JSM 2021

Asymmetric Linear Filters for Seasonal Adjustment Applications to the COVID-19

ALAIN QUARTIER-LA-TENTE (LEMNA, INSEE)
Ongoing research under supervision of:
Dominique Ladiray (Independent) and Olivier Darné (Lemna)
With the help of Jean Palate (NBB)

Ongoing research real-time detection of turning points with linear filters

- Olivier Darné Under supervision of Dominique Ladiray and Olivier Darné
- Help of Jean Palate

Ongoing research real-time detection of turning points with linear filters

- Under supervision of Dominique Ladiray and Olivier Darné
- Help of Jean Palate

In this presentation:

- First results comparing 4 methods for trend-cycle extraction:
 - Current X-13ARIMA algorithm (Henderson filter)
 - Local Polynomial filters (Proietti and Luati (2008))
 - Fidelity-Smoothness-Timeliness approach (Grun-Rehomme, Guggemos, and Ladiray (2018))
 - RKHS filters (Dagum and Bianconcini (2008))

Ongoing research real-time detection of turning points with linear filters

- Olivier Darné

 Under supervision of Dominique Ladiray and Olivier Darné
- Help of Jean Palate

In this presentation:

- First results comparing 4 methods for trend-cycle extraction:
 - Current X-13ARIMA algorithm (Henderson filter)
 - Local Polynomial filters (Proietti and Luati (2008))
 - Fidelity-Smoothness-Timeliness approach (Grun-Rehomme, Guggemos, and Ladiray (2018))
 - RKHS filters (Dagum and Bianconcini (2008))
- • package rjdfilters (https://github.com/palatej/rjdfilters, development version: https://github.com/AQLT/rjdfilters)

A raw time series can be decompose as (additive decomposition):

$$X_t = \underbrace{TC_t}_{ ext{trend-cycle}} + \underbrace{S_t}_{ ext{seasonality}} + \underbrace{I_t}_{ ext{irregular}}$$

And TC_t generally estimated on a series without seasonality

A raw time series can be decompose as (additive decomposition):

$$X_t = \underbrace{TC_t}_{ ext{trend-cycle}} + \underbrace{S_t}_{ ext{seasonality}} + \underbrace{I_t}_{ ext{irregular}}$$

And TC_t generally estimated on a series without seasonality

Moving averages (or *linear filters*) are ubiquitous in trend-cycle extraction and seasonal adjustment (e.g.: X-13-ARIMA):

$$M_{\theta}(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k}$$

A raw time series can be decompose as (additive decomposition):

$$X_t = \underbrace{TC_t}_{ ext{trend-cycle}} + \underbrace{S_t}_{ ext{seasonality}} + \underbrace{I_t}_{ ext{irregular}}$$

And TC_t generally estimated on a series without seasonality

Moving averages (or *linear filters*) are ubiquitous in trend-cycle extraction and seasonal adjustment (e.g.: X-13-ARIMA):

$$M_{\theta}(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k}$$

 $oldsymbol{\Theta}$ In general, *symmetric* moving averages $(p = f \text{ et } \theta_{-i} = \theta_i)$

A raw time series can be decompose as (additive decomposition):

$$X_t = \underbrace{TC_t}_{ ext{trend-cycle}} + \underbrace{S_t}_{ ext{seasonality}} + \underbrace{I_t}_{ ext{irregular}}$$

And TC_t generally estimated on a series without seasonality

Moving averages (or *linear filters*) are ubiquitous in trend-cycle extraction and seasonal adjustment (e.g.: X-13-ARIMA):

$$M_{\theta}(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k}$$

- igoplus In general, *symmetric* moving averages $(p = f \text{ et } \theta_{-i} = \theta_i)$
- $oldsymbol{\odot}$ For **real-time estimates**, we must rely on **asymmetric** filters (p > f): revisions and delay in turning points detection (**phase-shift**): this is the case of the COVID-19

