Normalización - Parte 02

2C -2023

Normalización - Marco General

Normalización 1era. Parte

- Concepto DF
- Problemas de DF y cómo eliminarlos por medio del método de descomposición
- 1FN, 2FN, 3FN, BCFN

Normalización 2da. Parte

- Inferencia de DF
- Conceptos nuevos: clausura, equivalencia y cubrimiento mínimo
- Propiedades de la descomposición
- Algoritmos para el diseño de esquemas

- Diseñador de BD especifica DF semánticamente obvias
- Existencia de DF no especificadas que pueden ser inferidas

- Diseñador de BD especifica DF semánticamente obvias
- Existencia de DF no especificadas que pueden ser inferidas
- Ejemplo.
 - R={E_CUIL,Nro_Depto,D_Nombre}
 - $\bullet \quad F \!=\! \{ E_CUIL \!\to\! Nro_Depto, Nro_Depto \!\to\! D_Nombre \}$

- Diseñador de BD especifica DF semánticamente obvias
- Existencia de DF no especificadas que pueden ser inferidas
- Ejemplo.
 - R={E_CUIL,Nro_Depto,D_Nombre}
 - $F = \{E_CUIL \rightarrow Nro_Depto, Nro_Depto \rightarrow D_Nombre\}$
 - De ambas DFs se puede inferir que E_CUIL→D_Nombre

- Diseñador de BD especifica DF semánticamente obvias
- Existencia de DF no especificadas que pueden ser inferidas
- Ejemplo.
 - R={E_CUIL,Nro_Depto,D_Nombre}
 - $\bullet \quad F = \{E_CUIL \rightarrow Nro_Depto, Nro_Depto \rightarrow D_Nombre\}$
 - De ambas DFs se puede inferir que E_CUIL→D_Nombre
- Inferencia. Una DF $X \rightarrow Y$ es inferida de o implicada por un conjunto de DFs F de R si se cumple $X \rightarrow Y$ en toda instancia legal r(R). Es decir, siempre que r(R) satisface F, se cumple $X \rightarrow Y$

- Diseñador de BD especifica DF semánticamente obvias
- Existencia de DF no especificadas que pueden ser inferidas
- Ejemplo.
 - R={E_CUIL,Nro_Depto,D_Nombre}
 - $F = \{E_CUIL \rightarrow Nro_Depto, Nro_Depto \rightarrow D_Nombre\}$
 - De ambas DFs se puede inferir que E_CUIL→D_Nombre
- Inferencia. Una DF X→Y es inferida de o implicada por un conjunto de DFs F de R si se cumple X→Y en toda instancia legal r(R). Es decir, siempre que r(R) satisface F, se cumple X→Y
- Clausura. Conjunto de todas las DFs de F más todas las DFs que puedan ser inferidas de F. Se denota como F⁺
 - R={E_CUIL,Nro_Depto,D_Nombre}
 - $F = \{E_CUIL \rightarrow Nro_Depto, Nro_Depto \rightarrow D_Nombre\}$
 - $\bullet \quad F^+ = \{ \textit{E_CUIL} \rightarrow \textit{Nro_Depto}, \textit{Nro_Depto} \rightarrow \textit{D_Nombre}, \quad \textit{E_CUIL} \rightarrow \textit{D_Nombre}, \quad \ldots \}$
- Necesidad. Para calcular F⁺ es necesario un método: Reglas de inferencia

- Reglas de Inferencia. Propuestas por Armstrong (1974) y conocidas como "Axiomas de Armstrong"
 - RI1 (regla reflexiva). Si $Y \subseteq X$, entonces $X \rightarrow Y$
 - RI2 (regla de incremento). $\{X \rightarrow Y\} \models XZ \rightarrow YZ$
 - RI3 (regla transitiva). $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$

- Reglas de Inferencia. Propuestas por Armstrong (1974) y conocidas como "Axiomas de Armstrong"
 - RI1 (regla reflexiva). Si $Y \subseteq X$, entonces $X \rightarrow Y$
 - RI2 (regla de incremento). $\{X \rightarrow Y\} \models XZ \rightarrow YZ$
 - RI3 (regla transitiva). $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$
- Demostración RI1.

- Reglas de Inferencia. Propuestas por Armstrong (1974) y conocidas como "Axiomas de Armstrong"
 - RI1 (regla reflexiva). Si $Y \subseteq X$, entonces $X \rightarrow Y$
 - RI2 (regla de incremento). $\{X \rightarrow Y\} \models XZ \rightarrow YZ$
 - RI3 (regla transitiva). $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$
- Demostración RI1. Supuestos
 - Y⊆X
 - t_1, t_2 existen en una instancia r(R) tal que $t_1[X]=t_2[X]$

Entonces, $t_1[Y]=t_2[Y]$ dado que $Y\subseteq X$; por lo tanto $X\to Y$ en r.

- Reglas de Inferencia. Propuestas por Armstrong (1974) y conocidas como "Axiomas de Armstrong"
 - RI1 (regla reflexiva). Si $Y \subseteq X$, entonces $X \rightarrow Y$
 - RI2 (regla de incremento). $\{X \rightarrow Y\} \models XZ \rightarrow YZ$
 - RI3 (regla transitiva). $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$
- Demostración RI1. Supuestos
 - Y⊆X
 - t_1, t_2 existen en una instancia r(R) tal que $t_1[X]=t_2[X]$

Entonces, $t_1[Y]=t_2[Y]$ dado que $Y\subseteq X$; por lo tanto $X\rightarrow Y$ en r.

Demostración RI2. (por contradicción)

- Reglas de Inferencia. Propuestas por Armstrong (1974) y conocidas como "Axiomas de Armstrong"
 - RI1 (regla reflexiva). Si $Y \subseteq X$, entonces $X \rightarrow Y$
 - RI2 (regla de incremento). $\{X \rightarrow Y\} \models XZ \rightarrow YZ$
 - RI3 (regla transitiva). $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$
- Demostración RI1. Supuestos
 - Y⊆X
 - t_1, t_2 existen en una instancia r(R) tal que $t_1[X]=t_2[X]$

Entonces, $t_1[Y]=t_2[Y]$ dado que $Y\subseteq X$; por lo tanto $X\rightarrow Y$ en r.

- Demostración RI2. (por contradicción) Supuestos
 - $X \rightarrow Y$ se cumple en r(R)
 - $XZ \rightarrow YZ$ NO se cumple en r(R)

Entonces existen t_1, t_2 tal que

- $0 t_1[X] = t_2[X]$

Esto no es posible dado que de (1) y (3) se deduce (5) $t_1[Z]=t_2[Z]$, y de (2) y (5) se obtiene (6) $t_1[YZ]=t_2[YZ]$, contradiciendo (4)

Inferencia
Clausura y Equivalencia
Conjunto minimal de DFs

Normalización - Reglas de Inferencia (Cont.)

Demostración RI3.

- Demostración RI3. Supuestos
 - $\underbrace{ \mathbf{V}}_{X \to Y} \text{ se cumple en } r(R)$
 - 2 $Y \rightarrow Z$ se cumple en r(R)

Entonces para cualquier t_1 , t_2 en r(R) tal que $t_1[X] = t_2[X]$, debe pasar que (3) $t_1[Y] = t_2[Y]$ por asunción (1). También se sabe, por (3) y por asunción (2) que $X \to Z$. Por lo tanto, RI3 se cumple en r(R).

- Demostración RI3. Supuestos
 - $\underbrace{ \mathbf{V}}_{X \to Y} \text{ se cumple en } r(R)$
 - 2 $Y \rightarrow Z$ se cumple en r(R)

Entonces para cualquier t_1 , t_2 en r(R) tal que $t_1[X]=t_2[X]$, debe pasar que (3) $t_1[Y]=t_2[Y]$ por asunción (1). También se sabe, por (3) y por asunción (2) que $X\to Z$. Por lo tanto, RI3 se cumple en r(R).

- Propiedades.
 - Fiable (Sound). Dado F de R, cualquier DF deducida de F utilizando RI1
 a RI3, se cumple en cualquier estado r(R) que satisface F
 - Completa (Complete). F⁺ puede ser determinado a partir de F aplicando solamente RI1 a RI3

Normalización - Reglas de Inferencia (Cont.)

- Demostración RI3. Supuestos
 - $\underbrace{ \mathbf{V}}_{X \to Y} \text{ se cumple en } r(R)$
 - 2 $Y \rightarrow Z$ se cumple en r(R)

Entonces para cualquier t_1 , t_2 en r(R) tal que $t_1[X]=t_2[X]$, debe pasar que (3) $t_1[Y]=t_2[Y]$ por asunción (1). También se sabe, por (3) y por asunción (2) que $X\to Z$. Por lo tanto, RI3 se cumple en r(R).

- Propiedades.
 - Fiable (Sound). Dado F de R, cualquier DF deducida de F utilizando RI1
 a RI3, se cumple en cualquier estado r(R) que satisface F
 - Completa (Complete). F⁺ puede ser determinado a partir de F aplicando solamente RI1 a RI3
- Reglas de Inferencia Adicionales. (corolarios de Armstrong)

- Demostración RI3. Supuestos
 - $\underbrace{ \mathbf{V}}_{X \to Y} \text{ se cumple en } r(R)$
 - 2 $Y \rightarrow Z$ se cumple en r(R)

Entonces para cualquier t_1 , t_2 en r(R) tal que $t_1[X]=t_2[X]$, debe pasar que (3) $t_1[Y]=t_2[Y]$ por asunción (1). También se sabe, por (3) y por asunción (2) que $X\to Z$. Por lo tanto, RI3 se cumple en r(R).

- Propiedades.
 - Fiable (Sound). Dado F de R, cualquier DF deducida de F utilizando RI1
 a RI3, se cumple en cualquier estado r(R) que satisface F
 - Completa (Complete). F⁺ puede ser determinado a partir de F aplicando solamente RI1 a RI3
- Reglas de Inferencia Adicionales. (corolarios de Armstrong)
 - RI4 (regla de descomposición o proyección). $\{X \rightarrow YZ\} \models X \rightarrow Y$
 - RI5 (regla de unión o aditiva). $\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ$
 - RI6 (regla pseudotransitiva). $\{X \rightarrow Y, WY \rightarrow Z\} \models WX \rightarrow Z$

Inferencia
Clausura y Equivalencia
Conjunto minimal de DEs

Normalización - Reglas de Inferencia (Cont.)

Demostración RI4.

- Demostración RI4.
 - \bigcirc $X \rightarrow YZ$ (hipótesis)
 - 2 $YZ \rightarrow Y$ (usando RI1 y tomando que $Y \subseteq YZ$)
 - 3 $X \rightarrow Y$ (usando RI3 sobre (1) y (2))

- Demostración RI4.
 - \bigcirc $X \rightarrow YZ$ (hipótesis)
 - 2 $YZ \rightarrow Y$ (usando RI1 y tomando que $Y \subseteq YZ$)
 - 3 $X \rightarrow Y$ (usando RI3 sobre (1) y (2))
- Demostración RI5.

