Extract a thermodynamically consistent subnetwork from a given model

- 1. Identify the largest subset of a model that admits a thermodynamically consistent flux
- 2. Specify a random subset of active/inactive reactions and present/absent metabolites
- 3. Compute the smallest thermodynamically consistent subnetwork containing a list of present metabolites and active reactions, and not containing a list of absent metabolites and inactive reactions

```
[solverOK,solverInstalled]=changeCobraSolver('ibm_cplex','all');
> changeCobraSolver: IBM ILOG CPLEX interface added to MATLAB path.
> ibm_cplex (version 1210) is compatible and fully tested with MATLAB R2021a on your operating system.
> changeCobraSolver: Solver for LP problems has been set to ibm_cplex.
> changeCobraSolver: IBM ILOG CPLEX interface added to MATLAB path.
> ibm_cplex (version 1210) is compatible and fully tested with MATLAB R2021a on your operating system.
> changeCobraSolver: Solver for MILP problems has been set to ibm_cplex.
> changeCobraSolver: IBM ILOG CPLEX interface added to MATLAB path.
> ibm_cplex (version 1210) is compatible and fully tested with MATLAB R2021a on your operating system.
> changeCobraSolver: Solver for QP problems has been set to ibm_cplex.
> changeCobraSolver: IBM ILOG CPLEX interface added to MATLAB path.
> ibm_cplex (version 1210) is compatible and fully tested with MATLAB R2021a on your operating system.
> changeCobraSolver: Solver for MIQP problems has been set to ibm_cplex.
> changeCobraSolver: Solver ibm_cplex not supported for problems of type EP. No solver set for this probl
> changeCobraSolver: Solver ibm_cplex not supported for problems of type NLP. No solver set for this prob
%[solverOK,solverInstalled]=changeCobraSolver('gurobi','all');
%[solverOK,solverInstalled]=changeCobraSolver('ibm_cplex','QP');
```

Load model

```
modelToLoad='circularToy';
modelToLoad='ecoli_core';
modelToLoad='modelRecon3MitoOpen';
modelToLoad='Recon3DModel';
%modelToLoad='iDopa';
```

Load a model

```
driver_thermoModelLoad

Model loaded: Recon3DModel
lower bounds greater than zero
Internal stochiometric nullspace computed in 4.5238 seconds.
```

Stoichiometric consistency

```
printLevel=2;
    [SConsistentMetBool, SConsistentRxnBool,
SInConsistentMetBool, SInConsistentRxnBool, unknownSConsistencyMetBool,
unknownSConsistencyRxnBool, model,stoichConsistModel]...
        = findStoichConsistentSubset(model, massBalanceCheck, printLevel);
else
    %Extract stoich consistent submodel
    if any(~model.SConsistentMetBool)
        rxnRemoveMethod='inclusive'; % maintains stoichiometric consistency
        [stoichConsistModel, rxnRemoveList] = removeMetabolites(model,
model.mets(~model.SConsistentMetBool),rxnRemoveMethod);
        SConsistentRxnBool2=~ismember(model.rxns,rxnRemoveList);
        if ~all(model.SConsistentRxnBool==SConsistentRxnBool2)
            error('inconsistent reaction removal')
        end
        try
            stoichConsistModel = removeUnusedGenes(stoichConsistModel);
        catch ME
            disp(ME.message)
        end
    else
        stoichConsistModel = model;
    end
end
[nMet,nRxn]=size(stoichConsistModel.S)
```

nMet = 5835nRxn = 10600

Flux consistency

```
fluxConsistentParam.method='fastcc';%can handle additional constraints
fluxConsistentParam.printLevel=1;
[~,~,~,*stoichConsistModel]=
findFluxConsistentSubset(stoichConsistModel,fluxConsistentParam);
```

Extract flux consistent submodel

```
if any(~stoichConsistModel.fluxConsistentRxnBool)
    rxnRemoveList =
stoichConsistModel.rxns(~stoichConsistModel.fluxConsistentRxnBool);
    stoichFluxConsistModel = removeRxns(stoichConsistModel,
rxnRemoveList,'metRemoveMethod','exclusive','ctrsRemoveMethod','inclusive');
    try
        stoichFluxConsistModel = removeUnusedGenes(stoichFluxConsistModel);
        catch ME
        disp(ME.message)
    end
else
```

```
stoichFluxConsistModel = stoichConsistModel;
end
[nMet,nRxn]=size(stoichFluxConsistModel.S)
```

nMet = 5835nRxn = 10600

Thermodynamic consistency

```
%save('debug_prior_to_findThermoConsistentFluxSubset.mat')
%return
param.printLevel = 1;
param.relaxBounds=0;
param.acceptRepairedFlux=1;
[thermoFluxConsistentMetBool,thermoFluxConsistentRxnBool,stoichFluxConsistMod
el,stoichFluxThermoConsistModel] =
findThermoConsistentFluxSubset(stoichFluxConsistModel,param);
--- findThermoFluxConsistentSubset START ----
                printLevel: 1
               relaxBounds: 0
        acceptRepairedFlux: 1
                   epsilon: 1.0000e-06
               formulation: 'pqzw'
           iterationMethod: 'random'
                     nMax: 20
           warmStartMethod: 'random'
           thetaMultiplier: 1.5000
                    theta: 0.5000
           regularizeOuter: 0
   thermoConsistencyMethod: 'cycleFreeFlux'
                   bigNum: 10000
                    debug: 0
optCardThermo objective data:
        0.1 = beta, the global weight on one-norm of internal reaction rate.
         -5 = min(g0), the local weight on zero-norm of internal reaction rate.
         -0 = \max(g0), the local weight on zero-norm of internal reaction rate.
          0 = \min(h0), the local weight on zero-norm of metabolite production rate.
          0 = \max(h0), the local weight on zero-norm of metabolite production rate.
optimizeCardinality objective data:
0 min cardinality variables:
        NaN mean(c(p))
                                 NaN min(c(p))
                                                          NaN max(c(p))
          1 lambda0
                              NaN min(k)
                                                    NaN max(k)
          1 lambda1
                              NaN min(o(p))
                                                       NaN max(o(p))
5303 max cardinality variables:
         -0 mean(c(q))
                                  -0 \min(c(q))
                                                           -0 \max(c(q))
                                                     5 \max(d)
                               5 min(d)
          1 delta0
          0 delta1
                                0 \min(o(q))
                                                        0 \max(o(q))
22879 cardinality free variables:
      0.077 \text{ mean(c(r))}
                                  -0 \min(c(r))
                                                           0.1 \max(c(r))
          0 alpha1
                              0 \min(o(r))
                                                         0 \max(o(r))
                ||dx||
                                                                                     ||x||1
 itn
       theta
                         del_obj
                                          obj
                                                  linear
                                                               | | x | | 0
                                                                           a(x)
     0.50 7.6657e+05 -8.8e+06 -2.2e+04
  1
                                                 1.6e+03
   2
       0.75
                184.22
                        -8.5e+02 -2.3e+04
                                                  1.1e+03
                                                                   0
                                                                              0
                                                                                          0
```

| | у |

-236

-238

3	1.12	98.541	-4.8e+02	-2.3e+04	7.3e+02	0	0	0	-239
4	1.69	61.895	-2.6e+02	-2.3e+04	4.9e+02	0	0	0	-239
5	2.53	40.001	-1.7e+02	-2.4e+04	3.3e+02	0	0	0	-239
6	3.80	26.092	-1.3e+02	-2.4e+04	2.2e+02	0	0	0	-239
7	5.70	18.183	-73	-2.4e+04	1.5e+02	0	0	0	-239
8	8.54	11.708	-68	-2.4e+04	97	0	0	0	-239
9	12.81	7.942	-34	-2.4e+04	65	0	0	0	-239
10	19.22	5.2426	-36	-2.4e+04	44	0	0	0	-239
11	28.83	3.5411	-48	-2.4e+04	29	0	0	0	-240
12	43.25	2.3919	-17	-2.4e+04	20	0	0	0	-240
13	64.87	1.6485	-13	-2.4e+04	14	0	0	0	-240
14	97.31	1.0952	-4.2	-2.4e+04	9.3	0	0	0	-240
15	145.96	0.76091	-2.9	-2.4e+04	6.5	0	0	0	-240
16	218.95	0.51853	-42	-2.4e+04	4.7	0	0	0	-240
17	328.42	0.53726	-14	-2.4e+04	3.5	0	0	0	-240
itn	theta	dx	del_obj	obj	linear	x 0	a(x)	x 1	y

Optimise cardinality reached the stopping criterion. Finished.

cycleFreeFlux: No solution found.

