Prueba técnica Backend NodelS

Preguntas de Selección Múltiple:

- 1. ¿Qué es un microservicio?
 - a) Una aplicación monolítica.
 - b) Un componente independiente y autónomo de software.
 - c) Un lenguaje de programación.
 - d) Un tipo de base de datos.
- 2. ¿Qué es la arquitectura orientada a eventos?
 - a) Una arquitectura que no utiliza eventos.
 - b) Una arquitectura que se basa en la comunicación síncrona.
 - c) Una arquitectura que utiliza eventos para comunicar componentes.
 - d) Una arquitectura que no se utiliza en el desarrollo de software.
- 3. ¿Qué es Docker?
 - a) Un sistema operativo.
 - b) Una herramienta de virtualización.
 - c) Una plataforma de contenedores.
 - d) Un lenguaje de programación.
- 4. ¿Cuál de las siguientes tecnologías se utiliza comúnmente para orquestar contenedores en un clúster?
 - a) Docker Compose.
 - b) Kubernetes.
 - c) Apache Kafka.
 - d) Redis.
- 5. ¿Qué es un patrón de diseño Singleton?
 - a) Un patrón de diseño que garantiza la creación de una única instancia de una clase.
 - b) Un patrón de diseño para la comunicación entre microservicios.
 - c) Un patrón de diseño para implementar la autenticación.
 - d) Un patrón de diseño para la gestión de eventos.
- 6. ¿Qué significa REST en el contexto de servicios web?
 - a) Representational State Transfer.
 - b) Remote Service Transfer.

- c) Request State Transfer.
- d) Resource State Transmission.
- 7. ¿Cuál de las siguientes afirmaciones es verdadera sobre HTTP?
 - a) HTTP es un protocolo de transferencia de archivos.
 - b) HTTP es un protocolo de transferencia de correo electrónico.
- c) HTTP es un protocolo de aplicación basado en TCP/IP utilizado para la transferencia de datos en la web.
 - d) HTTP es un protocolo de seguridad.
- 8. ¿Qué es un mensaje en el contexto de la programación orientada a eventos?
 - a) Un error en el código.
 - b) Una unidad de código fuente.
 - c) Un evento que indica que algo ha sucedido.
 - d) Una variable global.
- 9. ¿Cuál es el propósito de un balanceador de carga en una arquitectura de microservicios?
 - a) Garantizar que todos los microservicios tengan la misma carga de trabajo.
- b) Distribuir el tráfico de manera uniforme entre los microservicios para mejorar la escalabilidad y la disponibilidad.
 - c) Aumentar la latencia de los microservicios.
 - d) Desplegar microservicios en diferentes regiones geográficas.
- 10. ¿Cuál es el propósito de un sistema de mensajería en una arquitectura orientada a eventos?
 - a) Gestionar la autenticación y autorización.
 - b) Facilitar la comunicación asíncrona entre componentes.
 - c) Almacenar registros de eventos para auditoría.
 - d) Ejecutar código en microservicios.
- 11. ¿Qué es DevOps?
 - a) Una metodología de desarrollo de software.
 - b) Un lenguaje de programación.
 - c) Una herramienta de automatización de pruebas.
 - d) Una cultura y conjunto de prácticas que integran desarrollo y operaciones.
- 12. ¿Cuál es el propósito de un manejador de eventos en un sistema orientado a eventos?
 - a) Producir eventos.
 - b) Consumir eventos y tomar acciones en respuesta a ellos.
 - c) Almacenar eventos en una base de datos.

