2. Basics of microcontrollers

2.1. What is a MCU

What is a microcontroller? (MCU or μ C)

- IC = CPU + memory + additional hardware
- Designed to interact with other components
- Microcontroller ≠ microprocessor
- It is not possible to add external devices
- Different families with different features
- Preferred in embedded systems :
 - Low cost
 - Small size (portable)
 - Low power consumption
 - Efficiency
 - Diverse functions

0,95 euros 150μA at 3.6Volts (3xAAA) 10 or 20 MHz

The Elements of a Microcontroller

A microcontroller consists of a:

- CPU
- Memory
 - Non volatile
 - FLASH \rightarrow program.
 - EEPROM → data
 - Volatile memory
 - SRAM → temporary data.
- Clock generation
 - Internal oscillator
 - External circuitry

Source: https://www.allaboutcircuits.com/technical-articles/what-is-a-microcontroller-introduction-component-characteristics-component/

The Elements of a Microcontroller

- Peripherals: modules to interact with the external system.
 - Timing
 - General-purpose timer
 - External-event counter
 - Pulse-with modulation (PWM)
 - Analog signal processing
 - Analog comparator
 - ADC/DAC
 - Input/output:
 - General-purpose digital input and output circuitry (GPIO)
 - Communication
 - UART
 - SPI
 - 12C
 - USB

....and much more

The Elements of a Microcontroller

2.2. MCU market

MCU market review: Boosting the market growth

Electronic medical devices to Coronavirus measure oxygen levels, temperature, blood pressure, sugar levels,... Luxury cars, electric car, Automotive autonomous car, e-bicycle, ... Combine electrical network Smart and digital communication for Energy remote control. IoT and... Connected devices smartphones, televisions, tablets, gaming consoles, smart meters, security systems. https://www.grandviewresearch.com/industry-analysis/microcontroller-market

2.3. 8-bit MCU

MCU market review: by type

MCU market review: Why 8-bit?

- 8-bit low-pin-count (LPC) microcontrollers:
 - Process shrinks
 - Lower cost.
- Automotive:
 - Motor control: fuel efficiency
 - Connectivity
 - HVAC (air conditioner,...)

Ethernet and wireless connectivity requirements

- Smart energy management at home: thermostats
- Consumer Electronics and Home Appliance
 - Internet of Things (IoT)
 - Connected technologies: wearables, smoke detectors, thermostats,
 - → ultra-low power consumption
 - → integrated high-performance analog features.

MCU market review: Why not 8-bit?

- Intense competition from 16-bit and 32-bit
- The automotive industry → uses 16-bit and 32-bit MCUs on a large scale.
- New 32-bit MCUs have a higher processing power than their counterparts and consume less power.
- 32-bit MCUs is decreasing unit price.
- 8-bit MCU → low processing speed (8 MHz)
 - → not have substantial RAM

"32-bit CPUs will dominate when a complete 32-bit microcontroller costs \$0.50"

(By Prof. Philip Koopman)

2.4. How to select a MCU

How to select a Microcontroller

Know Hardware Requirements:

- Need communication interfaces like UART, Ethernet...?
- How many output and input pins you need to connect?
- Need analogic conversion?
- Do you want PWM?

- What processing speed is required?
- What type of calculations are involved?
- How much processing power is required?
- What are the timing constraints?

4 bit, 8 bit, 16 bit and 32 bit

How to select a Microcontroller

- Cost and Power Requirements
- Complex operations requires a higher cost
- Battery or not. Meet the power.
- Memory Requirement
- How much memory is required by your code
- Know Software Tools
- Assemblers, compilers, debuggers and simulating tools

https://en.wikipedia.org/wiki/List of common microcontrollers

8-bit

- Lower end applications
- Low-cost
- Low-power
- Suitable for one job
- Small size
- From small 6-pin devices to chips with 64 pins.
- Flash \rightarrow 256/512KB,
- SRAM \rightarrow 32 to 8KB
- EEPROM \rightarrow 0 to 4K

8-bit Most popular

- <u>8051</u> series (Intel):
 - Appliances, wireless communication devices, satellite modules...
 - Now used as IP
 - Suitable for low-cost and low-power
- PIC (Microchip):
 - Lot of tools (MPLAB IDE)
 - USART, SPI, I2C, ADC, USB, LIN, CAN and
- AVR (ATMEL now Microchip):
 - PIC comparable performance
 - IDE Arduino. Wide range of available libraries for Arduino
 - Software development → AVR studio

16-bit

- Mid-end applications
- Faster, more peripherals, more memory, more IO pins, have hardware multipliers.
- Both ADC's and DAC's
- More hardware :
 - Encryption engines
 - Operational or Programmable Gain Amplifiers
 - DMA controllers.

16-bit Most popular

- Microchip (dsPIC33 is a popular choice),
- NXP
- Infineon
- Cypress
- Texas instruments → TI MSP430
- Renesas

32-bit

- Powerful with microprocessor-like features.
- Advanced features
 - Instruction pipelining
 - Branch prediction
 - Nested Vectored Interrupts (NVI),
 - Floating Point Units (FPU),
 - Memory protection
 - On-board debuggers.
- Run large, fast, and robust applications.
- Real Time Operating Systems (RTOS)

32-bit Most popular

- ARM Cortex M-based
- Vendors of ARM-based chips :
 - O Atmel → SAM device line
 - STMicroelectronics → STM32
- Espressif → ESP32 includes:
 - WiFi and Bluetooth hardware on the chip: protocol stacks, radio transceivers and theres is a small pre-certified module with integrated antenna.
 - Very affordably priced
 - 10 capacitive touch GPIOs.

