PA-1020

[Total No. of Pages: 4

[5902]-44

S.Y. B.Sc. (Computer Science) MATHEMATICS

MTC - 242 : Operations Research

(2019 Pattern) (Semester - IV) (Paper - II) (24222)

Time: 2 Hours] [Max. Marks: 35

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicates full marks.
- 3) Non-programmable scientific calculator is allowed.

Q1) Attempt any Five of the following:

 $[5 \times 2 = 10]$

 Use north-west corner rule to obtain Initial Basic Feasible Solution of the following transportation problem:

Destination → Origin ↓	D	D ₂	D ₃	Supply
O ₁	5	1	8	12
Ο,	2	4	0	14
O ₃	3	6	7	4
Demand	9	10	11	

b) Write dual form of the following Linear Programming Problem :

Minimize
$$Z = 10 x_1 + 6x_2 + 2x_3$$

Subject to:

$$-x_1 + x_2 + x_3 \ge 1$$
$$3x_1 + x_2 - x_3 \ge 2$$
$$x_1, x_2, x_3 \ge 0$$

c) Solve following assignment problem for Maximization:

Jobs → Persons ↓	I	П	III
A	1	4	5
В	2	3	3
C	3	1	2

- d) What is degeneracy in the transportation problem?
- e) Write the mathematical formulation of assignment problem.
- f) Write the standard form of following Linear Programming Problem:

Minimize
$$Z = x_1 + x_2 + x_3$$

Subject to:

$$x_{1} - 3x_{2} + 4x_{3} = 5$$

$$x_{1} - 2x_{2} \le 3$$

$$2x_{1} - x_{3} \ge 4$$

$$x_{1}, x_{2}, x_{3} \ge 0$$

g) Draw the feasible region for the following constraints:

Maximize
$$Z = 3x + 2y$$

Subject to:

$$x - y \le 1$$
$$x + y \ge 3$$
$$x, y \ge 0$$

Q2) Attempt any three of the following:

 $[3\times 5=15]$

 a) Obtain Initial Basic Feasible Solution of the following transportation problem by Vogel's approximation method.

Warehouses → Factory ↓	W	W ₂	W ₃	W_4	Supply
\mathbf{F}_{1}	30	25	40	20	100
F ₂	29	26	35	40	250
F ₃	31	33	37	30	150
Requirement	90	160	200	50	

b) Solve the following assignment problem:

	A	В	C	D	E
M,	4	6	10	5	6
M ₂	7	4	-	5	4
M ₃	~	6	9	6	2
M ₄	9	3	7	2	3

c) Solve the following linear programming problem by graphically:

Maximize
$$Z = 3x + 5y$$

Subject to:

$$x + 2y \le 2000$$

$$x + y \le 1500$$

$$y \le 600$$

$$x, y \ge 0$$

d) Solve the following Linear Programming Problem by Big-M method.

Maximize
$$Z = x + 4y$$

S.t.

$$x + 2y \le 2$$

$$4x + 3y \ge 12$$

$$x, y \ge 0$$

e) Solve following assignment problem for minimum cost :

	I	II	Ш	IV	V
1	3	8	2	10	3
2	8	7	2	9	7
3	6	4	2	7	5
4	8	4	2	3	5
5	9	10	6	9	10

 a) Obtain optimal solution of the following Transportation Problem by modified distribution method.

1	2	11	4
20		10	
3	3	2	1
	20	20	10
4	2	5	9
	20)		

Also obtain alternate optimal solution

b) Solve the following linear programming problem by simplex method:

Maximize
$$Z = 3x_1 + 2x_2 + 5x_3$$

Subject to:

$$x_1 + 2x_2 + x_3 \le 430$$
$$3x_1 + 2x_3 \le 460$$
$$x_1 + 4x_2 \le 420$$
$$x_1, x_2, x_3 \ge 0$$

Total No. of Questions: 3]

SEAT No. :

P5146

[Total No. of Pages: 4

[5823]-404

S.Y. B.Sc. (Computer Science) MATHEMATICS

MTC-242: Operations Research

(2019 Pattern) (Semester - IV) (Paper - II) (24222)

Time: 2 Hours] [Max. Marks: 35

Instructions to the candidates:

- 1) All Questions are compulsory.
- 2) Figures to the right indicates full marks.
- 3) Non-programmable scientific calculator is allowed.
- Q1) Attempt any Five of the following.

