

RD-A143 362

SPECIAL FINITE ELEMENTS FOR ANALYSIS OF SOIL
CONSOLIDATION(U) OHIO STATE UNIV RESEARCH FOUNDATION
COLUMBUS R S SANDHU ET AL. AUG 83 OSURF-715107-83-2
UNCLASSIFIED AFOSR-TR-84-0580 AFOSR-83-0055

1/1

F/G 8/13

NL

END

IN MED

DMC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

AD-A143 362

AFOSR-TR-
62

RF Project 763420/715107

SPECIAL FINITE ELEMENTS FOR ANALYSIS OF SOIL CONSOLIDATION

Ranbir S. Sandhu, Shyan Chyun Lee, and Hwie-Ing The
Department of Civil Engineering

DEPARTMENT OF THE AIR FORCE
Air Force Office of Scientific Research
Bolling Air Force Base, D.C. 20332

Grant No. AFOSR-83-0055

RECEIVED
JUL 24 1984

A

August, 1983

DMC FILE COPY

OSU

The Ohio State University
Research Foundation
1314 Kinnear Road
Columbus, Ohio 43212

84 07 24 036

Public release;
Distribution unlimited.

UNCL

SECURITY CLASSIFI

THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE			
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5. MONITORING ORGANIZATION REPORT NUMBER(S) AFOSR-TR- 84-0580	
6a. NAME OF PERFORMING ORGANIZATION The Ohio State University	6b. OFFICE SYMBOL (If applicable) NA	7a. NAME OF MONITORING ORGANIZATION AFOSR/NA	
6c. ADDRESS (City, State and ZIP Code) 1314 Kinnear Road Columbus, Ohio 43212		7b. ADDRESS (City, State and ZIP Code) Building 410 Bolling AFB, DC 20332	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION AFOSR	8b. OFFICE SYMBOL (If applicable) NA	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER AFOSR-83-0055	
10c. ADDRESS (City, State and ZIP Code) Building 410 Bolling AFB, DC 20332		10. SOURCE OF FUNDING NOS.	
		PROGRAM ELEMENT NO. 61102F	PROJECT NO. 2307
11. TITLE (Include Security Classification) Special Finite Elements for Analysis of Soil		TASK NO. C1	
12. PERSONAL AUTHOR(S)		WORK UNIT NO.	
13a. TYPE OF REPORT Annual	13b. TIME COVERED FROM _____ TO _____	14. DATE OF REPORT (Yr., Mo., Day) August 1983	15. PAGE COUNT 62
16. SUPPLEMENTARY NOTATION			
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)	
FIELD	GROUP		
19. ABSTRACT (Continue on reverse if necessary and identify by block number) Use of 'singularity' elements to model pore-pressure in the vicinity of free-draining loaded surfaces, immediately after application of loads at these surfaces is discussed. One-dimensional consolidation is considered. Comparison of numerical results with the exact solution shows that use of specially designed elements approaching 'singularity' may succeed in reducing the error in pore-pressure.			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT. <input checked="" type="checkbox"/> DTIC USERS <input type="checkbox"/>		21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED	
22a. NAME OF RESPONSIBLE INDIVIDUAL LTC Lawrence D. Hokanson		22b. TELEPHONE NUMBER (Include Area Code) (202) 767-4935	22c. OFFICE SYMBOL AFOSR/NA

DD FORM 1473, 83 APR

EDITION OF 1 JAN 73 IS OBSOLETE.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

84 07 24 036

OSURF-715107-83-2

SPECIAL FINITE ELEMENTS
FOR
ANALYSIS OF SOIL CONSOLIDATION

By

Ranbir S. Sandhu
Shyan Chyun Lee
Hwile-Ing The

August 1983

Prepared for:

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Grant: AFOSR-83-0033

AIR FORCE
OFFICE OF
SCIENTIFIC
RESEARCH

Geotechnical Engineering Report No. 9

W. T. J. ...
Chief, Technical Information Division

THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION
1314 Kinnear Road, Columbus, Ohio 43212

ABSTRACT

Use of 'singularity' elements to model pore-pressure in the vicinity of free-draining loaded surfaces, immediately after application of loads at these surfaces is discussed. One-dimensional consolidation is considered. Comparison of numerical results with the exact solution shows that use of specially designed elements approaching 'singularity' may succeed in reducing the error in pore-pressure.

A-1

TABLE OF CONTENTS

ABSTRACT.....	i
TABLE OF CONTENTS.....	ii
LIST OF FIGURES.....	iii
LIST OF TABLES.....	v
I. INTRODUCTION.....	1
II. EQUATIONS GOVERNING LINEAR ELASTIC SOIL CONSOLIDATION.....	2
II.A The Differential Equations.....	2
II.B Spatial Interpolation.....	3
III. PORE-PRESSESURES NEAR LOADED FREE-DRAINING BOUNDARIES.....	4
III.A Preliminaries.....	4
III.B Singularity Elements.....	4
III.B.i The two-node singularity element.....	4
III.B.ii The three-node singularity element.....	5
III.B.iii Interpolation functions for the quadrilateral singularity elements.....	5
IV. NUMERICAL PERFORMANCE.....	7
IV.A Introduction.....	7
IV.B The Example Problem.....	7
IV.C Results of the Analysis.....	8
V. CONCLUSIONS.....	9
VI. ACKNOWLEDGEMENTS.....	9
VII. REFERENCES.....	10

LIST OF FIGURES

FIGURE 1. FUNCTION $f(x)=1-x^n$	13
FIGURE 2. SINGULARITY ELEMENT - SINGULARITY ALONG AXIS t AT EDGE 3-4	14
FIGURE 3. CONSOLIDATING SOIL COLUMN - TERZAGHI'S PROBLEM	15
FIGURE 4. FINITE ELEMENT MESH (8-4 ELEMENT)	16
FIGURE 5. DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE-PRESSURE (Special 8-4 Element, Shape Function based on $f(x)=1-x^n$)	
5A. LOCATION = .03H; n=2,3,4,5,10,30,40,48	17
5B. LOCATION = .06H; n=5,10,30,40,48	20
5C. LOCATION = .09H; n=5,10,30,40,48	22
FIGURE 6. DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE-PRESSURE (Special 8-4 Element, Shape Function based on $f(x)=1-ax-(1-a)x^n$, $a=1-e^{-st}$)	
6A. LOCATION = .03H; n=5; a=10,20	24
6B. LOCATION = .03H; n=10; a=10,15,20	25
6C. LOCATION = .03H; n=15; a=15,20	27
6D. LOCATION = .03H; n=30; a=30,32.5,40	28
6E. LOCATION = .03H; n=40; a=40	30
6F. LOCATION = .03H; n=48; a=0,40,60,70	31
6G. LOCATION = .06H; n=48; a=0,40,60,70	33
6H. LOCATION = .09H; n=48; a=0,40,60,70	35
FIGURE 7. DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE-PRESSURE (Special 8-4 Element, Shape Function based on $f(x)=1-ax-(1-a)x^n$, $a=1-e^{-st}$)	37
FIGURE 8. SPATIAL DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE-PRESSURE	
8A. $T'=0, .000021, .000042, .000105, .00021$	38
8B. $T'= .00063, .001154, .002204, .006402, .01165$	39
8C. $T'= .022146, .043137, .064128, .106111, .316023$	40
8D. $T'= .523936, 1.153674, 5.353927$	41

LIST OF FIGURES (CONTINUED)

FIGURE 9. DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE-PRESSURE (Special 8-6 Element, Shape Function based on $f(x)=a+bx+cx^n$)	
9A. LOCATION = .015H; n=5,10,20,40,48	42
9B. LOCATION = .03H; n=5,10,20,40,48	44
9C. LOCATION = .06H; n=5,10,20,40,48	46
9D. LOCATION = .09H; n=5,10,20,40,48	48
FIGURE 10. DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE-PRESSURE (Special 8-4 Element, Shape Function based on $f(x)=1-x^n$, 5 point integration)	
10A. LOCATION = .03H; n=5,10,20,30,40,50,60,62.5,65,67.5	50
10B. LOCATION = .06H; n=50,60,62.5,65,67.5	53
10C. LOCATION = .09H; n=50,60,62.5,65,67.5	55

LIST OF TABLES

TABLE 1. PORE PRESSURE USING SPECIAL 8-4 ELEMENT(Shape function based on $f(x)=1-x^n$)	
1A. LOCATION = .03H; n=2,3,4,5,10	18
1B. LOCATION = .03H; n=30,40,48	19
1C. LOCATION = .06H; n=5,10,30,40,48	21
1D. LOCATION = .09H; n=5,10,30,40,48	23
TABLE 2. PORE PRESSURE USING SPECIAL 8-4 ELEMENT(Shape function based on $f(x)=1-ax-(1-a)x^n$; $a=1-e^{-at}$)	
2A. LOCATION = .03H; n(m)=5(10),5(20),10(10),10(15),10(20)	26
2B. LOCATION = .03H; n(m)=15(15),15(20),30(30),30(32.5),30(40)	29
2C. LOCATION = .03H; n(m)=40(40),48(0),48(40),48(60),48(70)	32
2D. LOCATION = .06H; n(m)=48(0),48(40),48(60),48(70)	34
2E. LOCATION = .09H; n(m)=48(0),48(40),48(60),48(70)	36
TABLE 3. PORE PRESSURE USING SPECIAL 8-6 ELEMENT(shape function based on $f(x)=a+bx+cx^n$)	
3A. LOCATION = .015H; n=5,10,30,40,48	43
3B. LOCATION = .03H; n=5,10,30,40,48	45
3C. LOCATION = .06H; n=5,10,30,40,48	47
3D. LOCATION = .09H; n=5,10,30,40,48	49
TABLE 4. PORE PRESSURE USING SPECIAL 8-4 ELEMENT WITH 5-POINT INTEGRATION(Shape function based on $f(x)=1-x^n$)	
4A. LOCATION = .03H; n=5,10,20,30,40,48	51
4B. LOCATION = .03H; n=50,60,62.5,65,67.5	52
4C. LOCATION = .06H; n=50,60,62.5,65,67.5	54
4D. LOCATION = .09H; n=50,60,62.5,65,67.5	56

