(1) Quadratic formula for
$$ax^2 + bx + c = 0$$
, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

MODE MODE 6 3 4 AC 4 (CMPLX) 2

			(
(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	С	(12)	:	(13)	В	(14)	x^2	(15)	_
(16)	4	(17)	A	(18)	С	(19)	\rightarrow	(20)	D
(21)	4	(22)	((23)	$\sqrt{}$	(24)	D	(25))
(26)	_	(27)	В	(28))	(29)	١	(30)	2
(31)	÷	(32)	A	(33)	\rightarrow	(34)	X	(35)	4
(36)	-	(37)	Ans	(38)	_	(39)	В	(40)	Ъ
(41)	A	(42)	\rightarrow	(43)	Y	(44)	4	(45)	-
(46)	D	(47)		(48)	4	(49)	÷	(50)	A
(51)	\rightarrow	(52)	M						

Press MODE 1 (COMP) to exit the progamme mode.

Example To solve $2x^2 - 3x + 1 = 0$ and find the minimum of $y = 2x^2 - 3x + 1$

	,			
Key sequences	Display	Explanation		
Prog P4	$A^{?}$ 0	Enter into P4 CMPLX mode		
2 EXE -3 EXE 1 EXE	$B^2 - 4AC \rightarrow D$ 1. Disp	Discriminant D = 1		
EXE	1. _{Disp}	x = 1		
EXE	1J2 _{Disp}	$y = \frac{1}{2}$		
EXE	-1_18	$Minimum = -\frac{1}{8}$		

Press MODE 1 (COMP) to exit the progamme mode.

Example To solve $-x^2 + x - 3 = 0$ and find the maximum of $y = -x^2 + x - 3$

Key sequences	Display	Explanation		
Prog P4	$A^{?}$ 2	Enter into P4 CMPLX mode		
-1 EXE 1 EXE -3 EXE	$B^2 - 4AC \rightarrow D$ -11. Disp	Discriminant $D = -11$		
EXE	1 _12 _{Disp}			
SHIFT EXE	-1.658312395 <i>i</i>	$x = \frac{1}{2} - 1.658312395i$		
EXE	0.5 _{Disp}			
SHIFT EXE	1.658312395 <i>i</i>	$y = \frac{1}{2} + 1.658312395i$		
EXE	-11_14	$Maximum = -\frac{11}{4}$		

Press MODE 1 (COMP) to exit the progamme mode.

- (2) To solve the simultaneous equations : $\begin{cases} ax + by = c \\ dx + ey = f \end{cases}$
- (2.1) Transform the equation into $\begin{cases} x + \frac{b}{a}y = \frac{c}{a} \\ x + \frac{e}{d}y = \frac{f}{d} \end{cases}$
- (2.2) Press the following keys: MODE 5 1 (Lin) SHIFT 9 1 EXE AC

(2.3) Then the solutions are: SHIFT 2.1 \blacktriangleright 1 a EXE solution of x

SHIFT 2.1 \triangleright 2 b EXE solution of y

(2.4) Press MODE COMP to return to the normal mode.

Example To solve $\begin{cases} x + 2y = 3 \\ 4x + 5y = 6 \end{cases}$; first transform it into $\begin{cases} x + 2y = 3 \\ x + \frac{5}{4}y = \frac{3}{2} \end{cases}$.

Key sequences	Display	Explanation
MODE 5 1	0.	Enter into REG Lin Mode
SHIFT 9 1 EXE AC	0.	Clear the Stat memory
2,3 DT	Line = 1.	
1.25 , 1.5 DT	Line = 2.	
SHIFT 2 1 ▶ ▶ 1 EXE	a -1.	x = -1
SHIFT 2 1 ▶ ▶ 2 EXE	b 2.	y = 2

Press MODE 1 (COMP) to exit the REG Lin mode.

(3) To solve a triangle ABC. ①A.S.A.②A.A.S.③S.S.S.④S.A.S.⑤S.S.A.

(1) 7 (2) -> (3) A (4)	MODI	E MOD	E 6 3 1	AC 1	1															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?	(6)	\rightarrow	(7)	M	(8)	:	(9)	?	(10)	\rightarrow
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(11)	В	(12)	:	(13)	Lbl	14	0	(15)	:	(16)	?	(17)	\rightarrow	(18)	D	(19)	:	(20)	If
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(21)	D	(22)	=	(23)	1	(24)	:	(25)	Then	(26)	Goto	(27)	1	(28)	:	(29)	IfEnd	(30)	:
(61)	(31)	If	(32)	D	(33)	=	(34)	2	(35)	:	(36)	Then	(37)	В	(38)	\rightarrow	(39)	X	(40)	:
(61) 1 (62) : (63)	(41)	cos ⁻¹ ((42)	_	(43)	1	(44))	(45)	-	(46)	A	(47)	_	(48)	M	(49)	\rightarrow	(50)	В
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(51)	4	(52)	M	(53)	\rightarrow	(54)	A	(55)	:	(56)	X	(57)	\rightarrow	(58)	M	(59)	:	(60)	Goto
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(61)	1	(62)	:	(63)	IfEnd	(64)	:	(65)	If	(66)	D	(67)	=	(68)	3	(69)	:	(70)	Then
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(71)	В	(72)	\rightarrow	(73)	С	(74)	:	(75)	M	(76)	\rightarrow	(77)	В	(78)	:	(79)	Goto	(80)	2
$ \begin{array}{c} (101) \ \ : \ \ (102) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(81)	:	(82)	IfEnd	(83)	:	(84)	If	(85)	D	(86)	=	(87)	4	(88)	:	(89)	Then	(90)	A
$ \begin{array}{c} (111) & B & (112) & \cos(\ (113) \ M & (114) \) & (115) \) & (116) \ \rightarrow & (117) \ C & (118) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	(91)	\rightarrow	(92)	X	(93)	:	(94)	В	(95)	\rightarrow	(96)	A	(97)	:	(98)	X	(99)	\rightarrow	(100)	В
$ \begin{array}{c} (121) \ : \ (122) \ \text{IfEnd} \ (123) \ : \ (124) \ \text{If} \ (125) \ D \ (126) \ = \ (127) \ 5 \ (128) \ : \ (129) \ \text{Then} \ (130) \ \text{A} \\ (131) \ \rightarrow \ (132) \ \text{Y} \ (133) \ : \ (134) \ \text{Goto} \ (135) \ \text{3} \ (136) \ : \ (137) \ \text{IfEnd} \ (138) \ : \ (139) \ \text{Goto} \ (140) \ 0 \\ (144) \ : \ (144) \ : \ (144) \ : \ (146) \ = \ (147) \ \ (148) \) \ (149) \ - \ (159) \ \text{A} \\ (151) \ - \ (152) \ \text{B} \ (153) \ \rightarrow \ (154) \ \text{C} \ (155) \ : \ (156) \ \text{D} \ (157) \ = \ (158) \ \text{I} \ (159) \ \Rightarrow \ (169) \ \text{C} \\ (161) \ \ \ \ \ \ \ \ \ \ \ \ \ $	(101)	:	(102)	√((103)	A	(104)	x^2	(105)	+	(106)	В	(107)	x^2	(108)	_	(109)	2	(110)	A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(111)	В	(112)	cos((113)	M	(114))	(115))	(116)	\rightarrow	(117)	С	(118)	4	(119)	Goto	(120)	2
$ \begin{array}{c} (141) \ \ : \ \ (142) \ \ Lbl \ \ (143) \ \ 1 \ \ (144) \ \ : \ \ (145) \ \ cos^{-1} (\ \ (146) \ \ - \ \ \ (147) \ \ 1 \ \ \ (148) \ \) \ \ \ (149) \ \ - \ \ \ \ \ (150) \ \ A \\ (151) \ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	(121)	:	(122)	IfEnd	(123)	:	(124)	If	(125)	D	(126)	=	(127)	5	(128)	:	(129)	Then	(130)	A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(131)	\rightarrow	(132)	Y	(133)	:	(134)	Goto	(135)	3	(136)	:	(137)	IfEnd	(138)	:	(139)	Goto	(140)	0
$ \begin{array}{c} (161) \ \ \ \ \ \ \ \ \ \ \ \ \ $	(141)	:	(142)	Lbl	(143)	1	(144)	:	(145)	cos ⁻¹ ((146)	-	(147)	1	(148))	(149)	_	(150)	Α
$ \begin{array}{c} (171) \implies (172) \text{C} (173) \textbf{A} (174) \text{M} (175) \sin((176) \text{A} (177)) (178) \text{J} (179) \sin((180) \text{C} \\ (181)) (182) \rightarrow (183) \text{X} (184) \textbf{A} (185) \text{M} (186) \sin((187) \text{B} (188)) (189) \text{J} (190) \sin((191) \text{C} (192)) (193) \rightarrow (194) \text{Y} (195) \text{:} (196) \text{D} (197) = (198) \text{I} (199) \Rightarrow (200) \text{Y} \\ (201) \textbf{A} (202) \text{D} (203) \Rightarrow (204) \text{Z} (205) \Rightarrow (206) \text{Y} (207) \textbf{A} (208) \text{If} (209) \text{D} (210) = \\ (211) 6 (212) \text{:} (213) \text{Then} (214) \text{C} (215) - (216) \text{B} (217) \rightarrow (218) \text{A} (219) \textbf{A} (220) \text{Goto} \\ (221) \text{I} (222) \text{:} (223) \text{Else} (224) \text{Goto} (225) 9 (226) \text{:} (227) \text{IfEnd} (228) \text{:} (229) \text{IbI} (230) 2 \\ (231) \text{:} (232) \cos^{-1}((234) \text{B} (235) x^2 (236) + (237) \text{C} (238) x^2 (239) - (240) \text{A} \\ (241) x^2 (242) \text{)} (243) + (244) \text{(} (245) 2 (246) \text{B} (247) \text{C} (248) \text{)} (249) \text{)} (250) \rightarrow \\ (251) \text{X} (252) \textbf{A} (253) \cos^{-1}((254) \text{(} (255) \text{A} (256) x^2 (257) + (258) \text{C} (259) x^2 (260) - \\ (261) \text{B} (262) x^2 (263) \text{)} (264) \text{J} (264) \text{J} (265) \text{(} (266) 2 (267) \text{A} (268) \text{C} (269) \text{J} (277) \text{)} (278) \text{A} \\ (291) \text{Goto} (292) \text{J} (233) \text{:} (304) \text{Then} (305) \text{Goto} (306) \text{A} (307) \text{:} (338) \text{Bis} (309) \text{Goto} (310) \text{A} (301) \text{A} (301) $	(151)	ı	(152)	В	(153)	\rightarrow	(154)	C	(155)		(156)	D	(157)	=	(158)	1	(159)	\Rightarrow	(160)	C
$ \begin{array}{c} (181)) (182) \ \rightarrow (183) X (184) \rlap / (185) M (186) \sin((187) B (188)) (189) J (190) \sin((191) C (192)) (193) \rightarrow (194) Y (195) : (196) D (197) = (198) 1 (199) \Rightarrow (200) Y (200) Y (201) \rlap / (202) D (203) = (204) 2 (205) \Rightarrow (206) Y (207) \rlap / (208) \text{lif} (209) D (210) = (211) 6 (212) : (213) \text{Then} (214) C (215) - (216) B (217) \rightarrow (218) A (219) \rlap / (229) \text{Goto} (221) 1 (222) : (223) \text{Else} (224) \text{Goto} (225) 9 (226) : (227) \text{IfEnd} (228) : (229) \text{Lbl} (230) 2 (231) : (232) \cos^{-1}((233) ((234) B (235) x^2 (236) + (237) C (238) x^2 (239) - (240) A (241) x^2 (242) y (243) \div (244) ((245) 2 (246) B (247) C (248)) (249) y (250) - (251) X (252) \rlap / (223) \cos^{-1}((254) ((255) A (256) x^2 (257) + (258) C (259) x^2 (260) - (261) B (262) x^2 (263) y (264) J (265) ((266) 2 (266) A (268) C (269) J (270) Y (271) \rightarrow (271) \rightarrow (272) Y (273) \rlap / (274) \cos^{-1}((275) - (276) 1 (277) J (278) - (279) X (280) - (281) Y (282) \rightarrow (283) M (284) : (285) D (286) = (287) 3 (288) \Rightarrow (289) M (290) \rlap / \rlap / (291) (301) 1 (302) J (303) : (304) \text{Then} (305) \text{Goto} (336) 4 (307) : (308) \text{Else} (309) \text{Goto} (310) 5 (311) : (312) \text{Ifend} (323) J (334) J (335) Goto (326) 9 (327) : (328) B (399) J (330) J (340) \text{Fin} (335) J (336) B (337) - (238) x^2 (259) X (280) - (279) X (280) - (281) Y (289) M (299) J (280) J (28$	(161)	1	(162)	D	(163)	=	(164)	5	(165)	\Rightarrow	(166)	C	(167)	4	(168)	D	(169)	=	(170)	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(171)	\uparrow	(172)	C	(173)	4	(174)	M	(175)	sin((176)	A	(177))	(178)	L	(179)	sin((180)	C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(181))	(182)	\rightarrow	(183)	X	(184)	4	(185)	M	(186)	sin((187)	В	(188))	(189)	L	(190)	sin(
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(191)	С	(192))	(193)	\rightarrow	(194)	Y	(195)	:	(196)	D	(197)	=	(198)	1	(199)	\Rightarrow	(200)	Y
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(201)	4	(202)	D	(203)	=	(204)	2	(205)	\Rightarrow	(206)	Y	(207)	4	(208)	If	(209)	D	(210)	=
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(211)	6	(212)	:	(213)	Then	(214)	C	(215)	-	(216)	В	(217)	\rightarrow	(218)	A	(219)	4	(220)	Goto
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(221)	1	(222)	:	(223)	Else	(224)	Goto	(225)		(226)	:	(227)	IfEnd	(228)		(229)	Lbl	(230)	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(231)		(232)	cos ⁻¹ (_	((234)	В	(235)	x^2	(236)	+	(237)	С	(238)	x^2	(239)	-	(240)	A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(241)	x^2	(242))	(243)	÷	(244)	((245)	2	(246)			С	(248))	(249)		(250)	\rightarrow
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(251)	X	(252)		(253)	cos ⁻¹ ((254)	((255)	A	(256)		(257)	+	(258)	С	(259)	x^2	(260)	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(261)	В		x^2	(263))	(264)	L	(265)	((266)	2	(267)	A	(268)	С	(269))	(270))
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_			Y				cos ⁻¹ (,	/	_		X		
(301) 1 (302)) (303) : (304) Then (305) Goto (306) 4 (307) : (308) Else (309) Goto (310) 5 (311) : (312) IfEnd (313) : (314) Lbl (315) 4 (316) : (317) If (318) Y (319) ≤ (320) M (321) : (322) Then (323) 0 (324)	(281)	Y			(283)	M	_	:			(286)	=	(287)		(288)	\Rightarrow	(289)	M	(290)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Goto	\ /	9			\ /		\ /	3	\ /		\ /		\ /			≥	(300)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(301)	1	(302))	(303)	:	(304)	Then		Goto	(306)	4	(307)		(308)		(309)	Goto	(310)	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$:				:		Lbl			(316)		_ /	If				≤		M
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			\- /	Then	_		_	4		Goto								_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_ /	-			_	,		_		В	_ /			sin ⁻¹ (sin(
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			\	,						,		_	_ /					Goto		_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	_								_)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									_ /						/					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															_		_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						=														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			\ /)		_												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	Goto		7			· · /		_ /				_ /		_ /		· · · /			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1)	_															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)																		-
(451) : (452) IfEnd (453) : (454) Lbl (455) 9																				_
											(446)	\rightarrow	(447)	ע	(448)	:	(449)	Goto	(450)	1
									(433)	9		l	<u> </u>	l			l	<u> </u>		

Press MODE 1 (COMP) to exit the progamme mode.

Example To solve ABC. Given $\angle A = 50^{\circ}$, c = AB = 8, $\angle B = 70^{\circ}$. ①A.S.A.

Key sequences	Display	Explanation		
Prog P1	$A^{?}$ 0.	Enter into Proramme P1		
50 EXE 8 EXE 70 EXE	$D^{?}$ 0.	$\angle A = 50^{\circ}, M = 8, \angle B = 70^{\circ}$		
1 EXE	60. _{Disp}	Enter into \bigcirc A.S.A., $\angle C = 60^{\circ}$		
EXE	7.076415447 _{Disp}	X = a = 7.076415447		
EXE	8.680508601 _{Disp}	Y = b = 8.680508601		

Example To solve *ABC*. Given $\angle A = \frac{\pi}{3}$, $\angle B = 0.75$ rad. a = BC = 8. \bigcirc A.A.S.

Key sequences	Display	Explanation		
SHIFT MODE 2	R 0.	Enter into Radian mode		
Prog P1	$A^{?}$ 0.	Enter into Proramme P1		
πJ3 EXE 0.75 EXE 8 EXE	D^{γ} 0.	$\angle A = \frac{\pi}{3}, \ \angle B = 0.75 \text{ rad.}, \ X = a = 8$		
2 EXE	1.344395102. _{Disp}	Enter into ②A.A.S., $\angle C = 1.344395102 \text{ rad.}$		
EXE	6.296709145 _{Disp}	Y = b = 6.296709145		
EXE	9.001865524 _{Disp}	M = c = 9.001865524		

Press SHIFT MODE 1 to return to degree MODE.

Key sequences	Display	V	Explanation			
Prog P1	A?	0.	Enter into Proramme P1			
3 EXE 5 EXE 7 EXE	$\mathbf{D}^{?}$	0.	A = 3, B = 5, C = 7			
3 EXE	21.786789	3 _{Disp}	Enter into ③S.S.S., $X = \angle A = 21.7867893^{\circ}$			
EXE	38.213210		$Y = \angle B = 38.2132107^{\circ}$			
EXE	120. _{Dis}		$M = \angle C = 120^{\circ}$			
Example To solve <i>ABC</i> . Given $a = 3$, $\angle C$			13 = 32			
Key sequences	Displa	V	Explanation			
Prog P1	$A^{?}$	0.	Enter into Proramme P1			
3 EXE 120 EXE 5 EXE	$\mathbf{D}^{?}$	0.	$A = b = 3, B = a = 3, M = \angle C = 120^{\circ}$			
4 EXE	7. _{Disp}	-	Enter into \mathfrak{G} S.A.S., $M = c = 7$			
EXE	38.213210		$Y = \angle B = 38.2132107^{\circ}$			
EXE	21.786789		$X = \angle A = 21.7867893^{\circ}$			
Example To solve ABC. Given $b = 4$, $c = 2$		- Disp	33 = 33,700,000			
Key sequences	Display	V	Explanation			
Prog P1	A?	0.	Enter into Proramme P1			
4 EXE 2 EXE 30 EXE	D?	0.	$Y = b = 4, M = c = 2, \angle B = 30^{\circ}$			
5 EXE	1. _{Disp}		Enter into SS.S.A., One traingle can be formed			
EXE	A 135.5224		∠A = 135.5224878°			
EXE	C 14.47751		∠ <i>C</i> = 14.47751219°			
EXE	5.60503415		X = a = 5.605034154			
Example To solve ABC. Given $b = 1$, $c = 4$						
Key sequences	Display	y	Explanation			
Prog P1	$A^{?}$	0.	Enter into Proramme P1			
1 EXE 4 EXE 60 EXE	D?	0.	$Y = b = 1, M = c = 4, \angle B = 60^{\circ}$			
5 EXE	0. _{Disp}		Enter into SS.S.A., No traingle can be formed			
Example To solve ABC. Given $b = 3$, $c = 4$			-			
Key sequences	Display	у	Explanation			
Prog P1	A?	0.	Enter into Proramme P1			
3 EXE 4 EXE 30 EXE	D?	0.	$Y = b = 3, M = c = 4, \angle B = 30^{\circ}$			
5 EXE	2. Disp		Enter into SS.S.A., Two traingles can be formed			
EXE	A 108.1890	6851 _{Disp}	∠A = 108.1896851°			
EXE		3149 _{Disp}	∠C = 41.8103149°			
EXE	5.70016959		X = a = 5.700169593			
EXE	A 11.8103	3149 _{Disp}	Second answer $\angle A = 11.8103149^{\circ}$			
EXE	C 138.1896		Second answer $\angle C = 138.1896821^{\circ}$			
EXE	X 1.228033		Second answer $X = a = 1.228033638$			

(4) Find the centre, radius of a circle $x^2 + y^2 + Dx + Ey + F = 0$; and the length of tangent from (x_0, y_0) .

MODE MODE 632 AC21

(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	D	(12)	:	(13)	-	(14)	A	(15)	Т
(16)	2	(17)	\rightarrow	(18)	С	(19)	4	(20)	-
(21)	В	(22)	J	(23)	2	(24)	4	(25)	(
(26)	Ans	(27)	x^2	(28)	+	(29)	С	(30)	x^2
(31)	_	(32)	D	(33))	(34)	\rightarrow	(35)	M
(36)	4	(37)	?	(38)	\rightarrow	(39)	X	(40)	:
(41)	?	(42)	\rightarrow	(43)	Y	(44)	:	(45)	(
(46)	X	(47)	x^2	(48)	+	(49)	Y	(50)	x^2
(51)	+	(52)	A	(53)	X	(54)	+	(55)	В
(56)	Y	(57)	+	(58)	D	(59))		

Press MODE 1 (COMP) to exit the progamme mode.

Example Find the centre, radius of $x^2 + y^2 + 10x - 8y + 5 = 0$; and the length of tangent from (3, -2)

		• •,	<u> </u>			
Key sequences	Display		Explanation			
Prog P2	$A^{?}$	0.	Enter into Proramme P2			
10 EXE -8 EXE 5 EXE	-5. Disp		D = 10, E = -8, F = 5			
EXE	4. _{Disp}		Centre = $(-5, 4)$			
EXE	6. _{Disp}		Radius = 6			
EXE	X?	0.				
3 EXE -2 EXE	8.		Length of tangent = 8			

Example Find the centre, radius of $4x^2 + 4y^2 - 12x + 16y + 21 = 0$; and the length of tangent from (2, -2). Convert the equation of circle into: $x^2 + y^2 - 3x + 4y + \frac{21}{4} = 0$ first.

Key sequences	Display	Explanation			
Prog P2	$A^? 0.$	Enter into Proramme P2			
$-3 \text{ EXE 4 EXE } \frac{21}{4} \text{ EXE}$	3_12 Disp	$D = -3$, $E = 4$, $F = \frac{21}{4}$			
EXE	-2. _{Disp}	Centre = $\left(\frac{3}{2}, -2\right)$			
EXE	1. _{Disp}	Radius = 1			
EXE	$X^{?}$ 0.				
2 EXE -2 EXE	Math ERROR	(2, -2) lies inside the circle Length of tangent does not exist			

(5) Polynomial division $(ax^4 + bx^3 + cx^2 + dx + e) \div (fx + g)$

MODE MODE 6 3 4 AC 4 1

(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	С	(12)	:	(13)	?	(14)	\rightarrow	(15)	D
(16)	:	(17)	?	(18)	\rightarrow	(19)	M	(20)	:
(21)	?	(22)	\rightarrow	(23)	X	(24)	:	(25)	?
(26)	\rightarrow	(27)	Y	(28)	:	(29)	-	(30)	Y
(31)	L	(32)	X	(33)	\rightarrow	(34)	Y	(35)	:
(36)	A	(37)	١	(38)	X	(39)	4	(40)	Ans
(41)	Y	(42)	+	(43)	В	(44)	١	(45)	X
(46)	4	(47)	Ans	(48)	Y	(49)	+	(50)	С
(51)	L	(52)	X	(53)	4	(54)	Ans	(55)	Y
(56)	+	(57)	D	(58)	١	(59)	X	(60)	4
(61)	Ans	(62)	X	(63)	Y	(64)	+	(65)	M

Press MODE 1 (COMP) to exit the progamme mode.

Remark: If the polynomial is of degree = 3, a = 0.

Example $(4x^4 + 8x^2 + 2x - 1) \div (2x - 1)$

Example $(\exists x \mid 0x \mid 2x \mid 1) \cdot (x \mid 2x \mid 1)$	2 <i>x</i> 1)		
Key sequences	Displ	lay	Explanation
Prog P4	A?	0.	Enter into Proramme P4
4 EXE 0 EXE 8 EXE 2 EXE -1 EXE 2 EXE -1 EXE	2. _{Di}	isp	A = 4, B = 0, C = 8, D = 2, M = -1, X = f = 2, Y = g = -1
EXE	1. _{Di}	isp	
EXE	9_2 1	Disp	
EXE	13_4	Disp	Quotient = $2x^3 + 1x^2 + \frac{9}{2}x + \frac{13}{4}$
EXE	9_2	4	Remainder = $\frac{9}{4}$

(6) Polynomial division $(ax^4 + bx^3 + cx^2 + dx + e) \div (x^2 + fx + g)$

MODE MODE 6 3 4 AC 4 1

(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	C	(12)	:	(13)	?	(14)	\rightarrow	(15)	D
(16)	:	(17)	?	(18)	\rightarrow	(19)	M	(20)	:
(21)	?	(22)	\rightarrow	(23)	X	(24)	:	(25)	?
(26)	\rightarrow	(27)	Y	(28)	:	(29)	-	(30)	X
(31)	\rightarrow	(32)	X	(33)	:	(34)	-	(35)	Y
(36)	\rightarrow	(37)	Y	(38)	:	(39)	A	(40)	4
(41)	В	(42)	+	(43)	A	(44)	X	(45)	\rightarrow
(46)	В	(47)	4	(48)	C	(49)	+	(50)	X
(51)	Ans	(52)	+	(53)	A	(54)	Y	(55)	\rightarrow
(56)	C	(57)	4	(58)	D	(59)	+	(60)	X
(61)	Ans	(62)	+	(63)	В	(64)	Y	(65)	4
(66)	M	(67)	+	(68)	С	(69)	Y		

Press MODE 1 (COMP) to exit the programme mode. **Remark:** If the degree of dividend = 3, a = 0. **Example** $(4x^4 + 8x^2 + 2x - 1) \div (x^2 + 3x - 2)$

Key sequences	Display	Explanation
Prog P4	$A^? 0.$	Enter into Proramme P4
4 EXE 0 EXE 8 EXE 2 EXE -1 EXE 3 EXE -2 EXE	4. Disp	A = 4, B = 0, C = 8, D = 2, M = -1, X = f = 3, Y = g = -2
EXE	-12. _{Disp}	
EXE	52 Disp	Quotient = $4x^2 - 12x + 52$
EXE	-178 _{Disp}	
EXE	103	Remainder = $-178x + 103$

If the divisor is $px^2 + fx + g$, where $p \ne 0$, change it into $x^2 + \frac{f}{p}x + \frac{g}{p}$ and divide the quotient by p.

Example $(4x^4 + 7x^3 - 16x^2 - 2x + 7) \div (2x^2 + x - 1)$. First change into $x^2 + \frac{1}{2}x - \frac{1}{2}$.

Key sequences	Displ	ay	Explanation
Prog P4	$\mathbf{A}^{?}$	0.	Enter into Proramme P4
4 EXE 0 EXE 8 EXE 2 EXE -1 EXE 0.5 EXE -0.5 EXE	4. _{Di}	sp	A = 4, B = 0, C = 8, D = 2, M = -1, X = f = 0.5, Y = g = -0.5
EXE	-2. _D	isp	
EXE	11 _{Di}	isp	$Quotient = \frac{1}{2} \left(4x^2 - 2x + 11 \right)$
EXE	-4.5 _I	Disp	
EXE	4.5	· ·	Remainder = $-4.5x + 4.5$

(7) Newton's Method to find the approximate root $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ Polynomials up to degree 4

MODE MODE 6 3 4 AC 4 1

(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	C	(12)	:	(13)	?	(14)	\rightarrow	(15)	D
(16)	:	(17)	?	(18)	\rightarrow	(19)	M	(20)	:
(21)	?	(22)	\rightarrow	(23)	X	(24)	:	(25)	Lbl
(26)	1	(27)	:	(28)	((29)	3	(30)	A
(31)	X	(32)	^((33)	4	(34))	(35)	+
(36)	2	(37)	В	(38)	X	(39)	x^3	(40)	+
(41)	С	(42)	X	(43)	x^2	(44)		(45)	M
(46))	(47)	J	(48)	((49)	4	(50)	A
(51)	X	(52)	x^3	(53)	+	(54)	3	(55)	В
(56)	X	(57)	x^2	(58)	+	(59)	2	(60)	С
(61)	X	(62)	+	(63)	D	(64))	(65)	\rightarrow
(66)	Y	(67)	4	(68)	If	(69)	Abs((70)	Y
(71)		(72)	X	(73))	(74)	≥	(75)	1
(76)	EXP	(77)	-	(78)	1	(79)	0	(80)	:
(81)	Then	(82)	Y	(83)	\rightarrow	(84)	X	(85)	:
(86)	Goto	(87)	1	(88)	:	(89)	IfEnd		

Press MODE 1 (COMP) to exit the progamme mode.

Example To find the approximate root of $f(x) = x^4 + 6x^3 + 3x^2 - 26x - 24 = 0$, inital guess = 1.5

Estample to this the approximate foot of	1(11) 11 011 01	200 21 0, 1111011 guess 112		
Key sequences	Display	Explanation		
Prog P4	A? 0.	Enter into Proramme P4		
1 EXE 6 EXE 3 EXE -26 EXE -24 EXE	X? 0.	A = 1, B = 6, C = 3, D = -26, M = -24		
1.5 EXE	2.336148649 _{Disp}	1st approximation = 2.336148649		
EXE	2.059893868 _{Disp}	2nd approximation = 2.059893868		
EXE	2.002375203 _{Disp}	3rd approximation = 2.002375203		
EXE	2.00000394 _{Disp}	4th approximation = 2.00000394		

(8) To evaluate a 3×3 determinant: $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$.

MODE MODE 6 3 4 AC 4 1

(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	С	(12)	:	(13)	?	(14)	\rightarrow	(15)	D
(16)	:	(17)	?	(18)	\rightarrow	(19)	X	(20)	:
(21)	?	(22)	\rightarrow	(23)	Y	(24)	:	(25)	?
(26)	\rightarrow	(27)	M	(28)	:	(29)	В	(30)	Y
(31)	M	(32)	_	(33)	M	(34)	X	(35)	С
(36)	:	(37)	?	(38)	\rightarrow	(39)	M	(40)	:
(41)	Ans	(42)	+	(43)	D	(44)	M	(45)	C
(46)	_	(47)	M	(48)	Y	(49)	A	(50)	:
(51)	?	(52)	\rightarrow	(53)	M	(54)	:	(55)	Ans
(56)	+	(57)	A	(58)	X	(59)	M	(60)	_
(61)	M	(62)	D	(63)	В				

Press MODE 1 (COMP) to exit the progamme mode.

Example To evaluate $\begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 1 & 2 & 1 \end{vmatrix}$.

Key sequences	Disp	olay	Explanation
Prog P4	$\mathbf{A}^{?}$	0.	Enter into Proramme P4
1 EXE 2 EXE 3 EXE 0 EXE 1 EXE 4 EXE 1 EXE 2 EXE 1 EXE	-2	2.	The value of determinant = -2

(9) To find the vector cross product $(a\vec{i} + b\vec{j} + c\vec{k}) \times (d\vec{i} + e\vec{j} + f\vec{k})$

MODE MODE 6 3 4 AC 4 1

(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	С	(12)	:	(13)	?	(14)	\rightarrow	(15)	D
(16)	:	(17)	?	(18)	\rightarrow	(19)	X	(20)	:
(21)	?	(22)	\rightarrow	(23)	Y	(24)	:	(25)	В
(26)	Y	(27)	_	(28)	C	(29)	X	(30)	4
(31)	С	(32)	D	(33)	_	(34)	A	(35)	Y
(36)		(37)	A	(38)	X	(39)	_	(40)	В
(41)	D				·				

Press MODE 1 (COMP) to exit the progamme mode.

Example To find $(3\vec{i}-4\vec{j}) \times (-\frac{3}{4}\vec{i}+5\vec{j}+\vec{k})$

	<u> </u>	
Key sequences	Display	Explanation
Prog P4	$A^{?}$ 0.	Enter into Proramme P4
3 EXE -4 EXE 0 EXE -0.75 EXE 5 EXE 1 EXE	-4. _{Disp}	coefficient of $\vec{i} = -4$
EXE	-3. _{Disp}	coefficient of $\vec{j} = -3$
EXE	12.	coefficient of $\vec{k} = 12$

answer is $-4\vec{i} - 3\vec{j} + 12\vec{k}$

(10) To solve $f(x) = ax^3 + bx^2 + cx + d = 0$, where $a \ne 0$ and a, b, c, d may be complex numbers.

Calculator Programme for Casio fx-50FH II MODE MODE 6 3 3 AC 3 (CMPLX) 2

(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	С	(12)	:	(13)	?	(14)	\rightarrow	(15)	D
(16)	:	(17)	В	(18)	x^3	(19)		(20)	9
(21)	L	(22)	2	(23)	A	(24)	((25)	В
(26)	С	(27)	_	(28)	3	(29)	D	(30)	A
(31)	\rightarrow	(32)	D	(33)	:	(34)	В	(35)	x^2
(36)	_	(37)	3	(38)	A	(39)	С	(40)	\rightarrow
(41)	С	(42)	:	(43)	$\sqrt{}$	(44)	D	(45)	x^2
(46)		(47)	С	(48)	x^3	(49)	:	(50)	Ans
(51)		(52)	D	(53)		(54)	2	(55)	Ans
(56)	((57)	Ans	(58)	=	(59)	D	(60)	\rightarrow
(61)	D	(62)	:	(63)	∛((64)	Abs((65)	Ans
(66)	\Rightarrow	(67)	Ans	(68)	_	(69)	((70)	3
(71)	x^{-1}	(72)	arg((73)	D	(74)	\rightarrow	(75)	D
(76)	:	(77)	While	(78)	1	(79)	:	(80)	Abs(
(81)	D	(82)	\Rightarrow	(83)	D	(84)	+	(85)	C
(86)	ل	(87)	D	(88)	:	(89)	((90)	Ans
(91)	_	(92)	В	(93))	(94)	J	(95)	(
(96)	3	(97)	A	(98)	4	(99)	D	(100)	×
(101)	1	(102)		(103)	5	(104)	!	(105)	0
(106)	\rightarrow	(107)	D	(108)	:	(109)	WhileEnd		

Press MODE 1 (COMP) to exit the progamme mode.

Remark: to press the degree symbol °: Press Shift Ans 1.

Programme demonstration To solve $x^3 - 6x - 9 = 0$

Key sequences	Display		Explanation
AC Prog P3	$\mathbf{A}^{?}$	0.	Enter into P3 CMPLX mode
1 EXE 0 EXE -6 EXE -9 EXE	3. Disp		A = 1, B = 0, C = -6, D = -9, 1st ans. = 3
EXE	-1.5 _{Disp} R	k⇔I	
SHIFT EXE	0.866025403 _{i D}	isp R⇔I	2nd answer = $-1.5 + 0.866025403i$
EXE	-1.5 _{Disp} R	l⇔I	
SHIFT EXE	-0.866025403 _i D	oisp R⇔I	3rd answer $M = -1.5 - 0.866025403i$

Press AC and then MODE 1 to exit the programme mode and the CMPLX mode.

To solve $x^2 + 2x + 3 = 0$. Multiply the equation by X to give $x^3 + 2x^2 + 3x = 0$.

Remaining steps are the same, discard the first answer X = 0. Press MODE 1 to exit CMPLX mode.