Conformal prediction beyond exchangeability

Rina Foygel Barber

http://rinafb.github.io/

Collaborators

Aaditya Ramdas

Ryan Tibshirani

 Thanks to American Institute of Math (AIM) for hosting & supporting our collaboration as an AIM SQuaRE

The prediction problem

Setting:

- Training data $(X_1, Y_1), \ldots, (X_n, Y_n) \iff \text{fit model } \widehat{\mu}(X_i) \approx Y_i$
- Test point (X_{n+1}, Y_{n+1})
- If $\widehat{\mu}$ overfits to training data,

$$|Y_{n+1} - \widehat{\mu}(X_{n+1})| \gg \frac{1}{n} \sum_{i=1}^{n} |Y_i - \widehat{\mu}(X_i)|$$

even if training & test data are from the same distribution

The prediction problem

Goal: build prediction band C as a function of the training data, such that $\widehat{C}_n(X_{n+1})$ is likely to contain Y_{n+1}

- Want to be <u>distribution-free</u> —
 coverage holds w/o assumptions on distrib. of (X, Y)
- Want to be efficient minimize width of interval $\widehat{C}_n(X_{n+1})$

• Using any algorithm, fit model

$$\widehat{\mu}_{n/2} = \mathcal{A}\Big((X_1, Y_1), \dots, (X_{n/2}, Y_{n/2})\Big)$$

Compute holdout residuals

$$R_i = |Y_i - \widehat{\mu}_{n/2}(X_i)|, \quad i = n/2 + 1, \dots, n$$

• Prediction interval:

$$\widehat{C}_n(X_{n+1}) = \widehat{\mu}_{n/2}(X_{n+1}) \pm \widehat{Q}_{n/2,\alpha} \left\{ R_{n/2+1}, \dots, R_n \right\}$$

Definition: the $\lceil (1-lpha)(n/2+1) \rceil$ -th smallest value in the list

Theorem:1

If
$$\underbrace{(X_{n/2+1},Y_{n/2+1}),\dots,(X_n,Y_n)}_{\text{holdout}},\underbrace{(X_{n+1},Y_{n+1})}_{\text{test}}$$
 are i.i.d. (or exch.),
$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha.$$

¹Vovk et al 2005, Papadopoulos 2008, Lei et al. 2018

Theorem:¹

If
$$\underbrace{(X_{n/2+1},Y_{n/2+1}),\ldots,(X_n,Y_n)}_{\text{holdout}},\underbrace{(X_{n+1},Y_{n+1})}_{\text{test}}$$
 are i.i.d. (or exch.),
$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha.$$

Proof:

After conditioning on training data, holdout + test data is i.i.d. (or exch.) \Rightarrow residuals $R_{n/2+1}, \ldots, R_{n+1}$ are exchangeable

¹Vovk et al 2005, Papadopoulos 2008, Lei et al. 2018

Theorem:1

If
$$\underbrace{(X_{n/2+1},Y_{n/2+1}),\dots,(X_n,Y_n)}_{\text{holdout}},\underbrace{(X_{n+1},Y_{n+1})}_{\text{test}}$$
 are i.i.d. (or exch.),
$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha.$$

Proof:

After conditioning on training data, holdout + test data is i.i.d. (or exch.)

$$\Rightarrow$$
 residuals $R_{n/2+1}, \ldots, R_{n+1}$ are exchangeable

$$\Rightarrow \mathbb{P}\left\{R_{n+1} \leq \left(\mathsf{the}\;(1-\alpha)\mathsf{-quantile}\;\mathsf{of}\;R_{n/2+1},\ldots,R_{n+1}\right)\right\} \geq 1-\alpha$$

$$\updownarrow$$

$$R_{n+1} < \widehat{\mathbb{Q}}_{n/2} \alpha(R_{n/2+1},\ldots,R_n)$$

¹Vovk et al 2005, Papadopoulos 2008, Lei et al. 2018

Naive method vs Holdout method
$$\widehat{\mu}_n(X_{n+1}) \pm \widehat{\mathbb{Q}}_{n,\alpha}(R_i) \qquad \widehat{\mu}_{n/2}(X_{n+1}) \pm \widehat{\mathbb{Q}}_{n/2,\alpha}(R_i)$$
more accurate too small (overfitted) less accurate calibrated (but wider)

