2. Übungseinheit zur Vorlesung Mathematik in Medien und Informatik

Prof. Dr. R. Lasowski

Sommersemester 2024

Präsenzübungen

Erinnerung – Gruppen mit vier Elementen: In der Vorlesung haben wir gesehen, dass sich vier unterschiedliche Gruppentafeln aufstellen lassen, wenn wir annehmen, dass die betrachtete Gruppe neben dem Neutralelement e die weiteren Gruppenelemente a, b und c enthält. Wir haben festgestellt, dass sich drei dieser Gruppentafeln "durch Drehungen modellieren" lassen, die vierte jedoch nicht. Im Folgenden sind zwei (der von uns gefundenen vier) Gruppentafeln angegeben:

*	е	\mathbf{a}	b	\mathbf{c}	>	*	e	a	b
е	е	\mathbf{a}	b	c				a	
a	a	b	$^{\mathrm{c}}$	e	8	a	a	\mathbf{e}	$^{\mathrm{c}}$
b	b	$^{\mathrm{c}}$	\mathbf{e}	\mathbf{a}	ŀ	b	b	\mathbf{c}	e
\mathbf{c}	с	e	\mathbf{a}	b	($_{\rm c}$	\mathbf{c}	b	a

Wir bezeichnen den durch die linke Verknüpfungstafel dargestellte Gruppentyp als **zyklischen Gruppe der Ordnung 4** (Symbol C_4) und den nichtzyklischen Typ (rechte Verknüpfungstafel) als **Kleinsche Vierergruppe** (Symbol V_4).

Aufgabe P 1. Symmetrietransformationen von Rechtecken – Kleinsche Vierergruppe

Die Menge der Symmetrietransformationen eines (beliebigen nichtquadratischen) Rechtecks mit der Verknüpfung \circ (Hintereinanderausführung) bilden eine Gruppe, die vom Typ V_4 ist.

- (a) **Zeichnen Sie** ein Rechteck, dessen Kanten parallel zu den Koordinatenachsen sind und dessen Mittelpunkt im Koordinatenursprung liegt. **Machen Sie sich** anhand dieser Skizze **klar**, dass es genau die folgenden Transformationen sind, die das Rechteck in sich überführen: Die sogenannte "identische Abbildung" E, welche alle Punkte festlässt, die Drehung D um 180° , die Spiegelung S_x an der x-Achse, die Spiegelung S_y an der y-Achse.
- (b) **Schreiben Sie** in Form einer Tabelle für jede dieser vier Abbildungen **auf**, auf welchen Punkt die vier Ecken jeweils bewegt werden.
- (c) Man erhält eine Gruppe, indem man die Hintereinanderausführung \circ von Abbildungen als Verknüpfung einführt. **Stellen Sie** die Verknüpfungstafel **auf** und **vergleichen Sie** diese mit der Gruppentafeln von V_4 .

Hinweise:

- Beachten Sie die **Reihenfolge der Ausführung**. Wenn f und g zwei Abbildungen sind, wird der Ausdruck $f \circ g$ so gelesen: "f nach g". Die rechts stehende Abbildung g muss zuerst ausgeführt werden, danach wird die links stehende Abbildung f ausgeführt. Wenn die Abbildung $f \circ g$ auf ein Element x angewandt wird, so ist also $(f \circ g)(x) = f(g(x))$.
- Um in der obigen Aufgabe (c) zum Beispiel das Ergebnis der Verknüpfung $S_x \circ D$ zu ermitteln, bestimmen Sie für jede Ecke, auf welchen Punkt sie abgebildet wird, wenn Sie zuerst D und danach S_x ausführen. Sie entnehmen dann Ihrer Tabelle aus Teilaufgabe (b), welche der vier gegebenen Abbildungen die gleichen Bildpunkte wie $S_x \circ D$ liefert.

Aufgabe P 2. Für Schnelle zugleich – für alle anderen zuhause: Quadratsymmetrien

Zeichnen Sie ein Quadrat mit seinem Mittelpunkt im Koordinatenursprung. Stellen Sie analog zur Aufgabe P 1 die Verknüpfungstafel für die (acht) Symmetrietransformationen dieses Quadrates auf.

