Data Wrangling

Wrangling Munging Janitor Work Manipulation Transformation

50-80% of your time?

Two goals

- Make data suitable to use with a particular piece of software
- Reveal information

Data sets come in many formats

...but R prefers just one.

EDAWR

An R package with all of the data sets that we will use today.

storms

storm wind pressure date Alberto 110 2000-08-12 1007 Alex 1009 1998-07-30 45 Allison 1005 1995-06-04 65 1997-07-01 1013 Ana 40 Arlene 1010 1999-06-13 50 Arthur 45 1010 1996-06-21

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

storms

wind pressure date 110 1007 2000-08-12 1009 1998-07-30 45 1005 1995-06-04 65 1013 1997-07-01 40 1010 1999-06-13 50 45 1010 1996-06-21

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

pollution

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

Storm name

storms

strym wind pressure date Alberto 1 0 1007 2000-08-12 Alex 45 1009 1998-07-30 Allison 65 1005 1995-06-04 Ala 40 1013 1997-07-01 Arlene 50 1010 1999-06-13 Alvur 40 1010 1996-06-21

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

- Storm name
- Wind Speed (mph)

storms

storm	wind	pressure	date
Alberto	10	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Alia	40	1013	1997-07-01
Arlane	5 D	1010	1999-06-13
Arwur	*	10.0	1996-06-21

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

- Storm name
- Wind Speed (mph)
- Air Pressure

storms

sterm wind pressure date Alberto 1 0 1007 2000-08-12 Alex 45 1009 1998-07-30 Allison 65 1005 1995-06-04 Ala 40 1013 1997-07-01 Arlane 50 1010 1999-06-13 Alvur Alvur 100 1996-6-21

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

storms

sterm wind pressure date Alberto 1 0 1007 2000-08-12 Alex 45 1009 1998-07-30 Allison 65 1005 1995-06-04 Ala 40 1013 1997-07-01 Arlane 50 1010 1999-06-13 Alvur Alvur 100 1996-6-21

cases

Country	2011	2012	2013
FR	7000	6900	7000
DΞ	5800	6000	6200
	15000	14000	13000

pollution

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

Country

storms

storm wind pressure date Alberto 1 0 1007 2000-08-12 Alex 45 1009 1998-07-30 Allison 65 1005 1995-06-04 Ala 40 1013 1997-07-01 Arlane 50 1010 1999-06-13 Alvaur 100 1996-06-21

cases

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

- Country
- Year

storms

storm wind pressure date Alberto 1 0 1007 2000-08-12 Alex 45 1009 1998-07-30 Allison 65 1005 1995-06-04 Ana 40 1013 1997-07-01 Arlane 50 1010 1999-06-13 Alvaur 40 1000 1996-06-21

cases

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

- Country
- Year
- Count

storms

storm wind pressure date Alberto 1 0 1007 2000-08-12 Alex 45 1009 1998-07-30 Allison 65 1005 1995-06-04 Ana 40 1013 1997-07-01 Arione 50 1010 1999-06-13 Anom 43 100 1996-36-21

cases

pollution

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
Lordon	large	22
Lordon	small	16
Be ing	large	121
Being	small	56

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

- Country
- Year
- Count

• City

storms

storm	wind	pressure	dzte
Alberto	10	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Alia	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Artur	*	10.0	1996 6-21

cases

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
Lordon	large	> 22
Lordon	small	16
Be ing	large	121
Beling	small	56

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

- Country
- Year
- Count

- City
- Amount of large particles

storms

storm	wind	pressure	dzte
Alberto	10	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Alia	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Artur	*	10.0	1996 6-21

cases

pollution

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
Lordon	large	22
Lordon	small	16
Be ing	large	121
Bering	small	56

- Storm name
- Wind Speed (mph)
- Air Pressure
- Date

- Country
- Year
- Count

- City
- Amount of large particles
- Amount of small particles

© 2014 RStudio, Inc. All rights reserved.

storms

storm wind pressure date Alberto 1 0 1007 2000-08-12 Alex 45 1009 1998-07-30 Allison 65 1005 1995-06-04 Ala 40 1013 1997-07-01 Arlane 50 1010 1999-06-13 Alvaur 43 100 1996-06-21

cases

pollution

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
Lordon	large	22
Lordon	small	16
Be ing	large	121
Beving	small	56

storms\$storm
storms\$wind
storms\$pressure
storms\$date

cases\$country
names(cases)[-1]
unlist(cases[1:3, 2:4])

pollution\$city[1,3,5]
pollution\$amount[1,3,5]
pollution\$amount[2,4,6]

ratio = pressure wind

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storms\$pressure / storms\$wind

950		110	8.6
1003	/	45	22.3
987	/	65	15.2
1004		40	25.1
1006		50	20.1
1000	/	45	22.2

Tidy data

- Each variable is saved in its own column.
- Each **observation** is saved in its own **row**.
- Each "type" of observation stored in a **single table** (here, storms).