I. INTRODUCTION

Use of the finite element method for solution of soil consolidation problems is well established. Since the first application of this method [1,2], considerable progress has been made in the theoretical formulation as well as the computational procedures. Recent advances include variational formulations admitting limited smoothness of finite element bases [3,4], experimentation with several different spatial interpolation schemes [5-9] and investigation of various temporal approximation methods [6,9-15]. The finite element method has been applied to soils exhibiting secondary compression [8,11,13], nonlinear soil behavior [13,16-20], and to finite deformation [16,18,20]. Developments in solution procedures include use of Laplace transforms [10,11,14], automatic selection of the time-step size [13] and the use of single variable formulations [21,22]. Other developments cover use of boundary element methods [23,24], allowance for infinitely distant boundaries, material interfaces, etc.

One particular aspect of the finite element procedures for soil consolidation has been the difficulty in reproducing accurately the pore-water pressures near loaded free-draining surfaces immediately after application of loads at these surfaces. This can be troublesome in problems involving inelastic soil behavior. Yokoo's [25] formulation, not requiring the fluid pressure to satisfy the prescribed boundary condition at the free-draining boundary gave good solution immediately after loading. Buchbauer's [26] studies showed that transition elements, using higher order interpolation, near loaded boundaries had only limited success. Vermeer [27] suggested that the fluid pressure boundary condition be enforced as a 'ramp' condition to limit the error.

Herein we report numerical performance of another approach to development of finite element procedures to satisfactorily model the pore-pressure distribution in the vicinity of free-draining loaded surfaces. It consists of using 'singularity' elements. In the second section we state the two-field formulation of the boundary value problem of consolidation of linear elastic soils. The third section contains a discussion of the problem of determining the pore pressures in the vicinity of a free-draining loaded surface and a description of 'singularity' elements. The numerical performance of several variants of the scheme in solution of one-dimensional consolidation is discussed in the fourth section. The fifth section lists the conclusions arrived at as a result of this investigation.

II. EQUATIONS GOVERNING LINEAR ELASTIC SOIL CONSOLIDATION

II.A The Differential Equations

Assuming pore water to be incompressible, the equations of force equilibrium of elementary volumes and of mass continuity may be written in standard indicial notation as [1,7,28]:

$$[E_{klj} u_{k,l,i,j} + \bar{\pi}_{,j} + \rho_f \delta_{ij}] = 0 \quad (1)$$

$$[K_{ij} (\bar{\pi}_{,j} + \rho_f)] + u_{,i,i} = 0 \quad (2)$$

where u_i , f_i , E_{klj} , K_{ij} denote the cartesian components, respectively, of the displacement vector, the body force vector per unit mass, the isothermal elasticity tensor and the permeability tensor. ρ is the mass density of the saturated soil and ρ_2 that of water. $\bar{\pi}$ is the pore water pressure. With these field equations we associate the following boundary conditions:

$$u_i = \hat{u}_i \text{ on } S_{1i} \quad (3)$$

$$t_i = (G_{ji} + \bar{\pi} \delta_{ji}) n_j = \hat{t}_i \text{ on } S_{2i} \quad (4)$$

$$\bar{\pi} = \hat{\bar{\pi}} \text{ on } S_3 \quad (5)$$

$$q_i n_i = 0 \text{ on } S_4 \quad (6)$$

where S_{1i} , S_{2i} are complementary subsets of the boundary of the spatial region of interest and so are S_3 , S_4 .

Discretization of the governing function for the two-field formulation [3,29] followed by application of the variational principle leads to the following matrix equations [1,29,30]:

$$\begin{bmatrix} K & C^T \\ C & \alpha \Delta t \bar{K} \end{bmatrix} \begin{Bmatrix} u(t_1) \\ \bar{\pi}(t_1) \end{Bmatrix} + \begin{bmatrix} 0 & 0 \\ C^T & -(1-\alpha) \Delta t \bar{K} \end{bmatrix} \begin{Bmatrix} u(t_0) \\ \bar{\pi}(t_0) \end{Bmatrix} = \begin{Bmatrix} p_1 \\ p_2 \end{Bmatrix} \quad (7)$$

where (t_0, t_1) is the single time step of interest;

$$\Delta t = t_1 - t_0$$

$\{u(t)\}_i, \{u(t)\}_0$ = vectors of nodal point values of the components of displacement at time t_i, t_0
 respectively;
 $\{\Pi(t)\}_i, \{\Pi(t)\}_0$ = vectors of nodal point values of the pore water pressure at times t_i, t_0
 respectively;
 $\{P\}_i$ = the vector of nodal point loads including applied nodal loads, boundary tractions, body
 forces, initial stresses and effect of displacement constraints;
 $\{P\}_2$ = the vector of nodal point fluxes including applied nodal fluxes, boundary fluxes, body
 force effects and effects of specified pore water pressures;
 $[K]$ = the spatial 'stiffness matrix' for the elastic soil;
 $[\bar{K}]$ = the spatial 'flow matrix' for $\Delta t = 1$;
 α = the coefficient characterizing single step temporal discretization; $\alpha > 0.5$ for stability;
 $[C]$ = the coupling matrix representing the influence of pore water pressures in the force
 equilibrium equation;
 $[C]^T$ = the coupling matrix representing the influence of soil volume change upon the nodal point
 flux.

The matrices $[K]$ and $[\bar{K}]$ depend upon the interpolation schemes for displacements and pore water pressures, respectively. The coupling matrix $[C]$ involves spatial interpolation for both the field variables. The temporal discretization for the single step scheme is reflected in the value of the coefficient α .

Equation (7) includes the 'natural' boundary conditions expressed by Equations (4) and (6). Equations (3) and (5) are satisfied by explicitly requiring $u_i = \hat{u}_i$ on S_{ii} and $\Pi_i = \hat{\Pi}_i$ on S_{3i} .

III.2 Spatial Interpolation

The basic interpolation scheme used in the present study was the 8-4 quadrilateral element introduced by Sandhu [7,30]. In this element, the displacements have biquadratic Lagrange interpolation and the pore water pressure has bilinear Lagrange interpolation which is isoparametric with the element geometry. In this report, this procedure is referred to as the standard PS84 procedure. The singularity elements used near the loaded free-draining surfaces will be described in the next section.

III. PORE-PRESSES NEAR LOADED FREE-DRAINING BOUNDARIES

III.A Preliminaries

Immediately after application of a surface load to a free-draining boundary, the excess pore water pressure remains zero at the surface but has a very steep gradient and rises, over an extremely short distance into the soil mass, to a magnitude comparable with the applied stress. Finite element interpolations commonly used do not have [29] the capability to model this locally high pore pressure gradient near the surface. Attempts to overcome this difficulty have included use of variational principles where the pressure field is not required to satisfy the specified boundary condition [25], using fine mesh near the loaded surface, and using higher order interpolation near the loaded surface [26]. None of these gives satisfactory results. During consolidation of nonlinear soils, the stress solution at any time step defines the mechanical behavior for the next step. Therefore, it is important to get sufficiently accurate element stresses at each time step. In the work reported herein, an alternative approach based on use of special 'singularity elements' was used.

III.B Singularity Elements

Singularity elements, using special interpolation schemes which reflect the actual variation in the variables, have been extensively used for analysis of fracture where the stresses are unbounded at the crack-tip. Hughes and Akin [31] proposed special functions for point as well as line singularities. In the present work only line singularity was considered in the context of a two-dimensional problem.

Consider the sequence of functions

$$f(x) = 1 - x^n \quad (8)$$

over the domain $[0,1]$. Figure 1 shows the plots for $n=0$ through 5. In the limit as $n \rightarrow \infty$, $f(x) = 1$ for x in the interval $[0,1]$ and $=0$ at $x=1$. This is the type of discontinuity encountered in consolidation analysis. Two types of singularity elements were considered.

III.B.i The two-node singularity element

In one dimension, over range $[0,1]$, the singularity element would use interpolation functions

$$1-x^n, x^n$$

where n is sufficiently large. For $n=1$ this reduces to linear interpolation. Noting that the error in pore water pressures near loaded free-draining boundaries is of relevance only immediately after loading and decays with advance in the time domain, it appeared reasonable to use a composite element which would approximate the singularity for small values of the 'elapsed time' after loading and reduce to linear interpolation for large

values of the time variable. This led to use of variants of the type

$$f(x) = 1 - ax - (1-a)x^n \quad (9)$$

where $a=0$ approximates the singularity element and $a=1$ gives linear interpolation. Thus, the coefficient a has to be assigned a value growing with time from 0 to 1. The scheme investigated was based on

$$a = 1 - \exp(-\alpha T) \quad (10)$$

where α is a scalar coefficient and T the non-dimensional 'time factor'. The investigation covered a range of values of n and α .

