Lecture 8: Policy Gradient I ²

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2018

Additional reading: Sutton and Barto 2018 Chp. 13

²With many slides from or derived from David Silver and John Schulman and Pieter Abbeel

Last Time: We want RL Algorithms that Perform

- Optimization
- Delayed consequences
- Exploration
- Generalization
- And do it statistically and computationally efficiently

high dete efficiency

Last Time: Generalization and Efficiency

 Can use structure and additional knowledge to help constrain and speed reinforcement learning

Class Structure

• Last time: Imitation Learning

• This time: Policy Search

• Next time: Policy Search Cont.

Table of Contents

- Introduction
- Policy Gradient
- Score Function and Policy Gradient Theorem
- 4 Policy Gradient Algorithms and Reducing Variance

Policy-Based Reinforcement Learning

• In the last lecture we approximated the value or action-value function using parameters θ ,

$$V_{ heta}(s) pprox V^{\pi}(s)$$

$$Q_{ heta}(s,a)pprox Q^{\pi}(s,a)$$

look up

- A policy was generated directly from the value function
 - e.g. using ϵ -greedy
- In this lecture we will directly parametrize the policy

$$\pi_{\theta}(s, a) = \mathbb{P}[a|s, \theta]$$

- Goal is to find a policy π with the highest value function V^{π}
- We will focus again on model-free reinforcement learning

Value-Based and Policy-Based RL

- Value Based
 - Learnt Value Function
 - Implicit policy (e.g. ϵ -greedy)
- Policy Based
 - No Value Function
 - Learnt Policy
- Actor-Critic
 - Learnt Value Function
 - Learnt Policy

Advantages of Policy-Based RL

Advantages:

- Better convergence properties
- Effective in high-dimensional or continuous action spaces

1060tics

Can learn stochastic policies

Disadvantages:

- Typically converge to a local rather than global optimum
- ullet Evaluating a policy is typically inefficient and high variance

Example: Rock-Paper-Scissors

- Two-player game of rock-paper-scissors
 - Scissors beats paper
 - Rock beats scissors
 - Paper beats rock
- Consider policies for iterated rock-paper-scissors
 - A deterministic policy is easily exploited
 - A uniform random policy is optimal (i.e. Nash equilibrium)

Example: Aliased Gridword (1)

- The agent cannot differentiate the grey states
- Consider features of the following form (for all N, E, S, W)

$$\phi(s,a) = 1$$
 (wall to N, $a = \text{move E}$)

Compare value-based RL, using an approximate value function

$$Q_{\theta}(s,a) = f(\phi(s,a),\theta)$$

To policy-based RL, using a parametrised policy

$$\pi_{\theta}(s, a) = g(\phi(s, a), \theta)$$

Example: Aliased Gridworld (2)

- Under aliasing, an optimal deterministic policy will either
 - move W in both grey states (shown by red arrows)
 - move E in both grey states
- Either way, it can get stuck and never reach the money
- Value-based RL learns a near-deterministic policy
 - ullet e.g. greedy or ϵ -greedy
- So it will traverse the corridor for a long time

Example: Aliased Gridworld (3)

An optimal stochastic policy will randomly move E or W in grey states

$$\pi_{\theta}$$
 (wall to N and W, move E) = 0.5

$$\pi_{\theta}$$
(wall to N and W, move W) = 0.5

- It will reach the goal state in a few steps with high probability
- Policy-based RL can learn the optimal stochastic policy

Policy Objective Functions

- Goal: given a policy $\pi_{\theta}(s, a)$ with parameters θ , find best θ
- But how do we measure the quality for a policy π_{θ} ?
- In episodic environments we can use the start value of the policy

$$J_1(\theta) = V^{\pi_{\theta}}(s_1) = \mathbb{E}_{\pi_{\theta}}[v_1]$$

In continuing environments we can use the average value

$$J_{\mathsf{avV}}(\theta) = \sum_{\mathsf{s}} d^{\pi_{\theta}}(\mathsf{s}) V^{\pi_{\theta}}(\mathsf{s})$$

