

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A Aula 1 (Parte A) - Matrizes Definição e Tipos Especiais

Professora: Isamara C. Alves

Data: 02/03/2021

Motivação

EXEMPLOS DE APLICAÇÕES:

• ECONOMIA e CONTABILIDADE: problemas financeiros em empresas e bancos, balanços em planilhas eletrônicas; etc.

Motivação

EXEMPLOS DE APLICAÇÕES:

- ECONOMIA e CONTABILIDADE: problemas financeiros em empresas e bancos, balanços em planilhas eletrônicas; etc.
- COMPUTAÇÃO: geração dos movimentos e deformações nos efeitos especiais do cinema, da TV, dos games de computadores e nas visualizações das simulações científicas; etc.

Motivação

EXEMPLOS DE APLICAÇÕES:

- ECONOMIA e CONTABILIDADE: problemas financeiros em empresas e bancos, balanços em planilhas eletrônicas; etc.
- COMPUTAÇÃO: geração dos movimentos e deformações nos efeitos especiais do cinema, da TV, dos games de computadores e nas visualizações das simulações científicas; etc.
- ENGENHARIA: problemas de campos elétricos, magnéticos; balanceamento de equações químicas, problemas de chão de fábricas; redes de transportes e telecomunicações; etc.

Motivação

EXEMPLOS DE APLICAÇÕES:

- ECONOMIA e CONTABILIDADE: problemas financeiros em empresas e bancos, balanços em planilhas eletrônicas; etc.
- COMPUTAÇÃO: geração dos movimentos e deformações nos efeitos especiais do cinema, da TV, dos games de computadores e nas visualizações das simulações científicas; etc.
- ENGENHARIA: problemas de campos elétricos, magnéticos; balanceamento de equações químicas, problemas de chão de fábricas; redes de transportes e telecomunicações; etc.
- INTELIGÊNCIA ARTIFICIAL: regras de decisões, teoria nebulosa; busca inteligente no Google; etc.

Motivação - Problema.1

Problema.1: Alunos x Notas de Provas em MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota
João	5	5	5
Maria	3	4	8
Ana	8	3	7
Pedro	6	8	10

Motivação - Problema.1

Problema.1: Alunos x Notas de Provas em MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota
João	5	5	5
Maria	3	4	8
Ana	8	3	7
Pedro	6	8	10

Linha.1

Motivação - Problema.1

Problema.1: Alunos x Notas de Provas em MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota
João	5	5	5
Maria	3	4	8
Ana	8	3	7
Pedro	6	8	10

Linha.1 Linha.2

Motivação - Problema.1

Problema.1: Alunos x Notas de Provas em MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota
João	5	5	5
Maria	3	4	8
Ana	8	3	7
Pedro	6	8	10

Linha.1 Linha.2 Linha.3

Motivação - Problema.1

Problema.1: Alunos x Notas de Provas em MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota
João	5	5	5
Maria	3	4	8
Ana	8	3	7
Pedro	6	8	10

Motivação - Problema.1

Problema.1: Alunos x Notas de Provas em MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota
João	5	5	5
Maria	3	4	8
Ana	8	3	7
Pedro	6	8	10

Linha.1 Linha.2 Linha.3 Linha.4

Coluna.1

Motivação - Problema.1

Problema.1: Alunos x Notas de Provas em MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota
João	5	5	5
Maria	3	4	8
Ana	8	3	7
Pedro	6	8	10

Coluna.1 Coluna.2

Motivação - Problema.1

Problema.1: Alunos x Notas de Provas em MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota
João	5	5	5
Maria	3	4	8
Ana	8	3	7
Pedro	6	8	10

Coluna.1 Coluna.2 Coluna.3

Motivação - Problema.1

Problema.1: Alunos x Notas de Provas em MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota
João	5	5	5
Maria	3	4	8
Ana	8	3	7
Pedro	6	8	10

Coluna.1 Coluna.2 Coluna.3

Motivação - Problema.1

Problema.1: Alunos x Notas de Provas em MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota
João	5	5	5
Maria	3	4	8
Ana	8	3	7
Pedro	6	8	10

Coluna.1 Coluna.2 Coluna.3

Linha.1 Linha.2 Linha.3 Linha.4

• Qual o total de pontos de cada aluno?

Motivação - Problema.1

PROBLEMA.1: ALUNOS X NOTAS DE PROVAS EM MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota
João	5	5	5
Maria	3	4	8
Ana	8	3	7
Pedro	6	8	10
	<u> </u>		

Coluna.1 Coluna.2 Coluna.3

- Qual o total de pontos de cada aluno?
- Qual a média aritmética de cada aluno?

Motivação - Problema.1

PROBLEMA.1: ALUNOS X NOTAS DE PROVAS EM MATA07

Alunos	1 ^a nota	2 ^a nota	3 ^a nota
João	5	5	5
Maria	3	4	8
Ana	8	3	7
Pedro	6	8	10
	C 1	C 1 0	

Coluna.1 Coluna.2 Coluna.3

- Qual o total de pontos de cada aluno?
- Qual a média aritmética de cada aluno?
- Qual a média ponderada de cada aluno?

Matrizes Revisão Motivação - Problema.1

Podemos representar entre COLCHETES ou PARÊNTESES as informações da TABELA respeitando a ordem das informações nas LINHAS e COLUNAS.

		1^a nota	2 ^a nota	3^a nota	
João	Γ	5	5	5	1
Maria	ŀ	3	4	8	
Ana		8	3	7	
Pedro	Ĺ	6	8	10	

Motivação - Problema.1

Podemos representar entre COLCHETES ou PARÊNTESES as informações da TABELA respeitando a ordem das informações nas LINHAS e COLUNAS.

	1^a nota	2^a NOTA	3^a NOTA		
João	Γ 5	5	5	٦	Linha.1
Maria	3	4	8		
Ana	8	3	7		
Pedro	6	8	10		

Motivação - Problema.1

Podemos representar entre COLCHETES ou PARÊNTESES as informações da TABELA respeitando a ordem das informações nas LINHAS e COLUNAS.

	1^a nota	2 ^a nota	3^a nota		
João	Γ 5	5	5	1	Linha.1
Maria	3	4	8		Linha.2
Ana	8	3	7		
Pedro	6	8	10		

Motivação - Problema.1

Podemos representar entre COLCHETES ou PARÊNTESES as informações da TABELA respeitando a ordem das informações nas LINHAS e COLUNAS.

	1^a NOT	$^{\circ}$ A $^{\circ}$ NOTA	A 3 ^a NOTA		
João	Γ 5	5	5	1	Linha.1
Maria	3	4	8		Linha.2
Ana	8	3	7		Linha.3
Pedro	6	8	10		

Matrizes Revisão Motivação - Problema.1

Podemos representar entre COLCHETES ou PARÊNTESES as informações da TABELA respeitando a ordem das informações nas LINHAS e COLUNAS.

		1^a nota	2 ^a nota	3^a nota		
João	Γ	5	5	5	1	Linha.1
Maria		3	4	8		Linha.2
Ana		8	3	7		Linha.3
Pedro		6	8	10		Linha.4

Motivação - Problema.1

Podemos representar entre COLCHETES ou PARÊNTESES as informações da TABELA respeitando a ordem das informações nas LINHAS e COLUNAS.

		1^a nota	2 ^a NOTA	3^a nota		
João	Γ	5	5	5	1	Linha.1
Maria		3	4	8	-	Linha.2
Ana		8	3	7		Linha.3
Pedro	L	6	8	10		Linha.4

Coluna.1

Motivação - Problema.1

Podemos representar entre COLCHETES ou PARÊNTESES as informações da TABELA respeitando a ordem das informações nas LINHAS e COLUNAS.

	1^a NOTA	2^a nota	3 ^a nota		
João	Γ 5	5	5	1	Linha.1
Maria	3	4	8		Linha.2
Ana	8	3	7		Linha.3
Pedro	6	8	10		Linha.4
	Coluna.1	Coluna.2			

Motivação - Problema.1

Podemos representar entre COLCHETES ou PARÊNTESES as informações da TABELA respeitando a ordem das informações nas LINHAS e COLUNAS.

	1^a NOTA	2 ^a NOTA	3^a nota		
João	Γ 5	5	5	1	Linha.1
Maria	3	4	8		Linha.2
Ana	8	3	7		Linha.3
Pedro	6	8	10		Linha.4
	Coluna.1	Coluna.2	Coluna.3		

Motivação - Problema.1

Podemos representar entre COLCHETES ou PARÊNTESES as informações da TABELA respeitando a ordem das informações nas LINHAS e COLUNAS.

