Calculus II

Exercise II, Kepler's Second Law, Part 2

In Page 880 of the textbook, we know that:

the velocity vector is $\mathbf{v}=\mathbf{r}'$ and the acceleration vector is $\mathbf{a}=\mathbf{r}''$. We use the following laws of Newton :

Second Law of Motion : $\mathbf{F} = m\mathbf{a}$

Law of Gravitation : $\mathbf{F} = -\frac{GMm}{r^3}\mathbf{r}$

where **F** is the gravitational force on the planet, m and M are the masses of the planet and the sun, G is the gravitational constant, and $r = |\mathbf{r}|$.

By equating the expressions for F in Newton's two laws, we find that

$$\mathbf{a} = -\frac{GM}{r^3}\mathbf{r}$$

and so ${\boldsymbol a}$ is parallel to ${\boldsymbol r}.$ It follows that ${\boldsymbol r}\times{\boldsymbol a}={\boldsymbol 0}.$