FIFA pràctica

Volem predir el "value" dels jugadors utilitzant la informació del jugador.

Enllaç al github: https://github.com/xescnova/FIFA-Machine-
Learning/tree/main/Practica%203%20IA (https://github.com/xescnova/FIFA-Machine-Learning/tree/main/Practica%203%20IA (<a href="https://github.com/xescnova/FIFA-Machine-Learning/tree/main/Practica%203%20IA") (<a href="https://github.com/xescnova/

Importar Ilibreries

Importam les llibreries necesaries

```
In [1]: import os
    from sklearn.model_selection import train_test_split
    from sklearn import linear_model
    from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
    import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
```

Llegim les dades

Per llegir-les utilitzam pandas i la utilitat de la llibreria os .

```
In [2]: df = pd.read_csv(os.path.join("..", "in", "fifa.csv"))
```

Anàlisi de dades

Aquestes són les nostres dades i hem de fer un anàlisi

```
In [3]: pd.set_option('display.max_columns', None)
```

In [4]: df.head()

Out[4]:

	Unnamed: 0	ID	Name	Age	Photo	Nationality	
0	0	158023	L. Messi	31	https://cdn.sofifa.org/players/4/19/158023.png	Argentina	https://cc
1	1	20801	Cristiano Ronaldo	33	https://cdn.sofifa.org/players/4/19/20801.png	Portugal	https://cc
2	2	190871	Neymar Jr	26	https://cdn.sofifa.org/players/4/19/190871.png	Brazil	https://cc
3	3	193080	De Gea	27	https://cdn.sofifa.org/players/4/19/193080.png	Spain	https://cc
4	4	192985	K. De Bruyne	27	https://cdn.sofifa.org/players/4/19/192985.png	Belgium	https://c

Eliminació de columnes

A aquesta part eliminaré les columnes que no aporten informació a la resolució del problema : ID,Nationality,Photo,Preferred Foot,Name, Flag , Club Logo , Real Face , Joined , Jersey Number , Loaned From , Contract Valid Until , Weight , Height.

Totes aquestes columnes excepte "Joined" i "Loaned From" no són necesaries i es trivial. Per altra banda, tampoc ens interesa conèixer l'any en que va entrar la persona al club perqué és independent del seu "Value". Si és un jugador cedit tampoc ens interesa, perque hi ha molt pocs que ho són i el "Value" del jugador no dependrà d'ell.

Weight i Height són atributs que es podria realitzar un tractament. En el cas de Height seria canviar el x'x per x.x perque el programa ho pugui computar i en el cas de Weight seria llevar la part de Xlbs i pasar-ho a kg si es prefereix però he decidit no tractar-les perque són quasi irrelevants per calcular el "Value" del jugador ja que hi ha altres atributs que són més importants.

Work Rate i Body Type es podria fer un tractament similar al que realitzaré per "Club" que consisteix en agafar totes les files diferents i transformar-les en columnes i si el jugador té aquest atribut aleshores asignar-li un 1 i un 0 si no el té. Per Work Rate primer s'hauria de fer un tractament previ perque té 2 valors , un per la primera part i un altre per la segona, aleshores podriem agafar el de la primera part i l'altre eliminar-lo i a continuació realitzar el tractament anterior. Però per calcular el "Value" hi ha atributs més importants i aquests els podem eliminar.

Preferred foot: atribut amb molt poc impacte sobre "Value" que podem eliminar també.

In [5]: df.drop(['ID','Preferred Foot','Name','Nationality','Body Type','Weight','Height
df

Out[5]:

	Unnamed: 0	Age	Overall	Potential	Club	Value	Wage	Special	International Reputation	Wea Foc
0	0	31	94	94	FC Barcelona	€110.5M	€565K	2202	5.0	4.
1	1	33	94	94	Juventus	€77M	€405K	2228	5.0	4.
2	2	26	92	93	Paris Saint- Germain	€118.5M	€290K	2143	5.0	5.
3	3	27	91	93	Manchester United	€72M	€260K	1471	4.0	3.
4	4	27	91	92	Manchester City	€102M	€355K	2281	4.0	5.
18202	18202	19	47	65	Crewe Alexandra	€60K	€1K	1307	1.0	2.
18203	18203	19	47	63	Trelleborgs FF	€60K	€1K	1098	1.0	2.
18204	18204	16	47	67	Cambridge United	€60K	€1K	1189	1.0	3.
18205	18205	17	47	66	Tranmere Rovers	€60K	€1K	1228	1.0	3.
18206	18206	16	46	66	Tranmere Rovers	€60K	€1K	1321	1.0	3.
18207 ı	rows × 73 c	olumn	ıs							
4										•

