Spling Smoothing and Tuning Parameter Selection

Eun Ryung Lee

SKKU

October 1, 2018

- Spline Smoothing
 - Regression Splines
 - Smoothing Splines: Roughness Penalty

2 Regularization/Tuning Parameter Selection

- Spline Smoothing
 - Regression Splines
 - Smoothing Splines: Roughness Penalty

2 Regularization/Tuning Parameter Selection

Introduction

- Instead of just considering input variables x (potentially mult.), augment/replace with transformations = "input features"
- Linear basis expansions
 - maintain linear form in terms of these transformations

$$f(\mathbf{x}) = \sum_{j=1}^{p} \beta_j h_j(\mathbf{x})$$

- What transformations should we use?
 - $h_i(\mathbf{x}) = x_i$
 - $h_i(\mathbf{x}) = x_i^2$ or $h_i(\mathbf{x}) = x_i x_k$
 - $h_i(\mathbf{x}) = I(L_i \leq x_i \leq U_i)$
 - . . .

Piecewise Polynomials Fits

- Assume that x is univariate
- Polynomial fits are often good locally, but not globally
 - Adjusting coefficients to fit one region can make the function go wild in other regions
- Consider piecewise polynomial fits
 - Local behavior can often be well approximated by low-order polynomials

Piecewise Polynomials Fits

LIDAR Data Example

Piecewise Constant Fits

Example 1: Piecewise constant, with 3 basis functions

Basis functions

$$h_1(x) =$$
 , $h_2(x) =$, $h_3(x) =$

- Resulting model: $f(x) = \sum_{j=1}^{3} \beta_j h_j(x)$
- Fit: Take the mean of the data in each region

Piecewise Constant

Piecewise Linear Fits

Example 1: Piecewise linear, with 6 basis functions

Basis functions

$$h_{j+3} = h_j(x)x, j = 1, 2, 3$$

- Resulting model: $f(x) = \sum_{j=1}^{6} \beta_j h_j(x)$
- Fit: fit the linear model with the data in each region

Linear Splines

Resulting piecewise linear model:

$$f(x) = I(x < \xi_1)(\beta_1 + \beta_4 x) + I(\xi_1 \le x < \xi_2)(\beta_2 + \beta_5 x) + I(\xi_2 \le x)(\beta_3 + \beta_6 x)$$

- Typically prefer continuity
 - Enforce

Which implies

of parameters?

Linear Splines

■ More directly, we can use the truncated power basis

$$h_1(x) = 1$$

 $h_2(x) = x$
 $h_3(x) = (x - \xi_1)_+$
 $h_4(x) = (x - \xi_2)_+$

Resulting model:

$$f(x) = \beta_0 + \beta_1 x + \beta_2 (x - \xi_1)_+ + \beta_3 (x - \xi_2)_+$$

Quadratic and Cubic Splines

Quadratic spline

•
$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + b_1 (x - \xi_1)_+^2 + b_2 (x - \xi_2)_+^2$$

- Has continous first derivative
- Cubic spline

•
$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + b_1 (x - \xi_1)_+^3 + b_2 (x - \xi_2)_+^3$$

Has continous first and second derivatives

Cubic Spline Fit

Cubic Spline Fit

Discontinuous cubic spline

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + b_0 + b_1 (x - \xi_1) + b_2 (x - \xi_1)^2 + b_3 (x - \xi_1)_+^3$$

$$c_0 + c_1 (x - \xi_2) + c_2 (x - \xi_2)^2 + c_3 (x - \xi_2)_+^3$$

Continuous cubic spline

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + + b_1(x - \xi_1) + b_2(x - \xi_1)^2 + b_3(x - \xi_1)_+^3 + c_1(x - \xi_2) + c_2(x - \xi_2)^2 + c_3(x - \xi_2)_+^3$$

Cubic Spline Fit

Continously differentiable cubic spline

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + b_2 (x - \xi_1)^2 + b_3 (x - \xi_1)^3 + c_2 (x - \xi_2)^2 + c_3 (x - \xi_2)^3 + c_3 (x - \xi_2)^2 + c_3 ($$