Recap: Tidy data

123

Variables in columns, observations in rows, each type in a table

Easy to access variables

Automatically preserves observations

tidyr

tidyr

A package that reshapes the layout of tables.

Two main functions: gather() and spread()

```
# install.packages("tidyr")
```

library(tidyr)

?gather

?spread

Your Turn

Imagine how this data would look if it were tidy with three variables: *country, year, n*

cases

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

FR 2011 7000 DE 2011 5800	Country	Year	n
DE 2011 5800	FR	2011	7000
	DE	2011	5800

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Countr	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country FR DE US

key (former column names)

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

key value (former cells)

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Collapses multiple columns into two columns:

- 1. a key column that contains the former column names
- 2. a value column that contains the former column cells

```
gather(cases, "year", "n", 2:4)
```

Collapses multiple columns into two columns:

- 1. a key column that contains the former column names
- 2. a value column that contains the former column cells

data frame to reshape

Collapses multiple columns into two columns:

- 1. a key column that contains the former column names
- 2. a value column that contains the former column cells

```
gather(cases, "year", "n", 2:4)
```

data frame to reshape name of the new key column (a character string)

Collapses multiple columns into two columns:

- 1. a key column that contains the former column names
- 2. a value column that contains the former column cells

Collapses multiple columns into two columns:

- 1. a key column that contains the former column names
- 2. a value column that contains the former column cells


```
##
                                             country year
                                                                n
     country
              2011
                    2012
                          2013
##
                                       ## 1
                                                   FR 2011
                                                             7000
## 1
              7000
                          7000
          FR
                    6900
                                       ## 2
                                                   DE 2011
                                                             5800
          DE
              5800
                    6000
                          6200
          US 15000 14000 13000
                                       ## 3
                                                   US 2011 15000
                                                   FR 2012
                                                             6900
                                       ## 4
                                       ## 5
                                                   DE 2012
                                                             6000
                                       ## 6
                                                   US 2012 14000
                                                   FR 2013
                                                             7000
                                       ## 7
                                                             6200
                                       ## 8
                                                   DE 2013
                                                   US 2013 13000
                                       ## 9
```

gather(cases, "year", "n", 2:4)

Your Turn

Imagine how the pollution data set would look tidy with three variables: *city, large, small* pollution

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

сŻУ	particle size	amount (µg/m³)
New York	large	> 23 \
New York	small	14
Lordon	large	> 22
Lordon	small	16
Beling	large	121
Bering	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

key (new column names)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

key value (new cells)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

Generates multiple columns from two columns:

- 1. each unique value in the key column becomes a column name
- 2. each value in the value column becomes a cell in the new columns

spread(pollution, size, amount)

Generates multiple columns from two columns:

- 1. each unique value in the key column becomes a column name
- 2. each value in the value column becomes a cell in the new columns

spread(pollution, size, amount)

data frame to reshape

Generates multiple columns from two columns:

- 1. each unique value in the key column becomes a column name
- 2. each value in the value column becomes a cell in the new columns

Generates multiple columns from two columns:

- 1. each unique value in the key column becomes a column name
- 2. each value in the value column becomes a cell in the new columns

56

16

14


```
city size amount
                                           city large small
##
                                   ##
  1 New York large
                      23
                                        Beijing
                                   ## 1
                                                  121
                      14
  2 New York small
                                        London
                                                   22
    London large
                  22
                                   ## 3 New York
                                                   23
    London small
                      16
## 4
## 5 Beijing large 121
    Beijing small
## 6
                      56
```

spread(pollution, size, amount)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

unite() and separate()

There are three more variables hidden in storms:

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

- Year
- Month
- Day

separate()

Separate splits a column by a character string separator.

separate(storms, date, c("year", "month", "day"), sep = "-")

