

Supervised by: Eng. Omar Samir

Team members

Ahmed Emad Ahmed Hafez Nour Moustafa Youssef Shabrawy

Agenda

- Project Idea
- Data preprocessing
- Data Visualization
- Association Rules
- Models
- Models Evaluation
 - Future Work

Project Idea (Business Part)

Heart disease is the leading cause of death globally, and its prevalence is increasing rapidly.

<u>Early detection</u> of heart disease is crucial for reducing mortality rates and improving the quality of life for patients.

In this Project, we develop a predictive model for the early detection of heart disease.

Data preprocessing (technical Part)

check for rows that do not contain values

> convert all nonnumerical (14 features) to numerical ones

Data Visualization

Target Class

Numeric Classes Distributions

Association Rules

Models

Logistic Regression

- We used the model from ML-lib in pySpark.
- We did oversampling using RandomOversampler to balance the classes.
- Converted the data from pandas dataframe to spark dataframe.
- So we had to combine each row in the data to be a python list to feed it to the model to train on it.

Naive Bayes

- We used the model from ML-lib in pySpark.
- We did oversampling using RandomOversampler to balance the classes.
- Converted the data from pandas dataframe to spark dataframe.
- So we had to combine each row in the data to be a python list to feed it to the model to train on it.

SVM

- We used the model from ML-lib in pySpark.
- We did oversampling using RandomOversampler to balance the classes.
- Converted the data from pandas dataframe to spark dataframe.
- So we had to combine each row in the data to be a python list to feed it to the model to train on it.

Naive Bayes using map-reduce

- We did oversampling using RandomOversampler to balance the classes.
- Converted the data from pandas dataframe to rdd dataframe which convert tubular form to list of the rows.
- First, we calculated the prior probabilities of each class.
 - Map phase we generated a key-value pair <key=class, value=1>
 - Reduce phase we aggregated the values with the same key so we have a key-value pair <key=class, value=totalCount>

Naive Bayes using map-reduce

- Second, we calculated the conditional probabilities of each variable.
 - Map phase we generated a key-value pair <key= (featureValue,class), value=1>
 - Reduce phase we aggregated the values with the same key so we have a key-value pair <key= (featureValue,class), value=totalCount>
 - Another map phase to generate the conditional probabilities<key=(featureValue,class),
 value=totalCount/classCount>

Models Evaluation

	Accuracy (F1-score)	Macro Avg
Logistic Regression	76%	76%
Naive Bayes	65%	62%
SVM	76%	76%
Naive Bayes Map- reduce	75%	75%

Future Work

Future Work

• We want to implement KNN using map-reduce

Bonus

Thank You