BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

Work Integrated Learning Programmes Division

Cluster Programme - M. Tech in AI & ML II Semester, 2022 – 23(July,2023) Mid semester Examination (**Regular**)

Course No : AIMLC ZC418

Course Title : Introduction to Statistical Methods

Nature of Exam. : Open Book (Online)

Weightage : 30 Marks
Duration : 120 minutes

Date : 16th July,2023_FN

Number of questions: 4 Number of Pages: 3

SET- B Answer Key

Q. No	Question			
Q.1.a)	Let A be an event of a student passing the examination and B be the event of getting preplacement offer(PPO) with probabilities 1/8 and 3/4 respectively in a university. Then find the probability that a student i).passing the examination or getting PPO ii).passing the examination but not getting PPO iii).neither passing the examination nor getting PPO			
Solution:	(31. a) $P(A) = \frac{1}{8}$ $P(B) = \frac{3}{4}$ i) $P(A \cup B) = P(A) + P(B) - P(A) P(B)$ = P(A) + P(B) - P(A) P(B) $= \frac{1}{8} + \frac{3}{4} - \frac{3}{32} = \frac{28 - 3}{32} = \frac{25}{32}$ (2 marks) = 0.78125 ii) $P(A \cap B') = P(A) \times P(B') = \frac{1}{8} \times \frac{1}{4} = \frac{1}{32} = 0.21875$ (1 mark) III) $P(A \cap B') = P(A') P(B') = \frac{7}{8} \times \frac{1}{4} = \frac{7}{32} = 0.21875$ (1 mark)			
Q.1.b	Consider the following data and answer the questions if possible. Otherwise state reasons.	3 M		
Solution:	Q1.6) i) $P(x>55) = \frac{20}{105} = 0.19047$ — (1 mark) ii) $P(x<35) = \frac{10}{105} = 0.0952$ — (1 mark) iii) $P(35< x < 65) = \frac{50}{105} = 0.47619$ — (1 mark)			

Q.2.a)	If two events, A and B, are such that $P(A) = 0.3$, $P(B) = 0.5$, and $P(A \cap B) = 0.10$, find the Following:i) $P(A \mid A \cup B)$ ii) $P(A \mid A \cap B)$ iii) $P(A \cap B \mid A \cup B)$				4 M	
Solution	$P(A A \cup B) iii) P(A A \cap B) iiii) P(A \cap B A \cup B)$ $SET B$ $Question 2 a)$ $P(A) = 0 3 P(B) = 0 \cdot 5 P(A \cap B) = 0 \cdot 10$ $P(A A \cup B) = P(A \cap (A \cup B)) = P(A)$ $P(A \cap B) = P(A \cap (A \cup B)) = P(A \cap B)$ $P(A \cap B) = 0 \cdot 4285$ $P(A A \cup B) = P(A \cap (A \cup B)) = P(A \cap B)$ $P(A \cap B) = 1$ $P(A \cap$					
Q.2.b)	An e – commerce company has three delivery boys A, B and C who delivers 30%, 40% and 25% of items daily from the warehouse. It is observed that they take more time than the expected with probabilities 5%, 10% and 3% respectively. i).Find that the probability that the delivery is always delayed by the company ii).The probability that the delay in delivery is by B					3 M
Solution	(Question 2.b) i) Find the probability Ital the delivery is always delayed $p(D) = p(A) \cdot p(D A) + p(B) \cdot p(D B) + p(C) \cdot p(D C)$ $p(D) = p(B) \cdot p(D A) + p(D B) \cdot p(D B) + p(C) \cdot p(D C)$ $= (0.30)(0.05) + (0.40)(0.10) + (0.25)(0.03)$ $= (0.0625 = 0.063)$ $p(D) = 0.063$ $p(D) = 0.063$ $p(B D) = \frac{p(BD)}{p(D)} = \frac{p(B) \cdot p(D B)}{p(D)} = \frac{(0.40)(0.10)}{0.063} = 0.6349$ $p(B D) = 0.635 - 2 \text{ marks}$ Activate V Goto Setting					
Q.3.a)	Probability distribution of two random variables X and Y are given below. Y X					4 M
		0	1	2	3	
	0	0.15	0.30	0.05	0	
	1	0.05	0.15	2k	0.05	
	2	0	0.05	0.10	k	
	i).Find the probabil	lity $P(Y > X)$.	L	I		

	ii).Validate the statement" X and Y are independent"				
Solution	i) $P(Y > X) = P(0,1) + P(0,2) + P(1,2) = 0.05 + 0 + 0.05 = 0.1$ (2marks) ii) As $P(0,0) = 0.15$ and $P(x=0) \cdot P(y=0) = 0.2 \cdot 0.5 = 0.1$ Thus $P(0,0) \neq P(x=0) \cdot P(y=0)$ (1mark) X and y are not independent (1mark)				
Q.3.b)	Consider the following probability distribution.				
1	X -2 -1 1 2	1			
	i)." Probability distribution is not valid because x is negative". Validate. ii).If the distribution is valid then find E(X), E(X²) and hence variance of X.	4 M			
Solution	i) As $0 < P(x_i) < 1$ and summation of $P(x_i) = 1$ (1mark)				
	ii) $E(x) = -0.25$ (1mark)				
ı	E(x ²)=2.05 (1mark) V(x)=1.9875 (1mark)				
Q.4.a)	Let X be a random variable which follows binomial distribution with n = 500 and p = 0.20. Then find the following i). $P(X > 290)$ ii) $P(X = 250)$ iii). $P(120 < X < 180)$.	4 M			
Solution	As n.p= $500*0.2=100 > 15$ and n.q= $500*0.8=400 > 15$, hence we can use Binomial approximation to Normal distribution $\mu = np = 100 \text{ and } \sigma = sqrt(npq) = 8.94$ Let $z = \frac{x-\mu}{\sigma} = \frac{x-100}{8.94}$ (1mark) i). P (X > 290) = P (X > 290.5) = P(Z > 21.3) = 0 (1mark) ii) P (X = 250) = P (249.5 < X < 250.5) = P(16.72 < Z < 16.83) = 0(1mark) iii). P (120 < X < 180) = P (120.5 < X < 179.5) = P(2.29 < Z < 8.89) = 0.5 - 0.4890 = 0.011 (1mark)				
Q.4.b)	The rain fall (in cms) in a Country during every July month is normally distributed with mean and standard deviation of rainfall are respectively as 12cms and 1.25cms. For the July month of 2022, calculate the probabilities of having rainfall i) less than 15 cms ii).in between 13cms and 18cms. iii) of 13 cms				
Solution:	$\mu = 12 \text{ and } \sigma = 1.25$ Let $z = \frac{x - \mu}{\sigma} = \frac{x - 12}{1.25}$ (1mark)				
	 i) P(x<15)=P(z<2.4)=0.9918 (1mark) ii) P(13<x<18)=p(0.8<z<4.8)= (1mark)<="" -="" 0.2881="0.2119" 0.5="" li=""> iii) P(x=13) = 0 (1mark) </x<18)=p(0.8<z<4.8)=>				