Statistical Machine Learning (BE4M33SSU) Lecture 11: Structured Output Support Vector Machines

Czech Technical University in Prague V. Franc

Linear classifier

Two-class linear classifier:

- ullet \mathcal{X} is a set of observations and $\mathcal{Y}=\{+1,-1\}$ is a set of hidden labels
- ullet $\phi\colon \mathcal{X} o \mathbb{R}^n$ feature map embedding observations from \mathcal{X} to \mathbb{R}^n
- lacktriangle Two-class linear classifier $h \colon \mathcal{X} \to \mathcal{Y}$

$$h(x; \boldsymbol{w}, b) = \operatorname{sign}(\langle \boldsymbol{w}, \boldsymbol{\phi}(x) \rangle + b) = \begin{cases} +1 & \text{if } \langle \boldsymbol{w}, \boldsymbol{\phi}(x) \rangle + b \ge 0 \\ -1 & \text{if } \langle \boldsymbol{w}, \boldsymbol{\phi}(x) \rangle + b < 0 \end{cases}$$

A generic linear classifier:

- $lacktriangleq \mathcal{X}$ is set of observations and \mathcal{Y} is a finite set
- ullet $\phi \colon \mathcal{X} imes \mathcal{Y} o \mathbb{R}^n$ is a joint feature map embedding $\mathcal{X} imes \mathcal{Y}$ to \mathbb{R}^n
- Generic linear classifier $h: \mathcal{X} \to \mathcal{Y}$

$$h(x; \boldsymbol{w}) \in \operatorname*{Argmax}_{y \in \mathcal{Y}} \langle \boldsymbol{w}, \boldsymbol{\phi}(x, y) \rangle$$

Example: multi-class linear classifier

- $lacktriangleq \mathcal{X}$ is a set of observations and $\mathcal{Y} = \{1, \dots, Y\}$ is a set of class labels
- lacktriangle Multi-class linear classifier $h \colon \mathcal{X} \to \mathcal{Y}$

$$h(x; \boldsymbol{w}) \in \underset{y \in \mathcal{Y}}{\operatorname{Argmax}} \langle \boldsymbol{w}_y, \boldsymbol{\phi}(x) \rangle$$

where $\phi \colon \mathcal{X} \to \mathbb{R}^d$ is a feature map $m{w} = (m{w}_1, \dots, m{w}_Y) \in \mathbb{R}^{d \cdot Y}$ are parameters.

We can write the score function as

$$\langle \boldsymbol{w}_y, \boldsymbol{\phi}(x) \rangle = \langle \boldsymbol{w}, \boldsymbol{\phi}(x,y) \rangle$$

where $\phi\colon \mathcal{X} imes \mathcal{Y} o \mathbb{R}^{d\cdot Y}$ is

$$\phi(x,y) = (0, \dots, \underbrace{\phi(x)}_{y-\mathsf{th}}, \dots, 0)$$

Example: sequence classifier for OCR

- $\boldsymbol{x} = (x_1, \dots, x_L) \in \mathcal{I}^L$ sequence of images with characters
- $y = (y_1, \dots, y_L) \in \mathcal{A}^L$ seq. of chars. from $\mathcal{A} = \{A, \dots, Z\}$
- $lacktriangleq p(x_i \mid y_i)$ appearance model for characters
- $p(y_i \mid y_{i-1})$ language model
- Finding the most probable sequence of characters:

$$\hat{\boldsymbol{y}} \in \operatorname{Argmax} \left(\underbrace{p(y_1) \prod_{i=2}^{L} p(y_i \mid y_{i-1}) \prod_{i=1}^{L} p(x_i \mid y_i)}_{p(x_1, \dots, x_L, y_1, \dots, y_L)} \right)$$

5/16

The MAP estimate from HMM:

$$\hat{\boldsymbol{y}} \in \operatorname{Argmax}_{\boldsymbol{y} \in \mathcal{A}^L} \left(\log p(y_1) + \sum_{i=2}^L \log p(y_i \mid y_{i-1}) + \sum_{i=1}^L \log p(x_i \mid y_i) \right)$$

