

Project Title	COVID-19 Clinical Trials EDA Pandas
Tools	Python, ML, SQL, Excel
Domain	Data Analyst & Data scientist
Project Difficulties level	intermediate

Dataset: Dataset is available in the given link. You can download it at your convenience.

Click here to download data set

About Dataset

Dataset Description

ClinicalTrials.gov is a database of privately and publicly funded clinical studies conducted around the world. It is maintained by the National Institute of Health. All data is publicly available and the site provides a direct download feature which makes it super easy to use relevant data for analysis.

This dataset consists of clinical trials related to COVID 19 studies presented on the site.

The dataset consists of XML files where each XML file corresponds to one study. The filename is the NCT number which is a unique identifier of a study in the ClinicalTrials repository. Additionally, a CSV file has also been provided, which might not have as much information as contained in the XML file, but does give sufficient information.

Please refer to this notebook for details on the dataset:

https://www.kaggle.com/parulpandey/eda-on-covid-19-clinical-trials

Acknowledgements

ClinicalTrials.gov is a resource provided by the U.S. National Library of Medicine.

IMPORTANT:

Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details.

Before participating in a study, talk to your health care provider and learn about the risks and potential benefits.

NOTE:

- 1. this project is only for your guidance, not exactly the same you have to create. Here I am trying to show the way or idea of what steps you can follow and how your projects look. Some projects are very advanced (because it will be made with the help of flask, nlp, advance ai, advance DL and some advanced things) which you can not understand.
- 2. You can make or analyze your project with yourself, with your idea, make it more creative from where we can get some information and understand about

our business. make sure what overall things you have created all things you understand very well.

Example: You can get the basic idea how you can create a project from here

Here's a step-by-step guide for performing Exploratory Data Analysis (EDA) on a COVID-19 Clinical Trials dataset using Pandas, tailored for beginners.

Project Title:

Exploratory Data Analysis of COVID-19 Clinical Trials

1. Objective

The objective is to explore the dataset to gain insights into the characteristics of COVID-19 clinical trials, such as their status, phases, study designs, and demographics.

2. Importing Libraries and Loading Data

First, you'll need to import the necessary libraries and load your dataset.

```
import pandas as pd

# Load the dataset

df = pd.read_csv('covid_clinical_trials.csv') # Replace with
your dataset's path
```

3. Initial Data Exploration

Start by exploring the basic structure and content of the dataset. # View the first few rows of the dataset print(df.head()) # Check the columns and data types print(df.info()) # Summary statistics for numerical columns print(df.describe()) # Summary statistics for categorical columns print(df.describe(include='object')) 4. Handling Missing Data Check for missing values and decide how to handle them. # Check for missing values print(df.isnull().sum()) # Drop columns with a high percentage of missing values or fill them df = df.drop(columns=['Acronym', 'Study Documents']) # Example of dropping columns df['Results First Posted'].fillna('Unknown', inplace=True)

```
Example of filling missing data
```

5. Univariate Analysis

Analyze each column individually to understand the distribution and key characteristics.

• **Status Distribution**: Analyze the status of clinical trials (e.g., Completed, Ongoing).

```
print(df['Status'].value_counts())
df['Status'].value_counts().plot(kind='bar', title='Status of
Clinical Trials')
```

• Phase Distribution: Understand the distribution of trial phases.

```
print(df['Phases'].value_counts())
df['Phases'].value_counts().plot(kind='bar',
title='Distribution of Phases')
```

• Age Group Analysis: Analyze the distribution of age groups.

```
print(df['Age'].value_counts())
df['Age'].value_counts().plot(kind='bar', title='Age Group
Distribution')
```

6. Bivariate Analysis

Explore relationships between different variables.

• Status vs. Phases: Explore how trial phases are distributed across different statuses.

```
status_phase = pd.crosstab(df['Status'], df['Phases'])
print(status_phase)
status_phase.plot(kind='bar', stacked=True, title='Status vs.
Phases')
```

 Conditions vs. Outcome Measures: Understand the common outcome measures for different conditions.

```
conditions_outcomes = df.groupby('Conditions')['Outcome
Measures'].apply(lambda x: ', '.join(x)).reset_index()
print(conditions_outcomes)
```

7. Time Series Analysis

Analyze the trends over time, such as the number of trials started over the months.

```
# Convert date columns to datetime
df['Start Date'] = pd.to_datetime(df['Start Date'],
errors='coerce')
df['Primary Completion Date'] = pd.to_datetime(df['Primary
Completion Date'], errors='coerce')
```

```
# Plot the number of trials started over time
df['Start
Date'].dt.to_period('M').value_counts().sort_index().plot(kind=
'line', title='Trials Started Over Time')
```

8. Conclusion

Summarize the findings from your EDA. For example:

- The majority of trials are in the "Completed" phase.
- Most trials target adult populations.
- There's a steady increase in the number of trials over time.

9. Saving Results

You can save the processed data or specific analysis results for further use.

```
# Save the cleaned data
df.to_csv('cleaned_covid_clinical_trials.csv', index=False)
```

10. Output and Visuals

After running the code, you should observe:

- Bar charts showing the distribution of trial statuses, phases, and age groups.
- A time series plot illustrating the trend of trials over time.

This project will provide a solid foundation in EDA using Pandas, with practical insights into the clinical trials landscape for COVID-19.

Example: You can get the basic idea how you can create a project from here Sample code with output

```
Import Required Libraries¶
In [1]:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
Load The DataSet
In [2]:
df =
pd.read_csv('../input/covid19-clinical-trials-dataset/COVID
clinical trials.csv' , index_col = 0)
Exploratory Data Analysis
In [3]:
# print the first 5 rows in the dataset
df.head(n = 5)
```

Out[3]: Ρ ri е L m S S a C a S t S F r 0 t t u m Ν U d In u C Spo t p Out C S d te t р S У 0 nso S Τ t Co h d У rv CO D е С r/C Τi t m е Ν R ndit me a е a a 0 olla **URL** р ti e ion Me d nt t ti С u bor D е 0 n 0 io asu S m u S е е U ator S a е n D P t b res m u ti D m er S 0 е е a 0 t 0 S n d t n t t S S D е S а d е t d е a

k																			
1	N C T 0 4 7 8 5 8 9 8	D ia g n o st ic P e fo r m a n c e fo th e I D Z o y ™	C O > _ D D Z o &	A c ti v e , n o t r e c r u it i n g	ZoResultsA>a:lable	Co vid 19	D ia g n o st ic T e st : I D N o w ™ C O V I D - 1 9	Ev alu ate the dia gno stic per for ma nce of the ID	Gro upe Hos pita lier Pari s Sai nt Jos eph	AII	COVID - IDNow	N o v e m b e r 9 , 2 0 2 0	D e c e m b e r 2 2 , 2 0 2 0	A p ri I 3 0 , 2 0 2 1	M a r c h 8 , 2 0 2 1	8	Groupe Hospitalier Paris Saint-Jos	N a N	https://Cli nicalTrial s.gov/sh ow/NCT0 4785898

		C O V I D -1 9.					S cr e e ni n g T e st											e p h , P a ri s,		
2	N C T 0 4 5 9 5 1 3 6	S tu d y to E v al u at e th e E ffi c	C O V I D - 1 9	N o t y e t r e c r u it i n g	N o R e s u I t s A v a i I a b	Co V-2 Infe	D r u g: D r u g C O V I D 1 9 -	Ch ang e on vira I loa d res ults fro m bas elin e aft	Unit ed Me dic al Spe cialt ies	AII	C O V I D 1 9 - 0 0 0 1 - U S R	N o v e m b e r 2 , 2 0 2 0	D e c e m b e r 1 5 , 2 0 2 0	J a n u a r y 2 9 , 2 0 2 1	O c t o b e r 2 0 , 2 0	X a X	r 2	C i m e di c al , B a rr a n q ii II	N a N	https://Cli nicalTrial s.gov/sh ow/NCT0 4595136