	1^a nota	2 ^a NOTA	3^a nota		
João	Γ 5	5	5	1	Linha.1
Maria	3	4	8		Linha.2
Ana	8	3	7		Linha.3
Pedro	6	8	10]	Linha.4
	Coluna.1	Coluna.2	Coluna.3		

Motivação - Problema.1

Podemos representar entre COLCHETES ou PARÊNTESES as informações da TABELA respeitando a ordem das informações nas LINHAS e COLUNAS.

		1^a nota	2 ^a NOTA	3^a nota		
João	1	5	5	5	\	Linha.1
Maria		3	4	8	}	Linha.2
Ana		8	3	7		Linha.3
Pedro	/	6	8	10)	Linha.4
		Coluna.1	Coluna.2	Coluna.3		

Motivação - Problema.1

5	5	5
3	4	8
8	3	7
6	8	10

Motivação - Problema.1

Informações da TABELA entre COLCHETES ou PARÊNTESES respeitando a ordem das informações nas LINHAS e COLUNAS.

Linha.1

Motivação - Problema.1

5	5	5] Linha.1
3	4	8	Linha.2
8	3	7	
6	8	10	

Motivação - Problema.1

5	5	5] Linha.1
3	4	8	Linha.2
8	3	7	Linha.3
6	8	10	

Motivação - Problema.1

5	5	5	Linha.1
3	4	8	Linha.2
8	3	7	Linha.3
6	8	10	Linha.4

Motivação - Problema.1

Informações da TABELA entre COLCHETES ou PARÊNTESES respeitando a ordem das informações nas LINHAS e COLUNAS.

5	5	5	Linha.1
3	4	8	Linha.2
8	3	7	Linha.3
6	8	10	Linha.4

Coluna.1

Motivação - Problema.1

Informações da TABELA entre COLCHETES ou PARÊNTESES respeitando a ordem das informações nas LINHAS e COLUNAS.

5	5	5	Linha.1
3	4	8	Linha.2
8	3	7	Linha.3
6	8	10	Linha.4

Coluna.1

Coluna.2

Motivação - Problema.1

Informações da TABELA entre COLCHETES ou PARÊNTESES respeitando a ordem das informações nas LINHAS e COLUNAS.

5	5	5	Linha.1
3	4	8	Linha.2
8	3	7	Linha.3
6	8	10	Linha.4
Coluna.1	Coluna.2	Coluna.3	

Motivação - Problema.1

Informações da TABELA entre COLCHETES ou PARÊNTESES respeitando a ordem das informações nas LINHAS e COLUNAS.

$$A_{4\times3} = \begin{bmatrix} 5 & 5 & 5 & 5 \\ 3 & 4 & 8 & \\ 8 & 3 & 7 & \\ 6 & 8 & 10 & \end{bmatrix} \begin{array}{c} \text{Linha.1} \\ \text{Linha.2} \\ \text{Linha.3} \\ \text{Linha.4} \\ \end{array}$$
Coluna.1 Coluna.2 Coluna.3

Motivação - Problema.1

Informações da TABELA entre COLCHETES ou PARÊNTESES respeitando a ordem das informações nas LINHAS e COLUNAS.

$$A_{4\times3} = \begin{pmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{pmatrix}$$
 Linha.1 Linha.2 Linha.3 Linha.4 Coluna.1 Coluna.2 Coluna.3

 $A_{4\times3}$ é a MATRIZ com 4 linhas e 3 colunas que representa o Problema.1.

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Motivação - Problema.1

Informações da TABELA entre COLCHETES ou PARÊNTESES respeitando a ordem das informações nas LINHAS e COLUNAS.

$$A_{4\times3} = \begin{pmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{pmatrix}$$
 Linha.1 Linha.2 Linha.3 Linha.4 Coluna.1 Coluna.2 Coluna.3

 $A_{4\times3}$ é a MATRIZ com 4 linhas e 3 colunas que representa o Problema.1.

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Matrizes Revisão Definição

Sejam $m,n\in\mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m\times n$ é uma **tabela** com m.n elementos

Matrizes Revisão Definição

Sejam $m, n \in \mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m \times n$ é uma **tabela** com m.n elementos dispostos em m LINHAS e n COLUNAS.

Definição

Sejam $m, n \in \mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m \times n$ é uma **tabela** com m.n elementos dispostos em m LINHAS e n COLUNAS. Notação:

 $A_{m \times n}$

Definição

Sejam $m,n\in\mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m\times n$ é uma **tabela** com m.n elementos dispostos em m LINHAS e n COLUNAS.

Notação:

$$A_{m\times n}=(a_{ij})$$

Definição

Sejam $m,n\in\mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m\times n$ é uma **tabela** com m.n elementos dispostos em m LINHAS e n COLUNAS.

Notação:

$$A_{m\times n}=(a_{ij})_{1\leq i\leq m;}$$

Definição

Sejam $m, n \in \mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m \times n$ é uma **tabela** com m.n elementos dispostos em m LINHAS e n COLUNAS.

Notação:

$$A_{m\times n}=(a_{ij})_{1\leq i\leq m; 1\leq j\leq n}$$

Definição

Sejam $m,n\in\mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m\times n$ é uma **tabela** com m.n elementos dispostos em m LINHAS e n COLUNAS.

Notação:

$$A_{m\times n}=(a_{ij})_{1\leq i\leq m; 1\leq j\leq n}$$

Definição

Sejam $m, n \in \mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m \times n$ é uma **tabela** com m.nelementos dispostos em m LINHAS e n COLUNAS.

Notação:

$$A_{m\times n}=(a_{ij})_{1\leq i\leq m;1\leq j\leq r}$$

A
$$_{m imes n}=(a_{ij})_{1\leq i\leq m;1\leq j\leq n}$$
e, a_{ij} representa o elemento da i -ésima linha e j -ésima coluna $\mathbf{A}_{m imes n}=egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \end{bmatrix}$

Definição

Sejam $m, n \in \mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m \times n$ é uma **tabela** com m.nelementos dispostos em m LINHAS e n COLUNAS.

Notação:

$$A_{m\times n}=(a_{ij})_{1\leq i\leq m;1\leq j\leq n}$$

ação:
$$A_{m\times n}=(a_{ij})_{1\leq i\leq m; 1\leq j\leq n}$$
 de, a_{ij} representa o elemento da i -ésima linha e j -ésima coluna
$$\mathbf{A}_{m\times n}=\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \end{bmatrix}$$

Definição

Sejam $m, n \in \mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m \times n$ é uma **tabela** com m.n elementos dispostos em m LINHAS e n COLUNAS.

Notação:

$$A_{m\times n}=(a_{ij})_{1\leq i\leq m;1\leq j\leq n}$$

$$\mathbf{A}_{\mathbf{m}\times\mathbf{n}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Definição

Sejam $m, n \in \mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m \times n$ é uma **tabela** com m.n elementos dispostos em m LINHAS e n COLUNAS.

Notação:

$$A_{m\times n}=(a_{ij})_{1\leq i\leq m; 1\leq j\leq n}$$

$$\mathbf{A}_{\mathbf{m}\times\mathbf{n}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \end{bmatrix}$$

Definição

Sejam $m, n \in \mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m \times n$ é uma **tabela** com m.n elementos dispostos em m LINHAS e n COLUNAS.

Notação:

$$A_{m\times n}=(a_{ij})_{1\leq i\leq m;1\leq j\leq n}$$

$$\mathbf{A}_{\mathbf{m} \times \mathbf{n}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Definição

Sejam $m, n \in \mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m \times n$ é uma **tabela** com m.n elementos dispostos em m LINHAS e n COLUNAS.

Notação:

$$A_{m\times n}=(a_{ij})_{1\leq i\leq m;1\leq j\leq n}$$

$$\mathbf{A}_{\mathbf{m} \times \mathbf{n}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix}$$

Definição

Sejam $m, n \in \mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m \times n$ é uma **tabela** com m.n elementos dispostos em m LINHAS e n COLUNAS.

Notação:

$$A_{m\times n}=(a_{ij})_{1\leq i\leq m;1\leq j\leq n}$$

$$\mathbf{A}_{\mathbf{m}\times\mathbf{n}} = \left[\begin{array}{cccccc} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{array} \right]$$

Definição

Sejam $m, n \in \mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m \times n$ é uma **tabela** com m.n elementos dispostos em m LINHAS e n COLUNAS.

Notação:

$$A_{m\times n}=(a_{ij})_{1\leq i\leq m;1\leq j\leq n}$$

$$\mathbf{A}_{\mathbf{m}\times\mathbf{n}} = \left(\begin{array}{cccccc} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{array} \right)$$

Definição

Sejam $m, n \in \mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m \times n$ é uma **tabela** com m.n elementos dispostos em m LINHAS e n COLUNAS.

