

TECNOLOGIA EM SISTEMAS PARA INTERNET

Emanuelle Ferreira da Silva Lucas Matheus Silva Neander Wendel Nobre Teixeira

RELATÓRIO DE PRÁTICA INTEGRADA DE CIÊNCIA DE DADOS E INTELIGÊNCIA ARTIFICIAL

Brasília - DF

03/10/2020

Sumário

1. Objetivos	3
2. Descrição do problema	4
3. Desenvolvimento3.1 Código implementado	5 5
4. Considerações Finais	6
Referências	7

1. Objetivos

O projeto se encontra na fase de acréscimo de variáveis, em que o principal objetivo é desagrupar as variáveis date/time e acrescentar novas variáveis como sight datetime, weekdays,day,month da tabela da fase anterior.

2. Descrição do problema

O problema a ser desenvolvido nessa etapa do projeto consiste no acréscimo de novas variáveis como sight date(data), time(hora), weekdays(dia da semana),day(dia), month(mês) com o objetivo de organizar os dados de acordo com as suas categorias, além de ter trabalhando com a conversão da variável date/ time e o seu desagrupado.

3. Desenvolvimento

O desenvolvimento desta etapa consiste no acréscimo de novas variáveis na tabela. Utilizando o ambiente de desenvolvimento Google Colab e a biblioteca pandas e algumas funções como drop e map para o manuseio e o acréscimo das novas variáveis.

3.1 Código implementado

#5.8 Acréscimo de Variáveis

1- Carregando o arquivo df_OVNI_limpo gerado na atividade 5.7 após a limpeza dos dados em um novo data frame chamada acres_variavel.

2- Convertendo a coluna date/time por meio do pd.to_datetime, para logo em seguida divida-lá em duas colunas.

```
3 acres_variavel["Date / Time"] = pd.to_datetime(acres_variavel["Date / Time"])
```

3- Criando duas novas variáveis sight date e sight time e cessado os dados pormeio da at

```
2 acres_variavel["sight_Date"], acres_variavel["sight_Time"] = (acres_variavel["Date / Time"].dt.date, acres_variavel["Date / Time"].dt.time)
3 acres_variavel
```

Resultado do código acima.

C+		Date / Time	City	State	Shape	sight_Date	sight_Time
	0	1997-01-29 23:15:00	East Greenwich	RI	Disk	1997-01-29	23:15:00
	1	1997-01-26 22:00:00	Flagstaff	ΑZ	Light	1997-01-26	22:00:00
	2	1997-01-25 21:00:00	Marion	WI	Triangle	1997-01-25	21:00:00
	3	1997-01-24 19:00:00	Alta	UT	Other	1997-01-24	19:00:00
	4	1997-01-23 18:30:00	North Kingstown	RI	Triangle	1997-01-23	18:30:00
	88192	2017-12-01 17:00:00	New Rochelle	NY	Sphere	2017-12-01	17:00:00
	88193	2017-12-01 17:00:00	Foyil	OK	Formation	2017-12-01	17:00:00
	88194	2017-12-01 04:00:00	Chesapeake	VA	Light	2017-12-01	04:00:00
	88195	2017-12-01 04:00:00	Boise	ID	Cigar	2017-12-01	04:00:00
	88196	2017-12-01 01:00:00	Wasilla	AK	Flash	2017-12-01	01:00:00
	88197 ro	ws × 6 columns					

4-Removendo a coluna date/time da tabela por meio da função drop.

```
3 df_OVNI_preparado = acres_variavel.drop(columns=['Date / Time'],axis=1)
4 df_OVNI_preparado
5
```

Resultado do código acima com duas colunas.

D)		City	State	Shape	sight_Date	sight_Time
	0	East Greenwich	RI	Disk	1997-01-29	23:15:00
	1	Flagstaff	ΑZ	Light	1997-01-26	22:00:00
	2	Marion	WI	Triangle	1997-01-25	21:00:00
	3	Alta	UT	Other	1997-01-24	19:00:00
	4	North Kingstown	RI	Triangle	1997-01-23	18:30:00
	88192	New Rochelle	NY	Sphere	2017-12-01	17:00:00
	88193	Foyil	OK	Formation	2017-12-01	17:00:00
	88194	Chesapeake	VA	Light	2017-12-01	04:00:00
	88195	Boise	ID	Cigar	2017-12-01	04:00:00
	88196	Wasilla	AK	Flash	2017-12-01	01:00:00
	88197 ro	ws × 5 columns				

5-Criando uma nova variável para os dias da semana

```
df_OVNI_preparado["sight_Weekdays"] = (acres_variavel["Date / Time"].dt.weekday)
df_OVNI_preparado
```

Resultado do código acima com as três colunas como date, time e weekdays.

