





3

### METECROLOGICAL DATA REPORT

19504pm opps Minelian Sp. 1025 Remain Sp. 1-37 26 July 1979

White Sands Meteorplosical Team

ACCOUNTED TO CONTRACT A MARKOTT Barto I Sancio Resourch! Barton, Serv Herror

# 14 ERADCOM/ASL-DR-1946

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) **READ INSTRUCTIONS** REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER DR 1046 4. TITLE (and Subtitle) 5. TYPE OF RECOST A PERIOD COVERED 19304DT GSRS, Missile Number 1035 Round Number V-57, 7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(.) DA Took 1T665762D126#02 White Sands Meteorological Team 9. PERFORMING ORGANIZATION NAME AND AUDRESS 11. CONTROLLING OFFICE NAME AND ACCHESS US Army Electronics Research & Development Comd Atmospheric Sciences Laboratory White Sands Missile Range, New Mexico 88002 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) US Army Electronics Research & Development Comd UNCLASSIFIED 154. DECLASSIFICATION DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 9) Meteoro logical data repto, 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Repu 18. SUPPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse elde if necessary and identify by block number) 1. Ballistics 2. Meteorology 3. Wind 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Meteorological data gather for the launching of 19304DT GSRS, Missile Number 1035 Round Number V-57, are presented in tabular form.

|      |       | CONTENTS                                                                                     | PAGE    |
|------|-------|----------------------------------------------------------------------------------------------|---------|
| INTR | ODUCT | ION                                                                                          | - 1     |
| DISC | ussio | N                                                                                            | - 1     |
| MAP- |       |                                                                                              | - 2     |
| TABL | ES    |                                                                                              |         |
|      | 1.    | Surface Observation Taken at 0900 MDT at LC-33                                               | - 3     |
|      | 2.    | Anemometer-Measured Wind Speed and Direction, LC-33 Fixed Pole, Taken at 0900 MDT            | - 4     |
|      | 3.    | Anemometer-Measured Wind Speed and Direction, Tower Levels 1, 2, 3, and 4, taken at 0900 MDT | - 5     |
|      | 4.    | LC-33 Pilot Balloon Measured Wind Data at 0900 MDT                                           | - 6-7   |
|      | 5.    | Nick Site Pilot Balloon Measured Wind Data at 0900 MDT                                       | - 8-9   |
|      | 6.    | SMR-Significant Level Data at 0800 MST                                                       | - 10    |
|      | 7.    | SMR Upper Air Data at 0800 MST                                                               | - 11-15 |
|      | 8.1   | SMR MRN Significant Level Data 0800 MST                                                      | - 16    |
|      | 9.    | SMR Mandatory Levels at 0800 MST                                                             | - 17    |
|      | 10.   | SMR MRN Mandatory Levels at 0800 MST                                                         | - 18    |

| Unamnounced Justification  By  Distribution/  Availability Codes |
|------------------------------------------------------------------|
| By                                                               |
| By                                                               |
| Distribution/ Availability Codes                                 |
| Availability Codes                                               |
| Availability Codes                                               |
|                                                                  |
| Avail and/or                                                     |
| ist special                                                      |
| A.                                                               |

#### INTRODUCTION

19304DT GSRS , Missile Number 1035 , Round Number V-57 , was launched from LC-33 , White Sands Missile Range (wSMR). New Mexico, at 0900 MDT, 26 July 1979 . The scheduled launch time was 0900 MDT.

#### DISCUSSION

Meteorological data were recorded and reduced by the White Sands Meteorological Team, Atmospheric Sciences Laboratory (ASL), White Sands Missile Range, New Mexico. The data were obtained by the following methods:

#### 1. Observations

#### a. Surface

- (1) Standard surface observations to include pressure, temperature (°C), relative humidity, dew point (°C), density  $(gm/m^3)$ , wind direction and speed, and cloud cover were made at the LC-33 Met Site at T-0 minutes.
- (2) Anemometer data were provided from existing pole-mounted and tower-mounted anemometers at LC-33. Monitor of wind speed and direction from one anemometer was also provided in the launch control room.

#### b. Upper Air

(1) Low level wind data were obtained from RAPTS T-9 pibal observation at:

#### SITE AND ALTITUDE

LC-33 1020 Meters NICK 1110 Meters

(2) Air structure data (rawinsonde) were collected at the following Met Sites. Data were collected from surface to 94,000 feet in 500-feet increments.

SITE AND TIME

SMR 0800 MST



 MET TOWER - 4 Bendix Model T-20 Anemometers at 12 ft, 62 ft, 102 ft, and 202 ft with E/A recorders.

SHIT DEK THE .

- 2. POLE ANEMOMETER Bendix Model T-120 with E/A recorders.
  - (a) Pole #1 38.7 ft
  - (b) Pole #2 53.0 ft
  - (c) Pole #3 83.6 ft
- 3. RAPTS T-9 Radar Automatic Pilot-Balloon Tracking System T-9 Radar.

TABLE 1. Surface observations taken at LC-33 26 July 1979 at 0900 MDT, 19304DT GSRS, Missile No. 1035, Round No. V-57.

TABLE C. 10-33 FINES POLE ANTHONYTER-NEASONED WINDS

| ELEVATION         | 3977.3 | FT/MSL   |
|-------------------|--------|----------|
| PRESSURE          | 881.9  | MBS      |
| TEMPERATURE       | 22.9   | •c       |
| RELATIVE HUMIDITY | 69     | <u> </u> |
| DEW POINT         | 16.8   | •c       |
| DENSITY           | 1030   | GM/H3    |
| WIND SPEEC        | 05     | MPH      |
| WIND DIRECTION    | 40     | DEGREES  |
| CLOUD COVER       | CLEAR  |          |

\$2.51000 -00.510,6864 - \$0.878.8884 - \$0.31.0

TABLE 2. LC-33 FIXED POLE ANEMOMETER-MEASURED WINDS

|                | POLE #1    |           |               | POLE #2    |              |               | POLE #3 |       |
|----------------|------------|-----------|---------------|------------|--------------|---------------|---------|-------|
| T-TIME.<br>SEC | DIR<br>DEG | SPEED MPH | T-TIME<br>SEC | DIR<br>DEG | SPEED<br>MPH | T-TIME<br>SEC | DIR     | SPEED |
| -30            | 165        | 07        | -30           | 174        | 07           | -30           | 163     | 09    |
| -20            | 174        | 07        | -20           | 165        | 07           | -20           | 177     | 10    |
| -10            | 180        | 08        | -10           | 159        | 08           | -10           | 176     | 08    |
| 0.0            | 178        | 05        | 0.0           | 171        | 08           | 0.0           | 180     | 08    |
| +10            | 167        | 06        | +10           | 170        | 07           | +10           | 151     | 09    |

| Туре | 19304 GSF | RS   | _, Missil | e No. | 1035    | , Round No. | V-57   | launched |
|------|-----------|------|-----------|-------|---------|-------------|--------|----------|
| from |           | on   | 26 July   | 1979  | at      | 0900 MDT .  |        |          |
|      | POLE #1 = | X485 | ,874.29   | Y185  | ,958.90 | H4018.74    | 38.7 f | t. AGL   |
|      | POLE #2 = | X485 | ,874.93   | Y186  | ,012.00 | H4033.57    | 53.0 f | t. AGL   |
|      | POLE #3 = | X485 | ,877.29   | Y186  | ,116.06 | H4063.92    | 83.6 f | t. AGL   |

NOTE: Wind directions are referenced to the firing azimuth or true north true north.

