

TEAM MEMBERS

01/ VONTELA DHANUSH 19K41A0506

02/ AMOGH VARSH RAJU AMBATI 19K41A0590

03/ SARDAR KAMALJEETH SINGH 19K41A05E3

04/ MOHD AMAAN 19K41A05G3

05/ THALLAPALLY VINAY PRAKASH 19K41A05H2

Introduction

- Problem statement
- Solution

Literature survey

- Similar approaches
- Literature review

Design and implementation

- Design
- Data set & Proccessing
- Methodology

Conclusion

• Expected solution outcome

CONTENTS

INTRODUCTION

PNEUMONIA: lung inflammation caused by bacterial or viral infection, in which the air sacs fill with pus and may become solid. Inflammation may affect both lungs (double pneumonia) or only one (single pneumonia).

- Data collection
 Compilation of all avilable normal and disease affected images
- Training model

 Picking of Training model

 inputing of x-train and y-train
- Deployment
 Online and offline SAS Model.

Deaths from pneumonia, by age, World, 1990 to 2019

Source: IHME, Global Burden of Disease (2019)

OurWorldInData.org/pneumonia • CC BY

Note: Deaths from 'clinical pneumonia', which refers to a diagnosis based on disease symptoms such as coughing and difficulty breathing and may include other lower respiratory diseases.

Problem statement

- Time consumption
- Accesability
- Financial problem

Cardiomegaly

Enlarged heart

Pneumonia

Lung infection caused to air sacs in lungs

// The solution

Edema

Swelling caused due to accumilation in the body tissues

Mass

a lump formation like tumor

Literature Survey

Surevey and approaches of various projects

Title(System)	Model used	Technique(App roach)	Data Pre processing	Data set	Output metrics
Deep learning for chest X-ray analysis: A survey	CNN	image-level prediction (classification and regression), segmentation, localization, image generation and domain adaptation	All mentioned below	Kaggle challenge	Finding th4 high acc uracy using image-level prediction (classification and regression), segmentation, localization, image generation and domain adaptation
Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study	ResNet-34	CNN	Normalization Augmentation	Kaggle challenge	98.33%
PNEUMONIA DETECTION USING CNN THROUGH CHEST X-RAY	ANN,CNN	CNN	Image augmentation	Kaggle challenge	Architecture 5 works better
CHEST X-RAYS IMAGE CLASSIFICATI ON IN MEDICAL IMAGE ANALYSIS	ResNet-50	CNN	Normalization	ChestX-Ray 14	ResNet-50 achieved state-of-the-art results in four out of fourteen classes.
Deep-Pneumonia Framework Using Deep Learning Models Based on Chest X-Ray	ResNet152V 2	CNN		Kaggle challenge	99.22%

LIMITATIONS

The facts

No complete solution

Proposed or just published

Different outputs

CLASSIFICATION

MOST OF THE MODELS ARE CLASSIFICATION

ACCURACY

- BEST OUTPUTS HAVE LOW ACCURACY
- BEST PROPOSED MODELS HAVE HIGH ACCURACY BUT
 NO OUTPUT

USED MODELS

MOST OF THE PROJECTS HAVE COMMON MODELS
 IMPLEMENTED IN IT

SIMILAR APPROACH

SAME KIND OF IMAGE CLASSIFICATIONS

PROPOSAL

SOME OF THEM ARE JUST PROPOSALS OF OUTPUTS

FUTURE BURDEN

EXPECTING OF MORE MODELS TO IMPLEMENT

DATA SET

DATASET

TRAIN

- CONSISTS of 2 files Normal and diseased x-rays
- Consists of more than 5,218 images in trainig data file

TEST

- Consists of tested images
- Consists of more than 624 images

VAL

- Consists of augmented data for easy access of images
- Consists of total 18 images for cross referencing

Chest-X-Ray images

Design and implementation

PROJECT FLOW CHART

PROECT TIME LINE

MODELS

0,

DENSENET121

DenseNet is a convolutional neural network where each layer is connected to all other layers that are deeper in the network وي

00

Custom CNN

A Convolutional Neural Network, also known as CNN or ConvNet, is a class of neural networks that specializes in processing data that has a grid-like topology, such as an image. A digital image is a binary representation of visual data.

0;

VGG-16

It is considered to be one of the excellent vision model architecture till date. Most unique thing about VGG16 is that instead of having a large number of hyper-parameter they focused on having convolution layers of 3x3 filter with a stride 1 and always used same padding and maxpool layer of 2x2 filter of stride 2

ResNet50

ResNet-50 is a convolutional neural network that is 50 layers deep.

ResNet, short for Residual Networks is a classic neural network used as a backbone for many computer vision tasks. The fundamental breakthrough with ResNet was it allowed us to train extremely deep neural networks with 150+layers.

CNN ARCHITECTURE

Conclusion

Existing solutions

Existing solutions

BREATHE