Second degrés 2/2

I – Équation du second degrés

La solution d'une équation de second se nomme la racine du trinôme. Le nombre réel noté Δ égal à b^2-4ac se nomme le discriminant du trinôme.

Soit Δ le discriminant du trinôme $ax^2 + bx + c$.

- Si Δ < 0 : L'équation $ax^2 + bx + c$ = 0 n'a pas de solution réelle.
- Si Δ = 0 : L'équation $ax^2 + bx + c$ = 0 a une unique solution : $x_0 = \frac{-b}{2a}$

Si
$$\Delta$$
 > 0 : L'équation $ax^2 + bx + c$ = 0 a deux solutions distinctes : $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

La somme S et le produit P des racines d'un polynôme du second degré

de la forme
$$ax^2 + bx + c$$
 = 0 sont donnés par : $S = -\frac{b}{a}$ et $P = \frac{c}{a}$

II - Factoriser un trinôme

Soit f une fonction polynôme de degré 2 définie sur par

$$f(x) = ax^2 + bx + c.$$

- Si Δ = 0 : Pour tout réel x, on a : $f(x) = a(x x_0)^2$.
- Si Δ > 0 : Pour tout réel x, on a : $f(x) = a(x x_1)(x x_2)$.
- Si Δ < 0, il n'existe pas de forme factorisée de .

III – Signe d'un trinôme

Soit f une fonction polynôme de degré 2 définie sur R par $f(x) = ax^2 + bx + c$.

- Si Δ < 0:

х	$-\infty$	$+\infty$
f(x)	Signe	e de a

a > 0

- Si Δ = 0:

x	$-\infty$	x_0	$+\infty$
f(x)	Signe de a	0	Signe de a

- Si Δ > 0

<u> </u>	•			
x	$-\infty$	x_1	$\overline{x_2}$	$+\infty$
f(x)	Signe de a) Signe opposé (de <i>a</i>) Signe	de a

