Math 401 Notes

Lecture 1&2 (Statistics)

Ahmed Nasser

April 9, 2021

Contents

1	Statistics Steps	2
2	Types of Data	2
3	Types of statistical studies	2
4	Present (Graphs) 4.1 Histogram	2 2 2
5	Range & Width	2
6	grouped frequency distribution	3
7	The Median 7.1 Discrete Data	3 3
8	The Mode 8.1 Discrete Data 8.2 Grouped data	3 3
9	The Mean 9.1 Discrete Data	3 4 4
10	The Standard Deviation	4
11	The Population Variance 11.1 Discrete Data	4 4
12	Chebyshev's Theorem	4
13	Percentiles	5
14	Quartiles	5

1 Statistics Steps

- 1. Collect
- 2. Organize
- 3. Present
- 4. Summarize
- 5. Draw Conclusion

2 Types of Data

3 Types of statistical studies

1. Descriptive statistics

collecting, organizing, presenting, and summarizing of data, in an informative way.

2. Inferential statistics

drawing conclusions and making decisions using the given data

4 Present (Graphs)

4.1 Histogram

- X-axis Class Limits
- *Y*-axis "*f*" or "*r.f.*"

4.2 Ogive

- X-axis Upper limits of each class limit
- *Y*-axis "*c.f.*" or "*c.r.f.*"

5 Range & Width

- 1. Range = Max Val Min Val
- 2. Class Width = $\frac{\text{Range}+1}{\text{No. of classes}}$ If this value is not an integer ROUND IT UP

6 grouped frequency distribution

- If the **number of classes is given** and the given data values are integers: we proceed using the **direct method**
- If the **number of classes is NOT given** and the given data values are integers or decimals

If an initial value is **NOT** given, we proceed using the **Stem-leaf method**.

If an initial value is given, we proceed using the (\sqrt{n}) method. (Width = $\frac{\text{Range}}{\text{No. of classes}}$)

7 The Median

7.1 Discrete Data

- Sort the Data value
- MD = middle point (in case of odd num)
- MD = (sum of the two middle points) / 2 (in case of odd num)

7.2 Grouped data

$$MD = \frac{\frac{n}{2} - \text{pre."} c.f"}{f}(W) + L_m$$

where W is the class width and L_m is the lower bound

ex: if the median is 80 then about 50% of student achieved more than 80 and 50% achieved less than 80

8 The Mode

8.1 Discrete Data

- The mode is a data value that has the highest frequency in a data set
- If all of data values have the same frequency then there is no mode

8.2 Grouped data

- We use Modal class instead of mode in grouped data
- The modal class is the class corresponds to the highest frequency

9 The Mean

9.1 Discrete Data

• For a population

$$\mu = \frac{\sum_{i=1}^{N} X_i}{N}$$

• For a Sample

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

9.2 Grouped data

$$\mu = \frac{\sum f.X_m}{\sum f} = \frac{\sum f.X_m}{N}$$

Where X_m is the class midpoint

9.3 Weighted data

$$\mu = \frac{\sum_{i=1}^{n} W_i X_i}{\sum_{i=1}^{n} W_i}$$

10 The Standard Deviation

• For a population

$$\sigma := \sqrt{\sigma^2}$$

• For a Sample

$$S := \sqrt{S^2}$$

11 The Population Variance

11.1 Discrete Data

• For a population

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (X_{i} - \mu)^{2}}{N}$$

• For a Sample

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}$$

$$S^{2} = \frac{\sum_{i=1}^{n} X_{i}^{2} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n}}{n-1}$$

11.2 Grouped data

• For a population

$$\sigma^2 = \frac{\sum f.(X_m - \mu)^2}{\sum f}$$

• For a Sample

$$S^{2} = \frac{\sum f.X_{m}^{2} - \frac{(\sum f.X_{m})^{2}}{\sum f}}{(\sum f) - 1}$$

12 Chebyshev's Theorem

 $[\bar{x}-ks,\bar{x}+ks]$ is the smallest interval thant contains at least $(1-\frac{1}{k^2})*100\%$ of the data

4

13 Percentiles

• Sort your data values

$$\text{Percentile} = \frac{0.5 + \text{No. of values below } X}{n} * 100\%$$

• n is number of data and p is the percentile then evaluate m=n.p if m is not integer round it up and then p corresponds \mathbf{data} $\mathbf{value}[m]$ if m is integer then p corresponds the average of \mathbf{data} $\mathbf{value}[m]$ and \mathbf{data} $\mathbf{value}[m+1]$

14 Quartiles

- $Q_1 = 25^{\text{th}}$ percentile
- $Q_2 = 50^{\text{th}}$ percentile —or— median
- $Q_3 = 75^{\text{th}}$ percentile