Terrorism

https://www.casact.org/education/rpm/2009/handouts/lalonde3.pdf (retrieved 22 January 2017)

Terrorism Model: Possible Future Attacks Where They Could Occur

- Commercial facilities
 - Prominent buildings
 - Corporate headquarters
 - Transportation facilities
 - Chemical plants
 - Energy facilities
 - Retail centers and malls
 - Hotels and casinos
 - Amusement parks and sports venues
- Government facilities
 - Federal office buildings and courthouses
 - Embassies
 - State capitols
- Educational, medical, and religious institutions, etc.

Key Questions to be Answered by the Terrorism Model

- Who?
- Where?
- How?
- How much?
- How often?

Delphi Method for Development of Frequency and Severity Updates

Threat Index (TI) is Spread across Individual Landmarks

Threat Index (TI)

- Target type
- Weapon/attack type
- Locale

TI spread across set of individual landmarks for Target Type at Locale

Trophy Value

RESULT → Landmark Attack Vector (LAV)

- For each individual landmark
- LAV indicates weighted likelihood of each weapon/attack type

Bldg. 3 Port. bomb Car bomb Truck bomb Crash

Weapon Intensity and Damage

- Bomb Blast
- Air Crash
- Chemical
- Biological
- Radiological
- Nuclear

Damage and Casualty Estimates Consider Multiple Effects on the Target and Surrounding Buildings

Injury and Fatality Rates Associated with Damage Contours

Use of DoD's Hazard Prediction and Assessment Capability (HPAC) Model for NBC

- Full spectrum of NBC weapons
- Accurately predicts the effects of hazardous material releases
 - Contamination
- Embedded climatology and historical weather data
- Terrain data and supporting wind-flow models calculate the local winds field

Medium anthrax attack

Exceedance Probability Curve Results

Analysis Conducted Against Each Landmark

Financial Model

Financial Model

What is the Purpose of the Financial Model?

- The financial model allows users to estimate the losses to contracts that have been established to cover catastrophic events
 - Users include insurers, reinsurers, investors, other financial institutions
 - Contracts may cover individual risks, groups of risks, or portfolios of risk
- The financial model can be expected to
 - Allow users to assess contract losses from catastrophic events
 - Provide estimates of the range of losses that could occur
 - Provide input into a framework for managing risk

Model Estimates Contribution from Many, but Not All, Sources of Loss

- What elements are considered?
 - Direct sources of loss
 - Building
 - Contents
 - Indirect sources of loss
 - Loss of use/business interruption
 - Demand surge
 - Policy and reinsurance terms
- What is not included?
 - Additional sources of loss
 - Non-modeled perils
 - Contingent business interruption
 - Other contract expenses
 - Loss adjustment
 - Profits, commissions, fees, etc...

The Financial Model Must Account for Uncertainty in Modeled Damage Estimates

- When calculating damage, models must account for variability in damage, even for similar buildings subjected to the same intensity
- The variability can be attributed to differences in
 - Construction quality and practices
 - Local intensity
 - Unmodeled phenomena
- Claims analysis and damage surveys confirm this observation

Wind Speed (mph)

The Peril Models Provide Estimates of the Probability of Damage, Not Just a Single Value

- Peril models calculate a probability distribution of damage for each location.
- The mean of the distribution is the mean damage ratio for the intensity of each event.
- Financial module uses the distributions when applying insurance and reinsurance terms
- Application of terms is independent of the peril model simulation

Insurance Terms Considered by Financial Module

Deductibles

- At location level
 - By site: \$, %, % of loss
 - By coverage: \$ and %
 - Combined (Building, Other Structures, Contents): \$ and %
 - CEA Mini Policy: \$ and %
 - Franchise
- At policy level
 - Attachment point
 - Minimum
 - Maximum
 - Minimum and maximum
 - % of loss
 - Franchise
 - Blanket

Limits

- At location level
 - Site
 - By coverage
- At policy level
 - Blanket
 - Excess
 - Sublimits
 - First loss
 - Reduced Indemnity

