

החוג למתמטיקה (0366) אלגברה לינארית 2ב (1120) (גרסה ארוכה)

מרצה: רני הוד *מתרגל: אמיתי אלדר* תשפ"ב, סמסטר ב' (2022)

מסכם: רועי מעין

פרק 1 – מבוא ולכסון

4	דמיון מטריצות וערכים עצמיים
5	פולינומים
7	לכסון
פרק 2 – פולינומים של ה"ל/מטריצות	
9	פולינומים של ה"ל/מטריצות
פרק 3 – מרחבי מכפלה פנימית	
14	מרחבי מכפלה פנימית
18	המרחב הדואלי
21	נושאים נוספים

1 – מבוא ולכסון

חזרה על לינארית 1ב

 $M_C^B[v]_B=[v]_C$ נשים לב כי מטריצת מעבר בסיס הגדרנו בזמנו $[id]_C^B$, ובעת נסמנה באות M, כלומר מטריצת מעבר בסיס הגדרנו בזמנו תרגיל חזרה נחמד מתרגול 1:

שאלה ממבחן (לינארית 1, 2016): יהיו U,V מרחבים וקטוריים ממימד n ו־U,V העתקה לינארית. הוכיחו או הפריכו: T היא איזוומרפיזם אם ורק אם קיימים B,C של B,C הוכיחו או לינארית. $\left[T\right]_{C}^{B}=I_{n}$ כך ש־

פתרון:

C:=: ונסמן: V של $B:=\{v_1,...,v_n\}$ ובסיס כלשהו נבחר בסיס. נבחר איזומורפיזם. נבחר איזומורפיזם. $|C|=\dim U$ יש אכן, מכיוון ש־ . $[T]_C^B=I_n$ ו אכן על הוא בסיס של Tו נטען כי Tונטען כי Tו הוא בסיס של Tוכן ש- .Tמספיק להוכיח ש־C קבוצה בת"ל. נניח ש־ $a_1,...,a_n$ מקדמים כך ש־C שז מכיוון אז מכיוון הוכיח ש־C קבוצה בת"ל. $\sum_{i=1}^n a_i t^i$ (פון ש־T איזומורפיזם ובפרט חח" ע, נסיק כי T העתקה לינארית מתקיים גם T = T איזומורפיזם ובפרט חח" ע, נסיק כי T = TC בסיס, בהכרח $a_1,a_2,...,a_n=0$ בסיס, בהכרח בסיס, מכיוון ש־ $\sum_{i=1}^n a_i v_i=0$ ולכן נסיק שגם $\sum_{i=1}^n a_i v_i=0$ בסיס. לבסוף, לכל i נקבל e_i נקבל $[T(v_i)]_C$ ולכן $[T(v_i)]_C$ מטריצה שהעמודה ה־i שלה אי היחידה I_n כפי שרצינו.

כיוון שני: אם קיימים בסיסים כאלה אז

$$\dim \operatorname{Im} T = \operatorname{rank} [T]_C^B = n$$

כלומר T העתקה על בין שני מרחבים מאותו מימד, ולכן איזומורפיזם.

דמיון מטריצות וערכים עצמיים

דמיון מטריצות

A-אז נאמר ש $A'=P^{-1}AP$ או הפיבה המקיימת: $P\in M_n(\mathbb{F})$ אם קיימת מטריצה אם קיימת $A,A'\in M_n(\mathbb{F})$ אז נאמר ש תיקרא מטריצת הדמיון. $P.A \sim A'$ ונסמן A'-

טענה (שיעור 1): יחס הדמיון על מטריצות ריבועיות הוא יחס שקילות.

 $\{\alpha I_n\}$ היא (מטריצה סקלרית) מחלקת ביחס הדמיון של הדמיון של השקילות ביחס הדמיון של

<u>:הערות</u>

- היחס של דמיון מטריצות הוא לא אותו דבר כמו יחס שקילות שורה כתוצאה מדירוג מטריצות.
- . מטריצת הדמיון P אינה יחידה, ייתכנו שתי מטריצות P הפיכות שונות ממש שמקיימות את התנאים

מטריצה לכסינה (<u>Diagonalizable):</u> מטריצה ריבועית A תיקרא לכסינה/ניתנת ללכסון **אם היא דומה למטריצה אלכסונית**. המטריצה האלכסונית הזו תיקרא הצורה האלכסונית של A.

T:V o V עבורו T:V o V אלכסונית. T אלכסונית. T:V o V אלכסונית.

 $A' = [T]_{\mathcal{C}}$, $A = [T]_{\mathcal{B}}$ בך שמתקיים B כך שמתקיים T: V o V טענה (שיעור 1): $A' = [T]_{\mathcal{C}}$ קיימת ה"ל

:הערות

- כלומר, שתי מטריצות ריבועיות מייצגות את אותה ה"ל בבסיסים שונים אמ"מ הן דומות.
- $A'[v]_C = [Tv]_C = M_C^B[T]_B M_B^C[v]_C = P^{-1}AP[v]_C$ במקרה זה מטריצת הדמיון P במקרה היא מטריצת מעבר בסיסים
 - לכל סקלר λ המטריצה הסקלרית λI דומה רק לעצמה (הוכחנו בתרגול 1).

יש את Aי ש את $A'\in M_n(\mathbb{F})$ אדומה ל- $A\in M_n(\mathbb{F})$ אינווריאנטית לדמיון אם גם עבור כל התכונה של-A יש.

:הערות

- $A \sim B$ תכונות אינווריאנטיות לדמיון דטרמיננטה, עקבה, דרגה, הוכחנו בשיעור ובתרגול (אם
 - $\det(B) = \det(P^{-1}AP) = \det(P^{-1})\det(A)\det(P) = \det(A) \quad \circ$
 - $tr(B) = tr(P^{-1}AP) = tr(PP^{-1}A) = tr(A)$
 - $rk(B) = rk(P^{-1}AP) = rk(AP) = rk((AP)^{T}) = rk(P^{T}A) = rk(A)$
- בדי להוכיח שמטריצות לא דומות, ניתן להראות תכונה אינווריאנטית לדמיון שלא מתקיימת ביניהן.
 - מטריצות שחולקות דטרמיננטה, עקבה ודרגה לא בהכרח דומות!

תרגילון: הראו שהתא השמאלי העליון במטריצה אינו אינווריאנטה של דמיון.

ערכים עצמים ווקטורים עצמיים

(ע"ע) אז נקרא λ -ל ערך עצמי (ע"ע) אז נקרא או נקרא או נקרא או נקרא או ווקטור עצמי. $\lambda \in \mathbb{F}$ אז נקרא או נקרא $A \in M_n(\mathbb{F})$ אז נקרא או נקרא או ערך עצמי (ע"ע) λ שמתאים לע"ע A של המטריצה v, **ול-v** נ**קרא וקטור עצמי** (ו"ע) של

.spec(A) סימון: קבוצת הע"ע של מטריצה A נקראת מטריצה עם סימון: קבוצת הע"ע הע"ע סימון

בלומר: .λ. בלומר: A אם $v_1,...,v_k$ ו"ע של A שמתאימים לע"ע מסוים אז גם כל צ"ל שלהם הוא ו"ע של $v_1,...,v_k$ שמתאים ל- $A(\alpha_1 v_1 + \dots + \alpha_k v_k) = \alpha_1 A v_1 + \dots + \alpha_k A v_k = \alpha_1 \lambda v_1 + \dots + \alpha_k \lambda v_k = \lambda (\alpha_1 v_1 + \dots + \alpha_k v_k)$

(או V_λ) את קבוצת כל הו"ע של A עם ע"ע λ . מההגדרה מתקיים: $E(\lambda)$ את קבוצת כל הו"ע של

$$E(\lambda) = \{v \in \mathbb{F}^n | Av = \lambda v\} = \{v \in \mathbb{F}^n | (\lambda I_n - A)v = 0\} = N(\lambda I - A)$$

 $.\lambda$ בלומר, $E(\lambda)$ הוא תת-מרחב של \mathbb{F}^n , ונקרא לו המרחב העצמי של

:הערות

- (17v) אם אם אם ו"ע אז גם כל כפולה שלו הוא ו"ע (למשל v
- אם $E(\lambda) \neq \{0\}$ אז נגיד ש- Λ הוא ע"ע של A. כדי למצוא ע"ע של A נחפש מהם ערכי λ עבורם $E(\lambda) \neq \{0\}$ אומר שלמשוואה ההומוגנית $V(\lambda) = 0$ קיים יותר מפתרון אחד, כלומר **המטריצה V(\lambda) = 0 לא הפיכה**, והדטרמיננטה שלה מתאפסת.
- . עם k ע"ע שונים זה מזה, אז הקבוצה $\{v_1,...,v_k\}$ היא בת"ל. k אם קיימים k ו"ע של k עם k שם k שם אוים במטלה במטלה במטלה ווע של k

פולינומים

מבוא לפולינומים

פולינום: פולינום ממעלה (degree) הוא מהצורה: α_n הוא מהצורה: α_n הוא מהצורה: α_n הוא מהצורה: α_n המקדמים שלו מהשדה, פולינום: פולינום ממעלה ($\alpha_n \neq 0$ המקדם המוביל/העליון אינו אפס, $\alpha_n \neq 0$

:מספר אבחנות נסמן נסמן נסמן נסמן נסמן מספר אבחנות נסמן נסמן

- $-\infty$ פולינום האפס f(x)=0 הוא ממעלה •
- במילים פולינום שיש לו הופכי כפלי בחוג. אלו הם **הפולינומים ממעלה אפס**: $f(x)=lpha_0$ עבור $lpha_0
 eq 0$. במילים אחרות, מדובר בסקלר מהשדה.
 - . בולינום מתוקן (monic): פולינום שהמעלה שלו היא 1 נקרא מתוקן. האנלוג לפולינום מתוקן ב \mathbb{Z} הוא שלם חיובי.
 - $\deg(f+g) \leq \max\{\deg(f),\deg(g)\}$, וגם , $\deg(fg) = \deg(f) + \deg(g)$ מתקיים

חוג הפולינומים: נסמן ב- $\mathbb{F}[x]$ את אוסף כל הפולינומים עם מקדמים מהשדה \mathbb{F} . זהו מבנה אלגברי שנקרא **חוג (ring) אוקלידי**. יש דמיון רב בין חוג הפולינומים לבין חוג השלמים \mathbb{Z} . באופן לא מדויק ניתן לומר שחוג הוא "כמעט שדה":

- 1. חוג אוקלידי מקיים אתכל תנאי השדה (קיום האיברים 0,1, חילופיות כפל וחיבור, פילוג וכו') מלבד אחד בחוג אוקלידי לא לכל איבר יש איבר הופכי.
 - 2. במקום איבר הופכי, בחוג אוקלידי ניתן לבצע חלוקה עם שארית.