Notação:

$$A_{m\times n}=(a_{ij})_{1\leq i\leq m;1\leq j\leq n}$$

$$\mathbf{A}_{\mathbf{m}\times\mathbf{n}} = \left(\begin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{array} \right) \begin{array}{c} \rightarrow & i = 1 \\ \rightarrow & i = 2 \\ \vdots \\ \rightarrow & i \text{-\'esima} \\ \vdots \\ \rightarrow & i \text{-\'esima} \\ \vdots \\ \rightarrow & i = m \\ \text{LINHAS} \end{array}$$

Definição

Sejam $m, n \in \mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m \times n$ é uma **tabela** com m.n elementos dispostos em m LINHAS e n COLUNAS. Notação:

$$A_{m\times n}=(a_{ij})_{1\leq i\leq m; 1\leq j\leq n}$$

onde, a_{ij} representa o elemento da i-ésima linha e j-ésima coluna da matriz.

$$\mathbf{A}_{\mathbf{m}\times\mathbf{n}} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{pmatrix} \begin{array}{c} \rightarrow & i = 1 \\ \rightarrow & i = 2 \\ \vdots \\ \rightarrow & i \text{-\'esima} \\ \vdots \\ \rightarrow & i \text{-\'esima} \\ \vdots \\ \rightarrow & i \text{-\'esima} \\ \downarrow \\ j = 1 & j = 2 & \cdots & j \text{-\'esima} \\ & \downarrow \\ j \text{-\'esima} \\ & \vdots \\ \rightarrow & i \text{-\'esima} \\ & \vdots \\ \rightarrow & \vdots \\ \rightarrow$$

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Definição

Sejam $m, n \in \mathbb{N}^*$. Dizemos que uma MATRIZ de ORDEM $m \times n$ é uma **tabela** com m.n elementos dispostos em m LINHAS e n COLUNAS. Notação:

$$A_{m\times n}=(a_{ij})_{1\leq i\leq m; 1\leq j\leq n}$$

onde, a_{ij} representa o elemento da i-ésima linha e j-ésima coluna da matriz.

$$\mathbf{A}_{\mathbf{m}\times\mathbf{n}} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{pmatrix} \begin{array}{c} \rightarrow & i = 1 \\ \rightarrow & i = 2 \\ \vdots \\ \rightarrow & i \text{-\'esima} \\ \vdots \\ \rightarrow & i \text{-\'esima} \\ \vdots \\ \rightarrow & i \text{-\'esima} \\ \downarrow \\ j = 1 & j = 2 & \cdots & j \text{-\'esima} \\ & \downarrow \\ j \text{-\'esima} \\ & \vdots \\ \rightarrow & i \text{-\'esima} \\ & \vdots \\ \rightarrow & \vdots \\ \rightarrow$$

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Exemplo - Problema.2

Problema.2: Vôos entre Cidades

Figura: Grafo G(V,N) - Vôos entre Cidades

Exemplo - Problema.2

Problema.2: Vôos entre Cidades

Figura: Grafo G(V,N) - Vôos entre Cidades

A MATRIZ DE ADJACÊNCIA associada ao grafo acima G(V, N) é definida por;

Exemplo - Problema.2

Problema.2: Vôos entre Cidades

Figura: Grafo G(V,N) - Vôos entre Cidades

A Matriz de Adjacência associada ao grafo acima $\mathit{G}(\mathit{V},\mathit{N})$ é definida por;

$$a_{ij} = \begin{cases} 1; & \text{se existirem v\^oos (arestas) entre as cidades(v\'ertices) } i \in j \end{cases}$$

Exemplo - Problema.2

Problema.2: Vôos entre Cidades

Figura: Grafo G(V,N) - Vôos entre Cidades

A MATRIZ DE ADJACÊNCIA associada ao grafo acima G(V,N) é definida por;

$$a_{ij} = \begin{cases} 1; & \text{se existirem v\^oos (arestas) entre as cidades(v\'ertices) } i \in j \\ 0; & \text{caso contr\'ario} \end{cases}$$

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Exemplo - Problema.2

Problema.2: Vôos entre Cidades

Figura: Grafo G(V,N) - Vôos entre Cidades

A MATRIZ DE ADJACÊNCIA associada ao grafo acima G(V,N) é definida por;

$$a_{ij} = \begin{cases} 1; & \text{se existirem v\^oos (arestas) entre as cidades(v\'ertices) } i \in j \\ 0; & \text{caso contr\'ario} \end{cases}$$

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Exemplo - Problema.2

CIDADES	São Paulo	R. de Janeiro	Brasília	C. Grande	Cuiabá
São Paulo	0	1	1	1	0
R. de Janeiro	1	0	1	0	0
Brasília	1	1	0	1	0
C. Grande	1	0	1	0	1
Cuiabá	0	0	0	1	0

Exemplo - Problema.2

CIDADES	São Paulo	R. de Janeiro	Brasília	C. Grande	Cuiabá
São Paulo	0	1	1	1	0
R. de Janeiro	1	0	1	0	0
Brasília	1	1	0	1	0
C. Grande	1	0	1	0	1
Cuiabá	0	0	0	1	0

Linha.1

Exemplo - Problema.2

CIDADES	São Paulo	R. de Janeiro	Brasília	C. Grande	Cuiabá
São Paulo	0	1	1	1	0
R. de Janeiro	1	0	1	0	0
Brasília	1	1	0	1	0
C. Grande	1	0	1	0	1
Cuiabá	0	0	0	1	0

Linha.1 Linha.2

Exemplo - Problema.2

CIDADES	São Paulo	R. de Janeiro	Brasília	C. Grande	Cuiabá
São Paulo	0	1	1	1	0
R. de Janeiro	1	0	1	0	0
Brasília	1	1	0	1	0
C. Grande	1	0	1	0	1
Cuiabá	0	0	0	1	0

Linha.1 Linha.2 Linha.3

Exemplo - Problema.2

CIDADES	São Paulo	R. de Janeiro	Brasília	C. Grande	Cuiabá
São Paulo	0	1	1	1	0
R. de Janeiro	1	0	1	0	0
Brasília	1	1	0	1	0
C. Grande	1	0	1	0	1
Cuiabá	0	0	0	1	0

Linha.1 Linha.2 Linha.3 Linha.4

Exemplo - Problema.2

CIDADES	São Paulo	R. de Janeiro	Brasília	C. Grande	Cuiabá
São Paulo	0	1	1	1	0
R. de Janeiro	1	0	1	0	0
Brasília	1	1	0	1	0
C. Grande	1	0	1	0	1
Cuiabá	0	0	0	1	0

Linha.1 Linha.2 Linha.3 Linha.4 Linha.5

Exemplo - Problema.2

CIDADES	São Paulo	R. de Janeiro	Brasília	C. Grande	Cuiabá
São Paulo	0	1	1	1	0
R. de Janeiro	1	0	1	0	0
Brasília	1	1	0	1	0
C. Grande	1	0	1	0	1
Cuiabá	0	0	0	1	0

Linha.1 Linha.2 Linha.3 Linha.4 Linha.5

Coluna.1

Exemplo - Problema.2

CIDADES	São Paulo	R. de Janeiro	Brasília	C. Grande	Cuiabá
São Paulo	0	1	1	1	0
R. de Janeiro	1	0	1	0	0
Brasília	1	1	0	1	0
C. Grande	1	0	1	0	1
Cuiabá	0	0	0	1	0

Linha.1 Linha.2 Linha.3 Linha.4 Linha.5

Coluna.1 Coluna.2

Exemplo - Problema.2

CIDADES	São Paulo	R. de Janeiro	Brasília	C. Grande	Cuiabá
São Paulo	0	1	1	1	0
R. de Janeiro	1	0	1	0	0
Brasília	1	1	0	1	0
C. Grande	1	0	1	0	1
Cuiabá	0	0	0	1	0

Linha.1 Linha.2 Linha.3 Linha.4 Linha.5

Coluna.1

Coluna.2

Coluna.3

Exemplo - Problema.2

CIDADES	São Paulo	R. de Janeiro	Brasília	C. Grande	Cuiabá
São Paulo	0	1	1	1	0
R. de Janeiro	1	0	1	0	0
Brasília	1	1	0	1	0
C. Grande	1	0	1	0	1
Cuiabá	0	0	0	1	0
	Coluna.1	Coluna.2 Co	oluna.3	Coluna.4	

