PROJECT REPORT

Project Title: Predicting Plant Growth Stages with Environmental and Management Data Using Power BI

Team ID: PNT2025TMID06665

Team Size: 4

Team Leader: SYED JAMEERA

Team member: DIMPLE VINAYASRI KANUKOLLU

Team member: CHANDU SAHITHI

Team member: MUNAGALA NARESH BABU

1.INTRODUCTON:

1.1 ProjectOverview:

This project aims to develop a predictive modelusing PowerBI to forecast plantgrowth stages based on environmental and management data. The goal is to provide farmers and agricultural managers with a data-driven tool to optimize crop yields, reduce resource waste, and improve decision-making.

1.2 Purpose:

- 1. **Enhance decision-making:**Provide farmer sand agricultural managers with a data-driven tool to inform decisions on irrigation, fertilization, pruning, and pest control.
- 2. **Optimize resource allocation:**Help farmer sand agricultural managers optimize resource allocation by identifying the most critical factors affecting plant growth.
- 3. **Reduce resource waste:**Minimize waste by identifying the most effective management practices and environmental conditions for optimal plant growth.
- 4. **Improve crop yield prediction**:Develop a predictive model that accurately forecasts plant growth stages based on environmental and management data.

2IDEATIONPHASE:

2.1 PROBLEMSTATEMENT

Problem Statement	I am	I'm trying to	But	Because	Which makes me feel
(PS)	(Farmer)	10 UVS	25		
PS-1	A farmer or agricultural researcher	Predict plant growth stages accurately using environment al and management data	The data is complex, and traditiona I analysis methods are time-consumin g and error-prone	There are multiple factors like temperature, soil moisture, and fertilization that influence growth, making manual tracking inefficient	Which makes me feel: Overwhelmed and uncertain about making timely decisions
PS-2	An agricultural analyst or farm manager	Optimize crop yield by accurately forecasting plant growth stages using Power BI	Integratin g diverse environm ental and managem ent datasets into a single	Data sources vary in format and quality, requiring significant preprocessin g and expertise	Frustrated and concerned about inaccurate predictions affecting crop productivity

2.2 EmaphtyMap Canvas.

2.3 **Brainstorming:**

Step1: Team Gathering, Collaboration and Select the Problem Statement

Farmers and agritech companies struggle to predict plant growth stages accurately due to varying environmental conditions like soil type, sunlight exposure, water frequency, temperature, and humidity. Project Goal: Using Power BI, we aim to analyze plant growth patterns and provide data-driven insights to optimize farming strategies and improve crop yield and sustainability.

Step-3: Idea Prioritization

Step-3: Idea Prioritization

Idea	Priority Level (High/Medium/Low)	Reason for Priority
Data Cleaning & Transformation	High	Essential for accurate insights
Stacked Bar Chart (Soil Type vs Growth)	High	Shows key environmental impact
Scatter Plot (Sunlight vs Growth)	High	Helps find correlation
Decomposition Tree (Growth Analysis)	High	Breaks down key influencing factors
Card Visuals (Key Metrics)	High	Provides quick insights
Predictive Insights	Medium	Future enhancement
Advanced Al-based Predictions	Low	Needs further data exploration

3. RequirementAnalysis.

3.1 CustomerJourneyMap

3.2.SolutionRequirement.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	user Registration and Authentication	users (Farner, agronomists admins) must be able to register and log in srcurely
FR-2	Plant data input	users must be able to input plant type planting date and Growth Observation
FR-3	Environmental Data collection	The system must fetch real-time weather and soil sensor data from APIs
FR-4	Growth stages prediction	The system must predict the current and upcoming growth stages of plants based on environmental and historical data
FR-5	Management Recommendation	The system should suggest irrigation fertilization and pest control actions based 0n plant 's growth stages
FR-6	Data storage and Retrieval	LL Input and output data must be stored and retrievable for future analysis
FR-7	User Dashboard	Users should have a Dashboard Displaying plant growth status
FR-8	Notification System	The system must send alerts to users about growth stages changes weather conditions, and management actions