- Demostración RI4.
 - \bigcirc $X \rightarrow YZ$ (hipótesis)
 - 2 $YZ \rightarrow Y$ (usando RI1 y tomando que $Y \subseteq YZ$)
 - 3 $X \rightarrow Y$ (usando RI3 sobre (1) y (2))
- Demostración RI5.
 - \bigcirc $X \rightarrow Y$ (hipótesis)
 - $2 \times Z$ (hipótesis)
 - 3 $X \rightarrow XY$ (usando RI2 sobre (1) incrementando con X; notar que XX = X)
 - \bigcirc XY \rightarrow YZ (usando RI2 sobre (2) incrementando con Y)
 - \bigcirc $X \rightarrow YZ$ (usando RI3 sobre (3) y (4))

- Demostración RI4.
 - \bigcirc $X \rightarrow YZ$ (hipótesis)
 - 2 $YZ \rightarrow Y$ (usando RI1 y tomando que $Y \subseteq YZ$)
 - 3 $X \rightarrow Y$ (usando RI3 sobre (1) y (2))
- Demostración RI5.
 - \bigcirc $X \rightarrow Y$ (hipótesis)
 - $Q X \rightarrow Z$ (hipótesis)
 - 3 $X \rightarrow XY$ (usando RI2 sobre (1) incrementando con X; notar que XX = X)
 - \bigcirc XY \rightarrow YZ (usando RI2 sobre (2) incrementando con Y)
 - \bigcirc $X \rightarrow YZ$ (usando RI3 sobre (3) y (4))
- Demostración RI6.

- Demostración RI4.
 - \bigcirc $X \rightarrow YZ$ (hipótesis)
 - 2 $YZ \rightarrow Y$ (usando RI1 y tomando que $Y \subseteq YZ$)
 - \bigcirc $X \rightarrow Y$ (usando RI3 sobre (1) y (2))
- Demostración RI5.
 - \bigcirc $X \rightarrow Y$ (hipótesis)

 - 3 $X \rightarrow XY$ (usando RI2 sobre (1) incrementando con X; notar que XX = X)
 - 4 $XY \rightarrow YZ$ (usando RI2 sobre (2) incrementando con Y)
 - 5 $X \rightarrow YZ$ (usando RI3 sobre (3) y (4))
- Demostración RI6.

 - $Q WY \rightarrow Z$ (hipótesis)
 - 3 $WX \rightarrow WY$ (usando RI2 sobre (1) incrementando con W)
 - \bigcirc $WX \rightarrow Z$ (usando RI3 sobre (3) y (2))

- Demostración RI4.
 - \bigcirc $X \rightarrow YZ$ (hipótesis)
 - 2 $YZ \rightarrow Y$ (usando RI1 y tomando que $Y \subseteq YZ$)
 - \bigcirc $X \rightarrow Y$ (usando RI3 sobre (1) y (2))
- Demostración RI5.
 - \bigcirc $X \rightarrow Y$ (hipótesis)
 - $Q X \rightarrow Z$ (hipótesis)
 - 3 $X \rightarrow XY$ (usando RI2 sobre (1) incrementando con X; notar que XX = X)
 - 4 $XY \rightarrow YZ$ (usando RI2 sobre (2) incrementando con Y)
 - 5 $X \rightarrow YZ$ (usando RI3 sobre (3) y (4))
- Demostración RI6.
 - $\bigcirc X \rightarrow Y$ (hipótesis)
 - $Q WY \rightarrow Z$ (hipótesis)
 - \bigcirc *WX* \rightarrow *WY* (usando RI2 sobre (1) incrementando con *W*)
 - 4 $WX \rightarrow Z$ (usando RI3 sobre (3) y (2))
- Decidir si es verdadero o falso

- Demostración RI4.
 - \bigcirc $X \rightarrow YZ$ (hipótesis)
 - 2 $YZ \rightarrow Y$ (usando RI1 y tomando que $Y \subseteq YZ$)
 - 3 $X \rightarrow Y$ (usando RI3 sobre (1) y (2))
- Demostración RI5.
 - \bigcirc $X \rightarrow Y$ (hipótesis)

 - 3 $X \rightarrow XY$ (usando RI2 sobre (1) incrementando con X; notar que XX = X)
 - 4 $XY \rightarrow YZ$ (usando RI2 sobre (2) incrementando con Y)
 - 5 $X \rightarrow YZ$ (usando RI3 sobre (3) y (4))
- Demostración RI6.
 - \bigcirc $X \rightarrow Y$ (hipótesis)
 - $Q WY \rightarrow Z$ (hipótesis)
 - 3 $WX \rightarrow WY$ (usando RI2 sobre (1) incrementando con W)
 - 4 $WX \rightarrow Z$ (usando RI3 sobre (3) y (2))
- Decidir si es verdadero o falso
 - $X \rightarrow A$ y $Y \rightarrow B$, entonces $XY \rightarrow AB$

- Demostración RI4.

 - 2 $YZ \rightarrow Y$ (usando RI1 y tomando que $Y \subseteq YZ$)
 - 3 $X \rightarrow Y$ (usando RI3 sobre (1) y (2))
- Demostración RI5.
 - \bigcirc $X \rightarrow Y$ (hipótesis)
 - $Q X \rightarrow Z$ (hipótesis)
 - 3 $X \rightarrow XY$ (usando RI2 sobre (1) incrementando con X; notar que XX = X)
 - 4 $XY \rightarrow YZ$ (usando RI2 sobre (2) incrementando con Y)
 - 5 $X \rightarrow YZ$ (usando RI3 sobre (3) y (4))
- Demostración RI6.
 - $\bigcirc X \rightarrow Y$ (hipótesis)
 - $Q WY \rightarrow Z$ (hipótesis)
 - 3 $WX \rightarrow WY$ (usando RI2 sobre (1) incrementando con W)
- Decidir si es verdadero o falso
 - $X \rightarrow A$ y $Y \rightarrow B$, entonces $XY \rightarrow AB$ verdadero

- Demostración RI4.
 - \bigcirc $X \rightarrow YZ$ (hipótesis)
 - 2 $YZ \rightarrow Y$ (usando RI1 y tomando que $Y \subseteq YZ$)
 - 3 $X \rightarrow Y$ (usando RI3 sobre (1) y (2))
- Demostración RI5.
 - \bigcirc $X \rightarrow Y$ (hipótesis)
 - $Q X \rightarrow Z$ (hipótesis)
 - 3 $X \rightarrow XY$ (usando RI2 sobre (1) incrementando con X; notar que XX = X)
 - \bigcirc XY \rightarrow YZ (usando RI2 sobre (2) incrementando con Y)
 - \bigcirc $X \rightarrow YZ$ (usando RI3 sobre (3) y (4))
- Demostración RI6.
 - $\bigcirc X \rightarrow Y$ (hipótesis)
 - $Q WY \rightarrow Z$ (hipótesis)
 - 3 $WX \rightarrow WY$ (usando RI2 sobre (1) incrementando con W)
- Decidir si es verdadero o falso
 - $X \rightarrow A$ y $Y \rightarrow B$, entonces $XY \rightarrow AB$ verdadero
 - $XY \rightarrow A$, entonces $X \rightarrow A$ o $Y \rightarrow A$

- Demostración RI4.

 - 2 $YZ \rightarrow Y$ (usando RI1 y tomando que $Y \subseteq YZ$)
 - 3 $X \rightarrow Y$ (usando RI3 sobre (1) y (2))
- Demostración RI5.
 - \bigcirc $X \rightarrow Y$ (hipótesis)
 - $Q X \rightarrow Z$ (hipótesis)
 - 3 $X \rightarrow XY$ (usando RI2 sobre (1) incrementando con X; notar que XX = X)
 - 4 $XY \rightarrow YZ$ (usando RI2 sobre (2) incrementando con Y)
 - \bigcirc $X \rightarrow YZ$ (usando RI3 sobre (3) y (4))
- Demostración RI6.
 - $\bigcirc X \rightarrow Y$ (hipótesis)
 - $Q WY \rightarrow Z$ (hipótesis)
 - \bigcirc *WX* \rightarrow *WY* (usando RI2 sobre (1) incrementando con *W*)
 - \bigcirc $WX \rightarrow Z$ (usando RI3 sobre (3) y (2))
- Decidir si es verdadero o falso
 - $X \rightarrow A$ y $Y \rightarrow B$, entonces $XY \rightarrow AB$ verdadero
 - $XY \rightarrow A$, entonces $X \rightarrow A$ o $Y \rightarrow A$ falso (¿ejemplo?)

- Diseño. Típicamente
 - Diseñador especifica conjunto de DFs F determinadas por semántica de atributos de R
 - Se utilizan RI1 a RI3 para inferir DFs adicionales

- Diseño. Típicamente
 - Diseñador especifica conjunto de DFs F determinadas por semántica de atributos de R
 - 2 Se utilizan RI1 a RI3 para inferir DFs adicionales
- ¿Cómo realizar (2) de manera sistemática?

- Diseño. Típicamente
 - Diseñador especifica conjunto de DFs F determinadas por semántica de atributos de R
 - Se utilizan RI1 a RI3 para inferir DFs adicionales
- ¿Cómo realizar (2) de manera sistemática?
 - determinar conjunto de atributos X que aparecen del lado izq. de DFs de F
 - determinar conjunto Y de todos los atributos que dependen de X

- Diseño. Típicamente
 - Diseñador especifica conjunto de DFs F determinadas por semántica de atributos de R
 - Se utilizan RI1 a RI3 para inferir DFs adicionales
- ¿Cómo realizar (2) de manera sistemática?
 - determinar conjunto de atributos x que aparecen del lado izq. de DFs de F
 - determinar conjunto Y de todos los atributos que dependen de X
- Clausura de X. Conjunto de atributos que son determinados por X basados en E Se nota X⁺

- Diseño. Típicamente
 - Diseñador especifica conjunto de DFs F determinadas por semántica de atributos de R
 - Se utilizan RI1 a RI3 para inferir DFs adicionales
- ¿Cómo realizar (2) de manera sistemática?
 - determinar conjunto de atributos X que aparecen del lado izq. de DFs de F
 - determinar conjunto Y de todos los atributos que dependen de X
- Clausura de x. Conjunto de atributos que son determinados por x basados en F. Se nota X⁺
- Algoritmo Nro. 1 para determinar X⁺

Entrada: DFs F de R; subconjunto de atributos X de R

- 1. $X^{+} := X$
- 2. repetir
- viejoX⁺:=X⁺
- 4. Para cada DF $Y \rightarrow Z$ en F hacer
- 5. Si $Y \subseteq X^+$ entonces $X^+ = X^+ \cup Z$
- 6. hasta($X^+ = viejoX^+$)

Normalización - Clausura (Cont.)

Ejemplo.

```
 \bullet \quad R{=}(idClase, CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad) \\
```

```
 \begin{array}{l} \bullet \quad F = \{ \\ DF1: \ idClase \rightarrow \{ CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad \}, \\ DF2: \ CodigoCurso \rightarrow Puntos, \\ DF3: \ \{ CodigoCurso, Instrumento \} \rightarrow \{ Libro, Aula \}, \\ DF4: \ Libro \rightarrow Editor, \\ DF5: \ Aula \rightarrow Capacidad \\ \} \end{array}
```

Normalización - Clausura (Cont.)

Ejemplo.

```
 \bullet \quad R = (idClase, CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad) \\
```

```
    F={
    DF1: idClase→{CodigoCurso,Instrumento,Puntos,Libro,Editor,Aula,Capacidad},
    DF2: CodigoCurso→Puntos,
    DF3: {CodigoCurso,Instrumento}→{Libro,Aula},
    DF4: Libro→Editor,
    DF5: Aula→Capacidad
    }
```

• Aplicando el algoritmo para obtener X⁺

```
{idClase}<sup>+</sup>=
```

Normalización - Clausura (Cont.)

