

1 External Memory Controller

1.1 Overview

The External Memory Controller (EMC) divides the off-chip memory space and outputs control signals complying with specifications of various types of memory and bus interfaces. It enables the connection of static memory, NAND flash memory, synchronous DRAM, etc., to this processor.

Static memory interface

- Direct interface to ROM, Burst ROM, SRAM and NOR Flash.
- Support 4 external chip selection CS4~1#. Each bank can be configured separately.
- The size and base address of static memory banks are programmable.
- Output of control signals allowing direct connection of memory to each bank. Write strobe setup time and hold time periods can be inserted in an access cycle to enable connection to low-speed memory
- Wait state insertion can be controlled by program.
- Wait insertion by WAIT pin.
- Automatic wait cycle insertion to prevent data bus collisions in case of consecutive memory accesses to different banks, or a read access followed by a write access to the same bank

NAND flash interface

- Support on CS4~CS1, sharing with static memory bank4~bank1.
- Support most types of NAND flashes, including 8-bit and 16-bit bus width, 512B and 2KB page size. For 512B page size, 3 and 4 address cycles are supported. For 2KB page size, 4 and 5 address cycles are supported.
- Hardware ECC generation including Hamming and RS codes correction.
- Support read/erase/program NAND flash memory.
- Support boot from NAND flash.

SDRAM Interface

- Support 1 chip selection DCS#.
- Support both 32-bit and 16-bit bus width.
- Support both two-bank and four-bank type SDRAM.
- Support burst operation.
- Support both auto-refresh and self-refresh functions.
- The size and base address of each bank is configurable.
- Multiplexes row/column addresses according to SDRAM capacity
- Controls timing of SDRAM direct-connection control signals according to register setting
- Supports power-down mode to minimize the power consumption of SDRAM
- Support page mode

1.2 Pin Description

Following table list the EMC pins.

Table 1-1 EMC Pin Description

Pin Name	I/O	Signal	Description
Data Bus	I/O	D31 – D0	Data I/O
Address bus	0	A22-A0	Address output
Static chip select 4 ~ 1	0	CS4~1#	Chip select signal that indicates the static bank being accessed
SDRAM chip select	0	DCS#	Chip select signal that indicates the SDRAM bank being accessed
Read enable	0	RD# /	For Static memory read enable signal
Write enable	0	WE# /	Static memory write enable signal
Column address strobe	0	CAS#	SDRAM column address strobe signal
Row address strobe	0	RAS#	SDRAM row address strobe signal
Read/write	0	RD/WR#	Data bus direction designation signal Also used as SDRAM write enable signal
Byte enable 0	0	WE0# /	For non-byte-control static memory , D7-0 write enable signal,
		BE0# / DQM0 /	For byte-control static memory , D7-0 selection signal For SDRAM, D7–D0 selection signal
Byte enable 1	0	WE1# /	For non-byte-control static memory , D15-8 write enable signal
		BE1# / DQM1/	For byte-control static memory , D15-8 selection signal For SDRAM, D15–D8 selection signal
Byte enable 2	0	WE2# /	For non-byte-control static memory, D23-16 write enable signal
		BE2# / DQM2 /	For byte-control static memory, D23-16 selection signal For SDRAM , D23–D16 selection signal
Byte enable 3	0	WE3# / BE3# / DQM3	For static memory, D31-24 write enable signal For byte-control static memory, D31-24 selection signal For SDRAM, D31–D24 selection signal.
SDRAM Clock enable	0	CKE	Enable the SDRAM clock
Wait	I	Wait# /	External wait state request signal for memory-like devices
NAND flash read enable	0	FRE#	NAND flash read enable signal
NAND flash write enable	0	FWE#	NAND flash write enable signal
NAND flash ready/busy	I	FRB#	Indicates NAND flash is ready or busy (When Nand flash boot, GPC30 is used as FRB# of CS1#)

1.3 Physical Address Space Map

Both virtual spaces and physical spaces are 32-bit wide in this architecture. Virtual addresses are translated by MMU into physical address which is further divided into several partitions for static memory, SDRAM, and internal I/O.

Figure 1-1 Physical Address Space Map

Table 1-2 Physical Address Space Map

Start Address	End Address	Connectable Memory	Capacity
H'0000 0000	H'07FF FFF	SDRAM space	128 MB
H'0800 0000	H'0FFF FFFF	Static memory space	128 MB
H'1000 0000	H'13FF FFFF	Internal I/O space	64 MB
H'1400 0000	H'1BFF FFFF	Static memory space	128MB
H'1C00 0000	H'1FBF FFFF	Un-used	60MB
H'1FC0 0000	H'1FC0 0FFF	On-chip boot ROM	4KB
H'1FC0 1000	H'1FFF FFFF	Un-used	4095KB
H'2000 0000	H'BFFF FFFF	SDRAM space	2944 MB
H'D000 0000	H'FFFF FFFF	Reserved space	512 MB

The base address and size of each memory banks are configurable. Software can re-configure these memory banks according to the actual connected memories. Following table lists the default configuration after reset.

Table 1-3 Default Configuration of EMC Chip Select Signals

Chip-Selec	Connected Memory	Capacit	Memory	Start	End Address
t Signal		у	Width *1	Address	
CS1#	Static memory bank 1	8 MB	8, 16, 32	H'1800 0000	H'1BFF FFFF
CS2#	Static memory bank 2	8 MB	8, 16, 32	H'1400 0000	H'17FFFFFF
CS3#	Static memory bank 3	8 MB	8, 16, 32	H'0C00 0000	H'0FFF FFFF
CS4#	Static memory bank 4	8 MB	8, 16, 32	H'0800 0000	H'0BFF FFFF
DCS#*3	SDRAM bank	128 MB	16, 32	H'2000 0000	H'27FF FFFF

Notes:

- 1. Data width of static memory banks can be configured to 8, 16 or 32 bits by software.
- 2. The 4KB address space from H'1FC00000 to H'1FC00FFF in bank 0 is mapped to on-chip boot ROM. The other memory spaces in bank 0 are not used.
- 3. To support large SDRAM space, EMC re-maps the physical address H'00000000-H07FFFFF to H'20000000-H'27FFFFF. Software must configure the SDRAM base address by the re-mapped address.

1.4 Static Memory Interface

The static memory controller provides a glueless interface to SRAM's, ROMs (PROMs/EPROMs/FLASH), dual port memory, IO devices, and many other peripherals devices. It can directly control up to 4 devices using four chip select lines. Additional devices may be supported through external decoding of the address bus. The Device Controller shares the data and address busses with the SDRAM controller. Thus, only one memory subsection (SDRAM, memory, or IO) can be active at any time.

Each chip select can directly access memory or IO devices that are 8-bits, 16-bits, or 32-bits wide. Each device connected to a chip select line has 2 associated registers that control its operation and the access timing to the external device. The Static Memory Control Register SMCRn specifies various configurations for the device. The Static Memory Address Configuration Register SACRn specifies the base address and size for each device, enabling any device to be located anywhere in the physical address range.

The static memory interface includes the following signals:

- Four chip selects, CS4~1#
- Twenty-three address signals, A22-A0
- One read enable, RD#
- One write enable, WE#
- Four byte enable, BE3~1#
- One wait pin, WAIT#

The SMT field in SMCRn registers specifies the type of memory and BW field specifies the bus width. BOOT_SEL[1:0] defines whether system boot from Nor or Nand flash and the page size when boot from Nand flash.

1.4.1 Register Description

Table 1-4 Static Memory Interface Registers

Name	Description	RW	Reset Value	Address	Access Width
SMCR1	Static memory control register 1	RW	0x0FFF7700	0x13010014	32
SMCR2	Static memory control register 2	RW	0x0FFF7700	0x13010018	32
SMCR3	Static memory control register 3	RW	0x0FFF7700	0x1301001C	32
SMCR4	Static memory control register 4	RW	0x0FFF7700	0x13010020	32
SACR1	Static memory bank 1 address configuration register	RW	0x000018FC	0x13010034	32
SACR2	Static memory bank 2 address configuration register	RW	0x000016FE	0x13010038	32
SACR3	Static memory bank 3 address configuration register	RW	0x000014FE	0x1301003C	32
SACR4	Static memory bank 4 address configuration register	RW	0x00000CFC	0x13010040	32

1.4.1.1 Static Memory Control Register (SMCR1~4)

SMCR1~4 are 32-bit read/write registers that contain control bits for static memory. On reset, SMCR1~4 are initialized to 0x0FFF7700.