		а			I		0												а		
		С			е		0												,		
		У					0												Α		
		of					1												tl		
		С					-												а		
		О					U												n		
		V					S												ti		
		Ι					R												С		
		D																	0		
		1					D												,		
		9-					r												С		
		0					u												ol		
		0					g:												0		
		0					n												m		
		1.					0												bi		
							r												а		
							m														
							al														
							S														
							al														
							in														
							е														
	N	L	Т	R	Ν	0017	0	Α	Uni			Т	М	J	J	M	N	Ν	0	N I	https://Cli
3	_	u	A		0		th	qua	ver	A		A	a	u	u	a			s	N	nicalTrial
	Т	n	С		R		e	litat	sity		٠	C	у	n	n	у			р	a N	, .
	0	g)	r	e	9	r:	ive	of		•	-	7	е	е	2		e	e	IN	ow/NCT0
		ש		•	•)			31111010

								<u> </u>								
4	С	С	u	S	L	ana	Mil		С	,	1	1	0	m	d	4395482
3	Т	0	it	u	u	lysi	ano		Ο	2	5	5	,	b	al	
9	S	٧	İ	Ι	n	s of	Bic		٧	0	,	,	2	е	е	
5	С	Ι	n	t	g	par	occ		Ι	2	2	2	0	r	Р	
4	а	D	g	S	С	enc	а		D	0	0	0	2	9	а	
8	n	1		Α	Т	hy			1		2	2	0	,	р	
2	Α	9		٧	s	mal			9		1	1		2	а	
	n			а	С	lun								0	G	
	al			i	а	g								2	io	
	У			Ι	n	da								0	٧	
	si			а	а	m									а	
	S			b	n										n	
	of			Ι	al										ni	
	S			е	у										X	
	Α				si										Χ	
	R				S										Ш	
	S				in										Ι,	
	-				С										В	
	С				0										е	
	0				V										r	
	V				ı										g	
	2				D										а	
	In				-										m	
	d				1										0	
	u				9										,	
	С				р										, It	
	е				at										al	
	d				ie										y	
	L				nt										Р	
	_														•	

		g K o n g A m				st ic T e st											al, HongKong, Ho		
5	N C T 0 4 3 9 5 9 2 4	M at er n al -f o et al Tr a	T M F - C O V I D - 1	R	al Fet al Infe ctio n Tra	D ia g n o st ic T e st :	CO VID -19 by pos itiv e PC R in cor	Ce ntre Hos pita lier Ré gio nal d'O rléa ns	F e m a l e	C H R O - 2 0 2 0 - 1	M a y 5 , 2 0 2 0	M a y 2 0 2	M a y 2 0 2 1	M a y 2 0 , 2 0 2 0	Z a Z	J u n e 4 , 2 0 2	C H R O rl é a n s, O rl	N a N	https://Cli nicalTrial s.gov/sh ow/NCT0 4395924

n	9	а	sio	D	d	Се		0				é		\exists
S		i	n C	ia	blo	ntre						а		
m		1	OVI	g	od	d						n		
is		а		n	and							S,		
si		b	9	0	/							F		
0		ı		si	O							r		
n		е		S								а		
of				of								n		
S				S								С		
Α				Α								е		
R				R										
S				S										
-				-										
С				С										
0				0										
V-				V										
2				2										
				b										
				у										
				R										
				Т										

5 rows × 26 columns

In [4]:

Shape of the DataSet

```
df.shape
Out[4]:
(5783, 26)
In [5]:
# Columns in the dataset
df.columns
Out[5]:
Index(['NCT Number', 'Title', 'Acronym', 'Status', 'Study
Results'.
       'Conditions', 'Interventions', 'Outcome Measures',
       'Sponsor/Collaborators', 'Gender', 'Age', 'Phases',
'Enrollment'.
       'Funded Bys', 'Study Type', 'Study Designs', 'Other
IDs', 'Start Date',
       'Primary Completion Date', 'Completion Date', 'First
Posted',
       'Results First Posted', 'Last Update Posted',
'Locations',
       'Study Documents', 'URL'],
```

```
dtype='object')
In [6]:
# Categorical Features
df.select_dtypes(include = 'object').columns
Out[6]:
Index(['NCT Number', 'Title', 'Acronym', 'Status', 'Study
Results'.
       'Conditions', 'Interventions', 'Outcome Measures',
       'Sponsor/Collaborators', 'Gender', 'Age', 'Phases',
'Funded Bys',
       'Study Type', 'Study Designs', 'Other IDs', 'Start
Date',
       'Primary Completion Date', 'Completion Date', 'First
Posted'.
       'Results First Posted', 'Last Update Posted',
'Locations',
       'Study Documents', 'URL'],
     dtype='object')
In [7]:
# Neumrical Features
df.select_dtypes(exclude = 'object').columns
```

```
Out[7]:
Index(['Enrollment'], dtype='object')
In [8]:
# Detecting (Percentage) Missing Data
missing_data = df.isnull().mean() * 100
missing_data
```

Out[8]:

NCT Number	0.000000
Title	0.000000
Acronym	57.115684
Status	0.000000
Study Results	0.000000
Conditions	0.000000
Interventions	15.320768
Outcome Measures	0.605222
Sponsor/Collaborators	0.000000
Gender	0.172921
Age	0.000000
Phases	42.555767
Enrollment	0.587930
1	

```
Funded Bys
                          0.000000
Study Type
                          0.000000
Study Designs
                          0.605222
Other IDs
                          0.017292
Start Date
                        0.587930
Primary Completion Date 0.622514
Completion Date
                0.622514
First Posted
                     0.00000
Results First Posted 99.377486
Last Update Posted
                  0.00000
Locations
                       10.115857
                  96.852845
Study Documents
URL
                          0.000000
dtype: float64
In [9]:
# Visualize data without calculating
def visualize_data(data , caption = '' , ylabel = 'Percentage')
of Mising Data'):
   # set figure size
   sns.set(rc={'figure.figsize':(15,8.27)})
   # make ticks vertical
   plt.xticks(rotation=90)
```

```
# set title to the image and plot it or the highest 40
    fig = sns.barplot(x = data.keys()[:min(40)]
len(data))].tolist() , y = data.values[: min(40 ,
len(data))].tolist()) \
    .set_title(caption)
    # set labels
    plt.ylabel(ylabel)
    plt.show()
In [10]:
visualize_data(missing_data , 'Percentage of missing data in
each feature')
```


As shown the percentae of missing data in **Results First Posted** is **99.3%** and **Study Documents** is **96.8%**, so it's impossible to impute them without destoying our dataset.

```
In [11]:
# Drop Study Documents and Results First Posted

df.drop(['Results First Posted' , 'Study Documents'] , inplace
= True , axis = 1 )
```

