MA329 Statistical linear models

Assignment 6 (Due date: Dec 30, 11:00pm. For late submission, each day costs 10 percent. The solution will be released at 6pm Jan 1 Sunday since the final exam is on Jan 3. This assignment will not be accepted once the solution is released.)

1. (15 marks) A research was conducted to study how communities respond to a violent crime. Monthly violent crime statistics were collected in two neighboring cities, A and B, before and after the murder of a citizen in city A. The following regression model was adopted.

MODEL G:
$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

where

y is the violent crime rate (number of crimes per 1000 population)

 $x_1 = \{1 \text{ if city A, } 0 \text{ if city B}\}$

 $x_2 = \{1 \text{ if after the murder}, 0 \text{ if before the murder}\}$

- a. Express, in terms of the β s, the expected violent crime rate for months after the murder in city A.
- b. Express, in terms of the β s, the expected violent crime rate for months before the murder in city B.
- c. With $\alpha = 0.05$, state clearly an α -level test (including the full model, the reduced model, the hypotheses, the test statistics and the rejection rule) for testing the usefulness of the independent variable x_2 in the model.
- 2. (20 marks) An economist wants to compare the mean dollar amounts owed by delinquent credit card customers in the three different socioeconomic classes: (1) lower class, (2) middle class, and (3) upper class. Let

 μ_1 = mean amount owed by lower class delinquent credit card customers

 μ_2 = mean amount owed by middle class delinquent credit card customers

 μ_3 = mean amount owed by upper class delinquent credit card customers

A sample of 10 customers with delinquent accounts is selected from each group, and the amount owed by each is recorded, as shown in the following table.

Dollars Owed					
Group 1 (lower class)	Group 2 (middle class)	Group 3 (upper class)			

148	513 335	
76	264	643
393	433	216
520	94	536
236	535	128
134	327	723
55	214	258
166	135	380
415	280	594
153	304	465

A regression model is used to predict the amount owed (y) using socioeconomic class as an independent variable. Use indicator variables

$$X_1 = \begin{cases} 1 & \text{if group 2} \\ 0 & \text{if not} \end{cases}$$
 $X_2 = \begin{cases} 1 & \text{if group 3} \\ 0 & \text{if not} \end{cases}$

The regression model is

$$E(y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Computer output

ANOVA

Model	<u>df</u>	Sum of Squares	Mean Square
Regression	2	198772	99386
Error	27	770671	28543
Total	29	969443	

Coefficients

	Coefficients	Std. Error	t
Constant	229.6	53.43	4.3
X_1	80.3	75.56	1.06
X_2	198.20	75.56	2.62

- a. Express the parameters β_0 , β_1 and β_2 in terms of μ_1 , μ_2 and μ_3 .
- b. Compute the estimate of the difference between the population mean delinquent amounts for the upper- and lower-class groups.
- c. Compute the estimate of the difference between the population mean delinquent amounts for the upper- and middle-class groups.
- d. Test the null hypothesis that the population mean delinquent amounts for the three groups are equal ($\alpha = 0.05$). State clearly the null and alternative hypotheses, the test statistics, the accept/reject decision and the conclusion.
- 3. (15 marks) Consider the model Consider the model $y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$, i = 1,2,3, j = 1,2. In matrix notation, the model can be expressed as $Y = X\beta + \epsilon$.
 - a. Write X, X'X, X'Y,
 - b. With the conditions (constraints) $\alpha_1 + \alpha_2 + \alpha_3 = 0$ and $\beta_1 + \beta_2 = 0$, write the procedure to obtain the solution using the normal equation.
 - c. Is $3\mu + \alpha_1 + \alpha_2 + \alpha_3 + 3\beta_3$ estimable?