Лабораторная работа №1

Современные численные методы решения граничных задач

Цель работы: На примере решения задачи теплопроводности стержня научиться использовать следующие численные методы: метод конечных разностей, метод конечных элементов, метод граничных элементов.

Задание на лабораторную работу.

Для выбранного варианта необходимо:

- 1. Построить математическую модель физической системы. Рассматривается задача моделирования распределения температуры в тонком стержне заданной длины и сечения, изготовленного из различных материалов. На одном конце стержня (левом, согласно рисунка 1) происходит конвективный теплообмен с внешней средой, а на противоположном, подводится тепловой поток заданной интенсивности.
- 2. Разработать методику исследования математической модели методом конечных разностей, методом граничных элементов и методом конечных элементов.
- 3. Разработать программное обеспечение, которое должно удовлетворять следующим требованиям:
 - обеспечить ввод исходных данных с помощью GUI;
 - решать задачу методом конечных разностей, методом граничных элементов и методом конечных элементов;
 - отобразить в виде графиков (двумерного и трёхмерного) результаты решения;
 - все результаты решения сохранять как в тестовые файлы (для претендующих на оценки 4-5), так и в файлы специальных форматов (для всех остальных).
- 4. Провести верификацию полученных результатов с помощью конечноэлементного комплекса ANSYS. Вывести график распределения температур по длине стержня.
- 5. Оформить отчет о проделанной работе.

Содержание отчета.

- 1. Название, цель работы.
- 2. Задание к лабораторной работе.
- 3. Описание математической модели задачи.
- 4. Приложение к отчету:
 - а) программа для расчета значений температур, полученных методом конечных разностей, методом граничных элементов и методом конечных элементов; б) результаты решения задачи в виде графиков (двумерного и трёхмерного);
 - в) log-файл решения задачи в ANSYS;
 - г) результаты решения задачи в ANSYS, сравнением с результатами из п. б);
 - д) провести указанное в задании исследование математической модели (таблица 1).
- 5. Выводы по работе:
 - а) сравнить численные методы по скорости нахождения решения при заданной точности;
 - б) сравнить численные методы по значениям найденных решений;
 - в) найти максимальное отклонение найденных решений;

Контрольные вопросы

- 1. Напишите дифференциальное уравнение теплопроводности для стержня и расшифруйте все величины, в него входящие.
- 2. Напишите дифференциальное уравнение теплопроводности для пластины и расшифруйте все величины, в него входящие.
- 3. Напишите дифференциальное уравнение теплопроводности для объемной фигуры и расшифруйте все величины, в него входящие.
- 4. Опишите граничные условия первого рода.
- 5. Опишите граничные условия второго рода.
- 6. Опишите граничные условия третьего рода.
- 7. В чем суть метода конечных разностей?
- 8. Выведите выражения для явной схемы.
- 9. Опишите как пользоваться явной схемой при решении задачи о теплопроводности стержня.
- 10. Выведите выражения для неявной схемы.
- 11. Опишите как пользоваться неявной схемой при решении задачи о теплопроводности стержня.
- 12. В чем суть схемы Кранка-Николсона?
- 13. Чем отличается стационарная от нестационарной тепловой задачи?
- 14. В чем суть метода конечных элементов?

- 15. Какие матрицы необходимы для расчета локальных матриц для каждого конечного элемента?
- 16. Как формируется глобальная матрица?
- 17. Как учитывается изменение температуры с течением времени?
- 18. В чем суть метода граничных элементов?