Debugging relaxation etc...

full: []
 obj: []
rcost: []
dual: []
slack: []

solver: 'ibm_cplex'
algorithm: 'Automatic'

stat: 0 origStat: 3

origStatText: 'Model has been proved infeasible'

time: 0.0300 basis: []

itn	obj	obj_old	err(obj)	err(x)	card(v)	card(r)	card(p)	card(q)
0	14.072	66705	66691	165.16	3913	0	543	541
1	1391	14.072	1376.9	48.563	2734	0	692	717
2	944.42	1391	446.54	62.844	3799	0	652	666
3	1526.3	944.42	581.91	64.636	3026	0	712	702
4	828.59	1526.3	697.73	63.09	3157	0	574	605
5	992.49	828.59	163.9	55.391	3334	0	716	682
6	1074.4	992.49	81.866	59.058	3674	0	687	657
7	1300.5	1074.4	226.18	63.35	3238	0	700	708
8	1040.9	1300.5	259.63	62.911	3773	0	685	639
9	1327.8	1040.9	286.85	63.278	3013	0	703	667
10	814.59	1327.8	513.18	60.13	3064	0	614	603
11	1027.5	814.59	212.94	55.715	2717	0	628	614
12	677.72	1027.5	349.8	53.573	3435	0	602	618
13	1061.2	677.72	383.44	54.092	3505	0	734	693
14	1272.7	1061.2	211.54	62.794	3509	0	693	670
15	1197.8	1272.7	74.901	64.628	3152	0	669	689
16	971.72	1197.8	226.09	60.517	2983	0	585	622
17	903.71	971.72	68.006	56.208	2923	0	612	658
18	834.71	903.71	69	54.078	3806	0	671	642
19	1348.3	834.71	513.59	60.702	3075	0	720	659
itn	obj	obj_old	err(obj)	err(x)	card(v)	card(r)	card(p)	card(q)

Relaxed model is feasible.

Statistics:

599 lower bound relaxation(s)

576 upper bound relaxation(s)

0 steady state relaxation(s)

... done.

ans = 9.1346e-07

ans = 0

ans = 0

```
solution = struct with fields:
   stat: 1
      v: [19391×1 double]
      r: [23417×1 double]
      p: [19391×1 double]
      q: [19391×1 double]
solutionRelaxed1 = struct with fields:
           full: [19391×1 double]
            obj: 26.3611
          rcost: [19391x1 double]
           dual: [23417×1 double]
          slack: [23417×1 double]
         solver: 'ibm_cplex'
      algorithm: 'Automatic'
           stat: 1
       origStat: 1
    origStatText: 'Optimal solution found'
           time: 1.2415
          basis: []
solutionRelaxed2 = struct with fields:
           full: [19391×1 double]
            obj: 0
          rcost: [19391×1 double]
           dual: [23417×1 double]
          slack: [23417×1 double]
         solver: 'ibm_cplex'
      algorithm: 'Automatic'
           stat: 1
       origStat: 1
    origStatText: 'Optimal solution found'
           time: 0.6092
          basis: []
solutionRelaxed3 = struct with fields:
           full: [19391×1 double]
            obj: 0
          rcost: [19391x1 double]
           dual: [23417×1 double]
          slack: [23417×1 double]
         solver: 'ibm_cplex'
      algorithm: 'Automatic'
           stat: 1
       origStat: 1
    origStatText: 'Optimal solution found'
           time: 0.3797
          basis: []
cycleFreeFlux: No solution found, try using a different solver.
cycleFreeFlux: No solution found.
Debugging relaxation etc...
           full: []
            obj: []
          rcost: []
           dual: []
          slack: []
         solver: 'ibm_cplex'
      algorithm: 'Automatic'
           stat: 0
       origStat: 3
    origStatText: 'Model has been proved infeasible'
           time: 0.0305
          basis: []
 itn
                     obj_old err(obj)
            obj
                                              err(x) card(v) card(r) card(p)
                                                                                     card(q)
   0
          14.072
                      66355
                                 66341
                                              164.43
                                                          3913
                                                                  0
                                                                               543
                                                                                         541
```

1 2 3 4 5	1391 944.42 1526.3 828.59 992.49	14.072 1391 944.42 1526.3 828.59	1376.9 446.54 581.91 697.73 163.9
6 7	1074.4 1300.5	992.49 1074.4	81.866 226.18
8 9	1040.9 1327.8	1300.5 1040.9	259.63 286.85
10	814.59	1327.8	513.18
11	1027.5	814.59	212.94
12 13	677.72 1061.2	1027.5 677.72	349.8 383.44
14	1272.7	1061.2	211.54
15 16	1197.8	1272.7	74.901
16 17	971.72 903.71	1197.8 971.72	226.09 68.006
18	834.71	903.71	69
19	1348.3	834.71	513.59
itn Relaxed	obj model is fea	obj_old sible.	err(obj)
Statisti	cs:		
	r bound rela		
	r bound rela state relax		
done			
ans = 9 .	1346e-07		
ans = 0 $ans = 0$			
solution	= struct wi	th fields:	
stat			
v	: [19391×1 d : [23417×1 d		
p		=	
q			
solution	Relaxed1 = s	truct with 9391×1 doub	
	obj: 26		ie]
	rcost: [1	9391×1 doub	=
	=	3417×1 doub	=
	slack: [2 solver: 'i	3417×1 doub bm cplex'	ıe]
a	lgorithm: 'A	utomatic'	
	stat: 1		
	origStat: 1 StatText: '0	ntimal solu	tion found!
5	StatText: 'O time: 1.		
7	basis: []		c' 11.
solution	Relaxed2 = s full: [1	9391×1 doub	
	obj: 0	202111 0000	
		9391×1 doub	
	=	3417×1 doub 3417×1 doub	=
	solver: 'i		10]
a	lgorithm: 'A		
	stat: 1 origStat: 1		
	origstat. 1 StatText: '0	ptimal solu	tion found'
J	time: 0.	5761	
	basis: []		E4.13
solution	Relaxed3 = s full: [1	truct with 9391×1 doub	
	obj: 0		•

48.563

62.844

64.636

63.09

55.391

59.058

63.35

62.911

63.278

60.13

55.715

53.573

54.092

62.794

64.628

60.517

56.208

54.078

60.702

err(x) card(v) card(r) card(p)

card(q)

```
dual: [23417×1 double]
          slack: [23417×1 double]
          solver: 'ibm_cplex'
      algorithm: 'Automatic'
           stat: 1
       origStat: 1
   origStatText: 'Optimal solution found'
           time: 0.3650
          basis: []
Warning: cycleFreeFlux did not solve, trying v2QNTy
76.81% thermodynamically feasible internal fluxes (checked by v2QNty method).
               iter
                                card(y)
                                                         nz
                                                                  %feas int.nz.
                                                                                  tot %feas int.nz.
                  1
                                    5303
                                                        7882
                                                                            0.68
                                                                                                0.50
                  2
                                   2376
                                                        3075
                                                                            1.00
                                                                                                0.69
                  3
                                                        1708
                                                                           1.00
                                                                                                0.77
                                   1427
                   4
                                   1022
                                                        1296
                                                                            1.00
                                                                                                0.83
                  5
                                    769
                                                        794
                                                                           1.00
                                                                                                0.86
                  6
                                    606
                                                        587
                                                                           1.00
                                                                                                0.88
                  7
                                    506
                                                        432
                                                                           1.00
                                                                                                0.90
                  8
                                                        377
                                                                           1.00
                                    449
                                                                                                0.91
                  9
                                    389
                                                        324
                                                                           1.00
                                                                                                0.92
                 10
                                     348
                                                         301
                                                                           1.00
                                                                                                0.93
                 11
                                    298
                                                         332
                                                                           1.00
                                                                                                0.94
                 12
                                    254
                                                         384
                                                                           1.00
                                                                                                0.95
                 13
                                     216
                                                         209
                                                                           1.00
                                                                                                0.96
                 14
                                    191
                                                         200
                                                                           1.00
                                                                                                0.97
                 15
                                    153
                                                         201
                                                                           1.00
                                                                                                0.97
                 16
                                    151
                                                        162
                                                                           1.00
                                                                                                0.97
                 17
                                    106
                                                        139
                                                                           1.00
                                                                                                0.98
                                                                           1.00
                 18
                                    102
                                                        161
                                                                                                0.98
                 19
                                     78
                                                        127
                                                                           1.00
                                                                                                0.98
                 20
                                     91
                                                        128
                                                                            1.00
                                                                                                0.98
                                                                 %feas int.nz. tot %feas int.nz.
               iter
                                card(y)
                                                         nz
                                                                                                       tot
findThermoConsistentFluxSubset terminating early: n = nMax = 20
```