	SM	ICR ICR ICR	2																										0x	13010 13010 13010 13010	018 01C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2 1	0
						ST	RV			TA	W			TB	3P			7	ГАН	l		-	ГАЗ	6	В	N			BCM	BL	SMT
RST	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0	1	1	1	0/x	0/x	0	0	0	0 0	0

Bits	Name	Description	RW
31:28	Reserved	Writes to these bits have no effect and always read as 0.	R
27:24	STRV	Static Memory Recovery Time: Its value is the number of idle cycles	RW
		(0~15 cycles) inserted between bus cycles when switching from one bank	
		to another bank or between a read access to a write access in the same	

		bank. Its initi	al value is 0xF	(15 cycles).									
23:20	TAW	Access Wai	t Time: For no	ormal memory, these bits specify the number of	RW								
		wait cycles to	be inserted in	n read strobe time. For burst ROM, these bits									
		specify the number of wait cycles to be inserted in first data read strobe											
		time.											
		TAW3~	0 Wait cycle	Wait# Pin									
		0000	0 cycle	Ignored									
		0001	1 cycle	Enabled									
		0010	2 cycles	Enabled									
		0011	3 cycles	Enabled									
		0100	4 cycles	Enabled									
		0101	5 cycles	Enabled									
		0110	6 cycles	Enabled									
		0111	7 cycles	Enabled									
		1000	8 cycles	Enabled									
		1001	9 cycles	Enabled									
		1010	10 cycles	Enabled									
		1011	12 cycles	Enabled									
		1100	15 cycles	Enabled									
		1101	20 cycles	Enabled									
		1110	25 cycles	Enabled									
		1111	31 cycles	Enabled (Initial Value)									
19:16	TBP	Burst Pitch	Time: For bur	st ROM, these bits specify the number of wait	RW								
		cycles to be inserted in subsequent access. For normal memory, these											
		bits specify t	he number of	wait cycles to be inserted in write strobe time.									
		TBP3~0) Wait cycle	Wait# Pin									
		0000	0 cycle	Ignord									
		0001	1 cycle	Enabled									
		0010	2 cycles	Enabled									
		0011	3 cycles	Enabled									
		0100	4 cycles	Enabled									
		0101	5 cycles	Enabled									
		0110	6 cycles	Enabled									
		0111	7 cycles	Enabled									
		1000	8 cycles	Enabled									
		1001	9 cycles	Enabled									
		1010	10 cycles	Enabled									
		1011	12 cycles	Enabled									
		1100	15 cycles	Enabled									
		1101	20 cycles	Enabled									
		1110	25 cycles	Enabled									
		1111	31 cycles	Enabled (Initial Value)									
15	Reserved	Writes to the	se bits have n	o effect and always read as 0.	R								

14:12	TAH	Address Hol	ld Time: These bits specify the number of wait cycles to be	RW
14.12	17311		negation of read/write strobe to address.	1744
			Wait cycle	
		000	0 cycle	
		001	1 cycle	
		010	2 cycles	
		010	3 cycles	
		100	4 cycles	
		100	•	
		110	5 cycles	
			6 cycles	
44	Danamad	111	7 cycles (Initial Value)	-
11	Reserved		se bits have no effect and always read as 0.	R
10:8	TAS		up Time: These bits specify the number of wait cycles (0~7	RW
		,	inserted from address to assertion of read/write strobe.	
			Wait cycle	
		000	0 cycle	
		001	1 cycle	
		010	2 cycles	
		011	3 cycles	
		100	4 cycles	
		101	5 cycles	
		110	6 cycles	
		111	7 cycles (Initial Value)	
7:6	BW		These bits specify the bus width. this filed is writeable and	RW
			to 0 by a reset.	
			Bus Width	
		00	8 bits (Initial Value)	
		01	16 bits	
		10	32 bits	
		11	Reserved	
5:4	Reserved	Writes to thes	se bits have no effect and always read as 0.	R
3	BCM	SRAM Byte	Control Mode (BCM): When SRAM is connected; this bit	RW
		specifies the	type of SRAM. This bit is only valid when SMT is set to 0.	
		BCM	Description	
		0	SRAM is set to normal mode (Initial Value)	
		1	SRAM is set to byte control mode	
2:1	BL	Burst Lengt	h (BL1, BL0): When Burst ROM is connected; these bits	
		specify the nu	umber of burst in an access. These bits are only valid when	
		SMT is set to	1.	
		BL1~0	Burst Length	
		00	4 consecutive accesses. Can be used with 8-, 16-, or	
			32-bit bus width (Initial Value).	
		01	8 consecutive accesses. Can be used with 8-, 16-, or	

			32-bit bus width	
		10	16 consecutive accesses. Can only be used with 8- or	
			16-bit bus width. Do not specify for 32-bit bus width	
		11	32 consecutive accesses. Can only be used with 8-bit bus	
			width	
0	SMT	Static Memo	ory Type (SMT): This bit specifies the type of static memory.	RW
		SMT	Description	
		0	Normal Memory (Initial Value)	
		1	Burst ROM	

1.4.1.2 Static Bank Address Configuration Register (SACR1~4)

SACR1~4 defines the physical address for static memory bank 1 to 4, respectively. Each register contains a base address and a mask. When the following equation is met:

 $(physical_address [31:24] \& MASK_n) == BASE_n$

The bank n is active. The *physical_address* is address output on internal system bus. Static bank regions must be programmed so that each bank occupies a unique area of the physical address space. Bank 0 base address must be 0 because it's system boot address. Programming overlapping bank regions will result in unpredictable error. These registers are initialized by a reset.

	SA	CR CR CR:	2																				0 x′	130	100		0x1	301 301 301	003	88
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14 1	12 BAS	10	9	8	7	6		4 MA			1	0
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0														

Bits	Name	Description		RW
31:16	Reserved	Writes to these bits have no	effect and read always as 0.	R
15:8	BASE	Address Base: Defines the	base address of Static Bank n (n = 1 to 4).	RW
		The initial values are:		
		SACR1.BASE	0x18	
		SACR2.BASE	0x14	
		SACR3.BASE	0x0C	
		SACR4.BASE	0x08	
23:20	MASK	Address Mask: Defines the	mask of Static Bank n (n = 1 to 4).	RW
		The initial values are:		
		SACR1.MASK	0xFC	
		SACR2.MASK	0xFC	
		SACR3.MASK	0xFC	
		SACR4.MASK	0xFC	

1.4.2 Example of Connection

Following figures shows examples of connection to 32-, 16- and 8-bit data width normal memory.

Figure 1-2 Example of 32-Bit Data Width SRAM Connection

Figure 1-3 Example of 16-Bit Data Width SRAM Connection

Figure 1-4 Example of 8-Bit Data Width SRAM Connection

1.4.3 Basic Interface

When SMT field in SMCRn (n = 1 to 4) is 0 and BCM field is 0, normal memory (non-burst ROM, Flash, normal SRAM or memory-like device) is connected to bank n. When bank n (n = 1 to 4) is accessed, CSn# is asserted as soon as address is output. In addition, the RD# signal, which can be used as OE#, and write control signals, WE0# to WE3#, are asserted.

The TAS field in SMCRn is the latency from CSn# to read/write strobe. The TAW3 field is the delay time of RD# in read access. TBP3~0 field is the delay time of WE# and WEn# in write access. In addition, any number of waits can be inserted by means of the external pin (WAIT#). The TAH field is the latency from RD# and WEn# negation to CSn# negation, also the hold time to address and write data.

All kinds of normal memories (non-burst ROM, normal SRAM and Flash) have the same read and write timing. There are some requirements for writes to flash memory. Flash memory space must be un-cacheable and un-buffered. Writes must be exactly the width of the populated Flash devices on the data bus (no byte writes to a 32-bit bus or word writes to a 16-bit bus, and so on). Software is responsible for partitioning commands and data, and writing them out to Flash in the appropriate sequence.

Glossary

Th - hold cycle

Tw - wait cycle

Ts - setup cycle

T1 - read inherent cycle or first write inherent cycle

T2 - last write inherent cycle

Tb - burst read inherent cycle

Following figures show the timing of normal memory. A no-wait read access is completed in one cycle and a no-wait write access is completed in two cycles. Therefore, there is no negation period in case of access at minimum pitch.

*In this example, SMCRn:MT = 0, BCM = 0, TAS = 0, TAW = 0, TAH = 0

Figure 1-5 Basic Timing of Normal Memory Read

Figure 1-6 Basic Timing of Normal Memory Write

*In this example, SMCRn: SMT = 0, BCM = 0, TAS = 1, TAW = 1, TAH = 1

Figure 1-7 Normal Memory Read Timing With Wait (Software Wait Only)

Figure 1-8 Normal Memory Write Timing With Wait (Software Wait Only)

*In this example, SMCRn: SMT = 0, BCM = 0, TAS = 1, TAW = 1, TAH=1

Figure 1-9 Normal Memory Read Timing With Wait (Wait Cycle Insertion by WAIT# pin)

1.4.4 Byte Control

The byte control SRAM interface is a memory interface that outputs a byte select strobe WEn# in both read and write bus cycles. It has 16 bit data pins, and can be directly connected to SRAM which has an upper byte select strobe and lower byte select strobe function such as UB# and LB#.

