Motorola Semiconductor Technical Data

CPU12 Reference Guide

Figure 1. Programming Model

Stack and Memory Layout

STACK UPON ENTRY TO SERVICE ROUTINE IF SP WAS ODD BEFORE INTERRUPT

_			
SP +8	RTN _{LO}		SP +9
SP +6	Y _{LO}	RTN _{HI}	SP +7
SP +4	X _{LO}	Y _{HI}	SP +5
SP +2	А	X _{HI}	SP +3
SP	CCR	В	SP +1
SP -2			SP -1

STACK UPON ENTRY TO SERVICE ROUTINE IF SP WAS EVEN BEFORE INTERRUPT

SP +9			SP +10
SP +7	RTN _{HI}	RTN _{LO}	SP +8
SP +5	Y _{HI}	Y _{LO}	SP +6
SP +4	X _{HI}	X _{LO}	SP +4
SP +1	В	А	SP +2
SP -1		CCR	SP

Interrupt Vector Locations

\$FFFE, \$FFFF	Power-On (POR) or External Reset
\$FFFC, \$FFFD	Clock Monitor Reset
\$FFFA, \$FFFB	Computer Operating Properly (COP Watchdog Reset
\$FFF8, \$FFF9	Unimplemented Opcode Trap
\$FFF6, \$FFF7	Software Interrupt Instruction (SWI)
\$FFF4, \$FFF5	XIRQ
\$FFF2, \$FFF3	IRQ
\$FFC0-\$FFF1	Device-Specific Interrupt Sources

Notation Used in Instruction Set Summary

Explanation of Italic Expressions in Source Form Column

```
abc — A or B or CCR
   abcdxys — A or B or CCR or D or X or Y or SP. Some assemblers also allow T2 or T3.
       abd — A or B or D
   abdxys — A or B or D or X or Y or SP
      dxys — D or X or Y or SP
     msk8 — 8-bit mask, some assemblers require # symbol before value
      opr8i — 8-bit immediate value
    opr16i — 16-bit immediate value
     opr8a — 8-bit address used with direct address mode
    opr16a — 16-bit address value
oprx0 xysp — Indexed addressing postbyte code:
                 oprx3,-xys Predecrement X or Y or SP by 1 . . . 8
                 oprx3,+xys Preincrement X or Y or SP by 1 . . . 8
                 oprx3,xys- Postdecrement X or Y or SP by 1 . . . 8
                 oprx3,xys+ Postincrement X or Y or SP by 1 . . . 8
                 oprx5,xysp 5-bit constant offset from X or Y or SP or PC
                 abd,xysp
                            Accumulator A or B or D offset from X or Y or SP or PC
     oprx3 — Any positive integer 1 . . . 8 for pre/post increment/decrement
     oprx5 — Any value in the range –16 . . . +15
     oprx9 — Any value in the range -256 \dots +255
    oprx16 — Any value in the range -32,768 . . . 65,535
      page — 8-bit value for PPAGE, some assemblers require # symbol before this value
       rel8 — Label of branch destination within -256 to +255 locations
       rel9 — Label of branch destination within -512 to +511 locations
      rel16 — Any label within 64K memory space
   trapnum — Any 8-bit value in the range $30-$39 or $40-$FF
       xvs — X or Y or SP
      xysp — X or Y or SP or PC
```

Address Modes

IMM Immediate IDX — Indexed (no extension bytes) includes: 5-bit constant offset Pre/post increment/decrement by 1 . . . 8 Accumulator A, B, or D offset IDX1 — 9-bit signed offset (1 extension byte) IDX2 — 16-bit signed offset (2 extension bytes) [D, IDX] — Indexed indirect (accumulator D offset) Indexed indirect (16-bit offset) [IDX2] Inherent (no operands in object code) INH **REL** 2's complement relative offset (branches)

Machine Coding

- dd 8-bit direct address \$0000 to \$00FF. (High byte assumed to be \$00).
- ee High-order byte of a 16-bit constant offset for indexed addressing.
- eb Exchange/Transfer post-byte. See Table 3 on page 23.
- Low-order eight bits of a 9-bit signed constant offset for indexed addressing, or low-order byte of a 16-bit constant offset for indexed addressing.
- hh High-order byte of a 16-bit extended address.
- ii 8-bit immediate data value.
- jj High-order byte of a 16-bit immediate data value.
- kk Low-order byte of a 16-bit immediate data value.
- 1b Loop primitive (DBNE) post-byte. See **Table 4** on page 24.
- 11 Low-order byte of a 16-bit extended address.
- mm 8-bit immediate mask value for bit manipulation instructions. Set bits indicate bits to be affected.
- pg Program page (bank) number used in CALL instruction.
- qq High-order byte of a 16-bit relative offset for long branches.
- tn Trap number \$30-\$39 or \$40-\$FF.
- Signed relative offset \$80 (-128) to \$7F (+127).
 Offset relative to the byte following the relative offset byte, or low-order byte of a 16-bit relative offset for long branches.
- xb Indexed addressing post-byte. See **Table 1** on page 21 and **Table 2** on page 22.

Access Detail

Each code letter equals one CPU cycle. Uppercase = 16-bit operation and lowercase = 8-bit operation. For complex sequences see the *CPU12 Reference Manual* (CPU12RM/AD).

- f Free cycle, CPU doesn't use bus
- g Read PPAGE internally
- Read indirect pointer (indexed indirect)
- i Read indirect PPAGE value (call indirect)
- n Write PPAGE internally
- Optional program word fetch (P) if instruction is misaligned and has an odd number of bytes of object code — otherwise, appears as a free cycle (f)
- P Program word fetch (always an aligned word read)
- r 8-bit data read
- R 16-bit data read
- s 8-bit stack write
- S 16-bit stack write
- w 8-bit data write
- u 8-bit stack read
- U 16-bit stack read
- ∨ 16-bit vector fetch
- t 8-bit conditional read (or free cycle)
- T 16-bit conditional read (or free cycle)
- x 8-bit conditional write

Special Cases

- PPP/P Short branch, PPP if branch taken, P if not
- OPPP/OPO Long branch, OPPP if branch taken, OPO if not

Condition Codes Columns

- Status bit not affected by operation.
- 0 Status bit cleared by operation.
- 1 Status bit set by operation.
- Δ Status bit affected by operation.
- Status bit may be cleared or remain set, but is not set by operation.
- 1 Status bit may be set or remain cleared, but is not cleared by operation.
- ? Status bit may be changed by operation but the final state is not defined.
- ! Status bit used for a special purpose.

Instruction Set Summary

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	s	х	Н	ı	N	Z	ν	С
ABA	$(A) + (B) \Rightarrow A$ Add Accumulators A and B	INH	18 06	00	-	-	Δ	-	Δ	Δ	Δ	Δ
ABX	(B) + (X) \Rightarrow X Translates to LEAX B,X	IDX	1A E5	PP ¹	-	-	-	-	-	-	-	-
ABY	(B) + (Y) \Rightarrow Y Translates to LEAY B,Y	IDX	19 ED	PP ¹	-	-	-	-	-	-	-	-
ADCA #opr8i ADCA opr8a ADCA opr16a ADCA oprx0_xysp ADCA oprx9_xysp ADCA oprx16_xysp ADCA [D,xysp] ADCA [oprx16_xysp]	(A) + (M) + C ⇒ A Add with Carry to A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	89 ii 99 dd B9 hh 11 A9 xb A9 xb ff A9 xb ee ff A9 xb	P rfP rOP rfP rPO frPP fIFrFP fIFrFP	_	_	Δ	-	Δ	Δ	Δ	Δ
ADCB #opr8i ADCB opr8a ADCB opr16a ADCB oprx0_xysp ADCB oprx9,xysp ADCB oprx16,xysp ADCB [D,xysp] ADCB [oprx16,xysp]	(B) + (M) + C ⇒ B Add with Carry to B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C9 ii D9 dd F9 hh l1 E9 xb E9 xb ff E9 xb ee ff E9 xb	P rfP rOP rFP rPO frPP fIFrFP fIFrFP	-	_	Δ	-	Δ	Δ	Δ	Δ
ADDA #opr8i ADDA opr8a ADDA opr16a ADDA oprx0_xysp ADDA oprx9,xysp ADDA oprx16,xysp ADDA [D,xysp] ADDA [oprx16,xysp]	$(A) + (M) \Rightarrow A$ Add without Carry to A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8B ii 9B dd BB hh 11 AB xb AB xb ff AB xb ee ff AB xb	P rfP rOP rfP rPO frPP fIFrFP fIFrfP	-	_	Δ	-	Δ	Δ	Δ	Δ
ADDB #opr8i ADDB opr8a ADDB opr16a ADDB oprx0_xysp ADDB oprx9,xysp ADDB oprx16,xysp ADDB [D,xysp] ADDB [oprx16,xysp]	$(B) + (M) \Rightarrow B$ Add without Carry to B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CB ii DB dd FB hh ll EB xb EB xb ff EB xb ee ff EB xb ee ff	P rfP rOP rfP rPO frPP fIFrFP fIFrFP	-	-	Δ	-	Δ	Δ	Δ	Δ
ADDD #opr16i ADDD opr8a ADDD opr16a ADDD oprx0_xysp ADDD oprx9,xysp ADDD oprx16,xysp ADDD [D,xysp] ADDD [oprx16,xysp]	$(A:B) + (M:M+1) \Rightarrow A:B$ Add 16-Bit to D (A:B)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C3 jj kk D3 dd F3 hh l1 E3 xb E3 xb ff E3 xb ee ff E3 xb ee ff	OP RfP ROP RFP RPO fRPP fIFRFP	-	_	1	-	Δ	Δ	Δ	Δ
ANDA #opr8i ANDA opr8a ANDA opr16a ANDA oprx0_xysp ANDA oprx9,xysp ANDA oprx16,xysp ANDA [D,xysp] ANDA [oprx16,xysp]	(A) ◆ (M) ⇒ A Logical And A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	84 ii 94 dd B4 hh 11 A4 xb A4 xb ff A4 xb ee ff A4 xb ee ff	P rfp rOP rfp rPO frpp fifrfp fifrfp	_	_	I	_	Δ	Δ	0	_
ANDB #opr8i ANDB opr8a ANDB opr16a ANDB oprx0_xysp ANDB oprx9,xysp ANDB oprx16,xysp ANDB [D,xysp] ANDB [D,xysp]	(B) • (M) ⇒ B Logical And B with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C4 ii D4 dd F4 hh ll E4 xb E4 xb ff E4 xb ee ff E4 xb	P rfP rOP rfP rPO frPP fIFrFP fIFrFP	_	_	-	-	Δ	Δ	0	_

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	s	Х	Н	ı	N	z	V	С
ANDCC #opr8i	(CCR) • (M) ⇒ CCR Logical And CCR with Memory	IMM	10 ii	P	↓	₩	⇒	↓	↓	↓	↓	↓
ASL opr16a ASL oprx0_xysp ASL oprx9,xysp ASL oprx16,xysp ASL [D,xysp] ASL [oprx16,xysp] ASL ASLA ASLB	C b7 b0 Arithmetic Shift Left Arithmetic Shift Left Accumulator A Arithmetic Shift Left Accumulator B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	78 hh 11 68 xb 68 xb ff 68 xb ee ff 68 xb 68 xb ee ff 48 58	rOPW rPW rPOW frPPW fIFrPW fIPrPW 0 0	-	-	-	-	Δ	Δ	Δ	Δ
ASLD	C b7 A b0 b7 B b0 Arithmetic Shift Left Double	INH	59	0	-	-	-	-	Δ	Δ	Δ	Δ
ASR opr16a ASR oprx0_xysp ASR oprx9,xysp ASR oprx16,xysp ASR [D,xysp] ASR [oprx16,xysp] ASRASRA	b7 b0 C Arithmetic Shift Right Arithmetic Shift Right Accumulator A Arithmetic Shift Right Accumulator B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	77 hh 11 67 xb 67 xb ff 67 xb ee ff 67 xb ee ff 67 xb ee ff 47 57	rOPW rPW rPOW frPPW fIfrPW fIFrPW O	-	_	-	-	Δ	Δ	Δ	Δ
BCC rel8	Branch if Carry Clear (if C = 0)	REL	24 rr	PPP/P ¹	†-	<u> </u>	-	 	†-	<u> </u>	-	
BCLR opr8a, msk8 BCLR opr16a, msk8 BCLR oprx0_xysp, msk8 BCLR oprx9,xysp, msk8 BCLR oprx16,xysp, msk8	(M) • (mm) ⇒ M Clear Bit(s) in Memory	DIR EXT IDX IDX1 IDX2	4D dd mm 1D hh 11 mm 0D xb mm 0D xb ff mm 0D xb ee ff mm	rPOW rPPW rPOW rPWP frPwOP	-	-	-	-	Δ	Δ	0	-
BCS rel8	Branch if Carry Set (if C = 1)	REL	25 rr	PPP/P ¹	†-	-	-	-	-	-	-	-
BEQ rel8	Branch if Equal (if Z = 1)	REL	27 rr	PPP/P ¹	-	-	-	-	-	-	-	-
BGE rel8	Branch if Greater Than or Equal (if $N \oplus V = 0$) (signed)	REL	2C rr	PPP/P ¹	-	-	-	-	-	-	-	-
BGND	Place CPU in Background Mode see CPU12 Reference Manual	INH	00	VfPPP	-	-	-	-	-	-	-	-
BGT rel8	Branch if Greater Than (if $Z + (N \oplus V) = 0$) (signed)	REL	2E rr	PPP/P ¹	-	-	-	-	-	-	-	-
BHI rel8	Branch if Higher (if C + Z = 0) (unsigned)	REL	22 rr	PPP/P ¹	-	-	-	-	-	-	-	-
BHS rel8	Branch if Higher or Same (if C = 0) (unsigned) same function as BCC	REL	24 rr	PPP/P ¹	-	-	-	-	-	-	-	-
BITA #opr8i BITA opr8a BITA opr16a BITA oprx0_xysp BITA oprx9_xysp BITA oprx16,xysp BITA [D.xysp] BITA [Oprx16,xysp]	(A) • (M) Logical And A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	85 ii 95 dd B5 hh ll A5 xb A5 xb ff A5 xb ee ff A5 xb ee ff	P rfP rOP rfP rPO frPP fIfrfP fIPrfP	-	_	-	-	Δ	Δ	0	-
BITB #opr8i BITB opr8a BITB opr16a BITB oprx0_xysp BITB oprx9,xysp BITB oprx16,xysp BITB [D,xysp] BITB [oprx16,xysp]	(B) • (M) Logical And B with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C5 ii D5 dd F5 hh l1 E5 xb E5 xb ff E5 xb ee ff E5 xb ee ff	P rfP rOP rfP rPO frPP fIFrFP fIFrFP	-	-	-	-	Δ	Δ	0	

