Estructuras Algebraicas

Abel Doñate Muñoz

Contents

0	Not	tación y definiciones preeliminares	2
	0.1	Notación	2
	0.2	Definiciones estructuras	2
1	Ani	illos	2
	1.1	Ideales	2
	1.2	Ideales primos y maximales	3
	1.3	Elementos primos e irreductibles	4
	1.4	Anillos de polinomios	5
	1.5	Cadena de contenciones anillos	5
2	Cue	erpos	5
	2.1	Implicaciones de cuerpos	5
	2.2	Cuerpos finitos	5
3	Gru	ıpos	6
	3.1	Fundamentals	6
	3.2	Acciones de grupo	6
	3.3	Subgrupos de Sylow	7
	3.4	Grupos abelianos	7
4	Αpέ	éndice con Anillos, cuerpos y grupos	7
	4.1	Anillos	7

0 Notación y definiciones preeliminares

0.1 Notación

Convenimos la siguiente notación:

- PC. Propiedad conmutativa
- PA. Propiedad Asociativa
- PD(*,+). Propiedad distributiva * con respecto a +
- EN. Existe un elemento neutro y es único
- PI. Todo elemento tiene inverso

0.2 Definiciones estructuras

Definition (Semigrupo). (G,*) con PA, EN

Definition (Grupo). (G,*) con PA, EN, PI

Definition (Anillo).
$$(A, +, *)$$
 con
$$\begin{cases} (A, +) \ grupo \ abeliano \\ (A, *) \ semigrupo \\ PD(*, +) \end{cases}$$

Definition (Cuerpo). (A, +, *) donde todo elemento diferente de 0 es una unidad

Definition (Módulo). (M, +) es un módulo sobre el anillo A si:

- (M, +) grupo abeliano
- \bullet $A \times M \to M$
- $a*(m_1+m_2) = a*m_1 + a*m_2$
- (a+b)*m = a*m + b*m
- (a*b)*m = a*(b*m)
- $1_A * m = m$

1 Anillos

Definition (Morfismo de anillos). Una aplicación $f: A \to B$ es un morfismo si preserva las operaciones:

- 1. $f(1_A) = 1_B$
- 2. $f(x +_A y) = f(x) +_B f(B)$
- 3. $f(x *_A y) = f(x) *_B f(y)$

Definition (Tipos de morfismo). Los tipos de morfismo son

- ullet Monomorfismo o inmersión \iff inyectivo
- ullet Epimorfismo \iff exhaustivo
- $Isomorfismo \iff biyectivo$

1.1 Ideales

Definition (Característica). La característica de un anillo es el menor $n \in \mathbb{N}$ tal que $n \cdot 1_A = 0$. En caso de no cumplirse la característica es 0

Definition (Ideal). $I \subseteq A$ es un ideal si

- $\forall a \in I \ \forall \lambda \in A \Rightarrow \lambda a \in I$
- $\forall a, b \in I \Rightarrow a + b \in I$

Proposition. $J \subseteq B \ ideal \Rightarrow f^{-1}(J) \ ideal$

Definition (Ideales generados). Sean $I, J \subseteq A$ ideales. Son ideales

- $I + J := \{a + b : a \in I, b \in J\}$
- \bullet $I \cap J$
- $IJ = \{ \sum a_i b_i : a_i \in I, b_i \in J \}$

Definition (Ideal principal). El ideal principal generado por a es

$$I = (a) := \{ ra : r \in A \}$$

Theorem (Propiedad universal del cociente). .

$$\begin{cases} f: A \to B \ \textit{morfismo de anillos}. \\ I \subseteq Kerf \ \textit{ideal}. \end{cases} \Rightarrow \exists ! \ \textit{morfismo } \tilde{f}: A/I \to B \ \textit{tq} \end{cases} \xrightarrow{A} \xrightarrow{f} B$$

Theorem (Teorema de Isomorfismo). $f: A \to B$ morfismo de anillos. Hay un isomorfismo canónico \tilde{f}

$$\tilde{f}: A/\ker f \to Imf$$
 tal que $A/\ker f \simeq Imf$

1.2 Ideales primos y maximales

Definition (Ideal primo). Sea $\mathfrak{p} \subseteq A$ un ideal.

$$\mathfrak{p}$$
 es primo \iff $\forall a, b \in A$ $ab \in \mathfrak{p} \Rightarrow a \in \mathfrak{p} / b \in \mathfrak{p}$

o una definición equivalente y más útil a veces

$$\mathfrak{p}$$
 es primo $\iff \forall a, b \in A \quad a \notin \mathfrak{p} \ y \ b \notin \mathfrak{p} \Rightarrow ab \notin \mathfrak{p}$

Definition (Anillo integro). A es integro si no tiene divisores de cero (tiene ley de cancelación)

Definition (Ideal maximal). El ideal $\mathfrak{m} \subset A$ es maximal si no está contenido en ningún otro ideal propio de A.