- d) Definir eventos en un sistema.
- 13. ¿Qué es un contenedor en el contexto de Docker?
 - a) Una máquina virtual.
 - b) Un archivo ZIP.
 - c) Una instancia de una imagen de Docker que se ejecuta en un sistema operativo.
 - d) Una aplicación web.
- 14. ¿Qué es un webhook?
 - a) Una técnica para realizar pruebas unitarias.
 - b) Una URL que permite recibir notificaciones o eventos desde una fuente externa.
 - c) Una base de datos en memoria.
 - d) Un servicio de autenticación.
- 15. ¿Cuál es el propósito principal de las pruebas de integración?
 - a) Identificar errores en un componente individual.
 - b) Validar la interacción entre diferentes componentes del sistema.
 - c) Probar la funcionalidad de una aplicación en producción.
 - d) Evaluar el rendimiento de un servidor web.
- 16. ¿Qué es un servicio RESTful?
 - a) Un servicio web que utiliza SOAP como protocolo de comunicación.
 - b) Un servicio web que sigue los principios y restricciones de REST.
 - c) Un servicio web que no admite solicitudes HTTP GET.
 - d) Un servicio web que solo funciona en entornos locales.
- 17. ¿Cuál es la ventaja de utilizar un sistema de control de versiones como Git en el desarrollo de software?
 - a) Facilita la programación concurrente.
 - b) Proporciona seguridad en línea.
 - c) Elimina la necesidad de escribir código.
 - d) Reduce la velocidad de desarrollo.
- 18. ¿Cuál es el propósito de un diagrama de secuencia en UML (Unified Modeling Language)?
 - a) Representar la estructura de una base de datos.
 - b) Mostrar la interacción entre objetos en un sistema.

- c) Describir la arquitectura de hardware de un servidor.
- d) Documentar los requisitos de un proyecto.
- 19. ¿Cuál es el objetivo de la programación orientada a objetos (POO)?
 - a) Facilitar la comunicación entre microservicios.
 - b) Organizar el código en funciones.
 - c) Modelar el mundo real mediante la creación de clases y objetos.
 - d) Utilizar solo funciones en lugar de objetos.
- 20. ¿Cuál es la diferencia entre una base de datos SQL y una base de datos NoSQL?
- a) Una base de datos SQL utiliza una estructura de datos fija, mientras que una base de datos NoSQL es flexible en su estructura.
 - b) Una base de datos SQL es más rápida que una base de datos NoSQL.
- c) Una base de datos SQL no admite consultas, mientras que una base de datos NoSQL sí lo hace.
 - d) Una base de datos SQL solo almacena datos numéricos.

Ejercicio Práctico

Supongamos que estás desarrollando un servicio de entrega de comida en línea. Diseña una arquitectura de microservicios para este sistema y describe brevemente cómo se comunicarían estos microservicios a través de eventos.

Para un servicio de entrega de comida en línea, diseñar una arquitectura de microservicios de la siguiente manera:

- 1. Servicio de Pedidos: Este microservicio sería responsable de recibir y gestionar los pedidos de comida de los clientes. Cuando un cliente realiza un pedido, este servicio crea un evento "PedidoCreado" que contiene los detalles del pedido.
- 2. Servicio de Restaurantes: Este microservicio gestionaría la información de los restaurantes asociados. Cuando un restaurante actualiza su menú o estado de disponibilidad, emite un evento "ActualizaciónDeRestaurante" que contiene la información relevante.
- 3. Servicio de Entrega: Este microservicio se encargaría de asignar entregadores a los pedidos y rastrear el estado de entrega. Cuando se asigna un entregador a un pedido, emite un evento "EntregadorAsignado" con los detalles pertinentes.

- 4. Servicio de Pagos: Este microservicio maneja las transacciones de pago. Cuando se completa un pago exitoso, emite un evento "PagoCompletado" que incluye la información de la transacción.
- 5. Servicio de Notificaciones: Este microservicio se encarga de enviar notificaciones a los clientes sobre el estado de sus pedidos. Escucha los eventos generados por otros microservicios y envía notificaciones push o por correo electrónico según sea necesario.

Estos microservicios se comunicarían entre sí a través de eventos utilizando un sistema de mensajería como Apache Kafka o RabbitMQ. Cada vez que un evento significativo ocurre en un microservicio, se emite un evento que otros microservicios pueden escuchar y reaccionar en consecuencia. Esto permite una arquitectura altamente escalable y desacoplada para el sistema de entrega de comida en línea.

Tecnologias a utilizar:

- NodeJS
- PostgreSQL
- Kafka o RabbitMQ
- NestJS Opcional
- Docker

Entregar la URL del Repositorio Publico (Github – Gitlab – Bitbucket) y en el README.md especificar la solución, Documentación de los Servicios y como correr el proyecto