Arreglar NaNs

Hi ha valors que són NaN,és a dir "not a number" ,valors nulls. Aquí hi ha les columnes que tenen algun NaN

```
In [6]: df.columns[df.isna().any()].tolist()
Out[6]: ['Club',
           'International Reputation',
          'Weak Foot',
           'Skill Moves',
           'Position',
           'LS',
           'ST',
           'RS',
           'LW',
           'LF',
           'CF',
           'RF',
           'RW',
           'LAM',
           'CAM',
           'RAM',
           'LM',
           'LCM',
           'CM',
           'RCM',
           'RM',
           'LWB',
           'LDM',
           'CDM',
           'RDM',
           'RWB',
           'LB',
           'LCB',
           'CB',
           'RCB',
           'RB',
           'Crossing',
           'Finishing',
           'HeadingAccuracy',
           'ShortPassing',
           'Volleys',
           'Dribbling',
           'Curve',
           'FKAccuracy',
           'LongPassing',
           'BallControl',
           'Acceleration',
           'SprintSpeed',
           'Agility',
           'Reactions',
           'Balance',
           'ShotPower',
           'Jumping',
           'Stamina',
           'Strength',
           'LongShots',
           'Aggression',
           'Interceptions',
           'Positioning',
```

'Vision',

```
'Penalties',
'Composure',
'Marking',
'StandingTackle',
'SlidingTackle',
'GKDiving',
'GKHandling',
'GKKicking',
'GKPositioning',
'GKReflexes',
'Release Clause']
```

Amb la següent instrucció podem veure la informació del nostre dataframe, les columnes Non-Null indiquen el total de jugadors que tenen un valor en aquell atribut.

El total de jugadors són 18207, per tant, haurem de tractar totes les columnes amb NaN.

