

by (S) ignify

## Linear

**TruGroove** 

Suspended micro (lens)



Project:
Location:
Cat.No:
Type:

TruGroove suspended micro includes AccuRender technology for the highest color quality at the highest efficacy

to asymmetric wall wash exceeding the demands of the most challenging spaces.

**TruGroove suspended micro (lens)** drives performance beyond the edge. Innovative optics deliver exceptional uniformity and wide row spacing from a 1.75" aperture continuous line

of light. Unique Quad Optic louver cells offer a wide range of options from graze to stack

| Line ID: | Qty: |
|----------|------|
| Notes:   |      |

Ordering guide 12

example: TM05L940QRPC230Q5008DS1NCSW, A6-1-24

| amily                                                                                                                                                                                                                                        | Version                                                                                                                                                                                                                                                                                                                                                | Distribution Source                                                                    |                         | CRI/CCT 1, 5, 8, 16                        |                                                                          |                                                                                  |                                                                                                                         |                                         |                      |                                              |                                                                     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------|--------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|----------------------------------------------|---------------------------------------------------------------------|--|--|
| TruGroove micro                                                                                                                                                                                                                              | 0 Suspended                                                                                                                                                                                                                                                                                                                                            | 1 Direct L LE                                                                          | D                       | 950 CRI 90, 5000K                          | RI 90, 4000K 935 CRI 90, 3500K                                           |                                                                                  |                                                                                                                         |                                         |                      |                                              |                                                                     |  |  |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        | 3 Indirect 5 Indirect / Direct 6 Direct / Indirect                                     |                         | 930 CRI 90, 3000K                          | 927 CRI                                                                  | 90, 2700K                                                                        | 9T2 CRI                                                                                                                 | 90, 2700-6500K 2ch Tun                  | able White (please   | confirm                                      | driver & controls)                                                  |  |  |
| ptics (Direct)                                                                                                                                                                                                                               | <b>.</b>                                                                                                                                                                                                                                                                                                                                               | o birect/ indirect                                                                     |                         |                                            | Lumens                                                                   | (Direct) 1, 16                                                                   | Optics (I                                                                                                               | Indirect)                               | Lumens (Indirect)    | 1, 16 Run                                    | Length 7                                                            |  |  |
| ens Optic <sup>9, 16</sup>                                                                                                                                                                                                                   | Louver Cell Optic 8,15                                                                                                                                                                                                                                                                                                                                 | Louver Color Louve                                                                     | r Length 15             | Louver Position 15                         | NN Nor                                                                   |                                                                                  | N Nor                                                                                                                   | •                                       | NN None              |                                              | 2ft                                                                 |  |  |
| No Lens (must specify louver optic) Performance Symmetric Batwing Flush MesoOptics P Performance Asymmetric Wall Wash Flush MesoOptics Definition Symmetric Flush Silk Definition Symmetric Drop Silk Definition Symmetric Flush Black otes: | N No Louver (must specify lens optic) G Performance 17° Graze Beam w/MesoOptics R Performance 27° Narrow Beam w/MesoOptics M Performance 48° Medium Beam w/MesoOptics S Performance 63° Stack Beam w/MesoOptics Q Performance 61° Symmetric Batwing w/MesoOptics W Performance 20° Asymmetric Wall Wash w/MesoOptics K Definition Symmetric Silk Optic | N None N No<br>B Black C 6ii<br>W White 1 1fi<br>P Platinum F Fu<br>G Gold<br>C Copper | one<br>n (3 Cells)      | N None 1 One End 2 Both Ends F Full Length | 40 4000<br>35 3500<br>30 3000<br>25 2500<br>20 2000<br>15 1500<br>07 700 | 0 Im/4ft<br>0 Im/4ft<br>0 Im/4ft<br>0 Im/4ft<br>0 Im/4ft<br>0 Im/4ft<br>0 Im/4ft | Q Per                                                                                                                   |                                         | 70 7000 lm/4ft       | C2<br>03<br>C3<br>04<br>05<br>06<br>08<br>XX | 2.5ft<br>3ft<br>3.5ft<br>4ft<br>5ft<br>6ft<br>8ft<br>Continuous run |  |  |
| or lens/louver combinations please sele                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                         |                                            |                                                                          |                                                                                  |                                                                                                                         |                                         |                      |                                              | pended Patterns:                                                    |  |  |
|                                                                                                                                                                                                                                              | with a lens, must select N for lens option.                                                                                                                                                                                                                                                                                                            |                                                                                        |                         |                                            |                                                                          |                                                                                  |                                                                                                                         |                                         |                      | A4                                           | 2ft x 2ft Flat Corn                                                 |  |  |
| Continuous runs available in 6in increme                                                                                                                                                                                                     | nts (please specify length).  Driver 3,5                                                                                                                                                                                                                                                                                                               | Circuit 2, 10, 11                                                                      |                         |                                            |                                                                          | 2 3 6 10 13                                                                      | l                                                                                                                       | 4 9 14                                  |                      |                                              |                                                                     |  |  |
| /oltage <sup>3</sup>                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                         |                                            |                                                                          |                                                                                  |                                                                                                                         | Controls 4, 9, 14                       |                      |                                              |                                                                     |  |  |
| UNV 120-277V                                                                                                                                                                                                                                 | E Advance Xitanium 0-10V (1% Dim)                                                                                                                                                                                                                                                                                                                      | 1 Single Circuit                                                                       |                         |                                            | N Nor                                                                    |                                                                                  | NN Nor                                                                                                                  | ne                                      |                      |                                              |                                                                     |  |  |
| 347V                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                        | V Single Circuit + 1 Thru W                                                            |                         |                                            |                                                                          | ery Pack                                                                         |                                                                                                                         |                                         |                      |                                              |                                                                     |  |  |
| UNV 120-277V                                                                                                                                                                                                                                 | D Advance Xitanium DALI (5% Dim)                                                                                                                                                                                                                                                                                                                       | F Single Circuit + 4 Thru W                                                            | /ires (Mains & Dimmin   | g)                                         |                                                                          | iliary Wiring                                                                    |                                                                                                                         |                                         |                      |                                              |                                                                     |  |  |
|                                                                                                                                                                                                                                              | H Lutron EcoSystem LDE1 (<1% Dim, Fade-to-Black)                                                                                                                                                                                                                                                                                                       | G Dual Circuit (Up/Down)                                                               |                         |                                            | G GTD                                                                    | (please specify voltage)                                                         |                                                                                                                         |                                         |                      |                                              |                                                                     |  |  |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        | W Dual Circuit (Up/Down)                                                               | +1 Thru Wire (BP Trigg  | (er)                                       |                                                                          |                                                                                  |                                                                                                                         |                                         |                      |                                              |                                                                     |  |  |
| UNV 120-277V                                                                                                                                                                                                                                 | S Advance Xitanium SR (1% Dim)                                                                                                                                                                                                                                                                                                                         | 1 Single Circuit                                                                       |                         |                                            | N Nor                                                                    |                                                                                  | NN Nor                                                                                                                  |                                         |                      |                                              |                                                                     |  |  |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        | V Single Circuit + 1 Thru W                                                            | /ire (BP Trigger)       |                                            |                                                                          | ery Pack                                                                         | CS Interact Pro scalable wireless sensor with integral daylight & occupancy sensing, advanced grouping with dwell time. |                                         |                      |                                              |                                                                     |  |  |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                         |                                            | R UL9                                                                    | 24 Sensor Bypass Relay                                                           |                                                                                                                         |                                         |                      |                                              |                                                                     |  |  |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                         |                                            |                                                                          |                                                                                  |                                                                                                                         | eract Pro Enterprise adv                |                      |                                              |                                                                     |  |  |
|                                                                                                                                                                                                                                              | 5. Advance Slov Toron CD (40/ Dire)                                                                                                                                                                                                                                                                                                                    | A Circle Circuit                                                                       |                         |                                            |                                                                          |                                                                                  |                                                                                                                         | .500 with IoT capabilitie               | s for enterprise sca | le projec                                    | ts.                                                                 |  |  |
| O UNV 120-277V                                                                                                                                                                                                                               | F Advance FlexTune SR (1% Dim)                                                                                                                                                                                                                                                                                                                         | 1 Single Circuit                                                                       | ( (DD T-:)              |                                            | N Nor                                                                    | ie                                                                               | NN Nor                                                                                                                  |                                         |                      | and doub                                     | -1-1-0                                                              |  |  |
|                                                                                                                                                                                                                                              | 2 0-10V 2ch (1% Dim)                                                                                                                                                                                                                                                                                                                                   | V Single Circuit + 1 Thru W                                                            | rire (BP Trigger)       |                                            |                                                                          |                                                                                  |                                                                                                                         | eract Pro scalable wirel                |                      |                                              |                                                                     |  |  |
|                                                                                                                                                                                                                                              | 6 DALI-2 DT6 2ch (1% Dim)                                                                                                                                                                                                                                                                                                                              |                                                                                        |                         |                                            |                                                                          |                                                                                  |                                                                                                                         | upancy sensing, advance                 |                      |                                              |                                                                     |  |  |
|                                                                                                                                                                                                                                              | 8 DALI-2 DT8 2ch (1% Dim)                                                                                                                                                                                                                                                                                                                              |                                                                                        |                         |                                            |                                                                          |                                                                                  |                                                                                                                         | eract Pro Enterprise adv                |                      |                                              |                                                                     |  |  |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                         |                                            |                                                                          |                                                                                  |                                                                                                                         | .500 with IoT capabilitie               | s for enterprise sca | le projec                                    | ts.                                                                 |  |  |
| Low Voltage (48-54V DC)                                                                                                                                                                                                                      | P PoE Lighting Controller                                                                                                                                                                                                                                                                                                                              | 1 Single Circuit                                                                       |                         |                                            | N Nor                                                                    |                                                                                  | NN Nor                                                                                                                  |                                         |                      |                                              |                                                                     |  |  |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                         |                                            | в ватт                                                                   | ery Pack                                                                         |                                                                                                                         | eract Office wired senso                |                      |                                              |                                                                     |  |  |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                         |                                            |                                                                          |                                                                                  |                                                                                                                         | upancy sensing, enable                  |                      |                                              |                                                                     |  |  |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                         |                                            |                                                                          |                                                                                  |                                                                                                                         | eract Office advanced w                 |                      |                                              | SC2000                                                              |  |  |
| 17                                                                                                                                                                                                                                           | Mount Type                                                                                                                                                                                                                                                                                                                                             | Ceiling Type                                                                           |                         |                                            |                                                                          |                                                                                  |                                                                                                                         | h IoT capabilities for en<br>ion Length | terprise scare proje | cts.                                         |                                                                     |  |  |
| inish <sup>17</sup>                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                        |                                                                                        | -11                     |                                            |                                                                          |                                                                                  |                                                                                                                         | non cengui                              |                      |                                              |                                                                     |  |  |
| V Standard White                                                                                                                                                                                                                             | A Aircraft Cable Mount                                                                                                                                                                                                                                                                                                                                 | 1 Non-accessible ceiling,                                                              |                         | 6-1 T-Grid On-Grid Mo                      |                                                                          |                                                                                  | 24 24"                                                                                                                  |                                         | 144 144"             |                                              | 192"                                                                |  |  |
| Titanium Silver                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                        | 2 T-Grid, Fixed Position M                                                             |                         | 6-2 T-Grid On-Grid Mo                      |                                                                          |                                                                                  | <b>48</b> 48"                                                                                                           |                                         | 96 96"               | 240                                          | 240"                                                                |  |  |
| Midnight Black                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                        | <ol><li>Non-accessible ceiling,</li></ol>                                              |                         | 6-3 T-Grid On-Grid Mo                      | ount 9/16" x                                                             | 5/16", (slot tee & tegular tile)                                                 |                                                                                                                         |                                         |                      |                                              |                                                                     |  |  |
| Graphite Grey                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                        | 5 T-Grid 24" Span Mount,                                                               | (non tegular tile only) |                                            |                                                                          |                                                                                  |                                                                                                                         |                                         |                      |                                              |                                                                     |  |  |
| Dark Walnut Woodgrain                                                                                                                                                                                                                        | Notes:                                                                                                                                                                                                                                                                                                                                                 |                                                                                        |                         |                                            |                                                                          |                                                                                  |                                                                                                                         |                                         |                      |                                              |                                                                     |  |  |
| Light Cherry Woodgrain                                                                                                                                                                                                                       | Aircraft cable suspension length is from ceiling to top of lu                                                                                                                                                                                                                                                                                          |                                                                                        |                         |                                            |                                                                          |                                                                                  |                                                                                                                         |                                         |                      |                                              |                                                                     |  |  |
| White Cherry Woodgrain                                                                                                                                                                                                                       | Standard power cord is white. Black or clear power cords a                                                                                                                                                                                                                                                                                             |                                                                                        |                         |                                            |                                                                          |                                                                                  |                                                                                                                         |                                         |                      |                                              |                                                                     |  |  |
| Custom (please specify color)                                                                                                                                                                                                                | Standard canopies are white. A1 and A3 canopies can be po                                                                                                                                                                                                                                                                                              | owder coated to match fixtu                                                            | re colour on request (* | excludes woodgrain fir                     | inishes).                                                                |                                                                                  |                                                                                                                         |                                         |                      |                                              |                                                                     |  |  |

