Modèles de localisation et modèles d'interactions spatiales

Filière Geo Data Science : UE2 Analyse de Données

Juste Raimbault¹

2024-2025

¹LaSTIG, IGN-ENSG-UGE

Localisation et interactions spatiales

Processus de points spatiaux

Modèles de localisation

Modèles d'interaction spatiale

Introduction

Modèles basiques

Modèles contraints

Maximisation de l'entropie

Modèles alternatifs

Processus de Poisson en 1d

Processus aléatoire de distribution de points, tel que le nombre de points dans un intervalle est distribué par:

$$N((a,b]) \sim \text{Poisson}(\beta(b-a))$$

et le processus est indépendant dans des intervalles disjoints

Loi de probabilité $Poisson(\mu)$:

$$\mathbb{P}(N=k)=e^{-\mu}\frac{\mu^k}{k!}$$

Processus de poisson spatiaux

Processus de points dans le plan tel que pour tout fermé borné B de mesure $\lambda(B)$:

- 1. $N(B) \sim \text{Poisson}(\beta \lambda(B))$
- 2. indépendant sur des régions disjointes

Propriété: Conditionnellement au nombre de points, sur un intervalle fini W, le processus suit une loi binomiale pour $B \subset W$:

$$\mathbb{P}(N(B) = k | N(W) = n) = \binom{n}{k} p^k (1 - p)^{n-k}$$

i.e. les points sont indépendants et distribués uniformément

Processus de Poisson inhomogène

- ightarrow l'intensité est une fonction de $B: \beta(B)$
- ightarrow densité de points variable dans l'espace

Propriétés des processus de Poisson

- Superposition des processus homogènes d'intensité β_1,β_2 est toujours un Poisson d'intensité $\beta_1+\beta_2$
- Processus marqués (label ou stock aléatoire), utilisé pour filtrer ou faire des clusters (processus de Matern)
- Différentes méthodes d'estimation de la densité
- ... (applications en statistiques avancées)

Localisation et interactions spatiales

Processus de points spatiaux

Modèles de localisation

Modèles d'interaction spatiale

- Introduction
- Modèles basiques
- Modèles contraints
- Maximisation de l'entropie
- Modèles alternatifs

Modèles de localisation

- ightarrow modèles simplifiés en économie urbaine pour la localisation des entreprises, ménages
- ightarrow relative flexibilité analytique : extensions utilisées toujours dans des modèles en économie contemporaine
- \rightarrow Exemples : modèle d'Hoteling, de Salop, d'Alonso

Modèle d'Hoteling

Consommateurs distribués uniformément, localisation de deux points de vente A, B aux coordonnées a, b sur un segment de longueur I, prix de vente p_A, p_B , coût de transport c.

- \rightarrow point d'indifférence donné par $p_A + cx = p_B + cy$ (x, y portion) du segment dans l'aire d'influence, avec a + x + y + b = l
- ightarrow expression de (x,y), puis des profits $\pi_A=p_A(a+x)$ et $\pi_B=p_B(b+y)$
- ightarrow maximisation des profits par chaque vendeur donne une expression fermée pour les localisations et les prix

Modèle de Salop

n points de vente localisés à equidistance autour d'un cercle de longueur N, consommateurs uniformes, coût de transport c, prix de revient r

ightarrow prix d'équilibre $ar{p}$? point d'indifférence donne le profit qui est maximisé

ightarrow symétrie : prix identiques $\implies \bar{p} = r + rac{cL}{n}$

Application et extension : prix des carburants en fonction de la densité de population [Bergeaud and Raimbault, 2020]

Modèle de Von Thunen

Von Thünen (1842): rente foncière et localisation des activités agricoles

Avec R rente foncière, r rendement agricole, p prix du marché, c coût de production, T coût de transport, d distance au marché

$$R = r \cdot (p - c) - r \cdot T \cdot d$$

- ightarrow localisation des différentes activités agricoles dans des intervalles de rayon, en fonction de leur rendement et coûts de transport et production
- ightarrow cercles concentriques: ville, maraichage, forêt, céréales, élevage

Modèle monocentrique d'Alonso

Alonso (1964): théorie de l'équilibre pour la relocalisation des ménages, des entreprises et de l'agriculture

- ightarrow reformulation/extension de Von Thünen, avec loyers, coûts de transport des ménages, localisation des ménages et des emplois, type et intensité d'usage du sol
- ightarrow équilibre économique et spatial
- ightarrow extensions analytiques ou quantitatives appliquées dans la recherche récente en économie urbaine

Localisation et interactions spatiales

Processus de points spatiaux

Modèles de localisation

Modèles d'interaction spatiale

Introduction

Modèles basiques

Modèles contraints

Maximisation de l'entropie

Modèles alternatifs

Localisation et interactions spatiales

Processus de points spatiaux

Modèles de localisation

Modèles d'interaction spatiale

Introduction

Modèles basiques

Modèles contraints

Maximisation de l'entropie

Modèles alternatifs

Géographie et interactions

 \rightarrow The First Law of geography (Tobler, 1970) :

"Everything is related to everything else, but near things are more related than distant things"

- ightarrow Usage du terme "interaction" implicite avant 1950
- ightarrow E. Ullman 1954: "Geography as spatial interaction"
- ightarrow Concept agrégé, collectif (analyse des échanges entre villes et régions)
- ightarrow Formalisation multi-niveaux en cours (approches systèmes complexes)

Géographie et interactions

- Les interactions concernent tous les domaines de la géographie: Biens et personnes (transport, déplacements);
 Personnes (migrations); Information, capitaux: géographie économique, géographie culturelle)
- Les conditions de l'interaction selon Ullman (1954): complémentarité; absence de substituabilité, transferabilité (mobilité, coût de transport)

Echanges entre les lieux

- ightarrow échanges entre personnes, entreprises, groupes sociaux, déplacements localisés; l'interaction est l'action réciproque résultant des échanges entre acteurs localisés
- → échanges entre unités spatiales représentés par des flux; l'interaction spatiale est l'action réciproque entre des objects géographiques
- ightarrow du niveau micro (entre éléments, acteurs) au niveau mmacro entre lieux par agrégation

Exemple de la mobilité

Mobilité : pratique des déplacements par les personnes

- Portée croissante des déplacements en relation avec la vitesse et le coût
- Rythmes : ordinaires et occasionnelles
- Espaces de vie, espace-temps, réseaux de lieux

De la mobilité aux flux

- Flux et découpage territorial
- Tableaux d'échanges
- Mesures de la mobilité

L'espace-temps des mobilités

La "Time Geography" introduite par T. Hägerstrand (1970) [Pumain and Saint-Julien, 2010]

Espaces de mobilité en pratique

[Grauwin et al., 2017]

Echelles de mobilité en pratique

[Alessandretti et al., 2020]

Mobilité et flux

Aspects historiques du modèle gravitaire

The laws of migration (Ravenstein, 1885 et 1889)

- \rightarrow recensements 1871/1881
 - courtes distances
 - lieux d'absorption (villes commerciales/industrielles) vs lieux de dispersion (zones rurales)
 - flux et contre-flux d'importance presque égale
 - propagation de proche en proche de la migration

Origine du modèle gravitaire :

- G.K. Zipf The P1P2/D Hypothesis: On the Intercity Movement of Persons, American Sociological Review, II (December 1946), 677-686.
- J.Q. Stewart (astronome, Princeton) 1947: The "gravitation" of the geographical drawing power of a college

Exemples de contextes d'application

- Transports : flux de mobilité
- Démographie : migration
- Economie : commerce international
- Marketing : aires de chalandise
- Réseaux inter-urbains
- ...

