



# SepNE: Bringing Separability to Network Embedding

Ziyao Li, Liang Zhang and Guojie Song

Presented by: Ziyao Li Jan. 2019



SepNE







## **Motivation**

The motivation of bringing up separability.



## What is Network Embedding?



**Network Embedding (NE):** Finding network data representations which concisely represent networks, in order to achieve efficiency in various downstream applications such as pattern discovery, analysis and prediction.



Network Embedding



## **Current Embedding Methods**

Traditional Methods: LLE[1]; Isomap[2]; Laplace Eigenmaps[3];

Random-Walk Based: DeepWalk[4]; node2vec[5];

Edge-Reconstruction Based: LINE[6];

Neural Network Based: GCN[7]; GraphSAGE[8].



Almost all current embedding algorithms learn representations for entire networks, even when only a small proportion of nodes are requested. This leads to:

- Vain efforts in embedding unrequested nodes.
- 2. A limitation over the maximum network scale that such methods can handle.



- An impossibility: it is impossible to directly solve the efficiency problem on super-scale networks, as the running time of algorithms inevitably grows linearly to problem scales.
- An observation: often, it is unnecessary to derive representations for all of the nodes in a network.
- An attempt: to learn representations for different subsets of nodes--very small compared to the collectivity--while preserving information of the entire network.





**Separability**: a separable algorithm divides the original problem into different self-standing sub-problems and separately solves each, and the solution to the sub-problems are directly usable answers instead of intermediate results.



## SepNE v.s. Inseparable algorithms





Very clumsy when handling superlarge networks.





Flexible, fast and parallelizable.





## **Separated Matrix Factorization**

Basic idea, approximation and optimization goal.



- Matrix Factorization (MF): finding two matrices W and C that both satisfy given constraints and minimize the residuals of reconstructing original matrix M.
- Denoted in formula:

$$min_{W.C} \| M - W^T C \|$$

MF based Network Embedding: Factorizing a somehow normalized proximity matrix to derive node representations.



#### **Local and Global Information**

- Local Information: the proximity within a given set of nodes.
- Global Information: the proximity between two given set of nodes.





- Landmark Information: the proximity between a given set of nodes and the selected landmarks.
- Why landmarks? To maintain comparability of representation vectors of different sets.



## From Graph to Matrix





| Landmarks            | Landmark Information |        |        |  |  |  |
|----------------------|----------------------|--------|--------|--|--|--|
| Landma               | Local                | Global | Global |  |  |  |
| Candmark Information | Global               | Local  | Global |  |  |  |
|                      | Global               | Global | Local  |  |  |  |

### **Preserving Different Information**

Local reconstructing:

$$Loss^{lc} = ||M_{ii} - W_i^T C_i||, i = 0, 1, \dots, s$$

Landmark reconstructing

$$Loss^{lm} = ||M_{i0} - W_i^T C_0|| + ||M_{0i} - W_0^T C_i||, i = 1, 2, \dots, s$$

Global reconstructing

$$Loss^{gb} = ||M_{i\bar{\iota}} - W_i^T C_{\bar{\iota}}|| + ||M_{\bar{\iota}i} - W_{\bar{\iota}}^T C_i||, i = 1, 2, \dots, s$$



## **Approximating Global Information via Landmarks**

#### A transformation:

$$\Phi = W_0; \ \Psi = C_0$$

$$W_i = \Phi A_i; C_i = \Psi B_i$$

#### Global approximation:

$$Loss^{gb} = \|M_{i\bar{\iota}} - W_{i}^{T} C_{\bar{\iota}}\| + \|M_{\bar{\iota}i} - W_{\bar{\iota}}^{T} C_{i}\|$$

$$= \|M_{i\bar{\iota}} - A_{i}^{T} \Phi^{T} \Psi B_{\bar{\iota}}\| + \|M_{\bar{\iota}i} - A_{\bar{\iota}}^{T} \Phi^{T} \Psi B_{i}\|$$

$$\approx \|M_{i\bar{\iota}} - A_{i}^{T} M_{0\bar{\iota}}\| + \|M_{\bar{\iota}i} - M_{\bar{\iota}0} B_{i}\|$$



