7 Kvantily

Teorie: Kvantily náhodné veličiny

Pro náhodnou veličinu X s distribuční funkcí je **kvantilová funkce** dána vztahem

$$F^{-1}(u) = \inf \{ x \in \mathbf{R} : F(x) \ge u \}, \ 0 < u < 1.$$

Pro $0 < \alpha < 1$ se hodnota $F^{-1}(\alpha)$ nazývá α -kvantil.

Pokud je distribuční funkce spojitá, pak kvantilová funkce je totožná s obyčejnou inverzní funkcí k funkci F.

Kvantily normovaného normálního rozdělení značíme u_{α} a platí, že $u_{\alpha} = -u_{1-\alpha}$. Pro kvantily normálního a normálního normovaného rozdělení platí: $x_{\alpha} = u_{\alpha} \cdot \sigma + \mu$.

Pomocí kvantilové funkce lze vyjádřit i často používané **kritické hodnoty**, např. kritická hodnota pro normované normální rozdělení je dána vztahem $z(\alpha) = \Phi^{-1}(1-\alpha)$, kde Φ je distribuční funkce normovaného normálního rozdělení.

(7.1) Určete 10% a 95% kvantil následujících náhodných veličin

(a)
$$X \sim R(-0, 5; 0, 5)$$

$$[x_{10\%} = -0.4; x_{95\%} = 0.45]$$

(b)
$$X \sim Exp(A = 3; \delta = 5)$$

$$[x_{10\%} = 3,53; x_{95\%} = 17,98]$$

(c)
$$X \sim N(\mu = -10; \sigma^2 = 25)$$

$$[x_{10\%} = -16, 41; x_{95\%} = -1, 78]$$

(d) X daná funkcí hustoty

$$f(x) = \begin{cases} 1 - |x| & pro \quad x \in (-1, 1) \\ 0 & jinde \end{cases}$$

[
$$x_{10\%} = -0.55$$
; $x_{95\%} = 0.68$]

(e) X daná distribuční funkcí

$$F(x) = \begin{cases} 0 & pro \quad x \in (-\infty, 0] \\ \frac{x^3}{8} & pro \quad x \in (0, 2) \\ 1 & pro \quad x \in [2, \infty) \end{cases}$$

$$[x_{10\%} = 0.93; x_{95\%} = 1.97]$$

(7.2) Předpokládejte, že veličina $X \sim N(\mu; \sigma^2)$. Určete parametry μ, σ^2 , pokud víte

(a)
$$P(X \geq 3) = 0.4$$
 a $P(X \leq 2) = 0.3$

$$[\mu = 2, 7; \sigma^2 = 1, 6]$$

(b)
$$P(X \ge -2) = 0.6$$
 a $P(X \ge 2) = 0.1$

$$[\mu = -1, 3; \sigma^2 = 6, 8]$$

(c)
$$P(X \le 10) = 0.4$$
 a $P(X \ge 15) = 0.7$

[neexistuje]

(d)
$$x_{0.25} = 3$$
 a $x_{0.75} = 7$

$$[\mu = 5; \sigma^2 = 8, 7]$$

(e)
$$x_{0.20} = -5$$
 a $x_{0.90} = 10$

$$[\mu = 0, 9; \sigma^2 = 50]$$

(7.3) Předpokládejte, že veličina $X \sim R(a;b)$. Určete parametry a,b, pokud víte

(a)
$$P(X \ge 5) = 0.2$$
 a $P(X \le 2) = 0.3$

$$[a = 0, 2; b = 6, 2]$$

(b)
$$x_{0.20} = -11$$
 a $x_{0.90} = 10$

$$[a = -17; b = 13]$$

(7.4) Předpokládejte, že veličina $X \sim Exp(A; \delta)$. Určete parametry A, δ , pokud víte

(a)
$$P(X \ge 3) = 0.5$$
 a $P(X \le 2) = 0.25$

$$[A = 1, 3; \delta = 2, 5]$$

(b)
$$x_{0.10} = 5$$
 a $x_{0.90} = 10$

$$[A = 4, 8; \delta = 2, 3]$$