In [12]:

```
# Columns in the dataset after dropping Study Documents and
Results First Posted
df.columns
```

```
Out[12]:
Index(['NCT Number', 'Title', 'Acronym', 'Status', 'Study
Results'.
       'Conditions', 'Interventions', 'Outcome Measures',
       'Sponsor/Collaborators', 'Gender', 'Age', 'Phases',
'Enrollment'.
       'Funded Bys', 'Study Type', 'Study Designs', 'Other
IDs', 'Start Date',
       'Primary Completion Date', 'Completion Date', 'First
Posted'.
       'Last Update Posted', 'Locations', 'URL'],
      dtype='object')
In [13]:
# Drop Duplicate Rows
print(f"Shape before dropping duplicates data {df.shape}")
df.drop_duplicates(inplace = True)
print(f"Shape after dropping duplicates data {df.shape}")
```

```
Shape before dropping duplicates data (5783, 24)
Shape after dropping duplicates data (5783, 24)
There is no duplicate rows in the dataset.
In [14]:
# Drop rows that have less than 10 non-null values
print(f"Shape before dropping Null rows {df.shape}")
df.dropna(how = 'any' , axis = 0 , thresh = 10 , inplace =
True)
print(f"Shape after dropping Null rows {df.shape}")
Shape before dropping Null rows (5783, 24)
Shape after dropping Null rows (5783, 24)
There is no rows with less than 10 non-null values
In [15]:
df.isnull().mean() * 100
Out[15]:
NCT Number
                             0.000000
Title
                             0.000000
```

Acronym	57.115684
Status	0.000000
Study Results	0.000000
Conditions	0.000000
Interventions	15.320768
Outcome Measures	0.605222
Sponsor/Collaborators	0.000000
Gender	0.172921
Age	0.000000
Phases	42.555767
Enrollment	0.587930
Funded Bys	0.000000
Study Type	0.000000
Study Designs	0.605222
Other IDs	0.017292
Start Date	0.587930
Primary Completion Date	0.622514
Completion Date	0.622514
First Posted	0.000000
Last Update Posted	0.000000
Locations	10.115857
URL	0.000000
dtype: float64	

In [16]:

```
# We can extract a new feature form The Location which is the
country where the study hold
countries = [ str(df.Locations.iloc[i]).split(',')[-1] for i in
range(df.shape[0])]
df['Country'] = countries
In [17]:
df.columns
Out[17]:
Index(['NCT Number', 'Title', 'Acronym', 'Status', 'Study
Results'.
       'Conditions', 'Interventions', 'Outcome Measures',
       'Sponsor/Collaborators', 'Gender', 'Age', 'Phases',
'Enrollment',
       'Funded Bys', 'Study Type', 'Study Designs', 'Other
IDs', 'Start Date',
       'Primary Completion Date', 'Completion Date', 'First
Posted'.
       'Last Update Posted', 'Locations', 'URL', 'Country'],
     dtype='object')
In [18]:
```

df.Country.value_counts()[:35]

Out	1101	
UILL	ואו	
Ouc		

Out[18]:	
United States	1267
France	647
nan	585
United Kingdom	306
Italy	235
Spain	234
Turkey	219
Canada	202
Egypt	192
China	171
Brazil	137
Germany	128
Belgium	91
Mexico	88
Switzerland	76
Russian Federation	69
Sweden	57
Denmark	56
Israel	56
India	55
Pakistan	53

Argentina	47
Netherlands	46
Norway	38
Hong Kong	36
Colombia	33
Republic of	31
Austria	29
Poland	29
Singapore	29
Saudi Arabia	27
Australia	26
Greece	26
Islamic Republic of	23
South Africa	22

Name: Country, dtype: int64

Now We need to clasify the missing data to one of these categories

- Missing Completely At Random (MCAR)
- 2) Missing At Random (MAR)
- 3) Not Missing At Random (NMAR)

In [19]:

Lets's start with Acronym

```
print(f"Number of unique values is {df.Acronym.nunique()} \n")
df.Acronym.value_counts()
Number of unique values is 2338
Out[19]:
COVID-19 47
PROTECT 7
CORONA
              6
RECOVER
SCOPE
ASD
                1
VICO
                1
LICORNE
                1
LOSVID
MindMyMindFU 1
Name: Acronym, Length: 2338, dtype: int64
In [20]:
# Find the realtion between null values in Acronym and Countries
```

```
(df.Acronym.isnull().groupby(df.Country).mean().sort_values(asc
ending = False) * 100)[:60]
```

