PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-256129

(43)Date of publication of application: 11.09.2002

(51)Int.CI.

CO8L 33/14 CO8F 2/24 CO8K 3/00 CO8L 33/24 CO8L101/00 HO1G 9/00 HO1G 9/04 HO1G 9/058 HO1M 4/04 HO1M 4/62

(21)Application number : 2001-324628

(71)Applicant: SANYO CHEM IND LTD

(22)Date of filing:

23.10.2001

(72)Inventor: UENO YOSHIYUKI

MURAHASHI TOMOYUKI YAMADA KATSUNORI

(30)Priority

Priority number : 2000343133

Priority date: 10.11.2000

Priority country: JP

2000394467

26.12.2000

JP

(54) BINDER FOR ELECTRODE OF ELECTROCHEMICAL ELEMENT AND PRODUCTION METHOD FOR ELECTRODE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a binder which gives an electrode material dispersion which is excellent in applicability and hardly makes streaks on a coated surface; an electrode material dispersion containing the same; an electrode; and an electrochemical element using the electrode.

SOLUTION: The binder for an electrode of an electrochemical element comprises (A) a vinyl-polymer-based thermally reversible thickener of which the hydrophilicity and hydrophobicity reversibly change into each other at a certain transition temperature (T° C) and (B) a water-dispersible binder resin. The electrode material dispersion for an electrochemical element contains the binder and an electrode material. The method for producing an electrode of an electrochemical element is characterized in that an electrode material dispersion for an electrochemical element containing a binder comprising a vinyl-polymer-based thermally reversible thickener (A) of which the hydrophilicity and

hydrophobicity reversibly change into each other at a certain transition temperature (T° C) and (B) a water-dispersible binder resin is poured into a mold or applied to a substrate at a

temperature 5° C lower than the transition temperature (T° C) and then is dried at a temperature higher than the transition temperature. The electrochemical element has an electrode prepared from the electrode material dispersion.

LEGAL STATUS

[Date of request for examination]

19.10.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(51) Int.Cl.7

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-256129 (P2002-256129A)

テーマコード(参考)

(43)公開日 平成14年9月11日(2002.9.11)

CO8L 33/14		C 0 8 L 33/14 4 J 0 0 2
C08F 2/24		C 0 8 F 2/24 A 4 J 0 1 1
C 0 8 K 3/00		C 0 8 K 3/00 5 H 0 5 O
C 0 8 L 33/24		C 0 8 L 33/24
101/00		101/00
	審查請求	未請求 請求項の数18 OL (全 19 頁) 最終頁に続く
(21)出願番号	特顧2001-324628(P2001-324628)	(71)出顧人 000002288
		三群化成工業株式会社
(22)出顧日	平成13年10月23日(2001.10.23)	京都府京都市東山区一橋野本町11番地の1
		(72) 発明者 上野 義之
(31)優先権主張番号	特顧2000-343133 (P2000-343133)	京都市東山区一橋野本町11番地の1 三洋
(32)優先日	平成12年11月10日(2000.11.10)	化成工業株式会社内
(33)優先権主張国	日本(JP)	(72)発明者 村橋 智至
(31)優先権主張番号	特願2000-394467 (P2000-394467)	京都市東山区一橋野本町11番地の1 三洋
(32) 優先日	平成12年12月26日 (2000, 12, 26)	化成工業株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者 山田 勝典
		京都市東山区一橋野本町11番地の1 三洋
		化成工業株式会社内
		最終頁に続く

FΙ

(54) 【発明の名称】 電気化学素子の電極用結合剤および電極の製造方法

識別記号

(57)【要約】 (修正有)

【課題】 塗工適性に優れており、塗工面にストリーク (スジ) などが発生しにくい電極材料分散液が得られる 結合剤、電極材料分散液、電極およびそれを用いた電気 化学素子を提供する。

【解決手段】 一定の転移温度(T℃)で親水性と疎水性が可逆的に変化するビニル重合体系熱可逆性増粘剤(A)と水分散性バインダー樹脂(B)からなる電気化学素子の電極用結合剤;該結合剤と電極材料を含有する電気化学素子用電極材料分散液;一定の転移温度(T℃)で親水性と疎水性が可逆的に変化するビニル重合系熱可逆性増粘剤(A)と水分散性バインダー樹脂(B)からなる結合剤を含む電気化学素子用電極材料分散液を、転移温度(T℃)よりも5℃以上低い温度で、型に注型あるいは基材に塗工した後、転移温度より高い温度で乾燥することを特徴とする電気化学素子の電極の製造方法;並びに該電極材料分散液から形成された電極を有する電気化学素子;である。

【特許請求の範囲】

【請求項1】 一定の転移温度 (T℃) で親水性と疎水性が可逆的に変化するビニル重合体系熱可逆性増粘剤 (A) と水分散性バインダー樹脂 (B) からなる電気化学素子の電極用結合剤。

【請求項2】 (A)が、環状アミンのアルキレンオキシド付加物の(メタ)アクリル酸エステル、炭素数5以上の非環状アミンのアルキレンオキシド付加物の(メタ)アクリル酸エステル、Nーアルキルもしくはアルコキシアルキル(メタ)アクリルアミド、N,Nージーアルキ10ルもしくはジーアルコキシアルキル(メタ)アクリルアミド、およびNー(メタ)アクリロイル複素環アミンからなる群から選ばれる含窒素アクリル系単量体の少なくとも1種を必須単量体とする(共)重合体の1種以上である請求項1記載の結合剤

【請求項3】 (B) が、ビニル重合系樹脂(B1)、ウレタン樹脂(B2)、ポリエステル樹脂(B3)、ポリアミド樹脂(B4)、エポキシ樹脂(B5)およびポリエーテル樹脂(B6)からなる群から選ばれる1種以上である請求項1または2記載の結合剤。

【請求項4】 (B1)が、(メタ)アクリル酸エステル系単量体、(メタ)アクリルアミド系単量体、シアノ基含有単量体、スチレン系単量体、ジエン系単量体、ア*

*ルケニルエステル系単量体、エポキシ基含有単量体、モノオレフィン類、ハロゲン原子含有単量体、複素環含有単量体、不飽和二塩基酸ジアルキルエステル系単量体、シリル基含有単量体、アニオン性単量体、およびカチオン性単量体からなる群から選ばれるビニル単量体の少なくとも1種以上からなる(共)重合体である請求項3記載の結合剤。

【請求項5】 (B1)の少なくとも一部がフッ素原子 含有単量体単位を有する樹脂(B12)である請求項3 または4記載の結合剤。

【請求項6】 (B1) の少なくとも一部が側鎖にフルオロアルキル基を有する樹脂である請求項3~5のいずれか記載の結合剤。

【請求項7】 (B) からなる水分散液の水相での界面 活性剤量が 0. 01ミリモル/g (樹脂)以下である請求項 1~6のいずれか記載の結合剤。

【請求項8】 (B1) からなる水分散液が、重合性乳化剤(d) を用いて得られる樹脂ラテックスである請求項 $1\sim7$ のいずれか記載の結合剤。

20 【請求項9】 (d) が下記一般式(1) で示される請求項7記載の結合剤。

【化1】

[式中、Arは芳香環、R'は水素原子またはメチル基、R'およびR'は1価炭化水素基であって、m個のR'およびn個のR'のうち少なくとも1つは芳香環を有す 30 る炭化水素基である。mおよびnはm+nの平均が1~8となる0または1~5の整数、Xは共有結合、アルキレン基、アルキリデン基、アリールアルキリデン基、酸素原子、硫黄原子、スルホニル基、ビストリフルオロメチルメチレン基もしくはカルボニル基、Mはカチオン、Aは炭素数2~4のアルキレン基、pおよび q は p + q の平均が2~80となる1または2~40の整数を示す。]

【請求項10】 (A) と(B) の固形分合計重量に基づいて(A) を0.001~30重量%の割合で含有す 40 る請求項1~9のいずれか記載の結合剤。

【請求項11】 さらに水溶性高分子(C)を含有する 請求項 $1\sim10$ のいずれか記載の結合剤。

【請求項12】 (C)が、ポリビニルアルコール及びその変性体、(メタ)アクリルアミドおよび/または(メタ)アクリル酸塩の(共)重合体、スチレンーマレイン酸塩共重合体、ポリアクリルアミドのマンニッヒ変性体、ホルマリン縮合型樹脂、ポリアミドポリアミンもしくはジアルキルアミンーエピクロルヒドリン共重合体、ポリエチレンイミン、並びに天然高分子もしくはそ 50

の誘導体からなる群から選ばれる1種以上である請求項 11記載の結合剤。

【請求項13】 請求項1~12のいずれか記載の結合 剤と電極材料を含有する電気化学素子用電極材料分散 液。

【請求項14】 一定の転移温度(T℃)で親水性と疎水性が可逆的に変化するビニル重合体系熱可逆性増粘剤(A)と水分散性バインダー樹脂(B)および必要により水溶性高分子(C)並びに電極材料を含有する電気化学素子用電極材料分散液。

【請求項15】 電極材料が、遷移金属のカルコゲン化合物、水素吸蔵合金、炭素系材料、パラジウムもしくはその塩、並びに導電性高分子からなる群から選ばれる1種以上である請求項13または14記載の電極材料分散液。

【請求項16】 一次電池、二次電池、アルミ電解コンデンサまたは電気二重層キャパシタの電極用である請求項13~15のいずれか記載の分散液。

【請求項17】 請求項13~15のいずれか記載の電極材料分散液を、転移温度(T^{\mathbb{C}})よりも10 $^{\mathbb{C}}$ 以上低い温度で、型に注型あるいは基材に塗工した後、転移温度(T^{\mathbb{C}})よりも高い温度で乾燥することを特徴とする電気化学素子の電極の製造方法。

【請求項18】 請求項13~15のいずれか記載の電極材料分散液から形成された電極を有する一次電池、二次電池、アルミ電解コンデンサまたは電気二重層キャパシタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は電気化学素子の電極用結合剤に関し、さらに詳しくは一次電池、二次電池、アルミ電解コンデンサおよび電気二重層キャパシタなどの電気化学素子の電極用結合剤、電気化学素子の電極材 10料分散液、電気化学素子の電極の製造方法、および電気化学素子に関する。

[0002]

【従来の技術】従来、電気化学素子の電極用結合剤としては、例えば、電気化学素子の電極に充分な空隙を持たせるために、水系の樹脂バインダー(例えば、スチレンーブタジエン系樹脂の水性バインダーなど)と増粘剤(カルボキシメチルセルロース、ポリビニルアルコールなど)を配合したものが提案されている(特開平5-74461号公報、特開平2-66918号公報)。

【発明が解決しようとする課題】しかしながら、これらの結合剤を用いた電極材料分散液では、集電体に塗工する分散液の粘度が高くなるため、塗工適性が低下し、塗工面にストリーク(スジ)などが発生し易く、このようにして製造された電極を用いた場合、そのストリークなどで欠落した部分から短絡が発生し、著しく電気化学素子のの寿命を縮めるという問題点があった。

[0004]

【課題を解決するための手段】本発明者らは、鋭意検討 30 した結果、特定の熱可逆性増粘剤(A)と水分散性バインダー樹脂(B)を含有する結合剤を電気化学素子の電極用結合剤として使用することにより、電気化学素子が優れた充放電特性などを発現することを見いだし本発明に到達した。

【0005】すなわち本発明は、一定の転移温度(T ℃)で親水性と疎水性が可逆的に変化するビニル重合体 系熱可逆性増粘剤(A)と水分散性バインダー樹脂

(B)からなる電気化学素子の電極用結合剤;該結合剤と電極材料を含有する電気化学素子用電極材料分散液;一定の転移温度(T℃)で親水性と疎水性が可逆的に変化するビニル重合体系熱可逆性増粘剤(A)と水分散性バインダー樹脂(B)および必要により水溶性高分子

