stroke-prediction-model

May 1, 2024

Author: Asad Mujeeb

 ${\bf Project}: {\it Stroke \ Prediction \ Model}$

 $\mathbf{gmail}: a sad muje eb @student.bzu.edu.pk$

 ${\bf contact}: \ +923166328876$

Linkedin : Linkedin

```
[74]: # This Python 3 environment comes with many helpful analytics libraries.
       \hookrightarrow installed
      # It is defined by the kaggle/python Docker image: https://github.com/kaggle/
       →docker-python
      # For example, here's several helpful packages to load
      import numpy as np # linear algebra
      import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
      import matplotlib.pyplot as plt
      import seaborn as sns
      # Input data files are available in the read-only "../input/" directory
      # For example, running this (by clicking run or pressing Shift+Enter) will list_
       ⇔all files under the input directory
      import os
      for dirname, _, filenames in os.walk('/kaggle/input'):
          for filename in filenames:
              print(os.path.join(dirname, filename))
      # You can write up to 20GB to the current directory (/kaggle/working/) that ⊔
       →gets preserved as output when you create a version using "Save & Run All"
      # You can also write temporary files to /kaggle/temp/, but they won't be saved_
       ⇔outside of the current session
```

/kaggle/input/stroke-prediction-dataset/healthcare-dataset-stroke-data.csv

```
[2]: # read the data

df = pd.read_csv(r"/kaggle/input/stroke-prediction-dataset/

⇔healthcare-dataset-stroke-data.csv")
```

```
df.head()
[3]:
                             hypertension heart_disease ever_married \
               gender
                        age
     0
         9046
                 Male
                       67.0
                                         0
                                                         1
        51676
               Female
                       61.0
                                         0
                                                         0
     1
                                                                    Yes
        31112
                 Male
                       80.0
                                         0
                                                         1
                                                                    Yes
     3
        60182
               Female
                       49.0
                                         0
                                                         0
                                                                    Yes
         1665 Female
                      79.0
                                                         0
                                         1
                                                                    Yes
            work_type Residence_type avg_glucose_level
                                                                  smoking status \
                                                            bmi
              Private
                               Urban
                                                  228.69
                                                                 formerly smoked
     0
                                                          36.6
                                                  202.21
                                                                    never smoked
     1
        Self-employed
                                Rural
                                                            NaN
     2
              Private
                                                  105.92 32.5
                                                                    never smoked
                                Rural
     3
              Private
                                Urban
                                                  171.23
                                                           34.4
                                                                          smokes
                                                                    never smoked
     4 Self-employed
                                Rural
                                                  174.12 24.0
        stroke
     0
             1
     1
             1
     2
             1
     3
             1
             1
[4]: # count the values
     df.value_counts()
                                         heart_disease ever_married work_type
                    age
                          hypertension
            gender
     Residence_type avg_glucose_level
                                         bmi
                                               smoking_status
                                                                 stroke
            Female
                    13.0 0
     77
                                                         No
                                                                       children
     Rural
                     85.81
                                         18.6
                                               Unknown
                                                                           1
     49605
                    63.0 0
            Male
                                         0
                                                         Yes
                                                                       Private
     Urban
                     74.39
                                         31.0
                                               formerly smoked
                                                                           1
     49661
           Male
                    53.0 0
                                                         Yes
                                                                       Govt job
     Urban
                     85.17
                                                                           1
                                         29.2 never smoked
                                                                 0
     49646 Male
                    72.0 0
                                                         Yes
                                                                       Self-employed
     Rural
                     113.63
                                         26.5 Unknown
                                                                 0
     49645
           Male
                    58.0 0
                                         0
                                                         No
                                                                       Private
```

[3]: # show the sample data

Rural

25138

Rural

25130

Urban

25107

Urban

76.22

91.63

27.0 0

79.21

65.04

Female 78.0 1

Female 47.0 0

Female

33.5 smokes

Unknown

30.9 never smoked

0

0

19.5

22.2 formerly smoked 0

Yes

Yes

0

0

0

1

1

1

1

Private

Private

Private

```
25102 Female 51.0 0
                                                               Govt_job
                                  0
                                                  Yes
Urban
               95.16
                                  42.7 formerly smoked 0
                                                                    1
72940 Female 2.0
                                  0
                                                  No
                                                                children
Urban
                102.92
                                  17.6
                                        Unknown
                                                         0
                                                                    1
Name: count, Length: 4909, dtype: int64
```

