Introduction Eswaran & Kotwal Epilogue

Credit and Microfinance: Consumption and Credit

Dr. Kumar Aniket

Lecture 1

© Kumar Aniket Lecture 1: Consumption & Credit

,

© Kumar Aniket

Lecture 1: Consumption & Credit

Epilogue

2/12

 Introduction
 Eswaran & Kotwal
 Epilogue

 ○●
 ○○○○○○
 ○○

LENDER'S CONTRACT PRISM

Adverse Selection: Ascertaining the borrower's risk type.

→ Borrower invests and thus initiates the project

Moral Hazard: Ensuring that the borrower exerts high effort.

Project concludes and its outcome is realised

Costly State Verification: Verifying the project's actual outcome

Enforcement: Forcing the borrower to repay

 Introduction
 Eswaran & Kotwal

 ●○
 0000000

POVERTY AND MICROFINANCE

- The poor often lack access to financial services wealth-threshold for accessing financial services has decreased though the ages due considerable progress in the field of banking
- Microfinance attempts to provide financial services to the poor
 This course looks at optimal design of microfinance institution
 - uses a contract based approach
 - depth of outreach is the metric used

 Introduction
 Eswaran & Kotwal
 Epilogue

 ○○
 ● ○○○○○
 ○○

ESWARAN & KOTWAL (1990)

Individual's ability to smooth consumption

affects her capacity to bear risk.

Consumption smoothing requires wealth and / or credit to trade consumption across time and disengage it from income

Wealth self insures through saving and delays consumption

Credit brings forward future the consumption

Difficult to smooth consumption when

- 1. credit markets rusty
- 2. wealth distribution skewed

Rural Credit Markets

- 1. Segemented with lots of exclusivity
- 2. Variation in terms of loans we explore credit ceilings

© Kumar Aniket Lecture 1: Consumption & Credit 3/12 © Kumar Aniket Lecture 1: Consumption & Credit 4

MODEL

Two period model with uncertain income in each period

Income uncertainty: $z + \sigma$ and $z - \sigma$ with equal probability

	Period 2		
	States	Good	Bad
Period 1	Good	$2(z+\sigma)$	2z
	Bad	2 <i>z</i>	$2(z-\sigma)$

Table: Agent's total lifetime income in all possible states of nature

Agents are risk averse and identical in all respects

$$U(c^1, c^2) = u(c^1) + u(c^2)$$
 $u'() > 0, u''() < 0;$

other than their respective *credit ceilings B*.

© Kumar Aniket Lecture 1: Consumption & Credit 5/12

 Introduction
 Eswaran & Kotwal
 Epilogue

 ○○
 ○○●○○○
 ○○

CONSTRAINED MAXIMISATION

Individual credit ceiling is B

Upper bound of relevant rate of B

If bad state is realised in period 1, the $c_{bad}^*(B)$ solves:

$$\max_{c^1} u(c^1_{bad}) + E(u(c^2_{bad}))$$

subject to $b \leq B$.

$$c_{bad}^*(B) = \begin{cases} (z - \sigma) + B & \text{for } B < B_c \\ \tilde{c}_{bad}^1 & \text{for } B \geqslant B_c \end{cases}$$

If good state is realised in period 1,

$$\tilde{c}_{good}^{1}$$
 solves $\max_{c_{good}^{1}} u(c_{good}^{1}) + E(u(c_{good}^{2}))$

UNCONSTRAINED MAXIMISATION

Period 1 Income realisation received

Decision on c^1 period 1 consumption

... implying decision to borrow or save contingent

$$\begin{array}{l} \tilde{c}_{bad}^1 \text{ solves } \max_{c_{bad}^1} u(c_{bad}^1) + E\big(u(c_{bad}^2)\big) \\ \\ \tilde{c}_{good}^1 \text{ solves } \max_{c_{good}^1} u(c_{good}^1) + E\big(u(c_{good}^2)\big) \\ \end{array}$$

Period 2 Income realisation received

repay or receieve repayment

 c^2 the residual income is consumed in period 2

© Kumar Aniket Lecture 1: Consumption & Credit 6/12

 Introduction
 Eswaran & Kotwal
 Epilogue

 ○○
 ○○○●○○
 ○○

UN/CONSTRAINED MAXIMISATION

	Consumption		
		Period 1	Period 2
States in Period 1	bad	\tilde{c}^1_{bad}	Total income - \tilde{c}^1_{bad}
	good	\tilde{c}^1_{good}	Total income - \tilde{c}_{good}^1

Table: Agent's consumption in all states without credit ceiling

		Consumption		
		Period 1	Period 2	
States in Period 1	bad	$c_{bad}^*({\color{red}B})$	Total income - $c_{bad}^*(B)$	
	good	\tilde{c}_{good}^1	Total income - \tilde{c}_{good}^1	

Table: Agent's consumption in all states with a binding credit ceiling B

© Kumar Aniket Lecture 1: Consumption & Credit 7/12 © Kumar Aniket Lecture 1: Consumption & Credit 8/12

RISK PREMIUM

Expected Utility depends on

- z (expected income)
- σ (volatility of income)
- *B* (credit ceiling) if $B \leq B_c$

Expected utility is increasing and concave in B till B_c and flat beyond

Certainty equivalent income *x* is the risk-less income = expected utility from the uncertain income process

$$2U(\mathbf{x}) = EU(B, z, \sigma)$$

where
$$x = z - \pi_{risk}$$

x can be broken down into expected income z and risk premium π_{risk} .

© Kumar Aniket Lecture 1: Consumption & Credit

9/12

Introduction Eswaran & Kotwal Epilogue

Figure: Obtaining the Risk Premium

Certainty Equivalent Income = Expected Utility

© Kumar Aniket Lecture 1: Consumption & Credit

Introduction

Eswaran & Kotwal

Introduction Eswaran & Kotwal

10/12

CONCLUSION

- Credit constraint's role in shaping an individual's outlook towards risk
- Cost an agent is ready to pay to insulate herself from income risk increases with as her credit ceiling decreases.
- Getting entrapped in Poverty
 - may lead severely credit constrained individuals to choose low mean income low risk occupations over high mean income high risk occupations

EMPIRICAL EVIDENCE

Karlan and Zinman (2008)

- shows that randomly give credit constrained individuals access to credit improves their welfare.
- credit constraint may be one of the causes of poverty

Dercon and Shapiro (2005)

- revisited the ICRISAT data set after three decades
- found a threshold below which individuals get entrapped by poverty
 - individuals with income below a threshold in 1980s still had similar incomes
 - individuals with income above the threshold had seen marked increase in income