Linha.1 Linha.2 Linha.3 Linha.4 Linha.5

Exemplo - Problema.2

CIDADES	São Paulo	R. de Janeiro	Brasília	C. Grande	Cuiabá
São Paulo	0	1	1	1	0
R. de Janeiro	1	0	1	0	0
Brasília	1	1	0	1	0
C. Grande	1	0	1	0	1
Cuiabá	0	0	0	1	0

Linha.1 Linha.2 Linha.3 Linha.4 Linha.5

Coluna.1 Coluna.2

Coluna.3

Coluna.4

Coluna.5

Exemplo - Problema.2

CIDADES	São Paulo	R. de Janeiro	Brasília	C. Grande	Cuiabá
São Paulo	0	1	1	1	0
R. de Janeiro	1	0	1	0	0
Brasília	1	1	0	1	0
C. Grande	1	0	1	0	1
Cuiabá	0	0	0	1	0

Linha.1 Linha.2 Linha.3 Linha.4 Linha.5

Coluna.1

Coluna.2

Coluna.3

Coluna.4

Coluna.5

Exemplo - Problema.2

CIDADES	São Paulo	R. de Janeiro	Brasília	C. Grande	Cuiabá
São Paulo	0	1	1	1	0
R. de Janeiro	1	0	1	0	0
Brasília	1	1	0	1	0
C. Grande	1	0	1	0	1
Cuiabá	0	0	0	1	0
(Coluna.1	Coluna.2 C	oluna.3	Coluna.4	Colur

Linha.2 Linha.3 Linha.4 Linha.5

Linha.1

Coluna.4 Coluna.5

A MATRIZ DE ADJACÊNCIA associada ao problema;

$$\mathbf{A_5} = egin{bmatrix} 0 & 1 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 & 0 \ 1 & 1 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 \ \end{bmatrix}$$

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Exemplo - Problema.2

Cidades	São Paulo	R. de Janeiro	Brasília	C. Grande	Cuiabá
São Paulo	0	1	1	1	0
R. de Janeiro	1	0	1	0	0
Brasília	1	1	0	1	0
C. Grande	1	0	1	0	1
Cuiabá	0	0	0	1	0

Linha.1 Linha.2 Linha.3 Linha.4 Linha.5

Coluna.1 Coluna.2 Coluna.3 Coluna.4 Coluna.5

A MATRIZ DE ADJACÊNCIA associada ao problema;

$$\mathbf{A_5} = egin{bmatrix} 0 & 1 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 & 0 \ 1 & 1 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 & 1 \ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

MAT A07 - Álgebra Linear A - Semestre - 2021.1

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m \times n}(\mathbb{K})$

O conjunto de todas as Matrizes de ordem $m \times n$ será denotado $\mathcal{M}_{m \times n}(\mathbb{K})$, onde

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m \times n}(\mathbb{K})$

O conjunto de todas as Matrizes de ordem $m \times n$ será denotado $\mathcal{M}_{m \times n}(\mathbb{K})$, onde \mathbb{K} representa o conjunto que contém todos os elementos de $A_{m \times n}$;

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m\times n}(\mathbb{K})$

O conjunto de todas as Matrizes de ordem $m \times n$ será denotado $\mathcal{M}_{m \times n}(\mathbb{K})$, onde \mathbb{K} representa o conjunto que contém todos os elementos de $A_{m \times n}$; sendo $\mathbb{K} = \mathbb{R}$

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m \times n}(\mathbb{K})$

O conjunto de todas as Matrizes de ordem $m \times n$ será denotado $\mathcal{M}_{m \times n}(\mathbb{K})$, onde \mathbb{K} representa o conjunto que contém todos os elementos de $A_{m \times n}$; sendo $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m\times n}(\mathbb{K})$

O conjunto de todas as Matrizes de ordem $m \times n$ será denotado $\mathcal{M}_{m \times n}(\mathbb{K})$, onde \mathbb{K} representa o conjunto que contém todos os elementos de $A_{m \times n}$; sendo $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

MATRIZ REAL

 $\mathbb{K} = \mathbb{R}$

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m\times n}(\mathbb{K})$

O conjunto de todas as Matrizes de ordem $m \times n$ será denotado $\mathcal{M}_{m \times n}(\mathbb{K})$, onde \mathbb{K} representa o conjunto que contém todos os elementos de $A_{m \times n}$; sendo $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

MATRIZ REAL

$$\mathbb{K} = \mathbb{R} \Rightarrow a_{ij} \in \mathbb{R}; \forall i = 1, \dots, m; \forall j = 1, \dots, n$$

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m\times n}(\mathbb{K})$

O conjunto de todas as Matrizes de ordem $m \times n$ será denotado $\mathcal{M}_{m \times n}(\mathbb{K})$, onde \mathbb{K} representa o conjunto que contém todos os elementos de $A_{m \times n}$; sendo $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

MATRIZ REAL

$$\mathbb{K} = \mathbb{R} \Rightarrow a_{ij} \in \mathbb{R}; \forall i = 1, \dots, m; \forall j = 1, \dots, n$$

Notação: $A \in \mathcal{M}_{m \times n}(\mathbb{R})$

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m\times n}(\mathbb{K})$

O conjunto de todas as Matrizes de ordem $m \times n$ será denotado $\mathcal{M}_{m \times n}(\mathbb{K})$, onde \mathbb{K} representa o conjunto que contém todos os elementos de $A_{m \times n}$; sendo $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

MATRIZ REAL

$$\mathbb{K} = \mathbb{R} \Rightarrow a_{ij} \in \mathbb{R}; \forall i = 1, \dots, m; \forall j = 1, \dots, n$$

Notação: $A \in \mathcal{M}_{m \times n}(\mathbb{R})$

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m\times n}(\mathbb{K})$

O conjunto de todas as Matrizes de ordem $m \times n$ será denotado $\mathcal{M}_{m \times n}(\mathbb{K})$, onde \mathbb{K} representa o conjunto que contém todos os elementos de $A_{m \times n}$; sendo $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

MATRIZ REAL

$$\mathbb{K} = \mathbb{R} \Rightarrow a_{ij} \in \mathbb{R}; \forall i = 1, \ldots, m; \forall j = 1, \ldots, n$$

Notação:
$$A \in \mathcal{M}_{m \times n}(\mathbb{R})$$

EXEMPLO:

$$\mathbf{A}_{2\times3} = \begin{bmatrix} 2 & -7 & 0 \\ \frac{4}{5} & 3 & -9 \end{bmatrix}$$

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m\times n}(\mathbb{K})$

O conjunto de todas as Matrizes de ordem $m \times n$ será denotado $\mathcal{M}_{m \times n}(\mathbb{K})$, onde \mathbb{K} representa o conjunto que contém todos os elementos de $A_{m \times n}$; sendo $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

MATRIZ REAL

$$\mathbb{K} = \mathbb{R} \Rightarrow a_{ij} \in \mathbb{R}; \forall i = 1, \ldots, m; \forall j = 1, \ldots, n$$

Notação:
$$A \in \mathcal{M}_{m \times n}(\mathbb{R})$$

EXEMPLO:

$$\mathbf{A}_{2\times3} = \begin{bmatrix} 2 & -7 & 0 \\ \frac{4}{5} & 3 & -9 \end{bmatrix}$$

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m \times n}(\mathbb{K})$

MATRIZ COMPLEXA

$$\mathbb{K}={\mathbb{C}}$$

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m \times n}(\mathbb{K})$

MATRIZ COMPLEXA

$$\mathbb{K} = \mathbb{C} \Rightarrow a_{ij} \in \mathbb{C}; \forall i = 1, \dots, m; \forall j = 1, \dots, n$$

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m\times n}(\mathbb{K})$

MATRIZ COMPLEXA

$$\mathbb{K} = \mathbb{C} \Rightarrow a_{ij} \in \mathbb{C}; \forall i = 1, \dots, m; \forall j = 1, \dots, n$$

Notação: $A \in \mathcal{M}_{m \times n}(\mathbb{C})$

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m\times n}(\mathbb{K})$

MATRIZ COMPLEXA

$$\mathbb{K} = \mathbb{C} \Rightarrow a_{ij} \in \mathbb{C}; \forall i = 1, \dots, m; \forall j = 1, \dots, n$$

Notação: $A \in \mathcal{M}_{m \times n}(\mathbb{C})$

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m\times n}(\mathbb{K})$

MATRIZ COMPLEXA

$$\mathbb{K} = \mathbb{C} \Rightarrow a_{ij} \in \mathbb{C}; \forall i = 1, \dots, m; \forall j = 1, \dots, n$$

Notação: $A \in \mathcal{M}_{m \times n}(\mathbb{C})$

$$a_{ij} \in \mathbb{C} \Rightarrow a_{ij} = z = a + bi; ext{ onde, } a,b \in \mathbb{R}; i = \sqrt{-1}$$