²Vovk, Gammerman, Shafer 2005

An alternative—the full conformal method:²

- Models fitted on all n training samples (no data splitting)
- Guaranteed distribution-free predictive coverage
- High computational cost

²Vovk, Gammerman, Shafer 2005

Suppose we observe training + test data:

$$(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$$

• Fit model to all n+1 data points,

$$\widehat{\mu} = \mathcal{A}((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_{n+1})),$$

& compute residuals

$$R_i = |Y_i - \widehat{\mu}(X_i)|, \ i = 1, \dots, n, \quad R_{n+1} = |Y_{n+1} - \widehat{\mu}(X_{n+1})|$$

• Check if $R_{n+1} \leq (\text{the } (1-\alpha) \text{ quantile of } R_1, \dots, R_n, R_{n+1})$

If data points are i.i.d. (or exch.), and $\mathcal A$ treats data points symmetrically, then R_1,\ldots,R_{n+1} are exchangeable

 \Rightarrow this event has $\geq 1-lpha$ probability

Suppose we observe training + test data:

$$(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, y)$$

• Fit model to all n+1 data points,

$$\widehat{\mu} = \mathcal{A}((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, \mathbf{y})),$$

& compute residuals

$$R_i = |Y_i - \widehat{\mu}(X_i)|, i = 1, ..., n, R_{n+1} = |y - \widehat{\mu}(X_{n+1})|$$

• Check if $R_{n+1} \leq (\text{the } (1-\alpha) \text{ quantile of } R_1, \dots, R_n, R_{n+1})$

If data points are i.i.d. (or exch.), and A treats data points symmetrically, then R_1, \ldots, R_{n+1} are exchangeable

 \Rightarrow this event has $\geq 1-\alpha$ probability if we plug in $y=Y_{n+1}$

• Suppose we observe training + test data:

$$(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, y)$$

ullet Fit model to all n+1 data points,

$$\widehat{\mu} = \mathcal{A}((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, y)),$$

& compute residuals

$$R_i = |Y_i - \widehat{\mu}(X_i)|, i = 1, ..., n, R_{n+1} = |y - \widehat{\mu}(X_{n+1})|$$

ullet Check if $R_{n+1} \leq ig(ext{the } (1-lpha) ext{ quantile of } R_1, \ldots, R_n, R_{n+1} ig)$

• Suppose we observe training + test data:

$$(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, y)$$

• Fit model to all n+1 data points,

$$\widehat{\mu} = \mathcal{A}((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, y)),$$

& compute residuals

$$R_i = |Y_i - \widehat{\mu}(X_i)|, i = 1, ..., n, R_{n+1} = |y - \widehat{\mu}(X_{n+1})|$$

• Check if $R_{n+1} \leq \left(\mathsf{the} \left(1 - \alpha \right) \mathsf{quantile} \; \mathsf{of} \; R_1, \ldots, R_n, R_{n+1} \right)$

 $y \overset{\widehat{\mu},\alpha}{\leadsto} \{\text{Yes}, \text{No}\}$

- In theory, need to run \mathcal{A} on $(X_1,Y_1),\ldots,(X_{n+1},y)$ for every $y\in\mathbb{R}$
- Can compute efficiently for some special cases (ridge, Lasso³)
- In practice, run on a grid of y values (can be formalized⁴)

³Lei 2017, Fast Exact Conformalization of Lasso...

⁴Chen et al 2017, Discretized conformal prediction...

Theorem:⁵

If $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$ are i.i.d. (or exchangeable), and the algorithm $\mathcal A$ that treats data points symmetrically,

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha.$$

Proof:

$$\mathbb{P}\left\{Y\in\widehat{C}_n(X_{n+1})\right\}=$$

$$\mathbb{P}\left\{\text{for test value }y=Y_{n+1},\text{ answer is Yes}\right\}\geq 1-\alpha$$

⁵Vovk, Gammerman, Shafer 2005

Theorem:⁵

If $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$ are i.i.d. (or exchangeable), and the algorithm $\mathcal A$ that treats data points symmetrically,

$$\mathbb{P}\left\{Y_{n+1}\in\widehat{C}_n(X_{n+1})\right\}\geq 1-\alpha.$$

Proof:

$$\mathbb{P}\left\{Y\in\widehat{C}_n(X_{n+1})\right\}=$$

$$\mathbb{P}\left\{\text{for test value }y=Y_{n+1},\text{ answer is Yes}\right\}\geq 1-\alpha$$

• The holdout method a.k.a. "split conformal" is a special case.