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storms2

storm	wind	pressure	year	month	day
Alberto	110	1007	2000	08	12
Alex	45	1009	1998	07	30
Allison	65	1005	1995	06	04
Ana	40	1013	1997	07	1
Arlene	50	1010	1999	06	13
Arthur	45	1010	1996	06	21

© 2014 RStudio, Inc. All rights reserved.

unite()

Unite unites columns into a single column.

unite(storms2, "date", year, month, day, sep = "-")

storms2

storm	wind	pressure	year	month	day
Alberto	110	1007	2000	80	12
Alex	45	1009	1998	07	30
Allison	65	1005	1995	06	04
Ana	40	1013	1997	07	1
Arlene	50	1010	1999	06	13
Arthur	45	1010	1996	06	21

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

© 2014 RStudio, Inc. All rights reserved.

Recap: tidyr

A package that reshapes the layout of data sets.

Make observations from variables with gather()

Make variables from observations with spread()

Split and merge columns with unite() and separate()

Data sets contain more information than they display

dplyr

A package that helps transform tabular data.

```
# install.packages("dplyr")
```

library(dplyr)

?select ?mutate

?filter ?summarise

?arrange ?group_by

nycflights13

Data sets related to flights that departed from NYC in 2013

```
# install.packages("nycflights13")
```

library(nycflights13)

?airlines ?planes

?airports ?weather

?flights

Ways to access information

Extract existing variables.

select()

Extract existing observations.

filter()

Derive new variables (from existing variables)

mutate()

Change the unit of analysis

summarise()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	pressure
Alberto	1007
Alex	1009
Allison	1005
Ana	1013
Arlene	1010
Arthur	1010

select(storms, storm, pressure)

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

wind	pressure	date
110	1007	2000-08-12
45	1009	1998-07-30
65	1005	1995-06-04
40	1013	1997-07-01
50	1010	1999-06-13
45	1010	1996-06-21

select(storms, -storm)

see ?select for more

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

wind	pressure	date
110	1007	2000-08-12
45	1009	1998-07-30
65	1005	1995-06-04
40	1013	1997-07-01
50	1010	1999-06-13
45	1010	1996-06-21

select(storms, wind:date)

see ?select for more

Useful select functions

* Blue functions come in dplyr

-	Select everything but
:	Select range
contains()	Select columns whose name contains a character string
ends_with()	Select columns whose name ends with a string
everything()	Select every column
matches()	Select columns whose name matches a regular expression
num_range()	Select columns named x1, x2, x3, x4, x5
one_of()	Select columns whose names are in a group of names
starts_with()	Select columns whose name starts with a character string

filter()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04
Arlene	50	1010	1999-06-13

filter(storms, wind >= 50)

filter()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04

logical tests in R

?Comparison

<	Less than
>	Greater than
==	Equal to
<=	Less than or equal to
>=	Greater than or equal to
!=	Not equal to
%in%	Group membership
is.na	Is NA
!is.na	Is not NA

?base::Logic

&	boolean and
	boolean or
xor	exactly or
!	not
any	any true
all	all true

mutate()

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date	ratio
Alberto	110	1007	2000-08-12	9.15
Alex	45	1009	1998-07-30	22.42
Allison	65	1005	1995-06-04	15.46
Ana	40	1013	1997-07-01	25.32
Arlene	50	1010	1999-06-13	20.20
Arthur	45	1010	1996-06-21	22.44

mutate(storms, ratio = pressure / wind)

mutate()

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date	ratio	inverse
Alberto	110	1007	2000-08-12	9.15	0.11
Alex	45	1009	1998-07-30	22.42	0.04
Allison	65	1005	1995-06-04	15.46	0.06
Ana	40	1013	1997-07-01	25.32	0.04
Arlene	50	1010	1999-06-13	20.20	0.05
Arthur	45	1010	1996-06-21	22.44	0.04

mutate(storms, ratio = pressure / wind, inverse = ratio^-1)

Useful mutate functions

* All take a vector of values and return a vector of values

** Blue functions come in dplyr

pmin(), pmax()	Element-wise min and max
cummin(), cummax()	Cumulative min and max
cumsum(), cumprod()	Cumulative sum and product
between()	Are values between a and b?
cume_dist()	Cumulative distribution of values
cumall(), cumany()	Cumulative all and any
cummean()	Cumulative mean
lead(), lag()	Copy with values one position
ntile()	Bin vector into n buckets
<pre>dense_rank(), min_rank(), percent_rank(), row_number()</pre>	Various ranking methods