In read/write access, RD#/WE# is used as read/write strobe signal and WEn# are used as byte select signals.

Following figure shows an example of byte control SRAM connection to processor.

Figure 1-10 Example of 32-Bit Data Width Byte Control SRAM Connection

Following figures show examples of Byte Control SRAM timing.

*In this example, SMCRn: SMT = 0, BCM = 1, TAS = 1, TAW = 1, TAH = 1

Figure 1-11 Byte Control SRAM Read Timing

*In this example, SMCRn: SMT = 0, BCM = 1, TAS = 1, TBP = 1, TAH = 1

Figure 1-12 Byte Control SRAM Write Timing

1.4.5 Burst ROM Interface

Setting SMT to 1 in SMCRn allows burst ROM to be connected to bank n (n = 1 to 4). The burst ROM interface provides high-speed access to ROM that has a nibble access function. Basically, access is performed in the same way as for normal memory, but when the first cycle ends, only the address is changed before the next access is executed. When 8-bit burst ROM is connected, the number of consecutive accesses can be set as 4, 8, 16, or 32 with bits BL1~0. When 16-bit ROM is connected, 4, 8, or 16 can be set in the same way. When 32-bit ROM is connected, 4 or 8 can be set.

For burst ROM read, TAW sets the delay time from read strobe to the first data, TBP sets the delay time from consecutive address to data. Burst ROM writes have the same timing as normal memory except TAW instead of TBP is used to set the delay time of write strobe.

WAIT# pin sampling is always performed when one or more wait states are set.

Following figures show the timing of burst ROM.

*In this example, SMT = 1, BL = 0, TAS = 1, TAW = 3, TBP = 1, TAH = 1

Figure 1-13 Burst ROM Read Timing (Software Wait Only)

1.5 NAND Flash Interface

NAND flash can be connected to static memory bank 4~ band 1. Both 8-bit and 16-bit NAND flashes are supported. Hardware ECC generator is implemented (including Hamming and RS codes correction). A mechanism for booting from NAND flash is also supported.

1.5.1 Register Description

Table 1-5 NAND Flash Interface Registers

Name	Description	RW	Reset Value	Address	Access Width
NFCSR	NAND flash control/status register	RW	0x00000000	0x13010050	32
NFECCR	NAND flash ECC control register	RW	0x00000000	0x13010100	32
NFECC	NAND flash ECC data register	R	Undefined	0x13010104	32
NFPAR0	NAND flash RS Parity 0 register	RW	0x00000000	0x13010108	32/16/8
NFPAR1	NAND flash RS Parity 1 register	RW	0x00000000	0x1301010C	32/16/8
NFPAR2	NAND flash RS Parity 2 register	RW	0x00000000	0x13010110	32/16/8
NFINTS	NAND flash Interrupt Status register	RW	0x00000000	0x13010114	32
NFINTE	NAND flash Interrupt Enable register	RW	0x00000000	0x13010118	32
NFERR0	NAND flash RS Error Report 0 register	R	0x00000000	0x1301011C	32/16
NFERR1	NAND flash RS Error Report 1 register	R	0x00000000	0x13010120	32/16
NFERR2	NAND flash RS Error Report 2 register	R	0x00000000	0x13010124	32/16
NFERR3	NAND flash RS Error Report 3 register	R	0x00000000	0x13010128	32/16

1.5.1.1 NAND Flash Control/Status Register (NFCSR)

NFCSR is a 32-bit read/write register that configure NAND flash. It is initialized by any reset.

Bits	Name	Description	RW
31:16	Reserved	Writes to these bits have no effect and read always as 0.	R
1/3/5/	FCEn	NAND Flash FCE# Assertion Control: Controls the assertion of NAND	RW
7	(n=1,2,3,	Flash FCEn#. When set, FCEn# is always asserted until this bit is	
	4)	cleared. When the NAND flash require FCEn# to be asserted during read	
		busy time, this bit should be set	

		FCE	Description	
		0	FCEn# is asserted as normal static chip enable(Initial	
		value)		
		1	FCEn# is always asserted	
0/2/4/	NFEn	NAND Flash	n Enable: Specifies if NAND flash is connected to static bank	RW
6	(n=1,2,3,	n. When sy	stem is configured to boot from NAND flash, this bit is	
	4)	initialized to	1.	
		NFE	Description	
		0	Static bank n is not used as NAND flash.	
		1	Static bank n is used as NAND flash.	

1.5.1.2 NAND Flash ECC Control Register (NFECCR)

NFECCR is a 32-bit read/write register that is used to control ECC calculation. It is initialized by any reset.

Bits	Name	Description		RW
31:5	Reserved	Writes to the	se bits have no effect and read always as 0.	R
4	PRDY	PAR Ready:	It is used to indicate the parity data is ready in NFPAR0~2	W
		register durir	ng RS decoding. It is automatically cleared by hardware and	
		always read	as 0.	
		PRDY	Description	
		0	Parity data is not available (Initial value)	
		1	Parity data is ready in NFPAR0~2 registers	
3	ENCE	RS Encodin	g/Decoding Select: It is used to define whether in encoding	RW
		or in decodin	g phase when RS is used.	
		ENCE	Description	
		0	Decoding (Initial value)	
		1	Encoding	
2	RSE	Hamming a	nd RS codes Select: It is used to select the correction	RW
		algorithm be	tween Hamming and RS codes.	
		RSE	Description	
		0	Hamming (Initial value)	
		1	Reed-Solomn (RS)	
1	ERST	NAND Flash	ECC Reset: It is used to reset ECC controller. This bit is	W
		cleared auto	matically by hardware and always read as 0.	

		ERST	Description	
		0	ECC controller is not reset(Initial value)	
		1	ECC controller is reset	
0	ECCE	NAND Flash	ECC Enable: ECC correction is enable/disable.	RW
		ECCE	Description	
		0	ECC is disabled (initial value)	
		1	ECC is enabled	

1.5.1.3 NAND Flash ECC Data Register (NFECC)

NFECC is a 32-bit read only register that contains the result of ECC calculation. It is not initialized by any reset. When ERST of NFECCR is set, NFECC is initialized to 0.

	NF	ECC																											0x1	301	001	104
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												EC	C2							EC	C1							EC	C0			
RST	0	0	0	0	0	0	0	0	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

Bits	Name	Description	RW
31:24	Reserved	Writes to these bits have no effect and read always as 0.	R
23:16	ECC2	Byte 2 of ECC	R
15:8	ECC1	Byte 1 of ECC	R
7:0	ECC0	Byte 0 of ECC	R

1.5.1.4 NAND Flash Parity Register (NFPARn, n=0,1,2)

NFPAR0, NFPAR1 and NFPAR2 are all 32-bit read/write register that contains the encoding and decoding parity data during RS correction. It is initialized by any reset and ERST of NFECCR.

PARn (n=0~7), total 8 9-bit register together contains the parity data during RS correction. In encoding, they are writtern by hardware and software needs to read out and write into NAND flash spare space after NFINTS.ENCF bit is set to 1. In decoding, they are writtern by software. Software should first read out the 512B nand flash data and then 8 9-bit parity data and write the parity data into PARn registers.

		AR4			·					PAR									PAR									PAR				
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	NF	PAF	R 1																										0x	130	101	0C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PAR0(0 bit)				P	AR	1							F	PAR2								Ρ	AR	3				PAR4(8~5 bits)			
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	NF	PAF	R2																										0>	(130)101	110
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserv								erve	ed												F	PAR	0 (8	3~1	bits	s)					
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1.5.1.5 NAND Flash Interrupt Status Register (NFINTS)

NFINTS is a 32-bit read-only register that contains the interrupt flag and error count information during RS correction. It is initialized by any reset. Software write 0 to clear the corresponding bit except ERRC.

	NF	INT	S																										0х	130)10 ⁻	114
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ERRC												F	Rese	erve	ed											PADF	DECF	ENCF	UNCOR	ERR
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description		RW
31:29	ERRC	ERR Count:	It indicates the number of errors in the nand flash data block	R
		and these bit	s are also reset by NFECCR.ERST bit.	
		ERRC	Description	
		0	No errors or uncorrection error occurs (Initial value)	
		1	One error in the nand flash data block	
		2	Two errors in the nand flash data block	

R R
R
1
R
R
R
R

1.5.1.6 NAND Flash Interrupt Enable Register (NFINTE)

NFINTE is a 32-bit read/write register that is used to enable/disable nand flash interrupt during RS correction. It is initialized by any reset.