- where $d^{\pi_{\theta}}(s)$ is the stationary distribution of Markov chain for π_{θ} .
- Or the average reward per time-step

$$J_{\mathsf{avR}}(heta) = \sum_{\mathsf{s}} \mathsf{d}^{\pi_{ heta}}(\mathsf{s}) \sum_{\mathsf{a}} \pi_{ heta}(\mathsf{s}, \mathsf{a}) \mathcal{R}^{\mathsf{a}}_{\mathsf{s}}$$

 For simplicity, today will mostly discuss the episodic case, but can easily extend to the continuing / infinite horizon case

Policy optimization

- Policy based reinforcement learning is an optimization problem
- ullet Find policy parameters heta that maximize $V^{\pi_{ heta}}$

Policy optimization

- Policy based reinforcement learning is an optimization problem
- ullet Find policy parameters heta that maximize $V^{\pi_{ heta}}$
- Can use gradient free optimization:
 - Hill climbing
 - Simplex / amoeba / Nelder Mead
 - Genetic algorithms
 - Cross-Entropy method (CEM)
 - Covariance Matrix Adaptation (CMA)

Recall Human-in-the-Loop Exoskeleton Optimization (Zhang et al. Science 2017)

 Optimization was done using CMA-ES, variation of covariance matrix evaluation

Gradient Free Policy Optimization

 Can often work embarrassingly well: "discovered that evolution strategies (ES), an optimization technique that's been known for decades, rivals the performance of standard reinforcement learning (RL) techniques on modern RL benchmarks (e.g. Atari/MuJoCo)" (https://blog.openai.com/evolution-strategies/)

Gradient Free Policy Optimization

- Often a great simple baseline to try
- Benefits
 - Can work with any policy parameterizations, including non-differentiable

• Frequently very easy to parallelize (computation US

- Limitations
 - Typically not very sample efficient because it ignores temporal structure

Policy optimization

- Policy based reinforcement learning is an optimization problem
- Find policy parameters θ that maximize $V^{\pi_{\theta}}$
- Can use gradient free optimization:
- Greater efficiency often possible using gradient
 - Gradient descent
 - Conjugate gradient
 - Quasi-newton
- We focus on gradient descent, many extensions possible
- And on methods that exploit sequential structure

optm12

GPS

Table of Contents

- 1 Introduction
- Policy Gradient
- 3 Score Function and Policy Gradient Theorem
- 4 Policy Gradient Algorithms and Reducing Variance

Policy Gradient

- Define $V(\theta) = V^{\pi_{\theta}}$ to make explicit the dependence of the value on the policy parameters
- Assume episodic MDPs (easy to extend to related objectives, like average reward)

Policy Gradient

- Define $V(\theta) = V^{\pi_{\theta}}$ to make explicit the dependence of the value on the policy parameters
- Assume episodic MDPs
- Policy gradient algorithms search for a *local* maximum in $V(\theta)$ by ascending the gradient of the policy, w.r.t parameters θ

$$\nabla \theta = \alpha \nabla_{\theta} V(\theta)$$

• Where $\nabla_{\theta} V(\theta)$ is the policy gradient

• and α is a step-size parameter

Computing Gradients by Finite Differences

- To evaluate policy gradient of $\pi_{\theta}(s, a)$
- For each dimension $k \in [1, n]$
 - Estimate kth partial derivative of objective function w.r.t. θ
 - ullet By perturbing heta by small amount ϵ in kth dimension

$$\frac{\delta V(\theta)}{\delta \theta_k} \approx \frac{V(\theta + \epsilon u_k) - V(\theta)}{\epsilon}$$

where u_k is a unit vector with 1 in kth component, 0 elsewhere.

Computing Gradients by Finite Differences

- To evaluate policy gradient of $\pi_{\theta}(s, a)$
- For each dimension $k \in [1, n]$
 - Estimate kth partial derivative of objective function w.r.t. θ
 - ullet By perturbing heta by small amount ϵ in kth dimension

$$\frac{\delta V(\theta)}{\delta \theta_k} pprox \frac{V(\theta + \epsilon u_k) - V(\theta)}{\epsilon}$$

where u_k is a unit vector with 1 in kth component, 0 elsewhere.