(C) 並びに電極材料を含有する電気化学素子用電極材料分散液;一定の転移温度(T℃)で親水性と疎水性が可逆的に変化するビニル重合系熱可逆性増粘剤(A)と水分散性バインダー樹脂(B)からなる結合剤を含む電気化学素子用電極材料分散液を、転移温度(T℃)よりも5℃以上低い温度で、型に注型あるいは基材に塗工した後、転移温度より高い温度で乾燥することを特徴とす 50

る電気化学素子の電極の製造方法;並びに該電極材料分散液から形成された電極を有する一次電池、二次電池、アルミ電解コンデンサまたは電気二重層キャパシタ;である。

【0006】本発明において、(A)の転移温度(T $\mathbb C$)は、(A)の固形分1重量%水溶液を徐々に加熱($1\mathbb C$ /分)してゆき、その水溶液が目視により白濁し始める温度を測定することによって求められる。(A)の転移温度($\mathbb T$ C)は、通常 $20\mathbb C$ 以上、好ましくは $30\sim95\mathbb C$ 、さらに好ましくは $60\sim80\mathbb C$ である。転移温度が $20\mathbb C$ 以上であると、(A)を含有した結合剤を含む電極材料分散液の使用時に粘度が高すぎることはなく、取り扱いし易い。なお、電極材料分散液の注型もしくは塗工温度は、通常、(A)の転移温度よりも $5\mathbb C$ 以上低い温度である。また、(A)の増粘性は熱可逆性であり、上記の測定で白濁した水溶液を $\mathbb T$ C以下に冷却して白濁を消失させた後、再度 $\mathbb T$ C以上に加温すると水溶液が再び白濁することにより(A)の増粘性が熱可逆性であることが確認できる。

【0007】(A)には、熱可逆性増粘性を付与するビニル単量体(a)の単独重合体および2種以上の(a)から構成される共重合体、並びに(a)と他の単量体(b)との共重合体が含まれる。

【0008】 (a) としては、(a1) 環状アミンのア ルキレン (炭素数2~4) オキシド付加物 (付加モル数 1~40)の(メタ)アクリル酸エステル;モルホリノ エチル (メタ) アクリレート、特開平6-9848号公 報に記載のものなど、(a2)炭素数5以上の非環状ア ミンのアルキレン(炭素数 2~4) オキシド付加物(付 加モル数1~40)の(メタ)アクリル酸エステル;ジ イソプロピルアミノエチル (メタ) アクリレートなど、 (a3) N-アルキルもしくはアルコキシアルキル (メ タ)アクリルアミド (N置換基の総炭素数 3~6);N -イソプロピル(メタ)アクリルアミド、N-メトキシ プロピル (メタ) アクリルアミド、および特開平1-1 4276号公報に記載のもの等、(a4) N, N-ジー アルキルもしくはジーアルコキシアルキル (メタ) アク リルアミド (N置換基の総炭素数2~8); N, Nージ エチル (メタ) アクリルアミドおよび特開昭60-23 3184号公報に記載のもの等、(a5) N-(メタ) アクリロイル複素環アミン; N- (メタ) アクリロイル ピロリジンおよびN-(メタ)アクリロイルモルホリン 等、(a6)ポリイミノエチレン基(重合度2~50) を有するビニル単量体;テトラエチレンイミンモノ(メ タ)アクリルアミドおよび特開平9-12781号公報 に記載のもの等、(a7) ポリオキシアルキレン(アル キレン基の炭素数2~4、重合度3~40)モノオール もしくはジオールのモノ (メタ) アクリレート; テトラ エチレングリコールモノエチルエーテルモノ (メタ) ア クリレート、ペンタエチレングリコールモノブチルエー

テルモノ (メタ) アクリレート、トリオキシプロピレン テトラオキシエチレングリコールモノメチルエーテルモ ノ (メタ) アクリレート、テトラプロピレングリコール のエチレンオキシド6モル付加物のモノ (メタ) アクリ レート等、(a8) ポリオキシアルキレン(アルキレン 基の炭素数2~4、重合度3~40) モノオールもしく はジオールのモノビニルフェニルエーテル: テトラエチ レングリコールモノメチルエーテルモノビニルフェニル エーテル、ペンタエチレングリコールモノエチルエーテ ルモノビニルフェニルエーテル、ペンタオキシプロピレ 10 ンテトラオキシエチレングリコールモノメチルエーテル モノビニルフェニルエーテル、テトラプロピレングリコ ールのエチレンオキシド8モル付加物のモノビニルフェ ニルエーテル等、(a9)アルキル(炭素数1~6)ビ ニルエーテル:メチルビニルエーテル等:が挙げられ る。

【0009】(a)のうち、大きな増粘効果を与える点 で、好ましいものは (a 1) ~ (a 8) 、さらに好まし いものは(a1)~(a5)から選ばれる1種以上の単 量体である。

【0010】 (a) と共重合できる単量体 (b) として

(b1)非イオン性単量体;

(b 1 1) (メタ) アクリル酸エステル系単量体: (シク ロ) アルキル (炭素数1~22) (メタ) アクリレート [メチル(メタ)アクリレート、エチル(メタ)アクリ レート、n-ブチル (メタ) アクリレート、iso-ブチ ル (メタ) アクリレート、シクロヘキシル (メタ) アク リレート、2-エチルヘキシル (メタ) アクリレート、 クリレート、オクタデシル (メタ) アクリレート等]; 芳香環含有 (メタ) アクリレート [ベンジル (メタ) ア クリレート、フェニルエチル (メタ) アクリレート 等];アルキレングリコールもしくはジアルキレングリ コール(アルキレン基の炭素数2~4)のモノ(メタ) アクリレート [2-ヒドロキシエチル (メタ) アクリレ ート、2-ヒドロキシプロピル(メタ)アクリレート、 ジエチレングリコールモノ (メタ) アクリレート]: (ポリ) グリセリン (重合度1~4) モノ (メタ) アク リレート;多官能(メタ)アクリレート[(ポリ)エチ 40 レングリコール (重合度1~100) ジ (メタ) アクリ レート、(ポリ)プロピレングリコール(重合度1~1 00) ジ (メタ) アクリレート、2, 2ービス (4ーヒ ドロキシエチルフェニル)プロパンジ(メタ)アクリレ ート、トリメチロールプロパントリ(メタ)アクリレー ト等]、

【0011】(b12)(メタ) アクリルアミド系単量 体: (メタ) アクリルアミド、および (a3)~ (a 6) 以外の(メタ) アクリルアミド系誘導体 [N-メチ ロール (メタ) アクリルアミド、ダイアセトンアクリル 50 アミド等]、

(b 1 3)シアノ基含有単量体: (メタ) アクリロニトリ ル、2-シアノエチル (メタ) アクリレート、2-シア ノエチルアクリルアミド等、

(b 1 4)スチレン系単量体:スチレンおよび炭素数7~ 18のスチレン誘導体 [αーメチルスチレン、ビニルト ルエン、p-ヒドロキシスチレンおよびジビニルベンゼ ン等]、

(b 1 5)ジエン系単量体: 炭素数 4~12 のアルカジエ ン [ブタジエン、イソプレン、クロロプレン等]、

(b 1 6)アルケニルエステル系単量体:カルボン酸(炭 素数2~12) ビニルエステル [酢酸ビニル、プロピオ ン酸ビニル、酪酸ビニルおよびオクタン酸ビニル等]、 カルボン酸 (炭素数2~12) (メタ) アリルエステル [酢酸 (メタ) アリル、プロピオン酸 (メタ) アリルお よびオクタン酸(メタ)アリル等]、

(b 1 7)エポキシ基含有単量体: グリシジル (メタ) ア クリレート、(メタ)アリルグリシジルエーテル等、 (b 1 8)モノオレフィン類炭素数2~12のモノオレフ

ィン [エチレン、プロピレン、1-ブテン、1-オクテ ンおよび1ードデセン等]、

【0012】(b19)フッ素以外のハロゲン原子含有単 量体: 塩素、臭素またはヨウ素原子含有単量体、例えば 塩化ビニルおよび塩化ビニリデンなど、

【0013】(b110)複素環含有単量体:Nービニル 置換系単量体 (N-ビニルー2-ピロリドンおよびN-ビニルスクシンイミドなど) およびN-メチロールマレ イミドなど、

(b 1 1 1) 不飽和二塩基酸 ジアルキルエステル類:マレ イソデシル(メタ)アクリレート、ラウリル(メタ)ア 30,イン酸ジアルキル(炭素数1~8)エステル、イタコン 酸ジアルキル (炭素数1~8) エステル等、

> (b 1 1 2) シリル基含有単量体: 3-トリメトキシシリ ルプロピル (メタ) アクリレート等、

【0014】 (b2) アニオン性単量体;

(b 2 1)モノカルボン酸系 単量体: (メタ) アクリル 酸、クロトン酸、マレイン酸モノアルキル (炭素数1~

8) エステル、イタコン酸モノアルキル (炭素数1~

8) エステル、ビニル安息香酸等、

(b 2 2)ジカルボン酸系単量体: (無水) マレイン酸、 フマル酸、イタコン酸等、

(b 2 3) スルホン酸系単量体: アルケンスルホン酸、

(ビニルスルホン酸および (メタ) アリルスルホン酸な ど)、芳香族スルホン酸(スチレンスルホン酸など)、 スルホン酸基含有不飽和エステル [アルキル (炭素数1 ~10) (メタ) アリルスルホコハク酸エステルおよび スルホアルキル (炭素数2~6) (メタ) アクリレート などし、

(b 2 4) 硫酸エステル系単量体: (メタ) アクリロイル ポリオキシアルキレン(重合度2~15) 硫酸エステル

(b25) 上記アニオン性単量体の塩[ナトリウム塩、カリウム塩等のアルカリ金属塩、トリエタノールアミン等のアミン塩、テトラアルキル(炭素数4~18) アンモニウム塩等の四級アンモニウム塩)]等;

【0015】 (b3) カチオン性単量体;

(b31) 1級アミノ基含有単量体: 炭素数3~6のアルケニルアミン[(メタ) アリルアミン、クロチルアミンなど)]、アミノアルキル(炭素数2~6)(メタ)アクリレート[アミノエチル(メタ) アクリレートなど]、

(b32) 2級アミノ基含有単量体:アルキル(炭素数1~6) アミノアルキル(炭素数2~6) (メタ) アクリレート [tープチルアミノエチルメタクリレート、メチルアミノエチル(メタ) アクリレートなど]、炭素数6~12のジアルケニルアミン [ジ(メタ) アリルアミンなど]、

(b33)3級アミノ基含有単量体:ジアルキル(炭素数1~4)アミノアルキル(炭素数2~6)(メタ)アクリレート[ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジメ 20チルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリレート、ジブチルアミノエチル(メタ)アクリレートなど]、ジアルキル(炭素数1~4)アミノアルキル(炭素数2~6)(メタ)アクリルアミド[ジメチルアミノエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミドなど]、

(b34)第4級アンモニウム塩基含有単量体:上記(b33)を、4級化剤(炭素数1から12のアルキルクロライド、ジアルキル硫酸、ジアルキルカーボネート、およびベンジルクロライド等)を用いて4級化したもの、例えば、アルキル(メタ)アクリレート系第4級アンモニウム塩[(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロライド、(メタ)アクリロイルオキシエチルトリエチルアンモニウムクロライド、(メタ)アクリロイルオキシエチルシステンモニウムクロライド、(メタ)アクリロイルオキシエ

ンモニウムクロライド、 (メタ) アクリロイルオキシエ チルメチルモルホリノアンモニウムクロライドなど]、 アルキル (メタ) アクリルアミド系第4級アンモニウム 塩[(メタ) アクリロイルアミノエチルトリメチルアン 40 モニウムクロライド、 (メタ) アクリロイルアミノエチ ルトリエチルアンモニウムクロライド、 (メタ) アクリ ロイルアミノエチルジメチルベンジルアンモニウムクロ ライドなど] およびその他の第4級アンモニウムタロ ライドなど] およびその他の第4級アンモニウムメチルサルフ エート、トリメチルビニルフェニルアンモニウムクロラ イドなど]、

【0016】(b35)その他のカチオン系単量体: 芳香 環含有カチオン性単量体 [ビニルアニリン、p-アミノスチレン、N, N-ジメチルアミノスチレン等]、複素 50