TABLE 3. LC-33 METEOROLOGICAL TOWER ANEMOMETER-MEASURED WINDS (202 FT. TOWER)

| ngger ut            | EVEL #1<br>12 ft. |              | LEVEL #2<br>62 ft.  |            |              |  |  |
|---------------------|-------------------|--------------|---------------------|------------|--------------|--|--|
| T-TIME<br>SEC       | DIR<br>DEG        | SPEED<br>MPH | T-TIME<br>SEC       | DIR<br>DEG | SPEED<br>MPH |  |  |
| -30                 | 038               | 05           | -30                 | 159        | 06           |  |  |
| -20                 | 042               | 05           | -20                 | 148        | 07           |  |  |
| -10                 | 040               | 03           | -10                 | 143        | 06           |  |  |
| 0.0                 | 048               | 04           | 0.0                 | 159        | 08           |  |  |
| +10                 | 042               | 03           | +10                 | 157        | 07           |  |  |
| LEVEL #3<br>102 ft. |                   |              | LEVEL #4<br>202 ft. |            |              |  |  |
| T-TIME<br>SEC       | DIR               | SPEED MPH    | T-TIME<br>SEC       | DIR<br>DEG | SPEED<br>MPH |  |  |
| -30                 | 158               | 07           | -30                 | 153        | 07           |  |  |
| -20                 | 165               | 06           | -20                 | 162        | 07           |  |  |
| -10                 | 174               | 06           | -10                 | 162        | 08           |  |  |
| 0.0                 | 177               | 06           | 0.0                 | 154        | 10           |  |  |
| +10                 | 177               | 06           | +10                 | 151        | 10           |  |  |

WTSM Coordinates: X484,982.64 Y185,957.73 H3983.00 (base)

Type 19304 GSRS , Missile No. 1035 , Round No. V-57 launched from LC-33 on 26 July 1979 at 0900 MDT.

NOTE: Wind directions are referenced to the firing azimuth or true north true north.

#### PILOT BALLOON MEASURED WIND DATA\*

| TABLE 4                     |                            |                    |     |
|-----------------------------|----------------------------|--------------------|-----|
| RELEASED FROM LC-33         | DATE 26 July 1979          | TIML 0900          | MDT |
| RELEASE POINT COORDINATES ( | WSTM) X= 486,037.24 Y=18   | 32.350.16 H=3977.3 | 0   |
| MISSILE TYPE 19304DT GSRS   | MISSILE NO. 1035           | ROUND NO. V-57     |     |
| MISSILE LAUNCHED FROM LC-3  | 3 DATE 26 July 197         | 9 TIME 0900        | MDT |
| NOTE: WIND PIRECTIONS ARE   | REFERENCED TO THE FIRING A | ZIMUTH             |     |
| OR TRUE NORTH true north    |                            |                    |     |

Heights are METERS AGL METERS or FEET AGL

| neights ar     | e METERS AGE.     | .METEVS      |
|----------------|-------------------|--------------|
| HE1GHT<br>AGI_ | DIRECTION DEGREES | SPEED<br>MPH |
| SFC            | 140               | 05.0         |
| 30             | 093               | 02.5         |
| 60             | 045               | 02.0         |
| 90             | 094               | 01.0         |
| 120            | 142               | 02.0         |
| 150            | 143               | 07.5         |
| 180            | 144               | 12.5         |
| 210            | 151               | 12.0         |
| 240            | 157               | 11.5         |
| 270            | 148               | 10.5         |
| 300            | 138               | 09.5         |
| 330            | 140               | 10.0 70      |
| 360            | 141               | 10.0         |

| HEIGHT<br>AGI | DIRECTION DEGREES | SPEED<br>MPH |
|---------------|-------------------|--------------|
| 390           | 145               | 10.5         |
| 420           | 148               | 10.5         |
| 450           | 150               | 11.5         |
| 480           | 152               | 12.0         |
| 510           | 147               | 16.0         |
| 540           | 141               | 19.5         |
| 570           | 133               | 19.0         |
| 600           | 125               | 18.5         |
| 630           | 123               | 20.5         |
| 660           | 120               | 22.5         |
| 690           | 120               | 22.0         |
| 720 ·         | 120               | 22.0         |
| 750           | 125               | 20.5         |

DELAS-MS-MT-WS Form 46 1 Sept 1979

forms 46-A & 46-B and all other Pibal forms which are obsolete.

Page 2 of 2 Pages

RELEASED FROM LC-33 DATE 26 July 1979 TIME 0900 MDT

| HE IGHT<br>AGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DIRECTION DEGREES | SPEED<br>MPH |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130               | 19.0         |
| 810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 133               | 17.5         |
| 840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 136               | 16.0         |
| 870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 138               | 17.0         |
| 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140               | 17.5         |
| 930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 140               | 17.5         |
| 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 139               | 17.0         |
| 990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 143 .             | 17.0         |
| 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 146               | 16.5         |
| la sulle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |              |
| town as the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |              |
| e de la composition della comp |                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
| 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |              |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | ¥1   99      |
| 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | SI LOV       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | real se      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TE LOS BAR        | A A OF AN    |

| HE IGHT<br>AGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DIRECTION DEGREES | SPEED<br>MPH                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------|
| 1,117.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2920 TS40E9       | C TAXT BLLL                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o Flam LC-        | SALE LADNES                       |
| #32 (1.31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The thirt is East | it onin                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                 | 625 296 JULI<br>625 296 JULI      |
| ar-species.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Asserted the second of the second |
| The state of the s |                   | ent.                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                   |
| - Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                   |
| 100000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | •                                 |
| Salary and Con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | oais                              |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | asystam and a     |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ctPT cas                          |

## PILOT BALLOON MEASURED WIND DATA\*

| TABLE 5        |                |           |             |           |          |          |     |
|----------------|----------------|-----------|-------------|-----------|----------|----------|-----|
| RELEASED FROM_ | NICK           | DATE_     | 26 July 1   | 979       | TIME_    | 0900 MD  |     |
| RELEASE POINT  | COORDINATES (W | STM) X=4  | 70,734.56   | Y= 255,   | 775.64   | H= 4126. | 57  |
| MISSILE TYPE 1 | 9304DT GSRS M  | ISSILE NO | . 1035      | R         | OUND NO. | V-57     |     |
| MISSILE LAUNCH | ED FROM LC-33  |           | DATE _ 26 J | uly 1979  | _TIME_   | 0900     | MDT |
| NOTE: WIND DI  | RECTIONS ARE R | EFERENCED | 10 THE FI   | RING AZIM | UTH      |          |     |
| OR TRUE NORTH  | true north     |           |             |           |          |          |     |

Heights are METERS AGL. METERS or FEET AGL

| HEIGHT .AGL | DIRECTION DEGREES | SPEED<br>MPH |
|-------------|-------------------|--------------|
| SFC         | 185               | 4.0          |
| 30          | 181               | 6.0          |
| 60          | 179               | 8.0          |
| 90          | 178               | 10.0         |
| 120         | 177               | 12.0         |
| 150         | 177               | 13.0         |
| 180         | 176               | 15.0         |
| 210         | 174               | 13.0         |
| 240         | 173               | 16.0         |
| 270         | 172               | 18.0         |
| 300         | 171               | 20.0         |
| 330         | 171               | 23.0         |
| 360         | 161               | 13.5         |

| HEIGHT AGL | DIRECTION DEGREES | SPEED<br>MPH |
|------------|-------------------|--------------|
| 390        | 159               | 15.5         |
| 420        | 157               | 18.0         |
| 450        | 156               | 20.0         |
| 480        | 155               | 22.0         |
| 510        | 133               | 14.0         |
| 540        | 137               | 15.0         |
| 570        | 141               | 16.5         |
| 600        | 144               | 18.0         |
| 630        | 147               | 19.0         |
| 660        | 149               | 21.0         |
| 690        | 137               | 15.0         |
| 720        | 145               | 16.0         |
| 750        | 151               | 18.          |

DELAS-MS-MT-WS Form 46 1 Sept 1979 forms 46-A & 46-B and all other Pibal forms which are obsolete.

