সহস্ৰ গাণিতিক সূত্ৰ

(Thousend Formulas of Mathematices)

(মাধ্যমিক,স্লাতক এবং ইঞ্জিনিয়ারিং শিক্ষার্থীদের জন্য বিশেষ সহয়াক গ্রন্থ)

সৌমেন সাহা

পাটিগণিত
সংখ্যা সেট
বীজগণিত
জ্যামিতি
ব্রিকোণমিতি
মেট্রিক্স ও নির্ণায়ক
ডেক্টর
স্থানাংক জ্যামিতি
অন্তরকলন বিদ্যা
সমাকলন বিদ্যা
অন্তরকল সমীকরণ
ধারা বা শ্রেণী
বিণ্যাস ও সমাবেশ

বুকস্ ফেয়ার 🛚 ঢাকা

সূচিপত্ৰ

প্রারম্ভিক

প্রথম অধ্যায় : সিম্বল (Symbol) বা প্রতীক

- ১.১ সাধারণ গাণিতিক প্রতীকসমূহ
- ১.২ জ্যামিতিক প্রতীকসমূহ
- ১.৩ বীজগাণিতিক প্রতীকসমূহ
- 3.8 রৈখিক বীজগাণিতিক প্রতীকসমূহ
- ১.৫ বিণ্যাস ও সমাবেশের প্রতীকসমূহ
- ১.৬ সম্ভাব্যতা ও পরিসংখ্যানের প্রতীকসমূহ
- ১.৭ সেট তত্ত্বের প্রতীকসমূহ
- ১.৮ যুক্তিবিদ্যার প্রতীকসমূহ
- ১.৯ ক্যালকুলাস ও বিশ্লেষণাত্মক গাণিতিক প্রতীকসমূহ
- ১.১০ সংখ্যা প্রতীকসমূহ
- ১.১১ গ্রীক বর্ণমালার অক্ষর সমূহ

দিতীয় অধ্যায় : পাটিগণিতের সূত্র সমূহ

- ২.১ বিভাজ্যতা
- ২.২ সরল অংক করা নিয়ম
- ২.৩ দশমিক ভগ্নাংশকে সাধারণ ভগ্নাংশে পরিবর্তনের নিয়ম
- ২.৪ গ.সা.গু এবং ল.সা.গু
- ২.৫ অনুপাত
- ২.৬ শতকরা হিসাব এবং তার ব্যবহার
- ২.৭ লাভ ও ক্ষতি
- ২.৮ সুদকষা
- ২.৯ ক্ষেত্র পরিমাপ
- ২.১০ বিবিধ পরিমাপ
- ২.১১ এক নজরে পাটিগণিতের গুরুত্বপূর্ণ সূত্রসমূহ

তৃতীয় অধ্যায় : সংখ্যা সেট

- ৩.১ সেটের পরিচয়
- ৩.২ সেটের সংখ্যা
- ৩.৩ সাধারণ অভেদাবলী
- ৩.৪ জটিল সংখ্যা

চতুর্থ অধ্যায় : বীজগণিত

- 8.১ গৌণিক সূত্র সমূহ
- ৪.২ গুণফলের সূত্র সমূহ
- 8.৩ ঘাত
- 8.8 বীজ
- 8.৫ লগারিদম
- ৪.৬ সমীকরণ
- 8.৭ মৌলিক অসমতা
- ৪.৮ চক্রবৃদ্ধির সূত্র

পঞ্চম অধ্যায় : জ্যামিতি

- ৫.১ সমকোণী ত্রিভূজ
- ৫.২ সমদ্বিবাহু ত্রিভূজ
- ৫.৩ সমবাহু ত্রিভূজ
- ৫.৪ বিষমবাহু ত্রিভূজ
- ৫.৫ বর্গক্ষেত্র
- ৫.৬ আয়তক্ষেত্র
- ৫.৭ সামান্তরিক
- ৫.৮ রম্বস
- ৫.৯ ট্রাপিজিয়াম
- ৫.১০ সমদ্বিবাহু ট্রাপিজিয়াম
- ৫.১১ অন্তঃবৃত্তের মধ্যে সমদ্বিবাহু ট্রাপিজিয়াম
- ৫.১২ অভঃবৃত্তের মধ্যে ট্রাপিজিয়াম
- ৫.১৩ কাইট
- ৫.১৪ সমবৃত্ত চতুর্ভুজ
- ৫.১৫ স্পর্শীয় চতুর্ভুজ
- ৫.১৬ সাধারণ চতুর্ভুজ
- ৫.১৭ সমবাহু ষড়ভূজ
- ৫.১৮ সমবাহু বহুভূজ
- ৫.১৯ বৃত্ত
- ৫.২০ বৃত্ত খণ্ড
- ৫.২১ বৃত্তাংশ
- ৫.২২ ঘনক
- ৫.২৩ আয়তকার সামন্তরিক
- ৫.২৪ প্রিজম
- ৫.২৫ সমবাহু চতুস্তলক
- ৫.২৬ সমবাহু পিরামিড
- ৫.২৭ সমবাহু পিরামিডের ছিন্নক
- ৫.২৮ আয়তকার লম্ব কীল
- ৫.২৯ অষ্টতলক
- ৫.৩০ লম্ব বৃত্তীয় বেলন
- ৫.৩১ লম্বৃত্তীয় বেলন সহ তীর্যক সমতলীয় তল
- ৫.৩২ লম্ বৃত্তীয় কোণক
- ৫.৩৩ লম্ব বৃত্তীয় কোণক এর ছিন্নক
- ৫.৩৪ গোলক
- ৫.৩৫ গোলীয় কাপ
- ৫.৩৬ গোলীয় বৃত্তখণ্ড
- ৫.৩৭ গোলীয় রেখাংশ
- ৫.৩৮ গোলীয় কীল
- ৫.৩৯ উপবৃত্তক
- ৫.৪০ বৃত্তাকার বৃষ

ঘঠ অধ্যায় : ত্রিকোণমিতি

- ৬.১ ছয়টি ত্রিকোণমিতিক অনুপাতের সূত্র
- ৬.২ কোণ পরিমাপের রেডিয়ান ও ডিগ্রী কোণের মধ্যে সম্পর্ক
- ৬.৩ ত্রিকোণমিতিক অপেক্ষকের সংজ্ঞা ও লেখ
- ৬.৪ ত্রিকোণমিতিক অপেক্ষকের চিহ্ন
- ৬.৫ বিভিন্ন কোণের জন্য ত্রিকোণমিতিক অপেক্ষকের মান
- ৬.৬ ত্রিকোণমিতির গুরুত্বপূর্ণ সূত্র সমূহ
- ৬.৭ লঘুকরণ সূত্র
- ৬.৮ ত্রিকোণমিতির পর্যায়বৃত্ত অপেক্ষক
- ৬.৯ ত্রিকোণমিতিক অপেক্ষকৈর মধ্যে সম্পর্ক
- ৬.১০ ত্রিকোণমিতিক যোগ-বিয়োগের সূত্র
- ৬.১১ দ্বিকোণের সূত্র
- ৬.১২ গুণিত কোণের সূত্র
- ৬.১৩ অর্ধ কোণের সূত্র
- ৬.১৪ অর্ধ কোণের ট্যানজেন্ট পরিচয়
- ৬.১৫ অন্যান্য ত্রিকোণমিতিক সূত্র সমূহ
- ৬.১৬ ত্রিকোণমিতিক অপেক্ষকের শক্তি
- ৬.১৭ ত্রিকোণমিতিক বিপরীত অপেক্ষকের লেখ ৬.১৮ ত্রিকোণমিতিক বিপরীত অপেক্ষকের মধ্যে সম্পক
- ৬.১৯ ত্রিকোণমিতিক সমীকরণ
- ৬.২০ পরাবৃত্তীয় অপেক্ষকের মধ্যে সম্পর্ক

সপ্তম অধ্যায় : মেট্রিক্স ও নির্ণায়ক

- ৭.১ নির্ণায়ক
- ৭.২ নির্ণায়কের ধর্ম
- ৭.৩ মেট্রব্র
- ৭.৪ রৈখিক সমীকরণের নিয়ম

অষ্টম অধ্যায় : ভেক্টর

- ৮.১ ভেক্টর স্থানাংক
- ৮.২ ভেক্টর যোগ
- ৮.৩ ভেক্টর বিয়োগ
- ৮.৪ ভেক্টর স্কেলিং
- ৮.৫ স্কেলার গুণফল
- ৮.৬ ভেক্টর গুণফল
- ৮.৭ ত্রয়ী গুণফল

দবম অধ্যায় :স্থানাংক জ্যামিতি

- ৯.১ একমাত্রিক স্থানাংক পদ্ধতি
- ৯.২ দ্বিমাত্রিক স্থানাংক পদ্ধতি
- ৯.৩ সমতলে সরল রেখা
- ৯.৪ বৃত্ত
- ৯.৫ উপবৃত্ত
- ৯.৬ পরাবৃত্ত
- ৯.৭ অতিবৃত্ত
- ৯.৮ ত্রিমাত্রিক স্থানাংক পদ্ধতি
- ৯.৯ সমতল

৯.১২ গোলক

দশম অধ্যায় : অন্তরকলন বিদ্যা

- ১০.১ অপেক্ষক এবং তাদের লেখ
- ১০.২ অপেক্ষকের সীমা
- ১০.৩ অন্তরকলজের সংজ্ঞা ও ধর্ম
- ১০.৪ অন্তরকলজের তালিকা
- ১০.৫ উচ্চক্রমের অন্তরকলজ
- ১০.৬ অন্তরকলজের আবেদন
- ১০.৭ অন্তরকল
- ১০.৮ অন্তরকল প্রকারক

একাদশ অধ্যায় : সমাকলন বিদ্যা

- ১১.১ অনির্দিষ্ট সমাকলন
- ১১.২ মূলদ অপেক্ষকের সমাকলন
- ১১.৩ অমূলদ অপেক্ষকের সমাকলন
- ১১.৪ ত্রিকোণমিতিক অপেক্ষকের সমাকলন
- ১১.৫ পরাবৃত্তীয় অপেক্ষকের সমাকলন
- ১১.৬ সূচক এবং লগারিদমীক অপেক্ষকের সমাকলন
- ১১.৭ লঘুকরণ সূত্র
- ১১.৮ নির্দিষ্ট সমাকল
- ১১.৯ অপ্রকৃত সমাকলন
- ১১.১০ দ্বৈত সমাকলন
- ১১.১১ ত্রয়ী সমাকলন
- ১১.১২ রেখা সমাকলন
- ১১.১৩ তলের সমাকলন

দ্বাদশ অধ্যায় : অন্তরকল সমীকরণ

- ১২.১ প্রথম ক্রমের সাধারণ অন্তরকল সমীকরণ
- ১২.২ দ্বিক্রমের সাধারণ অন্তরকল সমীকরণ
- ১২.৩ কিছু আংশিক অন্তরকলন সমীকরণ

এয়োদশ অধ্যায় : ধারা বা শ্রেণি

- ১৩.১ পাটিগাণিতিক ধারা
- ১৩.২ জ্যামিতিক ধারা
- ১৩.৩ কিছু সসীম ধারা
- ১৩.৪ অসীম ধারা
- ১৩.৫ অপসারী ধারা
- ১৩.৬ ঘাত ধারা
- ১৩.৭ শক্তি শ্রেণীর অন্তরকলন ও সমাকলন
- ১৩.৮ টেলর ও ম্যাকলারিণ শ্রেণী
- ৩.৯ কিছু অপেক্ষকের জন্য শক্তি শ্রেণীর বিস্তুতি
- ১৩.১০ দ্বিপদ শ্রেণী
- ১৩.১১ ফুরিয়ার শ্রেণী
- ১৩.১২ বিণ্যাস ও সমাবেশ

ভুমিকা

অংক বা গণিত শেখার শেষ নেই। সাধারণত দেখা যায় মাধ্যমিক স্তরের ছাত্র-ছাত্রীরা অংক করার সময় প্রায়ই অংকের সূত্রগুলি ভুলে যায়। তাই তাদের আবার সূত্রগুলিকে এক স্থানে লিখে তা তাদের পড়ার টেবিলে বা সামনে রেখে দেয় এবং সব সময়ই চোখ বোলায়, যাতে করে সূত্রগুলি যেন মনে থাকে। তাছাড়া বার বার বই উল্টানোও অসজ্য মনে করেন অনেকে। তাই গাণিতিক সূত্রের উপর একটি ভালো মানের বইয়ের অভাব অনেকে করে থাকেন। বাজারে যেসব সূত্রের বই পাওয়া যায় তা অনেকটাই গভীর বা উচ্চত্তর শ্রেণীর জন্য সহায়ক নয়। বর্তমান গ্রন্থে সেই অভাবকেই পূরণ করার চেষ্টা করা হয়েছে। বইটিতে পাটিগণিত, বীজগণিত, ক্যালকুলাস, জ্যামিতি, ত্রিকোণমিতি, পরিমিতির গুরুত্বপূর্ণ সূত্রাবলী একত্রে সাজানো হয়েছে। মাধ্যমিক, উচ্চমাধ্যমিক হতে শুরু করে উচ্চ পর্যায়ে যেসকল ছাত্র-ছাত্রী অধ্যায়নরত বা গণিতের উচ্চত্তর পর্যায়ে অধ্যায়ন করতে আগ্রহী তাদের জন্য বইটি অনেক উপকারে আসবে বলে মনে করি। এখানে প্রসঙ্গত একটি কথা বিশেষভাবে বলে রাখি, গণিতের অনেক শব্দের বাংলা প্রতিশব্দ পাওয়া কঠিন তদুপরী যতদূর সম্ভব মূল ইংরেজী শব্দের বাংলা প্রতিশব্দ দেবার চেষ্টা করা হয়েছে। আশাকরি, সকল শ্রেণীর ছাত্র-ছাত্রীদের যারা গণিত শিখতে আগ্রহী তাদের জন্য বইটি অসাধারণ ভূমিকা রাখতে পারবে। অনিচ্ছাকৃত ভুল-ক্রটির জন্য ক্ষমা প্রার্থনা করছি। ভুল সংক্রান্ত যে কোন অভিযোগ সাদরে গ্রহণ করব এবং তা পরবর্তি সংস্করণে শুধরে নেবার চেষ্টা করব। এছাড়া অভিজ্ঞ অধ্যাপকবৃন্দের মতমত সাদরে গ্রহণীয়।

বইটি সকলের ভালো লাগলে বা উপকারে আসলে আমার পরিশ্রম সার্থক হয়েছে বলে মনে করব।

খুলনা, ফেব্রুয়ারী ২০১৪

সৌমেন সাহা sahasoumen024@gmail.com

প্রারম্ভিক

কোন শিক্ষার্থীকে যদি জিজ্ঞাসা করা যায়, 'কোন পাঠিত বিষয়টি আপনার সবচেয়ে কঠিন মনে হয় ? তবে সে এক কথায় উত্তর দেবে, 'অংক'। সত্যি, অঙ্কের মত বিদঘুটে বিষয় বোধহয় দ্বিতীয়টি আর নেই। শুধু ছাত্র-ছাত্রীদের কথাই বা বলি কেন, যে কোন সাধারণ শিক্ষিত লোককে ওই একই প্রশ্ন করলে সম্ভবত হুবহু একই উত্তর মিলবে। তবে এমন দুই-একজন লোকও পাবেন যাদের কাছে অংক খারপ লাগার বিষয়ই নয় বরং তারা উল্টো তাতে আনন্দ পান। অনেকে মনে করেন (যারা অংক কষে আনন্দ পান), জীবনের সবচেয়ে বড় আনন্দ হচ্ছে প্রত্যেকদিন একটা করে অতি কঠিন অংকের সমাধান করা। আপনারা শুনলে অবাক হবেন যে সম্ভবত সভ্য মানুষের মধ্যে বিজ্ঞানের যতগুলি বিভাগ চালু আছে গণিত তথা অংকই হলো তার মধ্যে সবচেয়ে পুরাতন। বোধহয় মানুষ প্রয়োজনের তাগিদেই অংকের বিভিন্ন প্রক্রিয়া আবিষ্কার করতে বাধ্য হয়েছিল, যেমন প্রয়োজনই তাদেরকে দিয়ে আবিষ্কার করিয়েছিল বিজ্ঞানের অন্যান্য শাখার।

এখন প্রশ্ন হলো, মানুষের মাথায় কি করে অংক এলো ? এর উত্তর বলা যায়, বন্য মানুষ গোষ্ঠীবদ্ধ হয়ে যখনই বস-বাস করতে শুরু করেছে কৃষির আবিদ্ধার তখনো হয়নি, বন্য পশু শিকার করে মানুষের চলে ক্ষুন্নিবৃত্তি-তখনই সম্ভবত গণনা করার প্রয়োজন হয়েছিল মানুষের জীবনে। নিজের গোষ্ঠীর লোকদের হিসেব রাখা বা শিকারের পরিমান কতটুকু হলো তার মাপ রাখা এই সব থেকেই হয়তো অঙ্কের সূচনা। অবশ্য এ কাজটি সে সময়ে কিন্তাবে, কোন পদ্ধতির সাহায্য নিয়ে তারা করত তা আজ নিশ্চিত করে বলা সম্ভব নয়। কিন্তু সে সব পুরোনো কথা থাক। বিজ্ঞানের যত রকম শাখার সঙ্গে আজ আমাদের পরিচয় হয়েছে অংকশাস্ত্রই হলো তার মধ্যে সবচেয়ে প্রধান এবং গোড়ার বিষয়- এ কথা বললে হয়তো ভুল বলা হবে না। কারণ অংকশাস্ত্রের সাহায্য ছাড়া প্রায় কোন বিজ্ঞানই তেমন করে এগিয়ে যেতে পারে না। তা ছাড়া এর চর্চা খুবই সহজ, অর্থাৎ ব্যায়সাধ্য নয়।

এখন প্রশ্ন হলো গণিত বা অংক কথাটির অর্থ কি ? গণিত কথাটি এসেছে 'গণনা করা' থেকে। কথাটির অর্থ হলো 'গণনা-বিজ্ঞান' অর্থাৎ যে বিশেষ জ্ঞান দ্বারা গণনা করা হয়ে থাকে তাকেই গণিত বলা হয়। কথাটি অনেক দিনের পুরোনো। আর্যদের প্রাচীন শাস্ত্র বেদ, সেই বেদেরও বিভিন্ন জায়গায় 'গণিত' কথাটির বিশেষ উল্লেখ আছে। এক কথায় 'গণিত' বলে প্রকাশ করলেও এর বিভিন্ন বিভাগ সম্বন্ধেও হিন্দু পণ্ডিতেরা বেশ কিছু জানতেন। বৌদ্ধ শাস্ত্রাদিতে দেখা যায় যে গণিতের রয়েছে তিনটি বিভ গ, যথা: ১) মুদ্রা অর্থাৎ আঙ্গুলের সাহায্যে গণনা করা যায় যে গণিত, ২) গণনা অর্থাৎ মনে মনে হিসেব করে করা যায় যে গণিত এবং ৩) সংখ্যায়ন অর্থাৎ উচ্চ পর্যায়ের গণিত। অবশ্য সংখ্যায়ন কথাটি গণিতের সব রকম শাখা সম্বন্ধেই ব্যবহার করা চলে। আজকালকার দিনে আমরা গণিত বা অংক বলতে শুধুমাত্র গণনা বা

সংখ্যায়ন বুঝি না, কথাটি আজ আরো ব্যাপক হয়ে দাড়িয়েছে। এর মধ্যে রয়েছে পাটিগণিত, বীজগণিত,জ্যামিতি, ত্রিকোণমিতি, পরিমিতি প্রভৃতি।

অংকশাস্ত্রের ইংরেজী নাম ম্যাথমেটিক্স (Mathematices)। কথাটি এসেছে গ্রীক শব্দ 'ম্যাথিন' থেকে; এ কথাটির মানে হলো শিক্ষা করা। পাটিগণিতের ইংরেজী নাম অ্যারিথম্যাটিক; এ কথাটি 'অ্যারিথমাস' কথার রূপান্তর। অ্যারিথমাস মানে সংখ্যা। জ্যামিতি বা ক্ষেত্রগণিতের ইংরেজী নাম জিওমেট্রি। এ শব্দটি এসেছে পৃথিবী এবং পরিমাপ থেকে। (জিও হচ্ছে পৃথিবী এবং মেট্রি হচ্ছে পরিমাপ করা)। ত্রিভূজের তিনটি কোণ, ত্রিভূজের গুণাগুণ নিয়ে গণিত শাস্ত্রের যে বিভাগটি গড়ে উঠেছে তার সংস্কৃত এবং বাংলা নাম ত্রিকোণমিতি। ইংরেজীতে 'ট্রাঙ্গেল' অর্থাৎ ত্রিভূজ থেকেই ট্রিগোনোমেট্রি।

যে কোন শাখার গণিতের কথা ধরা যাক না কেন, না লিখে কোন গণনাকার্য করা যায় না। অবশ্য আঙ্গুলে গুণে বা মনে মনে হিসেব করে ছোটখাটো অংকের সমাধান করা যায় বটে, কিন্তু জটিল কিছু করতে গেলেই তার জন্যে কোন লেখার সরঞ্জাম দরকার। এ কাজে দুইটি জিনিষ প্রয়োজন। এক-যার উপর লেখা হবে; দুই.- যা দিয়ে লেখা হবে। যার উপর লেখা হবে সে কাজে কোন বোর্ড বা 'পাটি' ব্যবহার করা চলে; যা দিয়ে লেখা হবে তা কোন খড়িমাটি হতে বাঁধা নেই। এইভাবে পাটি বা বোর্ডের উপর লিখে যে গণনাকার্য করা হতো তারই নাম দেওয়া হয় পাটি গণিত। সেকালে মাটি বা পাটির উপর বালি ছড়িয়েও এ কাজটি সমাধান করা হতো। এজন্যেই পাটিগণিতের আর এক নাম দেওয়া হয়েছিল ধুলি-কর্ম। অবশ্য এ নামটার তেমন চল আজ নেই, কিন্তু পাটিতে লেখার চল উঠে গেলেও পাটিগণিত নামটি রয়ে গেছে। পাটিগণিত বলতে এখন আমরা বুঝি যে শাস্ত্রের সাহায়ে উচ্চ পর্যায়ের গণনাকার্য করা যায়।

এখন প্রশ্ন হলো, পাটিগণিত আর বীজগণিতের তফাৎটা কি ? পাটিগণিতে কতকগুলো সংখ্যা ব্যবহার করার রীতি আছে। কিন্তু বীজগণিতে অজানা সংখ্যা বা "বীজ" ব্যবহার করা হয় সংখ্যার বদলে। কোনও প্রতীক (ইংরেজীতে যাকে বলে 'সিম্বল') বা কোন অক্ষর দিয়ে এই অজানা সংখ্যা বা বীজ বোঝানো হয়। প্রাচীন ভারতবর্ষের বিশিষ্ট গণিতজ্ঞ ব্রক্ষণ্ডপ্ত সর্বপ্রথম পাটিগণিত ও বীজগণিতের মধ্যে প্রভেদ করেন। তিনি বীজগণিতকে নাম দিয়েছিলেন 'কুউক গণিত'।

কাজেই দেখা যাচ্ছে যে, পৃথিবীর যেখানেই গণিতশাস্ত্রের আরম্ভ হয়ে থাকুক না কেন, গণিতশাস্ত্র দুটি মূল ধারণার উপর নির্ভর করেই সৃষ্টি হয়েছে। প্রথমটি হচ্ছে গণনা করা ; আর দ্বিতীয়টি হচ্ছে প্রাচীন কালের লোকের পৃথিবী এবং বিশ্বব্রহ্মাণ্ড সম্বন্ধে ধারণা। অবশ্য আজকের দিনে আমরা যে গণিতের বিভিন্ন শাখার সঙ্গে পরিচিত তার মধ্যেও এই দুটি মূল ধারণার প্রভাব পুরোপুরি বর্তমান। তবে সপ্তদশ শতাব্দীর শেষের দিকে গণিতের আর একটি নতুন শাখার প্রবর্তন হয়। সেটি হচ্ছে 'বিশ্লেষণ গণিত' যাকে ইংরেজীতে বলা হয় অ্যানালিটিক্যাল ম্যাথামেটিক্স। এর প্রবর্তক হলেন মহাজ্ঞানী

নিউটন এবং লিব্নিৎস। বর্তমানে ইনট্রিগ্রাল ও ডিফারেনশিয়াল ক্যালকুলাস নামে যে গণিত পরিচিত তা আসলে বিশ্লেষণ গণিতেরই অংশ বিশেষ। কিন্তু মজার কথা হলো এই গণিতেরও আবিদ্ধার হয়েছিল নিউটন-লাইবনিৎসেরও জন্মের বহু আগে প্রাচীন ভারতের আরেক শ্রেষ্ঠ গণিতজ্ঞ দ্বিতীয় ভাদ্ধরাচার্যের হাতে।

আজকের দিনের গণিতকে আমরা মোটুমুটি দুইটি ভাগে প্রধাণত ভাগ করে থাকি। একটিকে বলি বিশুদ্ধ গণিত (পিওর ম্যাথমেটিক্স), অন্যটি ফলিত গণিত। গণিতের যে সব শাথা সম্বন্ধে এতক্ষণ আলোচনা করা হলো তা সবই বিশুদ্ধ গণিতের (Peour Mathematices) অংশ বিশেষ। গণিতের নানা প্রক্রিয়া অন্যান্য ব্যবহারিক বিজ্ঞানের নানা কাজে লাগে। এর মধ্যে রয়েছে পদার্থবিদ্যা, রসায়নশাস্ত্র, জ্যোতিষশাস্ত্র, তর্কশাস্ত্র, প্রভৃতি। গণিতের যে যে অংশ এ সবের বিভিন্ন সমাধানের কাজে লাগে তারই নাম ফলিত গণিত বা Applied Mathematices (অ্যাপ্লায়িড ম্যাথমেটিক্স)।

প্রথম অধ্যায় সিম্বল (Symbol) বা প্রতীক ১.১ সাধারণ গাণিতিক প্রতীকসমূহ

প্রতীক	প্রতীকের নাম	প্রতীক	প্রতীকের নাম
(Symbol)	(Symbol Name)	(Symbol)	(Symbol
			Name)
=	সমান (equals sign)		পর্যায় (period)
≠	অসমান (not equal sign)	a^b	ঘাত/ শক্তি
	worker (not equal sign)	a	(power)
>	বৃহত্তর (strict inequality)	a^b	caret
<	ক্ষুপ্রতর (strict inequality)	\sqrt{a}	বগমূল
	190% (strict medianty)	va	(square root)
≥	সমান ও বৃহত্তর (inequality)	$\sqrt[3]{a}$	ঘনমূল
		va	(cube root)
≤	সমান ও ক্ষুদ্রত্তর	⁴ √a	চতুর্থ মূল
	(inequality)	να	(fourth root)
()	প্রথম বন্ধনী	ⁿ √a	nth মূল (n-th
()	(parentheses)	να	root (radical))
[]	তৃতীয় বন্ধনী (brackets)	%	শতকরা / শতাংশ
			(percent)
+	যোগ (plus sign)	%0	প্রতি মাইল
			(per-mille)
_	বিয়োগ (minus sign)	ppm	প্রতি মিলিয়ন
			(per-million)
±	যোগ-বিয়োগ	ppb	প্রতি বিলিয়ন
	(plus - minus)	ppo	(per-billion)
_	বিয়োগ-যোগ	ppt	প্রতি ট্রিলিয়ন
	(minus - plus)	ppt	(per-trillion)
*	গুণ (asterisk)	÷	ভাগ (division
		·	sign / obelus)
×	ক্স/গুণ (times sign)	/	ভাগ (division
		<i>'</i>	slash)
	ডট/গুণ (multiplication		ভাগ (horizontal
	dot)	_	line)
mod	মুড (modulo)		

১.২ জ্যামিতিক প্রতীকসমূহ

প্রতীক	প্রতীকের নাম	প্রতীক	প্রতীকের নাম
(Symbol)	(Symbol Name)	(Symbol)	(Symbol
			Name)
	কোণ (angle)	_AB	চাপ (arc)
/	পরিমাপকৃত কোণ (measured	,	লম্ব
<u> </u>	angle)	1	(perpendicular)
1	spherical angle		সমান্তরাল
4	spherical aligie		(parallel)
L	সমকোণ (right angle)	≅	congruent to
0	ডিগ্ৰী (degree)	~	সদৃশ্য (similarity)
	arcminute	Δ	ত্রিভূজ (triangle)
′′	arcsecond	x-y	পার্থক্য (distance)
\leftrightarrow	অসীম রেখা (line)	77	পাই ধ্রুবক (pi
AB	THE CAN (INIC)	π	constant)
AB	রেখাংশ (line segment)	rad	রেডিয়ান (radians)
→ AB	রশা (ray)	grad	গ্ৰেড (grads)

১.৩ বীজগাণিতিক প্রতীকসমূহ

প্রতীক	প্রতীকের নাম	প্রতীক	প্রতীকের নাম
(Symbol)	(Symbol Name)	(Symbol)	(Symbol
			Name)
x	x variable	x!	exclamation mark
=	equivalence x		single vertical bar
≙	equal by definition $f(x)$		function of x
:=	equal by definition	$(f \circ g)$	function composition
~	approximately equal	(a,b)	open interval
≈	approximately equal	[<i>a</i> , <i>b</i>]	closed interval
∝	proportional to	onal to Δ	
∞	lemniscate	Δ	discriminant

«	much less than	Σ	sigma
>>	much greater than	ΣΣ	sigma
()	parentheses	П	capital pi
[]	brackets	e	e constant / Euler's number
{ }	braces	γ	Euler- Mascheroni constant
$\lfloor x \rfloor$	floor brackets	φ	golden ratio
[x]	ceiling brackets	π	pi constant

১.৪ রৈখিক (লিনিয়ার) বীজগাণিতিক প্রতীকসমূহ

প্রতীক	ক প্রতীকের নাম প্রতীক		প্রতীকের নাম
(Symbol)	(Symbol Name)	(Symbol)	(Symbol
			Name)
	dot	$\ x\ $	double vertical
			bars
×	cross	A^{T}	transpose
$A \otimes B$	tensor product	A†	Hermitian matrix
$\langle x,y\rangle$	inner product	A *	Hermitian matrix
[]	brackets	A^{-1}	inverse matrix
()	parentheses	rank(A)	matrix rank
A	determinant	dim(U)	dimension
det(A)	determinant		

১.৫ বিণ্যাস ও সমাবেশের প্রতীকসমূহ

প্রতীক	প্রতীকের নাম		
(Symbol)	(Symbol Name)		
n!	factorial		
$_{n}P_{k}$	permutation		
$egin{pmatrix} {}_{\mathbf{n}}^{\mathbf{C_k}} \ {}_{k}^{n} \end{pmatrix}$	combination		

১.৬ সম্ভাব্যতা ও পরিসংখ্যানের প্রতীকসমূহ

প্রতীক	প্রতীকের নাম প্রতীক		প্রতীকের নাম
(Symbol)	(Symbol Name)	(Symbol Name) (Symbol)	
P(A)	probability function	Md	sample median
$P(A \cap B)$	probability of events intersection	Qı	lower / first quartile
$P(A \cup B)$	probability of events union	Q_2	median / second quartile
$P(A \mid B)$	conditional probability function	Q ₃	upper / third quartile
f(x)	probability density function (pdf)	x	sample mean
F(x)	cumulative distribution function (cdf)	s²	sample variance
μ	population mean	S	sample standard deviation
E(X)	expectation value	Z_X	standard score
$E(X \mid Y)$	conditional expectation	<i>X</i> ~	distribution of X
var(X)	variance	$N(\mu,\sigma^2)$	normal distribution
σ^2	variance	U(a,b)	uniform distribution
std(X)	standard deviation	$exp(\lambda)$	exponential distribution
σ_X	standard deviation	gamma(c, λ)	gamma distribution
$ ilde{oldsymbol{x}}$	median	$\chi^2(k)$	chi-square distribution
cov(X,Y)	covariance	$F(k_1, k_2)$	F distribution
corr(X,Y)	correlation	Bin(n,p)	binomial distribution
$\rho_{X,Y}$	correlation	Poisson(λ)	Poisson distribution
. Σ	summation	Geom(p)	geometric distribution
ΣΣ	double summation	HG(N,K, $n)$	hyper-geometric distribution
Мо	mode	Bern(p)	Bernoulli distribution
MR	mid-range		

১.৭ সেট তত্ত্বের প্রতীকসমূহ

প্রতীক	প্রতীকের নাম	প্রতীক	প্রতীকের নাম
(Symbol)	(Symbol Name) (Symbol)		(Symbol Name)
{ }	set	x∉A	not element of
$A \cap B$	intersection	(a,b)	ordered pair
$A \cup B$	union	A×B	cartesian product
$A \subseteq B$	subset	A	cardinality
$A \subset B$	proper subset / strict subset	#A	cardinality
A ⊄ B	not subset	\aleph_0	aleph-null
$A \supseteq B$	superset	\aleph_1	aleph-one
$A\supset B$	proper superset / strict superset	Ø	empty set
A⊅B	not superset	\mathbb{U}	universal set
. 2 ^A	power set	N ₀	natural numbers / whole numbers set (with zero)
$\mathcal{P}(A)$	power set	N ₁	natural numbers / whole numbers set (without zero)
A = B	equality ·	Z	integer numbers set
A ^c	complement	Q	rational numbers set
A\B	relative complement	\mathbb{R}	real numbers set
A - B	relative complement	C	complex numbers set
ΑΔΒ	symmetric difference	A ⊖ B	symmetric difference
a∈A	element of		

১.৮ যুক্তিবিদ্যার প্রতীকসমূহ

প্রতীক	প্রতীকের নাম	প্রতীক	প্রতীকের নাম (Symbol Nome)
(Symbol)	(Symbol Name)	(Symbol)	(Symbol Name)
•	and	Φ_	circled plus / oplus
^	caret / circumflex	~	tilde
&	ampersand	⇒	implies
+	plus	⇔	equivalent
	reversed caret	A	for all
	vertical line	3	there exists
x'	single quote	∄	there does not exists
x	bar		therefore
7	not	·:	because / since
!	exclamation mark		

১.৯ ক্যালকুলাস ও বিশ্লেষণাত্মক গাণিতিক প্রতীকসমূহ

	-1	•	~
প্রতীক (Symbol)	প্রতীকের নাম প্রতীক (Symbol Name) (Symbol)		প্রতীকের নাম (Symbol Name)
$\lim_{x\to x_0} f(x)$	limit	\dot{y}	time derivative
ε	epsilon	ÿ	time second derivative
e	e constant / Euler's number	$\frac{\partial f(x,y)}{\partial x}$	partial derivative
y '	derivative		integral
y "	second derivative	∬	double integral
y ⁽ⁿ⁾	nth derivative	\mathfrak{M}	triple integral
$\frac{dy}{dx}$	derivative	•	closed contour / line integral
$\frac{d^2y}{dx^2}$	second derivative	∯	closed surface integral

$-\frac{d^ny}{dx^n}$	nth derivative	∰	closed volume integral
[<i>a</i> , <i>b</i>]	closed interval	$\overrightarrow{\widehat{x}}$	vector
(a,b)	open interval	\widehat{x}	unit vector
i	imaginary unit	$x*\overline{y}$	convolution
z*	complex conjugate	\mathcal{L}	Laplace transform
z	complex conjugate	${\mathcal F}$	Fourier transform
∇	nabla / del	δ	delta function
		∞	lemniscate

১.১০ সংখ্যা প্রতীকসমূহ

নাম	ইউরোপিয়ান	রোমান	नाम	ইউরোপিয়ান	রোমান
(Name)	(European)	(Roman)	(Name)	(European)	(Roman)
zero	0			200	CC
one	1	I		300	CCC
two	2	II		400	CD
three	3	III		500	D
four	4	IV		600	DC
five	5			700	DCC
six	6	VI		800	DCCC
seven	7	VII		900	CM
eight	8	VIII		1000	M
nine	9	IX			
ten	10	X			
eleven	11	XI			_
twelve	12	XII			
thirteen	13	XIII			
fourteen	14	XIV			
fifteen	15	XV			
sixteen	16	XVI			
seventeen	17	XVII			
eighteen	18	XVIII	sixty	60	LX
nineteen	19	XIX	seventy	70	LXX

twenty	20	XX	eighty	80	LXXX
thirty	30	XXX	ninety	90	XC
fourty	40	XL	one hundred	100	С
fifty	50	L			

১.১১ গ্রীক বর্ণমালার অক্ষর সমূহ

প্রতীক	প্রতীকের নাম	গ্রীক অক্ষরের নাম	সমতুল্য ইংরেজী অক্ষর
(Upper Case) বড় হাতের	(Lower Case) ছোট হাতের	(Greek Letter Name)	(English Equivalent)
A	α	Alpha	a
В	β	Beta	b
Γ	γ	Gamma	g
Δ	δ	Delta	d
E	ε	Epsilon	e
Z	ζ	Zeta	z
H	η	Eta	h
Θ	θ	Theta	th
I	ı	Iota	i
K	κ	Kappa	k
Λ	λ	Lambda	1
M	μ	Mu	m
N	ν	Nu	n
Ξ	ξ	Xi	X
О	o	Omicron	О
П	π	Pi	р
P	ρ	Rho	r
Σ Τ	σ	Sigma	S
T	τ	Tau	t
Y	υ	Upsilon	u
Φ	φ	Phi	ph
X	χ	Chi	ch
Ψ	Ψ	Psi	ps
Ω	ω	Omega	0

দ্বিতীয় অধ্যায়

পাটিগণিতের সূত্রসমূহ

(Formoula's of Arithmetic)

২.১ বিভাজ্যতা :

মনে করি, 'ক', 'খ' স্বাভাবিক সংখ্যা। 'খ', 'ক' দ্বারা বি্ভাজ্য (Divisible) বলতে বুঝায় এমন একটি স্বাভাবিক সংখ্যা 'গ' রয়েছে, যেন 'ক' 'গ' = 'খ' হয়। তখন 'ক' কে 'খ'-এর উৎপাদক (Factor) বা গুণনীয়ক এবং 'খ' কে 'ক'-এর গুণিতক (Multiple) বলা হয়।

$$ightarrow$$
'খ' 'ক' দারা বিভাজ্য বলতে $\dfrac{\sigma}{w}$ লেখা হয়।

- \rightarrow যে কোন সংখ্যা ১ এবং ঐ সংখ্যা দ্বারা বিভাজ্য ; প্রতীকে : $\frac{5}{6}$ এবং $\frac{\pi}{6}$
- → বিভাজ্যতার একটি গুরুত্বপূর্ণ ধর্ম হলো অনুবর্তিতা (Transitivity):