Out[20]:	
Country	
Iraq	100.000000
Belarus	100.000000
Rwanda	100.000000
South Sudan	100.000000
Cambodia	100.000000
Bulgaria	100.000000
Cyprus	100.000000
Bosnia and Herzegovina	100.000000
Guinea-Bissau	100.000000
Dominican Republic	100.000000
Ecuador	100.000000
North Macedonia	100.000000
Bahrain	100.000000
Azerbaijan	100.000000
Uruguay	100.000000
Uzbekistan	100.000000
Kyrgyzstan	100.000000
Cape Verde	100.000000
Republic of	96.774194

Taiwan	93.750000
Singapore	93.103448
Japan	88.888889
Kuwait	87.500000
China	87.134503
Turkey	86.757991
Ukraine	85.714286
Malaysia	84.615385
Egypt	83.854167
Hungary	83.333333
Hong Kong	80.55556
Bangladesh	80.00000
India	80.000000
Kazakhstan	80.00000
Saudi Arabia	77.77778
Puerto Rico	76.470588
Israel	75.000000
Zimbabwe	75.000000
Jordan	72.727273
Poland	72.413793
Indonesia	71.428571
United States	69.376480
Romania	69.230769
Kenya	66.666667
Nepal	66.666667

New Zealand	66.666667
Ethiopia	66.666667
Slovakia	66.66667
Thailand	66.66667
Lebanon	66.66667
nan	66.324786
Islamic Republic of	65.217391
Russian Federation	65.217391
Chile	64.705882
Austria	62.068966
Pakistan	60.377358
Brazil	59.124088
Mexico	57.954545
Sweden	57.894737
Argentina	57.446809
Canada	55.940594

Name: Acronym, dtype: float64

- After inspecting the relation between the missing values in Acronym and Country we can conclude that there is a sort of relation between these two features, so we can say that Data is Missing At Random (MAR).
- So we can Impute by Missing Category.

```
In [21]:
```

```
# impute by a missing Indicator

df.Acronym = df.Acronym.fillna("Missing Acronym")
```

In [22]: # Detecting (Percentage) Missing Data df.isnull().mean() * 100

Out[22]: NCT Number 0.000000 Title 0.000000 0.000000 Acronym Status 0.000000 Study Results 0.000000 Conditions 0.000000 Interventions 15.320768 Outcome Measures 0.605222 0.000000 Sponsor/Collaborators Gender 0.172921 0.000000 Age Phases 42.555767 Enrollment 0.587930 Funded Bys 0.000000 Study Type 0.000000 Study Designs 0.605222

0.017292

Other IDs

```
Start Date
                             0.587930
Primary Completion Date
                             0.622514
Completion Date
                             0.622514
First Posted
                             0.000000
Last Update Posted
                        0.00000
Locations
                            10.115857
URL
                             0.000000
Country
                             0.000000
dtype: float64
We can do the same for other categorical features such as Interventions, Phases,
Locations and other categorical features
In [23]:
# Impute Interventions , Phases , Locations by Missing Category
categorical_features = df.select_dtypes(include =
object).columns
features =
categorical_features[df[categorical_features].isnull().mean() >
0]
for feature in features:
    df[feature] = df[feature].fillna(f"Missing {feature}")
```

```
In [24]:
# Detecting (Percentage) Missing Data
df.isnull().mean() * 100
```

Out[24]:

NCT Number	0.00000
Title	0.00000
Acronym	0.00000
Status	0.00000
Study Results	0.00000
Conditions	0.00000
Interventions	0.00000
Outcome Measures	0.00000
Sponsor/Collaborators	0.00000
Gender	0.00000
Age	0.00000
Phases	0.00000
Enrollment	0.58793
Funded Bys	0.00000
Study Type	0.00000
Study Designs	0.00000
Other IDs	0.00000