## **Final Loss of SMF**



#### Global approximation:

$$Loss = Loss^{lc} + Loss^{lm} + \lambda Loss^{gl} + \eta(||A||_F^2 + ||B||_F^2),$$

where

$$Loss^{lc} = \frac{1}{2} \left\| M_{ii} - A_i^T \Phi^T \Psi B_i \right\|_F^2$$

$$Loss^{lm} = \frac{1}{2} (\|M_{i0} - A_i^T \Phi^T \Psi\|_F^2 + \|M_{0i} - \Phi^T \Psi B_i\|_F^2)$$

$$Loss^{gb} = \frac{1}{2} (\|M_{i\bar{\iota}} - A_i^T M_{0\bar{\iota}}\|_F^2 + \|M_{\bar{\iota}i} - M_{\bar{\iota}0} B_i\|_F^2)$$







Graph partitioning;

2. Landmark selecting;

3. SVD over landmark local information (derive  $\Phi, \Psi$ );  $\bot$ 

4. Optimizing SMF over different sets.

Preparation Stage

Optimization Stage



Structure-based setup: partitioning the graph according to network communities; Louvain[9] is used in the paper.

Random partition: randomly partition the network into subsets.

Request-based setup: only extract requested nodes as one or more sets.





GDS: Greedy Dominating Set approach, choosing in each step the node with highest degree which is un-dominated.



## **Optimization & Complexity**

Using an iterative optimization method:

$$A_i^{(t+1)} = \min_{A} Loss(A, B_i^{(t)})$$
$$B_i^{(t+1)} = \min_{B} Loss(A_i^{(t+1)}, B)$$

- Complexity: preparation  $O(n \log n + k^3)$ optimization -  $O(k \times (deg + iter \times k) \times n_i)$
- The optimization complexity is irrelevant to the network scale.





## **Experiments & Discussion**

Experimental results, analysis and discussion



| Algorithm                   | Running Time |
|-----------------------------|--------------|
| SepNE-IO(Interested Only)   | 6.2min       |
| SepNE-RP(Random Partition)  | 43.8min      |
| SepNE-LP(Louvain Partition) | 68.8min      |
| LINE(1st)                   | 138.1min     |
| DeepWalk                    | >24hrs       |

Running Time over Flickr Data (1.7M nodes, 70k requested).



SepNE shows much better speed than current embedding methods.



#### **Matrix Reconstruction**



Reconstruction loss of Nystrom[10], SVD and SepNE.



Compared with other matrix factorization methods (Nystrom), SepNE shows comparable reconstruction ability to SVD.



## **Accuracy – Document Datasets**

|           | Wiki   |        | Cora   |        | Citeseer |        |  |
|-----------|--------|--------|--------|--------|----------|--------|--|
| %train    | 10%    | 90%    | 10%    | 90%    | 10%      | 90%    |  |
| LINE(1st) | 0.4488 | 0.5937 | 0.4657 | 0.6009 | 0.3206   | 0.4259 |  |
| LINE(2nd) | 0.3298 | 0.4787 | 0.2637 | 0.3297 | 0.2221   | 0.2561 |  |
| DeepWalk  | 0.5737 | 0.6893 | 0.7509 | 0.8187 | 0.5086   | 0.5813 |  |
| SepNE     | 0.5764 | 0.6867 | 0.7365 | 0.822  | 0.5157   | 0.6072 |  |

Micro F1 over document Datasets.



SepNE shows competent performance over small datasets.



| %train    | 1%     | 3%     | 5%     | 10%    | 20%    | 30%    | 50%    | 90%    |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|
| LINE(1st) | 0.3683 | 0.4118 | 0.4165 | 0.4219 | 0.4270 | 0.4273 | 0.4296 | 0.4274 |
| LINE(2nd) | 0.3450 | 0.3824 | 0.3955 | 0.3973 | 0.4032 | 0.4056 | 0.4069 | 0.4068 |
| DeepWalk  | 0.4072 | 0.4353 | 0.4433 | 0.4481 | 0.4518 | 0.4564 | 0.4585 | 0.4592 |
| SepNE-IO  | 0.4065 | 0.4341 | 0.4477 | 0.4562 | 0.4582 | 0.4607 | 0.4630 | 0.4622 |
| SepNE-RP  | 0.4061 | 0.4388 | 0.4502 | 0.4601 | 0.4628 | 0.4634 | 0.4636 | 0.4658 |
| SepNE-LP  | 0.4269 | 0.4468 | 0.4562 | 0.4623 | 0.4645 | 0.4656 | 0.4674 | 0.4677 |

Micro F1 over Flickr Datasets.



