Merge Sort.

$$T(n) = T(\frac{n}{2}) + T(\frac{n}{2}) + cn$$

$$T(1) = c'$$

Recursion Tree Method

$$\frac{n}{2i} = 1 \Rightarrow z^{i} = n \Rightarrow i = \log_{2} n \longrightarrow depth$$

$$T(n) = T(\frac{h}{4}) + T(\frac{3h}{4}) + cn^2$$

[Cn]

$$\frac{1}{16}$$
 $\frac{3n}{16}$ $\frac{3n}$

 $\frac{10}{16}$ cn²

$$T(n) = 2T(\frac{n}{2}) + cn$$

 $T(\frac{n}{2}) = 2 T(\frac{n}{2}) + \frac{cn}{2}$

$$T(n) = 2^{2}T(\frac{n}{2})+cn+cn$$

= $2^{1}T(\frac{n}{2^{1}})+im$

Stop when
$$2^{i}=n$$

= $n T(i) + c(\log_{2}n)n$

$$T(n) \leq T(\frac{n}{5}) + T(\frac{7n}{10}) + cn$$

$$T(m_0)$$

$$m_0 \leq 20$$

 $f_i(x) = a_i x + e_i$ $i+2\cdots n$ $h(x) = \max \{f_i(x)\}$ $i=1,2\cdots n$

We want m(1,n)

(n(1,it)+Milli,itt)+Pi+Pi+LPit+1 (Ai-Ai+)*Ait+1

Sep 4 cs38

Find the largest squire that contains all 1:

%

(top left corner of square)

(in): largest 1 the square could have starting from (i.j). (iii)

To determine value of m(i,j). if A(i,j)=0.

then m(2.))=0.

else

the largest l for (i,j) is

the minimum of m(i,j+), m(i+,j+), m(i+,j+)

three neighbors

time: [O(n2)]

space [O[n2]]

space [O(n) > store only row at a time

1 = max{1', w+1"}

Two files.

<DP>

$$X = X_1 \cdots X_m$$

diff fifz

longest comman subsequence problem (不在家的工作数)

R: Find the size of longest common subsequence.

LCS

Cij = length of LCS

We want Cmin

index 0 means empty String.

 $\begin{array}{c} Cij & Ci-1,j-1 \\ Ci,j-1 \\ Ci-1,j \end{array}$

$$Cij = \begin{cases} Ci-1, j-1+0 & \text{if } Xi=y_j ; Ci-1, j-1+0 & \text{if } Xi\neq y_j \\ Cij = \begin{cases} Ci-1, j-1+0 & \text{if } Xi\neq y_j \end{cases}$$

MOX of three candidates.

To find the path. back track in matrix. Use ofmn) space.

To find the path in O(n) space.

two vectors sweeping.

max of sum of lettand right.

tecursive.

time:
$$mn + \frac{mn}{2} + \frac{mn}{4} = 2mn$$

Inorder.

left

pop out point.

right ...

[Greedy]

li ti

- Only of resource maximum number of events sort events by finish time.

 Sweep from left to right
- 2) multipul resources fulfill all events.

 Adetermine number of resources maintain a counter for overlaping events.

 while sweeping from left to right.

 if events bump into a bi, counter +t

 else if bump into a ri, counter --.

=> max count is the number of resources needed.

a assigning resources:

event list: sorted by start time

available resource list =

boolean is Available [maxcount] while sweeping from left to right.

if bump into a bi, assign i to some available resource and mark it follows if bump into ari, mark the corresponding resource true.

[Matching]

(D // initialize

isAvailableWorker[i] = true.

isAvailable [ask [i] = true.

// Start assigning

mark corresponding booleans false.

@ IEITIVI

Q: Minimum the number of guards. a maintain a list

Current Leaves:

& For each node, maintain a reference counter it ref counter is 1, add it to list & Idea: Grep a leaf from list, judguard at it's parent, delete "corresponding edges, update ref counters.

Grep another leaf from list....

until list is empty.

si Linear.

Input: n points (x2, y2)

Output: points that are not dominated by others.

if $\chi_i > \chi_j$ and $y_i > y_j$. then (χ_i, y_i) dominate (χ_j, y_j)

 $\bigcirc O(N^2)$.

3 offlogn)

3 off points by x coordinate.

Sweep from 1 right to left.

remember the highest Y encountered so for

(3) Recursion

recursive on left and right, then merge.

4 Binary search

30 Version

× above × below

recursion

nlogh his output sine

Input: ai, - an

Output. i, iz. ... ik - k

1. 3. 9. 5. 8. 2.

binary search label array, ask left neighbor to obtain its label and +1, then replace the right neigh

nloak

> sweep.

X 3 4 5 6

array az as at ac

Input

n gegments do any of them intercept?

Output Yes/No.

1) o(n2), for every pair of segments ...

2 0(M)

current tree: Az. As.

event list: sorted endpoints by x coordinate.

use binary search tree to store current segments...
compare. 上面的地面的大.

insertion. deletion from tree. Check neighbor in tree

A The intersection detected is not the left most intersection

Find all intersections

A keep on going. modification needed. event list: endpoints and intersection already detected.

Nogn + Tlogn

Lover bound

Finding the min.

lower bound M-1

prove:

Finding the min and max at the same time.

lowerbound 3n-2

algorithm pair up, n pairs

prove: min max

 $(|\cdot|) - n$

from 2n 1's down to 2

(0,1) > (1,0)

Convex Hull.

lower bound = n logn

prove:

H.

convex hull with

less than alogn algorithm

銀及CH 時间复襲 Cnlogn.
那么 Sorting 可以 Cnlogn.
新品、所以 C.H シnlogn

less than nlognalgorithm

Sort using C.H. $f(x) = x^2$ (x_1, x_1^2) x_3 x_4 x_5 x_6

if C.H complexity < nlog n then sorting can be done by using C.H algorithm on $(\chi_{\bar{j}}, \chi_{\bar{j}}^2)$.

complexity of sorting: nlogn + ch

Contradict.

Contradict.

Contradict.

O Sort by Polar angle - nlogn

2) go through ...

- r

lowest

if left turn: push.

if right turn : pop until no highttu

 $\Omega(n \log n)$ lower bound.

- 1. Sorting
- 2. Element Uniqueness
- 3. Set Equality

Graph Algoriths.

DFS

BFS.
Adjacency lists

lower: in subtree of v.

the smallest DFS number point
it could jump to

low(7) = 2

when done with low(x), update parent of x: V low(v) = min(low(v), low(x))

S/L(v) = 2/E/ Linear

Check even odd.

if low(x) < low (V x) is not a bridge.

(V x) is a bridge.

(V x) is a bridge.

articulation vertices

if low(x)< > V && low(y) < V && low(z) < V

V is not a articulation point

Biconnected component.

Push edges to stack

if low(x) >V.

pep edges (subgraph of x) \rightarrow one biconnected component.

Question. (Exam):

 Δ if (a,b) is a bridge.

a . b are ortidation points

[False]

a b

△ if (a.b) is a bridge.

and graph has more than 2 points

at least one of a and b

is articulation point.

True

Dif graph has more than 2 points there are at least two articulation points.

True

Leaves of DFS tree are articulation points.

If a tree has only one leaf, then the node is an articulation point.