A raw time series can be decompose as (additive decomposition):

$$X_t = \underbrace{TC_t}_{ ext{trend-cycle}} + \underbrace{S_t}_{ ext{seasonality}} + \underbrace{I_t}_{ ext{irregular}}$$

And TC_t generally estimated on a series without seasonality

Moving averages (or *linear filters*) are ubiquitous in trend-cycle extraction and seasonal adjustment (e.g.: X-13-ARIMA):

$$M_{\theta}(X_t) = \sum_{k=-p}^{+f} \theta_k X_{t+k}$$

- igoplus In general, *symmetric* moving averages $(p = f \text{ et } \theta_{-i} = \theta_i)$
- $oldsymbol{\odot}$ For **real-time estimates**, we must rely on **asymmetric** filters (p > f): revisions and delay in turning points detection (**phase-shift**): this is the case of the COVID-19
- Occuparison of 3 methods that could be included in X-13-ARIMA

Contents

- 1. Introduction
- 2. Description of the methods
- 2.1 Current approache
- 2.2 Local Polynomials
- 2.3 Linear Filters and Reproducing Kernel Hilbert Space (RKHS)
- 2.4 Minimization under constraints: FST approach
- 3. Comparison of the methods
- 4. Conclusion

- 1. Series extend over 1 year by ARIMA model
- Trend-Cycle component extracted using symmetric Henderson moving average

- 1. Series extend over 1 year by ARIMA model
- Trend-Cycle component extracted using symmetric Henderson moving average
- Forecasts linear combinations of past values: equivalent to the use of asymmetric filters

- 1. Series extend over 1 year by ARIMA model
- Trend-Cycle component extracted using symmetric Henderson moving average
- Forecasts linear combinations of past values: equivalent to the use of asymmetric filters
- igoplus X-11: iteratively decomposes X_T in TC_t , S_t and I_t with automatic outlier correction

- 1. Series extend over 1 year by ARIMA model
- Trend-Cycle component extracted using symmetric Henderson moving average
- Forecasts linear combinations of past values: equivalent to the use of asymmetric filters
- igoplus X-11: iteratively decomposes X_T in TC_t , S_t and I_t with automatic outlier correction
- Comparison of 3 alternatives modern approaches that can reproduce Henderson filter

Local polynomials: **Q** rjdfilters::lp_filter()

Assumption: $y_t = \mu_t + \varepsilon_t$ with $\varepsilon_t \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$

 μ_t locally approximated by polynomial of degree d:

$$\forall j \in \llbracket -h, h \rrbracket : y_{t+j} = m_{t+j} + \varepsilon_{t+j}, \quad m_{t+j} = \sum_{i=0}^{d} \beta_i j^i$$

Local polynomials: **Q** rjdfilters::lp_filter()

Assumption: $y_t = \mu_t + \varepsilon_t$ with $\varepsilon_t \overset{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$

 μ_t locally approximated by polynomial of degree d:

$$\forall j \in \llbracket -h, h \rrbracket : y_{t+j} = m_{t+j} + \varepsilon_{t+j}, \quad m_{t+j} = \sum_{i=0}^{d} \beta_i j^i$$

Estimation using WLS using kernels: $\hat{\beta} = (X'KX)^1X'Ky$ and

$$\hat{m}_t = \hat{\beta}_0 = w'y = \sum_{j=-h}^n w_j y_{t-j}$$
 equivalent to symmetric moving average

 \bullet Henderson filter using a specific kernel and d=3.