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m\times n}(\mathbb{K})$

MATRIZ COMPLEXA

$$\mathbb{K} = \mathbb{C} \Rightarrow a_{ij} \in \mathbb{C}; \forall i = 1, \dots, m; \forall j = 1, \dots, n$$

Notação: $A \in \mathcal{M}_{m \times n}(\mathbb{C})$

$$a_{ij} \in \mathbb{C} \Rightarrow a_{ij} = z = a + bi; ext{ onde, } a,b \in \mathbb{R}; i = \sqrt{-1}$$

EXEMPLO:

$$\mathbf{A}_{3\times4} = \begin{bmatrix} 4 & 5+2i & -3i & 3\\ 0 & i & 2 & 2\\ 6+6i & 1 & -3i & 4 \end{bmatrix}$$

Definição - $\mathcal{M}_{m \times n}(\mathbb{K})$

Conjunto $\mathcal{M}_{m\times n}(\mathbb{K})$

MATRIZ COMPLEXA

$$\mathbb{K} = \mathbb{C} \Rightarrow a_{ij} \in \mathbb{C}; \forall i = 1, \dots, m; \forall j = 1, \dots, n$$

Notação: $A \in \mathcal{M}_{m \times n}(\mathbb{C})$

$$a_{ij} \in \mathbb{C} \Rightarrow a_{ij} = z = a + bi; ext{ onde, } a,b \in \mathbb{R}; i = \sqrt{-1}$$

EXEMPLO:

$$\mathbf{A}_{3\times4} = \begin{bmatrix} 4 & 5+2i & -3i & 3\\ 0 & i & 2 & 2\\ 6+6i & 1 & -3i & 4 \end{bmatrix}$$

Igualdade

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que as matrizes A e B são IGUAIS se, e somente se,

$$a_{ij} = b_{ij}; \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Igualdade

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que as matrizes A e B são IGUAIS se, e somente se,

$$a_{ij} = b_{ij}; \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação: A = B

Igualdade

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que as matrizes A e B são IGUAIS se, e somente se,

$$a_{ij} = b_{ij}; \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$A = B$$
 EXEMPLO:

$$\mathbf{A}_{3\times4} = \begin{bmatrix} 4 & 5+2i & -3i & -1 \\ 7 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix}$$

Igualdade

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que as matrizes $A \in B$ são IGUAIS se, e somente se,

$$a_{ij} = b_{ij}; \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

$$\mathbf{A}_{3\times 4} = \begin{bmatrix} 4 & 5+2i & -3i & -1 \\ 7 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix} \quad \text{e} \quad \mathbf{B}_{3\times 4} = \begin{bmatrix} 4 & 5+2i & -3i & -1 \\ & & & & & \end{bmatrix}$$

Igualdade

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que as matrizes $A \in B$ são IGUAIS se, e somente se,

$$a_{ij} = b_{ij}; \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação:
$$A = B$$
 EXEMPLO:

$$\mathbf{A}_{3\times4} = \begin{bmatrix} 4 & 5+2i & -3i & -1 \\ 7 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{B}_{3\times4} = \begin{bmatrix} 4 & 5+2i & -3i & -1 \\ 7 & 5 & -3 & -1+i \end{bmatrix}$$

11 MAT A07 - Álgebra Linear A - Semestre - 2021.1

Igualdade

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que as matrizes A e B são IGUAIS se, e somente se,

$$a_{ij} = b_{ij}; \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

$$\mathbf{A}_{3\times 4} = \begin{bmatrix} 4 & 5+2i & -3i & -1 \\ 7 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix} \quad \text{e} \quad \mathbf{B}_{3\times 4} = \begin{bmatrix} 4 & 5+2i & -3i & -1 \\ 7 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix}$$

Igualdade

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que as matrizes A e B são IGUAIS se, e somente se,

$$a_{ij} = b_{ij}; \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

$$\mathbf{A}_{3\times 4} = \begin{bmatrix} 4 & 5+2i & -3i & -1 \\ 7 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix} \quad \text{e} \quad \mathbf{B}_{3\times 4} = \begin{bmatrix} 4 & 5+2i & -3i & -1 \\ 7 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix}$$

Igualdade

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que as matrizes $A \in B$ são IGUAIS se, e somente se,

$$a_{ij} = b_{ij}; \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

$$\mathbf{A}_{3\times 4} = \begin{bmatrix} 4 & 5+2i & -3i & -1 \\ 7 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix} \quad \text{e} \quad \mathbf{B}_{3\times 4} = \begin{bmatrix} 4 & 5+2i & -3i & -1 \\ 7 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix}$$

$$A = B$$
 A é IGUAL A B

Igualdade

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que as matrizes A e B são IGUAIS se, e somente se,

$$a_{ij} = b_{ij}; \forall i = 1, \ldots, m; \forall j = 1, \ldots, n.$$

Notação: A = BEXEMPLO:

$$\mathbf{A}_{3\times 4} = \begin{bmatrix} 4 & 5+2i & -3i & -1 \\ 7 & 5 & -3 & -1+i \\ 0 & i & 2 & 3 \end{bmatrix} \quad \mathbf{e} \quad \mathbf{B}_{3\times 4} = \begin{bmatrix} 4 & 5+2i & -3i & -1 \\ 7 & 5 & -3 & -1+i \\ 0 & \mathbf{0} & 2 & 3 \end{bmatrix}$$

 $A \neq B$ A é DIFERENTE DE B

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ LINHA se, e somente se, m = 1.

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ LINHA se, e somente se, m = 1. EXEMPLOS:

 $\mathbf{A}_{1\times3} = \begin{bmatrix} 5 & 5 & 5 \end{bmatrix}$ notas do aluno João

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ LINHA se, e somente se, m = 1.

EXEMPLOS: $\mathbf{A_{1\times3}} = \begin{bmatrix} 5 & 5 & 5 \end{bmatrix}$ notas do aluno João $\mathbf{B_{1\times3}} = \begin{bmatrix} 3 & 4 & 8 \end{bmatrix}$ notas da aluna Maria

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ LINHA se, e somente se, m = 1. EXEMPLOS:

```
\mathbf{A_{1\times3}} = \begin{bmatrix} 5 & 5 & 5 \end{bmatrix} notas do aluno João \mathbf{B_{1\times3}} = \begin{bmatrix} 3 & 4 & 8 \end{bmatrix} notas da aluna Maria \mathbf{C_{1\times3}} = \begin{bmatrix} 8 & 3 & 7 \end{bmatrix} notas da aluna Ana
```

Matrizes Revisão - Tipos Especiais

 $\mathbf{D}_{1\times3} = \begin{bmatrix} 6 & 8 & 10 \end{bmatrix}$ notas do aluno Pedro

Matriz Linha

```
Seja A \in \mathcal{M}_{m \times n}(\mathbb{K}). Dizemos que A é uma MATRIZ LINHA se, e somente se, m = 1.
EXEMPLOS:
```

Matrizes Revisão - Tipos Especiais

Matriz Linha

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ LINHA se, e somente se, m=1. EXEMPLOS:

$$\begin{array}{l} \textbf{A}_{1\times3} = \begin{bmatrix} 5 & 5 & 5 \end{bmatrix} \text{ notas do aluno João} \\ \textbf{B}_{1\times3} = \begin{bmatrix} 3 & 4 & 8 \end{bmatrix} \text{ notas da aluna Maria} \\ \textbf{C}_{1\times3} = \begin{bmatrix} 8 & 3 & 7 \end{bmatrix} \text{ notas da aluna Ana} \\ \textbf{D}_{1\times3} = \begin{bmatrix} 6 & 8 & 10 \end{bmatrix} \text{ notas do aluno Pedro} \end{array}$$

Observe que a MATRIZ DAS NOTAS pode ser representada pelas SUBMATRIZES:

$$\mathbf{N_{4\times3}} = \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix} =$$

Matrizes Revisão - Tipos Especiais

Matriz Linha

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ LINHA se, e somente se, m=1. EXEMPLOS:

$$\mathbf{A_{1\times3}} = \begin{bmatrix} 5 & 5 & 5 \end{bmatrix}$$
 notas do aluno João $\mathbf{B_{1\times3}} = \begin{bmatrix} 3 & 4 & 8 \end{bmatrix}$ notas da aluna Maria $\mathbf{C_{1\times3}} = \begin{bmatrix} 8 & 3 & 7 \end{bmatrix}$ notas da aluna Ana

 $\mathbf{D}_{1\times3} = \begin{bmatrix} 6 & 8 & 10 \end{bmatrix}$ Notas do aluno Pedro