環含有カチオン性単量体 [Nービニルカルバソール、Nービニルイミダゾール、2ービニルピリジン、4ービニルピリジン、Nービニルピロリドン、Nービニルチオピロリドン等]、およびこれらの塩(塩酸塩、リン酸塩等の無機酸塩、ギ酸塩、酢酸塩等の有機酸塩)。

【0017】(b)のうち好ましいものは(b1)特に(b12)、並びに(b2)特に(b21)および(b2)である。

【0018】(A)が2種以上の(a)から構成される共 重合体の場合の共重合割合(重量比)は、好ましくは、 (a1)~(a5)/(a6)~(a8)=90/10~10/90である。(A)が(a)と(b)の共重合 体の場合の共重合割合は、単量体の合計重量に基づいて (b)が60重量%以下、好ましくは0.1~30%で ある(以下において、%は特に限定しない限り重量%を 表す)。

【0019】また、(A) の、数平均分子量[GPC(ゲルパーミュエーションクロマトグラフィー)による測定:以下Mnと略記する]は、通常1,000~5,000,000、好ましくは2,000~500,000である。

【0020】(A)は水溶液状、塊状または粉末状であ り、水溶液状および塊状が好ましい。(A)は、公知のラ ジカル重合方法で製造することができ、溶液重合、塊状 重合、乳化重合などいずれの方法でもよいが、好ましく は溶液重合(特に水溶液重合)または塊状重合である。 乳化重合で得られた場合はイオン性基を中和することに より水溶液にすることができる。水溶液の場合の固形分 含量は通常5~70%、好ましくは20~40%であ り、pHは通常3~12、好ましくは6~10である。 【0021】(B)は水分散性バインダーを構成する樹 脂であり、熱可逆性増粘作用を有しない。また、(B) は、重合工程でもしくは重合後に後述の水性媒体を使用 して水分散体(水性ラテックス状もしくは樹脂粉末水分 散液状、好ましくは水性ラテックス状)にされるもので ある。また、(B) の25℃の水への溶解度は通常5% 以下、好ましくは3%以下である。

【0022】(B) としては、ビニル重合系樹脂(B1)、ウレタン樹脂(B2)、ポリエステル樹脂(B3)、ポリアミド樹脂(B4)、エポキシ樹脂(B5) およびポリエーテル樹脂(B6)などが挙げられる。

【0023】(B1)としては、上記の(b)として例示した単量体を構成単量体とするビニル重合系樹脂(B11)、またはフッ素原子含有単量体単位を有するビニル重合系樹脂(B12)と(B11)からなる樹脂が挙げられる。(B12)はフッ素原子含有単量体(f)および必要により(b)を構成単位とする重合体であり、

(f)には、(B12)の側鎖にフルオロアルキル基を有する構造を与える単量体(f1)、および(B12)の主鎖にフルオロアルキレン基を有する構造を与える単

量体(f2)が含まれる。(f1)としては以下のもの が挙げられる。(f11)フッ素化アルキル(炭素数1 ~18) (メタ) アクリレート; パーフルオロアルキル (メタ) アクリレート [例えば、パーフルオロドデシル (メタ) アクリレート、パーフルオロn-オクチル (メ タ) アクリレート、パーフルオロn-ブチル (メタ) ア クリレート]、パーフルオロアルキル置換アルキル(メ タ)アクリレート[例えばパーフルオロヘキシルエチル (メタ) アクリレート、パーフルオロオクチルエチル (メタ) アクリレート]、パーフルオロオキシアルキル 10 (メタ) アクリレート [例えば、パーフルオロドデシル オキシエチル (メタ) アクリレートおよびパーフルオロ デシルオキシエチル(メタ)アクリレートなど]、(f 12) フッ素化アルキル (炭素数1~18) クロトネー ト、(f13)フッ素化アルキル(炭素数1~18)マ レートおよびフマレート、(f14)フッ素化アルキル (炭素数1~18) イタコネート、(f15) フッ素化 アルキル置換オレフィン(炭素数2~10またはそれ以 上、フッ素原子数1~17またはそれ以上)、例えばパ ーフロオロヘキシルエチレンなど。(f2)としては以 20 下のものが挙げられる。 炭素数2~10またはそれ以 上、およびフッ素原子の数1~20またはそれ以上であ って、二重結合炭素にフッ素原子が結合したフッ素化オ レフィン;例えばテトラフルオロエチレン、トリフルオ ロエチレン、フッ化ビニリデン、ヘキサフルオロプロピ レンなど。これらの(f)のうち好ましいものは、共重 合性が良好であり安定な水分散系にし易いという点で (f1)である。安定な水分散系であれば、得られる結 合剤からなる電極材料分散液の塗工適性が優れている。 【0024】 (B11) における単量体の共重合割合 (モル比) は、好ましくは (b1) / (b2) / (b 3) = $100 \sim 50 / 0 \sim 30 / 0 \sim 20$ rbs. \pm た、(b)のうち、親水性単量体 [(b12)、(b2 1) ~ (b 2 5) 、、および (b 3 1) ~ (b 3 4) な ど]の構成割合は、(B1)が水分散系を保つ範囲であ れば特に限定されないが、通常、単量体合計に基づい て、0~20モル%である。また、(B12)における 単量体の共重合割合(モル比)は、好ましくは、(b) / (f) = 9 9~7 0 / 1~ 3 0、さらに好ましくは9 8~90/2~10、特に好ましくは97~93/3~ 7である。(f)が1以上であれば、電極強度が向上す る傾向にあり、30以下であれば、(B1)の撥水性が 大きくなりすぎることはなく分散安定性の良好な水分散 体が得られる。また、(B1)における(B12)の重 量割合は特に限定されないが、好ましくは (B1) の重 量に基づいて (B12) が20~100%、さらに好ま しくは80~100%である。

【0025】 (B11) および (B12) のうち好ましいものとしては、上記の単量体を構成成分とするアクリル系樹脂[全単量体中(b11) が80%以上(その他 50

の単量体が20%以下)のもの]、スチレンーアクリル 系樹脂 [スチレン/ (b 1 1) の重量比が 40~60/ 60~40であり、全単量体中におけるこれらの単量体 が90%以上(その他の単量体が10%以下)のも の]、スチレン-ブタジエン系樹脂[スチレン/ブタジ エンの重量比が30~70/70~30であり、全単量 体中におけるこれらの単量体が80%以上(その他の単 量体が20%以下)のもの]、アクリルーブタジエン系 樹脂 [(b 1 1) /ブタジエンの重量比が 30~70/ 70~30であり、全単量体中におけるこれらの単量体 が80%以上のもの]、アクリロニトリルーブタジエン 系樹脂 [アクリロニトリル/ブタジエンの重量比が30 ~70/70~30であり、全単量体中におけるこれら の単量体が80%以上のもの]、酢酸ビニル系樹脂[全 単量体中酢酸ビニルが90%以上のもの]、エチレンー 酢酸ビニル系樹脂 [エチレン/酢酸ビニルの重量比が2 0~80/80~20であり、全単量体中におけるこれ らの単量体が90%以上のもの]、エチレンープロピレ ン系樹脂 [エチレン/プロピレンの重量比が20~80 /80~20であり、全単量体中におけるこれらの単量 体が90%以上のもの]、ポリブタジエン系樹脂[全単 量体中ブタジエンが80%以上のもの]、スチレンーマ レイン酸系樹脂 [スチレン/マレイン酸の重量比が40 ~60/60~40であり、全単量体中におけるこれら の単量体が70%以上のもの]、変性ポリスチレン系樹 脂[全単量体中スチレンが80%以上であり、そのうち の10%以上が変性(スルホン酸変性、アミノ変性、ハ ロゲン化アルキル変性など)されているもの]等の樹脂 が挙げられる。これらのうち、さらに好ましいものは、 アクリル系樹脂、スチレンーアクリル系樹脂、およびス チレンーブタジエン系樹脂である。

【0026】 (B11) および (B12) のうちで特に 好ましいものは、上記で好ましいものとして挙げたアクリル系樹脂、スチレンーアクリル系樹脂およびスチレンーブタジエン系樹脂などにおけるその他の単量体として (b2) [(B12) の場合は (f) も含む] を含むものであり、とりわけ好ましいものは (b2) として (b21) [特に、(x/y) アクリル酸など]、(b22) [特に、マレイン酸など] および/またはこれらの塩を含むものである。(b2) の含有量は、(B11) を構成する全単量体の重量に基づいて好ましくは $1\sim20$ %、さらに好ましくは $2\sim10$ %である。

【0027】(B1)からなる水分散体において、水相での界面活性剤量が0.01割私/g(樹脂)以下であると、(A)の増粘開始からゲル化に至る温度幅を狭くすることができるため好ましく、0.002割私/g以下であるものがさらに好ましい。なお、水相の界面活性剤量は、(B1)の重量に対するモル濃度である。水相中の界面活性剤量は、(B1)50gを含む水分散体を濃度10%に希釈した後、30,000rpm×30分間

で遠心沈降させた上澄みを2.0g採り、高速液体クロマトグラフィーにて定量したものである。

【0028】水相の界面活性剤量が0.01割和/g以下の水分散体を製造する方法としては、例えば、水への溶解度が低い非重合性乳化剤(例えば、HLB値が3~9のもの、例えば、炭素数22以上の脂肪酸のアミンまたはアルカリ金属の塩、炭素数15以上の脂肪族または芳香族アルコールのエチレンオキシド1~6モル付加物等)を用いて単量体を乳化重合する方法、重合性乳化剤(d)を使用して単量体を乳化重合する方法、水溶性ポ 10

リマーを保護コロイドとして使用して単量体を乳化重合*

【0029】これらの方法のうち、高分子量の樹脂を含む水分散体が得られる点で乳化重合する方法が好ましく、(d)を使用して単量体を乳化重合する方法が特に好ましい。(d)としては、例えば、下記一般式(1)で示されるものが挙げられる。

[0030]

【化2】

$$R^{1}$$
 $(R^{3}) = (R^{3}) = (1)$
 R^{1} R^{3} R

【0031】式中、Arは芳香環、R'は水素原子またはメチル基、R'およびR'は1価炭化水素基であって、m個のR'およびn個のR'のうち少なくとも1つは芳香環を有する炭化水素基である。mおよびnはm+nの平均が1~8となる0または1~5の整数、Xは共有結合、アルキレン基、アルキリデン基、アリールアルキリデン基、酸素原子、硫黄原子、スルホニル基、ビストリフルオロメチルメチレン基もしくはカルボニル基、Mはカチオン、Aは炭素数2~4のアルキレン基、pおよびqはp+qの平均が2~80となる1または2~40の整数を示す。

【0032】一般式(1)において、芳香環Arとしては、炭化水素系芳香環およびヘテロ原子を含む芳香環が挙げられる。炭化水素系としては、ベンゼン環、ナフタレン環などであり、ヘテロ原子を含む芳香環としてはチ 30オフェン環、ピロール環などが挙げられる。

【0033】R'およびR'は1価炭化水素基であり、例 えば、アルキル基、アルケニル基、アラルキル基、アル キル置換アラルキル基、スチリル基、ポリスチリル基お よび縮合ベンジル基であり、m個のR² およびn個のR³ のうち少なくとも1個(好ましくは2~7個)は芳香環 含有炭化水素基である。アルキル基としては、炭素数1 ~24の直鎖および分岐アルキル基(メチル基、エチル 基、n-およびi-プロピル基、ネオペンチル基、ヘキ シル基、オクチル基など)、アルケニル基としては、炭 40 素数2~24の直鎖および分岐アルケニル基(オクテニ ル基、ノネニル基、デセニル基、ウンデセニル基、ドデ セニル基など)、アラルキル基としては、炭素数7~1 8のアリールアルキル基(ベンジル基、2-フェニルエ チル基、3-フェニプロピル基など)、ポリスチリル基 としては、スチレンが2~8個縮合または付加した基、 縮合ベンジル基としては塩化ベンジルなどが 2~8個縮 合した基などが挙げられる。これらのうち、好ましいの は、スチリル基、ポリ(重合度2~6) スチリル基、ベ ンジル基、縮合(縮合度2~6) ベンジル基およびこれ 50 らの基の混合基である。

