

RAPPORT DE STAGE

Compression de maillage et problèmes d'évolution

Intégration temporelle et multirésolution adaptative pour les EDP en temps.

Étudiant : Alexandre Edeline

École : ENSTA Paris - Institut Polytechnique de Paris

Période : du 14/04/2025 au 15/09/2025

Laboratoire : CMAP - École Polytechnique

Maîtres de stages: Marc Massot et Christian Tenaud

Tuteur académique : Patrick CIARLET

Remerciements

Je tiens à remercier...

Résumé

Résumé

Résumé du rapport de stage en français (150-300 mots). Présenter brièvement le contexte, les objectifs, la méthodologie, les principaux résultats et conclusions.

Mots-clés : Schémas Numériques, Simulation des EDP d'Évolution, Multirésolution Adaptative, Méthodes ImEx, Advection-Diffusion-Réaction, Analyse d'erreur numérique, Analyse de stabilité

English abstract of the internship report (150-300 words). Briefly present the context, objectives, methodology, main results and conclusions.

Keywords: Numerical Schemes, Evolution PDE Simulation, Adaptive Multiresolution, ImEx Methods, Advection-Diffusion-Reaction, Numerical Error Analysis, Stability Analysis

Table des matières

	Ren	nerciem	ents
	Rési	ımé .	
	List	e des fig	gures
	List	e des ta	bleaux
1	Pré	sentat	ion du laboratoire 5
		1.0.1	Historique et activités
		1.0.2	La recherche au CMAP
		1.0.3	L'équipe HPC@Math et lenvironnement de travail 6
2	Des	criptic	on du travail objectifs et état de l'art 7
	2.1	Préser	ntation du sujet et problématique générale
	2.2	Quelq	ues notions techniques
		2.2.1	Intégrations des EDOs
		2.2.2	Les équations d'advection-diffusion-réaction
		2.2.3	Les trois opérateurs
		2.2.4	Difficultés mathématiques intrinsèques
		2.2.5	Les stratégies de simulation
		2.2.6	Conclusion
		2.2.7	Simulation des EDPs d'évolution
		2.2.8	Analyse de schéma numériques
		2.2.9	La Multirésolution Adaptative
	2.3	Objec	tifs
	2.4		ode de travail et outils
3	Cor	ıtribut	ion 17
	3.1	Étude	de méthodes ImEx sur une équation de diffusion-réaction
		3.1.1	L'équation de Nagumo
		3.1.2	Les méthodes ImEx
		3.1.3	Analyse de stabilité
		3.1.4	Étude de la convergence
		3.1.5	Conclusion
	3.2	Impac	t de la multirésolution adaptative sur l'erreur d'une méthode des lignes 28
		3.2.1	Cadre de l'étude
		3.2.2	Calcul des équations équivalentes
		3.2.3	Complément expérimental

		3.2.4	Conclusion		 	 	 	 	 			 ;	31
4	Con	clusio	n									•	32
Bi	ibliog	graphie	•									•	34
	.1	Annex	e A : Titre d	le l'annexe	 	 	 	 	 			 	35
	.2	Annex	e B : Titre d	le l'annexe	 	 	 	 	 			 	35

Table des figures

2.1	Exemple illustratif du comportement de l'erreur de l'approximation dans le ca	
	d'un schéma d'ordre 2 avec une instabilité pour $\Delta t > 10^{-1}$	9
2.2	Exemple de maillage adapté par multiresoltion adaptative grâce au logiciel Samurai.	13
3.1	Profils des ondes solutions de l'équation de Nagumo pour différents ratios k/D à	
	$\mathrm{kD}=1$ fixé (c'est à dire à vitesse fixée). L'augmentation du ratio $\mathrm{k/D}$ accentue	
	le gradient spatial	19
3.2	Plage de valeurs du terme de réaction non-linéaire et de sa différentielle pour deux	
	coefficients de réactions : $k=1$ et $k=10$	20
3.3	Pour différents couples D et k , diagrammes de stabilité des méthodes ImEx et de	
	référence sur l'équation de Nagumo.	25
3.4	Pour $k=500$ et $D=500$: diagrammes de stabilité des méthodes Im Ex et de	
	référence sur l'équation de Nagumo.	28

Liste des tableaux

Chapitre 1

Présentation du laboratoire

1.0.1 Historique et activités

Le Centre de Mathématiques Appliquées de l'École Polytechnique ¹ (CMAP) a été créé en 1974 lors du déménagement de l'École Polytechnique vers Palaiseau. Cette création répond au besoin émergent de mathématiques appliquées face au développement des méthodes de conception et de simulation par calcul numérique dans de nombreuses applications industrielles de l'époque(nucléaire, aéronautique, recherche pétrolière, spatial, automobile). Le laboratoire fut fondé grâce à l'impulsion de trois professeurs : Laurent SCHWARTZ, Jacques-Louis LIONS et Jacques Neveu. Jean-Claude Nédélec en fut le premier directeur, et la première équipe de chercheurs associés comprenait P.A. RAVIART, P. CIARLET, R. GLOWINSKI, R. TEMAM, J.M. THOMAS et J.L. LIONS. Les premières recherches se concentraient principalement sur l'analyse numérique des équations aux dérivées partielles. Le CMAP s'est diversifié au fil des décennies, intégrant notamment les probabilités dès 1976, puis le traitement d'images dans les années 1990 et les mathématiques financières à partir de 1997. Le laboratoire a formé plus de 230 docteurs depuis sa création et a donné naissance à plusieurs startups spécialisées dans les applications industrielles des mathématiques appliquées.

1.0.2 La recherche au CMAP

Le CMAP comprend trois pôles de recherche : le pôle analyse, le pôle probabilités et le pôle décision et données. Chaque pôle accueil en son sein plusieurs équipes :

1. Analyse

- ♦ EDP pour la physique.
- ♦ Mécanique, Matériaux, Optimisation de Formes.
- ♦ HPC@Maths (calcul haute performance).
- ♦ PLATON (quantification des incertitudes en calcul scientifique), avec l'INRIA.

2. Probabilités

- ♦ Mathématiques financières.
- ♦ Population, système particules en interaction.
- ♦ ASCII (interactions stochastiques coopératives), avec l'INRIA.

 $^{1. \ \, \}text{https://cmap.ip-paris.fr}$

♦ MERGE (évolution, reproduction, croissance et émergence), avec l'INRIA.

3. Décision et données

- ♦ Statistiques, apprentissage, simulation, image.
- ♦ RandOpt (optimisation aléatoire).
- \diamond Tropical (algèbre (max, +)), avec IINRIA.

J'ai intégré l'équipe **HPC@Maths pole analyse**. De nombreuses équipe sont partagées entre le CMAP et l'INRIA ce qui démontre l'aspect appliqué du laboratoire.

1.0.3 L'équipe HPC@Math et lenvironnement de travail

L'équipe HPC@Math L'équipe HPC@Math 2 travaille à l'interface des mathématiques de la physique (mécanique des fluides, thermodynamique) et de l'informatique pour développer des méthodes numériques complètes (schéma, analyse d'erreur, implémentation) pour la simulation des EDP. Léquipe se centre sur les problèmes multi-échelles; les EDPs cibles qui typiquement étudiées sont les équations d'advection-réaction-diffusion qui représente de manière générale le couplage entre la mécanique des fluides, la thermodynamique et la chimie (typiquement un problème de combustion). Tout cela se fait dans le contexte HPC (high performance computing). Le HPC désigne l'usage optimal des ressources informatiques disponibles cela peut être développer une simulation efficace sur une petite machine comme des schéma hautement parallélisable dans des paradigmes de calculs hybrides ou dans des contextes hexascale (échelle hexaflopique) ³. Ainsi l'application des méthodes développées est au cur des réflexions de l'équipe.

ii Envrionnement de travail

 $^{2. \} https://initiative-hpc-maths.gitlab.labos.polytechnique.fr/site/index.html\\$

^{3.} Plateformes de calculs ayant une capacité de calcul théorique de 10¹⁶ opérations par seconde (hexaflops).

Chapitre 2

Description du travail objectifs et état de l'art

Cette partie décrit les objectifs de mon travail et les méthodes employées. Elle introduit également le lecteur au sujet et ses problématiques et fournis un état de l'art élémentaire des différents domaines convoqués.

2.1 Présentation du sujet et problématique générale

Mon travail participe à l'élaboration de méthodes numériques pour l'approximations des équations au dérivées partielles d'évolution. En particulier, j'ai travaillé sur les équations d'advections-diffusion-réaction. Elles représentent typiquement des systèmes physiques couplant mécanique des fluides, thermodynamique et réactions chimiques ¹. Ces équations sont difficiles à simuler du fait de leur caractère multi-échelle ². Pour gérer les différentes échelles spatiales, des méthodes de compression de maillage ont été mises en oeuvre. La méthode de compression utilisée ici est la multirésolution adaptative, Les différentes échelles temporelles ³ sont usuellement gérées par force brute ou par séparation d'opérateurs. Ici nous allons également étudier des méthodes hybrides : les méthodes implicites-explicites (ImEx). Mon travaille vise principalement à comprendre comment s'agence la multirésolution adaptative avec les différentes méthodes d'intégrations temporelles.

