XX

DOSSIER DOCUMENT REPONSE

✓ Ce dossier comporte 15 pages numérotées de 1 à 15 :

Partie A - Technologie de Conception : Pages 1 et 2;

Partie B – Mécanique : Pages 3 à 9 ;

Partie C - Automatique : Pages 10 à 15;

- ✓ Un seul dossier document réponse est fourni au candidat et doit être rendu, en totalité, même sans réponses à la fin de l'épreuve.
- ✓ Le renouvellement de ce dossier est interdit.

PARTIE A - TECHNOLOGIE DE CONCEPTION

A.1- Compléter l'actigramme A-0 de la ligne de production des boules de pétanque :

A.2- Compléter le diagramme FAST partiel suivant :

A.3- ETUDE GRAPHIQUE:

Le dessin ci-dessous représente le support d'articulation du cylindre de vérin qui commande la vé-came du système de transfert. Ce dessin comporte trois vues à compléter :

- la vue de face en coupe A-A;
- la vue de dessus;
- la vue de droite.

PARTIE B: MECANIQUE

B.1- ETUDE GEOMETRIQUE:

B.1.1- Ecrire, dans la base de R_0 , les équations scalaires traduisant la condition de fermeture géométrique de la chaîne S_0 - S_1 - S_2 - S_3 - S_0 . En déduire le nombre de degrés de liberté du système.

 $......\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}$

 $\dots \lambda Cos\alpha - 2eSin\beta = a \dots (1)$

 $\dots \lambda Sin\alpha + 2eCos\beta = b \dots (2)$

d = ...3 - 2 = 1....

B.1.1- Déduire la relation entre λ et β ;

.....(1) $\Leftrightarrow \lambda Cos\alpha = a + 2eSin\beta$

......(2) $\Leftrightarrow \lambda Sin\alpha = b - 2eCos\beta$

.....(1)² + (2)² $\Leftrightarrow \lambda^2 = a^2 + b^2 + 4e(aSin\beta - bCos\beta)$

B.2- GEOMETRIE DE MASSES:

On considère l'ensemble (S) regroupant les solides (S_3) et (S_4) : $S = \{S_3, S_4\}$ (Figure 2-B). (S_3) , dont les trous des axes d'articulation sont négligés, est assimilé à un secteur de cylindre homogène de rayon R, de longueur 2L et de masse m_3 . (S_4) est une boule homogène supposée pleine, de masse m_4 et de rayon r. Le centre d'inertie G_3 de (S_3) et G_4 de (S_4) appartiennent au plan de symétrie $(D, \vec{x}_3, \vec{y}_3)$. On notera **M** la masse de (S): $\mathbf{M} = \mathbf{m}_3 + \mathbf{m}_4$.

B.2.1- Déterminer, dans la base de R_3 , le vecteur position de G_3 centre d'inertie de (S_3) : \overrightarrow{DG}_3 ;

...... (D, \vec{x}_3) est un axe de symétrie de $(S_3) \Rightarrow G_3 \in (D, \vec{x}_3) \Leftrightarrow y_{G_3} = z_{G_3} = 0$

(S₃) homogène $\Rightarrow Vx_G = \int_{P \in S} x_p dV(P) = \int_0^R \int_{\frac{\pi}{2}}^{\frac{7\pi}{4}} 2LrCos\theta \ rdrd\theta = 2L\frac{-\sqrt{2}}{3}R^3 \dots \text{ et } V = \frac{3}{2}L\pi R^2$

B.2.2- Déterminer, dans la base de R_3 , le vecteur position de centre G de (S): \overline{DG} ;

 $\dots M\overrightarrow{DG} = \sum_{3}^{4} m_i \overrightarrow{DG}_i = m_3 \overrightarrow{DG}_3 + m_4 \overrightarrow{DG}_4 \dots$

