用玻尔共振仪研究阻尼振动和受迫振动特性 实验报告

姓名: 吴晨聪 学号: 2022010311 实验日期: 2023年11月3日 实验台号: 11

一. 实验目的

- (1) 观测阻尼振动,学习测量振动系统基本参数的方法;
- (2) 研究受迫振动的幅频特性和相频特性,观察共振现象;
- (3) 观测不同阻尼对受迫振动的影响。

二. 实验仪器

波尔共振仪

三. 数据处理

1. 阻尼0档

测量数据取对数后填入如下表格

	$ln\theta_1$	$ln\theta_2$	$ln\theta_3$	$ln heta_4$	$ln\theta_5$	$ln\theta_6$	$ln\theta_7$	$ln heta_8$	$ln heta_9$	$ln\theta_{10}$
$1^{\sim}10T_d$	4.883	4.883	4.875	4.868	4.868	4.852	4.852	4.844	4.836	4.828
$11^{\sim}20T_{d}$	4.820	4.804	4.804	4.796	4.787	4.787	4.779	4.779	4.771	4.762
21~30T _d	4.745	4.745	4.736	4.727	4.727	4.718	4.710	4.710	4.700	4.691
31~40T _d	4.673	4.673	4.663	4.654	4.654	4.644	4.635	4.635	4.625	4.615
$41^{\sim}50T_{d}$	4.615	4.595	4.585	4.585	4.575	4.564	4.564	4.554	4.543	4.533

周期 T_a 平均值为1.50058s

对于阻尼振动公式

$$J\frac{d^{2}\theta}{dt^{2}} + \gamma \frac{d\theta}{dt} + k\theta = 0$$
$$\omega_{0} = \sqrt{k/J}$$
$$\beta = \gamma/(2J)$$

解方程得

$$\theta_t = \theta_i exp(-\beta t)cos(\sqrt{{\omega_0}^2 - \beta^2}t + \phi_i)$$

因此阻尼振动角频率为

$$\omega_d = \sqrt{{\omega_0}^2 - \beta^2}$$

对 θ_t 取对数得

$$ln\theta_t = ln \left[\theta_i cos(\sqrt{{\omega_0}^2 - \beta^2}t + \phi_i)\right] - \beta t$$

假设从 t_0 时刻开始连续测量最大摆幅,则测量第j个摆幅则测量第j个摆幅 θ_j 时对应的时间 $t=t_0+jT_d$,于是有

$$ln\theta_j = ln \left[\theta_i cos(\sqrt{{\omega_0}^2 - \beta^2}t + \phi_i)\right] - \beta t_0 - j\beta T_d$$

设因变量 $y = ln\theta_i$, 自变量x = j, 用最小二乘法拟合直线y = bx + a, 则斜率

$$b = -\beta T_d = -\beta \frac{2\pi}{\sqrt{{\omega_0}^2 - \beta^2}} = -\frac{2\pi}{\sqrt{\xi^{-2} - 1}}$$

(定义阻尼比 $\xi = \beta/\omega_0$)因此求出b就可以求出阻尼比,再结合周期 T_d 就可以求出固有频率 ω_0 。

求得回归直线方程为为y = -0.0071x + 4.8996。R方为0.9977。

计算得阻尼比

$$\xi = 0.001299$$

标准偏差

$$S_b = b \sqrt{\frac{r^{-2} - 1}{n - 2}} = -4.92 \times 10^{-5}$$

不确定度

$$\Delta_b = t_{0.95}(v)S_b = -9.89 \times 10^{-5}$$
$$\xi = (1.299 \pm 0.019) \times 10^{-3}$$
$$T_d = (1.5005 \pm 0.0035)s$$

固有频率

$$\omega_0 = (3.6424 \pm 0.0254)s^{-1}$$

2. 阻尼2档

测量数据取对数后填入如下表格

$ln\theta_1$	$ln\theta_2$	$ln\theta_3$	$ln heta_4$	$ln heta_5$	$ln\theta_6$	$ln\theta_7$	$ln heta_8$	$ln heta_9$	$ln heta_{10}$
4.787	4.700	4.615	4.533	4.454	4.369	4.277	4.190	4.111	4.025

计算得阻尼比

$$\xi = 0.0151$$

$$\beta = 0.0562s^{-1}$$

时间常数

$$\tau = 17.78s$$

3. 阻尼4档

测量数据取对数后填入以下表格

$ln\theta_1$	$ln\theta_2$	$ln\theta_3$	$ln heta_4$	$ln\theta_5$	$ln\theta_6$	$ln\theta_7$	$ln\theta_8$	$ln\theta_9$	$ln\theta_{10}$
4.860	4.718	4.575	4.443	4.304	4.159	4.025	3.871	3.738	3.584

周期 T_d 平均值为1.5061s

求得回归直线方程为y = -0.1410x + 5.0032。R方为0.99982

计算得阻尼比

$$\xi = 0.0246$$

$$\beta = 0.0936s^{-1}$$

时间常数

$$\tau = 10.68s$$

4. 受迫振动幅频特性和相频特性曲线。

测量数据填入以下表格

阻尼2档

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
θ_n	n	52	79	100	119	132	147	154	157	154	147	52	79	100	119	132
ф)	159	150	139	132	118	109	100	88	78	70	60	51	40	30	20

