Inteligencia Artificial

Aprendizaje automático

Departamento de Ciencias de la Computación e Inteligencia Artificial

Universidad de Sevilla

Aprendizaje

- ► Definiciones de *aprendizaje*:
 - Cualquier cambio en un sistema que le permita realizar la misma tarea de manera *más eficiente* la próxima vez (*H. Simon*)
 - Modificar la representación del mundo que se está percibiendo (R. Michalski)
 - ► Realizar cambios útiles en nuestras mentes (M. Minsky)

Aprendizaje

- Aprendizaje automático: construir programas que mejoran automáticamente con la experiencia
- Ejemplos de tareas:
 - Construcción de bases de conocimiento a partir de la experiencia
 - Clasificación y diagnóstico
 - Minería de datos, descubrir estructuras desconocidas en grandes grupos de datos
 - Resolución de problemas, planificación y acción

Tipos de aprendizaje y paradigmas

- Tipos de aprendizaje
 - Supervisado
 - No supervisado
 - Con refuerzo
- Paradigmas
 - Aprendizaje por memorización
 - Clasificación (Clustering)
 - Aprendizaje inductivo
 - Aprendizaje por analogía
 - Descubrimiento
 - Algoritmos genéticos, redes neuronales

Ejemplo de aprendizaje

- Conjunto de entrenamiento
 - Ejemplos: días en los que es recomendable (o no) jugar al tenis
 - Representación como una lista de pares atributo-valor

EJ.	Cielo	Temperatura	Humedad	Viento	JugarTenis
D_1	Soleado	Alta	Alta	Débil	-
D_2	Soleado	Alta	Alta	Fuerte	-
D_3	Nublado	Alta	Alta	Débil	+
D_4	Lluvia	Suave	Alta	Débil	+

- Objetivo: Dado el conjunto de entrenamiento, aprender el concepto «Días en los que se juega al tenis»
 - Se trata de aprendizaje supervisado
- Problema: ¿Cómo expresar lo aprendido?
 - En este tema, veremos algoritmos para aprender árboles de decisión, reglas, modelos probabilísticos,...

Aprendizaje de árboles de dec<u>isión</u>

Árboles de decisión

Ejemplos de árboles de decisión

Árboles de decisión

Ejemplos de árboles de decisión

Árboles de decisión

- Árboles de decisión
 - Nodos interiores: atributos
 - Arcos: posibles valores del nodo origen
 - ► Hojas: valor de clasificación (usualmente + ó −, aunque podría ser cualquier conjunto de valores, no necesariamente binario)
 - Representación de una función objetivo
- Disyunción de reglas proposicionales:

```
(Cielo=Soleado \land Humedad=Alta \rightarrow JugarTenis= -)
\lor (Cielo=Soleado \land Humedad=Normal \rightarrow JugarTenis= +)
\lor (Cielo=Nublado \rightarrow JugarTenis= +)
\lor (Cielo=Lluvioso \land Viento=Fuerte \rightarrow JugarTenis= -)
\lor (Cielo=Lluvioso \land Viento=Debil \rightarrow JugarTenis= -)
```

Aprendizaje de árboles de decisión

- Objetivo: aprender un árbol de decisión consistente con los ejemplos, para posteriormente clasificar ejemplos nuevos
- Ejemplo de conjunto de entrenamiento:

EJ.	Cielo	Temperatura	Humedad	Viento	JugarTenis
D_1	Soleado	Alta	Alta	Débil	-
D_2	Soleado	Alta	Alta	Fuerte	-
D_3	Nublado	Alta	Alta	Débil	+
D_4	Lluvia	Suave	Alta	Débil	+

Algoritmo ID3

Algoritmo ID3

ID3(Ejemplos, Atributo-objetivo, Atributos)

