

CONVOLUTIONAL NEURAL NETWORK

DEEP LEARNING

MEREDITA SUSANTY

Convolutional Neural Network Deep Learning

Penulis: Meredita Susanty

ISBN:

Editor: Prasasva Kirana

Penerbit: Universitas Pertamina

Cetakan Pertama, 2022 Edisi Pertama, 2022

Hak Cipta © 2022 Universitas Pertamina JI Teuku Nyak Arief Simprug Kebayoran Lama, Jakarta Selatan 12120

Telepon : 021-29044308

Website : https://universitaspertamina.ac.id/ Email : info@universitaspertamina.ac.id

Cetakan Pertama, 2022 Edisi Pertama, 2022

Hak Cipta Dilindungi Undang-Undang. Dilarang memperbanyak sebagian atau seluruh isi buku ini dalam bentuk apapun, baik secara elektronis maupun mekanis, termasuk tidak terbatas pada memfotokopi, merekam, atau dengan menggunakan sistem penyimpanan lainnya, tanpa izin tertulis dari Penerbit

UNDANG-UNDANG NO.28 TAHUN 2014 TENTANG HAK CIPTA

- Setiap Orang yang dengan tanpa hak dan/atau tanpa ijin Pencipta atau pemegang Hak Cipta melakukan pelanggaran hak ekonomi Pencipta yang meliputi penerjemahan dan pengadaptasian Ciptaan untuk Penggunaan Secara Komersial dipidana dengan pidana penjara paling lama 3 (tiga) tahun dan/atau pidana denda paling banyak Rp500.000.000,00 (lima ratus juta rupiah).
- 2. Setiap Orang yang dengan tanpa hak dan/atau tanpa ijin Pencipta atau pemegang Hak Cipta melakukan pelanggaran hak ekonomi Pencipta yang meliputi penerbitan, penggandaan dalam segala bentuknya, dan pendistribusian Ciptaan untuk Penggunaan Secara Komersial dipidana dengan pidana penjara paling lama 4 (empat) tahun dan/atau pidana denda paling banyak Rp1,000.000.000,000 (satu miliar rupiah).
- Setiap Orang yang memenuhi unsur sebagaimana dimaksud pada poin kedua di atas yang dilakukan dalam bentuk pembajakan, dipidana dengan pidana penjara paling lama 10 (sepuluh) tahun dan/atau pidana denda paling banyak Rp4.000.000.000,00 (empat miliar rupiah).

Susanty, Meredita

Convolutional Neural Network Deep Learning

—Jakarta: Penerbit Universitas Pertamina,2022 1 jil., 155 hlm., 17,6 x 25 cm

ISBN.

1. Ilmu Komputer

l. Judul

Kecerdasan Buatan

II. Susanty, Meredita

Tentang Penulis

Meredita Susanty adalah dosen tetap program studi Ilmu Komputer Universitas Pertamina sejak tahun 2016. Meredita meraih gelar sarjana komputer dari Universitas Gadjah Mada dan gelar master dari University of Nottingham. Di program studi Ilmu Komputer Meredita mengajar Pengantar Teknologi Informasi dan Algoritma, Dasar Pemrograman dan Rekayasa Perangkat Lunak.

Prakata

Jika seratus tahun lalu listrik mengubah setiap industri besar mulai dari transportasi, manufaktur, kesehatan, komunikasi, dan banyak bidang lainnya. Saat ini perkembangan *deep learning* mengakibatkan transformasi di berbagai bidang seperti dalam melakukan pencarian melalui situs web, melakukan pemasaran daring, melakukan pembacaan X-ray di bidang kesehatan, melakukan personalisasi pendidikan, hingga otomotif dengan munculnya kendaraan tanpa awak.

Karena pengaruhnya di berbagai sektor, kemampuan dan penguasaan disiplin ilmu ini sangat dicari dalam bidang teknologi dan informasi. Buku ini membahas perkembangan dalam bidang computer vision dan beberapa aplikasinya dan diharapkan dapat membantu para pemula untuk memahami cara kerja convolutional neural network dari konsep yang mendasar hingga mampu menggunakannya pada beberapa contoh kasus. Dengan ilustrasi arsitektur model dan tahapan perhitungan yang dilakukan dalam model diharapkan pembaca dapat lebih mudah memahami cara kerja setiap model yang dibahas dalam buku ini.

Buku ini ditujukan untuk pembaca yang kurang familiar dengan Kalkulus sehingga dasar teori perhitungan tidak dibahas mendalam. Bagi pembaca yang memiliki pemahaman yang baik tentang kalkulus atau ingin mendalami teori dasar kalkulus yang mendasari perhitungan pada tiap model, dapat mengacu ke referensi yang disediakan di bagian akhir setiap bab.

