T-DEV-810 Group 12

INTRODUCTION TO MACHINE LEARNING

Content

- 1. Problem to solve
- 2. The different detection algorithms
- 3. General principles
- 4. Data preprocessing
- 5. Convolutional Neural Network
- 6. Boosted trees
- 7. Analysis of Results
- 8. Conclusion

PROBLEM TO SOLVE

Using a machine learning algorithm, determine from a lung x-ray:

- a **healthy** patient
- a patient with viral pneumonia
- a patient with bacterial pneumonia

R

healthy

viral pneumonia

bacterial pneumonia

THE DIFFERENT DETECTION ALGORITHMS

1 - Neural networks

- K-Nearest Neighbor algorithm (KNN)
- Artificial neural network (ANN)
- Convolutional Neural Networks (CNN)

2 - Decision trees

- The Random Forests
- The Boosted Trees

We chose to use the **CNN** and **Boosted Trees** algorithms.

GENERAL PRINCIPLES

Important terms to remember in Machine Learning

- Overfitting
- Underfitting
- Bias
- Variance
- Learning rate
- Gradient descent
- Activation function
- A neuron

DATA PREPROCESSING

Raw Dataset: **5856** images.

Tasks:

- Check images sizes
- Label the images
- Define the targets
- Check the color channels
- Enhance contrasts
- Adjust class distribution
- Adjust test / train proportions
- Create more images
- Normalize images

DATA PREPROCESSING

Define our targets

- person998_bacteria_2928.jpeg
- person998_bacteria_2927.jpeg
- person997_virus_1678.jpeg
- person997_bacteria_2926.jpeg
- person996_virus_1677.jpeg
 - person996_bacteria_2924.jpeg

Enhance the contrasts

DATA PREPROCESSING

- [1, 0, 0] pour un patient sain
- [0, 1, 0] pour un patient souffrant de pneumonie virale
- [0,0,1] pour un patient souffrant de pneumonie bactérienne

66% train 33% test

CONVOLUTIONAL NEURAL NETWORK (CNN)

Pairing conv and pooling

- filters
- kernell
- RelU
- stride
- padding
- dropout
- pooling
- softmax
- Adam optimizer

CONVOLUTIONAL NEURAL NETWORK (CNN)

- Nous avons en entrée des images de 64x64x3
- Une première couche de convolution à 32 filtres, et un kernel de 4x4
- Une première couche de pooling avec un kernel de 2x2
- Une seconde couche de convolution à 64 filtres, et un kernel de 2x2
- Une seconde couche de pooling avec un kernel de 2x2
- Une troisième couche de convolution à 128 filtres, et un kernel de 2x2
- Une troisième couche de pooling avec un kernel de 2x2
- Un dropout de 50%
- Un flatten
- Une couche dense de 1024 neurones
- Une couche d'output de 3 neurones

Layer (type)	Output	Shape	Param #
conv2d_22 (Conv2D)	(None,	61, 61, 32)	1568
max_pooling2d_22 (MaxPooling	(None,	30, 30, 32)	0
spacing_dummy_layer_30 (Spac	(None,	30, 30, 32)	0
conv2d_23 (Conv2D)	(None,	29, 29, 64)	8256
max_pooling2d_23 (MaxPooling	(None,	14, 14, 64)	0
spacing_dummy_layer_31 (Spac	(None,	14, 14, 64)	0
lastConv (Conv2D)	(None,	13, 13, 128)	32896
1 (MaxPooling2D)	(None,	6, 6, 128)	0
spacing_dummy_layer_32 (Spac	(None,	6, 6, 128)	0
2 (Dropout)	(None,	6, 6, 128)	0
3 (Flatten)	(None,	4608)	0
spacing_dummy_layer_33 (Spac	(None,	4608)	0
4 (Dense)	(None,	1024)	4719616
7 (Dense)	(None,	3)	3075

Total params: 4,765,411 Trainable params: 4,765,411 Non-trainable params: 0

CONVOLUTIONAL NEURAL NETWORK (CNN)

Before training the model : callbacks & hyperparams

Save model's weights after each epoch

Epochs: 100

Learning rate: 0.0002

Batch size: 8
Dynamic plotting

K-fold cross validation

K=3 Diagram of k-fold cross-validation with k=4.

3 blocs of equal number of images Equally distributed targets among each bloc 3 distinct trainings

BOOSTED TREES

Based on the principle of decision trees. We used the **XGBoost** library.

- Each tree is created synchronously, following the others so that the next one learns from the previous one.
- Each internal node represents a test on an attribute.
- Each leaf node represents an item.
- The features to be analyzed are determined by XGBoost.

BOOSTED TREES

- Each tree gives a probability per patient, which will be adjusted during the training.
- To improve the probability for a patient, we **sum the associated leaf in each tree**.
- The goal is to obtain the smallest residual for each patient.
- In the algorithm, **hyperparameters** are defined: the **number of trees**, the **depth of the trees** and the **learning rate**.

BOOSTED TREES

- GridSearchCV library is used to find the best hyperparameter settings.
- For each hyperparameters, we test 4
 values, train the model and select the
 best one.
- It is preferable to have not very deep but many trees.
- Ideally, more values should have been tested and the hyperparameters should have been combined together.

ANALYSIS OF RESULTS

CONVOLUTIONAL NEURAL NETWORK (CNN)

BOOSTED TREES

ANALYSIS OF RESULTS

Details of the CNN's activity

Discussions

- CNN and Boosted Trees succeed on different points.
- Our low calculation performance may have limited our research.
- Boosted Tree might have corroborated errors along the way.
- Hard to adjust hyperparameters.
- Might use Ensemble Learning to perfect our algo.

CONCLUSION

- Different algorithms works totally differently
- Interesting that Decision Tree ≅ Neural Network
- Not a single answer to all the problems
- Realistic problems
- Great introduction to IA

QUESTIONS?