Calcul Intégral III

STEP, MINES ParisTech*

10 septembre 2020 (#7589d72)

Table des matières

bjectifs d'apprentissage	3
ntégrale de fonctions de plusieurs variables	4
Domaine des variables	. 4
Pavés	
Volume d'un pavé	. 5
Longeur, aire, volume	
Ensemble négligeable	. 5
Presque partout	. 6
Subdivision pointée	. 6
Somme de Riemman	
Jauge	. 7
Subdivision pointée subordonnée à une jauge	
Intégrale dans \mathbb{R}^n	
Propriétés élémentaires	
Linéarité	
Croissance de l'intégrale	
Inégalité triangulaire	
Fonctions égales presque partout	
Fonctions égales presque partout (réciproque)	
Ensemble mesurable	
Propriétés élémentaires (tribu)	
Topologie et ensembles mesurables	
Ensembles négligeables	
Fonction mesurable	
Critère de l'image réciproque	
Ensemble mesurable	
Produit d'ensembles mesurables	
Théorème de convergence dominée	
Théorème de convergence monotone	

^{*}Ce document est un des produits du projet **O** boisgera/CDIS, initié par la collaboration de (S)ébastien Boisgérault (CAOR), (T)homas Romary et (E)milie Chautru (GEOSCIENCES), (P)auline Bernard (CAS), avec la contribution de Gabriel Stoltz (Ecole des Ponts ParisTech, CERMICS). Il est mis à disposition selon les termes de la licence Creative Commons "attribution – pas d'utilisation commerciale – partage dans les mêmes conditions" 4.0 internationale.

Critère d'intégrabilité dominée	12
Intégrale multiple	12
Théorème de Fubini	12
Ordre et nombre des variables	12
Théorème de Tonelli	14
Fubini-Tonelli, mode d'emploi	14
Changement de variables	15
Changement de variables	15
Annexe – Théorème de la divergence	16
Compact à bord régulier	16
Changement de repère orthonormé	17
Caractérisation implicite des compacts à bord régulier	17
Normale extérieure	18
Normale extérieure et caractérisation implicite	18
Normale extérieure et hypographe	19
Partition de l'unité	20
Intégrale de surface	20
Divergence	20
Lemme de la divergence	21
Théorème de la divergence	23
Lemme de recouvrement de Lebesgue	24
Exercices complémentaires	26
Aire du disque unité	26
Intégrabilité des fonctions puissances	26
Déformations d'un compact à bord régulier	26
Ovales de Cassini	27
Intégrales de surface	27
Rétraction	28
Intégration par parties	28
Solutions	29
Exercices essentiels	29
Aire du disque unité	35
Intégrabilité des fonctions puissances	36
Déformations d'un compact à bord régulier	37
Ovales de Cassini	38
Intégrales de surface	39
Rétraction	39
Intégration par parties	40
Réferences	40

Objectifs d'apprentissage

Cette section s'efforce d'expliciter et de hiérarchiser les acquis d'apprentissages associés au chapitre. Ces objectifs sont organisés en paliers :

(o) Prérequis (\bullet) Fondamental ($\bullet\bullet$) Standard ($\bullet\bullet\bullet$) Avancé ($\bullet\bullet\bullet\bullet$) Expert

Sauf mention particulière, les objectifs "Expert", les démonstrations du document ¹ et les contenus en annexe ne sont pas exigibles ("hors-programme").

Construction de l'intégrale dans \mathbb{R}^n

- • savoir définir un pavé de \mathbb{R}^n (ou de $[-\infty, \infty]^n$),
- \bullet savoir calculer son volume n-dimensionnel,
- savoir comment exploiter dans ce cadre *n*-dimensionnel les concepts :
 - •• d'ensemble négligeable,
 - •• de subdivision pointée,
 - • de somme de Riemman,
 - •• de jauge et de subdivision subordonnée,
 - ••• d'intégrale de Lebesgue.

Ensembles et fonctions mesurables

- savoir caractériser :
 - $\bullet \bullet$ les ensembles de mesure finie et mesurables de \mathbb{R}^n ,
 - •• les fonctions mesurables (critère de l'image réciproque),
 - • les fonctions intégrables (critère d'intégrabilité dominée).

Propriétés de l'intégrale dans \mathbb{R}^n

- savoir exploiter
 - • la linéarité de l'intégrale,

 - •• les relations entre intégrale et égalité presque partout,
 - •• les théorèmes de convergence.

Intégrale multiple

- • savoir calculer une intégrale dans \mathbb{R}^n au moyen de n intégrales dans \mathbb{R} ,
- • connaître les variantes de cette technique (ordre et nombre des variables),
- • connaître l'hypothèse d'intégrabilité validant ce calcul (Fubini),
- ••• connaître les propriétés des fonctions intermédiaires (Fubini),
- • savoir caractériser l'intégrabilité des fonctions positives (Tonelli),
- ••• connaître les propriétés des fonctions intermédiaires (Tonelli),
- •• savoir caractériser l'intégrabilité des fonctions signées (via Tonelli).

^{1.} L'étude des démonstrations du cours peut toutefois contribuer à votre apprentissage, au même titre que la résolution d'exercices.

Changement de variables

- connaître la formule du changement de variables,
- •• connaître les hypothèses du théorème et son résultat d'intégrabilité,
- •• savoir appliquer le théorème de façon relativement directe,
- ••• savoir introduire un changement de variables quand c'est pertinent.

Théorème de la divergence

- •••• savoir caractériser un compact à bord C^1 ,
- •••• savoir calculer la normale extérieure d'un tel ensemble,
- •••• connaître la définition d'intégrale de surface,
- •••• savoir exploiter le théorème de la divergence.

Intégrale de fonctions de plusieurs variables

Remarque – Domaine des variables

Comme pour les fonctions d'une seule variable, la théorie de l'intégrale de jauge des fonctions de plusieurs variables est applicable à des variables pouvant prendre des valeurs réelles ou infinies. Mais il s'agit largement d'un "détail d'implémentation" : en pratique, le besoin que nous souhaitons satisfaire, c'est l'intégration des fonctions de variables réelles; pour nous conformer à ce cas d'usage principal, et après avoir construit l'intégrale dans le domaine $[-\infty,\infty]^n$, nous énoncerons uniquement les propriétés de l'intégrale dans le domaine \mathbb{R}^n . Quand il sera nécessaire de considérer une fonction de variables réelles comme fonction de variables réelles étendues (pouvant être infinies), on prolongera la fonction initiale en lui assignant la valeur zéro dès qu'une de leur variables est infinie 2 . De façon similaire, il est possible de définir l'intégrale d'une fonction $f: A \to \mathbb{R}$ où $A \subset \mathbb{R}^n$ en la prolongeant par zéro sur \mathbb{R}^n (ou directement sur $[-\infty, +\infty]^n$).

Exercice – Prolongements (•) A quelles fonctions de $[-\infty, +\infty]^2 \to \mathbb{R}$ sont associées la fonction $(x, y) \in \mathbb{R}^2 \mapsto \exp(-x^2 - y^2) \in \mathbb{R}$, la fonction $(x, y) \in \mathbb{R}^2 \mapsto \arctan(x^2 + y^2) \in \mathbb{R}$, la fonction $(x, y) \in [-1, 1]^2 \mapsto 1 \in \mathbb{R}$? (Solution p. 29.)

Dans la suite, les pavés joueront pour l'intégration des fonctions de plusieurs variables le rôle qui était dévolu aux intervalles pour les fonctions d'une variable :

Définition - Pavés

On appelle $pav\acute{e}$ de $[-\infty, +\infty]^n$ tout ensemble I de la forme

$$I = I_1 \times \cdots \times I_n$$

^{2.} Toute autre valeur que zéro conviendrait aussi bien ici, car la différence entre le domaine de définition du prolongement et le domaine initial est $[-\infty,\infty]^n\setminus\mathbb{R}^n$, qui est un ensemble négligeable (cf. exercice "domaine à l'infini" (p. 6)). Dans le cas d'un domaine de définition initial A quelconque, il est par contre nécessaire de prolonger par zéro (au moins presque partout).

où les I_i sont des intervalles de $[-\infty, +\infty]$.

FIGURE 1 – Réprésentation du pavé $[1,3] \times [1,2]$ du plan (étendu).

Exercice – Partition en pavés (•) Montrer que l'ensemble $\mathbb{R}^2 \setminus [-1, 1]^2$ peut être partitionné en 4 pavés. (Solution p. 29.)

Volume d'un pavé

On appelle volume n-dimensionnel (ou parfois simplement volume quand le contexte est clair) du pavé $I = I_1 \times \cdots \times I_n$ de $[-\infty, +\infty]^n$ la valeur

$$\lambda(I) := \ell(I_1) \times \cdots \times \ell(I_n) \in [0, +\infty],$$

en adoptant la convention que $0 \times \infty = 0$.

Remarque - Longeur, aire, volume

On pourra continuer à appeler cette grandeur longueur plutôt que volume n-dimensionnel si l'on travaille dans \mathbb{R} (ou $[-\infty, +\infty]$); dans \mathbb{R}^2 (ou $[-\infty, +\infty]^2$) il est approprié de la désigner sous le terme d'aire et dans \mathbb{R}^3 (ou $[-\infty, +\infty]^3$) sous le terme de volume. On pourra dans ces trois cas particuliers préférer les notation ℓ , a et v au symbole λ .

Exercice – Volume de pavés (•) Calculer l'aire des pavés $\{(0,0)\}$, $[-1,1]^2$, $[-1,1] \times [0,+\infty]$ et $\{0\} \times \mathbb{R}$ de $[-\infty,+\infty]^2$. (Solution p. 29.)

Définition – Ensemble négligeable

Un ensemble A de $[-\infty, +\infty]^n$ est négligeable si pour tout $\varepsilon > 0$, il existe une collection dénombrable de pavés I_1, I_2, \ldots , de $[-\infty, +\infty]^n$ qui recouvre l'ensemble A – telle que $A \subset \bigcup_i I_i$ – et vérifiant

$$\sum_{i} \lambda(I_i) \le \varepsilon.$$

Exercice – **Domaine à l'infini (•)** Montrer que l'ensemble $[-\infty, +\infty]^n \setminus \mathbb{R}^n$ est d'aire négligeable. (Solution p. 29.)

Exercice – Graphe du sinus (••) Montrer que l'ensemble

$$G = \{(x, \sin x) \mid x \in [0, 2\pi]\}\$$

est d'aire négligeable.

FIGURE 2 – Graphe de la fonction sin sur $[0, 2\pi]$.

(Solution p. 30.)

Définition – Presque partout

Une propriété P dépendant d'un vecteur $x \in [-\infty, \infty]^n$ est vraie presque partout si l'ensemble des points x où elle est fausse est un ensemble négligeable. On pourra utiliser la notation "P p.p." ou "P(x) p.p." pour signifier que la propriété P est vraie presque partout.

Subdivision pointée

Une subdivision pointée du pavé fermé I de $[-\infty, +\infty]^n$ est une famille finie

$$\{(t_i, J_i) \mid 0 \le i \le k - 1\}$$

où les J_i sont des pavés fermés de I sans chevauchement (les intersections deux à deux des pavés de cette collection sont des ensembles négligeables) qui recouvrent I et tels que $t_i \in J_i$ pour tout $i \in \{0, \ldots, k-1\}$.

Définition - Somme de Riemman

La somme de Riemann associée à la fonction $f: I \to \mathbb{R}$, où I est un pavé fermé de $[-\infty, +\infty]^n$, et à la subdivision pointée \mathcal{D} de I est la grandeur

$$S(f,\mathcal{D}) = \sum f(t)\lambda(J), \ \ (t,J) \in \mathcal{D}, \, \lambda(J) < +\infty.$$

FIGURE 3 – Une subdivision pointée de $[-\infty, \infty]^2$ comportant 12 pavés.

Définition - Jauge

Une jauge γ sur un pavé fermé I de $[-\infty, +\infty]^n$ est une fonction qui associe à tout $t \in I$ un pavé ouvert $\gamma(t)$ de $[-\infty, +\infty]^n$ contenant t.

Définition – Subdivision pointée subordonnée à une jauge

Une subdivision \mathcal{D} du pavé fermé I de $[-\infty, +\infty]^n$ est subordonnée à une jauge γ sur I si pour tout $(t, J) \in \mathcal{D}$, $J \subset \gamma(t)$.

