Instrumentation

Pr. Joseph Moerschell, Dr. Marc Nicollerat

3 Erreurs de mesure

3.1 Introduction

- Il y a toujours des erreurs dans la mesure. Selon la précision requise, il faut minimiser les erreurs par différentes solutions.
- Un datasheet va préciser un certain nombre de paramètres liés à la précision

Table 1: Paramètres qu'on peut trouver dans une note technique

Paramètre	Unité
offset	%
linéarité	%
influence température	%/K
répétabilité	%

3.2 Au menu des sources d'erreurs

Les sources d'erreur communes sont légions. Il s'agit de les identifier. Quelques sources possibles sont listées dans la Table 2.

Table 2: Quelques sources d'erreur.

Paramètre	Description	Parade
Offset	Lorsque la mesurande est null, l'offset apparaît comme une valeur non nulle à la sortie	Il peut être mesurés avant d'appliquer la mesurande et soustrait aux mesures
Précision	La précision donnée d'un capteur comprend toutes les erreurs	Choisir le capteur approprié
Erreur de linéarité	Cette erreur caractérise la relation entre la mesurande et la sortie, soit le gain	On peut calibrer l'appareil avec une mesurande connue
Stabilité	La stabilité représente la plage dans laquelle la sortie varie pour une même mesurande	Cette variation est liée à des facteurs d'influence ou au bruit de mesure. On peut prendre plusieurs mesures pour calculer une moyenne
Répétabilité	La répétabilité est la différence de sortie pour une même mesurande appliquée à plusieurs reprises	La procédure de mesure peut améliorer la répétabilité (on effectue les mesures toujours de la même façon)
Environnement	Les conditions de l'environnement (température) peuvent influencer la mesure	Contrôler l'environnement
Chaine d'acquisition	La sortie du capteur est mesurée par un appareil (un voltmètre par exemple)	La précision du système doit être adaptée.
→ Tip		

Pour améliorer la précision, la plage de mesure de l'appareil doit être adaptée.

3.3 Grandeurs additives et/ou multiplicatives

Les grandeurs interférentes sont des grandeurs qui s'ajoutent à la mesure. En analysant la structure d'un capteur et en comprenant comment il fonctionne, on peut détecter les interférences possibles.

Exemple du pont de Wheatstone. La grandeur mesurée U sera affectée de façon...

- ullet additive par une erreur des résistance R,
- ullet multiplicative par une erreur de la tension U_0

$$egin{align} \sigma &= \epsilon \cdot E\left[rac{N}{m^2}
ight] & \Delta R = K \cdot R_0 \cdot \epsilon\left[\Omega
ight] \ \epsilon &= rac{dL}{L} pprox rac{\Delta L}{L}[1] & U \cong -rac{K\epsilon}{4} U_0\left[V
ight] \ \end{aligned}$$

Jauge de contrainte mesurée par un 1/4 de pont.

(i) Note

Exemple de développemenet dans le notebook jupyter python/exemple_erreur_add_mult.ipynb

3.4 Autres causes des erreurs de mesure

- Facteurs psychologiques
 - angle de lecture
 - fatigue
 - lecture d'une valeur instable
- Temps de réponse
 - Lecture trop rapide
- Crosstalk
 - Un canal de lecture peut influencer l'autre

(i) Note

Plusieurs personnes mesurent une longeur avec un double-mètre.

3.5 Limites de précision

Certaines particularités limitent les possibilités de retrouver la mesurande avec précision.

- Hystérèse
 - Un jeu mécanique, typiquement un engrenage. Le jeu fait que le mouvement d'un axe à l'entrée ne se voit pas tout de suite à la sortie.
 - En magnétisme, l'aimantation a une hystérésis. La caractéristique n'est pas la même selon le sens de parcours.

- Un offset peut venir fausser la caractéristique.
- Fonction non univoque. Il n'est pas possible de trouver la bonne mesurande.
- Résolution : nombre de chiffres affichés par un multimètre.

3.6 Linéarité

Une caractéristique non linéaire est compensée par l'instrument

$$Y_{capteur} = ax^2 \implies Y_{sortie} = b\sqrt{Y_{Capteur}} \implies Y_{sortie} = b\sqrt{a} \cdot x$$

La correction n'est jamais parfaite, elle peut demander des calibrations. Un appareil peut utiliser un polynôme du genre de Equation 1.

$$T = T_0 \cdot (a0 + a1 * R + a2 * R^2) \tag{1}$$

Les paramètres a_i doivent être identifiés précisément pour minimiser l'erreur. Si une influence n'est pas modélisée, une erreur va apparaître.

3.7 Dérive

Pendant son fonctionnement, un appareil peut voir varier sa caractéristique changer, par exemple à cause de son échauffement.

Figure 1: Dérive due à l'échauffement

3.8 Offset et gain

L'offset et le gain influencent la caractéristique comme le montre la Figure 2

Figure 2: Mesure faussée par un offset et un gain

Figure 3: Mesure faussée par un offset

Figure 4: Mesure faussée par un gain imprécis

3.9 Précision

Les sources d'erreurs possibles d'un capteur sont illustrées sur la Figure 5

Figure 5: Différentes erreurs de mesures

Dans la mesure où les erreurs sont petites, on peut calculer l'erreur finale comme la somme des erreur relatives.

3.10 Exemple de spécification

Exemple de données sur la précision d'un capteur de pression

Item*		Min.	Тур.	Max.	Unit
Accuracy	Obar \sim 1bar		0.25	0.5	%FS
	2bar \sim 35bar		0.25	0.5	/0Г3
	Obar \sim 1bar		0.75	1.25	
Zero Thermal error	2bar \sim 35bar		0.5	0.75	2452 225 26
FS Thermal error	Obar \sim 1bar		0.75	1.25	±%FS, @25 ℃
rs meimarenor	2bar \sim 35bar		0.5	0.75	
Stabiliby	≤2bar	0.5		9/ FS / voos	
Stability	≤35bar	0.2		%FS/year	
Static pressure effect		0.05		±%FS, each 1bar	
Compensation temp.		0~50			
Operation temp.		-30~80 ; -10~70(Cable)		°C	
Storage temp.		-40~120; -20 ~85(Cable)			

Paramètre	Echelle	Graphique
Accuracy	%FS	NL
Zero Thermal error	%FS	offset
FS thermal error	%FS	gain(Température)
Stability	%FS	gain(temps)

Données sur la précision pour un capteur de pression

! Important

FS tient pour Full Scale. L'erreur est dépendante de la plage maximum du capteur. Si on utilise un capteur sur une plage réduite, cette erreur devient importante.

3.11 Exemple d'appareil de précision

Spécification du HP 3458, multimètre de précision

DC Voltage

Range	Full Scale	Maximum Resolution	Input Impedance	Temperature Coefficient (ppm of Reading + ppm of Range) /° C	
				Without ACAL ¹	With ACAL ²
100 mV	120.00000	10 nV	>10 GΩ	1.2 + 1	0.15 + 1
1 V	1.20000000	10 nV	>10 GΩ	1.2 ± 0.1	0.15 + 0.1
10 V	12.0000000	100 nV	>10 GΩ	0.5 ± 0.01	0.15 ± 0.01
100 V	120.000000	1 μV	$10 \text{ M}\Omega \pm 1\%$	2 + 0.4	0.15 + 0.1
1000 V	1050.00000	10 μV	$10~M\Omega\pm1\%$	2 + 0.04	0.15 + 0.01

Accuracy³ (ppm of Reading (ppm of Reading for Option 002) + ppm of Range)

