

Wang, and Erland Syafiq

Problem and Statement Analysis

- The problem we addressed was the automated solving of Sudoku puzzles
- Sudoku is a puzzle where you fill out a nxn square such that in each row, column and square each number is unique
- Each puzzle has prefilled out squares

3			8		1			2
2		1	Û	3		6		4
			2		4		G - 3	6 - 5
8		9			90-3	1	90-3 121-3	6
	6					90.0	5	
7		2				4		9
			5		9			
9		4		8		7		5
6	ΪÍ		1		7		90-3	3

Defining the Problem

Variables: {The cells} Domain: {1, 2, ..., n}

Constraints: Alldiff (each row), Alldiff (each column), Alldiff (each minisquare)

Use-Case Scenarios

- Solving Sudoku Puzzles
 - Validating data
- Educational purposes
 - Cognitive enhancement

Al Algorithm and Model

- Backtracking
- Forward-Looking
- Constraint Propagation
- Heuristic Selection of Variables

Results and Demonstration

Demo

Results

- Solves 130 standard Sudoku puzzles with difficulties ranging from low to extremely high, in ~1 second.
- Solves 30 extremely hard standard Sudoku puzzles in ~2 seconds
- Solves 140 extremely hard standard
 Sudoku puzzles in ~2 seconds
- Solves 10 large 16x16 Sudoku puzzles in
 <1 second
- Solves 44 extremely hard 16x16 Sudoku puzzles in ~2 minutes

```
EB. | . . . A | . . F 1 | 8 . . 5
. . A 9 | 7 . . . | . . . . | . 3 C .
. 5 G . I . . 4 3 I . . B . I . . . E
C . 1 . I . . . F I . A 3 8 I . . . .
5 . . . I . 2 . . I . . . 9 I . . . G
. 3 . 8 | . G . 6 | C . . F | . . . .
. . E . I . . D . I . . 5 . I B . A
E...IB8..I.7.CI.4..
. D . . I . . . 4 I . . . . I 3 5 . .
B. 5 F | . 6 . . | . . . . . . . . . . 7
49...A7.51.D.21.GF.
8 . 7 . I . . E . I 6 . G . I . A . .
 G 2 B | 5 . . . | . . . . | 4 . 9 .
 . . . | 6 . . . | . 8 1 . | 7 . . 3
 . . . I . C . . I 2 B . A I . . G D
```

Lesson Learned

- Continue to develop the Al
 - Started with only backtracking
- Constraint propagation

