CS2233: Data Structures

Assignment 7 15th October, 2018

Problem Statement

- Input: A collection of disjoint singletons followed by set operations.
- Goal: Serve the following requests:
 - Given elements a and b, are they in the same set?
 - Given an element a, what is the representative element of the set containing a?
 - Given a and b, perform union of the sets that contain a and b.
 - Given an element a, what is the rank of a?

Input Format

Each line of the input looks like one of the following:

- 'N' followed by a positive integer n that indicates number of singleton sets to create.
- '?' followed by two positive integers a and b separated by a space.
- 'S' followed by a positive integer a.
- 'U' followed by two positive integers a and b separated by a space.
- 'R' followed by a positive integer a.

Each of the lines above ends with a '\n' character. All numbers used will fit inside an int. End of input is indicated by EOF.

Output Format

- If input line was "N n": No corresponding output.
- If input line was "U a b": No corresponding output.
- If input line was "? a b":
 - Output -1 if either of a or b is not a valid element.
 - Output 0 if a and b belong to different sets.
 - Output 1 if a and b belong to the same set.

- If input line was "S a":
 Output the representative element of the set that contains a.
- If input line was "R a":
 Output the rank of a if a is a valid element. Output -1 otherwise.

All output lines have to end with a '\n' character.

Implementation rules

- When the request "N n" is given, you'll create n singleton sets namely $\{1\}, \{2\}, \ldots, \{n\}$ and each element will be the representative of its own singleton set. Discard the previous collection of sets if any.
- The sets have to be stored using the disjoint forest implementation.
- Use an array of pointers to have random access to the node corresponding to each element.
- When the request "U a b" is issued, let the sets containing a and b be S_a and S_b with representative elements r_a and r_b respectively. You have to perform a union of the sets S_a and S_b and remove S_a and S_b from your collection. The union operation has to be implemented using the *Union by Rank* heuristic. Further, if ranks of r_a and r_b are equal, you should make the tree corresponding to S_b a child of r_a and thus increment rank of r_a .
- Do **not** use the *Path Compression* heuristic for Union.

Other Remarks

• **Deadline:** 27th October, 2018.

Example input

Input:	Output:
 N 5	1
R 2	1
R 3	-1
R 9	2
U 3 4	1
R 3	2
U 1 4	-1
R 4	1
R 3	0
? 12 21	3
? 1 3	3
? 3 2	-1
U 1 62	3
S 1	2
S 4	1
S 62	2
U 1 2	-1
S 2	2
R 3	2
U 3 5	3
? 1 5	1
R 3	
R 9	
N 4	
U 1 2	
R 1	
U 3 4	
R 3	
U 2 3	
R 1	
S 4	