfad[schritte] = Richtung des nächstes Nachbarfeld
      schritte = schritte + 1
      if (findeLösung(nPos) == true) {
         //Lösung für Teilproblem wurde gefunden
         return true
      } else { //Wir sind in einer Sackgasse
         schritte = schritte - 1
   } // end while
   //Es gibt keine Schrittfolge, die zu einer Lösung führt
   return false
```

Allgemeiner Backtracking Algorithmus


```
findeLösung( ↓index ↓↑lösung) {
  while (es gibt noch neue Teilschritte) {
     wähle den nächsten neuen Teilschritt schritt
     erweitere lösung um schritt
     if (lösung vollständig) {
       return true //Lösung wurde gefunden
     } else {
       if (findeLösung(index + 1, lösung) == true) {
          //Lösung für Teilproblem wurde gefunden
          return true
       } else { //Wir sind in einer Sackgasse
          mache schritt rückgängig
  } // end while
  //Es gibt keine Schrittfolge, die zu einer Lösung
  fijhrt
  return false
```

n-Damen Problem (1)

- Geg: Schachbrett mit n × n Feldern und n Damen.
- Ges: Alle Damen so plazieren, sodass sich diese gegenseitig nicht schlagen können
- Idee: Eine Dame bedroht alle Figuren in der gleichen Zeile/Spalte und entlang den Diagonalen
 ⇒ pro Zeile 1 Dame, pro Spalte 1 Dame
- Lösungsschritt

Suche in der jeweils nächsten Zeile eine Position, die von keiner der bisher gesetzten Figuren bedroht wird

-1.Schritt					
2					

n-Damen Problem Algorithmus (Pseudo code)


```
PlaceQueen ( ↓row ↓↑nrOfQueensPlaced) {
  for all (columns col) {
     if (QueenFits(col, row)) {
       place Queen at (col|row)
       nrOfOueensPlaced++
       if (PlaceQueen(row + 1, nrOfQueensPlaced) == true) {
          //Solution found
          return true
       } else { //Unable to place Queen => Backtracking
          remove Oueen from (col|row)
          nrOfOueensPlaced--
       } // end if
     } // end if
  } // end while
  return (nr0f0ueensPlaced == boardSize)
```

Laufzeitbetrachtung

- Bei der Tiefensuche werden bei
 - max. k möglichen Verzweigungen von jeder Teillösung aus
 - einem Lösungsbaum mit maximaler Tiefe von n im schlechtesten Fall
- 1 + k + k^2 + k^3 + ... + k^n = $(k^{n+1} 1) / (k 1)$ = $O(k^n)$ Alternativen untersucht
 - ⇒ exponentielle Laufzeit

Anwendung von Wissen über das Problem führt zu wesentlichen Verbesserungen!

Backtracking mit Heuristiken

- Bisher
 - Systematische Suche, aber wenig intelligent
- Verbesserung
 - Verwendung von zusätzlichen Wissen
 - Bei jeder Entscheidung welcher Schritt als nächster ausgeführt werden soll, wird der viel-versprechendste gewählt.
 - ⇒Erhöhung der Wahrscheinlichkeit schneller eine Lösung zu finden

Heuristiken sind "Strategien, die *mit höherer* Wahrscheinlichkeit (jedoch ohne Garantie) das Auffinden einer Lösung beschleunigen sollen."

(Quelle: Schüler-Duden "Die Informatik", S. 236, Bibliograph. Institut, Mannheim/Wien/Zürich, 1986)

Springerproblem (1)

Das Problem:

 Ein Springer soll jedes Feld eines Schachbretts genau einmal besuchen

Ein Springer kann max. 8 mögliche Orte anspringen

Quelle: Thomas Dübendorfer

- Zug ist gültig, wenn das neue Feld
 - innerhalb des Spielfeldes liegt
 - unbesucht ist
- Besuchsreihenfolge wird gespeichert

Springerproblem (2)

Backtracking Algorithmus:

- Systematisch gemäß obiger Reihenfolge springen
- Bei "Sackgassen" Sprünge zurücknehmen (Backtracking)
- Springerweg, sobald Weglänge = Anzahl Felder

36	31	22	19	4	29
23	18	3	30	o,	20
32	35	24	21	28	5
17	2	33	8	13	10
34	25	12	15	6	27
1	16	7	26	11	14

Die Abbildung zeigt einen Springerweg auf einem Schachbrett der Grösse 6x6.

Begonnen wurde unten links.

Heuristik von Warnsdorf (1)

- Es muss immer auf das Feld gesprungen werden, welches am schlechtesten erreichbar ist.
- Maß für schlechte Erreichbarkeit eines Feldes:
 - Anzahl unbesuchter Felder, die man von diesem in einem Sprung erreichen kann. Je weniger, um so schlechter erreichbar.
- Wir bauen diese Regel ein:
 - Anstatt in der vorgegebenen Reihenfolge zu springen, berechnen wir jeweils die Erreichbarkeit aller vom aktuellen Ort anspringbarer Felder und springen zuerst zum am schlechtest erreichbaren.

Heuristik von Warnsdorf (2)

- Auswirkungen
 - Springerweg für 8x8 in unter 1 Sekunde.
 - Springerweg für 50x50 in wenigen Sekunden.
 - Springerweg ab ca. 60x60 ziemlich langsam.

Grund

 Bis 56x56 Felder brauchen wir dank der Heuristik von Warnsdorf keinen einzigen Backtracking-Schritt zu machen. Der Aufwand zur Bestimmung der Erreichbarkeiten der Felder macht sich also mehr als bezahlt.

Exhaustions suche

 Im Gegensatz zum herkömmlichen Backtracking werden alle Lösungen gesucht

```
findeAlleLösungen( ↓index ↓↑lösung) {
  while (es gibt noch neue Teilschritte gibt) {
     wähle den nächsten Teilschritt schritt
     erweitere lösung um schritt
     if (lösung vollständig) {
       Verarbeite Lösung
     } else {
       findeAlleLösungen(index + 1, lösung)
    mache schritt rückgängig
  } // end while
```