Activity 5

Stability of fixed points and local Lyapunov exponents

Goals

Considering a fixed point X_* of a dynamical system, after a perturbation moving to a point in a neighbourhood of X_* , we want to know if the orbit returns to X_* (stable fixed point) or if the orbit leaves the neighbourhood of X_* (unstable fixed point).

This activity does not concern the symbolic dynamical systems.

Theory

Lyapunov stability

Definition 27 (Stability within the meaning of Lyapunov). Let (Γ, F, μ) be a discrete or continuous time dynamical system. Let X_* be a fixed point of the flow $(\varphi^t(X_*) = X_*)$. We say that X_* is:

• stable within the meaning of Lyapunov, if $\forall \epsilon > 0$, $\exists d_{\epsilon}$ such that $\forall t > 0$

$$||X - X_*|| < d_{\epsilon} \Rightarrow ||\varphi^t(X) - X_*|| < \epsilon$$

• asymptotically stable within the meaning of Lyapunov, if it is stable and if $\exists \eta > 0$,

$$||X - X_*|| < \eta \Rightarrow \lim_{t \to +\infty} \varphi^t(X) = X_*$$

• exponentially stable within the meaning of Lyapunov, if it is stable and if $\exists \alpha, \beta, \eta > 0$

$$||X - X_*|| < \eta \Rightarrow ||\varphi^t(X) - X_*|| \le \alpha ||X - X_*||e^{-\beta t}$$

A fixed point is said to be unstable within the meaning of Lyapunov if it is not stable.

A perturbation of a marginally stable fixed point X_* (stable but not asymptotically stable) induces an orbit remaining in the neighbourhood of X_* but not returning to it. An exponential stability means that the perturbed orbit returns to the fixed point at an exponential speed.

Theorem 6. The stability or the instability of a fixed point X_* of a nonlinear dynamical system is equivalent to the stability or the instability of 0 for the linearisation of the dynamical system at X_* , except in the case of a marginal stability where nonlinearities can eventually destabilise the system.

Proof : We consider the perturbative expansion $X(t) = X_* + \delta X(t) + \sum_{n=2}^{+\infty} D_n \delta X(t) ... \delta X(t)$ where D_n is a rank n+1 tensor, with $X(0) = X_* + \delta X(0)$.

Suppose that the linearised system is asymptotically stable: $\exists \eta > 0$, $\|\delta X(0)\| < \eta \Rightarrow \lim_{t \to +\infty} \delta X(t) = 0$, then $\|X(0) - X_*\| < \eta \Rightarrow \lim_{t \to +\infty} X(t) = X_*$. The dynamical system is then asymptotically stable.

Suppose that the linearised system is only marginally stable: $\forall \epsilon > 0$, $\exists d_{\epsilon}$, $\|\delta X(0)\| < d_{\epsilon} \Rightarrow \|\delta X(t)\| < \epsilon$. Then $\|X(t) - X_*\| = \|\delta X + \sum_{n=2}^{+\infty} D_n \delta X ... \delta X\| \le \epsilon + \sum_{n=2}^{+\infty} \|D_n\| \epsilon^n$. Even if ϵ is small, nothing ensures the convergence of the series $\sum_{n=2}^{+\infty} \|D_n\| \epsilon^n$. We cannot then conclude. Suppose that the linearised system is unstable: $\lim_{t \to +\infty} \delta X(t) = +\infty$ (only unstable behaviour of a linear system), then the perturbative series diverges (this does not necessarily mean that $\lim_{t \to +\infty} X(t) = +\infty$), the convergence radius of the series is then zero and the behaviour of the system cannot be represented only in the neighbourhood of X_* . The system is then unstable.

Theorem 7 (Lyapunov theorem). Let (Γ, φ, μ) be a dynamical system, X_* be fixed point, ∂F_{X_*} be the Jacobian matrix at X_* of the generator F of the flow (for a continuous time system) or $\partial \varphi_{X_*}$ be the Jacobian matrix at X_* of the flow (for a discrete time system). We suppose that ∂F_{X_*} (or $\partial \varphi_{X_*}$) is diagonalisable. Let $\{\Re e(\lambda_i)\}_i$ be the set of real parts of the eigenvalues of ∂F_{X_*} , or be such that $\{e^{\lambda_i}\}_i$ is the set of the eigenvalues of $\partial \varphi_{X_*}$. These quantities are called local Lyapunov exponents. Let $(n_+, n_0, n_-) \in \mathbb{N}^3$ be the signature of the Lyapunov exponents: n_+ is the number of positive Lyapunov exponents, n_0 is the number of zero Lyapunov exponents and n_- is the number of negative Lyapunov exponents (with the eigenvalues counted as many times as they are degenerated).