Définition – Intégrale dans \mathbb{R}^n

Une fonction $f: [-\infty, \infty]^n \to \mathbb{R}$ est dite intégrable au sens de Henstock-Kurzweil s'il existe un réel A tel que pour tout $\varepsilon > 0$ il existe une jauge γ de $[-\infty, +\infty]^n$ telle que pour toute subdivision pointée \mathcal{D} de $[-\infty, +\infty]^n$ subordonnée à γ , on ait $|S(f, \mathcal{D}) - A| \le \varepsilon$. Le réel A quand il existe est unique; il est appelé intégrale de Henstock-Kurzweil de f sur \mathbb{R}^n .

La fonction f est dite intégrable (au sens de Lebesgue) si f et |f| sont intégrables au sens de Henstock-Kurzweil. L'intégrale (de Lebesgue) de f est alors définie comme l'intégrale de Henstock-Kurzweil de f et notée

$$\int f$$
 ou $\int f(x) dx$ ou $\int f(x_1, \dots, x_n) dx_1 \dots dx_n$.

Lorsque la fonction f est définie sur $A \subset [-\infty, \infty]^n$ on dira que f est intégrable sur A si son prolongement \bar{f} par zéro à $[-\infty, \infty]^n$ est intégrable sur $[-\infty, \infty]^n$; s'il est nécessaire d'être explicite quant au domaine d'intégration A, on utilisera

les notations

$$\int_A f := \int_A f(x) \, dx := \int \bar{f}(x) \, dx.$$

Propriétés élémentaires

Dans cette section, nous énonçons sans preuve dans le cadre \mathbb{R}^n les propriétés de l'intégrale déjà connues dans \mathbb{R} .

Théorème - Linéarité

Si les fonctions $f: \mathbb{R}^n \to \mathbb{R}$ et $g: \mathbb{R}^n \to \mathbb{R}$ sont intégrables et $\alpha \in \mathbb{R}$, alors les fonctions f+g et αf sont intégrables. De plus,

$$\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx \text{ et } \int \alpha f(x) dx = \alpha \int f(x) dx.$$

Exercice – **Additivité I** (•) Soit $f : \mathbb{R}^n \to \mathbb{R}$. Montrer que si f est intégrable sur $A \subset \mathbb{R}^n$ et sur $B \subset \mathbb{R}^n$ et que A et B sont d'intersection vide alors f est intégrable sur $A \cup B$ et

$$\int_{A \cup B} f(x) dx = \int_A f(x) dx + \int_B f(x) dx.$$

(Solution p. 30.)

Proposition – Croissance de l'intégrale

Si les fonctions $f: \mathbb{R}^n \to \mathbb{R}$ et $g: \mathbb{R}^n \to \mathbb{R}$ sont intégrables et que $f \leq g$, alors

$$\int f(x) \, dx \le \int g(x) \, dx.$$

Corollaire – Inégalité triangulaire

Si $f: \mathbb{R}^n \to \mathbb{R}$ est intégrable alors |f| est intégrable et

$$\left| \int f(x) \, dx \right| \le \int |f(x)| \, dx.$$

Proposition - Fonctions égales presque partout

Une fonction $f: \mathbb{R}^n \to \mathbb{R}$ égale presque partout à une fonction $g: \mathbb{R}^n \to \mathbb{R}$ intégrable est elle-même intégrable et

$$\int f(x) \, dx = \int g(x) \, dx.$$

Proposition - Fonctions égales presque partout (réciproque)

Si les fonctions $f:\mathbb{R}^n \to \mathbb{R}$ et $g:\mathbb{R}^n \to \mathbb{R}$ sont intégrables et si

$$f \leq g$$
 presque partout et $\int f(x) dx \geq \int g(x) dx$,

alors f = g presque partout.

Un théorème de changement de variables généralise le théorème déjà énoncé pour une variable; il est suffisamment complexe pour mériter sa propre section dans ce chapitre (p. 15). L'équivalent dans \mathbb{R}^n du théorème fondamental du calcul est le théorème de la divergence 3; l'annexe (p. 16) lui est entièrement consacrée.

La notion d'ensemble mesurable est inchangée (modulo le remplacement des intervalles fermés bornés de \mathbb{R} par les pavés fermés bornés de \mathbb{R}^n); les trois propriétés élémentaires de la collection des ensembles mesurables de \mathbb{R}^n sont toujours vérifiées (la collection est une tribu), cette famille contient tous les fermés (et tous les ouverts) et "négligeable" et "(mesurable et) de mesure (n-dimensionnelle) nulle" sont toujours synonymes.

Définition – Ensemble mesurable

Un ensemble E de \mathbb{R}^n est de mesure (de Lebesgue ou n-dimensionnelle) finie si sa fonction caractéristique 1_E est intégrable sur \mathbb{R}^n ; il est mesurable si sa fonction caractéristique est intégrable sur tout pavé fermé borné de \mathbb{R}^n . La mesure (de Lebesgue ou n-dimensionnelle) $\lambda(E)$ d'un ensemble E mesurable est définie par

$$\lambda(E) := \int 1_E(x) \, dx$$

si E est de mesure finie et

$$\lambda(E) := +\infty$$

dans le cas contraire (si E est mesurable mais pas de mesure finie).

Théorème - Propriétés élémentaires (tribu)

- 1. L'ensemble vide est mesurable.
- 2. Le complémentaire d'un ensemble mesurable est mesurable.
- 3. L'union d'une collection dénombrable d'ensembles mesurables est mesurable.

Théorème – Topologie et ensembles mesurables

Tout ensemble fermé (ou ouvert) est mesurable.

Exercice – **Disque fermé (•)** Montrer que le disque $D = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 \leq 1\}$ est mesurable. (Solution p. 31.)

 $^{3.\,}$ même si cela ne saute pas forcément aux yeux !

Théorème – Ensembles négligeables

Un ensemble est de mesure de Lebesgue nulle si et seulement s'il est négligeable.

Exercice – **Additivité II** (••) Soit $f: \mathbb{R}^n \to \mathbb{R}$. Montrer que si f est intégrable sur $A \subset \mathbb{R}^n$ et sur $B \subset \mathbb{R}^n$ et que A et B sont sans chevauchement $(A \cap B)$ est négligeable alors f est intégrable sur $A \cup B$ et

$$\int_{A\cup B} f(x) \, dx = \int_A f(x) \, dx + \int_B f(x) \, dx.$$

(Solution p. 31.)

Les fonctions mesurables ont la même definition que dans \mathbb{R} ; le critère de mesurabilité par l'image réciproque est toujours valide.

Définition - Fonction mesurable

Une fonction $f: \mathbb{R}^n \to \mathbb{R}$ est mesurable si elle est la limite simple d'une suite de fonctions intégrables, c'est-à-dire s'il existe une suite de fonctions intégrables $f_k: \mathbb{R}^n \to \mathbb{R}$ telle que pour tout $x \in \mathbb{R}$, $f_k(x) \to f(x)$ quand $k \to +\infty$. Une fonction $f: \mathbb{R}^n \to \mathbb{R}^m$ est mesurable si chacune de ses composantes est mesurable.

Théorème - Critère de l'image réciproque

Une fonction $f: \mathbb{R}^n \to \mathbb{R}^m$ est mesurable si et seulement l'image réciproque de tout fermé (ou de tout ouvert) de \mathbb{R}^m par f est mesurable.

Proposition – Ensemble mesurable

Un sous-ensemble E de \mathbb{R}^n est mesurable si et seulement si sa fonction caractéristique 1_E est mesurable.

Un cas particulier important sans équivalent dans $\mathbb R$: les produits d'ensembles mesurables sont mesurables.

Produit d'ensembles mesurables

Si les ensembles $A \subset \mathbb{R}^m$ et $B \subset \mathbb{R}^n$ sont mesurables, alors leur produit cartésien $A \times B \subset \mathbb{R}^m \times \mathbb{R}^n$ est mesurable.

Démonstration Comme $A \times B = (A \times \mathbb{R}^n) \cap (\mathbb{R}^m \times B)$ et que l'intersection de deux ensembles mesurables est mesurable (p. 9), il suffit d'établir que $A \times \mathbb{R}^n$ et $\mathbb{R}^m \times B$ sont mesurables. Nous nous contenterons de prouver que $A \times \mathbb{R}^n$ est mesurable, la preuve pour $\mathbb{R}^m \times B$ étant presque identique.

Soient P_1 et P_2 deux pavés fermés arbitraires de \mathbb{R}^m et \mathbb{R}^n respectivement; nous allons établir que la fonction $(x,y) \in P_1 \times P_2 \to 1_A(x)$ est intégrable. Cela montrera que $(x,y) \in \mathbb{R}^m \times \mathbb{R}^n \to 1_A(x) \times 1_{\mathbb{R}^n}(y)$ est mesurable et donc que $A \times \mathbb{R}^n$ est mesurable (p. 10).

Par construction, $A \cap P_1$ est de mesure finie donc $1_{A \cap P_1}$ est intégrable (p. 9). Soit $\varepsilon > 0$ et γ_1 une jauge sur \mathbb{R}^m telle que pour toute subdivision pointée \mathcal{D}_1 de P_1 subordonnée à γ_1 on ait

$$\left| S(1_A, \mathcal{D}_1) - \int_{P_1} 1_A(x) \, dx \right| \le \varepsilon.$$

Soit γ la jauge sur $P_1\times P_2$ définie par

$$\gamma(x,y) = \gamma_1(x) \times [-\infty, +\infty]^m$$
.

Soit \mathcal{D} une subdivision pointée de $P_1 \times P_2$ subordonnée à γ . Soit \mathcal{I}_2 une collection de p pavés fermés sans chevauchement tels que si $I_1 \times I_2$ appartienne à \mathcal{D} alors I_2 est l'union d'un nombre fini d'éléments de \mathcal{I}_2 . En jouant sur le fait que les valeurs de $(x,y)\mapsto 1_A(x)$ sont indépendantes de y et en décomposant les pavés de \mathcal{D}_1 selon leur second composante, on peut trouver p subdivisions pointées \mathcal{D}_1^i de P_1 toutes subordonnées à γ_1 et des réels positifs α_i tels que $\sum_{i=1}^p \alpha_i = \lambda(P_2)$ et

$$S((x,y) \mapsto 1_A(x), \mathcal{D}) = \sum_{i=1}^p \alpha_i S(1_A, \mathcal{D}_1^i).$$

Par conséquent,

$$\left| S((x,y) \mapsto 1_A(x), \mathcal{D}) - \lambda(P_2) \int_{P_1 \times P_2} 1_A(x) \, dx \right| \le \lambda(P_2)\varepsilon$$

et $(x,y) \in P_1 \times P_2 \mapsto 1_A(x)$ est donc bien intégrable.

Les théorème de convergence (dominée, monotone) et le critère d'intégrabilité dominée se transposent à l'identique pour les fonctions de plusieurs variables.

Théorème - Théorème de convergence dominée

Si une suite de fonctions intégrables $f_k : \mathbb{R}^n \to \mathbb{R}$ converge simplement vers la fonction f, c'est-à-dire si pour tout $x \in \mathbb{R}^n$,

$$\lim_{k \to +\infty} f_k(x) = f(x)$$

et qu'il existe une fonction intégrable $g: \mathbb{R} \to [0, +\infty[$ dominant la suite f_k , c'est-à-dire telle que pour tout $k \in \mathbb{N}$ et pour tout $x \in \mathbb{R}^n$,

$$|f_k(x)| \le g(x)$$

alors la fonction f est intégrable et

$$\int f(x) dx = \int \lim_{k \to +\infty} f_k(x) dx = \lim_{k \to +\infty} \int f_k(x) dx.$$

Théorème - Théorème de convergence monotone

Si une suite de fonctions intégrables $f_k:\mathbb{R}^n\to\mathbb{R}$ est croissante et majorée en tout point, c'est-à-dire si pour tout x de \mathbb{R}^n

pour tout
$$k \in \mathbb{N}$$
, $f_k(x) \le f_{k+1}(x)$ et $\sup_k f_k(x) < +\infty$,

alors la limite simple f des f_k est intégrable si et seulement si

$$\sup_{k} \int f_k(x) \, dx < +\infty.$$

et dans ce cas,

$$\int f(x) dx = \int \lim_{k \to +\infty} f_k(x) dx = \lim_{k \to +\infty} \int f(x) dx.$$

Théorème - Critère d'intégrabilité dominée

Une fonction $f: \mathbb{R}^n \to \mathbb{R}$ est intégrable si et seulement si f est mesurable et il existe une fonction intégrable $g: \mathbb{R} \to [0, +\infty[$ telle que $|f| \le g$.

