Clustering river networks to classify landscape domains

Fiona Clubb¹, Bodo Bookhagen², and Aljoscha Rheinwalt²
¹Department of Geography, Durham University

²Institute of Geosciences, University of Potsdam

Why should we care about river network morphology?

We can use rivers to quantify Earth's topography

We might be able to identify faults remotely, e.g. blind thrust faults

Slope vs. drainage area

Power law relationship between slope and drainage area:

$$S = k_s A^{\theta}$$

 k_s = channel steepness θ = concavity index

Problem: Data gaps and noise

Typical slope-area plot from river basin near Xi'an, China (SRTM 30 m)

Mudd et al. (2018)

Problem: We now have large volumes of data to analyse...

Many countries now have freely available national lidar data (e.g. Scotland, England, Netherlands, Belgium, Spain, Finland, Denmark, Slovenia, etc...)

We need new techniques that can deal with global topographic data at high resolutions

Potential solution: clustering of river profiles

Separate channels with different morphology

Potential solution: clustering of river profiles

- Separate channels with different morphology
- Allow more robust extraction of channel metrics, such as normalised channel steepness

Potential solution: clustering of river profiles

- Separate channels with different morphology
- Allow more robust extraction of channel metrics, such as normalised channel steepness
- Data driven technique that can help to distinguish signal from noise

Clustering of 1D data

- Algorithms developed mostly for time series data
- Used in diverse fields: climate science, meteorology, evolutionary biology, geophysics, quantitative finance, economics, epidemiology, etc...

Applying to river networks

Separate channels by stream order to ensure we are comparing channels with similar discharge/drainage area

Profile dissimilarity

STEP 1

Compare the similarity of each pair of profiles

 d_R = dissimilarity metric

Agglomerative hierarchical clustering

STEP 2: Use matrix of pairwise d_R values for clustering

Agglomerative hierarchical clustering

STEP 2: Use matrix of pairwise d_R values for clustering

Applying to river networks

STEP 3

Assign clusters back to the original profiles

Applying the method

Applying the method

Bitterroot National Forest, Idaho

Applying the method

- Bitterroot National Forest, Idaho
- Santa Cruz Island, California

Transient incision: Bitterroot National Forest, Idaho

Transient incision: Bitterroot National Forest, Idaho

Distinguishing fluvial and debris flow process domains

First order channels: both clusters have **low concavity**

Third order channels:

- Low concavity cluster (debris flow dominated)
- High concavity cluster (fluvial dominated)

Impact of lithology: Pozo catchment, Santa Cruz Island

Impact of lithology: Pozo catchment, Santa Cruz Island

Impact of lithology: Pozo catchment, Santa Cruz Island

Red cluster: 95% Canada shale

Blue cluster: 78% breccia/volc.

First order catchment metrics

Slope-area plots by cluster

Higher concavity and channel steepness in blue cluster (more resistant lithology)

Comparison with normalized channel steepness

Comparison with normalized channel steepness

No significant variation in

 k_{sn} with lithology

Conclusions and potential applications

 Clustering can be used to tackle the problem of landscape heterogeneity

Arequipa, Peru, Google Earth View

Conclusions and potential applications

- Clustering can be used to tackle the problem of landscape heterogeneity
- Data-driven approach with few assumptions

Arequipa, Peru, Google Earth View

Conclusions and potential applications

- Clustering can be used to tackle the problem of landscape heterogeneity
- Data-driven approach with few assumptions
- Potential applications: channel steepness analysis, identification of debris flow domains, hillslope-valley transitions, extraction of alluvial reaches, etc.

Arequipa, Peru, Google Earth View