Laboratorio Nro. 1 laboratorio recursión

Juan José Zuluaga Bedoya

Universidad Eafit Medellín, Colombia jjzuluagab@eafit.edu.co

Juan José Wilches Rivas

Universidad Eafit Medellín, Colombia jjwilchesr@eafit.edu.co

3) Simulacro de preguntas de sustentación de Proyectos

3.1
$$T(m,n) = T(m,n-1)+T(m-1,n)$$

3.2

PhD. Mauricio Toro Bermúdez

Docente | Escuela de Ingeniería | Informática y Sistemas Correo: mtorobe@eafit.edu.co | Oficina: Bloque 19 – 627 Tel: (+57) (4) 261 95 00 Ext. 9473

18	219541
19	884880

3.3 no, como podemos ver en el ejercicio anterior al tener características de una función exponencial el programa se demoraría demasiado para cadenas de caracteres de 300.000.
3.5

groupSum6:

$$C1 = 5 = T (0)$$

 $C2 = 7$

Mejor caso:
$$T(n) = T(n-1) + C2$$

 $T(n) = C2*n + C1$

Pero caso:
$$T(n) = T(n-1) + T(n-1) + C2$$

 $T(n) = C2(2^n-1) + C1*2^n(n-1)$

n es el número de espacios restantes para terminar el arreglo

groupSumClump:

$$C1 = 6 = T(0)$$

 $C2 = 10$

$$C2 = 10$$

 $C3 = 14$

$$C4 = 31$$

$$T(n) = T(n-1) + T(n-1) + C3$$

 $T(n)=C3(2^n-1) + C1*2^n(n-1)$ (mejor caso)

$$T(n) = T(n-2) + T(n-2) + C_3$$

 $T(n)=2^{(1/2)}(1/2)(C2(-1)^{(n)}+C1)-C3$ (peor caso) n es el número de espacios restantes para terminar el arreglo

groupSum5

$$C1 = 6$$

$$C2 = 10$$

$$C3 = 13$$

$$C4 = 16$$

$$C5 = 18$$

Caso intermedia:
$$T(n) = T(n-2) + C_3$$

$$T(n) = -(1/4) *C3*((-1) ^(2n)-2n) + C2*(-1) ^(n) +C1$$

mejor caso:
$$T(n) = T(n-1) + C_4$$

 $T(n) = C4*n + C1$

PhD. Mauricio Toro Bermúdez

Docente | Escuela de Ingeniería | Informática y Sistemas Correo: mtorobe@eafit.edu.co | Oficina: Bloque 19 – 627

Tel: (+57) (4) 261 95 00 Ext. 9473

Peor caso:
$$T(n) = T(n-1) + T(n-1) + C_5$$

 $T(n) = C5(2^n-1) + C1*2^(n-1)$

n es el número de espacios restantes para terminar el arreglo

groupNoAdj

$$C1 = 4$$

C2 = 9

C3 = 18

C4 = 18

Mejor caso:
$$T(n) = T(n-2) + T(n-1) + C_3$$

T(n) = -C3 + C1*F(n) + C2*L(n)

with F(n) the nth Fibonacci number and L(n) the nth Lucas number

Peor caso:
$$T(n) = T(n-1) + T(n-1) + C4$$

 $T(n) = C4(2^{n-1}) + C1*2^{(n-1)}$

n es el número de espacios restantes para terminar el arreglo

splitArray

$$C1 = 7$$

 $C = 16$

$$T(n) = T(n-1) + T(n-1) + C_2$$

$$T(n) = C2(2^n-1) + C1*2^(n-1)$$

n es el número de espacios restantes para terminar el arreglo

Factorial

$$C1=3$$

Cuando n= factorial

$$T(n)=c_2+T(n-1)$$

$$T(n) = c_2 n + c_1$$

 $RSolve[T[n] == Subscript[c, 2] + T[-1 + n], \{T[n]\}, n]$

bunnyEars

$$C1=3$$

Cuando n= numero de filas

$$T(n)=c1 + T(n-1) \rightarrow T(n) = c1 n + c_1$$

$$RSolve[T[n] == c1 + T[-1 + n], \{T[n]\}, n],$$

PhD. Mauricio Toro Bermúdez

Docente | Escuela de Ingeniería | Informática y Sistemas Correo: mtorobe@eafit.edu.co | Oficina: Bloque 19 – 627

Tel: (+57) (4) 261 95 00 Ext. 9473

bunnyEars2

Cuando n= bunnies

$$T(n) = -c_2 + c_1 F_n + c_2 L_n$$

 $RSolve[T[n] == Subscript[c, 2] + T[-2 + n] + T[-1 + n], \{T[n]\}, n]$

Triangle

C1=2

C2 = 3

Cuando n= numero de filas

$$T(n)=T(n-1)+c_2-->T(n)=c_2 n+c_1$$

 $RSolve[T[n] == Subscript[c, 2] + T[-1 + n], \{T[n]\}, n]$

CountHi

C1 = 4

C2 = 8

C3=9

Siendo n= tamaño de arreglo

$$T(n)=c_3+T(n-1)$$
 --> $T(n)=c_3 n + c_1$

 $RSolve[T[n] == Subscript[c, 3] + T[-1 + n], \{T[n]\}, n]$

4) Simulacro de Parcial

4.1

1. A

2. A 3. A 4.2

1) A) Verdadero

2) A) Falso

B)Falso

C) Falso

4.3

1. B

int lucas(int n){
 if(n == 1)
 return 2;

PhD. Mauricio Toro Bermúdez

Docente | Escuela de Ingeniería | Informática y Sistemas Correo: mtorobe@eafit.edu.co | Oficina: Bloque 19 – 627 Tel: (+57) (4) 261 95 00 Ext. 9473


```
if(n == 2)
  return 1;
  return lucas(n-1) +lucas(n-2);
}
4.4. C

4.4. 
static boolean isPal(String s) {
    02 if(s.length() == 0 || s.length() == 1)
    03 return true;
    04 if(s.charAt(0)== s.charAt(s.length())
    05 return isPal(s.substring(1, s.length()-1));
    06 //else
    07 return false;
    08}
```

PhD. Mauricio Toro Bermúdez

Docente | Escuela de Ingeniería | Informática y Sistemas Correo: mtorobe@eafit.edu.co | Oficina: Bloque 19 – 627 Tel: (+57) (4) 261 95 00 Ext. 9473