Notes: 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	s	Х	н	ı	N	z	٧	С
BLE rel8	Branch if Less Than or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	2F rr	PPP/P ¹	-	-	-	-	-	-	-	-
BLO rel8	Branch if Lower (if C = 1) (unsigned) same function as BCS	REL	25 rr	PPP/P ¹	-	-	-	-	-	-	-	-
BLS rel8	Branch if Lower or Same (if C + Z = 1) (unsigned)	REL	23 rr	PPP/P ¹	-	-	-	-	-	-	-	-
BLT rel8	Branch if Less Than (if N \oplus V = 1) (signed)	REL	2D rr	PPP/P ¹	-	-	-	-	-	-	-	-
BMI rel8	Branch if Minus (if N = 1)	REL	2B rr	PPP/P ¹	-	-	-	-	-	-	-	-
BNE rel8	Branch if Not Equal (if Z = 0)	REL	26 rr	PPP/P ¹	-	-	-	-	-	-	-	-
BPL rel8	Branch if Plus (if N = 0)	REL	2A rr	PPP/P ¹	-	-	-	-	-	-	-	-
BRA rel8	Branch Always (if 1 = 1)	REL	20 rr	PPP	-	-	-	-	-	-	-	-
BRCLR opr8a, msk8, rel8 BRCLR opr16a, msk8, rel8 BRCLR oprx0_xysp, msk8, rel8 BRCLR oprx9, xysp, msk8, rel8 BRCLR oprx16,xysp, msk8, rel8	Branch if (M) • (mm) = 0 (if All Selected Bit(s) Clear)	DIR EXT IDX IDX1 IDX2	4F dd mm rr 1F hh 11 mm rr 0F xb mm rr 0F xb ff mm rr 0F xb ee ff mm rr	rPPP rfPPP rPPP rffPPP frPffPPP	-	-	-	-	-	-	-	-
BRN rel8	Branch Never (if 1 = 0)	REL	21 rr	P	-	-	-	-	-	-	-	-
BRSET opr8, msk8, rel8 BRSET opr16a, msk8, rel8 BRSET oprx0_xysp, msk8, rel8 BRSET oprx9, xysp, msk8, rel8 BRSET oprx16,xysp, msk8, rel8	Branch if (M) ● (mm) = 0 (if All Selected Bit(s) Set)	DIR EXT IDX IDX1 IDX2	4E dd mm rr 1E hh 11 mm rr 0E xb mm rr 0E xb ff mm rr 0E xb ee ff mm rr	rPPP rfPPP rPPP rffPPP frPffPPP	-	-	-	-	-	-	-	_
BSET opr8, msk8 BSET opr16a, msk8 BSET oprx0_xysp, msk8 BSET oprx9,xysp, msk8 BSET oprx16,xysp, msk8	(M) → (mm) ⇒ M Set Bit(s) in Memory	DIR EXT IDX IDX1 IDX2	4C dd mm 1C hh 11 mm 0C xb mm 0C xb ff mm 0C xb ee ff mm	rPOw rPPw rPOw rPwP frPwOP	-	-	-	-	Δ	Δ	0	-
BSR rel8	$(SP) - 2 \Rightarrow SP$; RTN_H : $RTN_L \Rightarrow M_{(SP)}$: $M_{(SP+1)}$ Subroutine address $\Rightarrow PC$ Branch to Subroutine	REL	07 rr	PPPS	-	-	-	-	-	-	-	-
BVC rel8	Branch if Overflow Bit Clear (if V = 0)	REL	28 rr	PPP/P ¹	+	-	-	-	-	-	-	H
BVS rel8	Branch if Overflow Bit Set (if V = 1)	REL	29 rr	PPP/P ¹	+	-	_	-	-	-	_	H
CALL opr16a, page CALL oprx0_xysp, page CALL oprx9,xysp, page CALL oprx16,xysp, page CALL [D,xysp] CALL [oprx16, xysp]	(SP) – 2 ⇒ SP; RTN _H ;RTN _L ⇒ M _(SP) ;M _(SP+1) (SP) – 1 ⇒ SP; (PPG) ⇒ M _(SP) ; pg ⇒ PPAGE register; Program address ⇒ PC Call subroutine in extended memory (Program may be located on another expansion memory page.) Indirect modes get program address and new pg value based on pointer.	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	4A hh ll pg 4B xb pg 4B xb ff pg 4B xb ee ff pg 4B xb 4B xb	gnfSsPPP gnfSsPPP gnfSsPPP fgnfSsPPP fIignSsPPP fIignSsPPP	-	-	_	_	_	_	_	-
СВА	(A) – (B)	INH	18 17	00	-	-	-	-	Δ	Δ	Δ	Δ
CLC	Compare 8-Bit Accumulators 0 ⇒ C Translates to ANDCC #\$EE	IMM	10 FE	P	-	-	-	-	-	-	-	0
CLI	Translates to ANDCC #\$FE 0 ⇒ I Translates to ANDCC #\$EF (enables I-bit interrupts)	IMM	10 EF	P	-	-	-	0	-	-	-	-

Notes
1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	s	х	Н	ı	N	z	V	С
CLR opr16a CLR oprx0_xysp CLR oprx9.xysp CLR oprx16.xysp CLR [D,xysp] CLR [oprx16.xysp] CLR [CLR CLR CLR CLR CLR CLR CLR CLR CLR CLR	$0\Rightarrow M$ Clear Memory Location $0\Rightarrow A \qquad \text{Clear Accumulator A} \\ 0\Rightarrow B \qquad \text{Clear Accumulator B}$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	79 hh 11 69 xb 69 xb ff 69 xb ee ff 69 xb ee ff 69 xb ee ff 87 C7	WOP PW PWO PWP PIFPW O O	-	-	-	-	0	1	0	0
CLV	0 ⇒ V Translates to ANDCC #\$FD	IMM	10 FD	P	-	-	-	-	-	-	0	-
CMPA #opr8i CMPA opr8a CMPA opr16a CMPA opr0_xysp CMPA oprx9_xysp CMPA oprx16,xysp CMPA [D,xysp] CMPA [oprx16,xysp]	(A) – (M) Compare Accumulator A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	81 ii 91 dd B1 hh 11 A1 xb A1 xb ff A1 xb ee ff A1 xb ee ff	P rfP rOP rfP rPO frPP fIfrfP fIPrfP	_	-	-	-	Δ	Δ	Δ	Δ
CMPB #opr8i CMPB opr8a CMPB opr16a CMPB oprx0_xysp CMPB oprx9_xysp CMPB oprx16_xysp CMPB [D,xysp] CMPB [D,xysp] CMPB [oprx16_xysp]	(B) – (M) Compare Accumulator B with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C1 ii D1 dd F1 hh l1 E1 xb E1 xb ff E1 xb ee ff E1 xb ee ff	P rfP rOP rfP rPO frPP fIfrfP fIPrfP	-	-		-	Δ	Δ	Δ	Δ
COM opr16a COM oprx0_xysp COM oprx9,xysp COM oprx16,xysp COM [D,xysp] COM [oprx16,xysp] COMA COMA	$\begin{array}{c} (\overline{M}) \Rightarrow M \ \ equivalent \ to \ \$FF - (M) \Rightarrow M \\ 1\text{'s Complement Memory Location} \\ \\ (\overline{A}) \Rightarrow A \qquad \text{Complement Accumulator A} \\ (\overline{B}) \Rightarrow B \qquad \text{Complement Accumulator B} \end{array}$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	71 hh 11 61 xb 61 xb ff 61 xb ee ff 61 xb ee ff 61 xb ee ff 41 51	rOPW rPW rPOW frPPW fIFrPW fIFrPW 0 0	_	_	П	-	Δ	Δ	0	1
CPD #opr16i CPD opr8a CPD opr16a CPD oprx0_xysp CPD oprx9_xysp CPD oprx16_xysp CPD [D,xysp] CPD [D,xysp] CPD [oprx16,xysp]	(A:B) – (M:M+1) Compare D to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8C jj kk 9C dd BC hh 11 AC xb AC xb ff AC xb ee ff AC xb	OP RfP ROP RfP RFP GrPP fifrfP fiprfP	_	_	-	_	Δ	Δ	Δ	Δ
CPS #opr16i CPS opr8a CPS opr16a CPS oprx0_xysp CPS oprx9,xysp CPS oprx16,xysp CPS [D,xysp] CPS [Oprx16,xysp]	(SP) – (M:M+1) Compare SP to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8F jj kk 9F dd BF hh 11 AF xb AF xb ff AF xb ee ff AF xb	OP RfP ROP RFP RPO fRPP fIFRFP	_	-	-	-	Δ	Δ	Δ	Δ
CPX #opr16i CPX opr8a CPX opr16a CPX oprx0_xysp CPX oprx9,xysp CPX oprx16,xysp CPX [D,xysp] CPX [Oprx16,xysp] CPX [Oprx16,xysp]	(X) – (M:M+1) Compare X to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8E jj kk 9E dd BE hh 11 AE xb AE xb ff AE xb ee ff AE xb	OP RfP ROP RFP RPO fRPP fifrfP	_	-	-	-	Δ	Δ	Δ	Δ
CPY #opr16i CPY opr8a CPY opr16a CPY oprx0_xysp CPY oprx9_xysp CPY oprx16_xysp CPY [D_xysp] CPY [D_xysp] CPY [D_xysp] CPY [Oprx16_xysp]	(Y) – (M:M+1) Compare Y to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8D jj kk 9D dd BD hh 11 AD xb AD xb ff AD xb ee ff AD xb ee ff AD xb ee ff	OP RfP ROP RFP RPO FRPP FIFRFP FIFRFP	-	_	-	-	Δ	Δ	Δ	Δ

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	s	х	н	ı	N	z	v	С
DAA	Adjust Sum to BCD Decimal Adjust Accumulator A	INH	18 07	OfO	-	-	-	-	Δ	Δ	?	Δ
DBEQ abdxys, rel9	(cntr) – 1⇒ cntr if (cntr) = 0, then Branch else Continue to next instruction Decrement Counter and Branch if = 0	REL (9-bit)	04 lb rr	PPP	-	-	-	-	-	-	-	-
DBNE abdxys, rel9	(cntr = A, B, D, X, Y, or SP) (cntr) – 1 ⇒ cntr If (cntr) not = 0, then Branch; else Continue to next instruction Decrement Counter and Branch if ≠ 0	REL (9-bit)	04 lb rr	PPP	-	-	-	-	_	-	-	-
DEC opr16a DEC oprx0_xysp DEC oprx16,xysp DEC [D,xysp] DEC [oprx16.xysp] DEC [oprx16.xysp] DECA DECB		EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	73 hh 11 63 xb 63 xb ff 63 xb ee ff 63 xb ee ff 63 xb ee ff 43 53	rOPw rPw rPOW frPPw fifrPw fifrPw O O	-	_	_	_	Δ	Δ	Δ	-
DES	(SP) – \$0001 ⇒ $SPTranslates to LEAS –1,SP$	IDX	1B 9F	PP ¹	-	-	-	-	-	-	-	-
DEX	(X) – \$0001 ⇒ X Decrement Index Register X	INH	09	0	-	-	-	-	-	Δ	-	-
DEY	(Y) – \$0001 ⇒ Y Decrement Index Register Y	INH	03	0	-	-	-	-	-	Δ	-	-
EDIV	$(Y:D) \div (X) \Rightarrow Y \text{ Remainder } \Rightarrow D$ 32 × 16 Bit \Rightarrow 16 Bit Divide (unsigned)	INH	11	fffffffffo	-	-	-	-	Δ	Δ	Δ	Δ
EDIVS	$(Y:D) \div (X) \Rightarrow Y \text{ Remainder } \Rightarrow D$ 32 × 16 Bit \Rightarrow 16 Bit Divide (signed)	INH	18 14	Offfffffffo	-	-	-	-	Δ	Δ	Δ	Δ
EMACS opr16a ²	$\begin{split} &(M_{(X)}:M_{(X+1)})\times (M_{(Y)}:M_{(Y+1)})+(M-M+3)\Rightarrow M-M+3\\ &16\times 16 \text{ Bit} \Rightarrow 32 \text{ Bit}\\ &\text{Multiply and Accumulate (signed)} \end{split}$	Special	18 12 hh 11	ORROfffRRfWWP	-	-	-	-	Δ	Δ	Δ	Δ
EMAXD oprx0_xysp EMAXD oprx9,xysp EMAXD oprx16,xysp EMAXD [D,xysp] EMAXD [oprx16,xysp]	MAX((D), (M:M+1)) ⇒ D MAX of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) – (M:M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1A xb 18 1A xb ff 18 1A xb ee ff 18 1A xb 18 1A xb ee ff	ORFP ORPO OfRPP OfifRfP OfipRfP	-	-	-	-	Δ	Δ	Δ	Δ
EMAXM oprx0_xysp EMAXM oprx9,xysp EMAXM oprx16,xysp EMAXM [D,xysp] EMAXM [oprx16,xysp]	MAX((D), (M:M+1)) ⇒ M:M+1 MAX of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) – (M:M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1E xb 18 1E xb ff 18 1E xb ee ff 18 1E xb 18 1E xb ee ff	ORPW ORPWO OfFPWP OfIFRPW OfIPRPW	-	-	-	-	Δ	Δ	Δ	Δ
EMIND oprx0_xysp EMIND oprx9.xysp EMIND oprx16,xysp EMIND [D,xysp] EMIND [oprx16,xysp]	MIN((D), (M:M+1)) ⇒ D MIN of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) – (M:M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1B xb 18 1B xb ff 18 1B xb ee ff 18 1B xb 18 1B xb ee ff	ORfP ORPO OfRPP OfIfRfP OfIPRfP	-	-	-	-	Δ	Δ	Δ	Δ
EMINM oprx0_xysp EMINM oprx9,xysp EMINM oprx16,xysp EMINM [D,xysp] EMINM [oprx16,xysp]	MIN((D), (M·M+1)) ⇒ M·M+1 MIN of 2 Unsigned 16-Bit Values N, Z, V and C status bits reflect result of internal compare ((D) – (M·M+1))	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1F xb 18 1F xb ff 18 1F xb ee ff 18 1F xb 18 1F xb ee ff	ORPW ORPWO OfRPWP OfIfRPW OfIPRPW	-	-	-	-	Δ	Δ	Δ	Δ
EMUL	$(D) \times (Y) \Rightarrow Y:D$ 16 × 16 Bit Multiply (unsigned)	INH	13	ffO	-	-	-	-	Δ	Δ	-	Δ

