Report of Project 1 A Review of Convexified Convolutional Neural Network

Xiaodong Jia June 10, 2017

Contents

1 Introduction

In this report, we analysis the convexification of a two layer neural network based on this paper¹, make a review of the related works and use some new methods to solve the same problem.

2 A Brief Summary of the Main Ideas

A convolutional neural network (CNN) can be written as a function f(x),

$$f: \mathbb{R}^{d_0} \to \mathbb{R}^{d_2}$$
,

where d_0 is the dimension of input vectors x, d_2 is the number of classes. Particularly, for a two layer convolutional neural network, the following form separates the trainable parameters and other terms,

$$f^{A}(x) := (\operatorname{tr}(Z(x)A_{1}), ..., \operatorname{tr}(Z(x)A_{d_{2}})),$$

where A denotes all trainable parameters, and Z only depends on the inputs. If the loss function $\mathcal{L}(f;y)$ is convex about f, $\mathcal{L}(f^A(Z))$ is convex about A. We can then solve the convex optimization problem

$$\widehat{A} \in \operatorname{argmin}_{\|A\|_* \leq R} \widetilde{\mathcal{L}}(A)$$

where $\tilde{\mathcal{L}}(A) = \sum_{i=1}^{n} \mathcal{L}(f^{A}(x_{n}); y_{n}), n$ is the size of mini-batch, $\|\cdot\|_{*}$ denotes the nuclear norm, and R is a restriction. \widehat{A} is then transformed to the corresponding parameters of the CNN.

As a result, the original non-convex problem is tranformed to a convex one.

3 The Construction of A Two-layer Convexified Convolutional Neural Network

A two-layer convolutional can be written as a function $f: \mathbb{R}^{d_0} \to \mathbb{R}^{d_2}$, it takes in a vector x, which is often the vector-representation of a picture. In the context of this report, the output f(x) is a discrete distribution vector, i.e. the kth element $f_k(x) \in [0,1]$ denotes the probability of x belonging to class k.

In a more common explanation, the input vector, or picture, x, is first separated to P patches, which can be written as a function $z_p(x) \in \mathbb{R}^{d_1}, 1 \leq p \leq P$.

Then, each patch is transformed to r scalars, which can be written as $h_j(z_p) = \sigma(w_j^T z_p), 1 \leq j \leq r$, where $w_j \in \mathbb{R}^{d_1}, \ \sigma : \mathbb{R} \to \mathbb{R}$ is in general a non-linear function. Each h_j is known as a filter.

Now we have $P \times r$ scalars. These scalars are finally summed together with weights, denoting as $\alpha_{k,j,p}$. The two-layer CNN can then be written as

$$f_k(x) := \sum_{j=1}^r \sum_{p=1}^P \alpha_{k,j,p} h_j(z_p(x)).$$

¹Convexified Convolutional Neural Networks, see https://arxiv.org/abs/1609.01000.

When σ is identity, i.e. $\sigma(x)=x, x\in\mathbb{R}$, we can separate the trainable parameters α, w with other constants.