西南交通大学 2019-2020 学年第 (一) 学期期末试卷 (A)

课程代码 6000259 课程名称 近世代数 A **考试时间** 120 分钟

题号	1	2	3	4	5	6	7	总成绩
分数								

阅卷教师签字:

考试说明: 所有解答中用到的结论,如课程没有涉及,引用时需给出证明。

1. (15 分) 设 \mathbb{R}^* 为非零实数集, 定义集合 $G = \mathbb{R}^* \times \mathbb{R}$ 上的一个二元运算如下:

$$(a,b)*(c,d) = (ac,ad+b)$$

证明:

- (a). (G,*) 是一个群.
- (b). $K = \{(1, b) | b \in \mathbb{R}\}$ 是 G 的正规子群.

 $\overline{\mathbf{u}}$: 易见在 G 中,二元运算 * 是封闭的. (1 **分**)

- (1). 结合性: (3 分) $((a,b)*(a_1,b_1))*(c,d) = (aa_1,ba_1+b_1)*(c,d) = (aa_1c,ba_1c+b_1c+d),$ $(a,b)*((a_1,b_1)*(c,d)) = (a,b)*(a_1c,b_1c+d) = (aa_1c,ba_1c+b_1c+d)$ $\Longrightarrow ((a,b)*(a_1,b_1))*(c,d) = (a,b)*((a_1,b_1)*(c,d))$
- (2). e = (1,0) 是单位元. (a,b)*(1,0) = (a,b) = (1,0)*(a,b) (2分)
- (3). $\forall \alpha = (a, b) \in G$, 取 $\beta = (\frac{1}{a}, -\frac{b}{a})$, 则 $\alpha * \beta = \beta * \alpha = (1, 0) \Longrightarrow \alpha^{-1} = \beta$, 即任意元都有逆元. 因此由定义知 (G, *) 是一群. (2**分**) (b). 欲证 K 为 G 的正规子群,只需证明:K 为 G 的子群,并且对任意 $g \in G$,都有 $gKg^{-1} \subset K$,实际上:

$$(1,b)*(1,b')^{-1} = (1,b)*(1,-b') = (1,b-b') \in K \Longrightarrow K$$
是子群 (3分)

$$(a,b)(1,c)(a,b)^{-1} = (a,ac+b)(\frac{1}{a}, -\frac{b}{a}) = (1,ac) \in K \Longrightarrow K \triangleleft G$$
 (4分)

- 2. $(15 \, \mathcal{A})$ 设 $f: G \longrightarrow H$ 是一个群同态, $A \in G$ 的一子群. 证明:
 - (a) f(A) 是 H 的子群;
 - (b) 商群 G/Ker f 同构于 G 在 f 下的同态像 Im f.

证:

- (a) $\forall \alpha, \beta \in f(A)$, 则 $\exists a, b \in A$ 使得 $\alpha = f(a), \beta = f(b)$, 注意到: $\alpha \beta^{-1} = f(a)(f(b))^{-1} = f(a)f(b^{-1}) = f(ab^{-1}) \in f(A)$, 所以 f(A) 是 H 的子群. (7 分)
- (b) (若直接用同态基本定理证,只给2分) 定义映射:

$$\bar{f}: G/\mathrm{Ker}f \longrightarrow Imf$$

$$g\mathrm{Ker}f \longmapsto f(g)$$

现我们证明 \bar{f} 满足以下条件:

(a). \bar{f} 是群同态: 实际上,

$$\bar{f}(g_1\mathrm{Ker}fg_2\mathrm{Ker}f) = \bar{f}(g_1g_2\mathrm{Ker}f) = f(g_1g_2) = f(g_1)f(g_2) = \bar{f}(g_1\mathrm{Ker}f)\bar{f}(g_2\mathrm{Ker}f) 4$$

(b). \bar{f} 是双射(单旦满): 满射显然,只需证 \bar{f} 是单的,实际上,

$$\bar{f}(g_1\mathrm{Ker}f) = \bar{f}(g_2\mathrm{Ker}f) \Longrightarrow f(g_1) = f(g_2) \Longrightarrow f(g_1g_2^{-1}) = e_H \Longrightarrow g_1g_2^{-1} \in \mathrm{Ker}f$$

$$\Longrightarrow g_1\mathrm{Ker}f = g_2\mathrm{Ker}f.$$
 故 \bar{f} 是群同构, 从而 $G/\mathrm{Ker}f \cong \mathrm{Im}f$ (4分).

3. $(15 \, \beta)$ 设 p,q 都是素数,证明: p^2q 阶群必有非平凡的正规子群.

解:由 Sylow 定理:我们有以下两种情形:

- (1). 当 q < p. 由于 Sylow p 子群在该群中的指标是 q,易见,q 是群的唯一的最小素因子,从而 Sylow q 子群是正规子群。(由课后习题) (7 **分**)
- (2). 当 q > p, Sylow q 子群的个数 $n_q|p^2$ 且 $n_q \equiv 1 \pmod{q}$. 从而 $n_q = 1, p, p^2$. (2 分)
 - (a) 若 $n_q = 1$, 则 Sylow q 子群是正规子群. (2 分)
 - (b) 若 $n_q = p$, 由于 q > p, 且 $n_q \equiv 1 \pmod{q} \Longrightarrow n_q \neq p \pmod{2}$
 - (c) 若 $n_q = p^2$ 且 $n_q \equiv 1 \pmod{p}$, 则 Sylow q 子群有 $p^2 \uparrow \uparrow$,它们都是循环群. 于是有 $p^2(q-1) \uparrow q$ 阶元,剩下的 $p^2q p^2(q-1) = p^2 \uparrow \uparrow$ 元素正好是一个 Sylow p 子群, 从而是正规子群. (2 分)

4. (15 分) 求环 Z/(18) 的全部理想,指出其中那些是素理想和极大理想,并解释为什么?