阻尼4档

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
θ_m	32	45	58	71	80	86	90	91	89	86	77	70	58	46	31
φ	21	29	39	50	62	69	78	89	100	111	122	130	140	150	160

绘制幅频特性曲线:

绘制相频特性曲线:

四. 实验总结

1. 在阻尼振动实验中,测量结果与理论计算相符。阻尼档位为0时,阻尼系数非常小,可

以忽略不计。阻尼档位为2时,时间常数为17.78秒;阻尼档位为4时,时间常数为10.68秒。时间常数反映了振幅衰减到一定比例所需的时间。随着阻尼增强,时间常数变短。

- 2. 在受迫振动实验中,测量结果也与理论计算相符。在幅频特性曲线中,当角频率ω/ω δ接近1时,振幅达到最大值。在相频特性曲线中,相位角φ随着角频率ω/ω δ的增加而递增,在接近1时增加最快。
- 3. 实验操作较为简单,但需要一定耐心,比如对同一仪器进行尺寸测量及等待测定摆动周期时。
- 4. 实验过程需要小心保护仪器,共振点附近不要测量,以免振幅过大损伤弹簧,在做实验前需要仔细检查实验仪器,确保无误后再开始实验。
- 5. 在实验过程中也要注意比对实验数据与理论值,若在理论无误的情况下数据差别较大,则 应即使停止实验进行检查。

五. 原始数据记录

序号	θ,	ln θ _j	时阻尼比的测5 序号	θ_j	$\ln \theta_j$
1	132	III 0j	26	112	moj
2	132		27	[1]	
3	131		28	(11)	
4	130		29	110	
5	130		30	109	
6	128		31	107	
7	128		32	107	
8	121		33	106	
9	126		34	105	1
10	125		35	105	
11	124		36	154	
12	127		37	103	
13	122		38	103	
14	121		39	102	
15	120		40	101	
16	120		41	101	
17	119		42	99	
18	119		43	98	
19	118		44	98	3
20	111		45	97	
21	115		46	96	
22	115		47	96	
23	114		48	95	
			49	94	
-	113			1.7	
24 25 b	113		49 50 ζ	93	

表 2 最小阳尼时振动周期和朋友鱼领家的到底

次数	1	2	3	4	5
10T _d /s	14.979	14.993	15.007	15,019	15.031
$10\overline{T_d}/s$					
T_d/s			ω_0/s^{-1}		

表 3 阻尼状态 2 的阻尼比测定

序号	θ_j	$\ln \theta_j$	T _d /s	$\overline{T_d}/s$	b
1	120		1.499		
2	110		1.561		
3	101		1,503		
4	93		1.504		1
5	86		1.505		
- 6	79		1.505		
7	72		1.507		
8	66		1.507		-
9	61		1.507		M. Carlot
10	56		1.509		7

表 4 阻尼状态 3 的阻尼比测定

序号	θ_{j}	$\ln \theta_j$	T _d /s	$\overline{T_d}/s$	b
1					
2					
3					
4					
5					
6	-				
7					
8					
9					
10					

表 5 阻尼状态 4 的阻尼比测定

序号	θj	$\ln \theta_j$	T _d /s	$\overline{T_d}/s$	b
1	129		1.498		
2	112		1.501		1
3	97		1.504		1888
4	85		1.505		
5	74		1.507		
6	64		1.508		
7	56		1.509		
8	48		1.509		
9	42		1.51		18
10	36		1.51		

表 6 阳尼状态 2 受迫振动数据

1		表 6 阻尼	大态 2 受迫和	设 列蚁佑 」	1	- 1
T/s	ω/s ⁻¹	ω/ω_0	θ_m \checkmark	ϕ_1	φ ₂	$\bar{\phi}$
1.456			52	158	1 160	159
1.413			79	151	149	150
1.480			100	140	13-8	139
1.483			119	131	133	132
1.486			132	119	117	118
1.488			147	109	109	109
1.490			154	100	100	100
1.494			157	81	89	88
1.474			154	177	79	78
			147	70	70	70
1.502			136	61	59	60
1.508			121	51	51	51
1.516				41	39	40
1.526.			103		30	30
1.542			78	30		20
1.567			54	19	21	20
					No.	

表 8 阻尼状态 4 受迫振动数据

T/s	ω/s ⁻¹	ω/ω_0	θ_m	ϕ_1	φ ₂	$ar{\phi}$
1.608			32	19	22	2
1.574			45	28	30	29
1.553			58	40	48	39
1.537			71	51	49	50
1.526			6. 80	61	63	62
1.519			86	68	76	69
1.511			90	79	77	78
1,504			91	89	89	89
1,497	100	No. of The Control	89	101	99	100
1.492			86	112	110	(()
1.487			71	123	121	122
1.480			70	129	(3)	130
1.469			58	(41	139	140
1.456			46	149	151	150
1.428			31	160	160	160
1.140						

为为