1 Rachunek λ z typami prostymi

1.1 Typy proste

Niech U będzie przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych $p,\ q,\ \dots$ (być może indeksowanych liczbami naturalnymi), które będziemy nazywali zmiennymi typowymi.

Definicja 1. (Typy proste)

Typami prostymi będziemy określali najmniejszy w sensie mnogościowym zbiór wyrażeń taki, że:

T1. Jeśli p jest zmienną typową, to p jest typem prostym.

T2. Jeśli τ i σ są typami prostymi, to $(\tau \to \sigma)$ jest typem prostym.

Typy proste zbudowane tylko wedle reguły T1 nazywamy typami *atomowy*mi, zaś wyrażenia zbudowe wedle reguły T2 – typami funkcyjnymi. Zbiór typów prostych określony w myśl powyższej definicji będziemy oznaczali przez \mathbf{T}_{\rightarrow} .

Późniejsze litery alfabetu greckiego, tj. σ , τ , ρ , ... będą służyły nam za zmienne metasyntaktyczne do oznaczania typów prostych. Dla lepszej czytelności będziemy pomijali najbardziej zewnętrzne nawiasy. Konstruktor typu \rightarrow jest prawostronnie łączny, co oznacza, że typy $\tau \rightarrow \sigma \rightarrow \theta$ oraz $\tau \rightarrow (\sigma \rightarrow \theta)$ będziemy uznawali za tożsame.

Typy proste ujęte Definicją 1 mają strukturę drzewa binarnego. Wysokość takiego drzewa będziemy nazywali *stopniem* typu. Precyzyjnie ujmuje to pojęcie poniższa definicja.

Definicja 2. (Stopień typu)

Stopniem typu nazywamy funkcje

$$\delta(p) = 0,$$

$$\delta(\tau \to \sigma) = 1 + \max(\delta(\tau), \ \delta(\sigma)).$$

1.2 Pseudotermy

Niech V będzie przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych x, y, \dots (indeksowanych być może liczbami naturalnymi). Elementy takiego zbioru będziemy nazywali λ -zmiennymi.

Definicja 3. (Pseudo-pretermy)

Pseudo-pretermamibędziemy nazywali najmniejszy (w sensie mnogościowym) zbiór $\mathbf{\Lambda}_{\mathrm{T}}^-$ taki, że:

- P1. Jeśli $x \in V$, to $x \in \Lambda_T^-$.
- P2. Jeśli $M \in \Lambda_{\mathrm{T}}^{-}$ i $N \in \Lambda_{\mathrm{T}}^{-}$, to $(MN) \in \Lambda_{\mathrm{T}}^{-}$.
- P3. Dla dowolnych $x \in V$, $\sigma \in T_{\rightarrow}$, $M \in \Lambda_T^-$ mamy, $\dot{z}e(\lambda x^{\sigma}.M) \in \Lambda_T^-$.

Wyrażenia postaci P2 nazywamy aplikacjami M do N, zaś wyrażenia postaci P3 – λ -abstrakcjami, gdzie o wszystkich podtermach termu M mówi się, że są w zasięgu λ -abstraktora, zaś o λ -zmiennej x mówi się, że jest związana.

Za zmienne metasyntaktyczne obieramy duże litery alfabetu łacińskiego M, N, \ldots Podobnie jak w podrozdziale 1.1 stosujemy konwencję o opuszczaniu najbardziej zewnętrznych nawiasów. Aplikacja termów jest łączna lewostronnie, co oznacza, że będziemy utożsamiali wyrażenia MNP oraz (MN)P.

Definicja 4. (Zmienne wolne)

Dla pseudo-pretermu M określamy zbiór termów wolnych FV w nastepujący sposób:

$$FV(x) = \{x\}$$

$$FV(\lambda x^{\sigma}. P) = FV(P) \setminus \{x\}$$

$$FV(PQ) = FV(P) \cup FV(Q)$$

Jesli $FV(M) = \emptyset$, to mówimy, że M jest zamknięty.

Definicja 5. (Podstawienie)

Podstawieniem~[x/N] pseudo-pretermu N za λ -zmienną x w M nazwamy zdefiniowane następująco przekształcenie:

$$x[x/N] = N,$$

 $y[x/N] = y,$ o ile $x \neq y,$
 $(PQ)[x/N] = P[x/N]Q[x/N],$
 $(\lambda y^{\sigma}. P)[x/N] = \lambda y^{\sigma}. P[x/N],$ gdzie $x \neq y$ i $y \notin FV(N).$

Zachodzą następujące fakty:

Fakt 1. (a) Jeśli $x \notin FV(M)$, to M[x/N] jest poprawnym podstawieniem i M[x/N] = M.