## **Finish options**







Titanium Silver (T)



Midnight Black (B)



Graphite Grey (G)



Dark Walnut (1)



Light Cherry (2)



White Cherry (3)

**DLC Note:** Not all product variations listed on this page are DLC qualified. To ensure that a specific model is qualified, visit www.designlights.org/search













#### Order guide footnotes

- 1. Nominal values within a range. Not all lumen packages are available with all configurations. Consult photometry data for CRI, color temp, lumens & distribution of chosen configuration.
- 2. Not all wiring types are available with all configurations. Consult Ledalite for a complete list of available options.
- 3. 347V not available with Battery Pack, GTD, DALI, Lutron EcoSystem or Sensor Ready drivers or Interact Pro options. Battery packs available in modules > 4ft (lumen package limits may apply, check with Ledalite).
- 4. Interact Pro & Interact Office Wired (PoE) options require separate controls hardware by Signify.
- 5. Tunable White options are available with Interact Pro wireless or with 2ch 0-10V, DALI-2 (DT6 or DT8) or Interact Office (PoE) wired drivers. Please enquire about options such as Lutron T Series or DMX control (extended lead times may apply).
- 6. Auxiliary Wiring not available with Interact Pro or Interact Office Wired (PoE) luminaires. Aux sections are wired to one fixture end only.
- 7. Flat corners are 90°. No asymmetric lens optics in corners. Please enquire about options for custom angles and intersections. for 2ft D/I configurations please consult factory. (Extended lead times may apply for these options).
- 8. Tunable White not available with Louver Cell Optics.
- 9. Integral sensors only recommended at ends of runs for best aesthetics. Mid run sensors can be provided in remote mounts. Integral sensors not available with Drop Lens options. Please enquire about options for remote sensors. Sensors must be combined with Sensor Ready driver options. Default sensor color is white, fixtures with black or dark finishes have black sensors. (Consult factory for other combinations).
- 10. Luminaires are pre-wired to both ends with quick wire connectors at one end for standard circuit & battery pack trigger wire (if applicable). Each circuit has its own neutral conductor. All circuits are clearly labelled at each end.
- 11. Thru Wire options can provide either one additional set of (4) power and dimming wires (Black/White/Purple/Pink or Brown) or one additional battery pack trigger wire (Orange) through a selected module, please consult factory for other Thru Wire options.
- 12. Other options not shown here may also be possible via a custom request. Extended lead times and minimum order quantities may apply, please consult factory.
- 13. UL924 listed sensor bypass relay is factory installed between driver & sensor. Must be ordered in same module as integral sensing option. Consult Ledalite for other options. Must be installed in conjunction with a UL1008 device.
- 14. Must order IRT9015 Interact commissioning remote with each system order.
- 15. Combination modules with Louver Cells and a Flush Lens may be specified by using the "Louver Cell Length" and "Louver Cell Position" options.
- 16. Black Lens limits direct lumens to 700 or 1000lm/4ft and indirect lumens to a max of 3000lm/4ft. Tunable White only in MesoOptic, Flush Silk or Drop Silk lenses, consult photometry data for lumens options of chosen configuration.
- 17. Woodgrain finishes only available in straight runs.

Note: Due to continuing product improvements. Ledalite reserves the right to change the specifications without notice.

## **Options and dimensions**

#### Standalone

Keep it simple with standalone modules, available in 8 standard lengths (consult Ledalite for custom lengths).



#### **Continuous Run**

Create an uninterrupted ribbon of light with continuous runs, specifiable to 6 in.



#### **Patterns**

Seamlessly create any pattern imaginable (flat corners are 90°, contact Ledalite for custom angles and intersections).



#### Flush lens

TruGroove suspended micro with 1.75" wide Flush MesoOptics or Silk lens.



Direct



Indirect



#### Louver

TruGroove suspended micro with Ledalite's unique quad optic louver cells with MesoOptics in 6 distributions.



Direct



Louvers can be ordered at the full fixture length or in 6 in. or 1ft sections at one or both ends of a fixture in combination with a lens.



## Drop lens and black lens

TruGroove suspended micro with drop lens and black lens options.





## **Options and dimensions**

#### **Side Views**

Standalone



| t | Nominal | Housing        | Lens <b>Aperture</b> | Mounting <b>Points</b>           |
|---|---------|----------------|----------------------|----------------------------------|
|   | 2ft     | 24.5" [622mm]  | 24.0" [610mm]        | 22.0" [559mm] to 23.5" [597mm]   |
|   | 2.5ft   | 30.5" [775mm]  | 30.0" [762mm]        | 28.0" [711mm] to 29.5" [749mm]   |
|   | 3ft     | 36.5" [927mm]  | 36.0" [914mm]        | 34.0" [864mm] to 35.5" [902mm]   |
|   | 3.5ft   | 42.5" [1080mm] | 42.0" [1067mm]       | 40.0" [1016mm] to 41.5" [1054mm] |
|   | 4ft     | 48.5" [1232mm] | 48.0" [1219mm]       | 46.0" [1168mm] to 47.5" [1207mm] |
|   | 5ft     | 60.5" [1537mm] | 60.0" [1524mm]       | 58.0" [1473mm] to 59.5" [1511mm] |
|   | 6ft     | 72.5" [1842mm] | 72.0" [1829mm]       | 70.0" [1718mm] to 71.5" [1816mm] |
|   | 8ft     | 96.5" [2451mm] | 96.0" [2438mm]       | 94.0" [2388mm] to 95.5" [2426mm] |

## Continuous Run (Mid-run)



| Nominal | Housing        | Lens <b>Aperture</b> | Mounting <b>Points</b>           |
|---------|----------------|----------------------|----------------------------------|
| 2ft     | 24.0" [610mm]  | 24.0" [610mm]        | 22.0" [559mm] to 23.5" [597mm]   |
| 2.5ft   | 30.0" [762mm]  | 30.0" [762mm]        | 28.0" [711mm] to 29.5" [749mm]   |
| 3ft     | 36.0" [914mm]  | 36.0" [914mm]        | 34.0" [864mm] to 35.5" [902mm]   |
| 3.5ft   | 42.0" [1067mm] | 42.0" [1067mm]       | 40.0" [1016mm] to 41.5" [1054mm] |
| 4ft     | 48.0" [1219mm] | 48.0" [1219mm]       | 46.0" [1168mm] to 47.5" [1207mm] |
| 5ft     | 60.0" [1524mm] | 60.0" [1524mm]       | 58.0" [1473mm] to 59.5" [1511mm] |
| 6ft     | 72.0" [1829mm] | 72.0" [1829mm]       | 70.0" [1718mm] to 71.5" [1816mm] |
| 8ft     | 96.0" [2438mm] | 96.0" [2438mm]       | 94.0" [2388mm] to 95.5" [2426mm] |

## Continuous Run (End-run)



| Nominal | Housing         | Lens <b>Aperture</b> | Mounting <b>Points</b>           |
|---------|-----------------|----------------------|----------------------------------|
| 2ft     | 24.25" [616mm]  | 24.0" [610mm]        | 22.0" [559mm] to 23.5" [597mm]   |
| 2.5ft   | 30.25" [768mm]  | 30.0" [762mm]        | 28.0" [711mm] to 29.5" [749mm]   |
| 3ft     | 36.25" [921mm]  | 36.0" [914mm]        | 34.0" [864mm] to 35.5" [902mm]   |
| 3.5ft   | 42.25" [1073mm] | 42.0" [1067mm]       | 40.0" [1016mm] to 41.5" [1054mm] |
| 4ft     | 48.25" [1226mm] | 48.0" [1219mm]       | 46.0" [1168mm] to 47.5" [1207mm] |
| 5ft     | 60.25" [1530mm] | 60.0" [1524mm]       | 58.0" [1473mm] to 59.5" [1511mm] |
| 6ft     | 72.25" [1842mm] | 72.0" [1829mm]       | 70.0" [1718mm] to 71.5" [1816mm] |
| 8ft     | 96.25" [2445mm] | 96.0" [2438mm]       | 94.0" [2388mm] to 95.5" [2426mm] |

## **Top View**

Flat Corner 90°



| Nominal   | Housing       | Mounting <b>Points</b> |
|-----------|---------------|------------------------|
| 2ft x 2ft | 25.1" [636mm] | 23.0" [585mm]          |

Flat corners are  $2ft \times 2ft$  and can be used to create suspended patterns. Flat corners are  $90^{\circ}$ , contact Ledalite for custom angles and intersections.

#### Specifications

#### **Optical System**

**Direct hemisphere:** Light emitted from a linear array of downward-facing LEDs is laterally redirected using optical microstructures embedded in a layer of MesoOptics DX film to generate an optimal batwing distribution and a uniform continuum of light. The available Flush Silk lens is a value-oriented option that provides a lambertian distribution while maintaining a uniform continuum of light.

Additionally, Ledalite's unique Quad Optic Louver Cell provides 6 tailored optical distributions with reduced glare.

Indirect hemisphere: White light emitted from a linear array of upward-facing LEDs is shaped into a homogeneous, wide-throw batwing distribution or a low peak angle asymmetric throw using either a free-form elliptical lens or an engineered light guide panel.

#### Housing

Post painted precision aluminum extrusion.

#### **Endcaps**

Diecast flat aluminum endcaps with integral groove to match housing.

#### Finish

High quality powder coated, available in standard Matte White, Black, Titanium Silver or Graphite Grey. TruGroove can also be specified in any custom color upon request for a one-time setup charge. Optional sensors (such as Interact Pro) available in white only.

#### Mounting

**Suspended:** Variable sling mount allows  $\pm$  5" of horizontal adjustment from joint or end. Aircraft cable and tamper-resistant gripper provide unlimited vertical adjustment and are independently tested to stringent safety standards.

#### Joints

Self-aligning joining system with hands-free pre-joining wire access.

#### Weight

Maximum 3.8/ft (suspended), 10lb (2ft x 2ft suspended corner).

#### Electrica

Fixtures are factory pre-wired to section ends with quick-wire connectors and tested for all circuits and backup battery packs. LED boards and drivers are easily field replaceable with access from below the ceiling.

#### Standard Drivers

Advance Xitanium 0-10V, 1% Dimming.

Advance Xitanium DALI, 5% Dimming.

Advance Xitanium Sensor Ready, 1% Dimming.

PoE Lighting Controller (for PoE tunable white).

 ${\tt Lutron\ EcoSystem\ LDE1,\ 1\%\ Dimming\ with\ Soft-On\ and\ Fade-to-Black.\ Class\ 2\ rated\ output.\ Consult\ Ledalite\ for\ other\ available\ drivers.}$ 

#### **2ch Tunable Drivers**

Advance FlexTune Sensor Ready, 1% Dimming.

0-10V, 1% Dimming.

DALI-2 DT6 or DT8, 1% Dimming.

Class 2 rated output. Consult Ledalite for other available drivers.

#### **Standard Battery Packs**

Bodine Battery Pack, 90 min, 10W, Class 2 rated output.

Lumen output = 10W x luminaire efficacy x 1.1. Typical output ~1200lm.

PoE Battery Pack, 90 min, 6W, Class 2 rated output.

Lumen output = 6W x luminaire efficacy. Typical output ~650lm.

#### **Lumen Maintenance**

LEDs have been tested by the manufacturer in accordance with IESNA LM-80-15. At an ambient temperature of 25°C, the LED lumen maintenance expectation according to IES TM-21-11 is:

 $L_{80}$  (10k) > 60,000 hours (Reported methodology).

#### **Source Color**

LEDs rated for color rendering of: CRI R<sub>a</sub>  $\geq$  90, R<sub>g</sub>  $\geq$  50, G<sub>a</sub>  $\geq$  97, C<sub>g</sub>  $\geq$  90 IES TM-30-18: R<sub>f</sub>  $\geq$  90, R<sub>fhl</sub>  $\geq$  89, R<sub>g</sub>  $\geq$  99, R<sub>cs.hl</sub>  $\geq$  -5%

SPD and TM-30-18 reports available upon request

Fixture to fixture color accuracy within: 2 SDCM for Static White luminaires 3 SDCM for Tunable White luminaires

#### **Approvals**

Certified to UL, IES & CSA Standards.