Intégrale multiple

Théorème - Théorème de Fubini

Soit $f: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$ une fonction intégrable. Alors la fonction partielle $x \in \mathbb{R}^m \mapsto f(x,y)$ est intégrable pour presque tout $y \in \mathbb{R}^n$, la fonction définie presque partout

$$y \in \mathbb{R}^n \mapsto \int_{\mathbb{R}^m} f(x, y) \, dx$$

est intégrable et

$$\int_{\mathbb{R}^{m+n}} f(x,y) \, dx dy = \int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^m} f(x,y) \, dx \right] dy.$$

Remarque - Ordre et nombre des variables

Deux extensions du théorème de Fubini (p. 12) souvent utiles :

— Il est possible de changer l'ordre d'intégration des variables : si f est intégrable, alors la fonction partielle $y \in \mathbb{R}^n \mapsto f(x,y)$ est intégrable pour presque tout $x \in \mathbb{R}^m$, la fonction définie presque partout

$$x \in \mathbb{R}^m \mapsto \int_{\mathbb{R}^n} f(x, y) \, dy$$

est intégrable et

$$\int_{\mathbb{R}^{m+n}} f(x,y) \, dx dy = \int_{\mathbb{R}^m} \left[\int_{\mathbb{R}^n} f(x,y) \, dy \right] dx.$$

FIGURE 4 – Graphe de la fonction $f:(x,y)\in\mathbb{R}\times\mathbb{R}\mapsto e^{-x^2-y^2}$ en gris et des fonctions partielles $x\in\mathbb{R}\mapsto f(x,y)$ pour y=-1.5,-1,-0.5 en noir.

— Il est possible de considérer des fonctions de trois variables ou plus. Par exemple, si la fonction $f: \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}$ est intégrable, alors

$$\int_{\mathbb{R}^{m+n+p}} f(x,y,z) \, dx dy dz = \int_{\mathbb{R}^p} \left[\int_{\mathbb{R}^n} \left[\int_{\mathbb{R}^m} f(x,y,z) \, dx \right] dy \right] dz.$$

(étant entendu que tous les fonctions intermédiaires intervenant dans le membre de droite de cette équation sont bien définies presque partout).

Démonstration Se reporter à Swartz (2001).

Exercice - Calcul de l'aire d'un triangle (•) Considérons le triangle

$$T = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0 \text{ et } x + y \le 1\}.$$

En supposant l'intégrale ci-dessous bien définie, calculer :

$$a(T) = \int_{\mathbb{R}^2} 1_T(x, y) \, dx dy.$$

(Solution p. 31.)

Exercice – Contre-exemple $(\bullet \bullet)$ Comparer les valeurs des intégrales multiples

$$\int_0^1 \left[\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dx \right] \, dy \; \; \text{et} \; \; \int_0^1 \left[\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \right] \, dx,$$

puis expliquer le résultat. Indication : on remarquera que

$$\frac{x^2 - y^2}{(x^2 + y^2)^2} = \frac{\partial}{\partial x} \left(-\frac{x}{x^2 + y^2} \right)$$

(Solution p. 31.)

Pour pouvoir appliquer le théorème de Fubini, il faut savoir a priori que la fonction est intégrable et pas seulement que ses intégrales multiples sont bien définies (cf. "Contre-exemple" ci-dessus (p. 13)). Si la fonction est à valeurs positives toutefois, l'examen de ses intégrales multiples permet de s'assurer de l'intégrabilité; c'est le théorème de Tonelli :

Théorème - Théorème de Tonelli

Soit $f: \mathbb{R}^m \times \mathbb{R}^n \to [0, +\infty[$ une fonction mesurable. Alors, pour presque tout $y \in \mathbb{R}^n$, la fonction $x \in \mathbb{R}^m \mapsto f(x, y)$ est mesurable. Si de plus pour presque tout $y \in \mathbb{R}^n$ cette fonction est intégrable, alors la fonction (définie presque partout)

$$g: y \in \mathbb{R}^n \mapsto \int_{\mathbb{R}^m} f(x, y) \, dx$$

est mesurable. Si elle est intégrable, alors la fonction f est intégrable. Réciproquement, si $x \in \mathbb{R}^m \mapsto f(x,y)$ n'est pas intégrable presque partout ou que la fonction g n'est pas intégrable, alors f n'est pas intégrable.

Démonstration Se reporter à Swartz (2001).

Remarque – Fubini-Tonelli, mode d'emploi

Les deux théorèmes sont souvent utilisés ensemble pour intégrer une fonction $f: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$, de la façon suivante :

- 1. On vérifie tout d'abord que la fonction f est mesurable. Comme sa valeur absolue |f| est mesurable et positive, le théorème de Tonelli est alors susceptible de lui être appliqué.
- 2. On étudie si |f| satisfait bien toutes les hypothèses du théorème de Tonelli (p. 14). Si c'est le cas, la fonction |f| est intégrable; la fonction f étant mesurable, par le critère d'intégrabilité dominée (p. 12), f est donc intégrable.
- 3. Le théorème de Fubini (p. 12) est donc applicable! On peut donc évaluer l'intégrale de f par en calculant son intégrale multiple.

Exercice - Triangle d'aire finie (•) Montrer que le triangle

$$T = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y > 0 \text{ et } x + y < 1\}$$

est d'aire finie, c'est-à-dire que 1_T est intégrable. (Solution p. 32.)

Exercice – Intégrabilité des pavés fermés bornés (•) Montrer que la fonction caractéristique 1_I du pavé $I = [a_1, b_1] \times \cdots \times [a_n, b_n]$ de \mathbb{R}^n est intégrable et que

$$\lambda(I) := \int 1_I(x) dx = (b_1 - a_1) \times \cdots \times (b_n - a_n).$$

(Solution p. 32.)

Exercice – Tout droite du plan est négligeable (••) En utilisant les théorèmes de Tonelli (p. 14) et Fubini (p. 12), montrer que toute droite du plan est négligeable. (Solution p. 33.)

Changement de variables

Théorème – Changement de variables

Soient D_1 et D_2 des ouverts de \mathbb{R}^n et $h:D_1\to D_2$ un C^1 -difféomorphisme de D_1 sur D_2 : une fonction continûment différentiable et bijective dont l'inverse $h^{-1}:D_2\to D_1$ est également continûment différentiable. La matrice jacobienne associée à la différentielle de h étant notée J_h , la fonction $f:D_2\to\mathbb{R}$ est intégrable si et seulement si la fonction $(f\circ h)|\det J_h|:D_1\to\mathbb{R}$ est intégrable et dans ce cas,

$$\int_{D_2} f(y) \, dy = \int_{D_1} f(h(x)) |\det J_h(x)| \, dx.$$

FIGURE 5 – Changement de variables

Démonstration Se reporter à (Swartz 2001, annexe 5).

Exercice – **Homothétie** (•) Soit $f : \mathbb{R}^n \to \mathbb{R}$ une fonction intégrable. Montrer que pour tout coefficient $\alpha > 0$, l'intégrale

$$\int_{\mathbb{R}^n} f(\alpha x) dx$$

est bien définie et la calculer en fonction de l'intégrale de f sur \mathbb{R}^n . (Solution p. 33.)

Exercice – Volume et translation (\bullet) Montrer que si A est mesurable et de volume fini dans \mathbb{R}^3 l'image de A par une translation est également mesurable et de même volume. (Solution p. 34.)

Exercice - Coordonnées polaires (••) Soit

$$C = \{(x, y) \in \mathbb{R}^2 \mid y \neq 0 \text{ ou } x > 0\} \text{ et } P = \{(r, \theta) \in \mathbb{R}^2 \mid r > 0 \text{ et } -\pi < \theta < \pi\}.$$

On note h la fonction de P dans C définie par $h(r,\theta)=(r\cos\theta,r\sin\theta)$. Montrer que pour toute fonction $f:C\to\mathbb{R}$ intégrable, si l'on pose $g(r,\theta)=f(x,y)$ où $(x,y)=h(r,\theta)$, alors

$$\int_C f(x,y) \, d(x,y) = \int_P g(r,\theta) r \, d(r,\theta).$$

(Solution p. 34.)

Exercice – Absence du déterminant jacobien (••) Supposons D_1 , D_2 , h et f conformes aux hypothèses du théorème de changement de variables (p. 15). On suppose de plus que $f \circ h$ est intégrable sur D_1 . Exprimer l'intégrale

$$\int_{D_1} f(h(x)) dx$$

comme une intégrale sur D_2 . (Solution p. 34.)

Annexe – Théorème de la divergence

Définition – Compact à bord régulier

Un sous-ensemble K de \mathbb{R}^n est un compact à bord C^1 s'il est compact (fermé et borné) et peut être caractérisé au voisinage de tout point de sa frontière ∂K , et après un éventuel changement de repère, comme l'hypographe – l'ensemble des points en-dessous du graphe – d'une fonction continûment différentiable. Autrement dit, pour tout point $x_0 \in \partial K$, il existe une application affine inversible $T: \mathbb{R}^n \to \mathbb{R}^n$ et un voisinage ouvert V de x_0 de la forme $V = T(U \times I)$, où U est un ouvert de \mathbb{R}^{n-1} et I est un intervalle ouvert de \mathbb{R} , et une fonction $f: U \to I$ continûment différentiable tels que

$$K \cap V = T(\{(y_1, \dots, y_n) \in U \times I \mid y_n \le f(y_1, \dots, y_{n-1})\}).$$

Remarque - Changement de repère orthonormé

Il est possible d'imposer dans la définition des compacts à bord C^1 (p. 16) que T soit une isométrie directe (qui conserve la distance et l'orientation); cela revient à n'autoriser que les changements de repère orthonormés directs. La caractérisation des compacts à bord C^1 qui en résulte est inchangée.

Théorème - Caractérisation implicite des compacts à bord régulier

Un sous-ensemble compact K de \mathbb{R}^n est un compact à bord C^1 si pour tout point x_0 de sa frontière ∂K il existe un voisinage ouvert V de x_0 et une fonction continûment différentiable $g:V\to\mathbb{R}$ dont la différentielle est non nulle en x_0 , telle que pour tout point x de V, x appartient à K si et seulement si $g(x)\leq 0$.

Démonstration Si K est un compact à bord C^1 , il existe une application affine inversible $T: \mathbb{R}^n \to \mathbb{R}^n$ et un voisinage ouvert V de x_0 de la forme $V = T(U \times I)$, où U est un ouvert de \mathbb{R}^{n-1} et I est un intervalle ouvert de \mathbb{R} , et une fonction $f: U \to I$ continûment différentiable tels que

$$K \cap V = T(\{(y_1, \dots, y_n) \in U \times I \mid y_n \le f(y_1, \dots, y_{n-1})\}).$$

Par conséquent, si l'on définit la fonction $g: V \to \mathbb{R}$ par

$$g(x) = y_n - f(y_1, \dots, y_{n-1})$$
 où $(y_1, \dots, y_n) = T^{-1}(x)$,

on obtient la caractérisation implicite souhaitée. La seule vérification qui n'est pas évidente par construction est le caractère non-nul de la différentielle dg en x_0 . Si $T(x) = A \cdot x + b$ où A est une application linéaire (nécessairement inversible) et $b \in \mathbb{R}^n$, en posant $\phi(y) = y_n - f(y_1, \dots, y_{n-1})$, on obtient

$$dg(x) = d(\phi \circ T^{-1})(x) = d\phi(T^{-1}(x)) \cdot dT^{-1}(x) = d\phi(T^{-1}(x)) \cdot A^{-1}.$$

Or, $\partial_n \phi(y) = 1$ en tout point y de $U \times I$. L'application A^{-1} étant inversible, il existe un vecteur h de \mathbb{R}^n tel que $A^{-1} \cdot h = (0, \dots, 0, 1)$; pour un tel vecteur on a donc

$$dg(x) \cdot h = d\phi(T^{-1}(x)) \cdot A^{-1} \cdot h = \sum_{i=1}^{n} \partial_i \phi(T^{-1}(x)) (A^{-1} \cdot h)_i = 1.$$

La différentielle de g est donc bien non-nulle en tout point de V (et donc a fortiori en x_0).

