

19 BUNDESREPUBLIK **DEUTSCHLAND**

® Patentschrift □ DE 100 32 708 C 1

⑤ Int. Cl.⁷: D 02 G 1/02

DEUTSCHES PATENT- UND **MARKENAMT**

- (21) Aktenzeichen: 100 32 708.7-26 (22) Anmeldetag: 7. 7. 2000
- (43) Offenlegungstag:
- (45) Veröffentlichungstag der Patenterteilung: 31. 1. 2002

D 02 G 3/26

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

- (73) Patentinhaber: Hamel AG, Arbon, CH
- (74) Vertreter: PATENTANWÄLTE CHARRIER RAPP & LIEBAU, 86152 Augsburg
- (72) Erfinder: Deeg, Thomas, Seuzach, CH
- (56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

198 27 870 C1 DE 26 37 208 A1 11 44 614 GB US 42 79 120

Service Manual zu "Self-twist-spinner-type 888, Fa. Platt UK Limited. Blackburn BB6 7SE, Lancashir, England;

- (A) Verfahren und Vorrichtung zur Herstellung eines Selbstzwirngarns
- Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Herstellung eines Selbstzwirngarns (1), bei dem zunächst mindestens zwei Vorgarne (2, 3) zwischen mindestens einer Falschdreheinrichtung (4) durchgeführt werden, wodurch den Vorgarnen (2, 3) jeweils periodisch abwechselnd Bereiche mit S- und Z-Drehungen erteilt werden, welche durch Bereiche ohne Drehung (0) voneinander getrennt sind und die Vorgarne (2, 3) anschließend so zusammengeführt werden, daß sie sich aufgrund ihrer Eigendrehung selbsttätig zusammendrehen, wobei die Bereiche ohne Drehung (0) im zusammengedrehten Selbstzwirngarn (1) eine Phasendifferenz (Φ) aufweisen. Bei derartigen Verfahren und bei den bekannten Vorrichtungen zur Durchführung des Verfahrens kommt es jedoch häufig zu Brüchen der Vorgarnfäden und das hergestellte Selbstzwirngarn (1) weist eine unzureichende Festigkeit auf. Die Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zur Herstellung eines Selbstzwirngarnes (1) zur Verfügung zu stellen, welche eine möglichst hohe Festigkeit des erzeugten Selbstzwirngarnes (1) erzielt, wird dadurch gelöst, daß zur Erteilung der Phasendifferenz (Φ) mindestens eines der Vorgarne (2) nach der Durchführung durch die Falschdreheinrichtung (4) über mindestens eine Umlenkrolle (5) auf eine Führungsrolle (6) geführt wird und die Zusammensetzung der Vorgarne (2, 3) auf der Führungsfläche (6a) der Führungsrolle (6) erfolgt.

1

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung eines Selbstzwirngarnes nach dem Oberbegriff des Anspruchs 1 bzw. des Anspruchs 8.

[0002] Derartige Verfahren und Vorrichtungen sind aus dem Stand der Technik, beispielsweise gemäß der GB 1 144 614, der DE 26 37 208 A1 und der US 4,279,120 bekannt. Hierbei werden zwei oder mehr Vorgarne zunächst mittels sogenannter Falschdreheinrichtungen abwechselnd 10 mit Bereichen von S- und Z-Drehungen versehen, welche durch Bereiche ohne Drehung oder mit geringerer Drehung voneinander getrennt sind. Zwei derart gedrehte Vorgarne werden anschließend so zusammengeführt, daß sich die beiden Garne aufgrund ihrer Rückdrehtendenz selbsttätig zu einem sogenannten Selbstzwirngarn (englisch: self-twistyarn) zusammendrehen, wobei die Bereiche der beiden Vorgarne ohne Drehung bzw. mit geringerer Drehung in vorteilhafter Weise phasenverschoben sind.

[0003] Aus dem Stand der Technik ist ferner eine gattungsgemäße Vorrichtung zur Herstellung eines derartigen Selbstzwirngarnes von der Firma Platt UK Limited bekannt (siehe beispielsweise Service Manual zum "Self-twist-spinner-type 888" der Firma Platt UK Limited, Blackburn, England). Bei dieser Vorrichtung erfolgt die Zusammenführung der beiden Garne mittels Vereinigungsösen. Um eine bestimmte Phasendifferenz zwischen den Bereichen ohne Drehung der beiden Garne zu erzeugen, wird dabei eines der beiden Vorgarne nach Durchlauf der Falschdreheinrichtung zunächst über eine Umlenköse geführt und anschließend auf die Vereinigungsöse gelenkt, an der die Zusammenführung mit dem anderen Vorgarn erfolgt.