Certain versions without battery packs are DesignLights Consortium qualifies. Please see the DLC QPL list for exact catalog numbers. www.designlights.org/QPL

Select TruGroove micro configurations contribute toward satisfying features L03, L04, L06, L07 and L08 under the WELL v2 Building Standard®.

Luminaires that include Interact Pro controls options can help meet the requirements in 90.1–2022, IECC 2021, and CA T24 2022 for a maximum of 20min. time out for occupancy controls.

#### **Environment**

Rated for dry or damp locations in operating ambient temperatures of  $0-25^{\circ}$ C (32-77°F).

Many luminaire components, such as reflectors, refractors, lenses, and LEDs are made from various types of plastics which can be adversely affected by airborne contaminants. If sulfur-based chemicals, petroleum-based products, cleaning solutions, or other contaminants are expected in the intended area of use, consult factory for compatibility. Damage caused by sulfur, chlorine, petroleum-based solution or other contaminants are not covered under warranty. Not suitable for natatorium environments.

#### Warrant

Five-year luminaire limited warranty including LED boards and driver: www.signify.com/warranties

#### QuickShip

10-day QuickShip available for most configurations upon request. More information available at:

www.signify.com/en-us/brands/ledalite/quickship

#### **Wireless Controls Options**

## Interact Pro scalable sensor for Foundation, Advanced & Enterprise tiers (CS an evolution of SpaceWise):

- CS is a connected sensor with integral occupancy and daylight sensing and supports wireless mesh connectivity.
- The sensor works in the Foundation mode (similar to SpaceWise) when configured without a gateway or in an Interact Pro Advanced or Enterprise mode if a compatible gateway is used.
- Interact Pro includes an App, a portal and a broad portfolio of wireless luminaires, lamps and retrofit kits all working on the same system.
- Startup is implemented via Interact Pro App (Android or iPhone) & Bluetooth connectivity. The App provides flexibility to choose between a gateway or non gateway mode for setup.
- Setup with the gateway requires wired internet access to the gateway. It is possible to add a gateway at a later point.
- Prepare project configuration steps remotely and use IRT9015 remote onsite to identify and group devices together.
- Compatible with UID8451/10 wireless dimmer switch, SWS200 wireless scene switch, wireless Occ sensor (OCC SENSOR IA CM IP42 WH 10/1) and wireless Day/Occ sensor (OCC MULTI SENSOR IA CM WH 10/1).
- For more information on Interact Pro visit: www.interact-lighting.com/interactproscalablesystem

#### **Emergency Options (R):**

- · Power Sensing (Factory default) Recommended
- UL924 option requires unswitched power sense line, absence of voltage on the normal circuit triggers luminaire to 100% output.
- · Power Interruption Detection (Field option)
- Detects AC power interruption >30ms triggers 90 minute emergency mode with luminaire at 100% output.

#### Interact Pro scalable sensor bundles for Enterprise tier (SB):

- SB option, in addition to occupancy and daylight sensing, supports advanced IoT capabilities such as people estimation analysis, desk level temperature & humidity sensing, noise classification, and BLE beacon.
- Compatible with UID8451/10 wireless dimmer switch, SWS200 wireless scene switch, wireless Occ sensor (OCC SENSOR IA CM IP42 WH 10/1) and wireless Day/Occ sensor (OCC MULTI SENSOR IA CM WH 10/1).
- Use Interact software and insights to increase building efficiency, achieve building wide integration and optimize space through occupancy analytics.
- Requires compatible Gateway and internet connectivity for commissioning.
   For more information, visit:

www.interact-lighting.com/office

#### **Wired Controls Options**

#### Interact Office Wired PoE (IO & SB):

- PoE based IoT connected lighting solution for large enterprises that span across multiple floors, buildings and require multiple gateways.
- Use Interact software and insights to increase building efficiency, achieve building wide integration and optimize space through occupancy analytics.
- Integral sensor option for occupancy sensing (PIR) and/or daylight harvesting available for additional energy savings.
- SB option, in addition to occupancy and daylight sensing, supports advanced IoT capabilities such as people estimation analysis, desk level temperature & humidity sensing, noise classification, and BLE beacon.
- Optional integral emergency controller and battery pack provides backup lighting in the case of a power outage. Test switch and indicator light mounted on the chassis.
- Emergency battery has a 3 month pre-installed shelf life, and must be stored and installed in environments of -20°C to 30°C (-4F to 86F) ambient, and 45-85% relative humidity.
- For more information on Interact Office Wired visit: www.interact-lighting.com/office

Note: Signify Interact Office Luminaires are not sold individually and are only compatible with Signify's Interact Office control system & software. The system requires a compatible back-end IT infrastructure for normal operations, please consult your Signify representative for additional information

#### Tunable White:

- Tunable White is available in Interact Office Wired PoE luminaires. Other control options for Tunable White with DALI (DT6 or DT8), 0-10V, Lutron T Series or DMX control are available via an Engineered-to-Order (ETO) request.
- Signify tunable white solutions are designed to help maximize the influence of lighting on your daily life.
- Dynamic behaviors via scheduled lighting recipes mimicking daylight patterns or supporting biorhythms.
- Scene setting via lighting pre-sets based on various combinations of lighting color temperature and intensity.

| Interact Pro so                                   | calable sensor option o | odes across Genlyte p | roduct lines |                          |
|---------------------------------------------------|-------------------------|-----------------------|--------------|--------------------------|
|                                                   | Evokit                  | Day-Brite             | Ledalite     | Lightolier               |
| Zigbee + Bluetooth + Sensing                      | SWZCS                   | SWZCS                 | CS           | SBA accessory (external) |
| Zigbee + Bluetooth                                | RADIO                   | RADIO                 | RA           | RA                       |
| Zigbee + Bluetooth + Sensing + Environmental data | IAOSB                   | IAOSB                 | SB           | SB                       |
| Zigbee + Highbay + Sensing                        | -                       | SWZCSH                | -            | -                        |

| Functionalities overview                            |            | Interact Pro scalable | e system   |
|-----------------------------------------------------|------------|-----------------------|------------|
|                                                     |            | Financia Na<br>       |            |
|                                                     | Foundation | Advanced              | Enterprise |
| Dimming, grouping, and zoning                       | <b>✓</b>   | <b>✓</b>              | <b>✓</b>   |
| Bluetooth and ZigBee enabled                        | <b>✓</b>   | <b>✓</b>              | <b>✓</b>   |
| Motion sensing and daylight harvesting              | <b>✓</b>   | <b>✓</b>              | <b>~</b>   |
| Integration with 0-10V and phase dimming fixtures   | <b>✓</b>   | <b>✓</b>              | <b>~</b>   |
| Code compliance                                     | <b>✓</b>   | <b>✓</b>              | <b>~</b>   |
| Granular dimming and dwell time                     | <b>✓</b>   | <b>✓</b>              | <b>✓</b>   |
| Correlated color temperature (CCT) tuning by switch | <b>✓</b>   | <b>/</b>              | <b>✓</b>   |
| Support for sensor-based Tunable White luminaires   | <b>✓</b>   | <b>✓</b>              | <b>✓</b>   |
| Energy reporting and monitoring                     |            | <b>/</b>              | <b>~</b>   |
| Scheduling                                          |            | <b>✓</b>              | <b>✓</b>   |
| Demand response                                     |            | <b>✓</b>              | <b>✓</b>   |
| BMS integration (BACnet)                            |            |                       | <b>✓</b>   |
| Floor plan visualization                            |            |                       | <b>✓</b>   |
| IoT sensors for wellness                            |            |                       | <b>✓</b>   |
| IoT Apps for productivity                           |            |                       | <b>✓</b>   |

## Currently supported maximum system size

To be able to design the lighting system correctly for the customer, it is important to know the prime characteristics of the system, its possibilities and limitations.

| System level                                               |                     |
|------------------------------------------------------------|---------------------|
| Total number of gateways                                   | Unlimited           |
| Total number of devices                                    | 200 per network     |
| <ul> <li>luminaires with<br/>integrated sensors</li> </ul> | 150                 |
| • smart TLEDS                                              | 150                 |
| Total number of ZGP devices (sensors and switches)         | 50                  |
| · sensors                                                  | 30                  |
| • switches                                                 | 50                  |
| zones and groups                                           | 64                  |
| Group level                                                |                     |
| Recommended number of lights                               | 40 (recommended 25) |
| Number of ZGP devices                                      | 5                   |
| Number of scenes                                           | 16                  |
|                                                            |                     |



## Colorimetry

TruGroove micro (TMxx) AccuRender Static White

| Nominal (                   | CRI &CCT                         | CRI 90, 2700K | CRI 90, 3000K | CRI 90, 3500K | CRI 90, 4000K | CRI 90, 5000K |
|-----------------------------|----------------------------------|---------------|---------------|---------------|---------------|---------------|
|                             | CRI R <sub>a</sub>               | 94            | 93            | 93            | 93            | 93            |
| 015 040 0 4005 1            | R <sub>9</sub>                   | 55            | 57            | 59            | 64            | 68            |
| CIE 013.3-1995 <sup>1</sup> | G <sub>a</sub>                   | 99            | 99            | 99            | 99            | 99            |
|                             | C <sub>9</sub>                   | 93            | 93            | 93            | 93            | 94            |
|                             | R <sub>f</sub>                   | 92            | 91            | 91            | 91            | 90            |
| IES TM-30-18 <sup>2</sup>   | R <sub>p</sub> h <sub>1</sub>    | 90            | 90            | 90            | 91            | 89            |
| IES IM-30-18 -              | R <sub>g</sub>                   | 100           | 100           | 99            | 100           | 100           |
|                             | R <sub>cs</sub> , h <sub>1</sub> | -6%           | -5%           | -6%           | -5%           | -5%           |
| MD                          | ER <sup>3</sup>                  | 0.45          | 0.51          | 0.58          | 0.65          | 0.81          |

<sup>1.</sup> Color Rendering Index (CRI Ra) and Strong Red (R9) are calculated in accordance with CIE 013.3-1995. Color Gamut index (Ga) and red chroma Index (C9) are CIE based properties using the Global Lighting Association's calculation tool.

## **Photometry**

The following pages contain photometry for TruGroove suspended micro with lens.

Photometry for TruGroove suspended micro with louvers can be found by scanning the QR code or following the link:

https://www.signify.com/api/assets/v1/file/Signify/content/7ee2b6d4e0de4996a2aeae6e01177639/TruGroove\_Suspended\_Micro\_Louver\_SpecSheet.pdf



<sup>2.</sup> Fidelity Index (Rf), Red Fidelity Index (Rf,h1), Gamut Index (Rg), and Red Local Chroma Shift (Rcs,h1) are calculated in accordance with IES TM-30-18.

<sup>3.</sup> Melanopic Daylight Efficacy Ratio (MDER) is the measure for "spectral melanopic efficiency" as defined in CIE S 026-2018.