⁵Vovk, Gammerman, Shafer 2005

Related methods

Computational/statistical tradeoff:

	Holdout method (a.k.a. split conformal)	VS	Full conformal
$\#$ calls to ${\cal A}$	1		∞
Sample size used by ${\mathcal A}$	<i>n</i> /2		n

 $^{^6}$ Vovk 2015, Vovk et al 2018

⁷Barber et al 2019

Related methods

Computational/statistical tradeoff:

	Holdout method (a.k.a. split conformal)	VS	Full conformal
$\#$ calls to ${\cal A}$	1		∞
Sample size used by ${\cal A}$	<i>n</i> /2		n

A compromise—cross-validation type methods:

- Cross-conformal⁶
- Jackknife+ and CV+7

⁶Vovk 2015, Vovk et al 2018

⁷Barber et al 2019

Theory for split/full conformal (and jackknife+ etc) relies on:

- 1. $(X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$ are exchangeable (e.g., i.i.d.)
- 2. Regression algorithm ${\cal A}$ treats input data points symmetrically

Why? Need exchangeability of residuals when we plug in $y = Y_{n+1}$:

```
• Fit model to all n+1 data points, \widehat{\mu}=\mathcal{A}((X_1,Y_1),\dots,(X_n,Y_n),(X_{n+1},\textbf{y})), & compute residuals R_i=|Y_i-\widehat{\mu}(X_i)|,\ i=1,\dots,n,\quad R_{n+1}=|\textbf{y}-\widehat{\mu}(X_{n+1})|
```

Challenges in practice:

- 1. $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$ may be nonexchangeable (e.g., distribution drift, dependence over time, ...)
- 2. May want to choose \mathcal{A} that treats data nonsymmetrically (e.g., weighted regression, ...)

Inspired by Vladimir Vovk's talk at IFDS MADlab workshop 2021:

- ELEC2 data set tracking electricity demand in Australia
- Run conformal at each time point
- Under exchangeability, the process in the figure should be mean-zero

Exchangeability
$$\iff$$
 (X_{n+1}, Y_{n+1}) is a random draw from empirical distribution $\frac{1}{n+1} \sum_{i=1}^{n+1} \delta_{(X_i, Y_i)}$ $\delta_z = \text{point mass at } z$

Exchangeability
$$\iff$$
 (X_{n+1}, Y_{n+1}) is a random draw from empirical distribution $\frac{1}{n+1} \sum_{i=1}^{n+1} \delta_{(X_i, Y_i)}$ $\delta_z = \text{point mass at } z$

Intuitively, with distribution drift, can we approximate (X_{n+1}, Y_{n+1}) as a random draw from $\sum_{i=1}^{n+1} w_i \cdot \delta_{(X_i, Y_i)}$?

weights
$$w_{n+1} \geq w_n \geq \cdots \geq w_1 \geq 0$$
 with $\sum_i w_i = 1$

In practice, using weights appears to correct for nonexchangeability:

In theory, using weights seems to violate the exchangeability argument.

• Under exchangeability, the key step in the proof:

$$\mathbb{P}\left\{R_{n+1} \leq \widehat{\mathsf{Q}}_{1-\alpha}\left(\frac{1}{n+1}\sum_{i=1}^{n+1}\delta_{R_i}\right)\right\} = \mathbb{P}\left\{R_k \leq \widehat{\mathsf{Q}}_{1-\alpha}\left(\frac{1}{n+1}\sum_{i=1}^{n+1}\delta_{R_i}\right)\right\}$$

In theory, using weights seems to violate the exchangeability argument.

