Total No. of Printed Pages:3

Enrollment	No
-------------------	----

Engineering nation Dec-2023 chine Learning

Branch/Specialisation: RA

Maximum Marks: 60

indicated A ta if

Q.1 (N	ACQs)	* *	ad of only a, b, c or d. Assume suitable of usual meaning.				
Q.1	i.	Identify the type of learning used.	ng in which labelled training data is	1			
		(a) Reinforcement learning	(b) Unsupervised learning				
		(c) Supervised learning	(d) Semi unsupervised learning				
	ii.	The most common issue who	The most common issue when using machine learning is				
		(a) Poor Data Quality	(b) Inadequate Infrastructure				
		(c) Lack of skilled resources	(d) None of these				
	iii.	Data points have zero residu	al:	1			
		(a) If they are above the regr	ession line				
		(b) If they are below the regr	ression line				
		(c) If the regression line actu	ally passes through the point				
		(d) None of these					
	iv.	controls the	magnitude of a step taken during	1			
		gradient descent.					
		(a) Parameter	(b) Learning rate				
		(c) Step rate	(d) Momentum				
	v.	What is the disadvantage of	decision trees?	1			
		(a) Factor analysis					
		(b) Decision trees are robust	to outliers				
		(c) Decision trees are prone to	to be overfit				
		(d) All of these					
	vi.	Support Vector Machine (SV	/M) can be used for	1			
		(a) Classification only	(b) Regression only				
		(c) Both (a) and (b)	(d) None of these				

[2]

	vii.	In SVM, what is a hyperplan	e?	1			
		(a) Decision boundaries	(b) Data points				
		(c) Features	(d) None of these				
	viii.	When do we need kernel PC	A?	1			
		(a) When we need to capture	e non-linearity in the data				
		(b) When there are kernels i	n the data				
		(c) When any two features a	re highly correlated				
		(d) When the we need to red	luce the number of dimensions to m/2,				
		where m is the original n	number of features				
	ix.	Which of the following is an	example of time series problem?	1			
		I. Estimating number of ho	tel rooms booking in next 6 months.				
		II. Estimating the total sal	les in next 3 years of an insurance				
		company.					
		III. Estimating the number o	f calls for the next one week.				
		(a) I and II	(b) I and III				
		(c) All of these	(d) None of these				
	х.	If the demand is 100 during	ng October 2016, 200 in November	1			
		2016, 300 in December 201	2016, 300 in December 2016, 400 in January 2017. What is the				
		3-month simple moving aver	rage for February 2017?				
		(a) 300	(b) 350				
		(c) 400	(d) Need more information				
Ω^2	i.	What is overfitting and unde	rfitting?	2			
Q.2	ii.	_	_	3			
	11.	Compare and contrast Supervised and unsupervised machine learning algorithms.					
	iii.	0 0	npact the performance of machine	5			
	111.	learning model? Explain with	-	J			
OR	iv.	•	iques to avoid overfitting in machine	5			
OK	1 V .	learning model? Explain with		J			
		rearming moder: Explain with	п схапіріс.				
Q.3	i.	What is linear regression?		2			
	ii.	What is gradient descent al	gorithm? Explain different types and	8			
		working procedure of gradie	nt descent algorithm.				
OR	iii.	State linear discriminant ana	alysis algorithm. Explain how LDA is	8			
		used for dimensionality redu	ction in Machine learning.				
Q.4	i.	What is K nearest neighbour	s algorithm? Explain with example.	3			

ii.	State	Support	vector	machine	(SVM).	Also	explain	different		
	kernel functions in SVM.									

OR	iii.	What	is	decision	tree	algorithm?	Explain	different	criteria	of	7
		attribu	ite s	selection r	measi	ires					

[3]

Q.5	i.	What are the missing values? How do you handle missing values?	4
_		e e e e e e e e e e e e e e e e e e e	

- ii. What is K means clustering algorithm? Write working procedure 6 of it.
- OR iii. What is the curse of dimensionality? Explain. How principal 6 component analysis (PCA) is used for dimensionality reduction with example?

Q.6 Attempt any two:

What are the five time series forecasting methods? Explain. 5

5

- ii. What methods will you use to measure the similarity/difference 5 between two time-series vectors?
- iii. What are the four components of a time series forecast? Explain.

[4]

Marking Scheme

RA3EL08 (T)- Machine Learning

Q.1	i)	C		1
	ii)	A		1
	iii)	C		1
	iv)	В		1
	v)	C		1
	vi)	C		1
	vii)	A		1
	viii)	A		1
	ix)	C		1
	x)	A		1
Q.2	i.	Definition of each	1 mark	2
	ii.	Advantage minimum 2	1.5 marks	3
		Disadvantage minimum 2	1.5 marks	
	iii.	Impact of bias and varience	3 marks	5
		Example	2 marks	
OR	iv.	techniques to avoid overfitting (Any 4)	4 marks	5
		Explain with example.	1 mark	
Q.3	i.	Regression definition	2 marks	2
	ii.	Gradient descent algorithm	4 marks	8
		Types	2 marks	
		working procedure	2 marks	
OR	iii.	State Linear discriminant	4 marks	8
		how LDA is used for dimensionality reductio	n 4 marks	
Q.4	i.	K nearest neighbours algorithm	2 marks	3
		example.	1 mark	
	ii.	Support vector machine (SVM)	3 marks	7
		different kernel functions in SVM.	4 marks (1 for each)	
OR	iii.	decision Tree algorithm	4 marks	7
		different criteria of attribute selection measur	es 3 marks	
Q.5	i.	What are the missing values	2 marks	4

		How do you handle missing values	2 marks	
	ii.	K means clustering algorithm	3 marks	6
		Write working procedure of it.	3 marks	
OR	iii.	curse of dimensionality	3 marks	6
		How Principal component	3 marks	
Q.6		Attempt any two:		
	i.	5 time series forecasting methods		5
		1 mark	for each method	
	ii.	similarity/difference between two time-series	s vectors	5
		2 mark	for each method	
	iii.	four components of a time series forecast		5
		1 mark for each	ch component	

P.T.O.