CORRECTION TD DE pH-METRIE

Exercice 1

1) On a un mélange d'acides faibles. Pour avoir le pH, il suffit de déterminer $[H_3O^{\dagger}]$: Les deux équations de ces acides dans l'eau sont :

$$CH_3COOH + H_2O = CH_3COO^{-} + H_3O^{+}$$

 $HNO_2 + H_2O = NO_2^{-} + H_3O^{+}$

Attention : Pensez à bien recalculer les concentrations des différentes espèces présentes, nous avons un mélange de deux solutions ($V_{tot} = V_{CH3COOH} + V_{HNO2}$):

$$C_1=(C_{CH3COOH},V_{CH3COOH})/V_{tot}$$

 $C_2=(C_{HNO2},V_{HNO2})/V_{tot}$

D'après l'équation de conservation des charges, on a $[H_3O^+] = [CH_3CO_2^-] + [NO_2^-]$ (1)

Considérant ces 2 acides comme faibles, on peut écrire $C_1 - x_1 \approx C_1$ et $C_2 - x_2 \approx C_2$. Ainsi :

$$K_{a1} = \frac{\left[H_{3}O^{+}\right]\left[CH_{3}CO_{2}^{-}\right]}{\left[CH_{3}CO_{2}H\right]} \approx \frac{\left[H_{3}O^{+}\right]\left[CH_{3}CO_{2}^{-}\right]}{C_{1}} \text{ et donc } \left[CH_{3}CO_{2}^{-}\right] = \frac{K_{a1}.C_{1}}{\left[H_{3}O^{+}\right]}$$

De même : $[NO_2^-] = \frac{K_{a2}.C_2}{|H_2O^+|}$ et ainsi on résout l'équation (1) qui devient : $[H_3O^+] = \frac{K_{a1}.C_1}{|H_2O^+|} + \frac{K_{a2}.C_2}{|H_2O^+|}$

On trouve, après application numérique, $[H_3O^+]=4{,}01.10^{-3}$ mol.L⁻¹ et donc **pH = 2,40**.

2) On a un mélange de bases faibles. Pour avoir le pH, il suffit de déterminer [HO]: Les deux équations de ces bases dans l'eau sont :

$$NH_3 + H_2O = NH_4^+ + HO^-$$

 $CH_3NH_2 + H_2O = CH_3NH_3^+ + HO^-$

D'après l'équation de conservation des charges, on a $[HO^-] = [CH_3NH_3^+] + [NH_4^+]$ (1)

Considérant ces 2 bases comme faibles, on peut écrire
$$C_1 - x_1 \approx C_1$$
 et $C_2 - x_2 \approx C_2$. Ainsi :
$$K_{b1} = \frac{\left[HO^{-}\right]\left[NH_{4}^{+}\right]}{\left[NH_{3}\right]} \approx \frac{\left[HO^{-}\right]\left[NH_{4}^{+}\right]}{C_1} \text{ et donc } \left[NH_{4}^{+}\right] = \frac{K_{b1}.C_1}{\left[HO^{-}\right]}$$

De même : $[CH_3NH_3^+] = \frac{K_{b2}.C_2}{|HO^-|}$ et ainsi on résout l'équation (1) qui devient : $[HO^-] = \frac{K_{b1}.C_1}{|HO^-|} + \frac{K_{b2}.C_2}{|HO^-|}$

On trouve, après application numérique, $[HO^-] = 4.14.10^{-3}$ mol.L⁻¹ et donc **pH = 11,6**.

3) On faible: l'acide mélange fort-acide fort impose le pH. Donc $pH = -\log[H_3O^+] = -\log\left(\frac{30 \times 0.1}{70}\right) = 1.37$

En toute rigueur, il aurait fallu considérer les 2 équilibres : celui de l'acide fort et celui de l'acide faible. En faisant les bilans de matière, on aurait remarqué que l'acide faible libère très peu d'ions H₃O⁺ comparé à l'acide fort. L'acide faible contribue donc très peu au pH.

