Podsumowanie pracy w sekcji Hexapod w semestrze 237

Hexapod Bionik

KNR "Bionik"

hexapod.bionik@gmail.com

7 Marca 2024

Profil GitHub

Hexapod Bionik

Organizacja na GitHub

Spis treści

- 1 Podsumowanie prac w semestrze 23Z
 - Prace wykonane w sekcji algorytmicznej
 - Protokół Hexapod
 - Kinematyka odnóża
 - Symulacja w Webots
 - Podsumowanie prac w sekcji mechanicznej
 - Obecne odnóże
 - Odnóże rozwojowe v1
 - Odnóże rozwojowe v2
- Plany rozwojowe na semestr 24L
 - Cele dla sekcji algorytmicznej
 - Cele dla sekcji mechanicznej
 - Wykorzystanie małej puli

Główne założenia dot. projektu

- Robot kroczący typu Hexapod
- Wykorzystanie połączenia Raspberry Pi z mikrokontrolerem STM32 w sterowaniu
- Stabilizacja zadanej orientacji robota
- Wykorzystanie druku 3D w technologii FDM
- Docelowo implementacja oprogramowania we framework'u ROS2

Założenia implementacyjne protokołu Hexapod

- Budowa protokołu wymiany danych na bazie protokołu SPI
- Wykorzystanie Raspberry Pi 4 jako Main Controller
- Wykorzystanie STM32F446 jako Hardware Controller
- Wiele rodzajów ramek o unikatowych identyfikatorach zapewnienie skalowalności

Schemat połączeń

Protokół Hexapod v1.0.0 - obsługiwane ramki

Ramka typu ONE SERVO

Podstawowa ramka komunikacyjna w wersji v1.0.0, pozwala na ustawienie kąta dla serwomechanizmu z danym numerem identyfikacyjnym.

Ramka typu ONE LEG

Ramka komunikacyjna pozwalająca w jednej wiadomości przesłać ustawienia kątów dla wszystkich 3 serwomechanizmów znajdujących się w jednej nodze.

Typ ramki	Długość [bytes]	Kod
ONE LEG FRAME	14	1
ONE SERVO FRAME	6	2

Diagram kinematyczny odnóża

- J1 zakres ruchu $\theta_1 \in (-90^\circ; 90^\circ)$
- J2 zakres ruchu $\theta_2 \in (-90^\circ; 90^\circ)$
- J3 zakres ruchu $\theta_3 \in (-180^\circ; 0^\circ)$

Symulacja w Webots

Schemat techniczny obecnego odnóża

Schemat techniczny obecnego odnóża

Symulacja momentów siły - J3

Symulacja momentów siły - J2

Odnóże rozwojowego v1

Schemat techniczny odnóża rozwojowego v1

Schemat techniczny odnóża rozwojowego v1

Odnóże rozwojowego v2

Schemat techniczny odnóża rozwojowego v1

Schemat techniczny odnóża rozwojowego v1

Cele dla sekcji algorytmicznej

- Stworzenie interfejsu pozwalającego na sterowanie położeniem i orientacją robota (system ortogonalnych modułów)
- Podstawowy układ stabilizacji zadanej orientacji w oparciu o sprzężenie zwrotne z modułu IMU
- Przenoszenie dotychczas stworzonych modułów do nowej architektury systemu opartej o ROS2
- Dalsze symulacje robota w środowisku Webots z wykorzystaniem najnowszych modeli
- Rozwój protokołu Hexapod (rozszerzanie o nowe ramki i optymalizacja)

Plany na teraz

- Opracowanie najniższej warstwy komunikacji z STM32 w oparciu o pakiety oraz węzły ROS2
- Sukcesywne przenoszenie elementów robota do formatu URDF(preferowane zamiast natywnego dla Webots PROTO)
- Unifikacja modeli generowania trajektorii oraz chodu
- Integracja zaimplementowanych algorytmów i programów na urządzenia docelowe

Cele dla sekcji mechanicznej

- Projektowanie korpusu robota oraz jego realizacja w ramach możliwości
- Projektowanie układu zasilania dla robota
- Projektowanie shield'a dla Raspberry Pi 4 wraz z mikrokontrolerem STM32 oraz innymi komponentami pomiarowymi
- Testy czujników nacisku
- CI/CD

Plany na teraz

- Realizacja, testy i walidacja nowych wersji odnóża i następnie wybranie ostatecznej wersji rozwojowej
- Integracja zaimplementowanych algorytmów i programów na urządzenia docelowe

Wykorzystanie małej puli

- Mechanika
 - Elementy złączne ok. 250zł dla 6 odnóży
 - Serwomechanizmy 20 sztuk po 150 zł, ok. 3000 zł
 - Filament ok. 300 zł
- Elektronika
 - IMU 3 sztuki ok. 150zł
 - Płytki drukowane ok. 1500zł jeśli zamawiane w UE
 - Elementy do obłożenia płytek ok. 800zł
 - Pakiety bateryjne ok. 600zł
 - Raspberry 5 w wesji 8GB 2 sztuki po 440 zł, ok. 880 zł
 - Mikrokontrolery STM ok. 370 zł
 - Przewody ok. 100 zł

Sumując wszystko wychodzi ok 8000 zł.

