斯特林数

Stirling Numbers

定义

第一类斯特林数(斯特林轮换数): $\begin{bmatrix} n \\ k \end{bmatrix}$

 $\begin{bmatrix} n \\ k \end{bmatrix}$ 表示将 n 个元素排成 k 个**轮换**的方案数。这里,**轮换**是指环形排列,可以转动而相等。

第二类斯特林数(斯特林子集数): $\left\{ egin{array}{c} n \\ k \end{array} \right\}$

 $\left\{ egin{array}{l} n \\ k \end{array}
ight\}$ 表示将一个有 n 件物品的集合划分成 k 个非空子集的方案数。

递归式

$$\left[egin{array}{c} n \ k \end{array}
ight] = (n-1)\left[egin{array}{c} n-1 \ k \end{array}
ight] + \left[egin{array}{c} n-1 \ k-1 \end{array}
ight]$$

$$\left\{ {n \atop k} \right\} = k \left\{ {n-1 \atop k} \right\} + \left\{ {n-1 \atop k-1} \right\}$$

组合证明即可。

n	$\left[\begin{smallmatrix} n \\ 0 \end{smallmatrix} \right]$	$\begin{bmatrix} n \\ 1 \end{bmatrix}$	$\left[n\atop 2\right]$	$\begin{bmatrix} n \\ 3 \end{bmatrix}$	$\left[n\atop 4\right]$	$\begin{bmatrix} n \\ 5 \end{bmatrix}$	$\begin{bmatrix} n \\ 6 \end{bmatrix}$	$\begin{bmatrix} n \\ 7 \end{bmatrix}$	$\begin{bmatrix} n \\ 8 \end{bmatrix}$	$\left[\begin{matrix} n\\ 9\end{matrix}\right]$
0	1									
1	0	1								
2	0	1	1							
3	0	2	3	1						
4	0	6	11	6	1					
5	0	24	50	35	10	1				
6	0	120	274	225	85	15	1			
7	0	720	1764	1624	735	175	21	1		
8	0	5040	13068	13132	6769	1960	322	28	1	
9	0	40320	109584	118124	67284	22449	4536	546	36	1

n	$\left\{ \begin{smallmatrix} n \\ 0 \end{smallmatrix} \right\}$	$\left\{ egin{array}{c} n \\ 1 \end{array} \right\}$	$\left\{ egin{array}{c} n \\ 2 \end{array} \right\}$	$\left\{ egin{array}{c} n \\ 3 \end{array} \right\}$	$\left\{ egin{array}{c} n \\ 4 \end{array} \right\}$	$\left\{ n\atop 5\right\}$	$\left\{ egin{array}{c} n \\ 6 \end{array} \right\}$	$\left\{ egin{array}{c} n \\ 7 \end{array} \right\}$	$\left\{ egin{array}{c} n \\ 8 \end{array} \right\}$	$\left\{ \begin{matrix} n \\ 9 \end{matrix} \right\}$
0	1									
1	0	1								
2	0	1	1							
3	0	1	3	1						
4	0	1	7	6	1					
5	0	1	15	25	10	1				
6	0	1	31	90	65	15	1			
7	0	1	63	301	350	140	21	1		
8	0	1	127	966	1701	1050	266	28	1	
9	0	1	255	3025	7770	6951	2646	462	36	1

通项公式

m 个位置,每个位置可以选择 n 种颜料上色,则共有 n^m 种方案;换一个角度,枚举一共用的 k 种颜色,把 m 分成 k 个子集,每个子集一种颜色,加起来也是总方案数。所以我们有:

$$n^m = \sum_{k=0}^n inom{n}{k} \left\{ egin{array}{c} m \ k \end{array}
ight\} k!$$

实施二项式反演,得到:

$$n! \left\{egin{array}{l} m \ n \end{array}
ight\} = \sum_{k=0}^n inom{n}{k} k^m (-1)^{n-k}$$

这即是通项公式。

也可以写成卷积的样子:

$$\left\{ egin{aligned} n \ k \end{aligned}
ight\} = \sum_{i=0}^k rac{i^n}{i!} \cdot rac{(-1)^{k-i}}{(k-i)!}$$

恒等式

《具体数学》6.1节

重要恒等式:

其他:

斯特林反演

$$g(n) = \sum_k (-1)^k \left\{ egin{array}{l} n \ k \end{array}
ight\} f(k) \iff f(n) = \sum_k (-1)^k \left[egin{array}{l} n \ k \end{array}
ight] g(k)$$

另一种形式:

$$g(n) = \sum_{k} \begin{Bmatrix} n \\ k \end{Bmatrix} f(k) \iff f(n) = \sum_{k} (-1)^{n-k} \begin{bmatrix} n \\ k \end{bmatrix} g(k)$$
 $g(n) = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} f(k) \iff f(n) = \sum_{k} (-1)^{n-k} \begin{Bmatrix} n \\ k \end{Bmatrix} g(k)$

证明:

必要性:

$$\begin{split} \sum_k (-1)^k \begin{bmatrix} n \\ k \end{bmatrix} g(k) &= \sum_k (-1)^k \begin{bmatrix} n \\ k \end{bmatrix} \sum_j (-1)^j \begin{Bmatrix} k \\ j \end{Bmatrix} f(j) \\ &= \sum_j (-1)^{n-j} f(j) \sum_k \begin{bmatrix} n \\ k \end{bmatrix} \begin{Bmatrix} k \\ j \end{Bmatrix} (-1)^{n-k} \\ &= \sum_j (-1)^{n-j} f(j) [n=j]$$
 反转公式
$$&= f(n) \end{split}$$

充分性:

$$\sum_{k} (-1)^{k} \begin{Bmatrix} n \\ k \end{Bmatrix} f(k) = \sum_{k} (-1)^{k} \begin{Bmatrix} n \\ k \end{Bmatrix} \sum_{j} (-1)^{j} \begin{bmatrix} k \\ j \end{bmatrix} g(j)$$

$$= \sum_{j} (-1)^{n-j} g(j) \sum_{k} (-1)^{n-k} \begin{Bmatrix} n \\ k \end{Bmatrix} \begin{bmatrix} k \\ j \end{bmatrix}$$

$$= \sum_{j} (-1)^{n-j} g(j) [n=j]$$
反转公式
$$= g(n)$$

证毕。