"Window" functions

* All take a vector of values and return a vector of values

pmin(), pmax() cummin(), cummax() cumsum(), cumprod() between() 2 cume_dist() 3 cumall(), cumany() cumsum() 10 4 cummean() 15 5 lead(), lag() 21 6 ntile() dense_rank(), min_rank(), percent_rank(), row_number()

summarise()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

median	variance
22.5	1731.6

pollution %>% summarise(median = median(amount), variance = var(amount))

summarise()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

mean	sum	n
42	252	6

pollution %>% summarise(mean = mean(amount), sum = sum(amount), n = n())

Useful summary functions

* All take a vector of values and return a single value

^{**} Blue functions come in dplyr

min(), max()	Minimum and maximum values
mean()	Mean value
median()	Median value
sum()	Sum of values
var, sd()	Variance and standard deviation of a vector
first()	First value in a vector
last()	Last value in a vector
nth()	Nth value in a vector
n()	The number of values in a vector
n_distinct()	The number of distinct values in a vector

"Summary" functions

* All take a vector of values and return a single value

© 2014 RStudio, Inc. All rights reserved.

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Ana	40	1013	1997-07-01
Alex	45	1009	1998-07-30
Arthur	45	1010	1996-06-21
Arlene	50	1010	1999-06-13
Allison	65	1005	1995-06-04
Alberto	110	1007	2000-08-12

arrange(storms, wind)

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Ana	40	1013	1997-07-01
Alex	45	1009	1998-07-30
Arthur	45	1010	1996-06-21
Arlene	50	1010	1999-06-13
Allison	65	1005	1995-06-04
Alberto	110	1007	2000-08-12

arrange(storms, wind)

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21
Alex	45	1009	1998-07-30
Ana	40	1013	1997-07-01

arrange(storms, desc(wind))

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Ana	40	1013	1997-07-01
Alex	45	1009	1998-07-30
Arthur	45	1010	1996-06-21
Arlene	50	1010	1999-06-13
Allison	65	1005	1995-06-04
Alberto	110	1007	2000-08-12

arrange(storms, wind)

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Ana	40	1013	1997-07-01
Arthur	45	1010	1996-06-21
Alex	45	1009	1998-07-30
Arlene	50	1010	1999-06-13
Allison	65	1005	1995-06-04
Alberto	110	1007	2000-08-12

arrange(storms, wind, date)

The pipe 0/0>0/0

library(dplyr)

select(tb, child:elderly)

tb %>% select(child:elderly)

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	pressure
Alberto	1007
Alex	1009
Allison	1005
Ana	1013
Arlene	1010
Arthur	1010

select(storms, storm, pressure)

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	pressure
Alberto	1007
Alex	1009
Allison	1005
Ana	1013
Arlene	1010
Arthur	1010

storms %>% select(storm, pressure)

filter()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04
Arlene	50	1010	1999-06-13

filter(storms, wind >= 50)

filter()

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Allison	65	1005	1995-06-04
Arlene	50	1010	1999-06-13

storms %>% filter(wind >= 50)

storms

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

mutate()

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storms %>%

mutate(ratio = pressure / wind) %>%
select(storm, ratio)

© 2014 RStudio, Inc. All rights reserved.

mutate()

storm	wind	pressure	date
Alberto	110	1007	2000-08-12
Alex	45	1009	1998-07-30
Allison	65	1005	1995-06-04
Ana	40	1013	1997-07-01
Arlene	50	1010	1999-06-13
Arthur	45	1010	1996-06-21

storm	ratio
Alberto	9.15
Alex	22.42
Allison	15.46
Ana	25.32
Arlene	20.20
Arthur	22.44

storms %>%

mutate(ratio = pressure / wind) %>%
select(storm, ratio)

© 2014 RStudio, Inc. All rights reserved.

