1 Required Proofs

- 1. For any subgroup $H \leq G$, the following hold:
 - (a) |Hg| = |H|
 - (b) $Hg = H \Leftrightarrow g \in H$
 - (c) Any two right cosets of H are equal or disjoint.
 - (d) $Hx = Hy \Leftrightarrow xy^{-1} \in H$

Proof Recall that $Hg = \{hg : h \in H\}$. We thus have

- (a) Let's see that the map $\phi: H \to Hg$ given by $h \mapsto hg$ is a bijection. It is injective: if $h_1g = h_2g$, then multiplying on the right by g^{-1} implies that $h_1 = h_2$. It is surjective: if $x \in Hg$, then $x = h_1g$ for some $h_1 \in H$. But then $x = \phi(h_1)$.
- (b) If Hg = H, clearly $g \in Hg$ so $g \in H$. Conversely, if $g \in H$, then since H is closed under multiplication (it is a subgroup), Hg = H.
- (c) If Hg_1 and Hg_2 are not disjoint, let $x \in Hg_1$ and Hg_2 . Then $x = h_1g_1 = h_2g_2$ so $h_1^{-1}h_2g_2 = g_1$. Now for any $hg_1 \in Hg_1$, we have $hg_1 = hh_1^{-1}h_2g_2 \in Hg_2$ so $Hg_1 \subseteq Hg_2$. Since $|Hg_1| = |Hg_2|$ by (1), equality must hold.
- (d) First suppose Hx = Hy. Then to each $h \in H$, there exists h' so hx = h'y; that is, $xy^{-1} = h^{-1}h' \in H$. Conversely, if $xy^{-1} \in H$, then $x = xy^{-1}y \in Hy$ so $x \in Hx$ and $x \in Hy$ and by (3), Hx = Hy.
- 2. The conjugacy relation is an equivalence relation on G, and for any $g \in G$, $|C_g| \cdot |G_G(g)| = |G|$.

PROOF Recall that $x \sim y$ if and only if there exists $g \in G$ so $g^{-1}xg = y$.

- (a) Reflexive: $x \sim x$ since $1^{-1}x1 = x$.
- (b) *Symmetric*: If $x \sim y$, then $g^{-1}xg = y$ and $(g^{-1})^{-1}yg^{-1} = x$ so $y \sim x$.
- (c) Transitive: If $x \sim y$ and $y \sim z$, then $g^{-1}xg = y$ and $h^{-1}y = z$, so $(gh)^{-1}xgh = z$ and $x \sim z$.

Recall that $C_G(g) \le G$. It suffices to show $[G:C_G(g)] = |C_g|$: in particular, I claim that the map from right cosets of $C_G(g)$ to conjugate elements of g given by $C_G(g)h \mapsto h^{-1}gh$ is a bijection. Let's first see that it is well-defined and injective. We have

$$\begin{split} C_G(g)h_1 &= C_G(g)h_2 \Longleftrightarrow h_1h_2^{-1} \in C_G(g) \\ &\iff h_1h_2^{-1}g = gh_1h_2^{-1} \\ &\iff h_2^{-1}gh_2 = h_1^{-1}gh_1 \end{split}$$

It is also surjective: if $hg^{-1}h$ is an arbitrary conjugate element, then it is the image of $C_G(g)h$. Thus the map is bijective, so

$$[G:C_G(g)]=|C_g|\Longrightarrow \frac{|G|}{|C_G(g)|}=|C_g|$$

and the desired result holds.

3. Subgroups of cyclic groups are also cyclic.

PROOF Let $G = \langle g \rangle$ be cyclic, and let $H \leq G$. If $H = \{1\}$ it is certainly cyclic; otherwise, let $n \neq 0$ be minimal so that $g^n \in H$. I claim that $H = \langle g^n \rangle$. Certainly $\langle g^n \rangle \subseteq H$ by closure under multiplication. If $h \in H$ is arbitrary, write $h = g^{kn+r}$ for some $k, r \in \mathbb{N}$ with r < n. But then $g^r = h(g^k)^{-n} \in H$, so by minimality of n, we must have r = 0. Thus $h = (g^n)^k \in \langle g^n \rangle$ so $H \subseteq \langle g^n \rangle$ and equality holds, as desired.

4. Groups of order p^2 (with p any prime) are commutative.

PROOF First recall that G is a disjoint union of its conjugacy classes. Let's first see that $Z(G) = \{g \in G : |C_g| = 1\}$. If $|C_g| = 1$, then $C_g = \{g\}$ so $x^{-1}gx = g$ and gx = xg for any $x \in G$. Similarly, if $g \in Z(G)$, then gx = xg for any $x \in G$ so $x^{-1}gx = g$ and $C_g = \{g\}$. Thus G is a disjoint union of its center along with its non-trivial conjugacy classes (this is commonly referred to as the *class equation*). Recall as well that $|C_g|$ divides |G| for all $g \in G$.

