# 빅데이터 처리/탐색

### 빅데이터 탐색 소개

#### 1. 빅데이터 탐색 개요

빅데이터 탐색에 대한 기본 정의 및 RDBMS 기반의 탐색과 빅데이터 탐색의 차이점을 이해한다.



#### 2. 빅데이터 탐색에 활용되는 기술

빅데이터 탐색에 사용할 4가지 기술(하이브, 스파크, 우지, 휴)를 소개하고 각 기술별 주요 기능과 아키텍처, 활용 방안을 알아본다.



#### 3. 탐색 파일럿 실행 1단계 - 탐색 아키텍처

스마트카의 빅데이터 탐색과 관련된 요구사항을 구체화하고, 탐색 요구사항을 해결하기 위한 파일럿 아키텍처를 설명한다.



#### 4. 탐색 파일럿 실행 2단계 - 탐색 환경 구성

스마트카 탐색 아키텍처를 실제로 설치 및 환경을 구성한다. 하이브, 우지, 휴, 스파크 순으로 설치한다.



#### 5. 탐색 파일럿 실행 3단계 - 휴를 이용한 데이터 탐색

후의 웹 UI를 통해 데이터 탐색 환경을 전반적으로 이해한다. HDFS/HBase/Hive Editor 등을 이용해 하둡에 적 재된 스마트카 데이터셋을 탐색한다.



#### 6. 탐색 파일럿 실행 4단계 - 데이터 탐색 기능 구현 및 테스트

스마트카 데이터셋 탐색 결과를 이용해 5가지 주제 영역에 해당하는 분석 마트를 도출하고, 각 영역별 후처리 워크플로 작업을 한다.

### 빅데이터 처리/탐색 개요

- 대용량 저장소에 적재된 데이터를 분석에 활용하기 위해 데이터를 정형화 및 정규화하는 기술.
- 데이터를 통해 가치를 발굴하기 위해서는 데이터를 이해하는 것이 선행되어야 함.
- 적재된 빅데이터를 이해하기 위해 지속적으로 관찰하고 탐색하는 탐색적 분석을 수행.
- ▶ 빅데이터 처리 및 탐색 영역은 적재된 데이터를 가공하고 이해하는 단계.
- ▶ 탐색적 분석(EDA-Exploratory Data Analysis)
  - 데이터를 이해하는 과정에서의 데이터들의 패턴, 관계, 트렌드 등을 찾는 과정.
  - SQL on Hadoop이 주로 사용.
  - 애드혹(Ad-Hoc) 쿼리로 데이터를 선택, 변환, 통합, 축소 등의 작업을 수행.
- 상당히 많은 시간과 자원이 필요한 단계.
- 덩치 큰 비정형 데이터를 정교한 후처리 작업(필터링, 클린징, 통합, 분리 등)으로 정형화해서 데이터의 직관성을 확보한 후,
- ▶ 업무 도메인에 대한 이해를 바탕으로 충분한 탐색적 분석을 진행했을 때,
- ▶ 빅데이터를 통한 미래의 통찰력과 비즈니스 가치의 창출이 가능.
- ▶ 탐색 결과는 분석을 위한 기초 데이터로 활용되며, 일련의 처리/탐색, 분석/응용 과정을 거쳐 빅데이터의 DW(Data Warehouse)가 만들어짐.

### 빅데이터 탐색 개요



- 빅데이터 하이브 기반 데이터 웨어하우스 vs. 일반 데이터 웨어하우스

### 빅데이터 Data Warehouse

#### > External 영역

- 전처리(수집/적재)와 후처리(탐색/분석)가 만나서 데이터를 서로 공유하는 영역.
- 원천 데이터의 형식을 최대한 유지.

### Managed 영역

- 처리/가공 단계를 거친 External의 데이터셋이 전달되어 옴.
- 데이터의 주제 영역별 처리/탐색 과정.

#### ➤ Mart 영역

- 현황 분석 모형 : 빅데이터 마트 모델을 통합, 요약, 집계 등을 리포팅.
- 고급 분석 모형 : 데이터의 패턴과 트렌드를 분석해 미래를 예측.

#### ▶ 하이브리드 DW

- 빅데이터 마트와 일반 마트가 데이터를 서로 교환 가능.
- 대규모 거래 및 실시간성 데이터의 처리는 빅데이터 DW가, 온라인성 업무 및 마스터 데이터는 기존 DW가 처리하면서 서로의 단점을 보완.

