```
import pandas as pd
import numpy as np
```

df =
pd.read_csv('https://raw.githubusercontent.com/YBI-Foundation/Dataset/
main/Fruits.csv')

df.head()

,	Fruit Category	Fruit Name	Fruit Weight	Fruit Width	Fruit Length
0	1	Apple	192	8.4	7.3
1	1	Apple	180	8.0	6.8
2	1	Apple	176	7.4	7.2
3	1	Apple	178	7.1	7.8
4	1	Apple	172	7.4	7.0

	Fruit	Colour	Score
0			0.55
1			0.59
2			0.60
3			0.92
4			0.89

df.info

			ame.info of Fruit Length	Fruit Category	Fruit Name	Fruit
0 0	FIUIL	1	Apple	192	8.4	7.3
1		1	Apple	180	8.0	6.8
2		1	Apple	176	7.4	7.2
3		1	Apple	178	7.1	7.8
4		1	Apple	172	7.4	7.0
5		1	Apple	166	6.9	7.3
6		1	Apple	172	7.1	7.6
7		1	Apple	154	7.0	7.1
8		1	Apple	164	7.3	7.7

9	1	Apple	152	7.6	7.3
10	1	Apple	156	7.7	7.1
11	1	Apple	156	7.6	7.5
12	1	Apple	168	7.5	7.6
13	1	Apple	162	7.5	7.1
14	1	Apple	162	7.4	7.2
15	1	Apple	160	7.5	7.5
16	1	Apple	156	7.4	7.4
17	1	Apple	140	7.3	7.1
18	1	Apple	170	7.6	7.9
19	2	0range	86	6.2	4.7
20	2	0range	84	6.0	4.6
21	2	0range	80	5.8	4.3
22	2	0range	80	5.9	4.3
23	2	0range	76	5.8	4.0
24	2	0range	342	9.0	9.4
25	2	0range	356	9.2	9.2
26	2	0range	362	9.6	9.2
27	2	0range	204	7.5	9.2
28	2	0range	140	6.7	7.1
29	2	0range	160	7.0	7.4
30	2	0range	158	7.1	7.5
31	2	0range	210	7.8	8.0
32	2	0range	164	7.2	7.0

33	2	0range	190	7.5	8.1
34	2	0range	142	7.6	7.8
35	2	0range	150	7.1	7.9
36	2	0range	160	7.1	7.6
37	2	0range	154	7.3	7.3
38	2	0range	158	7.2	7.8
39	2	0range	144	6.8	7.4
40	2	0range	154	7.1	7.5
41	2	0range	180	7.6	8.2
42	2	0range	154	7.2	7.2
43	3	Lemon	97	7.2	10.3
44	3	Lemon	70	7.3	10.5
45	3	Lemon	93	7.2	9.2
46	3	Lemon	80	7.3	10.2
47	3	Lemon	98	7.3	9.7
48	3	Lemon	87	7.3	10.1
49	3	Lemon	66	5.8	8.7
50	3	Lemon	65	6.0	8.2
51	3	Lemon	58	6.0	7.5
52	3	Lemon	59	5.9	8.0
53	3	Lemon	60	6.0	8.4
54	3	Lemon	58	6.1	8.5
55	3	Lemon	58	6.3	7.7
56	3	Lemon	58	5.9	8.1

5/	3	Lemon	76	6.5	8.5
58	3	Lemon	59	6.1	8.1

Fruit Colour Score 0 0.55 1 0.59 2 0.60 3 0.92 4 0.89 5 0.93 6 0.92 7 0.88 8 0.70 9 0.69 10 0.69 11 0.67 12 0.73 13 0.83 0.85 14 15 0.86 16 0.84 17 0.87 18 0.88 19 0.80 20 0.79 21 0.77 22 0.81 23 0.81 24 0.75 25 0.75 26 0.74 27 0.77 28 0.72 29 0.81 30 0.79 31 0.82 32 0.80 33 0.74 34 0.75 35 0.75 36 0.76 37 0.79 38 0.77 39 0.75 40 0.78 41 0.79 42 0.82

