Calculus I (Math 2554)

Summer 2015

Dr. Ashley K. Wheeler

University of Arkansas

last updated: June 2, 2015

Week 3

3.2 Rules of Differentiation

- 3.3 The Product and Quotient Rules
- 3.4 Derivatives of Trigonometric Functions
- 3.5 Derivatives as Rates of Change
- 3.6 The Chain Rule

Week 3: 8-12 June \$\int 3.2 \text{ Rules of Differentiation}

- Constant Functions
- Power Rule
- Constant Multiple Rule
- Sum Rule
- Exponential Functions
- Higher-Order Derivatives
- Book Problems

€3.3 The Product and Quotient Rules

- Product Rule
 - · Derivation of the Product Rule
 - Derivation of the Quotient Rule
 - Quotient Rule
 - Derivative of e^{kx}
- Rates of Change
- Book Problems

∮3.4 Derivatives of Trigonometric

- Derivatives of Sine and Cosine Functions
- Trig Identities You Should Know
- · Derivatives of Other Trig Functions
- Higher-Order Trig Derivatives
- Book Problems

∮3.5 Derivatives as Rates of Change

- Growth Models Average and Marginal Cost
- Average and iviarginal Cos
 Book Problems
- Book Problems
- Version 1 of the Chain Rule
 - Guidelines for Using the Chain Rule
 - Version 2 of the Chain Rule
 - Chain Rule for Powers
- Composition of 3 or More Functions
- Book Problems

3.3 The Product and Quotient Rules 3.4 Derivatives of Trigonometric Functions 3.5 Derivatives as Rates of Change

ϕ 3.2 Rules of Differentiation

Recall the definition of the derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

(as a function of x, i.e., a formula). And, for any particular point a, we have

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

3.5 Derivatives as Rates of Change

3.6 The Chain Rule

Constant Functions

The constant function f(x) = c is a horizontal line with a slope of 0 at every point. This is consistent with the definition of the derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{c - c}{h}$$
$$= \lim_{h \to 0} 0 = 0.$$

Therefore, for constant functions, $\frac{d}{dx}c = 0$.

Fact: For any positive integer n, we can factor

$$x^{n} - a^{n} = (x - a)(x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1}).$$

For example, when n=2, we get

$$x^{2} - a^{2} = (x - a)(x + a),$$

which is the difference of squares formula.

Power Rule, cont.

Suppose $f(x) = x^n$ where n is a positive integer. Then at a point a,

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{x^n - a^n}{x - a}$$

$$= \lim_{x \to a} \frac{(x - a)(x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1})}{x - a}$$

$$= (a^{n-1} + a^{n-2} \cdot a + \dots + a \cdot a^{n-2} + a^{n-1}) = na^{n-1}.$$

Using the formula for the derivative as a function of x, one can show $\frac{d}{dx}(x^n) = nx^{n-1}.$

Constant Multiple Rule

Consider a function of the form cf(x), where c is a constant. Just like with limits, we can factor out the constant:

$$\frac{d}{dx}[cf(x)] = \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h}$$

$$= \lim_{h \to 0} \frac{c[f(x+h) - f(x)]}{h} = c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= cf'(x)$$

Therefore,
$$\frac{d}{dx}[cf(x)] = cf'(x)$$
.

3.6 The Chain Rule

Sum Rule

Sums of functions also behave under the same limit laws when we differentiate:

$$\frac{d}{dx}[f(x) + g(x)] = \lim_{h \to 0} \frac{[f(x+h) + g(x+h)] - [f(x) + g(x)]}{h}$$

$$= \lim_{h \to 0} \left[\frac{[f(x+h) - f(x)]}{h} + \frac{[g(x+h) - g(x)]}{h} \right]$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= f'(x) + g'(x)$$

3.2 Rules of Differentiation

3.3 The Product and Quotient Rules

3.4 Derivatives of Trigonometric Functions
3.5 Derivatives as Rates of Change

3.6 The Chain Rule

o The Chain Rule

So if f and g are differentiable at x,

$$\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x).$$

The Sum Rule can be generalized for more than two functions to include n functions.

Note: Using the Sum Rule and the Constant Multiple Rule produces the Difference Rule:

$$\frac{d}{dx}[f(x) - g(x)] = f'(x) - g'(x).$$

Exercise

Using the differentiation rules we have discussed, calculate the derivatives of the following functions. Note which rule(s) you are using.

