Introdução ao aprendizado de máquina 6

Aula 6- Introdução a deep learning

- Dificuldades de se treinar redes neurais profundas
- Gradientes desaparecendo ou explodindo
- Técnicas para se estimar redes neurais profundas
- Redes Neurais convolucionais (CNN)
- Interpretação das convoluções
- Outras aplicações de CNN

Dificuldades de se treinar redes neurais profundas

Relembrando redes neurais

Camada de entrada Camada escondida Camada de saída

$$a_1 = \Omega \left(heta_{10} + heta_{11} x_1 + heta_{12} x_2 + heta_{13} x_3
ight) \ a_2 = \Omega \left(heta_{20} + heta_{21} x_1 + heta_{22} x_2 + heta_{23} x_3
ight) \ a_3 = \Omega \left(heta_{30} + heta_{31} a_1 + heta_{32} a_2
ight) \ \hat{y} = a_3$$

 Precisamos iniciar os parâmetros aleatoriamente para quebrar simetria!!

Relembrando a derivada

$$egin{aligned} a_1 &= \Omega \left(heta_{10} + heta_{11} x_1 + heta_{12} x_2
ight) \ a_2 &= \Omega \left(heta_{20} + heta_{21} x_1 + heta_{22} x_2
ight) \ a_3 &= \Omega \left(heta_{30} + heta_{31} a_1 + heta_{32} a_2
ight) \ \hat{y} &= a_3 \ \Omega(z) &= rac{1}{1 + e^{-z}} \ J(heta) &= - \sum \left(y_i \log(\hat{y}) + (1 - y_i) \log(1 - \hat{y})
ight) \end{aligned}$$

Amplificando e reduzindo os sinais

Obstáculos em se treinar redes neurais

- 1. Gradientes desaparecendo ou explodindo dificultam o treino das camadas iniciais
- 2. Dados insuficientes para tantos parâmetros
- 3. Pode ser muito demorado
- 4. Modelo com milhões de parâmetros pode levar ao sobreajuste

Gradientes desaparecendo, gradientes explodindo

Gradientes desaparecendo e explodindo

Problemas com gradientes:

- A. Gradiente desaparecendo: quando o signal obtido no erro retorna às camadas iniciais, o gradiente pode estar muito pequeno e essas camadas não aprendem
- B. Gradientes explodindo: as vezes o oposto acontece, gradientes ficam muito grandes e não se chega ao parâmetro ótimo
- C. Aprendizado instável: camadas diferentes aprendem com velocidades diferentes

Entendendo o problema

Glorot and Bengio (2010) em um paper seminar explicam as principais causas do problema:

- 1. Sigmoid não é uma boa função de ativação
- 2. Especialmente quando combinada com inicialização normal(0,1)

Possíveis soluções:

- 3. Método de iniciação Xavier garante que a variância do gradiente é similar em ambas as direções
- 4. Usar funções ativação diferentes

Outras funções de ativações

Outras técnicas de deep learning

Outras técnicas de deep learning

- A. Cortar os gradientes (ex abs(gradients) <=1)
- B. Normalizar a ativação de cada camada
- C. Transferir o aprendizado
- D. Dropout (abandono)

Transferir o aprendizado

Dropout (abandono)

Figure 11-9. Dropout regularization

Convoluções

Problema de milhões de parâmetros

O que é uma convolução

Matriz entrada

$$egin{bmatrix} 1 & 3 & 6 & 4 \ 2 & 2 & 0 & 4 \ 5 & 0 & 1 & 4 \ 4 & 4 & 1 & 3 \end{bmatrix}$$

Filtro
$$\left[egin{array}{cc} -1 & 1 \ -1 & 1 \end{array}
ight]$$

Exemplo de convolução

$$egin{bmatrix} 1 & 3 & 6 & 4 \ 2 & 2 & 0 & 4 \ 5 & 0 & 1 & 4 \ 4 & 4 & 1 & 3 \end{bmatrix} egin{bmatrix} -1 & 1 \ -1 & 1 \end{bmatrix}$$

Bordas (padding) e passo (stride)

Bordas (padding) e passo (stride)