43	0.70
44	0.72
45	0.72
46	0.71
47	0.72
48	0.72
49	0.73
50	0.71
51	0.72
52	0.72
53	0.74
54	0.71
55	0.72
56	0.73
57	0.72
58	0.70 >

df.describe

<box> Weight</box>			ne.describe of Fruit Length	\	Fruit	Category	Fruit	Name	Fruit
0	ITUIC	1	Apple	`	192		8.4		7.3
1		1	Apple		180		8.0		6.8
2		1	Apple		176		7.4		7.2
3		1	Apple		178		7.1		7.8
4		1	Apple		172		7.4		7.0
5		1	Apple		166		6.9		7.3
6		1	Apple		172		7.1		7.6
7		1	Apple		154		7.0		7.1
8		1	Apple		164		7.3		7.7
9		1	Apple		152		7.6		7.3
10		1	Apple		156		7.7		7.1
11		1	Apple		156		7.6		7.5
12		1	Apple		168		7.5		7.6
13		1	Apple		162		7.5		7.1

14	1	Apple	162	7.4	7.2
15	1	Apple	160	7.5	7.5
16	1	Apple	156	7.4	7.4
17	1	Apple	140	7.3	7.1
18	1	Apple	170	7.6	7.9
19	2	0range	86	6.2	4.7
20	2	0range	84	6.0	4.6
21	2	0range	80	5.8	4.3
22	2	0range	80	5.9	4.3
23	2	0range	76	5.8	4.0
24	2	0range	342	9.0	9.4
25	2	0range	356	9.2	9.2
26	2	0range	362	9.6	9.2
27	2	0range	204	7.5	9.2
28	2	0range	140	6.7	7.1
29	2	0range	160	7.0	7.4
30	2	0range	158	7.1	7.5
31	2	0range	210	7.8	8.0
32	2	0range	164	7.2	7.0
33	2	0range	190	7.5	8.1
34	2	0range	142	7.6	7.8
35	2	Orange	150	7.1	7.9
36	2	0range	160	7.1	7.6
37	2	0range	154	7.3	7.3

38	2	0range	158	7.2	7.8
39	2	0range	144	6.8	7.4
40	2	0range	154	7.1	7.5
41	2	0range	180	7.6	8.2
42	2	0range	154	7.2	7.2
43	3	Lemon	97	7.2	10.3
44	3	Lemon	70	7.3	10.5
45	3	Lemon	93	7.2	9.2
46	3	Lemon	80	7.3	10.2
47	3	Lemon	98	7.3	9.7
48	3	Lemon	87	7.3	10.1
49	3	Lemon	66	5.8	8.7
50	3	Lemon	65	6.0	8.2
51	3	Lemon	58	6.0	7.5
52	3	Lemon	59	5.9	8.0
53	3	Lemon	60	6.0	8.4
54	3	Lemon	58	6.1	8.5
55	3	Lemon	58	6.3	7.7
56	3	Lemon	58	5.9	8.1
57	3	Lemon	76	6.5	8.5
58	3	Lemon	59	6.1	8.1

	Fruit	Colour	Score
0			0.55
1			0.59
2			0.60
3			0 02

4 5 6 7 8 9 10 11 12 13 14 15 16	0.89 0.93 0.92 0.88 0.70 0.69 0.67 0.73 0.83 0.85 0.86
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	0.88 0.79 0.77 0.81 0.81 0.75 0.75 0.77 0.72 0.81 0.79 0.82 0.80 0.74 0.75 0.75 0.75 0.75
41 42 43 44 45 46 47 48 49 50 51 52 53	0.79 0.82 0.70 0.72 0.72 0.71 0.72 0.73 0.71 0.72 0.72

```
54
                0.71
55
                0.72
                0.73
56
57
                0.72
58
                0.70 >
df.shape
(59, 6)
df.columns
dtype='object')
df['Fruit Category'].value counts()
    24
2
1
    19
3
    16
Name: Fruit Category, dtype: int64
df.groupby('Fruit Category').mean()
              Fruit Weight Fruit Width Fruit Length Fruit Colour
Score
Fruit Category
                165.052632
                             7.457895
                                          7.342105
1
0.783684
                170.333333
                             7.220833
                                          7.195833
0.776250
                 71.375000
                             6.512500
                                          8.856250
0.718125
y = df['Fruit Category']
y.shape
(59,)
У
0
     1
1
     1
2
     1
3
     1
4
     1
5
     1
6
     1
7
     1
8
     1
```

