Principal Component Analysis

Dr. Juliho Castillo

Tecnológico de Monterrey

2025-09-29

Table of contents

Índice

Principal Component Analysis Theory	. 5
Example 1A: Educational Assessment PCA	47
Example 2A: European Stock Markets PCA	57
Example 3A: Kuiper Belt Objects PCA	66
Example 4A: Hospital Health Outcomes PCA	75

Part I: PCA Theory

Principal Component Analysis Theory

Understanding PCA: The Big Picture

Imagine you're a photographer trying to capture the best view of a 3D sculpture.

You want to find the **single best angle** that shows the most interesting features and variations of the sculpture. That's essentially what Principal Component Analysis does with data!

What PCA does in simple terms:

- Takes your data with many variables (dimensions)
- Finds the «best directions» to look at your data

- These directions capture the most variation and patterns
- Reduces complexity while keeping the most important information

Why is this useful?

- Makes complex data easier to visualize and understand
- Removes noise and redundant information
- Helps identify the most important patterns in your data

Refresher: What is PCA?

- Principal Component Analysis (PCA) is a linear method for dimension reduction.
- It finds orthogonal directions (principal components) that capture the largest possible variance in the data.
- PCA produces new variables (components) that are linear combinations of the original observed variables.
- Use cases: visualization, noise reduction, pre-processing before supervised learning, and exploratory data analysis.

Refresher: Eigen Decomposition

Eigen decomposition is a fundamental matrix factorization technique used in multivariate analysis.

Definition: For a square matrix A, if it can be diagonalized, we can write: $A = PDP^{-1}$

Where:

- D is a diagonal matrix containing the eigenvalues $\lambda_1,\lambda_2,...,\lambda_n$
- P is the matrix whose columns are the eigenvectors $v_1, v_2, ..., v_n$
- Each eigenvector satisfies: $Av_j = \lambda_j v_j$

Deeper Meaning and Significance:

- **Eigenvalues** (λ_j) measure the «strength» or «importance» of each underlying pattern in your data
- **Eigenvectors** (v_j) reveal the «direction» or «profile» of these patterns
- This decomposition is fundamental because it separates complex multivariate relationships into independent, interpretable components
- In factor analysis context: eigenvalues help determine how many meaningful factors exist, while eigenvectors show how variables cluster together

For symmetric matrices (like covariance matrices in PCA/FA):

- The eigenvectors are orthonormal $(P^{\top}P=I)$
- The decomposition simplifies to: $A = PDP^{\top}$

Geometric interpretation: Eigenvectors represent directions of maximum variance, eigenvalues represent the magnitude of variance in those directions.

In multivariate statistics: This decomposition underlies both PCA (principal components) and Factor Analysis (latent factors).

For detailed matrix algebra foundations, see Appendix.

Why PCA Works: The Big Idea

The Goal: Find the direction that captures the most variance in your data

The Problem: We want to maximize variance, but prevent the solution from becoming infinite

The Solution in Simple Terms:

- 1. What we want: Direction with maximum variance
- 2. **Constraint:** Direction must have unit length (prevents infinity)
- 3. Mathematical magic: This leads to the eigenvalue problem

- 4. Key insight: $Sv = \lambda v$
- 5. **Result:** Largest eigenvalue = maximum variance

Why This Works:

- Eigenvalues tell us how much variance each direction captures
- · Eigenvectors tell us what those directions are
- We pick the directions with the most variance

In Practice:

- · Computer finds eigenvalues and eigenvectors
- We sort them from largest to smallest
- First few capture most of the interesting patterns

Mathematical Formulation: Foundation

Let $x \in \mathbb{R}^p$ be a random vector with mean μ and covariance matrix Σ .

