Листок 5

Тема 5(2.1). Конечные поля. Соответствие Галуа

Упражнения и задачи

- 1. Завершите доказательство предложения: пусть k поле характеристики p, тогда $\forall \alpha, \beta \in k \ \forall d \in \mathbb{Z}_+ \ (\alpha + \beta)^{p^d} = \alpha^{p^d} + \beta^{p^d}.$
- 2. Докажите, что если расширение L/K конечной степени [L:K], то L/K алгебраическое.
- 3. Докажите, что
 - для $a \in \mathbb{Z}$ $a^l 1|a^m 1 \Leftrightarrow l|m$ в $\mathbb{F}_q[x]$ $x^l 1|x^m 1 \Leftrightarrow l|m$
- 4. Пусть p,q различные простые. Чему равно число неприводимых многочленов степени q в $\mathbb{F}_p[x]$?
- 5. Пусть $\sigma_j(f) = \sum_{g|f}' (Ng)^j$, где суммирование берется по неприводимым унитарным делителям g (для $f \in \mathbb{F}_q[x]$ степени $\deg f = n$ $Nf = q^n$). Докажите, что
 - $\sum_{f} \frac{\sigma_0(f)}{(Nf)^s} = \frac{1}{(1-q^{1-s})^2};$
 - $\sum_{f} \frac{\sigma_1(f)}{(Nf)^s} = \frac{1}{(1-q^{1-s})(1-q^{2-s})}$.
- 6. Пусть $\alpha \in \mathbb{F}_q^*$. Докажите, что $x^n = \alpha$ разрешимо $\Leftrightarrow \alpha^{(q-1)/d=1}$, где d = (n, q-1), причем если разрешимо, то d решений.
- 7. Как выглядит подгруппа всех квадратов в \mathbb{F}_{2^n} ?
- 8. Пусть n|q-1, докажите, что $G=\{\alpha\in\mathbb{F}_q^*: x^n=\alpha$ разрешимо $\}$ подгруппа в \mathbb{F}_q^* , $|G| = \frac{q-1}{n}$.
- 9. Пусть $n|q-1, F=\mathbb{F}_q, K/F$ расширение конечных полей, [K:F]=n. Докажите, что $\forall \alpha \in F^*$ уравнение $x^n = \alpha$ имеет n решений в K.
- 10. Пусть K/F расширение конечных полей, $\operatorname{char} F \neq 2$, [K:F]=3. Докажите, что если α не является квадратом в F, то α не является квадратом и в K.
- 11. Пусть $F=\mathbb{F}_q,\ K/F$ расширение конечных полей, $\alpha\in\mathbb{F}_q,\ n|q-1$ и $x^n=\alpha$ не разрешимо в \mathbb{F}_q . Тогда $x^n = \alpha$ не разрешимо в K, если (n, [K:F]) = 1.
- 12. Пусть $F = \mathbb{F}_q$, K/F расширение конечных полей, [K:F] = 2. Докажите, что $\forall \beta \in K \ \beta^{1+q} \in F$. Более того, $\forall \alpha \in F \ \exists \beta \in K : \alpha = \beta^{1+q}$.

SageMath

• Исследуйте основные функции SageMath связанные с заданием и свойствами конечных полей

1

- Определение конечного поля: FiniteField(), GF();
- Неприводимый многочлен задающий конечное поле: polynomial(), опция modulus в FiniteField() для явного задания неприводимого многочлена модели конечного поля;
- Решение уравнения $x^n = \alpha$: nth_root().