Turf and macroalgae productivity on coral reefs: a modelling exercise in Moorea

2022-06-28

Packages

Loading data compiled and reworked by Tebbett and Bellwood 2021 Mar Env Res.

Depth data were added manually by looking at each individual study

```
data <- read_csv('turf_prod_val.csv') |>
 filter(!is.na(depth))
## Rows: 214 Columns: 4
## -- Column specification ------
## Delimiter: ","
## chr (3): mean_prod (g C m-2 day-1), obs, Ref
## dbl (1): depth
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
unit <- names(data)[1]</pre>
names(data)[1] <- 'prod'</pre>
x <- str split(data$prod, '\xb1')</pre>
data$mean_prod <- as.numeric(substr(unlist(lapply(x, function(x)x[1])),1,4))</pre>
data$se_prod <- as.numeric(substr(unlist(lapply(x, function(x)x[2])),2,5))</pre>
## Warning: NAs introduced by coercion
data <- data %>% filter(mean_prod != 0)
```

Now, for the data points we do not have standard error values, determine them from the relationship between mean and se:

Predicting variability using the mean for 14 points and also adjusting McClure 2019, ## which is a ci and not se, and also adding a small non zero value to all zero se

```
mod_se <- lm(se_prod ~ mean_prod, data=data)
## Model sucks, but better than to consider zero

data[is.na(data$se_prod),'se_prod'] <- round(predict(mod_se, newdata=data[is.na(data$se_prod),]),2)
data[data$Ref == 'McClure 2019', 'se_prod'] <- data[data$Ref == 'McClure 2019', 'se_prod'] / 1.96
nzmin <- function(x) min(x[x>0])
data[data$se_prod == 0,'se_prod'] <- nzmin(data$se_prod)</pre>
```

And finally modelling algal turf productivity using a meta-analysis

Bayesian model with depth as the only predictor

Loading and tidying data to predict for

```
## Constrained max depth of site to 15m
pred_depth <- read.csv('moorea_depth.csv') %>%
```

```
mutate(site=tolower(site)) %>%
group_by(site) %>%
mutate(depth=if_else(depth < -15,-15, depth)*-1) %>%
slice_max(depth)

pred_data <- read.csv('moorea_benthos.csv') %>%
mutate(site=gsub('\\s','_',tolower(site)))
```

Filtering and manipulating the time series for the categories of interest.

For Moorea, at the moment, these could be algal turfs, halimeda and macroalgae

```
ts data <- left join(pred data, pred depth, by='site') %>%
  filter(Habitat=='Outer slope' & Season=='Mar') %>%
  mutate(subs_group=case_when(
      Substrate == 'Dead coral' ~ 'algal_turf',
      Substrate == 'Stegastes Turf' ~ 'algal_turf',
      Substrate == 'Rubble' ~ 'algal_turf',
      Substrate == 'Pavement' ~ 'algal_turf',
      Substrate == 'Macroalgae' ~ 'macroalgae',
      Substrate == 'Turbinaria' ~ 'macroalgae',
      Substrate == 'Halimeda' ~ 'halimeda',
      TRUE ~ Substrate,
  )) %>%
  filter(subs_group %in% c('algal_turf', 'macroalgae')) %>%
  group_by(Year, site, Transect, lat, long, depth, subs_group) %>%
  summarise(prop=sum(proportion), .groups='drop_last') %>%
  pivot wider(names from=subs group, values from=prop, values fill=0)
```

Now, how about trying to predict benthic reef productivity by merging area specific turf productivity predicted using the data compiled by Tebbett and Bellwood and turf cover?

```
## in kg C ha-1 day-1
```

Now plotting

First the time series of turf productivity over time in Moorea

And using Duarte's et al 2022's data to explore a model for macroalgae

It could be possible to do the same for Halimeda, but there are less values

Maybe return to this possibility later?

Warning: Removed 19 rows containing missing values (geom_point).

