KOMMUNIKATIONSFEHLER, VERKLEMMUNG UND DIVERGENZ BEI INTERFACE-AUTOMATEN KOLLOQUIUM ZUR BACHELORARBEIT

Ayleen Schinko

7. Mai 2016

INHALT

- MOTIVATION
- 2 Definitionen
- 3 Verfeinerungen über Fehler-Freiheit
- 4 Hiding

Ayleen Schinko 7. Mai 2016 2 / 15

MOTIVATION

- Modellierung von Systemen und deren Kommunikationsverhalten
- simulation parallel arbeitender Softwarekomponenten

Ayleen Schinko 7. Mai 2016 3 / 15

MOTIVATION

- Modellierung von Systemen und deren Kommunikationsverhalten
- simulation parallel arbeitender Softwarekomponenten
- Kommunikationsfehler in Interface-Automaten nicht zulässig, deshalb Error-IO-Transitionssysteme mit optimistischer Fehlererreichbarkeit als Abwandlung davon betrachtet
 - Kommunikationsfehler (bzw. Error) zwischen Komponenten
 - Verklemmung (bzw. Ruhe) innerhalb einer Softwarekomponenten (keine Outputs mehr möglich)
 - Divergenz einer Softwarekomponenten (unendliche viele intere Aktionen)
- Verfeinerungsrelation über den Transitionssystemen (fehlerfreie Spezifikation durch fehlerfreies System verfeinert)

MOTIVATION

- Modellierung von Systemen und deren Kommunikationsverhalten
- simulation parallel arbeitender Softwarekomponenten
- Kommunikationsfehler in Interface-Automaten nicht zulässig, deshalb Error-IO-Transitionssysteme mit optimistischer Fehlererreichbarkeit als Abwandlung davon betrachtet
 - Kommunikationsfehler (bzw. Error) zwischen Komponenten
 - Verklemmung (bzw. Ruhe) innerhalb einer Softwarekomponenten (keine Outputs mehr möglich)
 - Divergenz einer Softwarekomponenten (unendliche viele intere Aktionen)
- Verfeinerungsrelation über den Transitionssystemen (fehlerfreie Spezifikation durch fehlerfreies System verfeinert)
- gewünscht verfeinernde Präkongruenz
- Hiding (bzw. Internalisierung) von Outputs bildet Verbergen in der Parallelkomposition nach

DEFINITIONEN

DEFINITION (ERROR-IO-TRANSITIONSSYSTEME)

Ein Error-IO-Transitionssysteme (EIO) ist ein Tupel $S = (Q, I, O, \delta, q_0, E)$ mit den Komponenten:

- Q die Menge der Zustände,
- *I*, *O* die disjunkte Menge der (sichtbaren) Input- und Output-Aktionen,
- $\delta \subseteq Q \times (I \cup O \cup \{\tau\}) \times Q$ die Transitionsrelation,
- $q_0 \in Q$ der Startzustand,
- $E \subseteq Q$ die Menge der Error-Zustände.

Aktionsmenge von S: $\Sigma = I \cup O$

Signatur: Sig(S) = (I, O)

DEFINITION (PARALLELKOMPOSITION)

Zwei ElOs S_1, S_2 sind komponierbar, falls $O_1 \cap O_2 = \emptyset$ gilt. Die Parallelkomposition der EIOs S_1 und S_2 ist $S_{12} := S_1 || S_2 = (Q, I, O, \delta, q_0, E)$ mit den Komponenten:

$$\bullet \ Q = Q_1 \times Q_2,$$

•
$$I = (I_1 \backslash O_2) \cup (I_2 \backslash O_1)$$
,

•
$$O = O_1 \cup O_2$$
,

$$q_0 = (q_{01}, q_{02}),$$

mit
$$\operatorname{Sync}(S_1, S_2) = (I_1 \cap O_2) \cup (O_1 \cap I_2) \cup (I_1 \cap I_2).$$

7. Mat 2016 5 / 15

DEFINITION (PARALLELKOMPOSITION)