- (b) Jeśli M[x/N] jest poprawnym podstawieniem, to $y \in FV(M[x/N])$ wtw, gdy albo $y \in FV(M)$ i $x \neq y$, albo $y \in FV(N)$ i $x \in FV(M)$.
- (c) Podstawienie M[x/x] jest poprawne i M[x/x] = M.

(d) Jeśli M[x/y] jest poprawnym podstawieniem, to M[x/y] ma tę samą długość, co M.

Fakt 2. Powiedzmy, że M[x/N] jest poprawnym podstawieniem i N[y/L] i M[x/N][y/L] są poprawnymi podstawieniami, gdzie $x \neq y$. Jeśli $x \notin FV(L)$ lub $y \notin FV(M)$, to M[y/L] i M[y/L] jest poprawnym podstawieniem oraz

$$M[x/N][y/L] = M[y/L][x/N[y/L]].$$

Fakt 3. Jesli M[x/y] jest poprawnym postawieniem i $y \notin FV(M)$, to M[x/y][y/x] jest poprawnym podstawieniem oraz M[x/y][y/x] = M.

Definicja 6. (α -konwersja)

 α -konwersją nazywamy najmniejszą (w sensie mnogościowym) zwrotną i przechodnią relację binarną = $_{\alpha}$ określoną na zbiorze pseudotermów $\Lambda_{\rm T}^-$ spełniającą poniższe warunki:

- (a) Jeśli $y \notin FV(M)$ i M[x/y] jest poprawnym podstawieniem, to $\lambda x. M =_{\alpha} \lambda y. M[x/y]$.
- (b) Jeśli $M =_{\alpha} N$, to dla każdej λ -zmiennej x mamy $\lambda x. M =_{\alpha} \lambda x. N$.
- (c) Jeśli $M =_{\alpha} N$, to $MZ =_{\alpha} NZ$.
- (d) Jeśli $M =_{\alpha} N$, to $ZM =_{\alpha} ZN$.

Bez dowodu podajemy następujące twierdzenia:

Fakt 4. $Relacja =_{\alpha} jest symetryczna$.

Fakt 5. = $_{\alpha}$ jest relacją równoważności.

Fakt 6. Jeśli
$$M =_{\alpha} N$$
, to $FV(M) = FV(N)$.

Dysponując powyższymi rozstrzygnięciami otrzymujemy wygodne utożsamienie pseudo-pretermów, które różnią się między sobą tylko zmiennymi związanymi.

Definicja 7. (Pseudotermy)

Klasy abstrakcji relacji α -konwersji nazywamy pseudotermami. Zbiór wszystkich pseudotermów oznaczamy następująco:

$$\mathbf{\Lambda}_{\mathrm{T}} = \{ [M]_{\alpha} \mid M \in \mathbf{\Lambda}_{\mathrm{T}}^{-} \}$$

Nadużywając notacji będziemy odnosili się do pseudotermów tylko przez ich reprezentantów.

1.3 Typowalność

Definicja 8. (Kontekst)

Kontekstem nazywamy skończoną funkcję częściową $\Gamma: V \longrightarrow \mathbf{T}_{\rightarrow}$, czyli zbiór par postaci $\Gamma = \{x_1^{\tau_1}, \ldots, x_n^{\tau_n}\}$, gdzie $(x_i^{\tau_i}) = (x_i, \tau_i)$ oraz $x_i \neq x_j$ dla $i \neq j$. Zbiór

$$dom(\Gamma) = \{x \in V \mid \exists \tau (x^{\tau} \in \Gamma)\}\$$

nazywamy dziedzing kontekstu Γ , zaś

$$rg(\Gamma) = \{ \tau \in \mathbf{T}_{\rightarrow} \mid \exists x (x^{\tau} \in \Gamma) \}$$

-zakresem kontekstu Γ . Piszemy:

- $x_1^{\tau_1}, x_2^{\tau_2}$ zamiast $\{x_1^{\tau_1}, x_2^{\tau_2}\}$, o ile $x_1^{\tau_1}$ i $x_2^{\tau_2}$ są różne,
- Γ , x^{φ} zamiast $\Gamma \cup \{x^{\varphi}\}$, o ile $x^{\varphi} \notin \Gamma$,
- Γ , Δ zamiast $\Gamma \cup \Delta$, o ile $\Gamma \cap \Delta = \emptyset$.

Okreslimy teraz system przypisywania typów do pseudotermów w stylu dedukcji naturalnej. Sekwentami w tym systemie będziemy nazywali wyrażenia postaci $\Gamma \vdash M^{\sigma}$, gdzie $M \in \Lambda_{\Gamma}$, $\sigma \in \mathbf{T}_{\rightarrow}$, zaś Γ jest pewnym kontekstem.