Ejemplo.

```
 \bullet \quad R = (idClase, CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad) \\
```

```
● F=\{
DF1: idClase \rightarrow \{CodigoCurso,Instrumento,Puntos,Libro,Editor,Aula,Capacidad\},
DF2: CodigoCurso \rightarrow Puntos,
DF3: \{CodigoCurso,Instrumento\} \rightarrow \{Libro,Aula\},
DF4: Libro \rightarrow Editor,
DF5: Aula \rightarrow Capacidad
\}
```

- Aplicando el algoritmo para obtener X⁺
 - {idClase}⁺={idClase, CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad}=R

Ejemplo.

```
\bullet \quad R = (idClase, CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad)
```

```
● F=\{
DF1: idClase \rightarrow \{CodigoCurso,Instrumento,Puntos,Libro,Editor,Aula,Capacidad\},
DF2: CodigoCurso \rightarrow Puntos,
DF3: \{CodigoCurso,Instrumento\} \rightarrow \{Libro,Aula\},
DF4: Libro \rightarrow Editor,
DF5: Aula \rightarrow Capacidad
\}
```

Aplicando el algoritmo para obtener x⁺

- {idClase}⁺={idClase, CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad}=R
- {CodigoCurso}⁺=

Ejemplo.

```
\bullet \quad R = (idClase\,, CodigoCurso\,, Instrumento\,, Puntos\,, Libro\,, Editor\,, Aula\,, Capacidad)
```

```
• F=\{
DF1: idClase \rightarrow \{CodigoCurso,Instrumento,Puntos,Libro,Editor,Aula,Capacidad\},
DF2: CodigoCurso \rightarrow Puntos,
DF3: \{CodigoCurso,Instrumento\} \rightarrow \{Libro,Aula\},
DF4: Libro \rightarrow Editor,
DF5: Aula \rightarrow Capacidad
\}
```

• Aplicando el algoritmo para obtener X⁺

```
• {idClase}<sup>+</sup>={idClase, CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad}=R
```

```
• {CodigoCurso}<sup>+</sup>={CodigoCurso,Puntos}
```

Ejemplo.

```
 \bullet \quad R = (idClase, CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad) \\
```

```
● F=\{
DF1: idClase \rightarrow \{CodigoCurso,Instrumento,Puntos,Libro,Editor,Aula,Capacidad\},
DF2: CodigoCurso \rightarrow Puntos,
DF3: \{CodigoCurso,Instrumento\} \rightarrow \{Libro,Aula\},
DF4: Libro \rightarrow Editor,
DF5: Aula \rightarrow Capacidad
\}
```

Aplicando el algoritmo para obtener x⁺

- {idClase} += {idClase, CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad} = R
- {CodigoCurso,Instrumento}⁺=

Ejemplo.

```
 \bullet \quad R = (idClase, CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad) \\
```

```
    F={
    DF1: idClase→{CodigoCurso,Instrumento,Puntos,Libro,Editor,Aula,Capacidad},
    DF2: CodigoCurso→Puntos,
    DF3: {CodigoCurso,Instrumento}→{Libro,Aula},
    DF4: Libro→Editor,
    DF5: Aula→Capacidad
    }
```

Aplicando el algoritmo para obtener X⁺

- {idClase}⁺={idClase, CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad}=R
- { CodigoCurso } ⁺ = { CodigoCurso , Puntos }
- {CodigoCurso,Instrumento}⁺= {CodigoCurso,Instrumento,Puntos,Libro,Editor,Aula,Capacidad}

Ejemplo.

```
 \bullet \quad R = (idClase, CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad) \\
```

```
● F = \{
DF1: idClase \rightarrow \{CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad\},
DF2: CodigoCurso \rightarrow Puntos,
DF3: \{CodigoCurso, Instrumento\} \rightarrow \{Libro, Aula\},
DF4: Libro \rightarrow Editor,
DF5: Aula \rightarrow Capacidad
\}
```

- Aplicando el algoritmo para obtener X⁺
 - {idClase} += {idClase, CodigoCurso, Instrumento, Puntos, Libro, Editor, Aula, Capacidad} = R
 - {CodigoCurso}⁺={CodigoCurso,Puntos}
 - {CodigoCurso,Instrumento}⁺= {CodigoCurso,Instrumento,Puntos,Libro,Editor,Aula,Capacidad}
- Observación. Clausura idClase ∉ {CodigoCurso,Instrumento}⁺ por lo tanto NO es CK

Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

Normalización - Equivalencia

- **Oubrimiento.** Dados E y F conjuntos de DFs, F cubre a E si $(\forall df \in E) df \in F^+$
- Equivalencia. Dados E y F conjuntos de DFs, F y E son equivalentes si F⁺=E⁺, es decir, si F cubre a E y E cubre a F

Normalización - Equivalencia

- Cubrimiento. Dados E y F conjuntos de DFs, F cubre a E si $(\forall df \in E)df \in F^+$
- Equivalencia. Dados E y F conjuntos de DFs, F y E son equivalentes si F⁺=E⁺, es decir, si F cubre a E y E cubre a F
- Ejercicio. Decir si los siguientes conjuntos de DFs son equivalentes
 - $F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$
 - $\bullet \quad G = \{A \rightarrow CD, E \rightarrow AH\}$

Normalización - Equivalencia

- Cubrimiento. Dados E y F conjuntos de DFs, F cubre a E si $(\forall df \in E)df \in F^+$
- Equivalencia. Dados E y F conjuntos de DFs, F y E son equivalentes si F⁺=E⁺, es decir, si F cubre a E y E cubre a F
- Ejercicio. Decir si los siguientes conjuntos de DFs son equivalentes
 - $F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$
 - \bullet $G = \{A \rightarrow CD, E \rightarrow AH\}$
- Metodología. Para determinar si F cubre a G, calcular, para cada DF X→Y de G, X⁺ con respecto a F. Luego verificar si este X⁺ incluye los atributos en Y. Similar razonamiento para verificar si G cubre a F

Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

- $lackbox{ } \to \mathsf{Se} \mathsf{\ explico} \mathsf{\ como} \mathsf{\ expandir} \mathsf{\ F} \mathsf{\ a} \mathsf{\ F}^+$
- ← Se quiere ver el camino inverso, reducir F a su expresión minimal

- Se explicó cómo expandir F a F^+
- ullet Se quiere ver el camino inverso, reducir ${\it F}$ a su expresión minimal
- Atributo Extraño. Atributo que puede ser removido sin alterar la clausura del conjunto de DFs.
- Formalmente. Sea $X \rightarrow A$ en F, $Y \subset X$ es extraño si F implica lógicamente $(F \{X \rightarrow A\} \cup \{(X Y) \rightarrow A\}$

- $lackbox{0}
 ightarrow \mathsf{Se}$ explicó cómo expandir F a F^+
- ullet Se quiere ver el camino inverso, reducir ${\it F}$ a su expresión minimal
- Atributo Extraño. Atributo que puede ser removido sin alterar la clausura del conjunto de DFs.
- Formalmente. Sea $X \rightarrow A$ en F, $Y \subset X$ es extraño si F implica lógicamente $(F \{X \rightarrow A\} \cup \{(X Y) \rightarrow A\}$
- Características de un Conjunto de DFs para ser minimal
 - Cada DF de F debe poseer un solo atributo en su lado derecho
 - 2 No es posible reemplazar niguna DF $X \rightarrow A$ de F por $Y \rightarrow A$, siendo $Y \subset X$, y seguir teniendo un conjunto de DFs equivalente a F
 - No es posible remover niguna DF de F y seguir teniendo un conjunto de DFs equivalente a F

- $lackbox{ } \to \mathsf{Se} \ \mathsf{explico} \ \mathsf{como} \ \mathsf{expandir} \ \mathit{F} \ \mathsf{a} \ \mathit{F}^+$
- ullet Se quiere ver el camino inverso, reducir ${\it F}$ a su expresión minimal
- Atributo Extraño. Atributo que puede ser removido sin alterar la clausura del conjunto de DFs.
- Formalmente. Sea $X \rightarrow A$ en F, $Y \subset X$ es extraño si F implica lógicamente $(F \{X \rightarrow A\} \cup \{(X Y) \rightarrow A\}$
- Características de un Conjunto de DFs para ser minimal
 - Cada DF de F debe poseer un solo atributo en su lado derecho
 - 2 No es posible reemplazar niguna DF $X \rightarrow A$ de F por $Y \rightarrow A$, siendo $Y \subset X$, y seguir teniendo un conjunto de DFs equivalente a F
 - No es posible remover niguna DF de F y seguir teniendo un conjunto de DFs equivalente a F
- Intuitivamente. F minimal es un conjunto canónico y sin redundancia
- Cubrimiento minimal. Un cubrimiento minimal de F es un conjunto minimal de DFs (en forma canónica y sin redundancia) que es equivalente a F.
- Existencia. Siempre es posible hallar al menos un cubrimiento minimal F para cualquier conjunto de DFs E usando el siguiente algoritmo

Algoritmo Nro. 2 Búsqueda de un cubrimiento minimal F para un conjunto de DFs E

Entrada: Conjunto de DFs E

```
    F:=E
    Reemplazar cada DF X → {A<sub>1</sub>, A<sub>2</sub>,...,A<sub>n</sub>} en F por n DFs X → A<sub>1</sub>, X → A<sub>2</sub>,...,X → A<sub>n</sub>
/*Traslada a todas las DFs a una forma canónica para los pasos subsiguientes*/
    Para cada DF X → A en F
Para cada atributo B que es un elemento de X
Si{F - {X → A}} ∪ {(X - {B}) → A} es equivalente a F
Entonces reemplazar X → A por (X - {B}) → A
    /*Remueve al atributo extraño B del lado izquierdo de X siempre que es posible*/
    Para cada DF X → A en F
Si F - {X → A} es equivalente a F
Remover X → A de F
    /*Remueve las DF redundantes siempre que es posible*/
```

Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

Normalización - Conjunto Minimal de DFs (Cont.)

 Ejemplo 1. Sea un conjunto de DFs E={B→A,D→A,AB→D}. Encontrar el cubrimiento minimal de E denominado F

- Ejemplo 1. Sea un conjunto de DFs E={B→A,D→A,AB→D}. Encontrar el cubrimiento minimal de E denominado F
 - Paso (1) Todas las DFs de E están en forma canónica. No es necesario hacer ningún cambio

- Ejemplo 1. Sea un conjunto de DFs E={B→A,D→A,AB→D}. Encontrar el cubrimiento minimal de E denominado F
 - Paso (1) Todas las DFs de E están en forma canónica. No es necesario hacer ningún cambio
 - Paso (2) Hay que determinar si AB→D posee algún atributo extraño en su lado izquierdo. Esto es, si puede ser reemplazado por A→D o B→D
 - Aplicando RI2 a B→A, incrementándolo con B, se obtiene BB→AB
 que equivale a (i) B→AB; Adicionalmente se tiene la DF (ii) AB→D
 - Aplicando la RI3 (transitiva) sobre (i) y (ii), se obtiene B→D. Así, AB→D puede ser reemplazada por B→D
 - El conjunto original E puede ser reemplazado por otro equivalente $E' = \{B \rightarrow A, D \rightarrow A, B \rightarrow D\}$
 - No es posible otra reducción ya que todos los lados izquierdos poseen un solo atributo

- Ejemplo 1. Sea un conjunto de DFs E={B→A,D→A,AB→D}. Encontrar el cubrimiento minimal de E denominado F
 - Paso (1) Todas las DFs de E están en forma canónica. No es necesario hacer ningún cambio
 - Paso (2) Hay que determinar si AB→D posee algún atributo extraño en su lado izquierdo. Esto es, si puede ser reemplazado por A→D o B→D
 - Aplicando RI2 a B→A, incrementándolo con B, se obtiene BB→AB
 que equivale a (i) B→AB; Adicionalmente se tiene la DF (ii) AB→D
 - Aplicando la RI3 (transitiva) sobre (i) y (ii), se obtiene B→D. Así, AB→D puede ser reemplazada por B→D
 - El conjunto original E puede ser reemplazado por otro equivalente
 E'={B→A,D→A,B→D}
 - No es posible otra reducción ya que todos los lados izquierdos poseen un solo atributo
 - Paso (3) Usando RI3 (transitiva) sobre B→D y D→A, se infiere B→A. Por lo tanto B→A es redundante y puede ser eliminada de E'

- Ejemplo 1. Sea un conjunto de DFs E={B→A,D→A,AB→D}. Encontrar el cubrimiento minimal de E denominado F
 - Paso (1) Todas las DFs de E están en forma canónica. No es necesario hacer ningún cambio
 - Paso (2) Hay que determinar si AB→D posee algún atributo extraño en su lado izquierdo. Esto es, si puede ser reemplazado por A→D o B→D
 - Aplicando RI2 a B→A, incrementándolo con B, se obtiene BB→AB que equivale a (i) B→AB; Adicionalmente se tiene la DF (ii) AB→D
 - Aplicando la RI3 (transitiva) sobre (i) y (ii), se obtiene B→D. Así, AB→D puede ser reemplazada por B→D
 - El conjunto original E puede ser reemplazado por otro equivalente
 E'={B→A,D→A,B→D}
 - No es posible otra reducción ya que todos los lados izquierdos poseen un solo atributo
 - Paso (3) Usando RI3 (transitiva) sobre B→D y D→A, se infiere B→A. Por lo tanto B→A es redundante y puede ser eliminada de E'
 - Cubrimiento minimal de E. $F = \{B \rightarrow D, D \rightarrow A\}$

Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

Normalización - Conjunto Minimal de DFs (Cont.)

