DOI: 10.1021/om900413a

Reactivity Differences of Pt⁰ Phosphine Complexes in C-C Bond **Activation of Asymmetric Acetylenes**

Ahmet Gunay, Christian Müller, Rene J. Lachicotte, William W. Brennessel, and William D. Jones*

Department of Chemistry, University of Rochester, Rochester, New York 14627

Received May 19, 2009

Carbon-carbon bond activation reactions of asymmetric acetylene derivatives of the type L₂Pt-(PhC≡CR) were studied with 1,2-bis(diisopropylphosphino)ethane (dippe), 1,2-bis(di-tert-butylphosphino)ethane (dtbpe), and 1-diisopropylphosphino-2-dimethylaminoethane (dippdmae) chelates. (dippe)Pt(η^2 -PhC \equiv CCH₃) (1a), (dippe)Pt(η^2 -PhC \equiv CCF₃) (1b), and (dippe)Pt(η^2 -PhC \equiv CC-(CH₃)₃) (1c) showed no thermal reactivity at 160 °C, but 1b showed evidence for C-C cleavage to form (dippe)Pt(Ph)(C≡CCF₃) upon irradiation with UV light (>300 nm). In comparison, dtbpe analogues of these metal complexes, (dtbpe)Pt(η^2 -PhC=CCH₃) (2a), (dtbpe)Pt(η^2 -PhC=CCF₃) (2b), and (dtbpe)Pt(η^2 -PhC \equiv CC(CH₃)₃) (2c), showed either C-H or C-C activation products upon photolysis. 2b produced (dtbpe)Pt(Ph)(C≡CCF₃), but 2a or 2c showed the formation of $(dtbpe)Pt(D)(C_6D_5)$ (2D) by activation of the C_6D_6 solvent. Compounds 2a-c showed no thermal reactivity at 160 °C. Two complexes with the hemilabile chelate dippdmae were synthesized and fully characterized, (dippdmae)Pt(η^2 -PhC \equiv CCF₃) (3b) and (dippdmae)Pt(η^2 -PhC \equiv CC(CH₃)₃) (3c). C-C cleavage products of the type $(L_2)Pt(Ph)(C = CCF_3)$ were observed only upon photolysis of compounds 1b, 2b, and 3b.

Introduction

Carbon-carbon bond activation with the aid of transition metal complexes remains one of the most challenging fields in organometallic chemistry. $^{1-4}$ While C-H bond activations have found many successful applications in organic synthesis and industrial chemistry, mild C-C bond activation is currently far from practical use.⁵ New routes for the efficient cleavage of C-C bonds will help convert naturally abundant traditionally unreactive molecules into useful raw materials¹ and could offer potential applications in organic synthesis and petroleum research.

To further develop this field, factors influencing C-C bond cleavage need to be understood, and new examples of metal insertions need to be elucidated.² Our group recently reported a new method⁶ for C-C bond activation that does

not take advantage of the known strategies of relief of ring strain, 7-13 attainment of aromaticity, 14,15 or forcing the targeted bond into close proximity to the transition metal center. 1,2,16,17 The new examples involve alkynes containing $sp-sp^2$ (i.e., $C \equiv C-aryl$) bonds. Here we report attempts to activate the sp-sp³ C-C bonds by photolysis of mixed aryl-alkyl acetylene complexes. Also, a comparison is made between the effects of dippe, dtbpe, and dippmae ligands on the activation reaction.

Results and Discussion

Synthesis and Characterization of L₂Pt(alkyne) Complexes. To examine the possibility of sp-sp³ C-C bond activation, several aryl-alkyl acetylene complexes of the type (chelate)Pt(η^2 -PhC=CR) containing the phosphine ligands dippe (Prⁱ₂PCH₂CH₂PPrⁱ₂), dtbpe (Bu^t₂PCH₂CH₂PBu^t₂), or dippdmae (Prⁱ₂PCH₂CH₂NMe₂) were prepared as shown in eq 1. The syntheses all involve reaction of a 1:1:1 mixture of

^{*}Corresponding author. E-mail: jones@chem.rochester.edu.

⁽¹⁾ Murakami, M.; Ito, Y. Cleavage of Carbon-Carbon Single Bonds by Transition Metals. In Topics in Organometallic Chemistry; Murai, S., Ed.; Springer: Berlin, 1999; Vol. 3, pp 97-129.

⁽²⁾ Rybtchinski, B.; Milstein, D. Angew. Chem., Int. Ed. 1999, 38, 870.

⁽³⁾ Jennings, P. W.; Johnson, L. L. *Chem. Rev.* **1994**, *94*, 2241. (4) Bishop, K. C., III. *Chem. Rev.* **1976**, *76*, 461.

⁽⁵⁾ Jun, C. H.; Moon, C. W.; Lee, H.; Lee, D. Y. J. Mol. Catal. A **2002**, 189, 145.

^{(6) (}a) Gunay, A.; Jones, W. D. J. Am. Chem. Soc. 2007, 129, 8729. (b) Müller, C.; Iverson, C. N.; Lachicotte, R. J.; Jones, W. D. J. Am. Chem. Soc. 2001, 123, 9718.

⁽⁷⁾ Perthuisot, C.; Jones, W. D. *J. Am. Chem. Soc.* **1994**, *116*, 3647. (8) Perthuisot, C.; Edelbach, B. L.; Zubris, D. L.; Jones, W. D. Organometallics 1997, 16, 2016.

⁽⁹⁾ Edelbach, B. L.; Lachicotte, R. J.; Jones, W. D. J. Am. Chem. Soc. 1998, 120, 2843.

⁽¹⁰⁾ Wick, D. D.; Northcutt, T. O.; Lachicotte, R. J.; Jones, W. D. Organometallics 1998, 17, 4484.

⁽¹¹⁾ Bessmertnykh, A. G.; Blinov, K. A.; Grishin, Y. K.; Donskaya, N. A.; Beletskaya, I. P. Tetrahedron Lett. 1995, 36, 7901.

⁽¹²⁾ Nishimura, T.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 1999, 121,

⁽¹³⁾ Nishimura, T.; Uemura, S. J. Am. Chem. Soc. 1999, 121, 11010. (14) Crabtree, R. H.; Dion, R. P. J. Chem. Soc., Chem. Commun. **1984**, 1260.

⁽¹⁵⁾ Barretta, A.; Cloke, F. G. N.; Feigenbaum, A.; Green, M. L. H.; Gourdon, A.; Prout, K. J. Chem. Soc., Chem. Commun. 1981, 156.

⁽¹⁶⁾ Jones, W. D. Nature 1993, 364, 676.

