Control Systems

G V V Sharma*

	Contents			7	Gain I	Gain Margin	
1	Signal Flow Graph		2		7.1	Introduction	2
	1.1	Mason's Gain Formula	2				
	1.2	Matrix Formula	2		7.2	Example	2
2	Bode Plot		2		7.3	Example	2
	2.1	Introduction	2				
	2.2	Example	2				
	2.3	Phase	2	8	Phase	Margin	2
3	Secon	nd order System	2		8.1	Intoduction	2
	3.1	Damping	2				
	3.2	Example	2		8.2	Example	2
	3.3	Settling Time	2				
	3.4	Routh Array	2				
	3.5	Marginal Stability	2	9	Oscilla	ntor	2
	3.6	Stability	2				
	3.7	Example	2		9.1	Introduction	2
	3.8	Example	2		9.2	Evampla	2
4	State-	Space Model	2		9.2	Example	2
	4.1	Controllability and Observ-					
		ability	2	10	D4 I		2
	4.2	Second Order System	2 2	10	Root I	Locus	2
	4.3	Example	2		10.1	Introduction	2
	4.4	Example	2		10.1	introduction	_
	4.5	Example	2				
	4.6	Example	2				
5	Nyquist Plot		2				
	5.1	Introduction	2		stract—This manual is an introduction to control		
	5.2	Example	2	systems based on GATE problems.Links to sample Python codes are available in the text.			
6	Compensators		2				
	6.1	Phase Lead	2	Download python codes using			
	6.2	Lag Lead	2				
	6.3	Example	2	svn	co https:/	/github.com/gadepall/school/trunk/	

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

svn co https://github.com/gadepall/school/trunk/ control/codes

1 SIGNAL FLOW GRAPH

- 1.1 Mason's Gain Formula
- 1.2 Matrix Formula

2 Bode Plot

- 2.1 Introduction
- 2.2 Example
- 2.3 Phase

3 SECOND ORDER SYSTEM

- 3.1 Damping
- 3.2 Example
- 3.3 Settling Time
- 3.4 Routh Array
- 3.5 Marginal Stability
- 3.6 Stability
- 3.7 Example
- 3.8 Example

4 STATE-SPACE MODEL

- 4.1 Controllability and Observability
- 4.2 Second Order System
- 4.3 Example
- 4.4 Example
- 4.5 Example
- 4.6 Example

5 Nyquist Plot

- 5.1 Introduction
- 5.2 Example

6 Compensators

- 6.1 Phase Lead
- 6.2 Lag Lead
- 6.3 Example

7 Gain Margin

- 7.1 Introduction
- 7.2 Example
- 7.3 Example

8 Phase Margin

- 8.1 Intoduction
- 8.2 Example

9 OSCILLATOR

- 9.1 Introduction
- 9.2 Example

10 Root Locus

- 10.1 Introduction
- 10.1. A unity negative feedback system has the

$$G(s) = \frac{K}{s(s+1)(s+3)}$$
 (10.1.1)

The value of the gain K(>0) at which the root locus crosses the imaginary axis is?

Solution:

10.2. Root Locus:

The Root locus is the locus of the roots of the characteristic equation, which are the poles of closed loop transfer function, by varying system gain K from 0 to ∞ .

10.3. The characteristic equation of the closed loop control system is:

$$1 + G(s)H(s) = 0 (10.3.1)$$

The points on the root locus branches must satisfy the angle condition. We can find the value of K for the points on the root locus branches by using magnitude condition.

10.4. Angle Condition:

Given the Characteristic equation, we can write 10.8. Verification: it as:

$$G(s)H(s) = -1 + i0$$
 (10.4.1)

The phase angle of G(s)H(s) is: $\angle G(s)H(s) =$

$$\arctan(\frac{0}{-1}) = (2n+1)\pi$$

The angle condition is the point at which the angle of the transfer function is an odd multiple of 180.

10.5. Magnitude Condition

Magnitude of G(s)H(s) is:

$$|G(s)H(s)| = \sqrt{(-1)^2 + 0^2}$$
 (10.5.1)

$$|G(s)H(s)| = 1$$
 (10.5.2)

The magnitude condition is that the point (which satisfied the angle condition) at which the magnitude of the transfer function is one.

10.6. For given transfer function:

H(s) = 1. So, closed loop transfer function will be

$$T(s) = \frac{K}{s(s+1)(s+3) + K}$$
 (10.6.1)

Poles of closed loop transfer function are the roots of the Characteristic Equation. So, characteristic Equation is:

$$s^3 + 4s^2 + 3s + K = 0 ag{10.6.2}$$

10.7. Routh Array Table:

If all elements of any row of the Routh array table are zero, then the root locus branch intersects the imaginary axis

Routh Array Table:

$$\begin{vmatrix} s^{3} \\ s^{2} \\ s^{1} \\ s^{0} \end{vmatrix} \begin{vmatrix} 1 & 3 \\ 4 & K \\ (12 - K)/4 & 0 \\ K \end{vmatrix}$$
 (10.7.1)

For poles to be on imaginary axis, row s^1 should be zero. So,

$$\frac{12 - K}{4} = 0 \tag{10.7.2}$$

Hence, K = 12.

Auxilliary equation:

$$4s^2 + K = 0 (10.8.1)$$

$$4s^2 + 12 = 0 \tag{10.8.2}$$

$$\implies$$
 s = $-j\sqrt{3}$,+ $j\sqrt{3}$

Thus a pair of poles lie on imaginary axis for K = 12.

10.9. Root Locus plot

Code to plot root locus: