Review of Linear Algebra

Throughout these notes, F denotes a field (often called the *scalars* in this context).

1 Definition of a vector space

Definition 1.1. A F-vector space or simply a vector space is a triple $(V, +, \cdot)$, where (V, +) is an abelian group (the vectors), and there is a function $F \times V \to V$ (scalar multiplication), whose value at (t, v) is just denoted $t \cdot v$ or tv, such that

- 1. For all $s, t \in F$ and $v \in V$, s(tv) = (st)v. (An analogue of the associative law for multiplication.)
- 2. For all $s, t \in F$ and $v \in V$, (s + t)v = sv + tv. (Scalar multiplication distributes over scalar addition.)
- 3. For all $t \in F$ and $v, w \in V$, t(v + w) = tv + tw. (Scalar multiplication distributes over vector addition.)
- 4. For all $v \in V, \ 1 \cdot v = v.$ (A kind of identity law for scalar multiplication.)

It is a straightforward consequence of the axioms that 0v = 0 for all $v \in V$, where the first 0 is the element $0 \in F$ and the second is $0 \in V$, that, for all $t \in F$, t0 = 0 (both 0's here are the zero vector), and that, for all $v \in V$, (-1)v = -v.

Example 1.2. (1) The *n*-fold Cartesian product F^n is an F-vector space, where F^n is a group under componentwise addition, i.e. $(a_1, \ldots, a_n) + (b_1, \ldots, b_n) = (a_1 + b_1, \ldots, a_n + b_n)$, and scalar multiplication is defined by $t(a_1, \ldots, a_n) = (ta_1, \ldots, ta_n)$.

(2) If X is a set and F^X denotes the group of functions from X to F, then F^X is an F-vector space. Here addition is defined pointwise: (f+g)(x) = f(x) + g(x), and similarly for scalar multiplication: (tf)(x) = tf(x).

- (3) The polynomial ring F[x] is an F-vector space under addition of polynomials, where we define tf(x) to be the product of the constant polynomial $t \in F$ with the polynomial $f(x) \in F[x]$. Explicitly, if $f(x) = \sum_{i=0}^{n} a_n x^n$, then $tf(x) = \sum_{i=0}^{n} ta_n x^n$.
- (4) More generally, if R is any ring containing F as a subring, then R becomes an F-vector space, using the fact that (R, +) is an abelian group, and defining, for $t \in F$ and $r \in R$, scalar multiplication tr to be the usual multiplication in R applied to t and r. In this case, the properties (1)–(4) of a vector space become consequences of associativity, distributivity, and the fact that $1 \in F$ is the multiplicative identity in R. In particular, if E is a field containing F as a subfield, then E is an F-vector space in this way.

Definition 1.3. Let V be a vector space. An F-vector subspace of V is a subset $W \subseteq V$ is an additive subgroup of V which is closed under scalar multiplication (i.e. such that, for all $v \in W$ and for all $t \in F$, $tv \in W$). It then follows that $(W, +, \cdot)$ is also a vector space.

Example 1.4. $\{0\}$ and V are always vector subspaces of V. The set

$$P_n = \{ \sum_{i=0}^{n} a_i x^i : a_i \in F \}$$

of polynomials of degree at most n, together with the zero polynomial, is a vector subspace of F[x].

Finally, we have the analogue of homomorphisms and isomorphisms:

Definition 1.5. Let V_1 and V_2 be two F-vector spaces and let $f: V_1 \to V_2$ be a function (= map). Then f is linear or a linear map if it is a group homomorphism from $(V_1, +)$ to $(V_2, +)$, i.e. is additive, and satisfies: For all $t \in F$ and $v \in V_1$, f(tv) = tf(v). The function f is a linear isomorphism if it is both linear and a bijection; in this case, it is easy to check that f^{-1} is also linear.

There is an analogue of vector spaces for more general rings:

Definition 1.6. Let R be a ring (always assumed commutative, with unity). Then an R-module M is a triple $(M, +, \cdot)$, where (M, +) is an abelian group, and there is a function $R \times M \to M$, whose value at (r, m) is denoted rm or $r \cdot m$, such that:

1. For all $r, s \in R$ and $m \in M$, r(sm) = (rs)m.

- 2. For all $r, s \in R$ and $m \in M$, (r+s)m = rm + sm.
- 3. For all $r \in R$ and $m, n \in M$, r(m+n) = rm + rn.
- 4. For all $m \in M$, $1 \cdot m = m$.