|          |      |      |      |              |        | Page_ | 2 of | 2 Pages |
|----------|------|------|------|--------------|--------|-------|------|---------|
| RELEASED | FROM | NICK | DATE | 26 July 1979 | _TIME_ | 0900  |      | MDT     |

| HEIGHT<br>AGL | DIRECTION DEGREES | SPEED<br>MPH |
|---------------|-------------------|--------------|
| 780           | 156               | 20.0         |
| 810           | 160               | 22.0         |
| 840           | 154               | 21.5         |
| 870           | 161               | 22.0         |
| 900           | 164               | 23.0         |
| 930           | 161               | 20.5         |
| 960           | 156               | 24.5         |
| 990           | 159               | 26.0         |
| 1020          | 160               | 26.5         |
| 1050          | 155               | 28.0         |
| 1080<br>1080  | 160               | 26.0         |
| 1110          | 160               | 24.5         |
|               |                   |              |
| 4             |                   |              |
|               |                   |              |
|               |                   |              |
|               |                   |              |
|               |                   |              |

| HEIGHT<br>AGL      | DIRECTION<br>DEGREES                  | SPEED<br>MPH    |
|--------------------|---------------------------------------|-----------------|
|                    |                                       |                 |
|                    | ,                                     |                 |
|                    |                                       |                 |
|                    |                                       |                 |
|                    |                                       |                 |
|                    |                                       |                 |
| • 41 to 10 (a) (a) |                                       | 100             |
|                    |                                       |                 |
| Stereon A          | Shirt Street                          |                 |
| - 10 - 17 td       | 5 -5 1 1 10 50 15<br>5 15 15 15 15 15 | 2 19 10<br>20 2 |
| E SE SE SE SE      |                                       |                 |
|                    |                                       |                 |
|                    |                                       | 100             |
|                    |                                       |                 |
|                    |                                       |                 |
|                    |                                       |                 |
|                    |                                       |                 |
|                    |                                       |                 |
|                    |                                       |                 |
|                    |                                       |                 |
|                    |                                       |                 |

| 0 (0 (0                                      |                                                   |       |        |       |        |      |       |       |        |            |       |          |      |         |       |       |       |       |      |      |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
|----------------------------------------------|---------------------------------------------------|-------|--------|-------|--------|------|-------|-------|--------|------------|-------|----------|------|---------|-------|-------|-------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|------------|---------|-------|-------|---------|--------|---------|----------|
| DEG                                          |                                                   |       |        |       |        |      |       |       |        |            |       |          |      |         |       |       |       |       |      |      |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
| 8034 LAT DEG<br>2307 LON DEG                 |                                                   |       |        |       |        |      |       |       |        |            |       |          |      |         |       |       |       |       |      |      |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
| 8034                                         |                                                   |       |        |       |        |      |       |       |        |            |       |          |      |         |       |       |       |       |      |      |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
| 32.48034                                     |                                                   |       |        |       |        |      |       |       |        |            |       |          |      |         |       |       |       |       |      |      |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
|                                              |                                                   |       |        |       |        |      |       |       |        |            |       |          |      |         |       |       |       |       |      |      |       |       |       |       |       |       |       |            |         |       |       | 0.5     |        |         |          |
|                                              |                                                   |       |        |       |        |      |       |       |        |            |       |          |      |         |       |       |       |       |      |      |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
|                                              | HUM.                                              |       | 0      | 0     | 00     |      |       | 0     | 0      | 0 0        |       | <b>.</b> |      |         | 0     | 0     | 0     |       |      | ,    |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
|                                              | REL.HUM.<br>PERCENT                               | 70.   | 62.0   | 67.   | 76.0   | 67.  | 0.69  | 56.   | 58.    | 50.0       | 40    | 42.      |      | 16.0    | 18.   | 15.   | 15.   | 32.0  | 12.  | 12.  |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
|                                              | . 9                                               |       |        |       |        |      |       |       |        |            |       |          |      |         |       |       |       |       |      |      |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
|                                              | URE<br>POINT<br>TIGRA                             | 17.7  | 13.0   | 12.5  | 12.4   | 2.0  | 7.5   | 6.2   | 4.6    | 5.0        | 0.1-  | 7.7.     |      | -27.3   | -33.0 | -35.6 | 35.2  | -28.5 | 7.7  | 1.00 |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
| α<br>Σ                                       | ERAT<br>DEW<br>CEN                                |       |        |       |        |      |       |       |        |            |       |          |      | ' '     | •     | •     | •     | • 1   |      |      |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
| ν<br>Σ                                       | TEMPERATURE<br>AIR DEWPOINT<br>DEGREES CENTIGRADE |       |        | 18.7  | 16.6   | 00   | 13.1  | 6.    | 5.6    | 3.1        | 1.0   | 1.       | •    | 5.5     |       | 8.4   | 10.   | 9.51- | 0 0  | 0    | -39.7 | -46,8 | 8.1   | 5.3   |       | 174.0 | 174.4 | 1.11       | -68.1   | 5.8   | 1.4   | -58.9   | 6.0    | 0.00    | * !      |
|                                              |                                                   | 23    | 20     | =     | =:     |      | •     | -     | -      |            | -     | -        |      | 7       | 7     | 7     | 7     |       | 1 1  | 2 4  | m     | 1     | 10    | 12    | 10    | 1     |       | - 1        | -9-     | 9-    | 9     | -5      | - 5    | 100     | 1        |
|                                              | GEOMETRIC<br>ALTITUDE<br>MSL FEET                 | 10    | -      | -     | n 4    | 0 4  | r     | 5     | 2      | <b>.</b> t | 0:    | ++       |      | 10      | 4     | 60    | 2     | 0 (   | v    | ) H  | . 0   | S     | 6     | n 1   | ٥ ،   |       | 00    | <b>u</b> - | t       | 2     | 6     | 1       | ~1     | .:      | <b>.</b> |
|                                              | SEOME<br>ALTIT<br>MSL F                           | 3997. | 4505.1 | 5014. | 5868.3 | 7270 | 8325  | 9041. | 10432. | 10870      | 2363  | 12743.4  | 2000 | 19433.0 | 2590  | 3520. | 3346. | 5053. | 1007 | 1038 | 6194  | 9999. | 1037. | 3699. | 7054. | .2022 | 1600  | 4007       | 59560.4 | 1972. | 4965. | 68857.1 | . 4960 | 79709.7 | 69534.4  |
| Ş                                            |                                                   |       |        |       |        |      |       |       | _      |            |       |          |      |         |       |       |       |       |      |      |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
| #S                                           | PRESSURE<br>MILL IBARS                            | 880.  | 865.4  | 850.0 | 824.6  | 784  | 755.2 | 736.  | 700.   | 689.0      | 925.6 | 574.     |      | 500.0   | 439.  | 455.4 | 418.  | 100   | 100  | 272  | 250.0 | 220.  | 200.  | 175   | 150.0 |       | 000   | 00         | 79.0    | 70.   | 900   | 20.0    | 45.2   | 20.00   | 20.00    |
| 080                                          |                                                   |       |        |       |        |      |       |       |        |            |       |          |      |         |       |       |       |       |      |      |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
| 258                                          |                                                   |       |        |       |        |      |       |       |        |            |       |          |      |         |       |       |       |       |      |      |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
| •                                            |                                                   |       |        |       |        |      |       |       |        |            |       |          |      |         |       |       |       |       |      |      |       | 1     |       |       |       |       |       |            |         |       |       |         |        |         |          |
| E N                                          |                                                   |       |        |       |        |      |       |       |        |            |       |          |      |         |       |       |       |       |      |      |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
| 26 JULY 79 0800 HRS MST<br>ASCENSION NO. 258 |                                                   |       |        |       |        |      |       |       |        |            |       |          |      |         |       |       |       |       |      |      |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |
| 26<br>ASCI                                   |                                                   |       |        |       |        |      |       |       |        |            |       |          |      |         |       |       |       |       |      |      |       |       |       |       |       |       |       |            |         |       |       |         |        |         |          |

| SIAILON ALILIOUE 3997-30 PECI MSL | L MSL |
|-----------------------------------|-------|
| UI 7 79 0800 HRS M                | YST   |

