Subgradient Methods for Constrained Problems

- projected subgradient method
- projected subgradient for dual
- subgradient method for constrained optimization

Projected subgradient method

solves constrained optimization problem

minimize
$$f(x)$$
 subject to $x \in \mathcal{C}$,

where $f: \mathbf{R}^n \to \mathbf{R}$, $\mathcal{C} \subseteq \mathbf{R}^n$ are convex

projected subgradient method is given by

$$x^{(k+1)} = \Pi(x^{(k)} - \alpha_k g^{(k)}),$$

 Π is (Euclidean) projection on \mathcal{C} , and $g^{(k)} \in \partial f(x^{(k)})$

same convergence results:

- for constant step size, converges to neighborhood of optimal (for f differentiable and h small enough, converges)
- for diminishing nonsummable step sizes, converges

key idea: projection does not increase distance to x^*

Linear equality constraints

minimize
$$f(x)$$
 subject to $Ax = b$

projection of z onto $\{x \mid Ax = b\}$ is

$$\Pi(z) = z - A^{T} (AA^{T})^{-1} (Az - b)$$
$$= (I - A^{T} (AA^{T})^{-1} A)z + A^{T} (AA^{T})^{-1} b$$

projected subgradient update is (using $Ax^{(k)} = b$)

$$x^{(k+1)} = \Pi(x^{(k)} - \alpha_k g^{(k)})$$

$$= x^{(k)} - \alpha_k (I - A^T (AA^T)^{-1} A) g^{(k)}$$

$$= x^{(k)} - \alpha_k \Pi_{\mathcal{N}(A)}(g^{(k)})$$

Example: Least l_1 -norm

minimize
$$||x||_1$$
 subject to $Ax = b$

subgradient of objective is $g = \mathbf{sign}(x)$

projected subgradient update is

$$x^{(k+1)} = x^{(k)} - \alpha_k (I - A^T (AA^T)^{-1}A) \operatorname{sign}(x^{(k)})$$

problem instance with n=1000, m=50, step size $\alpha_k=0.1/k$, $f^\star\approx 3.2$

Prof. S. Boyd, EE364b, Stanford University

Projected subgradient for dual problem

(convex) primal:

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m$

solve dual problem

maximize
$$g(\lambda)$$
 subject to $\lambda \succeq 0$

via projected subgradient method:

$$\lambda^{(k+1)} = \left(\lambda^{(k)} - \alpha_k h\right)_+, \qquad h \in \partial(-g)(\lambda^{(k)})$$

Subgradient of negative dual function

assume f_0 is strictly convex, and denote, for $\lambda \succeq 0$,

$$x^*(\lambda) = \underset{z}{\operatorname{argmin}} \left(f_0(z) + \lambda_1 f_1(z) + \dots + \lambda_m f_m(z) \right)$$

so
$$g(\lambda) = f_0(x^*(\lambda)) + \lambda_1 f_1(x^*(\lambda)) + \dots + \lambda_m f_m(x^*(\lambda))$$

a subgradient of -g at λ is given by $h_i = -f_i(x^*(\lambda))$

projected subgradient method for dual:

$$x^{(k)} = x^*(\lambda^{(k)}), \qquad \lambda_i^{(k+1)} = \left(\lambda_i^{(k)} + \alpha_k f_i(x^{(k)})\right)_+$$

- primal iterates $x^{(k)}$ are not feasible, but become feasible in limit (sometimes can find feasible, suboptimal $\tilde{x}^{(k)}$ from $x^{(k)}$)
- dual function values $g(\lambda^{(k)})$ converge to $f^{\star} = f_0(x^{\star})$

interpretation:

- λ_i is price for 'resource' $f_i(x)$
- ullet price update $\lambda_i^{(k+1)} = \left(\lambda_i^{(k)} + \alpha_k f_i(x^{(k)})\right)_+$
 - increase price λ_i if resource i is over-utilized (i.e., $f_i(x) > 0$)
 - decrease price λ_i if resource i is under-utilized (i.e., $f_i(x) < 0$)
 - but never let prices get negative

Example

minimize strictly convex quadratic $(P \succ 0)$ over unit box:

minimize
$$(1/2)x^TPx - q^Tx$$

subject to $x_i^2 \le 1, \quad i = 1, \dots, n$

- $L(x,\lambda) = (1/2)x^T(P + \mathbf{diag}(2\lambda))x q^Tx \mathbf{1}^T\lambda$
- $x^*(\lambda) = (P + \mathbf{diag}(2\lambda))^{-1}q$
- projected subgradient for dual:

$$x^{(k)} = (P + \mathbf{diag}(2\lambda^{(k)}))^{-1}q, \quad \lambda_i^{(k+1)} = \left(\lambda_i^{(k)} + \alpha_k((x_i^{(k)})^2 - 1)\right)_+$$

problem instance with n=50, fixed step size $\alpha=0.1$, $f^{\star}\approx-5.3$; $\tilde{x}^{(k)}$ is a nearby feasible point for $x^{(k)}$

Prof. S. Boyd, EE364b, Stanford University

Subgradient method for constrained optimization

solves constrained optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0, \quad i = 1, \dots, m,$

where $f_i: \mathbf{R}^n \to \mathbf{R}$ are convex

same update $x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}$, but we have

$$g^{(k)} \in \begin{cases} \partial f_0(x) & f_i(x) \le 0, \quad i = 1, \dots, m, \\ \partial f_j(x) & f_j(x) > 0 \end{cases}$$

define $f_{\text{best}}^{(k)} = \min\{f_0(x^{(i)}) \mid x^{(i)} \text{ feasible}, i = 1, \dots, k\}$

Convergence

assumptions:

- there exists an optimal x^* ; Slater's condition holds
- $||g^{(k)}||_2 \le G$; $||x^{(1)} x^*||_2 \le R$

typical result: for $\alpha_k > 0$, $\alpha_k \to 0$, $\sum_{i=1}^{\infty} \alpha_i = \infty$, we have $f_{\text{best}}^{(k)} \to f^*$

Example: Inequality form LP

LP with n=20 variables, m=200 inequalities, $f^{\star}\approx -3.4$; $\alpha_k=1/k$ for optimality step, Polyak's step size for feasibility step