Submodules and homomorphisms of R-modules are defined in the obvious way. For example, R^n is an R-module. Despite the similarity with the definition of vector spaces, general R-modules can look quite complicated. For example, a \mathbb{Z} -module is the same thing as an abelian group, and hence $\mathbb{Z}/n\mathbb{Z}$ is a \mathbb{Z} -module. For a general ring R, if I is an ideal of R, then both I and R/I are R-modules.

2 Linear independence and span

Let us introduce some terminology:

Definition 2.1. Let V be an F-vector space and let $v_1, \ldots, v_d \in V$ be a sequence of vectors. A linear combination of v_1, \ldots, v_d is a vector of the form $t_1v_1 + \cdots + t_dv_d$, where the $t_i \in F$. The span of $\{v_1, \ldots, v_d\}$ is the set of all linear combinations of v_1, \ldots, v_d . Thus

$$\text{span}\{v_1, \dots, v_d\} = \{t_1v_1 + \dots + t_dv_d : t_i \in F \text{ for all } i\}.$$

By definition (or logic), span $\emptyset = \{0\}.$

We have the following properties of span:

Proposition 2.2. Let $v_1, \ldots, v_d \in V$ be a sequence of vectors. Then:

- (i) span $\{v_1, \ldots, v_d\}$ is a vector subspace of V containing v_i for every i.
- (ii) If W is a vector subspace of V containing v_1, \ldots, v_d , then

$$\operatorname{span}\{v_1,\ldots,v_d\}\subseteq W.$$

In other words, span $\{v_1, \ldots, v_d\}$ is the smallest vector subspace of V containing v_1, \ldots, v_d .

(iii) For every $v \in V$, span $\{v_1, \ldots, v_d\} \subseteq \text{span}\{v_1, \ldots, v_d, v\}$, and equality holds if and only if $v \in \text{span}\{v_1, \ldots, v_d\}$.

Proof. (i) Taking $t_j = 0, j \neq i$, and $t_i = 1$, we see that $v_i \in \text{span}\{v_1, \dots, v_d\}$. Next, given $v = t_1v_1 + \dots + t_dv_d$ and $w = s_1w_1 + \dots + s_dw_d \in \text{span}\{v_1, \dots, v_d\}$,

$$v + w = (s_1 + t_1)v_1 + \dots + (s_d + t_d)w_d \in \text{span}\{v_1, \dots, v_d\}.$$

Hence $\operatorname{span}\{v_1,\ldots,v_d\}$ is closed under addition. Also, $0=0\cdot v_1+\cdots+0\cdot v_d\in \operatorname{span}\{v_1,\ldots,v_d\}$, and, given $v=t_1v_1+\cdots+t_dv_d\in \operatorname{span}\{v_1,\ldots,v_d\}$, $-v=(-t_1)v_1+\cdots+(-t_d)v_d\in \operatorname{span}\{v_1,\ldots,v_d\}$ as well. Hence $\operatorname{span}\{v_1,\ldots,v_d\}$ is an additive subgroup of V. Finally, for all $v=t_1v_1+\cdots+t_dv_d\in \operatorname{span}\{v_1,\ldots,v_d\}$ and $t\in F$,

$$tv = (tt_1)v_1 + \dots + (tt_d)v_d \in \text{span}\{v_1, \dots, v_d\}.$$

Hence span $\{v_1, \ldots, v_d\}$ is a vector subspace of V containing v_i for every i.

- (ii) If W is a vector subspace of V containing v_1, \ldots, v_d , then, for all $t_1, \ldots, t_d \in F$, $t_i v_i \in W$. Hence $t_1 v_1 + \cdots + t_d v_d \in W$. It follows that $\operatorname{span}\{v_1, \ldots, v_d\} \subseteq W$.
- (iii) We always have span $\{v_1, \ldots, v_d\} \subseteq \text{span}\{v_1, \ldots, v_d, v\}$, since we can write $t_1v_1 + \cdots + t_dv_d = t_1v_1 + \cdots + t_dv_d + 0 \cdot v$.