Data Matrix Representation:

- Data matrix $X \in \mathbb{R}^{n \times p}$ with n observations and p variables
- Each row x_i^{\top} is an observation vector
- ullet Centered data: $oldsymbol{X}_c = oldsymbol{X} oldsymbol{1}_n \overline{oldsymbol{x}}^ op$ where $oldsymbol{1}_n$ is vector of ones

Sample Covariance Matrix:

$$S = \frac{1}{n-1} X_c^{\top} X_c \tag{1}$$

Pointwise Form:

$$s_{ij} = \frac{1}{n-1} \sum_{l=1}^{n} (x_{li} - \overline{x}_i) (x_{lj} - \overline{x}_j)$$
 (2)

Eigenvalue Problem: Find eigenvalues $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_p \geq 0$ and orthonormal eigenvectors $v_1, v_2, ..., v_p$ such that:

$$Sv_j = \lambda_j v_j \quad \text{for } j = 1, 2, ..., p$$
 (3)

Mathematical Formulation: Spectral Decomposition

Spectral Decomposition of Covariance Matrix:

$$S = V\Lambda V^{\top} = \sum_{i=1}^{p} \lambda_{j} v_{j} v_{j}^{\top}$$

$$\tag{4}$$

Pointwise Form:

$$s_{ij} = \sum_{l=1}^{P} \lambda_l v_{il} v_{jl} \tag{5}$$

where:

- $V = [v_1 \mid v_2 \mid ... \mid v_n] \in \mathbb{R}^{p \times p}$ (eigenvector matrix)
- $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$ (diagonal eigenvalue matrix)
- $V^{ op}V = VV^{ op} = I_n$ (orthonormality condition)

Principal Components: The j-th principal component for observation i is:

$$z_{ij} = \boldsymbol{v}_j^{\top} (\boldsymbol{x}_i - \overline{\boldsymbol{x}}) = \boldsymbol{v}_j^{\top} \boldsymbol{x}_{ci} \tag{6}$$

Pointwise Form:

$$z_{ij} = \sum_{l=1}^{p} v_{jl} (x_{il} - \overline{x}_l) \tag{7}$$

Component Score Matrix:

$$Z = X_c V \in \mathbb{R}^{n \times p} \tag{8}$$

Mathematical Formulation: Variance Properties

Variance of Principal Components:

$$\operatorname{Var}(Z_i) = \operatorname{Var}(\boldsymbol{v}_i^{\mathsf{T}} \boldsymbol{X}_c) = \boldsymbol{v}_i^{\mathsf{T}} \boldsymbol{S} \boldsymbol{v}_i = \lambda_i \tag{9}$$

Total Variance Decomposition:

$$\operatorname{tr}(S) = \sum_{j=1}^{p} s_{jj} = \sum_{j=1}^{p} \lambda_{j}$$
 (10)

Proportion of Variance Explained: By component j: $\rho_j = \frac{\lambda_j}{\sum_{k=1}^p \lambda_k}$

Cumulative:
$$ho_{1:k} = rac{\sum_{j=1}^k \lambda_j}{\sum_{j=1}^p \lambda_j}$$

Reconstruction Formula: Using first k components: $\hat{x} = \overline{x} + \sum_{j=1}^k z_j v_j$

Pointwise Form: $\hat{x}_i = \overline{x}_i + \sum_{j=1}^k z_j v_{ji}$

Mean Squared Reconstruction Error: $ext{MSE} = rac{1}{n} \ \| m{X}_c - m{Z}_{1:k} m{V}_{1:k}^ op \|_F^2 = \sum_{j=k+1}^p \lambda_j$

From Concept to Computation: PCA Algorithm

Ready to turn theory into practice?

The PCA algorithm is like a recipe for finding the best viewpoints of your data. Think of it as teaching a computer to be that photographer we mentioned earlier!

What the algorithm does step-by-step:

- 1. **Preparation**: Clean and standardize the data (like focusing the camera)
- 2. Find relationships: Calculate how variables relate to each other
- 3. **Discover directions**: Find the best angles (principal components)
- 4. Transform data: Project data onto these new viewpoints
- 5. **Decide**: How many viewpoints do we actually need?

Why follow this exact sequence?

