Actuarial Formula Cheat Sheet Ma fiche de Révision Actuarielle

Licence/Master Économie/Économétrie de l'Assurance Licence/Master Actuariat

25août2025

Mots clés de l'assurance

1 – Assurance Vie, Non-Vie

La séparation entre vie et non vie est fondamentale, un assureur ne peut proposer les deux types d'assurance sans détenir deux entreprises distinctes :

- Les **assurances vie**, c'est-à-dire les assurances de personnes à l'exception des assurances des dommages corporels,
- Les assurances non vie qui incluent les assurances de biens et de responsabilité ainsi que les assurances sur les dommages corporels.

2 - Les principes de l'assurance

L'assurance est supposée :

- être établie dans une bonne foi absolue,
- et seulement si l'assuré a un intérêt à la conservation d'une chose (assurance de biens),
- fonctionner en vertu du principe indemnitaire :
 - ne pas permettre l'enrichissement au règlement d'un sinistre,
 - pas même à travers un cumul d'assurance,
 - la subrogation (en Responsabilité Civile, si l'assureur indemnise l'assuré victime, il ne peut plus faire de recours auprès du responsable du sinistre.)
- ne pas réduire les efforts de prévention et protection de l'assuré en la qualité de personne raisonnable et même s'il bénéficie de cette protection financière.

établir la cause pour un sinistre en Responsabilité Civile, "je ne suis pas responsable si je ne contribue pas à la cause du sinistre."

3 - La police d'assurance

La **police d'assurance** (ou contrat) d'assurance est le document contractuel qui régit les relations entre la compagnie d'assurance (ou mutuelle d'assurance) et l'assuré (ou sociétaire pour une mutuelle). Ce contrat fixe en particulier :

- 1. la liste des évènements garantis, avec les exclusions éventuelles.
- 2. la garantie, c'est-à-dire l'assistance (principalement financière) apportée à l'assuré en cas de sinistre,
- $3.\,$ les obligations de l'assuré :
 - les mesures de prévention éventuelles afin de diminuer le risque,
 - les délais de déclaration à l'assureur en cas de sinistre,
 - le montant et les conditions de paiement de la prime (franchise, limite),
 - les possibilités de résiliation de la police (tacite reconduction),
- 4. les obligations de la compagnie d'assurances : les délais de paiements pour l'indemnisation.

4 – La prime et les sinistres

Classiquement, le rôle de l'assureur est de substituer une constante C, la **cotisation** ou la **prime**, à un sinistre aléatoire S. La **prime pure** ou **prime technique** vise le dédommagement des sinistres sans excédents, ni bénéfice, globalement $C_t = \mathbb{E}[S]$ La **prime nette** est supérieure à la prime pure. Elle vise à couvrir le coût des sinistres et à donner une marge de sécurité.

La **prime commerciale** est la prime nette + frais généraux + commissions + bénéfice escomptés + impôts.

Pour des raisons commerciales, la prime effectivement demandée peut être très différente de la prime technique.

Prime émise : prime demandée à l'assurée pour couvrir les sinistres qui peuvent survenir sur la période de couverture définie par le contrat (généralement 1 an en IARD).

Prime acquise : prorata de prime émise servant à couvrir le risque sur la période d'exposition d'un exercice (année civile).

Le S/P est l'indicateur majeur. Pour que l'assureur ait un profit le $S/P \ll 1$.

5 – Triangle de charge / de paiement

La comptabilité de l'assurance est déclinée par année de **survenance** du sinistre. Si une prime couvre plusieurs années civiles, une quote part sera affectée pour chacune. Chaque règlement, chaque provisionnement de sinistre est affectée à l'année de survenance. Le suivi des paiements, ou des charges, s'exprime à travers un triangle (ou matrice triangulaire) :

$$\begin{pmatrix} C_{1,1} & C_{1,2} & \dots & C_{1,n} \\ C_{1,1} & C_{1,2} & \dots & C_{2,n-1} \\ \vdots & \vdots & & & \\ C_{n-1,1} & C_{n-1,2} & & & \\ C_{n,1} & & & & \end{pmatrix}$$

où $C_{i,j} = \sum_{k=1}^{j} X_{i,k}$ représente le montant des sinistres cumulés réglés pour l'année d'origine i et l'année de développement j.

6 – Solvabilité II et gestion des risques

Solvabilité II est le cadre réglementaire européen applicable aux assureurs et réassureurs depuis 2016. Il repose sur trois piliers interdépendants :

- Pilier 1 : Exigences quantitatives qui détermine le capital minimum :
 - **SCR** (Solvency Capital Requirement) : capital pour absorber un choc extrême (99.5% sur 1 an),
 - MCR (Minimum Capital Requirement) : seuil minimum absolu,
 - actifs admissibles pour couvrir les provisions techniques et les exigences de capital (allocation d'actifs).

Pilier 2 : Gouvernance, contrôle interne et gestion des risques

Cœur du lien avec l'**ERM** (*Enterprise Risk Management*). Les exigences portent sur :

- la gouvernance : conseils d'administration responsables du dispositif de gestion des risques;
- un système efficace de **contrôle interne**;

- des fonctions clés indépendantes : actuarielle, gestion des risques, conformité, audit interne;
- l'ORSA (Own Risk and Solvency Assessment): évaluation interne des risques et de la solvabilité, outil central d'alignement entre stratégie, appétence au risque et capital économique.
- Pilier 3 : Discipline de marché

Repose sur la **transparence** et la communication :

- **SFCR** (Solvency and Financial Condition Report): public, résume la solvabilité et la situation financière,
- **RSR** (*Regular Supervisory Report*) : destiné au superviseur,
- reporting quantitatif : états réglementaires (QRTs), transmission régulière des données financières et prudentielles.

7 – Les principales branches de l'assurance vie et non–vie

L'assurance vie couvre des engagements à long terme, avec ou sans composante épargne :

- **Assurance en cas de vie** : capital ou rente versés si l'assuré est vivant à une date donnée.
- **Assurance en cas de décès** : versement si décès de l'assuré pendant la période couverte.
- Assurance mixte : combinaison vie et décès.
- Rente viagère : versements périodiques jusqu'au décès.
- Épargne/retraite : produits à capital différé ou à rente différée.
- Unités de compte : prestations dépendantes de la valeur de supports financiers.
- Contrats collectifs: retraites professionnelles, prévoyance collective.

L'assurance non-vie couvre des risques survenant à court ou moyen terme :

- **Automobile** : responsabilité civile, dommages au véhicule.
- **Habitation** : incendie, vol, dégâts des eaux, responsabilité.

- Responsabilité civile générale : RC vie privée, RC entreprise.
- Santé et prévoyance : remboursements médicaux, invalidité, incapacité.
- Accidents corporels : capital en cas d'accident, invalidité ou décès.
- **Pertes d'exploitation** : pertes financières d'une entreprise consécutive à un sinistre qui l'empêche d'exercer son activité.
- Risques techniques : construction, bris de machine.
- Assurance transport, aviation, maritime : biens en transit, responsabilités spécifiques.

8 - Actuaire

En pratique, l'actuaire:

- tarifie les produits d'assurance et de prévoyance,
- estime les provisions techniques,
- projette les flux de trésorerie et valorise les engagements long terme,
- mesure le capital économique (SCR, ORSA) et contribue à l'ERM,
- conseille la direction sur la stratégie, la solvabilité et la conformité réglementaire.

Mathématiques Financières

9 - Capitalisation Actualisation

10 – Les Intérêts

Escompte ou taux précompté d

$$d = i/(1+i)$$

Intérêt simple i

$$I_t = Pit = Pi\frac{k}{365}$$

Intérêt composés i

$$V_n = P(1+i)^n = P\left(1 + \frac{p}{100}\right)^n$$

Intérêt continu r

$$V_t = V_0 e^{rt}$$

Taux effectif i_e

$$i_e = \left(1 + \frac{i}{m}\right)^m - 1$$

où i est le taux nominal et m le nombre de périodes sur un an. Taux équivalent $i^{(m)}$

$$i^{(m)} = m(1+i)^{1/m} - 1$$

Taux nominal i et taux périodique

Le taux **nominal** ou taux **facial** permet de calculer les intérêts dus sur un an. Le taux **périodique** correspond au taux nominal divisé par le nombre de périodes sur un an i/m. Si le taux périodique est hebdomadaire, le taux nominal sera divisé par 52.

11 - Valeur actuelle et valeur future

La valeur actuelle (VA) ou valeur présente (VP) représente le capital qui doit être investi aujourd'hui à un taux d'intérêt composé annuel i pour obtenir des flux de trésorerie futurs (F_k) aux moments t_k :

$$VP = \sum_{k=1}^{n} F_k \times \frac{1}{(1+i)^{t_k}}$$
 (1)

Lorsque les F_k sont constants et de valeur K

$$VP = K \frac{1 - (1+i)^{-n}}{i} \tag{2}$$

La valeur future (VF) représente la valeur du capital en T qui, avec un taux d'intérêt composé annuel i, capitalise les flux de trésorerie futurs (F_k) aux moments t_k .

$$VF = V_n = \sum_{k=1}^{n} F_k \times (1+i)^{n-t_k}$$
 (3)

Plus généralement $VF = (1+i)^n VP$.

12 – Annuités

Annuité certaine $a_{\overline{n}|}$ (ou $a_{\overline{n}|i}$ si le taux d'intérêt i est utile à préciser) : c'est le cas par défaut en mathématiques financières. Ses paiements sont par exemple garantis par un contrat.

$$\ddot{a}_{\overline{n}|} = 1 + v + \dots + v^{n-1} = \frac{1 - v^n}{1 - v} = \frac{1 - v^n}{d}$$

Annuité contingente \ddot{a}_x : ses paiements sont conditionnés à un événement aléatoire, comme lors d'une rente viagère d'un individu d'âge x. Dans cet exemple, ils courent jusqu'à ce que mort s'ensuive :

La date du décès est représenté ici par un petit cercueil. Cette forme d'annuité sera largement étudiée dans la partie actuariat vie.

Annuité à terme échu (immédiate) $a_{\overline{n}|}$: ses paiements périodiques sont effectués à la fin de chaque période de paiement, comme pour le salaire payé en fin de mois. C'est le cas par défaut, illustré précédemment pour l'annuité certaine.

$$\ddot{a}_{\overline{n}|} = 1 + v + \dots + v^{n-1} = \frac{1 - v^n}{1 - v} = \frac{1 - v^n}{d}$$

$$PV_{\overline{n}|}^{\text{due}} = K\ddot{a}_{\overline{n}|} = K\frac{1 - v^n}{d}$$

Annuité à terme à échoir (due) $\ddot{a}_{\overline{n}|}$: ses paiements périodiques sont effectués au début de chaque période de paiement, comme pour un loyer par exemple.

aussi notée PV^{im} :

$$a_{\overline{n}|} = v + v^2 + \dots + v^n = \frac{1 - v^n}{i} = v \frac{1 - v^n}{1 - v}$$

$$PV_{\overline{n}|}^{im} = Ka_{\overline{n}|} = K\frac{1 - v^n}{i}$$

Annuité perpétuelle a ou $a_{\overline{\infty}}$:

$$a = 1/i$$

Annuité différée $m|a_{\overline{n}}|$: ses paiements ne commencent pas dans la première période mais après m périodes, m étant fixé à l'avance.

Annuité ou série périodique / mensuelle $a^{(m)}$: la périodicité par défaut est un an, mais le paiement unitaire peut être aussi réparti sur m périodes dans l'année.

$$a_{\overline{n}|}^{(m)} \xrightarrow[0 \ 1 \ 2 \ 3]{} ----- \xrightarrow[n-3 \ n-2 \ n-1 \ n}$$

Si $i^{(m)}$ représente le taux d'intérêt (annuel) nominal équivalent avec m période annuelle $i^{(m)}=m\left((1+i)^{1/m}-1\right)$.

De même $d^{(m)}$ taux d'escompte nominal conforme à d et m : $d^{(m)} = m \left(1 - (1-d)^{1/m}\right)$.

$$\ddot{a}_{\overline{n}|}^{(m)} = \frac{1}{m} \sum_{k=0}^{mn-1} v^{\frac{k}{m}} = \frac{d}{d^{(m)}} \ddot{a}_{\overline{n}|} = \frac{1-v^n}{d^{(m)}} \approx \ddot{a}_{\overline{n}|} + \frac{m-1}{2m} \left(1-v^n\right)$$

$$a_{\overline{n}|}^{(m)} = \frac{1}{m} \sum_{k=1}^{mn} v^{\frac{k}{m}} = \frac{i}{i^{(m)}} a_{\overline{n}|} = \frac{1 - v^n}{i^{(m)}} \approx a_{\overline{n}|} - \frac{m - 1}{2m} (1 - v^n)$$

Annuité unitaire a: elle est utilisée lors de la construction de formules d'annuité. Pour une annuité constante, le montant total versé chaque année est de 1, quelque soit m.

Annuité dynamique, croissante/décroissante Ia/Da: dans sa forme la plus simple, elle verse un montant qui démarre à $1\ (n)$ et qui croit (décroit) à chaque période de façon arithmétique ou géométrique. Dans l'exemple suivant, la progression est arithmétique. On utilise le préfixe I (increasing) pour indiquer les annuités croissantes et D (decreasing) pour les annuités dégressives.

$$(I\ddot{a})_{\overline{n}|} = 1 + 2v + \dots + nv^{n-1} = \frac{1}{d} (\ddot{a}_{\overline{n}|} - nv^n)$$
 (4)

avec, on le rappelle, d = i/(1+i) et à terme échu (immediate)

$$(Ia)_{\overline{n}|} = v + 2v^2 + \dots + nv^n = \frac{1}{i} (\ddot{a}_{\overline{n}|} - nv^n)$$

$$(D\ddot{a})_{\overline{n}|} = n + (n-1)v + \dots + v^{n-1} = \frac{1}{d}(n - a_{\overline{n}|})$$

et à terme échu :

$$(Da)_{\overline{n}|} = nv + (n-1)v^2 + \dots + v^n = \frac{1}{i}(n-a_{\overline{n}|})$$

13 - L'emprunt (Indivis)

La principale propriété de l'emprunt est de considérer séparément les intérêts du remboursement (ou de l'amortissement). Par un remboursement constant ou par annuité constante : la somme de l'amortissement et de l'intérêt à chaque période est constante.

Par un amortissement constant.

Par un remboursement in fine, où l'intérêt est constant. Seuls les intérêts sont versés périodiquement jusqu'au terme, moment où le remboursement total est effectué.

14 – Tableau d'amortissement de l'emprunt

	In fine	Amortissements constants	Annuités constantes
Capital restant dû S_k	$T_k = S_0, T_n = 0$	$S_0\left(1-\frac{k}{n}\right)$	$S_0 \frac{1 - v^{n-k}}{1 - v^n}$
Intérêts U_k	$i \times S_0$	$S_0\left(1 - \frac{k-1}{n}\right)i$	$K\left(1-v^{n-k+1}\right)$
$\begin{array}{c} \text{Amortis-} \\ \text{sements} \\ T_k \end{array}$	$T_k = O, T_n = S_0$	$\frac{S_0}{n}$	Kv^{n-k+1}
Annuité K_k	$K_k = iS_0, K_n = (1+i)S_0$	$\frac{S_0}{n}(1-(n-k+1)i)$	$K = S_0 \frac{i}{1 - v^n}$

Finances de Marchés

15 - Fonctionnement des marchés

La Bourse (Exchange) - lieu d'échange - permet, de fait, la rencontre physique entre les demandeurs et offreurs de capitaux. Les principales cotations concernent les actions (equities), les obligations (Fixed Income) et les matières premières (commodities). Sont cotés des titres comme des actions ou des obligations, des fonds (Exhange Trade Funds qui répliquent des indices actions, ETC ou ETN qui répliquent des indices plus spécifiques ou des matières premières, SICAV ou FCP, bons de souscription, warrant), des contrats à terme, des options, des swaps ou encore des produits structurés.

L'Autorité des marchés financiers (AMF) veille :

- à la protection de l'épargne investie;
- à l'information des investisseurs;
- au bon fonctionnement des marchés.

Euronext (dont Amsterdam, Brussels, Lisbon, et Paris) est la principale bourse en France. Ses concurrents sont entre autres Deutsche Börse (dont Eurex, eex) en Europe, ou ICE (dont NYSE (2012), NYBOT (2005), IPE (2001), LIFFE) et CME Group (y compris CBOT, NYMEX, COMEX) aux États-Unis. Le marché de gré à gré (OTC, Over-The-Counter) représente une part majeure des volumes échangés hors marchés organisés. Depuis le G20 de Pittsburgh (2009), certains dérivés OTC standardisés doivent être compensés via une entité centrale. Ces CCP (Central Counterparties) jouent ainsi le rôle de chambre de compensation (clearing) : elles remplacent le contrat bilatéral par deux contrats entre chaque partie et la CCP.

16 – Le Marché Monétaire

Les titres de taux à court terme, négociés sur les marchés monétaires, sont généralement à **intérêts précomptés**. Les taux nominaux sont alors annuels et les calculs utilisent les **taux proportionnels** pour s'adapter aux durées inférieures à un an. Ces titres sont cotés ou évalués selon le principe de l'escompte et avec une convention de calendrier Euro-30/360.

Sur le marché américain, les titres de dette publique sont appelés : Bons du Trésor (T-bills) : ZC <1 an, Obligations du Trésor (T-notes) : ZC <10 ans, Obligations du Trésor (T-bonds) : obligations à coupon avec une maturité >10 ans.

Ce sont principalement :

- BTF (bons du Trésor à taux fixe, France): émis à 13,
 26, 52 sem., taux précompté, adjudication hebdo, nominal
 1 €, règlement à J+2.
- Bons du Trésor > 1 an : mêmes règles que les obligations (voir section suivante).
- Certificats de dépôt (CDN): titres émis par banques émis à taux fixe/précompté (court terme) ou à taux variable/postcompté (long terme), aussi appelés BMTN.

- **Eurodollars :** dépôts en USD hors USA, anciennement indexés LIBOR, aujourd'hui en déclin.
- Billets de trésorerie : titres non garantis à court terme, émis par grandes entreprises pour financer leur trésorerie.

Calculs du prix d'un Bon du Trésor à taux fixe et à intérêt précompté

Dans le cas d'un titre à intérêt précompté selon la convention Euro-30/360, l'escompte D s'écrit :

$$D = F \cdot d \cdot \frac{k}{360}$$

où F désigne la valeur nominale, d le taux d'escompte annuel pour évaluer le titre à escompte et k la maturité en jour. Si le taux d'escompte d est connu, alors le prix P s'écrit :

$$P = F - D = F\left(1 - d \cdot \frac{k}{360}\right)$$

de même, si le prix P est connu, alors le taux d'escompte d se déduit :

$$d = \frac{F - P}{F} \cdot \frac{360}{k}$$

Les principaux Contrats à Terme : Federal Funds Futures (US), Three-Month SOFR Futures (US), ESTR Futures (UE), SONIA Futures (UK), Euribor Futures (UE).

17 - Marché Obligataire

Les obligations sont des titres de créance à long terme dans lesquels l'émetteur (gouvernement central ou local, banque, entreprise emprunteuse) promet à l'obligataire (le prêteur) de payer périodiquement des intérêts (coupons) et de rembourser à la date d'échéance la valeur nominale (ou valeur faciale, ou principal). Comme mentionné dans la section précédente Les Bons du Trésor de durée supérieure à un an seront assimilés aux obligations de maturité inférieure à 5 ans parce que leur fonctionnement est similaire.

Les obligations zéro-coupon : ne paient que la valeur nominale à l'échéance. Avec E le prix d'émission et R son remboursement :

Les obligations à coupon : Les obligations à taux fixe ont un taux de coupon qui reste constant jusqu'à la date d'échéance. Avec l'hypothèse d'un remboursement $in\ fine,\ E$ le prix d'émission, c les coupons et R son remboursement, on peut l'illustrer de la manière suivante :

Les obligations indexées (obligations liées à l'inflation) ont les coupons et parfois aussi la valeur nominale indexés à l'inflation ou à un autre indicateur économique, comme les Obligations Assimilables du Trésor indexées sur l'inflation (OATi). Les valeurs de c varient.

Les obligations à taux flottant, à taux variable ou à taux révisable : ont un taux de coupon variable lié à un taux d'intérêt de référence (par exemple le euro short- term rate (\in STR)).

Les obligations **perpétuelles** n'ont pas de date d'échéance, le principal n'est jamais remboursé.

On distingue souvent les obligations d'État (obligations du Trésor, Treasury bonds) des obligations d'entreprises ou corporate qui sont émises par des entreprises privées.

Une obligation se définit principalement par une valeur nominale F pour Face Value), le Taux nominal i, sa durée ou maturité n. Dans le cas par défaut, le détenteur de l'obligation confie le montant E=F à l'émission en 0, reçoit chaque année un coupon $c=i\times F$ et en n, le principal ou capital R=F lui est restitué. Quand E=F, on dit que l'émission est au pair, et quand R=F, on dit que la restitution est au pair.

Le prix d'une obligation est déterminé par la valeur actuelle des flux de trésorerie futurs attendus (coupons et remboursement du principal) actualisés au taux de rendement du marché r.

Le calcul des prix des obligations repose simplement sur la formule de la valeur actualisée :

$$VP = \sum_{k=1}^{n} \frac{c}{(1+r)^k} + \frac{F}{(1+r)^n}$$

où:

- VP : prix ou valeur présente de l'obligation,
- -r: taux d'intérêt du marché pour la maturité concernée.

Pour les obligations à coupons périodiques, le coupon est divisé par le nombre de périodes (m) par an et la formule devient :

$$VP = \sum_{k=1}^{mn} \frac{c/m}{(1+r^{(m)})^k} + \frac{R}{(1+r^{(m)})^{mn}}$$

où c/m représente le paiement périodique du coupon et $r^{(m)}$ le taux d'intérêt périodique.

Le rendement de l'obligation est la valeur $r^{(m)}$, le taux équivalent de r sur m périodes dans l'année, qui égalise la valeur présente VP_r avec le prix actuel ou de marché de cette obligation.

