Algoritmos y Estructuras de Datos I

Segundo cuatrimestre de 2017

Departamento de Computación - FCEyN - UBA

Especificación - clase 2

Lógica proposicional - tipos básicos

1

Semántica clásica

- ► Dos valores de verdad posibles:
 - 1. verdadero (o bien "true", "T" o "V")
 - 2. falso (o bien "false" o "F")
- ► El valor de verdad de una fórmula se obtiene a partir del valor de verdad de sus subfórmulas:
 - true se interpreta como verdadero.
 - ▶ false se interpreta como falso.
 - $ightharpoonup \neg A$ se interpreta como "no", se llama negación
 - ► ∧ se interpreta como "y", se llama conjunción
 - ▶ ∨ se interpreta como "o" (no exclusivo), se llama disyunción
 - ightharpoonup ightharpoonup se interpreta como "si... entonces", se llama implicación
 - → se interpreta como "si y solo si", se llama doble implicación
 o equivalencia

Lógica proposicional - sintaxis

► Símbolos:

true, false,
$$\neg$$
, \wedge , \vee , \rightarrow , \leftrightarrow , (,)

► Variables proposicionales (infinitas)

$$p, q, r, \dots$$

- ► Fórmulas
 - 1. true y false son fórmulas
 - 2. Cualquier variable proposicional es una fórmula
 - 3. Si A es una fórmula, $\neg A$ es una fórmula
 - 4. Si A_1, A_2, \dots, A_n son fórmulas, $(A_1 \wedge A_2 \wedge \dots \wedge A_n)$ es una fórmula
 - 5. Si A_1, A_2, \dots, A_n son fórmulas, $(A_1 \lor A_2 \lor \dots \lor A_n)$ es una fórmula
 - 6. Si A y B son fórmulas, $(A \rightarrow B)$ es una fórmula
 - 7. Si A y B son fórmulas, $(A \leftrightarrow B)$ es una fórmula

2

Semántica clásica

Conociendo el valor de las variables proposicionales de una fórmula, podemos calcular el valor de verdad de la fórmula:

р	$\neg p$
Т	F
F	Т

р	q	$(p \wedge q)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

р	q	$(p \lor q)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

р	q	(p ightarrow q)
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

р	q	$(p \leftrightarrow q)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Ejemplo: tabla de verdad para $((p \land q) ightarrow r)$

p	q	r	$(p \land q)$	$((p \land q) \rightarrow r)$
Т	Т	Т	Т	Т
Т	Т	F	Т	F
Т	F	Т	F	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	Т	F	F	Т
F	F	Т	F	Т
F	F	F	F	Т

5

Tautologías, contradicciones y contingencias

▶ Una fórmula es una tautología si siempre toma el valor *T* para valores definidos de sus variables proposicionales.

Por ejemplo, $((p \land q) \rightarrow p)$ es tautología:

р	q	$(p \wedge q)$	$((p \land q) \to p)$
Т	Т	T	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	Т

▶ Una fórmula es una contradicción si siempre toma el valor F para valores definidos de sus variables proposicionales.

Por ejemplo, $(p \land \neg p)$ es contradicción:

р	$\neg p$	$(p \land \neg p)$
Т	F	F
F	Т	F

► Una fórmula es una contingencia cuando no es ni tautología ni contradicción.

Dos conectivos bastan

- ► ¬ y ∨
 - \blacktriangleright $(A \land B)$ es $\neg(\neg A \lor \neg B)$
 - $(A \to B) \text{ es } (\neg A \lor B)$
 - ▶ true es $(A \lor \neg A)$
 - ► false es ¬true
- ► ¬ y ∧
 - \blacktriangleright $(A \lor B)$ es $\neg(\neg A \land \neg B)$
 - $(A \to B) \text{ es } \neg (A \land \neg B)$
 - false es $(A \land \neg A)$
 - ► true es ¬false
- ▶ ¬ y →
 - $(A \lor B) \text{ es } (\neg A \to B)$
 - $(A \wedge B) \text{ es } \neg (A \rightarrow \neg B)$
 - ▶ true es $(A \rightarrow A)$
 - ► false es ¬true

