Strutture Aeronautiche Esercitazione 3 Prof.re Franco Mastroddi

Matteo Hakimi 1455230

Indice

1	Introduzione	3
2	Pressione uniforme	3
3	Carico concentrato	7
4	Modi Propri	11

1 Introduzione

Si vogliono calcolare i modi propri ed il campo di spostamento (in due diverse condizioni di carico), di una piastra in alluminio rettangolare di lati a=4 m e b=5 m di spessore t=3 mm appoggiata sui 4 lati. Il calcolo verrá svolto tramite l'uso di solutore agli elementi finiti, utilizzando 2 discretizzazioni della struttura. Infine si effettuerá il confronto della soluzione con quella ottenuta per via analitica.

Figura 1: Piastra appoggiata

2 Pressione uniforme

Il primo caso analizzato è quello di un carico di pressione uniformemente distribuito sulla superficie della piastra stessa, di intensità $P=200N/m^2$. Avendo ipotizzato la struttura assimilabile come una piastra puramente flessibile, dalla teoria analitica basata sull'approccio "alla Galerkin" scengliendo le funzioni di forma coincidenti con le autofunzioni (metodo delle autofunzioni) si ha che lo spostamento in direzione verticale rispetto al piano contenente la piastra è dato da:

$$w(x,y) = \frac{16P}{D\pi^2} \sum_{m,n=1,3,5,\dots}^{\infty} \frac{\sin(\frac{m\pi x}{a})\sin(\frac{n\pi y}{b})}{mn[(\frac{m\pi}{a})^2 + (\frac{n\pi}{b})^2]^2}$$
(1)

dove D rappresenta la rigidezza flessionale della piastra. Si riportano in tabella il valore dello spostamento al centro della piastra in funzione dei valori m,n di troncamento della serie.

m	n	w [m]	m	n	w [m]
1	1	-1.830475	5	1	-1.783267
1	3	-1.794563	5	3	-1.782920
1	5	-1.797970	5	5	-1.783037
1	7	-1.797299	5	7	-1.782993
3	1	-1.779639	7	1	-1.782707
3	3	-1.782150	7	3	-1.782786
3	5	-1.781625	7	5	-1.782752
3	7	-1.781769	7	7	-1.782768

Si puó osservare che la serie converge abbastanza velocemente, si noti infatti che il termine ottenuto troncando la sommatoria a m=n=3 differisce di circa $10^{-4}m$ rispetto a quello successivo.

Possiamo quindi assumere (per i nostri scopi), che troncando la serie a m=n=3 si abbia una buona stima della soluzione.

Si è calcolata inoltre la risposta statica (SOL 101) della struttura utilizzando un codice agli elementi finiti,dopo aver opportunamente discretizzato la struttura prima con 10 e 16 elementi (non 15 perchè in seguito si vorrá mettere un carico concentrato nel nodo centrale al fine di valutarne lo spostamento) (SHELL) rispettivamente lungo i lati a e b e poi con 20 e 30 elementi lungo i medesimi lati.

Lo spostamento massimo si ha in corrispondenza del nodo centrale.

Caso mesh 10x16

POINT ID.	T1	T2	Т3	R1	R2	R3
94	0.0	0.0	-1.793269E+00	1.533773E-13	-1.170397E-10	0.0

Caso mesh 20x30

POINT ID.	T1	T2	Т3	R1	R2	R3
326	0.0	0.0	-1.786304E+00	1.478681E-07	-3.190725E-12	0.0

Si nota che le componenti sul piano (x,y) dello spostamento sono nulle in accordo con la teoria analitica.

La rotazione massima attorno a y si ottiene nei punti (0,2.5) (4,2.5) di stessa intensitá (1.453 rad) ma di verso opposto mentre quella attorno a x nei punti (2,0) (2,5) (1.216 rad), ovvero si ottiene a metá dei lati su cui la piastra ha il

vincolo di appoggio, come era possibile prevedere anche dalla simmetria del problema.

Si riportano in figura le diverse soluzioni ottenute (analitica e FEM).

Figura 2: Pressione uniforme, 10x16 elementi

Figura 3: Pressione uniforme, 20x30 elementi

Figura 4: Pressione uniforme, analitica m=n=3

Si osserva un andamento della soluzione ottenuta mediante solutore FEM in buon accordo con quello fornito dalla teoria; presentando uno spostamento massimo (in modulo) in corrispondenza del centro e un valore nullo ai bordi. Si nota inoltre come l'andamento delle linee a spostamento costante (concentriche data la simmetria del problema) , differisce molto poco tra le diverse soluzioni.

