Assignment 3

Ashraful Islam RIN: 661854753

1 Exercise 1.13

1.1 a

 $P(\text{error that h makes in approximating y}) \qquad (1)$ $= P(h(x) \neq y) \qquad (2)$ $= P(h(x) \neq y | y = f(x))P(y = f(x)) + P(h(x) \neq y | y \neq f(x))P(y \neq f(x)) \qquad (3)$ $= \mu \lambda + (1 - \mu)(1 - \lambda) \qquad (4)$ $= \mu(2\lambda - 1) + 1 - \lambda \qquad (5)$

1.2 b

From Eqn. 5, we get when $\lambda=0.5,$ P(error that h makes in approximating y) will be independent of μ .

2 Exercise 2.1

- 1. Positive rays: break points k=2, as 2 points cannot be shattered by the ray. $m_H(k)=k+1=3<2^k=4$
- 2. Positive intervals: break points k=3, and $m_H(k)=\binom{4}{2}+1=7<2^3=8$.
- 3. Convex sets: There's no break point, as the convex set can shatter any N points.

3 Exercise 2.2

3.1 a

- 1. Positive rays: $m_H(N) = N + 1$. And $\sum_{i=0}^{k-1} \binom{N}{i} = \binom{N}{0} + \binom{N}{1} = 1 + N$. So, $m_H(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$.
- 2. Positive intervals: $m_H(N) = \binom{N+1}{2} + 1 = \frac{N(N+1)}{2} + 1$. And $\sum_{i=0}^{k-1} \binom{N}{i} = \binom{N}{0} + \binom{N}{1} + \binom{N}{2} = 1 + N + \frac{N(N-1)}{2} = 1 + \frac{N(N+1)}{2}$. So, $m_H(N) \leq \sum_{i=0}^{k-1} \binom{N}{i}$.

3. Here, $k=\inf$, and $\sum_{i=0}^{k-1} \binom{N}{i}=\inf$. So, we still $m_H(N)=2^N\leq\sum_{i=0}^{k-1} \binom{N}{i}$.

3.2 b

 $m_H(N) = N + 2^{\lfloor \frac{N}{2} \rfloor}$. Now, $m_H(2) = 4 \nleq 2^N = 4$, $m_H(3) = 5 < 2^3 = 8$. Hence, break point k = 3.

Now, we know, for all N, $m_H(N) \leq \sum_{i=0}^{k-1} {N \choose i} = {N \choose 0} + {N \choose 1} + {N \choose 2} = 1 + N + \frac{N(N-1)}{2} = 1 + \frac{N(N+1)}{2}$. However, $N + 2^{\lfloor \frac{N}{2} \rfloor} < 1 + \frac{N(N+1)}{2}$ does not hold for all N, as the left side is exponential and right side is polynomial. Hence, the hypothesis cannot exist.

4 Exercise 2.3

We know, $d_{VC} = k - 1$. So,

- 1. Positive rays: $d_{vc} = 1$
- 2. Positive intervals: $d_{vc} = 2$
- 3. Convex sets: $d_{vc} = \inf$

5 Exercise 2.6

5.1 a

We know, $E_{\text{out}}(g) \leq E_{\text{in}}(g) + \sqrt{\frac{1}{2N}\log\frac{2m_H(N)}{\delta}}$, where $\sqrt{\frac{1}{2N}\log\frac{2m_H(N)}{\delta}}$ is the error bar. For training cases, M=1000 and N=400, training error bar = 0.115. For testing, M=1 and N=200, testing error bar = 0.096. So, training has higher error bar.

5.2 b

If we reserve more data for testing, then we will have less data for training. In that case, the training error bar will be larger, and we might not have a good hypothesis. Hence, even though the error bar will be smaller, $E_{\text{test}}(g)$ might be larger from where $E_{\text{in}}(g)$ might be larger too.

6 Problem 1.11

$$E_{\text{in}}(h) = \frac{1}{N} \sum_{i=1}^{N} e(h(x_n), f(x_n))$$

$$= \frac{1}{N} \left(\sum_{f(x_n)=1} e(h(x_n), 1) + \sum_{f(x_n)=-1} e(h(x_n), -1) \right)$$

Now, for Supermarket,

$$E_{\text{in}}(h) = \frac{1}{N} \left(\sum_{f(x_n)=1} e(h(x_n), 1) + \sum_{f(x_n)=-1} e(h(x_n), -1) \right)$$
$$= \frac{1}{N} \left(\sum_{f(x_n)=1} 10[h(x_n \neq 1)] + \sum_{f(x_n)=-1} [h(x_n \neq -1)] \right)$$

Now, for CIA,

$$E_{\text{in}}(h) = \frac{1}{N} \left(\sum_{f(x_n)=1} e(h(x_n), 1) + \sum_{f(x_n)=-1} e(h(x_n), -1) \right)$$
$$= \frac{1}{N} \left(\sum_{f(x_n)=1} [h(x_n \neq 1)] + \sum_{f(x_n)=-1} 1000[h(x_n \neq -1)] \right)$$

Here, $[a \neq b] = 1$, if $a \neq b$, else it is 0.

7 Problem 1.12

7.1 a

Here, $E_{\rm in}(h) = \sum_{n=1}^{N} (h-y_n)^2$. To minimize $E_{\rm in}(h)$, $\frac{dE_{\rm in}(h)}{dh} = 0$ $\Longrightarrow 2\sum_{n=1}^{N} (h-y_n) = 0$ $\Longrightarrow h = \frac{1}{N}\sum_{n=1}^{N} y_n = h_{\rm mean}$

7.2 b

$$\frac{dE_{\rm in}(h)}{dh} = 0$$

$$\frac{d}{dh} \sum_{i=1}^{N} |h - y_n| = 0$$

We know that $\frac{d}{dx}|x|=+1$, if x>0, otherwise -1. Hence, there should be equal number of +1 and -1 in the left side of the above equation, or h should be median of $\{y_n\}$, so that there will be equal number of $y_n>h$ as there is $y_n< h$.

7.3 c

If $y_N=y_N+\epsilon$, where $\epsilon\to\inf$, then From (a), $h_{\rm mean}\to\inf$. However, $h_{\rm median}$ will remain the same. So (a) is sensitive to outlier whereas (b) is not.