⁽¹⁷⁾ Rosenthal, U.; Pellny, P. M.; Kirchbauer, F. G.; Burlakov, V. V. Acc. Chem. Res. 2000, 33, 119.

chelate, Pt(COD)₂, and PhC \equiv CR in C₆D₆, and heating at 55–100 °C for several hours is necessary. The *tert*-butyl acetylene derivatives (c) were more difficult to form. Formation of **1c** required heating at 100 °C for 20 h to obtain 100% conversion. Formation of **2c** required heating to 100 °C in the presence of 20 equiv of alkyne. The ³¹P{¹H} NMR spectra of compounds **1a**–**c** and **2a**–**c** typically show two doublets with platinum satellites ($J_{P-P} \approx 50$ Hz; $J_{P-Pt} \approx 3000$ Hz). The "b" series of compounds containing a CF₃-substituted acetylene showed one of the phosphorus resonances as a doublet of quartets due to the additional P–F coupling ($J_{P-F} = 10-16$ Hz).

$$Pt(COD)_{2}$$
+ chelate +Ph-C=C-R
$$\frac{\triangle}{C_{6}D_{6}}$$
-2 COD
$$P = R = CH_{3}, CF_{3}, C(CH_{3})_{3}$$

$$Pr^{i}_{2}PCH_{2}CH_{2}PPr^{i}_{2} = dippe$$

$$Bu^{t}_{2}PCH_{2}CH_{2}PBu^{t}_{2} = dtpe$$

$$2a$$

$$2b$$

$$2c$$

$$Pr^{i}_{2}PCH_{2}CH_{2}NMe_{2} = dippdmae$$
- 3b 3c

Complexes $3\mathbf{b} - \mathbf{c}$ have the potential to form two regioisomers. Heating a 1:1:1 ratio of dippdmae, Pt(COD)₂, and PhC \equiv CCF₃ at 70 °C overnight produced $3\mathbf{b}$ in 51% yield. The product was obtained as a mixture of two isomers (90% isomer with the CF₃ group *trans* to P, 10% isomer with the CF₃ group *cis* to P). The 31 P{ 1 H} NMR spectrum of the major isomer of $3\mathbf{b}$ shows a quartet at δ 64.7 ($J_{P-Pt} = 3844$ Hz, $J_{P-F} = 16$ Hz), and the minor isomer appears as a singlet at δ 66.6 ($J_{P-Pt} = 3633$ Hz).

The single-crystal structures of 1b-3c have been determined and are shown Figure 1. Table 1 lists similar bond distances and angles for the compounds. While d^{10} Pt⁰ complexes might be expected to have a tetrahedral geometry, the structural analysis revealed a distorted trigonal geometry at the metal center with the alkyne ligand in the P-Pt-P plane. One can notice asymmetrical binding of the trifluoromethylphenylacetylene derivatives, in that the Pt-C(2) bond is noticeably shorter in 1b and 2b, but not in 3b. The C=C-C bending of the alkyne substituents ranges from 135° to 145° , indicative of strong π -back-bonding. ^{18,19} The presence of an elongated C-C triple bond compared to free

diphenylacetylene is also indicative of back-bonding.²⁰ Rosenthal has characterized a large number of related L₂Ni-(alkyne) complexes,²¹ and some Pd and Pt derivatives are known²²

Reactivity of L₂Pt(alkyne) Complexes. Complexes 1a-2c were all found to be thermally very stable. Heating to 160 °C for 1-3 days in C_6D_6 showed no evidence of reaction for 1a, 2a, 1b, 2b, 1c, or 2c. However, 3b and 3c proved to be more thermally sensitive. Upon heating (dippdmae)Pt(η^2 - $PhC = CCF_3$ (3b) either alone or with 5 equiv of $PhC = CCF_3$ at 75 °C, another complex was seen to grow in. This species shows two resonances in the ³¹P{¹H} NMR spectrum, a multiplet at δ 30.7 (J_{P-Pt} = 3565 Hz) and a doublet (J_{P-P} = 18 Hz) at δ 32.7 ($J_{\rm P-Pt}$ = 3304 Hz). In earlier studies of the diphenylacetylene complex (dippdmae)Pt(η^2 -PhC \equiv CPh), it was established that the bis-monodentate complex $(dippdmae)_2Pt(\eta^2-PhC \equiv CPh)$ can form if an extra equivalent of dippdmae is present. 23 By analogy to the chemical shift and the Pt-P coupling constants of (dippdmae)₂Pt(η^2 -PhC=CPh) (δ 32.2, J_{P-Pt} = 3336 Hz), the new resonances seen in the 31P NMR spectrum were assigned to $(dippdmae)_2Pt(\eta^2-PhC \equiv CCF_3)$ (Scheme 1). The high value of the Pt-P coupling constant and the fact that one of the phosphorus resonances was a multiplet while the other was a doublet support this assignment. The fate of the residual Pt⁰ was not determined, and heating 3b at 100 °C for 1 day caused decomposition.

Similarly, (dippdmae)Pt(η^2 -PhC \equiv CC(CH₃)₃) (**3c**) also proved to be thermally sensitive. Upon heating **3c** at 55 °C for 2 days, similar to the case for **3b**, a new complex appears with a doublet at δ 27.8 ($J_{P-P} = 28$ Hz; $J_{P-Pt} = 3208$ Hz) and another doublet at δ 34.1 ($J_{P-P} = 28$ Hz; $J_{P-Pt} = 3483$ Hz). Comparison to the literature data for (dippdmae)₂Pt(η^2 -PhC \equiv CPh)²³ suggests that the new complex was (dippdmae)₂Pt(η^2 -PhC \equiv CC(CH₃)₃) (Scheme 1). Heating **3c** at 75 °C for 1 day caused decomposition.

Our previous studies showed that aryl-alkyne C-C bonds undergo oxidative addition upon photolysis. 6 Therefore, compound 1a was irradiated with UV light ($\lambda > 300 \text{ nm}$) in C₆D₆ solution. After irradiation overnight, no evidence for activation product was seen, and only 1a remained. Similar irradiation of **1c** also showed no evidence for C-C cleavage. Irradiation of 1b for 10 days, however, showed the formation of a new product (60%) whose ³¹P NMR spectrum showed multiplets at δ 63.95 ($J_{Pt-P} = 2251 \text{ Hz}$) and 71.90 ($J_{Pt-P} =$ 1566 Hz). These chemical shifts and coupling constants are consistent with the formation of the C-C insertion product (dippe)Pt(Ph)(C≡CCF₃), **4b**. ⁶ As further evidence for aryl− alkyne C-C cleavage, the ¹H NMR spectrum showed a change in the ortho C-H resonance of the alkyne phenyl group from δ 8.10 (d, J = 7 Hz) in **1b** to δ 7.75 (t, J = 7 Hz) with platinum satellites ($J_{Pt-H} = 27 \text{ Hz}$) in **4b** (see Supporting Information for spectra). Irradiation for 18 days showed \sim 80% conversion to **4b**, but the product could not be isolated cleanly. No evidence for sp-sp³ bond cleavage

In contrast to **1a**, irradiation of **2a** in C_6D_6 with UV light $(\lambda > 300 \text{ nm})$ for 20 h led to the complete conversion to a Pt^{II} product, as observed by ³¹P NMR spectroscopy. The product that appeared displayed a 1:1:1 triplet (J = 30 Hz) at δ 83.8 with platinum satellites $(J_{P-Pt} = 1721 \text{ Hz})$ and a singlet

⁽¹⁸⁾ Otsuka, S.; Nakamura, A. Adv. Organomet. Chem. 1976, 14, 245, and references therein..

