

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

Fig. 1

Study of the release of DNA at pH 5.0

0092854-104001

Fig. 2

Efficiency of transfection *in vitro*

Fig. 3

Stabilization of the nucleolipid complexes by compound C, compound D, BRIJ700 or analog D

Fig. 4

Fig. 5

Fig. 6

Figure 7: Dose response of pH labile C18-PEG₅₀₀₀ (Compound C) on gene transfer activity in vivo mediated by a cationic lipid/DOPE/DNA (5/5/1) complex. Non-degradable C18-PEG₅₀₀₀ (BRIJ700) was used as a negative control. Data are mean (lines) and individual values of 4 Balb/C mice bearing subcutaneous M109 tumor.

Figure 8: Dose response of pH labile cholesterol-PEG₅₀₀₀ (Compound D) on gene transfer activity in vivo mediated by a cationic lipid/DOPE/DNA (5/5/1) complex. Non-degradable cholesterol-PEG₅₀₀₀ (Analog D) was used as a negative control. Data are mean (lines) and individual values of 4 Balb/C mice bearing subcutaneous M109 tumor.