Let us assume the following parametrization:

$$\log p(y_1) = \langle \boldsymbol{w}, \boldsymbol{\phi}(y_1) \rangle$$

$$\log p(y_i \mid y_{i-1}) = \langle \boldsymbol{w}, \boldsymbol{\phi}(y_{i-1}, y_i) \rangle$$

$$\log p(x_i | y_i) = \langle \boldsymbol{w}, \boldsymbol{\phi}(x_i, y_i) \rangle$$

The MAP estimate becomes a linear classifier:

$$\hat{\boldsymbol{y}} = \underset{(y_1, \dots, y_k) \in \mathcal{A}^L}{\operatorname{Argmax}} \left\langle \boldsymbol{w}, \boldsymbol{\phi}(y_1) + \sum_{i=2}^L \boldsymbol{\phi}(y_{i-1}, y_i) + \sum_{i=1}^L \boldsymbol{\phi}(x_i, y_i) \right\rangle$$

Learning by Emprical Risk Minimization

- $\ell \colon \mathcal{Y} \times \mathcal{Y} \to [0, \infty)$ loss such that $\ell(y, y') = 0$ iff y = y'.
- Find parameters \boldsymbol{w} of $h(x; \boldsymbol{w})$ which minimize the expected risk

$$R(\boldsymbol{w}) = \mathbb{E}_{(x,y)\sim p}\Big(\ell(y,h(x;\boldsymbol{w}))\Big)$$

The Empirical Risk Minimization principle leads to solving

$$\boldsymbol{w}^* \in \operatorname*{Argmin}_{\boldsymbol{w} \in \mathbb{R}^n} R_{\mathcal{T}^m}(\boldsymbol{w})$$

where the empirical risk is

$$R_{\mathcal{T}^m}(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i; \boldsymbol{w}))$$

and $\mathcal{T}^m = \{(x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, ..., m\}$ are training examples drawn from i.i.d. with distribution p(x, y).

Learning linear classifier from separable examples

lacktriangle A correctly classified example (x^i, y^i) , that is,

$$y^{i} = h(x^{i}; \boldsymbol{w}) = \underset{y \in \mathcal{Y}}{\operatorname{Argmax}} \langle \boldsymbol{w}, \boldsymbol{\phi}(x^{i}, y) \rangle$$

implies

$$\langle \boldsymbol{\phi}(x^i, y^i), \boldsymbol{w} \rangle > \langle \boldsymbol{\phi}(x^i, y), \boldsymbol{w} \rangle, \qquad \forall y \in \mathcal{Y} \setminus \{y^i\}$$

Definition 1. The examples $\mathcal{T}^m = \{(x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, m\}$ are linearly separable w.r.t. joint feature map $\phi \colon \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^n$ if there exists $w \in \mathbb{R}^n$ such that

$$\langle \boldsymbol{\phi}(x^i, y^i), \boldsymbol{w} \rangle > \langle \boldsymbol{\phi}(x^i, y), \boldsymbol{w} \rangle, \qquad \forall i \in \{1, \dots, m\}, y \in \mathcal{Y} \setminus \{y^i\}$$

(Generic) Perceptron algorithm

8/16

◆ **Task:** given a set of points $\{a^i \in \mathbb{R}^n \mid i=1,2,\ldots,K\}$ we want to find $w \in \mathbb{R}^n$ such that

$$\langle \boldsymbol{w}, \boldsymbol{a}^i \rangle > 0, \qquad \forall i \in \{1, 2, \dots, K\}$$
 (1)

Perceptron:

- 1. $w \leftarrow 0$
- 2. Find a violating $\langle \boldsymbol{w}, \boldsymbol{a}^i \rangle \leq 0$, $i \in \{1, 2, \dots, K\}$
- 3. If there is no violating inequality return w otherwise update

$$oldsymbol{w} \leftarrow oldsymbol{w} + oldsymbol{a}^i$$

and go to step 2.

