浙江大学 20<u>19</u> - 20<u>20</u> 学年<u>秋冬</u>学期

《概率论与数理统计》期末考试试卷

		and the second	子院: <u></u>)	K-FX/IP:		
						5方线计	能计管婴入场	4
							<u> 肥川 开始</u> 八次	
考试日	期: _2020	<u>)</u> 年 <u>1</u> 月	_15_日, 考	讨试时间 :	_120_分包	Ŧ		
		诚	信考试,社	冗着应考,	杜绝违约	I.		上算器入场 (A) 上海母:
			、题,四页					
					责任自负		作业绝县 。	
为生姓名:			. A:		4 Nr:			
题序	_	: = :	Ξ	四	五	六	总分	
得分								
评卷人			2					
备用数据:	$\Phi(1)=0.$	8413, Ф	(2) = 0.97	72, z _{0.0}	, = 1.645,	$z_{0.025} = 1$	1.96, $n \ge 50$,	$t_{\alpha}(n) \approx z_{\alpha}$
				100 10000		10 TO		10 march 10
一. 填空题	(每小格:	3分,共	36分)					
1. 设 A, B 为	两个随机	事件,已知	P(A)=0.	45, P(A	$B) = P(\overline{A} $	\overline{B}) = 0.6	,则A与B是	否独立?
答:		_; P(B)=	·	•				
2. 设随机变	量X与Y相	互独立,	$X \sim B(1,$	0.5), Y~	B(2, 0.5)	,则 Var(2 <i>X-Y</i>)=	,
$E[\min(X, Y)]$]=							
3. (1)设X朋	及从参数 λ	=3 的泊松	分布,则	P(X-3 2	≥ 2) =		: (2) 设 Y 的數) 少期望
和方差均为	3, 用切比	2雪夫不等	式估计 P(<i>Y</i> -3 ≥	2)的上界	为		
4. 设(X, Y) d	生上半单位	江圆 D = {	$(x,y):x^2$	$+y^2 < 1, y$	v > 0} 服从	均匀分布	市,则在 D 上桐	死率密度
函数 f(x, y)=								
5. 设总体 2	$C \sim N(\mu,$	1), X ₁ ,	,X ₁₆ 是	X的简	单随机样	本 , <i>Ȳ</i> ₁ =	$=(X_1++X_n)$	4)/4 ,
$\overline{Y}_2 = (X_5 + \dots$	+ X ₁₆)/1	2,则 <i>P</i> ($\left \overline{Y}_{1}-\mu\right <1$	1) =	: 3(<u>\bar{Y}_1</u>	$-\overline{Y}_2)^2 \sim$	分	布(写出
参数), Var	$\sum_{i=1}^{4} (X_i)^{i}$	$-\overline{Y}_{i}$) ² + \overline{Y}_{i}	$\sum_{i=1}^{16} (X_i - 1)^{i}$	Z)21=				

- 6. 为检验总体 X 的分布律 $H_0: P(X=i)=\frac{i+1}{20}, i=1,2,3,4,5$. 是否成立,从总体中抽取容量为 100 的简单随机样本,观测结果为 "1" 观测到 5 次, "2" 观测到 17 次, "3" 观测到 19 次, "4" 观测到 28 次, "5" 观测到 31 次,采用拟合优度检验,则检验统计量的
- 二. (15 分) 设(X, Y)的联合密度函数 $f(x,y) = \begin{cases} 0.75, y^2 < x < 1, \\ 0, \\ \end{bmatrix}$ (1)分别求 X, Y 的边际密

值为______, 在 α = 0.05 下是否拒绝原假设? 说明理由: ______

度函数 $f_X(x)$, $f_Y(y)$; (2) 求 P(Y>0.1|X=0.25); (3)判断 X 与 Y 是否相关? 说明理由;

(4) 令
$$Z =$$
 $\begin{cases} 0, & 0 \le Y < \sqrt{X} < 1, \\ 1, & \text{其他.} \end{cases}$ 判断 $X \ni Z$ 是否独立?说明理由.

三. (9分) 设X与Y服从相同的 0-1 分布,P(X=1)=p. (1)若X与Y独立,求 (X, Y)的联合分布律; (2) 若X与Y的相关系数为 0.5,求 (X, Y)的联合分布律.

四. (15 分)设随机变量 X 的概率密度函数 $f(x) = \begin{cases} \frac{x^2}{9}, & 0 < x < 3, \\ 0, & \text{其他.} \end{cases}$

次,结果记为 $X_1,...,X_n$. (1) 求 X 的分布函数 F(x); (2) 若 $Y = X^2$,求 Y 的概率密度函数 $f_Y(y)$; (3) 当 $n \to +\infty$ 时, $\frac{1}{n} \sum_{i=1}^n X_i^{-2} e^{-X_i}$ 依概率收敛到何值? (4) 求 $\frac{1}{81} \sum_{i=1}^{81} X_i^3$ 的近似分布,并写出该分布的概率密度函数 g(z).

五. (10 分) 为了解某市两所高校学生的消费情况,在两所高校各随机调查 100 人,调查结果为甲校学生月平均消费 2583 元,样本方差 882669,乙校学生月平均消费 2439 元,样本方差 678976,设甲校学生月平均消费额 $X \sim N(\mu_1, \sigma_1^2)$,乙校学生月平均消费额 $Y \sim N(\mu_2, \sigma_2^2)$, $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ 未知,两个样本独立。(1)在显著水平 0.05 下检验假设 $H_0: \sigma_1^2 = \sigma_2^2$, $H_1: \sigma_1^2 \neq \sigma_2^2$,并计算相应的 p-值;(2) 若 $\sigma_1^2 = \sigma_2^2$,求 $\mu_1 - \mu_2$ 的置信度为 95%的双侧置信区间。(保留 1 位小数)

六. (15 分) 设总体 X 的概率密度函数 $f(x;\theta,\lambda) = \begin{cases} \frac{\lambda(\theta-x)^{\lambda-1}}{\theta^{\lambda}}, 0 < x \leq \theta \\ 0, \quad \text{其他.} \end{cases}$

 $X_1,...,X_n$ 是总体X的简单随机样本, (1) $\lambda=2$, θ 为未知参数,求 θ 的矩估计量 $\hat{\theta}$,并 判断其是否为 θ 的无偏估计,说明理由; (2) $\theta=2$, λ 为未知参数,求 λ 的极大似然估计量 $\hat{\lambda}$,并判断其是否为 λ 的相合估计,说明理由.

浙江大学 2019 - 2020 学年秋冬学期 《概率论与数理统计》期末考试试卷解答

课程号: 061B9090, 开课学院: _数学科学学院, 任课教师: _

考试试卷: A 卷 √、B 卷 (请在选定项上打 √)

考试形式:闭√、开卷(请在选定项上打√),允许带无存储功能计算器入场

考试日期: _2020 年 1 月 15 日, 考试时间: 120 分钟

- 一. 填空题 (每小格 3 分, 共 36 分):
- 1. 不独立, 0.25. 2. 3/2, 3/8.
- 3. $1 \frac{99}{8}e^{-3} = 0.384$, 0.75. 4. $\frac{2}{\pi}$. 5. 0.9544, $\chi^2(1)$, 28.
- 6. $\chi^2 = 3.21$, 接受原假设, 因为 $\chi^2 = 3.21 < \chi^2_{0.05}(4) = 9.49$.
- 二. (15 分)解: (1) $f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_{-\sqrt{x}}^{\sqrt{x}} 0.75 dy = 1.5\sqrt{x}, 0 < x < 1, \\ 0 & 其他 \end{cases}$;

$$f_{\gamma}(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_{y^2}^{1} 0.75 dx = \frac{3}{4} (1 - y^2), -1 < y < 1, \\ 0, & \text{其他.} \end{cases}$$

(2)
$$f_{\gamma|_X}(y|0.25) = \frac{f(x,0.25)}{f_X(0.25)} = \begin{cases} 1, & -0.5 < y < 0.5, \\ 0, & 其他. \end{cases}$$
 均匀分布,

P(Y > 0.1 | X = 0.25) = 0.4;

- (3) 因为E(Y) = 0, E(XY) = 0, Cov(X,Y) = 0, 所以X = Y 不相关:
- (4) X与 Z独立. 因为对一切 x, z, $P(X \le x, Z \le z) = P(X \le x)P(Z \le z)$.

三. (9分) (1)若X与Y独立, $P(X=1,Y=1)=p^2$,

(X, Y)的联合分布律为

$X \setminus Y$	0 1	P(X=i)
0	$(1-p)^2$ $p(1-p)$	1-p
1	$p(1-p)$ p^2	p
P(Y=j)	1-p p	

(2) 若 X 与 Y 的相关系数为 0.5, E(XY)- E(X)E(Y)=0.5 p (1-p), P(X=1, Y=1)= E(XY)=0.5 p (1+p),

(X, Y)的联合分布律为

X \	Y	0	1	P(X=i)
0		(1-p) (1-0.5p)	0.5p (1-p)	1-p
1		0.5p (1-p)	0.5 p (1+p)	p
P(Y=j)		1- <i>p</i>	p	

四. (15 分)解: (1)
$$F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0, & x < 0, \\ \frac{x^3}{27}, & 0 \le x < 3, \\ 1, & x \ge 3. \end{cases}$$

(2)
$$f_Y(y) = \frac{1}{2\sqrt{y}} f_X(\sqrt{y}) = \begin{cases} \frac{\sqrt{y}}{18}, & 0 < y < 9, \\ 0, & \text{其他.} \end{cases}$$

(3)
$$E(X^{-2}e^{-X}) = \int_0^3 x^{-2}e^{-x} \frac{x^2}{9} dx = \frac{1}{9}(1-e^{-3}), \quad \stackrel{\text{def}}{=} n \to +\infty \text{ for } n$$

(4)
$$E(X^3) = \int_0^3 x^3 \frac{x^2}{9} dx = \frac{27}{2}$$
, $E(X^6) = \int_0^3 x^6 \frac{x^2}{9} dx = 243$,

$$Var(X^3) = 243 - \frac{27 \times 27}{4} = \frac{243}{4}$$
,

$$\frac{1}{81} \sum_{i=1}^{81} X_i^3 \stackrel{\text{lifely}}{\sim} N(\frac{27}{2}, \frac{3}{4})$$
,

概率密度函数
$$g(z) = \sqrt{\frac{2}{3\pi}} \exp[\frac{-2}{3}(z - \frac{27}{2})^2], -\infty < z < +\infty.$$

五(10分) 解: (1)
$$H_0: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2$$

拒绝域为
$$F = \frac{S_1^2}{S_2^2} \ge F_{0.025}(99,99) = 1.49$$
或 $F = \frac{S_1^2}{S_2^2} \le \frac{1}{F_{0.025}(99,99)}$

计算得 $f_0 = \frac{882669}{678976} = 1.30$,未落在拒绝域内,接受原假设,

$$P_{-} = 2P(F(99,99) \ge 1.30) = 0.2$$

(2) μ-μ 的置信度为 95%的双侧置信区间为

$$(\overline{X} - \overline{Y} \pm t_{0.025}(198)\sqrt{\frac{S_1^2 + S_2^2}{2}}\sqrt{\frac{1}{100} + \frac{1}{100}})$$
, \(\psi\frac{\pi}{2}\frac{4}{(-100.9)}\), 388.9).

其中
$$s_w = \sqrt{\frac{s_1^2 + s_2^2}{2}} = 883.64$$
, $t_{0.025}(198) \approx 1.96$

$$t_{0.025}(198)\sqrt{\frac{S_1^2 + S_2^2}{2}}\sqrt{\frac{1}{100} + \frac{1}{100}} = 244.9$$

六. (15 分) 解: (1)
$$f(x;\theta) = \begin{cases} \frac{2(\theta-x)}{\theta^2}, 0 < x \le \theta \\ 0, \quad \text{其他.} \end{cases}$$
, $\mu_1 = E(X) = \int_0^\theta x \frac{2(\theta-x)}{\theta^2} dx = \frac{\theta}{3}$,

 θ 的矩估计 $\hat{\theta}=3\bar{X}$,

$$E(\hat{\theta}) = 3E(\bar{X}) = \theta$$
 , $\hat{\theta}$ 为 θ 的无偏估计;

(2)似然函数
$$L(\lambda) = \prod_{i=1}^{n} f(x_i; \lambda) = \frac{\lambda^n [\prod_{i=1}^{n} (2 - x_i)]^{\lambda - 1}}{2^{n\lambda}}$$

$$l(\lambda) = n \ln \lambda + (\lambda - 1) \sum_{i=1}^{n} \ln(2 - x_i) - n\lambda \ln 2, \frac{d}{d\lambda} l(\lambda) = \frac{n}{\lambda} + \sum_{i=1}^{n} \ln(2 - x_i) - n \ln 2 = 0,$$

解得
$$\hat{\lambda} = \frac{n}{n \ln 2 - \sum_{i=1}^{n} \ln(2 - X_i)} = [\ln 2 - \frac{1}{n} \sum_{i=1}^{n} \ln(2 - X_i)]^{-1}.$$

$$\frac{1}{n}\sum_{i=1}^{n}\ln(2-X_{i})\overset{P}{\to}E(\ln(2-X))=\ln2-\frac{1}{\lambda}\ ,\ \text{所以}\ \hat{\lambda}\overset{P}{\to}\lambda\ ,\ \text{即}\,\hat{\lambda}\ \text{为}\,\lambda\,\text{的相合估计}.$$