Wired LANs: Ethernet

- IEEE Standards
- Standard Ethernet
- Changes in the Standard
- Fast Ethernet
- Gigabit Ethernet

IEEE Standards

 In 1985, the Computer Society of the IEEE started a project, called Project 802, to set standards to enable intercommunication among equipment from a variety of manufacturers. Project 802 is a way of specifying functions of the physical layer and the data link layer of major LAN protocols.

IEEE 802 Working Group

	nactive or disbanded working groups
802.16 Broadband Wireless Access Working Group 802.17 Resilient Packet Ring Working Group 802.18 Radio Regulatory TAG 802.	2.4 Token Bus Working Group 2.5 Token Ring Working Group 2.7 Broadband Area Network Working Group 2.8 Fiber Optic TAG

Standard Ethernet

• The original Ethernet was created in 1976 at Xerox's Palo Alto Research Center (PARC). Since then, it has gone through several generations

MAC Sublayer

- Preamble: alerting the receiving system to the coming frame and enabling it to synchronize its input timing
- CRC: CRC-32

Addressing

• Ethernet address in hexadecimal notation

- The least significant bit of the first byte defines the type of address.
 If the bit is 0, the address is unicast; otherwise, it is multicast
- The broadcast destination address is a special case of the multicast address in which all bits are 1s

Ethernet

- Access method: 1- persistent CSMA/CD
- Slot time = rount-trip time + time required to send the jam sequence
 - 512 bits for Ethernet, 51.2 μ s for 10 Mbps Ethernet

Physical Layer: Ethernet

10Base5: Thick Ethernet

10Base2: Thin Ethernet

10BaseT: Twisted-Pair Ethernet

10Base-F: Fiber Ethernet

Summary of Standard Ethernet

Characteristics	10Base5	10Base2	10Base-T	10Base-F
Media	Thick coaxial cable	Thin coaxial cable	2 UTP	2 Fiber
Maximum length	500 m	185 m	100 m	2000 m
Line encoding	Manchester	Manchester	Manchester	Manchester

Changes in the Standard

Bridged Ethernet: Raising bandwidth and separating collision domains

Changes in the Standard

• Switched Ethernet: N-port bridge

Changes in the Standard

Full-duplex (switched) Ethernet: no need for CSMA/CD

Fast Ethernet

- Under the name of IEEE 802.3u
 - Upgrade the data rate to 100 Mbps
 - Make it compatible with Standard Ethernet
 - Keep the same 48-bit address and the same frame format
 - Keep the same min. and max. frame length
- MAC Sublayer
 - CSMA/CD for the half-duplex approach
 - No need for CSMA/CD for full-duplex Fast Ethernet
- Auto-negotiation: allow two devices to negotiate the mode or data rate of operation

Fast Ethernet: Physical Layer

Topology

• Implementation

Fast Ethernet: Encoding

Summary of Fast Ethernet

Characteristics	100Base-TX	100Base-FX	100Base-T4
Media	Cat 5 UTP or STP	Fiber	Cat 4 UTP
Number of wires	2	2	4
Maximum length	100 m	100 m	100 m
Block encoding	4B/5B	4B/5B	
Line encoding	MLT-3	NRZ-I	8B/6T

Gigabit Ethernet

- Under the name of IEEE 802.3z
 - Upgrade the data rate to 1 Gbps
 - Make it compatible with Standard or Fast Ethernet
 - Keep the same 48-bit address and the same frame format
 - Keep the same min. and max. frame length
 - Support autonegotiation as defined in Fast Ethernet
- MAC Sublayer
 - Most of implementations follows full-duplex approach
 - In the full-duplex mode of Gigabit Ethernet, there is no collision; the maximum length of the cable is determined by the signal attenuation in the cable.
- Half-duplex mode (very rare)
 - Traditional: $0.512 \,\mu s$ (25m)
 - Carrier Extension: 512 bytes (4096 bits) min. length
 - Frame bursting to improve the inefficiency of carrier extension

Gigabit Ethernet: Physical Layer

Topology

Switch Switch

d. Hierarchy of stars

Gigabit Ethernet: Physical Layer

• Implementation

Encoding

Gigabit Ethernet: Summary

Characteristics	1000Base-SX	1000Base-LX	1000Base-CX	1000Base-T
Media	Fiber short-wave	Fiber long-wave	STP	Cat 5 UTP
Number of wires	2	2	2	4
Maximum length	550 m	5000 m	25 m	100 m
Block encoding	8B/10B	8B/10B	8B/10B	
Line encoding	NRZ	NRZ	NRZ	4D-PAM5

Ten-Gigabit Ethernet

- Under the name of IEEE 802.3ae
 - Upgrade the data rate to 10 Gbps
 - Make it compatible with Standard, Fast, and Giga Ethernet
 - Keep the same 48-bit address and the same frame format
 - Keep the same min. and max. frame length
 - Allow the interconnection of existing LANs into a MAN or WAN
 - Make Ethernet compatible with Frame Relay and ATM
- MAC Sublayer: Only in full-duplex mode → no CSMA/CD

Characteristics	10GBase-S	10GBase-L	10GBase-E
Media	Short-wave 850-nm multimode	Long-wave 1310-nm single mode	Extended 1550-mm single mode
Maximum length	300 m	10 km	40 km