→ আরেকটি সহজ অথচ প্রয়োজনীয় ধর্ম হচ্ছে :

$$\frac{\overline{\Phi}}{\overline{\Psi}}$$
 এবং $\frac{\overline{\Phi}}{\overline{\Psi}}$ এবং $\frac{\overline{\Phi}}{\overline{\Psi}}$ এবং $\frac{\overline{\Phi}}{\overline{\Psi}}$; এখানে, $\Psi>\eta$ ধরে নেওয়া হয়েছে।

- → ১ এবং 'ক' বাদে 'ক'-এর অন্য কোন উৎপাদককে তার প্রকৃত উৎপাদক বলা হয়। 'খ' যদি 'ক' এর প্রকৃত উৎপাদক হয়়, তবে 'খ' '১ এর চেয়ে বড় এবং 'ক'-এর চেয়ে ছোট হবে।
- → যদি 'ক'-এর আদৌ কোন প্রকৃত উৎপাদক না থাকে, তবে 'ক' কে মৌলিক সংখ্যা বলা হয়্ অর্থাৎ যে সংখ্যা অথবা ১ ছাড়া অন্য কোন সংখ্যা দ্বারা বিভাজ্য নয় তাকে মৌলিক সংখ্যা বলে। যেমন ২,৩,৫,৭,১১,৩ ইত্যাদি।
- → যে সংখ্যা অন্তত একটি প্রকৃত উৎপাদক আছে, তাকে কৃত্রিম সংখ্যা বলা হয়।
- → ১ বাদে প্রত্যেক সংখ্যারই অন্তত একটি মৌলিক উৎপাদক রয়েছে। a মৌলিক সংখ্যা হলে a এর একমাত্র মৌলিক উৎপাদক a নিজেই। a কৃত্রিম সংখ্যা হলে a এর প্রকৃত উৎপাদকগুলোর মধ্যে (যদি একাধিক প্রকৃত উৎপাদক থাকে) যেটি ক্ষুদ্রতম, সেটি মৌলিক সংখ্যা হতে বাধ্য। কেননা, ঐ সংখ্যাটি মৌলিক না হলে তার অন্তত

একটি প্রকৃত উৎপাদক থাকতো, যা a এরও উৎপাদক হতো এবং ঐ সংখ্যার ছোট হতো। এক এক করে a এর সকল মৌলিক উৎপাদক বের করে a কে মৌলিক উৎপাদকে বিশ্লেষণ করা যায়। কোন সংখ্যাকে যেভাবেই মৌলিক উৎপাদকে বিশ্লেষণ করা হোক না কেন, তার মৌলিক উৎপাদকগুলো একই থাকবে। ঐ বিশ্লেষণে কোন মৌলিক উৎপাদক অবশ্য একাধিকবার উপস্থিত থাকতে পারে। কিন্তু এই উপস্থিতির সংখ্যাও যে কোন বিশ্লেষণে একই হবে। যেমন ৭২-এর মৌলিক উৎপাদকে বিশ্লেষণ হচ্ছে: ৭২ = ২×২×২×৩×৩।

এখানে ২ তিন বার এবং ৩ দুই বার উপস্থিত। কোন মৌলিক উৎপাদকের এই উপস্থিতির সংখ্যাকে ঐ উৎপাদকের সূচক (Exponent) বলা হয়। a যে কোন সংখ্যা হলে $a \times a$ কে a^2 , $a \times a \times a$ কে a^3 ইত্যাদি দ্বারা সূচিত ক্ষরা হয়। অতএব আমরা লিখতে পারি- ৭২ = ২ $^{\circ}$ × $^{\circ}$ ।

- $\stackrel{\cdot}{\to}$ যে কোন স্বাভাবিক সংখ্যার মৌলিক উৎপাদকে বিশ্লেষণ যে অনন্য এই অতি তাৎপর্যপূর্ণ ফল পাটিগাণিতের মূল উপপাদ্য নামে পরিচিত।
- → মৌলিক সংখ্যার শেষ নেই। অর্থাৎ অসংখ্য মৌলিক সংখ্যা রয়েছে।
- → কোন সংখ্যা মৌলিক ঠিক না প্রমাণের জন্য, যেসব মৌলিক সংখ্যার বর্গ ঐ সংখ্যার চেয়ে বড় নয়,এমন প্রত্যেক মৌলিক সংখ্যা দ্বারা তা অবিভাজ্য; দেখানোই যথেট । কেননা কোন কৃত্রিম সংখ্যার ক্ষুদ্রন্তম মৌলিক উৎপাদক ঐ সংখ্যার বর্গমূলের চেয়ে বড় নয় । যেমন ১৩৯ সংখ্যাটি মৌলিক । কেননা যেসব মৌলিক সংখ্যার বর্গ ১৩৯-এর বড় নয়, তার হচ্ছে ২,৩,৫,৭,১১ এবং এদের কোনটিই ১৩৯ এর উৎপাদক নয় ।
- → যে সংখ্যা ২ দ্বারা বি্ভাজ্য তাকে যুগা বা জোড় সংখ্যা (Even Number) বলা হয় ।
- → যে সংখ্যা ২ দ্বারা অবি্ভাজ্য তাকে অযুগা বা বিজোড় সংখ্যা (Odd Number) বলা হয় ।
- \rightarrow যুগা সংখ্যার সাধারণ রূপ 2n, সুতরাং

২.২ সরল অংক করা নিয়ম:

সরল অংক করবার সময় প্রথমে রেখা বন্ধনীর কাজ এবং পরে ক্রমান্বয়ে '১ম বন্ধনী', '২য় বন্ধনী', '৩য় বন্ধনী', 'এর', 'ভাগ','গুণ', 'যোগ' ও 'বিয়োগ'-এর কাজ করতে হয়। অবশ্য সম্ভব হলে গুণ ও ভাগের কাজ একত্রেও করা যায়। যেমন-

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}\right]$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right\}$$

$$= \alpha - \left[\alpha - \frac{1}{2}\left\{b - \left(\omega \div \frac{1}{2}\right)\right$$

২.৩ দশমিক ভগ্নাংশকে সাধারণ ভগ্নাংশে পরিবর্তনের নিয়ম :

মিনে রাখুন : কোন সংখ্যার সামনে যদি ফোঁটা থাকে তা হলে তাকে দশমিক আর কোন সংখ্যার উপরে যদি ফোঁটা থাকে তাহলে তাকে পৌণপুণিক বলে। যেমন :

২.৮ এটিকে পড়তে হবে এভাবে- দুই দশমিক আট এবং .২৭ = দশমিক দুই সাত পৌণপুণিক] → এক একটি পৌণপুণিকের জন্য হরে এক একটি ৯ লিখতে হবে। লবে দশমিক উঠিয়ে দিয়ে পুরো সংখ্যা লিখতে হবে এবং পৌণপুণিকের অংকগুলো ছাড়া তার বামে

যে সকল অংক থাকে তা বিয়োগ করতে হবে ; যেমন : ২.৭৭ =
$$\frac{299-2}{88}$$
।

→ দশমিক থেকে আরম্ভ করে পৌণপুণিবের পূর্ব পর্যন্ত অর্থাৎ দশমিক এবং পৌণপুণিকের পূর্ব পর্যন্ত অর্থাৎ দশমিক এবং পৌণপুণিকের মাঝে যে সকল অংক থাকে তাদের প্রত্যেকটির জন্য হরে এক একটি করে শূণ্য (০) হবে; যেমন:

$$2.80 = \frac{280 - 28}{80}$$

→ পৌণপুণিক ছাড়া যদি দশমিকের অংক থাকে তা হলে দশমিকের জন্য এক (১) এবং দশমিকের পরে যতটি অংক থাকবে তার প্রত্যেকটির জন্য একটি শূণ্য (০) হবে;

যেমন .৪৪৩ =
$$\frac{880}{2000}$$
।

২.৪ গ.সা.গু এবং ল.সা.গু:

গ্.সা.শু: দুইটি সংখ্যার সবচেয়ে বড় সাধারণ গুণনীয়ককে তাদের গরিষ্ঠ সাধারণ গুণনীয়ক (সংক্ষেপে গ.সা.গু) বলা হয়।

দুইটি সংখ্যার ১ ভিন্ন কোন সাধারণ গুণনীয়ক নাও থাকতে পারে। সেক্ষেত্রে তাদের গ.সা.গু হবে ১। এরপ সংখ্যাযুগলকে সহমৌলিক (relatively বা coprime) বলা হয়; যেমন- ৮, ৯। দুইটি বিভিন্ন মৌলিক সংখ্যা অবশ্যই সহমৌলিক। কিন্তু সহমৌলিক সংখ্যাযুগলের কোন একটি সংখ্যা মৌলিক নাও হতে পারে।

দুইটি সংখ্যার মৌলিক উৎপাদকে বিশ্লেষণ জানা থাকলে, তাদের গ.সা.গু. সহজেই লেখা যায়। যেমন-

২৭৭২ = ২^২×৩^২×৭×১১ এবং

8২০০ = ২ $^{\circ}$ \times ৩ \times ৫ $^{\circ}$ \times ৭ এর গ.সা.গু = ২ $^{\circ}$ \times ৩ \times ৭ = ৮৪। এই প্রক্রিয়াতে উভয় সংখ্যার সাধারণ মৌলিক উৎপাদকগুলো চিহ্নিত করে উভয় সংখ্যার মধ্যে তাদের ক্ষুদ্রত্তম সূচক নিতে হয়, এভাবে প্রাপ্ত সংখ্যাগুলোর গুণফলই নির্ণেয় গ.সা.গু।

ইউক্লিডের গ.সা.শু. নির্ণয়ের পদ্ধতি:

মৌলিক উৎপাদকে বিশ্লেষণ না করে, কিভাবে দুইটি সংখ্যার গ.সা.গু. নির্ণয় করা যায়, তা সর্বপ্রথম উল্লেখ দেখা যায় ইউক্লিডের গণিতশাস্ত্রের মহাগ্রন্থ "অবতারণিকায়" (Euclid's Elements) । তাই ওই প্রণালী ইউক্লিডীয় গ.সা.গু. প্রক্রিয়া নামে পরিচিত। একটি উদাহরণের সাহায্যে প্রক্রিয়াটি ব্যাখ্যা করা যাক।

মনেকরি, ১৪৪ ও ৬৩০ এর গ.সা.গু নির্ণয় করতে হবে। প্রথমে বড় সংখ্যাটিকে ছোট সংখ্যাটি দিয়ে ভাগ করি। ভাগফল হলো ৪, এবং ভাগশেষ হলো ৫৪। এখন এই ভাগশেষ দিয়ে ছোট সংখ্যাটিকে ভাগ দিই। ভাগফল হলো ২, ভাগশেষ হলো ৩৬। এখন আবার এই ভাগশেষ দিয়ে পূর্ববর্তী ভাগশেষ ৫৪-কে ভাগ দিই; ভাগফল হলো ১, ভাগশেষ হলো ১৮। এখন এই ভাগশেষ দিয়ে পূর্ববর্তী ভাগশেষ ত৬-কে ভাগ দিলে কোন অবশিষ্ট থাকে না। ভাগ মিলে যাওয়ায় ঠিক আগের ভাগশেষই নির্ণেয় গ.সা.গু। এক্ষেত্রে গ.সা.গু. হচ্ছে ১৮।

ল.সা.গু: দুইটি সংখ্যার সাধারণ গুণিতকদের মধ্যে ক্ষুদ্রতম সংখ্যাকে তাদের লঘিষ্ঠ সাধারণ গুণিতক (সংক্ষেপে ল.সা.গু) বলা হয়।

দুইটি সংখ্যার মৌলিক উৎপাদকে বিশ্লেষণ জানা থাকলে তাদের ল.সা.গু. ও সহজে লেখা যায়। যেমন-

২৭৭২ = ২ 3 ×৩ 3 ×৭×১১ এবং

8২০০ = ২° \times ৩ \times ৫ $^{2}\times$ ৭ এর ল.সা.গু = ২ $^{2}\times$ ৩ $^{2}\times$ ৫ $^{2}\times$ 9 \times 9 \times 9 = ১৩৮৬০০। এই প্রক্রিয়ায় উভয় সংখ্যায় উপস্থিত সকল মৌলিক উৎপাদকগুলোর উভয় সংখ্যার মধ্যে বৃহত্তম সূচক নিতে হয়। এভাবে প্রাপ্ত সংখ্যাগুলোর গুণফলই নির্ণেয় ল.সা.গু.।

→ দুইটি সহমৌলিক সংখ্যার ল.সা.গু.সংখ্যাদ্বয়ের গুণফল ; কেননা এরূপ দুইটি সংখ্যার মৌলিক উৎপাদকে বিশ্লেষণ আদৌ কোন সাধারণ উৎপাদক থাকতে পারে না। অতএব এদের ল.সা.গু. পেতে হলে সংখ্যাদ্বয়ের সকল মৌলিক উৎপাদকের গুণফল নিতে হবে, যা সংখ্যাদ্বয়ের গুণফলের সমান।

ভগ্নাংশের ল.সা.শু. ও গ.সা.শু. :

২.৫ অনুপাত:

অনুপাত দ্বারা একই জাতীয় দুইটি রাশির মধ্যে তুলনা বোঝায়। দুইটি একজাতীয় রাশি একটি অপরটির তুলনায় কতগুণ বা অংশ তাই ঐ রাশি দুইটির অনুপাত।

দুইটি রাশির অনুপাত নির্ণয় করতে হলে প্রথম রাশিকে দ্বিতীয় রাশি দ্বারা ভাগ করা হয়। প্রথম রাশিকে 'পূর্ব রাশি' এবং দ্বিতীয় রাশিকে 'উত্তর রাশি' বলা হয়। যেমন : যদি রতন ও মানিক ঘন্টায় যথাক্রমে ৫ কি.মি. ও ৪ কি.মি. দৌড়ায় তবে রতন ও মানিকের গতিবেগের অনুপাত = $\frac{\alpha \cdot \pi \cdot \pi}{8 \cdot \pi \cdot \pi}$ । অর্থাৎ রতনের গতিবেগ

মানিকের গতিবেগের 🦟 গুণ।

অনুপাত একটি প্রকৃত ও অপ্রকৃত ভগ্নাংশ। সুতরাং ভগ্নাংশের সকল নিয়মই অনুপাতের বেলায় প্রযোজ্য। অনুপাতকে 'ঃ' এরূপ চিহ্ন দ্বারা প্রকাশ করা হয়। কোন অনুপাতের মান ১ অপেক্ষা বড় হলে তাকে গুরু অনুপাত এবং ১ অপেক্ষা ছোট হলে তাকে লঘু অনুপাত ও ১ হলে তাকে একানুপাত বলা হয়। যেমন-

$$\frac{22}{c}$$
 গুরু অনুপাত এবং $\frac{9}{6}$ লঘু অনুপাত।

বিভিন্ন প্রকার অনুপাত :

ব্যস্ত অনুপাত: কোন অনুপাতের পূর্ব ও উত্তর রাশিকে যথাক্রমে উত্তর ও পূর্ব রাশি ধরে যে অনুপাত হয় তাকে প্রথম অনুপাতের ব্যস্ত অনুপাত বলা হয়। যেমন- ৩ ঃ ৪ এর ব্যস্ত অনুপাত ৪ ঃ ৩ ।

মিশ্র অনুপাত : দুইটি রাশির অনুপাতকে সরল অনুপাত বলা হয়। একাধিক সরল অনুপাতের পূর্ব রাশির গুণফলকে পূর্বরাশি ও উত্তর রাশির গুণফলকে উত্তর রাশি ধরে যে অনুপাত হয়, তকে মিশ্র অনুপাত বলা হয়। যেমন- ৫ ঃ ৬, ৩ ঃ ৪ ও ২ ঃ ৩ তিনটি সরল অনুপাত। তাদের পূর্ব রাশিগুলোর গুণফল ৩০ এবং উত্তর রাশিগুলোর গুণফল ৭২; সুতরাং প্রদত্ত অনুপাত তিনটির মিশ্র অনুপাত ৩০ ঃ ৭২ ।

দ্বিশুণানুপাত : কোন অনুপাতের পূর্ব ও উত্তর রাশির বর্গের অনুপাতকে তার দ্বিশুণানুপাত বলা হয়। যেমন- ৩ ঃ ২ এর দ্বিশুণানুপাত ৩ ২ ঃ ২ ২ ৯ ঃ ৪ ।

দ্বিভাজিত তনুপাত : কোন অনুপাতের পূর্ব ও উত্তর রাশির বর্গমূলের অনুপাতকে তার দ্বিভাজিত অনুপাত বলা হয়।

যেমন- ১৬ ঃ ৯ এর দ্বিভাজিত অনুপাত $\sqrt{\mathsf{১৬}}$ ঃ $\sqrt{\mathsf{a}} = \mathsf{8}$ ঃ ৩ ।

সমানুপাত : যদি চারটি রাশি এরূপ হয় যে প্রথম ও দ্বিতীয়টির অনুপাত তৃতীয় ও চতুর্থটির অনুপাতের সমান, তবে ওই চারটি রাশি নিয়ে একটি সমানুপাত উৎপন্ন হয়। যেমন- ৫ টাকা, ১৫ টাকা, ৬ কি.মি. এবং ১৮ কি.মি. । রাশি চারটি একটি সমানুপাত তৈরী করে। কেননা, প্রথম দুইটি রাশির অনুপাত $\frac{c}{\lambda c} = \frac{\lambda}{2}$ এবং দ্বিতীয় দুইটি রাশির

অনুপাত
$$\frac{6}{2} = \frac{5}{2}$$
। এই অনুপাতকে ৫ % ১৫ = ৬ % ১৮ প্রকাশ করা হয়।

সমানুপাতের চারটি রাশিই একজাতীয় হওয়ার প্রয়োজন হয় না। প্রত্যেক অনুপাতের রাশি দুইটি একজাতীয় হলেই চলে। সমানুপাতের প্রথম ও চতুর্থ রাশিকে প্রান্তীয় রাশি ও দ্বিতীয় ও তৃতীয় রাশিকে মধ্য রাশি বলা হয়। চতুর্থ রাশিকে ১ম, ২য় ও ৩য় রাশির চতুর্থ সমানুপাতিক বলা হয়। সমানুপাতের ১ম,২য়,৩য় ও ৪র্থ রাশিকে উল্লিখিত ক্রমে সমানুপাতি বলা হয়।

ক্রমিক সমানুপাত : যদি একই জাতীয় তিনটি রাশি এরপ হয় যে ১ম ঃ ২য় = ২য় ঃ ৩য়, তবে ওই রাশি তিনটি ক্রমিক সমানুপাতে আছে বলা হয়। এখানে ২য় রাশিটিকে ১ম ও ৩য় রাশির মধ্যক বা মধ্য সমানুপাতী এবং তৃতীয় রাশিকে ১ম ও ২য় রাশির তৃতীয় সমানুপাতিক বলা হয়।

नक्नीयः

- ১) চারটি রাশি সমানুপাতী হলে প্রান্তীয় রাশি দুইটির মানের গুণফল মধ্যরাশি দুইটির মানের গুণফলের সমান হয়। অর্থাৎ, কঃখ = গঃঘ হলে কঘ =খগ।
- ২) সমানুপাতের অনুপাত দুইটির ব্যস্ত অনুপাত দুইটি ও সমান হয়।
- ৩) চারটি একজাতীয় রাশি সমানুপাতিক হলে ১ম ও ৩য় রাশির অনুপাত, ২য় ও ৪র্থ রাশির অনুপাতের সমান হয়। অর্থাৎ, কঃ খ = গঃ ঘ হলে কঃ গ = খঃ ঘ।

২.৬ শতকরা হিসাব এবং তার ব্যবহার :

শতকরা একটি ভগ্নাংশ, যার হর ১০০। সুদ-কষা, লাভ-ক্ষতি, জনসংখ্যা সম্পর্কিত তথ্য প্রভৃতি দৈনন্দিন ব্যবহারিক ক্ষেত্রে আমরা শতকরা ব্যবহার করে থাকি। শতকরা প্রকাশের প্রতীক '%'। এর অর্থ প্রতি 'শতে'। যেমন, শতকরা ৭ অর্থ $\frac{9}{500}$ । একে ৭% লেখা হয়।

নিম্নে কয়েকটি ভগ্নাংশের সঙ্গে তাদের শতকরা সম্পর্ক দেখানো হলো:

ভগ্নাংশে	দশমিক ভগ্নাংশ	শতাংশ	শতকরা
3	.২৫	300	२०%
	.২০	২০	२०%
\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	.১৫০	>60 >00	\ @0%
<u>ء</u> ک	.১২৫	300	۷
b		200 25 2	۶۶ ۶ %
7	.oo¢	2	<mark>३</mark> %
২০০		<u>></u> >> >>00	2

যে কোন সাধারণ বা দশমিক ভগ্নাংশকে শতকরায় এবং শতকরাকে সাধারণ বা দশমিক ভগ্নাংশে রূপান্তরিত করা যায়।

শতকরাকে সাধারণ ভগ্নাংশে প্রকাশ :

$$3b\% = \frac{3b}{300} = \frac{8}{60}$$
; $\frac{3}{20}\% = \frac{\frac{3}{20}}{\frac{3}{200}} = \frac{\frac{9}{20}}{\frac{3}{200}} = \frac{\frac{9}{200}}{\frac{3}{200}} = \frac{\frac{9}{200}}{\frac{9}{200}} = \frac{\frac{9}{200}}{\frac{9}{200}} = \frac{\frac{9}{200}}{\frac{9}{200}} = \frac{\frac{9}{200}}{\frac{9}{200}} = \frac{\frac{9}{200}}{\frac{9}{200}} = \frac{9}{200}$

সাধারণ ভগ্নাংশকে শতকরায় প্রকাশ:

$$\frac{2}{6} = \frac{5}{6} \times \frac{5}{6} = \frac{80}{500} = 80\% \quad ; \quad \frac{5}{5} = \frac{5}{5} \times \frac{5}{5} = \frac{55}{5} = \frac{5$$

শতকরাকে দশমিক ভগ্নাংশে প্রকাশ :

$$2.8\% = \frac{2.8}{200} = .028$$
; $200\% = \frac{200}{200} = 2.00$

সূত্র : যদি
$$b=$$
 মোট রাশি, $r=$ শতকরা ভগ্নাংশ $=\frac{5}{200}\%$ ও

$$p=$$
শতকরা অংশ = b এর $S\%$ হয় তাহলে $p=br$.

দশমিক ভগ্নাংশকে শতকরায় প্রকাশ:

$$\% P \& \theta = \frac{P \& \theta}{200} = \frac{200 \times P \& 00}{200} = P \& 00.$$

$$\% P \& \theta = \frac{200 \times P \& 00}{200} = \frac{200 \times P \& 00}{200} = 9 \& 0.$$

২.৭ লাভ ও ক্ষতি:

জিনিসপত্র কেনাবেচায় লাভ বা ক্ষতি হতে পারে। কোন জিনিস কিনতে বা তৈরী করতে যে ব্যয় হয়, তাকে 'ক্রয়মূল্য' বলা হয়। আর কোন জিনিস বিক্রয় করলে যে দাম পাওয়া যায় তাকে 'বিক্রয়মূল্য' বলা হয়।

> বিক্রয়মূল্য ক্রয়মূল্য অপেক্ষা বেশি হলে লাভ হয়। বিক্রয়মূল্য ক্রয়মূল্য অপেক্ষা কম হলে ক্ষতি হয়।

সাধারণ ব্যবসায়ীরা কেনাবেচার জন্য দোকানভাড়া, কুলিভাড়া, গাড়িভাড়া ও কর্মচারীর বেতন দিয়ে থাকেন। এসব খরচকে আনুষঙ্গিক খরচ বলা হয়। একটি জিনিষের ক্রয়মূল্য এবং তা কেনাবেচার খাতে আনুষঙ্গিক খরচকে একত্রে ওই জিনিসের জন্য বিনিয়োগ বলা হয়। অর্থাৎ একটি জিনিস বিক্রয়ের পূর্ব পর্যন্ত সেই খাতে সর্বমোট খরচই বিনিয়োগ। অনেক সময় বিনিয়োগকে প্রকৃত ক্রয়মূল্য বা্ সর্বমোট খরচ বলে ধরা হয়। ব্যবসায়ীরা বিনিয়োগের উপর নির্ভর করে বিক্রয়মূল্য নির্দিষ্ট করে। অর্থাৎ উপরের আলোচনা থেকে বলা যায় যে.

বিক্রয়মূল্য - ক্রয়মূল্য = লাভ ক্রয়মূল্য - বিক্রয়মূল্য = ক্ষতি ক্রয়মূল্য + আনুষঙ্গিক খরচ = বিনিয়োগ বিনিয়োগ + লাভ = বিক্রয়মূল্য বিনিয়োগ - ক্ষতি = বিক্রয় মূল্য

মনে রাখতে হবে যে লাভ বা ক্ষতি সবসময় বিনিয়োগের উপর হিসাব করা হয় এবং তাকে সাধারণ বিনিয়োগের শতকরা রূপে প্রকাশ করা হয়। আনুষঙ্গিক খরচের উল্লেখ না থাকলে ক্রয়মূল্যকেই বিনিয়োগ বলে গণ্য করা হয়।

S% লাভ বা ক্ষতি বললে লাভ বা ক্ষতি রিনিয়োগের S% বুঝায়। এর অর্থ ১০০ টাকা বিনিয়োগের লাভ বা ক্ষতি S টাকা। b টাকা বিনিয়োগে S% লাভ বা ক্ষতি

হলে p=br সূত্র থেকে পাওয়া যায়,
$$p=br=b imes \frac{S}{200}$$

সুতরাং S% লাভে b টাকা বিনিয়োগকৃত জিনিসের বিক্রয়মূল্য = $b+rac{b imes S}{200}$ টাকা।

S% ক্ষতিতে b টাকা বিনিয়োগকৃত জিনিসের বিক্রয়মূল্য = $b - \frac{b \times S}{200}$ টাকা।

b টাকা বিনিয়োগে মোট p টাকা লাভ বা ক্ষতি হলে $p{=}br$ সূত্র থেকে পাওয়া যায়।

$$r = \frac{p}{b} = \frac{p \times 200}{200} = \frac{p \times 200}{b} \%$$

অর্থাৎ শতকরা লাভ বা ক্ষতি = $\frac{p imes imes imes oo}{b}$ টাকা।

২.৮ সুদক্ষা:

কোনো ব্যাক্তি বা প্রতিষ্ঠান অপর কোন ব্যক্তি বা প্রতিষ্ঠানকে টাকা ধার দিলে ধারদাতাকে পাওনাদার এবং ধার গ্রহীতাকে দেনাদার বলা হয়।

ধার দেওয়া টাকাকে সাধারণত মূলধন বা আসল বলা হয়।

পাওনাদার দেনাদারের নিকট থেকে মুলধনের উপর যে অতিরিক্ত টাকা পেয়ে থাকে তাকে মূলধনের সুদ বলা হয়। অর্থাৎ মূলধন ব্যবহারের জন্য মূলধনের মালিককে যে অতিরিক্ত অর্থ দিতে হয় তাই সুদ।

সুদ ও মূলধন বা আসলের সমষ্টিকে সুদ মূল বা সুদ-আসল বলা হয়।

কোন নির্দিষ্ট টাকার উপর কোন নির্দিষ্ট সময়ের জন্য যে সুদ দেয়া হয় তাকে সুদের হার বলা হয়। সুদের হার সাধারণত ১০০ টাকার উপর এক বছরের জন্য ধরা হয়ে থাকে এবং তাকে শতকরা বার্ষিক সুদের হার বলা হয়।

সুদ সাধারণত দুই প্রকার : সরল সুদ ও চক্রবৃদ্ধি সুদ।

কেবল আসল বা মূলধনের উপর যে সুদ হিসাব করা হয় তাকে সরল সুদ বলা হয়। আবার নির্দিষ্ট সময়ান্তে উদ্ভূত সুদ-আসলকে আসল ধরে পরবর্তী নির্দিষ্ট সময়ের জন্য তার উপর সুদ নির্ধারণ করা হলে ওই সুদকে চক্রবৃদ্ধি সুদ বলা হয়।

অন্যরূপ উল্লেখ না থাকলে 'সুদের হার' বলতে শতকরা বার্ষিক সুদের হার বুঝায়। সরল সুদকষার ক্ষেত্রে আসল, সুদ, সুদের হার ও সময়-এই চারটি উপাত্তের যে কোন তিনটি জানা থাকলে, চতুর্থটি ঐকিক নিয়মে নির্ণয় করা যায়। লক্ষণীয় যে,

শতকরা বার্ষিক সুদের হার S হলে,

১০০ টাকার ১ বছরের সুদ S টাকা

১ টাকার ১ বছরের সুদ
$$\frac{S}{200}$$
 টাকা

b টাকার ১ বছরের সুদ $b \times \frac{S}{200}$ টাকা

90

b টাকার t বছরের সুদ $b imes \frac{S}{200} imes t$ টাকা

অর্থাৎ, i = brt

যেখানে b= মূলধন, r= ১ টাকার ১ বছরের সুদ $=\frac{S}{200}$, যেখানে সুদের হার S% , t= সময় (বছর), t= মোট সুদ

উল্লেখ যে, S% সুদের হার একক মূলধনের একক সময়ের সুদ $r=rac{S}{200}$

সুদ-কষার উপরোক্ত i=brt সূত্রের ব্যবহার অনেক ক্ষেত্রে সুবিধাজনক।

সাধারণভাবে ৩০ দিনে ১ মাস, ১২ মাসে ১ বছর এবং ৩৬৫ দিনে ১ বছর ধরা হয়। বছরের কোন নির্দিষ্ট সময় থেকে অন্য কোন নির্দিষ্ট সময় হিসাব করতে হলে প্রতি ইংরেজী মাসে যতদিন থাকে তা ধরতে হবে-যেমন, জুন মাসে ৩০ দিন, জুলাই ও আগষ্ট মাসে ৩১ দিন, ইত্যাদি।

২.৯ ক্ষেত্র পরিমাপ:

কোন সমতলের সীমাবদ্ধ স্থানকে ক্ষেত্র বলে। আর সীমাবদ্ধ স্থানের পরিমাপকে ওই ক্ষেত্রের ক্ষেত্রফল বলা হয়।

যে কোন পরিমাপে একক প্রয়োজন। ক্ষেত্র পরিমাপের জন্য, যে বর্গক্ষেত্রের বাহু ১ দৈর্ঘ্য-একক (যথা ঃ সে.মি., ইঞ্চি ইত্যাদি), তার ক্ষেত্রফলকে একক হিসাবে নেয়া হয় এবং একে ১ বর্গ দৈর্ঘ্য একক (যথা ঃ বর্গ সে.মি., বর্গ ইঞ্চি ইত্যাদি) বলা হয়।

যে বর্গক্ষেত্রের এক বাহুর দৈর্ঘ্য ১ সে.মি., তার ক্ষেত্রফল ১ বর্গ.সে.মি.। যে বর্গক্ষেত্রের এক বাহুর দৈর্ঘ্য ১ ইঞ্চি, তার ক্ষেত্রফল ১ বর্গ ইঞ্চি। বড় আকারের ক্ষেত্রের পরিমাপের জন্য বৃহত্তর একক ব্যবহার করা হয়। যথা ঃ ১ বর্গ মিটার (বর্গ মি.) ১ বর্গ কি.মি., ১ বর্গ মাইল ইত্যাদি।

মেট্রিক পদ্ধতিতে ভূমি পরিমাপের একক এয়র।

১ এয়র = ১ বর্গ ডেকামিটার = ১০০ বর্গ মিটার।

দেশীয় পদ্ধতিতে পূর্বে বর্গগজ, বর্গ চেইন, একর, বর্গমাইল এবং ছটাক, কাঠা, বর্গরাশি, বিঘা ইত্যাদি ব্যবহৃত হতো। নিচে ক্ষেত্র পরিমাপের বিভিন্ন এককের সম্পর্ক উল্লেখ করা হলো:

- ১ বর্গ মিটার = ১০০ বর্গ ডেসিমিটার = ১০০০০ বর্গ সে.মি.
- ১ এয়র = ১ বর্গ ডেকামিটার = ১০০ বর্গ মিটার
- ১ বৰ্গ ফুট = ১৪৪ বৰ্গ ইঞ্চি
- ১ বর্গ গজ =৯ বর্গ ফুট

বিভিন্ন ক্ষেত্রের ক্ষেত্রফল নির্ণয় করার সূত্রসমূহ:

আয়তক্ষেত্রের ক্ষেত্রফল = দৈর্ঘ্য ×প্রস্থ

বর্গক্ষেত্রের ক্ষেত্রফল = (বাহু)^২

বর্গক্ষেত্রের কর্ণ =
$$\sqrt{(বাহু)^2 + (বাহু)^2}$$

সামন্তরিক ক্ষেত্রের ক্ষেত্রফল = ভূমি ×উচ্চতা

ত্রিভূজ ক্ষেত্রের ক্ষেত্রফল =
$$\frac{5}{2}$$
 ভূমি \times উচ্চতা

সমকোণী ত্রিভূজ-ক্ষেত্রের ক্ষেত্রফল = সমকোণ সংলগ্ন বাহুদ্বয়ের গুণফলের অর্থেক। যেখানে, a,b,c ত্রিভূজের বাহু তিনটির দৈর্ঘ্য এবং 2S=a+b+c (ত্রিভূজের পরিসীমা) সেখানে, ত্রিভূজ-ক্ষেত্রের ক্ষেত্রফল = $\sqrt{s(s-a)(s-b)(s-c)}$

অর্থ পরিসীমা = (S)=
$$\frac{a+b+c}{2} = \frac{$$
পরিসীমা}

বর্গক্ষেত্রের পরিসীমা = 8 × এক বাহুর পরিমাণ

সমিছবাহু ত্রিভূজের ক্ষেত্রফল =
$$\frac{a}{8}\sqrt{8b^2-a^2}$$
 [যেখানে $a=$ ভূমি, $b=$ অপর বাহু]

সমবাহু ত্রিভূজের ক্ষেত্রফল
$$=\frac{\sqrt{2}}{8}a^2$$
[যেখানে $a=$ যে কোন বাহুর দৈর্ঘ্য]

২.১০ বিবিধ পরিমাপ:

ওজন পরিমাপের মেট্রিক এককসমূহ

 ১০ মিলিগ্রাম
 =
 ১ সেন্টিগ্রাম

 ১০ সেন্টিগ্রাম
 =
 ১ ডেসিগ্রাম

 ১০ ডেসিগ্রাম
 =
 ১ গ্রাম

১০ থাম = ১ ডেকাথাম
১০ ডেকাথাম = ১ বেক্টোথাম
১০ হেক্টোথাম = ১ কিলোথাম
১০০ কিলোথাম = ১ কুইন্টাল
১০০০ কিলোথাম বা = ১ মেটিক টন

১০ কুইন্টাল

তরল পদার্থের আয়তন পরিমাপের মেট্রিক এককসমূহ

 ১০ মিলিলিটার
 =
 ১ সেন্টিলিটার

 ১০ সেন্টিলিটার
 =
 ১ ডেসিলিটার

 ১০ ডেসিলিটার
 =
 ১ লিটার

 ২০ লিটার
 =
 ১ ডেকালিটার

 ১০ ডেকালিটার
 = ১ হেক্টোলিটার

 ১০ হেক্টোলিটার
 = ১ কিলোলিটার

দৈর্ঘ্য পরিমাপের মেট্রিক এককসমূহ

 ১০ মিলিমিটার
 =
 ১ সেন্টিমিটার

 ১০ সেন্টিমিটার
 =
 ১ ডেসিমিটার

 ১০ মেটার
 =
 ১ মেটার

 ১০ মেটার
 =
 ১ ডেকামিটার

 ১০ ডেকামিটার
 =
 ১ হেক্টোমিটার

 ১০ হেক্টোমিটার
 =
 ১ কিলোমিটার

দৈর্ঘ্য পরিমাপের মেট্রিক ও ব্রিটিশ পদ্ধতির সম্পর্ক

১ মিটার = ৩৯.৩৭ ইঞ্চি (প্রায়)
১ কিলো মিটার = ০.৬২ মাইল (প্রায়)
১ ইঞ্চি = ২.৫৪ সে.মি. (প্রায়)
১ গজ = ০.৯১৪৪ মিটার (প্রায়)
১ মাইল = ১.৬ কিলোমিটার (প্রায়)

ক্ষেত্রফল পরিমাপের মেট্রিক এককসমূহ ভূমি পরিমাপের মূল একক বর্গমিটার ১০০ বর্গ সেন্টিমিটার = ১ বর্গ ডেসিমিটার ১০০ বর্গ ডেসিমিটার ১ বর্গ মিটার ১০০ বর্গ মিটার = ১ এয়র (বর্গ ডেকামিটার) ১ হেক্টর বা ১ বর্গ হেক্টোমিটার ১০০ এয়র ক্ষেত্রফল পরিমাপের ব্রিটিশ এককসমূহ ১৪৪ বর্গ ইঞ্চি = ১ বর্গ ফুট ৯ বৰ্গ ফুট = ১ বর্গ গজ ৪৮৪০ বর্গ গজ = ১ একর ১০০ শতক (ডেসিমেল) = ১ একর ১৭৬০ বর্গগজ ১ মাইল ক্ষেত্রফল পরিমাপের দেশীয় এককসমূহ ১ বর্গ হাত = ১ গণ্ডা = ১ ছটাক ২০ গণ্ডা = ১ কাঠা ১৬ ছটাক ১ বিঘা ২০ কাঠা ক্ষেত্রফল পরিমাপের মেট্রিক ও ব্রিটিশ পদ্ধতির সম্পর্ক ১ বর্গ সেন্টিমিটার = ০.১৬ বর্গ ইঞ্চি (প্রায়) ১ বর্গ মিটার = ১০.৭৬ বর্গফুট (প্রায়) ১ হেক্টর = ২.৪৭ একর (প্রায়) ১ বর্গ ইঞ্চি = ৬.৪৫ বর্গ সেন্টিমিটার (প্রায়) ১ বর্গ ফুট = ৯২৯ বর্গ সেন্টিমিটার (প্রায়) = ০.৮৪ বর্গ মিটার (প্রায়) ১ বর্গ গজ ১ বর্গ মাইল ৬৪০ একর ক্ষেত্রফল পরিমাপের মেট্রিক , ব্রিটিশ ও দেশীয় এককের সম্পর্ক ১ বর্গ হাত = ৩২৪ বর্গ ইঞ্চি ৪ বর্গগজ বা ৪ গণ্ডা = ৯ ফুট = ০.৮৩৬ বর্গমিটার (প্রায়) = ৭২০ বর্গফুট = ৮০ বর্গগজ ১ কাঠা =৬৬.৮৯ বর্গমিটার (প্রায়) ১ বিঘা = ১৬০০ বৰ্গ গজ = ১৩৩৭.৮ বর্গমিটার (প্রায়) ৪৩৫.৬ বর্গফুট (প্রায়) ১ শতক = ১০০০ বর্গকড়ি (১০০ কড়ি=৬৬ ফুট) ১ বর্গমাইল = ১৯৩৬ বিঘা