Size of the largest flux, stoich and thermo consistent submodel

--- findThermoFluxConsistentSubset END ----

rcost: [19391×1 double]

```
[nMet,nRxn]=size(stoichFluxThermoConsistModel.S)
save(['~/work/sbgCloud/programModelling/projects/thermoModel/results/
thermoKernel/' modelToLoad
'_stoichFluxThermoConsistModel.mat'],'stoichFluxThermoConsistModel')
```

```
%modelToLoad='Recon3DModel';
load(['~/work/sbgCloud/programModelling/projects/thermoModel/results/
thermoKernel/' modelToLoad
'_stoichFluxThermoConsistModel.mat'],'stoichFluxThermoConsistModel')
```

Nullspace

Nullspace is necessary for backup check of thermodynamic consistency using thermoFlux2QNty

```
[stoichFluxThermoConsistModel,rankK,nnzK,timeTaken] =
internalNullspace(stoichFluxThermoConsistModel);
rankK
```

Data to define a thermodynamically consistent subnetwork

Setup random data to select a random subset

```
param.n=200;
[rankMetConnectivity,rankMetInd,rankConnectivity] =
rankMetabolicConnectivity(stoichFluxThermoConsistModel,param);
```



```
[nMet,nRxn]=size(stoichFluxThermoConsistModel.S);
rxnWeights=rand(nRxn,1)-0.5;
rxnWeights(~stoichFluxThermoConsistModel.SConsistentRxnBool)=0;

coreRxnBool=rxnWeights<-0.45;
removeRxnBool=rxnWeights>0.45;
if 0
    rxnWeights(rxnWeights>0.4)=1;
    rxnWeights(rxnWeights<-0.4)=-1;
end
rxnWeights(rxnWeights>=-0.4 & rxnWeights<=0.4)=0;
hist(rxnWeights,40)</pre>
```



```
metWeights=rand(nMet,1)-0.5;
metWeights(rankMetInd(1:200))=0;
coreMetBool=metWeights<-0.45;
removeMetBool=metWeights>0.45;
if 0
    metWeights(metWeights>0.4)=1;
    metWeights(metWeights<-0.4)=-1;
end
metWeights(metWeights>=-0.4 & metWeights<=0.4)=0;
hist(metWeights,40)</pre>
```



```
nlt=length(coreRxnBool);
activeInactiveRxn=zeros(nlt,1);
activeInactiveRxn(coreRxnBool)=1;
activeInactiveRxn(removeRxnBool)=-1;
hist(activeInactiveRxn)
```



```
mlt=length(coreMetBool);
presentAbsentMet=zeros(mlt,1);
presentAbsentMet(coreMetBool)=1;
presentAbsentMet(removeMetBool)=-1;
if 0
    activeInactiveRxn(:)=0;
    presentAbsentMet(:)=0;
end
param.normalizeZeroNormWeights=0;
```


Compute the smallest thermodynamically consistent subnetwork given a list of present/absent metabolites and active/inactive reactions

```
[tissueModel, thermoModelMetBool, thermoModelRxnBool] =
thermoKernel(stoichFluxThermoConsistModel, activeInactiveRxn, rxnWeights,
presentAbsentMet, metWeights,param);
```

```
--- thermoKernel START ----
thermoKernel parameters:
                 printLevel: 1
                 relaxBounds: 0
          acceptRepairedFlux: 1
                           n: 200
   normalizeZeroNormWeights: 0
                 formulation: 'pqzwrs'
                     epsilon: 1.0000e-06
           removeOrphanGenes: 1
              nbMaxIteration: 30
                       nMax: 20
             iterationMethod: 'greedyRandom'
            warmStartMethod: 'random'
                formulation: 'pqzwrs'
            thetaMultiplier: 1.5000
                      theta: 0.5000
            regularizeOuter: 1
                    epsilon: 1.0000e-06
                 printLevel: 1
                relaxBounds: 0
         acceptRepairedFlux: 1
    thermoConsistencyMethod: 'cycleFreeFlux'
```

bigNum: 10000 debug: 0

optCardThermo objective data:

- 1 = beta, the global weight on one-norm of internal reaction rate.
- $-0.5 = \min(g0)$, the local weight on zero-norm of internal reaction rate.
- 0.5 = max(g0), the local weight on zero-norm of internal reaction rate.
- -0.5 = min(h0), the local weight on zero-norm of metabolite production rate.
- 0.5 = max(h0), the local weight on zero-norm of metabolite production rate.

optimizeCardinality objective data:

1393 min cardinality variables:

 $0 \operatorname{mean}(c(p)) -0 \operatorname{min}(c(p)) -0 \operatorname{max}(c(p))$

 $0 \text{ lambdal} \qquad \qquad 0 \text{ min}(o(p)) \qquad \qquad 0 \text{ max}(o(p))$

1912 max cardinality variables:

 $0 \ \text{deltal} \qquad \qquad 0 \ \text{min}(o(q)) \qquad \qquad 0 \ \text{max}(o(q))$

35242 cardinality free variables:

itn	theta	dx	dol obi	obj	linear	112110	2 (35)	55 1	
IUII			del_obj	_		x 0	a(x)	x 1	y
1		9.6992e+05	-8.5e+07	7.9	11	1.64389	0.11	0	-14.90
2	0.75	4.5121	-1.7	6.2	12	2.0597	0.16	0	-15.84
3	1.12	2.8094	-1.8	4.4	12	1.65769	0.25	0	-17.51
4	1.69	3.0116	-2	2.4	12	1.23553	0.43	0	-18.81
5	2.53	3.0252	-2.3	0.041	13	1.23553	0.45	0	-19.68
6	3.80	2.7007	-3.3	-3.3	13	1.23553	0.47	0	-24.78
7	5.70	2.0612	-4.9	-8.2	14	1.23553	0.87	0	-25.69
8	8.54	1.9653	-2.8	-11	13	1.23553	0.9	0	-27.03
9	12.81	1.3137	-3.8	-15	12	1.23553	0.95	0	-30.49
10	19.22	1.2354	-4	-19	11	1.23553	1	0	-32.32
11	28.83	0.809	-2.2	-21	10	1.23553	1.1	0	-32.32
12	43.25	0.71837	-0.57	-21	9.6	1.23553	1.2	0	-32.32
13	64.87	0.46434	-0.55	-22	9.2	1.23553	1.2	0	-33.26
14	97.31	0.33824	-1.1	-23	8.9	1.23553	1.2	0	-33.26
15	145.96	0.21621	-0.14	-23	8.8	1.23553	1.2	0	-33.26
16	218.95	0.2235	-0.088	-23	8.7	1.23553	1.2	0	-33.26
17	328.42	0.10113	-0.058	-23	8.6	1.23553	1.2	0	-33.26
itn	theta	dx	del_obj	obj	linear	x 0	a(x)	x 1	y
	Ontimian		woodhod the at	tonning grit	ordon Find	ahad			

Optimise cardinality reached the stopping criterion. Finished.

100.00% thermodynamically feasible internal fluxes (checked by cycleFreeFlux method).

regularizeOuter: 1

epsilon: 1.0000e-06

printLevel: 1
 relaxBounds: 0
acceptRepairedFlux: 1

thermoConsistencyMethod: 'cycleFreeFlux'

bigNum: 10000 debug: 0

optCardThermo objective data:

- 1 = beta, the global weight on one-norm of internal reaction rate.
- -0.5 = min(g0), the local weight on zero-norm of internal reaction rate.
- 0.5 = max(g0), the local weight on zero-norm of internal reaction rate.

-0.5 = min(h0), the local weight on zero-norm of metabolite production rate.

0.5 = max(h0), the local weight on zero-norm of metabolite production rate.

optimizeCardinality objective data:

1393 min cardinality variables: -0 min(c(p)) 0 mean(c(p)) $-0 \max(c(p))$ -0 m 0.5 max(k) 1 lambda0 0.4 min(k) 0 lambda1 0 min(o(p)) 0 max(o(p)) 1912 max cardinality variables:

-0 min(c(q)) -0 0.5 max(d) -0 max(c(q)) 0.4 min(d) 1 delta0 $0 \max(o(q))$ 0 delta1 0 min(o(q)) 35242 cardinality free variables: 0.48 mean(c(r)) $-0 \min(c(r))$ $1 \max(c(r))$ 0 alpha1 0 min(o(r)) $0 \max(o(r))$ itn theta ||dx|| del_obj obj linear ||x||0

1 0.50 9.6862e+05 -8.4e+07 8.1 11 3.74292
2 0.75 2.3033 -1 7.1 10 2.06605
3 1.12 2.5538 -1.1 6 10 2.06605
4 1.69 2.8214 -1.1 4.8 11 1.23553
5 2.53 3.0167 -2.9 2 12 1.23553
6 3.80 2.0716 -2.1 -0.084 12 1.23553
7 5.70 2.5196 -3.8 -3.9 13 0.832228
8 8.54 1.9952 -3.6 -7.5 13 0.832228
9 12.81 1.589 -3 -10 12 0.832228
10 19.22 1.0613 -1.5 -12 10 0.832228
11 28.83 0.69458 -0.65 -13 9.7 0.832228
12 43.25 0.49103 -0.32 -13 9.3 0.832228
13 64.87 0.24192 -0.24 -13 9 0.832228
14 97.31 0.21816 -0.55 -14 8.9 0.832228
16 218.95 0.097141 -0.048 -14 8.7 0.832228
17 328.42 0.16623 -0.031 -14 8.7 0.832228
itn theta ||dx|| del_obj obj linear ||x||0
Optimise cardinality reached the stopping criterion. Finished. a(x) | |x||1 0.11 0 0.16 0 -13.29 0.16 0.26 0.43 0.45 0.47 0.5 0.55 0.62 0.73 0.83 0.83 0.83 -12.36 0 -13.240 -14.56 0 -17.11 0 -17.11 0 -18.83 0 -20.67 0 -22.59 0 -23.07 0 -23.07 0 -23.07 0 -23.47 0 -23.47 0 -23.47 Optimise cardinality reached the stopping criterion. Finished. 100.00% thermodynamically feasible internal fluxes (checked by cycleFreeFlux method). iter. nz.flux.%it.feas.int.flux. %feas.inc.flux. nz.prod. %it.feas.nz.prod. %feas.inc.prod. 178 1.00 0.02 121 1.29 0.03 1 2 208 1.00 0.04 155 1.19 0.10 335 249 1.20 0.22 3 1.00 0.07 1.28 1.30 1.29 1.28 1.30 1.31 1.28 1.36 1.36 1.29 1.40 1.28 1.30 1.45 1.45 0.35 424 1.00 0.11 301 1.28 4 393 5 0.20 272 0.42 0.29 0.34 0.41 0.45 505 354 6 0.51 354 208 281 291 211 203 228 134 258 0.23 0.34 0.41 0.45 0.50 0.54 0.59 0.61 0.54 0.58 280 7 8 378 395 9 0.63 272 10 0.65 0.67 11 281 0.68 315 12 189 13 0.69 0.70 0.72 258 14 358 15 299 1.00 0.68 218

| | y |

| | у |

fc

gre

0.72

0.73

0.73

0.74

0.73 176 1.36 20 235 1.00 0.73 176 1.36 0.74 greiter. nz.flux.%it.feas.int.flux. %feas.inc.flux. nz.prod. %it.feas.nz.prod. %feas.inc.prod. for thermoKernel terminating confus no effect of the procKernel terminating confus no e thermoKernel terminating early: n = nMax = 20

0.69

0.70

0.71

0.72

116

191

175

107

1.38

1.00

1.00

1.00

1.00

16

17

18

19

166

275

249

150

[nMet,nRxn]=size(tissueModel.S)

--- thermoKernel END ----

Compare the target versus predicted model

```
%plotThermoCoreStats(activeInactiveRxn, presentAbsentMet,
thermoModelMetBool, thermoModelRxnBool);
plotThermoKernelExtractStats(stoichFluxThermoConsistModel,
activeInactiveRxn, rxnWeights, presentAbsentMet, metWeights,
thermoModelMetBool, thermoModelRxnBool)
```


Target Class

Save weights

```
rxnWeightsTmp=rxnWeights;
metWeightsTmp=metWeights;
```

Submodel with just metabolites specified

```
metWeights=metWeightsTmp;
rxnWeights(:)=0;
[tissueModel, thermoModelMetBool, thermoModelRxnBool] =
thermoKernel(stoichFluxThermoConsistModel, activeInactiveRxn, rxnWeights,
presentAbsentMet, metWeights,param);
```

```
thetaMultiplier: 1.5000
                                theta: 0.5000
                            regularizeOuter: 1
                                         epsilon: 1.0000e-06
                                       printLevel: 1
                                      relaxBounds: 0
                     acceptRepairedFlux: 1
         thermoConsistencyMethod: 'cycleFreeFlux'
                                               bigNum: 10000
                                                   debug: 0
optCardThermo objective data:
                         1 = beta, the global weight on one-norm of internal reaction rate.
                          0 = \min(g0), the local weight on zero-norm of internal reaction rate.
                          0 = max(g0), the local weight on zero-norm of internal reaction rate.
                   -0.5 = min(h0), the local weight on zero-norm of metabolite production rate.
                     0.5 = max(h0), the local weight on zero-norm of metabolite production rate.
optimizeCardinality objective data:
0 max(c(p))
                                                                                                                                0.5 max(k)
                                                                                                                                 0 max(o(p))
36920 cardinality free variables:  0.46 \text{ mean}(c(r)) & -0 \text{ min}(c(r)) \\ 0 \text{ alphal} & 0 \text{ min}(o(r)) 
                                                                                                                                 0 max(o(r))
                                                                                                                                                       1 \max(c(r))
 itn theta ||dx|| del_obj obj linear ||x||0

1 0.50 9.6648e+05 -8.4e+07 7.9 10 2.08529

2 0.75 2.4394 -0.69 7.2 9.4 1.67053

3 1.12 1.334 -0.47 6.7 9.3 1.23553

4 1.69 3.7656 -1 5.7 12 1.23553

5 2.53 3.2162 -1.7 4 11 1.23553

6 3.80 2.1001 -1.8 2.1 11 1.23553

7 5.70 1.3982 -1.2 0.95 10 1.23553

8 8.54 0.78275 -1.5 -0.51 9.8 0.832228

9 12.81 0.52353 -1.8 -2.3 9.5 0.832228

10 19.22 0.37265 -0.29 -2.6 9.1 0.832228

11 28.83 0.33297 -0.11 -2.7 8.9 0.832228

12 43.25 0.19468 -0.5 -3.2 8.7 0.832228

13 64.87 0.099656 -0.91 -4.1 8.7 0.832228

14 97.31 0.11652 -1.5 -5.6 8.6 0.832228

15 145.96 0.12539 -0.03 -5.6 8.6 0.832228

16 218.95 0.067216 -0.018 -5.6 8.6 0.832228

17 328.42 0.13964 -0.012 -5.6 8.6 0.832228

itn theta ||dx|| del_obj obj linear ||x||0

Optimise cardinality reached the stopping criterion. Finished.
                                                                                                                                                                                         a(x) ||x||1
                                                                                                                                                                                                                                              ||у|
                                                                                                                                                                                      0.087
0.13
                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                           -7.858

      0.13
      0
      -8.287

      0.24
      0
      -8.287

      0.36
      0
      -8.287

      0.45
      0
      -8.737

      0.47
      0
      -10.00

      0.51
      0
      -10.00

      0.55
      0
      -12.

      0.62
      0
      -12.

      0.73
      0
      -12.

      0.83
      0
      -15.03

      0.83
      0
      -15.03

      0.83
      0
      -15.03

      0.83
      0
      -15.03

      0.83
      0
      -15.03

      0.83
      0
      -15.03

      0.83
      0
      -15.03

      0.83
      0
      -15.03

      0.83
      0
      -15.03

      0.83
      0
      -15.03

      0.83
      0
      -15.03

      0.84
      0
      -15.03

      0.85
      0
      -15.03

      0.86
      0
      -15.03

      0.87
      0
      -15.03

      0.89
      0
      -15.03

      0.80
      0
      -15.03

                                                                                                                                                                                                                             0 -8.287
          Optimise cardinality reached the stopping criterion. Finished.
100.00% thermodynamically feasible internal fluxes (checked by cycleFreeFlux method).
                           warmStartMethod: 'random'
```

formulation: 'pqzwrs'

thetaMultiplier: 1.5000 theta: 0.5000

regularizeOuter: 1

epsilon: 1.0000e-06

printLevel: 1 relaxBounds: 0 acceptRepairedFlux: 1

bigNum: 10000 debug: 0

optCardThermo objective data:

- 1 = beta, the global weight on one-norm of internal reaction rate.
- 0 = min(g0), the local weight on zero-norm of internal reaction rate.
- 0 = max(g0), the local weight on zero-norm of internal reaction rate.
- -0.5 = min(h0), the local weight on zero-norm of metabolite production rate.
- 0.5 = max(h0), the local weight on zero-norm of metabolite production rate.

optimizeCardinality objective data:

539 min cardinality variables:

 $0 \min(c(p))$ 0 m $0.4 \min(k)$ 0.5 max(k) $0 \min(o(p))$ 0 max(0 max(c(p)) 0 mean(c(p)) 1 lambda0

0 lambda1 0 max(o(p))

1088 max cardinality variables:

 $0 \text{ mean}(c(q)) \qquad \qquad 0 \text{ min}(c(q))$ 0 max(c(q)) 0.4 min(d) 0.5 max(\(\alpha\) (o(q)) 1 delta0

0 min(o(q)) 0 delta1

36920 cardinality free variables:

0.46 mean(c(r)) $-0 \min(c(r))$ $1 \max(c(r))$ 0 alphal $0 \min(o(r))$ 0 $\max(o(r))$

itn	theta	dx	del_obj	obj	linear	x 0	a(x)	x 1	y
1	0.50	9.7116e+05	-8.5e+07	7.9	10	2.08529	0.079	0	-7.121
2	0.75	2.4188	-0.68	7.2	9.5	1.23553	0.11	0	-7.551
3	1.12	2.6941	-0.72	6.5	10	1.23553	0.24	0	-8.353
4	1.69	4.9777	-0.99	5.5	11	1.23553	0.36	0	-8.353
5	2.53	4.4276	-1.7	3.8	11	1.23553	0.45	0	-8.802
6	3.80	2.3513	-2.2	1.6	11	1.23553	0.47	0	-10.52
7	5.70	1.6188	-1.2	0.4	10	1.23553	0.51	0	-10.52
8	8.54	0.63996	-0.59	-0.19	9.6	1.23553	0.56	0	-10.52
9	12.81	0.55001	-0.9	-1.1	9.4	0.832228	0.55	0	-12.35
10	19.22	0.4508	-1.5	-2.6	9.1	0.832228	0.62	0	-12.35
11	28.83	0.42169	-0.11	-2.7	8.9	0.832228	0.73	0	-12.35
12	43.25	0.24485	-0.032	-2.8	8.7	0.832228	0.83	0	-12.35
13	64.87	0.19244	-0.075	-2.9	8.7	0.832228	0.83	0	-12.35
14	97.31	0.10717	-0.042	-2.9	8.6	0.832228	0.83	0	-12.35
15	145.96	0.083129	-0.023	-2.9	8.6	0.832228	0.83	0	-12.35
16	218.95	0.070749	-0.015	-2.9	8.6	0.832228	0.83	0	-12.35
17	328.42	0.14835	-0.0098	-2.9	8.6	0.832228	0.83	0	-12.35
itn	theta	dx	del_obj	obj	linear	x 0	a(x)	x 1	у
	Ontimica	rardinality	reached the st	conning grit	erion Fini	ched			

fc gre gre

Optimise cardinality reached the stopping criterion. Finished.

100.00% thermodynamically feasible internal fluxes (checked by cycleFreeFlux method). iter. nz.flux.%it.feas.int.flux. %feas.inc.flux. nz.prod. %it.feas.nz.prod. %feas.

iter.	nz.flux.%it.fe	as.int.flux.	%feas.inc.flux.	nz.prod.	%it.feas.nz.prod.	%feas.inc.prod.
1	137	1.00	NaN	95	1.21	0.03
2	186	1.00	NaN	139	1.17	0.08
3	297	1.00	NaN	226	1.19	0.20
4	467	1.00	NaN	349	1.30	0.37
5	203	1.00	NaN	149	1.23	0.43
6	282	1.00	NaN	213	1.24	0.51
7	285	1.00	NaN	201	1.32	0.56
8	213	1.00	NaN	156	1.30	0.60
9	168	1.00	NaN	124	1.27	0.62
10	132	1.00	NaN	97	1.20	0.63
11	248	1.00	NaN	184	1.33	0.66
12	111	1.00	NaN	78	1.22	0.66
13	200	1.00	NaN	148	1.36	0.68
14	112	1.00	NaN	77	1.25	0.68
15	984	1.00	NaN	709	1.26	0.70

	63 61. 6			7 01. 6	3 0.5	-
20	965	1.00	NaN	718	1.24	0.76
19	974	1.00	NaN	732	1.22	0.75
18	1000	1.00	NaN	726	1.26	0.75
17	1024	1.00	NaN	744	1.27	0.74
16	1076	1.00	NaN	789	1.24	0.74

fc

iter. nz.flux.%it.feas.int.flux. %feas.inc.flux. nz.prod. %it.feas.nz.prod. %feas.inc.prod. thermoKernel terminating early: n = nMax = 20

Metabolite confusion matrix, accuracy = 0.82548

--- thermoKernel END ----

[nMet,nRxn]=size(tissueModel.S)

nMet = 1870 nRxn = 2635

Compare the target versus predicted model

plotThermoKernelExtractStats(stoichFluxThermoConsistModel,
activeInactiveRxn, rxnWeights, presentAbsentMet, metWeights,
thermoModelMetBool, thermoModelRxnBool)

Submodel with just reactions specified

rxnWeights=rxnWeightsTmp;

```
metWeights(:)=0;
[tissueModel, thermoModelMetBool, thermoModelRxnBool] =
thermoKernel(stoichFluxThermoConsistModel, activeInactiveRxn, rxnWeights,
presentAbsentMet, metWeights,param);
--- thermoKernel START ----
thermoKernel parameters:
                printLevel: 1
               relaxBounds: 0
         acceptRepairedFlux: 1
                         n: 200
   normalizeZeroNormWeights: 0
               formulation: 'pqzwrs'
                   epsilon: 1.0000e-06
          removeOrphanGenes: 1
            nbMaxIteration: 30
                     nMax: 20
            iterationMethod: 'greedyRandom'
           warmStartMethod: 'random'
              formulation: 'pqzwrs'
           thetaMultiplier: 1.5000
                   theta: 0.5000
           regularizeOuter: 1
                  epsilon: 1.0000e-06
               printLevel: 1
               relaxBounds: 0
        acceptRepairedFlux: 1
   thermoConsistencyMethod: 'cycleFreeFlux'
                   bigNum: 10000
                    debug: 0
optCardThermo objective data:
          1 = beta, the global weight on one-norm of internal reaction rate.
       -0.5 = \min(q0), the local weight on zero-norm of internal reaction rate.
        0.5 = max(g0), the local weight on zero-norm of internal reaction rate.
          0 = \min(h0), the local weight on zero-norm of metabolite production rate.
          0 = \max(h0), the local weight on zero-norm of metabolite production rate.
optimizeCardinality objective data:
854 min cardinality variables:
                              -0 \min(c(p))
         -0 mean(c(p))
                                                          -0 \max(c(p))
                              0.4 min(k)
          1 lambda0
                                                   0.5 \max(k)
          0 lambda1
                              0 min(o(p))
                                                        0 max(o(p))
824 max cardinality variables:
-0 min(c(q))
                                                           -0 \max(c(q))
          1 delta0
                             0.4 min(d)
                                                  0.5 max(d)
                             0 min(o(q))
          0 delta1
                                                       0 \max(o(q))
36869 cardinality free variables:
       \begin{array}{ccc} 0.46 \text{ mean}(c(r)) & -0 \text{ min}(c(r)) \\ 0 \text{ alphal} & 0 \text{ min}(o(r)) \end{array}
                                                            1 \max(c(r))
                                                      0 \max(o(r))
                ||dx|| del_obj
                                                 linear
                                                                                    ||x||1
 itn
       theta
                                        obj
                                                             | x | 0
                                                                          a(x)
                                                                                                ΙΙУΙ
                                                  8.4 0.408362
      0.50 9.6945e+05 -8.5e+07
                                        8.4
                                                                          0.02
                                                                                        0
      0.75 0.082294
                           -0.032
                                        8.4
                                                    8.4 0.408362
                                                                        0.028
                                                                                        0
                                                                                              -3.506
                                                   8.5 0.408362
  3
      1.12
              0.25722
                           -0.046
                                        8.3
                                                                          0.03
                                                                                        0
                                                                                              -3.506
                                                  8.5 0.422161
8.5 0.422161
                          -0.093
-0.15
      1.69
              0.41187
                                        8.2
                                                                       0.0076
                                                                                        0
                                                                                              -3.506
  4
                                        8.1
obj
                                                                                        0
  5 2.53 5.4552e-14
                                                                        0.011
                                                                                              -3.506
       theta ||dx|| del_obj
                                                 linear ||x||0
                                                                         a(x) | |x| | 1
 itn
                                                                                               | | у |
    Optimise cardinality reached the stopping criterion. Finished.
```

```
100.00% thermodynamically feasible internal fluxes (checked by cycleFreeFlux method).
          warmStartMethod: 'random'
              formulation: 'pqzwrs'
           thetaMultiplier: 1.5000
                   theta: 0.5000
           regularizeOuter: 1
                  epsilon: 1.0000e-06
               printLevel: 1
              relaxBounds: 0
        acceptRepairedFlux: 1
   thermoConsistencyMethod: 'cycleFreeFlux'
                   bigNum: 10000
                    debug: 0
optCardThermo objective data:
         1 = beta, the global weight on one-norm of internal reaction rate.
       -0.5 = \min(90), the local weight on zero-norm of internal reaction rate.
        0.5 = max(g0), the local weight on zero-norm of internal reaction rate.
          0 = \min(h0), the local weight on zero-norm of metabolite production rate.
          0 = \max(h0), the local weight on zero-norm of metabolite production rate.
optimizeCardinality objective data:
854 min cardinality variables:
         -0 mean(c(p)) -0 min(c(p))
1 lambda0 0.4 min(k)
                                                          -0 \max(c(p))
                                                   0.5 \max(k)
          0 lambda1
                              0 min(o(p))
                                                        0 max(o(p))
824 max cardinality variables:
         -0 mean(c(q))
                             -0 min(c(q))
                                                           -0 \max(c(q))
                             0.4 min(d)
          1 delta0
                                                  0.5 max(d)
          0 delta1
                             0 min(o(q))
                                                      0 \max(o(q))
36869 cardinality free variables:
       o.46 mean(c(r)) -0 min(c(r))
o alpha1 0 min(o(r))
                                                           1 \max(c(r))
                                                      0 max(o(r))
               ||dx|| del_obj
                                        obj linear
                                                            ||x||0
                                                                         a(x)   |x| 1
                                                                                               | | у |
 itn
       theta
                                                                       0.02
                                                                                    0
                                                 8.4 0.830523
      0.50 9.6798e+05 -8.5e+07
                                        8.4
                                                                                             -3.506
      0.75 0.11192
                          -0.032
                                        8.4
                                                   8.4 0.408362
                                                                                       0
                                                                                             -3.506
  2
      0.75  0.11192  -0.032  8.4  8.4  0.408362

1.12  0.25722  -0.046  8.3  8.5  0.408362

1.69  0.41187  -0.093  8.2  8.5  0.422161

2.53  5.4552e-14  -0.15  8.1  8.5  0.422161

theta ||dx|| del_obj obj linear ||x||0
                                                                       1.12
  3
      1.69
    Optimise cardinality reached the stopping criterion. Finished.
100.00% thermodynamically feasible internal fluxes (checked by cycleFreeFlux method).
iter. nz.flux.%it.feas.int.flux. %feas.inc.flux. nz.prod. %it.feas.nz.prod. %feas.inc.prod.
                                                                                                fc
   1
         100
                          1.00
                                           0.01
                                                    72
                                                                     1.15
                                                                                                gre
   2
           99
                           1.00
                                            0.01
                                                       70
                                                                      1.21
                                                                                        NaN
                                                                                                gre
   3
          113
                          1.00
                                            0.02
                                                      79
                                                                      1.15
                                                                                       NaN
                                                                                                gre
                                                      83
   4
          113
                          1.00
                                           0.03
                                                                     1.12
                                                                                       NaN
                                                                                                gre
         181
   5
                          1.00
                                           0.07
                                                    134
                                                                     1.14
                                                                                       NaN
                                                                                                gre
         240
   6
                         1.00
                                          0.14
                                                     183
                                                                     1.14
                                                                                      NaN
                                                                                                gre
          192
                                                     128
   7
                                                                     1.38
                         1.00
                                           0.20
                                                                                      NaN
                                                                                                gre
   8
         184
                                                     130
                                                                                      NaN
                         1.00
                                          0.24
                                                                     1.31
                                                                                                gre
   9
         276
                                                     192
                                                                                      NaN
                         1.00
                                          0.30
                                                                    1.38
                                                   192
193
227
209
205
173
                                                                                                gre
  10
         267
                         1.00
                                          0.35
                                                                    1.28
                                                                                      NaN
                                                                                               gre
  11
         309
                         1.00
                                          0.42
                                                                    1.29
                                                                                      NaN
                                                                                              gre
  12
         293
                         1.00
                                          0.49
                                                                    1.44
                                                                                      NaN
                                                                                               gre
```

0.54

0.57 173 0.62 249 0.66 203 0.67 122

1.39

1.25

1.37

1.37

1.42

NaN

NaN

NaN

NaN

NaN

gre

gre

gre

gre

gre

13

14

15

16

17

295

214

340

284

177

1.00

1.00

1.00

1.00

1.00

18	116	1.00	0.67	87	1.20	NaN	gre
19	147	1.00	0.68	101	1.40	NaN	gre
20	199	1.00	0.70	139	1.42	NaN	gre
iter.	nz.flux.%it.fea	as.int.flux.	%feas.inc.flux.	nz.prod.	%it.feas.nz.prod.	%feas.inc.prod.	fo
thermo	Kernel terminati	ng early: n =	nMax = 20				


```
[nMet,nRxn]=size(tissueModel.S)
```

nMet = 1441nRxn = 1924

Compare the target versus predicted model

plotThermoKernelExtractStats(stoichFluxThermoConsistModel,
activeInactiveRxn, rxnWeights, presentAbsentMet, metWeights,
thermoModelMetBool, thermoModelRxnBool)

Submodel with just active metabolites specified

```
metWeightsRed=metWeightsTmp;
rxnWeightsRed=rxnWeightsTmp*0;
metWeightsRed(metWeightsRed>=0)=0;
```

```
[tissueModel, thermoModelMetBool, thermoModelRxnBool] =
thermoKernel(stoichFluxThermoConsistModel, activeInactiveRxn, rxnWeightsRed,
presentAbsentMet, metWeightsRed,param);
```

```
--- thermoKernel START ----
thermoKernel parameters:
                 printLevel: 1
                relaxBounds: 0
         acceptRepairedFlux: 1
                          n: 200
   normalizeZeroNormWeights: 0
                formulation: 'pqzwrs'
                     epsilon: 1.0000e-06
           removeOrphanGenes: 1
             nbMaxIteration: 30
                       nMax: 20
             iterationMethod: 'greedyRandom'
            warmStartMethod: 'random'
                formulation: 'pqzwrs'
            thetaMultiplier: 1.5000
```

```
theta: 0.5000
             regularizeOuter: 1
                      epsilon: 1.0000e-06
                   printLevel: 1
                  relaxBounds: 0
          acceptRepairedFlux: 1
    thermoConsistencyMethod: 'cycleFreeFlux'
                        bigNum: 10000
                         debug: 0
optCardThermo objective data:
            1 = beta, the global weight on one-norm of internal reaction rate.
            0 = min(g0), the local weight on zero-norm of internal reaction rate.
            0 = max(g0), the local weight on zero-norm of internal reaction rate.
         -0.5 = min(h0), the local weight on zero-norm of metabolite production rate.
            0 = \max(h0), the local weight on zero-norm of metabolite production rate.
optimizeCardinality objective data:
0 min cardinality variables:

        NaN mean(c(p))
        NaN min(c(p))

        1 lambda0
        NaN min(k)

        0 lambda1
        NaN min(o(p))

                                                                       NaN max(c(p))
                                                               NaN max(k)
                                                                   NaN max(o(p))
1088 max cardinality variables:
                                       0 min(c(q))
            0 mean(c(q))
                                                                           0 \max(c(q))
            1 delta0
                                     0.4 min(d)
                                                              0.5 max(d)
            0 delta1
                                   0 min(o(q))
                                                                    0 \max(o(q))
37459 cardinality free variables:
         \begin{array}{ccc} \text{0.45 mean(c(r))} & & -\text{0 min(c(r))} \\ \text{0 alphal} & & \text{0 min(o(r))} \end{array}
                                                               0 max(o(r))
                                                                          1 \max(c(r))
```

itn	theta	dx	del_obj	obj	linear	x 0	a(x)	x 1	y
1	0.50 9	0.6587e+05	-8.5e+07	7.4	13	0	0	0	-14.77
2	0.75	5.8717	-2.6	4.8	14	0	0	0	-14.32
3	1.12	3.0027	-2.1	2.7	13	0	0	0	-15.21
4	1.69	5.6907	-2.2	0.55	13	0	0	0	-17.00
5	2.53	5.2054	-4.5	-3.9	14	0	0	0	-20.17
6	3.80	2.462	-3.4	-7.3	13	0	0	0	-21.59
7	5.70	1.606	-2.7	-10	12	0	0	0	-22.5
8	8.54	1.0881	-1.7	-12	11	0	0	0	-22.5
9	12.81	0.80985	-0.89	-13	10	0	0	0	-22.5
10	19.22	0.49523	-0.58	-13	9.4	0	0	0	-22.5
11	28.83	0.38668	-0.36	-13	9	0	0	0	-22.5
12	43.25	0.28276	-0.38	-14	8.8	0	0	0	-23.47
13	64.87	0.21412	-0.94	-15	8.7	0	0	0	-23.47
14	97.31	0.16629	-0.083	-15	8.6	0	0	0	-23.47
15	145.96	0.084169	-0.26	-15	8.5	0	0	0	-25.28
16	218.95	0.12117	-1.6	-17	8.5	0	0	0	-25.28
17	328.42	0.16767	-0.14	-17	8.5	0	0	0	-25.74
itn	theta	dx	del_obj	obj	linear	x 0	a(x)	x 1	Y
	Optimise of	rardinality	reached the st	oppina crit	erion. Finis	shed.			

Optimise cardinality reached the stopping criterion. Finished.

100.00% thermodynamically feasible internal fluxes (checked by cycleFreeFlux method).

warmStartMethod: 'random'

formulation: 'pqzwrs' thetaMultiplier: 1.5000 theta: 0.5000

regularizeOuter: 1

epsilon: 1.0000e-06

printLevel: 1
 relaxBounds: 0
acceptRepairedFlux: 1

thermoConsistencyMethod: 'cycleFreeFlux'

bigNum: 10000 debug: 0

optCardThermo objective data:

- 1 = beta, the global weight on one-norm of internal reaction rate.
- $0 = \min(g0)$, the local weight on zero-norm of internal reaction rate.
- 0 = max(g0), the local weight on zero-norm of internal reaction rate.
- -0.5 = min(h0), the local weight on zero-norm of metabolite production rate.
- 0 = max(h0), the local weight on zero-norm of metabolite production rate.

optimizeCardinality objective data:

0 min cardinality variables:

rdinality variables:

NaN mean(c(p))

1 lambda0

0 lambda1

NaN min(c(p))

NaN min(k)

NaN min(o(p)) NaN max(c(p)) NaN max(k) NaN max(o(p))

1088 max cardinality variables:

0 min(c(q)) 0 mean(c(q)) 0 max(c(q)) 1 delta0 0.4 min(d) 0.5 max(d) $0 \max(o(q))$ 0 delta1 $0 \min(o(q))$

37459 cardinality free variables:

itn	theta	dx	del_obj	obj	linear	x 0	a(x)	x 1	y
1	0.50 9	.6895e+05	-8.5e+07	8.1	9	0	0	0	-6.131
2	0.75	1.691	-0.42	7.7	8.8	0	0	0	-6.561
3	1.12	2.8196	-0.42	7.3	10	0	0	0	-6.561
4	1.69	3.3125	-0.91	6.4	11	0	0	0	-6.561
5	2.53	3.3113	-2.3	4.1	11	0	0	0	-7.845
6	3.80	1.408	-1	3	11	0	0	0	-8.276
7	5.70	1.4232	-1.5	1.5	10	0	0	0	-8.728
8	8.54	0.75486	-0.82	0.71	9.6	0	0	0	-9.635
9	12.81	0.5787	-1.1	-0.43	9.2	0	0	0	-9.635
10	19.22	0.45877	-0.29	-0.72	8.9	0	0	0	-9.635
11	28.83	0.19759	-0.19	-0.91	8.7	0	0	0	-9.635
12	43.25	0.17445	-0.12	-1	8.6	0	0	0	-9.635
13	64.87	0.1615	-0.44	-1.5	8.5	0	0	0	-11.45
14	97.31	0.14097	-1.5	-2.9	8.5	0	0	0	-11.45
15	145.96	0.12588	-0.026	-3	8.5	0	0	0	-11.45
16	218.95	0.086138	-0.015	-3	8.5	0	0	0	-11.45
17	328.42	0.074785	-0.01	-3	8.5	0	0	0	-11.45
itn	theta	dx	del_obj	obj	linear	x 0	a(x)	x 1	y
	Ontimise o	ardinality	reached the st	conning crit	erion Finis	shed			11-1

fc gre gre

Optimise cardinality reached the stopping criterion. Finished.

100.00% thermodynamically feasible internal fluxes (checked by cycleFreeFlux method).

100.00	o chermoaynami	carry reasible	IIICCIIIAI IIAACS (circulated by	Cyclericeriax meet	100).	
iter.	nz.flux.%it.f	eas.int.flux.	%feas.inc.flux.	nz.prod.	%it.feas.nz.prod.	%feas.inc.prod.	
1	122	1.00	NaN	86	1.16	0.02	
2	230	1.00	NaN	172	1.16	0.10	
3	231	1.00	NaN	183	1.18	0.18	
4	352	1.00	NaN	263	1.22	0.31	
5	283	1.00	NaN	206	1.32	0.40	
6	274	1.00	NaN	199	1.37	0.47	
7	275	1.00	NaN	201	1.34	0.54	
8	175	1.00	NaN	139	1.19	0.56	
9	130	1.00	NaN	97	1.20	0.58	
10	307	1.00	NaN	235	1.34	0.62	
11	243	1.00	NaN	183	1.31	0.65	
12	120	1.00	NaN	84	1.29	0.65	
13	218	1.00	NaN	158	1.32	0.67	
14	113	1.00	NaN	80	1.24	0.67	
15	131	1.00	NaN	99	1.30	0.68	
16	129	1.00	NaN	92	1.30	0.69	

17	164	1.00	NaN	116	1.30	0.69	gre
18	166	1.00	NaN	123	1.26	0.70	gre
19	165	1.00	NaN	117	1.35	0.71	gre
20	141	1.00	NaN	95	1.36	0.72	gre
iter.	nz.flux.%it.:	feas.int.flux.	%feas.inc.flux.	nz.prod.	%it.feas.nz.prod.	%feas.inc.prod.	fo
	7		**	_	_	_	

Metabolite confusion matrix, accuracy = 0.71875

--- thermoKernel END ----

[nMet,nRxn]=size(tissueModel.S)

nMet = 1448nRxn = 1753

Compare the target versus predicted model

plotThermoKernelExtractStats(stoichFluxThermoConsistModel,
activeInactiveRxn, rxnWeightsRed, presentAbsentMet, metWeightsRed,
thermoModelMetBool, thermoModelRxnBool)

