SEMAINE 10

SÉRIES NUMÉRIQUES. FAMILLES SOMMABLES

EXERCICE 1:

Soit a un nombre réel non nul, soit la fonction $f: \mathbb{R} \to \mathbb{C}$ définie par $f(t) = \frac{1}{t} e^{ia \ln t}$.

1. Quelle est la nature de la série de terme général f(n) ? Ses sommes partielles sont-elles bornées?

On pourra commencer par majorer la différence $\left| \int_{k}^{k+1} f(t) dt - f(k) \right|$.

2. Quelle est la nature de la série $\sum_{n} \frac{e^{ia \ln n}}{n \ln n}$?

1. La fonction f est de classe C^1 avec $f'(t) = \frac{ia-1}{t^2} e^{ia \ln t}$. Pour $t \in [k, k+1]$, on a $|f'(t)| \leq \frac{M}{k^2}$ avec $M = |ia - 1| = \sqrt{a^2 + 1}$, donc $|f(t) - f(k)| \le \frac{M}{k^2}(t - k)$. Pour tout $k \in \mathbb{N}^*$, posons $u_k = f(k)$ et $v_k = \int_{1}^{k+1} f(t) dt$. Alors, $|v_k - u_k| = \left| \int_k^{k+1} (f(t) - f(k)) dt \right| \le \int_k^{k+1} |f(t) - f(k)| dt$ $\leq \frac{M}{k^2} \int_{-k^2}^{k+1} (t-k) dt = \frac{M}{2k^2}.$

<u>La</u> série de <u>terme</u> général $v_k - u_k$ étant absolument convergente, on en déduit que les séries $\sum_{k} u_{k} \text{ et } \sum_{k} v_{k} \text{ sont de même nature. Or,}$ $\int \frac{1}{t} e^{ia \ln t} dt = \int e^{iau} du = \frac{1}{ia} e^{iau} = \frac{1}{ia} e^{ia \ln t},$

$$\int \frac{1}{t} e^{ia \ln t} dt = \int e^{iau} du = \frac{1}{ia} e^{iau} = \frac{1}{ia} e^{ia \ln t} ,$$

donc $\sum_{i=1}^{n} v_k = \int_1^{n+1} f(t) dt = \frac{1}{ia} \left(e^{ia \ln(n+1)} - 1 \right)$. Or, cette dernière expression n'a pas de

limite quand n tend vers $+\infty$: en effet, si la suite de terme général $z_n=e^{ia\ln n}$ convergeait, alors il en serait de même de sa suite extraite $z_{2^k}=e^{ika\ln 2}=(e^{ia\ln 2})_k^k$ (c'est une suite géométrique avec une raison de module 1), ce qui entraînerait $a \ln 2 \in 2\pi \mathbb{Z}$; en considérant la suite extraite (z_{3^k}) , on aurait $a \ln 3 \in 2\pi \mathbb{Z}$, et le rapport $\frac{\ln 3}{\ln 2}$ serait rationnel (absurde :

de $\frac{\ln 2}{\ln 3} = \frac{p}{q}$, on tirerait $3^p = 2^q$). La série $\sum_{n} v_n$ est donc divergente, donc $\sum_{n} f(n)$ diverge

Posons maintenant $S_n = \sum_{k=1}^n u_k$ et $T_n = \sum_{k=1}^n v_k$. On a obtenu $T_n = \frac{1}{ia} \left(e^{ia \ln(n+1)} - 1 \right)$, donc

 $|T_n| \leq \frac{2}{|a|}$: les sommes partielles de la série $\sum_i v_k$ sont bornées. Comme $|S_n - T_n| \leq$

 $\sum_{k=0}^{n} |u_k - v_k| \le \frac{M}{2} \sum_{k=0}^{n} \frac{1}{k^2}, \text{ les sommes partielles } S_n \text{ sont aussi bornées.}$

2. Montrons plus généralement le théorème d'Abel:

Soit $\sum_{n} u_n$ une série de nombres complexes dont les sommes partielles $S_n = \sum_{k=1}^{n} u_k$ sont bornées, soit (a_n) une suite de réels positifs décroissante et de limite nulle. Alors la série $\sum_{n} a_n u_n$ converge.

