પ્રશ્ન 1(અ) [3 ગુણ]

બિટ રેટ, બાઉડ રેટ અને બેન્ડવિડ્થ વ્યાખ્યાયિત કરો

જવાબ:

પેરામીટર	વ્યાખ્યા	એકમ
બિટ રેટ	પ્રતિ સેકન્ડ ટ્રાન્સમિટ થતા બિટ્સની સંખ્યા	bps (બિટ્સ પર સેકન્ડ)
બાઉડ રેટ	પ્રતિ સેકન્ડ સિગ્નલ ફેરફારની સંખ્યા	બાઉડ
બેન્ડવિડ્થ	કોમ્યુનિકેશન ચેનલમાં ફ્રીક્વન્સીની રેંજ	Hz (હર્ટ્ઝ)

• બિટ રેટ: વાસ્તવિક ડેટા ટ્રાન્સમિશન સ્પીડ

• બાઉડ રેટ: મોક્યુલેશન રેટ અથવા સિમ્બોલ રેટ

• બેન્ડવિડ્ય: ફ્રીક્વન્સી રેંજ માટે ચેનલ કેપેસિટી

મેમરી ટ્રીક: "બિટ્સ બાઉડ બેન્ડવિડ્થ - કોમ્યુનિકેશન માટે BBB"

પ્રશ્ન 1(બ) [4 ગુણ]

બ્લોક ડાયાગ્રામ સાથે TDM સમજાવો

જવાબ:

- TDM **સિદ્ધાંત**: બહુવિધ સિગ્નલ્સ ટાઇમ સ્લોટ્સ દ્વારા સિંગલ ચેનલ શેર કરે છે
- ટાઇમ સ્લોટ્સ: દરેક ઇનપુટને સમર્પિત સમય અવધિ મળે છે
- **સિંકોનાઇઝેશન**: ટાન્સમિટર અને રિસીવર સિંકોનાઇઝ હોવા જોઇએ
- ઉપયોગ: ડિજિટલ ટેલિફોન સિસ્ટમ્સ, કમ્પ્યુટર નેટવર્ક્સ

મેમરી ટ્રીક: "ટાઇમ ડિવાઇડેડ મિ્ટિપલ - TDM સમય શેર કરે છે"

પ્રશ્ન 1(ક) [7 ગુણ]

ડિજિટલ કોમ્યુનિકેશન સિસ્ટમનો બ્લોક ડાયાગ્રામ સમજાવો

જવાબ:

ટેબલ: સિસ્ટમ કોમ્પોનન્ટ્સ

કોમ્પોનન્ટ	รเช้
સોર્સ એન્કોડર	એનાલોગને ડિજિટલમાં કન્વર્ટ કરે છે
ચેનલ એન્કોડર	એરર કરેક્શન કોડ્સ ઉમેરે છે
ડિજિટલ મોક્યુલેટર	ડિજિટલને એનાલોગ સિગ્નલમાં કન્વર્ટ કરે છે
ચેનલ	ટ્રાન્સમિશન મીડિયમ
ડિજિટલ ડીમોડ્યુલેટર	ડિજિટલ સિગ્નલ પુનઃપ્રાપ્ત કરે છે
ચેનલ ડીકોડર	એરર શોધે અને સુધારે છે
સોર્સ ડીકોડર	મૂળ સિગ્નલ પુનર્નિર્માણ કરે છે

• ફાયદાઓ: નોઇઝ પ્રતિરોધકતા, એરર કરેક્શન ક્ષમતા

• પ્રોસેસિંગ: ડિજિટલ સિગ્નલ પ્રોસેસિંગ તકનીકો

• **વિશ્વસનીયતા**: લાંબા અંતર પર વધુ સારી કામગીરી

મેમરી ટ્રીક: "સોર્સ ચેનલ મોક્યુલેટ ટ્રાન્સમિટ ડીમોક્યુલેટ ડીકોડ - SCMTDD"

પ્રશ્ન 1(ક OR) [7 ગુણ]

કોમ્યુનિકેશન ચેનલના વિવિધ પ્રકારો સમજાવો

જવાબ:

ચેનલ પ્રકારો ટેબલ:

ચેનલ પ્રકાર	લાક્ષણિકતાઓ	ઉપયોગ
ટેલિફોન ચેનલ	300-3400 Hz બેન્ડવિડ્થ	વૉઇસ કોમ્યુનિકેશન
કોએક્સિયલ કેબલ	હાઇ બેન્કવિડ્થ, શિલ્કેડ	કેબલ TV, ઇન્ટરનેટ
ઓપ્ટિકલ ફાઇબર	ખૂબ હાઇ બેન્ડવિડ્થ, લાઇટ સિગ્નલ્સ	લાંબા અંતર, હાઇ સ્પીડ
વાયરલેસ ચેનલ	રેડિયો ફ્રીક્વન્સી ટ્રાન્સમિશન	મોબાઇલ, સેટેલાઇટ
સેટેલાઇટ ચેનલ	લાંબા અંતર, સ્પેસ કોમ્યુનિકેશન	ગ્લોબલ કોમ્યુનિકેશન