Asymmetric filters: **Q** rjdfilters::lp_filter()

Several solutions:

- Same method with less data (DAF) ← Minimize revisions under same polynomial constraints (reproduce cubic trend)
- no bias lots of variance

Asymmetric filters: **Q** rjdfilters::lp_filter()

Several solutions:

- 1. Same method with less data (DAF) ← Minimize revisions under same polynomial constraints (reproduce cubic trend)
- no bias lots of variance
- 2. Minimization of revisions filter under polynomial constraints:
 - 2.1 Linear-Constant (LC): y_t linear and v reproduce constant trends (Musgrave filter)
 - 2.2 Quadratic-Linear (QL): y_t quadratic and v reproduce linear trends
 - 2.3 Cubic-Quadratic (CQ): y_t cubic and v reproduce quadratic trends
 - Asymmetric filters v depends on a ratio linked to "IC-Ratio"

Asymmetric filters: **Q** rjdfilters::lp_filter()

Several solutions:

- 1. Same method with less data (DAF) ← Minimize revisions under same polynomial constraints (reproduce cubic trend)
- no bias lots of variance
- 2. Minimization of revisions filter under polynomial constraints:
 - 2.1 Linear-Constant (LC): y_t linear and v reproduce constant trends (Musgrave filter)
 - 2.2 Quadratic-Linear (QL): y_t quadratic and v reproduce linear trends
 - 2.3 Cubic-Quadratic (CQ): y_t cubic and v reproduce quadratic trends
 - Asymmetric filters *v* depends on a ratio linked to "IC-Ratio"
- simple models with easy interpretation
- Timeliness not controlled method extended in rjdfilters::lp_filter()

- RKHS theory used to approximate Henderson filter
- With K_p the **kernel function**, the symmetric filter:

$$\forall j \in \llbracket -h, h \rrbracket : w_j = \frac{K_p(j/b)}{\sum_{i=-h}^h K_p(i/b)}$$

- RKHS theory used to approximate Henderson filter
- With K_p the **kernel function**, the symmetric filter:

$$\forall j \in \llbracket -h, h \rrbracket : w_j = \frac{K_p(j/b)}{\sum_{i=-h}^h K_p(i/b)}$$

• For asymmetric filters:

$$\forall j \in \llbracket -h, q \rrbracket : w_{\mathsf{a},j} = \frac{K_{\mathsf{p}}(j/b)}{\sum_{i=-h}^{q} K_{\mathsf{p}}(i/b)}$$

- RKHS theory used to approximate Henderson filter
- With K_p the **kernel function**, the symmetric filter:

$$\forall j \in \llbracket -h, h \rrbracket : w_j = \frac{K_p(j/b)}{\sum_{i=-h}^h K_p(i/b)}$$

- $oldsymbol{\Theta}$ with b=h+1 and a specific K_p you have the Henderson filter
 - For asymmetric filters:

$$\forall j \in \llbracket -h, q \rrbracket : w_{\mathsf{a},j} = \frac{K_{\mathsf{p}}(j/b)}{\sum_{i=-h}^{q} K_{\mathsf{p}}(i/b)}$$

- RKHS theory used to approximate Henderson filter
- With K_p the **kernel function**, the symmetric filter:

$$\forall j \in \llbracket -h, h \rrbracket : w_j = \frac{K_p(j/b)}{\sum_{i=-h}^h K_p(i/b)}$$

- \bullet with b = h + 1 and a specific K_p you have the Henderson filter
 - For asymmetric filters:

$$\forall j \in \llbracket -h, q \rrbracket : w_{\mathsf{a},j} = \frac{K_{\mathsf{p}}(j/b)}{\sum_{i=-h}^{q} K_{\mathsf{p}}(i/b)}$$

3 b chosen by optimization, e.g. minimizing revisions linked to phase-shift:

$$b_{q,arphi} = \min_{b_q} \int_0^{2\pi/12}
ho_s(\lambda)
ho_ heta(\lambda) \sin^2\left(rac{arphi_ heta(\omega)}{2}
ight) \,\mathrm{d}\omega$$

Filtres asymétriques

several local extremum

Generalizable to create filters that could be applied to irregular frequency series

rkhs_optimal_bw()

q=0 q=1 q=2 q=3 q=4 q=5

6.0000 6.0000 6.3875 8.1500 9.3500 6.0000

FST approach: **Q** rjdfilters::fst_filter()