La cotation d'une obligation d'une obligation se fait en pourcentage. Ainsi une cotation à 97,9 sur Euronext indique une valeur de cotation à $97,9/100 \times F$. Elle se fait hors **coupons courus**, la part du prochain coupon auquel le vendeur a le droit si l'obligation est vendue avant le paiement de ce coupon.

18 – Duration & Convexité

La duration de Macaulay :

$$D = \sum_{t=1}^{n} t \cdot w_t, \quad \text{où} \quad w_t = \frac{PV(C_t)}{P}.$$

Si la fréquence de paiement est k par an, la duration exprimée en années est obtenue en divisant par k. La duration modifiée D^* :

$$D^* = \frac{D}{1+i}.$$

Ce qui permet d'approximer la variation du porte feuille ΔP en cas de variation des taux Δ_i

$$\Delta P \approx -P \ D^* \Delta_i$$

De même, la convexité

$$C = \frac{1}{P(i)} \times \frac{d^2 P(i)}{di^2},$$

ce qui permet d'affiner l'approximation de ΔP

$$P(i + \Delta_i) \approx P(i) \left(1 - D^* \Delta_i + \frac{1}{2} C(\Delta_i)^2 \right).$$

19 - MEDAF

ou CAPM (Capital Asset Pricing Model):

$$E(r_i) = r_f + \beta_i (E(r_m) - r_f)$$

- $E(r_i)$ est le rendement espéré de l'actif i,
- r_f est le taux sans risque,
- $E(r_m)$ est le rendement espéré du marché,
- β_i est le coefficient de sensibilité de l'actif i par rapport aux variations observées sur le marché.

Le coefficient β_i mesure la volatilité de l'actif i par rapport à l'ensemble du marché.

20 - Marché des dérivés

Un **contrat dérivé** (ou actif contingent) est un instrument financier dont la valeur dépend d'un actif ou d'une variable sousjacente. Les options font partie des contrats dérivés.

Une **option** est un contrat donnant le droit (sans obligation) d'acheter (call) ou de vendre (put) un actif sous-jacent à un prix fixé (prix d'exercice), à une date future, contre paiement d'une prime. L'acheteur (position longue) paie la prime; le vendeur (position courte) la reçoit. L'**option européenne** (exercice possible uniquement à l'échéance) et **option américaine** (exercice possible à tout moment jusqu'à l'échéance).

Les options cotées sur actions sont appelées stock options.

21 – Les stratégies simples

Avec T l'échéance, K le prix d'exercice, S ou S_T le sous-jacent à l'échéance, le retour (payoff) est de $\max(0, S_T - K) = (S_T - K)^+$. En notant C la prime , le profit réalisé est de $\max(0, S_T - K) - C$, avec un profit si $(S_T < V_{PM} = K + C)$ (PM pour point mort).

À l'échéance, le retour est de $\min(0, K - S_T) = -\max(0, S_T - K) = -(S_T - K)^+$ et le profit réalisé est de $C - \max(0, S_T - K)$.

À l'échéance, le retour est de $\max(0, K - S_T) = (K - S_T)^+$. En notant P la prime du put, le profit réalisé est de $\max(0, K - S_T) - P$, positif $\operatorname{si} V_{PM} = K - P < S_T$.

À l'échéance, le retour est de $\min(0, S_T - K) = -(K - S_T)^+$.

22 – Les stratégies d'écart

Stratégie d'écart : utilise deux options ou plus du même type (deux options d'achat ou deux options de vente). Si les prix d'exercice varient, c'est un écart vertical. Si les échéances changent, c'est un écart horizontal.

Une stratégie d'écart vertical (spread trading strategy) implique une position longue et une position courte sur des options d'achat portant sur le même sous-jacent, de même échéance mais avec des prix d'exercice différents. On distingue : écart vertical haussier (Bull spread) et écart vertical baissier (Bear spread).

Écart vertical haussier : anticipant une hausse modérée du sous-jacent, l'investisseur prend une position longue sur C_1 et courte sur C_2 sous la contrainte $E_1 < E_2$. Résultat net à l'échéance :

Écart vertical baissier : anticipant une baisse modérée du sous-jacent, l'investisseur vend l'option la plus chère et achète la moins chère.

Écart papillon (butterfly spread): anticipe une faible variation du sous-jacent. C'est la combinaison d'un écart vertical haussier et d'un écart vertical baissier. Stratégie adaptée si de grandes variations sont jugées peu probables. Investissement initial faible.

23 - Les stratégies combinées

Une **stratégie combinée** utilise à la fois des options d'achat et de vente. On distingue notamment les **stellages** et les **strangles**.

Un stellage (straddle) combine l'achat d'une option d'achat et d'une option de vente de même échéance et de même prix d'exercice. Cette stratégie parie sur une forte variation du prix, à la hausse ou à la baisse. La perte maximale survient si le prix à l'échéance est égal au prix d'exercice.

Un **strangle** est l'achat d'un call et d'un put de même échéance mais à prix d'exercice différents. Il suppose une très forte variation de la valeur du sous-jacent.

24 – Absence d'opportunité d'arbitrage

Il est impossible de réaliser un gain sans risque à partir d'un investissement initial nul. Ainsi, aucun profit sans risque n'est possible par exploitation des écarts de prix.

25 - La relation de parité

L'AOA implique la relation suivante entre le Call et le Put, sur le marché action :

$$S_t - C_t + P_t = Ke^{-i_f \cdot \tau}$$

26 – Le modèle de Cox-Ross-Rubinstein

Il repose sur un processus en temps discret avec deux évolutions possibles du prix à chaque période : une hausse (facteur u) ou une baisse (facteur d), avec $u>1+i_f$ et $d<1+i_f$. Le prix à t=1 est alors $S_1^u=S_0u$ ou $S_1^d=S_0d$, selon une probabilité q ou 1-q.

Ce modèle s'étend à n périodes avec n+1 prix possibles pour S_T . À l'échéance, la valeur d'une option d'achat est donnée par $C_1^u=(S_1^u-K)^+$ et $C_1^d=(S_1^d-K)^+$.

Absence d'opportunité d'arbitrage implique que :

$$d < 1 + i_f < u$$

et une probabilité risque neutre

$$q = \frac{(1+i_f) - d}{u - d}$$

Prix du call (avec $S_1^d < K < S_1^u$):

$$C_0 = \frac{1}{1+i_f} \left[q C_1^u + (1-q) C_1^d \right]$$

On peut aussi construire un porte feuille de réplication composé de Δ actions et B obligations, tel que :

$$\begin{cases} \Delta = \frac{S_1^u - K}{S_1^u - S_0^d}, \\ B = \frac{-S_1^d}{1 + i_f} \cdot \Delta \end{cases} \Rightarrow \Pi_0 = \Delta S_0 + B$$

Prix du put :

$$P_0 = \frac{1}{1 + i_f} \left[q P_1^u + (1 - q) P_1^d \right]$$

Détermination de q, u, d: En calibrant le modèle pour retrouver les premiers moments du rendement sous la probabilité risque neutre (espérance i_f , variance $\sigma^2 \delta t$), on obtient :

$$e^{i_f \delta t} = qu + (1 - q)d, \qquad qu^2 + (1 - q)d^2 - [qu + (1 - q)d]^2 = \sigma^2 \delta t$$

Si on ajoute la contrainte $u = \frac{1}{d}$, on arrive à :

$$q = \frac{e^{-if^{\delta_t} - d}}{u - d}$$

$$u = e^{\sigma\sqrt{\delta t}}$$

$$d = e^{-\sigma\sqrt{\delta t}}$$

27 – Le modèle de Black & Scholes

Hypothèses du modèle

- Le taux sans risque R est constant. On définit $i_f = \ln(1 + R)$, ce qui implique $(1 + R)^t = e^{i_f t}$.
- Le prix de l'action S_t suit un mouvement brownien géométrique :

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

$$S_t = S_0 \exp\left(\sigma W_t + \left(\mu - \frac{1}{2}\sigma^2\right)t\right)$$

- Pas de dividende pendant la durée de vie de l'option.
- L'option est « européenne » (exercée uniquement à l'échéance).
- Marché sans friction : pas d'impôts ni de coûts de transaction.
- La vente à découvert est autorisée.

L'équation de Black-Scholes-Merton pour évaluer un contrat dérivé f est :

$$\frac{\partial f}{\partial t} + i_f S \frac{\partial f}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} = i_f f$$

À l'échéance, le prix d'une option d'achat est $C(S,T) = \max(0, S_T - K)$, et celui d'une option de vente est $P(S,T) = \max(0, K - S_T)$.

Déterminants	call	put
Cours du sous-jacent	+	-
Prix d'exercice	-	+
La maturité (ou le temps)	+ (-)	+ (-)
Volatilité	+	+
Taux d'intérêt à court terme	+	-
Versement de dividende	-	+

Les solutions analytiques sont :

$$C_t = S_t \Phi(d_1) - K e^{-i_f \tau} \Phi(d_2)$$

 $P_t = K e^{-i_f \tau} \Phi(-d_2) - S_t \Phi(-d_1)$

où:

$$d_1 = \frac{\ln(S_t/K) + (i_f + \frac{1}{2}\sigma^2)\tau}{\sigma\sqrt{\tau}}, \quad d_2 = d_1 - \sigma\sqrt{\tau}$$

- **Delta** Δ : variation du prix de l'option selon le sous-jacent.
- Gamma Γ : sensibilité du delta.
- **Thêta** Θ : sensibilité au temps.
- Véga V : sensibilité à la volatilité.
- **Rho** ρ : sensibilité au taux d'intérêt.

Le **Delta** mesure l'impact d'une variation du sous-jacent :

$$\Delta_C = \frac{\partial C}{\partial S} = \Phi(d_1), \quad \Delta \in (0, 1)$$

$$\Delta_P = \frac{\partial P}{\partial S} = \Phi(d_1) - 1, \quad \Delta \in (-1, 0)$$

Le Delta global d'un portefeuille Π avec des poids ω_i est :

$$\frac{\partial \Pi}{\partial S_t} = \sum_{i=1}^n \omega_i \Delta_i$$

28 – La courbe de taux

La **courbe de taux** ou la courbe des rendements ou $r_f(\tau)$, livre une représentation graphique des taux d'intérêt sans risques en fonction de l'échéance (ou maturité). Elle est aussi appelée courbe des taux **zéro coupon** qui font référence à un type d'obligation (ZC) sans risque et sans coupons. Cette courbe offre aussi un aperçu des attentes du marché en matière de taux d'intérêt futurs (taux forward).

29 – Les modèles de Nelson-Siegel et Svensson Les fonctions de Nelson-Siegel prennent la forme

$$y(m) = \beta_0 + \beta_1 \frac{\left[1 - \exp\left(-m/\tau\right)\right]}{m/\tau} + \beta_2 \left(\frac{\left[1 - \exp\left(-m/\tau\right)\right]}{m/\tau} - \exp\left(-m/\tau\right)\right)$$

où $y\left(m\right)$ et m sont comme ci-dessus, et $\beta_{0},\,\beta_{1},\,\beta_{2}$ et τ sont des paramètres :

— β_0 est interprété comme le niveau à long terme des taux d'intérêt (le coefficient est 1, c'est une constante qui ne décroît pas),

— β_1 est le composant à court terme, en notant que :

$$\lim_{m \to 0} \frac{\left[1 - \exp\left(-m/\tau\right)\right]}{m/\tau} = 1$$

Il résulte que le taux overnigth tel que \in str sera égal à $\beta_0 + \beta_1$ dans ce modèle.

- β_2 est le composant à moyen terme (il commence à 0, augmente, puis décroît vers zéro, autrement dit en forme de cloche),
- τ est le facteur d'échelle sur la maturité, il détermine où le terme pondéré par β_2 atteint son maximum.

Svensson (1995) ajoute un second terme en forme de cloche, il s'agit du modèle Nelson–Siegel–Svensson. Le terme supplémentaire est :

$$+\beta_3 \left(\frac{\left[1-\exp\left(-m/\tau_2\right)\right]}{m/\tau_2} - \exp\left(-m/\tau_2\right)\right)$$

et l'interprétation est la même que pour β_2 et τ ci-dessus, il permet deux points d'inflexion à la courbe de taux.

Ces fonctions de Nelson-Siegel et de Svensson, présentent l'avantage de bien se comporter à long terme, et d'être facile à paramétrer. Elles sont représentées sur la figure où les pictogrammes représentel les différentes maturités usuelles pour ce type de biens ou investissements. Elles permettent de modéliser pratiquement une large forme de courbe de taux. Une fois ajustée, l'utilisateur peut alors évaluer des actifs ou définir diverses mesures de sensibilité.

30 – Modèle de Vasicek

Sous une probabilité risque-neutre \mathbb{Q} , le taux court (r_t) suit un processus d'Ornstein-Uhlenbeck à coefficients constants :

$$dr_t = \kappa(\theta - r_t) dt + \sigma dW_t, \quad r_0 \in \mathbb{R}$$

où:

- $-\kappa > 0$ est la vitesse de retour à la moyenne,
- θ est le niveau moyen de long terme,
- $-\sigma > 0$ est la volatilité,
- W_t est un brownien standard sous \mathbb{Q} .

La solution de l'EDS (application du lemme d'Itô à $Y_t = r(t)e^{\kappa t}$):

$$r_t = r_s e^{-\kappa(t-s)} + \theta(1 - e^{-\kappa(t-s)}) + \sigma \int_s^t e^{-\kappa(t-u)} dW_u$$

Ainsi :

$$\mathbb{E}_{\mathbb{Q}}[r_t \mid \mathcal{F}_s] = r_s e^{-\kappa(t-s)} + \theta(1 - e^{-\kappa(t-s)})$$
$$\operatorname{Var}_{\mathbb{Q}}[r_t \mid \mathcal{F}_s] = \frac{\sigma^2}{2\kappa} \left(1 - e^{-2\kappa(t-s)}\right)$$

Le processus (r_t) est gaussien, les taux négatifs sont possibles.

31 – Prix d'une obligation zéro-coupon (Vasicek)

Le prix à l'instant t d'une obligation zéro-coupon de maturité T est donné par :

$$ZC(t,T) = A(t,T) e^{-B(t,T) r_t}$$

où:

$$B(t,T) = \frac{1 - e^{-\kappa(T-t)}}{\kappa}$$

$$A(t,T) = \exp\left[\left(\theta - \frac{\sigma^2}{2\kappa^2}\right)(B(t,T) - (T-t)) - \frac{\sigma^2}{4\kappa}B(t,T)^2\right]$$

Cette formulation est possible grâce au fait que $\int_t^T r_s ds$ soit une variable gaussienne conditionnellement à \mathcal{F}_t .

$$ZC(t,T) = \mathbb{E}_{\mathbb{Q}}\left[\exp\left(-\int_{t}^{T} r_{s} \, ds\right) \Big| \mathcal{F}_{t}\right]$$

32 - Modèle Cox-Ingersoll-Ross (CIR)

Sous la mesure risque-neutre \mathbb{Q} , le taux court (r_t) suit la dynamique :

$$dr_t = \kappa(\theta - r_t) dt + \sigma \sqrt{r_t} dW_t, \quad r_0 \ge 0$$

avec:

- $\kappa > 0$: vitesse de retour à la moyenne,
- $\theta > 0$: niveau de long terme,
- $-\sigma > 0$: volatilité,
- W_t : mouvement brownien sous \mathbb{Q} .

Ainsi:

- La racine carrée $\sqrt{r_t}$ garantit $r_t \ge 0$ si $2\kappa\theta \ge \sigma^2$ (condition de Feller).
- Le processus (r_t) est un processus de diffusion non gaussien mais à trajectoires continues.
- Le taux est **mean-reverting** autour de θ .

Ainsi, le processus (r_t) est une diffusion à lois conditionnelles explicites (sous \mathbb{Q}):

Pour s < t, la variable r_t suit une loi de type χ^2 non centrale :

$$r_t \mid \mathcal{F}_s \sim c \cdot \chi_d^2(\lambda)$$

avec :

vec:
$$-c = \frac{\sigma^2(1 - e^{-\kappa(t-s)})}{4\kappa}$$
$$-d = \frac{4\kappa\theta}{\sigma^2} : \text{degr\'es de libert\'e}$$
$$-\lambda = \frac{4\kappa e^{-\kappa(t-s)}r_s}{\sigma^2(1 - e^{-\kappa(t-s)})}$$

$$\mathbb{E}_{\mathbb{Q}}[r_t \mid \mathcal{F}_s] = r_s e^{-\kappa(t-s)} + \theta(1 - e^{-\kappa(t-s)})$$

$$\operatorname{Var}_{\mathbb{Q}}[r_t \mid \mathcal{F}_s] = \frac{\sigma^2 r_s e^{-\kappa(t-s)} (1 - e^{-\kappa(t-s)})}{\kappa} + \frac{\theta \sigma^2}{2\kappa} (1 - e^{-\kappa(t-s)})^2$$

33 - Prix d'une obligation zéro-coupon (CIR)

Dans le modèle CIR, le prix d'une obligation zéro-coupon à l'instant t de maturité T s'écrit :

$$ZC(t,T) = A(t,T) \cdot e^{-B(t,T) r_t}$$

avec:

$$B(t,T) = \frac{2(e^{\gamma(T-t)} - 1)}{(\gamma + \kappa)(e^{\gamma(T-t)} - 1) + 2\gamma}$$

$$A(t,T) = \left[\frac{2\gamma e^{\frac{(\kappa + \gamma)}{2}(T-t)}}{(\gamma + \kappa)(e^{\gamma(T-t)} - 1) + 2\gamma}\right]^{\frac{2\kappa\theta}{\sigma^2}}$$

où:

$$\gamma = \sqrt{\kappa^2 + 2\sigma^2}$$

34 - Swaption, modèle de Black

Une **swaption** est une option sur un swap de taux. Elle donne le droit (et non l'obligation) de contracter un swap à une date future T.

- **Payer swaption**: droit de payer le taux fixe et recevoir le taux variable.
- **Receiver swaption**: droit de recevoir le taux fixe et payer le taux variable.

Notations:

- T : date d'exercice de la swaption
- K : taux fixe (strike)
- S(T): taux swap à la date T
- A(T): valeur actuelle des flux fixes futurs.
- σ : volatilité du taux swap

Le modèle de Black (1976) est une adaptation du modèle Black–Scholes pour les produits à taux d'intérêt. Ici, le taux swap S(T) joue le rôle de l'actif sous-jacent, avec un payoff de type option européenne.

Formule de Black pour une payer swaption :

$$SW_{paver} = A(T) [S_0 N(d_1) - KN(d_2)]$$

où:

$$d_1 = \frac{\ln(S_0/K) + \frac{1}{2}\sigma^2 T}{\sigma\sqrt{T}}$$
$$d_2 = d_1 - \sigma\sqrt{T}$$

et $N(\cdot)$ est la fonction de répartition de la loi normale standard.

Formule pour une receiver swaption:

$$SW_{receiver} = A(T) \left[KN(-d_2) - S_0N(-d_1) \right]$$

Actuariat Vie

35 - Notations sur les tables de survie

L'âge x, y, z des individus assurés...

 l_x est le nombre de personnes vivantes, par rapport à une cohorte initiale, à l'âge x (ou y, z...)

 ω est l'âge maximal envisagé dans la table de mortalité.

 $d_x = l_x - l_{x+1}$ est le nombre de personnes qui meurent entre l'âge x et l'âge x+1.

 q_x est la probabilité de décès entre les âges de x et l x+1.

$$q_x = d_x/l_x$$

 p_x est la probabilité que l'individu d'âge x survive à l'âge x+1.

$$p_x + q_x = 1$$

De même, $nd_x = d_x + d_{x+1} + \cdots + d_{x+n-1} = l_x - l_{x+n}$ montre le nombre de personnes qui meurent entre l'âge x et l'âge x + n. nq_x est la probabilité de décès entre les âges de x et l'âge x + n.

$$_{n}q_{x} = _{n}d_{x}/l_{x}$$

 ${}_np_x$ est la probabilité d'une personne d'âge x de survivre à l'âge x+n.

$$_{n}p_{x}=l_{x+n}/l_{x}$$

 $_{m\mid}q_{x},$ la probabilité que l'individu d'âge x meurt dans la $m+1^{e}$ année.

$$_{m|q_x} = \frac{d_{x+m}}{l_x} = \frac{l_{x+m} - l_{x+m+1}}{l_x}$$

 e_x est l'espérance de vie pour une personne encore en vie à l'âge x. C'est le nombre espéré d'anniversaires à vivre.

$$e_x = \sum_{t=1}^{\infty} t p_x$$

36 - Coefficient ou commutations

Ces coefficients ou commutations sont établies par des fonctions actuarielles qui dépendent d'une table de mortalité et d'un taux $i\ (v=1/(1+i))$ pour établir la table actuarielle :

$$D_x = l_x \cdot v^x$$

peut être vu "comme" le nombre de survivants actualisés. Les sommes

$$N_x = \sum_{k>0} D_{x+k} = \sum_{k=0}^{\omega - x} D_{x+k}$$

$$S_x = \sum_{k \ge 0} N_{x+k} = \sum_{k \ge 0} (k+1).D_{x+k}$$

seront utilisés pour simplifier les calculs. De même

$$C_x = d_x v^{x+1}$$

peut être vu "comme" le nombre de décès actualisés à l'âge x. Les sommes

$$M_x = \sum_{k=0}^{\omega - x} C_{x+k}$$

$$R_x = \sum_{k=0}^{\omega - x} M_{x+k}$$

seront utilisés pour simplifier les calculs.

Les coefficients D_x N_x et S_x seront utilisés pour les calculs sur les opérations en cas de vie et C_x M_x et R_x pour les opérations en cas de décès.