III.B.ii The three-node singularity element

This element would directly involve three functions, viz.,

$$1, x, x^n$$

where n is sufficiently large. This was expected to include linear interpolation and approximation of the singularity at the same time.

III.B.iii Interpolation functions for the quadrilateral singularity elements

Special 8-4 and 8-6 elements were used to model the singularity. Figure 2 shows the arrangement for the two elements. The line singularity implies singularity in one variable only. In the following we assume this to be the variable t . For the 8-4 element the interpolating functions are:

$$(N) = \left\{ \begin{array}{l} (1-s)(1-t)^n \\ s(1-t)^n \\ st^n \\ (1-s)t^n \end{array} \right\} \quad (11)$$

where the range of s, t is $[0,1]$. If the variant expressed by Equation (9) is employed;

$$(N) = \begin{cases} (1-s)(1-at-(1-a)t^n) \\ s(1-at-(1-a)t^n) \\ s(at+(1-a)t^n) \\ (1-s)(at+(1-a)t^n) \end{cases} \quad (12)$$

For the 8-6 element, the interpolating functions are:

$$(N) = \begin{cases} (1-s)((1-t^n)-(2-b)M) \\ s((1-t^n)-(2-b)M) \\ s(t^n-bM) \\ (1-s)(t^n-bM) \\ 2sM \\ 2(1-s)M \end{cases} \quad (13)$$

where

$$b = 2^{\frac{1-n}{2}}$$

and

$$M = (t-t^n)/(1-2(.5)^n)$$

IV. NUMERICAL PERFORMANCE

IV.A Introduction

Several investigators [33 thru' 39] have used the finite element method to obtain approximate solutions to the problem of soil consolidation. Using different interpolation schemes all have generally reported success with whatever scheme they used. Comparative evaluations of different schemes are rare. Some comparisons of numerical performance were attempted by Sandhu [7,8]. In evaluating various procedures, Sandhu [29] proposed that the following criteria be used.

- i. The interpolation scheme must conform with the assumptions regarding continuity and differentiability used in setting up the governing variational formulation.
- ii. It should be possible to generate the 'undrained' solution i.e., the state of fluid pressures and displacements at time $t=0+$.
- iii. For sufficiently small time steps, the scheme should be insensitive to the choice of the time step size.

The 8-4 element is known to satisfy all the three conditions [7,8,29] except that near drained loaded surfaces, the solution at $t = 0+$ has an error which decays with advance in the time domain [7]. If the solution immediately after loading was of no interest, the 8-4 interpolation scheme would be adequate. However, if accuracy of the solution at $t=0+$ is important (e.g. in nonlinear or cyclic consolidation), modifications to the element interpolation scheme are necessary. Indeed this was the primary motivation for the present investigation.

IV.B The Example Problem

The procedures described were applied to Terzaghi's problem of one dimensional consolidation. For this problem, the theoretical solution is known and, therefore, precise comparisons were possible. The dimensions of the consolidating soil column and the soil properties were the same as in Sandhu's example [7]. Figure 3 shows the soil column. Figure 4 shows the finite element model. The time domain was partitioned as tabulated below:

- 1 step of $\Delta t = 0$ to get the 'undrained' solution
- 1 step of $\Delta t = 0.00001$ over $[0.0, 0.00001]$
- 1 step of $\Delta t = 0.01$ over $[0.00001, 0.01001]$
- 9 steps of $\Delta t = 0.01$ over $[0.01001, 0.10001]$
- 10 steps of $\Delta t = 0.1$ over $[0.10001, 1.10001]$
- 10 steps of $\Delta t = 1.0$ over $[1.10001, 11.10001]$
- 9 steps of $\Delta t = 10.0$ over $[11.10001, 101.10001]$
- 10 steps of $\Delta t = 100.0$ over $[101.10001, 1101.10001]$

8 steps of $\Delta t = 1000.0$ over [1101.10001, 9101.10001]

IV.C Results of the Analysis

The example problem was solved using the special singularity elements described earlier. The solution in each case gave nodal point values of the pore pressures. The error in the solution was non-dimensionalized through division by the applied surface load.

Figure 5A and Tables IA, IB show the history of pore water pressure using the 8-4 element with functions of the type expressed by Equation (8) at depth .03H below the top free-draining boundary of the soil column of height H. Results show that the 'immediate' pore water pressure obtained by this method was more accurate than that obtained using the PS84. However, the pore pressure dropped sharply after application of the load and accuracy in pore pressures was worse than that of PS84 in later time stages. Apparently, the error in pore pressure at later time stages was due to the absence of the linear term from the interpolation scheme. For time factor values upto .03 the error reduced with n increasing upto 5. For time factor values greater than .3 the error increased with increasing n.

Figure 5B and Table IC show the results at a point .06H below the loaded surface. Figure 5C and Table ID give the results at a depth of .09H. As would be expected, the error at these points is throughout smaller than at .03H. The pattern of dependence upon n and the value of the time factor is essentially pn 23 the same.

To combine the ability of the singularity interpolation to give accurate 'immediate' pore pressures and the accuracy of the PS84 element for later time stages, it appeared reasonable to set up shape functions such that the element has the characteristics of the singularity element at early stages and these change to those of PS84 as time increases. For this reason, shape functions of the type expressed by Equation (9) were developed. Figures 6A thru' 6F and Tables 2A thru' 2C show the effect of variation in n for values of n equal to 5,10,15,30,40 and 48. Figures 6G, 6H and Tables 2D, 2E give additional information, for n equal to 48, for the locations .06H and .09H below the surface.

Figure 7 compares the results for various values of n paired with the optimal (out of the set tried) value of a in each case. The least error in initial pore pressures was realized for n=48, a=40. However, the error was seen to grow with time. The best overall accuracy was obtained for n=30, a=32.5. For this case, the maximum error was less than three percent. Figures 8A thru' 8D show the spatial variation of error in the calculated pore pressures for this choice of n,a.

Figures 9A thru' 9D and Tables 3A thru' 3D illustrate the results obtained using the 8-6 singularity element. Accuracy of the pore pressure at any location of the entire soil column except .03H and .015H below the loaded surface is good. At later time stages also the pore pressures compared well with the exact solution and did not differ much from the results of the PS84 element regardless of the value of n (so long as it was greater than 5) in the singularity element; n=10 gave the best results.

Exact evaluation of the element matrices requires the Gaussian quadrature to use a number of integration points equal to the index n (for n an integer). This can be quite expensive. The CPU time using 48 integration points for only one element was about 50 percent more than that for the PS84 system. To reduce computational costs, use of reduced integration order for the 8-4 element, using interpolants in Equation (8) was investigated. The error in pore pressures, using five point integration, increased with n upto 20. Beyond this value of n the error decreased. The best results were obtained for n equal to 62.5. The results are summarized in Figures 10A thru' 10C and Tables 4A thru' 4D.

V. CONCLUSIONS

Numerical performance of the several schemes that were investigated indicates the following:

- i. The 8-4 singularity element using shape functions based $f(x) = 1 - x^n$ gives good values for the 'immediate' pore pressures but at later time stages the results are in error. Accuracy in pore water pressures at all time stages was improved using reduced order of quadrature for sufficiently high value of n .
- ii. The 8-6 'singularity' element using shape functions based on $f(x) = a + bx + cx^n$, yielded good values of the pore pressures at all time stages for most of the soil column. However, at locations close to the loaded surface, the error was quite large. This makes the scheme unsatisfactory.
- iii. Accuracy in pore pressures at all time stages can be achieved using the 8-4 'singularity' element whose shape functions are based on $f(x) = 1 - ax - (1-a)x^n$, in which the coefficient $a = 1 - \exp(-\alpha T)$. This combines the best characteristics of the singularity element with those of the PS84 element.

The foregoing conclusions are based on study of a one-dimensional problem. It is important that the procedures be extended to problems of two and three dimensions (point singularities as well as surface singularities) before firm recommendations for routine use of certain elements can be made. More investigation is also needed in the selection of indices n and α used in the formulation. Further, realizing that the consolidation of soils is a decay process, use of more than one exponential terms in the time domain could possibly enhance accuracy. Use of reduced integration in conjunction with interpolation of the type $f(x) = 1 - ax - (1 - a)x^n$, if successful, would reduce the computational costs.

VI. ACKNOWLEDGEMENTS

This report is based on the second author's M.S. thesis presented to the Ohio State University. The Ohio State University Instruction and Research Computer Center provided the computational facilities. The Air Force Office of Scientific Research provided partial support under Grant AFOSR-83-0053 to the Ohio State University.