- Each step builds on the previous one
- Mathematical guarantees that we find the **optimal** solution
- Practical choices (like standardization) can dramatically affect results

Let's see the detailed mathematical recipe:

Algorithm: Principal Component Analysis

Input: Data matrix $X \in \mathbb{R}^{n \times p}$ (n observations, p variables), standardization choice **Output:** Principal components V, eigenvalues Λ , component scores Z

1. Prepare Your Data

- **Different units?** (age vs income) → Standardize all variables
- Same units? (all test scores) → Just center the data
- Rule of thumb: When in doubt, standardize

2. Calculate Relationships Between Variables

- Compute correlation matrix: How do variables relate?
- This captures all the patterns in your data

3. Find the Best Directions (Eigenvalues & Eigenvectors)

- Computer finds the directions with most variance
- Eigenvalues = how much variance each direction captures
- Eigenvectors = what those directions are

4. Transform Your Data

- Project data onto the new directions
- Get principal component scores for each observation

5. Decide How Many Components to Keep

• Use Kaiser rule: keep eigenvalues > 1

- Or pick enough to explain 70-80% of variance
- Fewer components = simpler interpretation

PCA Algorithm: Simple Numerical Example

Given Data: 3 observations, 2 variables

$$X = \begin{pmatrix} 5 & 3 \\ 3 & 1 \\ 1 & 3 \end{pmatrix}$$
 and $\overline{x} = \begin{pmatrix} 3 \\ 2.33 \end{pmatrix}$ (11)

Step 1: Center the data

$$\boldsymbol{X}_c = \boldsymbol{X} - \mathbf{1}_3 \overline{\boldsymbol{x}}^\top = \begin{pmatrix} 5 & 3 \\ 3 & 1 \\ 1 & 3 \end{pmatrix} - \begin{pmatrix} 3 & 2.33 \\ 3 & 2.33 \\ 3 & 2.33 \end{pmatrix} = \begin{pmatrix} 2 & 0.67 \\ 0 & -1.33 \\ -2 & 0.67 \end{pmatrix} \quad (12)$$

Step 2: Compute sample covariance matrix

$$oldsymbol{S} = rac{1}{2} oldsymbol{X}_c^ op oldsymbol{X}_c = rac{1}{2} egin{pmatrix} 2 & 0 & -2 \ 0.67 & -1.33 & 0.67 \end{pmatrix} egin{pmatrix} 2 & 0.67 \ 0 & -1.33 \ -2 & 0.67 \end{pmatrix} = egin{pmatrix} 4 & -0.67 \ -0.67 & 1.33 \end{pmatrix}$$

Step 3: Solve eigenvalue problem $Sv = \lambda v$

- Eigenvalues: $\lambda_1=4.45$, $\lambda_2=0.88$

• Eigenvectors:
$$m{v}_1=\left(egin{matrix}0.95\\-0.32\end{smallmatrix}
ight)$$
, $m{v}_2=\left(egin{matrix}0.32\\0.95\end{smallmatrix}
ight)$

Step 4: Compute PC scores

$$Z = X_c V = \begin{pmatrix} 2 & 0.67 \\ 0 & -1.33 \\ -2 & 0.67 \end{pmatrix} \begin{pmatrix} 0.95 & 0.32 \\ -0.32 & 0.95 \end{pmatrix} = \begin{pmatrix} 1.69 & 1.28 \\ 0.43 & -1.26 \\ -2.12 & 0.00 \end{pmatrix} (14)$$

Interpretation: PC1 explains $\frac{4.45}{5.33} = 83.5\%$ of total variance

Python Implementation: PCA Example

```
import numpy as np
from sklearn.decomposition import PCA
import pandas as pd
# Step 1: Create the data
X = np.array([[5, 3],
              [3, 1],
              [1. 311)
# Step 2: Apply PCA
```

```
pca = PCA()
X transformed = pca.fit transform(X)
# Step 3: Get results
eigenvalues = pca.explained variance
eigenvectors = pca.components .T
variance ratio = pca.explained variance ratio
print(f"Eigenvalues: {eigenvalues}")
print(f"PC1 explains {variance ratio[0]:.1%} of variance")
print(f"Transformed data:\n{X transformed}")
```

Output matches our manual calculation!

Deciding how many components to retain

Common heuristics and formal approaches:

- Kaiser criterion: keep components with eigenvalue > 1 (applies when using correlation matrix).
- Cumulative variance: keep the smallest number of components that explain a target (e.g., 70–90%) of total variance.
- Scree plot: look for the «elbow» where additional components contribute little incremental variance.