Let $|G|=p^2$ and write $|G|=|Z(G)|+\sum_{i=1}^k|C_{g_i}|$ where the C_{g_i} are disjoint non-trivial conjugacy classes. Since $|C_{g_i}|>1$, we must have $|C_{g_i}|\equiv 0\pmod p$. Thus $|Z(G)|\equiv 0\pmod p$, and since $|Z(G)|\geq 1$, we have |Z(G)|=p or $|Z(G)|=p^2$.

If $|Z(G)| = p^2$, it is clear that G is commutative, so suppose |Z(G)| = p. Let $x \in G \setminus Z(G)$, so $Z(G) \leq C_G(x)$. Thus p divides $|C_G(x)|$ and $|C_G(x)| \geq p+1$, so $|C_G(x)| = p^2$. Thus $C_G(x) = G$ and $x \in Z(G)$, a contradiction.

5. First Isomorphism Theorem: for any homomorphism $\phi: G \to H$ of groups, $G/\ker(\phi) \cong \operatorname{im}(\phi)$.

Proof Consider the map α from right cosets of $\ker(\phi)$ to $\operatorname{im}(\phi)$ given by $\ker(\phi)h = \phi(h)$. First, let's check that α is well-defined and injective. By properties of homomorphisms,

$$\begin{aligned} \ker(\phi)h_1 &= \ker(\phi)h_2 \Longleftrightarrow h_1h_2^{-1} \in \ker(\phi) \\ &\iff \phi(h_1h_2^{-1}) = 1 \\ &\iff \phi(h_1)\phi(h_2)^{-1} = 1 \\ &\iff \phi(h_1) = \phi(h_2) \end{aligned}$$

and to see surjectivity, if $y \in \text{im}(\phi)$, then $y = \phi(h)$ and $y = \alpha(\text{ker}(\phi)h)$.

It remains to check that α is a homomorphism. Indeed,

$$\alpha(\ker(\phi)h_1 \ker(\phi)h_2) = \alpha(\ker(\phi)(h_1h_2)$$

$$= \phi(h_1h_2)$$

$$= \phi(h_1)\phi(h_2)$$

$$= \alpha(\ker(\phi)h_1)\alpha(\ker(\phi)h_2)$$

as required.

6. If M, N are normal subgroups in a group G with $M \cap N = \{1\}$, then mn = nm for all $m \in M$ and $N \in N$. If we assume additionally that MN = G, then $G \cong M \times N$.

PROOF To show that mn = nm, it suffices to show that $m^{-1}n^{-1}mn \in M \cap N = \{1\}$. Since M is normal and $m \in M$, $n^{-1}mn \in M$ so $m^{-1}n^{-1}mn \in M$. Similarly, $m^{-1}n^{-1}m \in N$ since N is normal, so $m^{-1}n^{-1}mn \in N$ as well.

Now, let's define $\phi: M \times N \to G$ by $\phi(m,n) = m \cdot n$. Since $M \cdot N = G$, ϕ is surjective, so let's check injectivity. We have using the identity proved earlier

$$\begin{split} \phi(m_1,n_1) &= \phi(m_2,n_2) \Longrightarrow m_1 n_1 = m_2 n_2 \\ &\Longrightarrow m_2^{-1} m_1 = n_2 n_1^{-1} \\ &\Longrightarrow m_1 m_2^{-1}, n_1 n_2^{-1} \in M \cap N \\ &\Longrightarrow m_1 m_2^{-1} = 1, n_1 n_2^{-1} \\ &\Longrightarrow (m_1,n_1) = (m_2,n_2) \end{split}$$

so it remains to show that ϕ is a homomorphism. Indeed,

$$\phi((m_1, n_1) \cdot (m_2, n_2)) = \phi(m_1 m_2, n_1 n_2)$$

$$= m_1 m_2 n_1 n_2$$

$$= m_1 n_1 m_2 n_2$$

$$= \phi(m_1, n_1) \phi(m_2, n_2)$$

by the claim proven earlier, as required.

