Real-Time Computability of Real Numbers by Chemical Reaction Networks

Xiang Huang 1 , Titus H. Klinge 2 , James I. Lathrop 1 , Xiaoyuan Li 1 , Jack H. Lutz 1

April 21, 2018

¹Computer Science Department, Iowa State University

²Computer Science Department, Grinnell College

Introduction and Motivation

• Abbreviated "CRNs"

- Abbreviated "CRNs"
- An abstract **mathematical model** of how chemicals interact in a well-mixed solution.

- Abbreviated "CRNs"
- An abstract mathematical model of how chemicals interact in a well-mixed solution.
- Used for over a half century

- Abbreviated "CRNs"
- An abstract mathematical model of how chemicals interact in a well-mixed solution.
- Used for over a half century

Hydrazine Combustion

$$3N_2H_4 \longrightarrow 4NH_3 + N_2$$

$$N_2H_4 \longrightarrow N_2 + 2H_2$$

$$4NH_3 + N_2H_4 \longrightarrow 3N_2 + 8H_2$$

$$2H_2 + O_2 \longrightarrow 2H_20$$

- Abbreviated "CRNs"
- An abstract mathematical model of how chemicals interact in a well-mixed solution.
- Used for over a half century

Hydrazine Combustion

$$3N_2H_4 \longrightarrow 4NH_3 + N_2$$

$$N_2H_4 \longrightarrow N_2 + 2H_2$$

$$4NH_3 + N_2H_4 \longrightarrow 3N_2 + 8H_2$$

$$2H_2 + O_2 \longrightarrow 2H_20$$

Abstract CRN

stract CRN
$$3A \longrightarrow 4B + C$$

$$A \longrightarrow C + 2D$$

$$4B + A \longrightarrow 3C + 8D$$

$$2D + E \longrightarrow 2F$$

 CRNs have become the programming language of choice for many molecular programming applications.

- CRNs have become the programming language of choice for many molecular programming applications.
- How powerful are they?

- CRNs have become the programming language of choice for many molecular programming applications.
- How powerful are they?
- Benchmark: we are asking which real numbers can be computed by CRNs.

- CRNs have become the programming language of choice for many molecular programming applications.
- How powerful are they?
- Benchmark: we are asking which real numbers can be computed by CRNs.
- In fact, which real numbers can be computed quickly by CRNs?

Main Result

Today's Theorem Every algebraic number can be computed by a CRN in real time.

Main Result

Today's Theorem

Every algebraic number can be computed by a CRN in real time.

algebraic $\sqrt{2}, \frac{1+\sqrt{5}}{2}, \frac{\sqrt{\sqrt{3}+\sqrt{5}}}{2}$ not algebraic (transcendental)

$$\sqrt{2}, rac{1+\sqrt{5}}{2}$$
, $rac{\sqrt{\sqrt{3}+\sqrt{5}}}{2}$ π , e

• Real-time Computability

- Real-time Computability
- Lyapunov Computability

- Real-time Computability
- Lyapunov Computability
- Algebraic Numbers

- Real-time Computability
- Lyapunov Computability
- Algebraic Numbers
- Large Population Protocol
- Transendental Number

Real-time Computability

More about CRNs

$$A + 2B \xrightarrow{r} A + C$$

$$\emptyset \xrightarrow{s} X$$

A, B, C, X are **species** (abstract molecule types). r, s are **rate constants**. The **rates** of these two reactions at time t are

$$r \cdot a(t) \cdot b(t)^2$$

and

s.

where a(t) =the **concentration** of A at time t, etc.

CRN and its ordinary differential equations

Once we have the definition for rates of reactions, we can write a CRN into a system of ordinary differential equations (ODEs).

Example:

with initial value x(0) = 0, y(0) = 0.

Streamplot

Figure 1: Streamplot

Streamplot

Figure 1: Streamplot

Figure 2: duck

Streamplot

Figure 2: duck

Figure 1: Streamplot

Put a rubber duck at point (0,0) at time 0. It will eventually reach the red spot, i.e., $(2,\frac{1}{2})$.

We view the long-term behavior (limit) of a CRN as a process of **computation.**

We view the long-term behavior (limit) of a CRN as a process of **computation.** In the previous example, we say

• X computes 2

We view the long-term behavior (limit) of a CRN as a process of **computation**. In the previous example, we say

- X computes 2
- Y computes $\frac{1}{2}$

We view the long-term behavior (limit) of a CRN as a process of **computation.** In the previous example, we say

- X computes 2
- Y computes $\frac{1}{2}$

A number α is real-time computable, if it can be computed by a CRN N with the following properties:

• (zero initialized). All species should have initial value 0.