- Parallel analysis: compare empirical eigenvalues to those obtained from random data — keep components with larger eigenvalues than random.
 - How it works: Generate random datasets with same dimensions (n observations × p variables) as your data
 - Compare: For each component k, if λ_k (actual) $> \lambda_k$ (random), retain component k
 - Advantage: Accounts for sampling error and prevents overextraction
 - Conservative approach: Often retains fewer components than Kaiser criterion

Algorithm: Component/Factor Retention Decision

Input: Eigenvalues $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_p$, variance threshold α

Output: Optimal number of components/factors k^*

- 1. Kaiser Criterion (Rule of Thumb)
 - Keep components with eigenvalue > 1
 - Why? Each component should explain more variance than a single variable

- ► Easy rule: Count how many eigenvalues are bigger than 1
 - 2. **Cumulative Variance** (Practical Goal)
 - Keep enough components to explain 70-80% of total variance
 - Example: If first 3 components explain 75%, keep 3
 - Trade-off: More components = more complexity
 - 3. Scree Plot (Visual Method)
 - Plot eigenvalues from largest to smallest
 - Look for the «elbow» where the line flattens out
 - Keep components before the elbow

4. Parallel Analysis (Statistical Test)

- Compare your eigenvalues to random data
 - Keep components larger than random ones
 - Software does this automatically

5. Final Decision

Use multiple methods and find agreement

- When in doubt, choose fewer components (simpler is better)
 - Recommendation: Use parallel analysis as primary criterion

Component Retention: Simple Numerical Example

Given Eigenvalues: From 5-variable correlation matrix

$$\lambda = [2.8, 1.2, 0.7, 0.2, 0.1] \tag{15}$$

Step 1: Kaiser Criterion

$$k_{\text{Kaiser}} = |\{j : \lambda_j > 1\}| = |\{1, 2\}| = 2$$
 (16)

components

Step 2: Cumulative Variance (80% threshold)

- Total variance: $\sum \lambda_i = 5.0$
- Cumulative proportions: [0.56, 0.80, 0.94, 0.98, 1.00]
- $k_{\text{variance}} = \min\{j: \rho_j \ge 0.80\} = 2 \text{ components}$

Step 3: Parallel Analysis (simplified)

- Random eigenvalues (average): $\overline{\lambda}^{\mathrm{random}} = [1.4, 1.1, 0.9, 0.7, 0.5]$
- Compare: $\lambda_j > \overline{\lambda}_j^{\mathrm{random}}$
 - Factor 1: 2.8 > 1.4 🗸
 - ► Factor 2: 1.2 > 1.1 ✓
 - ightharpoonup Factor 3: $0.7 < 0.9 \times$
- $k_{\text{parallel}} = 2$ components

Step 4: Consensus Decision

$$k^* = \text{consensus}(2, 2, 2) = 2 \tag{17}$$

components

Result: All criteria agree → retain 2 components explaining 80% of variance

Python Implementation: Component Retention

```
import numpy as np
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

# Simulated data with 5 variables
np.random.seed(42)
X = np.random.randn(100, 5)

# Apply PCA
```

```
pca = PCA()
pca.fit(X)
eigenvalues = pca.explained variance
cumvar = pca.explained variance ratio .cumsum()
# Kaiser criterion
n kaiser = sum(eigenvalues > 1)
# Cumulative variance (80% threshold)
n cumvar = np.argmax(cumvar >= 0.8) + 1
print(f"Kaiser criterion: {n kaiser} components")
print(f"80% variance: {n cumvar} components")
print(f"Cumulative variance: {cumvar}")
```

```
# Scree plot
plt.plot(range(1, 6), eigenvalues, 'bo-')
plt.axhline(y=1, color='r', linestyle='--')
plt.title('Scree Plot')
plt.show()
```

Algorithm: PCA Data Analysis Checklist

Input: Raw data matrix, research objectives

Output: Validated PCA results and interpretation

1. Data Quality Assessment

- Check for missing values; handle via imputation or deletion
- Detect outliers using Mahalanobis distance or visualization
- if outliers are excessive then consider robust PCA methods

2. Variable Scaling Decision

Examine variable scales and units

- if variables have different scales then
 - Standardize: Use correlation matrix for PCA
- else
 - Use covariance matrix for PCA

3. Component Interpretation

- Examine loading matrix V
- for each component j do
 - Identify variables with $|v_{ij}| > 0.3$ (substantial loading)
 - Name component based on dominant variables

4. Results Validation and Reporting

- Generate eigenvalue table with variance proportions
- Create scree plot for visual component selection

- Report cumulative variance explained
- Include rotated component matrix if rotation applied

Part II: PCA Examples

Example 1A: Educational Assessment PCA

Educational Assessment: PCA Analysis

This section demonstrates PCA using controlled synthetic data with known factor structure to validate the method and teach key concepts.

- Dataset: Student assessment data with 6 variables (100 students)
- Research Question: Can PCA recover the underlying ability factors? How does it separate meaningful structure from noise?
- Method: Standardized PCA on synthetic data with known latent factors
- **Scripts**: educational_pca.py

Dataset: Student Assessment Variables

Six variables representing different aspects of student ability:

- MathTest: Mathematics assessment score
- VerbalTest: Verbal reasoning assessment score
- SocialSkills: Social competency rating
- Leadership: Leadership ability rating
- RandomVar1, RandomVar2: Pure noise controls

Known Factor Structure (Ground Truth)

Ground Truth for Validation:

- Intelligence Factor: Affects MathTest (0.85 loading) and VerbalTest (0.80 loading)
- Personality Factor: Affects SocialSkills (0.85 loading) and Leadership (0.80 loading)
- Measurement error added to all meaningful variables (0.2-0.25 noise levels)

PCA Results: Factor Recovery

Running educational_pca.py reveals clear factor structure:

Component	Eigenvalue	% Variance	Cumulative %
PC1	2.203	36.7%	36.7%
PC2	1.608	26.8%	63.5%
PC3	0.842	14.0%	77.6%
PC4	0.736	12.3%	89.8%
PC5	0.322	5.4%	95.2%

- Kaiser Criterion: Retain PC1-PC2 (eigenvalues > 1.0)
- Scree Test: Clear elbow after PC2
- Variance: Two factors explain 63.5% of total variance

Component Loadings: Structure Discovery

Loadings matrix reveals underlying factor structure:

Variable	PC1	PC2	PC3
MathTest	0.489	0.502	-0.148
VerbalTest	0.467	0.518	0.184
SocialSkills	0.488	-0.483	0.345
Leadership	0.466	-0.498	-0.412
RandomVar1	0.325	0.124	0.634
RandomVar2	-0.283	-0.032	0.502

- **PC1**: General ability factor (all meaningful variables 0.47-0.49)
- PC2: Cognitive vs. Social separation (positive: Math/Verbal, negative: Social/Leadership)
- Noise Validation: Random variables show weaker, inconsistent patterns

PCA Interpretation: Method Validation

Factor Recovery Validation (comparing to ground truth):

- Structure Detection: PCA successfully identifies 2-factor structure
- Meaningful vs. Noise: Max loading for random variables (0.325)
 meaningful variables (0.47)
- Factor Separation: PC2 cleanly separates cognitive (Math/Verbal) from social (Social/Leadership) abilities

Practical Insights:

- PC1 captures general «ability» factor common in educational assessments
- PC2 reveals specific cognitive vs. social skill dimensions
- Noise components (PC5-PC6) have eigenvalues < 0.35, clearly distinguishable

Example 2A: European Stock Markets PCA

European Stock Markets: PCA Analysis

This section demonstrates PCA applied to financial markets using synthetic European stock market data.