FR-9	Admin control panel	Admins should manage plant growth models update environment data sources and oversee system performance
FR-10	Reports Analytis	users should be able to generate reports on plant growth history and environmental conditions

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Performance	The system should process data and generate predictions within 5 seconds
NFR-2	Scalability	The system must support multiple users and large datasets without performance Degradation
NFR-3	security	User authentication must use encryption and sensitive data should be securely stored
NFR-4	Availability	The system should 99.9 user-friendly with simple navigation and clear instruction
NFR-5	Usability	The interface should be user friendly with simple navigation and clear instruction
NFR-6	Data Accuracy	Predictions should have at least 85 present accuracy ,improving over time with machine learning
NFR-7	Interoperability	The system must integrate with third-party weather APIS and lot soil sensors

NFR-8	Maintainability	Sysstem updates and maintenance should be possible with minimal downtime
NFR-9	compliance	The system must adhere to agricultural data standards and privacy regulations

3.3 <u>DataFlow Diagram</u>.

Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

3.4 TechnologyStack.

Technology Stach for Plant growth stages

4.1 SolutionFit

4.2 PROPOSEDSOLUTION

SR.No.	Parameter	Description
1.	Problem Statement(Problem to be solved)	How to Predict Plant growth stages. With environmental and management data using Power BI.
2.	Idea/Solution description	Use Power BI to visualize relationships between environmental factor sand plant growth stages. Identify key variables that influence growth stages through correlation analysis. Dashboard Creation: Develop interactive dashboards that display: Current environmental conditions(temperature ,humidity, soilmoisture). Cumulative GDD and predicted growth stages. Historical trends of growth stages against environmental factors.
3.	Novelty/Uniqueness	Power BI's interactive dashboards make complex data easily interpre table for users with varying levels of technical expertise. Visual elements such as charts and maps help in quickly identifying trends and anomalies.
4.	SocialImpact/Customer Satisfaction	 Knowledge: The educational component of using Power BI dashboards helps farmers understand the relationship between environmental factors and plant growth, enhancing their agricultural knowledge and skills. Cost Savings: Efficient resource management leads to reduced operational costs forfarmers. By minimizing in putslike water and fertilizers, farmers can increase their profit margins.
5.	BusinessModel(RevenueModel)	The proposed solution of predicting plant growth stages using Power BI fits well intovariousbusinessmodelsthatcangeneraterevenuewhileprovidingsignificant value to farmers and agricultural businesses. By leveraging subscription services, consulting, partnerships, data monetization, and educational programs, the

		Solution can create a sustainable revenue stream while contributing to the advancement of precision agriculture and improved farming practices.
6.	ScalabilityoftheSolution	Predicting plant growth stages involves utilizing machine learning models ,such as Random Forest and deep learning techniques, to analyze environmental and managementdata.IntegratingthesemodelswithtoolslikePowerBlcanenhance scalability by enabling real-time data visualization and decision-making in agricultural practices DataCollection:Gatherenvironmentaldata(temperature,humidity,soilmoisture) and management data (fertilization, irrigation schedules) to create a comprehensive dataset. Integration with Power BI: Use Power BI to visualize the predictions and insights Derived from them ach in e learning models ,allowing for better understanding and communication of results.

4.3 SOLUTIONARCHITECTURE:

Solution architecture is a complex process - with many sub-processes - that bridges the gap between business problems and technology solutions. Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure ,characteristics ,behaviour, and other aspects of the software to project stakeholders.1. Identify business goals: Improve crop yields, reduce resource waste, and enhance decision-making.
- 2. Define problem statement: Develop apredictive model to forecast plant growth stages based on environmental and management data.
- 3. Gather requirements: Collect data on environmental factors, management practices, and plant growth stages.

2:Data Collection and Integration

- 1. Environmental data: Collect data on temperature, humidity, solar radiation, soil moisture, and weatherfore casts.
- 2. Management data:Collect data on irrigation, fertilization, pruning, pestcontrol, and cropvariety.
- 3. Plant growth stage data:Collectdataonplantgrowthstages,includingobservationaldataandsensorreadings.
- 4. Integrate data sources:Combinedatafromvarioussources,includingsensors,weatherstations,andfarm management systems.