- Sì todos los Ejemplos son positivos, devolver un nodo etiquetado con +
- 2. Si todos los Ejemplos son negativos, devolver un nodo etiquetado con -
- Si Atributos está vacío, devolver un nodo etiquetado con el valor más frecuente de Atributo-objetivo en Ejemplos.
- 4. En otro caso:
- 4.1. Sea A el atributo de Atributos que MEJOR clasifica Ejemplos
- 4.2. Crear Árbol, con un nodo etiquetado con A.
- 4.3. Para cada posible valor v de Å, hacer:
 - * Añadir un arco a Árbol, etiquetado con v.
 - * Sea Ejemplos(v) el subconjunto de Ejemplos con valor del atributo A igual a v.
 - * Si Ejemplos(v) es vacío:
 - Entonces colocar debajo del arco anterior un nodo etiquetado con el valor más frecuente de Atributo-objetivo en Ejemplos.
 - Si no, colocar debajo del arco anterior el subárbol ID3(Ejemplos(v), Atributo-objetivo, Atributos-{A}).
- 4.4 Devolver Árbol

¿Cómo saber qué atributo clasifica mejor?

Entropía de un conjunto de ejemplos D (resp. de una clasificación):

$$Ent(D) = -\frac{|P|}{|D|} \cdot log_2 \frac{|P|}{|D|} - \frac{|N|}{|D|} \cdot log_2 \frac{|N|}{|D|}$$

donde $P \vee N$ son, respectivamente, los subconjuntos de ejemplos positivos y negativos de D

- Notación: $Ent([p^+, n^-])$, donde p = |P| y n = |N|
- Intuición:
 - Mide la ausencia de «homogeneidad» de la clasificación
 - ► Teoría de la Información: cantidad media de información (en bits) necesaria para codificar la clasificación de un ejemplo
- Ejemplos:
 - $Ent([9^+, 5^-]) = -\frac{9}{14} \cdot log_2 \frac{9}{14} \frac{5}{14} \cdot log_2 \frac{5}{14} = 0.94$
 - $ightharpoonup Ent([k^+, k^-]) = 1$ (ausencia total de homogeneidad)
 - ► $Ent([p^+, 0^-]) = Ent([0^+, n^-]) = 0$ (homogeneidad total)

IA

< A →

Ganancia de información

- Preferimos nodos con menos entropía (árboles pequeños)
- ► Entropía *esperada* después de usar un atributo *A* en el árbol:

$$\frac{}{\sum_{v \in Valores(A)} \frac{|D_v|}{|D|}} \cdot Ent(D_v)$$
 donde D_v es el subconjunto de ejemplos de D con valor del atributo A igual a v

► Ganancia de información <u>esperada</u> después de usar un atributo *A*:

$$Ganancia(D, A) = Ent(D) - \sum_{v \in Valores(A)} \frac{|D_v|}{|D|} \cdot Ent(D_v)$$

► En el algoritmo ID3, en cada nodo usamos el atributo con mayor ganancia de información (considerando los ejemplos correspondientes al nodo)

► Conjunto de entrenamiento:

EJ.	Cielo	Temperatura	Humedad	Viento	JugarTenis
D_1	Soleado	Alta	Alta	Débil	-
D_2	Soleado	Alta	Alta	Fuerte	-
D_3	Nublado	Alta	Alta	Débil	+
D_4	Lluvia	Suave	Alta	Débil	+
D_5	Lluvia	Baja	Normal	Débil	+
D_6	Lluvia	Baja	Normal	Fuerte	-
D_7	Nublado	Baja	Normal	Fuerte	+
D_8	Soleado	Suave	Alta	Débil	-
D_9	Soleado	Baja	Normal	Débil	+
D_{10}	Lluvia	Suave	Normal	Débil	+
D_{11}	Soleado	Suave	Normal	Fuerte	+
D_{12}	Nublado	Suave	Alta	Fuerte	+
D_{13}	Nublado	Alta	Normal	Débil	+
D_{14}	Lluvia	Suave	Alta	Fuerte	-

- ▶ Entropía inicial: $Ent([9^+, 5^-]) = 0.94$
- Selección del atributo para el nodo raíz:

►
$$Ganancia(D, HUMEDAD) = 0.94 - \frac{7}{14} \cdot Ent([3^+, 4^-]) - \frac{7}{14} \cdot Ent([6^+, 1^-]) = 0.151$$