 $[5 \times 2 = 10]$

- a) Write two applications of Linear programming problem.
- b) How an assignment problem with certain restrictions can be solved?
- c) Write dual form of the following Linear programming problem:

Maximize
$$Z = x_1 + 3x_2$$

Subject to

3 . . 2 . . 6

$$3x_1 + 2x_2 \le 6$$

$$3x_1 + x_2 = 4$$

$$x_1, x_2 \ge 0$$

 d) Obtain Initial Basic Feasible solution of the Transportation Problem using Matrix Minima Method.

D	D ₂	D ₃	Supply
10	13	6	10
16	7	13	12
8	22	2	8
6	11	13	30
		16 7 8 22	10 13 6 16 7 13 8 22 2

e) Solve the following Assignment Problem for minimization :

Jobs	I	П	III
→ Persons ↓			
A	7	3	5
В	2	7	4
С	6	5	3
D	3	4	7

f) Write the standard form of the following linear programming problem :

$$Minimize Z = x_1 + x_2 + x_3$$

Subject to:

$$x_1 - 3x_2 + 4x_3 = 5$$

$$x_1 - 2x_2 \le 3$$

$$2x_1 - x_3 \ge 4$$

$$x_1, x_2, x_3 \ge 0$$

g) Draw the Feasible region for the following constraints:

$$Max Z = 3x - 2y$$

Subject to

$$x + y \le 1$$
$$2x + 2y \ge 4$$
$$x, y \ge 0$$

Q2) Attempt any three of the following:

 $[3 \times 5 = 15]$

Solve the following assignment problem to minimize the cost such that Machine. M₂ cannot be assigned Job - C and Machine M₃ cannot be assigned Job - A.

	A	В	C	D	E
M ₁	9	11	15	10	11
M ₂	12	9	-	10	9
M ₃	=	11	14	11	7
M ₄	14	8	12	7	8

b) Solve the following Linear Programming Problem by Big-M method:

Maximize
$$Z = 3x_1 - x_2$$

Subject to:

$$2x_1 + x_2 \ge 2$$

$$x_1 + 3x_2 \le 3$$

$$x_2 \le 4$$

$$x_1, x_2 \ge 0$$

c) Solve the following assignment problem For minimum cost :

	A	В	C	D	E
M,	7	5	9	8	11
M ₂	9	12	7	11	10
M ₃	8	5	4	6	9
M_4	7	3	6	9	5
M ₅	4	6	7	5	11

d) Solve the Linear Programming Problem by graphically.

$$Max. Z = 9x + 13y$$

Subject to:

$$2x + 3y \le 18$$

$$2x + y \le 10$$

$$x, y \ge 0$$

e) Solve Transportation Problem by north - west corner rule.

	I	II	Ш	IV	V	VI	Capacity
A	9	12	9	8	4	3	5
В	7	3	6	8	9	4	8
С	4	5	6	8	10	14	6
D	7	3	5	7	10	9	7
Е	2	3	8	10	2	4	3
Requirement	3	4	5	7	6	4	

Q3) Attempt any one of the following:

 $[1 \times 10 = 10]$

a) Find Initial Basic Feasible solution by vogel's Approximation method. Obtain the optimal solution by Modified Distribution method of the following transportation problem.

Ware houses → Factory ↓	W 1	W ₂	W_3	W_4	Supply
F,	19	30	50	10	7
F ₂	70	30	40	60	9
F,	40	8	70	20	18
Requirement	5	8	7	14	34

 i) Solve the following Linear Programming problem by simplex method.

$$Max. Z = 6x + 3y$$

Subject to:

$$2x + y \le 8$$
$$3x + 3y \le 18$$
$$y \le 3$$
$$x, y \ge 0$$

ii) Write an algorithm to solve assignment problem

