Analysis of Variance and Related Topics for Ordinary Least Squares Regression

The ANOVA Table for OLS Regression

The Analysis of Variance or ANOVA Table is a fundamental output from a fitted OLS regression model. The output from the ANOVA table is used for a number of purposes.

- Show the decomposition of the total variation.
- Compute the R-Squared and Adjusted R-Squared metrics.
- Perform the Overall F-test for a regression effect.
- Perform a F-test for nested models as commonly used in forward, backward, and stepwise variable selection.

Decomposing the Sample Variation

- The Total Sum of Squares is the total variation in the sample.
- The Regression Sum of Squares is the variation in the sample that has been explained by the regression model.
- The Error Sum of Squares is the variation in the sample that cannot be (or has not been) explained.

SST	$\sum_i^n (Y_i - \bar{Y})^2$	Total Sum of Squares
SSR	$\sum_i^n (\widehat{Y}_i - \overline{Y})^2$	Regression Sum of Squares
SSE	$\sum_{i}^{n}(Y_{i}-\widehat{Y}_{i})^{2}$	Error Sum of Squares

Metrics for Goodness-Of-Fit in OLS Regression

The Coefficient of Determination - R-Squared

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \tag{1}$$

- The Coefficient of Determination R^2 will take values $0 \le R^2 \le 1$ and represents the proportion of the variance explained by the regression model.
- Implicitly, R^2 is a function of the number of parameters in the model. For a nested subset of predictor variables $p_0 < p_1$, i.e. p_1 contains the original p_0 predictor variables and some new predictor variables, R^2 will have a monotonic relationship such that $R^2(p_0) \le R^2(p_1)$.

Metrics for Goodness-Of-Fit in OLS Regression - Continued

Adjusted R-Squared

$$R_{ADJ}^2 = 1 - \frac{SSE/(n-k-1)}{SST/(n-1)} = 1 - \frac{SSE/(n-p)}{SST/(n-1)}$$
 (2)

- Note that standard regression notation uses k for the number of predictor variables included in the regression model and p for the total number of parameters in the model. When the model includes an intercept term, then p=k+1. When the model does not include an intercept term, then p=k.
- The Adjusted R-Squared metric accounts for the *model complexity* of the regression model allowing for models of different sizes to be compared.
- The Adjusted R-Squared metric will not be monotonic in the number of model parameters.

The Overall F-Test for a Regression Effect

Consider the regression model

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k. \tag{3}$$

The Overall F-Test for a regression effect is a joint hypothesis test that at least one of the predictor variables has a non-zero coefficient.

The null and alternate hypotheses are given by

$$H_0: \beta_1=\dots=\beta_k=0$$
 versus $H_1: \beta_i\neq 0$ (4) for some $i\in\{1,\dots,k\}$.

• The test statistic for the Overall F-test is given by

$$F_0 = \frac{SSR/k}{SSE/(n-p)} \tag{5}$$

which has a F-distribution with (k, n-p) degrees-of-freedom for a regression model with k predictor variables and p total parameters. When the regression model includes an intercept, then p=k+1. If the regression model does not include an intercept, then p=k.

The F-Test for Nested Models

For our discussion of nested models let's consider two concrete examples which we will refer to as the *full model* (FM)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 \tag{6}$$

and the reduced model (RM).

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \tag{7}$$

Notice that the predictor variables in the reduced model are a subset of the predictor variables in the full model, i.e. $RM \subset FM$.

- In this notation we say that the FM nests the RM, or the RM is nested by the FM.
- We only use the terms full model and reduced model in the context of nested models.
- We can use a F-test for nested models to decide whether or not to include an additional predictor variable in the final model.

Details for the F-Test for Nested Models

Given a full model and a reduced model we can perform a F-test for nested models for the exclusion of a single predictor variable or multiple predictor variables.

In the context of our concrete example, we could test either of these null hypotheses.

• Example 1: Test a Single Predictor Variable

$$H_0: \beta_3 = 0$$
 versus $H_1: \beta_3 \neq 0$ (8)

Example 2: Test Multiple Predictor Variables

$$H_0: \beta_2 = \beta_3 = 0$$
 versus $H_1: \beta_i \neq 0$ (9)

for some $i \in \{2, 3\}$.

Details for the F-Test for Nested Models - Continued

The test statistic for the F-test for nested models will always have this form in terms of the FM and the RM.

Test Statistic for the Nested F-Test

$$F_0 = \frac{\left[SSE(RM) - SSE(FM)\right] / \left[dim(FM) - dim(RM)\right]}{SSE(FM) / \left[n - dim(FM)\right]} \tag{10}$$

- The test statistics is based on the reduction in the SSE obtained from adding additional predictor variables. Note that SSE(FM) is always less than SSE(RM).
- The dimension of a statistical model is the number of parameters.

Connection to Forward Variable Selection

The F-test for nested models is the standard statistical test implemented in most statistical software packages for performing forward and backward, and hence stepwise, variable selection.

Forward Variable Selection

- Given the model $Y = \beta_0 + \beta_1 X_1$ and a set of candidate predictor variables Z_1, \ldots, Z_s , how do we select the best Z_i to include in our model as X_2 ?
- In forward variable selection the FM will be $Y = \beta_0 + \beta_1 X_1 + \beta_2 Z_i$ and the RM will be $Y = \beta_0 + \beta_1 X_1$. The forward variable selection algorithm will select the Z_i with the largest F-statistic that is statistically significant at a predetermined level. The algorithm will continue to add predictor variables until there are no predictor variables that are statistically significant to the predetermined level.

Connection to Backward Variable Selection

Backward Variable Selection

Given the model

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_s X_s \tag{11}$$

how do we eliminate predictor variables whose effects are not statistically significant?

- In backward variable selection the FM will be $Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_s X_s$ and the RM will be $Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_{s-1} X_{s-1}$, for notational convenience. The backward variable selection algorithm will drop the X_i with the smallest F-statistic that is not statistically significant at a predetermined level. The algorithm will continue to drop predictor variables until there are no predictor variables that aren't statistically significant to the predetermined level.
- Note that both of the forward and backward variable selection procedures consider only one variable at each iteration.