

Micorocontroller for Robot Car

https://github.com/krittinunt

Oli Medium

https://krittinunt.medium.com/

https://www.youtube.com/chobtrong

Arduino Mega 2560

Microcontroller: ATmega2560

Operating Voltage: 5V

Input Voltage (recommended): 7-12V

Input Voltage (limit): 6-20V

Digital I/O Pins: 54 (of which 15 provide PWM output)

Analog Input Pins: 16

DC Current per I/O Pin: 20 mA

DC Current for 3.3V Pin: 50 mA+

Flash Memory: 256 KB of which 8 KB used by bootloader

SRAM: 8 KB

EEPROM: 4 KB

Clock Speed: 16 MHz

LED_BUILTIN: 13

VMS = Motor Vcc which must be between 4.8 and 24V.

GND = Motor Ground

	Speed Pins	Speed Control	Direction Pins	Direction Control		
Motor A	D10	PWM 0-100	D12	HIGH = Forward	LOW = Reverse	
Motor B	D11	PWM 0-100	D13	HIGH = Forward	LOW = Reverse	

01_Buzzer | Arduino 1.8.13

File Edit Sketch Tools Help

```
O1_Buzzer
```

```
1 int const BUZZER = 4;
 3 void setup() {
    // put your setup code here, to run once:
    pinMode (BUZZER, OUTPUT);
    // beep beep
    digitalWrite(BUZZER, HIGH);
    delay(70);
    digitalWrite (BUZZER, LOW);
10
    delay(50);
11
   digitalWrite (BUZZER, HIGH);
12
13 delay(70);
14
    digitalWrite (BUZZER, LOW);
15 }
16
17 void loop() {
18
    // put your main code here, to run repeatedly:
19
20 }
```



```
O2 Serial | Arduino 1.8.13
                                                        // Print to serial
                                                    23
File Edit Sketch Tools Help
                                                    24
                                                         Serial.println();
                                                    25
                                                         Serial.println();
                                                         Serial.println("SRTC Robot ready");
                                                    26
 02_Serial
                                                         Serial.println("==============
                                                    27
 1 int const BUZZER = 4;
                                                    28 }
                                                    29
 3 void setup() {
                                                    30 void loop() {
     // put your setup code here, to run once:
                                                         // put your main code here, to run repeatedly:
     Serial.begin (9600);
                                                    32
     while (!Serial)
                                                    33 }
                                                                  SRTC Robot ready
10
11
     // digital pin mode
                                                   1.8.13
                                                                                pinMode (BUZZER, OUTPUT);
12
                                                   s Help
13
     // beep beep
14
     digitalWrite (BUZZER, HIGH);
15
16
     delay(70);
                                                   t BUZZER = 4;
     digitalWrite (BUZZER, LOW);
17
     delay(50);
18
                                                   up() {
     digitalWrite (BUZZER, HIGH);
19
                                                    your setup code here, to run o
     delay(70);
20
                                                   .begin (9600);
21
     digitalWrite(BUZZER, LOW);
                                                   (!Serial)
22
                                                                  Autoscroll Show timestamp
                                                                                                           9600 baud
                                                                                                 Newline
                                                                                                                       Clear output
```



```
26
 03_Read_IR_sensor
                                              27
                                                  // Print to serial
 1 int const BUZZER = 4;
                                                  Serial.println();
                                              28
                                                  Serial.println();
                                              29
 3 int const IR SENSOR C = 1;
                                                  Serial.println("SRTC Robot ready");
                                              30
                                                  31
 5 float ir sensor c value = 0.0;
                                              32 }
                                              33
 7 void setup() {
                                              34 void loop() {
    // put your setup code here, to run once:
                                                  // put your main code here, to run repeatedly:
    Serial.begin (9600);
                                              36
    while (!Serial)
10
                                                  ir sensor c value = analogRead(IR SENSOR C);
                                              37
    {
11
