Optimisation in Machine Learning

▼ Lab Assignment - 3

Ayush Abrol B20AI052

```
import pandas as pd
import numpy as np
import cvxopt as cp
import cvxpy as cvx
import matplotlib.pyplot as plt
import yfinance as yf
```

Looking Daily Close Price Historical Data from 30 August,
 2021 to 30 August, 2022 for any 10 stocks.

Stocks selected: GOOG, AAPL, MS, AMZN, UBER, TSLA, NVDA, INTC, AMD, BABA

```
Adj Close
```

		Adj Close						
		AAPL	AMD	AMZN	BABA	GOOG	INTC	MS
<pre>df = data['Adj Close']</pre>								
	∠U∠ 1-	152 266730	111 320000	171 በ78506	162 220003	145 460408	52 218403	100 220172
df.he	ead()							
	• •							
		AAPL	AMD	AMZN	BABA	GOOG	INTC	MS
	Date							
	2021- 08-30	152.266739	111.320000	171.078506	162.289993	145.469498	52.218403	100.829178
	2021- 08-31	150.983948	110.720001	173.539505	166.990005	145.462006	52.334572	101.158539
	2021- 09-01	151.660172	109.989998	173.949997	173.279999	145.841995	51.957020	101.042290
	2021-		· · · · · · · · · · · · · · · · · · ·	.==	·=		=	
B = df.values								
B.shape								
(252, 10)								
df.isnull().sum()								
	AAPL	0						
	AMD	0						
	AMZN BABA	0 0						
	GOOG	0						
	INTC	0						
	MS	0						
	NVDA TSLA	0 0						
	UBER	0						
	dtype:							
Q = np.cov(B.T) # Creating a covariance matrix								
Q								
	array([[157.74377		-	21.01896287,		-	
		64.39092 391.54866		4375875, 4 291484],	10.54330095,	335.771415	544,	
		[125.09336	-		77.71547605,	250.727653	389,	
		229.59182	499, 75.6	6226151, 13	30.22328946,		-	
		742.57837	-	4834565], 1547605 57	10 13/E7010	120 626176	501	
		[121.01896 296.01481	.426, 103.0		40.13457818, 58.84568087,			

722.52832314, 173.67593213],

```
[ -74.42082694, 250.72765389,
                                           420.63647601,
                                                         711.69523388,
              253.5054141 ,
                             98.30137001,
                                           156.78364348, 557.42906608,
              267.38458803, 169.154059221,
            [ 64.39092963, 229.59182499, 296.01481426, 253.5054141 ,
              178.65881525,
                             63.05593838,
                                            96.33548689, 570.1690946,
              406.11457314,
                             97.11347355],
            [ 13.44375875,
                                           103.04531264,
                                                          98.30137001,
                            75.66226151,
              63.05593838,
                             32.01402523,
                                            36.17833517, 191.5244935,
              110.80221224,
                             37.48980898],
            [ 40.54330095, 130.22328946, 168.84568087, 156.78364348,
              96.33548689, 36.17833517,
                                            74.20824867, 291.59415384,
              200.25522591,
                             61.13232898],
            [ 335.77141544, 969.71226696,
                                           943.04805374,
                                                         557.42906608,
              570.1690946 , 191.5244935 ,
                                           291.59415384, 2366.6687094,
             1870.79552595,
                            282.71169375],
            [ 391.54866965, 742.57837965, 722.52832314,
                                                         267.38458803,
              406.11457314, 110.80221224,
                                           200.25522591, 1870.79552595,
             2279.17983157,
                            218.12060348],
            [ 23.5291484 , 121.74834565,
                                           173.67593213, 169.15405922,
               97.11347355, 37.48980898,
                                            61.13232898, 282.71169375,
              218.12060348, 66.56793673]])
c = np.array([[0] for i in range (10)])
m = -np.log(np.array([B[-1][i]/B[0][i] for i in range (10)]))
m
     array([-0.05812802, 0.22951941, 0.27620485, 0.51880609,
                                                                0.27639995,
             0.46074729, 0.16666735, 0.3610824, -0.15617936, 0.32028669])
R = 52 \#B20AI052
val = R/1000
A = np.column_stack((m, np.negative(np.identity(10, dtype = 'int'))))
b = np.array([-val]+[0]*10)
Aeq = np.array([[1]*10])
beq = np.array([[1]])
A.shape
     (10, 11)
A = A.T
A.shape
     (11, 10)
sol = cp.solvers.qp(cp.matrix(Q, tc='d'), cp.matrix(c, tc='d'), cp.matrix(A, tc='d'),
                    cp.matrix(b, tc='d'), cp.matrix(Aeq, tc='d'), cp.matrix(beq, tc='d'))
print(sol['x'])
                                                dres
                      dcost
          pcost
                                        pres
                                  gap
      0:
          3.7802e+00
                     3.5056e+00
                                 2e+01
                                        5e+00
                                               4e+00
         3.8295e+00
      1:
                     4.4471e+00 6e+00
                                        1e+00
                                               1e+00
                                  2e+01
      2:
          1.1823e+01
                     1.9949e+01
                                               9e-01
                                        1e+00
          1.7238e+01
                     3.3746e+01
                                 2e+01
                                        6e-01
                                               5e-01
```

```
4: 2.1496e+01 3.8895e+01 2e+01 4e-01 3e-01
     5: 2.9321e+01 5.0953e+01 1e+01 2e-01 2e-01
        4.0262e+01 6.3981e+01 1e+01
                                       1e-01 1e-01
     7: 7.5309e+01 7.5476e+01 7e+00 2e-02 1e-02
     8: 7.4515e+01 7.4930e+01 5e+00 9e-03 8e-03
     9: 7.5854e+01 7.5598e+01 4e-01
                                       2e-04 2e-04
    10: 7.5735e+01 7.5732e+01 5e-03 3e-06 2e-06
    11: 7.5733e+01 7.5733e+01 5e-05 3e-08 2e-08
    Optimal solution found.
     [ 9.73e-01]
     [ 6.64e-08]
     [ 2.17e-08]
    [ 3.31e-09]
     [ 4.97e-08]
     [ 2.55e-08]
     [ 2.73e-02]
     [ 3.32e-09]
     [-2.36e-09]
     [ 7.52e-08]
print("After rounding upto 5 decimal places: ")
for i in range(10):
   print(round(sol['x'][i], 5))
print("The minimum variance portfolio is: ", sol['primal objective'])
    After rounding upto 5 decimal places:
    0.97274
    0.0
    0.0
    0.0
    0.0
    0.0
    0.02726
    0.0
     -0.0
    0.0
    The minimum variance portfolio is: 75.73303129867864
```

Colab paid products - Cancel contracts here

X