Start Date 0.00000 Primary Completion Date 0.00000 Completion Date 0.00000 First Posted 0.00000 Last Update Posted 0.00000 Locations 0.00000 URL 0.00000 Country 0.00000 dtype: float64 Now the Time to handle The missing data for the Enrollment In [25]: # Check the skewness df.Enrollment.skew() Out[25]: 34.06593382031148 The value of Skewness is 34 which means that we This feature isn't normally distributed In [26]: # Plotting the distribution of the enrollment df.Enrollment.plot(kind = 'kde')

Out[26]:

<AxesSubplot:ylabel='Density'>

So We will impute by the median

```
In [27]:
```

Some Statstical Valuee for the Enrollment Column

```
min_Value = df.Enrollment.min()
max_Value = df.Enrollment.max()
mean_Value = df.Enrollment.mean()
```

```
median_Value = df.Enrollment.median()
std_Value = df.Enrollment.std()
print(f"the min value is {min_Value} \n \
The max value is {max_Value} \n \
The mean is {mean_Value} \n \
The Median is {median_Value} \n \
Standard Devation is {std_Value}")
the min value is 0.0
The max value is 20000000.0
 The mean is 18319.48860671421
 The Median is 170.0
 Standard Devation is 404543.7287841079
In [28]:
# Using Median to impute Missing Values
df.Enrollment = df.Enrollment.fillna(median_Value)
In [29]:
# Detecting (Percentage) Missing Data
df.isnull().mean() * 100
```

Out[29]:

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Locations 0.0

URL 0.0

Country 0.0

dtype: float64

In [30]:
df.head()

Out[30]:

R a n k														a t e			d			
1	N C T 0 4 7 8 5 8 9 8	Dia gnostic Pefformance	C O > _ D D Z o >	Active, notrecruit	NoResultsA>a:-ab-	Co vid 19	D ia g n o st ic T e st : I D N o w ™	Ev alu ate the dia gn osti c per for ma nc e of the ID	Gro upe Ho spit alie r Par is Sai nt Jos eph	AII	Allo cati on: N/A Inte rven tion Mod el: Sin gle Gro	COVID-IDNow	N o v e m b e r 9 , 2 0 2 0	D e c e m b e r 2 2 , 2 0 2 0	A p ri I 3 0 , 2 0 2 1	M a r c h 8 , 2 0 2 1	a r c h 8 , 2	G r o u p e H o s p it a li e r P a	https://Cl inicalTria ls.gov/sh ow/NCT 0478589 8	France

		o f t h e I D N o w ™ C O V I D - 1 9		i n g	е		C O V I D - 1 9 S c r e e ni n g T e st											ri s S a i n t- J o s e p h , P a ri s ,		
2	N C T 0 4	S t u d	C O V I D		o R	-Co V-2	D r u g	Ch an ge on vir	Uni ted Me dic	A	 Allo cati on: Ran dom	C O > _ D	N o v e m	D e c e m	J a n u a	O c t o b	c t o	C i m e	https://Cl inicalTria ls.gov/sh ow/NCT 0459513	C 0 I 0 n

5	t	-	t	u	ecti	D	al	Sp		ized	1	b	b	r	е	е	ic	6	b
9	0	1	r	Ι	on	r	loa	eci		Inte	9	е	е	У	r	r	а		i
5	Ε	9	е	t		u	d	alti		rven	-	r	r	2	2	2	I,		а
1	٧		С	S		g	res	es		tion	0	2	1	9	0	0	В		
3	al		r	Α		С	ults			Mod	0	,	5	,	,	,	а		
6	u		u	٧		Ο	fro			el:	0	2	,	2	2	2	rr		
	а		i	а		٧	m			Par.	1	0	2	0	0	0	а		
	t		t	i		Ι	ba				-	2	0	2	2	2	n		
	е		i	Ι		D	seli				U	0	2	1	0	0	q		
	t		n	а		1	ne				S		0				u		
	h		g	b		9	aft.				R						ill		
	е			Ι		-											а		
	Ε			е		0											,		
	ffi					0											Α		
	С					0											tl		
	а					1											а		
	С					-											n		
	У					U											ti		
	0					S											С		
	f					R											0		
	С																,		
	0					D											С		
	٧					r											0		
	Ι					u											Ι		
	D					g											0		
	1					:											m		
	9					n											b		
	-					0											i		
	0					r													

