More techniques

Lasso and Ridge Regression Bagging and Boosting

We want to move the green line closer to the blue line but only with access to the green dots (training data)

That is, we want to reduce the overfitting to the training data

We want to REDUCE variance

We want to INCREASE bias

sale.price = gross.square.feet*m+c

sale.price = gross.square.feet*m+c

sale.price = gross.square.feet*m+c

$$sale.price = gross.square.feet*m+c$$

- Linear Regression
 - Minimize "errors"
 - Minimize RMSE equivalent to minimize "sum of the squared residuals"

Ridge Regression

- Minimize "sum of the squared residuals + penalty"
- Minimize "sum of the squared residuals + λ * m^2 "

Ridge Regression

- Minimize "sum of the squared residuals + penalty"
- Minimize "sum of the squared residuals + λ * m^2 "
- Penalty gets smaller as m^2 gets smaller, i.e. <u>penalty is lower when slope</u> <u>shrinks towards zero</u> that is what we want!

Why?

- Why do we want to shrink slope towards zero
- When slope is large <u>small change in **x** creates large changes in **y**</u>
 - High variance sign of overfit
- Shrinking slope implies
 - small change in x creates small(er) changes in y
 - Lower variance cost of added bias

What about the λ ?

- λ (lambda) can be any value from 0 -> infinity
- Larger λ means larger penalty -> slope closer to 0
- Smaller λ means lower penalty -> slope closer to normal linear regression
- If λ = 0, Ridge regression = linear regression !!!!!!!

How to decide λ? Hyper parameter tuning!

```
592   set.seed(345)
593   ridge_spec <- linear_reg(penalty = tune(), mixture = 0) %>%
594   set_engine("glmnet")
595
```

```
> ridge_spec
Linear Regression Model Specification (regression)

Main Arguments:
   penalty = tune()
   mixture = 0

Computational engine: glmnet
```

```
592  set.seed(345)
593  ridge_spec <- linear_reg(penalty = tune(), mixture = 0) %>%
594    set_engine("glmnet")
595
596  # Create cross validation folds
597  cv_folds <- vfold_cv(train, v = 5)</pre>
```

```
set.seed(345)
ridge_spec <- linear_reg(penalty = tune(), mixture = 0) %>%
set_engine("glmnet")

595
596  # Create cross validation folds
597  cv_folds <- vfold_cv(train, v = 5)

598
599  # Set up grid of lambda values to try
lambda_grid <- grid_regular(penalty(range = c(-5, 5)), levels = 100)</pre>
```

```
> lambda_grid%>%
       filter(row_number() %% 5 == 1)
# A tibble: 20 × 1
           penalty
              <dbl>
        0.000<u>01</u>
        0.000<u>032</u>0
        0.000102
        0.000327
        0.001<u>05</u>
        0.003<u>35</u>
        0.0107
        0.0343
        0.110
 9
        0.351
10
11
        1.12
12
        3.59
13
       11.5
       36.8
14
      118.
     376.
17 <u>1</u>205.
18 <u>3</u>854.
19 <u>12</u>328.
20 <u>39</u>442.
```

```
penalty(range = c(-10, 0), trans = transform_log10())
```

Arguments

range A two-element vector holding the *defaults* for the smallest and largest possible values, respectively. If a transformation is specified, these values should be in the *transformed units*.

trans A trans object from the scales package, such as scales::transform_log10() or scales::transform_reciprocal(). If not provided, the default is used which matches the units used in range. If no transformation, NULL.

```
592 set.seed(345)
     ridge_spec <- linear_reg(penalty = tune(), mixture = 0) %>%
         set_engine("glmnet")
594
595
596 # Create cross validation folds
     cv_folds <- vfold_cv(train, v = 5)</pre>
598
    # Set up grid of lambda values to try
599
     lambda_grid <- grid_regular(penalty(range = c(-5, 5)), levels = 100)
601
    train <- train %>% mutate(dummy = 1)
602
     ridge_recipe <- recipe(sale.price ~ gross.square.feet + dummy, data = train)
604
```

```
set.seed(345)
     ridge_spec <- linear_reg(penalty = tune(), mixture = 0) %>%
594
         set_engine("glmnet")
595
     # Create cross validation folds
596
     cv_folds <- vfold_cv(train, v = 5)</pre>
598
599
     # Set up grid of lambda values to try
     lambda_grid <- grid_regular(penalty(range = c(-5, 5)), levels = 100)
601
602
     train <- train %>% mutate(dummy = 1)
     ridge_recipe <- recipe(sale.price ~ gross.square.feet + dummy, data = train)</pre>
604
     ridge_wf <- workflow() %>%
605
       add_model(ridge_spec) %>%
606
607
       add_recipe(ridge_recipe)
602
```



```
set.seed(345)
592
     ridge_spec <- linear_reg(penalty = tune(), mixture = 0) %>%
594
         set_engine("glmnet")
595
596
     # Create cross validation folds
     cv_folds <- vfold_cv(train, v = 5)</pre>
598
599
     # Set up grid of lambda values to try
     lambda_grid <- grid_regular(penalty(range = c(-5, 5)), levels = 100)
601
602
     train <- train %>% mutate(dummy = 1)
     ridge_recipe <- recipe(sale.price ~ gross.square.feet + dummy, data = train)
604
     ridge_wf <- workflow() %>%
606
       add_model(ridge_spec) %>%
       add_recipe(ridge_recipe)
607
608
     # Tune the model
     tune_results <- tune_grid(</pre>
611
         ridge_wf,
         resamples = cv_folds,
612
613
         grid = lambda_grid
614 )
615
     # Find best lambda
     best_lambda <- select_best(tune_results, metric = "rmse")</pre>
```

```
set.seed(345)
592
     ridge_spec <- linear_reg(penalty = tune(), mixture = 0) %>%
594
         set_engine("glmnet")
595
596
     # Create cross validation folds
     cv_folds <- vfold_cv(train, v = 5)</pre>
598
     # Set up grid of lambda values to try
599
     lambda_grid <- grid_regular(penalty(range = c(-5, 5)), levels = 100)
601
602
     train <- train %>% mutate(dummy = 1)
     ridge_recipe <- recipe(sale.price ~ gross.square.feet + dummy, data = train)
604
     ridge_wf <- workflow() %>%
       add_model(ridge_spec) %>%
606
607
       add_recipe(ridge_recipe)
608
     # Tune the model
     tune_results <- tune_grid(</pre>
611
         ridge_wf,
         resamples = cv_folds,
612
613
         grid = lambda_grid
614 )
615
     # Find best lambda
     best_lambda <- select_best(tune_results, metric = "rmse")</pre>
618
     # Finalize workflow with best lambda
     final_ridge_workflow <- ridge_wf %>%
621
         finalize_workflow(best_lambda)
622
    # Fit final model
624 ridge_fit <- final_ridge_workflow %>%
625
         fit(data = train)
626
627
     # Look at results
628
     ridge_fit %>%
         tidy()
629
```

```
set.seed(345)
592
     ridge_spec <- linear_reg(penalty = tune(), mixture = 0) %>%
594
         set_engine("glmnet")
595
     # Create cross validation folds
     cv_folds <- vfold_cv(train, v = 5)</pre>
598
     # Set up grid of lambda values to try
     lambda\_grid \leftarrow grid\_regular(penalty(range = c(-5, 5)), levels = 100)
601
602
     train <- train %>% mutate(dummy = 1)
     ridge_recipe <- recipe(sale.price ~ gross.square.feet + dummy, data = train)
604
     ridge_wf <- workflow() %>%
       add_model(ridge_spec) %>%
606
607
       add_recipe(ridge_recipe)
                                                                                   > final_ridge_workflow
608
                                                                                   — Workflow ———
     # Tune the model
                                                                                   Preprocessor: Recipe
     tune_results <- tune_grid(</pre>
                                                                                   Model: linear_reg()
611
         ridge_wf,
        resamples = cv_folds,
612
                                                                                   — Preprocessor
613
         grid = lambda_grid
                                                                                   0 Recipe Steps
614
615
                                                                                   -- Model
     # Find best lambda
                                                                                   Linear Regression Model Specification (regression)
     best_lambda <- select_best(tune_results, metric = "rmse")</pre>
618
                                                                                   Main Arguments:
     # Finalize workflow with best lambda
                                                                                     penalty = 1e+05
     final_ridge_workflow <- ridge_wf %>%
                                                                                     mixture = 0
         finalize_workflow(best_lambda)
621
C22
                                                                                   Computational engine: glmnet
```

```
set.seed(345)
592
     ridge_spec <- linear_reg(penalty = tune(), mixture = 0) %>%
594
         set_engine("glmnet")
595
596
     # Create cross validation folds
     cv_folds <- vfold_cv(train, v = 5)</pre>
598
599
     # Set up grid of lambda values to try
     lambda_grid <- grid_regular(penalty(range = c(-5, 5)), levels = 100)
601
602
     train <- train %>% mutate(dummy = 1)
     ridge_recipe <- recipe(sale.price ~ gross.square.feet + dummy, data = train)
604
     ridge_wf <- workflow() %>%
606
       add_model(ridge_spec) %>%
607
       add_recipe(ridge_recipe)
608
     # Tune the model
     tune_results <- tune_grid(</pre>
611
         ridge_wf,
         resamples = cv_folds,
612
613
         grid = lambda_grid
614 )
615
     # Find best lambda
     best_lambda <- select_best(tune_results, metric = "rmse")</pre>
618
     # Finalize workflow with best lambda
     final_ridge_workflow <- ridge_wf %>%
621
         finalize_workflow(best_lambda)
622
    # Fit final model
624 ridge_fit <- final_ridge_workflow %>%
625
         fit(data = train)
626
627
     # Look at results
628
     ridge_fit %>%
         tidy()
629
```

```
rmse_ridge <- rmse(lm_ridge_test_predictions, truth = sale.price, estimate = ridge_pred)
lmse_ridge <- rmse(lm_ridge_test_predictions, truth = sale.price, estimate = lm_pred)

print(paste("Ridge RMSE:", round(rmse_ridge$.estimate)))

print(paste("LM RMSE:", round(lmse_ridge$.estimate)))

rmse_ridge <- rmse(lm_ridge_test_predictions, truth = sale.price, estimate = lm_pred)

print(paste("Ridge RMSE:", round(rmse_ridge$.estimate)))

rmse_ridge <- rmse(lm_ridge_test_predictions, truth = sale.price, estimate = lm_pred)

rmse_ridge <- rmse(lm_ridge_test_predictions, truth = sale.price, estimate = lm_pred)

rmse_ridge <- rmse(lm_ridge_test_predictions, truth = sale.price, estimate = lm_pred)

rmse_ridge <- rmse(lm_ridge_test_predictions, truth = sale.price, estimate = lm_pred)

rmse_ridge <- rmse(lm_ridge_test_predictions, truth = sale.price, estimate = lm_pred)

rmse_ridge <- rmse(lm_ridge_test_predictions, truth = sale.price, estimate = lm_pred)

rmse_ridge <- rmse(lm_ridge_test_predictions, truth = sale.price, estimate = lm_pred)

rmse_ridge <- rmse(lm_ridge_test_predictions, truth = sale.price, estimate = lm_pred)
```