Ziel-Zeitmarke: 45 Minuten

Aufgabe P 3. 8-Bit-Zweierkomplement-Darstellung ganzer Zahlen

- (a) Geben Sie an, welche ganzen (Dezimal-)Zahlen sich in Acht-Bit-Zweierkomplement-Darstellung (8-Bit-ZKD) schreiben lassen.
- (b) Bestimmen Sie die 8-Bit-ZKDen der Dezimalzahlen 107_{10} , $(-107)_{10}$, 89_{10} und $(-89)_{10}$.
- (c) Rechnen Sie nun (wie ein Computer) in der Welt der Zweierkomplementdarstellungen. Verwenden Sie die in Teilaufgabe (b) ermittelten Darstellungen
 - zur Berechnung der 8-Bit-ZKD x, die der Dezimalzahl $X = 107_{10} 89_{10}$ entspricht,
 - zur Berechnung der 8-Bit-ZKD y, die der Dezimalzahl $Y=89_{10}\,-\,107_{10}\,$ entspricht.

Hinweis: $107_{10} - 89_{10} = 107_{10} + (-89)_{10}$, usw.

(d) Prüfen Sie nach, ob Ihre Ergebnisse x und y tatsächlich den Dezimalzahlen 18_{10} bzw. $(-18)_{10}$ entsprechen.

Wir verwenden im Folgenden die abkürzenden Schreibweisen ${\bf 1}$ für $0000\,0001$ und ${\bf 0}$ für $0000\,0000$. Ferner bezeichne $\bar z$ die 8-Bit-Folge, die aus z durch **bitweise Inversion** entsteht. Der Ausdruck **Zweierkomplementbildung** bezeichnet den Übergang $z\mapsto \bar z+{\bf 1}$.

(e) **Betrachten Sie** die 8-Bit-ZKD $a=1010\,1110$, welche eine negative Zahl A darstellt. Um A zu bestimmen, haben Sie mehrere Möglichkeiten, vgl. auch Aufgabe H 9. Im Folgenden bezeichne b die 8-Bit-ZKD der positiven Zahl B:=-A.

Alternative 1: Machen Sie die Operation rückgängig, mit der man durch Zweierkomplementbildung von b zu a käme: Aus $a=\overline{b}+\mathbf{1}$ folgt $a-\mathbf{1}=\overline{b}$ und $\overline{a-\mathbf{1}}=b$. Ziehen Sie also $\mathbf{1}=0000\,0001$ von a ab, wenden Sie auf das Ergebnis bitweise Inversion an, um b zu erhalten, bestimmen Sie hieraus B und schließlich A=-B.

Alternative 2: Bilden Sie $\overline{a} + 1 = \overline{b} + 1 + 1 = b$. Invertieren Sie also a bitweise, addieren Sie $1 = 0000\,0001$ zu \overline{a} , um b zu erhalten, bestimmen Sie hieraus B und schließlich A = -B.

Alternative 3: Schreiben Sie a als Summe $1010\,1110=1000\,0000+0010\,1110$ und berechnen Sie A als Summe von $-(128)_{10}$ und der Dezimalzahl, die der Folge $0010\,1110$ entspricht.

Welche Alternative sagt Ihnen am besten zu?

Ziel-Zeitmarke: 90 Minuten

Für Schnelle sogleich, für alle anderen zuhause:

Aufgabe P 4. Schriftliche Addition und Subtraktion im Dezimal- und im Dualsystem

- (a) Berechnen Sie schriftlich die Summe S und danach die Differenz D der beiden Dezimalzahlen 713 und 386. Beobachten Sie, wo Sie Überträge notieren bzw. wo Sie sich "Ziffern borgen".
- (b) Berechnen Sie zunächst die Summe s=a+b und danach die Differenz d=a-b der beiden Dualzahlen $a=0111\,0001$ und $b=0101\,0110$. Führen Sie Ihre Rechnungen **unbedingt im Dualsystem** durch. Auch hier müssen Sie Überträge bilden bzw. sich "Ziffern borgen".

Erst nachdem Sie Ihre Rechnungen im Dualsystem durchgeführt haben, übersetzen Sie bitte die Zahlen a, b, s und d ins Dezimalsystem.

Hausübungen

Die in der Präsenzübung zu Übungseinheit 2 teilweise behandelte Aufgabe H 1 kann nach der Übungssitzung noch einmal aufgegriffen und vertieft werden.