A number α is real-time computable, if it can be computed by a CRN N with the following properties:

- (zero initialized). All species should have initial value 0.
- (integrality). All the rate constants of any reaction should be integers.

A number α is real-time computable, if it can be computed by a CRN N with the following properties:

- (zero initialized). All species should have initial value 0.
- (integrality). All the rate constants of any reaction should be integers.
- (boundedness). All the concentrations of any species are bounded.

A number α is real-time computable, if it can be computed by a CRN N with the following properties:

- (zero initialized). All species should have initial value 0.
- (integrality). All the rate constants of any reaction should be integers.
- (boundedness). All the concentrations of any species are bounded.
- (real-time convergence). There is a species X, such that for all $t \in [\tau, \infty)$ for some τ ,

$$|x(t) - |\alpha|| \le 2^{-t} \tag{1}$$

.

Zero initial values

 This prevents the CRN from coding too much (infinite) information in its initial values.

For example, encode an uncomputable number in the initial value to "compute" it.

Integer Rate

Suppose we want to compute a real number α , without the constraint, one can use the following simple CRN

to compute α , which is just like "cheating".

We denote the set of real-time computable reals as $\mathbb{R}_{\textit{RTCRN}}.$

The following are true for this class:

We denote the set of real-time computable reals as \mathbb{R}_{RTCRN} .

The following are true for this class:

• \mathbb{R}_{RTCRN} is a countable set.

We denote the set of real-time computable reals as \mathbb{R}_{RTCRN} .

The following are true for this class:

- \mathbb{R}_{RTCRN} is a countable set.
- $\mathbb{Q} \subseteq \mathbb{R}_{RTCRN}$, where \mathbb{Q} is the set of rational numbers.

We denote the set of real-time computable reals as \mathbb{R}_{RTCRN} .

The following are true for this class:

- \mathbb{R}_{RTCRN} is a countable set.
- $\mathbb{Q} \subseteq \mathbb{R}_{RTCRN}$, where \mathbb{Q} is the set of rational numbers.

Lyapunov CRN-Computable

Reals: A Bridge

A Bridge Crosses Nonlinearity

 It is not easy to show real-time computability directly, due to the high nonlinearity of CRNs.

¹Teschl, Gerald. Ordinary Differential Equations and Dynamical Systems.

A Bridge Crosses Nonlinearity

- It is not easy to show real-time computability directly, due to the high nonlinearity of CRNs.
- However, we can take advantage of Lyapunov's exponential stability theorem¹, which requires only derivative and eigenvalue analysis.

 $^{^{1}}$ Teschl, Gerald. Ordinary Differential Equations and Dynamical Systems.

A Bridge Crosses Nonlinearity

- It is not easy to show real-time computability directly, due to the high nonlinearity of CRNs.
- However, we can take advantage of Lyapunov's exponential stability theorem¹, which requires only derivative and eigenvalue analysis.
- The path: instead of showing

Algebraic $\subseteq \mathbb{R}_{RTCRN}$,

we define a new set \mathbb{R}_{LCRN} in between and show

Algebraic $\subseteq \mathbb{R}_{LCRN} \subseteq \mathbb{R}_{RTCRN}$,

¹Teschl, Gerald. Ordinary Differential Equations and Dynamical Systems.

Jacobian Matrix

If N=(S,R) is a CRN with $S=\{Y_1,\ldots,Y_n\}$, then the ODEs of each species can be written as

$$y'_1 = f_1(y_1, ..., y_n),$$

 \vdots
 $y'_n = f_n(y_1, ..., y_n),$

where $f_1, \ldots, f_n : \mathbb{R}^n \to \mathbb{R}$ are polynomials.

Jacobian Matrix

If N = (S, R) is a CRN with $S = \{Y_1, \dots, Y_n\}$, then the ODEs of each species can be written as

$$y'_1 = f_1(y_1, \dots, y_n),$$

$$\vdots$$

$$y'_n = f_n(y_1, \dots, y_n),$$

where $f_1, \ldots, f_n : \mathbb{R}^n \to \mathbb{R}$ are polynomials.