- Uses *n* evaluations to compute policy gradient in *n* dimensions
- Simple, noisy, inefficient but sometimes effective
- Works for arbitrary policies, even if policy is not differentiable

Training AIBO to Walk by Finite Difference Policy Gradient²⁷

- Goal: learn a fast AIBO walk (useful for Robocup)
- Adapt these parameters by finite difference policy gradient
- Evaluate performance of policy by field traversal time

²⁷Kohl and Stone. Policy gradient reinforcement learning for fast quadrupedal locomotion. ICRA 2004. http://www.cs.utexas.edu/ai-lab/pubs/icra04.pdf

AIBO Policy Parameterization

- AIBO walk policy is open-loop policy
- No state, choosing set of action parameters that define an ellipse
- Specified by 12 continuous parameters (elliptical loci)
 - The front locus (3 parameters: height, x-pos., y-pos.)
 - The rear locus (3 parameters)
 - Locus length
 - Locus skew multiplier in the x-y plane (for turning)
 - The height of the front of the body
 - The height of the rear of the body
 - The time each foot takes to move through its locus
 - The fraction of time each foot spends on the ground
- ullet New policies: $\{ egin{aligned} \mathsf{or} \ \mathsf{each} \ \mathsf{parameter}, \ \mathsf{randomly} \ \mathsf{add} \ ig(\epsilon, \ \mathsf{0}, \ \mathsf{or} \ -\epsilon ig) \end{aligned}$

AIBO Policy Experiments

- "All of the policy evaluations took place on actual robots... only human intervention required during an experiment involved replacing discharged batteries ... about once an hour."
- Ran on 3 Aibos at once
- Evaluated 15 policies per iteration.
- Each policy evaluated 3 times (to reduce noise) and averaged
- Each iteration took 7.5 minutes
- ullet Used $\eta=2$ (learning rate for their finite difference approach)

Training AIBO to Walk by Finite Difference Policy **Gradient Results**

 Authors discuss that performance is likely impacted by: initial starting policy parameters, ϵ (how much policies are perturbed), η (how much to change policy), as well as policy parameterization

AIBO Walk Policies

 $\bullet \ https://www.cs.utexas.edu/\tilde{A}ustinVilla/?p{=}research/learned_walk$

Table of Contents

- Introduction
- Policy Gradient
- 3 Score Function and Policy Gradient Theorem
- 4 Policy Gradient Algorithms and Reducing Variance

Computing the gradient analytically

- We now compute the policy gradient analytically
- Assume policy π_{θ} is differentiable whenever it is non-zero
- ullet and we know the gradient $abla_{ heta}\pi_{ heta}(s,a)$

Likelihood Ratio Policies

- Denote a state-action trajectory as $\tau = (s_0, a_0, r_0, ..., s_{T-1}, a_{T-1}, r_{T-1}, s_T)$
- Use $R(\tau) = \sum_{t=0}^{T} R(s_t, a_t)$ to be the sum of rewards for a trajectory τ

Likelihood Ratio Policies

- Denote a state-action trajectory as $\tau = (s_0, a_0, r_0, ..., s_{T-1}, a_{T-1}, r_{T-1}, s_T)$
- Use $R(\tau) = \sum_{t=0}^{T} R(s_t, a_t)$ to be the sum of rewards for a trajectory τ
- Policy value is

$$V(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{T} R(s_t, a_t); \pi_{\theta} \right] = \sum_{\tau} P(\tau; \theta) R(\tau), \tag{1}$$

- where $P(\tau; \theta)$ is used to denote the probability over trajectories when executing policy $\pi(\theta)$
- In this new notation, our goal is to find the policy parameters θ :

$$\arg\max_{\theta} V(\theta) = \arg\max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau). \tag{2}$$

Likelihood Ratio Policy Gradient

• Goal is to find the policy parameters θ :

$$\arg\max_{\theta} V(\theta) = \arg\max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau). \tag{3}$$