Notes

1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

2. opr16a is an extended address specification. Both X and Y point to source operands.

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	s	х	Н	ı	N	Z	v	С
EMULS	$(D) \times (Y) \Rightarrow Y:D$ 16 × 16 Bit Multiply (signed)	INH	18 13	OfO	-	-	-	-	Δ	Δ	-	Δ
EORA #opr8i EORA opr8a EORA opr16a EORA oprx0_xysp EORA oprx76,xysp EORA oprx16,xysp EORA [D,xysp] EORA [oprx16,xysp]	(A) ⊕ (M) ⇒ A Exclusive-OR A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	88 ii 98 dd B8 hh ll A8 xb A8 xb ff A8 xb ee ff A8 xb ee ff	P rfP rOP rfP rPO frPP fIfrfP fIFrfP	-	-	-	-	Δ	Δ	0	-
EORB #opr8i EORB opr8a EORB opr16a EORB oprx0_xysp EORB oprx9,xysp EORB oprx16,xysp EORB [D,xysp] EORB [oprx16,xysp]	(B) ⊕ (M) \Rightarrow B Exclusive-OR B with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C8 ii D8 dd F8 hh l1 E8 xb E8 xb ff E8 xb ee ff E8 xb E8 xb ee ff	P rfP rOP rFP rPO frpP fIfrfP fIFrfP	_	_	_	_	Δ	Δ	0	-
ETBL oprx0_xysp	(M:M+1)+ [(B)×((M+2:M+3) – (M:M+1))] ⇒ D 16-Bit Table Lookup and Interpolate Initialize B, and index before ETBL. <ea> points at first table entry (M:M+1) and B is fractional part of lookup value (no indirect addr. modes or extensions allowed)</ea>	IDX	18 3F xb	ORREFEEF	-	-	_	_	Δ	Δ	-	?
EXG abcdxys,abcdxys	(r1) ⇔ (r2) (if r1 and r2 same size) or \$00:(r1) ⇒ r2 (if r1=8-bit; r2=16-bit) or (r1 _{low}) ⇔ (r2) (if r1=16-bit; r2=8-bit) r1 and r2 may be A, B, CCR, D, X, Y, or SP	INH	B7 eb	P	-	-	-	-	-	-	_	-
FDIV	(D) ÷ (X) \Rightarrow X; Remainder \Rightarrow D 16 × 16 Bit Fractional Divide	INH	18 11	Offfffffffo	-	-	-	-	-	Δ	Δ	Δ
IBEQ abdxys, rel9	(cntr) + 1⇒ cntr If (cntr) = 0, then Branch else Continue to next instruction Increment Counter and Branch if = 0 (cntr = A, B, D, X, Y, or SP)	REL (9-bit)	04 lb rr	РРР	-	-	-	-	-	-	-	-
IBNE abdxys, rel9	(cntr) + 1⇒ cntr if (cntr) not = 0, then Branch; else Continue to next instruction Increment Counter and Branch if ≠ 0 (cntr = A, B, D, X, Y, or SP)	REL (9-bit)	04 lb rr	PPP	-	-	-	-	-	-	-	-
IDIV	(D) ÷ (X) \Rightarrow X; Remainder \Rightarrow D 16 × 16 Bit Integer Divide (unsigned)	INH	18 10	Offfffffffo	-	-	-	-	-	Δ	0	Δ
IDIVS	(D) + (X) \Rightarrow X; Remainder \Rightarrow D 16 × 16 Bit Integer Divide (signed)	INH	18 15	Offfffffffo	-	-	-	-	Δ	Δ	Δ	Δ
INC opr16a INC oprx0_xysp INC oprx9,xysp INC oprx16,xysp INC [D,xysp] INC [oprx16,xysp] INC [oprx16,xysp] INCA INCB	$(M) + \$01 \Rightarrow M$ Increment Memory Byte $(A) + \$01 \Rightarrow A$ $(B) + \$01 \Rightarrow B$ Increment Acc. A $(B) + \$01 \Rightarrow B$ Increment Acc. B	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	72 hh 11 62 xb 62 xb ff 62 xb ee ff 62 xb ee ff 62 xb ee ff 42 52	rOPW rPW rPOW frPPW fIFrPW fIPrPW O O	-	-	-	-	Δ	Δ	Δ	-
INS	(SP) + \$0001 ⇒ SP Translates to LEAS 1,SP	IDX	1B 81	PP ¹	-	-	-	-	-	-	-	-
INX	(X) + \$0001 ⇒ X Increment Index Register X	INH	08	0	-	-	-	-	-	Δ	-	-
INY	(Y) + \$0001 ⇒ Y Increment Index Register Y	INH	02	0	-	-	-	-	-	Δ	-	-

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	s	х	Н	ı	N	Z	٧	С
JMP opr16a JMP oprx0_xysp JMP oprx9,xysp JMP pprx16,xysp JMP [D,xysp] JMP [oprx16,xysp]	Subroutine address ⇒ PC Jump	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	06 hh 11 05 xb 05 xb ff 05 xb ee ff 05 xb 05 xb ee ff	PPP PPP PPP fPPP fIfPPP fIfPPP	-	-	-	-	-	_		-
JSR opr8a JSR opr16a JSR oprx0_xysp JSR oprx9,xysp JSR prx16,xysp JSR [D,xysp] JSR [oprx16,xysp]	$ \begin{aligned} & (SP) - 2 \Rightarrow SP; \\ & RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ & Subroutine \ address \Rightarrow PC \end{aligned} $ Jump to Subroutine	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	17 dd 16 hh 11 15 xb 15 xb ff 15 xb ee ff 15 xb ee ff 15 xb ee ff	PPPS PPPS PPPS fPPPS fIFPPS fIfPPPS fIfPPPS	-	-	-	-	-	-	-	-
LBCC rel16	Long Branch if Carry Clear (if C = 0)	REL	18 24 qq rr	OPPP/OPO ¹	-	-	-	-	-	-	-	-
LBCS rel16	Long Branch if Carry Set (if C = 1)	REL	18 25 qq rr	OPPP/OPO ¹	 -	-	-	-	-	-	-	-
LBEQ rel16	Long Branch if Equal (if Z = 1)	REL	18 27 qq rr	OPPP/OPO ¹	-	-	-	-	-	-	-	-
LBGE rel16	Long Branch Greater Than or Equal (if $N \oplus V = 0$) (signed)	REL	18 2C qq rr	OPPP/OPO ¹	-	-	-	-	-	-	-	-
LBGT rel16	Long Branch if Greater Than (if $Z + (N \oplus V) = 0$) (signed)	REL	18 2E qq rr	OPPP/OPO ¹	-	-	-	-	-	-	-	-
LBHI rel16	Long Branch if Higher (if C + Z = 0) (unsigned)	REL	18 22 qq rr	OPPP/OPO ¹	-	-	-	-	-	-	-	-
LBHS rel16	Long Branch if Higher or Same (if C = 0) (unsigned) same function as LBCC	REL	18 24 qq rr	OPPP/OPO ¹	-	-	-	-	-	-	-	-
LBLE rel16	Long Branch if Less Than or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	18 2F qq rr	OPPP/OPO ¹	-	-	-	-	-	-	-	-
LBLO rel16	Long Branch if Lower (if C = 1) (unsigned) same function as LBCS	REL	18 25 qq rr	OPPP/OPO ¹	-	-	-	-	-	-	-	-
LBLS rel16	Long Branch if Lower or Same (if C + Z = 1) (unsigned)	REL	18 23 qq rr	OPPP/OPO ¹	-	-	-	-	-	-	-	-
LBLT rel16	Long Branch if Less Than (if N ⊕ V = 1) (signed)	REL	18 2D qq rr	OPPP/OPO ¹	-	-	-	-	-	-	-	-
LBMI rel16	Long Branch if Minus (if N = 1)	REL	18 2B qq rr	OPPP/OPO ¹	-	-	-	-	-	-	-	-
LBNE rel16	Long Branch if Not Equal (if Z = 0)	REL	18 26 qq rr	OPPP/OPO ¹	-	-	-	-	-	-	Ī -	-
LBPL rel16	Long Branch if Plus (if N = 0)	REL	18 2A qq rr	OPPP/OPO ¹	-	-	-	-	-	-	-	-
LBRA rel16	Long Branch Always (if 1=1)	REL	18 20 qq rr	OPPP	-	-	_	-	-	-	-	-
LBRN rel16	Long Branch Never (if 1 = 0)	REL	18 21 qq rr	OPO	-	-	_	-	-	-	-	-
LBVC rel16	Long Branch if Overflow Bit Clear (if V=0)	REL	18 28 qq rr	OPPP/OPO ¹	-	-	-	-	-	-	-	-
LBVS rel16	Long Branch if Overflow Bit Set (if V = 1)	REL	18 29 qq rr	OPPP/OPO ¹	-	-	-	-	-	-	_	-
LDAA # opr8i LDAA opr8a LDAA opr16a LDAA oprx0_xysp LDAA oprx9.xysp LDAA (D.xysp) LDAA [D.xysp] LDAA [Oprx16,xysp]	(M) ⇒ A Load Accumulator A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	86 ii 96 dd B6 hh ll A6 xb A6 xb ff A6 xb ee ff A6 xb ee ff	p rfp rOP rfp rPO frpp fIfrfp fIPrfp	_	-	_	_	Δ	Δ	0	-
LDAB # opr8i LDAB opr8a LDAB opr16a LDAB oprx0_xysp LDAB oprx16,xysp LDAB oprx16,xysp LDAB [D,xysp] LDAB [oprx16,xysp]	(M) ⇒ B Load Accumulator B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C6 ii D6 dd F6 hh ll E6 xb E6 xb ff E6 xb ee ff E6 xb E6 xb ee ff	P rfP rOP rfP rPO frPP fIfrfP fIPrfP	-	-	-	-	Δ	Δ	0	ı

Note 1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles if the branch is not taken.

