Code No: 131AA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech I Year I Semester Examinations, March/April - 2023 **MATHEMATICS - I**

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, MMT, AE)

Time: 3 Hours Max. Marks: 75

Note: i) Question paper consists of Part A, Part B.

- ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
- iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART - A

(25 Marks)

- Define an exact differential equation. Write the solution of that exact differential-1.a) equation. [2] [3]
 - Write the general solution of $(D^2 + a^2) y = sinax$. b)
 - Define a Hermitian matrix and a skew-Hermitical matrix. [2] c)
 - Define Echelon form of a matrix. What is the rank of a matrix which is in Echelon d) [3]
 - Show that the sum of the eigen values is equal to its trace. e) [2]
 - Define a quadratic form and give its real symmetric matrix. f) [3]
 - If $z = e^{xy}$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. g) [2]
 - If $x = r\cos\theta$, $y = r\sin\theta$, find $\frac{\partial(r,\theta)}{\partial(x,y)}$. h) [3]
 - Form a partial differential equation from $z = f(x^2 + y^2)$ by the elimination of arbitrary i) function. [2]
 - j) Solve px + qy = z. [3]

PART - B

(50 Marks)

- Solve $(\cos x \tan y + \cos(x+y))dx + (\sin x \sec^2 y + \cos(x+y))dy = 0$. 2.a)
 - According to Newton's law of cooling, the rate at which a substance cools in moving b) air is proportional to the difference between the temperature of the substance and that of the air. If the temperature of the air is 30°C and the substance cools from 100°C to 70^{0} C in 15 minutes, find when the temperature will be 40^{0} C? [5+5]

3. Solve
$$\frac{d^2y}{dx^2} + 4y = \tan 2x$$
 by method of variation of parameters. [10]

- 4.a) Find the rank of the matrix $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$.
 - b) Solve the system of equation 3x+3y+2z=1; x+2y=4; 10y+3z=-2; 2x-3y-z=5. [5+5]

OR

- 5. Solve the system $\lambda x + y + z = 0$; $x + \lambda y + z = 0$; $x + y + \lambda z = 0$ for all values of λ , if it has a non-trivial solution. [10]
- 6. Verify Cayley-hamilton theorem for the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence find the value of $A^8 5A^7 + 7A^6 3A^5 + A^4 5A^3 + 8A^2 2A + I$. [10]
- 7. Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy$ to the canonical form and find its nature.
- 8.a) If $u = \log\left(\frac{x^4 + y^4}{x + y}\right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$.
 - b) If $u = \sin^{-1}(x y)$, x = 3t, $y = 4t^3$, show that $\frac{du}{dt} = \frac{3}{1 t^2}$. [5+5]

OR

- 9. Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. [10]
- 10.a) Form a partial differential equation from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
 - b) Solve $(x^2 y^2 z^2) p + 2xyq = 2zx$.

OR

- 11.a) For a partial differential equation from $f(x+y+z, x^2+y^2+z^2) = 0$.
 - b) Solve $p^2 q^2 = x y$. [5+5]

---00O00---