

Space Shuttle Main Engine

- Extra Large Throat Main Combustion Chamber
 - Robust Nozzle
- Advanced Health Management System

Friction Stir Welding

- Advanced Thrust Vector Control
- Attach/Holddown Hardware

Randy Humphries, Jr. Space Shuttle Projects Office

May, 2000

Reusable Solid Rocket Motor

Propellant Grain Geometry

Safety Benefit of Proposed Shuttle Safety Upgrades

Proposed Upgrades Reduce Significant Hazards

Significant hazard reduction opportunities

- Crew cockpit situational awareness
- Orbiter hydrazine APU
- SRB hydrazine APU
- SSME critical failure modes

Other hazard reduction opportunities

- Orbiter main landing gear tire & wheel
- RSRM propellant grain factor of safety
- External tank (ET) weld process reliability
- SRB Attach/Hold Down Hardware

Studies

- Crew escape improvements
- Abort improvements
- TPS improvements
- Toxic processing protective gear

Space Shuttle Safety Upgrades

The Goals & The Challenges

• Goals

- Major reduction in ascent catastrophic risk
- Significant reduction in orbital & entry system catastrophic failure risk
- Improve crew cockpit situational awareness for managing critical operational situations

Challenges

- All upgrades fully operational by end of 2005
- No impact to on-going operations
- Control costs to estimates provided in President's proposed budget

Propulsion Safety Upgrades Advanced Thrust Vector Control

Major Risk Factor

- •SRB TVC System
- Approximately 35 percent of totalSRB risk
- Approximately 7.5 percent of total vehicle risk

Inherent Hazards

- Hydrazine Fuel
- Associated with ~50
 percent of SRB TVC
 Criticality 1 failure
 modes
- Personnel hazards and costs associated with handling

What

· Replace existing hydrazine APU

Why

 Reduce risk associated with personnel hazards and enhance safety by eliminating hydrazine

Space Shuttle Main Engine BLK Propulsion Safety Upgrades

What

- X-large Throat Main Combustion Chamber (XLTMCC) reduces operating environment for turbopumps and other components for increased engine reliability
 - XLTMCC is longer to optimize MCC/Nozzle configuration

Why

Safety & Reliability:

• Improve 3-engine catastrophic failure from 1 in 1,885 to 1/2,586 by reducing the operating environment

What

- Channel-wall constructed 2-pass nozzle
- Eliminates feedline/aft manifold crit 1 welds
- Robust fabrication with reduced part count

Why

Safety & Reliability:

- · Simplified construction
- Improves 3-engine failure from 1 in 2,363 to 1 in 2,593 and reduces nozzle failure from 1 in 13,860 to
 - 1 in 27.720

Advanced Health Management System Propulsion Safety Upgrades

What

AHMS Phase I adds the following to the existing SSME Block II Controller:

- High pressure turbopump vibration redline capability
- External high speed serial data interface

Why

Safety & Reliability:

 Reduces SSME ascent failure probability from 1/1283 to 1/1668

Future Development:

 High speed serial data interface supports development of AHMS Phase II

What

AHMS Phase II provides the capability to detect and isolate engine failures with high confidence and provides previously unavailable mitigation options

- Phase IIA Health Management Computer (HMC),
 Optical Plume Anomaly Detection (OPAD) and
 Linear Engine Model (LEM) prototyping and
 requirements definition tasks
 - Phase IIB development of Health Management Computer (HMC) as real time flight system, production, integration into Orbiter fleet

Why

Safety & Reliability:

 Further reduces SSME ascent failure probability from 1/1668 to 1/2189

Propulsion Safety Upgrades Friction Stir Welding

8,000 inches Welds out of LH₂ Barrel 1 Welds (HB1) Constant Thickness (0.320) 6 each 15-feet long LH2 Barrel 1 (Longeron Welds) (0.650/0.550 - 0.320)4 each 15-feet long Tapered Thickness 2 each Tapered Thickness (0.500 - 0.320) 22 each constant thickness (0.320) LH, Barrels 2, 3, and 4 Welds 24 each 20-feet long LO, Barrel Welds (OB) 0.387) Lapered Thickness 4 each 8-feet long

What

- Refine the technology to replace longitudinal fusion welds with friction stir welding
- Replace existing tools with two new universal FSW tools
- Implement friction stir welding on the longitudinal welds for the oxygen and hydrogen barrels

Why

- Improved mechanical properties
- Reduced defect rate
- Increased process control

Propellant Grain Geometry Modifications

• Objective

- IMPROVE System Safety AND Personnel Safety by modifying propellant grain geometry to improve structural factors of safety
- Potential system risks; over pressurization and premature flame at case wall
- Personnel risk; exposure to hazardous operations

Background

CEI specification structural requirements for propellant grain are below a 2.0 safety factor due S-bend (storage 1.4), 2b. S-bend (launch 1.6); 3a. Igniter Boot (storage 1.4), 3b. Igniter Boot to localized induced loads. Five regions exist:: 1. Transition area (transportation 1.4); 2a. (launch 1.6); 4. Fin Tip (storage 1.4); 5. Fwd & CTR Flap Terminus (storage 1.4)

Propulsion Safety Upgrades Summary

Safety Is Our #1 Priority

Strong Program/Project Management Initiatives

Highly Motivated TEAM