[0004] Die Umlenkung des einen Vorgarnes über die Umlenköse hat sich als vorteilhaft erwiesen, da somit eine beliebige Phasendifferenz zwischen den Bereichen ohne Drehung bzw. mit geringerer Drehung zwischen den beiden Vorgarnen einstellbar ist. Dabei hat sich gezeigt, daß die Festigkeit des resultierenden Selbstzwirngarnes stark von der Phasenverschiebung der Bereiche ohne Drehung abhängt. Zur Erzielung einer hohen Garnfestigkeit ist in dem genannten Handbuch der Firma Platt eine bevorzugte Phasendifferenz von 30° genannt.

[0005] Bei den bekannten Vorrichtungen kommt es jedoch häufig zu Brüchen der Vorgarnfäden, da diese aufgrund der Reibung an den Umlenk- und Vereinigungsösen starkem 45 Verschleiß unterliegen. Dieser Verschleiß führt auch zu einer verminderten Festigkeit des zusammengedrehten Selbstzwirngarnes.

[0006] Es besteht daher die Aufgabe, ein Verfahren und eine Vorrichtung der gattungsgemäßen Art zur Herstellung 50 eines Selbstzwirngarnes zur Verfügung zu stellen, welche eine möglichst hohe Festigkeit des Selbstzwirngarnes erzielt

[0007] Gelöst wird diese Aufgabe mit den kennzeichnenden Merkmalen der Ansprüche 1 bzw. 8. Vorteilhafte Ausgestaltungen des Verfahrens sind den Unteransprüchen 2 bis 7 zu entnehmen. Vorteilhafte Ausgestaltungen der Vorrichtung sind den Unteransprüchen 9 bis 11 entnehmbar.

[0008] Die Erfindung wird im folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf die begleitenden 60 Zeichnungen näher erläutert. Die Zeichnungen zeigen:

[0009] Fig. 1 Schematische Darstellung einer Vorrichtung zur Herstellung eines Selbstzwirngarnes;

[0010] Fig. 2 schematische Darstellung einer Falschdreheinrichtung zur Erzeugung eines Vorgarnes mit periodisch 65 abwechselnden Bereichen mit S- und Z-Drehungen;

[0011] Fig. 3A illustrative Darstellung zweier Vorgarne von Fig. 2 sowie eines aus diesen Vorgarnen durch deren

2

Zusammenführung ohne Phasendifferenz hergestellten Selbstzwirngarnes;

[0012] Fig. 3B illustrative Darstellung zweier Vorgarne von Fig. 2 sowie eines aus diesen Vorgarnen durch deren Zusammenführung mit einer Phasendifferenz zwischen den ungedrehten Bereichen hergestellten Selbstzwirngarnes.

[0013] Fig. 4 Draufsicht auf eine Vorrichtung zur Herstellung eines Selbstzwirngarnes;

[0014] Fig. 5 Seitenansicht der Vorrichtung von Fig. 5; [0015] Fig. 6 vorteilhafte Ausführungsform einer Vorrichtung gemäß Fig. 4.

[0016] Fig. 1 zeigt schematisch eine Vorrichtung zur Herstellung eines Selbstzwirngarnes. Diese Vorrichtung umfaßt im wesentlichen ein Streckwerk 11 zur Erzeugung zweier ungedrehter Vorgarne 2 und 3, eine Falschdreheinrichtung 4, durch welche den Vorgarnen 2 und 3 periodisch abwechselnd Bereiche mit S- und Z-Drehungen erteilt werden, sowie einer Zwirnvorrichtung 12, in der die beiden gedrehten Vorgarne 2, 3 so zusammengeführt werden, daß sie sich zu einem Selbstzwirngarn 1 zusammendrehen.

