概率统计(A)课程作业: 数理统计的基本概念

周书予

2000013060@stu.pku.edu.cn

April 30, 2022

1

1. 对于
$$x \in \{0,1\}^n$$
, 记 $k = \sum_{i=1}^n x_i$, 有

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = p^k (1-p)^{n-k}$$

2.

$$\mathbb{E}\left[\overline{X}\right] = \mathbb{E}\left[X\right] = p$$

$$\operatorname{Var}\left[\overline{X}\right] = \mathbb{E}\left[\overline{X}^2\right] - \mathbb{E}\left[\overline{X}\right]^2 = \frac{n\mathbb{E}\left[X^2\right] - n(n-1)\mathbb{E}\left[X\right]^2}{n^2} - \mathbb{E}\left[X\right]^2 = \frac{\operatorname{Var}\left[X\right]}{n} = \frac{p(1-p)}{n}$$

$$\mathbb{E}\left[S^2\right] = \operatorname{Var}\left[X\right] = p(1-p)$$

 $\mathbf{2}$

$$\mathbb{E}\left[\overline{X}\right] = \mathbb{E}\left[X\right] = m$$

$$\operatorname{Var}\left[\overline{X}\right] = \mathbb{E}\left[\overline{X}^2\right] - \mathbb{E}\left[\overline{X}\right]^2 = \frac{n\mathbb{E}\left[X^2\right] - n(n-1)\mathbb{E}\left[X\right]^2}{n^2} - \mathbb{E}\left[X\right]^2 = \frac{\operatorname{Var}\left[X\right]}{n} = \frac{2m}{n}$$

$$\mathbb{E}\left[S^2\right] = \operatorname{Var}\left[X\right] = 2m$$

3

$$T = \frac{X}{\sqrt{Y/n}}$$
, 其中 $X \sim \mathcal{N}(0,1)$, $Y \sim \chi^2(n)$ 且 X, Y 独立, 则 $T^2 = \frac{X^2}{Y/n}$, 注意到 $X^2 \sim \chi^2(1)$, 故 $T^2 \sim F(1,n)$.

4

$$F = \frac{X/n_1}{Y/n_2}$$
, 其中 $X \sim \chi^2(n_1)$, $Y \sim \chi^2(n_2)$ 且 X, Y 独立, 则 $1/F = \frac{Y/n_2}{X/n_1}$, 故 $1/F \sim F(n_2, n_1)$.

5

引理 1. 考虑多元正态分布 $\mathbf{X} \sim \mathcal{N}(\mathbf{a}, B)$, 其中 \mathbf{a} 是分布的期望 (均值), B 是分布的协方差矩阵. 对于任意可逆矩阵 $A \in \mathbb{R}^{n \times n}$, 有 $A\mathbf{X} \sim \mathcal{N}(A\mathbf{a}, ABA^{\mathrm{T}})$.

证明. 记 Y = AX, 根据密度变换, 可得 Y 的概率密度函数为

$$f_{\mathbf{Y}}(\mathbf{y}) = \left| \frac{\partial \mathbf{x}}{\partial \mathbf{y}} \right| f_{\mathbf{X}}(\mathbf{x}) = \left| \frac{\partial A^{-1} \mathbf{y}}{\partial \mathbf{y}} \right| f_{\mathbf{X}}(A^{-1} \mathbf{y})$$

$$= \frac{1}{\det(A)} \cdot \frac{1}{(2\pi)^{n/2} \sqrt{\det(B)}} \exp\left(-\frac{1}{2} (A^{-1} \mathbf{y} - \mathbf{a})^{\mathrm{T}} B^{-1} (A^{-1} \mathbf{y} - \mathbf{a}) \right)$$

$$= \frac{1}{(2\pi)^{n/2} \sqrt{\det(ABA^{\mathrm{T}})}} \exp\left(-\frac{1}{2} (\mathbf{y} - A\mathbf{a})^{\mathrm{T}} (ABA^{\mathrm{T}})^{-1} (\mathbf{y} - A\mathbf{a}) \right)$$

故证明了 $\mathbf{Y} \sim \mathcal{N}(A\mathbf{a}, ABA^{\mathrm{T}})$.