Wprowadzamy następujące reguły dowodzenia:

$$\frac{\Gamma, x^{\varphi} \vdash M^{\psi}}{\Gamma, x^{\tau} \vdash x^{\tau}} \text{ (Var)}, \quad \frac{\Gamma, x^{\varphi} \vdash M^{\psi}}{\Gamma \vdash (\lambda x^{\varphi}, M)^{\varphi \to \psi}} \text{ (Abs)}, \quad \frac{\Gamma \vdash M^{\varphi \to \psi} \quad \Gamma \vdash N^{\varphi}}{\Gamma \vdash (MN)^{\psi}} \text{ (App)}.$$

Definicja 9. (Typowalność)

Mówimy, że pseudoterm M jest typu σ w kontekście Γ (jest typowalny), jeśli istnieje skończone drzewo sekwentów spełniające poniższe warunki:

- 1. W korzeniu drzewa znajduje się sekwent $\Gamma \vdash M^{\sigma}$.
- 2. Liście są aksjomatami, tj. sekwentami postaci $\Gamma, x^{\sigma} \vdash x^{\sigma}$.
- 3. Każdego rodzica można otrzymać z jego dzieci przez zastosowanie którejś z reguł wyprowadzania nowych sekwentów.

Tak określone drzewo będziemy nazywali wyprowadzeniem typu.

Definicja 10. (λ -termy)

Wszystkie typowalne pseudotermy w pewnym kontekście Γ nazywamy λ -termami (z typami prostymi w kontekście Γ).

 $Uwaga. \lambda$ -term w kontekście Γ_1 może nie być typowalny w innym kontekście Γ_2 .

Mówiąc o λ -termach i nie podając żadnego związanego z nimi kontekstu Γ będziemy implicite zakładali, że istnieje pewien kontekst w którym są one typowalne. Zakładamy również, że ustalone są typy dla wszystkich λ -zmiennych. Typ dowolnego λ -termu będziemy w ramach konwencji notowali używając górnego indeksu. Dla przykładu, λ -term $(M^{\sigma \to \tau}N^{\sigma})^{\tau}$ jest w pewnym kontekście Γ typu τ .

Przez stopień λ -termu M^{σ} będziemy mieli na myśli stopień typu σ . Nadużywając notacji będziemy pisali

$$\delta(M^{\sigma}) = \delta(\sigma),$$

gdzie δ występująca po prawej stronie powyższej równości to funkcja określona w myśl Definicji 2.

Fakt 7. Jesli $\Gamma \vdash M^{\sigma}$ oraz $\Gamma \vdash M^{\tau}$, to $\sigma = \tau$.

1.4 Redukcja

Definicja 11. (Zgodność)

Relację R na zbiorze termów Λ_T nazywamy zgodnq, jeśli dla $M,\,N,\,Z\in\Lambda_T$ spełnia ona następujące warunki:

- i) Jeśli MRN, to $(\lambda x^{\sigma}. M) R (\lambda x^{\sigma}. N)$ dla dowolnych $x \in V$ i $\sigma \in T_{\rightarrow}$.
- ii) Jeśli MRN, to (MZ)R(NZ).
- iii) Jeśli MRN, to (ZM)R(ZN).

Przy powyższych ustaleniach kongruencją będziemy nazywali każdą zgodną relację równowazności na $\Lambda_{\rm T}$, zaś redukcją – każdą zgodną, zwrotną i przechodnią relację na $\Lambda_{\rm T}$.

Definicja 12. (β -redukcja)

 β -redukcją nazywamy najmniejsza w sensie mnogościowym zgodną relację binarną \longrightarrow_{β} określoną zbiorze na pseudotermów $\Lambda_{\rm T}$ za pomocą podstawienia

$$(\lambda x^{\sigma}.P)Q \longrightarrow_{\beta} P[x/Q].$$

 β -redeksami bedziemy nazywali wyrażenia postaci $(\lambda x^{\sigma}. M)N$, zaś rezultat ich β -redukcji w postaci termu $M[x/N] - \beta$ -reduktem.

Określamy następujące relacje:

B1. \longrightarrow_β^+ jest przechodnim domknięciem relacji \longrightarrow_β w zbiorze pseudotermów $\Lambda_{\rm T}.$

- B2. $\longrightarrow_{\beta}^{*}$ jest domknięciem przechodnio-zwrotnim w Λ_{T} relacji \longrightarrow_{β} , a zatem jest redukcjq.
- B3. = $_{\beta}$ jest najmniejszą relację równowazności zawierającą relację \longrightarrow_{β} , (czyli konqruencjq).

Definicja 13. (Postać normalna)

Powiemy, że λ -term M jest w postaci normalnej, jeśli żadna z jego podformuł nie jest β -redeksem. Przez NF $_{\beta}$ będziemy oznaczali zbiór wszystkich λ -termów w postaci normalnej.

Zachodza następujące fakty:

Fakt 8. M ma postać normalną, jeśli $M =_{\beta} N$ dla pewnego N, który jest w postaci normalnej.