- બેન્ડવિડ્થ: વિવિધ ચેનલ્સ અલગ-અલગ ફ્રીક્વન્સી રેંજ આપે છે
- નોઇઝ લાક્ષણિકતાઓ: દરેક ચેનલની વિશિષ્ટ નોઇઝ પ્રોપર્ટીઝ છે
- અંતર ક્ષમતા: લોકલથી ગ્લોબલ કવરેજ સુધી બદલાય છે
- કોસ્ટ ફેક્ટર્સ: ઇન્સ્ટોલેશન અને મેઇન્ટેનન્સ કોસ્ટ અલગ છે

મેમરી ટ્રીક: "ટેલિફોન કોએક્સ ઓપ્ટિકલ વાયરલેસ સેટેલાઇટ - TCOWS ચેનલ્સ"

પ્રશ્ન 2(અ) [3 ગુણ]

ડિજિટલ સિક્વન્સ 11100110 માટે ASK, FSK અને BPSK માટે મોક્યુલેશન વેવફોર્મ દોરો

જવાબ:

મેમરી ટ્રીક: "ASK એમ્પ્લિટ્યુડ, FSK ફ્રીક્વન્સી, BPSK ફેઝ - AFP મોડ્યુલેશન"

પ્રશ્ન 2(બ) [4 ગુણ]

ફ્રીક્વન્સી શિફ્ટ કીઇંગ (FSK) સિગ્નલના મૂળભૂત સિદ્ધાંત અને જનરેશનને સમજાવો

જવાબ:

FSK જનરેશન ટેબલ:

બાઇનરી ડેટા	ફ્રીક્વન્સી	આઉટપુટ
લોજિક '1'	f ₁ (હાઇ ફ્રીક્વન્સી)	હાઇ ફ્રીક્વ કેરિયર
લોજિક '0'	f _o (લો ફ્રીક્વન્સી)	લો ફ્રીક્વ કેરિયર

- સિદ્ધાંત: બાઇનરી ડેટા કેરિયર ફ્રીક્વન્સી કંટ્રોલ કરે છે
- **બે ફ્રીક્વન્સીઝ**: '1' માટે f₁ અને '0' માટે f₀
- કોન્સ્ટન્ટ એમ્પ્લિટ્યુડ: માત્ર ફ્રીક્વન્સી બદલાય છે
- ડિટેક્શન: રિસીવર પર ફ્રીક્વન્સી ડિસ્ક્રિમિનેશન

મેમરી ટ્રીક: "ફ્રીક્વન્સી શિફ્ટ્સ કી - FSK ફ્રીક્વન્સી કંટ્રોલ"

પ્રશ્ન 2(ક) [7 ગુણ]

બ્લોક ડાયાગ્રામ અને કોન્સ્ટેલેશન ડાયાગ્રામ સાથે QPSK મોક્યુલેટર અને ડીમોક્યુલેટરની કામગીરી સમજાવો

જવાબ:

QPSK મોક્યુલેટર બ્લોક ડાયાગ્રામ:

કોન્સ્ટેલેશન ડાયાગ્રામ:

QPSK ટ્રુથ ટેબલ:

1	Q	ફેઝ	સિમ્બોલ
0	0	45°	00
0	1	135°	01
1	1	225°	11
1	0	315°	10

• **યાર ફેઝ**: 45°, 135°, 225°, 315°

• બે બિટ્સ પર સિમ્બોલ: હાયર ડેટા રેટ

• કોન્સ્ટન્ટ એન્વેલોપ: એમ્પ્લિટ્યુડ કોન્સ્ટન્ટ રહે છે

• ડીમોક્યુલેશન: ફેઝ ડિટેક્શન અને પેરેલલ ટુ સીરિયલ કન્વર્શન

મેમરી ટ્રીક: "ક્વાડરેચર ફેઝ શિફ્ટ કી - QPSK ચાર ફેઝ"

પ્રશ્ન 2(અ OR) [3 ગુણ]

ASK મોક્યુલેટરનો બ્લોક ડાયાગ્રામ દોરો અને તેના કામનું વર્ણન કરો

જવાબ:

• **કામનો સિદ્ધાંત**: ડિજિટલ ડેટા કેરિયર એમ્પ્લિટ્યુડ કંટ્રોલ કરે છે

• લોજિક '1': પૂર્ણ એમ્પ્લિટ્યુડ સાથે કેરિયર ટ્રાન્સમિટ થાય છે

• લોજિક '0': કોઇ કેરિયર ટ્રાન્સમિટ થતું નથી (ઝીરો એમ્પ્લિટ્યુડ)

• સિમ્પલ ઇમ્પ્લિમેન્ટેશન: એનાલોગ સ્વિચ અથવા મલ્ટિપ્લાયર વાપરે છે

મેમરી ટ્રીક: "એમ્પ્લિટ્યુડ શિફ્ટ કી - ASK એમ્પ્લિટ્યુડ કંટ્રોલ"

પ્રશ્ન 2(બ OR) [4 ગુણ]

16-QAM ના પ્રિન્સિપલને સમજાવો અને કોન્સ્ટેલેશન ડાયાગ્રામ દોરો

જવાબ:

16-QAM કોન્સ્ટેલેશન:

