Clase 25

Manuel Garcia.

November 14, 2023

1 Haces tangentes

Un haz tangente a una variedad M es el conjunto de todos los espacios tangentes de esta variedad:

$$TM = \bigcup_{p \in M} T_p M$$
 M es el espacio base de TM . $\forall p \in M$

Podemos elegir $(x^i(p), \xi^i(p)) \in TM$. En el espacio tangente tenemos unos elementos $u^{\alpha}(p) = (x^i(p), \xi^i(p))$ con $\alpha = 1, ..., 2m$. Localmente lo podemos escribir como (esto lo podemos ver como un espacio de fase):

$$TM = u_i \times T_p M = u_i \times \mathbb{R}^m$$

EJEMPLOS Proyección

$$\pi: TU_i \to U_i, \quad \forall u \in TU_i$$

$$\pi(u) = p \in U_i$$

$$\pi^{-1}(p) = T_pM \to \text{ Fibra en } p.$$

Cambios de coordenadas

$$(U_i, x^{\mu}), (U_j, y^{\mu}), \quad y^{\mu} = \psi(p)$$

 $V^{'\mu}(y) = \frac{\partial y^{\mu}}{\partial x^{\nu}} V^{\nu}(x) = J^{\mu}_{\nu} V^{\nu}(x)$

 $J^{\mu}_{\nu} \in GL(n,\mathbb{R}^n) \to \text{ Grupo de estructura de } TM.$

El mape
o $s~:~M\to TM/~\pi\circ s=id_M$ Es una sección.

El mapeo $x_i:U_i\to TU_i/\pi\circ s_i=is_M$ es una sección local.

Haciendo uso del espacio tangencial podemos definir unas fibras a lo largo del espacio.

2 Haces Fibrados

Un haz fibrado diferenciable (E, π, M, F, G) se compone de los siguientes elementos:

- Una variedad diferenciable $E \to \text{espacio total}$.
- Una variedad diferenciable $M \to \mathrm{espacio}$ base.
- Una variedad diferenciable $F \to \text{fibra}$ (o fibra típica).
- Una función surjectiva $\pi: E \to M \to \text{proyección}, \, \pi^{-1}(p) = F_p \approx F$ fibra en p.
- \bullet Un grupo de Lie G con acción sobre F a la izquierda \rightarrow grupo de estructura.
- Una cubertura de $M, \{U_i\}$ con un difeomorfismo.

$$\phi_i: U_i \times F \to \pi^{-1}(U_i)/\pi \circ \phi_i(p,f) = p \to \text{trivialización local}.$$

$$\phi_i^{-1}: \pi^{-1}(U_i) \to U_i \times F$$

• $\phi_i(p,f) = \phi_{i,p}(f)$, $\phi_{j,p}: F \to F$ sea un elemento de G. Las funciones ϕ_i, ϕ_j se relacionan por un mapeo suave $t_{ij}: U_i \cap U_j \to G/$ $\phi_j(p,f) = \phi_i(p,t_{ij}(p)f)$. $t_{ij} \to$ funciones de transición.

2.1 Haces Vectoriales

Un haz vectorial tiene como fibra F un espacio vectorial $E \xrightarrow{\pi} M$. La fibra F tiene dimensión k la cual se denomina dimensión de la fibra. Las funciones de transición en la fibra $\in GL(k,\mathbb{R})$.

2.2 Haces principales

Un haz principal tiene fibra F la cual es identica al gurpo de estructura G. $P \xrightarrow{\pi} M \circ P(M, G)$ también se llama un haz G sobre M.

2.3 Haces cotangentes

$$T^*M \equiv \bigcup_{p \in M} T_p^*M$$