En effet, soient deux entiers p et q avec p < q; une classique (quoique hors programme) transformation d'Abel donne

$$\sum_{k=p+1}^{q} a_k u_k = \sum_{k=p+1}^{q-1} S_k (a_k - a_{k+1}) + S_q a_q - S_p a_{p+1}$$

et, si on a $|S_n| \leq M$ pour tout n, on déduit la majoration

$$\left| \sum_{k=p+1}^{q} a_k u_k \right| \le M \left(\sum_{k=p+1}^{q-1} (a_k - a_{k+1}) + a_{p+1} + a_q \right) = M a_{p+1} .$$

Comme $\lim_{p\to\infty}a_{p+1}=0$, la série de terme général a_nu_n vérifie la condition de Cauchy, donc converge.

Il suffit d'appliquer le théorème d'Abel avec $u_n = \frac{1}{n}e^{ia \ln n}$ et $a_n = \frac{1}{\ln n}$ pour déduire que la série $\sum_{n} \frac{e^{ia \ln n}}{n \ln n}$ est convergente.

EXERCICE 2:

- **1.** Montrer que, pour tout entier naturel non nul m, on a $\sum_{n=1}^{\infty} \frac{\sqrt{m}}{(m+n)\sqrt{n}} \leq \int_{0}^{+\infty} \frac{dx}{(x+1)\sqrt{x}}$.
- 2. Soient $(a_n)_{n\in\mathbb{N}^*}$ et $(b_n)_{n\in\mathbb{N}^*}$ deux suites de réels positifs, de carré sommable (c'est-à-dire les séries $\sum a_n^2$ et $\sum b_n^2$ sont convergentes). Montrer que la famille $\left(\frac{a_ib_j}{i+j}\right)_{(i,j)\in(\mathbb{N}^*)^2}$ est sommable et montrer l'inégalité

$$\sum_{(i,j)\in(\mathbb{N}^*)^2} \frac{a_i b_j}{i+j} \le \pi \left(\sum_{n=0}^{+\infty} a_n^2\right)^{\frac{1}{2}} \left(\sum_{n=0}^{+\infty} b_n^2\right)^{\frac{1}{2}}.$$

1. En posant t=mx, on a $\int_0^{+\infty} \frac{dx}{(x+1)\sqrt{x}} = \sqrt{m} \int_0^{+\infty} \frac{dt}{(t+m)\sqrt{t}}$. La fonction $t\mapsto \frac{1}{(t+m)\sqrt{t}}$ étant décroissante sur \mathbb{R}_+^* , on a, pour tout entier naturel n l'inégalité

$$\frac{1}{(n+m+1)\sqrt{n+1}} \le \int_n^{n+1} \frac{dt}{(t+m)\sqrt{t}}$$

et, en sommant (ce qui est légitime, tout converge...), $\sum_{n=0}^{+\infty} \frac{1}{(m+n+1)\sqrt{n+1}} \leq \int_0^{+\infty} \frac{dt}{(t+m)\sqrt{t}},$ ce qui donne bien l'inégalité voulue. Comme

$$\int_0^{+\infty} \frac{dx}{(x+1)\sqrt{x}} = \int_0^{+\infty} \frac{2u \ du}{(u^2+1)u} = 2 \int_0^{+\infty} \frac{du}{1+u^2} = \pi \ ,$$

on a prouvé, pour tout $m \in \mathbb{N}^*$, l'inégalité $\sum_{n=1}^{+\infty} \frac{1}{(m+n)\sqrt{n}} \leq \frac{\pi}{\sqrt{m}}$.

2. Pour tout
$$n \in \mathbb{N}^*$$
, posons $S_n = \sum_{i,j=1}^n \frac{a_i b_j}{i+j}$. Posons $||a||_2 = \left(\sum_{n=0}^{+\infty} a_n^2\right)^{\frac{1}{2}}$ et $||b||_2 = \left(\sum_{n=0}^{+\infty} b_n^2\right)^{\frac{1}{2}}$.

Pour tout $n \in \mathbb{N}^*$, on a (hénaurme astuce):

$$S_n = \sum_{i,j=1}^n \frac{\sqrt[4]{i} \ a_i}{\sqrt[4]{j} \ \sqrt{i+j}} \frac{\sqrt[4]{j} \ b_j}{\sqrt[4]{i} \ \sqrt{i+j}} \le \left(\sum_{i,j=1}^n \frac{\sqrt{i} \ a_i^2}{\sqrt{j} \ (i+j)}\right)^{\frac{1}{2}} \left(\sum_{i,j=1}^n \frac{\sqrt{j} \ b_j^2}{\sqrt{i} \ (i+j)}\right)^{\frac{1}{2}}$$

