1)

FIG. 1. G is plotted against x over full axes [1].

FIG. 2. G is plotted against x on truncated axes to display the local minima and maximum, as well as inflection points [1].

1) cont. d^2G/dx^2

FIG. 3. d^2G/dx^2 is plotted against x over full axes [1].

FIG. 4. d^2G/dx^2 is plotted on truncated axes to display its roots on x [1].

FIG. 5. Exponent term $-A\beta^2-B\beta^4$ is plotted against β to evaluate its values at β_{max} and β_{crit} . [1].

FIG. 6. C(y,t) is plotted against y at its β_{max} condition for maximum fluctuation at t=0.6381s before reaching an equilibrium concentration [1].

FIG. 7. C(y,t) for β_{max} is evaluated at its initial value to verify its maximum fluctuation at t = 0.6381s is equal to the corresponding binodal equilibrium point [1].

FIG. 8. C(y,t) for β_{max} is evaluated at its minimum value to verify its fluctuation at t = 0.6381s is equal to the corresponding binodal equilibrium point [1].

FIG. 9. C(y,t) is plotted against y over varied values of t. Amplitude of the cosinusoidal fluctuation increases with time until it reaches the equilibrium concentraion defined earlier (too many data points to fit on this document [2]).

2)

X_t t (min) log(-ln(1-X_t)) log(t) X_t t (min) log(-ln(1-X_t)) log(t) X_t t (min) log(-ln(1-X_	
0.096 15.8 -0.9960 1.1987 0.005 12.6 -2.2999 1.1004 0.004 20.2 -2.39	1 1.3054
0.176 20 -0.7131 1.3010 0.014 14.4 -1.8508 1.1584 0.018 27.8 -1.74	8 1.4440
0.275 25.7 -0.4927 1.4099 0.018 15.9 -1.7408 1.2014 0.029 35.5 -1.53	2 1.5502
0.407 30.8 -0.2819 1.4886 0.026 17.7 -1.5793 1.2480 0.051 40.1 -1.28	1 1.6031
0.469 36.2 -0.1986 1.5587 0.038 19.1 -1.4118 1.2810 0.099 45.3 -0.98	9 1.6561
0.709 54.3 0.0915 1.7348 0.085 24.6 -1.0514 1.3909 0.16 52.7 -0.75	6 1.7218
0.811 63.1 0.2217 1.8000 0.134 27.7 -0.8420 1.4425 0.238 59.5 -0.56	7 1.7745
0.879 71.7 0.3247 1.8555 0.244 31.6 -0.5533 1.4997 0.395 67.1 -0.29	8 1.8267
0.952 84.3 0.4824 1.9258 0.353 36.8 -0.3611 1.5658 0.592 79.9 -0.04	5 1.9025
0.608 44.3 -0.0285 1.6464 0.739 91.9 0.12	2 1.9633
0.736 47.4 0.1244 1.6758 0.855 99.3 0.28	8 1.9969
0.826 49 0.2427 1.6902 0.911 114.1 0.38	7 2.0573
0.907 58.8 0.3757 1.7694 0.976 128.6 0.57	7 2.1092
0.965 63.5 0.5254 1.8028	

Table 1. The given data is listed along with their respective calculations for Avrami analysis. A TA Instruments reference was utilized as extra reading and to determine $\ln(-\ln())$ vs. $\log(-\ln())$ convention [3]. Excel equations are available for inspection [4].

FIG. 10. The given degree of crystallization vs. time data is overlaid by isotherm [4].

FIG. 11. Avrami analysis is presented, overlaid by linear-fit isotherms [4].

Temp(°C)	n	log(k)	k
110	1.932	-3.237	5.79E-04
236	3.905	-6.457	3.49E-07
240	3.729	-7.205	6.24E-08

Temp(°C)	xtal	nucleation	rate det.
110	rod	sporadic	diffusion
236	sphere	sporadic	contact
240	sphere	simultaneous	contact

Table 2. Avrami exponent and rate constant, as well as predicted crystal morphology, method of growth, and rate determining aspect are displayed above. [3].

References / Supplemental

- [1] Figure was plotted utilizing WolframAlpha computing suite.
- [2] If there are any uncertainties of the calculations used, the full excel worksheet can be accessed here: https://github.com/zswain/MSEG804 as "ZachSwain_MSEG804-Exam2_#1.xlsx"
- [3] "TA393," TA Instruments, New Castle, DE. http://www.tainstruments.com/pdf/literature/TA393.pdf
- [4] If there are any uncertainties of the calculations used, the full excel worksheet can be accessed here: https://github.com/zswain/MSEG804 as "ZachSwain_MSEG804-Exam2_#2.xlsx"