1.
$$y = x^5$$

$$2. \ \ y = 4x^3 - 2x^2$$

3.
$$y = -1500$$

4.
$$y = 3x^3 - 2x + 4$$

Exponential Functions

Let $f(x) = b^x$, where b > 0, $b \ne 1$. To differentiate at 0, we write

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{b^x - b^0}{x} = \lim_{x \to 0} \frac{b^x - 1}{x}.$$

It is not obvious what this limit should be. However, consider the cases b=2 and b=3. By constructing a table of values, we can see that

$$\lim_{x \to 0} \frac{2^x - 1}{x} \approx 0.693 \quad \text{and} \quad \lim_{x \to 0} \frac{3^x - 1}{x} \approx 1.099.$$

3.2 Rules of Differentiation

- 3.3 The Product and Quotient Rules
- 3.4 Derivatives of Trigonometric Functions
- 3.5 Derivatives as Rates of Change
- 3.6 The Chain Rule

So, f'(0) < 1 when b=2 and f'(0) > 1 when b=3. As it turns out, there is a particular number b, with 2 < b < 3, whose graph has a tangent line with slope 1 at x=0. In other words, such a number b has the property that

$$\lim_{x \to 0} \frac{b^x - 1}{x} = 1.$$

Question

What number is it?

Answer: This number is e=2.718281828459... (known as the Euler number). The function $f(x)=e^x$ is called the **natural exponential function**.

3.3 The Product and Quotient Rules Week 3 3.4 Derivatives of Trigonometric Functions 3.5 Derivatives as Rates of Change

3.6 The Chain Rule

Now, using $\lim_{x\to 0} \frac{e^x-1}{x} = 1$, we can find the formula for $\frac{d}{dx}(e^x)$:

$$\frac{d}{dx}(e^x) = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$

$$= \lim_{h \to 0} \frac{e^x \cdot e^h - e^x}{h}$$

$$= \lim_{h \to 0} \frac{e^x(e^h - 1)}{h}$$

$$= e^x \left(\lim_{h \to 0} \frac{e^h - 1}{h}\right)$$

$$= e^x \cdot 1 = e^x$$

3.2 Rules of Differentiation

3.3 The Product and Quotient Rules

3.4 Derivatives of Trigonometric Functions
3.5 Derivatives as Rates of Change

3.6 The Chain Rule

o The Chain Rule

Exercise

- (a) Find the slope of the line tangent to the curve $f(x) = x^3 4x 4$ at the point (2, -4).
- (b) Where does this curve have a horizontal tangent?

Higher-Order Derivatives

If we can write the derivative of f as a function of x, then we can take *its* derivative, too. The derivative of the derivative is called the **second derivative** of f, and is denoted f''.

In general, we can differentiate f as often as needed. If we do it n times, the $n{\rm th}$ derivative of f is

$$f^{(n)}(x) = \frac{d^n f}{dx^n} = \frac{d}{dx} [f^{(n-1)}(x)].$$

3.2 Rules of Differentiation

3.3 The Product and Quotient Rules

3.4 Derivatives of Trigonometric Functions

3.5 Derivatives as Rates of Change

3.6 The Chain Rule

3.2 Book Problems

3-45 (x3)

• For these problems, use only the rules we have derived so far.

Week 3

3.3 The Product and Quotient Rules
3.4 Derivatives of Trigonometric Functions

3.2 Rules of Differentiation

3.5 Derivatives as Rates of Change

3.6 The Chain Rule

Week 3: 8-12 June

∮3.2 Rules of Differentiation

- Constant Functions
- Power Rule
- Constant Multiple Rule
- Sum Rule
- Exponential Functions
- Higher-Order Derivatives
- Book Problems

∮3.3 The Product and Quotient Rules

- Product Rule
- Derivation of the Product Rule
- Derivation of the Quotient Rule
- Quotient Rule
- Derivative of e^{kx}
- Rates of Change
- Book Problems

3.4 Derivatives of Trigonometric Functions

- Derivatives of Sine and Cosine Functions
- Trig Identities You Should Know
- Derivatives of Other Trig Functions
- Higher-Order Trig Derivatives
 Book Problems

∮3.5 Derivatives as Rates of Change

- Growth Models Average and Marginal Cost
- Deel Deel les
- Book Problems

3.6 The Chain Rule

- Version 1 of the Chain Rule
- Guidelines for Using the Chain Rule
- Version 2 of the Chain Rule
- Chain Rule for Powers
- Composition of 3 or More Functions
- Book Problems

Week 3

3.2 Rules of Differentiation 3.3 The Product and Quotient Rules 3.4 Derivatives of Trigonometric Functions 3.5 Derivatives as Rates of Change

3.6 The Chain Rule

 ϕ 3.3 The Product and Quotient Rules

Issue: Derivatives of products and quotients do NOT behave like they do for limits.