Infine si riportano i valori di spostamento del punto centrale:

w [m]	Soluzione
-1.830475	Analitica m=n=1
-1.782150	Analitica m=n=3
$-1.793269E\!+\!00$	FEM mesh 10x16
-1.786304E+00	FEM mesh $20x30$

Si noti come infittendo la mesh si passa da un errore globale di $\epsilon = 1.11\%$ ad un errore globale di $\epsilon = 0.42\%$ l'errore è sceso dell 0.7%.

Tuttavia occorre precisare, che dato l'ordine di grandezza della soluzione $o(10^1m)$ rispetto a quello dello spessore $o(10^3m)$, l'ipotesi di piastra puramente flessibile non è più vera; ovvero l'intensità del carico non rientra nel range di applicabilità per gli stati di deformazione compatibili forniti dalla teoria di Kirchhoff, dove si ipotizza una deformazione dell'ordine dello spessore.

3 Carico concentrato

Nel secondo caso si è sostituito il carico distribuito con un carico equivalente concentrato al centro della piastra F = 4000N.

Analogamente a quanto visto per il caso di pressione uniformente distribuita, si è assunto il modello di piastra puramente flessibile, e in accordo con la teoria analitica si ha:

$$w(x,y) = \frac{4F}{DS} \sum_{m,n=1,3,5,\dots}^{\infty} \frac{\sin(\frac{m\pi x}{a})\sin(\frac{m\pi}{2})\sin(\frac{n\pi y}{b})\sin(\frac{n\pi y}{2})}{[(\frac{m\pi}{a})^2 + (\frac{n\pi}{b})^2]^2}$$
(2)

Dove S è la superficie della piastra, S=ab.

Si riportano in tabella il valore dello spostamento al centro della piastra in funzione dei valori m,n di troncamento della serie.

m	n	w[m]	\mathbf{m}	\mathbf{n}	w $[m]$	\mathbf{m}	n	w [m]	m	n	w $[m]$
1	1	-4.516516	5	1	-5.082060	9	1	-5.128607	13	1	-5.138515
1	3	-4.782343	5	3	-5.094899	9	3	-5.130220	13	3	-5.138912
1	5	-4.824376	5	5	-5.102125	9	5	-5.131512	13	5	-5.139267
1	7	-4.835976	5	7	-5.105949	9	7	-5.132474	13	7	-5.139570
1	9	-4.840327	5	9	-5.108007	9	9	-5.133162	13	9	-5.139819
1	11	-4.842302	5	11	-5.109164	9	11	-5.133646	13	11	-5.140019
1	13	-4.843321	5	13	-5.109849	9	13	-5.133986	13	13	-5.140177
1	15	-4.843899	5	15	-5.110275	9	15	-5.134226	13	15	-5.140301
3	1	-4.974617	7	1	-5.115204	11	1	-5.135046	15	1	-5.140540
3	3	-5.030377	7	3	-5.119255	11	3	-5.135803	15	3	-5.140768
3	5	-5.049813	7	5	-5.122131	11	5	-5.136450	15	5	-5.140977
3	7	-5.057270	7	7	-5.124012	11	7	-5.136973	15	7	-5.141162
3	9	-5.060552	7	9	-5.125206	11	9	-5.137380	15	9	-5.141320
3	11	-5.062178	7	11	-5.125966	11	11	-5.137688	15	11	-5.141453
3	13	-5.063063	7	13	-5.126458	11	13	-5.137919	15	13	-5.141563
3	15	-5.063582	7	15	-5.126784	11	15	-5.138092	15	15	-5.141652
						-			-		

Si puó osservare che la serie questa volta converge più lentamente rispetto al caso precedentemente trattato, si noti infatti che il termine ottenuto troncando la sommatoria a m=n=3 differisce di circa $10^{-2}m$ rispetto a quello successivo, stabilizzandosi per m=15 n=7.

La necessità di aggiungere più armoniche alla sommatoria per migliorare la soluzione nell'intorno del punto dove è applicato il carico é dovuta alla natura singolare del carico concentrato stesso in termini spaziali.

Si è calcolata inoltre la risposta statica (SOL 101) della struttura utilizzando un codice agli elementi finiti,dopo aver opportunamente discretizzato la struttura prima con 10 e 16 elementi (poichè si vuole mettere il carico nel punto centrale) (SHELL) rispettivamente lungo i lati a e b e poi con 20 e 30 elementi lungo i medesimi lati.

Lo spostamento massimo si ha in corrispondenza del nodo centrale.