• Take the gradient with respect to θ :

$$\nabla_{\theta}V(\theta) = \nabla_{\theta}\sum_{\tau}P(\tau;\theta)R(\tau)$$

$$= \sum_{\tau} \nabla_{\theta} P(\tau;\theta)R(\tau)$$

$$= \sum_{\tau} \frac{P(\tau;\theta)}{P(\tau;\theta)} \nabla_{\theta} P(\tau;\theta)R(\tau)$$

$$= \sum_{\tau} R(\tau) P(\tau;\theta) \frac{\nabla_{\theta} P(\tau;\theta)}{P(\tau;\theta)}$$

$$= \sum_{\tau} R(\tau) P(\tau;\theta) \nabla_{\theta} \log_{\theta} P(\tau;\theta)$$

$$= \sum_{\tau} R(\tau) P(\tau;\theta) \nabla_{\theta} \log_{\theta} P(\tau;\theta)$$

Likelihood Ratio Policy Gradient

• Goal is to find the policy parameters θ :

$$\arg\max_{\theta} V(\theta) = \arg\max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau). \tag{4}$$

• Take the gradient with respect to θ :

$$\nabla_{\theta} V(\theta) = \nabla_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} \nabla_{\theta} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} \frac{P(\tau; \theta)}{P(\tau; \theta)} \nabla_{\theta} P(\tau; \theta) R(\tau)$$

$$= \sum_{\tau} P(\tau; \theta) R(\tau) \underbrace{\frac{\nabla_{\theta} P(\tau; \theta)}{P(\tau; \theta)}}_{\text{likelihood ratio}}$$

$$= \sum_{\tau} P(\tau; \theta) R(\tau) \nabla_{\theta} \log P(\tau; \theta)$$

Likelihood Ratio Policy Gradient

• Goal is to find the policy parameters θ :

$$\arg\max_{\theta} V(\theta) = \arg\max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau). \tag{5}$$

• Take the gradient with respect to θ :

$$\nabla_{\theta} V(\theta) = \sum_{\tau} P(\tau; \theta) R(\tau) \nabla_{\theta} \log P(\tau; \theta)$$

• Approximate with empirical estimate for m sample paths under policy π_{θ} :

$$\nabla_{\theta} V(\theta) \approx \hat{g} = (1/m) \sum_{i=1}^{m} \underbrace{R(\tau^{(i)}) \nabla_{\theta} \log P(\tau^{(i)}; \theta)}_{}$$

Score Function Gradient Estimator: Intuition

- Consider generic form of $R(\tau^{(i)})\nabla_{\theta}\log P(\tau^{(i)};\theta)$: $\hat{g}_i = f(\underline{x}_i)\nabla_{\theta}\log p(x_i|\theta)$
- f(x) measures how good the sample x is.
- Moving in the direction \hat{g}_i pushes up the logprob of the sample, in proportion to how good it is
- Valid even if f(x) is discontinuous, and unknown, or sample space (containing x) is a discrete set

Score Function Gradient Estimator: Intuition

Score Function Gradient Estimator: Intuition

$$\hat{g}_i = f(x_i) \nabla_{\theta} \log p(x_i | \theta)$$

Decomposing the Trajectories Into States and Actions

• Approximate with empirical estimate for m sample paths under policy π_{θ} :

$$\nabla_{\theta}V(\theta) \approx \hat{g} = (1/m)\sum_{i=1}^{m}R(\tau^{(i)})\nabla_{\theta}\log P(\tau^{(i)})$$

$$\nabla_{\theta}\log P(\tau^{(i)};\theta) = \nabla_{\hat{\theta}}\log P(\tau^{(i)};\theta) = \nabla_{\hat{\theta}}\log P(\tau^{(i)};\theta) = \nabla_{\hat{\theta}}\log P(\tau^{(i)};\theta) + \sum_{i=0}^{T-1} \pi_{\theta}(\alpha_{i}|s_{i}) P(s_{i+1}|\alpha_{i},s_{i})$$

$$= \nabla_{\theta}\left[\log \mu(s_{0}) + \sum_{i=0}^{T-1}\log \pi_{\theta}(\alpha_{i}|s_{i}) + \sum_{i=0}^{T-1}\log P(s_{i+1}|\alpha_{i},s_{i})\right]$$

$$= \sum_{i=0}^{T-1} \nabla_{\theta}\log \pi_{\theta}(\alpha_{i}|s_{i})$$

$$= \sum_{i=0}^{T-1} \nabla_{\theta}\log \pi_{\theta}(\alpha_{i}|s_{i})$$

Decomposing the Trajectories Into States and Actions

• Approximate with empirical estimate for m sample paths under policy π_{θ} :