^{1.} Typiquement des problèmes de combustion.

^{2.} Une réaction chimique a des temps et distances typiques généralement plusieurs ordres de grandeurs plus faibles que les temps et distances typiques de la mécanique des fluides.

^{3.} En terme technique, les différents termes des équations étudiées ont des raideurs très différentes.

2.2 Quelques notions techniques

2.2.1 Intégrations des EDOs

Bien des techniques d'approximation d'EDPs d'évolution font intervenir à un moment la résolution d'une équation différentielle ordinaire (EDO ⁴), c'est à dire une équation différentielle ne faisant intervenir qu'une seule variable différenciée (ici le temps). Nous commençons donc cette section par rappeler quelques notions d'analyse et de simulation des EDOs ⁵.

Définition 2.2.1 (Équation différentielle ordinaire). Une équation différentielle ordinaire est une équation de la forme :

$$u' = f(u,t) \quad u: t \in \mathbb{R}^+ \mapsto u(t) \in \mathbb{R}^d$$

$$u(0) = u_0.$$
(2.1)

.i Schémas explicites et implcites. L'approximation des EDO se fait grâce à des schéma numériques. Ceux-ci se divisent en deux catégories, les schéma explicites et les schéma implicite ⁶. Dans ce qui suit on note u^n l'approximation de la solution d'une EDO au pas de temps n, c'est à dire que donné un pas de discrétisation temporel Δt l'objectif est d'avoir $u^n \approx u(t = n\Delta t)$.

Définition 2.2.2 (Schéma explicite). Un schéma numérique est dit explicite si le pas de temps n + 1 est obtenu grâce au pas de temps n, c'est à dire :

$$u^{n+1} = u^n + f(u^n, \Delta t). (2.2)$$

Définition 2.2.3 (Schéma implicite). Un schéma numérique est dit implicite si le pas de temps n + 1 est obtenu grâce au pas de temps n et n + 1, c'est à dire :

$$u^{n+1} = u^n + f(u^{n+1}, \Delta t). (2.3)$$

Ainsi, une itération d'un schéma implicite nécessite l'inversion d'un système linéaire ou non linéaire.

De fait une itération implicite est souvent plus coûteuse qu'une itération d'un schéma explicite ⁷. Cependant pour des raisons de stabilités les méthodes explicites peuvent nécessiter des pas de temps bien plus fin, et donc bien plus d'itérations. Le choix entre méthode explicite et implicite dépend de bien des facteurs (du problème, du niveau de précision voulu, de la difficulté d'implémentation etc...) c'est un enjeu central de la simulation numérique.

.ii Stabilité des schémas numériques Un schéma numérique d'ordre p converge vers la solution exacte de l'EDO avec une erreur qui décroît asymptotiquement en Δt^p lorsque le pas de temps diminue. Cependant, cette convergence n'est garantie que si le schéma reste stable.

^{4.} On utilisera aussi le terme système dynamique, même si en toute rigueur ce concept est un peu plus large.

^{5.} Pour nos besoins nous nous restreignons au EDO du premier ordre.

^{6.} Nous présentons ici seulement les schéma à un pas et non pas les schémas multi-pas. Ce choix est fait en raison de la barrière de Dhalquist.

^{7.} En particulier si la dimension de la solution d est grande.

L'instabilité se manifeste par une divergence de la solution numérique : au-delà d'un pas de temps critique Δt_0 , la norme de la solution discrète $\|u^n\|$ tend vers l'infini ⁸. Cette instabilité peut s'interpréter de deux manières complémentaires : d'un point de vue mathématique, le schéma se comporte comme une suite géométrique de raison |r| > 1; d'un point de vue physique, le schéma introduit artificiellement de l'énergie dans le système à chaque itération. La contrainte de stabilité impose donc $\Delta t < \Delta t_0$. Lorsque ce seuil est très restrictif, la résolution de l'EDO nécessite un nombre important d'itérations, augmentant considérablement le coût calculatoire. Comme évoqué précédemment les méthodes explicites sont généralement plus bien sensibles à cette limitation que les méthodes implicites.

FIGURE 2.1 – Exemple illustratif du comportement de l'erreur de l'approximation dans le ca d'un schéma d'ordre 2 avec une instabilité pour $\Delta t > 10^{-1}$.

Définition 2.2.4 (Stabilité d'un schéma numérique). Un schéma numérique $n \mapsto u^n \in \mathbb{R}^d$ est stable si est seulement si :

$$||u^{n+1}|| \le ||u^n||. \tag{2.4}$$

Pour un schéma d'intégration et une ODE fixée, cette condition peut être vérifiée ou non en fonction de la valeur du pas discrétisation Δt .

La stabilité d'une méthode d'intégration d'EDO dépend entre autre de l'opérateur intervenant dans l'équation. Un opérateur prompt à poser des problèmes de stabilité.

Définition 2.2.5 (Problème raide). Un système dynamique, est dit raide si les méthodes ex-

^{8.} Phénomène communément appelé "explosion" de la solution numérique.

plicites ne sont pas adaptées à sa résolution. En termes plus mathématiques le système

$$\frac{\mathrm{d}u}{\mathrm{d}t} = f(u,t) \quad u(t) \in \mathbb{R}^d \, \forall t \ge 0. \tag{2.5}$$

est dit raide si la jacobienne de f, J_f possède de grandes valeurs propres négatives 9 .

En simplifiant, si un opérateur est raide, il impose une condition de stabilité très restrictive aux méthodes explicites et force à choisir des méthodes implicites ¹⁰.

Exemple 2.2.6 (Équation de Dhalquist). Pour saisir de manière plus intuitive le concept de raideur, prenons le cas simple de l'équation de Dhalquist définissant le système suivant ¹¹:

$$\frac{\mathrm{d}u}{\mathrm{d}t} = -\lambda u, \quad \lambda > 0$$

$$u(t=0) = u_0$$
(2.6)

La solution analytique est : $u(t) = u_0 e^{-\lambda t}$. Ainsi passé quelque $1/\lambda$ la dynamique du système est au point mort. Grossièrement la dynamique digne d'intérêt du système se concentre entre t=0 et $t=\frac{10}{\lambda}$. Au delà, $u(t>\frac{10}{\lambda})=o(u_0)$, la dynamique est terminée. Ainsi le lecteur comprend aisément que si l'on souhaite simuler le comportement d'un tel système, il faut prendre des pas de temps petits devant $|\lambda|^{-1}$. Si λ est de grande amplitude cela peut devenir très contraignant... Si l'on souhaite utiliser des méthodes explicites, c'est encore pire car la raideur du système n'est plus un simple contrainte de précision mais de stabilité. En effet si l'on cherche à approximer le système par un schéma d'Euler explicite, alors : $U^{n+1}=U^n(1-\lambda\Delta t)$ alors la contrainte de stabilité est $\Delta t \lambda < 1/2$ ce qui est contraignant si λ est grand. Si $\lambda=10^5$ alors il faut avoir $\Delta t/approx10^{-5}$ donc pour simuler le système entre t=0 et t=1 il faut cent-milles points! A l'inverse si l'on choisit un schéma d'Euler implicite : $u^{n+1}=u^n-\lambda\Delta tu^{n+1}$, alors la condition de stabilité devient : $||(1+\lambda\Delta t)^{-1}|| \leq 1$ ce qui est toujours vrai, quelque soit $-\lambda \in \mathbb{R}^-$, la raideur du système n'est pas un problème pour la méthode implicite. On comprend mieux la définition précédente Un système dynamique, est dit raide si les méthodes explicites ne sont pas adaptées à sa résolution.

Il existe plusieurs type de stabilité comme la A-stabilité (méthode stable indépendamment de la raideur du problème), la L-stabilité (schéma amortissant les hautes fréquences), par soucis de concision nous n'irons pas plus loins mais le lecteur intéressé se référera à [8].

2.2.2 Les équations d'advection-diffusion-réaction

Plaçons nous dans le contexte physique naturel des équations d'advection, diffusion, réaction : Des particules sont placées dans un milieu fluide où elles **diffusent**, ce milieu fluide est en mouvement, cet écoulement déplace les particules, il les **advecte**. Enfin les particules **réagissent** entre-elles et ces réactions modifient les grandeurs thermodynamiques (température, pression) et in fine les propriétés du milieu fluide. Les équations d'advection, diffusion, réaction modélisent donc ces trois phénomènes et leurs couplages respectifs.

^{9.} Ici grand est à comprendre au sens de grande amplitude devant d'autres valeurs propres.

^{10.} La réalité est plus nuancée, nous le verrons.

^{11.} C'est le cas le plus simple d'une valeur propre négative

2.2.3 Les trois opérateurs

A Advection

L'advection désigne le transport d'une quantité par un flot. L'opérateur d'advection le plus simple est l'opérateur de transport $c\frac{\partial}{\partial x}$:

$$\frac{\partial u}{\partial t} = c \frac{\partial u}{\partial x} \tag{2.7}$$

De manière générale un opérateur dadvection d'une quantité u par un flot \underline{a} s'écrit $\underline{a} \cdot \underline{\nabla} u$. Par exemple dans les équations de Navier-Stokes, l'opérateur $\underline{v} \cdot \underline{\nabla} \underline{v}$ représente la vitesse \underline{v} qui est transportée par elle même. Une version simplifiée de ce phénomène est l'équation bien connue de Bürgers.

