tp2

Lapu Matthias | Amaël Kreis

2023-02-17

I. Variation sous-jacente et échantillonnage répété

1. Si X E(0.5), quelle est la probabilité qu'on observe une valeur supérieure à 3?

2. Simulez un échantillon de taille n=20 d'un loi de E(0,5), créez un histogramme de votre échantillon et commentez la forme de votre histogramme. Superposer la vrai densité. Quelle est la probabilité empirique qu'on observe une valeur supérieure à 3?

```
x<-rexp(20,0.5)
hist(x, freq=FALSE)
maxvalue <- ceiling(max(x))
lines(0:maxvalue,dexp(0:maxvalue, 0.5), col="green",)</pre>
```

Histogram of x

Commentaire histogramme à insérer

- 3.Répétez cette opération 5 ou 6 fois et commentez les différences entre les histogrammes que vous obtenez à chaque fois. Utilisez la même limite sur les axes pour faciliter la comparaison. Notez également comment la probabilité empirique qu'on observe une valeur supérieure à 3 change.
 - 4. Augmentez la taille de votre échantillon à 100 et répétez votre expérience. Que remarquez-vous?

- II. Variabilité aléatoire du maximum de l'échantillon
- 1. Simuler un échantillon de taille n=10 d'une loi $U(-1,\ 1)$ et enregistrez le maximum de l'échantillon.

```
x <- runif(10, -1, 1)
max <- max(x)
```

2. Répétez les deux étapes ci-dessus dix fois, en écrivant le maximum de l'échantillon à chaque fois. Commentez la variabilité des valeurs que vous obtenez pour les maxima de votre échantillon.

```
for (i in 1:10) {
  x <- runif(10, -1, 1)
}</pre>
```

3. Répétez 100 fois et construisez un histogramme et une boîte à moustaches. Quelle est la loi dumaximum, $M = \max 1$ in X i où X i U(-1, 1) (TD1)? Superposer la densité théoreique sur l'histogramme. Que remarquez-vous?

```
par(mfrow=c(3,4))
for (i in 1:100) {
```

```
x <- runif(10, -1, 1)
hist(x)
boxplot(x, horizontal = TRUE)
}</pre>
```


Х

Histogram of x

Histogram of x

Х

Histogram of x

Histogram of x

Histogram of x

Histogram of x

Histogram of x

Histogram of x

F - - -

0.5

-0.5

-0.5

-0.5

-0.5

-0.5

0.5

0.5

0.5

Histogram of x

Х

Histogram of x

Histogram of x

Histogram of x

Histogram of x

Histogram of \boldsymbol{x}

Histogram of x

-0.5

0.4 0.8

-0.2

Histogram of x

0.5

0.5

Histogram of x

Histogram of x

-0.5

Histogram of x

Histogram of x

Histogram of x

Histogram of x

Histogram of x

Histogram of x

Histogram of \boldsymbol{x}

Histogram of x

Histogram of x

1.0

Frequency

0.5

-0.5

-1.0

0.0

Histogram of x

Histogram of x

-0.5

0.5

Histogram of x

Histogram of x

Histogram of x

Х

Histogram of x

Histogram of x

Histogram of x

0.5

-0.5

Histogram of x

Histogram of \boldsymbol{x}

Х

Histogram of x

Histogram of x

Histogram of x

х

Histogram of x

-0.5

-0.5

-0.5

0.5

0.5

0.5

Histogram of x

4. Augmentez la taille de votre échantillon à 50 et répétez votre expérience. Que remarquez-vous? Sont-ils proches de la symétrie ?

```
x <- runif(50, -1, 1)
```