תכונות מעניינות שנובעות מתנאי החוק האוקלידי:

בריקים (ראשוניים), כך (עד כדי כפל ב-1-) כמכפלת מספרים אי-פריקים (ראשוניים), כך (עד כדי כפל ב-1-) כמכפלת מספרים אי-פריקים (ראשוניים), כך גם ניתן לכתוב בצורה יחידה כל פולינום כמכפלה של פולינומים אי-פריקים, כדי כדי כפל באיבר הפיך.

$$,258 = 2 \cdot 3 \cdot 43 = (-2) \cdot 3 \cdot (-43)$$
$$.x^{4} + 1 = (x^{2} - \sqrt{2} \cdot x + 1) \cdot (x^{2} + \sqrt{2} \cdot x + 1) = (2x^{2} - 2\sqrt{2} \cdot x + 2) \cdot (\frac{1}{2}x^{2} + \frac{1}{2}\sqrt{2} \cdot x + \frac{1}{2})$$

0. אין מחלקי 0 – בחוק אוקלידי אין שני איברים שונים מ-0 שמכפלתם שווה ל-0

. הוא פולינום הפיךg,h ממעלה חיובית שבכל הצגה שלו בתור f=gh לפחות אחד מבין g,h הוא פולינום הפיך

חלוקה עם שארית

יחידים פולינומים ניתן למצוא פולינומים עם שארית. בהינתן $f,g\in\mathbb{F}[x]$ באשר g
eq 0 ניתן למצוא פולינומים יחידים פולינומים עם שארית. בהינתן $g\neq 0$ ניתן למצוא פולינומים יחידים g+1 ניתן למצוא פולינומים יחידים g+1 ניתן למצוא פולינומים יחידים g+1 באשר g+1 ניתן למצוא פולינומים יחידים g+1 ניתן למצוא פולינומים יחידים g+1 ניתן למצוא פולינומים יחידים פולינומים פולינומים יחידים פולינומים פולינ

הערות:

- $g \nmid f$ אחרת נסמן $g \mid g$ מחלק את g / g מחלק שארית 0 אז נסמן $g \mid f$ ונאמר ש- $g \mid g$ ונאמר ש-
 - כדי לחלק פולינומים עם שארית נבצע תהליך שדומה לחילוק ארוך.

שורש של פולינום $f(x)=\sum_{i=0}^n \alpha_i \beta^i$ אפשר להציב סקלר $x=\beta\in\mathbb{F}$ בפולינום $x=\beta\in\mathbb{F}$ בפולינום אולקבל את הסקלר $f(x)=\sum_{i=0}^n \alpha_i x^i$ ולקבל את הסקלר $f(\beta)=0$ מתקיים $f(\beta)=0$ אז $f(\beta)=0$ נקרא שורש של

:הערות

- לפולינום ממעלה 0 יש 0 שורשים.
- . אפולינום ממעלה $\beta \in \mathbb{F}$ הוא פולינום האפס, כל $\beta \in \mathbb{F}$ הוא שורש.
 - לפולינום ממעלה 1 (לינארי) יש שורש יחיד.
 - ניתן לחשב שורשי פולינום ממעלה 2 על ידי נוסחת השורשים.

בעיות אפשריות:

- $(x-1)^2 = x^2 2x + 1$ עבור $\beta = 1$ שורש מרובה כמו 1
- 2. שורשי הפולינום לא בשדה לעיתים אין שורשים בשדה הממשיים אבל יש בשדה המרוכבים.

 $x-\beta \mid f \Leftrightarrow f \in \mathbb{F}[x]$ טענה (שיעור 3): $\beta \in \mathbb{F}$ הוא שורש של

שורש מרובה: β נקרא שורש מריבוי $l \geq l$ של פולינום f אם f אם $(x-\beta)^l$, ו- $(x-\beta)^l$, ו- $(x-\beta)^{l+1}$ אם $(x-\beta)^{l+1}$ לינום $(x-\beta)^{l+1}$ אם $(x-\beta)^{l+1}$ לינום $(x-\beta)^{l+1}$

. ממעלה חיובית יש שורש. $f \in \mathbb{C}[x]$ ממעלה חיובית שורש. $f \in \mathbb{C}[x]$

כלומר אין פולינומים אי-פריקים ממעלה גדולה מ-1, כל פולינום מרוכב ניתן לכתוב כמכפלה של גורמים לינאריים.

$$x^{4} + 1 = \left(x - e^{-\frac{\pi}{4}i}\right) \cdot \left(x - e^{-\frac{3\pi}{4}i}\right) \cdot \left(x - e^{-\frac{5\pi}{4}i}\right) \cdot \left(x - e^{-\frac{7\pi}{4}i}\right)$$

מסקנה: לפולינום ממעלה $n \geq 0$ יש לכל היותר n שורשים שונים.

פירוק לראשוניים

מחלק מחלק h המחלק המשותף (common divisor): עבור פולינומים f, g המחלק המשותף h המחלק המשותף (עבור פולינומים h בלומר h המחלק המשותף h המחלק משותף (h בלומר h בלומר h את שניהם ונסמן (h בלומר h בלומר h בלומר h בלומר h המחלק משותף (h בלומר h בלומ

מחלק את d אם d מחלק את f, g וגם לבל מחלק f, g של gcd אונסמן (gcd) אם d מחלק את שהר שdנאמר ש-dנאמר ש-dנאמר ש-dנאמר ש-dנאמר שהוא משעלה מקסימלית. dנאם dוגם שותף אחר dמתקיים ש-dמחלק את d2. בלומר d3 וגם d4 וגם d5 וגם שותף שהוא ממעלה מקסימלית.

<u>הערות:</u>

- . אפשר לראות שאם h_1,h_2 שניהם f,g של gcd של gcd שניהם h_1,h_2 ולכן הם שווים עד כדי כפל בפולינום הפיך.
 - על שני פולינומים להיות המתוקן מכל אלה. gcd של שני פולינומים
- . אפשר להכליל את הטענה ל- $\gcd(a,b,c)=\gcd(a,(\gcd(b,c))$ אפשר להכליל את הטענה ל- $\gcd(a,b,c)=\gcd(a,(\gcd(b,c))$

אלגוריתם שלמים או שני פולינומים. האלגוריתם שלמים או שני מספרים שלמים או שני פולינומים. האלגוריתם או שני מספרים שלמים או שני פולינומים. האלגוריתם a>b באשר $\gcd(a,b)$ באשר שבור הצאה – עבור הבאה

- .a אם b=0 החזר את
- $\gcd(b, a \ mod \ b)$ אחרת, החזר את •

h=mf+ng בך שמתקיים $m,n\in\mathbb{F}[x]$ אז יש פולינומים פולינומים (שיעור 1): אם $h=\gcd(f,g)$ אם אם האלו תוך כדי חישוב ה-gcd, לעיתים זה נקרא "אלגוריתם אוקלידס המורחב".

לבסון

פולינום אופייני

 $\mathcal{C}_A(x) = \det(x I_n - A)$ בולינום אופייני של מטריצה A להיות הפולינום האופייני של מטריצה A

יראינו כי מתקיים ש- λ הוא ע"ע של A אם הוא מאפס את הדטרמיננטה, כלומר הצבתו בפולינום תניב 0. במילים אחרות: $C_A(x)$ ע"ע של $\lambda \Leftrightarrow A$ שורש של λ

מסקנה (שיעור 4): למטריצה מסדר n יש לכל היותר n ע"ע שונים.

:A כדי למצוא ו"ע וע"ע למטריצה

- \mathcal{C}_A מחשבים את 1
- $(0 \le k \le n)$ ג. מחשבים שורשים שלו שלו שורשים (1.3 מחשבים מחשבים מחשבים (1.5 מחשבים אורשים מחשבים (1.5 מחשבים אורשים (1.5 מחשבים אורשים).
- $E(\lambda_i) = \mathrm{N}(\lambda_i I_n A)$ -לכל 1 מוצאים בסיס ל-1 מוצאים 1 מוצאים .3

הקשר בין לכסון לע"ע וו"ע

.(בסיס עצמי). A לכסינות A לכסינה A לכסינה A לכסינה A לכסינה A שמורכב מו"ע של A

הסיבה: אם B בסיס כזה ו- $P=M_E^B$ אז המטריצה $P^{-1}AP$ אלכסונית. נשים לב ש- M_E^B היא המטריצה שהעמודות שלה הן הווקטורים .B איא המטריצה האלכסונית שאיברי האלכסון שלה הם הע"ע שמתאימים לו"ע של $P^{-1}AP$ היא המטריצה האלכסונית שאיברי האלכסון שלה הם הע"ע שמתאימים לו

מסקנה (תרגול 3): A לכסינה \Leftrightarrow סכום המימדים של המ"ע הוא n: הראינו שו"ע עם ע"ע שונים מהווים קבוצה בת"ל, ולכן איחוד A בסיסים שלהם מהווה בסיס מלכסן. בניסוח אחר A לכסינה \Leftrightarrow המרחב \mathbb{F}^n הוא סכום ישר של המ"ע של נשים לב שבגלל שסכום המימדים הוא תמיד לכל היותר \mathbf{n} , כדי להראות ש- \mathbf{A} לכסינה מספיק להראות שהוא לפחות \mathbf{n}

. אם A, B דומות אז יש להן אותו ספקטרום A, B

.V של B עבור בסיס $A=[T]_B$ ה"ל ותהי T:V o V עבור בסיס

.A של $\lambda \in \mathbb{F}$ שמתאים לע"ע של A שמתאים ו"ע של $[v]_B \in \mathbb{F}^n \Leftrightarrow \lambda \in \mathbb{F}$ של ע"ע של $v \in V$

בלומר – בדי לחקור את המ"ע של T, מספיק לחקור את המ"ע של מטריצה מייצגת בלשהי.

 $.C_A = C_B$ טענה (שיעור 5): אם A, B אם

מסקנה (שיעור 5): **הפולינום האופייני הוא תכונה איווריאנטית לדמיון**, ובעצם מקורו בה"ל A,B ייצוגים שלה. לכן ניתן להגדיר מסקנה (שיעור 5): **הפולינום האופייני הוא תכונה איווריאנטית לדמיון**, ובעצם מקורו בה"ל T את **הפולינום האופייני של T** להיות להיות $C_T=C_{[T]}$ ולא משנה לפי איזה בסיס מייצגים את T:V o V

T:V o V שמורכב מו"ע של T: V o V טענה (שיעור 5): משורכב מו"ע של לבסינה Cיש בסיס עצמי של איש בסיס של D

 $(P^{-1}A'P=D'$ וגם $P^{-1}AP=D)$ וגם את A וגם את A וגם את P וגם אותה מטריצת אותה מותה מטריצת אותה מותה מטריצת אותה מותה מותה מותה מותה מטריצת אותה מותה מות A'ו-A'ו הימולטני של A

(שיעור 5): יהיו A,A' מטריצות לכסינות. אז A,A' מתחלפות \Leftrightarrow הן לכסינות סימולטנית. A,A'

בך שמתקיים V בסיס B של B ה"ל לבסינות סימולטנית, אם קיים בסיס S, T: V o V נגיד ש-S, T: V o V בר שמתקיים אם קיים בסיס אלכסונית וגם $[S]_B$ אלכסונית.

משפט (תרגול 7): תהיינה $S \Leftrightarrow S, T \colon V \to V$ העתקות לבסינות. אז $S \Vdash T + S$ ו-T מתחלפות.