| STATION ALTITUDE<br>26 JULY 79<br>ASCENSION NO. 2 | S        | 3997.30 FEET MSL<br>0800 HRS MST<br>8 | ET MSL<br>MST                                    |                       | UPPER AIR DATA<br>2070060258<br>S M R    | 58<br>8              | 4 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6E0DETI<br>32.              | GEODETIC COORDINATES<br>32.48034 LAT DEG<br>106.42307 LON DEG |
|---------------------------------------------------|----------|---------------------------------------|--------------------------------------------------|-----------------------|------------------------------------------|----------------------|-----------------------------------------|-----------------------------|---------------------------------------------------------------|
| GEOMETRIC<br>ALTITUDE<br>MSL FFET                 | PRESSURE | TEMP<br>AIR<br>DEGREES                | TEMPERATURE<br>AIR DEWPOINT<br>EGREES CENTIGRADE | REL . HUM.<br>PERCENT | DENSITY<br>GM/CUBIC<br>METER             | SPEED OF SOUND KNOTS | WIND DA<br>DIRECTION<br>DEGREES(IN)     | DATA<br>N SPEED<br>N) KNOTS | INDEX<br>OF<br>PEFRACTION                                     |
|                                                   |          |                                       |                                                  |                       | 1 (1)                                    |                      |                                         |                             |                                                               |
| 4000                                              | 880.8    | 23.5                                  | 17.7                                             | 20.0                  | 1025.4                                   | 673                  | 209.0                                   | 0.0                         | 1.000316                                                      |
| 4500.0                                            |          | 20.5                                  | 13.0                                             | 62.1                  | 1020.0                                   | 699                  | 190.6                                   | 8                           | .00029                                                        |
| 5000.0                                            |          | 18.7                                  | 12.5                                             | 6.99                  | 1008.4                                   | 667                  | 173.6                                   | 8.9                         | .00026                                                        |
| 5500.0                                            |          | 17.5                                  | 12.4                                             | 72.1                  | 8.466                                    | 999                  | 160.6                                   | 10.4                        | •                                                             |
| 600000                                            |          | 16.7                                  | 12.2                                             | 74.7                  | 1.085                                    |                      | 151.5                                   | 12.3                        | .00028                                                        |
| 6500.0                                            |          | 17.0                                  | 11.4                                             | 2.69                  | 952.0                                    |                      | 148.4                                   | 12.7                        | •                                                             |
| 7000.0                                            |          | 16.3                                  | 10.2                                             | 67.2                  | 947.4                                    |                      | 149.5                                   | 11.6                        | 00026                                                         |
| 7500.0                                            |          | 15.3                                  | 9.1                                              | 2.99                  | 934.3                                    | 663.5                | 156.3                                   | 9.6                         | •                                                             |
| 80000                                             |          | 14.0                                  | 8.2                                              | 68.1                  | 922.1                                    | 6-199                | 170.6                                   |                             | .00025                                                        |
| 8500.0                                            | 750      | 13.5                                  | 7.3                                              | 65.8                  | 907.2                                    | 661.3                | 192.0                                   |                             | •                                                             |
| 0.0006                                            |          | 14.8                                  | 6.3                                              | 56.8                  | 887.4                                    | 662.7                | 227.6                                   | 5.5                         | •                                                             |
| 9500.0                                            | 723.9    | 14.1                                  | 5.7                                              | 56.7                  | 873.6                                    | 661.9                | 269.0                                   | 6.7                         | 1.000237                                                      |
| 100000                                            |          | 13.3                                  | 5.1                                              | 57.4                  | 9.098                                    | 6.099                | 292.5                                   | 7.8                         | •                                                             |
| 10500.0                                           |          | 12.7                                  | 4.3                                              | 56.8                  | 847.2                                    |                      | 289.7                                   | 8.0                         | 1.000227                                                      |
| 11000.0                                           | 685.8    | 12.8                                  | 5.6                                              | 49.7                  | 831.9                                    |                      | 297.4                                   |                             | .00022                                                        |
| 11500.0                                           | 673.4    | 11.8                                  | 1.3                                              | 48.3                  | 820.1                                    | 658.9                | 310.4                                   |                             | .00021                                                        |
| 12000.0                                           |          | 10.8                                  | 0:                                               | 47.0                  | \$ · · · · · · · · · · · · · · · · · · · |                      | 329.6                                   | 8.5                         | .00020                                                        |
| •                                                 | b.659    | 10.1                                  | -1.4                                             | 9.44                  | 796.1                                    |                      | 344.3                                   | 10.3                        | 00050                                                         |
| 13000.0                                           |          | 6                                     | -3.0                                             | 41.6                  | 783.8                                    |                      | 354.5                                   | 13.1                        | 1.000198                                                      |
| •                                                 | 625.8    | 7.9                                   | 9.4-                                             | 800%                  | 773.6                                    |                      | 358.1                                   | 15.8                        | 00019                                                         |
|                                                   | 014.     | 4.9                                   | -6.2                                             | 0.04                  | 763.5                                    |                      | 9.                                      | 18.4                        | 00018                                                         |
|                                                   |          | 200                                   | -7.8                                             | 39.1                  | 753.6                                    | 650.                 | 2.5                                     | 20.9                        | 0001                                                          |
| ٠.                                                | 0.160    | 000                                   | 5.6-                                             | 28.2                  | 143.8                                    |                      | ٠.<br>١٠٠                               | 22.1                        | 000                                                           |
|                                                   | 280.5    |                                       | -10.5                                            | 27.00                 | 10401                                    | 040                  | 2.5                                     | 21.8                        | 1.000177                                                      |
| 16500.0                                           | 3.075    |                                       | 17.0                                             | 20.00                 | 7.5.0                                    | 040                  | 0.21                                    | ****                        | 7.00017                                                       |
|                                                   | Suns     | -                                     | 7 01-                                            | 7.20                  | 200-2                                    | 040.0                | 1.01                                    | 1.61                        | 1910001                                                       |
|                                                   | 538.4    | 4-1-6                                 | 2001                                             | 20.00                 | 2001                                     | 40.00                | 5.70                                    |                             | 1.000163                                                      |
|                                                   | 528.2    | -2.5                                  | -22.1                                            | 7000                  | 670.3                                    |                      | 23.5                                    | 22.0                        | 1.000161                                                      |
| •                                                 | 518.2    | 25.5                                  | 222.0                                            | 0                     | 640                                      |                      | 1.62                                    | 2000                        | /61000-1                                                      |
|                                                   | 503.4    | 444                                   | -25.6                                            | 17.3                  | 4.600                                    | 632.5                | 0.01                                    | 200                         | •                                                             |
|                                                   |          | -5-7                                  | -27.4                                            | 16.0                  | 649.2                                    | 6373                 | 200                                     | 25.6                        | 2000                                                          |
| 20000                                             |          | -7-0                                  | -28.2                                            | 16.3                  | 639.6                                    | 645. A               | 256.4                                   | 22.3                        |                                                               |
| 20500.0                                           |          | -8-3                                  | -29.1                                            | 16.7                  | 630.2                                    | 634.2                | 351.5                                   | 21.4                        | 71000                                                         |
| 0                                                 | 470.1    | -9.5                                  | -30.0                                            | 17.0                  | 621.0                                    | 632.6                | 347.7                                   | 21.2                        | 71000                                                         |
| :                                                 | 460.9    | -10.8                                 | -30.9                                            | 17.3                  |                                          | 631.1                | 3+4+6                                   | 21.3                        | .0001                                                         |
| 22000.0                                           | 451.9    | -12.1                                 |                                                  | 17.6                  | 605.9                                    | 629.5                | 342.6                                   | -                           | m                                                             |
| :                                                 | 443.1    | -13.4                                 | -32.7                                            | 17.9                  | 594.1                                    |                      | 341.6                                   |                             | .0001                                                         |
| :                                                 | 434.4    | -14.2                                 |                                                  | 16.9                  | 584.3                                    |                      | 342.4                                   | 0                           | .00013                                                        |

| Z | ALTITUDE   | 3997.30      | FEET   | MSL |
|---|------------|--------------|--------|-----|
| 7 | 26 JULY 79 | 0800 HRS MST | HRS MS | 1   |

