Connected subtraction games on graphs

Antoine Dailly (G-SCOP, Grenoble)

Joint work with Julien Moncel (LAAS) and Aline Parreau (LIRIS).

This work was supported by the ANR project GAG.

CGTC3, January 22nd 2019

Subtraction Game SUB(S)

- ► Played on heaps of counters
- ▶ Removing k counters from a heap $\Leftrightarrow k \in S$

Subtraction Game SUB(S)

- ► Played on heaps of counters
- ▶ Removing k counters from a heap $\Leftrightarrow k \in S$

Subtraction Game SUB(S)

- ► Played on heaps of counters
- ▶ Removing k counters from a heap $\Leftrightarrow k \in S$

Subtraction Game SUB(S)

- ► Played on heaps of counters
- ▶ Removing k counters from a heap $\Leftrightarrow k \in S$

Subtraction Game SUB(S)

- ► Played on heaps of counters
- ▶ Removing k counters from a heap $\Leftrightarrow k \in S$

Subtraction Game SUB(S)

- ► Played on heaps of counters
- ▶ Removing k counters from a heap $\Leftrightarrow k \in S$

Subtraction Game SUB(S)

- ► Played on heaps of counters
- ▶ Removing k counters from a heap $\Leftrightarrow k \in S$

Example : $SUB(\{2,4\})$

Studying subtraction games

Sprague-Grundy Theorem \Rightarrow One heap is sufficient

Periodicity results

Grundy sequence

The sequence of Grundy values for heaps of size $0,1,2,3,\ldots$

Periodicity results

Grundy sequence

The sequence of Grundy values for heaps of size $0, 1, 2, 3, \dots$

Theorem (Folklore)

If S is finite, then the Grundy sequence of SUB(S) is ultimately periodic.

Periodicity results

Grundy sequence

The sequence of Grundy values for heaps of size $0, 1, 2, 3, \dots$

Theorem (Folklore)

If S is finite, then the Grundy sequence of SUB(S) is ultimately periodic.

Theorem (Albert, Nowakowski, Wolfe, 2007)

If S is finite, then the Grundy sequence of SUB($\mathbb{N}\setminus S$) is ultimately arithmetic periodic.

Going further

1. Splitting heaps \rightarrow Octal, hexadecimal games and generalizations

Going further

- 1. Splitting heaps \rightarrow Octal, hexadecimal games and generalizations
- 2. Playing on more complex structures

Going further

- 1. Splitting heaps \rightarrow Octal, hexadecimal games and generalizations
- 2. Playing on more complex structures

We will play subtraction games on graphs!

Connected Subtraction Game CSG(S)

- ► Played on graphs
- ▶ Removing k connected vertices $\Leftrightarrow k \in S$
- ► No disconnecting the graph!

Connected Subtraction Game CSG(S)

- ► Played on graphs
- ▶ Removing k connected vertices $\Leftrightarrow k \in S$
- ► No disconnecting the graph!

Connected Subtraction Game CSG(S)

- ► Played on graphs
- ▶ Removing k connected vertices $\Leftrightarrow k \in S$
- ► No disconnecting the graph!

Connected Subtraction Game CSG(S)

- ► Played on graphs
- ▶ Removing k connected vertices $\Leftrightarrow k \in S$
- ► No disconnecting the graph!

Connected Subtraction Game CSG(S)

- ► Played on graphs
- ▶ Removing k connected vertices $\Leftrightarrow k \in S$
- ► No disconnecting the graph!

Connected Subtraction Game CSG(S)

- ► Played on graphs
- ▶ Removing k connected vertices $\Leftrightarrow k \in S$
- ► No disconnecting the graph!

Connected Subtraction Game CSG(S)

- ► Played on graphs
- ▶ Removing k connected vertices $\Leftrightarrow k \in S$
- ► No disconnecting the graph!