par l'inégalité de Cauchy-Schwarz. Ensuite

$$S_n \le \left(\sum_{i=1}^n \left(\sum_{j=1}^n \frac{\sqrt{i}}{\sqrt{j} \ (i+j)}\right) a_i^2\right)^{\frac{1}{2}} \left(\sum_{j=1}^n \left(\sum_{i=1}^n \frac{\sqrt{j}}{\sqrt{i} \ (i+j)}\right) b_j^2\right)^{\frac{1}{2}} \le \pi \|a\|_2 \|b\|_2$$

d'après la question 1. En posant, pour tout entier naturel n non nul, $J_n = [\![1,n]\!]^2$, on vient de montrer que $S_n = \sum_{(i,j)\in J_n} \frac{a_i b_j}{i+j} \le \pi \ \|a\|_2 \ \|b\|_2$. Comme les J_n forment une suite croissante de parties finies de $(\mathbb{N}^*)^2$ dont la réunion est $(\mathbb{N}^*)^2$, cela prouve la sommabilité de la famille $\left(\frac{a_i b_j}{i+j}\right)_{(i,j)\in(\mathbb{N}^*)^2}$ et le fait que sa somme, qui est $\sup_{n\in\mathbb{N}^*} S_n$, est inférieure ou égale à $\pi \ \|a\|_2 \ \|b\|_2$, ce qu'il fallait prouver.

EXERCICE 3:

La fonction zéta de Riemann est définie par $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ pour tout réel x > 1. L'indicateur d'Euler d'un entier naturel non nul n est défini par

$$\varphi(n) = \operatorname{Card}\{k \in [1, n] \mid k \wedge n = 1\}.$$

- 1. Pour $n \in \mathbb{N}^*$, calculer $\sum_{d|n} \varphi(d)$.
- 2. Pour $x \in]2, +\infty[$, en déduire une expression de la somme $\Phi(x) = \sum_{n=1}^{\infty} \frac{\varphi(n)}{n^x}$ à l'aide de la fonction ζ .

3. Soit k un entier naturel supérieur ou égal à 2, pour tout $n \in \mathbb{N}^*$, on pose $Q_k(n) = 0$ s'il existe un nombre premier p tel que $p^k \mid n$ et $Q_k(n) = 1$ sinon. Démontrer la relation

$$\forall x \in]1, +\infty[\qquad \frac{\zeta(x)}{\zeta(kx)} = \sum_{n=1}^{\infty} \frac{Q_k(n)}{n^x} \ .$$

- Commençons par quelques compléments sur les familles sommables : du cours, on déduit immédiatement le résultat suivant :
 - Si $(u_k)_{k\in A}$ est une famille de nombres complexes indexée par un ensemble dénombrable A, si $(A_n)_{n\in\mathbb{N}}$ est une famille dénombrable de parties finies de A, deux à deux disjointes et de réunion égale à A, si on note $s'_n = \sum_{k\in A_n} |u_k|$ et $s_n = \sum_{k\in A_n} u_k$, alors la famille $(u_k)_{k\in A}$ est sommable si et seulement si la série de réels positifs $\sum_{n\geq 0} s'_n$ est convergente et, dans ce cas,

on
$$a \sum_{k \in A} u_k = \sum_{n=0}^{\infty} s_n = \sum_{n=0}^{\infty} \left(\sum_{k \in A_n} u_k \right).$$

- Il suffit en effet de considérer la suite croissante (J_n) de parties finies avec $J_n = \bigcup_{i=0}^n A_i$ pour se ramener aux termes exacts du programme officiel.
- Si $A = \mathbb{N}^2$, ce résultat est classiquement utilisé avec les parties $A_n = \{(p,q) \in \mathbb{N}^2 \mid p+q=n\}$ pour $n \in \mathbb{N}$, ce qui conduit à la notion de **produit de Cauchy** de deux séries absolument convergentes $\sum_{n \in \mathbb{N}} u_n$ et $\sum_{n \in \mathbb{N}} v_n$: la série $\sum_{n \in \mathbb{N}} w_n$, avec $w_n = \sum_{p+q=n} u_p v_q = \sum_{p=0}^n u_p v_{n-p}$ est absolument convergente et

$$\sum_{n=0}^{\infty} w_n = \sum_{n=0}^{\infty} \left(\sum_{p+q=n} u_p v_q \right) = \sum_{(p,q) \in \mathbb{N}^2} u_p v_q = \left(\sum_{p=0}^{\infty} u_p \right) \left(\sum_{q=0}^{\infty} v_q \right).$$