১ বর্গমিটার = 8.৭৮ গণ্ডা (প্রায়) =০.২৩৯ ছটাক (প্রায়) = ২৩.৯ ছটাক (প্রায়) ১ এয়র আয়তন পরিমাপের মেট্রিক এককসমূহ ১০০০ ঘনসেন্টিমিটার ১ ঘন ডেসিমিটার ১০০০ ঘন ডেসিমিটার ১ ঘন মিটার ১ ঘন মিটার = ১ স্টেয়র = ১ ডেকাস্টেয়র ১০ ঘনস্টেয়র আয়তনে মেট্রিক ও ব্রিটিশ এককের সম্পর্ক ১ স্টেয়র = ৩৫.৩ ঘনফুট (প্রায়) = ১৩.০৮ ঘনগজ (প্রায়) ১ ডেকাস্টেয়র = ২৮.৩৬ লিটার (প্রায়) ১ ঘনফুট ১ ইঞ্চি = ২.৫৪ সেন্টিমিটার (প্রায়) = ৩৯.৩৭ ইঞ্চি ১ মিটার = ১ হেক্টর ১০০ এয়র ১০০০ বর্গমিটার ১ হেক্টর = ১০,০০,০০০ ঘন সেন্টিমিটার ১ ঘন মিটার ১ বর্গমিটার = ১০.৭৬ বর্গফুট = ১ হেক্টর ২.৪৭ একর = ১০০০ ঘন সেন্টিমিটার ১ লিটার = ০.২২ গ্যালন (প্রায়) ১ লিটার 8.৫৫ লিটার (প্রায়) ১ গ্যালন ১ কিলোগ্রাম ২.২ পাউণ্ড বা ১১ সের ২৪ ১ কুইন্টাল = ১০০ কিলোগ্রাম ১ মেট্রিক টন ১০ কুইন্টাল = ১০০০ কি.গ্ৰাম = ১ বর্গ ডেকামিটার ১ এয়র = ১০০ বর্গ মিটার ১ বর্গমিটার = ১০০ বর্গ ডেসিমিটার = ১০,০০০ বৰ্গ সে.মি. ১ বর্গ ফুট = ১৪৪ বর্গ ইঞ্চি ১ বর্গ গজ = ৯ বর্গ ফুট ১ বর্গ চেইন =. ৪৮৪ বর্গগজ (১ চেইন = ২২ গজ) ৪৮৪০ বর্গ গজ ১ একর

=১০ বৰ্গ চেইন

১ বর্গ মাইল = ৬৪০ একর
 ১ ছটাক = ৫ বর্গ গজ

১ কাঠা = ১৬ ছটাক = ৮০ বৰ্গগজ ১ বিঘা = ২০ কাঠা = ১৬০০ বৰ্গ গজ

১ একর = ৪৮৪০ বর্গগজ

=৩ বিঘা ৮ ছটাক

১ বর্গ রশি = ১৬০০ বর্গগজ

=১ বিঘা (১ রশি = ৪০ গজ)

১০০০ ঘন সেন্টিমিটার পানির = ১ কিলোগ্রাম

ভর

পরিমাপ সংখ্যা পাতন

স্থানীয়মান	সহস্র	শতক	দশক	একক	দশমাংশ	শতাংশ	সহস্রাংশ
দশমিক	2000	200	> 0	۵	2/20	2/200	2/2000
মান							
মেট্রিক	কিলো	হেক্টো	ডেকা	এককের	ডেসি	সেন্টি	মিলি
মান				মান			
দৈৰ্ঘ্য	কিলো-	হেক্টো-	ডেকা-	মিটার	ডেসি-	সেন্টি-	মিলি-
পরিমাপের	কিলো	মিটার	মিটার		মিটার	মিটার	মিটার
একক							
ওজন	কিলো-	হেক্টো-	ড়েকা-	গ্রাম	ডেসি-	সেন্টি-	মিলি-
পরিমাপের	গ্রাম	গ্রাম	গ্রাম		গ্রাম	গ্রাম	গ্রাম
একক							
তরল	কিলো-	হেক্টো-	ডেকা-	লিটার	ডেসি-	সেন্টি-	মিলি-
পরিমাপের	লিটার	লিটার	লিটার		লিটার	লিটার	লিটার
একক							

ক্ষেত্রফলের শুরুত্বপূর্ণ একক সমূহের পূর্ণ ও সাংকেতিক নাম

রাশির পূর্ণ নাম	বাং লা সংকেত	ইংরেজী সংকেত	রাশির পূর্ণ নাম	বাংলা সংকেত	ইংরেজী সংকেত
কিলোমিটার	কি.মি.	km	ইঞ্চি	₹.	inch
পাউণ্ড	পা.	lbs	ফুট	ফুট	ft
ড্রাম	দ্রা.	dr	গজ	গ.	yds
কোয়ার্টার	কো.	vr	হাত	হা.	cubit
হন্দর	হ, '	cwt	ফার্লং	ফা.	fur
জিল	জি.	gi	লিটার	नि.	L
পাইন্ট	পাই.	pt	মিলিলিটার	মিলি.	ml

২.১১ এক নজরে পাটিগণিতের শুরুত্বপূর্ণ সূত্রসমূহ:

বিভাজ্যতার সূত্র সমূহ:

- ১. ভাজ্য = ভাগফল ×ভাজক + ভাগশেষ
- ২. ভাজক = ভাজ্য ভাগশেষ ÷ ভাগফল

ভগ্নাংশের গ.সা.গু. ও ল.সা.গু-র সূত্র সমূহ:

- ৩. ভগ্নাংশের গ.সা.গু = লবগুলোর গ.সা.গু হরগুলোর ল.সা.গু
- ৪. ভগ্নাংশের ল.সা.গু = লবগুং লার ল.সা.গু হরগুং লার গ.সা.গু
- ৫. ভগ্নাংশদয়ের গুণফল = ভগ্নাংশদয়ের ল.সা.গু 🗴 ভগ্নাংশদয়ের গ.সা.গু.

গড় নির্ণয়ের সূত্র সমূহ :

- ৬. গড় = রাশি সমষ্টি \div রাশি সংখ্যা বা, গড় = $\frac{$ রাশির সমষ্টি }{রাশির সংখ্যা
- ৭. রাশির সমষ্টি = গড় \times রাশির সংখ্যা
- ৮. রাশির সংখ্যা = রাশির সমষ্টি ÷ গড়
- ৯. আয়ের গড় = $\frac{\text{c মাট আ ে য়ের পরিমাণ}}{\text{c মাট c লা ে কর সংখ্যা}}$ অথবা, $\frac{\text{c মাট টাকা}}{\text{c মাট জন}}$

সংখ্যার পরিমান বা সংখ্যা

- ১১. ক্রমিক ধারার গড় = শেষ পদ + ১ম পদ
- ১২. এক জাতীয় কতিপয় রাশির যোগফল = গড় ×রাশির সংখ্যা
- ১৩. শ্রেণী বিন্যাসকৃত উপাত্তের গড় =

শ্রেণীর মধ্যবিন্দু ও ঘটন সংখ্যাগুলোর গুণফলের সমষ্টি

ঘটনসংখ্যাগুলোর সমষ্টি

উপরোক্ত ১৩নং সূত্রটির সহজ রূপ :

১৪. শ্রেণী বিন্যাসকৃত উপাত্তের গড় =

অনুমিত শ্রেণীর মধ্য বিন্দু + \frac{\sum (ঘটন সংখ্যা বিচ্যুতি সংখ্যা)}{\cdot \subseteq \text{মাট ঘটনসংখ্যা}} \times শ্রেণী
বিস্তার

[সমষ্টিকে \sum চিহ্ন দ্বারা প্রকাশ করা হয়]

শতকরা হাস-বৃদ্ধির সূত্র সমূহ :

১৫. হিসাবকৃত মূল্য = বর্ধিত মূল্য 🗴 হ্রাসকৃত মূল্য / ১০০

১৬. শতকরা ব্যবহার হ্রাস = শতকরা বৃদ্ধি / বর্ধিত মূল্য×১০০%

১৭. শতকরা ব্যবহার বৃদ্ধি = শতকরাহ্রাস /হ্রাসকৃত মূল্য×১০০%

বা, ক্রয়মূল্য =
$$\frac{\mathsf{Soo} \times \mathsf{C}}{\mathsf{PP}}$$
 তি + লাভ

ঐকিক নিয়মের সূত্র সমূহ: সময় ও দূরত্ব্ঘটিত সমস্যা, কাজ , সময়. দূরত্ব ও গতি বিষয়ক সমস্যা ও নৌকা ও স্রোতের বেগ সম্পর্কিত সমস্যার জন্য

সময় ও দূরত্বঘটিত সমস্যার জন্য সূত্র :

3b. দূরত্ব = গতিবেগ \times সময়

১৯. গতিবেগ =
$$\frac{\overline{p}$$
 রত্ব সময়

২০. সময় =
$$\frac{\overline{y}}{\overline{y}}$$
 রত্ব

২১. সময় = প্রাথমিক লোক সংখ্যা × দিন/ঘন্টা ÷পরিবর্তিত লোকসংখ্যা [যদি লোকসংখ্যা এবং দিন বা ঘন্টা দেওয়া থাকে তবে সময় নির্ণয়ের জন্য এই সূত্র ব্যবহার হবে]

কাজ-এর সূত্র :

২২. কাজের সময় = λ ম জনের কাজ \times উভয় জনের কাজ / λ ম জনের কাজ - উভয় জনের কাজ

অর্থাৎ, কাজের সময়
$$(y) = \frac{x \times g}{x - g}$$

সময়, দূরত্ব ও গতি নির্ণয়ের সূত্র :

২৩. গতি বা বেগ =
$$\frac{F}{7}$$
 রত্ব বা, $\frac{\text{CMID } F}{\text{CMID } 7 \text{MU}}$ বা,

২৪. সময় =
$$\frac{F}{\zeta}$$
 রত্ব

২৫. স্থানটির দূরত্ব =
$$\frac{c \, \text{বিশি গতি} \times \text{কম গতি}}{c \, \text{বিশি গতি} - \text{কম গতি}} \times \text{সময়ের পার্থক্য}$$

নৌকা ও স্রোতের বেগ সম্পর্কিত সূত্র :

২৬. গড় গতিবেগ =
$$\frac{\lambda \ln b}{\lambda \ln b}$$
 সময়

২৭. প্রতিকূল ক্ষেত্রে , সময় =
$$\frac{c \ln \overline{b} \ \overline{p} \ \overline{a} \ \overline{q}}{n \log \overline{a} \ \overline{c} \ \overline{c}$$

২৮. অনুকূল ক্ষেত্রে , সময় =
$$\frac{\text{c মাট দূ রত্ব}}{\text{গতির সমষ্টি}}$$

২৯. অনুক্ল + প্রতিক্ল ক্ষেত্রে , সময় =
$$\frac{\text{cnib } \text{দ্ রত্ব}}{\text{গতির সমটি}} + \frac{\text{cnib } \text{দ্ রত্ব}}{\text{গতির ব্যবধান}}$$

৩০. স্রোতের বেগ =
$$\frac{\sqrt{\sqrt{9} - 2000}}{\sqrt{2}}$$

৩১. নৌকার বেগ =
$$\frac{\sqrt{\sqrt{9} + 2\sqrt{9}}}{\sqrt{9}}$$

শতকরা লাভ-ক্ষতি নির্ণয়ের সূত্র:

৩৩. পণ্য হিসাবে শতকরা লাভ = লাভ পণ্য
$$\times$$
১০০%

ক্রয় হিসাব

সুদ-কষার সূত্র সমূহ:

8০. আসল =
$$\frac{$00 \times 7}{7}$$
ময় $\times 7$ দের হার

8২. সুদের হার =
$$\frac{500 \times yr}{\text{আসল } \times yr}$$
 আসল সময় সুদের হার

৪৩. সময় =
$$\frac{300 \times 74}{\text{আসল} \times 74 \text{দের হার}}$$

সময়, সুদের হার ও সুদাসল জানা থাকলে আসল নির্ণয়ের সূত্র:

88. আসল =
$$\frac{$00 \times 9 দাসল}{$00 + 9 ময় $\times 9 দের হার}$$

$$8c$$
. চক্রবৃদ্ধি সুদাসল = আসল $\left(3 + \frac{সুদের হার}{300}\right)$ বছর

জনমিতির সূত্র সমূহ:

৪৬. স্থুল জন্মহার =
$$\frac{B}{P}$$
×১০০০

[B= ১ বছরে জন্মগ্রহণকারী শিশু, P = বছরের মধ্যে জনসংখ্যা]

৪৭. স্থুল মৃত্যুহার =
$$\frac{D}{P} \times 1000$$

[D= ১ বছরে মৃত শিশু, P = বছরের মধ্যে জনসংখ্যা]

৪৮. স্বাভাবিক বৃদ্ধির হার =
$$\frac{B-D}{P} imes ১০০০ = CBR - CDR$$

৪৯. স্বাভাবিক শতকরা বৃদ্ধির হার =
$$\frac{CBR - CDR}{NC}$$

৫০. শিশু মৃত্যুর হার =
$$\frac{D_{\circ-1}}{P_{\circ-1}} \times$$
১০০০ $[D_{\circ-1}=$ ১ বছরে জন্ম নেওয়া শিশু, $P_{\circ-1}=$ বছরে শিশু মৃত্যুর সংখ্যা $]$

৫১. সাধারণ প্রজনন ক্ষমতার হার
$$=rac{B}{F_{5a-8b}} imes$$
১০০০

৫২. জনসংখ্যা দ্বিগুণ হওয়ার সময় = ৭০ ÷ স্বাভাবিক বৃদ্ধির শতকরা হার

পরিসংখ্যানের সূত্র সমূহ:

- ৫৪. উপাত্তের সংখ্যাগুলোর পরিমাণ বেজোড় হলে মাঝের সংখ্যা = মধ্যক
- ৫৫. জোড় হলে, মধ্যক = মাঝের দুই সংখ্যার যোগফল / ২
- ৫৬. উপাত্তের সর্বাধিকবার সংখ্যাটি = প্রচুরক
- ৫৭. উপাত্তলোর গড় = উপাত্তলোর সমষ্টি/ পদসংখ্যা

বর্গের সূত্র :

- ৫৮. ক্রমিক সংখ্যা দুটির যোগফল = সংখ্যাদ্বয়ের বর্গের অন্তর
- ৫৯. ছোট সংখ্যা = বর্গের অন্তর-১ ÷২
- ৬০. বড সংখ্যা = ছোট সংখ্যা +১
- ৬১. বড় সংখ্যা = বর্গের অন্তর +১ ÷২
- ৬২. বর্গের অন্তর = $\sqrt{\alpha}$ বর্গের সমষ্টি + ২ \times গুণফল

তৃতীয় অধ্যায় সংখ্যা সেট (Number Set)

৩.১ সেটের পরিচয় (Set Identities) :

সেট (Sets) : A,B,C

সার্বিক সেট (Universal Set) : I

পুরুক (Complement) : A'

প্রকৃত উপসেট (Proper Subset) : $A \subset B$

ফাঁকা সেট (Empty Set) : Ø

সেটের সংযোগ (Union of sets) : $A \cup B$

সেটের ছেদ (Intersection of sets) : $A \cap B$

সেটের পার্থক্য (Difference of sets) : A\B

সেটের সূত্র সমূহ :

- $A \subset I$
- $A \subset A$
- ৩. A = B যদি $A \subset B$ এবং $B \subset A$
- 8. ফাঁকা সেট $ot\! igorplus \subset A$
- ৫. সেটের সংযোগ $C = A \cup B = \{x | x \in A, or, x \in B\}$

- ৬. বিনিময় যোগ্য (Commutativity) $A \cup B = B \cup A$
- ৭. সংযোজ্য (Associativity) $A \cup (B \cup C) = (A \cup B) \cup C$
- ৮. সেটেরে ছেদ $C = A \cup B = \{x | x \in A, and, x \in B\}$

- ৯. বিনিময় যোগ্য (Commutativity) $A \cap B = B \cap A$
- ১০. সংযোজ্য (Associativity) $A \cap (B \cap C) = (A \cap B) \cap C$
- ১১. বন্টন (Distributivity) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

- ১২. বগৈক সম (Idempotency) $A \cap A = A, A \cup A A$
- ১৩. ক্ষেত্রকরণ (Domination) $A \cap \emptyset = A, A \cup I = I$
- ১৪. অভেদ (Identity) $A \cup \emptyset = A, A \cap I = A$
- ১৫. পুরক (Complement) $A' = \{x \in I | x \notin A\}$
- ১৬. পূরক সেটের ছেদ ও সংযোগ (Complement of Intersection and Union)

$$A \cup A' = I, A \cap A' = \emptyset$$

- ১৭.ডি.মরগানের সূত্র $(A \cup B)' = A' \cap B', (A \cap B)' = A' \cup B'$
- ১৮. সেটের পার্থক্য (Difference of Sets)

$$C = B \setminus A = \{x | x \in B, and, x \notin A\}$$

১৯.
$$B \setminus A = B \setminus (A \cap B)$$

$$A = B \cap A'$$

$$A \setminus A = \emptyset$$

২২.
$$A \setminus B = A$$
 যদি $A \cap B = \emptyset$

$$\forall \circ. \ (A \setminus B) \cap C = (A \cap C) \setminus (B \cap C)$$

$$88. A' = I \setminus A$$

$$\exists \alpha. \ C = A \times B = \{(x, y) | x \in A, and, y \in B\}$$

৩.২ সেটের সংখ্যা (Sets of Numbers) :

স্বাভাবিক সংখ্যা (Natural Numbers) : N

সম্প্রসংখ্যা (Whole numbers) : N₀

পূর্ণ সংখ্যা (Integers) : Z

ধনাত্মক পূর্ণ সংখ্যা (Positive integers) : Z+

ঋণাত্নক পূর্ণ সংখ্যা (Negative integers) : Z

ঘূর্ণায়ন সংখ্যা (Rational numbers) : Q

বাস্তব সংখ্যা (Real numbers): R

জটিল সংখ্যা (Complex numbers) : C

$$9. N_0 = \{0,1,2,3,....\}$$

$$\forall v. Z^+ = N = \{1,2,3,....\}$$

$$Z' = \{..., -3, -, 2, -1, ...\}$$

 $Z = Z' \cup \{0\} \cup Z' = \{..., -3, -2, -1, 0, 1, 2, 3,\}$

$$\Rightarrow Q = \left\{ x \middle| x = \frac{a}{b} \text{ and } , a \in Z, and, b \in Z, and, b \neq 0 \right\}$$

৩০.
$$C = \{x + iy | x \in R, and, y \in R\}$$
, যেখানে i হলো কাল্পনিক একক।

\circ 3. $N \subset Z \subset O \subset R \subset C$

৩.৩ সাধারণ অভেদাবলী (Basic Identities) :

বাস্তব সংখ্যা (Real numbers) : a,b,c

$$02. a + 0 = a$$

೨೨.
$$a + (-a) = 0$$

$$08. \ a+b=b+a$$

$$\circ c. (a+b)+c=a+(b+c)$$

৩৬.
$$a - b = a + (-b)$$

$$99. \ a.1 = a$$

೦৮.
$$a.\frac{1}{a} = 1, a \neq 0$$

ుస.
$$a.0 = 0$$

80.
$$a.b = b.a$$

83.
$$(a.b).c = a.(b.c)$$

$$84. \ a(b+c) = ab + ac$$

89.
$$\frac{a}{b} = a.\frac{1}{b}$$

৩.৪ জটিল সংখ্যা (Complex Numbers) :

স্বাভাবিক সংখ্যা (Natural number) : n

কাল্পনিক সংখ্যা (Imaginary unit): i

জটিল সংখ্যা (Complex number) : z

বাস্তব অংশ (Real part) : a,c কাল্পনিক অংশ (Imaginary part) : bi,di একটি জটিল সংখ্যার মাপাঙ্ক

(Modulus of a complex number) : r,r₁,r₂ একটি কাম্পনিক সংখ্যার কোণাঙ্ক

(Argument of a complex number) : $\varphi, \varphi_1, \varphi_2$

88.

$i^1 = \overline{i}$	$i^5 = i$	$i^{4n+1} = \overline{i}$
$i^2 = -1$	$i^6 = -1$	$i^{4n+2} = -1$
$i^3 = -i$	$i^7 = -i$	$i^{4n+3} = -i$
$i^4=1$	$i^8 = 1$	$i^{4n}=1$

8¢. z = a + bi

৪৬. জটিল সমতল : অপর পৃষ্টার চিত্রটি লক্ষ্য করুন ।

89.
$$(a+bi)+(c+di)=(a+c)+(b+d)i$$

8b.
$$(a+bi)-(c+di)=(a-c)+(b-d)i$$

85.
$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

$$a-bi=a-bi$$

$$e < a = r \cos \varphi, b = r \sin \varphi$$

$$\alpha \cdot a + bi = r(\cos \varphi + i \sin \varphi)$$

৫৪. যদি
$$a+bi$$
 একটি জটিল সংখ্যা হয় তবে, $r=\sqrt{a^2+b^2}$, $\varphi=\arctan\frac{b}{a}$

$$\begin{aligned}
\varphi \varphi. \ \ z_1.z_2 &= r_1(\cos \varphi_1 + i \sin \varphi_1).r_2(\cos \varphi_2 + i \sin \varphi_2) \\ &= r_1 r_2 \Big[\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2) \Big]
\end{aligned}$$

$$e. r(\cos\varphi + i\sin\varphi) = r[\cos(-\varphi) + i\sin(-\varphi)]$$

$$eq. \frac{1}{r(\cos\varphi + i\sin\varphi)} = \frac{1}{r} [\cos(-\varphi) + i\sin(-\varphi)]$$

$$\operatorname{Qb.} \frac{z_1}{z_2} = \frac{r_1(\cos\varphi_1 + i\sin\varphi_1)}{r_2(\cos\varphi_2 + i\sin\varphi_2)} = \frac{r_1}{r_2} \left[\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)\right]$$

$$\mathfrak{CS}. \ z^n = [r(\cos\varphi + i\sin\varphi)]^n = r^n[\cos(n\varphi) + i\sin(n\varphi)]$$

৬০. ডি.মুভরির সূত্র :
$$(\cos \varphi + i \sin \varphi)^n = \cos(n\varphi) + i \sin(n\varphi)$$

৬১. একটি জটিল সংখ্যার \mathbf{n}^{th} তম বর্গের সূত্র :

$$\sqrt[n]{z} = \sqrt[n]{r(\cos\varphi + i\sin\varphi)} = \sqrt[n]{r} \left(\cos\frac{\varphi + 2\pi k}{n} - i\sin\frac{\varphi + 2\pi k}{n}\right)$$

যেখানে k = 0,1,2,...n-1.

৬২. অয়লারের সূত্র :
$$e^{ix} = \cos x + i \sin x$$

চতুর্থ অধ্যায়

বীজগণিত (Algebra)

8.১ গৌণিক সূত্র সমূহ (Factoring Formulas) :

বান্তব সংখ্যা (Real numbers) : a,b,c স্বাভাবিক সংখ্যা (Natural numbers) : n

అం.
$$a^2 - b^2 = (a+b)(a-b)$$

$$8. a^3 - b^3 = (a-b)(a^2 + ab + b^2)$$

$$bar{a}^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

$$bb. \ a^4 - b^4 = (a^2 - b^2)(a^2 + b^2) = (a - b)(a + b)(a^2 + b^2)$$

$$99. \ a^5 - b^5 = (a - b)(a^4 + a^3b + a^2b^2 + ab^3 + b^4)$$

$$\forall b. \ a^5 + b^5 = (a+b)(a^4 - a^3b + a^2b^2 - ab^3 + b^4)$$

$$a^{n} + b^{n} = (a+b)(a^{n-1} - a^{n-2}b + a^{n-3}b^{2} - \dots - ab^{n-2} + b^{n-1})$$

৭০. যদি n যুগা বা জোড় হয় তবে,

$$a^{n}-b^{n}=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^{2}+....+ab^{n-2}+b^{n-1}),$$

$$a^{n} + b^{n} = (a+b)(a^{n-1} - a^{n-2}b + a^{n-3}b^{2} - \dots + ab^{n-2} - b^{n-1})$$

৪.২ গুণফলের সূত্র সমূহ (Product Formulas) :

বাস্তব সংখ্যা (Real numbers) : a,b,c

পূর্ণ সংখ্যা (Whole numbers) : n,k

93.
$$(a-b)^2 = a^2 - 2ab + b^2$$

92.
$$(a+b)^2 = a^2 + 2ab + b^2$$

90.
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

98.
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

9¢.
$$(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4$$

95.
$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

৭৭. দ্বিপদী সত্র :

$$(a+b)^n = {}^n c_0 a^n + {}^n c_1 a^{n-1} b + {}^n c_2 a^{n-2} b^2 + \dots + {}^n c_{n-1} a b^{n-1} + {}^n c_n b^n$$

যেখানে
$${}^n c_k = \frac{n!}{k!(n-k)!}$$
 হলো দ্বিপদ সহগ ।

9b.
$$(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca$$

98.
$$(a+b+c+....+u+v)^2 = a^2+b^2+c^2+....+u^2+v^2+$$

$$2(ab+ac+.....+au+av+bc+.....+bu+bv+....+uv)$$

8.৩ **খাত (Powers)** :

ভূমি (ধনাত্মক প্রকৃত সংখ্যা) (Bases-Positive real numbrer) : a,b ঘাত (মূলদ সংখ্যা) (Powers-rational numbers) : n,m

 $b3. \frac{a^m}{a^n} = a^{m-n}$

be. $a^0 = 1, a \neq 0$

bo.
$$a^{m}a^{n} = a^{m+n}$$

రాష.
$$(ab)^m = a^m b^m$$
 కారు. $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$

$$b8. (a^m)^n = a^{mn}$$

b.
$$a^1 = 1$$
 b. $a^{-m} = \frac{1}{a^m}$

$$\text{ bq. } a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

8.8 বীজ (Roots) :

ভূমি (Bases) : a,b

ঘাত (মূলদ সংখ্যা) (Powers-rational numbers) : n,m $a,b \ge 0$ হলো যুগা বীজ (n=2k, k $\in N$)

$$\forall \forall . \ \sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

So.
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}, b \neq 0$$

$$> 2. \left(\sqrt[n]{a} \right)^n = a$$

$$88. \sqrt[n]{a^m} = a^{\frac{m}{n}}$$

৮৯.
$$\sqrt[n]{a}\sqrt[m]{b} = \sqrt[nm]{a^m b^n}$$

$$\delta \lambda. \left(\sqrt[n]{a^m} \right)^p = \sqrt[n]{a^{mp}}$$

$$\delta Q = \sqrt[n]{a^m} = \sqrt[np]{a^{mp}}$$

$$\&c. \sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$$

৯৬.
$$\left(\sqrt[n]{a}\right)^n = \sqrt[n]{a^m}$$

\$9.
$$\frac{1}{\sqrt[n]{a}} = \frac{\sqrt[n]{a^{n-1}}}{a}, a \neq 0$$

Note:
$$\sqrt{a\pm\sqrt{b}} = \sqrt{\frac{a+\sqrt{a^2-b}}{2}} \pm \sqrt{\frac{a-\sqrt{a^2-b}}{2}}$$

$$\delta \delta. \frac{1}{\sqrt{a} \pm \sqrt{b}} = \frac{\sqrt{a} \mp \sqrt{b}}{a - b}$$

৪.৫ লগারিদম (Logarithms) :

ধনাত্মক প্রকৃত সংখ্যা (Positive real numbers) : x,y,a,c,k স্বাভাবিক সংখ্যা (Natural numbers) : n

১০০. লগারিদমের সংজ্ঞা:

$$y = \log_a x$$
 যদি এবং কেবল যদি $x = a^y, a > 0, a \ne 1$

اده ا
$$\log_a 1 = 0$$

১૦૨.
$$\log_a a = 1$$

১০৩.
$$\log_a 0 = \begin{cases} -\infty \\ +\infty \end{cases}$$
 যদি a>1 এবং a<1

$$\log_a(xy) = \log_a x + \log_a y \qquad \text{sof. } \log_a \frac{x}{y} = \log_a x - \log_a y$$

১০৬.
$$\log_a(x^n) = n \log_a x$$

$$\log_a \sqrt[n]{x} = \frac{1}{n} \log_a x$$

Sob.
$$\log_a x = \frac{\log_c x}{\log_c a} = \log_c x \cdot \log_a c, c > 0, c \neq 1$$

اهم.
$$\log_a c = \frac{1}{\log_a a}$$

$$330. \ x = a^{\log_a x}$$

১১১. লগারিদমের ভূমি ১০ হলে,
$$\log_{10} x = \log x$$

১১২. স্বাভাবিক লগারিদম
$$\log_e x = \ln x$$

যেখানে
$$e = \lim_{k \to \infty} \left(1 + \frac{1}{k} \right)^k = 2.718281828...$$

330.
$$\log x = \frac{1}{\ln 10} \ln x = 0.434294 \ln x$$

338.
$$\ln x = \frac{1}{\log e} \log x = 2.302585 \log x$$

৪.৬ সমীকরণ (Equations) :

বান্তব সংখ্যা : a,b,c,p,q,u,v সমাধান : x₁,x₂,y₁,y₂,y₃

১১৫. এক চল রৈখিক সমীকরণ :
$$ax+b=0, x=-\frac{b}{a}$$

১১৬. দ্বিঘাত সমীকরণ :
$$ax^2 + bx + c = 0, x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

১১৭. নিরূপক :
$$D = b^2 - 4ac$$

১১৮. ভিটি'র সূত্র : যদি
$$x^2+px+q=0$$
, হয় তাহলে $\begin{cases} x_1+x_2=-p\\ x_1x_2=q \end{cases}$

$$ax^2 + bx + c = 0, x_1 = 0, x_2 = -\frac{b}{a}$$

$$30. \ ax^2 + c = 0, x_{1,2} = \pm \sqrt{-\frac{c}{a}}$$

১২১. ত্রিঘাত সমীকরণ বা কার্ডানোর সূত্র :
$$y^3 + py + q = 0$$

$$y_1 = u + v, y_{2,3} = -\frac{1}{2}(u + v) \pm \frac{\sqrt{3}}{2}(u + v)i$$

যেখানে
$$u = \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^2}}$$
 , $v = \sqrt[3]{-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^2}}$

8.৭ মৌলিক অসমতা (Inequalities) :

চল : x,y,z

বাস্তব সংখ্যা :
$$egin{cases} a,b,c,d \ a_1,a_2,a_3,...,a_n \end{cases}$$
, m,n

নির্ণায়ক : D,D_x,D_y,D_z

(0

১২২. মৌলিক অসমতা, অন্তরাল চিহ্ন এবং লেখ:

মৌলিক অসমতা	অন্তরাল চিহ্ন	লেখ
$a \le x \le b$	[a,b]	a b X
$a < x \le b$	(a,b]	$a b \rightarrow X$
$a \le x < b$	[<i>a</i> , <i>b</i>)	$a b \rightarrow X$
a < x < b	(a,b)	a b x
$-\infty < x \le b,$ $x \le b$	(-∞,b]	b X
$-\infty < x < b,$ $x < b$	(-∞,b)	
$a \le x < \infty,$ $x \ge a$	[<i>a</i> ,∞)	a X
$a < x < \infty$, $x > a$	(<i>a</i> ,∞)	
x z u	Table 1	

১২২. যদি a > b হয় , তাহলে b < a

১২৩. যদি a > b হয় , তাহলে a-b > 0 এবং b-a < 0

১২৪. যদি a > b হয়, তাহলে a+c > b+c

১২৫. যদি a > b হয় . তাহলে a-c > b-c

১২৬. যদি a > b এবং c > d হয়, তাহলে a+c > b+d

'১২৭. যদি a > b এবং c > d হয়, তাহলে a - d > b - c

১২৮. যদি a > b এবং m > 0 হয়, তাহলে ma > mb

১২৯. যদি
$$a > b$$
 এবং $m > 0$ হয়, তাহলে $\frac{a}{m} > \frac{b}{m}$

১৩০. যদি a > b এবং m < 0 হয়, তাহলে ma < mb

১৩১. যদি
$$a > b$$
 এবং $m < 0$ হয়, তাহলে $\frac{a}{m} < \frac{b}{m}$

১৩২. যদি 0 < a < b এবং n > 0 হয়, তাহলে $a^n < b^n$

১৩৩. যদি 0 < a < b এবং n < 0 হয়, তাহলে $a^n > b^n$

১৩৪. যদি
$$0 < a < b$$
 হয়, তাহলে $\sqrt[n]{a} < \sqrt[n]{b}$ ১৩৫. $\sqrt{ab} \le \frac{a+b}{2}$,

যেখানে $a>0,\,b>0$; একটি মৌলিক অসমতা হবে যদি a=b হয়।

১৩৬.
$$a+rac{1}{a}\geq 2$$
, যেখানে $a>0$; একটি মৌলিক অসমতা হবে যদি $a=1$ হয়।

১৩৭.
$$\sqrt[n]{a_1a_2....a_n} \leq \frac{a_1+a_2+....+a_n}{n}$$
, যেখানে $a_1,a_2,....,a_n>0$

১৩৮. যদি
$$ax+b>0$$
 এবং $a>0$ হয় তাহলে $x>-\frac{b}{a}$

১৩৯. যদি
$$ax+b>0$$
 এবং $a<0$ হয় তাহলে $x<-\frac{b}{a}$

\$80.
$$ax^2 + bx + c > 0$$

383.
$$|a+b| \le |a| + |b|$$

১৪২. যদি
$$|x| < a$$
 হয় তাহলে $-a < x < a$, যেখানে $a > 0$

১৪৩. যদি
$$|x|>a$$
 হয় তাহলে $x<-a$ এবং $x>a$ যেখানে $a>0$

১৪৪. যদি
$$x^2 < a$$
 হয় তাহলে $|x| < \sqrt{a}$, যেখানে $a > 0$

১৪৫. যদি
$$x^2 > a$$
 হয় তাহলে $|x| > \sqrt{a}$, যেখানে $a > 0$

১৪৬. যদি
$$\frac{f(x)}{g(x)} > 0$$
 হয় তাহলে $\begin{cases} f(x).g(x) > 0 \\ g(x) \neq 0 \end{cases}$

১৪৭. যদি
$$\frac{f(x)}{g(x)} < 0$$
 হয় তাহলে $\begin{cases} f(x).g(x) < 0 \\ g(x) \neq 0 \end{cases}$

৪.৮ চক্রবৃদ্ধির সূত্র (Compound Interest Formulas) :

ভবিষ্যত মূল্য : A

প্রাথমিক সঞ্চয় : C

বার্ষিক লাভের পরিমাণ : r

লঘ্নিকৃত বৎসর সংখ্যা : t

প্রতি বছর চক্রবৃদ্ধির সংখ্যা : n

১৪৮. সাধারণ চক্রবৃদ্ধির সূত্র :
$$A = C \left(1 + \frac{r}{n} \right)^{nt}$$

১৪৯. সরলীকৃত চক্রবৃদ্ধির সূত্র :
$$A = C(1+r)^t$$

১৫০. নিয়মিত চক্রবৃদ্ধির সূত্র : যদি নিয়মিত চক্রবৃদ্ধি ঘটে
$$(n o \infty)$$
 ,

তাহলে $A = Ce^n$

পঞ্চম অধ্যায়

জ্যামিতি (Geometry)

৫.১ সমকোণী ত্রিভূজ (Right Tringle):

সমকোণী ত্রিভূজের বাহু : a,b

অতিভূজ : c

উচ্চতা : h

মধ্যমা : ma, mb, mc

কোণ : α, β

পরিবৃত্তের ব্যাসার্ধ : R

অন্তঃবৃত্তের ব্যাসার্ধ : r

ক্ষেত্রফল : S

$$3 \alpha 3. \ \alpha + \beta = 90^{\circ}$$

$$3\alpha < \sin \alpha = \frac{a}{c} = \cos \beta$$

seo.
$$\cos \alpha = \frac{b}{c} = \sin \beta$$
 seo. $\tan \alpha = \frac{a}{b} = \cot \beta$

308.
$$\tan \alpha = \frac{a}{b} = \cot \beta$$

sec.
$$\cot \alpha = \frac{b}{a} = \tan \beta$$
 sec. $\cot \alpha = \frac{c}{b} = \cos ec\beta$

$$\sec \alpha = \frac{c}{1} = \cos ec\beta$$

$$\sec \alpha = \frac{c}{a} = \sec \beta$$

১৫৮. পিথাগোরাসের সূত্র :
$$a^2+b^2=c^2$$

১৫৯.
$$a^2 = fc, b^2 = gc,$$

যেখানে f হলো যথাক্রমে a,b বাহুর প্রক্ষেপ এবং c অতিভূজ ।

১৬০. $h^2 = fg$, যেখানে h হলো সমকোণের উচ্চতা।

$$363. \ m_a^2 = b^2 - \frac{a^2}{4}, m_b^2 = a^2 - \frac{b^2}{4},$$

যেখানে m_a এবং m_b হলো a,b বাহুর মধ্যমা।

১৬২.
$$m_c = \frac{c}{2}$$
, যেখানে m_c হলো অতিভূজ c এর মধ্যমা।

১৬৩.
$$R = \frac{c}{2} = m_c$$

$$348. \ r = \frac{a+b-c}{2} = \frac{ab}{a+b+c}$$

১৬৬.
$$S = \frac{ab}{2} = \frac{ch}{2}$$

৫.২ সমদ্বিবাহু ত্রিভূজ (IsoscelesTringle):

ভূমি : a

বাহু : b

ভূমি সংলগ্ন কোণ $: \beta$

শীর্ষ কোণ $: \alpha$

ভূমির উচ্চতা : h

পরিসীমা : L

ক্ষেত্ৰফল : S

১ હવ.
$$\beta = 90^{\circ} - \frac{\alpha}{2}$$

١٥٤.
$$h^2 = b^2 - \frac{a^2}{4}$$

১৬৯.
$$L=a+2b$$

$$390. S = \frac{ah}{2} = \frac{b^2}{2} \sin \alpha$$

৫.৩ সমবাহু ত্রিভূজ (Equilateral Tringle) :

সমবাহু ত্রিভূজের পার্শ্ব : a

উচ্চতা : h

পরিবৃত্তের ব্যাসার্ধ : R

অন্তঃবৃত্তের ব্যাসার্ধ : r

পরিসীমা : L

ক্ষেত্ৰফল : S

۱۹۵.
$$h = \frac{a\sqrt{3}}{2}$$

$$392. R = \frac{2}{3}h = \frac{a\sqrt{3}}{3}$$

١٩٥.
$$r = \frac{1}{3}h = \frac{a\sqrt{3}}{6} = \frac{R}{2}$$

$$$98. L = 3a$$

$$390. S = \frac{ah}{2} = \frac{a^2\sqrt{3}}{4}$$

৫.৪ বিষমবাহ্ ঝিভূজ (Scalene Tringle) :

ত্রিভূজের পার্ম্ব : a,b,c

পরিসীমার্ধ : p =
$$\frac{a+b+c}{2}$$

ত্রিভূজের কোণ $: lpha, eta, \gamma$

পার্শ্বের উচ্চতা : a,b,c : ha,hb,hc

পার্শ্বের মধ্যমা : a,b,c : ma,mb,mc

কোণের সমদ্বিখণ্ডক : $lpha,eta,\gamma$: t_a,t_b,t_c

পরিবৃত্তের ব্যাসার্ধ : R

অন্তঃবৃত্তের ব্যাসার্ধ : r

ক্ষেত্ৰফল : S

ኔዓ৬.
$$\alpha + \beta + \gamma = 180^{\circ}$$

١٩٩.
$$a+b>c, b+c>a, c+c>b$$
.

$$|a-b| < c, |b-c| < a, |a-c| < b$$

১৭৯. মধ্যমা :
$$q = \frac{a}{2}, q ||a|$$

$$a^2 = b^2 + c^2 - 2bcCos\alpha,$$

১৮০. কোসাইনের সূত্র :
$$b^2=a^2+c^2-2acCoseta$$
, $c^2=a^2+b^2-2abCos\gamma$.