Caso mesh 10x16

POINT ID.	T1	T2	Т3	R1	R2	R3
94	0.0	0.0	-5.233809E+00	3.899901E-13	8.056322E-09	0.0

Caso mesh 20x30

POINT ID.	T1	T2	Т3	R1	R2	R3
326	0.0	0.0	-5.181973E+00	2.022009 E-07	-8.568539E-10	0.0

In accordo a quanto visto nel caso precedente lo spostamento sul piano risulta nullo e i punti di massima rotazione coincidono con quelli precedenti in particolare si ha che la rotazione massima lungo x è 2.455 rad quella lungo y 3.418 rad.

Si riportano in figura le diverse soluzioni ottenute (analitica e FEM).

Figura 5: Carico concentrato, 10x15 elementi

Figura 6: Carico concentrato, 20x30 elementi

Figura 7: Carico concentrato, analitica m=n=15

Anche in questo caso l'andamento della soluzione ottenuta con codice FEM risulta in buon accordo con quella ottenuta analiticamente. Infine si riportano i valori di spostamento del punto centrale:

w [m]	Soluzione
-4.516516	Analitica m=n=1
-5.141652	Analitica m=n=15
-5.233809E+00	FEM mesh 10x16
$-5.181973\mathrm{E}{+00}$	$FEM\ mesh\ 20x30$

Si noti come infittendo la mesh si passa da un errore globale di $\epsilon = 9.22\%$ ad un errore globale di $\epsilon = 4.02\%$ rispetto al caso precedente l'errore è sceso, a paritá di infittimento, del 5.20%, si nota invece che l'errore commesso che si ha troncando la soluzione a m=n=1 e quella a m=n=15 è di $\epsilon = 62.51\%$ Tuttavia occorre precisare, ancora una volta che che dato l'ordine di grandezza della soluzione $o(10^1m)$ rispetto a quello dello spessore $o(10^3m)$, l'ipotesi di piastra puramente flessibile non è più vera.

4 Modi Propri

Il terzo ed ultimo caso prevede il calcolo dei primi 12 modi di vibrare; quest'ultimi, e le rispettive pulsazioni, sono state calcolati mediante il codice FEM (SOL 103), avendo discretizzato la struttura con 20 e 30 elementi lungo i lati a e b rispettivamente, e normalizzando tali modi rispetto al massimo dello spostamento (MAX) in modo da ottenere una rappresentazione con valore massimo pari a 1.

Infine viene riportata la loro rappresentazione prevista dalla teoria analitica in cui ricordiamo che il generico modo è:

$$\varphi_{mn}(x,y) = C\sin(\frac{m\pi x}{a})\sin(\frac{n\pi y}{b}) \tag{3}$$

Dove
$$C = \frac{2}{\sqrt{ab}}$$
.

Si riportano in tabella i valori delle pulsazioni ottenute tramine Nastran e quelle ricavate analiticamente. Ricordiamo che:

$$\omega_{mn}^2 = \frac{D}{\rho t} \left[\left(\frac{m\pi}{a} \right)^2 + \left(\frac{n\pi}{b} \right)^2 \right]^2 \tag{4}$$

Modo	n	m	ω_{mn} Analitica [rad/s]	$\omega \; { m FEM} \; [{ m rad/s}]$
1	1	1	4.592018	4.581230
2	1	2	9.968038	9.926906
3	2	1	12.992050	12.950650
4	2	2	18.368071	18.209100
5	1	3	18.928073	18.840260
6	3	1	26.992104	26.906030
7	2	3	27.328105	26.987730
8	1	4	31.472121	31.324720
9	3	2	32.368125	32.035540
10	2	4	39.872153	39.299420
11	3	3	41.328159	40.606980
12	4	1	46.592179	46.454400

Si nota un buon accordo tra le frequenze proprie di vibrazione calcolate con il codice agli elementi finiti e quelle esatte. Infine vengono riportati le prime 12 deformate corrispondenti.

(a) Modo 1 FEM.

(b) Modo 1 Analitico.

(b) Modo 2 Analitico.

(b) Modo 3 Analitico.

(a) Modo 4 FEM.

(b) Modo 4 Analitico.

(b) Modo 5 Analitico.

(b) Modo 6 Analitico.

(a) Modo 7 FEM.

(b) Modo 8 Analitico.

(b) Modo 9 Analitico.

(a) Modo 10 FEM.

(b) Modo 10 Analitico.

(b) Modo 11 Analitico.

(b) Modo 12 Analitico.