7. A commutative simple ring is either a field or a zero-ring.

PROOF If $R = \{0\}$ then it is certainly a zero-ring, so suppose $R \neq \{0\}$. First suppose R has zero divisors and get $a, b \neq 0$ with $a \cdot b = 0$. Define $N(a) = \{x \in \mathbb{R} : a \cdot x = 0\}$. Note that N(a)R: if $x, y \in N(a)$ then (x + y)a = xa + ya = 0, and for any $r \in R$, (rx)a = r(xa) = 0. Since $b \neq 0$, $b \in N(a)$, so N(a) = R since R is simple. Now define $N = \{x \in R : xR = 0\}$. Again, NR since (x + y)R = xR + yR = 0 and (ax)R = a(xR) = 0. Note that $a \in N$ and $a \neq 0$, so as before, N = R and R is a zero-ring.

Otherwise, we assume R has no zero divisors. Let $a \ne 0$, so $\{0\} \ne RaR$ and Ra = R. Since $a \in R$, get $e \in R$ so that ea = a. Then if ea = a is arbitrary, ea = bea so ea

8. In an integral domain, every prime element is irreducible. In a prinicipal ideal domain, gcd(a, b) always exists and can be expressed as xa + yb with some $x, y \in R$. In a principal ideal domain, every irreducible element is prime.

PROOF Let $p \in R$ be prime and suppose d|p. Get x so that dx = p; then, since p is prime, p|x or p|d. If p|d, then $p \sim d$; if p|x, get x so that x = py. Then dpy = p so (dy - 1)p = 0 and since R is integral, dy = 1 so d is a unit.

Fix elements $a, b \in R$ and consider the ideal $I = \{xa + yb : x, y \in R\}$. This is an ideal: $x_1a + y_1b + x_2a + y_2b = (x_1 + x_2)a + (y_1 + y_2)b \in I$ and r(xa + yb) = (rx)a + (ry)b. Since R is a PID, I = (d); note that d|a and d|b. Since $d \in I$, d = xa + yb for some $x, y \in R$; thus, if c|a

and c|b, then c|xa + yb = d, so d is a greatest common divisor. If d' is any other greatest common divisor, then d' = ud so d' = (ux)a + (uy)b.

Finally, suppose $q \in R$ is irreducible and q|ab. Note that gcd(q, a)|q so either $q \sim gcd(q, a)$ or $1 \sim gcd(q, a)$. In the first case, q|a. In the second case, there exists x, y so that 1 = xq + ya. Then b = xqb + yab and q|xqb and q|yab, so q|b.

9. Every Euclidean domain is a principal ideal domain.

PROOF Let J be an arbitrary ideal and let $d \in J$ be such that N(d) is minimal. Clearly $(d) \subseteq J$; it suffices to show that $J \subseteq (d)$. If $x \in J$ is arbitrary, write x = qd + r with N(r) < N(d). Noce that $r = x - qd \in J$, so by minimality of d, r = 0. Thus $x = qd \in (d)$.

2 All Definitions

2.1 Groups

- **1.** A **group** is a pair (G, *) with $*: G \times G \rightarrow G$ such that
 - (a) (a*b)*c = a*(b*c)
 - (b) There exists $e \in G$ with e * a = a * e = a
 - (c) For each $a \in G$, there exists $b \in G$ so ab = ba = e.

We say that *G* is **commutative** if a * b = b * a for all $a, b \in G$.

- 2. We say that H is a **subgroup** of G and write $H \le G$ if (H, *) is a group. Given an element h, the **subgroup generated by** h denoted by $\langle g \rangle$ is the set $H = \{h^n : n \in \mathbb{N}\}$.
- **3.** The order of a group G is |G|. The order of an element g is $|\langle g \rangle|$.
- **4.** A group is **cyclic** if it is generated by a single element.
- **5.** The **center** of a group is the set $Z(G) := \{x \in G : xg = gx \forall g \in G\}$. The **centralizer** of an element is the set $C_G(g) := \{x \in G : xg = gx\}$.
- **6.** We say that a and b are **conjugate elements**, and write $a \sim b$, if there exists $x \in G$ so $x^{-1}ax = b$. We say that K and H are **conjugate subgroups** if there exists x so that $x^{-1}Hx = K$.
- 7. The centralizer of a subgroup is $C_G(H) = \{x \in G : xh = hx \forall h \in H\}$. The normalizer of a subgroup is $N_G(H) = \{x \in G : x^{-1}Hx = H\}$.
- **8.** A **right coset** of a subgroup H is a set Hx for some $x \in G$.
- **9.** The **index** of a subgroup H in G, denoted [G:H], is the number of distinct right cosets of H.
- **10.** Given a normal subgroup HG, the **factor group** H/G is the group of right cosets of H with multiplication (Hx)(Hy) = H(xy).
- **11.** A **simple group** is a group whose only normal subgroups are itself and the trivial group.
- **12.** A **homomorphism** of groups is a map $\phi : G \to H$ so that $\phi(g * h) = \phi(g) \times \phi(h)$. It is an **isomorphism** if ϕ is also bijective, and an **automorphism** if the map is from G to itself. Given a homomorphism ϕ , we define the **kernel** $\ker(\phi) = \{x \in G : \phi(x) = 1\}G$ and **image** $\operatorname{im}(\phi) = \{\phi(x) : x \in G\} \leq H$.
- **13.** The **symmetric group** S_n is the group of permutations on [n], with composition operation. The **parity** of a permutation is the parity of the number of 2-cycles needed to represent the permutation. Given a permutation σ , we define the **signature** of σ by $sgn(\sigma) = 1$ if σ is even, and -1 if it is odd.