$$abla_{ heta} V(heta) \;\; pprox \;\; \hat{g} = (1/m) \sum_{i=1}^m R(au^{(i)})
abla_{ heta} \log P(au^{(i)})$$

$$\nabla_{\theta} \log P(\tau^{(i);\theta}) = \nabla_{\theta} \log \left[\underbrace{\mu(s_0)}_{\text{Initial state distrib.}} \underbrace{\prod_{t=0}^{T-1} \underbrace{\pi_{\theta}(a_t|s_t)}_{\text{policy}} \underbrace{P(s_{t+1}|s_t, a_t)}_{\text{dynamics model}} \right]$$

$$= \nabla_{\theta} \left[\log \mu(s_0) + \sum_{t=0}^{T-1} \log \pi_{\theta}(a_t|s_t) + \log P(s_{t+1}|s_t, a_t) \right]$$

$$= \sum_{t=0}^{T-1} \underbrace{\nabla_{\theta} \log \pi_{\theta}(a_t|s_t)}_{\text{no dynamics model required}} \underbrace{\nabla_{\theta} \log \pi_{\theta}(a_t|s_t)}_{\text{no dynamics model required}}$$

Score Function

• Define score function as $\nabla_{\theta} \log \pi_{\theta}(s, a)$

Likelihood Ratio / Score Function Policy Gradient

- Putting this together
- Goal is to find the policy parameters θ :

$$\arg\max_{\theta} V(\theta) = \arg\max_{\theta} \sum_{\tau} P(\tau; \theta) R(\tau). \tag{6}$$

• Approximate with empirical estimate for m sample paths under policy π_{θ} using score function:

$$abla_{\theta} V(\theta) \approx \hat{g} = (1/m) \sum_{i=1}^{m} R(\tau^{(i)}) \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= (1/m) \sum_{i=1}^{m} R(\tau^{(i)}) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{(i)}|s_{t}^{(i)})$$

Do not need to know dynamics model

Policy Gradient Theorem

• The policy gradient theorem generalizes the likelihood ratio approach

Theorem

For any differentiable policy $\pi_{\theta}(s,a)$, for any of the policy objective function $J=J_1$, (episodic reward), J_{avR} (average reward per time step), or $\frac{1}{1-\gamma}J_{avV}$ (average value), the policy gradient is

$$abla_{ heta} J(heta) = \mathbb{E}_{\pi_{ heta}} [
abla_{ heta} \log \pi_{ heta}(s, a) Q^{\pi_{ heta}}(s, a)]$$

Table of Contents

- Introduction
- Policy Gradient
- 3 Score Function and Policy Gradient Theorem
- Policy Gradient Algorithms and Reducing Variance

Likelihood Ratio / Score Function Policy Gradient

 $\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^{m} \underbrace{R(\tau^{(i)})}_{t=0} \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{(i)}|s_{t}^{(i)})$

- Unbiased but very noisy
- Fixes that can make it practical
 - Temporal structure
 - Baseline
- Next time will discuss some additional tricks

Policy Gradient: Use Temporal Structure

• Previously:

ly:
$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\left(\sum_{t=0}^{T-1} r_{t} \right) \left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \right]$$

 We can repeat the same argument to derive the gradient estimator for a single reward term $r_{t'}$.

$$\nabla_{\theta} \mathbb{E}[r_{t'}] = \mathbb{E}\left[\underline{r_{t'}} \sum_{t=0}^{t'} \underline{\nabla_{\theta} \log \pi_{\theta}(a_t|s_t)}\right]$$

Summing this formula over t, we obtain

$$\nabla_{\theta} \mathbb{E}[R] = \mathbb{E}\left[\sum_{t=0}^{T-1} r_{t'} \sum_{t=0}^{t'} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})\right] \\
= \mathbb{E}\left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}, s_{t}) \sum_{t'=t}^{T-1} r_{t'}\right]$$