Рис.1. Моделируемая физическая система

Варианты заданий для лабораторной работы №1

N₂		Marion			Формат	Marrar
7/45	Физическ	Матер			сохранени	Метод
вар	Физическ	иал	Шаблон	Предмет	сохрансни	решени
иан та	ая система	стержн я	МКР	исследования	я результат ов	я СЛАУ
1	Рис. 1 а)	1 медь 2 бронза 3 латунь	неявная четырехточ ечная схема	Подбор размера частей таким образом, чтобы разница минимальных температур между отдельными частями не превышала заданного числа	XML Exell	прогонк и
2	Рис. 1 б)	1 сталь 2 ДТ16Т	схема Кранка– Николсона	Подбор размера частей таким образом, чтобы на левом конце температура находилась в заданном диапазоне	XML MathCAD	Гаусса
3	Рис. 1 в)	1 медь 2 латунь	схема Франкела– Дюфорта	Подбор размера частей таким образом, чтобы размер каждой части был не меньше заданного, а температура на левом конце не превышала заданную	XML Exell	МСГ
4	Рис. 1 г)	1 бронза 2 латунь	схема Ричардсона	Подбор размера частей таким образом, чтобы разница максимальных температур между отдельными частями не превышала заданного числа	XML MathCAD	[L][L] ^T
5	Рис. 1 а)	1 медь 2 бронза 3 ДТ16Т	нецентраль ная неявная схема	Подбор размера частей таким образом, чтобы максимальная температура каждой части не превышала заданную	XML Exell	[L][D] [L] ¹
6	Рис. 1 б)	1 бронза 2 полипр опилен	схема Саульева	Подбор размера частей таким образом, чтобы минимальная температура каждой части не превышала заданную	XML MathCAD	Гаусса- Зейделя
7	Рис. 1 в)	1 латунь	неявная четырехточ	Подбор размера частей таким образом, чтобы	XML Exell	метод релакса

		2	ечная	разница минимальных температур между		ции
		полипр опилен	схема	отдельными частями не превышала заданного числа		
8	Рис. 1 г)	1 медь 2 полипр опилен	схема Кранка– Николсона	Подбор размера частей таким образом, чтобы на левом конце температура находилась в заданном диапазоне	XML Exell	прогонк и
9	Рис. 1 а)	1 медь 2 полипр опилен 3 латунь	схема Франкела– Дюфорта	Подбор размера частей таким образом, чтобы размер каждой части был не меньше заданного, а температура на левом конце не превышала заданную	XML MathCAD	Гаусса
10	Рис. 1 б)	1 медь 2 полипр опилен	схема Ричардсона	Подбор размера частей таким образом, чтобы разница максимальных температур между отдельными частями не превышала заданного числа	XML Exell	МСГ
11	Рис. 1 в)	1 латунь 2 полипр опилен	нецентраль ная неявная схема	Подбор размера частей таким образом, чтобы максимальная температура каждой части не превышала заданную	XML MathCAD l	[L][L] ^T
12	Рис. 1 а)	1 медь 2 силикат ное стекло	схема Саульева	Подбор размера частей таким образом, чтобы минимальная температура каждой части не превышала заданную	XML Exell	[L][D] [L]
13	Рис. 1 б)	1 бронза 2 полипроп илен 3 латунь	схема Кранка- Николсона	Подбор размера частей таким образом, чтобы разница минимальных температур между отдельными частями не превышала заданного числа	XML MathCAD	Гаусса- Зейделя
14	Рис. 1 в)	1 медь 2	неявная четырехточе чная схема	Подбор размера частей таким образом, чтобы разница максимальных температур между	XML	метод Гаусса