                                                  Serial.print("IR Sensor value : ");
                                              38
12
                                              39
                                                  Serial.println(ir sensor c value);
13
    1
                                              40
14
                                                  delay(200);
                                              41
    // digital pin mode
15
                                              42 }
    pinMode (BUZZER, OUTPUT);
16
17
                                                     IR Sensor value : 147.00
    // beep beep
18
                                                     IR Sensor value: 147.00
    digitalWrite (BUZZER, HIGH);
19
                                                     IR Sensor value: 147.00
20
    delay(70);
                                                      IR Sensor value: 147.00
    digitalWrite (BUZZER, LOW);
21
                                                     IR Sensor value: 147.00
22
    delay(50);
                                                     IR Sensor value : 148.00
    digitalWrite (BUZZER, HIGH);
23
                                                     IR Sensor value : 148.00
    delay(70);
24
                                                      IR Sensor value: 148.00
    digitalWrite(BUZZER, LOW);
25
                                                     IR Sensor value: 148.00
```

```
04_Read_IR_sensor_Plot
 1 int const BUZZER = 4;
 3 int const IR SENSOR L = 0;
 4 int const IR SENSOR C = 1;
 5 int const IR SENSOR R = 2;
 7 float ir sensor 1 value = 0.0;
8 float ir sensor c value = 0.0;
9 float ir sensor r value = 0.0;
10
11 void setup() {
    // put your setup code here, to run once:
12
    Serial.begin (9600);
13
    while (!Serial)
14
15
16
17
18
    // digital pin mode
19
    pinMode (BUZZER, OUTPUT);
20
21
    // beep beep
22
    digitalWrite (BUZZER, HIGH);
23
    delay(70);
24
    digitalWrite (BUZZER, LOW);
25
```

```
delay(50);
26
    digitalWrite(BUZZER, HIGH);
27
    delay(70);
28
    digitalWrite (BUZZER, LOW);
29
30
    // Print to serial
31
    Serial.println();
32
    Serial.println();
33
    //Serial.println("SRTC Robot ready");
34
    //Serial.println("=========
35
36 1
37
38 void loop() {
    // put your main code here, to run repeatedly:
39
40
    ir sensor 1 value = analogRead(IR SENSOR L);
41
    ir sensor c value = analogRead(IR SENSOR C);
42
43
    ir sensor r value = analogRead(IR SENSOR R);
44
    //Serial.print("IR Sensor value : ");
45
    Serial.print(ir sensor l value);
46
    Serial.print(',');
47
    Serial.print(ir sensor c value);
48
    Serial.print(',');
49
    Serial.println(ir sensor r value);
```

```
51
52
       delay(200);
53 }
                                                                                              COM5
Done uploading.
                                                                                              1000.0 +
   O4_Read_IR_sensor_Plot | Arduino 1.8.13
  File Edit Sketch Tools House
                                                                                              750.0
                    Auto Format
                                                      Ctrl+T
                    Archive Sketch
     04_Read_IR_s
                    Fix Encoding & Reload
                                                                                              500.0
          digi
                    Manage Libraries...
                                                      Ctrl+Shift+1
                                                      Ctrl+Shift+M
   30
                    Serial Monitor
                    Serial Plotter
                                                      Ctrl+Shift+L
   31
          // E
                                                                                              250.0
   32
          Seri
                    WiFi101 / WiFiNINA Fin. are Updater
          Seri
    33
                    Board: "Arduino Mega or Mega 23.
   34
          //S€
                                                                                                0.0
                    Processor: "ATmega2560 (Mega 2560)"
                                                                                                                       100
                                                                                                                                          200
   35
          //S€
                    Port: "COM5 (Arduino Mega or Mega 2560)"
                                                                                               9600 baud
                                                                                                                                            Send
   36 }
                    Get Board Info
   37
                    Programmer: "AVRISP mkll"
   38 void
                    Burn Bootloader
   39
          // put your main code here, to run repeatedly:
   40
          ir_sensor_l_value = analogRead(IR SENSOR_L);
   41
          ir_sensor_c_value = analogRead(IR_SENSOR_C);
   42
```

