Mit dem Sinus modellieren

Kirill Heitzler

29. April 2021

Inhaltsverzeichnis

1 Grundlagen

1.1 Rechtwinkliges Dreieck - Beschriftung

Abbildung 1: Rechtwinkliges Dreieck

Das Rechtwinklige Dreieck wird folgendermaßen wie in ?? beschriftet.

Die Ecken werden mit den Buchstaben A, B, C gegen den Uhrzeigersinn bei A angefangen beschriftet.

Die Winkel α , β , γ werden in die Ecken der entsprechenden Buchstaben A, B, C gesetzt.

Die anliegende Kathete zu Winkel α wird "Ankathete von α " genannt und die Kathete gegenüber von α wird "Gegenkathete von α " genannt.

Die Hypotenuse liegt gegenüber des rechten Winkels γ .

1.2 Der Sinus

Definition: In einem rechtwinkligen Dreieck (??) nennt man zu einem Winkel α des Dreiecks das Streckenverhältnis

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$

den Sinus von α .

Abbildung 2: Rechtwinkliges Dreieck

Sinus - Beispiel 1.3

Gegenkathete von α mithilfe des Sinus berechnen:

Aufgabe: Berechne die Höhe des Freiburger Münsters. Das rechtwinklige Dreieck in ?? besitzt einen rechten Winkel (90°), die Hypotenuse 164,05 Meter und die Winkelweite des Winkels α mit 45°. Berechne die Gegenkathete von α namens x.

Abbildung 3: Rechtwinkliges Dreieck am Münster

Rechnung:

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$

$$\sin(45^{\circ}) = \frac{x}{164,05m}$$

$$| \cdot 164,05m$$
(2)

$$\sin(45^\circ) = \frac{x}{164,05m} \qquad |\cdot 164,05m$$
 (2)

$$\sin(45^\circ) \cdot 164,05m = x \tag{3}$$

$$x \cong 116m \tag{4}$$

Antwort: Die Gegenkathete von α beträgt etwa 116 Meter, somit ist das Münster auch etwa 116 Meter groß.

1.4 Der Kosinus und der Tangens

Sinus von α :

$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}}$$

Abbildung 4: Rechtwinkliges Dreieck

Cosinus von α :

$$\cos(\alpha) = \frac{\text{Ankathete von } \alpha}{\text{Hypotenuse}}$$

Abbildung 5: Rechtwinkliges Dreieck

Tangens von α :

$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha}$$

Abbildung 6: Rechtwinkliges Dreieck

2 Einheitskreis

2.1 Beispiel

Aufgaben-Text: Auf einem Koordinatensystem eines Radarschirms (??) wird die Lage von zwei Schiffen durch die Entfernung zum Hafen(0) und durch den Kurs gegenüber der x-Achse beschrieben.

Aufgabe: Ein Schiff A ist mit dem Kurs 30° gegenüber der x-Achse einen Kilometer weit gefahren. Welche Koordinaten im x-y-Koordinatensystem hat es?

Welche Koordinaten hat das Schiff **B**, das mit dem Kurs **75° einen Kilometer** weit gefahren ist?

Abbildung 7: Radar

Lösung:

Das Schiff **A** mit dem Kurs **30**° befindet sich auf der x-Achse: etwa **0,86 Kilometer** und y-Achse: **0,5 Kilometer**. Also auf dem Punkt **A(0,86|0,5)**

Das Schiff **B** mit dem Kurs 75° befindet sich auf der x-Achse: etwa 0,25 Kilometer und y-Achse: 0,96 Kilometer. Also auf dem Punkt A(0,25|0,96)

2.2 Der Sinus und Kosinus am Einheitskreis

Dreiecke mit der **Hypotenusenlänge 1** kann man in einem Koordinatensystem auf folgenden Weise darstellen:

- 1. Die Endpunkte der **Hypotenuse** sind der Ursprung O und ein Punkt **P**, der auf einem Kreis um O mit dem **Radius 1** liegt. Diesen Kreis nennt man den **Einheitskreis**.
- 2. Die Ecke mit dem rechten Winkel liegt auf der x-Achse senkrecht unter P. Der Punkt P hat somit Koordinaten $P(\cos(\alpha)|\sin(\alpha))$

Abbildung 9: Sinus und Kosinus am Einheitskreis

2.3 Beziehungen zwischen Sinus, Kosinus und Tangens

1. Für $0^{\circ} < \alpha < 90^{\circ}$ nimmt $\sin(\alpha)$ mit wachsendem α zu und $\cos(\alpha)$ ab(??). $\sin(0^{\circ}) = 0$, $\cos(0^{\circ}) = 1$ (??), $\sin(90^{\circ}) = 1$, $\cos(90^{\circ}) = 0$ (??).