Reinsurance Terms Considered by Financial Module

- Facultative reinsurance
 - Proportional
 - Non-proportional
 - Available at policy or individual locations
- Risk-based treaty reinsurance
 - Quota share
 - Surplus share
 - Per risk excess of loss
 - Includes special conditions
 - Line of business and region specific
 - Occurrence limits
 - Aggregate limits
- Portfolio (CAT) treaty reinsurance
 - Occurrence
 - Aggregate (stop loss)

Example Applications of the Financial Model

- With knowledge of the basic approach, extension to more complex situations is straightforward
 - Single location policies with multiple coverages
 - Multiple location policies
 - Reinsurance treaties
- Example calculations using the financial model
 - Single location policies
 - Deductible application spreadsheet
 - Multiple location policies
 - Reinsurance treaties
- Advanced topics with business applications
 - Back allocation
 - Multiple layer policies
 - Sublimits
 - Multiple region analyses

Summary on Financial Modeling

- The goal of the financial model is to compute the losses that result from the damage estimates produced by the peril models
- Accounting for uncertainty by modeling a realistic distribution around the mean damage ratio will result in a more accurate interpretation of the impact of policy conditions on losses
- The calculations within the financial model have a direct impact on the losses on which underwriting and portfolio decisions are based
- Catastrophe modelers should understand how modeling systems treat complex policy terms and conditions

Interpreting Model Results

Results of the Catastrophe Models

- Event by event loss information
- Probability distribution of losses (EP curves)
- Annual aggregate losses
- Annual occurrence losses
- Industry and company specific losses
- Direct, ceded and net retained losses
- Large losses, PML's
- Loss costs
- Sorted output
 - geographic area, line of business, construction type

Catastrophe Models Provide a Wide Range of Outputs

Event	γear	Company Loss		Event Info
270011986	3657	2,811,789	Class	5 Hurr FL LA BF MS TX
270017822	5454	2,672,028	Class	5 Hurr NY NJ CT MA PA
110128230	4470	1,951,563	MW 8.1	EQ New Madrid
270004221	1295	1,946,088	Class	5 Hurr FL BF SS SJ VQ
270019211	5872	1,786,625	Class	5 Hurr TX FL LA BF MS
270018458	5649	1,658,905	Class	4 Hurr NY CT NJ MA NH
270006717	2023	1,634,955	Class	4 Hurr FL BF SS SJ VQ
270010779	3294	1,625,767	Class	5 Hurr FL NC SC TN BF
110083756	2917	1.605.027	MW 8.3	EO San Francisco
270010551	3232	1,562,932	Class	5 Hurr FL AL JM MS LA
270022466	6869	1,562,240	Class	2 Hurr FL PQ DR GA BF
270016561	5063	1,475,085	Class	5 Hurr FL BF GA SC
110124693	4350	1,465,897	MW 8.2	EQ San Francisco
270007716	2349	1,444,885	Class	5 Hurr FL MS JM AL LA
270021324	6512	1,397,606	Class	4 Hurr FL CJ JM BF TD

Standard Output is a Loss Exceedance Probability Curve

Consider Loss Output as Probabilities, Not Return Periods

Analysis Assumptions

- An Assumptions report summarizing the data and assumptions is provided for review prior to simulation.
- Documents the modeled data for your review

Catastrophe Loss Analysis Service

Data Assumptions Document

Prepared for: ABC Companyl

January 9, 2004

- Detailed summary of insurance terms
 - Application
 - Coverages
 - Limits
 - Deductibles
 - Replacements

Line of Business & Coverage Summary									
A lding	B Other Structures		C Contents			D Loss of Use			
imit Ded	Rep	Limit	Ded	Rep	Limit	Ded	Rep/d*	Limit	Ded
% CovC BA, BP	\$0	\$10	\$0	L	\$50,000	BA, BP	\$150	40% CovC	BA, BP
100,000 BA, BP	L	10% Cov A	BA, BP	L	50% CovA	BA, BP	\$150	20% CovA	BA, BP
19	A ldingimit Ded	A Iding Ott Cimit Ded Rep Cocc BA, BP 50	A B	A B Other Structures	A B Other Structures Commit Ded Rep Limit Ded Rep Limit Ded Rep Limit Limi	A	A	A	A