37 – Les annuités viagères ou rentes

$$a_x = \sum_{k=1}^{\infty} {}_k p_x v^k = \ddot{a}_x - 1 = \frac{N_{x+1}}{D_x}$$

$$\ddot{a}_x = \sum_{k=0}^{\infty} {}_k p_x v^k = \frac{N_x}{D_x}$$

Si la périodicité correspond à m période par an :

$$\ddot{a}_{x}^{(m)} = \sum_{k=0}^{\infty} \frac{1}{m} \frac{1}{m} p_{x} v^{\frac{k}{m}} \approx \ddot{a}_{x} - \frac{m-1}{2m}$$

De même, s'il paie 1/m en début des m périodes

$$a_x^{(m)} \approx a_x + \frac{m-1}{2m}$$

Les annuités viagères temporaires (Whole life annuity guaranteed for n years)

$$a_{x:\overline{n}|} = \sum_{k=1}^{n} {}_{k} p_{x} v^{k} = \frac{N_{x+1} - N_{x+n+1}}{D_{x}}$$

$$\ddot{a}_{x:\overline{n}|} = \sum_{k=0}^{n-1} {}_{k} p_{x} v^{k} = \frac{N_{x} - N_{x+n}}{D_{x}}$$

Les annuités viagères différées $m|a_x$ (Deferred life annuity) représentent les rentes sur l'individu d'âge x différée m années. Le premier paiement intervient dans m+1 ans en cas de vie.

38 - Capitaux décès ou survie

Les capitaux décès(Whole life insurance noted SP_x or A_x)

 A_x indique une prestation au décès à la fin de l'année de la mort (montant de 1), quelque que soit la date de survenance, pour un individu assuré à l'âge x lors de la souscription.

 $A_{x:\overline{n}|}$ désigne un capital versé au décès s'il survient et au plus tard dans n années (Endowment).

 $A^1_{x:\overline{n}|}$ désigne un capital décès versé si x décède dans les n années à venir (Term insurance).

 $A_x^{(12)}$ indique une prestation payable à la fin du mois du décès. \overline{A}_x indique une prestation payée à la date du décès.

Capital décès (Whole life)

$$A_x = \sum_{k=0}^{\infty} {}_{k|} q_x \ \nu^{k+1} = \frac{M_x}{D_x}$$

$$A_{x:\overline{n}|}^{1} = \sum_{k=0}^{n-1} {}_{k|} q_{x} \ \nu^{k+1} = \frac{M_{x} - M_{x+n}}{D_{x}}$$

Capital différé (Pure Endowment, capital unique en cas de survie) noté $A_{x:\overline{n}|}$ ou ${}_{n}E_{x}$.

Capital décès avec versement du capital en cas de survie (Endowment)

$$A_{x:\overline{n}|} = A_{x:\overline{n}|}^1 + A_{x:\overline{n}|}^1$$

39 – L'assurance vie sur plusieurs individus

 a_{xyz} est une rente annuelle, payée dès la fin de la première année et tant que vivent (x), (y) et (z).

 $a_{\overline{xyz}}$ est une rente annuelle, payée dès la fin de la première année et tant que vivent (x), (y) ou (z).

$$a_{\overline{xy}} = a_y + a_x - a_{xy}$$

 A_{xyz} est une assurance qui intervient à la fin de l'année du premier décès de (x), (y) et (z).

La barre verticale indique la conditionnalité :

 $a_{x|y}$ est une rente de réversion qui profite à (x) après le décès de (y).

 $A_{x|yz}$ est une assurance au premier décès de (y) et (z).

40 – Schémas simplifié de tarification des primes périodiques et provisions

 $\begin{aligned} V_t &= PV_t(.) - PPP \times PPU_t \\ PV_t(.) \text{ recalcul\'ee avec } x+t, k, n, m-t, K... \text{ } si \text{ } t \geq m \\ \text{ou } x+t, k, n-(t-m), m=0, K... \text{ } si \text{ } t > m \\ \text{de m\'eme } PPU_t =_{(m'-t)^+|} \ddot{a}_{x+t: n'-(t-m)^+|}^{(k')} \end{aligned}$

Probabilités & Statistiques

41 - Axiomatique

Un univers Ω , est l'ensemble de tous les résultats possibles qui peuvent être obtenus au cours d'une expérience aléatoire.

L'événement aléatoire est un événement ω_i de l'univers dont l'issue (le résultat) n'est pas certaine.

L'événement élémentaire :

- deux événements élémentaires distincts ω_i et ω_j sont incompatibles,
- la réunion de tous les événements élémentaires de l'univers Ω correspond à la certitude.

Les ensembles :

- $E = \{\omega_{i1}, \dots, \omega_{ik}\}$ un sous-ensemble de Ω (k éléments).
- \overline{E} le complémentaire de E,
- $E \cap F$ l'intersection de E et F,
- $E \cup F$ l'union de E et F,
- $-E \setminus F = E \cap \overline{F} E \text{ moins } F,$
- Ø l'événement impossible ou vide.

Soit E un ensemble. On appelle **tribu** ou σ -algèbre sur E, un ensemble \mathcal{A} de parties de E qui vérifie :

- $-\mathcal{A}\neq\emptyset$,
- $-\forall A \in \mathcal{A}, \overline{A} \in \mathcal{A},$
- si $\forall n \in \mathbb{N}, A_n \in \mathcal{A} \text{ alors } \cup_{n \in \mathbb{N}} A_n \in \mathcal{A}.$

On appelle **probabilité** \mathbb{P} toute application de l'ensemble des évènements \mathcal{A} dans l'intervalle [0,1], telle que :

$$\mathbb{P}: \mathcal{A} \mapsto [0,1]$$

satisfaisant les propriétés (ou axiomes) suivantes :

- **(P1)** $A \subseteq \mathcal{A} \text{ alors } \mathbb{P}(A) \geq 0$,
- **(P2)** $\mathbb{P}(\Omega) = 1$,
- **(P3)** $A, B \subseteq \mathcal{A}$, si $A \cap B = \emptyset$ alors $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.

L'espace de probabilité se définit par

$$\{\Omega, \mathcal{A}, \mathbb{P}(.)\}$$

L'égalité de poincarré s'écrit :

$$\forall A \in F, \forall B \in F, \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

42 - Bayes

En théorie des probabilités, la **probabilité conditionnelle** d'un événement A, sachant qu'un autre événement B de probabilité non nulle s'est réalisé.

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Le réel $\mathbb{P}(A|B)$ se lit 'probabilité de A, sachant B. Le théorème de Bayes permet d'écrire :

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}.$$

43 - Variables aléatoires

Soient $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé. On appelle **variable aléatoire** X de Ω vers \Re , toute fonction mesurable $X : \Omega \mapsto \Re$.

$$\{X \le x\} \equiv \{e \in \Omega \mid X(e) \le x\} \in \mathcal{A}$$

L'ensemble des événements de Ω n'est souvent pas explicite. La **fonction de répartition** (F_X) d'une variable aléatoire réelle caractérise sa loi de probabilité.

$$F_X(x) = \mathbb{P}(X \le x), x \in \Re$$

où le membre de droite représente la probabilité que la variable aléatoire réelle X prenne une valeur inférieure ou égale à x. La probabilité que X se trouve dans l'intervalle]a,b] est donc, si a < b, $\mathbb{P}(a < X \le b) = F_X(b) - F_X(a)$

Une loi de probabilité possède une **densité de probabilité** f, si f est une fonction définie sur \mathbb{R}^+ , Lebesgue-intégrable, telle que la probabilité de l'intervalle [a, b] est donnée par

$$\mathbb{P}(a < X \le b) = \int_a^b f(x) \mathrm{d} \mathbf{x} \text{ pour tous nombres tq } a < x < b.$$

44 – Espérance

L'espérance mathématique dans le cas discret (variables qualitatives ou quantitatives discrètes) :

$$\mathbb{E}[X] = \sum_{j \in \mathbb{N}} x_j \mathbb{P}(x_j)$$

où $\mathbb{P}(x_j)$ est la probabilité associée à chaque événement x_i . L'espérance mathématique dans le cas continu :

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x.f(x)dx$$

où f désigne la fonction de densité de la variable aléatoire x, définie dans notre cas sur $\mathbb R$. S'agissant de somme ou d'intégrale, l'espérance est linéaire, c'est-à-dire :

$$\mathbb{E}[c_0 + c_1 X_1 + c_2 X_2] = c_0 + c_1 \mathbb{E}[X_1] + c_2 \mathbb{E}[X_2]$$

$$\mathbb{E}[X] = \int x.f(x)dx = \int_0^1 F^{-1}(p)dp = \int \overline{F}(x)dx$$

45 - Convolution ou loi de la somme

La convolution de deux fonctions f et g, notée (f * g)(x), est définie par :

$$(f * g)(x) = \int f(t)g(x - t) dt$$

La convolution mesure comment f(t) et g(t) interagissent à différents points tout en tenant compte du décalage (ou translation) entre Si X et Y sont deux variables aléatoires indépendantes de densités respectives f_X et f_Y , alors la densité de la somme Z = X + Y est donnée par :

$$f_Z(x) = (f_X * f_Y)(x) = \int_{-\infty}^{+\infty} f_X(t) f_Y(x-t) dt.$$

46 - Loi composée ou modèle fréquence/gravité

Soit N une variable aléatoire discrète dans \mathbb{N}^+ , (X_i) une suite de variable aléatoire iid d'espérance et variance finies, alors pour

$$S = \sum_{i=1}^{N} X_i :$$

$$\mathbb{E}(S) = \mathbb{E}(\mathbb{E}[S \mid N]) = \mathbb{E}(N.\mathbb{E}(X_1)) = \mathbb{E}(N).\mathbb{E}(X_1)$$

$$Var(S) = \mathbb{E}(Var[S \mid N]) + Var(\mathbb{E}[S \mid N])$$

47 - Théorèmes fondamentaux

Soit X une variable aléatoire réelle définie sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, et supposée presque sûrement positive ou nulle. L'Inégalité de Markov donne :

$$\forall \alpha > 0, \mathbb{P}(X \ge \alpha) \leqslant \frac{\mathbb{E}[X]}{\alpha}.$$

L'inégalité de Bienaymé-Tchebychev : Pour tout réel strictement positif α , avec $\mathbb{E}[X] = \mu$ et $\text{Var}[X] = \sigma^2$

$$\mathbb{P}\left(|X - \mu| \ge \alpha\right) \le \frac{\sigma^2}{\alpha^2}.$$

La **loi faible des grands nombres** considère une suite $(X_i)_{i\geq n\in\mathbb{N}^*}$ de variables aléatoires indépendantes définies sur un même espace probabilisé, ayant mêmes espérance et variance finies notées respectivement $\mathbb{E}[X]$ et $\mathrm{Var}(X)$.

$$\forall \varepsilon > 0, \quad \lim_{n \to +\infty} \mathbb{P}\left(\left|\frac{X_1 + X_2 + \dots + X_n}{n} - \mathbb{E}[X]\right| \ge \varepsilon\right) = 0$$

Considérons une suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires indépendantes qui suivent la même loi de probabilité, intégrables, i. e. $E(|X_0|) < +\infty$.

En reprenant les notations, la **loi forte des grands nombres** précise que $(Y_n)_{n\in\mathbb{N}}$ converge vers E(X) « presque sûrement ».

$$\mathbb{P}\left(\lim_{n\to+\infty}Y_n=E(X)\right)=1$$

Considérons la somme $S_n = X_1 + X_2 + \cdots + X_n$.

$$Z_n = \frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}},$$

l'espérance et l'écart-type de \mathbb{Z}_n valent respectivement 0 et 1 : la variable est ainsi dite centrée et réduite.

Le **théorème central limite** stipule alors que la loi de Z_n converge en loi vers la loi normale centrée réduite $\mathcal{N}(0,1)$ lorsque n tend vers l'infini. Cela signifie que si Φ est la fonction de répartition de $\mathcal{N}(0,1)$, alors pour tout réel z:

$$\lim_{n \to \infty} P(Z_n \le z) = \Phi(z),$$

ou, de façon équivalente :

$$\lim_{n \to \infty} P\left(\frac{X_n - \mu}{\sigma/\sqrt{n}} \le z\right) = \Phi(z)$$

48 – Variables multidimensionnelles

Une loi de probabilité est dite **multidimensionnelle**, ou n-dimensionnelle, lorsque la loi décrit plusieurs valeurs (aléatoires) d'un phénomène aléatoire. Le caractère multidimensionnel apparaît ainsi lors du transfert, par une variable aléatoire, de l'espace probabilisé (Ω, \mathcal{A}) vers un espace numérique E^n de dimension n.

Soit une variable aléatoire X sur l'espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, à valeurs dans \mathbb{R}^n muni de la tribu borélienne réelle produit $\mathcal{B}(\mathbb{R})^{\otimes n}$. La loi de la variable aléatoire X est la mesure de probabilité \mathbb{P}_X définie par :

$$\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B)) = \mathbb{P}(X \in B).$$

pour tout $B \in \mathcal{B}(\mathbb{R})^{\otimes n}$.

Le théorème de **Cramer-Wold** assure que la loi (n-dimensionnelle) de ce vecteur aléatoire est entièrement déterminée par les lois (unidimensionnelles) de toutes les combinaisons linéaires de ces composantes :

$$\sum_{i=1}^{n} a_i X_i \text{ pour tous } a_1, a_2, \dots, a_n$$

49 - Loi marginale

La loi de probabilité de la i^e coordonnée d'un vecteur aléatoire est appelée la i^e loi marginale. La loi marginale \mathbb{P}_i de \mathbb{P} s'obtient par la formule :

$$\mathbb{P}_i(B) = \mathbb{P}_{X_i}(B) = \iint \mathbb{1}_{\omega_i \in B} \mathbb{P}(\mathrm{d}(\omega_1, \dots, \omega_n)), \forall B \in \mathcal{B}(\mathbb{R}).$$

Les lois marginales d'une loi absolument continue s'expriment à l'aide de leurs densités marginales.

La fonction de densité conditionnelle X_2 sachant la valeur x_1 de X_1 , peut s'écrire :

$$f_{X_2}(x_2 \mid X_1 = x_1) = \frac{f_{X_1, X_2}(x_1, x_2)}{f_{X_1}(x_1)},$$

$$f_{X_2}(x_2 \mid X_1 = x_1)f_{X_1}(x_1) = f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1 \mid X_2 = x_2)f_{X_2}(x_1,x_2)$$

50 - Indépendance

 $(X_1, X_2, ..., X_n)$ est une famille de variables aléatoires indépendantes si l'une des deux conditions suivantes est remplie :

$$\forall (A_1,\ldots,A_n) \in \mathcal{E}_1 \times \cdots \times \mathcal{E}_n$$

$$\mathbb{P}(X_1 \in A_1 \text{ et } X_2 \in A_2 \dots \text{ et } X_n \in A_n) = \prod_{i=1}^n \mathbb{P}(X_i \in A_i),$$

on a l'égalité

$$\mathbb{E}\left[\prod_{i=1}^n \varphi_i(X_i)\right] = \prod_{i=1}^n \mathbb{E}\left[\varphi_i(X_i)\right],$$

pour n'importe quelle suite de fonctions φ_i définies sur (E_i, \mathcal{E}_i) , à valeurs dans \mathbb{R} , dès que les espérances ci-dessus ont un sens.

$$f_X(x) = \prod_{i=1}^n f_{X_i}(x_i)$$

51 – Dépendance parfaite en dimension 2

Soient F_1, F_2 fonctions de répartition $\mathbb{R} \to [0, 1]$.

Les classes de Fréchet $\mathcal{F}_{(F_1,F_2)}$ regroupent l'ensemble des fonctions de répartition $\mathbb{R}^2 \to [0,1]$ dont les lois marginales sont précisément F_1, F_2 .

Pour tout $F \in \mathcal{F}(F_1, F_2)$, et pour tout x in \mathbb{R}^d

$$F^-(\boldsymbol{x}) \le F(\boldsymbol{x}) \le F^+(\boldsymbol{x})$$

où $F^+(\mathbf{x}) = \min\{F_1(x_1), F_2(x_2)\}$, et $F^-(\mathbf{x}) = \max\{0, F_1(x_1) + F_2(x_2) - 1\}$.

- 1. Le couple $X = (X_1, X_2)$ est dit comonotone si et seulement s'il admet F^+ comme fonction de répartition.
- 2. Le couple $X = (X_1, X_2)$ est dit antimonotone si et seulement s'il admet F^- comme fonction de répartition.

Le couple $X = (X_1, X_2)$ est dit **comonotone** (antimonotone) s'il existe des fonctions non-décroissantes (non-croissante) g_1 et g_2 d'une variable aléatoire Z telles que

$$\boldsymbol{X} = (g_1(Z), g_2(Z))$$

52 - Le vecteur gaussien

Un vecteur $X=(X_1,\cdots,X_n)$ est dit **vecteur gaussien**, de loi $\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$, lorsque toute combinaison linéaire $\sum_{j=1}^n \alpha_j X_j$ de ses composantes est la loi normale univariée. En particulier, chaque composante X_1,\cdots,X_n est de loi normale.

- $\boldsymbol{\mu}$ de \mathbb{R}^N sa localisation,
- Σ semi-définie positive de $\mathcal{M}_N(\mathbb{R})$, sa variance-covariance.

Si Σ est bien définie positive, donc inversible, alors

$$f_{(\boldsymbol{\mu},\boldsymbol{\Sigma})}\left(\boldsymbol{x}\right) = \frac{1}{(2\pi)^{N/2}\left|\boldsymbol{\Sigma}\right|^{1/2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}.$$

où $|\Sigma|$ est le déterminant de Σ .

53 – Trois mesures de lien (corrélations)

On nomme le coefficient de **corrélation linéaire de Pearson** la valeur

$$\rho_P = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

où σ_{xy} désigne la covariance entre les variables x et y, et σ_x , σ_y leur écart type. ρ prend ses valeurs dans [-1,1] (application du théorème de Cauchy-Schwartz).

 $X \perp Y \Rightarrow \rho_P = 0$, Attention, $\rho_P = 0 \Rightarrow X \perp Y$.

Le tau de Kendall se définit par

$$\tau_K = \mathbb{P}((X - X')(Y - Y') > 0) - P((X - X')(Y - Y') < 0)$$

où (X,Y) (X',Y') sont deux couples indépendant de même densité jointe. Cela correspond à la probabilité des concordants diminuée de celle des discordants :

$$\tau_K = \mathbb{P}\left(\operatorname{sgn}(X - X') = \mathbb{P}(\operatorname{sgn}(Y - Y')) - \mathbb{P}\left(\operatorname{sgn}(X - X') \neq \operatorname{sgn}(Y - Y')\right)\right)$$

$$= \mathbb{E}\left[\operatorname{sgn}(X - X')\operatorname{sgn}(Y - Y')\right]$$

$$= \operatorname{Cov}(\operatorname{sgn}(X - X'), \operatorname{sgn}(Y - Y'))$$

$$= 4\mathbb{P}(X < X', Y < Y') - 1$$

Le coefficient de corrélation rho de Spearman de (X, Y) est défini comme le coefficient de corrélation de Pearson des rangs des variables aléatoires X et Y. Pour un échantillon n, les n valeurs X_i , Y_i sont converties par leurs rangs x_i , y_i , et ρ est calculé :

$$\rho_S = \frac{1/n \sum_i (x_i - \mathbb{E}[x])(y_i - \mathbb{E}[y])}{\sqrt{1/n \sum_i (x_i - \mathbb{E}[x])^2 \times 1/n \sum_i (y_i - \mathbb{E}[y])^2}}.$$

Si on note $x_i = R(X_i)$ de 1 à N et $d_i = x_i - y_i$

$$\rho_S = 1 - \frac{6\sum_i d_i^2}{n(n^2 - 1)}$$

54 - Copule

Une **copule** est une fonction de répartition, notée \mathcal{C} , définie sur $[0,1]^d$ dont les marges sont uniformes sur [0,1]. Une caractérisation est alors que $\mathcal{C}(u_1,...,u_d)=0$ si une des composantes u_i est nulle, $\mathcal{C}(1,...,1,u_i,1,...,1)=u_i$, et \mathcal{C} est d-croissante.

Soit $F^{(d)}$ une fonction de répartition en dimension d où les F_i sont les lois marginales de F.

Le **théorème de Sklar** indique que $F^{(d)}$ admet une représentation copule :

$$F^{(d)}(x_1,...,x_d) = \mathcal{C}(F_1(x_1),...,F_d(x_d))$$

Si ces lois marginales sont toutes continues, la copule $\mathcal C$ est alors unique, et donnée par la relation

$$C(u_1, ..., u_d) = F^{(d)}(F_1^{-1}(u_1), ..., F_d^{-1}(u_d))$$

Dans ce cas, on pourra alors parler de la copule associée à un vecteur aléatoire $(X_1,...,X_d)$. Ce théorème est très important puisque nous pouvons séparer la partie marge de distribution de la partie dépendance.

La **Copule Gaussienne** est une distribution sur le cube unitaire de dimension d, $[0,1]^d$. Elle est construite sur la base d'une loi normale de dimension d sur \mathbb{R}^d .

Soit la matrice de corrélation $\Sigma \in \mathbb{R}^{d \times d}$, la copule Gaussienne de paramètre Σ peut s'écrire :

$$C_{\Sigma}^{Gauss}(u) = \Phi_{\Sigma} \left(\Phi^{-1}(u_1), \dots, \Phi^{-1}(u_d) \right),$$

où Φ^{-1} est la fonction de répartition inverse de la loi normale standard et Φ_{Σ} est la distribution jointe d'une loi normale de dimension d, de moyenne nulle et de matrice de covariance égale à la matrice de corrélation Σ .

Une copule \mathcal{C} est qualifiée d'archimédienne si elle admet la représentation suivante :

$$C(u_1, ..., u_d) = \psi^{-1} (\psi(u_1) + \cdots + \psi(u_d))$$

où ψ est alors appelé **générateur**.

Souvent, les copules admettent une formulation explicite de \mathcal{C} . Un seul paramètre permet d'accentuer la dépendance de toute la copule, quelque soit sa dimension d.