ריבוי אלגברי וגיאומטרי

dimV=n או של ה"ל $T\colon V o V$ באשר $A\in M_n(\mathbb{F})$ באשר $\lambda\in\mathbb{F}$ או של ה"ל $\lambda\in\mathbb{F}$ באשר $\lambda\in\mathbb{F}$

- $\mathcal{C}_A(x)$ שנסמן λ בשורש של λ הוא הריבוי של λ שנסמן של שנסמן λ שנסמן λ
- . בפירוק של הפולינום האופייני לגורמים אי פריקים $(x-\lambda)$ בפירוק של החזקה שבה מופיע הגורם \circ
 - $.dim N(\lambda I_n A) = dim E(\lambda)$ הוא $gm(\lambda)$ שנסמן א שנסמן הריבוי הגיאומטרי של
 - כמה ו"ע בת"ל צריך בשביל לפרוש את המרחב הנ"ל.

 $:1 \leq gm(\lambda), am(\lambda) \leq n$ כמובן מתקיים

- $.gm(\lambda) \geq 1$ ולכן $\{0\} \subset E(\lambda) \subseteq \mathbb{F}^n$ ריבוי גיאומטרי מתקיים
- $am(\lambda) \leq n$ ריבוי אלגברי לפולינום לא יהיה שורש עם ריבוי שגדול ממעלת הפולינום ולכן •

 $:\Leftrightarrow$ לבסינה $A:specA=\{\lambda_1,...,\lambda_k\}$ ויהיו $A\in M_n(\mathbb{F})$ תהי תהי

- $.am(\lambda_1) + \cdots + am(\lambda_k) = n$ מתקיים. 1
 - $.gm(\lambda_i) = am(\lambda_i) : 1 \le i \le k$ לבל.

 $.gm(\lambda) \le am(\lambda)$ טענה (שיעור 5): לכל λ מתקיים

באשר $lpha_i$ אם פולינום מתפרק למכפלת גורמים לינאריים: $f(x)=\prod_{i=1}^n(x-lpha_i)$ באשר לאו דווקא שונים, אז נאמר שהוא מתפצל מעל $f(x)=\prod_{i=1}^n(x-lpha_i)$

 $.gm(\lambda) \leq am(\lambda)$ מתקיים T:V o V ולכל ע"ע $\lambda \in \mathbb{F}$ של T:V o V לכל ה"ל

 \Leftrightarrow מעל $\mathbb F$ ממימד מעבור V או $T\colon V o V$ או $A\in M_n(\mathbb F)$ מעל $A\in M_n(\mathbb F)$

- \mathbb{F} או מתפצל מעל מעל \mathcal{C}_T או הפולינום האופייני 1.
- $.gm(\lambda) = am(\lambda)$ מתקיים $\lambda \in SpecA/T$.2

.T או A ע"ע שונים של א $\lambda_1,\dots,\lambda_k$ עצור $i\leq i\leq k$ עבור עבור $v_i\in E(\lambda_i)$ יהיו

 $v_1 = \cdots = v_k = 0$ אם $v_1 + \cdots + v_k = 0$ אם

מסקנה (שיעור 6): אם לכל l_i ניקח l_i ניקח ניקח $v_i^1, v_i^2, \dots, v_i^{l_i} \in E(\lambda_i)$ מכל אחד מהמרחבים העצמיים, ניקח l_i וקטורים בת"ל), אז $\{v_i^1, \dots, v_i^{l_1}, \dots, v_i^{l_1}, \dots, v_k^{l_k}, \dots, v_k^{l_k}\}$ נקבל כי הקבוצה $\{v_1^1, \dots, v_1^{l_1}, \dots, v_1^{l_1}, \dots, v_k^{l_k}\}$ בת"ל (האיחוד של כולם בת"ל).

הערות חשובות (תרגול):

- . פעמים dim $(E(\lambda))$ היא המטריצה שאיברי האלכסון שלה הם הע"ע, כאשר הע"ע A היא המטריצה שאיברי האלכסון שלה הם הע"ע, כאשר הע"ע Λ
- 2) הצורה האלכסונית של A **יחידה עד כדי שינוי סדר האיברים** על האלכסון (נשים לב כי היא **יחידה אם היא קיימת**, אבל לא כל מטריצה דומה למטריצה אלכסונית).
- 3) **הסדר של העמודות של המטריצה המלכסנת (P)** צריך להתאים לסדר הע"ע על האלכסון של הצורה האלכסונית, כלומר וקטור העמודה הראשונה מתאים לע"ע בעמודה הראשונה וכו'.

סכום ישר

 $\{w_1+\cdots+w_k: orall i.w_i\in W_i\}$ הוא התמ"ו $\sum_{i=1}^k W_i$ הוא $\sum_{i=1}^k W_i$ הוא התמ"ו V מעל שדה \mathbb{F} ויהיו ויהיו ויהיו של און יהי

: משפט (שיעור 7): יהי $W=W_1+\cdots+W_k$ יהי שקולים:

- .(2 מקרה פרטי של 2) אז $w_1=\cdots=w_k$ אז $w_i\in W_i$ עבור $w_1+\cdots w_k=0$ מקרה פרטי של 2.
- $w \in W$ נקבעים ביחידות על פי $w \in W_1 + \cdots + w_k$ כך שמתקיים בי $w \in W_i$ נקבעים ביחידות על פי $w \in W_i$ יש לכל וקטור
 - $W_i \cap \sum_{j=1, j \neq i}^k W_j = \{0\}$: מתקיים i = 1, ..., k 3.
 - .4 אונככת מרוככת (גרסה מרוככת של 3). אונה (גרסה מרוככת של 3). לכל $W_i \cap \sum_{j=1}^{i-1} W_j = \{0\}$
 - $.dimW_1 + \cdots + dimW_k = dimW$.5

:סבום ישר (direct sum) אין איז של (של $W_1, ..., W_k$ אם מתקיים אחד (ולכן כל) התנאים במשפט אז W נקרא סכום ישר

$$W_1 \oplus ... \oplus W_k = \bigoplus_{i=1}^k W_i$$

2 – פולינומים של ה"ל/מטריצות

פולינומים של ה"ל/מטריצות

פולינומים של ה"ל/מטריצות

:אידיאליים

ניזכר כי חוג הוא מבנה אלגברי R עם פעולת חיבור וכפל כך שמתקיימות כל התכונות של שדה, פרט לכך שקיים הופכי כפלי לכל איבר $M_n(\mathbb{F}), \mathbb{F}[x,y], \mathbb{F}[x], \mathbb{Z}$ - ששונה מ-0. כמו כן, כפל לא חייב להיות קומטטיבי. חוגים לדוגמה

 $\mathbb{Z}[x]$ אפשר להגדיר מושג של **תת-חוג (sub-ring)** בדומה לתמ"ו, תת-שדה ובו'. למשל: \mathbb{Q} הוא תת-שדה של $\mathbb{Z}[x]$ תת-חוג של

 $I\cdot R\subseteq R$ מתקיים ($a+b\in I$ עבורה 0 בלומר לכל סגורה לחיבור (לכל $a+b\in I$ מתקיים אידיאל של חוג R אידיאל של חוג אוויבי הוא $a \cdot b \in I$ מתקיים $a \cdot b \in \mathbb{R}$, $a \in I$

וזה אידיאל של \mathbb{Z} . אידיאל מהצורה השאת (בפילות של איבר $I_m=m_\mathbb{Z}=\{n\in\mathbb{Z}|\ m|n\ \}$ אפשר להגדיר $m\in\mathbb{Z}$.m נקרא אידיאל ראשי (principle ideal) נקרא אידיאל אידיאל וערידי (m

<u>טענה (שיעור 8):</u> בחוג אוקלידי (שיש בו חלוקה עם שארית) כל אידיאל הוא ראשי.

הצבה של ה"ל/מטריצה בפולינום:

עבור $f(A)=I+lpha_1A+\cdots+lpha_kA^k$ נגדיר $f(x)=lpha_0+lpha_1x+\cdots+lpha_kx^k$ באופן $A\in M_n(\mathbb{F})$ נאדיר $f\in \mathbb{F}[x]$ עבור $f(T) = \alpha_0 i d_V + \alpha_1 T + \dots + \alpha_k T^k$ דומה נגדיר עבור ה"ל:

 $f(T)=0_V$ איפוס פולינום: נאמר ש- $f(A)=0_N$ מאפסת את הפולינום f אם $f(A)=0_N$ ובדומה T/A איפוס

נסמן A- שורש שלהם. ביוון שזה אידיאל ראשי -A- בל הפולינומים ש-A- A ונקרא לו **הפולינום המינימלי** של m_A את היוצר של m_A ונקרא לו הפולינום המינימלי של $\mathbb{F}[x]$ (כל אידיאל של

בונה מ-0 המקיים: $m_A(x) \in \mathbb{F}[x]$ שונה מ-0 המקיים:

- $m_A \in Ann(A)$.1
- $m{m}_A \mid f \Leftrightarrow f(A) = m{0}: m_A$ מתקיים $p \in Ann(A)$ מאפסת הייב להיות נפולה של $p \in Ann(A)$ (Ann(A)- הוא בעל דרגה מינימלית מבין הפולינום השונים מ-0 ב m_A (ובאופן שקול:
 - .3 מתוקן.

 m_A או (m_A אורש של $m_A(x)$ מתחלק ב- $(x-\lambda)$ בלומר λ שורש של λ טענה (שיעור 9):

אבחנות לגבי הצבה בפולינום:

- $f(A) = f_1(A) + f_2(A)$ אז $f = f_1 + f_2$ אם .1
 - $f(A) = \alpha g(A)$ אם $f = \alpha g$
- $f(A) = f_1(A)f_2(A) = f_2(A)f_1(A)$ אם $f = f_1f_2$ אם
- A באשר $M_A=m_T$ בלומר $M_A=m_T$ בלומר נקבל ($M_A=m_T$ באשר $M_A=m_T$ בלומר בוער $M_A=m_T$ באשר $M_A=m_T$ באשר $M_A=m_T$ באשר $M_A=m_T$ ייצוג של T לפי כל בסיס B של V.

 $f \in \mathbb{F}[x]$ ע"ע של f(A)/f(T) ע"ע של $f(\lambda)$ אז $f(\lambda)$ אז ע"ע של $\lambda \in \mathbb{F}$ אם $\lambda \in \mathbb{F}$ אם $\lambda \in \mathbb{F}$

.f ע"ע של 1/A שמאפסת את הפולינום 1 אז $\lambda \in \mathbb{F}$ ע"ע של $\lambda \in \mathbb{F}$ מסקנה (שיעור 9):

משפט קיילי-המילטון (CH)

 $\mathcal{C}_T(T)=0$ מתקיים $T\colon V o V$, ולכל ה"ל ה"ל $T\colon V o V$ מתקיים $A\in M_n(\mathbb{F})$ מתקיים משפט קיילי-המילטון

 $m_T \mid C_T$, $m_A \mid C_A$ - ניסוח חלופי

<u>שלבים בהוכחה:</u>

- 1. נוביח למטריצות/ה"ל לכסינות.
- 2. נוכיח למטיצות/ה"ל ניתנות לשילוש.
 - 3. נוכיח למקרה הכללי.