6

Equivalencias entre fórmulas

- ► Teorema. Las siguientes son tautologías.
 - 1. Idempotencia

$$(p \wedge p) \leftrightarrow p$$

$$(p \lor p) \leftrightarrow p$$

2. Asociatividad

$$(p \wedge q) \wedge r \leftrightarrow p \wedge (q \wedge r)$$

$$(p \lor q) \lor r \leftrightarrow p \lor (q \lor r)$$

3. Conmutatividad

$$(p \land q) \leftrightarrow (q \land p)$$

$$(p \lor q) \leftrightarrow (q \lor p)$$

4. Distributividad

$$p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r)$$

$$p \vee (q \wedge r) \leftrightarrow (p \vee q) \wedge (p \vee r)$$

5. Reglas de De Morgan
$$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$$

$$\neg(p \lor q) \leftrightarrow \neg p \land \neg q$$

Relación de fuerza

- ▶ Decimos que A es más fuerte que B cuando $(A \rightarrow B)$ es tautología.
- ► También decimos que A fuerza a B o que B es más débil que A.
- ► Por ejemplo,
 - 1. $\xi(p \land q)$ es más fuerte que p? sí
 - 2. $\downarrow(p \lor q)$ es más fuerte que p? no
 - 3. $\not p$ es más fuerte que $(q \to p)$? sí Pero notemos que si q está indefinido y p es verdadero entonces $(q \to p)$ está indefinido.
 - 4. ¿p es más fuerte que q? no
 - 5. ip es más fuerte que p? sí
 - 6. ¿hay una fórmula más fuerte que todas? false!
 - 7. ¿hay una fórmula más débil que todas? true

9

Expresión bien definida

- ► Toda expresión está bien definida en un estado si todas las proposiciones valen *T* o *F*.
- ► Sin embargo, existe la posibilidad de que haya expresiones que no estén bien definidas.
 - Por ejemplo, la expresión x/y no está bien definida si y=0.
- ► Por esta razón, necesitamos una lógica que nos permita decir que está bien definida la siguiente expresión
 - ▶ $y = 0 \lor x/y = 5$
- ► Para esto, introducimos tres valores de verdad:
 - 1. verdadero (T)
 - 2. falso (F)
 - 3. indefinido (\perp)

10

Semántica trivaluada (secuencial)

Se llama secuencial porque ...

- ► los términos se evalúan de izquierda a derecha,
- ► la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

Introducimos los operadores lógicos \land_L (y-luego, o *conditional and*, o **cand**), \lor_L (o-luego o *conditional or*, o **cor**).

р	q	$(p \wedge_L q)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F
Т	T	
F	1	F
T	Т	
T	F	1
\perp	\perp	

р	q	$(p \vee_L q)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
Т	\perp	Т
F	\perp	\perp
	Т	\perp
	F	
\perp	\dashv	\perp

Semántica trivaluada (secuencial)

¿Cuál es la tabla de verdad de \rightarrow_L ?

р	q	$(p \rightarrow_L q)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т
Т	T	
F	T	Т
\perp	Т	
T	F	1
T	T	1

Tipos de datos

- ► Un **tipo de datos** es un conjunto de valores (el conjunto base del tipo) provisto de una serie de operaciones que involucran a esos valores.
- ► Para hablar de un elemento de un tipo *T* en nuestro lenguaje, escribimos un término o expresión
 - ▶ Variable de tipo *T* (ejemplos: *x*, *y*, *z*, etc)
 - ▶ Constante de tipo T (ejemplos: 1, -1, $\frac{1}{5}$, 'a', etc)
 - ► Función (operación) aplicada a otros términos (del tipo *T* o de otro tipo)
- ► Todos los tipos tienen un elemento distinguido: ⊥ o Indef

13

Tipo \mathbb{Z} (números enteros)

- ► Su conjunto base son los números enteros.
- \blacktriangleright Constantes: 0 ; 1 ; -1 ; 2 ; -2 ; ...
- ► Operaciones aritméticas:
 - ightharpoonup a + b (suma); a b (resta); abs(a) (valor absoluto)
 - ► a * b (multiplicación); a div b (división entera);
 - ▶ $a \mod b$ (resto de dividir $a \mod b$), $a^b \mod a$ (potencia)
 - ightharpoonup a / b (división, da un valor de $\mathbb R$)
- ightharpoonup Comparaciones de términos de tipo ${\Bbb Z}$:
 - ► *a* < *b* (menor)
 - $\rightarrow a \le b$ o $a \le b$ (menor o igual)
 - $\rightarrow a > b \text{ (mayor)}$
 - ▶ $a \ge b$ o $a \ge b$ (mayor o igual)
 - $ightharpoonup a = b ext{ (iguales)}$
 - ightharpoonup a
 eq b (distintos)