Electrical Characteristics

規格特性 Characteristics	代號 Symbol	測試條件 Test conditions	極小 Min.	基準 Ref.	最大 Max.	單位 Units
輸入電壓 Supply voltage	Vcc		3.5	-	20	٧
輸出飽和電壓 Output saturation voltage	Vce (sat)	Vcc = 14V ; IC = 20mA	-	300	700	mV
輸出漏電電流 Output leakage current	Icex	Vcc = 14V ; Vcc = 14V	-	< 0.1	10	μΑ
輸入電流 Supply current	Ice	Vcc = 20V Output open		5	10	mA
輸出上升時間 Output rise time	tr	Vcc = 14V ; RL = 820 Ω ; CL = 20pF	-	0.3	1.5	μς
輸出下降時間 Output fall time	tr	Vcc = 14V ; RL = 820 Ω ; CL = 20pF	-	0.3	1.5	μς

● 使用相對溼度: 20%~85%RH Operating relative humidity

● 使用度範圍: -10°C~+60°C Operating temperature range

Two Channel Encoder Connections

1. Black : - Motor

2. Red : + Motor

3. Brown: Hall Sensor Vcc

4. Green : Hall Sensor GND

5. Blue : Hall Sensor A Vout

6. Purple: Hall Sensor B Vout

BOARD	PWM PINS	PWM FREQUENCY 490 Hz (pins 5 and 6: 980 Hz)			
Uno, Nano, Mi <mark>ni</mark>	3, 5, 6, 9, 10, 11				
Mega	2 - 13, 44 - 46	490 Hz (pins 4 and 13: 980 Hz)			
Leonardo, Micro, Yún	3, 5, 6, 9, 10, 11, 13	490 Hz (pins 3 and 11: 980 Hz)			
Uno WiFi Rev2, Nano Every	3, 5, 6, 9, 10	976 Hz			
MKR boards *	0 - 8, 10, A3, A4	732 Hz			
MKR1000 WiFi *	0 - 8, 10, 11, A3, A4	732 Hz			
Zero *	3 - 13, A0, A1	732 Hz			
Nano 33 IoT *	2, 3, 5, 6, 9 - 12, A2, A3, A5	732 Hz			
Nano 33 BLE/BLE Sense	1 - 13, A0 - A7	500 Hz			
Due **	2-13	1000 Hz			
101	3, 5, 6, 9	pins 3 and 9: 490 Hz, pins 5 and 6: 980 Hz			

Pulse Width Modulation 0% Duty Cycle - analogWrite(0) 5v 0v 25% Duty Cycle - analogWrite(64) 5v 0v 50% Duty Cycle - analogWrite(127) 5v 0v 75% Duty Cycle - analogWrite(191) 5v 0v 100% Duty Cycle - analogWrite(255) 5v 0v