[0017] Das Streckwerk 11 ist in dem Ausführungsbeispiel von Fig. 1 als Walzenstreckwerk mit zwei Streckwalzen 13, 14 ausgebildet. Bei der Falschdreheinrichtung 4 handelt es sich um eine an sich bekannte Nitschelvorrichtung. Diese weist zwei im wesentlichen zylindrische, achsenparallel angeordnete und um ihre Achsen rotierende Nitschelwalzen 7, 8 auf. Die Nitschelwalzen 7, 8 rotieren dabei gegensinnig zueinander und fördern hierdurch das zwischen ihnen eingeklemmte Vorgarn 2, 3. Zusätzlich zu ihrer Rotation oszillieren die beiden Nitschelwalzen 7, 8 in axialer Richtung zwischen zwei Grenzstellungen. Durch diese axiale Oszillation werden die beiden durchgeführten Vorgarne 2, 3 verdrillt und erhalten somit eine Drehung. In einer Oszillationsrichtung erhalten die Vorgarne eine S-Drehung, in der entgegengesetzten Oszillationsrichtung eine Z-Drehung. Da die Nitschelwalzen 7, 8 in den Umkehrpunkten ihrer axialen Bewegung stillstehen, erhalten die Vorgarne zu diesen Zeitpunkten keine Drehung. Daher sind die sich abwechselnden Bereiche mit S- und Z-Drehungen durch Bereiche ohne Drehung bzw. Bereiche mit geringerer Drehung getrennt.

[0018] Alternativ zu der in Fig. 1 gezeigten Falschdreheinrichtung 4 mit Nitschelwalzen 7, 8 können auch Falschdreheinrichtungen des Klemmtyps, wie beispielsweise in der DE 198 27 870 C1 beschrieben, oder Falschdreheinrichtungen, welche den Vorgarnen Drehung durch Luftverwirbelung erteilen (wie z. B. in der US 4,279,120 beschrieben), zur Anwendung kommen.

[0019] Nach Durchlauf durch die Falschdreheinrichtung 4 wird eines der beiden Vorgarne 2 über eine Umlenkrolle 5 auf eine Führungsrolle 6 geführt. Das andere Vorgarn 3 wird nach Durchlauf durch die Falschdreheinrichtung 4 unmittelbar auf die Führungsrolle 6 geleitet, wo die Zusammenführung der Vorgarne 2, 3 am Zusammenführungspunkt 13 erfolgt.

[0020] Bei der Zusammenführung der beiden Vorgarne 2,
3 hat sich gezeigt, daß die Phasenlage der Bereiche ohne Drehung der beiden Vorgarne 2,
3 einen wesentlichen Einfluß auf die Festigkeit des zusammengedrehten Selbstzwirngarnes 1 hat. In Fig. 3A ist ein Selbstzwirngarn gezeigt, welches durch Zusammendrehen zweier Vorgarne 2,
3 erzeugt wurde, wobei die Vorgarne 2,
3 so zusammengeführt wurden, daß sich die Bereiche ohne Drehung direkt gegenüber liegen, also in Phase sind. Damit liegen auch im zusammengedrehten Selbstzwirngarn 1 die Bereiche ohne Drehung jeweils an der gleichen Stelle. Da die Vorgarne in den Bereichen ohne Drehung eine geringere Festigkeit aufweisen, weist auch das Selbstzwirngarn an diesen Stellen geringere Festigkeit auf.

[0021] Aus diesem Grunde ist es vorteilhaft, die beiden Vorgarne 2, 3 so zusammenzuführen, daß die Bereiche ohne Drehung nicht in Deckung sind, wie in Fig. 3B gezeigt. Dort weisen die Bereiche ohne Drehung einen Phasenabstand von Φ auf. Der Phasenabstand Φ kann dabei einen Bruchteil 5 der Periode der abwechselnden Bereiche mit S- und Z-Drehungen betragen, wobei eine 360°-Periode durch den Abstand L von zwei Bereichen mit gleichsinniger Drehung definiert ist. In Fig. 3B beträgt die Phasendifferenz Φ ca. 90°.
[0022] Vergleichsversuche haben gezeigt, daß die höchste 10 Garnfestigkeit erzielt wird, wenn die Phasendifferenz (4) zwischen 90° und 135° liegt.