Les opérateurs d'advections sont généralement à valeurs propres imaginaires ¹². Ainsi ils sont peu raides mais résonnants. Les méthodes explicites sont généralement les plus adaptées pour les traiter.

B Diffusion

La diffusion désigne l'éparpillement de particules au sein d'un milieu fluide ¹³. Ce phénomène est la limite macroscopique du déplacement microscopiques des particules à cause de l'agitation thermique. L'opérateur de diffusion le plus classique est celui de l'équation de la chaleur :

$$\frac{\partial u}{\partial t} = D\Delta u. \tag{2.8}$$

Le spectre de cet opérateur est \mathbb{R}^- , il est donc infiniment raide. Lorsqu'il est discrétisé seul une partie de sa raideur est captée, en pratique la raideur de l'opérateur augmente de manière quadratique avec la finesse de la discrétisation spatiale.

Cet opérateur est donc moyennement raide. Ainsi on pourrait penser qu'une méthode implicite est adéquate. Cependant ce n'est généralement pas le cas. En effet le coefficient de diffusion est généralement fonction de la température, et donc lopérateur $D(T) \times \Delta(\cdot)$ varie génialement dans le temps et l'espace. Ainsi il faut inverser à chaque itération l'opérateur implicite, et comme c'est un opérateur non local ¹⁴, il faut inverser une matrice de taille d >> 1 dont la structure peut être très hétérogène. (car le coefficient de diffusion dépend de T et du milieu, donc in fine de \underline{x}). Aujourd'hui il est d'usage d'utiliser des méthodes explicites stabilisées qui parviennent à gérer la raideur moyenne ¹⁵ comme les méthodes ROK2 et ROK4[1].

^{12.} Par abus, s'il s'agit d'un opérateur non-linéaire on lui associera les valeurs propres de sa Jacobienne.

^{13.} En théorie de l'information cela décrit la tendance de l'entropie augmenter et l'information à se moyenner, se flouter.

^{14.} Si l'opérateur de diffusion était local on pourrait résoudre plusieurs petit systèmes, potentiellement en parallèle ce qui est bien moins coûteux qu'inverser un grand système. Pour se convaincre, inverser un matrice pleine de taille 10^6 coûte au moins 10^{18} opérations, alors qu'inverser 100 systèmes de taille 10^4 coûte $100 \times 10^{12} = 10^{14}$ soit dix mille fois moins, et si ces résolution étaient parallélisé ce serait un million de fois moins.

^{15.} Nous reviendrons sur ce qualificatif au prochain paragraphe.

C Réaction

Les phénomène sont en général bien adaptés aux méthodes implicites car extrêmement raides et locaux. En effet, les temps typiques d'une réaction chimique ¹⁶ sont de l'ordre de la nanoseconde. De fait, les réactions chimiques sont très difficiles à simuler par des méthodes explicites. Et les méthodes implicites ne sont pas très chères dans ce contexte, en effet comme les réactions sont locales (à chaque pas de temps les particules les particules au sein d'une cellules ne réagissent qu'avec les autres particules de la même cellule) les méthodes explicites peuvent se paralléliser. En d'autres termes il est possible de mettre en oeuvre une méthode implicite par cellule, ce qui revient à inverser un opérateur de petite dimension en chaque cellule, et il n'est pas nécessaire d'inverser un énorme système.

2.2.4 Difficultés mathématiques intrinsèques

La simulations des équations d'advections-réaction-diffusion se heurte à deux difficultés majeur, le couplage des trois opérateurs mentionnés précédemment et le caractère multi-échelles des solutions.

A Première difficulté : le couplage des opérateurs

Les développements précédents auront convaincu le lecteur que résoudre chaque phénomène individuellement, n'est pas insurmontable. Cependant, les résoudre tous en même temps, c'est à dire les coupler, est en pratique très difficile. En effet, lorsque l'on couple les trois opérateurs, il en résulte un unique opérateur qui doit être traité par une méthode numérique. C'est là que surgissent les difficultés : si la méthode est explicite (éventuellement stabilisée), la raideur de la réaction impose des pas de temps extrêmement restrictifs, à l'inverse si l'on choisit une méthode implicite, la non-localité de la diffusion demande l'inversion d'un système de taille déraisonnable. Cette approche naïve, monolithique, n'est donc pas adaptée. Il faut trouver d'autres stratégies de pour simuler ces équations dadvection-réaction-diffusion.

B Seconde difficulté : le caractère multi-échelles des solutions

Les solutions des solutions étudiées sont souvent multi-échelles, en temps et en espace. Cela signifie que certaines zones spatio-temporelles nécessitent une finesse d'approximation élevée pour pouvoir reproduire fidèlement le comportement physique, alors qu'en d'autres zones une approximation grossière est suffisante. Prenons l'exemple d'un incendie dans un local. Au début le foyer est très restreint et seul cette zone doit être maillée finement, car partout ailleurs il ne se passe rien, petit à petit l'incendie se propage et la zone à mailler finement augmente. Un autre exemple de phénomène multi-échelle serait une détonation, il faut mailler finement, au foyer de l'explosion et le front de l'onde de choc. Mais la zone non atteinte par l'explosion, qui n'a pas encore reçu le choc, pourrait être maillée très grossièrement. Ainsi si l'on maille naïvement, il est envisageable qu'à certains instants, 90% du domaine soit maillé avec un pas d'espace 100 fois plus fin que nécessaire; il y a alors une grande inefficacité ¹⁷.

^{16.} En réalité une réaction chimique simple (une simple combustion H_2/O_2 fait intervenir une dizaine de composés et reactions intermédiaires, dont les temps typiques sont très faibles.)

^{17.} À cela s'ajoute le fait que ce problème augmente fortement avec la dimension.

2.2.5 Les stratégies de simulation

Pour surmonter ces difficultés, des stratégies d'adaptation de maillage et d'intégration en temps spécifiques doivent être utilisées de concert.

A L'adaptation de maillage

Pour prendre avantage du caractère multi-échelle des solutions étudiées, il est courant de procéder à de l'adaptation de maillage. C'est à dire mailler avec une finesse différentes chaque zone du domaine et être en mesure de faire évoluer ce maillage de concorde avec l'évolution du problème dans le temps. La méthode d'adaption de maillage sur lequel nous nous concentrons est la multirésolution-adaptative par transformée d'ondelettes introduite par Ami Harten dans les années 1990 [9]. Cette méthode est très étudiée par l'équipe du CMAP et a donnée lieu au développement du logiciel Samurai ¹⁸.

FIGURE 2.2 – Exemple de maillage adapté par multiresoltion adaptative grâce au logiciel Samurai.

A.i La multi-résolution adaptative La multiresoltion adaptative se base sur une compression de la solution par transformée d'ondelette ¹⁹. Les détails mathématiques seront données plus tard et sappuieront notamment sur [13]. Pour l'heure le lecteur doit simplement comprendre que la compression se fait de la manière suivante : une transformée en ondelette permet de représenter la solution sur différentes échelle d'espace ²⁰. Cela permet de quantifier l'information contenue à en chaque échelle d'espace. Enfin la compression consiste à ignorer les échelles ne comprenant pas assez d'information par rapport à un seuil ε fixé par l'utilisateur.

^{18.} https://github.com/hpc-maths/samurai

^{19.} C'est même procédé qui est à l'oeuvre dans la compression d'image jpg.

^{20.} Par exemple les échelles $\Delta x, \Delta x/2, \Delta x/4, \dots, \Delta x/2^n$

A.ii Autres méthodes Il existe d'autre stratégies pour raffiner le maillage autour des zones sensibles que la transformée en ondelette. La plus classique est une adaptation basée sur les gradients. Si les gradients sont élevés c'est que la solution est complexe, et donc un maillage fin est nécessaire pour la représenter fidèlement. Cette approche est simple à mettre en oeuvre et part de la même heuristique que la multiresoltion adaptative, cependant elle est moins systématique (pas de quantification de l'information perdue) et plus difficile à analyser. Elle est cependant utilisée dans des logiciels industriels comme Ansys ²¹.

B Les techniques d'intégration

Comme expliqué précédemment, la simulation de chaque opérateur est faisable individuellement mais très difficile conjointement. Les stratégies pour intégrer les trois opérateurs en même temps, reposent donc sur le fait de les intégrer... séparément.

