1. Mealy model example

- a. Design a circuit for checking binary coded decimal (BCD)
 - i. BCD uses a 4-bit number to represent a single decimal digit
 - ii. Circuit will take in 4 bits, indicate whether BCD is valid, then take in another 4 bits
 - iii. First bit taken in is least significant, last bit is most significant
 - 1. This means newest numbers get placed on left side in our diagram below
 - iv. Circuit outputs 0 if the BCD is valid (binary number formed is between 0 and 9) and 1 otherwise
- b. State transition diagram
 - i. Left branch means 0 input
 - ii. Right branch means 1 input

2. Minimizing a Mealy model

- a. Apply the Partitioning Minimization Procedure to reduce the number of states in the Mealy model
- b. Except for state i, we will refer to the states simply by their bit patterns
- c. Since this is a Mealy model, states do not have output values
 - i. The k-successors for a state are the output value created by the combination of the state and the possible inputs
- d. $P_1 = (i, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111)$
- e. $P_2 = (i, 0, 1, 00, 01, 10, 11) (000, 001) (100, 010, 110, 101, 011, 111)$
 - i. The first block all have k-successors of 0/1, 1/1
 - ii. The second block all have 0/0, 1/0
 - iii. The last block all have 0/0, 1/1
 - iv. Don't have a fourth block based on the other possible k-successor combination, 0/1, 1/0
 - 1. No states that have that combination
- f. $P_3 = (i, 0, 1) (00, 01) (10, 11) (000, 001) (100, 010, 110, 101, 011, 111)$
 - i. The first block all have k-successors in the first block of P₂
 - ii. (00, 01) have 0-successors in (001, 001), and 1-sucessors in (100, 010, 110, 101, 011, 111)
 - iii. (10, 11) have both of their k-successors in (100, 010, 110, 101, 011, 111)
 - iv. (000, 001) have the single state, i, as their k-successor
 - 1. We can presume that that block will never split
 - 2. Ignore it until the end of the procedure
 - v. Similarly, (100, 010, 110, 101, 011, 111) all have a single state, i, as their k-successor
 - 1. That block will never split either

- g. $P_4 = (i) (0, 1) (00, 01) (10, 11) (000, 001) (100, 010, 110, 101, 011, 111)$
 - i. (i, 0, 1) of P_3 must split
 - 1. i leads to (i, 0, 1) for both of its k-successors
 - 2. 0 and 1 both lead to (00, 01) for its 0-successor and (10, 11) for its 1-successor
- h. No need for another partition because all elements in each block of P4 lead to identical blocks of P4
- i. Therefore, P₄ is our final partition, and we will use it to make the state diagram below

3. Implementing the FSM

- a. We let * stand for either a 0 or 1 at a given position
- b. \sim (00*) = (100, 010, 110, 101, 011, 111) in our notation
 - i. Call it so because these states are not (~) 00*
- c. State transition diagram and state table below

Present State	Next State		Output	
Present State	x = 0	x = 1	x = 0	x =1
i	*	*	1	1
*	0*	1*	1	1
0*	00*	~(00*)	1	1
1*	~(00*)	~(00*)	1	1
00*	i	i	0	0
~(00*)	i	i	0	1

State table

4. Assigning binary codes

- a. Will need 3 flip flops to represent 6 states
- b. Can assign binary codes randomly, but careful assignment reduces the combinational logic
- c. Rule of thumb for state binary code assignments
 - i. Try to assign adjacent (Hamming distance of 1) code words to a state and the state that follows it
 - ii. If two present states have the same next state, assign those present states adjacent code words
 - iii. Creating a K-map will help
 - iv. Initial state i will always be all 0s

- d. Assign using the rules above
 - i. Place i at 000, will always do this
 - 1. Place * next to i at 010 since * is the successor to i
 - 2. Place 0* and 1* adjacent to * at 110 and 011 respectively
 - 3. 00* needs to be adjacent to i and 0*, which leaves 100 as the only place
 - 4. Would like $^{\sim}(00^*)$ to be adjacent to 0^* , 1^* , and i, but that isn't possible
 - a. These are rules of thumb, not fixed laws
 - 5. Can place \sim (00*) at 001 to be adjacent to i and 1*, though
- e. Note that there may potentially be more than one valid code assignment that minimizes distance

		AB					
		00	01	11	10		
c	0	i	*	0*	00*		
	1	~(00*)	1*				