1 Extrema liés

Extrema liés

Rédaction "propre" et la plus détaillée possible de l'existence et l'unicité des multiplicateurs de Lagrange liant les différentielles de plusieurs fonctions sous certaines hypothèses.

[**GOU20**] p. 337

p. 347

Théorème 1 (Extrema liés). Soit U un ouvert de \mathbb{R}^n et soient $f, g_1, \ldots, g_r : U \to \mathbb{R}$ des fonctions de classe \mathscr{C}^1 . On note $\Gamma = \{x \in U \mid g_1(x) = \cdots = g_r(x) = 0\}$. Si $f_{\mid \Gamma}$ admet un extremum relatif en $a \in \Gamma$ et si les formes linéaires $d(g_1)_a, \ldots, d(g_r)_a$ sont linéairement indépendantes, alors il existe des uniques $\lambda_1, \ldots, \lambda_r$ appelés **multiplicateurs de Lagrange** tels que

$$df_a = \lambda_1 d(g_1)_a + \cdots + \lambda_r d(g_r)_a$$

Démonstration. Soit s = n - r. Identifions \mathbb{R}^n à $\mathbb{R}^s \times \mathbb{R}^r$ et écrivons les éléments (x, y) de \mathbb{R}^n sous la forme $(x, y) = (x_1, \dots, x_s, y_1, \dots, y_r)$. On notera également par la suite $a = (\alpha, \beta)$ avec $\alpha \in \mathbb{R}^s$ et $\beta \in \mathbb{R}^r$. On a déjà plusieurs informations :

- $\in \mathbb{R}^r$. On a déjà plusieurs informations : — Déjà, $r \le n$, car les formes linéaires $d(g_i)_a$ forment une famille libre de $(\mathbb{R}^n)^*$, qui est de
- dimension n.

 De plus, si r = n, la démonstration est triviale car $(d(g_i)_n)_{i \in \mathbb{N}}$ est alors une base de $(\mathbb{R}^n)^*$
- De plus, si r = n, la démonstration est triviale car $(d(g_i)_a)_{i \in [1,n]}$ est alors une base de $(\mathbb{R}^n)^*$. Pour ces raisons, nous supposerons dans la suite $r \le n - 1$ (ie. $s \ge 1$).

Comme $(d(g_i)_a)_{i \in [1,r]}$ est une famille libre, la matrice

$$\left(\left(\frac{\partial g_i}{\partial x_j}(a) \right)_{\substack{i \in [1,r] \\ j \in [1,s]}} \left(\frac{\partial g_i}{\partial y_j}(a) \right)_{\substack{i \in [1,r] \\ j \in [1,r]}} \right)$$

est de rang r. On peut donc extraire une sous-matrice de taille $r \times r$ inversible. Quitte à changer le nom des variables, on peut supposer que c'est la sous-matrice de droite, ie.

$$\det\left(\left(\frac{\partial g_i}{\partial y_j}(a)\right)_{i,i\in[1,r]}\right) \neq 0 \tag{*}$$

On va appliquer le théorème des fonctions implicites à la fonction $g=(g_1,\ldots,g_r)$. Pour cela, on vérifie les hypothèses :

- g est de classe \mathscr{C}^1 .
- $g(\alpha, \beta) = 0$ car $(\alpha, \beta) = a \in \Gamma$.
- La différentielle partielle $d_{\nu}g_a$ est inversible par (*).

Ainsi, il existe:

- U' voisinage de α dans \mathbb{R}^s .
- V' voisinage de β dans \mathbb{R}^r .
- $\varphi: U' \to V'$ de classe \mathscr{C}^1 telle que $\varphi(\alpha) = \beta$ et $\forall (x,y) \in U' \times V'$, $(x,y) \in \Gamma \iff g(x,y) = 0 \iff y = \varphi(x)$.

2 Extrema liés

En d'autres termes, sur un voisinage de a, les éléments de Γ s'écrivent $(x, \varphi(x))$. On pose maintenant $u: x \mapsto (x, \varphi(x))$ et $h = f \circ u$. Par composition, h est différentiable en α et

$$0 \stackrel{\alpha \text{ extremum de } h}{=} dh_{\alpha} = d(f \circ u)_{\alpha} = df_{u(\alpha)} \circ du_{\alpha} = df_{a} \circ du_{\alpha}$$