【0034】また、mおよびnはm+nの平均が $1\sim$ 8、好ましくは $2\sim7$ となる0または $1\sim5$ の整数である。 R^2 および R^3 が複数個存在する場合は、それらは同一でも異なっていてもよい。芳香環の合計数(Arも含めて)は通常 $3\sim16$ 、好ましくは $4\sim12$ である。

【0035】Xのアルキレン基としては、メチレン基、 エチレン基およびプロピレン基など;アルキリデン基と してはエチリデン基、2-プロピリデン基、1-プロピ リデン基およびシクロヘキシリデン基など;並びにアリ ールアルキリデン基としてはフェニルエチリデン基など が挙げられる。Xのうち好ましいものはアルキレン基お よびアルキリデン基であり、さらに好ましいものはメチ レン基および2-プロピリデン基である。

【0036】Mはカチオンであり、アルカリ金属(ナトリウム、カリウム、リチウムなど)イオン、アルカリ土類金属(マグネシウム、カルシウム、バリウムなど)イオンなどの金属イオン;アンモニウムイオン;モノ~テトラアルキル置換アンモニウム(アルキル基の炭素数1~8、例えばテトラメチル、テトラエチルなど)イオン;ヒドロキシアルキル基の炭素数が2~4のアルカノールアミン(例えばモノエタノールアミン、ジエタノールアミン、トリエタノールアミンなど)イオンなどが挙げられる。これらのうち好ましいものは、アルカリ金属イオンおよびアンモニウムイオンである。

【0037】炭素数2~4のアルキレン基Aには、エチレン基、プロピレン基および1,2-、2,3-、1,3-および1,4-ブチレン基が含まれる。エチレン基、プロピレン基およびこれらの併用が好ましい。

【0038】 pおよびqは、p+qの平均が $2\sim80$ 、好ましくは $5\sim60$ 、さらに好ましくは $15\sim40$ となる、1または $2\sim40$ の整数である。

【0039】R²またはR³のいずれかが芳香環含有炭化 水素基である場合、ラジカル重合時の乳化安定性が良好 で、生成する水分散液の粒子径が最適化し易い。また、

してもよい。

アンモニウムイオンまたはアミニウムイオンを示す。] で示されるもの、その他特開平9-25454号公報記 載の重合性乳化剤が挙げられる。

p+qの平均が5~60の場合は、疎水性または親水性 が適当であり、乳化重合時の単量体の乳化安定性が良い 傾向にあり、生成する水分散体の粒子径が最適化し易 い。

【0043】(d)のうちで、各種単量体、特にスチレンとの共重合性が良好である点で、一般式(1)のものが好ましい。

【0044】(d)の使用量は、(b)の重量に基づい

【0040】一般式(1)の乳化剤の例としては、ビス (ポリオキシアルキレン多環フェニルエーテル)のモノ メタクリレート化硫酸エステル塩(多環フェニルの多環 部分の芳香環の総数が通常3~10)が挙げられる。ビ ス (ポリオキシアルキレン多環フェニルエーテル)とし ては、(p1) 多環フェノール(たとえば、スチレン化 10 フェノール、ベンジル化フェノールなど)のホルムアル デヒド縮合物にアルキレンオキシド [以下AOと略記; 炭素数2~4のもの、例えばエチレンオキシド(E -、2、3-、1、3-および1、4-ブチレンオキシ ドなど]を付加したもの(この場合スチレンまたはベン ジルの付加モル数はフェノール環1個当たり0.2~4 個で、スチレンまたはベンジル基が直接フェノール環に 付加してもよいし、フェノール環に付加したスチレンま たはベンジル基にさらに1個以上のスチレンまたはベン 20 ジル基を付加した構造でもよい)、(p2) ビスフェノ ール類(たとえばC-アルキル置換ビスフェノール、ハ ロゲン化ビスフェノール、ビスフェノールF、ビスフェ ノールA、シクロヘキシレンビスフェノール、ビストリ フルオロメチルメチレンビスフェノール(ビスフェノー ルAF)、ビスフェノールS、ビスフェノールADな ど) もしくはジヒドロキシジフェニル、ヒドロキシベン ゾフェノンなどのフェノール類が上記と同様にスチレン 化またはベンジル化されたものにAOを付加したもの、 などが挙げられる。なお、(p1)の場合は、3核体以 30 上の縮合物が副生することがあり、一般式 (1) 以外の モノメタクリレート化硫酸エステル塩が生成するが本発

て通常0. 1~20%、好ましくは1~10%である。 【0045】(B1)の水分散体を乳化重合によって製造するに際し、公知の重合開始剤が使用でき、さらに必要により連鎖移動剤、キレート剤、pH緩衝剤等を使用

【0041】一般式(1)の乳化剤の製造方法としては、特公平6-62685に記載されているように、多環フェノールをホルムアルデヒドで縮合(縮合度の平均は2)させ、ついでAOを付加反応させた後、(メタ)アクリル酸と脱水、エステル化した後、通常の硫酸化剤で硫酸化したのち、必要に応じ中和する方法などが挙げられる。上記製造方法において、多環フェノールとして40はスチレンの付加モル数1~5のスチレン化フェノールなど、AOとしてはEOまたはPOなど、AOの付加モル数は2~80、硫酸化剤としてはクロルスルホン酸、無水硫酸またはスルファミン酸などが挙げられる。

明における(d)はこれらの副生物も含む。

【0046】重合開始剤としては、有機系重合開始剤 [パーオキシド類(クメンハイドロパーオキシド、ジイ ソプロピルベンゼンハイドロパーオキシド、パラメタン ハイドロパーオキシド、ベンゾイルパーオキシド、ラウ ロイルパーオキシド等)、アゾ化合物類(アゾビスイソ ブチロニトリル、アゾビスイソバレロニトリル等)]、 無機系重合開始剤 [過硫酸塩 (過硫酸ナトリウム、過硫 酸アンモニウム、過硫酸カリウム等)、過酸化水素等] 等が使用できる。酸化還元系の重合開始剤としては、酸 化剤としての過硫酸塩または/および過酸化物と、還元 剤としてのピロ重亜硫酸ナトリウム、亜硫酸ナトリウ ム、硫酸水素ナトリウム、硫酸第一鉄、グルコース、ホ ルムアルデヒドナトリウムスルホキシレートまたは/お よびLーアスコルビン酸(塩)などを組み合わせて使用 できる。重合開始剤の使用量は、(b)の重量に基づい て通常 0. 01~5%、好ましくは 0. 1~3% であ

【0042】(d) としては、上記の他に、CH₂=C(R')COO(CH₂).SO₃M、CH₂=C(R')COO(AO)pSO₃M、およびCH₂=C(R')COO(AO)pCH₂COOM[式中、R'は水素原子またはメチル基、mは1~24の整数、Aは炭素数2~4のアルキレン基、pは2~200の整数、Mはアルカリ金属イオン、

【0047】連鎖移動剤としては、 α ーメチルスチレンダイマー(2, 4-ジフェニルー4-メチルー1-ペンテン等)、ターピノーレン、テルピネン、ジペンテン、炭素数8~18のアルキルメルカプタン、炭素数8~18のアルキレンジチオール、チオグリコール酸アルキル、ジアルキルキサントゲンジスルフィド、テトラアルキルチウラムジスルフィド、クロロホルム、四塩化炭素等が使用できる。これらは、単独あるいは2種以上を組み合わせて使用できる。連鎖移動剤の使用量は、(b)の重量に基づいて通常0~15%、好ましくは0~5%である。

【0048】キレート剤としてはグリシン、アラニン、エチレンジアミン四酢酸ナトリウム等、pH緩衝剤としてはトリポリリン酸ナトリウム、テトラポリリン酸カリウム等が使用できる。キレート剤またはpH調整剤の使用量は、(b)の重量に基づいて通常 $0\sim5\%$ 、好ましくは $0\sim3\%$ である。

【0049】(B1)のMnは通常2,000~5,000,000、好ましくは3,000~2,000,000である。なお、(B1)~(B6)のMnは後述のトルエン不溶分の測定における不溶分を除いた可溶分の

挙げられる。

みを測定したMnである。

【0050】ウレタン樹脂(B2)は、有機ポリイソシ アネート(u1)と活性水素原子含有成分(u2)を反 応させてなるものである。

【0051】(B2)の水分散体には、自己乳化型の (B2) の水分散体と、乳化剤を用いて(B2) を乳化 した乳化剤乳化型の水分散体が含まれる。これらのう ち、水相での界面活性剤量が少なくできるという点で、 自己乳化型が好ましい。

【0052】自己乳化型の(B2)は、(u2)の少な 10 くとも一部に、分子内に親水性基と活性水素原子含有基 とを含有する化合物 (u3) を使用することにより製造 することができる。

【0053】(u3)における親水性基には、アニオン 性基、カチオン性基および非イオン性基が含まれる。

【0054】アニオン性基としては、スルホン酸基、ス ルファミン酸基、リン酸基、カルボキシル基およびこれ らの塩が挙げられる。(u3)における活性水素原子含 有基としては、水酸基、カルボキシル基およびアミノ基 などが挙げられる。

【0055】アニオン性基を有する(u3)のうち、ス ルホン酸基を有する化合物としては、スルホン酸ジオー ル[3-(2,3-ジヒドロキシプロポキシ)-1-プ ロパンスルホン酸など]、スルホポリカルボン酸[スル ホイソフタル酸、スルホコハク酸など] およびアミノス ルホン酸[2-アミノエタンスルホン酸および3-アミ ノプロパンスルホン酸など]が挙げられる。スルファミ ン酸基を有する化合物としては、スルファミン酸ジオー ル [N, N-ビス (2-ヒドロキシアルキル) スルファ ミン酸 (アルキル基の炭素数 1~6) またはそのAO付 30 加物(AOとしてはEOまたはPOなど、AOの付加モ ル数1~6):例えばN, N-ビス (2-ヒドロキシエ チル) スルファミン酸およびN, Nービス (2-ヒドロ キシエチル) スルファミン酸 PO2モル付加物など]が あげられる。リン酸基を有する化合物としては、ビス (2-ヒドロキシエチル) ホスフェートなどが挙げられ る。カルボキシル基を有する化合物としては、ジアルキ ロールアルカン酸[例えば2, 2-ジメチロールプロピ オン酸 (DMPA)、2,2-ジメチロールブタン酸、 2, 2-ジメチロールヘプタン酸、2, 2-ジメチロー 40 ルオクタン酸など] およびアミノ酸(2-アミノエタン酸 等)が挙げられる。 これらの塩としては、アミン類 (トリエチルアミン、アルカノールアミン、モルホリン など) および/またはアルカリ金属水酸化物 (水酸化ナ

トリウムなど) などの塩が挙げられる。 【0056】カチオン性基を含有する(u3)として は、3級もしくは4級窒素原子を有するモノオールおよ びポリオール、例えばNーメチルジエタノールアミン、

N、N-ジメチルエタノールアミンなどの酸類(酢酸な ど)による中和物および4級化剤(ジメチル硫酸など)

による4級化物などが挙げられる。イオン性基(アニオ ン性またはカチオン性基) 含有の(u3) を使用した (B2) の具体例としては、特公昭42-24192号 公報および特公昭43-9076号公報に記載のものが

【0057】非イオン性基を有する(u3)としては、 ポリエチレングリコールおよびポリエチレンプロピレン グリコール (Mn=100~3,000) などが挙げら れる。(u3)としては非イオン性化合物とアニオン性 化合物またはカチオン性化合物と併用してもよい。

【0058】(u3)の活性水素原子1個当たりのMn は、(u3)がイオン性基を有するものの場合は好まし くは300未満であり、(u3)が非イオン性基を有す るものの場合は好ましくは50~1,500である。 【0059】自己乳化型の(B2)を構成する(u3) の当量は、(u3)がイオン性化合物の場合は、(B 2) の重量に基づいて親水性基が好ましくは0.01~ 2 ミリ当量/g、さらに好ましくは0.1~1 ミリ当量/g であり、(u3)が非イオン性化合物の場合は、(B 2) の重量に基づいて親水性基の重量が好ましくは3~ 30% [後述の (a 2 1) または (a 2 2) を使用する 場合で、その中にポリオキシエチレン鎖 (付加モル数2 以上)を含む場合は、それらの重量も含む]、さらに好 ましくは5~20%である。