1 Find the number of null values in each column

```
[5]: print(df.isna().sum())

# graphical representation of null values
df.isna().sum().plot(kind = "barh")
```

id 0 0 gender 0 age hypertension 0 heart_disease 0 0 ever_married work_type 0 Residence_type 0 avg_glucose_level 0 bmi201 smoking_status 0 0 stroke dtype: int64

7 1

[5]: <Axes: >

Found 201 NULL values in bmi column

```
[6]: # statistical analysis

df.describe(include = "all")
```

	df.des	cribe(include	= "all")					
[6]:		id	gender	age	hypertension	heart_d	isease \	
	count	5110.000000	5110	5110.000000	5110.000000	5110.	000000	
	unique	NaN	3	NaN	NaN		NaN	
	top	NaN	Female	NaN	NaN		NaN	
	freq	NaN	2994	NaN	NaN		NaN	
	mean	36517.829354	NaN	43.226614	0.097456	0.	054012	
	std	21161.721625	NaN	22.612647	0.296607	0.	226063	
	min	67.000000	NaN	0.080000	0.00000	0.	000000	
	25%	17741.250000	NaN	25.000000	0.000000	0.	000000	
	50%	36932.000000	NaN	45.000000	0.000000	0.	000000	
	75%	54682.000000	NaN	61.000000	0.000000	0.	000000	
	max	72940.000000	NaN	82.000000	1.000000	1.	000000	
		ever_married	work_type	Residence_typ	e avg_glucos	se_level	bmi	\
	count	5110	5110	511	.0 5110	0.00000	4909.000000	
	unique	2	5		2	NaN	NaN	
	top	Yes	Private	Urba	ın	NaN	NaN	
	freq	3353	2925	259	96	NaN	NaN	
	mean	NaN	NaN	Na	ıN 106	3.147677	28.893237	

std	NaN	NaN	NaN	45.283560	7.854067
min	NaN	NaN	NaN	55.120000	10.300000
25%	NaN	NaN	NaN	77.245000	23.500000
50%	NaN	NaN	NaN	91.885000	28.100000
75%	NaN	NaN	NaN	114.090000	33.100000
max	NaN	NaN	NaN	271.740000	97.600000
	smoking_status	stroke			
count	5110	5110.000000			
unique	4	NaN			
top	never smoked	NaN			
freq	1892	NaN			
mean	NaN	0.048728			
std	NaN	0.215320			
min	NaN	0.000000			
25%	NaN	0.000000			
50%	NaN	0.000000			
75%	NaN	0.000000			
max	NaN	1.000000			

[7]: # provide the datatype of all column

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5110 entries, 0 to 5109
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	id	5110 non-null	int64
1	gender	5110 non-null	object
2	age	5110 non-null	float64
3	hypertension	5110 non-null	int64
4	heart_disease	5110 non-null	int64
5	ever_married	5110 non-null	object
6	work_type	5110 non-null	object
7	Residence_type	5110 non-null	object
8	avg_glucose_level	5110 non-null	float64
9	bmi	4909 non-null	float64
10	smoking_status	5110 non-null	object
11	stroke	5110 non-null	int64

dtypes: float64(3), int64(4), object(5)

memory usage: 479.2+ KB

2 Pre-Processign + EDA

```
[8]: df = df.drop(['id'], axis = 1)
```

3 Gender Analysis

```
[9]: df["gender"].value_counts()
 [9]: gender
      Female
                2994
     Male
                2115
      Other
                   1
     Name: count, dtype: int64
     we have a 'other' gender, we will remove it
[10]: # remove the other gender
      df["gender"] = df["gender"].replace("Other", "Female")
      # plot the pie chart
      print(df["gender"].value_counts())
      df["gender"].value_counts().plot(kind = "pie")
     gender
     Female
               2995
     Male
               2115
     Name: count, dtype: int64
[10]: <Axes: ylabel='count'>
```


4 Target Feature - Stroke

Stroke Analysis


```
[13]: print("% of people who actually got stroke ", (df["stroke"].value_counts()[1] / df["stroke"].value_counts().sum()).round(3) * 100)
```