 Λ ע"ע λ ע"ע λ אורש של m_T אם $\lambda \in \mathbb{F}$ אם $\lambda \in \mathbb{F}$

בלומר, שורשי הפולינום המינימלי = שורשי הפולינום האופייני = הע"ע.

i>j עבור $A\in M_n(\mathbb{F})$ מטריצה $A\in M_n(\mathbb{F})$ נקראת משולשית עליונה אם

אבחנות (שיעור 10):

- מטריצה היא אלכסונית ⇔ היא משולשית עליונה ותחתונה.
- . אם C_A ובפרט $C_A(x)=\prod_{i=1}^n(x-\beta_i)$ אז $\begin{pmatrix} \beta_1 & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \beta_n \end{pmatrix}$ ובפרט A מתפצל. •

$T:V \to V$ מיוצגת על ידי: $T:V \to V$ שעבורם B מיוצגת על ידי

- $(u_i$ ה-span הוא כל הכפולות של span-ה) $Tu_i \in Span\{u_i\}$ בריך להיות ו"ע, בלומר אלבסונית על u_i צריך איות ו"ע, בלומר
- $(u_{i+1},\ldots,u_n$ אין תלות בוקטורים) אין $Tu_i\in Span\{u_1,\ldots,u_i\}$ מתקיים: u_i מתקיים לכל (אין מטריצה משולשית (שליונה)

 $\mathcal{C}_T(T) = 0$ ניתנת לשילוש: אז T: V o V משפט (שיעור 10):

תמ"ו אינווריאנטים (שמורים)

 $Tw\in W$ גם $w\in W$ אם $TW\subseteq W$, בלומר לכל $W\in W$ גם $W\in W$ גם $W\subseteq W$, בלומר $W\in W$ גם $W\in W$ גם $T:V\to V$. בלומר בלומר בלומר $T:V\to W$.

 $.T \bigm|_W : W \to W$ ולקבל ה"ל W-ל ל את לצמצם ניתן במקרה הזה ניתן לצמצם את ולקבל ה"ל

תכונות:

- .1 תמיד $\{0\}$ ו-V תמ"ו T-אינוו'.
 - 2. מ"ע הוא תמ"ו T-אינוו^י.
- 2. כל תמ"ו T-אינוו' ממימד 1 חלקי למ"ע.
- 4. סכום וחיתוך של תמ"ו T-אינוו' הוא T-אינוו'.

(נקבל: W ושל W ושל W ושל W ושל W אז בבסיס של V שמורכב מבסיסים של V ושל V ושל V ושל V נקבל:

$$.[T] = \begin{pmatrix} A_1 & \cdots & *** \\ \vdots & \ddots & \vdots \\ 0 & \cdots & A_2 \end{pmatrix}$$

W
eq U מ"ו מעל שדה \mathbb{F} . יהי V
eq T: תמ"ו T: תמ"ו T: תמ"ו T: איוונ'.

 $(T-\lambda id_V)u\in W$ מתפצל (מעל $T-\lambda id_V)u\in W$ וקיים וקטור וקיים $u\in V\setminus W$ נניח ש m_T

מתפצל. $m_T \Leftrightarrow$ מתפצל. T ניתנת לשילוש

מסקנה: כל ה"ל ניתנת לשילוש מעל ℃.

 C_A , $m_A\in\mathbb{R}[x]$ נסמן $M_n(\mathbb{C})$. ניתן להתבונן בה גם כאיבר של $M_n(\mathbb{C})$. נסמן להתבונן בהור הפולינום המינימלי $A\in M_n(\mathbb{R})$ $\mathcal{C}_A=\mathcal{C}_A', m_A'=m_A$: אז מתקיים. אז מתקיים. בהתאם, נסמן נסמן נסמן בהתאם. בהתאם מעל A והאופייני של

. מכפלת גורמים לינאריים שונים $T\colon V o V$ מכפלת גורמים לינאריים שונים $m_T\Leftrightarrow T$

תכונות של פירוק מרחב לסכום ישר של מרחבים שמורים (תרגול 6):

נניח ש-V מ"ו, $V \to V$ ה"ל, ו- W_k שמורי $V = W_1 \oplus ... \oplus W_k$ פירוק של $V = W_1 \oplus ... \oplus W_k$ בולם תמ"ו שמורי $V \to V$ בהכרח על העתקה לכסינה – אנחנו רוצים לפרק את המרחב לתמ"ו שהם כולם שמורי T. כי אז מתקיים:

היא מטריצה בלוקים אלכסונית – גודל כל בלוק כמספר איברי הבסיס B_i היא מטריצה $B=igcup_{i=1}^k B_i$ היא מטריצה B_i היא מטריצה של B_i היא מטריצה וויקים אלכסונית המטריצה מטריצה איברי הבסיס $A_i = \left[T \,\middle|_{W_i}
ight]_{B_i}$ ב-, B_i . כאשר לפי משפט הפירוק הפרימרי). ב-,

$$[T]_B = \begin{pmatrix} A_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & A_2 & 0 & \cdots & 0 & 0 \\ 0 & 0 & A_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A_{k-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & A_k \end{pmatrix}$$

2. למה זה טוב? למשל לכל פולינום $p \in \mathbb{F}[x]$ מתקיים:

$$p([T]_B) = \begin{pmatrix} p(A_1) & 0 & 0 & \cdots & 0 & 0\\ 0 & p(A_2) & 0 & \cdots & 0 & 0\\ 0 & 0 & p(A_3) & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & p(A_{k-1}) & 0\\ 0 & 0 & 0 & \cdots & 0 & p(A_k) \end{pmatrix}$$

כדי לחשב פולינום כלשהו על T נעשה את זה לכל בלוק בנפרד.

אה המשותפת המינימלים של lcm . $m_T = lcm(m_{T \big|_{W_1}}(x), ..., m_{T \big|_{W_k}}(x))$. עבור הפולינום המינימלי מתקיים: 3 פולינומים – כולם מחלקים אותו והוא מחלק כל כפולה משותפת אחרת שלהם. מקרה נפוץ – אם כל הפולינומים זרים אז נקבל .cr ה- gcd שלהם הוא 1 ואז ה- lcm יהיה פשוט המכפלה של כל הפולינומים

משפט הפירוק הפרימרי

. באופן הבא $Im(P_W)=W$ עבורה $P_W\colon V o V$ באופן הבא ניתן להגדיר את ההטלה עבור מ"ו V ותמ"ו V. ב-פסיס של על ידי השלמת בסיס W לבסיס של כל V, והגדרת V ב-שביי הבסיס האחרים נרשום $V=W\oplus U$ $P_W(v) = w$ ניתן להציג באופן יחיד על ידי v = w + u עבור $v \in V$ ניתן להציג באופן יחיד על ידי $v \in V$

אבחנות (שיעור 12):

- 1. לכל תמ"ו **P**_W ,W ה**"ל**.
- ולכן w=w+0 היא W=w+0 היא שיבר מ-W ואיבר מ-W אז בעת ההצגה כסכום של איבר מ- $P_W(v)=w$ כי אם $P_W^2=P_W$ $P_W \mid_W = id_W$ ומתקיים $W = Im(P_W)$ הוא אינוו' כי P_W -אינוו' כי $P_W \mid_W = id_W$ ומתקיים ומתקיים ומרכי

הגדרה שקולה: ה"ל P:V o V המקיימת $P^2=P$ היא בעצם ההטלה עבור P_W עבור P_W . נבחין שבמקרה זה מתקיים $.KerP \cap ImP = \{0\}$

ע"י בך P_i : V o V מ"ו ממימד $V o P_i$ מעל שדה W_k . נניח $W_k o W_1 o W_2 \dots \oplus W_k$ נגדיר לכל והיה $V o V_i$ יהיה וממימד מעל שדה V_i : עבור $w_i \in W_i$ אז מתקיימים התנאים הבאים $v = w_1 + \dots + w_k$ שנציג כל $v \in V$ שנציג כל $v \in V$

- $W_i = Im(P_i)$:i לכל .1
- $.P_i^2 = P_i : i$.2 .2 .2 .2 . $.P_iP_j = 0_V : i \neq j$.3 .3 . $.P_1 + \dots + P_k = id_V$.4

T:V o V טענה (שיעור 12): נניח $W_1\oplus W_2$, ותהיינה P_1,P_2 ההטלות המתאימות. תהי .'אינוו'. אם $W_1, W_2 \Leftrightarrow i = 1,2$ עבור $TP_i = P_i T$ אז

אפשר לרשום את V כסכום ישר של W ותמ"ו נוסף בכמה אופנים שונים, ועבור כל אחד מתקבלת הטלה שונה.

. כאשר e_1 , e_2 וקטורי היחידה הרגילים במישור V=R² = sp{ e_1 , e_2 } את דוגמה: ניקח את

 $q = e_1 + e_2$ עבור $Q = sp\{q\}$ ונגדיר $W = sp\{e_1\}$, $U = sp\{e_2\}$ נגדיר

. שונים U, Q אך כמובן $V = W \oplus U = W \oplus Q$ שונים

יתר על כן, הייצוג של וקטור כללי $v = \alpha_1 e_1 + \alpha_2 e_2$ נראה אחרת בשני המקרים:

 α_1 e1 את תחזיר לנו את W תחזיר לכן ההטלה על $V = \alpha_1$ e1 איבר מ־U ואיבר מ־W איבר מ־W ואיבר מ־C ואיבר מ־U ואיבר מ־C ואיבר מ־

 $(\alpha_1-\alpha_2)e_1$ איבר מ־V איבר מ־V וש לנו $(\alpha_1-\alpha_2)e_1+\alpha_2e_1$ איבר מ־V איבר מ־W איבר מ־V וש לנו או $(\alpha_1-\alpha_2)e_1+\alpha_2e_1$

.U ישירות באופן יחיד בלי להתייחס למרחב השני P_W אז כרגע אי אפשר להגדיר את

.U כי זה תלוי ב־ $P_{W:U}$ אבל כרגע צריך לסמן משהו כמו $P_{W:U}$ כי זה תלוי ב־ $P_{W:U}$ בהמשך הקורס נראה שיש בחירה "טובה" ספציפית עבור $P_{W:U}$ וכך נגדיר את

משפט הפירוק הפרימרי (שיעור 13): תהיT:V o V ה"ל ונרשום $m_T=\prod_{i=1}^k p_i^{r_i}=p_1^{r_1}\cdot...\cdot p_k^{r_k}$ משפט הפירוק הפרימרי (שיעור 13): אז: $W_i = \overline{Ker(p_i^{r_i}(T))}$ אז:

- $V = W_1 \oplus ... \oplus W_k$.1
 - .T בל W_i הם שמורי
 - $m_{T|_{W_i}} = p_i^{r_i}$.3

למעשה, המשפט נכון לגורמים אי פריקים של כל פולינום שההעתקה היא שורש שלו. נראה זאת במפורש בטענה הבאה:

f(T)=0 בך ש-p,q זרים וכן $f=p(x)q(x)\in \mathbb{F}[x]$ משפט הפירוק הפרימרי היפה (תרגול 6): תהי T:V o V ה"ל ויהי פולינום אז מתקיים: U = Ker(p(T)), W = Ker(q(T)) אם נסמן

- .T שמורי W,U .1
- $.V = W \oplus U$.2

משפט זה לא קשור לפולינום מינימלי או אופייני. אם הפולינום f מתפרק לגורמים לינאריים ממעלה 1 אז T לכסינה והמרחב מתפרק לסכום ישר של מרחבים עצמיים.