47 / 62

Policy Gradient: Use Temporal Structure

• Recall for a particular trajectory $au^{(i)}$, $\sum_{t'=t}^{T-1} r_{t'}^{(i)}$ is the return $G_t^{(i)}$

$$\nabla_{\theta} \mathbb{E}[R] \approx (1/m) \sum_{i=1}^{m} \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t, s_t) G_t^{(i)}$$

Monte-Carlo Policy Gradient (REINFORCE)

Leverages likelihood ratio / score function and temporal structure

$$\Delta\theta_t = \alpha \nabla_\theta \log \pi_\theta(s_t, a_t) G_t \tag{7}$$

REINFORCE:

```
Initialize policy parameters \theta arbitrarily for each episode \{s_1, a_1, r_2, \cdots, s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do for t=1 to T-1 do \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) G_t endfor endfor return \theta
```

Differentiable Policy Classes

- Many choices of differentiable policy classes including:
 - Softmax
 - Gaussian
 - Neural networks

Softmax Policy

- Weight actions using linear combination of features $\phi(s, a)^T \theta$
- Probability of action is proportional to exponentiated weight

$$\pi_{\theta}(s,a) = e^{\phi(s,a)^{T}\theta} / (\sum_{a} e^{\phi(s,a)^{T}\theta})$$
(8)

The score function is

$$\nabla_{\theta} \log \pi_{\theta}(s, a) = \phi(s, a) - \mathbb{E} \pi_{\theta}[\phi(s, \cdot)]$$

Gaussian Policy

- In continuous action spaces, a Gaussian policy is natural
- Mean is a linear combination of state features $\mu(s) = \phi(s)^T \theta$
- Variance may be fixed σ^2 , or can also parametrised
- Policy is Gaussian $a \sim \mathcal{N}(\mu(s), \sigma^2)$
- The score function is

$$abla_{ heta} \log \pi_{ heta}(s,a) = rac{(a-\mu(s))\phi(s)}{\sigma^2}$$

Likelihood Ratio / Score Function Policy Gradient

0

$$\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^{m} R(\tau^{(i)}) \sum_{t=0}^{i-1} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)}|s_t^{(i)})$$

- Unbiased but very noisy
- Fixes that can make it practical
 - Temporal structure
 - Baseline
- Next time will discuss some additional tricks

Policy Gradient: Introduce Baseline

• Reduce variance by introducing a baseline b(s)

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t, \theta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t) \right) \right]$$

- For any choice of b(s), gradient estimator is unbiased.
- Near optimal choice is expected return, $b(s_t) \approx \mathbb{E}[r_t + r_{t+1} + \cdots + r_{T-1}]$
- Interpretation: increase logprob of action a_t proportionally to how much returns $\sum_{t'=t}^{T-1} r_{t'}$ are better than expected

Baseline b(s) Does Not Introduce Bias-Derivation

$$\begin{split} & \mathbb{E}_{\tau}[\nabla_{\theta}\log\pi(a_t|s_t,\theta)b(s_t)] \\ & = \mathbb{E}_{s_{0:t},a_{0:(t-1)}}\left[\mathbb{E}_{s_{(t+1):\mathcal{T}},a_{t:(\mathcal{T}-1)}}[\nabla_{\theta}\log\pi(a_t|s_t,\theta)b(s_t)]\right] \end{split}$$

Baseline b(s) Does Not Introduce Bias-Derivation

$$\begin{split} &\mathbb{E}_{\tau} \big[\nabla_{\theta} \log \pi(a_t | s_t, \theta) b(s_t) \big] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[\mathbb{E}_{s_{(t+1):\mathcal{T}}, a_{t:(\mathcal{T}-1)}} [\nabla_{\theta} \log \pi(a_t | s_t, \theta) b(s_t)] \right] \text{ (break up expectation)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \mathbb{E}_{s_{(t+1):\mathcal{T}}, a_{t:(\mathcal{T}-1)}} [\nabla_{\theta} \log \pi(a_t | s_t, \theta)] \right] \text{ (pull baseline term out)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \mathbb{E}_{a_t} [\nabla_{\theta} \log \pi(a_t | s_t, \theta)] \right] \text{ (remove irrelevant variables)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \sum_{a} \pi_{\theta}(a_t | s_t) \frac{\nabla_{\theta} \pi(a_t | s_t, \theta)}{\pi_{\theta}(a_t | s_t)} \right] \text{ (likelihood ratio)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \sum_{a} \nabla_{\theta} \pi(a_t | s_t, \theta) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} \sum_{a} \pi(a_t | s_t, \theta) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} 1 \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} 1 \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} 1 \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \cdot 0 \right] = 0 \end{split}$$