• Under exchangeability, the key step in the proof:

$$\mathbb{P}\left\{R_{n+1} \leq \widehat{Q}_{1-\alpha}\left(\frac{1}{n+1}\sum_{i=1}^{n+1}\delta_{R_i}\right)\right\} = \mathbb{P}\left\{R_k \leq \widehat{Q}_{1-\alpha}\left(\frac{1}{n+1}\sum_{i=1}^{n+1}\delta_{R_i}\right)\right\}$$

But with weights...

$$\mathbb{P}\left\{R_{n+1} \leq \widehat{Q}_{1-\alpha}\left(\sum_{i=1}^{n+1} w_i \cdot \delta_{R_i}\right)\right\} \stackrel{???}{=} \mathbb{P}\left\{R_k \leq \widehat{Q}_{1-\alpha}\left(\sum_{i=1}^{n+1} w_i \cdot \delta_{R_i}\right)\right\}$$

Even if the data points (X_i, Y_i) are exchangeable,

- $w_i \not\equiv \frac{1}{n+1} \leadsto \widehat{\mathbb{Q}}_{1-\alpha}(...)$ is not symmetric function of the R_i 's
- If also A treats data nonsymmetrically $\rightsquigarrow R_i$'s not exch.

Aims

Our aim is to construct a procedure that...

- Uses weighted quantiles to be more robust to distribution drift etc
- Allows for nonsymmetric algorithms, for a more accurate model
- Guarantees exact coverage (if data is in fact exchangeable)
- Guarantees bounded loss of coverage (if data has bounded violation of exchangeability)

nexCP method (symmetric algorithm case):

• Suppose we observe training + test data:

$$(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, y)$$

• Fit model to all n+1 data points,

$$\widehat{\mu} = \mathcal{A}((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, y)),$$

& compute residuals

$$R_i = |Y_i - \widehat{\mu}(X_i)|, \ i = 1, \dots, n, \quad R_{n+1} = |y - \widehat{\mu}(X_{n+1})|$$

- Check if $R_{n+1} \leq (\text{the } (1-\alpha) \text{ quantile of } \sum_{i=1}^{n+1} \mathbf{w}_i \cdot \delta_{R_i})$
- $\widehat{C}_n(X_{n+1}) = \{ \text{all } y \in \mathbb{R} \text{ for which the above holds} \}$

nexCP method (general algorithm case):

• Suppose we observe training + test data:

$$(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, y)$$

• Fit model to all n+1 data points,

$$\widehat{\mu} = \mathcal{A}((X_1, Y_1), \dots, \underbrace{(X_{n+1}, y)}_{\text{in position } K}, \dots, (X_n, Y_n), (X_K, Y_K)),$$

for a random index $K \sim \sum_{i=1}^{n+1} w_i \cdot \delta_i$,

& compute residuals

$$R_i = |Y_i - \widehat{\mu}(X_i)|, i = 1, ..., n, R_{n+1} = |y - \widehat{\mu}(X_{n+1})|$$

- Check if $R_{n+1} \leq (\text{the } (1-\alpha) \text{ quantile of } \sum_{i=1}^{n+1} \mathbf{w}_i \cdot \delta_{R_i})$
- $\widehat{C}_n(X_{n+1}) = \{ \text{all } y \in \mathbb{R} \text{ for which the above holds} \}$

Extensions — can define analogous nonexchangeable versions of:

- ullet Split conformal (note: symmetry of ${\cal A}$ doesn't matter for this case)
- Jackknife+ and CV+

Note—our methods require the weights w_1, \ldots, w_{n+1} to be fixed.

This is very different from weighted conformal prediction, where data-dependent weights $w_i = w(X_i)$ are used as an exact correction for covariate shift⁸

⁸Tibshirani et al 2019; Candès, Lei, Ren 2021; Lei & Candès 2021

Empirical results

Compare 3 methods:

- 1. **CP+LS**: conformal prediction with A =least squares
- 2. **nexCP+LS**: nonexch. conformal prediction with $w_i \propto 0.99^{-i}$, with $\mathcal{A} = \text{least squares}$
- 3. **nexCP+WLS**: nonexch. conformal prediction with $w_i \propto 0.99^{-i}$, with $\mathcal{A}=$ weighted least squares with weights $\propto 0.99^{-i}$