		латунь		отдельными частями не превышала заданного числа	Exell	
15	Рис. 1 г)	1 гетинак с 2 медь	схема Франкела– Дюфорта	Подбор размера частей таким образом, чтобы размер каждой части был не меньше заданного, а температура на левом конце не превышала заданную	XML MathCAD	прогонк и
16	Рис. 1 а)	1 гетинак с 2 латунь	схема Ричардсона	Подбор размера частей таким образом, чтобы разница максимальных температур между отдельными частями не превышала заданного числа	XML Exell	Гаусса
17	Рис. 1 б)	1 бронза 2 полипр опилен 3 медь	нецентраль ная неявная схема	Подбор размера частей таким образом, чтобы максимальная температура каждой части не превышала заданную	XML MathCAD	МСГ
18	Рис. 1 в)	1 медь 2 аллюми ний	схема Саульева	Подбор размера частей таким образом, чтобы минимальная температура каждой части не превышала заданную	XML Exell	[L][L] ^T
19	Рис. 1 в)	1 медь 2 аллюми ний	неявная четырехточ ечная схема	Подбор размера частей таким образом, чтобы разница минимальных температур между отдельными частями не превышала заданного числа	XML MathCAD	[L][D] [L] ^T
20	Рис. 1 г)	1 ДТ16Т 2 аллюми ний	схема Кранка– Николсона	Подбор размера частей таким образом, чтобы на левом конце температура находилась в заданном диапазоне	XML Exell	Гаусса- Зейделя
21	Рис. 1 а)	1 полипр опилен 2 медь	схема Франкела— Дюфорта	Подбор размера частей таким образом, чтобы размер каждой части был не меньше	XML MathCAD	метод релакса ции

3 заданного, а

№	Физическ	Матер			Формат	Метод
вар	Физическ	иал	Шаблон	Предмет	сохранени	решени
иан та	ая система	стержн я	МКР	исследования	я результат ов	я СЛАУ
		латунь		температура на левом конце не превышала		
				заданную		
				Подбор размера частей		
		1 сталь		таким образом, чтобы		
ļ				разница максимальных		прогонк
22	Рис. 1 б)	2	схема	температур между	XML Exell	И
		аллюми	Ричардсона	отдельными частями не		
		ний		превышала заданного		
				числа		
		1		Подбор размера частей		
ļ		латунь	цепентоли	таким образом, чтобы		
ļ		2	нецентраль	максимальная	XML	
23	Рис. 1 в)	полипр	ная неявная	температура каждой	MathCAD	Гаусса
ļ		опилен	схема	части не превышала	1,1441101110	
				заданную		
		1		Подбор размера частей		
ļ		l l		таким образом, чтобы		
		бронза	avarra	• •		
24	Рис. 1 г)	2	Саульева	минимальная температура каждой	XML Exell	МСГ
ļ		полипр	Саульева	температура каждой		
		опилен		части не превышала заданную		
		1		Подбор размера частей		
ļ		бронза		таким образом, чтобы		
		2	неявная	разница минимальных		т
25	Рис. 1 а)	полипр	четырехточ	температур между	XML	$[L][L]^{T}$
ļ		опилен	ечная	отдельными частями не	MathCAD	
ļ		3	схема	превышала заданного		
		ДТ16Т		числа		
ļ				Подбор размера частей		
ļ		1	схема	таким образом, чтобы		
ļ		золото		на левом конце		[L][D]
26	Рис. 1 б)	2	Кранка–	температура	XML Exell	[L] ¹
ļ		латунь	Николсона	находилась в заданном		
				диапазоне		
				Подбор размера частей		
ļ				таким образом, чтобы		
		1	схема	размер каждой части		
	D 4 \			был не меньше	XML	Гаусса-
27	Рис. 1 в)	золото	Франкела-	заданного, а	MathCAD	Зейделя
ļ		2 медь	Дюфорта	температура на левом		
ļ				конце не превышала		
				заданную		
		4	1	Пожбом моргиом с угостой		
		1		Подбор размера частей		метод

