Optimization in Data Science

Brian J. Mann

Feb 29, 2016

Objectives

- Know How Gradient Descent Works
- Use Gradient Descent to Optimize the Cost Function For Logistic Regression
- Know How Stochastic Gradient Descent Works
- Implement Stochastic Gradient Descent
- Know How Newton's Method Works
- Implement Newton's Method

Agenda

Morning

- 1. What is Gradient Descent and why do we need it?
- 2. Examples of gradient descent
- 3. What can go wrong?
- 4. Using Gradient Descent to solve logistic regression

Afternoon

- 1. Stochastic Gradient Descent
- 2. Newton's Method

Cost Functions

- Machine learning often involves fitting a model to test data
- ► The best fit is often determined using a *cost function* or *likelihood function*
 - ► Linear Regression:

$$\sum (y_i - \beta^T x_i)^2$$

Logistic Regression:

$$\sum y_i \log g(\beta^T x_i) + (1 - y_i) \log(1 - g(\beta^T x_i))$$
$$\left(g(z) = \frac{1}{1 + e^{-z}}\right)$$

Linear Regression

► The cost function $\sum (y_i - \beta^T x_i)^2$ can be represented in matrix format:

$$||y - X\beta||^2$$

▶ Has a closed-form solution for the minimum

$$\beta = (X^T X)^{-1} X^T y$$

- ► $(X^TX)^{-1}$ very hard to compute if you have many features (say > 10,000)
- Is there a quicker way?

Logistic Regression

▶ The log-likelihood function

$$\sum y_i \log g(\beta^T x_i) + (1 - y_i) \log(1 - g(\beta^T x_i))$$

has no such closed form for its maximum.

How will you find the maximum?

Ideas?

Gradient Descent

- ▶ Algorithm for finding the minimum of a function
- Question: Can be used to find maxima by _____?

Recall

▶ The gradient of a multivariate function $f(x_1,...,x_n)$ is

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right)$$

ightharpoonup
abla f(a) points in the direction of greatest increase of f at a

Gradient Descent

- ▶ Minimize *f*
- ► Choose:
 - ▶ a starting point *x*
 - learning rate α
 - ightharpoonup threshold ϵ
- ▶ Move in the direction of $-\nabla f(x)$:
 - Set $y = x \alpha \nabla f(x)$
- ▶ If $\frac{|f(x)-f(y)|}{|f(x)|}$ < ϵ , return f(y) as the min, and y as the argmin

Gradient Descent

- ▶ alpha is called the *step-size* or *learning rate*
 - ▶ If 'alpha' is too small, convergence takes a long time
 - ▶ If 'alpha' is too big, can overshoot the minimum

Figure 1:alpha too large

Choosing Alpha

▶ If the value of

$$\frac{|\nabla f(x) - \nabla f(y)|}{|x - y|}$$

is bounded above by some number $L(\nabla f)$ then

$$\alpha \leq \frac{1}{L(\nabla f)}$$

will converge.

- For example:
 - $f(x) = x^2$
 - $L(\nabla f) = 2$
 - $\alpha = 1/2$ will be the best value

Adaptive Step Size

- ightharpoonup Change lpha at each iteration
- Barzilai and Borwein, 1998
 - ▶ Suppose x_i is the value of x at the iteration i

 - At each step

$$\alpha = \frac{\Delta g(x)^T \Delta x}{||\Delta g(x)||^2}$$

is a good choice of $\boldsymbol{\alpha}$

Convergence Criteria

Choices:

- $|f(x)-f(y)| < \epsilon$
- ► Max number of iterations
- ▶ Magnitude of gradient $|\nabla f| < \epsilon$

Gradient Ascent

- ▶ To maximize f, we can minimize -f
- ▶ Still use almost the same algorithm
 - Just replace

$$y = x - \alpha \nabla f(x)$$

with

$$y = x + \alpha \nabla f(x)$$

Some Examples

Examples

What Can Go Wrong

Where do you think gradient descent fails?

Example

Figure 2:Non-convex function

More Bad Things

- ▶ Need differentiable and convex cost/likelihood function
- Only finds local extrema
- Poor performance without feature scaling

Back to Logistic Regression

Trying to maximize the log-likelihood function

$$\ell(\beta) = \sum y_i \log g(\beta^T x_i) + (1 - y_i) \log(1 - g(\beta^T x_i))$$