$$V_{DC} = \frac{VCC \times Duty Cycle}{100}$$

$$V_{DC} = \frac{12 \times 50}{100}$$

$$V_{DC} = 6 \text{ Volts}$$

```
TCCR0B = (TCCR0B & 0xF8) | 0x04;

//TCCR2B = (TCCR2B & 0xF8) | 0x06;  // set up timer 2 (pin 9, 10) to 122.5Hz

TCCR4B = (TCCR4B & 0xF8) | 0x04;  // set up timer 4 (pin 6, 7, 8) to 112.5Hz

TCCR5B = (TCCR5B & 0xF8) | 0x04;  // set up timer 5 (pin 44, 45, 46) to 112.5Hz

Timer3.initialize(20000);  // set up timer 3 to 20mSec (50Hz)

Timer3.attachInterrupt(timer3Isr);  // enable timer 3 INT
```



```
26
05_Motor_Control
                                                       27
 1 int const BUZZER = 4;
                                                       28
                                                       29
3 int const IR SENSOR L = 0;
                                                       30
 4 int const IR SENSOR C = 1;
                                                       31
 5 int const IR SENSOR R = 2;
                                                       32
                                                       33
7 // EN -> speed, Direction control -> HIGH =
                                                       34
8 // motor A
                                                       35
 9 int const MOTOR A EN = 10;
                                                       36
10 int const MOTOR A DIR = 12;
                                                       37
11
                                                       38
12 // motor B
                                                       39
13 int const MOTOR B EN = 11;
                                                            delay(70);
                                                       40
14 int const MOTOR B DIR = 13;
15
                                                            delay(50);
16 float ir sensor 1 value = 0.0;
17 float ir sensor c value = 0.0;
                                                            delay(70);
18 float ir sensor r value = 0.0;
                                                       44
                                                       45
19
                                                       46
20 void setup() {
                                                       47
    // put your setup code here, to run once:
                                                       48
22
    Serial.begin (9600);
    while (!Serial)
                                                       49
23
24
    {
25
26
```

```
// digital pin mode
pinMode (BUZZER, OUTPUT);
pinMode (MOTOR A EN, OUTPUT);
pinMode (MOTOR A DIR, OUTPUT);
// config digital pin
digitalWrite (MOTOR A DIR, HIGH);
analogWrite (MOTOR A EN, 0);
// beep beep
digitalWrite(BUZZER, HIGH);
digitalWrite (BUZZER, LOW);
digitalWrite (BUZZER, HIGH);
digitalWrite (BUZZER, LOW);
// Print to serial
//Serial.println();
//Serial.println();
//Serial.println("SRTC Robot ready");
```

```
51
    52 }
53
54 void loop() {
55
    // put your main code here, to run repeatedly:
56
57
    ir sensor 1 value = analogRead(IR SENSOR L);
58
    ir sensor c value = analogRead(IR SENSOR C);
59
    ir sensor r value = analogRead(IR SENSOR R);
60
61
    //Serial.print("IR Sensor value : ");
    //Serial.print(ir sensor 1 value);
62
    //Serial.print(',');
63
64
    //Serial.print(ir sensor c value);
    //Serial.print(',');
65
    //Serial.println(ir sensor r value);
66
67
    // motor A Forward
68
69
    digitalWrite (MOTOR A DIR, HIGH);
70
    analogWrite(MOTOR A EN, 64);
71
    delay(5000);
72
73
    // motor A stop
74
    analogWrite (MOTOR A EN, 0);
75
    delay(2000);
76 }
```

```
07_Drive_Two_Motors
 1 int const BUZZER = 4;
 3 int const IR SENSOR L = 0;
 4 int const IR SENSOR C = 1;
 5 int const IR SENSOR R = 2;
 7 // EN -> speed, Direction control -> HIGH =
 8 // motor A
 9 int const MOTOR A EN = 10;
10 int const MOTOR A DIR = 12;
11
12 // motor B
13 int const MOTOR B EN = 11;
14 int const MOTOR B DIR = 13;
15
16 float ir sensor 1 value = 0.0;
17 float ir sensor c value = 0.0;
18 float ir sensor r value = 0.0;
19
20 void setup() {
    // put your setup code here, to run once:
21
    Serial.begin (9600);
22
    while (!Serial)
23
24
25
     ;
```

```
26
27
    // digital pin mode
28
    pinMode (BUZZER, OUTPUT);
29
30
31
    pinMode (MOTOR A EN, OUTPUT);
32
    pinMode (MOTOR A DIR, OUTPUT);
33
    pinMode (MOTOR B EN, OUTPUT);
34
    pinMode (MOTOR B DIR, OUTPUT);
35
36
    // config digital pin
    digitalWrite (MOTOR A DIR, HIGH);
37
    analogWrite (MOTOR A EN, 0);
38
    digitalWrite (MOTOR B DIR, HIGH);
39
    analogWrite (MOTOR B EN, 0);
40
41
    // beep beep
42
    digitalWrite(BUZZER, HIGH);
43
44
    delay(70);
    digitalWrite(BUZZER, LOW);
45
46
    delay(50);
    digitalWrite (BUZZER, HIGH);
47
    delay(70);
48
    digitalWrite (BUZZER, LOW);
49
50
```

```
77
                                                                 // motor A stop
51
    // Print to serial
                                                             78
                                                                 //analogWrite(MOTOR A EN, 0);
52
    //Serial.println();
                                                                 //delay(2000);
                                                             79
53
    //Serial.println();
                                                             80
54
    //Serial.println("SRTC Robot ready");
                                                             81
                                                                 // motor A Reverse
55
    82
                                                                 //digitalWrite(MOTOR A DIR, LOW);
56 }
                                                                 //analogWrite(MOTOR A EN, 64);
                                                             83
57
                                                                 //delay(5000);
                                                             84
58 void loop() {
                                                             85
    // put your main code here, to run repeatedly:
59
                                                             86
                                                                 // motor A stop
60
                                                                 //analogWrite(MOTOR A EN, 0);
                                                             87
61
    ir sensor 1 value = analogRead(IR SENSOR L);
                                                             88
                                                                 //delay(2000);
62
    ir sensor c value = analogRead(IR SENSOR C);
                                                             89
    ir sensor r value = analogRead(IR SENSOR R);
63
                                                             90
                                                                 //delay(200);
64
                                                             91
65
    //Serial.print("IR Sensor value : ");
                                                                 // Drive two motors
                                                             92
    //Serial.print(ir sensor 1 value);
66
                                                                 digitalWrite (MOTOR A DIR, HIGH);
                                                             93
    //Serial.print(',');
67
                                                                 digitalWrite (MOTOR B DIR, HIGH);
                                                             94
    //Serial.print(ir sensor c value);
68
                                                             95
                                                                 analogWrite (MOTOR A EN, 64);
    //Serial.print(',');
69
                                                                 analogWrite (MOTOR B EN, 64);
                                                             96
70
    //Serial.println(ir sensor r value);
                                                                 delay(5000);
                                                             97
71
                                                             98
72
    // motor A Forward
                                                                 // Stop two motors
                                                             99
    //digitalWrite(MOTOR A DIR, HIGH);
73
                                                                 analogWrite (MOTOR A EN, 0);
                                                            100
    //analogWrite(MOTOR A EN, 64);
74
                                                                 analogWrite (MOTOR B EN, 0);
                                                            101
75
    //delay(5000);
                                                            102
                                                                 delay(2000);
                                                            103 }
```