Now suppose that $\operatorname{span}\{v_1,\ldots,v_d\}=\operatorname{span}\{v_1,\ldots,v_d,v\}$. Then in particular $v\in\operatorname{span}\{v_1,\ldots,v_d,v\}=\operatorname{span}\{v_1,\ldots,v_d\}$, by (i), and hence $v\in\operatorname{span}\{v_1,\ldots,v_d\}$, i.e. v is a linear combination of v_1,\ldots,v_d . Conversely, suppose that $v\in\operatorname{span}\{v_1,\ldots,v_d\}$. Then by (i) $\operatorname{span}\{v_1,\ldots,v_d\}$ is a vector subspace of V containing v_1,\ldots,v_d and v and hence $\operatorname{span}\{v_1,\ldots,v_d,v\}\subseteq\operatorname{span}\{v_1,\ldots,v_d\}$. Thus $\operatorname{span}\{v_1,\ldots,v_d,v\}=\operatorname{span}\{v_1,\ldots,v_d\}$.

Definition 2.3. A sequence of vectors w_1, \ldots, w_ℓ such that

$$V = \operatorname{span}\{w_1, \dots, w_\ell\}$$

will be said to span V.

Definition 2.4. An F-vector space V is a finite dimensional vector space if there exist $v_1, \ldots, v_d \in V$ such that $V = \text{span}\{v_1, \ldots, v_d\}$. The vector space V is infinite dimensional if it is not finite dimensional.

For example, F^n is finite-dimensional. But F[x] is not a finite-dimensional vector space. On the other hand, the subspace P_n of F[x] defined in Example 1.4 is a finite dimensional vector space, as it is spanned by $1, x, \ldots, x^n$.

The next piece of terminology is there to deal with the fact that we might have chosen a highly redundant set of vectors to span V.

Definition 2.5. A sequence $w_1, \ldots, w_r \in V$ is linearly independent if the following holds: if there exist real numbers t_i such that

$$t_1w_1 + \dots + t_rw_r = 0,$$

then $t_i = 0$ for all i. The sequence w_1, \ldots, w_r is linearly dependent if it is not linearly independent.

Note that the definition of linear independence does **not** depend **only** on the set $\{w_1, \ldots, w_r\}$ —if there are any repeated vectors $w_i = w_j$, then we can express 0 as the nontrivial linear combination $w_i - w_j$. Likewise if one of the w_i is zero then the set is linearly dependent.

By definition or by logic, the empty set is linearly independent. For a less obscure example, $e_1, \ldots, e_n \in F^n$ are linearly independent since if $t_1e_1 + \cdots + t_ne_n = 0$, then (t_1, \ldots, t_n) is the zero vector and thus $t_i = 0$ for all i. More generally, for all $j \leq n$, the vectors e_1, \ldots, e_j are linearly independent.

Lemma 2.6. The vectors w_1, \ldots, w_r are linearly independent if and only if, given $t_i, s_i \in F$, $1 \le i \le r$, such that

$$t_1w_1 + \cdots + t_rw_r = s_1w_1 + \cdots + s_rw_r$$

then $t_i = s_i$ for all i.

Proof. If w_1, \ldots, w_r are linearly independent and if $t_1w_1 + \cdots + t_rw_r = s_1w_1 + \cdots + s_rw_r$, then after subtracting and rearranging we have $(t_1 - s_1)w_1 + \cdots + (t_r - s_r)w_r0$. Thus by the definition of linear independence $t_i - s_i = 0$ for every i, i.e. $s_i = t_i$. Conversely, if the last statement of the lemma holds and if $t_1w_1 + \cdots + t_rw_r = 0$, then it follows from

$$t_1w_1 + \cdots + t_rw_r = 0 = 0 \cdot w_1 + \cdots + 0 \cdot w_r$$

that $t_i = 0$ for all i. Hence w_1, \ldots, w_r are linearly independent.

Clearly, if w_1, \ldots, w_r are linearly independent, then so is any reordering of the vectors w_1, \ldots, w_r , and likewise any smaller sequence (not allowing repeats), for example w_1, \ldots, w_s with $s \leq r$. A related argument shows:

Lemma 2.7. The vectors w_1, \ldots, w_r are **not** linearly independent if and only if we can write at least one of the w_i as a linear combination of the $w_i, j \neq i$.

The proof is left as an exercise.

