Gait Sequence Modelling and Estimation using Hidden Markov Models

Kouame H. Kouassi ksskou001@myuct.ac.za

Abstract

In the present work, gait sequence modelling and estimation was performed with Hidden Markov Models (HMMs) from inertial measurement unit (IMU) data. More specifically, from IMU measurements, a dog's footfalls were correctly identified with up to 95% precision. The continuous-valued IMU measurements were modelled with Gaussian mixtures.

Model Parameters

- $\pi = \{\pi_i\}$, the initial state distribution as prior knowledge
- $A = \{a_{ij}\}$, the state transition probabilities. a_{ij} denotes probability of transitioning from state S_i to state S_j .
- $\Phi = \{\phi_j(k)\}$, Gaussian distributions characterised by the mean matrix: μ_{jm} , the co-variance matrices Σ_{jm} , and the mixture distribution: β_{jm} .

Dimensionality reduction

Feature ranking with separability of index (SI): Features' are ordered according to their between-class 'classifiability content' using mahalanobis distance

Forward feature selection: forward feature selection with a prior reduction using SI ranking PCA: The four principal components (PC) were selected to represent the dataset in the PC-space.

LDA: The data was reduced to 3-dimensions using Linear Discriminant Analysis.

Parameter estimation

Increase the data by mirroring and aggregation: The reverse gait sequence was appended to the (aggregated) initial IMU measurement sequence.

Transition matrix, A: Using the available ground-truth, the HMM was reduced to a discrete Markov problem to estimate the transition probabilities.

Gaussian Mixture parameter, μ_{jm} , Σ_{jm} , and β_{jm} : The parameters were initialised with kmeans++, then optimised with the Expectation-Maximisation algorithm with the training samples.

Initial state distribution (Snapshot preferential) G_0 is a scale free network. Add k_A edges from a random node with preferential attachment based on the snapshot network. Delete k_D existing edges.

Footfall Prediction

Given a sequence of observation, the dog's successive positions (the hidden states) are determined using the

pi, A, and Φ . Practically, the **Viterbi algorithm** was used to predict the hidden state sequence.

Gait Estimation System Overview A states Front HMM Front state Gimensions 18-D IMU data 18-to-K dimensions 18-to-K dimensions

dimensions

Dimensionality

Reduction

Back HMM

Gait Estimator

State Transition Markov Process Transition Matrix Heat Map of the underlying Markov process 1 0.45 0.4 0.35 0.2 0.2 0.15 1 2 3 4 1 2 3 4 0.2 0.15

Motion Type Recognition

	Running Data	Walking Data	Trotting Data
Model of Dog's Run	91.16%	2.06%	0.22%
Model of Dog's Walk	21.06%	100.00%	75.53%
Model of Dog's Trot	27.40%	45.72%	100.00%

Table 1: Dog's motion type recognition with prediction accuracy

	Running Data	Walking Data	Trotting Data
Model of Dog's Run	0.00	-0.00×10^{14}	-0.00×10^{14}
Model of Dog's Walk	-0.00×10^{14}	0.00	-0.00×10^{14}
Model of Dog's Trot	-1.44×10^{12}	-0.1302	0.00

Table 2: Dog's motion type recognition with sequence's log-likelihood