## CHAPTER ONE

## DNE - Does Not Exist

Some functions do not have a derivative at a certain point. The reason for this in most cases as we will see is because the slope f' approaches  $\infty$ ,  $-\infty$ , or simply doesn't exist.

Some common functions include  $x^{\frac{2}{3}}$  at x=0,  $x^{\frac{1}{3}}$  at x=0, |x| at x=0, and  $\frac{1}{x}$  at x=0.

**Definition 1.1** (DNE). The derivative of f(x) at x = a is considered DNE if

$$\lim_{x \to a^+} f'(x) \neq \lim_{x \to a^-} f'(x)$$

This definition is actually expanded upon in first to second year university mathematics <sup>1</sup> by the *Epsilon Delta Definition of a Limit*. Regardless, it is pretty intuitive that Definition 1.1 is true.

**Example 1.2.** Consider the derivative of  $f(x) = \frac{1}{x}$  at x = 0 (see Figure 1.1). We can immediately see that the value of f'(x) at x = a is unclear. To prove this, differentiate to get  $f'(x) = -\frac{1}{x^2}$ 

$$\lim_{x \to 0^+} = -\infty$$
$$\lim_{x \to 0^-} = \infty$$

Which we can tell from the graph as well. Therefore, we see that we cannot reach a consenus.<sup>2</sup>

**Example 1.3.** Consider the derivative of  $f(x) = x^3$  at x = 0 (see Figure 1.2). We can immediately see  $\lim_{x \to 0} f'(x) = \infty$ , implying DNE.

**Example 1.4.** Consider the derivative of f(x) = |x| at x = 0 (see Figure 1.3). We apply Definition 1.1 to prove that  $\lim_{x \to 0} f'(x) = \mathsf{DNE}$ . The derivative of f(x) = |x| is interestingly  $f'(x) = \frac{|x|}{x}$  or  $f'(x) = \frac{x}{|x|}$ . This implies

$$\lim_{x \to \infty} f'(x) = \frac{1}{|x|}.$$
 This implifies

$$\lim_{x \to 0^{+}} f'(x) = 1$$

$$\lim_{x \to 0^{-}} f'(x) = -1$$

Or you can just look at the graph to determine these values. Therefore, according to Definition 1.1, f'(0) is undefined.

 $^{1}$  We will refer to first year university mathematics at U1 mathematics. This applies to any year as well (example year 2 university mathematics is U2 mathematics).



**Figure 1.1:** Graph of  $f(x) = \frac{1}{x}$ . There is a V.A at x = 0.

 $^2$  It should be noted that this was a bad example, but one that first comes to mind. The reason for this is because even if there weren't two values for  $\lim_{x\to 0^+} f'(x)$  and  $\lim_{x\to 0^-} f'(x)$ , it still wouldn't have mattered, since they both evaluate to  $\pm \infty$ , which is DNE. However, I hope that it proves the point that if there are two possible values for the limiting case, then the derivative is defined as DNE.



**Figure 1.2:** Graph of  $f(x) = x^{\frac{1}{3}}$ . There is a vertical POI at x = 0.



**Figure 1.3:** Graph of f(x) = |x|. The sharp turn at x = 0 is what we call a **cusp**.

**Proposition 1.5.** The derivative of f'(x) at x = a is DNE if:

1. 
$$\lim_{x \to a^+} f'(x) \neq \lim_{x \to a^-} f'(x)$$

- 2. There is a horizontal POI at x = a.
- 3. There is a cusp at x = a.