Réciproquement, considérons un $x_0 \in \partial K$ et supposons qu'il existe une fonction $g: V \to \mathbb{R}$ satisfaisant les propriétés de l'énoncé. La différentielle de g étant non nulle en x_0 , par continuité de l'application $x \mapsto dg(x) \cdot u$ pour tout $u \in \mathbb{R}^n$, il existe un vecteur de u de \mathbb{R}^n tel que

$$dg(x) \cdot u > 0$$

dans un voisinage V' de x_0 contenu dans V. Soit T une application affine inversible de la forme $T(x) = A \cdot x + b$ telle que $A \cdot e_n = u$. La fonction $g \circ T$ définie sur de $T^{-1}(V')$ satisfait alors

$$\begin{split} \partial_n(g \circ T)(y) &= dg(T(y)) \cdot dT(y) \cdot e_n \\ &= dg(T(y)) \cdot A \cdot e_n \\ &= dg(T(y)) \cdot u > 0. \end{split}$$

L'application du théorème des fonctions implicites fournit un ouvert non vide $U \times I$ inclus dans $T^{-1}(V')$ où $U \subset \mathbb{R}^{n-1}$ et I est un intervalle ouvert de \mathbb{R} , ainsi qu'une fonction $f: U \to I$ continûment différentiable telle que dans $U \times I$,

$$g \circ T(y_1, \dots, y_n) = 0 \Leftrightarrow y_n = f(y_1, \dots, y_{n-1}).$$

Par le théorème fondamental du calcul.

$$g \circ T(y_1, \dots, y_n) = g \circ T(y_1, \dots, f(y_1, \dots, y_{n-1}))$$

$$+ \int_{f(y_1, \dots, y_{n-1})}^{y_n} \partial_n(g \circ T)(y_1, \dots, y_{n-1}, t) dt$$

$$= \int_{f(y_1, \dots, y_{n-1})}^{y_n} \partial_n(g \circ T)(y_1, \dots, y_{n-1}, t) dt,$$

ce qui garantit que dans $T(U \times I)$, $g(x) \le 0$ – c'est-à-dire $x \in K$ – si et seulement si x = T(y) et $y_n \le f(y_1, \dots, y_{n-1})$.

Définition - Normale extérieure

Une normale à un compact à bord C^1 K de \mathbb{R}^n en un point $x \in \partial K$ de sa frontière est un vecteur $n(x) \in \mathbb{R}^n$ unitaire (de norme 1) tel que

$$\lim_{\substack{y \to x \\ y \in \partial K}} \left\langle n(x), \frac{y - x}{\|y - x\|} \right\rangle = 0.$$

Cette normale n(x) est extérieure si pour $\varepsilon > 0$ assez petit, $x + \varepsilon n(x) \notin K$.

On admettra l'unicité de la normale extérieure ainsi définie; son expression peut être calculée simplement dans le cas d'une représentation implicite ou explicite (comme hypographe) du compact à bord.

Proposition – Normale extérieure et caractérisation implicite

Si K est un compact à bord C^1 caractérisé au voisinage de $x_0 \in \partial K$ par l'inégalité $g(x) \leq 0$, où V est un voisinage ouvert de x et $g: V \to \mathbb{R}$ est continûment différentiable de différentielle non nulle sur V, alors la normale extérieure de K en $x \in \partial K \cap V$ est le vecteur de \mathbb{R}^n donné par

$$n(x) = \frac{\nabla g(x)}{\|\nabla g(x)\|}.$$

Démonstration La fonction g étant différentiable en $x \in \partial K$, on a localement

$$g(y) = g(x) + dg(x) \cdot (y - x) + o(||y - x||) = \langle \nabla g(x), y - x \rangle + o(||y - x||).$$

Si $y \in \partial K$, g(y) = 0, donc

$$\left\langle \nabla g(x), \frac{y-x}{\|y-x\|} \right\rangle = o(1) \to 0 \text{ quand } y \to x.$$

Si $y = x + \varepsilon \nabla g(x) / ||\nabla g(x)||$, avec $\varepsilon > 0$,

$$g(y) = \langle \nabla g(x), y - x \rangle + o(\|y - x\|) = \varepsilon \|\nabla g(x)\| + o(\varepsilon),$$

et donc g(y) > 0 – soit $y \notin K$ – pour ε suffisamment petit.

Proposition - Normale extérieure et hypographe

Si K est un compact à bord C^1 caractérisé au voisinage de $x_0 \in \partial K$ comme l'hypographe de la fonction $f: U \to I$ où U est un ouvert de \mathbb{R}^{n-1} et I un intervalle ouvert de \mathbb{R} , alors la normale extérieure de K en $x \in \partial K \cap V$ est le vecteur de \mathbb{R}^n donné par

$$n(x_1,\ldots,x_n) = \frac{(-\partial_1 f(x_1,\ldots,x_{n-1}),\ldots,-\partial_{n-1} f(x_1,\ldots,x_{n-1}),1)}{\sqrt{1+\|\nabla f(x_1,\ldots,x_{n-1})\|^2}}.$$

Démonstration Il suffit de constater qu'on peut associer à l'hypographe de f la description implicite $g(x) \leq 0$ avec

$$g(x_1,\ldots,x_{n-1},x_n)=x_n-f(x_1,\ldots,x_{n-1})$$

puis d'exploiter la caractérisation de la normale dans ce cas (p. 18). Comme

$$\nabla g(x_1, \dots, x_n) = (-\partial_1 f(x_1, \dots, x_{n-1}), \dots, -\partial_{n-1} f(x_1, \dots, x_{n-1}), 1)$$

et que par conséquent

$$\|\nabla g(x_1,\ldots,x_n)\| = \sqrt{1 + \|\nabla f(x_1,\ldots,x_{n-1})\|^2},$$

le résultat s'en déduit.

Nous allons maintenant définir l'intégrale de surface d'une fonction continue sur la frontière d'un compact à bord. Pour arriver à nos fins, nous allons tout d'abord définir l'intégrale de surface pour des fonctions continues nulles en dehors d'un voisinage – arbitrairement petit – d'un point du compact. Le résultat suivant de partition de l'unité nous permettra de "recoller" ces contributions à l'intégrale globale.

Définition - Partition de l'unité

Pour toute famille finie d'ouverts V_i de \mathbb{R}^n recouvrant un ensemble compact K, il existe une famille $\rho_i:\mathbb{R}^n\to [0,+\infty[$ de fonctions continûment différentiables dont le support

$$\operatorname{supp}(\rho_i) = \overline{\{x \in \operatorname{dom}(\rho_i) \mid \rho_i(x) \neq 0\}}.$$

est compact et inclus dans V_i et telles que

$$\sum_{i} \rho_i(x) = 1 \text{ pour tout } x \in K.$$

La démonstration est donnée à la fin de cette annexe (p. 25).

Définition - Intégrale de surface

Soit $\phi: \partial K \to \mathbb{R}^m$ une fonction continue. Si K est caractérisé dans un voisinage ouvert V de $x_0 \in \partial K$ comme l'hypographe de la fonction $f: U \to I$ après une transformation T qui soit une isométrie directe, la contribution de $V = T(U \times I)$ à l'intégrale de surface de ϕ est définie par la relation

$$\int_{\partial K \cap V} \phi(x) \sigma(dx) := \int_{U} \phi(z, f(z)) \sqrt{1 + \|\nabla f(z)\|^2} \, dz.$$

Si les V_i sont de tels ouverts consituant un recouvrement fini de ∂K et les ρ_i une partition de l'unité associée (p. 24), alors l'intégrale de surface de ϕ sur ∂K est définie par

$$\int_{\partial K} \phi(x)\sigma(dx) := \sum_{i} \int_{\partial K \cap V_{i}} \rho_{i}(x)\phi(x)\sigma(dx)$$

On admettra que cette définition est indépendante du choix de la décomposition de ∂K .

Définition – Divergence

Soit V un ouvert de \mathbb{R}^n . On appelle divergence d'une fonction différentiable

$$v: V \to \mathbb{R}^n, \ v = (v_1, \dots, v_n)$$

la fonction div $v:V\to\mathbb{R}$ définie par

$$\operatorname{div} v(x) = \sum_{i=1}^{n} \partial_i v_i(x)$$

Lemme - Lemme de la divergence

Soit $f: U \to \mathbb{R}$ une fonction de classe C^1 où U est un pavé ouvert borné de \mathbb{R}^{n-1} . Soit $v: U \times \mathbb{R} \to \mathbb{R}^n$ une fonction de classe C^1 de support compact dans $U \times \mathbb{R}^{n-1}({}^4)$. L'ensemble Ω désignant l'hypographe strict de f – soit $\Omega = \{(y,z) \mid y \in U, z \in \mathbb{R}, z < f(y)\}$ – et Γ le graphe de f – soit $\Gamma = \{(y,f(y)) \mid y \in U\}$ – et n la normale extérieure associée, on a la relation

$$\int_{\Omega} \operatorname{div} v(x) \, dx = \int_{\Gamma} \langle v(x), n(x) \rangle \, \sigma(dx).$$

Démonstration On remarque que si $v = we_i$ où $w : U \times \mathbb{R} \to \mathbb{R}$ est de classe C^1 et $i \in \{1, ..., n\}$, comme div $v = \partial_i w$ et $\langle v(x), n(x) \rangle = w(x)n_i(x)$, le résultat du lemme devient

$$\int_{\Omega} \partial_i w(x) \, dx = \int_{\Gamma} w(x) n_i(x) \, \sigma(dx).$$

Réciproquement, que si cette relation est valable pour tout $i \in \{1, ..., n\}$, la conclusion du lemme de Stokes s'en déduit facilement. Démontrer la relation ci-dessus suffit donc à prouver le lemme.

La transformation $h: U \times]-\infty, 0[\to \mathbb{R}^n$ définie par

$$h(x_1, \ldots, x_{n-1}, x_n) = (x_1, \ldots, x_{n-1}, x_n + f(x_1, \ldots, x_{n-1}))$$

est une application de classe C^1 . Par construction,

$$h(U \times]-\infty, 0[) = \Omega$$

et admet une inverse, donnée par

$$h^{-1}(x_1,\ldots,x_{n-1},x_n)=(x_1,\ldots,x_{n-1},x_n-f(x_1,\ldots,x_{n-1}))$$

qui est également de classe C^1 . La matrice jacobienne associée à h vaut

$$J_h(x) = \left[\begin{array}{c|c} I & 0 \\ \hline J_f(x) & 1 \end{array} \right]$$

et par conséquent son déterminant jacobien satisfait

$$\det J_h(x) = 1.$$

Par conséquent, le changement de variable associé à h fournit

$$\int_{\Omega} \partial_i w(x) \, dx = \int_{h(U \times]-\infty, 0[)} \partial_i w(x) \, dx$$

$$= \int_{U \times]-\infty, 0[} \partial_i w(h(x)) | \det J_h(x) | \, dx$$

$$= \int_{U \times]-\infty, 0[} \partial_i w(x_1, \dots, x_{n-1}, x_n + f(x_1, \dots, x_{n-1})) \, dx$$

^{4.} La fonction v étant continue et définie dans un ouvert $(U \times \mathbb{R}^{n-1})$, son support est compact dans cet ensemble si et seulement si l'ensemble $\{x \mid v(x) \neq 0\}$ est borné et sa distance au complémentaire de $U \times \mathbb{R}$ dans \mathbb{R}^n est strictement positive.

ou encore, en notant $\pi(x) = (x_1, \dots, x_{n-1}),$

$$\int_{\Omega} \partial_i w(x) \, dx = \int_{U \times]-\infty, 0[} \partial_i w(\pi(x), x_n + f(\pi(x))) \, dx.$$

Nous allons évaluer cette expression en comparant l'intégrande dans le membre de droite de cette équation avec la dérivée partielle de $w(\pi(x), x_n + f(\pi(x)))$ par rapport à x_i .