VII. REFERENCES

1. R.S. Sandhu, Fluid Flow in Saturated Porous Media, Ph.D. Thesis, University of California, Berkeley, California, 1968.
2. R.S. Sandhu, and E.L. Wilson, "Finite Element Analysis of Seepage in Elastic Media", Proceedings, Amer. Soc. Civ. Engrs., Vol. 95, Jour. Engrg. Mech. Div., 641-652, 1969.
3. R.S. Sandhu, Variational Principles for Soil Consolidation, Report OSURF-3570-2 to National Science Foundation, Dept. of Civil Engineering, The Ohio State University, Columbus, Ohio, 1975.
4. R.S. Sandhu, "Variational Principles for Finite Element Analysis of Soil Consolidation", in Numerical Methods in Geomechanics, Ed. C.S. Desai, Amer. Soc. Civ. Engrs., 20-40, -1976.
5. J. Ghaboussi, and E.L. Wilson, "Flow of Compressible Fluid in Porous Elastic Solids", Int. Jour. Numer. Methods in Engrg., Vol. 5, 419-442, 1973.
6. I.H. Smith, "Transient Phenomena of Offshore Foundations", in Numerical Methods in Offshore Engineering, Eds. O.C. Zienkiewicz, R.W. Lewis, and K.C. Stagg, J. Wiley, 483-513, 1978.
7. R.S. Sandhu, H. Liu, and K.J. Singh, "Numerical Performance of Some Finite Element Schemes for Analysis of Seepage in Porous Elastic Media", Int. Jour. Numer. Anal. Methods in Geomechanics", Vol. 1, 177-194, 1977.
8. R.S. Sandhu, and H. Liu, "Analysis of Consolidation of Viscoelastic Soils", in Numerical Methods in Geomechanics, Ed. W. Wittke, Balkema, 1255-1263, 1979.
9. J.H. Prevost, "Consolidation of Anelastic Porous Media", Proceedings, Amer. Soc. Civ. Engrs., Vol. 107, Jour. Engrg. Mech. Div., 169-186, 1981.
10. J.R. Booker, "A Numerical Method of Solution of Biot's Consolidation Theory", Quar. Jour. Mech. and App. Math., Vol. 26, 445-470, 1973.
11. J.R. Booker, and J.C. Small, "Finite Element Analysis of Primary and Secondary Consolidation", Int. Jour. Solids Struct., Vol. 13, 137-149, 1977.
12. I.H. Smith, J.L. Siemieniuch, and I. Gladwell, "Evaluation of Norsett Methods for Integrating Differential Equations in Time", Int. Jour. Numer. Anal. Methods in Geomechanics, Vol. 1, 57-74, 1977.
13. K. Runesson, On Nonlinear Consolidation of Soft Clay, Publication 78:1, Dept. of Struc. Mech., Chalmers Institute of Technology, Goteborg, Sweden, 1978.
14. J.R. Booker, and J.C. Small, "An Investigation of the Stability of Numerical Solutions of Biot's Equations of Consolidation", Int. Jour. Solids Struct., Vol. 11, 907-917, 1975.
15. P.A. Vermeer, and A. Verruijt, "An Accuracy Condition for Consolidation by Finite Elements", Int. Jour. Numer. Anal. Methods in Geomechanics, Vol. 5, 1-14, 1981.
16. J.P. Carter, J.R. Booker, and J.C. Small, "The Analysis of Finite Elasto-Plastic Consolidation", Int.

- Jour. Numer. Anal. Methods in Geomechanics, Vol. 3, 107-129, 1979.
17. L. Suklje, "Stress and Strain in Nonlinear Viscous Soils", Int. Jour. Numer. Anal. Methods in Geomechanics, Vol. 2, 129-158, 1978.
 18. J.P. Carter, J.C. Seall, and J.R. Booker, "A Theory of Finite Elastic Consolidation", Int. Jour. Solids Struct., Vol. 13, 467-478, 1977.
 19. J.H. Sewardane, and C.S. Desai, "Two Numerical Schemes for Nonlinear Consolidation", Int. Jour. Numer. Methods in Engrg., Vol. 17, 405-426, 1981.
 20. A.B. Moussa, A Coupled Problem of Finite Deformation and Flow in Porous Media, Ph.D. Thesis, The Ohio State University, Columbus, Ohio, 1980.
 21. B.J. Krause, Untersuchungen über Numerische Verfahren für Elastisch-poröse Medien, Dr. Ing. Thesis, Technische Universität, Berlin, West Germany, 1975.
 22. B.J. Krause, "Finite Element Schemes for Porous Elastic Media", Proceedings, Aer. Soc, Civ. Engrs., Vol. 104, Jour. Engrg. Mech. Div., 605-620, 1978.
 23. P.K. Banerjee, and R. Butterfield, "Transient Flow Through Porous Elastic Media", Chapter 2, Developments in Boundary Element Methods-2, Eds. P.K. Banerjee, and R. P. Shaw, Applied Science Publishers, England, 1981.
 24. T. Kuroki, T. Ito, and K. Onishi, "Boundary Element Method in Biot's Linear Consolidation", App. Math. Modelling, Vol. 6, 103-110, 1982.
 25. Y. Yokoo, K. Yamagata, and H. Nagaonka, "Finite Element Method Applied to Biot's Consolidation Theory", Soils and Foundations, Vol. 11, 29-46, 1971.
 26. R. Buchmaier, Personal communications, 1980, 1981.
 27. P.A. Vermeer, Personal communication, 1980.
 28. M.A. Biot, "General Theory of Three-Dimensional Consolidation", Jour. App. Phys., Vol 12, 155-164, 1941.
 29. R.S. Sandhu, Finite Element Analysis of Coupled Deformation and Fluid Flow in Porous Media, NATO Advanced Study Institute, Vimeiro, Portugal, 1981.
 30. R.S. Sandhu, Finite Element Analysis of Soil Consolidation, Report OSURF-3570-3 to National Science Foundation, Dept. of Civ. Engrg., The Ohio State University, Columbus, Ohio, 1976.
 31. T.J.R. Hughes, and J.E. Akin, "Techniques for Developing 'Special' Finite Element Shape Functions with Particular Reference to Singularities", Int. Jour. Numer. Methods in Engrg., Vol. 15, 733-751, 1980.
 32. S.C. Lee, Special Finite Elements for Analysis of Soil Consolidation, M.S. Thesis, The Ohio State University, Columbus, Ohio, 1982.
 33. C.T. Hwang, N.R. Morgenstern, and D.W. Murray, "On Solution of Plane Strain Consolidation Problems by Finite Element Methods", Canadian Geotech. Jour., Vol. 8, 109-118, 1971.
 34. S.A. Asproudas, and C.S. Desai, Analysis and Applications of a Finite Element Procedure for

Consolidation, Dept. of Civ. Engrg., Virginia Polytech. Inst. and State University, Blacksburg, Virginia, 1975.

35. H.L. Martin, Implementation and Comparison of the Biot and Terzaghi-Rendulic Theories of Consolidation, Ph. D. Thesis, University of Colorado, Boulder, Colorado, 1976.
36. S. Valliappan, I.K. Lee, and P. Boonlualohr, "Finite Element Analysis of Consolidation Problems", in Finite Element Methods in Flow Problems, Eds. J.T. Oden, O.C. Zienkiewicz, R. Gallagher, and C. Taylor, University of Alabama at Huntsville Press, Huntsville, Alabama, 1974.
37. Y. Yokoo, K. Yanagata, and H. Nagaonka, "Finite Element Analysis of Consolidation Following Undrained Deformation", Soils and Foundations, Vol. 11, 37-58, 1971.
38. M. Masseria, and M.R. Soulie, Etude par éléments finis des déformations non-drainées dans un milieu poreux, Proceedings, Fifth Canadian Congress of App. Mech., Fredericton, 114-115, 1975.
39. J.T. Christian, and J.W. Boehmer, "Plane Strain Consolidation by Finite Elements", Proceedings, Amer. Soc. Civ. Engrs., Vol. 96, Jour. Soil Mech. Found. Div., 1435-1457, 1970.

FIGURE 1. FUNCTION $f(x) = 1 - x^n$

a. 8-4 ELEMENT

b. 8-6 ELEMENT

FIGURE 2. SINGULARITY ELEMENT - SINGULARITY
ALONG AXIS t AT EDGE 3-4

FIGURE 3. CONSOLIDATING SOIL COLUMN - TERZAGHI'S PROBLEM

FIGURE 4. FINITE ELEMENT MESH (8-4 ELEMENT)

LOCATION = 0.03 H

FIGURE 5A DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE PRESSURE (Special 8-4 Element, Shape Function based on $f(x) = 1-x^n$)

TABLE 1A PORE PRESSURE AT 0.03H BELOW THE SURFACE USING SPECIAL 8-4

ELEMENT (shape function based on $f(x) = 1-x^n$)		2	3	4	5	10	PS84	EXACT
τ	n							
10.0	11.170131	11.130651	11.108655	11.093963	11.057777	11.267909	11.000000	
10.000021	11.114712	11.070553	11.041118	11.018195	10.938806	11.200800	10.999990	
10.000042	11.064806	11.016346	10.980464	10.950565	10.837148	11.141744	10.998177	
10.000105	10.941145	10.881873	10.831388	10.786560	10.610515	11.001348	10.951382	
10.000210	10.792353	10.720632	10.656167	10.598764	10.388006	10.842692	10.836802	
10.000630	10.513842	10.429347	10.359709	10.304161	10.153485	10.572994	10.579220	
10.001154	10.379110	10.301061	10.242951	10.200460	10.100448	10.443835	10.447879	
10.002204	10.262101	10.199028	10.156858	10.128295	10.066048	10.324711	10.333044	
10.006402	10.188499	10.116573	10.092049	10.075733	10.039738	10.200795	10.199339	
10.011650	10.155558	10.085684	10.067517	10.055513	10.029146	10.150597	10.148478	
10.022146	10.115044	10.059339	10.046695	10.038386	10.020185	10.106004	10.107989	
10.043137	10.080045	10.043038	10.033894	10.027883	10.014696	10.077033	10.077490	
10.064128	10.047871	10.035494	10.027956	10.023002	10.012129	10.063605	10.063587	
10.106111	10.037259	10.027615	10.021749	10.017895	10.009439	10.049568	10.049446	
10.316023	10.019706	10.014555	10.011440	10.009400	10.004944	10.026345	10.026243	
10.525936	10.011487	10.008430	10.006599	10.005408	10.002828	10.015482	10.015604	
11.155674	10.002294	10.001652	10.001279	10.001040	10.000534	10.003166	10.003299	
15.353927	10.000001	10.000001	10.000001	10.0	10.0	10.000001	10.0	

