

The variance

Statistical Inference

Brian Caffo, Jeff Leek, Roger Peng Johns Hopkins Bloomberg School of Public Health

The variance

- The variance of a random variable is a measure of spread
- If X is a random variable with mean μ , the variance of X is defined as

$$Var(X) = E[(X - \mu)^2] = E[X^2] - E[X]^2$$

- The expected (squared) distance from the mean
- Densities with a higher variance are more spread out than densities with a lower variance
- The square root of the variance is called the standard deviation
- The standard deviation has the same units as X

Example

- What's the variance from the result of a toss of a die?
 - E[X] = 3.5

-
$$E[X^2]=1^2 imes rac{1}{6}+2^2 imes rac{1}{6}+3^2 imes rac{1}{6}+4^2 imes rac{1}{6}+5^2 imes rac{1}{6}+6^2 imes rac{1}{6}=15.17$$

•
$$Var(X) = E[X^2] - E[X]^2 \approx 2.92$$

Example

- What's the variance from the result of the toss of a coin with probability of heads (1) of p?
 - E[X]=0 imes(1-p)+1 imes p=p
 - $E[X^2] = E[X] = p$

$$Var(X) = E[X^2] - E[X]^2 = p - p^2 = p(1-p)$$

Distributions with increasing variance

The sample variance

The sample variance is

$$S^2 = rac{\sum_{i=1} (X_i - ar{X})^2}{n-1}$$

(almost, but not quite, the average squared deviation from the sample mean)

- It is also a random variable
 - It has an associate population distribution
 - Its expected value is the population variance
 - Its distribution gets more concentrated around the population variance with mroe data
- Its square root is the sample standard deviation

Simulation experiment

Simulating from a population with variance 1

Variances of x die rolls

Recall the mean

- Recall that the average of random sample from a population is itself a random variable
- · We know that this distribution is centered around the population mean, $E[ar{X}] = \mu$
- We also know what its variance is $Var(ar{X}) = \sigma^2/n$
- This is very useful, since we don't have repeat sample means to get its variance; now we know how it relates to the population variance
- We call the standard deviation of a statistic a standard error

To summarize

- The sample variance, S^2 , estimates the population variance, σ^2
- The distribution of the sample variance is centered around σ^2
- The the variance of sample mean is σ^2/n
 - Its logical estimate is s^2/n
 - The logical estimate of the standard error is S/\sqrt{n}
- S, the standard deviation, talks about how variable the population is
- S/\sqrt{n} , the standard error, talks about how variable averages of random samples of size n from the population are

Standard normals have variance 1; means of n standard normals have standard deviation $1/\sqrt{n}$

```
nosim <- 1000
n <- 10
sd(apply(matrix(rnorm(nosim * n), nosim), 1, mean))</pre>
```

```
## [1] 0.3156
```

```
1 / sqrt(n)
```

```
## [1] 0.3162
```

Standard uniforms have variance 1/12; means of random samples of n uniforms have sd $1/\sqrt{12 \times n}$

```
nosim <- 1000
n <- 10
sd(apply(matrix(runif(nosim * n), nosim), 1, mean))</pre>
```

```
## [1] 0.09017
```

```
1 / sqrt(12 * n)
```

```
## [1] 0.09129
```

Poisson(4) have variance 4; means of random samples of n Poisson(4) have sd $2/\sqrt{n}$

```
nosim <- 1000
n <- 10
sd(apply(matrix(rpois(nosim * n, 4), nosim), 1, mean))</pre>
```

```
## [1] 0.6219
```

```
2 / sqrt(n)
```

```
## [1] 0.6325
```

Fair coin flips have variance 0.25; means of random samples of n coin flips have sd $1/(2\sqrt{n})$

```
## [1] 0.1587
```

```
1 / (2 * sqrt(n))
```

```
## [1] 0.1581
```

Data example

```
library(UsingR); data(father.son);
x <- father.son$sheight
n<-length(x)</pre>
```

Plot of the son's heights

Let's interpret these numbers

```
round(c(var(x), var(x) / n, sd(x), sd(x) / sqrt(n)), 2)
```

```
## [1] 7.92 0.01 2.81 0.09
```


Summarizing what we know about variances

- The sample variance estimates the population variance
- The distribution of the sample variance is centered at what its estimating
- It gets more concentrated around the population variance with larger sample sizes
- The variance of the sample mean is the population variance divided by n
 - The square root is the standard error
- It turns out that we can say a lot about the distribution of averages from random samples, even though we only get one to look at in a given data set