- ► $Ganancia(D, VIENTO) = 0.94 \frac{8}{14} \cdot Ent([6^+, 2^-]) \frac{6}{14} \cdot Ent([3^+, 3^-]) = 0.048$
- ► $Ganancia(D, Cielo) = 0.94 \frac{5}{14} \cdot Ent([2^+, 3^-]) \frac{4}{14} \cdot Ent([4^+, 0^-]) \frac{5}{14} \cdot Ent([3^+, 2^-]) = 0.246$ (mejor atributo)
- ► Ganancia(D,Temperatura) = $0.94 \frac{4}{14} \cdot Ent([2^+, 2^-]) \frac{6}{14} \cdot Ent([4^+, 2^-]) \frac{4}{14} \cdot Ent([3^+, 1^-]) = 0.02$
- El atributo seleccionado es CIELO

Árbol parcialmente construido:

- ► Selección del atributo para el nodo CIELO=SOLEADO
- $D_{\mathrm{Soleado}} = \{D_1, D_2, D_8, D_9, D_{11}\}$ con entropía $Ent([2^+, 3^-]) = 0.971$
 - ► $Ganancia(D_{\text{SOLEADO}}, \text{HUMEDAD}) = 0.971 \frac{3}{5} \cdot 0 \frac{2}{5} \cdot 0 = 0.971$ (mejor atributo)
 - ► $Ganancia(D_{\text{SOLEADO}}, \text{TEMPERATURA}) = 0.971 \frac{2}{5} \cdot 0 \frac{2}{5} \cdot 1 \frac{1}{5} \cdot 0 = 0.570$
 - ► $Ganancia(D_{\text{Soleado}}, \text{Viento}) = 0.971 \frac{2}{5} \cdot 1 \frac{3}{5} \cdot 0.918 = 0.019$
- ► El atributo seleccionado es HUMEDAD

- Selección del atributo para el nodo CIELO=LLUVIA:
- $D_{\rm LLUVIA}=\{D_4,D_5,D_6,D_{10},D_{14}\}$ con entropía $Ent([3^+,2^-])=0.971$
 - ► $Ganancia(D_{LLUVIA}, HUMEDAD) = 0.971 \frac{2}{5} \cdot 1 \frac{3}{5} \cdot 0.918 = 0.820$
 - ► $Ganancia(D_{LLUVIA}, TEMPERATURA) = 0.971 \frac{3}{5} \cdot 0.918 \frac{2}{5} \cdot 1 = 0.820$
 - ► $Ganancia(D_{\text{LLUVIA}}, \text{VIENTO}) = 0.971 \frac{3}{5} \cdot 0 \frac{2}{5} \cdot 0 = 0.971$ (mejor atributo)
- ► El atributo seleccionado es VIENTO

Árbol finalmente aprendido:

Conjunto de entrenamiento:

EJ.	Color	Forma	Tamaño	Clase
O_1	Rojo	Cuadrado	Grande	+
O_2	Azul	Cuadrado	Grande	+
O_3	Rojo	Redondo	Pequeño	-
O_4	Verde	Cuadrado	Pequeño	-
O_5	Rojo	Redondo	Grande	+
O_6	Verde	Cuadrado	Grande	-

- ▶ Entropía inicial en el ejemplo de los objetos, $Ent([3^+, 3^-]) = 1$
- Selección del atributo para el nodo raíz:
 - ► $Ganancia(D, Color) = 1 \frac{3}{6} \cdot Ent([2^+, 1^-]) \frac{1}{6} \cdot Ent([1^+, 0^-]) \frac{2}{6} \cdot Ent([0^+, 2^-]) = 0.543$
 - ► $Ganancia(D, FORMA) = 1 \frac{4}{6} \cdot Ent([2^+, 2^-]) \frac{2}{6} \cdot Ent([1^+, 1^-]) = 0$
 - ► $Ganancia(D, TAMAÑO) = 1 \frac{4}{6} \cdot Ent([3^+, 1^-]) \frac{2}{6} \cdot Ent([0^+, 2^-]) = 0.459$
- ► El atributo seleccionado es Color

