

Annexure – II (Question Paper Template)

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains two pages.
- (2) All Questions are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer to each new question is to be started on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required, but justify it.
- (7) Draw the neat labelled diagrams, wherever necessary.

Question		Max.
No.		Marks
Q1 (a)	i. State the sampling theorem	[01]
	ii. Consider the analog signal, $x_a(t) = \sin 480\pi t + 3 \sin 720\pi t$	
	Determine the minimum sampling frequency and the sampled version of the	[04]
	analog signal at this frequency.	
	OR	
	i. Find the period of the given signal if it is periodic $x(t) = \sin 3t + \sin \pi t$	[01]
	ii. Differentiate between energy and power signal	[02]
	iii. Sketch the odd part of the signal u(t) where u(t) is a unit step function	[01]
	iv. Sketch the signum function sgn t. How is it related to the function	[01]
	obtained in iii above?	
Q1 (b)	(i) Check the Linearity and Time-invariance of the system $y(t) = t^2x(t)$,	[05]
	where $y(t)$ and $x(t)$ are the output and input respectively.	
	(ii) Sketch each of the individual waveform of the signal x(t) given and then	[05]
	sketch the resultant x(t)	
	x(t) = [u(t) + r(t-1) - 2u(t-3)] u(-t+5)	
Q2 (a)	i. Determine the signal x(n) for the following Discrete Time Fourier	[03]
	Transform	[[]
	$X(e^{jw})=e^{-jw}(1+\cos w)$	
	ii. Determine the Fourier Transform of coswn u(n)	[03]
	iii. State and explain any two properties of the Fourier Transform	[04]
	excluding the linearity property.	
	OR	[05]
	i. The impulse response of an LTI system is $h(n) = \{-2, -1, 3, -2\}$. Find the response	
	of the system for $x(n) = \{2,3,4,1\}.$	

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai)
NAAC Accredited with "A" Grade (CGPA: 3.18)

	 ii. Consider the causal, discrete-time, linear constant-coefficient difference equation: y[n] - 0.8y[n - 1] = u[n]. x[n]. a) Determine the transfer function H(z) of the system. b) Is the system stable? Why? 	[05]
Q2 (b)	When two systems are in cascade the impulse response is the convolution of the impulse responses i.e $h(n) = h_1(n) * h_2(n)$. Determine the impulse response for the cascade of two LTI systems having impulse responses $h_1(n) = (1/2)^n u(n)$ and $h_2(n) = (1/4)^n u(n)$. How will you verify your answer? OR Find the poles and zeros of the system function and display them in the complex z-plane. $H(z) = 1 - 2z^{-1} + 2z^{-2} - z^{-3}$	[05]
Q3 (a)	Determine Z transform of the following signals, draw the ROC i. $x(n) = (\frac{-1}{5})^n u(n) + 5(\frac{1}{2})^n u(-n-1)$ ii. $x(n) = n^2 u(n)$	[05]
Q3 (b)	Determine all possible functions x(n) if i. $X(z) = \frac{5z^{-1}}{(1-2z^{-1})(3-z^{-1})}$ ii. $X(z) = \frac{3z^{-1}+1}{3z^{-1}+1+2z^{-2}}$	[10]
	OR	
	i. Obtain direct form II realization of a system described by following 5 1	[05]
	$y(n) = -\frac{5}{4}y(n-1) + \frac{1}{8}y(n-2) + \frac{1}{16}y(n-3) + x(n) + 5x(n-1) + 6x(n-2)$	[05]
	ii. An LTI System is described by the following equation, determine the cascade or parallel realization structure of the system. $y(n) - \frac{3}{10}y(n-1) - \frac{1}{10}y(n-2) = x(n) + \frac{1}{9}x(n-1)$	

Shri Vile Parle Kelavani Mandal's

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Q4 (a)	The input x(n) and impulse response h(n) of an LTI system are as given below.	[10]
	Determine the response of the system using linear convolution.	
	$x(n) = \{1, 2, 1, 2\}$ and $h(n) = \{2, 2, -1, 1\}$	
	Validate your answer using the tabular method.	
	OR	
	A continuous time LTI system is represented by the equation	[10]
	$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y(t) = 2x(t)$	
	(i) Determine the transfer function of the system	
	(ii) Determine the impulse response of the system described by the equation.	
Q4 (b)	For an LTI system with unit impulse response $h(t)=e^{-2t}$ $u(t)$ determine the	
	output to the input $x(t) = e^{-t} u(t)$ using convolution. Verify your result by using	[05]
	either Laplace transform.	
Q5 (a)	Solve any two.	
Q3 (u)	i. State the initial and final value theorem. Determine the initial and final	[05]
	values of $x(t)$ if its Laplace transform is given by:	[00]
		[05]
	$X(s) = \frac{0.8}{s^2 + 0.6s + 0.2}$	[05]
	ii. Mention the applications of signals in any one of leading technological	[03]
	fields of today.	
	iii. Find the z-transform of the signal $x(n) = \{2,1,2\}$. Determine its ROC.	
	Hence or otherwise find the DTFT of $x(n)$. Compute its magnitude at $w=0$	
	and $w=\pi/2$	
O5 (b)		
Q5 (b)		[02]
		[01]
	iii. State an expression to obtain discrete time fourier transform of $x(n)$.	[02]
	Obtain the formula of $X(z)$ from the same.	[02]