Bits	Name	Description	RW
31:5	Reserved	Writes to these bits have no effect and read always as 0.	R
4	PADFE	Padding Finish Interrupt Enable: It is used enable or disable padding	RW
		finish interrupt.	
		PADFE Description	

	0	Disable Padding finish interrupt (Initial value)	
	1	Enable Padding finish interrupt	
DECFE	Decoding Fi	nish Interrupt Enable: It is used to enable or disable	RW
	decoding fini	sh interrupt.	
	DECFE	Description	
	0	Disable Decoding Finish Interrupt (Initial value)	
	1	Enable Decoding Finish Interrupt	
ENCFE	Encoding Fi	nish Interrupt Enable: It is used to enable or disable	RW
	encoding fini	sh interrupt.	
	ENCFE	Description	
	0	Disable Encoding Finish Interrupt (Initial value)	
	1	Enable Encoding Finish Interrupt	
UNCORE	Uncorrectio	n Error Interrupt Enable: It is used to enable or disable	RW
	uncorrection	error interrupt.	
	UNCOR	E Description	
	0	Disable Uncorrectable Error interrut (Initial value)	
	1	Enable Uncorrectable Error Interrupt	
ERRE	Error Interru	upt Enable: It is used to enable or disable error interrupt.	RW
	ERRE	Description	
	0	Disable Error interrupt (Initial value)	
	1	Enable Error interrupt	
	ENCFE	DECFE Decoding Findecoding finity DECFE 0 1 ENCFE Encoding Finity ENCFE 0 1 UNCORE Uncorrection UNCORE 0 1 ERRE Error Interrue ERRE 0	DECFE Decoding Finish Interrupt Enable: It is used to enable or disable decoding finish interrupt. DECFE Description 0 Disable Decoding Finish Interrupt (Initial value) 1 Enable Decoding Finish Interrupt ENCFE Encoding Finish Interrupt Enable: It is used to enable or disable encoding finish interrupt. ENCFE ENCFE Description 0 Disable Encoding Finish Interrupt (Initial value) 1 Enable Encoding Finish Interrupt UNCORE Uncorrection Error Interrupt Enable: It is used to enable or disable uncorrection error interrupt. UNCORE Description 0 Disable Uncorrectable Error interrupt (Initial value) 1 Enable Uncorrectable Error Interrupt ERRE Description 0 Disable Error Interrupt (Initial value) ERRE Description 0 Disable Error interrupt (Initial value)

1.5.1.7 NAND Flash Error Report Register (NFERRn, n=0,1,2,3)

NFERRn is 32-bit read/write register that contains the index and error value for each error symbol after RS decoding. It is initialized by any reset and ERST of NFECCR.

	NF NF	ER ER ER	R1 R2																										0x 0x	130	10 ²	120 124 128
Bit	31	30	29	28	27	26	25	24	23	22 2	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Re	serv	⁄ed				IN	NDE	Xn	(n=	0,1	,2,3	5)				Res	serv	/ed				N	ИΑЅ	SKn	(n=	0,1	,2,3)	
RST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	RW
31:25	Reserved	Writes to these bits have no effect and read always as 0.	R
24:16	INDEXn	Error Symbol Index: It is used to indicate the location of the error symbol	R
		in the 511 symbols. For example, INDEX=1, it means the first symbol has	
		error bits.	

15:9	Reserved	Writes to these bits have no effect and read always as 0.	R
8:0	MASKn	Error Symbol Value: It is used to indicate the error value of the indexed	R
		symbol. For example, INDEX=1, and MASK=3, it means the first two bits	
		of the first symbol are wrong, and software need to XOR MASK and the	
		indexed symbol to get the right data.	

1.5.2 NAND Flash Boot Loader

To support boot from NAND flash, 4KB on-chip Boot ROM is implemented. Following figure illustrates the structure of NAND Flash Boot Loader.

Figure 1-14 Structure of NAND Flash Boot Loader

When system is configured to boot from NAND flash, after reset, the program in Boot ROM is executed and the program will copy the first 4K bytes of NAND flash to internal memory for further initialization.

Generally, the boot code will copy more NAND flash content to SDRAM. Hardware ECC can be utilized to check the data validity. Then the main program will be executed on SDRAM.

When system is configured to boot from NAND flash, software may know the nand flash page size through BOOT_SEL[1:0] pin.

1.5.3 NAND Flash Operation

Set NFEn bit of NAND Flash Control/Status Register (NFCSR) will enable access to NAND flash. The partition of static bank n (n=1~4) is changed as following figure. Writes to any of address space will be translated to NAND flash address cycle. Writes to any of command space will be translated to NAND flash command cycle. Caution: don't read to address and command space, and these two partitions should be uncacheable. Reads and writes to any of data space will be translated to NAND flash data read/write cycle. DMA access to data space is supported to increase the speed of data read/write. The DMA access cannot exceed the page boundary (512 bytes or 2K bytes) of NAND flash.

Figure 1-15 Static Bank 2 Partition When NAND Flash is Used (an example)

The timing of NAND flash access is configured by SMCRn and is same as normal static memory timing, except that CSn# is controlled by NFCE bit NFCSR. CSn# is always asserted when NFCE is 1. When NFCE is 0, CSn# is asserted as normal static memory access.

The control signals for direction connection of NAND flash are CSn#, FRE#, FWE#, FRB#(GPIO), A16 and A15. Following figure shows the connection between processor and NAND Flash.

Figure 1-16 Example of 8-bit NAND Flash Connection

Hardware ECC generation for 8-/16-bit organization is implemented. There are two algorithm that could be used.

1.5.3.1 Hamming

When using Hamming algorithm, ECC parity code consists of 24 bits per 512 bytes (256 halfwords) and 22 bits per 256 bytes. Following table shows the ECC code assignment.

Table 1-6 512-Byte ECC Parity Code Assignment Table For 8-bit NAND Flash

	Data7	Data6	Data5	Data4	Data3	Data2	Data1	Data0
ECC0	P64	P64'	P32	P32'	P16	P16'	P8	P8'
ECC1	P1024	P1024'	P512	P512'	P256	P256'	P128	P128'
ECC2	P4	P4'	P2	P2'	P1	P1'	P2048	P2048'

24-bit ECC parity code = 18-bit line parity + 6-bit column parity

Table 1-7 256-Byte ECC Parity Code Assignment Table For 8-bit NAND Flash

	Data7	Data6	Data5	Data4	Data3	Data2	Data1	Data0
ECC0	P64	P64'	P32	P32'	P16	P16'	P8	P8'
ECC1	P1024	P1024'	P512	P512'	P256	P256'	P128	P128'
ECC2	P4	P4'	P2	P2'	P1	P1'	Χ	Х

22-bit ECC parity code = 16-bit line parity + 6-bit column parity

Table 1-8 256-Halfword ECC Parity Code Assignment Table For 16-bit NAND Flash

	Data7	Data6	Data5	Data4	Data3	Data2	Data1	Data0
ECC0	P128	P128'	P64	P64'	P32	P32'	P16	P16'
ECC1	P2048	P2048'	P1024	P1024'	P512	P512'	P256	P256'

ECC2	P8	P8'	P4	P4'	P2	P2'	P1	P1'
L002	1 0	1 0	' -	' -	' ~	' ~	' '	' '

24-bit ECC parity code = 16-bit line parity + 8-bit column parity

1.5.3.2 Reed-Solomn

RS controller uses RS(511, 503) codes. The total codes have 511 symbols, each symbol is 9-bit. The message has 503 9-bit symbols. So 512B nand flash data will be split into 9-bit symbols and it is 455 1/9 symbols, and then hardware will padding 47 8/9 zero symbol to build the 503 symbol message. During encoding, after padding zero, hardware will generate 8 9-bit parity symbol, software should read out the parity and write into nand flash spare space. During decoding, after reading out the 512B data and padding zero, hardware will using the parity data in NFPAR0~2 written by software to generate error information in NFERR0~3. Software should first read out the 512B nand flash data and then the parity data and write the parity data into NFPAR0~2.

