Ch. 8 – Chemical Reactions

III. Types of Chemical Reactions (p. 256 - 267)

A. Combustion

the burning of any substance in O₂ to produce heat

$$A + O_2 \rightarrow B$$

$$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

A. Combustion

- Products:
 - Contain oxygen
 - Hydrocarbon combustion forms CO₂ + H₂O

4 Na(s)+
$$O_2(g) \rightarrow 2 Na_2 O(s)$$

$$C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$$

Combustion Reaction

http://www.marymount.k12.ny.us/mar ynet/stwbwk05/05flashchem/lyreactio n/lyreaction.html

B. Synthesis(Combinations)

- the combination of 2 or more substances to form a compound
- only one product

$$A + B \rightarrow AB$$

$$-+$$
 $--$

B. Synthesis (Combination)

 $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$

B. Synthesis (Combination)

- Products:
 - ionic formula units cancel charges (CRISS-CROSS)
 - covalent molecules hard to tell

$$2 \text{ Al(s)} + 3 \text{Cl}_2(g) \rightarrow 2 \text{ AlCl}_3(s)$$

C. Decomposition

- a compound breaks down into 2 or more simpler substances
- only one reactant

$$AB \rightarrow A + B$$

$$\longrightarrow$$
 $+$ \bullet

C. Decomposition

 $2 H_2O(I) \rightarrow 2 H_2(g) + O_2(g)$

C. Decomposition

- Products:
 - Binary compounds break into elements
 - others hard to tell

2 KBr(I)
$$\rightarrow$$
 2 K(s) + Br₂(I)

Decomposition Resulting in the Formation of a Compound and Element

http://www.marymount.k12.ny.us/mar ynet/stwbwk05/05flashchem/mnreacti on/reaction.html

D. Single Replacement

- one element replaces another in a compound
 - metal replaces metal (+)
 - nonmetal replaces nonmetal (-)

$$\underline{}$$
 + $\underline{}$ $\underline{}$ + $\underline{}$

D. Single Replacement

 $Cu(s) + 2AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2Ag(s)$

D. Single Replacement

- Products:
 - metal → metal (+)
 - nonmetal → nonmetal (-)
 - free element must be more active (check activity series)

Fe(s)+ CuSO₄(aq)
$$\rightarrow$$
 Cu(s)+ FeSO₄(aq)

$$Br_2(I)+ NaCl(aq) \rightarrow N.R.$$

$Mg(s) + 2HCI \rightarrow MgCl 2(aq) + H₂(g)$

http://www.marymount.k12.ny.us/mar ynet/stwbwk05/05flashchem/avreacti on/avreaction.html

Single Replacement Involving a Metallic Element

http://www.marymount.k12.ny.us/mar ynet/stwbwk05/05flashchem/gbreacti on/reaction.html

E. Double Replacement

- ions in two compounds "change partners"
- cation of one compound combines with anion of the other

$$\bigcirc + \bigcirc - \bigcirc + \bigcirc \bigcirc$$

E. Double Replacement

 $Pb(NO_3)_2(aq) + K_2CrO_4(aq) \rightarrow PbCrO_4(s) + 2KNO_3(aq)$

E. Double Replacement

- Products:
 - switch negative ions
 - one product must be insoluble (check solubility table)

$$Pb(NO_3)_2(aq) + 2KI(aq) \rightarrow PbI_2(s) + 2KNO_3(aq)$$

$$NaNO_3(aq) + KI(aq) \rightarrow N.R.$$

Double Replacement: Evolution of a Gas

http://www.marymount.k12.ny.us/mar ynet/stwbwk05/05flashchem/isreactio n/reaction.html

Double Replacement Reaction Involving a Polyatomic Ion and Producing a Precipitate

http://www.marymount.k12.ny.us/mar ynet/stwbwk05/05flashchem/kereacti on/reaction.html