Sample Exposure Summary

Sample Output: Average Annual Losses

Loss(%) 49.60

> 19.70 7.60 5.30

Distribution of Exposures and Losses by County Hurricane

Florida

County	Insurance in Force*	Expo.(%)	Est. Avg. Annual Loss*
Dade	2,685,425,029	26.70	8,176,098
Broward	1,683,535,079	16.70	3,248,721
Palm Beach	612,604,722	6.10	1,258,249
Pinellas	779,617,497	7.70	868,774
Hillsborough	809,851,549	8.00	485,428
Sarasota	181,439,454	1.80	203,523
Collier	116,989,287	1.20	203,370
Pasco	203,302,975	2.00	192,977
Orange	356,193,480	3.50	156,457
Brevard	146,186,858	1.50	154,887
Lee	102,194,284	1.00	144,169
Duval	355,270,434	3.50	139,691
Manatee	98,567,621	1.00	134,367
Bay	126,969,155	1.30	109,080
Volusia	113,239,216	1.10	62,440
Polk	126,172,334	1.30	62,307
Marion	138,087,873	1.40	61,543
Charlotte	43,945,123	0.40	58,817
Seminole	119,271,988	1.20	55,348
Okaloosa	91,222,609	0.90	53,221
St. Johns	73,698,466	0.70	51,106
Escambia	85,230,548	0.80	50,422
St. Lucie	35,486,130	0.40	47,921
Hernando	62,606,162	0.60	43,531
Martin	19,220,895	0.20	42,768
Leon	164,125,274	1.60	41,618
Citrus	83,114,000	0.80	41,053
Lake	100,590,841	1.00	40,897
Alachua	100,131,288	1.00	34,964

Customized Maps

Detailed Reports

- State
- County
- Zip
- Location

Sample Output: Probability Distributions

Exhibit 1: Annual Occurrence Loss

Estimated Average Return Time (years)	Estimated Probability of Exceedance	Earthquake Occurrence (\$millions)
20	0.050	1.2
50	0.020	3.6
100	0.010	6.0
250	0.004	12.3
500	0.002	18.2
1,000	0.001	33.9

Exhibit 2: Estimated Occurrence Loss Distribution

Sample Output: Mean Losses for Specific Events

Exhibit V.a: US (cont.)

State	County	НО	Total		
FL	Seminole	6,507	6,507		
FL	St. Lucie	110,387	110,387		
FL	Sumter	1,300	1,300		
FL	Volusia	29	29		
Tota	ı	1,827,658,575	1,827,658,575		

^{*} US Dollars

Loss Report for Cat 5 Hurricane

Available For All Perils

Return Periods are Frequently Misinterpreted

"There is a 4% annual probability that a Katrina-sized hurricane loss could occur in the U.S."

2009 4% Probability

2010 4% Probability

Long Return Periods Incorrectly Imply Losses Will Not Occur "In My Lifetime"

- PML means different things to different people
 - "It's the worse case scenario"
 - "Something that will never happen"
 - "The one in one hundred event"
 - "Whatever A.M.Best asks us for"
- PML is ingrained in insurance industry thinking
 - A holdover from pre-model days
- Models provide a full distribution of risk potential with associated probabilities
- A 100-year return period means that there is a 1% annual probability of that size loss or larger

Models Provide Probabilities of Loss, Not Probabilities of Events

What is the Probability of a Specific Event?