Observe que a MATRIZ DAS NOTAS pode ser representada pelas SUBMATRIZES:

$$\mathbf{N_{4\times3}} = \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix} = \begin{bmatrix} \mathbf{A_{1\times3}} \\ \mathbf{B_{1\times3}} \\ \mathbf{C_{1\times3}} \\ \mathbf{D_{1\times3}} \end{bmatrix}$$

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ LINHA se, e somente se, m=1. EXEMPLOS:

$$\mathbf{A_{1\times3}} = \begin{bmatrix} 5 & 5 & 5 \end{bmatrix}$$
 notas do aluno João $\mathbf{B_{1\times3}} = \begin{bmatrix} 3 & 4 & 8 \end{bmatrix}$ notas da aluna Maria $\mathbf{C_{1\times3}} = \begin{bmatrix} 8 & 3 & 7 \end{bmatrix}$ notas da aluna Ana $\mathbf{D_{1\times3}} = \begin{bmatrix} 6 & 8 & 10 \end{bmatrix}$ notas do aluno Pedro

Observe que a MATRIZ DAS NOTAS pode ser representada pelas SUBMATRIZES:

$$\mathbf{N_{4\times3}} = \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix} = \begin{bmatrix} \mathbf{A_{1\times3}} \\ \mathbf{B_{1\times3}} \\ \mathbf{C_{1\times3}} \\ \mathbf{D_{1\times3}} \end{bmatrix}$$

Matriz Linha

Matrizes Coluna

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ COLUNA se, e somente se, n = 1.

Matrizes Coluna

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ COLUNA se, e somente se, n = 1. EXEMPLOS:

$$\mathbf{A_{4 \times 1}} = \begin{bmatrix} 5 \\ 3 \\ 8 \\ 6 \end{bmatrix}$$
 NOTA $\mathbf{3}^{a}$ NOTA

Matrizes Coluna

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ COLUNA se, e somente se, n = 1. EXEMPLOS:

$$\mathbf{A_{4\times 1}} = \begin{bmatrix} 5\\3\\8\\6 \end{bmatrix} \quad \mathbf{B_{4\times 1}} = \begin{bmatrix} 5\\4\\3\\8 \end{bmatrix}$$

Matrizes Coluna

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ COLUNA se, e somente se, n = 1. EXEMPLOS:

$$\mathbf{A_{4\times 1}} = \begin{bmatrix} 5 \\ 3 \\ 8 \\ 6 \end{bmatrix} \quad \mathbf{B_{4\times 1}} = \begin{bmatrix} 5 \\ 4 \\ 3 \\ 8 \end{bmatrix} \quad \mathbf{C_{4\times 1}} = \begin{bmatrix} 5 \\ 8 \\ 7 \\ 10 \end{bmatrix}$$

Matrizes Coluna

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ COLUNA se, e somente se, n = 1. EXEMPLOS:

$$\mathbf{A_{4\times 1}} = \begin{bmatrix} 5\\3\\8\\6 \end{bmatrix} \quad \mathbf{B_{4\times 1}} = \begin{bmatrix} 5\\4\\3\\8 \end{bmatrix} \quad \mathbf{C_{4\times 1}} = \begin{bmatrix} 5\\8\\7\\10 \end{bmatrix}$$

Observe que a MATRIZ DAS NOTAS pode ser representada pelas SUBMATRIZES;

$$\mathbf{N_{4 imes3}} = egin{bmatrix} 5 & 5 & 5 \ 3 & 4 & 8 \ 8 & 3 & 7 \ 6 & 8 & 10 \end{bmatrix} =$$

Matrizes Coluna

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ COLUNA se, e somente se, n = 1. EXEMPLOS:

$$\mathbf{A_{4\times 1}} = \begin{bmatrix} 5\\3\\8\\6 \end{bmatrix} \quad \mathbf{B_{4\times 1}} = \begin{bmatrix} 5\\4\\3\\8 \end{bmatrix} \quad \mathbf{C_{4\times 1}} = \begin{bmatrix} 5\\8\\7\\10 \end{bmatrix}$$

Observe que a MATRIZ DAS NOTAS pode ser representada pelas SUBMATRIZES;

$$\mathbf{N_{4\times3}} = \begin{vmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{vmatrix} = \begin{bmatrix} \mathbf{A_{4\times1}} & \mathbf{B_{4\times1}} & \mathbf{C_{4\times1}} \end{bmatrix}$$

Matrizes Coluna

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ COLUNA se, e somente se, n = 1. EXEMPLOS:

$$\mathbf{A_{4\times 1}} = \begin{bmatrix} 5\\3\\8\\6 \end{bmatrix} \quad \mathbf{B_{4\times 1}} = \begin{bmatrix} 5\\4\\3\\8 \end{bmatrix} \quad \mathbf{C_{4\times 1}} = \begin{bmatrix} 5\\8\\7\\10 \end{bmatrix}$$

Observe que a MATRIZ DAS NOTAS pode ser representada pelas SUBMATRIZES;

$$\mathbf{N_{4\times3}} = \begin{vmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{vmatrix} = \begin{bmatrix} \mathbf{A_{4\times1}} & \mathbf{B_{4\times1}} & \mathbf{C_{4\times1}} \end{bmatrix}$$

Matrizes Retangular

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ RETANGULAR se, e somente se, $m \neq n$.

Matrizes Retangular

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ RETANGULAR se, e somente se, $m \neq n$. EXEMPLOS:

1.
$$\mathbf{N_{4\times3}} = \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix}$$
 MATRIZ DO PROBLEMA.1

Matrizes Retangular

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ RETANGULAR se, e somente se, $m \neq n$. EXEMPLOS:

1.
$$\mathbf{N_{4\times3}} = \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix}$$
 MATRIZ DO PROBLEMA.1

Matrizes Retangular

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ RETANGULAR se, e somente se, $m \neq n$. EXEMPLOS:

1.
$$\mathbf{N_{4\times3}} = \begin{bmatrix} 5 & 5 & 5 \\ 3 & 4 & 8 \\ 8 & 3 & 7 \\ 6 & 8 & 10 \end{bmatrix}$$
 MATRIZ DO PROBLEMA.1

$$2. \ \mathbf{A_{2\times3}} = \begin{bmatrix} 4 & 5+2i & -3i \\ 0 & i & 2 \end{bmatrix}$$

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ QUADRADA se, e somente se, m = n.

Matriz Quadrada

Matriz Quadrada

1.
$$\mathbf{A_5} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
 MATRIZ DO PROBLEMA.2

Matriz Quadrada

1.
$$\mathbf{A_5} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
 matriz do problema.2

Matriz Quadrada

1.
$$\mathbf{A_5} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
 MATRIZ DO PROBLEMA.2

$$\mathbf{2.} \ \mathbf{A_2} = \begin{bmatrix} \frac{4}{5} & -3\\ 0 & -3i \end{bmatrix}$$

Matriz Quadrada

1.
$$\mathbf{A_5} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
 MATRIZ DO PROBLEMA.2

$$\mathbf{2.} \ \mathbf{A_2} = \begin{bmatrix} \frac{4}{5} & -3\\ 0 & -3i \end{bmatrix}$$

Matriz Quadrada

1.
$$\mathbf{A_5} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
 MATRIZ DO PROBLEMA.2

$$\mathbf{2.} \ \mathbf{A_2} = \begin{bmatrix} \frac{4}{5} & -3\\ 0 & -3i \end{bmatrix}$$

$$\mathbf{A_n} = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1i} \end{bmatrix}$$

$$\mathbf{A_n} = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \ \end{pmatrix}$$

```
\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \end{bmatrix}
```

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \end{bmatrix}$$

$$\mathbf{A_{n}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Matriz Quadrada

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Diagonal Principal e Secundária de An

• Se i = j: a_{ii} são os elementos da DIAGONAL PRINCIPAL: $a_{11}, \ldots, a_{ii}, \ldots, a_{nn}$; e

Matriz Quadrada

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Diagonal Principal e Secundária de An

- Se i = j: a_{ii} são os elementos da DIAGONAL PRINCIPAL: $a_{11}, \ldots, a_{ii}, \ldots, a_{nn}$; e
- Se i + j = n + 1: a_{ij} são os elementos da DIAGONAL SECUNDÁRIA: $a_{1n}, \ldots, a_{i(n-i+1)}, \ldots, a_{n1}$

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ NULA se, e somente se,

$$a_{ij} = 0; \forall i = 1, \ldots, m; \forall j = 1, \ldots n.$$

Matriz Nula

Matriz Nula

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ NULA se, e somente se,

$$a_{ij} = 0; \forall i = 1, \ldots, m; \forall j = 1, \ldots n.$$

Notação: $O_{m \times n}$.