Cette formule fournit une copule si et seulement si ψ est d-monotone sur $[0,\infty)$ i.e. la dérivé k^e de ψ satisfait

$$(-1)^k \psi^{(k)}(x) \ge 0$$

pour tout $x \ge 0$ et $k = 0, 1, \dots, d-2$ et $(-1)^{d-2}\psi^{d-2}(x)$ est non-croissante et convexe.

Les générateurs suivants sont tous monotones, i.e. d-monotone pour tout $d \in \mathbb{N}$.

Nom	Générateur $\psi^{-1}(t)$,	$\psi(t)$	Paramètre
Ali- Mikhail- Haq	$\frac{1-\theta}{\exp(t)-\theta}$	$\log\left(\frac{1-\theta+\theta t}{t}\right)$	$\theta \in [0,1)$
Clayton	$(1+\theta t)^{-1/\theta}$	$\frac{1}{\theta} \left(t^{-\theta} - 1 \right)$	$\theta \in (0, \infty)$
Frank	$-\frac{1}{\theta}\exp(-t)$	$-\log\left(\frac{\exp(-\theta t)-1}{\exp(-\theta)-1}\right)$	$\theta \in (0, \infty)$
	$\times \log(1 - (1 - \exp(-\theta)))$		
Gumbel	$\exp\left(-t^{1/\theta}\right)$	$(-\log(t))^{\theta}$	$\theta \in [1, \infty)$
Ι Τ	$\exp(-t)$	$-\log(t)$	
Joe	$1 - \left(1 - \exp(-t)\right)^{1/\theta}$	$-\log\left(1-(1-t)^{\theta}\right)$	$\theta \in [1, \infty)$

55 – Mouvement brownien, filtration et martingales

Une filtration $(\mathcal{F}_t)_{t\geq 0}$ est une famille croissante de σ -algèbres ou tribu représentant l'information disponible jusqu'au temps t. Un processus (X_t) est dit \mathcal{F}_t -adapté si X_t est mesurable par rapport à \mathcal{F}_t pour tout t.

Un processus $(B_t)_{t\geq 0}$ est un **mouvement brownien standard** (ou processus de Wiener) s'il vérifie :

- $-B_0=0$;
- accroissements indépendants : $B_t B_s$ indépendant de \mathcal{F}_s ;
- accroissements stationnaires : $B_t B_s \sim \mathcal{N}(0, t s)$;
- trajectoires continues presque sûrement.

Un processus (M_t) est une **martingale** (par rapport à \mathcal{F}_t) si :

$$\mathbb{E}[|M_t|] < \infty$$
 et $\mathbb{E}[M_t \mid \mathcal{F}_s] = M_s$ $\forall 0 \le s < t$

Exemples : le mouvement brownien, les intégrales stochastiques de la forme $\int_0^t \theta_s dB_s$ (sous conditions) sont des martingales.

Variation quadratique est noté $\langle B \rangle_t = t$, $\langle cB \rangle_t = c^2 t$ Covariation : pour deux processus d'Itô X, Y,

$$\langle X, Y \rangle_t := \lim_{\|\Pi\| \to 0} \sum_i (X_{t_{i+1}} - X_{t_i})(Y_{t_{i+1}} - Y_{t_i})$$

convergence en probabilité, où $\Pi = \{t_0 = 0 < t_1 < \dots < t_n = t\}$ est une partition de [0, t].

56 – Processus d'Itô et calcul différentiel stochastique Un processus (X_t) est un processus d'Itô s'il peut s'écrire :

$$X_t = X_0 + \int_0^t \phi_s \, ds + \int_0^t \theta_s \, dB_s$$

ou en différentielle

$$dX_t = \phi_t dt + \theta_t dB_t$$

avec ϕ_t , θ_t \mathcal{F}_t -adaptés et L^2 -intégrables.

Formule d'Itô (1D) : pour $f \in C^2(\mathbb{R})$, on a :

$$df(X_t) = f'(X_t)dX_t + \frac{1}{2}f''(X_t)d\langle X \rangle_t$$

Exemple : si $dX_t = \mu dt + \sigma dB_t$ alors :

$$dX_t^2 = 2X_t dX_t + d\langle X \rangle_t$$

Formule d'Itô (multi-dimension):

Si $X = (X^1, \dots, X^d)$ est un processus d'Itô, $f \in C^2(\mathbb{R}^d)$:

$$df(X_t) = \sum_{i} \frac{\partial f}{\partial x_i}(X_t) dX_t^i + \frac{1}{2} \sum_{i,j} \frac{\partial^2 f}{\partial x_i \partial x_j}(X_t) d\langle X^i, X^j \rangle_t$$

Intégration par parties (Itô):

$$d(X_tY_t) = X_t dY_t + Y_t dX_t + d\langle X, Y \rangle_t$$

57 – Équations différentielles stochastiques (EDS) Une EDS (SDE) est une équation stochastique de la forme :

$$dX_t = b(t, X_t)dt + a(t, X_t)dB_t, \quad X_0 = x$$

où:

- b(t,x) est la **dérive** (*drift*) : fonction $\mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$;
- a(t,x) est la **diffusion** : fonction $\mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$;
- B_t est un mouvement brownien;
- X_t est la solution, processus stochastique adapté.

Forme intégrale :

$$X_t = x + \int_0^t b(s, X_s) ds + \int_0^t a(s, X_s) dB_s$$

Conditions d'existence et d'unicité:

— **Lipschitz** : il existe L > 0 tel que :

$$|b(t,x) - b(t,y)| + |a(t,x) - a(t,y)| \le L|x-y|$$

— Croissance linéaire :

$$|b(t,x)|^2 + |a(t,x)|^2 \le C(1+|x|^2)$$

Exemples classique:

- Brownien géométrique : $dS_t = \mu S_t dt + \sigma S_t dB_t$
- Ornstein-Uhlenbeck : $dX_t = \theta(\mu X_t)dt + \sigma dB_t$

Méthodes numériques : Euler-Maruyama, Milstein.

58 – Probabilité risque neutre

Une probabilité \mathbb{Q} est dite **risque neutre** si, sous \mathbb{Q} , tout actif S_t a un prix actualisé $\frac{S_t}{B_t}$ qui est une martingale où (B_t) est le numéraire (par exemple $B_t = e^{rt}$).

L'absence d'arbitrage $\iff \exists \mathbb{Q} \sim \mathbb{P}$ telle que les prix actualisés soient des martingales. C'est le **théorème fondamental de l'évaluation des actifs**.

Application:

Sous \mathbb{Q} , la valeur à l'instant t d'un actif donnant un retour H à la date T est :

$$S_t = B_t \, \mathbb{E}^{\mathbb{Q}} \left[\left. \frac{H}{B_T} \right\| \mathcal{F}_t \right]$$

Remarque:

La mesure $\mathbb Q$ est équivalente à $\mathbb P$, mais reflète un monde "sans préférence pour le risque", utile en valorisation.

59 – Les simulations

Les simulations permettent en particulier d'approximer l'espérance par la moyenne empirique des réalisations x_1, \ldots, x_n :

$$\frac{1}{n}(x_1 + \ldots + x_n) \approx \int x dF(x) = \mathbb{E}[X]$$

Ensuite, en vertu du TLC, nous estimons l'incertitude ou intervalle de confiance sur la base de la loi normale :

$$\left[\overline{x} - 1,96\frac{S_n}{\sqrt{n}}, \overline{x} + 1,96\frac{S_n}{\sqrt{n}}\right]$$

où S_n estime sans biais la variance de X:

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$

la convergence est dite en $\mathcal{O}(\frac{\sigma}{\sqrt{n}})$. Cet intervalle permet de décider le nombre de simulations à réaliser.

60 – Générateur pseudo aléatoire sur $[0,1]^d$

L'ordinateur ne sait pas lancer le dé $(\Omega = \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \})$. Il génère un pseudo aléa, c'est à dire un algorithme déterministe qui ressemble à un événement aléatoire. Les générateurs produisent généralement un aléa sur $[0,1]^d$. Si la valeur initiale (seed) est définie ou identifiée, les tirages suivants sont connus et répliquables.

L'algorithme le plus simple est appelée méthode des congruences linéaires :

$$x_{n+1} = \Phi(x_n) = (a \times x_n + c) \mod m$$

chaque x_n est un entier compris entre 0 et m-1. a le multiplicateur [multiplier], c l'accroissement [increment], et m le modulo [modulus] de la forme 2^p-1 , c'est-à-dire un nombre premier de Mersenne (p nécessairement premier):

Générateur de Marsaglia : $a=69069, b=0, m=2^{32}$ Générateur Knuth&Lewis : $a=1664525, b=1013904223, m=2^{32}$

Générateur de Haynes : $a=6364136223846793005, b=0, m=2^{64}$ Le générateur de Tausworthe, constitue une extension 'autorégressi-ve' :

$$x_n = (a_1 \times x_{n-1} + a_2 \times x_{n-2} + \dots + a_k \times x_{n-k}) \mod m \text{ avec } n \ge k$$

La période du générateur est m^k-1 , avec tous les a_i premiers entre eux. Si m est de la forme 2^p , les temps de calculs machine sont réduits. Le générateur aléatoire par défaut est généralement l'algorithme de Mersenne-Twister. Il est basé sur une récurrence linéaire sur une matrice F_2 (matrice dont les valeurs sont en base 2, i.e. 0 ou 1). Son nom provient du fait que la longueur de la période choisie pour être un nombre premier de Mersenne.

- 1. sa période est de $2^{19937} 1$
- il est uniformément distribué sur un grand nombre de dimensions (623 pour les nombres de 32 bits);
- 3. il est plus rapide que la plupart des autres générateurs,
- 4. il est aléatoire quel que soit le poids du bit considéré, et passe les tests Diehard.

61 - Simuler une variable aléatoire

Simuler X d'une loi quelconque F_X revient souvent à simuler $(p_i)_{i\in[1,n]}$ de loi $\mathcal{U}ni(0,1).$

Si F_X est inversible, $x_i = F_X^{-1}(p_i)$ (ou fonction quantile) livre $(x_i)_{i \in [1,n]}$ un jeu de n simulations de loi F_X .

Si c'est une variable discrète $(F^{-1}$ n'existe pas) $X_{\ell} = \min_{\ell} F(X_{\ell}) > p_i$, où $(X_{\ell})_{\ell}$ l'ensemble dénombrable des valeurs possibles, ordonnées de manière croissante.

Dans la méthode du **changement de variable**, on suppose qu'on sait simuler une loi X, et qu'il existe ϕ tel que $Y = \varphi(X)$ suit une loi F_Y . L'exemple naturelle est celui de $X \sim \mathcal{N}(0,1)$ et de faire le changement $Y = \exp(X)$ pour obtenir Y qui suit une loi lognormale.

La méthode du rejet est utilisée dans des cas plus complexe, par exemple lorsque F^{-1} n'est pas explicite ou exige beaucoup de temps de calcul. Soit f une fonction de densité de probabilités. On suppose qu'il existe une densité de probabilités g telle que :

$$\exists K > 0 , \forall x \in \mathbb{R} , f(x) \le Kg(x)$$

On simule alors Z suivant la loi de densité g, et $Y \sim \mathcal{U}([0;Kg(Z)])$. Alors la variable aléatoire $X = \{Z|Y \leq f(Z)\}$ suit la loi de densité f.

f(x), mélange loi normale

La performance de l'algorithme dépend du nombre de rejet, représenté par la surface bleu sur le graphique.

62 – Méthodes de Monte Carlo

Les **méthodes de Monte Carlo** reposent sur la simulation répétée de variables aléatoires pour approximer des quantités numériques.

Convergence:

- Par la **loi des grands nombres**, l'estimateur converge presque sûrement vers la valeur attendue.
- Par le **théorème central limite**, l'erreur standard est en $\mathcal{O}(N^{-1/2})$:

$$\sqrt{N}(\hat{\mu}_N - \mu) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$$

— Cette convergence lente justifie l'usage de techniques d'amélioration de la convergence.

Techniques de réduction de variance :

- Variables antithétiques : on simule X et -X (ou 1-U si $U \sim \mathcal{U}[0,1]$), puis on moyenne les résultats. Réduction efficace si f est monotone.
- Méthode de contrôle : si $\mathbb{E}[Y]$ est connue, on simule (f(X),Y) et on corrige :

$$\hat{\mu}_{corr} = \hat{\mu} - \beta(\bar{Y} - \mathbb{E}[Y])$$

où β optimal minimise la variance.

- **Stratification** : on divise l'espace des simulations en strates (sous-ensembles), et on simule proportionnellement dans chaque strate.
- **Importance sampling** : on modifie la loi de simulation pour accentuer les événements rares, puis on repondère :

$$\mathbb{E}[f(X)] = \mathbb{E}^Q \left[f(X) \frac{\mathrm{d}P}{\mathrm{d}Q}(X) \right]$$

utilisée notamment pour estimer les queues de distribution (VaR, TVaR).

63 – Le bootstrap

Le **bootstrap** est une méthode de *rééchantillonnage* permettant d'estimer l'incertitude d'un estimateur sans supposer de forme paramétrique pour la loi sous-jacente.

Soit un échantillon $\xi=(X_1,X_2,\ldots,X_n)$ de variables iid suivant une loi inconnue F. On cherche à estimer une statistique $\theta=T(F)$ (ex. moyenne, médiane, variance), via son estimateur empirique $\hat{\theta}=T(\hat{F}_n)$.

1. On approxime ${\cal F}$ par la fonction de répartition empirique :

$$\hat{F}_n(x) = \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\{X_k \le x\}}$$

- 2. On génère B échantillons bootstrap $\xi^{*(b)} = (X_1^{*(b)}, \dots, X_n^{*(b)})$ en tirant **avec remise** dans l'échantillon initial
- 3. Pour chaque échantillon simulé, on calcule l'estimation $T^{*(b)} = T(\hat{F}_n^{*(b)}).$

Les réalisations $T^{*(1)}, \dots, T^{*(B)}$ forment une approximation de la distribution de l'estimateur $\hat{\theta}$.

On peut en déduire :

- un biais estimé : $\widehat{\text{bias}} = \overline{T^*} \hat{\theta}$;
- un intervalle de confiance à $(1-\alpha)$: $[q_{\alpha/2}, q_{1-\alpha/2}]$ des quantiles empiriques de $T^{*(b)}$;
- une estimation de la **variance** : $\widehat{Var}(T^*)$.

Remarque : Le bootstrap est particulièrement utile lorsque la distribution de T est inconnue ou difficile à estimer analytiquement.

64 - Bootstrap paramétrique

Le bootstrap paramétrique repose sur l'hypothèse que les données suivent une famille de lois paramétrée $\{F_{\theta}\}$.

Soit $\xi = (X_1, \dots, X_n)$ un échantillon iid selon une loi F_θ inconnue. On procède comme suit :

- 1. Estimer le paramètre $\hat{\theta}$ à partir de ξ (ex. par maximum de vraisemblance).
- 2. Générer Béchantillons $\xi^{*(b)}$ de taille n, simulés selon la loi $F_{\hat{\theta}}.$
- 3. Calculer $T^{*(b)} = T(\xi^{*(b)})$ pour chaque échantillon.

Ce procédé approxime la distribution de l'estimateur $T(\xi)$ en supposant connue la forme de F. Il est plus efficace que le bootstrap non paramétrique si l'hypothèse de modèle est bien spécifiée. Le bootstrap paramétrique est plus rapide, mais hérite des biais du modèle.

65 – Validation croisée

La validation croisée est une méthode d'évaluation de la performance prédictive d'un modèle statistique, utilisée notamment en machine learning ou en tarification.

Principe:

- Diviser les données en K blocs (ou folds).
- Pour chaque $k = 1, \ldots, K$:
 - Entraı̂ner le modèle sur les K-1 autres blocs.

- Évaluer la performance (erreur, log-vraisemblance...) sur le k-ième bloc.
- Agréger les erreurs pour obtenir une estimation globale de la performance hors-échantillon.

66 - Méthodes quasi-Monte Carlo

Les méthodes **quasi-Monte Carlo** visent à **accélérer la convergence** de l'estimateur d'espérance sans recourir à l'aléatoire. L'erreur typique est de l'ordre :

$$\mathcal{O}\left(\frac{(\ln N)^s}{N}\right)$$

où N est la taille de l'échantillon et s la dimension du problème. Ces méthodes reposent sur l'utilisation de suites **à discrépance faible** dans $[0,1]^s$. La discrépance à l'origine ($star\ discrepancy$), notée $D_N^*(P)$ pour un ensemble de points $P=\{x_1,\ldots,x_N\}$, mesure l'écart maximal entre la proportion de points contenus dans des rectangles ancrés à l'origine et leur volume. Elle est définie par :

$$D_N^*(P) = \sup_{u \in [0,1]^s} \left| \frac{1}{N} \sum_{i=1}^N \mathbf{1}_{[0,u)}(x_i) - \lambda_s([0,u)) \right|$$

avec :

- $[0,u) = \prod_{j=1}^{s} [0,u_j)$ un rectangle ancré à l'origine dans $[0,1]^s$,
- $\mathbf{1}_{[0,u)}(x_i)$ l'indicatrice de l'appartenance de x_i à ce rectangle.
- $--- \lambda_s([0,u)) = \prod_{j=1}^s u_j$ le volume de ce rectangle.

Une discrépance faible signifie que les points sont bien répartis dans l'espace, ce qui améliore la convergence de l'estimation.

Suite de van der Corput (dimension 1) : Soit n un entier. On l'écrit en base b :

$$n = \sum_{k=0}^{L-1} d_k(n) \, b^k$$

puis on inverse les chiffres autour de la virgule pour obtenir :

$$g_b(n) = \sum_{k=0}^{L-1} d_k(n) b^{-k-1}$$

Par exemple, pour b = 5 et n = 146, on a $146 = (1041)_5$, donc:

$$g_5(146) = \frac{1}{5^4} + \frac{0}{5^3} + \frac{4}{5^2} + \frac{1}{5} = 0.3616$$

Séquence de Halton (dimension s) : On généralise la suite de van der Corput en utilisant s bases entières premières distinctes b_1, \ldots, b_s :

$$x(n) = (g_{b_1}(n), \dots, g_{b_s}(n))$$

Cette construction fournit une suite de points bien répartis dans $[0,1]^s$.

Inégalité de Koksma-Hlawka

Pour une fonction f de variation finie V(f) (au sens de Hardy–Krause) sur $[0,1]^s$:

$$\left| \int_{[0,1]^s} f(u) \, du - \frac{1}{N} \sum_{i=1}^N f(x_i) \right| \le V(f) \, D_N$$

où D_N est la discrépance de la suite utilisée.

Cette borne explique pourquoi les méthodes quasi-Monte Carlo sont souvent plus efficaces que les méthodes de Monte Carlo.

Distribution	Densité & support	Moments &	Fonction génératrice
		fonction de répartition	de moment
$\mathcal{B}in(m,q)$ $(0$	$\binom{m}{x} p^x (1-p)^{m-x}$ $x = 0, 1, \dots, m$	$E = mp, \text{Var} = mp(1 - p)$ $\gamma = \frac{mp(1 - p)(1 - 2p)}{\sigma^3}$	$\left(1 - p + pe^t\right)^m$
$\mathcal{B}er(q)$	$\equiv \text{Binomial}(1, p)$		
$\mathcal{DU}ni(n)$ $(n>0)$	$\frac{1}{n}, x = 0, 1, \dots n$	$\mathbb{E} = (n+1)/2$ $\operatorname{Var} = (n^2 - 1)/12$ $\mathbb{E} = \operatorname{Var} = \lambda$	$\frac{e^t(1-e^{nt})}{n(1-e^t)}$
$\mathcal{P}ois(\lambda)$ $(\lambda > 0)$	$e^{-\lambda} \frac{\lambda^x}{x!}, x = 0, 1, \dots$	$\mathbb{E} = \text{Var} = \lambda$ $\gamma = 1/\sqrt{\lambda}$ $\kappa_j = \lambda, j = 1, 2, \dots$ $\mathbb{E} = m(1-n)/n$	$\exp\left[\lambda\left(e^{t}-1\right)\right]$
$\mathcal{NB}in(m,q)$ $(m > 0, 0$	$\binom{m+x-1}{x}p^m(1-p)^x$ $x=0,1,2,\dots$	$\mathbb{E} = m(1-p)/p$ $Var = \mathbb{E}/p$ $\gamma = \frac{(2-p)}{p\sigma}$	$\left(\frac{p}{1 - (1 - p)e^t}\right)^m$
$\mathcal{G}eo(q)$	$\equiv \mathcal{NB}in(1,q)$		
$\mathcal{CU}ni(a,b)$ $(a < b)$	$\frac{1}{b-a}; a < x < b$	$\mathbb{E} = (a+b)/2,$ $Var = (b-a)^2/12,$ $\gamma = 0$	$\frac{e^{bt} - e^{at}}{(b-a)t}$
$\mathcal{N}\left(\mu,\sigma^2\right)$ $(\sigma>0)$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\frac{-(x-\mu)^2}{2\sigma^2}$	$\mathbb{E} = \mu, \text{Var} = \sigma^2, \gamma = 0$ $(\kappa_j = 0, j \ge 3)$	$\exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$
$\mathcal{G}am(k,\theta)$ $(k,\theta>0)$	$\frac{\theta^k}{\Gamma(k)}x^{k-1}e^{-\theta x}, x > 0$	$\mathbb{E} = k/\theta, \text{Var} = k/\theta^2,$ $\gamma = 2/\sqrt{k}$	$\left(\frac{\theta}{\theta - t}\right)^k (t < \theta)$
$\mathcal{E}_{xp}(\lambda)$	$\equiv \mathcal{G}am(1,\lambda)$	$\mathbb{E} = 1/\lambda$ $Var = 1/\lambda^2$	
$\chi^2(k)(k\in\mathbb{N})$	$\equiv \mathcal{G}am(k/2,1/2)$		
$\mathcal{IN}(\alpha,\beta)$ $(\alpha > 0, \beta > 0)$	$\frac{\alpha x^{-3/2}}{\sqrt{2\pi\beta}} \exp\left(\frac{-(\alpha - \beta x)^2}{2\beta x}\right)$	$\mathbb{E} = \alpha/\beta, \text{Var} = \alpha/\beta^2, e^{\alpha(1)}$ $\gamma = 3/\sqrt{\alpha} \qquad (t \le 1)$	$-\sqrt{1-2t/eta}$) $\leq eta/2$
	$F(x) = \Phi\left(\frac{-\alpha}{\sqrt{\beta x}} + \sqrt{\beta x}\right) + e^{2\alpha}\Phi\left(\frac{-\alpha}{\sqrt{\beta x}}\right)$	$\left(\frac{-\alpha}{\beta x} - \sqrt{\beta x}\right), x > 0$	
$\mathcal{B}eta(\alpha,\beta)$ $(\alpha > 0, \beta > 0)$	$\Gamma(\alpha+\beta) \frac{x^{(\alpha-1}(1-x)^{\beta-1}}{\Gamma(\alpha)\Gamma(\beta)}, 0 < x < 1$. ,	
$\mathcal{LN}orm\left(\mu,\sigma^2\right)$ $(\sigma>0)$	$\frac{1}{x\sigma\sqrt{2\pi}}\exp\frac{-(\log x - \mu)^2}{2\sigma^2}, x > 0$	$\mathbb{E} = e^{\mu + \sigma^2/2}, \text{Var} = e^{2\mu + 2\sigma^2} - \gamma = c^3 + 3c \text{ où } c^2 = \text{Var}/\mathbb{E}^2$	$e^{2\mu+\sigma^2}$
$\mathcal{P}areto\left(\alpha, x_{\rm m}\right)$ $\left(\alpha, x_{\rm m} > 0\right)$	$\frac{\alpha x_{\rm m}^{\alpha}}{x^{\alpha+1}}, x > x_{\rm m}$	$\mathbb{E} = \frac{\alpha x_{\rm m}}{\alpha - 1} \alpha > 1, \text{Var} = \frac{\alpha}{\alpha}$	$\frac{\alpha x_{\rm m}^2}{(-1)^2(\alpha - 2)} \alpha > 2$
$Weibull(\alpha, \beta)$ $(\alpha, \beta > 0)$	$\alpha\beta(\beta y)^{\alpha-1}e^{-(\beta y)^{\alpha}}, x>0$	$\mathbb{E} = \Gamma(1 + 1/\alpha)/\beta$ $\operatorname{Var} = \Gamma(1 + 2/\alpha)/\beta^2 - \mathbb{E}^2$ $\mathbb{E}\left[Y^t\right] = \Gamma(1 + t/\alpha)/\beta^t$	

(Micro)-Économie de l'Assurance

67 – Concept d'utilité

L'utilité modélise les préférences d'un individu entre deux paniers de biens x et y dans un ensemble S, via la relation $x \succcurlyeq y$ (préféré ou indifférent).