B.i La séparation d'opérateurs La séparation d'opérateurs (en Anglais : splitting) consiste à intégrer successivement chaque opérateur. L'intégration d'un opérateur A, dans une équation comme :

$$\frac{\partial u}{\partial t} = Au. {(2.9)}$$

s'écrit avec la notion d'exponentielle de matrice ²² :

$$u(t) = e^{tA}u_0. (2.10)$$

Ainsi si l'on a deux opérateurs :

$$\frac{\partial u}{\partial t} = (A+B)u. \tag{2.11}$$

$$u(t) = e^{t(A+B)}u_0 \approx e^{t(B)}e^{t(A)}u_0.$$
 (2.12)

Ce n'est qu'une approximation car $e^{t(A+B)} = e^{t(B)}e^{t(A)}$ n'est vrai que si les opérateurs A et B commutent. Cependant c'est vrai à l'ordre O(t). Cela correspond au splitting de Lie ²³ Cette méthode permet de traiter les opérateurs l'un après l'autre, indépendamment les uns des autres, avec une méthode numérique qui lui est adaptée. Cela rend la méthode très simple de mise en oeuvre. En revanche, il est difficile de monter au-delà de l'ordre deux en temps.

Une étude extensive de l'usage du splitting, pour les équations d'advection-diffusion-réaction couplées à la multiresoltion adaptative a été réalisée dans la thèse de Max Duarte, préparée à Centrale Paris sous la direction de Marc Massot [5].

 $^{21.\} https://www.ansys.com/fr-fr/blog/how-to-accelerate-ansys-fluent-simulations-with-adaptive-meshing$

^{22.} Ou de manière plus rigoureuse avec la notion de semi-groupe.

^{23.} Un autre schéma : $e^{t/2(A+B)} = e^{t(B)}e^{t(A)}e^{t/2(B)}$, le splitting de Strang existe et est précis à l'ordre 2 en temps.

B.ii Les méthodes ImEx Nous détaillerons ces méthode en 3.1.2. Pour l'heure le lecteur doit savoir que ces méthodes ImEx ²⁴ [12] [11] sont très proches de la séparation d'opérateurs dans leurs implémentation, seulement elles apportent plus de cohérence mathématiques et facilite la montée en ordre. De manière général, une méthode Runge et Kutta et une technique d'intégration en temps qui se décompose en plusieurs étapes (aussi appelés étages). Cette succession d'étages engendre différentes approximations et une combinaison adéquate des ces approximations assure la montée en ordre de la méthode. Dans les méthodes RK-ImEx à chaque étage, l'approximation obtenu en ajoutant une contribution explicite d'un des opérateur (celui pour lequel une méthode explicite est adaptée, par exemple d'advection) et une contribution implicite de l'autre opérateur (celui pour lequel un méthode implicite est adaptée, par exemple la diffusion). Ainsi, un traitement différent est appliqué à chaque opérateur tout en conservant une méthode avec une cohésion globale ²⁵.

2.2.6 Conclusion

Cette introduction a mis en évidence la complexité intrinsèque des équations d'advection-diffusion-réaction, qui réside dans le couplage de trois phénomènes physiques aux propriétés mathématiques antagonistes. L'advection, peu raide, la diffusion, moyennement raide et non-locale, et la réaction, extrêmement raide mais locale, ne peuvent être traitées efficacement par une approche monolithique classique. Les deux défis principaux identifiés : le couplage des opérateurs et le caractère multi-échelles des solutions, nécessitent des stratégies numériques spécifiques. D'une part, l'adaptation de maillage, notamment par multi-résolution adaptative, permet de concentrer les ressources de calcul là où l'information physique est la plus riche. D'autre part, des techniques d'intégration découplées, séparation d'opérateurs ou des méthodes ImEx, exploitant les propriétés spécifiques de chaque phénomène et éviter l'écueil du solver monolithique.

2.2.7 Simulation des EDPs d'évolution

Définition 2.2.7 (Méthode des lignes). Une méthode des lignes est une famille de méthodes numériques pour approximer les EDP d'évolutions Elle consiste à discrétiser les opérateurs spatiaux de l'équation afin d'obtenir une équation semi-discrétisée en espace, puis à utiliser une technique d'intégration en temps, pour obtenir la discrétisation complète de l'équation.

Définition 2.2.8 (Méthodes d'intégration espace temps).

^{24.} Les méthodes évoquées ici sont les méthodes ImEx Runge et Kutta (RK-ImEx). Il existe également des méthodes ImEx couplées espace-temps [14].

^{25.} Cependant dans la méthode de splitting, nous avions le luxe de choisir chaque méthode de résolution indépendamment des autres, ici ce n'est plus le cas il fait respecter des relations d'ordre, plus de cohésion mais plus de contrainte.

Dans la suite de notre étude nous allons utiliser la paradigme des volumes finis. Les volumes finis sont particulièrement adaptés au lois de conservations. Les volumes finis discrétisent la valeur moyenne sur les mailles, alors que les différences finies discrétisent la valeur au nuds du maillage et les éléments finis discrétisent l'espace fonctionnel lui même.

Définition 2.2.9 (Volumes finis). Donné un maillage $(C_j)_{j\in J}$ d'un domaine Ω , la discrétisation par volume fini approxime les quantités :

$$U_j = \frac{1}{|C_j|} \int_{C_j} u(x) d\Omega. \tag{2.13}$$

2.2.8 Analyse de schéma numériques

Stabilité... Convergence...

Définition 2.2.10 (Procédure de Cauchy-Kovaleskaya).

Définition 2.2.11 (Équation modifiée).

2.2.9 La Multirésolution Adaptative

•••

2.3 Objectifs

Mon premier objectif a été de comparer les performances des méthodes ImEx avec une méthode de séparation d'opérateur car sur le papier ces deux méthodes sont très proches. J'ai mis en lumière leurs différents domaines de stabilité et réalisé des tests de convergence. Cette étude a été réalisée sur une équation simple mais très représentative des équations de réaction-diffusion, l'équation de Nagumo.

Mon second objectif était d'explorer l'impact théorique de la multi-résolution adaptative (MRA) sur un schéma numérique classique. J'ai mené une analyse d'erreur sur une équation de diffusion résolue par une méthode des lignes d'ordre deux, et j'ai découvert que la multirésolution-adaptative peut dégrader l'ordre de convergence d'une méthode. J'ai par la suite tenté (sans succès) de mettre en évidence ce résultat expérimentalement grâce au code Samurai. J'ai choisi de travailler sur la diffusion pour compléter le travail réalisé par l'équipe en [3] qui se centrait sur l'advection.

2.4 Méthode de travail et outils

Chapitre 3

Contribution

Cet partie vise à présenter mes travaux. Rappelons qu'il se sont concentrés sur la résolutions des EDPs d'advection-diffusion-réaction grâce aux méthodes modernes de compression de maillage (multirésolution adaptative) et de découplage des opérateurs (ImEx et splitting).

Dans un premier temps, je présente l'analyse d'une méthode ImEx appliquée à l'équation de Nagumo (une équation de diffusion-réaction). J'étudie la stabilité des méthodes de manière générale puis dans le cas spécifique de cette équation. Par la suite, j'ai mené une comparaison expérimentale avec une méthode concurrente : la séparation d'opérateur.

Dans un second temps je présente une étude de l'impact de la multirésolution adaptative sur la convergence d'une méthode des lignes sur un problème de diffusion. Cette étude comprend un pan théorique (obtention de l'équation équivalente du schéma avec multirésolution adaptative) et un pan expérimental (étude de convergence grâce au logiciel Samurai).

3.1 Étude de méthodes ImEx sur une équation de diffusionréaction

Pour cette première étude nous présentons d'abord l'équation de Nagumo et expliquons en quoi elle est une excellente équation test pour éprouver les méthodes de résolution des équations d'advection-diffusion-réaction. Dans un second temps nous présentons les méthodes ImEx utilisées. Par la suite, nous évaluons la stabilité de ces méthodes ImEx dans le contexte de l'équation de Nagumo. Cela permet de valider la pertinence *a priori* de ces ImEx sur l'équation, et nous mène naturellement à une étude de convergence expérimentale ou les méthodes ImEx présentées sont confrontées à une méthode de séparation d'opérateur classique (splitting de Strang).

3.1.1L'équation de Nagumo

L'équation de Nagumo (ou FitzHugh-Nagumo) est issue de modèles de transmission de l'information nerveuse [6]. Nous utilisons la forme spatiale de l'équation [10] avec un terme de réaction cubique pour ajouter de la non-linéarité :

$$\partial_t u = \underbrace{D\partial_{xx} u}_{\text{diffusion}} - \underbrace{ku(1 - u^2)}_{\text{réaction}}.$$
 (3.1)

Solutions Analytiques

Cette équation admet des solutions propagatives sous la forme ¹:

$$u(x - ct) = \frac{e^{-\sqrt{\frac{k}{2D}}((x - x_0) - ct)}}{1 + e^{-\sqrt{\frac{k}{2D}}((x - x_0) - ct)}}$$
(3.2)

Avec : $c = \sqrt{\frac{kD}{2}}$ et x_0 le point de départ de l'onde. Ainsi, le produit kD fixe la vitesse et le ratio $\frac{k}{D}$ la magnitude du gradient d'espace.

1.0 0.8 k = 3.0, D = 0.33k = 10.0, D = 0.100.0 -6 -2 o Position x

Profils des ondes solutions de l'équation Nagumo (kD = 1 fixé)

FIGURE 3.1 – Profils des ondes solutions de l'équation de Nagumo pour différents ratios k/D à kD = 1 fixé (c'est à dire à vitesse fixée). L'augmentation du ratio k/D accentue le gradient spatial.

\mathbf{B} Analyse des opérateurs

Le terme de diffusion est non-local et, discrétisé à l'ordre deux par n points et un pas Δx , les valeurs propres associées sont $\left\{\frac{2D}{\Delta x^2}\left(\cos\frac{p\pi}{n+1}-1\right)\mid p\in\{1,\ldots,n\}\right\}$ [4], ainsi la raideur du terme de diffusion croit linéairement avec le coefficient de diffusion D et de manière quadratique avec la finesse du maillage $1/\Delta x$. En effet les valeurs propres sont négatives et :

$$\max_{p} |\cos \frac{p\pi}{n+1} - 1| \sim 2,$$
 (3.3)

$$\min_{p} |\cos \frac{p\pi}{n+1} - 1| \sim \frac{1}{2} \left(\frac{\pi}{n+1}\right)^{2}.$$
 (3.4)

^{1.} C'est une sigmoïde, qui se propage à vitesse $\sqrt{\frac{kD}{2}}$.

Et donc:

$$\frac{\max_{p} |1 - \cos\frac{p\pi}{n+1}|}{\min_{p} |1 - \cos\frac{p\pi}{n+1}|} \approx n^{2}.$$
 (3.5)

Concernant le terme de réaction, en choisissant un état initial correspondant à 3.2, la solution reste entre 0 et 1. Ainsi le terme de réaction est local, et ses valeurs propres sont comprises entre -k et 2k. En fonction de la valeur de u, la réaction se comporte comme une relaxation de temps caractéristique $\tau \sim \frac{1}{k}$ ou comme une explosion de temps caractéristique $\tau \sim \frac{1}{2k}$. Pour les valeurs étudiés, $k \leq 20$, ainsi la réaction reste peu raide. En effet :

$$R(u) = ku(1 - u^2), (3.6)$$

$$R'(u) = k(1 - 3u^2). (3.7)$$

FIGURE 3.2 – Plage de valeurs du terme de réaction non-linéaire et de sa différentielle pour deux coefficients de réactions : k = 1 et k = 10.

C Coclusion sur l'équation de Nagumo

Ainsi l'équation de Nagumo, présente un terme de réaction 2 , et un terme de diffusion. Cette équation fait émerger un front d'onde 3 et dispose de deux paramètre k et D simple pour modifier les propriétés de la solution. Cela en fait donc un modèle-test de choix pour étudier le comportement de diverses méthodes dédiées au équations d'advections-réaction-diffusion.

^{2.} à noter qu'il n'est pas raide, comparé aux termes de réaction rencontrés en combustion.

^{3.} Cela permet de tester le comportement de la multi-résolution adaptative.

3.1.2 Les méthodes ImEx

La classe de méthodes ImEx étudiée sont les méthodes de Runge et Kutta additives (RK-ImEx ou RK-additive). Ces méthodes consistent à sommer plusieurs méthodes de Runge et Kutta appliquées chacune à un opérateur différent. L'objectif est d'employer des RK explicites (RKE) et des RK implicites (RKI), en adéquation avec les besoin de chaque opérateur.

A Un exemple

Pour introduire aux méthodes de Runge et Kutta additives, commençons par un exemple simple et usons d'une méthode RK-ImEx d'ordre un, résultant de la somme de deux méthodes RK à un étages (RK1). Nous notons cette méthode ImEx111 [2]. Les méthodes RK1 servant de briques élémentaires à la RK111 sont : un schéma d'Euler explicite et un schéma d'Euler implicite. Supposons que l'on cherche à approcher une équation d'évolution faisant intervenir deux opérateurs : A^E se prêtant à des méthodes explicites 4 et A^I se prêtant aux méthodes implicites 5 . L'équation cible serait de la forme :

$$\partial_t u = A^E u + A^I u. (3.8)$$

A.i Résolution par approche monolithique Rappelons d'abord comme le problème serait résolu en n'utilisant qu'une seule RK1 pour tout le problème (approche monolithique).

Euler explicite En résolvant avec Euler explicite, le schéma s'écrit :

$$u^{n+1} = u^n + \Delta t (A^E + A^I) u^n. (3.9)$$

Mais si l'opérateur A^I est très raide, la stabilité risque d'imposer un pas de temps très restrictif risquant de rendre la méthode non viable.

Euler implicite En résolvant avec Euler implicite, le schéma s'écrit :

$$u^{n+1} = (Id - \Delta t(A^E + A^I))^{-1}u^n. (3.10)$$

Mais si l'opérateur A^E est rend l'inversion coûteuse; par exemple s'il est non-local (impliquant la résolution d'un gros système au lieu de plusieurs petits systèmes), ou s'il est non linéaire (nécessite d'être réinverser à chaque pas de temps); alors cette méthode ne sera pas viable non plus.

A.ii Résolution par une méthode ImEx : une Runge et Kutta Additive Mettons en oeuvre la méthode ImEx111. Lapproximation au pas de temps n+1 s'écrit en sommant une contribution issue de la méthode Euler explicite (RKE1) et une contribution issue de la méthode

^{4.} Par exemple, un opérateur peu raide mais non local.

^{5.} Par exemple un opérateur raide mais local.

Euler implicite (RKI1):

$$u^{n+1} = u^n + \Delta t(\underbrace{k_1}_{\text{RKE1}} + \underbrace{k'_1}_{\text{RKII}})$$
(3.11)

La contribution RKE1 s'écrit :

$$k_1 = A^E u^n. (3.12)$$

La contribution RKI1 s'écrit :

$$k_1' = A^I u^{n+1} (3.13)$$

Ainsi:

$$u^{n+1} = u^{n+1} = u^n + \Delta t (A^E u^n + A^I u^{n+1}),$$

$$donc: u^{n+1} - \Delta t A^I u^{n+1} = u^n + \Delta t A^E u^n,$$
et donc: $u^{n+1} = (Id - \Delta t A^I)^{-1} \circ (Id + \Delta t A^E) u^n.$
(3.14)

Ainsi dans cette méthode seul lopérateur $Id - \Delta tA^I$ doit être inversé. Ce qui était bien lobjectif. Les opérateurs ont été découplés lors de la résolution.

B Cadre mathématique général

Pour construire des méthodes plus complexes et d'ordres supérieurs introduisons le formalisme de [2] pour traiter les méthodes RK-additives. Ici, nous travaillons uniquement sur méthodes ImEx pour deux opérateurs mais théoriquement, il est possible de construire des méthodes ImEx pour traiter autant d'opérateurs que l'on le souhaite [11].

B.i Notation Une méthode ImEx additive est construite à partir d'une méthode implicite à s étages (une méthode DIRK et si possible SDIRK) et d'une méthode explicite à s+1 étages ⁶. Pour uniformiser, le tableau de Butcher de la méthode implicite est complété par une ligne et une colonne de zéros afin que les deux méthodes s'écrivent comme si elles avaient le même nombre d'étages. Les tableaux de Butcher des deux méthodes s'écrivent alors :

Méthode RKE, s+1 étages :

^{6.} Au besoin, la méthode explicite peut être à s étages, qui est un cas particulier d'une méthode à s+1 étages.

Méthode RKI (DIRK) s étages :

RKI:
$$\frac{c \mid A}{\mid b^{T} \mid} =
\frac{c \mid A}{\mid b \mid} =
\frac{c_{1} \mid 0 \quad 0 \quad 0 \quad \cdots \quad 0}{c_{1} \mid 0 \quad a_{11} \mid 0 \quad \cdots \quad 0} \\
\frac{c_{2} \mid 0 \quad a_{21} \mid a_{22} \mid \cdots \quad 0}{\vdots \mid \vdots \mid \vdots \mid \ddots \quad \ddots \quad \vdots} \\
\frac{c_{s} \mid 0 \quad a_{s1} \mid a_{s2} \mid \cdots \quad a_{ss}}{\mid 0 \quad b_{1} \mid b_{2} \mid \cdots \quad b_{s}}$$
(3.16)

où les coefficients \tilde{a}_{ij} , \tilde{b}_i , \tilde{c}_i définissent la méthode explicite et les coefficients a_{ij} , b_i , c_i définissent la méthode implicite DIRK.

B.ii Schéma général d'une méthode RK-additive Une étape de la méthode RK-additive appliquée au système $\frac{du}{dt} = A^E u + A^I u$ s'écrit :

Calcul des étages : En initialisant $u_0 = u^n$,

$$u_i = u^n + \Delta t \sum_{j=0}^{i-1} \tilde{a}_{ij} A^E u_j + \Delta t \sum_{j=1}^{i} a_{ij} A^I u_j, \qquad i = 0, 1, \dots, s$$
 (3.17)

Soit en mettant en lumière le caractère implicite de la méthode sur A^I :

$$(Id - \Delta t a_{ii} A^I) u_i = u^n + \Delta t \sum_{j=0}^{i-1} \tilde{a}_{ij} A^E u_j + a_{ij} A^I u_j, \qquad i = 0, 1, \dots, s$$
(3.18)

Solution à l'étape suivante :

$$u^{n+1} = u^n + \Delta t \sum_{i=0}^{s} \tilde{b}_i A^E u_i + \Delta t \sum_{i=1}^{s} b_i A^I u_i$$
 (3.19)

Cette formulation générale permet de construire des méthodes d'ordre élevé.

B.iii Ordre de convergence L'ordre d'une méthode RK-additive est bien sur borné par l'ordre le plus faible des méthodes RK individuelles qu'elle convoque. Naturellement, cette borne n'est pas nécessairement atteintes pour toute méthodes RK additionnée. Des conditions d'ordre liant les coefficients des méthodes individuelles entre eux doivent être respectées. Le nombre de ses conditions augmente (très) rapidement avec l'ordre de la méthode et le nombre d'opérateurs à résoudre [11], le lecteur motivé se référera par exemple à [7].

3.1.3 Analyse de stabilité

Nous étudions la viabilité des RK-ImEx sur l'équation de Nagumo. Pour cela nous étudions sa stabilité. Dans un premier temps, une étude générale de la stabilité de des RK-ImEx est menée. Dans un second temps, l'étude se centre sur l'application à l'équation de Nagumo.

A Étude de stabilité générale des RK-ImEx

Lorsque l'on use d'une méthode ImEx, les deux (ou plus) opérateurs sont découplés, c'est bien là l'intérêt. Cependant cela complique légèrement l'analyse usuelle de stabilisé. En effet la fonction de stabilité attend alors deux variables, le coefficient spectral associé à l'opérateur traité explicitement et le coefficient spectral associé à l'opérateur traité implicitement. Ainsi, pour chaque couple de valeur propre, la fonction de stabilité prend une valeur différente et comme les coefficients spectraux sont complexes, on ne peut plus visualiser d'un simple coup d'il le domaine de stabilité (comme en ... AFAIRE), puisque celui-ci est de dimension quatre ⁷.

A.i Calcul des fonction d'amplification Afin d'étudier la stabilité linéaire des méthodes, les fonctions d'amplifications ont été numériquement.

B Étude de stabilité appliquée à l'équation de Nagumo

Nous allons particulariser la démarche suivante en la centrant sur l'équation de Nagumo. Cela vas nous permettre de comprendre comme se comportent les méthodes ImEx sur ce problème particulier.

- B.i Valeurs propres mises en jeu Comme expliqué en 3.1.1 l'équation présente deux opérateurs :
 - \diamond La diffusion dont le spectre d'étend de $\frac{-1}{L^2}$ à $\frac{-1}{\Delta x^2}$ (où L est la taille du domaine discrétisé).
 - \diamond La réaction dont le spectre balaie continûment -k jusqu'à 2k

Pour restreindre l'analyse de stabilité il faut donc tracer le diagramme de stabilité des méthodes étudiées en prenant $Z_I \in \mathbb{R}^-$ et $Z_E \in [-k; 2k] \subset \mathbb{R}$ ce qui nous donne un espace à deux dimensions. Il faut ensuite placer des couples (Z_E, Z_I) correspondant. Lorsque l'on réalise se travaille nous trouvons les diagrammes suivant :

B.ii Résultats Le lecteur est invité à prendre un peu de temps pour comprendre la logique de ces graphiques car ils sont très éclairants. Ces diagrammes permettent d'analyser respectivement la stabilité de la méthode ImEx222, de la méthode ImEx232, ainsi qu'à titre de comparaison, la stabilité d'une méthode RKE d'ordre 2^8 et d'une méthode de splitting 9. Chaque colonne représente l'analyse d'une méthode différente. La première ligne présente le domaine de stabilité en fonction des indices spectraux $Z_E \in \mathbb{R}$ et $Z_I \in \mathbb{R}^-$. Les points bleus représentent les couples d'indices spectraux intervenant dans la résolution de l'équation de Nagumo pour les

^{7.} En effet la fonction de stabilité $R\mathbb{C} \times \mathbb{C} \to \mathbb{R}$ et dim $\mathbb{C} \times \mathbb{C} = 4$.

^{8.} Celle apparaissant dans ImEx222.

^{9.} Où l'on utilise les méthodes implicites et explicites de la méthode ImEx222 mais dans un contexte de splitting de Strang.

(a) Cas standard D=1, k=1, dt=1.0e-03, dx=2.4e-03

(b) Cas diffusion plus raide, réaction moins raide D=10, k=0.1, dt=1.0e-02, dx=4.9e-03

(c) Cas diffusion moins raide, réaction plus raide D=2e-4, k=500, dt=1.0e-02, dx=4.9e-03

FIGURE 3.3 – Pour différents couples D et k, diagrammes de stabilité des méthodes ImEx et de référence sur l'équation de Nagumo.

paramètres d'équation choisis (D et k) et les paramètres de discrétisation retenus $(\Delta t \text{ et } \Delta x)$. La seconde ligne n'est qu'un zoom de la première autour de ces indices spectraux. La dernière colonne (splitting) présente une disposition différente, puisque les opérateurs sont totalement découplés. La première ligne correspond à la fonction de stabilité de la méthode explicite (avec un zoom autour des indices spectraux de la réaction). la seconde ligne représente la fonction de stabilité de la méthode implicite. Dans les deux cas, l'intervalle tracé en bleu représente la plage de valeurs d'indices spectraux balayés par chaque opérateur.

B.iii Analyse

Analyse générale Analysons les domaines de stabilité des figures en fig. 3.3, pour l'instant nous ignorons les marqueurs bleus sur les figures.

- \diamond **Méthode RKE2**: En troisième colonne, le diagramme de stabilité d'une méthode explicite naïve RKE2, sert de référence. Le domaine de stabilité accepte des valeurs propres négatives de magnitude deux, ce qui est résultat classique des méthodes Runge et Kutta explicites d'ordre deux. Ainsi domaine de stabilité s'étend jusqu'à -2 selon l'axe portant Z_E tant que la valeur propre Z_I est négligeable. De même le domaine de stabilité s'étend jusqu'à -2 selon Z_I tant que la valeur propres Z_E est négligeable. Enfin il y a une zone intermédiaire quand Z_E et Z_I sont tous les deux de l'ordre de l'unité 10 , où la raideur résultante est $Z_E + Z_I$.
- \diamond Méthode ImEx232 : En observant la seconde colonne, nous constatons que la méthode ImEx232 maintient un domaine de stabilité restreint (jusqu'à -2) selon l'axe Z_E , mais selon l'axe Z_I , le domaine de stabilité s'est étendu considérablement. C'est logique puisque la valeurs propre Z_E est explicitée, sont domaine pris seul n'a évolué, et la valeur propre Z_I peut être très raide (très négative) puisque la méthode explicite l'opérateur lié à Z_I .
- \diamond Méthode ImEx222 : Passant à la première colonne, le domaine de stabilité ImEx222 resemble beaucoup à celui de l'ImEx232. Seulement, le domaine de stabilité s'élargit considérablement selon Z_E , pourvus que Z_I soit assez grand. Cette propriété est remarquable, cela signifie que la méthode traite couple les raideurs dans sont traitement. Plus précisément, plus l'opérateur implicité est raide, plus l'opérateur explicité peut être raide 11 .

Analyse selon les paramètres de l'équation k et D. Analysons grace au graphiques fig. 3.3 la disposition des valeurs couples de valeurs propres mis en jeu par l'équation de Nagumo selon les paramètre k et D. Les paramètres de simulation : Δt et Δx sont fixés. Les jeux de valeurs choisis sont $(k, D) = (1, 1), (k, D) = (0.1, 10), (k, D) = (500, 2 \, 10^{-4})$. Le produit kD est maintenu égal à un, ainsi la vitesse de propagation est toujours la même. Ces couples de valeurs propres Z_E, Z_I mis en jeu par les opérateur de l'équation sont tracés en bleus 12 .

 \diamond Cas standard, (k, D) = (1, 1) - fig. 3.3a : Dans ce cas, la raideur de la diffusion (Z_I) déstabilise la méthode RKE2 (on voit que

^{10.} Attention à l'échelle logarithmique.

^{11.} Cette analyse est partiellement erronée, nous verrons pourquoi au prochain paragraphe.

^{12.} Pour les Z_I le spectre est discret, pour Z_E , le spectre est continu, il a donc fallut échantillonnés le long de l'axe Z_E

de nombreux couples de v.p. entrent dans le zones rouges quand Z_I augmente). Pour ces valeurs de $(\Delta x, \Delta t)$ cette méthode n'est donc pas viable. C'est tout à fait normal, les méthodes imposent des pas de temps très restrictifs sur les problèmes de diffusion. En revanche, les méthodes ImEx sont tout à fait stable puisque, comme constaté précédemment, le domaine de stabilité s'étend infiniment quand $Z_I \to -\infty$. Le point notable est que certains couples de valeurs propres tombent malgré tout dans une zone instable (en bas à gauche). Mais cela n'est pas un problème car il s'agit de couples de valeurs propres ou la valeur propres ¹³ de l'opérateur de réaction (Z_E) est positive. Donc la méthode n'est pas instable au sens ou elle reflète simplement la dynamique explosive de la réaction. D'ailleurs si en se penchant sur le graphique de la partie explicite du splitting, on constante qu'il y a une zone (correspondant à Z_E positive) ou la fonction d'amplification est d'amplitude supérieure à un, le splitting reproduit donc fidèlement la dynamique de la réaction. Ce qui peut être un problème est l'inverse, pour les méthodes ImEx, il y a des couples de valeurs propres où Z_E est positif et où la fonction d'amplification est d'amplitude inférieure à un. Cela pourrait être un frein pour reproduire fidèlement la dynamique explosive de la réaction dans les zones concernées ¹⁴.

