Lista 2 - Cálculo Infinitesimal II

Semestre 2017/2 - Prof. Ricardo M. S. Rosa

19 de setembro de 2017

Obs: Sejam claros nas suas repostas e façam as devidas justificativas. Boa sorte!

- 1º Questão: Considere a espiral logarítmica $\mathbf{r}(t) = e^{\alpha t}(\cos(\alpha t), \sin(\alpha t)), t \in \mathbb{R}$, onde $\alpha > 0$.
 - (1) Ache a curvatura e os vetores tangente e normal da curva, em função do parâmetro $t \in \mathbb{R}$.
 - (2) Ache uma reparametrização da curva pelo comprimento de arco.
 - (3) Ache uma reparametrização pelo comprimento de arco da restrição dessa curva ao intervalo [0, 1].
- **2º** Questão: Considere uma curva parametrizada regular $\mathbf{r}: I \to \mathbb{R}^3$, definida em um intervalo $I \subset \mathbb{R}$. Sejam $t_0 \in I$ e $\mathbf{T}(t_0) = \mathbf{r}'(t_0)/\|\mathbf{r}'(t_0)\|$. Seja $\mathbf{v} \in \mathbb{R}^3$ um vetor unitário qualquer. Como a curva é regular, temos que $\mathbf{r}(t) \neq \mathbf{r}(t_0)$, para $t \in I$ suficientemente próximo de t_0 . Para tais valores de t, considere o ângulo $\theta(t)$ entre o vetor \mathbf{v} e o vetor $\mathbf{w}(t) = \mathbf{r}(t) \mathbf{r}(t_0)$. Mostre que $\theta(t)$ converge para zero, quando $t \to t_0$, se, e somente se, $\mathbf{v} = \mathbf{T}(t_0)$. Ou seja, de fato, a reta gerada por $\mathbf{r}(t_0) + s\mathbf{T}(t_0)$, $s \in \mathbb{R}$, é tangente à curva no ponto $\mathbf{r}(t_0)$.
- 3º Questão: Considere as curvas definidas a seguir no plano xy. Observe que todas elas passam pela origem $\mathbf{0}$ e têm a sua curvatura $\kappa(\mathbf{P})$ bem definida em todo ponto \mathbf{P} da curva fora da origem. Faça um esboço de cada uma dessas curvas e encontre a curvatura $\kappa(\mathbf{0})$, caso ela esteja definida na origem, ou determine o que acontece com o limite de $\kappa(\mathbf{P})$ quando \mathbf{P} converge para a origem.
 - (1) y = |x|, para todo $x \in \mathbb{R}$.
 - (2) $y = |x|^p$, para todo $x \in \mathbb{R}$, onde 0 .
 - (3) $x = t^4$, $y = t^2$, para todo $t \in \mathbb{R}$.
- **4º** Questão: Determine a curvatura, a torção e os vetores tangente, normal e binormal da curva $\mathbf{r}(t) = (\cos t, \sin t, t), t \in \mathbb{R}$.
- 5º Questão: Uma molécula de DNA é composta por duas hélices circulares, onde cada hélice tem um raio de cerca de 10 ångströms (sendo $1\text{\AA} = 10^{-8}$ cm), sobe 34 Å a cada volta completa e dá cerca de $2,9 \times 10^{8}$ voltas completas. Estime o comprimento total de cada hélice. (Questão 59 da Seção 13.3 do Stewart vol. 2, tradução da sexta edição norte-americana, Cengage Learning, São Paulo 2010.)
- **6º** Questão: Encontre em que ponto o plano normal à curva $\mathbf{r}(t) = (t, t^2, t^3)$ é paralelo ao plano 2x 4y + 6z = 4.
- 7º Questão: Mostre que as curvas $\mathbf{r}_1(t) = (t, t^3)$, $\mathbf{r}_2(t) = (t, -t^3)$, $\mathbf{r}_3(t) = (t, |t|^3)$, e $\mathbf{r}_4(t) = (t, -|t|^3)$, $t \in \mathbb{R}$, têm todas a mesma curvatura k(t), $t \in \mathbb{R}$, com k(0) = 0

(essas curvas exemplificam o fato da curvatura só determinar unicamente a curva – a menos de movimentos rígidos – quando a curvatura é estritamente positiva).

- 8º Questão: Considere uma haste dada pelo segmento de reta que liga a origem a um ponto $\mathbf{H}=(0,0,h)$, para algum h>0, e uma fonte de luz em um ponto $\gamma_0=(x_0,y_0,z_0)$, com $z_0>h$. A sombra da haste no plano z=0, causada por essa fonte de luz, é um segmento de reta que liga a origem $\mathbf{0}=(0,0,0)$ a um ponto extremo $\sigma_0=(\xi_0,\eta_0,0)$, $\xi_0,\eta_0\in\mathbb{R}$. Determine ξ_0 e η_0 em função de x_0,y_0,z_0 e h. Considerando, agora, que a fonte de luz se move ao longo de um caminho definido por uma curva parametrizada $\gamma(t)=(x(t),y(t),z(t)), t\in I$, onde $I\subset\mathbb{R}$ é um intervalo e z(t)>h, para todo $t\in I$, encontre uma condição em γ para que o extremo $\sigma(t)=(\xi(t),\eta(t),0)\in\mathbb{R}^2\times\{0\}$ da sombra seja uma curva parametrizada regular. Interprete geometricamente essa condição.
- 9º Questão: Seja $k: I \to \mathbb{R}$ uma função contínua e não-negativa definida em um intervalo $I \subset \mathbb{R}$. Fixe um $s_0 \in I$, considere uma primitiva $\theta: I \to \mathbb{R}$ qualquer de k e defina a curva $\gamma(s) = (x(s), y(s)), s \in I$, por

$$x(s) = \int_{s_0}^{s} \cos \theta(\sigma) d\sigma, \quad y(s) = \int_{s_0}^{s} \sin \theta(\sigma) d\sigma, \quad \forall s \in I.$$

- (1) (1 ponto) Mostre que γ é uma curva duas vezes continuamente diferenciável e parametrizada pelo comprimento de arco.
- (2) (1 ponto) Mostre que a curvatura de γ é exatamente k.
- (3) (1 ponto) Dados um ponto qualquer $\mathbf{P}_0 = (x_0, y_0) \in \mathbb{R}^2$ do plano e um vetor unitário $\mathbf{T}_0 = (u_0, v_0) \in \mathbb{R}^2$, modifique a definição de γ de forma a ainda ter uma curva duas vezes continuamente diferenciável, parametrizada pelo comprimento de arco, com curvatura k e tal que $\gamma(t_0) = \mathbf{P}_0$ e $\gamma'(t_0) = \mathbf{T}_0$.
- **10ª Questão:** Considere uma curva γ que pertence ao cilindro $\{(x,y,z)\in\mathbb{R}^3,\ x^2+y^2=a^2\}$, onde a>0, e com a seguinte propriedade: em cada ponto \mathbf{P} da curva, o ângulo entre o eixo y e o plano tangente ao cilindro em \mathbf{P} é igual ao ângulo entre o eixo z e a reta tangente à curva em \mathbf{P} . Mostre que essa curva pode ser parametrizada por

$$\gamma(\theta) = (a\cos\theta, a\sin\theta, c\pm a\ln(\sin\theta)),$$

onde $c \in \mathbb{R}$ é uma constante e θ é um parâmetro que varia em um intervalo contido em $(0,\pi)$.