

Estatística Avançada - Aula 08

Testes de Hipóteses III

Kaique Matias de Andrade Roberto

Ciências Atuariais - Ciências Econômicas

HECSA - Escola de Negócios

FIAM-FAAM-FMU

Conteúdo

- 1. Conceitos que aprendemos em Aulas anteriores
- 2. Teste para Proporção
- 3. *p*-valor
- 4. Comentários Finais
- 5. Referências

Aulas anteriores

Conceitos que aprendemos em

- vimos uma motivação pra os testes de hipóteses;
- descrevemos os 5 Passos para uma boa execução de um teste de hipóteses;
- começamos a lidar com testes de hipóteses para média com variância conhecida;
- começamos a lidar com testes de hipóteses para proporção.

Passo 1

Fixe qual a hipótese H_0 a ser testada e qual a hipótese alternativa H_1 .

Passo 2

Use a teoria estatística e as informações disponíveis para decidir qual estatística (estimador) será usada para testar a hipótese H_0 . Obter as propriedades dessa estatística (distribuição, média, desvio padrão).

Passo 3

Fixe a probabilidade α de cometer o erro de tipo I e use este valor para construir a região crítica (regra de decisão). Lembre que essa região é construída para a estatística definida no Passo 2, usando os valores do parâmetro supostos em H_0 .

Passo 4

Use as observações da amostra para calcular o valor da estatística do teste.

Passo 5

Se o valor da estatística calculado com os dados da amostra não pertencer à região crítica, não rejeite H_0 ; caso contrário, rejeite H_0 .

Exemplo 1.1

Uma máquina automática para encher pacotes de café enche-os segundo uma distribuição normal, com média μ e variância sempre igual a $400g^2$. A máquina foi regulada para $\mu=500g$. Desejamos, periodicamente, colher uma amostra de 16 pacotes e verificar se a produção está sob controle, isto é, se $\mu=500g$ ou não. Se uma dessas amostras apresentasse uma média $\overline{x}=492g$, você pararia ou não a produção para regular a máquina?

Exemplo 1.2

A associação dos proprietários de indústrias metalúrgicas está muito preocupada com o tempo perdido com acidentes de trabalho, cuja média, nos últimos tempos, tem sido da ordem de 60 horas/homem por ano e desvio padrão de 20 horas/homem. Tentou-se um programa de prevenção de acidentes, após o qual foi tomada uma amostra de nove indústrias e medido o número de horas/homens perdidas por acidente, que foi de 50 horas. Você diria, no nível de 5%, que há evidência de melhoria?

Exemplo 1.3

O salário médio dos empregados das indústrias siderúrgicas de um país é de 2,5 salários mínimos, com um desvio padrão de 0,5 salários mínimos. Uma indústria é escolhida ao acaso e desta é escolhida uma amostra de 49 empregados, resultando um salário médio de 2,3 salários mínimos. Podemos afirmar que esta indústria paga salários inferiores à média nacional, com o nível de 5%?

Vamos usar os passos do Teste de Hipóteses para construir os passos do teste para proporções.

Passo 1

Temos uma população e uma hipótese sobre a proporção p de indivíduos portadores de certa característica. Esta hipótese afirma que essa proporção é igual a certo valor p_0 . Então,

$$H_0: p = p_0.$$

O problema fornece informações sobre a alternativa, que pode ter uma das três formas abaixo:

 $H_1: p \neq p_0$ (teste bilateral) $H_1: p > p_0$ (teste unilateral à direita) $H_1: p < p_0$ (teste unilateral à esquerda).

Passo 2

Como vimos na Aula-05, a estatística \hat{p} , a proporção amostral, tem uma distribuição aproximadamente normal, a saber,

$$\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right).$$

Passo 3

Fixado um valor de α , devemos construir a região crítica para p, sob a suposição de que o parâmetro definido por H_0 seja o verdadeiro. Ou seja, podemos escrever

$$\hat{p} \sim N\left(p_0, rac{p_0(1-p_0)}{n}
ight).$$

O quarto e quinto passos irão depender da amostra.