 Ejemplo 2. Sea un conjunto de DFs E={A→BCDE,CD→E}. Encontrar el cubrimiento minimal de E denominado F

Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

- Ejemplo 2. Sea un conjunto de DFs E={A→BCDE,CD→E}. Encontrar el cubrimiento minimal de E denominado F
 - Paso (1) Al pasar todas las DFs de E a la forma canónica, se obtiene: $E = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, CD \rightarrow E\}$

- Ejemplo 2. Sea un conjunto de DFs E={A→BCDE,CD→E}. Encontrar el cubrimiento minimal de E denominado F
 - Paso (1) Al pasar todas las DFs de E a la forma canónica, se obtiene: $E = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, CD \rightarrow E\}$
 - Paso (2) Hay que determinar si CD→E posee algún atributo extraño en su lado izquierdo. Esto no sucede ya que las DFs C→E / D→E no pueden ser derivadas de las otras DFs

- Ejemplo 2. Sea un conjunto de DFs E={A→BCDE,CD→E}. Encontrar el cubrimiento minimal de E denominado F
 - Paso (1) Al pasar todas las DFs de E a la forma canónica, se obtiene: $E = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, CD \rightarrow E\}$
 - Paso (2) Hay que determinar si CD→E posee algún atributo extraño en su lado izquierdo. Esto no sucede ya que las DFs C→E / D→E no pueden ser derivadas de las otras DFs
 - Paso (3) Verificamos si alguna DF es redundante. Dado que A→CD y CD→E, por RI3 (transitiva) A→E es redundante.

- Ejemplo 2. Sea un conjunto de DFs E={A→BCDE,CD→E}. Encontrar el cubrimiento minimal de E denominado F
 - Paso (1) Al pasar todas las DFs de E a la forma canónica, se obtiene: $E = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, CD \rightarrow E\}$
 - Paso (2) Hay que determinar si CD→E posee algún atributo extraño en su lado izquierdo. Esto no sucede ya que las DFs C→E / D→E no pueden ser derivadas de las otras DFs
 - Paso (3) Verificamos si alguna DF es redundante. Dado que A→CD y
 CD→E, por RI3 (transitiva) A→E es redundante.
 - Cubrimiento minimal de E. F={A→BCD,CD→E} (combinando partes derechas)

Inferencia
Clausura y Equivalencia
Conjunto minimal de DFs

Normalización - Clave de una Relación

Algoritmo Nro. 3 Búsqueda de una clave κ de R a partir de un conjunto de DFs

Marco General Inferencia Clausura y Equivalencia Conjunto minimal de DFs

Normalización - Clave de una Relación

Algoritmo Nro. 3 Búsqueda de una clave K de R a partir de un conjunto de DFs

Entrada: Relación R y un Conjunto de DFs F de R

- 1. K:=R
- 2. Para cada atributo A∈K

```
Computar (K-A)^+ con respecto a F
Si(K-A)^+ contiene todos los atributos de R entonces K:=K-\{A\}
```

Normalización - Clave de una Relación

Algoritmo Nro. 3 Búsqueda de una clave κ de R a partir de un conjunto de DFs

Entrada: Relación R y un Conjunto de DFs F de R

- 1. K:=R
- Para cada atributo A∈ K

```
Computar (K-A)^+ con respecto a F
Si(K-A)^+ contiene todos los atributos de R entonces K:=K-\{A\}
```

 Algoritmo determina una sola de las CK. Depende fuertemente de la manera en que son removidos los atributos

Normalización - Insuficiencia de formas normales

- Descomposición. Es la descomposición de R en un conjunto de esquemas
 D={R₁,R₂,...,R_m} de R
- Propiedad deseable Nro. 1. Se desea preservación de atributos

$$\bigcup_{i=1}^{m} R_i = R$$

Normalización - Preservación de DFs

- Propiedad deseable Nro. 2. Si X→Y en F, es deseable que o bien aparezca en algún esquema R_i de D o bien pueda ser inferida de las DFs de algún esquema R_i
- Importante. No es necesario que las DFs de F aparezcan en las Ri de D. Es suficiente que la unión de las DFs de cada Ri de D sea equivalente a F

Normalización - Preservación de DFs

- Propiedad deseable Nro. 2. Si $x \rightarrow Y$ en F, es deseable que o bien aparezca en algún esquema R_i de D o bien pueda ser inferida de las DFs de algún esquema R_i
- Importante. No es necesario que las DFs de F aparezcan en las Ri de D. Es suficiente que la unión de las DFs de cada Ri de D sea equivalente a F
- Proyección. Dado un conjunto de DFs F de R, la proyección de F sobre R_i, denotado como π_{R_i}(F) donde R_i es un subconjunto de R, es el conjunto de DFs X→Y en F⁺ tal que los atributos (X∪Y)⊆R_i

Normalización - Preservación de DFs

- Propiedad deseable Nro. 2. Si $x \rightarrow Y$ en F, es deseable que o bien aparezca en algún esquema R_i de D o bien pueda ser inferida de las DFs de algún esquema R_i
- Importante. No es necesario que las DFs de F aparezcan en las Ri de D. Es suficiente que la unión de las DFs de cada Ri de D sea equivalente a F
- Proyección. Dado un conjunto de DFs F de R, la proyección de F sobre R_i, denotado como π_{R_i}(F) donde R_i es un subconjunto de R, es el conjunto de DFs X→Y en F⁺ tal que los atributos (X∪Y)⊆R_i
- Preservación de DFs. La descomposición $D=\{R_1,R_2,...,R_m\}$ de R preserva dependencias con respecto a F si la unión de las proyecciones de F de cada R_i de D es equivalente a F. Es decir, si $(\pi_{R_1}(F)\cup...\cup\pi_{R_m}(F))^+=F^+$

Ejemplo 1. LOTES_1A

Descomposición Boyce-Codd FN (BCFN).

LOTES 1AX

id_Nacional Zonificación id_Provincial

LOTES_1AY

Zonificación Provincia

Ejemplo 1. LOTES 1A

<u>ic</u>	<u>l_Nacional</u>	Provincia	id_Provincial	Zonificación
DF1		1	↑	
DF2	1			
DF5		1		

Descomposición Boyce-Codd FN (BCFN).

LOTES_1AX	(
id_Nacional	Zonificación	id_Provincial

¿Esta descomposición preserva atributos?

• Ejemplo 1. LOTES_1A

<u>ic</u>	d_Nacional	Provincia	id_Provincial	Zonificación
DF1		^	^	
DF2				
DF5		1		

Descomposición Boyce-Codd FN (BCFN).

LOTES_1AX
| id_Nacional | Zonificación | id_Provincial

LOTES_1AY

Zonificación Provincia

¿Esta descomposición preserva atributos? ¡Sí!

Ejemplo 1. LOTES_1A

<u>i</u>	d_Nacional	Provincia	id_Provincial	Zonificación
DF1			<u> </u>	
DF2				
DF5		↑		

Descomposición Boyce-Codd FN (BCFN).

id_Nacional Zonificación id_Provincial

- ¿Esta descomposición preserva atributos? ¡Sí!
- ¿Esta descomposición preserva DFs?

• Ejemplo 1. LOTES_1A

<u>id</u>	_Nacional	Provincia	id_Provincial	Zonificación
DF1		^		
DF2	1			
DF5		1		

Descomposición Boyce-Codd FN (BCFN).

LOTES_1AX		
id_Nacional	Zonificación	id_Provincial

- ¿Esta descomposición preserva atributos? ¡Sí!
- ¿Esta descomposición preserva DFs? ¡NO! Se pierde DF 2

Descomposición en 2FN.

Descomposición en 2FN.

¿Esta descomposición preserva atributos?

Descomposición en 2FN.

¿Esta descomposición preserva atributos? ¡Sí!

Descomposición en 2FN.

- ¿Esta descomposición preserva atributos? ¡Sí!
- ¿Esta descomposición preserva DFs?

Descomposición en 2FN.

- ¿Esta descomposición preserva atributos? ¡Sí!
- ¿Esta descomposición preserva DFs? ¡Sí!

• Ejemplo 3.

Descomposición en 3FN.

LOTES_1A

- 1	id_Nacional	Provincia	id_Provincial	Zonificación
DF1		↑	↑	
DF2	↑		1	

LOTES 1B

Ejemplo 3.

Descomposición en 3FN.

LOTES_1A

• ¿Esta descomposición preserva atributos?

LOTES 1B

• Ejemplo 3.

DF2

Descomposición en 3FN.

• ¿Esta descomposición preserva atributos? ¡Sí!

• Ejemplo 3.

LOTES_1

Descomposición en 3FN.

- ¿Esta descomposición preserva atributos? ¡Sí!
- ¿Esta descomposición preserva DFs?

• Ejemplo 3.

DF2

Descomposición en 3FN.

- ¿Esta descomposición preserva atributos? ¡Sí!
- ¿Esta descomposición preserva DFs? ¡Sí!

Ejemplo 3.

LOTES_1

DF2

	id_Nacional	Provincia	id_Provincial	Zonificación	Precio_m2
DF1					
DF2					
DF4					

Descomposición en 3FN.

- ¿Esta descomposición preserva atributos? ¡Sí!
- ¿Esta descomposición preserva DFs? ¡Sí!