Si $A = (\mathbb{N}^*)^2$, on peut aussi considérer les parties $A_n = \{(p,q) \in (\mathbb{N}^*)^2 \mid pq = n\}$ avec $n \in \mathbb{N}^*$ pour arriver à la notion de **produit de Dirichlet** de deux séries absolument convergentes $\sum_{n \in \mathbb{N}^*} u_n$ et $\sum_{n \in \mathbb{N}^*} v_n$: la série $\sum_{n \in \mathbb{N}^*} x_n$, avec $x_n = \sum_{pq=n} u_p v_q = \sum_{d|n} u_d v_{\frac{n}{d}}$ est absolument convergente et

$$\sum_{n=1}^{\infty} x_n = \sum_{n=1}^{\infty} \left(\sum_{pq=n} u_p v_q \right) = \sum_{(p,q) \in (\mathbb{N}^*)^2} u_p v_q = \left(\sum_{p=1}^{\infty} u_p \right) \left(\sum_{q=1}^{\infty} v_q \right).$$

1. C'est un exercice classique d'arithmétique : $\sum_{d|n} \varphi(d) = n$; en effet, on a $[\![1,n]\!] = \bigcup_{d|n} A_d$ (union disjointe), où

$$A_d = \left\{ k \in [\![1,n]\!] \mid k \wedge n = \frac{n}{d} \right\} = \left\{ q \frac{n}{d} \; ; \; q \in [\![1,d]\!] \; \text{et} \; q \wedge d = 1 \right\} \, ,$$

donc $Card(A_d) = \varphi(d)$, ce qui donne la relation demandée.

2. Pour x > 2, la série à termes positifs $\sum_{p \ge 1} \frac{\varphi(p)}{p^x}$ est absolument convergente (car $\varphi(p) \le p$), de même que la série $\sum_{q \ge 1} \frac{1}{q^x}$ et leur produit de Dirichlet est la série

$$\sum_{n\geq 1} \Big(\sum_{pq=n} \frac{\varphi(p)}{p^x q^x}\Big) = \sum_{n\geq 1} \frac{1}{n^x} \Big(\sum_{pq=n} \varphi(p)\Big) = \sum_{n\geq 1} \frac{1}{n^x} \Big(\sum_{d\mid n} \varphi(d)\Big) = \sum_{n\geq 1} \frac{1}{n^{x-1}} \;,$$

et on a

$$\Big(\sum_{p=1}^{\infty}\frac{\varphi(p)}{p^x}\Big)\Big(\sum_{q=1}^{\infty}\frac{1}{q^x}\Big)=\Phi(x)\ \zeta(x)=\sum_{n=1}^{\infty}\frac{1}{n^{x-1}}=\zeta(x-1)\ ,$$

donc $\Phi(x) = \frac{\zeta(x-1)}{\zeta(x)}$ pour tout réel x > 2.

3. La série $\sum_{n\geq 1} \frac{Q_k(n)}{n^x}$ est (absolument) convergente pour x>1 et on a

$$\zeta(kx) \left(\sum_{n=1}^{\infty} \frac{Q_k(n)}{n^x} \right) = \left(\sum_{p=1}^{\infty} \frac{1}{p^{kx}} \right) \left(\sum_{q=1}^{\infty} \frac{Q_k(q)}{q^x} \right) = \sum_{(p,q) \in (\mathbb{N}^*)^2} \frac{Q_k(q)}{(p^k q)^x}$$

Pour tout $n \in \mathbb{N}^*$, considérons la partie $A_n = \{(p,q) \in (\mathbb{N}^*)^2 \mid p^k q = n\}$. Les A_n sont des parties finies de $(\mathbb{N}^*)^2$, deux à deux disjointes et $(\mathbb{N}^*)^2 = \bigcup_{n=1}^{\infty} A_n$. La suite double

 $\left(\frac{Q_k(q)}{(p^kq)^x}\right)_{(p,q)\in(\mathbb{N}^*)^2}$ étant sommable comme famille-produit de deux suites sommables, sa

somme
$$S(x)$$
 vérifie $S(x) = \sum_{n=1}^{\infty} s_n(x)$ avec $s_n(x) = \sum_{(p,q) \in A_n} \frac{Q_k(q)}{(p^k q)^x} = \frac{1}{n^x} \sum_{(p,q) \in A_n} Q_k(q)$.