Definition 2.8. Let V be an F-vector space. The vectors v_1, \ldots, v_d are a basis of V if they are linearly independent and $V = \text{span}\{v_1, \ldots, v_d\}$. For example, the standard basis vectors e_1, \ldots, e_n are a basis for F^n . The elements $1, x, \ldots, x^n$ are a basis for P_n .

Thus to say that the vectors v_1, \ldots, v_r are a basis of V is to say that every $x \in V$ can be uniquely written as $x = t_1v_1 + \cdots + t_rv_r$ for $t_i \in F$.

Lemma 2.9 (Main counting argument). Suppose that w_1, \ldots, w_b are linearly independent vectors contained in span $\{v_1, \ldots, v_a\}$. Then $b \leq a$.

Proof. We shall show that, possibly after relabeling the v_i ,

$$span\{v_1, \dots, v_a\} = span\{w_1, v_2, \dots, v_a\} = span\{w_1, w_2, v_3, \dots, v_a\}$$
$$= \dots = span\{w_1, w_2, \dots, w_b, v_{b+1}, \dots, v_a\}.$$

From this we will be able to conclude that $b \leq a$.

To begin, we may suppose that $\{w_1, \ldots, w_b\} \neq \emptyset$. (If $\{w_1, \ldots, w_b\} = \emptyset$, then b = 0 and the conclusion $b \leq a$ is automatic.) Moreover none of the w_i is zero. Given w_1 , we can write it as a linear combination of the v_i :

$$w_1 = \sum_{i=1}^a t_i v_i.$$

Since $w_1 \neq 0$, $\{v_1, \ldots, v_a\} \neq \emptyset$, i.e. $a \geq 1$, and at least one of the $t_i \neq 0$. After relabeling the v_i , we can assume that $t_1 \neq 0$. Thus we can solve for v_1 in terms of w_1 and the v_i , i > 1:

$$v_1 = \frac{1}{t_1}w_1 + \sum_{i=2}^{a} \left(-\frac{t_i}{t_1}\right)v_i.$$

It follows that $v_1 \in \text{span}\{w_1, v_2, \dots, v_a\}$. Now using some of the properties of span listed above, we have

$$span\{w_1, v_2, \dots, v_a\} = span\{v_1, w_1, v_2, \dots, v_a\} = span\{v_1, v_2, \dots, v_a\},\$$

where the second equality holds since $w_1 \in \text{span}\{v_1, v_2, \dots, v_a\}$.

Continuing in this way, write w_2 as a vector in span $\{w_1, v_2, \dots, v_a\}$:

$$w_2 = t_1 w_1 + \sum_{i=2}^{a} t_i v_i.$$

For some $i \geq 2$, we must have $t_i \neq 0$, for otherwise we would have $w_2 = t_1 w_1$ and thus there would exist a nontrivial linear combination $t_1 w_1 + (-1)w_2 = 0$, contradicting the linear independence of the w_i . After relabeling, we can assume that $t_2 \neq 0$; notice that in particular we must have $a \geq 2$. Arguing as before, we may write

$$v_2 = -\frac{t_1}{t_2}w_1 + \frac{1}{t_2}w_2 + \sum_{i=3}^a \left(-\frac{t_i}{t_2}\right)v_i,$$

and thus we can solve for v_2 in terms of w_1, w_2 , and $v_i, i \geq 3$ and so

$$span\{w_1, v_2, \dots, v_a\} = span\{w_1, w_2, v_3, \dots, v_a\}.$$

By induction, for a fixed i < b, suppose that we have showed that $i \le a$ and that after some relabeling of the v_i we have

$$\operatorname{span}\{v_1, \dots, v_a\} = \operatorname{span}\{w_1, v_2, \dots, v_a\} =$$
$$= \operatorname{span}\{w_1, w_2, v_3, \dots, v_a\} = \dots = \operatorname{span}\{w_1, w_2, \dots, w_i, v_{i+1}, \dots, v_a\}.$$

We claim that the same is true for i + 1. Write

$$w_{i+1} = t_1 w_1 + \dots + t_i w_i + t_{i+1} v_{i+1} + \dots + t_a v_a$$

which is possible as

$$w_{i+1} \in \text{span}\{v_1, \dots, v_a\} = \text{span}\{w_1, w_2, \dots, w_i, v_{i+1}, \dots, v_a\}.$$