$\lceil 0$	0	0	0	0	$0 \rceil$	$\lceil -1 1 \rceil$
0	1	3	6	4	0	$egin{bmatrix} -1 & 1 \ -1 & 1 \end{bmatrix}$
0	2	2	0	4	0	
0	5	0	1	4	0	
0	4	4	1	3	0	
$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0	0	0	0	$0 \rfloor$	

$$\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$$

Dimensões do resultado

[0	0	0	0	0	0
0	1	3	6	4	0
0	$\overset{-}{2}$	2	0	4	0
0 0 0 0	5	0	1	4	0
0	4	4	1	3	0
0	0	0	0	0	$0 \rfloor$

$$\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$$

Interpretação

O que esses filtros significam?

$$egin{bmatrix} 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{bmatrix} egin{bmatrix} -1 & 0 & 1 \ -1 & 0 & 1 \end{bmatrix} egin{bmatrix} 1 & 1 & 1 \ 0 & 0 & 0 \ -1 & -1 & -1 \end{bmatrix} egin{bmatrix} rac{1}{9} & rac{1}{9} & rac{1}{9} \ rac{1}{9} & rac{1}{9} & rac{1}{9} \end{bmatrix}$$

Outros filtros

Operation	Filter	Convolved Image	
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$		
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$		
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$		
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$		
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$		
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	6	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$		

Camadas Pooling

Camadas pooling

$$egin{bmatrix} 1 & 3 & 6 & 4 \ 2 & 2 & 0 & 4 \ 5 & 0 & 1 & 4 \ 4 & 4 & 1 & 3 \end{bmatrix}$$

 $[\max pool]_{2x2}$

 $egin{bmatrix} 3 & 6 & 6 \ 5 & 2 & 4 \ 5 & 4 & 4 \end{bmatrix}$

 $[\text{avg pool}]_{2x2}$

 $\begin{bmatrix} 2 & 2.75 & 3.5 \\ 2.25 & 0.75 & 2.25 \\ 3.25 & 2 & 2.25 \end{bmatrix}$

Por que pooling funciona

O objetivo das camadas pooling é aos poucos diminuir o tamanho da imagem representada

- Torna a representação das imagens menor e mais fácil de lidar
- Reduz o número de parâmetros e a complexidade da rede, mitigando o sobreajuste
- Torna a rede robusta a pequenas transformações, distorções e rotações na imagem
- Ajuda e chegar a uma representação equivariante da nossa imagem, de tal forma que o tamanho do objeto na foto não importa

Arquitetura de redes neurais convolucionais (CNNs)

Arquitetura das redes neurais convolucionais

Extraindo características das imagens

Classificando as imagens

Passos para se treinar redes neurais convolucionais

- 1. Iniciamos o todos os filtros e parâmetros com valores aleatórios
- 2. A rede recebe a imagem no treino, passa pela propagação para frente e encontra as probabilidades de cada classe
- 3. Calculamos o erro total da camada de saída somando os erros de todas as classes
- 4. Usamos a propagação para trás para calcular o gradiente do erro com respeito a todos os parâmetros e aos filtros
- 5. Atualizamos os parâmetros e os filtros
- 6. Repetimos passos 2-5 para todas as imagens no conjunto treino

Outras aplicações

CNN podem ser usadas em mais do que reconhecimento de imagem

$$Y = egin{bmatrix} y_{-6} \ y_{-5} \ y_{-4} \ y_{-3} \ y_{-2} \ y_{-1} \ y_{0} \end{bmatrix} = egin{bmatrix} 100 \ 120 \ 115 \ 200 \ 135 \ 130 \ 140 \end{bmatrix}$$

$$f=\left[egin{array}{cccc} rac{1}{4} & rac{1}{4} & rac{1}{4} \end{array}
ight]$$

Por que CNNs funcionam tão bem?

- CNNs funcionam bem porque forçam localidade
- Características provavelmente são mais relacionadas outras características próximas do que com características longe
- Drasticamente reduz o número de parâmetros que temos que estimar
- Algoritmos convergem mais rapidamente sofrem menos com o sobreajuste
- Isso nos permite ter redes bem mais profundas e aprender características ainda mais complexas