3:Data Analysis and Modeling

- 1. Data preprocessing:Clean,transform,and normalized at a for analysis.
- 2. Feature engineering: Extract relevant features from environmental and management data.
- 3. Model selection: Choose asuitable algorithm for predicting plant growth stages, such as decisiontrees, random forests, or neural networks.
- 4. Modeltrainingandevaluation: Trainandevaluate the predictive model using various metrics, including accuracy, precision, and recall.

SolutionDesign.

- 1. Define solution architecture: Design a solution architecture that integrates the predictive model with a user-friendly interface.
- 2. Choose technologies: Select technologies, including Power BI, Azure Machine Learning, and Azure Io THub.
- 3. Design data pipeline:Design a data pipeline that integrates data from various source sand feeds it in to the predictive model.

5:Implementation and Deployment

- 1. Implement predictive model:Implement the predictive model using Azure Machine Learning.
- 2. Develop user interface: Develop a user-friendly interface using Power BI that allows farmers and agricultural managers to input data and view predictions.
- 3. Deploy solution: Deploy the solution to a cloud-based platform, such as Azure.

5. PROJECT PLANNING AND SCHEDULING.

5.1 Project Planning:

Sprint	Functional Requirement(Epic)	User Story Number	User Story/Task	Story Points	Priority	Team Members
Sprint-1	Data collection and Integration.	USN-1	Gather relevant environmental data, including temperature, humidity, soil moisture, and light levels.	7	High	SHAIK SOHAIL
	Data Preperation	USN-2	Cleans the collected data for analysis.	8	High	KORRAPATI RAVINDRA BHAVANI , SHAIK SOHAIL
Sprint-2	Data Analysis and Modeling	USN-3	Utilize Power BI's analytical tools to explore relationships between environmental factors and plant growth stages.	5	Low	PATTAPU RAKESH
	Visualization Developnment	USN-4	Create interactive visualization for key metrics	6	Medium	SHAIK SOHAIL, KORRAPATI RAVINDRA BHAVANI
	Dashboard Design	USN-5	Design user-friendly interfaces that allow stakeholders to easily access and interpret data	8	High	SHAIK SOHAIL

			Incorporate visual elements such as charts, graphs, and map store present data effectively.			KORRAPATI RAVINDRA BHAVANI
Sprint-3	Implementation	USN-6	Provide training and support to users to ensure they can effectively utilize the dashboards for decision-making	7	Medium	KORRAPATI RAVINDRA BHAVANI, PETETI PAVAN PRAKASH
	Feedback		Gather feedback from stake holder on initial dashboard	6	Medium	PETETI PAVAN PRAKASH, PATTAPU RAKESH
	Evaluation and Continuous Improvement	USN-7	Analyze user engagement with the dashboards and gather feedback for enhancements. Foster a culture of data-driven decision-making with in the organization to maximize the benefits of the project.	9	High	SHAIK SOHAIL, KORRAPATI RAVINDRA BHAVANI, PETETI PAVAN PRAKASH, PATTAPU RAKESH

Project Tracker, Velocity & Burn down Chart: (4Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	21	10Days	22Feb2025	03March2025	22	03March 2025
Sprint-2	20	10Days	04March 2025	13March2025	21	13March 2025

Sprint-3	15	3Days	13March 2025	14March 2025	14	14March 2025

Velocity:

Total Story Points Completed:56

Total Number of Sprints=3

Velocity=Total Story Points/Number of Sprints

Velocity=56/3=18.66

Burn down Chart:

A burn chart is graphical representation of work left do versus time. It is often used in agile software development methodologies such as Scrum. Burn down charts be applied to any project containing measurable progress over time.