Zwei ElOs S_1, S_2 sind **komponierbar**, falls $O_1 \cap O_2 = \emptyset$ gilt. Die Parallelkomposition der ElOs S_1 und S_2 ist $S_{12} := S_1 || S_2 = (Q, I, O, \delta, q_0, E)$ mit den Komponenten:

• . . . ,

•
$$\delta = \{((q_1, q_2), \alpha, (p_1, q_2)) \mid (q_1, \alpha, p_1) \in \delta_1,$$

 $\alpha \in (\Sigma_1 \cup \{\tau\}) \setminus \text{Synch}(S_1, S_2) \}$
 $\cup \{((q_1, q_2), \alpha, (q_1, p_2)) \mid (q_2, \alpha, p_2) \in \delta_2,$
 $\alpha \in (\Sigma_2 \cup \{\tau\}) \setminus \text{Synch}(S_1, S_2) \}$
 $\cup \{((q_1, q_2), \alpha, (p_1, p_2)) \mid (q_1, \alpha, p_1) \in \delta_1, (q_2, \alpha, p_2) \in \delta_2,$
 $\alpha \in \text{Synch}(S_1, S_2) \},$

• ...,

mit $Sync(S_1, S_2) = (I_1 \cap O_2) \cup (O_1 \cap I_2) \cup (I_1 \cap I_2).$

DEFINITION (PARALLELKOMPOSITION)

Zwei ElOs S_1, S_2 sind komponierbar, falls $O_1 \cap O_2 = \emptyset$ gilt. Die Parallelkomposition der ElOs S_1 und S_2 ist $S_{12} := S_1 || S_2 = (Q, I, O, \delta, q_0, E)$ mit den Komponenten:

•
$$E = (Q_1 \times E_2) \cup (E_1 \times Q_2)$$

 $\cup \left\{ (q_1, q_2) \mid \exists a \in O_1 \cap I_2 : q_1 \xrightarrow{a} \land q_2 \xrightarrow{a} \right\}$
 $\cup \left\{ (q_1, q_2) \mid \exists a \in I_1 \cap O_2 : q_1 \xrightarrow{a} \land q_2 \xrightarrow{a} \right\},$

mit
$$Sync(S_1, S_2) = (I_1 \cap O_2) \cup (O_1 \cap I_2) \cup (I_1 \cap I_2).$$

7. Mat 2016 5 / 15 *Traces* sind die möglichen Wege eines EIOs, mit ihrer Transitionsbeschriftung.

Traces sind die möglichen Wege eines EIOs, mit ihrer Transitionsbeschriftung.

Definition (Pruning- und Fortsetzungs-Funktion)

Für ein EIO S wird definiert:

- prune : $\Sigma^* \to \Sigma^*$, $w \mapsto u$, mit w = uv, $u = \varepsilon \land u \in \Sigma^* \cdot I$ und $v \in O^*$,
- cont: $\Sigma^* \to \mathfrak{P}(\Sigma^*), w \mapsto \{wu \mid u \in \Sigma^*\},\$
- cont : $\mathfrak{P}(\Sigma^*) \to \mathfrak{P}(\Sigma^*), L \mapsto \bigcup \{\operatorname{cont}(w) \mid w \in L\}.$

7. Mat 2016 6 / 15

DEFINITION (RUHE)

Ein Ruhe-Zustand ist ein Zustand in einem EIO, der keine Outputs und kein τ zulässt.

Die Menge der Ruhe-Zustände in einem EIO ist wie folgt formal definiert:

$$Qui := \left\{ q \in Q \mid \forall \alpha \in (O \cap \{\tau\}) : q \not\to \right\}.$$

DEFINITION (RUHE)

Ein Ruhe-Zustand ist ein Zustand in einem ElO, der keine Outputs und kein T zulässt.

Die Menge der Ruhe-Zustände in einem EIO ist wie folgt formal definiert:

$$Qui := \left\{ q \in Q \mid \forall \alpha \in (O \cap \{\tau\}) : q \not\xrightarrow{\alpha} \right\}.$$

DEFINITION (DIVERGENZ)

Ein Divergenz-Zustand ist ein Zustand in einem EIO, der eine unendliche Folge von τs ausführen kann.

