Portable Emissions Testing of a 105-FT Commercial Tug

Alan Bentz Bert Macesker Robert Desruisseau

U.S. Coast Guard
Research and Development Center
1082 Shennecossett Road
Groton, CT 06340-6096

FINAL REPORT October 1996

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for:

U.S. Department of Transportation United States Coast Guard Systems, (G-S) Washington, DC 20593-0001 19970327 019

DIE QUALITY INCUSATION &

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

The contents of this report reflect the views of the Coast Guard Research & Development Center. This report does not constitute a standard, specification, or regulation.

G.T. Gunther

Commanding Officer

United States Coast Guard

Research & Development Center 1082 Shennecossett Road

Groton, CT 06340-6096

		Technic	al Report Docume					
1. Report No.	2. Government Acce	ession No.	3. Recipient's Catalog	No.				
CG-D-07-97								
4. Title and Subtitle			5. Report Date					
4. Title and Subtitle			October 1996					
Portable Emissions Testing of a	6. Performing Organization Code							
7. Author(s) Alan Bentz, Bert Macesk	8. Performing Organiz	ation Report No.						
9. Performing Organization Name and Ad	dress		H&DC 28/96					
			10. Work Unit No. (TR	AIS)				
U.S. Coast Guard Research and Development Cent 1082 Shennecossett Road	er		11. Contract or Grant	No.				
Groton, Connecticut 06340-6096			13. Type of Report an	d Period Covered				
12. Sponsoring Agency Name and Addres	ss	The state of the s	Final Report					
U.S. Department of Transportatio United States Coast Guard Systems, (G-S) Washington, DC 20593-0001		14. Sponsoring Agency Code Commandant (G-SEN) USCG Headquarters Washington, DC 20593-0001						
15. Supplementary Notes The R&D Center's technical p 16. Abstract	point of contact is B	ert Macesker, 860-4	41-2726.					
Emission testing was conducted in May 1996 on a commercial tug as part of a general Coast Guard R&D study to evaluate protocols for shipboard emissions testing. The objectives of this test were to determine emissions data for a commercial tug, evaluate fuel savings techniques, and evaluate portable testing protocols for emissions testing. Portable emission analyzers were used that employ electrochemical sensors. The NOx values determined were below both the International Maritime Organization's (IMO) and Environmental Protection Agency's (EPA's) maximum allowable levels for a 1225 RPM rated engine. A commercial engine speed pilot was installed with a fuel management system to record fuel consumption, engine horsepower, and provide a capability of balancing the engines for optimum running efficiency. An indication of fuel savings was apparent when the engine speed pilot was engaged.								
17. Key Words		18. Distribution State	ment					
emissions fuel savings engine speed pilot		Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161						
19. Security Classif. (of this report)	20. SECURITY CLA	SSIF. (of this page)	21. No. of Pages	22. Price				

Form DOT F 1700.7 (8/72)

UNCLASSIFIED

Reproduction of form and completed page is authorized iii

UNCLASSIFIED

METRIC CONVERSION FACTORS

Ø	_											٠																		
asure	Symbol		.E .!	≘ #	, P	Ē	ć	in.	yd ²	Ē			20	ō				tl oz	ပ	ā	₽,	36 6	, E	λđ			å.	•		
Metric Me	To Find		inches	feet	yards	miles		square inches	square yards	square miles	acres		onuces	spunod	short tons			fluid onnces	cnbs	pints	quarts	gallons	cubic feet	cubic yards			Fahrenheit	temperature	212°F	١٩٦
ions from	Multiply By	TH	0.04	4.0		9.0	A	0.16	1.2	4.0	2.5	VEIGHT)	0.035	2.2	- :		ME	0.03	0.125	2.1	1.06	0.26	32	5. 2.		IRE (EXACT)	9/5 (then	add 35)	8.6	80 120 150 5 370 60 1
Approximate Conversions from Metric Measures	When You Know	LENGTH	millimeters	centimeters	meters	kilometers	AREA	square centimeters	square meters	square kilometers	hectares(10,000 m²)	MASS (WEIGHT)	grams	kilograms	tonnes (1000 kg)		NOLUME	milliliters	liters	liters	liters	liters	cubic meters	cubic meters		TEMPERATURE (EXACT)	Celsius	temperature	3,2	7%
Appro	Symbol		E	E	EE	Ę.		cm ²	₂ E	km ²	ha		o	kg	-			Ē	_		_	_ "	ີ∈ິ	Ē			ပွ			
SS S3	rs lo	2 6	L	81		 	91	S	1	, I	3		2 L	L		or	6		3	1		9			*		E 	5	L	uo
9	8	יוין יוי	'!' 7		111	' ' 	6	'1'	' ! '	' '	5	'l'	il il	l'['	4	1' '		'ا' 3		' 'l'		' ' '	2	!' '	1.	'''	1	' '1	inch	es
sures	Symbol		ca	CB	Ε	Ę			a ₂			ha		5	Ą	-		Ē	Ē	Ē	_	-	_	_ '	E E	E		ပ		
letric Meas	To Find		centimeters	centimeters	meters	kilometers		square centimeters	square meters	square meters	square kilometers	hectares	•	grams	kilograms	tonnes		milliliters	milliliters	milliliters	liters	liters	liters	liters	cubic meters	cubic meters	(EXACT)	Celsius	temperature	
sions to M	Multiply By	LENGTH	* 2.5	30	6.0	1.6	AREA	6.5	0.09	0.8	2.6	9.0	MASS (WEIGHT)	28	0.45	6.0	VOLUME	5	15	30	0.24	0.47	0.95	3.8	0.03	0.76	TEMPERATURE (5/9 (after	subtracting 32)	
Approximate Conversions to Metric Meas	Symbol When You Know		inches	feet	yards	miles		square inches	square feet	square yards	square miles	acres	_	onuces	spunod	short tons (2000 lb)		teaspoons	tablespoons	fluid ounces	cnbs	pints	quarts	gallons	cubic feet	cubic yards	TEM	Fahrenheit	temperature	= 2.54 (exactly).
Appro	Symbol		.⊑	z	yq	Ē		in ²	112	yd ²	mi ²			20	<u>a</u>			tsp	tbsp	fl oz	υ	ŧ	ŧ	gal	#3	yq3		i,		* i. t.

EXECUTIVE SUMMARY

Emission testing was conducted in May 1996 on a commercial tug as part of a general Coast Guard R&D study to evaluate protocols for shipboard emissions testing. The objectives of this test were to determine emissions data for a commercial tug, evaluate fuel savings techniques, evaluate portable testing protocols for emissions testing, and also evaluate alternatives to measuring horsepower and fuel rate that would be more efficient and simpler than traditional approaches.

Testing was conducted on the Maritrans, Inc. Tug COUGAR which is a typical tug boat that is married to a notched fuel barge. In order to relate measured emissions data to ship physical and operating characteristics, several variables were measured which included shaft and engine horsepower, fuel consumption, turbocharger intake air flow, exhaust stream emissions, and diesel fuel constituents. Using a calculation procedure developed by the Coast Guard R&D Center, the average weighted NOx values for a number of tug operating configurations were determined to be,

Free Tug \rightarrow 4.5 g/kWh (port engine) Tug w/ light barge \rightarrow 5.1 g/kWh (port engine)

Tug w/ full barge \rightarrow 4.9 g/kWh (port & stbd engine average)

These NOx values are below the IMO maximum allowable level of 10.85 g/kWh for a 1225 rpm rated engine. They are also well below the EPA average criteria of 9.2 g/kWh.

A commercial engine speed pilot (analogous to an automobile cruise control) was installed with a fuel management system to record fuel consumption, engine horsepower, and provide a capability of balancing the engines for optimum running efficiency. A strong indication of fuel savings was apparent with the engine speed pilot engaged.

Two different portable emission analyzers were evaluated which employ electrochemical sensors. The ENERAC Model 3000E appears to give reliable NOx readings, based on its design to eliminate cross contamination, provide multiple sensor ranges, and absorption losses.

The tug boat test represents one of a series of several shipboard emission tests that are being conducted to gain experience and to collect data in developing a practical shipboard emission test protocol for recommendation to the International Maritime Organization. The last of the series of tests as part of the R&D project will be done on a Coast Guard Cutter construction tender (WLIC). The data and lessons learned from all of the tests will be used in constructing the shipboard emission protocol.

ACKNOWLEDGMENTS

Appreciation is expressed to Maritrans Inc. for the use of their Tug COUGAR. Special thanks to the crew of the Tug COUGAR for its cooperation and technical support during the test period. Although Jim Tabor from Smartboat, Inc. was responsible for the EMS-1000 fuel management system and ESP-1000 engine speed pilot instrumentation, he also provided invaluable support in the conduct of the overall test. Appreciation is also expressed to SCPO Brion of the R&D Center's Marine Systems & Environmental Technology Division for his technical assistance in collecting the emissions data.

TABLE OF CONTENTS

Section		Page
1 -	BACKGROUND	
2	INTRODUCTION	
	 Overview of Test Data and Equipment. Portable Test Instrumentation Discussion. 	4
3	TEST RESULTS 3.1 Tug Pushing Full Load Barge 3.2 Tug Pulling Light Barge 3.3 Free Tug	
4	SUMMARY	8
5	CONCLUSIONS 5.1 ISO 8178 Emission Factor 5.2 NOx Interpretation 5.3 Portable Emission Testing Lessons Learned 5.4 EMS-1000 Speed Pilot	
6	REFERENCES	18
Append	lix A - Example Calculations for Emissions	

LIST OF FIGURES

	Page			
Figure 1 Overview of Tug COUGAR Instrumentation	5			
Eigen 2 Tug COUGAD CO Emissions				
Figure 3 Tug COLIGAR NOv Emissions	11			
Times 4 IMO NOv Emission Levels	13			
Figure 5 EMS-1000 Plot for Tug Pulling Light Barge Run				
LIST OF TABLES				
Table 1 Characteristics of Tug COUGAR	2			
Table 2 Shin Test Data Collected	••••••			
Table 3 Instrument Readings after Test	Э			
Table 4 Testing Sequence for Tug with Full Barge	0			
Toble 5 Testing Sequence for Tug with Light Barge	/			
Table 6 Testing Sequence for Free Tug	/			
Table 7 Summary of Fuel Flow Data	o			
Table 8 Summary of Pollutant Levels Recorded by Emission Analyzers	9			
Table 9 Pollutant I evels Recorded by Emission Analyzers for Tug at Idle	10			
Table 10 ISO 8178 NOx Factor	14			
Table 11 Emission Levels Recorded with Analyzers Exchanged Between Engines	16			

1 Background

1.1 Purpose of Test

This emission ship test supports the research on the development of portable emissions testing protocols for consideration by the International Maritime Organization (IMO). This effort has been conducted within the present Exhaust Emissions Project, 3310, at the Coast Guard Research & Development Center (CG R&D Center), sponsored jointly by the Naval Engineering Projects Division at USCG Headquarters, and by the U.S. Maritime Administration.

1.2 Review of Regulatory Actions

The U.S. Coast Guard's interest in emissions testing arises from its desire to meet all federal and state quality regulations and the fact that it may be called upon in the future to enforce regulations in the marine environment. In the U.S., the Clean Air Act Amendments of 1990, Section(a)(3), have charged the U.S. Environmental Protection Agency (EPA) with defining and controlling the emission inputs from non-road sources, including marine sources. On the international level, the IMO has developed proposed guidelines for controlling air pollution from ships. Additional discussion on regulatory actions, including proposed emission levels, can be found in Reference [1].

1.3 Prior Coast Guard Work on Portable Emission Measurements

Because of concern that laboratory bench testing does not duplicate the actual in-service load cycles on marine engines, and that performance of in-service engines degrades in time and their emissions increase, it is desired to measure emissions at-sea. There may be several modes of operation for vessels (duty cycles) with defined speed, torque, and time. ISO 8178 lists several duty cycles in Reference [2]. EPA recommends cycle E2 at four different torque values (as a percentage of full torque), giving emissions as a weighted average of the four values.

The CG R&D Center conducted a series of tests involving three Point Class 82-FT patrol boats using ISO 8178 procedures in Reference [3]. Six Coast Guard cutters and patrol boats were also tested for emissions by Environmental Transportation Consultants (ETC) in Reference [4]. The purpose of these tests was to survey vessel emissions to provide the Coast Guard with a database for air quality compliance planning and to update the emission inventory for selected USCG vessel classes operating under the jurisdiction of California Air Resources Board (CARB). The CG R&D Center and Maritime Administration recently conducted testing (Reference [1]) on the M/V KINGS POINTER to quantify the level of pollutants and to further explore portable emissions testing technology for shipboard applications.

2 Introduction

2.1 Objectives

The objectives of this test were to:

- · determine emissions data for a commercial tug
- evaluate portable testing protocols for emissions testing including the evaluation of alternatives to measuring horsepower and fuel rate that would be more efficient and less cumbersome to instrument
- evaluate fuel savings techniques

2.2 Tug COUGAR Description

The commercial tug was selected for testing in a meeting between Dr. Bentz of the CG R&D Center and Mr. Dittrich of Maritrans, Inc. during Propulsion '95 in New Orleans. Maritrans, Inc., being very interested in emissions research, offered the use of one of its tugs for emissions testing. The Maritrans, Inc. Tug COUGAR is a typical tug boat that is married to a notched fuel barge. The tug and barge usually make transits between Carteret, NJ and Bridgeport, CT, delivering fuel to the tank farm at Bridgeport. The crew estimated making as many as three deliveries every week of the year. The Tug COUGAR's last dry-docking was April 1996, which was just before the emissions testing in May. The principal characteristics are presented in Table 1.

Table 1 Characteristics of Tug COUGAR

Tug COUGAR:	
Length Overall	105'
Beam	32'9"
Draft	15'3"
Vert. Clearance	70'
Gross Tons	171
Net Tons	116
Main Engines (2)	Caterpillar
	D399s
Red Gear	Reint
	Jes/WAV140
	0
Red Gear Ratio	5:1
propellers (2)	4 bladed
Ocean 60 Barge:	
Length Overall	310'
Beam	62'
Draft Light	3'6"
Gross Tons	3824

Coast Guard R&D Center staff from the Marine Systems & Environmental Technology Division and a Stellar Marine representative from Smartboat, Inc. were on-board the Tug COUGAR from 9 May through 16 May, 1996. The first two days, 9 and 10 May, were used for installing the test gear. Twelve hours were needed by both Coast Guard personnel and the Steller Marine representative to install the horsepower meters, the fuel management system (EMS-1000), and engine speed pilot (ESP-1000). Test data were collected whenever possible from 11 May through 15 May. On 16 May gear was removed and the test team departed.

2.3 Overview of Test Data and Equipment

Data Collected

In order to relate measured emissions data to ship physical and operating characteristics, several physical variables had to be measured. A complete discussion of the variables that affect engine exhaust emissions may be found in Reference [3]. Data listed in Table 2 were collected.

Table 2 Ship Test Data Collected

Barometric Pressure (inches of Hg) Relative humidity near engine intake (%) Temperature associated with relative humidity (°F) Intake Air Temperature (°F) Shaft rpm (port & stbd) Engine rpm (port & stbd) Shaft Horsepower Fuel Flow (GPH) Intake Air Flow (CFM) Stack Temperature (°F) Oxygen volume (dry) in exhaust (%) CO volume (dry) in exhaust (%) Excess Air Volume (dry) in exhaust (%) NO volume (dry) in exhaust (ppm) NO₂ volume (dry) in exhaust (ppm) NOx volume (dry) in exhaust (ppm)

A discussion of how each variable was collected follows:

Barometric Pressure, Relative Humidity, Air Temperature

Barometric Pressure was recorded in the Maritrans Tug COUGAR's engine room on a Control Data digital recorder. Barometric pressure was also recorded by each of the

Shortridge Flowhoods[5] installed on the inboard port and starboard turbocharger air intakes. The Control Data digital recorder was checked against the University of Connecticut's Marine Science Institute equipment. Relative humidity, air temperature, and barometric pressure readings agreed within 4%. Relative humidity readings were checked against a Dickson Company Model THDx humidity sensor while in the engine room. Air temperature readings were taken from the Shortridge Flowhoods installed on each inboard turbocharger and were confirmed against temperature readings available on the Control Data digital recorder and THDx chart recorder. All of these data were recorded manually.

Shaft rpm/Engine rpm

Shaft rpm and shaft horsepower were measured with Coast Guard owned Wireless Data Corp. horsepower (HP) meters [6]. Engine rpm, by sensing the rotations of the flywheel gear, was recorded by the Stellar Marine fuel management system (EMS-1000) system. These data were recorded manually and also recorded continuously by the Stellar Marine EMS-1000 data logging software when functioning. The 5:1 reduction gear ratio was confirmed by the engine rpm readings recorded by the EMS-1000 and the shaft rpm measurements made with the Coast Guard instrumentation.

