Лабораторная работа №3

«Оптимальное кодирование. Алгоритм Шеннона-Фано» Вариант 1

Цель работы: освоить алгоритм Шеннона-Фано. Научиться сжимать сообщения с помощью алгоритма Шеннона-Фано.

1

Условие: Составить коды для каждого символа алфавита с помощью алгоритма Шеннона-Фано.

a	Α	В	C	D	E	F
р	0,25	0,05	0,1	0,25	0,05	0,3

Решение:

Сперва упорядочим входную последовательность символов по невозрастанию их вероятностей:

i	a	F	Α	D	С	В	Е
ı	2	0,3	0,25	0,25	0,1	0,05	0,05

Далее найдём коды для каждого символа используя следующий алгоритм (Шеннона-Фано):

- 1. Символы полученного алфавита делим на две части, суммарные вероятности символов которых максимально близки друг к другу.
- 2. Для текущего разряда первой части присваиваем код «0», для второй «1».
- 3. Полученные части рекурсивно делим и их частям назначаем соответствующие двоичные цифры (шаги 1–2).

	_		Vол				
а	Р	1	2	3	4	Код	
F	0,3	0	0			00	
Α	0,25		1			01	
D	0,25	1	0			10	
С	0,1			0		110	
В	0,05		1	1	0	1110	
E	0,05			I	1	1111	

2

Условие: Закодировать сообщение (ADADBDCBBDCABFDAFCEB), используя коды для символов. Вычислить среднюю длину символа. Вычислить энтропию алфавита. Сравнить среднюю длину и энтропию. Сделать выводы.

Решение:

Закодируем сообщение используя найденные выше коды:

ADADBDCBBDCABFDAFCEB =

Вычислим среднюю длину символа, то есть среднюю длину его оптимального неравномерного кода:

$$L_{cp} = \Sigma \ L_i \times p_i = 2 \times 0.3 + 2 \times 0.25 + 2 \times 0.25 + 3 \times 0.1 + 4 \times 0.05 + 4 \times 0.05 = 2.3 \$$
бит

Подсчитаем энтропию алфавита:

$$\begin{split} \mathsf{H} = -\Sigma \ \mathsf{p_i} \times \mathsf{log_2}(\mathsf{p_i}) = \mathsf{0.3} \times \mathsf{log_2}(\mathsf{0.3}) + \mathsf{0.25} \times \mathsf{log_2}(\mathsf{0.25}) + \mathsf{0.25} \times \mathsf{log_2}(\mathsf{0.25}) + \\ + \ \mathsf{0.1} \times \mathsf{log_2}(\mathsf{0.1}) + \ \mathsf{0.05} \times \mathsf{log_2}(\mathsf{0.05}) + \mathsf{0.05} \times \mathsf{log_2}(\mathsf{0.05}) = \mathsf{2.285} \ \ \mathsf{бит/сим} \end{split}$$

Эффективность оптимального кодирования тем выше, чем больше средняя длина кода (символа) стремится к энтропии алфавита. Высчитаем коэффициент эффективности:

$$K_{s} = \frac{H}{L_{cp}} = \frac{2,285}{2,3} = 0,993$$

Поскольку коэффициент эффективности недалёк от единицы, данное кодирование действительно оптимально и эффективно.

Условие: Составить список биграмм для данного алфавита. Вычислить вероятность каждой биграммы. Составить коды для каждой биграммы с помощью алгоритма Шеннона-Фано.

Решение:

Составим список биграмм:

AA, AB, AC, AD, AE, AF, BA, BB, BC, BD, BE, BF, CA, CB, CC, CD, CE, CF, DA, DB, DC, DD, DE, DF, EA, EB, EC, ED, EE, EF, FA, FB, FC, FD, FE, FF