^{(19) (}a) Bartik, T.; Happ, B.; Iglewsky, M.; Bandmann, H.; Boese, R.; Heimbach, P.; Hoffmann, T.; Wenschuh, E. Organometallics 1992, 11, 1235. (b) Rosenthal, U.; Schulz, W. J. Organomet. Chem. 1987, 321, 103. (c) Tatsumi, K.; Hoffmann, R.; Templeton, J. L. Inorg. Chem. 1982, 21, 466. (d) Hey, E.; Weller, F.; Dehnicke, K. Z. Anorg. Allg. Chem. 1984, 514, 18. (e) Dewar, M. J. S.; Ford, G. P. J. Am. Chem. Soc. 1979, 101, 783. (f) Hartley, F. R. Angew. Chem. 1972, 84, 657. (g) Nelson, J. H.; Wheelock, K. S.; Cusachs, L. C.; Jonassen, H. B. J. Am. Chem. Soc. 1969, 91, 7005. (h) Greaves, E. O.; Lock, C. J. L.; Maitlis, P. M. Can. J. Chem. 1968, 46, 3879. (i) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C79. (j) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.

⁽²⁰⁾ Mavriris, A.; Moustakali-Mavridis, I. *Acta Crystallogr.* **1977**, *B33*, 3612. The C≡C bond length in free diphenylacetylene is 1.198(4) Å.

⁽²¹⁾ Rosenthal, U.; Oehme, G.; Görls, H.; Burlakov, V. V.; Yanovsky, A. I.; Struchkov, Y. T. J. Organomet. Chem. 1990, 390, 113. Rosenthal, U.; Oehme, G.; Burlakov, V. V.; Petrovskii, P. V.; Vol'pin, M. E. J. Organomet. Chem. 1990, 391, 119. Rosenthal, U.; Nauck, C.; Arndt, P.; Pulst, S.; Baumann, W.; Burlakov, V. V.; Görls, H. J. Organomet. Chem. 1994, 484, 81.

^{(22) (}a) Rosenthal, U.; Oehme, G.; Görls, H.; Burlakov, V. V.; Yanovsky, A. I.; Struchkov, Y. T. *J. Organomet. Chem.* **1990**, *389*, 251. (b) Boag, N. M.; Green, M.; Grove, D. M.; Howard, J. A. K.; Spencer, J. L.; Stone, F. G. A. *J. Chem. Soc., Dalton Trans.* **1980**, 2170.

⁽²³⁾ Müller, C.; Lachicotte, R. J.; Jones, W. D. Organometallics 2002, 21, 1118.

Figure 1. Molecular structures of (chelate)Pt(η^2 -PhC=CR) (1b, 1c, 2a, 2b, 2c, 3b, and 3c) where chelate = dippe (1), dtbpe (2), or dippdmae (3) and R = CH₃ (a), CF₃ (b), or *t*-Bu (c) (50% probability ellipsoids).

Table 1. Selected Bond Lengths (Å) and Bond Angles (deg) for 1a-3c

Bond Lengths							
	1b	1c	2a	2b	2c	3b	3c
Pt(1)-P(1)	2.2527(10)	2.2603(5)	2.2862(8)	2.276(4)	2.2798(10)	2.2502(9)	2.249(3)
$Pt(1)-P(2)/N(1)^a$	2.2638(10)	2.2589(5)	2.2783(8)	2.299(4)	2.2788(9)	2.2302(9) $2.221(3)^a$	$2.242(6)^a$
Pt(1)-C(1)	2.040(4)	2.0411(17)	2.060(3)	2.098(16)	2.043(3)	1.998(4)	2.067(7)
Pt(1)-C(2)	2.006(4)	2.0497(17)	2.023(3)	2.027(15)	2.060(3)	2.022(4)	1.995(7)
C(1)-C(2)	1.299(5)	1.303(2)	1.310(4)	1.342(18)	1.285(5)	1.301(5)	1.302(9)
C(1)-C(3)	1.463(5)	1.458(2)	1.456(4)	1.37(2)	1.459(5)	1.465(5)	1.449(9)
C(2) - C(9)	1.471(5)	1.503(2)	1.463(4)	1.50(2)	1.528(5)	1.457(5)	1.497(9)
			Bond Angles	S			
	1b	1c	2a	2 b	2c	3b	3c
$P(1)-P(1)-P(2)/N(1)^a$	87.12(4)	87.244(18)	88.51(3)	88.32(12)	88.34(4)	84.21(9) ^a	83.7(4) ^a
C(1)-Pt(1)-C(2)	37.44(15)	37.14(7)	37.41(13)	37.9(5)	36.51(13)	37.76(14)	37.3(3)
C(3)-C(1)-C(2)	142.1(4)	145.31(17)	140.0(3)	135.3(17)	142.6(4)	143.2(4)	144.8(7)
C(9)-C(2)-C(1)	140.5(4)	140.34(16)	143.9(3)	141.9(16)	138.1(3)	140.4(4)	144.2(7)
^a Replace P(2) with N	(1) in these compo	unds.					

Scheme 1. Reactivity of Alkyne Complexes

Figure 2. Product (dippe)Pt(D)(C_6D_5) (2D) arising from irradiation of 2a in C_6D_6 (50% probability ellipsoids).

at δ 102.0 (J_{P-Pt} = 1794 Hz). This sample was crystallized, and the X-ray structure of the product was determined (Figure 2, Table 2), indicating that the product was (dtbpe)Pt(D)(C_6D_5) (**2D**), arising from reaction with the solvent (C_6D_6) rather than the C-C activation of 1-phenyl-1-propyne (Scheme 1). Irradiation of **2c** gives a similar result, producing **2D**. A related result was reported earlier describing the formation of C_6H_6 -activated product (dtbpe)Pt(H)(C_6H_5) upon photolysis of (dtbpe)PtH₂ in benzene.²⁴

Irradiation of **2b** in C_6D_6 also led to the formation of a new Pt^{II} product, **5b**. In this case, however, the ³¹P NMR spectrum showed two distinct singlets, each with platinum satellites (Figure 3, δ 71.1, $J_{P-Pt} = 2564$ Hz; 80.0, $J_{P-Pt} = 1547$ Hz). Complete conversion to **5b** was not observed even after 8 days of irradiation by UV light, the highest conversion reaching 60%, suggesting attainment of a photostationary state. These chemical shifts and coupling constants are consistent with the formation of the C-C insertion product (dtbpe)Pt(Ph)(C=CCF₃), **5b**.6

Figure 3. 31 P NMR spectrum upon irradiation of **2b** in C_6D_6 for 4 days.