Shaft Horsepower/Torque - Shaft torque was measured on the port and starboard shafts with strain gauges during each test run. Shaft torque measurements were used in determining shaft HP. Each propulsion shaft was outfitted with a Wireless Data Corporation Model 1642A horsepower measuring system [6] which consisted of a strain gauge bonded to the outside of the shaft and a magnetic pickup which recorded the rpm. An FM transmitter collar system transmitted the strain information to the horsepower meter. The measured strain was converted to torque. Accuracy of the instruments were within 2% of full scale which was 1500 HP. Thus accuracy was +/- 30 HP.

Air Pressure, Temperature, and Humidity - These parameters were measured in the vicinity of the air intake. Flowhoods were attached to the turbocharger and provided air pressure and temperature as well as flow rate in cubic feet per minute (CFM).

<u>Fuel Consumption</u> - Fuel consumption was calculated and recorded by the EMS-1000 in gal/hr.

Exhaust Gases - Emission analyzers that employ electrochemical sensors recorded the composition of exhaust gases in ppm or percent concentrations. A probe was inserted through a fitting on the exhaust stack located less than two feet above the engine. Exhaust gas concentrations of CO, NO, NO₂, SO₂, O₂ were recorded manually by Coast Guard personnel and data streamed, in some instances, to the EMS-1000 for continuous datalogging. Two different analyzers were used including the ENERAC Model 3000E and ECOM-KD. The sensor's accuracy for NO, NO₂, and CO ppm readings on the ECOM-KD[7] and ENERAC 3000E[8] are advertised as 5% and 2%, respectively.

2.4 Portable Test Instrumentation Discussion

Figure 1 provides an overview of the instrumentation used on the Tug COUGAR. It was intended to use two ECOM-KDs. The EMS-1000 fuel management system was configured to record data from the ECOM-KD's RS232 ports. However, one of the ECOM-KD analyzers malfunctioned and was inoperable during the test period. During the test the ECOM-KD presented an alarm indicating that the NO sensor battery was low. Therefore, data were streamed to the EMS-1000 data logging software from one emission analyzer only. The other emission analyzer employed was the ENERAC Model 3000E. The ENERAC Model 3000E was recently acquired by the Coast Guard R&D Center through an upgrade of an ENERAC 2000E but was not supplied with an SO₂ sensor. Both analyzers were calibrated in accordance with [7] and [8] before the test and span gas readings were checked before and after the shipboard test with the following results:

Table 3 Instrument Readings after Test (originally calibrated to nominal span gas values)

	reading from tank (ppm)	ECOM-KD calibration	reading from tank (ppm)	ENERAC 3000 calibration
СО	815	751	625	751
NO	1120	1034	923	1010
NO_2	101	104	450	500
SO_2	470	512	-	-

In general, there appears to more disparity from the tank readings in the ENERAC 3000E post-test span gas readings than in the ECOM-KD. The final readings on the emission analyzers were made at the R&D Center about four days after the test was complete.

Figure 1 Overview of Tug COUGAR Instrumentation

Fuel measurement on diesel engines require that both the supply and return fuel lines be monitored to measure the net fuel flow that goes to the engine. In-service horsepower measurements using conventional methods of strain gauges on shafts require time consuming and laborious installation procedures.

The approach of measuring shaft horsepower using strain gauge installations has been the approach the R&D Center has employed for the last two decades when instrumenting various Coast Guard vessels for test & evaluation (T&E). This has proven to be a reliable and consistent approach over the years. It is, however, a time consuming and demanding procedure that requires a skilled technician. Meticulous care is taken to prepare the shaft for strain gauges as well as the system setup. This process can take from 12 to 24 hours depending on accessibility of the shafts.

An alternative means of determining in-situ horsepower of main diesel engines was developed by Stellar Marine Inc. Their method determines horsepower as well as fuel consumption based on the fuel rack positions. Both systems were used in testing the Maritrans Tug for comparative purposes. The premise behind the EMS-1000 in Reference [9] is that diesel engines are equipped with precise fuel metering systems. The fuel

injectors deliver a precise amount of fuel into each cylinder at specific intervals. The quantity and rate of fuel is determined by the settings on the engine rpm and fuel racks. The EMS-1000 measures fuel consumption using the engines own fuel metering system. The EMS-1000 Main Control Unit uses a patented algorithm to determine fuel rate and horsepower based on the fuel rack position, rpm, and engine manufacturer's test data. Engine rpm is determined with a magnetic pickup that senses and counts the number of flywheel teeth that pass by its position.

The Stellar Marine fuel management system (EMS-1000) was used to measure fuel consumption, speed, and HP. Fuel consumption was determined with a potentiometer that recorded the fuel rack position calibrated to fuel used. The Stellar Marine engine speed pilot (ESP-1000) was also installed and required tapping into the throttle pneumatic system. The ESP-1000 was purported to control the throttle in such a way as to balance the engine outputs and give more efficient operation with a resulting fuel savings of as much as 10-15% in some instances. Both the EMS-1000 and ESP-1000 software were installed on the Gateway 2000 laptop. The laptop was used to engage and disengage the engine speed pilot. Obviously, fuel savings are of great interest to both industry and the Coast Guard. The evaluation of the ESP-1000 was considered a secondary test which was to be accomplished on a not-to-interfere basis with the primary emission data collection.

Fittings were installed in the port and starboard exhaust stacks about a foot above the engine to accommodate ball valves. The ball valves were opened after steady-state stack temperatures were attained at which point the emission analyzer probes were inserted. The Shortridge Flowhoods were attached to the inboard port and starboard turbochargers with a hose clamp and suspended from overhead deck grates.

The test rpms to represent the four different operating points per ISO 8178 in Reference [2] were determined on 11 May. A maximum speed run was conducted with the tug by itself to determine a top port and starboard average rpm. This was determined to be 1178 rpm. Based on this value the test rpms were determined as:

1000/ 1170		1000/
$100\% \rightarrow 1178 \text{ rpm}$	corresponding to	100% power
$91\% \rightarrow 1072 \text{ rpm}$	corresponding to	75% power
$80\% \rightarrow 942 \text{ rpm}$	corresponding to	50% power
$63\% \rightarrow 742 \text{ rpm}$	corresponding to	25% power

3.0 Test Results

3.1 Tug Pushing Full Load Barge

Testing was conducted with the Tug COUGAR pushing a full barge on 15 May while making a fuel delivery from Carteret, NJ to Bridgeport, CT. Table 4 presents the order of test runs conducted. The % corresponds to the percent of maximum rpm setting determined. The letter preceding the % rpm setting is a unique designator for a particular test configuration used for tracking in the data spreadsheets. In the case of the tug pushing

a full barge, a randomized test sequence was not attempted because of operational restrictions. A randomized test sequence of % rpm operating points in accordance with Reference [3] was conducted for the other tug configurations.

Table 4 Testing Run Sequence for Tug with Full Barge

(1)	(2)	(3)	(4)
F100%	-	H100%	G80%
F91%	E80%	H91%	G91%
F80%	E91%	H80%	G100%
F63%	E100%	H63%	IDLE

^{(1), (2)} speed pilot off; ENERAC - stbd engine; ECOM - port engine

At convenient points in the test, the two emission analyzers were swapped between engines so that differences in analyzer readings could be evaluated.

Computations used to determine engine pollutant levels are based on a stoichiometric material balance of incoming fuel and air with exhaust. The basic assumption is that there is more than sufficient oxygen available in the air entering the diesel engine to affect complete combustion of the fuel components. For the material balance, the quantity of air per unit time (including water vapor), and the quantity of fuel per unit time account for all incoming materials. The material balance calculations to determine pollutant levels and manually recorded data for this test are presented in Appendix B. The calculations for the pollutant levels for the tug at idle are also presented in Appendix B.

3.2 Tug Pulling Light Barge

The Tug COUGAR was tested with the Ocean 60 barge under tow on 13 May enroute from Bridgeport, CT to Carteret, NJ. Table 5 presents the order of test runs conducted. The Shortridge Flowhood on the starboard engine gave erratic readings, sometimes as much as one-half the readings on the port flow meter. It was later determined that this Flowhood's charging system had malfunctioned. Therefore, the readings on the starboard engine were not used in the material balance to determine the weighted pollutant levels.

Table 5 Testing Run Sequence for Tug with Light Barge

(1)	(2)	(3)	(4)	(5)	(6)
B100%	D80%	A63%	C63%	B100%	A63%
B91%	D91%	A80%	C100%	B91%	A80%
B80%	D100%	A91%	C91%	B80%	A91%
B63%	D63%	A100%	C80%	B63%	A100%

^{(1), (2)} speed pilot on; ECOM - stbd engine; ENERAC - port engine

^{(3), (4)} speed pilot on; ENERAC - port engine; ECOM - stbd engine

^{(3), (4)} speed pilot off; ECOM - stbd engine; ENERAC - port engine

^{(5), (6)} speed pilot off; ECOM - port engine; ENERAC - stbd engine

The material balance calculations to determine pollutant levels and manually recorded data for this test are presented in Appendix C.

3.3 Free Tug

The Tug COUGAR was tested in the free condition, i.e., without towing or pushing the barge, on 14 - 15 May. Testing was done in the East River around Manhattan in the middle of the night to minimize encounters with vessel traffic. An attempt was made to randomize the test operating points. However, the order of testing was often switched because of traffic encountered in the East River. Table 6 presents the order of test runs conducted.

Table 6 Testing Run Sequence for Free Tug

(1)	(2)	(3)
A63%	B80%	C63%
A80%	A100%	C100%
A91%	B91%	C91%
B63%	B100%	C80%

(1), (2),(3) speed pilot off; ENERAC - stbd engine; ECOM - port engine

The Shortridge Flowhood on the starboard engine gave erratic readings, sometimes as much as one-half the readings on the port flow meter. Both Flowhood meters were sent back to Shortridge Instruments, Inc. for calibration after the test. The readings were found within specifications (+/- 3% +/- 5 CFM) on both meters. The erratic readings during the test are attributed to the low battery indicator light coming on periodically even though the unit was thought to be charged. Rechargeable batteries were replaced on both units after the test. Therefore, the readings on the starboard engine were not used in the material balance to determine weighted pollutant levels.

The material balance calculations to determine pollutant levels and manually recorded data for this test are presented in Appendix D.

4 Summary

4.1 Fuel Flow Measurements

It is apparent from Table 7 (see highlighted readings) that there were fuel savings associated with having the ESP-1000 engine speed pilot engaged - particularly at the two highest speed levels. The values for these short term tests were on the order of 5-6%. It should be noted that these measurements were based on manual readings taken over only a few hours for each tug and barge configuration tested. Approximately, a half hour was spent at each test rpm before moving to the next one. The Stellar Marine representative indicated that longer voyages are generally needed with the speed pilot engaged to realize a fuel savings (with repeatable results).

Table 7 Summary of Fuel Flow Data

		Free Tug (pilot off)	Full Barge (pilot off)	Full Barge (pilot on)	Light Barge (pilot off)	Light Barge (pilot on)
Engine	rpm	Fuel (gal/hr)			Fuel (gal/hr)	Fuel (gal/hr)
stbd	742	10.9	12.6	12.6	11.9	11.9
stbd	942	17.5	21.5	21.5	19.9	19.9
stbd	1072	24.4	31.4	29.5	27.9	27.0
stbd	1178	34.0	44.9	41.9	38.9	36.6
port	742	10.7	12.3	12.3	11.6	11.5
port	942	17.1	21.5	21.2	19.2	19.2
port	1072	23.4	31.1	29.4	27.4	26.9
port	1178	32.8	44.9	44.3	39.0	36.7

4.2 Pollutant Measurements

Table 8 presents a summary table of average emission pollutant levels recorded by the emission analyzers for the different tug running configurations. It is apparent in Table 8 that there is significantly more NO emissions than NO_2 . Generally, in a diesel engine exhaust, the NO represents about 90% of the gas mixture, the NO_2 about 10%, and N_2O is negligible. Measurements were also made when the tug was at idle. These data are presented in Table 9.

Table 8 Summary of Pollutant Levels Recorded by Emission Analyzers

		Free Tug (ENERAC-stbd/ECOM-port)			Light Barge (ENERAC-port/ECOM-stbd)			Full Barge (ENERAC-port/ECOM-stbd)		
		•			•	•		•	•	•
Engine	rpm	COppm	NOppm	NO2ppm	COppm	NOppm	NO2ppm	COppm	NOppm	NO2ppm
stbd	742	73	513	98	76	627	31	78	808	26
stbd	942	60	666	105	89	745	22	81	883	19
stbd	1072	77	692	83	95	697	16	79	829	17
stbd	1178	111	647	71	106	688	17	92	807	15
port	742	82	534	24	63	678	124	67	754	133
port	942	61	719	26	63	803	111	69	815	96
port	1072	66	721	21	76	765	89	71	810	83
port	1178	113	663	22	87	751	79	87	770	75

Note that the engine speed pilot was disengaged for these data

Table 9 Pollutant Levels Recorded by Emission Analyzers for Tug at Idle
(ENERAC-port/ECOM-stbd)

(ENERGIA POINTER)						
Engine	speed	COppm	NOppm	NO ₂ ppm		
stbd	0*	792	31	46		
port	0*	755	15	53		

^{*}Srpm is 0 but Erpm was 545(port) and 525(stbd)

Using the calculation procedure developed by Dr. Bentz in Appendix A, NOx and CO emission levels in grams per kilowatt-hour were calculated for the different running conditions tested on the tug. The calculations are based on a stoichiometric material balance of incoming fuel and air with exhaust. Figure 2 and 3 present these results.

Figure 2 Tug COUGAR CO Emissions

Figure 3 Tug COUGAR NOx Emissions

5 Conclusions

5.1 ISO 8178 Emission Factor

The International Maritime Organization (IMO) has developed proposed guidelines for controlling air pollution from ships. In these guidelines, the maximum NOx emissions at different rated engine speeds are recommended. The testing procedures used to develop engine NOx values are contained in the International Organization for Standardization (ISO) 8178, Parts 1, 4, and 5. Usually, these tests are done in the engine manufacturer's laboratory on test beds. The EPA issued a supplemental notice of proposed rule making which refines its November 1994 proposed rule. The EPA proposed an average NOx emission standard of 9.2 g/kWh, while the IMO NOx emission standard varies from 9.8g/kWh to 17.0g/kWh depending on engine speed. EPA's proposed NOx emission standard is an average in which the engine can be either below or above, so long as the emissions above the standard are compensated with the emissions below the standard. Whereas, the IMO NOx emission standard is a cap type standard that all engines must be less than.

ISO 8178 provides that each vessels emission be evaluated by a single statistic which takes into account a generic operating profile. Table 10 presents the weighted results for the free tug, tug pushing a full barge, and tug towing a light barge. The average weighted NOx values for each configuration are:

Free Tug \rightarrow 4.5 g/kWh (port engine) Tug w/ light barge \rightarrow 5.1 g/kWh (port engine) Tug w/ full barge \rightarrow 4.9 g/kWh (port & stbd engine average)

These NOx values are below the IMO maximum allowable level of 10.85 g/kWh for a 1225 RPM rated engine. They are also well below the EPA average criteria of 9.2 g/kWh. This is illustrated in Figure 4.

Table 10 ISO 8178 NOx Factor (based on % full RPM when pulling a light barge and w/o the ESP-1000 Speed Pilot engaged)

		F	ree Tug		Li	ght Barge	Э	F	ull Barge	
Engine	RPM(b)		•	Weight	NOx	Weight	Weight	NOx	Weight	Weight
	,	(g/kWh)	Factor	NOx	(g/kWh)	Factor	NOx	(g/kWh)	Factor	NOx
stbd	63%	(a)	0.15	(a)	(a)	0.15	(a)	5.74	0.15	0.86
stbd	80%		0.15	(a)	(a)	0.15	(a)	4.52	0.15	0.68
stbd	91%		0.50	(a)	(a)	0.50	(a)	4.76	0.50	2.38
stbd	100%		0.20	(a)	(a)	0.20	(a)	3.49	0.20	0.70
	totals=	`,		(a)			(a)	•		4.62
port	63%	5.90	0.15	0.89	6.71	0.15	1.01	7.21	0.15	1.08
port	80%	4.73	0.15	0.71	5.04	0.15	0.76	5.05	0.15	0.76
port	91%	4.34	0.50	2.17	4.98	0.50	2.49	5.01	0.50	2.51
port	100%	3.68	0.20	0.74	4.41	0.20	0.88	4.43	0.20	0.89
•	totals=			4.50	5		5.13			5.23

(a) questionable measurements due to erratic turbocharger air flow readings

Max. Allowable NOx Emissions for Marine Diesel Engines

Figure 4 IMO NOx Emission Levels

5.2 NOx Interpretation

Presently, the IMO criteria requires that all NOx be reported as NO₂. The definition of NOx is that it is the sum of the nitrogen oxides which includes NO, NO₂, and N₂O. The molecular weight of NO is 30 whereas the molecular weight of NO₂ is 46. Reporting NO as NO₂ can have the effect of raising the determined value depending on the percent of NO present. For example, assuming that the exhaust mixture is about 90% NO, the weighted molecular weight is,

```
(30*0.9)+(46*0.1) = 31.6
```

The average weighted NOx factor for the full barge running configuration was determined to be 4.9 g/kWh. This value is based on a direct summation of NO and NO₂ recorded tug emissions. The total moles normalized by power can be approximated by,

```
\frac{4.9 \text{ g/kWh}}{31.6 \text{ g/mole}} = 0.156 \text{ moles NOx/kW-hr},
0.156 * 0.9 = 0.1404 \text{ moles NO}
0.156 * 0.1 = \frac{0.0156}{0.156} \text{ moles NO}_2
tot moles
0.156 * 0.1 = \frac{0.0156}{0.156} \text{ moles NO}_2
```

Applying the interpretation of the IMO definition where NO is computed as NO₂ using a molecular weight of 46 results in,

```
0.156*46 = 7.2g/kWh
```

This value still remains under the IMO criteria, but illustrates the disparity in calculated emission approaches. A rigorous application of reporting the NO as NO₂ would require a weighting factor application to the calculations in Appendix A. This was not done.

