Université de Genève Section de Mathématiques

A. Karlsson

Analyse Complexe 2015 - 2016 Série d'exercices 23

Si vous avez des questions ou des remarques, vous pouvez nous écrire à : Maxime.Gagnebin@unige.ch ou Jhih-Huang.Li@unige.ch. Il n'y a pas de bonus, mais nous vous encourageons à faire les exercices et nous rendre dans nos casiers. Les exercices avec une étoile sont pour votre entraînement et ne seront pas corrigés.

On rappelle quelques définitions vues en exercice.

— Une fonction de \mathbb{R} vers \mathbb{R} de classe \mathcal{C}^{∞} est dans la classe de Schwartz $\mathcal{S}(\mathbb{R})$ si

$$\rho_{m,n}(f) := \sup_{x \in \mathbb{R}} |x|^m |f^{(n)}(x)| < \infty \text{ pour tous } m, n \geqslant 0.$$

— Soit f est intégrable, alors sa transformée de Fourier est définie par

$$\widehat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-2i\pi\xi x} dx, \quad \xi \in \mathbb{R}.$$

- On définit \mathcal{C}_0^{∞} comme l'ensemble des fonctions \mathcal{C}^{∞} à support compact.
- 1. Montrer que $f \in \mathcal{S}(\mathbb{R})$ si et seulement si $\lim_{x\to\pm\infty} |x|^m |f^{(n)}(x)| = 0$ pour tout $m,n \geq 0$. Est-ce que les fonctions suivantes sont dans la classe de Schwartz?
 - (a) $f(x) = Ce^{-bx^2},$
 - (b) $f(x) = e^{-|x|}$,
 - (c) $f(x) = (1 + x^2 k)^{-1}$ pour $k \in \mathbb{N}$,
 - (d) P(x)f(x) où P est un polynôme et $f \in \mathcal{S}(\mathbb{R})$.
 - (e) $f \in \mathcal{C}_0^{\infty}$.
- 2. Montrer que si $f \in \mathcal{S}(\mathbb{R})$, alors $f \in L^p(\mathbb{R})$ pour tout $p \in [1, \infty]$.

Définition. Soit des fonctions $\{f_k\}_{k\geqslant 1}$ et f dans la classe de Schwartz. On dit que $\{f_k\}$ converge vers f dans $\mathcal{S}(\mathbb{R})$ si pour tout $m,n\in\mathbb{N}$ on a

$$\rho_{m,n}(f_k - f) = \sup_{x \in \mathbb{R}} \left| x^m \left(f_k^{(n)}(x) - f^{(n)}(x) \right) \right| \to 0$$

3. Montrer que pour $f \in \mathcal{S}(\mathbb{R})$, $n \in \mathbb{N}$ et $p \in [1, \infty]$, il existe une constant C_p telle que

$$||f^{(n)}||_p \le C_p \left(||f^{(n)}||_{\infty} + \rho_{\lfloor 2/p \rfloor + 1, n}(f) \right) < \infty$$

Montrer ensuite que si $\{f_k\}$ converge vers f dans $\mathcal{S}(\mathbb{R})$ alors $f_k \to f$ dans $L^p(\mathbb{R})$ pour tout $p \in [1, \infty]$

4. Analyser la fonction f suivante

$$f_{a,b}: t \mapsto \begin{cases} \left(1 + e^{\frac{2t - (a+b)}{(b-t)(t-a)}}\right)^{-1} & \text{si } a < t < b \\ 1 & \text{si } t \leqslant a \\ 0 & \text{si } t \geqslant b. \end{cases}$$

Puis trouver une suite de fonctions $\{f_k\}$ dans $\mathcal{S}(\mathbb{R})$ telle que $f_k \to 0$ dans $L^1(\mathbb{R})$, mais f_k ne converge pas dans $\mathcal{S}(\mathbb{R})$.

- 5. Soit $f \in \mathcal{S}(\mathbb{R})$ montrer que $\widehat{f} \in \mathcal{S}(\mathbb{R})$.
- 6. Que se passe-t-il si on applique quatre fois la transformée de Fourier à une fonction $f \in \mathcal{S}(\mathbb{R})$?
- 7. Montrer que si $f \in \mathcal{C}_0^{\infty}$, alors \widehat{f} peut être étendue en une fonction analytique sur \mathbb{C} .
- 8. Soit $f \in \mathcal{C}_0^{\infty}(\mathbb{R})$, en utilisant le point précédent, montrer que si \widehat{f} est à support compact alors $f \equiv 0$.
- 9. Soit $f(x) = e^{-x^2}$, calculer $f \star f$ (la convolution de f avec elle même).
- 10. Noter que $\mathcal{F} \circ \mathcal{F}[f](y) = \mathcal{F} \circ \mathcal{F}[f](-y)$ trouver un point fixe de cette application.