- lackbox On heaps ightarrow Grundy sequence
- $\blacktriangleright \ \ \mathsf{On} \ \mathsf{graphs} \to ?$

- ► On heaps → Grundy sequence
- ▶ On graphs \rightarrow ?

Idea

- ► On heaps → Grundy sequence
- ▶ On graphs \rightarrow ?

Idea

- ► On heaps → Grundy sequence
- ▶ On graphs \rightarrow ?

Idea

- ► On heaps → Grundy sequence
- ▶ On graphs \rightarrow ?

Idea

$$G \stackrel{\longleftarrow}{\iota} P_k =$$
 (etc.)

- ightharpoonup On heaps ightarrow Grundy sequence
- ▶ On graphs \rightarrow ?

Idea

Studying the Grundy values when appending a path to a given vertex.

$$G \stackrel{\bullet}{u} P_k =$$
 (etc)

 \rightarrow Used for Node-Kayles (Fleischer and Trippen, 2004) and Arc-Kayles (Huggan and Stevens, 2016)

What we already know

Not subtraction games

- ▶ Node-Kayles : Ultimate periodicity for P_k with u as the second vertex (i.e. $S_{1,k-2,\ell}$)
- lacktriangleq ARC-KAYLES : Ultimate periodicity test for subdivided stars with three paths with u as a leaf

What we already know

Not subtraction games

- ▶ Node-Kayles: Ultimate periodicity for P_k with u as the second vertex (i.e. $S_{1,k-2,\ell}$)
- lacktriangleq ARC-KAYLES : Ultimate periodicity test for subdivided stars with three paths with u as a leaf

Subtraction games

- \triangleright S finite: Ultimate periodicity for paths with u as a leaf
- ► CSG($\{1,2\}$) :Periodicity for subdivided stars and bistars with u as the central vertex or a leaf

Theorem (D., Moncel, Parreau, 2019+)

If S is finite, then for every graph G and vertex u the sequence of the $G \overset{\bullet}{\cup} P_k$ for CSG(S) is ultimately periodic.

```
Theorem (D., Moncel, Parreau, 2019+)
```

If S is finite, then for every graph G and vertex u the sequence of the $G \overset{\bullet}{\mathfrak{u}} P_k$ for $\mathrm{CSG}(S)$ is ultimately periodic.

Idea of the proof

Induction on |G|.

1. $|G| \in \{0,1\}$: paths

Theorem (D., Moncel, Parreau, 2019+)

If S is finite, then for every graph G and vertex u the sequence of the $G \overset{\bullet}{\mathfrak{u}} P_k$ for CSG(S) is ultimately periodic.

Idea of the proof

Induction on |G|.

- 1. $|G| \in \{0,1\}$: paths
- 2. Otherwise, three possible kinds of moves :
 - 2.1 Playing on $P_k \rightarrow |S|$ different moves
 - 2.2 Playing on G without removing $u \to \operatorname{at} \operatorname{most} 2^{|G|-1}$ different moves
 - 2.3 Emptying $G \rightarrow$ at most |S| different moves

Theorem (D., Moncel, Parreau, 2019+)

If S is finite, then for every graph G and vertex u the sequence of the $G \overset{\bullet}{\mathfrak{u}} P_k$ for $\mathrm{CSG}(S)$ is ultimately periodic.

Idea of the proof

Induction on |G|.

- 1. $|G| \in \{0,1\}$: paths
- 2. Otherwise, three possible kinds of moves :
 - 2.1 Playing on $P_k \rightarrow |S|$ different moves
 - 2.2 Playing on G without removing $u \to \operatorname{at} \operatorname{most} 2^{|G|-1}$ different moves
 - 2.3 Emptying $G \rightarrow \text{at most } |S| \text{ different moves}$

$$\Rightarrow \mathcal{G}(G \overset{\bullet}{\mathsf{u}} P_k) \leq C$$

Theorem (D., Moncel, Parreau, 2019+)

If S is finite, then for every graph G and vertex u the sequence of the $G \overset{\bullet}{\mathfrak{u}} P_k$ for $\mathsf{CSG}(S)$ is ultimately periodic.