5.3 Portable Emission Testing Lessons Learned

It took a week of elapsed time aboard the Tug COUGAR to conduct two days worth of testing. This was because of the necessity of working around the boat's commercial schedule. One day was needed for the installation, i.e., approximately 12 hours of not being underway, for the strain gauge horsepower meters, and EMS-1000, and ESP-1000. Two consecutive days of testing would have allowed for plenty of time to carry out all the testing objectives. However, a week was spent aboard to capture the two days of testing needed because commercial operations of the tug, which often included anchoring offshore waiting for terminal availability, was not conducive to collecting emissions data on a continuous basis. Future shipboard emission testing aboard commercial vessels may require tradeoffs to minimize the potential impact on its commercial operations and the time spent aboard by test personnel including (1) a more efficient installation procedure to minimize vessel down time and (2) a reduction in the number of test runs conducted through statistical design of the experiments.

Air Flow Measurements

The Shortridge Flowhoods have been used on several shipboard emission tests without any difficulties. Unfortunately, in this test, the starboard flowmeter was not working properly for some of the test configurations. This prevented the development of average weighted values of NOx between the two engines for the free tug and light barge test runs.

A couple of mechanical failures of parts on the Flowhoods gave reason for concern. First a roll pin that holds the arms (vanes) in place for operation with the manual movement switch became loose and fell out. This was replaced during testing and a dab of epoxy was placed on the ends to prevent it from falling out. A second failure was when the bottom plastic vane broke off. This was epoxyed back on. In both cases, a small part (one metal and one plastic) could have been sucked into the turbocharger and caused damage to the engine. The flowhoods used in these applications need to be more robust in design. If the Coast Guard R&D Center uses these types of Flowhoods in the future, it will install fitted screens to their intakes to protect the turbocharger.

Readings were made from the flowhoods manually. In future shipboard emission tests it would be desirable to automate this data collection in conjunction with emission and ship power measurements.

Horsepower Measurements

The EMS-1000 data logging software, which recorded both shaft horsepower from the strain gage measurements and engine horsepower determined with the EMS-1000 system, was used to construct an overlay of horsepower measurements at various times during testing. These plots demonstrated close tracking between the two measurements. However, a scale difference exists between them. This difference has not been resolved, but appears to have been a problem with the strain gauge calibration settings.

The Stellar Marine EMS-1000 system has potential in saving setup time in dealing with horsepower measurements on main diesel engines. Additional testing is warranted to assess this as a replacement over traditional methods of instrumenting for power measurements.

Emission Analyzers

Table 11 presents a comparison of average recorded emission readings from both emission analyzers on one engine and then swapped to the other during the light barge testing. On average, the ECOM-KD exhibited 24% higher CO readings than the ENERAC Model 3000E. The accuracy of the ECOM-KD is 5% compared to 2% for readings of NO, NO₂, and CO on the ENERAC 3000E. Therefore, the disparity in the CO measurements cannot be explained by differences in the sensor's accuracy. It was determined after the test that the correct Precision Control Module (PCM) was not installed in the ENERAC 3000E. Unlike the single range sensors on the ECOM-KD, the ENERAC 3000E has PCMs for

CO, NO, and SO2 with selective range settings. Selection of the appropriate modules sets the measurement range of the instrument. There are PCMs with a low, mid, and high range settings. The ENERAC 3000E had a mid-range PCM (500-1000 ppm) installed. As it turned out, CO readings on the COUGAR were on the order of 100 ppm or less which would have required the more sensitive low-range PCM (0-500 ppm). This module was not available during the test. The reduced CO level readings on the ENERAC 3000E may be due to the less sensitive mid-range module (having been installed).

The ENERAC Model 3000E recorded higher levels of NO₂ than the ECOM-KD. The NO readings recorded by the ENERAC Model 3000E were on average 4% higher than readings by the ECOM-KD. The difference in NO readings between the instruments may be explained by the fact that the NO sensor on the ENERAC Model 3000 is temperature controlled. A sensor temperature of below 25 degrees Celsius is maintained to limit measurement drift in accordance with EPA's Conditional Test Method (CTM-022). Holding the temperature below 30 degrees Celsius is a means of improving sensor accuracy and reliability.

Table 11 Emission Levels Recorded with Analyzers
Exchanged Between Engines

Tug Pulling Light Barge Test Data

Analyzer	Engine	rpm	COppm	NOppm	NO ₂ ppm
ENERAC	stbd	742	64	683	123
ENERAC	port	742	63	678	124
ECOM	stbd	742	76	627	31
ECOM	port	742	84	722	37
ENERAC	stbd	942	70	803	101
ENERAC	port	942	63	803	111
ECOM	stbd	942	89	745	22
ECOM	port	942	83	841	25
ENERAC	stbd	1072	80	814	78
ENERAC	port	1072	76	765	89
ECOM	stbd	1072	95	697	16
ECOM	port	1072	87	786	19
ENERAC	stbd	1178	82	788	69
ENERAC	port	1178	87	751	79
ECOM	stbd	1178	106	688	17
ECOM	port	1178	103	766	16

5.4 ESP-1000 Speed Pilot

An indication of fuel savings was measured when the engine speed pilot was engaged. The averaged manual readings in Table 6 demonstrated that most of the fuel savings occurred above 1000 rpm. The EMS-1000 data logging software provides a convenient tool to review data collected with and without the ESP-1000 engaged. On 13 May 1996, the tug was tested with a light (empty) barge being pulled behind it. The engine speed pilot was on for 2.7 hours and off for 9.0 hours. The gallons per mile were averaged with the results of 5.8 gal/mi when the engine speed pilot was engaged versus 8.2 gal/mi when the engine speed pilot was not used. This represents a savings of 2.4 gal/mi (or 29.3%). This is illustrated in Figure 5. Figure 5 presents a 12 hour running picture of the tug on 13 May 1996. Starboard and port rpm, GPS recorded speed, and port engine fuel consumption are plotted. The area of the rpm readings with the sawtooth appearance represent when emission testing was taking place at different rpm settings.

Although, an indication of fuel savings was apparent, further testing is needed. The Coast Guard R&D Center will conduct another emissions test on a Coast Guard WLIC construction tender in the fall of 1996. This emission test will include the use of the ESP-1000 and a specific test designed to comparatively quantify fuel savings.

Figure 5 EMS-1000 Plot for Tug Pulling Light Barge Run

6 References

- [1] Marine Exhaust Emissions Measurement of the M/V Kings Pointer, S.J. Allen, A.P. Bentz, U.S. Coast Guard Research & Development Center Report.
- [2] ISO 8178, Part 4: Test Cycles for Different Engine Applications (1992), Section 6.5, Test Cycles Type E, "Marine Applications."
- [3] Experimental Design on Marine Exhaust Emissions, M.J. Goodwin, Report No. CG-D-08-95, January 1995, U.S. Coast Guard Research and Development Center, NTIS Accession No. AD-A2936603.
- [4] Shipboard Marine Engines Emissions Testing for the United States Coast Guard Headquarters, Delivery Order 31, Final Report, 1995, Environmental Transportation Consultants.
- [5] Air Data Multimeter ADM-870 Electronic Microanometer, Technical Manual, Shortridge Instruments, Inc. Scottsdale, AZ.
- [6] Technical Manual, Description, Operation, Installation and Maintenance Instruction for Propulsion Shaft Horsepower Measurement Systems, Model Series 1642A, Accurex Corp., Autodata Division (now Wireless Data Corporation), Mountain View CA.
- [7] ECOM-KD Manual, Technical Manual, ECOM AMERICA, 3075 Breckinridge Blvd., Suite 420, Duluth, GA 30136.
- [8] ENERAC 3000E Compliance-Level Emission Analyzers Instruction Manual, Energy Efficiency Systems, Inc., 1300 Shanes Drive, Westbury, NY 11590
- [9] EMS-1000 Fuel Management System Manual, Stellar Marine.
- [10] EPA's Conditional Test Method (CT-022), A scientifically Sound Framework for the Use of NOx Electrochemical Sensors, March 199, unpublished, Energy Efficiency Systems, Inc.

Appendix A EXAMPLE EMISSION CALCULATION

[BLANK]

Calculations are based on a stoichiometric material balance of incoming fuel and air with exhaust. The basic assumption is that there is more than sufficient oxygen available in the air entering the diesel engine to effect complete combustion of the fuel components.

For the material balance, the quantity of air per unit time (including water vapor), and the quantity of fuel per unit time account for all incoming materials.

Laboratory analysis of the fuel quantitatively measures the elemental components of the fuel. Theoretical amounts of combustion products (assuming complete combustion) are computed using the equations below:

$$C + O_2 = CO_2$$
 $S + O_2 = SO_2$
 $4H + O_2 = 2H_2O$ $N+O_2 = NO_2$

These equations permit calculation of the theoretical amount of oxygen required (and therefore air) for complete combustion. Any air above that amount is "excess air." In actuality, complete stoichiometric combustion does not occur. Thus, not all carbon is completely converted to CO₂. However, once the CO is experimentally determined, the actual CO₂ can be calculated. Similarly, not all nitrogen goes to NO₂, but the NO formed is independently measured.

Water is the product of combustion of hydrogen, but there is also water in the exhaust that entered as water vapor in the air. This source of water requires no additional oxygen, but must be accounted for in the total material balance. Any oxygen in the fuel (as oxygen-containing compounds) must be subtracted from the total oxygen required, since it contributes to the oxygen available.

Sulfur in the fuel produces SO₂, but the Tug COUGAR fuel gave levels below the sensor detection limits - thus no SO₂ was measurable, despite the presence of some sulfur in the fuel. Overall, the material balance is given schematically as follows:

combustion

By tracking the substances and their amounts, it is possible to compute the amounts expected in the exhaust of primary combustion products. Analysis of the exhaust for CO, NO, NO2, and SO2, permits complete material balance.

Table A1 presents the fuel analysis in the first two columns. The fuel analysis of samples of the Tug COUGAR's fuel was performed by Saybolt, Inc. Using the equations described previously, with the appropriate atomic weights, the moles of oxygen needed can be calculated.

Table A1
Calculated Oxygen Requirement for Complete
Combustion Based on Fuel Analysis

	• • • • • • • • • • • • • • • • • • • •		•	
Fuel Comp	lb/100lb fuela	MWT of Comp	Moles of Comp	Moles 02 req
С	86.860	12.011	7.232	
Н	12.970	1.008	12.867	3.217 ^b
S	0.150		0.005	0.005
0	0.020		-0.001	-0.001
N	0.020		0.001	0.001
H20	0.000		0.000	0.000
Ash	0.001			
A311	0.001			
Total	100.021	•		10.453
Total	100.021			10

a based on fuel analysis

From the information above, the temperature, pressure, and humidity of the incoming air, the goal is to calculate the moles of dry flue gas (DFG) generated per unit time. Although, the exiting gas is wet, the instruments used for measuring the combustion products must first dry the air to protect the electrochemical sensors. Thus, the concentration of NOx in ppm, for example, is based on the amount found in the DFG.

The following example calculations are performed for the data collected on the port Caterpillar engine when the tug was pushing a full barge without the EMS-1000 speed pilot engaged. The calculation is shown for a test rpm of 1072. Computations below are based on data taken on 15 May 1996 on the Tug COUGAR.

Density of Wet Air

$$\rho(\text{wet air})[\text{lb/ft}^3] = \frac{1.326 \times \text{Pres}}{459.6 + \text{F}}$$
 [1]

Air entering the engines had an average temperature of 85.4 deg F and measured an average atmospheric pressure of 30.6 in Hg, thus,

$$= \underbrace{1.326 \times 30.6}_{459.6 + 85.4} = 0.0744 \text{ lb/ft}^3$$
 [2]

^b represents 6.170 moles of water

Air Flow wet [lb/min]

 $= [2] \times CFM(meas)$

= $0.0744 \text{ lb/ft}^3 \times 1392 \text{ ft}^3/\text{min}$

= 103.63 lb/min

[3]

Fuel Flow [gal/min]

= 31.08 GPH(meas) x 1 hr/60 min

= 0.518 gal/min

[4]

Fuel Consumed [lb/min]

density of standard diesel approx. 7.09 lb/gal

[5]

= 7.09 lb/gal(pdiesel) x [4]

= 3.67 lb/min

[6]

Air / Fuel Ratio wet [lb/100lb]

= [3]/[6]

= 103.63 lb/min / 3.67 lb/min

= 2821 lb/100lb

[7]

[9]

Air Flow dry [lb/min]

= Air Flow wet - (Air Flow wet x RHc),

where RHc is the humidity correction value from the pschrometric chart with measured temperature of 85.4 deg F (29.7 deg C) and measured averaged relative humidity of 17.3%,

Air / Fuel Ratio dry [lb/100lb]

The next step is to determine the total oxygen and nitrogen available for combustion in the incoming air, where the weight % of oxygen is 23.14% and that of nitrogen is 76.86%.

Total O₂ [lb O₂ / 100 lb Fuel]

 $= [9] \times 0.2314$ lb O₂/lb air $= 2807 \text{ lb}/100 \text{lb} \times 0.2314 \text{ lb } \text{O}_2/\text{lb} \text{ air}$ [10] = 650 lb/100 lbTotal N₂ [lb N₂ / 100 lb Fuel] $= [9] \times 0.7686$ lb O2/lb air $= 2807 \text{ lb}/100 \text{lb } \times 0.7686 \text{ lb } O2/\text{lb air}$ [11] = 2158 lb/100lbMoles of O₂ Theoretically Required [moles O₂ / 100 lb Fuel] [12] = 10.453 moles/100lb(from fuel composition in Table A1) Excess Air [lb air/100 lb fuel] = Actual Air in - Theoretical Air In $= [9] - [12] \times 32 \text{ lb } O_2 \times 1 \text{ lb air}$ 1 mole O₂ 0.2314 lb O₂ = 2807 lb/100lb - 1446 lb/100lb[13] = 1362 lb/100lbPercent Excess Air [%] = Excess Air / Theoretical Air in = 1362 lb/100lb / 1446 lb/100lb x 100 [14] = 94%Excess O₂ [moles O₂/100lb Fuel] $= [13] \times 0.2314 \text{ lb } O_2 \times 1 \text{ mole } O_2$ 1 lb air 32 lb O₂ = 9.8 moles/100 lb[15] Water in Air [moles H2O/100 lb Fuel] = $[7] \times lb H₂O/lb air (from Pschrometric Chart)$ = 2821 lb air/100lb Fuel x 0.005 lb H₂O/lb air x 1 mole H₂O 18 lb H₂O [16] $= 0.784 \text{ moles H}_2\text{O}/100\text{lb}$ $CO_2 + SO_2$ [moles (CO_2+SO_2) / 100lb Fuel]

= 7.232 + 0.005 (from Table A1)

O2 Supplied [moles O2/100lb Fuel]

$$= [10] \times \frac{1 \text{ mole } O_2}{32 \text{ lb } O_2}$$

$$= 20.3 \text{ moles}/100 \text{lb}$$
[18]

N2 Supplied [moles N2/100lb Fuel]

$$= [11] \times \frac{1 \text{ mole } N_2}{28.161 \text{ lb } N_2}$$

$$= 76.6 \text{ moles}/100 \text{lb}$$
[19]

H₂O Total [moles H₂O/100lb Fuel]

=
$$[16] \times \underline{\text{1mole H}_2\text{O}} + \text{combustion product}$$

18.016 lb H₂O

(where the combustion product is from HCs and equal to 0.06434 moles H2O/lb Fuel)

= 0.784 moles H₂O/100lb Fuel + 6.434 moles H₂O/100lb Fuel

= 7.2 moles/100lb [20] = 129.6 lb H₂O/100lb Fuel [21]

or

Total Moles of Wet Flue Gas [moles WFG/100lb Fuel]

=
$$(CO_2 + SO_2)$$
 + excess $O_2 + N_2 + H_2O$
= $[17] + [15] + [19] + [20]$
= 7.237 moles/100lb + 9.8 moles/100lb + 76.6 moles/100lb
+ 7.2 moles/100lb
= 100.8 moles/100lb [22]

Total Moles of Dry Flue Gas [moles DFG/100lb Fuel]

Moles CO [moles CO/100lb Fuel]

