Graphes

1 Définitions

1.1 Graphes

• Un graphe **non orienté** est la donnée d'un couple G=(V,E), où V est un ensemble fini non vide et $E\subset \{\{x,y\}\,|\, (x,y)\in V^2\}.$

Un graphe **orienté** est la donnée d'un couple G = (V, E), où V est un ensemble fini non vide et $E \in \mathcal{P}(V^2)$

Les éléments de V et A sont appelés **sommets du graphe**. Les éléments de E sont appelés **arrêtes du graphe**. Les éléments de A sont appelés **arcs du graphe**.

Si $e = \{x\} \in E$ (avec $x \in V$), e est une **boucle** sur

Pour $(x,y) \in \mathbb{V}^2$, on dit que x et y sont voisins ssi

On dit que x est successeur de y ssi $(y,x) \in A$ On dit que x est prédécesseur de y ssi $(x,y) \in A$

On appelle **voisinnage** de $x \in E$ le nombre de voisins d'un Le **degré** de x est le cardinal de l'ensemble On appelle degré sortant de x, noté deg⁺ x le nombre de successeurs de x On appelle degré entrant de x, noté deg⁻ x le nombre de prédecesseurs de x

On supposera par la suite que l'on travaille avec des graphes non orientés.

Propriété : Soit G = (V, E) un graphe. On a $\sum_{x \in V} \deg(x) = 2$ card (E)

▷ On a :

$$\sum_{x \in V} \deg(x) = \sum_{x \in V} \sum_{y \in V} \mathbbm{1}_{x,y} =$$

1.2 Accessibilité, connexité

On fixe G = (V, E) un graphe non orienté, et H = (A, S) un graphe orienté.

Soit $s = (s_i) \in V^{n+1}$. On dit que s est une **chaîne de** G ssi $\forall i \in [1, n[, \{s_i, s_{i+1}\}] \in E$ On dit alors que s est une chaîne de longueur n et qui relie s_0 **et** s_n .

Soit $s = (s_i) \in A^{n+1}$. On dit que s est un **chemin de** G ssi $\forall i \in [1, n[, \{s_i, s_{i+1}\} \in E]$ On dit alors que s est une chaîne de longueur n et qui relie s_0 à s_n .

On dit alors que s_n est accessible depuis s_0 . Par ailleurs, si $s_n = s_0$, on dit que s est un **cycle** pour un graphe non-orienté, ou un **circuit** dans un graphe orienté.

Si tous les (s_i) sont distincts, on dit que s est **élémentaire**.

Remarque : Il y a toujours un nombre fini de chaînes élémentaires, mais si G (resp. H) a des cycles (resp. des circuits), il y a un nombre infini de chaînes (il suffit de tourner en rond...).

Exercice 1: Définir la relation entre les circuits/chemins d'un graphe, qui met en relation deux circuits/chemins ssi ils relient les mêmes sommets. Est-ce une relation d'équivalence?

Propriété : La relation \mathcal{R} définie sur V^2 par $x\mathcal{R}y$ ssi x est accessible depuis y est une relation d'équivalence.

- \triangleright Soit $x \in V$. On a bien $x\mathcal{R}x$: la chaîne de longueur n=0 s=(x) convient.
- ⊳ Soit $(x,y) \in V^2$, tel que $x\mathcal{R}y$. Alors par définition il existe $s = (s_0,...,s_n) \in V^{n+1}$ tel que $s_0 = x$ et $s_n = y$, et $\forall i \in [\![0,n[\![,\{s_i,s_{i+1}\}\}\in A.$ Considérons $s' = (s_n,s_{n-1},...,s_1,s_0).$ s' est une chaîne reliant y et x. En effet, $s'_0 = s_n = y$ et $s'_n = s_0 = x$, et $\forall i \in [\![0,n[\![,\{s'_i,s'_{i+1}\}\}=\{s_{n-i},\{n-i-1\}=\{s_k,s_{k+1}\}\}\}$ ∈ A en posant $k = n i 1 \in [\![0,n[\![,k]]]$.

 \triangleright Soit $(x,y,z) \in V^3$ tel que $x\mathcal{R}y$ et $y\mathcal{R}z$. Comme $x\mathcal{R}y$, il existe $s=(s_0,...,s_n) \in V^{n+1}$ une chaîne avec $s_0=x$ et $s_n=y$. Comme $y\mathcal{R}x$, il existe $t=(t_0,...,t_m) \in V^{m+1}$ une chaîne avec $t_0=y$ et $t_m=z$. Considérons $u=(s_0,...s_n,t_0,...t_m)$. u est bien une chaîne car $\forall i \in \llbracket 0,n+m \rrbracket$

Exercice 2: Définir une relation d'équivalence similaire pour H, où l'on doit avoir un chemin dans chaque sens entre deux points en relation.

Une composante connexe de G est une classe d'équivalence pour la relation d'équivalence définie ci-dessus. Si G n'admet qu'une composante connexe, on dit que G est un graphe connexe. Dans le cas de la relation d'équivalence sur les graphes orientés, on appelle les classes d'équivalences composante fortement connexe.

Soit $W \subset V$ avec $W \neq \emptyset$. W est **convexe** ssi $\forall (x,y) \in W^2$, il existe une chaîne reliant x et y.

Propriété : W est une composante connexe ssi W est connexe minimal, c'est à dire si $\forall W' \subset V \setminus \{W\}, W \subset W'$, W' n'est pas connexe.

Soit G' = (V', E') un graphe. G' est un sous-graphe ssi $V' \subset V$, $E' \subset E$.

Soit $V' \subset V$ Le graphe induit par G sur V' est $G' = (V', \{\{x,y\} \in E \mid (x,y) \in V^2\})$.

Propriété: amogus is sus