点集拓扑作业(6)

Problem 1 赋予全序集 X 序拓扑, $a,b\in X,a< b,U$ 是 a 的开邻域. 证明: $\exists c\in(a,b],[a,c)\subseteq U.$

由于 U 是 a 的开邻域,因此 $a\in U, U$ 是开集。记 $\mathcal B$ 是序拓扑的基,则 $\exists J, \forall \alpha\in J, B_\alpha=(s_\alpha,t_\alpha)\in \mathbb B$,满足 $U=\bigcup_{\alpha\in J}B_\alpha=\bigcup_{\alpha\in J}(s_\alpha,t_\alpha)$.其中 s_α,t_α 可能为 $-\infty,+\infty$,分别表示 $[m,t_\alpha), [s_\alpha,M)$ 的情形,m,M 是 X 的最小值和最大值,如果存在的话。任取 $\alpha_0\in J, a\in B_{\alpha_0}$ 记 $t=\min\{t_{\alpha_0},b\}$,则 $t\in (a,b]$ 且 $[a,t)\subseteq [a,t_{\alpha_0})=B_{\alpha_0}\subseteq\bigcup_{\alpha\in J}B_\alpha=U$.命题得证.

Problem 2 证明或否定: 设 (X,\mathcal{T}) 是拓扑空间, \mathcal{C} 是 \mathcal{T} 的子基, $A\subseteq X$. 则 $x\in\overline{A}$ 当且仅当 $\forall U\in\mathcal{C}$, 若 $x\in U$, 则 $U\cap A\neq\phi$.

命题的必要性依然成立, 充分性不再成立.

必要性: $x \in \overline{A} \Rightarrow \forall U \in \mathcal{T}, x \in U$ 则 $U \cap A \neq \phi$. 由于子基中的元素均为开集,所以命题成立. 充分性:取 $X = \{a,b,c\}$ 是三元素集合, $\mathcal{C} = \left\{\{a,b\},\{a,c\}\right\}$ 是一个子基. 取 $A = \{b,c\}$. 由于 $A = X - \{a\}$,而 $\{a\} = \{a,b\} \cap \{a,c\}$ 是开集,所以 A 是闭集, $A = \overline{A}$, $a \notin \overline{A}$. 但是逐一验证便可得到, $\forall U \in \mathcal{C}$,都有 $U \cap A \neq \phi$. 这说明充分性不成立.

Problem 3 $X = \{a, b, c\}$ 上是否存在使得 $A = \{a\}, A' = \{a, b\}$ 的拓扑?

不存在. 否则, 由于 $a \in A'$, 于是 $\forall U$ 是开集, $a \in U$, 都有 $\phi \neq U \cap A \setminus \{a\} = U \cap \phi = \phi$. 矛盾!

Problem 4 设 A 是拓扑空间 X 的子集, 证明: $\mathring{A} = X \setminus \overline{X \setminus A}, \overline{A} = X \setminus (X \setminus A)$.

记 \mathcal{T} 是 X 的拓扑. 则有 $\mathring{A} = \bigcup_{\substack{U \subseteq A \\ U \in \mathcal{T}}} U$. 于是可以得到 : $X \setminus \mathring{A} = X \setminus \left(\bigcup_{\substack{U \subseteq A \\ U \in \mathcal{T}}} U\right) = \bigcap_{\substack{U \subseteq A \\ U \in \mathcal{T}}} X \setminus U$. 由于

 $X \setminus A \subseteq X \setminus U$, 只需证明 $X \setminus U$ 遍历包含 $X \setminus A$ 的闭集, 即 U 遍历包含于 A 的开集, 这就是 U 的取法.

同样地,
$$X \setminus (X \ A) = X \setminus \left(\bigcup_{\substack{U \subseteq X \setminus A \\ U \in \mathcal{T}}} U \right) = \bigcap_{\substack{U \subseteq X \setminus A \\ U \in \mathcal{T}}} X \setminus U$$
. 由上知, $\bigcap_{\substack{U \subseteq X \setminus A \\ U \in \mathcal{T}}} X \setminus U = \overline{X \setminus X \setminus A} = \overline{A}$. 得证.

Problem 5 证明: $\overline{A \cup B} = \overline{A} \cup \overline{B}$ 和 $\bigcup_{\alpha \in J} \overline{A_{\alpha}} \subseteq \overline{\bigcup_{\alpha \in J} A_{\alpha}}$.

记 \mathcal{B} 是拓扑的基,先证明后一个命题. $\forall x \in \bigcup_{\alpha \in J} \overline{A_\alpha}, \exists \alpha_0 \in J, x \in \overline{A_{\alpha_0}}.$ 于是

 $orall x \in B \in \mathcal{B}, A_{lpha_0} \cap B
eq \phi.$

于是 $B \cap \left(\bigcup_{\alpha \in J} A_{\alpha}\right)
eq \phi$. 因此 $x \in \overline{\bigcup_{\alpha \in J} A_{\alpha}}$. 所以 $\bigcup_{\alpha \in J} \overline{A_{\alpha}} \subseteq \overline{\bigcup_{\alpha \in J} A_{\alpha}}$.

注意到 $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$ 是上式的特殊情况, 只需证明, $\forall x \in \overline{A \cup B}, x \in \overline{A} \cup \overline{B}$. 注意到 $\overline{A}, \overline{B}$ 是闭集, 所以 $\overline{A} \cup \overline{B}$ 是闭集且 $\overline{A} \subseteq \overline{A}, \overline{B} \subseteq \overline{B}$. 于是 $\overline{A} \cup \overline{B}$, 因为 $\overline{A \cup B}$ 是包含 $\overline{A} \cup \overline{B}$ 的最小闭集, 所以 $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$. 综上, 命题成立.

Problem 6 (1) 证明 $C = \{[a,b)|a,b \in \mathbb{Q}\}$ 是 \mathbb{R} 上的基, 并验证在该拓扑下 $(0,\sqrt{2}),(\sqrt{2},3)$ 的闭包.

- (2) 证明序拓扑中 $\overline{(a,b)} \subseteq [a,b]$. 并指明等号何时成立.
- (1) $\forall x \in \mathbb{R}, a = [x], b = [x] + 1, x \in [a, b) \in C$. 其中 [x] 是 x 的整数部分.

 $orall B_1=[a_1,b_1), B_2=[a_2,b_2)\in \mathcal{C}, orall x\in B_1\cap B_2$ 有 $x\in B_3=[\max\{a_1,a_2\},\min\{b_1,b_2\})\in \mathcal{C},$ 且满足 $B_3\subseteq B_1\cap B_2$. 于是 \mathcal{C} 是一个基.

接下来我们证明, $\overline{(0,\sqrt{2})}=[0,\sqrt{2}]$. 分为两部分,验证 $0,\sqrt{2}$ 是闭包中的元素,验证 $(-\infty,0)\cup(\sqrt{2},+\infty)$ 中没有闭包中的元素。 $\forall 0\in B=[a,b)\in\mathcal{C}$,则 $\min\{\frac{b}{2},1\}\in B\cap(0,\sqrt{2})$. 因此 $0\in\overline{(0,\sqrt{2})}$. 再者 $\forall\sqrt{2}\in B'=[a',b')\in\mathcal{C}$, 由于 $\sqrt{2}\notin\mathbb{Q}$, 于是 $a'<\sqrt{2}$. 取大于 a' 小于 $\sqrt{2}$ 的有理数 c, 例如: $a'+[\sqrt{2}-a']$. 则 $\max\{c,1\}\in(0,\sqrt{2})\cap B'$. 因此 $\sqrt{2}\in\overline{(0,\sqrt{2})}$. 再来证明后半部分, $\forall x<0$, 注意到 $\exists t< x,s>x,t,s\in\mathbb{Q},x\in[t,s)\in\mathcal{C}$ 但 $[x,\frac{x}{2})\cap(0,\sqrt{2})=\phi$. 故 $x\notin\overline{(0,\sqrt{2})}$. 同样地, $\forall x>\sqrt{2}$, $\exists y\in(\sqrt{2},x)\cap\mathbb{Q}$, $x\in[y,[x]+1)\in\mathcal{C}$, 但 $[y,[x]+1)\cap(0,\sqrt{2})=\phi$. 故 $x\notin\overline{(0,\sqrt{2})}$. 再然后证明, $(\sqrt{2},3)=[\sqrt{2},3)$. 同样是两方面的证明。 $\forall\sqrt{2}\in B=[a,b)\in\mathcal{C}$, $\exists c\in(\sqrt{2},b)\cap\mathbb{Q}$, 使得 $\min\{c,2\}\in(\sqrt{2},3)\cap B$. 于是 $\sqrt{2}\in\overline{(\sqrt{2},3)}$. 接下来 $\forall x<\sqrt{2}$, $\exists t< x,x< s<\sqrt{2}$, $t,s\in\mathbb{Q}$, 满足 $t\in[t,s)\in\mathcal{C}$ 但 $t,s\cap(\sqrt{2},3)=\phi$. 故 $t\in[t,s)\in\mathcal{C}$ 包 $t\in[t,s)\in\mathcal{C}$ $t\in[t,s)\in\mathcal{C}$ 包 $t\in[t,s)\in\mathcal{C}$ $t\in[t,s)\in\mathcal{C}$ $t\in[t,s)\in\mathcal{C}$ $t\in[t,s)\in\mathcal{C}$ $t\in[t,s)\in\mathcal{C}$ $t\in[t,s)\in\mathcal{C}$ $t\in[t,s)\in\mathcal{$

(2) 对全序集 X 上的序拓扑 T, 基为 B. 只讨论 a, b 不是 X 的最值, 否则只需单列下文证明的一般.

只需证明, $\forall x < a, y > b, x, y \not\in \overline{(a,b)}$. 取 $x \in (t,a) \in \mathcal{B}$, 其中 $t = \begin{cases} -\infty, \text{if } m = \min X \exists, x = m \\ y < x, \text{ others} \end{cases}$. 但

是 $(t,a)\cap(a,b)=\phi$. 因此 $x
ot\in\overline{(a,b)}$. 同样可证 y. 因此 $\overline{(a,b)}\subseteq[a,b]$.

等号成立当且仅当 $\forall c \in X, c > a, \exists t \in (a,c) \cap X. \ \forall d \in X, d < b, \exists s \in (d,b) \cap X.$

必要性: $a \in \overline{(a,b)} \Rightarrow \forall \beta > a, a \in B = (\alpha,\beta) \in \mathcal{B}, \exists t \in B \cap (a,b), a < t < \beta.$ 同理可证关于 b 的情况.

充分性: $\forall a \in B = (\alpha, \beta) \in \mathcal{B}, \exists t \in (a, \min\{\beta, b\}) = B \cap (a, b).$ 于是 $a \in \overline{(a, b)}$. 同理可证关于 b 的情况.