Exercise 6.5.

- 1) When any of Alice's or Bob's spin operators acts on a product state, the result is a product state
- 2) Show that in a product state, the expectation of any component of $\vec{\sigma}$ or $\vec{\tau}$ is the same as it would be in the individual spin states.

Solution.

1) Let $|AB\rangle$ be a product state and let $\sigma_w = \sigma_x$ or σ_y or σ_z . Then $|A^*| \equiv \sigma_w |A|$ is another of Alice's states. Thus

$$\sigma_{w}|AB\rangle = (\sigma_{w} \otimes I)(|A\}\otimes|B\rangle) = \sigma_{w}|A\rangle\otimes I|B\rangle = A'\}\otimes|B\rangle = |A'B\rangle$$

is a product state, and similarly for Bob.

2) In part 1, if |A| is normalized (i.e., a unit vector) then so is |A| since $\det \sigma_w = -1$ (whether $\sigma_w = \sigma_x$, σ_y , or σ_z). If, in addition, $|B\rangle$ is normalized, then so is $|AB\rangle$:

First we have to define what we mean for $|AB\rangle$ to be a unit vector. For any $|CD\rangle$ we define $\langle CD|AB\rangle \equiv \langle C|A\rangle \langle D|B\rangle$. Now, since $|A\rangle$ and $|B\rangle$ are normalized, $\langle A|A\rangle = 1 = \langle B|B\rangle$. Hence $\langle AB|AB\rangle = \langle A|A\rangle \langle B|B\rangle = 1$.

Since both |A| and |AB| are normalized, then equation (4.14) in the book is valid: