

通用 LCD 驱动与控制电路 BL55076

BL55076 是一款通用型液晶控制和驱动单芯片,具有 4 背极和 40 段极共 160 位元的输出能力,适用于常用低占空比的字符/图形式液晶屏幕。BL55076 具有兼容多数微机系统的双向二线式串行总线通讯接口,可以级联使用。具备自动地址增量功能。

特点

- 单片 LCD 控制器/驱动器
- 背极驱动方式:静态或2、3、4复合
- 偏置电压:静态、1/2、1/3
- 宽工作电压范围: 2~6V
- 串行数据接口
- 4背极,40段极输出
- 40x4 共 160 位显存
- 多种闪烁方式
- 显存地址自动增加
- VLCD 引脚调整 LCD 工作电压
- 双向-二线串行总线通信
- 最高级联 16 片 BL55076
- 兼容 TTL/COMS 电平
- 先进的低压 CMOS 工艺
- LQFP-64 封装形式

应用领域

- 电表、水表、汽表
- 玩具
- 手持仪表
- 闹钟

Wrote by 2006

管脚说明

编号	名称	定义	I/0
10	SDA	二线串行总线数据信号	I/0
11	SCL	二线串行总线时钟信号	Ι
12	SYNC	级联同步信号(0SC=0:输出;0SC=1:	I/0
		输入)	
13	CLK	外部时钟信号(0SC=0:输出;0SC=1:	I/0
		输入)	
14	Vdd	电源正级	I
15	0SC	晶振选择信号(0:晶振; 1:外部时	I
		钟)	
16-18	AO、A1、A2	总线子地址信号	I
19	SA0	总线从地址 bit0 信号	I
20	Vss	电源负极	I
21	Vlcd	液晶工作低电位电压	I
25-28	ComO, Com2, Com1, Com3	液晶板 COM 输出	0
29-32、34-37、	S0S39	液晶板 SEG 输出	0
49-64、2-7			
1, 8, 9, 22, 23,	NC	未使用	_
24、33、48			

表1

管脚排列

图 1

功能框图

图 2

功能描述

1. 功能电路

BL550076内部集成了LCD驱动器所必需的所有功能电路。这些电路包括:LCD偏置电压发生器、LCD电压选择器、内部时钟、显示RAM、显示锁存器、移位寄存器、段/背极输出电路、输入/输出存储体选择器、闪烁电路、数据指针和子地址计数器。

2. 显示驱动原理:

BL55076有40个段输出S0--S39和4个背极输出Com0--Com3,它们和LCD直接相连,当少于40个段输出和少于4个背极输出应用时,不用的段或背极可空出。BL55076共有静态1:2、1:3、1:4四种背极输出方式,允许使用1/2或1/3两种偏置电压。

显示内容和 RAM 地址之间的关系可见下表:

	显示 RAM 地址和 SEGMENT(SO~S39)输出												
		0	1	2	3	0	0	0	0	37	38	39	Ram 数据
COM													填充次序
(Com0~	0												3
Com3)	1												2
输出	2												1
	3												0

表 2

当要显示的数据传送给 BL55076 后, BL55076 将接收到的字节数据按照所选择的 LCD 驱动方式填充在显示 RAM 中。图 2 示出了在不同的驱动方式下 7 段显示器的显示填充顺序。

方式	LCD 段	LCD 背极	显示 RAM 填装顺序	发送的显示字节
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		BP n n+1 n+2 n+3 n+4 n+5 n+6 n+7 0 c b a f g e d DP 1 * * * * * * * * * * * * * * * * * *	MSB LSB cbafgedDP
1:2	Sn+1 b	BP0	BP n n+1 n+2 n+3 0 a f e d 1 b g c DP 2 * * * * 3 * * * *	MSB LSB abfgecdDP
	Sn+1 $Sn+2$ f g	BP0 BP2	BP n n+1 n+2 0 b a f 1 DP d e 2 c g * 3 * * *	MSB LSB b DP c a d g f e
1:4 多极		BPO BP2	BP n n+1 0 a f 1 c e 2 b g 3 DP d	MSB LSB acbDPfegd