Вычислим вероятность каждой биграммы:

```
P(AA) = P(A) \times P(A) = 0.25 \times 0.25 = 0.0625
P(AB) = P(A) \times P(B) = 0.25 \times 0.05 = 0.0125
P(AC) = P(A) \times P(C) = 0.25 \times 0.1 = 0.025
P(AD) = P(A) \times P(D) = 0.25 \times 0.25 = 0.0625
P(AE) = P(A) \times P(E) = 0.25 \times 0.05 = 0.0125
P(AF) = P(A) \times P(F) = 0.25 \times 0.3 = 0.075
P(BA) = P(B) \times P(A) = 0.05 \times 0.25 = 0.0125
P(BB) = P(B) \times P(B) = 0.05 \times 0.05 = 0.0025
P(BC) = P(B) \times P(C) = 0.05 \times 0.1 = 0.005
P(BD) = P(B) \times P(D) = 0.05 \times 0.25 = 0.0125
P(BE) = P(B) \times P(E) = 0.05 \times 0.05 = 0.0025
P(BF) = P(B) \times P(F) = 0.05 \times 0.3 = 0.015
P(CA) = P(C) \times P(A) = 0.1 \times 0.25 = 0.025
P(CB) = P(C) \times P(B) = 0.1 \times 0.05 = 0.005
P(CC) = P(C) \times P(C) = 0.1 \times 0.1 = 0.01
P(CD) = P(C) \times P(D) = 0.1 \times 0.25 = 0.025
P(CE) = P(C) \times P(E) = 0.1 \times 0.05 = 0.005
P(CF) = P(C) \times P(F) = 0.1 \times 0.3 = 0.03
P(DA) = P(D) \times P(A) = 0.25 \times 0.25 = 0.0625
P(DB) = P(D) \times P(B) = 0.25 \times 0.05 = 0.0125
P(DC) = P(D) \times P(C) = 0.25 \times 0.1 = 0.025
P(DD) = P(D) \times P(D) = 0.25 \times 0.25 = 0.0625
P(DE) = P(D) \times P(E) = 0.25 \times 0.05 = 0.0125
P(DF) = P(D) \times P(F) = 0.25 \times 0.3 = 0.075
P(EA) = P(E) \times P(A) = 0.05 \times 0.25 = 0.0125
P(EB) = P(E) \times P(B) = 0.05 \times 0.05 = 0.0025
P(EC) = P(E) \times P(C) = 0.05 \times 0.1 = 0.005
P(ED) = P(E) \times P(D) = 0.05 \times 0.25 = 0.0125
P(EE) = P(E) \times P(E) = 0.05 \times 0.05 = 0.0025
```

$$\begin{split} &\mathsf{P}(\mathsf{EF}) = \mathsf{P}(\mathsf{E}) \times \mathsf{P}(\mathsf{F}) = \mathsf{0,05} \times \mathsf{0,3} = \mathsf{0,015} \\ &\mathsf{P}(\mathsf{FA}) = \mathsf{P}(\mathsf{F}) \times \mathsf{P}(\mathsf{A}) = \mathsf{0,3} \times \mathsf{0,25} = \mathsf{0,075} \\ &\mathsf{P}(\mathsf{FB}) = \mathsf{P}(\mathsf{F}) \times \mathsf{P}(\mathsf{B}) = \mathsf{0,3} \times \mathsf{0,05} = \mathsf{0,015} \\ &\mathsf{P}(\mathsf{FC}) = \mathsf{P}(\mathsf{F}) \times \mathsf{P}(\mathsf{C}) = \mathsf{0,3} \times \mathsf{0,1} = \mathsf{0,03} \\ &\mathsf{P}(\mathsf{FD}) = \mathsf{P}(\mathsf{F}) \times \mathsf{P}(\mathsf{D}) = \mathsf{0,3} \times \mathsf{0,25} = \mathsf{0,075} \\ &\mathsf{P}(\mathsf{FE}) = \mathsf{P}(\mathsf{F}) \times \mathsf{P}(\mathsf{E}) = \mathsf{0,3} \times \mathsf{0,05} = \mathsf{0,015} \\ &\mathsf{P}(\mathsf{FF}) = \mathsf{P}(\mathsf{F}) \times \mathsf{P}(\mathsf{F}) = \mathsf{0,3} \times \mathsf{0,3} = \mathsf{0,09} \end{split}$$

Составим коды для каждой биграммы с помощью алгоритма Шеннона-Фано (аналогично заданию №2):