As an example, consider $f(x)=x^2$ and $g(x)=x^3$. We can try to differentiate their product in two ways:

•
$$\frac{d}{dx}[f(x)g(x)] = \frac{d}{dx}(x^5)$$

= $5x^4$

$$f'(x)g'(x) = (2x)(3x^2)$$
$$= 6x^3$$

Question

Which answer is the correct one?

Product Rule

If f and g are any two functions that are differentiable at x, then

$$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + g'(x)f(x).$$

In the example from the previous slide, we have

$$\frac{d}{dx}[x^2 \cdot x^3] = \frac{d}{dx}(x^2) \cdot (x^3) + x^2 \cdot \frac{d}{dx}(x^3)$$
$$= (2x) \cdot (x^3) + x^2 \cdot (3x^2)$$
$$= 2x^4 + 3x^4$$
$$= 5x^4$$

3.3 The Product and Quotient Rules

3.4 Derivatives of Trigonometric Functions

3.5 Derivatives as Rates of Change

3.6 The Chain Rule

Derivation of the Product Rule

$$\frac{d}{dx}[f(x)g(x)] = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \left(\frac{f(x+h)g(x+h) + [-f(x)g(x+h) + f(x)g(x+h)] - f(x)g(x)}{h} \right)$$

$$= \lim_{h \to 0} \left(\frac{f(x+h)g(x+h) - f(x)g(x+h)}{h} \right)$$

$$+ \left(\lim_{h \to 0} \frac{f(x)g(x+h) - f(x)g(x)}{h} \right)$$

3.2 Rules of Differentiation 3.3 The Product and Quotient Rules

3.4 Derivatives of Trigonometric Functions 3.5 Derivatives as Rates of Change

3.6 The Chain Rule

Derivation of the Product Rule (cont.)

$$= \lim_{h \to 0} \left(g(x+h) \frac{f(x+h) - f(x)}{h} \right) + \left(\lim_{h \to 0} f(x) \frac{g(x+h) - g(x)}{h} \right)$$
$$= g(x)f'(x) + f(x)g'(x)$$

Derivation of Quotient Rule

Question

Let
$$q(x) = \frac{f(x)}{g(x)}$$
. What is $\frac{d}{dx}q(x)$?

Answer: We can write f(x) = q(x)g(x) and then use the Product Rule:

$$f'(x) = q'(x)g(x) + g'(x)q(x)$$

and now solve for q'(x):

$$q'(x) = \frac{f'(x) - q(x)g'(x)}{g(x)}.$$

Then, to get rid of q(x), plug in $\frac{f(x)}{g(x)}$:

$$q'(x) = \frac{f'(x) - g'(x)\frac{f(x)}{g(x)}}{g(x)}$$
$$= \frac{g(x)\left(f'(x) - g'(x)\frac{f(x)}{g(x)}\right)}{g(x)\cdot g(x)}$$

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2}$$

"LO-D-HI minus HI-D-LO over LO squared"

Quotient Rule

Just as with the product rule, the derivative of a quotient is not a quotient of derivatives, i.e.

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] \neq \frac{f'(x)}{g'(x)}.$$

Here is the correct rule, the Quotient Rule:

$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - g'(x)f(x)}{[g(x)]^2}.$$

or the chair raic

Exercise

Use the Quotient Rule to find the derivative of

$$\frac{4x^3 + 2x - 3}{x + 1}.$$

Exercise

Find the slope of the tangent line to the curve

$$f(x) = \frac{2x-3}{x+1} \text{ at the point } (4,1).$$

3.6 The Chain Rule

The Quotient Rule also allows us to extend the Power Rule to negative numbers – if n is any integer, then

$$\frac{d}{dx}\left[x^n\right] = nx^{n-1}.$$

Question

How?

3.2 Rules of Differentiation

3.3 The Product and Quotient Rules
3.4 Derivatives of Trigonometric Functions

3.5 Derivatives as Rates of Change

3.6 The Chain Rule

o The Chain Rule

Exercise

If
$$f(x) = \frac{x(3-x)}{2x^2}$$
, find $f'(x)$.

