Sottospazi vettoriali

Si definise
$$W_1 + W_2 = \{n + y \in V \mid n \in W_1 \land y \in W_2\}$$

Proposizione W1+W2 & sottospezio vettorial di V

+)
$$W_1 \in W_1 + W_2 \Rightarrow W_1 = w_1 + y_1$$
 can $w_1 \in W_1$ e $y_1 \in W_2$

$$W_1 + W_2 = (n_1 + y_1) + (n_2 + y_2) = \underbrace{(n_1 + n_2)}_{\in W_1} + \underbrace{(y_1 + y_2)}_{\in W_2} \in W_1 + W_2$$

Exemptio
$$V = \mathbb{R}^2$$
, $W_1 = \mathcal{L}((1,0))$, $W_2 = \mathcal{L}((0,1))$; $W_1 + W_2 = \mathbb{R}^2$ in fath in generic elements di W_1 et della

 $W_1, W_2 \subseteq W_1 + W_2$, in fath again elements on di W_1 si pro scriven com $n + Q \in W_1 + W_2$ $\in W_2$ Ogni elements of di W_2 si scrive $Q + y \in W_1 + W_2$. Quindi dim $(W_1 + W_2) \ge \max \left\{ \dim (W_1), \dim (W_2) \right\}$