Aufgabe H 1. Schriftliche Addition und Subtraktion im Dezimal- und im Dualsystem

(a) Berechnen Sie schriftlich die Summe S und danach die Differenz D der beiden Dezimalzahlen 713 und 386. Beobachten Sie, wo Sie Überträge notieren bzw. wo Sie sich "Ziffern borgen".

Sie finden die Vorgehensweise bei der Subtraktion in Online-Quellen, studieren Sie dort die Angaben unter den Stichworten "Abziehverfahren" "Ergänzungsverfahren" und "Entbündelungsverfahren".

(b) Berechnen Sie zunächst die Summe s=a+b und danach die Differenz d=a-b der beiden Dualzahlen $a=0111\,0001$ und $b=0101\,0110$. Führen Sie Ihre Rechnungen **unbedingt im Dualsystem** durch. Auch hier müssen Sie Überträge bilden bzw. sich "Ziffern borgen".

Erst nachdem Sie Ihre Rechnungen im Dualsystem durchgeführt haben, übersetzen Sie bitte die Zahlen a, b, s und d ins Dezimalsystem.

(c) Führen Sie die Subtraktion der Dezimalzahlen $5\,160\,467 - 1\,862\,584$ einmal nach dem "Entbündelungsverfahren" und einmal nach dem "Ergänzungsverfahren" durch.

Aufgabe H 2. Gruppen mit vier Elementen

Gegeben sei eine Gruppe G mit vier Elementen e,a,b,c, wobei e das Neutralelement der Gruppe ist. Die Verknüpfungen in endlichen Gruppen kann man in Verknüpfungstafeln aufschreiben. Im Folgenden sind noch einmal zwei Gruppentafeln für diese vier Elemente angegeben:

(a) Betrachten Sie die linke Verknüpfungstafel und bestimmen Sie

$$a * a = a^2$$
, $a * a * a = a^3$, $a * a * a * a = a^4$, $a * a * a * a * a = a^5$, ...
 $b * b = b^2$, $b * b * b = b^3$, ...
 $c * c = c^2$, $c * c * c = c^3$, ...

Welche Ergebnisse ergeben sich für Potenzen n > 4?

- (b) Zeigen Sie anhand der einschlägigen Definitionen, die Sie bitte in den Vorlesungsfolien nachlesen, dass die durch die linke Tafel dargestellte Gruppe **zyklisch** ist.
- (c) **Betrachten Sie** nun die rechte Verknüpfungstafel und verfahren Sie analog zur Teilaufgabe (a). Ist die durch die rechte Tafel dargestellte Gruppe zyklisch?
- (d) Untersuchen Sie die beiden anderen möglichen Verknüpfungstafeln (vgl. Vorlesungsfolien) für Gruppen mit vier Elementen in analoger Weise und weisen Sie nach, dass auch diese zum zyklischen Typ gehören.

Aufgabe H 3. Der Körper mit zwei Elementen

Es sei \mathbb{F}_2 der Körper, welcher (nur) zwei Elemente enthält. Die beiden Elemente bezeichnen wir mit 0 bzw. 1. Stellen Sie die Verknüpfungstafeln für die Addition \oplus und für die Multiplikation \odot in \mathbb{F}_2 auf.

Hinweis: Lassen Sie sich durch die vielleicht ungewohnten Symbole \oplus und \odot nicht verwirren. Zur Aufstellung der Additionstafel gehen Sie so vor wie in der Vorlesung (Sudoku-Prinzip). Zur Aufstellung der Multiplikationstafel verwenden Sie die Tatsache, dass $0 \cdot a = 0 = a \cdot 0$ für alle $a \in F_2$ gilt.

Aufgabe H 4. Ein kleiner endlicher Körper

Betrachten Sie den Körper $\mathbb{F}_3 = \{0, 1, 2\}$ mit drei Elementen und stellen Sie die Verknüpfungstafel für die Addition und für die Multiplikation auf.

Aufgabe H 5. Ein weiterer kleiner endlicher Körper

Betrachten Sie den Körper $\mathbb{F}_4=\{0,1,a,b\}$ mit vier Elementen und stellen Sie die Verknüpfungstafel für die Addition und für die Multiplikation auf.

Hinweis: In diesem Körper gelten die Beziehungen 1+1=0, a+a=0, b+b=0.

Aufgabe H 6. Sudoku-Prinzips für Gruppentafeln

In der Vorlesung wurde das vom Dozenten so genannte "Sudoku-Prinzip" für Gruppentafeln vorgestellt: **Jede Gruppentafel erfüllt das Sudokuprinzip**.