## **Photometry**

Direct (TM01) Performance Symmetric Batwing Flush MesoOptic lens

| Nomi   | nal CRI &CC            | Т     |                 | CRI 9                       | 0, 270           | OK                   |          |                | CRI                         | 90, 300 | ок                  |          |                            | CRI           | 90, 350 | оок                  |          |                 | CRI                         | 90, 400 | OOK                 |          |                 | ОК                          |      |                      |          |
|--------|------------------------|-------|-----------------|-----------------------------|------------------|----------------------|----------|----------------|-----------------------------|---------|---------------------|----------|----------------------------|---------------|---------|----------------------|----------|-----------------|-----------------------------|---------|---------------------|----------|-----------------|-----------------------------|------|----------------------|----------|
|        | al Lumen<br>e (Im/4ft) | Watts | Flux (Im/4ft) ¹ | Efficacy (LPW) <sup>1</sup> | UGR <sup>5</sup> | Photometry<br>Report | IES File | lux (lm/4ft) ¹ | Efficacy (LPW) <sup>1</sup> | UGR®    | hotometry<br>Report | IES File | Flux (Im/4ft) <sup>1</sup> | icacy (LPW) 1 | UGR®    | Photometry<br>Report | IES File | Flux (lm/4ft) ¹ | Efficacy (LPW) <sup>1</sup> | UGR     | hotometry<br>Report | IES File | Flux (Im/4ft) ¹ | Efficacy (LPW) <sup>1</sup> | UGR® | Photometry<br>Report | IES File |
| Direct | Indirect               |       | ≖               | Eff                         |                  | •                    |          | 正              | Ett                         |         |                     |          | ᇤ                          | Effici        |         |                      |          | ᇤ               | Eff                         |         | <u> </u>            |          | ᇤ               | Ett                         |      | <u> </u>             |          |
| 4000   | NA                     | 43.1  | 3,759           | 87.2                        | 25.5             | PDF                  | IES      | 3,856          | 89.5                        | 25.6    | PDF                 | IES      | 3,995                      | 92.7          | 25.7    | PDF                  | IES      | 4,038           | 93.7                        | 25.7    | PDF                 | IES      | 4,085           | 94.8                        | 25.8 | PDF                  | IES      |
| 3500   | NA                     | 37.3  | 3,294           | 88.3                        | 25.0             | PDF                  | IES      | 3,372          | 90.4                        | 25.1    | PDF                 | IES      | 3,498                      | 93.8          | 25.3    | PDF                  | IES      | 3,537           | 94.8                        | 25.3    | PDF                 | IES      | 3,575           | 95.8                        | 25.3 | PDF                  | IES      |
| 3000   | NA                     | 31.6  | 2,832           | 89.6                        | 24.5             | PDF                  | IES      | 2,894          | 91.6                        | 24.6    | PDF                 | IES      | 3,006                      | 95.1          | 24.7    | PDF                  | IES      | 3,039           | 96.2                        | 24.8    | PDF                 | IES      | 3,070           | 97.2                        | 24.8 | PDF                  | IES      |
| 2500   | NA                     | 26.4  | 2,358           | 89.3                        | 23.9             | PDF                  | IES      | 2,407          | 91.2                        | 24.0    | PDF                 | IES      | 2,503                      | 94.8          | 24.1    | PDF                  | IES      | 2,530           | 95.8                        | 24.1    | PDF                 | IES      | 2,555           | 96.8                        | 24.2 | PDF                  | IES      |
| 2000   | NA                     | 20.7  | 1,892           | 91.4                        | 23.1             | PDF                  | IES      | 1,930          | 93.2                        | 23.2    | PDF                 | IES      | 2,008                      | 97.0          | 23.3    | PDF                  | IES      | 2,029           | 98.0                        | 23.4    | PDF                 | IES      | 2,048           | 98.9                        | 23.4 | PDF                  | IES      |
| 1500   | NA                     | 15.9  | 1,416           | 89.1                        | 22.1             | PDF                  | IES      | 1,445          | 90.9                        | 22.2    | PDF                 | IES      | 1,505                      | 94.7          | 22.3    | PDF                  | IES      | 1,518           | 95.5                        | 22.4    | PDF                 | IES      | 1,533           | 96.4                        | 22.4 | PDF                  | IES      |
| 1000   | NA                     | 11.2  | 933             | 83.3                        | 20.7             | PDF                  | IES      | 952            | 85.0                        | 20.7    | PDF                 | IES      | 993                        | 88.7          | 20.9    | PDF                  | IES      | 999             | 89.2                        | 20.9    | PDF                 | IES      | 1,010           | 90.2                        | 20.9 | PDF                  | IES      |

Direct (TM01) Performance Asymmetric Wall Wash Flush MesoOptic lens

| Nomi   | nal CRI &CC            | т     |              | CRI 9       | 0, 270           | OK                   |          |              | CRI                         | 90, 300          | оок                 |          |                 | CRI         | 90, 350 | ок                   |          |              | CRI                         | 90, 400          | ок                  |          | CRI 90, 5000K |             |                  |                      |          |
|--------|------------------------|-------|--------------|-------------|------------------|----------------------|----------|--------------|-----------------------------|------------------|---------------------|----------|-----------------|-------------|---------|----------------------|----------|--------------|-----------------------------|------------------|---------------------|----------|---------------|-------------|------------------|----------------------|----------|
|        | al Lumen<br>e (Im/4ft) | Watts | k (lm/4ft) ¹ | acy (LPW) 1 | UGR <sup>5</sup> | Photometry<br>Report | IES File | x (lm/4ft) ¹ | Efficacy (LPW) <sup>1</sup> | UGR <sup>5</sup> | hotometry<br>Report | IES File | Flux (Im/4ft) ¹ | acy (LPW) 1 | UGR     | Photometry<br>Report | IES File | k (lm/4ft) ¹ | Efficacy (LPW) <sup>1</sup> | UGR <sup>5</sup> | hotometry<br>Report | IES File | x (lm/4ft) ¹  | acy (LPW) 1 | UGR <sup>5</sup> | Photometry<br>Report | IES File |
| Direct | Indirect               |       | Flux         | Efficacy    |                  | £_                   |          | Flux         | Effic                       |                  | £_                  |          | Flu             | Effice      |         | £_                   |          | Flux         | Effic                       |                  | £_                  |          | Flux          | Efficacy    |                  | 푼_                   |          |
| 4000   | NA                     | 43.1  | 3,641        | 84.5        | 24.9             | PDF                  | IES      | 3,735        | 86.7                        | 25.0             | PDF                 | IES      | 3,870           | 89.8        | 25.1    | PDF                  | IES      | 3,911        | 90.7                        | 25.1             | PDF                 | IES      | 3,957         | 91.8        | 25.2             | PDF                  | IES      |
| 3500   | NA                     | 37.3  | 3,190        | 85.5        | 24.4             | PDF                  | IES      | 3,266        | 87.6                        | 24.5             | PDF                 | IES      | 3,388           | 90.8        | 24.6    | PDF                  | IES      | 3,426        | 91.8                        | 24.7             | PDF                 | IES      | 3,463         | 92.8        | 24.7             | PDF                  | IES      |
| 3000   | NA                     | 31.6  | 2,743        | 86.8        | 23.9             | PDF                  | IES      | 2,803        | 88.7                        | 24.0             | PDF                 | IES      | 2,912           | 92.2        | 24.1    | PDF                  | IES      | 2,944        | 93.2                        | 24.2             | PDF                 | IES      | 2,974         | 94.1        | 24.2             | PDF                  | IES      |
| 2500   | NA                     | 26.4  | 2,284        | 86.5        | 23.3             | PDF                  | IES      | 2,332        | 88.3                        | 23.3             | PDF                 | IES      | 2,425           | 91.9        | 23.5    | PDF                  | IES      | 2,451        | 92.8                        | 23.5             | PDF                 | IES      | 2,475         | 93.8        | 23.6             | PDF                  | IES      |
| 2000   | NA                     | 20.7  | 1,832        | 88.5        | 22.5             | PDF                  | IES      | 1,869        | 90.3                        | 22.6             | PDF                 | IES      | 1,945           | 94.0        | 22.7    | PDF                  | IES      | 1,965        | 94.9                        | 22.7             | PDF                 | IES      | 1,984         | 95.8        | 22.8             | PDF                  | IES      |
| 1500   | NA                     | 15.9  | 1,371        | 86.2        | 21.5             | PDF                  | IES      | 1,399        | 88.0                        | 21.6             | PDF                 | IES      | 1,458           | 91.7        | 21.7    | PDF                  | IES      | 1,470        | 92.5                        | 21.7             | PDF                 | IES      | 1,485         | 93.4        | 21.8             | PDF                  | IES      |
| 1000   | NA                     | 11.2  | 904          | 80.7        | 20.0             | PDF                  | IES      | 922          | 82.3                        | 20.1             | PDF                 | IES      | 962             | 85.9        | 20.3    | PDF                  | IES      | 968          | 86.4                        | 20.3             | PDF                 | IES      | 979           | 87.4        | 20.3             | PDF                  | IES      |

Direct (TM01) Definition Symmetric Flush Silk lens

| ,      |                        |       |              |             |                  |                      |          |              |                             |                  |                    |          |                 |             |                  |                      |          |              |                             |                  |                    |          |              |             |                  |                      |          |
|--------|------------------------|-------|--------------|-------------|------------------|----------------------|----------|--------------|-----------------------------|------------------|--------------------|----------|-----------------|-------------|------------------|----------------------|----------|--------------|-----------------------------|------------------|--------------------|----------|--------------|-------------|------------------|----------------------|----------|
| Nomi   | nal CRI &CC            | т     |              | CRI 9       | 0, 270           | οκ                   |          |              | CRI                         | 90, 300          | оок                |          |                 | CRI         | 90, 350          | ок                   |          |              | CRI 9                       | 90, 400          | ок                 |          |              | CRI 9       | 90, 500          | ок                   |          |
|        | al Lumen<br>e (Im/4ft) | Watts | x (Im/4ft) ¹ | acy (LPW) 1 | UGR <sup>5</sup> | Photometry<br>Report | IES File | x (lm/4ft) ¹ | Efficacy (LPW) <sup>1</sup> | UGR <sup>5</sup> | otometry<br>Report | IES File | Flux (Im/4ft) ¹ | acy (LPW) 1 | UGR <sup>5</sup> | Photometry<br>Report | IES File | x (Im/4ft) ¹ | Efficacy (LPW) <sup>1</sup> | UGR <sup>5</sup> | otometry<br>Report | IES File | x (lm/4ft) ¹ | acy (LPW) ¹ | UGR <sup>5</sup> | Photometry<br>Report | IES File |
| Direct | Indirect               |       | Flux         | Effica      |                  | -E                   |          | 2            | Effic                       |                  | 옵                  |          | 급               | Effic       |                  | 옵                    |          | Flux         | Effic                       |                  | 옵                  |          | Flux         | Efficacy    |                  | 4                    |          |
| 4000   | NA                     | 43.1  | 3,955        | 91.8        | 27.2             | PDF                  | IES      | 4,058        | 94.2                        | 27.3             | PDF                | IES      | 4,204           | 97.5        | 27.4             | PDF                  | IES      | 4,249        | 98.6                        | 27.4             | PDF                | IES      | 4,299        | 99.7        | 27.5             | PDF                  | IES      |
| 3500   | NA                     | 37.3  | 3,466        | 92.9        | 26.7             | PDF                  | IES      | 3,548        | 95.1                        | 26.8             | PDF                | IES      | 3,681           | 98.7        | 26.9             | PDF                  | IES      | 3,721        | 99.8                        | 27.0             | PDF                | IES      | 3,762        | 100.9       | 27.0             | PDF                  | IES      |
| 3000   | NA                     | 31.6  | 2,980        | 94.3        | 26.2             | PDF                  | IES      | 3,045        | 96.4                        | 26.3             | PDF                | IES      | 3,163           | 100.1       | 26.4             | PDF                  | IES      | 3,198        | 101.2                       | 26.4             | PDF                | IES      | 3,231        | 102.2       | 26.5             | PDF                  | IES      |
| 2500   | NA                     | 26.4  | 2,482        | 94.0        | 25.6             | PDF                  | IES      | 2,533        | 95.9                        | 25.6             | PDF                | IES      | 2,634           | 99.8        | 25.8             | PDF                  | IES      | 2,662        | 100.8                       | 25.8             | PDF                | IES      | 2,688        | 101.8       | 25.8             | PDF                  | IES      |
| 2000   | NA                     | 20.7  | 1,990        | 96.1        | 24.8             | PDF                  | IES      | 2,031        | 98.1                        | 24.9             | PDF                | IES      | 2,113           | 102.1       | 25.0             | PDF                  | IES      | 2,135        | 103.1                       | 25.0             | PDF                | IES      | 2,155        | 104.1       | 25.1             | PDF                  | IES      |
| 1500   | NA                     | 15.9  | 1,490        | 93.7        | 23.8             | PDF                  | IES      | 1,520        | 95.6                        | 23.9             | PDF                | IES      | 1,583           | 99.6        | 24.0             | PDF                  | IES      | 1,597        | 100.4                       | 24.0             | PDF                | IES      | 1,613        | 101.4       | 24.1             | PDF                  | IES      |
| 1000   | NA                     | 11.2  | 982          | 87.7        | 22.3             | PDF                  | IES      | 1.002        | 89.5                        | 22.4             | PDF                | IES      | 1.045           | 93.3        | 22.5             | PDF                  | IES      | 1.052        | 93.9                        | 22.6             | PDF                | IES      | 1.063        | 94.9        | 22.6             | PDF                  | IES      |

<sup>1. 4</sup>ft Luminaire photometry has been conducted in accordance with IES LM-79-08. IES files can be downloaded by clicking the links in the table above, or online at ledalite.com. Luminaires with finishes other than standard white may result in a drop in flux and efficacy.

Performance Symmetric Batwing Flush MesoOptic Iens Spacing Criteria: 1.17/1.48



Performance Asymmetric Wall Wash Flush MesoOptic lens Spacing Criteria: 1.44/1.23



Definition Symmetric Flush Silk Iens Spacing Criteria: 1.23/1.22



Candela plots shown are for 3000lm/4ft, CRI 90, 3500K configurations.