At least one of the numbers t_{i+1}, \ldots, t_a is nonzero, for otherwise $w_{i+1} = t_1 w_1 + \cdots + t_i w_i$, which would say that the vectors w_1, \ldots, w_{i+1} are not linearly independent. In particular this says that $i+1 \leq a$. After relabeling, we may assume that $t_{i+1} \neq 0$. Then as before we can solve for v_{i+1} in terms of the vectors $w_1, \ldots, w_{i+1}, v_{i+2}, \ldots, v_a$. It follows that

$$span\{w_1, w_2, \dots, w_i, v_{i+1}, \dots, v_a\} = span\{w_1, w_2, \dots, w_i, w_{i+1}, v_{i+2}, \dots, v_a\}$$

and we have completed the inductive step. So for all $i \leq b, i \leq a$, and in particular $b \leq a$.

This rather complicated argument has the following consequences:

Corollary 2.10. (i) Suppose that $V = \text{span}\{v_1, \dots, v_n\}$ and that w_1, \dots, w_ℓ are linearly independent vectors in V. Then $\ell \leq n$.

- (ii) If V is a finite-dimensional F-vector space, then every two bases for V have the same number of elements—call this number the dimension of V which we write as $\dim V$ or $\dim_F V$ if we want to emphasize the field F. Thus for example $\dim F^n = n$ and $\dim P_n = n + 1$.
- (iii) If $V = \text{span}\{v_1, \dots, v_d\}$ then some subsequence of v_1, \dots, v_d is a basis for V. Hence dim $V \leq d$, and if dim V = d then v_1, \dots, v_d is a basis for V.
- (iv) If V is a finite-dimensional F-vector space and w_1, \ldots, w_ℓ are linearly independent vectors in V, then there exist vectors

$$w_{\ell+1}, \ldots, w_r \in V$$

such that $w_1, \ldots, w_\ell, w_{\ell+1}, \ldots, w_r$ is a basis for V. Hence $\dim V \geq \ell$, and if $\dim V = \ell$ then w_1, \ldots, w_ℓ is a basis for V.

- (v) If V is a finite-dimensional F-vector space and W is a vector subspace of V, then $\dim W \leq \dim V$. Moreover $\dim W = \dim V$ if and only if W = V.
- (vi) If v_1, \ldots, v_d is a basis of V, then the function $f: F^d \to V$ defined by

$$f(t_1, \dots, t_d) = \sum_{i=1}^d t_i v_i$$

is a linear isomorphism from F^d to V.

- *Proof.* (i) Apply the lemma to the subspace V itself, which is the span of v_1, \ldots, v_n , and to the linearly independent vectors $w_1, \ldots, w_\ell \in V$, to conclude that $\ell \leq n$.
- (ii) If w_1, \ldots, w_b and v_1, \ldots, v_a are two bases of V, then by definition w_1, \ldots, w_b are linearly independent vectors, and $V = \text{span}\{v_1, \ldots, v_a\}$. Thus $b \leq a$. But symmetrically v_1, \ldots, v_a is a sequence of linearly independent vectors contained in $V = \text{span}\{w_1, \ldots, w_b\}$, so $a \leq b$. Thus a = b.
- (iii) If v_1, \ldots, v_d are not linearly independent, then, by Lemma 2.7, one of the vectors v_i is expressed as a linear combination of the others. After relabeling we may assume that v_d is a linear combination of v_1, \ldots, v_{d-1} . By (iii) of Proposition 2.2, $\operatorname{span}\{v_1, \ldots, v_{d-1}\} = \operatorname{span}\{v_1, \ldots, v_d\}$. Continue in this way until we find v_1, \ldots, v_k with $k \leq d$ such that $\operatorname{span}\{v_1, \ldots, v_k\} = \operatorname{span}\{v_1, \ldots, v_d\}$ and such that v_1, \ldots, v_k are linearly independent. Then by definition $k = \dim V$ and $k \leq d$. Moreover k = d exactly when v_1, \ldots, v_d are linearly independent, in which case $\operatorname{span}\{v_1, \ldots, v_d\}$ is a basis.
- (iv) If $\operatorname{span}\{w_1,\ldots,w_\ell\}\neq V$, then there exists a vector, call it $w_{\ell+1}\in V$ with $w_{\ell+1}\notin\operatorname{span}\{w_1,\ldots,w_\ell\}$. It follows that the sequence $w_1,\ldots,w_\ell,w_{\ell+1}$