Árbol parcialmente construido:

- ► Selección del atributo para el nodo Color=Rojo:
- $\blacktriangleright \ D_{\rm Rojo} = \{O_1,O_3,O_5\}$ con entropía $Ent([2^+,1^-]) = 0.914$
 - ► $Ganancia(D_{ROJO}, FORMA) = 0.914 \frac{1}{3} \cdot Ent([1^+, 0^-]) \frac{2}{3} \cdot Ent([1^+, 1^-]) = 0.247$
 - ► $Ganancia(D_{ROJO}, TAMAÑO) = 0.914 \frac{2}{3} \cdot Ent([2^+, 0^-]) \frac{1}{3} \cdot Ent([0^+, 1^-]) = 0.914$
- ► El atributo seleccionado es TAMAÑO

Árbol finalmente aprendido:

Búsqueda y sesgo inductivo

- Búsqueda local en un espacio de hipótesis
 - Espacio de todos los árboles de decisión
 - Un único árbol candidato en cada paso
 - Sin retroceso (peligro de óptimos locales), búsqueda en escalada
 - Decisiones tomadas a partir de conjuntos de ejemplos
- Sesgo inductivo
 - Se prefieren árboles más cortos sobre los más largos
 - Sesgo preferencial, implícito en la búsqueda
 - Principio de la navaja de Occam

Algunas cuestiones prácticas a resolver en aprendizaje automático

- Validar la hipótesis aprendida
 - ¿Podemos cuantificar la bondad de lo aprendido respecto de la explicación real?
- Sobreajuste
 - ¿Se ajusta demasiado lo aprendido al conjunto de entrenamiento?

Medida del rendimiento del aprendizaje

- Conjuntos de entrenamiento y prueba (test)
 - Aprender con el conjunto de entrenamiento
 - Medir el rendimiento en el conjunto de prueba:
 - proporción de ejemplos bien clasificados en el conjunto de prueba
- Repetición de este proceso
 - Curva de aprendizaje
 - Estratificación: cada clase correctamente representada en el entrenamiento y en la prueba
- Si no tenemos suficientes ejemplos como para apartar un conjunto de prueba: validación cruzada
 - Dividir en k partes, y hace k aprendizajes, cada uno de ellos tomando como prueba una de las partes y entrenamiento el resto. Finalmente hacer la media de los rendimientos.
 - lacktriangle En la práctica: validación cruzada, con k=10 y estratificación

Sobreajuste y ruido

- ▶ Una hipótesis $h \in H$ sobreajusta los ejemplos de entrenamiento si existe $h' \in H$ que se ajusta peor que h a los ejemplos pero actúa mejor sobre la distribución completa de instancias.
- Ruido: ejemplos incorrectamente clasificados. Causa sobreajuste
- ► Ejemplo: supongamos que, por error, se incluye el ejemplo <AZUL, REDONDO, PEQUEÑO> como ejemplo negativo
- ► El árbol aprendido en este caso sería (sobreajustado a los datos):

Sobreajuste y ruido

- Otras causas de sobreajuste:
 - Atributos que en los ejemplos presentan una aparente regularidad pero que no son relevantes en realidad
 - Conjuntos de entrenamiento pequeños
- Maneras de evitar el sobreajuste en árboles de decisión:
 - Parar el desarrollo del árbol antes de que se ajuste perfectamente a todos los datos
 - Podar el árbol a posteriori
- Poda a posteriori, dos aproximaciones:
 - Transformación a reglas, podado de las condiciones de las reglas
 - Realizar podas directamente en el árbol
 - Las podas se producen siempre que reduzcan el error sobre un conjunto de prueba