..... Or $\overrightarrow{DG}_3 = \frac{-4\sqrt{2}}{9} \frac{R}{\pi} \vec{x}_3 = x_{G_3} \vec{x}_3 \dots$ et $\overrightarrow{DG}_3 = c \vec{x}_3 \dots$

$$\overrightarrow{DG} = \frac{m_3 x_{G_3} + m_4 c}{M} \vec{x}_3$$
 et $DG_3 = cx_3$
$$\overrightarrow{DG} = \frac{m_3 x_{G_3} + m_4 c}{M}$$

$$(\vec{x}_3, \vec{y}_3, \vec{z}) = \frac{m_3 x_{G_3} + m_4 c}{M}$$

B.2.3- Montrer que la matrice d'inertie de (S) au point D est diagonale dans la base de R_3 :

...... Deux plans de symétrie : $(D, \vec{x}_3, \vec{y}_3)$ et $(D, \vec{x}_3, \vec{z}) \Leftrightarrow P_{Dx_3y_3} = P_{Dx_3z} = P_{Dy_3z} = 0$

B.2.4- Déterminer le moment d'inertie de (S_3) par rapport à l'axe (D, \vec{z}) : I_3 ;

..... $I_3 = \int r^2 dm(P) = \int r^2 \rho dv(P) = \int_0^R \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} r^2 \rho 2 L r dr d\theta \dots$ avec $\rho = \frac{m_3}{V} = \frac{2m_3}{3\pi L R^2} \dots$

..... $I_3 = \frac{m_3 R^2}{2}$ $I_3 = \dots \frac{m_3 R^2}{2}$

$$I_3 = \dots \frac{m_3 R^2}{2} \dots$$

B.2.5- Déterminer le moment d'inertie de (S) par rapport à l'axe $(D, \vec{z}) : I$;

..... $I = I_3 + I_{DZ}(S_4)$ or $I_{DZ}(S_4) = I_{G_4Z}(S_4) + m_4c^2 = \frac{2}{5}m_4r^2 + m_4c^2$

$$I = \frac{m_3 R^2}{2} + m_4 (\frac{2}{5} r^2 + c^2) \dots I = \dots \frac{m_3 R^2}{2} + m_4 (\frac{2$$

B.3- ETUDE CINEMATIQUE:

B.3.1- Exprimer, dans la base de R_1 , les torseurs cinématiques suivants :

B.3.1.1- de mouvement de (S_1) par rapport à (S_0) au point A : $\{V(S_1/S_0)\}_A = \{\dots \dots \dot{\alpha} \dot{z} \dots \dots \}$;

B.3.1.2- de mouvement de (S_2) par rapport à (S_0) au point B : $\{V(S_2/S_0)\}_B = \{\dots \dot{\lambda}\vec{x}_1 + \lambda \dot{\alpha}\vec{v}_2\}$;

B.3.1.3- de mouvement de (S_3) par rapport à (S_0) au point $C: \{V(S_3/S_0)\}_C = \left\{\begin{array}{c} \dots \dots \beta \vec{z} \dots \\ \vec{s} \end{array}\right\}$;

B.3.2- Déterminer, en fonction de $\dot{\beta}$, le vecteur vitesse du point B appartenant à (S_3) par rapport à (S_0) . En déduire, par projection dans la base de R_1 , une relation entre $\dot{\beta}$ et $\dot{\lambda}$:

 $\dots \lor (B \subset S_3/S_0) = \lor (C \subset S_3/S_0) \lor B \cup \lor (B \subset S_3/S_0) \lor B \cup S_3 \cup$

 $\dots \operatorname{or} \vec{V}(B \in S_3/S_0) = \vec{V}(B \in S_2/S_0) \Rightarrow 2e\dot{\beta}(Cos(\beta - \alpha)\vec{x}_1 + Sin(\beta - \alpha)\vec{y}_1) = \dot{\lambda}\vec{x}_1 + \lambda\dot{\alpha}\vec{y}_1 \dots$

.....

