

M66, Modélisation et analyse numérique

TD5: Consistance, Stabilité, Convergence

Exercice 1

Soit le problème :

$$(P) \begin{cases} y' = f(t, y), \ t \in I_0, \\ y(t_0) = \eta, \end{cases}$$

où $I_0 = [t_0, t_0 + T]$ et f est une fonction de classe $\mathcal{C}^1(I_0 \times \mathbb{R}, \mathbb{R})$ et globalement lipschitzienne. Considérons la méthode de Runge-Kutta implicite, de matrice $A = (a_{ij})_{1 \leq i,j \leq q}$:

$$\begin{cases} y_{n,i} = y_n + h_n \sum_{j=1}^q a_{ij} f(t_{n,j}, y_{n,j}), & 1 \le i \le q, \\ y_{n+1} = y_n + h_n \sum_{j=1}^q b_j f(t_{n,j}, y_{n,j}), & 1 \le i \le q, \end{cases}$$

où $h_n = t_{n+1} - t_n$, $t_{n,j} = t_n + \tau_j h_n$, et où l'on suppose que, pour tout $1 \le j \le q$, $\sum_{k=1}^q a_{jk} = \tau_j$.

a) On admet que, pour h_n suffisamment petit, le système en $(y_{n,i})_{i=1,\dots,q}$ admet une unique solution $y_{n,i} = \Phi_i(t_n, y_n, h_n) \in \mathcal{C}^1(I_0 \times \mathbb{R} \times [0, \varepsilon[, \mathbb{R}), i = 1, \dots, q.$

Déterminer Φ , en fonction de Φ_i , b_i et τ_i , tel que le schéma ci-dessus soit sous la forme

$$y_{n+1} = y_n + h_n \Phi(t_n, y_n, h_n).$$

- b) Montrer que $\Phi(t, y, 0) = f(t, y) \sum_{j=1}^{q} b_j$. En déduire une condition nécessaire et suffisante pour que le schéma soit d'ordre au moins 1.
- c) Montrer que $\partial_h \Phi_i(t, y, 0) = \sum_{j=1}^q a_{ij} f(t, y)$ pour $i = 1, \dots, q$. En déduire une condition nécessaire et suffisante pour que la méthode soit d'ordre au moins 2.
- d) Un exemple concret. On considère la méthode définie par

$$\begin{cases} y_{n+\frac{1}{3}} = y_n + \frac{h}{6} \left(f(t_n, y_n) + f(t_{n+\frac{1}{3}}, y_{n+\frac{1}{3}}) \right), \\ y_{n+1} = y_n + \frac{h}{4} \left(3f(t_{n+\frac{1}{3}}, y_{n+\frac{1}{3}}) + f(t_{n+1}, y_{n+1}) \right), \end{cases}$$

où $t_{n+\frac{1}{3}} = t_n + \frac{h}{3}$ et $f: [t_0, t_0 + a] \times \mathbb{R} \to \mathbb{R}$ est \mathcal{C}^1 et globalement L-lipschitzienne par rapport à y. On admettra que, pour h suffisamment petit, ce système admet une unique solution \mathcal{C}^1 par rapport aux données. Montrer que cette méthode est consistante d'ordre au moins égal à 2, puis qu'elle est convergente.

Exercice 2

On considère l'équation différentielle

$$x'(t) = f(t, x(t)), t \in I_0 = [0, T],$$

munie de la donnée de Cauchy $x(0) = x_0$, et où la fonction f est continue de $I_0 \times \mathbb{R}^m$ dans \mathbb{R}^m et L-lipschitzienne par rapport à la variable x.

On s'intéresse à la résolution numérique de l'équation sur une discrétisation $0=t_0 < t_1 < \cdots < t_N = T$ de pas maximal $h=\max h_n$ à l'aide de l'un des deux schémas :

$$\begin{cases} X_{n+1/2} = X_n + \frac{h_n}{2} f(t_n, X_n) \\ X_{n+1} = X_n + h_n f(t_{n+1/2}, X_{n+1/2}) \end{cases}, \qquad \begin{cases} Y_{n+1/2} = \frac{Y_n + Y_{n+1}}{2} \\ Y_{n+1} = Y_n + h_n f(t_{n+1/2}, Y_{n+1/2}) \end{cases},$$

où on a noté $t_{n+1/2} = \frac{t_n + t_{n+1}}{2} = t_n + \frac{h_n}{2}$.

- a) Écrire chacun de ces schémas sous la forme d'une méthode de Runge-Kutta.
- b) Pour une même discrétisation, lequel des deux schémas est plus coûteux numériquement? Sous quelle condition sur h ces schémas définissent-ils X_n et Y_n de façon unique?
- c) Montrer qu'ils sont tous les deux d'ordre au moins 2. Sont-ils stables? Convergents?
- d) On considère le cas $f(t,x) = -\lambda x$ où $\lambda \in \mathbb{C}_+^*$ est un nombre complexe de partie réelle strictement positive. On suppose que la discrétisation est uniforme de pas h et on s'intéresse à la résolution numérique de l'équation différentielle sur \mathbb{R}_+ . Montrer que, pour chacun des deux schémas, on peut écrire

$$X_{n+1} = r_X(\lambda h)X_n, \qquad Y_{n+1} = r_Y(\lambda h)Y_n,$$

où $r_W(z)$, $W \in \{X, Y\}$, est une fraction rationnelle que l'on calculera pour chacun des schémas. On appelle domaine de A-stabilité l'ensemble

$$D_W = \{ z \in \mathbb{C} \mid |r_W(z)| \le 1 \},$$

et on dit que la méthode est A-stable si $\mathbb{C}_+^* \subset D_W$.

Montrer que D_X est un compact de \mathbb{C} . Déterminer D_Y . Les méthodes sont-elles A-stables? Quel schéma choisiriez-vous pour intégrer l'équation différentielle sur un intervalle de temps très grand?

e) On suppose que l'équation différentielle est posée sur \mathbb{C}^m et que f(t,x) = -Ax où A est une matrice carrée de taille m qu'on supposera diagonalisable. Sous quelle condition sur A la solution $t \mapsto x(t)$ reste-t-elle bornée sur \mathbb{R}_+ ? Calculer X_n , Y_n en fonction de X_0 , Y_0 . Sous quelle condition sur le pas h les suites (X_n) et (Y_n) restent-elles bornées?

Exercice 3

On considère le schéma de Runge-Kutta implicite suivant :

$$\begin{cases}
X_{n+\frac{1}{3}} = X_n + \frac{h}{6} \left(f(t_n, X_n) + f(t_{n+\frac{1}{3}}, X_{n+\frac{1}{3}}) \right), \\
X_{n+1} = X_n + \frac{h}{4} \left(3f(t_{n+\frac{1}{3}}, X_{n+\frac{1}{3}}) + f(t_{n+1}, X_{n+1}) \right),
\end{cases} (*)$$

où $t_{n+1/3} = (n+1/3)h$. On rappelle (voir Exercice 1) que ce schéma est d'ordre au moins 2.

a) Soit Y une solution de l'équation différentielle $Y' = -\lambda Y$ où λ est un complexe quelconque. Soit (Y_n) une solution du schéma (*) associé à cette équation différentielle. Montrer que

$$Y_{n+1} = r(\lambda h)Y_n,$$

où r est donnée par

$$r(z) = \frac{24 - 14z + 3z^2}{24 + 10z + z^2}.$$

b) Le schéma (*) est-il A-stable?