▶ To use gradient ascent: need to compute $\nabla \ell(\beta)$

More Logistic Regression

First, let's compute the derivative of the sigmoid function g:

$$\frac{d}{dz}g(z) = \frac{d}{dz} \frac{1}{1 + e^{-z}}$$

$$= \frac{d}{dz} (1 + e^{-z})^{-1}$$

$$= -(1 + e^{-z})^{-2} (-e^{-z})$$

$$= \frac{1}{1 + e^{-z}} (\frac{e^{-z}}{1 + e^{-z}})$$

$$= g(z) (\frac{1 + e^{-z} - 1}{1 + e^{-z}})$$

$$= g(z) (\frac{1 + e^{-z}}{1 + e^{-z}} - \frac{1}{1 + e^{-z}})$$

$$= g(z) (1 - g(z))$$

Figure 3: g'(z)

More Logistic Regression

▶ Using this and the chain rule, compute $\frac{\partial \ell}{\partial \beta_i}$

$$\begin{split} \frac{\partial}{\partial \beta_{j}} \ell(\beta) &= \frac{\partial}{\partial \beta_{j}} \left(\sum_{i=1}^{n} y_{i} \log \left(g(\beta^{T} x_{i}) \right) + (1 - y_{i}) \log \left(1 - g(\beta^{T} x_{i}) \right) \right) \\ &= \sum_{i=1}^{n} \left(\frac{y_{i}}{g(\beta^{T} x_{i})} - \frac{1 - y_{i}}{1 - g(\beta^{T} x_{i})} \right) \frac{\partial}{\partial \beta_{j}} \left(g\left(\beta^{T} x_{i} \right) \right) \\ &= \sum_{i=1}^{n} \left(\frac{y_{i}}{g(\beta^{T} x_{i})} - \frac{1 - y_{i}}{1 - g(\beta^{T} x_{i})} \right) g(\beta^{T} x_{i}) \left(1 - g(\beta^{T} x_{i}) \right) \frac{\partial}{\partial \beta_{j}} \left(\beta^{T} x_{i} \right) \\ &= \sum_{i=1}^{n} \left(\frac{y_{i}}{g(\beta^{T} x_{i})} - \frac{1 - y_{i}}{1 - g(\beta^{T} x_{i})} \right) g(\beta^{T} x_{i}) \left(1 - g(\beta^{T} x_{i}) \right) x_{ij} \end{split}$$

Figure 4:Computing $\nabla \ell$

More Logisitic Regression

Simplifying:

$$\frac{\partial}{\partial \beta_j} \ell(\beta) = \sum_{i=1}^n \left(y_i \left(1 - g(\beta^T x_i) \right) - (1 - y_i) g(\beta^T x_i) \right) x_{ij}$$

$$= \sum_{i=1}^n \left(y_i - y_i g(\beta^T x_i) - g(\beta^T x_i) + y_i g(\beta^T x_i) \right) x_{ij}$$

$$= \sum_{i=1}^n \left(y_i - g(\beta^T x_i) \right) x_{ij}$$

$$= \sum_{i=1}^n \left(y_i - f(x_i) \right) x_{ij}$$

Figure 5:Computing $\nabla \ell$

More Logisitic Regression

▶ This is what you'll use to update the value of β in each iteration of gradient descent

Stochastic Gradient Descent

Why Not Regular Gradient Descent?

► Can you think of some problems with gradient descent as we learned it this morning?

Problems with Gradient Descent

- Memory constrained
 - Need to store all data in memory
- CPU constrained
 - ► Cost function is a function of all data
- What if you are getting new data continuously?

Solution

Only use a single data point, or a small subset of your data, at in each step!

Algorithm

- Same as gradient descent except at each step compute the cost function by using just one observation
- For example in linear regression, instead of computing the gradient of

$$\sum_{i} (y_i - \beta^T x_i)^2$$

randomly select some x_i, y_i and compute the gradient of

$$(y_i - \beta^T x_i)^2$$

Properties

- ► Faster than batch (regular) Gradient Descent on average
- Prone to oscillation around an optimum
- Only requires one observation in memory at once

Variants

- Can use a small subset of your data instead of a single observations
 - "Minibatch" Stochastic GD
- "Online" Stochastic GD updates the model by performing a gradient descent step each time a new observation is collected

Newton's Method

What Is It?

- Optimization technique similar to gradient descent
- Uses a root-finding method applied to f'(x)

Algorithm in One Dimension

- \triangleright Choose initial x_0
- ▶ While $f'(x) > \epsilon$:

$$x_{i+1} = x_i - \frac{f'(x_i)}{f''(x_i)}$$

Higher Dimensions

$$y_{i+1} = y_i - H(y_i)^{-1} \nabla f(y_i)$$

($H(a) = \left[\frac{\partial f}{\partial x_i \partial x_j}(a)\right]$ is the *Hessian* matrix, the matrix of second partial derivatives at a)

Problems

- ▶ Hessian might be singular, or computation can be slow
- Can diverge with a bad starting guess