Podado de árboles

Algoritmo de poda para reducir el error

- 1. Dividir el conjunto de ejemplos en Entrenamiento y Prueba
- 2. Árbol=árbol obtenido por ID3 usando Entrenamiento
- 3. Continuar=True
- 4. Mientras Continuar:
- * Medida = proporción de ejemplos en Prueba correctamente clasificados por Árbol
- * Por cada nodo interior N de Árbol:
 - Podar temporalmente Árbol en el nodo N y sustituirlo por una hoja etiquetada con la clasificación mayoritaria en ese nodo
- Medir la proporción de ejemplos correctamente clasificados en el conjunto de prueba.
- * Sea K el nodo cuya poda produce mejor rendimiento
- * Si este rendimiento es mejor que Medida, entonces
- Árbol = resultado de podar permanentemente Árbol en K
- * Si no, Continuar=Falso
- 5. Devolver Árbol

Otras cuestiones prácticas del algoritmo ID3

- Extensiones del algoritmo:
 - Atributos con valores contínuos
 - Otras medidas para seleccionar atributos
 - Otras estimaciones de error
 - Atributos sin valores
 - Atributos con coste
- ► Algoritmos C4.5 y C5.0 (Quinlan)

Clasificación mediante modelos probabilísticos: *naive* Bayes

Clasificadores naive Bayes

- ightharpoonup Supongamos un conjunto de atributos A_1,\ldots,A_n cuyos valores determinan un valor en un conjunto finito V de posibles «clases» o «categorías»
- ▶ Tenemos un conjunto de entrenamiento D con una serie de tuplas de valores concretos para los atributos, junto con su clasificación
- Queremos aprender un clasificador tal que clasifique nuevas instancias $\langle a_1, \dots, a_n \rangle$
 - Es decir, el mismo problema en el tema de aprendizaje de árboles de decisión (pero ahora lo abordaremos desde una perspectiva probabilística).

Clasificadores naive Bayes

- Podemos diseñar un modelo probabilístico para un problema de clasificación de este tipo, tomando los atributos y la clasificación como variables aleatorias
- ▶ El valor de clasificación asignado a una nueva instancia $\langle a_1, \dots, a_n \rangle$, notado v_{MAP} vendrá dado por

$$\underset{v_j \in V}{argmax} P(v_j | a_1, \dots, a_n)$$

Aplicando el teorema de Bayes podemos escribir

$$v_{MAP} = \underset{v_j \in V}{argmax} P(a_1, \dots, a_n | v_j) P(v_j)$$

- Y ahora, simplemente estimar las probabilidades de la fórmula anterior a partir del conjunto de entrenamiento
- Problema: necesitaríamos una gran cantidad de datos para estimar adecuadamente las probabilidades $P(a_1, \ldots, a_n | v_i)$

Clasificadores naive Bayes

- Podemos simplificar el aprendizaje suponiendo que los atributos son (mútuamente) condicionalmente independientes dado el valor de clasificación (de ahí lo de «naive»)
- La situación se representa entonces por la red:

En ese caso, tomamos como valor de clasificación:

$$v_{NB} = \underset{v_j \in V}{argmax} P(v_j) \prod_{i} P(a_i|v_j)$$

Estimación de probabilidades *naive* Bayes

- Para el proceso de aprendizaje, sólo tenemos que estimar las probabilidades $P(v_j)$ (probabilidades a priori) y $P(a_i|v_j)$ (probabilidades a priori) y a (probabilidad
- Mediante cálculo de sus frecuencias en el conjunto de entrenamiento, obtenemos estimaciones de máxima verosimilitud de esas probabilidades:

$$P(v_j) = \frac{\#(V = v_j)}{N} \qquad P(a_i | v_j) = \frac{\#(A_i = a_i, V = v_j)}{\#(V = v_j)}$$

donde N es el número total de ejemplos, $\#(V=v_j)$ es el número de ejemplos clasificados como v_j y $\#(A_i=a_i,V=v_j)$ es el número de ejemplos clasificados como v_j cuyo valor en el atributo A_i es a_i .

