# ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ



Лабораторная работа N 4.7.2

Эффект Поккельса

Баранов Даниил Группа Б02-103 **Цель:** исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля.

**Оборудование:** гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластинка, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осциллограф, линейка.

#### 1 Теоретические сведения

Эффект Поккельса – изменение показателя преломления света в кристалле под действием электрического поля.

Рассмотрим кристалл ниобата лития LiNbO<sub>3</sub> с цетральноосевой симметрией вдоль оси Z. Для световой волны с  $\mathbf{E}$  перпендикулярно Z показатель преломления будет  $n_o$ , а для волны с  $\mathbf{E}$  вдоль  $Z-n_e$ . В случае, когда луч света идёт под углом  $\theta$  к оси, есть два значение показателя преломления  $n_1$  и  $n_2$ :  $n_1=n_o$  для волны с  $\mathbf{E}$  перпендикулярным плоскости ( $\mathbf{k}$ , $\mathbf{Z}$ ) (обыкновенная волна) и  $n_2$  для волны с  $\mathbf{E}$  в этой плоскости (необыкновенная волна). В последнем случае

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_0^2} + \frac{\sin^2 \theta}{n_e^2}.\tag{1}$$



Рис. 1: Оптическая часть экспериментальной установки

Если перед кристаллом, помещённым между поляроидами, расположить линзу или матовую пластинку, то на экране за поляроидом мы увидим тёмные концентрические окружности — результат интерференции обыкновенной и необыкновенной волн. При повороте выходного поляроида на  $90^{\circ}$  картина меняется с позитива на негатив (на месте светлых пятен появляются тёмные и наоборот). В случае, когда разрешённое направление анализатора перпендикулярно поляризации лазерного излучения, радиус тёмного кольца с номером m равен

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{n_0 - n_e} m,\tag{2}$$

где L – расстояние от центра кристалла до экрана, l – длина кристалла.

Теперь поместим кристалл в постоянное электрическое поле  $E_{\text{эл}}$ , направленное вдоль оси X, перпендикулярной Z. Показатель преломления для луча, распространяющего вдоль Z, всегда  $n_o$ . В плоскости (X,Y) возникают два главных направления под углами  $45^{\circ}$  к X и Y с показателями преломления  $n_0 - \Delta n$  и  $n_o + \Delta n$  (быстрая и медленная ось), причём  $\Delta n = AE_{\text{эл}}$ . Для поляризованного вертикально света и анализатора, пропускающего горизонтальную поляризацию, на выходе интенсивность на выходе будет иметь вид

$$I_{\text{вых}} = I_0 \sin^2 \left( \frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right), \tag{3}$$



Рис. 2: Экспериментальная установка

где  $U_{\lambda/2}=\frac{\lambda}{4A}\frac{d}{l}$  – полуволновое напряжение, d – поперечный размер кристалла. При напряжении  $U=E_{\text{эл}}d$  равном полуволновому сдвиг фаз между двумя волнами равен  $\pi$ , а интенсивность света на выходе максимальна.

На Рис. 2 представлена схема всей установки (оптическая часть изорбажена на Рис. 1). Свет лазера, проходя через сквозь пластину, рассеивается и падает на двоякопреломляющий кристалл. На экране за поляроидом видна интерференционная картина. Убрав рассеивающую пластину и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла. Заменив экран фотодиодом и подав на кристалл переменное напряжение, можно исследовать поляризацию с помощью осциллографа.

## 2 Ход работы

#### 2.1 Измерение радиусов тёмных колец

Изначально была собрана схема установки, соответствующая рисунку из предыдущего раздела, проведена юстировка системы. Получена интерференционная картина. Было выбрано расстояние от середины кристалла до экрана  $L=75\pm0,5$  см.  $\lambda=0,63$  мкм.

При заданном расстоянии были проведены измерения радиусов тёмных колец, результаты приведены в таблице 1.

| L, cm        | m | r(m), cm | $arepsilon_r$ |
|--------------|---|----------|---------------|
|              | 1 | 2,5      | 0,040         |
|              | 2 | 3,7      | 0,027         |
|              | 3 | 4,5      | 0,022         |
| $75 \pm 0.5$ | 4 | 5,3      | 0,019         |
|              | 5 | 6,2      | 0,016         |
|              | 6 | 6,8      | 0,015         |
|              | 7 | 7,3      | 0,014         |

Таблица 1: Радиусы тёмных колец

По данным из таблицы 1 был построен график зависимости квадратов радиусов тёмных колец от номеров тёмных колец. Полученное значение углового коэффициента  $k=8,0\pm0,2$  см². Из формулы 2 получаем

$$n_o - n_e = \frac{\lambda}{l} \frac{(n_o L)^2}{k} = 0.089 \pm 0.004$$

. Это соотносится с табличным значением 0,09 в пределах погрешности.



Рис. 3: График зависимости квадрата радиуса пятна от номера пятна

#### 2.2 Определение полуволнового напряжения

В данном пункте работы была убрана матовая пластинка, и для перпендикулярных и параллельных поляризаций лазера и анализатора был проделан опыт с увеличением напряжения на кристалле и измерением максимумов и минимумов интенсивности. Полученные результаты приведены в таблице 2 (считаем абсолютную погрешность равной половине деления) Из таблицы найдём значение полуволнового

|                  | $U_{\text{перп}}$ , дел | $U_{\text{парал}}$ , дел | $U_{\text{перп}}$ , B | $U_{\text{перп}}, B$ |
|------------------|-------------------------|--------------------------|-----------------------|----------------------|
| $U_{\lambda/2}$  | 31                      | 32                       | 465                   | 480                  |
| $U_{\lambda}$    | 60                      | 60                       | 900                   | 900                  |
| $U_{3\lambda/2}$ | 90                      | 90                       | 1350                  | 1350                 |

Таблица 2: Таблицы измерений приложенных напряжений для получения значения полуволнового напряжения

напряжения  $U_{\lambda/2} = 454 \pm 10$  В.

Проверим также, что при выставлении напряжения  $U_{\lambda/4}$  получается круговая поляризация (интенсивность не меняется при вращении анализатора). Получим также

фигуры Лиссажу и определим полуволновое напряжение с помощью них - будем менять напряжение и получив фигуру Лиссажу с максимумов и минимумом посчитаем полуволновое напряжение как разность этих напряжений.  $U_{\lambda/2}=420\pm30~{\rm B}$ 

Результаты сходятся в пределах погрешности.

### 3 Вывод

В работе с помощью интерференционной картины было определено двулучепреломления ниобата лития (по угловому коэффициенту зависимости квадрата радиуса тёмного пятна от номера тёмного пятна с помощью формулы 2), которое с хорошей точностью сошлось с табличным значением. Также был исследован эффект Поккельса и двумя способами определено полуволновое напряжение - с помощью наблюдением за изменением интенсивности и с помощью фигур Лиссажу, также полученное значение было проверено с помощью следующего факта: при напряжении  $U_{\lambda/4}$  должна получиться круговая поляризация.