Abstandsmessung mit Viertelbrücke

Gegeben: epsilon_0, epsilon_R, A, E,

später U_d, U_0

Gesucht: a_0,

a.

später delta_a

Ein Plattenkondensator soll als Abstabdssensor in einer

Wechselspannungs-Viertelbrücke betrieben werden. [Zeichnen Sie die Schaltung] Das Dielektrum ist Luft (also ist epsilon_R = 1), die Plattenfläche ... cm2 (Fläche A)

Im Arbeitspunkt soll der Kondensator eine Empfindlichkeit von ... zeigen (Empfindlichkeit E)

a. Wie groß muss der Plattenabstand im Arbeitspunkt sein? (gesucht wird a_0)

b. Im Betrieb wird die Diagonalspannung ... V gemessen (*U_d*)

bei einer Spannungsversorgung ... V (U_0)

Wie groß ist die gemessene Abstanbdsänderung? (gesucht wird delta_a)

epsilon_0	8,854E-12	AS/Vm	(Natu
epsilon_r	1		
A (in cm2)	2	cm2	
F	-1,00E-09	Farad/m	

U O	5	V
0_0	1.2	·

(Naturkonstante)

Differenzdrucksensor in Halbbrücke

Gegeben: A, p_1, p2, U_0, U_d

Gesucht: k

Sie müssen einen Differenzdrucksensor entwerfen, er misst Drücke von … bis … gegen den Refrenzdruck p_0 = …

[Skizzieren u. erklären Sie das Prinzip eines Differenzdrucksensors]

Aufgrund derräumlichen Verhältnisse steht Ihnen für den Differentialkondensator ein Bauraum von … x … für zur Verfügung , der Plattenabstand beträgt … m $(gemeint\ ist\ a_0)$ Der Sensor soll Wechselspannungs-Halbbrücke mit

der Betriebsspannung U_0 = ... betrieben werden.

a. In welchem Wertebereich ist die Federkonsante (gemeint ist k) zu wählen, damit die Ausgangsspannung (gemeint ist U_d) nicht kleiner als ... wird ?

p_0 (=p_1)	100	Pascal (P)
p_1 (max)	_ 110	Pascal (P)
p_1 (min)	105	Pascal (P)

U_0	12	Volt
U_d	1	Volt

Breite	0,01	m	angeben in cm
Höhe	0,05	m	angeben in cm
a_0	0,001	· m	angeben in mm

Schichtdickenmessung

Gegeben: U_0, U_d, A, epsilon_r_2

Gesucht: C

Bei der Produktion von Polyethylenfolie (epsilon_r = ...) wird ein Plattenkondensator der Plattenfläche ... cm2 (gemeint ist A) zur Überwachung der Foliendicke verwendet.

Diese ist sehr viel dünner als der Plattenabstand.

Der Kondensator wird in einer Viertelbrücke mit der

Versorgungsspannung ... V (gemeint ist U_0) betrieben.

Bei einer Foliendicke von ... mm (gemeint ist a_2) soll die Diagonalspannung (gemeint ist U_d) den Wert ... zeigen.

a. Welche Kapazität hat der Kondensator dann mit/ohne eingeführte Folie? (Gesucht ist also C)

epsilon_r	2,4	100	
A in cm2	4000	cm2	
A in m2	0,4	m2	
U_0 _	5	V	
U_d	-0,005	٧	
a_2	0,0001	m	angeben in mm
epsilon_0	8,85E-12	Ás/Vm	

Weil die Foliendicke a_2 sehr viel kleiner ist als der Plattenabstand a_0, darf man folgede Formel verwenden:

Eindringen eines Dielektrikums (kleine Änderungen)

Gegeben: epsilon_r_2, b_0, a_0, U_0, U_d

Gesucht: I_0, C_0, C

Ein Alarmgeber misst kleine (!) Eindringtiefen einer giftigen Flüssigkeit mit epsilon_r = ... in einen Plattenkondensator mit folgenden Maßen: Breite $b_0 = ...$ Plattenabstand = ... (gemeint ist a_0)

Er wird in einer Viertelbrücke verbaut mit der Versorgungsspannunhg ... (gemeint ist U_0) Bei einer Eindringtiefe von ... mm (gemeint ist I) soll die Diagonalspannung (gemeint ist U_d) der Brücke den Wert ... haben.

a. Wie lang muss der Kondensator sein? (gesucht ist I_0)

b. Wie groß ist dann die Kapazität des Kondensators ohne und mit eindringender Flüssigkeit ? (gesucht sind C_0 und C)

onsilon r/= onsilon = 21			1
epsilon_r (= epsilon_r_2)			1
b_0	0,05	, m	angeben in cm
a_0 ,	0,0005	m	
U_0	2	Volt	
U_d	-0,005	Volt	angeben in mV
	0,002	m	