Abbildung 10: Beziehung 1

Wendet man auf das im Einheitskreis dargestellte Dreieck den Satz des Pythagoras an (??), so erhält man den für jede Winkelweite gültigen Zusammenhang $\sin^2(\alpha) + \cos^2(\alpha) = 1.$ Beispiel:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$(\sin(45))^2 + (\cos(45))^2 = 1 \tag{2}$$

$$\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = 1\tag{3}$$

$$\frac{\sqrt{2^2}}{2^2} + \frac{\sqrt{2^2}}{2^2} = 1\tag{4}$$

$$\frac{2}{4} + \frac{2}{4} = 1\tag{5}$$

$$\frac{2}{4} + \frac{2}{4} = 1$$

$$\frac{1}{2} + \frac{1}{2} = 1$$
(5)

$$0, 5 + 0, 5 = 1 \tag{7}$$

Abbildung 11: Einheitskreis Dreieck Satz des Pythagoras

3. In ?? sieht man:

$$\sin(90^{\circ} - \alpha) = x = \cos(\alpha)$$
 und $\cos(90^{\circ} - \alpha) = y = \sin(\alpha)$

Beispiel:

$$\sin(90^{\circ} - \alpha) = x \qquad = \cos(\alpha) \quad (1)$$

$$\sin(90^{\circ} - 30^{\circ}) = \frac{\sqrt{3}}{2} = \cos(30^{\circ})$$
 (2)

4. Ebenfalls in ??:
$$tan(\alpha) = \frac{y}{x} = \frac{sin(\alpha)}{\cos(\alpha)}$$
.

Abbildung 12: $\sin(90^{\circ}$ - $\alpha);$ $\cos(90^{\circ}$ - $\alpha)$

2.4 Einheitskreis - Definition

Definition: Es gilt:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$\sin(90^{\circ} - \alpha) = \cos(\alpha)$$

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}, \ \alpha \neq 90^{\circ}, \text{ weil: } \tan(90) = \frac{\sin(90)}{\cos(90)} = \frac{1}{0} = \mathcal{I}$$

2.5 Einheitskreis - Aufgabe

Aufgabe: $sin(\alpha) = 0, 6$.

Bestimme:

a)
$$\cos(\alpha)$$
 b) $\tan(\alpha)$ c) $\sin(90^{\circ} - \alpha)$ d) $\cos(90^{\circ} - \alpha)$ e) $\tan(90^{\circ} - \alpha)$

a) Lösung:

$$\sin^2(\alpha) + \cos^2(\alpha) = 1 \tag{1}$$

$$0,6^2 + \cos^2(\alpha) = 1 \qquad |-0,6^2|$$

$$\cos^2(\alpha) = 1 - 0.36 \tag{3}$$

$$\cos(\alpha) = \sqrt{1 - 0.36} \tag{4}$$

$$\cos(\alpha) = \sqrt{0.64} \tag{5}$$

$$\cos(\alpha) = 0.8 \tag{6}$$

b) Lösung:

$$\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} \tag{1}$$

$$\tan(\alpha) = \frac{0.6}{0.8} = \frac{6}{8} \tag{2}$$

$$\tan(\alpha) = \frac{3}{4} = 0,75\tag{3}$$

c) Lösung:

$$sin(90^{\circ} - \alpha) = cos(\alpha) = 0,8 \tag{1}$$

d) Lösung:

$$\cos(90^{\circ} - \alpha) = \sin(\alpha) = 0,6 \tag{1}$$

e) Lösung:

$$tan(90^{\circ} - \alpha) = \frac{sin(90^{\circ} - \alpha)}{cos(90^{\circ} - \alpha)} = \frac{0.8}{0.6}$$
 (1)

$$\tan(90^{\circ} - \alpha) = \frac{8}{6} = \frac{4}{3} \tag{2}$$

3 Mit dem Sinus modellieren

3.1 Mit dem Sinus modellieren - Beispiel

Aufgabe:

Bei einem Schaufelraddampfer dreht sich das Rad mit dem Durchmesser 2 Meter einmal vollständig in 60 Sekunden(??). In welcher Höhe über dem Wasserspiegel liegt der rot markierte Punkt A?

