Chapitre 4 : Applications linéaires et matrices associées

I Introduction

A Définitions

Dans toute cette section, on notera E et F deux \mathbb{K} -espaces vectoriels, avec $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

Définition : Soit $f: E \to F$ une application. On dit que f est une **application linéaire** si pour tous $x,y \in E$ et tout $\lambda, \mu \in \mathbb{K}$, on a :

$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$$

On note $\mathcal{L}(E, F)$ l'ensemble des applications linéaires de E vers F.

1 Remarque: On a le résultat suivant : $f \in \mathcal{L}(E,F) \implies f(0) = 0$

Vocabulaire :

- $f \in \mathcal{L}(E,F)$ est un isomorphisme $\Leftrightarrow f$ est bijective. On note Isom(E,F) l'ensemble des isomorphismes de E vers F.
- $f \in \mathcal{L}(E, F)$ est une forme linéaire $\Leftrightarrow F = \mathbb{K}$
- $f \in \mathcal{L}(E, F)$ est un endomorphisme $\Leftrightarrow E = F$
- Si f est un endomorphisme et un isomorphisme, on dit que f est un **automorphisme** de E, et on note $f \in Aut(E)$.

On notera que si $f \in Isom(E, F)$, alors dim(E) = dim(F).

Proposition: (admis)

 $\mathcal{L}(E,F)$ est un sous-espace vectoriel de F^E (i.e. l'ensemble des applications de E vers F).

B Noyau et image d'une application linéaire

Définition : Soit $f \in \mathcal{L}(E, F)$. On appelle **noyau** de f l'ensemble des éléments de E qui sont envoyés sur 0_F par f :

$$\ker(f) := f^{-1}(0)$$

Application : Calculer le noyau de l'application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par f(x,y) = (x+2y,3x-y,4y).

Définition: On appelle **image** de f l'ensemble des éléments de F qui sont atteints par f:

$$Im(f) := f(E)$$

Application: Calculer l'image de l'application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par f(x,y) = (x+2y,3x-y,4y).

1 Remarque : On a le résultat suivant : ker(f) et Im(f) sont respectivement des sous-espaces vectoriels de E et F.

Proposition: (admis)

- $f \in \mathcal{L}(E, F)$ est injective $\Leftrightarrow \ker(f) = \{0_E\}.$
- $f \in \mathcal{L}(E, F)$ est surjective $\Leftrightarrow \text{Im}(f) = F$.

 \bigcirc Vocabulaire : $f \in \mathcal{L}(E,F)$ est dite bijective si elle est injective et surjective (voir définition isomorphisme 1.A)

Proposition : Aplication linéaire et bases (admis)

Si $E = Vect(u_1, \dots, u_n)$ alors $F = Vect(f(u_1), \dots, f(u_n))$.

 \bigcirc Vocabulaire: On appelle le rang de f et on note rg(f) la dimension de l'image de f:

Théorème du rang : (admis)

Soit $f \in \mathcal{L}(E,F)$. On a la relation suivante :

 $\dim(\ker(f)) + \operatorname{rg}(f) = \dim(E)$

Application: Déduire des applications précédentes la dimension de \mathbb{R}^2 est bien 2.

Corollaire : Injectivité et surjectivité (admis)

Si $f \in \mathcal{L}(E,F)$ telle que dim(E) = dim(F), alors on a : f injective $\Leftrightarrow f$ surjective $\Leftrightarrow f$ bijective.

C Rapports géométriques

Définition : Soient $\lambda \in \mathbb{K}$, $E = F \oplus G$ un \mathbb{K} -espace vectoriel.

- a) $h \in \mathcal{L}(E)$: $h(x) = \lambda x \quad \forall x \in E$, est une homothétie de rapport λ .
- b) $p \in \mathcal{L}(E)$: $x + y \mapsto x$ avec $x \in F$, $y \in G$, est la projection sur F parallèlement à G.
- c) $s \in \mathcal{L}(E)$: $x + y \mapsto x y$ avec $x \in F$, $y \in G$, est la symétrie par rapport à F parallèlement à G.

Proposition: Comportements des rapports (admis)

Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.

a) Si $\lambda = 0$, alors f = 0 (l'application nulle).

Si $\lambda \neq 0$, alors $f \in \text{Isom}(E, F)$, et son inverse est donné par : $f^{-1} = \frac{1}{\lambda} \cdot \text{Id}_E$.

- b) $p \circ p = p$, alors : $\ker(p) = G$ et $\operatorname{Im}(p) = F$.
- c) $s \circ s = \mathrm{Id}_E$, donc : $\ker(s) = \{0\}$ et $\mathrm{Im}(s) = E$,

Il Matrices et applications linéaires

A Matrices associées à une application linéaire

Définition : Soit $f \in \mathcal{L}(E,F)$, $B = (v_1, \dots, v_n)$ une base de E et $C = (w_1, \dots, w_m)$ une base de F. On appelle **matrice associée** de f (relative aux bases B et C) et on note

$$Mat_{B,C}(f)$$

la matrice dont les colonnes sont les coordonnées de $f(v_i)$ dans la base C, pour tout $i \in \{1, \ldots, n\}$.