Derivative of e^{kx}

For any real number k,

$$\frac{d}{dx}\left(e^{kx}\right) = ke^{kx}.$$

Exercise

What is the derivative of x^2e^{3x} ?

Rates of Change

The derivative provides information about the instantaneous rate of change of the function being differentiated (compare to the limit of the slopes of the secant lines from $\oint 2.1$).

For example, suppose that the population of a culture can be modeled by the function p(t). We can find the instantaneous growth rate of the population at any time $t \geq 0$ by computing p'(t) as well as the **steady-state population** (also called the **carrying capacity** of the population). The steady-state population equals

$$\lim_{t\to\infty}p(t).$$

Week 3

3.2 Rules of Differentiation 3.3 The Product and Quotient Rules 3.4 Derivatives of Trigonometric Functions

3.5 Derivatives as Rates of Change 3.6 The Chain Rule

3.3 Book Problems

6-51 (x3)

Week 3

3.2 Rules of Differentiation
3.3 The Product and Quotient Rules

3.4 Derivatives of Trigonometric Functions

3.5 Derivatives as Rates of Change

3.6 The Chain Rule

Week 3: 8-12 June

∮3.2 Rules of Differentiation

- Constant Functions
- Power Rule
- Constant Multiple Rule
- Sum Rule
- Exponential Functions
- Higher-Order Derivatives
- Book Problems

€3.3 The Product and Quotient Rules

- Product Rule
 - Derivation of the Product Rule
 - Derivation of the Quotient Rule
 - Quotient Rule
- Derivative of e^{kx}
- Rates of Change
- Book Problems

∮3.4 Derivatives of Trigonometric Functions

- Derivatives of Sine and Cosine Functions
- Trig Identities You Should Know
- · Derivatives of Other Trig Functions
- Higher-Order Trig Derivatives
- Book Problems

∮3.5 Derivatives as Rates of Change

- Growth Models Average and Marginal Cost
- Book Problems

3.6 The Chain Rule

- Version 1 of the Chain Rule
- Guidelines for Using the Chain Rule
- Version 2 of the Chain Rule
- Chain Rule for Powers
- Composition of 3 or More Functions
- Book Problems

- 3.2 Rules of Differentiation
- 3.3 The Product and Quotient Rules 3.4 Derivatives of Trigonometric Functions
- 3.5 Derivatives as Rates of Change
- 3.6 The Chain Rule

ϕ 3.4 Derivatives of Trigonometric Functions

Derivative formulas for sine and cosine can be derived using the following limits:

$$\bullet \lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\bullet \lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

(We will prove these limits in Chapter 4.)

Week 3

3.2 Rules of Differentiation

3.3 The Product and Quotient Rules

3.4 Derivatives of Trigonometric Functions 3.5 Derivatives as Rates of Change

.5 Derivatives as itales of Chang

3.6 The Chain Rule

Exercise

Evaluate
$$\lim_{x\to 0} \frac{\sin 9x}{x}$$
 and $\lim_{x\to 0} \frac{\sin 9x}{\sin 5x}$.

Derivatives of Sine and Cosine Functions

Using the previous limits and the definition of the derivative, we obtain

$$\frac{d}{dx}(\sin x) = \cos x$$
$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

3.5 Derivatives as Rates of Change

3.6 The Chain Rule

Trig Identities You Should Know

$$\bullet \sin^2 x + \cos^2 x = 1$$

$$\bullet \ \tan^2 x + 1 = \sec^2 x$$

$$\bullet \ \sin 2x = 2\sin x \cos x$$

$$\cos 2x = 1 - 2\sin^2 x$$

$$\bullet \sin^2 x = \frac{1 - \cos 2x}{2}$$

•
$$\tan x = \frac{\sin x}{\cos x}$$

$$\cot x = \frac{\cos x}{\sin x}$$

$$\cot x = \frac{1}{\tan x}$$

$$\bullet \ \sec x = \frac{1}{\cos x}$$

3.6 The Chain Rule

Derivatives of Other Trig functions

$$\frac{d}{dx}(\tan x) = \frac{d}{dx} \left(\frac{\sin x}{\cos x}\right)$$

$$= \frac{\cos x \cos x - (-\sin x)\sin x}{\cos^2 x}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$

$$= \frac{1}{\cos^2 x} = \sec^2 x$$

So
$$\frac{d}{dx}(\tan x) = \sec^2 x$$
.

