- **C** 23. Suppose F is on \overline{PQ} and $PF = \frac{3}{8}PQ$. If $P = (x_1, y_1)$ and $Q = (x_2, y_2)$, where $x_1 < x_2$, find the coordinates of F. (*Hint*: See Exercise 22.)
 - **24.** Given points P(2, 1) and D(7, 11), find the coordinates of a point T on \overline{PD} such that $\frac{PT}{TD} = \frac{2}{3}$.

Self-Test 1

For each pair of points find (a) the distance between the two points and (b) the midpoint of the segment that joins the two points.

2.
$$(8, -6)$$
 and $(0, 0)$

3.
$$(-2, 7)$$
 and $(8, -3)$

4.
$$(-3, 2)$$
 and $(-5, 7)$

Write an equation of the circle described.

- 5. Center at the origin; radius 9
- **6.** Center (-1, 2); radius 5
- 7. Find the center and the radius of the circle $(x + 2)^2 + (y 3)^2 = 36$.

Find the slope of the line through the points named.

9.
$$(-4, 2)$$
 and $(1, -1)$

- 10. For which is slope *not* defined, a horizontal line or a vertical line?
- 11. Given P(3, -2) and Q(5, 2), find:
 - **a.** the slope of any line parallel to \overrightarrow{PQ}
 - **b.** the slope of any line perpendicular to \overrightarrow{PQ}
- 12. Name each vector as an ordered pair.

$$\mathbf{a}$$
. \overrightarrow{AB}

b. \overrightarrow{CD}

c. \overrightarrow{FE}

- 13. Find the magnitude of each vector in Exercise 12.
- 14. Complete.

a.
$$(-3, 2) + (7, -11) = \frac{?}{}$$

b.
$$3(4, -1) + (-2)(-5, 3) = \frac{?}{}$$

15. If M(-3, 7) is the midpoint of \overline{PQ} , where P has coordinates (9, -4), find the coordinates of Q.

Exs. 12, 13