כך ש־ $a,b\in\mathbb{F}[x]$ לקבל זרים נקבל ביוון ש־q,p כר ש־מזהות ביוו $a,b\in\mathbb{F}[x]$ 1 = aa + bp

נראה כי $v \in V$ אכן לכל a(T)q(T)(V) = kerp(T) מתקיים:

$$p(T)\left(a(T)q(T)v\right) = a(T)\left(q(T)p(T)v\right) = a(T)f(T)v = a(T)(0) = 0$$

עד כה קיבלנו כי $v \in kerp(T)$ יהי הפוך, יהי $a(T)q(T)(V) \subseteq kerp(T)$. נקבל מבזו:

$$v = id(v) = a(T)q(T)v + b(T)p(T)v = a(T)q(T)v$$

משמע $v \in a(T)q(T)(V)$ ולכן יש שיוויון.

.b(T)p(T)(V) = kerq(T) באופן דומה מוכיחים

אם כך שוב מבזוט נקבל שלכל $v \in V$ מתקיים:

$$v = a(T)q(T)v + b(T)p(T)v = u + w$$

כדי להראות שהסכום ישר, יהי $U \cap U \cap v \in W$ מתקיים שוב מבזו:

$$v = a(T)q(T)v + b(T)p(T)v = 0 + 0 = 0$$

.V אינווריאנטי נוסף של T:V o U ביחס ל-T. יהי T:V o U תמ"ו T:V o U הפירוק הפרימרי של אויהי $W_1\oplus ...\oplus W_k$ ה"ל ויהי , אז הפירוק מסירים מהסכום מחוברים טריוויאלים, הוא: מסירים $S=T \bigm|_U - U$ באשר מסירים מהסכום טריוויאלים, אז הפירוק הפרימרי של U $.W_i \cap U = \{0\}$ בלומר

דן הרן – סעיפים א' וב' חשובים:

למה 19.11: יהי $W\subseteq V$ תת מרחב שמור־T. יהי $W\subseteq V$ למה 19.11: יהי $W\subseteq V$ למה אור־S=T

$$f(T|_W)=f(T)|_W$$
 או לכל $f\in F[X]$. כלומר, $f\in F[X]$ מתקיים $f\in F[X]$ יהי (א)

- $.m_S|m_T$ (2)
 - $f_S | f_T$ (x)

i=0 אכן, עבור $i\geq 0$ לכל $S^i(w)=T^i(w)\in W$ אוכן, עבור $i\geq 0$ ארכן, עבור $i\geq 0$ אז i-1 נניח נכונות עבור. $S^0(w)=w=T^0(w)$, לכן לכן $S^0=1_W, T^0=1_V$

$$.S^i(w) = S(S^{i-1}(w)) = S(T^{i-1}(w)) = T(T^{i-1}(w)) = T^i(w)$$

מכאן שאם $f = \sum_{i=0}^{\infty} a_i X^i$ מכאן מכאן

$$f(S)(w) = \left(\sum_{i=0}^{\infty} a_i S^i\right)(w) = \sum_{i=0}^{\infty} a_i S^i(w) = \sum_{i=0}^{\infty} a_i T^i(w) = \left(\sum_{i=0}^{\infty} a_i T^i\right)(w) = f(T)(w)$$

- (ב) לפל $m_T(S)(w)=m_T(T)(w)=0$ אכן, ואכן, $m_T(S)=0$ כי להוכיח כי 7.15 די להוכיח כי $m_T(S)(w)=0$ $m_T(S) = 0$, כלומר, $w \in W$
- ,9.5 נבחר של V=m+k , $\dim W=m$ נבחר בסיס. מניח U=m+k , $\dim W=m$ נבחר נבחר מניח (ג) $f_T(X)=f_S(X)\cdot f_D(X)$ 6.12 מכאן לפי תרגיל. $A=[S]_{\mathcal{B}_0}^{\mathcal{B}_0}\in \mathrm{M}_m(F)$ באשר, $[T]_{\mathcal{B}}^{\mathcal{B}}=\left(egin{array}{cc}A&C\\0&D\end{array}
 ight)$

$$m_T|f\Leftrightarrow f(T)=0$$
 מתקיים: $f\in F[X]$ לכל 7.15: לכל

3 – מרחבי מכפלה פנימית

מרחבי מכפלה פנימית

מכפלה פנימית (מ"פ)

המוטיבציה שלנו היא להכניס למ"ו מושגים גיאומטריים כמו "אורך" או "זווית" (בפרט זווית של 90 מעלות). המטרה היא למצוא בסיסים \mathbb{C} או \mathbb{R} או בשדות אך ורק בשדות \mathbb{R}^n או \mathbb{C}^n אורתונורמליים, כמו הבסיס הסטנדרטי של

הערה – ממ"פ ממשי נקרא אוקלידי, ממ"פ מרוכב נקרא יוניטרי.

"מכפלה פנימית ב- $(\cdot,\cdot):V imes V$ מ"ו ממשי. פונקציה בינארית V imes V (י,·): ענקראת מכפלה פנימית אם מתקיימים:

- $\langle u,v\rangle = \langle v,u\rangle$ מתקיים $u,v\in V$ סימטריות: לכל
 - 2. לינאריות משמאל:
- $\langle u_1 + u_2, v \rangle = \langle u_1, v \rangle + \langle u_2, v \rangle$ מתקיים $u_1, u_2, v \in V$ לכל .a
 - $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$ מתקיים $u, v \in V$ הומוגניות משמאל: לכל .b

מ-1 + 2 מקבלים גם לינאריות מימין (בזכות הסימטריה).

v=0 מתקיים $\langle v,v\rangle \geq 0$ מתקיים $0\neq v\in V$, שוויון רק עבור 3 $\langle 0,0 \rangle = 0$ מתקיים $\langle 0,v \rangle = 0$ ובפרט $v \in V$

 $\langle v,u \rangle = \sum_{i=1}^n v_i u_i = v^T u : \mathbb{R}^n$ בתרגול 8 ראינו מספר דוגמאות למכפלות פנימיות, הבסיסית ביותר היא המכפלה הסטנדרטית על $\langle v, v \rangle = \sum_{i=1}^{n} v_i^2$ נשים לב כי מתקיים

 $(u,v)^2 \le \langle u,u \rangle \cdot \langle v,v \rangle$ אז $u,v \in V$ ממ"פ ממשי ויהיו עם אורין ויהי אז אז פיעור 15): יהי V אי שוויון קושי שוורץ

מכפלה פנימית ב- $\underline{\mathbb{C}}$ יהי V מ"ו מרובב. פונקציה בינארית $V o \mathbb{C}$ נקראת מכפלה פנימית אם מתקיימים:

- $(u,v) = \langle v,u \rangle$ מתקיים $u,v \in V$ 1.
 - 2. לינאריות משמאל:
- $\langle u_1+u_2,v\rangle=\langle u_1,v\rangle+\langle u_2,v\rangle$ מתקיים $u_1,u_2,v\in V$ לכל .a
 - $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$ מתקיים $u, v \in V$ הומוגניות משמאל: לכל .b
 - מ-1 + 2 מקבלים גם אנטי לינאריות מימין (בזכות הסימטריה).

 $\langle u, \lambda v \rangle = \bar{\lambda} \langle u, v \rangle$ אדיטיביות מימין יש בכיף, הומוגניות מימין עובדת ככה

v=0 מתקיים $\langle v,v\rangle \geq 0$, שוויון רק עבור $v \in V$. מתקיים 3 לכל $v \in V$ מתקיים $v \in V$ ובפרט (0, v) = 0). לבל לכל $v \in V$ מתקיים $v \in V$ מהרמיטיות.

 $\|(u,v)\|^2 \le \langle u,u \rangle \cdot \langle v,v \rangle$ אי שוויון קושי שוורץ $\|v\|^2 \le \langle u,u \rangle \cdot \langle v,v \rangle$ אי שוויון קושי שוורץ.

דוגמאות למכפלות פנימיות

(1 הדוגמה מלינארית: (הדוגמה מלינארית). \mathbb{R}^n

$$\langle v, u \rangle_{st} := \sum_{i=1}^{n} v_i \cdot u_i$$

 \mathbb{C}^n על המכפלה נפנימית הסטנדרטית על .2

$$\langle v, u \rangle_{st} := \sum_{i=1}^{n} v_i \cdot \overline{u_i}$$

מסתבר מסתבר אם הפנימית הסטנדרטית על $M_{n \times n}\left(\mathbb{R}\right)$ (בתרגיל בית. אם מחשבים את זה באופן מפורש מסתבר $M_{n \times n}\left(\mathbb{R}\right)$ שמקבלים את המקרה הקודם כשחושבים על המטריצות בתור ווקטור ארוך)

$$\langle A, B \rangle := tr \left(A \cdot B^T \right)$$

 $:M_{n\times n}\left(\mathbb{C}\right)$ אמכפלה הפנימית הסטנדרטית על 4.

$$\langle A, B \rangle := tr \left(A \cdot \overline{B^T} \right)$$

נורמה:

 $\|\cdot\|:V o\mathbb{R}$ נקראת נורמה אם מתקיים:

- $\lambda \in \mathbb{F}$ לכל $||\lambda v|| = |\lambda| \cdot ||v||$, לכל
- $(\|0\|=0)$ v=0 חיוביות: $\|v\|>0$ לכל $\|v\|>0$, יש שוויון רק עבור
- $\|u+v\| \le \|u\| + \|v\|$ מתקיים מין אי שוויון המשולש (שיעור 15): לבל $u,v \in V$

. (, \). בממ"פ V היא $|v| = \sqrt{\langle v, v \rangle}$ היא מכונה גם נורמה של $v \in V$ הנורמה של

:הערות

- $|\langle u,v\rangle| \leq \|u\|\cdot\|v\|$ הוא CS במונחי נורמה, אי שוויון
- של 90 מעלות, בלומר הוקטורים יהיו מאונכים זה לזה.

אורתוגונליות

אורתוגונליות:

. ניצבים זה לזה / אורתוגונלים $u\perp v$ נסמן $u\perp v$ נסמן $u\perp v$ ניצבים זה לזה $u\perp v$ ניצבים u,v $u \in S$ נסמן $v \perp u$ כאשר $v \perp u$ עבור כל $S \subseteq V$ ווקטורים $S \subseteq V$ עבור כל

. מקיים v מקיים $\|v\|=1$ נקרא לו וקטור נורמל/יחידה $\|v\|=1$

$$-\sqrt{\sum_{i=1}^n\left(rac{1}{\sqrt{n}}
ight)^2}=1$$
 בורמל (ביחס למ"פ הסטנדרטית) נורמל (ביחס למ"פ החקטור $rac{1}{\sqrt{n}}$

 $\|\hat{v}\| = \left| \frac{1}{\|v\|} \right| \cdot \|v\| = 1$ ואז $\hat{v} = \frac{v}{\|v\|}$: צאופן כללי, לכל $v \neq 0$ אפשר להסתכל על נרמול של

 $||u\pm v||^2 = ||u||^2 + ||v||^2$ אז $||u\pm v||^2$ אם שפט פיתגורס (שיעור 16): אם $||u\pm v||^2$

 $. \forall u \in U, w \in W$: $u \perp w$ אם מתקיים $U \perp W$ אם $U, W \subseteq V$ עבור שני תמ"ו עבור שני תמ"ו ניצבים:

 $\forall u \in B, w \in C: u \perp w \Leftrightarrow U \perp W$ בהתאמה. אז U, W בסיסים של בסיסים של בסיסים של בסיסים של בהתאמה. אז

אפיונים של קבוצות ובסיסים אורתוגונליים:

 $u,v\in S$ פוכן לכל $u,v\in S$ נקראת קבוצה אורתוגונלית אם $v\in S$ וכן לכל $u,v\in S$ שונים מתקיים $S\subseteq V$

הדוגמה הפשוטה ביותר היא הבסיס הסטנדרטי $\{e_1,\ldots,e_n\}$, זוהי קבוצה אורתוגונלית. כלומר, קבוצה שבה כל הוקטורים ניצבים זה לזה.