Die Umkehrung dieser Aussage ("Jedes Sudoku stellt eine Gruppentafel dar.") ist jedoch nicht richtig. Es gibt Sudokus, die keine Gruppentafel darstellen Dies wird nun demonstriert.

Sudokus mit fünf Elementen – Gruppe oder nicht?

.	e	\mathbf{a}	b	\mathbf{c}	d	•	e	\mathbf{a}	b	$^{\mathrm{c}}$	
е	е	a	b	c	d	e	е	a	b	с	
a	a	b	\mathbf{c}	d	\mathbf{e}	\mathbf{a}	a	\mathbf{e}	$^{\mathrm{d}}$	b	
b	b	\mathbf{c}	d	\mathbf{e}	\mathbf{a}	b	b	$^{\mathrm{c}}$	\mathbf{e}	$^{\mathrm{d}}$	
c	c	d	\mathbf{e}	\mathbf{a}	b	c	c	$^{\mathrm{d}}$	\mathbf{a}	\mathbf{e}	
d	d	\mathbf{e}	\mathbf{a}	b	$^{\mathrm{c}}$	d	d	b	$^{\mathrm{c}}$	\mathbf{a}	

Betrachten Sie zunächst die linke Gruppentafel einer Gruppe mit fünf Elementen:

- (a) Ist die dargestellte Gruppe kommutativ?
- (b) Die Gruppe ist zyklisch. Welche Gruppenelemente sind Erzeuger der Gruppe? Bemerkung: Jede Gruppe mit fünf Elementen ist zyklisch
- (c) Die rechte Tafel ist zwar ein regelgerechtes Sudoku (stimmt das?), stellt jedoch keine Gruppentafel dar. Konnen Sie erklären, warum? Hinweis: Finden Sie (mindestens) eine Verletzung des Assoziativgesetzes; bestimmen Sie z.B. (a*b)*c und a*(b*c).

Aufgabe H 7. Ein Ring mit vier Elementen – "Restklassenring modulo 4"

Wir betrachten nun die zyklische Gruppe C_4 , bezeichnen die Elemente mit $\overline{0}$, $\overline{1}$, $\overline{2}$, $\overline{3}$ und verwenden die Addition + als Verknüpfung.

Die hier dargestellte Gruppe ist wie folgt motiviert: Wir betrachten die Reste, die sich bei der ganzzahligen Division natürlicher oder ganzer Zahlen durch 4 ergeben. So gilt z.B. $13=3\cdot 4+1$, der sich hier ergebende Rest ist also gleich 1. Man schreibt hierfür auch $13\mod 4=1$. Für 27 etwa ergibt sich der Rest 3, dagegen ist z.B. 20 durch 4 teilbar, hier ergibt sich also der Rest 0.

Das Symbol $\overline{0}$ bezeichnet nun die Menge all derjenigen ganzen Zahlen, die bei ganzzahliger Division durch 4 den Rest 0 ergeben. Dementsprechend

bezeichnet $\overline{1}$ die Menge all derjenigen ganzen Zahlen, die bei ganzzahliger Division durch 4 den Rest 1 ergeben, usw.

Mit diesen sogenannten Restklassen kann man nun rechnen. Beispielsweise lässt sich die Gleichung $\overline{1} + \overline{3} = \overline{0}$, die sich aus der obigen Verknüpfungstafel ablesen lässt, wie folgt interpretieren:

Addiert man irgendeine Zahl aus $\overline{1}$ zu irgendeiner Zahl aus $\overline{3}$, so ist das Ergebnis durch 4 teilbar, liegt also in $\overline{0}$

- (a) Illustrieren Sie den oben beschriebenen Sachverhalt anhand von Beispielen.
- (b) Welche Elemente von C_4 sind Erzeuger von C_4 ?
- (c) Das Erzeugnis $\langle \overline{2} \rangle$ von $\overline{2}$ ist eine Gruppe. Schreiben Sie die Gruppentafel von $\langle \overline{2} \rangle$ auf. Erkennen Sie diese wieder?
- (d) Beweisen Sie mit Hilfe des Distributivgesetzes, dass für alle Elemente $a \in C_4$ die Gleichung $\overline{0} \cdot a = \overline{0}$ gilt.