Moles NO [moles NO/100lb Fuel]

= NOppm x [23] = 810ppm x 10-6 x 93.6 moles/100lb [25] = 0.0758 moles/100lbMoles NO₂ [moles NO₂/100lb Fuel] $= NO_2ppm \times [23]$ $= 83 \times 10-6 \times 93.6 \text{ moles}/100\text{lb}$ = 0.0077 moles/100lb[26] Moles SO₂ [moles SO₂/100lb Fuel] $= SO_2ppm \times [23]$ [27] = 0Moles CO₂ [moles CO₂/100lb Fuel] = moles CO₂ (theoretical) - moles CO (actual [24]) = 7.232 - 0.00664[28] = 7.225 moles/100lbfrom CO₂ measurement on emission analyzer 8.5% CO₂ $= 0.085 \times [23]$ $= 0.085 \times 93.6 \text{ moles}/100lb$ [28A] = 7.956 moles/100 lbWeight of NO [lb NO/100lb Fuel] $= [25] \times 30.008$ lb NO/mole = 0.0758 moles/100lb x 30.008 lb NO/mole [29] = 2.28 lb/100lbWeight of NO₂ [lb NO₂/100lb Fuel] $= [26] \times 46.007 \text{ lb NO}_2/\text{mole}$ $= 0.0077 \text{ moles}/100 \text{lb x } 46.007 \text{ lb NO}_2/\text{mole}$ [30] = 0.354 lb/100 lbWeight of SO₂ [lb SO₂/100lb Fuel] [31] = 0

 $= [28] \times 44.011 \text{ lb CO}_2/\text{mole}$

Weight of CO₂ [lb CO₂/100lb Fuel]

= 7.225 moles/100lb x 44.011 lb CO₂/mole = 317.9 lb/100lb [32]

NOx Weight [lb NOx/100lb Fuel]

Fuel Consumed in 1 hour [lb]

NOx Produced in 1 hour [grams NOx/hour]

$$= [33]/100 \times [34]$$

$$= 2.634 \text{ lb}/100\text{lb} /100 \times 220.2 \text{ lb}$$

$$= 5.80 \text{ lb NOx/hr}$$
or
$$= 5.80 \text{ lb NOx/hr} \times 453.4 \text{g/lb} = 2629.7 \text{ g/hr}$$
[35]

Work done in 1 hour [kW-hr]

= shaft HP x
$$0.746 \text{ kW/HP}$$

= 525.2 kW-hr [36]

NOx [g/kW-hr]

(CO in g/kW-hr is calculated in the same fashion)

NOx [kg/ton of Fuel]

= [33] x 10
=
$$2.634 \text{ lb/100lb x 10}$$

= $26.34 \text{ kg/ton of Fuel}$ [38]

[BLANK]

Appendix B Tug with Full Barge Emission Calculations

[B-3 through B-8 present the NOx calculations of the tug pushing the full barge without the engine speed pilot engaged;

B-9 through B-14 present the NOx calculations of the tug pushing the full barge with the

engine speed pilot engaged;

B-15 presents the raw data sheet for the tug pushing the full barge without the engine speed pilot engaged;

B-16 presents the raw data sheet for the tug pushing the full barge with the engine speed pilot engaged;

B-17 through B-22 presents the NOx calculations of the tug at idle;

B-23 presents the raw data sheet for the tug at idle]

[BLANK]

Full Barge	Full Barge(pilot off;ECOM-stbd,El	M-stbd, ENE	NERAC-port)	[4]				
Engine	Speed	H	Fuel Flow	Fuel Flow	Air Flow	Air Temp	Air Temp	Air Press
	(mdu)	(ft lb)	(gal/hr)	(gal/min)	(CFM)	(deg F)	(deg C)	(in Hg)
stbd	742	212	1	0.211	533	7.68	32.1	30.8
stbd	942		21.50	0.358	864	91.9	33.3	30.8
stbd	1072		31.42	0.524	1421	87.1	30.6	30.8
stbd	1178	968	44.93	0.749	1515	85.7	29.9	30.8
port	742		12.30	0.205	909	87.8		30.6
port	942	478	21.53	0.359	931	6.98	30.5	30.6
port	1072	704	31.08	0.518	1392	85.4	29.7	
port	1178	1010	44.85	0.748	1874	86.6	30.3	30.7
boll	-							

						[2]	[3]	[6]
	CO2	00	ON	NO ₂	XON	Air Wet	Air Wet	Fuel
	(%)	(mdd)	(mdd)	(mdd)	(mdd)	(lb/cuft)	(lb/min)	(lb/min)
17.0 m	E	78	808	26	837		39.60	1.49
17.0 m	E	81	1 883	19	901			2.54
17.3 m	E E	62	9 829	17	842	0.0747	106.18	3.71
17.2 m	m	92	2 807	15	823			5.31
17.0	6.0	79	7 754	133	887		44.82	1.45
17.0	8.1	69	9 815	96			69.15	2.54
17.3		7	1 810	83	3 877	0.0744		3.67
17.2	8.6	87	7 770	75	5 849		139.49	5.30

121		[8]	[6]	[10]	[11]	[12]	[13]	[14]
Air/Fuel Wet	RHC	Air Div	Air/Fuel Dry	O2/Fuel	N2/Fuel	O2/Fuel	XS Air/Fuel	XS Air/Fuel
		(lb/min)	(Ib/100Ib)	(lb/100lb)	(lp/100lb)	(moles/100lb)	(lp/100lb)	(%)
2652 94	0.005	1	2640	1	2029	10.453		82.60
2517.88			2505	580	1926			73.31
2860 22		105.65		629	2187	10.453		96.87
2133.42				491	1632		677.2	46.84
3083.54	0.005	44.59	3068	710	2358			
77.717.77		5 68.81	2704	626		10.453		
2821.36		103		650	2158			
2631.96			2619	909	3 2013	10.453		81.16
20.1007								

	[16]	[17]	[18]	[19]	[20]	[21]	[22]	[23]
KS O2/Fuel	H20/Fuel	CO2+SO2/Fuel	iel O2/Fuel	N2/Fuel	H2Otot/Fuel	H2Otot/Fuel	WFGtot/Fuel	DFGto/Fuel
<u></u>	moles/100lb) (moles/100lb) (moles/100lb)	(moles/100lb)	(moles/100lb)	(moles/100lb)	(moles/100lb)	(lb/100lb)	(moles/100lb)	(moles/100lb)
8.6	0.737	7.236	19.088	72.045	10.49	188.83	98.41	87.92
7.7	0.699		18.116	68.377	10.28	185.08	93.56	83.28
10.1	0.795		20.580	77.674	10.81	194.58	105.85	95.04
4.9	0.593	7.236	15.350	57.936	69.6	174.41	79.76	70.07
11.7	0.857	7.236	22.186	83.738	11.15	200.78	113.86	102.71
9.1	0.755	7.236	19.555	73.806	10.59	190.63	100.73	90.14
9.8	0.784		20.300	76.619	10.75	193.50	104.45	
8.5	0.731	7.236	18.937	71.475	10.46	188.25	97.65	87.20

[24]	[25]	[26]	[27]	[28]	[28A]	[29]	[30]	[31]	
		NO2	SO ₂	CO ₂	C02	NO/Fuel	NO2/Fuel	SO2/Fuel	
(moles/100lb)	les/100lb)	(moles/100lb)	(moles/100lb)	(moles/1	(moles/100lb)	(lb/100lb)	(lp/100lb)	(lb/100lb)	
0.00689		0.00229	0	7.225 m	E	2.130			0
0.00673		0.00154	0	7.225 m	E	2.206			0
0.00752		0.00157	0	7.224 m	E	2.363	0.072		0
0.00642		0.00105	0	7.225 m	E	1.697	0.048		0
0.00692	0.07744	0.01363	0	7.225	6.197	2.324	0.627		0
0.00623		0.00865	0	7.225	7.302				0
0.00662		0.00775	0	7.225	7.996				0
0.00759		0.00651	0	7.224	7.470	2.014	0.300		0

[32]	[33]	[34]	[35]	[36]	[37]	[38]	
CO2/Fuel	NOx/Fuel	fuel 1hr	NOx 1hr	Pwr	NOx out	NOx out	
(lb/100lb)	(lb/100lb)	(q _I)	(gal/hr)	(kW hr)	(g/kW-hr)	(kg/ton)	
318.0	2.235	89.570	98.706	158.2	5.74		22
318.0				348.4	4.52		23
317.9	2.435		2459.54	517.0	4.76		24
318.0	1.746		2521.31	722.1	3.49		17
318.0	2.951	87.207	1166.72	161.9	7.21		30
318.0	2.603			356.6	5.05		26
318.0	2.635	220.381	2632.77	525.2	5.01		26
317.9	2.314		3336.00	753.5	4.43		23

Full Barge(pilot on;E	Full Barge(pilot on; ECOM-stbd, ENERAC-port)		[4]				
Engine	Speed	H	Fuel Flow	Fuel Flow	Air Flow	Air Temp	Air Temp	Air Press
	(rpm)	(ft lb)	(gal/hr)	(gal/min)	(CFM)	(deg F)	(deg C)	(in Hg)
stbd		742 203	3 12.57		519	88.1	31.2	30.8
stbd		942 452	2 21.53	0.359	871	88.2	31.2	
stbd	-	1072 638	8 29.48		1303	89.9	32.2	
stbd	-	1178 903	3 32.82		1681	88.8	31.6	30.8
port		742 213	3 12.27	0.204	809	84.2	29.0	30.6
pout					916	84.5	29.2	30.6
port	-			0.490	1302	84.7	29.3	30.6
port		1178 1020			1893	85.6	29.8	30.6

			1.48	2.54	3.48	3.88	1.45	2.51	3.47	5.23	
[9]	Fuel	(lb/min)									
[3]	Air Wet	(lb/min)	38.67	65.00		125.23	45.37		97.15		
[2]	Air Wet	(lp/cnft)	0.0746	0.0746	0.0744	0.0745		0.0746	0.0746	0.0745	
			810	863	821	798	846	883	877	840	
	NOX	(mdd)									
			28	21	198	15	116	91	9/	72	
	NO ₂	(mdd)									
			788	844	802	781	730	791	799	767	
	9	(mdd)									
			83	83	83	93	65	76	77	82	
	00	(mdd)									
							5.9	7.9	8.5	8.6	
	C02	(%)	E	E	E	Ε					
			18.0 m	18.5 m	18.5 m	18.5 m	18.0	18.5	18.5	18.5	
	꿒	(%)									

121		[8]	[6]	[10]	[11]	[12]	[13]	[14]
Air/Firel Wet	RHC	Air Drv	Air/Fuel Dry	O2/Fuel	N2/Fuel	O2/Fuel	XS Air/Fuel	XS Air/Fuel
(Ih/100lh)		(lb/min)	(lb/100lb)	(lb/100lb)	(lb/100lb)	(moles/100lb)	(lb/100lb)	(%)
2604 34	0 005			009	1992			79.26
2554.38		64		588	1953			
2782 80		96		641	2128		1323.3	
3229.32		124		744	2470	10.453	1767.6	122.28
3129 74	0 002	45.14	3114	721	2393	10.453	1668.5	115.42
2725 96				628	2085	10.453	1266.8	87.63
2797 88		96		644	2140			
2696.89		140	2683	621	2062	10.453	1237.8	85.63

	[16]	[17]	[18]	[19]	[20]	[21]	[22]	[23]
KS O2/Fuel	H20/Fuel	CO2+SO2/Fuel O2/Fuel	O2/Fuel	N2/Fuel	H2Otot/Fuel	H2Otot/Fuel	WFGtot/Fuel	DFGto/Fuel
moles/100lb)		(moles/100lb) (moles/100lb) (moles/100lb) (moles/100lb)	(moles/100lb)		(moles/100lb)	(lb/100lb)	(moles/100lb)	(moles/100lb)
8.3		7.236	18.738	70.725	10.42	187.48	99.96	86.25
7.9	0.710	7.	18.379	69.368	10.34	186.09	94.87	84.53
9.6		7.	20.023	75.571	10.69	192.43	103.07	92.38
12.8		7.236	23.235	87.697	11.38	204.82	119.09	107.72
12.1	0.869	7.236	22.519	84.993	11.23	202.06	115.52	104.29
9.2			19.614	74.028	10.60	190.85	101.03	90.42
9.7	0.777	7.236	20.131	75.981	10.71	192.85	103.61	92.90
9.0		7.236	19.404	73.238	10.56	190.05	86.66	89.43

			0	0	0	0	0	0	0	0	٦
[31]	SO2/Fuel	(Ib/100Ib)									
[30]	NO2/Fuel	(lb/100lb)	0.110	0.082	0.076	0.075	0.557	0.380	0.326	0.294	
[29]	NO/Fuel	(lb/100lb)	2.039	2.141	2.223	2.524	2.284	2.146	2.228	2.059	
[28A]	CO2		ш	E	Е	E	6.119	7.159	7.850	7.646	
[28]	CO2	(moles/100lb) (moles/100lb)	7.225 m	7.225 m	7.224 m	7.222 m	7.225	7.225	7.225	7.224	
[27]	2	es/100lb)	10	0	0	0	0	0	0	0	
[26]		-		0.00178	0.00165	0.00163	0.01210	0.00826	0.00709	0.00639	
[25]		(HOOIP)	0.06793	0.07134	0.07407	0.08413	0.07610	0.07153	0.07425	0.06860	
[24]		(moles/100lh)	0.00719	0.00697	0.00770	96600'0	0.00678	0.00689	0.00711	0.00736	

			21	22	23	26	28	25	26	24	
[38]	Nox out	(kg/ton)									
[37]	NOx out	(g/kW-hr)	5.73	4.57	4.58	4.07	7.06	4.83	4.78	4.40	
[36]	Pwr	(kW hr)	151.4			673.3	158.6	356.8	504.8	761.2	
[35]	NOx 1hr	(gal/hr)	867.860	1538.473			1119.972	1723.021	2412.828	3348.108	
[34]	fuel 1hr	(q _I)	860.68	152.671	209.037	232.670	86.971	150.426	208.328	313.851	
[33]	NOx/Fuel	(lb/100lb)	2.148	2.223	2.299	2.600	2.840	2.526	2.554	2.353	
[32]	CO2/Fuel	(lb/100lb)	318.0	318.0	317.9	317.8	318.0	318.0	318.0	318.0	

GPSsp	6.7	6.2	6.7	6.7	6.2	6.7	7	7.6	2	4.		7.6	7.4	8.7	7.6	8.8	8.7	7.6	8.	7.7	0,	8.6	7.7	0,	8.0	7.			7.		1	9.0	ľ	6.0	00	ľ	0.0	2.6		1	ų		
STHP GP	356	352	348	346	340	340	5,57	540	0 0	240	<u>8</u>	540	534	814	782	962	816	802	810	808	808	908	802	808	802	524	548	225	524	524	546	340	ng.	352	8	334	328	160	164	8	152	36	55
STRPM ST	945	944	945	942	942	948	1073	4073	5/01	10/3	1071	1073	1073	1189	1188	1188	1192	1092	1191	1190	1189	1189	1192	1191	1190	1074	1076	1075	1074	1074	1073	943	941	942			١				743		
STgal/Hr S	21.1	21.1	21.9	22.8	21.5	213	24.0	0.10	31.3	31.6	31.8	30.9	31.2				45.6			ļ			44.6				31.1							21.8		21.2		ļ	ļ				
CGRPM	=	191	191	191					717		217																217					Ì								·			
CGTO	132	128	128	143																							172						Ì										
CGHP	494	465	462	495	487	481	200				732											L					707														212	218	
RH%	17	17				17			18		18					18							17		17		15							17		5 17					1.	5 17	
Ho.	30.8							1																			30.7																
Fdea	2 06																										85.7											8 90.8			88.8		1
CFM	477	459		483									703						800								749									1 464							
STemp				597	603	3 5					664	664	999					3	509		130			736	77		707			69	.69			0	9	62	62			0 47		45	
SOZDOM	0.20					,			0		-	1				0 0		-	- 0.5					, ,	DIV						4				3-	- 6	5					- 4	
NOwn	2																			100						1	16 887								L			25 821		27 85	34 884		
MO20N	MOZDVI	200										1 75					7																					797				751 10	
	NOppin 964	098	7.90	-		193		778	786	62			787 787		70	2 2			8.5		18	8			1/8 // // // // // // // // // // // // /		100	8 6	837		R. B.		Of I	ð	8 1 84				a a	à		9	
and a COO	mdd700	- 69	- 00			8		75 -	35 -	35 .						3 8					- 08	- 26					0,00	- 20				65 -	BO -	80				20.	201-	85 E	. 99		
pilot off)	E .								10.2				7.0														0,													42.2			<u></u>
Cougar Pushing Full Barge (speed pilot off	- 1																																										
ing Full Ba	-1	5-15/112	2711/01-0	5-15/1123	5-15/1120	5-15/1121	5-15/1122	5-15/1127	5-15/1178	6 15/11/20	E 4E/1424	1	3-13/1132		7		1													T	5-13/1004			1	T	T	T	T	T		0-10/11/0		5-15/1113
ugar Push		off/stbd	off/stbd	off/stbd	off/port	off/port	off/port	off/stbd	off/ethd	OR/other	TO STORE	nod/lio	nod/no														off/stbd	off/stbd	off/stbd	off/por	nod/no	Ollypoli	1	T	T				T	1	T	1	(off/port
Tug Cot	Run Seq	E1.80	E2.80	E3.80	E1.80	E2.80	E3.80	F1 91	1000	12.01	20.20	20.00	E2.91	E3.91	E1.	E2 100	E3 100	E1 18	E2.100	E3 100	F1.100	F2.100	F3.100	F1.100	F2.100	F3 8	F1.91	F2.91	F3.91	F1.91	12.91	20.0	2 6	22.00	2 2	2 2	22.00	2 2	3 5	25.62	13.03	3 8	F7 63