D-		City	State	Shape	sight_Date	sight_Time	sight_Weekdays
	0	East Greenwich	RI	Disk	1997-01-29	23:15:00	2
	1	Flagstaff	ΑZ	Light	1997-01-26	22:00:00	6
	2	Marion	WI	Triangle	1997-01-25	21:00:00	5
	3	Alta	UT	Other	1997-01-24	19:00:00	4
	4	North Kingstown	RI	Triangle	1997-01-23	18:30:00	3
	88192	New Rochelle	NY	Sphere	2017-12-01	17:00:00	4
	88193	Foyil	OK	Formation	2017-12-01	17:00:00	4
	88194	Chesapeake	VA	Light	2017-12-01	04:00:00	4
	88195	Boise	ID	Cigar	2017-12-01	04:00:00	4
	88196	Wasilla	AK	Flash	2017-12-01	01:00:00	4
-	88197 ro	ws × 6 col <mark>umns</mark>					

6- Adicionando os nomes dos dias da semana na coluna sight_weekdays

```
dia_semana={0:'Segunda-Feira',1:'Terça-Feira',2:'Quarta-Feira',3:'Quinta-Feira',4:'SextaFeira',5:'Sábado',6:'Domingo',}
df_OVNI_preparado["sight_Weekdays"] = acres_variavel["Date / Time"].dt.weekday.map(dia_semana)
df_OVNI_preparado
```

Resultado do código acima com as variáveis date, time e weekdays criadas.

	<u> </u>			,	· · · · · · · · · · · · · · · · · · ·	
€	City	State	Shape	sight_Date	sight_Time	sight_Weekdays
0	East Greenwich	RI	Disk	1997-01-29	23:15:00	Quarta-Feira
1	Flagstaff	AZ	Light	1997-01-26	22:00:00	Domingo
2	Marion	WI	Triangle	1997-01-25	21:00:00	Sábado
3	Alta	UT	Other	1997-01-24	19:00:00	SextaFeira
4	North Kingstown	RI	Triangle	1997-01-23	18:30:00	Quinta-Feira
88192	New Rochelle	NY	Sphere	2017-12-01	17:00:00	SextaFeira
8819	3 Foyil	OK	Formation	2017-12-01	17:00:00	SextaFeira
8819	4 Chesapeake	VA	Light	2017-12-01	04:00:00	SextaFeira
8819	5 Boise	ID	Cigar	2017-12-01	04:00:00	SextaFeira
8819	6 Wasilla	AK	Flash	2017-12-01	01:00:00	SextaFeira
88197	rows × 6 columns					

7-Criando as variáveis sight_day e month para dia e mês.

```
1 df_OVNI_preparado["sight_Day"],df_OVNI_preparado["sight_Month"] = (acres_variavel["Date / Time"].dt.day, acres_variavel["Date / Time"].dt.month)
2 df_OVNI_preparado
```

Resultado do código acima com as variáveis criadas.

8-Salvando o data frame final em um arquivo csv.

```
1 df_OVNI_preparado.to_csv("df_OVNI_preparado.csv", index=False)
```

9-Lendo o arquivo df_OVNI_preparado.csv por meio da função read_csv em um novo dataframe.

```
novo = pd.read_csv("df_OVNI_preparado.csv")
novo
```

Resultado do código acima com as variáveis criadas.

C →		City	State	Shape	sight_Date	sight_Time	sight_Weekdays	sight_Day	sight_Month
	0	East Greenwich	RI	Disk	1997-01-29	23:15:00	Quarta-Feira	29	1
	1	Flagstaff	AZ	Light	1997-01-26	22:00:00	Domingo	26	1
	2	Marion	WI	Triangle	1997-01-25	21:00:00	Sábado	25	1
	3	Alta	UT	Other	1997-01-24	19:00:00	SextaFeira	24	1
	4	North Kingstown	RI	Triangle	1997-01-23	18:30:00	Quinta-Feira	23	1
8	88192	New Rochelle	NY	Sphere	2017-12-01	17:00:00	SextaFeira	1	12
8	88193	Foyil	OK	Formation	2017-12-01	17:00:00	SextaFeira	1	12
1	88194	Chesapeake	VA	Light	2017-12-01	04:00:00	SextaFeira	1	12
8	88195	Boise	ID	Cigar	2017-12-01	04:00:00	SextaFeira	1	12
{	88196	Wasilla	AK	Flash	2017-12-01	01:00:00	SextaFeira	1	12
88	8197 ro	ws × 8 columns							

4. Considerações Finais

Por meio dessa etapa do projeto podemos concluir que é muito importante realizamos a criação de novas variáveis na tabela para a melhor análise e compreensão dos dados.

Referências

FIGUEIREDO, Vinicius. Seus Primeiros Passos com Data Scientist: Introdução ao Pandas. **Data Hackers**. São Paulo, 30 de maio de 2018. Disponível em:

https://medium.com/data-hackers/uma-introdu%C3%A7%C3%A3o-simples-ao-pandas-1e15ee a37fa1>. Acesso em: 08 de Set. de 2020.

FAMETHEMES.Biblioteca seaborn com o matplotlib. Vooo - Insights.c2020

Disponível em:https://www.vooo.pro/insights/biblioteca-seaborn-com-o-matplotlib/. Acesso em:26 de set. de 2020

MATHEUS, Yuri. Matplotlib uma biblioteca Python para gerar gráficos interessantes. **alura. São Paulo,** 27 de Novembro de 2018. Disponível em:

https://www.alura.com.br/artigos/criando-graficos-no-python-com-a-matplotlib>.Acesso em: 25 de set. de 2020.

.