Erstelle eine Wertetabelle in 5 Sekunden-Schritten.

Abbildung 13: Schaufelraddampfer

Lösung:

Zeit t (in s)	0	5	10	15	20	25	30	35	40	45	50	55	60
Winkel α	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	360°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0	-0,5	-0,87	-1	-0,87	-0,5	0

3.2 Winkel α mit $0^{\circ} \leq \alpha \leq 90^{\circ}$

Am Einheitskreis entspricht $\sin(\alpha)$ der y-Koordinate des Punktes P(??). $\sin(40^\circ) \approx 0,64$

Abbildung 14: Winkel α mit $0^{\circ} \leq \alpha \leq 90^{\circ}$

3.3 Erweiterter Winkel α mit $90^{\circ} < \alpha \leq 360^{\circ}$

Wird α über 90° vergrößert, wird der Sinuswert von α ebenso als y-Koordinate des Punktes P festgelegt(??).

Abbildung 15: Erweiterter Winkel α mit 90° < $\alpha \leq 360^\circ$

3.4 Erweiterter Winkel α mit 90° < $\alpha \leq$ 360° - Aufgabe

Aufgabe:

Ein Punkt P bewegt sich auf dem Einheitskreis(??) gegen den Uhrzeigersinn. Für $\alpha=0^{\circ}$ befindet er sich im Punkt(1|0)

- a) Gib die x- und y-Koordinaten des Punktes P für $\alpha=140^{\circ}$ und für $\alpha=310^{\circ}$ an.
- b) Bestimme zwei verschiedene Werte für α , sodass seine y-Koordinate 0,8 beträgt.

Abbildung 16: $\alpha = 0^{\circ}$

Lösung a)

Für $\alpha = 140^{\circ}$: Punkt (-0,77|0,64)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(140^\circ) \approx 0,64\tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(140^\circ) \approx -0.77\tag{4}$$

Für $\alpha = 310^{\circ}$: Punkt (0.64|-0.77)

$$\sin(\alpha) = y \tag{1}$$

$$\sin(310^\circ) \approx -0.77\tag{2}$$

$$\cos(\alpha) = x \tag{3}$$

$$\cos(310^\circ) \approx 0,64 \tag{4}$$

Lösung b)

Für α_1 : $sin(53, 1^\circ) \approx 0.8$

$$\sin^{-1}(0,8) \approx 53,1^{\circ}$$
 (1)

Für α_2 : $\sin(126, 9^\circ) \approx 0.8$

$$\sin^{-1}(0,8) \approx 53,1^{\circ}$$
 (1)

$$180^{\circ} - 53, 1^{\circ} = 126, 9^{\circ} \tag{2}$$

3.5 Funktion f mit $f(\alpha)$

Ordnet man jedem Winkel α mit $0^{\circ} \leq \alpha \leq 360^{\circ}$ seinen Sinuswert zu, so erhält man eine Funktion f mit $f(\alpha) = \sin(\alpha)$.

Man kann mithilfe des Graphen von f (??) zu gegebenem Winkel den Sinuswert näherungsweise ablesen oder näherungsweise Winkel mit vorgegebenem Sinuswert ermitteln.

Abbildung 17: $f(\alpha) = \sin(\alpha)$

3.6 Sinusfunktion im Gradmaß - Definition

Die Funktion f mit $f(\alpha) = \sin(\alpha)$ heißt Sinusfunktion im Gradmaß.

3.7 Graph einer Sinusfunktion zeichnen

Zeit t (in s)	0	5	10	15	20	25	30	35	40	45	50	55	60
Winkel α	0°	30°	60°	90°	120°	150°	180°	210°	240°	2700	300°	330°	360°
Höhe h (in m)	0	0,5	0,87	1	0,87	0,5	0	-0,5	-0,87	-1	-0,87	-0,5	0

Abbildung 18: Sinuswelle Zeichnen

3.8 Einen Zeitlichen Vorgang modellieren

In einem Hafenbecken schwankt der Wasserstand periodisch um seinen Durchschnittswert (??)