Localisation et interactions spatiales

Processus de points spatiaux

Modèles de localisation

Modèles d'interaction spatiale

Introduction

Modèles basiques

Modèles contraints

Maximisation de l'entropie

Modèles alternatifs

Définitions

- ightarrow Zones d'émission/attraction en interaction : Iris, communes, régions, pays, zones ad-hoc
- \rightarrow Caractéristiques X_{ik} des zones, comme population (origine) et emploi (destination)
- ightarrow Flux observés entre zones T^{obs}_{ij}

Modèle gravitaire

Avec coût généralisé c_{ij} , friction de la distance β , activités à l'origine O_i et à destination D_j , K constante, les flux sont donnés par

$$T_{ij} = K \cdot O_i \cdot D_j \cdot c_{ij}^{-\beta}$$

Estimation: pour le paramètre β , régression linéaire de $\log(T_{ij}^{obs}/(O_iD_j))$ en fonction du coût c_{ij}

Application : potentiel d'accessibilité (voir séance Réseaux Spatiaux)

Modèle général

En pratique, de multiples facteurs peuvent être pris en compte :

$$\log T_{ij}^{obs} \sim \beta_0 + \sum_k \beta_k \log X_{ik} + \sum_l \beta_l \log X_{jl} + \beta \log f(c_{ij}) + \varepsilon$$

Distribution de ε ?

- → modèle linéaire classique
- ightarrow modèle de Poisson: log $T_{ii}^{obs} \sim \mathrm{Poisson}(\lambda_{ij})$ avec

$$\log \lambda_{ij} = \beta_0 + \sum_k \beta_k \log X_{ik} + \sum_l \beta_l \log X_{jl} + \beta \log f(c_{ij})$$

(estimation avec moindre carrés itérativement re-pondérés, par glm dans R)

Localisation et interactions spatiales

Processus de points spatiaux

Modèles de localisation

Modèles d'interaction spatiale

Introduction

Modèles basiques

Modèles contraints

Maximisation de l'entropie

Modèles alternatifs

Contrainte simple

Contrainte à l'origine ou à la destination : les flux émis ou reçu doivent être égaux aux flux réels

Nouvelle formulation :

$$T_{ij} = A_i O_i D_j c_{ij}^{-\beta}$$

tel que $\sum_{j} T_{ij} = T_{i} = \sum_{j} T_{ij}^{obs} = O_{i}$, ce qui donne

$$T_{ij} = O_i rac{D_j c_{ij}^{-eta}}{\sum_k D_k c_{ik}^{-eta}}$$

Modèle similaire pour la contrainte à la destination

Contrainte double

Contrainte à l'origine $\sum_j T_{ij} = O_i$ et à la destination $\sum_i T_{ij} = D_j$ simultanément

$$T_{ij} = A_i B_j O_i D_j c_{ij}^{-\beta}$$

avec

$$A_i = 1/\sum_j B_j D_j c_{ij}^{-eta}$$

$$B_j = 1/\sum_i A_i O_i c_{ij}^{-\beta}$$

Estimation : algorithme itératif pour A_i , B_j , ou équivalent à des effets fixes par origine et destination dans les modèles statistiques

Localisation et interactions spatiales

Processus de points spatiaux

Modèles de localisation

Modèles d'interaction spatiale

Introduction

Modèles basiques

Modèles contraints

Maximisation de l'entropie

Modèles alternatifs

Dérivation théorique du modèle à double contrainte

[Wilson, 1971]: lien avec la maximisation de l'entropie

Pour maximiser la probabilité d'observer la matrice T_{ij} , maximiser l'entropie

$$W = \frac{\prod_{ij} T_{ij}!}{T!}$$

sous contraintes $\sum_j T_{ij} = O_i$, $\sum_i T_{ij} = D_j$ et $\sum T_{ij} c_{ij} = C$ donne

$$T_{ij} = A_i B_j O_i D_j \exp(-\beta c_{ij})$$

- ightarrow le modèle doublement contraint est le plus probable avec les flux observés
- \rightarrow dérivation d'un modèle à partir de l'entropie dans des cas plus généraux : multi-modes, multiples profils socio-économiques, . . . :