Fakt 9. Jeśli $\Gamma \vdash M^{\sigma}$ i $M \longrightarrow_{\beta}^{*} N$, to $\Gamma \vdash N^{\sigma}$.

Definicja 14. (η -redukcja)

 $\eta\text{-redukcją}$ nazywamy najmniejszą (w sensie mnogościowym) zgodnąrelację w $\pmb{\Lambda}_{\rm T}$ taką, że

$$\lambda x^{\sigma}. Mx \longrightarrow_{n} M,$$

o ile $x \notin FV(M)$.

Fakt 10. Jeśli $\Gamma \vdash M^{\sigma}$ i $M \longrightarrow_{\eta}^{\star} N$, to $\Gamma \vdash N^{\sigma}$.

1.5 Normalizacja

Powiemy, że λ -term M ma własność:

- (słabej) normalizacji (symbolicznie: $M \in WN_{\beta}$) wtedy i tylko wtedy, gdy istnieje ciąg β -redukcji rozpoczynający się od M i kończący się termem w postaci normalnej N.
- silnej normalizacji (symbolicznie: $M \in SN_{\beta}$), jeśli wszystkie ciągi β -redukcji rozpoczynające się od M są skończone.

Z powyższego określenia widzimy, że własność SN_{β} pociąga za sobą własność WN_{β} .

Definicja 15. (Strategia redukcji)

Strategią redukcji nazywamy odwzorowanie $F: \Lambda_T \longrightarrow \Lambda_T$ takie, że F(M) = M, gdy M jest w postaci normalnej i $M \to_{\beta} F(M)$ w przeciwnym wypadku. Mówimy, że strategia F jest normalizująca, jeśli dla każdego $M \in WN_{\beta}$ istnieje $i \in \mathbb{N}$ takie, że $F^i(M)$ jest w postaci normalnej.

Twierdzenie 1. (Własność WN_{β}) Wszystkie λ -termy mają postać normalną.

 $Dow \acute{o}d.$ Pokażemy, że dla dowolnego $\lambda\text{-termu}~M$ istnieje normalizująca strategia redukcji.

Przypuśćmy, że M nie jest w postaci normalnej. Oznaczmy przez δ_M maksymalny stopień redeksów występujących w M. Ponieważ wiele redeksów w M może mieć ten sam stopień δ_M , przez n_M oznaczmy liczbę wystąpień redeksów stopnia δ_M w M.

Niech Δ będzie β -redeksem stopnia δ_M położonym w M najbardziej na prawo i niech M' będzie β -reduktem otrzymanym przez zredukowanie Δ . Zauważmy, że $n_M < n_{M'}$, gdyż Δ nie wystepuje już w M', zaś β -redukcja Δ może prowadzić do powstania redeksów tylko mniejszego stopnia. Istotnie, ilość redeksów w M może zwiększyć się tylko na jeden z poniższych sposobów:

- i) powstanie nie występujących wcześniej redeksów.
- ii) powielenie już istniejących redeksów.

(b) Redukcja $(\lambda x^{\tau} y^{\rho}, \dots x \dots y \dots) M^{\tau} Q^{\rho}$ do nowego redeksu postaci $(\lambda y^{\rho}, \dots M^{\tau} \dots y \dots) Q^{\rho}$.

(c) Redukcja $(\lambda x^{\tau} y^{\rho}, \dots y \dots x \dots) M^{\tau} Q^{\rho}$ do nowego redeksu postaci $(\lambda y^{\rho}, \dots y \dots M^{\tau} \dots) Q^{\rho}$.

(d) Redukcja $(\lambda x^{\rho \to \mu}. x)(\lambda y^{\rho}. \dots y...)N^{\rho}$ do nowego redeksu $(\lambda y^{\rho}. \dots y...)N^{\rho}$.

Rysunek 1: test

Powtarzając otrzymujemy więc λ -term w postaci normalnej.

Twierdzenie 2. (Własność SN_{β}) Wszystkie λ -termy mają własność silnej normalizacji.

- WCR: $\forall a, b, c \in A (a \longrightarrow b \land a \longrightarrow c) \rightarrow \exists d \in A (b \longrightarrow^* d \land c \longrightarrow^* d)$
- CR: $\forall a, b, c \in A (a \longrightarrow^* b \land a \longrightarrow^* c) \rightarrow \exists d \in A (b \longrightarrow^* d \land c \longrightarrow^* d)$

Twierdzenie 3. (Lemat Newmana) $Niech \rightarrow bedzie relacją binarną spełniającą <math>SN.$ Jeśli \rightarrow spełnia WCR, to spełnia CR.

Dowód.

Twierdzenie 4. (Własność SN_{β}) Każdy λ -term w stylu Churcha własność silnej normalizacji.

 $Dow \acute{o}d.$