9 10 11 13 14 15 16 17 18 19 20 12 22 23 24 25 26 27 28 29 30 31 32 33 33 34 44 44 44 45 46 47 48 49 49 49 49 49 49 49 49 49 49 49 49 49	111111111111111111111111111111111111111
46 47 48 49 50 51 52 53 54 55 56	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

```
58
Name: Fruit Category, dtype: int64
x = df[['Fruit Weight', 'Fruit Width', 'Fruit Length', 'Fruit Colour
Score']]
x.shape
(59, 4)
Х
    Fruit Weight Fruit Width Fruit Length Fruit Colour Score
                                                                  0.55
0
              192
                             8.4
                                            7.3
              180
                             8.0
                                            6.8
                                                                  0.59
1
2
              176
                             7.4
                                            7.2
                                                                  0.60
                                            7.8
3
                             7.1
              178
                                                                  0.92
4
              172
                             7.4
                                            7.0
                                                                  0.89
5
                                            7.3
              166
                             6.9
                                                                  0.93
6
              172
                             7.1
                                            7.6
                                                                  0.92
7
              154
                             7.0
                                            7.1
                                                                  0.88
                                            7.7
8
              164
                             7.3
                                                                  0.70
9
              152
                             7.6
                                            7.3
                                                                  0.69
10
                             7.7
                                            7.1
                                                                  0.69
              156
11
              156
                             7.6
                                            7.5
                                                                  0.67
                             7.5
12
                                            7.6
                                                                  0.73
              168
13
              162
                             7.5
                                            7.1
                                                                  0.83
14
                                            7.2
                                                                  0.85
              162
                             7.4
15
              160
                             7.5
                                            7.5
                                                                  0.86
16
              156
                             7.4
                                            7.4
                                                                  0.84
17
                             7.3
                                            7.1
                                                                  0.87
              140
18
              170
                             7.6
                                            7.9
                                                                  0.88
19
               86
                             6.2
                                            4.7
                                                                  0.80
20
               84
                             6.0
                                            4.6
                                                                  0.79
21
               80
                             5.8
                                            4.3
                                                                  0.77
22
                                            4.3
                                                                  0.81
               80
                             5.9
                                            4.0
23
               76
                             5.8
                                                                  0.81
24
                             9.0
                                            9.4
                                                                  0.75
              342
25
                                            9.2
              356
                             9.2
                                                                  0.75
26
              362
                             9.6
                                            9.2
                                                                  0.74
27
                                            9.2
                                                                  0.77
              204
                             7.5
28
              140
                             6.7
                                            7.1
                                                                  0.72
29
                             7.0
                                            7.4
                                                                  0.81
              160
                                            7.5
                                                                  0.79
30
              158
                             7.1
31
              210
                             7.8
                                            8.0
                                                                  0.82
32
                             7.2
                                            7.0
                                                                  0.80
              164
33
              190
                             7.5
                                            8.1
                                                                  0.74
34
                                                                  0.75
              142
                             7.6
                                            7.8
35
                                            7.9
                                                                  0.75
              150
                             7.1
                                                                  0.76
36
                             7.1
                                            7.6
              160
37
              154
                             7.3
                                            7.3
                                                                  0.79
```