	2	Ричардсона	разница максимальных	111111	l
	бронза		температур между	ции	

№		Матер			Формат	Метод
вар	Физическ	иал	Шаблон	Предмет	сохранени	решени
иан та	ая система	стержн я	МКР	исследования	я результат ов	я СЛАУ
				отдельными частями не превышала заданного числа		
29	Рис. 1 а)	1 медь 2 полипр опилен 3 ДТ16Т	нецентраль ная неявная схема	Подбор размера частей таким образом, чтобы максимальная температура каждой части не превышала заданную	XML MathCAD	прогонк и
30	Рис. 1 б)	1 медь 2 золото	схема Саульева	Подбор размера частей таким образом, чтобы минимальная температура каждой части не превышала заданную	XML Exell	Гаусса
31	Рис. 1 в)	1 титан 2 аллюми ний	неявная четырехточ ечная схема	Подбор размера частей таким образом, чтобы разница минимальных температур между отдельными частями не превышала заданного числа	XML MathCAD	МСГ
32	Рис. 1 г)	1 медь 2 серебро	схема Кранка– Николсона	Подбор размера частей таким образом, чтобы на левом конце температура находилась в заданном диапазоне	XML Exell	[L][L] ^T
33	Рис. 1 а)	1 сталь 2 полипр опилен 3 ДТ16Т	схема Франкела– Дюфорта	Подбор размера частей таким образом, чтобы размер каждой части был не меньше заданного, а температура на левом конце не превышала заданную	XML MathCAD	[L][D] [L] ¹
34	Рис. 1 б)	1 серебро 2 золото	схема Ричардсона	Подбор размера частей таким образом, чтобы разница максимальных температур между отдельными частями не превышала заданного числа	XML Exell	Гаусса- Зейделя
35	Рис. 1 в)	1 медь 2	нецентраль ная неявная	Подбор размера частей таким образом, чтобы	XML	метод релакса

Ī	золото	схема	максимальная	MathCAD	ции
			температура каждой		·

Nº		Матер			Формат	Метод
вар	Физическ	иал	Шаблон	Предмет	сохранени	решени
иан та	ая система	стержн	МКР	исследования	я результат ов	я СЛАУ
				части не превышала заданную		
36	Рис. 1 г)	1 медь 2 КПТ- 8	схема Саульева	Подбор размера частей таким образом, чтобы минимальная температура каждой части не превышала заданную	XML Exell	прогонк и
37	Рис. 1 а)	1 ДТ16Т 2 полипр опилен 3 сталь	неявная четырехточ ечная схема	Подбор размера частей таким образом, чтобы разница минимальных температур между отдельными частями не превышала заданного числа	XML MathCAD	Гаусса
38	Рис. 1 б)	1 олово 2 медь	схема Кранка– Николсона	Подбор размера частей таким образом, чтобы на левом конце температура находилась в заданном диапазоне	XML Exell	МСГ
39	Рис. 1 в)	1 медь 2 КПТ- 8	схема Франкела– Дюфорта	Подбор размера частей таким образом, чтобы размер каждой части был не меньше заданного, а температура на левом конце не превышала заданную	XML MathCAD	[L][L] ^T
40	Рис. 1 г)		схема Ричардсона	Подбор размера частей таким образом, чтобы разница максимальных температур между отдельными частями не превышала заданного числа	XML Exell	[L][D] [L] ¹
41	Рис. 1 а)	1 бронза 2 гетинак с 3 ДТ16Т	нецентраль ная неявная схема	Подбор размера частей таким образом, чтобы максимальная температура каждой части не превышала заданную	XML MathCAD	Гаусса- Зейделя
42	Рис. 1 б)	1 асбест	схема	Подбор размера частей таким образом, чтобы	XML Exell	метод релакса

i	Ī		Ī	
	2 медь			шии
		температура каждой		

№ вар иан та	Физическ ая система	Матер иал стержн я	Шаблон МКР	Предмет исследования	Формат сохранени я результат ов	Метод решени я СЛАУ
				части не превышала заданную		
43	Рис. 1 в)	1 латунь 2 олово	схема Кранка– Николсона	Подбор размера частей таким образом, чтобы на левом конце температура находилась в заданном диапазоне	XML MathCAD	МСГ
44	Рис. 1 г)	1 серебро 2 олово	неявная четырехточ ечная схема	Подбор размера частей таким образом, чтобы размер каждой части был не меньше заданного, а температура на левом конце не превышала заданную	XML Exell	[L][L] ^T
45	Рис. 1 б)	1 асфальт 2 сталь	схема Франкела— Дюфорта	Подбор размера частей таким образом, чтобы разница максимальных температур между отдельными частями не превышала заданного числа	XML MathCAD	[L][D] [L] ¹