Solutions of Introduction to Algorithms: A Creative Approach

Saman Saadi

Contents

1	Mathematical Induction	1
	1.1 Counting Regions in the Plane	 1

iv CONTENTS

Chapter 1

Mathematical Induction

1.1 Counting Regions in the Plane

A set of lines in the plane is said to be in **general position** if no two lines are parallel and no three lines intersect at a common point.

Guess: Adding one more line to n-1 lines in general position in the plane increases the number of regions by n. In other words T(n) = T(n-1) + n.

The base cases is trivial

- T(0) = 1
- T(1) = T(0) + 1 = 2
- T(2) = T(1) + 2 = 2 + 2 = 4
- T(3) = T(2) + 3 = 4 + 3 = 7

So we assume T(n) is correct, now we want to prove T(n+1) is also correct. Let's remove line n^{th} . According to induction hypothesis Adding line $(n+1)^{th}$ add n new regions. If we add line n^{th} again, it intersect with line $(n+1)^{th}$ at exactly one point p. This point is located in region R.

In the absence of line n^{th} , line $(n+1)^{th}$ adds only one new region when it passes R. But in presence of line n^{th} , it adds 2 new regions when it passes R. For other regions line $(n+1)^{th}$ adds n-1 new regions with or without the presence of line n^{th} . So line $(n+1)^{th}$ adds n-1+2=n+1 new regions when n^{th} is presented.

So instead of proving the number of regions by adding a new line, we proved how many new regions are added when we have line $(n+1)^{th}$. So It's easy to prove the number of regions. Starting with one line we have $2+2+3+4+\cdots+n=1+1+2+\cdots+n=1+\frac{n\times(n+1)}{2}$.