decture 1 Frobability Space (R, A, P) 1) S = set of outcomes (of the experiment)2) A is a S = algebra of events(3) (1;2;3;4;5;6) complementary event (4) a die - several dice a sum of events: at least one of events X, Y happens $X + Y = X \cup Y$ $XY = X \cap Y \rightarrow a$ fracturet of events: Both events X, Y happen = if XEA, JEA = XYEA XYEA SYEA SX+YEA XEA, YEAGXEA, YEA

$$\begin{array}{l} \overline{X}VY = \overline{X}OY \\ \overline{X}OY = \overline{X}VY \end{array}$$

$$\begin{array}{l} X_{1}, X_{2}, \dots, X_{n}, \dots \in A \Rightarrow \\ \overline{S}, X_{1} \in A \\ \overline{a} = 1 \\ a) & & & & & & & & & & & & \\ \Omega = & & & & & & & & & & \\ \Omega = & & & & & & & & & & & \\ \Omega = & & & & & & & & & & & \\ \end{array}$$

$$\begin{array}{l} X \cup Y = \overline{X}OY \\ \overline{X}OY = \overline{X}O$$

{3,4,5,6}

 $\{1,2,3,4,5,6\}$ $\{1,2,3,4\}$

[1,2] [1,2,5,6]

65,63

3) Probability is a function on set of events.
a)
$$X \in A$$
: $P(X) > 0$
b) $P(\Omega) = 1$

a)
$$f(x) = 1$$

b) $f(x) = 1$

c) $f(x) = 1$

c) $f(x) = 1$

6)
$$F(UC) = 1$$

c) X and Y are disjoint events (i.e. $XY = \emptyset$)
 $\Rightarrow P(X+Y) = P(X) + P(Y)$ additivity

$$\Rightarrow P(X+Y) = P(X) + P(Y) \quad \text{additivity}$$

$$() \times \times \times \times \quad \text{are disjoints events}$$

C)
$$X_1, X_2, ..., X_n,$$
 are disjoints events

$$\Rightarrow P\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} P(X_i) \quad o-\text{additivity}$$

$$\Rightarrow P\left(\sum_{i=1}^{\infty} X_i\right) = \sum_{i=1}^{\infty} P(X_i) \circ - addit$$

Classical model

$$S = \{a_1, a_2, ..., a_n\}$$
 $P(a_1) = P(a_2) = ... = P(a_n) = \frac{1}{n}$

A is an event

 $P(A) = \begin{array}{c} \text{number of outcomes in } A \\ \text{n} \end{array}$
 $X_1 Z_1 Z_2 Y_2 Y_3 Y_4 Y_5 100$

50 humbers are taken at random

 $P(\text{the smallest number is } 4) = ?$
 $\binom{100}{50}$ is a total number of outcomes

 $\binom{96}{93}$ favorable outcomes

 $\binom{96}{93}$ favorable outcomes

 $\binom{96}{93}$ favorable outcomes

10-digit numbers formed with digits 4,5,6,7,8 that follow in non-decreasing order (not all the digits have to be present) 4444778888 P(all 5 digits are "used" in this number) 4456666777 10 stars, 4 Bars (14) is a total number of outcomes (3) is a number of favorable outcomes $P = {\binom{9}{4}}/{\binom{14}{4}}$

$$P(A+B) = P(A) + P(B)$$
 if A and B are disjoint $AB = \emptyset$

ALB (ALB) BLA B $A+B = (A LB) + (AB) + (BLA)$
 $P(A+B) = P(A LB) + P(AB) + P(AB) + P(AB) = P(A LB) + P(AB) + P(AB) = P(A+B) + P(B) + P(B) + P(C) - P(A+B) = P(A) + P(B) - P(AB) + P(C) - P(AC+BC) = P(A) + P(B) - P(AB) + P(C) - P(AC) - P(BC) + P(AC-BC) = P(AC-BC) + P(AC-BC) = P(AC-BC) + P(AC-BC)$

 $(A_1 + A_2 + ... + A_n) B =$ = $A_1 B + A_2 B + ... + A_n B$

Conditional probability
$$P(B) \neq 0$$

$$P(AB) = P(AB)$$

$$P(AB) = P(B) \cdot P(A|B) = P(A) \cdot P(B|A)$$

$$P(ABC) = P(AB) \cdot P(C|AB) = P(A) \cdot P(B|A)$$

$$P(ABC) = P(AB) \cdot P(C|AB) = P(A) \cdot P(B|A)$$

$$P(C|AB) = P(C|AB) \cdot P(C|AB) \cdot P(C|AB)$$

$$P(ABCQ) = P(A) - P(B|A) - P(C|AB) \cdot P(Z|ABC)$$

$$A = getting$$
 an even number
$$B = getting "2"$$

$$P(BA) = P(B) = \frac{1/6}{1/2}$$

$$P(A) = \frac{1}{1/2}$$

MATHEMATICS M A T H S P(X₁) P(X₂|X₁X₂) P(X₄|X₁X₂X₃) P(X₅|X₁X₂X₃X₄) P(X₁) P(X₂|X₁X₂X₃X₄) $\frac{2}{10}$ $\frac{2}{9}$ $\frac{1}{8}$ $\frac{1}{7}$ X_1 , X_2 , Xi = { the letter on position is the necessary one? P(X1X2 X3X4 X5)

independent events $P(AB) = P(A) \cdot P(B)$ $\frac{P(AB)}{P(B)} = P(A)$ P(A|B) = P(A)P(B|A) = P(B)A, B, C pairwood P(AB) = P(A)P(B) P(AC) = P(A)P(C) P(AC) = P(A)P(C)mutical independence P(BC) = P(B)P(C)P(ABC) = P(A)P(B)P(C)P(A|BC) = P(A)green red $\frac{P(ABC)}{P(C)} = P(AB)$ red Blue green P(AB|C) = P(AB) $G = \{a \text{ face rolled contains green}\}\$ $R = \{a \text{ face rolled contains red}\}\$ blue 6 P(B) = P(R) = P(G) = 1/2P(BG) = P(BR) = P(GR) = 1/4P(BGR) = 1/4

are (motivally) independent $X_1, X_2, X_3,$ events $P(X_{i_1}X_{i_2}-X_{i_k}|X_{j_1}X_{j_2}-X_{j_k})=P(X_{i_1}X_{i_2}-X_{i_k})$ $\{i_1, i_2, \dots, i_k\} \subset \{1, 2, 3, \dots, h\}$ $= P(X_{i_1}X_{i_2}...X_{i_k}) = P(X_{i_1}).P(X_{i_2})...P(X_{i_k})$ 20 people; at least two of them have birthday on the same day $365^{20} \text{ outcomes}$ $1 - \frac{365 \cdot 364 \cdot 363 \cdot 362 \cdot \ldots 346}{365^{20}}$