Daftar Isi

Bab 1.	Perkembangan Computer Vision	1
1.1	Color Marker Tracking	2
1.2	Viola-Jones Face Detection	5
Bab 2.	Convolutional Neural Network	10
2.1	Edge Detection	11
2.2	Padding	15
2.3	Strided Convolutions	18
2.4	Convolutions Over Volume	22
2.5	Convolutional Network dengan Sebuah Layer	25
2.6	Pooling Layer	31
2.7	Contoh CNN	34
Bab 3.	Studi Kasus I: ResNet	45
3.1	Cara Kerja ResNet	45
3.2	Networks in Networks dan 1x1 Convolutions	53
Bab 4.	Studi Kasus II: Inception Network	57
4.1	Cara Kerja Inception Network	57
Bab 5.	Studi Kasus III: MobileNet	64
5.1	Cara Kerja MobileNet	65
5.2	Arsitektur MobileNet	70
Bab 6.	Studi Kasus IV: EfficientNet	73
6.1	Cara Kerja EfficientNet	75
Bab 7.	Tips dalam Penggunaan Convolution Network	80
7.1	Penggunaan Open-Source	82
7.2	Transfer Learning	84
7.3	Data Augmentasi	86
7.4	Perkembangan Deep Learning di bidang Computer Vision	90
Bab 8.	Deteksi Obiek	96

8.1	Object Localization	99
8.2	Landmark Detection	101
8.3	Object Detection	102
8.4	Implementasi Convolutional menggunakan Sliding Window	104
8.5	Prediksi Bounding Box	105
8.6	Irisan pada Gabungan	107
8.7	Non-Max Suppresion	108
8.8	Anchor Boxes	110
8.9	Algoritma YOLO	111
8.10	Region Proposals	113
Bab 9.	Semantic Segmentation	117
9.1	Transpose Convolutions	120
9.2	Arsitektur U-Net	122
9.3	Cara Kerja U-Net	123
Bab 10.	Pengenalan Wajah	128
10.1	One Shot Learning	131
10.2	Siamese Network	133
10.3	Triplet Loss	134
10.4	Verifikasi Wajah dan Klasifikasi Biner	136
Bab 11.	Neural Style Transfer	140
11.1	Deep ConvNet Learning	143
11.2	Cost Function	145
11.3	Content Cost Function	146
11.4	Style Cost Function	148
11.5	Generalisasi 1D dan 3D	149
Daftar Pustaka156		

Perkembangan *Computer Vision*

Tujuan:

- Mengetahui perkembangan computer vision sebelum dan setelah munculnya deep learning.
- Mengetahui berbagai algoritma untuk mengenali objek dalam *computer vision*.

Computer vision adalah salah satu bidang yang berkembang pesat karena kemunculan deep learning. Computer vision yang menggunakan deep learning saat ini mampu membantu kendaraan nirawak untuk mengetahui keberadaan mobil-mobil lain juga pejalan kaki disekitar dan menghindarinya. Selain itu, perkembangannya membantu pengenalan wajah menjadi lebih canggih. Saat ini kita bisa membuka telepon selular bahkan membuka pintu dengan pengenalan wajah. Aplikasi pencarian pun sudah dapat dilakukan terhadap gambar.

Perkembangan *computer vision* memungkinkan munculnya berbagai aplikasi-aplikasi baru yang beberapa tahun lalu mungkin dianggap tidak mungkin. Selain itu, perkembangan di bidang ini juga memberikan inspirasi ke area-area lain seperti pada bidang pemrosesan bahasa alami. Dengan mempelajari topik ini diharapkan mendorong para pembaca untuk menciptakan produk atau aplikasi baru. Jika pembaca tidak berkecimpung di bidang *computer vision*, diharapkan pembahasan di dalam buku ini dapat memberikan ide untuk diterapkan di bidang-bidang lain.

Sebelum membahas berbagai metode *deep learning* dalam *computer vision* pada bab ini akan diperkenalkan beberapa algoritma sederhana yang dulu digunakan untuk mengenali objek dan keterbatasannya. Dengan mengetahui algoritma-algoritma ini, diharapkan memberikan

BAB 2

Convolutional Neural Network

Tujuan:

- Paham alasan kemunculan arsitektur convolutional neural network.
- Paham cara kerja convolutional neural network.
- Mengetahui penggunaan convolutional neural network pada beberapa contoh kasus.

Pada bab sebelumnya, kita sudah mengenal istilah *kernel* atau *patch*. Pada bab ini kita akan membahas penggunaan *convolution* pada jaringan saraf tiruan atau *neural network* (NN). Untuk mengingatkan kembali, jaringan saraf tiruan menerima beberapa input dimana masing-masing input dilakukan degngan nilai bobot tertentu. Hasil perkalian setiap input dengan bobot ini kemudian dijumlahkan. Nilai ini yang akan menjadi nilai pada node berikutnya. Pada *convolutional neural network* (CNN), yang menjadi input bukanlah sebuah nilai tapi data dalam bentuk dua dimensi yang berisi pixel data. Bobot untuk setiap input pada CNN setara dengan nilai kernel yang dibahas pada bab sebelumnya. Namun, berbeda dengan kernel pada bab sebelumnya yang sudah ditentukan, NN akan mempelajari sendiri kernel mana yang akan berguna untuk mengenali fitur-fitur tertentu pada gambar.

Pada bab ini kita akan membahas secara mendalam cara kerja CNN yang meliputi cara kerja setiap layer pada CNN, operasi-operasi dasar yang dilakukan pada tiap layer, serta bagaimana menyusun layer dengan benar untuk menyelesaikan permasalah klasifikasi multi-class terhadap berbagai objek dalam suatu gambar.