En termes de matrices, cela donne:

$$\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \left(\left(\frac{\partial f}{\partial x_{j}}(a) \right)_{j \in [\![1,s]\!]} \quad \left(\frac{\partial f}{\partial y_{j}}(a) \right)_{j \in [\![1,r]\!]} \right) \left(\left(\frac{\partial \varphi_{i}}{\partial x_{j}}(\alpha) \right)_{i \in [\![1,r]\!]} \right)$$

$$= \begin{pmatrix} \frac{\partial f}{\partial x_{1}}(a) + \sum_{k=1}^{r} \frac{\partial f}{\partial y_{k}}(a) \frac{\partial \varphi_{k}}{\partial x_{1}}(\alpha) \\ \vdots \\ \frac{\partial f}{\partial x_{s}}(a) + \sum_{k=1}^{r} \frac{\partial f}{\partial y_{k}}(a) \frac{\partial \varphi_{k}}{\partial x_{s}}(\alpha) \end{pmatrix}$$

On aboutit à la relation suivante :

$$\forall i \in [1, s], \frac{\partial f}{\partial x_i}(a) + \sum_{k=1}^r \frac{\partial f}{\partial y_k}(a) \frac{\partial \varphi_k}{\partial x_i}(\alpha) = 0$$
 (**)

Comme $\forall j \in [1, r]$, $g_j(\alpha, \varphi(\alpha)) = g_j(a) = 0$, on peut aboutir de la même manière à la relation suivante :

$$\forall i \in [1, s], \forall j \in [1, r], \frac{\partial g_j}{\partial x_i}(a) + \sum_{k=1}^r \frac{\partial g_j}{\partial y_k}(a) \frac{\partial \varphi_k}{\partial x_i}(\alpha) = 0$$
 (***)

On considère maintenant la matrice M suivante :

$$M = \begin{pmatrix} \left(\frac{\partial f}{\partial x_{j}}(a)\right)_{j \in \llbracket 1, s \rrbracket} & \left(\frac{\partial f}{\partial y_{j}}(a)\right)_{j \in \llbracket 1, r \rrbracket} \\ \left(\frac{\partial g_{i}}{\partial x_{j}}(a)\right)_{\substack{i \in \llbracket 1, r \rrbracket \\ j \in \llbracket 1, s \rrbracket}} & \left(\frac{\partial g_{i}}{\partial y_{j}}(a)\right)_{\substack{i \in \llbracket 1, r \rrbracket \\ j \in \llbracket 1, r \rrbracket}} \end{pmatrix}$$

Par (**) et (***), les s premiers vecteurs colonnes de cette matrice s'expriment linéairement en fonction de ses r derniers. Donc $\operatorname{rang}(M) \leq r$. Mais, le rang des vecteurs lignes d'une matrice est égal au rang de ses vecteurs colonnes. Donc les r+1 vecteurs lignes de M forment une famille liée. Mais par hypothèse, les r dernières lignes sont libres. Donc la première ligne est combinaison linéaire des r dernières, ce qui se réécrit :

$$\exists \lambda_1, \dots, \lambda_r \in \mathbb{R}$$
 tels que $\mathrm{d}f_a = \lambda_1 \mathrm{d}(g_1)_a + \dots + \lambda_r \mathrm{d}(g_r)_a$

L'unicité est claire car $(d(g_i)_a)_{i \in [1,r]}$ est une famille libre.

Attention à la rigueur et à la propreté dans cette démonstration. On peut très vite se perdre si l'on va trop vite ou si l'on ne prend pas le temps de bien écrire chaque donnée.

Remarque 2. Il paraît que le jury n'aime pas beaucoup cette démonstration. Si vous la proposez en développement, soyez sûr de pouvoir en donner une interprétation géométrique : grâce à la condition d'indépendance des $d(g_i)_a$, Γ est une sous-variété de \mathbb{R}^n autour du point

[BMP] p. 20

П

3 Extrema liés

a. D'autre part,

$$\mathrm{d}f_a = \lambda_1 \mathrm{d}(g_1)_a + \dots + \lambda_r \mathrm{d}(g_r)_a \iff \bigcap_{i=1}^r \mathrm{Ker}(\mathrm{d}(g_i)_a) \subseteq \mathrm{Ker}(\mathrm{d}f_a) \tag{*}$$

En particulier, $\mathrm{d}f_a$ est nulle $\sup \bigcap_{i=1}^r \mathrm{Ker}(\mathrm{d}(g_i)_a)$. Or, l'espace tangent en a à la sous-variété $\{x \text{ proche de } a \mid g_1(x) = \dots = g_r(x) = 0\}$ est justement $\{h \in \mathbb{R}^n \mid \mathrm{d}(g_1)_a(h) = \dots = \mathrm{d}(g_r)_a(h) = 0\}$.

Bref, la condition (*) exprime que $\mathrm{d}f_a$ est nulle sur le plan tangent à Γ en a. Ceci équivaut aussi à ce que ∇f_a soit orthogonal à l'espace tangent à Γ en a. Ainsi, la seule manière de rendre f plus petit serait de "sortir de Γ ".

Bibliographie

Objectif agrégation [BMP]

Vincent Beck, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.