Statistics for Data Science -1

Lecture 5.3: Permutation formula-distinct objects

Usha Mohan

Indian Institute of Technology Madras

Learning objectives

- 1. Understand basic principles of counting.
- 2. Concept of factorials.
- Understand differences between counting with order (permutation) and counting without regard to order (combination).
- 4. Use permutations and combinations to answer real life applications.

Permutations

Permutation when objects are distinct

Permutation when objects are distinct- repetitions not allowed Permutation when objects are distinct- repetitions allowed

Permutation

Definition

A permutation is an ordered arrangement of all or some of n objects.

Take A, B, C- Possible arrangements- taking all at a time

Take A, B, C- Possible arrangements- taking all at a time

First place	Second place	Third place
А	В	С
А	С	В
В	А	С
В	С	А
С	А	В
С	В	А

Take A, B, C- Possible arrangements- taking two at a time

Permutation when objects are distinct

Take A, B, C- Possible arrangements- taking two at a time

First place	Second place
А	В
А	С
В	А
В	С
С	А
С	В

```
Statistics for Data Science -1
Permutations
```

Permutation when objects are distinct

Example

Take $A,\,B,\,C,\,D$ - Possible arrangements- taking all at a time

Take A, B, C, D- Possible arrangements- taking all at a time

First place	Second place	Third place	Fourth place
A	B	C	D D
		_	
A	В	D	C
A	C	В	D
Α	C	D	В
Α	D	В	C
Α	D	C	В
В	Α	C	D
В	Α	D	C
В	C	Α	D
В	C	D	A C
В	D	Α	C
В	D	С	Α
	Α	В	D
C C C C	Α	D	В
С	В	Α	D
C	В	D	Α
С	D	Α	В
Ċ.	D	В	Α
Ď	Ā	В	C
D	A	Č	В
Ď	В	Ä	č
D	В	Ċ	Ä
D	C	A	В
D	C	B	A
U	C	В	А

Permutation when objects are distinct

Example

Take A, B, C, D- Possible arrangements- taking two at a time

Take A, B, C, D- Possible arrangements- taking two at a time

First place	Second place
A	В
A	С
A	D
В	A
В	С
В	D
С	A
С	В
С	D
D	A
D	В
D	С

The number of possible permutations of r objects

Permutation when objects are distinct

Permutation formula

The number of possible permutations of r objects from a collection of n distinct objects is given by the formula

The number of possible permutations of r objects from a collection of n distinct objects is given by the formula

$$n \times (n-1) \times \ldots \times (n-r+1)$$

The number of possible permutations of r objects from a collection of n distinct objects is given by the formula

$$n \times (n-1) \times \ldots \times (n-r+1)$$

$$^{n}P_{r} =$$

The number of possible permutations of r objects from a collection of n distinct objects is given by the formula

$$n \times (n-1) \times \ldots \times (n-r+1)$$

$$^{n}P_{r}=\frac{n!}{(n-r)!}$$

The number of possible permutations of r objects from a collection of n distinct objects is given by the formula

$$n \times (n-1) \times \ldots \times (n-r+1)$$

$$^{n}P_{r}=\frac{n!}{(n-r)!}$$

- Special cases
 - 1. ${}^{n}P_{0} =$

The number of possible permutations of r objects from a collection of n distinct objects is given by the formula

$$n \times (n-1) \times \ldots \times (n-r+1)$$

$$^{n}P_{r}=\frac{n!}{(n-r)!}$$

- Special cases
 - 1. ${}^{n}P_{0} = \frac{n!}{(n-0)!} = \frac{n!}{n!} = 1$ There is only one ordered arrangement of 0 objects.

The number of possible permutations of r objects from a collection of n distinct objects is given by the formula

$$n \times (n-1) \times \ldots \times (n-r+1)$$

$$^{n}P_{r}=\frac{n!}{(n-r)!}$$

- Special cases
 - 1. ${}^{n}P_{0} = \frac{n!}{(n-0)!} = \frac{n!}{n!} = 1$ There is only one ordered arrangement of 0 objects.
 - 2. ${}^{n}P_{1} =$

The number of possible permutations of r objects from a collection of n distinct objects is given by the formula

$$n \times (n-1) \times \ldots \times (n-r+1)$$

$$^{n}P_{r}=\frac{n!}{(n-r)!}$$

- Special cases
 - 1. ${}^{n}P_{0} = \frac{n!}{(n-0)!} = \frac{n!}{n!} = 1$ There is only one ordered arrangement of 0 objects.
 - 2. ${}^{n}P_{1} = \frac{n!}{(n-1)!} = n$. There are n ways of choosing one object from n objects.