- Dataset: 4 major European indices (DAX, SMI, CAC, FTSE) over 1,860 trading days
- Research Question: How integrated are European financial markets? Can we identify common market factors?
- Method: Standardized PCA on correlation matrix of daily returns
- Scripts: invest_pca.py

Dataset: European Market Indices

- DAX (Germany): Frankfurt Stock Exchange largest European economy
- SMI (Switzerland): Swiss Market Index major financial center
- CAC (France): Paris Stock Exchange core eurozone market
- FTSE (UK): London Stock Exchange major international hub

PCA Results: Market Integration

Running invest_pca.py reveals extraordinary market integration:

Component	Eigenvalue	% Variance	Cumulative %
PC1	3.895	97.3%	97.3%
PC2	0.092	2.3%	99.6%
PC3	0.011	0.3%	99.9%
PC4	0.004	0.1%	100.0%

• **Dominant PC1**: Captures almost all variance (97.3%)

- Kaiser Criterion: Only PC1 has eigenvalue > 1.0
- Interpretation: European markets move as a single integrated system
- Implication: Extremely limited diversification within Europe

Component Loadings: Perfect Market Synchronization

All European markets load equally on PC1 (common market factor):

Market Index	PC1 Loading	PC2 Loading
DAX (Germany)	0.501	0.502
SMI (Switzerland)	0.501	-0.513
CAC (France)	0.500	0.351

- **PC1 Interpretation**: Uniform loadings (0.50) = perfect market integration
- PC2 Interpretation: Subtle Brexit effect (FTSE vs continental markets)
- Financial Reality: Global/EU-wide factors dominate individual market performance

Financial Interpretation: Systematic Risk Dominance

PC1 as European Systematic Risk Factor:

- Market Integration: 97.3% shared variance indicates extreme integration
 - European markets behave as single economic unit
 - Global economic conditions affect all markets simultaneously
 - ► ECB monetary policy, EU regulations, major political events

Portfolio Implications:

- Diversification within Europe provides minimal risk reduction
- Need global (non-European) assets for meaningful diversification
- European «diversified» portfolio = 97% systematic risk exposure

• Risk Management:

- PC1 represents non-diversifiable risk within European context
- PC2-PC4 (2.7% total) = market-specific idiosyncratic opportunities
- Brexit effect visible in PC2 (FTSE vs continental separation)

Example 3A: Kuiper Belt Objects PCA

Kuiper Belt Objects: PCA Analysis

This section demonstrates PCA applied to astronomical data from the outer solar system.

- Dataset: Orbital parameters of 98 trans-Neptunian objects (TNOs) and Kuiper Belt objects
- Research Question: What are the main modes of orbital variation?
 Can we identify distinct dynamical populations?
- Method: Standardized PCA on 5 orbital elements with different physical units
- Scripts: kuiper_pca.py

Dataset: Orbital Parameters

Five key orbital elements describe each object's motion:

- a (AU): Semi-major axis average distance from Sun (30-150 AU)
- **e**: Eccentricity orbital shape (0=circle, 1=parabola)
- i (degrees): Inclination tilt relative to solar system plane
- H (magnitude): Absolute magnitude brightness/size indicator

Known Dynamical Populations

Three main populations with distinct orbital signatures:

- Classical Kuiper Belt (60%): Low eccentricity, low inclination
 - Nearly circular orbits around 39-48 AU
 - «Cold» population likely formed in place
- Scattered Disk Objects (30%): High eccentricity, distant
 - e > 0.3, semi-major axis > 50 AU
 - Scattered outward by gravitational encounters with Neptune
- Resonant Objects (10%): Locked in orbital resonances
 - 3:2 resonance at 39.4 AU (like Pluto)

PCA Results: Multi-Component Structure

Running kuiper_pca.py reveals distributed variance across components:

Component	Eigenvalue	% Variance	Cumulative %
PC1	2.009	39.8%	39.8%
PC2	1.079	21.4%	61.1%
PC3	1.036	20.5%	81.6%
PC4	0.628	12.4%	94.1%
PC5	0.299	5.9%	100.0%

- Kaiser Criterion: Retain PC1-PC3 (eigenvalues > 1.0)
- Variance Distribution: More balanced than previous examples
- Interpretation: Complex astronomical system requires multiple dimensions

Component Loadings: Astronomical Interpretation

Each component captures distinct aspects of orbital architecture:

Variable	PC1	PC2	PC3
a (distance)	0.571	-0.172	-0.578
e (eccentricity)	0.642	0.087	-0.117
i (inclination)	0.487	0.378	0.705

- PC1: «Orbital Excitation» distance (a), eccentricity (e), inclination
 (i) correlate
- PC2: «Observational Bias» brightness (H) dominates, reflecting size-distance effects
- PC3: «Resonant Structure» inclination vs distance separation, identifies resonant families

PCA Interpretation: Dynamical Evolution

PC1 as Dynamical Excitation:

- High loadings on distance (a), eccentricity (e), and inclination (i)
- Represents gravitational «heating» of orbits over solar system history
- Separates pristine objects from those scattered by planetary migration
- Implication: Multiple gravitational processes create complex structure

Example 4A: Hospital Health Outcomes PCA

Hospital Health Outcomes: PCA Analysis

This section demonstrates PCA applied to healthcare quality data from US hospitals.

- Dataset: Health outcome metrics for 50 US hospitals across 8 performance indicators
- Research Question: What are the main dimensions of hospital quality? Can we rank hospital performance?
- Method: Standardized PCA on healthcare metrics with different units and scales
- Scripts: hospitals_example.py

Dataset: Hospital Performance Metrics

Eight key hospital quality indicators (with desired direction):

- **MortalityRate** (%): Hospital mortality rate (lower → better)
- **ReadmissionRate** (%): 30-day readmission rate (lower → better)
- PatientSatisfaction (0-100): Patient satisfaction score (higher → better)
- **AvgLengthStay** (days): Average length of stay (shorter → better)
- **InfectionRate** (%): Hospital-acquired infections (lower → better)
- **NurseRatio**: Nurse-to-patient ratio (higher → better)

- SurgicalComplications (%): Surgical complication rate (lower → better)
- EDWaitTime (minutes): Emergency dept. wait time (lower → better)

PCA Results: Strong Quality Factor

Running hospitals_pca.py reveals dominant quality dimension:

Component	Eigenvalue	% Variance	Cumulative %
PC1	5.752	70.5%	70.5%
PC2	0.695	8.5%	79.0%
PC3	0.480	5.9%	84.9%
PC4-PC8	all below 0.50	15.1%	100.0%

• **Dominant PC1**: Single quality factor explains 70.5% variance

- Kaiser Criterion: Only PC1 has eigenvalue > 1.0
- Interpretation: Hospital quality is largely unidimensional
- Healthcare Insight: Organizational excellence affects all metrics simultaneously

Component Loadings: Quality Halo Effect

PC1 shows consistent quality pattern across all metrics:

Health Outcome Metric	PC1	PC2	PC3
SurgicalComplications (\downarrow)	-0.378	-0.002	-0.156
MortalityRate (\downarrow)	-0.353	-0.368	-0.337
ReadmissionRate (\downarrow)	-0.352	0.150	0.515
PatientSatisfaction (†)	0.402	0.059	0.188
NurseRatio (↑)	0.381	0.041	0.160
InfectionRate (\downarrow)	-0.337	0.187	-0.358

EDWaitTime (\downarrow)	-0.311	-0.528	0.597
AvgLengthStay (↓)	-0.302	0.723	0.226

- Consistent Pattern: All «bad» outcomes load negatively, «good» outcomes positively
- Quality Halo: Excellent hospitals excel across all dimensions
- PC2: Efficiency dimension (length of stay vs wait time trade-off)

Healthcare Interpretation: Organizational Excellence

PC1 as Systematic Quality Factor:

- Organizational Culture: Leadership, processes, and culture affect all outcomes
 - Quality improvement programs create hospital-wide excellence
 - Poor management leads to problems across multiple domains
 - Safety culture and continuous improvement mindset crucial

Policy Implications:

- Hospital rankings can use single composite score (PC1)
- Quality interventions should be comprehensive, not focused on single metrics
- Resource allocation should target hospitals with low PC1 scores

Healthcare Economics:

- High-quality hospitals are more efficient (better outcomes at lower cost)
- Bundled payments incentivize comprehensive quality improvement
- Value-based care models align with PC1 structure