		0 0 1					m al s al in e											а		
3	N C T 0 4 3 9 5 4 8 2	L u n g C T S c a n A n al y si s o f S A	T A C - C O V I D 1 9	R e c r u i t i n g	N o R e s u l t s A > a i l a b l e	cov id1 9	O t her: LungCTscananalysi	A qu alit ativ e an aly sis of par en chy ma I lun g da m	Univer sity of Mil ano Bic occ a	AII	Obs erva tion al Mod el: Coh ort Tim e Per spe ctiv e:	T A C - C O V I D 1 9	M a y 7 , 2 0 2 0	J u n e 1 5 , 2 0 2 1	J u n e 1 5 , 2 0 2 1	M a y 2 0 , 2 0 2 0	N o v e m b e r 9 , 2 0 2 0	O s p e d a l e P a p a G i o v a n n i	https://Cl inicalTria ls.gov/sh ow/NCT 0439548 2	SanNarino

		R S - C o V 2 I n d u c e d L u n					s in C O V I D - 1 9 p a ti e n ts										X X II I, B e r g a m o , It a ly P		
4	N C T 0 4 4	 T h e R ol e	C O V I D - 1	A c t i v e ,	Z o R e s u _	CO VI D	D ia g n o st ic	Pro por tio n of asy mp	Ho ng Ko ng Sa nat oriu	A	 Obs erva tion al Mod el: Coh	R C - 2 0 2	J u I y 3 1 ,	A u g u s t 3	u	n e	 H o n g K o n	https://Cl inicalTria ls.gov/sh ow/NCT 0441606 1	H o n g k o n

6	f	9	n	t	 Т	to	m	ort	-	0	2	1	0	0	g	 g
0	а		0	s	е	ma	&	Tim	0	2	0	,	2	2	S	
6	Р		t	Α	st	tic	Но	е	8	0	2	2	0	0	а	
1	ri		r	٧	:	su	spit	Per			0	0			n	
	٧		е	а	С	bje	al	spe				2			а	
	а		С	i	0	cts		ctiv				0			t	
	t		r	Ι	٧	Pro		e:							0	
	е		u	а	Ι	por									ri	
	Н		i	b	D	tio									u	
	0		t	Ι	1	n									m	
	S		i	е	9										&	
	pi		n		D										Н	
	t		g		ia										0	
	al				g										S	
	in				n										р	
	Н				0										it	
	0				st										а	
	n				ic										Ι,	
	g				Т										Н	
	K				е										0	
	0				st										n	
	n														g	
	g														K	
	Α														0	
	m														n	
															g	
															,	
															Н	
															0	

|--|

П	,	S		-							T
	,	A		С							
	l	R		0							
		S		٧							
	-	-		2							
	(С		b							
	(0		у							
	\	V		R							
	-	-		Т							
		2									

5 rows × 25 columns

Data Visualizations

```
In [31]:
# Get Countires with highest Contributiuons
top_10_Countires = df.Country.value_counts()[:10]
visualize_data(top_10_Countires , caption = 'Top 10 Countries'
, ylabel = 'Contributions')
```


In [35]:
print(f"The shape of data frame is {df.shape}")
print(f"Nunique in NCT Number is {df['NCT Number'].nunique()}")
print(f"Nunique in URL is {df.URL.nunique()}")

The shape of data frame is (5783, 25)
Nunique in NCT Number is 5783
Nunique in URL is 5783

So If We are going to apply a (Machine Learning) ML model we can drop NCT

Number and URL because there is an index already which is Rank. To reduce the number of categorical Features, Specially because they will need to be doecoded inorder to be used in a ML Model.

Reference link