• If the set of inequalities (1) is solvable then the Perceptron algorithm exits in a finite number of steps which does not depend on m.

Structured Sutput i erception

• Learning $h(x; \boldsymbol{w}) \in \operatorname{Argmax}_{y \in \mathcal{Y}} \langle \boldsymbol{w}, \boldsymbol{\phi}(x, y) \rangle$ from examples $\mathcal{T}^m = \{(x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, m\}$ leads to solving

$$\langle \boldsymbol{\phi}(x^i, y^i), \boldsymbol{w} \rangle - \langle \boldsymbol{\phi}(x^i, y), \boldsymbol{w} \rangle > 0, \quad \forall i \in \{1, \dots, m\}, y \in \mathcal{Y} \setminus \{y^i\}$$

- Structured Output Perceptron:
 - 1. $w \leftarrow 0$
 - 2. Find a misclassified example $(x^i, y^i) \in \mathcal{T}^m$ such that

$$y^i \neq \hat{y}^i \in \operatorname{Argmax}_{y \in \mathcal{Y}} \langle \boldsymbol{w}, \boldsymbol{\phi}(x^i, y) \rangle$$
 prediction problem

3. If there is no misclassified example return $oldsymbol{w}$ otherwise update

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \boldsymbol{\phi}(x^i, y^i) - \boldsymbol{\phi}(x^i, \hat{y}^i)$$
 parameter update

and go to step 2.

10/16

• Learning $h(x; \boldsymbol{w}) \in \operatorname{Argmax}_{y \in \mathcal{Y}} \langle \boldsymbol{w}, \boldsymbol{\phi}(x, y) \rangle$ from examples $\mathcal{T}^m = \{(x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, m\}$ by ERM leads to

$$m{w}^* \in \operatorname*{Argmin}_{m{w} \in \mathbb{R}^n} R_{\mathcal{T}^m}(m{w}) \quad \text{where} \quad R_{\mathcal{T}^m}(m{w}) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i; m{w}))$$

The SO-SVM approximates the ERM by a convex problem

$$w^* \in \underset{w \in \mathcal{W}_r}{\operatorname{Argmin}} R^{\psi}(w)$$
 where $R^{\psi}(w) = \frac{1}{m} \sum_{i=1}^{m} \psi(x^i, y^i, w)$

where

- $\mathcal{W}_r \subseteq \mathbb{R}^n$ convex feasible set; e.g. $\mathcal{W}_r = \{ m{w} \in \mathbb{R}^n \mid \| m{w} \| \leq r \}$
- $\psi \colon \mathcal{X} \times \mathcal{Y} \times \mathbb{R}^n \to \mathbb{R}$ convex proxy approximating the true loss ℓ

Margin rescaling loss

11/16

• We require that the score of the correct label y^i is higher than the score of the incorrect label y by margin proportional to the loss $\ell(y^i, y)$:

$$\langle \boldsymbol{w}, \phi(x^i, y^i) \rangle \ge \langle \boldsymbol{w}, \phi(x^i, y) \rangle + \ell(y^i, y), \qquad \forall y \in \mathcal{Y} \setminus \{y^i\}$$

The margin rescaling loss

$$\psi(x^i, y^i, \boldsymbol{w}) = \max \left\{ 0, \max_{y \in \mathcal{Y} \setminus \{y^i\}} \{ \ell(y^i, y) + \langle \boldsymbol{w}, \boldsymbol{\phi}(x^i, y) \rangle - \langle \boldsymbol{w}, \boldsymbol{\phi}(x^i, y^i) \rangle \} \right\}$$

