Every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a matrix transformation. In other words, there exists a unique $m \times n$ matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}, \quad \forall \mathbf{x} \in \mathbb{R}^n$$

A is called the standard matrix for the linear transformation T.

The Change-of-coordinates in \mathbb{R}^n

Definition

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be an ordered basis of \mathbb{R}^n . The matrix

$$P_{\mathcal{B}} = [\mathbf{b}_1 \quad \dots \quad \mathbf{b}_n]$$

formed using the basis vectors $\mathbf{b}_1, \dots, \mathbf{b}_n$ as columns, is called the *change-of-coordinates* matrix from \mathcal{B} to the standard basis in \mathbb{R}^n .

The change-of-coordinates matrix takes a coordinate vector with respect to the \mathcal{B} basis and tranforms it to standard coordinates. So if \mathbf{x} is a vector in \mathbb{R}^n , then

$$\mathbf{x}=P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}.$$

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be an ordered basis of \mathbb{R}^n . Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the coordinate transformation which sends

$$\mathsf{x}\mapsto [\mathsf{x}]_\mathcal{B}.$$

The change-of-coordinates matrix $P_{\mathcal{B}}$ is the standard matrix of the inverse T^{-1} of the coordinate transformation.

The standard matrix of the coordinate transformation T is $P_{\mathcal{B}}^{-1}$.

Particular Case: The *B*-matrix

Definition

Let $T: V \to V$ be a linear transformation from a vector space to itself. Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be an ordered basis for V. There is a unique matrix $[T]_{\mathcal{B}}$, which we call the \mathcal{B} -matrix of T such that

$$[T(v)]_{\mathcal{B}} = [T]_{\mathcal{B}}[v]_{\mathcal{B}}, \quad \forall v \in V.$$

Further, $[T]_{\mathcal{B}}$ is obtained using the formula

$$[T]_{\mathcal{B}} = [[T(v_1)]_{\mathcal{B}} \dots [T(v_n)]_{\mathcal{B}}]$$

Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation. Let A be the standard matrix of T. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be any ordered basis of \mathbb{R}^n . Let

$$P_{\mathcal{B}} = [\mathbf{b}_1 \quad \cdots \quad \mathbf{b}_n]$$

be the change-of-coordinates matrix from \mathcal{B} to the standard basis in \mathbb{R}^n . Then the \mathcal{B} -matrix of T is $P_{\mathcal{B}}^{-1}AP_{\mathcal{B}}$.

$$\boxed{[T]_{\mathcal{B}} = P_{\mathcal{B}}^{-1} A P_{\mathcal{B}}}$$

we also obtain the formula

$$\underbrace{\text{Standard matrix of } T}_{\text{E}} = P_{\mathcal{B}}[T]_{\mathcal{B}}P_{\mathcal{B}}^{-1}$$

Another Application: 3D Rotations

through the origin, "within planes perpendicular to the axis of rotation".

Solitie (xample: Xis of notation is - 1h = Zi Fixed anglist. V2 - (- 1 1 0) \\
\frac{1}{5}.\frac{1}{5}.\frac{1}{5}. 5/1/8/1/3

 $\frac{1}{3} - \frac{5}{1} \cdot \frac{1}{1} \cdot \frac{1}{2} \cdot \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{2}{3}$ $\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{2}} + 0.\sqrt{3}$ Rofale 12 by or angle of 0.

Toos 0 - sin 0

sin 0 cos 0.

1 (V3) -- -.) m V 2 - (0) V 7

Standond 1/16-1/56 100 0 1 5 MI + JJ + Zh

- / (+ y) + m

Matrix of a Linear Transformation

Proposition (M)

Let V, W be vector spaces. Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be an ordered basis for V and $\mathcal{C} = \{w_1, \dots, w_m\}$ be an ordered basis for W. Let $T: V \to W$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$[T(v)]_{\mathcal{C}} = A[v]_{\mathcal{B}}, \text{ for every } v \in V.$$

Further, we have

$$A = [[T(v_1)]_{\mathcal{C}} \dots [T(v_n)]_{\mathcal{C}}]$$

This unique matrix A is called is called the *matrix* of T with respect to the bases \mathcal{B} and \mathcal{C} , and is denoted by $[T]_{\mathcal{B},\mathcal{C}}$.

Let U, V and W be vector spaces. Let $T: U \rightarrow V$ and $S: V \rightarrow W$ be linear transformations. Then the composite

 $S \circ T : U \to W$ is also a linear transformation.

Let us look at some examples of how to find this matrix, when working with matrices and/or polynomials.

all polynomials
of degree & n. al polynomials
legge \le h-1 is defined

$$(i) f (f + g) = J (f + g) = J + J$$

$$J = J + J$$

 $C(R, f \in P) = d(f) = cdf = cTH$

VP-C 0 N

 $T(v_1) = 0$ $T(v_2) = 1$, $T(v_3) = 2\ell$, $T(v_3) = 3\ell^2$

SWW 600 E Span Sin Most D-Dan Sonn, contr = Span Sonn, contr = Span Sonn, contr Span I sum