[0023] Um die gewünschte Phasendifferenz zwischen den ungedrehten Bereichen einzustellen, wird gemäß Fig. 1 eines der beiden Vorgarne 2 über eine Umlenkrolle 5 auf die 15 Führungsrolle 6 geführt. Die Führung über die Umlenkrolle 5 bewirkt, daß das Vorgarn 2 zwischen der Falschdreheinrichtung 4 und dem Zusammenführungspunkt 13 einen längeren Weg zurücklegt als das Vorgarn 3, welches nach Durchlauf durch die Falschdreheinrichtung 4 unmittelbar 20 auf die Führungsrolle 6 geführt wird. Der längere Weg, den das Vorgarn 2 verglichen mit dem Vorgarn 3 zurücklegt, bestimmt die Phasenlage Φ zwischen den ungedrehten Bereichen

[0024] In den Fig. 4 und 5 ist die Ausgestaltung und die 25 Anordnung der Rollen 5 und 6 näher dargestellt. Gemäß dem dort gezeigten Ausführungsbeispiel sind die beiden Rollen 5 und 6 drehbar gelagert, wobei ihre Drehachse jeweils senkrecht steht zu der Ebene, welche durch die beiden Vorgarne 2 und 3 aufgespannt ist. Die Umlenkrolle 5 ist in 30 dem Ausführungsbeispiel von Fig. 4 von der Falschdreheinrichtung 4 weiter entfernt als die Führungrolle 6. Das Vorgarn 2 wird nach Durchlauf durch die Falschdreheinrichtung 4 zunächst über die Umlenkrolle 5 geführt und anschließend auf die Führungsrolle 6 geleitet.

[0025] Wie aus den Fig. 4 und 5 ersichtlich, sind die Rollen 5 und 6 als scheibenförmige Zylinder ausgebildet, wobei im Zylindermantel zur Verbesserung der Führung der Vorgarne 2, 3 eine Führungskerbe 14 ausgebildet ist. Die Führungskerbe 14 verhindert ein seitliches Abrutschen der Vorgarne 2, 3 von den Führungsflächen 5a, 6a der Rollen 5, 6. [0026] Die Zusammenführung der beiden Vorgarne 2 und 3 erfolgt am Zusammenführungspunkt 13 auf der Führungsfläche 6a der Führungsrolle 6.

[0027] Durch den Abstand der Drehachsen 5b und 6b der 45 Rollen 5 und 6 kann der zusätzliche Weg eingestellt werden, den das Vorgarn 2 zwischen der Falschdreheinrichtung 4 und dem Zusammenführungspunkt 13 verglichen mit dem anderen Vorgarn 3 zurückzulegen hat. Hierzu sind die Rollen 5 und 6 so gelagert, daß ihre Drehachsen 5b und 6b in 50 der Ebene, welche durch die beiden Vorgarne 2 und 3 aufgespannt ist, gegeneinander verschiebbar sind.

[0028] Durch Vergleichsversuche mit Rollen unterschiedlicher Größe hat sich gezeigt, daß die höchste Garnfestigkeit mit Rollen zu erzielen ist, deren Durchmesser mindestens 55 10% der Periodenlänge L der abwechselnd S- und Z-gedrehten Bereiche des zusammengedrehten Selbstzwirngarnes 1 aufweisen.

[0029] Hinsichtlich der Garnfestigkeit des erzeugten Selbstzwirngarnes 1 hat es sich weiterhin als besonders vorteilhaft erwiesen, wenn die beiden Vorgarne 2, 3 im Bereich der Falschdreheinrichtung 4 und im Bereich vor der Führung über die Umlenkrolle 5 im wesentlichen parallel zueinander verlaufen, wobei das Vorgarn 3, welches nicht über die Umlenkrolle 5 geführt wird, im Bereich zwischen der 65 Falschdreheinrichtung 4 und dem Zusammenführungspunkt 13 in der selben Richtung verläuft, wie das zusammengedrehte Selbstzwirngarn 1. Dieser Verlauf der Vorgarne 2 und

3 vor ihrem Zusammenführen ermöglicht ein Verzwirnen, ohne daß die Vorgarne dabei unter Spannung stehen oder sich an der Führungsrolle 6 verhaken können. Dies bewirkt einen gleichbleibenden Abstand der ungedrehten Zonen der Vorgarne 2 und 3 im zusammengedrehten Selbstzwirngarn