Afirmación Nro. 1

Siempre es posible encontrar una descomposición D con preservación de DFs con respecto a F tal que cada R_i en D se encuentre en 3FN

Zonificación

Normalización - Lossless Join

- Lossless Join informalmente. El cumplimiento de esta propiedad no permite la generación de tuplas espúreas cuando se realiza un NATURAL JOIN entre las relaciones resultantes de una descomposición
- Lossless Join formalmente. Una descomposición $D=\{R_1,R_2,...,R_m\}$ de R posee la propiedad lossless join con respecto al conjunto de DFs F de R si, para todo estado r(R) que satisface F, se cumple que $\bowtie(\pi_{R_1}(r),...,\pi_{R_m}(r))=r$

Algoritmo Nro. 4 Chequeo de propiedad Lossless Join

Algoritmo Nro. 4 Chequeo de propiedad Lossless Join

Entrada: R, descomposición $D=\{R_1,R_2,...,R_m\}$ de R y un conjunto de DFs F

- 1. Crear una matriz S con una fila i por cada R_i en D, y una columna j por cada atributo A_i en R
- 2. Para todo i,j asignar $S(i,j)=b_{jj}$ /*cada b_{jj} es un elemento distinto de la matriz*/
- 3. Para cada i,jSi $A_i \in R_i$ entonces $S(i,j) = a_i$ /*distingue a elementos que pertenecen a la relación R_i */
- 4. Repetir hasta que un loop completo no genere cambios en S

Para cada $X \rightarrow Y$ en F

Para todas las filas fs en S que tienen los mismos valores en los atributos de X

Hacer que los atributos en fs para cada columna y de Y tengan el mismo valor de la siguiente manera Si alguna de las fs en y tiene un simbolo a entonces asignarlo al resto de las fs en y

Sino elegir arbitrariamente un simbolo b de fs en y y asignarlo al resto de las fs en y

5. Si alguna fila de S posee la totalidad de elementos a entonces es lossless join, caso contrario no lo es

• Ejemplo 1. Sean

- R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
- R₁=EMP_UBICACION={E_Nombre,P_Ubicación}
- R₂=EMP_PROY1={E_CUIL,P_Número,P_Nombre,P_Ubicación,Horas}
- $D = \{R_1, R_2\}$
- F={

```
E\_CUIL \rightarrow E\_Nombre;

P\_N\'umero \rightarrow \{P\_Nombre; P\_Ubicaci\'on\};

\{E\_CUIL, P\_N\'umero\} \rightarrow Horas;\}
```

• Ejemplo 1. Sean

- R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
- R₁=EMP_UBICACION={E_Nombre,P_Ubicación}
- R₂=EMP_PROY1={E_CUIL,P_Número,P_Nombre,P_Ubicación,Horas}
- $D = \{R_1, R_2\}$
- F={

 $E_CUIL \rightarrow E_Nombre$;

 $P_N imero \rightarrow \{P_N ombre; P_U bicación\};$

 $\{E_CUIL, P_Número\} \rightarrow Horas;\}$

Paso 1.

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1						
R_2						

• Ejemplo 1. Sean

- R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
- R₁=EMP_UBICACION={E_Nombre,P_Ubicación}
- R₂=EMP_PROY1={E_CUIL,P_Número,P_Nombre,P_Ubicación,Horas}
- $D = \{R_1, R_2\}$
- F={

 $E_CUIL \rightarrow E_Nombre$;

 $P_N imero \rightarrow \{P_N ombre; P_U bicación\};$

 $\{E_CUIL, P_Número\} \rightarrow Horas;\}$

Paso 1.

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1						
₹2						

Paso 2.

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1	b ₁₁	b ₁₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	b ₂₃	b ₂₄	b ₂₅	b ₂₆

• Ejemplo 1. Sean

- R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
- R₁=EMP_UBICACION={ E_Nombre, P_Ubicación}
- R₂=EMP_PROY1={E_CUIL,P_Número,P_Nombre,P_Ubicación,Horas}

 b_{12}

- D={R₁,R₂}
- F={

 $E_-CUIL \rightarrow E_-Nombre$:

 $P_N imero \rightarrow \{P_N ombre; P_U bicación\};$

 $\{E_CUIL, P_Número\} \rightarrow Horas;\}$ R_1

Ro

Paso 1.

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
1	E CUIL	E Nombre	P Número	P Nombre	P Ubicación	Horas

- Paso 2.
 - b_{13} b22 b24 b₂₆ b23
- Paso 3.

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1	b ₁₁	a ₂	b ₁₃	b ₁₄	a ₅	b ₁₆
R_2	a ₁	b ₂₂	a ₃	a4	a ₅	a ₆

 b_{16}

 b_{14}

 b_{15}

• Ejemplo 1. Sean

- $\bullet \quad R = \{E_CUIL, E_Nombre, P_N\'umero, P_Nombre, P_Ubicaci\'on, Horas\}$
- R₁=EMP_UBICACION={E_Nombre,P_Ubicación}
- R₂=EMP_PROY1={E_CUIL,P_Número,P_Nombre,P_Ubicación,Horas}
- $D = \{R_1, R_2\}$
- F={

 $E_CUIL \rightarrow E_Nombre;$

 $P_N\'umero \rightarrow \{P_Nombre; P_Ubicaci\'on\};$

 $\{E_CUIL, P_N\'umero\} \rightarrow Horas;\}$

			,	. ,				
•	Paso 1.		E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
		R_1						
		R_2						
•	Paso 2.		E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
		R_1	b ₁₁	b ₁₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
		R_2	b ₂₁	b ₂₂	b ₂₃	b ₂₄	b ₂₅	b ₂₆
•	Paso 3.		E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
		R_1	b ₁₁	a ₂	b ₁₃	b ₁₄	a ₅	b ₁₆

• Paso 4. No modifica ningún símbolo b en a

• Ejemplo 1. Sean

- R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
- R₁=EMP_UBICACION={E_Nombre,P_Ubicación}
- $\blacksquare \ \ \, R_2 = EMP_PROY1 = \{E_CUIL, P_N\'umero, P_Nombre, P_Ubicaci\'on, Horas\}$
- $D = \{R_1, R_2\}$
- F={

 $E_CUIL \rightarrow E_Nombre$;

 $P_N imero \rightarrow \{P_N ombre; P_U bicación\};$

 $\{\textit{E_CUIL}, \textit{P_N\'umero}\} \!\rightarrow\! \textit{Horas};\}$

•	Paso 1.		E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
		R_1						
		R_2						
•	Paso 2.		E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
		R_1	b ₁₁	b ₁₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
		R_2	b ₂₁	b ₂₂	b ₂₃	b ₂₄	b ₂₅	b ₂₆
•	Paso 3.		E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
		R_1	b ₁₁	a ₂	b ₁₃	b ₁₄	a ₅	b ₁₆

- Paso 4. No modifica ningún símbolo b en a
- Paso 5. No hay ninguna fila en S que posea a en la totalidad de valores, por lo tanto la descomposición no es lossless join

• Ejemplo 1. Sean

- $\bullet \quad R = \{E_CUIL, E_Nombre, P_N\'umero, P_Nombre, P_Ubicaci\'on, Horas\}$
- R₁=EMP={E_CUIL,E_Nombre}
- R₂=PROY={P_Número,P_Nombre,P_Ubicación}
- $\bullet \quad R_3 = TRABAJA_EN = \{ \textit{E_CUIL}, \textit{P_N\'umero}, \textit{Horas} \}$
- $D = \{R_1, R_2, R_3\}$
- F={ E_CUIL→E_Nombre; P_Número→{P_Nombre; P_Ubicación}; {E_CUIL,P_Número}→Horas;}

• Ejemplo 1. Sean

- R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
- R₁=EMP={E_CUIL,E_Nombre}
- R₂=PROY={P_Número,P_Nombre,P_Ubicación}
- $\bullet \quad R_3 {=} \, TRABAJA_EN {=} \{ E_CUIL, P_N\'umero, Horas \}$
- $D = \{R_1, R_2, R_3\}$
- $F = \{ E_CUIL \rightarrow E_Nombre; P_N\'umero \rightarrow \{ P_Nombre; P_Ubicaci\'on \}; \{ E_CUIL, P_N\'umero \} \rightarrow Horas; \}$
- Paso 1.

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1						
R_2						
R ₃						

• Ejemplo 1. Sean

- $\bullet \quad R = \{E_CUIL, E_Nombre, P_N\'umero, P_Nombre, P_Ubicaci\'on, Horas\}$
- R₁=EMP={E_CUIL,E_Nombre}
- R₂=PROY={P_Número,P_Nombre,P_Ubicación}
- $\bullet \quad R_3 = TRABAJA_EN = \{ \textit{E_CUIL}, \textit{P_N\'umero}, \textit{Horas} \}$
- $D = \{R_1, R_2, R_3\}$
- F={ E_CUIL→E_Nombre; P_Número→{P_Nombre;P_Ubicación}; {E_CUIL,P_Número}→Horas;}
- Paso 1.

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
₹1						
₹2						
3						

Paso 2.

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1	b ₁₁	b ₁₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	b ₂₃	b ₂₄	b ₂₅	b ₂₆
R_3	b ₃₁	b ₃₂	b ₃₃	b ₃₄	b ₃₅	b ₃₆

• Ejemplo 1. Sean

- R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
- R₁=EMP={E_CUIL,E_Nombre}
- R₂=PROY={P_Número,P_Nombre,P_Ubicación}
- $\bullet \quad R_3 {=} \, TRABAJA_EN {=} \{ E_CUIL, P_N\'umero, Horas \}$
- $D = \{R_1, R_2, R_3\}$
- F={ E_CUIL→E_Nombre; P_Número→{P_Nombre;P_Ubicación}; {E_CUIL,P_Número}→Horas;}
- Paso 1.

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
₹1						
₹2						
3						

Paso 2.

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1	b ₁₁	b ₁₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	b ₂₃	b ₂₄	b ₂₅	b ₂₆
R_3	b ₃₁	b ₃₂	b ₃₃	b ₃₄	b ₃₅	b ₃₆

Paso 3.

-						
	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a ₃	a ₄	a ₅	b ₂₆
R_3	a_1	b ₃₂	a ₃	b ₃₄	b ₃₅	a ₆

• Ejemplo 1. Sean

- R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
- $R_1 = EMP = \{E_CUIL, E_Nombre\}$
- R₂=PROY={P_Número,P_Nombre,P_Ubicación}
- $\bullet \quad R_3 {=} TRABAJA_EN {=} \{ E_CUIL, P_N\'umero, Horas \}$
- $D = \{R_1, R_2, R_3\}$
- F={ E_CUIL→E_Nombre; P_Número→{P_Nombre; P_Ubicación}; {E_CUIL.P_Número}→Horas:}

• Ejemplo 1. Sean

- R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
- R₁=EMP={E_CUIL,E_Nombre}
- R₂=PROY={P_Número,P_Nombre,P_Ubicación}
- $R_3 = TRABAJA_EN = \{E_CUIL, P_N\'umero, Horas\}$
- $D = \{R_1, R_2, R_3\}$
- F={ E_CUIL→E_Nombre; P_Número→{P_Nombre;P_Ubicación}; {E_CUIL,P_Número}→Horas;}
- Paso 4. E_CUIL → E_Nombre

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a ₃	a4	a ₅	b ₂₆
R_3	a_1	<i>b</i> p\$\$ ≥ 22	a ₃	b ₃₄	b ₃₅	a ₆

• Ejemplo 1. Sean

- R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
- R₁=EMP={E_CUIL,E_Nombre}
- R₂=PROY={P_Número,P_Nombre,P_Ubicación}
- R₃=TRABAJA_EN={E_CUIL,P_Número,Horas}
- $D = \{R_1, R_2, R_3\}$
- $F = \{ E_CUIL \rightarrow E_Nombre; P_N\'umero \rightarrow \{ P_Nombre; P_Ubicaci\'on \}; \{ E_CUIL, P_N\'umero \} \rightarrow Horas; \}$
- Paso 4. E_CUIL → E_Nombre

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a ₃	a4	a ₅	b ₂₆
R_3	a_1	<i>ф</i> фф а2	a ₃	b ₃₄	b ₃₅	a ₆

Paso 4. P_Número → {P_Nombre: P_Ubicación}

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a ₃	a4	a ₅	b ₂₆
R_3	a_1	<i>р</i> _{ββ} а ₂	a ₃	Þ\$A ∂4	\$\$\$ a₅	a ₆

• Ejemplo 1. Sean

- R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
- R₁=EMP={E_CUIL,E_Nombre}
- R₂=PROY={P_Número,P_Nombre,P_Ubicación}
- $\bullet \quad R_3 = TRABAJA_EN = \{ E_CUIL, P_N\'umero, Horas \}$
- $D = \{R_1, R_2, R_3\}$
- F={ E_CUIL→E_Nombre; P_Número→{P_Nombre;P_Ubicación}; {E_CUIL,P_Número}→Horas;}
- Paso 4. E_CUII → F_Nombre

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a ₃	a4	a ₅	b ₂₆
R_3	a ₁	<i>b</i> ≱≱ a₂	a ₃	b ₃₄	b ₃₅	a ₆

Paso 4. P_Número → {P_Nombre: P_Ubicación}

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a ₃	a4	a ₅	b ₂₆
R_3	a_1	<i>þ</i> ¢¢ a₂	a ₃	<i>\$</i> \$\$ a 4	<i>\$</i> \$\$ a₅	a ₆

• Paso 4. {E_CUIL,P_Número}→Horas no produce cambios en S

• Ejemplo 1. Sean

- R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
- R₁=EMP={E_CUIL,E_Nombre}
- R₂=PROY={P_Número,P_Nombre,P_Ubicación}
- $\bullet \quad R_3 = TRABAJA_EN = \{E_CUIL, P_N\'umero, Horas\}$
- $D = \{R_1, R_2, R_3\}$
- $F = \{ E_CUIL \rightarrow E_Nombre; P_N\'umero \rightarrow \{ P_Nombre; P_Ubicaci\'on \}; \{ E_CUIL, P_N\'umero \} \rightarrow Horas; \}$
- Paso 4. E_CUII → F_Nombre

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a ₃	a4	a ₅	b ₂₆
R_3	a_1	<i>ф</i> фф а2	a ₃	b ₃₄	b ₃₅	a ₆

Paso 4. P_Número → {P_Nombre: P_Ubicación}

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a ₃	a ₄	a ₅	b ₂₆
R_3	a_1	<i>b</i> β¢ a₂	a ₃	<i>\$</i> \$\$ a₄	<i>b</i> _{8,5} a ₅	a ₆

- Paso 4. $\{E_CUIL, P_N\'umero\} \rightarrow Horas$ no produce cambios en S
- Paso 4. Nueva vuelta sobre TODAS las DFs F no produce cambios en S

• Ejemplo 1. Sean

- R={E_CUIL,E_Nombre,P_Número,P_Nombre,P_Ubicación,Horas}
- R₁=EMP={E_CUIL,E_Nombre}
- R₂=PROY={P_Número,P_Nombre,P_Ubicación}
- $\bullet \quad R_3 = TRABAJA_EN = \{ E_CUIL, P_N\'umero, Horas \}$
- $D = \{R_1, R_2, R_3\}$
- $\bullet \quad F = \{ \ E_CUIL \rightarrow E_Nombre; \ P_Número \rightarrow \{ P_Nombre; P_Ubicación \}; \\ \{ E_CUIL, P_Número \} \rightarrow Horas; \}$
- Paso 4. E_CUII → F_Nombre

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a ₃	a ₄	a ₅	b ₂₆
R_3	a ₁	<i>b</i> ≱≱ a₂	a ₃	b ₃₄	b ₃₅	a ₆

Paso 4. P_Número→{P_Nombre;P_Ubicación}

	E_CUIL	E_Nombre	P_Número	P_Nombre	P_Ubicación	Horas
R_1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a ₃	a4	a ₅	b ₂₆
R_3	a_1	<i>ф</i> ф а2	a ₃	Þ\$A 24	\$\$\$ ≥5	a ₆

- Paso 4. {E_CUIL,P_Número}→Horas no produce cambios en S
- Paso 4. Nueva vuelta sobre TODAS las DFs F no produce cambios en S
- Paso 5. Ultima fila de S posee la totalidad de sus valores en a, por lo tanto la descomposición es lossless join

- Caso especial. Existe algoritmo más sencillo en caso de descomposición binaria
- Limitación. Sólo descomposición binaria
- Chequeo Lossless Join para descomposición binaria. También denominado NJB (Nonadditive Join Test for Binary Decompositions)
- NJB. Una descomposición D={R₁,R₂} de R cumple con la propiedad de lossless join, con respecto a un conjunto de DFs F de R sí y sólo sí
 - La DF $(R_1 \cap R_2 \to R_1 R_2) \in F^+$, o
 - La DF $(R_1 \cap R_2 \to R_2 R_1) \in F^+$

Ejemplo.

DF1 DF2

Descomposición 1. (Estudiante en ambas relaciones)

<u>Estudiante</u> <u>Instructor</u> <u>Estudiante</u> <u>Materia</u>

Ejemplo.

DF1 DF2

Descomposición 1. (Estudiante en ambas relaciones)

_	Desconiposición I.		1 - 3 - 6	andrice cir	arribas relaci	01103	,		
	<u>Estudiante</u>	Instru	ctor			Es	<u>tudiante</u>	<u>Materia</u>	

- La DF $(R_1 \cap R_2 \to R_1 R_2) \in F^+ \equiv (\textit{Estudiante} \to \textit{Intructor}) \in F^+$,0
- La DF $(R_1 \cap R_2 \rightarrow R_2 R_1) \in F^+ \equiv (\textit{Estudiante} \rightarrow \textit{Materia}) \in F^+$

Ejemplo.

DF1 DF2

• Descomposición 1. (Estudiante en ambas relaciones)

_	D cocomposicion 1.		Estadiante en ambas relació			11037		
	<u>Estudiante</u>	Instru	ctor		E	<u>studiante</u>	<u>Materia</u>	

- La DF $(R_1 \cap R_2 \rightarrow R_1 R_2) \in F^+ \equiv (\textit{Estudiante} \rightarrow \textit{Intructor}) \in F^+$,0
- La DF $(R_1 \cap R_2 \rightarrow R_2 R_1) \in F^+ \equiv (\textit{Estudiante} \rightarrow \textit{Materia}) \in F^+$
- Descomposición 1 ¿Cumple Lossless join?

Ejemplo.

DF1 DF2

Descomposición 1. (Estudiante en ambas relaciones)

<u>Estudiante</u>	Instructor	<u> </u>	Estudiante	<u>Materia</u>

- La DF $(R_1 \cap R_2 \rightarrow R_1 R_2) \in F^+ \equiv (\textit{Estudiante} \rightarrow \textit{Intructor}) \in F^+$,0
- La DF $(R_1 \cap R_2 \rightarrow R_2 R_1) \in F^+ \equiv (\textit{Estudiante} \rightarrow \textit{Materia}) \in F^+$
- Descomposición 1 ¿Cumple Lossless join? ¡No! porque no cumple con ninguna de las dos condiciones

Ejemplo.

DF1 DF2

Descomposición 2. (Materia en ambas relaciones)

Materia Instructor Materia Estudiante

Ejemplo.

DF1 DF2

• Descomposición 2. (Materia en ambas relaciones)

Materia <u>Instructor</u> <u>Materia Estudiante</u>

- La DF $(R_1 \cap R_2 \rightarrow R_1 R_2) \in F^+ \equiv (Materia \rightarrow Intructor) \in F^+$, o
- La DF $(R_1 \cap R_2 \rightarrow R_2 R_1) \in F^+ \equiv (Materia \rightarrow Estudiante) \in F^+$

Ejemplo.

DF1 DF2

• Descomposición 2. (Materia en ambas relaciones)

Materia <u>Instructor</u> <u>Estudiante</u>

- La DF $(R_1 \cap R_2 \rightarrow R_1 R_2) \in F^+ \equiv (Materia \rightarrow Intructor) \in F^+$,0
- La DF $(R_1 \cap R_2 \rightarrow R_2 R_1) \in F^+ \equiv (Materia \rightarrow Estudiante) \in F^+$
- Descomposición 2 ¿Cumple Lossless join?

Ejemplo.

DF1 DF2

• Descomposición 2. (Materia en ambas relaciones)

Materia	Instructor	<u>Materia</u>	<u>Estudiante</u>

- La DF $(R_1 \cap R_2 \rightarrow R_1 R_2) \in F^+ \equiv (Materia \rightarrow Intructor) \in F^+$, o
- La DF $(R_1 \cap R_2 \rightarrow R_2 R_1) \in F^+ \equiv (Materia \rightarrow Estudiante) \in F^+$
- Descomposición 2 ¿Cumple Lossless join? ¡No! porque no cumple con ninguna de las dos condiciones

Ejemplo.

DF1 DF2

Estudiante

Ejemplo.

DF1 DF2

• Descomposición 3. (Instructor en ambas relaciones)

_	Descomposición 3. (mistractor en ambas relaciones)						
	Instructor	Materia	Inst	tructor	<u>Estudiante</u>		

- La DF $(R_1 \cap R_2 \rightarrow R_1 R_2) \in F^+ \equiv (Instructor \rightarrow Materia) \in F^+$, o
- La DF $(R_1 \cap R_2 \rightarrow R_2 R_1) \in F^+ \equiv (Instructor \rightarrow Estudiante) \in F^+$

Ejemplo.

DF1 DF2

• Descomposición 3. (Instructor en ambas relaciones)

_	Cocomposici	OII O. (1115CI	uccoi	cii aiiibas	relacion	100)		
	<u>Instructor</u>	Materia				<u>Instructor</u>	<u>Estudiante</u>	

- La DF $(R_1 \cap R_2 \rightarrow R_1 R_2) \in F^+ \equiv (Instructor \rightarrow Materia) \in F^+$,0
- La DF $(R_1 \cap R_2 \rightarrow R_2 R_1) \in F^+ \equiv (Instructor \rightarrow Estudiante) \in F^+$
- Descomposición 3 ¿Cumple Lossless join?

Ejemplo.

DF1 DF2

Descomposición 3. (Instructor en ambas relaciones)

Instructor	Materia		Instructor	<u>Estudiante</u>
		-		

- La DF $(R_1 \cap R_2 \to R_1 R_2) \in F^+ \equiv (\textit{Instructor} \to \textit{Materia}) \in F^+$,0
- La DF $(R_1 \cap R_2 \rightarrow R_2 R_1) \in F^+ \equiv (Instructor \rightarrow Estudiante) \in F^+$
- Descomposición 3 ¿Cumple Lossless join? ¡Sí! porque se cumple al menos una de las dos condiciones: (Instructor → Materia) ∈ F⁺

Normalización - Lossless Join - Descomposiciones sucesivas

 Recapitulando. En ejemplos previos utilizamos descomposiciones sucesivas al pasar a R a 2FN y luego a 3FN

Afirmación Nro. 2

Si se cumplen las siguientes condiciones:

- Una descomposición $D=\{R_1,R_2,...,R_m\}$ de R cumple la propiedad de lossless join con respecto a F de R
- Una descomposición $D_i = \{Q_1, Q_2, ..., Q_k\}$ de R_i cumple la propiedad de lossless join con respecto a la proyección de F sobre R_i

Entonces la descomposición $D_2=\{R_1,R_2,...R_{i-1},Q_1,Q_2,...,Q_k,R_{i+1},...,R_m\}$ de R cumple con la propiedad lossless join con respecto a F de R

Algoritmo Nro. D1 Descomposición en 3FN

Algoritmo Nro. D1 Descomposición en 3FN

Entrada: R universal y un conjunto de DFs F sobre R

- 1. Hallar el cubrimiento minimal G de F (utilizar algoritmo ya dado)
- Para cada lado izquierdo X de cada DF que aparece en G
 Crear una relación en D con atributos {X∪{A₁}∪{A₂}∪…∪{A_k}} siendo X → A₁, X → A₂, ..., X → A_k las únicas dependencias en G con X como lado izquierdo (X es la clave de esta relación)
- 3. Si ninguna relación en D contiene una clave de R
 entonces crear una relación adicional en D que contenga
 atributos que formen una clave de R (se puede utilizar algoritmo ya dado)
- 4. Eliminar relaciones redundantes de D. Una relación R de D es redundante si R es una proyección de otra relación S de D

- Ejemplo 1.
 - $\qquad \qquad U \! = \! \{ E_CUIL, P_N\'umero, E_Salario, E_Tel\'efono, D_N\'umero, P_Nombre, P_Ubicaci\'on \}$
 - F={ FD1: E_CUIL→{E_Salario,E_Teléfono,D_Número}, FD2: P_Número→{P_Nombre,P_Ubicación}, FD3:{E_CUIL,P_Número}→{E_Salario,E_Teléfono,D_Número,P_Nombre,P_Ubicación}}
 - {E_CUIL,P_Número} representa una clave de la relación U (por FD3)

Ejemplo 1.

