Calculus and Probability Theory

Assignment 1, February 2, 2017

Handing in your answers:

- submission via Blackboard (http://blackboard.ru.nl);
- one single pdf file (make sure that if you scan/photo your handwritten assignment, the result is clearly readable);
- all of your solutions are clearly and convincingly explained;
- please make sure that you write your name and your student number on the assignment.

Deadline: Friday, February 10, 14:30 sharp!

Goals: After completing these exercises successfully you should be confident with the following topics:

- Even and odd functions
- The domain and range of a function
- The limit of a function

Marks: You can score a total of 100 points.

1. (10 points) Let $f(x) = x - x^3$. Determine the values x for which

1.
$$f(x) = 0$$
; 2. $f(x) > 0$.

Solution:

We note that $x - x^3 = x(1 - x^2) = x(1 - x)(1 + x)$ so f(x) = 0 for $x \in \{-1, 0, 1\}$. Now note that $(1 - x^2) > 0 \iff |x| < 1 \iff x \in (-1, 1)$. So we get four cases:

- (a) x < -1. Then x < 0 and $(1 x^2) < 0$, so f(x) > 0.
- (b) $x \in (-1,0)$. Then x < 0 and $(1-x^2) > 0$, so f(x) < 0.
- (c) $x \in (0,1)$. Then x > 0 and $(1-x^2) > 0$, so f(x) > 0.
- (d) x > 1. Then x > 0 and $(1 x^2) < 0$, so f(x) < 0.

[[Grading Instruction:

Grading (total 10):	
aspect:	points
correct results for $f(x) = 0$	5
correct results for $f(x) > 0$	5
small mistakes	-2

]]

2. (10 points) Let's assume that x runs through the interval (0,1). What values does y run through for y = a + (b - a)x, where $a, b \in \mathbb{R}$?

Solution:

We distinguish 3 cases. Clearly, when a = b, we have $y = \{a\}$. Furthermore,

(a) b > a. Then $(b-a) \ge 0$. Using the fact that $x \in (0,1)$ we see that y = a + (b-a)x > a and y = a + (b-a)x < a + (b-a) = b. So y takes values in the interval (a,b). Does y reach every value in this interval? Let c be in (a,b). Then

$$c = a + (b - a)x_c \iff x_c = \frac{c - a}{b - a}.$$

Because c lies in (a, b), we see that x_c lies in (0, 1). So for every element c in (a, b), there exists an element x_c in (0, 1) such that $c = a + (b - a)x_c$. Hence y runs through all values in (a, b).

(b) b < a. Then (b-a) < 0. Again using $x \in (0,1)$ we find y = a + (b-a)x < a and y = a + (b-a)x > a + (b-a) = b, so y takes values in (b,a). Using the same approach as above we find that y runs through all values in (b,a).

[[Grading Instruction:

Grading (total 10):	
aspect:	points
distinguish $b > a$ and $b < a$	2
recognize that y is in (a, b) or (b, a)	5
every value in (a, b) or (b, a) is reached	3

]]

3. (10 points) Are the following functions even or odd? In your explanation use the definition.

(a)
$$f(x) = 3x - x^3$$
;

(b)
$$f(x) = \sqrt[3]{(1-x)^2} + \sqrt[3]{(1+x)^2}$$
;

Solution:

(a)
$$f(-x) = 3(-x) - (-x)^3 = -3x + x^3 = -(3x - x^3) = -f(x)$$
, so odd.

(b)
$$f(-x) = \sqrt[3]{(1-(-x))^2} + \sqrt[3]{(1+(-x))^2} = \sqrt[3]{(1+x)^2} + \sqrt[3]{(1-x)^2} = f(x)$$
, so even.

[[Grading Instruction:

Grading (total 10):	
aspect:	points
(a)	5
(b)	5

11

4. (10 points) What is the inverse of

$$y = \frac{ax+b}{cx+d} \qquad (ad-bc \neq 0)?$$

When is it equal to the original function?

