Exercice 1.

On considère la fonction F définie par

$$F(x) = \int_{x}^{2x} \frac{1}{\operatorname{Arctan}(t)} dt.$$

- 1. (a) Déterminer le domaine de définition de F.
 - (b) Étudier la parité de F.
- 2. (a) Étudier, sur \mathbb{R}_+^* les variations puis le signe de $k(x) = 2\operatorname{Arctan}(x) \operatorname{Arctan}(2x)$.
 - (b) Montrer que F est dérivable sur \mathbb{R}_+^* et déterminer sa dérivée.
 - (c) Étudier les variations de F sur \mathbb{R}_+^* .
 - (d) Soit x > 0. Démontrer qu'il existe un réel $c_x \in]x, 2x[$, tel que $F(x) = \frac{x}{\operatorname{Arctan}(c_x)}$ et en déduire un équivalent de F(x) en $+\infty$.
- 3. (a) Trouver un équivalent de $g(t) = \frac{1}{\operatorname{Arctan}(t)} \frac{1}{t}$ lorsque t tend vers 0. En déduire que g est prolongeable par continuité en 0. On note encore g son prolongement.
 - (b) Montrer que F admet une limite finie en 0 et la déterminer. On note encore F le prolongement.
 - (c) F est-elle de classe \mathcal{C}^1 sur \mathbb{R} ? Justifier soigneusement.
 - (d) Montrer que F admet un développement limité d'ordre 2 en 0 et le déterminer.
 - (e) Déterminer une équation de la tangente à la courbe représentative C de F en 0. Préciser la position de C par rapport à sa tangente en ce point.
- 4. Pour $t \in \mathbb{R}_+^*$ on pose : $h(t) = t^2 (\frac{1}{\arctan(t)} \frac{2}{\pi} \frac{4}{t\pi^2})$.
 - (a) Que vaut $Arctan(t) + Arctan(\frac{1}{t})$ pour $t \in \mathbb{R}_+^*$?
 - (b) Montrer que h admet une limite finie lorsque t tend vers $+\infty$. En déduire que h est bornée sur $[1, +\infty[$ puis que $\exists k \in \mathbb{R}_+, \forall t \geqslant 1, | \frac{1}{\arctan(t)} - \frac{2}{\pi} - \frac{4}{t\pi^2} | \leqslant \frac{k}{t^2}.$
 - (c) En déduire que la courbe de F admet pour asymptote $\Delta: y = \frac{2}{\pi}x + \frac{4}{\pi^2}\ln 2$ lorsque x tend vers $+\infty$.
 - (d) Que peut-on en déduire en $-\infty$?

- Mathermatiques secon scintere
 - 5. Donner l'allure de la courbe représentative de F en reportant les éléments obtenus lors des questions précédentes.
 - 6. Étude d'une suite implicite :
 - (a) Montrer que $\forall n \in \mathbb{N}^*, \exists ! x \in \mathbb{R}_+, F(x) = n$. On note x_n cette valeur.
 - (b) Montrer que la suite (x_n) est croissante et tend vers $+\infty$.
 - (c) Donner un équivalent , puis un développement asymptotique à deux termes de x_n en $+\infty$.