| SEODETIC COORDINATES<br>32-48034 LAT DEG<br>106-42307 LON DEG | INDEX<br>OF<br>REFRACTION                                                                                                                                    | 19.0 1.000129<br>17.0 1.000127 |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 32.                                                           | SPEED<br>KNOTS                                                                                                                                               | 19.0                           |
|                                                               | URE TEMPERATURE REL.HUM. DENSITY SPEED OF WIND DATA AIR DEWPOINT PERCENT GM/CUBIC SOUND DIRECTION SPEED ARS DEGREES CENTIGRADE METER KNOTS DEGREES(TN) KNOTS | 342.4                          |
| 38<br>58                                                      | SPEED OF<br>SOUND<br>KNOTS                                                                                                                                   | 573.9 626.3<br>561.6 626.8     |
| UPPER AIR DATA<br>2070060258<br>S M R                         | DENSITY S<br>GM/CUBIC<br>METER                                                                                                                               | 573.9                          |
| <b>3</b>                                                      | REL.HUM.<br>PERCENT                                                                                                                                          | 15.1                           |
| T MSL                                                         | ERATURE<br>DEWPOINT<br>CENTIGRADE                                                                                                                            | -35.5 15.1                     |
| 3997.30 FEET MSL<br>0800 HRS MST<br>58                        | AIR<br>DEGREES                                                                                                                                               | .3 -14.8                       |
| 58                                                            | URE                                                                                                                                                          | 87                             |

| INDEX<br>OF<br>REFRACTION                         | 1.000129 | 1.000127 | 1.000125 | 1.000124 | 1.000121 | 1.000119 | 1.000116 | 1.000114 | 1.000112 | 1.000110 | 1.000108 | 1.000106 | 1.000105 | 1.000103 | 1.000101 | 1.000100 | 1.000098 | 1.000096 | 1.000095 | 1.000093 | 1.000091 | 1.000099 | 1.000068 | 1.000086 | 1.000065 | 1.000064 | 1.000062 | 1.000081 | 1.000079 | 1.000078 | 1.000077 | 1.000076 | 1.000074 | 1.000073 | 1.000072 | 1.000070 | 1.000069 | 0000  | 1.000067 | 1.000065 |  |  |  |
|---------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------|----------|----------|--|--|--|
| SPEED KNOTS                                       | 19.0     | 17.0     | 14.9     | 13.0     | 12.2     |          | 12.2     | 12.5     |          | 15.6     |          |          | 21.8     | 20.4     |          | 15.4     | 12.6     |          | 4.6      | 9.6      | 10.5     | •        | 10.8     | 11.0     | 11.9     | 13.3     | 14.8     | 14.4     | 13.8     |          | 15.0     |          | 19.0     |          | 18.7     |          |          |       |          |          |  |  |  |
| WIND DATA<br>DIRECTION SPEED<br>DEGREES(TN) KNOTS | 342.4    | 341.7    | 340.6    | 339.7    | 340.6    | 344.2    | 350.4    | 358.7    | 7.4      | 10.5     | 11.0     | 8.2      | 5.5      | 1.0      | 357.3    | 353.6    | 352.2    | 352-1    | 352.4    | 352.9    | 351.7    | 350.6    | 349.6    | 349.5    | 349.5    | 346.0    | 342.2    | 336.4    | 329.5    | 327.2    | 325.4    | 327.7    | 329.6    | 329.5    | 329.3    | 3265     |          |       |          |          |  |  |  |
| SPEED OF<br>SOUND<br>KNOTS                        | 626.3    | 626.8    | 626.1    | 625.5    | 624.4    | 623.3    | 622.2    | 621.1    | 619.6    | 618.2    | 616.7    | 615.3    | 613.8    | 612.4    | 610.9    | 4.609    | 608.0    | 606.5    | 605.6    | 9.4.09   | 603.7    | 602.9    | 601.4    | 599.6    | 597.8    | 595.9    | 594.2    | 592.6    | 591.0    | 589.4    | 567.7    | 586.1    | 584.5    | 583.0    | 581.4    | 579.9    | 574.4    | 576.8 | 575.3    | 573.8    |  |  |  |
| DENSITY S<br>GM/CUBIC<br>METER                    | 573.9    | 561.6    | 9.155    | 541.8    | 532.7    | 523.9    | 515.2    | 506.7    | 498.5    | 490.5    | 482.6    | 474.9    | 467.3    | 459.8    | 452.5    | 445.2    | 438.1    | 431.2    | 423.3    | 415.5    | 407.9    | 400.5    | 393.7    | 387.5    | 381.4    | 375.4    | 369.5    | 362.9    | 350.8    | 350.8    | 344.9    | 339.1    | 333.1    | 327.2    | 321.4    | 315.7    | 310.0    | 304.3 | 298.8    | 93.      |  |  |  |
| REL.HUM.<br>PERCENT                               | 15.1     | 15.8     | 23.5     | 31.2     | 27.4     | 22.2     | 17.0     | 12.0     | 12.1     | 12.2     | 12.3     | 12.4     | 12.5     | 12.6     | 12.7     | 12.8     | 12.9     | 13.0**   | 10.1**   | 7.2**    | 4.3*     | 1.4**    |          |          |          |          |          | . 7.5    |          |          |          |          |          |          |          |          |          |       |          |          |  |  |  |
| TEMPERATURE<br>AIR DEWPOINT<br>GREES CENTIGRADE   | -35.5    | -34.7    | -31.1    | -28.7    | -30.8    |          | -37.1    | -41.2    | -42.1    | -42.9    | -43.8    | -44.7    | -45.6    | -46.5    | -4.7.4   | -48.3    | -49.2    | -50.1    | -52.8    | -56.1    |          | 1.69-    |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |       |          |          |  |  |  |
| AIR<br>DEGREES                                    | -14.8    | -14.4    | -14.9    | -15.5    | -16.4    | -17.3    | -18.2    | -19.1    | -20.5    | -21.4    | -22.6    | -23.8    | -24.9    | -26.1    | -27.3    | -28.5    | -29.6    | -30.8    | -31.5    | -32.3    | -33.0    | -33.7    | -34.8    | -36.3    | -37.7    | -39.1    | -40.5    | -41.7    | -43.0    | -44.3    | -45.6    | -46.8    | -48.0    | -49.2    | -50.4    | -51.6    | -52.8    | -53.9 | -55.1    | -56.2    |  |  |  |
| PRESSURE<br>MILLIBARS                             | 425.8    |          | 0.60#    |          | -        | -        | -        | -        | -        |          |          |          |          |          | -        |          |          |          |          |          | 281.2    |          |          |          |          | -        |          | -        |          |          | -        | -        | 215.3    |          |          |          |          | 16    | 87.      | 82.      |  |  |  |
| GEOMETRIC<br>ALTITUDE<br>MSL FEET                 | 23500.0  | :        | :        | :        | -        | :        | :        | -        | -        | :        | :        | :        | :        | :        | :        | :        | :        | :        | :        | :        | 33500.0  | :        | •        | :        | :        | •        | :        | •        | •        | •        | :        | -        | :        | -        | 500      | 0        | 0        | 0     | 0        |          |  |  |  |