- \diamond Cas diffusion raide, réaction peu raide, (k,D)=(0.1,10) fig. 3.3b: Ici, D=10 donc toutes les valeurs propres liées à la diffusion sont multipliées par 10 par rapport au cas précédent. De fait la méthode RK2E de référence présente des instabilités pour encore plus de couples de valeurs propres est n'est pas pas viable. Concernant les méthodes ImEx222 et ImEx232 elles sont stables, et cette fois-ci toutes les valeurs propres liées à la dynamique explosive de la réaction sont amorties.
- ♦ Cas diffusion peu raide, réaction très raide $(k,D) = (500,2\,10^{-4})$ fig. 3.3c Dans ce cas de figure, k=500. La grande valeur du coefficient de réaction rend cette dernière très raide. Cela à pour effet de dilater selon l'axe des abscisse les indices spectraux puisque $Z_E \in [-500\Delta t, +1000\Delta t]$ alors que dans le cas $k=1:Z_E \in [-\Delta t, 2\Delta t]$. Ici la méthode méthode explicite au sein des ImEx n'est plus stable pour la réaction, ainsi toutes les méthodes deviennent instables. Le splitting également devient instable car il utilise aussi la méthode RK2E pour la réaction. Le fait que la méthode explicite de l'ImEx soit instable pour l'opérateur explicité peu sembler un obstacle infranchissable, cependant ce n'est pas si simple. Pour illustrer ce point, étendons l'analyse avec le cas spécial en fig. 3.4, dans ce cas la réaction est toujours raide k=500 mais la diffusion est également très raide car D=500 ¹⁵ Alors la méthode ImEx222 devient stable, comme vu en B.iii, plus l'opérateur traité implicitement est raide, plus la méthode permet à l'opérateur traité explicitement d'être raide. C'est un cas remarquable ou le couplage intervenant au sein de la méthode ImEx la rend plus stable que le splitting!

^{13.} Dans cette section, nous identifions valeurs propres λ et indices spectraux $z = \lambda \Delta t$ puisque le pas de temps Δt est maintenu constant. Cette identification permet de discuter directement en termes de raideur des opérateurs.

^{14.} Il n'est pas évident d'avoir a priori la bonne intuition car peut être que la diffusion calme en quelque sorte le caractère explosif de la réaction et qu'alors une fonction d'amplification d'amplitude < 1 est normal... Restons prudent sur cette analyse.

^{15.} Jusqu'ici, la vitesse de propagation était la même dans tous les scénarios puisque kD était maintenu constant. Dans le scénario présenté ici, ce n'est plus le cas

FIGURE 3.4 – Pour k=500 et D=500 : diagrammes de stabilité des méthodes ImEx et de référence sur l'équation de Nagumo.

Analyse selon les paramètres de simulation Δt et Δx

3.1.4 Étude de la convergence

3.1.5 Conclusion

3.2 Impact de la multirésolution adaptative sur l'erreur d'une méthode des lignes

La multirésolution adaptative (MRA) a démontré une grande efficacité expérimentalement. Cependant, son impact sur la qualité des solutions obtenues n'est pas encore totalement compris mathématiquement. En [3], une étude de l'erreur introduite par la multirésolution adaptative a été menée. Cette étude se concentre sur les équations d'advection résolues par des schémas de type One Step [DARU2004563] et compare l'équation équivalente des schémas avec MRA et celle des schémas sans MRA pour mettre en lumière les différences introduites par la multirésolution. La présente étude se place dans la continuité de cette démarche ¹⁶ et suit un cheminement similaire pour déterminer, grâce aux équations équivalentes, l'impact de la MRA sur une équation de diffusion résolue par une méthode des lignes d'ordre deux.

D'abord, le problème cible est présenté ainsi que le schéma de référence. Par la suite, les équations équivalentes du schéma de référence et du schéma avec multirésolution adaptative sont évaluées puis analysées. Enfin, les résultats théoriques obtenus sont éprouvés expérimentalement.

3.2.1 Cadre de l'étude

A Problème cible

Nous cherchons à résoudre le problème de diffusion suivant :

$$\partial_t u = D \partial_{rr} u. \tag{3.20}$$

^{16.} À un niveau plus modeste.

Nous ignorons les problématiques de conditions de bords.

A.i Méthode des lignes utilisée Pour résoudre cette équation aux dérivées partielles, nous utilisons une méthode des lignes. D'abord un schéma volume fini pour la discrétisation spatiale menant à l'équation semi-discrétisée suivante :

$$\partial_t U(t) = \frac{D}{\Delta x} \left(\frac{U_{k+1} - 2U_k + U_{k-1}}{\Delta x} \right) \tag{3.21}$$

Puis une méthode de Runge und Kutta explicite d'ordre deux sur lopérateur linéaire donne :

$$U_k^{n+1} = U_k^n$$

$$+ D \frac{\Delta t}{\Delta x} \left(\frac{U_{k+1} - 2U_k + U_{k-1}}{\Delta x} \right)$$

$$+ D^2 \frac{\Delta t^2}{\Delta x^2} \left(\frac{U_{k+2} - 4U_{k+1} + 6U_k - 4U_{k-1} + U_{k-2}}{\Delta x^2} \right).$$
(3.22)

Cela s'écrit sous la forme conservative suivante :

$$u_k^{n+1} = u_k^n + \lambda \left(\Phi_{k+1/2}^n - \Phi_{k-1/2}^n \right)$$
 (3.23)

Avec:

$$\lambda = D \frac{\Delta t}{\Delta x^2} \tag{3.24}$$

$$\Phi_{k+1/2}^n = u_{k+1}^n - u_k^n + \frac{1}{2}\lambda \left(u_{k+2}^n - 3u_{k+1}^n + 3u_k^n - u_{k-1}^n\right),\tag{3.25}$$

$$\Phi_{k-1/2}^n = u_k^n - u_{k-1}^n + \frac{1}{2}\lambda \left(u_{k+1}^n - 3u_k^n + 3u_{k-1}^n - u_{k-2}^n\right). \tag{3.26}$$

A.ii multirésolution adaptative La multirésolution adaptative consiste à compresser le maillage, puis a effectuer les calculs sur le maillage compressé. Le schéma classique est le suivant :

- 1. Partir d'un état compressé au pas de temps n.
- 2. Calculer la solution au pas de temps n+1
- 3. Compresser de nouveau selon un seuil de compression ε grâce à une transformée multiéchelle.

Lors de la compression, la transformée multiéchelle représente la solution sur plusieurs niveaux de détails, du plus global, au plus local. Plus le niveau est profond, c'est à dire plus il est local, moins les détails associés portent d'information. L'opération de compression est réalisée en supprimant en chaque cellules, les niveaux dont la valeur des détails passent sous un certain seuil ¹⁷ [postelApprox].

Ce seuil ε n'est pas l'unique juge lors la compression, des heuristiques reposant sur la quantité d'information des détails de niveau supérieur sont utilisées pour ne pas seuiller systématique-

^{17.} Typiquement $2^{\Delta l} \varepsilon$ où Δl

ment. L'objectif est en quelque sorte d'anticiper le besoin de détails 18. La plus connue est l'heuristique d'Ami Harten [9].

Plusieurs stratégies existent pour réaliser le calcul d'un pas de temps à l'autre. Généralement, on estime les quantités au temps n+1 aux niveaux courants, à partir des quantité au niveau courant au temps n. Ensuite une opération de reconstruction-prédiction détermine le niveau de finesse requis de la solution au temps n+1. Il est également possible de calculer les quantités du temps n+1 au niveau courant, à partir des quantités au temps n reconstruites à un niveau plus fin. Bien que cela aie une faible efficacité computationnelle, cela réduirait les erreurs liés à la multirésolution selon la qualité du prédicteur employé comme discuté en [3]. Ici nous allons étudier théoriquement les erreurs dans un contexte similaire. Nous nous plaçons sur une cellule à un niveau de détail fixé, les flux sont calculés à partir de quantités reconstruites à un niveau de détails Δl plus fin. Le raisonnement et les ressources de calcul formel de [3] on été d'une aide précieuse.

Calcul du flux au travers de Δl niveaux :

Lorsque l'on applique le procédé de multirésolution, étant donné une cellule à un niveau de détail donné l, on cherche à faire évoluer la valeur à l'étape n vers la valeur à l'étape n+1. Pour ce faire, il faut évaluer les flux à partir les cellules voisines. Dès lors plusieurs choix s'offrent à nous. Où bien on utilise les cellules voisines à leurs niveaux courants, où bien on use de l'opérateur de reconstruction afin d'estimer les cellules voisines à des niveaux plus fins.

