Entwicklung eines Konzepts und Konstruktion einer Versuchseinrichtung zur zeitlich synchronisierten Generierung von Partikel-Testsignalen

Advanced Design Project

Alexander Sonnleitner, Dinh-Van Vo, Kim-Khanh Vo, Gia Thi Ngo, Felix Sternkopf

Fachbereich Maschinenbau

Fachgebiet Fahrzeugtechnik und Dynamik Prof. Dr. rer. nat. Hermann Winner Entwicklung eines Konzepts und Konstruktion einer Versuchseinrichtung zur zeitlich synchronisierten Generierung von Partikel-Testsignalen Advanced Design Project

Eingereicht von Alexander Sonnleitner, Dinh-Van Vo, Kim-Khanh Vo, Gia Thi Ngo, Felix Sternkopf Tag der Einreichung: 13. Februar 2018

Gutachter: Prof. Dr. rer. nat. Hermann Winner

Betreuer: M.Sc. Hartmut Niemann

Technische Universität Darmstadt Fachbereich Maschinenbau

Fachgebiet Fahrzeugtechnik und Dynamik Prof. Dr. rer. nat. Hermann Winner

Ehrenwörtliche Erklärung							
ilenworthiche Erki	arung						

Kurzzusammenfassung

Contents

1	Einf	ührung	1
	1.1	Motivation	1
	1.2	Voraussetzungen	1
2	Tech	nnische Grundlagen	3
	2.1	Strömungsmechanik	3
		2.1.1 Rohrströmungen	3
		2.1.2 Laminare/Turbulente Strömungen	3
		2.1.3 Reynoldszahl	3
		2.1.4 Prandtlzahl	3
	2.2	Feinraumtechnik	3
		2.2.1 Eigenschaften von Partikeln	3
		2.2.2 Partikelmessverfahren	3
		2.2.3 Aerosole	3
	2.3	Mechanische Grundlagen	3
		2.3.1 Ventile	3
		2.3.2 Luftfiltersysteme	3
3	Vers	suchsplattform	5
	3.1	Partikelmessgeräte	5
		3.1.1 APS-3321	5
		3.1.2 FMPS-3091	5
		3.1.3 OPC-N2	5
	3.2	Simulation	5
		3.2.1 SpaceClaim	5
		3.2.2 Fluent	5
	3.3	Partikelgeneratoren	5
		3.3.1 Dinhs Megazerstäuber 2000	5
		3.3.2 Alexs Partikelhack 500M	5
		3.3.3 Der Gia 6000	5
4	Anfo	orderungen an unsere Arbeit	7
5	Ana	lyse verschiedener Industrie-Aerosole	9
	5.1	Eigenschaften von Aerosolen	9
	5.2	Di-Ethyl-Hexyl-Sebacat (DEHS)	9
	5.3	Di-N-Octylphtalat (DOP)	9
	5.4	Emery 3004 (PAO-4)	9
	5.5	Poly Styrene Latex Spheres (PSL)	9
	5.6	Auswertung der Analyse	9
		5.6.1 Anforderungsvergleich der Aerosole	9
		5.6.2 Auswahl eines Aerosols	9
6	Kon	zepte für den Versuchsaufbau	11

Lis	st of Figures	15
8	Auswertung der Konzepte	15
7	Simulationsergebnisse	13

iv Contents

1 Einführung		
Linumung		
1.1 Motivation		
1.2 Voraussetzungen		

2 Technische Grundlagen
2.1 Strömungsmechanik
2.1.1 Rohrströmungen
2.1.2 Laminare/Turbulente Strömungen
2.1.3 Reynoldszahl
2.1.4 Prandtlzahl
2.2 Feinraumtechnik
2.2.1 Eigenschaften von Partikeln
2.2.2 Partikelmessverfahren
2.2.3 Aerosole
2.3 Mechanische Grundlagen
2.3.1 Ventile
2.3.2 Luftfiltersysteme

3 Versuchsplattform
3.1 Partikelmessgeräte
3.1.1 APS-3321
3.1.2 FMPS-3091
3.1.3 OPC-N2
3.2 Simulation
3.2.1 SpaceClaim
3.2.2 Fluent
3.3 Partikelgeneratoren
3.3.1 Dinhs Megazerstäuber 2000
3.3.2 Alexs Partikelhack 500M
3.3.3 Der Gia 6000

Anforderungen an un	sere Arbeit		

5 Analyse verschiedener Industrie-Aerosole	
5.1 Eigenschaften von Aerosolen	
5.2 Di-Ethyl-Hexyl-Sebacat (DEHS)	
5.3 Di-N-Octylphtalat (DOP)	
5.4 Emery 3004 (PAO-4)	
5.5 Poly Styrene Latex Spheres (PSL)	
5.6 Auswertung der Analyse	
5.6.1 Anforderungsvergleich der Aerosole	
5.6.2 Auswahl eines Aerosols	

onzepte für	den Versuchs	aufbau			

7 Simulationsergebnisse								