【0060】自己乳化型の(B2)の水分散体の製法と しては、たとえば、実質的にイソシアネート基(NCO 基) と非反応性の有機溶剤の存在下または非存在下で、 (u1)、(u3)を含む(u2)および必要により停 止剤(e)を仕込み、一段または多段法によりNCO末 端ウレタンプレポリマーとし、次いで該プレポリマーを 塩基 [(u3)がアニオン性化合物の場合]または酸も しくは4級化剤 [(u3) がカチオン性化合物の場合] で親水化(中和または4級化)するか、あるいは親水化 しながら、通常10℃~60℃、好ましくは20℃~4 0℃で、必要により鎖伸長剤(f)、架橋剤(h)およ び/または停止剤(e)を含む水溶液と混合して水分散 体となし、NCO基がなくなるまで伸長反応、架橋反応 および/または停止反応を行い、必要により有機溶剤を 留去する方法が例示できる。親水化(中和または4級 化) は水分散体形成後に行ってもよい。

【0061】(u1)としては、炭素数6~20(NC O基の炭素原子は除く)の芳香族ジイソシアネート [例 えば2,4ーおよび/または2,6-トリレンジイソシ アネート(TDI)、4,4'-および/または2, 4' -ジフェニルメタンジイソシアネート (MDI) な ど]、炭素数4~15の脂環式ジイソシアネート[例え ばイソホロンジイソシアネート(IPDI)、ジシクロ ヘキシルメタンー4, 4'ージイソシアネート(水添M DI) など]、炭素数2~18の脂肪族ジイソシアネー ト [例えばエチレンジイソシアネート、テトラメチレン

ジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネートなど]、炭素数8~15の芳香脂肪族ジイソシアネート[キシリレンジイソシアネート(XDI)など]、並びにこれらのジイソシアネートの変性体[例えばウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、イソシアヌレート基および/またはオキサゾリドン基を含有する変性体]などが挙げられる。

【0062】 (u2) としては、ポリエステルポリオール (u21)、ポリエーテルポリオール (u22)、ポ 10 リオレフィンポリオール (u23)、ポリマーポリオール (u24)、低分子ポリオール (u25) およびこれ 5の2種以上の混合物が挙げられる。

【0063】(u21)には、縮合型ポリエステルポリオール(u211)、ポリラクトンポリオール(u212)、ひまし油系ポリオール(u213)およびポリカーボネートポリオール(u214)が含まれる。(u211)としては、たとえば、ポリオール[(u25)および/または(u22)]とポリカルボン酸(c1)との重縮合物、(u212)および(u214)としては20(u25)および/または(u22)へのラクトン(c2)もしくはアルキレンカーボネート(c3)の重付加物が挙げられる。(u213)としては、ひまし油、ひまし油と(u25)および/または(u22)とのエステル交換物、並びにひまし油のEO(4~30モル)付加物などが挙げられる。

【0064】(u25)には、2価~8価またはそれ以上の炭素数2~18のアルコールが含まれる。2価アルコールとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコー 30ル、1,4ーブタンジオール、1,3ーブタンジオール、3ーメチルー1,5ペンタンジオール、1,6ーへキサンジオール、ネオペンチルグリコール、2ーメチルー1,8ーオクタンジオール、1,9ーノナンジオール、シクロへキサンジメタノール、ビスヒドロキシエトキシベンゼンなど、3~8価アルコールとしては、グリセリン、トリメチロールプロパン、ペンタエリスリトールなどが挙げられ、これらのAO低モル付加物(OH当量300未満;OH当量=水酸基1個当たりのMn)、およびこれらの2種以上の混合物も使用できる。40

【0065】(c1)としては、炭素数2~24の脂肪族もしくは脂環式ジカルボン酸 [例えばしゅう酸、コハク酸、マロン酸、アジピン酸、グルタル酸、アゼライン酸、セバシン酸、ヘキサヒドロフタル酸、ナディック酸、マレイン酸、フマル酸、イタコン酸、テトラヒドロフタル酸など];炭素数8~18の芳香族ジカルボン酸[例えばフタル酸、イソフタル酸、テレフタル酸など];炭素数8~18の3~4価またはそれ以上の脂肪族もしくは脂環式多価カルボン酸 [例えばメチルシクロヘキセントリカルボン酸、シクロペンタンテトラカルボ 50

ン酸、ブタンテトラカルボン酸など];炭素数9~18 の3~4価またはそれ以上の芳香族ポリカルボン酸「例 えばトリメリット酸、ピロメリット酸、ベンソフェノン テトラカルボン酸など]:これらのエステル形成性誘導 体 [例えば酸無水物、低級アルキル (炭素数1~4) エ ステルなど〕等;およびこれら2種以上の併用が挙げら れる。これらのうち好ましいものは脂肪族ジカルボン 酸、芳香族ジカルボン酸、3~4価またはそれ以上の芳 香族ポリカルボン酸 (無水物) およびこれらの2種以上 の併用であり、さらに好ましいものは脂肪族ジカルボン 酸、2~4 価の芳香族ポリカルボン酸およびこれらの併 用である。(c2)としては、炭素数4~12のラクト ン、例えば 4ーブタノリド、5ーペンタノリド、6ーへ キサノリドなどが挙げられる。(c3)としてはアルキ レン基の炭素数2~8のアルキレンカーボネート、例え ばエチレンカーボネート、プロピレンカーボネートなど が挙げられる。

【0066】 (u21) の具体例としては、たとえば、ポリエチレンアジペートジオール、ポリブチレンアジペートジオール、ポリネオペンチルアジペートジオール、ポリネオペンチルアジペートジオール、ポリ (3 ーメチルペンチレンアジペート) ジオール、ポリカプロラクトンジオール、ポリバレロラクトンジオール、ポリベキサメチレンカーボネートジオールなどが挙げられる。

【0067】 (u22) には、活性水素原子を2~8個またはそれ以上有する開始剤のAO付加物およびそのアルキレンジハライドによるカップリング物が含まれる。AOとしては前述の(p1) で記したもの、炭素数5~12またはそれ以上のもの(例えば α -オレフィンオキサイドおよびスチレンオキサイドなど)、エピハロヒドリン(エピクロルヒドリンなど)およびこれらの2種以上の併用(ランダム付加および/またはブロック付加)が含まれる。開始剤としては、前述の(u25)、多価フェノール類[前述の(p2)で示したビスフェノール類、ハイドロキノン、カテコールおよびレゾルシンなど]およびアミン類などが使用できる。

【0068】(u22) としては、たとえば、ポリオキシエチレンポリオール、ポリオキシプロピレンポリオール、ボリオキシーンプロピレンポリオール、ビスフェノール類のEOおよび/またはPO付加物などが挙げられる。

【0069】(u23)としては、ポリアルカジエン系ポリオール、例えば1,2および/または1,4ーポリブタジエンジオールおよび水添ポリブタジエンジオールなど;およびアクリル系ポリオール、例えばヒドロキシエチル(メタ)アクリレートと他の単量体[スチレン、アルキル(炭素数1~8)(メタ)アクリレートなど]との共重合体が挙げられる。

【0070】(u24)としては、、たとえば(u2

1) および/または(u 2 2)中で、ラジカル重合性モノマー [例えば、スチレン、(メタ)アクリロニトリル、(メタ)アクリル酸エステル、塩化ビニル、これらニ種以上の混合物など] をラジカル重合させ、該ラジカル重合体を分散させたもの(重合体含量は通常5~30重量%)が挙げられる。

【0071】(u21)~(u25)のOH当量(水酸基1個当たりのMn)は通常30~6,000、好ましくは300~5,000である。30以上であれば得られるポリウレタン樹脂の柔軟性があり、6,000以下10であれば樹脂が柔らかすぎることはなく強度が発揮できる。また、(u25)のOH当量は通常30~300である。(u25)は(u21)~(u24)と併用するのが好ましい。併用の場合の(u25)/(u21)~(u24)の比率は1/100~50/50が好ましい。

【0072】プレポリマーの製造において、NCO基/活性水素含有基(カルボキシル基を除く)の当量比は、通常1.01~2、好ましくは1.1~1.6である。プレポリマー化の反応温度は、通常20 $^{\circ}$ ~150 $^{\circ}$ 、好ましくは60 $^{\circ}$ ~110 $^{\circ}$ であり、反応時間は2~10時間である。プレポリマー化の終点は遊離NCO基含量が通常0.5~5重量%となった時点である。

【0073】有機溶剤としては、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)、エステル類(酢酸エチル、酢酸ブチル、エチルセロソルブアセテートなど)、エーテル類(ジオキサン、テトラハイドロフランなど)、炭化水素類(nーヘキサン、nーヘプタン、シクロヘキサン、テトラリン、トルエン、キシレンなど)、塩素化炭化水素類(ジクロロエタン、トリクロロエタン、トリクロロエチレン、パークロロエチレンなど)、アミド類(ジメチルホルムアミド、ジメチルアセトアミドなど)、Nーメチルピロリドンなどが使用できる。

【0074】 (f) および (h) としては、水、ポリア ミン [炭素数 2~16の、脂肪族ポリアミン(エチレン ジアミン、ヘキサメチレンジアミン、ジエチレントリア ミンなど)、脂環族ポリアミン(イソホロンジアミン、 4, 4'-ジシクロヘキシルメタンジアミンなど)、芳 香族ポリアミン(4, 4'-ジアミノジフェニルメタン 40 など)、芳香脂肪族ポリアミン(キシリレンジアミンな ど)、ヒドラジンもしくはその誘導体など]、これらの ポリアミンのブロック化物 [ブロック化剤としては、炭 素数3~8のケトン類(アセトン、メチルエチルケト ン、メチルイソブチルケトンなど]、ヒドラジン誘導体 [ヒドラジン、カルボジヒドラジド、アジピン酸ジヒド ラジドなど] および前述の(u25)が使用できる。水 をのぞく(f)および必要により使用される(h)の使 用量は、プレポリマー中に残存するNCO基1当量に対 して(f)および(h)の活性水素原子含有基(1級お 50 よび2級アミノ基など) が通常 $0.5\sim2$ 当量、好ましくは $0.9\sim1.2$ 当量となるような量である。

【0075】また、必要により使用される(e)としては、分子内に活性水素原子含有基を1個有する炭素数1~12の化合物、たとえばモノアルコール(メタノール、ブタノールなど)およびモノアミン(ブチルアミン、ジブチルアミンなど)が使用できる。(e)の使用量は、プレポリマー中に残存するNCO基1当量に対して(e)の活性水素原子含有基が通常0.5当量から2.0当量、好ましくは0.9当量から1.2当量となるような量である。

【0076】ポリエステル系樹脂(B3)としては、たとえば、ポリオール類とポリカルボン酸類との重縮合物、およびポリラクトン[ポリオール類へのラクトン付加物など]が挙げられる。

【0077】ポリオール類としては、前述の(u25) および/または(u22)で例示したものと同様のもの が挙げられる。これらのうち好ましいものは脂肪族2価 アルコール、脂肪族3価アルコール、脂肪族4価アルコ ールおよびこれらの2種以上の併用(とくに2価アルコ ールと3価アルコールおよび/または4価アルコールと の併用)であり、さらに好ましいものは、ネオペンチル グリコール、2-ブチルー2-エチルー1、3-プロパ ンジオールおよび1,6-ヘキサンジオールから選ばれ る2価アルコールと、トリメチロールプロパンおよび/ またはペンタエリスリトールとの併用である。併用の場 合は2価アルコールと3価アルコールおよび/または4 価アルコールとの質量比は、(99.5:0.5)~ (70:30)、特に(98:2)~(80:20)が 好ましい。ポリカルボン類およびラクトンとしては、そ れぞれ前述の(c1)および(c2)で例示したものと 同様のものが含まれる。これらのうち好ましいものは脂 肪族ジカルボン酸、芳香族ジカルボン酸、 3~4 価また はそれ以上の芳香族ポリカルボン酸 (無水物) およびこ れらの2種以上の併用であり、さらに好ましいものは脂 肪族ジカルボン酸、芳香族 2~4価カルボン酸およびこ れらの併用であり、特に好ましいものはアジピン酸およ び/またはセバシン酸と、イソフタル酸、テレフタル酸 および(無水)トリメリット酸から選ばれる芳香族ポリ カルボン酸との併用〔質量比(20~50): (80~ 50)〕である。