16-QAM લાક્ષણિકતાઓ ટેબલ:

પેરામીટર	વેલ્યુ
બિટ્સ પર સિમ્બોલ	4 બિટ્સ
સ્ટેટ્સની સંખ્યા	16
એમ્પ્લિટ્યુડ લેવલ્સ	4 લેવલ્સ
ફેઝ લેવલ્સ	4 ફેઝ

- સિદ્ધાંત: એમ્પ્લિટ્યુડ અને ફેઝ મોક્યુલેશન કોમ્બાઇન કરે છે
- હાયર ડેટા રેટ: 4 બિટ્સ પર સિમ્બોલ
- કોમ્પ્લેક્સ મોક્યુલેશન: પ્રિસાઇસ એમ્પ્લિટ્યુડ અને ફેઝ કંટ્રોલ જરૂરી
- ઉપયોગ: હાઇ-સ્પીડ ડિજિટલ કોમ્યુનિકેશન

મેમરી ટ્રીક: "16 ક્વાડરેચર એમ્પ્લિટ્યુડ મોક્યુલેશન - 16QAM કોમ્પ્લેક્સ સિગ્નલ્સ"

પ્રશ્ન 2(ક OR) [7 ગુણ]

બ્લોક ડાયાગ્રામ અને વેવફોર્મ સાથે BPSK મોક્યુલેટર અને ડીમોક્યુલેટરનું કામ સમજાવો

જવાબ:

BPSK મોક્યુલેટર:

BPSK ડીમોક્યુલેટર:

BPSK વેવફોર્મ્સ:

• ફ્રેઝ શિફ્ટ: '1' અને '0' વચ્ચે 180°

• **કોહેરન્ટ ડિટેક્શન**: સિંકોનાઇઝ્ડ કેરિયર જરૂરી

• બેસ્ટ પરફોર્મન્સ: સૌથી ઓછી બિટ એરર રેટ

• **કોન્સ્ટન્ટ એન્વેલોપ**: એમ્પ્લિટ્યુડ કોન્સ્ટન્ટ રહે છે

મેમરી ટ્રીક: "બાઇનરી ફેઝ શિફ્ટ કી - BPSK બે ફેઝ"

પ્રશ્ન 3(અ) [3 ગુણ]

SNR ના સંદર્ભમાં ચેનલ ક્ષમતાને વ્યાખ્યાયિત કરો અને તેનું મહત્વ સમજાવો

જવાબ:

શેનોનના ચેનલ કેપેસિટી ફોર્મ્યુલા:

ફોર્મ્યુલા	$C = B \log_2(1 + S/N)$
С	ચેનલ કેપેસિટી (bps)
В	બેન્ડવિડ્થ (Hz)
S/N	સિગ્નલ-ટુ-નોઇઝ રેશિયો

• મહત્વ: મહત્તમ થિયોરેટિકલ ડેટા રેટ

• SNR અસર: વધુ SNR વધુ કેપેસિટીને મંજૂરી આપે છે

• **બેન્ડવિડ્થ ટ્રેડ-ઓફ**: SNR માટે બેન્ડવિડ્થ બદલી શકાય છે

• ડિઝાઇન લિમિટ: સિસ્ટમ ડિઝાઇન માટે ઉપરની સીમા સેટ કરે છે

મેમરી ટીક: "ચેનલ કેપેસિટી શેનોનની લિમિટ - CCSL"

પ્રશ્ન 3(બ) [4 ગુણ]

અસિંકોનસ અને સિંકોનસ સીરિયલ ડેટા કોમ્યુનિકેશન તકનીકોનું વર્ણન કરો

જવાબ:

સરખામણી ટેબલ:

પેરામીટર	સિંકોનસ	અસિંકોનસ
ક્લોક	અલગ ક્લોક સિગ્નલ	કોઇ અલગ ક્લોક નથી
સ્ટાર્ટ/સ્ટોપ બિટ્સ	જરૂરી નથી	સ્ટાર્ટ અને સ્ટોપ બિટ્સ
સ્પીડ	વધારે	ઓછી
કોસ્ટ	વધારે	ઓછી

• સિંકોનસ: ક્લોક સિંકોનાઇઝેશન જરૂરી

• અસિંકોનસ: સ્ટાર્ટ/સ્ટોપ બિટ્સ સાથે સેલ્ફ-સિંકોના

• ઉપયોગ: સિંક્રોનસ હાઇ-સ્પીડ માટે, અસિંક્રોનસ સિમ્પલ સિસ્ટમ્સ માટે

• કાર્યક્ષમતા: સિંકોનસ વધુ કાર્યક્ષમ, અસિંકોનસ વધુ લવચીક

મેમરી ટીક: "સિંક ક્લોક, અસિંક સ્ટાર્ટ-સ્ટોપ - SCSS"

પ્રશ્ન 3(ક) [7 ગુણ]

યોગ્ય ઉદાહરણની મદદથી હફમેન કોર્ડિંગ સમજાવો

જવાબ:

ઉદાહરણ: અક્ષરો A, B, C, D સંભાવનાઓ 0.4, 0.3, 0.2, 0.1 સાથે

સ્ટેપ-બાય-સ્ટેપ હફમેન ટ્રી કન્સ્ટ્રક્શન:

```
સ્ટેપ 1: સંભાવનાઓની યાદી
A: 0.4, B: 0.3, C: 0.2, D: 0.1
સ્ટેપ 2: સૌથી નીચી કોમ્બાઇન કરો
      0.3
      / \
   C:0.2 D:0.1
સ્ટેપ 3: કોમ્બાઇનિંગ ચાલુ રાખો
       0.6
      / \
   B:0.3 0.3
       C:0.2 D:0.1
સ્ટેપ 4: અંતિમ ટ્રી
        1.0
    A:0.4 0.6
           /
        B:0.3 0.3
            C:0.2 D:0.1
```

હફમેન કોડ્સ ટેબલ:

અક્ષર	સંભાવના	કોડ
Α	0.4	0
В	0.3	10
С	0.2	110
D	0.1	111

• **એવરેજ કોડ લેન્થ**: 0.4×1 + 0.3×2 + 0.2×3 + 0.1×3 = 1.9 બિટ્સ

• કમ્પ્રેશન પ્રાપ્ત: પ્રતિ અક્ષર એવરેજ બિટ્સ ઘટાડે છે

• પ્રીફિક્સ પ્રોપર્ટી: કોઇ કોડ બીજાનો પ્રીફિક્સ નથી

મેમરી ટ્રીક: "હફમેન મિનિમમ એવરેજ લેન્થ - HMAL"

પ્રશ્ન 3(અ OR) [3 ગુણ]

સંચારમાં સંભાવના અને એન્ટ્રોપીનું મહત્વ જણાવો

જવાબ:

મહત્વ ટેબલ:

કન્સેપ્ટ	મહત્વ
સંભાવના	માહિતીની ઘટનાની સંભાવના માપે છે
એન્ટ્રોપી	એવરેજ માહિતી સામગ્રી માપે છે
મહત્તમ એન્ટ્રોપી	સમાન સંભાવના ઘટનાઓ સાથે થાય છે

• **માહિતી સામગ્રી**: I = log₂(1/P) બિટ્સ

• એન્ટ્રોપી ફોર્મ્યુલા: $H = -\Sigma P(x) \log_2 P(x)$

• **યેનલ ડિઝાઇન**: કોમ્યુનિકેશન સિસ્ટમ્સ ઑપ્ટિમાઇઝ કરવામાં મદદ કરે છે

• કોડિંગ કાર્યક્ષમતા: સોર્સ કોડિંગ ડિઝાઇનને માર્ગદર્શન આપે છે

મેમરી ટ્રીક: "પ્રોબેબિલિટી એન્ટ્રોપી ઇન્ફોર્મેશન - PEI કોમ્યુનિકેશન"

પ્રશ્ન 3(બ OR) [4 ગુણ]

સિમ્પ્લેક્સ, હાફ ડુપ્લેક્સ અને ફુલ ડુપ્લેક્સ ડેટા ટ્રાન્સમિશન મોડ સમજાવો

જવાબ:

ટ્રાન્સમિશન મોડ્સ ટેબલ:

મોડ	દિશા	ઉદાહરણ	ડાયાગ્રામ
સિમ્પ્લેક્સ	માત્ર એક દિશા	રેડિયો બ્રોડકાસ્ટ	$A \rightarrow B$
હાફ ડુપ્લેક્સ	બંને દિશા, એકસાથે નહીં	વોકી-ટોકી	$A \rightleftharpoons B$
ફુલ ડુપ્લેક્સ	બંને દિશા, એકસાથે	ટેલિફોન	$A \rightleftharpoons B$

• સિમ્પ્લેક્સ: એકદિશીય કોમ્યુનિકેશન

• **હાફ ડુપ્લેક્સ**: દ્વિદિશીય પરંતુ વૈકલ્પિક

• કુલ ડુપ્લેક્સ: એકસાથે દ્વિદિશીય

• બેન્ડવિડ્થ આવશ્યકતા: કુલ ડુપ્લેક્સને બમણી બેન્ડવિડ્થ જોઇએ

મેમરી ટ્રીક: "સિમ્પલ હાફ ફુલ - SHF ટ્રાન્સમિશન મોડ્સ"

પ્રશ્ન 3(ક OR) [7 ગુણ]

યોગ્ય ઉદાહરણની મદદથી શેનોન કાડો કોડિંગ સમજાવો

જવાબ:

ઉદાહરણ: અક્ષરો A, B, C, D સંભાવનાઓ 0.4, 0.3, 0.2, 0.1 સાથે

શેનોન-કાડો અલ્ગોરિદ્યમ સ્ટેપ્સ:

સ્ટેપ 1: ઘટતા ક્રમમાં ગોઠવો A: 0.4, B: 0.3, C: 0.2, D: 0.1

```
સ્ટેપ 2: બે ગ્રુપમાં વિભાજિત કરો
ગ્રુપ 1: A(0.4) → sìs 0 થી શરૂ થાય છે
ગ્રુપ 2: B(0.3), C(0.2), D(0.1) → sìs 1 થી શરૂ થાય છે
સ્ટેપ 3: ગ્રુપ 2નું પેટાવિભાજન
B(0.3) → sìs: 10
C(0.2), D(0.1) → sìs 11 થી શરૂ થાય છે
સ્ટેપ 4: અંતિમ પેટાવિભાજન
C(0.2) → sìs: 110
D(0.1) → sìs: 111
```