4) On a un mélange d'un acide faible avec une base forte : il y a réaction :

	CH ₃ CO ₂ H +	HO =	CH ₃ CO ₂ +	H ₂ O
EI	9.10^{-2}	4.10 ⁻²	0	Excès
Equilibre	5.10 ⁻²	3	4.10 ⁻²	Excès

Ici H_3O^+ n'apparait pas. L'autoprotolyse de l'eau indique qu'il y en a. Mais on ne connait pas leur concentration.

Utilisons plutôt la formule de Henderson :
$$pH = pK_a + \log \frac{[CH_3COO^-]}{[CH_3COOH]} = 4,74 + \log \frac{4.10^{-2}}{5.10^{-2}} = 4,64$$
 .

5) On a un mélange d'un acide fort avec une base faible : il a réaction :

	NH ₃ +	H ₃ O ⁺ =	NH ₄ ⁺ +	H ₂ O
EI	3,75.10 ⁻²	4,4.10 ⁻²	0	Excès
Equilibre	3	6,5.10 ⁻³	3,75.10 ⁻²	Excès

Ici on peut utiliser pH = $-\log [H_3O^+] = -\log (6.5.10^{-3}) = 2.19$.

On aurait pu utiliser la formule de Henderson, mais cela nous aurait obligé à calculer ε : trop long.

- 6) On a un mélange de base forte et de base faible. Comme au 3) on néglige la base faible face à la base forte, qui impose le pH : $pH = 14 + \log[HO^-] = 14 + \log\left(\frac{25 \times 0.1}{35}\right) = 12,85$
- 7) On mélange une polybase avec un acide fort. Il se produit deux réactions successives :

1 ^{ère} réaction	CO ₃ ²⁻ +	H ₃ O ⁺ =	HCO ₃ +	H ₂ O
EI	0,15	0,24	0	Excès
Equilibre	3	0,09	0,15	Excès

2 ^{ème} réaction	HCO ₃ +	H ₃ O ⁺ =	H ₂ CO ₃ +	H ₂ O
EI	0,15	0,09	0	Excès
Equilibre	0,06	ε'	0,09	Excès

Formule de Henderson :
$$pH = pK_a + \log \frac{[HCO_3^-]}{[H_2CO_3]} = 6.4 + \log \frac{0.06}{0.09} = 6.22$$
 .

8) On mélange un polyacide avec une base forte. Il se produit deux réactions successives :

1 ^{ère} réaction	H ₃ PO ₄ +	HO =	H ₂ PO ₄ +	H₂O
EI	7,6.10 ⁻²	0,12	0	Excès
Equilibre	3	4,5.10 ⁻²	7,6.10 ⁻²	Excès

2 ^{ème} réaction	H ₂ PO ₄ +	HO =	HPO ₄ ²⁻ +	H ₂ O
EI	7,6.10 ⁻²	4,5.10 ⁻²	0	Excès
Equilibre	3,1.10 ⁻²	ε'	4,5.10 ⁻²	Excès

Formule de Henderson :
$$pH = pK_a + \log \frac{[HPO_4^{2-}]}{[H_2PO_4^{-}]} = 7.2 + \log \frac{4.5 \cdot 10^{-2}}{3.1 \cdot 10^{-2}} = 7.36$$
.

9) On mélange un acide faible avec une base forte : il y a réaction :

	NH ₄ ⁺ +	HO =	NH ₃ +	H ₂ O
EI	0,8	0,5	0	Excès
Equilibre	0,3	ε	0,5	Excès

Formule de Henderson :
$$pH = pK_a + \log \frac{[NH_3]}{[NH_4^+]} = 9,2 + \log \frac{0,5}{0,3} = 9,42$$
 .

1)

- a. Le pH-mètre mesure une ddp entre deux électrodes : une en verre dont le potentiel dépend de [H₃O⁺], et une électrode de référence de potentiel constant (calomel saturé généralement).
- b. Deux réactions de dosage : $1/H_2SO_3 + HO^- = HSO_3^- + H_2O$ $2/HSO_3^- + HO^- = SO_3^{-2}^- + H_2O$

On dose successivement les deux acidités de l'acide sulfureux, de pKa = 2,0 et 7,2 :

- H_2SO_3 du couple H_2SO_3/HSO_3^- est un acide dit faible (pK_{a1} > 0), mais sont pK_a relativement faible (pK_a < 3) nous montre qu'il se dissocie d'une façon non négligeable dans l'eau.
- HSO₃ du couple HSO₃ /SO₃² est lui aussi un acide faible, mais son pK_a supérieur à pK_{a1} nous indique qu'il est bien plus faible que H₂SO₃.

La réaction de ces deux acides avec HO^- est totale (les deux $\Delta pK_a \ge 3$).

A la 1ère équivalence : n(HO ajoutés) = n(H₂SO₃ initial) donc :
$$V_{\ell q1} = \frac{\text{C}_{\text{a}}.\text{V}_{\text{a}}}{\text{C}_{\text{b}}} = 5.0cm^3$$
 ou mL.

Comme on dose un diacide, la $2^{\text{ème}}$ équivalence est telle que $V_{\text{éq2}} = 2.V_{\text{éq1}} = 10,0 \text{ cm}^3$.

• $V_b = 0.0 \text{ cm}^3$: solution aqueuse à l'équilibre d' H_2SO_3 (couple H_2SO_3/HSO_3 de pKa = 2):

	H ₂ SO ₃ +	H ₂ O =	HSO ₃ +	H ₃ O ⁺
EI	Ca	Excès	0	0
Equilibre	C _a – x	Excès	Х	Х

$$K_a = \frac{x^2}{C_a - x}$$
 d'où, après résolution, x = 1,79.10⁻² mol.L⁻¹. Donc **pH = -log [H₃O⁺] = -log x = 1,75**.

• $V_b = 2.5 \text{ cm}^3$: l'acide réagit avec les ions hydroxyde :

$$C_a.V_a = 5.10^{-4} \text{ mol}$$

 $C_b.V_b = 2,5.10^{-4} \text{ mol}$

Dosage	H ₂ SO ₃ +	HO =	HSO ₃ +	H ₂ O
EI	5.10 ⁻⁴ mol	2,5.10 ⁻⁴ mol	0	Excès
Equilibre	2,5.10 ⁻⁴ mol	3	2,5.10 ⁻⁴ mol	Excès

<u>Attention</u>: nous avons un changement de volume, il faut donc recalculer les concentrations des espèces présentes en fonction de ce changement :

On a ainsi obtenu une solution constitué de
$$H_2SO_3$$
: $[H_2SO_3] = \frac{2,5.10^{-4}}{(10+2,5).10^{-3}} = 2,0.10^{-2} \text{ mol.L}^{-1}$

et de
$$HSO_3^-$$
: $[HSO_3^-] = \frac{2,5.10^{-4}}{(10+2,5).10^{-3}} = 2,0.10^{-2} \text{ mol.L}^{-1}$

Ces deux espèces se mettent en équilibre dans l'eau :

Mise à l'équilibre	H ₂ SO ₃ +	H ₂ O =	HSO ₃ +	H_3O^+
EI	0,02	Excès	0,02	0
Equilibre	0,02 - x	Excès	0,02 + x	Х

$$K_a = \frac{x.(0.02 + x)}{0.02 - x}$$
 d'où x = 5,62.10⁻³ mol.L⁻¹ et donc **pH = -log [H₃O⁺] = -log x = 2,25**.

<u>Remarque</u>: on est à la ½ équivalence de la $1^{\text{ère}}$ réaction de dosage. On n'a pas pour autant pH = pK_{a1}, car l'acide n'est pas assez faible.