P(Single Event) =
$$1 / \infty = 0$$

Models Can Provide the Probability of Different Types of Events

Event ID	Year	State	County	SS Scale	Longitude	Latitude	Central Pressure	Max Windspeed	Industry Loss
270012931	3888	LA	Plaquemines	3	-89.17	29.37	962.8	109.1	2,379,385,213
270002073	638	TX	Galveston	4	-94.39	29.49	943.8	126.4	1,169,523,187
270004331	1304	MS	Jackson	3	-88.42	30.27	958.7	116.2	2,425,661,519
270000660	200	LA	Iberia	3	-91.68	29.49	957.7	114.7	1,467,115,619
270012025	3617	LA	Lafourche	5	-90.5	29.16	897.7	165.8	32,179,256,355
270000349	103	LA	Iberia	4	-92.07	29.58	934	133.7	4,550,417,528
270023237	7015	TX	Brazoria	3	-95.18	29.05	951.2	121.7	6,552,011,909
270011455	3438	MS	Jackson	3	-88.52	30.22	956	113.6	4,130,229,662
270014646	4414	LA	Plaquemines	4	-89.07	29.87	931.3	135.3	27,758,529,327
270000935	277	TX	Brazoria	4	-95.61	28.78	942.8	126.3	6,029,080,432
270029991	9057	AL	Baldwin	3	-87.59	30.34	955.6	115.8	1,580,530,915
270020334	6128	AL	Baldwin	4	-87.74	30.34	930.9	140.9	4,993,300,124
270012769	3842	MS	laakaan	<u> </u>	00 E	20.22	011.2	158.7	16,793,312,346
270018283	5529	MS					Gulf	164.5	56,942,806,766
270019373	5853	AL				ы	urricane	107.3	1,004,149,493
270000363	108	LA				- 11	urricarie	150.9	11,024,114,242
•	•	•	P (Cat 3)	= 3.5	303/10,0	000	33.0	% .	•
•	•	•	_	·	•			•	•
•	•	•	P (Cat 4)	= 1,	488/10,0)00	14.99	% ·	•
		_	P (Cat 5)	=	231/10,0	000	2.39	%	

No Historical Event Will Ever Occur Again

Models Provide the Probability of Losses, Not the Probability of an Event

Exceedance Probability	Annual Occurrence Loss	Annual Aggregate Loss	
•	•	•	
•	•	•	
0.15	53,738,239,362	56,110,982,780	
0.16	50,270,776,997	55,341,168,718	
0.17	49,913,421,931	53,738,239,362	
0.18	49,859,663,629	52,080,041,127	
0.19	49,819,414,592	51,707,961,972	
0.20	49,561,956,519	50,768,968,601	
0.21	48,500,900,897	50,054,523,376	
0.22	48,292,060,441	49,977,120,866	
0.23	48,106,958,762	49,859,663,629	
0.24	47,431,290,406	49 819 414 592	
0.25	45,416,129,581		Gulf I
0.26	45,285,783,212		
0.27	44,790,150,796		Hurricane I
0.28	43,834,515,306		
0.29	42,337,563,871	D Comillo	3.3%
0.30	42,149,956,525	P _{Loss} > Camille	3.5%
0.31	40.765.613.551		
0.32	40,132,315,421	P _{Loss} > Betsy	0.4%
0.33	39,586,673,793	1 2033	3 , 3
•	•	P _{Loss} > Katrina	0.3%
•	•	Loss / Natilia	0.5%
•	•		

Many U.S. Hurricane Scenarios Could Cause Losses Equal to or Greater than Katrina

Loss Probabilities Increase When Considering All Perils

Loss Probabilities Increase When Considering Global Portfolios

Japan Earthquake - 8.0 Magnitude

Evaluating Portfolio Risk Based on Regional Losses Can Underestimate Actual Risk

	EV	5%	2%	1%	0.40%	0.20%	0.10%
Florida	88,532	430,820	960,702	1,583,573	2,456,240	3,493,607	4,461,022
	EV	5%	2%	1%	0.40%	0.20%	0.10%
Gulf	50,963	278,431	507,331	681,241	1,040,441	1,246,136	1,712,889
	EV	5%	2%	1%	0.40%	0.20%	0.10%
Southeast	14,627	69,491	187,918	317,683	454,516	555,225	665,121
	EV	5%	2%	1%	0.40%	0.20%	0.10%
East Coast	31,789	89,841	302,462	607,099	1,272,425	2,353,480	3,528,153

	EV	5%	2%	1%	0.40%	0.20%	0.10%
U.S.	172,321	724,209	1,340,950	2,064,604	3,432,493	4,488,137	5,693,138

Evaluating Portfolio Risk Based on Single Country Losses Can Underestimate Actual Risk

	EV	5%	2%	1%	0.40%	0.20%	0.10%
France	190,164	1,041,163	1,827,144	2,329,030	3,125,430	3,664,796	4,315,150
	EV	5%	2%	1%	0.50%	0.20%	0.10%
Germany	48,877	226,736	612,047	969,368	1,748,242	2,535,825	2,998,433
	EV	5%	2%	1%	0.40%	0.20%	0.10%
United Kingdom	64,364	320,213	675,240	1,001,590	1,898,679	2,267,980	2,843,990