NAND Flash Initialize Sequence

- 1. Configure SMCRn (n=1,2,3,4) according to the NAND flash AC characteristics.
- 2. Set NFEn bit of NFCSR to 1

NAND Flash Program Sequence

- 1. Set NFCEn bit of NFCSR to 1 to assert CSn# continuously
- 2. Write 0x80 to command space to issue Page Program command
- 3. Write 2 or 3 bytes of address to address space
- 4. Enable and reset the ECC generator by setting ECCE and ERST bits of NFECCR.
- 5. Select Haming or RS algorithm by setting NFECCR.RSE, 0: Hamming, 1: RS
- 6. If using RS algorithm, set NFECCR.ENCE to 1
- 7. Write 256 or 512 bytes data to data space using Hamming, write 512B data using RS
- 8. When using Hamming, clear ECCE bit of NFECCR to disable ECC generator and read out the ECC parity code from NFECC register, write 16-byte redundant data
- 9. When using RS, poll NFINTS.ENCF bit or wait for ENCF interrupt, and read out parity data from NFPAR0~2 register and write them into nand flash spare space
- 10. Write 0x10 to command space to issue Page Program command
- 11. Clear NFCEn bit of NFCSR to deassert CSn#
- 12. Check RB bit of NFCSR to wait the program complete

NAND Flash Read Sequence

- 1. Set NFCEn bit of NFCSR to 1 to assert CSn# continuously
- 2. Write 0x00 to command space to issue Read command
- 3. Write 2 or 3 bytes of address-to-address space

- 4. Enable and reset the ECC generator by setting ECCE and ERST bits of NFECCR.
- 5. Select Haming or RS algorithm by setting NFECCR.RSE, 0: Hamming, 1: RS
- 6. Check RB# pin (GPIO) to wait for NAND flash is not busy
- 7. When using Hamming, Read 256 or 512 bytes from NAND flash (DMA can be used), clear ECCE bit of NFECCR to disable ECC generator and Read 16-byte redundant data from NAND flash, then read out the ECC parity code from NFECC register, compare these two parity codes and correct the error bit or run the error routine
- 8. When using RS, Read 512 bytes data and 9 bytes parity data from NAND flash (DMA can be used), poll NFINTS.DECF bit or wait for decoding finish interrupt, and then analyze error status in NFINTS register, if there is any error, read NFERR0~3 registers, find the error byte according to NFERRn.INDEXn and XOR NFERRn.MASKn with the indexed bytes to get the correct data
- 9. If continuous pages are needed to be read, repeat steps from 5 to 9.
- 10. Clear NFCEn bit of NFCSR to deassert CSn#

ECC Generation Sequence for large page

In large page (2KBX8/1KHWX16 org.), 24-bit ECC code is generated for every 512 bytes or 256 halfwords data. Software gets ECC codes as following steps:

- 1. Set ERST bit of NFECCR to reset ECC generator
- 2. Read/write 512 bytes / 256 halfwords data
- 3. Read out 24-bit ECC code from NFECC register
- 4. Repeat step 1 to 3 until whole page is completed
- Write spare area according to above ECC codes.

1.6 SDRAM Interface

The SDRAM controller provides a glueless interface to industry standard SDRAM chip. The SDRAM controller provides one chip selects DCS# supporting 16-bit or 32-bit wide SDRAM.

Both 2-bank and 4-bank SDRAM modules are supported. The bank select signals are always output from the A13 pin and A14 pin of processor.

The SDRAM interface includes the following signals:

- One chip selects, DCS#
- Four byte mask signals, DQM3~0#
- 15 multiplexed bank/row/column address signals, A14-A0
- One write enable, RD/WR#
- One column-address strobe CAS#
- One row-address strobe RAS#
- One clock enable CKE
- One clock CKO

The processor performs auto-refresh (CBR) during normal operation and supports self-refreshing SDRAM during sleep, hibernate, and frequency-change modes. An SDRAM power-down mode bit (DMCR[PDM]]) can be set so that the CKO and the clock-enable signal CKE to SDRAM are automatically deasserted whenever none of the corresponding banks is being accessed.

1.6.1 Register Description

Table 1-9 SDRAM Registers

Name	Description	RW	Reset Value	Address	Access Width
DMCR	DRAM control register	RW	0x0000 0000	0x13010080	32
RTCSR	Refresh time control/status register	RW	0x0000	0x13010084	16
RTCNT	Refresh timer counter	RW	0x0000	0x13010088	16
RTCOR	Refresh time constant register	RW	0x0000	0x1301008C	16
DMAR	SDRAM bank address configuration register	RW	0x000020F8	0x13010090	32
SDMR	Mode register of SDRAM bank	W		0x1301A000	8

1.6.1.1 SDRAM Control Register (DMCR)

DMCR is a 32-bit read/write register that specifies the timing, address multiplexing and refresh control of SDRAM. This enables direct connection of SDRAM without external circuits.

The DMCR is initialized to 0x00000000 by any resets. SDRAM bank should not be accessed until initialization is completed.

	DN	ICR																										0 x	130	100	080
Bit	31	30	29	28	27	26	25	24	23	22	21 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BW				CA		RMODE	RFSH	MRSET		RA	BA	PDM	EPIN		Т	RA	S	RC	CD	_	ГРС)		TR	WL		ΓRC	;	тс	CL
RS T	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	1	RW
31	BW	Specifies th	e data bus width of SDRAM	RW
		BW	Description	
		0	Data width is 32 bits (Initial value)	
		1	Data width is 16 bits	
30:29	Reserved	Writes to the	ese bits have no effect and always read as 0.	R
28:26	CA	Column Ad	dress Width: Specify the column address width of connected	RW
		SDRAM chi	р.	
		CA	Description	
		000	8 bits column address	
		001	9 bits column address	
		010	10 bits column address	

		044	AA Life and an and discon	
		011	11 bits column address	
		100	12 bits column address	
		101	Reserved	
		110	Reserved	
		111	Reserved	
25	RMODE	Refresh Mod		RW
		RMODE	Description	
		0	Auto-refresh	
		1	Self-refresh	
24	RFSH	Refresh Con	trol.	RW
		RFSH	Description	
		0	No refresh is performed (Initial value)	
		1	Refresh is performed	
23	MRSET	Mode Regist	ter Set: Set when a SDRAM mode register setting is used.	RW
		When this bit	is 0 and SDRAM mode register is written, a Pre-charge all	
		banks comm	and (PALL) is performed. When this bit is 1 and SDRAM	
		mode registe	er is written, a Mode Register Set command (MRS) is	
		performed.		
		MRSET	Description	
		0	All-bank pre-charge (Initial value)	
		1	Mode register setting	
22	Reserved	Writes to thes	se bits have no effect and always read as 0.	R
21:20	RA	Row Addres	s Width: Specify the row address width of connected	RW
		SDRAM.		
		RA	Description	
		00	11-bit row address (Initial value)	
		01	12-bit row address	
		10	13-bit row address	
		11	Reserved	
19	BA	Bank Addres	ss Width: Specify the number of bank select signals for one	RW
		chip select.		
		BA	Description	
		0	1-bit bank address is used (2 banks each chip select)	
			(Initial value)	
		1	2-bit bank address is used (4 banks each chip select)	
18	PDM	Power Down	Mode: Set power-down mode. When power-down mode is	RW
			will be driven to power-down mode when it is not accessing	
			g. Clock supply to SDRAM will be stopped also.	
		PDM	Description	
		0	Non-power-down mode (Initial value)	
		1	Power-down mode	
17	EPIN	•	entrol: Controls the level of CKE pin. Clearing this bit by	RW
17			uses a power-down command (if CKOEN of CPM is 1).	1.00
		John Wale Cau	1000 a power down command (ii ortolia or or ivi is 1).	

		0		
			ter power-down command, all commands except	
		•	exit are prohibited. Setting this bit by software causes a	
		•	exit command. Setting EPIN is a part of initializes procedure	
		for SDRAM.		
		EPIN	Description	
		0	CKE pin is deserted (Initial value)	
		1	CKE pin is asserted	
16	Reserved	Writes to thes	se bits have no effect and always read as 0.	R
15:13	TRAS	RAS Asserti	on Time: When synchronous DRAM is connected, these	RW
		bits set the m	inimum CKE negation time after self-refresh command is	
		issued.		
		TRAS	Description	
		000	4 (Initial value)	
		001	5	
		010	6	
		011	7	
		100	8	
		101	9	
		110	10	
		111	11	
12:11	RCD	RAS-CAS D	elay: Set the SDRAM bank active-read/write command	RW
		delay time.	•	
		RCD	Description	
		00	1(Initial value)	
		01	2	
		10	3	
		11	4	
10:8	TPC	RAS Precha	rge Time: Specify the minimum number of cycles until the	RW
		next bank act	tive command is output after precharging.	
		TPC	Description	
		000	1 cycle (Initial value)	
		001	2 cycles	
		010	3 cycles	
		011	4 cycles	
		100	5 cycles	
		101	6 cycles	
		110	7 cycles	
		111	8 cycles	
7	Reserved		se bits have no effect and always read as 0.	R
6:5	TRWL		arge Time: Set the SDRAM write precharge delay time. In	RW
			ge mode, they specify the time until the next bank active	
			issued after a write cycle. After a write cycle, the next active	
			not issued for a period of TRWL + TPC.	
		John Harland	not located for a policy of Tittle 1 Ti O.	<u> </u>

		TRWL	Description	
		00	1 cycle (Initial value)	
		01	2 cycles	
		10	3 cycles	
		11	4 cycles	
4:2	TRC	RAS Cycle Tim	ne: For SDRAM, no bank active command is issued	RW
		during the perio	d TRC after an auto-refresh command. In self-refresh,	
		these bits also	specify the delay cycles to be inserted after CKE	
		assertion.		
		TRC	Description	
		000	1 cycle (Initial value)	
		001	3 cycle	
		010	5 cycle	
		011	7 cycle	
		100	9 cycle	
		101	11 cycle	
		110	13 cycle	
		111	15 cycle	
1:0	TCL	CAS Latency:	Specify the delay from read command to data becomes	RW
		available at the	outputs.	
		TCL	Description	
		00	Inhibit (Initial value)	
		01	2 cycles	
		10	3 cycles	
		11	Inhibit	

1.6.1.2 SDRAM Mode Register (SDMR)

SDMR is written to via the SDRAM address bus and is a 10-bit write-only register. It sets SDRAM mode for SDRAM bank. SDMR is undefined after a reset.

Write to the SDRAM mode register use the address bus rather than the data bus. If the value to be set is X and the SDMR address is Y, the value X is written in the SDRAM mode register by writing in address X + Y. Here Y is 0xA000, X is value for SDRAM configuration. For example Y is 0x022, random data is writer to the address offset 0xA022, as a result, 0x022 is written to the SDMR register. The range for value X is 0x000 to 0x3FF.

The Mode Register is used to define the specific mode of operation of the SDRAM. This definition includes the section of a burst length, a burst type, a CAS latency, an operating mode and a write burst mode, as shown in following figure.

Figure 1-17 Synchronous DRAM Mode Register Configuration

1.6.1.3 Refresh Timer Control/Status Register (RTCSR)

RTCSR is a 16-bit readable/writable register that specifies the refresh cycle and the status of RTCNT.

RTCSR is initialized to 0x0000 by a reset.

Bits	Name		Description	RW				
15:8	Reserved	These bits alw	yays read 0. Data written to these bits are ignored	R				
7	CMF	Compare-Mat	ch Flag (CMF): Status flag that indicates a match between					
		the refresh tim	ner counter (RTCNT) and refresh time constant register					
		(RTCOR) valu	es. Writes to 1 of this bit have no effect.					
		CMF	Description					
		0	RTCNT and RTCOR values do not match (Initial value)					
			Clear condition: When 0 is written					
		1	RTCNT and RTCOR values match					
			Set condition: When RTCNT = RTCOR					
2:0	CKS	Refresh Cloc	efresh Clock Select Bits: These bits select the clock input to RTCNT.					
		The source clo	ock is the external bus clock (CKO). The RTCNT count					
		clock is CKO	divided by the specified ratio.					
		CKS	Description					
		000	Disable clock input (Initial value)					
		001	Bus lock CKO/4					
		010	CKO/16					
		011	CKO/64					
		100	CKO/256					
		101	101 CKO/1024					
İ		110	CKO/2048					
		111	CKO/4096					

1.6.1.4 Refresh Timer Counter (RTCNT)

RTCNT is a 16-bit read/write register. RTCNT is a 16-bit counter that counts up with input clocks. The clock select bits (CKS2–CKS0) of RTCSR select the input clock. When the refresh bit (RFSH) of the memory control register (DMCR) is set to 1 and the refresh mode is set to auto-refresh, a memory refresh cycle starts when RTCNT matches RTCOR. RTCNT is initialized to 0x0000 by a reset.

1.6.2 Refresh Time Constant Register (RTCOR)

RTCOR is a 16-bit read/write register. The values of RTCOR and RTCNT (bottom 8 bits) are constantly compared. When the refresh bit (RFSH) of the memory control register (DMCR) is set to 1 and the refresh mode bit (RMODE) is set to auto-refresh, a memory refresh cycle starts when RTCNT matches RTCOR. RTCOR is initialized to 0x0000 by a reset.

1.6.2.1 DRAM Bank Address Configuration Register (DMAR)

DMAR define the physical address for SDRAM bank, respectively. Each register contains a base address and a mask. When the following equation is met:

$$(physical_address [31:24] \& MASK_n) == BASE_n$$

The bank n is active. The *physical_address* is address output on internal system bus. DRAM bank regions must be programmed so that each bank occupies a unique area of the physical address space. Programming overlapping bank regions will result in unpredictable error.

These registers are initialized by a reset.

	DMA	R														0x13010090															
Bit	31 3	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																			BA	SE							MA	SK			
RST																															

Bits	Name	Description	RW
31:16	Reserved	Writes to these bits have no effect and read always as 0.	R
15:8	BASE	Address Base: Defines the base address of SDRAM Bank. The initial	RW
		values are:	
		DMAR.BASE 0x20	
23:20	MASK	Address Mask: Defines the mask of SDRAM Bank.	RW
		The initial values are:	
		DMAR.MASK 0xF8	

1.6.3 Example of Connection

Following figure shows an example of connection of 512K x 16-bit x 2-bank SDRAM.

Figure 1-18 Example of Synchronous DRAM Chip Connection (1)

Following figure shows an example of connection of 1M x 16-bit x 4-bank synchronous DRAM.

Figure 1-19 Example of Synchronous DRAM Chip Connection (2)

1.6.4 Address Multiplexing

SDRAM can be connected without external multiplexing circuitry in accordance the address multiplex specification bits CA2~0, RA1~0 and BA in DMCR. Table 1-10 shows the relationship between the address multiplex specification bits and the bits output at the address pins.

A14-0 is used as SDRAM address. The original values are always output at these pins.

Table 1-10 SDRAM Address Multiplexing (32-bit data width) *4

CA2~0	RA1~0	Output Timing	A0-A9, A10, A11, A12	A1 3	A14	Note
8 bits	11 bits	Column	A2-A11, L/H* ¹ , A12, A13	A21	A22	3, 4
		Row	A10-A22			
	12 bits	Column	A2-A11, L/H* ¹ , A12, A13	A22	A23	3, 4
		Row	A10-A22			
	13 bits	Column	A2-A11, L/H* ¹ , A12, A13	A23	A24	3, 4
		Row	A10-A22			
9 bits	11 bits	Column	A2-A11, L/H* ¹ , A12, A13	A22	A23	3, 4
		Row	A11-A23			
	12 bits	Column	A2-A11, L/H* ¹ , A12, A13	A23	A24	3, 4
		Row	A11-A23			
	13 bits	Column	A2-A11, L/H* ¹ , A12, A13	A24	A25	3, 4
		Row	A11-A23			
10 bits	11 bits	Column	A2-A11, L/H* ¹ , A12, A13	A23	A24	3, 4
		Row	A12-A24			
	12 bits	Column	A2-A11, L/H* ¹ , A12, A13	A24	A25	3, 4
		Row	A12-A24			
	13 bits	Column	A2-A11, L/H* ¹ , A12, A13	A25	A26	3, 4
		Row	A12-A24			
11 bits	11 bits	Column	A2-A11, L/H* ¹ , A12, A13	A24	A25	3, 4
		Row	A13-A25,			
	12 bits	Column	A2-A11, L/H* ¹ , A12, A13	A25	A26	3, 4
		Row	A13-A25,			
	13 bits	Column	A2-A11, L/H* ¹ , A12-A17	A26	A27	3, 4
		Row	A13-A25,			
12 bits	11 bits	Column	A2-A11, L/H* ¹ , A12, A13	A25	A26	3, 4
		Row	A14-A26			
	12 bits	Column	A2-A11, L/H* ¹ , A12, A13	A26	A27	3, 4
		Row	A14-A26			
	13 bits	Column	A2-A11, L/H* ¹ , A12, A13	A27	A28	3, 4
		Row	A14-A26			

Notes:

- 1. L/H is a bit used in the command specification; it is fixed at L or H according to the Access mode.
- 2. Bank address specification
- 3. If one bank select signal is used (BA = 0), take A13 as bank select signal. If two bank select signals are used (BA = 1), take A13 and A14 as bank select signals
- 4. The A0 to A14 in table head are output pins. The A2 to A28 in table body are physical address.

Table 1-11 SDRAM Address Multiplexing (16-bit data width) *4

CA2~0	RA1~0	Output Timing	A0-A9, A10, A11, A12	A13	A14	Note
8 bits	11 bits	Column	A2-A11, L/H* ¹ , A12, A13	A21	A22	3, 4
		Row	A10-A22			
	12 bits	Column	A2-A11, L/H* ¹ , A12, A13	A22	A23	3, 4
		Row	A10-A22			
	13 bits	Column	A2-A11, L/H* ¹ , A12, A13	A23	A24	3, 4
		Row	A10-A22			
9 bits	11 bits	Column	A2-A11, L/H* ¹ , A12, A13	A22	A23	3, 4
		Row	A11-A23			
	12 bits	Column	A2-A11, L/H* ¹ , A12, A13	A23	A24	3, 4
		Row	A11-A23			
	13 bits	Column	A2-A11, L/H* ¹ , A12, A13	A24	A25	3, 4
		Row	A11-A23			
10 bits	11 bits	Column	A2-A11, L/H* ¹ , A12, A13	A23	A24	3, 4
		Row	A12-A24			
	12 bits	Column	A2-A11, L/H* ¹ , A12, A13	A24	A25	3, 4
		Row	A12-A24			
	13 bits	Column	A2-A11, L/H* ¹ , A12, A13	A25	A26	3, 4
		Row	A12-A24			
11 bits	11 bits	Column	A2-A11, L/H* ¹ , A12, A13	A24	A25	3, 4
		Row	A13-A25,			
	12 bits	Column	A2-A11, L/H* ¹ , A12, A13	A25	A26	3, 4
		Row	A13-A25,			
	13 bits	Column	A2-A11, L/H* ¹ , A12-A17	A26	A27	3, 4
		Row	A13-A25,			
12 bits	11 bits	Column	A2-A11, L/H* ¹ , A12, A13	A25	A26	3, 4
		Row	A14-A26			
	12 bits	Column	A2-A11, L/H* ¹ , A12, A13	A26	A27	3, 4
			A14-A26			
	13 bits	Column	A2-A11, L/H* ¹ , A12, A13	A27	A28	3, 4
		Row	A14-A26			

Notes:

- L/H is a bit used in the command specification; it is fixed at L or H according to the Access mode.
- 2. Bank address specification
- 3. If one bank select signal is used (BA = 0), take A13 as bank select signal. If two bank select signals are used (BA = 1), take A13 and A14 as bank select signals
- 4. The A0 to A14 in table head are output pins. The A2 to A28 in table body are physical address.

