

SIMD Acceleration for Index Structures

Marten Wallewein-Eising
Otto von Guericke Univerity, Magdeburg
January 26, 2018

Agenda

Motivation

Excursion: B+-Tree

SIMD Style Processing

Adapted Tree structures

Seg-Tree/Trie

FAST

VAST

ART

Evaluation

Conclusion

Motivation

Excursion: B⁺-Tree

B⁺-Tree

- N-ary tree with large number of children per node
- Only leaf nodes contain values
- Leaf nodes often linked for range based scans

Single Instruction Multiple Data

• __m128i _mm_cmpgt_epi32 (__m128i a, __m128i b)
Compares 4 signed 32-bit integers in a and 4 signed 32-bit integers in b for greater-than.

Adapted Tree structures

- Seg-Tree/Trie
- FAST: Fast Architecture Sensitive Tree
- VAST: Vector-Advanced and Compressed Structure Tree
- ART: Adaptive Radix Tree

Seg-Tree/Trie

- Each node is a k-ary search tree
- Each node is linearised to use k-ary search
- $k = \frac{|SIMD|}{|Kev|}$, k keys are compared in parallel

Fast Architecture Sensitive Tree

- Based on binary tree
- Hierarchical blocking: SIMD, cache line and page blocks
- Efficient cache line and page usage

Adapted Tree structures

- VAST: Vector-Advanced and Compressed Structure Tree
 - · Extension of FAST
 - Uses key compression on lower levels of the tree
- ART: Adaptive Radix Tree
 - Uses different node types with different number of keys and children
 - Due to overfill or underfill of nodes, the node type is changed

Evaluation

Implementation of the considered performance criteria and their impact:

Criterium	Seg-Tree/Trie	FAST	ART	VAST	Impact
Horizontal vectorization	X	X	X	X	high
Minimized key size	0	-	X	X	high
Adapted node sizes and types	-	X	-	X	low
Decreased branch misses	-	X	-	X	medium
Full use of cache line using blocking and alignment	-	X	-	X	medium
Usage of Compression	o	-	X	X	medium
Adapt search algorithm for linearised nodes	X	-	-	-	low

Legend: x: implements the issue, o: partially implements the issue,

-: not implements the issue

Conclusion

How to adapt index structures to modern database systems:

- Compare as many keys as possible in parallel with SIMD
 - Direct performance increase up to a multiple
- Efficient usage of cache line
- · Decrease branch misses
- Use compression or adapted search algorithms

Sources

- http://infolab.stanford.edu/~nsample/cs245/ handouts/hw2sol/sol2.html
- https://www.clker.com/clipart-bosque.html
- S. Zeuch, F. Huber and J.-C. Freytag "Adapting Tree Structures for Processing with SIMD Instructions" in EDBT, 2014.
- C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W. Lee, S. A. Brandt and P. Dubey "FAST:
 Fast Architecture Sensitive Tree Search on Modern CPUs and GPUs" in SIGMOD, pp. 339-350, 2010.
- V. Leis, A. Kemper and T. Neumann "The Adaptive Radix Tree: ARTful Indexing for Main-Memory Databases" in ICDE, pages 38-49, 2013.

Sources

 T. Yamamuro, M. Onizuka, T. Hitaka, and M. Yamamuro "VAST-Tree: A Vector-Advanced and Compressed Structure for Massive Data Tree Traversal" in EDBT, pp. 396-407, 2012.

Thank you for your attention!