The Multigrid Method

Review of Last Lecture and Outline

- Review Poisson equation
- Overview of Methods for Poisson Equation
- ° Jacobi's method
- ° Red-Black SOR method
- ° Conjugate Gradients

Reduce to sparse-matrix-vector multiply Need them to understand Multigrid

- ° Multigrid
- ° Comparison of methods

Motivation for Multigrid

- ° Recall that Jacobi, SOR, CG, or any other sparse-matrix-vector-multiply-based algorithm can only move information one grid-cell at a time, due to local structure of stencil →It takes O(N¹/²) steps to get information across the grid
- ° Faster convergence in O(1) steps requires moving information across grid faster than to one neighboring grid cell per step.
- ° Can be shown that decreasing error by fixed factor c<1 and takes $\Omega(\log n)$ steps \rightarrow Convergence to a fixed error ϵ < 1 takes $\Omega(\log n)$ steps

Multigrid Motivation

Takes O(n) steps to propagate information across an nxn grid

11/8/2021 Lecture 8

Multigrid Overview

° Basic Algorithm:

- Replace problem on fine grid by an approximation on a coarser grid
- Solve the coarse grid problem approximately, and use the solution as a starting guess for the fine-grid problem, which is then iteratively updated
- Solve the coarse grid problem recursively, i.e. by using a still coarser grid approximation, etc.

° Success depends on coarse grid solution being a good approximation to the fine grid

Fine and Coarse Approximations

Multigrid Sketch, continued

 $^{\circ}$ $\mathsf{P}^{(m)}$, $\mathsf{P}^{(m-1)}$, ... , $\mathsf{P}^{(1)}$ is sequence of problems from finest to coarsest

2 2 2 2 1 1 1

P⁽³⁾: 1D grid of 9 points
7 unknowns
Points labeled 2 are
part of next coarser grid

P⁽²⁾: 1D grid of 5 points
3 unknowns
Points labeled 1 are
part of next coarser grid

P⁽³⁾: 9 by 9 grid of points
7 by 7 grid of unknowns
Points labeled 2 are
part of next coarser grid

P⁽²⁾: 5 by 5 grid of points
3 by 3 grid of unknowns
Points labeled 1 are
part of next coarser grid

P⁽¹⁾: 3 by 3 grid of points 1 by 1 grid of unknowns

Multigrid Operators (1)

- ° For problem P⁽ⁱ⁾ solve T_i x_i = b_i:
 - b_i is the RHS and

both live on grids of size 2i-1

- x_i is the current estimated solution
- T_i is implicit in the operators below.
- All the following operators (next slide) just average values on neighboring grid points
 - Neighboring grid points on coarse problems are far away in fine problems, so information moves quickly on coarse problems
 - Levels will be constructed explicitly
 - (→ next slide gives an overview of the operators)

Multigrid Operators (2)

- ° The restriction operator R; maps P⁽ⁱ⁾ to P⁽ⁱ⁻¹⁾
 - Restricts problem on fine grid P⁽ⁱ⁾ to coarse grid P⁽ⁱ⁻¹⁾ by sampling or averaging
 - $b_{i-1} = R_i(b_i)$
- The interpolation operator In _{i-1} maps an approximate solution x_{i-1} to an x_i
 - Interpolates solution on coarse grid P⁽ⁱ⁻¹⁾ to fine grid P⁽ⁱ⁾
 - $x_i = In_{i-1}(x_{i-1})$
- The solution operator S_i takes P⁽ⁱ⁾ and computes an improved solution x(i) on same grid
 - Uses "weighted" Jacobi or SOR
 - $x_{i, improved} = S_i (b_i, x_i)$
- Details of these operators follow after describing overall algorithm

Multigrid V-Cycle Algorithm (recursive)

Function MGV (b_i, x_i) ... Solve $T_i x_i = b_i$ given b_i and an initial guess for x_i ... return an improved x_i if (i = 1)compute exact solution x_1 of $P^{(1)}$ return x₁ else $x_i = S_i(b_i, x_i)$ $\mathbf{r}_{i} = \mathbf{T}_{i} \mathbf{x}_{i} - \mathbf{b}_{i}$ $d_i = In_{i-1}(MGV(R_i(r_i), 0))$ $x_i = x_i - d_i$ $x_i = S_i(b_i, x_i)$ return x

improve solution by damping high frequency error, compute residual, solve $T_i d_i = r_i$ recursively, correct fine grid solution, improve solution again.

Why is this called a V-Cycle?