76

```
10_Car_Turn_Left_Half_Drive
 1 int const BUZZER = 4;
 3 int const IR SENSOR L = 0;
 4 int const IR SENSOR C = 1;
 5 int const IR SENSOR R = 2;
 7 // EN -> speed, Direction control -> HIGH = Forward,
 8 // motor A
 9 int const MOTOR A EN = 10;
10 int const MOTOR A DIR = 12;
11
12 // motor B
13 int const MOTOR B EN = 11;
14 int const MOTOR B DIR = 13;
15
16 float ir sensor 1 value = 0.0;
17 float ir sensor c value = 0.0;
18 float ir sensor r_value = 0.0;
19
20 void setup() {
    // put your setup code here, to run once:
    Serial.begin(9600);
22
23
    while (!Serial)
24
25
```

```
26
27
28
    // digital pin mode
29
    pinMode (BUZZER, OUTPUT);
30
    pinMode (MOTOR A EN, OUTPUT);
31
32
    pinMode (MOTOR A DIR, OUTPUT);
33
    pinMode (MOTOR B EN, OUTPUT);
34
    pinMode (MOTOR B DIR, OUTPUT);
35
36
    // config digital pin
    digitalWrite (MOTOR A DIR, HIGH);
37
38
    analogWrite (MOTOR A EN, 0);
39
    digitalWrite (MOTOR B DIR, HIGH);
    analogWrite (MOTOR B EN, 0);
40
41
    // beep beep
42
43
    digitalWrite (BUZZER, HIGH);
    delay(70);
44
    digitalWrite(BUZZER, LOW);
45
46
    delay(50);
47
    digitalWrite (BUZZER, HIGH);
    delay(70);
48
    digitalWrite (BUZZER, LOW);
49
50
```

```
// Print to serial
51
                                                           76
52 //Serial.println();
                                                               // motor A stop
                                                            77
                                                               //analogWrite(MOTOR A EN, 0);
53
   //Serial.println();
                                                           78
54
    //Serial.println("SRTC Robot ready");
                                                                //delay(2000);
                                                           79
55
    80
56 }
                                                                // motor A Reverse
                                                            81
57
                                                                //digitalWrite(MOTOR A DIR, LOW);
                                                           82
58 void loop() {
                                                                //analogWrite(MOTOR A EN, 64);
                                                           83
    // put your main code here, to run repeatedly:
                                                                //delay(5000);
59
                                                           84
60
                                                           85
61
    ir sensor l value = analogRead(IR SENSOR L);
                                                           86
                                                               // motor A stop
    ir sensor c value = analogRead(IR SENSOR C);
                                                               //analogWrite(MOTOR A EN, 0);
62
                                                           87
    ir sensor r value = analogRead(IR SENSOR R);
63
                                                           88
                                                               //delay(2000);
64
                                                           89
    //Serial.print("IR Sensor value : ");
65
                                                           90
                                                                //delay(200);
    //Serial.print(ir sensor l value);
66
                                                           91
67
    //Serial.print(',');
                                                                // Drive two motors
                                                           92
    //Serial.print(ir sensor c value);
                                                                //digitalWrite(MOTOR A DIR, HIGH);
68
                                                            93
69
    //Serial.print(',');
                                                                //digitalWrite(MOTOR B DIR, HIGH);
                                                            94
70
    //Serial.println(ir sensor r value);
                                                           95
                                                                //analogWrite(MOTOR A EN, 64);
71
                                                           96
                                                                //analogWrite(MOTOR B EN, 64);
    // motor A Forward
72
                                                           97
                                                                //delay(5000);
73
    //digitalWrite (MOTOR A DIR, HIGH);
                                                           98
    //analogWrite(MOTOR A EN, 64);
74
                                                           99
                                                                // Car Forward
75
    //delay(5000);
                                                                //digitalWrite(MOTOR A DIR, HIGH);
                                                          100
```

```
//digitalWrite(MOTOR B DIR, LOW);
101
     //analogWrite(MOTOR A EN, 64);
102
     //analogWrite(MOTOR B EN, 64);
103
104
     //delay(5000);
105
106
     // Car Reverse
     //digitalWrite(MOTOR A DIR, LOW);
107
     //digitalWrite(MOTOR B DIR, HIGH);
108
     //analogWrite(MOTOR A EN, 64);
109
     //analogWrite(MOTOR B EN, 64);
110
111
     //delay(5000);
112
     // Car Turn Left Half Drive
113
     digitalWrite (MOTOR B DIR, LOW);
114
     analogWrite (MOTOR A EN, 0);
115
116
     analogWrite (MOTOR B EN, 64);
     delay (5000);
117
118
     // Stop two motors
119
     analogWrite (MOTOR A EN, 0);
120
     analogWrite (MOTOR B EN, 0);
121
122
     delay(2000);
123 }
```

```
// Car Turn Left Half Drive
113
     //digitalWrite(MOTOR B DIR, LOW);
114
115
     //analogWrite(MOTOR A EN, 0);
     //analogWrite(MOTOR B EN, 64);
116
117
     //delay(5000);
118
119
     // Car Turn Left Full Drive
     digitalWrite (MOTOR A DIR, LOW);
120
121
     digitalWrite (MOTOR B DIR, LOW);
122
     analogWrite (MOTOR A EN, 64);
123
     analogWrite (MOTOR B EN, 64);
124
     delay(5000);
125
126
     // Stop two motors
     analogWrite (MOTOR A EN, 0);
127
128
     analogWrite (MOTOR B EN, 0);
129
     delay(2000);
130 }
```


