

Solución

$$\int \frac{x}{1 - x^2} dx = -\frac{1}{2} \ln \left| 1 - x^2 \right| + C$$

Pasos

$$\int \frac{x}{1-x^2} dx$$

Aplicar integración por sustitución

Mostrar pasos 🔰

$$=\int -\frac{1}{2u}du$$

Sacar la constante: $\int a \cdot f(x) dx = a \cdot \int f(x) dx$

$$= -\frac{1}{2} \cdot \int \frac{1}{u} du$$

Aplicar la regla de integración: $\int \frac{1}{u} du = \ln(|u|)$

$$=-\frac{1}{2}\ln|u|$$

Sustituir en la ecuación $u = 1 - x^2$

$$= -\frac{1}{2} \ln \left| 1 - x^2 \right|$$

Agregar una constante a la solución

$$= -\frac{1}{2}\ln\left|1 - x^2\right| + C$$

This website uses cookies to ensure you get the best experience.
By using this website, you agree to our Cookie Policy.
Learn more

Accept

Gráfica

This website uses cookies to ensure you get the best experience.

By using this website, you agree to our Cookie Policy.

Learn more

Accept