% of people who actually got stroke $\ 4.9$ Only 5% of people got stroke

5 Hyper-tension Analysis

6 Work type analysis

```
[16]: df["work_type"].value_counts()
[16]: work_type
      Private
                       2925
      Self-employed
                        819
      children
                        687
      Govt_job
                        657
      Never_worked
                         22
      Name: count, dtype: int64
[17]: # graphical representation
      df['work_type'].value_counts().plot(kind = "pie")
[17]: <Axes: ylabel='count'>
```


7 Smoking status Analysis

8 Residance type Analysis

We have equal percentage of population who are from urban and rural areas

9 BMI Analysis

```
[22]: # Number of BMI- NULL values

df["bmi"].isnull().sum()
```

[22]: 201

we have null values in BMI column contains 201 NaN

```
[23]: sns.histplot(data = df["bmi"])
```

/opt/conda/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version.

Convert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

[23]: <Axes: xlabel='bmi', ylabel='Count'>

BMI is highly skewed

```
[24]: sns.boxplot(data = df["bmi"])
```

[24]: <Axes: >

Based on histogram and distplot , there are outliers in BMI column

[25]: # finding the count of ouliers

[26]: 3.9334637964774952

```
q1 = df["bmi"].quantile(0.25)
      q3 = df["bmi"].quantile(0.75)
      # Finding IQR
      IQR = q3 - q1
      da = (df["bmi"] < (q1 - 1.5 * IQR)) | (df["bmi"] > (q3 + 1.5 * IQR))
      da.value_counts()
[25]: bmi
     False
               5000
     True
                110
     Name: count, dtype: int64
     Total Outliers: 110
     Total non-outliers: 5000
[26]: # percentage of null values in BMI
      df["bmi"].isna().sum() / len(df["bmi"]) * 100
```

NULL values hold 3.93% of the dataframe

[30]: <Axes: >

```
[27]: df_na = df.loc[df["bmi"]. isnull()]
      g = df_na["stroke"].sum()
      print("People who got stroke and their BMI is NA :", g)
      h = df["stroke"].sum()
      print("people who got stroke and their BMI is given", h)
      print("percentage of people with stroke in NAN values to the overall dataset : \sqcup
       People who got stroke and their BMI is NA: 40
     people who got stroke and their BMI is given 249
     percentage of people with stroke in NAN values to the overall dataset :
     16.06425702811245
[28]: # percentage of instance who got stroke
      df["stroke"].sum() / len(df) * 100
[28]: 4.87279843444227
     our main target is stroke and who got stroke in the minority 249 which is only 4.9\%
[29]: # dealing with null values in BMI
      print("Median of BMI : ", df["bmi"].median())
      df["bmi"] = df["bmi"].fillna(df["bmi"].median())
     Median of BMI: 28.1
[30]: df.isna().sum().plot(kind = "barh")
```


10 Age Analysis

```
[31]: sns.histplot(data = df["age"])
```

/opt/conda/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

[31]: <Axes: xlabel='age', ylabel='Count'>


```
[32]: sns.boxplot(data = df["age"])
```

[32]: <Axes: >

The age parameter value does not have outliers

11 Average Glucose Level

```
[33]: sns.histplot(data = df["avg_glucose_level"])

/opt/conda/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning:
    use_inf_as_na option is deprecated and will be removed in a future version.
    Convert inf values to NaN before operating instead.
    with pd.option_context('mode.use_inf_as_na', True):

[33]: <Axes: xlabel='avg_glucose_level', ylabel='Count'>
```



```
[34]: # boxplot
sns.boxplot(data = df["avg_glucose_level"])
```

[34]: <Axes: >


```
[35]: # finding the count of outliers in avg_glucose_level

q1 = df["avg_glucose_level"].quantile(0.25)
q3 = df["avg_glucose_level"].quantile(0.75)

IQR = q3 - q1
da = (df["avg_glucose_level"] < (q1 - 1.5 * IQR)) | (df["avg_glucose_level"] > \( \text{ } \) \( \
```

[35]: avg_glucose_level False 4483

True 627

Name: count, dtype: int64

Total outliers in avg_glucose_level : 627

Total non-outliers in avg_glucose_level: 4483

12 Heart diseases Analysis

13 Ever married analysis with values

```
[39]: 3353 / len(df)
```

[39]: 0.6561643835616439

This result shows that 65.6% of people are married and 34.4~% are un-married of the population

```
[40]: df["ever_married"].value_counts().plot(kind = "pie")
```