Localisation et interactions spatiales

Processus de points spatiaux

Modèles de localisation

Modèles d'interaction spatiale

Introduction

Modèles basiques

Modèles contraints

Maximisation de l'entropie

Modèles alternatifs

Intervening opportunities

[Stouffer, 1940] théorie sociologique basée sur les opportunités dans le voisinage

ightarrow flux entre deux lieux proportionnel aux opportunités à destination mais inversement proportionnel aux opportunités intermédiaires qui captent les individus

ightarrow le rôle de la distance est une conséquence de la distribution des activités

Modèle de radiation

[Simini et al., 2012] modèle sans paramètres dérivé d'un processus de radiation/absorption des navetteurs

$$T_{ij} = T_i \cdot \frac{P_i P_j}{(P_i + s_{ij})(P_i + P_j + s_{ij})}$$

ightarrow meilleure performance que le modèle gravitaire uniquement à certaines échelles et dans certains cas [Masucci et al., 2013]

Modèle multi-niveaux

[Dennett and Wilson, 2013]: migration inter-régionales en Europe

- ightarrow contraintes au niveau des pays et des régions
- ightarrow utilisation des données de migration interne pour distribuer les flux entrants et sortants dans le pays

Modèles de liens manquant

Certains jeux de données exhibent un nombre non-négligeable de lien absents

- ightarrow modèles avec une composante spécifique pour l'absence de lien
 - Zero-inflated Poisson model: superposition d'une composante conditionnant le compte de Poisson
 - Hurdle model : modèle de seuil

Modèles urbains et modèles de transport

Dernière séance d'ouverture : modèle d'interactions spatiales comme brique de modèles de simulation plus conséquents

- Modèle de transport à quatre étapes
- Modèles Land-use Transport Interaction
- Modèles de dynamiques urbaines sur le temps long
- Modèles de croissance de réseaux
- ...

Application

TP interaction spatiales : estimer des modèles d'interaction spatiale (simple, contraint, Poisson)

Données : réseau Européen de filiales de firmes ; flux domicile-travail en lle-de-France par modes de transport (EGT 2010)

References i

132:131-143.

- Alessandretti, L., Aslak, U., and Lehmann, S. (2020). The scales of human mobility.

 Nature, 587(7834):402–407.
- Bergeaud, A. and Raimbault, J. (2020).

 An empirical analysis of the spatial variability of fuel prices in the united states.

 Transportation Research Part A: Policy and Practice,
- Dennett, A. and Wilson, A. (2013).

 A multilevel spatial interaction modelling framework for estimating interregional migration in europe.

Environment and Planning A, 45(6):1491–1507.

References ii

Grauwin, S., Szell, M., Sobolevsky, S., Hövel, P., Simini, F., Vanhoof, M., Smoreda, Z., Barabási, A.-L., and Ratti, C. (2017).

Identifying and modeling the structural discontinuities of human interactions.

Scientific reports, 7(1):1-11.

Masucci, A. P., Serras, J., Johansson, A., and Batty, M. (2013).

Gravity versus radiation models: On the importance of scale and heterogeneity in commuting flows.

Physical Review E, 88(2):022812.

Mathian, H., Berroir, S., Sanders, L., and Saint-Julien, T. (2004).

Mobilités et polarisations: vers des métropoles polycentriques. Le cas des métropoles francilienne et méditerranéenne.

PhD thesis, MELT; Plan Urbanisme Construction Architecture.

Pumain, D. and Saint-Julien, T. (2010).

Analyse spatiale: les localisations.

Armand Colin.

References iv

Simini, F., González, M. C., Maritan, A., and Barabási, A.-L. (2012).

A universal model for mobility and migration patterns. *Nature*, 484(7392):96–100.

Stouffer, S. A. (1940).
Intervening opportunities: a theory relating mobility and distance.

American sociological review, 5(6):845-867.

Wilson, A. G. (1971).

A family of spatial interaction models, and associated developments.

Environment and Planning A, 3(1):1-32.