Chapter 1

Fuzzy Topology

Definition 1 (Fuzzy Topology). Let X be a non-empty set. A collection δ of fuzzy sets on X is called the fuzzy topology on X if it satisfies the following conditions:

- (i) $\underline{0}, \underline{1} \in \delta$.
- (ii) If $A, B \in \delta$, then $A \wedge B \in \delta$.
- (iii) If $A_i \in \delta$, then $\forall_{i \in I} A_i \in \delta$.

If δ is a topology on X then, $\langle \mathcal{F}(X), \delta \rangle$ is called a fuzzy topological space.

Example. Let $X = \{a, b\}$ and A be a fuzzy set defined by A(a) = 0.5 and A(b) = 0.4. Then $\delta = \{\underline{0}, \underline{1}, A\}$ be a fuzzy topology and $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space.

Example. Let A, B be a fuzzy sets of I = [0, 1] defined as

$$A(x) = \begin{cases} 0; & \text{if } 0 \le x \le \frac{1}{2} \\ 2x - 1; & \text{if } \frac{1}{2} \le x \le 1 \end{cases} \quad \text{and} \quad B(x) = \begin{cases} 1; & \text{if } 0 \le x \le \frac{1}{4} \\ -4x + 2; & \text{if } \frac{1}{4} \le x \le \frac{1}{2} \\ 0; & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$

Then $\delta = \{\underline{0}, \underline{1}, A, B, A \vee B\}$ is a fuzzy topology on I.

Definition 2 (Open and CLosed Fuzzy Sets). Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then, the member of δ i.e., each $A \in \delta$ is called the fuzzy open set. A fuzzy set B is called a fuzzy closed set if $B^c \in \delta$.

Example. Let $X = \{a, b\}$, $B : X \to [0, 1]$ such that B(a) = 0.5, B(b) = 0.6. Then, $B^c(a) = 0.5$, $B^c(b) = 0.4$, $\delta = \{\underline{0}, \underline{1}, A\}$, A(a) = 0.5, A(b) = 0.4.

 \therefore B is closed under δ/δ -closed. i.e., B^c is open.

Difference between classical and fuzzy sets: Classical set contains elements that satisfy precise properties of membership while fuzzy set contains elements that satisfy imprecise properties of membership.

Definition 3 (Interior and Closure of fuzzy sets). Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space and A be a non-empty subset of X.

The interior of A is denoted by A° and defined as the union of all open sets contained in A. i.e., $A^{\circ} = \bigcup \{G \in \delta | G \leq A\}$. (Largest open set contained in A).

The closure of A is denoted by \bar{A} and defined as the intersection of all closed sets containing A. i.e., $\bar{A} = \bigcap \{F | F^c \in \delta \text{ and } A \leq F\}$. (Smallest closed set containing A).

Example. Consider, $X = \{a, b, c\}$ and

$$A: \ a \mapsto 0.2, \ b \mapsto 0.4, \ c \mapsto 0.8$$

$$B: \ a \mapsto 0.4, \ b \mapsto 0.6, \ c \mapsto 0.8$$

 $C: a \mapsto 0.6, b \mapsto 0.8, c \mapsto 1.0$

Then, $\delta = \{\underline{0}, \underline{1}, A, B, C\}$ be a fuzzy topology on X. Here $U: X \to [0, 1]$ and $U: a \mapsto 0.8, b \mapsto 0.7, c \mapsto 0.8$. Find U° and \overline{U} .

Solution. 1. We know that, $U^{\circ} = \bigcup \{G \in \delta : g \leq U\} = \bigcup \{\underline{0}, A, B\} = B$. Since, $\underline{0} \leq A \leq B$.

2. At first, $A^c: a \mapsto 0.8, b \mapsto 0.6, c \mapsto 0.2$ $B^c: a \mapsto 0.6, b \mapsto 0.4, c \mapsto 0.2$ $C^c: a \mapsto 0.4, b \mapsto 0.2, c \mapsto 0.0$ $0^c = 1$ and $1^c = 0$

We know that $\bar{U} = \bigcap \{F | F^c \in \delta \text{ and } U \leq F\} = \underline{1}$.