By using trig identities and the Quotient Rule, we obtain

$$\frac{d}{dx}(\csc x) = \frac{d}{dx}\left(\frac{1}{\sin x}\right) = -\csc x \cot x$$

$$\frac{d}{dx}(\sec x) = \frac{d}{dx}\left(\frac{1}{\cos x}\right) = \sec x \tan x$$

$$\frac{d}{dx}(\cot x) = \frac{d}{dx}\left(\frac{1}{\tan x}\right) = -\csc^2 x$$

3.2 Rules of Differentiation 3.3 The Product and Quotient Rules 3.4 Derivatives of Trigonometric Functions 3.5 Derivatives as Rates of Change

3.6 The Chain Rule

Exercise

Compute the derivative of the following functions:

$$f(x) = \frac{\tan x}{1 + \tan x}$$
 $g(x) = \sin x \cos x$

Higher-Order Trig Derivatives

There is a cyclic relationship between the higher order derivatives of $\sin x$ and $\cos x$:

$$f(x) = \sin x$$
 $g(x) = \cos x$
 $f'(x) = \cos x$ $g'(x) = -\sin x$
 $f''(x) = -\sin x$ $g''(x) = -\cos x$
 $f^{(3)}(x) = -\cos x$ $g^{(3)}(x) = \sin x$
 $f^{(4)}(x) = \sin x$ $g^{(4)}(x) = \cos x$

3.2 Rules of Differentiation

3.3 The Product and Quotient Rules

3.4 Derivatives of Trigonometric Functions 3.5 Derivatives as Rates of Change

3.6 The Chain Rule

3.4 Book Problems

7, 13, 17, 21-27, 33, 35, 44-46, 53-55

- 3.2 Rules of Differentiation
 3.3 The Product and Quotient Rules
- 3.4 Derivatives of Trigonometric Functions
- 3.5 Derivatives as Rates of Change
- 3.6 The Chain Rule

Week 3: 8-12 June

∮3.2 Rules of Differentiation

- Constant Functions
- Power Rule
- Constant Multiple Rule
- Sum Rule
- Exponential Functions
- Higher-Order Derivatives
- Book Problems

∮3.3 The Product and Quotient Rules

- Product Rule
- · Derivation of the Product Rule
- · Derivation of the Quotient Rule
- Quotient Rule
- Derivative of e^{kx}
- Rates of Change
- Book Problems

3.4 Derivatives of Trigonometric

- Derivatives of Sine and Cosine Functions
- Trig Identities You Should Know
- Derivatives of Other Trig Functions
- Higher-Order Trig Derivatives
 Book Problems
- ϕ 3.5 Derivatives as Rates of Change
 - Growth Models
 - Average and Marginal Cost
 - Book Problems
 - 3.6 The Chain Rule
 - Version 1 of the Chain Rule
 - Guidelines for Using the Chain Rule
 - Version 2 of the Chain Rule
 - Chain Rule for Powers
 - Composition of 3 or More Functions
 - Book Problems

Position and Velocity

Suppose an object moves along a straight line and its location at time t is given by the position function s = f(t). The **displacement** of the object between t = a and $t = a + \Delta t$ is

$$\Delta s = f(a + \Delta t) - f(a).$$

Here Δt represents how much time has elapsed.

We now define average velocity as

$$\frac{\Delta s}{\Delta t} = \frac{f(a + \Delta t) - f(a)}{\Delta t}.$$

Recall that the limit of the average velocities as the time interval approaches 0 was the instantaneous velocity (which we denote here by v). Therefore, the instantaneous velocity at a is

$$v(a) = \lim_{\Delta t \to 0} \frac{f(a + \Delta t) - f(a)}{\Delta t} = f'(a).$$

In mathematics, speed and velocity are related but not the same – if the velocity of an object at any time t is given by v(t), then the speed of the object at any time t is given by

$$|v(t)| = |f'(t)|.$$

3.6 The Chain Rule

By definition, acceleration (denoted by a) is the instantaneous rate of change of the velocity of an object at time t. Therefore,

$$a(t) = v'(t)$$

and since velocity was the derivative of the position function s=f(t), then

$$a(t) = v'(t) = f''(t).$$

Summary: Given the position function s = f(t), the velocity at time t is the first derivative, the speed at time t is the absolute value of the first derivative, and the acceleration at time t is the second derivative.

Question

Given the position function s=f(t) of an object launched into the air, how would you know:

- The highest point the object reaches?
- How long it takes to hit the ground?
- The speed at which the object hits the ground?

Growth Models

Suppose p=f(t) is a function of the growth of some quantity of interest. The average growth rate of p between times t=a and a later time $t=a+\Delta t$ is the change in p divided by the elapsed time Δt :

$$\frac{\Delta p}{\Delta t} = \frac{f(a + \Delta t) - f(a)}{\Delta t}.$$

As Δt approaches 0, the average growth rate approaches the derivative $\frac{dp}{dt}$, which is the instantaneous growth rate (or just simply the growth rate). Therefore,

$$\frac{dp}{dt} = \lim_{\Delta t \to 0} \frac{f(a + \Delta t) - f(a)}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta p}{\Delta t}.$$

3.6 The Chain Rule

Exercise

The population of the state of Georgia (in thousands) from 1995 (t=0) to 2005 (t=10) is modeled by the polynomial

$$p(t) = -0.27t^2 + 101t + 7055.$$

- (a) What was the average growth rate from 1995 to 2005?
- (b) What was the growth rate for Georgia in 1997?
- (c) What can you say about the population growth rate in Georgia between 1995 and 2005?

Average and Marginal Cost

Suppose a company produces a large amount of a particular quantity. Associated with manufacturing the quantity is a **cost function** C(x) that gives the cost of manufacturing x items. This cost may include a **fixed cost** to get started as well as a **unit cost** (or **variable cost**) in producing one item.

If a company produces x items at a cost of C(x), then the average cost is $\frac{C(x)}{x}$. This average cost indicates the cost of items already produced. Having produced x items, the cost of producing another Δx items is $C(x + \Delta x) - C(x)$. So the average cost of producing these extra Δx items is

$$\frac{\Delta C}{\Delta x} = \frac{C(x + \Delta x) - C(x)}{\Delta x}.$$

If we let Δx approach 0, we have

$$\lim_{\Delta x \to 0} \frac{\Delta C}{\Delta x} = C'(x)$$

which is called the **marginal cost**. The marginal cost is the approximate cost to produce one additional item after producing \boldsymbol{x} items.

Note: In reality, we can't let Δx approach 0 because Δx represents whole numbers of items.

3.6 The Chain Rule

Exercise

If the cost of producing x items is given by

$$C(x) = -0.04x^2 + 100x + 800$$

for $0 \le x \le 1000$, find the average cost and marginal cost functions. Also, determine the average and marginal cost when x=500.

3.2 Rules of Differentiation
3.3 The Product and Quotient Rules
3.4 Derivatives of Trigonometric Functions
3.5 Derivatives as Rates of Change
3.6 The Chain Rule

3.5 Book Problems

9-12, 17-18, 22-23, 27-37 (odds)

- 3.2 Rules of Differentiation
- 3.3 The Product and Quotient Rules
- 3.4 Derivatives of Trigonometric Functions 3.5 Derivatives as Rates of Change
- 3.6 The Chain Rule

Week 3: 8-12 June

- Constant Functions
- Power Rule
- Constant Multiple Rule
- Sum Rule
- Exponential Functions
- Higher-Order Derivatives
- Book Problems

- Product Rule
- Derivation of the Product Rule
- Derivation of the Quotient Rule
- Quotient Rule
- Derivative of e^{kx}
- Rates of Change
- Book Problems

- Derivatives of Sine and Cosine Functions
- Trig Identities You Should Know
- · Derivatives of Other Trig Functions
- Higher-Order Trig Derivatives
- Book Problems

- Growth Models Average and Marginal Cost
- Book Problems
- ∮3.6 The Chain Rule
 - Version 1 of the Chain Rule
 - Guidelines for Using the Chain Rule
 - Version 2 of the Chain Rule
 - Chain Rule for Powers
 - Composition of 3 or More Functions
 - Book Problems

- 3.2 Rules of Differentiation 3.3 The Product and Quotient Rules
 - 3.4 Derivatives of Trigonometric Functions
 - 3.5 Derivatives as Rates of Change 3.6 The Chain Rule

ϕ 3.6 The Chain Rule

Suppose that Yvonne (y) can run twice as fast as Uma (u). Therefore $\frac{dy}{du} = 2.$

Suppose that Uma can run four times as fast as Xavier (x). So $\frac{du}{dx} = 4$.