1.6.5 SDRAM Command

Commands for SDRAM are specified by RAS#, CAS#, RD/WR and special address signals. The processor accesses SDRAM by using the following subset of standard interface commands.

- Mode Register Set (MRS)
- Bank Activate (ACTV)
- Read (READ)
- Write (WRIT)
- Burst Terminate
- Precharge All Banks (PALL)
- Auto-Refresh (CBR)
- Enter Self-Refresh (SLFRSH)
- No Operation (NOP)

Table 1-12 SDRAM Command Encoding (Notes: 1)

Command				Proc	essor Pi	ns		
	CS#	RAS#	CAS#	RD/WR#	DQM	A14-11, A9-0	A10	Note
INHIBIT	Н	Х	Х	Х	Х	Х	Х	
NOP	L	Н	Н	Н	Х	Х	Х	
MRS	L	L	L	L	Х	Op-Code		
ACTV	L	L	Н	Н	Х	Bank, Row	Х	2
READ	L	Н	L	Н	L/H	Bank, Col	L	3
WRIT	L	Н	L	L	L/H	Bank, Col	L	3
Burst Terminate	L	Н	Н	L	Х	Х	Х	
PRE	L	L	Н	L	Х	Bank	L	
PALL	L	L	Н	L	Х	Х	Н	
CBR/SLFRSH	L	L	L	Н	Х	Х	Х	4

Note:

- CKE is HIGH for all commands shown except SLFRSH
- A0-A12 provides row address, and A13-A14 determines which bank is active.
- A0-A9 provides column address, and A13-A14 determines which bank is being read from or written to.
- This command is CBR if CKE is HIGH, SLFRSH if CKE is LOW.

1.6.6 SDRAM Timing

The SDRAM bank function is used to support high-speed accesses to the same row address. As SDRAM is internally divided into two or four banks, it is possible to activate one row address in each bank.

When a de-active bank is accessed, an access is performed by issuing an ACTV command following by READ or WRIT command.

When an active bank is accessed and just hit the open row, an access is performed by issuing READ or WRIT command immediately without issuing an ACTV command.

When an active bank is accessed but hit a closed row, a PRE command is first issued to precharge the bank, then the access is performed by issuing an ACTV command followed by a READ or WRIT command.

There is a limit on Tras, the time for placing each bank in the active state. If there is no guarantee that there will not be a cache hit and another row address will be accessed within the period in which this value is maintained by program execution, it is necessary to set auto-refresh and set the refresh cycle to no more than the maximum value of Tras. In this way, it is possible to observe the restrictions on the maximum active state time for each bank. If auto-refresh is not used, measures must be taken in the program to ensure that the banks do not remain active for longer than the prescribed time.

Glossary

Tr - row active cycle

Trw - row active wait cycle

Trwl - write latency cycle

Tpc - precharge cycle

TRr - refresh command cycle

Trc - RAS cycle

Trs1 - self refresh cycle 1

Trs2-self refresh cycle 2

Trs3 – self refresh cycle 3

Trsw - self refresh wait cycle

Tc1 - command cycle 1

Tc2 - command cycle 2

Tc3 - command cycle 3

Tc4 - command cycle 4

Tc5 – command cycle 5

Tc6 - command cycle 6

Tc7 – command cycle 7

Tc8 - command cycle 8

Td1 - data cycle 1

Td2 - data cycle 2

Td3 – data cycle 3

Td4 – data cycle 4

Td5 – data cycle 5

Td6 - data cycle 6

Td7 - data cycle 7

Td8 - data cycle 8

TRp1 - precharge-all cycle 1

TRp2 – precharge-all cycle 2

TRp3 – precharge-all cycle 3

TRp4 – precharge-all cycle 4

TMw1 - mode register set cycle 1

TMw2 – mode register set cycle 2

TMw3 - mode register set cycle 3

TMw4 - mode register set cycle 4

Following figures show the timing of 4-beat burst access, 8-beat burst access and single access.

Figure 1-20 Synchronous DRAM 4-beat Burst Read Timing (Different Row)

*DMCR: RCD = 1, TCL = 1, TPC = 2

Figure 1-21 Synchronous DRAM 4-beat Burst Read Timing (Same Row)

*DMCR: RCD = 1, TCL = 1, TPC = 2, TRWL = 1

Figure 1-22 Synchronous DRAM 4-beat Burst Write Timing (Different Row)

*DMCR: RCD = 1, TCL = 1, TPC = 2, TRWL = 1

Figure 1-23 Synchronous DRAM 4-beat Burst Write Timing (Same Row)

*DMCR: RCD = 1, TCL = 1, TPC = 2

Figure 1-24 Synchronous DRAM 8-beat Burst Read Timing (Different Row)

*DMCR: RCD = 1, TCL = 1, TPC = 2

Figure 1-25 Synchronous DRAM 8-beat Burst Read Timing (Same Row)

*DMCR: RCD = 1, TCL = 1, TPC = 2, TRWL = 1

Figure 1-26 Synchronous DRAM 8-beat Burst Write Timing (Same Row)

*DMCR: RCD = 1, TCL = 1, TPC = 2, TRWL = 1

Figure 1-27 Synchronous DRAM 8-beat Burst Write Timing (Different Row)

*DMCR: RCD = 1, TCL = 1, TPC = 2

Figure 1-28 Synchronous DRAM Single Read Timing (Different Row)

*DMCR: RCD = 1, TCL = 1, TPC = 2

Figure 1-29 Synchronous DRAM Single Read Timing (Same Row)

*DMCR: RCD = 1, TCL = 1, TPC = 2, TRWL = 1

Figure 1-30 Synchronous DRAM Single Write Timing (Different Row)

*DMCR: RCD = 1, TCL = 1, TPC = 2, TRWL = 1

Figure 1-31 Synchronous DRAM Single Write Timing (Same Row)

1.6.7 Power-Down Mode

The SDRAM power-down mode is supported to minimize the power consumption. CKE going to low level when SDRAM is idle/active state will drive SDRAM to precharge/active power-down mode. The clock supplies to SDRAM may be stopped also when CKE keep in low level more than two cycles. When a new access start or a refresh request, CKE is driven to high level and clock supplies is re-enabled. In power-down mode, clock of the accessed SDRAM bank pair is supplied. Clock of the other pair is stopped.

Following figures shows the timing of power-down mode and clock stopping.

Figure 1-32 SDRAM Power-Down Mode Timing (CKO Stopped)

Following figure shows the power-down mode timing that CKE low level less than two cycles and clock is not stopped.

Figure 1-33 SDRAM Power-Down Mode Timing (Clock Supplied)

1.6.8 Refreshing

EMC provide a function for controlling the refresh of synchronous DRAM, Auto-refresh can be performed by clearing the RMODE bit to 0 and setting the RFSH bit to 1 in DMCR. If SDRAM is not accessed for a long period, self-refresh mode can be activated by set both the RMODE bit and the RFSH bit to 1.

1.6.8.1 AUTO-Refresh

Refreshing is performed at intervals determined by the input clock selected by bits CKS2-0 in RTCSR, and the value set in RTCOR. The value of bits CKS2-0 in RTCSR should be set so as to satisfy the refresh interval stipulation for the synchronous DRAM used. First make the settings for RTCOR, RTCNT, and the RMODE and RFSH bits in MCR, and then make the CKS2-CKS0 setting. When the clock is selected by CKS2-CKS0, RTCNT starts counting up from the value at that time. The RTCNT value is constantly compared with the RTCOR value, and if the two values are the same, a refresh request is generated and an auto-refresh is performed. At the same time, RTCNT is cleared to zero and the count-up is restarted. Figure 1-34 shows the auto-refresh cycle operation.