[0030] Wie in dem Ausführungsbeispiel von Fig. 6 gezeigt, kann das zusammengedrehte Selbstzwirngarn 1 in Garnlaufrichtung nach dem Zusammenführungspunkt 13 über eine drehbar gelagerte Andrückrolle 10 geführt werden. Dies ermöglicht eine saubere und spannungsfreie Führung des zusammengedrehten Selbstzwirngarnes 1. Ebenso kann das Vorgarn 3, welches nicht über die Umlenkrolle 5 umgelenkt wird, in Garnlaufrichtung C vor dem Zusammenführungspunkt 13 über eine Andrückrolle 9 auf die Führungsfläche 6a der Führungsrolle 6 geführt werden. Dadurch wird eine exakte und spannungsfreie Führung des Vorgarnes 3 auf die Führungsfläche 6a gewährleistet. Eine spannungsfreie Zusammenführung der Vorgarne 2 und 3 trägt wesentlich zur Verbesserung der Garnfestigkeit des Selbstzwirngarnes 1 bei und bewirkt überdies einen über die Länge des Selbstzwirngarnes 1 gleichbleibenden Abstand der ungedrehten Zonen. Dies wiederum verbessert die Eigenschaften von mit derartigen Selbstzwirngarnen 1 gewebten Stoffen hinsichtlich ihrer Festigkeit und hinsichtlich ihres optischen Eindrucks.

[0031]Verglichen mit den aus dem Stand der Technik bekannten Umlenk- und Zusammenführungsvorrichtungen, welche als Umlenkösen und Vereinigungsösen ausgebildet sind, weist die vorliegende Erfindung den Vorteil auf, daß die Vorgarne durch die Umlenkung und die Zusammenführung nicht abgenutzt oder beschädigt werden können. Bei Ösen tritt nämlich aufgrund der Reibung der Garne an den Ösen eine Abnutzung der Vorgarne 2, 3 auf, bevor diese zum Selbstzwirngarn 1 zusammengeführt werden. Ferner können sich die Vorgarne 2, 3 in den Ösen verhaken, wodurch es häufig zu Fadenbrüchen während des Herstellungsprozesses kommt. Dies führt zu häufigen und unerwünschten Unterbrüchen im Herstellungsprozeß. Weiterhin kann ein Verhaken der Vorgarne 2, 3 in den Ösen zu einer Ungleichmäßigkeit im Abstand der ungedrehten Zonen im Selbstzwirngarn 1 führen. Dies bedingt ein unvorteilhaftes Aussehen von mit derartigen Selbstzwirngarnen gewebten Stoffen.

[0032] Diese Nachteile des Stands der Technik werden erfindungsgemäß dadurch umgangen, daß die Vorgarne 2 und 3 nach der Durchführung durch die Falschdreheinrichtung 4 statt über Ösen über eine Umlenkrolle 5 und eine Führungsrolle 6 geführt und anschließend zusammengedreht werden. Die Zusammenführung der beiden Vorgarne 2, 3 erfolgt dabei auf der Führungsfläche 6a der Führungsrolle 6, was eine saubere und spannungsfreie Zusammenführung der Vorgarne 2 und 3 gewährleistet. Dabei können sich die beiden Vorgarne 2 und 3 bei ihrer Zusammenführung nicht in der Vereinigungsvorrichtung verhaken.

[0033] Mit dem erfindungsgemäßen Verfahren und der erfindungsgemäßen Vorrichtung können Selbstzwirngarne hergestellt werden, welche, verglichen mit herkömmlich hergestellten, eine bis zu 60%-ige höhere Zugfestigkeit aufweisen.

Patentansprüche

1. Verfahren zur Herstellung eines Selbstzwirngarns (1), bei dem zunächst mindestens zwei Vorgarne (2, 3) zwischen mindestens einer Falschdreheinrichtung (4) durchgeführt werden, wodurch den Vorgarnen (2, 3) jeweils periodisch abwechselnd Bereiche mit S- und Z-Drehungen erteilt werden, welche durch Bereiche ohne

Drehung (0) voneinander getrennt sind und die Vorgarne (2, 3) anschließend so zusammengeführt werden, daß sie sich aufgrund ihrer Eigendrehung selbsttätig zusammendrehen, wobei die Bereiche ohne Drehung (0) im zusammengedrehten Selbstzwirngarn (1) eine Phasendifferenz (φ) aufweisen, dadurch gekennzeichnet, daß zur Erteilung der Phasendifferenz (φ) mindestens eines der Vorgarne (2) nach der Durchführung durch die Falschdreheinrichtung (4) über mindestens eine Umlenkrolle (5) auf eine Führungsrolle (6) geführt wird und die Zusammenführung der Vorgarne (2, 3) auf der Führungsfläche (6a) der Führungsrolle (6) erfolgt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Phasendifferenz (φ) zwischen 90° und 135° liegt