14. If p^k divides |G| for maximal k, then a Sylow p-subgroup H of G is a subgroup with $|H| = p^k$.

2.2 Rings

- 1. A ring (with identity) is the fusion of an abelian group and a monoid, compatible via distributive laws. A ring without identity takes a semigroup instead of a monoid. To be precise, $(R, \times, +)$ is a ring if
 - (a) (R, +) is an abelian group
 - (b) (R, \times) is a semigroup: $(a \times b) \times c = a \times (b \times c)$ for all $a, b, c \in R$. If R has an identity, then there exists e so that $e \times a = a \times e = a$ for all $a \in R$.
 - (c) Distributive laws: $a \times (b+c) = a \times b + a \times c$ and $(a+b) \times c = a \times c + b \times c$.
- **2.** A **division ring** is a ring in which every element has a multiplicative inverse. A commutative division ring is called a **field**. A **zero-ring** is a ring in which ab = 0 for all $a, b \in R$. The set R^{\times} denotes the set of **units** in R; i.e. elements with a multiplicative inverse.
- **3.** An **ideal** I in R is a subring (perhaps without identity) such that for all $a \in R$ and $b \in I$, $ab \in I$ and $ba \in I$. We say that $a \sim b \pmod{I}$ if $a b \in I$. The equivalence classes induced by \sim are called **congruence classes**. The **principal ideal generated by** a is the set (a) which is the intersection of all ideals of R containing a. When R is commutative, (a) = aR = Ra. We say that an ideal I is **principal** if I = (a) for some $a \in R$. We say that a proper ideal I of R is **maximal** if the only ideal properly containing it is R. It is a fact that every proper ideal of R is contained in a maximal ideal of R (Zorn's lemma)! Ideals I and I are **comaximal** if I + I = R.
- **4.** If R is a ring and I is an ideal in R, then I is a normal subgroup of (R, +). Let R/I denote the congruence classes modulo I, with addition (a + I) + (b + i) = (a + b) + I and multiplication (a + I)(b + I) = (ab) + I. Under these operations, R/I is a ring called the **factor ring** of R by I.
- **5.** We say that $\phi : R \to S$ is a **ring homomorphism** if $\phi(x + y) = \phi(x) + \phi(y)$ and $\phi(xy) = \phi(x)\phi(y)$. Then we have the **kernel** $\ker(\phi) = \{a \in R : \phi(a) = 0\}$ and **image** $\operatorname{im}(\phi) = \{\phi(a) : a \in R\}$. Note that $\ker(\phi)$ is an ideal of R and $\operatorname{im}(\phi)$ is a subring of S.
- **6.** A **zero-divisor** in a ring R is a non-zero element $a \in R$ such that there exists $b \neq 0$ so that ab = 0. An **integral domain** is a commutative ring with identity and no zero divisors. A **principal ideal domain** is an integral domain such that every ideal of R is principal.
- 7. In a commutative ring with identity R, we say that a|b (a **divides** b) if there exists r so that b = ar. We say that a and b are **associates** and write $a \sim b$ if there exists a unit u so that a = bu. Let's summarize some basic facts:
 - (a) u is a unit if and only if u|1 if and only if (u) = (1).
 - (b) u is a unit if and only if (u) = (1).
 - (c) In an integral domain R, $a \sim b$ if and only if a|b and b|a. Equivalently, (a) = (b).
- **8.** Let R be an integral domain. A **non-trivial factorization** of a is an equation of the form a = bc where b, c are not units and not associates of a. We say that a is **irreducible** if it does not have a non-trivial factorization. We say that a is **prime** if whenever a|bc, then a|b or a|c. Note that in an integral domain, every prime is irreducible. Given elements a and b, we denote their **greatest common divisor** to be the set of elements d so that d|a and d|b and, whenever c|a and c|b, then c|d.