શેનોન-ફાડો કોડ્સ ટેબલ:

અક્ષર	સંભાવના	કોડ
А	0.4	0
В	0.3	10
С	0.2	110
D	0.1	111

- એવરેજ લેન્થ: હફમેન સમાન (1.9 બિટ્સ)
- ટોપ-ડાઉન એપ્રોચ: રૂટથી પાંદડાઓ સુધી વિભાજિત કરે છે
- હંમેશા ઑપ્ટિમલ નથી: હફમેન સામાન્ય રીતે વધુ સારું છે

મેમરી ટ્રીક: "શેનોન ફાડો ટોપ-ડાઉન - SFTD કોડિંગ"

પ્રશ્ન 4(અ) [3 ગુણ]

ડેટા કોમ્યુનિકેશનમાં નૈતિક અને ગોપનીયતાની બાબતોનું વર્ણન કરો

જવાબ:

નીતિશાસ્ત્ર અને ગોપનીયતા ટેબલ:

પાસા	વિચારણા	
ડેટા ગોપનીયતા	વપરાશકર્તાની સંમતિ, ડેટા સુરક્ષા	
સિક્યુરિટી	એન્ક્રિપ્શન, એક્સેસ કંટ્રોલ	
પારદર્શિતા	સ્પષ્ટ ડેટા વપરાશ નીતિઓ	

- ગોપનીયતાના અધિકારો: વ્યક્તિગત ડેટા પર વપરાશકર્તાનું નિયંત્રણ
- નૈતિક ઉપયોગ: જવાબદાર ડેટા હેન્ડલિંગ પ્રથાઓ
- કાનૂની પાલન: ડેટા સુરક્ષા કાયદાઓનું પાલન કરવું

• સિક્યુરિટી પગલાં: અનધિકૃત પ્રવેશ સામે સુરક્ષા

મેમરી ટ્રીક: "ગોપનીયતા સિક્યુરિટી પારદર્શિતા - PST નીતિશાસ્ત્ર"

પ્રશ્ન 4(બ) [4 ગુણ]

RS 232 સ્ટાન્ડર્ડને પિન ડાયાગ્રામ સાથે સમજાવો

જવાબ:

RS-232 પિન કન્ફિગરેશન (DB-9):

પિન	સિગ્નલ	รเข้
1	DCD	ડેટા કેરિયર ડિટેક્ટ
2	RXD	રિસીવ ડેટા
3	TXD	ટ્રાન્સમિટ ડેટા
4	DTR	ડેટા ટર્મિનલ રેડી
5	GND	ગ્રાઉન્ડ
6	DSR	ડેટા સેટ રેડી
7	RTS	રિક્વેસ્ટ ટુ સેન્ડ
8	CTS	ક્લિયર ટુ સેન્ડ
9	RI	રિંગ ઇન્ડિકેટર

• **વોલ્ટેજ લેવલ્સ**: '0' માટે +3V થી +25V, '1' માટે -3V થી -25V

• **મહત્તમ અંતર**: 19.2 kbps પર 50 ફુટ

• ઉપયોગ: કમ્પ્યુટર અને મોડેમ વચ્ચે સીરિયલ કોમ્યુનિકેશન

મેમરી ટ્રીક: "RS-232 નવ પિન્સ સીરિયલ - RNS કોમ્યુનિકેશન"

પ્રશ્ન 4(ક) [7 ગુણ]

યોગ્ય ઉદાહરણની મદદથી હેમિંગ કોડ સમજાવો

જવાબ:

ઉદાહરણ: 4-બિટ ડેટા 1011

હેમિંગ કોડ કન્સ્ટ્રક્શન:

સ્થિતિ	1	2	3	4	5	6	7
явіз	P1	P2	D1	P4	D2	D3	D4
વેલ્યુ	?	?	1	?	0	1	1

પેરિટી કેલ્ક્યુલેશન્સ:

• **P1** (સ્થિતિઓ 1,3,5,7): P1 \oplus 1 \oplus 0 \oplus 1 = 0, તેથી P1 = 0

• **P2** (સ્થિતિઓ 2,3,6,7): P2 \oplus 1 \oplus 1 \oplus 1 = 1, તેથી P2 = 1

• **P4** (સ્થિતિઓ 4,5,6,7): P4 \oplus 0 \oplus 1 \oplus 1 = 0, તેથી P4 = 0

અંતિમ હેમિંગ કોડ: 0110111

એરર ડિટેક્શન પ્રોસેસ:

• સિન્ડ્રોમ S = S4S2S1 કેલ્ક્યુલેટ કરો

• જો S = 000, કોઇ એરર નથી

• જો S ≠ 000, S દ્વારા દર્શાવેલ સ્થિતિએ એરર છે

• સિંગલ એરર કરેક્શન: એક-બિટ એરર સુધારી શકે છે

• ડબલ એસ્ટ ડિટેક્શન: બે-બિટ એસ્ટ શોધી શકે છે

• સિસ્ટેમેટિક એપ્રોચ: વ્યવસ્થિત પેરિટી બિટ પ્લેસમેન્ટ

મેમરી ટ્રીક: "હેમિંગ સિંગલ એરર કરેક્શન - HSEC"