- ° Just a picture of the call graph
- ° In time a V-cycle looks like the following

Complexity of a V-Cycle

° On a serial machine

- Work at each "dot" in the V-cycle is O(the number of unknowns)
- Cost of level *i* is $(2^{i}-1)^{2} = O(4^{i})$ (for a 2D grid)
- If finest grid level is m, total time is:

$$\sum_{i=1}^{m} O(4^{i}) = O(4^{m}) = O(\# unknowns)$$

- ° On a parallel machine (PRAM)
 - with one processor per grid point and free communication, each step in the V-cycle takes constant time, O(1)
 - Total V-cycle time is O(m) = O(log #unknowns)

Full Multigrid (FMG)

° Intuition:

- improve solution by doing multiple V-cycles
- avoid expensive fine-grid (high frequency) cycles
- analysis of why this works is beyond the scope of this class

```
Function FMG (b_m, x_m)
... return improved x_m given initial guess
compute the exact solution x_1 of P^{(1)}
for i=2 to m
x_i = MGV (b_i, \ln_{i-1}(x_{i-1}))
```

° In words:

- Solve the problem with 1 unknown
- Given a solution to the coarser problem, $P^{(i-1)}$, map it to starting guess for $P^{(i)}$
- Solve the finer problem using the Multigrid V-cycle

Full Multigrid Cost Analysis

- One V for each call to FMG
 - one also use "W"s and other compositions
- ° Serial time: $\sum_{i=1}^{m} O(4^{i}) = O(4^{m}) = O(\# unknowns)$
- ° PRAM time: $\sum_{i=1}^{m} O(i) = O(m^2) = O(\log^2 \# \text{ unknowns})$

Complexity of Solving Poisson's Equation

- Theorem: error ε after one FMG call is ≤ c times the error before, where c < 1/2, and independent of # unknowns
- $x^k = FMG$ (b, x^{k-1}) ==> ϵ (x^k) < 1/2 ϵ (x^{k-1}) (i.e., at least 1 bit per FMG iteration. x^k =solution after k^{th} FMG iteration)
- Corollary: We can make the error ε < tol, for any fixed tolerance in a fixed number of steps, independent of size of the finest grid

- This is the most important convergence property of MG, distinguishing it from other methods, which converge more slowly for large grids
- Total complexity is just proportional to the cost of one FMG call

The Solution Operator S_i - Details

- ° The solution operator S_i, is a weighted Jacobi op.
- ° Consider the 1D problem

° At level i, pure Jacobi replaces:

$$x(j) := 1/2 (x(j-1) + x(j+1) + b(j))$$

Weighted Jacobi uses:

$$x(j) := 1/3 (x(j-1) + x(j) + x(j+1) + b(j))$$

° In 2D, similar average of nearest neighbors

Weighted Jacobi chosen to damp high frequency error

Initial error
 "Rough"
 Lots of high frequency components
 Norm = 1.65

Error after 1 Jacobi step
"Smoother"
Less high frequency component
Norm = 1.055

Error after 2 Jacobi steps
 "Smooth"
 Little high frequency component
 Norm = .9176,
 won't decrease much more

17

Multigrid as Divide and Conquer Algorithm

° Each level in a V-Cycle reduces the error in one part of the frequency domain

Schematic Description of Multigrid

The Restriction Operator R_i - Details

- ° The restriction operator R_i takes
 - a problem P⁽ⁱ⁾ with RHS b_i and
 - maps it to a coarser problem P⁽ⁱ⁻¹⁾ with RHS b_{i-1}
- ° In 1D, average values of neighbors
 - $x_{coarse}(j) = 1/4 * x_{fine}(j-1) + 1/2 * x_{fine}(j) + 1/4 * x_{fine}(j+1)$

The Restriction Operator R_i - Details

In 2D, average with all 8 neighbors (N,S,E,W,NE,NW,SE,SW)

Interpolation Operator Ini

 In 2D, interpolation requires averaging with 4 nearest neighbors (NW,SW,NE,SE)

Convergence Picture of Multigrid in 1D

- •Full Multigrid on each iteration
- Error decreases by a factor >5 on each iteration

Convergence Picture of Multigrid in 2D

Right Hand Side

Parallel 2D Multigrid

 Multigrid on 2D requires nearest neighbor (up to 8) computation at each level of the grid

° Start with n=2^m+1 by 2^m+1 grid (here m=5)

° Use an s by s processor grid (here s=4)