Si $i \in \{1, ..., n-1\}$, la règle de dérivation en chaîne fournit

$$\partial_i \left(w(\pi(x), x_n + f(\pi(x)) \right) = \partial_i w(\pi(x), x_n + f(\pi(x))$$

$$+ \partial_n w(\pi(x), x_n + f(\pi(x))) \times \partial_i f(\pi(x))$$

et dans le cas contraire,

$$\partial_n \left(w(\pi(x), x_n + f(\pi(x))) \right) = \partial_n w(\pi(x), x_n + f(\pi(x))).$$

Si $U = I_1 \times \cdots \times I_{n-1}$ et si pour $i \in \{1, \dots, n-1\}$, on a $I_i =]a_i, b_i[$, alors par le théorème fondamental du calcul,

$$\int_{I_i} \partial_i (w(\pi(x), x_n + f(\pi(x))) dx_i = \lim_{\varepsilon \to 0} \int_{a_i + \varepsilon}^{b_i - \varepsilon} \partial_i (w(\pi(x), x_n + f(\pi(x))) dx_i$$
$$= \lim_{\varepsilon \to 0} \left[w(\pi(x), x_n + f(\pi(x))) \right]_{a_i + \varepsilon}^{b_i - \varepsilon}$$

Comme w est de support compact, pour toute valeur de $x_1, x_2, ..., x_{i-1}, x_{i+1}, ..., x_n$, la fonction partielle

$$x_i \in [a_i, b_i] \to w(\pi(x), x_n + f(\pi(x)))$$

est également de support compact. Par conséquent,

$$S_i(x_1,\ldots,x_{i-1},x_{i+1},\ldots) := \int_{I_i} \partial_i(w(\pi(x),x_n+f(\pi(x)))) dx_i = 0.$$

Par le théorème de Fubini, on peut alors déduire que

$$\int_{U\times]-\infty,0[} \partial_i(w(\pi(x), x_n + f(\pi(x)))) dx =$$

$$\int_{I_1\times \dots I_{i-1}\times I_{i+1}\times \dots \times]-\infty,0[} S_i(x_1, \dots, x_{i-1}, x_{i+1}, \dots) d(x_1, \dots, x_{i-1}, x_{i+1}, \dots) = 0.$$

Si $i \in \{1, \ldots, n-1\}$, on a donc

$$\int_{\Omega} \partial_i w(x) \, dx = \int_{U \times]-\infty, 0[} \partial_n w(\pi(x), x_n + f(\pi(x)) \times (-\partial_i f(\pi(x))) \, dx$$

et pour i = n,

$$\int_{\Omega} \partial_n w(x) \, dx = \int_{U \times [-\infty, 0[} \partial_n w(\pi(x), x_n + f(\pi(x))) \, dx.$$

Dans ce second cas, en raison de la compacité du support w, le théorème fondamental du calcul fournit

$$\int_{-\infty}^{0} \partial_{n} w(\pi(x), x_{n} + f(\pi(x))) dx_{n} = \lim_{z \to -\infty} \left[x_{n} \mapsto w(\pi(x), x_{n} + f(\pi(x))) \right]_{z}^{0}$$
$$= w(\pi(x), f(\pi(x)),$$

et donc par le théorème de Fubini,

$$\int_{\Omega} \partial_n w(x) \, dx = \int_{U} w(y, f(y)) \, dy.$$

Quand $i \in \{1, ..., n-1\}$, un calcul analogue fournit

$$\int_{\Omega} \partial_n w(x) dx = \int_{U} w(y, f(y)) \times (-\partial_i f(y)) dy.$$

Quel que soit la valeur de $i \in \{1, \dots, n\}$, comme la normale extérieure n est donnée par

$$n(y, f(y)) = \frac{(-\partial_1 f(y), \dots, -\partial_{n-1} f(y), 1)}{\sqrt{1 + ||\nabla f(y)||^2}},$$

on constate que l'on a

$$\int_{\Omega} \partial_i w(x) dx = \int_{U} w(y, f(y)) n_i(y, f(y)) \sqrt{1 + \|\nabla f(y)\|^2} dy,$$

et par conséquent

$$\int_{\Omega} \partial_i w(x) \, dx = \int_{\Gamma} w(x) n_i(x) \, d\sigma(x).$$

Théorème - Théorème de la divergence

Soit U un ouvert de \mathbb{R}^n et K un ensemble compact K à bord C^1 inclus dans U. Pour toute fonction $v: U \to \mathbb{R}^n$ continûment différentiable,

$$\int_{K} \operatorname{div} v(x) \, dx = \int_{\partial K} \langle v(x), n(x) \rangle \, \sigma(dx).$$

Pour toute fonction $f: U \to \mathbb{R}$ continûment différentiable et tout $i \in \{1, \dots, n\}$,

$$\int_{K} \partial_{i} f(x) dx = \int_{\partial K} n_{i}(x) f(x) \sigma(dx).$$

Démonstration Comme dans la démonstration du lemme de la divergence (p. 21), il suffit d'établir une version du résultat, par exemple la première, et la seconde version s'en déduit.

Pour tout $x \in \partial K$, il existe un pavé ouvert borné U_x de \mathbb{R}^{n-1} , un intervalle ouvert I_x de \mathbb{R} , une isométrie affine directe T_x et une fonction continûment différentiable

 $f_x:U_x\to I_x$ telle que $T_x(U_x\times I_x)$ soit un voisinage de x et $K\cap T_x(U_x\times I_x)$ soit l'image de l'hypographe de f_x par T_x . Si $x\in \mathring{K}$, il existe un pavé ouvert borné U_x de \mathbb{R}^{n-1} et un intervalle ouvert I_x de \mathbb{R} tels que $U_x\times I_x\subset \mathring{K}$; on prendra ici $T_x=I$ (l'identité) et pour $f_x:U_x\to\mathbb{R}$ une fonction constante dont la valeur soit un majorant de I_x .

Par compacité, K peut être recouvert par un nombre fini des ensembles $V_x := T_x(U_x \times I_x)$, associés au points x_1, \ldots, x_k . Soit $\rho_j, j \in \{1, \ldots, k\}$ une partition de l'unité (p. 20) associée. On a alors

$$\int_{K} \operatorname{div} v(x) \, dx = \int_{K} \operatorname{div} \left(\sum_{j=1}^{k} \rho_{j}(x) v(x) \right) \, dx$$
$$= \sum_{j=1}^{k} \int_{K \cap V_{x_{j}}} \operatorname{div} \left(\rho_{j}(x) v(x) \right) dx.$$

L'application du lemme de la divergence (p. 21) quand x_j est un point intérieur à K fournit

$$\int_{K \cap V_{x_j}} \operatorname{div} \left(\rho_j(x) v(x) \right) dx = 0,$$

car v est nulle sur le graphe de f_{x_j} , et quand x_j est un point frontière

$$\begin{split} \int_{K\cap V_{x_j}} \operatorname{div}\left(\rho_j(x)v(x)\right) dx &= \int_{\partial K\cap V_{x_j}} \left\langle \rho_j(x)v(x), n(x) \right\rangle \, d\sigma(x) \\ &= \int_{\partial K\cap V_{x_j}} \rho_j(x) \left\langle v(x), n(x) \right\rangle \, d\sigma(x). \end{split}$$

Par conséquent,

$$\begin{split} \int_K \operatorname{div} v(x) \, dx &= \sum_{j=1}^k \int_{\partial K \cap V_{x_j}} \rho_j(x) \, \langle v(x), n(x) \rangle \, \, d\sigma(x) \\ &= \int_{\partial K} \langle v(x), n(x) \rangle \, \, d\sigma(x). \end{split}$$

La preuve de l'existence d'une partition de l'unité repose sur le lemme suivant :

Lemme – Lemme de recouvrement de Lebesgue

Soit K un compact de \mathbb{R}^n et une famille arbitraire d'ouverts V_i recouvrant K. Alors il existe un rayon r > 0 tel que pour tout $x \in K$, il existe un indice i telle que la boule ouverte B(x,r) de rayon r centrée en x soit incluse dans V_i .

Démonstration Supposons au contraire que pour tout r > 0 il existe un $x \in K$ tel que pour tout indice i, la distance entre x et le complémentaire de V_i soit (strictement) inférieure à r. Soit x_k une suite de points de K tels que pour tout i, $d(x_k, \mathbb{R}^n \setminus V_i) \leq 2^{-k}$; par compacité de K, il existe une suite extraite des x_k qui converge vers un $\ell \in K$. En passant à la limite sur cette suite, on établit

que pour tout indice i on a $d(\ell, \mathbb{R}^n \setminus V_i) = 0$, soit $x \in \mathbb{R}^n \setminus V_i$ puisque $\mathbb{R}^n \setminus V_i$ est fermé. Par conséquent, pour tout $i, x \notin V_i$, ce qui contredit l'hypothèse que les V_i forment un recouvrement de K.

Démonstration de l'existence d'une partition de l'unité Nous allons initialement établir l'existence d'une suite de fonctions $\rho_i : \mathbb{R}^n \to \mathbb{R}$ continues, nulles en dehors de V_i dont la somme vaut 1 sur un voisinage ouvert V de K, puis déduire de cette construction l'existence de fonctions continûment différentiables ρ_i' satisfaisant satisfaisant le théorème.

Notons $V = \bigcup_i V_i$; l'ensemble V_i étant ouvert, la fonction $x \in V \mapsto d(x, \mathbb{R}^n \setminus V_i)$, qui est continue, est strictement positive sur V_i et nulle ailleurs. La somme $x \in \mathbb{R}^n \mapsto \sum_j d(x, \mathbb{R}^n \setminus V_j)$, également continue, est donc strictement positive sur V. Les fonctions ρ_i définies par

$$\rho_i(x) = \frac{d(x, \mathbb{R}^n \setminus V_i)}{\sum_i d(x, \mathbb{R}^n \setminus V_j)}$$

satisfont donc les propriétés requises pour l'étape 1.

Le lemme de recouvrement de Lebesgue (p. 24) établit l'existence d'un r>0 tel que pour tout $x\in K$, il existe au moins un indice i tel que $B(x,r)\subset V_i$. Notons V_i' l'union des boules ouverts B(x,r) pour lequel l'incide i convient quand x décrit K. Par construction, les V_i' sont ouverts et recouvrent K; de plus, les adhérences $\overline{V_i'}$ sont bornées (ce sont des sous-ensembles de $\{x\in K\,|\,d(x,K)\leq r\}$) et vérifient $d(\overline{V'}_i,\mathbb{R}^n\setminus V_i)\geq r$.

Considérons les fonctions ρ_i de l'étape initiale associées à la famille des V_i' et prolongées par 0 en dehors de $\bigcup_i V_i'$. Définissons alors les fonctions $\rho_i': \mathbb{R}^n \to [0, +\infty[$ par

$$\rho_i'(x) = \int_{\mathbb{R}^n} \rho_i(y)\phi(x-y) \, dy$$

où $\phi:\mathbb{R}^n\to [0,+\infty[$ est une fonction continûment différentiable, de support inclus dans $\overline{B}(0,r/2)$ et telle que

$$\int_{\mathbb{R}^n} \phi(x) \, dx = 1.$$

Le théorème de dérivation sous le signe somme établit que les ρ'_i sont continûment différentiables. Par construction, le support de ρ'_i est inclus dans $V'_i + \overline{B}(x, r/2)$, ce qui garantit que supp $(\rho'_i) \subset V_i$. Finalement, pour tout $x \in K$,

$$\sum_{i} \rho'_{i}(x) = \sum_{i} \int_{\mathbb{R}^{n}} \rho_{i}(y)\phi(x-y) \, dy$$
$$= \int_{\mathbb{R}^{n}} \sum_{i} \rho_{i}(y)\phi(x-y) \, dy$$
$$= \int_{\mathbb{R}^{n}} \phi(x-y) \, dy$$
$$= 1.$$

Exercices complémentaires

Aire du disque unité

Soit $D = \overline{B}(0,1)$ le disque unité fermé de \mathbb{R}^2 .

Question 1 (\bullet) Montrer que 1_D est intégrable. (Solution p. 35.)

Question 2 ($\bullet \bullet$) Calculer l'aire de D en utilisant le théorème de Fubini puis un changement de variable dans \mathbb{R} . (Solution p. 35.)

Question 3 (••) Calculer l'aire de D en utilisant un changement de variables dans \mathbb{R}^2 . (Solution p. 35.)

Intégrabilité des fonctions puissances

Soit C la couronne $\{x \in \mathbb{R}^2 \mid ||x|| > 1\}$; on souhaite prouver dans cet exercice que l'intégrale

 $I = \int_C \frac{dx}{\|x\|^{\alpha}}$

est bien définie si et seulement si $\alpha > 2$.

Question 1 (•) Soit $C_{++} = C \cap \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 > 0 \text{ et } x_2 > 0\}$. Montrer que $x \mapsto ||x||^{-\alpha}$ est intégrable sur C si et seulement si elle est intégrable sur C_{++} . (Solution p. 36.)

Question 2 (•) Déterminer l'image de C_{++} par la fonction

$$h: (x_1, x_2) \mapsto (x_1, r)$$
 où $r = ||(x_1, x_2)||$

et montrer que h est un C^1 -difféomorphisme de C_{++} sur cette image. (Solution p. 36.)

Question 3 (••) Déterminer (formellement) l'expression de l'intégrale I au moyen des variables (x_1, r) , puis (y, r) où $y = x_1/r$. En déduire que I est bien définie si et seulement si $\alpha > 2$. (Solution p. 37.)

Déformations d'un compact à bord régulier

Soit K un compact à bord C^1 de \mathbb{R}^n et $T:\mathbb{R}^n\to\mathbb{R}^n$ une application continûment différentiable telle que T=I+H, où l'application continûment différentiable $H:\mathbb{R}^n\to\mathbb{R}^n$ satisfait $\sup_{x\in\mathbb{R}^n}\|dH(x)\|<1$.

Question 1 (••••) Montrer que l'ensemble

$$T(K) = \{x + T(x) \mid x \in K\}$$

est un compact à bord C^1 de \mathbb{R}^n . (Solution p. 37.)