	EV	5%	2%	1%	0.40%	0.20%	0.10%
Europe	303,406	1,541,731	2,456,897	3,201,013	4,365,344	5,365,344	6,377,127

Using Single Peril Analyses Will Lead to an Underestimation of Catastrophe Risk

	EV	5%	2%	1%	0.40%	0.20%	0.10%
Hurricane	78,508,811	339,071,187	503,429,518	693,817,715	959,262,565	1,092,055,628	1,303,179,422
	EV	5%	2%	1%	0.40%	0.20%	0.10%
Earthquake	27,120,338	158,879,967	264,089,927	405,934,077	742,971,254	983,646,511	1,141,000,940
	EV	5%	2%	1%	0.40%	0.20%	0.10%
Severe Thunderstorr	60,308,841	l 196,058,211	312,291,274	504,203,661	715,506,615	960,019,277	1,166,591,807

	EV	5%	2%	1%	0.40%	0.20%	0.10%
Combined Perils	129,915,455	430,705,438	655,847,183	866,008,366	1,116,176,497	1,318,694,700	1,685,204,827

Assessing Risk Beyond 0.4% Exceedance Probability

 Tail Value-At-Risk (TVAR): Average of all simulated event losses beyond specified probability, such as 1% or 0.4%

TVAR is Easily Calculated Using Model Output

Loss Exceedance Probability	Aggregate Loss
	_
0.40	311,100,395
	•
0.39	312,027,252
0.38	315,590,675
0.37	315,925,077
0.36	316,539,935
0.35	321,534,834
	•
	•
0.06	403,624,382
0.05	422,855,644
0.04	429,665,083
0.03	516,419,526
0.02	532,142,180
0.01	852,654,660

TVAR_{0.4} = Prob wtd average of losses beyond 0.4% probability

= \$387 Million

Manage Portfolio Risk Using Aggregate and Occurrence Loss Information

Understanding Large Aggregate Loss Years Helps Evaluate Alternative Reinsurance Options

Year 5063	\$1.227B
\$942M	Florida Hurricane
\$125M	Texas Severe Thunderstorm
\$33M	Midwest Severe Thunderstorm
\$30M	Gulf Severe Thunderstorm
\$12M	Texas Severe Thunderstorm
\$11M	Plains Severe Thunderstorm
\$10M	Texas Severe Thunderstorm
\$10M	Upper Midwest Severe Thunderstorm

\$100M + in
Aggregate Severe
Thunderstorm
Losses

Year 6753	\$1.226B
\$400M	Florida Hurricane
\$363M	Texas Severe Thunderstorm
\$332M	Florida Hurricane
\$23M	Midwest Severe Thunderstorm
\$12M	Midatlantic Severe Thunderstorm

Year 2521	\$1.222B
\$638M	California Earthquake
\$311M	California Earthquake
\$132M	Texas Severe Thunderstorm
\$19M	Gulf Hurricane
\$19M	Southeast Severe Thunderstorm
\$18M	Midwest Severe Thunderstorm
\$15M	Southeast Severe Thunderstorm

Large 3rd Event Loss

I've Run the Model, Have I Accounted for All the Risk?

 If you've got your exposure right then your loss distribution provides a robust starting point for catastrophe risk management

- Confirm loss results include all covered, modelable perils
- Do modeled losses include:
 - Loss adjustment expenses
 - Inland flooding
 - Hazardous waste cleanup
 - **—** ...
- Review of experience from past events can provide guidance for factors to be used to adjust modeled loss distribution
- Dependent on unique nature of event

Best Practice Checklist for Interpreting Model Probabilities

Evaluate model results as probabilities, not return periods

Interpret model output as loss probabilities not event probabilities

Evaluate risk using countrywide losses rather than regional losses

Evaluate risk using all peril losses not single largest peril losses

Analyze and manage losses beyond the 0.4% exceedance probability

Manage to aggregate exceedance probability curve

Confirm loss results correctly include all covered, modelable perils

Benchmark company loss distributions against the industry loss distribution

