ANÁLISIS DE LA DEMANDA ELÉCTRICA EN ESPAÑA MEDIANTE SERIES TEMPORALES.

Determinación de variables exógenas

Alumno: Bernardo José Llamas Verna

Tutor: Lino González García

Máster Universitario en Ciencia de Datos

Universidad Camilo José Cela

OBJETIVOS.

Análisis y obtención de los patrones que rigen la demanda eléctrica en el Estado español para el período (2014-2021).

Modelado de la demanda eléctrica.

Extracción de variables exógenas con las que enriquecer los modelos.

Variable cuyo valor se determina fuera del modelo y se impone en dicho modelo sin ser afectada por él.

ESTADO DEL ARTE SOBRE DETERMINACIÓN DE VARIABLES EXÓGENAS PARA EL ESTUDIO DE DEMANDA ELÉCTRICA.

- Ramón Christen et al. (2020): Se pueden determinar hasta 50 variables exógenas divididas en las siguientes categorías que no tienen la misma influencia sobre la variable de estudio.
 - → Variables climáticas: humedad, precipitación, temperatura, viento, climáticas, etc.
 - → Calendario: fechas, eventos señalados, vacaciones, Navidad, etc.
 - → Información del día: si el día es antes/después de un festivo, día laboral, etc.
 - → Socioeconómico: tendencias de la economía, PIB, tasa de empleo, etc.
 - → Información demográfica: tasa de nacimientos, número de habitantes, número de viviendas, etc.
 - → Otros: sensores, aparatos conectados a la red, etc.

EXTRACCIÓN DE DATOS

DEMANDA ELÉCTRICA

- Red Eléctrica (API e.sios)
 - Extracción de datos de demanda eléctrica por día período (2014-2021).

TEMPERATURA

- Copernicus Climate Data Store
 - Datos diarios de temperatura para 5 ciudades españolas.
 (Madrid, Barcelona, Valencia, Sevilla, Bilbao)

ANÁLISIS EXPLORATORIO DE LA DEMANDA

- o Distribución periódica anual.
- Márgenes de consumo entre (1.1-1.4)•10⁸ MWh.
- Caída abrupta de la demanda en 2020 por irrupción del COVID-19.

ANÁLISIS EXPLORATORIO DE LA DEMANDA

DISTRIBUCIÓN ANUALY MENSUAL

DISTRIBUCIÓN ANUAL

- Demanda creciente hasta 2018.
- 2020 año de mayor variabilidad por COVID.

DISTRIBUCIÓN MENSUAL

- **T Enero** mes de mayor consumo promedio.
- **↓ Abril** mes de menor consumo promedio.
- Meses de invierno y verano, mayor demanda.
- Meses de otoño y primavera, menor demanda.

ANÁLISIS EXPLORATORIO DE LA DEMANDA

- Tendencia al alza hasta el 2018, posible estancamiento económico.
- Periodicidad anual marcada por las estaciones.
- Serie no estacionaria (test de Dickey-Fuller).
- ACF y PACF muestran una autocorrelación entre valores que permite modelos autorregresivos.

ANÁLISIS DE LA DEMANDA DIARIA

Días laborables (L-V):

Consumo promedio parecido

Fin de semana (S-D):

Consumo promedio reducido.

Domingo día de menor consumo.

ANÁLISIS DE LA DEMANDA DIARIA

Días laborables (L-V):

Consumo promedio parecido

Fin de semana (S-D):

Consumo promedio reducido.

Domingo día de menor consumo.

ANÁLISIS DE LA DEMANDA DIARIA (FESTIVOS)

Podemos ver cómo afectan los festivos a la demanda eléctrica.

Los festivos en promedio suponen una demanda un 8% menor que en un día laboral.

INFLUENCIA DE LA TEMPERATURA EN LA DEMANDA

- Se puede confirmar la influencia de la temperatura sobre la demanda energética
- La influencia es de aumento de la demanda para valores extremos (por debajo de los 15°C y por encima de los 20°C)

VARIABLES EXÓGENAS

- → Día de la semana (weekday) (0-6 lunes-domingo)
- → Días laborables (working_day) (1) / Festivos (0)
- → Temperatura promedio en 5 ciudades.
- → Estacionalidad (invierno/verano).
 - ⇒ Booleans (is_winter/is_summer).

DATASET RESUMEN CON VARIABLES EXÓGENAS

date	value	weekday	working_day	madrid_temp	barcelona_temp	bilbao_temp	sevilla_temp	valencia_temp	is_winter	is_summer
2014-01-02	4059590.0	3.0	1.0	9.109185	10.764683	12.935602	14.524325	15.136449	1	C
014-01-03	4098986.0	4.0	1.0	9.776889	11.935958	13.029657	15.653018	16.565861	1	C
2014-01-04	3867911.0	5.0	1.0	6.703811	11.307489	9.814500	14.106683	14.699295	1	C
014-01-05	3648038.0	6.0	1.0	5.285333	8.682916	9.971085	10.653680	10.970076	1	(
	***	***	***	***	***	***			***	
2021-12-27	3686647.0	0.0	1.0	11.606002	13.531011	14.285517	17.009720	17.443636	1	(
2021-12-28	3729169.0	1.0	1.0	9.792129	14.261092	14.133620	16.015375	16.007968	1	(
2021-12-29	3692921.0	2.0	1.0	8.401157	13.250848	12.936356	13.320164	15.173263	1	(
2021-12-30	3689439.0	3.0	1.0	7.203344	11.992122	12.347234	12.666560	12.678245	1	C
021-12-31	3331056.0	4.0	1.0	8.081628	11.068301	12.862481	13.293043	11.608819	1	(

MODELOS DE SERIES TEMPORALES Y MÉTRICAS

MODELOS

MÉTRICAS

- Holt-Winters (baseline model)
- SARIMAX
- XGBoost
- Prophet

- MAE
- o MSE
- RMSE
- MAPE
- SMAPE
- MASE

4 ESCENARIOS

Aplicamos los modelos sobre diferentes escenarios para ver cómo afectan las variables exógenas:

- A Sin variables exógenas
- B Día de la semana y día laboral/festivo.
- © Día de la semana, laboral/festivo y temperatura.
- Día de la semana, laboral/festivo, temperatura y estacionalidad (invierno, verano).

PREDICCIONES MARZO 2022

- Todos los modelos son mejores que HW.
- **SARIMAX** mantiene muy bien la estacionalidad diaria.
- XGBoost y Prophet siguen bien las predicciones pero aumentan los errores con el tiempo.
- Prophet mejor modelo.

PREDICCIONES MARZO 2022 (ERRORES)

- Errores de Prophet en promedio menores que XGBoost.
- Márgenes de error de XGBoost bastante grandes cuando hay picos de demanda.
- Preferencia por Prophet
 por permitir una predicción
 de demanda más cercana al
 valor real cuando hay picos
 de consumo.

CONCLUSIONES

- ⇒ Hay variables exógenas que penalizan la precisión de los modelos (is_winter/is_summer)
 - · La temperatura a veces ha llegado a penalizar también en ciertos modelos.
- ⇒ Aparentemente más peso días de la semana y festivos.
 - Peso decisivo de los patrones de consumo. Caso español, país de temperaturas suaves.
- ⇒ Prophet es el mejor modelo en la mayoría de escenarios y métricas.
- ⇒ SARIMAX destaca muchas veces como mejor modelo en el escenario B para MAE, MAPE y sMAPE.
- ⇒ XGBoost da métricas muy parecidas en cada escenario.

SIGUIENTES PASOS

- ⇒ Temperatura: investigar si el considerar la temperatura media de cada día en cada una de las cinco ciudades consideradas es acertado.
 - Aumentar la granularidad: pasar a datos horarios de temperatura.
 - Más ciudades (Coruña)
- ⇒ Estacionalidad: otro tratamiento o descartarlas.
- ⇒ Población: funcionaría como un peso que aumentase/disminuyese la influencia de la temperatura.
- ⇒ Días laborables y festivos: realizar una investigación más granular (caso del viernes, festivos según día de la semana, post-festivos)
- ⇒ Descomposición demanda: hogares/industria
- ⇒ Redes Neuronales.

¡MUCHAS GRACIAS!