Continuously twice differentiable cubic spline

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + b_3 (x - \xi_1)_+^3 c_3 (x - \xi_2)_+^3$$

Cubic Splines as Linear Smoothers

■ Cubic spline function with *K* knots:

$$g(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \sum_{k=1}^{K} b_k (x - \xi_k)_+^3$$

- The true model : $Y = f(X) + \epsilon$ with $E(\epsilon) = 0$
- Assume that $f(x) \approx g(x)$ in the region of our interest
- Design matrix

Estimator

Linear smoother

Space of polynomial splines

Definition

An degree-d spline with internal knots $\xi_1 < \xi_2 \cdots < \xi_K$ is a piecewise d degree polynomial with d-2 continuous derivatives at the knots.

Basis for the space of polynomial splines of order M

• Power basis : 1,
$$x, x^2, ..., x^d, (x - \xi_1)_+^d, ..., (x - \xi_K)_+^d$$

- B-spline basis: defined recursively in terms of divided differences starting from the Haar basis functions
- Dimension : K + d + 1
- Choices
 - Order of spline
 - Number of knots
 - Placement of knots

B-Spline Basis - Order 1 and 2(Linear)

B-Spline Basis - Order 3(Quadratic) and 4(Cubic)

Cubic B-Splines as Linear Smoothers

- Cubic B-spline with *K* knots has the basis expansion:
- The true model : $Y = f(X) + \epsilon$ with $E(\epsilon) = 0$
- Assume that $f(x) \approx g(x)$ in the region of our interest
- Design matrix

Computational gain:

- Spline Smoothing
 - Regression Splines
 - Smoothing Splines: Roughness Penalty

2 Regularization/Tuning Parameter Selection

Smoothing Splines

Penalized Least Square: for a given $\lambda \geq 0$, find the function f which minimizes

$$\sum_{i=1}^{n} \left\{ Y_i - f(X_i) \right\}^2 + \lambda \int \left\{ f''(x) \right\}^2 dx \tag{1}$$

over some class \mathcal{F} of smooth functions.

- $\sum_{i=1}^{n} \{Y_i f(X_i)\}^2$: RSS
- $\int \{f''(x)\}\}^2 dx$: a penalty for the roughness of the function
- similar to a Ridge regression
- It is known that the minimizer \hat{f} is a natural cubic spline, with knots at each sample point X_1, \ldots, X_n

Natural Spline

■ Definition

A spline function of order 2k-1 is called a *natural spline of order* 2k-1 if it is a polynomial of order k-1 beyond the boundary knots ξ_1 and ξ_K .

- Dimension: *K*
- Power basis for the space of natural cubic splines:

1,
$$x$$
, $d_i(x) - d_{n-1}(x)$, $i = 1, ..., n-2$

where

$$d_i(x) = \frac{(x - X_i)_+^3 - (x - X_n)_+^3}{X_n - X_i}.$$

 Several choices of basis for the space of natural splines are provided in Section 5.3.3 of
 Eubank (1988). Spline Smoothing and Nonparametric Regression.
 New York: Marcel Dekker, Inc.

Estimation

- Recall that the minimizer \hat{f} of the penalized criterion 1 for smoothing spline is a natural cubic spline, with knots at each sample point X_1, \ldots, X_n .
- Deriving smoothing spline:

Smoothing Spline as a Linear Smoother

- Spline Smoothing
 - Regression Splines
 - Smoothing Splines: Roughness Penalty

2 Regularization/Tuning Parameter Selection

Regularization/Tuning Parameter in Nonparameter Regression

- Consider (univariate) nonparametric regression model $Y_i = f(X_i) + \epsilon_i$ for i = 1, ..., n.
- In the above nonparametric regression estimation methods for estimating *f*, there exists a regularization tuning parameter, which controls degree of smoothing i.e.,model complexity:
 - Kernel regression:
 - Regression spline:
 - Smoothing spline:

Regularization/Tuning Parameter Selection

■ Note that the above estimation methods are all a linear smoother.

What can one use for selecting the tuning parameter in each problem?