Contrôle chapitre 5 et 6 Yoann Pietri

Contrôle de cours

Géométrie plane et trigonométrie

Durée du contrôle : 45 min Ce sujet comporte 2 pages La calculatrice est autorisée

Exercice 1 (R.O.C., temps conseillé: 10 min):

Redémontrer la condition de colinéarité de deux vecteurs

Exercice 2 (temps conseillé : 20 min) :

- 1. Donner les coordonnées des points A,B,C
- 2. Donner les coordonnées du point I milieu de [A, B]
- 3. Donner les coordonnées du vecteur \overrightarrow{AB}
- 4. Trouver un vecteur directeur de \mathcal{D}
- 5. Etablir une équation cartésienne de la droite ${\mathscr D}$
- 6. Trouver les coordonnées du point D tel que ABCD soit un parallélogramme

Exercice 3 (Coordonnées polaires, temps conseillé : 25 min) :

1. Rappeler, sans démonstration, le théorème de décomposition selon 2 vecteurs non colinéaires

2. Soit $\theta \in \mathbb{R}$, on note

$$\overrightarrow{u_{\theta}} = \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}$$

$$\overrightarrow{v_{\theta}} = \begin{pmatrix} -\sin(\theta) \\ \cos(\theta) \end{pmatrix}$$

Montrer que $\overrightarrow{u_{\theta}}$ et $\overrightarrow{v_{\theta}}$ ne sont pas colinéaires

3. Soit $\vec{w} = \begin{pmatrix} x \\ y \end{pmatrix}$. Déduire des questions 1 et 2 qu'il existe λ et μ tels que

$$\overrightarrow{w} = \lambda \overrightarrow{u_{\theta}} + \mu \overrightarrow{v_{\theta}}$$

4. En déduire le système

$$\left\{ \begin{array}{lcl} x & = & \lambda \cos(\theta) & - & \mu \sin(\theta) & (1) \\ y & = & \lambda \sin(\theta) & + & \mu \cos(\theta) & (2) \end{array} \right.$$

5. Montrer alors, en réalisant $\cos(\theta) \times (1) + \sin(\theta) \times (2)$ puis $-\sin(\theta) \times (1) + \cos(\theta) \times (2)$, on obtient

$$\left\{ \begin{array}{l} \lambda = x\cos(\theta) + y\sin(\theta) \\ \mu = y\cos(\theta) - x\sin(\theta) \end{array} \right.$$

6. Représenter $\overrightarrow{u_{\theta}}$ et $\overrightarrow{v_{\theta}}$ dans le cas $\theta = \frac{\pi}{4}$

7. Décomposer $\begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}$ selon $\overrightarrow{u_{\theta}}$ et $\overrightarrow{v_{\theta}}$ dans le cas $\theta = \frac{\pi}{4}$. (On rappelle ici que $\cos(\frac{\pi}{4}) = \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$)

8. A quoi correspond le cas $\theta = 0$?

FIN DU SUJET