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

| 26 JULY 79 0800 HRS MST |
|-------------------------|

| DETIC COORDINATES<br>32.46034 LAT DEG<br>106.42307 LON DEG | INDEX<br>OF<br>REFRACTION                        |       | 1.000063 | 1.000062 | 1.000060 | 1.000059 | .00005 | 1.000057 | 1.000056 | 1.000055 | 1.000054 | 1.000052 | 1.000051 | 1.000050 | 100000 | 1.000048 | 1.000047 | 1.000046  | 1.000045 | 1.000044 | 1.000043 | 1.000042 | .0000 | *0000 | 6500001 | 1.000037 | 1.000036 | 1.000035 | 1.000034 | 1.000033 | 1.000032 | 1.000031 | .00003  | .00002  | 1.000028 | 1.000028 | 1.000027 | 1.000026 | 1.000025 | 1.000025 |
|------------------------------------------------------------|--------------------------------------------------|-------|----------|----------|----------|----------|--------|----------|----------|----------|----------|----------|----------|----------|--------|----------|----------|-----------|----------|----------|----------|----------|-------|-------|---------|----------|----------|----------|----------|----------|----------|----------|---------|---------|----------|----------|----------|----------|----------|----------|
| 32.40<br>32.40                                             | SPEED<br>KNOTS                                   | 16.0  | 16.3     | 16.1     | 16.2     | 15.8     | S      | 13.4     | •        | •        | 2.5      | 3.9      | 5.5      | 2.9      | e.     | 10.6     | 10.3     | 10.1      | 10.7     | 11.7     | 13.0     | 13.2     | 10.4  | 11.4  | 0       | 12.0     | 15.2     | 15.3     | 15.4     | 15.3     | 15.1     | 14.4     | 13.0    | 11.5    | 12.7     | 14.6     | 16.3     |          |          | 19.4     |
|                                                            | WIND DATA<br>DIRECTION SP<br>DEGREES(TN) KN      | 116   | 341.0    | 343.0    | 343.2    | 342.1    | 340.8  | 341.0    | 342.2    | 339.8    | 328.7    | 305.1    | 292.9    | 287.5    | 300.3  | 308.3    | 321.7    | 338.7     | 354.4    | 01       | 15.7     | 10.4     | 211.5 | 9.17  | 9.04    | 889.0    | 101.2    | 97.3     | 93.5     | 93.4     | 6.46     | 0.96     | 95.7    | 95.5    | 3        | 73.9     | 71.6     | 74.1     | 1.07     | 1.,,     |
| Se<br>Se                                                   | SPEED OF<br>SOUND<br>KNOTS                       |       | 570.8    | 569.6    | 568.3    | 567.1    | 565.9  | 564.6    | 563.4    | 562.1    | 560.7    | 559.4    | 558.0    | 556.6    | 555.3  | 553.9    | 552.5    | 551.2     | 549.8    | 249.7    | 551.0    | 551.8    | 551.1 | 550.4 | 0.44    | 240.0    | 549.6    | 549.9    | 551.4    | 553.0    | 554.6    | 556.1    | 557.7   | 556.4   | 559.1    | 559.7    | 560.4    |          | 562.0    | 563.0    |
| UPPER AIR DATA<br>2070060258<br>S M R                      | DENSITY<br>GM/CUBIC<br>METER                     | 1     | 282.6    | 77.      |          | 266.0    | 260.8  | 255.6    | 50.      | 420      | 540.4    | 235.5    | 230.7    | 226.1    | 221.5  |          | 212.6    | 208.3     | 204-1    | 6        | 193.0    | 187.5    | 163.2 | 1/9.0 | A       | 166.0    | 161.8    | 157.5    | 152.6    | 147.9    | 143.4    | 139.0    | 134.7   | 131.0   | 127.5    | 124.0    |          |          | 114.2    | 11110    |
| 5                                                          | REL.HUM.                                         |       |          |          |          |          |        |          |          |          |          |          |          |          |        |          |          |           |          |          |          |          |       |       |         |          |          |          |          |          |          |          |         |         |          |          |          |          |          |          |
| IT MSL<br>MST                                              | TEMPERATURE<br>AIR DEWPOINT<br>EGREES CENTIGRADE |       |          |          |          |          |        |          |          |          |          |          |          |          |        |          |          |           |          |          |          |          |       |       |         |          |          |          |          |          |          |          |         |         |          |          |          |          |          |          |
| 997.30 FEET MSL<br>0800 HRS MST                            | AIR<br>DEGREES                                   | 1     | -58.5    | -59.4    | -60.3    | -61.2    | -62.2  | -63.1    | 0.49-    | -65.0    | -66.0    | -67.0    | -68.0    | -69.0    | -20.0  | -71.0    | -72.0    | -73.0     | -74.0    | -74.0    | -73.1    | -72.5    | 13.0  | 17.00 | 7       | -74.1    | -74.1    | -73.9    | -72.8    | -71.7    | -70.5    | 4.69-    | -68.2   | -67.7   | -67.2    | -66.7    | -66.3    | -65.8    | -65.0    | -640     |
| n &                                                        | PRESSURE<br>MILLIBARS                            | 170.4 | 174.1    | 169.9    | 165.8    | 161.8    | 157.9  |          |          | 146.6    | 143.0    |          | •        | 132.5    | 129.2  | 125.9    | 122.8    | 119.7     | 116.7    | 113.     | 110.0    | 100.0    | 103.5 | 6.201 | 97.6    | 6.46     | 92.4     | 90.1     | 87.8     | 85.6     | 83.4     | 81.3     | 79.2    | 17.5    | 75.4     | 73.5     | 11.1     | 6669     | 2.89     | 000      |
| STATION ALTITUDE 26 JULY 79 ASCENSION NO. 2                | GEOMETRIC<br>ALTITUDE<br>MSL FEET                |       | 440000   |          | 45000.0  | :        | :      | 46500.0  | :        | :        | :        | 48200.0  | :        |          | :      |          | :        | 1 51500.0 | 22000    | 52500.0  |          |          | 0.000 |       | 200000  | 56000-0  | -        | 57000.0  | 57500.0  |          |          | 1        | 595c0.0 | 0.00009 | 60500.0  | :.       | •        |          | 0.00529  | 0.00000  |

| 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |                                                   |          |                              |                            |                                           | 106.  | 06.42307 LUN DEG          |
|------------------------------------------|---------------------------------------------------|----------|------------------------------|----------------------------|-------------------------------------------|-------|---------------------------|
| PRESSURE                                 | TEMPERATURE<br>AIR DEWPOINT<br>DEGREES CENTIGRADE | REL.HUM. | DENSITY<br>GM/CUBIC<br>METER | SPEED OF<br>SOUND<br>KNOTS | WIND DATA<br>DIRECTION S<br>DEGREES(IN) K | SPEED | INDEX<br>OF<br>REFRACTION |
| 6.49                                     | -63.6                                             |          | 107.9                        | 564.0                      | 78.0                                      | 19.9  |                           |
| 63.3                                     | -62.8                                             |          | 104.9                        | 565.0                      | 60.3                                      | 20.9  | 20000                     |
| 61.8                                     | -62.1                                             |          | 102.0                        |                            | 83.1                                      | 22.1  |                           |
| 60.3                                     | -61.4                                             |          | 59.5                         |                            | 85.7                                      | 23.2  |                           |
| 58.8                                     | -61.1                                             |          | 96.7                         |                            | h-06                                      | 22.0  |                           |
| 57.4                                     | 7-60-7                                            |          | 94.2                         |                            | 95.5                                      | 21.0  | -                         |
| 56.1                                     | +-09-                                             |          | 91.8                         |                            | 97.8                                      | 20.3  | 7,000                     |
| 54.7                                     | -60.1                                             |          | 89.5                         |                            | 95.7                                      | 19.8  |                           |
|                                          | -59eB                                             |          | 87.2                         |                            | 93.5                                      |       |                           |
| 52.1                                     | -59.5                                             |          | 85.0                         |                            | 93.5                                      | 19.8  |                           |
| 50.9                                     | -59.1                                             |          | 82.8                         |                            | 94.1                                      | 20.4  | .0000                     |
| 49.7                                     | -58.7                                             |          | 80.7                         |                            | 9.46                                      | 21.0  | .00001                    |
| 49.5                                     | -53.0                                             |          | 73.5                         |                            | 95.8                                      | 21.5  | .00001                    |
| 47.3                                     | -57.3                                             |          | 76.4                         |                            | 2.96                                      | 21.9  |                           |
| 46.2                                     | -56.6                                             |          | 74.3                         |                            | h• #6                                     | 22.4  |                           |
| 45.1                                     | -55.9                                             |          | 72.4                         |                            | 89.5                                      | 22.9  |                           |
| 3                                        | -55.5                                             |          | 70.6                         |                            | 84.8                                      | 23.6  | .00001                    |
| 3                                        | -55.2                                             |          | 68.8                         |                            | 84.1                                      | 25.2  | .00001                    |
| 45.1                                     | 104°                                              |          | 67.1                         |                            | 0.48                                      | 27.0  | 10000                     |
| 41.1                                     | -54.5                                             |          | 65.5                         | 576.1                      | 64.3                                      | 28.7  |                           |
| 40.1                                     | -54.1                                             |          | 63.8                         | 576.5                      | 9.98                                      | 30.4  | .00001                    |
| 39.5                                     | -53.8                                             |          | 62.3                         | 577.0                      | 98.6                                      | 32.1  | .0000                     |
|                                          | -53.4                                             |          | 60.7                         |                            | 668                                       | 33.7  | •                         |
| :                                        | -53.1                                             |          | 59.2                         |                            | 90.3                                      | 35.1  |                           |
| 36.5                                     | -52.7                                             |          | 57.8                         |                            | 2.06                                      | 36.5  | 1.000013                  |
| 35.7                                     | -52.4                                             |          | 56.3                         |                            | 91.2                                      | 38.1  | 1.000013                  |
| 34.9                                     | -52.0                                             |          | 54.9                         |                            | 91.6                                      | 39.8  |                           |
| 34.1                                     | -51.7                                             |          | 53.6                         |                            | 92.1                                      | 41.5  |                           |
| 33.3                                     | -51.3                                             |          | 52.3                         |                            | 95.0                                      | 41.6  | 1.000012                  |
|                                          | -51.0                                             |          | 51.0                         |                            | 93.7                                      | 41.2  | .00001                    |
|                                          | -50.6                                             |          | 49.7                         |                            | 9.46                                      | 40.8  | .00001                    |
| 31.0                                     | -50.3                                             |          | 48.5                         |                            | 95.3                                      | 38.6  | 1.000011                  |
| 30.3                                     | 6.64-                                             |          | 47.3                         |                            | 7.96                                      | 36.3  | .00001                    |
| 59.6                                     | -49.7                                             |          | 45.2                         |                            | 9.96                                      | 34.3  | 1.000010                  |
| 28.9                                     | 9.61-                                             |          | 45.1                         | 585.                       | 6.56                                      | 33.8  | .0000                     |
| 28.3                                     | +·6+-                                             |          | 0.44                         | 582.                       | 95.0                                      | 33.3  | .0000                     |
| 27.6                                     | -49.3                                             |          | 43.0                         | 582.                       | 0.46                                      | 33.1  | .00001                    |
| 27.0                                     | -49.2                                             |          | 42.0                         | 563.                       | 92.7                                      | 33.7  | .00000                    |
| 25.4                                     | 0.64-                                             |          | 41.0                         | 583.                       | 91.4                                      | 34.3  | 1.000009                  |
| 9                                        |                                                   |          |                              |                            |                                           |       |                           |