১৮১. সাইন এর সূত্র:
$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$
,

যেখানে R হলো পরিবৃত্তের ব্যসার্ধ ।

$$3b2. R = \frac{a}{2\sin\alpha} = \frac{b}{2\sin\beta} = \frac{c}{2\sin\gamma} = \frac{bc}{2h_a} = \frac{ac}{2h_b} = \frac{ab}{2h_c} = \frac{abc}{4S}$$

كان
$$r^2 = \frac{(p-a)(p-b)(p-c)}{p}, \frac{1}{r} = \frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c}$$

$$\sin\frac{\alpha}{2} = \sqrt{\frac{(p-b)(p-c)}{bc}},$$

Str8.
$$\cos \frac{\alpha}{2} = \sqrt{\frac{p(p-a)}{bc}},$$

$$\tan \frac{\alpha}{2} = \sqrt{\frac{(p-b)(p-c)}{p(p-a)}},$$

$$h_a = \frac{2}{a} \sqrt{p(p-a)(p-b)(p-c)},$$

Stre.
$$h_b = \frac{2}{b} \sqrt{p(p-a)(p-b)(p-c)}$$
,

$$h_e = \frac{2}{c} \sqrt{p(p-a)(p-b)(p-c)},$$

$$h_a = b \sin \gamma = c \sin \beta$$
,

ኔ৮৬.
$$h_b = a \sin \gamma = c \sin \alpha$$
,
 $h_c = a \sin \beta = b \sin \alpha$

$$m_a^2 = \frac{b^2 + c^2}{2} - \frac{a^2}{4},$$

১৮৭.
$$m_b^2 = \frac{a^2 + c^2}{2} - \frac{b^2}{4}$$
, $m_c^2 = \frac{a^2 + b^2}{2} - \frac{c^2}{4}$

১৮৮.
$$AM = \frac{2}{3}m_a, BM = \frac{2}{3}m_b, CM = \frac{2}{3}m_c$$
 (নীচের চিত্রে দ্রষ্টব্য)

$$t_a^2 = \frac{4bcp(p-a)}{(b+c)^2},$$

١٥٥.
$$t_b^2 = \frac{4acp(p-b)}{(a+c)^2}$$
,

$$t^2 = \frac{4abp(p-c)}{(a+b)^2}$$

$$S = \frac{ah_a}{2} = \frac{bh_b}{2} = \frac{ch_c}{2}$$

$$S = \frac{ab\sin\gamma}{2} = \frac{ac\sin\beta}{2} = \frac{bc\sin\alpha}{2}$$
 $S = \sqrt{p(p-a)(p-b)(p-c)}$ হেরনের সূত্র

$$S = pr, S = \frac{abc}{\Delta P}, S = 2R^2 Sin \alpha Sin \beta Sin \lambda$$

$$S = p^2 \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$$

৫.৫ বৰ্গক্ষেত্ৰ (Square) :

বর্গক্ষেত্রের বাহু : a কৰ্ণ : d

পরিবত্তের ব্যাসার্ध : R

অন্তঃবৃত্তের ব্যাসার্ধ : r

পরিসীমা : L ক্ষেত্রফল: S

১৯১.
$$d = a\sqrt{2}$$

اهخ.
$$R = \frac{d}{2} = \frac{a\sqrt{2}}{2}$$

১৯৩.
$$r = \frac{a}{2}$$

۱۵8.
$$L = 4a$$

ኔ৯৫.
$$S = a^2$$

৫.৬ আয়তক্ষেত্র (Rectangle) :

আয়তক্ষেত্রের বাহু : a.b

আয়তক্ষেত্রের কর্ণ : d

পরিবৃত্তের ব্যাসার্ধ : R পরিসীমা : L

ক্ষেত্রফল : S

১৯৬.
$$d = \sqrt{a^2 + b^2}$$

১৯৭.
$$R = \frac{d}{2}$$

১৯৮.
$$L=2(a+b)$$

১৯৯.
$$S = ab$$

৫.৭ সামান্তরিক (Parallelogram) :

সামান্তরিকের বাহু : a,b

সামান্তরিকের কর্ণ : d_1, d_2

ক্রমিক কোণ $: \alpha, \beta$

কর্ণ সংলগ্ন কোণ :
$$oldsymbol{arphi}$$

$$\alpha + \beta = 180^{\circ}$$

$$h = h \sin \alpha = h \sin \beta$$

$$808. S = ah = ab \sin \alpha, S = \frac{1}{2}d_1d_2 \sin \varphi$$

৫.৮ রম্স (Rhombus):

রম্বসের কর্ণ :
$$d_1, d_2$$

ক্রমিক কোণ : α, β

$$\alpha + \beta = 180^{\circ}$$

$$809. \ h = a \sin \alpha = \frac{d_1 d_2}{2a}$$

২০৯.
$$L=4a$$

$$850. S = ah = a^{2} \sin \alpha, S = \frac{1}{2} d_{1} d_{2}$$

৫.৯ ট্রাপিজিয়াম (Trapezoid) :

$$33. \ q = \frac{a+b}{2}$$

 $\{0\}, d_1^2 + d_2^2 = 2(a^2 + b^2)$

200. L = 2(a+b)

$$333. S = \frac{a+b}{2}.h = qh$$

 $209. d_1^2 + d_2^2 = 4a^2$

Rob. $r = \frac{h}{2} = \frac{d_1 d_2}{d_2} = \frac{a \sin \alpha}{2}$

৫.১০ সমদ্বিবাহু ট্রাপিজিয়াম (IsoscelesTrapezoid) :

ট্রাপিজিয়ামের ভূমি : a,b

বাহু : c

মধ্যমা : q

উচ্চতা : h

কৰ্ণ : d

পরিবৃত্তের ব্যাসার্ধ : R

ক্ষেত্রফল : S

$$250. \ q = \frac{a+b}{2}$$

$$38. \ d = \sqrt{ab + c^2}$$

$$430. \ h = \sqrt{c^2 - \frac{1}{4}(b - a)^2}$$

২১৬.
$$R = \frac{c\sqrt{ab+c^2}}{\sqrt{(2c-a+b)(2c+a-b)}}$$

$$39. S = \frac{a+b}{2}.h = qh$$

৫.১১ অন্তঃবৃত্তের মধ্যে সমদ্বিবাহু ট্রাপিজিয়াম

(IsoscelesTrapezoid with Incribed Circle):

ভূমি : a,b

বাহু : c

মধ্যমা : q

উচ্চতা : h

কৰ্ণ : d

অন্তঃবৃত্তের ব্যাসার্ধ : R

পরিবৃত্তের ব্যাসার্ধ : r

পরিসীমা : L ক্ষেত্রফল : S

$$2bc. a+b=2c$$

$$338. \ q = \frac{a+b}{2} = c$$

$$440. d^2 = h^2 + c^2$$

$$223. \ r = \frac{h}{2} = \frac{\sqrt{ab}}{2}$$

$$888. R = \frac{cd}{2h} = \frac{cd}{4r} = \frac{c}{2}\sqrt{1 + \frac{c^2}{ab}} = \frac{c}{2h}\sqrt{h^2 + c^2} = \frac{a+b}{8}\sqrt{\frac{a}{b} + 6 + \frac{b}{a}}$$

২২৩.
$$L = 2(a+b) = 4c$$

$$88. S = \frac{a+b}{2}.h = \frac{(a+b)\sqrt{ab}}{2} = qh = ch = \frac{Lr}{2}$$

৫.১২ অন্তঃবৃত্তের মধ্যে ট্রাপিজিয়াম (Trapezoid with Incribed Circle) :

ট্রাপিজিয়ামের ভূমি : a,b পার্শ্ব বাহু : c,d

মধ্যমা : a

উচ্চতা : h

কৰ্ণ: d₁,d₂

কর্ণের মধ্যবর্তী কোণ : arphi

অভঃবৃত্তের ব্যাসার্ধ : r

পরিবৃত্তের ব্যাসার্ধ : R পরিসীমা : I

ক্ষেত্রফল : S

$$440. \ a+b=c+d$$

$$= 246. \ q = \frac{a+b}{2} = \frac{c+d}{2}$$

$$229. L = 2(a+b) = 2(c+d)$$

$$S = \frac{a+b}{2}.h = \frac{(a+b)\sqrt{ab}}{2} = qh,$$

$$S = \frac{1}{2}d_1d_2\sin\varphi$$

৫.১৩ কাইট (Kite) :

কাইট-এর বাহু : a,b

কর্ণ: d_1, d_2

কোণ $: lpha, eta, \gamma$

পরিসীমা : L

ক্ষেত্রফল : S

২২৯.
$$\alpha + \beta + 2\gamma = 360^{\circ}$$

২৩০.
$$L=2(a+b)$$

২৩১.
$$S = \frac{d_1 d_2}{2}$$

৫.১৪ সমবৃত্ত চতুর্ভুজ (Cyclic Quadrilateral):

চতুর্ভূজের বাহু : a,b,c,d

চতুর্ভূজের কর্ণ : d_1, d_2

কর্ণের মধ্যস্থ কোণ : $oldsymbol{arphi}$

অন্তঃস্থ কোণ $: lpha, eta, \gamma, \delta$

পরিবৃত্তের ব্যাসার্ধ : R

পরিসীমা : L

পরিসীমার্ধ : p

ক্ষেত্রফল : S

२७२.
$$\alpha + \beta + \gamma + \delta = 180^{\circ}$$

২৩৩. টলেমির সূত্র :
$$ac+bd=d_1d_2$$

২৩৪.
$$L=a+b+c+d$$

২৩৫.
$$R=rac{1}{4}\sqrt{rac{(ac+bd)(ad+bc)(ab+cd)}{(p-a)(p-b)(p-c)(p-d)}}$$
 যেখানে $p=rac{L}{2}$

૨૭৬.
$$S = \frac{1}{2}d_1d_2\sin\varphi, S = \sqrt{(p-a)(p-b)(p-c)(p-d)}$$

যেখানে
$$p = \frac{L}{2}$$

৫.১৫ স্পর্শীয় চতুর্জ (Tangential Quadrilateral) :

চতুর্ভ্জের বাহু : a,b,c,d

কর্ণ: d_1, d_2

কর্ণের মধ্যের কোণ : arphi

অভঃবৃত্তের ব্যাসার্ধ : r

পরিসীমা : L

পরিসীমার্ধ : p

ক্ষেত্রফল : S

$$\text{2Ob. } L = a+b+c+d = 2(a+c) = 2(b+d)$$

২৩৯.
$$R = \frac{\sqrt{d_1^2 d_2^2 - (a-b)^2 (a+b-p)^2}}{2p}$$
 যেখানে $p = \frac{L}{2}$

$$80. S = pr = \frac{1}{2}d_1d_2\sin\varphi$$

৫.১৬ সাধারণ চতুর্ভুজ (General Quadrilateral) :

চতুর্জের বাহু : a,b,c,d

কর্ণ: d_1, d_2

কর্ণের মধ্যের কোণ : ϕ

অন্তঃস্থ কোণ $: lpha, eta, \gamma, \delta$

পরিসীমা : L

ক্ষেত্রফল : S

$$88$$
 $\alpha + \beta + \gamma + \delta = 360^{\circ}$

$$88. L = a+b+c+d$$

$$89. S = \frac{1}{2}d_1d_2\sin\varphi$$

পাৰ্শ্ব / বাহু : a

অন্তঃস্থ কোণ : α

তির্যক উচ্চতা : m

অন্তঃবৃত্তের ব্যাসার্ধ : r

পরিবৃত্তের ব্যাসার্ধ : R

পরিসীমা : L

পরিসীমার্ধ : p

ক্ষেত্ৰফল : S

$$888. \alpha = 120^{\circ}$$

$$8\&. r = m = \frac{a\sqrt{3}}{2}$$

२८७.
$$R = a$$

$$489. L = 6a$$

২৪৮.
$$S = pr = \frac{a^2 3\sqrt{3}}{2}$$
 যেখানে $p = \frac{L}{2}$

পার্শ্ব / বাহু: a, বাহুর সংখ্যা: n

অন্তঃস্থ কোণ : lpha , তীর্যক উচ্চতা : ${f m}$

অভঃবৃত্তের ব্যাসার্ধ : r

পরিবৃত্তের ব্যাসার্ধ : R

পরিসীমা : L. পরিসীমার্ধ : p ক্ষেত্রফল : S

$$\approx 88. \ \alpha = \frac{n-2}{2}.180^{\circ}$$

$$\Re R = \frac{a}{2\sin\frac{\pi}{n}}$$

$$8.65. \ r = m = \frac{a}{2 \tan \frac{\pi}{n}} = \sqrt{R^2 - \frac{a^2}{4}}$$
 $8.68. \ L = na$

$$2$$
 $$$ 2 $$$ 2 $$$ 2 $$$ 2 $$2$ $$2$ 2 $$2$ 2 $$2$ ~ 2 $$2$ $$2$ $$2$ $$2$ ~ 2 $$2$ $$2$ ~ 2 $$2$ ~ 2 $$2$ ~ 2 $$2$ ~ 2 ~$$$

২৫৩.
$$S = \frac{nR^2}{2} \sin \frac{2\pi}{n}, S = pr = p\sqrt{R^2 - \frac{a^2}{4}}$$
 যেখানে $p = \frac{L}{2}$

৫.১৯ বৃত্ত (Circle) :

ব্যাসার্ধ : R

সিকান্ট বৃত্তাংশ : e.f

মধ্যবর্তী কোণ : α

পরিসীমা : L

 $\approx 68. \ a = 2RSin\frac{\alpha}{2}$

ব্যাস : d

ট্যানজেন্ট বৃত্তাংশ : g

অন্তঃকোণ $: \beta$

ক্ষেত্রফল : S

২৫৬.	$ee_1 = ff$	1
২৫৭.	$g^2 = ff$	

Rev.
$$\beta = \frac{\alpha}{2}$$

২৫৯.
$$L = 2\pi R = \pi d$$

$$890. \ S = \pi R^2 = \frac{\pi d^2}{4} = \frac{LR}{2}$$

৫.২০ বৃত্ত খণ্ড (Sector of a Circle) :

৬৬

বৃত্তের ব্যাসার্ধ : R

বৃত্তচাপ : s

বৃত্ত মধ্যস্থ কোণ (রেডিয়ানে) : x

বৃত্ত মধ্যস্থ কোণ (ডিগ্রীতে) : lpha

পরিসীমা : L

ক্ষেত্রফল : S

૨૭১. s = Rx

২৬২.
$$s = \frac{\pi R \alpha}{180^{\circ}}$$

$$260. L = s + 2R$$

248.
$$S = \frac{Rs}{2} = \frac{R^2x}{2} = \frac{\pi R^2 \alpha}{360^0}$$

৫.২১ বৃত্তাংশ (Segment of a Circle) :

বৃত্তের ব্যাসার্ধ : R

বৃত্তচাপ : s

ব্যাস : a

বৃত্ত মধ্যস্থ কোণ (রেডিয়ানে) : x

বৃত্ত মধ্যস্থ কোণ (ডিগ্রীতে) : lpha

বৃত্তাংশের উচ্চতা : h

পরিসীমা : L

ক্ষেত্রফল : S

$$86c. \ a = 2\sqrt{2hR - h^2}$$

$$k = R - \frac{1}{2}\sqrt{4R^2 - a^2}, h < R$$

૨ ૭૧.
$$L = s + a$$

২৬৮.
$$S = \frac{1}{2} [sR - a(R - h)] = \frac{R^2}{2} (\frac{\alpha \pi}{180^0} - \sin \alpha) = \frac{R^2}{2} (x - \sin x)$$

$$S \approx \frac{2}{3}ha$$

৫.২২ ঘনক (Cube) :

ধার : a

কৰ্ণ : d

অন্তঃলিখিত গোলকের ব্যাসার্ধ : r

বহিঃস্থ গোলকের ব্যাসার্ধ : r

ভূমির ক্ষেত্রফল : S

আয়তন : V

২৬৯.
$$d = a\sqrt{3}$$

$$\approx 90. \ r = \frac{a}{2}$$

$$993. R = \frac{a\sqrt{3}}{2}$$

২৭৩.
$$V=a^3$$

৫.২৩ আয়তকার সামন্তরিক (Rectangular Parallelepiped) :

ধার : a,b,c

কৰ্ণ : d

ভূমির ক্ষেত্রফল : S

আয়তন : V

$$98. \ d = \sqrt{a^2 + b^2 + c^2}$$

૨૧৬.
$$V = abc$$

৫.২৪ প্রিজম (Prism) :

পার্শ্বিয় ধার : 1

উচ্চতা : h

পার্শ্বিয় ক্ষেত্রফল : Sr

ভূমির ক্ষেত্রফল : SB

সমগ্র তলের ক্ষেত্রফল : S

আয়তন : V

96. S = 2(ab + ac + bc)

$$399. S = S_L + 2S_B$$

২৭৮. ডান পার্শ্বস্থ প্রিজমের পার্শ্বিয় ক্ষেত্রফল :
$$S_L = (a_1 + a_2 + a_3 + ... + a_n)l$$

২৭৯. তীর্যক প্রিজমের পার্শ্বিয় ক্ষেত্রফল : $S_r = pl$,

যেখানে p হলে ছেদের পরিসীমা।

ર૪૦.
$$V = S_B h$$

৫.২৫ সমবাহু চতুত্তলক (Regular Tetrahedron) :

ত্রিভূজের পার্শ্বিয় দৈর্ঘ্য : a

উচ্চতা : h

ভূমির ক্ষেত্রফল : Sp তলের ক্ষেত্রফল : S

আয়তন : V

$$\text{Res}. \ h = \sqrt{\frac{2}{3}}a$$

રુષ્ટ.
$$S_B = \frac{\sqrt{3}a^2}{4}$$

રે૪૭.
$$S = \sqrt{3}a^2$$

RES.
$$V = \frac{1}{3}S_B h = \frac{a^3}{6\sqrt{2}}$$

ভূমির পার্শ্ব : a পার্শ্বিয় ধার : b

তীৰ্যক উচ্চতা : m উচ্চতা : h

পার্শ্বের সংখ্যা : n ভুমির পরিসীমার্ধ : p

ভূমির অন্তঃলিখিত ব্যাসার্ধ : r

পার্শ্বিয় ভূমির ক্ষেত্রফল $: S_{
m L}$ ভূমির ক্ষেত্রফল : SR

সমগ্র ভূমির ক্ষেত্রফল : S আয়তন : V

$$\forall \forall a. \ m = \sqrt{b^2 - \frac{a^2}{4}}$$

રુજ.
$$m = \sqrt{b^2 - \frac{a^2}{4}}$$
 રુષ્. $h = \frac{\sqrt{4b^2 \sin^2 \frac{\pi}{n} - a^2}}{2 \sin \frac{\pi}{n}}$

$$\text{Reg. } S_L = \frac{1}{2} nam = \frac{1}{4} na \sqrt{4b^2 - a^2} = pm$$

રુષ્ઠ.
$$S_R = pr$$

২৮৯.
$$S = S_B + S_L$$

$$\text{Reso. } V = \frac{1}{3} S_B \dot{h} = \frac{1}{3} prh$$

৫.২৭ সমবাহু পিরামিডের ছিন্নক (Frustum of a Regular Pyramid) :

উচ্চতা : h

তীর্থক উচ্চতা : m

ভূমির ক্ষেত্রফল : S1, S2

পার্শ্বিয় ভূমির ক্ষেত্রফল : Sr

ভূমির পরিসীমা : P1, P2

স্কেল গুণক : k

সমগ্র তলের ক্ষেত্রফল : S

আয়তন : V

$$\frac{b_1}{a_1} = \frac{b_2}{a_2} = \frac{b_3}{a_3} = \dots = \frac{b_n}{a_n} = \frac{b}{a} = k$$

$$2 \Rightarrow 2. \frac{S_2}{S} = k^2$$

২৯৩.
$$S_L = \frac{m(P_1 + P_2)}{2}$$

$$8. S = S_L + S_1 + S_2$$

২৯৫.
$$V = \frac{h}{3} \left(S_1 + \sqrt{S_1 S_2} + S_2 \right)$$

২৯৬.
$$V = \frac{hS_1}{3} \left[1 + \frac{b}{a} + \left(\frac{b}{a} \right)^2 \right] = \frac{hS_1}{3} \left[1 + k + k^2 \right]$$

৫.২৮ আয়তকার লঘ কীল (Rectangular Right Wedge):

ভূমির পার্শ্ব : a,b

উপরের ধার : c

উচ্চতা : h

পার্শ্বীয় ভূমির ক্ষেত্রফল : S_L

ভূমির ক্ষেত্রফল : S_B

সমগ্র পৃষ্ঠের ক্ষেত্রফল : S

আয়তন : V

રુ૧.
$$S_L = \frac{1}{2}(a+c)\sqrt{4h^2+b^2} + b\sqrt{h^2+(a-c)^2}$$

২৯৮.
$$S_B = ab$$
 ২৯৯. $S = S_B + S_L$ ৩০০. $V = \frac{bh}{6}(2a+c)$

৫.২৯ অষ্টতলক (Octahedron) :

ধার : a

অন্তঃবৃত্তের ব্যাসার্ধ : r

পরিবৃত্তের ব্যাসার্ধ : R

ক্ষেত্রফল : S

আয়তন : V

$$003. r = \frac{a\sqrt{6}}{6}$$

$$000. S = 2a^2\sqrt{3}$$

$$908. V = \frac{a^3\sqrt{2}}{3}$$

বিংশতি তলক (Ocosahedron):

$$900. \ r = \frac{a\sqrt{3}(3+\sqrt{5})}{12}$$

$$909. \ R = \frac{a}{4}\sqrt{2(5+\sqrt{5})}$$

$$909. S = 5a^2\sqrt{3}$$

$$\text{Oob. } V = \frac{5a^3(3+\sqrt{5})}{12}$$

ঘাদশ তলক (Dodecahedron) :

లంస.
$$r = \frac{a\sqrt{10(25+11\sqrt{15})}}{2}$$

$$vagan R = \frac{a\sqrt{3}(1+\sqrt{5})}{4}$$

$$\text{OSS. } S = 3a^2 \sqrt{5(5 + 2\sqrt{5})}$$

৩১২.
$$V = \frac{a^3(15+7\sqrt{5})}{4}$$

৫.৩০ লম্ব বৃত্তীয় বেলন (Right Circular Cylinder) :

ভূমির ব্যাসার্ধ : R

অনুবন্ধী ভূমি : d

উচ্চতা : H

পার্শ্বীয় ভূমির ক্ষেত্রফল $: S_L$

ভূমির ক্ষেত্রফল : S_B

সমগ্র পৃষ্ঠের ক্ষেত্রফল : S

আয়তন : V

లుం. $S_L = 2\pi RH$

లు 8.
$$S = S_L + 2S_B = 2\pi R(H + R) = \pi d \left(H + \frac{d}{2}\right)$$

$$\mathfrak{OSC}. V = S_R H = \pi R^2 H$$

৫.৩১ লমবৃন্ডীয় বেলন সহ তীর্যক সমতলীয় তল (Right Circular Cylinder

with an Oblique Plane Face):

ভূমির ব্যাসার্ধ : R

পার্শ্বের সর্বোচ্চ উচ্চতা : h1

পার্শ্বের সর্বোনিমু উচ্চতা : h_2

পার্শ্বীয় ভূমির ক্ষেত্রফল : S_L

সমতলীয় তলের ক্ষেত্রফল : S_B

ভূমির ক্ষেত্রফল : S

আয়তন : V

აა ა.
$$S_L = \pi R(h_1 + h_2)$$
 აა ა. $S_B = \pi R^2 + \pi R \sqrt{R^2 + \left(\frac{h_1 + h_2}{2}\right)^2}$

$$\text{ ost. } S = S_L + S_B = \pi R \left[h_1 + h_2 + R + \sqrt{R^2 + \left(\frac{h_1 - h_2}{2}\right)^2} \right]$$

లసిన.
$$V = \frac{\pi R^2}{2} (h_1 + h_2)$$

৫.৩২ লম বৃত্তীয় কোণক (Right Circular Cone) :

ভূমির ব্যাসার্ধ : R

অনুবন্ধী ভূমি : d

উচ্চতা : H

তীর্যক উচ্চতা : m

পার্শ্বীয় ভূমির ক্ষেত্রফল : SL

ভূমির ক্ষেত্রফল : S_B

সমগ্র তলের ক্ষেত্রফল : S

আয়ুত্ন : V

৩২০.
$$H = \sqrt{m^2 - R^2}$$

৩২১.
$$S_L = \pi Rm = \frac{\pi md}{2}$$

৩২২.
$$S_R = \pi R^2$$

৩২৩.
$$S = S_L + S_B = \pi R(m+R) = \frac{1}{2}\pi d\left(m + \frac{d}{2}\right)$$

$$0.88. V = \frac{1}{3}S_B H = \frac{1}{3}\pi R^2 H$$

৫.৩৩ লম বৃত্তীয় কোণক এর ছিন্নক (Frustum of a Right Circular Cone) :

ভূমির ব্যাসার্ধ : R, r

উচ্চতা : H

তীর্যক উচ্চতা : m

স্কেল গুণাংক : k

ভূমির ক্ষেত্রফল : S_1 , S_2

পার্শ্বীয় ভূমির ক্ষেত্রফল : SL

সমগ্র তলের ক্ষেত্রফল : S

আয়তন : V

૭૨૯.
$$H = \sqrt{m^2 - (R-r)^2}$$

৩২৬.
$$\frac{R}{r} = k$$

$$999. \frac{S_2}{S_1} = \frac{R^2}{r^2} = k^2$$

$$\text{ORF. } S_L = \pi m(R+r)$$

లని.
$$S = S_1 + S_2 + S_L = \pi [R^2 + r^2 + m(R+r)]$$

$$000. V = \frac{h}{3} \left(S_1 + \sqrt{S_1 S_2} + S_2 \right)$$

లలు.
$$V = \frac{hs}{3} \left[1 + \frac{R}{r} + \left(\frac{R}{r} \right)^2 \right] = \frac{hS_1}{3} \left[1 + k + k^2 \right]$$

৫.৩৪ গোলক (Sphere) :

ব্যাসার্ধ : R

অনুবন্ধী/ জ্যা: d

ভূমির ক্ষেত্রফল : S

আয়তন : V

৩৩২.
$$S=4\pi R^2$$

$$V = \frac{4}{3}\pi R^3 H = \frac{1}{6}\pi d^3 = \frac{1}{3}SR$$

৫.৩৫ গোলীয় কাপ (Spherical Cap):

গোলকের ব্যাসার্ধ : R

ভূমির ব্যাসার্ধ : r

উচ্চতা : h

পষ্টতলের ক্ষেত্রফল : SR

গোলীয় তলের ক্ষেত্রফল : Sc

সমগ্রতলের ক্ষেত্রফল : S

আয়তন : V

oos.
$$R = \frac{r^2 + h^2}{2h}$$
 oos. $S_B = \pi r^2$ oos. $S_C = \pi (h^2 + r^2)$

$$\circ \circ c. S_B = \pi r^2$$

೨೦೬.
$$S_C = \pi (h^2 + r^2)$$

voq.
$$S = S_R + S_C = \pi(h^2 + 2r^2) = \pi(2Rh + r^2)$$

oob.
$$V = \frac{\pi}{6}h^2(3R - h) = \frac{\pi}{6}h(3r^2 + h^2)$$

৫.৩৬ গোলীয় বৃত্তখণ্ড (Spherical Sector) :

গোলকের ব্যাসার্ধ : R

গোলীয় পাত্রের ভূমির ব্যাসার্ধ : r

উচ্চতা : h

সমগ্রতলের ক্ষেত্রফল : S

আয়তন : V

৩৩৯.
$$S = \pi R(2h+r)$$

$$\circ 80. V = \frac{2}{3}\pi R^2 h$$

[নোট : উপরের সূত্রগুলো সত্য যখন গোলীয় বৃত্তখণ্ড 'খোলা' ও 'বন্ধ' থাকে।]

৫.৩৭ গোলীয় রেখাংশ (Spherical Segment) :

গোলকের ব্যাসার্ধ : R

ভূমির ব্যাসার্ধ : r1, r2

উচ্চতা : h

গোলীয় তলের ক্ষেত্রফল : S.

সমতলীয় তলের ক্ষেত্রফল: S₁,S₂

সমগ্রতলের ক্ষেত্রফল : S

আয়তন : V

$$S_s = 2\pi Rh$$

$$982. S = S_S + S_1 + S_2 = \pi (2Rh + r_1^2 + r_2^2)$$

080.
$$V = \frac{1}{6}\pi h(3r_1^2 + 3r_2^2 + h^2)$$

৫.৩৮ গোলীয় কীল (Spherical Wedge):

ব্যাসার্ধ : R

দ্বিতল কোণ (ডিগ্রীতে) : x

দ্বিতল কোণ (রেডিয়ানে) : α

গোলীয় রেখার ক্ষেত্রফল : S

সমগ্র তলের ক্ষেত্রফল : S

আয়ত+:V

88.
$$S_L = \frac{\pi R^2}{90} \alpha = 2R^2 x$$

$$086. S = \pi R^2 + \frac{\pi R^2}{90} \alpha = \pi R^2 + 2R^2 x$$

$$v88. V = \frac{\pi R^3}{270} \alpha = \frac{2}{3} R^3 x$$

৫.৩৯ উপবৃত্তক (Ellipsoid) :

আয়তন : V

$$989. V = \frac{4}{3}\pi abc$$

স্ফীত আবর্ত উপগোলক (Prolate Spheroid) :

অক্ষাৰ্ধ : a,b,b (a > b)

ভূমির ক্ষেত্রফল : S

আয়তন : V

৩৪৮.
$$S = 2\pi b \left(b + \frac{a \arcsin e}{e} \right)$$
, যেখানে $e = \frac{\sqrt{a^2 - b^2}}{a}$

ల88.
$$V = \frac{4}{3}\pi b^2 a$$

পিষ্ট আবর্ত উপগোলক (Oblate Spheroid) :

অক্ষাৰ্ধ : a,b,b (a < b)

ভূমির ক্ষেত্রফল : S

আয়তন : V

৩৫০.
$$S=2\pi b\left(b+\frac{a\arcsin h\left(\frac{be}{a}\right)}{\frac{be}{a}}\right)$$
, যেখানে $e=\frac{\sqrt{b^2-a^2}}{b}$

$$\text{OCS. } V = \frac{4}{3}\pi b^2 a$$

৫.৪০ বৃত্তাকার বৃষ (Circular Torus) :

প্রধান ব্যাসার্ধ : R

অপ্রধান ব্যাসার্ধ : r

ভূমির ক্ষেত্রফল : S

আয়তন : V

$$0 \leqslant 3. S = 4\pi^2 Rr$$

ండం.
$$V = 2\pi^2 Rr^2$$

ষষ্ঠ অধ্যায় ত্রিকোণমিতি (Trigonometry)

সংজ্ঞা: 'ত্রি' অর্থ তিন আর 'মিতি' অর্থ পরিমাপ। সুতরাং 'ত্রিকোণমিতি' শব্দের অর্থ তিন কোণের পরিমাপ। তবে ত্রিকোণমিতি শুধু কোণের পরিমাপ নিয়েই আলোচনা করে না বরং তিন বাহু নিয়ে আলোচনা করে। সর্বোপরি বলা যায়, যে শাস্ত্র ত্রিভূজের তিন কোণ ও অন্যান্য বিষয়নিয়ে আলোচনা করে তাই ত্রিকোণমিতি। ত্রিকোণমিতির অনুপাত হলো ছয়টি। যথা: sin, cos, tan, cot, sec, cosec.

৬.১ ছয়টি ত্রিকোণমিতিক অনুপাতের সূত্র :

পার্শ্বের চিত্রটি লক্ষ্য করুণ,

চিত্রে OP=অতিভূজ, PM= লম্ব, OM = ভূমি

$$\sin \theta = \frac{PM}{OP} = \frac{\overrightarrow{PM}}{\overrightarrow{PM}} = \frac{\overrightarrow{PM}}{$$

কোণ $: \alpha, \beta$

বাস্তব সংখ্যা (একটি বিন্দুর স্থানাংক) : x,y সমগ্র সংখ্যা : k

৬.২ কোণ পরিমাপের রেডিয়ান ও ডিগ্রী কোণের মধ্যে সম্পর্ক:

$$968. \ 1 \ rad = \frac{180^{\circ}}{\pi} \approx 57^{\circ}17'45''$$

966.
$$1^0 = \frac{\pi}{180} red \approx 0.017453 rad$$

୭୯୬.
$$1' = \frac{\pi}{180.60} rad \approx 0.000291 rad$$

$$989. \ 1'' = \frac{\pi}{180.3600} rad \approx 0.000005 rad$$

কোণ (ডিগ্ৰীতে)	0	30	45	60	90	180	270	360
কোণ (রেডিয়ানে)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π

৬.৩ ত্রিকোণমিতিক অপেক্ষকের সংজ্ঞা ও লেখ:

ocs.
$$\sin \alpha = \frac{y}{r}$$

 $0.5. \tan \alpha = \frac{y}{x}$

ుటం. $\sec \alpha = \frac{r}{r}$

లు అంకి. $\cos ec\alpha = \frac{r}{r}$

৩৬৫. সাইন অপেক্ষক : $y = \sin x, -1 \le \sin x \le 1$

৩৬৬. কোসাইন অপেক্ষক: $y = \cos x, -1 \le \cos x \le 1$

৩৬৭. ট্যানজেন্ট অপক্ষেক : $y = \tan x, x \neq (2k+1)\frac{\pi}{2}, -\infty \leq \tan x \leq \infty$

৩৬৮. কটজেন্ট অপেক্ষক : $y = \cot x, x \neq k\pi, -\infty \leq \cot x \leq \infty$

৩৬৯. সেকজেন্ট অপেক্ষক : $y = \sec x, x \neq (2k+1)\frac{\pi}{2}$.

৩৭০. কোসাইনজেন্ট অপেক্ষক : $y = \cos ecx, x \neq k\pi$.

৬.৪ ত্রিকোণমিতিক অপেক্ষকের চিহ্ন :

৩৭১.

অক্ষ	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$	$\cot \alpha$	$\sec \alpha$	$\cos ec\alpha$
I	+	+	+	+	+	+
II	+					
III						
IV						

৬.৫ বিভিন্ন কোণের জন্য ত্রিকোণমিতিক অপেক্ষকের মান : ৩৭৩.

 α^0 $\sin \alpha$ $\cos \alpha$ $\cos ec\alpha$ α rad $\tan \alpha$ $\cot \alpha$ $sec \alpha$ 0 0 0 0 1 ∞ 30 $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ $\sqrt{3}$ 45 $\sqrt{2}$ $\frac{\sqrt{2}}{\frac{2}{\sqrt{3}}}$ 1 $\frac{\pi}{4}$ 60 2 $\sqrt{3}$ $\frac{\pi}{3}$ $\frac{1}{\sqrt{3}}$ 0 $\overline{0}$ 90 $\frac{\pi}{2}$ ∞ 00 120 2π $-\sqrt{3}$ 3 $\overline{0}$ 180 π -1 0 -1 ∞ ∞

270	$\frac{3\pi}{2}$	-1	0	∞	0	00	-1
360	2π	0	1	0	∞	1	∞

৩৭৪.					
α^0	α rad	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$	$\cot \alpha$
15	$\frac{\pi}{12}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2-\sqrt{3}$	$2+\sqrt{3}$
18	$\frac{\pi}{10}$	$\frac{\sqrt{5}-1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\sqrt{\frac{5-2\sqrt{5}}{5}}$	√5+2√5
36	$\frac{\pi}{5}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}+1}$	$\frac{\sqrt{5+1}}{\sqrt{10+2\sqrt{5}}}$
54	$\frac{3\pi}{10}$	$\frac{\sqrt{5}+1}{4}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}+1}{\sqrt{10+2\sqrt{5}}}$	√10+2√5 √5+1
72	$\frac{2\pi}{5}$	$\frac{\sqrt{10+2\sqrt{5}}}{4}$	$\frac{\sqrt{5}-1}{4}$	$\sqrt{5+2\sqrt{5}}$	5-2/5 5
75	$\frac{5\pi}{12}$	$\frac{\sqrt{6} + \sqrt{2}}{4}$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$2+\sqrt{3}$	$2-\sqrt{3}$

৬.৬ ত্রিকোণমিতির গুরুত্বপূর্ণ সূত্র সমূহ:

oge.
$$\sin^2 \alpha + \cos^2 \alpha = 1$$

oge. $\sec^2 \alpha - \tan^2 \alpha = 1$

999.
$$\cos ec^2\alpha - \cot^2\alpha = 1$$

999.
$$\cos ec^2\alpha - \cot^2\alpha = 1$$

૭૧৮.
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$
 ૭૧৯. $\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$

৩৮০.
$$\tan \alpha . \cot \alpha = 1$$
 ৩৮১. $\sec \alpha = \frac{1}{\cos \alpha}$

$$cos ec \alpha = \frac{1}{\sin \alpha}$$

৬.৭ পঘুকরণ সূত্র:

৩৮৩.