当 $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, I_n)$ 时, $\mathbf{Y} = A\mathbf{X} \sim \mathcal{N}(A\mathbf{0}, AI_nA^{\mathrm{T}}) = \mathcal{N}(\mathbf{0}, AA^{\mathrm{T}})$, 故 $\mathbf{Y} \sim \mathcal{N}(\mathbf{0}, I_n)$ 是 n 维标准正态分布的充要条件是 $AA^{\mathrm{T}} = I_n$, 也即 A 是正交矩阵.

6

取 \mathbb{R}^n 中向量

$$\alpha = \left(\frac{(t_1 - \bar{t})}{\sqrt{\sum_{k=1}^n (t_k - \bar{t})^2}}, \cdots, \frac{(t_n - \bar{t})}{\sqrt{\sum_{k=1}^n (t_k - \bar{t})^2}}\right)^{\mathrm{T}}$$
$$\beta = \left(\frac{1}{\sqrt{n}}, \cdots, \frac{1}{\sqrt{n}}\right)^{\mathrm{T}}$$

不难验证 $|\alpha|=|\beta|=1$,且 $\alpha\cdot\beta=0$. 故存在正交矩阵 $A\in\mathbb{R}^{n\times n}$ 以 α^{T} 和 β^{T} 作为其前两行. 由于 $\mathbf{X}=(X_1,\cdots,X_n)\sim\mathcal{N}(\mathbf{0},\sigma^2I_n)$,根据上一题的结论,有 $\mathbf{Y}=(Y_1,\cdots,Y_n)=A\mathbf{X}\sim\mathcal{N}(\mathbf{0},\sigma^2I_n)$. 注意到

$$\sum_{i=1}^{n} Y_i^2 = |\mathbf{Y}|^2 = |A\mathbf{X}|^2 = |\mathbf{X}|^2 = \sum_{i=1}^{n} X_i^2$$

$$Y_1^2 = \left(\sum_{j=1}^{n} \frac{(t_j - \bar{t})X_j}{\sqrt{\sum_{k=1}^{n} (t_k - \bar{t})^2}}\right)^2$$

$$Y_2^2 = \frac{1}{n} \left(\sum_{j=1}^{n} X_j\right)^2$$

以及 $\sum_{i=1}^{n}(X_i-\overline{X})^2=\sum_{i=1}^{n}X_i^2-\frac{1}{n}\left(\sum_{j=1}^{n}X_j\right)^2$, 故 $Q=\sum_{i=1}^{n}Y_i^2-Y_2^2-Y_1^2=\sum_{i=3}^{n}Y_i^2$. 由于 $Y_i\sim$ i.i.d. $\mathcal{N}(0,\sigma^2),Y_i/\sigma\sim$ i.i.d. $\mathcal{N}(0,1)$, 所以 $Q/\sigma^2=\sum_{i=3}^{n}(Y_i/\sigma)^2\sim\chi^2(n-2)$. 同理, 对于 $F=\frac{(Y_1/\sigma)^2}{(Q/\sigma^2)/(n-2)}$, 由于 $(Y_1/\sigma)^2\sim\chi^2(1)$ 且与 Q 独立, 所以 $F\sim F(1,n-2)$.