12/31/2007

Wrote by 2006

二线-串行通信总线协议

两个受控于BL55076的二线-串行通信总线受控器地址(0111000和0111001)。受控器 最重要的最低位由输入SA0的连线决定,因此,如下的两种在相同二线-串行通信总线上的 BL55076能被区别:

- (1) 在大型LCD应用中相同的二线-串行通信总线上达到16片BL55076;
- (2) 两种不同类的LCD复合在相同的二线-串行通信总线上使用。

二线-串行通信总线如图4。发送第一个起始条件后,紧接着发送两个BL55076从地址中的一个。所有SA0电平相同的BL55076同时响应从地址,但所有与SA0电平不同的BL55076则与二线-串行通信总线的通讯无关。在寻址之后为一个或多个(m≥1个字节)指令字节(COMMAND),用来定义所寻址的BL55076状态,指令字节中的最高位"C"用以标明是否是最后一个指令字节,当C="1"时表示后面的字节仍是指令字节;当C="0"时则表明该字节为最后一个指令字节。最后一个指令字节之后为一系列显示数据字节(DIS DATA),这些显示数据存放在显示RAM中,由数据指针和子地址计数器指示的地址上。数据指针和子地址计数器可自动变更,数据直接装载到指定的BL55076上,在每个字节之后的应答位由A2、A1、A0寻址的BL55066提供,在主控器发送完最后一个字节后产生一个终止条件P。

图 4

3 BL55076的控制命令

BL55076 共有 5 个控制命令字。命令和数据都是以字节的形式发送到 BL55076, 它们的 区别在于传送字节的最高位 C, 当 C=1 时表示其后传送的字节仍是命令; C=0 表示其后传送的字节是最后一个命令, 接下来传送的是一系列数据。下面列出了常用的 4 个命令的细节:

A. 方式设定

B. 数据指针(要显示的起始地址,对应段输出SO--S39的某一段)

C. 器件选择

D. 闪烁控制

图 5

极限参数

参数	符号	参数范围	单 位
电源电压	Vdd	-0. 5∼+8. 0	V
液晶工作电压	Vlcd	Vss-8.0∼ Vdd	V
输入电压 SDA、SCL	Vi	Vss-0.5∼Vdd+0.5	V
输出电压 SEG、COM	Vo	V1cd-0.5∼Vdd+0.5	V
Vdd, Vss, Vlcd 电流	Idd, Iss, Ilcd	-50~+50	mA
最大功耗	Ptot	400	mW
工作温度	Topr	-40∼ +75	°C
贮存温度	Tstg	−65~ +150	°C

表 6

直流电参数(除非特别指明, Ta=25℃)

符号	参 数	测试条件	最小值	典型值	最大值	单位
Vdd	工作电压		2	_	6	V
Vlcd	液晶工作电压		Vdd-6	-	Vdd-2	V
${ m I}_{ ext{ iny DD1}}$		Fc1k=200kHz	-	_	120	uА
$I_{ ext{DD2}}$		Fc1k=35kHz;Vdd=3.5V V1cd=0V;省电模式	_	-	60	uA
ViL	输入低电平电压	SDA, SCL	Vss	-	0. 3Vdd	V
ViH	输入高电平电压	SDA, SCL	0. 7Vdd	_	6. 0	V
Rph	上拉电阻	SDA, SCL	30	60	100	kΩ

表7

 冷流由参数	(除非特别指明,	Ta=25°C)
---------------	----------	----------

符号	参 数	测试条件	最小值	典型值	最大值	单位
Fclk	振荡频率	Vdd=5V	125	200	315	KHz
TclkH/L	振荡半周期		1	-	3	us
Tsh1	SCL启动延迟		5	-		us
Tsh2	SDA启动延迟		5	-		us
Tlow	脉冲低		5	-		us
Thig	脉冲高		4	_		us
Thd	脉冲延迟		250			ns

表8

时序图

图6

典型应用

图 7

注意: V1cd 引脚与 Vdd 之间的电压差为 LCD 屏的工作电压。 如果芯片工作电压与 LCD 屏电压相同, V1cd 引脚也可接地。

封装描述 LQFP64

图 9

单位	D	E	е	Ъ	f	m	n
mm(公差)	10.0(0.1)	12.0(0.15)	0.5	0. 22 (0. 05)	1. 25 (0. 2)	1.0	0.6(0.15)