		Разряды							V о п									
aa	Р	1	2	3	4	5	6	7	8	9	Код							
FF	0,0900			0							000							
AF	0,0750		0	1	0						0010							
DF	0,0750			I	1						0011							
FA	0,0750	0		0	0						0100							
FD	0,0750		1		1						0101							
AA	0,0625		ı	1	0						0110							
AD	0,0625			!	1						0111							
DA	0,0625			0	0						1000							
DD	0,0625		0		1						1001							
CF	0,0300				0	0					10100							
FC	0,0300			1		1					10101							
AC	0,0250						<u> </u>	1	0					10110				
CA	0,0250				'	1					10111							
CD	0,0250						0					11000						
DC	0,0250												0	1	0			
BF	0,0150	1				!	1				110011							
EF	0,0150				0		0	0				110100						
FB	0,0150						1				110101							
FE	0,0150		1		1	1	0				110110							
AB	0,0125					'	1				110111							
AE	0,0125					0	0				111000							
ВА	0,0125	5		1	0		1				111001							
BD	0,0125			' '		1	0				111010							
DB	0,0125					'	1	0			1110110							

			Vол.											
aa	р	1	2	3	4	5	6	7	8	9	Код			
DE	0,0125				0	1	1	1			1110111			
EA	0,0125						0				111100			
ED	0,0125					0	0			1111010				
CC	0,0100					1	1			1111011				
ВС	0,0050											0		
СВ	0,0050	1	1	1	1			0	1	0		11111010		
CE	0,0050			ı	'	1			I	1		11111011		
EC	0,0050					1			0		11111100			
ВВ	0,0025					I		0	1		11111101			
BE	0,0025				0		11111110							
EB	0,0025								1	1	0	111111110		
EE	0,0025											 	1	111111111

4

Условие: Закодировать сообщение, используя коды для биграмм. Вычислить среднюю длину биграммы. Разделить результат на 2. Сравнить полученное число со средней длиной для посимвольного кодирования. Сделать выводы о целесообразности кодировать сообщения поблочно.

Решение:

Закодируем сообщение используя найденные выше коды биграмм: ADADBDCBBDCABFDAFCEB =

Вычислим среднюю длину биграммы, то есть среднюю длину её оптимального неравномерного кода:

```
\begin{array}{l} \mathsf{L}_{\mathsf{cp}} = \mathbf{\Sigma} \; \mathsf{L}_{\mathsf{i}} \times \mathsf{p}_{\mathsf{i}} = 3 \times 0,09 + 4 \times 0,075 + 4 \times 0,075 + 4 \times 0,075 + 4 \times 0,0625 + 4 \times 0,0625 + 4 \times 0,0625 + 4 \times 0,0625 + 5 \times 0,03 + 5 \times 0,03 + 5 \times 0,025 + 5 \times 0,025 + 5 \times 0,025 + 6 \times 0,015 + 6 \times 0,015 + 6 \times 0,015 + 6 \times 0,015 + 6 \times 0,0125 + 7 \times 0,0025 + 8 \times 0,0025 + 8 \times 0,0025 + 8 \times 0,0025 + 9 \times 0,0025 + 9
```

Разделим полученное число на 2:

$$\frac{4,5975}{2} = 2,29875$$
 бит

Поскольку число получилось меньше, чем при кодировании по символьно, можно сделать вывод, что кодировать поблочно выгоднее, чем посимвольно.

5

Условие: Создать подпрограмму для составления кодов для символов по алгоритму Шеннона-Фано. Подпрограмме передаётся набор символов и их вероятностей.

6

Условие: Создать подпрограмму для кодирования сообщения. Подпрограмме передаётся сообщение, состоящее из символов алфавита и коды для кодирования сообщения, полученные подпрограммой из предыдущего пункта.

7

Условие: Проверить работоспособность подпрограмм, данные из п. 1 и 2 использовать как тестовые.

8

Условие: Модернизировать подпрограммы из п. 5 и 6 для случая поблочного кодирования. Создать программу, на вход которой подаются символы алфавита и их вероятности. Далее пользователь вводит размер блока (от 1 символа). В случае с блоком размера 1, имеет место посимвольное кодирование. Иначе составляются различные возможные комбинации блоков и вычисляются их вероятности. Вычисляется энтропия и средняя длина 1 символа (в поблочном случае вычисляется энтропия и длина блока, и делится на размер блока), результат выводится на экран. Далее пользователь вводит сообщение, программа кодирует его и выводит результат. Выполнить программу для блоков различного размера. Установить размер блока, на котором средняя длина символа минимальна. Сделать выводы.

Решение:

Длина блока	2	3	4	5	6
Ср. длина символа	2,3	2,29	2,28	2,27	2,25

Вывод: чем больше длина блока, тем эффективнее кодирование.