7

- 1. 注意到 $Z, W \sim \text{i.i.d.} \mathcal{N}(0,1)$, 故 $U = Z^2 + W^2 \sim \chi^2(2)$, 概率密度函数为 $f_U(u) = \frac{1}{2} e^{-u/2} \mathbb{1}[u > 0]$, 从而也有 $U \sim \text{Exp}\left(\frac{1}{2}\right)$.
- 2. 由于 $X_1, \dots, X_n \sim \text{i.i.d. } \text{Exp}(\lambda)$, 故 n 个指数分布随机变量的和 $S = n\overline{X}$ 的概率密度为

$$f_S(s) = \frac{s^{n-1} \lambda^n e^{-\lambda s}}{(n-1)!} \cdot \mathbb{1}[s > 0]$$

从而 $T = 2\lambda S$ 的概率密度为

$$f_T(t) = \frac{1}{2\lambda} f_S\left(\frac{t}{2\lambda}\right) = \frac{1}{2\Gamma(n)} \left(\frac{t}{2}\right)^{n-1} e^{-t/2} \cdot \mathbb{1}[t > 0]$$

故 $T \sim \chi^2(2n)$.

3. 注意到 $\frac{Y}{\sqrt{\lambda X}} = \frac{Y}{\sqrt{T/(2n)}}$, 其中 $Y \sim \mathcal{N}(0,1), T \sim \chi^2(2n)$ 且 Y 与 (X_1, \cdots, X_n) 独立说明 Y 与 T 独立, 故根据定义 $\frac{Y}{\sqrt{\lambda X}} \sim t(2n)$.

8

图 1: $\chi^2(5)$ 分布直方图

图 2: t(5) 分布直方图

图 3: F(3,5) 分布直方图

9

1. 注意到 $F_n(x;\omega)$ 与 F(x) 都是单调增函数, 故

$$F_n(x;\omega) - F(x) \le F_n(x_{M,k+1} - 0;\omega) - F(x_{M,k}) \le F_n(x_{M,k+1} - 0) - F(x_{M,k+1} - 0) + \frac{1}{M}$$

2. 由于 $|F_n(x;\omega) - F(x)| \le \max_{1 \le k \le M} \max \{|F_n(x_{M,k} - 0;\omega) - F(x_{M,k} - 0)|, |F_n(x_{M,k};\omega) - F(x_{M,k})|\} + \frac{1}{M}$ 对任意 $x \in \mathbb{R}$ 成立, 故

$$\sup_{x \in \mathbb{R}} |F_n(x;\omega) - F(x)| \leq \max_{1 \leq k \leq M} \max \{ |F_n(x_{M,k} - 0;\omega) - F(x_{M,k} - 0)|, |F_n(x_{M,k};\omega) - F(x_{M,k})| \} + \frac{1}{M}$$

$$\mathbb{P}\left(\sup_{x\in\mathbb{R}}|F_n(x;\omega)-F(x)|\geqslant \frac{2}{M}\right)$$

$$\leqslant \sum_{k=1}^M \mathbb{P}\left(|F_n(x_{M,k}-0;\omega)-F(x_{M,k}-0)|\geqslant \frac{2}{M}\right)+\mathbb{P}\left(|F_n(x_{M,k};\omega)-F(x_{M,k})|\geqslant \frac{2}{M}\right)$$

由于 $|F_n(x;\omega) - F(x)| \stackrel{P}{\to} 0 \ (n \to \infty)$, 对于任意 $\varepsilon > 0$ 都有 $\lim_{n \to \infty} \mathbb{P}(|F_n(x_{M,k};\omega) - F(x_{M,k})| \geqslant \varepsilon) = 0$, 进一步也可以证明 $\lim_{n \to \infty} \mathbb{P}(|F_n(x_{M,k};\omega) - F(x_{M,k} - 0)| \geqslant \varepsilon) = 0$, 从而

$$\lim_{n \to \infty} \mathbb{P}\left(\sup_{x \in \mathbb{R}} |F_n(x; \omega) - F(x)| \geqslant \frac{2}{M}\right) = 0$$

3. 由于 M 的任意性, 对于任意 $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}\left(D_n(\omega) \geqslant \varepsilon\right) = \lim_{n \to \infty} \mathbb{P}\left(\sup_{x \in \mathbb{R}} |F_n(x; \omega) - F(x)| \geqslant \varepsilon\right) = 0$$

即说明 $D_n(\omega) \stackrel{P}{\to} 0 \ (n \to \infty)$.