β	$\sin \beta$	$\cos \beta$	$\tan \beta$	$\cot \beta$
$-\alpha$	$-\sin\alpha$	$+\cos\alpha$	$-\tan \alpha$	$-\cot \alpha$
$90^{\circ} - \alpha$	$+\cos\alpha$	$+\sin\alpha$	$+\cot \alpha$	$+ \tan \alpha$
$90^{0} + \alpha$	$+\cos\alpha$	$-\sin\alpha$	$-\cot \alpha$	$-\tan \alpha$
$180^{0} - \alpha$	$+\sin\alpha$	$-\cos\alpha$	$-\tan \alpha$	$-\cot \alpha$
$180^{0} + \alpha$	$-\sin\alpha$	$-\cos\alpha$	$+ \tan \alpha$	$+\cot\alpha$
$270^{\circ} - \alpha$	$-\cos\alpha$	$-\sin\alpha$	$+\cot \alpha$	$+ \tan \alpha$
$270^{\circ} + \alpha$	$-\cos\alpha$	$+\sin\alpha$	$-\cot \alpha$	$-\tan \alpha$
$360^{\circ} - \alpha$	$-\sin\alpha$	$+\cos\alpha$	$-\tan \alpha$	$-\cot \alpha$
$360^{0} + \alpha$	$+\sin\alpha$	$+\cos\alpha$	$+ \tan \alpha$	$+\cot \alpha$

৬.৮ ত্রিকোণমিতির পর্যায়বৃত্ত অপেক্ষক:

৩৮৪.
$$\sin(\alpha \pm 2\pi n) = \sin \alpha$$
, পর্যায় 2π বা, 360°

৩৮৫.
$$\cos(\alpha \pm 2\pi n) = \cos \alpha$$
, পর্যায় 2π বা, 360°

৩৮৬.
$$tan(\alpha \pm \pi n) = tan \alpha$$
, পর্যায় π বা, 180°

৩৮৭.
$$\cot(\alpha \pm \pi n) = \cot \alpha$$
, পর্যায় π বা, 180°

৬.৯ ত্রিকোণমিতিক অপেক্ষকের মধ্যে সম্পর্ক:

obb.
$$\sin \alpha = \pm \sqrt{1 - \cos^2 \alpha} = \pm \sqrt{\frac{1}{2}(1 - \cos 2\alpha)} = 2\cos^2\left(\frac{\alpha}{2} - \frac{\pi}{4}\right) - 1$$

$$=\frac{2\tan\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}$$

లు.
$$\cos \alpha = \pm \sqrt{1-\sin^2 \alpha} = \pm \sqrt{\frac{1}{2}(1+\cos 2\alpha)} = 2\cos^2 \frac{\alpha}{2} - 1$$

$$=\frac{1-\tan^2\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}$$

yeso.
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \pm \sqrt{\sec^2 \alpha - 1} = \frac{\sin 2\alpha}{1 + \cos 2\alpha} = \frac{1 - \cos 2\alpha}{\sin 2\alpha}$$

$$=\pm\sqrt{\frac{1-\cos 2\alpha}{1+\cos 2\alpha}}=\frac{2\tan\frac{\alpha}{2}}{1+\tan^2\frac{\alpha}{2}}$$

عند
$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha} = \pm \sqrt{\cos ec^2 \alpha - 1} = \frac{1 + \cos 2\alpha}{\sin 2\alpha} = \frac{\sin 2\alpha}{1 - \cos 2\alpha}$$

$$=\pm\sqrt{\frac{1+\cos 2\alpha}{1-\cos 2\alpha}}=\frac{1-\tan^2\frac{\alpha}{2}}{2\tan\frac{\alpha}{2}}$$

૭৯૨.
$$\sec \alpha = \frac{1}{\cos \alpha} = \pm \sqrt{1 + \tan^2 \alpha} = \frac{1 + \tan^2 \frac{\alpha}{2}}{1 - \tan^2 \frac{\alpha}{2}}$$

ి అస్తు.
$$\cos ec\alpha = \frac{1}{\sin \alpha} = \pm \sqrt{1 + \cot^2 \alpha} = \frac{1 + \tan^2 \frac{\alpha}{2}}{2 \tan \frac{\alpha}{2}}$$

৬.১০ ত্রিকোণমিতিক যোগ-বিয়োগের সূত্র :

•88.
$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$$

•80. $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \sin \beta \cos \alpha$

ዕእህ.
$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

৩৯৭.
$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

where
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

৩৯৯.
$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

800.
$$\cot(\alpha + \beta) = \frac{1 - \tan \alpha \tan \beta}{\tan \alpha + \tan \beta}$$

803.
$$\cot(\alpha - \beta) = \frac{1 + \tan \alpha \tan \beta}{\tan \alpha - \tan \beta}$$

৬.১১ দ্বিকোণের সূত্র :

$$802$$
. $\sin 2\alpha = \sin \alpha . \cos \alpha$

800.
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha = 2\cos^2 \alpha - 1$$

808.
$$\tan 2\alpha = \frac{2\tan \alpha}{1-\tan^2 \alpha} = \frac{2}{\cot \alpha - \tan \alpha}$$

80¢.
$$\cot 2\alpha = \frac{\cot^2 \alpha - 1}{2\cot \alpha} = \frac{\cot \alpha - \tan \alpha}{2}$$

৬.১২ গুণিত কোণের সূত্র :

804.
$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha = 3\cos^2 \alpha . \sin \alpha - \sin^3 \alpha$$

809.
$$\sin 4\alpha = 4\sin \alpha .\cos \alpha - 8\sin^3 \alpha .\cos \alpha$$

80b.
$$\sin 5\alpha = 5\sin \alpha - 20\sin^3 \alpha + 16\sin^5 \alpha$$

808.
$$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha = \cos^3 \alpha - 3\cos \alpha \cdot \sin^2 \alpha$$

850.
$$\cos 4\alpha = 8\cos^4 \alpha - 8\cos^2 \alpha + 1$$

833.
$$\cos 5\alpha = 16\cos^5\alpha - 20\cos^3\alpha + 5\cos\alpha$$

832.
$$\tan 3\alpha = \frac{3\tan \alpha - \tan^3 \alpha}{1 - 3\tan^2 \alpha}$$

830.
$$\tan 4\alpha = \frac{4\tan \alpha - 4\tan^3 \alpha}{1 - 6\tan^2 \alpha + \tan^4 \alpha}$$

838.
$$\tan 5\alpha = \frac{\tan^5 \alpha - 10\tan^3 \alpha + 5\tan \alpha}{1 - 10\tan^2 \alpha + 5\tan^4 \alpha}$$

85¢.
$$\cot 3\alpha = \frac{\cot^3 \alpha - 3\cot \alpha}{3\cot^2 \alpha - 1}$$

836.
$$\cot 4\alpha = \frac{1 - 6\tan^2 \alpha + \tan^4 \alpha}{4\tan \alpha - 4\tan^3 \alpha}$$

839.
$$\cot 5\alpha = \frac{1 - 10\tan^2\alpha + 5\tan^4\alpha}{\tan^5\alpha - 10\tan^3\alpha + 5\tan\alpha}$$

৬.১৩ অর্ধ কোণের সূত্র :

835.
$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$
 835. $\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$

880.
$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha} = \csc \alpha - \cot \alpha$$

83.
$$\cot \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}} = \frac{\sin \alpha}{1 - \cos \alpha} = \frac{1 + \cos \alpha}{\sin \alpha} = \csc \alpha + \cot \alpha$$

৬.১৪ অর্ধ কোণের ট্যানজেন্ট পরিচয় :

822.
$$\sin \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$
820. $\cos \alpha = \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$

888.
$$\tan \alpha = \frac{2\tan\frac{\alpha}{2}}{1-\tan^2\frac{\alpha}{2}}$$
 880. $\cot \alpha = \frac{1-\tan^2\frac{\alpha}{2}}{2\tan\frac{\alpha}{2}}$

৬.১৫ অন্যান্য ত্রিকোণমিতিক সূত্র সমূহ:

826.
$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

839.
$$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

82b.
$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

888.
$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

800.
$$\tan \alpha + \tan \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cdot \cos \beta}$$

803.
$$\tan \alpha - \tan \beta = \frac{\sin(\alpha - \beta)}{\cos \alpha \cdot \cos \beta}$$

8૭૨.
$$\cot \alpha + \cot \beta = \frac{\sin(\beta + \alpha)}{\sin \alpha \cdot \sin \beta}$$

800.
$$\cot \alpha - \cot \beta = \frac{\sin(\beta - \alpha)}{\sin \alpha \cdot \sin \beta}$$

808.
$$\cos \alpha + \sin \alpha = \sqrt{2} \cos \left(\frac{\pi}{4} - \alpha \right) = \sqrt{2} \sin \left(\frac{\pi}{4} + \alpha \right)$$

800.
$$\cos \alpha - \sin \alpha = \sqrt{2} \sin \left(\frac{\pi}{4} - \alpha \right) = \sqrt{2} \cos \left(\frac{\pi}{4} + \alpha \right)$$

.804.
$$\tan \alpha + \cot \beta = \frac{\cos(\alpha - \beta)}{\cos \alpha \cdot \sin \beta}$$

809.
$$\tan \alpha - \cot \beta = \frac{\cos(\alpha + \beta)}{\cos \alpha \sin \beta}$$

80b.
$$1 + \cos \alpha = 2\cos^2 \frac{\alpha}{2}$$
 80b. $1 - \cos \alpha = 2\sin^2 \frac{\alpha}{2}$

880.
$$1 + \sin \alpha = 2\cos^2\left(\frac{\pi}{4} - \frac{\alpha}{2}\right)$$

883.
$$1-\sin\alpha=2\sin^2\left(\frac{\pi}{4}-\frac{\alpha}{2}\right)$$

882.
$$\sin \alpha . \sin \beta = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{2}$$

880.
$$\cos \alpha . \cos \beta = \frac{\cos(\alpha - \beta) + \cos(\alpha + \beta)}{2}$$

888.
$$\sin \alpha . \cos \beta = \frac{\sin(\alpha - \beta) + \sin(\alpha + \beta)}{2}$$

৮৬

884.
$$\tan \alpha \cdot \tan \beta = \frac{\tan \alpha + \tan \beta}{\cot \alpha + \cot \beta}$$

884.
$$\cot \alpha . \cot \beta = \frac{\cot \alpha + \cot \beta}{\tan \alpha + \tan \beta}$$

B89.
$$\tan \alpha . \cot \beta = \frac{\tan \alpha + \cot \beta}{\cot \alpha + \tan \beta}$$

১১৬ ত্রিকোণমিতিক অপেক্ষকের শক্তি :

88b.
$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$
 88b. $\sin^3 \alpha = \frac{3\sin \alpha - \sin 3\alpha}{4}$

$$800. \sin^4 \alpha = \frac{\cos 4\alpha - 4\cos 2\alpha + 3}{8}$$

803.
$$\sin^5 \alpha = \frac{10\sin \alpha - 5\sin 3\alpha + \sin 5\alpha}{16}$$

862.
$$\sin^6 \alpha = \frac{10 - 15\cos 2\alpha + 6\cos 4\alpha - \cos 6\alpha}{32}$$

800.
$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$
 808. $\cos^3 \alpha = \frac{3\cos \alpha + \cos 3\alpha}{4}$

8cc.
$$\cos^4 \alpha = \frac{\cos 4\alpha + 4\cos 2\alpha + 3}{8}$$

864.
$$\cos^5 \alpha = \frac{10\cos \alpha + 5\sin 3\alpha + \cos 5\alpha}{16}$$

869.
$$\cos^6 \alpha = \frac{10 + 15\cos 2\alpha + 6\cos 4\alpha + \cos 6\alpha}{32}$$

৬.১৭ ত্রিকোণমিতিক বিপরীত অপেক্ষকের লেখ:

৪৫৮. বিপরীত সাইন অপেক্ষক:

$$y = \arcsin x, -1 \le x \le 1, -\frac{\pi}{2} \le \arcsin x \le \frac{\pi}{2}$$

৪৫৯. বিপরীত কোসাইন অপেক্ষক :

$$y = \arccos x, -1 \le x \le 1, 0 \le \arccos x \le \pi$$

8৬০. বিপরীত ট্যানজেন্ট অপেক্ষক :

$$y = \arctan x, -\infty \le x \le \infty, -\frac{\pi}{2} \le \arctan x \le \frac{\pi}{2}$$

৪৬১. বিপরীত কটজেন্ট অপেক্ষক:

$$y = arc \cot x, -\infty \le x \le \infty, 0 \le arc \cot x \le \pi$$

৪৬২. বিপরীত সেকজেন্ট অপেক্ষক :

$$y = arc \sec x, x \in (-\infty, -1] \cup [1, \infty), arc \sec x \in \left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$$

৪৬৩. বিপরীত কোসেকজেন্ট অপেক্ষক:

$$y = \arccos ecx, x \in (-\infty, -1] \cup [1, \infty), \arccos ecx \in \left[-\frac{\pi}{2}, 0\right] \cup \left(0, \frac{\pi}{2}\right]$$

X

৬.১৮ ত্রিকোণমিতিক বিপরীত অপেক্ষকের মধ্যে সম্পর্ক:

8 \(8 \).
$$\arcsin(-x) = -\arcsin x$$

8 \(\epsilon \).
$$\arcsin x = \frac{\pi}{2} - \arccos x$$

856.
$$\arcsin x = \arccos \sqrt{1-x^2}, 0 \le x \le 1$$

889.
$$\arcsin x = -\arccos\sqrt{1-x^2}, -1 \le x \le 0$$

89b.
$$\arcsin x = \arctan \frac{x}{\sqrt{1-x^2}}, x^2 < 1.$$

৪৬৯.
$$\arcsin x = \operatorname{arc} \cot \frac{\sqrt{1-x^2}}{x}, 0 < x \le 1.$$

890.
$$\arcsin x = arc \cot \frac{\sqrt{1-x^2}}{x} - \pi, -1 \le x \le 0.$$

893.
$$arccos(-x) = \pi - arccos x$$

892.
$$\arccos x = \frac{\pi}{2} - \arcsin x$$

890.
$$\arccos x = \arcsin \sqrt{1-x^2}, 0 \le x \le 1$$

898.
$$\arccos x = \pi - \arcsin \sqrt{1 - x^2}, -1 \le x \le 0$$

89¢.
$$\arccos x = \arctan \frac{\sqrt{1-x^2}}{x}, 0 < x \le 1.$$

896.
$$\arccos x = \pi + \arctan \frac{\sqrt{1 - x^2}}{x}, -1 \le x \le 0.$$

899.
$$\arccos x = arc \cot \frac{x}{\sqrt{1-x^2}}, -1 \le x \le 1.$$

89b.
$$\arctan(-x) = -\arctan x$$

89%.
$$\arctan x = \frac{\pi}{2} - arc \cot x$$

8bo.
$$\arctan x = \arcsin \frac{x}{\sqrt{1+x^2}}$$

8b3.
$$\arctan x = \arccos \frac{1}{\sqrt{1+x^2}}, x \ge 0.$$

8b2.
$$\arctan x = -\arccos \frac{1}{\sqrt{1+x^2}}, x \le 0.$$

850.
$$\arctan x = \frac{\pi}{2} - \arctan \frac{1}{x}, x > 0.$$

888.
$$\arctan x = -\frac{\pi}{2} - \arctan \frac{1}{x}, x < 0.$$

85%.
$$\arctan x = \operatorname{arc} \cot \frac{1}{x}, x > 0.$$

8b4.
$$\arctan x = arc \cot \frac{1}{x} - \pi, x < 0.$$

869.
$$arc \cot(-x) = \pi - arc \cot x$$

8bb.
$$arc \cot x = \frac{\pi}{2} - \arctan x$$

৪৮৯.
$$arc \cot x = \arcsin \frac{1}{\sqrt{1+x^2}}, x > 0.$$

880.
$$arc \cot x = \pi - \arcsin \frac{1}{\sqrt{1+x^2}}, x < 0.$$

883.
$$arc \cot x = \arccos \frac{x}{\sqrt{1+x^2}}$$

8৯২.
$$arc \cot x = \arctan \frac{1}{x}, x > 0.$$

8పిల.
$$arc \cot x = \pi + \arctan \frac{1}{x}, x < 0.$$

৬.১৯ ত্রিকোণমিতিক সমীকরণ: সমগ্র সংখ্যা : n

858.
$$\sin x = a, x = (-1)^n \arcsin a + \pi n$$

884.
$$\cos x = a, x = \pm \arccos a + 2\pi n$$

8৯৬.
$$\tan x = a, x = \arctan a + \pi n$$

889.
$$\cot x = a, x = arc \cot a + \pi n$$

8৯৮.
$$\sin(ix) = i \sinh x$$

8৯৯.
$$tan(ix) = i tanh x$$

$$eoo. \cot(ix) = -i \coth x$$

$$cos. sec(ix) = sechx$$

$$\cos ec(ix) = -i\cos echx$$

সপ্তম অধ্যায়

মেট্রিক্স ও নির্ণায়ক (Matrix & Determinants)

মেট্রিকা : A,B,C

মেট্রিক্স-এর উপাদান $: a_i, b_i, a_{ii}, b_{ii}, c_{ii}$

মেট্রিক্স-এর নির্ণায়ক : $\det A$ উপাদানের মাইনর $a_{ii}:M_{ii}$

উপাদানের সহ উৎপাদক $a_{ij}:C_{ij}$

মেট্রিক্স-এর পক্ষান্তর $: A^T, \ \widetilde{A}$

সংলগ্ন মেট্রক্স : adj A মেট্রক্স-এর কর্ণাঙ্ক : tr A বিপরীত মেট্রিক্স : A⁻¹

বাস্তব সংখ্যা : k বাস্তব চল : xi

স্বাভাবিক সংখ্যা : m.n

৭.১ নির্ণায়ক (Determinants) :

৫০৩. দ্বিতীয় পর্যায়ের নির্ণায়ক :
$$dat A = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

৫০৪. তৃতীয় পর্যায়ের নির্ণায়ক :
$$datA = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}-a_{13}a_{22}a_{31}$$
 ৫০৫. তীর নিয়ম :

৫০৬. N তম ক্রমের নির্ণায়ক :
$$\det A = \begin{vmatrix} a_{11} & a_{12} & ... & a_{1j} ... a_{1n} \\ a_{21} & a_{22} & ... & a_{2j} ... a_{2n} \\ ... & ... & ... & ... & ... \\ a_{i1} & a_{i2} & ... & a_{ij} ... a_{in} \\ ... & ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nj} ... a_{nn} \end{vmatrix}$$

৫০৭. সহ উৎপাদক $: C_{ii} = (-1)^{i+j} M_{ij}$

৫০৮. N তম ক্রমের নির্ণায়কের জন্য ল্যাপলসের বিষ্ণৃতি:

$$i$$
 তম সারির জন্য $\det A = \sum_{i=1}^n a_{ij} C_{ij}, i=1,2,....,n.$

$$j$$
 তম সারির জন্য $\det A = \sum_{i=1}^{n} a_{ij} C_{ij}, i = 1, 2,, n.$

৭.২ নির্ণায়কের ধর্ম :

$$\begin{cases} a_1 & a_1 \\ a_2 & a_2 \end{cases} = 0 \qquad \text{ess. } \begin{vmatrix} a_1 & a_1 \\ a_2 & b_2 \end{vmatrix} = k \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

هامي
$$\begin{vmatrix} a_1 + kb_1 & b_1 \\ a_2 + kb_2 & b_2 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

৭.৩ মেট্রিক্স :

৫১৪. সংজ্ঞা :
$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

৫১৫. বর্গ মেট্রিক্স হলো একটি মেট্রিক্স যার ক্রম n imes n

৫১৬ যদি
$$\,a_{ij} = a_{ji}\,$$
হয় তাহলে বর্গ মেট্রিক্সটি হবে $\left\lfloor a_{ij} \,
ight
floor$

৫১৭. যদি
$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
 এবং

$$B = egin{bmatrix} b_{ij} \ b_{ij} \ b_{21} & b_{22} & \cdots & b_{1n} \ b_{21} & b_{22} & \cdots & b_{2n} \ dots & dots & dots \ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}$$
 হয় তাহলে,

$$A+B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

৫১৮. যদি k একটি ক্ষেলার রাশি এবং $A = \left\lfloor a_{ij} \right
floor$ একটি মেট্রক্স , তাহলে

$$kA = [ka_{ij}] = \begin{bmatrix} ka_{11} & ka_{12} & \cdots & ka_{1n} \\ ka_{21} & ka_{22} & \cdots & ka_{2n} \\ \vdots & \vdots & & \vdots \\ ka_{m1} & ka_{m2} & \cdots & ka_{mn} \end{bmatrix}$$

৫১৯. দুটি মেট্রক্স-এর গুণ :

যদি
$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
 এবং

$$B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1k} \\ b_{21} & b_{22} & \cdots & b_{2k} \\ \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nk} \end{bmatrix}$$
 হয় তাহলে

$$AB = C = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1k} \\ c_{21} & c_{22} & \cdots & c_{2k} \\ \vdots & \vdots & & \vdots \\ c_{n} & c_{n} & \cdots & c_{n} \end{bmatrix}$$
, যেখানে

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{i=1}^{n} a_{i\lambda}b_{\lambda j}$$
 (i = 1,2,..., m; j = 1,2,..., k

তাহলে হয়
$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}, B = \begin{bmatrix} b_i \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
, তাহলে

$$AB = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_{11}b_1 & a_{12}b_2 & a_{13}b_3 \\ a_{21}b_1 & a_{22}b_2 & a_{23}b_3 \end{bmatrix}$$

৫২০.
$$(AB)^T = B^T A^T$$
.

৫২১. $adjA = [C_{ij}]$

$$eqq$$
. $trA = a_{11} + a_{22} + + a_{nn}$ eqq . $A^{-1} = \frac{adjA}{\det A}$

$$\alpha \ge 8. \ (AB)^{-1} = B^{-1}A^{-1}$$

 $\alpha \ge \alpha. \ AX = \lambda X. |A - \lambda I| = 0$

৭.৪ রৈখিক সমীকরণের নিয়ম:

চল:
$$x,y,z,x_1,x_2,...$$

বাস্তব সংখ্যা: $a_1,a_2,a_3,b_1,a_{11},a_{12},....$
নির্ণায়ক: D,D_x,D_y,D_z

মেট্রব্র
$$:A,B,X$$

৫২৬.
$$\begin{cases} a_1 x + b_1 y = d_1 \\ a_2 x + b_2 y = d_2 \end{cases}, \ x = \frac{D_x}{D}, y = \frac{D_y}{D}$$

যেখানে
$$D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1$$
,

$$D_{x} = \begin{vmatrix} d_{1} & b_{1} \\ d_{2} & b_{2} \end{vmatrix} = d_{1}b_{2} - d_{2}b_{1},$$

$$D_{y} = \begin{vmatrix} a_{1} & d_{1} \\ a_{2} & d_{2} \end{vmatrix} = a_{1}d_{2} - a_{2}d_{1}$$

৫২৭. যদি $D \neq 0$ হয় তাহলে পদ্ধতিটির একটি একক সমাধান হলো

$$x = \frac{D_x}{D}, y = \frac{D_y}{D}$$

যদি D=0 এবং $D_x \neq 0$ (অথবা $D_y \neq 0$)হয় তাহলে পদ্ধতিটির কোন সমাধান হবে না।

যদি $D=D_{x}=D_{y}=0$ হয় তাহলে পদ্ধতিটির সমাধান হবে অসংখ্য এবং অসীম।

৫২৮.
$$\begin{cases} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3 \end{cases}, \ x=\frac{D_x}{D}, \ y=\frac{D_y}{D}, \ z=\frac{D_z}{D}, \ \text{যোগানো}$$

$$D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}, \qquad D_x = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3} \end{vmatrix}, \qquad D_{z} = \begin{vmatrix} a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3} \end{vmatrix}$$

একে মেট্রিক্সের আকালে লেখা যায় এভাবে

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$
 যেহেতু $A.X = B$,

যেখানে
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}.$$

৫৩০. রৈখিত সমীকরণ $n \times n$ এর সমাধান সেট হলো $X = A^{-1}.B$, যেখানে A^{-1} হলো A এর বিপরীত ।

অষ্টম অধ্যায়

ভেক্টর (Vectors)

ভেক্টর : $\vec{u}, \vec{v}, \vec{w}, \vec{r}, \vec{A}B, \dots$

ভেক্টরের দৈর্ঘ্য : $|\vec{u}|, |\vec{v}|, \dots$

একক ভেক্টর $: \vec{i}, \vec{j}, \vec{k}$

শূণ্য ভেক্টর : $\vec{0}$

ভেক্টরের স্থানংক $\vec{u}: X_1, Y_1, Z_1$, $\vec{v}: X_2, Y_2, Z_2$

কেলার : λ, μ

কোসাইনের দিক : $\cos \alpha, \cos \beta, \cos \gamma$

দুটি ভেক্টরের মধ্যবর্তী কোণ : heta

৮.১ ভেষ্টর স্থানাংক:

৫৩১. একক ভেক্টর :

$$\vec{i} = (1,0,0), \vec{j} = (0,1,0), \vec{k} = (0,0,1), |\vec{i}| = |\vec{j}| = |\vec{k}| = 1$$

૧02.
$$\vec{r} = \vec{A}B = (x_1 - x_0)\vec{i} + (y_1 - y_0)\vec{j} + (z_1 - z_0)\vec{k}$$

coo.
$$\vec{r} = |\vec{A}B| = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2}$$

৫৩৪. যদি $\vec{A}B=\vec{r}$ হয় তাহলে $\vec{B}A=-\vec{r}$

eve. $X = |\vec{r}|\cos \alpha, Y = |\vec{r}|\cos \beta, Z = |\vec{r}|\cos \gamma$

৫৩৬. যদি $\ \vec{r}(X,Y,Z)=\vec{r}(X_1,Y_1,Z_1),$ হয় তাহলে $\ X=X_1,Y=Y_1,Z=Z_1$

৮.২ ভেষ্টর যোগ:

$$\vec{e}$$

 $\text{ evb. } \vec{w} = \vec{u}_1 + \vec{u}_2 + \vec{u}_3 + \ldots + \vec{u}_n$

රෙත.
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

200

Q80.
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

(85).
$$\vec{u} + \vec{v} = (X_1 + X_2, Y_1 + Y_2, Z_1 + Z_2)$$

৮.৩ ভেক্টর বিয়োগ:

48२.
$$\vec{w} = \vec{u} - \vec{v}$$
 यिन $\vec{v} + \vec{w} = \vec{u}$

489.
$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$

$$\vec{q}$$
88. $\vec{u} - \vec{u} = \vec{0} = (0,0,0)$

$$\mathbf{e}\mathbf{8}\mathbf{e}.\ \left|\vec{0}\right|=0$$

$$\text{@84. } \vec{u} - \vec{v} = (X_1 - X_2, Y_1 - Y_2, Z_1 - Z_2)$$

৮.৪ ভেক্টর ক্ষেপিং:

@89.
$$\vec{w} = \lambda \vec{u}$$

$$\mathfrak{C}8\mathfrak{b}$$
. $|\vec{w}| = |\lambda| |\vec{u}|$

$$\mathfrak{C88}. \ \lambda \vec{u} = (\lambda X, \lambda Y, \lambda Z)$$

$$\alpha \alpha \circ \lambda \vec{u} = \vec{u} \lambda$$

$$\alpha \alpha \lambda. \ (\lambda + \mu) \vec{u} = \lambda \vec{u} + \mu \vec{u}$$

$$\mathbf{ee}. \ \lambda(\mu \vec{u}) = \mu(\lambda \vec{u}) = (\lambda \mu)\vec{u}$$

$$\alpha \alpha \circ \lambda (\vec{u} + \vec{v}) = \lambda \vec{u} + \lambda \vec{v}$$

৮.৫ কেলার গুণফল:

$$\mathbf{ee8}. \ \vec{u}.\vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

৫৫৫. যদি $\vec{u}=(X_1,Y_1,Z_1), \vec{v}=(X_2,Y_2,Z_2)$ হয় তাহলে,

$$\vec{u}.\vec{v} = X_1 X_2 + Y_1 Y_2 + Z_1 Z_2$$

৫৫৬. দুটি ভেক্টরের মধ্যবর্তী কোণ:

যদি
$$\vec{u}=(X_1,Y_1,Z_1), \vec{v}=(X_2,Y_2,Z_2)$$
 হয় তাহলে,

$$\cos\theta = \frac{X_1 X_2 + Y_1 Y_2 + Z_1 Z_2}{\sqrt{X_1^2 + Y_1^2 + Z_1^2} \sqrt{X_2^2 + Y_2^2 + Z_2^2}}$$

 $\mathcal{C}\mathcal{C}\mathcal{A}$. $\vec{u}.\vec{v} = \vec{v}.\vec{u}$

eeb. $(\lambda \vec{u}).(\mu \vec{v}) = \lambda \mu \vec{u}.\vec{v}$

 $\mathcal{CCS}. \ \vec{u}.(\vec{v} + \vec{w}) = \vec{u}.\vec{v} + \vec{u}.\vec{w}$

৫৬০.
$$\vec{u}.\vec{v}=0$$
 যদি \vec{u},\vec{v} লম্ব $(\theta=\frac{\pi}{2})$ হয়।

৫৬১.
$$\vec{u}.\vec{v}>0$$
 যদি $0<\theta<\frac{\pi}{2}$ হয়। ৫৬২. $\vec{u}.\vec{v}<0$ যদি $\frac{\pi}{2}<\theta<\pi$ হয়।

૯৬৩. $\vec{u}.\vec{v} \leq |\vec{u}|.|\vec{v}|$

৫৬৪.
$$\vec{u}.\vec{v}=|\vec{u}||\vec{v}|$$
 যদি \vec{u},\vec{v} সমান্তরাল $(\theta=0)$ হয়।

৫৬৫. যদি
$$\vec{u}=(X_1,Y_1,Z_1)$$
 হয় তাহলে $\vec{u}.\vec{u}=\vec{u}^2=\left|\vec{u}\right|^2=X_1^2+Y_1^2+Z_1^2$

$$\text{ eub. } \vec{i}.\vec{i} = \vec{j}.\vec{j} = \vec{k}.\vec{k} = 1 \qquad \text{ eub. } \vec{i}.\vec{j} = \vec{j}.\vec{k} = \vec{k}.\vec{i} = 0$$

৮.৬ ভেক্টর গুণফল:

৫৬৮. \vec{u} এবং \vec{v} ভেক্টরের ভেক্টর গুণফল হলো $\vec{u} imes \vec{v} = \vec{w}$, যেখানে

*
$$|\vec{w}| = |\vec{u}||\vec{v}| \cdot \sin \theta$$
, যেখানে $0 \le \theta \le \frac{\pi}{2}$

$$*$$
 $\vec{w} \perp \vec{u}$ এবং $\vec{w} \perp \vec{v}$

৫৬৯.
$$\vec{w} = \vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ X_1 & Y_1 & Z_1 \\ X_2 & Y_2 & Z_2 \end{vmatrix}$$

$$\text{eqo. } \vec{w} = \vec{u} \times \vec{v} = \begin{pmatrix} |Y_1 & Z_1| \\ |Y_2 & Z_2| \\ -|X_2 & Z_2| \\ |X_2 & Z_2| \end{pmatrix} \begin{vmatrix} |X_1 & Y_1| \\ |X_2 & Y_2| \\ |X_2 & Y_2| \end{pmatrix}$$

৫৭১.
$$S = |\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| . \sin \theta$$
 (পূর্বের চিত্রটি লক্ষ্য করুন)

৫৭২. দুটি ভেক্টরের মধ্যবতী কোণ :
$$\sin\theta = \frac{\vec{u} \times \vec{v}}{|\vec{u}| |\vec{v}|}$$
 (পূর্বের চিত্রটি লক্ষ্য করুন)

૯૧૭.
$$\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$$

$$\mathfrak{C}$$
 ۹8. $(\lambda \vec{u}) \times (\mu \vec{v}) = \lambda \mu \vec{u} \times \vec{v}$

১০২

$$\mathbf{Q} = \mathbf{Q} \cdot \vec{u} \times (\vec{v} \times \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$$

৫৭৬.
$$\vec{u} \times \vec{v} = \vec{0}$$
 হবে যদি যদি \vec{u}, \vec{v} সমান্তরাল $(\theta = 0)$ হয়।

e99.
$$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = \vec{0}$$

Q95.
$$\vec{i} \times \vec{j} = \vec{k}, \vec{j} \times \vec{k} = \vec{i}, \vec{k} \times \vec{i} = \vec{j}$$

৮.৭ ত্রয়ী গুণফল:

৫৭৯. স্কেলার ত্রারী গুণফল :
$$[\vec{u}\vec{v}\vec{w}] = \vec{u}.(\vec{v}\times\vec{w}) = \vec{v}.(\vec{w}\times\vec{u}) = \vec{w}.(\vec{u}\times\vec{v})$$

Qto.
$$[\vec{u}\vec{v}\vec{w}] = [\vec{w}\vec{u}\vec{v}] = [\vec{v}\vec{w}\vec{u}] = -[\vec{v}\vec{w}\vec{u}] = -[\vec{w}\vec{u}\vec{v}] = -[\vec{u}\vec{v}\vec{w}]$$

৫৮১.
$$k\vec{u}.(\vec{v}\times\vec{w})=k[\vec{u}\vec{v}\vec{w}]$$

৫৮২. স্থানাংক ব্যবস্থায় ক্ষেলার ত্রয়ীগুণফল:

$$ec{u}.(ec{v} imesec{w}) = egin{vmatrix} X_1 & Y_1 & Z_1 \ X_2 & Y_2 & Z_2 \ X_3 & Y_3 & Z_3 \end{bmatrix}$$
, যেখানে

$$\vec{u} = (X_1, Y_1, Z_1), \ \vec{v} = (X_2, Y_2, Z_2), \vec{w} = (X_3, Y_3, Z_3)$$

৫৮৩. সামন্তরিকের ষড়তলকের আয়তন $: V = |\vec{u}.(\vec{v} \times \vec{w})|$

৫৮৪. পিরামিডের আয়তন :
$$V = \frac{1}{6} |\vec{u}.(\vec{v} \times \vec{w})|$$

৫৮৫. ভেক্টরের ত্রায়ী গুণফল : $\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u}.\vec{w})\vec{v} + \vec{v}(\vec{u}.\vec{v})\vec{w}$

নবম অধ্যায়

স্থানাংক জ্যামিতি (Analytic Geometry)

৯.১ একমাত্রিক স্থানাংক পদ্ধতি:

স্থানাংক বিন্দু : $x_0, x_1, x_2, y_0, y_1, y_2$

বাস্তব সংখ্যা : λ

দুটি বিন্দুর মধ্যবর্তী দূরত্ব: d

৫৮৬. দুটি বিন্দুর মধ্যবর্তী দূরত্ব : $d = AB = |x_2 - x_1| = |x_1 - x_2|$

$$\frac{d}{A(x_1)} \frac{B(x_2)}{B(x_2)} \times$$

৫৮৭. একটি রেখাংশের অনুপাত λ হলে বিভাজন হবে :

$$x_0 = \frac{x_1 + \lambda x_2}{1 + \lambda}, \lambda = \frac{AC}{BC}, \lambda \neq 1$$

$$\frac{C(x_0)}{A(x_1)} \xrightarrow{B(x_2)} x \qquad \frac{C(x_0)}{A(x_1)} \xrightarrow{B(x_2)} x$$

$$\lambda > 0 \qquad \qquad \lambda < 0$$

৫৮৮. রেখাংশের মধ্য বিন্দু : $x_0 = \frac{x_1 + x_2}{2}, \lambda = 1$

৯.২ দ্বিমাত্রিক স্থানাংক পদ্ধতি:

স্থানাংক বিন্দু : $x_0, x_1, x_2, y_0, y_1, y_2$

মেরু স্থানাংক : r, φ

বাস্তব সংখ্যা : 🔏

ধনাত্নক বাস্তব সংখ্যা : a,b,c

দুটি বিন্দুর মধ্যবর্তী দূরত্ব: d

ক্ষেত্রফল : S

৫৮৯. দুটি বিন্দুর মধ্যবর্তী দূরত্ব :

$$d = AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$B(x_2, y_2)$$

$$A(x_1, y_1)$$

৫৯০. একটি রেখাংশের অনুপাত λ হলে বিভাজন হবে :

$$x_0 = \frac{x_1 + \lambda x_2}{1 + \lambda}, y_0 = \frac{y_1 + \lambda y_2}{1 + \lambda}, \lambda = \frac{AC}{BC}, \lambda \neq -1$$

৫৯১. রেখাংশের মধ্যবিন্দু : $x_0 = \frac{x_1 + x_2}{2}, y_0 = \frac{y_1 + y_2}{2}, \lambda = 1.$

৫৯২. ত্রিভূজের কেন্দ্রীয় বিন্দু (মধ্যমার ছেদ):

$$x_0 = \frac{x_1 + x_2 + x_3}{3}, y_0 = \frac{y_1 + y_2 + y_3}{3}$$

$$y$$

$$B(x_2, y_2)$$

$$C(x_3, y_3)$$

0

৫৯৩. ত্রিভূজের অন্তঃকেন্দ্র :
$$x_0=\frac{ax_1+bx_2+cx_3}{a+b+c}, y_0=\frac{ay_1+by_2+cy_3}{a+b+c}$$
. যেখানে $a=BC,b=CA,c=AB$

৫৯৪. ত্রিভূজের পরিকেন্দ্র:

$$x_{0} = \frac{\begin{vmatrix} x_{1}^{2} + y_{1}^{2} & y_{1} & 1 \\ x_{2}^{2} + y_{2}^{2} & y_{2} & 1 \\ x_{3}^{2} + y_{3}^{2} & y_{3} & 1 \end{vmatrix}}{\begin{vmatrix} x_{1} & y_{1} & 1 \\ x_{2}^{2} + y_{2}^{2} & y_{2} & 1 \\ x_{3}^{2} + y_{3}^{2} & y_{3} & 1 \end{vmatrix}}, y_{0} = \frac{\begin{vmatrix} x_{1} & x_{1}^{2} + y_{1}^{2} & 1 \\ x_{2} & x_{2}^{2} + y_{2}^{2} & 1 \\ x_{3} & x_{3}^{2} + y_{3}^{2} & 1 \end{vmatrix}}{\begin{vmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{vmatrix}}$$

