MATH50003 Numerical Analysis

III.2 LU and PLU factorisations

Dr Sheehan Olver

Part III

Numerical Linear Algebra

- 1. Structured matrices such as banded
- 2. LU and PLU factorisations for solving linear systems
- 3. Cholesky factorisation for symmetric positive definite
- 4. Orthogonal matrices such as Householder reflections
- 5. QR factorisation for solving least squares

LU factorisation:

$$A = LU$$

$$A^{\dagger}\bar{b} = (Lv)^{-1}\bar{b} = v^{-1}\bar{b}$$

PLU factorisation:

$$A = P^{\mathsf{T}}LU$$

back sub.

$$A^{-1}\hat{b} = (p^{T}LV)^{-1}\hat{b} = V^{-1}L^{-1}, p\hat{b}$$

III.2.1 Outer products

Definition 15 (outer product). Given $\boldsymbol{x} \in \mathbb{F}^m$ and $\boldsymbol{y} \in \mathbb{F}^n$ the outer product is:

$$oldsymbol{x} oldsymbol{x}^ op := [oldsymbol{x} y_1| \cdots | oldsymbol{x} y_n] = egin{bmatrix} x_1 y_1 & \cdots & x_1 y_n \ dots & \ddots & dots \ x_m y_1 & \cdots & x_m y_n \end{bmatrix} \in \mathbb{F}^{m imes n}.$$

$$\begin{bmatrix} x_1 \\ y_1 \\ y_2 \\ y_m \end{bmatrix} \begin{bmatrix} y_1 \\ y_1 \\ y_2 \\ y_m \end{bmatrix} = \begin{bmatrix} x_1y_1 \\ y_1y_2 \\ y_m \end{bmatrix} \begin{bmatrix} x_1y_2 \\ y_m \end{bmatrix} \begin{bmatrix} x_1y_2 \\ y_m \end{bmatrix}$$

Proposition 4 (rank-1). A matrix $A \in \mathbb{F}^{m \times n}$ has rank 1 if and only if there exists $\mathbf{x} \in \mathbb{F}^m$ and $\mathbf{y} \in \mathbb{F}^n$ such that

$$A = \boldsymbol{x} \boldsymbol{y}^{\top}.$$

Since if
$$A = \overline{x} \overline{y}T$$
 then $colspan(A) = Span(\overline{x})$.

III.2.2 LU factorisation A = LU

Gaussian elimination w/o pivoting computes an LU factorisation

Write
$$\frac{d}{dt} = \frac{a_{11}}{a_{21}} = \frac{a_{12}}{a_{22}} = \frac{d}{dt} = \frac{d}{dt$$

$$= \begin{bmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

$$\Rightarrow A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Example 12 (LU by-hand).
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 4 & 8 \\ 1 & 4 & 9 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

$$A_{2}$$

where

$$A_{2} = k_{1} - \frac{\vec{v}_{1} \cdot \vec{w}_{1}}{\vec{\lambda}} = \begin{bmatrix} 4 & 8 \\ 4 & 9 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$=\begin{bmatrix} 2 & 6 \\ 3 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$=\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Where

$$A_3 = k_1 - \frac{v_1 w_1}{\alpha_1} = \gamma - \frac{3}{1} \times 6 = -1$$

that

that
$$A = \begin{bmatrix} 1 \\ \sqrt{2}/\sqrt{x}, \end{bmatrix} \begin{bmatrix} x_1 & w_1^T \\ A_2 & \cdots \\ x_N^T & \cdots \end{bmatrix}$$

III.2.3 PLU factorisation $A = P^{T}LU$

Gaussian elimination w/ pivoting is a PLU factorisation

Permutation matrices:

$$\begin{pmatrix} 1 & 2 & 3 & --- & n \\ 6_1 & 6_2 & 6_3 & --- & 6_n \end{pmatrix}$$

$$6 = \begin{pmatrix} 1 & 1 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

reprents

vector

this acts on vectors via

This is linear!

$$\Rightarrow$$
 3 matrix Po s.t. Po $\vec{v} = \vec{v} [\vec{c}]$

^

Eg.
$$6 = (313)$$
 we have $9 = (000)$

Theorem 5 (PLU). A matrix $A \in \mathbb{C}^{n \times n}$ is invertible if and only if it has a PLU decomposition:

$$A = P^\top L U$$

where the diagonal of L are all equal to 1 and the diagonal of U are all non-zero, and P is a permutation matrix.

Example 13 (PLU by-hand). Consider the matrix
$$A = \begin{bmatrix} 0 & 2 & 1 \\ 2 & 6 & 2 \\ 1 & -1 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 6 & 2 \\ 1 & -1 & 5 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 6 & 2 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Then

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} A_1 = \begin{bmatrix} -4 & 4 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1/2 & 1 \end{bmatrix} \begin{bmatrix} -4 & 4 \\ 3 \end{bmatrix}$$

$$R$$

$$= \begin{bmatrix} P_1 \\ P_2 \end{bmatrix} \begin{bmatrix} A = \begin{bmatrix} P_2 \\ V_1 \\ V_2 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

$$= \begin{bmatrix} P_1 \\ P_2 \\ P_2 \end{bmatrix} \begin{bmatrix} V_2 \\ V_2 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \begin{bmatrix} V_2 \\ V_2 \end{bmatrix}$$

$$= \begin{bmatrix} V_1 \\ V_2 \\ V_2 \end{bmatrix} \begin{bmatrix} V_2 \\ V_2 \end{bmatrix} \begin{bmatrix} V_2 \\ V_2 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

What's the fastest way to compute det?

O(n3) operations