Table 2. Selected Bond Lengths (Å) and Bond Angles (deg) for 2D

Bond Lengths									
Pt(1)-P(1)	2.2880(10)	Pt(1)-C(1)	2.084(4)						
Pt(1)-P(2)	2.3317(10)	Pt(1)-D(1)	1.5854						
Bond Angles									
D(1)-P(1)-P(1)	90.2	D(1)-Pt(1)-C(1)	82.1						
P(2)-Pt(1)-P(1)	87.74(4)	Pt(1)-P(1)-C(31)	108.47(13)						
C(1)-Pt(1)-P(2)	99.90(11)	Pt(1)-P(2)-C(32)	106.61(13)						

Likewise, photolysis of **3b** with UV light for 9 h showed evidence for the slow formation of a new product (60%) with $J_{\text{Pt-P}} = 2802$ Hz. This product is assigned to the C-C cleavage product (dippdmae)Pt(Ph)(C=CCF₃) (**6b**). As with **5b**, the ¹H NMR spectrum showed a change in the ortho C-H resonance of the alkyne phenyl group from δ 7.96 (d, J=7 Hz) in **3b** to δ 7.64 (d, J=7 Hz) with platinum satellites ($J_{\text{Pt-H}} = 66$ Hz) in **6b** (see Supporting Information for spectra). Longer irradiation led to decomposition, which prevented isolation of **6b**.

The lack of C-C cleavage in 1a, 2a, 1c, and 2c was unexpected on the basis of prior reactivity seen in other $L_2Pt(acetylene)$ complexes.⁶ Evidently, 1-phenyl-1-propyne and *tert*-butylphenylacetylene do not coordinate sufficiently strongly so that upon irradiation dissociation occurs prior to C-C cleavage. The vacant coordination site can then be occupied by C_6D_6 , which is then activated. As these alkynes have an electron-donating alkyl group on the acetylene, this electron donation may cause poor back acceptance by the acetylene, and hence a weaker coordination. Therefore, a similar substrate with an electron-withdrawing substituent may show a better coordination to the platinum and facilitate C-C activation, as seen with trifluoromethylphenylacetylene.

While the detailed mechanism of the photoinduced C-C cleavage is not known, a pathway involving orthometalation can be ruled out, as para-substituents on the aryl ring remain para in the Pt-aryl product. ^{6b} We propose that the mechanism of cleavage is the same as seen in the isoelectronic C-CN cleavage of benzonitrile by [Ni(dippe)], which was established by experiment and DFT theory. ²⁵ In this mechanism, coordination to the triple bond is not important for C-C cleavage. The molecule must first rearrange to the η^2 -arene complex, which then undergoes C-C oxidative cleavage, as

⁽²⁵⁾ Ateşin, T. A.; Li, T.; Lachaize, S.; García, J. J.; Jones, W. D. *Organometallics* **2008**, *27*, 3811.

$$\underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 - i_{Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{CN} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in Pr_2 P \mid_{I_{i_1}, N_1, i, il}} P^i Pr_2 \right) }_{i_{Pr_2} P \mid_{I_{i_1}, N_1, i, il}} \underbrace{ \left(\sum_{i \in$$

shown in Scheme 2. Perhaps the role of photolysis is to destabilize the metal—alkyne interaction and promote the migration to the phenyl ring. This pathway would also account for the lack of $sp-sp^3$ C-C cleavage. Since only the CF₃-containing phenylalkynes undergo C-C activation, perhaps the stronger binding of this alkyne leads to the η^2 -arene complex upon photolysis rather than dissociation, as seen with the Me- and *t*-Bu-substituted alkynes. Additionally, the initial coordination of the [L₂Pt] fragment to the alkyne triple bond is apparently faster than the rate of coordination to the arene π -system, since no C-C cleavage is seen thermally when the η^2 -alkyne complexes were synthesized.

Conclusions

Pt⁰ complexes of η^2 -coordinated asymmetric acetylene derivatives 1-phenyl-1-propyne, trifluoromethylphenylacetylene, and *tert*-butylphenylacetylene have been synthesized and characterized. Only the Pt⁰ complexes with the electron-deficient trifluoromethylphenylacetylene ligand showed evidence for C–C cleavage. The strong donor chelate dtbpe on platinum showed evidence for C–H activation of benzene solvent following alkyne loss. In no case was evidence for sp–sp³ C–C cleavage observed.

Experimental Section

General Considerations. All experiments were carried out under a nitrogen atmosphere, either on a high-vacuum line using modified Schlenk techniques or in a Vacuum Atmospheres Corporation glovebox, unless otherwise stated. The solvents were available commercially and distilled from dark purple solutions of benzophenone ketyl. ¹H, ¹³C{H}, and ³¹P{H} NMR spectra were recorded on Bruker Avance-400, Bruker AMX-400, and Bruker Avance-500 spectrometers. All ¹H chemical shifts were referenced to residual proton resonances or to TMS in the deuterated solvents. An external standard of 85% H₃PO₄ was used to reference the ³¹P{H} NMR data. All crystal structures were determined by using a Siemens-SMART 3-circle CCD diffractometer. All photolysis experiments were performed in sealed NMR tubes with an Oriel arc source using a 200 W Hg(Xe) bulb. Elemental analyses were obtained from Desert Analytics. 1-Phenyl-1-propyne was obtained from commercial sources, and Pt(COD)₂, ^{26,27} trifluoromethylphenylacetylene,²⁸ 1,2-bis(diisopropylphosphino)ethane (dippe),²⁹ 1-diisopropylphosphino-2-dimethylaminoethane (dippdmae),³⁰ 1,2-bis(di-*tert*-butylphosphino)ethane (dtbpe),³¹ and *tert*-butylphenylacetylene³² were synthesized according to the reported procedures.

Preparation of (dippe)Pt(η^2 -PhC=CCH₃) (1a). 1-Phenyl-1propyne (2.82 mg, 0.024 mmol, 3.04 µL) was dissolved in 0.5 mL of C₆D₆ and transferred onto Pt(COD)₂ (10 mg, 0.024 mmol) powder. The color of the solution became dark brown. Then 0.5 mL of C₆D₆ solution of dippe (6.37 mg, 0.024 mmol) was added, and the solution was placed into a resealable NMR tube, which was heated at 70 °C overnight, whereupon the color turned light orange. The solvent and the free COD were removed under vacuum, and the light vellow powder was redissolved in C₆H₆. Colorless crystals of 1a were obtained via solvent evaporation at 23 °C. Yield: 7.5 mg, 54%. For 1a: ¹H NMR (C₆D₆): δ 0.83 (dd, $J_{H-P} = 13$ Hz, $J_{H-H} = 7$ Hz, 6 H, $CHMe_2$), 0.9 (dd, $J_{H-P} = 14 Hz$, $J_{H-H} = 7 Hz$, 6 H, $CHMe_2$), 1.08 (dd, $J_{H-P} = 7$ Hz, $J_{H-H} = 3$ Hz, 6 H, CH Me_2), 1.12 (dd, $J_{H-P} =$ $7 \text{ Hz}, J_{H-H} = 3 \text{ Hz}, 6 \text{ H}, \text{CH}Me_2$, 1.18 (m, 4 H, CH), 1.65 (s, 3 H, $C = CCH_3$), 1.85 (m, 2 H, CH_2), 2.05 (m, 2 H, CH_2), 7.13 (pseudo t, $J_{H-H} = 9 \text{ Hz}$, 1 H, p-C₆H₅), 7.39 (t, $J_{H-H} = 9 \text{ Hz}$, 2 H, m-C₆H₅), 7.95 (d, $J_{H-H} = 10 \text{ Hz}$, 2 H, o-C₆H₅). ¹³C{¹H} NMR (C₆D₆): δ 18.3 (s, CHMe₂), 18.7 (s, CHMe₂), 19.0 (s, C≡C−CH₃), 19.4 (s, CH Me_2), 19.8 (s, CH Me_2), 24.48 (m, CH₂), 25.7 (d, J_{C-P} = 21 Hz, CH), 26.4 (d, J_{C-P} = 21 Hz, CH), 124.8, 130.5, 131.6 and obscured by C_6D_6 (s, Ph), 135.9 (s, C = C), 141.2 (s, C = C). $^{31}P\{^{1}H\}$ NMR (C₆D₆): δ 77.5 (d, J_{P-P} = 48 Hz, with platinum satellites J_{P-Pt} = 2944 Hz, P trans to C–CH₃), 79.8 (d, J_{P-P} = 48 Hz, with platinum satellites $J_{P-Pt} = 3041$ Hz, P trans to

