2.5.1

b. For every integer n, if n^3 is even, then n is even.

Proof. Assume that n is odd. That is n = 2k + 1, for some integer k.

$$n^{3} = (2k+1)^{3} = (4k^{2} + 4k + 1)(2k + 1)$$

$$= 8k^{3} + 8k^{2} + 2k + 4k^{2} + 4k + 1$$

$$= 8k^{3} + 12k^{2} + 4k + 1$$

$$= 2(4k^{3} + 6k^{2} + 2k) + 1$$

$$= 2j + 1 \text{ for } j = 4k^{3} + 6k^{2} + 2k$$

Therefore n^3 takes the form of an odd number. Therefore, through contrapositive, for every integer n, if n^3 is even, then n is even.

c. For every integer n, if 5n + 3 is even, then n is odd.

Proof. Assume that n is even. That is n = 2k, for some integer k.

$$5n + 3 = 5(2k) + 3 = 10k + 3$$

= $2(5k + 1) + 1$
= $2j + 1$ for $j = 5k + 1$

Therefore 5n+3 takes the form of an odd number. Therefore, through contrapositive, for every integer n, if 5n+3 is even, then n is odd.

2.5.2

a. If x and y are integers such that $3 \nmid xy$, then $3 \nmid x$.

Proof. Assume that $3 \nmid x$. That is, x = 3k, for some integer k. Let y be an integer.

$$x = 3k$$
$$xy = 3ky$$

$$3 \mid xy \equiv 3 \mid 3ky$$

Since 3 divides 3. Therefore, through contrapositive, if x and y are integer such that $3 \nmid xy$, then $3 \nmid x$

b. For any integers x, y, and z if $x \mid y$ and $x \nmid z$, then $x \nmid (y + z)$.

Proof. Let $x \mid (y+z)$. That is, y+z=kx, for some integer k. Additionally, let $x \mid y$. That is, y=jx, for some integer j.

$$y + z = jx + z$$

$$jx + z = kx$$
$$z = kx - jx = x(k - j)$$

$$\therefore x \mid z \equiv x \mid x(k-j)$$

Since $x \mid x(k-j)$, therefore $x \mid z$. Therefore, through contrapositive, for any integers x, y, and z if $x \mid y$ and $x \nmid z$, then $x \nmid (y+z)$.