

FAST CMOS 16-BIT BUS TRANSCEIVER/ REGISTER (3-STATE)

IDT74FCT162646AT/CT

FEATURES:

- 0.5 MICRON CMOS Technology
- · High-speed, low-power CMOS replacement for ABT functions
- Typical tsk(o) (Output Skew) < 250ps
- Low input and output leakage –1µA (max.)
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 5V ±10%
- Balanced Output Drivers (±24mA)
- · Reduced system switching noise
- Typical Volp (Output Ground Bounce) < 1V at Vcc = 5V, TA = 25°C
- · Available in SSOP, TSSOP, and TVSOP packages

DESCRIPTION:

The FCT162646T 16-bit registered transceivers are built using advanced dual metal CMOS technology. These high-speed, low-power devices are organized as two independent 8-bit bus transceivers with 3-state D-type registers. The control circuitry is organized for multiplexed transmission of data between A bus and B bus either directly or from the internal storage registers. Each 8-bit transceiver/register features direction control (xDIR), over-riding Output Enable control (x $\overline{\text{OE}}$) and Select lines (xSAB and xSBA) to select either real-time data or stored data. Separate clock inputs are provided for A and B port registers. Data on the A or B data bus, or both, can be stored in the internal registers by the low-to-high transitions at the appropriate clock pins. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

The FCT162646T has balanced output drive with current limiting resistors. This offers low ground bounce, minimal undershoot, and controlled output fall times—reducing the need for external series terminating resistors. The FCT162646T is a plug-in replacement for the FCT16646T and ABT16646 for on-board bus interface applications.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

APRIL 2002

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	–0.5 to 7	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-60 to +120	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. All device terminals except FCT162XXX Output and I/O terminals.
- 3. Output and I/O terminals for FCT162XXX.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	3.5	6	pF
CI/O	I/O Capacitance	Vout = 0V	3.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description	
xAx	Data Register A Inputs	
	Data Register B Outputs	
хВх	Data Register B Inputs	
	Data Register A Outputs	
xCLKAB, xCLKBA	Clock Pulse Inputs	
xSAB, xSBA	Output Data Source Select Inputs	
xDIR, x OE	Output Enable Inputs	

FUNCTION TABLE(2)

	Inputs						a I/O ⁽¹⁾	
χŌĒ	xDIR	xCLKAB	xCLKBA	xSAB	xSBA	xAx	xBx	Operation or Function
Н	Х	H or L	H or L	Х	Х	Input	Input	Isolation
Н	Х	↑	↑	Х	X			Store A and B Data
L	L	Х	Х	Х	L	Output	Input	Real Time B Data to A Bus
L	L	Х	H or L	X	Н			Stored B Data to A Bus
L	Н	Х	Х	L	Х	Input	Output	Real Time A Data to B Bus
L	Н	H or L	Х	Н	X			Stored A Data to B Bus

- 1. The data output functions may be enabled or disabled by various signals at the xOE or xDIR inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition on the clock inputs.
- 2. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - ↑ = LOW-to-HIGH Transition

Real-Time Transfer Bus B to A

Real-Time Transfer Bus A to B

Storage From A and/or B

Transfer Stored Data to A and/or B

NOTE:

1. Cannot transfer data to A bus and B bus simultaneously.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: TA = -40°C to +85°C, Vcc = $5.0V \pm 10\%$

Symbol	Parameter	Test Condit	ions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level		2	_	_	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		_	_	0.8	V
Іін	Input HIGH Current (Input pins)(4)	Vcc = Max.	VI = VCC	_	_	±1	μA
	Input HIGH Current (I/O pins)(4)	-		_	_	±1	
lıL	Input LOW Current (Input pins)(4)		Vı = GND	_	_	±1	
	Input LOW Current (I/O pins)(4)			_	_	±1	
lozн	High Impedance Output Current	Vcc = Max.	Vo = 2.7V	_	_	±1	μA
lozL	(3-State Output pins) ⁽⁴⁾	Vo = 0.5V		_	_	±1	
VIK	Clamp Diode Voltage	Vcc = Min., IIN = -18mA		_	-0.7	-1.2	V
los	Short Circuit Current	Vcc = Max., Vo = GND ⁽³⁾		-80	-140	-250	mA
VH	Input Hysteresis	_		_	100	_	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	Vcc = Max. Vin = GND or Vcc		_	5	500	μA

