Name: Aavani Rajesh Perumbessi

Roll no: 150096724059

Cohort: Mark Zuckerburg

What is Polymorphism?

One Interface, Multiple Forms

Polymorphism allows objects of different classes to be treated as objects of a common base class.

Flexibility and Reusability

By defining common interfaces, we can write code that works with various types of objects, promoting code reuse and adaptability.

Static vs Dynamic Polymorphism

01

Static Polymorphism

Resolved at compile time, based on the object's type. Examples include function overloading and operator overloading.

02

Dynamic Polymorphism

Resolved at runtime, based on the actual object being used. This is achieved through inheritance and virtual functions.

Inheritance and Polymorphism

Overriding Virtual Functions

Virtual Functions
Declared with the `virtual` keyword in the base class.

Overriding
Derived classes redefine virtual functions, providing their own implementation.

Runtime Behavior
The appropriate function is called based on the actual

object type at runtime.

Polymorphic Containers

Flexibility and Efficiency

Use containers like vectors or lists to store objects of different derived classes.

Unified Interface

Access and manipulate objects through the base class interface, regardless of their actual type.

Example

A vector containing both `Dog` and `Cat` objects, accessed through a common `Animal` interface.

Dynamic Binding and Late Binding

4

Dynamic Binding

The process of resolving which function to call at runtime, based on the actual object type.

2

Late Binding

Function binding is deferred until runtime, allowing for flexibility and dynamic behavior.

Key Concept

2

Dynamic binding is the core mechanism that enables polymorphism in C++.

Advantages of Polymorphism

Code Reusability

Write code that works with various types of objects.

Maintainability

Easier to modify and extend the code without affecting other parts.

Flexibility

Adapts to changes in the system without significant code alterations.

Conclusion

Polymorphism is a powerful concept that allows for code flexibility, reusability, and maintainability. Understanding inheritance, virtual functions, and dynamic binding is crucial for leveraging polymorphism in C++. Embrace polymorphism to enhance your programming skills and build robust, adaptable software.

THANK YOU!