How much faster can Yvonne run than Xavier? In this case, we would take both our rates and multiply them together:

$$\frac{dy}{du} \cdot \frac{du}{dx} = 2 \cdot 4 = 8.$$

Version 1 of the Chain Rule

If g is differentiable at x, and y=f(u) is differentiable at u=g(x), then the composite function y=f(g(x)) is differentiable at x, and its derivative can be expressed as

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Guidelines for Using the Chain Rule

Assume the differentiable function y = f(g(x)) is given.

- 1. Identify the outer function f, the inner function g, and let u = g(x).
- 2. Replace g(x) by u to express y in terms of u:

$$y = f(g(x)) \implies y = f(u)$$

- 3. Calculate the product $\frac{dy}{du} \cdot \frac{du}{dx}$
- 4. Replace u by g(x) in $\frac{dy}{du}$ to obtain $\frac{dy}{dx}$.

Example

Use Version 1 of the Chain Rule to calculate $\dfrac{dy}{dx}$ for $y=(5x^2+11x)^{20}.$

- inner function: $u = 5x^2 + 11x$
- outer function: $y = u^{20}$

We have $y = f(g(x)) = (5x^2 + 11x)^{20}$. Differentiate:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 20u^{19} \cdot (10x + 11)$$
$$= 20(5x^2 + 11x)^{19} \cdot (10x + 11)$$

Exercise

Use the first version of the Chain Rule to calculate $\frac{dy}{dx}$ for

$$y = \left(\frac{3x}{4x+2}\right)^5.$$

Version 2 of the Chain Rule

Notice if y = f(u) and u = g(x), then y = f(u) = f(g(x)), so we can also write:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$
$$= f'(u) \cdot g'(x)$$
$$= f'(g(x)) \cdot g'(x).$$

Example

Use Version 2 of the Chain Rule to calculate $\frac{dy}{dx}$ for $y=(7x^4+2x+5)^9$.

- inner function: $g(x) = 7x^4 + 2x + 5$
- outer function: $f(u) = u^9$

Then

$$f'(u) = 9u^8 \implies f'(g(x)) = 9(7x^4 + 2x + 5)^8$$

 $g'(x) = 28x^3 + 2.$

Putting it together,

$$\frac{dy}{dx} = f'(g(x)) \cdot g'(x) = 9(7x^4 + 2x + 5)^8 \cdot (28x^3 + 2)$$

3.6 The Chain Rule

Chain Rule for Powers

If g is differentiable for all x in the domain and n is an integer, then

$$\frac{d}{dx}\left[\left(g(x)\right)^n\right] = n(g(x))^{n-1} \cdot g'(x).$$

Chain Rule for Powers (cont.)

Example

$$\frac{d}{dx}\left[(1-e^x)^4\right] = ?$$

Answer:

$$\frac{d}{dx} \left[(1 - e^x)^4 \right] = 4(1 - e^x)^3 \cdot (-e^x)$$
$$= -4e^x (1 - e^x)^3$$

3.2 Rules of Differentiation

3.3 The Product and Quotient Rules
3.4 Derivatives of Trigonometric Functions

3.5 Derivatives as Rates of Change

3.6 The Chain Rule

Composition of 3 or More Functions

Example

Compute
$$\frac{d}{dx} \left[\sqrt{(3x-4)^2 + 3x} \right]$$
.

Composition of 3 or More Functions (cont.)

Answer:

$$\frac{d}{dx} \left[\sqrt{(3x-4)^2 + 3x} \right] = \frac{1}{2} \left((3x-4)^2 + 3x \right)^{-\frac{1}{2}} \cdot \frac{d}{dx} \left[(3x-4)^2 + 3x \right]
= \frac{1}{2\sqrt{\left((3x-4)^2 + 3x \right)}} \cdot \left[2(3x-4)\frac{d}{dx}(3x-4) + 3 \right]
= \frac{1}{2\sqrt{\left((3x-4)^2 + 3x \right)}} \cdot \left[2(3x-4)\cdot 3 + 3 \right]
= \frac{18x-21}{2\sqrt{\left((3x-4)^2 + 3x \right)}}$$

3.2 Rules of Differentiation 3.3 The Product and Quotient Rules 3.4 Derivatives of Trigonometric Functions 3.5 Derivatives as Rates of Change 3.6 The Chain Rule

3.6 Book Problems

7-29 (odds), 30, 33-43 (odds), 49