[40]: <Axes: ylabel='count'>

14 Cross Analysis - All attributes compared with target variable

```
[41]: # comparing stroke with gender

sns.countplot(x = "stroke", hue = "gender", data = df)
```

[41]: <Axes: xlabel='stroke', ylabel='count'>

15 comparing stroke with work-type

```
[42]: sns.countplot(x = "stroke", hue = "work_type", data = df)
```

[42]: <Axes: xlabel='stroke', ylabel='count'>

People who never worked did not face heart attack and the people who are privately employed got more heart attack

16 comparing stroke with smoking status

```
[43]: sns.countplot(x = "stroke", hue = "smoking_status", data = df)
```

[43]: <Axes: xlabel='stroke', ylabel='count'>

people who formely smoked got more strokes. The people who smoked and never smoked has same probability of getting stroke

17 comparing stroke with residence type

```
[44]: sns.countplot(x = "stroke", hue = "Residence_type", data = df)

[44]: <Axes: xlabel='stroke', ylabel='count'>
```


people who lived in urban areas are more like to getting stroke as compared rural areas

18 Comparing stroke with heart diseases

```
[45]: sns.countplot(x = "stroke", hue = "heart_disease", data = df)
```

[45]: <Axes: xlabel='stroke', ylabel='count'>

People with no heart diseases are suffering are suffering with stroke as compared to one who face heart problem

19 Comparing stroke with married status

```
[46]: sns.countplot(x = "stroke", hue = "ever_married", data = df)

[46]: <Axes: xlabel='stroke', ylabel='count'>
```


Married people are more likely to get stroke as compared to un-married people

[47]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5110 entries, 0 to 5109
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	gender	5110 non-null	object
1	age	5110 non-null	float64
2	hypertension	5110 non-null	int64
3	heart_disease	5110 non-null	int64
4	ever_married	5110 non-null	object
5	work_type	5110 non-null	object
6	Residence_type	5110 non-null	object
7	avg_glucose_level	5110 non-null	float64
8	bmi	5110 non-null	float64
9	smoking_status	5110 non-null	object
10	stroke	5110 non-null	int64