The number of possible permutations of r objects from a collection of n distinct objects is given by the formula

$$n \times (n-1) \times \ldots \times (n-r+1)$$

$$^{n}P_{r}=\frac{n!}{(n-r)!}$$

- Special cases
 - 1. ${}^{n}P_{0} = \frac{n!}{(n-0)!} = \frac{n!}{n!} = 1$ There is only one ordered arrangement of 0 objects.
 - 2. ${}^{n}P_{1} = \frac{n!}{(n-1)!} = n$. There are n ways of choosing one object from n objects.
 - 3. ${}^{n}P_{n} =$

The number of possible permutations of r objects from a collection of n distinct objects is given by the formula

$$n \times (n-1) \times \ldots \times (n-r+1)$$

$${}^{n}P_{r}=\frac{n!}{(n-r)!}$$

- Special cases
 - 1. ${}^{n}P_{0} = \frac{n!}{(n-0)!} = \frac{n!}{n!} = 1$ There is only one ordered arrangement of 0 objects.
 - 2. ${}^{n}P_{1} = \frac{n!}{(n-1)!} = n$. There are n ways of choosing one object from n objects.
 - 3. ${}^{n}P_{n} = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n!$. We can arrange n distinct objects in n! ways- multiplication principle of counting.

The number of possible permutations of r objects from a collection of n distinct objects is given by the formula

$$n \times (n-1) \times \ldots \times (n-r+1)$$

$${}^{n}P_{r}=\frac{n!}{(n-r)!}$$

- Special cases
 - 1. ${}^{n}P_{0} = \frac{n!}{(n-0)!} = \frac{n!}{n!} = 1$ There is only one ordered arrangement of 0 objects.
 - 2. ${}^{n}P_{1} = \frac{n!}{(n-1)!} = n$. There are n ways of choosing one object from n objects.
 - 3. ${}^{n}P_{n} = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n!$. We can arrange n distinct objects in n! ways- multiplication principle of counting.

Take A, B, C- Possible arrangements- taking all at a time

First place	Second place	Third place
А	В	С
А	С	В
В	А	С
В	С	А
С	А	В
С	В	А

Permutation when objects are distinct

Take A, B, C- Possible arrangements- taking all at a time

First place	Second place	Third place
А	В	С
А	С	В
В	А	С
В	С	А
С	А	В
С	В	А

$$n = 3, r = 3, {}^{n}P_{r} = \frac{n!}{(n-r)!} = \frac{3!}{0!} = 6$$

Take A, B, C- Possible arrangements- taking two at a time

First place	Second place
А	В
А	С
В	А
В	С
С	А
С	В

Take A, B, C- Possible arrangements- taking two at a time

First place	Second place
А	В
А	С
В	А
В	С
С	А
С	В

$$n = 3, r = 2, {}^{n}P_{r} = \frac{n!}{(n-r)!} = \frac{3!}{1!} = 6$$

Permutations

Permutation when objects are distinct

Take A, B, C, D- Possible arrangements- taking all at a time

	9		
First place	Second place	Third place	Fourth place
Α	В	С	D
Α	В	D	C
Α	C	В	D
Α	C	D	В
Α	D	В	C
Α	D	C	В
В	Α	C	D
В	Α	D	C
В	C C	Α	D
В	C	D	Α
В	D	Α	C
В	D	C	Α
C C C C C	Α	В	D
C	Α	D	В
C	В	Α	D
C	В	D	Α
C	D	Α	В
C	D	В	Α
D	Α	В	C
D	Α	C	В
D	В	Α	C
D	В	C	Α
D	C	Α	В
D	C	В	Α

Take A, B, C, D- Possible arrangements- taking all at a time

	5 dir de d'enne		
First place	Second place	Third place	Fourth place
A	В	C	D
A	В	D	C
A	C	В	D
Α	C	D	B C
Α	D	В	
A	D	C C	В
В	Α		D
В	Α	D	C
В	C	Α	D
В	C	D	Α
В	D	Α	C
В	D	C	Α
C	Α	В	D
C C C	Α	D	В
C	В	Α	D
C	В	D	Α
C	D	Α	В
С	D	В	Α
D	Α	В	C
D	Α	C	В
D	В	Α	C
D	В	A C	Α
D	С	Α	В
D	C	В	Α

Take A, B, C, D- Possible arrangements- taking two at a time

First place	Second place
A	В
A	С
A	D
В	A C
В	
В	D
С	Α
С	В
С	D
D	A
D	В
D	С

Take A, B, C, D- Possible arrangements- taking two at a time

First place	Second place
Α	В
A	С
Α	D
В	Α
В	С
В	D
C C	Α
C	В
С	D
D	Α
D	В
D	С

$$n = 4, r = 2, {}^{n}P_{r} = \frac{n!}{(n-r)!} = \frac{4!}{2!} = 12$$

Example: application

► From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman assuming one person can not hold more than one position?