Clasificador naive Bayes: un ejemplo

Vamos a aplicar el clasificador a un ejemplo ya conocido, usado en el tema de árboles de decisión:

EJ.	Cielo	Temperatura	Humedad	Viento	JugarTenis
D_1	Soleado	Alta	Alta	Débil	-
D_2	Soleado	Alta	Alta	Fuerte	-
D_3	Nublado	Alta	Alta	Débil	+
D_4	Lluvia	Suave	Alta	Débil	+
D_5	Lluvia	Baja	Normal	Débil	+
D_6	Lluvia	Baja	Normal	Fuerte	-
D_7	Nublado	Baja	Normal	Fuerte	+
D_8	Soleado	Suave	Alta	Débil	-
D_9	Soleado	Baja	Normal	Débil	+
D_{10}	Lluvia	Suave	Normal	Débil	+
D_{11}	Soleado	Suave	Normal	Fuerte	+
D_{12}	Nublado	Suave	Alta	Fuerte	+
D_{13}	Nublado	Alta	Normal	Débil	+
D_{14}	Lluvia	Suave	Alta	Fuerte	-

Clasificador naive Bayes: un ejemplo

- Supongamos que queremos predecir si un día soleado, de temperatura suave, humedad alta y viento fuerte es bueno para jugar al tenis
- Según el clasificador Naive Bayes:

$$v_{NB} = \underset{v_{j} \in \{+,-\}}{argmax} P(v_{j}) P(soleado|v_{j}) P(suave|v_{j}) P(alta|v_{j}) P(fuerte|v_{j})$$

- Así que necesitamos estimar todas estas probabilidades, lo que hacemos simplemente calculando frecuencias en la tabla anterior:
 - $\begin{array}{l} \blacktriangleright p(+) = 9/14, \ p(-) = 5/14, \ p(soleado|+) = 2/9, \\ p(soleado|-) = 3/5, \ p(suave|+) = 4/9, \ p(suave|-) = 2/5, \\ p(alta|+) = 3/9, \ p(alta|-) = 4/5, \ p(fuerte|+) = 3/9 \ \text{y} \\ p(fuerte|-) = 3/5 \end{array}$

Clasificador naive Bayes: un ejemplo

- Por tanto, las dos probabilidades a posteriori son:
 - $P(+)P(soleado|+)P(suave|+)P(alta|+)P(fuerte|+) = 9/14 \cdot 2/9 \cdot 4/9 \cdot 3/9 \cdot 3/9 = 0.007$
 - $P(-)P(soleado|-)P(suave|-)P(alta|-)P(fuerte|-) = 5/14 \cdot 3/5 \cdot 2/5 \cdot 4/5 \cdot 3/5 = 0.0411$
- ➤ Así que el clasificador devuelve la clasificación con mayor probabilidad a posteriori, en este caso la respuesta es — (no es un día bueno para jugar al tenis)

Detalles técnicos sobre las estimaciones

- ➤ Si alguna de las probabilidades es cercana a 0 y tenemos pocos ejemplos en el conjunto de entrenamiento, lo más seguro es que la estimación de esa probabilidad sea 0
- Esto plantea dos problemas:
 - La inexactitud de la propia estimación
 - Afecta enormemente a la clasificación que se calcule, ya que se multiplican las probabilidades estimadas y por tanto si una de ellas es 0, anula a las demás
- Una primera manera de abordar el problema: usar logaritmos de las probabilidades.
 - Los productos se transforman en sumas

$$v_{NB} = \underset{v_j \in V}{argmax}[log(P(v_j)) + \sum_{i} log(P(a_i|v_j))]$$

Suavizado

- Problema en la estimaciones:
 - Probabilidades nulas o casi nulas, por ausencia en el conjunto de entrenamiento de algunos valores de atributos en algunas categorías
 - Sobreajuste
- ▶ Idea: suponer que tenemos m ejemplos adicionales, cuyos valores se distribuyen teóricamente a priori de alguna manera.
- Estimación suavizada de una probabilidad, a partir de observaciones: $\frac{n'+m\cdot p}{n+m}$
 - ightharpoonup n' y n: número de ejemplos favorables y totales observados
 - ▶ p: estimación a priori de la probabilidad que se quiere estimar.
 - → m: tamaño de muestreo equivalente, indica el número de ejemplos adicionales (ficticios)

Suavizado aditivo (o de Laplace)

Un caso particular de lo anterior se suele usar para la estimación de las probabilidades condicionales en naive Bayes:

$$P(a_i|v_j) = \frac{\#(A_i = a_i, V = v_j) + k}{\#(V = v_j) + k|A_i|}$$

donde k es un número fijado y $|A_i|$ es el número de posibles valores del atributo $|A_i|$.