dtypes: float64(3), int64(3), object(5)
memory usage: 439.3+ KB

20 creating dummy variable numeric binary attributes

```
[48]: # converting numerical binary values to string
         df[["hypertension", "heart disease", "stroke"]].astype(str)
          # generate the dummy attributes
         df = pd.get_dummies(df, drop_first = True)
[49]: # correlation matrix
         corrmat = df.corr()
         f,ax = plt.subplots(figsize = (9,8))
         sns.heatmap(corrmat, ax = ax ,cmap = "YlGnBu", linewidths = 0.8, annot = True)
[49]: <Axes: >
                                                                                                                                  1.0
                                                                       0.16 0.130.0210.16-0.020.005 0.12 -0.130.007 9.05 90.06 50.031
                                   hypertension -
                                                                                                                                  - 0.8
                                                              0.16<mark>0.0370.130.0860.11-0.012</mark>67e-05.087<mark>0.090</mark>.00310.0670.0220.044
                                                                   avg_glucose_level - 0.24 0.17
                                                                                                                                  0.6
                                                                   1 0.0360.0260.330.028 0.2 0.07 -0.48.000280.1 0.110.084
                                                     0.16<mark>0.037</mark>0.17
                                         stroke - 0.25 0.13 0.13 0.13 0.036 1 0.009 0.11-0.015.0120.0620.0840.0150.0650.00400089
                                                                                                                                  - 0.4
                                   gender_Male -0.0280.0210.0860.0550.026.0091 1 -0.030.0110.0320.0260.089.0059.0430.099.011
                               ever_married_Yes - 0.68 0.16 0.11 0.16 0.33 0.11 0.03 1 0.0910.15 0.19 0.54 0.063 0.17 0.1 0.11
                                                                                                                                 - 0.2
                        work_type_Never_worked -0.0790.0220.0160.0150.0280.0150.0110.091 1 0.0760.0290.0260.023-0.030.0360.028
                              work_type_Private - 0.120.00247e-06.017 0.2 0.0120.0330.15-0.076 1 -0.51-0.460.0180.026 0.1 0.1
                                                                                                                                  0.0
                        work_type_Self-employed -0.33 0.12 0.0870.0630.070.0620.0260.19-0.0290.51 1 -0.170.0110.0930.0310.0036
                             work_type_children --0.63-0.130.092-0.1 -0.440.0840.089-0.540.0260.46-0.17 1 0.00230.16-0.24-0.17
                                                                                                                                  -0.2
                          Residence_type_Urban -0.01-0.00190030.00090002801-0.00500060.0230.0180.01-0.0021 1 0.007-0.0240.027
                smoking_status_formerly_smoked -0.240.0590.0670.068 0.1 0.0650.0430.17-0.030.0260.0930.180.007 1 -0.35 -0.2
                                                                                                                                 - -0.4
                   smoking_status_never smoked - 0.12 0.0650.022.0240.130.0040.099 0.1 0.036 0.1 0.031-0.240.0240.035 1 -0.33
                         smoking_status_smokes -0.0730.0310.0440.0180.089.0089.011 0.11-0.028 0.1-0.003 0.170.027 -0.2 -0.33
                                                                                                                                 - -0.6
                                                                            gender_Male
                                                                                     ork_type_Never_worked
                                                                                                            smoking_status_formerly smoked
                                                                                                                smoking_status_never smoked
                                                                                 ever_married_Yes
                                                                                          work_type_Private
                                                                                              work_type_Self-employed
                                                                                                   work_type_children
                                                                                                                     smoking_status_smokes
                                                                   bmi
                                                                                                        Residence_type_Urban
                                                          heart_disease
```

```
[50]: # the dataframe after performing dummy attributes
      df.head()
[50]:
               hypertension heart_disease
                                             avg_glucose_level
                                                                  bmi
                                                                        stroke
                                                         228.69
                                                                 36.6
      0 67.0
                           0
                                                                             1
                                          1
      1 61.0
                           0
                                          0
                                                         202.21 28.1
                                                                             1
      2 80.0
                           0
                                                         105.92 32.5
                                          1
                                                                             1
      3 49.0
                                                         171.23 34.4
                           0
                                          0
                                                                             1
      4 79.0
                                          0
                                                         174.12 24.0
                                                                             1
                           1
         gender_Male ever_married_Yes work_type_Never_worked work_type_Private
      0
                True
                                   True
                                                           False
                                                                                True
               False
                                   True
                                                           False
                                                                               False
      1
      2
                True
                                   True
                                                           False
                                                                                True
      3
               False
                                   True
                                                           False
                                                                                True
      4
               False
                                   True
                                                           False
                                                                               False
         work_type_Self-employed
                                   work_type_children Residence_type_Urban
      0
                            False
                                                 False
                                                                         True
                             True
                                                                        False
      1
                                                 False
      2
                            False
                                                 False
                                                                        False
      3
                            False
                                                 False
                                                                         True
      4
                             True
                                                 False
                                                                        False
         smoking_status_formerly smoked
                                          smoking_status_never smoked \
      0
                                                                  False
                                    True
      1
                                   False
                                                                  True
                                   False
      2
                                                                  True
      3
                                   False
                                                                 False
      4
                                   False
                                                                  True
         smoking_status_smokes
                          False
      0
      1
                          False
      2
                          False
      3
                           True
      4
                          False
[51]: # use random over-sampling
      from imblearn.over_sampling import RandomOverSampler
[52]: oversample = RandomOverSampler(sampling_strategy = "minority")
      x = df.drop(['stroke'], axis = 1)
```

