Intégrale : exercices

Exercice 1 Soit la fonction définie sur l'intervalle [-1; 1] par $f(x) = (1 - x^2)e^{-x}$.

- **1.** Pour tout réel x de l'intervalle [-1; 1], on pose $F(x) = (1+2x+x^2)e^{-x}$. Montrer que la fonction F est une primitive de la fonction f sur l'intervalle [-1; 1].
- **2.** Calculer l'aire exacte, en unité d'aire, de la surface comprise entre l'axe des abscisses, la courbe (C), les droites d'équations x = -1 et x = 1.

Exercice 2 On considère la fonction g définie sur \mathbb{R} par $g(x) = x - \frac{x^2}{2}$.

On note (C) la courbe représentative de la fonction g dans un repère orthonormal d'unité graphique le centimètre.

On considère la fonction f définie sur l'intervalle]-1; $+\infty[$ par $f(x) = \ln(x+1)$.

On note (C') la courbe représentative de la fonction f dans le même repère que la précédente.

On se propose de déterminer l'aire de la partie D du plan, limitée par les courbes (C) et (C') et les droites d'équations x = 1 et x = 2.

- 1. On considère la fonction F définie sur]-1; $+\infty$] $par F(x) = (x+1) \ln(x+1) x$. Vérifier que F est une primitive de la fonction f.
- **2.** On admet que pour tout x de l'intervalle [1; 2], $f(x) \le g(x)$. Donner la valeur exacte de l'aire de la partie D en cm^2 puis une valeur approchée au mm^2 près.

Exercice 3 Soit la fonction définie sur l'intervalle]0; $+\infty[$ par $f(x) = \frac{\ln(x)}{x}$.

- **1.** Pour tout réel x de l'intervalle [1; 2], on pose $F(x) = (\ln(x))^2$. Montrer que la fonction F est une primitive de la fonction f sur l'intervalle [1; 2].
- **2.** Calculer l'aire exacte, en unité d'aire, de la surface comprise entre l'axe des abscisses, la courbe (C), les droites d'équations x = 1 et x = 2.

Exercice 4 *Soit la fonction définie sur l'intervalle* \mathbb{R} *par* $f(x) = x \cos(x)$.

- 1. Pour tout réel x de l'intervalle $[0; \pi]$, on pose $F(x) = x \sin(x) + \cos(x)$. Montrer que la fonction F est une primitive de la fonction f sur l'intervalle $[0; \pi]$.
- **2.** Calculer $\int_0^{\pi} x \cos(x) dx$. Faire le calcul sans calculatrice puis vérifier la valeur obtenue à la calculatrice. Est ce que cette intégrale correspond à une aire ou la différence d'une aire?