Shortcut to type %>%

Unit of analysis

mean	sum	n
42	252	6

group_by() + summarise()

group_by()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

pollution %>% group_by(city)

```
pollution %>% group_by(city)
## Source: local data frame [6 x 3]
## Groups: city
##
       city size amount
##
## 1 New York large
                      23
## 2 New York small
                   14
                   22
      London large
## 3
## 4 London small
                       16
                   121
## 5 Beijing large
## 6 Beijing small
                       56
```

group_by() + summarise()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

```
pollution %>% group_by(city) %>%
  summarise(mean = mean(amount), sum = sum(amount), n = n())
```


city	particle size	amount (µg/m³)
New York	large	23
New York	small	14

city	mean	sum	n
New York	18.5	37	2

London	large	22
London	small	16

London 1	19.0	38	2
----------	------	----	---

Beijing large 121
Beijing small 56

Beijing 88.5 177 2

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14

London	large	22
London	small	16

Beijing	large	121
Beijing	small	56

city	mean	sum	n
New York	18.5	37	2

city	mean	sum	n
New York	18.5	37	2
London	19.0	38	2
Beijing	88.5	177	2

Beijing 88.5 177 2

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14

London	large	22
London	small	16

Beijing	large	121
Beijing	small	56

city	mean	sum	n
New York	18.5	37	2
London	19.0	38	2
Beijing	88.5	177	2

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14

London	large	22
London	small	16

Beijing	large	121
Beijing	small	56

city	mean	sum	n
New York	18.5	37	2
London	19.0	38	2
Beijing	88.5	177	2

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	mean
New York	18.5
London	19.0
Beijing	88.5

pollution %>% group_by(city) %>% summarise(mean = mean(amount))

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

size	mean
large	55.3
small	28.6

pollution %>% group_by(size) %>% summarise(mean = mean(amount))

ungroup()

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

pollution %>% ungroup()

country	year	sex	cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

tb

country	year	sex	cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

	country	year	sex	cases
	Afghanistan	1999	female	1
	Afghanistan	1999	male	1
	Afghanistan	2000	female	1
	Afghanistan	2000	male	1
	Brazil	1999	female	2
•	Brazil	1999	male	2
	Brazil	2000	female	2
	Brazil	2000	male	2
	China	1999	female	3
	China	1999	male	3
	China	2000	female	3
	China	2000	male	3

tb %>%
 group_by(country, year)

country	year	sex	cases	country	year	sex	cases
Afghanistan	1999	female	1	Afghanistan	1999	female	1
Afghanistan	1999	male	1	Afghanistan	1999	male	1
Afghanistan	2000	female	1	Afghanistan	2000	female	1
Afghanistan	2000	male	1	Afghanistan	2000	male	1
Brazil	1999	female	2	Brazil	1999	female	2
Brazil	1999	male	2	Brazil	1999	male	2
Brazil	2000	female	2	Brazil	2000	female	2
Brazil	2000	male	2	Brazil	2000	male	2
China	1999	female	3	China	1999	female	3
China	1999	male	3	China	1999	male	3
China	2000	female	3	China	2000	female	3
China	2000	male	3	China	2000	male	3

tb %>%
 group_by(country, year) %>%
 summarise(cases = sum(cases))

country	year	sex	cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

```
tb %>%
  group_by(country, year) %>%
  summarise(cases = sum(cases)) %>%
  summarise(cases = sum(cases))
```


Hierarchy of information

country	year	sex	cases
Afghanistan	1999	female	1
Afghanistan	1999	male	1
Afghanistan	2000	female	1
Afghanistan	2000	male	1
Brazil	1999	female	2
Brazil	1999	male	2
Brazil	2000	female	2
Brazil	2000	male	2
China	1999	female	3
China	1999	male	3
China	2000	female	3
China	2000	male	3

country	year	cases
Afghanistan	1999	2
Afghanistan	2000	2
Brazil	1999	4
Brazil	2000	4
China	1999	6
China	2000	6

country	cases
Afghanistan	4
Brazil	8
China	12

cases 24

Larger units of analysis

Recap: Information

Extract variables and observations with select() and filter()

Arrange observations, with arrange().

Make new variables, with mutate().

Make groupies observations with **group_by()** and **summarise()**.

Joining data

dplyr::bind_cols()

У

x1	x2
Α	1
В	2
С	3

Ζ

x1	x2
В	2
С	3
D	4

_

x 1	x2	x1	x2
Α	1	В	2
В	2	С	3
С	3	D	4

bind_cols(y, z)

dplyr::bind_rows()

У

x1	x2
Α	1
В	2
С	3

Z

x1	x2
В	2
С	3
D	4

XI	XZ
Α	1
В	2
С	3
В	2
С	3
D	4

bind_rows(y, z)

dplyr::union()

У

x1	x2
Α	1
В	2
С	3

Z

x1	x2
В	2
С	3
D	4

x1	x2
Α	1
В	2
С	3
D	4

union(y, z)

dplyr::intersect()