Sprint	Day	TotalStoryPoints	StorypointsCompleted	RemainingStoryPoints
1	1	56	0	56
	2	56	0	56
	3	56	0	56
	4	56	0	56
	5	56	0	56
	6	56	0	56
	7	56	0	56
	8	56	0	56
	9	56	0	56
	10	56	21	35
2	1	56	21	35
	2	56	21	35
	3	56	21	35
	4	56	21	35
	5	56	21	35

I	6	56	21	35
	7	56	21	35
	8	56	21	35
	9	56	21	35
	10	56	20	15
3	1	56	15	15
	2	56	15	15
	3	56	15	15
	4	56	15	15
	5	56	15	15
	6	56	15	15
	7	56	15	15
	8	56	15	15
	9	56	15	15
	10	56	15	0

6. FUNCTIONAL AND PERFORMANCE

6.1. Performance Testing

ModelPerformanceTesting:

Project teams hall fill the following information in model performance testing template.

S.No	Parameter	Screenshot/Values
•		
1.	Data Rendered	14columnand193Rows.


```
Temperature_Range=
SWITCH(
  TRUE(),
  [Temperature]<15,"Low",
  [Temperature]>=15&&[Temperature]<25,"Moderate",
  [Temperature] >=25, "High" )
Humidity_Range=
SWITCH(
  TRUE(),
  [Humidity]<40, "Low",
  [Humidity]>=40&&[Humidity]<60,"Moderate",
  [Humidity] >= 60, "High"
```

```
Humidity_Level_Description =
SWITCH(
 TRUE(),
  [Humidity]<30,"VeryDry",
  [Humidity]>=30&&[Humidity]<50, "Dry",
  [Humidity]>=50&&[Humidity]<70,"Moderate",
  [Humidity] >= 70 && [Humidity] < 90, "Humid",
  [Humidity] >= 90, "Very Humid")
Temperature_Range_Description=
SWITCH(
 TRUE(),
  [Temperature]<10, "Very Cold",
  [Temperature]>=10&&[Temperature]<20,"Cold",
  [Temperature]>=20&&[Temperature]<30,"Moderate",
  [Temperature] >= 30 && [Temperature] < 40, "Warm",
```

```
[Temperature] >= 40, "Hot")
Growth_Milestone_Description =
SWITCH(
  [Growth_Milestone],
  0, "Early Stage",
  1,"MatureStage",
  "Unknown Stage"
Plant_Growth_Category=
SWITCH(
  [Growth_Milestone],
  0, "Initial Growth",
  1,"AdvancedGrowth",
  "Uncategorized"
```


7. RESULTS

7.1 Dashboard

Here are the key observations from the PowerBI dashboardon Predicting Plant Growth Stages with Environmental and Management Data.

1. WaterFrequencyAccordingtoSoilType. Description:This table displays the frequency of water usage for different soil types. Soil Types Indicated:

Loam

High:191.61

Moderate:205.65

Total:397.25

Sandy

High:215.43

Moderate:217.46

Total:432.88

Clay

High:280.24

Moderate:207.13

Total:487.37

Totals:

Weekly, Daily, and Bi-Weekly frequencies are show cased reach soil type, contributing to ove rall totals.

-Totalfrequencies for all soil types: 1,317.51.

- 2. AverageTemperature and Sum of Temperature-by-Temperature Range Description*
- Visualization Type:Barchart.
- KeyPoints:
- Categories:Warm,Moderate,Cold,andTotal.
- Displays trends in temperature averages ,categorized by range descriptions.
- Shows changes in temperature across these define dranges ,indicating general climate patterns for plant growth.
- 3. Temperature and Its Description According to Plant Growth*
 - -Components:
 - Key influencers and top segment side fied.

- Segment Performance: A visual representation showing aspecific segment's performance measurement (20.24).
- *4.Growth Milestone Count According to Soil Type*
- *Visualization Type :Barchart.
- *Soil Types:
 - Loam ,Sandy ,and Clay are shown with respective counts of growth milestones.
 - Reflects how different oil types of impact agricultural out comes interms of growth milestones.
- *5.Sum of Growth Milestone by Fertilizer Type*
- *Visualization Type :Pie chart.
- *Fertilizer Types:
 - -Organic(22.92%), Chemical(29.85%), None(47.94%).
 - Shows the distribution of growth milestones based on fertilizer type utilized.
- *6.Average Humidity by Humidity Level Description*

- *Visualization Type :Linechart.
- *Humidity Levels:
 - Categorized as Humid, Moderate, and Dry.
- Illustrates the trends in average humidity across the defined categories ,important for understanding plant care and health.

