Prepas π -internationales_Cycle ingénieur_ Février 2021

Première Année Cycle Ingenieur_Epreuve d'Algèbre

Durée: 2 heures

Exercice 1 (8 points). Dans \mathbb{R} on considère les opérations suivantes:

$$x \oplus y = x + y - 2$$
, $x \otimes y = xy - 2x - 2y + 6$

- (1) Montrer que (\mathbb{R}, \oplus) est un groupe abelien (On précisera l'élément neutre e)
- (2) Montrer que \otimes est associative, commutative et admet un élément neutre e'.
- (3) Soient x, y et z trois réels, comparer $x \otimes (y \oplus z)$ et $(x \otimes y) \oplus (x \otimes z)$. Que peut-on dire du triplet $(\mathbb{R}, \oplus, \otimes)$?
- (4) Montrer que l'anneau $(\mathbb{R}, \oplus, \otimes)$ est intègre.
- (5) Déterminer les éléments inversibles de $(\mathbb{R}, \oplus, \otimes)$. Le triplet $(\mathbb{R}, \oplus, \otimes)$ est-il un corps? justifier votre réponse

Exercice 2. (5 points). Dans le groupe (S_9, \circ) on considère la permutation

- (1) Déterminer les orbites de σ . Déduire sa signature.
- (2) Ecrire σ en produit de cycles, et en déduire une écriture en produit de transpositions
- (3) Quel est l'ordre de σ ? Déterminer σ^{2021} .

Exercice 3. (4 points). Dans l'espace vectoriel réel \mathbb{R}^3 , on considère les vecteurs u = (1, -1, 2), v = (2, 1, 3)

- (1) Ecrire le vecteur a = (3, 3, 4) comme combinaison linéaire des vecteurs u et v.
- (2) On considère le vecteur b = (x, y, z). Trouver une relation entre x, y et z pour que a s'écrive comme combinaison linéaire des vecteurs u et v.
- (3) On considère le vecteur w = (3, 1, 5). Montrer que (u, v, w) est une base de \mathbb{R}^3 .
- (4) Déterminer les coordonnées du vecteur c = (1, 1, 2) dans la base (u, v, w).

Exercice 4. (3 points). On considère l'ensemble $F = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y - z = 0\}$ et G_{α} le sous-espace vectoriel engendré par $e_1 = (1, \alpha, 2)$ où α désigne un réel fixé.

- (1) Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 .
- (2) Déterminer une base et la dimension du sous-espace vectoriel F.
- (3) Déterminer suivant les valeurs de α la dimension de $F \cap G_{\alpha}$.