Die Menge Div(S) besteht aus all diesen divergenten Zuständen des ElOs S.

7. Mai 2016 7 / 15

Verfeinerung

Definition (Divergenz-Verfeinerungs-Basisrelation)

Für ElOs S_1 und S_2 mit der gleichen Signatur wird $S_1 \sqsubseteq_{Div}^B S_2$ geschrieben, wenn ein Error-, Ruhe- oder Divergenz-Zustand in S_1 nur dann lokal erreichbar ist, wenn er auch in S_2 lokal erreichbar ist. Diese Basisrelation stellt eine Verfeinerung bezüglich Error, Ruhe und Divergenz dar.

 $\sqsubseteq_{Div}^{\mathbf{C}}$ bezeichnet die vollständige abstrakte Präkongruenz von $\sqsubseteq_{Div}^{\mathbf{B}}$ bezüglich $\cdot \parallel \cdot$.

DEFINITION (TRACES)

Für ein EIO S wird definiert:

- strikte Errortraces: $StET(S) := \left\{ w \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \in E \right\}$,
- gekürzte Errortraces: $PrET(S) := \bigcup \{prune(w) \mid w \in StET(S)\},\$
- Input-kritische Traces:

$$MIT(S) := \left\{ wa \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \land a \in I \land q \not\stackrel{a}{\not\rightarrow} \right\},\,$$

- $\bullet \ \, \mathbf{Errortraces} \colon ET(S) := \mathrm{cont}(PrET(S)) \cup \mathrm{cont}(MIT(S)), \\$
- ullet strikte Ruhetraces: $StQT(S):=\left\{w\in\Sigma^*\mid q_0\stackrel{w}{\Rightarrow}q\in Qui
 ight\}$,
- $\bullet \ \, \mathbf{strikte} \ \, \mathbf{Divergenztraces} \colon StDT(S) := \Big\{ w \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \in Div \Big\},$
- gekürzte Divergenztraces:

$$PrDT(S) := \bigcup \{ prune(w) \mid w \in StDT(S) \}.$$

• Divergenztraces: DT(S) := cont(PrDT(S)).

DEFINITION (ERROR-, DIVERGENZ- UND RUHE-SEMANTIK)

Sei S ein EIO.

- Die Menge der Error-Divergenztraces von S ist $EDT(S) := ET(S) \cup DT(S)$.
- Die Menge der error-divergenz-gefluteten Ruhetraces von S ist $QDT(S) := StQT(S) \cup EDT(S)$.
- Die Menge der error-divergenz-gefluteten Sprache von S ist $EDL(S) := L(S) \cup EDT(S)$.

Für zwei ElOs S_1, S_2 mit der gleichen Signatur schreibt man $S_1 \sqsubseteq_{Div} S_2$, wenn $EDT_1 \subseteq EDT_2$, $QDT_1 \subseteq QDT_2$ und $EDL_1 \subseteq EDL_2$ gilt.

SATZ (ERROR-, RUHE- UND DIVERGENZ-SEMANTIK FÜR PARALLELKOMPOSITION)

Für zwei komponierbare ElOs S_1, S_2 und ihre Komposition S_{12} gilt:

- $EDT_{12} = \text{cont} (\text{prune} ((EDT_1 || EDL_2) \cup (EDL_1 || EDT_2))),$
- $2 QDT_{12} = (QDT_1 || QDT_2) \cup EDT_{12},$
- \bullet $EDL_{12} = (EDL_1 || EDL_2) \cup EDT_{12}.$

SATZ (ERROR-, RUHE- UND DIVERGENZ-SEMANTIK FÜR PARALLELKOMPOSITION)

Für zwei komponierbare ElOs S_1, S_2 und ihre Komposition S_{12} gilt:

- $EDT_{12} = \text{cont} (\text{prune} ((EDT_1 || EDL_2) \cup (EDL_1 || EDT_2))),$
- $QDT_{12} = (QDT_1 || QDT_2) \cup EDT_{12},$
- **3** $EDL_{12} = (EDL_1 || EDL_2) \cup EDT_{12}$.