Empirical results

Simulated data

Empirical results

Real data — the ELEC2 dataset⁹

 $^{^9 \}mathrm{Harries}$ 1999; $\mathrm{https://www.kaggle.com/yashsharan/the-elec2-dataset}$

Theoretical guarantee

Theorem: Let $w_1, \ldots, w_{n+1} \ge 0$ be fixed, with

$$\sum_{i} w_i = 1, \quad w_{n+1} = \max_{i} w_i.$$

Then nonexchangeable conformal prediction satisfies

$$\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_n(X_{n+1})\right\} \geq 1 - \alpha - \sum_{k=1}^n w_k \cdot \mathsf{d}_{\mathsf{TV}}\big(R(\mathsf{data}), R(\mathsf{data}_{\mathsf{swap}(k)})\big)$$

- $R(\mathsf{data}) = (|Y_1 \widehat{\mu}(X_1)|, \dots, |Y_{n+1} \widehat{\mu}(X_{n+1})|)$ for $\widehat{\mu} = \mathcal{A}((X_1, Y_1), \dots, (X_{n+1}, Y_{n+1}))$
- data_{swap(k)} = data with points k and n+1 swapped

Theoretical guarantee

Implications:

- If (X_i, Y_i) are i.i.d. (or exch.), $\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_n(X_{n+1})\right\} \geq 1 \alpha$
- If (X_i, Y_i) are independent, then

$$\mathbb{P}\left\{Y_{n+1} \in \widehat{C}_n(X_{n+1})\right\} \ge 1 - \alpha - 2\sum_i w_i \cdot \mathsf{d}_{\mathsf{TV}}((X_i, Y_i), (X_{n+1}, Y_{n+1}))$$

Proof sketch — exchangeable case

Suppose we generate exchangeable $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$, then swap data points n+1 and K for $K \sim \sum_i w_i \cdot \delta_i$

After observing the swapped data set, which is the original test point?

• Since the data is exchangeable, $\mathbb{P}\left\{K=i\mid (\mathsf{swapped\ data})\right\} = \mathbb{P}\left\{K=i\right\} = w_i$

Proof sketch — exchangeable case

Suppose we generate exchangeable $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}),$ then swap data points n+1 and K for $K \sim \sum_i w_i \cdot \delta_i$

After observing the swapped data set, which is the original test point?

- Since the data is exchangeable, $\mathbb{P}\left\{K=i\mid (\mathsf{swapped\ data})\right\}=\mathbb{P}\left\{K=i\right\}=w_i$
- Equivalently, can view R_{n+1} as a draw from $\sum_i w_i \delta_{R(\mathsf{data}_{\mathsf{swap}(K)})_i}$

$$\Rightarrow \mathbb{P}\left\{R_{n+1} \leq \left(\mathsf{the}\; (1-lpha)\mathsf{-quantile}\; \mathsf{of}\; \sum_i w_i \delta_{R(\mathsf{data}_{\mathsf{swap}(K)})_i}\right)\right\} \geq 1-lpha$$

Proof sketch — general case

Suppose we generate nonexchangeable $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}),$ then swap data points n+1 and K for $K \sim \sum_i w_i \cdot \delta_i$

After observing the swapped data set, which is the original test point?

- For exchangeable data, $\mathbb{P}\{K=i \mid (\text{swapped data})\} = w_i$
- In general, distrib. of K|(swapped data) is $\approx \sum_i w_i \cdot \delta_i$
- $d_{\mathsf{TV}}\Big((\mathsf{data}, K), (\mathsf{data}_{\mathsf{swap}(K)}, K)\Big) \leq \sum_i w_i d_{\mathsf{TV}}(\mathsf{data}, \mathsf{data}_{\mathsf{swap}(k)})$