પ્રશ્ન 4(અ OR) [3 ગુણ]

એજ કમ્પ્યુટિંગને વ્યાખ્યાયિત કરો અને તેની વિશેષતા સમજાવો

જવાબ:

એજ કમ્પ્યુટિંગ વિશેષતાઓ:

વિશેષતા	વર્ણન
લો લેટન્સી	ડેટા સોર્સની નજીક પ્રોસેસિંગ
બેન્ડવિડ્થ સેવિંગ	નેટવર્ક ટ્રાફિક ઘટાડે છે
રિયલ-ટાઇમ પ્રોસેસિંગ	તાત્કાલિક ડેટા એનાલિસિસ

• વ્યાખ્યા: નેટવર્ક એજ પર, ડેટા સોર્સની નજીક કમ્પ્યુટિંગ

• ઘટાડેલી લેટન્સી: ઝડપી રિસ્પોન્સ ટાઇમ

• ડિસ્ટ્રિબ્યુટેડ પ્રોસેસિંગ: સેન્ટ્રલ સર્વર લોડ ઘટાડે છે

• ઉપયોગ: IoT, ઓટોનોમસ વાહનો, સ્માર્ટ સિટીઓ

મેમરી ટ્રીક: "એજ લો-લેટન્સી રિચલ-ટાઇમ - ELR કમ્પ્યુટિંગ"

પ્રશ્ન 4(બ OR) [4 ગુણ]

સંદેશાવ્યવહાર માટે મલ્ટીમીડિયા પ્રોસેસિંગની જરૂરિયાતો અને વિવિધ ડેટાના વિવિધ ફાઇલ ફોર્મેટ સમજાવો

જવાબ:

મલ્ટીમીડિયા ફાઇલ ફોર્મેટ્સ ટેબલ:

ડેટા પ્રકાર	ફોર્મેટ્સ	લાક્ષણિકતાઓ
ઓડિયો	MP3, WAV, AAC	કમ્પ્રેસ્ડ/અનકમ્પ્રેસ્ડ
વિડિયો	MP4, AVI, MOV	વિવિધ કોડેક્સ
ઇમેજ	JPEG, PNG, GIF	લોસી/લૉસલેસ કમ્પ્રેશન
ટેક્સ્ટ	TXT, PDF, DOC	વિવિદ્ય એન્કોડિંગ્સ

- પ્રોસેસિંગ જરૂરિયાતો: કમ્પ્રેશન, ફોર્મેટ કન્વર્શન, ક્વોલિટી ઑપ્ટિમાઇઝેશન
- બેન્ડવિડ્થ ઑપ્ટિમાઇઝેશન: ટ્રાન્સમિશન માટે ફાઇલ સાઇઝ ઘટાડવું
- ક્વોલિટી પ્રિઝર્વેશન: સ્વીકાર્ય ક્વોલિટી લેવલ રાખવું
- કમ્પેટિબિલિટી: મલ્ટિપલ ડિવાઇસ અને પ્લેટફોર્મ્સને સપોર્ટ કરવું

મેમરી ટ્રીક: "ઓડિયો વિડિયો ઇમેજ ટેક્સ્ટ - AVIT મલ્ટીમીડિયા"

પ્રશ્ન 4(ક OR) [7 ગુણ]

વેવફોર્મની મદદથી વિવિધ લાઇન કોર્ડિંગ સમજાવો

જવાબ:

ડેટા 1011 માટે લાઇન કોર્ડિંગ વેવફોર્મ્સ:

લાઇન કોડિંગ સરખામણી:

કોડ પ્રકાર	બેન્ડવિડ્થ	DC કોમ્પોનન્ટ	સિંકોનાઇઝેશન
NRZ-L	લો	હાજર	ખરાબ
NRZ-I	લો	હાજર	ખરાબ
RZ	ବାସ	હાજર	સાટું
Manchester	ବାର	ગેરહાજર	ઉર્લ્કહ

• NRZ: નોન-રિટર્ન-ટુ-ઝીરો, સિમ્પલ પરંતુ DC કોમ્પોનન્ટ છે

• RZ: રિટર્ન-ટુ-ઝીરો, વધુ સારું સિંક્રોનાઇઝેશન

• Manchester: સેલ્ફ-સિંક્રોનાઇઝિંગ, કોઇ DC કોમ્પોનન્ટ નથી

• સિલેક્શન ક્રાઇટેરિયા: બેન્ડવિડ્થ, સિંક્રોનાઇઝેશન, જટિલતા

મેમરી ટ્રીક: "NRZ RZ Manchester - NRM લાઇન કોડ્સ"

પ્રશ્ન 5(અ) [3 ગુણ]

સ્પ્રેડ સ્પેક્ટ્રમ ટેકનોલોજીનો ખ્યાલ સમજાવો

જવાબ:

સ્પ્રેડ સ્પેક્ટ્રમ લાક્ષણિકતાઓ:

પેરામીટર	વર્ણન
બેન્ડવિડ્થ સ્પ્રેડિંગ	વાઇડ ફ્રીક્વન્સી પર સિગ્નલ સ્પ્રેડ
લો પાવર ડેન્સિટી	સ્પેક્ટ્રમમાં પાવર વિતરિત
ઇન્ટરફેરન્સ રેઝિસ્ટન્સ	જેમિંગ સામે પ્રતિરોધક

• **સિદ્ધાંત**: જરૂરી કરતાં વધુ વાઇડ બેન્ડવિડ્થ પર સિગ્નલ ફેલાવે છે

• **તકનીકો**: ડાઇરેક્ટ સિક્વન્સ (DS-SS), ફ્રીક્વન્સી હોપિંગ (FH-SS)

• **ફાયદાઓ**: સિક્યુરિટી, ઇન્ટરફેરન્સ પ્રતિરોધ, મલ્ટિપલ એક્સેસ

મેમરી ટ્રીક: "સ્પ્રેડ સ્પેક્ટ્રમ સિક્યુરિટી - SSS ટેકનોલોજી"

પ્રશ્ન 5(બ) [4 ગુણ]

સેટેલાઇટ કોમ્યુનિકેશનના બ્લોક ડાયાગ્રામને સમજાવો

જવાબ:

સેટેલાઇટ કોમ્યુનિકેશન કોમ્પોનન્ટ્સ:

કોમ્પોનન્ટ	รเช้
અર્થ સ્ટેશન	ગ્રાઉન્ડ-બેસ્ડ ટ્રાન્સમિટ/રિસીવ
અપલિંક	પૃથ્વીથી સેટેલાઇટ ટ્રાન્સમિશન
ટ્રાન્સપોન્ડર	સેટેલાઇટ રિસીવર-ટ્રાન્સમિટર
ડાઉનલિંક	સેટેલાઇટથી પૃથ્વી ટ્રાન્સમિશન

• ફ્રીક્યન્સી બેન્ડ્સ: C-બેન્ડ, Ku-બેન્ડ, Ka-બેન્ડ

• કવરેજ એરિયા: મોટા ભૌગોલિક કવરેજ

• ઉપયોગ: બ્રોડકાસ્ટિંગ, ટેલિફોની, ઇન્ટરનેટ

• ફાયદાઓ: વાઇડ કવરેજ, લાંબા-અંતરની કોમ્યુનિકેશન

મેમરી ટ્રીક: "અર્થ અપલિંક ટ્રાન્સપોન્ડર ડાઉનલિંક - EUTD સેટેલાઇટ"

પ્રશ્ન 5(ક) [7 ગુણ]

મલ્ટીમીડિયા કોમ્યુનિકેશન્સનું મોડેલ અને મલ્ટીમીડિયા સિસ્ટમના તત્વોનું પ્રદર્શન કરો

જવાબ:

મલ્ટીમીડિયા કોમ્યુનિકેશન મોડેલ:

મલ્ટીમીડિયા સિસ્ટમ તત્વો:

તત્વ	รเช้	ઉદાહરણો
કેપ્ચર	મલ્ટીમીડિયા ડેટા ઇનપુટ	કેમેરા, માઇક્રોફોન
સ્ટોરેજ	મલ્ટીમીડિયા ફાઇલ્સ સ્ટોર કરવું	હાર્ડ ડિસ્ક, મેમોરી
પ્રોસેસિંગ	એડિટ અને મેનિપ્યુલેટ કરવું	વિડિયો એડિટિંગ સોફ્ટવેર
કોમ્યુનિકેશન	મલ્ટીમીડિયા ટ્રાન્સમિટ કરવું	નેટવર્ક્સ, ઇન્ટરનેટ
પ્રેઝન્ટેશન	મલ્ટીમીડિયા ડિસ્પ્લે કરવું	મોનિટર, સ્પીકર્સ

• સિંકોનાઇઝેશન: ઓડિયો-વિડિયો સિંકોનાઇઝેશન મહત્વપૂર્ણ

• કમ્પ્રેશન: બેન્ડવિડ્થ આવશ્યકતાઓ ઘટાડે છે

• ક્વોલિટી ઓફ સર્વિસ: સ્વીકાર્ય ક્વોલિટી જાળવે છે

• **રિયલ-ટાઇમ કન્સ્ટ્રેઇન્ટ્સ**: સમય-સંવેદનશીલ ડેટા ડિલિવરી

મેમરી ટ્રીક: "કેપ્યર સ્ટોર પ્રોસેસ કોમ્યુનિકેટ પ્રેઝન્ટ - CSPCP મલ્ટીમીડિયા"

પ્રશ્ન 5(અ OR) [3 ગુણ]

કોમ્યુનિકેશન સિક્યુરિટીમાં બ્લોક ચેઇનનું મહત્વ સમજાવો

જવાબ:

બ્લોકચેઇન સિક્યુરિટી વિશેષતાઓ:

વિશેષતા	લાલ
ડીસેન્ટ્રલાઇઝેશન	કોઇ સિંગલ પોઇન્ટ ઓફ ફેઇલ્યુર નથી
ઇમ્યુટેબિલિટી	ભૂતકાળના રેકોર્ડ્સ બદલી શકાતા નથી
ટ્રાન્સપેરન્સી	બધા ટ્રાન્ઝેક્શન્સ વૃશ્યમાન

