1 nalen

:הטענה ש- f -פירושה R הטענה ש-

f(x) = y קיים לפחות x אחד ב-x קיים לפחות $y \in \mathbf{R}$

: הטענה ש- f חד-חד-ערכית פירושה

f(x) = y קיים לכל היותר x אחד ב- $y \in \mathbf{R}$ לכל

-לכן, כדי להוכיח ש- f היא חחייע ועל \mathbf{R} , עלינו להראות ש

. f(x) = y המקיים A ב- אחד ויחיד ב- $y \in \mathbf{R}$

, $\frac{x}{1-x^2}=y$ כלומר , f(x)=y כלומר אפוא נתבונן אפוא

. המשוואה את המקיים A ב- A המקיים את קיים $y \in \mathbf{R}$ ונראה כי אכן לכל

. $0 \in A$ אם האכן . x = 0 אם הפתרון היחיד למשוואה אוש שהפתרון y = 0

. $y \neq 0$ -ניח כעת ש

. $yx^2 + x - y = 0$ לאחר סידור המשוואה נקבל

: זו משוואה ריבועית עבור הנעלם x מנוסחת פתרון משוואה ריבועית זו

$$x = \frac{-1 \pm \sqrt{1 + 4y^2}}{2y} = -\frac{1}{2y} \pm \sqrt{\frac{1}{4y^2} + 1} = k \pm \sqrt{k^2 + 1}$$

 $k \in \mathbf{R}$ (0 $\neq k \in \mathbf{R}$) k = -1/(2y) כאשר סימנו

עלינו המשוואה עייי המשוואה בדיוק אחד משני ערכי , $0 \neq k \in \mathbf{R}$ עלינו להראות עלינו להראות המשוואה ל

. -1 < x < 1 בתחום

. תמיד.
$$\sqrt{k^2 + 1} > 1 > 1$$
 תמיד.

: נפריד לשני מקרים

$$x_{+} \notin A$$
 כלומר $x_{+} = k + \sqrt{k^{2} + 1} > 1$ אז $k > 0$ (1)

 $x_{-} \in A$ נראה כי במקרה זה

, $k^2 + 2k + 1 > k^2 + 1$ מכיוון ש- , k > 0 - מתקיים

$$(k+1)^2 > k^2 + 1$$
 כלומר

 $k+1 > \sqrt{k^2+1}$ נקבל (הביטויים חיוביים (הביטויים הברוצאת שורש

.
$$k - \sqrt{k^2 + 1} > -1$$
 כלומר

 $0>k-\sqrt{k^{\,2}\,+1}\quad \text{ברור גם כי}$. $x_-\in A$. לכן $0>x_->-1$. לכן

מטופל באופן דומה (השלימו). לחילופין, נוכל לקבל את המקרה הזה מתוך k<0 המקרה מסופל באופן דומה (2) המקרה הקודם בעזרת הסתכלות בתכונותיה של f ומעט עבודה.

2 nolen

 $f(R_1)=R_1K=\{(1,1)\}$ מתקיים $R_1=\{(1,1)\}$ א. א. לא. למשל עבור $R_1=\{(1,1)\}$ מתקיים $R_2=\{(1,2)\}$ ועבור $R_2=\{(1,2)\}$ מתקיים $R_2=\{(1,2)\}$ קיבלנו שני איברים שונים ב- R_1 שיש להם אותה תמונה תחת משמע R_2 אינה חד-חד-ערכית.

RK=R עלינו להוכיח , f(R)=R עלינו להוכיח . $R\subseteq K$ היכחת הכלה בכיוון אחד, $RK\subseteq R$

 $(x,y) \in R$ יהי עלינו להראות כי $R \subseteq K$ וכאמור, $(x,y) \in RK$ יהי

 $(x,u) \in R$, $(u,y) \in K$ -ש כך ע קיים, קיים כפל יחסים, מהנתון ומהגדרת כפל

. y=1 נובע (u,y) $\in K$ ומכך ש- מהגדרת א

u=1 נובע $(x,u)\in R$ ומכך ש- $(x,u)\in R$ נובע , לכן, שוב מהגדרת אומכך ש-

. (x,y) = (x,u) לכן בפרט . y = u = 1

. עם כך, מכיון שכאמור אז $(x,y) \in R$ אז אם כך, מכיון שכאמור

 $R \subseteq RK$ הוכחת הכלה בכיוון השני,

 $(x,y) \in RK$ יהי $R \subseteq K$ וכאמור $R \subseteq K$, וכאמור יהי

. y=1 נתון $(x,y) \in R$ ומכך ש- K מהגדרת , $R \subseteq K$ נתון

. $(1,1) \in K$, K הגדרת מהגדרת

 $(x,1)\in RK$ מתקבל מתקבל (x,1) $\in R$, $(1,1)\in K$ מתקבל מהגדרת כפל יחסים, $(x,y)\in RK$ כלומר כלומר כלומר כמבוקש.

 $x \in A$ מכיל את כל הזוגות מהצורה (x,1), כאשר K

. K-טסים פל יחסים וובע שעבור כל יחס א, המכפלה אחלקית ל- מכאן ומהגדרת כפל יחסים וובע א

. $f(R) \subseteq K$ מתקיים R כלומר לכל

 $:f\,$ של בתמונה בתמונה ל- הקודם ראינו שכל הקודם ראינו שכל מצד שני, בסעיף הקודם האינו שכל ה

. (של עצמו) הוא תמונה של הוא תמונה כל , f(R) – R אז $R\subseteq K$ הוא כלומר כל , f(R)

Kשל היא החלקיות הקבוצת קבוצת היא היא fשל של לפיכך התמונה לפיכ

. |P(K)| = 8 הרי ,|K| = 3 מכיון ש-

K -שמונה הקבוצות החלקיות ל- f שמונה בדיוק א יחסים בתמונה של יש

ד. לפי הסעיף בספר (או הקובץ) שהוזכר בשאלה, יש התאמה **חד-חד-ערכית ועל** בין קבוצת מחלקות השקילות ש- f משרה לבין תמונת הפונקציה f: בחלוקה המושרה ע"י f,

f לכל מחלקת שקילות מתאים איבר אחד ויחיד בתמונת

f מחלקות שקילות שונות מתאימים איברים שונים בתמונת

וכל איבר בתמונת f מותאם למחלקה כלשהי.

.8 בסעיף הקודם ראינו שיש בדיוק איברים בתמונת f לכן מספר מחלקות השקילות הוא

उ नगिरा

א. יחס מעל A הוא קבוצה של זוגות סדורים של אברי A, לכן כל יחס מעל A, ובפרט כל יחס שקילות מעל A, A תלקי לקבוצה $A \times A$. קל לבדוק ש- $A \times A$ עצמה היא יחס שקילות (זהו יחס אקילות שבו כל אברי A נמצאים באותה מחלקה). לכן $A \times A$ היא האיבר הגדול ביותר ב- A לגבי הכלה.

. $I_{\scriptscriptstyle A}$ את מצד שני, יחס שקילות הוא בפרט רפלקסיבי, כלומר מכיל את

קל לבדוק שהיחס I_A אף הוא יחס שקילות מעל A (זהו יחס השקילות שבו כל איבר של I_A נמצא במחלקה בפני עצמו). מכיון שכל יחס שקילות מעל A מכיל אותו, והוא האיבר הקטן ביותר ב- K לגבי הכלה.

ג. היחס הריק מוכל בכל יחס, והוא אנטי-סימטרי (אם לא ברור לך מדוע הוא אנטי-סימטרי, ר' שאלות רב-ברירה בעניין זה באתר הקורס). לכן \oslash הוא איבר קטן ביותר ב-J לגבי הכלה. לעומת זאת, **אין** ב-J איבר גדול ביותר לגבי הכלה. כדי להראות זאת, נראה שני איברים מקסימליים ב-J, שונים זה מזה (לפי שאלה 3.21 בעמי 93 בספר, אם יש כמה איברים מקסימליים אז אין איבר גדול ביותר).

. מבדיקה אנטי-סימטרי. $R = I_A \cup \{(1,2), (2,3), (1,3)\}$ יהי

אם קיים ב- J איבר R_1 (כלומר יחס אנטי-סימטרי R_1) המכיל-ממש את R, אז R_1 חייב להכיל לפחות אחד מהזוגות R_1 , R_2 , R_3 , כי אלה כל אברי R_3 שמחוץ ל- R_3 . אבל הוספה של כל אחד מהזוגות האלה ל- R_3 מקלקלת את האנטי-סימטריות. לכן אין יחס אנטי-סימטרי מעל R_3 המכיל את R_3 . לפיכך R_3 הוא **איבר מקסימלי** ב- R_3 .

, $S = I_A \cup \{(2,1)\,,\,(3,2)\,,\,(3,1)\} = R^{-1}$ בדומה ל- R נוכל לקחת למשל את נוכל לקחת למשלי ב- J מסיבה דומה לגמרי, גם הוא איבר מקסימלי ב-

. איבר גדול ביותר שני איבר מקסימליים, לכן אין ב- לכן איבר גדול ביותר מצאנו שני איברים מקסימליים, לכן אין ב-

4 22167

8 - מתחלק ב- 3 , $3^2 - 1 = 9 - 1 = 8$: n = 1 מתחלק ב- 8

. (אגב, הטענה נכונה גם עבור n=0 ויכולנו להתחיל את הבדיקה שם).

, $k \in \mathbb{N}$ כאשר 3 $^{2n}-1=8k$ כלומר נניח שהטענה נכונה עבור n, כלומר עבור נניח שהטענה נכונה א

.8 - מתחלק ב- $3^{2(n+1)}-1$ - כלומר נוכיח שהטענה נכונה עבור n+1 , n+1 מתחלק ב- 8. נפתח:

$$3^{2(n+1)} - 1 = 9 \cdot 3^{2n} - 1 = 8 \cdot 3^{2n} + 3^{2n} - 1$$
$$= 8 \cdot 3^{2n} + 8k = 8(3^{2n} + k)$$

במעבר מהשורה הראשונה לשניה נעזרנו בהנחת האינדוקציה.

הביטוי שקיבלנו הוא כפולה של 8 במספר טבעי, משמע מתחלק ב- 8.

n+1 הראינו שהטענה נכונה עבור

. טבעיn טבעיה נכונה לכל משני השלבים נובע שהטענה נכונה לכל

.
$$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24 > 16 = 2^4$$
 ב. בדיקה:

, $n \geq 4$ ובנוסף $n! > 2^n$ ובנוסף, n בונה עבור עבור ובנוסף

 $(n+1)! > 2^{n+1}$ ונוכית

: נפעמ

$$(n+1)! = (n+1) \cdot n! > (n+1) \cdot 2^n > 4 \cdot 2^n > 2 \cdot 2^n = 2^{n+1}$$

המעבר הראשון הוא מהגדרת עצרת. המעבר השני - מהנחת האינדוקציה.

n+1>4 נובע $n\geq 4$ מההנחה - המעבר השלישי

n+1 הראינו שהטענה נכונה עבור

. טבעיn טבעיה נכונה לכל משני השלבים נובע שהטענה נכונה לכל