 $\vec{V}(B \in S_3/S_0) = \dots 2e\dot{\beta}\vec{x}_3 \dots$; Relation entre $\dot{\beta}$ et $\dot{\lambda}: \dots \dot{\lambda} = 2e\dot{\beta} \cos(\beta - \alpha) \dots$

B.3.3- Exprimer, dans la base de R_3 , le vecteur vitesse du point G_4 centre de (S_4) : $\vec{V}(G_4 \in S_4/S_0)$ (la boule (S_4) est supposée fixe dans (S_3)):

.....

 $\vec{V}(G_4 \in S_4/S_0) = \underbrace{\vec{V}(G_4 \in S_4/S_3)}_{\vec{0}} + \vec{V}(G_4 \in S_3/S_0) = \vec{V}(C \in S_3/S_0) + \overrightarrow{G_4C} \wedge \vec{\Omega}(S_3/S_0) \dots$

..... $\vec{V}(G_4 \in S_4/S_0) = \dot{\beta}(e\vec{x}_3 + c\vec{y}_3)$

 $\vec{V}(G_4 \in S_4/S_0) = \dots \dot{\beta}(e\vec{x}_3 + c\vec{y}_3) \dots$

B.3.4- Exprimer, dans la base de R_3 , le vecteur accélération du point G_4 centre de (S_4) : $\vec{\Gamma}(G_4 \in S_4/S_0)$

.....

 $\vec{\Gamma}(G_4 \in S_4/S_0) = \frac{d\vec{V}(G_4 \in S_4/S_0)}{dt} \Big|_{R_0} = (e\ddot{\beta} - c\dot{\beta}^2)\vec{x}_3 + (c\ddot{\beta} + e\dot{\beta}^2)\vec{y}_3 \dots$

.....

 $\vec{\Gamma}(G_4 \in S_4/S_0) = \dots (e\ddot{\beta} - c\dot{\beta}^z)\vec{x}_3 + (c\ddot{\beta} + e\dot{\beta}^z)\vec{y}_3...$

B.3.5- Lorsque la boule (S_4) atteint la gouttière (S_5) , son centre G_4 est sur l'axe (C, \vec{x}_5) . Si on note par $V_0 = \vec{V}(G_4 \in S_4/S_0)$. \vec{y}_5 la vitesse initiale de G_4 par rapport à (S_5) , donner l'expression de V_0 :

 $V_0 = \dots \sqrt{e^2 + c^2} \dot{\beta} \dots$

B.4- ETUDE DYNAMIQUE:

Dans cette partie on suppose que le centre d'inertie G de (S) est confondu avec D $(\overline{DG} = \overline{0})$
et que le vérin (S_2) exerce sur (S_3) un effort axial au point B défini par : $\vec{F}(S_2 \to S_3) = F\vec{x}_1$.
B.4.1- Déterminer, en projection sur \vec{z} , le moment au point C des efforts extérieures exercés sur (S) :
$\dots \dots \overrightarrow{\mathcal{M}}_{C}(\vec{S} \to S) \cdot \vec{z} = \overrightarrow{\mathcal{M}}_{C}(S_{0} \to S) \cdot \vec{z} + \overrightarrow{\mathcal{M}}_{C}(\vec{g} \to S) \cdot \vec{z} + \overrightarrow{\mathcal{M}}_{C}(S_{2} \to S) \cdot \vec{z} \dots \dots \dots$
$\overrightarrow{\mathcal{M}}_{\mathcal{C}}(\overline{S} \to S). \vec{z} = 2eFCos(\beta - \alpha) - eMgSin\beta$
$\overrightarrow{\mathcal{M}}_{\mathcal{C}}(\overline{S} \to S). \vec{z} = \dots 2eFCos(\beta - \alpha) - eMgSin\beta \dots$
B.4.2- Déterminer le moment cinétique au point C associé au mouvement de (S) par rapport à (S_0) ;
$\dots \vec{\sigma}_{\mathcal{C}}(S/S_0) = \vec{\sigma}_{\mathcal{D}}(S/S_0) + M\overrightarrow{CD}\wedge \overrightarrow{V}(D \in S/S_0) = [I_D(S)]\overrightarrow{\Omega}(S/S_0) + M(-e\vec{y}_3)\wedge e\dot{\beta}\vec{x}_3\dots$
ou $\vec{\sigma}_C(S/S_0) = [I_C(S)] \vec{\Omega}(S/S_0) = I_{cz} \dot{\beta} \vec{z}$ car C est fixe par rapport à S_0
avec $I_{cz} = I_{Gz} + Me^2 = I + Me^2$ (Th de Hygens)
7 (7 (7) 1 2) 0 →
$\vec{\sigma}_C(S/S_0) = \dots (I + Me^2) \dot{\beta} \vec{z} \dots$
B.4.3- Déterminer le moment dynamique au point C associé au mouvement de (S) par rapport à (S_0) ;
$\dots \vec{\delta}_C(S/S_0) = \frac{d\vec{\sigma}_C(S/S_0)}{dt}\Big _{R_0} = (I + Me^2)\beta \vec{z} \text{car C est fixe par rapport à } S_0 \dots$
$\vec{\delta}_C(S/S_0) = \dots (I + Me^2) \ddot{\beta} \vec{z} \dots$
B.4.4- En appliquant le théorème du moment dynamique, en projection sur \vec{z} , à (S) au cours de son
mouvement par rapport à (R_0) , déterminer l'expression permettant de calculer la force F
développée par le vérin (S_2) en fonction de $\dot{\lambda}$, β , $\dot{\beta}$ et $\ddot{\beta}$ et des données du problème.
R_0 est supposé galiléen $\Leftrightarrow \vec{\delta}_C(S/S_0). \vec{z} = \vec{\mathcal{M}}_C(\bar{S} \to S). \vec{z}$
$(I + Me^2)\ddot{\beta} = 2eFCos(\beta - \alpha) - eMgSin\beta$ et $\dot{\lambda} = 2e\dot{\beta}Cos(\beta - \alpha)$
$\mathbf{F} = \dots \left[(I + Me^2) \ddot{\beta} + eMgSin\beta \right] \frac{\dot{\beta}}{\dot{\lambda}} \dots$
$\mathbf{r} = \dots \cdot \left[(\mathbf{i} + \mathbf{m} \mathbf{e}) \mathbf{p} + \mathbf{e} \mathbf{m} \mathbf{g} \mathbf{s} \mathbf{m} \mathbf{p} \right] \frac{1}{\lambda} \dots$

B.5- ETUDE DU MOUVEMENT DE LA BOULE DANS LA GOUTTIERE:

Une fois transférer, la boule (S_4) commence à rouler sans glisser dans la gouttière (S_5) à travers un contact ponctuel en deux points I et J et sous l'effet d'une adhérence de coefficient f.

L'action mécanique de contact de la gouttière (S_5) sur la boule (S_4) aux points I et J est définie par les deux torseurs : $\{T_1(S_5 \to S_4)\}_I = \begin{Bmatrix} N\vec{n}_I - T\vec{y}_5 \\ \vec{0} \end{Bmatrix}_I$ et $\{T_2(S_5 \to S_4)\}_J = \begin{Bmatrix} N\vec{n}_J - T\vec{y}_5 \\ \vec{0} \end{Bmatrix}_J$

Le moment d'inertie de la boule par rapport à l'axe (G_4, \vec{z}) est : $I_{G_4Z} = \frac{2}{5} m_4 r^2$.