Per altra banda, totes les columnes amb Dtype = object hauran de ser convertides a int per tal de poder ser interpretades.

```
In [7]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18207 entries, 0 to 18206
Data columns (total 73 columns):

Data	columns (total 73 columns)):	
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	18207 non-null	int64
1	Age	18207 non-null	int64
2	Overall	18207 non-null	int64
3	Potential		int64
		18207 non-null	
4	Club	17966 non-null	object
5	Value	18207 non-null	object
6	Wage	18207 non-null	object
7	Special	18207 non-null	int64
8	International Reputation	18159 non-null	float64
9	Weak Foot	18159 non-null	float64
10	Skill Moves	18159 non-null	float64
11	Position	18147 non-null	object
12	LS	16122 non-null	object
13	ST	16122 non-null	object
14	RS	16122 non-null	object
			-
15	LW	16122 non-null	object
16	LF	16122 non-null	object
17	CF	16122 non-null	object
18	RF	16122 non-null	object
19	RW	16122 non-null	object
20	LAM	16122 non-null	object
21	CAM	16122 non-null	object
22	RAM	16122 non-null	object
23	LM	16122 non-null	object
24	LCM	16122 non-null	object
25	CM	16122 non-null	object
26	RCM	16122 non-null	object
27	RM	16122 non-null	object
28	LWB	16122 non-null	_
			object
29	LDM	16122 non-null	object
30	CDM	16122 non-null	object
31	RDM	16122 non-null	object
32	RWB	16122 non-null	object
33	LB	16122 non-null	object
34	LCB	16122 non-null	object
35	СВ	16122 non-null	object
36	RCB	16122 non-null	object
37	RB	16122 non-null	object
38	Crossing	18159 non-null	float64
39	Finishing	18159 non-null	float64
40	HeadingAccuracy	18159 non-null	float64
41	ShortPassing	18159 non-null	float64
42	_		float64
	Volleys		
43	Dribbling	18159 non-null	float64
44	Curve	18159 non-null	float64
45	FKAccuracy	18159 non-null	float64
46	LongPassing	18159 non-null	float64
47	BallControl	18159 non-null	float64
48	Acceleration	18159 non-null	float64
49	SprintSpeed	18159 non-null	float64

50	Agility	18159	non-null	float64
51	Reactions	18159	non-null	float64
52	Balance	18159	non-null	float64
53	ShotPower	18159	non-null	float64
54	Jumping	18159	non-null	float64
55	Stamina	18159	non-null	float64
56	Strength	18159	non-null	float64
57	LongShots	18159	non-null	float64
58	Aggression	18159	non-null	float64
59	Interceptions	18159	non-null	float64
60	Positioning	18159	non-null	float64
61	Vision	18159	non-null	float64
62	Penalties	18159	non-null	float64
63	Composure	18159	non-null	float64
64	Marking	18159	non-null	float64
65	StandingTackle	18159	non-null	float64
66	SlidingTackle	18159	non-null	float64
67	GKDiving	18159	non-null	float64
68	GKHandling	18159	non-null	float64
69	GKKicking	18159	non-null	float64
70	GKPositioning	18159	non-null	float64
71	GKReflexes	18159	non-null	float64
72	Release Clause	16643	non-null	object
dtyp	es: float64(37), int64(5),	object	t(31)	

memory usage: 10.1+ MB

Ens podem fixar que hi ha columnes que tenen el mateix valor però que no és el total, aquest valor és 18159. És a dir,hi ha 48 jugadors dels quals no se sap una serie d'atributs, aquests es poden eliminar ja que 48 jugadors sobre 18207 no és un canvi gran.

Procedim a eliminar-los (podem executar una instrucció que elimini els jugadors que no tenen Marking per exemple ja que seran els mateixos 48 que no tenen l'altra serie de atributs.

Out[8]:

	Unnamed: 0	Age	Overall	Potential	Club	Value	Wage	Special	International Reputation	Wea Foc
0	0	31	94	94	FC Barcelona	€110.5M	€565K	2202	5.0	4.
1	1	33	94	94	Juventus	€77M	€405K	2228	5.0	4.
2	2	26	92	93	Paris Saint- Germain	€118.5M	€290K	2143	5.0	5.
3	3	27	91	93	Manchester United	€72M	€260K	1471	4.0	3.
4	4	27	91	92	Manchester City	€102M	€355K	2281	4.0	5.
									•••	
18202	18202	19	47	65	Crewe Alexandra	€60K	€1K	1307	1.0	2.
18203	18203	19	47	63	Trelleborgs FF	€60K	€1K	1098	1.0	2.
18204	18204	16	47	67	Cambridge United	€60K	€1K	1189	1.0	3.
18205	18205	17	47	66	Tranmere Rovers	€60K	€1K	1228	1.0	3.
18206	18206	16	46	66	Tranmere Rovers	€60K	€1K	1321	1.0	3.

18159 rows × 73 columns

Eliminam els jugadors que no tenen Club , ja que són menys de 100 i no afecten als nostres càlculs. Es podria fer de una altra manera canviant el NaN per *Sense Club* però amb la quantitat que hi ha he preferit eliminar-los.

Out[9]:

	Unnamed: 0	Age	Overall	Potential	Club	Value	Wage	Special	International Reputation	Wea Foc
0	0	31	94	94	FC Barcelona	€110.5M	€565K	2202	5.0	4.
1	1	33	94	94	Juventus	€77M	€405K	2228	5.0	4.
2	2	26	92	93	Paris Saint- Germain	€118.5M	€290K	2143	5.0	5.
3	3	27	91	93	Manchester United	€72M	€260K	1471	4.0	3.
4	4	27	91	92	Manchester City	€102M	€355K	2281	4.0	5.
									•••	
18202	18202	19	47	65	Crewe Alexandra	€60K	€1K	1307	1.0	2.
18203	18203	19	47	63	Trelleborgs FF	€60K	€1K	1098	1.0	2.
18204	18204	16	47	67	Cambridge United	€60K	€1K	1189	1.0	3.
18205	18205	17	47	66	Tranmere Rovers	€60K	€1K	1228	1.0	3.
18206	18206	16	46	66	Tranmere Rovers	€60K	€1K	1321	1.0	3.

17918 rows × 73 columns

Hem de modificar els jugadors que tenen "Release Clause" = NaN per un valor igual a 0 ja que si el valor de la clàusula és NaN, significa que no en té i que és igual a 0 i el jugador es pot anar gratis.

In [10]: df['Release Clause'] = df['Release Clause'].fillna('€0K')
df

Out[10]:

	Unnamed: 0	Age	Overall	Potential	Club	Value	Wage	Special	International Reputation	Wea Foc
0	0	31	94	94	FC Barcelona	€110.5M	€565K	2202	5.0	4.
1	1	33	94	94	Juventus	€77M	€405K	2228	5.0	4.
2	2	26	92	93	Paris Saint- Germain	€118.5M	€290K	2143	5.0	5.
3	3	27	91	93	Manchester United	€72M	€260K	1471	4.0	3.
4	4	27	91	92	Manchester City	€102M	€355K	2281	4.0	5.
									•••	
18202	18202	19	47	65	Crewe Alexandra	€60K	€1K	1307	1.0	2.
18203	18203	19	47	63	Trelleborgs FF	€60K	€1K	1098	1.0	2.
18204	18204	16	47	67	Cambridge United	€60K	€1K	1189	1.0	3.
18205	18205	17	47	66	Tranmere Rovers	€60K	€1K	1228	1.0	3.
18206	18206	16	46	66	Tranmere Rovers	€60K	€1K	1321	1.0	3.

17918 rows × 73 columns

Hi ha un problema amb els porters. Els porters no tenen puntuació a les columnes "LS", "RT", "ST", etc. i és lògic perquè un porter només juga de porter.

Per això totes les columnes que tenguin NaN al les columnes de "LS", "RT", "ST", etc. seran emplenades amb 0.