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
IODL	Output LOW Current	$VCC = 5V$, $VIN = VIH or VIL$, $VO = 1.5V^{(3)}$		60	115	200	mA
lodh	Output HIGH Current	VCC = 5V, VIN = VIH or VIL,	Vcc = 5V, Vin = Vih or Vil, Vo = 1.5V ⁽³⁾		–115	-200	mA
Voн	Output HIGH Voltage	Vcc = Min.	Iон = –24mA	2.4	3.3	_	V
		VIN = VIH or VIL					
Vol	Output LOW Voltage	Vcc = Min.	IoL = 24mA	_	0.3	0.55	V
		VIN = VIH or VIL					

- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. The test limit for this parameter is $\pm 5\mu A$ at TA = $-55^{\circ}C$.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Condition	ons ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	$V_{CC} = Max.$ $V_{IN} = 3.4V^{(3)}$			0.5	1.5	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open xDIR = xOE = GND One Input Togging 50% Duty Cycle	VIN = VCC VIN = GND		75	120	μΑ/ MHz
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fcP = 10MHz (xCLKBA) 50% Duty Cycle	VIN = VCC VIN = GND	_	0.8	1.7	mA
		xDIR = xOE = GND One Bit Toggling fi = 5MHz 50% Duty Cycle	VIN = 3.4V VIN = GND	_	1.3	3.2	
		Vcc = Max. Outputs Open fcP = 10MHz (xCLKBA) 50% Duty Cycle	VIN = VCC VIN = GND	_	3.8	6.5 ⁽⁵⁾	
		xDIR = x OE = GND Sixteen Bits Toggling fi = 2.5MHz 50% Duty Cycle	VIN = 3.4V VIN = GND	_	8.3	20 ⁽⁵⁾	

- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V). All other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - IC = ICC + Δ ICC DHNT + ICCD (fCPNCP/2 + fiNi)
 - Icc = Quiescent Current (IccL, IccH and Iccz)
 - △Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)
 - DH = Duty Cycle for TTL Inputs High
 - NT = Number of TTL Inputs at DH
 - ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)
 - fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
 - NCP = Number of Clock Inputs at fCP
 - fi = Input Frequency
 - Ni = Number of Inputs at fi

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			FCT16	2646AT	FCT16	2646CT	
Symbol	Parameter	Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
t PLH	Propagation Delay	CL = 50pF	2	6.3	1.5	4.3	ns
tPHL	Bus to Bus	$RL = 500\Omega$					
tpzh	Output Enable Time		2	9.8	1.5	4.8	ns
tpzl	xDIR or xOE to Bus						
tpHZ	Output Disable Time		2	6.3	1.5	4.3	ns
tPLZ	xDIR or xOE to Bus						
t PLH	Propagation Delay		2	6.3	1.5	3.8	ns
tphL	Clock to Bus						
t PLH	Propagation Delay		2	7.7	1.5	4.2	ns
t _{PHL}	xSBA or xSAB to Bus						
tsu	Set-up Time HIGH or LOW Bus to Clock		2	_	2	_	ns
1H	Hold Time HIGH or LOW Bus to Clock		1.5	_	0	_	ns
tw	Clock Pulse Width HIGH or LOW		5	_	3	_	ns
tSK(o)	Output Skew ⁽³⁾		_	0.5	_	0.5	ns

- 1. See test circuits and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

TEST CIRCUITS AND WAVEFORMS

Test Circuits for All Outputs

Set-up, Hold, and Release Times

Propagation Delay

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

Enable and Disable Times

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.

ORDERING INFORMATION

DATA SHEET DOCUMENT HISTORY

1/21/2002 Removed Military temp grade 3/28/2002 Removed standard speed grade

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com for Tech Support: logichelp@idt.com (408) 654-6459