m2-l2-p3

February 3, 2024

1 M2-L2 Problem 3 (5 points)

When flow is directed across a pin fin heat sink, increasing fluid velocity can improve the heat transfer, making the heat sink more effective.

You have been given a dataset containing measurements for such a scenario, which contains the following: - Input: Reynolds Number of air flowing past the heat sink - Output: Heat transfer coefficient of the heat sink, in $W/(m^2)$ K

Your job is to train a model on this data to predict the heat transfer coefficient, given Reynolds number as input. You will use a high-order polynomial

Start by loading the data in the following cell:

```
[5]: import numpy as np
     import matplotlib.pyplot as plt
     def plot_data_with_regression(x_data, y_data, x_reg, y_reg, title=""):
         plt.figure()
         plt.scatter(x_data.flatten(), y_data.flatten(), label="Data", c="black")
         plt.plot(x_reg.flatten(), y_reg.flatten(), label="Fit")
         plt.legend(loc="upper left")
         plt.xlabel(r"$Re / 1000$")
         plt.ylabel(r"h, $W/m^2 K$")
         plt.xlim(0,6)
         plt.ylim(50,200)
         plt.title(title)
         plt.show()
     deg = 5
     x = np.array([1.010, 2.000, 2.990, 4.100, 5.020])
     y = np.array([75.1, 104.0, 100.6, 138.8, 150.8])
     X = np.vander(x,deg)
     xreg = np.linspace(0,6)
     Xreg = np.vander(xreg,deg)
```

1.1 Least Squares Regression

As we have done for previous problems, we can do least squares regression by computing the pseudo-inverse of the design matrix. Notice how the model performs beyond the training data.

```
[6]: w = np.linalg.inv(X.T @ X) @ X.T @ y.reshape(-1,1)
yreg = Xreg @ w
plot_data_with_regression(x, y, xreg, yreg, "5th order polynomial regression")
```


1.2 L2 Regularization

Notice that the plot above reveals that our fifth-order model is overfitting to the data. Let's try applying L2 regularization to fix this. In the lecture, the closed-form solution to least squares with L2 regularization was:

$$w=(X'X+\lambda I_m)^{-1}X'y$$

where I_m is the identity matrix, but with zero in the bias row/column instead of 1; λ is regularization strength; X' is the design matrix and y column vector output.

Complete the function below to compute this w for a given lambda:

```
[7]: def get_regularized_w(L):
    I_m = np.eye(deg)
    I_m[-1,-1] = 0

# YOUR CODE GOES HERE
# return regularized w
    regularized_w = np.linalg.inv(X.T @ X + L*I_m) @ X.T @ y.reshape(-1,1)
    return regularized_w
```

1.3 Testing different lambda values

With the above function written, we can compute w for some different values of lambda and decide which is qualitatively best.

1.4 Model Selection

Which value of lambda appears to yield the "best" model?

When lambda is 0.1, the model appears to yield the best.