Preparation of (dtbpe)Pt(η^2 -PhC=CCH₃) (2a). A 0.5 mL portion of a C₆D₆ solution of 1-phenyl-1-propyne (8.5 mg, $0.073 \text{ mmol}, 9.2 \mu\text{L}$) was added to Pt(COD)₂ (30 mg, 0.073 mmol), followed by 0.5 mL of a C₆D₆ solution of dtbpe (23.2 mg, 0.073 mmol). The color of the solution turned brown-red. The sample was heated at 100 °C to obtain the Pt⁰ product, whereupon the solution turned red. The volatiles were removed under vacuum, and the red powder was redissolved in C₆H₆ for recrystallization by evaporation. Colorless crystals of 2a were collected. Yield: 25.7 mg, 56%. For **2a**, 1 H NMR (C₆D₆): δ 0.97 (d, $J_{H-P} = 14$ Hz, 2 H, CH₂), 1.12 (s, 3 H, C=CCH₃), 1.16 (d, $J_{H-P} = 7$ Hz, 18 H, CMe₃), 1.19 (d, $J_{H-P} = 7$ Hz, 18 H, CMe₃), 1.28 (d, J_{H-P} = 12 Hz, 2 H, CH₂), 7.07 (pseudo t, J_{H-H} = 8 Hz, 1 H, p-C₆H₅), 7.33 (t, J_{H-H} =9 Hz, 2 H, m-C₆H₅), 7.80 (d, J_{H-H} =9 Hz, 2 H, o-C₆H₅). 13 C{ 1 H} NMR (C₆D₆): δ 17.1 (s, C=C-CH₃), 25.8 (m, CH_2), 29.9 (d, $J_{C-P} = 12$ Hz, $C(CH_3)_3$), 30.1 (d, $J_{C-P} = 12 \text{ Hz}$, $C(CH_3)_3$), 34.0 (m, P-Cs), 124.0 (s, ipso-C), 129 (s, C in Ph), the additional resonances obscured by C_6D_6 solvent (aromatic carbons), 141.2 (m, $C \equiv C$). $^{31}P\{^{1}H\}$ NMR (C_6D_6) : δ 96.6 (d, J_{P-P} = 55 Hz, with platinum satellites J_{P-Pt} = 3016 Hz, 1 P), 97.5 (d, $J_{P-P} = 54$ Hz, with platinum satellites $J_{P-Pt} =$

Preparation of (dtbpe)Pt(D)(C₆D₅) (2D). A 10 mg (0.016 mmol) portion of **2a** was dissolved in 1 mL of C_6D_6 and placed into a resealable NMR tube with a Teflon stopcock. The sample was irradiated with UV light ($\lambda > 300 \, \text{nm}$) for 20 h. A 95% conversion to the solvent activated complex was observed by ³¹P NMR spectroscopy. Colorless crystals of **2D** were obtained by solvent evaporation. Yield: 7.0 mg, 74%. For **2D**, ¹H NMR (CDCl₃):

⁽²⁶⁾ Green, M.; Howard, J. A. K.; Spencer, J. L.; Stone, F. G. A. *J. Chem. Soc.*, *Dalton Trans.* **1977**, 271.

⁽²⁷⁾ Ogoshi, S.; Morita, M.; Inoue, K.; Kurosawa, H. J. Org. Chem. **2004**, 689, 662.

⁽²⁸⁾ Kobayashi, Y.; Yamashita, T.; Takahashi, K.; Kuroda, H.; Kumadaki, I. *Chem. Pharm. Bull.* **1984**, *32* (11), 4402.

^{(29) (}a) Fryzuk, M. D.; Jones, T.; Einstein, F. W. B. *Organometallics* **1984**, *3*, 185. (b) Burg, R. J.; Chatt, J.; Hussain, W.; Leigh, G. J. *J. Organomet. Chem.* **1979**, *182*, 203.

⁽³⁰⁾ Werner, H.; Hampp, A.; Peters, K.; Peters, E. M.; Walz, L.; von Schnering, H. G. Z. Naturforsch. 1990, 45b, 1548.

⁽³¹⁾ Pörschke, K. R.; Pluta, C.; Proft, B.; Lutz, F.; Krüger, C. K. Z. *Naturforsch. B: Chem. Sci.* **1993**, *48*, 608–626.

⁽³²⁾ Bock, H.; Alt, H. Chem. Ber. 1970, 103, 1784.

δ 1.32 (m, 36 H, CMe₃), 1.54 (d, $J_{\rm H-P}$ = 13 Hz, 4 H, CH₂). 13 C{ 1 H} NMR (CDCl₃): δ 30.8 (m, C(CH₃)₃), 30.3 (m, C(CH₃)₃), 36.2 (d, $J_{\rm C-P}$ = 16 Hz, CH₂), 36.9 (d, $J_{\rm C-P}$ = 27 Hz, CH₂), 124.0, 127.3, 128.1, and 131.5 (Ph). 31 P{ 1 H} NMR (C₆D₆): δ 83.8 (t, $J_{\rm P-D}$ = 30 Hz, with platinum satellites $J_{\rm P-Pt}$ = 1721 Hz, 1 P, P trans to D), 102.0 (s, with platinum satellites $J_{\rm P-Pt}$ = 1794 Hz, 1 P, P trans to C₆D₅).