Tipos de datos de nuestro lenguaje de especificación

- ▶ Básicos
 - ► Enteros (ℤ)
 - ► Reales (ℝ)
 - ► Booleanos (Bool)
 - ► Caracteres (Char)
- ► Fnumerados
- ► Uplas
- ► Secuencias

1

Tipo \mathbb{R} (números reales)

- ► Su conjunto base son los números reales.
- ▶ Constantes: 0 ; 1 ; -7 ; 81 ; 7,4552 ; π ...
- ► Operaciones aritméticas:
 - ► Suma, resta y producto (pero no div y mod)
 - ▶ a/b (división)
 - $\triangleright \log_b(a)$ (logaritmo)
 - ► Funciones trigonométricas
- ightharpoonup Los mismos operadores de comparación que para \mathbb{Z} :
 - ► *a* < *b* (menor)
 - $\rightarrow a \le b$ o $a \le b$ (menor o igual)
 - a > b (mayor)
 - ▶ $a \ge b$ o $a \ge b$ (mayor o igual)
 - $ightharpoonup a = b ext{ (iguales)}$
 - ▶ $a \neq b$ (distintos)

 $\mathbb{Z} \subseteq \mathbb{R}$

- ightharpoonup es un subconjunto de ${\mathbb R}$
- ► Conversión de entero a real:
 - ▶ Si $x \in \mathbb{Z}$, entonces $x \in \mathbb{R}$
- ► Conversión de real a entero (truncamiento):
 - ▶ |a| o floor(a)
 - ightharpoonup Ejemplo floor(7,57) = 7
- ► Conversión de real a entero (redondeo):
 - ► round(a)
 - ightharpoonup Ejemplo round(7,57) = 8

17

Tipo Bool (valores de verdad)

- $ightharpoonup \neg A$ se puede escribir no(A)
- ▶ $(A \land B)$ se puede escribir (A && B)
- ▶ $(A \lor B)$ se puede escribir $(A \mid \mid B)$
- ▶ $(A \rightarrow B)$ se puede escribir $(A \rightarrow B)$
- ▶ $(A \leftrightarrow B)$ se puede escribir $(A \leftarrow B)$
- ► $A \neq B$ se puese escribir $A \neq B$. También se puede escribir $\neg(A = B)$

Tipo Bool (valor de verdad)

- ▶ Su conjunto base es $\mathbb{B} = \{$ true, false $\}$.
- ▶ Conectivos lógicos: \neg , \land , \lor , \rightarrow , \leftrightarrow con la semántica bi-valuada estándar.
- ► Comparación de términos de tipo Bool:
 - ► a = b
 - ▶ a ≠ b

18

Ejercicio

¿Cuáles de las siguientes son una especificación adecuada para el problema de decidir si un número entero es positivo?

```
proc esPositivo (in x : \mathbb{Z}, out r : Bool) {

Pre\{True\}

1. Post\{x > 0 \land r = true\}

2. Post\{(x > 0 \land r = true) \land (x <= 0 \land r = false)\}

3. Post\{(x > 0 \land r = true) \lor (x <= 0 \land r = false)\}

4. Post\{x \le 0 \implies r = true\}

5. Post\{x > 0 \implies r = true\}

6. Post\{(x > 0 \implies r = true) \lor (x <= 0 \implies r = false)\}

7. Post\{x > 0 \iff r = true\}

8. Post\{x <= 0 \iff r = false\}
```

Tipo Char (caracteres)

- ► Sus elementos son las letras, dígitos y símbolos.
- ► Constantes: 'a', 'b', 'c',..., 'z',..., 'A', 'B', 'C',..., 'Z',..., '0', '1', '2',..., '9' (en el orden dado por el estándar ASCII).
- ► Función ord, que numera los caracteres, con las siguientes propiedades:
 - ord('a') + 1 = ord('b')
 ord('A') + 1 = ord('B')
 - ightharpoonup ord('1') + 1 = ord('2')
- Función char, de modo tal que char(ord(c)) = c.
- ▶ Las comparaciones entre caracteres son comparaciones entre sus órdenes, de modo tal que a < b es equivalente a ord(a) < ord(b).