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	s	Х	Н	ı	N	Z	V	С
LDD #opr16i LDD opr8a LDD opr16a LDD oprx0_xysp LDD oprx9,xysp LDD oprx16,xysp LDD [D,xysp] LDD [oprx16,xysp]	(M:M+1) ⇒ A:B Load Double Accumulator D (A:B)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CC jj kk DC dd FC hh ll EC xb EC xb ff EC xb ee ff EC xb ee ff	OP RfP ROP RFP RPO fRPP fifrfP	-	_	-	_	Δ	Δ	0	_
LDS #opr16i LDS opr8a LDS opr16a LDS oprx9_xysp LDS oprx9_xysp LDS [D,xysp] LDS [oprx16_xysp] LDS [oprx16_xysp]	(M:M+1) ⇒ SP Load Stack Pointer	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CF jj kk DF dd FF hh ll EF xb EF xb ff EF xb ee ff EF xb ee ff	OP RfP ROP RFP RPO frPP fifrfP fiprfp	-	-	_	-	Δ	Δ	0	-
LDX #opr16i LDX opr8a LDX opr16a LDX oprx9_xysp LDX oprx9_xysp LDX prx16_xysp LDX [D,xysp] LDX [oprx16_xysp]	(M:M+1) ⇒ X Load Index Register X	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CE jj kk DE dd FE hh ll EE xb EE xb ff EE xb ee ff EE xb ee ff	OP RfP ROP RFP RPO fIRPP fIFRFP	-	_		-	Δ	Δ	0	-
LDY #opr16i LDY opr8a LDY opr16a LDY oprx9_xysp LDY oprx9_xysp LDY oprx16_xysp LDY [D,xysp] LDY [oprx16_xysp]	(M:M+1) ⇒ Y Load Index Register Y	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CD jj kk DD dd FD hh 11 ED xb ED xb ff ED xb ee ff ED xb ee ff	OP RfP ROP RFP RPO fRPP fIFRFP	-	-		-	Δ	Δ	0	-
LEAS oprx0_xysp LEAS oprx9,xysp LEAS oprx16,xysp	Effective Address ⇒ SP Load Effective Address into SP	IDX IDX1 IDX2	1B xb 1B xb ff 1B xb ee ff	PP ¹ PO PP	-	-	-	-	-	-	-	-
LEAX oprx0_xysp LEAX oprx9,xysp LEAX oprx16,xysp	Effective Address ⇒ X Load Effective Address into X	IDX IDX1 IDX2	1A xb 1A xb ff 1A xb ee ff	PP ¹ PO PP	-	-	-	-	-	-	-	-
LEAY oprx0_xysp LEAY oprx9,xysp LEAY oprx16,xysp	Effective Address ⇒ Y Load Effective Address into Y	IDX IDX1 IDX2	19 xb 19 xb ff 19 xb ee ff	PP ¹ PO PP	-	-	ı	-	-	-	-	-
LSL opr16a LSL oprx0_xysp LSL oprx9,xysp LSL [D,xysp] LSL [oprx16,xysp] LSLA LSLB	C b7 b0 Logical Shift Left same function as ASL Logical Shift Accumulator A to Left Logical Shift Accumulator B to Left	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	78 hh 11 68 xb 68 xb ff 68 xb ee ff 68 xb 68 xb ee ff 48 58	rOPw rPw rPow frPpw fifrPw fifrPw O	_	_	=	_	Δ	Δ	Δ	Δ
LSLD	C b7 A b0 b7 B b0 Logical Shift Left D Accumulator same function as ASLD	INH	59	0	-	-	ı	-	Δ	Δ	Δ	Δ
LSR opr16a LSR oprx0_xysp LSR oprx9,xysp LSR oprx16,xysp LSR [D,xysp] LSR [oprx16,xysp] LSRA LSRB	0 b7 b0 C Logical Shift Right Logical Shift Accumulator A to Right Logical Shift Accumulator B to Right	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	74 hh 11 64 xb 64 xb ff 64 xb ee ff 64 xb 64 xb ee ff 44 54	rOPw rPw rPOw frPPw fifrPw fiPrPw 0	-	-	ı	_	0	Δ	Δ	Δ

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	s	х	Н	ı	N	Z	v	С
LSRD	0 b7 A b0 b7 B b0 C Logical Shift Right D Accumulator	INH	49	0	-	_	_	-	0	Δ	Δ	Δ
MAXA oprx0_xysp MAXA oprx9,xysp MAXA oprx16,xysp MAXA [D,xysp] MAXA [oprx16,xysp]	$\begin{split} \text{MAX}((A), (M)) &\Rightarrow A \\ \text{MAX of 2 Unsigned 8-Bit Values} \\ \text{N, Z, V and C status bits reflect result of} \\ \text{internal compare } ((A) - (M)). \end{split}$	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 18 xb 18 18 xb ff 18 18 xb ee ff 18 18 xb 18 18 xb ee ff	OrfP OrPO OfrPP OfifrfP OfiPrfP	-	-	-	-	Δ	Δ	Δ	Δ
MAXM oprx0_xysp MAXM oprx9,xysp MAXM oprx16,xysp MAXM [D,xysp] MAXM [oprx16,xysp]	MAX((A), (M)) ⇒ M MAX of 2 Unsigned 8-Bit Values N, Z, V and C status bits reflect result of internal compare ((A) – (M)).	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1C xb 18 1C xb ff 18 1C xb ee ff 18 1C xb 18 1C xb	OrPw OrPwO OfrPwP OfifrPw OfiPrPw	-	-	-	-	Δ	Δ	Δ	Δ
MEM	$\begin{array}{l} \mu \left(\text{grade} \right) \Rightarrow M_{(Y)}; \\ (X) + 4 \Rightarrow X; (Y) + 1 \Rightarrow Y; \text{A unchanged} \\ \text{if (A)} < P1 \text{ or (A)} > P2 \text{ then } \mu = 0, \text{ else} \\ \mu = \text{MINI}((A) - P1) \times \text{S1}, (P2 - (A)) \times \text{S2}, \$FF] \\ \text{where:} \\ \text{A} = \text{current crisp input value;} \\ \text{X points at 4-byte data structure that describes a trapezoidal membership function (P1, P2, S1, S2);} \\ \text{Y points at fuzzy input (RAM location).} \\ \text{See $\mathit{CPU12 Reference Manual for special cases.} \\ \end{array}$	Special	01	RREOW	_	-	?	-	?	?	?	?
MINA oprx0_xysp MINA oprx9,xysp MINA oprx16,xysp MINA [D,xysp] MINA [oprx16,xysp]	MIN((A), (M)) ⇒ A MIN of 2 Unsigned 8-Bit Values N, Z, V and C status bits reflect result of internal compare ((A) – (M)).	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 19 xb 18 19 xb ff 18 19 xb ee ff 18 19 xb 18 19 xb ee ff	OrfP OrPO OfrPP OfIfrfP OfIPrfP	-	-	-	-	Δ	Δ	Δ	Δ
MINM oprx0_xysp MINM oprx9,xysp MINM oprx16,xysp MINM [D,xysp] MINM [oprx16,xysp]	MIN((A), (M)) ⇒ M MIN of 2 Unsigned 8-Bit Values N, Z, V and C status bits reflect result of internal compare ((A) – (M)).	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1D xb 18 1D xb ff 18 1D xb ee ff 18 1D xb 18 1D xb ee ff	OrPW OrPwO OfrPwP OfIfrPw OfIPrPw	-	-	-	-	Δ	Δ	Δ	Δ
MOVB #opr8, opr16a ¹ MOVB #opr8i, oprx0_xysp ¹ MOVB opr16a, opr16a ¹ MOVB opr16a, opr0e ² MOVB opr16a, oprx0_xysp ¹ MOVB oprx0_xysp, opr16a ¹ MOVB oprx0_xysp, oprx0_xysp ¹	$(M_1) \Rightarrow M_2$ Memory to Memory Byte-Move (8-Bit)	IMM-EXT IMM-IDX EXT-EXT EXT-IDX IDX-EXT IDX-IDX	18 0B ii hh 11 18 08 xb ii 18 0C hh 11 hh 11 18 09 xb hh 11 18 0D xb hh 11 18 0A xb xb	OPWP OPWO OrPWPO OPPW OrPWP OrPWP OrPWO	-	-	-	-	-	-	-	-
MOVW #oprx16, opr16a ¹ MOVW #opr16i, oprx0_xysp ¹ MOVW opr16a, opr16a ¹ MOVW opr16a, oprx0_xysp ¹ MOVW oprx0_xysp, opr16a ¹ MOVW oprx0_xysp, opr16a ¹	(M:M+1 ₁) ⇒ M:M+1 ₂ Memory to Memory Word-Move (16-Bit)	IMM-EXT IMM-IDX EXT-EXT EXT-IDX IDX-EXT IDX-IDX	18 03 jj kk hh ll 18 00 xb jj kk 18 04 hh ll hh ll 18 01 xb hh ll 18 05 xb hh ll 18 02 xb xb	OPWPO OPPW ORPWPO OPRPW ORPWP ORPWP	-	-	-	-	-	-	-	-
MUL	$(A) \times (B) \Rightarrow A:B$ 8 × 8 Unsigned Multiply	INH	12	ffO	-	-	-	-	-	-	-	Δ
NEG opr16a NEG oprx0_xysp NEG oprx16,xysp NEG [D,xysp] NEG [D,xysp] NEG [oprx16,xysp] NEGA	0 – (M) \Rightarrow M or (\overline{M}) + 1 \Rightarrow M Two's Complement Negate 0 – (A) \Rightarrow A equivalent to (\overline{A}) + 1 \Rightarrow A Negate Accumulator A	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH	70 hh 11 60 xb 60 xb ff 60 xb ee ff 60 xb 60 xb ee ff 40	rOPW rPW rPOW frPPW fIfrPW fIFrPW O	-	_	-	_	Δ	Δ	Δ	Δ
NEGB	$0 - (B) \Rightarrow B$ equivalent to $(\overline{B}) + 1 \Rightarrow B$ Negate Accumulator B	INH	50	0								
NOP	No Operation	INH	A7	0	-	-	-	-	-	-	-	-

Note 1. The first operand in the source code statement specifies the source for the move.

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	s	Х	Н	ı	N	Z	٧	С
ORAA #opr8i ORAA opr8a ORAA opr16a ORAA oprx0_xysp ORAA oprx9,xysp ORAA oprx16.xysp ORAA [D,xysp] ORAA [D,xysp] ORAA [oprx16,xysp]	(A) → (M) ⇒ A Logical OR A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8A ii 9A dd BA hh ll AA xb AA xb ff AA xb ee ff AA xb	P rfP rOP rFP rPO frPP fIfrfP fIPrfP	-	-	1	-	Δ	Δ	0	
ORAB #opr8i ORAB opr8a ORAB opr16a ORAB oprx0_xysp ORAB oprx9,xysp ORAB oprx16.xysp ORAB [D,xysp] ORAB [D,xysp] ORAB [oprx16,xysp]	(B) ★ (M) ⇒ B Logical OR B with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CA ii DA dd FA hh ll EA xb EA xb ff EA xb ee ff EA xb EA xb ee ff	P rfP rOP rfP rPO frPP fIfrfP fIPrfP	-	_	1	_	Δ	Δ	0	-
ORCC #opr8i	(CCR) + M ⇒ CCR Logical OR CCR with Memory	IMM	14 ii	P	1	-	⇑	⇑	⇑	⇑	1	1
PSHA	$(SP) - 1 \Rightarrow SP; (A) \Rightarrow M_{(SP)}$ Push Accumulator A onto Stack	INH	36	Os	-	-	-	-	-	1	-	-
PSHB	$(SP) - 1 \Rightarrow SP; (B) \Rightarrow M_{(SP)}$ Push Accumulator B onto Stack	INH	37	Os	-	-	-	-	-	-	-	-
PSHC	$(SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)}$ Push CCR onto Stack	INH	39	Os	-	-	-	-	-	-	- 	-
PSHD	$(SP) - 2 \Rightarrow SP; (A:B) \Rightarrow M_{(SP)}:M_{(SP+1)}$ Push D Accumulator onto Stack	INH	3В	os	-	-	-	-	-	-	-	-
PSHX	$(SP) - 2 \Rightarrow SP$; $(X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)}$ Push Index Register X onto Stack	INH	34	os	-	-	-	-	-	-	-	-
PSHY	(SP) – 2 \Rightarrow SP ; $(Y_H:Y_L)$ \Rightarrow $M_{(SP)}:M_{(SP+1)}$ Push Index Register Y onto Stack	INH	35	os	-	-	-	-	-	-	-	-
PULA	$(M_{(SP)}) \Rightarrow A; (SP) + 1 \Rightarrow SP$ Pull Accumulator A from Stack	INH	32	uf0	-	-	-	-	-	-	-	-
PULB	$(M_{(SP)}) \Rightarrow B$; $(SP) + 1 \Rightarrow SP$ Pull Accumulator B from Stack	INH	33	uf0	-	-	-	-	-	1	-	-
PULC	$(M_{(SP)}) \Rightarrow CCR; (SP) + 1 \Rightarrow SP$ Pull CCR from Stack	INH	38	uf0	Δ	↓	Δ	Δ	Δ	Δ	Δ	Δ
PULD	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow A:B; (SP) + 2 \Rightarrow SP$ Pull D from Stack	INH	3A	U£O	-	-	-	-	-	-	-	-
PULX	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow X_H:X_L: (SP) + 2 \Rightarrow SP$ Pull Index Register X from Stack	INH	30	UfO	-	-	-	-	-	-	-	-
PULY	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow Y_H:Y_L: (SP) + 2 \Rightarrow SP$ Pull Index Register Y from Stack	INH	31	UfO	-	-	-	-	-	-	-	-