У

x1	x2
Α	1
В	2
С	3

Z

x 1	x2
В	2
С	3
D	4

x1	x2
В	2
С	3

intersect(y, z)

dplyr::setdiff()

У

x1	x2
Α	1
В	2
С	3

Z

x1	x2
В	2
С	3
D	4

x1	x2
Α	1
D	4

setdiff(y, z)

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

name	plays	
George	sitar	
John	guitar	
Paul	bass	
Ringo	drums	

=

song	name	plays
Across the Universe	John	guitar
Come Together	John	guitar
Hello, Goodbye	Paul	bass
Peggy Sue	Buddy	<na></na>

left_join(songs, artists, by = "name")

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

name	plays	
George	sitar	
John	guitar	
Paul	bass	
Ringo	drums	

song	name	plays
Across the Universe	John	guitar
Come Together	John	guitar
Hello, Goodbye	Paul	bass
Peggy Sue	Buddy	<na></na>

left_join(songs, artists, by = "name")

songs2

song	first	last
Across the Universe	John	Lennon
Come Together	John	Lennon
Hello, Goodbye	Paul	McCartney
Peggy Sue	Buddy	Holly

artists2

first	last	plays
George	Harrison	sitar
John	Lennon	guitar
Paul	McCartney	bass
Ringo	Starr	drums
Paul	Simon	guitar
John	Coltranee	sax

song	first	last	plays
Across the Universe	John	Lennon	guitar
Come Together	John	Lennon	guitar
Hello, Goodbye	Paul	McCartney	bass
Peggy Sue	Buddy	Holly	<na></na>

left_join(songs2, artists2, by = c("first", "last"))

songs2

song	first	last
Across the Universe	John	Lennon
Come Together	John	Lennon
Hello, Goodbye	Paul	McCartney
Peggy Sue	Buddy	Holly

artists2

first	last	plays
George	Harrison	sitar
John	Lennon	guitar
Paul	McCartney	bass
Ringo	Starr	drums
Paul	Simon	guitar
John	Coltrane	sax

song	first	last	plays
Across the Universe	John	Lennon	guitar
Come Together	John	Lennon	guitar
Hello, Goodbye	Paul	McCartney	bass
Peggy Sue	Buddy	Holly	<na></na>

left_join(songs2, artists2, by = c("first", "last"))

left_join()

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

name	plays
George	sitar
John	guitar
Paul	bass
Ringo	drums

song	name	plays
Across the Universe	John	guitar
Come Together	John	guitar
Hello, Goodbye	Paul	bass
Peggy Sue	Buddy	<na></na>

left_join(songs, artists, by = "name")

inner_join()

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

name	plays
George	sitar
John	guitar
Paul	bass
Ringo	drums

song	name	plays
Across the Universe	John	guitar
Come Together	John	guitar
Hello, Goodbye	Paul	bass

inner_join(songs, artists, by = "name")

semi_join()

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

name	plays
George	sitar
John	guitar
Paul	bass
Ringo	drums

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul

semi_join(songs, artists, by = "name")

anti_join()

songs

song	name
Across the Universe	John
Come Together	John
Hello, Goodbye	Paul
Peggy Sue	Buddy

artists

name	plays
George	sitar
John	guitar
Paul	bass
Ringo	drums

song	name
Peggy Sue	Buddy

anti_join(songs, artists, by = "name")

Recap: Best format for analysis

Variables in columns

Observations in rows

Separate all variables implied by law, formula or goal

Unit of analysis matches the unit of analysis implied by law, formula or goal

Single table

How to learn more

slides at: bit.ly/wrangling-webinar

http://www.rstudio.com/resources/cheatsheets/

dplyr and more

Four courses that teach dplyr, ggvis, rmarkdown, and the RStudio IDE.

Video lessons

Live coding environment

Interactive practice

(~4 hrs worth of content for dplyr)

www.datacamp.com/tracks/rstudio-track

Data Science with R

R's tools for data science. Reshape2, dplyr, and ggplot2 packages.

- Tidy data
- Data visualization and customizing graphics
- Statistical modeling with R

bit.ly/intro-to-data-science-with-R

Expert Data Science

Coming Spring 2015

- Foundations of Data Science
- tidyr
- dplyr
- ggvis

Thank you

Data Wrangling with R

Slides at: bit.ly/wrangling-webinar