The Linear Model and Gradient Descent 2018-08-23

The Simple Linear Model

$$h(x) = w^*x + b$$

- -x is a feature or independent variable
- -h(x), the hypothesis, is a predicted value for the target or output variable
- -w and b, sometimes called the weight and bias, are constants

Error

- For each prediction h(x_i) there will be an error e_i,
 where e_i = h(x_i) y_i
- In the above examples:
 - Blue crosses are actual data points
 - Each of the red lines represents a linear model
 - Vertical green bars are the differences between the data (actual experience y_i) and the model (predicted outcome h(x_i))

Cost Function

- We want some function J(w, b) that informs us how well we have chosen w and b
- Consider Mean squared error:

$$J(w,b) = \frac{1}{2n} \sum_{i=1}^{n} e_i^2$$

$$J(w,b) = \frac{1}{2n} \sum_{i=1}^{n} (h(x_i) - y_i)^2$$

$$J(w,b) = \frac{1}{2n} \sum_{i=1}^{n} (w * x_i + b - y_i)^2$$

Optimizing The Cost Function

Calculate the partial derivatives of cost w.r.t w and b:

$$J(w,b) = \frac{1}{2n} \sum_{i=1}^{n} (w * x_i + b - y_i)^2$$

$$\frac{\partial J}{\partial w} = \frac{1}{n} \sum_{i=1}^{n} x_i (w * x_i + b - y_i) \qquad \qquad \frac{\partial J}{\partial b} = \frac{1}{n} \sum_{i=1}^{n} (w * x_i + b - y_i)$$

Gradient Descent

Goal: Find the value of z that minimizes f(z)

- Choose an initial value, z⁽⁰⁾ arbitrarily
- Update: $z^{(t+1)} = z^{(t)} \alpha \frac{df}{dz}^{(t)}$
- Continue until $|f(z)^{(t+1)} f(z)^{(t)}|$ is less than a predetermined threshold

Summary

- Goal: Construct a model of the form $h(x) = w^*x + b$
- Define a function $J(w,b) = \frac{1}{2n} \sum_{i=1}^{n} (h(x_i) y_i)^2$ to evaluate the performance of our model
- Find w and b that minimize J
- Use gradient descent to find optimal values of w and b

Linear Regression With Multiple Features

- Instead of having one feature or input x, we now have a vector of inputs (x₁, x₂, ..., x_m)
- Our hypothesis becomes $h(x) = w_1x_1 + w_2x_2 + ... + w_mx_m + b$
- Cost becomes $J(w_1, w_2, ..., w_m, b) = \frac{1}{2n} \sum_{i=1}^{n} (w_1 * x_{i,1} + w_2 * x_{i,2} + ... + w_m * x_{i,m} + b y_i)^2$
- The partial derivative of J w.r.t. wk is:

$$\frac{\partial J}{\partial w_k} = \frac{1}{n} \sum_{i=1}^n x_{i,k} (w_1 * x_{i,1} + w_2 * x_{i,2} + \dots + w_m * x_{i,m} + b - y_i)$$

• The update step for gradient descent becomes:

$$(z_1, z_2, \dots, z_j)^{(t+1)} = (z_1, z_2, \dots, z_j)^{(t)} - \alpha \left(\frac{\partial f}{\partial z_1}, \frac{\partial f}{\partial z_2}, \dots, \frac{\partial f}{\partial z_j}\right)^{(t)}$$

Additional Resources

- sklearn library for algorithms and datasets: http://scikit-learn.org/stable/datasets/index.html
- Continuing education:
 - Beginner: https://www.coursera.org/learn/machine-learning
 - Advanced: https://www.coursera.org/specializations/deep-learning
- MNIST: http://yann.lecun.com/exdb/mnist/