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	s	х	Н	ı	N	Z	v	С
REV (add if interrupted)	MIN-MAX rule evaluation Find smallest rule input (MIN). Store to rule outputs unless fuzzy output is already larger (MAX). For rule weights see REVW. Each rule input is an 8-bit offset from the base address in Y.	Special	18 3A	Orf(ttx)O ¹ ff + Orf	-	_	?	_	?	?	Δ	?
	Each rule output is an 8-bit offset from the base address in Y. \$FE separates rule inputs from rule outputs. \$FF terminates the rule list.											
	REV may be interrupted.											Ш
REVW (add 2 at end of ins if wts) (add if interrupted)	MIN-MAX rule evaluation Find smallest rule input (MIN), Store to rule outputs unless fuzzy output is already larger (MAX).	Special	18 3B	ORf(tTx)O ² (rffRf) ² fff + ORft	-	-	?	_	?	?	Δ	į
	Rule weights supported, optional. Each rule input is the 16-bit address of a fuzzy input. Each rule output is the 16-bit address of a fuzzy output. The value \$FFFE separates rule inputs from rule outputs. \$FFFF terminates the rule list. REVW may be interrupted.											
ROL opr16a	NEVW may be interrupted.	EXT	75 hh 11	rOPw	╁	_	_	-	Δ	Δ	Δ	Δ
ROL oprx0_xysp ROL oprx9,xysp ROL oprx16,xysp ROL [D,xysp]	C b7 b0 Rotate Memory Left through Carry	IDX IDX1 IDX2 [D,IDX]	65 xb 65 xb ff 65 xb ee ff 65 xb	rPw rPOw frPPw fIfrPw				_	Δ	Δ		
ROL [<i>oprx16,xysp</i>] ROLA ROLB	Rotate A Left through Carry Rotate B Left through Carry	[IDX2] INH INH	65 xb ee ff 45 55	fiPrPw O O								
ROR opr16a ROR oprx0_xysp ROR oprx9.xysp ROR oprx16.xysp ROR [D,xysp] ROR [oprx16.xysp] RORA RORB	b7 b0 C Rotate Memory Right through Carry Rotate A Right through Carry Rotate B Right through Carry	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	76 hh 11 66 xb 66 xb ff 66 xb ee ff 66 xb ee ff 46 56	rOPW rPW rPOW frPPW fIfrPW fIPrPW O O	-	-	-	-	Δ	Δ	Δ	Δ
RTC	$\begin{split} &(M_{(SP)}) \Rightarrow PPAGE; (SP) + 1 \Rightarrow SP; \\ &(M_{(SP)}:M_{(SP+1)}) \Rightarrow PC_{H}:PC_{L}; \\ &(SP) + 2 \Rightarrow SP \end{split}$ Return from Call	INH	0A	uUnPPP	-	-	-	-	_	-	_	_
RTI (if interrupt pending)	$\begin{array}{l} (M_{(SP)}) \Rightarrow CCR; (SP) + 1 \Rightarrow SP \\ (M_{(SP)}:M_{(SP+1)}) \Rightarrow B:A; (SP) + 2 \Rightarrow SP \\ (M_{(SP)}:M_{(SP+1)}) \Rightarrow X_H; X_L; (SP) + 4 \Rightarrow SP \\ (M_{(SP)}:M_{(SP+1)}) \Rightarrow PC_H; PC_L; (SP) - 2 \Rightarrow SP \\ (M_{(SP)}:M_{(SP+1)}) \Rightarrow Y_H; Y_L; \\ (SP) + 4 \Rightarrow SP \\ \\ Return from Interrupt \end{array}$	INH	0B	uUUUUPPP uUUUUV£PPP	Δ	₩	Δ	Δ	Δ	Δ	Δ	Δ
RTS	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow PC_H:PC_L;$ $(SP) + 2 \Rightarrow SP$ Return from Subroutine	INH	3D	UfPPP	-	-	-	-	-	-	-	-
SBA	Return from Subroutine $(A) - (B) \Rightarrow A$	INH	18 16	00	-	_	-	_	Δ	Δ	Δ	Δ
Jun	Subtract B from A	11411	10 10		_		_	-				

Notes

^{1.} The 3-cycle loop in parentheses is executed once for each element in the rule list. When an interrupt occurs, there is a 2-cycle exit sequence, a 4-cycle re-entry sequence, then execution resumes with a prefetch of the last antecedent or consequent being processed at the time of the interrupt.

^{2.} The 3-cycle loop in parentheses expands to 5 cycles for separators when weighting is enabled. The loop is executed once for each element in the rule list. When an interrupt occurs, there is a 2-cycle exit sequence, a 4-cycle re-entry sequence, then execution resumes with a prefetch of the last antecedent or consequent being processed at the time of the interrupt.

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	s	Х	Н	ı	N	z	ν	С
SBCA #opr8i SBCA opr8a SBCA opr16a SBCA oprx0_xysp SBCA oprx9,xysp SBCA oprx16,xysp SBCA [D,xysp] SBCA [oprx16,xysp]	(A) – (M) – C \Rightarrow A Subtract with Borrow from A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	82 ii 92 dd B2 hh 11 A2 xb A2 xb ff A2 xb ee ff A2 xb ee ff	P rfP rOP rfP rPO frPP fIFrFP fIFrfP	-	-	-	-	Δ	Δ	Δ	Δ
SBCB #opr8i SBCB opr8a SBCB opr16a SBCB oprx0_xysp SBCB oprx76,xysp SBCB oprx16,xysp SBCB [D,xysp] SBCB [oprx16,xysp]	(B) – (M) – C ⇒ B Subtract with Borrow from B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C2 ii D2 dd F2 hh 11 E2 xb E2 xb ff E2 xb ee ff E2 xb E2 xb ee ff	P rfp rOP rfp rPO frpp fIrfp fIfrfp fIprfp	-	-	_	-	Δ	Δ	Δ	Δ
SEC	1 ⇒ C Translates to ORCC #\$01	IMM	14 01	P	-	-	-	-	-	-	-	1
SEI	1 ⇒ I; (inhibit I interrupts) Translates to ORCC #\$10	IMM	14 10	P	-	-	-	1	-	-	-	-
SEV	1 ⇒ V Translates to ORCC #\$02	IMM	14 02	P	-	-	-	-	-	-	1	-
SEX abc,dxys	\$00:(r1) \Rightarrow r2 if r1, bit 7 is 0 or \$FF:(r1) \Rightarrow r2 if r1, bit 7 is 1 Sign Extend 8-bit r1 to 16-bit r2 r1 may be A, B, or CCR r2 may be D, X, Y, or SP Alternate mnemonic for TFR r1, r2	INH	B7 eb	P	_	_	_	_	-	-	-	_
STAA opr8a STAA opr16a STAA oprx0_xysp STAA oprx9.xysp STAA oprx16,xysp STAA [D,xysp] STAA [oprx16.xysp]	(A) ⇒ M Store Accumulator A to Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5A dd 7A hh 11 6A xb 6A xb ff 6A xb ee ff 6A xb 6A xb ee ff	PW WOP PW PWO PWP PIfPW PIPPW	-	-	-	-	Δ	Δ	0	-
STAB opr8a STAB opr16a STAB oprx0_xysp STAB oprx9,xysp STAB oprx16,xysp STAB [D,xysp] STAB [0,xysp]	(B) ⇒ M Store Accumulator B to Memory	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5B dd 7B hh 11 6B xb 6B xb ff 6B xb ee ff 6B xb ee ff	Pw WOP Pw PwO PwP PifPw PifPw	-	-	-	-	Δ	Δ	0	-
STD opr8a STD opr16a STD oprx0_xysp STD oprx9_xysp STD oprx16_xysp STD [D,xysp] STD [oprx16,xysp]	$(A) \Rightarrow M, (B) \Rightarrow M+1$ Store Double Accumulator	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5C dd 7C hh 11 6C xb 6C xb ff 6C xb ee ff 6C xb ee ff	PW WOP PW PWO PWP PIfPW PIPPW	-	-	-	-	Δ	Δ	0	-
STOP (entering STOP) (exiting STOP) (continue) (if STOP disabled)	$\begin{split} &(SP)-2\Rightarrow SP;\\ &RTN_H:RTN_L\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP; (Y_H:Y_L)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP; (X_H:X_L)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP; (B:A)\rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP; (B:A)\rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-1\Rightarrow SP; (CCR)\Rightarrow M_{(SP)}:\\ &STOP\ All\ Clocks\\ &If\ S\ control\ bit\ =\ 1,\ the\ STOP\ instruction\ is\ disabled\ and\ acts\ like\ a\ two-cycle\ NOP.\\ &Registers\ stacked\ to\ allow\ quicker\ recovery\ by\ interrupt. \end{split}$	INH	18 3E	OOSSSESS fVEPPP fO OO	_	_	-	_	-	-	-	_

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	s	х	Н	ı	N	Z	V	С
STS opr8a STS opr16a STS oprx0_xysp STS oprx9,xysp STS oprx16,xysp STS [D.xysp] STS [oprx16,xysp]	(SP _H :SP _L) ⇒ M:M+1 Store Stack Pointer	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5F dd 7F hh 11 6F xb 6F xb ff 6F xb ee ff 6F xb 6F xb ee ff	PW WOP PW PWO PWP PIfPW PIPPW	-	-	-	-	Δ	Δ	0	-
STX opr8a STX opr16a STX oprx0_xysp STX oprx9,xysp STX oprx16,xysp STX [D,xysp] STX [oprx16,xysp]	$(X_{H}:X_{L}) \Rightarrow M:M+1$ Store Index Register X	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5E dd 7E hh 11 6E xb 6E xb ff 6E xb ee ff 6E xb 6E xb ee ff	PW WOP PW PWO PWP PIfPW PIPPW	-	_	-	-	Δ	Δ	0	_
STY opr8a STY opr16a STY oprx0_xysp STY oprx16_xysp STY oprx16_xysp STY [D_xysp] STY [Oprx16_xysp]	$(Y_H;Y_L)\Rightarrow M:M+1$ Store Index Register Y	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	5D dd 7D hh 11 6D xb 6D xb ff 6D xb ee ff 6D xb 6D xb ee ff	PW WOP PW PWO PWP PIfPW PIPPW	-	_	-	-	Δ	Δ	0	-
SUBA #opr8i SUBA opr8a SUBA opr16a SUBA oprx0_xysp SUBA oprx9,xysp SUBA oprx16.xysp SUBA [D,xysp] SUBA [oprx16.xysp]	(A) – (M) ⇒ A Subtract Memory from Accumulator A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	80 ii 90 dd B0 hh 11 A0 xb A0 xb ff A0 xb ee ff A0 xb ee ff	P rfp rOP rfp rPO frpp fIfrfp fIprfp	-	_		-	Δ	Δ	Δ	Δ
SUBB #opr8i SUBB opr8a SUBB opr16a SUBB oprx0_xysp SUBB oprx16,xysp SUBB [0,xysp] SUBB [0,xysp]	(B) – (M) ⇒ B Subtract Memory from Accumulator B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C0 ii D0 dd F0 hh ll E0 xb E0 xb ff E0 xb ee ff E0 xb	P rfp rOP rfP rPO frpp fIfrfp fIfrfp fIprfp	-	_	1	_	Δ	Δ	Δ	Δ
SUBD #opr16i SUBD opr8a SUBD opr16a SUBD oprx0_xysp SUBD oprx9_xysp SUBD oprx16.xysp SUBD [D,xysp] SUBD [oprx16.xysp] SUBD [oprx16.xysp]	(D) – (M:M+1) ⇒ D Subtract Memory from D (A:B)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	83 jj kk 93 dd B3 hh 11 A3 xb A3 xb ff A3 xb ee ff A3 xb ee ff	OP RfP ROP RfP RPO firpp fifrfp fiprfp	-	_	-	_	Δ	Δ	Δ	Δ
SWI	$ \begin{aligned} &(SP) - 2 \Rightarrow SP; \\ &RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 2 \Rightarrow SP; (Y_H:Y_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 2 \Rightarrow SP; (X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 2 \Rightarrow SP; (B:A) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 2 \Rightarrow SP; (B:A) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ &(SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)} \\ &1 \Rightarrow I; (SWI \ Vector) \Rightarrow PC \end{aligned} $	INH	3F	VSPSSPSsp ¹	_	-		1	-	-	-	-
TAB	$(A) \Rightarrow B$ Transfer A to B	INH	18 OE	00	-	-	-	-	Δ	Δ	0	-
TAP	$(A) \Rightarrow CCR$ Translates to TFR A , CCR	INH	B7 02	P	Δ	↓	Δ	Δ	Δ	Δ	Δ	Δ
ТВА	$ (B) \Rightarrow A $ Transfer B to A	INH	18 OF	00	-	-	ı	-	Δ	Δ	0	-

Note 1. The CPU also uses the SWI processing sequence for hardware interrupts and unimplemented opcode traps. A variation of the sequence (V£PPP) is used for resets.

