Progetto Reti

Matteo Guerra 924497

June 2021

0.1 Introduzione

Il progetto consiste nel realizzare un programma in linguaggio *Python* che sfruttando il concetto dei socket consenta di simulare, utilizzando l'interfaccia di loopback del proprio PC, il comportamento di un sistema di Smart Meter IoT che rilevano la temperatura e umidità del terreno in cui sono posizionati.

I 4 dispostivi (DEVICE) si collegano 1 volta al giorno con una connessione UDP verso il Gateway. Tramite questa connessione i dispositivi inviano le misure che hanno raccolto durante le 24 ore precedenti. Una volta che il Gateway ottiene tutte le misure instaura una connessione TCP verso un server centrale (Cloud)

0.2 Descrizione dei file presenti

Ho realizzato sei diversi script:

- device1.py
- device2.py
- device3.py
- device4.py
- Gateway.py
- Cloud.py

Inoltre sono presenti anche quattro file .txt che contengono le misure rilevate dai vari dispositivi

0.3 Funzionamento

In modo tale che le misure arrivino al Cloud correttamente occorre eseguire gli script nel seguente modo:

Eseguire lo script: Cloud.py in un'apposita console

```
In [1]: runfile('C:/Users/matte/Desktop/Progetto Reti 2021/Cloud.py', wdir='C:/Users/
matte/Desktop/Progetto Reti 2021')
the web server is up on port: 8080
Ready to serve...
```

Eseguire lo script: Gateway.py in un'apposita console

```
In [7]: runfile('C:/Users/matte/Desktop/Progetto Reti 2021/Gateway.py', wdir='C:/Users/matte/
Desktop/Progetto Reti 2021')
starting up on localhost port 10000
waiting to receive message from devices...
```

In seguito nella terza ed ultima console eseguiamo, uno dietro l'altro i quattro script rimanenti ovvero, gli script dei device

```
In [1]: runfile('C:/Users/matte/Desktop/Progetto Reti 2021/device1.py', wdir='C:/Users/
matte/Desktop/Progetto Reti 2021')
sending data
"ORA,TEMPERATURA,UMIDITA'
6:00,15,50
18:00,18,65
"
waiting to receive response from
received message "Misure ricevute"
tempo per inviare il pacchetto UDP: 0.0031003952026367188 sec
closing socket
```

(esempio con device1.py)

Come si può notare dopo aver ricevuto la risposta da parte del *Gateway* "Misure ricevute" il socket UDP del device1 si chiude e quindi lo script termina.

Nella console del Gateway notiamo che le misure del device1 sono arrivate correttamente e il Gateway si mette in attesa di altre misure:

```
starting up on localhost port 10000

waiting to receive message from devices...
received data from ('127.0.0.1', 49436)
ORA,TEMPERATURA,UMIDITA'
6:00,15,50
18:00,18,65

sent 15 bytes back to ('127.0.0.1', 49436)

waiting to receive message from devices...
```

Una volta che abbiamo eseguito tutti e quattro i device, nella console del

Gateway ci ritroveremo questa stampa:

```
ricevute tutte le misure dai 4 dispositivi
```

A questo punto il Gateway inizia a scambiare le informazioni con il Cloud

```
<socket.socket fd=2584, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM,
proto=0, laddr=('127.0.0.1', 8080), raddr=('127.0.0.1', 56221)> ('127.0.0.1', 56221)
192.168.1.1_device_1 - 6:00 - 15 - 50
192.168.1.1_device_1 - 18:00 - 18 - 65
192.168.1.2_device_2 - 6:00 - 16 - 60
192.168.1.2_device_2 - 18:00 - 20 - 70
192.168.1.3_device_3 - 6:00 - 10 - 40
192.168.1.3_device_3 - 18:00 - 12 - 40
192.168.1.4_device_4 - 6:00 - 21 - 65
192.168.1.4_device_4 - 18:00 - 24 - 75
```

e ci ritroviamo con questa situazione nella console del Cloud.

Infine nella console del Gateway troviamo stampato il tempo necessario per inviare e ricevere le risposte tramite TCP e le risposte del Cloud:

```
ricevute tutte le misure dai 4 dispositivi
tempo per inviare il pacchetto TCP: 0.04132390022277832 sec
b'200 OK'
b'200 OK'
b'200 OK'
b'200 OK'
```

Una volta che abbiamo eseguito tutti i passaggi correttamente, ci ritroviamo nella situazione in cui il Cloud è ancora attivo, pronto per servire altre richieste, mentre il Gateway sarà chiuso.

Quindi se il giorno seguente cambiano i valori delle misure dei device dobbiamo andare a cambiare le misure nei file .txt dei device; eseguire lo script del Gateway in una determinata console e gli script dei device in un'altra Importante è ricordarsi che le misure nelle 24 ore sono due: una alle 6:00 e una alle 18:00.

0.3.1 Ulteriori dettagli

La dimensione dei buffer per l'invio dei dati è di 4096 byte; mentre le risposte hanno un buffer di 1024 byte dato che generalmente occupano meno spazio

0.3.2 Librerie utilizzate

- \bullet socket
- sys
- \bullet time