【0078】自己乳化型の(B3)は構成するポリオール類としては、前述の(u25)、および(u3)のうちの活性水素原子含有基として水酸基を有するもの(ポリエチレングリコール、ジアルキロールアルカン酸、スルホン酸ジオールなど)を併用することにより得ることができる。また、ポリカルボン酸類としてカルボン酸以外のアニオン性基を有するポリカルボン酸[例えばスルホイソフタル酸(塩)およびそのエステル形成性誘導体]などを併用することにより得ることもできる。

【0079】(B3)の製造法には特に制限がなく、通常のエステル化法またはエステル交換法等で得たポリエステルを乳化して製造することができる。エステル化またはエステル交換法では、通常100~250℃の反応温度で、必要によりポリエステル化反応に通常用いられる触媒および/または溶剤を用いてもよい。触媒としては、たとえばジブチル錫ジラウレート、オクチル酸錫、パラトルエンスルホン酸、ナフテン酸リチウムなど、溶剤としてはたとえば芳香族系溶媒[トルエン、キシレンなど]およびケトン系溶媒[アセトン、メチルエチルケ10トン、メチルイソブチルケトンなど]が挙げられる。

【0080】ポリアミド系樹脂(B4)としては、ポリカルボン酸類とポリアミンの縮合物、およびポリラクタム(ポリカルボン酸および/またはポリアミンのラクタム付加物)が挙げられる。ポリカルボン酸としては、前述の(c1)で例示したものと同様のものが挙げられる。ラクタムとしては炭素数4~12のラクタム、例えばカプロラクタムなどが挙げられる。ポリアミンとして、前述の(f)および(h)で例示したものと同様のものが挙げられる。

【0081】自己乳化型の(B4)は、ポリカルボン酸類として前述の(u3)のうちの活性水素原子含有基としてカルボン酸基またはそのエステル形成性基を有するもの[スルホポリカルボン酸(スルホイソフタル酸、スルホコハク酸など)]などを併用することにより得ることができる。

【0082】エポキシ樹脂(B5)としては、2~8価のポリフェノール(ビスフェノールA、水添ビスフェノールA、フェノールノボラックなど)や2~6価のポリアミン[前述の(f) および(h) と同様のもの]や2~4価のポリカルボン酸[前述の(c1) と同様のもの]にエピクロルヒドリンをアルカリ触媒下で反応させることで得られる樹脂(エポキシ当量180~3,000eq/g)、および米国特許5,238,767号明細書に記載のエポキシ系樹脂などが挙げられる。自己乳化型の(B5)は、ポリアミンの一部に活性水素含有基としてアミノ基を有する(u3)またはポリカルボン酸の一部に活性水素含有基としてカルボキシル基を有する(u3)を使用することにより得ることができる。

【0083】ポリエーテル樹脂(B6)としては、前述 40の(u22)で例示したものと同様のAOをアルカリあるいは酸触媒などの触媒下で開環重合することで得られる。また必要に応じて、前述の(u22)で例示したもの同様の開始剤の存在下で重合することもできる。自己乳化型の(B6)は、ポリオキシエチレン鎖の導入(EOのブロック付加など)およびイオン性基の導入(開始剤としてアミン類を使用し、その後アミノ基を4級アンモニウム塩とすることによりイオン性基を導入)により得ることができる。

【0084】 (B2) ~ (B6) において、好ましいも 50

のは、水相での界面活性剤の量が少なくできるという観点で、(B1)の場合と同様に自己乳化型のものである。自己乳化型の(B2)~(B6)における親水性基の好ましい当量または重量割合は(B1)の場合と同様である。

【0085】本発明において、乳化剤乳化型の(B)の 水分散体は以下の方法で製造できる。

①樹脂成分を10μm以下、好ましくは3μm以下にボールミルなどで粉砕した後、ポリビニルアルコールやポリアクリル酸塩などの保護コロイドを溶解させた水中に分散させる方法、

②樹脂成分を溶剤に溶解しポリビニルアルコールやポリアクリル酸塩などの保護コロイドを溶解させた水中に加え、高圧ホモジナイザーやボルテックスなどを用い10μm以下、好ましくは3μm以下に機械乳化したのち溶剤を留去する方法など。

これらの場合の(B)の水分散体の水相での界面活性剤 量は実質的に含まれていないか、または0.01ミリモル/ g(樹脂)以下であるのが好ましい。

【0086】 (B2) \sim (B4) および (B6) oMn は好ましくは1, 000以上、さらに好ましくは10, $000\sim1$, 000, 000またはそれ以上である。

(B5) のMnは好ましくは300以上、さらに好ましくは $300\sim2$,000である。なお、Mnは後述のトルエン不溶分を除いた、トルエン可溶分のみのMnである。

【0087】(B2)の場合は、トルエン不溶分(後述)を調整するために、架橋剤を(B2)の重量に基づいて好ましくは0.01~10%、さらに好ましくは1~5%使用することができる。使用できる架橋剤としてはアルデヒド含有化合物(ホルムアルデヒド、グリオキザールなど)、ヒドラジンおよびヒドラジド含有化合物(アジピン酸ジヒドラジドなど)、オキサゾリンおよびオキサゾリジン含有化合物(2-オキサゾリン、アミド変性アジリジン化合物を加熱環化変性して得られる化合物など)が挙げられる。

【0088】(B)のトルエン不溶分は、好ましくは5~95重量%、さらに好ましくは30~80重量%である。該トルエン不溶分は、乾燥させた樹脂中のトルエン不溶分の含有率であり、(B)の水分散体を厚み1mmのガラスモールドに流し、30℃で一昼夜減圧乾燥し、得られたフィルム約1gを精秤したあと、400m1のトルエンに48時間放置溶解し、重量既知の濾紙で濾過したものを上記条件で乾燥後精秤し、下式によって計算した値である。

トルエン不溶分 (%) = [濾紙上のトルエン不溶分重量 /トルエンに溶解する前のフィルム重量] ×100

【0089】また、(B) のガラス転移温度 (Tg) は、通常-80~80℃、好ましくは-50~50℃で ある。なお、Tgは (B) の水分散体をガラスモールド に流し30℃で8時間減圧乾燥して得られた、厚さ約 0.3mmのフィルムを示差走査熱量分析計 (DSC) を用いて、窒素下、20℃/分の条件で測定した値である。

【0090】 (B) の水分散体の平均粒子径 (算術平均; レーザードップラー法による) は、通常 0.02~ 10μ m、好ましくは 0. $1\sim 2\mu$ m、さらに好ましくは 0. $1\sim 1\mu$ m である。

【0091】(B)の水分散体の固形分含量は通常10~90%、好ましくは30~70%であり、pHは通常 103~12、好ましくは6~10である。

【0092】(B)の水分散体において、水性分散媒として用いられるものは、通常、水、親水性有機溶媒 [例えば、1価アルコール(メタノール、エタノール、イソプロパノールなど)、グリコール類(エチレングリコール、プロピレングリコール、ジエチレングリコールなど)、3価以上のアルコール(グリセリンなど)、セロソルブ類(エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなど)等]が挙げられる。これらのうち、好ましいものは水であり、親水 20性有機溶媒を併用する場合は、通常、分散媒合計に基づいて、親水性有機溶媒は10%以下が好ましい。

【0093】本発明の電極用結合剤の製造方法としては、下記の①~④の方法が挙げられる。

- ① (B) の水分散体と (A) とを、該 (A) の転移温度 よりも低い温度で混合機で混合して得る方法。
- ②(A)を構成するビニル系単量体と(B1)を構成するビニル系単量体とを、(A)の転移温度よりも低い温度で乳化重合して得る方法。
- ③ (A) の存在下、(B1) を構成するビニル系単量体を、(A) の転移温度よりも低い温度で乳化重合して得る方法。
- ④(B)の水分散体を製造する過程において、分散媒である水中に(A)を(A)の転移温度よりも低い温度で溶解させ、その温度で機械乳化あるいは分散をおこなう方法。

【0094】②の製造方法においては、(B1)を構成する単量体と(A)を構成する単量体とを混合して単量体を一液にして乳化重合する方法と、(B1)を構成する単量体と(A)を構成する単量体とを別々にして乳化40重合する方法などが挙げられる。

【0095】本発明の電極用結合剤における(A)の含有量は、(A)と(B)との固形分合計重量に基づいて、好ましくは0.001~30%、さらに好ましくは0.005~20%である。(A)が0.001%以上であれば熱可逆増粘性が発揮され易く、30%以下であれば(A)の転移温度よりも10 $^{\circ}$ 以上低い温度においても、結合剤の粘度が高くなりすぎることはなく取り扱い易いので好ましい。

【0096】本発明の電極用結合剤は、(A)と(B)

を含有するものであるが、必要により、水溶性高分子 (C) を、本発明の電極材料分散液の良好な途工適性を 妨げない範囲の量で含んでいてもよい。(C)は25℃ での水への溶解度が5%を超えるものであり、(C)の Mnは通常1,000~20,000,000、好まし くは5,000~5,000,000である。(C)の 具体例としては、ポリビニルアルコール及びその変性体 (エチレン/酢酸ビニル=2/98~30/70モル比 の共重合体の酢酸ビニル単位のうちの1~80モル%ケ ン化物、ポリビニルアルコールの1~50モル%部分ア セタール化物等)、デンプン及びその変性体(酸化デン プン、リン酸エステル化デンプン、カチオン化デンプン 等)、セルロース誘導体(カルボキシメチルセルロー ス、メチルセルロース、ヒドロキシエチルセルロース、 等)、(メタ)アクリルアミドおよび/または(メタ) アクリル酸塩の共重合体 [(メタ) アクリルアミド重合 体、(メタ) アクリルアミドー(メタ) アクリル酸塩共 重合体、(メタ)アクリル酸アルキル(炭素数1~4) エステルー (メタ) アクリル酸塩共重合体など]、スチ レンーマレイン酸塩共重合体、ポリアクリルアミドのマ ンニッヒ変性体、ホルマリン縮合型樹脂(尿素-ホルマ リン樹脂、メラミン-ホルマリン樹脂等)、ポリアミド ポリアミン もしくはジアル キルアミンーエ ピクロルヒド リン共重合体、ポリエチレンイミン、カゼイン、大豆蛋 白、合成蛋白、並びにマンナンガラクタン誘導体等が挙 げられる。また上記の塩としては、アルカリ金属(ナト リウム、カリウム、リチウム)塩、アンモニウム塩、有 機アミン(炭素数1~12のアルキル基を有するモノ、 ジもしくはトリアルキルアミン) 塩、および4級アンモ ニウム塩 (炭素数1~8のアルキル基を有し、4個のア ルキル基は同じでも異なっていてもよい)などが挙げら れる。水溶性高分子の含有量は、(A)と(B)の固形 分合計重量に基づいて、通常0~100部、好ましくは 0. 1~100部、さらに好ましくは0. 1~30部で ある。以上および以下において、部は重量部を示す。

【0097】本発明における電極材料分散液としては、本発明の結合剤と、電気化学素子の電極の製造に使用されている公知の電極材料の粉体もしくは繊維状物を水分散液状にしたものが挙げられる。

【0098】電極材料としては、遷移金属のカルコゲン 化合物、水素吸蔵合金、炭素系材料、パラジウムもしく はその塩、並びに導電性高分子からなる群から選ばれる 1種以上であるが挙げられる。