B.5.1- En se basant sur la condition de roulement sans glissement de (S_4) par rapport à (S_5) , déterminer en fonction de (S_5) la vecteur vitasse du point (S_5) contra de (S_5) par rapport à (S_5) .

déterminer, en fonction de $\dot{\boldsymbol{\varphi}}$, le vecteur vitesse du point G_4 centre de (S_4) par rapport à (R_5) :

 $.....\vec{V}(G_4 \in S_4/R_5) = \vec{V}(I \in S_4/R_5) + \overrightarrow{G_4 I} \wedge \overrightarrow{\Omega}(S_4/R_5) = -r\vec{n}_I \wedge \dot{\varphi}\vec{z} = \frac{\sqrt{2}}{2}r\dot{\varphi}\ \vec{y}_5....$

 $\vec{V}(G_4 \in S_4/R_5) = \dots \frac{\sqrt{2}}{2}r\dot{\varphi}\ \vec{y}_5...$

B.5.2- Déterminer l'énergie cinétique de (S_4) dans son mouvement par rapport à R_5 ;

.....

..... $Ec(S_4/R_5) = \frac{1}{2} \left(I_{G_4 Z} \dot{\varphi}^2 + m_4 \vec{V}^2 (G_4 \in S_4/R_5) \right) = \frac{1}{2} \left(\frac{2}{5} m_4 r^2 \dot{\varphi}^2 + m_4 \frac{1}{2} r^2 \dot{\varphi}^2 \right) \dots$

- $Ec(S_4/R_5) = \dots \frac{9}{20}m_4r^2\dot{\varphi}^2.\dots$
- **B.5.3-** Déterminer la puissance des actions mécaniques extérieures exercées sur (S_4) au cours de son mouvement par rapport à R_5 ;

.....

..... $P(\bar{S}_4 \to S_4/R_5) = \underbrace{P(S_5 \to S_4/R_5)}_{0} + P(\vec{g} \to S_4/R_5) = m_4 \vec{g} \cdot \vec{V}(G_4 \in S_4/R_5)$

..... $P(\bar{S}_4 \to S_4/R_5) = \frac{\sqrt{2}}{2} r m_4 g \sin \varphi ...$

 $\frac{1}{2} \left(\frac{34}{34} \right) = \frac{1}{2} \left(\frac{34}$

$$P(\bar{S}_4 \to S_4/R_5) = \dots \frac{\sqrt{2}}{2} r m_4 g \operatorname{Siny} \dot{\varphi} \dots$$

B.5.4- Appliquer le théorème de l'énergie cinétique à (S_4) au cours de son mouvement par rapport R_5 . En déduire son équation de mouvement.

..... R_5 (fixe par rapport à R_0) est supposé galiléen $\Rightarrow P(\bar{S}_4 \to S_4/R_5) = \frac{dEc(S_4/R_5)}{dt}$

 $\dots \frac{\sqrt{2}}{2}rm_4g \sin\gamma \dot{\varphi} = \frac{9}{10}m_4r^2\dot{\varphi}\ddot{\varphi} \iff 9r\ddot{\varphi} - 5\sqrt{2}g \sin\gamma = 0.$

Equation de mouvement de S_4/R_5 :........ $9r\ddot{\varphi} - 5\sqrt{2}g Sin\gamma = 0$

Soit y l'ordonnée du centre d'inertie G_4 de (S_4) sur l'axe (E, \vec{y}_5) : $\overrightarrow{EG}_4 = y\vec{y}_5$. On suppose qu'initialement à t = 0: $\varphi = 0$, y = 0 et $\dot{y} = \frac{dy}{dt} = V_0$.

B.5.5- Exprimer l'équation de mouvement de (S_4) par rapport à R_5 en fonction de y.

 $...... \vec{V}(G_4 \in S_4/R_5) = \dot{y}\vec{y}_5 = \frac{\sqrt{2}}{2}r\dot{\varphi}\ \vec{y}_5 \Leftrightarrow \dot{y} = \frac{\sqrt{2}}{2}r\dot{\varphi} \Leftrightarrow \ddot{y} = \frac{\sqrt{2}}{2}r\ddot{\varphi} \Leftrightarrow \sqrt{2}\ddot{y} = r\ddot{\varphi}$ $...... 9\sqrt{2}\ddot{y} - 5\sqrt{2}g\ Sin\gamma = 0.$

Equation de mouvement de S_4/R_5 :..... $9\ddot{y} - 5g Sin\gamma = 0$

B.5.6- Déterminer le paramètre de position y(t):

.....

