ME9926/ME9926-G

Dual N-Channel 20V (D-S) MOSFET

GENERAL DESCRIPTION

The ME9926 is the Dual N-Channel logic enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology. This high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and other battery powered circuits where switching and low in-line power loss are needed in a very small outline surface mount package.

FEATURES

- RDS(ON) \leq 29m Ω @VGS=4.5V
- RDS(ON) \leq 42m Ω @VGS=2.5V
- Super high density cell design for extremely low RDS(ON)
- Exceptional on-resistance and maximum DC current capability

APPLICATIONS

- Power Management in Note book
- Portable Equipment
- Battery Powered System
- Load Switch
- DSC

PIN CONFIGURATION

ME9926-G (Green product-Halogen free)

Ordering Information: ME9926 (Pb-free)

N-Channel MOSFET

N-Channel MOSFET

01

Absolute Maximum Ratings (TA=25°C Unless Otherwise Noted)

Parameter		Symbol	109	sec	Stead	yState	Unit
Drain-Source Voltage		VDSS	20			V	
Gate-Source Voltage		Vgss	±12			V	
Continuous Drain Current*	Ta=25°C	lo	6	6.6		.2	
	Ta=70°C		5	.2	4.2		Α
Pulsed Drain Current		Ідм	30			Α	
Maximum Power Dissipation*	Ta=25°C	D-	2.0		1.25		10/
	Ta=70°C	Po	1.2		0	.8	W
Operating Junction Temperature		TJ	-55 to 150			$^{\circ}\!\mathbb{C}$	
Thermal Resistance-Junction to Ambient*		Reja	Тур	45	Тур	80	°C AV
			Max	62.5	Max	100	°C/W

^{*} The device mounted on 1in² FR4 board with 2 oz copper

ME9926/ME9926-G

Dual N-Channel 20V (D-S) MOSFET

Electrical Characteristics (TA = 25°C Unless Otherwise Specified)

Symbol	Parameter	Limit	Min	Тур	Max	Unit	
STATIC							
BVDSS	Drain-Source Breakdown Voltage	Vgs=0, ID=250 μ A	20			V	
VGS(th)	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250 μ A	0.4		0.9	V	
Igss	Gate Body Leakage	V _{DS} =0V, V _{GS} =±12V			±100	nA	
IDSS	Zero Gate Voltage Drain Current	V _{DS} =20V, V _{GS} =0V			1	μ A	
RDS(ON)	Drain-Source On-Resistance	Vgs=4.5V, ID= 6.0A		22	29	mΩ	
	Drain-Source On-Resistance	Vgs=2.5V, ID= 5.2A		28	42		
VsD	Diode Forward Voltage	Is=1.7A, VGS=0V		0.72	1.2	V	
DYNAMIC							
Qg	Total Gate Charge			8		nC	
Qgs	Gate-Source Charge	V _{DS} =10V, V _{GS} =4.5V, I _D =6.0A		2.1			
Qgd	Gate-Drain Charge			2.3			
t d(on)	Turn-On Delay Time			14		- ns	
tr	Turn-On Rise Time	VDD=10V,ID=1.0A, VGEN=4.5V		17			
t d(off)	Turn-Off Delay Time	$R_G=6\Omega$		43			
t f	Turn-Off Fall Time			5			
Ciss	Input capacitance			550		pF	
Coss	Output Capacitance	V _{DS} =15V, V _{GS} =0V, f=1.0MHz		130			
Crss	Reverse Transfer Capacitance			40			

Notes: a. Pulse test: pulse width \leq 300us, duty cycle \leq 2%, Guaranteed by design, not subject to production testing.

b. Matsuki reserves the right to improve product design, functions and reliability without notice.

<u> Matsuki Electric</u>

Dual N-Channel 20V (D-S) MOSFET

Typical Characteristics (TJ =25°C Noted)

<u>Matsuki Electric</u>

Dual N-Channel 20V (D-S) MOSFET

Typical Characteristics (TJ =25°C Noted)

Maximum Forward Biased Safe Operating Area 100 R DS(ON) Ilimited 10 100 R DS(ON) Ilimited 100 R DS(ON) Ilimited 100 R DS(ON) Ilimited 100 R DS(ON) Ilimited 100 Ilimited Ilim

Dual N-Channel 20V (D-S) MOSFET

SOP-8 Package Outline

DIM	MILLIMETERS (mm)			
DIIVI	MIN	MAX		
Α	1.35	1.75		
A1	0.10	0.25		
В	0.35	0.49		
С	0.18	0.25		
D	4.80	5.00		
E	3.80	4.00		
е	1.27 BSC			
Н	5.80	6.20		
L	0.40	1.25		
θ	0°	7 °		

Note: 1. Refer to JEDEC MS-012AA.

2. Dimension "D" does not include mold flash, protrusions or gate burrs . Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per side.