Mid-Semester Examination

Time: 2 Hours

You need to give proper reason(s) to get FULL MARKS

1. Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 5 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 \\ -1 & 0 \\ 3 & 1 \end{bmatrix}$.

(a) Obtain the RREF of A and use it to give a basis of $\mathcal{N}(A) = \text{NULL SPACE}(A)$. 4 Marks

Solution: RREF(A) = $\begin{bmatrix} 1 & 0 & -\frac{4}{7} \\ 0 & 1 & \frac{2}{7} \end{bmatrix}$ and basis of $\mathcal{N}(A)$ is $\left\{ \alpha \left[\frac{4}{7}, \frac{-2}{7}, 1 \right]^t \right\}$, for some $\alpha \neq 0$. 2+2 Marks

(b) Let $W = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = 0$. Determine the vector $[a, b, c]^t$ such that W = Column Space(B) = Col(B).

Solution: Consider $\begin{bmatrix} 1 & 2 & x \\ -1 & 0 & y \\ 3 & 1 & z \end{bmatrix}$. So, the required condition is 2(z+3y)=x+y or equivalently, x-5y-2z=0. Thus, $[a,b,c]^t=\alpha[1,-5,-2]^t$, for some $\alpha\neq 0$.

(c) Determine a basis and dimension of $\mathcal{N}(A) \cap \operatorname{Col}(B)$.

Solution: As seen in the previous calculation, both the column vectors of B are orthogonal to the second row of A. So, $\left\{\alpha\left[\frac{4}{7}, \frac{-2}{7}, 1\right]^t\right\}$, for some $\alpha \neq 0$, is a basis of $\mathcal{N}(A) \cap \operatorname{Col}(B)$. Hence, the dimension is 1.

Marks to be given only when the student has found a basis of the intersection. $3~\mathrm{Marks}$

- 2. Let P = (3,0,2), Q = (1,2,-1) and R = (2,-1,1) be three points in \mathbb{R}^3 .
 - (a) Find the area of the triangle with vertices P, Q and R.

4 Marks

Solution: Note that $\overrightarrow{PQ} = (1, 2, -1) - (3, 0, 2) = (-2, 2, -3)$, $\overrightarrow{QR} = (2, -1, 1) - (1, 2, -1) = (1, -3, 2)$ and $\overrightarrow{RP} = (3, 0, 2) - (2, -1, 1) = (1, 1, 1)$. So, the triangle PQR is right angled at the vertex R. Hence,

$$Area(PQR) = \frac{1}{2} \|\overrightarrow{QR}\| \cdot \|\overrightarrow{RP}\| = \frac{1}{2} \sqrt{14} \sqrt{3} = \frac{1}{2} \sqrt{42}.$$
 4 Marks

Alternate:

$$\begin{aligned} \operatorname{Area}(PQR) &= & \frac{1}{2} \|\overrightarrow{PQ}\| \cdot \|\overrightarrow{QR}\| \operatorname{Sin}(\theta) = \frac{1}{2} \cdot \sqrt{17} \cdot \sqrt{14} \sqrt{1 - \frac{14^2}{17 \cdot 14}} \\ &= & \frac{1}{2} \sqrt{42}. \end{aligned} \qquad 4 \operatorname{Marks}$$

(b) Find a nonzero vector orthogonal to the plane of the triangle with vertices P,Q and R. 3 Marks

Solution: Note that we need to compute the normal vector of the plane containing the vectors $\overrightarrow{RP} = (1,1,1)$ and $\overrightarrow{QR} = (1,-3,2)$. Or we need to find null space of $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -3 & 2 \end{bmatrix}$. It's basis is $\{\alpha[-5,1,4]^t\}$, for some $\alpha \neq 0$. So, any non-zero multiple of $[-5,1,4]^t$ will do. 3 Marks

(c) Determine all vectors \mathbf{x} orthogonal to \overrightarrow{PQ} and \overrightarrow{QR} with $\|\mathbf{x}\| = \sqrt{2}$. 3 Marks

Solution: As **x** is orthogonal to \overrightarrow{PQ} and \overrightarrow{QR} , it is a multiple of $[-5,1,4]^t$. So, there are exactly two vectors $\alpha[-5,1,4]^t$, where $\alpha=\pm\frac{1}{\sqrt{21}}$.

