10707 Deep Learning: Spring 2021

Andrej Risteski

Machine Learning Department

Lecture 13:

More applications of variational methods: DBNs, VQ-VAEs, NVAEs

Part I: Learning Deep Belief Networks (DBNs)

- it is a generative model that mixes undirected and directed connections between variables
- > top 2 layers' distribution $p(\mathbf{h}^{(2)}, \mathbf{h}^{(3)})$ is an RBM!
- other layers form a Bayesian network with conditional distributions:

$$p(h_j^{(1)} = 1 | \mathbf{h}^{(2)}) = \text{sigm}(\mathbf{b}^{(1)} + \mathbf{W}^{(2)}^{\top} \mathbf{h}^{(2)})$$

$$p(x_i = 1 | \mathbf{h}^{(1)}) = \text{sigm}(\mathbf{b}^{(0)} + \mathbf{W}^{(1)} \mathbf{h}^{(1)})$$

The joint distribution of a DBN is as follows

$$p(\mathbf{x}, \mathbf{h}^{(1)}, \mathbf{h}^{(2)}, \mathbf{h}^{(3)}) = p(\mathbf{h}^{(2)}, \mathbf{h}^{(3)}) p(\mathbf{h}^{(1)}|\mathbf{h}^{(2)}) p(\mathbf{x}|\mathbf{h}^{(1)})$$

where

$$p(\mathbf{h}^{(2)}, \mathbf{h}^{(3)}) = \exp\left(\mathbf{h}^{(2)}^{\top} \mathbf{W}^{(3)} \mathbf{h}^{(3)} + \mathbf{b}^{(2)}^{\top} \mathbf{h}^{(2)} + \mathbf{b}^{(3)}^{\top} \mathbf{h}^{(3)}\right) / Z$$

$$p(\mathbf{h}^{(1)}|\mathbf{h}^{(2)}) = \prod_{j} p(h_j^{(1)}|\mathbf{h}^{(2)})$$

$$p(\mathbf{x}|\mathbf{h}^{(1)}) = \prod_i p(x_i|\mathbf{h}^{(1)})$$

(I realize this looks odd.)

 $Q(h^t|h^{t-1}), P(h^{t-1}|h^t)$ are product distributions, s.t.:

$$Q\left((h^t)_j = 1 \middle| h^{t-1}\right) = \frac{1}{1 + \exp(W_{t,.}h^{t-1})} \quad P\left((h^{t-1})_j = 1 \middle| h^t\right) = \frac{1}{1 + \exp((h^t)^T W_{.,t})}$$

 Learn an RBM with an input layer v=x and a hidden layer h.

- Learn an RBM with an input layer v=x and a hidden layer h.
- Treat inferred values $Q(\mathbf{h}^1|\mathbf{v}) = P(\mathbf{h}^1|\mathbf{v})$ as the data for training 2nd-layer RBM.

• Learn and freeze 2nd layer RBM.

 Learn an RBM with an input layer v=x and a hidden layer h.

Unsupervised Feature Learning.

• Treat inferred values $Q(\mathbf{h}^1|\mathbf{v}) = P(\mathbf{h}^1|\mathbf{v})$ as the data for training 2nd-layer RBM.

Learn and freeze 2nd layer RBM.

Proceed to the next layer.

Where does this training come from??

Let's write the marginal p(x) in terms of the Gibbs variational principle.

Recall, we have:

For every distribution $q(\mathbf{h}^{(1)}|\mathbf{x})$:

$$\log p(\mathbf{x}) \geq \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{h}^{(1)})$$
$$-\sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log q(\mathbf{h}^{(1)}|\mathbf{x})$$

Equality is attained if $q(\mathbf{h}^{(1)}|\mathbf{x}) = p(\mathbf{h}^{(1)}|\mathbf{x})$.

Let's write the marginal p(x) in terms of the Gibbs variational principle.

Recall, we have:

For every distribution
$$q(\mathbf{h}^{(1)}|\mathbf{x})$$
:

$$\log p(\mathbf{x}) \geq \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log p(\mathbf{x}, \mathbf{h}^{(1)})$$
$$-\sum_{\mathbf{a}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log q(\mathbf{h}^{(1)}|\mathbf{x})$$

$$-\sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log q(\mathbf{h}^{(1)}|\mathbf{x})$$

adding 2nd layer means untying the parameters

$$\log p(\mathbf{x}) \geq \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \left(\log p(\mathbf{x}|\mathbf{h}^{(1)}) + \log p(\mathbf{h}^{(1)})\right)$$
$$-\sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log q(\mathbf{h}^{(1)}|\mathbf{x})$$

- When adding a second layer, we model $p(\mathbf{h}^{(1)})$ using a separate set of parameters
 - \succ they are the parameters of the RBM involving $\,{f h}^{(1)}$ and $\,{f h}^{(2)}$
 - $ho p(\mathbf{h}^{(1)})$ is now the marginalization of the second hidden layer

$$p(\mathbf{h}^{(1)}) = \sum_{\mathbf{h}^{(2)}} p(\mathbf{h}^{(1)}, \mathbf{h}^{(2)})$$

adding 2nd layer means untying the parameters

$$\log p(\mathbf{x}) \geq \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \left(\log p(\mathbf{x}|\mathbf{h}^{(1)}) + \log p(\mathbf{h}^{(1)})\right)$$
$$-\sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log q(\mathbf{h}^{(1)}|\mathbf{x})$$

we can train the parameters of bound. This is equivalent to m terms are constant:

Layerwise training improves variational lower bound

$$-\sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log p(\mathbf{h}^{(1)})$$

 \succ this is like training an RBM on data ${\sf generated}$ from $\,q({f h}^{(1)}|{f x})!$

Stacking the layers

This is where the RBM stacking procedure comes from:

idea: improve prior on last layer by adding another hidden layer

Improvement at initialization: weight-tied DBN is equivalent to a RBM

Observation: a two-layer DBN with appropriately tied weights is

Formal proof is a little annoying. Intuition:

- Gibbs sampling converges to model distribution in first case.
- Gibbs sampling on top two layers, plus one last sample of x given $h^{(1)}$ converges to model distribution in second.
- The steps in these two random walks are *exactly* the same.

Improvement at initialization: weight-tied DBN is equivalent to a RBM

adding 2nd layer means untying the parameters

$$\log p(\mathbf{x}) \geq \sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \left(\log p(\mathbf{x}|\mathbf{h}^{(1)}) + \log p(\mathbf{h}^{(1)})\right)$$
$$-\sum_{\mathbf{h}^{(1)}} q(\mathbf{h}^{(1)}|\mathbf{x}) \log q(\mathbf{h}^{(1)}|\mathbf{x})$$

- ightharpoonup for $q(\mathbf{h}^{(1)}|\mathbf{x})$ we use **the posterior of the first layer RBM**.
- by initializing the weights of the second layer RBM as the transpose of the first layer weights, the bound is initially tight! (As we showed, a 2layer DBN with tied weights is equivalent to a 1-layer RBM)
- Need not keep being tight: as $p(\mathbf{h}^{(1)})$ changes, so does $p(\mathbf{h}^{(1)}|\mathbf{x})$, and so does the KL to $q(\mathbf{h}^{(1)}|\mathbf{x})$

This process of adding layers can be repeated recursively

we obtain the greedy layer-wise pre-training procedure for neural networks

We now see that this procedure corresponds to maximizing a bound on the likelihood of the data in a DBN

- ightharpoonup in theory, if our approximation $q(\mathbf{h}^{(1)}|\mathbf{x})$ is very far from the true posterior, the bound might be very loose
- this only means we might not be improving the true likelihood
- we might still be extracting better features!

Fine-tuning is done by the Up-Down algorithm

A fast learning algorithm for deep belief nets. Hinton, Teh, Osindero,
 2006.

Sampling from DBNs

To sample from the DBN model:

$$P(\mathbf{v}, \mathbf{h}^1, \mathbf{h}^2, \mathbf{h}^3) = P(\mathbf{v}|\mathbf{h}^1)P(\mathbf{h}^1|\mathbf{h}^2)P(\mathbf{h}^2, \mathbf{h}^3)$$

- Sample h² using alternating Gibbs sampling from RBM.
- Sample lower layers using sigmoid belief network.

Learned Features

 1^{st} -layer features

 2^{nd} -layer features

Learning Part-based Representation

Convolutional DBN

Faces

Groups of parts.

Object Parts

Trained on face images.

Learning Part-based Representation

Learning Part-based Representation

Groups of parts.

Class-specific object parts

Trained from multiple classes (cars, faces, motorbikes, airplanes).

Part II: Variants of VAEs (VQ-VAEs, NVAEs)

VQ-VAE, Oord et al '17, Razavi et al '19

Figure from Razavi et al '19

Basic idea: discrete latent space

Idea: perform k-means on the recovered latent vectors to discretize

Figure 1: Left: A figure describing the VQ-VAE. Right: Visualisation of the embedding space. The output of the encoder z(x) is mapped to the nearest point e_2 . The gradient $\nabla_z L$ (in red) will push the encoder to change its output, which could alter the configuration in the next forward pass.

The loss

Idea: perform k-means on the recovered latent vectors to discretize

Map the latent vectors to the closest mean (nearest-neighbor lookup):

$$q(z = k|x) = \begin{cases} 1 & \text{for } k = \operatorname{argmin}_{j} ||z_{e}(x) - e_{j}||_{2}, \\ 0 & \text{otherwise} \end{cases}$$

Variational posterior q(z|x) is a distribution over a domain of size K, and a point mass. Let's denote $z_q(x) = \operatorname{argmin}_j \left| \left| z_e(x) - e_j \right| \right|_2$.

Loss (first try):
$$L(\theta, e) = \mathbb{E}_x[\log(p_{\theta}(x|z_q) + KL(q(h))|p(h))]$$

Reconstruction loss

Regularization towards prior

The authors drop the regularization term.

Problem: the mapping $z_e \rightarrow z_q$ involves argmin and is not differentiable.

The loss: straight-through estimator

Idea: perform k-means on the recovered latent vectors to discretize

Map the latent vectors to the closest mean (nearest-neighbor lookup):

$$q(z = k|x) = \begin{cases} 1 & \text{for } k = \operatorname{argmin}_{j} ||z_{e}(x) - e_{j}||_{2}, \\ 0 & \text{otherwise} \end{cases}$$

Loss (first try): $L(\theta, e) = \mathbb{E}_{x}[\log(p_{\theta}(x|z_{\theta}))]$

Problem: the mapping $z_e \rightarrow z_q$ involves argmin and is not differentiable.

Solution: use straight-through estimator; copy gradients from decoder input $z_q(x)$ to encoder output $z_e(x)$

The loss: quantization

Idea: perform k-means on the recovered latent vectors to discretize

Map the latent vectors to the closest mean (nearest-neighbor lookup):

$$q(z = k|x) = \begin{cases} 1 & \text{for } k = \operatorname{argmin}_{j} ||z_{e}(x) - e_{j}||_{2}, \\ 0 & \text{otherwise} \end{cases}$$

Problem: the cluster means $\{e_i\}$ are not getting updated.

This term only updates cluster means $\{e_i\}$!

Loss (second try):
$$L(\theta, e) = \mathbb{E}_{x} [\log(p_{\theta}(x|z_{q}) + |SG(z_{e}(x)) - z_{q}(x)|]^{2}]$$

Reconstruction loss

 $SG(z_e(x))$: stop-gradient operator; identity at forward computation; has zero derivative, so argument doesn't get update at backward computation

The loss: quantization

Idea: perform k-means on the recovered latent vectors to discretize

Map the latent vectors to the closest mean (nearest-neighbor lookup):

$$q(z = k|x) = \begin{cases} 1 & \text{for } k = \operatorname{argmin}_{j} ||z_{e}(x) - e_{j}||_{2}, \\ 0 & \text{otherwise} \end{cases}$$

Problem: the cluster means $\{e_i\}$ are not getting updated.

Loss (second try):
$$L(\theta, e) = \mathbb{E}_{x} [\log(p_{\theta}(x|z_{q}) + |SG(z_{e}(x)) - z_{q}(x)|]^{2}]$$

Reconstruction loss

(Alternatively, this term can be rewritten as follows. If $z_{1,i,}\dots,z_{n_i,i}$ are the decoded samples closest to e_i , this term is $\sum_i \sum_{j=1}^{n_i} \left| \left| z_{j,i} - e_i \right| \right|^2$. New e_i can just be set to $e_i \coloneqq \sum_{i=1}^{n_i} z_{j,i}$.)