Dans un premier temps le stencil est choisi égal à 1. L'opérateur de prédiction d'un niveau à l'autre s'écrit alors :

$$\hat{u}_{2k}^{l+1} = +\frac{1}{8}u_{k-1}^l + u_k^l - \frac{1}{8}u_{k+1}^l, \tag{3.27}$$

$$\hat{u}_{2k}^{l+1} = +\frac{1}{8}u_{k-1}^{l} + u_{k}^{l} - \frac{1}{8}u_{k+1}^{l},$$

$$\hat{u}_{2k+1}^{l+1} = -\frac{1}{8}u_{k-1}^{l} + u_{k}^{l} + \frac{1}{8}u_{k+1}^{l}.$$
(3.27)

Puis en notant $\hat{u}_{(\cdot)}^{l+\Delta l}$ cet opérateur de prédiction itéré au travers de Δl niveaux 19:

$$\begin{bmatrix}
\hat{u}_{2\Delta l_{k-2}}^{(l+\Delta l)} \\
\hat{u}_{2\Delta l_{k-1}}^{(l+\Delta l)} \\
\hat{u}_{2\Delta l_{k+1}}^{(l+\Delta l)}
\end{bmatrix} = \begin{bmatrix}
+1/8 & 1 & -1/8 & 0 \\
-1/8 & 1 & +1/8 & 0 \\
0 & +1/8 & 1 & -1/8 \\
0 & -1/8 & 1 & +1/8
\end{bmatrix} \cdot \begin{bmatrix}
u_{k-2}^{l} \\
u_{k-1}^{l} \\
u_{k}^{l} \\
u_{k+1}^{l}
\end{bmatrix}$$

$$\underbrace{\begin{array}{c}
u_{k-1}^{l} \\
u_{k}^{l} \\
u_{k+1}^{l}
\end{bmatrix}}_{\text{Matrice de passage P pour $s=1$}}$$
(3.29)

En particulier, si la cellule étudiée est au niveau courant l alors on choisira d'aller approximer le flux au niveau le plus fin, c'est à dire avec $\overline{\Delta l} = \overline{l} - l$. Dès lors les flux approximés au niveau fins sont:

$$\hat{\hat{\Phi}}_{k-1/2} = \hat{u}_{2^{\overline{\Delta l}}k}^{l+\overline{\Delta l}} - \hat{u}_{2^{\overline{\Delta l}}k-1}^{l+\overline{\Delta l}} + \frac{1}{2}\lambda \tag{3.30}$$

^{18.} Même si la quantité d'information laisse entendre que certains détails pourraient être ignorés, l'intuition physique pose sont veto et force certains détails à être conservés par précaution, par exemple si un front front

^{19.} Au sens où l'on applique le prédicteur à des données déjà issues d'une prédiction.

Cela s'écrit sous la forme matricielle suivante (utile pour utiliser les outils de calcul formel).

$$\hat{\hat{\Phi}}_{k-1/2} = \begin{bmatrix} -\frac{\lambda}{2} & (\frac{3}{2}\lambda - 1) & (1 - \frac{3}{2}\lambda) & \frac{\lambda}{2} \end{bmatrix} \begin{bmatrix} +1/8 & 1 & -1/8 & 0 \\ -1/8 & 1 & +1/8 & 0 \\ 0 & +1/8 & 1 & -1/8 \\ 0 & -1/8 & 1 & +1/8 \end{bmatrix} \begin{bmatrix} u_{k-2}^l \\ u_{k-1}^l \\ u_k^l \\ u_{k+1}^l \end{bmatrix}$$
(3.31)

$$\hat{\hat{\Phi}}_{k+1/2} = \begin{bmatrix} -\frac{\lambda}{2} & (\frac{3}{2}\lambda - 1) & (1 - \frac{3}{2}\lambda) & \frac{\lambda}{2} \end{bmatrix} \begin{bmatrix} +1/8 & 1 & -1/8 & 0 \\ -1/8 & 1 & +1/8 & 0 \\ 0 & +1/8 & 1 & -1/8 \\ 0 & -1/8 & 1 & +1/8 \end{bmatrix} \begin{bmatrix} u_{k-1}^l \\ u_k^l \\ u_{k+1}^l \\ u_{k+2}^l \end{bmatrix}. \quad (3.32)$$

Attention le schéma final est légèrement différent car il fait ici intervenir deux pas d'espace : Δx le pas au niveau le plus fin et $\tilde{\Delta x} = 2^{\Delta l} \Delta x$ le pas du niveau courrant. Ainsi le schéma final est :

$$u_k^{n+1} = u_k^n + \frac{\lambda}{2^{\Delta l}} \left(\hat{\hat{\Phi}}_{k+1/2}^n - \hat{\hat{\Phi}}_{k-1/2}^n \right)$$
 (3.33)

- 3.2.2 Calcul des équations équivalentes
- 3.2.3 Complément expérimental
- 3.2.4 Conclusion

Chapitre 4

Conclusion

Bibliographie

- [1] Assyr Abdulle. "Fourth Order Chebyshev Methods with Recurrence Relation". In: SIAM Journal on Scientific Computing 23.6 (2002), p. 2041-2054. DOI: 10.1137/S1064827500379549.
- [2] Uri M. ASCHER, Steven J. RUUTH et Raymond J. SPITERI. "Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations". In: Applied Numerical Mathematics 25.2 (1997). Special Issue on Time Integration, p. 151-167. ISSN: 0168-9274.

 DOI: https://doi.org/10.1016/S0168-9274(97)00056-1. URL: https://www.sciencedirect.com/science/article/pii/S0168927497000561.
- [3] Belloti et al. "Modified equation and error analyses on adaptative meshes for the resolution of evolutionary PDEs with Finite Volume schemes". In: (2025).
- [4] M. BOUCHET. Le laplacien discret 1D. Notes de cours. Agrégation externe de mathématiques 2019-2020, Leçons 144, 155, 222, 226, 233. ENS Rennes, 2020. URL: https://perso.eleves.ens-rennes.fr/~mbouc892/lapdisc1d.pdf.
- [5] Max Pedro Duarte. "Méthodes numériques adaptives pour la simulation de la dynamique de fronts de réaction multi-échelle en temps et en espace". 2011ECAP0057. Thèse de doct. 2011. URL: http://www.theses.fr/2011ECAP0057/document.
- [6] Richard FITZHUGH. "Impulses and Physiological States in Theoretical Models of Nerve Membrane". In: Biophysical Journal 1.6 (1961), p. 445-466. ISSN: 0006-3495. DOI: https://doi.org/10.1016/S0006-3495(61)86902-6. URL: https://www.sciencedirect.com/science/article/pii/S0006349561869026.
- [7] E. Hairer. "Order conditions for numerical methods for partitioned ordinary differential equations". In: *Numerische Mathematik* 36.4 (1981), p. 431-445. ISSN: 0945-3245. DOI: 10.1007/BF01395956. URL: https://doi.org/10.1007/BF01395956.
- [8] Ernst Hairer, Syvert P. Nørsett et Gerhard Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. 2e éd. T. 8. Springer Series in Computational Mathematics. Springer Berlin, Heidelberg, 1993, p. XV, 528. ISBN: 978-3-540-56670-0. DOI: 10.1007/978-3-540-78862-1. URL: https://doi.org/10.1007/978-3-540-78862-1.
- [9] Ami Harten. "Adaptive Multiresolution Schemes for Shock Computations". In: Journal of Computational Physics 115.2 (1994), p. 319-338. ISSN: 0021-9991. DOI: https://doi.org/10.1006/jcph.1994.1199. URL: https://www.sciencedirect.com/science/article/pii/S0021999184711995.

BIBLIOGRAPHIE 34

[10] James Keener et James Sneyd. *Mathematical Physiology*. 1^{re} éd. Interdisciplinary Applied Mathematics. New York, NY: Springer, 1998, p. 281. ISBN: 978-0-387-22706-1. DOI: 10.1007/b98841.

- [11] Christopher A. Kennedy et Mark H. Carpenter. "Additive RungeKutta schemes for convectiondiffusionreaction equations". In: Applied Numerical Mathematics 44.1 (2003), p. 139-181. ISSN: 0168-9274. DOI: https://doi.org/10.1016/S0168-9274(02)00138-1. URL: https://www.sciencedirect.com/science/article/pii/S0168927402001381.
- [12] L. Pareschi et G. Russo. *Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation*. 2010. arXiv: 1009.2757 [math.NA]. URL: https://arxiv.org/abs/1009.2757.
- [13] Marie Postel. "Approximations multiéchelles". Polycopié, Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie.
- [14] Louis Reboul. "Development and analysis of efficient multi-scale numerical methods, with applications to plasma discharge simulations relying on multi-fluid models". 2024IP-PAX134. Thèse de doct. 2024. URL: http://www.theses.fr/2024IPPAX134/document.

Annexes

.1 Annexe A: Titre de l'annexe

Contenu de la première annexe.

.2 Annexe B : Titre de l'annexe

Contenu de la deuxième annexe.