৫৯৫. ত্রিভূজের লম্ব বিন্দু:

$$x_{0} = \frac{\begin{vmatrix} y_{1} & x_{2}x_{3} + y_{1}^{2} & 1 \\ y_{2} & x_{3}x_{1} + y_{2}^{2} & 1 \\ y_{3} & x_{1}x_{2} + y_{3}^{2} & 1 \end{vmatrix}}{\begin{vmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{vmatrix}}, y_{0} = \frac{\begin{vmatrix} x_{1}^{2} + y_{2}y_{3} & x_{1} & 1 \\ x_{2}^{2} + y_{3}y_{1} & x_{2} & 1 \\ x_{3}^{2} + y_{1}y_{2} & x_{3} & 1 \end{vmatrix}}{\begin{vmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{vmatrix}}$$

৫৯৬. ত্রিভূজের ক্ষেত্রফল :
$$S=(\pm)\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = (\pm)\frac{1}{2}\begin{vmatrix} x_2-x_1 & y_2-y_1 \\ x_3-x_1 & y_3-y_1 \end{vmatrix}$$

৫৯৭. চতুর্ভূজের ক্ষেত্রফল :

$$S = (\pm) \frac{1}{2} \begin{bmatrix} (x_1 - x_2)(y_1 + y_2) + (x_2 - x_3)(y_2 + y_3) + (x_3 - x_4)(y_3 + y_4) + \\ (x_4 - x_1)(y_4 + y_1) \end{bmatrix}$$

৫৯৮. দুটি মেরুস্থানাংকের মধ্যের দূরত্ব:

$$d = AB = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\varphi_2 - \varphi_1)}$$

৫৯৯. সমকোণী স্থানাংক হতে মেরুস্থানাংকের পরিবর্তন $: x = r \cos \varphi, y = r \sin \varphi$

৬০০. মেরুস্থানাংককে সমকোণী স্থানাংকে পরিবর্তন $: r = \sqrt{x^2 + y^2}$, $an \phi = rac{y}{x}$

৯.৩ সমতলে সরল রেখা:

স্থানাংক বিন্দু : $X,Y,x,x_0,x_1,y_0,y_1,a_1,a_2,...$

বাস্তব সংখ্যা : $k, a, b, p, t, A, B, C, A_1, A_2,...$

কোণ $: \alpha, \beta$

দুটি রেখার মধ্যবর্তী কোণ : arphi

সাধারণ ভেক্টর : \vec{n}

অবস্থান ভেক্টর $:ec{r},ec{a},ec{b}$

৬০১. সরল রেখার সাধারণ সমীকরণ : Ax + By + C = 0

702

৬০২. সরল রেখার সা্ধারণ ভেক্টর:

$$\vec{n}(A,B)$$
 যখন সরলরেকাটি $Ax + By + C = 0$

৬০৩. y = kx + b যেখানে রেখার নতিমাত্রা $k = \tan \alpha$

৬০৪. রেখার নতিমাত্রা : $k = \tan \alpha = \frac{y_2 - y_1}{x_2 - x_1}$

৬০৫. একটি বিন্দু ও একটি রেখার মধ্যে নতিমাত্রার সমীকরণ : $y=y_0^{'}+k(x-x_0^{'})$ যেখানে $P(x_0^{'},y_0^{'})$ রেখার উপর একটি বিন্দু ।

৬০৬. দুইটি বিন্দুর মধ্যবর্তী একটি রেখার সমীকরণ :

$$\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1} \text{ অথবা, } \begin{vmatrix} x & y & 1\\ x_1 & y_1 & 1\\ x_2 & y_2 & 1 \end{vmatrix} = 0$$

$$909. \frac{x}{a} + \frac{y}{b} = 1$$

৬০৮. সাধারণ অবস্থায় : $x\cos\beta + y\sin\beta - p = 0$

৬০৯. বিন্দু নির্দেশক অবস্থান : $\frac{x-x_1}{X} = \frac{y-y_1}{Y}$

৬১০. উল্লম্ব রেখা : x=a

৬১১. অনুভূমিক রেখা y=b

· X

৬১২. একটি সরলরেখার ভেক্টর সমীকরণ : $ec{r}=ec{a}+tec{b}$

৬১৩. সরলরেখার প্রচলিক রূপ :
$$\begin{cases} x = a_1 + tb_1 \\ y = a_2 + tb_2 \end{cases}$$

৬১৪. একটি বিন্দু থেকে একটি রেখার মধ্যে দূরত্ব : $d = \frac{\left|Aa + Bb + C\right|}{\sqrt{A^2 + B^2}}$

৬১৫. সমান্তরাল রেখা:

দুটি রেখা $y=k_1x+b_1$ এবং $y=k_2x+b_2$ সমান্তরাল হয় যদি $k_1=k_2$ । দুটি রেখা $A_1x+B_1y+C_1=0$ এবং $A_2x+B_2y+C_2=0$ সমান্তরাল হয় যদি

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} +$$

৬১৬. লম্ব রেখা:

দুটি রেখা $y=k_1x+b_1$ এবং $y=k_2x+b_2$ লম্ব হয় যদি $k_2=-\frac{1}{k_1}$ এবং

 $\mathbf{k}_1 \mathbf{k}_2 = -1$ সমান হয়।

দুটি রেখা $A_1x+B_1y+C_1=0$ এবং $A_2x+B_2y+C_2=0$ লম্ব হয় যদি

 $A_1 A_2 + B_1 B_2 = 0$

৬১৭. দুটি রেখার মধ্যবর্তী কোণ :

$$\tan \varphi = \frac{k_2 - k_1}{1 + k_1 k_2}, \cos \varphi = \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_1^2 \cdot \sqrt{A_2^2 + B_2^2}}}$$

৬১৮. দুটি রেখার ছেদ : যদি দুটি রেখা $A_{\rm l}x+B_{\rm l}y+C_{\rm l}=0$ এবং $A_{\rm l}x+B_{\rm l}y+C_{\rm l}=0$ পরস্পরকে ছেদ করে তাহলে ছেদ বিন্দুর স্থানাংক হবে

$$x_0 = \frac{-C_1B_2 + C_2B_1}{A_1B_2 - A_2B_1}, y_0 = \frac{-A_1C_2 + A_2C_1}{A_1B_2 - A_2B_1}$$

৯.৪ বৃত্ত:

ব্যাসার্ধ : R

বৃত্তের কেন্দ্র : (a,b)

বিন্দু স্থানাংক : $x, y, x_1, y_1,$

বাস্তব সংখ্যা : A,B,C,D,E,F,t

৬১৯. বৃত্তের সমীকরণ :
$$x^2 + y^2 = R^2$$

X

৬২০. যেকোন বিন্দু (a,b)এর সাপেক্ষে বৃত্তের সমীকরণ : $(x-a)^2 + (y-b)^2 = R^2$

৬২১. ত্রয়ী বিন্দুর রূপ :
$$\begin{vmatrix} x^2 + y^2 & x & y & 1 \\ x_1^2 + y_1^2 & x_1 & y_1 & 1 \\ x_2^2 + y_2^2 & x_2 & y_2 & 1 \\ x_3^2 + y_3^2 & x_3 & y_3 & 1 \end{vmatrix} = 0$$

৬২২. প্রচলিক রূপ:
$$\begin{cases} x = R \cos t, \\ y = R \sin t, \end{cases} 0 \le t \le 2\pi$$

৬২৩. সাধারণ রূপ : $Ax^2 + Ay^2 + Dx + Ey + F = 0$

৯.৫ উপবৃত্ত:

পরাক্ষার্ধ : a

উপাক্ষ্যার্ধ:b

ফোকাস : $F_1(-c,0), F_2(c,0)$

দুটি ফোকাসের মধ্যবর্তী দূরত্ব: 2c

y

বাস্তব সংখ্যা :A,B,C,D,E,F,t

ক্ষেত্রের পরিসীমা: L

ক্ষেত্রফল : S

উৎকেন্দ্ৰতা : e

৬২৪. উপবৃত্তের সমীকরণ :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

৬২৬.
$$a^2 = b^2 + c^2$$

৬২৭. উৎকেন্দ্রতা :
$$e=\frac{c}{a}<1$$

৬২৮.
$$x=\pm \frac{a}{e}=\pm \frac{a^2}{c}$$
 ৬২৯. প্রচলিক রূপ : $\begin{cases} x=a\cos t \\ y=b\sin t \end{cases}$, $0 \le t \le 2\pi$

৬৩০.সাধারণ রূপ :
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$
,

যেখানে
$$B^2 - 4AC < 0$$

৬৩১. সমান্তরাল রেখার সাথে স্থানাংক রেখার সাধারণ রূপ:

$$Ax^{2} + Cy^{2} + Dx + Ey + F = 0$$
, যেখানে $AC > 0$

৬৩২. পরিধি :
$$L = 4aE(e)$$

৬৩৩. পরিধির সমীকরণ :
$$L=\pi(1.5(a+b)-\sqrt{ab})$$
 , $L=\pi\sqrt{2(a^2+b^2)}$ ৬৩৪. $S=\pi ab$

৯.৬ পরাবৃত্ত :

অনুপ্রস্থ অক্ষ : a

অনুবন্ধী অক্ষ: b

ফোকাস : $F_1(-c,0), F_2(c,0)$

দুটি ফোকাসের মধ্যবর্তী দূরত্ব: 2c

উৎকেন্দ্ৰতা : e

স্পর্শপ্রবণ রেখা : s.t

বাস্তব সংখ্যা : A, B, C, D, E, F, t, k

৬৩৫. পরাবৃত্তের সাধারণ সমীকরণ : $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

৬৩৬.
$$|r_1 - r_2| = 2a$$

৬৩৭. স্পর্শপ্রবণ রেখার সমীকরণ :
$$y=\pm\frac{b}{a}x$$
 ৬৩৮. $c^2=a^2+b^2$

৬৩৮.
$$c^2 = a^2 + b^2$$

৬৩৯. উৎকেন্দ্রতা :
$$e=\frac{c}{a}>$$

৬৩৯. উৎকেন্দ্রতা :
$$e=\frac{c}{a}>1$$
 ৬৪০. সমীকরণ : $x=\pm\frac{a}{e}=\pm\frac{a^2}{c}$

$$\$83. \begin{cases} x = a \cosh t, \\ y = b \sinh t, \\ 0 \le t \le 2\pi \end{cases}$$

৬৪২. সাধারণ রূপ :
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$
,

যেখানে
$$B^2 - 4AC > 0$$

৬৪৩.
$$Ax^2 + Cy^2 + Dx + Ey + F = 0$$
, যেখানে $AC < 0$

৬৪৪. স্পর্শপ্রবণ রেখার রূপ :
$$xy = \frac{e^2}{4}$$
, অথবা $y = \frac{k}{x}$, যেখানে $k = \frac{e^2}{4}$

৯.৭ অতিবৃত্ত:

ফোকাস প্রচল: p

ফোকাস : F

শীর্ষবিন্দু : $M(x_0, y_0)$

বাস্তব সংখ্যা : A,B,C,D,E,F,p,a,b,c

৬৪৫. অতিবৃত্তের সাধারণ সমীকরণ : $y^2 = 2 px$

৬৪৬. সাধারণ রূপ :
$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$
, যেখানে $B^2 - 4AC = 0$

৬৪৭. নিয়মকের সমীকরণ : $y = ax^2$, $p = \frac{1}{2a}$

৬৪৮. y অক্ষ্যের সমান্তরাল রেখার সাধারণ রূপ:

$$Ax^2 + Dx + Ey + F = 0, (A, E \neq 0), \quad y = ax^2 + bx + c, p = \frac{1}{2a}$$

যেখানে,
$$y=y_0-rac{p}{2}$$
, ফোকাসের স্থানাংক: $F\!\left(x_0,y_0+rac{p}{2}
ight)$ এবং

শীর্ষ বিন্দুর স্থানাংক :
$$x_0=-\frac{b}{2a}$$
, $y_0=ax_0^2+bx_0+c=\frac{4ac-b^2}{4a}$

৯.৮ ত্রিমাত্রিক স্থানাংক পদ্ধতি :

স্থানাংক বিন্দু: $x_0, y_0, z_0, x_1, y_1, z_1,...$

বাস্তব সংখ্যা : λ

দুটি বিন্দুর মধ্যবর্তী দূরত্ব: d

ক্ষেত্রফল: S

আয়তন : V

৬৪৯. দুটি বিন্দুর মধ্যবর্তী দূরত্ব:

$$d = AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

৬৫০.
$$x_0=\frac{x_1+\lambda x_2}{1+\lambda}, y_0=\frac{y_1+\lambda y_2}{1+\lambda}, z_0=\frac{z_1+\lambda z_2}{1+\lambda}$$
 যেখানে $\lambda=\frac{AC}{CB}, \lambda\neq -1$

 $C(x_0,y_0,z_0)$ $C(x_0,y_0,z_0)$

 $B(x_{y},y_{y},z_{y})$ (x,y,z)

у

৬৫১. রেখাংশের মধ্যবিন্দু :
$$x_0 = \frac{x_1 + x_2}{2}$$
, $y_0 = \frac{y_1 + y_2}{2}$, $z_0 = \frac{z_1 + z_2}{2}$, $\lambda = 1$

৬৫২. ত্রিভূজের ক্ষেত্রফল:

$$S = \frac{1}{2} \sqrt{\begin{vmatrix} y_1 & z_1 & 1 \\ y_2 & z_2 & 1 \\ y_3 & z_3 & 1 \end{vmatrix}^2 + \begin{vmatrix} z_1 & x_1 & 1 \\ z_2 & x_2 & 1 \\ z_3 & x_3 & 1 \end{vmatrix}^2 + \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2}$$

৬৫৩. চতুস্তলকের আয়তন :

$$V = \pm \frac{1}{6} \begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix}, or, V = \pm \frac{1}{6} \begin{vmatrix} x_1 - x_4 & y_1 - x_4 & z_1 - x_4 \\ x_2 - x_4 & y_2 - x_4 & z_2 - x_4 \\ x_3 - x_4 & y_3 - x_4 & z_3 - x_4 \end{vmatrix}$$

৯.৯ সমতল:

স্থানাংক বিন্দু : $x, y, z, x_0, y_0, z_0, x_1, y_1, z_1, \dots$

বাস্তব সংখ্যা : $A,B,C,D,A_1,A_2,a,b,c,a_1,a_2,\lambda,p,t,...$

সাধারণ ভেক্টর : $\vec{n}, \vec{n}_1, \vec{n}_2$

কোসাইন দিগাঙ্ক গোষ্ঠী : $\cos \alpha, \cos \beta, \cos \gamma$

বিন্দু থেকে সমতলের দূরত্ব: d

৬৫৪. সমতলের সাধারণ সমীকরণ : Ax + By + Cz + D = 0

৬৫৫. সমতলের সাধারণ ভেক্টর : ভেক্টর $ec{n}(A,B,C)$ সাধারণ সমতলের সমীকরণ

$$Ax + By + Cz + D = 0$$

৬৫৬. বিশেষ ক্ষেত্রে সমতলের সমীকরণ : Ax + By + Cz + D = 0 যদি A = 0, সমতল x অক্ষ্যের সাথে সমান্তরাল হলে। যদি B = 0, সমতল y অক্ষ্যের সাথে সমান্তরাল হলে। যদি C = 0, সমতল z অক্ষ্যের সাথে সমান্তরাল হলে। যদি A = B = 0, সমতল xy অক্ষ্যের সাথে সমান্তরাল হলে। যদি A = C = 0, সমতল yz অক্ষ্যের সাথে সমান্তরাল হলে। যদি A = C = 0, সমতল xz অক্ষ্যের সাথে সমান্তরাল হলে।

৬৫৭. বিন্দু নির্দেশক রূপ: $A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$

৬৫৮. রেখা খন্ডিতাংশ রূপ :
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

৬৫৯. ত্রয়ী বিন্দুর রূপ:

$$\begin{vmatrix} x-x_3 & y-y_3 & z-z_3 \ x_1-x_3 & y_1-y_3 & z_1-z_3 \ x_2-x_3 & y_2-y_3 & z_2-z_3 \ \end{vmatrix} = 0$$
 অথবা, $\begin{vmatrix} x & y & z & 1 \ x_1 & y_1 & z_1 & 1 \ x_2 & y_2 & z_2 & 1 \ x_3 & y_3 & z_3 & 1 \ \end{vmatrix} = 0$

৬৬০. সাধারণ রূপ : $x\cos\alpha + y\cos\beta + z\cos\gamma - p = 0$

৬৬১. প্রচলিক রূপ :
$$\begin{cases} x=x_{\mathrm{l}}+a_{\mathrm{l}}s+a_{\mathrm{2}}t\\ y=y_{\mathrm{l}}+b_{\mathrm{l}}s+b_{\mathrm{2}}t\\ z=z_{\mathrm{l}}+c_{\mathrm{l}}s+c_{\mathrm{2}}t \end{cases}$$

৬৬২. দুটি সমতলের দ্বিতল কোণ : যদি দুটি সমতল

 $A_1x+B_1y+C_1z+D_1=0$, এবং $A_2x+B_2y+C_2z+D_2=0$ হয় তাহলে তাদের দ্বিতল কোণ

$$\cos \varphi = \frac{\vec{n}_1 \cdot \vec{n}_2}{\left|\vec{n}_1\right| \left|\vec{n}_2\right|} = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \cdot \sqrt{A_2^2 + B_2^2 + C_2^2}}$$

৬৬৩. সমান্তরাল সমতল : দুটি সমতল $A_1x + B_1y + C_1z + D_1 = 0$ এবং

$${m A_2}x + B_2y + C_2z + D_2 = 0$$
 সমান্তরাল হবে যদ্নি $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$ হয়।

৬৬৪. লম্ব সমতল : দুটি সমতল $A_{\mathrm{l}}x+B_{\mathrm{l}}y+C_{\mathrm{l}}z+D_{\mathrm{l}}=0$ এবং

$$A_2x + B_2y + C_2z + D_2 = 0$$
 লম্ব হবে যদি $A_1A_2 + B_1B_2 + C_1C_2 = 0$ হয়।

৬৬৫. সমতলের সমীকরণ যখন $P(x_{\!\scriptscriptstyle 1},y_{\!\scriptscriptstyle 1},z_{\!\scriptscriptstyle 1})$ সমান্তরাল হবে $(a_{\!\scriptscriptstyle 1},b_{\!\scriptscriptstyle 1},c_{\!\scriptscriptstyle 1})$ এবং

$$(a_2,b_2,c_2)$$
 ভেক্টরের জন্য, তখন $\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \ a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ \end{vmatrix}=0$

৬৬৬. একটি সমতলের সমীকরণ $P_1(x_1,y_1,z_1)$ এবং $P_2(x_2,y_2,z_2)$ সমান্তরাল

হবে ভেক্টর
$$(a,b,c)$$
 এর জন্য, তখন $\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ a & b & c \end{vmatrix} = 0$

৬৬৭. বিন্দু ও সমতলের মধ্যে দূরত্ব :
$$d = \frac{\left|Ax_1 + By_1 + Cz_1 + D\right|}{\sqrt{A^2 + B^2 + C^2}}$$

৯.১০ কোন স্থানে সরলরেখা:

বিন্দু স্থানাংক : $x, y, z, x_1, y_1, z_1, ...$

কোসাইনের দিগাঙ্কগোষ্ঠী : $\coslpha,\coseta,\cos\gamma$

বাস্তব সংখ্যা : $A,B,C,D,a,b,c,a_1,a_2,t,...$ সমতলের ভেক্টরের দিক : $\vec{s},\vec{s}_1,\vec{s}_2$

সাধারণ ভেক্টর : \vec{n}

দুটি বিন্দুর মধ্যবর্তী দূরত্ব : ϕ

৬৬৮. সমতলের বিন্দু নির্দেশক রূপের সমীকরণ : $\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c}$

৬৬৯. দ্বি-বিন্দুর রূপ:
$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$

৬৭০.প্রচলিক রূপ :
$$\begin{cases} x = x_1 + t \cos \alpha \\ y = y_1 + t \cos \beta \\ z = z_1 + t \cos \gamma \end{cases}$$

৬৭১. দুটি সরলরেখার কোণ:

$$\cos \varphi = \frac{\vec{s}_1 \cdot \vec{s}_2}{|\vec{s}_1| |\vec{s}_2|} = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

৬৭২ সমান্তরাল রেখা :

দুটি রেখা সমান্তরাল হবে যদি
$$\vec{s_1} \| \vec{s_2} \|$$
 এবং $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ হয়।

৬৭৩. লম্ব রেখা:

দুটি রেখা সমান্তরাল হবে যদি $\vec{s_1}.\vec{s_2}=0$ এবং $a_1a_2+b_1b_2+c_1c_2=0$ হয়।

$$\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1} \quad \text{এবং } \frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$$
 হলে

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

৬৭৫. সমান্তরাল রেখা এবং সমতল:

সমান্তরাল রেখা
$$\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$$

এবং সমতল Ax + By + Cz + D = 0 লম্ব হবে যদি $\vec{n}.\vec{s} = 0$ অথবা, Aa + Bb + Cc = 0 হয়।

৬৭৬. লম্ব রেখা এবং সমতল:

সরলরেখা
$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$$
 এবং সমতল $Ax + By + Cz + D = 0$

লম হবে যদি
$$\vec{n} \| \vec{s}$$
 এবং $\frac{A}{a} = \frac{B}{b} = \frac{C}{c}$ হয়।

৯.১১ দ্বিঘাত তল :

দ্বিঘাত তলের স্থানাংক বিন্দু : x, y, z

বাস্তব সংখ্যা : $A,B,C,a,b,c,k_1,k_2,k_3,...$

৬৭৭, সাধারণ দ্বিঘাত সমীকরণ :

$$Ax^{2} + By^{2} + Cz^{2} + 2Fyz + 2Gzx + 2Hxy + 2Px + 2Qy + 2Rz + D = 0$$

৬৭৮. বাস্তব উপবৃত্তক :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

৬৭৯. কাল্পনিক উপবৃত্তক :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$$

৬৮০. একপত্রী পরাবৃত্তক :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

৬৮১. দ্বিপত্রী পরাবৃত্তক :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

৬৮২. বাস্তব দিঘাত কোণ :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

৬৮৩. কাল্পনিক দ্বিঘাত কোণ : $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$

৬৮৪. উপবৃত্তক অধিবৃত্ত :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - z = 0$$

৬৮৫. পরাবৃত্তক অধিবৃত্ত: $\frac{x^2}{a^2} - \frac{y^2}{b^2} - z = 0$

৬৮৬. বাস্তব উপবৃত্তক বেলক :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

৬৮৭. কাল্পনিক উপবৃত্তক বেলক : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$

৬৮৮. অধিবৃত্তক বেলক : $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

-- **y**

৬৮৯. বাস্তব পরস্পরছেদী তল : $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$

৬৯০. কাল্পনিক পরস্পর ছেদী তল :
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$

৬৯১. অধিবৃত্তাকার বেলক :
$$\frac{x^2}{a^2} - y = 0$$

৬৯২. বাস্তব সমান্তরাল তল : $\frac{x^2}{a^2} = 1$ ৬৯৩. কাল্পনিক সমান্তরাল তল : $\frac{x^2}{a^2} = -1$

৬৯৪. শঙ্কু আকৃতি তল : $x^2 = 0$

৯.১২ গোলক:

গোলকের ব্যাসার্ধ : R

বিন্দু স্থানাংক : $x, y, z, x_1, y_1, z_1, ...$

গোলকের কেন্দ্র : (a,b,c)

বান্তব সংখ্যা : A, D, E, F, M

৬৯৫. কেন্দ্রস্থ গোলকের সাধারণ সমীকরণ : $x^2 + y^2 + z^2 = R^2$

৬৯৬. যেকোন বিন্দুতে (a,b,c) কেন্দ্রস্থ গোলকের সমীকরণ :

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$$

৬৯৭. অনুবন্ধী রূপ:

$$(x-x_1)(x-x_2)+(y-y_1)(y-y_2)+(z-z_1)(z-z_2)=0$$

৬৯৮. চতুর্থ বিন্দু রূপ :
$$\begin{vmatrix} x^2+y^2+z^2 & x & y & z & 1 \\ x_1^2+y_1^2+z_1^2 & x_1 & y_1 & z_1 & 1 \\ x_2^2+y_2^2+z_2^2 & x_2 & y_2 & z_2 & 1 \\ x_3^2+y_3^2+z_3^2 & x_3 & y_3 & z_3 & 1 \\ x_4^2+y_4^2+z_4^2 & x_4 & y_4 & z_4 & 1 \end{vmatrix} = 0$$

৬৯৯. সাধারণ রূপ : $Ax^2 + Ay^2 + Az^2 + Dx + Ey + Fz + M = 0 \quad (A \neq 0)$

গোলকের ব্যাসার্ধ :
$$R = \frac{\sqrt{D^2 + E^2 + F^2 - 4A^2M}}{2A}$$

গোলকের কেন্দ্রের স্থানাংক
$$(a,b,c)$$
 হলে $a=-\frac{D}{2A},b=-\frac{E}{2A},c=-\frac{F}{2A}$

দশম অধ্যায় অন্তরকলন বিদ্যা (Differential Calculus)

অপেক্ষক : f, g, y, u, vা,

কোণান্ধ: x

বাস্তব সংখ্যা : a,b,c,d

স্বাভাবিক সংখ্যা : n

কোণ $: \alpha$

বিপরীত অপেক্ষক : f^{-1}

১০.১ অপেক্ষক এবং তাদের শেখ:

৭০০. যুগা অপেক্ষক : f(-x) = f(x)

৭০১. অযুগা অপেক্ষক : f(-x) = -f(x)

৭০২. পর্যাবৃত্ত অপেক্ষক : f(x+nT) = f(x)

৭০৩. বিপরীত অপেক্ষক : যে কোন অপেক্ষক y=f(x) এর জন্য x=g(y)

অথবা $y = f^{-1}(x)$ একটি বিপরীত অপেক্ষক হবে।

৭০৪. সংযোজক অপেক্ষক : y = f(u), u = g(x), y = (g(x))

৭০৫. রৈখিক অপেক্ষক : $y = ax + b, x \in R, a = \tan \alpha$

৭০৬. দ্বিঘাত অপেক্ষক: $y = x^2, x \in R$.

 $909. \ y = ax^2 + bx + c, x \in R$

৭০৮. ঘনক অপেক্ষক $: y = x^3, x \in R$

908.
$$y = ax^3 + bx^2 + cx + d, x \in R$$
.

৭১০. ঘাত অপেক্ষক : $y = x^n, n \in N$

৭১১. বর্গমূল অপেক্ষক : $y = \sqrt{x}, x \in [0, \infty)$

৭১২. সূচক অপেক্ষক : $y=a^x, a>0, a\neq 1,$ $y=e^x \ \text{যদ} \ a=e, e=2.71828182846...$

৭১৩. লগারিদমীক অপেক্ষক : $y = \log_a x, x \in (0, \infty), a > 0, a \neq 1,$

৭১৪. পরাবৃত্তীয় সাইন অপেক্ষক : $y = \sinh x, \sinh x = \frac{e^x - e^{-x}}{2}, x \in R$.

৭১৫. পরাবৃত্তীয় কোসাইন অপেক্ষক : $y = \cosh x, \cosh x = \frac{e^x + e^{-x}}{2}, x \in R$.

৭১৬. পরাবৃত্তীয় ট্যানজেন্ট অপেক্ষক:

$$y = \tanh x$$
, $y = \tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$, $x \in R$.

৭১৭. পরাবৃত্তীয় কটজেন্ট অপেক্ষক :

$$y = \coth x, y = \coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}, x \in R, x \neq 0$$

৭১৮. পরাবৃত্তীয় সেকসেন্ট অপেক্ষক:

$$y = \sec hx, y = \sec hx = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}, x \in R.$$

৭১৯. পরাবৃত্তীয় কোসেন্ট অপেক্ষক:

$$y = \csc hx, y = \csc hx = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}, x \in R, x \neq 0.$$

৭২০. বিপরীত পরাবৃত্তীয় সাইন অপেক্ষক $: y = \arcsin hx, x \in R$.

৭২১. বিপরীত পরাবৃত্তীয় কোসাইন অপেক্ষক $: y = \arccos hx, x \in [1,\infty)$.

y

৭২২. বিপরীত পরাবৃত্তীয় ট্যানজেন্ট অপেক্ষক : $y = \arctan hx, x \in (-1,1)$.

৭২৩. বিপরীত পরাবৃত্তীয় কটজেন্ট অপেক্ষক:

$$y = arc \coth x, x \in (-\infty, -1) \cup (1, \infty).$$

৭২৪. বিপরীত পরাবৃত্তীয় সেকসেন্ট অপেক্ষক : $y = arc \sec hx, x \in \{0,1\}$

৭২৫. বিপরীত পরাবৃত্তীয় কোসেন্ট অপেক্ষক : $y = \arccos echx, x \in R, x \neq 0$.

১০.২ অপেক্ষকের সীমা:

অপেক্ষক: f(x), g(x)

926.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

929.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

926.
$$\lim_{x \to a} [f(x).g(x)] = \lim_{x \to a} f(x).\lim_{x \to a} g(x)$$

৭২৯.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{যদ } \lim_{x \to a} g(x) \neq 0$$

$$900. \lim_{x\to a} [kf(x)] = k \lim_{x\to a} f(x)$$

$$903. \lim_{x \to a} f(g(x)) = f \left(\lim_{x \to a} g(x) \right)$$

৭৩২.
$$\lim_{x\to a} f(x) = f(a)$$
 যদি অপেক্ষক $f(x)$ ধারাবাহিকভাবে $x=a$ হয় য

$$900. \lim_{x\to a} \frac{\sin x}{x} = 1$$

908.
$$\lim_{x \to a} \frac{\tan x}{x} = 1$$

904.
$$\lim_{x \to a} \frac{\sin^{-1} x}{x} = 1$$
 904. $\lim_{x \to a} \frac{\tan^{-1} x}{x} = 1$

906.
$$\lim_{x \to a} \frac{\tan^{-1} x}{x} = 1$$

909.
$$\lim_{x \to a} \frac{\ln(1+x)}{x} = 1$$

909.
$$\lim_{x \to a} \frac{\ln(1+x)}{x} = 1$$
 90b. $\lim_{x \to a} \left(1 + \frac{1}{x}\right)^x = e$

٩৩৯.
$$\lim_{x \to a} \left(1 + \frac{k}{x} \right)^x = e^k$$

980.
$$\lim_{x \to a} a^x = 1$$

১০.৩ অম্বরকলজের সংজ্ঞা ও ধর্ম :

অপেক্ষক:
$$f,g,y,u,v$$

কোণ :
$$lpha$$

985.
$$y'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$$

$$y = f(x)$$

$$\Delta y$$

$$y = f(x)$$

$$y$$

$$y$$

$$x + \Delta x$$

982.
$$\frac{dy}{dx} = \tan \alpha$$

૧৪৩.
$$\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

988.
$$\frac{d(u-v)}{dx} = \frac{du}{dx} - \frac{dv}{dx} \qquad 986. \quad \frac{d(ku)}{dx} = k\frac{du}{dx}$$

৭৪৬. গুণফলের পদ্ধতি :
$$\frac{d(u.v)}{dx} = \frac{du}{dx}.v + u.\frac{dv}{dx}$$

989.
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{\frac{du}{dx} \cdot v - u \cdot \frac{dv}{dx}}{v^2}$$

98b.
$$y = f(g(x)), u = g(x), \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

৭৪৯.
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$$
 যেখানে $x(y)$, $y(x)$ এর বিপরীত অপেক্ষক ।

$$900. \frac{d}{dx} \left(\frac{1}{y} \right) = -\frac{\frac{dy}{dx}}{y^2}$$

965.
$$y = f(x), \ln y = \ln f(x), \frac{dy}{dx} = f(x). \frac{d}{dx} \left[\ln f(x) \right]$$

১০.৪ অন্তর্নস্পজের তালিকা:

স্বাধীন চলক: x

বাস্তব ধ্রুবক: C.a.b.c

eq.
$$\frac{d}{dx}(C) = 0$$
 9ev. $\frac{d}{dx}(x) = 1$

168.
$$\frac{d}{dx}(ax+b) = a$$
 966. $\frac{d}{dx}(ax^2+bx+c) = ax+b$

Rev.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$9eq. \frac{d}{dx}(x^{-n}) = -\frac{n}{x^{n+1}}$$

96b.
$$\frac{d}{dx} \left(\frac{1}{x} \right) = -\frac{1}{x^2}$$
 96b. $\frac{d}{dx} \left(\sqrt{x} \right) = \frac{1}{2\sqrt{x}}$ 96b. $\frac{d}{dx} \left(\sqrt{x} \right) = \frac{1}{x}$

$$9 \Leftrightarrow \frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}, a > 0, a \neq 1.$$

$$9 \text{ bo. } \frac{d}{dx}(a^x) = a^x \ln a, a > 0, a \neq 1.$$

948.
$$\frac{d}{dx}(e^x) = e^x$$
940. $\frac{d}{dx}(\sin x) = \cos x$

966.
$$\frac{d}{dx}(\cos x) = -\sin x$$
 969. $\frac{d}{dx}(\tan x) = \frac{1}{\cos^2 x} = \sec^2 x$

$$94b. \frac{d}{dx}(\cot x) = -\frac{1}{\sin^2 x} = -\cos ec^2 x$$

৭৬৯.
$$\frac{d}{dx}(\sec x) = \tan x \cdot \sec x$$

990.
$$\frac{d}{dx}(\cos ecx) = -\cot x.\cos ecx$$

993.
$$\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1-x^2}}$$

992.
$$\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}}$$

990.
$$\frac{d}{dx}(\arctan x) = \frac{1}{1+x^2}$$

998.
$$\frac{d}{dx}(arc\cot x) = -\frac{1}{1+x^2}$$

99%.
$$\frac{d}{dx}(arc\sec x) = \frac{1}{|x|\sqrt{x^2 - 1}}$$

994.
$$\frac{d}{dx}(\arccos ecx) = -\frac{1}{|x|\sqrt{x^2 - 1}}$$

999.
$$\frac{d}{dx}(\sinh x) = \cosh x$$

99b.
$$\frac{d}{dx}(\cosh x) = \sinh x$$

998.
$$\frac{d}{dx}(\tanh x) = \frac{1}{\cosh^2 x} = \sec h^2 x$$

abo.
$$\frac{d}{dx}(\coth x) = -\frac{1}{\sinh^2 x} = -\cos e c h^2 x$$

٩৮১.
$$\frac{d}{dx}(\sec hx) = -\sec hx \cdot \tanh x$$

962.
$$\frac{d}{dx}(\cos echx) = -\cos echx. \coth x$$

950.
$$\frac{d}{dx}(\arcsin hx) = \frac{1}{\sqrt{x^2+1}}$$

968.
$$\frac{d}{dx}(\arccos hx) = \frac{1}{\sqrt{x^2 - 1}}$$

9b.e.
$$\frac{d}{dx}(\arctan hx) = \frac{1}{1-x^2}, |x| < 1$$

9bb.
$$\frac{d}{dx}(arc \coth x) = -\frac{1}{x^2 - 1}, |x| > 1$$

১৪৬

9 by 9.
$$\frac{d}{dx}(u^{\nu}) = \nu u^{\nu-1} \cdot \frac{du}{dx} + u^{\nu} \ln u \cdot \frac{d\nu}{dx}$$

১০.৫ উচ্চক্রমের অন্তরকলজ :

অপেক্ষক: f, y, u, v

স্বাধীন চলক: x

স্বাভাবিক সংখ্যা : n

9bb.
$$f'' = (f')' = \left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}$$

988.
$$f^{(n)} = \frac{d^n y}{dx^n} = y^{(n)} = (f^{(n-1)})'$$

980.
$$(u+v)^{(n)}=u^{(n)}+v^{(n)}$$

985.
$$(u-v)^{(n)} = u^{(n)} - v^{(n)}$$

৭৯২. লাইবনিৎজ-এর সূত্র :
$$(uv)'' = u''v + 2u'v' + uv''$$

$$(uv)''' = u'''v + 3u''v' + 3u'v'' = uv'''$$

$$(uv)^{(n)} = u^{(n)}v + nu^{(n-1)}v' + \frac{n(n-1)}{1.2}u^{(n-2)}v'' + \dots + uv^{(n)}$$

৭৯৩.
$$(x^m)^{(n)} = \frac{m!}{(m-n)!} x^{m-n}$$

$$988. \left(x^n\right)^{(n)}=n!$$

984.
$$(\log_a x)^{(n)} = \frac{(-1)^{n-1}(n-1)!}{x^n \ln a}$$

986.
$$(\ln x)^{(n)} = \frac{(-1)^{n-1}(n-1)!}{x^n}$$

૧৯૧.
$$(a^x)^{(n)} = a^x \ln^n a$$

৭৯৮.
$$(e^x)^{(n)} = e^x$$

৭৯৯.
$$\left(a^{mx}\right)^{(n)} = m^n a^{mx} \ln^n a$$

boo.
$$(\sin x)^{(n)} = \sin\left(x + \frac{n\pi}{2}\right)$$

bos.
$$(\cos x)^{(n)} = \cos\left(x + \frac{n\pi}{2}\right)$$

১০.৬ অম্বরকলজের আবেদন:

অপেক্ষক : f, g, y

একটি বস্তুর অবস্থান: ১

বেগ: ٧

ত্বরণ : w

স্বাধীন চলক: 🗴

সময়: *t*স্বাভাবিক সংখ্যা: *n*

৮০২. ট্যানজেন্ট রেখা : $y-y_0=f'(x_0(x-x_0)$ (নীচের চিত্রে দ্রষ্ঠব্য)

৮০৩. সাধারণ রেখা : $y-y_0=-\frac{1}{f'(x_0)}(x-x_0)$ (নীচের চিত্রে দ্রষ্ঠব্য)

৮০৪. L'Hopital's-এর নিয়ম:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \quad \text{यम} \quad \lim_{x \to c} f(x) = \lim_{x \to c} g(x) = \begin{cases} 0 \\ \infty \end{cases}$$

১০.৭ অন্তরকল:

অপেক্ষক : f, u, v

স্বাধীন চল : x

অপেক্ষকের অন্তরকলজ : y'(x), f'(x)

বাস্তব ধ্রুবক : C

অন্তরকল অপেক্ষক y = f(x): dy

x এর অন্তরকল : dx

x এর ক্ষুদ্র পরিবর্তন : Δx

y এর ক্ষুদ্র পরিবর্তন : ∆y

box.
$$dy = y'dx$$

box. $f(x + \Delta x) = f(x) + f'(x)\Delta x$
y

৮০৭. y এর ক্ষুদ্র পরিবর্তনের জন্য $\Delta y = f(x+\Delta x) - f(x)$ ৮০৮. d(u+v) = du+dv ৮০৯. d(u-v) = du-dv৮১০. d(Cu) = Cdu ৮১১. d(uv) = vdu+udv. ৮১২. $d\left(\frac{u}{v}\right) = \frac{vdu-udv}{v^2}$

১০.৮ অন্তরকল প্রকারক:

স্থানাংক রেখায় একক ভেক্টর $: ec{i}\,,ec{j},ec{k}$

কেলার অপেক্ষক : $f(x, y, z), u(x_1, x_2,, x_n)$

ক্ষেলার ক্ষেত্রে নতিমাত্রা: gard u, ∇u

দিক অন্তরকলজ : $\frac{\partial f}{\partial l}$

ভেক্টর অপেক্ষক : $\vec{F}(P,Q,R)$

ভেক্টর ক্ষেত্রের অপসরণ $: div \ \vec{F}, \nabla . \vec{F}$

ভেক্টর ক্ষেত্রের কার্ল : curl $ec{F},
abla imes ec{F}$

ল্যাপলস অপেক্ষক : $abla^2$

৮১৩. স্কেলার অপেক্ষকের নতিমাত্রা:

gard
$$f = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right),$$

gard
$$u = \nabla u = \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \dots, \frac{\partial u}{\partial x_n}\right)$$

৮১৪. দিক অন্তর্নকলজ :
$$\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma$$
,

যখন
$$\vec{l}(\cos\alpha,\cos\beta,\cos\gamma),\cos^2\alpha+\cos^2\beta+\cos^2\gamma=1$$

৮১৫. ভেক্টর ক্ষেত্রের অপসরণ :
$$div \ \vec{F} = \nabla . \vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

৮১৬. ভেক্টর ক্ষেত্রের কার্ল :
$$curl$$
 $\vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial x} \\ P & Q & R \end{vmatrix}$

$$= \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\vec{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\vec{k}$$

৮১৭. ল্যাপলস অপেক্ষক :
$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

by.
$$div (curl \vec{F}) = \nabla \cdot (\nabla \times \vec{F}) \equiv 0$$

$$\forall \lambda \delta$$
. $curl\ (grad f) = \nabla \times (\nabla f) \equiv 0$

$$\forall \mathsf{vo.} \ div \ (\mathit{grad} f) = \nabla . (\nabla f) = \nabla^2 f$$

$$\forall \forall \lambda. \ curl \ (curl \vec{F}) = gard \ (div \vec{F}) - \nabla^2 \vec{F} = \nabla (\nabla \cdot \vec{F}) - \nabla^2 \vec{F}$$

একাদশ অধ্যায় সমাকলন বিদ্যা (Integral Calculus)

অপেক্ষক: f,g,u,v

স্বাধীন চলক : x,t,ξ

অনির্দিষ্ট সমাকলন অপেক্ষক : $\int f(x)dx, \int g(x)dx,...$

অপেক্ষকের অন্তরকলজ : y'(x), f'(x), F'(x),...