Exemplo 2.1

O consumidor de um certo produto acusou o fabricante, dizendo que mais de 20% das unidades fabricadas apresentam defeito. Para confirmar sua acusação, ele usou uma amostra de tamanho 50, onde 27% das peças eram defeituosas. Mostre como o fabricante poderia refutar a acusação. Utilize um nível de significância de 10%.

Exemplo 2.2

Um fabricante garante que 90% dos equipamentos que fornece a uma fábrica estão de acordo com as especificações exigidas. O exame de uma amostra de 200 peças desse equipamento revelou 25 defeituosas. Teste a afirmativa do fabricante, nos níveis de 5% e 1%.

Exemplo 3.1

Considere a população:

Nota
7
6
10
9

Vamos estudar a distribuição amostral de $\hat{\mu}$.

O método de construção de um teste de hipóteses, descrito nas Seções/Aulas anteriores, parte da fixação do nível de significância α . Pode-se argumentar que esse procedimento pode levar à rejeição da hipótese nula para um valor de α e à não-rejeição para um valor menor.

Outra maneira de proceder consiste em apresentar a **probabilidade de significância** ou **nível descritivo** ou ainda *p*-**valor** do teste. Os passos são muito parecidos aos já apresentados; a principal diferença está em não construir a região crítica.

O que se faz é indicar a probabilidade de ocorrer valores da estatística mais extremos do que o observado, sob a hipótese de H_0 ser verdadeira.

Exemplo 3.2

Uma estação de televisão afirma que 60% dos televisores estavam ligados no seu programa especial da última segunda-feira. Uma rede competidora deseja contestar essa afirmação e decide usar uma amostra de 200 famílias para um teste. Nessa amostra, obteve-se proporção 0,52. Qual deve ser o procedimento adotado para avaliar a veracidade da afirmação da estação?

Exemplo 3.3

Uma companhia de serviços de ônibus intermunicipais planejou uma nova rota para servir vários locais situados entre duas cidades importantes. Um estudo preliminar afirma que a duração das viagens pode ser considerada uma v.a. normal, com média igual a 300 minutos e desvio padrão 30 minutos. As dez primeiras viagens realizadas nessa no a rota apresentaram média igual a 314 minutos. Esse resultado comprova ou não o tempo médio determinado nos estudos preliminares?

valor-p	0,10	0,05	0,025	0,01	0,005	0,001
Natureza da evidência	marginal	moderada	substancial	forte	muito forte	fortíssima

Exemplo 3.4

Suponha que queiramos testar $H_0: \mu=50$ contra $H_1: \mu>50$, onde μ é a média de uma normal $N(\mu,900)$. Extraída uma amostra de n=36 elementos da população, obtemos $\overline{x}=52$. Calcule o p-valor α do teste.

Exemplo 3.5

Os novos operários de uma empresa são treinados a operarem uma máquina, cujo tempo X (em horas) de aprendizado é anotado. Observou-se que X segue de perto a distribuição N(25,100). Uma nova técnica de ensino, que deve melhorar o tempo de aprendizado, foi testada em 16 novos empregados, o quais apresentaram 20,5 horas como tempo médio de aprendizado. Usando o p-valor, você diria que a nova técnica é melhor que a anterior?

Em resumo, na aula de hoje nós lidamos com:

- testes de hipóteses para média com variância conhecida;
- testes de hipóteses para proporção;
- valor-p (ou p-valor).

Nas próximas aulas nós vamos focar em:

- Teste para Variância de uma Normal;
- Teste para Média de uma Normal com Variância Desconhecida.

EXERCÍCIOS PARA APS (E PREPARAÇÃO PARA A N2)

Resolva os Exercícios 8.1-8.3.

Referências

Referências

Referências

Bons Estudos!