Permutation tests for testing

$$H_0: X = (X_1, \dots, X_n)$$
 is exchangeable

with a test statistic
$$T(X) = T(X_1, ..., X_n)$$

A valid p-value, for any subgroup $G \subseteq S_n$:¹⁰

$$P = \frac{\sum_{\sigma \in G} \mathbb{1}\{T(X_{\sigma}) \geq T(X)\}}{|G|}.$$

¹⁰Hemerik & Goeman 2018

Permutation tests for testing

$$H_0: X = (X_1, \dots, X_n)$$
 is exchangeable

with a test statistic $T(X) = T(X_1, ..., X_n)$

A valid p-value, for any subgroup $G \subseteq \mathcal{S}_n$:¹⁰

$$P = \frac{\sum_{\sigma \in G} \mathbb{1}\{T(X_{\sigma}) \geq T(X)\}}{|G|}.$$

For a subset $S \subset S_n$ that is not a subgroup, this p-value is *not* valid:

$$P = \frac{\sum_{\sigma \in S} \mathbb{1}\{T(X_{\sigma}) \geq T(X)\}}{|S|}.$$

¹⁰Hemerik & Goeman 2018

Example:

- n = 4
- *S* contains 3 permutations:

Identity,
$$1 \leftrightarrow 3 \& 2 \leftrightarrow 4$$
, $1 \leftrightarrow 4 \& 2 \leftrightarrow 3$

• Test statistic $T(X) = T(X_1, X_2, X_3, X_4) = X_1 + X_2$

Example:

- n = 4
- *S* contains 3 permutations:

Identity,
$$1 \leftrightarrow 3 \& 2 \leftrightarrow 4$$
, $1 \leftrightarrow 4 \& 2 \leftrightarrow 3$

- Test statistic $T(X) = T(X_1, X_2, X_3, X_4) = X_1 + X_2$
- Calculate p-value:

$$P = \frac{1 + \mathbb{1}\{T(X_3, X_4, X_1, X_2) \ge T(X)\} + \mathbb{1}\{T(X_4, X_3, X_2, X_1) \ge T(X)\}}{3}$$

$$= \begin{cases} \frac{1}{3}, & X_1 + X_2 > X_3 + X_4, \\ 1, & \text{otherwise} \end{cases}$$

$$\Rightarrow$$
 can have $\mathbb{P}\left\{P \leq \frac{1}{3}\right\} = \frac{1}{2}$

Theorem: Let $S \subseteq S_n$ be an arbitrary subset, and let $\sigma_* \in S$ be drawn uniformly at random. Then

$$P = \frac{\sum_{\sigma \in S} \mathbb{1}\{T(X_{\sigma \circ \sigma_*^{-1}}) \ge T(X)\}}{|S|}$$

is a valid p-value.

A related result—Besag & Clifford's "parallel" construction for exchangeable samples from an MCMC^{11}

¹¹Besag & Clifford 1989

Theorem: Let $S \subseteq S_n$ be an arbitrary subset, and let $\sigma_* \in S$ be drawn uniformly at random. Then

$$P = \frac{\sum_{\sigma \in \mathcal{S}} \mathbb{1}\{T(X_{\sigma \circ \sigma_*^{-1}}) \ge T(X)\}}{|\mathcal{S}|}$$

is a valid p-value.

A related result—Besag & Clifford's "parallel" construction for exchangeable samples from an MCMC¹¹

Connection to nonexchangeable conformal prediction:

- swap random K with n+1 before running $\mathcal{A} \longleftrightarrow$ applying σ_*^{-1}
- compare R_{n+1} vs $\sum_i w_i \cdot \delta_{R_i} \longleftrightarrow$ compare T(X) vs $T(X_{\sigma \circ \sigma_*^{-1}})$'s

¹¹Besag & Clifford 1989

Summary

- If we use fixed w_i's, no loss of coverage under exchangeability (via a new exchangeability proof technique), and robustness to violations of exchangeability
- If we also want to use a nonsymmetric algorithm, get the same coverage guarantee with a randomization step (swap (X_K, Y_K) with (X_{n+1}, Y_{n+1}) before running \mathcal{A})
 - Conformal prediction methods can now be applied to nonstationary data; models with a drift term or an autoregressive term; etc

Open questions

- Can we check robustness for a particular data set / distrib.? (i.e., if $w_i \propto \rho^{-i}$, how to tune ρ ?)
- Can we use data-dependent w_i 's? (e.g., w_i depends on distance(X_i, X_{n+1}))
- How to perform inference on multiple models / streaming data / other settings?