STATION ALTITUDE 3997.30 FEET MSL 26 JULY 79 0800 HRS MST ASCENSION NO. 258

UPPER AIR DATA 2070060258 S M R

GEODETIC COORDINATES 32.48034 LAT DEG 106.42307 LON DEG

| 106.42307 LON DEG | INDEX<br>OF<br>REFRACTION                       | 1.000009 | 1.000009 | 1.000008 | 1.000008 | 1.000008 | 1.000008 | 1.000008 | 1.000007 | 1.000007 | 1.000007 | 1.000007 | 1.000007 | 1.000007 | 1.000006 | 1.000006 | 1.000006 | 1.000006 | 1.000006 | 1.000006 | 1.000006 | 1.000005 | 1.000005 |  |
|-------------------|-------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
|                   | SPEED<br>KNOTS                                  | 34.1     | 33.6     | 33.1     | 32.9     | 32.7     | 32.9     | 35.1     | 37.3     | 39.0     | 38.0     | 37.0     | 36.0     | 34.8     | 33.6     | 32.8     | 37.4     | 42.3     |          |          |          |          |          |  |
|                   | WIND DATA<br>DIRECTION SI<br>DEGREES(IN) KI     | 91.4     | 92.2     | 92.7     | 91.9     | 91.1     | 90.3     | 4.68     | 9.88     | 87.7     | 86.3     | 84.6     | 83.6     | 84.5     | 85.5     | 87.0     | 92.1     | 96.2     |          |          |          |          |          |  |
|                   | SPEED OF SOUND KNOTS                            | 583.6    | 583.7    | 583.9    | 584.1    | 584.3    | 584.4    | 584.6    | 564.8    | 585.0    | 585.2    | 585.3    | 585.6    | 585.9    | 586.2    | 586.5    | 586.8    | 587.1    | 587.4    | 587.7    | 588.0    | 588.4    | 586.7    |  |
|                   | DENSITY S<br>GM/CUBIC<br>METER                  | 39.1     | 38.5     | 37.3     | 36.5     | 35.6     | 34.8     | 34.0     | 33.2     | 32.4     | 31.7     | 30.9     | 30.5     | 29.5     | 28.8     | 23.1     | 27.5     | 26.8     | 26.5     | 25.6     | . 25.0   | 24.4     | 23.8     |  |
|                   | REL.HUM.<br>PERCENT                             |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |  |
|                   | TEMPERATURE<br>AIR DEWPOINT<br>GREES CENTIGRADE |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |  |
|                   | AIR<br>DEGREES                                  | -48.8    | 9.81-    | -48.5    | 1.81-    | -48.5    | -48.1    | -48.0    | -47.8    | 1-47-7   | -47.5    | 1-47.4   | -47.2    | 6.94-    | -46.7    | -46.5    | -46.2    | 0.94-    | -45.8    | -45.5    | -45.3    | -45.1    | 9.44-    |  |
| NO. 258           | PRESSURE<br>MILLIBARS                           | 25.2     | 54.6     | 24.1     | 23.5     | 23.0     | 22.5     | 22.0     | 21.5     | 21.0     | 50.5     | 20.0     | 19.6     | 19.1     | 18.7     | 16.3     | 17.9     | 17.5     | 17.1     | 16.7     | 16.3     | 16.0     | 15.6     |  |
| ASCENSION NO.     | GEOMETRIC<br>ALTITUDE<br>MSL FEET               | 83500.0  | 84000.0  | 84500.0  | 85000.0  | 85500.0  | 86000.0  | 86500.0  | 87000.0  | 67500.0  | 88000.0  | 88500.0  | 89000.0  | 89500.0  | 0.00006  | 0.00506  | 91000.0  | 91500.0  | 92000.0  | 92500.0  | 93000.0  | 93500.0  | 0.00006  |  |

STATION ALTITUDE 3997.30 FEET MSL 2070060256
26 JULY 79 0800 HRS MST S M R. ASCENSION NO. 258

GEODETIC COORDINATES 32.48034 LAT DEG 106.42307 LON DEG

| ATURE PRESSURE<br>R MILLIBARS          |           |                                         |       |       |       |       |       |       |       |             |
|----------------------------------------|-----------|-----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------------|
| TEMPERATUR                             |           | 14-                                     | 64-   | -55   | -58   | -61   | -65   | -68   | -74   | 17-         |
| DEW PT DEP<br>DEG C                    | 66        | 66                                      | 66    | 66    | 66    | 66    | 66    | 66    | 66    | 66          |
|                                        | ***6666-  |                                         |       |       |       |       |       |       |       |             |
| DATA<br>N-S<br>MPS                     | ****6666- | .5.                                     |       | ÷     | :     | ;     | -2.   | - Se  | · · · | **          |
| SPEED<br>MPS                           | ***6666   |                                         |       |       |       |       |       |       |       |             |
| DIRECTION<br>DEG (TN)                  | ****6666  | • • • • • • • • • • • • • • • • • • • • | 97.   | 90.   | 95.   | 92.   | 74.   | 96.   | - 88. | <b>.</b> 0• |
| GEOPOTENTIAL<br>ALTITUDE<br>DECAMETERS | 2860.     | 5000                                    | 2419. | 2155. | 2091. | 1973- | 1882. | 1809. | 1/30  | 1671.       |

\*\* WIND DATA NOT COMPUTED DUE TO MISSING RAW AZIMUTH AND ELEVATION ANGLES.