বাস্তব ধ্রুবক : C, a, b, c, d, k

স্বাভাবিক সংখ্যা : m, n, i, j

১১.১ অনির্দিষ্ট সমাকলন :

৮২২.
$$\int f(x)dx = F(x) + C$$
 যদি $F'(x) = f(x)$ হয়।

৮২৩.
$$\left(\int f(x)dx\right)' = f(x)$$

$$\forall 8. \ \int kf(x)dx = k \int f(x)dx$$

$$\forall x \in \int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx$$

৮২৬.
$$[f(x) - g(x)]dx = \int f(x)dx - \int g(x)dx$$

$$\forall \mathsf{R}. \quad \int f(ax)dx = \frac{1}{a}F(ax) + C$$

$$\forall \forall b. \quad \int f(ax+b)dx = \frac{1}{a}F(ax+b) + C$$

৮২৯.
$$\int f(x)f'(x)dx = \frac{1}{2}f^2(x) + C$$

boo.
$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C$$

৮৩১.
$$\int f(x)dx = \int f(u(t))u'(t)dt$$
 যদি $x = u(t)$ হয়।

૪૦૨.
$$\int u dv = uv - \int v du$$

১১.২ মূলদ অপেক্ষকের সমাকলন :

boo.
$$\int adx = ax + C$$
 boos.
$$\int xdx = \frac{x^2}{2} + C$$

box.
$$\int x^2 dx = \frac{x^3}{3} + C$$
 box. $\int x^p dx = \frac{x^{p+1}}{p+1} + C, p \neq -1$

bo9.
$$\int (ax+b)^n dx = \frac{(ax)+b^{n+1}}{a(n+1)} + C, n \neq -1$$

bob.
$$\int \frac{dx}{x} = \ln|x| + C$$
 bob. $\int \frac{dx}{ax+b} = \frac{1}{a}\ln|ax+b| + C$

$$b80. \int \frac{ax+b}{cx+d} dx = \frac{a}{c}x + \frac{bc-ad}{c^2} \ln|cx+d| + C$$

$$b83. \int \frac{dx}{(x+a)(x+b)} = \frac{1}{a-b} \ln \left| \frac{x+b}{x+a} \right| + C, a \neq b$$

$$b82. \int \frac{xdx}{a+bx} = \frac{1}{b^2} (a+bx-a\ln|a+bx|) + C$$

$$80. \int \frac{x^2 dx}{a + bx} = \frac{1}{b^3} \left[\frac{1}{2} (a + bx)^2 - 2a(a + bx) + a^2 \ln|a + bx| \right] + C$$

b88.
$$\int \frac{dx}{x(a+bx)} = \frac{1}{a} \ln \left| \frac{a+bx}{x} \right| + C$$

$$8\alpha. \int \frac{dx}{x^2(a+bx)} = -\frac{1}{ax} + \frac{b}{a^2} \ln \left| \frac{a+bx}{x} \right| + C$$

$$b8b. \int \frac{xdx}{(a+bx)^2} = \frac{1}{b^2} \left(\ln|a+bx| + \frac{a}{a+bx} \right) + C$$

$$\text{b89. } \int \frac{x^2 dx}{(a+bx)^2} = \frac{1}{b^3} \left(a + bx - 2a \ln|a+bx| - \frac{a^2}{a+bx} \right) + C$$

b8b.
$$\int \frac{dx}{x(a+bx)^2} = \frac{1}{a(a+bx)} + \frac{1}{a^2} \ln \left| \frac{a+bx}{x} \right| + C$$

b88.
$$\int \frac{dx}{x^2 - 1} = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C$$
b80.
$$\int \frac{dx}{1 - x^2} = \frac{1}{2} \ln \left| \frac{x + 1}{x - 1} \right| + C$$
b83.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$
b83.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$
b83.
$$\int \frac{dx}{a^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$
b85.
$$\int \frac{dx}{1 + x^2} = \tan^{-1} x + C$$

$$\frac{1}{a^2 - x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

$$\text{bec. } \int \frac{dx}{x^2 + a^2} = \frac{1}{2} \ln(x^2 + a^2) + C$$

bees.
$$\int \frac{dx}{a+bx^2} = \frac{1}{\sqrt{ab}} \arctan\left(x\sqrt{\frac{b}{a}}\right) + C, ab > 0$$

be 9.
$$\int \frac{xdx}{a+bx^2} = \frac{1}{2b} \ln |x^2 + \frac{a}{b}| + C$$

$$\forall a \forall x. \int \frac{dx}{x(a+bx^2)} = \frac{1}{2a} \ln \left| \frac{x^2}{a+bx^2} \right| + C$$

$$\text{best. } \int \frac{dx}{a^2 - b^2 x^2} = \frac{1}{2ab} \ln \left| \frac{a + bx}{a - bx} \right| + C$$

beo.
$$\int \frac{dx}{ax^2 + bx + c} = \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right| + C,$$

bullet
$$\int \frac{dx}{ax^2 + bx + c} = \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}} + C,$$

$$b^2 - 4ac < 0$$

১১.৩ অমূলদ অপেক্ষকের সমাকলন:

by
$$\int \frac{dx}{\sqrt{ax+b}} = \frac{2}{a} \sqrt{ax+b} + C$$

by $\int \sqrt{ax+b} dx = \frac{2}{3a} (ax+b)^{\frac{3}{2}} + C$
by $\int \frac{xdx}{\sqrt{ax+b}} = \frac{2(ax-2b)}{3a^2} \sqrt{ax+b} + C$
by $\int \frac{x}{\sqrt{ax+b}} dx = \frac{2(3ax-2b)}{15a^2} (ax+b)^{\frac{3}{2}} + C$
by $\int \frac{dx}{(x+c)\sqrt{ax+b}} = \frac{1}{\sqrt{b-ac}} \ln \left| \frac{\sqrt{ax+b} - \sqrt{b-ac}}{\sqrt{ax+b} + \sqrt{b-ac}} \right| + C,$
 $\int \frac{dx}{(x+c)\sqrt{ax+b}} = \frac{1}{\sqrt{ac-b}} \arctan \sqrt{\frac{ax+b}{ac-b}} + C,$
 $\int \frac{b-ac}{c\sqrt{ac}} + C,$
 $\int \sqrt{\frac{ax+b}{cx+d}} dx = \frac{1}{c} \sqrt{(ax+b)(cx+d)} - \frac{ad-bc}{c\sqrt{ac}}$
by $\int \frac{ax+b}{cx+d} dx = \frac{1}{c} \sqrt{(ax+b)(cx+d)} - \frac{ad-bc}{c\sqrt{ac}}$
by $\int \frac{ax+b}{cx+d} dx = \frac{1}{c} \sqrt{(ax+b)(cx+d)} - \frac{ad-bc}{c\sqrt{ac}}$
by $\int \frac{ax+b}{cx+d} dx = \frac{1}{c} \sqrt{(ax+b)(cx+d)} - \frac{ad-bc}{c\sqrt{ac}}$
by $\int \frac{ax+b}{cx+d} dx = \frac{2(8a^2-12abx+15b^2x^2)}{105b^3} \sqrt{(a+bx)^3} + C$
by $\int \frac{x^2dx}{\sqrt{a+bx}} = \frac{2(8a^2-4abx+3b^2x^2)}{15b^3} \sqrt{a+bx} + C$

$$\forall 93. \int \frac{dx}{x\sqrt{a+bx}} = \frac{1}{\sqrt{a}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right| + C, a > 0$$

by 90.
$$\int \frac{dx}{x\sqrt{a+bx}} = \frac{2}{\sqrt{-a}} \arctan \left| \frac{a+bx}{-a} \right| + C, a < 0$$

$$\text{$\forall 98. } \int \sqrt{\frac{a-x}{b+x}} dx = \sqrt{(a-x)(b+x)} + (a+b) \arcsin \sqrt{\frac{x+b}{a+b}} + C$$

$$\forall 90. \int \sqrt{\frac{a+x}{b-x}} dx = -\sqrt{(a+x)(b-x)} - (a+b) \arcsin \sqrt{\frac{b-x}{a+b}} + C$$

$$\sqrt[3]{\frac{1+x}{1-x}}dx = -\sqrt{1-x^2} + \arcsin x + C$$

began
$$\int \frac{dx}{\sqrt{(x-a)(b-a)}} = 2\arcsin\sqrt{\frac{x-a}{b-a}} + C$$

$$\int \sqrt{a+bx-cx^2} \, dx = \frac{2cx-b}{4c} \sqrt{a+bx-cx^2} + \frac{2cx-$$

$$\frac{b^2 - 4ac}{8\sqrt{c^3}} \arcsin \frac{2\epsilon x - b}{\sqrt{b^2 + 4ac}} + C$$

bab.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \frac{1}{\sqrt{a}} \ln |2ax + b + 2\sqrt{a(ax^2 + bx + c)} + C|, a > 0$$

bbo.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = -\frac{1}{\sqrt{a}} \arcsin \frac{2ax + b}{4a} \sqrt{b^2 - 4ac} + C, a < 0$$

bbs.
$$\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \ln \left| x + \sqrt{x^2 + a^2} \right| + C$$

bb2.
$$\int x\sqrt{x^2 + a^2} dx = \frac{1}{2}(x^2 + a^2)^{\frac{3}{2}} + C$$

bbo.
$$\int x^2 \sqrt{x^2 + a^2} dx = \frac{x}{8} (2x^2 + a^2) \sqrt{x^2 + a^2} - \frac{a^4}{8} \ln |x + \sqrt{x^2 + a^2} + C|$$

bb8.
$$\int \frac{\sqrt{x^2 + a^2}}{x^2} dx = -\frac{\sqrt{x^2 + a^2}}{x} + \ln \left| x + \sqrt{x^2 + a^2} \right| + C$$

bbc.
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left| x + \sqrt{x^2 + a^2} \right| + C$$

bbb.
$$\int \frac{\sqrt{x^2 + a^2}}{x} dx = \sqrt{x^2 + a^2} + a \ln \left| \frac{x}{a + \sqrt{x^2 + a^2}} \right| + C$$

brq.
$$\int \frac{xdx}{\sqrt{x^2 + a^2}} = \sqrt{x^2 + a^2} + C$$

bbb.
$$\int \frac{x^2 dx}{\sqrt{x^2 + a^2}} = \frac{x}{2} \sqrt{x^2 + a^2} - \frac{a^2}{2} \ln |x + \sqrt{x^2 + a^2}| + C$$

bbb.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{x^2 + a^2}} \right| + C$$

bbo.
$$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \ln |x + \sqrt{x^2 - a^2}| + C$$

$$\forall 3. \int x \sqrt{x^2 - a^2} dx = \frac{1}{2} (x^2 - a^2)^{\frac{3}{2}} + C$$

৮৯২.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} + a \arcsin \frac{a}{x} + C$$

$$\int \frac{dx}{x} = \sqrt{x^2 - a^2} + a \arcsin \frac{1}{x} + C$$

byo.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = -\frac{\sqrt{x^2 - a^2}}{x} + \ln|x + \sqrt{x^2 - a^2}| + C$$

$$\text{bb8. } \int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right| + C$$

$$b \approx c. \int \frac{xdx}{\sqrt{x^2 - a^2}} = \sqrt{x^2 - a^2} + C$$

$$\text{biss. } \int \frac{x^2 dx}{\sqrt{x^2 - a^2}} = \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} \ln \left| x + \sqrt{x^2 - a^2} \right| + C$$

৮৯৭.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = -\frac{1}{a}\arcsin\frac{a}{x} + C$$

by
$$\int \frac{dx}{(x+a)\sqrt{x^2-a^2}} = \frac{1}{a}\sqrt{\frac{x-a}{x+a}} + C$$

రిసిం.
$$\int \frac{dx}{(x+a)\sqrt{x^2-a^2}} = -\frac{1}{a}\sqrt{\frac{x+a}{x-a}} + C$$

Soo.
$$\int \frac{dx}{x^2 \sqrt{x^2 - a^2}} = \frac{\sqrt{x^2 - a^2}}{a^2 x} + C$$

$$803. \int \frac{dx}{(x^2 - a^2)^{\frac{3}{2}}} = -\frac{x}{a^2 \sqrt{x^2 - a^2}} + C$$

$$802. \int (x^2 - a^2)^{\frac{3}{2}} dx = -\frac{x}{8} (2x^2 - 5a^2) \sqrt{x^2 - a^2} + \frac{3a^4}{8} \ln |x + \sqrt{x^2 - a^2}| + C$$

Soo.
$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

$$808. \int x\sqrt{a^2-x^2}dx = -\frac{1}{3}(a^2-x^2)^{\frac{3}{2}} + C$$

soc.
$$\int x^2 \sqrt{a^2 - x^2} dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a} + C$$

Now.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} + a \ln \left| \frac{x}{a + \sqrt{a^2 - x^2}} \right| + C$$

So 9.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = -\frac{\sqrt{a^2 - x^2}}{x} + \arcsin \frac{x}{a} + C$$

Sob.
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$

Now.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin \frac{x}{a} + C$$

\$\$0.
$$\int \frac{xdx}{\sqrt{a^2-x^2}} = -\sqrt{a^2-x^2} + C$$

$$533. \int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a} + C$$

$$\delta \delta \xi$$
. $\int \frac{dx}{(x+a)\sqrt{a^2-x^2}} = -\frac{1}{2}\sqrt{\frac{a-x}{a+x}} + C$

350.
$$\int \frac{dx}{(x-a)\sqrt{a^2-x^2}} = -\frac{1}{2}\sqrt{\frac{a+x}{a-x}} + C$$

38.
$$\int \frac{dx}{(x+b)\sqrt{a^2-x^2}} = \frac{1}{\sqrt{b^2-a^2}} \arcsin \frac{bx+a^2}{a(x+b)} + C, b > a$$

$$\Rightarrow 3c. \int \frac{dx}{(x+b)\sqrt{a^2-x^2}} = \frac{1}{\sqrt{a^2-b^2}} \ln \left| \frac{x+b}{\sqrt{a^2-b^2}\sqrt{a^2-x^2}+a^2+bx} \right| + C, b < a$$

$$334. \int \frac{dx}{x^2 \sqrt{a^2 - x^2}} = -\frac{\sqrt{a^2 - x^2}}{a^2 x} + C$$

$$539. \int (a^2 - x^2)^{\frac{3}{2}} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a} + C$$

$$\delta \lambda b. \int \frac{dx}{(a^2 - x^2)^{\frac{3}{2}}} = \frac{x}{a^2 \sqrt{a^2 - x^2}} + C$$

১১.৪ ত্রিকোণমিতিক অপেক্ষকের সমাকলন:

$$\int \sin x dx = -\cos x + C$$

$$\Im x dx = \frac{x}{2} - \frac{1}{4} \sin 2x + C$$

$$822. \int \cos^2 x dx = \frac{x}{2} + \frac{1}{4} \sin 2x + C$$

$$820. \int \sin^3 x dx = \frac{1}{3} \cos^3 x - \cos x + C = \frac{1}{12} \cos 3x - \frac{3}{4} \cos x + C$$

\$\in 8.
$$\int \cos^3 x dx = \sin x - \frac{1}{3} \sin^3 x + C = \frac{1}{12} \sin 3x + \frac{3}{4} \sin x + C$$

৯২৬.
$$\int \frac{dx}{\cos x} = \left| \sec x dx = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C$$

૪૨૧.
$$\int \frac{dx}{\sin^2 x} = \int \cos ec^2 x dx = -\cot x + C$$

$$88b. \int \frac{dx}{\cos^2 x} = \int \sec^2 x dx = \tan x + C$$

$$8 \approx 8. \int \frac{dx}{\sin^3 x} = \int \cos e c^3 x dx = -\frac{\cos x}{2\sin^2 x} + \frac{1}{2} \ln \left| \tan \frac{x}{2} \right| + C$$

Sec.
$$\int \frac{dx}{\cos^3 x} = \int \sec^3 x dx = \frac{\sin x}{2\cos^2 x} + \frac{1}{2} \ln \left| \tan(\frac{x}{2} + \frac{\pi}{4}) \right| + C$$

$$802. \int \sin^2 x \cos x dx = \frac{1}{3} \sin^3 x + C$$

Now.
$$\int \sin x \cos^2 x dx = -\frac{1}{3} \cos^3 x + C$$

Sec.
$$\int \sin^2 x \cos^2 x dx = \frac{x}{8} - \frac{1}{32} \sin 4x + C$$

Sec.
$$\int \tan x dx = -\ln|\cos x| + C$$

$$\int \frac{\sin x}{\cos^2 x} dx = \frac{1}{\cos x} + C = \sec x + C$$

So
$$\int \frac{\sin^2 x}{\cos x} dx = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| - \sin x + C$$

৯৩৮.
$$\int \tan^2 x dx = \tan x - x + C$$

ఎలస.
$$\left|\cot x dx = \ln\left|\sin x\right| + C\right|$$

\$80.
$$\int \frac{\cos x}{\sin^2 x} dx = -\frac{1}{\sin x} + C = -\cos e c x + C$$

$$883. \int \frac{\cos^2 x}{\sin x} dx = \ln \left| \tan \frac{x}{2} \right| + \cos x + C$$

$$\$8\$. \int \cot^2 x dx = -\cot x - x + C$$

880.
$$\int \frac{dx}{\cos x \sin x} = \ln |\tan x| + C$$

$$888. \int \frac{dx}{\sin^2 x \cos x} = -\frac{1}{\sin x} + \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C$$

$$86c. \int \frac{dx}{\sin x \cos^2 x} = \frac{1}{\cos x} + \ln \left| \tan \frac{x}{2} \right| + C$$

886.
$$\int \frac{dx}{\sin^2 x \cos^2 x} = \tan x - \cot x + C$$

\$89.
$$\int \sin mx \sin nx dx = -\frac{\sin(m+n)x}{2(m+n)} + \frac{\sin(m-n)x}{2(m-n)} + C, m^2 \neq n^2$$

\$8b.
$$\int \sin mx \cos nx dx = -\frac{\cos(m+n)x}{2(m+n)} - \frac{\cos(m-n)x}{2(m-n)} + C, m^2 \neq n^2$$

\$85.
$$\int \cos mx \cos nx dx = \frac{\sin(m+n)x}{2(m+n)} + \frac{\sin(m-n)x}{2(m-n)} + C, m^2 \neq n^2$$

$$\delta \mathcal{C}o. \int \sec x \tan x dx = \sec x + C$$

৯৫১.
$$\int \cos e c x \cot x dx = -\cos e c x + C$$

Seq.
$$\int \sin x \cos^n x dx = -\frac{\cos^{n+1} x}{n+1} + C$$

Sec.
$$\int \sin^n x \cos x dx = \frac{\sin^{n+1} x}{n+1} + C$$

See.
$$\int \arccos x dx = x \arccos x - \sqrt{1 - x^2} + C$$

See.
$$\int \arctan x dx = x \arctan x - \frac{1}{2} \ln(x^2 + 1) + C$$

Seq.
$$\int arc \cot x dx = xarc \cot x + \frac{1}{2}\ln(x^2 + 1) + C$$

৯৫৮.
$$\int \sinh x dx = \cosh x + C$$

৯৫৯.
$$\int \cosh x dx = \sinh x + C$$

৯৬০.
$$\int \tanh x dx = \ln \cosh x + C$$

های.
$$\left| \coth x dx = \ln \left| \sinh x \right| + C \right|$$

৯৬২.
$$\int \sec h^2 x dx = \tanh x + C$$

৯৬৩.
$$\int \cos e c h^2 x dx = -\coth x + C$$

৯৬8.
$$\int \sec hx \tanh x dx = -\sec hx + C$$

৯৬৫.
$$\int \cos e c h x \coth x dx = -\cos e c h x + C$$

৯৬৬.
$$\int e^x dx = e^x + C$$
 ৯৬৭.
$$\int a^x dx = \frac{a^x}{\ln a} + C$$

৯৬৮.
$$\int e^{ax} dx = \frac{e^{ax}}{c^2} + C$$
 ৯৬৯.
$$\int xe^{ax} dx = \frac{e^{ax}}{c^2} (ax - 1) + C$$

৯٩٥.
$$\int \ln x dx = x \ln x - x + C$$
 ১٩১. $\int \frac{dx}{x \ln x} = \ln \left| \ln x \right| + C$

$$892. \int x^n \ln x dx = x^{n+1} \left[\frac{\ln x}{n+1} - \frac{1}{(n+1)^2} \right] + C$$

$$\text{8.90. } \int e^{ax} \sin bx dx = \frac{a \sin bx - b \cos bx}{a^2 + b^2} e^{ax} + C$$

$$898. \int e^{ax} \cos bx dx = \frac{a \cos bx + b \sin bx}{a^2 + b^2} e^{ax} + C$$

১১.৭ পঘুকরণ সূত্র :

age.
$$\int x^n e^{mx} dx = \frac{1}{m} x^n e^{mx} - \frac{n}{m} \int x^{n-1} e^{mx} dx$$

$$899. \int \frac{e^{mx}}{x^n} dx = -\frac{e^{mx}}{(n-1)x^{n-1}} + \frac{m}{n-1} \int \frac{e^{mx}}{x^{n-1}} dx, n \neq 1$$

$$899. \int \sinh^n x dx = \frac{1}{n} \sinh^{n-1} x \cosh x - \frac{n-1}{n} \int \sinh^{n-2} x dx$$

$$\text{89b. } \int \frac{dx}{\sinh^n x} = -\frac{\cosh x}{(n-1)\sinh^{n-1} x} - \frac{n-2}{n-1} \int \frac{dx}{\sinh^{n-2} x}, n \neq 1$$

৯৭৯.
$$\int \cosh^{n} x dx = \frac{1}{n} \sinh x \cosh^{n-1} x \cosh x + \frac{n-1}{n} \int \cosh^{n-2} x dx$$

blo. $\int \frac{dx}{\cosh^{n} x} = -\frac{\sinh x}{(n-1)\cosh^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cosh^{n-2} x}, n \neq 1$

$$\int \cosh^{n} x = (n-1)\cosh^{n-1} x = n-1 \int \cosh^{n-2} x^{n-1} dx$$

$$\int \sinh^{n} x \cosh^{n} x dx = \frac{\sinh^{n-1} x \cosh^{n-1} x}{n-1} + \frac{m-1}{n-1} \int \sinh^{n} x \cosh^{n-2} x dx$$

Ships
$$\int \sinh^n x \cosh^n x dx = \frac{1}{n+m} \int \sinh^n x \cosh^n x dx$$

Ships $\int \sinh^n x \cosh^n x dx = \frac{\sinh^{n-1} x \cosh^{n+1} x}{n+m} \int \sinh^{n-2} x \cosh^n x dx$

పటం.
$$\int \tanh^n x dx = -\frac{1}{n-1} \tanh^{n-1} x + \int \tanh^{n-2} x dx, n \neq 1$$

$$\lim_{n \to \infty} \int \frac{1}{n-1} \cot n \, dn \, dn = \lim_{n \to \infty} \int \frac{1}{n} \int \frac{1}{n} dn \, dn \, dn$$

Sec
$$h^n x dx = \frac{\sec h^{n-2} x \tanh x}{n-1} + \frac{n-2}{n-1} \int \sec h^{n-2} x dx, n \neq 1$$

Sec $h^n x dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x dx$

$$8 + 9. \int \frac{dx}{\sin^n x} = -\frac{\cos x}{(n-1)\sin^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\sin^{n-2} x}, n \neq 1$$

Set.
$$\int \cos^n x dx = \frac{1}{n} \sin x \cos^{n-1} x + \frac{n-1}{n} \int \cos^{n-2} x dx$$

Set 5.
$$\int \frac{dx}{\cos^{n} x} = \frac{\sin x}{(n-1)\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2} x}, n \neq 1$$

$$\delta \delta \circ \cdot \int \sin^n x \cos^m x dx = \frac{\sin^{n+1} x \cos\cos^{n+1} x}{n+m} + \frac{m-1}{n+m} \int \sin^n x \cos^{n-2} x dx$$

৯৯২.
$$\int \tan^n dx = \frac{1}{n-1} \tan^{n-1} x - \int \tan^{n-2} x dx, n \neq 1$$

නිම.
$$\int \cot^n dx = -\frac{1}{n-1} \cot^{n-1} x - \int \cot^{n-2} x dx, n \neq 1$$

$$886. \int \cos ec^{n} dx = \frac{\cos ec^{n-2} x \cot x}{n-1} + \frac{n-2}{n-1} \int \cos ec^{n-2} x dx, n \neq 1$$

৯৯৬.
$$\int x^n \ln^m x dx = \frac{x^{n+1} \ln^m x}{n+1} - \frac{m}{n+1} \int x^n \ln^{m-1} x dx$$

Sag.
$$\int \frac{\ln^m x}{x^n} dx = -\frac{\ln^m x}{(n-1)x^{n-1}} + \frac{m}{n-1} \int \frac{\ln^{m-1} x}{x^n} dx, n \neq 1$$

৯৯৮.
$$\int \ln^n x dx = x \ln^n x - n \int \ln^{n-1} x dx$$

ఎంది.
$$\int x^n \sinh x dx = x^n \cosh x - n \int x^{n-1} \cosh x dx$$

Sooo.
$$\int x^n \cosh x dx = x^n \sinh x - n \int x^{n-1} \sinh x dx$$

Soos.
$$\int x^n \sin x dx = -x^n \cos x + n \int x^{n-1} \cos x dx$$

Soos.
$$\int x^n \sin^{-1} x dx = \frac{x^{n+1}}{n+1} \sin^{-1} x - \frac{1}{n+1} \int \frac{x^{n+1}}{\sqrt{1-x^2}} dx$$

Soo8.
$$\int x^n \cos^{-1} x dx = \frac{x^{n+1}}{n+1} \cos^{-1} x + \frac{1}{n+1} \int \frac{x^{n+1}}{\sqrt{1-x^2}} dx$$

Sood.
$$\int x^n \tan^{-1} x dx = \frac{x^{n+1}}{n+1} \tan^{-1} x - \frac{1}{n+1} \int \frac{x^{n+1}}{1+x^2} dx$$

Soob.
$$\int \frac{x^n dx}{ax^n + b} = \frac{x}{a} - \frac{b}{a} \int \frac{dx}{ax^n + b}$$

Soon.
$$\int \frac{dx}{(x^2+a^2)^n} = \frac{x}{2(n-1)a^2(x^2+a^2)^{n-1}} + \frac{2n-3}{2(n-1)a^2} \int \frac{dx}{(x^2+a^2)^{n-1}}, n \neq 1$$

Soop.
$$\int \frac{dx}{(x^2 - a^2)^n} = \frac{x}{2(n-1)a^2(x^2 - a^2)^{n-1}} - \frac{2n-3}{2(n-1)a^2} \int \frac{dx}{(x^2 - a^2)^{n-1}}, n \neq 1$$

১১.৮ निर्पिष्ठ সমাকল :

একটি অপেক্ষকের নির্দিষ্ট সমাকল :
$$\int\limits_a^b f(x)dx, \int\limits_a^b g(x)dx,...$$

রিম্যানের সমষ্টি :
$$\sum_{i=1}^n f(\xi_i) \Delta x_i$$

প্রতি অন্তরকলজ :
$$F(x)$$
, $G(x)$,

১০০৯.
$$\int\limits_{0}^{b} f(x)dx = \lim\limits_{n \to \infty} \sum\limits_{i=1}^{n} f(\xi_i) \Delta x_i$$
 যেখানে

$$\Delta x_i = x_i - x_{i-1}, x_{i-1} \le \xi_i \le x_i$$

$$\mathbf{x} = \mathbf{f}(\mathbf{x})$$

$$3030. \int_{a}^{b} 1 dx = b - a \qquad 3033. \int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

১০১৩.
$$\int_{a}^{b} [f(x) - g(x)] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$

$$\text{SoSa. } \int_{a}^{a} f(x)dx = 0 \qquad \text{SoSa. } \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

১০১৬.
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx , \ a < c < b$$
 এর জন্য ।

১০১৭.
$$\int f(x)dx \ge 0$$
 যদি $f(x) \ge 0$ হয় $[a,b]$ এর জন্য।

১০১৮.
$$\int\limits_{-\infty}^{\infty} f(x) dx \le 0$$
 যদি $f(x) \le 0$ হয় $[a,b]$ এর জন্য।

১০১৯. কলনবিদ্যার মৌলিক তত্ত্ব:

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a) \text{ योन } F'(x) = f(x)$$

১০২০. প্রতিস্থাপন পদ্ধতি :

যদি
$$x = g(t)$$
 হয় তাহলে $\int_a^b f(x)dx = \int_c^d f(g(t))g'9t)dt$, যখন $c = g^{-1}(a), d = g^{-1}(b)$

১০২১. অংশ সমাকলন :
$$\int_{a}^{b} u dv = (uv)\Big|_{a}^{b} - \int_{a}^{b} v du$$

১০২২. Trapezoidal নিয়ম:

$$\int_{a}^{b} f(dx) = \frac{b-a}{2n} \left[f(x_0) + f(x_n) + 2 \sum_{i=1}^{n-1} f(x_i) \right]$$

১০২৩. Simpson's -এর নিয়ম :

$$\int_{a}^{b} f(x)dx = \frac{b-a}{3n} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \dots + 4f(x_{n-1}) + f(x_n) \right]$$

যখন
$$x_i = a + \frac{b-a}{n}i, i = 0,1,2,...,n$$

১০২৪. বক্ররেখার ক্ষেত্রফল : $S = \int_a^b f(x)dx = F(b) - F(a)$, যখন F'(x) = f(x)

১০২৫. দুইটি বক্ররেখার ক্ষেত্রফল :

$$S = \int_{a}^{b} [f(x) - g(x)] dx = F(b) - G(b) - F(a) + G(a),$$
যেখানে $F'(x) = f(x), G'(x) = g(x)$

১১.৯ অপ্রকৃত সমাকলন :

১০২৬. যদি a ও b অসীম হয় তাহলে $\int\limits_a^b f(x)dx$ কে অপ্রকৃত সমাকলন বলে। ১০২৭. যদি f(x) , $\left[a,\infty\right)$ এর জন্য একটি ধারাবাহিক অপেক্ষক হয় তাহলে

$$\int_{a}^{\infty} f(x)dx = \lim_{n \to \infty} \int_{a}^{n} f(x)dx$$

১০২৮. যদি f(x) , $\left(-\infty,b
ight]$ এর জন্য একটি ধারাবাহিক অপেক্ষক হয় তাহলে

$$\int_{-\infty}^{b} f(x)dx = \lim_{n \to -\infty} \int_{n}^{b} f(x)dx$$

১০২৯. $\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx$

১০৩০. অধারাবাহিক সমাকলন : $\int\limits_a^b f(x)dx = \lim\limits_{\varepsilon \to 0+} \int\limits_a^{b-\varepsilon} f(x)dx$

Sous.
$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0+} \int_{a}^{c-\varepsilon} f(x)dx + \lim_{\delta \to 0+} \int_{c+\delta}^{b} f(x)dx$$

১১.১০ দ্বৈত সমাকলন:

দুটি চলের অপেক্ষক : f(x, y), f(u, v),...

ছৈত সমাকলন : $\iint\limits_R f(x,y) dx dy$, $\iint\limits_R g(x,y) dx dy$,...

রিম্যান সমষ্টি : $\sum_{i=1}^m \sum_{j=1}^n f(u_i, v_j) \Delta x_i \Delta y_j$

ক্ষুদ্র পরিবর্তন : $\Delta x_i \Delta y_i$ ক্ষেত্র সমাকলন : R,S

মেরু স্থানাংক : r, heta ক্ষেত্রফল : A

তলের ক্ষেত্রফল : S কঠিন বস্তুর আয়তন :V

পাতের ভর : m ঘনত্ব : ho(x,y)

প্রথম ভ্রামক $:M_x,M_y$ জাড্য ভ্রামক $:I_x,I_y,I_0$

পাতের চার্জ : Q চার্জ ঘনত্ব : $\sigma(x, y)$

ভরের মধ্যের স্থানাংক : \overline{x} , \overline{y} একটি অপেক্ষকের গড় : μ

$$\text{Sodd. } \iint\limits_{[a,b]\times[c,d]} f(x,y) dA = \lim_{\substack{\max \Delta x_i \to 0 \\ \max \Delta y_j \to 0}} \sum_{i=1}^m \sum_{j=1}^n f(u_i,v_j) \Delta x_i \Delta y_j$$

X

১০৩৩.
$$\iint_R [f(x,y)+g(x,y)] dA = \iint_R f(x,y) dA + \iint_R g(x,y) dA$$
১০৩৪.
$$\iint_R [f(x,y)-g(x,y)] dA = \iint_R f(x,y) dA - \iint_R g(x,y) dA$$
১০৩৫.
$$\iint_R kf(x,y) dA = k \iint_R f(x,y) dA,$$
 যেখানে k একটি ধ্রুবক $+$ ১০৩৬. যদি R এর জন্য $f(x,y) \leq g(x,y)$ হয় তাহলে
$$\iint_R f(x,y) dA \leq \iint_R g(x,y) dA$$
১০৩৭. যদি R এর জন্য $f(x,y) \geq 0$ এবং $S \subset R$ হয় তাহলে,
$$\iint_R f(x,y) dA \leq \iint_R f(x,y) dA$$

0 ----- --- x

Soot.
$$\iint\limits_R f(x,y)dxdy = \int\limits_a^b \left(\int\limits_c^d f(x,y)dy\right)dx = \int\limits_c^d \left(\int\limits_a^b f(x,y)dx\right)dy$$

বিশেষ ক্ষেত্রে
$$\iint_R f(x,y) dx dy = \iint_R g(x) h(y) dx dy = \left(\int_a^b g(x) dx\right) \left(\int_c^d h(y) dy\right)$$

১০৩৯.
$$\iint_R f(x,y) dx dy = \iint_S f[x(u,v),y(u,v)] \frac{\partial(x,y)}{\partial(u,v)} du dv$$
 যেখানে

$$\left| \frac{\partial(x, y)}{\partial(u, v)} \right| = \left| \frac{\partial x}{\partial u} \quad \frac{\partial x}{\partial v} \right| \neq 0$$

১০৪০.মেরু স্থানাংক : $x = r\cos\theta$, $y = r\sin\theta$

১০৪১. মেরুস্থানাংকের দ্বিসমাকলন :
$$dxdy = \left| \frac{\partial(x,y)}{\partial(r,\theta)} \right| drd\theta = rdrd\theta$$

যদি R এর মান $0 \le g(\theta) \le r \le h(\theta), \alpha \le \theta \le \beta$, যেখানে $\beta - \alpha \le 2\pi$

তাহলে
$$\iint_{R} f(x,y) dx dy = \int_{\alpha}^{\beta} \int_{g(\theta)}^{h(\theta)} f(r\cos\theta, r\sin\theta) r dr d\theta$$

যদি R এর মান $0 \le a \le r \le b, \alpha \le \theta \le \beta$, যেখানে $\beta - \alpha \le 2\pi$ তাহলে ,

$$V = \iint_{R} f(x, y) dA = \int_{a}^{b} \int_{h(x)}^{g(x)} f(x, y) dy dx$$

$$V = \iint_{R} f(x, y) dA = \int_{c}^{d} \int_{p(y)}^{q(y)} f(x, y) dy dx$$

$$V = \iint [f(x, y) - g(x, y)] dA$$

১০৪৪. মেরুস্থানাংকের আয়তন ও ক্ষেত্রফল:

$$A = \iint_{S} dA = \iint_{\alpha} \int_{h(\theta)}^{\beta} r dr d\theta, \qquad V = \iint_{S} f(r,\theta) r dr d\theta$$

$$\theta = \beta$$

$$\theta = \beta$$

১০৪৫. তলের ক্ষেত্রফল :
$$S = \iint_{\mathbb{R}} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \, dx dy$$

১০৪৬. পাতের ভর :
$$m = \iint \rho(x, y) dA$$

১০৪৭. পাতের ভ্রামক :
$$*M_x = \iint_{\Omega} y \rho(x, y) dA$$

$$*M_y = \iint_R x \rho(x, y) dA$$

$$*I_y = \iint_D x^2 \rho(x, y) dA$$

$$*I_x = \iint y^2 \rho(x, y) dA$$

$$*M_{y} = \iint_{R} x \rho(x, y) dA$$

$$*I_{x} = \iint_{R} y^{2} \rho(x, y) dA$$

$$*I_{y} = \iint_{R} x^{2} \rho(x, y) dA$$

$$*I_{0} = \iint_{R} (x^{2} + y^{2}) \rho(x, y) dA$$

১০৪৮. কেন্দ্রের ভর :
$$\overline{x} = \frac{M_y}{m} = \frac{1}{m} \iint_R x \rho(x, y) dA = \frac{\iint_R x \rho(x, y) dA}{\iint_R \rho(x, y) dA}$$

$$\overline{y} = \frac{M_x}{m} = \frac{1}{m} \iint_R y \rho(x, y) dA = \frac{\iint_R y \rho(x, y) dA}{\iint_R \rho(x, y) dA}$$

১০৪৯. পাতের চার্জ : $Q = \iint \sigma(x, y) dA$

১০৫০. একটি অপেক্ষকের গড় :
$$\mu = \frac{1}{S} \iint_{B} f(x,y) dA$$
, যেখানে $S = \iint_{B} dA$

১১.১১ ब्राग्नी नमाक्ना :

তিনটি চলকের অপেক্ষক : f(x,y,z), g(x,y,z),...