87.5 30.8 18 890 199 86.2 30.8 18 895 200 86.9 30.6 18 1013 220 86.9 30.6 18 1017 227 87.1 30.6 18 1009 225 81.9 30.6 18 652 161 91.9 30.8 18 652 167 91.9 30.8 18 652 166 84.6 30.6 18 652 166 85.6 30.6 18 707 177 90.9 30.9 18 450 125 86.1 30.6 18 450 125 89.4 30.8 18 450 125 89.4 30.6 18 469 137 88.8 30.6 18 469 137 88.8 30.6 18 469 137 88.8 <t< th=""><th>7775 87.75 901 87.75 9901 86.75 919 86.25 919 86.55 86.75 87.75 87.75 87.75 88.67 87.75 89.77 87.75 89.77 84.75 89.75 89.00 89.75 89.00 89.75 89.00 89.75 89.00 89.75 89.00 89.75 89.00 89.75 89.00 89.75 89.00 89.75 89.00 89.75 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00</th><th>728 726 694 695 696 696 697 700 700 700 700 700 603 676 635 636 604 607 607 607 607 607 607 607 607 607 607</th><th>820 728 832 0 726 863 0 726 863 634 634 846 0 695 848 0 700 844 0 701 843 0 701 844 0 701 847 0 669 887 669 669 876 0 676 877 0 636 878 0 637 875 0 636 892 604 669 893 0 669 894 0 465 814 0 466 821 0 466 844 433 844 439</th></t<>	7775 87.75 901 87.75 9901 86.75 919 86.25 919 86.55 86.75 87.75 87.75 87.75 88.67 87.75 89.77 87.75 89.77 84.75 89.75 89.00 89.75 89.00 89.75 89.00 89.75 89.00 89.75 89.00 89.75 89.00 89.75 89.00 89.75 89.00 89.75 89.00 89.75 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00 89.00	728 726 694 695 696 696 697 700 700 700 700 700 603 676 635 636 604 607 607 607 607 607 607 607 607 607 607	820 728 832 0 726 863 0 726 863 634 634 846 0 695 848 0 700 844 0 701 843 0 701 844 0 701 847 0 669 887 669 669 876 0 676 877 0 636 878 0 637 875 0 636 892 604 669 893 0 669 894 0 465 814 0 466 821 0 466 844 433 844 439
30.8 18 895 30.8 18 1013 30.6 18 1017 30.6 18 1009 30.9 18 652 30.8 18 653 30.9 18 653 30.6 18 690 30.6 18 707 30.6 18 450 30.8 18 465 30.8 18 465 30.6 18 465 30.8 18 465 30.8 18 465 30.8 18 199 30.8 18 199 30.8 18 204 30.8 18 206 30.8 18 206 30.8 18 207 30.8 18 207 30.8 19 457 30.8 19 457 30.8 19 457		726 695 695 696 696 696 697 700 700 700 603 603 604 604 607 604 607 604 607 604 607 604 607 604 607 604 607 604 607 604 607 604 608 608 608 608 608 608 608 608 608 608	832 0 832 826 826 826 862 862 862 843 9243 90 843 883 883 883 887 887 887 887 887 887 88
30 8 18 897 30 6 18 1013 30 6 18 1017 30 6 18 1008 30 9 18 652 30 8 18 684 30 8 18 684 30 8 18 629 30 6 18 707 30 6 18 450 30 8 18 465 30 6 18 465 30 6 18 465 30 6 18 465 30 8 18 465 30 8 18 197 30 8 18 206 30 6 18 206 30 6 18 206 30 6 18 206 30 6 18 206 30 6 18 207 30 7 19 457 30 8 19 457 30 8 19 457		726 694 695 696 697 697 700 701 607 676 676 676 607 607 607 607 607 607	825 0 863 - 865 -
30.6 18 1013 30.6 18 1005 30.6 18 652 30.9 18 652 30.8 18 684 30.8 18 684 30.6 18 629 30.6 18 707 30.9 18 450 30.8 18 442 30.6 18 465 30.6 18 465 30.6 18 465 30.6 18 465 30.6 18 20 30.6 18 20 30.8 18 20 30.6 18 20 30.8 18 20 30.6 18 20 30.6 18 20 30.6 18 20 30.6 18 20 30.6 18 20 30.8 19 457		694 695 696 697 700 700 701 605 635 635 607 607 607 607 607 607 607 607 607 607	863 - 862 - 862 - 862 - 865 - 965 -
30 6 18 1017 30 6 18 652 30 9 18 652 30 8 18 652 30 8 18 629 30 6 18 629 30 6 18 712 30 6 18 707 30 8 18 450 30 8 18 442 30 6 18 465 30 6 18 465 30 8 18 197 30 8 18 193 30 6 18 206 30 6 18 206 30 6 18 206 30 6 18 206 30 6 18 206 30 6 18 206 30 6 18 20 30 6 18 20 30 6 18 21 30 6 18 21 30 6 18 457 <td></td> <td>695 696 697 700 700 669 669 676 637 637 637 607 607 607 607 604 607 607 607 607 607 607 607 607 607 607</td> <td>862 - 858 - 858 - 858 - 858 - 958 -</td>		695 696 697 700 700 669 669 676 637 637 637 607 607 607 607 604 607 607 607 607 607 607 607 607 607 607	862 - 858 - 858 - 858 - 858 - 958 -
30.6 18 1009 30.9 18 652 30.8 18 684 30.8 18 629 30.6 18 629 30.6 18 707 30.9 18 450 30.8 18 481 30.6 18 481 30.6 18 465 30.6 18 465 30.6 18 465 30.6 18 19 30.6 18 19 30.6 18 20 30.6 18 213 30.6 18 20 30.6 18 20 30.6 18 21 30.6 18 21 30.6 18 21 30.6 18 21 30.6 18 21 30.6 18 21 30.6 19 457		696 697 701 701 669 676 676 635 635 604 607 607 636 6466 466 466 433 433 433	858 - 846 0 846 0 847 0 883 - 883 - 887 - 887 0 877 0 877 0 877 0 877 0 899 - 899 - 891 0 814 0 814 - 841 -
30.9 18 652 30.8 18 684 30.8 18 684 30.6 18 629 30.6 18 712 30.9 18 450 30.8 18 454 30.8 18 461 30.6 18 465 30.8 18 465 30.8 18 197 30.8 18 19 30.8 18 20 30.6 18 20 30.6 18 20 30.8 19 457 30.8 19 457 30.8 19 457		697 700 700 6689 676 676 635 637 636 604 607 607 466 466 466 466 466 466 466 466 466 46	846 0 843 6 843 6 843 6 863 6 867 6 876 6 877 6 877 6 877 6 887 6
30.8 18 684 30.8 18 689 30.6 18 712 30.6 18 707 30.9 18 450 30.8 18 465 30.6 18 465 30.6 18 465 30.6 18 465 30.8 18 197 30.8 18 206 30.6 18 206 30.6 18 206 30.6 18 207 30.6 18 217 30.6 18 217 30.6 18 207 30.6 18 217 30.8 19 457 30.8 19 457		700 701 668 676 635 635 637 636 607 607 607 448 448 433 623 667 466 466 466 466 466 466 466 466 466	843 0 844 0 844 0 844 0 843 - 0 843 - 0 843 - 0 845 0 845 0 845 - 0 844 - 0 844 - 844 - 844 - 0 844 -
30.8 18 629 30.6 18 712 30.6 18 707 30.6 18 707 30.9 18 450 30.8 18 462 30.6 18 462 30.6 18 465 30.6 18 469 30.8 18 197 30.8 18 193 30.6 18 206 30.6 18 206 30.6 18 21 30.6 18 21 30.6 18 21 30.6 18 21 30.6 18 21 30.6 18 21 30.6 18 21 30.8 19 457 30.8 19 457		669 676 676 635 635 635 607 607 607 807 448 444 433 653 865 866 867 867 867 868 868 868 868 868 868	843 - 0 883 - 887 - 878 - 0 878 - 0 876 - 0 877 - 0 877 - 0 877 - 0 892 - 0 893 - 0 894 - 0 844 - 0
30.6 18 690 30.6 18 712 30.6 18 450 30.8 18 454 30.8 18 481 30.6 18 481 30.6 18 465 30.8 18 197 30.8 18 199 30.6 18 213 30.6 18 206 30.6 18 221 30.6 18 213 30.6 18 245 30.8 19 457 30.8 19 457		669 676 637 637 636 607 607 607 607 607 607 607 607 607 60	883 - 887 - 887 - 887 - 887 - 9 878 - 9 875 - 9 877 - 9 892 - 9 897 -
30.6 18 712 30.6 18 707 30.9 18 450 30.8 18 442 30.6 18 461 30.6 18 465 30.8 18 19 30.8 18 19 30.6 18 19 30.6 18 20 30.6 18 213 30.6 18 21 30.6 18 21 30.6 18 21 30.8 19 457 30.8 19 457		676 676 635 637 636 604 607 607 607 607 465 466 466 486 486 486 486 486 486 486 486	887 - 878 - 0 878 - 0 875 0 0 875 0 0 877 0 0 892 - 892 - 794 0 871 0 0 871 0 0 871 - 0 0 871 - 0 0 871 - 0 87
30.6 18 707 30.9 18 450 30.8 18 445 30.8 18 481 30.6 18 466 30.6 18 469 30.8 18 197 30.8 18 213 30.8 18 199 30.6 18 206 30.6 18 211 30.8 19 457 30.8 19 457 30.8 19 457		676 635 635 637 636 604 607 607 466 466 466 486 433 433	878 - 876 0 876 0 877 0 877 0 882 - 888 - 887 0
30.9 18 450 30.8 18 442 30.6 18 461 30.6 18 465 30.8 18 469 30.8 18 197 30.8 18 20 30.6 18 20 30.6 18 20 30.6 18 21 30.6 18 21 30.8 19 457 30.8 19 457		635 637 637 604 607 607 607 465 466 466 433 433	875 0 875 0 877 0 892 - 893 - 897 - 897 - 897 - 844 - 841 -
30.8 18 454 30.8 18 442 30.6 18 465 30.6 18 465 30.8 18 197 30.8 18 213 30.8 18 203 30.6 18 206 30.6 18 221 30.6 18 221 30.8 19 457 30.8 19 457		637 636 604 607 607 607 465 466 466 466 466 466 466 466	877 0 877 0 892 - 898 - 87 - 794 0 821 0 821 0
30.8 18 442 30.6 18 481 30.6 18 466 30.6 18 197 30.8 18 197 30.8 18 199 30.6 18 201 30.6 18 221 30.6 18 211 30.6 19 457 30.8 19 457		636 604 607 607 607 465 466 466 439 439	892 - 898 - 898 - 794 - 0 814 - 681 - 881
30.6 18 481 30.6 18 466 30.6 18 469 30.8 18 19 30.8 18 199 30.6 18 206 30.6 18 221 30.6 18 211 30.6 19 457 30.8 19 457 30.8 19 457		604 607 607 465 466 466 486 433 433 623	892 - 898 - 898 - 897 - 994 - 994 - 844 -
30 6 18 466 30.6 18 469 30.8 18 197 30.8 18 213 30.8 18 206 30.6 18 221 30.6 18 211 30.6 18 211 30.8 19 457 30.8 19 457		607 607 465 466 466 433 434 444 623	898 - 897 - 794 0
30.6 18 469 30.8 18 197 30.8 18 213 30.8 18 206 30.6 18 201 30.6 18 221 30.6 19 457 30.8 19 457		465 466 466 466 433 433 623	887 - 794 0 794 0 814 0 821 - 851 - 851 - 844 -
30.8 18 197 30.8 18 213 30.8 18 206 30.6 18 211 30.6 18 211 30.8 19 457 30.8 19 451		465 466 466 433 444 623	794 0 814 0 821 0 844 - 851 -
30.8 18 213 30.8 18 199 30.6 18 221 30.6 18 211 30.8 19 457 30.8 19 451		466 466 433 444 439 623	814 0 821 0 844 - 851 -
30.8 18 199 30.6 18 201 30.6 18 221 30.6 19 457 30.8 19 451		466 433 444 439 623	821 0 844 - 851 - 844 -
30 6 18 206 30 6 18 221 30 8 19 457 30 8 19 457		433 439 623	844 - 851 - 844 -
30.6 18 221 30.6 18 211 30.8 19 457 30.8 19 451		444	851 - 844 -
30.6 18 211 30.8 19 457 30.8 19 451		439	844 -
30.8 19 457 30.8 19 451		623	
30.8 19 451			838 0
		622	851 0
30.8 19 456		620	858 0
30.7 19 484		299	- 898
30.6 19 482		276	872 -
30.6 19 488		582	
30.9 19 614		672	785 0
19 610		671	798 0
30.8 19 638	۵	672	907 0
30.6 19 644		642	- 880
30.7 19 654		643	871 -
30.6 19 653		644	- 098
30.9 19 910		712	0 652
30.8 19 906		714	0
30.8 19 917		714	0 2/2
30.7 19 1026		675	816 -
19 1057		089	69 817 - 680
30.7		682	821.

Tug at IDLE				[4]				
Engine	Speed	모	Fuel Flow	Fuel Flow	Air Flow	Air Temp	Air Temp	Air Press
	(mdu)	(ft lb)	(gal/hr)	(gal/min)	(CFM)	(deg F)	(deg C)	(in Hg)
stbd	0(1)	0	4.77	0.079	239	87.4	30.8	30.8
port	0(1)	0	4.83	0.081	252	83.2	28.4	
	(1)SRPM is 0 but Erpm is 54	out Erpm is 545(r	45(port) and 525(stbd)	(þq				
	(2)Engine HP not measured	not measured						

				0.56	0.57		
	[9]	Fuel	(lb/min)				
		Vet	ıin)	17.86	18.90		
	[3]	Air Wet	(lb/rr	1	0		
	[2]	Air Wet	(lb/cuft)	0.0747	0.075		
				77	67		
-		NOX	(mdd)				
				46	53		
		NO ₂	(mdd)				
				31	15		
		S S	(mdd)				
				792	759		
		ဝ	(mdd)				
					1.3		
		C02	(%)	E			
				19.0	19.0		
		RH	(%)				

1		١	1
٠	ì	1	ັ
	ì	i	-
	Ś	Ξ	
1	ı	ſ)

Iry O2/Fuel N2/Fuel XS Air/Fuel (Ib/100lb) (Ib/100lb) (moles/100lb) (lb/100lb) 3156 730 2425 10.453 1710.1 3293 762 2531 10.453 1847.1			[8]	[6]	[10]	[11]	[12]		[14]
(lb/100lb) (lb/100lb) (moles/100lb) (lb/100lb) (%) 5 730 2425 10.453 1710.1 8 762 2531 10.453 1847.1	Air/Fuel Wet RHc Air Dry	Air Dry				N2/Fuel		<u>-</u>	XS Air/Fuel
3156 730 2425 10.453 1710.1 3293 762 2531 10.453 1847.1		(lb/min)	_		(lb/100lb)	(lp/100lb)	(moles/100lb)	(lb/100lb)	
762 2531 10.453 1847.1	0.005	17.			730	2425		1710.1	118.30
		18.		3293	762	2531	10.453	1847.1	127.78
			Ц.						
			_						
			_						
			_						

	[17]	[18]	[19]	[20]	[21]	[22]	[23]
CO2+SO2/Fuel O2/Fuel	02/F	nel	N2/Fuel	H2Otot/Fuel	H ₂ Otot/Fuel	WFGtot/Fuel DFGto/Fuel	DFGto/Fuel
moles/100lb) (moles/100lb) (mole	(mole	(ql001/s	0lb) (moles/100lb) (moles/100lb) (moles/100lb)		(lb/100lb)	(moles/100lb)	(moles/100lb)
0.881 7.236		22.819	86.127	11.29		117.02	
0.919 7.236		23.810	89.868	11.50	207.04	121.96	110.46

[31]	SO ₂ /Fuel	(Ib/100Ib)				
[30]	NO2/Fuel	(lb/100lb)	0.224	0.269		
[29]	NO/Fuel	(lb/100lb)	0.098	0.049		
[28A]	CO2	(moles/100lb) (moles/100lb)	Е	1.381		
[28]	CO2	(moles/100lb)	7.148 m	7.148		
[27]	SO ₂	(moles/100lb)	0	0		
[26]	NO2	(41001/	0.00486	0.00585		
[25]	NO	(moles/100lb)	0.00328			
[24]	.00	(moles/100lb)		0.08387		

			7	N		\neg
			3.2	3.2		
[38]	Nox out	(kg/ton)				
[37]	NOx out	(g/kW-hr)	*(2)	*(2)		
[36]	Pwr	(kW hr)	0(2)	0(2)		
[35]	NOx 1hr	(gal/hr)	49.357 0(2)	49.402 0(2)		
[34]	fuel 1hr	(q))	33.796	34.268		
[33]		(lb/100lb)	0.322	0.318		
[32]	CO2/Fuel	(lp/100lb)	314.6	314.6		

100	Page Course Idle Speed	Speed	L																_	
Too bin I	שלפו - וחני	יסופנים											100	2	0,500	ı	OTOTAL IN IT	OTO MOUTO	ľ	000
Day on	Dilot/Fna	Date/Time 02%	COppu	CO2ppm	NOppm	NO2ppm	NOxppm	SO2ppm	Stemp	SH.	Fdeg	Hg.	KH%	CGH	200	CCRPM	Sigal/Hr	SIRPM SIRP		2
200	- HOULE	E 16/0132	10.3	an i		44	76	0	282	235	9.98	30.9		19	0 -32	0	4.7	525	0	
ולב	NI SUN											200		0	76.	Č	L V		c	
ū	off/etho	5-16/0133	19.3	, Q	3	46	-	_	C/7	107	9	30.0		0	7.		-		3	
i Č	off/cthd			300	33	48	78	0	569	231	86.5	30.8		6	0 -25	0	4.9	526	0	
וערו	3000)					1					-	30	Č	0 7	RAR	c	
ū	off/nort	5-16/0136	19.3	15	18	8	69	,	338		83.3	30.7		9	77	2	n F	3	5	
ווורר	100			1	,	-	00		25.4		230	30.7		0	2	ć	4.8		ō	
m D	off/port	5-16/0137	19.3	2	2	70	00		50	047				5	1	1			1	
ū	off/nort	5-16/0138	19.3 780	1.3	11	Z	99		347		4 82.3	30.7		6	0 20	2	4.0	280		
ווי	100			1	1	200	30		227										•	
<u>u</u>	off/port	5-16/0139	19.3	2		200			100											

[BLANK]

Appendix C Tug with Light Barge Emission Calculations

[C-3 through C-8 present the NOx calculations of the tug towing the light barge without the engine speed pilot engaged and with the ECOM and ENERAC emission analyzers used on the stbd & port engines, respectively;

C-9 through C-14 present the NOx calculations of the tug towing the light barge without the engine speed pilot engaged and with the ECOM and ENERAC emission analyzers used on the port & stbd engines, respectively;

C-15 through C-19 present the NOx calculations of the tug towing the light barge with the engine speed pilot engaged;

C-20 presents the raw data sheet for the tug towing the light barge with the engine speed pilot engaged;

C-21 through C-22 present the raw data sheet for the tug towing the light barge without the engine speed pilot engaged]

[BLANK]

Light Barge	Light Barge(pilot off; ECOM-stbd, ENERAC-port)	M-stbd, ENER	AC-port)	[4]				
Engine	Speed	Ŧ	Fuel Flow	Fuel Flow	Air Flow	Air Temp	Air Temp	Air Press
	(rpm)	(ft lb)	(gal/hr)	(gal/min)	(CFM)	(deg F)	(deg C)	(in Hg)
stbd	742	240		0.195	367	7 78.8	26.0	30.5
stbd	942		20.0	0.334	447	7 80.5		30.5
stbd	1072	685	27.9	0.464	628	8 79.6	26.4	
stbd	1178	911	38.6	0.644	845	5 80.9	27.2	30.5
port	742	221	11.5		628	8 78.4		
port	942	452	19.0	0.317	198	7 80.6	27.0	30.3
port	1072	673	27.4	0.456	1376	6 81.4		30.3
pod	1178	896	37.8	0.630	1681	1 80.6	27.0	30.2
(m) CO2 data	(m) CO2 data were not collected on the stbd engine	ed on the stbd er	ngine					
(n) stbd air flo	(n) stbd air flow readings were eratic duri	eratic during test	it					

			1.38	2.37	3.29	4.57	1.36	2.25	3.23	4.47		
[9]	Fuel	(Ib/min)										
[3]	Air Wet	lb/min)	27.55	33.46	47.03	63.26	46.74	64.36	102.03	124.65		
[2]	Air Wet		0.0751	0.0748	0.0749	0.0749	0.0745	0.0743	0.0741	0.0741		
_			656	692	713	707	800	606	853	827		
	NOX	(mdd)										
			31	22	16	17	124	111	89	79		
	NO ₂	(mdd)										
			627	745	697	688	678	803	765	751		
	SN ON	(mdd)										
			76	89	95	106	63	63	76	87		
	8	(mdd)										
							5.1	6.9	7.5	7.6		
	C02	(%)	E	E	E	E						
			21.0	20.5 m	21.0	20.4 m	21.0	20.5	21.0	20.5		
	RH	(%)										

	XS Air/Fuel		37.01	-2.62	-1.69	-4.64	137.10	97.31	117.16	92.08		
[14]	XS A	(%)										
[13]	XS Air/Fuel	(lb/100lb)	535.1	-37.9	-24.5	-67.1	1981.9	1406.6	1693.7	1331.1		
[12]	O2/Fuel	(moles/100lb) (lb/100lb)	10.453	10.453		10.453	10.453	10.453	10.453	10.453		
[11]	N2/Fuel	(lb/100lb)	1522	1082	1092	1059	2634	2192	2413	2134		
[10]	O2/Fuel	(lb/100lb)	458	326	329	319	793	099	726	643		
[6]	Air/Fuel Dry	(lb/100lb)	1981	1408	1421	1378	3427	2852	3139	2777		
[8]	Air Dry	(lb/min)	27.42	33.	46.80	62.95	46.51	64.04	101.52	124.03		
	RHc		0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005		
	Air/Fuel Wet	(lb/100lb)	1990.60	1414.75	1428.24	1385.39	3444.67	2866.54	3155.00	2790.64		

		1	(0)	1	N.	_	 -	S)	ဖြ	2		\Box
[23]	DFGto/Fuel	(moles/100lb)	65.16	45.38		44.37	115.11	95.25	105.16	92.65		
[22]	WFGtot/Fuel	(moles/100lb)	72.12	52.18	52.64	51.16	122.47	102.45	112.44	99.82		
[21]	H2Otot/Fuel	(lb/100lb)	125.15	122.27	122.34	122.13	132.42	129.53	130.98	129.15		
[20]	H2Otot/Fuel	(moles/100lb)	6.95	6.79	6.80	6.78	7.36	7.20	7.28	7.18		
[19]	N2/Fuel	(moles/100lb) (moles/100lb)	54.058	38.420	38.786	37.623	93.545	77.845		75.784		
[18]	O2/Fuel	(ql00	14.323			9.968	24.785	20.625				
[17]	CO2+SO2/Fuel O2/Fuel	(moles/100lb)	7.236	7.236	7.236		7.236	7				
[16]	/Fuel	(qlc	0.553				0.957					
[15]	XS O2/Filel	(moles/100lb)	3.9	-0.3	-0.2	-0.5	14.3	10.2	12.2	9.6		

_	_		0	0	0	0	0	0	0	0		
[31]	SO ₂ /Fuel	(Ib/100Ib)										
[30]	NO2/Fuel	(lb/100lb)	0.092	0.045	0.033	0.035	0.654		0.428	0.337		
[29]	NO/Fuel	(lb/100lb)	1.227	1.014	0.959	0.916	2.341	2.296	2.414	2.086		
[28A]	CO2		E	E	E	ш	5.890	6.525	7.835	6.995		
[28]	CO2	(moles/100lb)	7.227 m	7.228 m	7.227 m	7.227 m	7.225	7.226	7.224	7.224		
[27]	SO ₂	(moles/100lb)	0	0	0	0	0	0	0	0		
[26]	NO2	(moles/100lb)	0.00200	0.00098	0.00072	0.00076	0.01422	0.01053	0.00931	0.00733		
[25]		les/100lb)	0.04088	0.03379	0.03195	0.03053	0.07803	0.07652	0.08043	0.06953		
[24]		(moles/100lb)	0.00494	0.00405	0.00433	0.00470	0.00719	0 00602	0.00794	0.00803		

Page 6

			13	11	10	19	30	28	28	24		
[38]	Nox out	(kg/ton)										
[37]	NOx out	(g/kW-hr)	2.77	1.90	1.74	1.74	6.71	5.04	4.98	4.41		
[36]	Pwr	(kW hr)	179.2	358.8	510.6	679.2	164.9	337.1	501.9	668.5		
[35]	NOx 1hr	(gal/hr)	496.558	681.418	888.369	1181.597	1105.773	1698.243	2500.007	2945.358		
[34]	fuel 1hr	(q ₁)	83.1	141.9	197.6	274.0	81.4	134.7	194.0	268.0		
[33]	NOx/Fuel		1.319	1.059	0.992	0.951	2.996	2.780	2.842	2.424		
[32]	CO2/Fuel		318.1	318.1	318.1	318.1	318.0	318.0	317.9	317.9		

Light Barge	(pilot off;EC	ight Barge(pilot off;ECOM-port, ENERAC-stbd)		[4]				
Engine	Speed	무	Fuel Flow	Fuel Flow	Air Flow	Air Temp	Air Temp	Air Press
0	(rpm)	(ft lb)	(gal/hr)	(gal/min)	(CFM)	(deg F)	(deg C)	(in Hg)
stbd		742 245	12.0	0.199	430	83.0	28.3	
stbd	76	942 477	19.9	0.331	345			
stbd	1072		27.9	0.466	265	83.3	28.5	
stbd	1178	78 933	39.2	0.653	930	83.7	28.7	30.6
port	74	742 228	11.6	0.193	628	83.7	28.7	30.3
port	76	942 462	19.3	0.322	893	84.4	29.1	30.3
port	1072		27.4		1370	84.8	29.3	
port	11	1178 954	40.3		1827	84.4	29.1	30.3
			•					
(m) CO2 data	(m) CO2 data were not collected on the		port engine					
(n) stbd air flo	(n) stbd air flow readings were eratic duri	re eratic during test	st					

			1.41	2.35	3.30	4.63	1.37	2.28	3.24	4.76		
[9]	Fuel	(lb/min)										
[3]	Air Wet	(lb/min)	32.13	25.78	44.47	69.45	46.44		101.14			
[2]	Air Wet	(lp/cnft)	0.0748	0.0747	0.0747	0.0747	0.0739	0.0739	0.0738	0.0739		
			802	899	886	857	752	867	805	782		
	XON	(mdd)										
			123	101	78	69	37	25	19	16		
	NO ₂	(mdd)										
			683	803	814	788	722	841	786	766		
	9	(mdd)										
			64	70	80	82	84	83	87	103		
	8	(mdd)										
			5.3	7.2	7.6	7.9						
	CO2	(%)					Ε	E	E	E		
			19.5	19.3	19.5	19.0	19.5 m	19.3 m	19.5 m	19.7 m		
	RH	(%)										

			56.41	-24.41	-7.27	3.20	133.53	98.89	115.02	95.23		
[14]	XS Air/Fuel	(%)		1						ð		
[13]	XS Air/Fuel	(lp/100lp)	815.4	-352.8	-105.1	46.3	1930.2	1429.5	1662.6	1376.7		
[12]	O2/Fuel	(moles/100lb)	10.45	10.45	10.45	10.45	10.45	10.45	10.45	10.45		
[11]	N2/Fuel	(lb/100lb)	1738	840	1030	1147	2595	2210	2389	2169		
			523	253	310	345	781	665	719	653		
[10]	O2/Fuel	(lp/100lp)										
[6]	Air/Fuel Dry	(lb/100lb)	2261	1093	1340	1492	3376	2875		2822		
			31.97	25.65	44.25	69.10	46.21	65.68	00.64	134.23		
[8]	Air Drv	(lb/min)										
			0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005		
	RHC											
[2]		(lb/100lb)	2272	1098	1347	1499	3393	2890	3124	2836		

[5]	[16]	[17]	[18]	[19]	[20]	[21]	[22]	[23]
S O2/Fuel	H20/Fuel	CO2+SO2/Fuel	lel O2/Fuel	N2/Fuel	H2Otot/Fuel	H2Otot/Fuel	WFGtot/Fuel	DFGto/Fuel
noles/100lb)	noles/100lb) (moles/100lb) (moles/100lb		(moles/100lb)	(moles/100lb) (moles/100lb)	(moles/100lb)	(lb/100lb)	(moles/100lb)	(moles/100lb)
5.9	0.631	7.236	16.350	61.709	7.03	126.56	81.87	74.84
-2.6	0.305		7.902	29.824	6.71	120.69	41.21	34.51
-0.8	0.374		9.693	36.586	6.77	121.94	49.84	43.06
0.3	0.416		10.788	40.717	6.82	122.70	55.10	48.29
14.0	0.942	7.236	24.411	92.135	7.34	132.16	120.67	113.33
10.3	0.803	7.236	20.790	78.469	7.20	129.65	103.25	96.04
12.0	0.868		22.476	84.833	7.27	130.82	111.36	104.09
10.0	0.788	7.236		77.028	7.19	129.38	101.41	94.22

		 ,	_				 				 	_	7
			0	0	0	0	0	0	0	٥			
[31]	SO ₂ /Fuel	(lp/100lb)											
[30]	NO2/Fuel	(lb/100lb)	0.425	0.161	0.155	0.153	0.192	0.110	0.090	0.070			
[59]	NO/Fuel	(lb/100lb)	1.533	0.832	1.051	1.142	2.454	2.423	2.454	2.166			
[28A]	CO ₂		3.929	2.473	3.280	3.815	E	ш	E	m			
[28]	CO2	(moles/100lb) (moles/100lb)	7.227	7.229	7.228	7.228	7.222 m	7.224 m	7.223 m	7.222 m			
[27]	SO ₂	(moles/100lb)	0	0	0	0	0	0	0	0			
[26]			13	0.00349	0.00337	0.00332	0.00417	0.00240	0.00196	0.00152			
[25]		les/100lb)	0.05108				0.08177						
[24]		(moles/100lb)	0.00478	0.00242	0.00345	0.00394	0 00954	0.00792	0.00902	0.00966			

			20	10	12	13	56	25	25	22		
[38]	Nox out	(kg/ton)										
[37]	NOx out	(g/kW-hr)	4.13	1.78	2.13	2.34	5.78	4.57	4.48	4.07		
[36]	Pwr	(kW hr)	182.52		507.78	695.77	170.34	344.78	500.19	711.31		
[35]	NOx 1hr	(gal/hr)	753.00	633.74	1083.48	1631.08	985.16	1574.73	2240.57	2892.88		
[34]	fuel 1hr	(q))	84.844	140.855	198.047	277.928	82.126	137.073	194.266	285.373		
[33]	NOx/Fuel	(lb/100lb)	1.957	0.992	1.207	1.294	2.646	2.534	2.544	2.236		
[32]	CO2/Fuel	(lb/100lb)	318.1	318.2	318.1	318.1	317.9	317.9	317.9	317.8		

	2.	(mdd) (%)			m 99	m 98	5.3 67	7.1 79	7.7 83	68 7.7 89
	RH	(%)				t 22.0 m		4 22.2		3 22.0
	Air Press	(in Hg)		30.4	30.3	7 30.4	1 30.3	30.4	30.4	30.3
	Air Temp	(deg C)		24.1	24.8	5 24.7	3 24.4		5 24.2	3 243
	Air Temp	(deg F)		75.4	76.6	76.5	75.8			
	Air Flow	(CFM)	410	305	685	961	599	725	1106	1383
[4]	Fuel Flow	(gal/min)	0.198	0.331	0.450	0.610	0.192		0.448	
oilot on)	I Flow	(gal/hr)	11.88	19.87	27.02	36.58	11.52	19.20	26.90	36.65
t Barge(r	유	(ft lb)	244	475	675	889	223	451	664	867
Tug Pushing Light Barge(pilot	Speed		742	942	1072	1178	742	942	1072	4470
Tua Pus	Engine		stbd	stbd	stbd	stbd	nort	nort.	port	100

[11]	N2/Fuel	(lb/100lb)	1679	747	1230	1279	2527	1850	2002	7007
[10]	O2/Fuel N	(lb/100lb) (l	505	225	370	385	761	557	603	000
[6]	Air/Fuel D	(lib/100lb)	2184	971	1601	1664	3288	2407	2604	1000
[8]	Air Dry	(lb/min)	30.67	22.80	51.11	71.92	44.75	54.61	82.78	
			0.005	0.005	0.005	0.005	0.005		0.005	
[2]	Air/Fuel W RHc	(lp/100lp)	2194.83	976.20	1608.85	1672.12	3304.64		2617.39	0000
[9]	Fuel	(lb/min)	1.40	2.35	3.19	4.32	1.36	2.27	3.18	
[3]	Air Wet	(lb/min)	30.82	22.92	51.36	72.28	44.97	54.88	83.20	
	Air Wet	(lp/cnft)	0.0752	0.0752	0.0750	0.0752	0.0751	0.0757	0.0752	
	NOX	(mdd)	649	869	662	675	805	927		
	NO ₂	(mdd)	29	20	14	13	126	118	26	
	ON ON	(mdd)	621	682	647	663	679	799	753	