TABLE 1B PORE PRESSURE AT 0.03H BELOW THE SURFACE USING SPECIAL 8-4 ELEMENT (shape function based on $f(x) = 1-x^n$)

$\frac{x}{h}$	30	40	48	PS84	EXACT
0.0	1.023126	1.017748	1.014936	1.267909	1.000000
0.000021	10.746686	10.673083	10.620172	11.200800	10.999990
0.000042	10.552640	10.454235	10.388960	11.141744	10.998177
0.000105	10.250262	10.167274	10.123897	11.001348	10.951382
0.000210	10.089270	10.052175	10.038249	10.842692	10.836802
0.000630	10.044371	10.032694	10.027008	10.572994	10.579220
0.001154	10.031994	10.023835	10.019794	10.443835	10.447879
0.002204	10.022220	10.016665	10.013887	10.324711	10.333044
0.006402	10.013583	10.010215	10.008523	10.200795	10.199339
0.011650	10.009982	10.007510	10.006268	10.150597	10.148478
0.022146	10.006934	10.005219	10.004357	10.106004	10.107989
0.043137	10.005059	10.003809	10.003181	10.07033	10.077490
0.064128	10.004178	10.003146	10.002627	10.063605	10.063587
0.106111	10.003252	10.002449	10.002045	10.049568	10.049446
0.316023	10.001700	10.001280	10.001069	10.026345	10.026243
0.525936	10.000968	10.000729	10.000608	10.015482	10.015604
1.155674	10.000181	10.000136	10.000113	10.003166	10.003299
15.353927	10.0	10.0	10.0	10.000001	10.0

LOCATION = 0.06 H

FIGURE 5B DISTRIBUTION OF THE 'RELATIVE' ERROR IN
PORE PRESSURE (Special 8-4 Element ,
Shape Function based on $f(x) = 1-x^n$)

TABLE 1C PORE PRESSURE AT 0.06H BELOW THE SURFACE USING SPECIAL 8-4
ELEMENT (shape function based on $f(x) = 1-x^n$)

$\tau \backslash n$	5	10	30	40	48	PS84	EXACT
0.0	0.974832	0.984524	0.993806	0.995246	0.995999	0.928240	1.000000
0.000021	0.998811	1.016137	1.059583	1.076370	1.088422	1.061856	1.000000
0.000042	1.015374	1.035770	1.088679	1.106554	1.118104	1.0987231	1.000000
0.000105	1.033625	1.046955	1.066386	1.065718	1.063237	1.028603	1.099920
0.000210	1.010454	1.0994965	1.0941461	1.0922025	1.090920	1.037672	1.094710
0.000630	1.0.796477	1.0.716273	1.0.624666	1.0.611735	1.0.605259	1.0.904833	1.0.892633
0.001154	1.0.624158	1.0.546389	1.0.479378	1.0.470549	1.0.466117	1.0.767321	1.0.765628
0.002204	1.0.452515	1.0.393112	1.0.348481	1.0.342688	1.0.339777	1.0.603856	1.0.610575
0.006402	1.0.278089	1.0.243413	1.0.217492	1.0.214110	1.0.212407	1.0.390208	1.0.386430
0.011650	1.0.206155	1.0.180081	1.0.160799	1.0.158290	1.0.157028	1.0.296013	1.0.291858
0.022146	1.0.143926	1.0.125666	1.0.112279	1.0.110541	1.0.109667	1.0.210342	1.0.214009
0.043137	1.0.104869	1.0.091708	1.0.082056	1.0.080802	1.0.080171	1.0.153390	1.0.154251
0.064128	1.0.086609	1.0.075758	1.0.067802	1.0.066768	1.0.066248	1.0.126819	1.0.126772
0.106111	1.0.067453	1.0.059004	1.0.052812	1.0.052008	1.0.051603	1.0.098948	1.0.098701
0.316023	1.0.035460	1.0.030925	1.0.027619	1.0.027190	1.0.026975	1.0.052635	1.0.052433
0.525936	1.0.020402	1.0.017689	1.0.015730	1.0.015477	1.0.015350	1.0.030933	1.0.031177
1.155674	1.0.003923	1.0.003344	1.0.002936	1.0.002884	1.0.002858	1.0.006326	1.0.006592
5.353927	1.0.000002	1.0.000002	1.0.000002	1.0.000002	1.0.000002	1.0.0	1.0.

LOCATION = 0.09 H

FIGURE 5C DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE PRESSURE (Special 8-4 Element, Shape Function based on $f(x) = 1-x^n$)

TABLE 1D PORE PRESSURE AT 0.09H BELOW THE SURFACE USING SPECIAL 8-4
ELEMENT (shape function based on $f(x) = 1-x^n$)

n	5	10	30	40	48	PS84	EXACT
0.0	11.006721	11.004133	11.001654	11.001270	11.001068	11.019164	11.000000
0.000021	10.999490	10.995784	10.986075	10.982287	10.979572	11.006598	11.000000
0.000042	10.995666	10.992303	10.983125	10.980155	10.978326	10.998586	11.000000
0.000105	10.995845	10.996964	11.002224	11.005213	11.007485	10.991172	11.000000
0.000210	11.005906	11.012433	11.028092	11.032177	11.034364	10.998152	10.999971
0.000630	10.979524	10.962368	10.931896	10.925858	10.922648	11.000281	10.984274
0.001154	10.874978	10.835686	10.793413	10.787116	10.783894	10.934463	10.925537
0.002204	10.710177	10.664587	10.626550	10.621454	10.618882	10.805508	10.803293
0.006402	10.464070	10.432687	10.408510	10.405308	10.403693	10.558574	10.551235
0.011650	10.349475	10.324596	10.305883	10.303428	10.302191	10.431559	10.425563
0.022146	10.247241	10.229218	10.215913	10.214180	10.213308	10.311395	10.316197
0.043137	10.180941	10.167925	10.158344	10.157097	10.156470	10.228410	10.229575
0.064128	10.149681	10.138920	10.131008	10.129979	10.129461	10.189257	10.189157
0.106111	10.116753	10.108343	10.102170	10.101368	10.100964	10.147951	10.147578
0.316023	10.061441	10.056837	10.053476	10.053040	10.052821	10.078814	10.078515
0.525936	10.035352	10.032512	10.030457	10.030192	10.030058	10.046320	10.046688
1.155674	10.006798	10.006147	10.005686	10.005627	10.005597	10.009472	10.009871
15.353927	10.000004	10.000004	10.000004	10.000004	10.000003	10.0	10.0

LOCATION = 0.03 H

FIGURE 6A DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE PRESSURE (Special 8-4 Element, Shape Function based on $f(x)=1-ax-(1-a)x^n$, $a=1-e^{-mt}$)

LOCATION = 0.03 H

FIGURE 6B DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE PRESSURE (Special 8-4 Element, Shape Function based on $f(x)=1-ax-(1-a)x^n$, $a=1-e^{-mt}$)

TABLE 2A POKE PRESSURE AT 0.03H BELOW THE SURFACE USING SPECIAL 8-4
 ELEMENT (shape function based on $f(x) = 1 - ax - (1-a)x^n, a=1-e^{-\frac{h}{H}}$)

n	$f(10)$	$f(20)$	$f(10)$	$f(15)$	$f(20)$	$f(84)$	EXACT
0.0	1.094003	1.094003	1.057841	1.057841	1.057841	1.267909	1.000000
0.000021	1.073098	1.118886	1.009185	1.040397	1.068952	1.200800	1.999990
0.000042	1.052553	1.123325	1.071781	1.025187	1.069701	1.141744	1.998177
0.000105	1.0988082	1.1059807	1.0894734	1.0970205	1.015935	1.001348	1.951382
0.000210	1.0878094	1.0900921	1.0813794	1.0855717	1.0873698	1.042692	1.836802
0.000630	1.0578427	1.0590181	1.0545773	1.0571991	1.0579917	1.0572994	1.579220
0.001154	1.0442328	1.0451749	1.0420054	1.0441547	1.0446535	1.0443835	1.447879
0.002204	1.0330280	1.0327879	1.0326907	1.0325920	1.0326053	1.0324711	1.333044
0.006402	1.0201261	1.0201484	1.0200139	1.0200736	1.0201013	1.0200795	1.199339
0.011650	1.0150642	1.0150903	1.0150015	1.0150512	1.0150685	1.0150597	1.148478
0.022146	1.0106066	1.0106112	1.0105902	1.0105998	1.0106043	1.0106004	1.107989
0.043137	1.0077080	1.0077083	1.0077027	1.0077042	1.0077055	1.0077033	1.077490
0.064128	1.0063645	1.0063637	1.0063623	1.0063617	1.0063622	1.0063605	1.0633587
0.106111	1.0049601	1.0049588	1.0049599	1.0049581	1.0049580	1.0049568	1.049446
0.316023	1.0026373	1.0026353	1.0026385	1.0026356	1.0026352	1.0026345	1.026243
0.525936	1.0015508	1.0015488	1.0015523	1.0015492	1.0015487	1.0015482	1.015604
1.155674	1.0003189	1.0003168	1.0003207	1.0003175	1.0003169	1.0003166	1.0003299
15.353927	1.0000024	1.0000002	1.0000042	1.0000009	1.0000002	1.0000001	1.00