Upper bounds of the true loss:

$$y^{i} \neq \hat{y} = h(x^{i}; \boldsymbol{w}) \in \underset{y \in \mathcal{Y}}{\operatorname{Argmax}} \langle \boldsymbol{w}, \boldsymbol{\phi}(x^{i}, y) \rangle$$

implies $\langle \boldsymbol{w}, \boldsymbol{\phi}(x^i, \hat{y}) \rangle - \langle \boldsymbol{w}, \boldsymbol{\phi}(x^i, y^i) \rangle \geq 0$ and hence

$$\psi(x^i, y^i, \boldsymbol{w}) \ge \ell(y^i, h(x^i, \boldsymbol{w})), \quad \forall \boldsymbol{w} \in \mathbb{R}^n$$

SO-SVM with margin-rescaling loss

• Using shortcuts $\ell_i(y) = \ell(y^i, y)$ and $\phi_i(y) = \phi(x^i, y) - \phi(x^i, y^i)$ we can simplify the margin rescaling loss:

$$\psi(x^{i}, y^{i}, \boldsymbol{w}) = \max\{0, \max_{y \in \mathcal{Y} \setminus \{y^{i}\}} \{\ell(y^{i}, y) + \langle \boldsymbol{w}, \boldsymbol{\phi}(x^{i}, y) \rangle - \langle \boldsymbol{w}, \boldsymbol{\phi}(x^{i}, y^{i}) \rangle \}\}$$

$$= \max_{y \in \mathcal{Y}} \{\ell(y^{i}, y) + \langle \boldsymbol{w}, \boldsymbol{\phi}(x^{i}, y) \rangle - \langle \boldsymbol{w}, \boldsymbol{\phi}(x^{i}, y^{i}) \rangle \}$$

$$= \max_{y \in \mathcal{Y}} \{\ell_{i}(y) + \langle \boldsymbol{w}, \boldsymbol{\phi}_{i}(y) \rangle \}$$

The SO-SVM leads to a convex constrained optimization problem:

$$\mathbf{w}^* \in \underset{\mathbf{w} \in \mathcal{W}_r}{\operatorname{Argmin}} R^{\psi}(\mathbf{w}) \quad \text{where} \quad R^{\psi}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^m \max_{y \in \mathcal{Y}} \{\ell_i(y) + \langle \mathbf{w}, \boldsymbol{\phi}_i(y) \rangle \}$$

and $\mathcal{W}_r = \{ \boldsymbol{w} \in \mathbb{R}^n \mid ||\boldsymbol{w}|| \leq r \}$ is a convex set.

The SO-SVM problem can be written as unconstrained problem:

$$oldsymbol{w}^* \in \operatorname*{Argmin}_{oldsymbol{w} \in \mathbb{R}^n} \left(rac{\lambda}{2} \| oldsymbol{w} \|^2 + R^{\psi}(oldsymbol{w}) \right)$$

 After introducing slack variables it can be further rewritten as a constrained quadratic program:

$$\mathbf{w}^* = \underset{\mathbf{w} \in \mathbb{R}^n, \boldsymbol{\xi} \in \mathbb{R}^m}{\operatorname{argmin}} \left(\frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{m} \sum_{i=1}^m \xi_i \right)$$

subject to

$$\xi_i \ge \ell_i(y) + \langle \boldsymbol{w}, \boldsymbol{\phi}_i(y) \rangle, \quad \forall i \in \{1, \dots, m\}, \forall y \in \mathcal{Y}$$

lacktriangle Note that the QP has $m|\mathcal{Y}|$ linear constaints!

$$R^{\psi}(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} \max_{\hat{y}^i \in \mathcal{Y}} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle) = \max_{\hat{y}^1 \in \mathcal{Y}} \frac{1}{m} \sum_{i=1}^{m} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle)$$

$$\hat{y}^{m} \in \mathcal{Y}$$

$$R^{\psi}(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} \max_{\hat{y}^i \in \mathcal{Y}} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle) = \max_{\hat{y}^1 \in \mathcal{Y}} \frac{1}{m} \sum_{i=1}^{m} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle)$$

$$\hat{y}^{m} \in \mathcal{Y}$$

$$R^{\psi}(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} \max_{\hat{y}^i \in \mathcal{Y}} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle) = \max_{\hat{y}^1 \in \mathcal{Y}} \frac{1}{m} \sum_{i=1}^{m} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle)$$

