MECHANICAL ENGINEERING DEPARTMENT INDIAN INSTITUTE OF TECHNOLOGY, DELHI MEL 760 PROJECT MANAGEMENT MAJOR TEST

Date: 28th November 2006

Time: 10.30 – 12.30 P.M Maximum marks 30

Note: Attempt any four questions. All questions carry equal marks.

1. The following data is given for the activities in a project.

Job	a	b	С	đ	е	f	g	h	i
Predecessors	b,d	h	е	е		С	C		g
Duration	6	4	2	1	8	3	6	9	5
(days)									

- (a) Draw the A-O-A network
- (b) Determine all the four floats for all the activities.
- (c) What is the critical path?
- (d) If activity b increases in duration by 2 days what is the critical path?
- (e) If the increase in duration of activity b is by 4 days what is the critical path?
- 2. For the network shown in Fig 1 all activities follow a uniform distribution with parameters indicated in the Table below.

Activity	Lower duration, Upper duration
A1	10, 20
A2	20, 30
A3	10, 20
A4	20, 40
A5	10, 30
A6	10,20
A7	20,30

Compute the 90 % confidence times to reach each of the five nodes under both PERT and CCP.

3 The normal and crash durations for the activities of a project are given below. Determine the Project Cost Curve. Use either Fulkerson's procedure or the Heuristic approach.

Arc	Crash duration	Normal duration	Cost slope
(1,2)	4	6	8
(1,3)	4	8	9
(1,4)	3	5	3
(2,4)	3	3	infinity
(2,5)	3	5	4
(3,6)	8	12	20
(4,6)	5	8	5
(5,6)	6	6	infinity

4. A project has the following data:

Actitity	Predecessors	Duration (days)	Men/day
Al		2	4
A2 ""		1	2
A2	Al	3	2
A4	Al	2	4
A5	A2, A3	1	4

- (a) For both the ES/LS schedules perform resource aggregation and compare the peak and average resource load.
- (b) If the resources were limited to 4 men per day and the project duration could be anywhere between 6-9 days develop and ILP for minimizing the project duration under resource constraints.
- 5. Write short notes on any four of the following:
- (a) Project identification and screening
- (b) Financial appraisal of projects
- (c) Teamwork and Leadership in projects
- (d) Problems at project completion
- (e) Matrix organization for projects.