These visualizations collectively provide insights into the correlation between soil types, water frequency, temperature, fertilizer types, and humidity levels to plant growth metrics.

7.2REPORT

Average_Humidity

58.10

6.83

Average_Temperature

25.08

Growth Milestone Percentage by Water Frequency

REPORT

At 74.02, Humid had the highest Average_Humidity and was 79.53% higher than Dry, which had the lowest Average_Humidity at 41.23.

Humid had the highest Average_Humidity at 74.02, followed by Moderate at 60.10 and Dry at 41.23.

Moderate had 60.10Average_Humidity, Dry had 41.23, and Humid had 74.02.

Temperature_Range contributed the most to the Decrease of Temperature. When Temperature Range was Moderate, Temperature Decreased by 9.25.

clay had the highest Average_Sunlight_Hours at 7.27, followed by sandy at 6.76 and loam at 6.41.

At 54, Moderate had the highest

Growth_Milestone_Count and was 260.00% higher than Humid, which had the lowest Growth Milestone Count at 15.

KeyMetrics

- 1. Average SunlightHours: 6.83 hours.
- -AverageHumidity:58.10%
- -AverageTemperature:25.08°C
- 2. SoilTypeAnalysis.
- -AverageSunlightHoursbySoilType:
 - -Clay:7.27hours(31.34%)
 - -Sandy:6.76hours(35.58%)
 - -Loam:6.41hours(33.08%)
- 3. HumidityLevelInsights.
 - HumidityLevels:
 - Highest:Humidat74.02%
 - Moderate:60.10%
 - Lowest:Dryat41.23%

- The Humid classification showed asignificant increase(+79.53%)compared to Dry.
- 4. Growth Milestone Analysis.
 - Growth Milestone Count by Humidity Level:
 - Moderate: Highest count at 54
 - Dry:27
 - Humid:Lowestat15
 - Moderate conditions yielded significantly better growth outcomes.
- 5. Water Frequency Impact.
 - Growth Milestone Percentage by Water Frequency:
 - Daily
 - Bi-weekly
 - Weekly
- 6. TemperatureInsights:TemperatureInfluence:Thedecreaseintemperaturewasheavilyimpacted by the Temperature Range Description, especially noted when conditions were classified as cold, whichledtoadecreaseof9.70%.OverallFindings-Soiltype,humidity,andtemperature

interactively influence plant growth milestones. Optimal conditions are characterized by moderate humidity and adequate sunlight, indicating a path for future cultivation strategies.

8. ADVANTAGES&DISADVANTAGES

Advantages:

Predicting plant growth stages using environmental and management data can enhance agricultural efficiency by optimizing resource use and improving yield forecasts. However, challengesincludedataqualityissues,thecomplexityofmodelingbiologicalprocesses,andthe needforcontinuousdataupdatestomaintainaccuracy.*AdvantagesofPredictingPlantGrowth Stages*

- 1. Optimized Resource Management:
- Enable sprecise application of water, fertilizers ,and pesticides, reducing waste and costs.
- 2. ImprovedYieldForecasting:
 - Helps farmer santicipate harvest time sand plan accordingly, leading to better market strategies.

- 3. Enhanced Decision-Making:
 - Provide sactionable insights that can guide agricultural practices and interventions.
- 4. Data-Driven Insights:
- Utilizes historical and real-time data to make informed predictions, improving over all farm management.
- 5. Sustainability:
- Supports environmentally friendly practices by minimizing resource over use and promoting efficient farming techniques.

Disadvantages:

- 1. Data Quality Issues:
- In accurate or incompletedata can lead to unreliable predictions, affecting decision-making.
- 2. Complexity of Biological Processes:

- Plant growth is influence by numerous variables ,making it challenging to create accurate models.