Matriz Nula

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ NULA se, e somente se,

$$a_{ij} = 0; \forall i = 1, \ldots, m; \forall j = 1, \ldots n.$$

Notação: $O_{m \times n}$. EXEMPLOS:

1.
$$\mathbf{O}_{1\times 4} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$$

Matriz Nula

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ NULA se, e somente se,

$$a_{ij} = 0; \forall i = 1, \ldots, m; \forall j = 1, \ldots n.$$

Notação: $O_{m \times n}$.

$$\mathbf{1.} \ \mathbf{O}_{\mathbf{1} \times \mathbf{4}} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$$

Matriz Nula

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ NULA se, e somente se,

$$a_{ij} = 0; \forall i = 1, \ldots, m; \forall j = 1, \ldots n.$$

Notação: $O_{m \times n}$.

$$\mathbf{1.} \ \mathbf{O_{1\times 4}} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{2.} \ \mathbf{O}_{3\times 1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Matriz Nula

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ NULA se, e somente se,

$$a_{ij} = 0; \forall i = 1, \ldots, m; \forall j = 1, \ldots n.$$

Notação: $O_{m \times n}$.

$$\mathbf{1.} \ \mathbf{O_{1\times 4}} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{2.} \ \mathbf{O_{3\times 1}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Matriz Nula

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ NULA se, e somente se,

$$a_{ij} = 0; \forall i = 1, \ldots, m; \forall j = 1, \ldots n.$$

Notação: $O_{m \times n}$.

$$\mathbf{1.} \ \mathbf{O_{1\times 4}} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{2.} \ \mathbf{O_{3\times 1}} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

$$\mathbf{3.} \ \mathbf{O_3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Matriz Nula

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ NULA se, e somente se,

$$a_{ij} = 0$$
; $\forall i = 1, \ldots, m$; $\forall j = 1, \ldots n$.

Notação: $O_{m \times n}$.

$$\mathbf{1.} \ \mathbf{O_{1\times 4}} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

$$\mathbf{2.} \ \mathbf{O_{3\times 1}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

3.
$$\mathbf{O_3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Matriz Nula

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Dizemos que A é uma MATRIZ NULA se, e somente se,

$$a_{ij} = 0$$
; $\forall i = 1, \ldots, m$; $\forall j = 1, \ldots n$.

Notação: $O_{m \times n}$.

$$\mathbf{1.} \ \mathbf{O_{1\times 4}} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

$$\mathbf{2.} \ \mathbf{O_{3\times 1}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

3.
$$\mathbf{O_3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Matriz Diagonal

Matrizes Revisão - Tipos Especiais Matriz Diagonal

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Matrizes Revisão - Tipos Especiais Matriz Diagonal

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Matrizes Revisão - Tipos Especiais Matriz Diagonal

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A}_{\mathbf{n}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA An é uma MATRIZ DIAGONAL se, e somente se.

Matriz Diagonal

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{ii} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA A_n é uma MATRIZ DIAGONAL se, e somente se,

$$a_{ij} = 0$$
 para $i \neq j$.

Matriz Diagonal

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{ii} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA An é uma MATRIZ DIAGONAL se, e somente se.

$$a_{ij} = 0$$
 para $i \neq j$.

Observe que na DIAGONAL PRINCIPAL $a_{ii} \in \mathbb{K}: \forall i = 1, \dots, n$.

Matriz Diagonal

$$1. \ \mathbf{A_2} = \begin{bmatrix} 3 & 0 \\ 0 & \frac{2}{5} \end{bmatrix}$$

Matriz Diagonal

$$1. \ \mathbf{A_2} = \begin{bmatrix} 3 & 0 \\ 0 & \frac{2}{5} \end{bmatrix}$$

Matriz Diagonal

$$1. \ \mathbf{A_2} = \begin{bmatrix} 3 & \mathbf{0} \\ \mathbf{0} & \frac{2}{5} \end{bmatrix}$$

$$2. \ \mathbf{A_3} = \begin{bmatrix} -4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 + 2i \end{bmatrix}$$

Matriz Diagonal

$$1. \ \mathbf{A_2} = \begin{bmatrix} 3 & \mathbf{0} \\ \mathbf{0} & \frac{2}{5} \end{bmatrix}$$

$$2. \ \mathbf{A_3} = \begin{bmatrix} -4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 + 2i \end{bmatrix}$$

Matriz Diagonal

$$1. \ \mathbf{A_2} = \begin{bmatrix} 3 & \mathbf{0} \\ \mathbf{0} & \frac{2}{5} \end{bmatrix}$$

$$2. \ \mathbf{A}_3 = \begin{bmatrix} -4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 + 2i \end{bmatrix}$$

$$3. \ \ O_n = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Matriz Diagonal

$$1. \ \mathbf{A_2} = \begin{bmatrix} 3 & \mathbf{0} \\ \mathbf{0} & \frac{2}{5} \end{bmatrix}$$

$$2. \ \mathbf{A}_3 = \begin{bmatrix} -4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 + 2i \end{bmatrix}$$

$$3. \ \ O_n = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Matriz Diagonal

$$1. \ \mathbf{A_2} = \begin{bmatrix} 3 & \mathbf{0} \\ \mathbf{0} & \frac{2}{5} \end{bmatrix}$$

$$2. \ \mathbf{A}_3 = \begin{bmatrix} -4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 + 2i \end{bmatrix}$$

$$3. \ \ O_n = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

Matriz Escalar

Seja

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{ii} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & a_{nn} \end{bmatrix}$$

Matriz Escalar

Seja

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{ii} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ DIAGONAL \boldsymbol{A}_n é uma MATRIZ ESCALAR quando

$$a_{ij} = \begin{cases} 0; & i \neq j \end{cases}$$

Matriz Escalar

Seja

$$\mathbf{A}_{n} = \begin{bmatrix} a & 0 & \cdots & 0 & \cdots & 0 \\ 0 & a & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & a \end{bmatrix}$$

Dizemos que a MATRIZ DIAGONAL $\mathbf{A_n}$ é uma MATRIZ ESCALAR quando

$$a_{ij} = \begin{cases} 0; & i \neq j \\ a \in \mathbb{K}; a \text{ \'e uma constante }; & i = j \end{cases}$$

Matriz Escalar

Seja

$$\mathbf{A}_{n} = \begin{bmatrix} a & 0 & \cdots & 0 & \cdots & 0 \\ 0 & a & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & a \end{bmatrix}$$

Dizemos que a MATRIZ DIAGONAL $\mathbf{A_n}$ é uma MATRIZ ESCALAR quando

$$a_{ij} = \begin{cases} 0; & i \neq j \\ a \in \mathbb{K}; a \text{ \'e uma constante }; & i = j \end{cases}$$

Matriz Escalar

1.
$$\mathbf{A_3} = \begin{bmatrix} -4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{bmatrix} \Rightarrow a = -4$$

Matriz Escalar

1.
$$\mathbf{A_3} = \begin{bmatrix} -4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{bmatrix} \Rightarrow a = -4$$

Matriz Escalar

1.
$$\mathbf{A}_3 = \begin{bmatrix} -4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{bmatrix} \Rightarrow a = -4$$

2.
$$\mathbf{A_2} = \begin{bmatrix} 2+i & \mathbf{0} \\ \mathbf{0} & 2+i \end{bmatrix} \Rightarrow a = 2+i$$

Matriz Escalar

1.
$$\mathbf{A}_3 = \begin{bmatrix} -4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{bmatrix} \Rightarrow a = -4$$

2.
$$\mathbf{A_2} = \begin{bmatrix} 2+i & \mathbf{0} \\ \mathbf{0} & 2+i \end{bmatrix} \Rightarrow a = 2+i$$

1.
$$\mathbf{A_3} = \begin{bmatrix} -4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{bmatrix} \Rightarrow a = -4$$

2.
$$\mathbf{A_2} = \begin{bmatrix} 2+i & \mathbf{0} \\ \mathbf{0} & 2+i \end{bmatrix} \Rightarrow a = 2+i$$

3.
$$\mathbf{A_2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow a = 1$$

1.
$$\mathbf{A_3} = \begin{bmatrix} -4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{bmatrix} \Rightarrow a = -4$$

2.
$$\mathbf{A_2} = \begin{bmatrix} 2+i & \mathbf{0} \\ \mathbf{0} & 2+i \end{bmatrix} \Rightarrow a = 2+i$$

3.
$$\mathbf{A_2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow a = 1$$

1.
$$\mathbf{A_3} = \begin{bmatrix} -4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{bmatrix} \Rightarrow a = -4$$

