Pauling's Electronegativity Scale

Source: Environmental Organic Chemistry, Schwarzenbach et al., 2003

Acidity Constants of Some Important Acids

Name=	Formula	pK_{n1}	pK_{a2}	pK_{a3}	pK_{a4}
Nitric acid	HNO ₃	-1.30			
Trichloroacetic acid	CCI ₃ COOH	-0.5_			
Hydrochloric acid	HC1	<0			
Sulfuric acid	H ₂ SO ₄	<0	1.99		
Hydronium ion	H ₃ O ⁺	0.00	14.00		
Chromic acid	H ₂ CrO ₄	0.86	6.51		
Oxalic acid	(COOH) ₂	0.90	4.20		
Dichloroacetic acid	CHCl ₂ COOH	1.1		887 T	
Sulfurous acid	H ₂ SO ₃	1.86	7.30		
Phosphoric acid	H ₃ PO ₄	2.16	7.20	12.35	
Arsenic neid	H ₃ AsO ₄	2.24	6.76		
Monochloroacetic acid	CH,CICOOH	2.86			
Salicylic acid	C ₆ H ₄ OHCOOH	2.97	13.70		
Citric acid	C ₃ H ₄ OH(COOH) ₃	3.13	4.72	6.33	
Hydrofluoric acid	HF	3.17			
Benzoic acid	C ₆ H ₅ COOH	4.20			
Pentachlorophenol	C ₆ Cl ₅ OH	4.7			
Acetic acid	CH3COOH	4.76			
Carbonic acid	H ₂ CO ₃	6.35	10.33		
Hydrogen sulfide	H ₂ S	6.99	12.92		
Hypochlorous acid	HOCI	7.60		. 3	
Cupric ion	Cu ²⁺	8.00	5.68		
2-Chloro-phenol	C ₆ H ₄ ClOH	8.53			
Hypobromous acid	HOBr	8.63			
Zinc ion	Zn ²⁺	8.96	8.94		
Arsenous acid	H ₃ AsO ₃	9.23	12.10		
Hydrocyanic acid	HCN	9.24			
Boric acid	H ₄ BO ₄	9.24			
Ammonium ion	NH ₄ ⁺	9.25			
2,4-Dichloro-phenol	C ₆ H ₃ Cl ₂ OH	9.43			
Silicic acid	H ₄ SiO ₄	9.84	13.20		
Phenol	C ₆ H ₅ OH	9.98			
Cadmium ion	Cd ²⁺	10.08	10.27	12.95	14.05
Calcium ion	Ca ²⁺	12.60			

Source: Water Chemistry, Benjamin, 2010

Environmental Quality and Pollution

Weak Mono-Protic Acid Solution

Weak Acid:

A weak acid, when added to water is incompletely dissociated.

CH₃COOH is a weak **mono-protic** acid. When added to water, it partially dissociates, such that both the CH₃COO⁻ and CH₃COOH exist simultaneously in water. The degree of dissociation depends on the dissociation constant.

CH₃COOH
$$\stackrel{\rightarrow}{\leftarrow}$$
 CH₃COO⁻ + H⁺
pK_a = 4.8 (actually 4.76 as per Table 3.2)

Example Problem:

What is the pH of 10⁻³ M HAc solution?

$$[Ac^{-}] + [HAc] = C_A = 10^{-3} M$$

$$[H^+].[OH^-] = K_w = 10^{-14}$$

$$K_a = \frac{[H^+].[Ac^-]}{[HAc]} = 10^{-4.8}$$

Charge Balance: $[H^+] = [OH^-] + [Ac^-]$

Ans:
$$pH = 3.92$$
; $[HAc] = 8.82 \times 10^{-4} M$
 $[Ac^{-}] = 1.18 \times 10^{-4} M$

$$K.[HAc] = [H^+].C_A - [H^+].[HAc]$$

 $K_0 = 10^{-4.8}$

$$[HAc] = \frac{[H^+]}{K + [H^+]} \cdot C_A = \alpha_o \cdot C_A$$

Similarly,

$$[Ac^{-}] = \frac{K}{K + [H^{+}]} . C_{A} = \alpha_{1} . C_{A}$$

$$[H^+] = \frac{K_W}{[H^+]} + \alpha_1.C_A$$

Solving Eq. (A) we can find [H⁺]

But How?? Using Excel Worksheet

Speciation of a Weak Mono-Protic Acid Solution as a Function of pH

Variation of α_0 / α_1 of HAc with pH

At a given pH the concentration of, $[HAc] = \alpha_0$. C_{A} ; $[Ac^-] = \alpha_1$. C_A

$$C_A = [HAc] + [Ac^-];$$
 $pK = 4.8$

Note that [HAc] = [Ac⁻] when pH = pK At pH > pK, [Ac⁻] predominates At pH < pK, [HAc] predominates

All these results are true, irrespective of whatever else is present in solution.

pC-pH Diagram of HAc $C_A = 10^{-3} M$

pH of 10⁻³ M HAc solution is 3.92

Corresponding,

$$p[HAc] = 3.05$$
 $p[Ac^{-}] = 3.93$

If the pH of this solution is increased or decreased by addition of other base/acids, the [HAc] and [Ac-] concentrations will be as shown in the pC-pH diagram, provided C_A remains the same.