Minimization of a weighted sum of 3 criteria under polynomial constraints:

$$\begin{cases} \min_{\theta} & J(\theta) = \alpha F_{g}(\theta) + \beta S_{g}(\theta) + \gamma T_{g}(\theta) \\ s.c. & C\theta = a \end{cases}$$

 F_g : Fidelity (variance reduction ratio), S_g : Smoothness (Henderson criterion), T_g timeliness (phase-shift)

FST approach: **Q** rjdfilters::fst filter()

Minimization of a weighted sum of 3 criteria under polynomial constraints:

$$\begin{cases} \min_{\theta} & J(\theta) = \alpha F_g(\theta) + \beta S_g(\theta) + \gamma T_g(\theta) \\ s.c. & C\theta = a \end{cases}$$

 F_{g} : Fidelity (variance reduction ratio), S_{g} : Smoothness (Henderson criterion), T_g timeliness (phase-shift)

- Unique solution
 Asymmetric filters independent of data and symmetric filter
- Non-normalized weights

Contents

- 1. Introduction
- 2. Description of the methods
- 3. Comparison of the methods
- 3.1 Methodology
- 3.2 Time delay
- 3.3 Revision
- 3.4 Some examples
- 4. Conclusion

2 404 calendar adjusted series (sts_inpr_m, industrial production indices of EU):

 Seasonal adjustment with X-13ARIMA (RJDemetra::x13) for each date to extract: linearized component, length of trend and seasonal filters, decomposition mode and I-C ratio

2 404 calendar adjusted series (sts_inpr_m, industrial production indices of EU):

- Seasonal adjustment with X-13ARIMA (RJDemetra::x13) for each date to extract: linearized component, length of trend and seasonal filters, decomposition mode and I-C ratio
- 2. Seasonal adjustment using *fixed* linearized component (est. overall period) and same length/decomposition/I-C ratio with X-11 using custom trend-cycle filters (rjdfilters::x11()).

2 404 calendar adjusted series (sts_inpr_m, industrial production indices of EU):

- Seasonal adjustment with X-13ARIMA (RJDemetra::x13) for each date to extract: linearized component, length of trend and seasonal filters, decomposition mode and I-C ratio
- Seasonal adjustment using fixed linearized component (est. overall period) and same length/decomposition/I-C ratio with X-11 using custom trend-cycle filters (rjdfilters::x11()).
- 3. For each estimate, downturns and upturns:
 - upturn: $y_{t-3} \ge \cdots \ge y_{t-1} < y_t \le y_{t+1}$
 - o downturn: $y_{t-3} \le \cdots \le y_{t-1} > y_t \ge y_{t+1}$

2 404 calendar adjusted series (sts_inpr_m, industrial production indices of EU):

- Seasonal adjustment with X-13ARIMA (RJDemetra::x13) for each date to extract: linearized component, length of trend and seasonal filters, decomposition mode and I-C ratio
- Seasonal adjustment using fixed linearized component (est. overall period) and same length/decomposition/I-C ratio with X-11 using custom trend-cycle filters (rjdfilters::x11()).
- 3. For each estimate, downturns and upturns:
 - upturn: $y_{t-3} \ge \cdots \ge y_{t-1} < y_t \le y_{t+1}$
 - o downturn: $y_{t-3} \le \cdots \le y_{t-1} > y_t \ge y_{t+1}$

Time-delay: time to detect the correct turning point without further revisions Methods compared: RKHS minimizing phase-shift and local polynomial filters