```
In [11]: |df['LS'] = df['LS'].fillna('0')
         df['ST'] = df['ST'].fillna('0')
         df['RS'] = df['RS'].fillna('0')
         df['LW'] = df['LW'].fillna('0')
         df['LF'] = df['LF'].fillna('0')
         df['CF'] = df['CF'].fillna('0')
         df['RF'] = df['RF'].fillna('0')
         df['RW'] = df['RW'].fillna('0')
         df['LAM'] = df['LAM'].fillna('0')
         df['CAM'] = df['CAM'].fillna('0')
         df['RAM'] = df['RAM'].fillna('0')
         df['LM'] = df['LM'].fillna('0')
         df['LCM'] = df['LCM'].fillna('0')
         df['CM'] = df['CM'].fillna('0')
         df['RCM'] = df['RCM'].fillna('0')
         df['RM'] = df['RM'].fillna('0')
         df['LWB'] = df['LWB'].fillna('0')
         df['LDM'] = df['LDM'].fillna('0')
         df['CDM'] = df['CDM'].fillna('0')
         df['RDM'] = df['RDM'].fillna('0')
         df['RWB'] = df['RWB'].fillna('0')
         df['LB'] = df['LB'].fillna('0')
         df['LCB'] = df['LCB'].fillna('0')
         df['CB'] = df['CB'].fillna('0')
         df['RCB'] = df['RCB'].fillna('0')
         df['RB'] = df['RB'].fillna('0')
```

Transformació de columnes a int

"Value", "Wage" y "Release Clause" son columnes amb expressions que el programa no sap interpretar per això les hem de transformar

Utilitzarem el següent mètode:

```
In [12]: def value_to_float(x):
    """
    x = x.replace('\infty', '')
    ret_val = 0.0

if type(x) == float or type(x) == int:
        ret_val = x
    if 'k' in x:
        if len(x) > 1:
            ret_val = float(x.replace('K', ''))
        ret_val = ret_val *1000

if 'M' in x:
    if len(x) > 1:
        ret_val = float(x.replace('M', ''))
    ret_val = ret_val * 1000000.0

return ret_val
```

```
In [13]: df["Value"] = df["Value"].apply(value_to_float)
    df["Wage"] = df["Wage"].apply(value_to_float)
    df["Release Clause"] = df["Release Clause"].apply(value_to_float)
```

Hem de modificar els valors de "LS ST RS LW LF CF RF RW LAM CAM RAM LM LCM CM RCM RM LWB LDM CDM RDM RWB LB LCB CB RCB RB" perque duen un + i el programa no els sap interpretar.

Hem de crear el següent mètode que suma els dos valors. Exemple -> 88+2 = 90

```
In [14]: #funció que suma el str per exemple: 88+2 = 90 i el transforma a int, sino és str
def skillSuma(valor):
    if type(valor) == str:
        s1 = valor[0:2]
        s2 = valor[-1]
        valor = int(s1) +int(s2)
        return valor
    else:
        return 0
```

