Numeriska Metoder

En guide till E

Matriser

Matrismultiplikation

Två matriser A och B, måste ha dimensioner $m_1 x n$ och $n x m_2$ för att kunna multipliceras med varandra.

D.v.s. att A's kolumnantal måste vara samma som B's radantal

Vid multiplikation skapas en matris AB med dimensioner m₁ x m₂

Första raden på A tillsammans med första kolumnen i B skapar första elementet i AB, som vi kan kalla ab₁₁, i fallet nedan är det (a*1 + b*4).

Nästa element är (a*2+5*b) vilket är värdet på ab₁₂. Detta fortsätter tills första raden har multiplicerats med alla kolumner, då vi använder nästa rad tills slutet.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1a+4b & 2a+5b & 3a+6b \\ 1c+4d & 2c+5d & 3c+6d \end{pmatrix}$$

Tidsåtgång och antal operationer vid Gausselim

Vid gausseliminering av en matris med n obekanta krävs n^3 operationer Dubblas antalet obekanta så ökar tidsåtgången med en faktor $2^3 = 8$ gånger

Om det är en **triangulär** matris krävs det n^2 operationer Dubbla antalet obekanta -> Ökad tidsåtgång = faktor $2^2 = 4$ gånger längre

Om det är en **tridiagonal** matris krävs det **n** operationer Dubbla antalet obekanta -> Ökad tidsåtgång = faktor 2 = dubbelt så länge

Minstakvadratlösning med normalekvationerna Med minstakvadratmetoden (MKM)

Används för att lösa överbestämda linjära ekvationssystem

Ax≈y, x sökes

$$A^{T}Ax=A^{T}y$$

Minimerar residualvektorns euklidiska form Minimerar felkvadratsumman

$$\sum r_i^2 = ||r||_2^2 = ||y-Ax||_2^2 = ||Ax-y||_2^2$$

Felanalys

Felanalys

För ett exakt värde x och ett approximativt värde x gäller:

Absolutfel $\mid e_x \mid = \mid x - \bar{x} \mid \leq E_x$ (Absolutfelgränsen)

Absolutfelet är skillnaden mellan det exakta och det approximativa värdet

Relativfel $| r_x | = | e_x / x | = | x - \bar{x} | / x \le E_x$ (Relativfelgränsen)

Relativfelet är en indikation på hur bra ett resultat är i relation till resultatets storlek

Kancellation

Kancellation är något som kan uppstå när två nästan lika stora tal subtraheras från varandra, dvs då x-(x+h), h väldigt litet.

Problemet uppstår i flyttalsaritmetik pga datorers begränsade precision.

Små relativfel i termerna kan leda till stora relativfel i differensen

För stora h blir det stora trunkeringsfel

För små h ger stora avrundningsfel

Felpropagering

Om
$$\bar{x}_1 = x_1 + e_{x1}$$
 och $\bar{x}_2 = x_2 + e_{x2}$

För subtraktion och addition:

Addera absolutfelen

För multiplikation och division:

Addera relativfelen

Felfortplantningsformeln:

$$| \sim y - y | = | df/dx_1(\bar{x}) | |\bar{x}_1 - x_1| + | df/dx_2(\bar{x}) | |\bar{x}_2 - x_2| + \dots$$

Derivering

Derivering

Kedjeregeln

$$D\{f(g(x))\} = f'(g(x))g'(x)$$

Produktregeln

$$D\{f(x)g(x)\} = f'(x)g(x)+f(x)g'(x)$$

Partiella derivator

$$D_{x}\{f(x)g(y)\} = f'(x)g(x)$$

$$D_x\{f(x)+g(y)\}=f'(x)$$

Taylorutveckling

 $f(a+h)=f(a)+hf'(a)+h^2/2f''(a)+h^3/3!f'''(a)+...$

Differenskvoter

Bättre approximation med mindre h, tills kancellation uppstår. Stort h -> stort fel

Framåtdifferenskvot Trunkeringsfel prop mot h, O(h)

$$f'(a) \approx \Delta_h = (f(a+h)-f(a)) / h$$

Centraldifferenskvot Trunkeringsfel prop mot h², O(h²)

$$f'(a) \approx D_h = (f(a+h)-f(a-h)) / 2h$$

Bakåtdifferenskvot Trunkeringsfel prop mot h, O(h)

$$f'(a) \approx d_h = (f(a)-f(a-h)) / h$$

Differenskvotformel för andraderivatan

$$f''(a) \approx (f(a+h)-2f(a)+f(a-h)) / h^2$$

Trunkeringsfelet proportionellt mot h², O(h²)

Integraler

Trapetsregeln (sammansatta är samma)

Används för beräkning av integraler $I = \int_{a}^{b} f(x) dx$

$$I \approx T(h) = h(f(a)/2 + f(a+h) + f(a+2h) + ... + f(b-h) + f(b)/2)$$

h=(b-a)/n, n=antal delintervall

$$T(h) = h(sum_{i=1}^{n+1}f_i - (f_i + f_{n+1})/2)$$

$$T=sum_{i=1}^{n} h_{i}/2(f_{i}+f_{i+1})$$

Noggrannhetsordning 2, felet är O(h²)

Simpsons regel (sammansatta är samma)

$$S(h) = h/3(f(a)+4f(a+h)+2f(a+2h)+4f(a+3h)+...+4f(b-h)+f(b))$$

Antal intervall n måste vara jämnt

Noggrannhetsordning 4, felet är O(h⁴)

Richardsonextrapolation

Höjer noggrannheten med minst 1

På trapetsregeln (n=2)

$$R(h) = (2^{n}T(h/2)-T(h)) / (2^{n}-1) = (4T(h/2)-T(h)) / 3$$

På simpsons regel (n=4)

$$R(h) = (2^{n}S(h/2)-S(h)) / (2^{n}-1) = (16T(h/2)-T(h)) / 15$$

Interpolation

Linjär Interpolation

$$p(x) = y_1 + ((y_2 - y_1)/(x_2 - x_1))(x - x_1)$$

Styckvis linjär interpolation

$$p(x) = p(x_n + th_n) = y_n + t^* \Delta y_n$$

$$h_n = x_{n+1} - x_n$$
, $\Delta y_n = y_n + 1 - y_n$, $t = (x - x_n)/h_n$

Kvadratisk interpolation med polynom

Naiv (grad m)

N punkter -> n-1 gradtal

$$p(x) = c_1 + c_2 x + c_3 x^2 + ... + c_m x^{m-1}$$

Newton (grad m)

$$p(x) = c_1 + c_2(x - x_1) + c_3(x - x_1)(x - x_2) + ... + c_m(x - x_1)...(x - x_{m-1})$$

Lagrange (grad 2, 3 punkter)

$$p(x) = y1((x-x2)(x-x3))/((x1-x2)(x1-x3)) + \\ +y2((x-x1)(x-x3))/((x2-x1)(x2-x3)) + y3((x-x1)(x-x2))/((x3-x1)(x3-x2))$$

Runges fenomen

Uppstår vid interpolering av hög grad mellan ekvidistanta punkter

Ger ganska kraftiga svängar mellan interpolationspunkterna

Ekvationer och ekvationssystem

Överbestämt ekvationssystem

Ett överbestämt ekvationssystem har fler ekvationer än obekanta

Kan lösas med hjälp av MKM

Konvergens

Konvergens mot roten a

Linjär konvergens

Om C<1 för $|x_{n+1}-a| \approx C|x_n-a|$

Kvadratisk konvergens

Om K positiv konstant för $|x_{n+1}-a| \approx K|x_n-a|^2$

Sekantmetoden

$$X_{n+1} = X_n - ((X_n - X_{n-1}) / (f(X_n) - f(X_{n-1}))) f(X_n)$$

Behöver inte deriveras eller vara deriverbar

Kräver två startvärden

Har **linjär konvergens**, långsammare än Newton-Raphson

Newton-Raphsons metod en variabel

$$X_{n+1} = X_n - f(X_n)/f'(X_n)$$

Krävs att funktionen kan deriveras

Har kvadratisk konvergens för enkelrötter

Om funktionen har dubbelrötter så:

$$x_{n+1} = x_n - 2f(x_n)/f'(x_n)$$

Newton-Raphsons metod med flera variabler

$$X_{n+1} = X_n - f(X_n)/J(X_n) = X_n - J(X_n)^{-1}f(X_n)$$

Använder ett linjärt ekvationssystem i n variabler

Har kvadratisk konvergens

Fixpunktsiteration med fixpunktsmetoden (FPM)