- If $(n_+, n_0, n_-) = (0, 0, n)$, then X_* is a stable fixed point (exponentially stable for the linearisation).
- If $(n_+, n_0, n_-) = (0, 1, n 1)$, then X_* is stable, or is on a limit cycle.
- If $(n_+, n_0, n_-) = (0, 2, n 2)$ then X_* is stable and is surrounded by limit cycles, or is on a limit torus.
- If $(n_+, n_0, n_-) = (0, 3, n 3)$ then X_* is stable and is on a limit torus.
- If $(n_+, n_0, n_-) = (0, 4, n 4)$ then X_* is stable and is surrounded by limit tori, or is on a limit torus.
- If $(n_+, n_0, n_-) = (0, n_0, n n_0)$ with $n_0 > 4$ then X_* is stable and is surrounded by limit tori.
- If $n_+ \neq 0$ then X_* is unstable.

Proof : Let $\partial \varphi^t_{X_*}$ be the t power of the Jacobian matrix of the flow if the system is discrete in time, or be $\partial \varphi^t_{X_*} = e^{\partial F_{X_*}t}$ if the system is continuous in time. Let $\{e^{\lambda_i t}\}_i$ be the eigenvalues of $\partial \varphi^t_{X_*}$ and $(\chi_{i(a)})_{i,a}$ be the associated eigenvectors (a varies from 1 to the degeneracy level of λ_i). We suppose firstly than $\ker \partial F_{X_*} = \{0\}$ (the vector subspace of vectors invariant by $\partial \varphi^t_{X_*}$ is reduced to $\{0\}$). $\partial \varphi^t_{X_*}$ being diagonalisable, the set of the eigenvectors is a basis of \mathbb{C}^n (n being the dimension of the phase space), and then

$$\forall \delta X(0) \in \mathbb{R}^n, \exists \alpha^{i(\alpha)} \in \mathbb{C} \quad \delta X(0) = \sum_{i} \sum_{a} \alpha^{i(a)} \chi_{i(a)}$$

$$\delta X(t) = \partial \varphi_{X_*}^t \delta X(0) = \sum_i \sum_a \alpha^{i(a)} e^{\Re(\lambda_i)t} e^{i \Im(\lambda_i)t} \chi_{i(a)}$$

if $\forall i$, $\Re e(\lambda_i) < 0$ we have obviously

$$\|\delta X(t)\| = \mathcal{O}(e^{\max_i \Re e(\lambda_i)t})$$

0 is then an exponentially stable fixed point. If at least one value λ_j has a positive real part, then 0 is unstable because:

$$\forall t \in \mathcal{V}(+\infty), \quad \delta X(t) \simeq \sum_{j \mid \Re(\lambda_j) > 0} \sum_{a} \alpha^{j(a)} e^{\Re(\lambda_j)t} \chi_{j(a)}$$

Suppose now that $\forall i, \ \Re (\lambda_i) \leq 0$. Note that the number of eigenvalues with zero real part is necessarily even. Indeed $\partial F_{X_*} \in \mathfrak{M}_{n \times n}(\mathbb{R})$, and then if λ_i is eigenvalue of ∂F_{X_*} then $\overline{\lambda_i}$ is also eigenvalue $(\partial F \chi_{i(a)} = \lambda_i \chi_{i(a)} \Rightarrow \partial F \overline{\chi_{i(a)}} = \overline{\lambda_i} \overline{\chi_{i(a)}})$. The eigenvalues are conjugated. We have then $\forall t$ in the neighbourhood of $+\infty$,

$$\begin{split} \delta X(t) & \simeq & \sum_{i|\Re e(\lambda_i)=0 \text{ and } \Im m(\lambda_i)>0} \sum_a 2\Re e\left(\alpha^{i(a)}e^{i\Im m(\lambda_i)t}\chi_{i(a)}\right) \\ & \simeq & 2 \sum_{i|\Re e(\lambda_i)=0 \text{ and } \Im m(\lambda_i)>0} \sum_a \left(\cos(\Im m(\lambda_i)t)\Re e(\alpha^{i(a)}\chi_{i(a)}) - \sin(\Im m(\lambda_i)t)\Im m(\alpha^{i(a)}\chi_{i(a)})\right) \end{split}$$

We recall that the parametric equation of an ellipse in \mathbb{R}^2 is:

$$A\cos(2\pi t) + B\sin(2\pi t) = \begin{pmatrix} A_x\cos(2\pi t) + B_x\sin(2\pi t) \\ A_y\cos(2\pi t) + B_y\sin(2\pi t) \end{pmatrix}$$

(with the half-axis \overrightarrow{OA} and \overrightarrow{OB}). We see that the trajectory of $\delta X(t)$ converges to a limit torus. If $\dim \ker \partial F_{X_*} > 0$: $\ker \partial F_{X_*}$ is a set of fixed points, and then the system is stable by perturbation inner to $\ker \partial F_{X_*}$. This space is then a part of the attractor. If $\dim \ker \partial F_{X_*} = 1$ we have a stable cycle (the linearisation is valid only in the neighbourhood of X_* , and so a straight line for the linearised is a small part of a curve for the nonlinear system). If $\dim \ker \partial F_{X_*} = 2$ we have a stable torus. The previous analysis can be then remake for ∂F_{X_*} restricted to $(\ker \partial F_{X_*})^{\perp}$ (orthogonal supplement of $\ker \partial F_{X_*}$).

It is more easy to represent the situation for a two dimensional phase space:

Schemes of the phase trajectories in the neighbourhood of a fixed point X_* of a two dimensional dynamical system with respect to the eigenvalues ∂F_{X_*} in the complex plane.

If $\partial \varphi^t_{X_*}$ is not diagonalisable, we can use the following property:

Property 1. $\forall A \in \mathfrak{M}_{n \times n}(\mathbb{C}), \exists D \in \mathfrak{M}_{n \times n}(\mathbb{C}) \text{ a diagonalisable matrix and } \exists N \in \mathfrak{M}_{n \times n}(\mathbb{C}) \text{ a nilpotent matrix (i.e. } \exists p \in \mathbb{N} \text{ such that } N^p = 0) \text{ such that}$

$$A = D + N$$
 and $e^A = e^D e^N = e^D \sum_{i=0}^p \frac{N^p}{p!}$

So if $\partial \varphi_{X_*}^t$ is not diagonalisable, by using the decomposition of ∂F_{X_*} we see that $\partial \varphi_{X_*}^t$ is the product of a diagonalisable matrix by a polynomial of degree p>0 with respect to t. If 0 is an exponentially stable fixed point for the diagonalisable part, it is an asymptotically stable fixed point for the whole linearised dynamics (since the convergence to 0 is as $t^p e^{-\alpha t}$). If 0 is a marginally stable fixed point for the diagonalisable part (or is unstable), then it is unstable for the whole linearised dynamics.

Remark: Since $\partial \varphi_{X_*}^t = e^{t\partial F_{X_*}}$ and $\{\lambda_i\} = \operatorname{Sp}(\partial F_{X_*})$, then for the continuous time systems $(t \in \mathbb{R}^+)$, the Lyapunov values and exponents are inverses of times; whereas for discrete time systems $(t \in \mathbb{N})$, the Lyapunov values and exponents are without physical dimension.

Hyperbolic fixed points

Definition 28 (Hyperbolic point). Let (Γ, φ, μ) be a (discrete or continuous time) dynamical system. A fixed point X_* is said to be a hyperbolic point if the signature of the local Lyapunov exponents at X_* is $(n_+, 0, n_-)$ with $n_{\pm} \neq 0$.

In the figure representing the two dimensional case, the case of an hyperbolic point is represented 1st column 2nd row.