Exemple: Soit $f \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ définie par f(x,y) = (x+2y,3x-y,4y). Soit B = ((1,0),(0,1)) la base canonique de \mathbb{R}^2 et C = ((1,0,0),(0,1,0),(0,0,1)) la base canonique de \mathbb{R}^3 . On calcule les vecteurs $f(v_1)$ et $f(v_2)$:

$$f(1,0) = (1,3,0) = 1 \times (1,0,0) + 3 \times (0,1,0) + 0 \times (0,0,1)$$

$$f(0,1) = (2,-1,4) = 2 \times (1,0,0) - 1 \times (0,1,0) + 4 \times (0,0,1)$$

La matrice associée de f relative aux bases B et C est donnée par : $\operatorname{Mat}_{B,C}(f) = \begin{pmatrix} 1 & 2 \\ 3 & -1 \\ 0 & 4 \end{pmatrix}$

 \bigcirc Vocabulaire : On note E^* et on appelle dual de E l'ensemble des formes linéaires sur E.

Proposition: Base du dual (admis)

Soit $B=(v_1,\ldots,v_n)$ une base de E. On note $B^*=(v_1^*,\ldots,v_n^*)$ la base duale de E^* définie par :

$$v_i^*(v_j) = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{sinon} \end{cases}$$

Proposition: Transposée de la matrice d'une application linéaire (admis)

Soit $f \in \mathcal{L}(E, F)$ et $B = (v_1, \dots, v_n)$ une base de $E, C = (w_1, \dots, w_m)$ une base de F.

On note $B^*=(v_1^*,\ldots,v_n^*)$ la base duale de E^* et $C^*=(w_1^*,\ldots,w_m^*)$ la base duale de F^* .

De plus, on note ${}^tf \in \mathcal{L}(F^*,E^*)$ l'application linéaire définie par :

$$^{t}f(w^{*}) = w^{*} \circ f \quad \forall w^{*} \in F^{*}.$$

La matrice associée de tf relative aux bases C^* et B^* est la transposée de la matrice associée de f relative aux bases B et C:

$$\operatorname{Mat}_{C^*,B^*}({}^tf) = {}^t\operatorname{Mat}_{B,C}(f).$$

B Matrices de changement de base

De Vocabulaire : Une matrice de changement de base se dit aussi matrice de passage.

Définition : Soit $B=(v_1,\ldots,v_n)$ une base de E et $C=(w_1,\ldots,w_n)$ une autre base de E. On appelle **matrice** de changement de base de E vers E et on note

$$P_{B\to C} = \begin{pmatrix} \mathsf{coord}_B(w_1) & B(w_2) & \dots & \mathsf{coord}_B(w_n) \end{pmatrix}$$

la matrice dont les colonnes sont les coordonnées des vecteurs de la base C exprimés dans la base B.

© Exemple :

Soit B = ((1,0),(0,1)) la base canonique de \mathbb{R}^2 et C = ((2,3),(4,5)) une autre base de \mathbb{R}^2 .

La matrice de changement de base de B vers C est donnée par :

$$P_{B\to C} = \begin{pmatrix} 2 & 4 \\ 3 & 5 \end{pmatrix}$$

Application : Soit w un vecteur de E, X_1 ses coordonnées dans la base B, X_2 ses coordonnées dans la base B_2 et soit $P_{B\to C}$ la matrice de passage de B à C. Alors on a :

$$X_1 = P_{B \to C} \cdot X_2$$

 $oldsymbol{0}$ Remarque: Une telle matrice de changement de base est toujours inversible, et son inverse est la matrice de changement de base de C vers B.

Théorème: Formule de changement de base (admis)

Soit $f \in \mathcal{L}(E,F)$, $B=(v_1,\ldots,v_n)$ une base de E et $C=(w_1,\ldots,w_m)$ une base de F.

Soit $B' = (u_1, \dots, u_n)$ une autre base de E et $C' = (z_1, \dots, z_m)$ une autre base de F.

On note $P_{B\to B'}$ la matrice de changement de base de B vers B' et $P_{C'\to C}$ la matrice de changement de base de C' vers C.

Alors:

$$\operatorname{Mat}_{B',C'}(f) = P_{C'\to C} \cdot \operatorname{Mat}_{B,C}(f) \cdot P_{B\to B'}$$

avec $P_{C' \to C} = P_{C \to C'}^{-1}$.

Corollaire : Application aux endomorphismes (admis)

Soit $f \in \mathcal{L}(E)$ un endomorphisme de E. Soit $B = (v_1, \dots, v_n)$ une base de E et $B' = (w_1, \dots, w_n)$ une autre base de E.

On note $P_{B \to B'}$ la matrice de changement de base de B vers B'.

Alors:

$$\operatorname{Mat}_{B',B'}(f) = P_{B \to B'}^{-1} \cdot \operatorname{Mat}_{B,B}(f) \cdot P_{B \to B'}$$