Hinweis: Beginnen Sie so:
$$\overline{0} \cdot a = (\overline{0} + \overline{0}) \cdot a = \overline{0} \cdot a + \overline{0} \cdot a$$
.

- (e) Stellen Sie die Verknüpfungstafel für die Multiplikation \cdot auf. Berücksichtigen Sie hierbei, dass für alle Elemente $a \in C_4$ die folgenden Gleichungen gelten: $\overline{0} \cdot a = \overline{0}$, $\overline{1} \cdot a = a$, $\overline{2} \cdot a = (\overline{1} + \overline{1}) \cdot a = \overline{1} \cdot a + \overline{1} \cdot a = a + a$, $\overline{3} \cdot a = a + a + a$, usw.
- (f) Ist der Ring $(C_4, +, \overline{0}, \cdot, \overline{1})$ ein Körper?

Aufgabe H 8. Restklassenring modulo 6

Stellen Sie in Analogie zur vorstehenden Aufgabe die Verknüpfungstafeln für Addition und Multiplikation im Restklassenring modulo 6 auf.

Beispiele zur Illustration:

$$\bar{4} + \bar{3} = \bar{1}$$
, denn $4 + 3 = 7 = 1 \cdot 6 + 1$.

$$\bar{4}\cdot\bar{3}=\bar{0}$$
, denn $4\cdot 3=12=2\cdot 6+0$.

Aufgabe H 9. 8-Bit-Zweierkomplementdarstellungen ganzer Zahlen

- (a) Es seien X und Y bzw. x und y die Zahlen bzw. Darstellungen aus Aufgabe P 3. Offensichtlich gilt Y=-X und X=-Y. Prüfen Sie nach, dass für die 8-Bit-ZK-Darstellungen die Gleichung $x=\overline{y}+\mathbf{1}$ gilt.
- (b) Wir haben in der Vorlesung gesehen, dass $\overline{z}+\mathbf{1}$ die 8-Bit-ZKD der Dezimalzahl $(-Z)_{10}$ darstellt, wenn z die 8-Bit-ZKD der Dezimalzahl $(+Z)_{10}$ ist. Da ja -(-Z)=Z gilt, sollte auch die Identität $\overline{z}+\mathbf{1}+\mathbf{1}=z$ gelten. Zeigen Sie, dass dies in der Tat so ist.
 - Hinweis: Verwenden Sie die Tatsache, dass $z + \overline{z} + 1 = 0$ gilt und starten Sie wie folgt: $\overline{z} + 1 + 1 = (\overline{z} + 1 + 1) + (z + \overline{z} + 1)$. Klammern Sie um und fassen Sie geeignet zusammen.
- (c) Erinnern Sie sich daran, dass $k=1000\,0000$ die 8-Bit-ZKD von $-(128)_{10}$ ist. Die Binärzahl k hat wie die Null eine gewisse Ausnahmestellung. Prüfen Sie nach, dass $\overline{k}+\mathbf{1}=k$ sowie $k+k=\mathbf{0}$ gilt.

Aufgabe H 10. Binärzahlen und zyklische Gruppen

- (a) Die Menge B_2 der 2-Bit-Folgen enthalt die Elemente [00], [01], [10] und [11]. Wir haben auf B_2 eine Addition \oplus erklart (nämlich stellenweise Addition mit Übertrag). Stellen Sie die Verknüpfungstafel von (B_2, \oplus) auf und verifizieren Sie, dass sich die Verknüpfungstafel einer zyklischen Gruppe mit vier Elementen ergibt.
- (b) Geben Sie für jedes der vier Elemente von B_2 das jeweilige inverse Element an.
- (c) Zählen Sie ab, wieviele Gleichungen man nachprüfen müsste, um nachzuweisen, dass das Assoziativgesetz für (B_2, \oplus) gilt.
 - Hinweis: Damit das Assoziativgesetz gilt, muss $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ für alle $a,b,c \in B_2$ erfüllt sein.
- (d) Weisen Sie exemplarisch nach, dass $([10] \oplus [11]) \oplus [10] = [10] \oplus ([11] \oplus [10])$ gilt.
- (e) Betrachten Sie die Menge B_4 der 4-Bit-Folgen und als Verknüpfung die stellenweise Addition mit Übertrag \oplus . Berechnen Sie das Erzeugnis $\langle 0001 \rangle$, das Erzeugnis $\langle 0010 \rangle$, das Erzeugnis $\langle 0100 \rangle$ und das Erzeugnis $\langle 1000 \rangle$ jeweils durch sukzessive Addition. Stellen Sie die Gruppe (B_4, \oplus) durch Drehungen dar, verwenden Sie hierzu ein zyklisches Schema ("Uhr") und markieren Sie alle Erzeuger.
- (f) Durch welche geometrische Operation erhält man in dem Diagramm aus (e) zu einem gegebenen Element das inverse Element?
- (g) Prägen Sie sich ein: Für jede natürlich Zahl $n \geq 1$ ist die Menge B_n der n-Bit-Folgen mit der Verknüpfung "stellenweise Addition mit Übertrag"eine zyklische und (daher) kommutative Gruppe mit 2^n Elementen.