Abbildung 19: Wasserstand

Aufgabe:

- a) Erläutere, wie man zu einem gegebenen Zeitpunkt t
 die Winkelweite α erhält und umgekehrt. Bestimme für
t = 5 (t in h) den zugehörigen Winkel.
- b) Mit welcher Funktion kann man zu einem gegebenen Winkel α den Wasserstand berechnen? Berechne den Wasserstand 5 Stunden nach Beobachtungsbeginn.

Lösung a)

$$12h \stackrel{\triangle}{=} 360^{\circ} \qquad |: 12 \qquad (1)$$

$$1h \stackrel{\triangle}{=} 30^{\circ} \tag{2}$$

12h in ?? entsprechen 360°, also entspricht 1h dem Winkel 30°. Daraus Folgt $\alpha=t\cdot 30^\circ$ (t in h). Für t = 5 erhält man $\alpha=5\cdot 30^\circ=150^\circ$

$$\alpha = t \cdot 30^{\circ}$$

$$\alpha = 5 \cdot 30^{\circ} \tag{1}$$

$$=150^{\circ} \tag{2}$$

Lösung b)

Da der Wasserstand zwischen -0,2 und 0,2 um den Durchschnittswert pendelt (??), gilt:

$$f(\alpha) = 0, 2 \cdot \sin(\alpha)$$

Für t = 5:

$$\alpha = 5 \cdot 30^{\circ} \tag{1}$$

$$=150^{\circ} \tag{2}$$

$$f(150^\circ) = 0, 2 \cdot \sin(150^\circ) \tag{3}$$

$$=0,1 \tag{4}$$

Nach 5 Stunden liegt der Wasserstand 10cm über dem Durchschnittswert.

4 Anwendung

Auch wenn es uns nicht oft auffällt, viele technische Geräte bzw. Mechanismen verwenden die trigonometrischen Funktionen Sinus und Kosinus. Genauso wie viele mathematische Verfahren. Ein paar Beispiele:

- Oszilloskop (elektronisches Messgerät, das elektrische Spannungen in einen Verlaufsgraphen darstellt)
- GPS Global Positioning System (Positionsbestimmung mit Hilfe von Satelliten)
- Computergrafiken in 3D und 2D
- Landvermessungen
- Fourier Transformation (z. B. Anwendung beim Spektroskop für Chemiker)
- Astronomen nutzten Spektroskope, um chemische Zusammensetzungen von weit entfernten Planeten zu bestimmen

5 Zusammenfassung

5.1 Einheitskreis - Zusammenfassung

Die Endpunkte eines Dreickecks mit der Hypotenusenlänge 1 bilden den Ursprung 0 und einen Punkt P, der auf einem Kreis um 0 mit dem Radius 1 liegt und den Einheitskreis bildet.

Abbildung 20: Einheitskreis

Die Gegenkathete lässt sich mit $\sin(\alpha)$ und die Ankathete mit $\cos(\alpha)$ berechnen.

Abbildung 21: Sinus und Kosinus am Einheitskreis

5.2 Mit dem Sinus Modellieren - Zusammenfassung

Ordnet man jedem Winkel α mit $0^{\circ} \leq \alpha \leq 360^{\circ}$ seinen Sinuswert zu, so erhält man die Sinusfunktion im Gradmaß f mit $f(\alpha) = sin(\alpha)$. Trägt man die Werte der Sinusfunktion im Gradmaß in ein entsprechendes Koordinatensystem erhält man den Grafphen von f (??).

Abbildung 22: $f(\alpha) = \sin(\alpha)$

6 Quellen

- Freiburger Münster-https://freiburg-schwarzwald.de/fotos06feb/freiburg12-060227.jpg
- Vector Boot https://www.vecteezy.com/vector-art/170704-flat-ship-vectors
- Lambacher Sweizer 9(S. 90 104) Mathematik Buch
- Sinus und Kosinus im Alltag https://www.matheretter.de/wiki/sinus-kosinus-alltag