Ovales de Cassini

Soit a et b deux nombres réels strictements positifs. On désigne par K l'ensemble du plan délimité par les ovales de Cassini

$$K = \{(x,y) \in \mathbb{R}^2 \mid (x^2 + y^2)^2 - 2a^2(x^2 - y^2) + a^4 \le b^4 \}.$$

Question 1 (••••) Montrer que si $a \neq b$, l'ensemble K est un compact à bord C^1 .

FIGURE 6 – Compact à bord \mathbb{C}^1 délimité par les ovales de Cassini.

(Solution p. 38.)

Intégrales de surface

Soit $B = \overline{B}(0,1)$ le disque unité fermé de \mathbb{R}^2 .

Question 1 ($\bullet \bullet \bullet \bullet$) Calculer

$$\int_{\partial B} \sigma(dx) \ \text{ et } \ \int_{\partial B} x_1^2 \, \sigma(dx).$$

(Solution p. 39.)

FIGURE 7 – Ensemble délimité par les ovales de Cassini quand a=b=1.

Rétraction

Soit $B = \overline{B}(0,1)$ le disque unité fermé de \mathbb{R}^2 et $f: B \to B$ une fonction de classe C^2 (c'est-à-dire admettant un prolongement de classe C^2 sur un ouvert U contenant B). Une telle fonction f est une rétraction de B sur ∂B si $f(B) = \partial B$ et pour tout $x \in \partial B$, f(x) = x.

Question 1 ($\bullet \bullet \bullet \bullet$) Montrer que pour une telle rétraction f, on a

$$\int_{B} \det J_f(x) \, dx = 0.$$

(Solution p. 39.)

Question 2 (**)** En déduire l'impossibilité d'une telle rétraction. (Solution p. 39.)

Intégration par parties

Question 1 (••••) Si l'équivalent dans \mathbb{R}^n du théorème fondamental du calcul est le théorème de la divergence, quel résultat est l'équivalent dans \mathbb{R}^n de l'intégration par parties? (Solution p. 40.)

Solutions

Exercices essentiels

Prolongements Si l'on s'en tient sans réfléchir à la section "Domaine des variables" (p. 4), il faut associer à la première fonction la fonction

$$(x,y) \in [-\infty,\infty]^2 \mapsto \begin{vmatrix} \exp(-x^2 - y^2) & \text{si } x \in \mathbb{R} \text{ et } y \in \mathbb{R}, \\ 0 & \text{sinon.} \end{vmatrix}$$

à la seconde la fonction

$$(x,y) \in [-\infty,\infty]^2 \mapsto \begin{vmatrix} \arctan(x^2+y^2) & \text{si } x \in \mathbb{R} \text{ et } y \in \mathbb{R}, \\ 0 & \text{sinon.} \end{vmatrix}$$

et à la troisième la fonction

$$(x,y) \in [-\infty,\infty]^2 \mapsto \left| \begin{array}{cc} \arctan(x^2y^2) & \text{si } x \in [-1,1] \text{ et } y \in [-1,1], \\ 0 & \text{sinon.} \end{array} \right|$$

Dans le second cas, la note de bas de page nous autorise aussi à considérer la fonction

$$(x,y) \in [-\infty,\infty]^2 \mapsto \left| \begin{array}{cc} \arctan(x^2+y^2) & \text{si } x \in \mathbb{R} \text{ et } y \in \mathbb{R}, \\ \pi/2 & \text{sinon.} \end{array} \right|$$

qui peut sembler un choix plus naturel car le prolongement ainsi construit est continu. Par contre, dans le troisième cas, c'est bien par zéro que nous avons l'obligation d'étendre la fonction initiale (techniquement, car l'ensemble $[-\infty,\infty]^2\setminus[-1,1]^2$ n'est pas négligeable.)

Partition en pavés L'ensemble $\mathbb{R}^2 \setminus [-1,1]$ est l'union des quatres ensembles disjoints non vides suivants : $]-\infty, -1[\times \mathbb{R}, [-1,1] \times]1, +\infty[, [-1,1] \times]-\infty, -1[$ et $]1, +\infty[\times \mathbb{R}.$

Volume de pavés On a
$$a(\{(0,0)\}) = a([0,0]^2) = 0 \times 0 = 0$$
, $a([-1,1]^2) = 2 \times 2 = 4$, $a([-1,1] \times [0,+\infty]) = 2 \times (+\infty) = +\infty$ et $a(\{0\} \times \mathbb{R}) = 0 \times (+\infty) = 0$.

Domaine à l'infini L'ensemble $[-\infty, +\infty]^n \setminus \mathbb{R}^n$ est recouvert par les quatres pavés $\{-\infty\} \times [-\infty, \infty], \{+\infty\} \times [-\infty, +\infty], [-\infty, +\infty] \times \{-\infty\}$ et $[-\infty, +\infty] \times \{+\infty\}$. Chacun de ces pavés est d'aire nulle : on a par exemple

$$a(\{-\infty\} \times [-\infty, +\infty]) = \ell(\{-\infty\}) \times \ell([-\infty, +\infty]) = 0 \times (+\infty) = 0.$$

Par conséquent l'ensemble considéré est négligeable.

Graphe du sinus Notons $G = \{(x, \sin x) \mid x \in [0, 2\pi]\}$. Comme $(\sin)' = \cos$ et que le cosinus est majoré par 1, par le théorème des accroissements finis, pour tout $x, y \in [0, 2\pi]$ on a $|\sin x - \sin y| \le |x - y|$. Par conséquent, pour tout $x \in [0, 2\pi]$ et h > 0,

$$G \cap ([x-h,x+h] \times [-\infty,+\infty]) \subset [x-h,x+h] \times [(\sin x) - h,(\sin x) + h].$$

En choisissant $h=\pi/n$ et $x=\pi/n, 3\pi/n, 5\pi/n, \ldots$, on recouvre donc G par la collection de pavés

$$I_k = \left[k \frac{2\pi}{n}, (k+1) \frac{2\pi}{n} \right] \times \left[y_k - \frac{\pi}{n}, y_k + \frac{\pi}{n} \right], \ k \in \{0, 1, \dots, n-1\}$$

οù

$$y_k = \sin\left(\left(k + \frac{1}{2}\right) \frac{2\pi}{n}\right).$$

FIGURE 8 – Graphe de la fonction sin et recouvrement par les pavés I_k (n=12).

La somme des aires des pavés I_k satisfait

$$\sum_{k=0}^{n-1} a(I_k) = n \times \frac{2\pi}{n} \times \frac{2\pi}{n} = \frac{4\pi^2}{n}.$$

Il est donc possible de rendre cette somme arbitrairement faible en sélectionnant un n suffisamment grand. L'ensemble G est donc négligeable.

Additivité I Si f est intégrable sur $A \subset \mathbb{R}^n$ et sur $B \subset \mathbb{R}^n$ alors les prolongements de $f|_A$ et de $f|_B$ par zéro à \mathbb{R}^n , qui sont les fonctions $1_A f$ et $1_B f$, sont intégrables sur \mathbb{R}^n . On a également

$$\int_A f(x) dx = \int_{\mathbb{R}^n} 1_A(x) f(x) dx \text{ et } \int_B f(x) dx = \int_{\mathbb{R}^n} 1_B(x) f(x) dx.$$

Si A et B sont d'intersection vide, on a $1_{A\cup B}=1_A+1_B$, donc par linéarité de l'intégrale (p. 8), $1_{A\cup B}f=1_Af+1_Bf$ est intégrable, la fonction f est intégrable

sur $A \cup B$ et

$$\int_{A \cup B} f(x) dx = \int_{\mathbb{R}^n} 1_{A \cup B}(x) f(x) dx$$
$$= \int_{\mathbb{R}^n} 1_A(x) f(x) + 1_B(x) f(x) dx$$
$$= \int_A f(x) dx + \int_B f(x) dx.$$

Disque fermé L'ensemble D est fermé (c'est par exemple l'image réciproque du fermé [0,1] par l'application continue $(x_1,x_2) \mapsto x_1^2 + x_2^2$), par conséquent il est mesurable (p. 9).

Additivité II La trame de la démonstration est similaire à l'exercice "Additivité I" (p. 8). On constate ici que $1_{A\cup B}=1_A+1_B-1_{A\cap B}$; comme $A\cap B$ est négligeable, la fonction $1_{A\cap B}f$ est nulle presque partout, donc intégrable et d'intégrale nulle. La fonction $1_{A\cup B}$ est donc intégrable par linéarité de l'intégrale (p. 8) et

$$\begin{split} \int_{A \cup B} f(x) \, dx &= \int_{\mathbb{R}^n} 1_{A \cup B}(x) f(x) \, dx \\ &= \int_{\mathbb{R}^n} 1_A(x) f(x) + 1_B(x) f(x) - 1_{A \cap B} f(x) \, dx \\ &= \int_{\mathbb{R}^n} 1_A(x) f(x) + \int_{\mathbb{R}^n} 1_B(x) f(x) - \int_{\mathbb{R}^n} 1_{A \cap B} f(x) \, dx \\ &= \int_A f(x) \, dx + \int_B f(x) \, dx. \end{split}$$

Calcul de l'aire d'un triangle Si la fonction 1_D est intégrable, alors le théorème de Fubini est applicable (p. 12). On a donc

$$a(T) = \int_{\mathbb{D}} \left[\int_{\mathbb{D}} 1_T(x, y) \, dx \right] \, dy.$$

Or, si $0 \le y \le 1$,

$$1_T(x,y) = \begin{vmatrix} 1 & \text{si } 0 \le x \le 1 - y, \\ 0 & \text{sinon.} \end{vmatrix}$$

et dans le cas contraire, $1_T(x,y) = 0$. On a donc

$$a(T) = \int_0^1 \left[\int_0^{1-y} dx \right] dy = \int_0^1 (1-y) dy = \left[y - \frac{y^2}{2} \right]_0^1 = \frac{1}{2}.$$

Contre-exemple Pour tout $y \in [0,1]$ (et donc presque tout $y \in [0,1]$), on a

$$\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dx = \left[x \mapsto -\frac{x}{x^2 + y^2} \right]_0^1 = -\frac{1}{1 + y^2},$$

par conséquent

$$\int_0^1 \left[\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dx \right] \, dy = -\int_0^1 \frac{dy}{1 + y^2} = -[y \mapsto \arctan y]_0^1 = -\frac{\pi}{4}.$$

En exploitant la relation

$$\frac{x^2 - y^2}{(x^2 + y^2)^2} = \frac{\partial}{\partial y} \left(\frac{y}{x^2 + y^2} \right)$$

on établit de façon similaire que

$$\int_0^1 \left[\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \right] \, dx = \frac{\pi}{4}.$$

Or, si le théorème de Fubini (p. 12) était applicable, on pourrait intervertir l'ordre d'intégration des variables sans changer le résultat (p. 12). Comme cela n'est pas le cas, on en déduit que l'hypothèse exigée par le théorème de Fubini ne tient pas : la fonction

$$(x,y) \in [0,1] \times [0,1] \mapsto \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

n'est pas intégrable.

Triangle d'aire finie La fonction $1_T: \mathbb{R}^2 \to \mathbb{R}$ est positive et mesurable, car l'ensemble T est fermé donc mesurable. Par conséquent on peut essayer d'appliquer le théorème de Tonelli (p. 14) qui donnerait la conclusion voulue. Les calculs à effectuer pour vérifier que ses hypothèses sont vérifiées sont exactement les mêmes que ceux nécessaires au calcul de l'aire dans l'exercice "Calcul de l'aire d'un triangle" (p. 14) : ils montrent que pour tout $y, x \mapsto 1_T(x, y)$ est intégrable, puis que

$$y \mapsto \int 1_T(x,y) \, dy$$

est intégrable, ce qui nous permet de conclure.