【0099】遷移金属のカルコゲン化合物としては、MnO2、MnO3、V2O5、V6O13、Fe2O3、Fe2O4、LiNiO2、LiCoO2、LiMnO2、Ag2O、HgO、CuO、PdO2、NiOOH、TiS2、FeS2およびMoS2など; 水素吸蔵合金としては、Mg-Ni合金、La-Ni合金、Ti-Mn合金など; 炭素系材料としては、フッ化カーボン、アセチレ

ンブラック、グラファイト、ポリアクリロニトリル系およびピッチ系炭素繊維の粉砕物、LiC・などの黒鉛層間化合物および炭素系層間化合物など;パラジウムもしくはその塩としては、PdおよびPdSO・など;導電性高分子としては、ポリアセチレン、ポリー pーフェニレン、ポリチオフェンおよびポリピロールなどが挙げられる。これらの中で、好ましいものは遷移金属のカルコゲン化合物、水素吸蔵合金、炭素系材料、並びにパラジウムもしくはその塩であり、さらに好ましいものはしが、NiO・、LiCoO・、LiMnO・などのリチウム含有化合物である。リチウム電気化学素子用にこれらのリチウム含有化合物を用いた場合に特に好ましい放電特性が得られる。

【0100】電気化学素子が電池の場合は、電極材料粉体の平均粒径(算術平均;レーザードップラー法による)は、通常 50μ m以下、好ましくは $1\sim20\mu$ mである。これらの粉体は2種以上の粒径分布のピークを有するものでもよい。また、これらの粉体を2種以上併用する場合は、それぞれの平均粒径は同一であっても異な 20っていてもよい。

【0101】また、電気化学素子が電気二重層キャパシタの場合は、平均粒径が通常 10μ m以下、好ましくは $1\sim 5\mu$ mの粉末状活性炭、カーボンブラック、ケッチョンブラック、アセチレンブラックおよび繊維状活性炭 (繊維の長さは好ましくは $1\sim 10$ mm、平均直径/長さの比は通常 $1/10\sim 1/1$, 000)などの炭素系材料、ポリアセチレン、ポリーPーフェニレン、ポリピロールなどの導電性高分子、並びにこれらの 2 種以上の併用が挙げられる。これらの中で、好ましいものは炭素 30 系材料である。

【0102】本発明の電極材料分散液において、結合剤は、電極用粉体材料100部に対して通常0.1~30部(固形分換算)、好ましくは5~10部を配合して使用される。結合剤が0.1部以上であれば、バインダーとしての効果が高く、電気化学素子の電極としての充分な強度を保持できる。また、30部以下であれば、空隙が充分に生成し、電気化学素子の放電特性が向上するなど充分な効果が期待できる。

【0103】電極材料分散液において、その固形分にお 40 ける割合は、電極用粉体材料 100部に対して、通常、 (A) は0.0001~9部、(B) は0.09~2 1部、(C) は0~30部である。

【0104】本発明における電極材料分散液は、固形分含量 [(A)、(B)、(C)の合計]が通常40~90%、好ましくは60~80%のものであり、水分散スラリー状である。水分散スラリーの分散媒として用いられるものは、通常、水、親水性有機溶媒 [例えば、前述の(B)の分散媒として挙げたもの等]が挙げられる。これらのうち、好ましいものは水であり、親水性有機溶50

媒を併用する場合は、通常、分散媒合計に基づいて、親 水性有機溶媒は10%以下が好ましい。

【0105】本発明の電極材料分散液は、予め結合剤を 調製してから電極用粉体材料等を配合する方法と、分散 液を調製すると同時に結合剤の成分を配合する方法など があり、いずれの方法でもよい。具体的には、例えば、 以下の方法が挙げられる。

①予め、(A)、(B) および必要により水および/または(C)を、該(A)の転移温度(T℃)より10℃以上低い温度で、従来から公知の混合機(佐竹式攪拌機、プロペラプランジャーなど)を用いて配合して結合剤を製造しておき、その後、電極用粉体材料を混合機で配合する方法。

②予め結合剤を調製せずに、(A)、(B)、(C)、 電極用粉体材料、必要により水をそれぞれ単独で、

(A)の転移温度(T℃)より10℃以上低い温度で配合する方法で、仕込みの順序はいずれでもよい。

③ (A) または (B) の製造時に、(C)、水または/ および電極用粉体材料を配合する方法。

【0106】通常は、前述のように配合された分散液を、さらにボールミル等により微分散したのち、200~400メッシュの濾過装置(ステンレス網など)で濾過した後、減圧下で脱泡し、電極材料用分散液が得られる。

【0107】電極材料分散液から電極を製造する方法としては、集電体材料に、分散液に含まれる増粘剤(A)の転移温度(T℃)よりも5℃以上低い温度で分散液を塗工もしくは注型した後、直ちに(A)の転移温度(T℃)以上に熱処理・乾燥する方法が挙げられる。集電体材料としてはアルミ箔、銅箔やニッケル泊など;塗工手段としてはドクターブレード、エアナイフ、ロール、カーテンロール、ファウンテンブレードやグラビアロールなどのコーターを用いる方法;加熱手段としては熱風乾燥炉、電熱炉および赤外線加熱炉などの加熱炉が挙げられる。この乾燥工程で本発明の結合剤が増粘することにより、乾燥による体積収縮をおさえ、空隙の多い嵩高な電極が得られる。

【0108】電極を用いた電気化学素子の作製に必要な その他の部品としては、通常、セパレーター、集電体、 導電性基材、端子、絶縁体、電池缶などである。

【0109】本発明で得られた電極は、各種の電気化学素子の電極として使用できる。電気化学素子としては、例えば、一次電池(マンガン乾電池、アルカリマンガン乾電池、フッ化黒鉛・リチウム電池、二酸化マンガン・リチウム電池、固体電解質電池、注水電池、熱電池など)、二次電池(鉛蓄電池、ニッケル・カドニウム電池、ニッケル・水素電池、ニッケル・鉄蓄電池、酸化銀・亜鉛蓄電池、二酸化マンガン・リチウム二次電池、コバルト酸リチウム・炭酸系二次電池、バナジウム・リチウム二次電池など;例えば米国再発行特許第33,30

6号明細書記載のもの)、電気二重層キャパシタ、アルミ電解コンデンサなどが挙げられる。

【0110】このようにして得られた電極を用いて作製 される電気化学素子に用いられる電解質としては、電気 化学素子が電池の場合、リチウム塩(LiClO,、L iBF4、LiAsF6、CF3SO2Li、LiPF6、 LiAlCL,、LiIなど)、ナトリウム塩(NaC LO, NaBF, NaIなど) などがあげられる。ま た、これらの電解質の溶剤としては、カーボネート系化 合物 (エチレンカーボネート、プロピレンカーボネート 10 など)、エーテル系化合物 (テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、アニ ソールなど)、ニトリル系化合物(アセトニトリル、プ ロピオニトリル、ブチロニトリル、ベンゾニトリルな ど)、イオウ系化合物(ジメチルスルオキシド、ジメチ ルオルムアミド、スルホラン、メチルスルホランなど) およびリン系化合物(リン酸トリエチル、リン酸トリメ チルなど) などが挙げられる。これらの電解質の濃度は 通常0.1~3.0モル/Lで使用される。

【0111】電気化学素子が電気二重層キャパシタの場 20合の電解質としては、ホスホニウム塩 ((C₂H₅), PBF,、(C,H₅), PBF,、(C,H₅), PBF,、(C,H₅), PBF,、(C,H₅), PBF,、(C,H₅), PBF,、(C,H₅), PBF,、(C,H₅), PBF,、(C,H₅), NBF,、(C,H₅), NBF, など) および上記のリチウム塩など) などが挙げられる。また、これらの電解質の溶剤としては、上記と同様のものが挙げられる。これらの電解質の濃度は通常0.1~3.0モル/Lで使用される。

【実施例】以下、実施例により本発明をさらに説明する 30 が、本発明はこれに限定されるものではない。

【0113】製造例1(増粘剤1)

[0112]

モルホリノエチルメタクリレート90部、メタクリル酸 10部および2, 2'ーアゾビス(2, 4ージメチルバレロニトリル) 0. 1部をアンプルに加え、凍結脱気後 密閉し、50 \mathbb{C} で8時間重合させて、「増粘剤1」(転移温度T \mathbb{C} =65 \mathbb{C})を得た。

【0114】製造例2(増粘剤2)

【0115】製造例3 (バインダー1)

撹拌機、滴下ボンベ、窒素ガス導入管および温度計を備えた加圧反応容器に、水102部、スチレン45部、メチルメタクリレート9部、メタクリル酸4部、重合性乳化剤としてビス(ポリオキシエチレン多環フェニルエーテル)メタクリレート化硫酸エステルアンモニウム塩[一般式(1)でR'がメチル基、R'およびR'はスチ

リル基、Arはベンゼン環、Xはメチレン基、m+nは2~6でその平均が5、Aはエチレン基、Mはアンモニウム、p+qは23~25でその平均が24]5部、過硫酸ナトリウム1部およびラウリルメルカプタン0.2部を仕込み、撹拌下、系内を窒素ガスで置換後、滴下ボンベからブタジエン37部を圧入し、50℃で30時間、さらに85℃で5時間反応させた。次いで減圧下で未反応モノマーをストリッピングし、水酸化ナトリウム水溶液でpH9.5に調整することによって、固形分47.9%、水相の乳化剤量0.0008ミリモノg(樹脂)の水分散性スチレンーブタジエン系樹脂バインダー(以下「バインダー1」という)を得た。

28

【0116】製造例4 (バインダー2)

重合性乳化剤としてビス(ポリオキシエチレン多環フェニルエーテル)メタクリレート化硫酸エステルアンモニウム塩 [一般式(1)でR¹がメチル基、R²およびR³はベンジル基、Arはベンゼン環、Xはメチレン基、m+nは4~6でその平均が5、Aはエチレン基、Mはアンモニウム、p+qは20~24でその平均が22]5 部を用いた以外は製造例3と同様にして、固形分47.9%、水相の乳化剤量0.0010ミリモル/g(樹脂)の水分散性スチレンーブタジエン系樹脂バインダー(以下「バインダー2」という)を得た。

【0117】製造例5 (バインダー3)

重合性乳化剤としてビス(ポリオキシアルキレン多環フェニルエーテル)メタクリレート化硫酸エステルアンモニウム塩 [一般式 (1) で R¹がメチル基、R²およびR³はスチリル基およびベンジル基で、スチリル基とベンジル基の比率は平均で1/1モル、Arはベンゼンか環、Xはメチレン基、m+nは5~7でその平均が6、Aはエチレン基およびプロピレン基でエチレン基が平均19個とプロピレン基が平均4個のランダム共重合体、Mはアンモニウム、p+qは20~24でその平均が23]5部を用いた以外は製造例3と同様にして、固形分47.9%、水相の乳化剤量0.0003別砂/g(樹脂)の水分散性スチレンーブタジエン系樹脂バインダー(以下「バインダー3」という)を得た。

【0118】製造例6 (バインダー4)

製造例3と同様の反応容器に、水102部、nープチルメタクリレート45部、メチルメタクリレート46部、メタクリル酸4部、重合性乳化剤として下記式(2)で示される乳化剤5部、過硫酸ナトリウム1部およびラウリルメルカプタン0.2部を仕込み、撹拌下、系内を窒素ガスで置換後、50℃で30時間、さらに85℃で5時間反応させた。次いで減圧下で未反応モノマーをストリッピングし、水酸化ナトリウム水溶液でpH9.5に調整することによって、固形分47.9%、水相の乳化剤量0.0003ミリモル/g (樹脂)の水分散性アクリル系樹脂バインダー(以下「バインダー4」という)を得

(2)

29

[0119] 【化3】

C+H 19 -Ar-OCH 1 CH-(OCH 1 CH 2) 29 OSO 1 NH 4 CH 2 OCH 2 -CH=CH 3

【0120】ここで、Arはフェニレン基を示す。

【0121】製造例7 (バインダー5)