 $y(t) = \dots y = \left(\frac{5}{18}g \, Sin\gamma\right)t^2 + V_0t.\dots$

B.5.7- En appliquant le théorème de la résultante dynamique à (S_4) au cours de son mouvement par rapport R_5 , exprimer, en fonction de m_4 , g et γ , les efforts tangentiel et normal (T et N) exrcés par la gouttière (S_5) sur la boule (S_4) :

..... R_5 est supposé galiléen $\Rightarrow \vec{R}(\vec{S}_4 \to S_4) = m_4 \vec{\Gamma}(G_4 \in S_4/R_5) = m_4 \ddot{y} \vec{y}_5$

$$\begin{cases} \sqrt{2}N - m_4 g Cos \gamma = 0 & (1) \\ m_4 g Sin \gamma - 2T = m_4 \ddot{y} & (2) \end{cases}$$
 et $\ddot{y} = \frac{5}{9} g Sin \gamma$

.....

$$N = \dots \frac{1}{\sqrt{2}} m_4 g Cos \gamma \dots$$

$$T = \dots \frac{2}{9} m_4 g Sin \gamma \dots$$

B.5.8- En se basant sur la loi de Coulomb relative au roulement sans glissement, déterminer la valeur maximale de l'angle γ pour que (S_4) roule sans glisser sur la gouttière (S_5) :

Roulement sans glissement $\Leftrightarrow \|\vec{T}\| \le f \|\vec{N}\| \iff \frac{2}{9} m_4 g Sin \gamma \le \frac{1}{\sqrt{2}} f m_4 g Cos \gamma$

 $tan \gamma \leq \frac{9}{2\sqrt{2}}f...$

.....

 $tan \gamma \leq \ldots \frac{9}{2\sqrt{2}}f \ldots$

PARTIE C - AUTOMATIQUE

C.1- Commande séquentielle du poste de transfert des boules :

C.1.1- Compléter le GRAFCET suivant qui décrit le fonctionnement du système de transfert:

C.1.2- Compléter l'expansion de la macro-étape M1 « Dépôt » dont la structure est donnée cidessous:

C.1.3- Compléter l'expansion de la macro-étape M2 « Chargement » dont la structure est donnée ci-dessous:

C.2- REGULATION DE LA TEMPERATURE DU FOUR TUNNEL :

Premier cas : régulateur proportionnel avec retour unitaire

$$C_1(p) = k_r$$
 avec $k_r > 0$, $C_2(p) = 1$

Dans ce cas, on suppose que la perturbation est nulle : l(t) = 0.

C.2.1- Donner l'expression de la fonction de transfert en boucle fermée $H_{BF}(p) = \frac{Y(p)}{Y_{ref}(p)}$ (la mettre sous la forme canonique standard d'un système de premier ordre $\frac{k_{BF}}{1+\tau_{BF}p}$). Exprimer le gain statique k_{BF} et la constante de temps τ_{BF} en fonction de k_r , k et τ avec $k=k_1$. k_2 .

..... $H_{BF}(p) = \frac{C_1(p)H(p)}{1+C_1(p)H(p)} = \frac{\frac{kk_T}{1+kk_T}}{1+\frac{\tau}{1+kk_T}} = \frac{k_{BF}}{1+\tau_{BF}p}$...

C.2.2- Donner l'expression de l'erreur statique (e_s) sachant que le signal de référence est un échelon de position d'amplitude y_{c1} .

 $E(p) = Y_{ref}(p) - Y(p) = (1 - H_{BF}(p))Y_{ref}(p) ...$ $E(p) = \frac{1}{1 + C_1(p)H(p)}Y_{ref}(p) \text{ et } Y_{ref}(p) = \frac{1}{p}y_{c1}...$

...... L'erreur statique est donnée par : $e_s = \lim_{p \to 0} pE(p) = \frac{1}{1 + kk_r} y_{c1}$

C.2.3- Donner l'expression de la valeur initiale du signal de commande sachant que le signal de référence est un échelon de position d'amplitude y_{c1} .