För x =
$$G(x)$$
, $x_{n+1} = G(x_n)$

Om |G'(x)| < 1 så har FPM **linjär konvergens** med C = |G'(x)|

Kräver oftast omskrivning för att konvergera

Är långsammare än sekantmetoden och newton-raphsons metod

Gör om en given funktion f(x)=0 till x=g(x)Välj ett godtyckligt värde, utveckla till konvergens Om det inte konvergerar, gör om g(x)

Intervallhalveringsmetoden

När man vet att roten finns inom ett intervall

Beräkna intervallets mittpunkt m = (a+b)/2

Beräkna f(m)

Om f(m)<0, sätt a = m och upprepa

Om f(m)>0, sätt b=m och upprepa

Intervallets längd reduceras med en faktor 2 varje iterationssteg

Efter n iterationer är intervallet 2⁻ⁿ av ursprungsintervallet b-a

Differentialekvationer

Euler's metod / Euler Framåt

Används med första ordningens differentialekvationer y'=f(t,y)

$$y_{n+1} = y_n + hf(t_n, y_n) = y_n + hy'(t_n) \sim (y(t_n + h) - y(t_n)) / h$$

Funktionen är Explicit

Funktionen är stabil om $|1+h\lambda| \le 1$ för y'= λ y där y_{n+1}= y_n+ hy'(t_n)

Funktionen har noggrannhetsordning 1, med felet O(h)

Euler bakåt

Funktionen är Implicit

$$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1}) = y_n + hy'(t_{n+1})$$

Tillåter större steglängd för styva problem

Är svårare att implementera för randvärdesproblem

Noggrannhetsordning 1, Felet O(h)

Runge-Kuttas metod

RK2

$$y_{n+1} = y_n(f_1 - f_2) \begin{cases} f_1 = f(t_n, y_n) \\ f_2 = f(t_n + h, y_n + hf_1) \end{cases}$$

Noggrannhetsordning 2, Felet O(h²)

RK4
$$y_{n+1} = y_n + h/6(f_1 + 2f_2 + 2f_3 + f_4)$$

$$\begin{cases} f_1 = f(t_n, y_n) \\ f_2 = f(t_n + h/2, y_n + hf_1/2) \\ f_3 = f(t_n + h/2, y_n + hf_2/2) \\ f_4 = f(t_n + h, y_n + hf_3) \end{cases}$$

Noggrannhetsordning 4, Felet O(h⁴)

Högre ordningens differentialekvationer

y" = f(t,y,y') kan skrivas om till ett system av två första ordningens diff.ekvationer

$$u_1 = y, \quad u_2 = y'$$

 $u'_1 = u_2, \quad u'_2 = f(t, y_1, y_2)$
 $u'=f(t, u), \quad f=(u_2, F(t, u_1, u_2))$

N okända -> N stk första ordningens system, som kräver N begynnelsevärden

Standardform

$$z^{(n)}(t) = y(t,z(t),...,z^{(n-1)}(t)) = d/dt \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{bmatrix}$$

Begynnelsevärdesproblem och Randvärdesproblem

Begynnelsevärdesproblem

Ordinär differentialekvation med ett givet begynnelsevärde för en given punkt i definitionsmängden

$$y''=f(t,y,y'), y'=f(t,y), y_o=a$$

Randvärdesproblem

Ordinär differentialekvation med givna randvärden

$$y''=f(t,y,y'), y(a)=y_0, y(b)=y_{slut}$$

 $y''(x)=g(x,y(x))$

Inskjutningsmetoden för randvärdesproblem

Gör om ett randvärdesproblem till ett begynnelsevärdesproblem

Görs med en BVP-metod och en iterativ metod, exempelvis sekantmetoden och eulers metod

Gissa startderivatan om den är okänd, eller y₀ om startderivatan är given Lös med bästa tänkbara metod, ex RK4, se slutvärdet vid t=b, ta nytt startvärde

Matrismetoden för randvärdesproblem

$$y''(x_n) \approx (y(x_{n+1}) - 2y(x_n) + y(x_{n-1})) / h^2$$

 $y'(x_n) \approx (y(x_{n+1}) - y(x_{n-1})) / 2h$

Noggrannhetsordning 2, O(h²)

Dela intervallet $a \le t \le b$ i N intervall med steg h=(b-a)/N Inför beteckning t_i för kända t-värden t_i =a+ih Inför beteckning y_i för de n okända y-värdena y(t_i) n = N-1 om känt start och slutvärde, n = N om ena villkoret har ett derivatavillkor