ত্রয়ী সমাকলন : $\iiint f(x,y,z)dV, \iiint g(x,y,z)dV,....$

রিম্যান সমষ্টি : $\sum_{i=1}^m \sum_{i=1}^n \sum_{k=1}^p \ f(u_i, v_j, w_k) \Delta x_i \Delta y_j \Delta_k$

মূদ্র পরিবর্তন : $\Delta x_i \Delta y_i \Delta z_i$ সমাকলনের

a,b,c,d,r,s

ক্ষেত্র সমাকলন : G,T,S বেলন স্থানাংক : r,θ,z

গোলীয় স্থানাংক : $r, heta, \phi$ ঘনবস্তুর আয়তন : V

ঘনবস্তুর ভর : m ঘনত্ম : $\mu(x,y,z)$

ভরের মধ্যের স্থানাংক : \overline{x} , \overline{y} , \overline{z} প্রথম ভ্রামক : M_{xy} , M_{yz} , M_{xz}

সীমা

জাড্য ভ্রামক $: I_{xy}, I_{yz}, I_{xz}, I_{x}, I_{y}, I_{z}, I_{0}$

১০৫১. ত্রয়ী সমাকলানের সংজ্ঞা:

$$\iiint_{[a,b]\times[c,d]\times[r,s]} f(x,y,z)dV = \lim_{\substack{\max \Delta x_i \to 0 \\ \max \Delta y_j \to 0}} \sum_{i=1}^m \sum_{j=1}^n \sum_{k=1}^p f(u_i,v_j,w_k) \Delta x_i \Delta y_j \Delta z_k$$

$$\text{Soft}. \quad \iiint f(x,y,z) + g(x,y,z) dV = \iiint f(x,y,z) dV + \iiint g(x,y,z) dV$$

$$\text{Soft.} \quad \iiint_C f(x,y,z) - g(x,y,z) dV = \iiint_C f(x,y,z) dV - \iiint_C g(x,y,z) dV$$

১০৫৪.
$$\iiint k f(x,y,z) dV = k \iiint f(x,y,z) dV$$
 , যেখানে k একটি ধ্রুবক।

Sode.
$$\iiint_{C \cup T} f(x, y, z) dV = \iiint_{C} f(x, y, z) dV + \iiint_{T} f(x, y, z) dV$$

১০৫৬. চলের পরিবর্তন :
$$\iiint_{z} f(x,y,z) dx, dy, dz =$$

$$=\iiint_{S} f[x(u,v,w),y(u,v,w),z(u,v,w)] \frac{\partial(x,y,z)}{\partial(u,v,w)} dxdydz$$
, যেখানে

$$\left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} \neq 0$$

১০৫৭. ঘনবস্তুর আয়তন
$$: V = \iiint dx dy dz$$

১০৫৮. বেলক স্থানাংকের আয়তন
$$: V = \iiint_{S(z,\theta,z)} r dr d\theta dz$$

১০৫৯. গোলীয় স্থানাংকের আয়তন :
$$V = \iiint_{V(r,\theta,\sigma)} r^2 \sin \theta dr d\theta d\phi$$

১০৬০. ঘন বস্তুর ভর :
$$m=\iiint \mu(x,y,z)dV$$

১০৬১. ঘন বস্তুর মধ্যকের ভর :
$$\overline{x}=\frac{M_{yz}}{m}, \overline{y}=\frac{M_{xz}}{m}, \overline{z}=\frac{M_{xy}}{m}$$
, যেখানে

$$M_{yz} = \iiint_C x \mu(x, y, z) dV$$
, $M_{xz} = \iiint_C y \mu(x, y, z) dV$,

$$M_{xy} = \iiint_C z \mu(x, y, z) dV$$

১૦৬૨.
$$I_{xy} = \iiint_G z^2 \mu(x, y, z) dV$$
, $I_{yz} = \iiint_G x^2 \mu(x, y, z) dV$,

$$I_{xz} = \iiint_{z} y^{2} \mu(x, y, z) dV$$

১০৬৩.
$$I_x = I_{xy} + I_{xz} = \iiint_C (z^2 + y^2) \mu(x, y, z) dV$$
,

$$I_y = I_{xy} + I_{yz} = \iiint (z^2 + x^2) \mu(x, y, z) dV,$$

$$I_z = I_{xy} + I_{yz} = \iiint_C (y^2 + x^2) \mu(x, y, z) dV$$

$$I_0 = I_{xy} + I_{yz} + I_{xz} = \iiint_C (x^2 + y^2 + z^2) \mu(x, y, z) dV$$

১১.১২ রেখা সমাকলন:

ষ্কেলার অপেক্ষক : F(x, y, z), F(x, y), f(x)

অব্যক্ত ক্ষেলার : u(x,y,z) বক্ররেখা : C,C_1,C_2

সমাকলনের সীমা : a,b,α,β প্রচল : t,s

মেরুস্থানাংক :r, heta ভেক্টর ক্ষেত্র $:ec{F}(P,Q,R)$

অবস্থান ভেক্টর : $ec{r}(s)$ একক ভেক্টর : $ec{i}$, $ec{j}$, $ec{k}$, $ec{ au}$

ক্ষেত্রের ক্ষেত্রফল : S বক্ররেখার দৈর্ঘ্য : L

তারের ভর : m ঘনত্ব : ho(x,y,z),
ho(x,y)

ভরের মধ্যের স্থানাংক : $\overline{x}, \overline{y}, \overline{z}$ প্রথম ভ্রামক : M_{xy}, M_{yz}, M_{xz}

জাড্য ভ্রামক : I_x, I_y, I_z ঘনবস্তুর আয়তন : V

কাজ : W চৌম্বক ক্ষেত্র $: \vec{B}$ তড়িৎ প্রবাহ : I তড়িচচালক বল $: \mathcal{E}$

টৌম্বক ফ্লাক্স: 🕡

Sowe.
$$\int_{0}^{s} F(\vec{r}(s))ds = \int_{C} F(x, y, z)ds = \int_{C} Fds$$

$$\text{Sobb. } \int_{C_1 \cup C_2} Fds = \int_{C_1} fds + \int_{C_2} fds$$

Sown.
$$\int_{C} F(x,y,z)ds = \int_{z}^{B} F(x(t),y(t),z(t)) \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt$$

১০৬৮.
$$\int_{C} F(x, y) ds = \int_{C}^{B} F(x, f(x)) \sqrt{1 + (f'(x))^{2}} dx$$

ఎంటన.
$$\int_{C} F(x, y,) ds = \int_{\alpha}^{\beta} F(r \cos \theta, r \sin \theta) \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$$

১০৭০. ভেক্টর ক্ষেত্রের রৈখিক সমাকলন : ভেক্টর অপেক্ষক $\vec{r}=\vec{r}(s)$ এবং

$$0 \le s \le S$$
 $\overline{\alpha}$ $\frac{d\vec{r}}{ds} = \vec{\tau} = (\cos \alpha, \cos \beta, \cos \gamma)$

$$\int Pdx + Qdy + Rdz = \int_{0}^{S} (P\cos\alpha + Q\cos\beta + R\cos\gamma)ds$$

১০৭১. প্রিণের তত্ত্ব :
$$\iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{C} P dx + Q dy$$

$$3092. S = \iint dx dy = \frac{1}{2} \oint x dy - y dx$$

১০৭৩. যদি
$$\vec{F}=grad~u$$
, বা, $\frac{\partial u}{\partial x}=P, \frac{\partial u}{\partial y}=Q, \frac{\partial u}{\partial z}=R$ হয় , তাহলে

$$\int_{C} \vec{F}(\vec{r}) . d\vec{r} = \int_{C} P dx + Q dy + R dz = u(B) - u(A).$$

১০৭৪. বক্ররেখার দৈর্ঘ্য :

$$L = \int_{C} ds = \int_{\alpha}^{\beta} \left| \frac{d\vec{r}}{dt}(t) \right| dt = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$$

১০৭৫. মরুস্থানাংকে বক্ররেখার দৈর্ঘ্য:
$$L = \int_{0}^{\beta} \sqrt{\left(\frac{dr}{d\theta}\right)^2 + r^2} d\theta$$

১০৭৬. তারের ভর : $m = \int \rho(x, y, z) ds$ বা,

$$m = \int_{\alpha}^{\beta} \rho(x(t), y(t), z(t)) \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2}} dt$$

১০৭৭. তারের কেন্দ্রীয় ভর :
$$\overline{x} = \frac{M_{yz}}{m}, \overline{y} = \frac{M_{xz}}{m}, \overline{z} = \frac{M_{xy}}{m}$$
, যেখানে

$$M_{yz} = \int_C x \rho(x, y, z) ds, M_{xz} = \int_C y \rho(x, y, z) ds, M_{xy} = \int_C z \rho(x, y, z) ds$$

১০৭৮. জাড্য ভ্রামক :
$$I_x = \int (y^2 + z^2) \rho(x, y, z) ds$$
,

$$I_y = \int_C (x^2 + z^2) \rho(x, y, z) ds, \qquad I_z = \int_C (x^2 + y^2) \rho(x, y, z) ds$$

১০৭৯. বদ্ধ বক্ররেখার ক্ষেত্রফল :
$$S = \int_C x dy = -\int_C y dx = \frac{1}{2} \int_C x dy - y dx$$

$$\exists t, \quad S = \int_{\alpha}^{\beta} x(t) \frac{dy}{dt} dt = -\int_{\alpha}^{\beta} y(t) \frac{dx}{dt} dt = \frac{1}{2} \int_{\alpha}^{\beta} \left(x(t) \frac{dy}{dt} - y(t) \frac{dx}{dt} \right) dt$$

১০৮০, বদ্ধ বক্ররেখায় ঘন বস্তুর আয়তন :

$$V = -\pi \oint_C y^2 dx = -2\pi \oint_C xy dy = -\frac{\pi}{2} \oint_C 2xy dy + y^2 dx$$

১০৮১. কাজ :
$$W=\int\limits_{C}\vec{F}.d\vec{r}$$
 বা, $W=\int\limits_{C}\vec{F}.d\vec{r}=\int\limits_{C}Pdx+Qdy$

$$\exists t, \ W = \int_{a}^{\beta} \left[P(x(t), y(t), z(t)) \frac{dx}{dt} + Q(x(t), y(t), z(t)) \frac{dy}{dt} + R(x(t), y(t), z(t)) \frac{dz}{dt} \right] dt$$

১০৮২. অ্যাম্পিয়ারের সূত্র :
$$\oint \! ec{B} . dec{r} = \mu_0 I$$

১০৮৩. ফ্যারাডের সূত্র :
$$arepsilon = \oint_C ec{E} . d ec{r} = - rac{d \psi}{dt}$$

১১.১৩ তলের সমাকলন:

কেলার অপেক্ষক : f(x, y, z), z(x, y)

অবস্থান ভেক্টর : $\vec{r}(u,v), \vec{r}(x,y,z)$

একক ভেক্টর $: \vec{i}, \vec{j}, \vec{k}$ তল : S

ভেক্টর ক্ষেত্র : $\vec{F}(P,Q,R)$

ভেক্টর ক্ষেত্রের ডাইভারজেন্স (অপসরণ) : $div \vec{F} =
abla. \vec{F}$

ভেক্টর ক্ষেত্রের কার্ল : $curl\vec{F} = \nabla \times \vec{F}$ তলের ভেক্টর উপাদান : $d\vec{S}$

সাধারণ তল : $ec{n}$ তলের ক্ষেত্রফল : A

তলের ভর : m ঘনত্ব $: \mu(x,y,z)$

কেন্দ্রীয় ভরের স্থানাংক $: \overline{x}, \overline{y}, \overline{z}$ প্রথম ভ্রামক $: M_{xy}, M_{yz}, M_{xz}$

জাড্য ভ্রামক : $I_{xy}, I_{yz}, I_{xz}, I_x, I_y, I_z$

ঘনবস্তুর আয়তন : V বল : $ec{F}$

মহাকর্ষীয় ধ্রুবক : G প্রবাহী পদার্থের বেগ : $\vec{v}(\vec{r})$

প্রবাহী পদার্থের ঘনত্ব : ho চাপ : $p(ec{r})$ ভরের ফ্লাক্স , বৈদ্যুতিক ফ্লাক্স : ϕ তলের চার্জ : Q

চার্জ ঘনত : $\sigma(x,y)$ তড়িংক্ষেত্রের মান : \vec{E}

চাজ ধনত্ব: O(x,y) তাভ্ৎক্ষেত্রের মান: E১০৮৪. যদি $\vec{r}(u,v)=x(u,v)\vec{i}+y(u,v)\vec{j}+z(u,v)\vec{k}$ হয় তাহলে,

$$\iint_{S} f(x, y, z) dS = \iint_{D(u,v)} f(x(u,v), y(u,v), z(u,v)) \left| \frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v} \right| du dv$$

720

Solve.
$$\iint_{S} \vec{f}(x,y,z)dS = \iint_{D(x,y)} f(x,y,z(x,y)) \sqrt{1 + \left(\frac{\partial x}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dxdy$$
Solve.
$$\iint_{S} \vec{F}(x,y,z).d\vec{S} = \iint_{S} \vec{F}(x,y,z).\vec{n}.dS$$

$$= \iint_{D(u,v)} \vec{F}(x(u,v),y(u,v),z(u,v)) \cdot \left[\frac{\partial \vec{r}}{\partial u} \times \frac{\partial \vec{r}}{\partial v}\right] dudv$$

$$\forall 1, \iint_{S} \vec{F}(x,y,z).d\vec{S} = \iint_{S} \vec{F}(x,y,z).\vec{n}.dS$$

$$= \iint_{D(u,v)} \vec{F}(x(u,v),y(u,v),z(u,v)) \cdot \left[\frac{\partial \vec{r}}{\partial v} \times \frac{\partial \vec{r}}{\partial u}\right] dudv$$

$$\Rightarrow constant \int_{S} \vec{F}(x,y,z) d\vec{S} = \iint_{S} \vec{F}(x,y,z) \cdot \vec{n}.dS$$

Sob 9.
$$\iint_{S} \vec{F}(x, y, z) . d\vec{S} = \iint_{S} \vec{F}(x, y, z) . \vec{n} . dS$$
$$= \iint_{S} \vec{F}(x, y, z) \left(-\frac{\partial z}{\partial x} \vec{i} - \frac{\partial z}{\partial y} \vec{j} + \vec{k} \right) dx dy$$

বা,
$$\iint_{S} \vec{F}(x, y, z) . d\vec{S} = \iint_{S} \vec{F}(x, y, z) . \vec{n} . dS$$

$$= \iint_{D(u,v)} \vec{F}(x,y,z) \left(\frac{\partial z}{\partial x} \vec{i} + \frac{\partial z}{\partial y} \vec{j} - \vec{k} \right) dx dy$$

$$\iint_{S} (\vec{F}.\vec{n})dS = \iint_{S} Pdydz + Qdzdx + Rdxdy$$

$$= \iint_{S} (P\cos\alpha + Q\cos\beta + R\cos\gamma)dS$$

Sobb.
$$\iint_{S} (\vec{F} \cdot \vec{n}) dS = \iint_{S} P dy dz + Q dz dx + R dx dy$$

$$= \iint\limits_{D(u,v)} \begin{vmatrix} P & Q & R \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{vmatrix} du dv$$

১০৯০. অপসরণ তত্ত্ব :
$$\oint \int \vec{F}.d\vec{S} = \iiint (\nabla . \vec{F}) dV$$
 যেখানে,

$$\vec{F}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$$
 এবং $\nabla \cdot \vec{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$

১০৯১. স্থানাংক ব্যবস্থায় অপসরণ তত্ত্ব :

$$\iint_{S} P dy dz + Q dx dz + R dx dy = \iiint_{G} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz$$

১০৯২. স্টোকের (Stoke's) তত্ত্ব :
$$\oint_C \vec{F} . d\vec{r} = \iint_S (\nabla \times \vec{F}) d\vec{S}$$
 যেখানে,

$$\vec{F}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$$
 এবং

$$\nabla \cdot \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial x} \\ P & Q & R \end{vmatrix} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \vec{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \vec{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \vec{k}$$

১০৯২. স্থানাংক ব্যবস্থায় স্টোকের তত্ত্ব :
$$\oint_C Pdx + Qdy + Rdz =$$

$$\iint\limits_{S} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

১০৯৩. তলের ক্ষেত্রফল
$$=A=\iint\!\!dS$$

Sobs.
$$A = \iint_{D(x,y)} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dxdy$$

১০৯৫. তলের ভর :
$$m = \iint \mu(x, y, z) dS$$

১০৯৬. কক্ষের কেন্দ্রীয় ভর :
$$\overline{x} = \frac{M_{xx}}{m}, \overline{y} = \frac{M_{xx}}{m}, \overline{z} = \frac{M_{xy}}{m}$$
, যেখানে

$$M_{yz} = \iint_{S} x \mu(x, y, z) dS,$$
 $M_{xz} = \iint_{S} y \mu(x, y, z) dS,$

$$M_{xy} = \iint_{S} z\mu(x, y, z)dS$$

১০৯৭.
$$xy$$
 অক্ষে জাড্য ভ্রামক : $I_{xy}=\iint_{\mathcal{L}}z^2\mu(x,y,z)dS,$

$$I_{yz} = \iint_{S} x^2 \mu(x, y, z) dS, \qquad I_{xz} = \iint_{S} y^2 \mu(x, y, z) dS$$

১০৯৮.
$$xyz$$
 অক্ষে জাড্য ভ্রামক : $I_x = \iint_{\mathcal{L}} (y^2 + z^2) \mu(x, y, z) dS$

$$I_y = \iint_C (x^2 + z^2) \mu(x, y, z) dS, \quad I_z = \iint_C (x^2 + y^2) \mu(x, y, z) dS$$

১০৯৯. বদ্ধতলে ঘনবম্ভর আয়তন :
$$V = \frac{1}{3} \left| \iint_S z dy dz + y dx dz + z dx dy \right|$$

১১০০. মহাকর্ষীয় বল :
$$\vec{F} = Gm \iint \mu(x, y, z) \frac{\vec{r}}{r^3} dS$$

১১০১. বলের চাপ
$$: \ \vec{F} = \iint p(\vec{r}) d\vec{S}$$

১১০৪. তলের চার্জ :
$$Q = \iint \sigma(x,y) dS$$

১১০৫. গাউসের সূত্র :
$$\phi = \iint_{S} \vec{E}.d\vec{S} = \frac{Q}{\varepsilon_0}$$

ছাদশ অধ্যায়

অন্তর্কল সমীকরণ (Differential Equations)

এক চল বিশিষ্ট অপেক্ষক:y,p,q,u,g,h,G,H,r,z

কোণাঙ্ক (স্বাধীন চল): x, y

দ্বিচল বিশিষ্ট অপেক্ষক : f(x,y), M(x,y), N(x,y)

প্রথম অন্তরকলজ: $y', u', \dot{y}, \frac{dy}{dt}, \dots$

দ্বিতীয় অন্তরকলজ : y''. \ddot{y} , $\frac{d^2I}{dt^2}$,....

আংশিক অন্তরকলজ : $\frac{\partial u}{\partial t}$, $\frac{\partial^2 u}{\partial x^2}$,....

সাধারণ সংখ্যা : n

বিশেষ সমাধান : y_1, y_p

বাস্তব সংখ্যা : $k,t,C,C_1,C_2,p,q,lpha,eta$

বৈশিস্ট্য সমীকরণের বর্গমূল : λ , λ , সময় : t

তাপমাত্রা : T,S জনমিতি অপেক্ষক : P(t)

বস্তুর ভর : m স্প্রিপ্ত এর stiffness: k

সাম্য অবস্থা থেকে স্থানচুত্যি : y কোণাঙ্কের স্থানচুত্যি : A ক্যান্ড স্যাত স্থাত সহগ : γ

দশা কোণের স্থান চুত্যি : δ কৌণিক স্থান চুত্যি : θ

পেনা খেনাৰে হান চাৰ্ভ্য : D খেনাৰে হান চাৰ্ভ্য : D পেন্তুলামের দৈর্ঘ্য : L মাধ্যাক্ষীয় তুরণ : g

তড়িৎ প্রবাহ : I রোধ : R আবেশ : L ধারক : C

১২.১ প্রথম ক্রমের সাধারণ অম্ভরকল সমীকরণ :

১১০৬. $\frac{dy}{dx} + p(x)y = q(x)$ এর সাধারণ সমাধান হলো

$$y = \frac{\int u(x)q(x)dx + C}{u(x)}$$
 যেখানে $u(x) = \exp(\int p(x)dx)$

১১০৭.
$$\frac{dy}{dx}f(x,y)=g(x)h(y)$$
 এর সাধারণ সমাধান হলো

$$\int \frac{dy}{h(y)} = \int g(x)dx + C \text{ অথবা}, \ H(y) = G(x) + C$$

১১০৮.
$$\frac{dy}{dx} + p(x)y = q(x)y^n \text{ এবং } \frac{dz}{dx} + (1-n)p(x)z = (1-n)q(x)$$

১১০৯. Riccati সমীকরণ :
$$\frac{dy}{dx} = p(x) + q(x)y + r(x)y^2$$
 এবং

$$\frac{dz}{dx} = -[q(x) + 2y_1 r(x)]z - r(x)$$

১১১০. যদি
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
 হয় তাহলে $M(x,y)dx + N(x,y)dy = 0$ এর

সাধারণ সমাধান হলো
$$\int M(x,y)dx + \int N(x,y)dy = C$$

১১১১. তেজব্রিয় ক্ষয় :
$$\frac{dy}{dt}=-ky$$
 এর সমাধান হলো , $y(t)=y_0e^{-kt}$, যেখানে $y_0=y(0)$ ।

১১১২. ঠান্ডাকরণের নিউটনের সূত্র :
$$\frac{dT}{dt} = -k(T-S)$$
 এর সমাধান হলো,

$$T(t)=S+(T_0-S)e^{-kt}$$
 , যেখানে $T_0=T(0)$ এবং সময় $t=0$ ।

১১১৩. জনমিতির গতিবিদ্যা :
$$\frac{dP}{dt} = kP \bigg(1 - \frac{P}{M}\bigg)$$
 এর অন্তরকলন সমীকরণের

সমাধান হলো
$$P(t)=rac{MP_0}{P_0+(M-P_0)e^{-kt}},$$
যেখানে $P_0=P(0)$ এবং সময় $t=0$ ।

১২.২ বিক্রমের সাধারণ অন্তরকল সমীকরণ :

১১১৪.
$$y'' + py' - qy = 0$$
 বা, $\lambda^2 + p\lambda + q = 0$ এর সাধারণ সমীকরণ

হলো
$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$$
 যেখানে C_1, C_2 হলো ধ্রুবক ।

যদি
$$\lambda_1,\lambda_2$$
 জটিল সংখ্যা হয় তাহলে $\lambda_1=lpha+eta i,\lambda_2=lpha-eta i$, যখন

$$\alpha = -\frac{p}{2}, \beta = \frac{\sqrt{4q - p^2}}{2}$$
, তাহলে সাধারণ সমীকরণ হলো

$$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$$

১১১৫. y'' + py' + qy = f(x) এর সাধারণ সমীকরণ হলো $y = y_p + y_h$

১১১৬. y বর্জিত অন্তরকলজ সমীকরণ হলো y''=f(x,y') যদি u=y' হয় তাহলে u'=f(x,u) হবে প্রথম ক্রমের অন্তরকলজ সমীকরণ y''

১১১৭. x বর্জিত অন্তরকলজ সমীকরণ হলো y'' = f(y, y') যদি u = y' হয়

তাহলে $y'' = \frac{du}{dx} = \frac{du}{dy} \frac{dy}{dx} = u \frac{du}{dy}$, তাহলে পাই, $u \frac{du}{dy} = f(y,u)$ যা প্রথম ক্রমের অন্তরকলজ সমীকরণ

১১১৮. সাধারণ পেণ্ডুলামের সমীকরণ : $\frac{d^2\theta}{dt^2} + \frac{g}{L}\theta = 0$, θ ক্ষুদ্র পরিবর্তনের

জন্য সাধারণ সমীকরণটি হলো $heta(t) = heta_{\max} \sin \sqrt{\frac{g}{L}} t$, যেখানে পর্যায় $T = 2\pi \sqrt{\frac{L}{g}}$

১১১৯. RLC সার্কিট : $L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}I = V'(t) = \omega E_0 \cos(\omega t)$,

যেখানে I হলো RLC সার্কিটে তড়িং প্রবাহ এবং $V(t)=E_0\sin(\omega t)$ হলো এ.সি. ভোল্টেজের উৎস।

সাধারণ সমাধান হলো $I(t)=C_1e^{r_1t}+C_2e^{r_2t}+A\sin(\omega t-\varphi)$, যেখানে

$$r_{1,2} = \frac{-R \pm \sqrt{R^2 - \frac{4L}{C}}}{2L}, A = \frac{\omega E_0}{\sqrt{\left(L\omega^2 - \frac{1}{C}\right)^2 + R^2\omega^2}},$$

$$\varphi = \arctan\left(\frac{L\omega}{R} - \frac{1}{RC\omega}\right)$$
, যেখানে C_1, C_2 হলো ধ্রুবক।

১২.৩ কিছু আংশিক অম্ভরকলন সমীকরণ :

১১২০. ল্যাপলসের সমীকরণ :
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

১১২১. তাপের সমীকরণ :
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial t}$$

১১২২. তরঙ্গের সমীকরণ :
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial t^2}$$

এয়োদশ অধ্যায়

ধারা বা শ্রেণী (Series)

১৩.১ পাটিগাণিতিক ধারা :

প্রথম পদ: a,

n তম পদ : a"

দুটি পদের মধ্যবর্তী দূরত : d

ধারার পদের সংখ্যা : n

প্রথম n তম ধারার সমষ্টি : S_n

১১২৩.
$$a_n = a_{n-1} + d = a_{n-2} + 2d = ... = a_1 + (n-1)d$$

$$3338. \ a_1 + a_n = a_2 + a_{n-1} = ... = a_i + a_{n+1-i}$$

$$3320. \ a_i = \frac{a_{i-1} + a_{i+1}}{2}$$

$$S_n = \frac{a_1 + a_n}{2}.n = \frac{2a_1 + (n-1)d}{2}.n$$

১৩.২ জ্যামিতিক ধারা :

প্রথম পদ $: a_1$

n তম পদ: a_n

সাধারণ অনুপাত: q

ধারার পদের সংখ্যা : n

প্রথম n তম ধারার সমষ্টি : S_n

অসীমের যোগফল : S

১১২٩.
$$a_n = qa_{n-1} = a_1q^{n-1}$$

১১২৮.
$$a_1.a_n = a_2.a_{n-1} = ... = a_i.a_{n+1-i}$$

১১২৯.
$$a_i = \sqrt{a_{i-1}.a_{i+1}}$$

$$S_n = \frac{a_n q - a_1}{q - 1} = \frac{a_1 (q^n - 1)}{q - 1}$$

১১৩১.
$$S=\lim_{n\to\infty}S_n=rac{a_1}{1-a}$$
 , $\left|q\right|<1$ এর জন্য S এর অভিসরণ হয় $n\to\infty$

১৩.৩ কিছু সসীম ধারা :

ধারার পদের সংখ্যা : n

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

১১৩0.
$$2+4+6+...+2n=n(n+1)$$

3308.
$$1+3+5+...+(2n-1)=n^2$$

2508.
$$1+3+3+...+(2n-1)=n$$

2508. $k+(k+1)+(k+2)+...+(k+n-1)=\frac{n(2k+n-1)}{2}$

>>09.
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

>>09. $1^3 + 2^3 + 3^3 + \dots + n^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$

$$2 \quad \boxed{2}$$

$$1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(4n^2 - 1)}{3}$$

ఎఎరు.
$$1^3 + 3^3 + 5^3 + \dots + (2n-1)^3 = n^2(2n^2 - 1)$$

ఎఎ80. $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} + \dots = 2$

3383.
$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} + \dots = 1$$

১১৪২.
$$1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + ... + \frac{1}{(n-1)!} + ... = e$$
১৩.৪ অসীম ধারা : অনুক্রম : $\{a_n\}$

প্রথম পদ
$$:a_1 \ n$$
 তম পদ $:a_n \$

১১৪৩. অসীম শ্রেণী/ধারা :
$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + ... + a_n + ...$$

১১৪৪.
$$n$$
 তম এর আংশিক সমষ্টি : $S_n \sum_{n=1}^{\infty} a_n = a_1 + a_2 + ... + a_n$

১১৪৫. অসীম শ্রেণীর অভিসরণ :
$$\sum_{n=1}^{\infty}a_n=L$$
, যদি $\lim_{n \to \infty}S_n=L$

১১৪৬.
$$n$$
 তম পদের পরীক্ষা : যদি ধারার অভিসরণ হয় $\sum_{n=1}^\infty a_n$, তাহলে $\lim a_n=0$ । আর যদি ধারটি $\lim a_n \neq 0$ হয় তাহলে ধারাটি হবে অপসারী ।

$$\lim_{n \to \infty} a_n = 0$$
 । আর যদি ধারটি $\lim_{n \to \infty} a_n \neq 0$ হয় তাহলে ধারাটি হবে অপসারী ।

১৩.৫ অপসারী ধারা :

অপসারী ধারা :
$$\sum_{n=1}^{\infty} a_n = A, \sum_{n=1}^{\infty} b_n = AB$$

$$\sum_{n=0}^{\infty} (a_n + b_n) = \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n = A + B$$

$$338b. \sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n = cA$$

১৩.৬ ঘাঁত ধারা :

বাস্তব সংখ্যা : x, x_0

ঘাত শ্ৰেণী :
$$\sum_{n=1}^{\infty} a_n x^n$$
 , $\sum_{n=1}^{\infty} a_n (x - x_0)$

সম্গ্ৰ সংখ্যা : "n

১১৪৯.
$$x$$
 এর ঘাত শ্রেণী : $\sum_{n=1}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n + ...$

১১৫০. $(x-x_0)$ এর ঘাত শ্রেণী :

$$\sum_{i=1}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots + a_n (x - x_0)^n + \dots$$

১১৫১. অভিসরণের বিরতী :
$$f(x) = \sum_{n=1}^{\infty} a_n (x - x_0)^n$$

১১৫২. অভিসরণ ব্যাসার্ধ :
$$R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{a_n}}$$
 বা, $R = \lim_{n \to \infty} \frac{a_n}{a_{n+1}}$

১৩.৭ শক্তি শ্রেণীর অন্তরকলন ও সমাকলন :

সম্ভত অপেক্ষক (Continuous function) : f(x)

শক্তি শ্ৰেণী :
$$\sum_{n=0}^{\infty} a_n x^n$$

সমগ্ৰ সংখ্যা : "n

অভিসরণ ব্যাসার্ধ : R

১১৫৩. শক্তিশ্রেণীর অন্তরকলন :

$$f'(x) = \frac{d}{dx}a_0 + \frac{d}{dx}a_1x + \frac{d}{dx}a_2x^2 + \dots = a_1 + 2a_2x + 3a_3x^2 + \dots = \sum_{n=1}^{\infty} na_nx^{n-1}$$

$$\int f(x)dx = \int_{x^2} a_0 dx + \int_{x^3} a_1 x dx + \int_{\infty} a_2 x^2 dx + \dots$$

$$= a_0 x + a_1 \frac{x^2}{2} + a_2 \frac{x^3}{3} + \dots = \sum_{n=0}^{\infty} a_n \frac{x^{n+1}}{n+1} + C$$

১৩.৮ টেলর ও ম্যাকলারিণ শ্রেণী:

সমগ্ৰ সংখ্যা: n

অন্তরকলন যোগ্য অপেক্ষক: f(x)

অবশিষ্ট পদ $: R_{...}$

১১৫৫. টেলর শ্রেণী :

$$f(x) = \sum_{n=0}^{\infty} f^{(n)}(a) \frac{(x-a)^n}{n!} = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^2}{2!} + \dots$$

$$f^{(n)}(a)(x-a)^n = \frac{f''(a)(x-a)^n}{n!} = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^2}{2!} + \dots$$

$$+\frac{f^{(n)}(a)(x-a)^n}{n!}+R_n$$

১১৫৬. অবশিষ্ট
$$n+1$$
 তম পদ হলো, $R_n = \frac{f^{(n+1)}(\xi)(x-a)^{n+1}}{(n+1)!}, a < \xi < x$

১১৫৭, ম্যাকলারিন শ্রেণী:

$$f(x) = \sum_{n=0}^{\infty} f^{(n)}(0) \frac{x^n}{n!} = f(0) + f'(0)x + \frac{f''(0)x^2}{2!} + \dots + \frac{f^{(n)}(0)x^n}{n!} + R_n$$

১৩.৯ কিছু অপেক্ষকের জন্য শক্তি শ্রেণীর বিস্তৃতি : সমগ্র সংখ্যা : n , বাস্তব সংখ্যা : x

3306.
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$

3308.
$$a^x = 1 + \frac{x \ln a}{1!} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + ... + \frac{(x \ln a)^n}{n!} + ...$$

>>>0.
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^n x^{n+1}}{n+1} \pm \dots, -1 < x \le 1$$

١٥٤٥.
$$\ln \frac{1+x}{1-x} = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \dots\right), |x| < 1$$

3362.
$$\ln x = 2 \left[\frac{x-1}{x+1} + \frac{1}{3} \left(\frac{x-1}{x+1} \right)^3 + \frac{1}{5} \left(\frac{x-1}{x+1} \right) \dots \right], x > 0$$

3360.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} \pm \dots$$

33.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} \pm \dots$$

336.
$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + ..., |x| < \frac{\pi}{2}$$

3366.
$$\cot x = \frac{1}{x} - \left(\frac{x}{3} + \frac{x^3}{45} + \frac{2x^5}{945} + \frac{2x^7}{4725} + \dots \right), |x| < \pi$$

3369.
$$\arcsin x = x + \frac{x^3}{2.3} + \frac{1.3x^5}{2.4.5} + \dots + \frac{1.3.5...(2n-1)x^{2n+1}}{2.4.6...(2n)(2n+1)} + \dots, |x| < 1$$

كان
$$\arccos = \frac{\pi}{2} - \left(x + \frac{x^3}{2.3} + \frac{1.3x^3}{2.4.5} + \dots + \frac{1.3.5...(2n-1)x^{2n+1}}{2.4.6...(2n)(2n+1)} + \dots\right) |x| < 1$$

33%.
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + \frac{(-1)x^{2n+1}}{2n+1} + \dots, |x| \le 1$$

3390.
$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$$

33.
$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$$

১৩.১০ দ্বিপদ শ্রেণী:

সমগ্ৰ সংখ্যা: n, m,

বাস্তব সংখ্যা : x

সমশ্য: "C,,

3390.
$${}^{n}C_{m} = \frac{n(n-1)...[n-(m-1)]}{m!}, |x| < 1$$

3398.
$$\frac{1}{1+x} = 1-x+x^2-x^3+...,|x|<1$$

$$3390. \frac{1}{1-x} = 1 + x + x^2 + x^3 + ..., |x| < 1$$

3396.
$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{2.4} + \frac{1.3x^3}{2.4.6} - \frac{1.3.5x^4}{2.4.6.8} + \dots, |x| \le 1$$

3399.
$$\sqrt[3]{1+x} = 1 + \frac{x}{3} - \frac{1.2x^2}{3.6} + \frac{1.2.3x^3}{3.6.9} - \frac{1.2.5.8x^4}{3.6.9.12} + \dots, |x| \le 1$$

১৩.১১ ফুরিয়ার শ্রেণী :

পূর্ণ অপেক্ষক : f(x)

ফুরিয়ার সহগ : a_0, a_1, b_2

সমগ্ৰ সংখ্যা: n

১১٩৮.
$$f(x) = \frac{a_0}{2} + \sum_{n=0}^{\infty} (a_n \cos nx + b_n \sin nx)$$

১১৭৯.
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx$$

مالاه.
$$b_n = \frac{1}{\pi} \int_{0}^{\pi} f(x) \sin nx dx$$

১৩.১২ বিণ্যাস ও সমাবেশ:

বিণ্যাস :
$${}^{n}P_{...}$$
 সমাবেশ : ${}^{n}C_{...}$

সমগ্রসংখ্যা : n,m

১১৮১. গৌণিক (Factorial) :
$$n!=1.2.3...(n-2)(n-1)n$$
, $0!=1$

ኔኔ৮২.
$$^{n}P_{n}=n!$$

$$P_m = \frac{n!}{(n-m)!}$$

১১৮৪. দ্বিপদ সহগ :
$${}^{n}C_{m} = {n \choose m} = \frac{n!}{m!(n-m)!}$$

ኔኔ৮৫.
$$^{n}C_{m}=^{n}C_{m-m}$$

১১৮৬.
$${}^{n}C_{m} + {}^{n}C_{m+1} = {}^{n+1}C_{m+1}$$

$$C_0 + {^nC_0} + {^nC_1} + {^nC_2} + ... + {^nC_n} = 2^n$$

১৯২