 $V = 5.0 \text{ cm}^3$: c'est la 1^{ère} équivalence. L'espèce majoritaire est donc HSO_3^- : ampholyte qui intervient dans 3 équilibres :

$$\circ$$
 2 HSO₃⁻ = SO₃²⁻ + H₂SO₃ $K_1 = K_{a2} / K_{a1} = 10$

O
$$HSO_3^- + H_2O = SO_3^{2-} + H_3O^+$$
 $K_2 = K_{a2} = 10^{-7.2}$

$$\begin{array}{lll} \circ & 2 \; HSO_3^- = SO_3^{2^-} + H_2SO_3 & & K_1 = K_{a2} \, / \, K_{a1} = 10^{-5,2} \\ \circ & HSO_3^- + H_2O = SO_3^{2^-} + H_3O^+ & K_2 = K_{a2} = 10^{-7,2} \\ \circ & HSO_3^- + H_2O = H_2SO_3 + HO^- & K_3 = K_{b1} = K_e \, / \, K_{a1} = 10^{-12} \end{array}$$

On devrait en principe ne retenir que le 1^{er} équilibre (situation développée dans le cours), car il a la constante la plus élevée. Mais K₂ est assez proche (ΔK>10⁻³). Il faut donc considérer les 2 premiers équilibres simultanément.

1 ^{er} équilibre	2 HSO ₃ =	SO ₃ ²⁻ +	H ₂ SO ₃
EI	3,33.10 ⁻²	0	0
Equilibre	$3,33.10^{-2} - 2.x_1$	X ₁	X ₁

2 ^{ème} équilibre	HSO ₃ +	H ₂ O =	SO ₃ ²⁻ +	H₃O ⁺
EI	3,33.10 ⁻²	Excès	0	0
Equilibre	$3,33.10^{-2}-x_2$	Excès	X ₂	X ₂

<u>Attention</u>: Nous avons deux équilibres, mais nous sommes dans la même solution:

Le 1^{er} équilibre apporte x_1 de SO_3^{2-} ; le 2^{em} équilibre apporte x_2 de SO_3^{2-} . Ainsi, $[SO_3^{2-}]_T = x_1 + x_2$. Le 1^{er} équilibre fait disparaitre $2.x_1$ de HSO_3^- ; le 2^{eme} équilibre fait disparaitre x_2 de HSO_3^- .

Ainsi, $[HSO_3]_T = 3,33.10^{-2} - 2.x_1 - x_2$.

Le 1^{er} équilibre est caractérisé par la constante
$$K_1 = \frac{[H_2SO_3]_T.[SO_3^{2^-}]_T}{[HSO_3^-]_T^2} = \frac{x_1.(x_1+x_2)}{\left(3,33.10^{-2}-2.x_1-x_2\right)^2}$$
Le 2^{ème} équilibre est caractérisé par la constante $K_2 = \frac{[H_3O^+]_T.[SO_3^{2^-}]_T}{[HSO_3^-]_T} = \frac{x_2.(x_1+x_2)}{3.33.10^{-2}-2.x_1-x_2}$

C'est un système à résoudre. On trouve $x_1 = 7,34.10^{-5}$ mol.L⁻¹ et $x_2 = 2,20.10^{-5}$ mol.L⁻¹. D'où, d'après la formule de Henderson appliquée à n'importe leguel des deux couples : pH = 4,65.

Remarque: pour simplifier le calcul, on peut considérer que $3.33.10^{-2} - 2.x_1 - x_2 \approx 3.33.10^{-2}$ mol.L⁻¹, car les 2 constantes K₁ et K₂ sont très faibles, les équilibres sont très peu déplacés vers la droite.

• V = 7,5 cm³: on est à la ½ équivalence de la 2^{ème} réaction de dosage. Les calculs montrent dans ce cas que **pH** = $pK_{a2} = 7.2$ car $[HSO_3] = [SO_3^2]$ (HSO₃ du couple HSO_3/SO_3^2 est un acide très faible avec $pK_{a2} = 7.2$, donc faiblement dissocié dans l'eau à l'équilibre).

On aurait pu raisonner comme pour V = 2,5 cm³ et refaire tout un bilan de matière, on aurait trouvé également pH = 7,2.

V = 10,0 cm³: on est à la $2^{\text{ème}}$ équivalence: HSO_3^- a entièrement été transformé en SO_3^{2-} qui est donc majoritaire : solution aqueuse de base faible de concentration $c = (5.10^{-4})/(20.10^{-3}) = 2,5.10^{-2} \text{ mol.L}^{-1}$.

	SO ₃ ²⁻ +	$H_2O =$	HSO ₃ +	HO ⁻
EI	2,5.10 ⁻²	Excès	0	0
Equilibre	$2.5.10^{-2} - x$	Excès	Х	х

$$K_{b2} = \frac{K_e}{K_{c2}} = \frac{x^2}{2.5 \cdot 10^{-2} - x}$$
 d'où [HO¯] = x et donc **pH** = **14** + log x. On trouve après calculs **pH** = **9.8**.

 $V = 15.0 \text{ cm}^3$: on a un mélange de base forte en excès (HO⁻) et de base faible (SO₃²⁻). La base forte impose le pH. $[HO^{-}] = x = \frac{0.10.(15-10)}{15+10} = 0.02 \text{ mol.L}^{-1}$. D'où **pH = 14 + log x = 12.3**.

c. Voici la courbe tracée :

Remarque: On distingue bien les deux sauts de pH car pKa₁ et pKa₂ sont bien distinct.

2) La 1^{ère} acidité de l'acide sulfurique est forte. Sa 2^{ème} acidité et la 1^{ère} acidité de l'acide sulfureux sont moyennes. Les constantes de réactions sont trop proches pour que les espèces soient dosées séparément. Seule la 2^{ème} acidité de l'acide sulfureux est séparable des autres dans le dosage. La courbe de dosage ne présente que deux sauts de pH.

On attribue le 1^{er} au dosage de H₂SO₄, de HSO₄⁻ et de H₂SO₃.

H ₂ SO ₄ +	HO =	HSO ₄ +	H ₂ 0
HSO ₄ +	HO =	SO ₄ ²⁻ +	H_2O
H ₂ SO ₃ +	HO =	HSO ₃ +	H_2O

Le second saut de pH correspond au dosage de HSO₃.

HSO ₃ + HO	SO ₃ ²⁻ +	H ₂ 0
-----------------------	---------------------------------	------------------

A la $1^{\text{ère}}$ équivalence : $n(\text{HO}^{\text{-}}\text{ ajouté}) = 2.n(\text{H}_2\text{SO}_4\text{ initial}) + n(\text{H}_2\text{SO}_3\text{ initial})$ A la $2^{\text{ème}}$ équivalence : $n(\text{HO}^{\text{-}}\text{ ajouté après la }1^{\text{ère}}$ équivalence) = $n(\text{HSO}_3^{\text{-}}\text{ formé}) = n(\text{H}_2\text{SO}_3\text{ initial})$.

$$\begin{array}{c} \text{D'où le système}: C_{b}.V_{\text{\'eq1}} = 2.C_{\text{H2SO4}}.V_{0} + C_{\text{H2SO3}}.V_{0} \\ C_{b}.(V_{\text{\'eq2}} - V_{\text{\'eq1}}) = C_{\text{H2SO3}}.V_{0} \end{array} \right\}$$

On trouve $C_{H2SO4} = 1,5.10^{-2} \text{ mol.L}^{-1} \text{ et } C_{H2SO3} = 3,5.10^{-2} \text{ mol.L}^{-1}$.

Exercice 3

1) La concentration initiale en acide est : $C_0 = m_1/(M.V) = 0.250/(180 \times 0.200) = 6.94.10^{-3} \text{ mol.L}^{-1}$

	C ₉ H ₈ O ₄ +	H ₂ O =	C ₉ H ₇ O ₄ +	H₃O ⁺
EI	6,94.10 ⁻³	Excès	0	0
Equilibre	6,94.10 ⁻³ – x	Excès	Х	Х

$$K_a = \frac{x^2}{6,94.10^{-3} - x}$$
 d'où x = 1,32.10⁻³ mol.L⁻¹. Ainsi **pH = -log x = 2,89**. Le taux de dissociation est donc : $\begin{bmatrix} C_9 H_7 O_4^- \end{bmatrix}$ x

$$\alpha = \frac{\left[C_9 H_7 O_4^{-}\right]}{C_0} = \frac{x}{C_0} = 0.19$$
 soit **19 %.**

Inconvénient : solution relativement acide : attaque possible de la muqueuse de l'estomac.