LOCATION = 0.03 H

FIGURE 6C DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE PRESSURE (Special 8-4 Element, Shape Function based on $f(x)=1-ax-(1-a)x^n$, $a=1-e^{-mt}$)

TABLE 2B PORE PRESSURE AT 0.03H BELOW THE SURFACE USING SPECIAL 8-4 ELEMENT (shape function based on $f(x) = 1 - ax - (1-a)x^n, n = 1 - e^{-mt}$)

n	15(15)	15(20)	30(30)	30(32.5)	30(40)	PS84	EXACT
0.0	1.042118	1.042118	1.023289	1.023289	1.023289	1.267909	1.000000
0.000021	0.995399	1.028047	1.097994	1.014278	1.058694	1.200800	0.999990
0.000042	0.964574	1.017581	1.089560	1.014011	1.067647	1.141744	0.998177
0.000105	0.902638	0.964336	1.031235	1.048475	1.085819	1.001348	1.051382
0.000210	0.809718	0.839484	1.0802946	1.0812334	1.0833216	1.042692	0.836802
0.000630	0.554377	0.567545	1.0555734	1.0559309	1.0567372	1.0572994	1.0579220
0.001154	0.432046	0.440343	1.0434859	1.0436646	1.0440693	1.0443835	1.0447879
0.002204	0.323091	0.323857	1.0321253	1.0321900	1.0323410	1.0324711	1.0333044
0.006402	0.199998	0.200461	1.0199926	1.0200094	1.0200478	1.0200795	1.0199339
0.011650	0.150160	0.150431	1.0150206	1.0150284	1.0150460	1.0150597	1.0148478
0.022146	0.105891	0.105962	1.0105887	1.0105911	1.0105968	1.0106004	1.0107989
0.043137	0.077000	0.077023	1.0076991	1.0077001	1.0077024	1.0077033	1.0077490
0.064128	0.063594	0.063603	1.0063583	1.0063589	1.0063602	1.0063605	1.0063587
0.106111	0.049571	0.049571	1.0049561	1.0049564	1.0049570	1.0049568	1.0049446
0.316023	0.026355	0.026349	1.0026345	1.0026345	1.0026347	1.0026345	1.0026243
0.525936	0.015493	0.015486	1.0015482	1.0015483	1.0015483	1.0015482	1.0015604
1.155674	0.003177	0.003169	1.0003166	1.0003166	1.0003166	1.0003166	1.0003299
15.353927	0.000012	0.000003	1.0000001	1.0000001	1.0000001	1.0000001	1.0000001

LOCATION = 0.03 H

FIGURE 6E DISTRIBUTION OF THE 'RELATIVE' ERROR IN
PORE PRESSURE (Special 8-4 Element,
Shape Function based on $f(x)=1-ax-(1-a)x^n$,
 $a=1-e^{-mt}$)

LOCATION = 0.03 H

FIGURE 6P DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE PRESSURE (Special 8-4 Element, Shape Function based on $f(x)=1-ax-(1-a)x^n$, $a=1-e^{-mt}$)

TABLE 2C FROE PRESSURE AT 0.03H BELOW THE SURFACE USING SPECIAL 8-4
 ELEMENT (shape function based on $f(x) = 1 - ax - (1-a)x^n$, $a=1-e^{-mt}$)

n	$40(40)$	$48(0)$	$48(40)$	$48(60)$	$48(70)$	$PS84$	$EXACT$
10.0	11.017962	11.014936	11.015086	11.015161	11.015198	11.267909	11.000000
10.000021	11.014532	10.620172	10.980948	11.092554	11.132655	11.200800	0.999990
10.000042	11.015500	10.388960	10.975767	11.097860	11.132595	11.141744	0.998177
10.000105	10.942617	10.123897	10.909663	10.987630	11.007453	11.001348	10.951382
10.000210	10.804845	10.038249	10.783207	10.831992	10.845001	10.842692	10.836802
10.000630	10.557130	10.027008	10.549322	10.567735	10.572695	10.572994	10.579220
10.001154	10.435640	10.019794	10.431789	10.440995	10.443488	10.443835	10.447879
10.002204	10.321520	10.013887	10.320081	10.323563	10.324513	10.324711	10.333044
10.006402	10.200008	10.008523	10.199649	10.200521	10.200758	10.200795	10.199339
10.011650	10.150246	10.006268	10.150083	10.150480	10.150588	10.150597	10.148478
10.022146	10.105899	10.004357	10.105847	10.105974	10.106009	10.106004	10.107989
10.043137	10.076996	10.003181	10.076975	10.077026	10.077040	10.077033	10.077490
10.064128	10.063586	10.002627	10.063574	10.063604	10.063612	10.063605	10.063587
10.106111	10.049562	10.002045	10.049556	10.049571	10.049575	10.049568	10.049446
10.316023	10.026345	10.001069	10.026343	10.026347	10.026348	10.026345	10.026243
10.525936	10.015482	10.000608	10.015481	10.015484	10.015484	10.015482	10.015604
11.155674	10.003166	10.000113	10.003166	10.003166	10.003166	10.003166	10.003299
15.353927	10.000001	10.0	10.000001	10.000001	10.000001	10.0	10.0

LOCATION = 0.06 H

FIGURE 6G DISTRIBUTION OF THE 'RELATIVE' ERROR IN
PORE PRESSURE (Special 8-4 Element ,
Shape Function based on $f(x)=1-ax-(1-a)x^n$,
 $a=1-e^{-mt}$)

TABLE 2D PORE PRESSURE AT 0.06H BELOW THE SURFACE USING SPECIAL 8-4 ELEMENT (shape function based on $f(x) = 1 - ax - (1-a)x^n e^{-mx}$)

τ	n	$48(0)$	$48(40)$	$48(60)$	$48(70)$	PS84	EXACT
0.0	10.99599	10.99599	10.99599	10.99599	10.99599	10.928240	11.000000
10.000021	11.088422	11.004643	10.979156	10.970138	10.961856	11.000000	
10.000042	11.118104	11.004644	10.983891	10.978662	10.987231	11.000000	
10.000105	11.063237	11.013180	11.017936	11.019936	11.028603	10.999920	
10.000210	10.909920	11.009910	11.028758	11.033940	11.037672	10.994720	
10.000630	10.605259	10.880849	10.898977	10.903889	10.904833	10.892633	
10.001154	10.466117	10.751469	10.763445	10.766693	10.767321	10.765628	
10.002204	10.339777	10.595956	10.601889	10.603503	10.603856	10.610575	
10.006402	10.212407	10.388061	10.389674	10.390113	10.390208	10.386430	
10.011650	10.157028	10.295013	10.295769	10.295975	10.296013	10.291858	
10.022146	10.109667	10.210017	10.210268	10.210337	10.210342	10.214009	
10.043137	10.080171	10.153263	10.153366	10.153393	10.153390	10.154251	
10.064128	10.066248	10.126748	10.126807	10.126823	10.126819	10.126772	
10.106111	10.051603	10.098916	10.098945	10.098953	10.098948	10.098701	
10.316023	10.026975	10.052627	10.052636	10.052638	10.052635	10.052433	
10.525936	10.015350	10.030929	10.030933	10.030935	10.030933	10.031177	
11.155674	10.002858	10.006325	10.006326	10.006326	10.006326	10.006592	
15.353927	10.000002	10.000002	10.000002	10.000002	10.000002	10.0	

LOCATION = 0.09 H

FIGURE 6H DISTRIBUTION OF THE 'RELATIVE' ERROR IN
PORE PRESSURE (Special 8-4 Element,
Shape Function based on $f(x)=1-ax-(1-a)x^n$,
 $a=1-e^{-mt}$)

TABLE 2E PORE PRESSURE AT 0.09H BELOW THE SURFACE USING SPECIAL 8-4
 ELEMENT (shape function based on $f(x) = 1 - ax - (1-a)x^n, a = 1 - e^{-\frac{h}{H}}$)

$\frac{h}{H}$	n	$48(0)$	$48(40)$	$48(60)$	$48(70)$	$PS84$	$EXACT$
0.0	11.001068	11.001079	11.001084	11.001087	11.019164	11.000000	
0.000021	10.979572	10.998876	11.004634	11.006633	11.006598	11.000000	
0.000042	10.978326	10.999168	11.002191	11.002744	10.998586	11.000000	
0.000105	11.007485	10.998329	10.994278	10.993042	10.991172	11.000000	
0.000210	11.034364	11.001542	10.998088	10.997265	10.998152	10.999971	
0.000630	10.922648	10.990278	10.997382	10.999339	11.000281	10.984274	
0.001154	10.783894	10.923017	10.931510	10.933823	10.934463	10.925537	
0.002204	10.618882	10.797078	10.803401	10.805120	10.805508	10.803293	
0.006402	10.403693	10.555743	10.557859	10.558435	10.558574	10.551235	
0.011650	10.302191	10.430165	10.431211	10.431496	10.431559	10.425563	
0.022146	10.213308	10.310912	10.311280	10.311380	10.311395	10.316197	
0.043137	10.156470	10.228216	10.228367	10.228408	10.228410	10.229575	
0.064128	10.129461	10.189147	10.189235	10.189259	10.189257	10.189157	
0.1	10.111111	10.100964	10.147901	10.147944	10.147955	10.147951	10.147578
0.3	10.6023	10.052821	10.078801	10.078814	10.078817	10.078814	10.078515
10.525936	10.030058	10.046313	10.046320	10.046322	10.046320	10.046688	
11.155674	10.005597	10.009471	10.009473	10.009473	10.009472	10.009871	
15.353927	10.000004	10.000003	10.000003	10.000003	10.000003	10.0	