Intégrabilité des pavés fermés bornés On procède par récurrence sur la dimension n de l'espace. Admettons le résultat prouvé au rang n-1. La fonction caractéristique 1_I de $I=[a_1,b_1]\times\cdots\times[a_n,b_n]$ est mesurable ; en effet, pour tout ensemble ouvert de \mathbb{R} , l'image réciproque de cet ensemble par 1_I est \varnothing , I, $\mathbb{R}^2\setminus I$ ou \mathbb{R}^2 et tous ces ensembles sont mesurables (car fermé ou ouverts (p. 9)). Fixons $(x_2,\ldots,x_n)\in\mathbb{R}^{n-1}$; la fonction $x_1\in\mathbb{R}\mapsto f(x_1,x_2,\ldots,x_n)$ est intégrable : en effet si $(x_2,\ldots,x_n)\in[a_2,b_2]\times\cdots\times[a_n,b_n]$ on a

$$1_I(x_1, x_2, \dots, x_n) = \begin{vmatrix} 1 & \text{si } a_1 \le x_1 \le b_1, \\ 0 & \text{sinon.} \end{vmatrix}$$

et $1_I(x_1, x_2, \dots, x_n) = 0$ sinon. On a donc

$$\int 1_I(x_1, x_2, \dots, x_n) dx_1 = (b_1 - a_1) 1_{[a_2, b_2] \times \dots \times [a_n, b_n]}(x_2, \dots, x_n).$$

Par l'hypothèse de récurrence, $1_{[a_2,b_2]\times\cdots\times[a_n,b_n]}$ est intégrable d'intégrale $(b_2-a_2)\times\cdots\times(b_n-a_n)$, donc par le théorème de Tonelli (p. 14), 1_I est intégrable et

$$\int 1_I(x) dx = (b_1 - a_1) \int 1_{[a_2, b_2] \times \dots \times [a_n, b_n]}(x_2, \dots, x_n) d(x_2, \dots x_n)$$
$$= (b_1 - a_1) \times \dots \times (b_n - a_n).$$

Tout droite du plan est négligeable Deux cas se présentent : soit la droite considérée est de la forme $D = \{(x,y) \in \mathbb{R}^2 \mid y = ax + b\}$, soit elle est de la forme $D = \{(x,y) \in \mathbb{R}^2 \mid x = c\}$. Dans les deux cas, la droite est un ensemble fermé de \mathbb{R}^2 , donc mesurable (p. 9); par le critère de l'image réciprique (p. 10), la fonction caractéristique associée 1_D est donc mesurable. Dans le premier cas considéré, pour tout $x \in \mathbb{R}$, la fonction $y \mapsto 1_D(x,y)$ est nulle, sauf en y = ax + b; elle est donc nulle presque partout et donc intégrable et d'intégrale nulle. On a donc pour tout $x \in \mathbb{R}$.

$$\int 1_D(x,y) \, dy = 0$$

et par conséquent la fonction

$$x \in \mathbb{R} \mapsto \int 1_D(x, y) \, dy$$

est donc intégrable. Par le théorème de Tonelli (p. 14), la fonction f est donc intégrable et par le théorème de Fubini (p. 12), on a

$$a(D) = \int_{\mathbb{P}^2} 1_D(x, y) d(x, y) = \int_{\mathbb{P}} \left[\int_{\mathbb{P}} 1_D(x, y) \, dy \right] \, dx = 0.$$

La droite D est donc négligeable car mesurable et d'aire nulle (p. 10).

Le cas où $D=\{(x,y)\in\mathbb{R}^2\mid x=c\}$ se traite de façon similaire. On constate alors pour tout $x\in\mathbb{R}$, à l'exception de x=c, la fonction $y\mapsto 1_D(x,y)$ est nulle et donc intégrable et d'intégrale nulle et pour x=c elle n'est pas intégrable. Mais cette fonction est donc à nouveau intégrable pour presque tout $x\in\mathbb{R}$ et d'intégrale nulle. La fin du raisonnement est identique à celle du cas précédent.

Homothétie Si l'on pose $D_1=\mathbb{R}^n,\ D_2=\mathbb{R}^n,$ l'application $h:D_1\to D_2$ définie par $h(x)=\alpha x$ est un C^1 -difféomorphisme. De plus, on a

$$|\det J_h(x)| = \left| \det \begin{bmatrix} \alpha & 0 & \cdots & 0 \\ 0 & \alpha & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \alpha \end{bmatrix} \right| = |\alpha^n| = \alpha^n.$$

Par conséquent, le théorème de changement de variables (p. 15) fournit

$$\int_{\mathbb{R}^n} f(y) \, dy = \int_{\mathbb{R}^n} f(\alpha x) \alpha^n \, dx,$$

soit

$$\int_{\mathbb{R}^n} f(\alpha x) \, dx = \frac{1}{\alpha^n} \int_{\mathbb{R}^n} f(y) \, dy.$$

Volume et translation L'ensemble A mesurable et de volume fini a une fonction caractéristique 1_A intégrable et

$$\lambda(A) = \int 1_A(x) \, dx.$$

Soit h(x) = x - u ou $u \in \mathbb{R}^3$. La fonction h est une bijection de \mathbb{R}^3 sur lui-même, continûment différentiable ainsi que son inverse, $h^{-1}(x) = x + u$ et $J_h(x) = I$, donc det $J_h(x) = 1$. Par le théorème de changement de variables (p. 15), la fonction $1_{h^{-1}(A)} = 1_A \circ h$ est donc intégrable sur \mathbb{R}^3 et

$$\int 1_{h^{-1}(A)} dx = \int_{\mathbb{R}^3} (1_A \circ h) |\det J_h(x)| dx = \int_{\mathbb{R}^3} 1_A(x) dx = \lambda(A).$$

L'ensemble translaté $A+u=h^{-1}(A)$ est donc mesurable, de volume fini égal au volume de A.

Coordonnées polaires Les ensembles P et C sont ouverts et la fonction h – qui permet de passer des coordonnées polaires aux coordonnées cartésiennes – est une bijection de P dans C. Elle est continûment différentiable ; sa matrice jacobienne en (r, θ) vaut

$$J_h(r,\theta) = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix},$$

et son déterminant satisfait

$$\det J_h(r,\theta) = (\cos \theta)(r\cos \theta) - (\sin \theta)(-r\sin \theta) = r > 0.$$

Le jacobien est donc inversible et h^{-1} est continûment différentiable par le théorème d'inversion locale. On peut donc appliquer le théorème de changement de variables (p. 15) à la fonction f, ce qui fournit

$$\int_C f(x,y) d(x,y) = \int_P f(h(r,\theta)) |\det J_h(r,\theta)| d(r,\theta)$$
$$= \int_P g(r,\theta) r d(r,\theta).$$

Absence du déterminant jacobien La façon la plus rapide de procéder consiste à considérer que $f \circ h$ joue le rôle de f dans le théorème de changement de variables (p. 15), que h dans notre énoncé désigne h^{-1} dans ce théorème et que les rôles de D_1 et D_2 sont intervertis. Une fois que l'on a permuté ces notations, on réalise que l'intégrale que l'on souhaite calculer est le membre de gauche de l'équation du théorème de changement de variables, dont toutes les hypothèses sont par ailleurs satisfaites. Par conséquent on a

$$\int_{D_1} f(h(x)) dx = \int_{D_2} (f \circ h)(h^{-1}(y)) |\det J_{h^{-1}}(y)| dy.$$

On peut simplifier $(f \circ h)(h^{-1}(y))$ en f(y) et éventuellement exprimer le jacobien de h^{-1} en fonction du jacobien de $h: J_{h^{-1}}(y) = [J_h(h^{-1}(y))]^{-1}$; on obtient donc

$$\int_{D_1} f(h(x)) dx = \int_{D_2} f(y) |\det J_{h^{-1}}(y)| dy = \int_{D_2} f(y) \frac{1}{|\det J_h(h^{-1}(y))|} dy.$$

Aire du disque unité

Question 1 La fonction 1_D est intégrable : en effet, l'ensemble B est fermé donc mesurable (p. 9) et la fonction 1_D est dominée par la fonction caractéristique du pavé fermé $[-1,1]^2$, qui est intégrable. Par le critère d'intégrabilité dominée (p. 12), 1_D est donc intégrable.

Question 2 Le théorème de Fubini nous fournit

$$\int_{D} dx = \int_{-1}^{1} \left[\int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} dy \right] dx = 2 \int_{-1}^{1} \sqrt{1-x^{2}} dx.$$

Comme

$$\int_{-1}^{1} \sqrt{1 - x^2} \, dx = \int_{[-1, 1]} \sqrt{1 - x^2} \, dx = \int_{]-1, 1[} \sqrt{1 - x^2} \, dx,$$

on peut donc opérer le changement de variable

$$\theta \in]0, \pi[\mapsto x = -\cos \theta \in]-1, 1[$$

(bijectif, continûment différentiable ainsi que son inverse). Comme $(-\cos\theta)' = \sin\theta$, on a

$$\int_0^{\pi} \sqrt{1 - (-\cos^2 \theta)} \sin \theta \, d\theta = \int_{-1}^1 \sqrt{1 - x^2} \, dx$$

et donc

$$\int_{-1}^{1} \sqrt{1 - x^2} \, dx = \int_{0}^{\pi} \sin^2 \theta \, d\theta = \int_{0}^{\pi} \frac{1 - \cos 2\theta}{2} \, d\theta = \left[\frac{\theta}{2} - \frac{\sin 2\theta}{4} \right]_{0}^{\pi} = \frac{\pi}{2},$$

et finalement

$$\int_D dx = \pi.$$

Question 3 On remarque que l'union N de la frontière ∂D de D et du segment $\{(x,0) \mid x \in [-1,0]\}$ est négligeable dans \mathbb{R}^2 et donc que

$$\int_{D} dx = \int_{D \setminus N} dx,$$

ce qui nous permet de considérer le changement de variable

$$\phi: (r,\theta) \in]0,1[\times]-\pi,\pi[\mapsto (x,y) = (r\cos\theta,r\sin\theta) \in D\setminus N$$

(bijectif, continûment différentiable ainsi que son inverse). On calcule la matrice jacobienne

$$J_{\phi}(r,\theta) = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix},$$

dont le déterminant vaut

$$\det J_{\phi}(r,\theta) = (\cos\theta)(r\cos\theta) - (\sin\theta)(-r\sin\theta) = r.$$

On a donc

$$\int_{]0,1[\times]-\pi,\pi[} r \, dr d\theta = \int_D \, dx,$$

et donc par le théorème de Fubini,

$$\int_{D} dx = \int_{-\pi}^{\pi} \left[\int_{0}^{1} r \, dr \right] d\theta = \int_{-\pi}^{\pi} \frac{1}{2} \, d\theta = \pi.$$

Intégrabilité des fonctions puissances

Question 1 L'ensemble C peut être partitionné en 5 ensembles : C_{++} , C_{+-} , C_{-+} , C_{--} (où les signes en indices déterminent les signes autorisés pour les variables x_1 et x_2) et

$$N := C \setminus (C_{++} \cup C_{+-} \cup C_{-+} \cup C_{--}).$$

L'ensemble C_{++} est ouvert, donc mesurable. Par conséquent, si $f: x \mapsto \|x\|^{-\alpha}$ est intégrable sur C, elle est intégrable sur C_{++} . Réciproquement, si f est intégrable sur C_{++} , elle est intégrable sur chacun des ensembles $C_{\pm\pm}$ par changement de variable : le changement de variable $h: (x_1, x_2) \mapsto (x_1, -x_2)$ est par exemple un difféomorphisme de C_{++} sur C_{+-} tel que $|\det J_h| = 1$, donc par changement de variables (p. 15) l'intégrale de f est bien définie sur C_{+-} et

$$\int_{C_{+}} \|x\|^{-\alpha} dx = \int_{C_{+}} \|h(x)\|^{-\alpha} |\det J_h(x)| dx = \int_{C_{+}} \|y\|^{-\alpha} dy = I.$$

Comme N est négligeable, f est également intégrable sur N et par conséquent f est intégrable sur C comme somme des fonctions intégrables

$$f = f1_{C_{++}} + f1_{C_{+-}} + f1_{C_{-+}} + f1_{C_{--}} + f1_{N}.$$

Question 2 Si x appartient à C_{++} , ||x|| > 1, $x_1 > 0$ et $x_2 > 0$, donc r = ||x|| > 1 et $x_1 = \sqrt{r^2 - x_2^2} < r$. Réciproquement, si r > 0 et $0 < x_1 < r$, l'unique antécédent de (x_1, r) par h dans C_{++} est $(x_1, \sqrt{x_1^2 - r^2})$. La fonction h est donc une bijection de C_{++} dans

$$U := \{(x_1, r) \in]0, +\infty[\mid x_1 < r\}.$$

De plus, h est continûment différentiable, car elle est partout différentiable et les coefficients de sa matrice jacobienne

$$J_h(x_1, x_2) = \begin{bmatrix} 1 & 0\\ \frac{x_1}{\sqrt{x_1^2 + x_2^2}} & \frac{x_2}{\sqrt{x_1^2 + x_2^2}} \end{bmatrix}$$

sont continus par rapport à (x_1, x_2) . On à également

$$J_{h^{-1}}(x_1, r) = \begin{bmatrix} 1 & 0\\ -\frac{x_1}{\sqrt{r^2 - x_1^2}} & \frac{r}{\sqrt{r^2 - x_1^2}} \end{bmatrix}$$