<mark>קבוצה אורתונורמלית (א"נ):</mark> קבוצה אורתוגונלית שכל איבריה וקטורים נורמלים (מנורמה 1), נקראת קבוצה **אורתונורמלית**.

משפט (שיעור 17): קבוצה א"ג היא בת"ל.

.V מסקנה (שיעור 17): קבוצה א"ג של dim V וקטורים היא בסיס (א"ג) של

בסיס א"ג/א"נ: בסיס שאיבריו מהווים קבוצה א"ג/א"נ בהתאמה.

. קבוצה א"ג. התכונות הבאות שקולות: $S=\{u_1,\dots,u_k\}$ יהי V ממ"פ ותהי א"ג (שיעור 17): יהי V

- $v \perp S \Leftrightarrow v = 0$ מתקיים $v \in V$.1
- נשים לב כי V ולכן V בסיס א"ג של V נשים לב $v=\sum_{i=1}^k \frac{\langle v,u_i\rangle}{\langle u_i,u_i\rangle} u_i=\sum_{i=1}^k P_{u_i}\left(v\right)u_i$ מתקיים $v\in V$.2

$$[v]_S = \begin{pmatrix} \frac{\langle v, u_1 \rangle}{\|u_1\|^2} \\ \cdots \\ \frac{\langle v, u_k \rangle}{\|u_k\|^2} \end{pmatrix}$$
מתקיים

- $\langle v, w \rangle = \sum_{i=1}^k \frac{\langle v, u_i \rangle \langle u_i, w \rangle}{\langle u_i, u_i \rangle}$ מתקיים: $v, w \in V$ 3.
 - $\|v\|^2 = \sum_{i=1}^k rac{|\langle v, u_i
 angle|^2}{\langle u_i, u_i
 angle}$ מתקיים $v \in V$ לכל .4

1 ולכן לא $|u_i|=1$ אז הגורמים $|u_i|=1$ אז הגורמים (בי אם הקבוצה א"נ, כלומר קבוצה א"ג שבה $|u_i|=1$ אז הגורמים לב כי אם הקבוצה א"נ, כלומר קבוצה א"ג שבה $|u_i|=1$ אז הגורמים (2,3,4 את 2,3,4).

<u>תכונות נוספות (תרגול 9):</u>

- $. orall v \in V$: $[v]_B = egin{pmatrix} \langle v,b_1
 angle \\ ... \\ \langle v,b_n
 angle \end{pmatrix}$ אם $B = \{b_1,\ldots,b_n\}$ אם $B = \{b_1,\ldots,b_n\}$ אם $B = \{b_1,\ldots,b_n\}$
- אם $\forall v,u\in V$. כלומר בסופו של דבר המכפלה $\forall v,u\in V: \langle v,u\rangle = \langle [v]_B,[u]_B\rangle_{st}$ אז מתקיים א"נ של $B=\{b_1,\dots,b_n\}$. בסיס א"נ של אז מתקיים לפי בסיס א"נ כלשהו ותמיד קיים כזה לפי תהליך (GS).

הטלה אורתוגונלית

. לשם כך צריך להתקיים: $\pmb{\lambda u} - \pmb{v}$ הוא **הוקטור אורתוגונלי:** עבור $p_u(v)$, u
eq 0 הוא הוקטור אורתוגונלי:

$$\lambda = \frac{\langle v, u \rangle}{\langle u, u \rangle}$$
 כלומר: $0 = \langle \lambda u - v, u \rangle = \langle \lambda u, u \rangle - \langle v, u \rangle = \lambda \langle u, u \rangle - \langle v, u \rangle$

. $\|v-\lambda u\|$ את אמינימום את שיעור 16): ההיטל האורתוגונלי $P_u(v)=\lambda u$ הוא הוקטור היחיד שמביא למינימום את

.V הו תמ"ו של W=span(S), ונסמן ע קבוצה א"ג בממ"פ $S=\{u_1,...,u_k\}$, זהו תמ"ו של $S=\{u_1,...,u_k\}$ נסמן עבור $V\to W$ את $V\in V$ את ע א און ה"ל $P_W(v)=\sum_{i=1}^k P_{u_i}$

 $v - P_W(v) \perp W$ אבחנה (שיעור 17): מתקיים

. ייתן את אותה ה"ל. W רק ב-W, כל בסיס של W ייתן את אותה ה"ל. W ראם ההגדרה של P_W האם ההגדרה של או גם באיברי הבסיס הא"ג

 $P_W(v) \in W$ בי $v - P_W(v) \perp P_W(v)$ הערה: בעצם

 $w=P_W(v)$ הוא $v-w\perp W$ שמקיים $w\in W$ הוקטור היחיד $v\in V$ הוא לכל

.**S-ל** ממ"פ נסמן $S^\perp = \{v \in V | v \perp S\}$ ממ"פ נסמן $S \subseteq V$ כאשר $S \subseteq V$ נהוא יקרא המרחב הניצב: עבור קבוצת וקטורים

מספר U נותן לנו משוואות לינאריות על w. מספר על ממ"ם כלשהו, הנתון בי של ממ"ם בלשהו, הנתון בי על מאונך לכל וקטור ב-U נותן לנו משוואות לינאריות על U. המשוואות הבת"ל שנקבל הוא המימד של U.

<u>הערות:</u>

- $(W^{\perp})^{\perp}=W$ אז V אז W בהמשך נראה שאם W
- :כיתן לרשום כך עבור תמ"ו $v \in V$ כי בל $V = W \oplus W^\perp$ ניתן לרשום כך

$$v - P_W(v) \in W^{\perp}$$
 באשר $v = P_W(v) + (v - P_W(v))$

- $w \in W$ ו ו- $v-w \in W^\perp$ עבור עבור v=w+(v-w) שהסכום אכן סכום ישר כי לכל דרך לחשב w=w+(v-w) בהכרח מתקיים $w=P_W(v)$ בהכרח מתקיים
- פרטי של $P_U(v) = \sum_{i=1}^m \langle v, b_i \rangle \cdot b_i$ בסיס א"נ של U מתקיים לכל U בסיס א"נ של U אחת התכונות של בסיס א"ג).

 $(W^{\perp})^{\perp} = W$ מתקיים V של W לכל תמ"ו לכל עמ"ו. לכל עמ"ו

תהליך גרם-שמידט (G-S)

: מתקיים: j=1,...,n בר שלכל $u_1,...,u_n\in V$ מתקיים: במ"ל. אז קיימת קבוצה א"ג $u_1,...,u_n\in V$ בך שלכל

$$sp\{v_1, \dots, v_j\} = sp\{u_1, \dots, u_j\}$$

נצטרך W אם רוצים בסיס א"נ של W (אם רוצים בסיס א"נ של W) מסקנה (שיעור 18): בהינתן בסיס (רגיל) של תמ"ו של W של V, ביצוע G-S ייתן בסיס א"ג של $\hat{u}=rac{u}{\|u\|}$ לנרמל את הוקטורים

בהוכחת המשפט קיבלנו את הנוסחה: $u_j=v_j-\sum_{i=1}^{j-1}P_{u_i}(v_j)=v_j-\sum_{i=1}^{j-1}rac{\langle v_j,u_i
angle}{\|u_i\|^2}u_i$ בהוכחת המשפט קיבלנו את הנוסחה: פעם בנורמה של $u_j=v_j-\sum_{i=1}^{j-1}P_{u_i}(v_j)=v_j-\sum_{i=1}^{j-1}rac{\langle v_j,u_i
angle}{\|u_i\|^2}u_i$ בחוכחת המשפט קיבלנו את הנוסחה: $u_j=v_j-\sum_{i=1}^{j-1}P_{u_i}(v_j)=v_j-\sum_{i=1}^{j-1}rac{\langle v_j,u_i
angle}{\|u_i\|^2}u_i$ בחוכחת המשפט קיבלנו את הנוסחה: $u_j=v_j-\sum_{i=1}^{j-1}P_{u_i}(v_j)=v_j-\sum_{i=1}^{j-1}rac{\langle v_j,u_i
angle}{\|u_i\|^2}u_i$

:9 מתרגול GS אלגוריתם

- .1 עבור בסיס נתון של $S = \emptyset$ נאתחל, של U, עבור נחיף לו וקטורים.
 - $.s_1 = u_1$ נוסיף את .2
- $.s_i = u_i \sum_{j=1}^{i-1} P_{s_j}(u_j) = u_i \sum_{j=1}^{i-1} \frac{\langle u_i, s_j \rangle}{\|s_i\|^2} s_j$ נוסיף ל-S את הוקטור (3

$$u_3 = v_3 - \frac{\langle v_3, u_1 \rangle}{\|u_1\|^2} \cdot u_1 - \frac{\langle v_3, u_2 \rangle}{\|u_2\|^2} \cdot u_2 \quad u_2 = v_2 - \frac{\langle v_2, u_1 \rangle}{\|u_1\|^2} \cdot u_1$$

4. בדי להפוך את הבסיס לא"נ נחלק כל אחד מהודקטורים באורך שלו (תזכורת: $\|u\| = \sqrt{\langle u,u \rangle}$).

פירוק QR

$$\langle u,v
angle = \sum_{i=1}^m \overline{lpha}_ieta_i = ar{v}^tu = v^*u$$
 היא $v = egin{pmatrix} lpha_1 \\ \ldots \\ lpha_m \end{pmatrix}, u = egin{pmatrix} eta_1 \\ \ldots \\ eta_m \end{pmatrix}$ עבור $v = \mathbb{C}^m$ באשר $v = \mathbb{C}^m$ ניזכר שהמ"פ הסטנדרטית של $v = \mathbb{C}^m$

$$u_1,\dots,u_n$$
 שעמודותיה $Q\in M_{m imes n}(\mathbb{C})$ אם נרשום מטריצה מ $u_i^*u_j=\langle u_j,u_i
angle=egin{cases} 1\ i=j\ 0\ i
eq j \end{cases}$ שעמודותיה $u_1,\dots,u_n\in\mathbb{C}^m$ הקבוצה

 $Q^*Q=I_n$ נקראת **אוניטרית** אם מתקיים $Q\in M_{m imes n}(\mathbb{C})$ מטריצה אוניטרית: מטריצה על מטריצה $Q^*Q=I_n$

ראינו כי מטריצה היא **אוניטרית אמ"מ עמודותיה אורתונורמליות**.

 $Q^tQ=I_n$ נקראת **אורתוגונלית** אם מתקיים $Q\in M_{m imes n}(\mathbb{R})$ מטריצה מטריצה מטריצה על מטריצה $Q^tQ=I_n$

פירוק $Q \in M_{m imes n}(\mathbb{F})$ תהי $A \in M_{m imes n}(\mathbb{F})$ שעמודותיה בת"ל, אז קיימת מטריצה אוניטרית ($Q \in M_{m imes n}(\mathbb{F})$ ומטריצה משולשית $A \in M_{m imes n}(\mathbb{F})$, עם **אלכסון חיובי ממש**. כך ש: A = QR. יותר מכך, עמודות Q מתקבלות מביצוע $Q \in R$ מנורמל לעמודות $Q \in R$ והמטריצה $Q \in R$ מחושבת ממקדמי $Q \in R$. באופן מפורט יותר:

$$C_{j}(A) = \underbrace{\left(\begin{array}{cccc} | & | & | \\ | & | & | \\ \hat{u}_{1} & \hat{u}_{2} & \dots & \hat{u}_{n} \\ | & | & | \end{array} \right)}_{Q} \underbrace{\left(\begin{array}{cccc} < C_{j}(A), \hat{u}_{1} > \\ \vdots \\ < C_{j}(A), \hat{u}_{j-1} > \\ < C_{j}(A), \hat{u}_{j} > \\ 0 \\ \vdots \\ 0 \end{array} \right)}_{C_{j}(R)}$$

. ממש. חיוביים של איברי האלכסון איברי ולכן רכן רכן איברי חיוביים ממש. הערה־ ולכן איברי רכן רכן איברי ממש

$$\underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{12}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{12}} \\ 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{12}} \\ 0 & 0 & \frac{3}{\sqrt{12}} \end{pmatrix}}_{Q} \underbrace{\begin{pmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{3}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{4}{\sqrt{12}} \end{pmatrix}}_{R}$$

 $.ImA \oplus KerA^* = \mathbb{C}^m$ אז $n \leq m$ טענה (שיעור 19): מטריצה מדרגה $A \in M_{m imes n}(\mathbb{C})$ תהי

<u>הערות:</u>

- בתחילת שיעור 20 דיברנו על פירוק QR מול פירוק LU ולמה QR עדיף (הנורמה נשמרת וזה עוזר לחישוב ריבועים פחותים).
- הוכחת יחידות פירוק QR הייתה בסוף תרגול 9 (גרסה של אמיתי) ובתחילת תרגול 10 (גרסה של יהב). הוכחה לא כיפית בכלל.

ריבועים פחותים

 $a,b \in \mathbb{R}$ מחפשים פונקציה לינארית y=ax+b שמתאימה ביותר לנתונים. נרצה למצוא $m \geq 2$ בהינתן נקודות $\{x_i,y_i\}_{i=1}^m$ עבורם y_i , למשל y_i , למשל $\sum_{i=1}^m \left(y_i - (ax_i + b)\right)^2$ מינימלי. הביטוי הזה מודד כמה אנחנו רחוקים מ $y_i pprox ax_i + b$ ישאף לאפס. רשמנו את הנורמה (האוקלידית) בריבוע של הוקטור (האוקלידית) מתקיים: $\varepsilon = y - (ax + b)$

$$\|\varepsilon\|^2 = \sum_{i=1}^m \varepsilon^2 = \sum_{i=1}^m (y_i - (ax_i + b))^2$$

מחפשים פתרון מקורב . $b \in \mathbb{R}^m$ ונתון וקטור $n \leq m$ מדרגה מטריצה $A \in M_{m \times n}(\mathbb{R})$ מחפשים פתרון מקורב . $\|arepsilon\| = \sqrt{\sum_{i=1}^m arepsilon^2}$ בלומר מינימלית אוקלידית מנורמה arepsilon = Ax - B שעבורו $x \in \mathbb{R}^n$ למשוואה

המרחב הדואלי

המרחב הדואלי

 $.^{ ext{"}}\mathbb{F}^{1}$ " על כל שדה \mathbb{F} ניתן להסתכל כמ"ו חד מימדי מעל עצמו \mathbb{F}

 V^* עבור V מ"ו מעל \mathbb{F} נקראת **פונקציונל** (לינארי). קבוצת כל הפונקציונלים מסומנת $f\colon V o \mathbb{F}$ הגדרה:

 $(\mathbb{R}$ ממ"פ מעל \mathbb{R} , נשים לב בי עבור מרחב אוקלידי (מעל $f_u\colon V o \mathbb{F}$ את $u\in V$ נגדיר עבור \mathbb{R} , נשים לב כי עבור V $.ar{f_u}=f_u$ מתקיים אין הומוגניות ולכן לא מתקיים ($\mathbb C$ אמנם, עבור מרחב הרמיטי). אמנם, אמנם, עבור מתקיים ($u,v
angle=ar{f_u}=f_u$

 $.dimV^* = dimHom(V, \mathbb{F}) = 1 \cdot dimV = m \times n$ מה המימד של V^* ראינו בי

. ענה (שיעור 20): V ממ"פ, f_u מוגדר כמו קודם. ההעתקה $V^* o V^*$ שמוגדרת על ידי $\varphi(u) = f_u$ היא חח"ע.

מסקנות:

- V^* אם V איזומורפיזם מ-V ל-
- $f(v) = \langle [f]_{B^*}, [v]_B \rangle_{st}$ אם $\mathbb{F} = \mathbb{R}$ אם
- אם T=S אז $u,v\in V$ לכל $\langle v,Su\rangle=\langle v,Tu\rangle$ שמקיימות שמקיימות (לאו דווקא לינאריות) אם $S,T:V\to V$ $(Tu \perp V \perp C)$ באשר T=0 ואז T=0 ואז T=0

ההעתקה הצמודה

 $u,v\in V$ ממ"פ ממימד $v:V\to V$ מת"ב ממימד מעל $T:V\to V$ מתונה $T:V\to V$ ה"ל. אז קיימת העתקה $T^*:V\to V$ שמקיימת לכל .**T-) והיא יחידה ולינארית**. T^* נקראת **ההעתקה הדואלית** (הצמודה) ל $\langle v, Tu \rangle = \langle T^*v, u \rangle$

העתקה צמודה לעצמה: אם ה"ל T:V o V מקיימת $T:T=T^*$ היא נקראת צמודה לעצמה (הרמיטית). במקרה הממשי זו נקראת T:V o Vהעתקה סימטרית.

מתקיים: $T:V \to V$ מתקיים:

- $(T^*)^* = T$.1
- $(S+T)^* = S^* + T^*$
 - $(\lambda T)^* = \bar{\lambda} T^*$
 - $(S \circ T)^* = T^* \circ S^*$
- $id_V^* = id_V, 0_V^* = 0_V$.5
- $(T^{-1})^* = (T^*)^{-1}$ הפיכה: T אם 6.

עולם לא A^* אם A ממשית אז $A=ar{A}$ ולכן A=A מתנוון להיות פשוט A הגדרנו $A\in M_n(\mathbb{C})$ אם A מחנוון להיות פשוט אבור מטריצה מרוכבת T^* נכתוב T^t , ולכן תמיד נראה

> $[S]_B = [T^*]_B$ עבור V o V ובסיס א"נ $B = \{u_1, ..., u_n\}$ של T: V o V. כמו כן, אם T: V o V $S = T^*$ אז מתהיים

> > ולא א"נ? לא! B הוא רק א"ג ולא א"נ? לא!

: מעלות: 90- מתקיים $T\colon\mathbb{R}^2 o\mathbb{R}^2$ מתקיים אל פרכרח פרכרח או דווקא, למשל משל בהכרח $T:\mathbb{R}^2 o\mathbb{R}^2$ שמסובבת וקטור ב-90 מעלות: $T:\mathbb{R}^2 o\mathbb{R}^2$.T(x,y) = (-y,x)

 $T=0_V$ אז $u\in V$ און לכל $u\in U$ אז א דענה (שיעור 22): אם דעמה בממ"פ ממשי ומתקיים

כלומר, אנחנו צריכים את הדרישה של T צמודה לעצמה. אמנם בממ"פ מרוכב, איננו זקוקים לדרישה זו.

 $T=0_V$ אז $u\in V$ טענה (שיע<u>ור 22):</u> $Tu\perp u$ ממ"פ מרוכב, ה"ל לT:V o V מקיימת V ממ"פ מרוכב, ה"ל

 $u \in V$ לכל $\langle Tu,u \rangle \in \mathbb{R} \Leftrightarrow T=T^*$ ממ"פ מרוכב, $T:V \to V$ לכל ממ"פ מרוכב, מסקנה (שיעור 22):

מסקנה (שיעור 22): כל הע"ע של ה"ל הרמיטית הם ממשיים (בין אם המרחב ממשי או מרוכב).

משפט (שיעור 22): V ממ"פ ממימד $T\colon V \to V$ ה"ל. התנאים הבאים שקולים:

- $TT^* = id_V = T^*T$ אוניטרית: T .1
- $u,v \in V$ לכל $\langle Tu,Tv \rangle = \langle u,v \rangle$ לכל פנימית: מפפלה מנימית: 2
 - $v \in V$ לכל ||Tv|| = ||v|| לכל 1.3
- .(משמרת בסיס א"נ של V בסיס א"נ $B = \{Tu_1, ..., Tu_n\}$ של $B = \{u_1, ..., u_n\}$ של $B = \{u_1, ..., u_n\}$.4
- בסיס א"נ של V (יהיה יותר נוח לעיתים להראות פשוט ,V בסיס א"נ של $B=\{u_1,\dots,u_n\}$ בסיס א"נ של $B=\{u_1,\dots,u_n\}$ בסיס כלשהו).

הוכחנו את המשפט בשיעור 23.

 $Q^*AQ=B$ יוניטרית עבורה $Q\in M_n(\mathbb{C})$ אם קיימת אם קיימת עבורה $A,B\in M_n(\mathbb{C})$ אז נאמר ש-A **דומה יוניטרית** ל-B.

אז $Q^tAQ=B$ אורתוגונלית (=יוניטרית ממשית) עבורה $Q\in M_n(\mathbb{R})$. אם קיימת $A,B\in M_n(\mathbb{R})$ אורתוגונלית (Aדמיון אורתוגונלית ל-A דומה אורתוגונלית ל-B.

אבחנה (שיעור <mark>22):</mark> אם A דומה (יוניטרית/אורתוגונלית) למטריצה אלכסונית, נאמר שהיא לכסינה (יוניטרית/אורתוגונלית).

<u>טבלת סיכום סימונים (קרדיט לסיכומים מהמודל):</u>

<u>הערות (תרגול 12):</u>

- העתקות אוניטריות והרמיטיות הן נורמליות.
- א"נ: $[T]_B$ מטריצה אוניטרית/הרמיטית/נורמלית \Leftrightarrow לכל בסיס B א"נ: $(T)_B$ מטריצה אוניטרית/הרמיטית/נורמלית.

לכסון אוניטרי/אורתוגונלי

<u>תזכורות:</u>

- . עבור ה"ל T,S לבסינות, TS=ST אמ"מ הן לבסינות סימולטנית, בלומר יש בסיס T,S שבו גם TS=ST אלבסוניות.
 - . אלכסונית B שבו B אלכסונית, אם קיים בסיס א"נ B אלכסונית אלכסונית אם אוניטרית, אם דיים א"נ $T\colon V \to V$

אלכסונית גם $[T^*]_B=[T]_B^*$ אם $[T^*]_B=[T]_B^*$ וביוון ש- $[T^*]_B$ אלכסונית גם אבחנה (שיעור 23). אם $[T^*]_B=[T^*]_B$ וביוון ש- $[T^*]_B$ אלכסונית גם $[T^*]_B$ בזו. מהאפיון של **לבסון סימולטני**, חייב להתקיים $[T^*]_B$, כלומר $[T^*]_B$

הוכחנו שאם T לכניסה יוניטרית אז היא נורמלית.