STATION ALTITUDE 3997.30 FEET MSL 26 JULY 79 0800 HRS MST ASCENSION NO. 258

MANDATORY LEVELS 2070060256 S M R

GEODETIC COORDINATES 32.46034 LAT DEG 106.42307 LON DEG

| SPEE                      |              |       | 12.2  | 5.9   | 7.9    | 10.2   | 51.6   | 20.5   | 22.6   | 21.4   | 13.0   | 17.3   | 10.0   | 13.8   | 18.2   | 16.4   | 10.9   | 11.0   | 9.8    | 13.6   | 17.5   | 23.0   | 20.8   | 30.4   | 35.6   | 34.0   | 37.0   |
|---------------------------|--------------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| WIND DIRECTION            | DE GREES ( ) | 173.5 | 148.8 | 192.7 | 288.7  | 343.5  | 2.6    | 22.3   | 0.4    | 342.4  | 339.7  | 11.5   | 352.1  | 344.6  | 327.2  | 340.6  | 342.2  | 310.7  | 38.8   | 95.8   | 73.8   | 86.3   | 94.5   | 86.7   | 96.5   | 91.6   | 6.48   |
| REL . HUM.<br>PERCENT     |              | 67.   | .89   | .99   | 58.    | 45.    | 39.    | 24.    | 16.    | 18.    | 32.    | 12.    | 13.    |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| TEMPERATURE<br>R DEWPOINT | CENI ISRADE  | 12.5  | 10.9  | 7.3   | 9.4    | -1.3   | -8.5   | -18.5  | -27.3  | -32.0  | -28.5  | -43.5  | -50.1  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| AIR                       | DEGKEES      | 18.7  | 16.8  | 13.6  | 12.6   | 10-1   | 4.6    | 2      | -5.5   | -12.4  | -15.6  | -22.1  | -30.8  | -39.7  | -51.8  | -58.3  | -64.1  | -71.3  | -74.1  | -68.7  | -65.8  | -61.3  | -58.9  | -54.1  | 8.64-  | -48.7  | 4-7-4  |
| GEOPOTENTIAL              | 3            | 5010. | 6713. | 8510. | 10422. | 12459. | 14625. | 16928, | 19405. | 22082. | 25012. | 28278. | 31933. | 36114. | 40987. | 43786. | 46926. | 50525. | 54814. | 59114. | 61758. | 64864. | 68597. | 73252. | 79367. | 83290. | 88117. |
|                           | MILLIBARS    | 850-0 | 800-0 | 750.0 | 200.00 | 650.0  | 0.009  | 550.0  | 20000  | 450.0  | 0.004  | 350.0  | 300.0  | 250.0  | 200.0  | 175.0  | 150.0  | 125.0  | 100.0  | 90.0   | 70.0   | 0.09   | 20.0   | 0.04   | 30.0   | .55.0  | 20.0   |

cellieriani iniciai

| _                   |     |     |
|---------------------|-----|-----|
| MS                  | -   |     |
| 1                   | M   |     |
| 3997.30 FEET MSL    | FRS |     |
| 30                  | 000 |     |
| 97                  | 9   |     |
| 8                   |     | 9   |
| STATION ALTITUDE 39 |     | -   |
| E                   |     |     |
| 5                   | 6   | *** |
| 4                   | -   | 6   |
| 0                   | 7   | -   |
| E                   | 5   | 13  |
| 15                  | 9   | Ų   |

| TATION ALTITUDE 3997<br>5 JULY 79 08<br>SCENSION NO. 258 | E 3997.30 FEET MSL<br>0800 HRS MST<br>258 | r MSL<br>1ST                   | MRN MANG           | MRN MANDATORY LEVELS<br>2070060258<br>S M R |            | GEODETIC COOI<br>32.48034<br>106.42307 | GEODETIC COORDINATES<br>32.48034 LAT DEG<br>106.42307 LON DEG |
|----------------------------------------------------------|-------------------------------------------|--------------------------------|--------------------|---------------------------------------------|------------|----------------------------------------|---------------------------------------------------------------|
| SEOPOTENTIAL<br>ALTITUDE<br>DECAMETERS                   | DIRECTION<br>DEG (TN)                     | WIND DATA<br>SPEED N<br>MPS MI | DATA<br>N-S<br>MPS | E-₹<br>APS                                  | DEW PT DEP | TEMPERATURE<br>AIR<br>DEG C            | PRESSURE<br>MILLIBARS                                         |
| 2686.                                                    | 85.                                       | 19.                            | -2.                | -19.                                        | 66         | 47.4                                   | 2.000+1                                                       |
| 2539.                                                    | 92.                                       | 17.                            | ċ                  | -17.                                        | 66         | -48.7                                  | 2.500+1                                                       |
| 2419.                                                    | .96                                       | 18.                            |                    | -18.                                        | 66         | 8.64-                                  | 3.000+1                                                       |
| 2233.                                                    | 87.                                       | 16.                            | ;                  | -16.                                        | 66         | -54.1                                  | 4.000+1                                                       |
| 2091.                                                    | 95.                                       | ::                             | :                  | -11-                                        | 66         | -58.9                                  | 5.000+1                                                       |
| 1977.                                                    | 86.                                       | 12.                            | ;                  | -12.                                        | 66         | -61.3                                  | 6.000+1                                                       |
| 1882.                                                    | 74.                                       | • 6                            |                    | -6-                                         | 66         | -65.8                                  | 7.000+1                                                       |
| 1902.                                                    | 96.                                       | 7.                             | :                  | -7.                                         | 66         | -68.7                                  | 8.000+1                                                       |
| 1671.                                                    | 39.                                       | ς.                             |                    | -3-                                         | 66         | -74.1                                  | 1.000+2                                                       |
| 1540.                                                    | 311.                                      | •                              | -4-                | ;                                           | 66         | -71.3                                  | 1.250+2                                                       |
| 1430.                                                    | 342.                                      | •                              | -5-                | ۶۰                                          | 66         | -64.1                                  | 1.500+2                                                       |
| 1335.                                                    | 341.                                      | 8.                             | -9-                | 3.                                          | 66         | -58.3                                  | 1.750+2                                                       |
| 1249.                                                    | 327.                                      | •                              | ÷                  |                                             | 66         | -51.8                                  | 2.000+2                                                       |
| 1701.                                                    | 345.                                      | 7.                             | -7.                |                                             | 66         | -39.7                                  | 2.500+2                                                       |
| 973.                                                     | 352.                                      | 'n                             | .5.                | :                                           | 19         | -30.8                                  | 3.000+2                                                       |
| 862.                                                     | 12.                                       | 9.                             | •6•                | -8-                                         | 21         | -22.1                                  | 3.500+2                                                       |
| 762.                                                     | 340.                                      | 7.                             | .9.                | 2.                                          | 13         | -15.6                                  | 4.000+2                                                       |
| 673.                                                     | 342.                                      | 11:                            | -10.               | ÷                                           | 20         | -12.4                                  | 4.500+2                                                       |
| 591.                                                     | . 7                                       | 12.                            | -12.               | ÷                                           | 22         | -5.5                                   | 5.000+2                                                       |
| 516.                                                     | . 22.                                     | 11:                            | -10.               | į                                           | 18         | 2                                      | 5.500+2                                                       |
| *9##                                                     | 3.                                        | 11.                            | -17-               | ;                                           | 13         | 4.6                                    | 6.000+2                                                       |
| 380.                                                     | . 44.                                     | 'n                             | -5-                | •                                           | 11         | 10.1                                   | 6.500+2                                                       |
| 318.                                                     | 289.                                      |                                | -1-                | •                                           | 90         | 12.6                                   | 7.000+2                                                       |
| 259.                                                     | 193.                                      | ÷                              | 3.                 | •                                           | 90         | 13.6                                   | 7.500+2                                                       |
| 205.                                                     | 149.                                      | ••                             | ů                  | ÷-                                          | 90         | 16.8                                   | 8.000+2                                                       |
| 153.                                                     | 173.                                      | 'n                             | ů.                 | ;                                           | 90         | 18.7                                   | 8.500+2                                                       |
|                                                          |                                           |                                |                    |                                             |            |                                        |                                                               |