- Intuitivamente: se supone que además de los del conjunto de entrenamiento, hay k ejemplos en la clase v_j por cada posible valor del atributo A_i
- Usualmente k = 1, pero podrían tomarse otros valores
 - ► Elección de *k*: experimentando con los distintos rendimientos sobre un *conjunto de validación*

Aprendizaje basado en instancias: kNN

4 🗇 🕨

Clasificación mediante vecino más cercano

- Una técnica alternativa a construir el modelo probabilístico es calcular la clasificación directamente a partir de los ejemplos (aprendizaje basado en instancias)
- ▶ Idea: obtener la clasificación de un nuevo ejemplo a partir de las categorías de los ejemplos más «cercanos».
 - Debemos manejar, por tanto, una noción de «distancia» entre ejemplos.
 - ightharpoonup En la mayoría de los casos, los ejemplos serán elementos de \mathbb{R}^n y la distancia, la euclídea.
 - Pero se podría usar otra noción de distancia
- Ejemplo de aplicación: clasificación de documentos

El algoritmo k-NN

- ▶ El algoritmo k-NN (de k nearest neighbors):
 - Dado un conjunto de entrenamiento (vectores numéricos con una categoría asignada) y un ejemplo nuevo
 - lacktriangle Devolver la categoría mayoritaria en los k ejemplos del conjunto de entrenamiento más cercanos al ejemplo que se quiere clasificar

Distancias para k-NN

- Posibles distancias usadas para definir la «cercanía»:
 - lacksquare Euclídea: $d_e(oldsymbol{x},oldsymbol{y}) = \sqrt{\sum_{i=1}^n (x_i-y_i)^2}$
 - ightharpoonup Manhattan: $d_m(\boldsymbol{x},\boldsymbol{y}) = \sum_{i=1}^n |x_i y_i|$
 - ▶ Hamming: número de componentes en las que se difiere.
- ► La euclídea se usa cuando cada dimensión mide propiedades similares y la Mahattan en caso contrario; la distancia Hamming se puede usar aún cuando los vectores no sean numéricos.
- Normalización: cuando no todas las dimensiones son del mismo orden de magnitud, se normalizan las componentes (restando la media y dividiendo por la desviación típica)

Algunas observaciones sobre k-NN

- ► Elección de *k*:
 - Usualmente, basándonos en algún conocimiento específico sobre el problema de clasificación
 - También como resultado de pruebas en conjuntos más pequeños (conjuntos de validación)
 - Si la clasificación es binaria, preferiblemente impar, para intentar evitar empates (k=5, por ejemplo)
- Variante en kNN: para cada clase c, sumar la similitud (con el que se quiere clasificar) de cada ejemplo de esa clase que esté entre los k más cercanos. Devolver la clase que obtenga mayor puntuación.
 - Así un ejemplo cuenta más cuanto más cercano esté

Clustering

Clustering

- Como última aplicación del aprendizaje estadístico, trataremos técnicas de agrupamiento o clustering
- Se trata de dividir un conjunto de datos de entrada en subconjuntos (clusters), de tal manera que los elementos de cada subconjunto compartan cierto patrón o características a priori desconocidas
- En nuestro caso, los datos serán números o vectores de números y el número de clusters nos vendrá dado
- Aprendizaje no supervisado: no tenemos información sobre qué cluster corresponde a cada dato.
- Aplicaciones de clustering:
 - Minería de datos
 - Procesamiento de imágenes digitales
 - Bioinformática

Dos ejemplos

- Color quantization:
 - Una imagen digital almacenada con 24 bits/pixel (aprox. 16 millones de colores) se tiene que mostrar sobre una pantalla que sólo tiene 8 bits/pixel (256 colores)
 - ➤ ¿Cuál es la mejor correspondencia entre los colores de la imagen original y los colores que pueden ser mostrados en la pantalla?
- Mezcla de distribuciones:
 - Tenemos una serie de datos con el peso de personas de un pais; no tenemos información sobre si el peso viene de un varón o de una mujer, pero sabemos que la distribución de pesos es de tipo normal, y que en los hombres es distinta que en las mujeres
 - Atendiendo a los datos, ¿podemos aprender de qué dos distribuciones de probabilidad vienen?