- 2) Lors de la dissolution, l'acide le plus fort (C₉H₈O₄) réagit avec la base la plus forte (HCO₃) (tracer un axe de pK_a pour s'en convaincre). Concentration initiale en HCO_3^- : $[HCO_3^-] = m_2/(M_2.V) = 1,79.10^{-2} \text{ mol.L}^{-1}$.
 - a. $K = K_a/K_{a1} = 10^{2.9}$: considérée comme totale. Donc $C_9H_8O_4$ est limitant :

	C ₉ H ₈ O ₄ +	HCO ₃ =	C ₉ H ₇ O ₄ +	CO ₂ , H ₂ O
EI	6,94.10 ⁻³	1,79.10 ⁻²	0	0
Equilibre	0		6,94.10 ⁻³	6,94.10 ⁻³

b. CO₂ est peu soluble dans l'eau : il se dégage : effervescence.

c.
$$pH = pK_{a1} + \log \frac{[HCO_3^-]}{[CO_2]_d}$$
 [HCO₃⁻] = 1,79.10⁻² - 6,94.10⁻³ = 10,93.10⁻³ mol.L⁻¹ [CO₂]_d = ?

Or,
$$(n_{CO2})_T = n_{1(aspirine)} = 6,94.10^{-3} \text{ mol}$$

= $n_{CO2,d} + n_{CO2,g}$

Avec $n_{CO2,g} = V_2/V_m = 0.02/24 = 8.33.10^{-4} \text{ mol.}$

Ainsi, $n_{CO2,d} = 5,57.10^{-4}$ mol et donc $[CO_2]_d = 6,11.10^{-3}$ mol.L⁻¹.

Et donc $pH = 6.4 + \log \frac{10.93 \cdot 10^{-3}}{6.11 \cdot 10^{-3}} \approx 6.$ Solution moins acide : non agressive pour l'estomac.

Exercice 4

- 1)
- a. L'acide fort est dosé le 1^{er} : $(H_3O^+, Cl^-) + (Na^+, HO^-) \rightarrow 2 H_2O + (Na^+, Cl^-)$. La justification quantitative se fait par le calcul de la constante d'équilibre de chacune des réactions possibles $(HO^- \text{ avec } H_3O^+ : K_1^0 = 10^{14} \text{ et } HO^- \text{ avec } CH_3COOH : K_2^0 = 10^{14-4,8} = 10^{9,2})$.
- b. Les ions H_3O^+ très conducteurs sont remplacés par les ions Na^+ moins conducteurs donc σ diminue quand V_b augmente.
- c. $\sigma = \lambda_{Na^+} \cdot [Na^+] + \lambda_{H \cdot O^+} \cdot [H_3O^+] + \lambda_{Cl^-} \cdot [Cl^-]$

Or,
$$[Na^+] = \frac{C_b \cdot V_b}{100 + V_b}$$
 et $[H_3O^+] = \frac{2,4 \cdot 10^{-3} - C_b \cdot V_b}{100 + V_b}$ et $[Cl^-] = \frac{2,5 \cdot 10^{-4}}{100 + V_b}$

Ainsi la pente de la droite σ = f(V_b) vaut : $p_1 = \frac{C_b}{100 + V_b} \cdot \left(\lambda_{Na^+} - \lambda_{H_3O^+} \right)$

Ici V_b < 5 mL donc $100+V_b\approx 100$ donc p_1 est considéré comme constante : c'est bien une droite. De plus, comme $\lambda_{Na^+}<\lambda_{H_3O^+}$ alors $p_1<0$: la droite est décroissante, σ diminue : en accord avec b).