21

Ejemplo de tipo enumerado

Definimos el tipo Día así:

```
enum Día {
    LUN, MAR, MIER, JUE, VIE, SAB, DOM
}
```

- ► Valen:
 - ightharpoonup ord(LUN) = 0
 - ► Día(2) = MIE
 - ▶ JUE < VIE

Tipos enumerados

► Cantidad finita de elementos. Cada uno, denotado por una constante.

```
enum Nombre { constantes }
```

- ► Nombre (del tipo): tiene que ser nuevo.
- ► constantes: nombres nuevos separados por comas.
- ► Convención: todos con mayúsculas.
- ord(a) da la posición del elemento en la definición (empezando de 0).
- ► Inversa: El nombre del tipo funciona como inversa de ord.

22

Tipo upla (o tupla)

- ▶ Uplas, de dos o más elementos, cada uno de cualquier tipo.
- ► $T_0 \times T_1 \times \cdots \times T_k$: Tipo de las k-uplas de elementos de tipos T_0 , T_1 , ... T_k , respectivamente, donde k es fijo.
- ► Ejemplos:
 - $\blacktriangleright \ \mathbb{Z} \times \mathbb{Z}$ son los pares ordenados de enteros.
 - $ightharpoonup \mathbb{Z} imes \mathsf{Char} imes \mathsf{Bool}$ son las triplas ordenadas con un entero, luego un carácter y luego un valor booleano.
- ▶ nésimo: $(a_0, ..., a_k)_m$ es el valor a_m en caso de que $0 \le m \le k$. Si no, está indefinido.
- ► Ejemplos:
 - $(7,5)_0 = 7$
 - $('a', Domingo, 78)_2 = 78$

Términos

- ► Simples (variables y constantes del tipo).
- ► Complejos (combinaciones de funciones aplicadas a funciones, constantes y variables).

Ejemplos de términos de tipo ${\mathbb Z}$

- **▶** 0+1
- $((3+4)*7)^2-1$
- ▶ 2*if (1+1=2) then 1 else 0 fi
- ► 1 + ord('A')
- ightharpoonup con x variable de tipo \mathbb{Z} ; y de tipo \mathbb{R} ; z de tipo Bool
 - 2 * x + 1
 - (if $(y^2 > \pi)$ then 1 else 0 fi) + x
 - ► (x mod 3) * if (z) then 1 else 0 fi

25

Semántica de los términos

Con x e y variables de tipo \mathbb{Z} , decidir el valor de verdad de los siguientes términos cuando x=0 e y=5:

- ► *y* ≠ 5
- ► $x/(y-5) \ge 0$
- ▶ $y = 5 \vee_L x/(y-5) \ge 0$
- ► $x/(y-5) \ge 0 \lor_L y = 5$
- $\triangleright y \neq 5 \land_L x/(y-5) \ge 0$
- $\blacktriangleright x/(y-5) \ge 0 \land_L y \ne 5$
- ► $(y \neq 5 \land_L x/(y-5) \ge 0) \lor_L x = 0$
- ▶ $y + abs(x/(y 5)) \ge 0$

Semántica de los términos

- ▶ Vimos que los términos representan elementos de los tipos
- ► Los términos tienen valor indefinido cuando no se puede hacer alguna operación
 - ▶ 1 div 0
 - $(-1)^{1/2}$
- ► Las operaciones son estrictas
 - Si uno de sus argumentos es indefinido, el resultado también está indefinido
 - Ejemplos:
 - $0*(-1)^{1/2}$ es indefinido (* es estricto)
 - ► 0^{1/0} es indefinido (pot es estricto)
 - $((1+1=2) \lor_L (0>1/0))$ es verdadero $(\lor_L$ no es estricto)
 - lacktriangle Las comparaciones con ot son indefinidas
 - ▶ En particular, si x está indefinido, x = x es indefinido (no es verdadero)

26

Funciones y predicados auxiliares

- ► Asignan un nombre a una expresión.
- ► Facilitan la lectura y la escritura de especificaciones.
- ► Modularizan la especificación.

```
fun f(argumentos) : tipo = expresion;
pred p(argumentos){formula}
```