BOARD	DIGITAL PINS USABLE FOR INTERRUPTS			
Uno, Nano, Mini, other 328-based	2, 3			
Uno WiFi Rev.2, Nano Every	all digital pins			
Mega, Mega2560, MegaADK	2, 3, 18, 19, 20, 21			
Micro, Leonardo, other 32u4-based	0, 1, 2, 3, 7			
Zero	all digital pins, except 4			
MKR Family boards	0, 1, 4, 5, 6, 7, 8, 9, A1, A2			
Nano 33 loT	2, 3, 9, 10, 11, 13, 15, A5, A7			
Nano 33 BLE, Nano 33 BLE Sense	all pins			
Due	all digital pins			
101	all digital pins (Only pins 2, 5, 7, 8, 10, 11, 12, 13 work with CHANGE)			

```
14_Motor_Encoder
 1 int const BUZZER = 4;
 3 int const IR SENSOR L = 0;
 4 int const IR SENSOR C = 1;
 5 int const IR SENSOR R = 2;
 7 // EN -> speed, Direction control -> 1
 8 // motor A
 9 int const MOTOR A EN = 10;
10 int const MOTOR A DIR = 12;
11 int const MOTOR A SENSOR A = 18;
12 int const MOTOR A SENSOR B = 19;
13
14 // motor B
15 int const MOTOR B EN = 11;
16 int const MOTOR B DIR = 13;
17
18 float ir sensor 1 value = 0.0;
19 float ir sensor c value = 0.0;
20 float ir sensor r value = 0.0;
21
22 int i;
23 double motor A pos = 0;
24
25 void motor A encoder A(void);
```

```
26 void motor A encoder B(void);
27
28 void setup() {
   // put your setup code here, to run once:
   Serial.begin (9600);
30
   while (!Serial)
31
32
    -{
33
34
35
36
    // digital pin mode
    pinMode (BUZZER, OUTPUT);
37
38
39
    pinMode (MOTOR A EN, OUTPUT);
40
    pinMode (MOTOR A DIR, OUTPUT);
41
    pinMode (MOTOR A SENSOR A, INPUT PULLUP);
42
    pinMode (MOTOR A SENSOR B, INPUT PULLUP);
43
44
    // config digital pin
45
46
    digitalWrite (MOTOR A DIR, HIGH);
    analogWrite (MOTOR A EN, 0);
47
48
    digitalWrite (MOTOR A SENSOR A, HIGH);
49
    digitalWrite (MOTOR A SENSOR B, HIGH);
50
```

```
51
52
    // Interrupt
    attachInterrupt (digitalPinToInterrupt (MOTOR A SENSOR A), motor A encoder A, CHANGE);
53
    attachInterrupt (digitalPinToInterrupt (MOTOR A SENSOR B), motor A encoder B, CHANGE);
54
55
56
    // beep beep
57
    digitalWrite (BUZZER, HIGH);
    delay(70);
58
    digitalWrite (BUZZER, LOW);
59
60
    delay(50);
61
    digitalWrite(BUZZER, HIGH);
    delay(70);
62
63
    digitalWrite (BUZZER, LOW);
64
65
    // Print to serial
66 //Serial.println();
    //Serial.println();
67
    //Serial.println("SRTC Robot ready");
68
    //Serial.println("========");
69
70 }
71
72 void loop() {
    // put your main code here, to run repeatedly:
73
74
75
    motor A pos = 0;
```

```
76
     digitalWrite (MOTOR A DIR, HIGH);
 77
     analogWrite (MOTOR A EN, 64);
     while (motor A pos >= -800) delay(1);
 78
     Serial.println(motor A pos);
 79
     analogWrite (MOTOR A EN, 00);
 80
81
     digitalWrite(BUZZER, HIGH);
 82
     delay(100);
     digitalWrite(BUZZER, LOW);
83
 84
     delay(8000);
 85 }
 86
 87 void motor A encoder A(void)
88 {
 89
     if (digitalRead (MOTOR A SENSOR A) == HIGH)
 90
     {
 91
       if (digitalRead (MOTOR A SENSOR B) == LOW) motor A pos++; // CW
       else motor A pos--; // CCW
 92
 93
     else
 94
 95
       if (digitalRead (MOTOR A SENSOR B) == HIGH) motor A pos++; // CW
 96
       else motor A pos--; // CCW
 97
 98
99 }
100
```

```
101 void motor A encoder B (void)
102 {
103
     if (digitalRead(MOTOR A SENSOR B) == HIGH)
104
105