......

..... $U(p) = k_r E(p)$ d'où $U(p) = \frac{k_r}{1 + C_1(p)H(p)} Y_{ref}(p)$ et $Y_{ref}(p) = \frac{1}{p} y_{c1}$

...... La valeur initiale est donnée par : $u(0) = \lim_{p \to \infty} pU(p) = k_r y_{c1}$

.....

C.2.4- On fixe k_r de façon à limiter la valeur initiale de la commande à (+ 10 V). Sachant que $y_{c1} = 8 V$, Donner les valeurs de k_r , k_{BF} , τ_{BF} et de l'erreur statique e_s . En déduire la valeur de la température θ dans le four en régime permanent.

...... On a: $u(0) = k_r y_{c1}$, $k = k_1 k_2 = 1$, $k_{BF} = \frac{k k_r}{1 + k k_r}$, $\tau_{BF} = \frac{\tau}{1 + k k_r}$, $e_s = \frac{1}{1 + k k_r} y_{c1}$

..... $k_r = 1.25$ $k_{BF} = 0.555$ $\tau_{BF} = 160$ s $e_s = 3.555$ V.....

.....

Deuxième cas : régulateur proportionnel avec retour non unitaire

$$C_1(p) = k_r$$
 avec $k_r > 0$, $C_2(p) = \lambda$

C.2.5- On suppose que : l(t) = 0.

C.2.5.1- Donner la nouvelle expression de l'erreur statique dans le cas où le signal de référence est un échelon de position d'amplitude y_{c1} . Donner l'expression du paramètre λ permettant d'annuler l'erreur statique de position.

.....

 $E(p) = Y_{ref}(p) - Y(p) = Y_{ref}(p) - \lambda G_1(p) II(p) \left(p \right)$ $E(p) = \frac{\lambda + (\lambda + \lambda) C_1(p) II(p)}{1 + \lambda C_1(p) II(p)} Y_{ref}(p) \text{ et } Y_{ref}(p) = \frac{1}{p} y_{c1}...$

.....

...... L'erreur statique est donnée par : $e_s = \lim_{p \to 0} pE(p) = \frac{1 + (\lambda - 1)kk_r}{1 + \lambda kk_r} y_{c1}$

C.2.5.2- Donner l'expression de la fonction de transfert en boucle fermée pour la valeur de λ calculée dans la question précédente. Donner la valeur de la constante de temps du système en boucle fermée sachant que $k_r=1,25$.

.....

 $.... H_{BF}(p) = \frac{C_1(p)H(p)}{1+C_1(p)C_2(p)H(p)} = \frac{\frac{kk_T}{1+\lambda kk_T}}{1+\frac{\tau}{1+\lambda kk_T}p}$

Pour la valeur de : $\lambda = \frac{kk_r - 1}{kk_r}$, on obtient : $H_{BF}(p) = \frac{1}{1 + \frac{\tau}{k_r k_r} p}$

 $\tau_{BF} = \frac{\tau}{kk_r} \quad \dots \quad \tau_{BF} = 288 \, s \, \dots$

.....

C.2.6- On suppose que $l(t) \neq 0$. La perturbation est de type échelon de position.

