SPEECH RECOGNITION ACCOUNTBOT

2021/1/11

Teacher: Richard Tzong-Han, Tsai

Students: Jiun-Tze, Chen Chun-Wei, Tsao Wei-Hsiang, Shao Shu-Yu, Yang

Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan Department of Mangement of Information System, National Central University, Taiwan

Abstract

Bookkeeping is one of the daily routine for most people to track their money. But it takes a lot of time on the complicated procedure. In this project, we propose a speech recognition robot named AccountBot to keep the income and expenditure automatically. Specifically, we first apply a speech recognition module for speech input. Then, we build BERT-BiLSTM and BERT-MLP. Finally, we extract the item and money amount from the speech content.

Experiment & Result

(1)Dataset

	expense	income
train	99	99
valid	40	31

the size of training set and validation set

(2)Result

(a)ID F1 score

	income	expense
BERT-MLP	0.91	0.92

(b)SF Recall

	0	B-item	l-item	B-money	I-money
BERT-MLP	0.95	0.69	0.90	0.96	0.99
BERT-BILSTM	0.95	0.86	0.92	0.96	1.00

(c)SF Precision

	0	B-item	l-item	B-money	I-money
BERT-MLP	0.92	0.89	0.83	1.00	0.98
BERT-BILSTM	0.95	0.88	0.90	1.00	0.98

(d)SF F1 score

				B-money	I-money
BERT-MLP	0.94	0.78	0.86	0.98	0.99
BERT-BILSTM	0.95	0.87	0.91	0.98	0.99

Method

- (1) For intent detection (ID), we predict the intent by BERT-MLP
- (2) For slot filling (SF), we predict the slots by BERT-BiLSTM & BERT-MLP

(a)BERT-MLP

(b)BERT-BiLSTM