CS 70 Discrete Mathematics and Probability Theory Summer 2020 Course Notes

Short Answers - Graphs

- (a) Bob removed a degree 3 node from an *n*-vertex tree. How many connected components are there in the resulting graph?
- (b) Given an *n*-vertex tree, Bob added 10 edges to it and then Alice removed 5 edges. If the resulting graph has 3 connected components, how many edges must be removed in order to remove all cycles from the resulting graph?

Planarity 16/99.11-13 planar = S Euler, TEuler =) - Planar Prove that $K_{3,3}$ is nonplanar. K_{5} , $K_{3,3}$ are nonplanar

(a) Prove that $K_{3,3}$ is nonplanar.

(b) Consider graphs with the property T: For every three distinct vertices v_1, v_2, v_3 of graph G, there are at least two edges among them. Use a proof by contradiction to show that if G is a graph on > 7 vertices, and G has property T, then G is nonplanar.

(a)

$$1f \le 2e$$

$$v + f = 2 + e$$

1

Graph Coloring

Prove that a graph with maximum degree at most k is (k+1)-colorable.

if ks on k3,3 are a subgraph of G, then Gisnorphuar

Assume G=(V,E) is planar.

Ks must NoT be a subgraph. Consider any arbitrary set of 5 verts VI

30,002 EV, 8 80,023 & E

Consider the remaining verts $V_z = V (\{v_1, v_2\})$

Joz, og EVz: {03,00} & E.

Let S le (V\VI)\V2

(v1, v2, v): 4 ES = { v5, v6, v7}

(\(\frac{1}{31}, \frac{1}{41}, \frac{1}{2} \) \(\frac{1}{5}, \frac{1}{6}, \frac{1}{5}, \frac{1}{6}, \frac{1}{5} \)

{\\dagger_1,\dagger_2}, \{\dagger_1,\dagger_2}, \{\dagger_2,\dagger_2}, \{\dagger_2,\dagger_2}, \{\dagger_2,\dagger_2}, \{\dagger_2,\dagger_2}, \{\dagger_2,\dagger_2}, \{\dagger_2,\dagger_2}, \dagger_2,\dagger_2,\dagger_2}, \{\dagger_2,\dagger_2}, \dagger_2,\dagger_2,\dagger_2,\dagger_2}, \dagger_2,\dagge

verts o, vz, vz don't share edges.

But v, is come to vs, v, v, same for oz e v, whing the edges alwal, forming K3,3 as a subgraph of Go.

i. G must be nonplanor.

4 Hypercubes

The vertex set of the *n*-dimensional hypercube G = (V, E) is given by $V = \{0, 1\}^n$ (recall that $\{0, 1\}^n$ denotes the set of all *n*-bit strings). There is an edge between two vertices x and y if and only if x and y differ in exactly one bit position. These problems will help you understand hypercubes.

(a) Draw 1-, 2-, and 3-dimensional hypercubes and label the vertices using the corresponding bit strings.

(b) Show that for any $n \ge 1$, the *n*-dimensional hypercube is bipartite.