Homework 1

1 Problem

For each of the ODEs in the 1st column, indicate whether it is:

- 1. linear time-invariant (LTI), linear time-varying (LTV), or nonlinear
- 2. 1st order, 2nd order, or higher order
- 3. homogeneous or inhomogeneous

by marking the appropriate column. The unknown function x(t) represents the state of some mechanical system and t represents time. Hint: An ODE is considered nonlinear only if the nonlinearity involves the unknown function x(t).

	Linearity?			Order?			Homogeneity?	
System ODE	LTI	LTV	NL	1st	2nd	Higher	Homog.	Inhomog.
$\ddot{x} + 3tx = 0$								
$(\dot{x} - x)^2 + 1 = 0$								
$\int t^2 x + bx + c\dot{x} = 0$								
$\ddot{x} = 0$								
$\ddot{x} + \dot{x} + x - 2 =$								
$\ddot{x} + \sin(x) = 0$								
$e^t x + \dot{x} = \sin t$								
$\dot{x} + x = 0$								
$\dot{x}x + a + bt = 0$								
$\ddot{x} - b\dot{x}^2 = 0$								

2 Problem

Consider the following IVP:

$$\dot{x} + 2x = 0$$

with initial condition $x(t_0) = -10$ and $t_0 = 0$.

- 1. What is the particular solution, x(t)?
- 2. What is the value of x as time $t \to \infty$?

A.
$$x \to -\infty$$

B.
$$x \rightarrow -10$$

C.
$$x \rightarrow 0$$

D.
$$x \rightarrow +10$$

E.
$$x \to +\infty$$

3 Problem

Consider the ODE $\dot{x} + 2x = e^{-2t}$ with initial condition $x(t_0) = 10$ and $t_0 = 0$. What is the particular solution, x(t)?

4 Problem

For each of the following ODEs determine if the eigenvalues are (a) real and distinct, (b) repeated, (c) complex conjugate pairs:

- 1. $\ddot{x} + 2\dot{x} + 3x = 0$
- 2. $\ddot{x} + 4\dot{x} + x = 0$
- 3. $\ddot{x} + 4\dot{x} + 4x = 0$
- 4. $\ddot{x} + 3x = 0$

5 Problem

For each of the following linear, time-invariant, 2nd order homogeneous ODEs solve for the particular solution that satisfies the initial values given.

- 1. $\ddot{x} 4\dot{x} + 4x = 0$, Initial Values: x(0) = 12, $\dot{x}(0) = -3$
- 2. $\ddot{x} + 3\dot{x} 10x = 0$, Initial Values: x(0) = 4, $\dot{x}(0) = -2$
- 3. $\ddot{x} 8\dot{x} + 17x = 0$, Initial Values: x(0) = -4, $\dot{x}(0) = -1$

6 Problem

Match each one of the responses shown below (Cases 1-4) with one of the following IVPs

(a)
$$\ddot{x} + \dot{x} + x = 0, x(0) = 8, \dot{x}(0) = 0$$

(f)
$$\dot{x} + x = 8$$
, $x(0) = 2$

(b)
$$\dot{x} - x = 2$$
, $x(0) = 8$

(g)
$$\dot{x} + x = 0$$
, $x(0) = 8$

(c)
$$\dot{x} + x = 2$$
, $x(0) = 8$

(h)
$$\ddot{x} + \dot{x} + x = 0, x(0) = 8, \dot{x}(0) = -3$$

(d)
$$\ddot{x} + \dot{x} + x = 2$$
, $x(0) = 0$, $\dot{x}(0) = -8$

(i)
$$\ddot{x} + \dot{x} + x = 0$$
, $x(0) = 2$, $\dot{x}(0) = 10$

(e)
$$\ddot{x} + \dot{x} + x = 2$$
, $x(0) = 2$, $\dot{x}(0) = 0$

(j)
$$\dot{x} + 8x = 0$$
, $x(0) = 0$