Power of Wald test for interaction

Ziang Zhang

09/03/2021

Contents

l Po	wer of Wald test:	1
1.1	For one parameter:	1

1 Power of Wald test:

1.1 For one parameter:

If we consider using Wald test to test the null hypothesis $H_0: \theta = \theta_0$, the test statistic will be

$$\sqrt{\frac{n}{I^{-1}(\hat{\theta})}} \bigg(\hat{\theta} - \theta_0 \bigg)$$

where $\hat{\theta}$ is the MLE of θ and $I^{-1}(\hat{\theta})$ is inverse of the fisher information evaluated at the MLE.

Under null hypothesis, this test statistic follows a standard normal distribution. If the alternative hypothesis $H_a: \theta = \theta_1 \neq \theta_0$, then the power of our test can be computed as:

$$1 - \Phi(\Delta + z_{a/2}) + \Phi(\Delta - z_{a/2})$$

where
$$\Delta = \sqrt{nI(\theta_1)}(\theta_0 - \theta_1)$$
.

The important information above is that the power of Wald test will depend on several things at the same time:

- The difference of $\theta_0 \theta_1$
- The sample size n
- The true information $I(\theta_1)$