$\label{lem:machine Learning in Python @: Essential Techniques for Predictive Analysis \\ By Michael Bowles \\ Copyright © 2015 by John Wiley & Sons, Inc., Indianapolis, Indiana \\$

Index

features, 25 Α algorithms function approximation and, 76 increase, 5 bagged decision trees, 4 labels, relationship visualization, base learners, 211–212 42 - 49boosted decision trees, 4 bootstrap aggregation, 226-236 numeric variables, 26, 77 choosing, 11–13 predictions and, 3 real-valued, 62–68, 77 comparison, 6 squares of, 197 ensemble methods, 1 linear, compared to nonlinear, 87–88 targets, correlation, 44–47 times residuals, 197 logistic regression, 4 multiclass classification problems, AUC (area under the curve), 88 314 - 315nonlinear, compared to linear, 87–88 bagging, 11, 212, 226–236, 270–275 penalized linear regression bias versus variance, 229–231 methods, 1 Random Forests, 4 decision trees, 235-236 ANNs (artificial neural nets), 4 multivariable problems and, 231-235 argmin, 110–111 attributes. See also features; random forests and, 247–250 base learners, 9, 211–212 independent variables; inputs; predictors basis expansion, 19 linear methods/nonlinear problems, categorical variables, 26, 77 156–158 statistical characterization, 37 best subset selection, 103 cross plots, 42–43 factor variables, 26, 77 bias versus variance, 229–231

binary classification problems, 78	complex models, compared to simple	
ensemble methods, 284-302	models, 82–86	
penalized linear regression methods	complexity	
and, 181–191	balancing, 102–103	
binary decision trees, 9–10, 212–213	simple problems versus complex	
bagging, 11	problems, 80-82	
categorical features, 225–226	complexity parameter, 110	
classification features, 225–226	confusion matrix, 91	
overfitting, 221–225	contingency tables, 91	
predictions and, 213–214	correlations	
training, 214–217	heat map and, 49-50	
tree training, 218–221	regression problems, 60–62	
boosting, 212	Pearson's, 47–49	
bootstrap aggregating. See bagging	targets and attributes, 44-47	
box and whisker plots, 54–55	cross plots, 42–43	
normalization and, 55	cross-validation	
	out-of-sample error, 168–172	
C	regression, 182–183	
categorical variables, 19, 26		
binary decision trees, 225–226	D	
classification problems, 27	data frames, 37–38	
statistical characterization, 37	data sets	
chapter content and dependencies, 18-20	examples, 24	
chirped signals, 28	instances, 24	
chirped waveform, 151	items to check, 27–28	
class imbalances, 305–307	labels, 25	
classification problems	observations, 24	
algorithms and, 2–3	points, 7–8	
binary, penalized linear regression	problems, 24–28	
and, 181–191	shape, 29–32	
binary decision trees, 225-226	size, 29–32	
categorical variables, 27	statistical summaries, 32–35	
chirped signals, 28	unique ID, 25	
class imbalances, 305–307	user ID, 25	
converting to regression, 152–154	deciles, 34	
multiclass, 68–73, 204–209	decision trees, binary, 9–10	
ensemble methods, 302-314	bagging, 11	
multiple outcomes, 155–156	degree of freedom, 86–87	
penalized linear regression methods,	dependencies, chapters in book, 18–20	
151–155	dependent variables, 26	
coefficient estimation	•	
Lasso penalty and, 129–131	E	
penalized linear regression and, 122	ElasticNet package, 128-129, 131-132,	
coefficient penalized regression, 111	181–191	

ensemble methods, 1, 20, 211–212	G
bagged decision trees, 4	Glmnet, 132, 144–145
base learners, 9–11	initialization, 146–151
binary decision trees, 9–10	iterating, 146–151
bagging, 11	LARS comparison, 145–146
boosted decision trees, 4	gradient boosting, 236–239, 256–262,
multiclass classification problems,	291–298
302–314	classifier performance, 298–302,
penalized linear regression methods	307–311
and, 124	multivariable problems and,
penalized linear regression methods	244–246
comparison, 11–13	parameter settings, 239
Random Forests, 4	performance, 240–243
speed, 11	predictive models and, 240
ensemble models	random forest model base learners,
binary classification problems,	311–314
284–302	GradientBoostingRegressor, 263–267
non-numeric attributes	model performance, 269–270
coded variables, 278, 282–284	regression model implementation,
gradient boosting regression,	267–269
278–282	
random forest regression,	Н
275–278	heat map, correlations, 49–50
ensemble packages, 255–256	regression problems, 60–62
random forest model, 256–270	
errors, out-of-sample, 80	1
-	importance, 138
F	independent variables, 26
factor variables, 26	inputs, 11, 26
predictions, 50–62	K
false negatives, 92	KNNs (k nearest neighbors), 4
false positives, 92	KIVIVS (K Hearest Heighbors), 4
feature engineering, 7, 17–18, 76 feature extraction, 17–18	L
feature selection, 7	labels, 16. See also dependent variables;
features, 25	outcomes; responses; targets
function approximation and, 76	attributes, relationship visualization,
forward stepwise regression, 102	42–49
LARS and, 132–144	categorical, classification problems,
overfitting and, 103–108	27
function approximation, 1, 76,	data sets, 25
124–125	function approximation and, 76
performance, 78–79	numeric, regression problems, 27
training data, 76–78	LARS (least-angle regression), 132
transmit data, 10 10	. 0 0 //

