

Pre-Tutorial (To be completed by student before attending tutorial session)

 Construct the regular set accepted by the finite automaton whose transition diagram is as shown below.

Solution:

		ACADEMIC YEAR: 2024-25	
Course Title	THEORY OF COMPUTATION	Page 55 of 261	
Course Code(s)	23MT2014	Page 55 01 201	1

Construct a NFA for the regular expression (0 + 1(1 + 01)* 00)* Write each step.

56

Course little	THEORY OF COMPUTATION	
Course Code(s)	23MT2014	ACADEMIC YEAR: 2024-25
		Dark: 2024-25
		Page 56 of 261

Tutorial # TO BE FIL 2018 Student

3. Write the regular expression for the $L = \{w \in (0,1)^* \mid w \text{ has } v \in (0,1)^* \mid w \text{ has }$

Solution:

57

6

IN-TUTORIAL (To be carried out in presen

1. Construct the finite automaton equivalent to (0 + 1)*(00 + 11)(0 + 1)

Write each step.

Tutorial # 14 TO BE FILLS BY STUDENTS	Student ID	TO BE 300 8 QUEENTS
Date TO BE FILL 20 (8 IDENTS	Student Name	TO BE FILTTERES HOEMTS

3. Write the regular expression for the $L = \{w \in \{0,1\}^* \mid w \text{ has no pair of consecutive zeros?} \}$

IN-TUTORIAL (To be carried out in presence of faculty in classroom)

1. Construct the finite automaton equivalent to the regular expression (0 + 1)*(00 + 11)(0 + 1)*

Course Title	THEORY OF COMPUTATION	ACADEMIC YEAR: 2024-25
Course Code(s)	23MT2014	Page 57 of 261

Tutorial #	STO BE PALED BY STUDENT>	Student ID	<10 820088 TUD
Date	TO BE FIZE BY STUDENTS	Student Name	KIO BETERSHIP STUDIO

2. Construct a DFA with reduced states equivalent to the regular expression 10 + (0 + 11)

Solution:

Course Title TH 231 Course Code(s)

MPUTATION

Tutorial #	TO BE FLEED BY STUDEN	Student ID	<to by="" steles="" student=""></to>
		Student Name	KTO BELEGE BY STUDENTS
Date	<to &="" be="" betuden<="" fill="" td=""><td>Student</td><td>3011</td></to>	Student	3011

3. Consider the following transition diagram of a finite automaton. Prove that the strings recognized by this given automaton is (0 + 0(1 + 00)*1)*0(1 + 00)*0.

Solution: $(0+0(1+00)^{\frac{1}{2}})$: Represents the First part of the String, which consists of zero or more repetitions of either a single o(3) a sequence of o's followed by a this corresponds to the transition blue 2, and 2 to this corresponds to the transition blue 2, and 2 to the transition blue 2. Presents mandatory zero $o(1+00)^{\frac{1}{2}}$: Represents 1 (or) 3 ar o followed by zero $o(1+00)^{\frac{1}{2}}$: Represents the final o in String.

Course Title	THEORY OF COMPUTATION	ACADEMIC YEAR: 2024-25
Course Title		Page 59 of 261
Course Code(s)	23MT2014	rage 33 of 202

Tutorial #	<tore by="" filled="" student=""></tore>	Student ID	<10 30088 STU
Date	TO BE POLOBY STUDENT>	Student Name	STORELITIES

Post-Tutorial (To be carried out by student after attending tutorial session)

1. Find the set of strings over $\Sigma = \{a, b\}$ recognized by the following transition diagram automatons (i), (ii) and (iii).

Solution:

(i) No strings are accepted because there is no final state

souther all a lond all downers

Tutorial #	5 BE SPICE BY S	TUDENTE	Student ID	STEBOORS BY STUDENTS
	10 9018 mm	TUDENT	Student Name	STORY WITH STORY OF THE STORY O

2. Construct a finite automaton for the regular expression (01 + 2*)*1

Solution: Y, = 01

Course Title	THEORY OF COMPUTATION	ACADEMIC YEAR: 2024-25
Course Code(s)		Page 61 of 261

	Student ID	4103000
Tutorial # TOB FILL D BY STUDENT>	Student Name	STO BE THE CON STU
Date TO BE 196 8 Y STUDENTS	1 3000	

3. Construct a regular expression corresponding to the state diagram described by the following figure.

Viv

Solution:

$$q_1 = \epsilon + q_1 \alpha + q_3 \alpha - 1$$

 $q_1 = q_1 b + q_2 b + q_3 b - 1$
 $q_3 = q_1 \alpha - 3$

$$\frac{q_{3} \text{ in } q_{2}}{q_{2}} = q_{1}b + q_{2}b + (q_{2}a)b$$

$$q_{1} = q_{1}b (b+ab)^{*}$$

$$9_{2}$$
 in 9_{1}
 $9_{1} = 6 + 9_{1}a + (9_{1}b (b+ab)^{*})a$
 $9_{1} = (a+b(b+ab)^{*}a)^{*}$

$$(a+b(b+ab)^{*}a)^{*}$$

$$(a+b(b+ab)^{*}a)^{*}$$

Course Title	THEORY OF COMPUTATION	
Course Code(s)	23MT2014	ACADEMIC YEAR: 2024-25
		Page 62 of 261

_		TO BESTILLED BY STUDENT>	Student ID	<to be="" fboor="" sudent=""></to>
	Tutorial#	STORE TELEDITION OF A TELEDITI		<to by="" d="" student="" teness=""></to>
	Date	TO BE FILL 2018 STUDENT>	Studentivanie	1923

Viva Questions:

1. How does the structure of the NFA produced by Thompson's construction technique differ from the structure of the original regular expression?

Solution: i) Graphical Vs Linear

The NFA is a graphical Structure with States

and transitions, whereas there is a linear, and transitions,

soh Symbolic representation

The NFA Explicitly represents transition and intermediate states, while the R-E implies them through operation

The NFA is generally larger than 12.8

Course Title	THEORY OF COMPUTATION	ACADEMIC YEAR: 2024-25	
Course Code(s)	23MT2014	Page 63 of 261	63

Tutorial #	TO BESILLED BY STUDENT>	Student ID	220002000
	CTO BE 20 HB + 24 TUDENT>	Student Name	CTO 8 Teesh STOR

2. How does the structure of the regular expression produced by the state elimination method different the structure of the original DFA?

Solution:

DFA: Represents the language as a sequential process of state transitions based on input Symbols.

ii) R.E: Represents the language as a Combination op Symbols and operators.

(For Evaluator's use only)

Comment of the Evaluator (if Any)	Evaluator's Observation
	Marks Secured:out of 50
	Full Name of the Evaluator:
36) node recolled	Signature of the Evaluator
	Date of Evaluation:

Course Title	THEORY OF COMPUTATION	
Course Code(s)	23MT2014	