### ➤ Hive 소개

- 하둡 초창기에 적재된 데이터를 탐색/분석하기 위한 도구로 MapReduce를 주로 이용.
- MapReduce는 복잡도가 높은 프로그래밍 기법이 필요했고, 이는 업무 분석
  가 및 관리자들에게 빅데이터에 접근하는 것을 어렵게 만듦.
- 이를 해결하기 위해 페이스북에서 SQL과 매우 유사한 방식으로 하둡 데이터
  에 접근성을 높인 Hive 개발.
- 오픈 소스로 공개되면서 2016년 2월 하이브 2.0이 릴리스.
- 빅데이터의 가장 대표적인 SQL on Hadoop 제품으로 자리 잡음.
- 테이블 형태의 논리적인 뷰도 제공하며, DW(data warehouse)를 구축하기 위한 용도로도 활용.

### ➤ Hive 기본 요소

| 공식 홈페이지  | HIVE                            | http://hive.apache.org                                                                                |
|----------|---------------------------------|-------------------------------------------------------------------------------------------------------|
| 주요 구성 요소 | CLI                             | 사용자가 하이브 쿼리를 입력하고 실행할 수 있는 인터페이스(Hive Server1 기반<br>의 CLI와 Hive Server2 기반의 Beeline이 있음)              |
|          | JDBC/ODBC Driver                | 하이브의 쿼리를 다양한 데이터베이스와 연결하기 위한 드라이버를 제공                                                                 |
|          | Query Engine                    | 사용자가 입력한 하이브 쿼리를 분석해 실행 계획을 수립하고 하이브 QL을 맵리듀<br>스 코드로 변환 및 실행                                         |
| 주요 구성 요소 | MetaStore                       | 하이브에서 사용하는 테이블의 스키마 정보를 저장 및 관리하며, 기본적으로 더비<br>DB(Derby DB)가 사용되나 다른 DBMS(MySQL, PostgreSQL 등)로 변경 가능 |
| 라이선스     | Apache                          |                                                                                                       |
| 유사 프로젝트  | Impala, Tajo, Spark-SQL, Presto |                                                                                                       |

### ➤ Hive 아키텍처



#### ➤ Hive 활용 방안



### ➤ Spark 소개

- 맵리듀스 코어를 그대로 사용하는 하이브는 성능면에서 만족스럽지 못함.
- 그로 인해 반복적인 대화형 연산 작업에서는 하이브가 적합하지 못함.
- 이 단점을 극복한 고성능 인메모리 분석.
- 하둡과 유사한 클러스터 기반의 분산 처리 기능을 제공하는 오픈소스 프레임워크.
- UC 버클리의 AMPLab에서 2009년 개발, 2010년 오픈 소스로 공개.
- 2013년 6월 아파치 재단으로 이관되어 최상위 프로젝트.
- 최근 빅데이터 분야에서 가장 핫한 기술 중 하나.
- 데이터 가공 처리를 인메모리에서 수행함으로써 대용량 데이터 작업에도 빠른 성 능을 보장.
- 하둡과 하이브를 비롯한 기존의 여러 솔루션과의 연동을 지원하고 마이크로배치 방식의 실시간 처리 및 머신러닝 라이브러리를 비롯해 빅데이터 처리와 관련된 다양한 라이브러리를 지원.

### ➤ Spark 기본 요소

| 공식 홈페이지  | Spark                    | http://spark.apache.org                                                                                       |
|----------|--------------------------|---------------------------------------------------------------------------------------------------------------|
| 주요 구성 요소 | Spark RDD                | 스파크 프로그래밍의 기초 데이터셋 모델                                                                                         |
|          | Spark Driver / Executors | Driver는 RDD 프로그램을 분산 노드에서 실행하기 위한 Task의 구성, 할당.<br>계획 등을 수립하고, Executor는 Task를 실행 관리하며, 분산 노드의 스토리지 및 메모리를 참조 |
|          | Spark Cluster Manager    | 스파크 실행 환경을 구성하는 클러스터 관리자로 Mesos, YARN, Spark<br>Standalone이 있음                                                |
|          | Spark SQL                | SQL 방식으로 스파크 RDD 프로그래밍을 지원                                                                                    |
|          | Spark Streaming          | 스트리밍 데이터를 마이크로타임의 배치로 나누어 실시간 처리                                                                              |
|          | Spark MLib               | 스파크에서 머신러닝 프로그래밍(군집, 분류, 추천 등)을 지원                                                                            |
|          | Spark GraphX             | 다양한 유형의 네트워크(SNS, 하이퍼링크 등) 구조 분석을 지원                                                                          |
| 라이선스     | Apache                   |                                                                                                               |
| 유사 프로젝트  | Impala, Tajo, Tez        |                                                                                                               |

