Fast Multidimensional Signal Processing with Shearlab.il

Héctor Andrade Loarca (github: arsenal9971)

Notebook and Beamer:

https://github.com/arsenal997/Shearlab.jl/presentations/JuliaCon2017

TU Berlin, BMS

22th of June, 2017

images/tub afg.jpg

What is a signal?

Our definition

Function (or something that can be represented as) that contains information about the behavior or attributes of some phenomenon. It can be digital (discrete) or analog (continuous).

What is a signal?

Our definition

Function (or something that can be represented as) that contains information about the behavior or attributes of some phenomenon. It can be digital (discrete) or analog (continuous).

Figure: Digital and continuous one-dimensional signals

What is a signal?

Our definition

Function (or something that can be represented as) that contains information about the behavior or attributes of some phenomenon. It can be digital (discrete) or analog (continuous).

Figure: Digital and continuous one-dimensional signals

Figure: White noise, not a signal

Sparse representations of signals

Relevant information in structured data is sparse, due the high correlation of its elements.

Sparse representations of signals

- Relevant information in structured data is sparse, due the high correlation of its elements.
- Goal: Find the right dictionary to represent optimally our data.

Sparse Coefficients $\hat{\alpha}$

Fourier Transform (Fourier, 1822)

$$\hat{f}(\omega) := \int_{\mathbb{R}^n} f(x) e^{-i\langle x, \omega \rangle} dx$$

Fourier Transform (Fourier, 1822)

$$\hat{f}(\omega) := \int_{\mathbb{R}^n} f(x) e^{-i\langle x, \omega \rangle} dx$$

Short Time Fourier Transform (Gabor, 1946)

$$S_g f(t,\omega) = \int_{\mathbb{R}} f(x) \overline{g(x-t)} e^{-ix\omega} dx$$

Short Time Fourier Transform (Gabor, 1946)

$$S_g f(t,\omega) = \int_{\mathbb{R}} f(x) \overline{g(x-t)} e^{-ix\omega} dx$$

SPECTRAL FRAMES

Wavelet Transform (Morlet and Grossman, 1984)

$$egin{aligned} \mathcal{W}_{\psi}f(a,b) &= \int_{\mathbb{R}} f(t)a^{-rac{1}{2}}\overline{\psi\left(rac{t-b}{a}
ight)}dt \ &= (f*D_a\overline{\psi}^*)(b), \quad (a,b) \in \mathbb{R}^+ imes \mathbb{R} \ &\int_{0}^{\infty} rac{|\hat{\psi}(\omega)|^2}{\omega}d\omega < \infty \end{aligned}$$

where

Wavelet Transform (Morlet and Grossman, 1984)

$$egin{aligned} \mathcal{W}_{\psi}f(a,b) &= \int_{\mathbb{R}} f(t)a^{-rac{1}{2}}\overline{\psi\left(rac{t-b}{a}
ight)}dt \ &= (f*D_a\overline{\psi}^*)(b), \quad (a,b) \in \mathbb{R}^+ imes \mathbb{R} \end{aligned}$$

where

$$\int_0^\infty \frac{|\hat{\psi}(\omega)|^2}{\omega}d\omega < \infty$$

Cartoon-like functions

Definition

Let $f: \mathbb{R}^2 \longrightarrow \mathbb{C}$, $f \in \mathcal{E}^2(\mathbb{R}^2)$ if $f = f_0 + \chi_B f_1$, with $B \subset [0,1]^2$, $\partial B \in C^2$ and with bounded curvature. Moreover, $f_i \in C^2(\mathbb{R}^2)$ with $||f_i||_{C^2} \leq 1$ and $\text{supp} f_i \subset [0,1]^2$ for i=0,1.

Cartoon-like functions

Definition

Let $f: \mathbb{R}^2 \longrightarrow \mathbb{C}$, $f \in \mathcal{E}^2(\mathbb{R}^2)$ if $f = f_0 + \chi_B f_1$, with $B \subset [0,1]^2$, $\partial B \in C^2$ and with bounded curvature. Moreover, $f_i \in C^2(\mathbb{R}^2)$ with $||f_i||_{C^2} \leq 1$ and $\text{supp} f_i \subset [0,1]^2$ for i=0,1.

Optimal error for 2D signals

Best N-term approx. error (Donoho, 2001)

Let $\{\psi_{\lambda}\}_{{\lambda}\in{\Lambda}}\subset L^2(\mathbb{R}^2)$ a frame. The optimal best N-Term approximation error for any $f\in\mathcal{R}^2(\mathbb{R}^2)$ is

$$\sigma_{N}(f, \{\psi_{\lambda}\}_{\lambda \in \Lambda}) = O(N^{-1})$$

Optimal error for 2D signals

Best N-term approx. error (Donoho, 2001)

Let $\{\psi_{\lambda}\}_{{\lambda}\in\Lambda}\subset L^2(\mathbb{R}^2)$ a frame. The optimal best N-Term approximation error for any $f \in \mathcal{R}^2(\mathbb{R}^2)$ is

$$\sigma_{N}(f, \{\psi_{\lambda}\}_{\lambda \in \Lambda}) = O(N^{-1})$$

Error of 2D-wavelets

$$\sigma_{N}(f, \{\psi_{j,m}\}_{j,m}) \sim N^{-1/2}$$

Optimal error for 2D signals

Best N-term approx. error (Donoho, 2001)

Let $\{\psi_{\lambda}\}_{{\lambda}\in\Lambda}\subset L^2(\mathbb{R}^2)$ a frame. The optimal best N-Term approximation error for any $f \in \mathcal{R}^2(\mathbb{R}^2)$ is

$$\sigma_{N}(f, \{\psi_{\lambda}\}_{\lambda \in \Lambda}) = O(N^{-1})$$

Error of 2D-wavelets

$$\sigma_{N}(f, \{\psi_{j,m}\}_{j,m}) \sim N^{-1/2}$$

Scaling

$$A_j := \begin{pmatrix} 2^j & 0 \\ 0 & 2^{j/2} \end{pmatrix}$$

Scaling

$$A_j := \begin{pmatrix} 2^j & 0 \\ 0 & 2^{j/2} \end{pmatrix}$$

Scaling

$$A_j := \begin{pmatrix} 2^j & 0 \\ 0 & 2^{j/2} \end{pmatrix}$$

Scaling

$$A_j := \begin{pmatrix} 2^j & 0 \\ 0 & 2^{j/2} \end{pmatrix}$$

Shearing

$$S_k := \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$$

Scaling

$$A_j := \begin{pmatrix} 2^j & 0 \\ 0 & 2^{j/2} \end{pmatrix}$$

Shearing

$$S_k := \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$$

Scaling

$$A_j := \begin{pmatrix} 2^j & 0 \\ 0 & 2^{j/2} \end{pmatrix}$$

► Shearing

$$S_k := \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$$

Shearlet Transform (Kutyniok, Guo, Labate, 2005)

Classical Shearlet Transform

$$\langle f, \psi_{j,k,m} \rangle = \int_{\mathbb{R}^2} f(x) \overline{\psi_{j,k,m}(x)} dx$$

Shearlet Transform (Kutyniok, Guo, Labate, 2005)

Classical Shearlet Transform

$$\langle f, \psi_{j,k,m} \rangle = \int_{\mathbb{R}^2} f(x) \overline{\psi_{j,k,m}(x)} dx$$

where

$$\mathcal{SH}(\psi) = \{\psi_{j,k,m}(x) = 2^{3j/4}\psi(S_kA_jx - m) : (j,k) \in \mathbb{Z}^2, m \in \mathbb{Z}^2\}$$

Shearlet Transform (Kutyniok, Guo, Labate, 2005)

Classical Shearlet Transform

$$\langle f, \psi_{j,k,m} \rangle = \int_{\mathbb{R}^2} f(x) \overline{\psi_{j,k,m}(x)} dx$$

where

$$\mathcal{SH}(\psi) = \{\psi_{j,k,m}(x) = 2^{3j/4}\psi(S_kA_jx - m) : (j,k) \in \mathbb{Z}^2, m \in \mathbb{Z}^2\}$$

Cone-based shearlet transform

$$\mathcal{SH}(\phi,\psi,\tilde{\psi},c) \coloneqq \mathcal{P}_{\mathcal{R}}\Phi(\phi,c1) \cup \mathcal{P}_{\mathcal{C}_1}\Psi(\psi,c) \cup \mathcal{P}_{\mathcal{C}_2}\tilde{\Psi}(\tilde{\psi,c})$$

Cone-based shearlet transform

$$\mathcal{SH}(\phi,\psi,\tilde{\psi},c) := \mathcal{P}_{\mathcal{R}}\Phi(\phi,c1) \cup \mathcal{P}_{\mathcal{C}_1}\Psi(\psi,c) \cup \mathcal{P}_{\mathcal{C}_2}\tilde{\Psi}(\tilde{\psi,c})$$

Separable

$$\psi^{\mathsf{sep}}(x_1, x_2) = \psi_1(x_1)\phi_1(x_2)$$

Separable

$$\psi^{\text{sep}}(x_1, x_2) = \psi_1(x_1)\phi_1(x_2)$$

Non-separable

$$\hat{\psi}^{\mathsf{non}}(\xi) = P\left(\frac{\xi_1}{2}, \xi_2\right) \hat{\psi}^{\mathsf{sep}}(\xi)$$

Separable

$$\psi^{\text{sep}}(x_1, x_2) = \psi_1(x_1)\phi_1(x_2)$$

Non-separable

$$\hat{\psi}^{\mathsf{non}}(\xi) = P\left(rac{\xi_1}{2}, \xi_2
ight)\hat{\psi}^{\mathsf{sep}}(\xi)$$

Separable

$$\psi^{\mathsf{sep}}(x_1, x_2) = \psi_1(x_1)\phi_1(x_2)$$

Non-separable

$$\hat{\psi}^{\mathsf{non}}(\xi) = P\left(\frac{\xi_1}{2}, \xi_2\right) \hat{\psi}^{\mathsf{sep}}(\xi)$$

Best N-term approximation error

$$\sigma_N(f, \{\psi_{j,k,m}\}_{j,k,m}) \sim N^{-1}(\log(N))^{3/2}$$

Current software

- Matlab
 - ► FFST- Fast Finite Shearlet Transform (Häuser, Steidl, TU Keiserlautern)
 http://www.mathematik.uni-kl.de/imagepro/software/ffst/
 - ➤ 2D/3D Shearlet Toolbox (D. Labate, University of Houston) https://www.math.uh.edu/~dlabate/software.html
 - ► Shearlab3D (G. Kutyniok, W.-Q.Lim, R. Reisenhoffer, TU Berlin) http://www.shearlab.org/

Current software

- Matlab
 - ► FFST- Fast Finite Shearlet Transform (Häuser, Steidl, TU Keiserlautern)
 http://www.mathematik.uni-kl.de/imagepro/software/ffst/
 - ➤ 2D/3D Shearlet Toolbox (D. Labate, University of Houston) https://www.math.uh.edu/~dlabate/software.html
 - ► **Shearlab3D** (G. Kutyniok, W.-Q.Lim, R. Reisenhoffer, TU Berlin) http://www.shearlab.org/
- Python
 - pyShearLab (Stefan Loock, U Götingen) http://na.math.uni-goettingen.de/pyshearlab/

Current software

- Matlab
 - ► FFST- Fast Finite Shearlet Transform (Häuser, Steidl, TU Keiserlautern)
 http://www.mathematik.uni-kl.de/imagepro/software/ffst/
 - ➤ 2D/3D Shearlet Toolbox (D. Labate, University of Houston) https://www.math.uh.edu/~dlabate/software.html
 - ► **Shearlab3D** (G. Kutyniok, W.-Q.Lim, R. Reisenhoffer, TU Berlin) http://www.shearlab.org/
- Python
 - pyShearLab (Stefan Loock, U Götingen) http://na.math.uni-goettingen.de/pyshearlab/
- Julia
 - ► Shearlab.jl (H. Andrade, TU Berlin) https://github.com/arsenal9971/Shearlab.jl

Extensive use of fft, well implemented in Julia.

- Extensive use of fft, well implemented in Julia.
- ► Fast vectorization and loops as well as JIT-compilation.

- Extensive use of fft, well implemented in Julia.
- Fast vectorization and loops as well as JIT-compilation.
- ▶ Plenty of image filtering, import and rescaling functions with Images. jl , Wavelets. jl .

- Extensive use of fft, well implemented in Julia.
- Fast vectorization and loops as well as JIT-compilation.
- ▶ Plenty of image filtering, import and rescaling functions with Images. jl , Wavelets. jl .
- Support of multithreading and painless GPU processing with ArrayFire . jl .

Thanks!

Questions?

