Soluções: Formulação de IPs.

Questão 1 (Investimentos)

Uma empresa quer decidir em quais de 7 projetos ela vai investir. Os projetos tem os lucros

Projeto	1	2	3	4	5	6	7
Lucro [MR\$]	13	9	13	18	15	3	5

A empresa deve respeitar as seguintes restrições:

- Ela não pode investir em todos projetos.
- Ela deve investir em ao menos um projeto.
- Projeto 1 n\u00e3o pode ser realizado se projeto 3 for realizado.
- Projeto 4 pode ser realizado somente se projeto 2 for realizado também.
- Ela deve realizar ou ambos projetos 1 e 5 ou nenhum deles.

Formule um programa inteiro com o objetivo de maximizar o lucro.

Questão 2 (Formulação de Programas Inteiros)

Para os problemas abaixo, acha uma formulação como programa inteiro.

Cobertura por arcos

Instância Um grafo não-direcionado G = (V, E) com pesos $c : E \to \mathbb{Q}$ nos arcos.

Solução Uma cobertura por arcos, i.e. um subconjunto $E' \subseteq E$ dos arcos tal que todo vértice faz parte de ao menos um arco selecionado.

Objetivo Minimiza o custo total dos arcos selecionados em E'.

Conjunto dominante de arcos

Instância Um grafo não-direcionado G = (V, E) com pesos $c : E \to \mathbb{Q}$ nos arcos.

Solução Um conjunto dominante de arcos, i.e. um subconjunto $E' \subseteq E$ dos arcos tal que todo arco compartilha um vértico com ao menos um arco em E'.

Objetivo Minimiza o custo total dos arcos selecionados em E'.

Coloração de grafos

Instância Um grafo não-direcionado G = (V, E).

Solução Uma coloração do grafo, i.e. uma atribuição de cores nas vértices $c: V \to \mathbb{Z}$ tal que cada par de vértices ligando por um arco recebe uma cor diferente.

Objetivo Minimiza o número de cores diferentes.

CLIQUE MÍNIMO PONDERADO

Instância Um grafo não-direcionado G = (V, E) com pesos $c: V \to \mathbb{Q}$ nos vértices.

Solução Uma *clique*, i.e. um subconjunto $V' \subseteq V$ de vértices tal que existe um arco entre todo par de vértices em V'.

Objetivo Minimiza o peso total dos vértices selecionados V'.

Subgrafo cúbico

Instância Um grafo não-direcionado G = (V, E).

Solução Uma subgrafo cúbico, i.e. uma seleção $E' \subseteq E$ dos arcos, tal que cada vértice em G' = (V, E') possui grau 0 ou 3.

Objetivo Minimiza o número de arcos selecionados |E'|.

Questão 3 (Formulação Matemática)

Um Futoshiki é um tabuleiro quadrático de tamanho $n \times n$ preenchido com os números [1,n] tal que toda linha e toda coluna contém cada número exatamente uma vez. Além disso, algumas casas adjacentes na mesma linha tem que respeitar uma ordem entre seus números. Isso é indicado por um < ou > colocado entre as casas. Por exemplo, no tabuleiro abaixo, o número em A1 tem que ser maior que o número em A2. Formule um programa inteiro para resolver o seguinte Futoshiki minimizando o valor na casa A1:

	1	2	3	4	5
A		>		>	
B					
C			<		
D					
E	<				<