

编译原理

Compilers

极夜酱

目录

1	有限	状态自动机	1
	1.1	字母表	1
	1.2	语言	4
	1.3	DFA	6
	1.4	NFA	9
	1.5	正则表达式	11
2	上下	文无关语言	14
	2.1	上下文无关文法	14
	2.2	CNF	18
	23	PDA	22

Chapter 1 有限状态自动机

1.1 字母表

1.1.1 字母表 (Alphabet)

字母表是一个非空的有限集合,一般用 Σ 表示,集合中的元素被称为符号/字符 (symbol)。

例如:

- $\Sigma = \{0,1\}$: 二进制数集合。
- $\Sigma = \{a, b, \dots, z\}$: 小写字母集合。
- $\Sigma = \{(,),[,],\{,\}\}$: 括号集合。

1.1.2 串 (String)

串是一个由字母表中的字符组成的有限序列。

例如:

- abc π bbb $\Sigma = \{a, b, \dots, z\}$ 上的串。
- (()) π (() \not $\Sigma = \{(,),[,],\{,\}\}$ 上的串。

空串

空串使用 ϵ 表示。

串的长度

- |0010| = 4
- |aa| = 2
- $|\epsilon| = 0$

前缀 (prefix)

- aa 是 aaabc 的前缀
- aaab 是 aaabc 的前缀
- aaabc 是 aaabc 的前缀

后缀 (suffix)

- bc 是 aaabc 的后缀
- abc 是 aaabc 的后缀
- aaabc 是 aaabc 的后缀

子串 (substring)

- ab 是 aaabc 的子串
- aaa 是 aaabc 的子串
- aaabc 是 aaabc 的子串

连接 (concatenation)

当 $\omega = abd$, $\alpha = ce$, 那么 $\omega \alpha = abdce$.

指数 (exponentiation)

当 $\omega = abd$, 那么 $\omega^3 = abdabdabd$, $\omega^0 = \epsilon$.

反转 (reversal)

当 $\omega = abd$, 那么 $\omega^R = dba$ 。

1.1.3 克林闭包 (Kleene Closure)

 Σ^k 用于表示所有在字母表 Σ 上的长度为 k 的串的集合。

例如,
$$\Sigma = \{a, b\}$$
, 那么 $\Sigma^2 = \{ab, ba, aa, bb\}$, $\Sigma^0 = \{\epsilon\}$ 。

克林闭包 Σ^* 用于表示所有在字母表 Σ 上能够组成的串的集合。

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots = \bigcup_{k>0} \Sigma^k$$
 (1.1)

正闭包 Σ^+ 则是在 Σ^* 中除了空串以外的所有串的集合。

$$\Sigma^{+} = \Sigma^{1} \cup \Sigma^{2} \cup \Sigma^{3} \cup \dots = \bigcup_{k>0} \Sigma^{k}$$
 (1.2)

1.2 语言

1.2.1 语言 (Language)

语言是一个字母表中所构成串的集合。

例如, $\Sigma = \{a, b, c, \cdots, z\}$,那么所有英语单词所构成的集合 L 就是字母表 Σ 上的语言。

假设 $A = \{good, bad\}$ 和 $B = \{boy, girl\}$ 是两个语言,语言之间可以进行以下操作。

并集 (union)

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$
 (1.3)

 $A \cup B = \{good, bad, boy, girl\}$

连接 (concatenation)

$$A \circ B = \{ xy \mid x \in A \text{ or } y \in B \}$$
 (1.4)

 $A \circ B = \{goodboy, goodgirl, badboy, badgirl\}$

闭包

$$A^* = \{x_1, x_2, \cdots, x_k \mid k \ge 0 \text{ and each } x_i \in A\}$$
 (1.5)

 $A^* = \{\epsilon, good, bad, goodgood, goodgood, goodgood, goodgood, goodgoodbad, \cdots\}$

语法和语言与自动机理论密切相关,它们是许多软件实现的基础,例如编译器/解释器、文本编辑器、文本搜索、系统验证等。

在自动机理论中,要处理的问题就是判断一个给定的串是否属于某个语言。

例如:

- 0*10*: 只包含一个 1 的串的集合。
- $\Sigma^*1\Sigma^*$: 至少有一个 1 的串的集合。
- $\Sigma^*001\Sigma^*$: 包含子串 001 的串的集合。
- $(\Sigma\Sigma)^*$: 长度为偶数的串的集合。
- $(\Sigma\Sigma\Sigma)^*$: 长度为 3 的倍数的串的集合。

1.3 DFA

1.3.1 DFA (Deterministic Finite Automata)

有限状态机(FSM, Finite State Machine)用于决定程序当前状态和状态间的切换,状态机最终只能指向一个结果。

图 1.1: 有限状态机

确定性有限状态自动机 DFA 由一个五元组 $(Q, \Sigma, \delta, q_0, F)$ 表示,其中

- Q: 状态集合
- Σ: 字母表
- δ: 状态转移函数 (transition function)
- q₀: 初始状态
- *F*: 终结状态集合

例如 DFA 可以用来识别空串或者以 0 结尾的串:

图 1.2: 识别空串或以 0 结尾的串的 DFA

其中 $Q = \{q_0, q_1\}, \; \Sigma = \{0, 1\}, \; q_0$ 为初始状态, $F = \{q_0\}, \; \delta$ 为

状态	输入	
八心	0	1
q_0	q_0	q_1
q_1	q_0	q_1

能够被有限自动机接受的语言被称为正则语言 (regular language)。

例如,构建一个能够识别所有包含子串 001 的串的 DFA:

图 1.3: 识别包含子串 001 的串的 DFA

1.3.2 最小化 DFA

有限状态机的最小化,即将一个有限状态机转换为一个更小的有限状态机,使得 状态的数目最少。

对于两个状态,如果它们之间的转移函数相同,则这两个状态可以合并为一个状态。

在这个 DFA 中,状态 b 和 h 是等价的,当接收 0 时都转移到状态 g,当接收 1 时都转移到状态 c。同时状态 a 和 e 也是等价的,状态 a 接收 0 转移到状态 b,状态 e 接收 0 转移到状态 h,状态 a 和 e 接收 1 时都转移到状态 f。

因此, 状态 b 和 h 以及状态 a 和 e 可以进行合并。

图 1.4: 最小化 DFA

1.4 NFA

1.4.1 NFA (Non-deterministic Finite Automata)

在 DFA 中,每个状态的下一个状态都是唯一确定的,但是非确定性有限状态自动机 NFA 可能会存在多个下一状态。

例如在这个 NFA 中,状态 q_0 存在两个接收 1 的箭头,而状态 q_1 没有接收 1 的箭头。

图 1.5: NFA

因此,在 NFA 中,每个状态允许对相同输入存在 0 个、1 个或多个转移的状态。如果存在一条能够到达终结状态的路径,那么就称当前的输入是被 NFA 接受的。

1.4.2 DFA 与 NFA 的转换

NFA 并不比 DFA 更加强大,理论证明 NFA 与 DFA 是等价的。

例如将一个 NFA 转换为 DFA:

构建一个与 NFA 等价的 DFA, 只需将 NFA 中转换到的状态集合作为 DFA 中的一个状态即可。

图 1.6: NFA 转换 DFA

1.4.3 ϵ -NFA

 ϵ -NFA 允许不消耗输入字符在状态之间转移。

例如以下 ϵ -NFA 能够接受小数,如 +3.14、-0.12、.71、2. 等。

图 1.7: 接受小数的 ϵ -NFA

1.5 正则表达式

1.5.1 编译器 (Compiler)

编译器是一种特殊的程序,可以将一种编程语言的源代码翻译成机器码、字节码或另一种编程语言。

编译器包含以下阶段:

- 1. 词法分析器 (lexical analyzer)
- 2. 语法分析器 (syntex analyzer)
- 3. 语义分析器 (semantic analyzer)
- 4. 中间代码生成器 (intermediate code generator)
- 5. 代码优化器 (code optimizer)
- 6. 代码生成器 (code generator)

1.5.2 词法分析

词法分析是编译器的第一步,它的主要任务是读取源代码,并生成能够被解析器 (parser) 进行语法分析的 tokens 和语法书 (syntex tree)。

例如 time = hour * 60 + minute, 经过词法分析后, 将会得到:

- id(time)
- assignment(=)
- id(hour)
- op(*)
- num(60)
- op(+)

• id(minute)

图 1.8: 语法树

1.5.3 正则表达式 (Regex, Regular Expression)

正则表达式描述了字符串匹配的模式(pattern),可以用来检查一个串是否包含某个子串、替换子串、或提取符合条件的子串。像 grep、vi、python、lex 等工具都支持正则表达式的使用。

例如用于匹配一个合法的变量名的正则表达式为 [a-zA-Z_][a-zA-Z0-9_]*。即变量名只能由字母或下划线开头,后面可以是任意多个字母、数字或下划线。

正则表达式支持以下操作:

• 连接: ab 或 a · b

• 选择: a | b

• 克林闭包: $a^* = \{\epsilon, a, aa, aaa, \cdots\}$

• 匹配至少 1 次: $a^+ = aa^*$

• 匹配 0 次或 1 次: $a? = a \mid \epsilon$

• 匹配任意字符: .

• 补集: (a | b)

其中克林闭包运算的优先级最高, 其次是连接, 最后是选择。

例如 $(a \mid b)^*aa(a \mid b)^*$ 用于匹配包含连续的 a 的串, $b^*(abb^*)^*(a \mid \epsilon)$ 用于匹配没有连续的 a 的串。

然而 $\{a^nb^n\mid n\geq 0\}$ 却不是正则语言,因为它无法用有限个状态来验证 a 和 b 的 出现次数是相等的。

Chapter 2 上下文无关语言

2.1 上下文无关文法

2.1.1 上下文无关文法 (CFG, Context Free Grammar)

CFG 能够描述某些具有递归结构的特征,它有足够强的语言表达力来表示大多数编程语言的语法。

CFG 由一个四元组 (V, T, P, S) 表示:

- V: 变元 (variable) /非终结符 (non-terminal) 集合,用大写字母表示。
- T: 终结符 (terminal) 集合,用小写字母表示。
- P: 产生式 (production) 集合。
- S: 开始符号。

一个文法由一组替换规则产生。产生式集合

$$A \to \alpha_1$$

$$A \to \alpha_2$$

. .

$$A \to \alpha_k$$

可以被写成 $A \to \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_k$ 的形式。

2.1.2 推导 (Derivation)

推导用于确定符合文法规则的串的集合,即用来确定一个语言。

推导从开始符号开始,通过产生式进行替换,得到最终结果。

例如 $E \to E + E \mid E * E \mid (E) \mid id$,由开始符号 E 可以推导出 (id + id) * id。

$$E \Rightarrow E * E$$

$$\Rightarrow (E) * E$$

$$\Rightarrow (E) * id$$

$$\Rightarrow (E + E) * id$$

$$\Rightarrow (E + id) * id$$

$$\Rightarrow (id + id) * id$$

解析树 (parse tree) 是描述推导的一种直观方法。

图 2.1: 分析树

如果只关注语义分析和代码生成所需的信息,可以将分析树简化为一棵抽象语法树 (abstract syntex tree)。

图 2.2: 抽象语法树

2.1.3 二义性 (Ambiguity)

在推导的过程中涉及到同级别表达式的替换,因此按顺序可以分为最左推导(left-most derivation) 和最右推导 (rightmost derivation)。

文法的二义性,是指对于符合文法规则的同一个句子,存在两种可能的分析树。

例如 $E \to E + E \mid E * E \mid (E) \mid x \mid y \mid z$,使用最左推导会对 x + y * z 产生两个不同的分析树。

产生二义性的原因在于运算符之间的优先级在文法中并没有体现。消除二义性的办法就是在文法中引入一个中间量。

$$\begin{split} E &\rightarrow E + T \mid T \\ T &\rightarrow T * F \mid F \\ F &\rightarrow id \mid (E) \end{split}$$

2.2 CNF

2.2.1 上下文无关语言

CFG 可以用来表示语言 $\{a^nb^n \mid n \geq 0\}$:

$$S \to aSb$$

$$S \to ab$$

例如根据 S 可以生成生成 aaabbb:

$$S \Rightarrow aSb$$

 $\Rightarrow aaSbb$

 $\Rightarrow aaabbb$

CFG 好还可以用于表示 a 和 b 出现相等次数的语言, 例如 babaab:

$$S \rightarrow aB \mid bA$$

$$A \rightarrow a \mid aS \mid bAA$$

$$B \rightarrow b \mid bS \mid aBB$$

设计 CFG 需要一定的创造力,大部分复杂的 CFG 可以由多个简单的 CFG 并集组成。

例如设计一个能够表示语言 $\{0^n1^n \mid n \ge 0\} \cup \{1^n0^n \mid n \ge 0\}$ 的 CFG。

这两个部分可以分别表示为:

$$S_1 \rightarrow 0S_11 \mid \epsilon$$

$$S_2 \rightarrow 1S_20 \mid \epsilon$$

只需合并这两个部分,即可得到最终的 CFG:

$$S \to S_1 \mid S_2$$

$$S_1 \to 0S_11 \mid \epsilon$$

$$S_2 \to 1S_20 \mid \epsilon$$

2.2.2 乔姆斯基范式 (CNF, Chomsky Normal Form)

CNF 在保留相同语言的同时对语法规则施加了一些限制,好处是可以避免解析过程中的歧义问题,另一个好处就是为解析的复杂度提供了一个上限。

CNF 规定每条 CFG 的每一条规则都必须满足:

- 1. $S \to \epsilon$: 开始变元 S 可以为空。
- 2. $A \rightarrow BC$: 单个变元可以推导出两个变元,其中 $B \setminus C$ 不能为开始变元。
- 3. $A \rightarrow a$: 单个变元可以被终结符替换。
- 4. 不能出现单个变元推导出单个变元。

将 CFG 转换为 CNF 的步骤为:

- 1. 添加新的开始变元:确保开始变元始终在规则的左侧。
- 2. 消除所有 ϵ 规则: 消除从变元到空字符的规则。
- 3. 消除所有 $A \rightarrow B$ 规则:消除单个变元到单个变元的规则。
- 4. 添加变元: 为了满足 $A \to BC$ 的规则, 需要将 $A \to BCD$ 替换为 $A \to ED$, 即添加变元 $E \to BC$ 。

例如将 CFG 转换为 CNF:

$$S \to ABA$$
$$A \to aA \mid \epsilon$$
$$B \to bB \mid \epsilon$$

消除所有 є 规则

将 $A \rightarrow \epsilon$ 的规则,替换到出现 A 的规则中:

$$S \to ABA \mid BA \mid AB \mid B$$

$$A \to aA \mid a$$

$$B \to bB \mid \epsilon$$

将 $B \to \epsilon$ 的规则,替换到出现 B 的规则中:

$$S \to ABA \mid BA \mid AB \mid B \mid AA \mid A$$

$$A \to aA \mid a$$

$$B \to bB \mid b$$

消除所有 $A \rightarrow B$ 规则

在 S 中出现了单个变元到单个变元的情况,将这些规则进一步替换:

$$S \to ABA \mid BA \mid AB \mid bB \mid b \mid AA \mid aA \mid a$$

$$A \to aA \mid a$$

$$B \to bB \mid b$$

目前, $S \to BA$ 、 $S \to AA$ 、 $S \to AB$ 、 $S \to a$ 、 $S \to b$ 、 $A \to a$ 、 $B \to b$ 这些规则已经满足了 CNF 的要求:

$$S \to ABA \mid BA \mid AB \mid bB \mid b \mid AA \mid aA \mid a$$

$$A \to aA \mid a$$

$$B \to bB \mid b$$

添加变元

为了消除 $A \rightarrow BCD$ 这种情况,需要添加新的变元进行替换。

假设 $X \to AB$:

$$S \to XA \mid BA \mid AB \mid bB \mid b \mid AA \mid aA \mid a$$

$$A \to aA \mid a$$

$$B \to bB \mid b$$

$$X \to AB$$

同时为了满足 CNF 规则中 $A \to BC$ 的要求,需要对如 $A \to aA$ 这样的规则进行替换。

假设 $A_1 \rightarrow a$ 、 $B_1 \rightarrow b$:

$$S \to XA \mid BA \mid AB \mid B_1B \mid b \mid AA \mid A_1A \mid a$$

$$A \to A_1A \mid a$$

$$B \to B_1B \mid b$$

$$X \to AB$$

$$A_1 \to a$$

$$B_1 \to b$$

这样就完成了 CFG 到 CNF 的转换, 语法中的每条规则都满足了 CNF 的要求。

2.3 PDA

2.3.1 下推自动机 (PDA, Pushdown Automata)

DFA 和 NFA 由于受限于存储空间的问题,不能识别类似于 $\{a^nb^n \mid n \geq 0\}$ 这种语言。PDA 通过一个栈 (stack) 解决了这个问题。PDA 与 CFG 的功能的等价的。

图 2.3: PDA

PDA 由一个六元组 $(Q, \Sigma, \Gamma, \delta, q_0, F)$ 表示:

• Q: 状态集合

Σ: 输入字母表

Γ: 栈字母表

• δ : 状态转移函数

• q₀: 初始状态

• F: 终结状态集合

例如状态转移函数 $\delta(q_1, a, b) = \{(q_2, \epsilon)\}$ 表示,在状态 q_1 时,如果输入字符为 a,并且栈顶元素为 b,那么就将 a 消耗掉,并将 b 出栈,进入状态 q_2 。在 PDA 中

可表示为 $a, b \rightarrow \epsilon$ 。

例如状态转移函数 $\delta(q_3,\epsilon,b)=\{(q_4,a),(q_5,b)\}$ 表示,在状态 q_3 时,如果输入字符为空,并且栈顶元素为 b,那么有两种选择:

- 1. 使用 a 代替栈顶元素 b, 并进入状态 q_4 。
- 2. 栈保持原样 (b) 为栈顶),并进入状态 q_5 。