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	s	х	н	ı	N	z	v	С
TBEQ abdxys,rel9	If (cntr) = 0, then Branch; else Continue to next instruction	REL (9-bit)	04 lb rr	PPP	-	-	-	-	-	-	-	-
	Test Counter and Branch if Zero (cntr = A, B, D, X,Y, or SP)											
TBL oprx0_xysp	$(M) + [(B) \times ((M+1) - (M))] \Rightarrow A$ 8-Bit Table Lookup and Interpolate	IDX	18 3D xb	OrrffffP	-	-	-	-	Δ	Δ	-	?
	Initialize B, and index before TBL. <ea> points at first 8-bit table entry (M) and B is fractional part of lookup value.</ea>											
	(no indirect addressing modes or extensions allowed)											
TBNE abdxys,rel9	If (cntr) not = 0, then Branch; else Continue to next instruction	REL (9-bit)	04 lb rr	PPP	-	-	-	-	-	-	-	-
	Test Counter and Branch if Not Zero (cntr = A, B, D, X,Y, or SP)											
TFR abcdxys,abcdxys	(r1) \Rightarrow r2 or \$00:(r1) \Rightarrow r2 or (r1[7:0]) \Rightarrow r2	INH	B7 eb	P	or Δ	-	Δ	Δ	Δ	Δ	Δ	Δ
	Transfer Register to Register r1 and r2 may be A, B, CCR, D, X, Y, or SP											
ТРА	$(CCR) \Rightarrow A$ Translates to TFR CCR ,A	INH	B7 20	P	-	-	-	-	-	-	-	-
TRAP trapnum	$ \begin{aligned} &\langle SP \rangle - 2 \Rightarrow SP; \\ &RTN_H RTN_L \Rightarrow M_{\langle SP \rangle} M_{\langle SP + 1 \rangle}; \\ &\langle SP \rangle - 2 \Rightarrow SP; \; \langle Y_H ; Y_L \rangle \Rightarrow M_{\langle SP \rangle} M_{\langle SP + 1 \rangle}; \\ &\langle SP \rangle - 2 \Rightarrow SP; \; \langle M_H ; X_L \rangle \Rightarrow M_{\langle SP \rangle} M_{\langle SP + 1 \rangle}; \\ &\langle SP \rangle - 2 \Rightarrow SP; \; \langle B ; A \rangle \Rightarrow M_{\langle SP \rangle} M_{\langle SP + 1 \rangle}; \\ &\langle SP \rangle - 1 \Rightarrow SP; \; \langle CCR \rangle \Rightarrow M_{\langle SP \rangle}; \\ &1 \Rightarrow I; \; \langle TRAP \; Vector \rangle \Rightarrow PC \end{aligned} $	INH	18 tn tn = \$30-\$39 or \$40-\$FF	OfVSPSSPSsP	-	_	-	1	-	-	-	-
	Unimplemented opcode trap											
TST opr16a TST oprx0_xysp TST oprx9,xysp TST oprx16,xysp TST [D,xysp] TST [oprx16,xysp] TSTA TSTB	(M) – 0 Test Memory for Zero or Minus (A) – 0 Test A for Zero or Minus (B) – 0 Test B for Zero or Minus	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	F7 hh 11 E7 xb E7 xb ff E7 xb ee ff E7 xb ee ff 97 D7	rOP rfP rPO frpP fIfrfP fIPrfP O	-	_	_	_	Δ	Δ	0	0
TSX	$(SP) \Rightarrow X$ Translates to TFR SP,X	INH	B7 75	P	-	-	-	-	-	-	-	-
TSY	$(SP) \Rightarrow Y$ Translates to TFR SP,Y	INH	В7 76	P	-	-	-	-	-	-	-	-
TXS	$(X) \Rightarrow SP$ Translates to TFR X,SP	INH	B7 57	P	-	-	-	-	-	-	-	-
TYS	$(Y) \Rightarrow SP$ Translates to TFR Y,SP	INH	B7 67	P	-	-	-	-	-	-	-	1
WAI (before interrupt) (when interrupt comes)	$\begin{split} &\langle SP \rangle - 2 \Rightarrow SP; \\ &RTN_H:RTN_L \Rightarrow M_{\langle SP \rangle}:M_{\langle SP+1 \rangle}; \\ &\langle SP \rangle - 2 \Rightarrow SP; \ \langle Y_H:Y_L \rangle \Rightarrow M_{\langle SP \rangle}:M_{\langle SP+1 \rangle}; \\ &\langle SP \rangle - 2 \Rightarrow SP; \ \langle X_H:X_L \rangle \Rightarrow M_{\langle SP \rangle}:M_{\langle SP+1 \rangle}; \\ &\langle SP \rangle - 2 \Rightarrow SP; \ \langle SP \rangle \Rightarrow M_{\langle SP \rangle}:M_{\langle SP+1 \rangle}; \\ &\langle SP \rangle - 2 \Rightarrow SP; \ \langle SP \rangle \Rightarrow M_{\langle SP \rangle}:M_{\langle SP \rangle}:M_$	INH	3E	OSSSfSsf Vfppp	or or or	- 1	-	1	-	-	-	-
	WAIT for interrupt										L	

CPU12 Reference Guide

Instruction Set Summary (Continued)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	s	х	Н	ı	N	Z	٧	С
WAV (add if interrupt)	$\begin{split} \sum_{i=1}^{B} S_{i}F_{i} &\Rightarrow \textit{Y:D} \\ \sum_{i=1}^{B} F_{i} &\Rightarrow X \\ i &= 1 \\ \text{Calculate Sum of Products and Sum of Weights for Weighted} \end{split}$	Special	18 3C	Off(frrfffff)O SSS + UUrr	-	-	?	_	?	Δ	?	?
	Average Calculation Initialize B, X, and Y before WAV. B specifies number of elements. X points at first element in S_i list. Y points at first element in F_i list. All S_i and F_i elements are 8-bits. If interrupted, six extra bytes of stack used for intermediate values											
wavr pseudo- instruction	see WAV Resume executing an interrupted WAV instruction (recover intermediate results from stack rather than initializing them to zero)	Special	3C		-	-	?	-	?	Δ	?	?
XGDX	$ \begin{array}{c} (D) \Leftrightarrow (X) \\ \textit{Translates to EXG D, X} \end{array} $	INH	B7 C5	P	-	-	-	-	-	-	_ 	-
XGDY	(D) ⇔ (Y) Translates to EXG D, Y	INH	B7 C6	P	-	-	-	-	-	-	-	-

Table 1. Indexed Addressing Mode Postbyte Encoding (xb)

				1							1 -	1-	1 -	1-	1	1
<u>.</u>	00	10	20	30	40	50	60	70	80	90	A0	B0	C0	D0	E0	F0
·	0,X	16,X	1,+X	1,X+	0,Y	16,Y	1,+Y	1,Y+	0,SP	16,SP	1,+SP	1,SP+	_, 0,PC	16,PC	n,X	n,SP
	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	9b const	9b const
	01	11	21	31	41	51	61	71	81	91	A1	B1	C1	D1	E1	F1
	1,X	-15,X	2,+X	2,X+	1,Y	-15,Y	2,+Y	2,Y+	1,SP	-15,SP	2,+SP	2,SP+	1,PC	-15,PC	−n,X	-n,SP
	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	9b const	9b const
	02	12	22	32	42	52	62	72	82	92	A2	B2	C2	D2	E2	F2
	2,X	-14,X	3,+X	3,X+	2,Y	-14,Y	3,+Y	3,Y+	2,SP	-14,SP	3,+SP	3,SP+	2,PC	-14,PC	n,X	n,SP
	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	16b const	16b const
	03	13	23	33	43	53	63	73	83	93	A3	B3	C3	D3	E3	F3
	3,X	-13,X	4,+X	4,X+	3,Y	-13,Y	4,+Y	4,Y+	3,SP	-13,SP	4,+SP	4,SP+	3,PC	-13,PC	[n,X]	[n,SP]
	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	16b indr	16b indr
	04	14	24	34	44	54	64	74	84	94	A4	B4	C4	D4	E4	F4
	4,X	-12,X	5,+X	5,X+	4,Y	-12,Y	5,+Y	5,Y+	4,SP	-12,SP	5,+SP	5,SP+	4,PC	-12,PC	A,X	A,SP
	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	A offset	A offset
	05	15	25	35	45	55	65	75	85	95	A5	B5	C5	D5	E5	F5
	5,X	-11,X	6,+X	6,X+	5,Y	-11,Y	6,+Y	6,Y+	5,SP	-11,SP	6,+SP	6,SP+	5,PC	-11,PC	B,X	B,SP
	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	B offset	B offset
Ī	06	16	26	36	46	56	66	76	86	96	A6	B6	C6	D6	E6	F6
	6,X	-10,X	7,+X	7,X+	6,Y	-10,Y	7,+Y	7,Y+	6,SP	-10,SP	7,+SP	7,SP+	6,PC	-10,PC	D,X	D,SP
	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	D offset	D offset
Ī	07	17	27	37	47	57	67	77	87	97	A7	B7	C7	D7	E7	F7
	7,X	-9,X	8,+X	8,X+	7,Y	-9,Y	8,+Y	8,Y+	7,SP	-9,SP	8,+SP	8,SP+	7,PC	-9,PC	[D,X]	[D,SP]
	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	pre-inc	post-inc	5b const	5b const	D indirect	D indirect
Ī	08	18	28	38	48	58	68	78	88	98	A8	B8	C8	D8	E8	F8
	8,X	-8,X	8,–X	8,X-	8,Y	-8,Y	8,-Y	8,Y-	8,SP	-8,SP	8,-SP	8,SP-	8,PC	-8,PC	n,Y	n,PC
	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	9b const	9b const
	09	19	29	39	49	59	69	79	89	99	A9	B9	C9	D9	E9	F9
	9,X	-7,X	7,–X	7,X-	9,Y	-7,Y	7,-Y	7,Y-	9,SP	-7,SP	7,–SP	7,SP-	9,PC	-7,PC	-n,Y	-n,PC
	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	9b const	9b const
Ī	0A	1A	2A	3A	4A	5A	6A	7A	8A	9A	AA	BA	CA	DA	EA	FA
	10,X	-6,X	6,–X	6,X-	10,Y	−6,Y	6,-Y	6,Y-	10,SP	-6,SP	6,-SP	6,SP-	10,PC	-6,PC	n,Y	n,PC
L	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	16b const	16b const
	0B	1B	2B	3B	4B	5B	6B	7B	8B	9B	AB	BB	СВ	DB	EB	FB
	11,X	-5,X	5,-X	5,X-	11,Y	-5,Y	5,-Y	5,Y-	11,SP	-5,SP	5,-SP	5,SP-	11,PC	-5,PC	[n,Y]	[n,PC]
L	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	16b indr	16b indr
	0C	1C	2C	3C	4C	5C	6C	7C	8C	9C	AC	BC	CC	DC	EC	FC
	12,X	-4,X	4,–X	4,X-	12,Y	-4,Y	4,-Y	4,Y-	12,SP	-4,SP	4,-SP	4,SP-	12,PC	-4,PC	A,Y	A,PC
L	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	A offset	A offset
	0D	1D	2D	3D	4D	5D	6D	7D	8D	9D	AD	BD	CD	DD	ED	FD
	13,X	-3,X	3,-X	3,X-	13,Y	-3,Y	3,-Y	3,Y-	13,SP	-3,SP	3,-SP	3,SP-	13,PC	-3,PC	B,Y	B,PC
	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	B offset	B offset
	0E	1E	2E	3E	4E	5E	6E	7E	8E	9E	AE	BE	CE	DE	EE	FE
	14,X		2,-X	2,X-	14,Y		2,-Y	2,Y-	14,SP		2,-SP	2,SP-	14,PC		D,Y	D,PC
	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	D offset	D offset
	0F	1F	2F	3F	4F	5F	6F	7F	8F	9F	AF	BF	CF	DF	EF	FF
	15,X		1,-X	1,X-	15,Y		1,-Y	1,Y-	15,SP		1,-SP	1,SP-	15,PC	1,PC	[D,Y]	[D,PC]
L	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	pre-dec	post-dec	5b const	5b const	D indirect	D indirect
Ū						. 4 - T-1-1-										

CPU12 Reference Guide

Table 2. Indexed Addressing Mode Summary

Postbyte Code (xb)	Operand Syntax	Comments
rr0nnnn	,r n,r –n,r	5-bit constant offset n = -16 to +15 rr can specify X, Y, SP, or PC
111rr0zs	n,r –n,r	Constant offset (9- or 16-bit signed) z- 0 = 9-bit with sign in LSB of postbyte (s) 1 = 16-bit if z = s = 1, 16-bit offset indexed-indirect (see below) rr can specify X, Y, SP, or PC
rr1pnnnn	n,-r n,+r n,r- n,r+	Auto pre-decrement /increment or Auto post-decrement/increment; p = pre-(0) or post-(1), n = -8 to -1, +1 to +8 rr can specify X, Y, or SP (PC not a valid choice)
111rr1aa	A,r B,r D,r	Accumulator offset (unsigned 8-bit or 16-bit) aa - 00 = A 01 = B 10 = D (16-bit) 11 = see accumulator D offset indexed-indirect rr can specify X, Y, SP, or PC
111rr011	[n,r]	16-bit offset indexed-indirect rr can specify X, Y, SP, or PC
111rr111	[D,r]	Accumulator D offset indexed-indirect rr can specify X, Y, SP, or PC