Let $\{\chi_i\}_i$ be the eigenvectors associated with the Lyapunov values $\{\lambda_i\}$ of an hyperbolic point X_* . If $\Re e\lambda_i < 0$, χ_i corresponds to a stable direction of the flow in the neighbourhood of X_* ; whereas if $\Re e\lambda_i > 0$, χ_i corresponds to an unstable direction of the flow in the neighbourhood of X_* . We can then set

$$T_{X_*}\Gamma = E_s \oplus E_u$$

where $T_{X_*}\Gamma$ is the vector space of tangent vectors of Γ at X_* , $E_s = \operatorname{Lin}_{\mathbb{R}} \{\Re e\chi_i, \Im m\chi_i | \Re e\lambda_i < 0\}$ is the vector subspace of stable directions, and $E_u = \operatorname{Lin}_{\mathbb{R}} \{\Re e\chi_i, \Im m\chi_i | \Re e\lambda_i > 0\}$ is the vector subspace of unstable directions.

Theorem 8 (Stable manifold theorem). Let (Γ, φ, μ) be a dynamical system with X_* an hyperbolic point (and with Γ of class C^{∞} if it is a submanifold of \mathbb{R}^n), such that $\varphi : \Gamma \to \Gamma$ be a diffeomorphism (i.e. an infinitely differentiable bijection of Γ to Γ with an infinitely differentiable inverse map). Then there is a submanifold W_s of Γ containing X_* on which φ is a contraction ($\|\varphi(X) - \varphi(Y)\| \le \|X - Y\|$, $\forall X, Y \in W_s$) and such that $\partial \varphi_{X_*} : T_{X_*}W_s \to T_{X_*}\Gamma$ is an isomorphism of vector spaces between $T_{X_*}W_s$ and E_s . W_s is called stable manifold of X_* . We define W_u the unstable manifold of X_* as the stable manifold associated to the inverse flow φ^{-1} (stable manifold for the flow to the past).

Because $\dim W_s + \dim W_u = \dim \Gamma$, $W_s \cup W_u$ cover Γ in the neighbourhood of X_* , but generally $W_s \cup W_u \neq \Gamma$ (some points far from X_* may not belong to W_s or W_u).

By definition, the fixed points associated to homoclinic and heteroclinic orbits are hyperbolic. An homoclinic orbit leaves a fixed point along its unstable manifold and returns to it along its stable manifold. An heteroclinic orbit leaves a fixed point along its unstable manifold and goes to another fixed point along its stable manifold.

Stability of invariant cycles and invariant tori

Let C be a cycle of a continuous time dynamical system of period T. By definition $\forall X_* \in \Gamma$, $\varphi^T(X_*) = X_*$. So X_* is a fixed point of the discrete time dynamical system (Γ, Φ, μ) with $\Phi(X) = \varphi^T(X)$ $(\Phi^n(X) = \varphi^{nT}(X))$. The stability of the cycle C for the flow φ^t is then equivalent to the stability of the fixed point X_* for the stroboscopic flow Φ . The choice of X_* on C is free (the stability is the same for all points on C if φ is infinitely differentiable).

Let X_* be a cyclic point of a discrete time dynamical system of period p. By definition $\varphi^p(X_*) = X_*$. So X_* is a fixed point of the discrete time dynamical system (Γ, Φ, μ) with $\Phi(X) = \varphi^p(X)$ ($\Phi^n(X) = \varphi^{np}(X)$). The stability of the cyclic orbit of X_* for the flow φ is then equivalent to the stability of the fixed point X_* for the stroboscopic flow Φ (the stability is the same for all points of the cyclic orbit if φ is infinitely differentiable).

The stability of invariant cycles of a discrete time system which are not composed of cyclic orbits, and of invariant tori is more difficult. It is governed by the KAM (Kolmogorov-Arnold-Moser) theorem. This theorem is not on the program of the present course.

Work to be done

- 1. Diagonalise the Jacobian matrix ∂F_{X_*} or $\partial \varphi_{X_*}$ at each fixed points of your dynamical system, and find the local Lyapunov values $\{\lambda_i\}$ and the Lyapunov eigendirections $\{\Re e\chi_i, \Im m\chi_i\}$ for each fixed points.
- 2. Determine the nature of each fixed points (exponentially, asymptotically or marginally stable; unstable, hyperbolic).
- 3. Draw a figure showing the stable and unstable directions in the neighbourhood of the hyperbolic points.
- 4. If you have found cycles (for continuous time systems) or cyclic orbits (for discrete time systems), remake the three previous points for studying the stability of these orbits.