- т		1		~ □		·C	 C I	6 1	O I	G I
[21]	H2Otot/Fuel	(lp/100(p)	126.17	120.08	123.24	123.56		127.29	128.29	127.19
[20]	H2Otot/Fuel	(moles/100lb)	7.01	6.67	6.85	6.86	7.32	7.07	7.13	7.07
[19]	N2/Fuel	(moles/100lb (moles/100lb) (moles/100lb)	59.604	26.510	43.691	45.409	89.743	689'59	71.080	65.140
[18]	O2/Fuel	(moles/100lb	15.792	7.024	11.576	12.031	23.777	17.404	18.832	17.259
[17]	CO2+SO2/Fuel	(moles/100lb)	7.236	7.236	7.236	7.236	7.236	7.236	7.236	7.236
[16]	H20/Fuel	(moles/100lb)	0.610	0.271	0.447	0.464	0.918	0.672	0.727	0.666
[15]	XS O2/Fuel	(moles/100lb)	5.3	-3.4	1.1	1.6	13.3	7.0	8.4	6.8
[14]	XS Air/Fuel	(%)	51.07	-32.81			127.46		80.16	65.10
[13]	XS Air/Fuel XS Air/Fuel XS Oz/Fuel	(lb/100lb)	738.3	-474.3			1842.5			
[12]	O2/Fuel	(moles/100l (lb/100lb)	10.453	10 453	10.453	10.453	10.453	10.453	10.453	10 453

[22]	[23]	[24]	[52]	[56]	[27]	[28]	[28A]	[29]	[30]
WFGtot/Fuel	DFGto/Fuel	00	S S	NO2	SO ₂	CO ₂	CO2	NO/Fuel	NO2/Fuel
(moles/100lb	moles/100lb (moles/100lb) (moles/100lb)	(moles/100lb)	(moles/100lb	moles/100lb (moles/100lb)	(moles/100lb)	(moles/100lb) (moles/100lb)	(moles/100lb)	(lb/100lb)	(lp/100lp)
79.19	72.18	0.00571	0.04484	0.00206	0	7.226 m	E	1.345	0.095
36.99	30.32	0.00301	0.02066	090000	0	7.229 m	E	0.620	0.028
58.90	52.05	0.00516	0.03365	0.00075	0	7.227 m	٤	1.010	0.034
61.09	54.22	0.00533	0.03592	0.00072	0	7.226 m	E	1.078	0.033
117 62	140.20	0.00735	0077488	0.01388		ACC 7	5 83	2 247	0.639
86.95					0	7.225			0.434
93.82	86.70				0	7.224	6.63	1.959	0.385
86.25	79.18	0.00705	0.05891	0.00705	0	7.225	6.11	1.768	0.324

[34] [35]	[36]	[37]	[38]
NOx/Fuel fuel 1hr NOx 1hr	Pwr	NOx out	NOx out
(lb) (gal/hr)	(kW hr)	(g/kW-hr)	(kg/ton)
84.253 550.105	5 181.651	3.03	14
140.855 413.62	413.622 354.5987	1.17	9
191.548 906.780	0 503.177	1.80	10
259.376 1306.824	4 663.4427	1.97	11
81.653 1068.254	4 166.358	6.42	29
136.128 1449.320	0 336.6947	4.30	23
190.721 2026.429	9 495.5927	4.09	23
259.849 2464.742	2 646.782	3.81	21
259.	849 2464.74	- 1	646.782

GPSsp	9.1	8.8	8.9	9.1	8.8	8.9	9.3	6	æ	9.3	6	8	7.4	7.8	7.7	7.4	7.8	7.7	5.3	5.7	5.4	5.3	5.7	5.4	7.2	5.	7.2	7.0	7.2	8.2	8.4	9.3	8.2	8.4	9.3	10.1	9.5	6	2 0	300	6	9	5.8	9	9	5
		654	654	9/9	646	654	466	450	456	456	452	452	292	298	316	284	284	306	152	142	154	144	144	144	310	316	306	306	296	446	452	438	50	450	444	279	632	634	700	1 20	148	202	150	134	138	3
STHP	1174	1174	1172	78	20	1174	021	99	090	690	63	93	919	324	742	320	324	342	741	136	745	741	737	742	940	0 5	942	074	942	90	965	059	070	690	690	0/1	1163	1100	11/0	1160	75.5	748	749	730	748	40
STRPM																							1										1									1.0	12	10	1 4	•
STgal/Hr	36.	37.5	36.	38	36.	37.	27.	2					19.1			18.7					12.2						20		19.3				1							30.4				=	-	-
CGRPM	236	237	237	238	236	238	216																				8 8													735					151	
cera	201	202	203	196	195	196	170	167	170	165	166	167	130	133	134	127	126	131	83	83	8	8	84	88	133	134	134	128	130	163	163	162	163	162	160	192	192	25	200	184	207	8	BR	48	168	5
	305	206	912	830	869	887	693	629	688	670	674	673	459	471	480	438	438	462	252	249	256	230	227	232	478	487	482	AFF	462	999	663	658	099	629	920	862	877	9/8	220	0/0	320	240	244	205	219	0
CGHP	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	27	22	32	23	22	22	22	22	22	22	22	22	77	77 6	77	27	2,4	21	2	21	7
RH%	J.4	0.4	0.4	0.5	0.4	0.4	0.3	0.3	0.3	0.3	0.4	0.4	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.3	0.4	0.4	0.4	0.4	20.4	30.4	1 0	203	90.4	30.3	30.4	30.4	30.4	30.3	30.4	30.4	30.4	50.5	20.2	20.4	20.0	30.4	30.3	30.2	14.00
, H																																					78.8		1					1	78.9	
Fdeg	73.4	743	75.1	71.5	714	77	73	736	74.6	7.1.7	72.	73.	73.8	74.4	73.	73.4	72										76.1		719																	
CFM	804	395	443	617	296	544	480	279	397	519	426	573	161	164	117	352	354	340	196	195	232	281	292	308	143	169	160	200	369	406	203	250	269	581	649	372	401	469	10/	775	205	201	210	200	334	5
STemp	378	929	678	638	638	638	654	652	649	612	612	612	578	575	575	535	532	542	429	430	427	406	405	406	283	285	584	175	528	646	644	642	285	287	287	9/9	9/9	1/9	5/3	470	307	707	418	360	377	- 5
1	0	0	0				0	0	0				0	0	0				0	0	0				0	0	0	1		0	0	0				0	0	0	1	\dagger	c	0	0	,		-
n SO2ppm	34	793	798	338 -	339 -	843 -	788	798	862	873 -	862	857 -	834	840	863	950 -	926	- 906	773	793	788	825 -	823 -	830 -	548	552	553	970	926	518	532	536	841 -	838 -	835 -	546	261	265	- 619	- 679	700	130	538	760	785 -	200
NOxppm	7	9		93					20					26							39		135				13								83						0 0		210	1 = 1	118	ō
NO2ppm	-	-	1	6	6	6	-	1	2	102	101	100	2		2	12																														
NODDE	777	777	778	745	752	744	775	775	773	769	763	746	825	815	836	800	802	788	740	758	745	691	689	694	532	24	25	181	808 008	506	521	529	750	745	744	537	552	554	35	137	00/	402	522	EEA	659	ž
CO2ppm N	1			7.8	7.9	7.9				7.8	7.8	7.8				7.2	7.1	7.2				55	5.5	5.5			ſ		7				7.5	7.5	7.5				3.5	1.6	9.			4	2 +	n
1	25	130	125 -	81	80	84	06	115 -	120 -	85	98	84	105	110 -	110 -	103	83	83	8	189	8	67	69	72	85	8	8 5	2 2	200	8	95 -	- 32	83	83	78	70-	20	20	25 15	8 8	3 4	8 8	8 8	3 2	2 6	6
COppm	107	106	10 6	10.5	10.5	10.5	11	10.9	10.9	106	10 6	106	116	11.8	11.8	114	115	113	14	13.9	13.9	136	13.7	136	14.5	14.5	145	0 0	110	14.1	14	14	11	11	=	13.4	13.4	13.4	10.9	10.8	10.8	200	10.4	2 2	4.4.	17.4
ne 02%											_	_							43											125	127	129	326	928	330	352	355	357	40	956	200	570	200	307	175	170
Date/Time	5-13/0747	5-13/0749	5-13/0751	5-13/0750	5-13/0752	5-13/0754	5-13/0803	5-13/0804	5-13/0806	5-13/0805	5-13/0807	5-13/0809	5-13/0823	5-13/0825	5-13/0827	5-13/0828	5-13/0830	5-13/0832	5-13/0843	5-13/0846	5-13/0848	5-13/0845	5-13/0847	5-13/0849	5-13/0908	5-13/0910	5-13/0912	5-13/0903	5-13/0907	5-13/0925	5-13/0927	5-13/0929	5-13/0926	5-13/0928	5-13/0930	5-13/0952	5-13/0955	5-13/0957	5-13/0954	5-13/0956	5-13/0958	5-13/1023	5-13/1023	5 42/1024	5-13/1024	25
Run Sea Pilot/Eng Date/Til	on/stbd	on/stbd	on/stbd	on/port	on/port	on/port	on/stbd	on/stbd	on/stbd	on/port	on/port	on/port	on/stbd	on/stbd	on/stbd	on/port	on/port	on/port	on/stbd	on/stbd	on/stbd	on/port	on/port	on/port	on/stbd	on/stbd	on/stbd	nod/no	on/nort	on/stbd	on/stbd	on/stpd	on/port	on/port	on/port	on/stbd	on/stbd	on/stpd	on/port	on/port	on/port	DOISIDO	on/ethd	Dall'state	on/port	00/00
Run Sea	1	B2.100	B3 100	B1.100	B2.100	B3.100	B1.91	B2.91	91	81.91			B1.80	B2.80	B3.80	B1.80	B2.80	B3.80	B1.63	B2.63	B3.63	63	B2.63	B3.63	D1.80	D2.80	03.80	20.00	03.80	0191	D2.91	D3.91	D1.91	D2.91	D3.91	D1.100	D2.100	03.100	01.100	02.100	03.100	3 5 5	02.02	20.50	50.00	202

GPSsp	9	9 0	6.0	6.4	6.8	8.3	8.1	8.4	8.3	- 8.1	8.4	9.5	6	9.6	9.2	6	9.6	10.3	0.0	103	0.0	6	5.7	5.3	4.7	5.7	5.3	4 0	0.0	0.0	93	9.3	9.5	8.7	8.4	7.8	ò	0.4	2	9	6.6	9	9	9.9	80	8.3	20	8	8.3	a
,	140	1 5	138	138	138	314	302	304	294	284	284	462	462	450	451	\$20	446	670	0/0	644	650	646	148	146	152	140	142	147	200	676	670	670	929	466	468	468	460	4/0	316	312	312	296	296	296	708	714	708	718	732	740
SIKPM SIH	742	242	746	745	745	946	946	946	946	946	946	1073	1073	1073	1071	1071	1072	אור אין	11/1	1176	1175	1177	743	743	742	742	742	4470	1170	4478	1179	1179	1179	1071	1072	1072	10/1	10/0	701	570	943	941	943	942	1189	1189	1189	1195	1136	
	11.6	0.1	110	11.4	11.4	20.2	19.7	19.7	18.9	18.7	18.7	27.6	27.3	27.3	27	27	26.8	37.3	37.4	27.4	27.0	37.3	119	11.9	11.9	11.5	11.5	7.17	30.9	2000	38.0	38.6	38.6	28.1	28.8	28.1	27.2	97	8.72	20.5	20.1	19.3	19.1	19.3	40.2	39.9	39.8	404	40.7	
	150	200	15.1	151	151	191	191	191	192	192	191	217	217	217	217	217	217	238	220	000	220	238	150	150	150	151	151	151	238	230	239	239	239	216	217	216	219	218	717	101	8	191	191	190	240	240	240	242	242	
1	888	3 8	20 B	8	75	133	131	130	127	194	123	164	164	165	160	160	161	198	200	107	104	107	87	87	87	83	82	83	203	2004	207	203	201	169	169	169	172	165	197	434	136	125	126	130	506	508	209	206	212	41.4
HP CGTO	234	734	200	218	213	482	475	468	452	444	438	675	672	229	651	649	655	892	200	200	6/3	2002	247	247	247	225	224	226	918	973	918	914	206	969	692	695	709	069	683	460	480	459	456	462	942	953	953	650	970	2 2
	21	77	77	21	22	21	21	21	21	21	21	21	21	21	21	21	21	20	2 2	2 2	0,0	2 5	200	2,52	21	20	21	21	21	17	17	24	21	21	21	21	21	21	21	2 6	300	2 02	20	20	21	20	20	21	200	10.3
.	30.4	30.5	30.5	30.5	30.2	30.4	30.4	30.4	30.2	30.2	30.2	30.4	30.4	30.4	30.2	30.2	30.2	30.5	30.5	30.5	30.2	30.2	30.5	30.5	30.5	30.3	30.2	30.2	30.5	30.5	30.5	30.2	30.5	30.5	30.5	30.5	30.3	30.3	30.3	20.5	30.0	30.3	30.3	30.3	30.6	30.6	30.5	30.3	200	2.25
eg Hg	76.6	100	77.3	76.5	74.4	77.3	77.3	76.4	76.6	79	78.8	77.6	77.6	78.2	79.5	79.3	79.1	79.7	79.5	66/	80.4	40.4	20.0	80 B	80.1	81.5	80.1	80.8	80.9	81.4	80.3	00.0	210	81.1	81.5	81.3	83.3	83.7	83.3	90.7	- 0	82 B	83	83.1	81.1	83	82.4	9 70	0.0	07.70
	162	114	נוס	300	322	250	315	228	432	436	439	188	336	291	682	703	691	349	403	373	833	06/	040	245	179	334	301	317	465	443	318	/20	873	444	374	251	783	964	93	184	2 45	468	408	416	502	356	593	6	700	1170
STemp CFM	408	408	411	377	374	573	570	295	514	511	202	637	829	638	576	573	573	229	9/9	929	612	292	282	438	429	402	338	397	677	089	683	200	200	99	99	658	287	565	280	298	200	541	536	531	649	653	655	000	000	700
SO2ppm ST	0	0	0	-		C	0	0	,			0	0	0				0	0	0			-	0	0				0	0	0	1	1	0	0	0				0	5 0	2						-	5 0	5
NOxppm SC	9	629	611	704	777	694	009	600	903	907	895	648	149	651	839 -	851	958	658	995	199	814 -	836 -	845	707	969	822 -	813 -	810 -	742	755	761	- 960	- 979	774	781	785	851 -	- 862	861 -	842	040	020	906	924 -	817 -	832 -	853 -	1	1/8	(2)
NO2ppm NO	2	32	31	91.	124	280	2 6	101	406	3 :	113	0	13	12	84	, 68	91	16	13	=	75	83	84	67	29	123	125	127	25	20	18	5 5	5	200	16	14	84	91	92	2	20	17	£ 4	116	74	75	92		2	14
NOppm NO	581	594	593	1/9	900	664	670	673	BO4	202	780	616	674	639	758	757	760	636	646	655	749	753	200	622	671	694	969	689	714	734	743	745	749	758	767	777	773	771	770	817	820	41/	908	305	751	755	756	1	103	7631
CO2ppm NC				5	ر د	2			a	0.0	9 9	2			7.3	7.3	7.3				7.4	7.5	7.5			5.2	5.2	5.2				7.6	7.6	-			7.6	9.7	7.6			-		7	7.8	7.8	7.9			_
COppm	70	75 -	75 -	20	3 8	75		9 4	8 8	0 8	5 6	2 8	8 8	8 8	71	77	75	85 -	- 92	100	75	82	87	. 5	2 8	99	64	64	115 -	125 -	115 -	82	98	36	105	107	70	8	80	95 -	8	100	2 4	8 2	5	6	91	ac-stbd	9	105
	15.3	153	15.3	14.2	14.2	42	2	13.4	13.1	7 0	12 2	12.5	12.5	12.6	113	112	11.2	12.2	12.2	12.2	11	109	10.9	14.7	14.7	14	14	14	10.7	10.7	10.7	10.9	10.8	0.0	10.7	10.7	10.9	10.8	10.8	11.4	11.4	11.5	0.1.	1 9	106	10.5	10.4	n-port, Ener	10.6	10.6
Date/Time 02%	5-13/1040	5-13/1042	5-13/1047	5-13/1041	5-13/1043	5-13/1045	13/1033	7501/21-6	5-13/1059	5-13/1056	5-13/1036	2-13/1100	5.13/11/03	5,13/1113	5-13/1110	5-13/1112	5-13/1114	5-13/1124	5-13/1126	5-13/1128	5-13/1125	5-13/1127	5-13/1129	5-13/1154	5-13/1136 5-13/1158	5-13/1151	5-13/1153	5-13/1155	5-13/1203	5-13/1205	5-13/1207	5-13/1204	5-13/1206	5-13/1208	5.13/1219	5-13/1221	5-13/1218	5-13/1220	5-13/1221	5-13/1228	5-13/1230	5-13/1232	5-13/1229	5.13/1231	5-13/1241	5-13/1243	5-13/1245	emission analyzers, Ecom-port, Enerac-stbd	5-13/1242	5-13/12/4
Run Sea Pilot/Eng Date	_								T		1	T	officthed 5		T	T	Τ	T			off/port 5			T	off/ctbd 5			Г		off/stbd 5			T	off/port	Т	T	Τ	Γ		off/stbd 5			Т	T	off/sthod	T		mission ana		off/nort
Run Sea Pi	\top			A1.63 of				T				T		A2.91		42 01			Γ					T	C2.63		C2 63	T	C1.100		П	C1.100			5.5		Γ						88				B3.100	g		001 00