Theorem 1.0.1. Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then, the following conditions hold:

- (i) $\underline{0}^{\circ} = \underline{0}$ and $\underline{1}^{\circ} = \underline{1}$
- (ii) $\forall A \in \mathcal{F}(X), A^{\circ} \leq A$
- (iii) $\forall A \in \mathcal{F}(X), A^{\circ \circ} = A^{\circ}$
- (iv) for $A, B \in \mathcal{F}(X)$ with $A \leq B$ implies $A^{\circ} \leq B^{\circ}$
- (v) for $A, B \in \mathcal{F}(X)$, $(A \wedge B)^{\circ} = A^{\circ} \wedge B^{\circ}$

Proof. (i) By definition, $\underline{0}^{\circ} = \bigcup \{G \in \delta | G \leq \underline{0}\} = \underline{0} \text{ and } \underline{1}^{\circ} = \bigcup \{G \in \delta | G \leq \underline{1}\} = \underline{1}$

- (ii) By definition, $A^{\circ} = \bigcup \{G \in \delta | G \leq A\}$. Since, the arbitrary union of open sets is open, A° is the open set of $\mathcal{F}(X)$ and also, A° is the largest open set contained in A. $A^{\circ} \leq A$.
- (iii) From (ii), $A^{\circ} \leq A \Rightarrow A^{\circ \circ} \leq A^{\circ}$. But A° is the largest open set contained in A. So, $A^{\circ} \leq A^{\circ \circ}$. Hence, $A^{\circ \circ} = A^{\circ}$.
- (iv) Let $A, B \in \mathcal{F}(X)$ such that $A \leq B$. Now, since $A^{\circ} \leq A$, hence $A^{\circ} \leq B$. But B° is the set of all open sets contained in B. So, $B^{\circ} \leq B$. Therefore, $A^{\circ} \leq B^{\circ}$.
- (v) Let $A, B \in \mathcal{F}(X)$. Then,

$$A^{\circ} \leq A, \ B^{\circ} \leq B$$

$$\Rightarrow A^{\circ} \wedge B^{\circ} \leq A \wedge B$$

$$\Rightarrow (A^{\circ} \wedge B^{\circ})^{\circ} \leq (A \wedge B)^{\circ}$$
(1.1)

Here, A° is the largest open set contained in A and B° is the largest open set contained in B. Hence, $A^{\circ} \wedge B^{\circ}$ is also an open set of X. So, $(A^{\circ} \wedge B^{\circ})^{\circ} \leq (A \wedge B)^{\circ}$. From (1.1),

$$A^{\circ} \wedge B^{\circ} \le (A \cap B)^{\circ} \tag{1.2}$$

Again, Since,

$$A \wedge B \leq A, B$$

$$\Rightarrow (A \wedge B)^{\circ} \leq A^{\circ}, B^{\circ}$$

$$\Rightarrow (A \wedge B)^{\circ} \leq A^{\circ} \wedge B^{\circ}$$
(1.3)

From, (1.2) and (1.3), $A^{\circ} \wedge B^{\circ} = (A \wedge B)^{\circ}$.

Note. If A be a fuzzy open set of the topological space $\langle X, \delta \rangle$, then $A^{\circ} = A$, $\bar{A} = A$ iff A is closed.

Definition 4 (Fuzzy Point). A fuzzy set x_a on X is called a fuzzy point on X if $\forall y \in X$,

$$x_a(y) = \begin{cases} a; & \text{if } x = y \\ 0; & \text{if } x \neq y \end{cases}$$
; where, $0 < a \le 1$

The set of all fuzzy points on X is denoted by P(X). The fuzzy points x_{1-a} is called the dual point of the fuzzy points x_a .

Example. X = [0,1]m where $X = \{x,y,z\}$. We need to find $x_a(y)$ where $y \in X$.

$$x_a: x \to a$$
 $y_a: x \to 0$ $z_a: x \to 0$ dual of $x_a, x_{1-a}: x \to (1-a)$
 $y \to 0$ $y \to a$ $y \to 0$ $y \to 0$ $y \to 0$
 $z \to 0$ $z \to 0$ $z \to a$ $z \to 0$

Definition 5 (Neighborhood of a fuzzy point). Let $\langle X, \delta \rangle$ be a fuzzy topological space and $x_a \in P(X)$. Then $U \in \delta$ is called a fuzzy neighborhood of x_a if $x_a \in U$.

The set of all fuzzy neighborhood of x_a is denoted by $\mathcal{N}_{\delta}(x_a)$.

Example.
$$X = \{a, b, c\}, \ \delta = \{\underline{0}, \underline{1}, A, B\}, \ A : a \to 0.0, \ B : a \to 0.2.$$
 Find the neighborhood of $a_{0.4}, b_{0.7}, c_{0.8}$. $b \to 0.2$ $b \to 0.4$ $c \to 0.7$ $c \to 0.8$

Solution.

- 1. $a_{0.4}: a \to 0.4$; Fuzzy neighborhood of $a_{0.4}: \{\underline{1}\}$. $b \to 0.0$ $c \to 0.0$
- 2. $b_{0.7}: a \to 0.0$; Fuzzy neighborhood of $b_{0.7}: \{\underline{1}\}.$ $b \to 0.7$ $c \to 0.0$
- 3. $c_{0.8}: a \to 0.0$; Fuzzy neighborhood of $c_{0.8}: \{B, \underline{1}\}$. $b \to 0.0$ $c \to 0.8$

Theorem 1.0.2. Let $\langle X, \delta \rangle$ be a fuzzy topological space and $A \subseteq X$. Then a fuzzy point $x_a \in A^{\circ} \Leftrightarrow x_a$ has a neighborhood U such that $U \subseteq A$.

Proof. Suppose, $x_a \in A^{\circ}$. By the definition of A° , $A^{\circ} = \bigcup \{G \in \delta | G \subseteq A\}$. $\therefore x_a \in \bigcup \{G \in \delta | G \subseteq A\}$. Thus we have $x_a \in U$ for some $U \in \delta \ni U \subseteq A$. \therefore There exists a neighborhood U of x_a such that $U \subseteq A$.

Conversely, suppose, U be a neighborhood of a fuzzy point $x_a \ni U \subseteq A$. This implies, $x_a \in U \subseteq A$. Now, since A° is the largest open set contained in A, we have $U \subseteq A^{\circ}$. Thus, $x_a \in A^{\circ}$.

Definition 6 (Quasi-Coincident of a fuzzy point). Let $\langle X, \delta \rangle$ be a fuzzy topological space. A fuzzy point x_a is called quasi-coincident of a fuzzy set A denoted by $x_a \propto A$ iff $x_a \nleq A^c$ i.e., $a > A^c(x) \Rightarrow a + A(x) > 1$,

Definition 7 (Quasi-Coincident of a fuzzy set). A fuzzy set A is said to be quasi-coincident with a fuzzy set B iff there exists an $x \in X$ such that $A(x) > B^c(x)$ i.e., A(x) + B(x) > 1 for some $x \in X$.

Definition 8 (Quasi-neighborhood). An open set $U \in \delta$ is called a quasi-neighborhood of a fuzzy point x_a if x_a is a quasi-coincident of U. The set of all quasi-coincident of x_a is denoted by $\mathcal{Q}_{\delta}(x_a)$.

Example. Consider, $X = \{a, b, c\}, \delta = \{\underline{0}, \underline{1}, A, B\},$

$$A: \ a \mapsto 0.0, \ b \mapsto 0.2, \ c \mapsto 0.7$$

$$B: \ a \mapsto 0.6, \ b \mapsto 0.4, \ c \mapsto 0.8$$
 Given, $P: \ a \mapsto 0.0, \ b \mapsto 0.4, \ c \mapsto 0.9$

Find the quasi-neighborhood of x_a at a = 0.4.

Solution. Here, B^c : $a \mapsto 0.4$, $b \mapsto 0.6$, $c \mapsto 0.2$. Since, $a = 0.4 \ge B^c(a) = 0.4$ so, $x_{0.4}$ is a quasi-coincident of B and $\mathcal{Q}_{\delta}(x_a) = \{\underline{1}, B\}$.

Theorem 1.0.3. A quasi-neighborhood of x_a is exactly a neighborhood of x_{1-a} .

Proof. Let $\langle X, \delta \rangle$ be a fuzzy topological space and $U \in \delta$ be a quasi-neighborhood of x_a . By the definition of quasi-neighborhood of x_a ,

$$a > U^c(x)$$
, for some $x \in X$,
 $\Leftrightarrow a > 1 - U(x)$, for some $x \in X$,
 $\Leftrightarrow a + U(x) > 1$, for some $x \in X$,
 $\Leftrightarrow 1 - a < U(x)$, for some $x \in X$,
 $\Leftrightarrow x_{1-a} \in U$,
 $\Leftrightarrow U$ is a neighborhood of x_{1-a}

Proposition 1. Let, $\langle X, \delta \rangle$ be a fuzzy topological space and $A, B \subseteq X$. Then $A \leq B$ iff A and B^c are not quasi-coincident.

Proof. Suppose, $A \leq B$, then, $A(x) \leq B(x)$, for all $x \in X$. Now, $A(x) + B^c(x) = A(x) + 1 - B(x) \le 1$, for all $x \in X$ [Since, $A(x) \le B(x)$] Hence, A and B^c are not quasi-coincident.

Conversely, suppose A(x) and $B^{c}(x)$ are not quasi-coincident. Then,

$$A(x) + B^{c}(x) \le 1$$

$$\Rightarrow A(x) + 1 - B(x) \le 1$$

$$\Rightarrow A(x) - B(x) \le 0$$

$$\Rightarrow A(x) \le B(x)$$

Theorem 1.0.4. Let (X, δ) be a fuzzy topological space and $A \in \mathcal{F}(X)$. Then, the following conditions hold:

- 1. $x_a \in A^{\circ}$ iff $x_{1-a} \notin \bar{A}^c$.
- 2. $x_a \in A$ iff each neighborhood of its dual point x_{1-a} is quasi-coincident with A.

Proof.

1. Let $x_a \in A^{\circ}$. Then by definition of A° , there exists $B \in \delta$ such that $x_a \in B \subseteq A$ i.e., B is a neighborhood of x_a and hence B is a quasi-neighborhood of x_{1-a} . Hence $x_{1-a} \not\leq B^c$ i.e., $x_{1-a} \not\in B^c$. Since, $B \subseteq A$ and A is the smallest closed set containing A, we have, $B \subseteq A \subseteq \bar{A}$ implies $\bar{A}^c \subseteq B^c$. Hence we can show that $x_{1-a} \not\in A^c$.

Conversely, suppose $x_{1-a} \notin \bar{A}^c$. Then there is a neighborhood B of x_a which is not quasi-coincident with A^c . Thus,

$$B(x) + A^{c}(x) \le 1 \quad \forall x \in X$$

$$\Rightarrow B(x) \le A(x) \quad \forall x \in X$$

- $\therefore B^c \subseteq A \text{ and so } x_a \in B \subseteq A \text{ i.e., } x_a \in A^\circ.$
- 2. Let N be the neighborhood of x_{1-a} . Now, N is a quasi-coincident with A implies

$$N(x) + A(x) > 1, \ \forall x \in X$$

 $\Rightarrow N \text{ and } A \text{ intersect at } x$
 $\Rightarrow x_a \in \bar{A}$

Conversely, suppose $x_a \in \bar{A}$. The, N and A intersect at x. This implies,

$$N(x) + A(x) > 1$$
, $\forall x \in X$
 $\Rightarrow N$ is a quasi-coincident with A at x
 \Rightarrow each neighborhood N of x_{1-a} is quasi-coincident with A

Definition 9 (Subspace). Let $\langle X, \delta \rangle$ be a fuzzy topological space and $Y \subseteq X$, $Y \neq \emptyset$. Define $\delta_{\upharpoonright_Y} = \{U_{\upharpoonright_Y} | U \in \delta\}$. Then $\delta_{\upharpoonright_Y}$ is a fuzzy topology on Y. The fuzzy topological space $\langle Y, \delta_{\upharpoonright_Y} \rangle$ is called a subspace of $\langle X, \delta \rangle$.

Example. Let, $X = \{a, b, c\}$ and $Y = \{b, c\}$. Let $\delta = \{\underline{0}, \underline{1}, A, B\}$ where

$$A: a \mapsto 0.2, b \mapsto 0.4, c \mapsto 1.0$$

 $B: a \mapsto 0.1, b \mapsto 0.4, c \mapsto 0.8$

Then $\delta_{\uparrow_Y} = \{\underline{0}_{\uparrow_Y}, \underline{1}_{\uparrow_Y}, A_{\uparrow_Y}, B_{\uparrow_Y}\}$ where,

$$A_{\uparrow_Y}: b \mapsto 0.4, c \mapsto 1.0$$

 $B_{\uparrow_Y}: b \mapsto 0.4, c \mapsto 0.8$

is a fuzzy topology on Y and hence $\langle Y, \delta_{\upharpoonright Y} \rangle$ is a fuzzy subspace of $\langle X, \delta \rangle$.

Example. Let $X = \{1, 2, 3, 4\}$ and $Y = \{1, 3, 4\}$. Find a non-trivial fuzzy topology on X and hence, find a fuzzy subspace of $\langle X, \delta \rangle$.

Solution. Let $\delta = \{\underline{0}, \underline{1}, A, B\}$ be a fuzzy topology on X where,

$$A: 1 \mapsto 0.3, 2 \mapsto 0.1, 3 \mapsto 0.6, 4 \mapsto 0.2$$

 $B: 1 \mapsto 0.7, 2 \mapsto 0.4, 3 \mapsto 0.1, 4 \mapsto 0.2$

Then $\delta_{\uparrow_Y} = \{\underline{0}_{\uparrow_Y}, \underline{1}_{\uparrow_Y}, A_{\uparrow_Y}, B_{\uparrow_Y}\}$ where,

$$A_{\uparrow_Y}: 1 \mapsto 0.3, 3 \mapsto 0.6, 4 \mapsto 0.2$$

 $B_{\uparrow_Y}: 1 \mapsto 0.7, 3 \mapsto 0.1, 4 \mapsto 0.2$

is a fuzzy topology on Y and hence $\langle Y, \delta_{\upharpoonright_Y} \rangle$ is a fuzzy subspace of $\langle X, \delta \rangle$.

Remark. Let $\langle X, \tau \rangle$ be a fuzzy topological space. The two fuzzy sets A and B in X are said to be intersecting \Leftrightarrow there exists a point $x \in X$ such that $(A \wedge B)(x) \neq 0$.

For such a case, we say that, A and B intersect at x.

Again, if A and B are quasi-coincident at x, then, A(x) + B(x) > 1 i.e., both A(x) and B(x) are not zero and here A and B intersect at x.

- $x_a \to \text{quasi-coincident of } A \text{ if } a > A^c(y) \text{ for some } y \in X.$
- $U \in \delta \to \text{quasi-neighborhood if } x_a \text{ is a quasi-coincident of } U.$

Definition 10 (Adherent point). A fuzzy point x_a is called an adherent point of a fuzzy set A iff every quasi-neighborhood of x_a is a quasi-coincident with A.

Problem 1.1. Give an example of an adherent point.

Definition 11 (Accumulation Point). A fuzzy point x_a is called an accumulation point of a fuzzy set A iff x_a is an adherent point of A and every quasi-neighborhood of x_a and A are quasi-coincident at some point different from sup x_a , whenever, $x_a \in A$.

Definition 12 (Base). Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then \mathcal{B} is a base for δ iff every open set $G \in \delta$ is the union of members of \mathcal{B} i.e., $G = \bigcup B_i, \forall B_i \in \mathcal{B}$.

Definition 13 (Subbase). Let $\langle \mathcal{F}(X), \delta \rangle$ be a fuzzy topological space. Then $S \in X$ is called a subbase iff finite intersection of member of S form a base for δ .