Une fonction $U:S \to \mathbb{R}$ représente les préférences si :

$$x \succcurlyeq y \iff U(x) \ge U(y)$$

Axiomes nécessaires à l'existence d'une fonction d'utilité :

- 1. Complétude : Pour tout $x, y \in S$, soit $x \succeq y$, soit $y \succeq x$
- 2. Transitivité : Si $x \succcurlyeq y$ et $y \succcurlyeq z$, alors $x \succcurlyeq z$
- 3. Continuité : Si $x_n \to x$ et $y_n \to y$, et $x_n \succcurlyeq y_n$ pour tout n, alors $x \succcurlyeq y$

68 - Fonction d'utilité

Une fonction $u:\mathbb{R}_+\to\mathbb{R}$ représente les préférences d'un agent face à l'incertitude.

Critère d'utilité espérée : L'agent préfère X à Y si :

$$\mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$$

Il choisit X tel que $\mathbb{E}[u(X)]$ soit maximale.

Propriétés de u:

- u' > 0: l'agent préfère plus de richesse (monotonie)
- u'' < 0: l'agent est averse au risque (concavité)

Exemples classiques:

- Linéaire (neutre au risque) : u(x) = x
- Logarithmique : $u(x) = \ln(x)$
- *CRRA* (aversion relative constante): $u(x) = \frac{x^{1-\gamma}}{1-\gamma}, \ \gamma \neq 1$
- CARA (aversion absolue constante) : $u(x) = -e^{-ax}$

69 – Aversion au risque

Un agent est dit averse au risque (ou risquophobe) si :

$$u(\mathbb{E}[X]) > \mathbb{E}[u(X)]$$

Ce qui est équivalent à u concave, c.-à-d. u''(x) < 0

70 – Mesure de l'aversion au risque Indice d'aversion absolue :

$$A_a(x) = -\frac{u''(x)}{u'(x)}$$

Indice d'aversion relative :

$$A_r(x) = -x \cdot \frac{u''(x)}{u'(x)}$$

Inégalité de Jensen (cas concave) :

$$u(\mathbb{E}[X]) \ge \mathbb{E}[u(X)]$$

Avec l'égalité si et seulement si X est constante.

71 – Primes de risque

La **prime de risque** π est le montant maximal qu'un individu est prêt à payer pour remplacer une loterie de gain aléatoire H par son espérance certaine $\mathbb{E}[H]$. Elle vérifie :

$$\mathbb{E}[u(w+H)] = u(w + \mathbb{E}[H] - \pi)$$

 π est aussi appelée $\it mesure$ de $\it Markowitz$: elle capture l'écart entre utilité espérée et utilité certaine.

Inversement, la **prime compensatoire** $\tilde{\pi}$ est le montant que l'on doit offrir à un individu pour qu'il accepte la loterie H au lieu d'un gain certain. Elle vérifie :

$$\mathbb{E}[u(w+H+\tilde{\pi})] = u(w+\mathbb{E}[H])$$

72 - Diversification et utilité

Soient deux actifs:

- -A: risqué
- $B : \text{certain}, \text{ avec } \mathbb{E}[A] = B$

Un agent averse au risque préfère une combinaison $Z=\alpha A+(1-\alpha)B,$ avec $0<\alpha<1,$ à l'actif risqué seul. Si u est concave, alors

$$\mathbb{E}[u(Z)] > \mathbb{E}[u(A)]$$

Portefeuille optimal : choix des pondérations (w_i) maximisant l'utilité espérée :

$$\max \mathbb{E}[u(X)], \quad \text{où } X = \sum_{i} w_i X_i, \quad \text{s.c. } \sum w_i = 1$$

Principe : la diversification réduit le risque (variance) sans affecter l'espérance.

73 – Méthode de Lagrange pour l'optimisation sous contrainte

La méthode des multiplicateurs de Lagrange permet de résoudre un problème d'optimisation sous contrainte.

Objectif: maximiser/minimiser f(x) sous la contrainte g(x) = c, où $x \in \mathbb{R}^d$ est un vecteur de variables.

Étapes de la méthode :

- 1. **Identification**: déterminer la fonction objectif f(x) et la contrainte g(x) = c
- 2. Lagrangien:

$$\mathcal{L}(\boldsymbol{x}, \lambda) = f(\boldsymbol{x}) + \lambda(q(\boldsymbol{x}) - c)$$

3. Système d'équations : résoudre

$$\nabla_{\mathbf{x}} \mathcal{L} = \nabla f(\mathbf{x}) + \lambda \nabla g(\mathbf{x}) = \mathbf{0}, \quad \frac{\partial \mathcal{L}}{\partial \lambda} = g(\mathbf{x}) - c = 0$$

- 4. **Résolution** du système pour obtenir x^*, λ^*
- 5. **Vérification**: s'assurer que les solutions satisfont bien la contrainte et le type d'optimum (max/min)

Exemple (dimension 2): maximiser f(x,y) = xy sous la contrainte x + y = 10

$$\mathcal{L}(x, y, \lambda) = xy + \lambda(x + y - 10)$$

On dérive :

$$\frac{\partial \mathcal{L}}{\partial x} = y + \lambda = 0, \quad \frac{\partial \mathcal{L}}{\partial y} = x + \lambda = 0, \quad \frac{\partial \mathcal{L}}{\partial \lambda} = x + y - 10 = 0$$

On résout le système :

$$\begin{cases} y + \lambda = 0 \\ x + \lambda = 0 \\ x + y = 10 \end{cases} \Rightarrow \begin{cases} \lambda = -y \\ x = -\lambda = y \\ x + y = 10 \Rightarrow 2x = 10 \end{cases} \Rightarrow \begin{cases} x^* = y^* = 5, \\ f(5, 5) = 25 \end{cases}$$

Exemple (Choix optimal et contrainte budgétaire)

Un agent rationnel est face à un choix de consommation (c_1, c_2) entre deux biens, sous la contrainte :

$$p_1c_1 + p_2c_2 = R$$

où p_1, p_2 sont les prix et R le revenu total.

Problème: $\max_{c_1,c_2} u(c_1,c_2)$ s.c. $p_1c_1 + p_2c_2 = R$

Méthode : introduire le lagrangien

$$\mathcal{L}(c_1, c_2, \lambda) = u(c_1, c_2) + \lambda (R - p_1 c_1 - p_2 c_2)$$

Conditions du premier ordre (FOC):

$$\begin{cases} \frac{\partial u}{\partial c_1} = \lambda p_1 \\ \frac{\partial u}{\partial c_2} = \lambda p_2 \\ p_1 c_1 + p_2 c_2 = R \end{cases}$$

En divisant les deux premières équations :

$$\frac{\partial u/\partial c_1}{\partial u/\partial c_2} = \frac{p_1}{p_2}$$

Ce rapport est appelé taux marginal de substitution (TMS) : il mesure la quantité de bien 2 à laquelle l'agent est prêt à renoncer pour obtenir une unité supplémentaire de bien 1, tout en maintenant son niveau d'utilité constant.

74 – Demande d'assurance (Mosin)

Un agent possède un patrimoine initial w et fait face à une perte aléatoire L. Il existe une demande d'assurance pour l'assurance qui verse l'indemnité 0 < I(L) < L ssi $u(w - \pi_I) \ge$ $\mathbb{E}(u(w-L))$ et l'assurance optimale maximise $u(w-\pi_I)$. Dans Mosin (1968) ou Borch (1961) ou Smith (1968), le modèle de perte L se définit simplement par s compris entre 0 et w:

$$L = \begin{cases} 0 \text{ avec proba. } 1 - p \\ s \text{ avec proba. } p \end{cases}$$

La prime devient $\pi_I = (1 + \lambda)\mathbb{E}(I(L)) = (1 + \lambda)pI(s)$ avec λ un chargement. On note π le cas où I(L) = L avec $\pi = ps$. Si $\lambda = 0$, alors on parle de prime pure ou actuariellement juste.

Coassurance (partage du risque) : $I(l) = \alpha l$ sachant L = l pour $\alpha \in [0,1], \, \pi_I(\alpha) = \alpha \pi \text{ et} :$

$$w_f = w - L + I(L) - \pi(\alpha) = w - L + \alpha L - \alpha \pi = w - (1 - \alpha)L - \alpha \pi$$
$$U(\alpha) = (1 - p)u(w - \alpha \pi) + pu(w - (1 - \alpha)s - \alpha \pi)$$

L'assurance partielle ($\alpha^* < 1$) est optimale ssi $\lambda > 0$. L'assurance totale ($\alpha^* = 1$) est optimale si le chargement est nul.

L'assurance avec franchise (part d'autoassurance) : Avec franchise d l'assureur verse une indemnité $I(l) = (l-d)_+$ sachant L = l.

$$\pi(d) = (1 + \lambda)E((L - d)_{+}) = (1 + \lambda)(s - d)p$$

 $W_f = w - X + (L - d)_+ - \pi(a) = \omega \qquad \text{min.} (-1, -1)_+$ $U(d) = (1 - p)u(\underbrace{w + (1 + \lambda)(d - s)p}) + pu(\underbrace{w - d + (1 + \lambda)(d - s)p})_+$ $\underbrace{w_f^-}_{w_f^-}$ $\underbrace{w_f^-}_{w_f^-} = w - s(e) - \pi(I) + I - e \qquad \text{avec probabilité } p$ $\underbrace{w_f^-}_{w_f^+} = w - \pi(I) - e \qquad \text{avec probabilité } 1 - p$ $w_f = w - X + (L - d)_+ - \pi(d) = w - \min(X, d) - (1 + \lambda)(s - d)p$

optimale ssi la prime n'est pas actuariellement juste. De même, l'assurance totale ($d^* = 0$) est optimale si le chargement est

Modèle généralisé : Le risque de perte L > 0 aléatoire est définit sur \Re , avec fonction de répartition F_L),

$$\pi_I = (1+\lambda)\mathbb{E}(I(L)) = (1+\lambda)\int_0^\infty I(l)dF_L(l)$$

- 1. L'assurance totale $(d^* = 0)$ ou $(\alpha^* = 1)$ est optimale si et seulement si la prime est actuariellement juste.
- 2. Si $A_a(u,x)$ est décroissante, alors le niveau de franchise d^* ou le taux de couverture α^* augmente avec la richesse initiale. Pour les préférences CARA, d^* est indépendant de wou α^* est constant.
- 3. Le niveau de couverture décroît avec le coefficient de chargement λ lorsque $A_a(u,x)$ est croissante ou constante.
- 4. Un agent plus averse au risque choisit une couverture plus élevée.

75 – Information et assurance

Mosin avec hétérogénéïté : Deux types d'individus : H pour haut risque et Lo pour faible risque. $\theta \in [0, 1]$ la proportion d'individu H. Les individus de type $i \in \{Lo, H\}$ font face à un risque de même montant s survenant avec une probabilité différente p_i telle que $1 > p_H > p_{Lo} > 0$.

$$L_i = \left\{ \begin{array}{l} 0 \text{ avec probabilit\'e } 1 - p_i, \\ s \text{ avec probabilit\'e } p_i. \end{array} \right.$$

La probabilité du march

$$p_m = \theta p_H + (1 - \theta) p_{Lo}.$$

Absence d'antisélection : Dans ce modèle, en présence d'information totale, l'assureur préfère une assurance individuelle $I_i = s \text{ et } \pi_i = sp_i, \forall i.$

Le problème d'anti-sélection : L'assureur propose un contrat non individualisé du marché $M = (\pi_m = p_m I, I_m(s) = I(s))$, qui ne dépend pas de i. La fortune finale d'un individu de type i est $W_i^m = w - \pi_m - X_i + I_m.$

En présence d'un contrat unique, les individus de type H préfèrent un contrat d'assurance tel que $I_H(s) = s$ et $\pi_H = sp_m$, tandis que les individus de type Lo préfèrent une couverture partielle avec $I_L^{\star} < s$ et $\pi_{Lo} = I_L^{\star} p_m$.

Aléa moral: L'assurer réduit ou interrompt ses efforts maintenant qu'il est assuré. Les efforts de

- prévention réduisent la probabilité de sinistre,
- protection réduisent le montant de sinistre.

En l'absence d'effort e de prévention ou de réduction du risque, la fortune finale w_f est simplement définie par

$$\begin{cases} w_f^- = w - s - \pi(I) + I & \text{avec probabilité } p \\ w_f^+ = w - \pi(I) & \text{avec probabilité } 1 - p \end{cases}$$

S'il y a un effort e de prévention des risques, on considère

$$\begin{cases} w_f^- = w - s - \pi(I) + I - e & \text{avec probabilité } p(e) \\ w_f^+ = w - \pi(I) - e & \text{avec probabilité } 1 - p(e) \end{cases}$$

$$\begin{cases} w_f^- = w - s(e) - \pi(I) + I - e & \text{avec probabilité } p \\ w_f^+ = w - \pi(I) - e & \text{avec probabilité } 1 - p \end{cases}$$

- $-e \mapsto p(e)$ est strictement décroissante et strictement convexe.
- $-e \mapsto s(e)$ est strictement décroissante et strictement convexe.
- $I \leq s$ implique $w_f^- \leq w_f^+$

Économétrie & Séries Temporelles

76 – Définitions

Série temporelle - succession d'observations quantitatives d'un phénomène classées par ordre temporelle.

Il existe plusieurs variantes de séries temporelles :

- **Données de panel** consistant en une série temporelle pour chaque observation d'une section transversale.
- Sections transversales regroupées combinant des sections transversales de différentes périodes.

Processus stochastique - séquence de variables aléatoires indexées dans le temps.

77 - Composantes d'une série temporelle

- **Tendance** mouvement général à long terme d'une série.
- Variations saisonnières oscillations périodiques qui se produisent sur une période égale ou inférieure à une année et qui peuvent être facilement identifiées d'une année à l'autre (elles sont généralement dues à des raisons climatologiques).
- Variations cycliques sont des oscillations périodiques qui se produisent sur une période supérieure à une année (elles sont le résultat du cycle économique).
- Variations résiduelles sont des mouvements qui ne suivent pas une oscillation périodique reconnaissable (elles sont le résultat de phénomènes ponctuels).

78 - Types de modèles de séries temporelles

— Modèles statiques - la relation entre y et x est contemporaine. Conceptuellement :

$$y_t = \beta_0 + \beta_1 x_t + u_t$$

— Modèles à décalage distribué - la relation entre y et x n'est pas contemporaine. Conceptuellement :

$$y_t = \beta_0 + \beta_1 x_t + \beta_2 x_{t-1} + \dots + \beta_s x_{t-(s-1)} + u_t$$

L'effet cumulatif à long terme dans y lorsque Δx est : $\beta_1 + \beta_2 + \cdots + \beta_s$

— **Modèles dynamiques** - décalages de la variable dépendante (endogénéité). Conceptuellement :

$$y_t = \beta_0 + \beta_1 y_{t-1} + \dots + \beta_s y_{t-s} + u_t$$

— **Combinaisons** de ce qui précède, comme les modèles rationnels à décalage distribué (décalage distribué + dynamique).

79 – Hypothèses du modèle OLS dans le cadre des séries temporelles

Sous ces hypothèses, l'estimateur OLS présentera de bonnes propriétés. **Hypothèses de Gauss-Markov** étendues aux séries temporelles :

- t1. Linéarité des paramètres et faible dépendance.
 - a. y_t doit être une fonction linéaire des β .
 - b. Le stochastique $\{(x_t, y_t) : t = 1, 2, \dots, T\}$ est stationnaire et faiblement dépendant.
- t2. Pas de colinéarité parfaite.

- Il n'y a pas de variables indépendantes qui sont constantes : $\operatorname{Var}(x_i) \neq 0, \ \forall j = 1, \dots, k$
- Il n'y a pas de relation linéaire exacte entre les variables indépendantes.
- t3. Moyenne conditionnelle nulle et corrélation nulle.
 - a. Il n'y a pas d'erreurs systématiques : $\mathbb{E}(u \mid x_1, \dots, x_k) = \mathbb{E}(u) = 0 \rightarrow \mathbf{exog\acute{e}n\acute{e}it\acute{e}}$ forte (a implique b).
 - b. Il n'y a pas de variables pertinentes laissées hors du modèle : $\operatorname{Cov}(x_j,u) = 0, \ \forall j = 1,\ldots,k \to \operatorname{exog\acute{e}n\acute{e}it\acute{e}}$ faible.
- t4. Homoscédasticité. La variabilité des résidus est la même pour tout $x: \text{Var}(u \mid x_1, \dots, x_k) = \sigma_u^2$
- t5. Pas d'autocorrélation. Les résidus ne contiennent aucune information sur les autres résidus : $Corr(u_t, u_s \mid x_1, \dots, x_k) = 0, \ \forall t \neq s$
- t6. Normalité. Les résidus sont indépendants et identiquement distribués (i.i.d. etc.) : $u \sim \mathcal{N}(0, \sigma_u^2)$
- t7. Taille des données. Le nombre d'observations disponibles doit être supérieur à (k+1) paramètres à estimer. (Cette condition est déjà satisfaite dans des situations asymptotiques)

80 - Propriétés asymptotiques de l'OLS

Sous les hypothèses du modèle économétrique et le théorème de la limite centrale :

- Si t1 à t3a sont vérifiées : l'OLS est **non biaisée**. $\mathbb{E}(\hat{\beta}_i) = \beta_i$
- Si t1 à t3 sont vérifiées : l'OLS est **cohérent**. plim $(\hat{\beta}_j) = \beta_j$ (pour t3b, t3a est omis, exogénéité faible, biaisé mais cohérent)
- Maintenir t1 à t5 : **normalité asymptotique** de l'OLS (alors, t6 est nécessairement satisfait) : $u \sim \mathcal{N}(0, \sigma_u^2)$
- Maintenir t1 à t5 : estimation non biaisée de σ_u^2 . $\mathbb{E}(\hat{\sigma}_u^2) = \sigma_u^2$
- Maintenir t1 à t5 : OLS est BLUE, Best Linear Unbiased Estimator (meilleur estimateur linéaire non biaisé) ou efficace.
- Maintenir t1 à t6 : les tests d'hypothèse et les intervalles de confiance peuvent être effectués de manière fiable.

81 - Tendances et saisonnalité

Régression parasite - se produit lorsque la relation entre y et x est due à des facteurs qui affectent y et qui sont corrélés à x, $Corr(x_i, u) \neq 0$. Il s'agit du **non-respect de t3**.

Deux séries temporelles peuvent avoir la même tendance (ou une tendance contraire), ce qui devrait entraîner un niveau élevé de corrélation. Cela peut provoquer une fausse apparence de causalité, le problème étant la **régression fallacieuse**. Étant donné le modèle :

$$y_t = \beta_0 + \beta_1 x_t + u_t$$

où:

$$y_t = \alpha_0 + \alpha_1 \text{Tendance} + v_t$$

 $x_t = \gamma_0 + \gamma_1 \text{Tendance} + v_t$

L'ajout d'une tendance au modèle peut résoudre le problème :

$$y_t = \beta_0 + \beta_1 x_t + \beta_2 \text{Tendance} + u_t$$

La tendance peut être linéaire ou non linéaire (quadratique, cubique, exponentielle, etc.).

Une autre méthode consiste à utiliser le filtre de Hodrick-Prescott pour extraire la tendance et la composante cyclique.