[1] "LM RMSE: 507865"

Notes

• With multiple predictors the error is $\lambda(m_1^2 + m_2^2 + \ldots + m_n^2)$

Works on Logistic regression as well

- Mixture = 0 -> Ridge regression
- Mixture = 1 -> Lasso regression

Lasso Regression

• Lasso works similarly but uses a different penalty

•
$$\lambda^*(|m_1| + |m_2| + ... + |m_n|)$$

Lasso vs Ridge

- Ridge -
 - "L2 Norm" Euclidean distance
 - Moves closer to 0
 - Use when all variables are relevant but need shrinkage to avoid overfitting.

- Lasso
 - "L1 Norm" Manhattan distance
 - Can set to exactly 0 useful for variable selection
 - Use when you suspect some features are irrelevant for feature selection

Decision Tree

Bagging (Bootstrap AGGregating)

- Uses all available features when building each decision tree. It doesn't perform feature randomization at each split.
- Since all features are considered at each split, the trees in a bagged ensemble tend to be more correlated with each other.

- Difference from random_forest
 - Randomly select a subset of features at each node split in each tree

- Similarity
 - Both use random subsets of data for each tree that is trained

Boosting

- Boosting is also an ensemble technique that builds trees sequentially.
 - We make a simple tree, see where it is weakest, and make that part better
 - Process:
 - Train first tree on original data
 - Give higher weight to misclassified samples
 - Train next tree focusing on harder examples
 - Repeat, creating a chain of complementary trees