First, a REF command is issued in the TRr cycle. After the TRr cycle, new command output cannot be performed for the duration of the number of cycles specified by the TRC bits in DMCR. The TRC bits must be set so as to satisfy the synchronous DRAM refresh cycle time stipulation (active/active command delay time). Following figure shows the auto-refresh timing when TRC is set to 2.

Auto-refresh is performed in normal operation and sleep mode.

Figure 1-34 Synchronous DRAM Auto-Refresh Operation

A PALL command is issues firstly to precharge all banks. Then a REF command is issued in the TRr cycle.

Figure 1-35 Synchronous DRAM Auto-Refresh Timing

1.6.8.2 SELF-Refresh

Self-refresh mode is a kind of sleep mode in which the refresh timing and refresh addresses are generated within the SDRAM. Self-refreshing is activated by setting both the RMODE bit and the RFSH bit to 1. The self-refresh state is maintained while the CKE signal is low. SDRAM cannot be accessed while in the self-refresh state. Self-refresh mode is cleared by clearing the RMODE bit to 0. After self-refresh mode has been cleared, command issuance is disabled for the number of cycles specified by the TRC bits in DMCR. Trsw cycles are inserted to meet the minimum CKE negation time specified by the TRAS bits in DMCR. Self-refresh timing is shown in following figure. Settings must be made so that self-refresh clearing and data retention are performed correctly, and auto-refresh is performed at the correct intervals. When self-refreshing is activated from the state in which auto-refreshing is set, or when exiting sleep mode other than through a reset, auto-refreshing is restarted if RFSH is set to 1 and RMODE is cleared to 0 when self-refresh mode is cleared. If the transition from clearing of self-refresh mode to the start of auto-refresh takes time, this time should be taken into consideration when setting the initial value of RTCNT. Making the RTCNT value 1 less than the RTCOR value will enable refreshing to be started immediately. After self-refreshing has been set, the self-refresh state continues even if the chip standby state is entered using the processor's sleep function, and is maintained even after recovery from sleep mode other than through a reset. In the case of a reset, the bus state controller's registers are initialized, and therefore the self-refresh state is cleared.

Self-refreshing is performed in normal operation, in idle mode and in sleep mode. In sleep mode, if RFSH bit in DMCR is 1, self-refresh is always performed in spite of RMODE field in DMCR until sleep mode is canceled.

Relationship between Refresh Requests and Bus Cycle Requests:

If a refresh request is generated during execution of a bus cycle, execution of the refresh is deferred until the bus cycle is completed. If a match between RTCNT and RTCOR occurs while a refresh is waiting to be executed, so that a new Refresh request is generated, the previous refresh request is eliminated. In order for refreshing to be performed normally, care must be taken to ensure that no bus cycle is longer than the refresh interval.

A PALL command is issued firstly to precharge all banks.

Figure 1-36 Synchronous DRAM Self-Refresh Timing

1.6.9 Initialize Sequence

In order to use SDRAM, mode setting must first be performed after powering on. To perform SDRAM initialization correctly, the EMC registers must first be set, followed by a write to the SDRAM mode register.

In SDRAM mode register setting, the address signal value at that time is latched by MRS command. If the value to be set is X, the bus state controller provides for value X to be written to the synchronous DRAM mode register by performing a write to address offset 0xA000 + X for bank 0. In this operation the data is ignored, but the mode write is performed as a byte-size access. To set burst read/write, CAS latency 2 to 3, wrap type = sequential, and burst length 4 supported by the processor, arbitrary data is written in a byte-size access to the following addresses.

Table 1-13 SDRAM Mode Register Setting Address Example (32-bit)

	Bank 0			
CAS latency 2	A022	B088	C088	D088
CAS latency 3	A032	B0C8	C0C8	D0C8

Table 1-14 SDRAM Mode Register Setting Address Example (16-bit)

	Bank 0			
CAS latency 2	A011	B044	C044	D044
CAS latency 3	A019	B064	C064	D064

The value set in DMCR.MRSET is used to select whether a Pre-charge All Banks command (PALL) or a Mode Register Set command (MRS) is issued. The timing for the Pre-charge All Banks command is shown in Figure 1-37, and the timing for the Mode Register Set command in Figure 1-38

Before mode register setting, a 200 µs idle time (depending on the memory manufacturer) must be guaranteed after powering on requested by the synchronous DRAM. If the reset signal pulse width is greater than this idle time, there is no problem in performing initialize sequence immediately.

First, a pre-CHARGE all bank (PALL) command must be issued by performing a write to address offset 0xA000 + X for bank 0, while DMCR.MRSET = 0.

Next the NUMBER of dummy auto-refresh cycles specified by the manufacturer (usually 8) or more must be executed. This is usually achieved automatically while various kinds of initialization are being performed after auto-refresh setting, but a way of carrying this out more dependably is to set a short refresh request generation interval just while these dummy cycles are being executed. With

simple read or write access, the address counter in the synchronous DRAM used for auto-refreshing is not initialized, and so the cycle must always be an auto-refresh cycle.

After auto-REFRESH has been executed at least the prescribed number of times, a Mode Register Set command (MRS) is issued in the TMw1 cycle by setting DMCR.MRSET to 1 and performing a write to address offset 0xA000 + X.

An example of SDRAM operation flow is as the following:

1. Disable Bus release

Write 0x00000000 to BCR

2. Initialize RTCOR and RTCNT for auto-refresh cycle

Before configure SDRAM SDMR, SDRAM needs to execute auto-refresh, the number of times depends on the type of SDRAM. It's better to set a short refresh request generation interval here. For example, set RTCOR to 0x0000000F, and set RTCNT 0x00000000.

3. Initialize DMCR for Precharge all bank and auto-refresh

When DMCR.RMODE=0 and DMCR.RFSH=1, enter auto-refresh mode;

When DMCR.MRSET=0, write SDMR whill generates Precharge all bank cycle.

DMCR.TPC must be defined for precharge.

4. Disable refresh counter clock

Write 0x00000000 to RTCSR

Execute Precharge all bank before auto-refresh

Because DMCR.MRSET=0, writing SDMR generates a Precharge all bank cycle, for example, write address (0x1301A000).

6. Enable fast refresh counter clock for auto-refresh cycle

For example, write 0x00000001 to RTCSR

7. Wait for number of auto-refresh cycles (defined by SDRAM chip)

When RTCSR.CMF=1, it indicates value of RTCOR and RTCNT match and an auto-refresh cycle occurs.

8. Configure DMCR for SDRAM MODE Register Set

When DMCR.MRSET=1, write SDMR generate MRSET cycle.

For example, write 0x059A5231 to DMCR, so that:

Bus-width: 32-bit; Column Address: 9-bit; Row Address: 12-bit; Auto-refresh mode; SDMR Set mode; 4-bank; etc..

9. SDRAM Mode Register Set

Because DMCR.MRSET=1, for example, write address 0x1301A022 to configure SDMR as:

Burst Length: 4 burst Burst Type: Sequential

CAS Latency: 2

10. Set normal auto-refresh counter clock

For example, write 0x00000005 to RTCSR

11. Then Read/Write SDRAM can be executed

Figure 1-37 SDRAM Mode Register Write Timing 1 (Pre-charge All Banks)

Figure 1-38 SDRAM Mode Register Write Timing 2 (Mode Register Set)

1.7 Bus Control Register (BCR)

BCR is used to specify the behavior of EMC on system bus and indicate the BOOT_SEL[1:0] status which defines the boot configure. It is initialized to 0x00000001 by any reset.

BOOT_SEL[1:0] pins define the boot time configurations as listed in the following table.

Table 1-15 Boot Configuration

Boot_sel[1]	Boot_sel[0]	Description
0	0	Boot from external ROM at CS3_
0	1	Boot from USB device
1	0	Boot from 512 Byte page NAND flash at CS1_
1	1	Boot from 2k Byte page NAND flash at CS1_

Name	Description	RW	Reset Value	Address	Access Width
BCR	Bus Control Register	RW	0x?0000001	0x13010000	32

Bits	Name	Description	RW				
31:30	BT_SEL	BOOT_SEL (BT_SEL[1:0]): Status of BOOT_SEL pins that indicate the	R				
		boot configure. See the above boot configuration table.					
29:2	Reserved	Writes to these bits has no effect and always read as 0.	R				
1	BRE	us Release Enable: When clear, once a transaction to EMC begins on					
		the system bus; it must be completed before another transaction starts.					
		hen set, the system bus may be released to allow other transaction					
		before EMC prepare the read data or be able to receipt the write data. If					
		slow memory devices are used in the system, setting this bit will improve					
		the efficiency of the whole system. The efficiency of SDRAM access may					
		e improved by setting this bit. But the power consumption is increased if					
		s bit is set.					
		BRE Description					

		0	The system bus can not be released during an access	
			(Initial value)	
		1	The system bus can be released during an access	
0	Endian	Endian: Indicates the system is little-endian.		R