	X-13-ARIMA	RKHS	LC	QL	CQ	DAF
Min	2.0	2.00	2.00	2.00	2.00	2.00
D1	2.0	5.00	3.00	2.00	2.00	2.00
D2	3.0	5.00	3.00	3.00	2.00	2.00
D3	3.0	5.00	4.00	3.00	3.00	3.00
D4	3.0	5.00	4.00	3.00	5.00	3.00
Median	4.0	5.00	4.00	4.00	6.00	5.00
D6	4.0	7.00	4.00	5.00	6.00	6.00
D7	4.0	7.00	5.00	7.00	7.00	7.00
D8	5.0	7.00	5.00	7.00	7.00	7.00
D9	9.0	9.00	8.00	9.00	9.00	9.00
Max	14.0	14.00	14.00	14.00	14.00	14.00
Mean	4.4	6.29	4.69	4.97	5.32	5.09

	X-13-ARIMA	RKHS	LC	QL	CQ	DAF
Min	2.0	2.00	2.00	2.00	2.00	2.00
D1	2.0	5.00	3.00	2.00	2.00	2.00
D2	3.0	5.00	3.00	3.00	2.00	2.00
D3	3.0	5.00	4.00	3.00	3.00	3.00
D4	3.0	5.00	4.00	3.00	5.00	3.00
Median	4.0	5.00	4.00	4.00	6.00	5.00
D6	4.0	7.00	4.00	5.00	6.00	6.00
D7	4.0	7.00	5.00	7.00	7.00	7.00
D8	5.0	7.00	5.00	7.00	7.00	7.00
D9	9.0	9.00	8.00	9.00	9.00	9.00
Max	14.0	14.00	14.00	14.00	14.00	14.00
Mean	4.4	6.29	4.69	4.97	5.32	5.09

	X-13-ARIMA	RKHS	LC	QL	CQ	DAF
Min	2.0	2.00	2.00	2.00	2.00	2.00
D1	2.0	5.00	3.00	2.00	2.00	2.00
D2	3.0	5.00	3.00	3.00	2.00	2.00
D3	3.0	5.00	4.00	3.00	3.00	3.00
D4	3.0	5.00	4.00	3.00	5.00	3.00
Median	4.0	5.00	4.00	4.00	6.00	5.00
D6	4.0	7.00	4.00	5.00	6.00	6.00
D7	4.0	7.00	5.00	7.00	7.00	7.00
D8	5.0	7.00	5.00	7.00	7.00	7.00
D9	9.0	9.00	8.00	9.00	9.00	9.00
Max	14.0	14.00	14.00	14.00	14.00	14.00
Mean	4.4	6.29	4.69	4.97	5.32	5.09

	X-13-ARIMA	RKHS	LC	QL	CQ	DAF
Min	2.0	2.00	2.00	2.00	2.00	2.00
D1	2.0	5.00	3.00	2.00	2.00	2.00
D2	3.0	5.00	3.00	3.00	2.00	2.00
D3	3.0	5.00	4.00	3.00	3.00	3.00
D4	3.0	5.00	4.00	3.00	5.00	3.00
Median	4.0	5.00	4.00	4.00	6.00	5.00
D6	4.0	7.00	4.00	5.00	6.00	6.00
D7	4.0	7.00	5.00	7.00	7.00	7.00
D8	5.0	7.00	5.00	7.00	7.00	7.00
D9	9.0	9.00	8.00	9.00	9.00	9.00
Max	14.0	14.00	14.00	14.00	14.00	14.00
Mean	4.4	6.29	4.69	4.97	5.32	5.09

MAE in 2020

For series for which the optimal trend-cycle symmetric filter is of length 13

 R_t : relative revision error between first and last estimates.

Distribution of $\frac{\textit{MAE}(R_t)}{\textit{MAE}(R_t^{X-13})}$

	RKHS	LC	QL	CQ	DAF
Min	0.4	0.5	0.5	0.5	0.5
D1	0.9	0.9	1.1	1.1	1.1
D2	1.0	1.0	1.3	1.4	1.3
D3	1.1	1.1	1.4	1.5	1.5
D4	1.1	1.2	1.6	1.7	1.6
Median	1.2	1.3	1.7	1.8	1.8
D6	1.3	1.4	1.9	2.0	1.9
D7	1.4	1.5	2.0	2.3	2.2
D8	1.5	1.6	2.3	2.6	2.4
D9	1.7	1.8	2.6	3.1	2.9
Max	4.0	4.6	6.5	5.8	5.9
Mean	1.3	1.3	1.8	2.0	1.9

MAE in 2020

For series for which the optimal trend-cycle symmetric filter is of length 13

 R_t : relative revision error between first and last estimates.

