Určete proud protékající integrovaným odporem v křemíkovém IO o dělce 1 mm a o průřezu 100 μm² s dotací fosforem na koncentraci 10¹⁷ cm² při teplotě 300 K a úbytku napětí na odporu 10V. Pohyblivost elektronů a děr v křemíku odečtete z grafu.

Na obrázku je energetický diagram přechodu PN.

Určete polarizaci zobrazeného přechodu vnějším napětím: závěrná (na P +, na N -) 🕈 🗶

Určete difúzní napětí přechodu P $^+$ N v meV, kde N_A = 10^{20} cm $^{-3}$ a N_D = 10^{17} cm $^{-3}$ při teplotě 300K. Intrinsickou koncentraci v křemíku uvažujte $n_i = 1.10^{10} \text{ cm}^{-3} \text{a kT} = 26 \text{ meV}.$

5,99 x mV.

Určete průrazné napětí strmého přechodu PN⁺v křemíku, kde N_A = 1.10¹⁸ cm⁻³ při teplotě 300 K. Permitivitu křemíku uvažujte 1pF/cm. Hodnotu kritického elektrického pole odečtěte z grafu. 3.125 ✓ V.

Check

You have correctly selected 1.

Correct

Marks for this submission: 1/1.

Určete proud protékající integrovaným odporem v křemíkovém IO o délce 10 μ m a o průřezu 10 μ m 2 s dotací fosforem na koncentraci 10 17 cm 3 při teplotě 300 K a úbytku napětí na odporu 10V. Pohyblivost elektronů a děr v křemíku odečtete z grafu. 11.2

Marks for this submission: 1/1.

Na obrázku je jednotková buňka kubické mřížky s mřížkovými vektory a, b, c.

Určete Millerovy indexy šedě vyznačené roviny : (1 0 0) ♦ ✓

Na tuto rovinu je kolmý krystalografický směr. [1 0 0] 🛊

Na obrázku je energetický diagram přechodu PN.

Určete míru dotace oblastí P a N. Jedná se o přechod P+N ◆ ~

Vypočtěte vzdálenost $I E_F = E_i I v meV v Si při teplotě 300 a koncentraci elektronů v rovnováze <math>n_0 = 10^{16} cm^{-2}$.

Intrinsickou koncentraci v křemíku uvažujte n_i = 1.10¹⁰ cm⁻³a kT = 26 meV.

359 ~ meV

Zkontrolovat

Energetická vzdálenost I E_{cp} - E_{cn} I na obrázku se určí jako: e.(Ud+Ua) ◆ ✓

 $kde\ U_{d}\ je\ difúzní\ potenciál,\ U_{a}\ je\ absolutní\ hodnota\ aplikovaného\ vnějšího\ napětí\ a\ e\ značí\ náboj\ elektronu.$

Vypočtěte vzdálenost I $E_F-E_i\,I_v$ meV v Si při p_0 = $10^{16}\,cm^{-3}\,v$ rovnováze při teplotě 300 K.

Intrinsickou koncentraci v křemíku uvažujte n_i = 1.10¹⁰ cm⁻³a kT = 26 meV.

359 **✓** meV

Zkontrolovat

Určete průrazné napětí strmého přechodu PN^+v křemíku, kde $N_A = 1.10^{18}$ cm $^{-3}$ při teplotě 300 K. Permitivitu křemíku uvažujte 1pF/cm. Hodnotu kritického elektrického pole odečtěte z grafu. 3,125

Vybrali jste správně 1.

Správně Bodový získ: 1/1.

Křemík krystaluje v mřížce: kubické plošně centrované		
Na jeden uzel mřížky křemíku připadá: dva atomy 💠 🗸		
Vypočtěte objemovou koncentraci n _{Si} atomů Si v krystalu křemíku: 5 ✓ .10 ²² cm ⁻³ . Mřížková konstanta křemíku: a₀= 0,543 nm		
Zkontrolovat		

Správně Rodový ziek

Bodový zisk. 1/1.

Na obrázku je energetický diagram přechodu PN.

Určete míru dotace oblastí P a N. Jedná se o přechod P+N ≎ ✓

Vypočtěte vzdálenost I E_F – E_i I v meV v Si při teplotě 300 a koncentraci elektronů v rovnováze $n_{\theta} = 10^{16} \text{cm}^{-3}$.

Intrinsickou koncentraci v křemíku uvažujte n_i = 1.10¹⁰ cm⁻³a kT = 26 meV.

✓ meV 359

Na jeden uzel mřížky křemíku připadá: dva atomy 🗢 🗸 Vypočtěte plošnou koncentraci $n_{(100)}$ atomů Si v rovině (100) krystalu křemíku: Mřížková konstanta křemíku: a₀= 0,543 nm

Určete průrazné napětí strmého přechodu PN⁺v křemíku, kde N_A =1.10¹⁴ cm⁻³ při teplotě 300 K.

Permitivitu křemíku uvažujte 1pF/cm. Hodnotu kritického elektrického pole odečtěte z grafu.

Niemik krystałuje v mrzec.	kubické plošně centrované 💠 🗸
Na jeden uzel mřížky křemík	ı připadá: dva atomy ♦ ✓
Vypočtěte objemovou koncer Mřížková konstanta křemíku:	ntraci n _{Si} atomů Si v krystalu křemíku: 4.996 ✓ .10 ²² cm ⁻³ . a₀= 0,543 nm

Určete polarizaci zobrazeného přechodu vnějším napětím: bez napětí

Na přechodu P+N, kde N_A = 10^{18} cm⁻³ a N_D = 5.10^{19} cm⁻³při teplotě 300 K.

Permitivitu křemíku uvažujte 1pF/cm. Intrinsickou koncentraci v křemíku uvažujte n_i = 1.10¹⁰ cm⁻³a kT = 26 meV.

1) určete difúzní napětí: 1.059

2) určete šířku ochuzené oblasti 36.7

Určete průrazné napětí strmého přechodu PN⁺v křemíku, kde N_A = 1.10¹⁸ cm⁻³ při teplotě 300 K. Permitivitu křemíku uvažujte 1pF/cm. Hodnotu kritického elektrického pole odečtěte z grafu. 3.45 ✓ V.

Na obrázku je jednotková buňka kubické mřížky s mřížkovými vektory **a**, **b**, **c**.

Určete Millerovy indexy šedě vyznačené roviny : (1 1 2) ◆ ✓

S touto rovinou je ekvivalentní (vykazuje stejné fyzikální vlastnosti) rovina: (2 1 1) 🕏 🗸

Určete proud protékající integrovaným odporem v křemíkovém IO o délce 1 μm a o průřezu 1 μm² s dotací borem na koncentraci 10¹⁵ cm⁻³ při teplotě 300 K a úbytku napětí na odporu 10V. Pohyblivost elektronů a děr v křemíku odečtete z grafu.

Zkontrolovat

Energetická vzdálenost I E _{cp} - E _{cn} I na obrázku se určí jako:
kde U _d je difúzní potenciál, U _a je absolutní hodnota aplikovaného vnějšího napětí a e značí náboj elektronu. ■
Vypočtěte vzdálenost $I E_F - E_i I$ v meV v Si při $p_0 = 10^{16}$ cm ⁻³ v rovnováze při teplotě 300 K. Intrinsickou koncentraci v křemíku uvažujte $n_i = 1.10^{10}$ cm ⁻³ a kT = 26 meV.
Zkontrolovat