MULTIPLE CHOICE QUESTIONS (MCQ'S)

1.	Who introduced the Symbol						
	(a) British (b) French						
2.	The rational numbers were i	introduced by					
	(a) Arabs (1550 BC) (c) Egyptian (1550 BC)	(b) Greek (1550 BC)					
	(c) Egyptian (1550 BC)	(d) Indian (1550 BC)					
3.	"π" is a/an Number	r.					
	(a) Odd (b) prime	(c) Rational (d) Irrational					
4.	The Set R closed w.r.to						
	(a) Division	(b) Multiplication					
		(d) Addition					
5.	Natural numbers are called _	integers.					
	(a) Positive (b) Negative	(c) Odd (d) Even					
6.	The factors of $(4x^2 + 9y^2)$ is	s the Set of Complex numbers					
	are	2					
	(a) $(2x + 3y)^2$	(b) $(2x - 3yi)^2$					
	(c) $(2x - 3iy)(2x + 3iy)$	(d) $(2x + 3yi)^2$					
7.	Which is the identity elem	ent w.r to ordinary addition					
	• •						
	(a) 0 (b) 1	(c) -1 (d) $-\frac{1}{2}$					
	(a) 0	7					
0		2i then $\frac{Z_1}{Z_2} = \frac{1}{2}$					
8.	If $Z_1 = 4 - 31$ and $Z_2 = -1$.	Z_2					
	(a) $4 + 3i$ (b) $2 - i$	(c) $-2-i$ (d) $-2+i$					
9.	If $Z_1 = 1 + i$ and $Z_2 = 3 - 2i$	then find the value of $ 3Z_1 $					
	17.1-						
	(a) $\sqrt{218}$ (b) 310	(c) $\sqrt{312}$ (d) 218					
10.		f the Complex number $-7 + 1$					
	are and						
	(a) $-7 - i$, $5\sqrt{2}$	(b) 3/5,7					
	(c) 320	(d) $-252, \sqrt{2}$					
_	$\sqrt{2}$ is a/an number.	,					
J.	(a) Rational (b) Irrational	(c) Odd (d) Even					
2	A number x is an if x	$x \in \mathbb{N}$, $x = 0$ or $x \in -\mathbb{N}$.					
2.	(a) Integers (b) Whole	(c) Prime (d) Even					
	(a) Integers. (b) Whole						

Ch	apter 2 # Real and Complex	Number Systems 105
13.	(0, 0) is the identity in Comp	lex number w.r to
,	(a) Addition	(b) Subtraction
	(c) Multiplication	(d) division
14.	(1, 0) is the identity in comple	ex number w.r to
	(a) Addition	(b) Subtraction
	(c) Multiplication	(d) Division
15.	The number \sqrt{n} , when n	is Even positive number is
	(a) Rational	(b) Irrational
	(c) Imaginary	(d) Integer
16.		is odd positive number is
	(a) Rational (b) Irrational	(c) Imaginary(d) Integer
7.	The number \sqrt{n} , where n is a	
	(a) Rational	(b) Irrational
	(c) Imaginary	(d) Integer
8.	e is a/an number.	
	(a) Rational	(b) Irrational
	(c) Imaginary	(d) Integers
9.	The additive inverse of (a, b)	is
	(a) $(-a, b)$ (b) $(a, -b)$	(c) $(-a, -b)$ (d) (o, b)
0.	$\overline{Z_1 + Z_2} = \underline{\qquad}.$	
	(a) $\overline{Z_1}$, $\overline{Z_2}$ (b) $\overline{Z_1}$ - $\overline{Z_2}$	(c) $Z_1 + Z_2$ (d) $\overline{Z_1} + \overline{Z_2}$
1.	$\overline{Z_1 \cdot Z_2} = \underline{\qquad}$	
	(a) $\overline{Z_1}$ $\overline{Z_2}$	(b) $\overline{Z_1 + \overline{Z_2}}$
	(c) $\overline{Z_1} + \overline{Z_2}$	(d) None of these
2.	$Z.\overline{Z_1} = \underline{\qquad}$	
	(a) O	(b) Z Z
	(c) $ Z ^2$	(d) None of these
3.	Express $x^2 + y^2 = a^2$ in term	ms of conjugate Coordinate
	$\frac{\overline{(a) Z + Z}}{(b) Z \overline{Z}} = a^2$	(b) $Z - \overline{Z}$ (d) $Z \overline{Z} = 0$
	Subtract $(4 + i)$ from $(2 - 3i)$:	
	(a) $2 + 4i$ (b) $-2 + 4i$	(c) $3 + 5i$ (d) $-2 - 4i$

```
107
Chapter 2 # Real and Complex Number Systems
     Real and Imaginary part of (x + iy)3 are
     (a) (x^3 + 3xy^2) and (3x^2y + y^3)
     (b) (x^3 + 3xy^2) and (3x^2y - y^3)
     (c) (x^3 - 3xy^2) and (3x^2y - y^3)
     (d) (x^3 - 3xy^2) and (3x^2y - y^3)
      (\overline{Z}) = 
                                                    (d) Z^2
     (a) \overline{Z}
                     (b) Z<sup>-1</sup>
                                             _ and y = .
     If (x, y)(2, 3) = (-4, 7) then x =
                                      (b) x = -1, y = -2
     (a) x = 3, y = 2
                                      (d) x = 1, y = 2
     (c) x = 0, y = 0
     Modulus of the Complex number a + ib is
                                      (c) \sqrt{a^2 + b^2} (d) \sqrt{a^2 + ib^2}
                     (b) a^2 + b^2
     If Z = 3 \div 4i then |Z|^2 = _
                                                     (d)5
                     (b) v5
43. If Z = (1, 2) then Z
44. The multiplicative inverse of (a, b) is _
45. The Conjugate of a Complex number (a,b) is
      (a) (-a, -b) (b) (a, -b)
                                        (c) (-a, b)
46. The Conjugate of a Complex number − 7 + i is
      (a) - 7 - i
                       (b) 7 - i
                                         (c) 7 + i
47. (a, b) . (c, d) is equal to
      (a) (ac - bd, ad - bc)
                                         (b) (ac - bd, ad - bc)
       (c) (ac + ba, ad + ba)
                                         (d) (ac - bd, ad - bc)
```

```
108
         (a, b) + (c, d) is equal to
                                                         \left(\frac{ac-bd}{c^2+d^2}, \frac{bc+ad}{c^2+d^2}\right)
                \frac{ac + bd}{c^2 + d^2}, \frac{bc + ad}{c^2 + d^2}
         (c) \left(\frac{ac+bd}{c^2+d^2}, \frac{bc-ad}{c^2+d^2}\right)
                                                  (d) \left(\frac{ac-bd}{c^2+d^2}, \frac{bc-ad}{c^2+d^2}\right)
         Which is the Complex number whose additive and
         multiplicative inverses are equal?
                                                  (b) (0, 1) or (0, -1)
         (a) (1, 0) or (-1, 0)
                                                  (d) (0, -1)
         (c)(1,0)
  50.
         Is the Set C Closed under
         (a) Addition
                                                   (b) Subtraction
         (c) Multiplication
                                                  (d) Division
  51.
         For what value of x is (x + 3, 3) is equal to (-5, 3)
                                                  (c) -8
                             (b) -2
                                                                    (d) -5
         Imaginary part of a complex number
         (a) \frac{1}{2}
 53. The factor of 3m^2 + 8t^2 in Complex form are:
         (a) (\sqrt{3m} + 4it) (\sqrt{3m} - 4it)
         (b) (\sqrt{3m} + \sqrt{8} \text{ it}) (\sqrt{3m} - \sqrt{3} \text{ it})
        (c) (\sqrt{3}m + 2\sqrt{2} \text{ ti}) (\sqrt{3}m - 2\sqrt{2} \text{ ti})
(d) \sqrt{3}m + \sqrt{8} \text{ it}
The value of i<sup>3</sup> is equal to _____.
        (a) l
                            (b) -i
                                                  (c) 1
                                                                    (d)-1
       Roots of x^2 + 16 = 0 are
        (a) 4i and - 4i
                                                  (b) 2i and - 2i
        (c) 4i and -2i
                                                  (d) None of these
       Additive inverse of (0, 0) is
                                                 (b) (0, 1)
        (a) (a, 0)
                                                 (d) does not exist
        (c)(0,0)
57. Multiplicative inverse of (0, 0) is
                                                 (c) (0,0)
                           (b) (0, 1)
       (a)(1,0)
       (d) Does not exist
58. Is 12Z > 5Z? =
       (a) Yes
                           (b) No
                                                 (c) meaning less
       (d) None of these
```

CH	ipier 2 # Keai ana Compiex						
59.	If $3x - 12y = (7 + i)^2$ then $x =$	7					
	(a) 16 (b) $\frac{50}{3}$	(c) -7 (d) 7					
60.	If $Z = 3 + 4i$ then $Z + \overline{Z} = \underline{\hspace{1cm}}$						
	(a) 6	(b) 8i					
	(c) 0	(d) None of these					
61.	(a, b) $\cdot \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2} \right) = -$	-					
	(a) $(0, 0)$ (b) $(0, 1)$ The additive inverse of $i = $	(c) (1,0) (d) (1,1)					
62.	The additive inverse of i =						
		(b) (1, 0) or i					
	(c) $\frac{-1}{i}$	(a) $(1,0)$					
63.	$Z + \overline{Z} = \underline{\hspace{1cm}} \forall Z \in C$						
	(a) purely real	(b) purely Imaginary					
	(c) 2Z	(d) 2 Z					
64.	$Z - \overline{Z} = \underline{\hspace{1cm}} \forall Z \in C$						
	(a) purely real	(b) purely Imaginary					
	(c) Zero	(d) Mana of Alassa					
55 .	Every real number is also a _	number. (c) Irrational (d) Complex					
c z	(a) Rational (b) prime	(c) Irrational (d) Complex					
56.	The modulus of a Complex N	umber is					
	(a) Conjugate of Complex Nu(b) Distance from the Origin	imber to the point representing th					
	number						
	(c) The additive inverse of the Complex Number (d) The multiplicative inverse of Complex Number						
57.∴	The Set II - il possossos al-						
- , .	(a) Addition	sure property w.r to					
	(c) Subtraction	(b) Multiplication (d) None of the above					
68.	The set of Real numbers R -	(d) None of the above					
	The set of Real numbers $R =$ (a) QUI (b) Q \cap I	(c) O I					
	(d) None of these	(c) Q-1					
69.	$C = R \times R = \{ (a, b) / a, b \in R \}$ is called the Set of						
	numbers.	At is called the Set of					
	(a) Real (b) Complex	(c) Natural					
	(d) None of these						

(d) Division

(d) None of these

(b) No :

(c) Multiplication

(a) Yes

(c) Neither

Is Subtraction associative in R.

```
Chapter 2 # Real and Complex Number Systems
        If (a, b) = (c, d) then a = c, b = d.
         (a) True
                                         (b) False
         (c) Neither
                                         (d) None of these
  81. i^2 + i^4 = __
                                                       (d) 0
                        (b) 1
                                         (c) 2·
  82. 5i^2 + 4i^3 + 3i^4 =
        (a) -2-4i
                       (b) 2 – 4i
                                         (c) -2 + 4i (d) 0
  83. i^{14} + i^{15} + i^{16} + i^{17} =
                                        (c) 0
                                                       (d) 1 - 2i
                       (b) 1 + i
        (a) i
 84. The imaginary part of (x + 2yi)^2 is _
                                        (b) - 4xy
       (a) 4xy
                                        (d) None of these
       (c) x^2 - 4y^2
 85. If (3 + 4i)^2 + (3 - 4i)^2 then Imaginary part =
                                                      (d) (
                       (b) 5
                                       (c) -1
       (a) 10
 86. If Z = 3 + 4i then (\overline{Z})^2 =
                      (b) -7 - 24i
                                       (c) 7 - 24i (d) 24 - 7i
      (a) 9 + 16i
 87. If x = 2 + 3i and y = 2 - 3i then x^2 + y^2 = ...
                                       (c) 12i
                      (b) -10
     (a) 10
88. If Z = a + ib, Then Z^2 + (\overline{Z})^2 = 
                                       (b) 2[a^2 + b^2]
      (a) 2[a^2-b^2]
      (c) -2[a^2+b^2]
                                       (d) None of these
89. \sqrt{2} - i + i(\sqrt{2}i - 1) =
                     (b) -2i
90. the real part of (x + iy)^2 =
                                       (b) 2xy
     (a) x^2 + y^2
     (c) x^2 - 4y^2
                                      (d) None of these
```

				Ansv	vers				
1.	C	2.	c	3.	d	4.	b	5.	a
6.	C	7.	a	8.	C	9.	а	10.	a
11.	b	12.	а	13.	а	14.	C	15.	a
i6.	b	17.	b	18.	<i>b</i>	19.	c	20.	d
21.	a	22.	C	23.	b	24.	d	25.	b
26.	C	27.	b	28.	С	29.	а	30.	C
31.	b	32.	d	33.	a	34.	а	35.	a
36.	а	37.	C	38.	<i>d</i>	39.	C	40.	d
41.	C	42.	d	43.	c	44.	C	45.	b
46.	a	47.	b	48,	c	49.	b	50.	d
51.	C	52.	b	53.	c	54.	b	<i>55.</i>	а
56.	C	<i>5</i> 7.	d	58.	C	59.	a	60.	а
61.	C	62.	а	63.	а	64.	b	65.	d
66.	b	67.	d	68.	а	69.	b	70.	С
7i.	C	72.	a	73.	b	74.	b	75.	С
76.	d	77.	b	78.	b	79.	b	80.	a
81.	d	82.	а	83.	C	84.	а	85.	d
86.	b	87.	b	88.	а	89.	b	90.	a
91.	d								i la