<sup>2.</sup> Unified Glare Ratio (UGR) is calculated in accordance with CIE 117-1995. Reference conditions of 4Hx8Hx1H and reflectances of 70/50/20% have been applied using the procedure described in CIE 190-2010.

## **Photometry**

Indirect (TM03) Performance Symmetric lens

| Nomi   | nal CRI &CC            | T     |              | CRI 9       | 0, 270           | ОК                   |          |              | CRIS                        | 90, 30           | оок                 |          |              | CRI         | 90, 35 | оок                  |          |              | CRI         | 90, 400          | ок                   |          |              | CRIS        | 90, 500          | ок                   |          |
|--------|------------------------|-------|--------------|-------------|------------------|----------------------|----------|--------------|-----------------------------|------------------|---------------------|----------|--------------|-------------|--------|----------------------|----------|--------------|-------------|------------------|----------------------|----------|--------------|-------------|------------------|----------------------|----------|
|        | al Lumen<br>e (Im/4ft) | Watts | c (lm/4ft) ¹ | acy (LPW) ¹ | UGR <sup>5</sup> | Photometry<br>Report | IES File | c (Im/4ft) ¹ | Efficacy (LPW) <sup>1</sup> | UGR <sup>5</sup> | notometry<br>Report | IES File | c (Im/4ft) ¹ | acy (LPW) ¹ | UGR    | Photometry<br>Report | IES File | c (Im/4ft) ¹ | acy (LPW) ¹ | UGR <sup>5</sup> | Photometry<br>Report | IES File | c (Im/4ft) ¹ | acy (LPW) ¹ | UGR <sup>5</sup> | Photometry<br>Report | IES File |
| Direct | Indirect               |       | Flux         | Effica      |                  | A.                   |          | Flux         | Effic                       |                  | A.                  |          | Flux         | Effica      |        | Ä.                   |          | Flux         | Efficacy    |                  | 품                    |          | Flux         | Efficacy    |                  | 품                    | _        |
| NA     | 7000                   | 55.6  | 6,532        | 117.5       | N/A              | PDF                  | IES      | 6,717        | 120.8                       | N/A              | PDF                 | IES      | 7,004        | 126.0       | N/A    | PDF                  | IES      | 7,089        | 127.5       | N/A              | PDF                  | IES      | 7,244        | 130.3       | N/A              | PDF                  | IES      |
| NA     | 6000                   | 45.8  | 5,606        | 122.4       | N/A              | PDF                  | IES      | 5,766        | 125.9                       | N/A              | PDF                 | IES      | 5,997        | 130.9       | N/A    | PDF                  | IES      | 6,079        | 132.7       | N/A              | PDF                  | IES      | 6,213        | 135.7       | N/A              | PDF                  | IES      |
| NA     | 5000                   | 37.6  | 4,693        | 124.8       | N/A              | PDF                  | IES      | 4,825        | 128.3                       | N/A              | PDF                 | IES      | 5,005        | 133.1       | N/A    | PDF                  | IES      | 5,079        | 135.1       | N/A              | PDF                  | IES      | 5,195        | 138.2       | N/A              | PDF                  | IES      |
| NA     | 4000                   | 29.4  | 3,754        | 127.7       | N/A              | PDF                  | IES      | 3,860        | 131.3                       | N/A              | PDF                 | IES      | 3,992        | 135.8       | N/A    | PDF                  | IES      | 4,057        | 138.0       | N/A              | PDF                  | IES      | 4,150        | 141.2       | N/A              | PDF                  | IES      |
| NA     | 3000                   | 22.2  | 2,817        | 126.9       | N/A              | PDF                  | IES      | 2,899        | 130.6                       | N/A              | PDF                 | IES      | 2,992        | 134.8       | N/A    | PDF                  | IES      | 3,043        | 137.1       | N/A              | PDF                  | IES      | 3,110        | 140.1       | N/A              | PDF                  | IES      |
| NA     | 2000                   | 14.7  | 1,895        | 128.9       | N/A              | PDF                  | IES      | 1,954        | 132.9                       | N/A              | PDF                 | IES      | 2,011        | 136.8       | N/A    | PDF                  | IES      | 2,049        | 139.4       | N/A              | PDF                  | IES      | 2,089        | 142.1       | N/A              | PDF                  | IES      |
| NA     | 1000                   | 8.5   | 950          | 111.8       | N/A              | PDF                  | IES      | 981          | 115.4                       | N/A              | PDF                 | IES      | 1,005        | 118.2       | N/A    | PDF                  | IES      | 1,029        | 121.1       | N/A              | PDF                  | IES      | 1,045        | 122.9       | N/A              | PDF                  | IES      |

Indirect (TM03) Performance Asymmetric lens

| Nomi   | nal CRI &CC            | т     |            | CRI 9       | 0, 270           | 0K                   |          |              | CRI         | 90, 300          | оок                |          |                 | CRI         | 90, 350          | оок                  |          |              | CRI         | 90, 400          | OOK                |          |              | CRI         | 90, 500          | оок                  |          |
|--------|------------------------|-------|------------|-------------|------------------|----------------------|----------|--------------|-------------|------------------|--------------------|----------|-----------------|-------------|------------------|----------------------|----------|--------------|-------------|------------------|--------------------|----------|--------------|-------------|------------------|----------------------|----------|
|        | al Lumen<br>e (Im/4ft) | Watts | c(Im/4ft)¹ | acy (LPW) ¹ | UGR <sup>5</sup> | Photometry<br>Report | IES File | x (lm/4ft) ¹ | acy (LPW) ¹ | UGR <sup>5</sup> | otometry<br>Report | IES File | Flux (Im/4ft) ¹ | acy (LPW) ¹ | UGR <sup>5</sup> | Photometry<br>Report | IES File | c (Im/4ft) ¹ | acy (LPW) ¹ | UGR <sup>5</sup> | otometry<br>Report | IES File | x (lm/4ft) ¹ | acy (LPW) ¹ | UGR <sup>6</sup> | Photometry<br>Report | IES File |
| Direct | Indirect               |       | Flux       | Effica      |                  | Ph                   |          | Ē            | Efficacy    |                  | Phe                |          | Flu             | Effic       |                  | Å                    |          | Flux         | Efficacy    |                  | Å.                 | _        | Flu          | Effic       |                  | Å                    | _        |
| NA     | 6000                   | 57.3  | 5,602      | 97.8        | N/A              | PDF                  | IES      | 5,759        | 100.5       | N/A              | PDF                | IES      | 6,008           | 104.9       | N/A              | PDF                  | IES      | 6,079        | 106.1       | N/A              | PDF                | IES      | 6,212        | 108.4       | N/A              | PDF                  | IES      |
| NA     | 5000                   | 45.6  | 4,681      | 102.7       | N/A              | PDF                  | IES      | 4,815        | 105.6       | N/A              | PDF                | IES      | 5,007           | 109.8       | N/A              | PDF                  | IES      | 5,075        | 111.3       | N/A              | PDF                | IES      | 5,187        | 113.8       | N/A              | PDF                  | IES      |
| NA     | 4000                   | 35.7  | 3,753      | 105.1       | N/A              | PDF                  | IES      | 3,859        | 108.1       | N/A              | PDF                | IES      | 4,000           | 112.0       | N/A              | PDF                  | IES      | 4,060        | 113.7       | N/A              | PDF                | IES      | 4,153        | 116.3       | N/A              | PDF                  | IES      |
| NA     | 3000                   | 26.4  | 2,824      | 107.0       | N/A              | PDF                  | IES      | 2,904        | 110.0       | N/A              | PDF                | IES      | 3,001           | 113.7       | N/A              | PDF                  | IES      | 3,051        | 115.6       | N/A              | PDF                | IES      | 3,120        | 118.2       | N/A              | PDF                  | IES      |
| NA     | 2000                   | 17.3  | 1,888      | 109.1       | N/A              | PDF                  | IES      | 1,945        | 112.4       | N/A              | PDF                | IES      | 2,004           | 115.8       | N/A              | PDF                  | IES      | 2,040        | 117.9       | N/A              | PDF                | IES      | 2,082        | 120.3       | N/A              | PDF                  | IES      |
| NA     | 1000                   | 9.5   | 939        | 98.8        | N/A              | PDF                  | IES      | 970          | 102.1       | N/A              | PDF                | IES      | 995             | 104.7       | N/A              | PDF                  | IES      | 1,017        | 107.1       | N/A              | PDF                | IES      | 1,033        | 108.7       | N/A              | PDF                  | IES      |

<sup>1. 4</sup>ft Luminaire photometry has been conducted in accordance with IES LM-79-08. IES files can be downloaded by clicking the links in the table above, or online at ledalite.com. Luminaires with finishes other than standard white may result in a drop in flux and efficacy.

#### Performance Symmetric lens



#### Performance Asymmetric lens



Candela plots shown are for 5000lm/4ft, CRI 90, 3500K configurations.

<sup>2.</sup> Unified Glare Ratio (UGR) is calculated in accordance with CIE 117-1995. Reference conditions of 4Hx8Hx1H and reflectances of 70/50/20% have been applied using the procedure described in CIE 190-2010.