3. Need for Continuous Data Updates:

- Requires ongoing data collection and analysis to maintain prediction accuracy ,which can be resource-intensive.

4. Technical Expertise Required:

- Farmers may need training to effectively use predictive tool sand interpret results ,which can be a barrier to adoption.

5. Cost of Implementation:

- Initial setup and maintenance of predictive analytics systems can be expensive ,particularly for small- scale farmers.

9. CONCLUSION:

TheintegrationofenvironmentalandmanagementdatatopredictplantgrowthstagesusingPower BI presents a transformative opportunity for modern agriculture. By leveraging advanced data analytics, farmers and agricultural managers can gain valuable insights into the growth patterns of theircrops, enabling them to make informed decisions that enhance productivity and sustainability.

The advantages of this approach are significant. Optimized resource management leads to cost savings and reduced environmental impact, while improved yield forecasting allows for better planning and market positioning. Data-driven insights empower farmers to adapt their practices based on real-time conditions, ultimately fostering a more resilient agricultural system.

However, the challenges associated with this predictive modeling cannot be overlooked. Issues related to data quality, the complexity of biological processes, and the need for continuous data updates require careful consideration. Additionally, the technical expertise needed to effectively utilizePowerBlandinterpretthe results may posebarriersforsomeusers,particularly small-scale farmers.

In conclusion, while predicting plant growth stages using Power BI offers substantial benefits, successful implementation hinges on addressing the associated challenges. By investing in data quality, user training, and ongoing support, the agricultural sector can harness the full potential of predictive analytics, leading to enhanced crop management, increased yields, and a more sustainablefutureforfarming. Astechnology continues to evolve, the integration of predictive

analytics into agricultural practices will likely become increasingly essential, paving the way for smarter, more efficient farming methods.

10. FUTURESCOPE

Thefuturescopeofpredictingplantgrowthstageswithenvironmentalandmanagementdatausing Power BI is promising. As data analytics technology advances, the integration of real-time environmental data and management practices will enhance predictive accuracy, enabling more precise crop management and improved decision-making for farmers. Future Scope: Predicting Plant Growth Stages with Environmental and Management Data Using Power BI.

1.Enhanced Data Integration: The future will see improved integration of diverse data sources, includingsatelliteimagery, IoTsensors, and weatherfore casts, allowing for amore comprehensive understanding of plant growth dynamics

2. Machine Learning Advancements:

The application of advanced machine learning algorithms, such as deep learning, will refine predictive models, leading to higher accuracy in forecasting growth stages and potential yield outcomes.

3. User-FriendlyInterfaces:

Development of more intuitive interfaces in Power BI will facilitate easier access to predictive analyticsforfarmers,regardlessoftheirtechnicalexpertise,promotingwideradoptionofdata-driven practices.

4. Real-TimeMonitoring:

The incorporation of real-time monitoring systems will enable farmers to receive immediate feedback on plant health and growth conditions, allowing for timely interventions and adjustments in management practices.

5.Sustainability Focus: As sustainability becomes increasingly important, predictive analytics will helpoptimizeresourceuse, reducewaste, and minimize environmental impact, aligning agricultural practices with global sustainability goals.

6. Collaboration and Knowledge Sharing:

Future developments may foster greater collaboration among farmers, researchers, and agronomists, leading to shared in sight sand best practices that enhance the overall effectiveness of predictive modeling in agriculture.

7. Policyand Economic Implications:

The insights gained from predictive analytics could influence agricultural policies and economic strategies, promoting investments intechnology and infrastructure that support data-driven farming.

Insummary,thefutureofpredictingplantgrowthstagesusingPowerBlissettoevolvesignificantly, driven by technological advancements and a growing emphasis on sustainable agricultural practices. This evolution will empower farmers to make informed decisions, ultimately leading to enhanced productivity and resilience in the agricultural sector.

11. APPENDIX

Dataset Link: https://www.kaggle.com/datasets/gororororo23/plant-growth-data-classification

Demo Link: C\Users\91967\Downloads\Plant Growth Perdiction\DEMO\DEMO.mp4