Distribution of $\frac{\mathit{MAE}(R_t)}{\mathit{MAE}(R_t^{X-13})}$

	RKHS	LC	QL	CQ	DAF
Min	0.4	0.5	0.5	0.5	0.5
D1	0.9	0.9	1.1	1.1	1.1
D2	1.0	1.0	1.3	1.4	1.3
D3	1.1	1.1	1.4	1.5	1.5
D4	1.1	1.2	1.6	1.7	1.6
Median	1.2	1.3	1.7	1.8	1.8
D6	1.3	1.4	1.9	2.0	1.9
D7	1.4	1.5	2.0	2.3	2.2
D8	1.5	1.6	2.3	2.6	2.4
D9	1.7	1.8	2.6	3.1	2.9
Max	4.0	4.6	6.5	5.8	5.9
Mean	1.3	1.3	1.8	2.0	1.9

MAE in 2020

For series for which the optimal trend-cycle symmetric filter is of length 13

 R_t : relative revision error between first and last estimates.

Distribution of $\frac{MAE(R_t)}{MAE(R_t^{X-13})}$

	RKHS	LC	QL	CQ	DAF
Min	0.4	0.5	0.5	0.5	0.5
D1	0.9	0.9	1.1	1.1	1.1
D2	1.0	1.0	1.3	1.4	1.3
D3	1.1	1.1	1.4	1.5	1.5
D4	1.1	1.2	1.6	1.7	1.6
Median	1.2	1.3	1.7	1.8	1.8
D6	1.3	1.4	1.9	2.0	1.9
D7	1.4	1.5	2.0	2.3	2.2
D8	1.5	1.6	2.3	2.6	2.4
D9	1.7	1.8	2.6	3.1	2.9
Max	4.0	4.6	6.5	5.8	5.9
Mean	1.3	1.3	1.8	2.0	1.9

MAE in 2020

For series for which the optimal trend-cycle symmetric filter is of length 13

 R_t : relative revision error between first and last estimates.

Distribution of $\frac{MAE(R_t)}{MAE(R_t^{X-13})}$

	RKHS	LC	QL	CQ	DAF
Min	0.4	0.5	0.5	0.5	0.5
D1	0.9	0.9	1.1	1.1	1.1
D2	1.0	1.0	1.3	1.4	1.3
D3	1.1	1.1	1.4	1.5	1.5
D4	1.1	1.2	1.6	1.7	1.6
Median	1.2	1.3	1.7	1.8	1.8
D6	1.3	1.4	1.9	2.0	1.9
D7	1.4	1.5	2.0	2.3	2.2
D8	1.5	1.6	2.3	2.6	2.4
D9	1.7	1.8	2.6	3.1	2.9
Max	4.0	4.6	6.5	5.8	5.9
Mean	1.3	1.3	1.8	2.0	1.9

IPI in the manufacture of fabricated metal products, except machinery and equipment (C25) in Sweden (turning point in February 2020)

Some examples

Trend-cycle estimation of the series C25_SE with the method RKHS

Trend-cycle estimation of the series C25_SE with the method LC

May '20

Jul '20

Sep '20

Mar '20

lan '20

Sep '19

Nov '19

Mar '21

lan '21

Nov '20

Trend-cycle estimation of the series C25_SE with the method QL

Trend-cycle estimation of the series C25 SE with the method CQ

May '20

San '20

Nov '20

Nov 110

Mar '21

IPI in the manufacture of cement, lime and plaster (C235) in Germany (turning point in February 2020)