## **Photometry**

Direct/Indirect (TM05 & TM06) Performance Symmetric Batwing Flush MesoOptic lens

| Nomi | nal CRI &CC                                          | СТ                                                   |                                                              | CRI 9                                                      | 0, 270                                               | ОК                                     |                             |                                                              | CRI                                                         | 90, 300                                              | ООК                                    |                             |                                                              | CRI                                                         | 90, 350                                              | ООК                                           |                             |                                                               | CRI                                                         | 90, 400                                              | ООК                                    |                             |                                                               | CRI                                                         | 90, 500                                              | ОК                                            |                             |
|------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|----------------------------------------|-----------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|----------------------------------------|-----------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------|---------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|----------------------------------------|-----------------------------|---------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------|
|      | al Lumen<br>e (lm/4ft)<br>Indirect                   | Watts                                                | Flux (lm/4ft) ¹                                              | Efficacy (LPW) <sup>1</sup>                                | UGR <sup>5</sup>                                     | Photometry<br>Report                   | IES File                    | Flux (Im/4ft) <sup>1</sup>                                   | Efficacy (LPW) <sup>1</sup>                                 | UGR <sup>5</sup>                                     | Photometry<br>Report                   | IES File                    | Flux (Im/4ft) <sup>1</sup>                                   | Efficacy (LPW) <sup>1</sup>                                 | UGR                                                  | Photometry<br>Report                          | IES File                    | Flux (Im/4ft) <sup>1</sup>                                    | Efficacy (LPW) <sup>1</sup>                                 | UGR                                                  | Photometry<br>Report                   | IES File                    | Flux (Im/4ft) <sup>1</sup>                                    | Efficacy (LPW) <sup>1</sup>                                 | UGR                                                  | Photometry<br>Report                          | IES File                    |
| 4000 | 7000<br>6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 98.7<br>88.9<br>80.8<br>72.4<br>65.0<br>57.6<br>51.2 | 10,291<br>9,365<br>8,452<br>7,513<br>6,576<br>5,653<br>4,709 | 104.3<br>105.3<br>104.6<br>103.8<br>101.2<br>98.1<br>92.0  | 20.0<br>20.4<br>20.8<br>21.4<br>22.0<br>22.9<br>24.0 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 10,573<br>9,623<br>8,681<br>7,716<br>6,755<br>5,810<br>4,837 | 107.1<br>108.2<br>107.4<br>106.6<br>103.9<br>100.9<br>94.5  | 20.1<br>20.5<br>20.9<br>21.5<br>22.1<br>22.9<br>24.1 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 10,999<br>9,992<br>9,000<br>7,987<br>6,987<br>6,006<br>5,000 | 111.4<br>112.4<br>111.4<br>110.3<br>107.5<br>104.3<br>97.7  | 20.1<br>20.6<br>21.0<br>21.6<br>22.3<br>23.1<br>24.2 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 11,127<br>10,117<br>9,118<br>8,095<br>7,081<br>6,087<br>5,067 | 112.7<br>113.8<br>112.8<br>111.8<br>108.9<br>105.7<br>99.0  | 20.2<br>20.6<br>21.1<br>21.7<br>22.3<br>23.1<br>24.2 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 11,328<br>10,298<br>9,280<br>8,235<br>7,195<br>6,174<br>5,130 | 114.8<br>115.8<br>114.9<br>113.7<br>110.7<br>107.2<br>100.2 | 20.2<br>20.7<br>21.1<br>21.7<br>22.4<br>23.1<br>24.2 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES |
| 3500 | 7000<br>6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 92.9<br>83.1<br>74.9<br>66.6<br>59.2<br>51.7<br>45.4 | 9,826<br>8,900<br>7,987<br>7,048<br>6,111<br>5,188<br>4,244  | 105.8<br>107.1<br>106.6<br>105.8<br>103.2<br>100.3<br>93.5 | 19.1<br>19.6<br>20.1<br>20.7<br>21.4<br>22.1<br>23.3 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES |                                                              | 108.6<br>110.0<br>109.4<br>108.6<br>105.9<br>103.0<br>95.9  | 19.2<br>19.7<br>20.1<br>20.7<br>21.4<br>22.2<br>23.4 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 10,502<br>9,495<br>8,502<br>7,490<br>6,489<br>5,508<br>4,503 | 113.0<br>114.3<br>113.5<br>112.5<br>109.6<br>106.5<br>99.2  | 19.4<br>19.8<br>20.2<br>20.9<br>21.6<br>22.4<br>23.5 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 10,625<br>9,615<br>8,616<br>7,593<br>6,580<br>5,585<br>4,565  | 114.4<br>115.7<br>115.0<br>114.0<br>111.1<br>108.0<br>100.6 | 19.4<br>19.8<br>20.3<br>20.8<br>21.5<br>22.4<br>23.6 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 10,818<br>9,788<br>8,770<br>7,725<br>6,685<br>5,663<br>4,619  | 116.4<br>117.8<br>117.1<br>116.0<br>112.9<br>109.5<br>101.7 | 19.4<br>19.8<br>20.3<br>20.9<br>21.6<br>22.4<br>23.6 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES |
| 3000 | 7000<br>6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 87.2<br>77.4<br>69.3<br>61.0<br>53.8<br>46.3<br>40.1 | 9,364<br>8,438<br>7,525<br>6,586<br>5,649<br>4,727<br>3,782  | 107.4<br>109.0<br>108.6<br>108.0<br>105.0<br>102.1<br>94.3 | 18.2<br>18.6<br>19.1<br>19.8<br>20.4<br>21.3<br>22.6 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 9,611<br>8,661<br>7,719<br>6,754<br>5,793<br>4,848<br>3,875  | 110.2<br>111.9<br>111.4<br>110.7<br>107.7<br>104.7<br>96.6  | 18.3<br>18.7<br>19.2<br>19.8<br>20.5<br>21.4<br>22.7 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 10,010<br>9,003<br>8,011<br>6,998<br>5,997<br>5,017<br>4,011 | 114.8<br>116.3<br>115.6<br>114.7<br>111.5<br>108.4<br>100.0 | 18.4<br>18.8<br>19.3<br>20.0<br>20.6<br>21.5<br>22.8 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 10,128<br>9,118<br>8,119<br>7,096<br>6,083<br>5,088<br>4,068  | 116.1<br>117.8<br>117.2<br>116.3<br>113.1<br>109.9<br>101.4 | 18.4<br>18.9<br>19.4<br>20.0<br>20.7<br>21.6<br>22.9 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 10,314<br>9,283<br>8,265<br>7,220<br>6,180<br>5,159<br>4,115  | 118.3<br>119.9<br>119.3<br>118.4<br>114.9<br>111.4<br>102.6 | 18.4<br>18.8<br>19.3<br>20.0<br>20.7<br>21.6<br>22.8 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES |
| 2500 | 7000<br>6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 81.8<br>72.0<br>63.9<br>55.8<br>48.6<br>41.1<br>34.9 | 8,891<br>7,964<br>7,051<br>6,112<br>5,176<br>4,253<br>3,309  | 108.7<br>110.6<br>110.3<br>109.5<br>106.5<br>103.5<br>94.8 | 17.0<br>17.5<br>18.0<br>18.6<br>19.4<br>20.3<br>21.7 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 9,124<br>8,174<br>7,233<br>6,267<br>5,307<br>4,361<br>3,388  | 111.5<br>113.5<br>113.2<br>112.3<br>109.2<br>106.1<br>97.1  | 17.1<br>17.5<br>18.1<br>18.7<br>19.4<br>20.3<br>21.7 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 9,507<br>8,500<br>7,508<br>6,495<br>5,495<br>4,514<br>3,508  | 116.2<br>118.1<br>117.5<br>116.4<br>113.1<br>109.8<br>100.5 | 17.2<br>17.6<br>18.2<br>18.8<br>19.6<br>20.5<br>21.9 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 9,619<br>8,609<br>7,610<br>6,587<br>5,573<br>4,579<br>3,559   | 117.6<br>119.6<br>119.1<br>118.0<br>114.7<br>111.4<br>102.0 | 17.3<br>17.7<br>18.3<br>18.9<br>19.6<br>20.6<br>21.9 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 9,799<br>8,768<br>7,750<br>6,705<br>5,665<br>4,644<br>3,600   | 119.8<br>121.8<br>121.3<br>120.2<br>116.6<br>113.0<br>103.2 | 17.2<br>17.6<br>18.2<br>18.8<br>19.6<br>20.5<br>22.0 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES |
| 2000 | 7000<br>6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 76.2<br>66.4<br>58.3<br>49.9<br>42.7<br>35.5<br>29.1 | 8,424<br>7,498<br>6,585<br>5,646<br>4,709<br>3,786<br>2,842  | 110.6<br>112.9<br>113.0<br>113.1<br>110.3<br>106.6<br>97.7 | 15.6<br>16.1<br>16.6<br>17.2<br>18.0<br>19.0<br>20.5 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 8,646<br>7,696<br>6,755<br>5,789<br>4,829<br>3,884<br>2,911  | 113.5<br>115.9<br>115.9<br>116.0<br>113.1<br>109.4<br>100.0 | 15.6<br>16.1<br>16.6<br>17.3<br>18.1<br>19.1<br>20.5 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 9,013<br>8,006<br>7,013<br>6,001<br>5,000<br>4,019<br>3,013  | 118.3<br>120.6<br>120.3<br>120.3<br>117.1<br>113.2<br>103.5 | 15.7<br>16.2<br>16.8<br>17.4<br>18.2<br>19.2<br>20.7 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 9,117<br>8,107<br>7,108<br>6,085<br>5,072<br>4,077<br>3,057   | 119.6<br>122.1<br>121.9<br>121.9<br>118.8<br>114.8<br>105.1 | 15.8<br>16.3<br>16.8<br>17.5<br>18.2<br>19.3<br>20.7 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 9,292<br>8,261<br>7,243<br>6,198<br>5,159<br>4,137<br>3,093   | 121.9<br>124.4<br>124.2<br>124.2<br>120.8<br>116.5<br>106.3 | 15.7<br>16.2<br>16.8<br>17.4<br>18.3<br>19.2<br>20.7 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES |
| 1500 | 7000<br>6000<br>5000<br>4000<br>3000<br>2000         | 71.3<br>61.5<br>53.4<br>45.3<br>38.1<br>30.7<br>24.3 | 7,948<br>7,022<br>6,109<br>5,170<br>4,233<br>3,310<br>2,366  | 111.5<br>114.2<br>114.4<br>114.1<br>111.1<br>107.8<br>97.4 | 13.7<br>14.2<br>14.7<br>15.4<br>16.2<br>17.3<br>18.9 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 8,162<br>7,211<br>6,270<br>5,304<br>4,344<br>3,399<br>2,426  | 114.5<br>117.3<br>117.4<br>117.1<br>114.0<br>110.7<br>99.8  | 13.7<br>14.2<br>14.8<br>15.4<br>16.3<br>17.4<br>19.0 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 8,509<br>7,502<br>6,509<br>5,497<br>4,496<br>3,515<br>2,510  | 119.3<br>122.0<br>121.9<br>121.3<br>118.0<br>114.5<br>103.3 | 13.8<br>14.3<br>14.9<br>15.6<br>16.4<br>17.6<br>19.2 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 8,606<br>7,597<br>6,597<br>5,574<br>4,561<br>3,567<br>2,546   | 120.7<br>123.5<br>123.5<br>123.0<br>119.7<br>116.2<br>104.8 | 13.9<br>14.3<br>15.0<br>15.6<br>16.5<br>17.5<br>19.1 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 8,777<br>7,746<br>6,728<br>5,683<br>4,643<br>3,622<br>2,578   | 123.1<br>126.0<br>126.0<br>125.5<br>121.9<br>118.0<br>106.1 | 13.9<br>14.4<br>14.9<br>15.6<br>16.4<br>17.6<br>19.2 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES |
| 1000 | 7000<br>6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 66.4<br>56.7<br>48.5<br>40.6<br>33.4<br>25.9<br>19.6 | 7,465<br>6,539<br>5,626<br>4,687<br>3,750<br>2,827<br>1,883  |                                                            | 10.9<br>11.4<br>12.0<br>12.7<br>13.6<br>14.7<br>16.5 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES     |                                                              | 115.5<br>118.5<br>119.1<br>118.5<br>115.3<br>112.2<br>98.6  | 11.0<br>11.4<br>12.0<br>12.7<br>13.6<br>14.7<br>16.6 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 3,004<br>1,998                                               | 101.9                                                       | 11.1<br>11.6<br>12.1<br>12.9<br>13.8<br>14.9<br>16.8 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 8,088<br>7,078<br>6,079<br>5,056<br>4,043<br>3,048<br>2,028   |                                                             |                                                      | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES     | 8,254<br>7,223<br>6,205<br>5,160<br>4,121<br>3,099<br>2,055   |                                                             | 11.0<br>11.6<br>12.1<br>12.9<br>13.7<br>14.9<br>16.8 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES |

<sup>1. 4</sup>ft Luminaire photometry has been conducted in accordance with IES LM-79-08. IES files can be downloaded by clicking the links in the table above, or online at ledalite.com. Luminaires with finishes other than standard white may result in a drop in flux and efficacy.

Performance Symmetric Batwing Flush MesoOptic Lens Spacing Criteria: 1.17/1.48



Candela plot shown is for 3000lm/4ft Direct / 5000lm/4ft Indirect, CRI 90, 3500K configuration.

<sup>2.</sup> Unified Glare Ratio (UGR) is calculated in accordance with CIE 117-1995. Reference conditions of 4Hx8Hx1H and reflectances of 70/50/20% have been applied using the procedure described in CIE 190-2010.

 $<sup>3.</sup> For Photometry \, reports \, and \, IES \, files \, combining \, Direct/Indirect \, distributions \, other \, than \, those \, listed \, above, \, please \, consult \, Ledalite.$ 

## **Photometry**

Direct/Indirect (TM05 & TM06) Performance Asymmetric Wall Wash Flush MesoOptic lens

