Elements of Direct Current (DC) Circuits

Select two different resistors with similar (but not identical) value
Those values should be between: 80-10000 ohms:
Values: $R_1 = $ $R_2 = $
Measure in series: Rseries = the theory is
$R_1 + R_2 = R_s = $ % diff =
Measure in parallel: Rparallel = theory is: $R_p = R_1 x$
$R_2 / (R_1 + R_2) = $ % diff =
Now set DC power supply to a voltage (2-5 volts is fine) record: V
=
Plug one resistor into breadboard. Ensure you know how to use
the breadboard.
Next connect wires from the resistor to posts on breadboard.
Measure resistance across posts with the meter. Does it match
resistance of the resistor alone? Yes / No (get help)
Remove meter and connect power supply to posts. Measure
voltage across posts. Ensure it roughly equals value on power
supply? Yes / No (get help)
Next, switch meter to measure current (miliamps) and measure
current. $I = \underline{\hspace{1cm}}$
From ohm's law $V = IR$, compute what I should be:
%diff =
Switch to other resistor: I(measured) =
I(calc) = % diff =
Connect two resistors in series.
Measure the voltage across each resistor.
V1 = Does $V1+V2 = V$ (of power
supply?) Find a % difference=
What is the current: $I(measured) = \underline{\hspace{1cm}}$
$I(calc) = V/Rs = \underline{\hspace{1cm}} %diff = \underline{\hspace{1cm}}$
Connect two resistors in parallel.

Things you should know before leaving lab, in the form of a basic circuit quiz:

- 1. Draw the symbol for each of the following: resistor, DC power supply, wire, voltmeter, ammeter, ohmmeter.
- 2. Draw three circuits demonstrating how to properly measure each of: voltage, current and resistance (one diagram for each).
- 3. What is the difference between objects connected in series and parallel? What is the same in each case? What differs?
- 4. Draw an ohmmeter measuring the resistance of two resistors in series, then another where an ohmmeter measure two resistors in parallel.
- 5. How is the breadboard connected? Which are connected across versus up and down?
- 6. Mathematically, how can resistors combine in series and parallel to form a single value? (Meaning: be comfortable using the resistor combination formula. In the future, a larger network will be given, and the task is to combine this into a single effective resistor.