[53]:	x									
[53]:		age	hypertension	heart_diseas	e avg_gluc	ose_level	bmi	gender	Male	\
	0	67.0	0		1	228.69	36.6		- True	
	1	61.0	0	(0	202.21	28.1		False	
	2	80.0	0		1	105.92	32.5		True	
	3	49.0	0	(0	171.23	34.4		False	
	4	79.0	1	•	0	174.12	24.0	•	False	
		 80.0	 1		 O	 83.75	 28.1		False	
	5106	81.0	0		0	125.20	40.0		False	
	5107	35.0	0		0	82.99	30.6		False	
	5108	51.0	0		0	166.29	25.6	•	True	
	5109	44.0	0		0	85.28	26.2	•	False	
			. 1 7	3 . 37	, ,	1		,		
	0	ever_		ork_type_Neve		ork_type_H		\		
	0		True		False		True			
	1		True		False False		False			
	2		True		False False		True			
	3 4		True		False		True False			
			True 		raise		raise			
	5105		True		 False	•••	True			
	5106		True		False		False			
	5107		True		False		False			
	5108		True		False		True			
	5109		True		False		False			
		work	type_Self-emplo	oved work tw	pe_children	Residenc	ce type	Urban	\	
	0			alse	False			True	`	
	1			True	False			False		
	2			alse	False			False		
	3		Fa	alse	False			True		
	4		7	True	False			False		
	•••		•••		•••		•••			
	5105		Fa	alse	False			True		
	5106		7	Γrue	False			True		
	5107		7	Γrue	False			False		
	5108			alse	False			False		
	5109		Fa	alse	False			True		
		smoki	.ng_status_forme	erly smoked	smoking_sta	tus_never	smoked	\		
	0		J- -	True	0_	-	False			
	1			False			True			
	2			False			True			
	3			False			False			
	4			False			True			

```
5105
                                      False
                                                                      True
      5106
                                      False
                                                                      True
      5107
                                      False
                                                                      True
      5108
                                       True
                                                                     False
      5109
                                      False
                                                                     False
            smoking_status_smokes
      0
                             False
      1
                             False
      2
                             False
      3
                              True
      4
                             False
      5105
                             False
      5106
                             False
      5107
                             False
      5108
                             False
      5109
                             False
      [5110 rows x 15 columns]
[54]: y = df["stroke"]
[55]: y
[55]: 0
              1
      1
              1
      2
              1
      3
              1
              1
      5105
              0
      5106
              0
      5107
              0
      5108
              0
      5109
      Name: stroke, Length: 5110, dtype: int64
[56]: x_over, y_over = oversample.fit_resample(x,y)
      from sklearn.preprocessing import StandardScaler
      scaler = StandardScaler()
      df[["bmi", "avg_glucose_level", "age"]] = scaler.fit_transform(df[["bmi",
                                            "avg_glucose_level", "age"]])
```

```
[57]: # create a train test split
from sklearn.model_selection import train_test_split
x_train , x_test, y_train, y_test = train_test_split(x_over,y_over, test_size =_
$\to$0.2, random_state = 42)
```

```
[58]: # checking the shape of split

print("x_train : ", x_train.shape)
print("y_train : ", y_train.shape)
print("x_test : ", x_test.shape)
print("y_test : ", y_test.shape)
```

x_train : (7777, 15)
y_train : (7777,)
x_test : (1945, 15)
y_test : (1945,)

21 1. Decision Tree Model*

```
[59]: from sklearn.tree import DecisionTreeClassifier from sklearn import metrics from sklearn.metrics import auc, roc_auc_score, roc_curve, precision_score, recall_score, f1_score
```

```
[60]: clf = DecisionTreeClassifier()
    clf = clf.fit(x_train, y_train)
    y_pred = clf.predict(x_test)
    print("Accuracy : ", metrics.accuracy_score(y_test, y_pred) * 100)
    print("ROC AUC Score : ", roc_auc_score(y_test, y_pred))
```

Accuracy: 98.04627249357326 ROC AUC Score: 0.9805128205128205

22 2. KNN Model

```
[61]: from sklearn.neighbors import KNeighborsClassifier
  from sklearn.metrics import accuracy_score
  knn = KNeighborsClassifier(n_neighbors = 2)
  knn.fit(x_train, y_train)
  y_pred_knn = knn.predict(x_test)
  y_pred_prob_knn = knn.predict_proba(x_test)[:, 1]
  print("Accuracy score : ", accuracy_score(y_test, y_pred) * 100)
  print("ROC AUC Score : ", roc_auc_score(y_test, y_pred) * 100)
```

Accuracy score : 98.04627249357326 ROC AUC Score : 98.05128205128206

23 3- XGBoost Model

```
[62]: from xgboost import XGBClassifier

xgb = XGBClassifier()
xgb.fit(x_train, y_train)

y_pred_xgb = xgb.predict(x_test)
y_pred_prob_xgb = xgb.predict_proba(x_test)[:, 1]

print("Accuarcy score : ", accuracy_score(y_test, y_pred))
print("ROC AUC Score : ", roc_auc_score(y_test, y_pred))
```