Communication pattern for Multigrid on 33 by 33 mesh with 4 by 4 processor grid In top processor row, grid points labeled m are updated in problem P(m) of multigrid Pink processor owns grid points inside pink box

In lower half of graph, grid points labeled m need to be communicated to pink processor in problem P(m) of multigrid

Communication pattern for Multigrid on 33 by 33 mesh with 4 by 4 processor grid
In top processor row, grid points labeled m are updated in problem P(m) of multigrid
Pink processor owns grid points inside pink box
In lower half of graph, grid points labeled m need to be communicated to pink processor
in problem P(m) of multigrid

Performance Model of parallel 2D Multigrid

- ° Assume 2^m+1 by 2^m+1 grid of unknowns, n= 2^m+1, N=n²
- ° Assume p = 4^k processors, arranged in 2^k by 2^k grid
 - Each processor starts with 2^{m-k} by 2^{m-k} subgrid of unknowns
- ° Consider V-cycle starting at level m
 - At levels m through k of V-cycle, each processor does some work
 - At levels k-1 through 1, some processors are idle, because a 2^{k-1} by 2^{k-1} grid of unknowns cannot occupy each processor

Performance Model of parallel 2D Multigrid (2)

- ° Cost of one level (j) or P^(j) in V-cycle
 - If level j >= k, then cost = $O(4^{j-k}) \qquad \quad \text{Flops, proportional to the number of grid points/processor} \\ + O(1) \alpha \qquad \quad \text{Send a constant \# messages to neighbors} \\ + O(2^{j-k}) \beta \qquad \quad \text{Number of words sent}$
 - If level j < k, then cost =
 - O(1) Flops, proportional to the number of grid points/processor
 - + O(1) α Send a constant # messages to neighbors
 - + O(1) β Number of words sent
- Sum over all levels in all V-cycles in FMG to get complexity

Comparison of Methods (using p processors)

	# Flops	# Messages	# Words sent
MG	N/p +	(log N) ²	(N/p) ^{1/2} +
	log p * log N		log p * log N
FFT	N log N / p	p ^{1/2}	N/p
SOR	N ^{3/2} /p	N ^{1/2}	N/p

- ° SOR is slower than others on all counts
- ° Flops for MG and FFT depends on accuracy of MG
- ° MG communicates less total data (bandwidth)
- ° Total messages (latency) depends ...
 - This coarse analysis can't say whether MG or FFT is better when $\alpha >> \beta$

- ° In practice, we don't go all the way to P⁽¹⁾
- ° In sequential code, the coarsest grids are negligibly cheap, but on a parallel machine they are not.
 - Consider 1000 points per processor
 - In 2D, the surface to communicate is 4*sqrt(1000) ~= 128, or 13%
 - In 3D, the surface is 1000-8³ ~= 500, or 50%
 - Data locality ratio α (large α is preferred):

$$\alpha = \frac{\text{computation time between two communication steps}}{\text{communication time}}$$

- ° Apply communication avoiding Jacobi iterations!
- Dealing with coarse meshes efficiently
 - Should we switch to using fewer processors on coarse meshes?
 - Should we switch to another solver on coarse meshes?

Quiz 4

Deadline: Tuesday, November 16, 8:45AM

Extra Slides

(Not a part of discussions of the lecture)

Templates for choosing an iterative algorithm for Ax=b

- ° Use only matrix-vector-multiplication, dot, saxpy, ...
- ° www.netlib.org/templates

Summary of Jacobi, SOR and CG

- ° Jacobi, SOR, and CG all perform sparse-matrix-vector multiply
- ° For Poisson, this means nearest neighbor communication on an n-by-n grid
- It takes n = N^{1/2} steps for information to travel across an n-by-n grid
- Since solution on one side of grid depends on data on other side of grid faster methods require faster ways to move information
 - FFT
 - Multigrid

Multigrid Methods

- We studied several iterative methods
 - Jacobi, SOR, Guass-Seidel, Red-Black variations, Conjugate Gradients (CG)
 - All use sparse matrix-vector multiply (nearest neighbor communication on grid)
- Key problem with iterative methods is that:
 - detail (short wavelength) is correct
 - · convergence controlled by coarse (long wavelength) structure
- In simple methods one needs of order N² iterations to get good results
 - Ironically, one goes to large N (fine mesh) to get detail
 - · If all you wanted was coarse structure, a smaller mesh would be fine
- · Basic idea in multigrid is key in many areas of science
 - Solve a problem at multiple scales
- We get coarse structure from small N and fine detail from large N
 - Good qualitative idea but how do we implement?