Table 3. Transfer and Exchange Postbyte Encoding

				TRAN	SFERS				
↓ LS	MS⇒	0	1	2	3	4	5	6	7
0		$A \Rightarrow A$	$B \Rightarrow A$	$CCR \Rightarrow A$	$TMP3_L \Rightarrow A$	$B \Rightarrow A$	$X_L \Rightarrow A$	$Y_L \Rightarrow A$	$SP_L \Rightarrow A$
1		$A \Rightarrow B$	$B \Rightarrow B$	CCR ⇒ B	TMP3 _L ⇒ B	$B \Rightarrow B$	$X_L \Rightarrow B$	$Y_L \Rightarrow B$	$SP_L \Rightarrow B$
2		$A \Rightarrow CCR$	$B \Rightarrow CCR$	CCR ⇒ CCR	TMP3 _L ⇒ CCR	$B \Rightarrow CCR$	$X_L \Rightarrow CCR$	$Y_L \Rightarrow CCR$	$SP_L \Rightarrow CCR$
3		sex:A ⇒ TMP2	sex:B ⇒ TMP2	sex:CCR ⇒ TMP2	TMP3 ⇒ TMP2	D ⇒ TMP2	X ⇒ TMP2	Y ⇒ TMP2	SP ⇒ TMP2
4		sex:A ⇒ D SEX A,D	sex:B ⇒ D SEX B,D	sex:CCR ⇒ D SEX CCR,D	TMP3 ⇒ D	$D \Rightarrow D$	$X \Rightarrow D$	$Y \Rightarrow D$	$SP \Rightarrow D$
5		sex:A ⇒ X SEX A,X	sex:B ⇒ X SEX B,X	sex:CCR ⇒ X SEX CCR,X	TMP3 ⇒ X	$D \Rightarrow X$	$X \Rightarrow X$	$Y \Rightarrow X$	$SP \Rightarrow X$
6		sex:A ⇒ Y SEX A,Y	sex:B ⇒ Y SEX B,Y	sex:CCR ⇒ Y SEX CCR,Y	TMP3 ⇒ Y	$D \Rightarrow Y$	$X \Rightarrow Y$	$Y \Rightarrow Y$	$SP \Rightarrow Y$
7		sex:A ⇒ SP SEX A,SP	sex:B ⇒ SP SEX B,SP	sex:CCR ⇒ SP SEX CCR,SP	TMP3 ⇒ SP	$D \Rightarrow SP$	$X \Rightarrow SP$	$Y \Rightarrow SP$	$SP \Rightarrow SP$
				EXCH	ANGES	•		•	
∜ LS	MS⇒	8	9	Α	В	С	D	E	F
0		A ⇔ A	B ⇔ A	CCR ⇔ A	$TMP3_L \Rightarrow A$ $\$00:A \Rightarrow TMP3$	$\begin{array}{c} B \Rightarrow A \\ A \Rightarrow B \end{array}$	$X_L \Rightarrow A$ $\$00:A \Rightarrow X$	$ \begin{array}{c} Y_{L} \Rightarrow A \\ \$00:A \Rightarrow Y \end{array} $	$\begin{array}{c} SP_L \Rightarrow A \\ \$00:A \Rightarrow SP \end{array}$
1		A ⇔ B	B⇔B	CCR ⇔ B	$TMP3_{L} \Rightarrow B$ $\$FF:B \Rightarrow TMP3$	$\begin{array}{c} B \Rightarrow B \\ \$FF \Rightarrow A \end{array}$	$X_L \Rightarrow B$ \$FF:B \Rightarrow X	$Y_L \Rightarrow B$ \$FF:B \Rightarrow Y	$\begin{array}{c} SP_L \Rightarrow B \\ \$FF:B \Rightarrow SP \end{array}$
2		A ⇔ CCR	B ⇔ CCR	CCR ⇔ CCR	$\begin{array}{c} TMP3_L \Rightarrow CCR \\ \$FF:CCR \Rightarrow TMP3 \end{array}$	$\begin{array}{c} B \Rightarrow CCR \\ \$FF : CCR \Rightarrow D \end{array}$	$X_L \Rightarrow CCR$ \$FF:CCR $\Rightarrow X$	$Y_L \Rightarrow CCR$ \$FF:CCR \Rightarrow Y	$SP_L \Rightarrow CCR$ \$FF:CCR \Rightarrow \$P
3		$\begin{array}{c} \$00\text{:A} \Rightarrow TMP2 \\ TMP2_L \Rightarrow A \end{array}$	$$00:B \Rightarrow TMP2$ $TMP2_L \Rightarrow B$	$$00:CCR \Rightarrow TMP2$ $TMP2_L \Rightarrow CCR$	TMP3 ⇔ TMP2	D ⇔ TMP2	X ⇔ TMP2	Y ⇔ TMP2	SP ⇔ TMP2
4		\$00:A ⇒ D	\$00:B ⇒ D	$$00:CCR \Rightarrow D$ $B \Rightarrow CCR$	TMP3 ⇔ D	$D \Leftrightarrow D$	$X \Leftrightarrow D$	Y ⇔ D	SP ⇔ D
5		$\begin{array}{c} \$00:A \Rightarrow X \\ X_L \Rightarrow A \end{array}$	$00:B \Rightarrow X$ $X_L \Rightarrow B$	$$00:CCR \Rightarrow X$ $X_L \Rightarrow CCR$	TMP3 ⇔ X	$D \Leftrightarrow X$	$X \Leftrightarrow X$	$Y \Leftrightarrow X$	$SP \Leftrightarrow X$
6		$\begin{array}{c} \$00:A\Rightarrow Y\\ Y_L\Rightarrow A \end{array}$	$\begin{array}{c} \$00:B\Rightarrow Y\\ Y_L\Rightarrow B \end{array}$	$$00:CCR \Rightarrow Y$ $Y_L \Rightarrow CCR$	TMP3 ⇔ Y	D⇔Y	$X \Leftrightarrow Y$	Y⇔Y	SP ⇔ Y
7		$$00:A \Rightarrow SP$ $SP_L \Rightarrow A$	$\$00:B \Rightarrow SP$ $SP_L \Rightarrow B$	$$00:CCR \Rightarrow SP$ $SP_L \Rightarrow CCR$	TMP3 ⇔ SP	D ⇔ SP	X ⇔ SP	Y ⇔ SP	SP ⇔ SP

TMP2 and TMP3 registers are for factory use only.

Table 4. Loop Primitive Postbyte Encoding (lb)

00 A	10 A	20 A DBNE	30 A DBNE	40 A	50 A	60 A TBNE	70 A	80 A	90 A	A0 A	B0 A
DBEQ (+)	DBEQ (–)	(+)	(-)	TBEQ (+)	TBEQ (–)	(+)	TBNE (–)	IBEQ (+)	IBEQ (–)	(+)	(-)
01 B	11 B	21 B	31 B	41 B	51 B	61 B	71 B	81 B	91 B	A1 B	B1 B
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(–)	(+)	(-)	(+)	(–)	(+)	(–)	(+)	(–)	(+)	(–)
02	12	22	32	42	52	62	72	82	92	A2	B2
_	_	_	_	_	_	_	_	_	_	_	_
03	13	23	33	43	53	63	73	83	93	A3	B3
_	_	_	_	_	_	_	_	_	_	_	_
04 D	14 D	24 D	34 D	44 D	54 D	64 D	74 D	84 D	94 D	A4 D	B4 D
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(–)	(+)	(–)	(+)	(-)
05 X	-	-	35 X	45 X	55 X		75 X		95 X	A5 X	
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(–)	(+)	(-)	(+)	(-)	(+)	(-)
06 Y	16 Y	26 Y	36 Y	46 Y	56 Y	66 Y	76 Y	86 Y	96 Y	A6 Y	B6 Y
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(–)	(+)	(–)	(+)	(–)	(+)	(-)
07 SP	17 SP	27 SP	37 SP	47 SP	57 SP	67 SP	77 SP	87 SP	97 SP	A7 SP	B7 SP
DBEQ	DBEQ	DBNE	DBNE	TBEQ	TBEQ	TBNE	TBNE	IBEQ	IBEQ	IBNE	IBNE
(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(-)	(+)	(–)

Key to Table 4

Table 5. Branch/Complementary Branch

	Br	anch			Complemen	tary Branch	
Test	Mnemonic	Opcode	Boolean	Test	Mnemonic	Opcode	Comment
r>m	BGT	2E	$Z + (N \oplus V) = 0$	r≤m	BLE	2F	Signed
r≥m	BGE	2C	N ⊕ V = 0	r <m< td=""><td>BLT</td><td>2D</td><td>Signed</td></m<>	BLT	2D	Signed
r=m	BEQ	27	Z = 1	r≠m	BNE	26	Signed
r≤m	BLE	2F	$Z + (N \oplus V) = 1$	r>m	BGT	2E	Signed
r <m< td=""><td>BLT</td><td>2D</td><td>N ⊕ V = 1</td><td>r≥m</td><td>BGE</td><td>2C</td><td>Signed</td></m<>	BLT	2D	N ⊕ V = 1	r≥m	BGE	2C	Signed
r>m	BHI	22	C + Z = 0	r≤m	BLS	23	Unsigned
r≥m	BHS/BCC	24	C = 0	r <m< td=""><td>BLO/BCS</td><td>25</td><td>Unsigned</td></m<>	BLO/BCS	25	Unsigned
r=m	BEQ	27	Z = 1	r≠m	BNE	26	Unsigned
r≤m	BLS	23	C + Z = 1	r>m	BHI	22	Unsigned
r <m< td=""><td>BLO/BCS</td><td>25</td><td>C = 1</td><td>r≥m</td><td>BHS/BCC</td><td>24</td><td>Unsigned</td></m<>	BLO/BCS	25	C = 1	r≥m	BHS/BCC	24	Unsigned
Carry	BCS	25	C = 1	No Carry	BCC	24	Simple
Negative	BMI	2B	N = 1	Plus	BPL	2A	Simple
Overflow	BVS	29	V = 1	No Overflow	BVC	28	Simple
r=0	BEQ	27	Z = 1	r≠0	BNE	26	Simple
Always	BRA	20	_	Never	BRN	21	Unconditional

For 16-bit offset long branches preceed opcode with a \$18 page prebyte.

Memory Expansion

Some M68HC12 derivatives support >4 megabytes of program memory.

Memory precedence

```
— Highest —
```

On-chip registers (usually \$0000 or \$1000)

BDM ROM (only when BDM active)

On-chip RAM

On-chip EEPROM

On-chip program memory (FLASH or ROM)

Expansion windows (on MCUs with expanded memory)

Other external memory

— Lowest —

CPU sees 64 Kbytes of address space (CPU_ADDR [15:0])

PPAGE 8-bit register to select 1 of 256 —16 Kbyte program pages

DPAGE 8-bit register to select 1 of 256 — 4 Kbyte data pages

EPAGE 8-bit register to select 1 of 256 — 1 Kbyte extra pages

Extended address is 22 bits (EXT_ADDR [21:0])

Program expansion window works with CALL and RTC instructions to simplify program access to extended memory space. Data and extra expansion windows (when present) use traditional banked expansion memory techniques.

Program window

```
If CPU_ADDR [15:0] = $8000–BFFF and PWEN = 1
```

Then EXT_ADDR [21:0] = PPAGE [7:0]:CPU_ADDR [13:0]

Program window works with CALL/RTC to automate bank switching. 256 pages (banks) of 16 Kbytes each = 4 M.

Data window

```
If CPU_ADDR [15:0] = $7000–7FFF and DWEN = 1
Then EXT_ADDR [21:0] = 1:1:DPAGE [7:0]:CPU_ADDR [11:0]
User program controls DPAGE value
```

CPU12 Reference Guide

Extra window

If CPU_ADDR [15:0] = \$0000-03FF and EWDIR = 1 and EWEN = 1

or CPU_ADDR [15:0] = \$0400–07FF and EWDIR = 0 and EWEN = 1

Then EXT_ADDR [21:0] = 1:1:1:1:EPAGE [7:0]:CPU_ADDR [9:0]

User program controls EPAGE value

CPU address not in any enabled window

EXT_ADDR [21:0] = 1:1:1:1:1:1:CPU_ADDR [15:0]

MOTOROLA

Table 6. CPU12 Opcode Map (Sheet 1 of 2)