Question 3 Si l'on considère les variables x_1 et x_2 , la formule du théorème de changement de variables (p. 15) nous fournit

$$\int_{C++} ||x||^{-\alpha} dx = \int_{U} r^{-\alpha} |\det J_{h^{-1}}(x_1, r)| dx_1 dr,$$

soit

$$\int_{C++} ||x||^{-\alpha} dx = \int_{U} r^{-\alpha} \frac{r}{\sqrt{r^2 - x_1^2}} dx_1 dr = \int_{U} r^{-\alpha} \frac{1}{\sqrt{1 - (x_1/r)^2}} dx_1 dr;$$

un nouveau changement de variable introduisant $y = x_1/r \in]0,1[$ fournit

$$\int_{C++} ||x||^{-\alpha} dx = \int_{]0,1[\times]0,+\infty[} r^{-\alpha} \frac{1}{\sqrt{1-y^2}} r \, dy dr$$
$$= \int_{]0,1[\times]0,+\infty[} \frac{1}{r^{\alpha-1}} \frac{1}{\sqrt{1-y^2}} \, dy dr$$

La fonction $x \mapsto ||x||^{-\alpha}$ est donc intégrable si et seulement si cette dernière intégrale est bien définie. Or, l'intégrande

$$(y,r) \in]0,1[\times]0,+\infty[\mapsto \frac{1}{r^{\alpha-1}}\frac{1}{\sqrt{1-y^2}}$$

– et donc son extension par zéro à \mathbb{R}^2 – sont mesurables et positives, donc la caractérisation par le théorème de Tonelli (p. 14) est valable. Pour tout r > 0, la fonction en question est intégrable par rapport à y sur]0,1[et

$$\int_{]0,1[} \frac{1}{r^{\alpha-1}} \frac{1}{\sqrt{1-y^2}} \, dy = \frac{1}{r^{\alpha-1}} [\arcsin y]_0^1 = \frac{\pi}{2r^{\alpha-1}}.$$

La fonction $r]0, +\infty[\mapsto r^{\alpha-1}$ étant intégrable si et seulement si $\alpha > 2$, nous avons bien établi le résultat recherché.

Déformations d'un compact à bord régulier

Question 1 Sous les hypothèses de l'énoncé, nous avons établi en exercice de "Calcul Différentiel II" que la fonction T est un C^1 -difféomorphisme global de \mathbb{R}^n dans l'ouvert $T(\mathbb{R}^n)$.

L'ensemble T(K) est un ensemble compact comme image d'un ensemble compact par une application continue. Comme T est un difféomorphisme, un point y de \mathbb{R}^n est intérieur à T(K) si et seulement si $x = T^{-1}(y)$ est intérieur à K. Les points de la frontière $\partial T(K)$ sont donc les images des points de ∂K par T.

Soit $y_0 \in \partial T(K)$ et $x_0 = T^{-1}(y_0) \in \partial K$. Dans un voisinage V de x_0 , il existe une fonction continûment différentiable $g: V \to \mathbb{R}$ de différentialle non nulle en x_0 telle que $g(x) \leq 0$ équivaut à $x \in K$. Par conséquent, $y \in T(V)$ appartient à T(K) si et seulement si $g \circ T^{-1}(y) \leq 0$. La fonction $g \circ T^{-1}$ est continûment différentiable et

$$d(g \circ T^{-1})(y_0) = dg(T^{-1}(y_0)) \cdot dT^{-1}(y_0) = dg(x_0) \cdot (dT(x_0))^{-1}.$$

Soit $u \in \mathbb{R}^n$ tel que $dg(x_0) \cdot u \neq 0$; si $v = (dT(x_0)) \cdot u$, $d(g \circ T^{-1})(y_0) \cdot v \neq 0$. La différentielle de $g \circ T^{-1}$ est donc non nulle en y_0 . Par la caractérisation implicite des compacts à bord C^1 (p. 17), T(K) est donc un compact à bord C^1 de \mathbb{R}^n .

Ovales de Cassini

Question 1 Montrons tout d'abord que l'ensemble K est compact. Si les points (x_k, y_k) de \mathbb{R}^2 appartiennent à K, ils vérifient $(x_k^2 + y_k^2)^2 - 2a^2(x_k^2 - y_k^2) + a^4 \leq b^4$; si la suite converge vers (x, y), par continuité $(x^2 + y^2)^2 - 2a^2(x^2 - y^2) + a^4 \leq b^4$ et donc $(x,y) \in K$. L'ensemble K est donc fermé. De plus pour tout $(x,y) \in K$, comme

$$\|(x,y)\|^4 = (x^2 + y^2)^2 \text{ et } x^2 - y^2 \le \|(x,y)\|^2,$$

on a $||(x,y)||^4 \le b^4 - a^4 + 2a^2 ||(x,y)||^2$, donc si

$$\frac{\|(x,y)\|^4}{2} \ge b^4 \text{ et } \frac{\|(x,y)\|^2}{2} \ge 2a^2,$$

le point (x,y) n'appartient pas à K; l'ensemble K est donc borné. Fermé et borné dans \mathbb{R}^2 , l'ensemble K est donc compact.

Pour montrer que l'on a affaire à un ensemble compact à bord C^1 , nous souhaitons utiliser le résultat sur la caractérisation implicite de ces ensembles (p. 17). La fonction g de ce théorème prend bien sûr ici la forme

$$q(x,y) := (x^2 + y^2)^2 - 2a^2(x^2 - y^2) + a^4 - b^4$$

puisque $x \in K$ si et seulement si $g(x,y) \neq 0$. Il nous suffit donc de vérifier que gest C^1 , ce qui est évident, et qu'en tout point de la frontière de K, la différentielle de g – ou son gradient – est non-nulle. On se convaincra que tout point (x, y) de la frontière de K vérifie nécessairement g(x,y) en exploitant la continuité de g. Par conséquent, notre démonstration sera achevée si nous montrons qu'aucun point (x,y) de \mathbb{R}^2 ne satisfait simultanément

$$g(x,y) = 0$$
, $\partial_x g(x,y) = 0$ et $\partial_y g(x,y) = 0$.

Or $\partial_x g(x,y) = 4(x^2 + y^2)x - 4a^2x$ et $\partial_x g(x,y) = 4(x^2 + y^2)y + 4a^2y$; de la nullité de ces deux dérivées partielles, on déduit

$$(x^2 + y^2)x = a^2x$$
 et $(x^2 + y^2)y = -a^2y$.

Il nous faut désormais envisager les cas possibles selon que x et y sont nuls ou non:

- $x \neq 0$ et $y \neq 0$ est impossible car les deux équations ci-dessus entraînent alors $(x^2 + y^2) = a^2 = -a^2$ or a > 0. — x = y = 0 est impossible car $g(0,0) = a^4 - b^4 \neq 0$, car a > 0, b > 0 et

- x=0 et $y\neq 0$ entraı̂ne $x^2+y^2=y^2=-a^2$, impossible car a>0. finalement, si $x\neq 0$ et y=0, $x^2+y^2=x^2=a^2$, ce qui réinjecté dans g(x,0)=0 fournit $a^4-2a^4+a^4-b^4=0$, soit $b^4=0$, également impossible

Aucun point (x,y) de \mathbb{R}^2 n'annule simulanément g et son gradient; l'ensemble K est donc bien un compact à bord C^1 .

Intégrales de surface

Question 1 Comme la normale extérieure à B en ∂B vaut $n(x)=(x_1,x_2)$ et que $x_1^2+x_2^2=1$ sur ∂B , on a en posant $v(x)=(x_1,x_2)$ sur B l'égalité

$$\int_{\partial B} \sigma(dx) = \int_{\partial B} (x_1^2 + x_2^2) \, \sigma(dx) = \int_{\partial B} \langle v(x), n(x) \rangle \, \sigma(dx)$$

et donc par le théorème de la divergence

$$\int_{\partial B} \sigma(dx) = \int_{B} \operatorname{div} v(x) \, dx = \int_{B} (\partial_{1} x_{1} + \partial_{2} x_{2}) \, dx = 2 \int_{B} dx.$$

L'intégrale initiale est donc égale au double de l'aire du disque unité, soit 2π . Concernant la seconde intégrale, on à l'égalité

$$\int_{\partial B} x_1^2 \sigma(dx) = \int_{\partial B} \langle v(x), n(x) \rangle \, \sigma(dx) \text{ avec } v(x) = (x_1, 0)$$

et donc par le théorème de la divergence

$$\int_{\partial B} x_1^2 \sigma(dx) = \int_B \operatorname{div} v(x) \, dx = \int_B (\partial_1 x_1 + \partial_2 0) \, dx = \int_B dx.$$

L'intégrale initiale est donc égale à l'aire du disque unité, soit π .

Rétraction

Source: (Kannai 1981)

Question 1 On déduit de l'identité $||f(x)||^2 = \langle f(x), f(x) \rangle = 1$ valable sur B que pour tout $h \in \mathbb{R}^2$,

$$\langle df(x) \cdot h, f(x) \rangle + \langle f(x), df(x) \cdot h \rangle = 2 \langle df(x)^{\top} \cdot f(x), h \rangle = 0$$

et donc la relation $J_f(x)^t f(x) = 0$. La valeur f(x) étant non nulle, cela entraîne la non-inversibilité de la matrice jacobienne $J_f(x)$, ou ce qui est équivalent, la nullité du déterminant jacobien det $J_f(x)$. En conséquence,

$$\int_{B} \det J_f(x) \, dx = 0.$$

Question 2 La fonction f étant de classe C^2 , on a

$$\det J_f = (\partial_1 f_1)(\partial_2 f_2) - (\partial_1 f_2)(\partial_2 f_1)$$

$$= \partial_1 (f_1 \partial_2 f_2) - f_1 \partial_{12}^2 f_2 - \partial_2 (f_1 \partial_1 f_2) + f_1 \partial_{21}^2 f_2$$

$$= \partial_1 (f_1 \partial_2 f_2) - \partial_2 (f_1 \partial_1 f_2)$$

Par le théorème de la divergence, on a donc

$$\int_{B} \det J_{f}(x) dx = \int_{\partial B} (n_{1}(f_{1}\partial_{2}f_{2}) - n_{2}(f_{1}\partial_{1}f_{2}))\sigma$$
$$= \int_{\partial B} f_{1} \langle \nabla f_{2}, t \rangle \sigma$$

où t(x) désigne le vecteur tangent à ∂B en x:

$$t(x) = (-n_2(x), n_1(x)).$$

Comme la normale extérieure à B en $x = (x_1, x_2) \in \partial B$ est donnée par $n(x) = (x_1, x_2)$, on a $t(x) = (-x_2, -x_1)$. Par ailleurs, comme f(x) vaut identiquement x sur ∂B , $f_2(x)$ vaut x_2 et par conséquent

$$\langle \nabla f_2(x), t(x) \rangle = \langle \nabla(x_2), t(x) \rangle = x_1,$$

soit, puisque $f_1(x) = x_1 \text{ sur } \partial B$,

$$\int_{B} \det J_f(x) \, dx = \int_{\partial B} x_1^2 \, \sigma(dx) > 0.$$

Si une telle rétraction existait, on aurait donc une contradiction.

Intégration par parties

Question 1 On obtient le théorème d'intégration par parties en appliquant le théorème fondamental du calcul à la dérivée du produit fg.

Supposons de façon analogue que U est un ouvert de \mathbb{R}^n , K un ensemble compact à bord C^1 de U et que $f, g: U \to \mathbb{R}$ sont deux fonctions de classe C^1 . Le produit fg est également de classe C^1 et pour tout $i \in \{1, \ldots, n\}$,

$$\int_{K} \partial_{i}(fg)(x) dx = \int_{\partial K} n_{i}(x) f(x) g(x) \sigma(dx),$$

soit

$$\int_{K} (\partial_{i} f(x)) g(x) dx = \int_{\partial K} n_{i}(x) f(x) g(x) \sigma(dx) - \int_{K} f(x) (\partial_{i} g(x)) dx.$$

Alternativement, si $f: U \to \mathbb{R}$ et $v: U \to \mathbb{R}^n$ sont deux fonctions de classe C^1 , comme fv est de classe C^1 et que div $fv = f \operatorname{div} v + \langle \nabla f, v \rangle$, par le théorème de la divergence appliqué à fv on obtient

$$\int_{K} \langle \nabla f(x), v(x) \rangle \ dx = \int_{\partial K} f(x) \langle v(x), n(x) \rangle \ \sigma(dx) - \int_{K} f(x) \operatorname{div} v(x) \ dx.$$

Réferences

Kannai, Yakar. 1981. "An Elementary Proof of the No-Retraction Theorem." *American Mathematical Monthly* 88: 264–68.

Swartz, Charles. 2001. Introduction to Gauge Integrals. Singapore: World Scientific.