ETH zürich

Informatik I

Übungsstunde 11

Herbst 2020

Revision Aufgaben

- Polymorphic Animals
- Polymorphism and Overrides
- Mr Brush
- Comparing Rational Numbers

Beispiel

Taschenrechner mit umgekehrter polnischer Notation.

Auf English: Reverse Polish Notation (RPN). Ein Taschenrechner mit einem Stack.

Unterstützte Operationen:

- push(value) Pushe einen Wert auf den Stack
- pop() Poppe einen Wert vom Stack und zeige den Wert an
- add(), subtract(), multiply(), divide() Grundlegende artihmetische binäre Operationen: Poppe die Werte(v2) und v1 vom Stack und pushe v2 op v1

٨.

Stack

$$(4 \cdot 2) - (5+1)/2 = 5$$

$$(4 \cdot 2) - (5+1)/2 = 5$$

multiply()

$$(4 \cdot 2) - (5+1)/2 = 5$$

multiply()

-

$$(4 \cdot 2) - (5+1)/2 = 5$$

__ multiply()

push(5)

. 8

$$(4 \cdot 2) - (5+1)/2 = 5$$

__ multiply()

2

4 8

push(5)

8

push(1)

8

$$(4 \cdot 2) - (5+1)/2 = 5$$

__ multiply()

2

4 8

push(5)

8

push(1)

5 8 add()

5

$$(4 \cdot 2) - (5+1)/2 = 5$$

__ multiply()

2

4 8

push(5)

8

push(1)

5 8 add()

5 Q

$$(4 \cdot 2) - (5+1)/2 = 5$$

multiply()

push(5)

push(1)

5

add()

push(2)

$$(4 \cdot 2) - (5+1)/2 = 5$$

multiply()

push(5)

push(1)

5

add()

push(2)

divide()

$$(4 \cdot 2) - (5+1)/2 = 5$$

multiply()

push(5)

push(1)

5

add()

push(2)

divide()

$$(4 \cdot 2) - (5+1)/2 = 5$$

2

multiply() 2

4 8

push(5)

5

push(1)

5

add()

5 8

push(2)

6

6 g

8

divide() $\frac{2}{2}$

3

8

subtract()

3

$$(4 \cdot 2) - (5+1)/2 = 5$$

multiply()

push(5)

push(1)

5

add()

push(2)

divide()

subtract()

$$(4 \cdot 2) - (5+1)/2 = 5$$

multiply()

push(5)

push(1)

5

add()

push(2)

divide()

subtract()

pop()

$$(4 \cdot 2) - (5+1)/2 = 5$$

- \blacksquare value \rightarrow push(value)
- \blacksquare = \rightarrow pop()
- \blacksquare +, -, *, $/ \rightarrow add()$, subtract(), multiply(), divide()

Implementiere die Stack-Datenstruktur für den Rechner.

Stacle.

Vorschau Aufgaben

Über dynamische Datenstrukturen.

- Umgekehrte Ausgabe
- Invarianten der Datenstruktur Queue
- Implementation einer Warteschlange (Queue)
- Wörterbuch

Invarianten

"Eine luvariante ist eine Aussapp, die über die Ausführung bestimmt Programmbeleble Garantlen sibt". for (...) } Scode ? Ecodes X70

Queue (Warteschlange)

v 2 .

Bonusaufgaben

- Caesar Verschlüsselung
- Automatic Differentiation