- ▶ *f* es el nombre de la función, que puede usarse en el resto de la especificación en lugar de la expresión *e*.
- ▶ Los argumentos son opcionales y se reemplazan en e cada vez que se usa f.
- ▶ tipo es el tipo del resultado de la función (el tipo de e).
- ► Ejemplo:

```
fun suc(x : \mathbb{Z}) : \mathbb{Z} = x + 1;
```

Ejemplos de funciones auxiliares

```
    fun e(): R = 2,7182;
    fun inverso(x: R): R = 1/x;
    pred par(n: Z) { (n mod 2) = 0 }
    pred impar(n: Z) { ¬ (par(n)) }
    pred esFinde(d: Día){d = SAB ∨ d = DOM}
    Otra forma:
    pred esFinde2(d: Día){d > VIE}
```

20

Definir funciones auxiliares versus especificar problemas

Definimos funciones auxiliares

- ► Expresiones del lenguaje, que se usan dentro de las especificaciones como reemplazos sintácticos. Son de cualquier tipo.
- ► Dado que es un reemplazo sintáctico, no se permiten definiciones recursivas!

Especificamos problemas

- ► Condiciones (el contrato) que debería cumplir un algoritmo para ser solución del problema.
- ► En una especificación dando la precondición y la postcondición con predicados de primer orden.
- ▶ No podemos usar otros problemas en la especificación (dado que no pertenecen a la lógica de primer orden). Sí podemos usar predicados y funciones auxiliares ya definidos.

Expresiones condicionales

Función que elige entre dos elementos del mismo tipo, según una condición booleana (guarda)

- ► si la guarda es verdadera, elige el primero
- ► si no, elige el segundo

Por ejemplo

▶ expresión que devuelve el máximo entre dos elementos:

```
fun \max(a, b : \mathbb{Z}) : \mathbb{Z} = \text{IfThenElseFi}\langle \mathbb{Z} \rangle (a > b, a, b); cuando los argumentos se deducen del contexto, se puede escribir directamente fun \max(a, b : \mathbb{Z}) : \mathbb{Z} = \text{IfThenElseFi}(a > b, a, b); o bien fun \max(a, b : \mathbb{Z}) : \mathbb{Z} = \text{if } a > b \text{ then } a \text{ else } b \text{ fi};
```

• expresión que dado x devuelve 1/x si $x \neq 0$ y 0 sino

```
fun unoSobre(x : \mathbb{R}) : \mathbb{R} = \underbrace{\text{if } x \neq 0 \text{ then } 1/x \text{ else } 0 \text{ fi}}_{\text{no se indefine cuando } x = 0}
```

30

Especificar problemas

- **Ejemplo:** Especificar el problema de retornar el i-ésimo dígito de la representación decimal del número π .
- ▶ proc piesimo(in $i : \mathbb{Z}$, out result : \mathbb{Z}) {
 Pre $\{i > 0\}$ Post $\{result = \lfloor \pi * 10^i \rfloor \mod 10\}$ }

Cuantificadores

El lenguaje de especificación provee formas de predicar sobre los elementos de un tipo de datos

- ▶ $(\forall x : T) P(x)$: Término de tipo Bool. Afirma que todos los elementos de tipo T cumplen la propiedad P.
 - ▶ Se lee "Para todo x de tipo T se cumple P(x)"
- ▶ $(\exists x : T) P(x)$: Término de tipo Bool. Afirma que al menos un elemento de tipo T cumple la propiedad P.
 - ▶ Se lee "Existe al menos un x de tipo T que cumple P(x)"

En la expresión $(\forall x : T) P(x)$, la variable x está ligada al cuantificador. Una variable es libre cuando no está ligada a ningún cuantificador.

33

Operando con cuantificadores

► **Ejemplo:** Todos los enteros entre 1 y 10 son pares:

 $(\forall n : \mathbb{Z})(1 \le n \le 10 \longrightarrow n \mod 2 = 0).$

▶ **Ejemplo:** Existe un entero entre 1 y 10 que es par:

 $(\exists n : \mathbb{Z})(1 \leq n \leq 10 \land n \mod 2 = 0).$

▶ En general, si queremos decir que todos los enteros x que cumplen P(x) también cumplen Q(x), decimos:

 $(\forall x : \mathbb{Z})(P(x) \to Q(x)).$

▶ Para decir que existe un entero que cumple P(x) y que también cumple Q(x), decimos:

 $(\exists x : \mathbb{Z})(P(x) \wedge Q(x)).$

Ejemplo

- ► **Ejemplo:** Crear un predicado esPrimo que sea **Verdadero** si y sólo si el número *n* es un número primo.
- ▶ pred esPrimo $(n : \mathbb{Z})$ { $n > 1 \land (\forall n' : \mathbb{Z})(1 < n' < n \rightarrow n \mod n' \neq 0)$ }
- ► **Ejemplo:** Especificar el problema de, dado un número mayor a 1, indicar si el número es un número primo.
- ▶ proc $primo(in n : \mathbb{Z}, out result : Bool)$ {
 Pre $\{n > 1\}$ Post $\{result = esPrimo(n)\}$ }

34

Operando con cuantificadores

► La negación de un cuantificador universal es un cuantificador existencial, y viceversa:

```
\neg(\forall n: \mathbb{Z})P(n) \leftrightarrow (\exists n: \mathbb{Z})\neg P(n).\neg(\exists n: \mathbb{Z})P(n) \leftrightarrow (\forall n: \mathbb{Z})\neg P(n).
```

► Un cuantificador universal generaliza la conjunción:

```
\begin{array}{l} (\forall n: \mathbb{Z}) \big( a \leq n \leq b \rightarrow P(n) \big) & \wedge & P(b+1) \\ \leftrightarrow & (\forall n: \mathbb{Z}) \big( a \leq n \leq b+1 \rightarrow P(n) \big). \end{array}
```

▶ Un cuantificador existencial generaliza la disyunción:

```
(\exists n : \mathbb{Z}) (a \le n \le b \land P(n)) \lor P(b+1)
 \leftrightarrow (\exists n : \mathbb{Z}) (a \le n \le b+1 \land P(n)).
```

Especificar problemas

- ► La conjetura de Goldbach dice que todo entero par mayor que 2 puede ser expresado como la suma de dos números primos.
- ► Ejemplo: Especificar un procedimiento que indique si esta conjetura es verdadera.

```
▶ proc goldbach(out result : Bool) {
    Pre {True}
    Post {result = true \leftrightarrow (\forall n : \mathbb{Z})(n > 2 \land n \mod 2 = 0 \rightarrow (\exists p : \mathbb{Z})(\exists q : \mathbb{Z})(esPrimo(p) \land esPrimo(q) \land n = p + q))}
}
```

► Observar que estamos especificando el problema. Es posible que en este punto no sepamos cómo vamos a resolver este problema (si es que se puede resolver!), y es bueno no pensar en eso al momento de especificar.

37

Repaso: Pasaje de parámetros

in. out. inout

- ► Parámetros de entrada (in): Parámetros con valores que se copian hacia el procedimiento.
- ► Parámetros de salida (out): Parámetros para que el procedimiento informe resultados al código llamador.
- ► Parámetros de entrada-salida (inout): Parámetros de entrada y salida.

Especificar problemas

► **Ejemplo:** Especificar un procedimiento que calcule el máximo común divisor (mcd) entre dos números positivos.

```
▶ proc mcd(in n: \mathbb{Z}, in m: \mathbb{Z}, out result: \mathbb{Z}) {
    Pre \{n \geq 1 \land m \geq 1\}
    Post \{n \bmod result = 0 \land m \bmod result = 0 \land \neg (\exists p: \mathbb{Z})(p > result \land n \bmod p = 0 \land m \bmod p = 0)\}
}
```

► Observar que no damos una fórmula que especifica el valor de retorno, sino que solamente damos las propiedades que debe cumplir!

38

Especificar problemas

- ► **Ejemplo:** Especificar un procedimiento que incremente en una unidad una variable de tipo Z que representa un contador.
- ▶ proc $inc(inout n : \mathbb{Z})$ {

 Pre $\{n = n_0\}$ Post $\{n = n_0 + 1\}$ }
- ► La variable *n*₀ es una metavariable, que representa el valor inicial de la variable *n*, y que usamos en la postcondición para relacionar el valor de salida de *n* con su valor inicial.