מתי מטריצה A דומה יוניטרית/אורתוגונלית למטריצה אלכסונית?

דמיון אורתוגונלי:

- אבחנה (שיעור 23): אם A דומה אורתוגונלית למטריצה סימטרית, אז A בהכרח סימטרית.
- מסקנה (שיעור 23): אם A דומה אורתוגונלית למטריצה אלכסונית, אז A בהכרח סימטרית.

נוכיח בהמשך שכל מטריצה סימטרית A ניתנת ללכסון אורתוגונלי (זה לכסון יוניטרי במקרה של **מטריצה ממשית**).

:דמיון יוניטרי

- אז A בהכרח נורמלית. A אם A דומה יוניטרית למטריצה נורמלית A, אז A בהכרח נורמלית.
- מסקנה (שיעור 23): אם A לכסינה יוניטרית אז היא נורמלית בהכרח כי מטריצה מרוכבת אלכסונית היא נורמלית.

נוכיח בהמשך שתנאי זה (נורמליות) מספיק לצורך לכסון יוניטרי.

:ראינו כי

- תנאי הברחי לכך שה"ל/מטריצה **ממשית** תהיה **לכסינה יוניטרית** הוא שתהיה **סימטרית** (=צמודה לעצמה וממשית).
 - תנאי הכרחי לכך שה"ל/מטריצה **מרוכבת** תהיה **לכסינה יוניטרית** הוא שתהיה **נורמלית** (=מתחלפת עם צמודתה).

A ניתנת (עליונה). מטריצה A ניתנת $T\colon V o V$ ניתנת לשילוש יוניטרי אם יש בסיס א"נ B של T עבורו T:V o V משולשית (עליונה). מטריצה A ניתנת לשילוש יוניטרי אם היא דומה יוניטרית למטריצה משולשית.

<mark>אבחנה (שיעור 24):</mark> מטריצת המעבר בין B ל-C היא משולשית עליונה, כפי שראינו בפירוק QR למקרה של מטריצה ריבועית, R מטריצה משולשית (עם אלכסון ממשי חיובי).

אם R אם C-ל B מטריצתו משריצת (מטריצת משולשית משולשית משולשית (מטריצת מטריצת מטריצת משולשית משולשית משולשית משולשית בעצמה. $[T]_B = R^{-1}MR$ ומשולשית בעצמה.

מסקנה (שיעור 24): אם A/T ניתנת לשילוש אז היא ניתנת גם לשילוש יוניטרי.

. (גם במקרה הממשי). $T=T^st$ אם $T=T^st$ אז מתפצל $T=T^st$

 $\lambda \in \mathbb{F}$ נורמלית, שמתאים לע"ע $u \in V$ הוא ו"ע של ה"ל $T \colon V \to V$ נורמלית, שמתאים לע"ע $\overline{\lambda}$. אז v הוא גם ו"ע של T^* שמתאים לע"ע $\overline{\lambda}$.

 $E(\lambda_1) \perp E(\lambda_2)$ אם T ה"ל נורמלית ו- $\lambda_1
eq \lambda_1 \neq \lambda_2$ ע"ע שונים שלה, אז T משפט (שיעור 24):

מסקנה (שיעור 24): אם T ה"ל לבסינה, ונורמלית, אז T לבסינה יוניטרית.

. מתפצל T \mathcal{C}_T מתפצל T מחפצל T מורמלית וכן משפט (שיעור 24):

תרגול 12:

- .T לבסינה אוניטרית \Leftrightarrow קיים בסיס א"נ המלכסן את T
- $A = PDP^*$ אוניטרית בך שמתקיים P אוניטרית אונ
 - . לבסון אוניטרי: מעל \mathbb{T} , \mathbb{T} לבסינה אוניטרית T נורמלית.
 - . לכסון אורתוגונלי: מעל \mathbb{T} , לכסינה אורתוגונלית $T\Leftrightarrow T$ סימטרית.

איך מלכסנים אוניטרית?

- מוצאים מ"ע באופן רגיל.
- . עושים G-S לכל מ"ע בנפרד

נושאים נוספים

אפיון ה"ל/מטריצות (חיוביות ואי-שליליות)

 $0
eq x \in \mathbb{R}^n$ אם A סימטרית ובן לבל (positive definite) אם $A \in M_n(\mathbb{R})$ מתקיים $A \in M_n(\mathbb{R})$ מתקיים $x^tAx \geq \mathbf{0}$ מתקיים $0 \neq x \in \mathbb{R}^n$ אם A סימטרית ובן לבל (positive semi-definite / נקראת אי-שלילית (א"ש

:הערות

- א"ש! אומר היוביים/א"ש לא אומר בהכרח שכל a_{ij} הם חיוביים
- לשים לב שהמטריצות כאן הן **סימטריות** (לכן לכסינות אורתוגונלית, והע"ע ממשיים).

אבחנות (שיעור 26):

- $e_i^t A e_i = a_{ii}$ אם $x=e_i$ אוש/חיובית אז $a_{ii} \geq 0$ או $a_{ii} \geq 0$ אוש/חיובית אז $A = \left(a_{ij}\right)_{i,j=1}^n$ אם $A = \left(a_{ij}\right)_{i,j=1}^n$
 - $x^t A x = 0$ אז גם $A \neq 0$ אבור $A \neq 0$ אם $A \neq 0$ אם $A \neq 0$ אם $A \neq 0$ אם אם $A \neq 0$ אם אם אוגם פיכה. או גם א

A סימטרית ממשית. אז A חיובית (א"ש) $A \in M_n(\mathbb{R})$ חיוביים (א"ש). משפט (שיעור 26): תהי

(או $\langle Tv,v \rangle > 0$ בי $v \neq 0$ בי ממ"פ V בממ"פ V נקראת חיובית/א"ש אם היא צמודה לעצמה וכן מתקיים לכל $v \neq 0$ בי $v \neq 0$ (או (≥ 0)

. א"ש/חיובית א T \Leftrightarrow חיובית א" א A א" א B עבור בסיס א"נ אם $A = [T]_B$ הערה: אם

הערה: דמיון אורתוגונלי משמר א"ש/חיוביות.

נגדיר כעת שורש של מטריצה:

 A^{-} בך שמתקים A"א $B\in M_n(\mathbb{R})$ א"ם, אז **קיימת ויחידה** A''ש, אז סימטרית ממשית א"ש, אז איש, אז איש, אז איימת ויחידה $A\in M_n(\mathbb{R})$ משפט (שיעור 26):

<u>הערות:</u>

- השורש הריבועי של מטריצה מוגדר רק כאשר המטריצה **א"ש**, והוא ספציפית מדבר על **המטריצה הא"ש היחידה** $B^2 = A$ שמקיימת את השוויון
- אז $A = UDU^{-1}$ אורתוגונלית ו-D אלבסונית עם אלבסון ממשי אי-שלילי בך ש-U אורתוגונלית ו-D אופן חישוב: מכיוון ש . אי שלילית ומתקיים: B אי שליליים, בלומר B אי שליליים, באריים, בלומר B המטריצה $oldsymbol{B} = oldsymbol{U} \sqrt{oldsymbol{D}} oldsymbol{U}^{-1}$ $B^{2} = U\sqrt{D}U^{-1}U\sqrt{D}U^{-1} = A$

פירוק פולארי

א"ש Q אורתוגונלית) ו-S א"ש Q אורתוגונלית) ווייטרית (עבור A ממשית Q אורתוגונלית) ו-C א"ש T=QS איש מטריצה A אויש T=QS אורתוגונלית) ו-(צמודה לעצמה).

. אורתוגונלית (יוניטרית במקרה המרוכב). א"ש, U אורתוגונלית (יוניטרית במקרה המרוכב). A איש, U אורתוגונלית (יוניטרית במקרה המרוכב).

?איך נחשב פירוק פולארי עבור A נתונה

- $R = \sqrt{A^t A}$ נחשב שורש למטריצה $A^t A$ שהיא א"ש: $R^2 = A^t A$, לכן
- $U^t U = (AR^{-1})^t AR^{-1} = (R^{-1})^t A^t AR^{-1} = R^{-1}R^2R^{-1} = I$ אם A הפיכה, כלומר R הפיך, נקבל כי $AR^{-1} = U$. ואכן וקיבלנו כי U היא מטריצה אורתוגונלית.

.(אבל לא תהיה יחידות) לא הפיכה אפשר לחשב U בזו (אבל לא תהיה יחידות).

פירוק SVD

עבורם מתקיים: $x,y\in\mathbb{R}^n$ אם קיימים $A\in M_n(\mathbb{R})$ עבורם מתקיים: $\sigma\geq 0$ נקרא ערך סינגולרי של מטריצה

$$\begin{cases} Ax = \sigma y \\ A^t y = \sigma x \end{cases}$$

:במקרה המעניין, כאשר $\sigma>0$ נבחין שמתקיים

- . בלומר \mathbf{x} -ע"ע ו- \mathbf{x} בלומר \mathbf{x} בלומר $\mathbf{A}^t A x = \sigma A^t y = \sigma^2 x$
- ע"ע ו-y הוא ו"ע. σ^2 בלומר σ^2 בלומר $AA^ty = \sigma Ax = \sigma^2 y$

ע"ע. עותם ע AA^t ו- A^tA על אותם ע

 A^TA ממשית, הם השורשים הריבועיים של הע"ע החיוביים של A ממשית, הם השורשים הריבועיים של

באופן הבא: $A=U\Sigma V^t$ כאשר: פירוק של A באופן הבא

- אז m>n אז m>n מטריצת הערכים הסינגולריים. $\Sigma\in M_{m imes n}(\mathbb{R})$ זוהי מטריצה מלבנית אלכסונית, כלומר אם $\Sigma=diag(\sigma_i)_{i=1}^n$ אז m>n השורות העליונות מהוות מטריצה אלכסונית, ו-m-n הימניות הן עמודות אפסים. m>n אז m< n הימניות הן עמודות אפסים.
 - מטריצות אורתוגונליות. U,V

 $A=UR=UP^t\Sigma P=U'\Sigma V^t$ ניתן לקבל מיידית מפירוק פולארי: אם A=UR=UR ו-

 $A^tA = U\Sigma^2U^t = UDU^t$ אבחנה (שיעור 27): אם $A = U\Sigma V^t$ אם

אלגוריתם לחישוב (אמיתי):

- ?. בוחרים את אחת המטריצות $(A^t A)_{n imes m}$ או $(A^t A)_{m imes m}$ או איפה יש יותר אפסים?
- $(\Sigma\Sigma^t)_{m imes m}$:נניח לרגע שבחרנו את $AA^t=U\Sigma V^tV\Sigma^tU^t=U\Sigma\Sigma^tU^t$:SVD נציב פירוק. ($AA^t)_{m imes m}$ נעים לב ש: .2 אלכסונית עם ערכים σ_i^2 על האלכסון. σ_i^2 היא לכסון אורתוגונלי של