       if (digitalRead(MOTOR_A_SENSOR_A) == HIGH) motor_A_pos++; // CW
       else motor A pos--; // CCW
106
107
108
     else
109
       if (digitalRead (MOTOR A SENSOR A) == LOW) motor A pos++; // CW
110
       else motor A pos--; // CCW
111
112 }
113 }
```



```
15_Drive_Two_Motor_Encoder
 1 int const BUZZER = 4;
 3 int const IR SENSOR L = 0;
 4 int const IR SENSOR C = 1;
 5 int const IR SENSOR R = 2;
 7 // EN -> speed, Direction control ->
 8 // motor A
 9 int const MOTOR A EN = 10;
10 int const MOTOR A DIR = 12;
11 int const MOTOR A SENSOR A = 18;
12 int const MOTOR A SENSOR B = 19;
13
14 // motor B
15 int const MOTOR B EN = 11;
16 int const MOTOR B DIR = 13;
17 int const MOTOR B SENSOR A = 20;
18 int const MOTOR B SENSOR B = 21;
19
20 float ir sensor 1 value = 0.0;
21 float ir sensor c value = 0.0;
22 float ir sensor r value = 0.0;
23
24 int i;
25 double motor A pos = 0;
```

```
26 double motor B pos = 0;
27
28 void motor A encoder A(void);
29 void motor A encoder B(void);
30 void motor B encoder A(void);
31 void motor B encoder B (void);
32
33 void setup() {
    // put your setup code here, to run once:
    Serial.begin (9600);
35
    while (!Serial)
36
37
38
    ;
39
    1
40
    // digital pin mode
41
42
    pinMode (BUZZER, OUTPUT);
43
44
    pinMode (MOTOR A EN, OUTPUT);
    pinMode (MOTOR A DIR, OUTPUT);
45
46
47
    pinMode (MOTOR A SENSOR A, INPUT PULLUP);
    pinMode (MOTOR A SENSOR B, INPUT PULLUP);
48
49
    pinMode (MOTOR B SENSOR A, INPUT PULLUP);
50
    pinMode (MOTOR B SENSOR B, INPUT PULLUP);
```

```
51
52
    // config digital pin
53
    digitalWrite (MOTOR A DIR, HIGH);
54
    analogWrite (MOTOR A EN, 0);
55
    digitalWrite (MOTOR B DIR, HIGH);
56
    analogWrite(MOTOR B EN, 0);
57
58
    digitalWrite (MOTOR A SENSOR A, HIGH);
59
    digitalWrite (MOTOR A SENSOR B, HIGH);
    digitalWrite(MOTOR B SENSOR A, HIGH);
60
    digitalWrite(MOTOR B SENSOR B, HIGH);
61
62
    // Interrupt
63
    attachInterrupt (digitalPinToInterrupt (MOTOR A SENSOR A), motor A encoder A, CHANGE);
64
65
    attachInterrupt (digitalPinToInterrupt (MOTOR A SENSOR B), motor A encoder B, CHANGE);
66
    attachInterrupt (digitalPinToInterrupt (MOTOR B SENSOR A), motor B encoder A, CHANGE);
    attachInterrupt (digitalPinToInterrupt (MOTOR B SENSOR B), motor B encoder B, CHANGE);
67
68
69
    // beep beep
    digitalWrite (BUZZER, HIGH);
70
71
    delay(70);
    digitalWrite(BUZZER, LOW);
72
73
    delay(50);
74
    digitalWrite (BUZZER, HIGH);
75
    delay(70);
```

```
76
     digitalWrite(BUZZER, LOW);
77
78
     // Print to serial
    //Serial.println();
79
     //Serial.println();
 80
81
     //Serial.println("SRTC Robot ready");
82
     83 }
84
85 void loop() {
86
     // put your main code here, to run repeatedly:
87
88
     motor A pos = 0;
89
    motor B pos = 0;
90
     digitalWrite (MOTOR A DIR, HIGH);
91
     digitalWrite (MOTOR B DIR, LOW);
92
     analogWrite (MOTOR A EN, 64);
93
     analogWrite (MOTOR B EN, 50);
94
     while ( (motor A pos >= -800) && (motor B pos <= 800) )
95
       Serial.print("Motor A Pos = ");
96
       Serial.print (motor A pos);
97
       Serial.print(", Motor B Pos = ");
98
99
       Serial.println (motor B pos);
100
```

```
101