Can we predict standard error values from a relationship between mean and se as we did for algal turfs?


```
mod_se2 <- lm(se_prod ~ mean_prod, data=dmachal)
## Again, Model sucks, but better than to consider zero
dmachal[is.na(dmachal$se_prod),'se_prod'] <- round(predict(mod_se2, newdata=dmachal[is.na(dmachal$se_prod)))</pre>
```

And finally modelling macroalgae productivity using a meta-analysis

Bayesian model with depth as the only predictor

```
family=skew_normal(),
             prior = pri2,
             chains = 4, iter = 5000, thin = 3)
## Compiling Stan program...
## Trying to compile a simple C file
## Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
## clang -arch arm64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG
                                                                                       -I"/Library/Frame
## In file included from <built-in>:1:
## In file included from /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/StanHeade
## In file included from /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen
## In file included from /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen
## /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen/include/Eigen/src/Cor
## namespace Eigen {
## ^
## /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen/include/Eigen/src/Cor
## namespace Eigen {
##
## In file included from <built-in>:1:
## In file included from /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/StanHeade
## In file included from /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen
## /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/RcppEigen/include/Eigen/Core:96
## #include <complex>
            ^~~~~~~
## 3 errors generated.
## make: *** [foo.o] Error 1
## Start sampling
##
## SAMPLING FOR MODEL '65e53fdc92b4dc47b3a716bb70bf19ac' NOW (CHAIN 1).
## Chain 1:
## Chain 1: Gradient evaluation took 5.2e-05 seconds
## Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.52 seconds.
## Chain 1: Adjust your expectations accordingly!
## Chain 1:
## Chain 1:
## Chain 1: Iteration:
                          1 / 5000 [ 0%]
                                            (Warmup)
## Chain 1: Iteration: 500 / 5000 [ 10%]
                                            (Warmup)
## Chain 1: Iteration: 1000 / 5000 [ 20%]
                                            (Warmup)
## Chain 1: Iteration: 1500 / 5000 [ 30%]
                                            (Warmup)
## Chain 1: Iteration: 2000 / 5000 [ 40%]
                                            (Warmup)
## Chain 1: Iteration: 2500 / 5000 [ 50%]
                                            (Warmup)
## Chain 1: Iteration: 2501 / 5000 [ 50%]
                                            (Sampling)
## Chain 1: Iteration: 3000 / 5000 [ 60%]
                                            (Sampling)
## Chain 1: Iteration: 3500 / 5000 [ 70%]
                                            (Sampling)
## Chain 1: Iteration: 4000 / 5000 [ 80%]
                                            (Sampling)
## Chain 1: Iteration: 4500 / 5000 [ 90%]
                                            (Sampling)
## Chain 1: Iteration: 5000 / 5000 [100%]
                                            (Sampling)
```

```
## Chain 1:
## Chain 1: Elapsed Time: 0.842244 seconds (Warm-up)
                           0.609057 seconds (Sampling)
## Chain 1:
## Chain 1:
                           1.4513 seconds (Total)
## Chain 1:
##
## SAMPLING FOR MODEL '65e53fdc92b4dc47b3a716bb70bf19ac' NOW (CHAIN 2).
## Chain 2:
## Chain 2: Gradient evaluation took 2.1e-05 seconds
## Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
## Chain 2: Adjust your expectations accordingly!
## Chain 2:
## Chain 2:
## Chain 2: Iteration:
                          1 / 5000 [ 0%]
                                            (Warmup)
## Chain 2: Iteration: 500 / 5000 [ 10%]
                                            (Warmup)
## Chain 2: Iteration: 1000 / 5000 [ 20%]
                                            (Warmup)
## Chain 2: Iteration: 1500 / 5000 [ 30%]
                                            (Warmup)
## Chain 2: Iteration: 2000 / 5000 [ 40%]
                                            (Warmup)
## Chain 2: Iteration: 2500 / 5000 [ 50%]
                                            (Warmup)
## Chain 2: Iteration: 2501 / 5000 [ 50%]
                                            (Sampling)