製造例3と同様の反応容器に、水102部、スチレン1 5部、n-ブチルメタクリレート37部、メチルメタク リレート39部、メタクリル酸4部、重合性乳化剤とし 10 てビス (ポリオキシエチレン多環フェニルエーテル) メ タクリレート化硫酸エステルアンモニウム塩 [一般式 (1) でR'がメチル基、R'およびR'はスチリル基、 Arはベンゼン環、Xはメチレン基、m+nは5~6で その平均が5.5、Aはエチレン基、Mはアンモニウ ム、p+qは55~60でその平均が58] 5部、過硫 酸ナトリウム 1 部およびラウリルメルカプタン 0. 2 部 を仕込み、撹拌下、系内を窒素ガスで置換後、製造例6 と同様の条件で反応、ストリッピング、pH調整をする ことによって、固形分47.9%、水相の乳化剤量0. 0018ミリモル/g (樹脂) の水分散性アクリル系樹脂バ

【0122】製造例8 (バインダー6)

インダー(以下「バインダー5」という)を得た。

製造例3と同様の反応容器に、水102部、 スチレン4 5部、メタクリル酸ブチル20部、メチルメタクリレー ト26部、メタクリル酸4部、重合性乳化剤としてアク リロイルポリオキシプロピレン(重合度=12)硫酸エ ステルナトリウム5部、過硫酸ナトリウム1部およびラ ウリルメルカプタン0. 2部を仕込み、撹拌下、系内を 窒素ガスで置換後、製造例6と同様の条件で反応、スト 30 リッピング、pH調整をすることによって、固形分4 7. 9%、水相の乳化剤量0. 0080ミリモル/g (樹 脂)の水分散性アクリルースチレン系樹脂バインダー (以下「バインダー6」という)を得た。

【0123】製造例9 (バインダー7)

メチルメタクリレートのうちの2部をパーフルオロドデ シル (メタ) アクリレートに代えた以外は製造例3と同 様にして固形分47.7%、水相の乳化剤量0.001 0 リモル/g (樹脂)の水分散系スチレンーブタジエン系 樹脂バインダー(以下「バインダー7」という)を得 た。

【0124】製造例10 (バインダー8)

メチルメタクリレートをパーフルオロドデシル (メタ) アクリレートに代えた以外は製造例3と同様にして固形 分47.9%、水相の乳化剤量0.0009 訓却/g (樹脂) の水分散系スチレンーブタジエン系 樹脂バイン ダー(以下「バインダー8」という)を得た。

【0125】 実施例1~8;

<結合剤の製造>ステンレス製ビーカーに、それぞれ表 1に記載のバインダー14部と、増粘剤の20%水溶液 50

0. 1部を仕込み、プロペラプランジャーで混合して本 発明の実施例1~8の結合剤を製造した。

比較例1~3;実施例1と同様の容器に、比較例1はバ インダー1のみ、比較例2はポリエチレンエマルジョン [三井石油化学(株)製「ケミパールS-100」(固 形分50重量%)]のみを14部仕込み、これを結合剤 とした。また比較例3はバインダー1を14部とメチル セルロース [信越化学(株) 製「M-10000」] の 20重量%水溶液を0.5部を仕込んで結合剤とした。 【0126】実施例9~16、および比較例4~6; <リチウム2次電池電極用の電極材料分散液の製造>上 記の結合剤 1 4. 1部に、平均粒径 1 0 μ mの L i C o O: 100部、平均粒径20μmアセチレンブラック4 部および水30部を加え、プロペラプランジャーを用い 200rpmで30分間混合して正極用電極材料分散液 (s) を製造した。同様の結合剤14.1部に、平均粒 径10μmのLiC。100部および水30部を加え、 プロペラプランジャーを用い200rpmで30分間混 合して負極用電極材料分散液(r)を得た。

【0127】 <リチウム2次電池電極の作製>上記の分 散液(s)を、アルミニウム箔(長さ5cm×幅1cm ×厚さ20μm) に塗工量250g/m²になるように 25℃でブレードコーターを用いて塗工し、熱風温度1 20℃の熱風乾燥機で5分間乾燥し正極の電極を得た。 上記の分散液(r)を、ニッケル箔(長さ5cm×幅1 cm×厚さ20μm) に塗工量250g/m²になるよ うに25℃でブレードコーターを用いて塗工し、上記正 極と同様の乾燥条件で負極の電極を得た。

【0128】<リチウム二次電池の作製>上記の電極を 用いて、図1に示すようなリチウム2次電池を作製し た。ここで、電解質としては、溶媒(プロピレンカーボ ネート/エチレンカーボネートの混合物で混合重量比= 5/5) に Li PF。を 1 モル/ L溶解したものを用い た。セパレーターとしてはポリプロピレン製の微多孔 膜、集電体としてはアルミニウム箔を用いた。

【0129】実施例17~24、および比較例7~9 <電気二重層キャパシタ電極用の電極材料分散液の製造 >上記結合剤14.1部に、平均粒径2μ mの石油ピッ チ系活性炭粉末100部、平均粒径20μmのアセチレ ンブラック40部および水30部を加え、プロペラプラ ンジャーを用い200rpmで30分間混合し電極材料 分散液を製造した。

<電気二重層キャパシタ電極の作製>上記の分散液を、 エッチング したアルミニウム箔(長さ5cm×幅1cm ×厚さ20 μm) に塗工量250 g/m² になるように 25℃でブレードコーターを用いて塗工し、熱風温度1 20℃の熱風乾燥機で5分間乾燥し電気二重層キャパシ タ用の分極性電極を得た。

【0130】<電気二重層キャパシタの作製>上記の分 極性電極を用いて、図2に示すような電気二重層キャパ

32

シタを作製した。ここで、電解液としては、溶媒(プロピレンカーボネート/エチレンカーボネートの混合物で混合重量比=5/5)に(C:H:)、PBF:を1.0モル/L溶解したものを用いた。セパレーターとしてはポリプロピレン製の微多孔膜を用いた。

【0131】各実施例および比較例で得られた電極の空隙率とリチウム二次電池および電気二重層キャパシタの特性を下記の測定・評価方法で試験した。その結果を表2および表3に示す。

【0132】空隙率の測定法:水銀ポロシオメーター (島津製作所製「ポロサーザー9310」)を用いて、 得られた電極の水銀の圧入量と接触式厚み測定機(OZ AKI MFG.社製「GS-10」)を用い電極の厚 みを測定し、次式より空隙率を算出した。

【0133】空隙率(%) = $2 \times [$ 水銀の圧入量($\mu1$)〕 / [電極の厚み($\mu\mu$) - $20(\mu\mu)$]

【0134】リチウム二次電池の特性:リチウム二次電池を0.5mAの定電流で充電を行った後、放電開始時の放電電圧と放電30時間後の放電電圧を測定した。そしてさらにこの充電と放電を繰り返して、各サイクル数 20 における放電電気量を測定した。

【0135】電気二重層キャパシタの特性:電気二重層キャパシタに1mA定電流で放電し、静電容量を測定し*

* *

【0136】電極強度:放電サイクルテストを100回行った後、電極を取り出しアセトン50mlで洗浄後、風乾した後、10回の折り曲げ試験を行い、折り曲げ部の電極の亀裂の様子を観察した。 ◎:亀裂なし ○:折り曲げ部の5~10%が亀裂 △:折り曲げ部の30~50%が亀裂 ×:折り曲げ部の50%以上が亀裂【0137】

【表1】

	結合剤			
実施例 1	バインダー1 + 増粘剤1			
実施例 2	バインダー2 + 増粘剤1			
実施例3	パインダー3 + 増粘剤1			
実施例4	バインダー4 + 増粘剤2			
実施例 5	パインダー5 + 増粘剤2			
実施例 6	バインダー6 + 増粘剤2			
実施例7	バインダー7 + 増粘剤1			
実施例8	バインダー8 + 増粘剤2			

[0138]

【表 2】

	使用した 結合剤	空隙率 (%)	放電時間 放電電	聞とその E (V)	各サイクル数での放電 電気容量(mAh)		電極強度	
			放電 開始時	放電 30時間	108	50回目	100回目	
実施例 9	実施例1	35	4.3	3.8	15.5	13.4	10.1	0
実施例10	実施例2	36	4.5	3.8	15.7	13.7	10.4	0
実施例 1 1	実施例3	40	4.1	3.5	15.0	13.0	9.9	0
実施例12	実施例4	38	4.2	3.7	15.8	13.7	10.4	0
実施例13	実施例 5	38	4.2	3.6	16.3	14.0	10.9	0
実施例14	実施例 6	33	4.4	3.7	16.0	14.0	10.3	0
実施例 1 5	実施例7	33	4.4	3.7	16.0	14.0	10.8	0
実施例 1 6	実施例8	33	4.4	3.7	16.0	14. 1	10.3	0
比較例 4	比較例1	15	3.7	3.2	11.5	9.5	7.1	Δ
比較例 5	比較例2	12	3.5	2.9	10.9	9.4	7.3	Δ
比較例6	比較例3	20	3.9	3,3	12.0	10.8	8.5	0

	使用した 結合剤	空隙率 (%)	静電容量 (F/g)	内部抵抗 (mΩ/cm)
実施例17	実施例1	38	26	3 4
実施例18	実施例2	4 1	29	3 3
実施例19	実施例3	40	2 7	2 6
実施例20	実施例4	39	28	2 7
実施例21	実施例 5	43	29	3 4
実施例22	実施例 6	41	29	3 2
実施例23	実施例7	4 2	28	3 1
実施例24	実施例 8	4 2	2 B	3 2
比較例7	比較例 1	2 4	1 2	4 7
比較例8	比較例 2	19	11	5 1
比較例9	比較例3	20	12	5 8

[0140]

【発明の効果】本発明の電気化学素子の電極用結合剤は、電気化学素子の電極の製造工程における乾燥収縮を防ぎ、空隙率の高い電気化学素子の電極を形成すること 20ができるので、電気化学素子の電極と電解質の接触面積を増加させ、電気化学素子の電極反応を促進する。従って、より大きな放電電圧と放電電気量、またはより大きな静電容量を得ることができるので、電気化学素子の小型化、長寿命化にきわめて有効である。本発明の電極用結合剤は、電子機器の小型化の要望に対応する電気化学素子の小型軽量化を実現するための非常に有用な材料である。

【図面の簡単な説明】

【図1】断面図

【符号の説明】

- * 1 正極
 - 2 負極
- 3 電解液
- 0 4 集電体
 - 5 セパレーター
 - 6 電池缶

【図2】断面図

【符号の説明】

8 セパレーター

分極性電極

- 9 導電性基材
- 10 電解液
- 11 ケース
- 30 12 リード線

【図2】

フロントペー ジの続き

(51) Int. Cl. '		識別記号	FI		テーマュード(参考)
H 0 1 G	9/00		H 0 1 M	4/04	Z
	9/04			4/62	Z
	9/058		H 0 1 G	9/00	3 0 1 A
H 0 1 M	4/04			9/05	G
	4/62			9/24	C

Fターム(参考) 4J002 AB023 AB033 AB043 AC02X ACO3X ACO7X ACO8X ADO23 AD033 BB04X BB06X BB14X BB15X BB17X BB19X BC01X BC04X BC07X BC09X BC10X BC12X BD03X BD10X BD12X BD14X BD15X BD16X BE023 BE04W BE04X BF01X BF02X BF03X BG01X BG013 BG04X BG043 BG05X BG053 BG07W BG07X BG08X BG09X BG13W BG13X BG133 BH01X BH013 BH02X BJ00X BL01X BL02X BM004 BQ00X CC163 CC183 CD05X CD08X CD13X CE004 CF01X CF03X CF04X CF05X CF19X CF22X CG01X CH02X CHO43 CKO3X CKO4X CKO5X CL003 CL03X CL05X CM013 CMO24 CNO64 DA016 DA036 DA116 DC006 DD006 DE056 DE096 DE116 DE166 DG026 DG046 GQ00 HA07

4J011 KA04 KA06

5H050 AA15 AA19 BA01 BA08 BA17
CA11 CB07 CB16 CB19 DA11
EA22 EA23 EA24 GA02 GA22
HA02 HA10 HA11 HA14