"Vanilla" Policy Gradient Algorithm

```
Initialize policy parameter \theta, baseline b
for iteration=1, 2, \cdots do
 Collect a set of trajectories by executing the current policy
  At each timestep in each trajectory, compute
   the return R_t = \sum_{t'=t}^{T-1} r_{t'}, and
   the advantage estimate \hat{A}_t = R_t - b(s_t).
 Re-fit the baseline, by minimizing ||b(s_t) - R_t||^2.
   summed over all trajectories and timesteps.
  Update the policy, using a policy gradient estimate \hat{g},
   which is a sum of terms \nabla_{\theta} \log \pi(a_t|s_t,\theta) \hat{A}_t.
   (Plug \hat{g} into SGD or ADAM)
endfor
```

Practical Implementation with Autodiff

- Usual formula $\sum_t
 abla_{ heta} \log \pi(a_t|s_t; heta) \hat{A}_t$ is inifficient–want to batch data
- Define "surrogate" function using data from current batch

$$L(\theta) = \sum_{t} \log \pi(a_{t}|s_{t};\theta) \hat{A}_{t}$$

- Then policy gradient estimator $\hat{g} = \nabla_{\theta} L(\theta)$
- Can also include value function fit error

$$L(\theta) = \sum_{t} \left(\log \pi(z_t | s_t; \theta) \hat{A}_t - ||V(s_t) - \hat{R}_t||^2 \right)$$

Value Functions

• Recall Q-function / state-action-value function:

$$Q^{\pi,\gamma}(s,a) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 \cdots | s_0 = s, a_0 = a \right]$$

State-value function can serve as a great baseline

$$V^{\pi,\gamma}(s) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 \cdots | s_0 = s \right]$$

= $\mathbb{E}_{a \sim \pi} [Q^{\pi,\gamma}(s,a)]$

Advantage function: Combining Q with baseline V

$$A^{\pi,\gamma}(s,a) = Q^{\pi,\gamma}(s,a) - V^{\pi,\gamma}(s)$$

N-step estimators

 Can also consider blending between TD and MC estimators for the target to substitute for the true state-action value function.

$$\hat{R}_{t}^{(1)} = r_{t} + \gamma V(s_{t+1})$$

$$\hat{R}_{t}^{(2)} = r_{t} + \gamma r_{t+1} + \gamma^{2} V(s_{t+2}) \qquad \cdots$$

$$\hat{R}_{t}^{(\text{inf})} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+1} + \cdots$$

If subtract baselines from the above, get advantage estimators

$$\hat{A}_{t}^{(1)} = r_{t} + \gamma V(s_{t+1}) - V(s_{t})$$

$$\hat{A}_{t}^{(2)} = r_{t} + \gamma r_{t+1} + \gamma^{2} V(s_{t+2}) - V(s_{t})$$

$$\hat{A}_{t}^{(\text{inf})} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+1} + \dots - V(s_{t})$$

- $\hat{A}_t^{(a)}$ has low variance & high bias. $\hat{A}_t^{(\infty)}$ high variance but low bias. (Why? Like which model-free policy estimation techniques?)
- Using intermediate k (say, 20) can give an intermediate amount of bias and variance.

Application: Robot Locomotion

Learning to Walk in 20 Minutes

Russ Tedrake
Brain & Cognitive Sciences
Center for Bits and Atoms
Massachusetts Inst. of Technology
Cambridge, MA 02139
russt@csail.mit.edu

Teresa Weirui Zhang Mechanical Engineering Department University of California, Berkeley Berkeley, CA 94270 resa@berkeley.edu H. Sebastian Seung
Howard Hughes Medical Institute
Brain & Cognitive Sciences
Massachusetts Inst. of Technology
Cambridge, MA 02139
seung@mit.edu

Class Structure

- Last time: Imitation Learning
- This time: Policy Search
- Next time: Policy Search Cont.