Definition (Anillo fracción). Sean $F(A) = A \times (A - \{0\})$ y la clase de equivalencia $(a, s) \sim (b, t) \iff at - bs = 0$. Entonces

- 1. Si $\frac{a}{s}:=(a,s)$, entonces $\frac{a}{s}+\frac{b}{t}:=\frac{at+bs}{st}$ y $\frac{a}{s}*\frac{b}{t}:=\frac{ab}{st}$
- 2. $Fr(A) = F/\sim es$ un cuerpo con las operaciones anteriores

Theorem (Propiedad universal del anillo de fracciones). Sea A anillo integro $y \ f : A \to B$ morfismo tal que $f(A - \{0\}) \subseteq B^*$. Entonces

1. Esiste un único morfismo
$$\varphi \circ \iota = f$$

$$A \xrightarrow{f} B$$

$$f \varphi$$

$$Fr(A)$$

2. Si $A \stackrel{\iota'}{\hookrightarrow} F$ con F cuerpo que satisface (1), ha de ser $F \simeq Fr(A)$

Algunas implicaciones sobre anillos e ideales son:

- A integro \iff el ideal (0) es primo
- \mathfrak{p} primo $\iff A/\mathfrak{p}$ integro
- \mathfrak{m} maximal \iff A/\mathfrak{m} cuerpo \Rightarrow \mathfrak{m} primo

1.3 Elementos primos e irreductibles

Definition (Irreductible). $a \in A$ es irreductible si

1.
$$a \notin A^*$$

2.
$$a = bc \Rightarrow b \in A^* / c \in A^*$$

Definition (Primo). $a \in A$ es primo si $a|bc \Rightarrow a|b / a|c$

Definition (Anillo factorial (UFD)). A integro donde cada elemento admite una única descomposición en irreductibles (up to unidades).

$$a = p_1^{e_1} \cdots p_r^{e_r}$$
 $p_i = u_i q_i$ $u_i \in A^*$

Definition (Anillo principal (PID)). A integro en el que todo ideal es principal.

Definition (Anillo euclideo). A es euclideo si existe una función $\delta: A - \{0\} \to \mathbb{N}$ tal que

1.
$$\delta(ab) \ge \delta(a)$$

2.
$$\forall a, b \; \exists q, r : a = bq + r \quad y \quad r = 0 \; / \; \delta(r) < \delta(b)$$

Estos tres tipos de anillos se relacionan por A Euclideo $\Rightarrow A$ PID $\Rightarrow A$ UFD

Definition (Máximo común divisor). $m \in A$ es un mcd si

1.
$$m|a, m|b$$

2.
$$d|a, d|b \Rightarrow d|m$$

Definition (Mínimo común múltiplo). $M \in A$ es un MCM si

1.
$$a|M$$
, $b|M$

2.
$$a|c, b|c \Rightarrow M|c$$

El mcd y el MCM no tienen por que ser únicos.

Theorem (Enteros de Gauss). $\mathbb{Z}[i]$ es el anillo PID de los enteros de Gauss. Definimos la norma $N(a+bi)=a^2+b^2$

1. Las unidades son
$$1, -1, i, -i$$

2.
$$z = a + bi$$
 es primo $\iff z = p(\cdot u) \equiv 3 \mod 4$ o $N(z) = p$

Definition (Anillo MCD (GCDD)). A integro en el que todos dos elementos tienen mcd

Proposition (
$$\mathbb{Z}(\sqrt{-5})$$
 no es UFD). $6 = 2 \cdot 3 = (1 + \sqrt{-5}) \cdot (1 - \sqrt{-5})$

Algunas propiedades de los anillos:

- A PID: a irreductible $\iff a$ primo
- A UFD: a irreductible $\iff a$ primo
- A integro: a primo $\Rightarrow a$ irreductible
- A integro: a irreductible \iff (a) maximal
- A euclideo: $\exists ! mcd(a, b)$ (up to unidades)
- $A \text{ UFD} \Rightarrow A[X] \text{ UFD}$
- A[X] PID, A integro $\Rightarrow A$ cuerpo
- K cuerpo $\Rightarrow K[X]$ Euclideo

1.4 Anillos de polinomios

Durante toda la sección A es UFD y K = Fr(A) el cuerpo de fracciones.