The **Jacobian matrix** of the CRN N is the $n \times n$ matrix

$$J_N = \begin{pmatrix} \frac{\partial f_1}{\partial y_1} & \cdots & \frac{\partial f_1}{\partial y_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial y_1} & \cdots & \frac{\partial f_n}{\partial y_n} \end{pmatrix}.$$

The Bridge: \mathbb{R}_{LCRN}

We define the set of real \mathbb{R}_{LCRN} basically like \mathbb{R}_{RTCRN} :, but instead of requiring exponential convergence, we require:

- x ∈ R_{LCRN} then all eigenvalues of the Jacobian at x must have negative real part.
- x is a limit point of the system (in our rubber duck sense).

Lyapunov's exponential stability theorem then guarantees exponential convergence $\mathbf{near}\ \mathbf{x}.$

The Bridge: \mathbb{R}_{LCRN}

We define the set of real \mathbb{R}_{LCRN} basically like \mathbb{R}_{RTCRN} :, but instead of requiring exponential convergence, we require:

- $x \in \mathbb{R}_{LCRN}$ then all eigenvalues of the Jacobian at x must have negative real part.
- x is a limit point of the system (in our rubber duck sense).

Lyapunov's exponential stability theorem then guarantees exponential convergence $\mathbf{near}\ \mathbf{x}$.

Figure 3: whirlpool

Algebraic Numbers

A real number $\alpha \in \mathbb{R}$ is **algebraic** if there is a polynomial P(x) with integer coefficients such that α is a root of P, i.e., $P(\alpha) = 0$. Here we demonstrate by an example of how to compute algebraic numbers. Actually, along this path, one can show that algebraic numbers are in \mathbb{R}_{LCRN} .

Example:
$$\alpha = 2 - \sqrt{3}$$
 is a root of

$$x^2 - 4x + 1 = 0$$

A real number $\alpha \in \mathbb{R}$ is **algebraic** if there is a polynomial P(x) with integer coefficients such that α is a root of P, i.e., $P(\alpha) = 0$. Here we demonstrate by an example of how to compute algebraic numbers. Actually, along this path, one can show that algebraic numbers are in \mathbb{R}_{LCRN} .

Example: $\alpha = 2 - \sqrt{3}$ is a root of

$$x^2 - 4x + 1 = 0$$

We can implement a CRN such that:

$$x' = x^2 - 4x + 1$$
 \iff

A real number $\alpha \in \mathbb{R}$ is **algebraic** if there is a polynomial P(x) with integer coefficients such that α is a root of P, i.e., $P(\alpha) = 0$. Here we demonstrate by an example of how to compute algebraic numbers. Actually, along this path, one can show that algebraic numbers are in \mathbb{R}_{LCRN} .

Example: $\alpha = 2 - \sqrt{3}$ is a root of

$$x^2 - 4x + 1 = 0$$

We can implement a CRN such that:

$$x' = x^{2} - 4x + 1 \qquad \iff \qquad \begin{cases} \emptyset \xrightarrow{1} X \\ X \xrightarrow{4} \emptyset \\ 2X \xrightarrow{1} 3X \end{cases}$$

A real number $\alpha \in \mathbb{R}$ is **algebraic** if there is a polynomial P(x) with integer coefficients such that α is a root of P, i.e., $P(\alpha) = 0$. Here we demonstrate by an example of how to compute algebraic numbers. Actually, along this path, one can show that algebraic numbers are in \mathbb{R}_{LCRN} .

Example: $\alpha = 2 - \sqrt{3}$ is a root of

$$x^2 - 4x + 1 = 0$$

We can implement a CRN such that:

$$x' = x^2 - 4x + 1 \qquad \iff \qquad \begin{cases} \emptyset \xrightarrow{1} X \\ X \xrightarrow{4} \emptyset \\ 2X \xrightarrow{1} 3X \end{cases}$$

Note that in this process:

ullet α is the **first positive root** of the polynomial.

A real number $\alpha \in \mathbb{R}$ is **algebraic** if there is a polynomial P(x) with integer coefficients such that α is a root of P, i.e., $P(\alpha) = 0$. Here we demonstrate by an example of how to compute algebraic numbers. Actually, along this path, one can show that algebraic numbers are in \mathbb{R}_{LCRN} .