证明:由环同态基本定理, \mathbb{Z}_{18} 的理想都是形如:I/(18),其中 I 是 \mathbb{Z} 的包含理想 (18)的 \mathbb{Z} 的理想,故 \mathbb{Z}_{18} 的全部理想是:

$$\mathbb{Z}_{18}$$
, $(2)/(18)$, $(3)/(18)$, $(6)/(18)$, $(9)/(18)$, (0) (7%)

同理, \mathbb{Z}_{18} 的极大理想都形如: I/(18),其中 I 满足: $(18) \subset I$,I 是 \mathbb{Z} 的极大理想。由环同态第三定理: $\mathbb{Z}/28/I/(28) \cong \mathbb{Z}/I$. 从而,I/(28) 是极大理想 $\iff \mathbb{Z}/I$ 是域. 但 \mathbb{Z}/I 是域 $\iff I = (p)$,p 是素数,只需找 18 的素因子: 2,3,那么由其生成的理想 I 就满足: $(18) \subset I$,I 是 \mathbb{Z} 的极大理想,综上所述,

$$(2)/(18), \quad (3)/(18)$$

为 ℤ₁8 的极大理想. (8 分)

5. (15 分) 设 $\mathbb{F}[x]$ 为域 \mathbb{F} 上的多项式环,证明: $\mathbb{F}[x]$ 为主理想整环.

证: 设 $I \neq 0$ 为 $\mathbb{F}[x]$ 的任意一个理想,取 p(x) 为 I 中次数最小的非零次多项式. $\forall f(x) \in I$, 则由多项式带余除法,则存在 $r(x) \in \mathbb{F}[x]$,使得:

$$f(x) = p(x)q(x) + r(x), \quad 0 \le degr(x) < deg(p(x)) \tag{(7 分)}$$

 $\implies r(x) = f(x) - p(x)q(x) \in I$, 从而 r(x) 必须为零多项式. 否则 r(x) < deg(p(x)), 这与 p(x) 为 I 中次数最小的非零次多项式相矛盾. 从而, $f(x) = p(x)q(x) \implies I = (p(x))$, 即 I 为主理想环. 此外,若 $f(x)g(x) = 0 \implies f(x) = 0$ 或g(x) = 0,从而 $\mathbb{F}[x]$ 是整环. 总之, $\mathbb{F}[x]$ 是主理想整环. (8 **分**)

6. (10 分) 构造一个有 27 个元的有限域.

解: 由于 $3^3 = 27$,所以我们考虑多项式环 $\mathbb{Z}_3[x]$,要构造 27 个元的有限域,只需找一个在域 \mathbb{Z}_3 上一个 3 次不可约多项式 f(x) 即可. 因为

$$\mathbb{Z}_3[x]/(f(x)) \cong \mathbb{Z}_3[\alpha]$$

而 $\mathbb{Z}_3[\alpha]$ 是一个有 27 个元的域。其中 f(x) 为 α 的极小多项式. 为此我们考虑 $f(x) = x^3 + 2x + 1$,易见,f(x) 是 \mathbb{Z}_3 上的不可约多项式。从而域 $\mathbb{Z}_3[x]/(f(x))$ 即为一个有 27 个元的有限域.

- 7. (15 分) 设 α 是多项式 $f(x) = x^3 6x^2 + 9x + 3$ 的一个实根.
 - (a) 证明: $[\mathbb{Q}(\alpha):\mathbb{Q}]=3$.
 - (b) 求: $(1 + \alpha)^{-1}$

证明: (1) 由 Eisenstein 判别法知多项式 $f(x) = x^3 - 6x^2 + 9x + 3$ 在 \mathbb{Q} 上不可约,从而 $[\mathbb{Q}(\alpha):\mathbb{Q}] = 3$. (6 分)

(2) 设 $(1+\alpha)^{-1} = a + b\alpha + c\alpha^2$, $a, b, c \in \mathbb{Q}$, 则:

$$1 = (1+\alpha)(a+b\alpha+c\alpha^2) = a+b\alpha+c\alpha^2+a\alpha+b\alpha^2+c\alpha^3$$
$$= a+(a+b)\alpha+(b+c)\alpha^2+c(6\alpha^2-9\alpha-3)$$
$$= (a-3c)+(a+b-9c)\alpha+(b+7c)\alpha^2 \qquad (3 \ \%)$$

从而我们有以下方程组:

$$a - 3c = 1$$
$$a + b - 9c = 0$$
$$b + 7c = 0$$

所以我们得到: $(1+\alpha)^{-1} = \frac{1}{13}(\alpha^2 - 7\alpha + 16)$ (6 分)