Breadiction

Predicting Demand for Bakery Products

Erin Choi, Vicky Lin

Background

Problem

Predicting demand for food (bakery products) to reduce waste

Climate Change Connection

Food waste = 6% of global GHG emissions [1]

Quantifying demand prevents overproduction

Targeting food waste at the retailer and company stage of the supply chain

Previous ML Approaches

Regression: Predicting demand based on recipes [2]

CNN: Time-series analysis to predict hourly sales [3]

Methods: Data Preprocessing

Grupo Bimbo Inventory Demand (Kaggle) - data in Spanish [4]

Product

Client

State

Product ID Product name

Client ID

Client name

Location ID

Town

State

Product Product Product ID Type Weight Brand

Client ID Client Type

Location ID S

State

Data Preprocessing Cont.

Dataset Features After Feature Engineering

- State (33)
- Client Type (13)
- Product Type (11)
- Product Brand (55)
- Product Weight (grams)
- Product Price: sales in Pesos ÷ sales in unit quantity

Data Downsizing

- Downsize data from 75M to 8M rows computation limits
 - Client: Drop unidentified clients
 - Product: Drop products with no brand, price, or weight
 - Sample 250k transactions from each state (33 states)

Scaling & Encoding

- Robust Scaler
- One-Hot Encoding → 107 features

Methods: Regression Models

80 train / 20 test split, retraining and retesting models with new hyperparameters Regression problem, target = demand (sales minus returns)

Linear Regression

Lasso Regression

alpha

Ridge Regression

alpha

XGBoost

max_depth learning_rate

Bagging

Decision tree: max_depth n estimators

AdaBoost

Decision Tree: max_depth, criterion min_sample_split, n_estimators

Results: Metrics

Root Mean Squared Log Error, Mean/Median Absolute Error

	Model	RMSLE	MAE	MedAE
0	Linear Regression	0.896453	6.322293	3.556854
1	Lasso Regression	0.899771	6.353492	3.661482
2	Ridge Regression	0.896465	6.322351	3.556877
3	XGBoost	0.716399	4.884369	2.474169
4	Bagging	0.931823	6.441883	4.831724
5	AdaBoost	1.257163	10.046502	8.493673

XGBoost outperformed all other models in all metrics

Results: Metrics

Results: XGBoost Feature Importances

Results: XGBoost Feature Importances

	Feature	Importance
0	brand_BAR	0.120298
1	brand_CC	0.084348
2	state_QUERETARO	0.069850
3	brand_MTA LON	0.058350
4	brand_TNB BIM	0.041204
5	product_Pastry	0.030590
6	state_SINALOA	0.028307
7	state_PUEBLA	0.026467
8	brand_DH	0.025971
9	state_BAJA CALIFORNIA NORTE	0.025872
10	brand_MTB MLA	0.023099
11	product_Other	0.018366
12	brand_CU LON	0.017755
13	brand_TAB BIM	0.017302
14	product_Cookies	0.016527
15	brand_MTA WON	0.015913
16	state_Queretaro de Arteaga	0.015825
17	brand_RIC	0.015726
18	brand_MLA	0.014243
19	brand_MTA TR	0.013777

Discussion

Why XGBoost?

- Model is good for numerical & categorical training data with high dimensionality
- Execution speed is faster than other models when trained on large sample sizes
- Uses more accurate approximations to find the best tree model

Compared to Previous Work

- Previous work's XGBoost model resulted in better performance (smaller errors)
- Need more features and data points to improve performance of models
- Need longer timespan for time-series analysis [3]

Discussion

Future Improvements

- With higher computing power:
 - Use the whole dataset
 - Build a Random Forest Model
 - Further hyperparameter tuning (GridSearch)
- Generalizability
 - Current model is specific to features in Mexico (brands, prices)
 - Requires similar features from other countries for generalization

Thank You! QSA

References

- 1. J. Poore and T. Nemecek, "Reducing food's environmental impacts through producers and consumers," *Science*, vol. 360, no. 6392, pp. 987–992, 2018. www.science.org/doi/10.1126/science.aaq0216.
- 2. A. Garre, M. C. Ruiz, and E. Hontoria, "Application of Machine Learning to support production planning of a food industry in the context of waste generation under uncertainty," *Oper. Res. Perspect.*, vol. 7, no. 100147, 2020. doi.org/10.1016/j.orp.2020.100147.
- 3. N. Xue, I. Triguero, G. P. Figueredo, and D. Landa-Silva, "Evolving deep CNN-LSTMs for inventory time series prediction," 2019 IEEE Congress on Evolutionary Computation (CEC), 2019. www.cs.nott.ac.uk/~pszjds/research/files/dls cec2019.pdf.
- 4. A. Montoya, Grupo Bimbo, M. O'Connell, and Wendy Kan, "Grupo Bimbo Inventory Demand," *Kaggle.com*, 2016. www.kaggle.com/competitions/grupo-bimbo-inventory-demand.