7.3	7.4	7.7	7.3	7.4	7.7	6.5	6.9	6.3	6.5	6.9	6.3	5.1	4.7	5.1	5.1	4.7	5.1	ß	5.3	5.3	5	5.3	5.3	6.4	6.7	6.9	6.4	6.7	6.9	8.1	8.4	8.7	8.1	8.4	8.7	6	9.5	9.6	6	9.2	9.6
462	462	462	456	462	456	316	312	308	296	296	296	150	150	150	148	144	144	146	150	150	140	144	144	310	310	312	298	302	302	466	468	462	462	462	462	989	069	969	702	694	000
1071	1072	1072	1071	1071	1071	943	943	944	941	940	942	745	745	745	742	742	742	747	746	745	747	742	742	940	942	942	942	943	942	1074	1073	1075	1073	1072	1072	1191	1191	1190	1198	1186	1102
27.3	27.8	27.6	27.3	27.6	27.3	20.1	20.1	19.8	19.3	19.3	19.3	12	12	12	11.5	11.5	11.7	11.8	12.2	11.8	11.4	11.8	11.6	19.1	20.1	20	19.1	19.4	19.6	27.9	28.5	28.5	27.3	27.3	27.6	39.3	39.3	39	40.2	39.2	C UV
216	217	216	217	216	216	190	191	191	191	191	191	151	151	151	151	151	151	151	151	151	151	151	151	191	190	6	191	<u>19</u>	191	217	217	217	217	217	217	241	241	241	243	243	242
163	168	167	163	166	166	133	133	134	130	130	130	87	98	87	84	84	84	85	85	82	83	83	83	131	131	132	130	125	130	165	166	165	164	165	165	201	203	202	205	206	200
699	692	684	099	673	929	479	481	483	460	462	464	247	244	248	230	228	232	243	243	243	226	227	227	473	472	476	464	460	463	678	682	629	699	675	670	922	676	947	939	944	050
50	20	20	20	20	20	20	20	19	20	20	19	20	20	20	20	20	20	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	10
30.5	30.6	30.6	30.3	30.3	30.3	30.6	30.6	30.6	30.3	30.3	30.3	30.6	30.6	30.6	30.3	30.3	30.3	30.6	30.6	30.6	30.3	30.3	30.3	30.6	30.6	30.5	30.4	30.3	30.3	30.6	30.6	30.6	30.3	30.3	30.3	30.6	30.6	30.6	30.3	30.3	30.3
81.8	82	84.5	84.2	83.6	84.3	82.4	85.3	81.6	84.9	84.5	85.1	84.9	83	83.2	83.9	83.4	84.1	82.8	82.1	81.8	84.1	83.1	83.8	83.4	82.7	83	84.2	82.9	84.9	84.1	83.8	83.7	84.2	86.5	85.7	83.7	83.9	83.6	84.1	82.5	03.4
362	397	355	269	741	672	170	130	230	453	453	459	235	260	174	309	320	322	175	206	239	309	323	301	181	141	183	455	421	439	154	203	315	671	662	673	202	461	427	916	606	055
618	620	622	649	651	653	556	558	529	586	584	584	418	413	410	440	435	431	390	395	398	419	420	421	531	536	538	999	267	569	602	809	611	636	639	644	628	630	633	089	680	584
			0	0	0				0	0	0		_		0	0	0				0	0	0				0	0	0				0	0	0				0	0	c
878	- 698	894 -	803	816	812	892 -	- 006	. 006	857	871	978	812 -	908	802 -	752	765	752	800	801 -	- 118	737	744	292	- 606	903	888	864	867	867	- 888	884 -	- 006	962	800	902	B60 -	857 -	855 -	775	785	704
75	80	79	18	18	17	26	103	103	26	24	24	120	122	123	34	36	37	123,	125	127	35	39	40	86	102	104	56	22	25	11	79	80	21	20	19	89	69	69	19	18	47
821	810	820	785	787	801	818	802	795	830	820	852	694	684	629	732	725	721	678	676	684	710	721	720	823	793	788	833	840	840	797	804	830	775	778	787	790	788	786	761	766	77.4
7.5	7.7	7.8				7.2	7.2	7.3				5.3	5.3	5.3				5.2	5.2	5.2				7.1	7.1	7.1				7.5	1.6	7.6				7.9	7.9	7.9			
73	98	08	- 02	- 80	- 08	70	75	72	80	- 68	- 08	99	99	1.9	82	- 08	85 -	63	63	29	85 -	85 -	85 -	89	89	88	85 -	85 -	- 80	80	84	84	- 56	99	100	83	81	81	100	105 -	405
10.9	107	106	11	108	107	114	113	113	115	114	11.5	13.9	13.9	13.9	13.8	13.8	13.9	141	14	14	13.9	13.9	13.9	11.5	11.5	11.5	11.6	11.6	11.6	11	10.8	10.8	11	11	10.9	10.4	10.4	10.4	10.7	10.7	10.7
5-13/1253	5-13/1255	5-13/1256	5-13/1252	5-13/1254	5-13/1256	5-13/1305	5-13/1306	5-13/1308	5-13/1304	5-13/1306	5-13/1307	5-13/1315	5-13/1317	5-13/1319	5-13/1314	5-13/1316	5-13/1318	5-13/1356	5-13/1358	5-13/1400	3/1355	5-13/1357	5-13/1359	5-13/1406	5-13/1408	5-13/1409	5-13/1407	5-13/1409	5-13/1410	5-13/1418	5-13/1420	5-13/1421	5-13/1416	5-13/1417	5-13/1419	5-13/1431	5-13/1432	5-13/1434	5-13/1428	5-13/1430	5 43/4/34
		off/stbd 5-1;				off/stbd 5-1;	off/stbd 5-1;		off/port 5-1:		Γ	Γ				off/port 5-1			off/stbd 5-1		off/port 5-1		off/port 5-1	off/stbd 5-1	Г	off/stbd 5-1	off/port 5-1	off/port 5-1	off/port 5-1	off/stbd 5-1	off/stbd 5-1		off/port 5-1			Γ	Γ	off/stbd 5-		off/port 5-	T.
11 off/stbd	11 off/stbd		11 off/port	31 off/port	31 off/port			Γ	Γ							Γ																								A2.100 off	Τ
81.9	B2.91	B3.9	8191	B2.9	83.9	818	B2.8	83.8	B1.8	B2.8	83.8	B1.6	B2 6	B3.6	81.6	B2.6	B3.6	A1.E	A2.6	A3.6	A1.6	A2.6	A3.6	A1.	A2.	A3.	. A1.	, A2.	A33	A1.91	A2.	A3.	A	A2	A3	A	A2.	A3	A	A2	

Appendix D Free Tug Emission Calculations

[D-3 through D-8 present the NOx calculations of the tug running by itself without the engine speed pilot engaged;
D-9 through D-10 present the raw data sheet for the tug running by itself without the

engine speed pilot engaged]

[BLANK]

Free Runnin	Free Running Tug w/o Barge(pile	arge(pilot off)	f)	[4]				
Fnaine	Speed	표	Fuel Flow	Fuel Flow	Air Flow	Air Temp	Air Temp	Air Press
	(mau)	(ft lb)	(gal/hr)	(gal/min)	(CFM)	(deg F)	(deg C)	(in Hg)
stbd	742	139	10.93		388	8 80.9		
sthd	942	308		0.291	303	3 81.2		30.8
sthd	1072	478	24.40		529	9 82.0		
stbd	1178	701	34.04	0.567	671	1 81.8	3 27.7	30.8
port	742	152		0.179	570	0 80.4	1 26.9	
port	942		17.12					
port	1072				1071	1.77	7 25.4	30.6
port	1178				1399	9.77 6	9 25.5	30.6
(m) CO2 data	(m) CO2 data were not collected on the	ed on the port engine	ngine					

[2] [3] [6]	NOx Air Wet Air Wet Fuel	(lb/cuft) (lb/min)	98 606 0.0756 29.31 1.29	0.0756	83 776 0.0755 39.94 2.88	71 718 0.0755 50.64 4.02	24 558 0.0754 42.95 1.27	26 742 0.0755 58.50 2.02	80.97	22 686 0.0755 105.68 3.88	
			0.0756	0.0756	0.0755	0.0755	0.0754	0.0755	0.0756	0.0755	
						718					
	NO ₂	(mdd)				71					
	NO	(mdd)	513	999	692	647	534	719	721	663	
	00	(mdd)		09	77	111	82	61	99	113	
	C02		4.6	6.2	7.0	7.4	E	E	E	ш	
	RH		21.3	21.3	21.3	21.7	21.3	21.3 m	21.3	21.7 m	

	e		56.14	-23.51	-4.65	-13.35		133.46	99.02	101.17	87.54		
[14]	XS Air/Fuel	(%)				•				-			
[13]	XS Air/Fuel	(lp/100lb)		•	-67.2	-193.0					1265.5		
[12]	O2/Fuel	(moles/100lb)	10.453	10.453	10.453	10.453		10.453	10.453		10.453		
[11]	N2/Fuel	(lb/100lb)	1735	850	1059	696		2594	2211	2235	2084		
			522	256	319	290		781	999	673	627		
[10]	O2/Fuel	(lb/100lb)											
[6]	Air/Fuel Dry	(lb/100lb)	2257	1106	1378	1253		3375	2877	2908	2711		
[8]	Air Dry	(lb/min)	29.16	22.81	39.74			42.74	58.21	80	105.15		
			0.005	0.005	0.005	0.005		0.005	0.005	0.005	0.005		
	RHC		9	8	-	3	-	0	6	-	9	-	
[7]	Air/Fuel Wet	(lb/100lb)	2268.46	1111.23	1385.31	1258.83		3391.80	2891.49	2922.61	2724.66		

							-			-c 1	
[23]	DFGto/Fuel	(moles/100lb)	74.71	34.96	44.37	40.03	113.30	96.11	97.18	90.38	
[22]	WFGtot/Fuel	(moles/100lb) (moles/100lb)	84.41	42.87	52.71	48.17	124.73	106.77	107.89	100.78	
[21]	H2Otot/Fuel	(lb/100lb)	174.56	142.44	150.05	146.54	205.73	191.85	192.71	187.22	
[20]	H2Otot/Fuel	(moles/100lb)	9.70	7.91	8.34	8.14	11.43	10.66	10.71	10.40	
[19]	N2/Fuel	(moles/100lb)	61.604	30.177	37.620	34.186	92.110	78.523	79.368	73.993	
[18]	nel O2/Fuel	(moles/100lb)	16.322	7.995	9.967	9.057	24.404	20.805	21.028	19.604	
[17]	CO2+SO2/Fuel		7.236	7.236	7.236	7.236	7.236	7.236	7.236	7.236	
[16]	H20/Fuel	moles/100lb) (moles/100lb) (moles/100lb	0.630	0.309	0.385	0.350	0.942	0.803	0.812	0.757	
[15]	XS O2/Fuel	(moles/100lb)	5.9	-2.5	-0.5	4.1-	14.0	10.4	10.6	9.2	

		_	0	0	न	ा	-	0	न	0	0	\neg
[31]	SO2/Fuel	(lb/100lb)										
[30]		(lb/100lb)	0.338	0.168		0.130		0.127	0.113	0.092	0.093	
[29]	NO/Fuel	(lp/100lb)	1.150			0.777		1.816	2.073	2.102	1.797	
[28A]	CO2	(moles/100lb)	3.420	2.154	3.116	2.975		ш	Е	Е	ш	
[28]	CO2	(moles/100lb)	7.226	7.230	7.228	7.227		7.222 m	7.226 m	7.225 m	7.221 m	
[27]	SO ₂	(moles/100lb)	0	0	0	0		0	0	0	0	
[26]	NO2	6	0.00734	0.00366	0.00369	0.00283		0.00277	0.00247	0.00200	0.00202	
[25]		(moles/100lb)	0.03833		0.03070	0.02590		0.06050		0.07003	0.05988	
[24]		les/100lb)	0.00545	0.00210	0.00343	0.00445		0.00925	0.00587	0.00637	0.01024	

			15	6	11	6	19	22	22	19	
[38]	Nox out	(kg/ton)									
[37]	NOx out	(g/kW-hr)	5.04	2.12	2.40	1.90	5.90	4.73	4.34	3.68	
[36]	Pwr	(kW hr)	103.694	229.768	356.588	522.946	113.392	254.386	381.206	541.596	
[35]	NOx 1hr	(gal/hr)	522.862	486.336	855.953	993.109	669.333	1203.483	1653.114	1993.932	
[34]	fuel 1hr	(q _I)	77.517	123.760	172.996	241.375	75.981	121.397	166.221	232.710	
[33]	NOx/Fuel	(lb/100lb)	1.488	0.867	1.091	0.907	1.943	2.187	2.193		
[32]	CO2/Fuel	(lb/100lb)	318.0	318.2	318.1	318.1	317.9	318.0	318.0	317.8	

406

FREE

emp (359) (3 000 Part of the control o 4 5 4 5 4 5 4.5 6.2 474 6.1 69 7373 5-14/2358 5-14/2430 5-14/2431 5-14/2338 5-14/2341 5-14/2331 5-14/2335 5-14/2335 5-14/2350 5-14/2351 5-14/2351 5-14/2351 5-14/2351 5-14/2351 14/24/32 14/24/28 14/24/28 14/24/28 14/24/28 14/24/28 14/24/49 14/24/29 14/24/29 14/24/38 14/24/38 14/24/38 PilovEng offistbd off/stbd off/port off/stbd off/stbd off/port | National September | Nationa D-9

Page 1

13.2	14.7	14	13.2	12.4	11.8	12.5	12.4	11.8	12.5	10.6	10.5	, 11.4	10.6	10.5	11.4
995	999	995	264	400	400	394	378	330	378	258	258	254	258	262	258
1190	1188	1130	1189	1071	1069	1071	1071	1072	1071	945	945	945	926	922	965
33.2	32.8	32.8	32.8	24.7	23.9	24.2	23.4	23.7	23.4	17.2	17.4	17.2	17.6	17.4	17.1
240	240	240	240	217	217	217	217	217	217	191	191	191	194	194	194
150	160	161	160	117	117.	114	126	126	126	82	87	85	100	100	100
684	729	730	725	480	481	471	510	518	512	310	317	309	329	355	356
22	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
30.8	30.6	30.6	30.6	30.9	30.8	30.9	30.6	30.6	30.6	30.9	30.9	30.8	30.6	30.6	30.6
81.5	78.8	79.8	79.5	82.4	81.6	82	77.5	78.6	75.9	82	81.5	82.1	76.8	79	77
286	725	788	726	428	236	161	532	540	614	109	172	176	441	443	437
809	612	616	619	563	292	565	288	588	587	492	491		523	525	525
-	0	0	0				0	0	0			,	0	0	0
- 802	673	682	689	778 -	785 -	772 -	742	738	747	780 -	775 -		741	748	745
75	25	22	19	75	82	87	19	18	18	106	106		21	21	21
633	645	662	671	703	200	684	723	723	727	674	699		731	725	719
7.4		_		7	7.1	7				6.2	6.2				
113	110 -	110	115 -	73	80	78	65 -	75.	75 -	59	26		- 22	- 09	- 65
11.1	11.6	116	11.5	11.6	11.5	11.6	12.1	12	12.1	12.7	12.7	,	12.9	12.9	12.8
5-14/0122	5-14/0117	5-14/0118	5-14/0119	5-14/0131	5-14/0132	5-14/0133	5-14/0125	5-14/0127	5-14/0129	5-14/0139	5-14/0140		5-14/0136	5-14/0137	5-14/0138
off/stbd	off/port	off/port	off/port	off/stbd	off/stbd	off/stbd	off/port	off/port	off/port	off/stbd	off/stbd	off/stbd	off/port	off/port	off/port
C3 100	C1 100	C2 100	C3.100	C1.91	C2.91	C3 91	C1.91	C2.91	C3.91	0 8 8	C2.80	C3 80	C1.80	C2.80	3.80