Soit $n=p_1^{\alpha_1}\cdots p_r^{\alpha_r}$ la décomposition d'un entier n en produit de facteurs premiers distincts, alors le seul couple (p,q) appartenant à A_n et pour lequel $Q_k(q)=1$ est celui pour lequel on choisit $p=p_1^{\nu_1}\cdots p_r^{\nu_r}$ où, pour tout $i\in [\![1,r]\!]$, $\nu_i=E\left(\frac{\alpha_i}{k}\right)$ est le quotient dans la division euclidienne de α_i par k. On a donc $\sum_{(p,q)\in A_n}Q_k(q)=1$ pour tout $n\in \mathbb{N}^*$, donc $s_n(x)=\frac{1}{n^x}$.

Récapitulons:

$$S(x) = \sum_{(p,q) \in (\mathbb{N}^*)^2} \frac{Q_k(q)}{(p^k q)^x} = \zeta(kx) \left(\sum_{n=1}^{\infty} \frac{Q_k(n)}{n^x} \right) = \sum_{k=1}^{\infty} \frac{1}{n^x} ,$$

ce qui donne bien $\sum_{n=1}^{\infty} \frac{Q_k(n)}{n^x} = \frac{\zeta(x)}{\zeta(kx)}$ pour x > 1 et k entier, $k \ge 2$.

EXERCICE 4:

Soit $\mu: \mathbb{N}^* \to \mathbf{Z}$ la fonction (fonction de Möbius) définie par

$$\triangleright \mu(1) = 1$$
;

 $\triangleright \mu(n) = 0$ si n a au moins un facteur carré ;

 $\triangleright \mu(n) = (-1)^r$ si n est le produit de r facteurs premiers distincts.

- **1.** Soit $n \in \mathbb{N}^*$. Calculer $s_n = \sum_{d|n} \mu(d)$. En déduire la relation $\sum_{k=1}^{\infty} \frac{\mu(k)}{k^2} = \frac{6}{\pi^2}$.
- **2.** Pour tout $n \in \mathbb{N}^*$, soit $q_n = \operatorname{Card} \{(u, v) \in [\![1, n]\!]^2 \mid u \wedge v = 1\}$. Démontrer la relation

$$q_n = \sum_{k=1}^n \mu(k) E\left(\frac{n}{k}\right)^2.$$

3. En déduire que $\lim_{n \to +\infty} \frac{q_n}{n^2} = \frac{6}{\pi^2}$.

1. On a $s_1 = \mu(1) = 1$ et, si $n \ge 2$, soit $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ sa décomposition en facteurs premiers $(r \ge 1)$, avec les p_i distincts. Posons $m = p_1 \cdots p_r$. De la définition de la fonction μ , on déduit que $s_n = \sum_{d|n} \mu(d) = \sum_{d|m} \mu(d)$ mais les diviseurs de m sont les entiers de la

forme $d = \prod_{i \in I} p_i$, où I décrit l'ensemble des parties de $[\![1,r]\!]$ et, pour un tel entier d, on a $\mu(d) = (-1)^{\operatorname{Card}(I)}$ donc

$$s_n = \sum_{d|n} \mu(d) = \sum_{I \subset [1,r]} (-1)^{\operatorname{Card}(I)} = \sum_{k=0}^r (-1)^k C_r^k = (1+(-1))^r = 0.$$

En conclusion, $s_n = \begin{cases} 1 & \text{si } n = 1 \\ 0 & \text{sinon} \end{cases}$

Pour tout couple $(k, l) \in (\mathbb{N}^*)^2$, posons $a_{k, l} = \frac{\mu(k)}{k^2 l^2}$. La famille ("suite double") $(a_{k, l})_{(k, l) \in (\mathbb{N}^*)^2}$ est sommable car c'est la famille produit de deux suites sommables, à savoir $\left(\frac{\mu(k)}{k^2}\right)_{k \in \mathbb{N}^*}$ et sa somme vaut

$$S = \left(\sum_{k=1}^{\infty} \frac{\mu(k)}{k^2}\right) \left(\sum_{l=1}^{\infty} \frac{1}{l^2}\right) = \frac{\pi^2}{6} \cdot \sum_{k=1}^{\infty} \frac{\mu(k)}{k^2} .$$