5

- 3. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die beiden Vorgarne (2, 3) im Bereich der Falschdreheinrichtung (4) und vor der Führung über die Umlenkrolle (5) im wesentlichen parallel zueinander verlaufen, ein Vorgarn (2) unter 20 Änderung der ursprünglichen Laufrichtung (C) über eine Umlenkrolle (5) auf die Führungsrolle (6) geführt wird und das andere Vorgarn (3) ohne Änderung der ursprünglichen Laufrichtung (C) zur Zusammenführung der Vorgarne (2, 3) auf die Führungsfläche (6a) der 25 Führungsrolle (6) geführt wird.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Vorgarn (3), welches nicht über die Umlenkrolle (5) geführt wird, durch eine drehbar gelagerte Andrückrolle (9) zur Zusammenführung mit dem anderen Vorgarn (2) auf die Führungsfläche (6a) der Führungsrolle (6) geführt wird.
- 5. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß das zusammengedrehte Selbstzwirngarn (1) in Garnlaufrichtung (C) 35 nach der Führungsrolle (6) über eine drehbar gelagerte Andrückrolle (10) geführt wird.
- 6. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß der Winkelbereich, in welchem das über die Umlenkrolle (5) geführte Vorgarn (2) an deren Führungsfläche (5a) anliegt, zwischen 70° und 200°, vorzugsweise zwischen 80° und 120° beträgt.
- 7. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß der Winkelbereich, 45 in welchem das über die Umlenkrolle (5) auf die Führungsrolle (6) geführte Vorgarn (2) an deren Führungsfläche (6a) anliegt, zwischen 70° und 200°, vorzugsweise zwischen 80° und 120° beträgt.
- 8. Vorrichtung zur Herstellung eines Selbstzwirngarns 50 mit mindestens einer Falschdreheinrichtung (4), in der den mindestens zwei Vorgarnen (2, 3) abwechselnd Bereiche mit S- und Z-Drehungen erteilbar sind, welche durch Bereiche ohne Drehung voneinander getrennt sind, und einer Verzwirnvorrichtung, in der mindestens 55 zwei der Vorgarne (2, 3) so zusammenführbar sind, daß sie sich zu einem Selbstzwirngarn selbsttätig zusammendrehen, wobei im zusammengedrehten Selbstzwirngarn die Bereiche der Vorgarne ohne Drehung außer Phase liegen, dadurch gekennzeichnet, daß die Ver- 60 zwirnvorrichtung von mindestens einer Umlenkrolle (5) und einer Führungsrolle (6) gebildet ist, wobei die Umlenkrolle (5) mindestens eines der Vorgarne (2) aus der ursprünglichen Garnlaufrichtung (C) umlenkt und auf Führungsrolle (6) führt, auf deren Führungsfläche 65 (6a) die Zusammenführung mit mindestens einem anderen Vorgarn (3) erfolgt.
- 9. Vorrichtung nach Anspruch 8, dadurch gekenn-

zeichnet, daß die Führungsrolle (6) und die oder jede Umlenkrolle (5) einen Durchmesser von mindestens 10% der Periodenlänge (L) der abwechselnd S- und Zgedrehten Bereiche des zusammengedrehten Selbstzwirngarns (1) aufweisen.

6

10. Vorrichtung nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, daß die oder jede Falschdreheinrichtung (4) gebildet wird durch zwei im wesentlichen zylindrisch ausgebildete und achsenparallel angeordnete Nitschelwalzen (7, 8), welche sich um ihre Achsen (7a, 8a) gegenläufig drehen und axial relativ zueinander zwischen zwei Grenzstellungen oszillieren. 11. Vorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß die Führungsrolle (6) und die oder jede Umlenkrolle (5) drehbar gelagert sind, wobei ihre Drehachsen senkrecht zur Ebene stehen, welche durch die beiden Vorgarne (2, 3) aufgespannt wird und die Führungsrolle (6) in Garnlaufrichtung (C) nach der oder jeder Umlenkrolle (5) angeordnet ist.

Hierzu 5 Seite(n) Zeichnungen

- Leerseite -

Fig. 1

Fig. 2

Fig. 4

Fig. 5

Fig. 6