ECE 175B: Probabilistic Reasoning and Graphical Models Lecture 4: Bayesian Belief Networks

Florian Meyer & Ken Kreutz-Delgado

Electrical and Computer Engineering Department University of California San Diego

Factorizing Joint Distributions

- Complexity of Joint Probability Distributions: Let $\mathcal{X} = \{x_1, \dots, x_N\}$ be a set of N random variables with joint pmf $P(\mathcal{X}) = P(x_1, \dots, x_N)$
 - assume each random variable x_i is categorically taking $k_i \geqslant 2$ values; how many possible values does \mathcal{X} have?
 - imagine $k_i=2$, and N=300, then at least $2^{300}-1\approx 10^{90}$ values (v.s. number of atoms in the universe $10^{78}\sim 10^{82}$)
- To address this issue we exploit the structure of P(X)
 - factorize $P(\mathcal{X})$ based on the product rule (a.k.a. chain rule) and make use of the conditional independencies that exists among the random variables x_1, \ldots, x_N
 - encode the resulting factorization of $P(\mathcal{X})$ by a directed acyclic graph (DAG) called a Bayes Network or a Belief Network (BN)

The Chain Rule

• We can factorize the joint probability distribution P(X) as product of conditional distributions

$$P(X) = P(x_1, ..., x_N)$$

$$= P(x_N | x_{N-1}, ..., x_1) \cdots P(x_j | x_{j-1}, ..., x_1) \cdots P(x_1)$$

$$= \prod_{j=1}^{N} P(x_j | x_{j-1}, ..., x_1)$$

- Note that there are N! different ways to factorizing the joint distribution (each corresponding to a permutation of x_1, \ldots, x_N)
- To simplify the notation we just relabel any permutation x_{i_1}, \ldots, x_{i_N} as $x_1 \leftarrow x_{i_1}, \ldots, x_N \leftarrow x_{i_N}$ such that we have ancestral ordering, i.e., the last distribution in the chain is always $P(x_1)$

Markov Property of Conditional Probability Distributions

- It is still equally challenging to represent the conditional probability distribution $P(x_j|x_{j-1},...,x_1)$ for a large j
- Question: Do we really need to include the whole prior set $\mathbf{pr}(x_j) = \{x_{j-1}, \dots, x_1\}$?
- Answer: If there is conditional statistical independence, we only need to consider the smaller parents set of x_j , denoted as $\mathbf{pa}(x_j)$

Markov Property of Conditional Probability Distributions

• Define the parents of x_j , denoted $\mathbf{pa}(x_j)$, to be the smallest subset of $\mathbf{pr}(x_j)$, i.e.,

$$\operatorname{\mathsf{pa}}(\mathsf{x}_i) \subset \operatorname{\mathsf{pr}}(\mathsf{x}_i) \subset \mathcal{X}$$

such that

$$P(x_j|\mathbf{pa}(x_j)) = P(x_j|\mathbf{pr}(x_j))$$

This implies that

$$x_j \perp (pr(x_j) \backslash pa(x_j)) \mid pa(x_j)$$

• Now we can write $P(\mathcal{X}) = \prod_{j=1}^{N} P(x_j | \mathbf{pa}(x_j))$ and encode this factorization by a DAG

Build a BN from the factorization of $P(\mathcal{X}) = P(x_j | \mathbf{pa}(x_j))$

Algorithm 1: Build a BN from the factorization of P(X)

Ancestral Order of a BN

• Once a BN $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is constructed corresponding to the factorization $P(\mathcal{X}) = \prod_{j=1}^N P(\mathsf{x}_j | \mathbf{pa}(\mathsf{x}_j))$, we can define \mathcal{X} -subsets of interest in terms of the corresponding subsets of \mathcal{V}

•
$$h \in \operatorname{anc}(j) \Longleftrightarrow x_h \in \operatorname{anc}(x_j)$$
 $(h < j)$
• $i \in \operatorname{pa}(j) \Longleftrightarrow x_i \in \operatorname{pa}(x_j)$ $(i < j)$
• $k \in \operatorname{child}(j) \Longleftrightarrow x_k \in \operatorname{child}(x_j)$ $(k > j)$
• $l \in \operatorname{desc}(j) \Longleftrightarrow x_l \in \operatorname{desc}(x_i)$ $(l > j)$

- Note that for x_h, x_i, x_k, x_l related as defined above, we have $h \leq i < k \leq l$, i.e., we have ancestral ordering of the nodes of the graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- Note that $\mathbf{pa}(x_j) \subseteq \mathbf{anc}(x_j) \subseteq \mathbf{pr}(x_j) \subset \mathcal{X}$ (why?) and thus $x_j \perp (\mathbf{anc}(x_j) \mathbf{pa}(x_j)) \mid \mathbf{pa}(x_j)$

- To make this clearer, define the "grand-ancestors" of x_j as $\mathbf{granc}(x_j) \triangleq \mathbf{anc}(x_j) \setminus \mathbf{pa}(x_j)$ with $\mathbf{anc}(x_j) = \mathbf{granc}(x_j) \cup \mathbf{pa}(x_j)$
- Then we get the Basic Markov Property as

$$P(x_j|pa(x_j),granc(x_j)) \iff x_j \perp granc(x_j) \mid pa(x_j)$$

• Example: In a serial chain where the index $i \in \mathcal{V}$ represents time, "tomorrow" is independent of "past" given "today"

- Note that the ancestor/descedent relationship related to x_j restricts a timeline w.r.t. x_j
 - all ancestors of x_j have at least one directed path from it to x_j
 - all descedents of x_j have at least one directed path from x_j to itself
- For nodes that do not share a directed path with x_j , we say they are "out of the timeline" of x_i

- All nodes that are out of the timeline of x_j are denoted as $\mathbf{out}(x_j)$
- The ordering of $x \in \mathbf{out}(x_j)$ w.r.t x_j is unclear

• In a directed tree, every node is "in the timeline" of every other node

- Note that in general for $x \in \mathbf{out}(x_j)$, we have $\mathbf{pa}(x) \cap \mathbf{pa}(x_j) \neq \emptyset$
- Non-empty intersections also exists for anc, child, and desc

Finding the Best BN

- Recall that for a certain joint distribution of a set of N random variables
 - there are N! rearrangements of the factorizing order
 - we can build a BN corresponding to a specific factorization
- Questions: Do all factorizations represent the same causal relationship between the random variables? Do all factorizations yield the same specification complexity of conditional probability distributions? If not, which factorization should we choose?