Preparation of (dippe)Pt(η^2 -PhC=CCF₃) (1b). Trifluoromethylphenylacetylene (13.2 mg, 0.08 mmol) was dissolved in C_6D_6 (0.5 mL) and added to Pt(COD)₂ (32.9 mg, 0.08 mmol). A purple solution was formed, which was transferred to a vial containing dippe (21.0 mg, 0.08 mmol), producing an orange solution. Following evaporation of benzene the compound was dissolved in a 1:4 mixture of petroleum ether and dichloromethane and stored at -20 °C, forming yellow crystals. Yield: 25.0 mg, 50%. For **1b**, ¹H NMR (C_6D_6): δ 0.74 (dd, J_{H-P} = 14 Hz, $J_{H-H} = 8 \text{ Hz}, 6 \text{ H}, \text{CH}Me_2$, 0.82 (dd, $J_{H-P} = 16 \text{ Hz}, J_{H-H} =$ 12 Hz, 6 H, CH Me_2), 0.98 (dd, J_{H-P} = 17 Hz, J_{H-H} = 7 Hz, 6 H, $CHMe_2$), 1.07 (m, 4 H, P-CH-), 1.12 (dd, J_{H-P} = 16 Hz, J_{H-H} = 7 Hz, 6 H, CH Me_2), 1.95 (m, 4 H, CH₂), 7.08 (t, J_{H-H} = 7 Hz, 1 H, p-C₆H₅), 7.27 (pseudo t, $J_{\rm H-H}$ =8 Hz, 2 H, m-C₆H₅), 8.02 (d, $J_{\rm H-H}$ =8 Hz, 2 H, o-C₆H₅). 31 P{ 1 H} NMR (C₆D₆): δ 76.8 (dq, $J_{\rm P-P}$ = 34 Hz, $J_{P-F} = 10$ Hz, $J_{P-Pt} = 3248$ Hz), 78.9 (d, with platinum satellites, $J_{P-P} = 34$ Hz, $J_{Pt-P} = 2999$ Hz). ¹⁹F{¹H} NMR (C₆D₆): δ 6.7 (d, with platinum satellites, $J_{F-P} = 10$ Hz, $J_{F-Pt} = 57$ Hz). $^{13}C\{^{1}H\}$ NMR ($C_{6}D_{6}$): δ 18.5 (s, CH Me_{2}), 18.7 (s, CH Me_{2}), 19.4 (s, CH Me_2), 20.0 (s, CH Me_2), 23.5 (dd, $J_{C-P} = 27$ Hz, $J_{C-P} = 27$ 13 Hz, CH₂), 24.0 (dd, J_{C-P} = 27 Hz, J_{C-P} = 13 Hz, CH₂), 25.6 (d, J_{C-P} = 23 Hz, CH), 26.7 (d, J_{C-P} = 23 Hz, CH), 125.0, 126.9, 128.0, and 128.3 (s, Ph), 131.4 (m, CF₃), 132.0 (s, C = C), 134.0 (t, C = C). Anal. Calcd (found) for C₂₃H₃₇F₃P₂Pt: C, 44.02 (44.13); H, 5.94 (5.72).

Preparation of $(dtbpe)Pt(\eta^2-PhC \equiv CCF_3)$ (2b). Trifluoromethylphenylacetylene (4.13 mg, 0.0243 mmol) dissolved in 0.5 mL of C₆D₆ was added to a vial containing Pt(COD)₂ (10 mg, 0.0243 mmol), producing a light pink solution. Then $0.5 \,\mathrm{mL}$ of a $\mathrm{C_6D_6}$ solution of dtbpe (7.73 mg, 0.0243 mmol) was added, and the sample was heated at 100 °C to obtain a light orange solution of **2b** (full conversion by ³¹P NMR spectroscopy). The volatiles were removed under vacuum, and the sample was recrystallized from C₆H₆, producing colorless crystals of **2b**. Yield: 12.8 mg, 77%. For **2b**, 1 H NMR (CDCl₃): δ 1.27 (d, $J_{\rm H-P}$ = 13 Hz, 18 H, CMe₃), 1.39 (d, $J_{\rm H-P}$ = 13 Hz, 18 H, CMe₃), 1.85 (m, 4 H, CH₂), 7.21 (t, J = 7 Hz, 1 H, p-H), 7.38 (t, J = 7 Hz, overlapping with the solvent resonance, 2 H, m-H), 7.45 (d, J = 7 Hz, 2 H, o-H). ¹³C{¹H} NMR (CDCl₃): δ 25.6 (m, C), 30.0 (m, (CH₃)₃), 34.5 (m, CH₂), 125.4, 127.3, 127.5, and 128.6 (s, aromatic C's), 132.2 and 133.7 (m, C≡C), 139.0 (m, CF₃). $^{19}F\{^1H\}$ NMR (CDCl₃): δ 10.4 (d, with platinum satellites, $J_{F-P} = 13$ Hz, $J_{F-Pt} = 84$ Hz). $^{31}P\{^{1}H\}$ NMR (C_6D_6): δ 94.1 (dq, $J_{P-P} = 39$ Hz, $J_{P-F} = 12$ Hz, with platinum satellites $J_{P-Pt} = 3342 \text{ Hz}$, 1 P, P trans to CF₃), 95.3 (d, $J_{P-P} = 39 \text{ Hz}$, with platinum satellites $J_{P-Pt} = 3116 \text{ Hz}$, 1 P, P trans to Ph). ${}^{31}P\{{}^{1}H\}$ NMR (CDCl₃): δ 93.7 (m, with platinum satellites J_{P-Pt} = 3339 Hz, 1 P, P trans to CF₃), 94.9 (d, $J_{P-P} = 58$ Hz, with platinum satellites $J_{P-Pt} = 3116$ Hz, 1 P, P trans to Ph). Anal. Calcd (found) for C₂₇H₄₅F₃P₂Pt: 47.43 (48.74) C; 6.63 (6.17) H.

Preparation of (dippe)Pt(η^2 -PhC=CC(CH₃)₃) (1c). tert-Butylphenylacetylene (10.5 mg, 0.0664 mmol) was dissolved in THF- d_8 (0.5 mL) and cooled to -20 °C. This solution was transferred onto Pt(COD)₂ (27.3 mg, 0.0664 mmol), forming a dark orange solution, which was added to a vial containing 17.4 mg of dippe (0.0664 mmol). This solution was heated to 100 °C for 20 h, whereupon the color changed to bright yellow (complete conversion to the η^2 -alkyne complex was confirmed by ³¹P NMR spectroscopy). The solvent was evaporated under vacuum and the product recrystallized from pentane/dichloromethane at -20 °C. Yield: 31.4 mg, 77%. For 1c, ¹H NMR (THF- d_8): δ 0.96 (m, 12 H, CH Me_2), 1.06 (dd, J_{H-P} = 12 Hz, J_{H-H} = 7 Hz, 6 H, CH Me_2), 1.17 (dd, J_{H-P} = 15 Hz, J_{H-H} = 7 Hz,

6 H, CH Me_2), 1.31 (s, 9 H, t-Bu), 1.58 (m, 4 H, CH), 2.07 (m, 2 H, CH₂), 2.21 (m, 2 H, CH₂), 6.9 (t, $J_{H-H} = 7$ Hz, 1 H, p-C₆H₅), 7.13 (pseudo t, $J_{H-H} = 8$ Hz, 2 H, m-C₆H₅), 7.25 (d, $J_{H-H} = 8$ Hz, 2 H, o-C₆H₅). 13 C{ 1 H} NMR (C₆D₆): δ 18.0 (s, CH Me_2), 18.4 (s, CH Me_2), 20.0 (s, CH Me_2), 20.4 (s, C≡C-C-), 20.6 (s, CH Me_2), 23.1 (dd, $^{1}J_{C-P} = 74$ Hz, $^{2}J_{C-P} = 47$ Hz, CH₂), 25.0 (dd, $^{1}J_{C-P} = 83$ Hz, $^{2}J_{C-P} = 57$ Hz, CH₂), 26.2 (d, $J_{C-P} = 75$ Hz, CH), 32.7 (s, C(CH₃)₃), 124.2, 128.7, 131.2 and obscured by C₆D₆ (s, Ph), 143.1 and 143.3 (s, C≡C). 31 P{ 1 H} NMR (THF- J_8): δ 74.7 (d, with platinum satellites, $J_{P-P} = 47$ Hz, $J_{P-P} = 3111$ Hz), 75.4 (d, with platinum satellites, $J_{P-P} = 48$ Hz, $J_{P-P} = 2970$ Hz). Anal. Calcd (found) for C₂₆H₄₆P₂Pt: 50.72 (50.54) C, 7.53 (7.47) H.

Preparation of (dtbpe)Pt(η^2 -PhC=CC(CH₃)₃) (2c). tert-Butylphenylacetylene (3.84 mg, 0.024 mmol) was dissolved in 0.5 mL of C_6D_6 and added to $Pt(COD)_2$ (10 mg, 0.024 mmol) at room temperature. Then 0.5 mL of a C_6D_6 solution of dtbpe (7.74 mg, 0.024 mmol) was added, and the solution became light yellow. The sample was heated at 100 °C overnight to obtain only the η^2 -coordinated Pt⁰ complex. However, ³¹P NMR data showed that only 50% of the products were the target $Pt^0-\eta^2$ complex, 2c, with ~50% (dtbpe)Pt(COD) still remaining. To obtain only the Pt⁰- η^2 complex, an additional 19 equiv of the alkyne was added to the solution and the sample was heated at 100 °C overnight, producing only 2c. Excess alkyne was required to obtain high conversions. The volatiles were removed under vacuum and the white-yellow powder was recrystallized from C_6H_6 , yielding colorless and air-sensitive crystals of **2c**. Yield: 11.8 mg, 72%. For **2c**, ¹H NMR (C_6D_6): δ 1.02 (d, J_{H-P} = 12 Hz, 18 H, CMe₃), 1.12 (m, 2 H, CH₂), 1.26 (d, J_{H-P} = 12 Hz, 18 H, CMe_3), 1.41 (m, 2 H, CH_2), 1.63 (s, 9 H, $C = CCMe_3$), 6.99 (t, 1 H, $p-C_6H_5$), 7.25 (t, 2 H, $m-C_6H_5$), 7.37 (d, 2 H, $o-C_6H_5$). ¹³C{¹H} NMR (C_6D_6): δ 24.9 (m, P-C), 26.9 (m, P-C), 29.7 $(d, J_{C-P} = 48 \text{ Hz}, CMe_3), 29.9 \text{ (s, } C = CC), 30.2 \text{ (d, } J_{C-P} = 48 \text{ Hz},$ CMe_3), 32.8 (s, $CCMe_3$), 33.7 (dd, $J_{C-P} = 70$ Hz, $J_{C-P} = 28$ Hz, CH_2), 34.4 (dd, $J_{C-P} = 68 \text{ Hz}$, $J_{C-P} = 28 \text{ Hz}$, CH_2), 123.2 (s, ipso-C), resonances overlapping with C₆D₆ (Ph), 144.5 and 146.0 (s, C=C). ${}^{31}P\{{}^{1}H\}$ NMR (C₆D₆): δ 96.6 (d, $J_{P-P} = 55$ Hz, with platinum satellites $J_{P-Pt} = 3016 \text{ Hz}, 1 \text{ P}, 97.5 \text{ (d, } J_{P-P} = 54 \text{ Hz},$ with platinum satellites $J_{P-Pt} = 3155$ Hz, 1 P). Anal. Calcd (found) for C₃₀H₅₄P₂Pt: 53.64 (53.20) C, 8.10 (8.40) H.

Preparation of (dippdmae)Pt(η^2 -PhC=CCF₃) (3b). Pt(COD)₂ (36.7 mg, 0.089 mmol) was dissolved in a solution of trifluoromethylphenylacetylene (15.2 mg, 0.089 mmol) in C₆D₆ (0.5 mL) to give a purple solution. (i-Pr)₂PCH₂CH₂NMe₂ (16.9 mg, 0.089 mmol, 18.9 μ L) was added, producing a dark orange solution that was heated to 70 °C overnight. The volatiles were evaporated under vacuum, and the remaining solid was recrystallized from petroleum ether (0.5 mL) containing a few drops of dichloromethane at -20 °C. The product was obtained as orange crystals as a mixture of isomers (90% isomer with the CF_3 group trans to P, 10% isomer with the CF_3 group cis to P). Yield: 25.0 mg, 51%. For **3b**, ¹H NMR (C_6D_6): δ 0.79 (dd, J_{H-P} = 13 Hz, J_{H-H} = 7 Hz, 6 H, CH Me_2 (major)), 0.86 (dd, J_{H-P} = 14 Hz, $J_{H-H} = 7 \text{ Hz}, 6 \text{ H}, \text{CH}Me_2(\text{minor}), 1.02 (dd, J_{H-P} = 17 \text{ Hz}, J_{H-H} =$ 7 Hz, 6 H, CH Me_2 (major)), 1.10 (dd, $J_{H-P} = 16$ Hz, $J_{H-H} = 7$ Hz, 6 H, CHMe₂ (minor)), 1.80 (m, 2 × 6 H, CH₂, CH (both)), 2.63 (s, with platinum satellites, $J_{H-Pt} = 11$ Hz, 6 H, NMe₂ (minor)), 2.70 (s, with platinum satellites, $J_{H-Pt} = 11$ Hz, 6 H, NMe₂ (major)), 7.06 (t, $J_{H-H} = 7$ Hz, 1 H, p-C₆H₅ (major)), 7.08 (t, J = 7 Hz, 2 H, p-C₆H₅ (major)), 7.08 (t, J = 7 Hz, 2 H, p-C₆H₅ (major)), 7.08 (t, J = 7 Hz, 2 H, p-C₆H₅ (major)), 7.08 (t, J = 7 Hz, 2 H, p-C₆H₅ (major)), 7.08 (t, J = 7 Hz, p-C₆H₅ (major)), p-C₆ 7 Hz, p-C₆H₅ (minor)), 7.19 (pseudo t, $J_{H-H} = 7$ Hz, 2 H, m-C₆H₅ (major)), 7.26 (pseudo t, $J_{H-H} = 7$ Hz, 2 H, m-C₆H₅ (minor)), 7.85 (d, $J_{H-H} = 7 \text{ Hz}$, 2 H, o-C₆H₅ (minor)), 7.97 (d, $J_{H-H} = 7 \text{ Hz}$, 2 H, o-C₆H₅ (major)). ³¹P{¹H} NMR (C₆D₆): δ 64.7 (q, with platinum satellites, $J_{P-F} = 16 \text{ Hz}$, $J_{P-Pt} = 3844 \text{ Hz}$ (major)), 66.6 (s, with platinum satellites, $J_{P-Pt} = 3633 \text{ Hz (minor)}$). Anal. Calcd (found) for C₁₉H₂₉F₃NPPt: 41.15 (41.04) C, 5.27 (5.33) H, 2.53 (2.32) N.

Preparation of (dippdmae)Pt(η^2 -PhC \equiv CC(CH₃)₃) (3c). Pt-(COD)₂ (20.1 mg, 0.049 mmol) was suspended in C₆D₆ (0.5 mL), and (*i*-Pr)₂PCH₂CH₂NMe₂ (9.3 mg, 0.049 mmol, 10.3 μ L) was

added. A yellow solution formed, which was added to tertbutylphenylacetylene (7.7 mg, 0.049 mmol). The resultant solution was heated to 55 °C overnight. The volatiles were evaporated under vacuum, and the dark orange oil that remained was dissolved in petroleum ether (0.2 mL) containing a few drops of THF. Recrystallization at -20 °C produced yellow crystals of **3c**. Yield: 12.7 mg, 48%. For **3c**, ${}^{1}H$ NMR ($C_{6}D_{6}$): δ 0.92 (dd, $J_{H-P} = 13 \text{ Hz}, J_{H-H} = 7 \text{ Hz}, 6 \text{ H}, \text{CH}Me_2$), 1.08 (m, 2 H, CH), $1.17 \, (dd, J_{H-P} = 16 \, Hz, J_{H-H} = 6 \, Hz, 6 \, H, CHMe_2), 1.51 \, (s, 9 \, H,$ t-Bu), 1.85 (m, 4 H, CH₂), 2.65 (m, br, 6 H, NMe₂), 7.05 (t, J_{H-H} = 7 Hz, 1 H, p-C₆H₅), 7.31 (pseudo t, J_{H-H} = 7 Hz, 2 H, m-C₆H₅), 7.62 (d, br, J_{H-H} = 6 Hz, 2 H, o-C₆H₅). 31 P{ 1 H} NMR (C₆D₆): δ 65.8 (s, with platinum satellites, J_{P-Pt} = 3717 Hz). Anal. Calcd (found) for C₂₂H₃₈NPPt: 48.70(48.18) C, 7.06(5.88) H, 2.58(1.85) N.

Generation of (dippe)Pt(Ph)(C≡CCF₃) (4b). A 32 mg (0.052 mmol) amount of 1b was dissolved in 0.6 mL of C₆D₆ and placed in a resealable NMR tube. The solution was irradiated for 10 days, and NMR spectra were recorded periodically. The Supporting Information shows typical data, showing the conversion of **1b** into a new product assigned as (dippe)Pt(Ph)(C≡CCF₃) $(4b, \sim 60\% \text{ after } 10 \text{ days}; 80\% \text{ after } 18 \text{ days}). \text{ For } 4b, {}^{1}\text{H NMR}$ (C_6D_6) : δ 7.753 (t, J=7 Hz, $J_{Pt-H}=27$ Hz, 2 H_{ortho}), 7.285 (t, J=7 Hz, 2 H_{meta}), 7.043 (t, J = 7 Hz, 1 H_{para}), 2.17 (m, 2 H, CH₂), 1.87 (m, 2 H, CH₂), 1.24 (dd, J = 16, 8 Hz, 6 H, CH Me_2), 0.81 $(dd, J = 16, 8 Hz, 6 H, CHMe_2), 0.69 (dd, J = 16, 8 Hz, 6 H,$ $CHMe_2$), 0.67 (dd, J = 16, 8 Hz, 6 H, $CHMe_2$), $CHMe_2$ obscured. ³¹P{¹H} NMR (C₆D₆): δ 63.95 (m, J_{Pt-P} = 2551 Hz), 71.90 (m, J_{Pt-P} = 1566 Hz). ¹⁹F{¹H} NMR (C₆D₆): δ 13.62 (s, $J_{Pt-F} = 28$ Hz).

Generation of (dtbpe)Pt(Ph)($C \equiv CCF_3$) (5b). A 10 mg (0.015 mmol) amount of 2b was dissolved in 1 mL of C₆D₆, and the sample was placed into a resealable NMR tube. The tube was irradiated with UV light, and a maximum conversion of 60% to the activated complex **5b** was observed by ³¹P NMR after 8 days of photolysis. Longer photolysis resulted in decomposition. $^{31}P\{^{1}H\}$ NMR (C₆D₆): δ 71.1 (s, with platinum satellites J_{P-Pt} = 2564 Hz, 1 P, P trans to acetylide), 80.0 (s, with platinum satellites $J_{P-Pt} = 1547 \text{ Hz}$, 1 P, P trans to Ph).

Generation of (dippdmae)Pt(Ph)(C≡CCF₃) (6b). A 38 mg (0.068 mmol) sample of **3b** was dissolved in 0.6 mL of C₆D₆ and placed in a resealable NMR tube. The solution was irradiated for 10 days, and NMR spectra were recorded periodically. The Supporting Information shows typical data, showing the conversion of 3b into a new product assigned as $(dippdmae)Pt(Ph)(C \equiv CCF_3)$ (6b, $\sim 60\%$ after 4 days; $\sim 70\%$ after 10 days). For **6b**, ¹H NMR (C_6D_6): δ 7.643 (d, J = 7 Hz, $J_{\text{Pt-H}} = 66 \text{ Hz}, 2 \text{ H}_{\text{ortho}}), 7.091 \text{ (t, } J = 7 \text{ Hz}, 2 \text{ H}_{\text{meta}}), 6.947 \text{ (t, } J = 7 \text{ Hz})$ 7 Hz, 1 H_{para}), 3.575 (t, J=6 Hz, 2 H, CH₂), 2.385 (s, $J_{Pt-H}=18$ Hz, 6 H, NMe_2), 1.70 (m, 4 H, CH_2 +, $CHMe_2$), 0.67 (dd, J = 16, 8 Hz, 6 H, CH Me_2), 0.63 (dd, J = 16, 8 Hz, 6 H, CH Me_2). ³¹P{¹H} NMR (C₆D₆): δ 49.1 (s, $J_{Pl-P} = 2802$ Hz). ¹⁹F{¹H} NMR (C₆D₆): δ 4.356 (s, J_{Pt-F} = 155 Hz).

Acknowledgment is made to the U.S. Department of Energy, grant FG02-86ER13569, for their support of this work.

Supporting Information Available: ¹H and ³¹P NMR spectra for the photolyses of 1b, 2b, and 3b. Structural data for 1b, 1c, 2a, 2b, 2c, 3b, 3c, and 2D have been deposited with the Cambridge Crystallographic Data Centre, CCDC #732792-732799. This material is available free of charge via the Internet at http:// pubs.acs.org.