CS 4820, Spring 2019

Name: Kevin Klaben NetID: kek228

(1) (10 points) Let $\mathcal{L} \subseteq \{0,1\}^*$ be a language, and let $\overline{\mathcal{L}}$ be its complement, i.e. the set of all finite binary strings that don't belong to \mathcal{L} . Prove that \mathcal{L} is decidable if and only if both \mathcal{L} and $\overline{\mathcal{L}}$ are recognizable.

Claim: \mathcal{L} is decidable iff both \mathcal{L} and $\overline{\mathcal{L}}$ are recognizable.

Sub claim: \mathcal{L} is decidable if both \mathcal{L} and $\overline{\mathcal{L}}$ are recognizable.

Proof: Suppose \mathcal{L} is decidable. By definition, this means there exists some function M which can either reject or accept on every possible input x as being a member of \mathcal{L} . M cannot possibly fail to terminate in finite time by the definition of decidable. Using this same function M, it is clear that for all inputs which are elements of \mathcal{L} , M will accept x. Thus, M recognizes \mathcal{L} . Using a slightly modified M which switches the outputs (if M accepts x then x is not in the language and if M rejects x then x is a member of the language), then this modified M recognizes $\overline{\mathcal{L}}$. As both $\overline{\mathcal{L}}$ and \mathcal{L} are recognizable the subclaim holds.

Sub claim: if both \mathcal{L} and $\overline{\mathcal{L}}$ are recognizable, then \mathcal{L} is decidable.

Proof: Suppose that both \mathcal{L} and $\overline{\mathcal{L}}$ are recognizable. By definition of recognizable, we know there must exist some M which recognizes \mathcal{L} and some M' which recognizes $\overline{\mathcal{L}}$. Thus given some input x which is an element of $\{0,1\}^*$ we can run both M and M' on input x. If M accepts x then it is a member of \mathcal{L} and if x is accepted by M' then it is a member of $\overline{\mathcal{L}}$ and thus not a member of \mathcal{L} . As both \mathcal{L} and $\overline{\mathcal{L}}$ recognized by M and M' respectively, we know that M and M' must accept all members of their respective languages in finite time. Running M and M' together will always see at least one terminate in finite time as all inputs which are an element of $\{0,1\}^*$ are either an element of \mathcal{L} or $\overline{\mathcal{L}}$. Thus, on all possible inputs we can either accept or reject all inputs in finite time based on the outputs of M and M' running together as our function. As we can either accept or reject every input as either and element of \mathcal{L} or not an element of \mathcal{L} in finite time, \mathcal{L} is decidable.

Proof: As both sub claims hold, we can conclude that the original claim holds.