| Nomi | nal CRI &CC                                  | т                                             |                                                    | CRI 9                                        | 90, 270                                      | ОК                              |                         |                                                    | CRI                                              | 90, 300                                      | оок                             |                         |                                                    | CRI                                               | 90, 350                                      | оок                                    |                         |                                                    | CRI                                               | 90, 400                                      | OOK                                    |                         |                                                     | CRI                                               | 90, 500                                      | ОК                                     |                         |
|------|----------------------------------------------|-----------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------|-------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------------|---------------------------------|-------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------|-------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------|-------------------------|-----------------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------|-------------------------|
|      | al Lumen<br>e (lm/4ft)<br>Indirect           | Watts                                         | Flux (Im/4ft) ¹                                    | Efficacy (LPW) <sup>1</sup>                  | UGR <sup>5</sup>                             | Photometry<br>Report            | IES File                | Flux (Im/4ft) 1                                    | Efficacy (LPW) <sup>1</sup>                      | UGR <sup>5</sup>                             | Photometry<br>Report            | IES File                | Flux (Im/4ft) ¹                                    | Efficacy (LPW) 1                                  | UGR <sup>5</sup>                             | Photometry<br>Report                   | IES File                | Flux (Im/4ft) ¹                                    | Efficacy (LPW) 1                                  | UGR <sup>5</sup>                             | Photometry<br>Report                   | IES File                | Flux (Im/4ft) 1                                     | Efficacy (LPW) <sup>1</sup>                       | UGR <sup>5</sup>                             | Photometry<br>Report                   | IES File                |
| 4000 | 6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 100.4<br>88.7<br>78.8<br>69.3<br>60.2<br>52.3 | 9,243<br>8,321<br>7,394<br>6,465<br>5,528<br>4,580 | 92.1<br>93.8<br>93.8<br>93.3<br>91.8<br>87.6 | 19.7<br>20.2<br>20.8<br>21.4<br>22.2<br>23.3 | PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 9,494<br>8,550<br>7,594<br>6,639<br>5,680<br>4,705 | 94.6<br>96.4<br>96.4<br>95.8<br>94.4<br>90.0     | 19.7<br>20.3<br>20.7<br>21.5<br>22.3<br>23.4 | PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 9,878<br>8,877<br>7,869<br>6,871<br>5,873<br>4,865 | 98.4<br>100.1<br>99.9<br>99.1<br>97.6<br>93.0     | 19.9<br>20.4<br>20.9<br>21.6<br>22.5<br>23.5 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 9,990<br>8,987<br>7,972<br>6,962<br>5,951<br>4,928 | 99.5<br>101.3<br>101.2<br>100.5<br>98.9<br>94.2   | 19.9<br>20.4<br>20.9<br>21.6<br>22.5<br>23.5 | PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES | 10,169<br>9,144<br>8,110<br>7,077<br>6,039<br>4,990 | 101.3<br>103.1<br>102.9<br>102.1<br>100.3<br>95.4 | 20.0<br>20.4<br>21.0<br>21.6<br>22.4<br>23.6 | PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES |
| 3500 | 6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 94.5<br>82.9<br>72.9<br>63.4<br>54.3<br>46.5  | 8,792<br>7,871<br>6,943<br>6,014<br>5,078<br>4,130 | 93.0<br>94.9<br>95.2<br>94.9<br>93.5<br>88.8 | 18.9<br>19.4<br>19.9<br>20.6<br>21.4<br>22.6 | PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 9,025<br>8,081<br>7,125<br>6,171<br>5,211<br>4,236 | 95.5<br>97.5<br>97.7<br>97.3<br>96.0<br>91.1     | 18.9<br>19.5<br>20.0<br>20.7<br>21.5<br>22.7 | PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 9,396<br>8,395<br>7,387<br>6,389<br>5,392<br>4,383 | 99.4<br>101.3<br>101.3<br>100.8<br>99.3<br>94.3   | 19.1<br>19.5<br>20.1<br>20.8<br>21.7<br>22.9 | PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES | 9,504<br>8,501<br>7,486<br>6,476<br>5,466<br>4,442 | 100.6<br>102.5<br>102.7<br>102.1<br>100.7<br>95.5 | 19.1<br>19.5<br>20.2<br>20.9<br>21.7<br>22.9 | PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES | 9,675<br>8,650<br>7,616<br>6,583<br>5,545<br>4,496  | 102.4<br>104.3<br>104.5<br>103.8<br>102.1<br>96.7 | 19.1<br>19.6<br>20.2<br>20.8<br>21.8<br>22.9 | PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES |
| 3000 | 6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 88.9<br>77.2<br>67.3<br>58.0<br>48.8<br>41.1  | 8,345<br>7,424<br>6,496<br>5,567<br>4,631<br>3,682 | 93.9<br>96.2<br>96.5<br>96.0<br>94.9<br>89.6 | 17.9<br>18.5<br>19.0<br>19.8<br>20.6<br>21.9 | PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 8,562<br>7,618<br>6,662<br>5,708<br>4,748<br>3,773 | 96.3<br>98.7<br>99.0<br>98.4<br>97.3<br>91.8     | 18.0<br>18.5<br>19.1<br>19.8<br>20.7<br>22.0 | PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 8,920<br>7,919<br>6,911<br>5,913<br>4,915<br>3,906 | 100.3<br>102.6<br>102.7<br>101.9<br>100.7<br>95.0 | 18.1<br>18.6<br>19.2<br>20.0<br>20.8<br>22.1 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 9,023<br>8,019<br>7,004<br>5,995<br>4,984<br>3,961 | 101.5<br>103.9<br>104.1<br>103.4<br>102.1<br>96.4 | 18.1<br>18.6<br>19.3<br>19.9<br>20.9<br>22.2 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 9,186<br>8,161<br>7,127<br>6,094<br>5,056<br>4,007  | 103.3<br>105.7<br>105.9<br>105.1<br>103.6<br>97.5 | 18.1<br>18.6<br>19.2<br>20.0<br>20.9<br>22.2 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES     |
| 2500 | 6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 83.5<br>71.8<br>61.9<br>52.8<br>43.6<br>35.9  | 7,887<br>6,965<br>6,038<br>5,109<br>4,172<br>3,224 | 94.5<br>97.0<br>97.5<br>96.8<br>95.7<br>89.8 | 16.8<br>17.2<br>17.8<br>18.7<br>19.7<br>21.0 | PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 8,091<br>7,146<br>6,190<br>5,236<br>4,277<br>3,302 | 96.9<br>99.5<br>100.0<br>99.2<br>98.1<br>92.0    | 16.8<br>17.3<br>17.9<br>18.8<br>19.6<br>21.1 | PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 8,433<br>7,431<br>6,424<br>5,426<br>4,428<br>3,419 | 101.0<br>103.5<br>103.8<br>102.8<br>101.6<br>95.2 | 16.9<br>17.5<br>18.1<br>18.9<br>19.9<br>21.2 | PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES | 8,529<br>7,526<br>6,511<br>5,502<br>4,491<br>3,467 | 102.1<br>104.8<br>105.2<br>104.2<br>103.0<br>96.6 | 16.9<br>17.5<br>18.1<br>18.9<br>19.8<br>21.2 | PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES | 8,687<br>7,662<br>6,628<br>5,595<br>4,557<br>3,508  | 104.0<br>106.7<br>107.1<br>106.0<br>104.5<br>97.7 | 16.9<br>17.5<br>18.1<br>18.9<br>19.9<br>21.3 | PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES |
| 2000 | 6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 77.9<br>66.2<br>56.3<br>46.9<br>38.0<br>30.3  | 7,434<br>6,513<br>5,585<br>4,656<br>3,720<br>2,772 | 95.4<br>98.4<br>99.2<br>99.3<br>97.9<br>91.5 | 15.4<br>15.8<br>16.5<br>17.2<br>18.4<br>19.8 | PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 7,628<br>6,684<br>5,728<br>4,774<br>3,814<br>2,839 | 97.9<br>101.0<br>101.7<br>101.8<br>100.4<br>93.7 | 15.4<br>15.9<br>16.6<br>17.3<br>18.4<br>19.9 | PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 7,954<br>6,952<br>5,945<br>4,946<br>3,949<br>2,940 | 102.1<br>105.0<br>105.6<br>105.5<br>103.9<br>97.0 | 15.5<br>16.0<br>16.7<br>17.5<br>18.6<br>20.0 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 8,044<br>7,040<br>6,025<br>5,016<br>4,005<br>2,982 | 103.3<br>106.3<br>107.0<br>107.0<br>105.4<br>98.4 | 15.5<br>16.1<br>16.7<br>17.5<br>18.5<br>20.1 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 8,196<br>7,171<br>6,137<br>5,104<br>4,066<br>3,018  | 105.2<br>108.3<br>109.0<br>108.8<br>107.0<br>99.6 | 15.5<br>16.0<br>16.7<br>17.6<br>18.6<br>20.1 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES     |
| 1500 | 5000<br>5000<br>4000<br>3000<br>2000<br>1000 | 73.0<br>61.3<br>51.4<br>42.2<br>33.2<br>25.4  | 6,974<br>6,052<br>5,124<br>4,195<br>3,259<br>2,311 | 95.5<br>98.7<br>99.7<br>99.4<br>98.2<br>91.0 | 13.4<br>14.0<br>14.7<br>15.5<br>16.6<br>18.2 | PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 7,159<br>6,214<br>5,258<br>4,304<br>3,344<br>2,369 | 98.1<br>101.4<br>102.3<br>102.0<br>100.7<br>93.3 | 13.4<br>14.0<br>14.7<br>15.6<br>16.6<br>18.3 | PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 7,466<br>6,464<br>5,457<br>4,459<br>3,461<br>2,452 | 102.3<br>105.4<br>106.2<br>105.7<br>104.2<br>96.5 | 13.6<br>14.2<br>14.9<br>15.7<br>16.8<br>18.5 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 7,549<br>6,545<br>5,530<br>4,521<br>3,510<br>2,487 | 103.4<br>106.8<br>107.6<br>107.1<br>105.7<br>97.9 | 13.6<br>14.1<br>14.8<br>15.7<br>16.8<br>18.5 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES | 7,697<br>6,672<br>5,638<br>4,605<br>3,567<br>2,519  | 105.4<br>108.8<br>109.7<br>109.1<br>107.4<br>99.2 | 13.6<br>14.2<br>14.8<br>15.7<br>16.8<br>18.5 | PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES     |
| 1000 | 6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 68.1<br>56.4<br>46.6<br>37.6<br>28.4<br>20.7  | 6,506<br>5,584<br>4,657<br>3,728<br>2,791<br>1,843 | 95.5<br>99.0<br>99.9<br>99.1<br>98.3<br>89.0 | 10.6<br>11.2<br>11.9<br>12.8<br>14.0<br>15.8 | PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES     | 6,681<br>5,737<br>4,781<br>3,827<br>2,867<br>1,892 | 98.1<br>101.7<br>102.6<br>101.8<br>101.0<br>91.4 | 10.7<br>11.3<br>11.9<br>12.9<br>14.1<br>15.9 | PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES     | 6,970<br>5,969<br>4,961<br>3,963<br>2,965<br>1,957 | 102.3<br>105.8<br>106.5<br>105.4<br>104.4<br>94.5 | 10.8<br>11.4<br>12.2<br>13.0<br>14.2<br>16.0 | PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES     | 7,047<br>6,043<br>5,028<br>4,019<br>3,008<br>1,985 | 103.5<br>107.1<br>107.9<br>106.9<br>105.9<br>95.9 | 10.8<br>11.5<br>12.1<br>13.0<br>14.2<br>16.1 | PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES     | 7,191<br>6,166<br>5,132<br>4,099<br>3,061<br>2,012  | 105.6<br>109.3<br>110.1<br>109.0<br>107.8<br>97.2 | 10.9<br>11.4<br>12.1<br>13.0<br>14.2<br>16.1 | PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES |

<sup>1. 4</sup>ft Luminaire photometry has been conducted in accordance with IES LM-79-08. IES files can be downloaded by clicking the links in the table above, or online at ledalite.com. Luminaires with finishes other than standard white may result in a drop in flux and efficacy.

Performance Asymmetric Wall Wash Flush MesoOptic lens Spacing Criteria: 1.44/1.23



37% Down / 63% Up

Candela plot shown is for 3000lm/4ft Direct / 5000lm/4ft Indirect, CRI 90, 3500K configuration.

 $<sup>2. \</sup> Unified \ Glare \ Ratio (UGR) \ is calculated in accordance with CIE 117-1995. \ Reference \ conditions of \ 4Hx8Hx1H \ and \ reflectances \ of \ 70/50/20\% \ have been applied using the procedure \ described in CIE 190-2010.$ 

<sup>3.</sup> For Photometry reports and IES files combining Direct/Indirect distributions other than those listed above, please consult Ledalite