### ➤ Spark 아키텍처



➤ Spark 활용 방안



### 빅데이터 탐색에 활용하는 기술 - Oozie

### ➤ Oozie 소개

- 수집 및 적재된 수백 개 이상의 데이터셋을 대상으로 다양한 후처리 job이 데이터 간의 의존성과 무결성을 유지하며 복잡하게 실행됨.
- 반복적이면서 복잡한 후처리 job을 처리하기 위해 방향성 있는 비순환 그래 프(DAG:Direct Acyclic Graph)로 정의해서 job에 시작, 처리, 분기, 종료점 등 의 액션(Action)으로 구성하는 워크플로(workflow)가 필요.
- 위의 필요성에 의해 만들어진 것이 아파치 우지.
- 2008년 야후에서 개발, 2010년 오픈 소스로 공개.
- 2012년 아파치 최상위 프로젝트로 승격되어, 2015년 버전 4.2까지 릴리즈.

## 빅데이터 탐색에 활용하는 기술 – Oozie

### ➤ Oozie 기본 요소

| 공식 홈페이지  | 0071                                | http://oozie.apache.org                             |
|----------|-------------------------------------|-----------------------------------------------------|
| 주요 구성 요소 | Oozie Workflow                      | 주요 액션에 대한 작업 규칙과 플로우를 정의                            |
|          | Oozie Client                        | 워크플로를 Server에 전송하고 관리하기 위한 환경                       |
| 주요 구성 요소 | Oozie Server                        | 워크플로 정보가 잡으로 등록되어 잡의 실행, 중지, 모니터링 등을 관리             |
|          | Control 노드                          | 워크플로의 흐름을 제어하기 위한 Start, End, Decision 노드 등의 기능을 제공 |
|          | Action <u>노⊏</u>                    | 잡의 실제 수행 태스크를 정의하는 노드로서 하이브, 피그, 맵리듀스 등의 액션으로 구성    |
|          | Coordinator                         | 워크플로 잡을 실행하기 위한 스케줄 정책을 관리                          |
| 라이선스     | Apache                              |                                                     |
| 유사 프로젝트  | Azkaban, Cascading, Hamake, Airflow |                                                     |

### 빅데이터 탐색에 활용하는 기술 – Oozie

### ➤ Oozie 아키텍처



### 빅데이터 탐색에 활용하는 기술 - Oozie

#### ➤ Oozie 활용 방안



### ➤ Hue 소개

- 빅데이터 탐색/분석은 반복적인 작업이면서 그 과정에서 많은 도구들이 활용.
- 하둡 기반의 하이브, 피그, 우지, 스쿱 등 알아야 할 기술 요소가 지나치게 많
  아 업무 담당자 또는 데이터 분석가들이 직접 사용하기에는 많은 어려움.
- 빅데이터 기술이 성숙해지면서 이러한 복잡도를 숨기고 접근성을 높인 소프 트웨어들이 만들어짐.
- 그중 하나가 클라우데라에서 만든 것이 Hue.
- Hue는 다양한 하둡의 에코시스템의 기능들을 웹 UI로 통합 제공.
- 오픈 소스로 깃허브에 공개, 2016년 공식 사이트에서 3.90 버전까지 릴리즈.

### ➤ Hue 기본 요소

| 공식 홈페이지  | HUE                    | http://gethue.com                  |  |
|----------|------------------------|------------------------------------|--|
| 주요 구성 요소 | Job Designer           | 우지의 워크플로 및 Coordinator를 웹 UI에서 디자인 |  |
|          | Job Browser            | 등록한 잡의 리스트 및 진행 상황과 결과 등을 조회       |  |
|          | Hive Editor            | 하이브 QL을 웹 UI에서 작성, 실행, 관리          |  |
|          | Pig Editor             | 피그 스크립트를 웹 UI에서 작성, 실행, 관리         |  |
|          | HDFS Browser           | 하둡의 파일시스템을 웹 UI에서 탐색 및 관리          |  |
|          | HBase Browser          | HBase의 HTable을 웹 UI에서 탐색 및 관리      |  |
| 라이선스     | Apache                 |                                    |  |
| 유사 프로젝트  | NDAP, Flamingo, Ambari |                                    |  |

### ➤ Hue 아키텍처



#### ➤ Hue 활용 방안