Especificar problemas

- ▶ **Ejemplo:** Especificar un procedimiento que decremente en una unidad una variable de tipo ℤ que representa un contador. Para poder aplicar esta operación el contador tiene que ser mayor que 0.
- ▶ proc $dec(\text{inout } n : \mathbb{Z})$ {

 Pre $\{n = n_0 \land n \ge 1\}$ Post $\{n = n_0 1\}$ }

41

Especificar problemas

- ► Continuación: Modificar la solución anterior para que el resultado sean dos números coprimos entre sí.
- ▶ proc suma(in a, b, c, d : \mathbb{Z} , out e, f : \mathbb{Z}) {
 Pre {coprimos(a, b) \land coprimos(c, d) \land b \neq 0 \land d \neq 0}
 Post { $\frac{e}{f} = \frac{a}{b} + \frac{c}{d} \land \text{coprimos}(e, f)$ }

Especificar problemas

- ▶ **Ejemplo:** Dados cuatro enteros a, b, c, d tales que
 - ▶ a y b representan un número fraccionario $\frac{a}{b}$ (con $b \neq 0$) y son coprimos entre sí, y
 - c y d representan el número fraccionario $\frac{c}{d}$ (con $d \neq 0$)y son coprimos entre sí,

escribir la especificación de un procedimiento que compute $\frac{a}{b}+\frac{c}{d}$ y coloque el resultado en dos números enteros.

```
▶ proc suma(in a, b, c, d : \mathbb{Z}, out e, f : \mathbb{Z}) {
Pre {coprimos(a, b) \land coprimos(c, d) \land b \neq 0 \land d \neq 0}
Post \{\frac{e}{f} = \frac{a}{b} + \frac{c}{d}\}
}
```

```
▶ pred coprimos(n, m : \mathbb{Z}) {
\neg(\exists i : \mathbb{Z})(i \ge 2 \land n \mod i = 0 \land m \mod i = 0)
}
```

4

Especificando un semáforo

- ► **Ejemplo:** Representamos con tres valores de tipo *Bool* el estado de la luz verde, amarilla y roja de un semáforo.
- ► Escribir el procedimiento que inicializa el semáforo con la luz roja y el resto de las luces apagadas.

```
proc iniciar(out v, a, r : Bool) {
    Pre {True}
    Post {r = true ∧ a = false ∧ v = false}
}
```

Especificando un semáforo

► Continuación: Especificar un procedimiento que avance el estado de las luces de un semáforo.

- ► Podemos especificar un predicado para representar cada estado válido del semáforo:
- ▶ pred esRojo(v, a, r: Bool) { v =false $\land a =$ false $\land r =$ true }
- ▶ pred esRojoAmarillo(v, a, r: Bool) {
 v = false ∧ a = true ∧ r = true }
- ▶ pred esVerde(v, a, r: Bool){ $v = \text{true} \land a = \text{false} \land r = \text{false}$ }
- ▶ pred esAmarillo(v, a, r: Bool){ v =false $\land a =$ true $\land r =$ false }

45

Especificando un semáforo

► Continuación: Especificar un procedimiento que avance el estado de las luces de un semáforo.

- ► Podemos especificar un predicado para representar que el semáforo está en un estado válido:
- ▶ pred esValido(v, a, r: Bool) {
 esRojo(v, a, r)
 \lor esRojoAmarillo(v, a, r)
 \lor esVerde(v, a, r)
 \lor esAmarillo(v, a, r)
 }

Especificando un semáforo

► Continuación: Ahora podemos escribir una nueva versión de iniciar usando los predicados definidos anteriormente.


```
▶ proc iniciar(out v, a, r : Bool) {
    Pre {True}
    Post {esRojo(v, a, r)}
}
```

46

Especificando un semáforo

► Ahora especificamos el problema de avanzar:

▶ proc avanzar(inout v, a, r : Bool) {

```
Pre {  esValido(v,a,r) \\  \land v = v_0 \land r = r_0 \land a = a_0  } Post {  (esRojo(v_0,a_0,r_0) \rightarrow esRojoAmarillo(v,a,r)) \\   \land (esRojoAmarillo(v_0,a_0,r_0) \rightarrow esVerde(v,a,r) \\   \land (esVerde(v_0,a_0,r_0) \rightarrow esAmarillo(v,a,r)) \\   \land (esAmarillo(v_0,a_0,r_0) \rightarrow esRojo(v,a,r)) \}
```

Bibliografía		
 David Gries - The Science of Programming Chapter 1 - Propositions (Fórmulas, Tautologías, etc.) Chapter 2 - Reasoning using Equivalence Transformations (Propiedades, De Morgan, etc.) 		
49		