82 – Saisonnalité

Une série temporelle peut présenter une saisonnalité. Cela signifie que la série est soumise à des variations ou à des schémas saisonniers, généralement liés aux conditions climatiques.

Par exemple, le PIB (en noir) est généralement plus élevé en été et plus faible en hiver. Série corrigée des variations saisonnières (en orange) à titre de comparaison.

— Ce problème est une **régression parasite**. Un ajustement saisonnier peut le résoudre.

Un simple **ajustement saisonnier** pourrait consister à créer des variables binaires stationnaires et à les ajouter au modèle. Par exemple, pour les séries trimestrielles (Qq_t sont des variables binaires):

$$y_t = \beta_0 + \beta_1 Q 2_t + \beta_2 Q 3_t + \beta_3 Q 4_t + \beta_4 x_{1t} + \dots + \beta_k x_{kt} + u_t$$

Une autre méthode consiste à ajuster les variables en fonction des variations saisonnières (sa), puis à effectuer la régression avec les variables ajustées :

$$z_{t} = \beta_{0} + \beta_{1}Q2_{t} + \beta_{2}Q3_{t} + \beta_{3}Q4_{t} + v_{t} \rightarrow \hat{v}_{t} + \mathbb{E}(z_{t}) = \hat{z}_{t}^{sa}$$
$$\hat{y}_{t}^{sa} = \beta_{0} + \beta_{1}\hat{x}_{1t}^{sa} + \cdots + \beta_{k}\hat{x}_{kt}^{sa} + u_{t}$$

Il existe des méthodes bien plus efficaces et complexes pour ajuster saisonnièrement une série temporelle, comme la méthode \mathbf{X} -13ARIMA-SEATS.

83 - Autocorrélation

Le résidu de toute observation, u_t , est corrélé avec le résidu de toute autre observation. Les observations ne sont pas indépendantes. Il s'agit d'un cas de **non-respect** de **t5**.

$$Corr(u_t, u_s \mid x_1, \dots, x_k) = Corr(u_t, u_s) \neq 0, \ \forall t \neq s$$

84 – Conséquences — Les estimateurs OLS restent non biaisés.

- Les estimateurs OLS restent cohérents.
- L'OLS n'est **plus efficace**, mais reste un LUE (estimateur linéaire non biaisé).
- Les **estimations de variance** des estimateurs sont **biaisées** : la construction des intervalles de confiance et les tests d'hypothèse ne sont pas fiables.

85 – Détection

— **Diagrammes de dispersion** - recherchez des modèles de dispersion sur u_{t-1} par rapport à u_t .

Processus MA(q). <u>ACF</u> : seuls les premiers coefficients q sont significatifs, les autres sont brusquement annulés. <u>PACF</u> : décroissance exponentielle rapide atténuée ou ondes sinusoïdales.

Processus AR(p). \underline{ACF} : décroissance exponentielle rapide atténuée ou ondes sinusoïdales. \underline{PACF} : seuls les premiers coefficients p sont significatifs, les autres sont brusquement annulés.

Processus ARMA(p,q). <u>ACF</u> et <u>PACF</u>: les coefficients ne sont pas brusquement annulés et présentent une décroissance rapide.

Si les coefficients ACF ne décroissent pas rapidement, cela indique clairement un manque de stationnarité dans la moyenne.

— **Tests formels** - En général, H_0 : pas d'autocorrélation. En supposant que u_t suit un processus AR(1):

$$u_t = \rho_1 u_{t-1} + \varepsilon_t$$

où ε_t est un bruit blanc.

Test t AR(1) (régresseurs exogènes):

$$t = \frac{\hat{\rho}_1}{\operatorname{se}(\hat{\rho}_1)} \sim t_{T-k-1,\alpha/2}$$

— H_1 : Autocorrélation d'ordre un, AR(1).

Statistique de Durbin-Watson (régresseurs exogènes et normalité des résidus) :

$$d = \frac{\sum_{t=2}^{n} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{n} \hat{u}_t^2} \approx 2 \cdot (1 - \hat{\rho}_1)$$

Où $0 \le d \le 4$

— H_1 : Autocorrélation d'ordre un, AR(1).

$$\begin{array}{c|c|c|c} d = & 0 & 2 & 4 \\ \hline \rho \approx & 1 & 0 & -1 \end{array}$$

h de Durbin (régresseurs endogènes) :

$$h = \hat{\rho} \cdot \sqrt{\frac{T}{1 - T \cdot \upsilon}}$$

où υ est la variance estimée du coefficient associé à la variable endogène.

— H_1 : Autocorrélation d'ordre un, AR(1).

Test de Breusch-Godfrey (régresseurs endogènes) : il permet de détecter les processus $\mathrm{MA}(q)$ et $\mathrm{AR}(p)$ (ε_t est w. bruit) :

$$- MA(q) : u_t = \varepsilon_t - m_1 u_{t-1} - \dots - m_q u_{t-q}$$

$$-- AR(p) : u_t = \rho_1 u_{t-1} + \dots + \rho_p u_{t-p} + \varepsilon_t$$

Sous H_0 : Pas d'autocorrélation:

$$T \cdot R_{\hat{u}_t}^2 \sim \chi_q^2$$
 ou $T \cdot R_{\hat{u}_t}^2 \sim \chi_p^2$

— H_1 : Autocorrélation d'ordre q (ou p).

${\bf Test} \ {\bf Q} \ {\bf de} \ {\bf Ljung\text{-}Box}:$

- H_1 : Autocorrélation jusqu'au décalage h.
- 86 Correction Utiliser la méthode des moindres carrés ordinaires (OLS) avec un estimateur de matrice de variance-covariance robuste à l'hétéroscédasticité et à l'autocorrélation (HAC), par exemple celui proposé par Newey-West.
- Utiliser les moindres carrés généralisés (GLS). Supposons que $y_t = \beta_0 + \beta_1 x_t + u_t$, avec $u_t = \rho u_{t-1} + \varepsilon_t$, où $|\rho| < 1$ et ε_t est un <u>bruit blanc</u>.
 - Si ρ est connu, utilisez un modèle quasi-différencié :

$$y_t - \rho y_{t-1} = \beta_0 (1 - \rho) + \beta_1 (x_t - \rho x_{t-1}) + u_t - \rho u_{t-1}$$
$$y_t^* = \beta_0^* + \beta_1' x_t^* + \varepsilon_t$$

où $\beta'_1 = \beta_1$; et estimez-le par OLS.

- Si ρ n'est **pas connu**, l'estimer par exemple par la **méthode itérative de Cochrane-Orcutt** (la méthode de Prais-Winsten est également valable) :
 - 1. Obtenir \hat{u}_t à partir du modèle original.
 - 2. Estimez $\hat{u}_t = \rho \hat{u}_{t-1} + \varepsilon_t$ et obtenez $\hat{\rho}$.
 - 3. Créez un modèle quasi-différencié :

$$y_t - \hat{\rho}y_{t-1} = \beta_0(1 - \hat{\rho}) + \beta_1(x_t - \hat{\rho}x_{t-1}) + u_t - \hat{\rho}u_{t-1}$$
$$y_t^* = \beta_0^* + \beta_1'x_t^* + \varepsilon_t$$

où $\beta'_1 = \beta_1$; et l'estimer par OLS.

- 4. Obtenir $\hat{u}_t^* = y_t (\hat{\beta}_0^* + \hat{\beta}_1' x_t) \neq y_t (\hat{\beta}_0^* + \hat{\beta}_1' x_t^*).$
- 5. Répéter à partir de l'étape 2. L'algorithme se termine lorsque les paramètres estimés varient très peu entre les itérations.
- Si le problème n'est pas résolu, rechercher une **forte dépendance** dans la série.

87 – Lissage exponentiel $f_t = \alpha y_t + (1 - \alpha) f_{t-1}$ où $0 < \alpha < 1$ est le paramètre de lissage.

88 - Prévisions

Deux types de prévisions :

- De la valeur moyenne de y pour une valeur spécifique de x.
- D'une valeur individuelle de y pour une valeur spécifique de x.

Statistique U de Theil - compare les résultats prévus avec les résultats des prévisions réalisées à partir d'un minimum de données historiques.

$$U = \sqrt{\frac{\sum_{t=1}^{T-1} \left(\frac{\hat{y}_{t+1} - y_{t+1}}{y_t}\right)^2}{\sum_{t=1}^{T-1} \left(\frac{y_{t+1} - y_t}{y_t}\right)^2}}$$

- < 1 : la prévision est meilleure qu'une simple estimation.
- --=1: la prévision est à peu près aussi bonne qu'une simple estimation.
- > 1 : La prévision est moins bonne qu'une simple estimation.

89 - Stationnarité

La stationnarité permet d'identifier correctement les relations entre les variables qui restent inchangées dans le temps.

- **Processus stationnaire** (stationnarité stricte) : si un ensemble de variables aléatoires est pris et décalé de *h* périodes (changements de temps), la distribution de probabilité conjointe doit rester inchangée.
- **Processus non stationnaire** : par exemple, une série avec une tendance, où au moins la moyenne change avec le temps.
- Processus stationnaire de covariance il s'agit d'une forme plus faible de stationnarité :
 - $\mathbb{E}(x_t)$ est constant. $\operatorname{Var}(x_t)$ est constant.
 - Pour tout $t, h \ge 1$, $Cov(x_t, x_{t+h})$ dépend uniquement de h, et non de t.

90 – Faible dépendance

La faible dépendance remplace l'hypothèse d'échantillonnage aléatoire pour les séries temporelles.

- Un processus stationnaire $\{x_t\}$ est **faiblement dépendant** lorsque x_t et x_{t+h} sont presque indépendants lorsque h augmente sans limite.
- Un processus stationnaire de covariance est **faiblement dé pendant** si la corrélation entre x_t et x_{t+h} tend vers 0 suffisamment rapidement lorsque $h \to \infty$ (ils ne sont pas corrélés de manière asymptotique).

Les processus faiblement dépendants sont appelés **intégrés** d'ordre zéro, I(0). Quelques exemples :

— **Moyenne mobile** - $\{x_t\}$ est une moyenne mobile d'ordre q, MA(q):

$$x_t = e_t + m_1 e_{t-1} + \dots + m_q e_{t-q}$$

où $\{e_t: t=0,1,\ldots,T\}$ est une séquence *i.i.d.* avec une moyenne nulle et une variance σ_e^2 .

— **Processus autorégressif** - $\{x_t\}$ est un processus autorégressif d'ordre p, AR(p):

$$x_t = \rho_1 x_{t-1} + \dots + \rho_p x_{t-p} + e_t$$

où $\{e_t : t = 1, 2, ..., T\}$ est une séquence *i.i.d.* avec une moyenne nulle et une variance σ_e^2 .

Condition de stabilité : si $1 - \rho_1 z - \cdots - \rho_p z^p = 0$ pour |z| > 1, alors $\{x_t\}$ est un processus AR(p) stable qui est faiblement dépendant. Pour AR(1), la condition est : $|\rho_1| < 1$.

— **Processus ARMA** - est une combinaison de AR(p) et MA(q); $\{x_t\}$ est un ARMA(p,q):

$$x_t = e_t + m_1 e_{t-1} + \dots + m_q e_{t-q} + \rho_1 x_{t-1} + \dots + \rho_p x_{t-p}$$

91 – Racines unitaires

Un processus est I(d), c'est-à-dire intégré d'ordre d, si l'application de différences d fois rend le processus stationnaire.

Lorsque $d \ge 1$, le processus est appelé **processus à racine unitaire** ou on dit qu'il a une racine unitaire.

Un processus a une racine unitaire lorsque la condition de stabilité n'est pas remplie (il existe des racines sur le cercle unitaire).

92 - Forte dépendance

La plupart du temps, les séries économiques sont fortement dépendantes (ou très persistantes). Quelques exemples de **racine** $\mathbf{unitaire}\ \mathbf{I}(1)$:

— Marche aléatoire - un processus AR(1) avec $\rho_1 = 1$.

$$y_t = y_{t-1} + e_t$$

où $\{e_t: t=1,2,\ldots,T\}$ est une séquence *i.i.d.* avec une moyenne nulle et une variance σ_e^2 .

— Marche aléatoire avec dérive - un processus AR(1) avec $\rho_1 = 1$ et une constante.

$$y_t = \beta_0 + y_{t-1} + e_t$$

où $\{e_t: t=1,2,\ldots,T\}$ est une séquence *i.i.d.* avec une moyenne nulle et une variance σ_e^2 .

93 - Tests de racine unitaire

Test	H_0	Rejeter H_0
ADF	I(1)	tau < Valeur critique
KPSS	Niveau I(0)	mu > Valeur critique
	Tendance I(0)	tau > Valeur critique
Phillips-Perron	I(1)	Z-tau < Valeur critique
Zivot-Andrews	I(1)	tau < Valeur critique

94 – De la racine unitaire à la faible dépendance Intégré d'ordre un, I(1), signifie que la première différence du processus est faiblement dépendante ou I(0) (et généralement stationnaire). Par exemple, soit $\{y_t\}$ une marche aléatoire :

$$\Delta y_t = y_t - y_{t-1} = e_t$$
 où $\{e_t\} = \{\Delta y_t\}$ est i.i.d.

Remarque:

- La première différence d'une série supprime sa tendance.
- Les logarithmes d'une série stabilisent sa variance.

De la racine unitaire au pourcentage de variation

Lorsqu'une série I(1) est strictement positive, elle est généralement convertie en logarithmes avant de prendre la première différence pour obtenir le pourcentage de variation (approximatif) de la série :

$$\Delta \log(y_t) = \log(y_t) - \log(y_{t-1}) \approx \frac{y_t - y_{t-1}}{y_{t-1}}$$

95 - Coiintégration

Lorsque deux séries sont I(1), mais qu'une combinaison linéaire de celles-ci est I(0). Dans ce cas, la régression d'une série sur l'autre n'est pas fallacieuse, mais exprime quelque chose sur la relation à long terme. Les variables sont dites cointégrées si elles ont une tendance stochastique commune.

Par exemple, $\{x_t\}$ et $\{y_t\}$ sont I(1), mais $y_t - \beta x_t = u_t$ où $\{u_t\}$ est I(0). (β est le paramètre de cointégration).

96 - Test de cointégration

En suivant l'exemple ci-dessus :

- 1. Estimer $y_t = \alpha + \beta x_t + \varepsilon_t$ et obtenir $\hat{\varepsilon}_t$.
- 2. Effectuer un test ADF sur $\hat{\varepsilon}_t$ avec une distribution modifiée. Le résultat de ce test est équivalent à :
 - $H_0: \beta = 0$ (pas de cointégration)
 - $H_1: \beta \neq 0$ (cointégration)

si la statistique du test > valeur critique, rejeter H_0 .

97 – Hétéroscédasticité sur les séries temporelles L'hypothèse affectée est t4, ce qui conduit à une inefficacité de l'OLS.

Utilisez des tests tels que Breusch-Pagan ou White, où H_0 : pas d'hétéroscédasticité. Il est **important** pour que les tests fonctionnent qu'il n'y ait **pas d'autocorrélation**.

98 - ARCH

Une hétéroscédasticité conditionnelle autorégressive (ARCH) est un modèle permettant d'analyser une forme d'hétéroscédasticité dynamique, où la variance de l'erreur suit un processus AR(p).

Étant donné le modèle : $y_t = \beta_0 + \beta_1 z_t + u_t$ où il y a AR(1) et hétéroscédasticité :

$$\mathbb{E}(u_t^2 \mid u_{t-1}) = \alpha_0 + \alpha_1 u_{t-1}^2$$

99 - GARCH

Un modèle général d'hétéroscédasticité conditionnelle autorégressive (GARCH) est similaire au modèle ARCH, mais dans ce cas, la variance de l'erreur suit un processus ARMA(p,q).

Actuariat Non-Vie

100 - La tarification en assurance non-vie

Une approche générale, mais non exhaustive, car les possibles sont nombreux :

101 - Structure générale des données en assurance

Une structure classique des données en assurance. Là encore, les possibles sont nombreux :

102 – Provision

L'actuaire non-vie évalue principalement les provisions suivantes :

- Des provisions pour sinistres à payer (PSAP, Reserves for claims reported but not settel (RBNS))
- Des provisions pour sinistres non encore manifestés (PS-NEM, Reserve for claims incurred but not reported (IBNR))
- Des provisions pour primes non acquises (PPNA, Reserves for unearned premiums)
- Des provisions pour risques en cours (PREC, Reserves for outstanding risks (non-life))

103 - Chain Ladder déterministe

Soit C_{ik} le montant, cumulé jusqu'en l'année de développement k, des sinistres survenus en l'année d'accident i, pour $1 \leq i, k \leq n$. C_{ik} peut représenter soit le montant payé, soit le cout total estimé (paiement déjà effectué plus réserve) du sinistre. Les montants C_{ik} sont connus pour $i + k \leq n + 1$ et on cherche à estimer les valeurs des C_{ik} pour i + k > n + 1, et en particulier les valeurs ultimes C_{in} pour $2 \leq i \leq n$. Ces notations sont illustrées dans le triangle suivant :

La méthode de Chain Ladder estime les montants inconnus, C_{ik} pour i+k>n+1, par

$$\hat{C}_{ik} = C_{i,n+1-i} \cdot \hat{f}_{n+1-i} \cdots \hat{f}_{k-1} \quad i+k > n+1$$
 (5)

οù

$$\hat{f}_k = \frac{\sum_{i=1}^{n-k} C_{i,k+1}}{\sum_{i=1}^{n-k} C_{ik}} \quad 1 \le k \le n-1.$$
 (6)

La réserve de sinistre pour l'année d'accident $(R_i, 2 \le i \le n)$, est alors estimée par

 $\hat{R}_i = C_{in} - C_{i,n+1-i}$

$$=C_{i,n+1-i}\cdot \hat{f}_{n+1-i}\cdots \hat{f}_{n-1}-C_{i,n+1-i}$$
 Délais de réglement
$$\begin{pmatrix} C_{1,1} & C_{1,2} & \cdots & C_{1,n+1-i} & \cdots & C_{1,n-1} & C_{1,n} \\ C_{2,1} & C_{2,2} & \cdots & C_{2,n+1-i} & \cdots & C_{2,n-1} \\ \vdots & \vdots & \cdots & \vdots & \ddots \\ C_{i,1} & C_{i,2} & \cdots & C_{i,n+1-i} \\ \vdots & \vdots & \ddots & \sum \\ C_{n-1,1} & C_{n-1,2} \\ C_{n,1} & & & \\ &$$

104 - Méthode de Mack

Les deux premières hypothèses sont les suivantes :

$$E(C_{i,k+1} \mid C_{i1}, \dots, C_{ik}) = C_{ik} f_k \quad 1 \le i \le n, 1 \le k \le n-1$$
 (7)

(où i + j = n + 1)

$$\{C_{i1}, \dots, C_{in}\}, \{C_{j1}, \dots, C_{jn}\} \quad \forall i, j \text{ sont indépendents } (8)$$

Mack démontre que si on estime les paramètres du modèle (7) par (6) alors ce modèle stochastique (7), combiné avec l'hypothèse (8) fournit exactement les mêmes réserves que la méthode originale de Chain Ladder (5).

Avec la notation $f_{i,k} = \frac{C_{i,k+1}}{C_{i,k}}$, \hat{f}_k est la moyenne des $f_{i,k}$ pondérée par les $C_{i,k}$:

$$\hat{f}_k = \frac{\sum_{i=1}^{n-k} C_{i,k} \times f_{i,k}}{\sum_{i=1}^{n-k} C_{ik}}$$

La variance s'écrit :

$$\hat{\sigma}_{k}^{2} = \frac{1}{n-k-1} \sum_{i=1}^{n-k} C_{ik} \left(\frac{C_{i,k+1}}{C_{ik}} - \hat{f}_{k} \right)^{2}$$
$$= \frac{1}{n-k-1} \sum_{i=1}^{n-k} \left(\frac{C_{i,k+1} - C_{i,k} \hat{f}_{k}}{\sqrt{C_{i,k}}} \right)^{2}$$

Le troisième hypothèse concerne la distribution de R_i pour pouvoir construire facilement des intervalles de confiance sur les réserves estimées. Si la distribution est normale, de moyenne la valeur estimée \hat{R}_i et d'écart-type donné par l'erreur standard se (\hat{R}_i) . Un intervalle de confiance à 95% est alors donné par $\left[\hat{R}_i - 2\operatorname{se}\left(\hat{R}_i\right), \hat{R}_i + 2\operatorname{se}\left(\hat{R}_i\right)\right]$.

Si la distribution est supposée lognormale, les bornes d'un intervalle de confiance à 95% seront alors données par

$$\left[\hat{R}_i \exp\left(\frac{-\sigma_i^2}{2} - 2\sigma_i\right), \hat{R}_i \exp\left(\frac{-\sigma_i^2}{2} + 2\sigma_i\right)\right]$$

105 – Le modèle risque collectif

Le modèle collectif est le modèle de base en actuariat non-vie? X_i désigne le montant du i^e sinistre, N désigne le nombre de sinistres et S le montant total au cours d'une année

$$S = \sum_{i=1}^{N} X_i$$

en sachant que S=0 lorsque N=0 et que $\{X_i\}_{i=1}^\infty$ est une séquence iid et $N\perp\{X_i\}_{i=1}^\infty$. La difficulté est d'obtenir la distribution de S, alors même que $\mathbb{E}[N]$ n'est pas grand au sens du TCL.