C.2.6.1- En considérant que la consigne est nulle, Donner l'expression de la fonction de transfert
$F(p) = \frac{Y(p)}{L(p)}:$
$Y(p) = H(p)U(p) + L(p) = -C_1(p)C_2(p)H(p)Y(p) + L(p)$
Soit $(1 + C_1(p)C_2(p)H(p))Y(p) = L(p)$
$F(p) = \frac{Y(p)}{L(p)} = \frac{1}{1 + C_1(p)C_2(p)H(p)}$
$F(p) = \frac{1+\tau p}{1+\lambda k k_r + \tau p} \dots$
C.2.6.2- Calculer la valeur finale de la sortie $y(t)$ sachant que le signal de perturbation est un
échelon d'amplitude 1 V, $k_r = 1,25$ et λ est la valeur assurant une erreur statique nulle.
$y_{\infty} = \lim_{p \to 0} pY(p) = \lim_{p \to 0} pF(p)L(p) \iff y_{\infty} = \lim_{p \to 0} p \frac{1+\tau p}{1+\lambda k k_{\tau}+\tau p p} \dots$
$y_{\infty} = \frac{1}{1 + \lambda k k_r}$
On remplace λ par sa valeur assurant une erreur statique nulle, on obtient : $y_{\infty} = \frac{1}{kk_{\tau}}$
$y_{\infty} = \frac{1}{1.25} = 0.8 V$
3ème Cas : régulateur proportionnel intégral avec retour unitaire
$C_1(p) = k_r \left(1 + \frac{1}{T_{rp}} \right) \qquad \text{et} \qquad C_2(p) = 1$
C.2.7- On suppose que $l(t) = 0$.
C.2.7.1- Donner l'expression de la fonction de transfert en boucle fermée $H_{BF}(p) = \frac{Y(p)}{Y_{ref}(p)}$.
$H_{BF}(p) = \frac{C_1(p)H(p)}{1+C_1(p)H(p)} = \frac{kk_r(1+T_ip)}{T_i\tau p^2 + T_i(1+kk_r)p + kk_r}$
$1+C_1(p)H(p) \qquad I_{i}^{-1}p^{-}+I_{i}(1+\kappa\kappa_r)p+\kappa\kappa_r$

C.2.7.2- On pose: $x = kk_r$, Donner l'expression de dénominateur $D(p)$ de $H_{BF}(p)$ en fonction de
x , T_i et τ . Donner , selon la nature de la réponse du système en boucle fermée (réponse apériodique
ou réponse pseudo-périodique), la relation entre les paramètres x , T_i et τ .
$D(p) = T_i \tau p^2 + T_i (1 + kk_r)p + kk_r = T_i \tau p^2 + T_i (1 + x)p + x$
Le discriminant est donné par : $\Delta(p) = T_i^2(1+x)^2 - 4T_i\tau x$
C.2.8- On suppose que $l(t) \neq 0$. La perturbation est de type échelon de position.
C.2.8.1- En considérant que la consigne est nulle, Donner l'expression de la fonction de transfert :
$F(p) = \frac{Y(p)}{L(p)}.$
$Y(p) = \frac{1}{1 + C_1(p)H(p)}L(p) \Leftrightarrow F(p) = \frac{Y(p)}{L(p)} = \frac{1}{1 + C_1(p)H(p)}$
$F(p) = \frac{T_i p(1+\tau p)}{T_i \tau p^2 + T_i (1+kk_r)p + kk_r}$
GAGA GILL 1 . 1 . Surely de la continue(t) conhant que la gignal de parturbation set un
C.2.8.2- Calculer la valeur finale de la sortie $y(t)$ sachant que le signal de perturbation est un échelon d'amplitude 1 V.
echelon d'amphidde 1 v.
$y_{\infty} = \lim_{p \to 0} pY(p) = \lim_{p \to 0} pF(p)L(p) \dots$
$y_{\infty} = \lim_{p \to 0} p \frac{T_i p (1+\tau p)}{T_i \tau p^2 + T_i (1+kk_r)p + kk_r} \frac{1}{p}$
$\dots y_{\infty} = 0 \dots$
C.2.9- Comparer les performances des régulateurs étudiés.
Régulateur proportionnel : erreur statique non nulle, dynamique rapide
Régulateur proportionnel avec retour non unitaire : erreur statique nulle, dynamique
lente, n'élimine pas l'effet de la perturbation.
Régulateur proportionnel intégral: erreur statique nulle, la dynamique dépend des
paramètres du régulateur, élimine l'effet de la perturbation