Clustering basado en distancia

- ▶ Idea: dado el número k de grupos o clusters, buscar k puntos o centros representantes de cada cluster, de manera que cada dato se considera en el cluster correspondiente al centro que tiene a menor «distancia»
- ► Como antes, la distancia sería específica de cada problema:
 - Expresará la medida de similitud
 - La distancia más usada es la euclídea

Un algoritmo clásico: k-medias

- ▶ Entrada: un número k de clusters, un conjunto de datos $\{x_i\}_{i=1}^N$ y una función de distancia
- Salida: un conjunto de k centros m_1, \ldots, m_k

k-medias(k,datos,distancia)

- 1. Inicializar m_i (i=1,...,k) (aleatoriamente o con algún criterio heurístico)
- 2. REPETIR (hasta que los m_i no cambien): 2.1 PARA j=1....,N, HACER:
- Calcular el cluster correspondiente a x_j, escogiendo, de entre todos los m_i, el m_h tal que
 - distancia(x_j,m_h) sea mínima 2.2 PARA i=1,...,k HACER:
 - Asignar a m_i la media aritmética de los datos asignados al cluster i-ésimo
- 3. Devolver m_1,...,m_n

ldea gráfica intuitiva en el algoritmo de k-medias

Ejemplo en el algoritmo k-medias

- ▶ Datos sobre pesos de la población: 51, 43, 62, 64, 45, 42, 46, 45, 45, 62, 47, 52, 64, 51, 65, 48, 49, 46, 64, 51, 52, 62, 49, 48, 62, 43, 40, 48, 64, 51, 63, 43, 65, 66, 65, 46, 39, 62, 64, 52, 63, 64, 48, 64, 48, 51, 48, 64, 42, 48, 41
- ▶ El algoritmo, aplicado con k=2 y distancia euclídea, encuentra dos centros $m_1=63.63$ y $m_2=46.81$ en tres iteraciones
- ▶ 19 datos pertenecen al primer cluster y 32 al segundo cluster

Cuestiones sobre el algoritmo k-medias

Puede verse como un algoritmo de búsqueda local: encontrar los centros m_i que optimizan

$$\sum_{j} \sum_{i} b_{ij} d(x_j, m_i)^2$$

donde b_{ij} vale 1 si x_j tiene a m_i como el centro más cercano, 0 en otro caso.

No garantiza encontrar el óptimo global.

- ▶ Inicialización: aleatoria o con alguna técnica heurística (por ejemplo, partir los datos aleatoriamente en k clusters y empezar con los centros de esos clusters)
- ► En la práctica, los centros con los que se inicie el algoritmo tienen un gran impacto en la calidad de los resultados que se obtengan
- Clusters vacíos: elegir un nuevo centro de manera aleatoria o usando alguna técnica heurística

Bibliografía

- Mitchell, T.M. Machine Learning (McGraw-Hill, 1997)
 - ► Caps. 3,6,8 y 10
- Russell, S. y Norvig, P. Artificial Intelligence (A Modern Approach) (3rd edition) (Prentice Hall, 2010)
 - Seccs. 18.1, 18.2, 18.3, 20.1 y 20.2
- Russell, S. y Norvig, P. Inteligencia Artificial (Un enfoque moderno) (segunda edición en español) (Pearson Education, 2004)
 - Seccs. 18.1, 18.2, 18.3, 18.8, 20.1, 20.2 y 20.4
- Witten, I.H. y Frank, E. Data mining (Second edition) (Morgan Kaufmann Publishers, 2005)
 - ► Cap. 3, 4, 5 y 6.