Solution:

We find y(cx+d)=ax+b which results in x(cy-a)=-dy+b so that $x=\frac{-dy+b}{cy-a}$. Hence the inverse function g is given by $g(x)=\frac{-dx+b}{cx-a}$. It is equal to f when d=-a. Note that g is defined for all x except $x=\frac{a}{c}$. But $f(x)=\frac{a}{c}\iff ad-bd=0$, so g is still defined on the whole range of f.

[[Grading Instruction:

Grading (total 10):	
aspect:	points
$\mid g \mid$	5
d = -a	5
small mistakes	-3

]]

- 5. (30 points) Determine the domains and ranges of the following functions.
 - (a) $f(x) = \sqrt{7 x^2} + 1$;
 - (b) $f(x) = \frac{x-5}{x^2-3x-10}$;
 - (c) $f(x) = \frac{1}{|x|}$.

Solution:

Let D(f) and R(f) be the domain respectively the range of the function f.

- (a) To correctly compute the square root we need $7-x^2 \geq 0$, i.e. $-\sqrt{7} \leq x \leq \sqrt{7}$. So $\underline{D(f) = [-\sqrt{7}, \sqrt{7}]}$. As $0 \leq 7-x^2 \leq 7$ we have $0 \leq \sqrt{7-x^2} \leq \sqrt{7}$, so $1 \leq f(x) \leq \sqrt{7}+1$. Hence $R(\overline{f}) = [1, \sqrt{7}+1]$.
- (b) The only elements which are not in the domain are the points where the denominator evaluates to 0. We note that $x^2 3x 10 = (x 5)(x + 2)$ so that $\underline{D(f) = \mathbb{R} \setminus \{-2, 5\}}$ (all points in \mathbb{R} except -2 and 5). This also means that $f(x) = \frac{1}{x+2}$ if $x \neq -2, 5$. The range of $\frac{1}{x+2}$ is $\mathbb{R} \setminus \{0\}$, but we cannot include the value at x = 5. So $\underline{R(f) = \mathbb{R} \setminus \{0, \frac{1}{7}\}}$.
- (c) Clearly the domain only excludes x = 0, i.e. $D(f) = \mathbb{R} \setminus \{0\}$. The range is $R(f) = (0, \infty)$.

[[Grading Instruction:

Grading (total 30):	
aspect:	points
correct domain	6
correct range	4
small mistakes	-2

]]

- 6. (30 points) Find the limits. (Hint: try to simplify as much as possible before applying the limit!)
 - (a) $\lim_{x \to 0} \frac{3(x-1)+3}{x}$;
 - (b) $\lim_{x \to 2} \frac{x-2}{x^2+x-6}$;
 - (c) $\lim_{x \to 1} \frac{x^2 4x + 3}{x^2 + x 2}$.

Solution:

- (a) We note that for all $x \neq 0$ we have $\frac{3(x-1)+3}{x} = \frac{3x-3+3}{x} = \frac{3x}{x} = 3$. So we must have $\lim_{x \to 0} \frac{3(x-1)+3}{x} = 3$.
- (b) We note that for all $x \neq 2$ we have $\frac{x-2}{x^2+x-6} = \frac{x-2}{(x-2)(x+3)} = \frac{1}{x+3}$. So $\lim_{x\to 2} \frac{x-2}{x^2+x-6} = \lim_{x\to 2} \frac{1}{x+3} = \frac{1}{\underline{5}}$.
- (c) For all $x \neq 1$ we have $\frac{x^2 4x + 3}{x^2 + x 2} = \frac{(x 1)(x 3)}{(x 1)(x + 2)} = \frac{x 3}{x + 2}$. So $\lim_{x \to 1} \frac{x^2 4x + 3}{x^2 + x 2} = \lim_{x \to 1} \frac{x 3}{x + 2} = \frac{2}{3}$.

[[Grading Instruction:

Grading (total 30):	
aspect:	points
correct limit	10
small mistakes	-3