Mais on peut aussi sommer la suite double "à la Dirichlet": pour tout $n \in \mathbb{N}^*$, notons $J_n = \{(k,l) \in (\mathbb{N}^*)^2 \mid kl \leq n\}$. Alors (J_n) est une suite croissante de parties finies de $(\mathbb{N}^*)^2$ dont la réunion est égale à $(\mathbb{N}^*)^2$, donc

$$S = \lim_{n \to \infty} \left(\sum_{(k,l) \in J_n} a_{k,l} \right) = \sum_{n=1}^{\infty} \left(\sum_{kl=n} \frac{\mu(k)}{k^2 l^2} \right) = \sum_{n=1}^{\infty} \left(\frac{1}{n^2} \sum_{d|n} \mu(d) \right) = \sum_{n=1}^{\infty} \frac{s_n}{n^2} = 1$$

et cela donne le résultat

2. Soit l'ensemble $Q_n = \{(u,v) \in [\![1,n]\!]^2 \mid u \wedge v = 1\}$. Notons $p_1 < p_2 < \cdots < p_r$ la liste des nombres premiers inférieurs ou égaux à n. Pour tout i $(1 \le i \le r)$, soit A_i l'ensemble des couples $(u,v) \in [\![1,n]\!]^2$ tels que $p_i \mid u$ et $p_i \mid v$. Alors $Q_n = [\![1,n]\!]^2 \setminus \left(\bigcup_{i=1}^r A_i\right)$. On calcule alors le cardinal de Q_n par le **principe d'inclusion-exclusion**, appelé aussi **formule du crible**:

$$q_n = \operatorname{Card}(\llbracket 1, n \rrbracket^2) - \sum_{i} \operatorname{Card}(A_i) + \sum_{i < j} \operatorname{Card}(A_i \cap A_j) - \dots + (-1)^r \operatorname{Card}(A_1 \cap \dots \cap A_r)$$

$$= n^2 + \sum_{k=1}^r (-1)^k \sum_{i_1 < \dots < i_k} \operatorname{Card}(A_{i_1} \cap \dots \cap A_{i_k}).$$

Or, pour tout k-uplet (i_1, \dots, i_k) avec $i_1 < \dots < i_k$, $\operatorname{Card} (A_{i_1} \cap \dots \cap A_{i_k}) = E \left(\frac{n}{p_{i_1} \cdots p_{i_k}}\right)^2$.

Donc

$$q_n = n^2 + \sum_{k=1}^r (-1)^k \sum_{i_1 < \dots < i_k} E\left(\frac{n}{p_{i_1} \dots p_{i_k}}\right)^2 = \sum_{k=1}^n \mu(k) E\left(\frac{n}{k}\right)^2$$

(nous laissons le lecteur se convaincre de cette dernière égalité).

3. On a $\frac{q_n}{n^2} = \frac{1}{n^2} \sum_{k=1}^n \mu(k) E\left(\frac{n}{k}\right)^2$ et, du fait que $|\mu(k)| \le 1$ pour tout k, on déduit la majoration $\left| \frac{q_n}{n^2} - \sum_{k=1}^n \frac{\mu(k)}{k^2} \right| = \frac{1}{n^2} \left| \sum_{k=1}^n \mu(k) \left[\left(\frac{n}{k}\right)^2 - E\left(\frac{n}{k}\right)^2 \right] \right|$ $\le \frac{1}{n^2} \sum_{k=1}^n \left[\left(\frac{n}{k}\right)^2 - E\left(\frac{n}{k}\right)^2 \right].$

Or, pour tout réel $x \geq 0$, on a

$$0 \le x^2 - E(x)^2 = (x - E(x)) (x + E(x)) \le x + E(x) \le 2x ,$$

donc

$$\left| \frac{q_n}{n^2} - \sum_{k=1}^n \frac{\mu(k)}{k^2} \right| \le \frac{1}{n^2} \sum_{k=1}^n \frac{2n}{k} = \frac{2}{n} \sum_{k=1}^n \frac{1}{k} \sim \frac{2 \ln n}{n} \quad \underset{n \to \infty}{\longrightarrow} \quad 0.$$

Donc
$$\lim_{n\to\infty} \frac{q_n}{n^2} = \sum_{k=1}^{\infty} \frac{\mu(k)}{k^2} = \frac{6}{\pi^2}.$$

On peut interpréter ce nombre $\frac{6}{\pi^2}$ comme la "probabilité pour que deux entiers naturels non nuls soient premiers entre eux".