## **Photometry**

Direct/Indirect (TM05 & TM06) Definition Symmetric Flush Silk lens

| Nomi | nal CRI &CC                                          | СТ                                                   |                                                              | CRI 9                                                       | 90, 270                                              | 0K                                            |                             |                                                              | CRI                                                         | 90, 300                                              | оок                                           |                             |                                                               | CRI                                                         | 90, 350                                              | ООК                                           |                             |                                                               | CRI                                                         | 90, 400                                              | OOK                                           |                                 |                                                              | CRI                                                         | 90, 500                                              | ОК                                            |                             |
|------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------|---------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------|---------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|---------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------|
|      | al Lumen<br>e (Im/4ft)<br>Indirect                   | Watts                                                | Flux (lm/4ft) ¹                                              | Efficacy (LPW) <sup>1</sup>                                 | UGR <sup>5</sup>                                     | Photometry<br>Report                          | IES File                    | Flux (Im/4ft) 1                                              | Efficacy (LPW) <sup>1</sup>                                 | UGR <sup>5</sup>                                     | Photometry<br>Report                          | IES File                    | Flux (Im/4ft) 1                                               | Efficacy (LPW) 1                                            | UGR <sup>5</sup>                                     | Photometry<br>Report                          | IES File                    | Flux (Im/4ft) ¹                                               | Efficacy (LPW) <sup>1</sup>                                 | UGR                                                  | Photometry<br>Report                          | IES File                        | Flux (Im/4ft) 1                                              | Efficacy (LPW) 1                                            | UGR                                                  | Photometry<br>Report                          | IES File                    |
| 4000 | 7000<br>6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 98.7<br>88.9<br>80.8<br>72.4<br>65.0<br>57.6<br>51.2 | 10,487<br>9,561<br>8,648<br>7,709<br>6,772<br>5,850<br>4,906 | 106.3<br>107.5<br>107.0<br>106.5<br>104.2<br>101.6<br>95.8  | 21.9<br>22.2<br>22.7<br>23.3<br>23.8<br>24.6<br>25.7 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 10,774<br>9,824<br>8,883<br>7,917<br>6,957<br>6,012<br>5,039 | 109.2<br>110.5<br>109.9<br>109.4<br>107.0<br>104.4<br>98.4  | 22.0<br>22.3<br>22.8<br>23.4<br>23.9<br>24.7<br>25.8 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 11,208<br>10,201<br>9,209<br>8,196<br>7,196<br>6,215<br>5,209 | 113.6<br>114.7<br>114.0<br>113.2<br>110.7<br>107.9<br>101.7 | 22.0<br>22.5<br>22.9<br>23.5<br>24.1<br>24.8<br>25.9 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 11,338<br>10,328<br>9,329<br>8,306<br>7,293<br>6,298<br>5,278 | 114.9<br>116.2<br>115.5<br>114.7<br>112.2<br>109.3<br>103.1 | 22.0<br>22.5<br>23.0<br>23.5<br>24.1<br>24.9<br>26.0 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES     | 10,511<br>9,494<br>8,448<br>7,409<br>6,387                   | 116.9<br>118.2<br>117.5<br>116.7<br>114.0<br>110.9<br>104.4 | 22.1<br>22.5<br>22.9<br>23.5<br>24.2<br>24.9<br>26.0 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES |
| 3500 | 7000<br>6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 92.9<br>83.1<br>74.9<br>66.6<br>59.2<br>51.7<br>45.4 | 9,998<br>9,072<br>8,159<br>7,220<br>6,283<br>5,360<br>4,416  | 107.6<br>109.2<br>108.9<br>108.4<br>106.1<br>103.7<br>97.3  | 21.0<br>21.5<br>21.9<br>22.5<br>23.2<br>23.9<br>25.1 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 10,265<br>9,315<br>8,374<br>7,408<br>6,448<br>5,502<br>4,529 | 110.5<br>112.1<br>111.8<br>111.2<br>108.9<br>106.4<br>99.8  | 21.1<br>21.6<br>22.0<br>22.6<br>23.3<br>24.0<br>25.1 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 10,685<br>9,678<br>8,685<br>7,673<br>6,672<br>5,691<br>4,686  | 115.0<br>116.5<br>116.0<br>115.2<br>112.7<br>110.1<br>103.2 | 21.2<br>21.6<br>22.1<br>22.7<br>23.4<br>24.2<br>25.3 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 10,810<br>9,800<br>8,801<br>7,778<br>6,765<br>5,770<br>4,750  | 116.4<br>117.9<br>117.5<br>116.8<br>114.3<br>111.6<br>104.6 | 21.3<br>21.6<br>22.2<br>22.7<br>23.4<br>24.2<br>25.3 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES     | 11,005<br>9,975<br>8,957<br>7,911<br>6,872<br>5,850<br>4,806 | 118.5<br>120.0<br>119.6<br>118.8<br>116.1<br>113.2<br>105.9 | 21.2<br>21.7<br>22.1<br>22.7<br>23.4<br>24.2<br>25.4 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES |
| 3000 | 7000<br>6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 87.2<br>77.4<br>69.3<br>61.0<br>53.8<br>46.3<br>40.1 | 9,512<br>8,586<br>7,673<br>6,734<br>5,797<br>4,875<br>3,931  | 109.1<br>110.9<br>110.7<br>110.4<br>107.8<br>105.3<br>98.0  | 20.0<br>20.5<br>21.0<br>21.6<br>22.3<br>23.1<br>24.4 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | ,                                                            | 111.9<br>113.9<br>113.6<br>113.2<br>110.5<br>108.0<br>100.4 | 20.1<br>20.6<br>21.1<br>21.6<br>22.3<br>23.2<br>24.4 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 10,167<br>9,160<br>8,168<br>7,155<br>6,155<br>5,174<br>4,168  | 116.6<br>118.3<br>117.9<br>117.3<br>114.4<br>111.7          | 20.3<br>20.7<br>21.2<br>21.7<br>22.5<br>23.3<br>24.6 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 10,287<br>9,277<br>8,278<br>7,255<br>6,242<br>5,247<br>4,227  | 118.0<br>119.9<br>119.5<br>118.9<br>116.0<br>113.3<br>105.4 | 20.3<br>20.7<br>21.2<br>21.8<br>22.5<br>23.4<br>24.6 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES     | 10,474<br>9,444<br>8,426<br>7,381<br>6,341<br>5,320<br>4,276 | 120.1<br>122.0<br>121.6<br>121.0<br>117.9<br>114.9<br>106.6 | 20.3<br>20.7<br>21.2<br>21.8<br>22.5<br>23.4<br>24.6 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES |
| 2500 | 7000<br>6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 81.8<br>72.0<br>63.9<br>55.8<br>48.6<br>41.1<br>34.9 | 9,014<br>8,088<br>7,175<br>6,236<br>5,299<br>4,376<br>3,432  | 110.2<br>112.3<br>112.3<br>111.8<br>109.0<br>106.5<br>98.3  | 18.9<br>19.4<br>19.8<br>20.5<br>21.2<br>22.1<br>23.5 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 9,250<br>8,300<br>7,358<br>6,393<br>5,432<br>4,487<br>3,514  | 113.1<br>115.3<br>115.1<br>114.6<br>111.8<br>109.2<br>100.7 | 18.9<br>19.4<br>19.9<br>20.5<br>21.3<br>22.2<br>23.5 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 9,638<br>8,631<br>7,639<br>6,626<br>5,626<br>4,645<br>3,639   | 117.8<br>119.9<br>119.5<br>118.7<br>115.8<br>113.0<br>104.3 | 19.1<br>19.5<br>20.1<br>20.7<br>21.4<br>22.3<br>23.7 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 9,751<br>8,741<br>7,742<br>6,719<br>5,706<br>4,711<br>3,691   | 119.2<br>121.4<br>121.2<br>120.4<br>117.4<br>114.6<br>105.8 | 19.1<br>19.5<br>20.1<br>20.7<br>21.5<br>22.4<br>23.6 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES IES | 9,932<br>8,901<br>7,884<br>6,838<br>5,799<br>4,777<br>3,733  | 121.4<br>123.6<br>123.4<br>122.5<br>119.3<br>116.2<br>107.0 | 19.1<br>19.6<br>20.1<br>20.7<br>21.4<br>22.3<br>23.7 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES |
| 2000 | 7000<br>6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 76.2<br>66.4<br>58.3<br>49.9<br>42.7<br>35.5<br>29.1 | 8,523<br>7,596<br>6,683<br>5,744<br>4,808<br>3,885<br>2,941  | 111.9<br>114.4<br>114.6<br>115.1<br>112.6<br>109.4<br>101.1 | 17.4<br>17.9<br>18.5<br>19.1<br>19.9<br>20.8<br>22.3 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 8,747<br>7,797<br>6,856<br>5,890<br>4,930<br>3,984<br>3,012  | 114.8<br>117.4<br>117.6<br>118.0<br>115.5<br>112.2<br>103.5 | 17.5<br>17.9<br>18.5<br>19.2<br>19.9<br>20.9<br>22.3 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 9,118<br>8,111<br>7,118<br>6,106<br>5,105<br>4,124<br>3,119   | 119.7<br>122.2<br>122.1<br>122.4<br>119.6<br>116.2<br>107.2 | 17.7<br>18.1<br>18.6<br>19.3<br>20.1<br>21.0<br>22.6 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 9,223<br>8,213<br>7,214<br>6,191<br>5,178<br>4,183<br>3,163   | 121.0<br>123.7<br>123.7<br>124.1<br>121.3<br>117.8<br>108.7 | 17.7<br>18.1<br>18.7<br>19.3<br>20.1<br>21.1<br>22.5 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES     | 9,399<br>8,368<br>7,351<br>6,305<br>5,266<br>4,244<br>3,200  | 123.3<br>126.0<br>126.1<br>126.4<br>123.3<br>119.5<br>110.0 | 17.7<br>18.2<br>18.6<br>19.3<br>20.1<br>21.1<br>22.5 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES |
| 1500 | 7000<br>6000<br>5000<br>4000<br>3000<br>2000         | 71.3<br>61.5<br>53.4<br>45.3<br>38.1<br>30.7<br>24.3 | 8,022<br>7,096<br>6,183<br>5,244<br>4,307<br>3,384<br>2,440  | 112.5<br>115.4<br>115.8<br>115.8<br>113.0<br>110.2          | 15.5<br>16.0<br>16.6<br>17.3<br>18.1<br>19.1<br>20.7 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 8,237<br>7,287<br>6,346<br>5,380<br>4,420<br>3,474<br>2,501  | 115.5<br>118.5<br>118.8<br>118.8<br>116.0<br>113.2<br>102.9 | 15.6<br>16.1<br>16.6<br>17.3<br>18.2<br>19.2<br>20.8 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 8,588<br>7,581<br>6,588<br>5,576<br>4,575<br>3,594<br>2,588   | 120.4<br>123.3<br>123.4<br>123.1<br>120.1<br>117.1<br>106.5 | 15.8<br>16.2<br>16.8<br>17.5<br>18.3<br>19.3<br>20.9 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 8,686<br>7,676<br>6,677<br>5,654<br>4,640<br>3,646<br>2,626   | 121.8<br>124.8<br>125.0<br>124.8<br>121.8<br>118.8<br>108.1 | 15.8<br>16.3<br>16.8<br>17.5<br>18.3<br>19.4<br>21.0 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES     | 8,857<br>7,826<br>6,808<br>5,763<br>4,724<br>3,702<br>2,658  | 124.2<br>127.3<br>127.5<br>127.2<br>124.0<br>120.6<br>109.4 | 15.8<br>16.3<br>16.8<br>17.5<br>18.3<br>19.3<br>21.0 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES |
| 1000 | 7000<br>6000<br>5000<br>4000<br>3000<br>2000<br>1000 | 66.4<br>56.7<br>48.5<br>40.6<br>33.4<br>25.9<br>19.6 | 7,514<br>6,588<br>5,675<br>4,736<br>3,799<br>2,876<br>1,932  | 113.2<br>116.2<br>117.0<br>116.7<br>113.7<br>111.0<br>98.6  | 12.8<br>13.3<br>13.8<br>14.5<br>15.4<br>16.6<br>18.4 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES |                                                              |                                                             | 12.8<br>13.3<br>13.9<br>14.6<br>15.4<br>16.7<br>18.5 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES | 2,050                                                         |                                                             | 12.9<br>13.5<br>14.1<br>14.7<br>15.7<br>16.8<br>18.6 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES | 3,100<br>2,080                                                |                                                             |                                                      | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF | IES IES IES IES IES IES IES     | 8,307<br>7,276<br>6,258<br>5,213<br>4,173<br>3,152<br>2,108  |                                                             | 13.0<br>13.5<br>14.1<br>14.7<br>15.7<br>16.8<br>18.6 | PDF<br>PDF<br>PDF<br>PDF<br>PDF<br>PDF        | IES IES IES IES IES IES IES |

<sup>1. 4</sup>ft Luminaire photometry has been conducted in accordance with IES LM-79-08. IES files can be downloaded by clicking the links in the table above, or online at ledalite.com. Luminaires with finishes other than standard white may result in a drop in flux and efficacy.

Definition Symmetric Flush Silk lens Spacing Criteria: 1.23/1.22



Candela plot shown is for 3000lm/4ft Direct / 5000lm/4ft Indirect, CRI 90, 3500K configuration.

<sup>2.</sup> Unified Glare Ratio (UGR) is calculated in accordance with CIE 117-1995. Reference conditions of 4Hx8Hx1H and reflectances of 70/50/20% have been applied using the procedure described in CIE 190-2010.

 $<sup>3.</sup> For Photometry \, reports \, and \, IES \, files \, combining \, Direct/Indirect \, distributions \, other \, than \, those \, listed \, above, \, please \, consult \, Ledalite.$ 



© 2022 Signify Holding. All rights reserved. The information provided herein is subject to change, without notice. Signify does not give any representation or warranty as to the accuracy or completeness of the information included herein and shall not be liable for any action in reliance thereon. The information presented in this document is not intended as any commercial offer and does not form part of any quotation or contract, unless otherwise agreed by Signify.

Signify North America Corporation 400 Crossing Blvd, Suite 600 Bridgewater, NJ 08807 Telephone 855–486–2216 Signify Canada Ltd. 281 Hillmount Road, Markham, ON, Canada L6C 2S3 Telephone 800-668-9008

l trademarks are owned by Signify Holding or their respective owners