- $\qquad \qquad U \! = \! \{ E_CUIL, P_N\'umero, E_Salario, E_Tel\'efono, D_N\'umero, P_Nombre, P_Ubicaci\'on \}$
- F={ FD1: E_CUIL→{E_Salario,E_Teléfono,D_Número},
 FD2: P_Número→{P_Nombre,P_Ubicación},

```
FD3: \{\textit{E\_CUIL}, \textit{P\_N\'umero}\} \rightarrow \{\textit{E\_Salario}, \textit{E\_Tel\'efono}, \textit{D\_N\'umero}, \textit{P\_Nombre}, \textit{P\_Ubicaci\'on}\}\}
```

- {E_CUIL,P_Número} representa una clave de la relación U (por FD3)
- Paso 1. Aplicando algoritmo de minimal cover, en su paso 3 se observa
 - P_Número es atributo extraño en {E_CUIL,P_Número}→{E_Salario,E_Teléfono,D_Número}
 - E_CUIL es atributo extraño en $\{E_CUIL, P_N\'umero\} \rightarrow \{P_Nombre, P_Ubicaci\'on\}$
 - Así, cubrimiento minimal = FD1 y FD2 (FD3 es redundante).
 Agrupando atributos con mismo lado izg. en una sola DF:

```
Cubrimiento minimal G = \{E\_CUIL \rightarrow \{E\_Salario, E\_Teléfono, D\_Número\},\
```

 $P_N imero \rightarrow \{P_N ombre, P_U bicación\}\}$

- Ejemplo 1.
 - $\qquad \qquad U \! = \! \{ E_CUIL, P_N\'umero, E_Salario, E_Tel\'efono, D_N\'umero, P_Nombre, P_Ubicaci\'on \}$
 - F={ FD1: E_CUIL→{E_Salario,E_Teléfono,D_Número},
 FD2: P_Número→{P_Nombre,P_Ubicación}.

```
FD3: \{E\_CUIL, P\_N\'umero\} \rightarrow \{E\_Salario, E\_Tel\'efono, D\_N\'umero, P\_Nombre, P\_Ubicaci\'on\}\}
```

- {E_CUIL,P_Número} representa una clave de la relación U (por FD3)
- Paso 1. Aplicando algoritmo de minimal cover, en su paso 3 se observa
 - P_Número es atributo extraño en {E_CUIL,P_Número}→{E_Salario,E_Teléfono,D_Número}
 - E_CUIL es atributo extraño en $\{E_CUIL, P_N\'umero\} \rightarrow \{P_Nombre, P_Ubicaci\'on\}$
 - Así, cubrimiento minimal = FD1 y FD2 (FD3 es redundante).
 Agrupando atributos con mismo lado izq. en una sola DF:

```
Cubrimiento minimal G = \{E\_CUIL \rightarrow \{E\_Salario, E\_Teléfono, D\_Número\}, P\_Número \rightarrow \{P\_Nombre, P\_Ubicación\}\}
```

- Paso 2. Producir relaciones R_1 y R_2
 - R₁=(<u>E_CUIL</u>, E_Salario, E_Teléfono, D_Número)
 - R₂=(P_Número, P_Nombre, P_Ubicación)

- Ejemplo 1.
 - $\qquad \qquad U \! = \! \{ E_CUIL, P_N\'umero, E_Salario, E_Tel\'efono, D_N\'umero, P_Nombre, P_Ubicaci\'on \}$
 - F={ FD1: E_CUIL→{E_Salario,E_Teléfono,D_Número},
 FD2: P_Número→{P_Nombre,P_Ubicación}.

```
FD3: F\_Numero \rightarrow \{F\_Nombre, F\_Oblcactorf\},

FD3: \{E\_CUIL.P\_Número\} \rightarrow \{E\_Salario, E\_Teléfono, D\_Número, P\_Nombre, P\_Ubicación\}\}
```

- {E_CUIL,P_Número} representa una clave de la relación U (por FD3)
- Paso 1. Aplicando algoritmo de minimal cover, en su paso 3 se observa
 - P_Número es atributo extraño en {E_CUIL,P_Número}→{E_Salario,E_Teléfono,D_Número}
 - E_CUIL es atributo extraño en $\{E_CUIL, P_N\'umero\} \rightarrow \{P_Nombre, P_Ubicaci\'on\}$
 - Así, cubrimiento minimal = FD1 y FD2 (FD3 es redundante).
 Agrupando atributos con mismo lado iza, en una sola DF:

Agrupando atributos con mismo lado izq. en una sola DE: Cubrimiento minimal $G = \{E.CUIL \rightarrow \{E.Salario, E.Teléfono, D.Número\},\$

```
P_N \text{ umero} \rightarrow \{P_N \text{ ombre}, P_U \text{ bicación}\}\}
```

- Paso 2. Producir relaciones R_1 y R_2
 - R₁=(E_CUIL,E_Salario,E_Teléfono,D_Número)
 - R₂=(<u>P_Número</u>,P_Nombre,P_Ubicación)
- Paso 3. Generar R₃ adicional con clave de U. Obteniendo finalmente:
 - R₁=(<u>E_CUIL</u>, E_Salario, E_Teléfono, D_Número)
 - R₂=(<u>P_Número</u>,P_Nombre,P_Ubicación)
 - R₃=(<u>E_CUIL</u>, <u>P_Número</u>)

- U={id_Nacional, Provincia, id_Provincial, Zonificación}
- $F=\{\ FD1:\ id_Nacional \rightarrow \{Provincia,id_Provincial,Zonificación\}, \ FD2:\{Provincia,id_Provincial\} \rightarrow \{id_Nacional,Zonificación\}, \ FD3:Zonificación \rightarrow Provincia\}$
- Abreviaremos N=id_Nacional, V=Provincia, P=id_Provincial, Z=Zonificación}
- $\bullet \quad F = \{ N \rightarrow VPZ, VP \rightarrow NZ, Z \rightarrow V \}$

- U={id_Nacional, Provincia, id_Provincial, Zonificación}
- $$\begin{split} \bullet & F \! = \! \{ \ FD1: \ id_Nacional \! \to \! \{ Provincia_id_Provincial_Zonificaci\'on \} \,, \\ & FD2: \{ Provincia_id_Provincial \} \! \to \! \{ id_Nacional_Zonificaci\'on \} \,, \\ & FD3: Zonificaci\'on \! \to \! Provincia \} \end{split}$$
- Abreviaremos N=id_Nacional, V=Provincia, P=id_Provincial, Z=Zonificación}
- $F = \{N \rightarrow VPZ, VP \rightarrow NZ, Z \rightarrow V\}$
- Paso 1.
 - Aplicando algoritmo de minimal cover, en su paso 2 se obtiene
 F={N→V,N→P,N→Z,VP→N,VP→Z,Z→V}
 - Y en su paso 4, se observa que N→Z es redundante (se obtiene por transitividad de N→VP y VP→Z)
 - Así Cubrimiento minimal $G = \{N \rightarrow VP, VP \rightarrow NZ, Z \rightarrow V\}$

- U={id_Nacional, Provincia, id_Provincial, Zonificación}
- $$\begin{split} \bullet & F \! = \! \{ \ FD1: \ id_Nacional \! \to \! \{ Provincia_id_Provincial_Zonificaci\'on \} \,, \\ & FD2: \{ Provincia_id_Provincial \} \! \to \! \{ id_Nacional_Zonificaci\'on \} \,, \\ & FD3: Zonificaci\'on \! \to \! Provincia \} \end{split}$$
- Abreviaremos N=id_Nacional, V=Provincia, P=id_Provincial, Z=Zonificación}
- $F = \{N \rightarrow VPZ, VP \rightarrow NZ, Z \rightarrow V\}$
- Paso 1.
 - Aplicando algoritmo de minimal cover, en su paso 2 se obtiene
 F={N→V,N→P,N→Z,VP→N,VP→Z,Z→V}
 - Y en su paso 4, se observa que N→Z es redundante (se obtiene por transitividad de N→VP y VP→Z)
 - Así Cubrimiento minimal $G = \{N \rightarrow VP, VP \rightarrow NZ, Z \rightarrow V\}$
- Paso 2. Producir relaciones R₁, R₂ y R₃
 - $R_1=(N,V,P)$
 - $R_2 = (\underline{V}, \underline{P}, N, Z)$
 - $R_3=(\underline{Z},V)$

- U={id_Nacional, Provincia, id_Provincial, Zonificación}
- $F = \{ FD1: id_Nacional \rightarrow \{ Provincia, id_Provincial, Zonificación \}, \\ FD2: \{ Provincia, id_Provincial \} \rightarrow \{ id_Nacional, Zonificación \}, \\ FD3: Zonificación \rightarrow Provincia \}$
- Abreviaremos N=id_Nacional, V=Provincia, P=id_Provincial, Z=Zonificación}
- $\bullet \quad F = \{N \rightarrow VPZ, VP \rightarrow NZ, Z \rightarrow V\}$
- Paso 1.
 - Aplicando algoritmo de minimal cover, en su paso 2 se obtiene
 F={N→V,N→P,N→Z,VP→N,VP→Z,Z→V}
 - Y en su paso 4, se observa que N→Z es redundante (se obtiene por transitividad de N→VP y VP→Z)
 - Así Cubrimiento minimal $G = \{N \rightarrow VP, VP \rightarrow NZ, Z \rightarrow V\}$
- Paso 2. Producir relaciones R₁, R₂ y R₃
 - $P_1 = (N, V, P)$
 - $R_2 = (\underline{V}, \underline{P}, N, Z)$
 - $R_3=(\underline{Z},V)$
- Paso 4. R_3 y R_1 ambas son proyecciones de R_2 . Por lo tanto, ambas son redundantes

- $\qquad \qquad U \! = \! \{ \mathit{id_Nacional}, \! \mathit{Provincia}, \! \mathit{id_Provincial}, \! \mathit{Zonificación} \}$
- F={ FD1: id_Nacional→{Provincia,id_Provincial,Zonificación},
 FD2:{Provincia,id_Provincial}→{id_Nacional,Zonificación},
 FD3:Zonificación→Provincia}
- Abreviaremos N=id_Nacional, V=Provincia, P=id_Provincial, Z=Zonificación}
- $F = \{N \rightarrow VPZ, VP \rightarrow NZ, Z \rightarrow V\}$
- Paso 1.
 - Aplicando algoritmo de minimal cover, en su paso 2 se obtiene
 F={N→V,N→P,N→Z,VP→N,VP→Z,Z→V}
 - Y en su paso 4, se observa que N→Z es redundante (se obtiene por transitividad de N→VP y VP→Z)
 - Así Cubrimiento minimal $G = \{N \rightarrow VP, VP \rightarrow NZ, Z \rightarrow V\}$
- Paso 2. Producir relaciones R₁, R₂ y R₃
 - $P_1 = (N, V, P)$
 - $R_2 = (\underline{V}, \underline{P}, N, Z)$
 - R₃=(<u>Z</u>,V)
- Paso 4. R₃ y R₁ ambas son proyecciones de R₂. Por lo tanto, ambas son redundantes
- Así, la descomposición obtenida en 3FN es $R_2 = (\underline{V}, \underline{P}, N, Z)$ ¡Que es idéntica a la original!