• ક્રિપ્ટોગ્રાફિક સિક્યુરિટી: હેશ ફંક્શન્સ અને ડિજિટલ સિગ્નેયર્સ

• ડિસ્ટ્રિબ્યુટેડ લેજર: બહુવિધ કોપીઓ ટેમ્પરિંગ અટકાવે છે

• સ્માર્ટ કોન્ટ્રેક્ટ્સ: ઓટોમેટેડ સિક્યુરિટી પ્રોટોકોલ્સ

• ઉપયોગ: સિક્યુર મેસેજિંગ, આઇડેન્ટિટી વેરિફિકેશન

મેમરી ટ્રીક: "બ્લોકચેઇન ડિસ્ટ્રિબ્યુટેડ ઇમ્યુટેબલ - BDI સિક્યુરિટી"

પ્રશ્ન 5(બ OR) [4 ગુણ]

5G ટેકનોલોજીના મહત્વના તત્વો, વિશેષતાઓ અને ફાયદાઓ સમજાવો

જવાબ:

5G ટેકનોલોજી તત્વો:

તત્વ	સ્પેસિફિકેશન
સ્પીડ	10 Gbps સુધી
લેટન્સી	1 ms કરતાં ઓછી
કનેક્શન્સ	1 મિલિયન ડિવાઇસ પર km²
રિલાયબિલિટી	99.999% ઉપલબ્ધતા

મુખ્ય વિશેષતાઓ:

• એન્હાન્સ્ક મોબાઇલ બ્રોડબેન્ડ: અતિ-હાઇ-સ્પીડ ઇન્ટરનેટ

• અલ્ટા-રિલાયબલ લો લેટન્સી: ક્રિટિકલ એપ્લિકેશન્સ

• મેસિવ મશીન કોમ્યુનિકેશન: IoT કનેક્ટિવિટી

• નેટવર્ક સ્લાઇસિંગ: કસ્ટમાઇઝ્ડ નેટવર્ક સર્વિસીસ

ફાયદાઓ:

• હાયર કેપેસિટી: વધુ સિમલ્ટેનિયસ યુઝર્સ

• એનર્જી એફિશિયન્સી: ડિવાઇસ માટે વધુ સારી બેટરી લાઇફ

• **નવા એપ્લિકેશન્સ**: AR/VR, ઓટોનોમસ વાહનો

મેમરી ટ્રીક: "5G સ્પીડ લેટન્સી કનેક્શન્સ - SLC વિશેષતાઓ"

પ્રશ્ન 5(ક OR) [7 ગુણ]

RS 232, RS 422 અને RS 485 સ્ટાન્ડર્ડની સરખામણી કરો

જવાબ:

RS સ્ટાન્ડર્ડ્સ સરખામણી ટેબલ:

પેરામીટર	RS-232	RS-422	RS-485
મોડ	સિંગલ-એન્ડેડ	ડિફરન્શિયલ	ડિફરન્શિયલ
મહત્તમ અંતર	50 ફુટ	4000 हुट	4000 हुट
મહત્તમ સ્પીડ	20 kbps	10 Mbps	10 Mbps
ડ્રાઇવર્સ	1	1	32
રિસીવર્સ	1	10	32
ટોપોલોજી	પોઇન્ટ-ટુ-પોઇન્ટ	પોઇન્ટ-ટુ-મલ્ટિપોઇન્ટ	મલ્ટિપોઇન્ટ

વોલ્ટેજ લેવલ્સ:

સ્ટાન્ડર્ડ	લોજિક 1	લોજિક 0
RS-232	-3V થી -25V	+3V થી +25V
RS-422	ડિફરન્શિયલ > +200mV	ડિફરન્શિયલ < -200mV
RS-485	ડિફરન્શિયલ > +200mV	ડિફરન્શિયલ < -200mV

ઉપયોગ:

• RS-232: કમ્પ્યુટર સીરિયલ પોર્ટ્સ, મોડેમ્સ

• RS-422: ઇન્ડસ્ટ્રિયલ ઓટોમેશન, લાંબા-અંતર

• **RS-485**: બિલ્ડિંગ ઓટોમેશન, ઇન્ડસ્ટ્રિયલ નેટવર્ક્સ

મુખ્ય તફાવતો:

• **નોઇઝ ઇમ્યુનિટી**: RS-422/485માં ડિફરન્શિયલ સિગ્નલિંગ RS-232 કરતાં વધુ સારું

• **અંતર ક્ષમતા**: RS-422/485 RS-232 કરતાં ઘણું લાંબું

• મલ્ટિ-ડ્રોપ ક્ષમતા: RS-485 બહુવિધ ડિવાઇસને સપોર્ટ કરે છે

• ક્રોસ્ટ: RS-232 સૌથી સસ્તું, RS-485 સૌથી જટિલ

મેમરી ટ્રીક: "RS-232 સિમ્પલ, RS-422 લાંબું, RS-485 મલ્ટિ - SLM સ્ટાન્ડર્ડ્સ"