Aufgabe H 11. Symmetriegruppe eines Quadrates

Zeichnen Sie ein Quadrat mit seinem Mittelpunkt im Koordinatenursprung. Stellen Sie analog zur Aufgabe P 1 die Verknüpfungstafel für die acht Symmetrietransformationen dieses Quadrates auf.

Tutoriumsübungen

Aufgabe T 1. Zahlensysteme

- (a) Stellen Sie die Zahl $Z=1013_{10}\,$ im Dualsystem (d.h. bezüglich der Basis 2) dar. Verwenden Sie hierzu das Verfahren sukzessiver Division mit Rest.
- (b) Bestimmen Sie die Darstellung $t=[t_6,t_5,t_4,t_3,t_2,t_1,t_0]$ der Zahl $Z=1013_{10}$ im Dreiersystem (d.h. bezüglich der Basis 3). Verwenden Sie das Verfahren sukzessiver Division mit Rest. Werten Sie als Probe die Summe

$$t_6 \cdot 3^6 + t_5 \cdot 3^5 + t_4 \cdot 3^4 + t_3 \cdot 3^3 + t_2 \cdot 3^2 + t_1 \cdot 3^1 + t_0 \cdot 3^0$$

aus.

- (c) Im Hexadezimalsystem (mit Basis 16) werden die Ziffern 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F verwendet. Bestimmen Sie die Darstellung h der Zahl $Z=1013_{10}$ im Hexadezimalsystem. Führen Sie eine Probe analog zur Teilaufgabe (b) durch.
- (d) Aus der Hexadezimaldarstellung (Hex-Darstellung) $h = [h_2 h_1 h_0]$ der Zahl Z ergibt sich mühelos die 12-Bit-Darstellung b von Z. Erkennen Sie, wie man b aus h gewinnt?

Hinweis: Jede der Hexadezimalstellen wird mit 4 Binärstellen dargestellt.

- (e) **Zusatzaufgabe für ganz Schnelle:** Welche (ziemlich große) Dezimalzahl wird durch die Hexadezimalfolge AFFE dargestellt?
- (f) Stellen Sie die Zahl $Z=1013_{10}\,$ im Oktalsystem (d.h. bezüglich der Basis 8) dar.

Aufgabe T 2. Binärdarstellung ganzer Zahlen (Klausuraufgabe Wintersemester 2010/11)

- (a) Bestimmen Sie die 8-Bit-Zweierkomplementdarstellung der Dezimalzahl 91 mit einer Methode Ihrer Wahl.
- (b) Es sei $a=1001\,1010\,$ die 8-Bit-Zweierkomplementdarstellung einer ganzen Zahl A. Bestimmen Sie die Dezimaldarstellung der Zahl A mit einer Methode Ihrer Wahl.
- (c) Lässt sich die Zahl A + A in 8-Bit-Zweierkomplementdarstellung darstellen?

Aufgabe T 3. 8-Bit-Zweierkomplementdarstellung ganzer Zahlen

- (a) **Bestimmen Sie** die 8-Bit-Zweierkomplementdarstellungen a, b und c der Zahlen $A=88_{10},\ B=115_{10},\ \mathrm{und}\ C=(-115)_{10}.$
- (b) Rechnen Sie nun (wie ein Computer) in der Welt der Zweierkomplementdarstellungen. Verwenden Sie die in Teilaufgabe (a) ermittelten 8-Bit-Zweierkomplement-Darstellungen a und c zur Berechnung der 8-Bit-ZKD y, die der Dezimalzahl $Y=88_{10}-115_{10}$ entspricht.