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	158 144 154 180 154 97 70 93 80 98 87 66 65 58 59 60 58 58	7.2 6.8 7.1 7.6 7.2 7.3 7.3 7.3 7.3 5.8 6.0 6.0 5.9 6.1 6.3 5.9	7.8 7.4 7.5 8.2 7.2 10.3 10.5 9.2 10.2 9.7 10.1 8.7 8.2 7.5 8.0 8.4 8.5 7.7	0.77 0.75 0.78 0.79 0.82 0.70 0.72 0.72 0.71 0.72 0.73 0.71 0.72 0.74 0.71 0.72	
58	59	6.1	8.1	0.70	
<pre>from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.3, random_state=2529)</pre>					
<pre>x_train.shape, x_test.shape, y_train.shape, y_test.shape</pre>					
((41, 4), (18, 4), (41,), (18,))					
<pre>from sklearn.linear_model import LogisticRegression</pre>					
<pre>model = LogisticRegression(max_iter=500)</pre>					
<pre>model.fit(x_train, y_train)</pre>					
LogisticRegression(max_iter=500)					
<pre>y_pred = model.predict(x_test)</pre>					
y_pred.shape					
(18,)					

array([3, 3, 2, 2, 2, 2, 2, 3, 2, 1, 3, 1, 2, 3, 1, 2, 1, 3])

[2.13813513e-03, 2.41144478e-03, 9.95450420e-01],

array([[2.41632966e-03, 3.19679220e-03, 9.94386878e-01],

y_pred

model.predict_proba(x_test)

```
[4.00734862e-01, 5.98780620e-01, 4.84518233e-04],
       [4.38505956e-01, 5.61492022e-01, 2.02148976e-06],
       [4.08832600e-01, 5.91142577e-01, 2.48232453e-05],
       [4.53050894e-01, 5.46408107e-01, 5.40998978e-04],
       [2.52105201e-01, 7.01822439e-01, 4.60723596e-02],
       [8.66358590e-03, 1.85227743e-03, 9.89484137e-01],
       [4.95660140e-01, 5.04153971e-01, 1.85888493e-04],
       [6.04355858e-01, 3.95230058e-01, 4.14083784e-04],
       [1.42234794e-02, 1.02050293e-02, 9.75571491e-01],
       [5.75881620e-01, 4.23402795e-01, 7.15584880e-04],
       [4.17695783e-01, 5.82304217e-01, 1.39382161e-13],
       [7.46818111e-04, 1.09501728e-04, 9.99143680e-01],
       [6.72343729e-01, 3.27648588e-01, 7.68383938e-06],
       [3.63803252e-01, 6.36098813e-01, 9.79356349e-05],
       [5.76094513e-01, 4.23889814e-01, 1.56732761e-05],
       [5.00639637e-03, 3.81527341e-03, 9.91178330e-01]])
from sklearn.metrics import confusion matrix, classification report
print(confusion matrix(y test, y pred))
[[4 2 0]
 [0 6 0]
 [0 0 6]]
print(classification report(y test, y pred))
              precision
                           recall f1-score
                                               support
                             0.67
           1
                   1.00
                                        0.80
                                                     6
           2
                   0.75
                             1.00
                                        0.86
                                                     6
           3
                   1.00
                             1.00
                                        1.00
                                                     6
                                        0.89
    accuracy
                                                    18
   macro avq
                   0.92
                             0.89
                                        0.89
                                                    18
                   0.92
                             0.89
                                                    18
weighted avg
                                        0.89
df new = df.sample(1)
df new
    Fruit Category Fruit Name Fruit Weight Fruit Width Fruit Length
30
                                                      7.1
                 2
                       0range
                                         158
                                                                     7.5
    Fruit Colour Score
30
                  0.79
x new = df new[['Fruit Weight', 'Fruit Width', 'Fruit Length', 'Fruit
Colour Score']]
```

```
x_new.shape
(1, 4)

y_pred_new = model.predict(x_new)

y_pred_new

array([2])

model.predict_proba(x_new)

array([[4.00734862e-01, 5.98780620e-01, 4.84518233e-04]])
```