Trend-cycle estimation of the series C235_DE with the method RKHS

Time-delay = 5 months

May '20

Mar '20

Jul '20

Sep '20

Nov '20

lan '21

Sep '19

Nov '19

Ian '20

Mar '21

Trend-cycle estimation of the series C235_DE with the method QL

Trend-cycle estimation of the series C235_DE with the method CQ

May '20

Iul '20

Sep '20

Nov '20

lan '21

Mar '20

Sep '19

Nov '19

lan '20

Mar '21

Conclusion

• To build asymmetric filters, we can focus on the ones that reproduces at most linear trend (excluding QL, CQ and DAF filters)

Conclusion

- To build asymmetric filters, we can focus on the ones that reproduces at most linear trend (excluding QL, CQ and DAF filters)
- During the COVID-19, the current X-13-ARIMA algorithm seems to produce on average satisfying results

Conclusion

- To build asymmetric filters, we can focus on the ones that reproduces at most linear trend (excluding QL, CQ and DAF filters)
- During the COVID-19, the current X-13-ARIMA algorithm seems to produce on average satisfying results
- In some cases, we could prefer others trend-cycle filters ② rjdfilters can help

 More investigations to understand why and when a method performs better

- More investigations to understand why and when a method performs better
- Study on other datasets

- More investigations to understand why and when a method performs better
- Study on other datasets

Other methods:

- FST can lead to filters that performs better in terms of Fidelity,
 Smoothness, Timeliness than:
 - RKHS filters with same polynomial constraints
 - LC filters with same polynomial constraints
 - Study of those moving averages?

- More investigations to understand why and when a method performs better
- Study on other datasets

Other methods:

- FST can lead to filters that performs better in terms of Fidelity, Smoothness, Timeliness than:
 - RKHS filters with same polynomial constraints
 - LC filters with same polynomial constraints
 - Study of those moving averages?
- Direct Filter Approach (Wildi and McElroy (2019)), Cascade Linear Filter (Dagum and Luati (2008)), etc.

- More investigations to understand why and when a method performs better
- Study on other datasets

Other methods:

- FST can lead to filters that performs better in terms of Fidelity,
 Smoothness, Timeliness than:
 - RKHS filters with same polynomial constraints
 - LC filters with same polynomial constraints
 - Study of those moving averages?
- Direct Filter Approach (Wildi and McElroy (2019)), Cascade Linear Filter (Dagum and Luati (2008)), etc.
- Impact of outliers? Study of robust methods?

Bibliography

Q package: **Q** palatej/rjdfilters

About me: AQLT

Bibliography:

- Dagum, Estela Bee, and Silvia Bianconcini, 2008, "The Henderson Smoother in Reproducing Kernel Hilbert Space." Journal of Business & Economic Statistics 26: 536–45. https://ideas.repec.org/a/bes/jnlbes/v26y2008p536-545.html.
- Dagum, Estela Bee, and Alessandra Luati. 2008. "A Cascade Linear Filter to Reduce Revisions and False Turning Points for Real Time Trend-Cycle Estimation." Econometric Reviews 28 (1-3): 40-59. https://doi.org/10.1080/07474930802387837.
- Grun-Rehomme, Michel, Fabien Guggemos, and Dominique Ladiray. 2018. "Asymmetric Moving Averages Minimizing Phase Shift." Handbook on Seasonal Adjustment. ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/KS-GQ-18-001.
- Proietti, Tommaso, and Alessandra Luati. 2008. "Real Time Estimation in Local Polynomial Regression, with Application to Trend-Cycle Analysis." Ann. Appl. Stat. 2 (4): 1523-53.
- Wildi, Marc, and Tucker McElroy. 2019. "The Trilemma Between Accuracy, Timeliness and Smoothness in Real-Time Signal Extraction." International Journal of Forecasting 35 (3): 1072-84.

https://EconPapers.repec.org/RePEc:eee:intfor:v:35:y:2019:i:3:p:1072-1084.