is still linearly independent: if there exist $t_i \in F$, not all 0, such that $0 = \sum_{i=1}^{\ell+1} t_i w_i$, then we must have $t_{\ell+1} \neq 0$ since w_1, \ldots, w_ℓ are linearly independent. But that would say that $w_{\ell+1} \in \operatorname{span}\{w_1, \ldots, w_\ell\}$, contradicting our choice. So $w_1, \ldots, w_\ell, w_{\ell+1}$ are still linearly independent. We continue in this way. Since the number of elements in a linearly independent sequence of vectors in V is at most $\dim V$, this procedure has to stop after at most $\dim V - \ell$ stages. At this point we have found a linearly independent sequence which spans V and thus is a basis. To see the last statement, note that if $\operatorname{span}\{w_1, \ldots, w_\ell\} \neq V$, then there exist $\ell+1$ linearly independent vectors in V, and hence $\dim V \geq \ell+1$.

- (v) Choosing a basis of W and applying (iv) (since the elements of a basis are linearly independent) we see that it can be completed to a basis of V. Thus $\dim W \leq \dim V$. Moreover $\dim W = \dim V$ if and only if the basis we chose for W was already a basis for V, i.e. W = V.
- (vi) A straightforward calculation shows that f is linear. It is a bijection by definition of a basis: it is surjective since the v_i span V, and it is injective since the v_i are linearly independent and by Lemma 2.6.

Proposition 2.11. If V is a finite dimensional F-vector space and W is a subset of V, then W is a vector subspace of V if and only if it is of the form $\text{span}\{v_1,\ldots,v_d\}$ for some $v_1,\ldots,v_d\in V$.

Proof. We have already noted that a set of the form $\operatorname{span}\{v_1,\ldots,v_d\}$ is a vector subspace of V. Conversely let W be a vector subspace of V. The proof of (iv) of the above corollary shows how to find a basis of W. In particular W is of the form $\operatorname{span}\{v_1,\ldots,v_d\}$.

3 Linear functions and matrices

Let $f: F^n \to F^k$ be a linear function. Then

$$f(t_1,\ldots,t_n) = f(\sum_i t_i e_i) = \sum_i t_i f(e_i).$$

We can write $f(e_i)$ in terms of the basis e_1, \ldots, e_k of F^k : suppose that $f(e_i) = \sum_{j=1}^k a_{ji}e_j = (a_{1i}, \ldots, a_{ki})$. We can then associate to f an $k \times n$ matrix with coefficients in F as follows: Define

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \end{pmatrix}.$$

Then the columns of A are the vectors $f(e_i)$.

More generally, suppose that V_1 and V_2 are two finite dimensional vector spaces, and choose bases v_1, \ldots, v_n of V_1 and w_1, \ldots, w_k of V_2 , so that $n = \dim V_1$ and $k = \dim V_2$. If $f: V_1 \to V_2$ is linear, then, given the bases v_1, \ldots, v_n and w_1, \ldots, w_k we again get a $k \times n$ matrix A by the formula: $A = (a_{ij})$, where a_{ij} is defined by

$$f(v_i) = \sum_{j=1}^k a_{ji} w_j.$$

We say that A is the matrix associated to the linear map f and the bases v_1, \ldots, v_n and w_1, \ldots, w_k .

With the understanding that we have to choose bases to define the matrix associated to a linear map, composition of linear maps corresponds to multiplication of matrices. In particular, let $f \colon V \to V$ be a linear map from a finite dimensional vector space V to itself. In this case, it is simplest to fix one basis v_1, \ldots, v_n for V, viewing V as both the domain and range of f, and write $A = (a_{ij})$ where $f(v_i) = \sum_{j=1}^k a_{ji}v_j$. Again, having fixed the basis v_1, \ldots, v_n once and for all,linear maps from V to itself correspond to $n \times n$ matrices and composition to matrix multiplication. Finally, we can define the determinant det A of an $n \times n$ matrix with coefficients in F by the usual formulas (for example, expansion by minors). Moreover, the $n \times n$ matrix A is invertible \iff det $A \neq 0$, and in this case there is an explicit formula for A^{-1} (Cramer's rule).