106 – La distribution de S

Soit $G(x)=\mathbb{P}(S\leq x),\, F(x)=\mathbb{P}\left(X_1\leq x\right)$, et $p_n=\mathbb{P}(N=n)$ de sorte que $\left\{p_n\right\}_{n=0}^\infty$ soit la fonction de probabilité pour le nombre de sinistres.

$$\{S \le x\} = \bigcup_{n=0}^{\infty} \{S \le x \text{ et } N = n\}$$

$$\mathbb{P}(S \le x \mid N = n) = \mathbb{P}\left(\sum_{i=1}^{n} X_i \le x\right) = F^{n*}(x)$$

Ainsi, pour $x \ge 0$

$$G(x) = \sum_{n=0}^{\infty} p_n F^{n*}(x)$$

où F^{n*} désigne la convolution n^e , malheureusement elle n'existe pas sous forme fermée pour de nombreuses distributions. Si E[X] = m

$$E[S] = E[Nm] = E[N]m$$

Ce résultat est très intéressant, car il indique que le montant total attendu des sinistres est le produit du nombre attendu de sinistres et du montant attendu de chaque sinistre. De même, en utilisant le fait que $\{X_i\}_{i=1}^{\infty}$ sont des variables aléatoires indépendantes,

$$V[S \mid N=n] = V\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} V\left[X_i\right]$$

$$V[S] = E[V(S \mid N)] + V[E(S \mid N)]$$

= $E[N]V[X_i] + V[N]m^2$

107 – La classe de distributions (a, b, 0)

Une distribution de comptage est dite (a,b,0) si sa fonction de probabilité $\{p_n\}_{n=0}^{\infty}$ peut être calculée de manière récursive à partir de la formule

$$p_n = \left(a + \frac{b}{n}\right) p_{n-1}$$

pour $n = 1, 2, 3, \ldots$, où a et b sont des constantes.

Il existe exactement trois distributions non triviales dans la classe (a, b, 0), à savoir Poisson, binomiale et binomiale négative. Voici les valeurs de a et b pour les principales distributions (a, b, 0):

	a	b
$\mathcal{P}_{ois}(\lambda)$	0	λ
$\mathcal{B}_{in}(n,q)$	-q/(1-q)	(n+1)q/(1-q)
$\mathcal{NB}_{in}(k,q)$	1-q	(1-q)(k-1)
$\mathcal{G}_{eo}(q)$	1-q	0
Distribution de Panjer	$\frac{\lambda}{\alpha + \lambda}$	$\frac{(\alpha-1)\lambda}{\alpha+\lambda}$

La loi géométrique est un cas particulier de la binomiale négative où k=1.

108 - Algorithme d'agrégation de Panjer

L'algorithme de Panjer vise l'estimation de distribution d'une loi composée coût-fréquence dans des conditions particulières.

- $(X_i)_{i=1}^N$ iid discrètes définies sur $\{0, h, 2h, 3h...\}$
- la loi du nombre dans la classe dite (a, b, 0)

Puisque nous supposons désormais que les montants individuels des demandes sont répartis sur les entiers non négatifs, il s'ensuit que S est également réparti sur les entiers non négatifs. Comme $S = \sum_{i=1}^N X_i$, il s'ensuit que S = 0 si N = 0 ou si N = n et $\sum_{i=1}^n X_i = 0$. Comme $\sum_{i=1}^n X_i = 0$ uniquement si chaque $X_i = 0$, il s'ensuit par indépendance que

$$\mathbb{P}\left(\sum_{i=1}^{n} X_{i} = 0\right) = f_{0}^{n}$$

$$\begin{cases} g_{0} = p_{0} + \sum_{n=1}^{\infty} p_{n} f_{0}^{n} = P_{N}\left(f_{0}\right) \text{ si } a \neq 0, \\ g_{0} = p_{0} \cdot \exp(f_{0}b) \text{ si } a = 0, \\ g_{k} = \frac{1}{1 - af_{0}} \sum_{j=1}^{k} \left(a + \frac{bj}{k}\right) f_{j} g_{k-j} \end{cases}$$

 g_x est exprimé en fonction de g_0,g_1,\ldots,g_{x-1} , de sorte que le calcul de la fonction de probabilité est récursif. Dans toutes les applications pratiques de cette formule, un ordinateur est nécessaire pour effectuer les calculs. Cependant, l'avantage de la formule de récursivité de Panjer par rapport à la formule pour g_x est qu'il n'est pas nécessaire de calculer les convolutions, ce qui est beaucoup plus efficace d'un point de vue computationnel. L'algorithme de Panjer nécessite la discrétisation de la variable X_i .

109 – Panjer et la loi de Poisson

Lorsque la fréquence suit une loi de Poisson, cela implique que a=0 et $b=\lambda$. Le résultat se simplifie :

$$\begin{cases} g_0 = e^{-\lambda(1-f_0)} \\ g_k = \frac{\lambda}{k} \sum_{j=1}^k j.f_j.g_{k-j} \end{cases}$$

110 - Panjer et Pollaczeck-Khinchine-Beekman

Soit τ_1 le premier instant où $R_t < \kappa (= \kappa_0)$. On pose alors $L_1 = \kappa - R_{\tau_1}$. On redémarre le processus avec $\kappa_1 = \kappa_0 - R_{\tau_1}$ pour trouver τ_2 et $L_2 = \kappa_1 - R_{\tau_2}$. En continuant de la sorte, on constate que :

$$M = \sup_{t \ge 0} \{ S_t - ct \} = \sum_{k=1}^K L_k$$

où $K \sim \mathcal{G}eo(q)$ avec $q=1-\psi(0)$. En remarquant que les variables $(L_k)_{1\leq k\leq K}$ sont iid (F), on a alors $\psi(k)=\mathbb{P}[M>\kappa]$ donnée par la formule de Pollaczeck-Khinchine-Beekman. La représentation

$$\psi(\kappa) = \mathbb{P}\left[\sum_{j=1}^{K} L_j > \kappa\right]$$

permet d'évaluer la probabilité de ruine sur horizon infini à l'aide de l'algorithme de Panjer.

Réassurance

ASSURÉ Souscripteur Contrat d'assurance Agent Général / Courtier ASSUREUR DIRECT Cédante Convention de réassurance Convention de réassurance Courtier de réassurance RÉASSUREUR(S) Convention de réassurance RÉTROCESSIONNAIRE(S)

112 - Les mots clés de la réassurance

Cédante : client du réassureur, c'est-à-dire l'assureur direct, qui transfère (cède) des risques au réassureur contre le versement d'une **prime de réassurance**.

Cession : transfert de risques par l'assureur direct au réassureur. Capacité (*Value Exposure*) : limite du montant du risque couvert par un contrat de (ré)assurance.

Réassurance proportionnelle : participation proportionnelle du réassureur aux primes et aux sinistres de l'assureur direct.

Réassurance en quote-part (*Quota Share*) : type de réassurance proportionnelle où le réassureur participe à un pourcentage donné de tous les risques souscrits par un assureur direct dans une branche déterminée.

Réassurance en excédent de plein (Surplus Share) : type de réassurance proportionnelle où le réassureur couvre les risques au delà du plein de conservation de l'assureur direct. Ce ratio se calcul sur la capacité du risque souscrit (\approx Sinistre maximal possible).

Commission de réassurance : rémunération que le réassureur accorde à l'assureur ou aux courtiers en dédommagement des frais d'acquisition et de gestion des contrats d'assurance.

Réassurance non proportionnelle (ou réassurance en excédent de sinistre, *Excess Reinsurance*): prise en charge par le réassureur des sinistres excédant un certain montant, contre le versement par l'assureur direct d'une prime de réassurance spécifique.

 ${\bf R\acute{e}trocession}$: part des risques que le réassureur cède à d'autres réassureurs.

 ${\bf Coassurance}$: participation de plusieurs assureurs directs au même risque.

On utilise alors l'expression **pool de réassurance**. Le réassureur principal est appelé **apériteur**.

Traité de réassurance : contrat conclu entre l'assureur direct et le réassureur sur un ou plusieurs portefeuilles de l'assureur.

Réassurance facultative : Elle diffère du traité de réassurance par une souscription risque par risque (ou police par police) (du cas par cas, un risque à la fois).

113 – Le rôle économique de la réassurance

L'assurance et la réassurance partagent la même finalité : la mu-

tualisation des risques. La réassurance intervient en particuliers sur les risques :

- indépendants, mais unitairement coûteux (avion, navire, sites industriels...),
- de petits montants (bris, auto, ...) mais corrélés lors d'événements de grandes ampleurs, engendrant des cumuls onéreux.
- agrégés au sein d'un portefeuille de polices d'assurance,
- mal connus ou nouveaux.

La réassurance permet d'augmenter la capacité d'émission d'affaires, assurer la stabilité financière de l'assureur, surtout en cas de catastrophes, réduire leur besoin en capital, bénéficier de l'expertise du réassureur.

114 - Les types d'ententes en réassurance

115 – Les types de réassurance à travers un exemple

Notre assureur réassure N=30 polices d'assurance, d'un total de primes est de $10 \text{M} \in (P=\sum_{i=1...N}P_i)$. La capacité totale est de $180 \text{M} \in (\sum_{i=1...30}K_i)$. S_r sera la part totale de sinistre pris en charge par l'assureur et P_r la prime totale de réassurance. Voici les n=8 polices sinistrées $(1 \geq i \geq n)$, les sinistres des autres polices étant nuls $(S_i=0, \forall i>n)$:

Num de sinistre	1	2	3	4	5	6	7	8
Prime (k€)	500	200	100	100	50	200	500	200
Capacité (M€)	8	5	3	2	3	5	8	8
Sinistres (M€)	1	1	1	2	3	3	5	8

Le S/P est de 240%.

Quote-part:

$$S_r = \alpha \sum_{i=1...n} S_i$$
 $P_r = \alpha \sum_{i=1...N} P_i$

où $\alpha \in [0,1]$ (25% dans la figure) est la part cédé en Quote-part.

Excédent de plein, le plein est noté K (2M \in dans l'exemple), α_i représente le taux de cession de la police i.

$$S_r = \sum_{i=1...n} \underbrace{\left(\frac{(K_i - \boldsymbol{K})_+}{K_i}\right)}_{} S_i \qquad P_r = \sum_{i=1...N} \left(\frac{(K_i - \boldsymbol{K})_+}{K_i}\right) P_i$$

Excédent par sinistre

L'assureur fixe la priorité a et la porté b (respectivement 2M \in et 4M€ dans la figure).

$$S_r = \sum_{i=1...n} \min \left(\left(S_i - a \right)^+, b \right)$$

La prime est fixée par le réassurance, en fonction de son estimation de $\mathbb{E}[S_r]$.

WXL-R = Working XL per Risk

Excédent par événement

$$S_r = \sum_{\substack{Cat_j, \\ i = 1...N}} \min \left(\mathbb{1}_{i \in Cat_j} \times (S_i - a)^+, b \right)$$

Dans l'illustration, les sinistres font référence à un seul événement, avec une priorité à 5M€ et une portée à 10M€.

Cat-XL = Catastrophe XL

Excédent de pertes annuelles

Cette réassurance (Stop Loss) intervient lorsque le cumul des pertes annuelles est dégradé. Il s'exprime sur la base du ratio S/P avec une priorité et une porté du XL exprimées en %.

$$S_r = \min\left(\left(\sum_{i=1...N} S_i - aP\right)^+, bP\right)$$

116 – Les principales clauses en réassurance La franchise a^{ag} et la limite aggregate b^{ag} s'appliquent après

le calcul du S_r .

$$S_r^{ag} = \min\left(\left(S_r - a^{ag} \right)^+, b^{ag} \right)$$

L'objectif de la **clause d'indexation** est de conserver les <u>modalités du traité</u> sur plusieurs exercices successifs. Les bornes du traité s'alignent sur un indice économique (salaire, devise, indice de prix ...).

Avec clause de stabilisation, lorsque le sinistre souffre d'un règlement long, voire très long (au moins ≥ 1 an), les bornes du traité sont actualisées dans le calcul du S_r afin que les parts respectives du réassureur et de la cédante prévues initialement soient globalement respectées.

Avec la clause de partage des intérêts, si lors d'une transaction ou d'un jugement d'un tribunal une distinction a été faite entre l'indemnité et les intérêts, les intérêts courus entre la date du sinistre et celle du paiement effectif de l'indemnité seront répartis entre la cédante et le réassureur proportionnellement à leur charge respective résultant de l'application du traité hors intérêts.

La clause de reconstitution de garantie concerne uniquement les traités en excédent de sinistre par risque ou par événement qui pourraient être déclenchée à plusieurs reprises dans l'année. Le réassureur limite sa prestation à N fois la portée de l'XS, contre le versement d'une prime complémentaire. La reconstitution peut se faire au prorata temporis (temps qui reste à courir jusqu'à la date d'échéance du traité) ou au prorata des capitaux absorbés, ou les deux (double proata).

La clause de superposition (Interlocking Clause) est utilisée dans les traités en XS par évènement, qui fonctionnent par exercice de souscription et non par exercice de survenance. La clause de superposition qui aura pour effet de recalculer les bornes du traité, parce qu'un même évènement peut déclencher le traité des souscriptions n et N-1.

117 – La réassurance publique

La Caisse Centrale de Réassurance (CCR) propose, avec la garantie de l'État, des couvertures illimitées pour des branches spécifiques au marché français.

- les risques exceptionnels liés à un transport,
- la RC des exploitants de navires et installations nucléaires,
- les risques de catastrophes naturelles,
- les risques d'attentats et d'actes de terrorisme,

— le Complément d'Assurance crédit Public (CAP).

Elle gère également pour le compte de l'État certains Fonds Publics, en particulier le régime Cat Nat.

Également, le GAREAT est un Groupement d'Intérêt Économique (GIE) à but non lucratif, mandaté par ses adhérents, qui gère la réassurance des risques d'attentats et actes de terrorisme avec le soutien de l'État via la CCR.

118 – Titrisation / CatBonds

Pourquoi ? Les capacités financières de tous les assureurs et réassureurs réunies ne couvrent pas les dégâts d'un tremblement de terre majeur aux État Unis ($\geq 200~\mathrm{Md} \in$). Cette somme correspond à moins de 1% de la capitalisation sur les marchés financiers américains.

La titrisation transforme un risque assuranciel en titre négociable, souvent en titres obligataires appelés Cat-Bonds. Elle consiste en un échange de principal contre paiement périodique de coupons, dans lequel le paiement des coupons et ou le remboursement du principal sont conditionnés à la survenance d'un événement déclencheur défini a priori. Les taux de ces obligations sont majorés en fonction du risque, non pas de défaillance ou de contre partie, mais de la survenance de l'événement (inférieur à 1%). La structure dédiée à cette transformation s'appelle Special Purpose Vehicle (SPV).

Le déclencheur peut être liés directement aux résultats de la cédente (Indemnitaire), dépendre d'un indice de sinistralité, d'un paramètre mesurable (somme des excédents de pluie, échelle de Richter, taux de mortalité), ou d'un modèle (RMS & Equecat Storm modelling).

Critère	Indem- nitaire	Indice	Paramé- trique	Modèle
Transparence	Θ	0	0	\oplus
Risque de base	\oplus	Θ	Θ	⊕
Aléa moral	Θ	0	0	0
Universalité des périls	0	Φ	Θ	⊕
Délai de dé- clenchement	θ	Θ	0	0

Statistiques des extrêmes et tarification en réassurance

119 - Loi de Pareto

Soit la variable aléatoire X qui suit une loi de Pareto de paramètres $(x_{\rm m},k)$, k est l'indice de Pareto :

$$\mathbb{P}(X > x) = \left(\frac{x}{x_{\rm m}}\right)^{-k} \text{ avec } x \ge x_{\rm m}$$

$$f_{k,x_{\mathrm{m}}}(x) = k \frac{x_{\mathrm{m}}^k}{x^{k+1}} \text{ pour } x \geq x_{\mathrm{m}}$$

Loi de Pareto généralisée (GPD) a 3 paramètres μ , σ et ξ .

$$F_{\xi,\mu,\sigma}(x) = \begin{cases} 1 - \left(1 + \frac{\xi(x-\mu)}{\sigma}\right)^{-1/\xi} & \text{for } \xi \neq 0, \\ 1 - \exp\left(-\frac{x-\mu}{\sigma}\right) & \text{for } \xi = 0. \end{cases}$$

pour $x \ge \mu$ quand $\xi \ge 0$ et $\mu \le x \le \mu - \sigma/\xi$ quand $\xi < 0$ et où $\mu \in \mathbb{R}$ est la localisation, $\sigma > 0$ l'échelle et $\xi \in \mathbb{R}$ la forme. Notez que certaines références donnent le « paramètre de forme », comme $\kappa = -\xi$.

$$f_{\xi,\mu,\sigma}(x) = \frac{1}{\sigma} \left(1 + \frac{\xi(x-\mu)}{\sigma} \right)^{\left(-\frac{1}{\xi}-1\right)} = \frac{\sigma^{\frac{1}{\xi}}}{\left(\sigma + \xi(x-\mu)\right)^{\frac{1}{\xi}+1}}$$

120 – Loi des valeurs extrême généralisée

La fonction de répartition de la loi des extrêmes généralisée est

$$F_{\mu,\sigma,\xi}(x) = \exp\left\{-\left[1 + \xi\left(\frac{x-\mu}{\sigma}\right)\right]^{-1/\xi}\right\}$$

pour $1 + \xi(x - \mu)/\sigma > 0$, où $\mu \in \mathbb{R}$ est la localisation, $\sigma > 0$ d'échelle et $\xi \in \mathbb{R}$ la forme. Pour $\xi = 0$ l'expression est définie par sa limite en 0.

$$f_{\mu,\sigma,\xi}(x) = \frac{1}{\sigma} \left[1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right]^{(-1/\xi) - 1} \times \exp \left\{ - \left[1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right]^{-1/\xi} \right\}$$

$$f(x;\mu,\sigma,0) = \frac{1}{\sigma} \exp\left(-\frac{x-\mu}{\sigma}\right) \exp\left[-\exp\left(-\frac{x-\mu}{\sigma}\right)\right]$$

121 - Loi de Gumbel

La fonction de répartition de la loi de Gumbel est :

$$F_{\mu,\sigma}(x) = e^{-e^{(\mu-x)/\sigma}}.$$

Pour $\mu=0$ et $\sigma=1$, on obtient la loi standard de Gumbel. La loi de Gumbel est un cas particulier de la GEV (avec $\xi=0$). Sa densité :

$$f_{\mu,\sigma}(x) = \frac{1}{\sigma} e^{\left(\frac{x-\mu}{\sigma} - e^{-(x-\mu)/\sigma}\right)}$$

122 - Loi de Weibull

La loi de Weibull a pour fonction de répartition est définie par :

$$F_{\alpha,\mu,\sigma}(x) = 1 - e^{-((x-\mu)/\sigma)^{\alpha}}$$

où $x > \mu$. Sa densité de probabilité est :

$$f_{\alpha,\mu,\sigma}(x) = (\alpha/\sigma)((x-\mu)/\sigma)^{(\alpha-1)}e^{-((x-\mu)/\sigma)^{\alpha}}$$

où $\mu \in \mathbb{R}$ est la localisation, $\sigma > 0$ d'échelle et $\alpha = -1/\xi > 0$ la forme.

La distribution de Weibull est souvent utilisée dans le domaine de l'analyse de la durée de vie. C'est un cas particulier de la GEV lorsque $\xi < 0$.

Si le taux de pannes diminue au cours du temps alors, $\alpha < 1$. Si le taux de panne est constant dans le temps alors, $\alpha = 1$. Si le taux de panne augmente avec le temps alors, $\alpha > 1$. La compréhension du taux de pannes peut fournir une indication au sujet de la cause des pannes.

123 – Loi de Fréchet

Sa fonction de répartition de la loi de Frechet est donnée par

$$F_{\alpha,\mu,\sigma}(x) = \mathbb{P}(X \le x) = \begin{cases} e^{-\left(\frac{x-\mu}{\sigma}\right)^{-\alpha}} & \text{si } x > \mu \\ 0 & \text{sinon.} \end{cases}$$

où $\mu \in \mathbb{R}$ est la localisation, $\sigma > 0$ l'échelle et $\alpha = 1/\xi > 0$ la forme. C'est un cas particulier de la GEV lorsque $\xi > 0$.

$$f_{\alpha,\mu,\sigma}(x) = \frac{\alpha}{\sigma} \left(\frac{x-\mu}{\sigma}\right)^{-1-\alpha} e^{-\left(\frac{x-\mu}{\sigma}\right)^{-\alpha}}$$

124 - Lien entre GEV, Gumbel, Fréchet et Weibull

Le paramètre de forme ξ gouverne le comportement de la queue de distribution. Les sous-familles définies par $\xi = 0, \, \xi > 0$ et ξ < 0 correspondent respectivement aux familles de Gumbel, Fréchet et Weibull:

- Gumbel ou loi des valeurs extrêmes de type I
- Fréchet ou loi des valeurs extrêmes de type II, si $\xi = \alpha^{-1}$ avec $\alpha > 0$,
- Reversed Weibull (\overline{F}) ou loi des valeurs extrêmes de type III, si $\xi = -\alpha^{-1}$, avec $\alpha > 0$.

125 – Théorème général des valeurs extrêmes

Soit X_1, \ldots, X_n iid, X de fonction de répartition F_X et soit $M_n = \max(X_1, \dots, X_n).$

La théorie donne la distribution exacte du maximum :

$$\mathcal{P}(M_n \le z) = \Pr(X_1 \le z, \dots, X_n \le z)$$

= $\mathcal{P}(X_1 \le z) \cdots \mathcal{P}(X_n \le z) = (F_X(z))^n$.

S'il existe une séquence de paire de nombres réels (a_n, b_n) de telle sorte que $a_n > 0$ et $\lim_{n \to \infty} \mathcal{P}\left(\frac{M_n - b_n}{a_n} \le x\right) = F_X(x)$, où F_X est une fonction de répartition non dégénérée, alors la limite de la fonction F_X appartient à la famille des lois GEV.

126 – Densité sous-exponentielle

Cas des puissances

Si $\overline{F}_X(x) = \mathbb{P}(X > x) \sim c \ x^{-\alpha}$ quand $x \to \infty$ pour un $\alpha > 0$ et une constante c > 0 alors la loi de X est sous-exponentielle. Si F_X est une fonction de répartition continue d'espérance $\mathbb{E}[X]$ finie, on appelle l'indice des grands risques par

$$D_{F_X}(p) = \frac{1}{\mathbb{E}[X]} \int_{1-p}^1 F_X^{-1}(t) dt, \ p \in [0, 1]$$

Cette distribution en excès décroit moins vite que n'importe quelle distribution exponentielle. Il est possible de considérer cette statistique:

$$T_n(p) = \frac{X_{(1:n)} + X_{(2:n)} + \ldots + X_{(np:n)}}{\sum_{1 \le i \le n} (X_i)} \text{ où } \frac{1}{n} \le p \le 1$$

 $X_{(i:n)}$ désigne le i^e max des X_i .

