Nome e No.:_

Seja φ uma fórmula tal que $\vdash \varphi$. O objectivo deste exercício é dar duas demonstrações da seguinte proposição: para todo $\Gamma \subseteq \mathcal{F}^P$ e todo $\psi \in \mathcal{F}^P$, $\Gamma \vdash \psi$ sse $\Gamma, \varphi \vdash \psi$.

- 1. Dê uma demonstração da proposição usando as seguintes propriedades da relação de derivabilidade:
 - (a) (Monotonia) Se $\Delta \vdash \sigma$ e $\Delta \subseteq \Delta'$, então $\Delta' \vdash \sigma$.
 - (b) $\Delta, \sigma_1 \vdash \sigma_2 \text{ sse } \Delta \vdash \sigma_1 \rightarrow \sigma_2$.
 - (c) Se $\Delta \vdash \sigma_1 \rightarrow \sigma_2$ e $\Delta \vdash \sigma_1$, então $\Delta \vdash \sigma_2$.
- 2. Dê uma demonstração da proposição a partir da definição de derivabilidade.

Resolução:

1.

1.1. $\Gamma \vdash \psi$ só se $\Gamma, \varphi \vdash \psi$.

É imediato, por (a), pois $\Gamma \subseteq \Gamma \cup \{\varphi\}$.

1.2. $\Gamma \vdash \psi$ se $\Gamma, \varphi \vdash \psi$.

Suponhamos $\Gamma, \varphi \vdash \psi$. Queremos $\Gamma \vdash \psi$. De $\Gamma, \varphi \vdash \psi$ vem, por (b), $\Gamma \vdash \varphi \rightarrow \psi$. De $\vdash \varphi$ e (a) segue $\Gamma \vdash \varphi$. De $\Gamma \vdash \varphi \rightarrow \psi$ e $\Gamma \vdash \varphi$ concluímos, por (c), $\Gamma \vdash \psi$.

2.

2.1. $\Gamma \vdash \psi$ só se $\Gamma, \varphi \vdash \psi$.

Suponhamos $\Gamma \vdash \psi$. Queremos mostrar que existe derivação de ψ a partir de $\Gamma \cup \{\varphi\}$. Ora, de $\Gamma \vdash \psi$ segue que existe derivação de ψ a partir de Γ . Mas uma derivação de ψ a partir de Γ é também uma derivação de ψ a partir de $\Gamma \cup \{\varphi\}$.

2.2. $\Gamma \vdash \psi$ se $\Gamma, \varphi \vdash \psi$.

Suponhamos $\Gamma, \varphi \vdash \psi$. Queremos mostrar que existe derivação \mathcal{D} de ψ a partir de Γ . De $\Gamma, \varphi \vdash \psi$ vem que existe derivação \mathcal{D}' de ψ a partir de $\Gamma \cup \{\varphi\}$. De $\vdash \varphi$ vem que existe demonstração \mathcal{D}'' de φ . Então, basta tomar \mathcal{D} como sendo a derivação

$$\begin{array}{ccc} \Gamma, [\varphi]^1 & & \emptyset \\ \mathcal{D}' & & \emptyset \\ \frac{\psi}{\varphi \to \psi} & I \to^1 & \mathcal{D}'' \\ \hline \psi & & \varphi & E \to \end{array}$$