Submodel with just active reactions specified

rxnWeightsRed=rxnWeightsTmp;

```
rxnWeightsRed(rxnWeightsRed>=0)=0;
[tissueModel, thermoModelMetBool, thermoModelRxnBool] =
thermoKernel(stoichFluxThermoConsistModel, activeInactiveRxn, rxnWeightsRed,
presentAbsentMet, metWeightsRed,param);
--- thermoKernel START ----
thermoKernel parameters:
              printLevel: 1
              relaxBounds: 0
        acceptRepairedFlux: 1
                      n: 200
   normalizeZeroNormWeights: 0
              formulation: 'pqzwrs'
                 epsilon: 1.0000e-06
         removeOrphanGenes: 1
           nbMaxIteration: 30
                    nMax: 20
           iterationMethod: 'greedyRandom'
          warmStartMethod: 'random'
             formulation: 'pgzwrs'
          thetaMultiplier: 1.5000
                  theta: 0.5000
          regularizeOuter: 1
                 epsilon: 1.0000e-06
              printLevel: 1
             relaxBounds: 0
       acceptRepairedFlux: 1
   thermoConsistencyMethod: 'cycleFreeFlux'
                  bigNum: 10000
                   debug: 0
optCardThermo objective data:
         1 = beta, the global weight on one-norm of internal reaction rate.
      -0.5 = min(g0), the local weight on zero-norm of internal reaction rate.
         0 = max(g0), the local weight on zero-norm of internal reaction rate.
        -0 = min(h0), the local weight on zero-norm of metabolite production rate.
        -0 = \max(h0), the local weight on zero-norm of metabolite production rate.
optimizeCardinality objective data:
0 min cardinality variables:
       NaN max(c(p))
                                               NaN max(k)
         0 lambda1
                           NaN min(o(p))
                                                 NaN max(o(p))
824 max cardinality variables:
                          -0 min(c(q))
        -0 mean(c(q))
                                                      -0 \max(c(q))
         1 delta0
                          0.4 min(d)
                                              0.5 max(d)
         0 delta1
                            0 \min(o(q))
                                                   0 \max(o(q))
37723 cardinality free variables:
-0 min(c(r))
      0.45 mean(c(r))
0 alpha1
                                                       1 \max(c(r))
                           0 min(o(r))
         0 alpha1
                                                  0 \max(o(r))
              ||dx||
                                     obj linear
                                                                            ||x||1
 itn
       theta
                       del_obj
                                                         | x | 0
                                                                    a(x)
                                                                                        | | у |
      0.50 9.6384e+05 -8.4e+07
                                     8.4
                                              8.5
                                                            0
                                                                     0
                                                                                 0
  1
                                                                                      -3.118
                                               8.4
                                                                      0
      0.75 1.1692 -0.091
                                     8.3
                                                             0
                                                                                  0
                                                                                      -3.548
  2
                                                           0
                                                                      0 0
      1.12
              0.15183
                                               8.4
                                                                                 0
                                                                                      -3.506
                        -0.062
                                     8.3
  3
                                    8.2
                                                                                 0
     1.69 0.092443
                                                                                      -3.506
  4
                        -0.084
                                               8.4
  5
    2.53 0.44167
                         -0.14
                                                            0
                                                                                 0
                                                                                      -3.506
                                     8.1
                                                8.5
                         -0.25
                                                            0
      3.80 0.31473
                                      7.8
                                                8.5
                                                                      0
                                                                                 0
                                                                                      -3.956
```

metWeightsRed=metWeightsTmp*0;

7	5.70	1.8987	-0.76	7	9.6	0	0	0	-4.903
8	8.54	1.0204	-1.2	5.8	9.4	0	0	0	-5.394
9	12.81	1.4536	-1.1	4.8	10	0	0	0	-5.832
10	19.22	0.67982	-0.85	3.9	9.8	0	0	0	-5.832
11	28.83	0.60377	-0.54	3.4	9.2	0	0	0	-5.832
12	43.25	0.45629	-0.35	3	8.9	0	0	0	-5.832
13	64.87	0.57354	-0.22	2.8	8.7	0	0	0	-5.832
14	97.31	0.4286	-0.13	2.7	8.5	0	0	0	-5.832
15 16	145.96	0.145	-0.036	2.7	8.5	0	0	0	-5.832
16 17	218.95 328.42	0.11648	-0.019	2.6 2.6	8.5	0	0	0	-5.832
17		0.083385	-0.012		8.5	0			-5.832
itn	theta	11 11	<pre>del_obj reached the st</pre>	obj	linear	x 0	a(x)	x 1	У
			feasible inter				method)		
100.0		armStartMetho		iidi iidacb	(checked by	cyclerreer rax	· ilicciioa / ·		
	WC		n: 'pqzwrs'						
	t.h	netaMultiplie							
			a: 0.5000						
	re	egularizeOute							
		_	n: 1.0000e-06						
		printLeve							
		relaxBound	s: 0						
	accer	tRepairedFlu	x: 1						
t]	hermoCons	sistencyMetho	d: 'cycleFreeF	lux'					
		bigNu	m: 10000						
		debu	g: 0						
optCa:		objective da			c '				
		_	lobal weight o						
			e local weight						
			e local weight						
			e local weight e local weight						
	-0 =	= IIIax(IIU), LII	e local weight	on zero-no	III OI IIIELADO	iite producti	on race.		
optim	izeCardir	nality object	ive data:						
орсти	izccaraii	direy object	ive data:						
0 min	cardinal	ity variable	s:						
		nean(c(p))		min(c(p))	N	aN max(c(p))			
	1 1	ambda0	NaN min	(k)	NaN max	(k)			
	0 1	ambda1	NaN min	(o(p))	NaN	max(o(p))			
824 m		ality variab							
		nean(c(q))		min(c(q))		-0 max(c(q))			
	1 delta0			0.4 min(d)		0.5 max(d)			
	0 d	lelta1	0 min(o(d))	0 m	ax(o(q))			
		L. 6							
37723		ity free var				7 ())			
		nean(c(r))		min(c(r))	0	1 max(c(r))			
	0 a	alphal	0 min(O(r))	U m	ax(o(r))			
itn	theta	ı dx	del_obj	obj	linear	x 0	a(x)	x 1	37
1		9.6834e+05	-8.4e+07	8.4	8.5	0	a(x)	0	y -3.540
2	0.75	1.251	-0.098	8.3	8.4	0	0	0	-3.970
3	1.12	0.091425	-0.056	8.3	8.4	0	0	0	-3.506
4	1.69	0.092443	-0.084	8.2	8.4	0	0	0	-3.506
5	2.53	0.44167	-0.14	8.1	8.5	0	0	0	-3.506
6	3.80	0.31473	-0.25	7.8	8.5	0	0	0	-3.956
7	5.70	1.8987	-0.76	7	9.6	0	0	0	-4.903
8	8.54	1.0204	-1.2	5.8	9.4	0	0	0	-5.394
9	12.81	1.4536	-1.1	4.8	10	0	0	0	-5.832
10	19.22	0.67982	-0.85	3.9	9.8	0	0	0	-5.832
11	28.83	0.60377	-0.54	3.4	9.2	0	0	0	-5.832
12	43.25	0.45629	-0.35	3	8.9	0	0	0	-5.832
13	64.87	0.57354	-0.22	2.8	8.7	0	0	0	-5.832

14	97.31	0.4286	-0.13	2.7	8.5	0	0	0	-5.832
15	145.96	0.145	-0.036	2.7	8.5	0	0	0	-5.832
16	218.95	0.11648	-0.019	2.6	8.5	0	0	0	-5.832
17	328.42	0.083385	-0.012	2.6	8.5	0	0	0	-5.832
itn	theta	dx	del_obj	obj	linear	x 0	a(x)	x 1	y

fc gre fc

Optimise cardinality reached the stopping criterion. Finished.

100.00% thermodynamically feasible internal fluxes (checked by cycleFreeFlux method).

iter.	nz.flux.%it.	feas.int.flux.	%feas.inc.flux.	nz.prod.	%it.feas.nz.prod.	%feas.inc.prod.
1	111	1.00	0.02	74	1.24	NaN
2	110	1.00	0.02	76	1.24	NaN
3	132	1.00	0.03	93	1.22	NaN
4	127	1.00	0.04	94	1.18	NaN
5	215	1.00	0.10	152	1.24	NaN
6	190	1.00	0.15	138	1.23	NaN
7	247	1.00	0.21	175	1.29	NaN
8	268	1.00	0.28	193	1.34	NaN
9	300	1.00	0.36	217	1.27	NaN
10	284	1.00	0.43	201	1.42	NaN
11	234	1.00	0.47	162	1.37	NaN
12	325	1.00	0.53	235	1.39	NaN
13	217	1.00	0.56	155	1.39	NaN
14	223	1.00	0.59	158	1.29	NaN
15	197	1.00	0.60	137	1.37	NaN
16	136	1.00	0.61	94	1.29	NaN
17	189	1.00	0.63	135	1.39	NaN
18	222	1.00	0.65	148	1.47	NaN
19	316	1.00	0.68	219	1.42	NaN
20	155	1.00	0.69	114	1.34	NaN
iter	ng flux %it	feag int flux	%feag inc flux	ng prod	%it feag ng nrod	%feas inc prod

iter. nz.flux.%it.feas.int.flux. %feas.inc.flux. nz.prod. %it.feas.nz.prod. %feas.inc.prod.

thermoKernel terminating early: n = nMax = 20

Reaction confusion matrix, accuracy = 0.68811

--- thermoKernel END ----

[nMet,nRxn]=size(tissueModel.S)

nMet = 1449 nRxn = 1915

Compare the target versus predicted model

plotThermoKernelExtractStats(stoichFluxThermoConsistModel,
 activeInactiveRxn, rxnWeightsRed, presentAbsentMet, metWeightsRed,
 thermoModelMetBool, thermoModelRxnBool)

