

• Describe the resting membrane potential and its ionic basis.

Learning Goals

As a first step: How does communication occur within a single neuron?

Intracellular Recording

aka: the 'sharps microelectrode' technique

A healthy neuron has a resting membrane potential (or membrane voltage) of between -60 and -80 mV (the voltage inside the neuron is 60-80 mV less than outside the neuron).

Why the polarization at -70mV?

Extracellular Fluid

Cytoplasm

Why the polarization at -70mV?

Due to an unequal distribution of ions.

Four Factors:

1. Differential Permeability (due to the presence of ion channels).

Four Factors:

- 1. Differential Permeability.
- 2. Ions move down their concentration gradients. Thus, Na+ will tend to enter and K+ will tend to exit.

Four Factors:

- 1. Differential Permeability.
- 2. Movement down concentration gradient.
- 3. The negative internal charge creates pressure for both Na+ and K+ to enter the cell.

Four Factors:

- 1. Differential Permeability.
- 2. Movement down concentration gradient.
- 3. Electrostatic pressure.
- 4. Sodium-potassium pump transports 3 Na+ out for every 2 K+ it transports in.