The loss: commitment penalty

Idea: perform k-means on the recovered latent vectors to discretize

$$q(z = k|x) = \begin{cases} 1 & \text{for } k = \operatorname{argmin}_{j} ||z_{e}(x) - e_{j}||_{2}, \\ 0 & \text{otherwise} \end{cases}$$

Loss (third try):

$$L(\theta, e) = \mathbb{E}_{x} \left[\log(p_{\theta}(x|z_{q}) + \left| \left| SG(z_{e}(x)) - z_{q}(x) \right| \right|^{2} + \beta \left| \left| z_{e}(x) - SG(z_{q}(x)) \right| \right|^{2} \right]$$
Reconstruction loss Quantization loss

Authors add a commitment loss: this "regularizer" attempts to keep unquantized $z_e(x)$ close to current means $\{e_i\}$.

NVAE, Vahdat-Kautz '21

Figure from Vahdat-Kautz '21

Basic idea: careful changes in architecture

(a) Bidirectional Encoder (b) Generative Model

Figure 2: The neural networks implementing an encoder $q(\boldsymbol{z}|\boldsymbol{x})$ and generative model $p(\boldsymbol{x}, \boldsymbol{z})$ for a 3-group hierarchical VAE. \diamondsuit denotes residual neural networks, \diamondsuit denotes feature combination (e.g., concatenation), and \nwarrow is a trainable parameter.

Main idea: hierarchical model for the generative and inference direction, with careful choice of architecture;

Generative model:

Use residual networks from layer to layer; the dimensions of the z's gradually increase to gradually add more detail to image.

Basic idea: careful changes in architecture

Generative model:

Use residual networks from layer to layer; the dimensions of the z's gradually increase to gradually add more detail to image.

Hyperparamter	MNIST 28×28	CIFAR-10 32×32	ImageNet 32×32	CelebA 64×64	CelebA H 256×256	
# latent variable scales	2	1	1	3	5	5
# groups in each scale	5, 10	30	28	5, 10, 20	4, 4, 4, 8, 16	4, 4, 4, 8, 16
spatial dims of z in each scale	$4^2, 8^2$	16 ²	16^{2}	8 ² , 16 ² , 32 ²	8 ² , 16 ² , 32 ² , 64 ² , 128 ²	8 ² , 16 ² , 32 ² , 64 ² , 128 ²

(a) Residual Cell for NVAE Generative Model

Basic idea: careful changes in architecture

Encoder: weight tied w/ decoder for better behavior of KL term

(a) Bidirectional Encoder (b) Generative Model

Figure 2: The neural networks implementing an encoder $q(\boldsymbol{z}|\boldsymbol{x})$ and generative model $p(\boldsymbol{x},\boldsymbol{z})$ for a 3-group hierarchical VAE. \diamondsuit denotes residual neural networks, \diamondsuit denotes feature combination (e.g., concatenation), and \trianglerighteq is a trainable parameter.

Recall, there is a term KL(q(z|x)||p(z)) which will be large if q and p are far.

Weight tying: if we parametrize p(z) s.t.

$$p(z_l^i|\boldsymbol{z}_{< l}) := \mathcal{N}\left(\mu_i(\boldsymbol{z}_{< l}), \sigma_i(\boldsymbol{z}_{< l})\right)$$

we parametrize q(z|x) correspondingly as

$$q(z_l^i|\boldsymbol{z}_{< l},\boldsymbol{x}) := \mathcal{N} \left(\mu_i(\boldsymbol{z}_{< l}) + \Delta \mu_i(\boldsymbol{z}_{< l},\boldsymbol{x}), \sigma_i(\boldsymbol{z}_{< l}) \cdot \Delta \sigma_i(\boldsymbol{z}_{< l},\boldsymbol{x}) \right)$$

("relative to p" parametrization)

Then, we have:

$$\mathrm{KL}\left(q(z^{i}|\boldsymbol{x})||p(z^{i})\right) = \frac{1}{2} \left(\frac{\Delta \mu_{i}^{2}}{\sigma_{i}^{2}} + \Delta \sigma_{i}^{2} - \log \Delta \sigma_{i}^{2} - 1\right)$$