Idea of the proof

Induction on |G|.

- 1. $|G| \in \{0,1\}$: paths
- 2. Otherwise, three possible kinds of moves :
 - 2.1 Playing on $P_k \rightarrow |S|$ different moves
 - 2.2 Playing on G without removing $u \to \operatorname{at} \operatorname{most} 2^{|G|-1}$ different moves
 - 2.3 Emptying $G \rightarrow$ at most |S| different moves

$$\Rightarrow \mathcal{G}(G \overset{\bullet}{\mathsf{u}} P_k) \leq C$$

Every move brings us to a periodic sequence, the result comes from mex computation.

Questions

- 1. What period for a connected subtraction game?
- 2. Which games are purely periodic, and on which graphs?
- 3. What about $CSG(\mathbb{N} \setminus S)$?

Questions

- 1. What period for a connected subtraction game?
- 2. Which games are purely periodic, and on which graphs?
- 3. What about $CSG(\mathbb{N} \setminus S)$?

The family $CSG(\{1,\ldots,N\})$

Removing 1, 2, ..., N connected vertices, without disconnecting the graph.

The family $CSG(\{1,\ldots,N\})$

Removing 1, 2, ..., N connected vertices, without disconnecting the graph.

Theorem (Folklore)

The Grundy sequence for paths is $\overline{0, 1, 2, \dots, N}$.

The family $CSG(\{1,\ldots,N\})$

Removing 1, 2, ..., N connected vertices, without disconnecting the graph.

Theorem (Folklore)

The Grundy sequence for paths is $\overline{0,1,2,\ldots,N}$.

Question

Are there graph families such that the sequence of the $G \overset{\bullet}{\mathfrak{u}} P_k$ has period N+1?

$CSG(\{1,\ldots,N\})$ on stars

Theorem (D., Moncel, Parreau, 2019+)

If G is a star, then the sequence of the $G \overset{\bullet}{u} P_k$ is periodic with period N+1.

$CSG(\{1,\ldots,N\})$ on stars

Theorem (D., Moncel, Parreau, 2019+)

If G is a star, then the sequence of the $G \overset{\bullet}{u} P_k$ is periodic with period N+1.

Theorem (D., Moncel, Parreau, 2019+)

If $G = S_{1,\ell}$ and u is the central vertex, then the sequence of the $G \overset{\bullet}{\text{u}} - P_k$ is ultimately periodic with period N + 1.

$CSG(\{1,\ldots,N\})$ on stars

Theorem (D., Moncel, Parreau, 2019+)

If G is a star, then the sequence of the $G \overset{\bullet}{u} P_k$ is periodic with period N+1.

Theorem (D., Moncel, Parreau, 2019+)

If $G = S_{1,\ell}$ and u is the central vertex, then the sequence of the $G \overset{\bullet}{\text{u}} - P_k$ is ultimately periodic with period N+1.

Remark

Purely periodic for some values of ℓ , preperiod N+1 for others.

And subdivided stars?

Periodicity for $CSG(\{1,2\})$ and $CSG(\{1,2,3\})$ if u is the central vertex or a leaf, with period N+1.

And subdivided stars?

Periodicity for $CSG(\{1,2\})$ and $CSG(\{1,2,3\})$ if u is the central vertex or a leaf, with period N+1.

Drawback

Many base cases...

- For $CSG(\{1,2\})$: 2 base cases
- For $CSG(\{1,2,3\})$: 7 base cases

Definition

If, for all n, $\mathcal{G}(n)$ is the same for SUB(S) and $SUB(S \cup \{k\})$, then k can be adjoined to S.

Definition

If, for all n, $\mathcal{G}(n)$ is the same for SUB(S) and $SUB(S \cup \{k\})$, then k can be adjoined to S.

