Mímir: Building and Deploying an ML Framework for Industrial IoT

Devon Peticolas, Russell Kirmayer, Deepak S. Turaga - Oden Technologies

Outline of this talk

- Introduction to Oden and manufacturing
- System Overview
- Application for Predictive Quality Monitoring
- Future Work

Devon Peticolas

Sr. Data Engineer

Oden's Customers

Medium to large manufacturers in plastics extrusion, injection molding, and metal stamping.

Process and Quality Engineers looking to centralize, analyze, and act on their data.

Need for real-time prediction for better quality control.

Interactive Time-series Analysis

- performance.

Reporting and Alerting

- Daily summaries on key process metrics from continuous intervals of production work.
- Real-time email and text alerts on target violations and concerning trends.

Technology - Hardware

Oden Hardware

- Linux devices that connect via standard industrial protocols over serial and ethernet and speak of MQTT
- On-prem servers that a subset "edge" version of the Oden platform and speak to devices and modern PLCs via MQTT
- Connect to our services in the cloud via wired, wifi, or cellular networks.

Technology - Architecture

System Overview

- Infrastructure for optimized data capture
- Multi-resolution storage of manufacturing data
- Workflow for ML model training and validation
- Network-partition resliant deployment of ML to cloud and factory

Batch and Streaming Data Handling - Apache Beam

- Open Source
- Unified programming model for stream and batch processing
- Portable to multiple "runners" (Dataflow and Apache Flink)
- Java and Python SDKs

Unified Programming Model

- Unifies inputs, outputs, and intermediate state as
 PCollections (bounded or unbounded) linked by transforms built into a pipeline.
- Supports streaming joins, group-bys, stepping and sliding windows, and global state.
- Offers fine-grained tooling around handling late data.
- Can be executed over both batch and streaming data.

Oden's Streaming Data Pipeline

Multi-resolution Rollup Aggregates

Rollup non-overlapping windows of metrics using associative aggregates.

- Count
- Sum
- Min, Max
- Sum2 sum of x squared

$$(x * y) * z = x * (y * z)$$
 for all x , y , z in S

$$sum(A \cup B) = sum(A) + sum(B)$$

$$count(A \cup B) = count(A) + count(B)$$

$$max(A \cup B) = max(max(A), max(B))$$

$$sum2(A \cup B) = sum2(A \cup B) + sum2(A \cup B)$$

$$mean(A \cup B) = sum(A \cup B) / count(A \cup B)$$

$$f(A \cup B) = g(f(A), f(B))$$

$$stddev(A \cup B) = 1/(count(A \cup B)*(count(A \cup B)-1))*(sum2(A \cup B)-sum(A \cup B)^2)$$

- **Data Packing** Collecting all metrics and metadata needed to compose the feature set for one training or scoring example.
- **Labeling** Assigning a label to each data pack.
- Feature Extraction Extracting features from the data packs for training or scoring.
- **Model Training** Building a model against training data, the features + labels
- Model Validation Validating the model against held out data
- Model Scoring Applying the model to new data

Workflow Orchestration

- Labeling, Training, and validation are orchestrated using Apache Beam in DAGs
- Each step (or task) within the DAG is remotely managed process
- Input and output of each step (or task) is a table or set of files

Workflow Orchestration

Model Scoring in Cloud and Edge

Model Scoring in Cloud and Edge

Application: Predictive Quality

Cable Manufacturing

- Copper is pulled from an in-spool into an extruder.
- Plastic is melted over the copper to make wire.
- Wire is cooled.
- Wire is pulled into an out-spool.
- A laser measures the diameter of the wire to monitor its closeness to spec.

Cable Manufacturing

- Copper is pulled from an in-spool into an extruder.
- Plastic is melted over the copper to make wire.
- Wire is cooled.
- Wire is pulled into an out-spool.
- A laser measures the diameter of the wire to monitor its closeness to spec.

Predictive Quality

- Quality of cable coating is determined by measuring the average diameter and ensure it lies between an upper and lower limit [U, L].
- Information lag from measurement system
 means hundreds of feet can be produced before
 identifying an issue.
- Predictive alerting of quality issues must be tollerant to network partitions from cloud.

Prediction

- In real-time we stream controllable metrics such as line-speed, screw-rpm, temp-die, temp-flange and pressure
- In a lagging window we collect previous values for cold-od and pre-cooled diameter hot-od.
- We predict cold-od 5
 minutes into the future and
 use that to estimate quality
 in real time.

Application: Predictive Quality

Application: Predictive Quality

Application: Predictive Quality - Data Packing (For Training)

Application: Predictive Quality - Labeling

Application: Predictive Quality - Training

Application: Predictive Quality - Validation

Application: Predictive Quality - Deployment (Cloud)

Predictive Model Scoring

- 1. Load skpipeline from GCS
- 2. Read from pubsub/mqtt
- 3. Create prediction (score)
- 4. Write predictions to pubsub/mqtt

```
class ModelScoreDoFn(apache beam.DoFn):
   def process(self, element, skpipeline):
        x = np.array([])
        (id, fv) = element
       if fv is not None:
            x = np.append(x, fv).reshape(1, -1)
           pred = skpipeline.predict(x)
           id date list = id.split(".")
           if len(id date list) >= 2:
                ts = (pd.to datetime(id date list[1])).timestamp()
                return [ison.dumps(...)]
def run(argv=None):
   pipeline options = PipelineOptions()
   pipeline options.view as(SetupOptions).save main session = True
   ops = pipeline options.view as(UserOptions)
    # Copy the model from Cloud storage
    subprocess.check_call(["gsutil", "cp", ops.modeluri, MODEL_LOCAL_FILE_PATH]) (1)
    skpipeline = joblib.load(MODEL LOCAL FILE PATH)
    # Create the Apache Beam Pipeline
    p = apache beam.Pipeline(options=pipeline options)
    preds = (p
                                                                                 (2)
       # Read from queue into a PCollection
         "read" >> ReadFromPubSubOrMqtt(subscription=ops.inputtopic)
        # Parse the JSON messages and then score with the model
          "parse" >> apache beam.ParDo(FeaturePacktoFeatureVectorDoFn())
                                                                                 (3)
         "score" >> apache beam.ParDo(ModelScoreDoFn(), skpipeline)
        # Write the result to queue
        "write" >> WriteStringsToPubSubOrMqtt(user options.outputtopic)
                                                                                 (4)
    result = p.run().wait until finish()
```

Application: Predictive Quality - Scoring (Cloud)

Application: Predictive Quality - Scoring (Edge)

Predictive Quality -Results

- Example with Lasso Model
- MSE of 17e⁻⁶
- 85% precision
- 90% recall
- Acheives max of 430 tuples/sec per worker in cloud
- 325 tuples/sec per worker in cloud
- Meets customers desired trade-offs for false alarms and missed detection

Future

- Exposing this framework to customers
- Controlling machines as a result of models
- Internal applications for framework in self-monitoring

In summary

- Infrastructure for optimized data capture opens the possibility for a variety of powerful real-time models.
- Multi-resolution storage of manufacturing data makes exploring and training models easy.
- Workflow for ML model training and validation allows for continuous iterative improvement of models.
- Network-partition resilient deployment of ML to cloud and factory means models can service mission-critical needs in the factory.

Thank You