127 – Théorème de Pickands-Balkema-de Haan (loi des excès)

Soit X de distribution F_X , et soit u un seuil élevé. Alors, pour une large classe de lois F_X , la loi conditionnelle des excès

$$X_u := X - u \mid X > u$$

est approximable, pour u suffisamment grand, par une loi de Pareto généralisée (GPD):

$$\mathbb{P}(X - u \le y \mid X > u) \approx G_{\xi,\sigma,\mu=0}(y) := 1 - \left(1 + \frac{\xi(x - \mu)}{\sigma}\right)^{-1/\xi}$$

 $y \ge 0$. Autrement dit, pour $u \to x_F := \sup\{x : F(x) < 1\},\$

$$\sup_{0 \le y < x_F - u} |\mathbb{P}(X - u \le y \mid X > u) - G_{\xi, \sigma, \mu = 0}(y)| \to 0.$$

Ce théorème justifie l'utilisation de la loi de Pareto (généralisée) pour modéliser les excès au-delà d'un seuil, ce qui est précisément le cadre des traités de réassurance en excess of loss par risque, par événement ou de cumul annuel.

128 - Les données en réassurance

Comme la réassurance indemnise des agrégations de sinistre ou des sinistres extrêmes, elle utilise souvent des historiques qui devront être utilisé avec prudence :

- l'actualisation des données (impact de l'inflation moné-
- la revalorisation prend en compte l'évolution du risque :
 - l'évolution des taux de prime, garanties et modalités des contrats,
 - l'évolution des coûts des sinistres (indice des coûts de la construction, indices des coûts de réparation automobile,...
 - l'évolution de l'environnement juridique.
- le redressement de la statistique pour prendre en compte l'évolution de la base portefeuille :
 - profil des polices (nombre, capitaux,...),
 - natures des garanties (évolution des franchises, des exclusions...)

Après ces corrections, les données sont dites « as if » (en économie, on utilise l'expression contre-factuel).

129 – La prime Burning Cost

 X_i^j désigne le i^e sinistre de l'année j « as if » actualisé, revalorisé et redressé, n^j le nombre de sinistres l'année j, c^j la charge de l'assureur c. Le taux pur par la méthode de Burning Cost est donné par la formule :

$$BC_{pur} = \frac{1}{s} \sum_{j=1}^{n} \frac{c^j}{a_j}$$

Le Burning Cost n'est qu'une moyenne des ratios S/P croisés : les sinistres à la charge du réassureur sur les primes reçues par la cédante. La prime Burning Cost est alors : $P_{pure} = BC_{pur} \times a_{s+1}$. Dans le cas d'un $p \times f$,

$$c^{j} = \sum_{i=1}^{n^{j}} \max\left(\left(X_{i}^{j} - f\right), p\right) \mathbb{1}_{x^{j} \ge f}$$

Si l'assurance vie calcule des taux de prime en référence au capital, l'assurance non vie utilise comme référence à la valeur assurée, la réassurance prend elle comme référence le total des primes de la cédante, appelée **assiette**. On note a_i désigne l'assiette de prime à l'année j et a_{s+1}^{\ast} désigne l'assiette estimée de l'année à venir et où s désigne le nombre d'années d'historique.

130 – Le modèle Poisson-Pareto

[Prime de l'XS ou de l'XL] Soit p et f respectivement la portée et la priorité (franchise) de l'XS, avec la limite l = p + f (p XS

La prime XS correspond à :

$$\mathbb{E}\left[S_{N}\right] = \mathbb{E}\left[\sum_{i=1}^{N} Y_{i}\right] = \mathbb{E}[N] \times \mathbb{E}[Y]$$

οù

$$\mathbb{E}[Y] = l\mathbb{P}[X > l] - f \times \mathbb{P}[X \ge f] + \mathbb{E}[X \mid f \ge x \ge l]$$

Si $l = \infty$ et $\alpha \neq 1$:

$$\mathbb{E}[S_N] = \lambda \frac{x_{\rm m}^{\alpha}}{\alpha - 1} f^{1 - \alpha}$$

si $l = \infty$ et $\alpha = 1$ il n'y a pas de solution.

Si $l < \infty$ et $\alpha \neq 1$:

$$\mathbb{E}[S_N] = \lambda \frac{x_{\rm m}^{\alpha}}{\alpha - 1} \left(f^{1 - \alpha} - l^{1 - \alpha} \right)$$

Si $l < \infty$ et $\alpha = 1$:

$$\mathbb{E}[S_N] = \lambda x_{\rm m} \ln \left(\frac{1}{f}\right)$$

131 - Le modèle Poisson-LogNormal

Si X suit une $\mathcal{LN}orm(x_{\mathrm{m}}, \mu, \sigma)$ alors $X - x_{\mathrm{m}}$ suit une $\mathcal{LN}orm(\mu, \sigma)$ Il vient :

$$\mathbb{P}[X > f] = \mathbb{P}[X - x_{\mathrm{m}} > f - x_{\mathrm{m}}] = 1 - \Phi\left(\frac{\ln(f - x_{\mathrm{m}}) - \mu}{\sigma}\right)$$

$$\mathbb{E}[X \mid X > f]$$

$$= \mathbb{E}\left[X - x_{\mathrm{m}} \mid X - x_{\mathrm{m}} > f - x_{\mathrm{m}}\right] + x_{\mathrm{m}} \mathbb{P}[X > f]$$

$$= e^{m + \sigma^{2}/2} \left[1 - \Phi\left(\frac{\ln(f - x_{\mathrm{m}}) - (\mu + \sigma^{2})}{\sigma}\right)\right]$$

$$+ x_{\mathrm{m}} \left(1 - \Phi\left(\frac{\ln(f - x_{\mathrm{m}}) - \mu}{\sigma}\right)\right)$$

Avec franchise et sans limite :

$$\begin{split} \mathbb{E}[S_N] \\ &= \lambda \left(\mathbb{E}\left[X - x_{\mathrm{m}} \mid X - x_{\mathrm{m}} > f - x_{\mathrm{m}} \right] + x_{\mathrm{m}} \mathbb{P}[X > f] - f \mathbb{P}[X > f] \\ &= \lambda \left(e^{m + \sigma^2/2} \left[1 - \Phi\left(\frac{\ln(f - x_{\mathrm{m}}) - (\mu + \sigma^2)}{\sigma} \right) \right] \right) \\ &+ \lambda (x_{\mathrm{m}} - l) \left(1 - \Phi\left(\frac{\ln(f - x_{\mathrm{m}}) - \mu}{\sigma} \right) \right) \end{split}$$

Rappels Mathématiques Lycée/Prépa

132 - Pythagore

Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si ABC est rectangle en C, alors

133 - Thalès

Soient deux droites **sécantes en un point** A, et soient deux droites (BC) et (DE) **parallèles**, coupant les deux droites en B, D et C, E, alors :

134 – Équation du second degré

$$ax^2 + bx + c = 0$$

Le discriminant est défini par :

$$\Delta = b^2 - 4ac$$

— Si $\Delta > 0$, l'équation a deux solutions distinctes :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}, \quad x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

— Si $\Delta = 0$, l'équation a une solution double :

$$x = \frac{-b}{2a}$$

— Si $\Delta < 0$, l'équation a une solution dans les imaginaires

$$x_1 = \frac{-b + i\sqrt{\Delta}}{2a}, \quad x_2 = \frac{-b - i\sqrt{\Delta}}{2a}$$

135 – Fonctions factorielle, dénombrement et Gamma

La fonction **factorielle** (de \mathbb{N} dans \mathbb{N}) est définie par 0!=1 et $n!=n\times(n-1)\times\cdots\times2\times1=$ permutations de n éléments $C_n^k=\binom{k}{n}=\frac{n!}{k!(n-k)!}=$ choix de k éléments parmi n les C_n^k se calculent aussi par le triangle de Pascal et vérifient :

$$C_n^k = C_n^{n-k}, C_n^k + C_n^{k+1} = C_{n+1}^{k+1}.$$

Soit E un ensemble de cardinal $\operatorname{Card}(E)$ et de parties $\mathcal{P}(E)$:

$$\operatorname{Card}(\mathcal{P}(E)) = 2^{\operatorname{Card}(E)}$$

$$\operatorname{Card}(A \times B) = \operatorname{Card}(A) \times \operatorname{Card}(B)$$

$$\operatorname{Card}(A \cup B) = \operatorname{Card}(A) + \operatorname{Card}(B) - \operatorname{Card}(A \cap B)$$

$$\Gamma(n) = \int_0^\infty t^{n-1} e^{-t} \, dt$$

La fonction Γ peut être vue comme le prolongement de la factorielle : $\Gamma(n+1)=n!$.

136 – Développement binomial

Pour un entier positif n,

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

137 - Suites

Les suites arithmétiques de raison r

$$\begin{cases} u_{n+1} &= u_n + r \\ u_0 &\in \mathbb{R} \end{cases} \Rightarrow \begin{cases} u_n &= nr + u_0 \\ \sum_{k=0}^n u_k &= \frac{(n+1)(2u_0 + nr)}{2} \end{cases}$$

suites géométriques de raison $q \begin{cases} u_{n+1} = q \times u_n \\ u_0 \in \mathbb{R} \end{cases}$

$$\Rightarrow \begin{cases} u_n = u_0 \times q^n \\ \sum_{k=0}^n u_k = \begin{cases} (n+1)u_0 & \text{si} \\ u_0 \frac{1-q^{n+1}}{1-q} & \text{sinon} \end{cases} \quad q = 1$$

138 - Exponentielle et Logarithme

La fonction exponentielle e^x peut être définie par le développement en série entière suivant :

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Cette série converge pour tout $x \in \mathbb{R}$ et permet de définir l'exponentielle comme une somme infinie.

La fonction logarithme naturel $\ln(x)$ est définie comme la primitive de la fonction $\frac{1}{x}$. Autrement dit :

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$

avec la condition $\ln(1) = 0$. Cette définition permet d'établir le lien entre l'exponentielle et le logarithme via l'inversion : $e^{\ln(x)} = x$ pour x > 0.

139 – Relation de congruence

Soit m>0. On dit que deux réels a et b sont congrus modulo m s'il existe un entier relatif $k\in\mathbb{Z}$ tel que :

$$a = b + km$$
.

On note $a \equiv b \pmod{m}$.

En trigonométrie, on choisit souvent $m=2\pi$ ou $m=\pi$.

141 – Propriétés de la relation de congruence Soient m>0 et $a,b,c,d\in\mathbb{R}.$ Alors :

- Réflexivité : $a \equiv a \pmod{m}$.
- Symétrie : $a \equiv b \pmod{m} \iff b \equiv a \pmod{m}$.
- **Transitivité**: si $a \equiv b \pmod{m}$ et $b \equiv c \pmod{m}$, alors $a \equiv c \pmod{m}$.
- Additivité : si $a \equiv b \pmod{m}$ et $c \equiv d \pmod{m}$, alors $a + c \equiv b + d \pmod{m}$.

142 – Dérivées et primitives

$$f$$
 continue en $x_{\rm m} \Leftrightarrow \lim_{x \to x_{\rm m}} f(x) = f(x_{\rm m})$

$$f$$
 dérivable en $x_{\rm m} \Leftrightarrow \exists \lim_{h \to 0} \frac{f\left(x_{\rm m}+h\right)-f\left(x_{\rm m}\right)}{h} =: f'\left(x_{\rm m}\right)$

L'intégrale de Riemann d'une fonction f(x) sur un intervalle [a,b] est la limite, si elle existe, de la somme des aires des rectangles approchant l'aire sous la courbe, donnée par :

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x_i,$$

- $[x_{i-1}, x_i]$ est une subdivision de [a, b],
- $\Delta x_i = x_i x_{i-1}$ est la largeur du sous-intervalle,
- $x_i^* \in [x_{i-1}, x_i]$ est un point choisi arbitrairement dans chaque sous-intervalle.

Exemple d'intégrale de Riemann (upper)*

L'intégrale de Lebesgue d'une fonction f(x) sur un ensemble E est définie en mesurant l'aire sous la courbe en fonction des valeurs prises par f, donnée par :

$$\int_E f \, d\mu = \int_0^\infty \mu(\{x \in E : f(x) > t\}) \, dt,$$

- μ est une mesure (souvent la mesure de Lebesgue),
- $\{x \in E : f(x) > t\}$ représente l'ensemble des points où f(x) dépasse t.

À la différence de Riemann, Lebesgue regroupe les points selon leurs valeurs plutôt que selon leur position.

fonction $(n \in \mathbb{R})$	dérivée	primitive
x	1	$\frac{x^2}{2} + C$
x^2	2x	$\frac{x^3}{3} + C$
1/x	$-1/x^2$	$\ln(x) + C$
$\sqrt{x} = x^{1/2}$	$\frac{1}{2\sqrt{x}}$	$\frac{2}{3}x^{3/2} + C$
$x^n, n \neq -1$	nx^{n-1}	$\frac{x^{n+1}}{n+1} + C$
$\ln(x)$	1/x	$x\ln(x) - x + C$
e^x	e^x	$e^x + C$
$a^x = e^{x \ln(a)}$	$\ln(a) \times a^x$	$a^x/\ln(a) + C$
$\sin(x)$	$\cos(x)$	$-\cos(x) + C$
$\cos(x)$	$-\sin(x)$	$\sin(x) + C$
$\tan(x)$	$1 + \tan(x)$	$-\ln(\cos(x)) + C$
$1/\left(1+x^2\right)$	$-2x/\left(1+x^2\right)^2$	$\arctan(x) + C$

$$\begin{array}{ccc|c} (u+v)' &= u'+v' & \left(\frac{1}{u}\right)' &= -\frac{u'}{u^2} \\ (ku)' &= ku' & \left(\ln(u)\right)' &= \frac{u'}{u} \\ (u\times v)' &= u'v+uv' & \left(\exp(u)\right)' &= \exp(u)\times u' \\ \left(\frac{u}{v}\right)' &= \frac{u'v-uv'}{v^2} & (f(u))' &= f'(u)\times u' \\ (u^n)' &= nu^{n-1}\times u' & (f\circ u)' &= (f'\circ u)\times u' \end{array}$$

143 - Intégration par parties

Soit u(x) et v(x) deux fonctions continûment dérivables sur l'intervalle [a, b], alors

$$\int_{a}^{b} u(x)v'(x) \, dx = \left[u(x)v(x) \right]_{a}^{b} - \int_{a}^{b} u'(x)v(x) \, dx$$

où:

- u(x) est une fonction dont on connaît la dérivée u'(x),
- v'(x) est une fonction dont on connaît la primitive v(x).

144 - Intégration avec changement de variable

Soit f(x) une fonction continue et $x=\phi(t)$ un changement de variable, où ϕ est une fonction dérivable. Alors :

$$\int_{a}^{b} f(x) dx = \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} f(\phi(t)) \phi'(t) dt$$

où:

- $x = \phi(t)$ représente le changement de variable,
- $\phi'(t)$ est la dérivée de $\phi(t)$,
- les bornes de l'intégrale sont ajustées en fonction du changement de variable.

145 – Formule de Taylor

Soit f(x) une fonction n - fois dérivable en un point a. Le développement de Taylor de f(x) autour de a est donné par :

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^{2} + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^{n} + \mathcal{O}_{n}(x)$$

où:

- $-f^{(n)}(a)$ est la $n^{\rm e}$ dérivée de f évaluée en a,
- $\mathcal{O}_n(x)$ est le reste du développement de Taylor, représentant l'erreur d'approximation lorsque l'on tronque la série après le terme d'ordre n, avec

$$\lim_{x \to 0} \frac{\mathcal{O}_n(x)}{x^n} \Rightarrow 0$$

146 – Théorème des valeurs intermédiaires

Soit f une fonction continue sur un intervalle fermé [a,b] et $f(a) \neq f(b)$. Le théorème des valeurs intermédiaires affirme que pour tout réel c compris entre f(a) et f(b), il existe un point $c \in [a,b]$ tel que :

$$f(x) = c$$

Autrement dit, si une fonction est continue sur un intervalle, elle prend toutes les valeurs comprises entre f(a) et f(b) au moins une fois.

147 – Matrices et propriétés

Matrices diagonales : Une matrice est dite diagonale si tous les éléments en dehors de la diagonale principale sont nuls. Pour une matrice $A \in \mathbb{R}^{n \times n}$, cela s'écrit :

$$A = \operatorname{diag}(a_1, a_2, \dots, a_n)$$

où a_i sont les éléments diagonaux.

Matrices triangulaires : Une matrice est triangulaire supérieure si tous les éléments en dessous de la diagonale sont nuls, c'est-à-dire $A_{ij} = 0$ pour i > j. Inversement, elle est triangulaire inférieure si $A_{ij} = 0$ pour i < j.

148 - Déterminant d'une matrice

Le déterminant d'une matrice carrée $A \in \mathbb{R}^{n \times n}$ est un scalaire, noté $\det(A)$:

- Si A est une matrice carrée $n \times n$, alors A est inversible si et seulement si $\det(A) \neq 0$.
- Le déterminant d'une matrice triangulaire (supérieure ou inférieure) ou d'une matrice diagonale :

$$\det(A) = \prod_{i=1}^{n} A_{ii}$$

$$det(AB) = det(A) \cdot det(B), \quad det(\lambda B) = \lambda det(B),$$

$$\det(A^T) = \det(A)$$

— Si une matrice A contient deux lignes ou colonnes identiques, alors det(A) = 0.

Calcul du déterminant : Le déterminant d'une matrice 2×2 se calcule simplement par :

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

Pour une matrice 3×3 , il est donné par :

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg)$$

Pour des matrices de dimension supérieure, le déterminant peut être calculé par cofacteurs ou via une méthode de réduction (par exemple, la méthode de Gauss).

149 – Inversibilité d'une matrice

Une matrice $A \in \mathbb{R}^{n \times n}$ est inversible s'il existe une matrice A^{-1} telle que :

$$AA^{-1} = A^{-1}A = I_n$$

où I_n est la matrice identité. L'inversibilité d'une matrice est garantie par $\det(A) \neq 0$.

Trace : La trace d'une matrice carrée A, notée $\mathrm{Tr}(A)$, est la somme de ses éléments diagonaux :

$$Tr(A) = \sum_{i=1}^{n} A_{ii}$$

Elle représente souvent des grandeurs liées à la somme des valeurs propres d'une matrice.

Décomposition de Cholesky : La décomposition de Cholesky est applicable aux matrices symétriques définies positives. Elle permet de factoriser une matrice $A \in \mathbb{R}^{n \times n}$ en un produit de la forme :

$$A = LL^T$$

où L est une matrice triangulaire inférieure. Cette décomposition est utile dans les calculs numériques et les algorithmes d'optimisation.

150 – Gradient et matrice Hessienne

Pour une fonction $f: \mathbb{R}^n \to \mathbb{R}$ de classe C^2 , on définit :

— Le gradient $\nabla f(x)$ comme le vecteur des dérivées par-

tielles premières:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{pmatrix}$$

— La matrice Hessienne $\nabla^2 f(x)$ comme la matrice symétrique des dérivées secondes :

$$\nabla^2 f(x) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{pmatrix}$$

151 - Théorème des fonctions implicites

Soit $F: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^1 , et supposons que $F(a^*, b) = 0$ pour un certain couple $(a^*, b) \in \mathbb{R}^2$. Si

$$\frac{\partial F}{\partial y}(a^{\star}, b) \neq 0,$$

alors il existe un réel h>0 et une unique fonction φ , définie sur un voisinage (a^*-h,a^*+h) , telle que

$$\varphi(a^*) = b$$
 et $\forall x \in (a^* - h, a^* + h), \quad F(x, \varphi(x)) = 0$

De plus, la fonction implicite φ est de classe C^1 et sa dérivée est donnée par :

$$\varphi'(x) = -\left. \frac{\partial F/\partial x}{\partial F/\partial y} \right|_{y=\varphi(x)}$$

Mes notes personnelles

I

À propos des auteurs

Martial Phélippé-Guinvarc'h © to pest Actuaire et Maître de conférences à Le Mans Université depuis 2012 et enseigne également à l'EURIA depuis 2003. Il est actuaire (EURIA, 2006), membre de l'institut des actuaires (IA) et membre de l'association des économistes agricoles européens (EAAE). Martial Phélippé-Guinvarc'h enseigne les statistiques, l'analyse de données, la modélisation actuarielle, la programmation, en particulier en SAS et SAS IML, les mathématiques financières, les marchés des matières premières, la finance de marché et des dérivés, l'actuariat non vie, l'actuariat vie, le provisionnement, la solvabilité, la réassurance, l'économie de l'assurance, la gestion des risques, la gestion actifs passif. Il est SAS Protor, et a obtenu pour le Master MBFA de Le Mans Université le SAS Join certificate Insurance and Economic Analytics.

Marcelo Moreno Porras est professeur associé au département d'économie appliquée I et d'histoire et d'institutions économiques de l'Universidad Rey Juan Carlos (Madrid, Espagne) depuis 2023, spécialisé dans l'économétrie, la macroéconomie et la programmation. Il est également développeur de logiciels et spécialiste des technologies de l'information dans une entreprise privée à Mijas (Espagne). Il est l'auteur de plusieurs contributions à l'innovation pédagogique, coauteur de publications sur l'intégration des objectifs de développement durable dans l'enseignement de l'économie, et possède une expertise technique sur plusieurs langages de programmation et outils statistiques. Son parcours universitaire comprend une licence en économie (URJC, classement national de 1 %), un master en analyse économique moderne (URJC) et un master en statistiques appliquées (université de Nebrija).