Proposition (Divergenz-Präkongrunez)

Die Relation \sqsubseteq_{Div} ist eine Präkongruenz bezüglich $\cdot \| \cdot \|$

Definition (ω -Partner)

Ein EIO S_1 ist ein ω -Partner von einem EIO S_2 , wenn $I_1 = O_2$ und $O_1 = I_2 \cup \{\omega\}$ mit $\omega \notin I_2 \cup O_2$ gilt.

Definition (ω -Partner)

Ein EIO S_1 ist ein ω -Partner von einem EIO S_2 , wenn $I_1=O_2$ und $O_1=I_2\cup\{\omega\}$ mit $\omega\notin I_2\cup O_2$ gilt.

LEMMA (VERFEINERUNG MIT DIVERGENZ-ZUSTÄNDEN)

Gegeben sind zwei ElOs S_1 und S_2 mit der gleichen Signatur. Wenn $U\|S_1\sqsubseteq_{Div}^{\mathrm{B}}U\|S_2$ für alle ω -Partner U gilt, dann folgt daraus $S_1\sqsubseteq_{Div}S_2$.

Satz (Vollstänige Abstraktheit für Divergenz-Semantik)

Seinen S_1 und S_2 zwei ElOs mit derselben Signatur. Dann gilt $S_1 \sqsubseteq_{Div}^{\mathbb{C}} S_2 \Leftrightarrow S_1 \sqsubseteq_{Div} S_2$.

SATZ (VOLLSTÄNIGE ABSTRAKTHEIT FÜR DIVERGENZ-SEMANTIK)

Seinen S_1 und S_2 zwei ElOs mit derselben Signatur. Dann gilt $S_1 \sqsubseteq_{Div}^{\mathbb{C}} S_2 \Leftrightarrow S_1 \sqsubseteq_{Div} S_2$.

ABBILDUNG: Folgerungskette

KOROLLAR

Es gilt: $S_1 \sqsubseteq_{Div} S_2 \Leftrightarrow U \| S_1 \sqsubseteq_{Div}^B U \| S_2$ für alle komponierbaren U.

Ayleen Schinko 7. Mai 2016 14 / 15

HIDING

DEFINITION (INTERNALISIERUNGSOPERATOR)

Für ein ElO $S = (Q, I, O, \delta, q_0.E)$ ist S/X, mit dem **Internalisierungsoperator** \cdot/\cdot , definiert als $(Q, I, O', \delta', q_0, E)$ mit:

- $\bullet \ \tau \notin X$,
- $\bullet X \subseteq O$.
- \bullet $O' = O \setminus X$
- $\delta' = (\delta \cup \{(q, \tau, q') \mid (q, x, q') \in \delta, x \in X\}) \setminus \{(q, x, q') \mid x \in X\}.$

7. Mat 2016 15 / 15

HIDING

DEFINITION (INTERNALISIERUNGSOPERATOR)

Für ein ElO $S = (Q, I, O, \delta, q_0.E)$ ist S/X, mit dem **Internalisierungsoperator** \cdot/\cdot , definiert als $(Q, I, O', \delta', q_0, E)$ mit:

- $\bullet \ \tau \notin X$,
- $\bullet X \subseteq O$.
- $\bullet O' = O \backslash X$.
- $\delta' = (\delta \cup \{(q, \tau, q') \mid (q, x, q') \in \delta, x \in X\}) \setminus \{(q, x, q') \mid x \in X\}.$

DEFINITION (PARALLELKOMPOSITION MIT INTERNALISIERUNG)

Seinen S_1 und S_2 komponierbare EIOs, dann ist die Parallelkomposition mit Internalisierung definiert als $S_1|S_2 = S_{12}/(\operatorname{Synch}(S_1, S_2) \cap O_{12})$.

AYLEEN SCHINKO 7. Mat 2016 15 / 15