LOCATION = 0.03 H

FIGURE 7 DISTRIBUTION OF THE 'RELATIVE' ERROR IN
PORE PRESSURE (Special 8-4 Element,
Shape Function based on $f(x)=1-ax-(1-a)x^n$,
 $a=1-e^{-mt}$)

FIGURE 8A SPATIAL DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE PRESSURE

FIGURE 8B SPATIAL DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE PRESSURE

FIGURE 8C SPATIAL DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE PRESSURE

FIGURE 8D SPATIAL DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE PRESSURE

LOCATION = 0.015 H

FIGURE 9A DISTRIBUTION OF THE 'RELATIVE' ERROR IN
PORE PRESSURE (Special 8-6 Element,
Shape Function based on $f(x)=a+bx+cx^n$)

TABLE 3A PORE PRESSURE AT 0.015H BELOW THE SURFACE USING SPECIAL 8-6 ELEMENT (shape function based on $f(x) = a + bx + cx^n$).

n	5	10	30	40	48	EXACT
0.0	1.266902	1.142116	1.067463	1.032518	1.026855	1.000000
0.000021	1.001748	0.869719	0.751484	0.655639	0.636879	0.972492
0.000042	0.839768	0.726080	0.635650	0.589132	0.584033	0.880962
0.000105	0.616285	0.555691	0.523077	0.510893	0.509106	0.675848
0.000210	0.473981	0.446725	0.434083	0.427634	0.426544	0.514321
0.000630	0.303446	0.294808	0.290424	0.288406	0.288080	0.312709
0.001154	0.229133	0.225501	0.223635	0.222756	0.222615	0.233757
0.002204	0.164511	0.163447	0.162888	0.162622	0.162579	0.170361
0.006402	0.100911	0.100663	0.100530	0.100467	0.100457	0.100463
0.011650	0.075534	0.075423	0.075363	0.075334	0.075329	0.074564
0.022146	0.053085	0.053049	0.053027	0.053017	0.053016	0.054119
0.043137	0.038556	0.038540	0.038530	0.038525	0.038525	0.038791
0.064128	0.031829	0.031819	0.031812	0.031809	0.031809	0.031819
0.106111	0.024800	0.024795	0.024791	0.024789	0.024789	0.024735
0.316023	0.013179	0.013177	0.013175	0.013175	0.013175	0.013125
0.525936	0.007745	0.007744	0.007743	0.007742	0.007742	0.007804
1.155674	0.001584	0.001584	0.001583	0.001583	0.001583	0.001650
5.353927	0.0	0.0	0.0	0.0	0.0	0.0

LOCATION = 0.03 H

FIGURE 9B DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE PRESSURE (Special 8-6 Element , Shape Function based on $f(x) = a + bx + cx^n$)

TABLE 3B FLOW PRESSURE AT 0.03H BELOW THE SURFACE USING SPECIAL 8-4

ELEMENT (shape function based on $f(x) = a + bx + cx^2$)		PS84				EXACT	
τ	n	5	10	20	40	48	PS84
0.0	0.857214	0.917763	0.956216	0.977583	0.981303	1.267909	1.000000
0.000021	0.985051	1.050856	1.119061	1.178775	1.190196	1.200800	0.999990
0.000042	1.033127	1.083665	1.127355	1.146638	1.147459	1.141744	0.998177
0.000105	1.001330	1.011821	1.011924	1.007458	1.006498	1.001348	0.951382
0.000210	0.866046	0.858566	0.850675	0.846677	0.846035	0.842692	0.836802
0.000630	0.580516	0.577369	0.575309	0.574175	0.573986	0.572994	0.579220
0.001154	0.446782	0.445502	0.444716	0.444301	0.444231	0.443835	0.447879
0.002204	0.325301	0.325052	0.324906	0.324829	0.324816	0.324711	0.333044
0.006402	0.208891	0.200861	0.200843	0.200833	0.200831	0.200795	0.199339
0.011650	0.150637	0.150629	0.150623	0.150621	0.150620	0.150597	0.148478
0.022146	0.106021	0.106021	0.106020	0.106020	0.106020	0.106004	0.107989
0.043137	0.077045	0.077045	0.077045	0.077045	0.077045	0.077033	0.077490
0.064128	0.063615	0.063614	0.063615	0.063614	0.063614	0.063605	0.063587
0.106111	0.049576	0.049576	0.049576	0.049576	0.049576	0.049568	0.049446
0.316023	0.026349	0.026349	0.026349	0.026349	0.026349	0.026345	0.026243
0.525936	0.015484	0.015484	0.015485	0.015484	0.015484	0.015482	0.015604
1.155674	0.003166	0.003166	0.003167	0.003167	0.003166	0.003166	0.003299
15.353927	0.000001	0.000001	0.000001	0.000001	0.000001	0.000001	0.000001

LOCATION = 0.06 H

FIGURE 9C DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE PRESSURE (Special 8-6 Element, Shape Function based on $f(x) = a + bx + cx^n$)

TABLE 3C PORE PRESSURE AT 0.06H BELOW THE SURFACE USING SPECIAL 8-4

ELEMENT (shape function based on $f(x) = a+bx+cx^n$)

τ	n	5	10	30	40	48	PS84	EXACT
0.0	1.038245	1.022027	1.011728	1.006004	1.005008	0.928240	1.000000	
0.000021	10.999230	10.986001	10.971822	10.959741	10.957689	10.961856	11.000000	
0.000042	10.987790	10.982048	10.977726	10.978534	10.979522	10.987231	11.000000	
0.000105	11.002151	11.009537	11.017353	11.022915	11.023883	11.028603	11.000000	
0.000210	11.019010	11.027327	11.032961	11.035481	11.035866	11.037672	11.000000	
0.000630	10.905453	10.905477	10.905275	10.905097	10.905060	10.904833	10.892633	
0.001154	10.768929	10.768310	10.767870	10.767617	10.767573	10.767321	10.765628	
0.002204	10.604722	10.604353	10.604127	10.604007	10.603987	10.603856	10.610575	
0.006402	10.390333	10.390289	10.390262	10.390247	10.390245	10.390208	10.386430	
0.011650	10.296062	10.296049	10.296042	10.296037	10.296037	10.296013	10.291858	
0.022146	10.210361	10.210359	10.210358	10.210358	10.210358	10.210342	10.214009	
0.043137	10.153403	10.153402	10.153402	10.153402	10.153402	10.153390	10.154251	
0.064128	10.126829	10.126829	10.126828	10.126828	10.126828	10.126819	10.126772	
0.106111	10.098956	10.098956	10.098955	10.098955	10.098955	10.098948	10.098701	
0.316023	10.052639	10.052639	10.052639	10.052639	10.052639	10.052635	10.052433	
0.525936	10.030935	10.030935	10.030935	10.030935	10.030935	10.030933	10.031177	
1.155674	10.006326	10.006326	10.006326	10.006326	10.006326	10.006326	10.006592	
15.353927	10.000002	10.000002	10.000002	10.000002	10.000002	10.000002	10.000002	10.000002

LOCATION = 0.09 H

FIGURE 9D DISTRIBUTION OF THE 'RELATIVE' ERROR IN
PORE PRESSURE (Special 8-6 Element,
Shape Function based on $f(x)=a+bx+cx^n$)

TABLE 3D FORE PRESSURE AT 0.09H BELOW THE SURFACE USING SPECIAL 8-4
ELEMENT (shape function based on $f(x) = at + bx + cx^2$)

t	n	5	10	30	40	48	PS84	EXACT
0.0	0.989786	0.94117	0.996868	0.998396	0.998663	0.998663	0.019164	0.000000
0.000021	0.001270	0.003787	0.006622	0.008934	0.009257	0.009257	0.006598	0.000000
0.000042	0.003692	0.00699	0.003400	0.002046	0.001565	0.001565	0.998586	0.000000
0.000105	0.998542	0.95961	0.993606	0.992221	0.992012	0.991172	0.991172	0.000000
0.000210	0.997317	0.996847	0.996983	0.997436	0.997540	0.998152	0.999971	0.999971
0.000630	0.997372	0.998653	0.999451	0.999868	0.999938	0.999938	0.984274	0.984274
0.001154	0.934112	0.934324	0.934415	0.934449	0.934454	0.934463	0.925537	0.925537
0.002204	0.806147	0.805893	0.805722	0.805626	0.805609	0.805508	0.803293	0.803293
0.006402	0.558695	0.558652	0.558624	0.558609	0.558607	0.558574	0.551235	0.551235
0.011650	0.431611	0.431597	0.431587	0.431582	0.431581	0.431559	0.425563	0.425563
0.022146	0.311415	0.311413	0.311411	0.311410	0.311410	0.311395	0.316197	0.316197
0.043137	0.228422	0.228421	0.228421	0.228421	0.228421	0.228410	0.229575	0.229575
0.064128	0.189266	0.189266	0.189266	0.189266	0.189266	0.189257	0.189157	0.189157
0.106111	0.147959	0.147959	0.147959	0.147959	0.147959	0.147951	0.147578	0.147578
0.316023	0.078818	0.078818	0.078818	0.078818	0.078818	0.078818	0.078515	0.078515
0.525936	0.046322	0.046322	0.046322	0.046322	0.046322	0.046320	0.046688	0.046688
1.155674	0.009473	0.009473	0.009473	0.009473	0.009473	0.009472	0.009871	0.009871
15.353927	0.000003	0.000003	0.000003	0.000003	0.000003	0.000003	0.0	0.0

