## طراحي الگوريتمها

بهار ۱۴۰۰

مدرس: مسعود صديقين



گردآورنده: محمدعلی خدابندهلو ـ زهرا فاضل

برنامەنويسى خطى

يادآوري جلسه بيستم

در جلسه قبل با برنامهنویسی خطی آشنا شدیم و با یک مثال آن را بررسی کردیم. دیدیم که فرم کلی یک مسئله برنامهنویسی خطی به یکی از دو صورت زیر است:

$$\min \sum_{i=1}^{n} c_{i}x_{i}$$
s.t. 
$$\sum_{i=1}^{n} a_{1,i}x_{i} \geq b_{1},$$

$$\sum_{i=1}^{n} a_{7,i}x_{i} \geq b_{7},$$

$$\vdots$$

$$\sum_{i=1}^{n} a_{m,i}x_{i} \geq b_{m},$$

$$\forall 1 \leq i \leq n : x_{i} \geq \bullet$$

| max  | $\sum_{i=1}^{m} b_i y_i$                     |
|------|----------------------------------------------|
|      | i=1 $m$                                      |
| s.t. | $\sum_{i} a_{i,1} y_i \le c_1,$              |
|      | $\overline{i=1 \atop m}$                     |
|      | $\sum a_{i,\Upsilon} y_i \le c_{\Upsilon},$  |
|      | <i>i</i> =\                                  |
|      | :                                            |
|      | $\sum_{i=1}^{m} a_{i,n} y_i \le c_n,$        |
|      | $\forall 1 \leq i \leq m : y_i \geq \bullet$ |

هويج كلم خيار 
موية كالم خيار 
مراهي مين mg/kg A ويتامين 
مراهي مين mg/kg C ويتامين 
مراهير ويتامين مين سو/kg C مينامين 
مراهير سو/kg C مينامين مينامين مينامين مينامين سو/kg C مينامين مينامين سو/kg C مينامين مينامين سو/kg C مينامين سو/kg

که خط اول عبارتی است که می خواهیم آن را بهینه کنیم و خطوط بعدی، قیود ما روی متغیرهاست.

به عنوان مثال، مسئله زير را بررسي كرديم:

هر انسان برای زنده ماندن به ۵/۰ میلیگرم ویتامین A، ۱۵ میلیگرم ویتامین C، و گرم فیبر نیاز دارد. مقدار این سه ماده در هویج، کلم و خیار به صورت روبهرو است. میخواهیم کمترین هزینه برای تأمین مواد ضروری بدن را بیابیم.

فرض کنیم  $x_1$  میزان خرید هویج،  $x_7$  میزان خرید کلم و  $x_7$  میزان خرید خیار باشد. اگر  $x_7$  +  $x_7$  +  $x_7$  در واقع مسئلهای که میخواهیم حل کنیم، به شکل روبهرو است.

میخواهیم برای X حد پایین پیدا کنیم. با استفاده از قید سوم داریم:

 $\min X$ 

s.t. 
$$\Upsilon \Delta x_1 + \cdot / \Delta x_7 + \cdot / \Delta x_7 \ge \cdot / \Delta$$
,  $9 \cdot x_1 + \Upsilon \cdot \cdot x_7 + 1 \cdot x_7 \ge 1 \Delta$ ,  $\Upsilon \cdot x_1 + \Upsilon \cdot x_7 + 1 \cdot x_7 \ge \Upsilon$ ,  $x_1, x_7, x_7 \ge \cdot$ 

اگر از قیود دوم و سوم استفاده کنیم، به حد پایین متفاوتی میرسیم:

$$\begin{cases} \mathscr{S} \cdot x_1 + \mathscr{V} \cdot x_{\mathsf{Y}} + 1 \cdot x_{\mathsf{Y}} \ge 10 \\ {}^{\bullet} / \mathsf{V} \triangle x_1 + {}^{\bullet} / \mathsf{D} x_{\mathsf{Y}} + {}^{\bullet} / \mathsf{T} \triangle x_{\mathsf{Y}} \ge {}^{\bullet} / 1 \end{cases} \implies \begin{cases} {}^{\bullet} / {}^{\bullet} \mathscr{S} x_1 + {}^{\bullet} / \mathsf{T} x_{\mathsf{Y}} + {}^{\bullet} / \mathsf{T} x_{\mathsf{Y}} + {}^{\bullet} / \mathsf{T} x_{\mathsf{Y}} \ge {}^{\bullet} / {}^{\bullet} 10 \\ {}^{\bullet} / \mathsf{T} x_1 + {}^{\bullet} / \mathsf{T} x_{\mathsf{Y}} + {}^{\bullet} / \mathsf{T} x_{\mathsf{Y}} \ge {}^{\bullet} / {}^{\bullet} / \mathsf{T} \end{cases} \implies$$

$$\cdot$$
/ $\Upsilon$ 9 $x_1 + \cdot$ / $\Delta x_7 + \cdot$ / $1$ 1 $x_7 \ge \cdot$ / $\cdot$  $\Delta \Delta \implies X \ge \cdot$ / $\cdot$   $\Delta \Delta$ 

حال می خواهیم بهترین حد پایین را برای X بیابیم. ضرایب  $y_1$  و  $y_2$  را در نظر می گیریم و به ترتیب در قیود اول، دوم و سوم ضرب می کنیم.

$$y_{1}(\Upsilon \Delta x_{1} + \cdot / \Delta x_{Y} + \cdot / \Delta x_{Y} \geq \cdot / \Delta)$$

$$y_{Y}(\mathcal{F} \cdot x_{1} + \Upsilon \cdot \cdot x_{Y} + 1 \cdot x_{Y} \geq 1 \Delta)$$

$$y_{Y}(\Upsilon \cdot x_{1} + \Upsilon \cdot x_{Y} + 1 \cdot x_{Y} \geq \Upsilon)$$

$$y_{1} \geq \cdot , y_{Y} \geq \cdot , y_{Y} \geq \cdot$$

بنابراین هدف ما پیدا کردن  $y_7$  و  $y_7$  است به گونهای که سمت راست نامساوی را بیشینه کنند. از طرفی وقتی ضرایب  $y_7$  است به گونهای که سمت را با یکدیگر جمع میکنیم نباید مقدار آنها از ضریبهای متناظر در عبارت  $X = \frac{1}{2} (X_1 + \frac{1}{2} (X_1 + \frac{1}{2} (X_2 + \frac{1}{2} (X_1 + \frac{1}{2} (X_2 + \frac{1}{2} (X_1 + \frac{1}{$ 

$$\text{TD}y_1 + \text{S} \cdot y_{\text{T}} + \text{T} \cdot y_{\text{T}} \leq \text{IND}$$

$$\text{ID}y_1 + \text{T} \cdot y_{\text{T}} + \text{T} \cdot y_{\text{T}} \leq \text{ID}$$

$$\text{ID}y_1 + \text{T} \cdot y_{\text{T}} + \text{T} \cdot y_{\text{T}} \leq \text{ID}$$

$$\text{ID}y_1 + \text{T} \cdot y_{\text{T}} + \text{T} \cdot y_{\text{T}} \leq \text{ID}$$

$$\text{ID}y_1 \geq \text{T} \cdot y_{\text{T}} \geq \text{T} \cdot y_{\text{T}} \geq \text{T}$$

و در این حالت هدف ما پیدا کردن بیشینه عبارت  $Y = \frac{10}{7} + \frac{10}{7} + \frac{10}{7}$  است. خود این مسئه هم دوباره یک مسئله برنامهنویسی خطی است و به آن دوگان مسئه اصلی گفته می شود.

$$\max \quad {}^{\bullet}/{\Delta y_1} + {}^{\bullet}{\Delta y_{\Upsilon}} + {}^{\Psi}y_{\Upsilon}$$
s.t. 
$${}^{\Psi}\Delta y_1 + {}^{\varphi} \cdot y_{\Upsilon} + {}^{\Psi} \cdot y_{\Upsilon} \leq {}^{\bullet}/{}^{\vee}\Delta,$$

$${}^{\bullet}/{\Delta y_1} + {}^{\Psi} \cdot {}^{\bullet}y_{\Upsilon} + {}^{\Upsilon} \cdot y_{\Upsilon} \leq {}^{\bullet}\Delta,$$

$${}^{\bullet}/{\Delta y_1} + {}^{\Psi} \cdot y_{\Upsilon} + {}^{\Psi} \cdot y_{\Upsilon} \leq {}^{\Psi},$$

$$y_1, y_{\Upsilon}, y_{\Upsilon} \geq {}^{\bullet}$$

قضیه ۱ (strong duality). جواب مسئله اصلی و مسئله دوگان با هم برابر است.

**پرسش** فرم دوگان مسئله زیر را به دست آورید.

min 
$$\Delta x_1 + \mathbf{f} x_{\mathbf{f}} + \mathbf{A} x_{\mathbf{f}} + \mathbf{f} x_{\mathbf{f}}$$
  
s.t.  $\mathbf{f} x_1 + \mathbf{f} x_{\mathbf{f}} + \mathbf{f} x_{\mathbf{f}} + x_{\mathbf{f}} \ge \Delta$ ,  
 $x_1 - x_{\mathbf{f}} + \mathbf{f} x_{\mathbf{f}} + \mathbf{f} \cdot x_{\mathbf{f}} \ge \mathbf{f} \mathbf{V}$ ,  
 $\mathbf{f} x_1 + x_{\mathbf{f}} + \mathbf{f} \cdot x_{\mathbf{f}} \ge \mathbf{f}$ ,  
 $x_1, x_1, x_2, x_3 \ge \mathbf{f}$ 

پاسخ های خود را می توانید تا قبل از شروع کلاس به این لینک ارسال کنید.