```
In [16]: df.head()
```

Out[16]:

rnational eputation	Weak Foot	Skill Moves	Position	LS	ST	RS	LW	LF	CF	RF	RW	LAM	CAM	RAM	LM	LCM
5.0	4.0	4.0	RF	90	90	90	94	95	95	95	94	95	95	95	93	86
5.0	4.0	5.0	ST	94	94	94	92	93	93	93	92	91	91	91	91	84
5.0	5.0	5.0	LW	87	87	87	92	92	92	92	92	92	92	92	91	84
4.0	3.0	1.0	GK	0	0	0	0	0	0	0	0	0	0	0	0	0
4.0	5.0	4.0	RCM	85	85	85	90	90	90	90	90	91	91	91	91	90

```
In [17]: clb = df.pop("Club")

df = pd.concat([df.reset_index(drop=True), pd.get_dummies(clb, prefix='clb').rese
```

```
In [18]: df['clb 1. FC Heidenheim 1846'].value counts()
Out[18]: 0
               17890
                   28
          Name: clb_1. FC Heidenheim 1846, dtype: int64
In [19]: pos = df.pop("Position")
          df = pd.concat([df.reset index(drop=True), pd.get dummies(pos, prefix='pos').reset
In [20]: | df.head()
Out[20]:
                                                        clb_AS
                                                                clb_AS
                                               clb_AS
                                                                        clb_AZ clb_Aalborg clb_Aar
              clb_AFC
                               clb_AJ
                                       clb_AS
                      clb_AIK
                                                                 Saint-
                                                         Nancy
           Wimbledon
                              Auxerre
                                                                                       BK
                                      Béziers
                                              Monaco
                                                                       Alkmaar
                                                               Étienne
                                                       Lorraine
         )
                    0
                            0
                                    0
                                            0
                                                    0
                                                             0
                                                                    0
                                                                             0
                                                                                         0
         )
                    0
                            0
                                    0
                                            0
                                                    0
                                                             0
                                                                             0
                                                                                         0
                                                                    0
         )
                    0
                            0
                                            0
                                                    0
                                                                    0
                                                                             0
                                                                                         0
                    0
                            0
                                                    0
                                                                                         0
         )
                                    0
                                            0
                                                             0
                                                                    0
                                                                             0
         )
                    0
                            0
                                    0
                                            0
                                                    0
                                                             0
                                                                    0
                                                                             0
                                                                                         0
In [21]: df['pos_RW'].value_counts()
Out[21]: 0
               17553
          1
                  365
          Name: pos_RW, dtype: int64
In [22]: df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 17918 entries, 0 to 17917
          Columns: 749 entries, Unnamed: 0 to pos ST
          dtypes: float64(40), int64(31), uint8(678)
          memory usage: 21.3 MB
```

Predicció

Finalment volem predir el **value** .Per això ho treim del dataset amb pop("Value") i aplicam el model.

```
In [23]: val = df.pop("Value")
df
```

Out[23]:

	Unnamed: 0	Age	Overall	Potential	Wage	Special	International Reputation	Weak Foot	Skill Moves	LS	ST
0	0	31	94	94	565000.0	2202	5.0	4.0	4.0	90	90
1	1	33	94	94	405000.0	2228	5.0	4.0	5.0	94	94
2	2	26	92	93	290000.0	2143	5.0	5.0	5.0	87	87
3	3	27	91	93	260000.0	1471	4.0	3.0	1.0	0	0
4	4	27	91	92	355000.0	2281	4.0	5.0	4.0	85	85
17913	18202	19	47	65	1000.0	1307	1.0	2.0	2.0	44	44
17914	18203	19	47	63	1000.0	1098	1.0	2.0	2.0	47	47
17915	18204	16	47	67	1000.0	1189	1.0	3.0	2.0	47	47
17916	18205	17	47	66	1000.0	1228	1.0	3.0	2.0	49	49
17917	18206	16	46	66	1000.0	1321	1.0	3.0	2.0	45	45

17918 rows × 748 columns

→

Separam el data set en dos conjunts, un per fer el test i l'altre per entrenar amb el model.

In [24]: X_train, X_test, y_train, y_test = train_test_split(df, val, test_size=0.33, rand)

In [25]: len(X_train)

Out[25]: 12005

Entrenam un LinearRegression model.

In [26]: reg = linear_model.LinearRegression().fit(X_train, y_train)

Finalment obtenim una métrica R^2 per a la regressío, utilitz la implementació de <u>sickit-learn</u> (https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2 score.html).

In [27]: preds = reg.predict(X_test)

```
In [28]: preds[0]
Out[28]: -447513.5713709798

In [29]: y_test[0]
Out[29]: 110500000.0

In [30]: r2_score(preds, y_test)
Out[30]: 0.9672990111410212
```