- 2)
- a. $CH_3COOH + (Na^+, HO^-) \rightarrow (CH_3COO^-, Na^+) + H_2O$
- b. Les ions Na⁺ et CH₃COO⁻ apparaissent dans la solution, donc σ augmente avec V_b.
- 3)
- a. Le titrant (Na⁺, HO⁻) s'accumule dans le milieu.
- b. Na $^+$ et HO $^-$ apparaissent dans la solution, puisqu'ils sont ajoutés sans réagir. Comme $\lambda_{HO}^- >> \lambda_{CH_2COO}^-$ alors σ augmente avec V_b avec une pente $\mathbf{p_3} > \mathbf{p_2} > \mathbf{0}$.
- 4)
- a. $(V_b)_1$ correspond au volume de soude nécessaire pour neutraliser l'acide fort. $((V_b)_2 (V_b)_1)$ correspond au volume de soude nécessaire pour neutraliser l'acide éthanoïque. Donc $(n_{CH3COOH})_M = C_b \cdot ((V_b)_2 (V_b)_1) = 5,4.10^{-4}$ mol et donc $[CH_3COOH]_M = 5,4.10^{-2}$ mol.L⁻¹.
- b. Pour fabriquer M, on a dilué 50 mL de vinaigre dans un litre de solution : on a dilué 20 fois. Donc $[CH_3COOH]_{vinaigre} = 20 \times 5,4.10^{-2} = 1,08 \text{ mol.L}^{-1}$.

6) Pour que la relation $\sigma = \sum_{i} \lambda_{i} . [X_{i}]$ s'applique.

Mais aussi pour que le volume de titrant versé soit négligeable devant le volume de la solution titrée et donc que la courbe $\sigma = f(V_b)$ comporte des segments de droite.

Exercice 5

1)		4 NH ₄ +	6 HCHO =	3 H ₃ O ⁺ +	(CH2)6N4H+ +	3 H ₂ O
	EI	2.10 ⁻³	Excès	0	0	Solvant
	EF	8	Excès	1,5.10 ⁻³	0,5.10 ⁻³	Solvant

Plutôt que de doser directement NH_4^+ en solution (à l'aide d'une base forte comme la soude), il est plus simple de doser des ions H_3O^+ . En effet, l'étude pH-métrique est plus simple ainsi. Donc pourquoi ne pas « transformer » les ions NH_4^+ en ions H_3O^+ ? C'est ce qu'il se passe dans la réaction ci-dessus. On « transforme » NH_4^+ en H_3O^+ que l'on dose à l'aide de la soude, c'est-à-dire plus précisément à l'aide des ions HO^- . A l'aide du tableau d'avancement : $n(H_3O^+$ dosé) = $(3/4).n(NH_4^+$ initial) = (3/4) x 2.10^{-3} = $1,5.10^{-3}$ mol.

On dose
$$H_3O^+$$
: à l'équivalence : $n(HO^- \text{ vers\'e}) = n(H_3O^+ \text{ initial})$. Donc $V_b = \frac{1,5.10^{-3}}{C_b} = 1,5mL$.

On dose ensuite $(CH_2)_6N_4H^+$: $n(HO^-)$ versé après la $1^{\text{ère}}$ équivalence) = $n((CH_2)_6N_4H^+)$ initial). Donc $V_b = \frac{0.5 \cdot 10^{-3}}{C_b} = 0.5 mL$. Deux volumes équivalents donc deux sauts de pH. Le $2^{\text{ème}}$ saut de pH marque la fin du dosage (dosage complet de NH_4^+ initial).

2) Des bilans de matières (tableaux d'avancement) nous permettent, comme dans l'exercice 2, de calculer les pH pour différentes valeurs de V_b versé. On trouve :

V_b	0	1,5	1,75	2	2,5
Espèce majoritaire	H₃O ⁺	(CH ₂) ₆ N ₄ H ⁺	½ équivalence pH = pK _a	(CH ₂) ₆ N ₄	HO
pН	2,12	3,85	5,1	8,25	11,4

3) Le rouge de crésol car sa zone de virage encadre le point d'équivalence (à V_{éq2}).