On Flickr, SepNE even shows significantly better performance than DeepWalk and LINE.



| %train    | 1%     | 3%     | 5%     | 10%    | 20%    | 30%    | 50%    | 90%    |
|-----------|--------|--------|--------|--------|--------|--------|--------|--------|
| LINE(1st) | 0.1031 | 0.2322 | 0.2745 | 0.3141 | 0.3410 | 0.3520 | 0.3594 | 0.3673 |
| LINE(2nd) | 0.0782 | 0.1839 | 0.2158 | 0.2643 | 0.2987 | 0.3159 | 0.3280 | 0.3350 |
| DeepWalk  | 0.2037 | 0.3397 | 0.3739 | 0.4105 | 0.4355 | 0.4438 | 0.4501 | 0.4556 |
| SepNE-IO  | 0.2035 | 0.3325 | 0.3574 | 0.3885 | 0.4041 | 0.4129 | 0.4170 | 0.4216 |
| SepNE-RP  | 0.2256 | 0.3355 | 0.3633 | 0.3920 | 0.4115 | 0.4157 | 0.4214 | 0.4273 |
| SepNE-LP  | 0.2253 | 0.3361 | 0.3620 | 0.3882 | 0.4118 | 0.4170 | 0.4218 | 0.4277 |

Micro F1 over Flickr Datasets.



On Youtube, SepNE also shows competent accuracy.



#### **Discussion: Parameter λ**



Larger  $\lambda$  leads to better performance, converging with  $\lambda > 100$ .

The higher performances of larger λs, particularly compared with λ=0, show the effectiveness of the elaborated global loss.



- With comparable accuracy, SepNE significantly outperforms state-of-the-art baselines in running times and flexibility.
- SMF reduced the complexity of MF from  $O(n^3)$  to  $O(n \log n)$ . Should there be a theoretical proof of a lower bound over the loss in matrix reconstruction, SMF can be generated to all MF-based algorithms.



#### **Possible Future Work**

More efficiently exploring higher-order proximities in SepNE;

Adapting SepNE to dynamic network scenarios;

Finding a theoretical proof of a lower bound over the loss of SMF.

## THANK YOU



- [1] Roweis, S., and Saul, L. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 2323–2326.
- [2] Tenenbaum, J. B. et al. 2000. A global geometric framework for nonlinear dimensionality reduction. Science 2319–2323.
- [3] Belkin, M., and Niyogi, P. 2002. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in NIPS 14. 585–591.



- [4] Perozzi, B. et al. 2014. Deepwalk: online learning of social representations. In Proceedings of KDD-14, 701–710.
- [5] Grover, A., and Leskovec, J. 2016. node2vec: Scalable feature learning for networks. In Proceedings of KDD-16, 855–864.
- [6] Tang, J. et al. 2015. Line: large-scale information network embedding. In Proceedings of WWW-15, 1067–1077.
- [7] Kipf, T. N., and Welling, M. 2016. Semi-supervised classification with graph convolutional networks. CoRR abs/1609.02907.



- [8] Hamilton, W. et al. 2017. Inductive representation learning on large graphs. In Advances in NIPS 30. 1024–1034.
- [9] Blondel, V. D. et al. 2008. Fast unfolding of communities in large networks. *Journal of Statistical Mechanics: Theory and Experiment* 2008(10):P10008.
- [10] Drineas, P., and Mahoney, M. 2005. On the nystrm method for approximating a gram matrix for improved kernel-based learning. *Journal of Machine Learning Research* 6:2153–2175.