     analogWrite (MOTOR A EN, 00);
102
     analogWrite (MOTOR B EN, 00);
103
     Serial.print("Motor A Pos = ");
104
     Serial.print (motor A pos);
     Serial.print(", Motor B Pos = ");
105
106
     Serial.println (motor B pos);
107
     digitalWrite (BUZZER, HIGH);
108
     delay(100);
     digitalWrite(BUZZER, LOW);
109
     delay(8000);
110
111 }
112
113 void motor A encoder A(void)
114 {
115
     if (digitalRead (MOTOR A SENSOR A) == HIGH)
116
       if (digitalRead (MOTOR A SENSOR B) == LOW) motor A pos++; // CW
117
       else motor A pos--; // CCW
118
119
120
     else
121
122
       if (digitalRead (MOTOR A SENSOR B) == HIGH) motor A pos++; // CW
       else motor A pos--; // CCW
123
124
125 }
```

```
126
127 void motor A encoder B (void)
128 {
129
     if (digitalRead (MOTOR A SENSOR B) == HIGH)
130
131
       if (digitalRead (MOTOR A SENSOR A) == HIGH) motor A pos++; // CW
        else motor A pos--; // CCW
132
133
134
     else
135
        if (digitalRead (MOTOR A SENSOR A) == LOW) motor A pos++; // CW
136
       else motor A pos--; // CCW
137
138 }
139 }
140
141 void motor B encoder A(void)
142 {
143
     if (digitalRead (MOTOR B SENSOR A) == HIGH)
144
       if (digitalRead (MOTOR B SENSOR B) == LOW) motor B pos++; // CW
145
        else motor B pos--; // CCW
146
147
148
      else
149
        if (digitalRead (MOTOR B SENSOR B) == HIGH) motor B pos++; // CW
150
```

```
150
       if (digitalRead (MOTOR B SENSOR B) == HIGH) motor B pos++; // CW
       else motor B pos--; // CCW
151
152
153 }
154
155 void motor B encoder B(void)
156 {
157
     if (digitalRead (MOTOR B SENSOR B) == HIGH)
158
       if (digitalRead (MOTOR B SENSOR A) == HIGH) motor B pos++; // CW
159
       else motor B pos--; // CCW
160
161
162
     else
163
164
       if (digitalRead (MOTOR B SENSOR A) == LOW) motor B pos++; // CW
       else motor B pos--; // CCW
165
166 }
167 }
```

```
16_Free_Run
 85 void loop() {
     // put your main code here, to run repeatedly:
 87
     // fw
 88
    motor A pos = 0;
 8.9
    motor B pos = 0;
 90
     digitalWrite (MOTOR A DIR, HIGH);
 91
     digitalWrite (MOTOR B DIR, LOW);
 92
 93
     analogWrite (MOTOR A EN, 64);
 94
     analogWrite (MOTOR B EN, 64);
     while (motor A pos >= -10000)
 95
 96
 97
        Serial.print("Motor A Pos = ");
 98
        Serial.print (motor A pos);
99
        Serial.print(", Motor B Pos = ");
100
        Serial.println(motor B pos);
101
     analogWrite (MOTOR A EN, 00);
102
103
     analogWrite (MOTOR B EN, 00);
     delay(500);
104
105
```

```
106 // 1
     motor A pos = 0;
107
     motor B pos = 0;
108
     digitalWrite (MOTOR A DIR, LOW);
109
110
     digitalWrite (MOTOR B DIR, LOW);
111
     analogWrite (MOTOR A EN, 64);
     analogWrite (MOTOR B EN, 64);
112
     while (motor A pos <= 1000)
113
114
115
       Serial.print("Motor A Pos = ");
116
       Serial.print (motor A pos);
       Serial.print(", Motor B Pos = ");
117
       Serial.println (motor B pos);
118
119
     }
     analogWrite (MOTOR A EN, 00);
120
     analogWrite (MOTOR B EN, 00);
121
     delay(500);
122
123
124
     digitalWrite (BUZZER, HIGH);
     delay(100);
125
     digitalWrite (BUZZER, LOW);
126
     while (true)
127
128
      1
129
      11
130
131 }
```