Lab 8 - Parallelizing techniques (3 - parallel explore)

December 11, 2018

1 Goal

The goal of this lab is to implement a simple but non-trivial parallel algorithm.

2 Requirement

Given a directed graph, find a Hamiltonian cycle, if one exists. Use multiple threads to parallelize the search.

3 Computer Specification

• CPU: Intel Core i7-7500U, 2.90GHz

• RAM: 8 GB

• System type: 64-bit

4 Short Description of the Implementation

Algorithm - Backtracking:

- generate all possible paths starting from each node, and check each one if it is a Hamiltonian cycle
- in parallelized version we have one thread executing the backtrack for one node

Parallelization - Used the Thread class along with the ArrayBlockingQueue.

5 Performance Tests

note: by level 'x' i am referring that the graph will have x * 10 nodes

Algorithm	Level 1	Level 50	Level 100
regular linear algorithm	$2 \mathrm{ms}$	82ms	609ms
binary tree algo- rithm parallel	$0 \mathrm{ms}$	$40 \mathrm{ms}$	299ms

Throughout the tests I've put those algorithm through, the results were conclusive By parallelizing the backtracking algorithm we obtain results up to 3 times faster.

6 Conclusion

Parallelism should be used when talking about backtracking.