forward stepwise regression and,	bagging and, 231–235	
132–144	gradient boosting and, 244–246	
Glmnet comparison, 145–146	model building, 168–172	
model selection, 139–142	testing model, 168–172	
cross-validation in Python Code, 142–143	N	
errors on cross-validation fold, 143	n-fold cross-validation, 100	
practical considerations, 143–144	nonlinear algorithms, versus linear,	
Lasso penalty, 129–131	87–88	
lasso training, data sets, 173–176	nonlinear problems, linear methods	
linear algorithms <i>versus</i> nonlinear,	and, 156–158	
87–88	non-numeric attributes, linear	
linear methods	methods and, 158–163	
nonlinear problems and, 156–158	normalization, box plots and, 55	
non-numeric attributes, 158–163	notation, predictors, 77	
linear models, penalized linear	numeric values, assigning to binary	
regression and, 124	labels, 152–154	
linear regression, 1	numeric variables, 26, 77	
model training, 126–132	regression problems, 27	
numeric input and, classification		
problems, 151–155	0	
penalized linear regression methods,	OLS (ordinary least squares), 7, 101,	
1, 124–132	121	
logistic regression, 1, 4, 155	coefficient penalties, 127–128	
	L1 norm, 129	
M	Manhatten length, 129	
MACD (moving average convergence	outcomes, 26	
divergence), 17	function approximation and, 76	
machine learning, problem	outliers, quantile-quantile plot, 35–37	
formulation, 15–17	out-of-sample errors, 80	
MAE (mean absolute error), 78–79, 88	cross-validation and, 168–172	
mean, Pandas, 39	overfitting	
misclassification errors, 96	binary decision trees, 221–225	
mixture model, 81	forward stepwise regression and,	
models	103–108	
inputs, 11	ridge regression and, 110–119	
LARS and, 136–138 MSE (maan aguared error) 78, 70, 88	P	
MSE (mean squared error), 78–79, 88 multiclass classification problems,		
68–73, 78, 204–209	packages ElasticNet, 181–191	
algorithm comparison, 314–315 class imbalances, 305–307	penalized linear regression methods 166–167	
ensemble methods, 302–314	Pandas, 37–39	
multivariable regression, 167–168	Tarado, Or Or	

parallel coordinates plots, 40–42,	predictive models
64–66	building, 13–18
regression problems, 56-60	feature engineering, 7, 17–18
Pearson's correlation, 47–49	feature extraction, 17–18
penalized linear regression methods,	feature selection, 7
1, 20, 121	function approximation, 76
binary classification, 181–191	performance, 78–79
classification problems, 151–155	training data, 76–78
coefficient estimation, 122	gradient boosting and, 240
coefficient penalized regression, 111	labels, 16
ensemble methods and, 124	mathematical description, 19
ensemble methods comparison,	performance factors, 86–87
11–13	performance measures, 88–99
evaluation speed, 123	targets, 14
function approximation and, 124	trained, 25
Glmnet, 144–145	performance evaluation, 18
initialization, 146–151	predictors, 25
iterating, 146–151	function approximation and, 76
LARS comparison, 145-146	notation, 77
linear models and, 124	problem formulation, 15–17
linear regression regulation, 124–132	
multiclass classification, 204–209	Q
OLS (ordinary least squares) and, 7	quantiles, Pandas, 39
packages, 166–167	quantil-quantile plot, 35–37
reliable performance, 123	quartiles, 34
sparse solution, 123	quintiles, 34
speed, 11	
variable importance information,	R
122–123	random forest model, 256–270
percentiles, 34	base learners, gradient boosting and,
plots	311–314
box and whisker, 54–55	classification, 302–305
cross plots, 42–43	classifier performance, 291
parallel coordinates, 40-42	random forests, 212
quantile-quantile, 35–37	bagging and, 247–250
scatter plots, 42	performance and, 251–252
points, data sets, 7–8	RandomForestRegressor object, 256-262
pred() function, 79	real-valued attributes, 77
predictions	regression
attributes and, 3	penalized linear regression, 121
binary decision trees, 212–213	ridge regression, 121
factor variables and, 50-62	step-wise, 121
real-valued, 62–68	regression problems
wine taste, 168–172	correlation heat map, 60–62

numeric variables, 27	binary classification problem, 78
parallel coordinates, 56–60	function approximation and, 76
regressors, function approximation	multiclass classification problem, 78
and, 76	trained models, 25
relationships	linear, 126–132
attributes/labels, visualization,	performance evaluation, 18
42–49	training
variable, 56–60	binary decision trees, 214–217
reliable performance, 123	tree training, 218–221
residuals, 137	training data, 76–78
attributes times residuals, 197	deployment and, 172–181
responses, 26	tree training, 218–221
ridge regression, 102, 121	_
overfitting and, 110–119	U
RMSE (root MSE), 88	user ID, 25
ROC (receiver operating curves), 88,	
183	V
RSI (relative strength index), 17	validation, cross-validation, out-of- sample errors, 168–172
S	variable importance information,
scatter plots, 42	122–123
scikit-learn packages, 166	variables
simple models, compared to complex	categorical, 19, 26
models, 82–86	classification problems, 27
sklearn.linear_model, 166	statistical characterization, 37
sparse solution, 123	creating from old, 178–181
squares of attributes, 197	factor, 26
statistics, data sets, 32–35	numeric, 26
stepwise regression, 121	regression problems, 27
stratified sampling, 37, 306	relationships, 56–60
summaries	variance
data sets, 32–35	versus bias, 229–231
Pandas, 38–39	Pandas, 39
supervised learning, 1	visualization
SVMs (support vector machines), 4	attributes/labels relationship, 42–49
Т	parallel coordinates plots, 40–42
targets, 14, 26	variable relationships, 56–60
attributes, correlation, 44–47	•