Range	24 Hour ⁴	90 Day ⁵	1 Year ⁵	2 Year ⁵
100 mV	2.5 + 3	5.0 (3.5)+ 3	9 (5)+ 3	14 (10)+ 3
1 V	1.5 + 0.3	4.6 (3.1)+0.3	8 (4)+ 0.3	14(10)+0.3
10 V	0.5 + 0.05	4.1(2.6) + 0.05	8(4) + 0.05	14 (10)+0.05
100 V	2.5 + 0.3	$6.0(4.5) \pm 0.3$	10 (6)+0.3	14 (10)+ 0.3
1000 V^6	2.5 + 0.1	6.0 (4.5)+ 0.1	10 (6)+ 0.1	14 (10)+ 0.1

Transfer Accuracy/Linearity

Range	10 Min, Tref ± 0.5°C (ppm of Reading + ppm of Range)	Conditions
100 mV	0.5 + 0.5	 Following 4 hour warm-up. Full scale to 10% of full scale
1 V	0.3 + 0.1	 Measurements on the 1000 V range are within 5% of the initial measurement value and following measurement
10 V	0.05 + 0.05	setting.
100 V	0.5 + 0.1	 Tref is the starting ambient temperature. Measurements are made on a fixed range (>4 min.) using
$1000~\mathrm{V}$	1.5+0.05	accepted metrology practices

3.12 Calcul d'erreur par opérations

L'erreur d'un système composé de plusieurs élément peut se calculer selon les opérations effectuées sur le signal.

Opération	Erreurs	Calcul
C = A + B	E_A,E_B,E_C	$C+E_C=A\pm E_A+B\pm E_B=$
		$C\pm(E_A+E_B) \implies E_C=E_A+E_B$
C=A-B	E_A,E_B,E_C	$C+E_C=A\pm E_A-(B\pm E_B)=$
		$C\pm(E_A+E_B) \implies E_C=E_A+E_B$
$C = A \cdot B$	$\epsilon_A=rac{E_A}{A},$	$C+E_C=(A+E_A)\cdot(B+E_B)=$
	$\epsilon_B=rac{E_B}{B},$	$A(1+\epsilon_A)\cdot B(1+\epsilon_B) =$
	$\epsilon_C = rac{E_C}{B}$	$(A\cdot B)(1+\epsilon_A+\epsilon_B+\epsilon_A\epsilon_B)$
	CC - B	$\cong C \cdot (1 + \epsilon_A + \epsilon_B) \implies E_C = C \cdot (\epsilon_A + \epsilon_B)$
C=A/B	$\epsilon_A=rac{E_A}{A},$	$C+E_C=(A+E_A)/(B+E_B)=$
	$\epsilon_B=rac{E_B}{B},$	$rac{A}{B} rac{1+\epsilon_A}{1+\epsilon_B} =$
	$\epsilon_C = rac{E_C}{B}$	$rac{A}{B} rac{(1{+}\epsilon_A){\cdot}(1{+}\epsilon_B)}{1{-}\epsilon_B^2}$
		$\cong C(1+\epsilon_A+\epsilon_B) \implies E_C=C\cdot(\epsilon_A+\epsilon_B)$

3.13 Calcul d'erreur par linéarisation

Les erreurs étant petites, on peut linéariser autour des valeurs nominales.

Pour une fonction $Y=F(X_1,X_2,\ldots X_N)=Y(\mathbf{X}),$ on peut écrire :

$$egin{aligned} Y(\mathbf{X}) &= Y(\mathbf{X}_0) + \left\{ \left. rac{\partial Y}{\partial X_1} \right|_{\mathbf{X}_0} \cdot E_{X1} + \left. rac{\partial Y}{\partial X_2} \right|_{\mathbf{X}_0} \cdot E_{X2} + \ldots + \left. rac{\partial Y}{\partial X_N} \right|_{\mathbf{X}_0} \cdot E_{X_N}
ight\} \ &= Y_0 \pm E_Y \end{aligned}$$

3.14 Exercice de calcul d'erreur

- Exercices du Prof Moerschell (cyberlearn)
- notebook python/ex_erreur_diviseur_resistif_sol.ipynb