Example: application

- ► From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman assuming one person can not hold more than one position?
- ▶ 8 × 7 =

Example: application

- ► From a committee of 8 persons, in how many ways can we choose a chairman and a vice chairman assuming one person can not hold more than one position?
- ▶ $8 \times 7 = 56$

Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated.

- Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated.
- \triangleright 5 × 4 × 3 × 2 × 1 =

- Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated.
- \triangleright 5 × 4 × 3 × 2 × 1 = 120

- Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated.
- \triangleright 5 × 4 × 3 × 2 × 1 = 120
- ► How many of these will be even?

- Find the number of 4-digit numbers that can be formed using the digits 1, 2, 3, 4, 5 if no digit is repeated.
- \triangleright 5 × 4 × 3 × 2 × 1 = 120
- ▶ How many of these will be even? 48

➤ Six people go to the cinema. They sit in a row with ten seats. Find how many ways can this be done if

- ➤ Six people go to the cinema. They sit in a row with ten seats. Find how many ways can this be done if
 - (i) they can sit anywhere:

- ➤ Six people go to the cinema. They sit in a row with ten seats. Find how many ways can this be done if
 - (i) they can sit anywhere: ${}^{10}P_6 = 1,51,200$

- ➤ Six people go to the cinema. They sit in a row with ten seats. Find how many ways can this be done if
 - (i) they can sit anywhere: ${}^{10}P_6 = 1,51,200$
 - (ii) all the empty seats are next to each other:

- Six people go to the cinema. They sit in a row with ten seats. Find how many ways can this be done if
 - (i) they can sit anywhere: ${}^{10}P_6 = 1,51,200$
 - (ii) all the empty seats are next to each other: ${}^{7}P_{6} = 5,040$

Statistics for Data Science -1
Permutations

Permutation when objects are distinct

Example

Take A, B, C- Possible arrangements- taking all at a time

Take A, B, C- Possible arrangements- taking all at a time

First place	Second place	Third place
A	Α	Α
A	Α	В
A	Α	C
A	В	Α
A	В	B C
A	В	C
A	C	A
A	B C C C A	B C
A	C	C
В	Α	Α
В	Α	B C A
В	Α	C
В	В	Α
В	В	В
В	В	B C A
В	C	Α
В	C C C A	B C A
	C	C
C	Α	Α
l c	Α	В
c	Α	C
C	В	Α
B C C C C C C	В	В
l c	В	B C
l c	С	Α
l c	B C C C	В
C	С	A B C

Permutation when objects are distinct

Example

Take A, B, C- Possible arrangements- taking two at a time

Take A, B, C- Possible arrangements- taking two at a time

First place	Second place
А	А
Α	В
Α	С
В	Α
В	В
В	С
С	Α
С	В
С	С

Permutation formula

Permutation formula

The number of possible permutations of r objects from a collection of n distinct objects when repetition is allowed is given by the formula

Permutation formula

The number of possible permutations of r objects from a collection of n distinct objects when repetition is allowed is given by the formula

$$n \times n \times \ldots \times n$$

and is denoted by n^r

Permutations

Permutation when objects are distinct

Example

Take A, B, C- Possible arrangements- taking all at a time n = 3, r = 3, $n^r = 27$

Take ${}^{^{*}}\!\!A,B,$ C- Possible arrangements- taking all at a time.n=3, r=3, $n^{r}=27$

First place	Second place	Third place
A	Α	Α
A	Α	В
A	Α	C
A A	В	Α
A	В	В
A	В	C A
A	C	Α
A	С	В
A	C	B C
В	B C C C A A	Α
В	Α	В
В	Α	B C
В	В	A B C
В	В	В
В	В	C
В	С	Α
В	C	В
В	C C C A	A B C A
C	Α	Α
C	Α	В
C	Α	C A
C	В	Α
c	В	В
B C C C C C C		B C
c	B C C C	Α
c	С	В
C	C	B C -

Take A, B, C- Possible arrangements- taking two at a time

First place	Second place
А	Α
Α	В
Α	С
В	Α
В	В
В	С
С	Α
С	В
С	С

Permutation when objects are distinct

Take A, B, C- Possible arrangements- taking two at a time

First place	Second place
Α	Α
Α	В
Α	С
В	Α
В	В
В	С
С	Α
С	В
С	С

$$n = 3, r = 2, n^r = 9$$

Section summary

1. The number of possible permutations of r objects from a collection of n distinct objects is given by the formula

$$n \times (n-1) \times \ldots \times (n-r+1)$$

and is denoted by ${}^{n}P_{r} = \frac{n!}{(n-r)!}$

2. The number of possible permutations of *r* objects from a collection of *n* distinct objects when repetition is allowed is given by the formula

$$n \times n \times \ldots \times n$$

and is denoted by n^r