- 3. Let $W = \{(x_1, x_2, \dots, x_5) : x_1 + x_2 + x_3 + x_4 4x_5 = 0\}$ be a subspace of \mathbb{R}^5 . Then, the set $\{\mathbf{u}_1 = [1, 1, 1, 1, 1]^t, \mathbf{u}_2 = [1, 0, -1, 0, 0]^t, \mathbf{u}_3 = [1, -1, 0, 0, 0]^t\}$ is a linearly independent set in W.
 - (a) Apply the Gram-Schmidt Orthogonalization process to the vectors $\mathbf{u}_1, \mathbf{u}_2$ and \mathbf{u}_3 (do not change the order of the vectors) to obtain an orthonormal set S such that $\mathrm{LS}(S) = \mathrm{LS}(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$.

Solution: If $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ then alternate solutions can be $S = \{\pm \mathbf{v}_1, \pm \mathbf{v}_2, \pm \mathbf{v}_3\}$. Clearly $\mathbf{v}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} = \frac{1}{\sqrt{5}}[1, 1, 1, 1, 1]^t$, $\mathbf{v}_2 = \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} = \frac{1}{\sqrt{2}}[1, 0, -1, 0, 0]^t$ and $\mathbf{v}_3 = \frac{\mathbf{w}_3}{\|\mathbf{w}_2\|} = \frac{1}{\sqrt{6}}[1, -2, 1, 0, 0]^t$, where $\mathbf{w}_3 = \mathbf{u}_3 - \langle \mathbf{u}_3, \mathbf{v}_1 \rangle \mathbf{v}_1 - \langle \mathbf{u}_3, \mathbf{v}_2 \rangle \mathbf{v}_2$.

(b) Extend the set S to form an orthonormal basis of W. 3 Marks

Solution: Note that $\mathbf{u}_4 = [0, 0, 0, 4, 1]^t$ is an element of W and does not belong to $\mathrm{LS}(S)$. Hence, $\mathbf{w}_4 = \mathbf{u}_4 - \langle \mathbf{u}_4, \mathbf{w}_4 \rangle \mathbf{w}_4 = [-1, -1, -1, 3, 0]^t$ and thus, $\mathbf{v}_4 = \pm \frac{1}{2\sqrt{3}}[1, 1, 1, -3, 0]^t$. So, the required orthonormal basis is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$.

(c) Determine the orthogonal projection of the vector $[1, 0, 1, 0, 1]^t$ on $LS(S) = LS(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$.

4 Marks

Solution: Let $\mathbf{x} = [1, 0, 1, 0, 1]^t$. Then, the projection vector is given by $\sum_{i=1}^{3} \langle \mathbf{x}, \mathbf{v}_i \rangle \mathbf{v}_i$ which equals

 $\frac{3}{5}[1,1,1,1,1]^t + \frac{0}{2}[1,0,-1,0,0]^t + \frac{2}{6}[1,-2,1,0,0]^t = \frac{1}{15}[14,-1,14,9,9]^t.$ 4 Marks

Getting the projection vector $\frac{1}{15}[14, -1, 14, 9, 9]^t$.

4. Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$. If 6 is one of the eigenvalues of A, then determine

(a) the characteristic polynomial of A.

2 Marks

Solution: The characteristic polynomial is given by $p(x) = x^3 - 6x^2 - 3x + 18$ or $p(x) = -x^3 + 6x^2 + 3x - 18.$

(b) the other eigenvalues of A.

2 Marks

Solution: The other eigenvalues are roots of $x^2 - 3$ and hence they are $\pm \sqrt{3}$. 2 Marks

(c) all the eigenvectors of A.

2+2+2 Marks

Solution: The eigenpairs, for $\alpha \neq 0$, are

•
$$(6, \alpha[1, 1, 1]^t),$$

•
$$(\sqrt{3}, \alpha[-1+\sqrt{3}, -1-\sqrt{3}, 2]^t)$$
 or $(1.732, \alpha[.732, -2.732, 2]^t)$,

•
$$(\sqrt{3}, \alpha[-1+\sqrt{3}, -1-\sqrt{3}, 2]^t)$$
 or $(1.732, \alpha[.732, -2.732, 2]^t)$,
• $(-\sqrt{3}, \alpha[-1-\sqrt{3}, -1+\sqrt{3}, 2]^t)$ or $(-1.732, \alpha[-2.732, .732, 2]^t)$.

5. Let $A = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}$ be a real symmetric matrix with eigenvalues 1,0 and 3. Also, let the

eigenvectors corresponding to 1 and 0 be $[1,1,1]^t$ and $[1,-1,0]^t$, respectively. Then, determine the values of a, c and f.

Solution:

- The condition 0 is an eigenvalue of A with eigenvector $[1, -1, 0]^t$ implies a = b = d and c = e.
- The condition 1 is an eigenvalue with eigenvector $[1, 1, 1]^t$ with the above condition implies 2a + c = 1, 2c + f = 1. 3 Marks
- Trace(A) = 2a + f = 4 as Trace(A) = Sum of eigenvalues.
- Solving for a, c and f gives $a = \frac{5}{6}, c = -\frac{2}{3}$ and $f = \frac{7}{3}$. 1 + 1 + 1 Marks

Alternate: As A is symmetric, there exists a unitary matrix U such that $U^*AU = D = Diagonal(\lambda_1, \lambda_2, \lambda_3)$. Thus, $A = UDU^*$.

Here, two vectors $[1, 1, 1]^t$ and $[1, -1, 0]^t$ imply that the third eigenvector will be [1, 1, -2]. 3 Marks

Let
$$U = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{bmatrix}$$
 3 Marks

Correct values of a, c and f

4 Marks.

If $U = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 0 & -2 \end{bmatrix}$, then give 3 marks. As, due to NOT normalizing the columns of U, the student cannot get the correct answer and he loses 4 Marks.

6. Let \mathbb{V} denote the vector space of all real polynomials of degree less than or equal to 3 and $T: \mathbb{V} \to \mathbb{V}$ be a linear transformation defined by

$$T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_3 + a_2x + a_1x^2 + a_0x^3.$$

(a) Determine the matrix of the linear transformation, say A, with respect to the ordered basis $\mathcal{B} = \{1, 1+x, x^2+x^3, x^3\}.$ 4 Marks

Solution: By definition

$$A = T[\mathcal{B}, \mathcal{B}] = \begin{bmatrix} [T(1)]_{\mathcal{B}}, [T(1+x)]_{\mathcal{B}}, [T(x^2+x^3)]_{\mathcal{B}}, [T(x^3)]_{\mathcal{B}} \end{bmatrix}$$

$$= \begin{bmatrix} [x^3]_{\mathcal{B}}, [x^2+x^3]_{\mathcal{B}}, [T(1+x)]_{\mathcal{B}}, [T(1)]_{\mathcal{B}} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$
2 Marks
$$= \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

(b) Determine the characteristic polynomial of A.

3 Marks
3 Marks

Solution: $p(x) = x^4 - 2x^2 + 1$

3 Marks

(c) Now, verify the Cayley-Hamilton Theorem (Hint: $A^2 = I$). Solution: Statement of Cayley-Hamilton Theorem

1 Marks

Note that $A^2 = I$ and hence

$$A^4 - 2A^2 + I = I - 2I + I = \mathbf{0}.$$
 2 Marks

Alternate: Even if NOT stated correctly, but correctly verified, give 3 Marks.