Example: $\alpha = 2 - \sqrt{3}$ is a root of

$$x^2 - 4x + 1 = 0$$

We can implement a CRN such that:

$$x' = x^2 - 4x + 1 \qquad \iff \qquad \begin{cases} \emptyset \xrightarrow{1} X \\ X \xrightarrow{4} \emptyset \\ 2X \xrightarrow{1} 3X \end{cases}$$

Note that in this process:

- ullet α is the **first positive root** of the polynomial.
- constant term i.e., P(0), of the polynomial should be positive.

First positive root

Figure 4: First positive root

Other roots: shift

What if we want to compute the second root, $\beta = 2 + \sqrt{3}$?

Other roots: shift

What if we want to compute the second root, $\beta = 2 + \sqrt{3}$?

Figure 5: Other roots

Other roots: shift and flip

Figure 6: Other roots

\mathbb{R}_{LCRN} is a field

Let species X computes α . How to compute $\frac{1}{\alpha}$?

$\mathbb{R}_{\mathit{LCRN}}$ is a field

Let species X computes α . How to compute $\frac{1}{\alpha}$?

Ans:
$$Y' = 1 - XY$$

\mathbb{R}_{LCRN} is a field

Let species X computes α . How to compute $\frac{1}{\alpha}$?

Ans:
$$Y' = 1 - XY$$

That is, we add the follows reaction to the original network.

$$\emptyset \xrightarrow{1} Y$$

$$X + Y \xrightarrow{1} X$$

Subtraction

Let X computes α , Y computes β in a CRN. How to compute $\alpha - \beta$?

Subtraction

Let X computes α , Y computes β in a CRN. How to compute $\alpha - \beta$?

Ans:

$$Z'=1-(X-Y)Z,$$

Subtraction

Let X computes α , Y computes β in a CRN. How to compute $\alpha - \beta$?

Ans:

$$Z'=1-(X-Y)Z,$$

$$Z_r' = 1 - ZZ_r$$

Addition and multiplication can also be implemented easily.

Large Population Protocols (LPP).

• It is a simplify CRN model.

²Computing with Large Populations Using Interactions

Large Population Protocols (LPP).

- It is a simplify CRN model.
- Its reactions look like $X + Y \rightarrow Z + W$

 $^{^{2}}$ Computing with Large Populations Using Interactions

Large Population Protocols (LPP).

- It is a simplify CRN model.
- Its reactions look like $X + Y \rightarrow Z + W$
- Bournez et. al. ² prove that in this model all you can compute are exactly the algebraic numbers.

² Computing with Large Populations Using Interactions

Large Population Protocols (LPP).

- It is a simplify CRN model.
- Its reactions look like $X + Y \rightarrow Z + W$
- Bournez et. al. ² prove that in this model all you can compute are exactly the algebraic numbers.
- However, they assume their protocol must have finitely many equilibrium points. Then one can do a standard *quantifier* elimination.

²Computing with Large Populations Using Interactions

Large Population Protocols (LPP).

- It is a simplify CRN model.
- Its reactions look like $X + Y \rightarrow Z + W$
- Bournez et. al. ² prove that in this model all you can compute are exactly the algebraic numbers.
- However, they assume their protocol must have finitely many equilibrium points. Then one can do a standard *quantifier* elimination.

Generalized Fhrenfest urns:

A restricted model of LPP

²Computing with Large Populations Using Interactions

Large Population Protocols (LPP).

- It is a simplify CRN model.
- Its reactions look like $X + Y \rightarrow Z + W$
- Bournez et. al. ² prove that in this model all you can compute are exactly the algebraic numbers.
- However, they assume their protocol must have finitely many equilibrium points. Then one can do a standard *quantifier* elimination.

Generalized Ehrenfest urns:

- A restricted model of LPP
- Reactions look like $X + Y \rightarrow Z + Z$
- It can not compute all the algebraic numbers, specifically, it can not compute some rationals.

²Computing with Large Populations Using Interactions

LPP Cont.

But what if we have infinitely many equilibrium points? A continuum of them?

LPP Cont.

But what if we have infinitely many equilibrium points? A continuum of them?

Well, then we can compute transcendental numbers! The following CRN uses species $U,\ V$, such that $\lim_{t\to\infty} U(t)-V(t)=e-1$. Actually, it is just a fancy way to encode $y=e^{1-e^{-t}}-1$ in CRN.

The ODE for the previous CRN is:

$$x' = 1 - x$$

$$u' = 1 + u - xu - uv$$

$$v' = x + v - xv - uv$$

Its equilibrium points are on the curve $\{x = 1, uv = 1\}$.

Simulation by Simbiology

Thank you