Hinweis:
$$88_{10} - 115_{10} = 88_{10} + (-115)_{10}$$
.

(c) **Prüfen Sie nach**, ob Ihr Ergebnis y tatsächlich zur Dezimalzahl Y passt.

(d) Betrachten Sie die 8-Bit-ZKD $z=1010\,1010$; diese stellt eine negative Zahl Z dar. Um Z zu bestimmen, haben Sie mehrere Möglichkeiten, vgl. die Hinweise in Aufgabe P 3 sowie in Aufgabe H 9.

Aufgabe T 4. Schriftliche Subtraktion im Dezimalsystem

Lösen Sie die (im Folgenden noch einmal abgedruckte) Teilaufgabe (c) von Aufgabe H 1 der Hausübungen:

Führen Sie die Subtraktion der Dezimalzahlen $5\,160\,467-1\,862\,584$ einmal nach dem "Entbündelungsverfahren" und einmal nach dem "Ergänzungsverfahren" durch.

Nutzen Sie hierfür als Referenz z.B. https://de.wikipedia.org/wiki/Subtraktion.

Aufgabe T 5. Symmetriegruppe eines gleichseitigen Dreiecks

Zeichnen Sie ein gleichseitiges Dreieck und markieren Sie die Eckpunkte (im Gegenuhrzeigersinn) mit den Ziffern 1 bis 3. Zeichnen Sie außerdem die drei Winkelhalbierenden (bzw. Seitenhalbierenden bzw. Höhen bzw. Mittelsenkrechten) ein, deren Schnittpunkt ist der Dreiecksmittelpunkt M. Betrachten Sie nun die folgenden Abbildungen:

- S_1 : Spiegelung an der Winkelhalbierenden durch den Punkt 1.
- S_2 : Spiegelung an der Winkelhalbierenden durch den Punkt 2.
- S_3 : Spiegelung an der Winkelhalbierenden durch den Punkt 3.
- D_1 : Drehung um 120° im Gegenuhrzeigersinn Drehzentrum ist der Dreiecksmittelpunkt M.
- D_2 : Drehung um 240° im Gegenuhrzeigersinn Drehzentrum ist der Dreiecksmittelpunkt M.
- id: Identische Abbildung (alle Punkte bleiben fest).

Bemerkung: Die Spiegelungen erfolgen immer an den angegebenen ortsfesten Achsen. Dies gilt auch dann, wenn einer Spiegelung eine andere Abbildung vorrausgeht.

(a) **Schreiben Sie** in Form einer Tabelle für jede dieser sechs Abbildungen auf, auf welchen Punkt die drei Ecken jeweils bewegt werden.

Zum Beispiel bewegt die Spiegelung S_1 den Eckpunkt 2 auf den Punkt 3, den Eckpunkt 3 auf den Punkt 2, während die Ecke 1 festbleibt. Die Drehung D_1 bewegt die Eckpunkt 1 auf den Punkt 2, die Ecke 2 auf den Punkt 3 und die Ecke 3 auf den Punkt 1.

Man erhält eine Gruppe, indem man die Hintereinanderausführung \circ von Abbildungen als Verknüpfung einführt. Dabei bedeutet z.B. $S_1 \circ D_1$, dass **zuerst** D_1 und **danach** S_1 ausgeführt wird. Die Symbole $S_1 \circ D_1$ liest man " S_1 nach D_1 ".

- (b) **Ermitteln Sie** das Ergebnis der Verknüpfung $S_1 \circ D_1$, indem Sie für jede Ecke bestimmen, auf welchen Punkt sie abgebildet wird, wenn Sie **zuerst** D_1 und dann S_1 ausführen. Entnehmen Sie dann Ihrer Tabelle aus Teilaufgabe (a), welche der sechs gegebenen Abbildungen die gleichen Bildpunkte liefert.
- (c) Prüfen Sie nach, dass $D_1 \circ S_1 = S_3$ gilt.
- (d) **Stellen Sie** die Gruppentafel dieser Gruppe mit 6 Elementen **auf** und bestimmen Sie möglichst viele der (insgesamt 36) Einträge.

Hinweis: Im weiteren Verlauf des Semesters werden wir noch andere Methoden (mit Matrizen) kennenlernen, um Abbildungen darzustellen und Verknüpfungen von Abbildungen zu berechnen.