

Based on New Syllabus

Based on R.T.M. Nagpur University New Syllabus

DESIGN AND ANALYSIS OF ALGORITHM WITH VIVA-VOCE

S. Bale

SOLVED QUESTION BANK + UNIVERSITY PAPER SOLUTIONS

COMP. SCIENCE ENGG., INFORMATION TECH., COMP. TECH., ARTI. INTE., ARTI. INTE. & DATA SCI. (CSE, IT, CT, AI, AIDS)

B.TECH. VI SEMESTER

COMPUTER ENGINEERING (CE)

! Xerox center सावधान !

प्रिय विद्यार्थी, VBD की Xerox करने वाले Xerox center की संपूर्ण जानकारी दीजिए और इनाम पाइए। यदि हमारी जांच में आपके द्वारा दी गई जानकारी सही पाई गई तो आपको 5000/- रुपये का इनाम दिया जाएगा।* उपरोक्त जानकारी WhatsApp No. 9373644557 या Email id : vbdnagpur@gmail.com पर भेजें।

SYLLABUS

B.Tech. V SEMESTER COMPUTER TECHNOLOGY (CT)

UNIT- I See Unit-I, II & Appendix of this book

Algorithm, Properties of Algorithm, Summation of arithmetic and geometric series, Recurrence relations. Solutions of recurrence relations using following techniques: Characteristic equation, Recursion tree method and master method. Asymptotic notations of analysis of algorithms, Time complexity of program segments, Best case and worst case analysis of Insertion sort.

UNIT - II See Unit-III & IV of this book

Divide and Conquer Strategy: Binary search, Merge sort, Quick sort, Strassen's matrix multiplication.

Greedy Approach: Fractional Knapsack Problem, Huffman coding algorithm, Travelling Salesman Problem,
Activity Selection Problem, Job sequencing with deadlines problem, Minimum cost spanning trees, Single source shortest path.

UNIT - III See Unit-IV of this book

Dynamic Programming Strategy: Longest Common Subsequence, Single source shortest paths, Travelling salesman problem, All pairs shortest path, Matrix Chain Multiplication, Multistage graphs, Optimal binary search trees, 0/1 Knapsack problem.

UNIT - IV See Unit-V of this book

Backtracking Strategy: n-Queen's problem, Sum of subsets, Graph coloring, Hamiltonian cycles.

UNIT - V See Unit-VI of this book

NP-hard and NP-Complete Problems: Non-deterministic algorithms, NP-hard and NP-complete, decision and optimization problems, Clique, Polynomial Reduction, Cook's theorem, graph based problems on NP Principle.

CONTENTS

(B.Tech. V. SEMESTER COMPUTER TECHNOLOGY)

TI	NI	T	· -	Y
	1		-	

•	Algorithm	P.1-3:
•	Properties of Algorithm	PS-58
•	Summation of arithmetic and geometric series	P.1-7
•	Recurrence relations	P.1-9
•	Solutions of recurrence relations using following techniques	P.1-18
•	Characteristic equation	P.1-18
•	Recursion tree method and master method	P.1-10
•	Asymptotic notations of analysis of algorithms	P.2-4
•	lime complexity of program segments	
•	Best case and worst case analysis of Insertion sort	A-4 P.PS-3
U	NIT - II Divide and Conquer Strategy	
	Binary search	P.3-10
	Merge sort	P.3-12
	Quick sort	P.3-19
	Strassen's matrix multiplication	P.3-16
Gr	reedy Approach:	P.3-33
•	Fractional Knapsack Problem	
•	Huffman coding algorithm	P.3-39
•	Travelling Salesman Problem	P.3-57
•	Activity Selection Problem	P.4-25
•	Job sequencing with deadlines problem	P.3-38
•	Minimum cost spanning trees	P.3-43
	Single source shortest path	P.3-45
		P.3-56

UNIT - III	
Dynamic Programming Strategy	
Longest Common Subsequence	P.4-30
Single source shortest paths	
Travelling salesman problem	P.4-19
All pairs shortest path	P.4-25
Matrix Chain Multiplication	P.4-15
Multistage graphs	P.4-37
Optimal binary search trees	P.4-11
	P.4-23
0/1 Knapsack problem	P.4-36
UNIT - IV	
Backtracking Strategy:	
n-Queen's problem	P.5-22
• Sum of subsets	P.5-27
Graph coloring	P.5-22
Hamiltonian cycles	P.5-24
UNIT - V	
NP-hard and NP-complete pProblems:	
Non-deterministic algorithms	P.6-8
NP-hard and NP-complete	P.6-6
Decision and Optimization Problems	P.6-9
• Clique	P.6-12
Polynomial Reduction	P.6-11
Cook's theorem	P.6-10
Graph based problems on NP Principle	P.6-12

SOLVED UNIVERSITY QUESTION PAPERS

WINTER - 14 (CT, CS, IT)	
	PS-1 to PS-28
SUMMER - 15, WINTER - 15 (CT)	PS-29 to PS-46
SUMMER - 15, WINTER - 15 (CS)	PS-47 to PS-62
SUMMER - 15, WINTER - 15 (IT)	PS-63 to PS-84
SUMMER - 16, WINTER - 16 (CT)	
	PS-85 to PS-96
SUMMER - 16, WINTER - 16 (CS)	PS-97 to PS-114
SUMMER - 16, WINTER - 16 (IT)	PS-115 to PS-132
SUMMER - 17, WINTER - 17 (CT)	PS-133 to PS-146
SUMMER - 17, WINTER - 17 (CS)	PS-147 to PS-162
SUMMER - 17, WINTER - 17 (IT)	PS-163 to PS-180
SUMMER - 18, WINTER - 18 (CT)	PS-181 to PS-194
SUMMER - 18, WINTER - 18 (CS)	PS-195 to PS-212
SUMMER - 18, WINTER - 18 (IT)	PS-213 to PS-228
SUMMER - 19, WINTER - 19 (CT)	PS-229 to PS-242
SUMMER - 19, WINTER - 19 (CS)	PS-243 to PS-260
SUMMER - 19, WINTER - 19 (IT)	PS-261 to PS-278
APPENDIX	A-1 to A-8