Theorem. Si K es un cuerpo $\Rightarrow K[X]$ es Euclideo

Definition (Contenido). El contenido de un polinomio $f \in A[X]$ es el mcd de sus coeficientes

$$f = a_0 + a_1 x + \dots + a_n x^n$$
 \Rightarrow $c(f) = mcd(a_0, a_1, \dots a_n)$

Llamamos primitivo a $f \iff c(f) = 1$

Theorem (Lema de Gauss). f, g primitivos $\Rightarrow fg$ primitivo $(\Rightarrow c(fg) = c(f)c(g))$

Theorem (Criterio de Eisenstein). A UFD, $p \in A$ primo. $f = \sum a_i x^i \in A[X]$. Si se cumple

$$p|a_0, p|a_1, \dots p|a_{n-1}, p \not|a_n, p^2 \not|a_0 \Rightarrow f \text{ irreducible en } K[X]$$

Theorem (Criterio de reducción). A, B anillos, B íntegro. $\varphi: A \to B, \ \tilde{\varphi}: A[X] \to B[X]$

$$\begin{cases} deg(\tilde{\varphi}(f) = deg(f) \\ \tilde{\varphi}(f) \text{ irreductible en } Fr(B) \end{cases} \Rightarrow f \text{ no se puede descomponer como } f = gh$$

1.5 Cadena de contenciones anillos

Cuerpos \subseteq Anillo Euclideo \subseteq PID \subseteq UFD \subseteq GCDD \subseteq Anillo Integro \subseteq Anillo

2 Cuerpos

Definition (Extensión de cuerpo). Una extensión de cuerpo $F = K(\alpha)$ es el mínimo cuerpo F tal que $K \subseteq F$ y $\alpha \in F$

Definition (Dimensión de la extensión). Sea F/K una extensión de cuerpo.

Llamamos $[F:K] = \dim_K(F)$ a la dimensión del espacio vectorial de F con coeficientes en K.

2.1 Implicaciones de cuerpos

- α algebraico sobre $K \iff K(\alpha) = K[\alpha] \iff K(\alpha)/K$ extensión finita
- α, β algebraicos sobre $K \Rightarrow \alpha \pm \beta, \ \alpha \beta, \ \alpha / \beta$ algebraicos sobre K

(FALTA TODAS LAS RELACIONES CON EL POLINOMIO IRREDUCIBLE)

2.2 Cuerpos finitos

Definition (Cuerpo cerrado algebraicamente). El cuerpo K es cerrado algebraicamente si cualquier polinomio $f(x) \in K[X]$ tiene al menos una raíz $\alpha \in K$.

Esto es equivalente a decir que cualquier polinomio en K[X] descompone en factores lineales en K[X].

Definition (Clausura algebraica). Llamamos $K \subseteq \overline{K}$ al menor cuerpo algebraicamente cerrado tal que todo elemento de \overline{K} es algebraico sobre K.

Theorem (Wedderbrun). Todo cuerpo finito es conmutativo

Definition (Unicidad de los cuerpos finitos). Fijado p primo y n natural hay un único cuerpo finito \mathbb{F}_{p^n} de tamaño p^n

 \mathbb{F}_{p^n} es el conjunto de soluciones de $x^{p^n} - x = 0$ en la clausura algebraica de \mathbb{F}_p

Definition (Construcción de un cuerpo finito). Dado p^n elegimos un polinomio $P \in \mathbb{Z}/p\mathbb{Z}$ tal que Irred(P) = n. Tenemos entonces $\mathbb{F}_{p^n} \simeq (\mathbb{Z}/p\mathbb{Z})[X]/(P)$

Theorem (Pequeño teorema de Fermat). $x^p - x \in (\mathbb{Z}/p\mathbb{Z})[X]$ descompone en factores lineales en $\mathbb{Z}/p\mathbb{Z}$

$$x^{p} - x = x(x-1)(x-2)\cdots(x-(p-1))$$

Una generalización es que $x^{p^n} - x = \prod_{a \in \mathbb{F}_{p^n}} (x - a)$

Proposition. $\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n} \iff m|n$

Theorem ($\mathbb{F}_{p^n}^*$ es cíclico). $\exists \zeta \in \mathbb{F}_{p^n} : \mathbb{F}_{p^n}^* = \langle \zeta \rangle = \{1, \zeta, \dots, \zeta^{p^n-2}\}$

3 Grupos

3.1 Fundamentals

Theorem (Cayley). Todo grupo finito es isomorfo a un subgrupo de un grupo simétrico

Theorem (Wilson). $p \ primo \iff (p-1)! \equiv -1 \ (mod \ p)$

Definition (Clase lateral). $G/H = \{aH : a \in G\}$

Theorem (Lagrange). $[G:H] = \frac{|G|}{|H|}$

Definition (Subgrupo normal). $H \triangleleft G \iff ghg^{-1} \in H \ \forall g \in G \ \forall h \in H$

Definition (Grupo cociente). Si $H \triangleleft G \Rightarrow G/H$ grupo cociente

Theorem (Primer teorema de isomorfismo). Sea $f: G \to H$ morfismo. Entonces $G/Ker(f) \simeq Im(f)$

