22.01.2021 Econometrics-P Lecture 4
⇒ Simple regression model
$Ji = \beta_0 + \beta_1 \times i + Ui$ $i=1,2,,N$
l=1,2, , N
Limitations 1. Linearity between xi and y. 2. Causality is not ensured (most impostant) no we need a key assumption to ensure coursal relation strips.
2. Camality is not ensured (most important)
ns we need a key assumption to envire
coursal relation strips.
Assumptions on the Simple linear regression model
A1. $F(u_i) = 0$ Expectation sperator * Ui is a random error. \Rightarrow Ui $\sim f(u)$
Expectation operator
* Ui is a random error. => Ui ~ f(u)

A1. E(ui) = 0* Ui ~ f(u)

* andom

variable (conor) unere f (·) is a purbability sandom
variable (error)

function.

(pdf)

fluidu=1 - Area
tneflu) - Mat. of li is a discrete random variable with | = 0.1 With p = 0.1With p = 0.1 wor \$3 = 0.05 w (by = 0.15

(w.l.o.g) without loss of generality. $A1. E(u_i) = 0$ uir f(u) mat does expedation frandom exor imply For the discrete case: $u = \begin{cases} -50\% & p_2 \\ -5\% & p_2 \\ 50\% & p_3 \\ 50\% & p_3 \end{cases}$ $f(u_i) = \int u_i p_i$ for untinuous v.v.: Jelds foraitre soils Ji = Bo + B, zi + Ui w.l.o., assumption: E(hi)=0 -> When B is included in the SLR model then

E(ui) =0

A2. The crucial assumption for country E (uilxi) =0 Expected value of li given Xi is Zero (constant) =) Expected value of Mi does not depend on xi $E(u_i \mid x_i) = E(u_i) = 0$ $\int_{-\infty}^{\infty} u_{i} f(u_{i}) du = \int_{-\infty}^{\infty} u_{i} f(u_{i}) du.$ $= f(u_{i}) x_{i}$ independence $f(x_i)$ A $u_i \ge x_i$ $f(u_i, x_i)$ $f(x_i)$ u and n are independent. > Implication of Az is

$$Gorr(N_i, u_i) = Cor(N_i, u_i) = 0$$

$$Sd(x) 8d(u_i)$$

$$Cor(x_i, u_i) = 0$$

$$Cov(x_i, u_i) = E((x_i - E(x_i))(u_i - E(u_i))$$

Aprile
$$V(u_i) = F(u_i) - F(u_i) - F(u_i) - F(u_i) - F(u_i) - 2u_i F(u_i)$$

$$= F(u_i) + F(u_i) - 2F(u_i) + F(u_i) +$$

$$= [(u)] + [(u)] - 2[(u)] + ((u)) + ($$

Cor (ui, xi) =
$$E([u: -E(ui)][xi-E(xi)])$$

= $E[u: xi + E(ui)E(xi) - xiE(ui) - uiE(xi)]$

= $E[u: xi] + E(ui)E(xi)$

- $E(ui)E(xi)$

- $E(ui)E(xi)$

=
$$E[\text{Uixi}] - E(\text{Vi}) \cdot E(\text{Xi})$$

=0 (': A1)

$$A2 \Rightarrow \left[\text{E[uixi]} \right] = 0$$

Simulated the colonis familias.

Formating Bo and B, form the given data.

Ji= Bo + B, xi + Ui (Model)

Model

Bo and B, are to be estimated from the

given data !!

Pren data!

Bo and B, are to be estimated from the given data []

F(y, |x_i) = 11

E(y, |x_i) = 11

E(y, |x_i) = 11

E(y, |x_i) = 11

E (yi)=E(Po+B, xi+ui)

E(ui)= Po+B, xi