$$\hat{y}^{m} \in \mathcal{Y}$$

$$R^{\psi}(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} \max_{\hat{y}^i \in \mathcal{Y}} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle) = \max_{\hat{y}^1 \in \mathcal{Y}} \frac{1}{m} \sum_{i=1}^{m} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle)$$

$$r_1(w) = b_1 + \langle a_1, w \rangle$$

$$R^{\psi}(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} \max_{\hat{y}^i \in \mathcal{Y}} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle) = \max_{\hat{y}^1 \in \mathcal{Y}} \frac{1}{m} \sum_{i=1}^{m} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle)$$

$$\hat{y}^{m} \in \mathcal{Y}$$

$$R^{\psi}(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} \max_{\hat{y}^i \in \mathcal{Y}} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle) = \max_{\hat{y}^1 \in \mathcal{Y}} \frac{1}{m} \sum_{i=1}^{m} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle)$$

$$\hat{y}^{m} \in \mathcal{Y}$$

$$R^{\psi}(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} \max_{\hat{y}^i \in \mathcal{Y}} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle) = \max_{\hat{y}^1 \in \mathcal{Y}} \frac{1}{m} \sum_{i=1}^{m} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle)$$

$$\hat{y}^{m} \in \mathcal{Y}$$

т. Р

Cutting plane algorithm

$$R^{\psi}(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} \max_{\hat{y}^i \in \mathcal{Y}} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle) = \max_{\hat{y}^1 \in \mathcal{Y}} \frac{1}{m} \sum_{i=1}^{m} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle)$$

$$\hat{y}^{m} \in \mathcal{Y}$$

$$R^{\psi}(\boldsymbol{w}) = \frac{1}{m} \sum_{i=1}^{m} \max_{\hat{y}^i \in \mathcal{Y}} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle) = \max_{\hat{y}^1 \in \mathcal{Y}} \frac{1}{m} \sum_{i=1}^{m} (\ell_i(\hat{y}^i) + \langle \boldsymbol{\phi}_i(\hat{y}^i), \boldsymbol{w} \rangle)$$

$$\hat{y}^{m} \in \mathcal{Y}$$

1.
$$\boldsymbol{w}_1 \in \mathcal{W}, t \leftarrow 1$$

2. Compute a new cutting plane and the objective value:

$$\boldsymbol{a}_t = \frac{1}{m} \sum_{i=1}^m \boldsymbol{\phi}_i(\hat{y}^i), \quad b_t = \frac{1}{m} \sum_{i=1}^m \ell_i(\hat{y}^i), \quad R^{\psi}(\boldsymbol{w}_t) = b_t + \langle \boldsymbol{w}_t, \boldsymbol{a}_t \rangle$$

where \hat{y}^i is a solutions of loss augmented prediction problem:

$$\hat{y}^{i} = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \left(\ell_{i}(y) + \langle \boldsymbol{w}, \boldsymbol{\phi}_{i}(y) \rangle \right) = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \left(\ell(y^{i}, y) + \langle \boldsymbol{w}, \boldsymbol{\phi}(x^{i}, y) \rangle \right)$$

3. Solve a reduced problem

$$\mathbf{w}_{t+1} = \operatorname*{argmin}_{\mathbf{w} \in \mathcal{W}} R_t^{\psi}(\mathbf{w}), \quad \text{where} \quad R_t^{\psi}(\mathbf{w}) = \operatorname*{max}_{i=1,...,t} (b_i + \langle \mathbf{w}, \mathbf{a}_i \rangle)$$

4. If $\min_{i=1,\dots,t+1} R(\boldsymbol{w}_t) - R^{\psi}(\boldsymbol{w}_{t+1}) \leq \varepsilon$ exit else $t \leftarrow t+1$ and go to 2.

Summary

m p

- Generalized linear classifier
- Structured Output Perceptron
- Structured Output Support Vector Machines
- Cutting Plane Algorithm