2.
$$\mathbf{A_2} = \begin{bmatrix} 2+i & \mathbf{0} \\ \mathbf{0} & 2+i \end{bmatrix} \Rightarrow a = 2+i$$

3.
$$\mathbf{A_2} = \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \Rightarrow a = 1$$

4.
$$\mathbf{A_3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow a = 1$$

1.
$$\mathbf{A_3} = \begin{bmatrix} -4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{bmatrix} \Rightarrow a = -4$$

2.
$$\mathbf{A_2} = \begin{bmatrix} 2+i & \mathbf{0} \\ \mathbf{0} & 2+i \end{bmatrix} \Rightarrow a = 2+i$$

3.
$$\mathbf{A_2} = \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \Rightarrow a = 1$$

4.
$$\mathbf{A_3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow a = 1$$

1.
$$\mathbf{A_3} = \begin{bmatrix} -4 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{bmatrix} \Rightarrow a = -4$$

2.
$$\mathbf{A_2} = \begin{bmatrix} 2+i & \mathbf{0} \\ \mathbf{0} & 2+i \end{bmatrix} \Rightarrow a = 2+i$$

3.
$$\mathbf{A_2} = \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \Rightarrow a = 1$$

4.
$$\mathbf{A_3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow a = 1$$

Matriz Identidade

Nos exemplos 3 e 4 de MATRIZES ESCALARES, observe que

$$a_{ij} = \begin{cases} 0; & i \neq j \\ 1; & i = j \end{cases}$$

Matriz Identidade

Nos exemplos 3 e 4 de MATRIZES ESCALARES, observe que

$$A_{n} = \begin{cases} 0; & i \neq j \\ 1; & i = j \end{cases}$$

$$A_{n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Nos exemplos 3 e 4 de MATRIZES ESCALARES, observe que

$$a_{ij} = \begin{cases} 0; & i \neq j \\ 1; & i = j \end{cases}$$

$$A_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & \cdots & 0 \end{bmatrix}$$

Neste caso particular de MATRIZ ESCALAR onde a constante a=1, denominamos MATRIZ IDENTIDADE e denotamos I_n .

Nos exemplos 3 e 4 de MATRIZES ESCALARES, observe que

$$a_{ij} = \begin{cases} 0; & i \neq j \\ 1; & i = j \end{cases}$$

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \vdots & \vdots \end{cases}$$

Neste caso particular de MATRIZ ESCALAR onde a constante a=1, denominamos MATRIZ IDENTIDADE e denotamos I_n .

Matriz Triangular Inferior

Matriz Triangular Inferior

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Matriz Triangular Inferior

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Matriz Triangular Inferior

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA \boldsymbol{A}_n é uma MATRIZ TRIANGULAR INFERIOR se, e somente se,

Matriz Triangular Inferior

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA \boldsymbol{A}_n é uma MATRIZ TRIANGULAR INFERIOR se, e somente se,

$$a_{ij} = 0$$
 para $i < j$.

Matriz Triangular Inferior

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_{n}} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA \boldsymbol{A}_n é uma MATRIZ TRIANGULAR INFERIOR se, e somente se,

$$a_{ij} = 0$$
 para $i < j$.

Observe que $a_{ij} \in \mathbb{K}$ para $i \geq j$.

Matriz Triangular Inferior

1.
$$\mathbf{A_2} = \begin{bmatrix} 3 & \mathbf{0} \\ 2 & -5 \end{bmatrix}$$

Matriz Triangular Inferior

1.
$$\mathbf{A_2} = \begin{bmatrix} 3 & \mathbf{0} \\ 2 & -5 \end{bmatrix}$$

Matriz Triangular Inferior

1.
$$\mathbf{A_2} = \begin{bmatrix} 3 & \mathbf{0} \\ 2 & -5 \end{bmatrix}$$

$$2. \ \mathbf{A_3} = \begin{bmatrix} 3i & \mathbf{0} & \mathbf{0} \\ 2 & -5 & \mathbf{0} \\ 7 - i & 3 & \mathbf{0} \end{bmatrix}$$

Matriz Triangular Inferior

1.
$$\mathbf{A_2} = \begin{bmatrix} 3 & \mathbf{0} \\ 2 & -5 \end{bmatrix}$$

$$2. \ \mathbf{A_3} = \begin{bmatrix} 3i & \mathbf{0} & \mathbf{0} \\ 2 & -5 & \mathbf{0} \\ 7 - i & 3 & \mathbf{0} \end{bmatrix}$$

Matriz Triangular Inferior

1.
$$\mathbf{A_2} = \begin{bmatrix} 3 & \mathbf{0} \\ 2 & -5 \end{bmatrix}$$

2.
$$\mathbf{A_3} = \begin{bmatrix} 3i & 0 & 0 \\ 2 & -5 & 0 \\ 7 - i & 3 & 0 \end{bmatrix}$$

3.
$$A_n = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

Matriz Triangular Inferior

1.
$$\mathbf{A_2} = \begin{bmatrix} 3 & \mathbf{0} \\ 2 & -5 \end{bmatrix}$$

2.
$$\mathbf{A_3} = \begin{bmatrix} 3i & 0 & 0 \\ 2 & -5 & 0 \\ 7 - i & 3 & 0 \end{bmatrix}$$

3.
$$A_n = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

Matriz Triangular Inferior

EXEMPLOS:

1.
$$\mathbf{A_2} = \begin{bmatrix} 3 & \mathbf{0} \\ 2 & -5 \end{bmatrix}$$

$$2. \ \mathbf{A_3} = \begin{bmatrix} 3i & 0 & 0 \\ 2 & -5 & 0 \\ 7 - i & 3 & 0 \end{bmatrix}$$

3.
$$A_n = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

Matrizes Diagonais incluindo O_n e I_n .

Matriz Triangular Superior

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

Matriz Triangular Superior

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Matriz Triangular Superior

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Matriz Triangular Superior

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA \boldsymbol{A}_n é uma MATRIZ TRIANGULAR SUPERIOR se, e somente se,

Matriz Triangular Superior

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA \boldsymbol{A}_n é uma MATRIZ TRIANGULAR SUPERIOR se, e somente se,

$$a_{ij} = 0$$
 para $i > j$.

Matriz Triangular Superior

Seja $A \in \mathcal{M}_n(\mathbb{K})$;

$$\mathbf{A_n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & a_{nn} \end{bmatrix}$$

Dizemos que a MATRIZ QUADRADA \boldsymbol{A}_n é uma MATRIZ TRIANGULAR SUPERIOR se, e somente se,

$$a_{ij} = 0$$
 para $i > j$.

Observe que $a_{ij} \in \mathbb{K}$ para $i \leq j$.

Matriz Triangular Superior

$$1. \ \mathbf{A_2} = \begin{bmatrix} 3 & 2 \\ \mathbf{0} & -5 \end{bmatrix}$$

Matriz Triangular Superior

$$1. \ \mathbf{A_2} = \begin{bmatrix} 3 & 2 \\ \mathbf{0} & -5 \end{bmatrix}$$

Matriz Triangular Superior

1.
$$\mathbf{A_2} = \begin{bmatrix} 3 & 2 \\ 0 & -5 \end{bmatrix}$$

$$2. \ \mathbf{A_3} = \begin{bmatrix} 3i & 0 & 7-i \\ 0 & -5 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

Matriz Triangular Superior

1.
$$\mathbf{A_2} = \begin{bmatrix} 3 & 2 \\ 0 & -5 \end{bmatrix}$$

$$2. \ \mathbf{A_3} = \begin{bmatrix} 3i & 0 & 7-i \\ 0 & -5 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

Matriz Triangular Superior

1.
$$\mathbf{A_2} = \begin{bmatrix} 3 & 2 \\ 0 & -5 \end{bmatrix}$$

$$2. \ \mathbf{A_3} = \begin{bmatrix} 3i & 0 & 7-i \\ 0 & -5 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

3.
$$A_n = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

Matriz Triangular Superior

1.
$$\mathbf{A_2} = \begin{bmatrix} 3 & 2 \\ 0 & -5 \end{bmatrix}$$

$$2. \ \mathbf{A_3} = \begin{bmatrix} 3i & 0 & 7-i \\ 0 & -5 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

3.
$$A_n = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

Matriz Triangular Superior

EXEMPLOS:

1.
$$\mathbf{A_2} = \begin{bmatrix} 3 & 2 \\ \mathbf{0} & -5 \end{bmatrix}$$

$$2. \ \mathbf{A_3} = \begin{bmatrix} 3i & 0 & 7-i \\ 0 & -5 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$

3.
$$A_n = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

Matrizes Diagonais incluindo O_n e I_n .