*-					1										
00 *5	10 1	20 3	30 3	40 1	50 1	60 3-6	70 4	80 1	90 3		BO 3	CO 1	DO 3		F0 3
BGND	ANDCC	BRA	PULX	NEGA	NEGB	NEG	NEG	SUBA	SUBA	SUBA	SUBA	SUBB	SUBB	SUBB	SUBB
IH 1	IM 2	RL 2	IH 1	IH 1	IH 1	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3
01 5	11 11	21 1	31 3	41 1	51 1	61 3-6	71 4	81 1	91 3	A1 3-6	B1 3	CMDD	D1 3	E1 3-6	F1 3
MEM	EDIV	BRN	PULY	COMA	COMB	COM	COM	CMPA	CMPA	CMPA	CMPA	CMPB	CMPB	CMPB	CMPB
IH 1	IH 1	RL 2	IH 1	IH 1	IH 1	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3
02 1	12 3	22 3/1	32 3	42 1	52 1	62 3-6	72 4	82 1	92 3	A2 3-6	B2 3	C2 1	D2 3	E2 3-6	F2 3
INY	MUL	BHI	PULA	INCA	INCB	INC	INC	SBCA	SBCA	SBCA	SBCA	SBCB	SBCB	SBCB	SBCB
IH 1	IH 1	RL 2	IH 1	IH 1	IH 1	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3
03 1 DEY	13 3 EMUL	23 3/1	33 3 PULB	43 1	53 1 DECB	63 3-6	73 4 DEC	83 2 SUBD	93 3 SUBD	A3 3-6	B3 3	C3 2	D3 3	E3 3-6	F3 3
1	_	BLS	_	DECA	_	DEC	_			SUBD	SUBD	ADDD	ADDD	ADDD	ADDD
IH 1	IH 1	RL 2	IH 1 34 2	IH 1	IH 1	ID 2-4	EX 3	IM 3 84 1	DI 2 94 3	ID 2-4	EX 3 B4 3	IM 3	DI 2	ID 2-4 E4 3-6	EX 3
04 3 loop [‡]	14 1 ORCC	24 3/1 BCC	34 2 PSHX	44 1 LSRA	54 1 LSRB	64 3-6 LSR	74 4 LSR	84 1 ANDA	94 3 ANDA		ANDA	C4 1 ANDB	D4 3 ANDB	E4 3-6 ANDB	F4 3 ANDB
			_	l		_	_			ANDA		l			
RL 3 05 3-6	IM 2	RL 2 25 3/1	IH 1 35 2	IH 1 45 1	IH 1 55 1	ID 2-4 65 3-6	EX 3	IM 2 85 1	DI 2 95 3	ID 2-4 A5 3-6	EX 3 B5 3	IM 2 C5 1	DI 2 D5 3	ID 2-4 E5 3-6	EX 3
JMP	JSR	BCS	PSHY	ROLA	ROLB	ROL	ROL 4	BITA	BITA	BITA	BITA	BITB	BITB	BITB	BITB
ID 2-4	ID 2-4	RL 2	IH 1	IH 1	IH 1	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3
06 3	16 4	26 3/1	36 2	46 1	56 1	66 3-6	76 4	86 1	96 3	A6 3-6	B6 3	C6 1	D6 3	E6 3-6	F6 3
JMP	JSR	BNE	PSHA	RORA	RORB	ROR	ROR	LDAA	LDAA	LDAA	LDAA	LDAB	LDAB	LDAB	LDAB
EX 3	EX 3	RL 2	IH 1	IH 1	IH 1	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3
07 4	17 4	27 3/1	37 2	47 1	57 1	67 3-6	77 4	87 1	97 1	A7 1	B7 1	C7 1	D7 1	E7 3-6	F7 3
BSR	JSR	BEQ	PSHB	ASRA	ASRB	ASR	ASR	CLRA	TSTA	NOP	TFR/EXG	CLRB	TSTB	TST	TST
RL 2	DI 2	RL 2	IH 1	IH 1	IH 1	ID 2-4	EX 3	IH 1	IH 1	IH 1	IH 2	IH 1	IH 1	ID 2-4	EX 3
08 1	18 -	28 3/1	38 3	48 1	58 1	68 3-6	78 4	88 1	98 3	A8 3-6	B8 3	C8 1	D8 3	E8 3-6	F8 3
INX	page 2	BVC	PULC	ASLA	ASLB	ASL	ASL	EORA	EORA	EORA	EORA	EORB	EORB	EORB	EORB
IH 1		RL 2	IH 1	IH 1	IH 1	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3
09 1	19 2	29 3/1	39 2	49 1	59 1	69 2-5	79 3	89 1	99 3	A9 3-6	B9 3	C9 1	D9 3	E9 3-6	F9 3
DEX	LEAY	BVS	PSHC	LSRD	ASLD	CLR	CLR	ADCA	ADCA	ADCA	ADCA	ADCB	ADCB	ADCB	ADCB
IH 1	ID 2-4	RL 2	IH 1	IH 1	IH 1	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3
0A 6	1A 2	2A 3/1	3A 3	4A 8	5A 2	6A 2-5	7A 3	8A 1	9A 3	AA 3-6	BA 3	CA 1	DA 3	EA 3-6	FA 3
RTC	LEAX	BPL	PULD	CALL	STAA	STAA	STAA	ORAA	ORAA	ORAA	ORAA	ORAB	ORAB	ORAB	ORAB
IH 1	ID 2-4	RL 2	IH 1	EX 4	DI 2	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3
0B 8	1B 2	2B 3/1	3B 2	4B 8-10	5B 2	6B 2-5	7B 3	8B 1	9B 3	AB 3-6	BB 3	CB 1	DB 3	EB 3-6	FB 3
RTI	LEAS	BMI	PSHD	CALL	STAB	STAB	STAB	ADDA	ADDA	ADDA	ADDA	ADDB	ADDB	ADDB	ADDB
IH 1	ID 2-4	RL 2	IH 1	ID 2-5	DI 2	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3	IM 2	DI 2	ID 2-4	EX 3
0C 4-6	1C 4	2C 3/1	3C *+9	4C 4	5C 2	6C 2-5	7C 3	8C 2	9C 3		BC 3	CC 2	DC 3	EC 3-6	FC 3
BSET	BSET	BGE	wavr	BSET	STD	STD	STD	CPD	CPD	CPD	CPD	LDD	LDD	LDD	LDD
ID 3-5	EX 4	RL 2	SP 1	DI 3	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3
0D 4-6	1D 4	2D 3/1	3D 5	4D 4	5D 2	6D 2-5	7D 3	8D 2	9D 3		BD 3	CD 2	DD 3	ED 3-6	FD 3
BCLR	BCLR	BLT	RTS	BCLR	STY	STY	STY	CPY	CPY	CPY	CPY	LDY	LDY	LDY	LDY
ID 3-5	EX 4	RL 2	IH 1	DI 3	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3
0E 4-8	1E 5	2E 3/1	3E *8	4E 4	5E 2	6E 2-5	7E 3	8E 2	9E 3		BE 3	CE 2	DE 3	EE 3-6	FE 3
BRSET	BRSET	BGT	WAI	BRSET	STX	STX	STX	CPX	CPX	CPX	CPX	LDX	LDX	LDX	LDX
ID 4-6	EX 5	RL 2	IH 1	DI 4	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3	IM 3	DI 2	ID 2-4	EX 3
0F 4-8 BRCLR	1F 5 BRCLR	2F 3/1 BLE	3F 9 SWI	4F 4 BRCLR	5F 2 STS	6F 2-5 STS	7F 3 STS	8F 2 CPS	9F 3 CPS	AF 3-6 CPS	BF 3 CPS	CF 2 LDS	DF 3	EF 3-6 LDS	FF 3
ID 4-6			IH 1	DI 4	DI 2		EX 3	IM 3	DI 2				DI 2	_	EX 3
	EX 5														

Table 6. CPU12 Opcode Map (Sheet 2 of 2)

00 4	10 12	20 4	30 10	40 10	50 10	60 10	70 10	80 10	90 10	A0 10	B0 10	C0 10	D0 10	E0 10	F0 10
MOVW	IDIV	LBRA	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
IM-ID 5	IH 2	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
01 5	11 12	21 3	31 10	41 10	51 10	61 10	71 10	81 10	91 10	A1 10	B1 10	C1 10	D1 10	E1 10	F1 10
MOVW	FDIV	LBRN	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
EX-ID 5	IH 2	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
02 5	12 13	22 4/3	32 10	42 10	52 10	62 10	72 10	82 10	92 10	A2 10	B2 10	C2 10	D2 10	E2 10	F2 10
MOVW	EMACS	LBHI	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
ID-ID 4	SP 4	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
MOVW	13 3 EMULS	23 4/3 LBLS	33 10 TRAP	43 10 TRAP	53 10 TRAP	63 10 TRAP	73 10 TRAP	83 10 TRAP	93 10 TRAP	A3 10 TRAP	B3 10 TRAP	C3 10 TRAP	D3 10 TRAP	E3 10 TRAP	F3 10 TRAP
IM-EX 6	IH 2	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
04 6	14 12	24 4/3	34 10	44 10	54 10	64 10	74 10	84 10	94 10	A4 10	B4 10	C4 10	D4 10	E4 10	F4 10
MOVW	EDIVS	LBCC	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
EX-EX 6	IH 2	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
05 5	15 12	25 4/3	35 10	45 10	55 10	65 10	75 10	85 10	95 10	A5 10	B5 10	C5 10	D5 10	E5 10	F5 10
MOVW	IDIVS	LBCS	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
ID-EX 5	IH 2	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
06 2	16 2	26 4/3	36 10	46 10	56 10	66 10	76 10	86 10	96 10	A6 10	B6 10	C6 10	D6 10	E6 10	F6 10
ABA	SBA	LBNE	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
IH 2	IH 2	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
07 3	17 2	27 4/3	37 10	47 10	57 10	67 10	77 10	87 10	97 10	A7 10	B7 10	C7 10	D7 10	E7 10	F7 10
DAA	CBA	LBEQ	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
IH 2	IH 2	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
MOVB	18 4-7 MAXA	28 4/3 LBVC	38 10 TRAP	48 10 TRAP	58 10 TRAP	68 10 TRAP	78 10 TRAP	88 10 TRAP	98 10 TRAP	A8 10 TRAP	B8 10 TRAP	C8 10 TRAP	D8 10 TRAP	E8 10 TRAP	F8 10 TRAP
IM-ID 4	ID 3-5	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
09 5	19 4-7	29 4/3	39 10	49 10	59 10	69 10	79 10	89 10	99 10	A9 10	B9 10	C9 10	D9 10	E9 10	F9 10
MOVB	MINA	LBVS	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP	TRAP
EX-ID 5	ID 3-5	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
0A 5	1A 4-7	2A 4/3	3A *3n	4A 10	5A 10	6A 10	7A 10	8A 10	9A 10	AA 10	BA 10	CA 10	DA 10	EA 10	FA 10
MOVB	EMAXD	LBPL	REV	TRAP											
ID-ID 4	ID 3-5	RL 4	SP 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
0B 4	1B 4-7	2B 4/3	3B *3n	4B 10	5B 10	6B 10	7B 10	8B 10	9B 10	AB 10	BB 10	CB 10	DB 10	EB 10	FB 10
MOVB	EMIND	LBMI	REVW	TRAP											
IM-EX 5	ID 3-5	RL 4	SP 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
0C 6	1C 4-7	2C 4/3	3C *8B	4C 10	5C 10	6C 10	7C 10	8C 10	9C 10	AC 10	BC 10	CC 10	DC 10	EC 10	FC 10
MOVB	MAXM	LBGE	WAV	TRAP											
EX-EX 6	ID 3-5	RL 4	SP 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
0D 5	1D 4-7	2D 4/3	3D 8	4D 10	5D 10	6D 10	7D 10	8D 10	9D 10	AD 10	BD 10	CD 10	DD 10	ED 10	FD 10
MOVB	MINM	LBLT	TBL	TRAP											
ID-EX 5	ID 3-5 1E 4-7	RL 4 2E 4/3	ID 3 3E *9+5	IH 2 4E 10	IH 2 5E 10	IH 2 6E 10	IH 2 7E 10	IH 2 8E 10	9E 10	IH 2 AE 10	IH 2 BE 10	IH 2 CE 10	IH 2 DE 10	IH 2 EE 10	IH 2 FE 10
TAB	EMAXM	LBGT	STOP	TRAP											
IH 2	ID 3-5	RL 4	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2	IH 2
0F 2	1F 4-7	2F 4/3	3F 10	4F 10	5F 10	6F 10	7F 10	8F 10	9F 10	AF 10	BF 10	CF 10	DF 10	EF 10	FF 10
TBA	EMINM	LBLE	ETBL	TRAP											
IH 2	ID 3-5	RL 4	ID 3	IH 2											
	· · · ·	· ·													

^{*} Refer to instruction summary for more information.

[‡] The opcode \$04 corresponds to one of the loop primitive instructions DBEQ, DBNE, IBEQ, IBNE, TBEQ, or TBNE.

Table 7. Hexadecimal to ASCII Conversion

Hex	ASCII	Hex	ASCII	Hex	ASCII	Hex	ASCII
	NUL				@ ASCII		\
\$00 \$01		\$20 \$21	SP space	\$40 \$41		\$60 \$61	grave
\$01	SOH	\$21	-	\$41 \$42	A B	\$61 \$62	a
\$02 \$03	STX ETX	\$22	" quote #	\$42 \$42	С	\$62 \$63	b
		\$23		\$43		\$63	С
\$04	EOT	\$24	\$	\$44 045	D	\$64	d
\$05	ENQ	\$25	%	\$45	E	\$65	e
\$06	ACK	\$26	&	\$46	F	\$66	f
\$07	BEL beep	\$27	' apost.	\$47	G	\$67	g
\$08	BS <i>back</i> sp	\$28	(\$48	Н	\$68	h
\$09	HT tab	\$29)	\$49	I	\$69	i
\$0A	LF linefeed	\$2A	*	\$4A	J	\$6A	j
\$0B	VT	\$2B	+	\$4B	K	\$6B	k
\$0C	FF	\$2C	, comma	\$4C	L	\$6C	1
\$0D	CR return	\$2D	- dash	\$4D	М	\$6D	m
\$0E	SO	\$2E	. period	\$4E	N	\$6E	n
\$0F	SI	\$2F	/	\$4F	0	\$6F	0
\$10	DLE	\$30	0	\$50	Р	\$70	р
\$11	DC1	\$31	1	\$51	Q	\$71	q
\$12	DC2	\$32	2	\$52	R	\$72	r
\$13	DC3	\$33	3	\$53	S	\$73	s
\$14	DC4	\$34	4	\$54	Т	\$74	t
\$15	NAK	\$35	5	\$55	U	\$75	u
\$16	SYN	\$36	6	\$56	V	\$76	V
\$17	ETB	\$37	7	\$57	W	\$77	w
\$18	CAN	\$38	8	\$58	Χ	\$78	х
\$19	EM	\$39	9	\$59	Υ	\$79	у
\$1A	SUB	\$3A	:	\$5A	Z	\$7A	Z
\$1B	ESCAPE	\$3B	;	\$5B	[\$7B	{
\$1C	FS	\$3C	<	\$5C	\	\$7C	1
\$1D	GS	\$3D	=	\$5D]	\$7D	}
\$1E	RS	\$3E	>	\$5E	٨	\$7E	~
\$1F	US	\$3F	?	\$5F	_ under	\$7F	DEL delete

Hexadecimal to Decimal Conversion

To convert a hexadecimal number (up to four hexadecimal digits) to decimal, look up the decimal equivalent of each hexadecimal digit in **Table 8**. The decimal equivalent of the original hexadecimal number is the sum of the weights found in the table for all hexadecimal digits.

15 Bit Bit 0 15 8 7 4 3 12 11 0 4th Hex Digit 3rd Hex Digit 2nd Hex Digit 1st Hex Digit **Decimal Decimal Decimal** Hex **Decimal** Hex Hex Hex 0 0 0 0 0 0 1 1 4,096 1 256 1 16 1 8,192 2 2 512 2 2 2 32 3 12,288 3 768 3 48 3 3 4 4 16,384 4 1,024 4 64 4 5 5 5 5 5 20,480 1,280 80 24,576 6 6 1,536 96 6 6 6 7 7 7 7 28,672 7 1,792 112 8 32,768 8 2,048 8 128 8 8 9 36,864 9 9 2,304 9 144 9 40,960 Α Α Α 2,560 Α 160 10 В 45,056 2,816 В 11 В В 176 С 49,152 С 3,072 С 12 С 192 D 53,248 D D 3,328 D 208 13 Ε Ε 57,344 Ε Ε 224 3,484 14 F 61,440 F 3,840 F 240 F 15

Table 8. Hexadecimal to/from Decimal Conversion

Decimal to Hexadecimal Conversion

To convert a decimal number (up to 65,535₁₀) to hexadecimal, find the largest decimal number in **Table 8** that is less than or equal to the number you are converting. The corresponding hexadecimal digit is the most significant hexadecimal digit of the result. Subtract the decimal number found from the original decimal number to get the *remaining decimal value*. Repeat the procedure using the remaining decimal value for each subsequent hexadecimal digit.

CPU12 Reference Guide

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or 1-303-675-2140. Customer Focus Center, 1-800-521-6274

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinigawa-Ku, Tokyo, Japan. 03-5487-8488 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298 Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848

HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

© Motorola, Inc., 1998

