# Besos – terzo meeting Sviluppo RT-Linux TDRouter

Michele Welponer

Disi – Dipartimento di Ingegneria e scienze dell'informazione

Facolta' di Matematica, Fisica e Scienze Università degli Studi di Trento

Milano, maggio 2011.

#### Intro: dove eravamo rimasti?

- Traffic control: le discipline di queueing
  - disciplina *pnull* gestisce ed implementa una coda.
     I pacchetti vengono accodati e mai fatti uscire autonomamente
- Egressing packets synchro forwarding (EPSF)
  - dequeueing k pacchetti ogni interrupt GPS

# Problemi/Limitazioni hardware

- interfaccia fisica di uscita ethernet singola
  - Tx manda nei TF (1, 3, 5, 7, 9)
  - Rx riceve nei TF (1, 3, 5, 7, 9)

OK!

- interfacce fisiche di uscita ethernet multiple
  - Problema condivisione bus da parte degli ingressi PCI (DELL SC1420)

**RISOLTO!** 



- un-synchronized packet with destination 1
- un-synchronized packet with destination 2
- synchronized packet with destination 1
- synchronized packet with destination 2

synchronized packet with destination 1
synchronized packet with destination 2



## Propagation Delay Compensation (p.d.c.)

- Settando la p.d.c sulla scheda GPS posso anticipare o posticiparela la generazione degli interrupt sul TDR
- La p.d.f. della latenza e' una curva caratterizzata da un lower bound (l.b.) e un upper bound (u.b.), quindi una curva compresa sempre tra l.b. e u.b.



## Come procedere

- Verifichiamo se e come u.b. e l.b. variano al variare delle dimensioni del pacchetto (68 → 1400 byte)
- Verifichiamo con un v.l.t. se il nostro l.b. rimane invariato
- Applichiamo la p.d.c. In funzione delle dimensioni del pacchetto







traslazione curva verso dx

# Very Long Test 48h (v.l.t.)

 Controlliamo tramite v.l.t. se effettivamente il mio lower bound con pacchetti di 1400byte rimane sopra 40us



#### SI'

bene, possiamo usare una p.d.c. pari a -40us (se la dim. pacchetto rimane costante a 1400 byte)

• 1400 byte p.d.c = 0



1400 byte p.d.c. = -40





# Configurazione TDS switching boards (bis)

Michele Welponer © May 2011



synchronized packet with destination 1
synchronized packet with destination 2





## Queueing discipline semplice

Metodi: Enqueue, Dequeue, Requeue, Drop, Init,
 Reset, Destroy, Dump





#### Identificazione e supporto delle Classi

- Id esterno: id assegnato alla classe dall'utente
- Id interno: utilizzato dal kernel e assegnato dalla Q.d.
- NB: non tutte le Q.d. supportano le classi.
  - CBQ, DS\_MARK, CSZ, P-FIFO supportano le classi
  - possiamo usare P-FIFO modificando opportunamente il metodo dequeue() in modo che venga invocato solo in modo sincronizzato

- Liste di filtri: i filtri sono organizzati in liste di filtri
- Invocazione di un filtro: un filtro viene invocato nel momento dell'enqueue per assegnare i pacchetti alla classe di appartenenza corretta
- Elements: i filtri sono costituiti da varie sottostrutture (dette elements) che rappresentano i parametri di filtraggio pacchetti (IP header TOS, IP addresses, port numbers etc.)

Thank you ...Questions?