## Chain 2: Iteration: 3000 / 5000 [ 60%]
                                            (Sampling)
## Chain 2: Iteration: 3500 / 5000 [ 70%]
                                            (Sampling)
## Chain 2: Iteration: 4000 / 5000 [ 80%]
                                            (Sampling)
## Chain 2: Iteration: 4500 / 5000 [ 90%]
                                            (Sampling)
## Chain 2: Iteration: 5000 / 5000 [100%]
                                            (Sampling)
## Chain 2:
## Chain 2: Elapsed Time: 0.652352 seconds (Warm-up)
## Chain 2:
                           0.580784 seconds (Sampling)
## Chain 2:
                           1.23314 seconds (Total)
## Chain 2:
##
## SAMPLING FOR MODEL '65e53fdc92b4dc47b3a716bb70bf19ac' NOW (CHAIN 3).
## Chain 3:
## Chain 3: Gradient evaluation took 2.1e-05 seconds
## Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.21 seconds.
## Chain 3: Adjust your expectations accordingly!
## Chain 3:
## Chain 3:
## Chain 3: Iteration:
                          1 / 5000 [ 0%]
                                            (Warmup)
## Chain 3: Iteration: 500 / 5000 [ 10%]
                                            (Warmup)
                                            (Warmup)
## Chain 3: Iteration: 1000 / 5000 [ 20%]
## Chain 3: Iteration: 1500 / 5000 [ 30%]
                                            (Warmup)
## Chain 3: Iteration: 2000 / 5000 [ 40%]
                                            (Warmup)
## Chain 3: Iteration: 2500 / 5000 [ 50%]
                                            (Warmup)
## Chain 3: Iteration: 2501 / 5000 [ 50%]
                                            (Sampling)
## Chain 3: Iteration: 3000 / 5000 [ 60%]
                                            (Sampling)
## Chain 3: Iteration: 3500 / 5000 [ 70%]
                                            (Sampling)
## Chain 3: Iteration: 4000 / 5000 [ 80%]
                                            (Sampling)
## Chain 3: Iteration: 4500 / 5000 [ 90%]
                                            (Sampling)
## Chain 3: Iteration: 5000 / 5000 [100%]
                                            (Sampling)
## Chain 3:
## Chain 3: Elapsed Time: 0.956679 seconds (Warm-up)
## Chain 3:
                           0.526481 seconds (Sampling)
## Chain 3:
                           1.48316 seconds (Total)
```

```
## Chain 3:
##
## SAMPLING FOR MODEL '65e53fdc92b4dc47b3a716bb70bf19ac' NOW (CHAIN 4).
## Chain 4:
## Chain 4: Gradient evaluation took 2e-05 seconds
## Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.2 seconds.
## Chain 4: Adjust your expectations accordingly!
## Chain 4:
## Chain 4:
## Chain 4: Iteration:
                          1 / 5000 [ 0%]
                                            (Warmup)
## Chain 4: Iteration: 500 / 5000 [ 10%]
                                            (Warmup)
## Chain 4: Iteration: 1000 / 5000 [ 20%]
                                            (Warmup)
## Chain 4: Iteration: 1500 / 5000 [ 30%]
                                            (Warmup)
## Chain 4: Iteration: 2000 / 5000 [ 40%]
                                            (Warmup)
## Chain 4: Iteration: 2500 / 5000 [ 50%]
                                            (Warmup)
## Chain 4: Iteration: 2501 / 5000 [ 50%]
                                            (Sampling)
## Chain 4: Iteration: 3000 / 5000 [ 60%]
                                            (Sampling)
## Chain 4: Iteration: 3500 / 5000 [ 70%]
                                            (Sampling)
## Chain 4: Iteration: 4000 / 5000 [ 80%]
                                            (Sampling)
## Chain 4: Iteration: 4500 / 5000 [ 90%]
                                            (Sampling)
## Chain 4: Iteration: 5000 / 5000 [100%]
                                            (Sampling)
## Chain 4:
## Chain 4: Elapsed Time: 0.708491 seconds (Warm-up)
## Chain 4:
                           0.622554 seconds (Sampling)
## Chain 4:
                           1.33105 seconds (Total)
## Chain 4:
saveRDS(brmod2, 'macro_prod_brms.RDS')
```

Now, how about trying to predict benthicmacroalgae productivity by merging area specific turf productivity predicted using the data compiled by Duarte et al 2022 and macroalgae cover?

Now plotting

First the time series of macroalgae productivity over time in Moorea

Saving the final estimates fro Moorea

```
write.csv(fts_data,'Moorea_turf_macr_prod.csv', row.names=FALSE)
```