- U={id_Nacional, Provincia, id_Provincial, Zonificación}
- $F=\{\ FD1:\ id_Nacional \rightarrow \{Provincia,id_Provincial,Zonificación\}, \ FD2:\{Provincia,id_Provincial\} \rightarrow \{id_Nacional,Zonificación\}, \ FD3:Zonificación \rightarrow Provincia\}$
- Abreviaremos N=id_Nacional, V=Provincia, P=id_Provincial, Z=Zonificación}
- $\bullet \quad F = \{ N \rightarrow VPZ, VP \rightarrow NZ, Z \rightarrow V \}$

Ejemplo 2.B.

- U={id_Nacional, Provincia, id_Provincial, Zonificación}
- $$\begin{split} \bullet & F \! = \! \{ \ FD1: \ id_Nacional \! \to \! \{ Provincia_id_Provincial_Zonificaci\'on \} \,, \\ & FD2: \{ Provincia_id_Provincial \} \! \to \! \{ id_Nacional_Zonificaci\'on \} \,, \\ & FD3: Zonificaci\'on \! \to \! Provincia \} \end{split}$$
- Abreviaremos N=id_Nacional, V=Provincia, P=id_Provincial, Z=Zonificación}
- $F = \{N \rightarrow VPZ, VP \rightarrow NZ, Z \rightarrow V\}$
- Paso 1.
 - Aplicando algoritmo de minimal cover, en su paso 2 se obtiene
 F={N→V,N→P,N→Z,VP→N,VP→Z,Z→V}
 - Y en su paso 4, de manera alternativa, se observa que VP→Z es redundante (se obtiene por transitividad de VP→N y N→Z)
 - También $N \rightarrow V$ es redundante (transitividad de $N \rightarrow Z$ y $Z \rightarrow V$)
 - Así, se obtiene un cubrimiento minimal alternativo:

Cubrimiento minimal $G = \{N \rightarrow PZ, VP \rightarrow N, Z \rightarrow V\}$

- U={id_Nacional, Provincia, id_Provincial, Zonificación}
- F={ FD1: id_Nacional→{Provincia,id_Provincial,Zonificación},
 FD2:{Provincia,id_Provincial}→{id_Nacional,Zonificación},
 FD3:Zonificación→Provincia}
- Abreviaremos N=id_Nacional, V=Provincia, P=id_Provincial, Z=Zonificación}
- $F = \{N \rightarrow VPZ, VP \rightarrow NZ, Z \rightarrow V\}$
- Paso 1.
 - Aplicando algoritmo de minimal cover, en su paso 2 se obtiene
 F={N→V,N→P,N→Z,VP→N,VP→Z,Z→V}
 - Y en su paso 4, de manera alternativa, se observa que VP→Z es redundante (se obtiene por transitividad de VP→N y N→Z)
 - También $N \rightarrow V$ es redundante (transitividad de $N \rightarrow Z$ y $Z \rightarrow V$)
 - Así, se obtiene un cubrimiento minimal alternativo:
 Cubrimiento minimal G={N→PZ.VP→N.Z→V}
- Paso 2. Producir relaciones R1, R2 y R3
 - $R_1=(N,P,Z)$
 - $R_2=(V,P,N)$
 - $R_3 = (\underline{Z}, V)$

- U={id_Nacional, Provincia, id_Provincial, Zonificación}
- F={ FD1: id_Nacional→{Provincia,id_Provincial,Zonificación},
 FD2:{Provincia,id_Provincial}→{id_Nacional,Zonificación},
 FD3:Zonificación→Provincia}
- Abreviaremos N=id_Nacional, V=Provincia, P=id_Provincial, Z=Zonificación}
- $F = \{N \rightarrow VPZ, VP \rightarrow NZ, Z \rightarrow V\}$
- Paso 1.
 - Aplicando algoritmo de minimal cover, en su paso 2 se obtiene
 F={N→V,N→P,N→Z,VP→N,VP→Z,Z→V}
 - Y en su paso 4, de manera alternativa, se observa que VP→Z es redundante (se obtiene por transitividad de VP→N y N→Z)
 - También $N \rightarrow V$ es redundante (transitividad de $N \rightarrow Z$ y $Z \rightarrow V$)
 - Así, se obtiene un cubrimiento minimal alternativo:
 Cubrimiento minimal G={N→PZ,VP→N,Z→V}
- Paso 2. Producir relaciones R_1 , R_2 y R_3
 - $R_1=(N,P,Z)$
 - $R_2 = (\underline{V}, \underline{P}, N)$
 - R₃=(<u>Z</u>,V)
- Paso 4. Ninguna es proyecciones de otra. Por lo tanto, es el resultado final

- Ejemplo 2.B.
 - U={id_Nacional, Provincia, id_Provincial, Zonificación}
 - F={ FD1: id_Nacional→{Provincia,id_Provincial,Zonificación},
 FD2:{Provincia,id_Provincial}→{id_Nacional,Zonificación},
 FD3:Zonificación→Provincia}
 - Abreviaremos N=id_Nacional, V=Provincia, P=id_Provincial, Z=Zonificación}
 - $F = \{N \rightarrow VPZ, VP \rightarrow NZ, Z \rightarrow V\}$
 - Paso 1.
 - Aplicando algoritmo de minimal cover, en su paso 2 se obtiene
 F={N→V,N→P,N→Z,VP→N,VP→Z,Z→V}
 - Y en su paso 4, de manera alternativa, se observa que VP→Z es redundante (se obtiene por transitividad de VP→N y N→Z)
 - También $N \rightarrow V$ es redundante (transitividad de $N \rightarrow Z$ y $Z \rightarrow V$)
 - Así, se obtiene un cubrimiento minimal alternativo:
 Cubrimiento minimal G={N→PZ,VP→N,Z→V}
 - Paso 2. Producir relaciones R₁, R₂ y R₃
 - $R_1=(N,P,Z)$
 - $R_2 = (\underline{V}, \underline{P}, N)$
 - $R_3 = (\underline{Z}, V)$
 - Paso 4. Ninguna es proyecciones de otra. Por lo tanto, es el resultado final ¡Pero difiere del ejemplo anterior!

- U={id_Nacional, Provincia, id_Provincial, Zonificación}
- F={ FD1: id_Nacional→{Provincia,id_Provincial,Zonificación}, FD2:{Provincia,id_Provincial}→{id_Nacional,Zonificación}, FD3:Zonificación→Provincia}
- Abreviaremos N=id_Nacional, V=Provincia, P=id_Provincial, Z=Zonificación}
- $F = \{N \rightarrow VPZ, VP \rightarrow NZ, Z \rightarrow V\}$
- cubrimiento minimal alternativo: Cubrimiento minimal $G = \{N \rightarrow PZ, VP \rightarrow N, Z \rightarrow V\}$
- Resultado.
 - \bullet $R_1=(N,P,Z)$
 - $R_2 = (\underline{V}, \underline{P}, N)$
 - $R_3=(\underline{Z},V)$

• Ejemplo 2.B.

- U={id_Nacional, Provincia, id_Provincial, Zonificación}
- F={ FD1: id_Nacional→{Provincia,id_Provincial,Zonificación},
 FD2:{Provincia,id_Provincial}→{id_Nacional,Zonificación},
 FD3:Zonificación→Provincia}
- Abreviaremos N=id_Nacional, V=Provincia, P=id_Provincial, Z=Zonificación}
- $F = \{N \rightarrow VPZ, VP \rightarrow NZ, Z \rightarrow V\}$
- cubrimiento minimal alternativo: Cubrimiento minimal $G = \{N \rightarrow PZ, VP \rightarrow N, Z \rightarrow V\}$
- Resultado.
 - $R_1=(\underline{N},P,Z)$
 - $R_2 = (\underline{V}, \underline{P}, N)$
 - R₃=(<u>Z</u>,V)
- Observaciones.
 - Se preservan las DFs
 - Se encuentran en BCFN
 - 8 R2 es redundante en presencia de R1 y R3. Sin embargo, R2 no se puede eliminar dado que no es proyección de las otras dos relaciones
 - \bigcirc R_2 es importante ya que mantiene las dos CK juntas
 - R₂ mantiene la DF VP→N que se perdería si eliminamos dicha relación

Conclusiones.

- Con el algoritmo, partiendo del mismo conjunto de DFs, se puede generar más de un diseño (Ejemplo 2.A. vs Ejemplo 2.B.)
- En algunos casos, algoritmo puede producir diseños que cumplen con BCFN (incluyendo relaciones que mantienen la preservación de DFs)

Algoritmo Nro. D2 Descomposición en BCFN

• Algoritmo Nro. D2 Descomposición en BCFN

Entrada: R universal y un conjunto de DFs F sobre R

```
    D:={R}
    Mientras (∃Q∈D) Q no cumple BCFN{
    Seleccionar Q∈D que no cumple BCFN;
    Encontrar DF X → Y en Q que no cumple con BCFN;
    Reemplazar Q en D por la siguientes dos relaciones: (Q-Y) y (X∪Y);
    };
```

• Algoritmo Nro. D2 Descomposición en BCFN

Entrada: R universal y un conjunto de DFs F sobre R

```
    D:={R}
    Mentras (∃Q∈D) Q no cumple BCFN{
        Seleccionar Q∈D que no cumple BCFN;
        Encontrar DF X → Y en Q que no cumple con BCFN;
        Reemplazar Q en D por la siguientes dos relaciones: (Q − Y) y (X∪Y);
    };
```

En base a la propiedad NJB (descomposición binaria) y a la Afirmación Nro. 2
 D cumple con la propiedad lossless join

Ejemplo.

- R={<u>Estudiante</u>, <u>Materia</u>, Instructor}
- $$\begin{split} \bullet \quad F = \{ & \; FD1{:} \{ \textit{Estudiante}, \textit{Materia} \} \! \to \! \textit{Instructor}, \\ & \; FD2{:} \textit{Instructor} \! \to \! \textit{Materia} \} \end{split}$$

- Ejemplo.
 - R={ <u>Estudiante</u>, <u>Materia</u>, Instructor }
 - F={ FD1:{Estudiante,Materia}→Instructor, FD2:Instructor→Materia}
- Aplicando el algoritmo se obtiene
 - R₁=(Estudiante, Instructor)
 - R₂=(<u>Instructor</u>, Materia)

- Ejemplo.
 - R={ <u>Estudiante</u>, <u>Materia</u>, Instructor }
 - F={ FD1:{Estudiante,Materia}→Instructor, FD2:Instructor→Materia}
- Aplicando el algoritmo se obtiene
 - R₁=(Estudiante, Instructor)
 - R₂=(<u>Instructor</u>, Materia)

Importante

La teoría de lossless join se basa en la asunción de que no existen valores NULL en los atributos de JOIN

Normalización - Algoritmos Diseño

- Algortimo D1. Descompone relación universal R cumpliendo:
 - 3FN
 - Preservación de DFs
 - Lossless Join
- Algortimo D2. Descompone relación universal R cumpliendo:
 - BCFN
 - Lossless Join
- No es posible diseñar algoritmo que produzca una descomposición en BCFN con preservación DFs y Lossless Join

Normalización - Bibliografía

 Capítulo 15 (hasta 15.3 inclusive) Elmasri/Navathe - Fundamentals of Database Systems, 7th Ed., Pearson, 2015.