Accuarcy score : 0.9804627249357326 RDC AUC Score : 0.9805128205128205

24 4- Plot ROC AUC

```
[63]: fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob_xgb)
    plt.figure(figsize = (6,4))
    plt.plot(fpr, tpr, linewidth = 2, color = "teal")
    plt.plot([0,1], [0,1], "r--")
    plt.title("ROC Curve of XGBoost")
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive rate")
    plt.show()
```


25 Confusion Matrix

```
[64]: from sklearn.metrics import confusion_matrix
    cm = confusion_matrix(y_test, y_pred_xgb)
    sns.heatmap(cm, annot = True, cmap = "Blues", cbar = False)
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.title("Confusion Matrix")
    plt.show()
```



```
[65]: from sklearn.metrics import accuracy_score, precision_score, recall_score,___

4f1_score

print("Accuracy Score: ", accuracy_score(y_test, y_pred_xgb))

print("precision score: ", precision_score(y_test, y_pred_xgb))

print("recall score: ", recall_score(y_test, y_pred_xgb))

print("f1 score: ", f1_score(y_test, y_pred_xgb))
```

Accuracy Score : 0.9722365038560411

precision score : 0.947265625

recall score : 1.0

f1 score: 0.9729187562688064

26 5- Random Forest Classifier Model

```
[66]: from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import RandomizedSearchCV

rf_clf = RandomForestClassifier(n_estimators = 100)
rf_clf.fit(x_train, y_train)
```

```
y_pred_rf = rf_clf.predict(x_test)
print("Accuracy Score : ", accuracy_score(y_test, y_pred_rf) * 100)
```

Accuracy Score : 99.43444730077121

27 6- KFold Validation

```
[67]: from sklearn import model_selection
from sklearn.model_selection import KFold

kfold = model_selection.KFold(n_splits = 20, shuffle = True)
results_kfold = model_selection.cross_val_score(rf_clf, x_over, y_over, cv = kfold)

print("Accuracy : ", results_kfold.mean() * 100)
```

Accuracy: 99.35195747881124

28 7- Logistic Regression Model

```
[68]: from sklearn.linear_model import LogisticRegression
    classifier = LogisticRegression(random_state = 0, max_iter = 1000)

    classifier.fit(x_train ,y_train)
    y_pred_lr = classifier.predict(x_test)
    print("Accuracy score : ", accuracy_score(y_test, y_pred_lr)*100)

Accuracy score : 76.70951156812339
```

[]:

29 8- Prediction of Model

```
[73]: age = 75
   avg_glucose_level = 300
   bmi = 36.6
   gender_male = 1
   ever_married_Yes = 1
   work_type_Never_worked = 0
   work_type_Private = 1
   work_type_Self_employed = 0
   work_type_children = 0
   Residence_type_Urban = 1
   smoking_status_formerly_smoked = 1
```

```
smoking_status_never_smoked = 0
smoking_status_smokes = 0
hypertension = 0
heart_disease = 1
input_feature = ['age', 'hypertension', 'heart_disease', 'avg_glucose_level', __
 'gender_Male', 'ever_married_Yes', 'work_type_Never_worked',
       'work type Private', 'work type Self-employed', 'work type children',
       'Residence_type_Urban', 'smoking_status_formerly smoked',
       'smoking_status_never smoked', 'smoking_status_smokes']
feature_values = {
    'age': age,
    'hypertension': hypertension,
    'heart_disease': heart_disease,
    'avg_glucose_level': avg_glucose_level,
    'bmi': bmi,
    'gender_Male': gender_male,
    'ever married Yes': ever married Yes,
    'work_type_Never_worked': work_type_Never_worked,
    'work_type_Private': work_type_Private,
    'work_type_Self-employed': work_type_Self_employed,
    'work_type_children': work_type_children,
    'Residence_type_Urban': Residence_type_Urban,
    'smoking_status_formerly_smoked': smoking_status_formerly_smoked,
    'smoking_status_never_smoked': smoking_status_never_smoked,
    'smoking_status_smokes': smoking_status_smokes
}
df = pd.DataFrame(feature_values, index=[0])
prediction = rf_clf.predict(df)[0]
print(prediction)
```

1

30 Thank You

[]: