Geoinformatica paper extension

University of California, Riverside

February 9, 2024

So far...

- Explore a couple of implementation of k-d tree as new data structure during partitioning:
 - ▶ Brown's balanced K-d tree [https://arxiv.org/abs/1410.5420]
 - ► Sedona's KDB tree [https://sedona.apache.org/]

So far...

- ▶ We had a serious concern about data availability during k-d construction to complete the optimization...
 - ▶ At that stage we deal with a sample of the data.
 - ▶ Not certain if we could even detect possible unbalanced cells.
- ▶ but...

So far...

- ▶ We had seen that given a representative sample detecting unbalanced cells is possible (maybe missing a few).
- ▶ During kd-tree creation we could compute a set of initial intervals.
- ▶ During edge partitioning we could update those interval accordingly (in progress).
- ▶ So, we could expect to save time for sorting and interval finding we perform later in the original approach.

Some questions about other comments...

OVERLAY EVALUATION OPTIMIZATIONS scan the larger dat Optimizations for faces expanding cells approach avoids example, areas w The (naive) reduce phase described above has the potential for a smaller dataset). bottleneck since all faces (which can be a very large number) are sent to one node. One observation is that faces from different cells 6 EXPERIM that are concatenated are in contiguence cells. This implies that faces This section prese from a particular cell will be combi cells. We will use this spatial pro overhead in the central node. 1. How about overlay of > 3 DCELs We thus propose an alternative processing step is introduced. In a level in the quadtree structure (root) that can be used to combine

▶ Is it more related to compute more than two layers at the same time or something like cascading?

Some questions about other comments...

▶ With a balanced data structure would we expect a more fair evaluation when we test different levels of the tree?