Example

 $\mathsf{SUB}(\{1,2\})$ and $\mathsf{SUB}(\{1,2,4\})$ have the same Grundy sequence.

Definition

If, for all n, $\mathcal{G}(n)$ is the same for SUB(S) and $SUB(S \cup \{k\})$, then k can be adjoined to S.

Example

 $\mathsf{SUB}(\{1,2\})$ and $\mathsf{SUB}(\{1,2,4\})$ have the same Grundy sequence.

Ho (2015) gave two conditions for adjoining integers to a finite subtraction set.

Definition

If, for all n, $\mathcal{G}(n)$ is the same for SUB(S) and $SUB(S \cup \{k\})$, then k can be adjoined to S.

Example

 $SUB(\{1,2\})$ and $SUB(\{1,2,4\})$ have the same Grundy sequence.

Ho (2015) gave two conditions for adjoining integers to a finite subtraction set.

Question

What about graphs?

Theorem (D., Moncel, Parreau, 2019+)

Let S be a subdivided star. Then $\mathcal{G}(S)$ is the same for $CSG(\{1,2\})$ and $CSG(\{1,2,4\})$.

Theorem (D., Moncel, Parreau, 2019+)

Let S be a subdivided star. Then $\mathcal{G}(S)$ is the same for $CSG(\{1,2\})$ and $CSG(\{1,2,4\})$.

And in general?

If $M \not\equiv 0 \mod (N+1)$ then M can be adjoined to $\{1, \ldots, N\}$.

.

Theorem (D., Moncel, Parreau, 2019+)

Let S be a subdivided star. Then $\mathcal{G}(S)$ is the same for $CSG(\{1,2\})$ and $CSG(\{1,2,4\})$.

And in general?

Theorem (D., Moncel, Parreau, 2019+)

Let S be a subdivided star. Then $\mathcal{G}(S)$ is the same for $\mathsf{CSG}(\{1,2\})$ and $\mathsf{CSG}(\{1,2,4\})$.

And in general?

Theorem (D., Moncel, Parreau, 2019+)

Let S be a subdivided star. Then $\mathcal{G}(S)$ is the same for $\mathsf{CSG}(\{1,2\})$ and $\mathsf{CSG}(\{1,2,4\})$.

And in general?

Theorem (D., Moncel, Parreau, 2019+)

Let S be a subdivided star. Then $\mathcal{G}(S)$ is the same for $\mathsf{CSG}(\{1,2\})$ and $\mathsf{CSG}(\{1,2,4\})$.

And in general?

Theorem (D., Moncel, Parreau, 2019+)

Let S be a subdivided star. Then $\mathcal{G}(S)$ is the same for $CSG(\{1,2\})$ and $CSG(\{1,2,4\})$.

And in general?

Theorem (D., Moncel, Parreau, 2019+)

Let S be a subdivided star. Then $\mathcal{G}(S)$ is the same for $\mathsf{CSG}(\{1,2\})$ and $\mathsf{CSG}(\{1,2,4\})$.

And in general?

Conclusion

Conclusion

- ► A periodicity theorem for subtraction games
- ▶ Specific results for the $CSG(\{1,...,N\})$ family on stars
- ► Adapting questions from heaps to graphs

Conclusion

Conclusion

- ► A periodicity theorem for subtraction games
- ▶ Specific results for the $CSG(\{1,...,N\})$ family on stars
- ► Adapting questions from heaps to graphs

Interesting questions

- ▶ Is the period on graphs the same than on heaps?
- ▶ When may we adjoin integers?
- Complexity?

Conclusion

Conclusion

- ► A periodicity theorem for subtraction games
- ▶ Specific results for the $CSG(\{1,...,N\})$ family on stars
- ► Adapting questions from heaps to graphs

Interesting questions

- ▶ Is the period on graphs the same than on heaps?
- ► When may we adjoin integers?
- ► Complexity?