Theorem (Segundo teorema de isomorfismo). Sean $K \subseteq G, H \triangleleft G$. Entonces $K/(K \cap H) \simeq HK/H$

Theorem (Tercer teorema de isomorfismo). Sean $H \triangleleft K \triangleleft G$. Se cumple

- 1. $K/H \triangleleft G/H$
- 2. $G/K \simeq (G/H)/(K/H)$

Definition (Producto directo). G es producto directo de sus subgrupos H, K si

$$H \times K \to G$$
, $(h,k) \mapsto hk$ es isomorfismo

Entonces $H, K \triangleleft G, HK = G y H \cap K = \{e\}$

3.2 Acciones de grupo

 $\textbf{Definition} \ (\textbf{Acci\'{o}n} \ \text{de} \ \text{grupo}). \ \textit{Sea} \ \textit{G} \ \textit{grupo} \ \textit{y} \ \textit{S} \ \textit{un conjunto} \ \textit{definimos} \ \textit{la} \ \textit{acci\'{o}n} \ \textit{de} \ \textit{G} \ \textit{sobre} \ \textit{S} \ \textit{como}$

$$G \times S \to S$$

$$\begin{cases} 1) \ \forall s \in S & e_G s = s \\ 2) \ \forall g, h \in G & g(hs) = (gh)s \end{cases}$$

Definition (Órbita). La órbita de $s \in S$ es $GS = \{gs : g \in G\}$

Definition (Estabilizador). Estabilizador de $s \in S$ es el subgrupo $G_s = \{g \in G : gs = s\}$

Definition (Acción por conjugación). Tomamos S = G y el morfismo

$$G \times G \to G, \qquad g, s \mapsto gsg^{-1}$$

Definition (Centralizador). Elementos que conmutan con s. $Z(s) = \{g : gs = sg\}$. Es el estabilizador de la acción por conjugación.

Definition (Centro). $Z(G) = \{g \in G : \forall h \in G \ gh = hg\} \triangleleft G$

Definition (Clase de conjugación). $C_x = \{gxg^{-1} : g \in G\}$

Proposition. Hay una biyección $Gs \leftrightarrow G/G_s$ tal que $gs \leftrightarrow gG_s$

Theorem (Fórmula de las clases). G actua sobre S, $|S| < \infty$

$$|S| = \sum [G:G_{s_i}] \xrightarrow{Conjugaci\acute{o}n} |G| = |Z(G)| + \sum [G:Z(x_i)]$$

Proposition. $|G| = p^n \Rightarrow Z(G) \neq \{e\}$

Proposition. $Si |G| = p^2 \ es \ abeliano$

Theorem (Cauchy). $Si \ p||G| \Rightarrow \exists H \subseteq G : |H| = p$

3.3 Subgrupos de Sylow

Definition (p-grupo). Subgrupo de orden p^k

Definition (p-Sylow). $p-grupo\ maximal\ (no\ contenido\ en\ otro\ p-subgrupo)$

Proposition. $H \subseteq G$ p- $Sylow \Rightarrow \forall g \in GgHg^{-1}$ también lo es.

Theorem (Sylow). Sea $|G| = p^n M \ con \ p \ primo, \ p \ /\!\!/ M$

- 1. G tiene un p-Sylow de orden p^n
- 2. Todos los p-Sylows de G son conjugados
- 3. El número n_p de subgrupos de Sylow satisface $n_p \cong 1 \pmod{p}$, $n_p|M$
- 4. Todo p-subgrupo está contenido en un p- Sylow

Theorem. Si tots els subgrups de Sylow de G son normals, llavors G es producte directe dels Sylows.

3.4 Grupos abelianos

Theorem (Clasificación de grupos abelianos finitamente generados). .

 $Sea \ G = \langle x_1, \dots, x_n : M \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \rangle \ Por \ la \ forma \ normal \ de \ Smith \ sabemos \ que \ existen \ P, Q, D \ tal$

que M = PDQ con coeficientes en el anillo.

$$D = diag(\alpha_i), \qquad \alpha_i = \frac{d_i(1)}{d_{i-1}(A)}, \qquad d_i(A) = \gcd(menores\ de\ orden\ i)$$

4 Apéndice con Anillos, cuerpos y grupos

4.1 Anillos

Euclideos	\mathbb{Z}, \mathbb{Z}_p	$\mathbb{Z}[e^{i2\pi/3}](N(a+b\omega) = a^2 + b^2 - ab),$	K[X]
DIP pero no Euclideos		$\mathbb{Z}[\frac{1+\sqrt{-19}}{2}]$	
UFD pero no DIP		K[X,Y]	
Integro pero no UFD		$\mathbb{Z}[\sqrt{-5}]$	