LOCATION = 0.03 H

FIGURE 10A DISTRIBUTION OF THE 'RELATIVE' ERROR IN
PORE PRESSURE (Special 8-4 Element,
Shape Function based on $f(x) = 1-x^n$,
5-point integration)

TABLE 4A. FINE PRESSURE AT 0.03H BELOW THE SURFACE USING SPECIAL 8-4 ELEMENT WITH 5-POINT INTEGRATION (shape function based on $f(x)=1-x^4$)

$\frac{f}{x}$	n	5	10	20	30	40	PS84	EXACT
0.0	1.093962	1.057785	1.032570	1.020553	1.012988	1.0267909	1.0000000	
0.000021	1.018111	1.0339977	1.0878474	1.0891504	1.0925370	1.1200800	1.0999990	
0.000042	1.0950445	1.0839235	1.0752152	1.0782757	1.0848073	1.1141744	1.0998177	
0.000105	1.0786365	1.0614088	1.0491426	1.0546508	1.0664978	1.11001348	1.0951382	
0.000210	1.0598514	1.0392097	1.0268096	1.0325404	1.0465278	1.0842692	1.0836802	
0.000630	1.0303944	1.0155610	1.0098615	1.0120374	1.0197082	1.0572994	1.0579220	
0.001154	1.0200307	1.0101713	1.0066915	1.0079392	1.0124025	1.0443835	1.0447879	
0.002204	1.0128199	1.0066812	1.0045050	1.0052656	1.0078720	1.0324711	1.033044	
0.006402	1.075679	1.040187	1.027274	1.031776	1.047013	1.0200795	1.0199339	
0.011650	1.055474	1.029474	1.020016	1.023306	1.034424	1.0150597	1.0148478	
0.022146	1.038358	1.020411	1.013878	1.016146	1.023800	1.010604	1.0107989	
0.043137	1.027864	1.014860	1.010113	1.011761	1.017312	1.0077033	1.0077490	
0.064128	1.022985	1.012264	1.008348	1.009708	1.014285	1.0063605	1.0063587	
0.106111	1.017883	1.009544	1.006498	1.007560	1.011114	1.049568	1.049446	
0.316023	1.009394	1.004999	1.003400	1.003955	1.005824	1.026345	1.026243	
0.525936	1.005404	1.002860	1.001941	1.002259	1.003335	1.015482	1.015604	
1.155674	1.001039	1.000541	1.000365	1.000425	1.000632	1.003166	1.003299	
15.353927	1.0	1.0	1.0	1.0	1.0	1.0	1.0	

TABLE 4B PORE PRESSURE AT 0.03H BELOW THE SURFACE SPECIAL 8-4

ELEMENT WITH 5-POINT INTEGRATION (shape function based on $f(x)=1-x^n$)

η	50	60	62.5	65	67.5	PS84	EXACT
0.0	1.008117	1.005065	1.004499	1.003995	1.003548	1.267909	1.000000
0.000021	0.955571	0.976016	0.979693	0.982882	0.985631	1.200800	0.999990
0.000042	0.907409	0.948727	0.956287	0.962883	0.968605	1.141744	0.998177
0.000105	0.784782	0.875841	0.893234	0.908608	0.922098	1.001348	0.951382
0.000210	0.632305	0.776806	0.806171	0.832607	0.856179	0.842692	0.836802
0.000630	0.345130	0.539599	0.588123	0.634669	0.678542	0.572994	0.579220
0.001154	0.224265	0.396283	0.446831	0.498213	0.549238	0.443835	0.447879
0.002204	0.137805	0.262585	0.306230	0.353959	0.404726	0.324711	0.333044
0.006402	0.079526	0.146111	0.171310	0.200898	0.235193	0.200795	0.199339
0.011650	0.058047	0.106369	0.124800	0.146676	0.172482	0.150597	0.148478
0.022146	0.040002	0.073125	0.085844	0.101064	0.119248	0.106004	0.107989
0.043137	0.029021	0.052834	0.061954	0.072868	0.085925	0.077033	0.077490
0.064128	0.023930	0.043517	0.051013	0.059982	0.070717	0.063605	0.063587
0.106111	0.018610	0.033825	0.039648	0.046618	0.054968	0.049568	0.049446
0.316023	0.009776	0.017852	0.020963	0.024702	0.029202	0.026345	0.026243
0.525936	0.005627	0.010382	0.012238	0.014487	0.017218	0.015482	0.015604
1.155674	0.001083	0.002060	0.002455	0.002945	0.003556	0.003166	0.003299
15.353927	0.000001	0.000001	0.000001	0.000001	0.000001	0.000001	0.000001

LOCATION = 0.06 H

FIGURE 10B DISTRIBUTION OF THE 'RELATIVE' ERROR IN PORE PRESSURE (Special 8-4 Element, Shape Function based on $f(x) = 1-x^n$, 5-point integration)

TABLE 4C PORE PRESSURE AT 0.06H BELOW THE SURFACE SPECIAL 8-4
ELEMENT WITH 5-POINT INTEGRATION (shape function based on $f(x)=1-x^n$)

τ	n	50	60	62.5	65	67.5	PS84	EXACT
0.0	0.997826	0.998643	0.998795	0.998930	0.999050	0.928240	1.000000	
0.000021	11.010637	11.005767	11.004891	11.004130	11.003473	10.961856	11.000000	
0.000042	11.019054	11.010612	11.009062	11.007708	11.006532	10.987231	11.000000	
0.000105	11.025114	11.014872	11.012857	11.011062	11.009474	11.028603	10.999920	
0.000210	11.000578	11.002002	11.002010	11.001946	11.001833	11.037672	10.994710	
0.000630	10.811010	10.879184	10.894027	10.907667	10.920047	10.904833	10.892633	
0.001154	10.642059	10.741649	10.767351	10.792348	10.816217	10.767321	10.765628	
0.002204	10.464511	10.566623	10.598256	10.631252	10.664874	10.603856	10.610575	
0.006402	10.282382	10.344879	10.367756	10.394105	10.424006	10.390208	10.386430	
0.011650	10.208951	10.256032	10.276350	10.294332	10.318424	10.296013	10.291858	
0.022416	10.145643	10.178711	10.191310	10.206310	10.224124	10.210342	10.214009	
0.043137	10.106043	10.129756	10.138804	10.149605	10.162490	10.153390	10.154251	
0.064128	10.087557	10.107071	10.114520	10.123417	10.134045	10.126819	10.126772	
0.106111	10.068178	10.083364	10.089167	10.096105	10.104406	10.098948	10.098701	
0.316023	10.035845	10.044050	10.047206	10.050995	10.055551	10.052635	10.052433	
0.525936	10.020633	10.025618	10.027559	10.029908	10.032756	10.030933	10.031177	
1.155674	10.003973	10.005082	10.005529	10.006080	10.006765	10.006326	10.006592	
15.353927	10.000002	10.000002	10.000002	10.000002	10.000002	10.0	10.0	

LOCATION = 0.09 H

FIGURE 10C DISTRIBUTION OF THE 'RELATIVE' ERROR IN
PORE PRESSURE (Special 8-4 Element,
Shape Function based on $f(x) = 1-x^n$,
5-point integration)

TABLE 4D PORE PRESSURE AT 0.09H BELOW THE SURFACE SPECIAL 8-4
ELEMENT WITH 5-POINT INTEGRATION (shape function based on $f(x)=1-x^n$)

ξ	n	50	60	62.5	65	67.5	PS84	EXACT
0.0	11.000581	1.000362	1.000322	1.000286	1.000254	1.019164	1.019164	1.000000
0.000021	10.997466	10.998620	10.998828	10.999008	10.999164	11.006598	11.000000	1.000000
0.000042	10.996187	10.997861	10.998170	10.998440	10.998675	10.998586	11.000000	1.000000
0.000105	10.998483	10.998987	10.999105	10.999214	10.999315	10.991172	11.000000	1.000000
0.000210	11.006289	11.003441	11.002927	11.002481	11.002096	10.998152	10.999971	1.000000
0.000630	10.979647	10.988652	10.990328	10.991790	10.993058	11.000281	10.984274	1.000000
0.001154	10.882388	10.920993	10.929963	10.938387	10.946183	10.934463	10.925537	1.000000
0.002204	10.720058	10.785346	10.803626	10.822006	10.840126	10.805508	10.803293	1.000000
0.006402	10.468465	10.523309	10.542682	10.564566	10.588891	10.558574	10.551235	1.000000
0.011650	10.352398	10.396635	10.412879	10.431741	10.453444	10.431559	10.425563	1.000000
0.022146	10.249027	10.281491	10.293780	10.308293	10.325444	10.311395	10.316197	1.000000
0.043137	10.182141	10.205539	10.214432	10.225023	10.237621	10.228410	10.229575	1.000000
0.064128	10.150644	10.169965	10.177319	10.186091	10.196548	10.189257	10.189157	1.000000
0.106111	10.117485	10.132584	10.138344	10.145225	10.153446	10.147951	10.147578	1.000000
0.316023	10.061835	10.070153	10.073348	10.07181	10.081785	10.078814	10.078515	1.000000
0.525936	10.035595	10.040801	10.042824	10.045268	10.048227	10.046320	10.046688	1.000000
1.155674	10.006854	10.008095	10.008592	10.009203	10.009960	10.009472	10.009871	1.000000
15.353927	10.000004	10.000004	10.000004	10.000003	10.000003	10.000003	10.000003	10.000003