RUNS Test

- 1) Ho: Ri ~ independence Hi: Ri ~ ~
- 2) write sequence of runs above 2 below mean
- 3) count the number of observation above the mean Crs) and the no of observation below the mean cna)

max no, of possible runs (N) = n1+n2 min no. of possible runs = one

Total no. of runs (b)

4) calculate mean of variance of b

$$\mu_b = \frac{2n_1 + n_2}{N} + \frac{1}{2}$$

$$\frac{6^2}{b} = \frac{2 \pi i n^2 (2 \pi i n^2 - N)}{N^2 (N-2)}$$
 thun mor nz >20

the distribution of b will be approximated by a N.D.

- 5) Standard normal statistics 20 = b- Mb
- 6) -Za/2 ≤ Zo ≤ za/2 = Ho accepted. X = level of significance.

CHI SQUARE TEST

class (n)	N (range)	Oi .	Ei=N	oi-bi	(oi-Fi)	(0i-Fi)2 Fi
1	0.01-0.10	2	3	7	1	43
2	0.11-0.20	2000	उ	0	0	0
3	0.24 -0.30		3	1	1	1/3
4	0.31-0.40	4	3	1	1	43
5	0.41-0.50	3	3	0	0	0
						4.1 13

N= no. of random nos (interval)

n= dass

- 1) Arrange the sequence in ascending order.
- 2) Calculate:

$$D^{+} = \max_{1 \leq i \leq N} \frac{i}{N} - Ri$$

$$D = \max_{1 \leq i \leq N} \sum_{i = l} \frac{2i - l(i - 1)}{N}$$

level of significance, & will be mentioned.

N = total number of random nos.

li		1	2	3	4	5	-	
K	li			70			← substitute	values.

3) calculate:

Ī	b ⁺]		17	7	4.000	calculating
	0-			9	upon	Capacianin

4) D<Da => Ho accepted

AUTOCORRELATION TEST

M₂ largest integer such that it CM+1) m ≤ N

Ho: Pim = 0, if nos are independent

HI: Pin # 0 if nos are dependent

$$\hat{S}_{im} = \frac{1}{M+1} \left[\sum_{k=0}^{\infty} Ri + km Ri + (k+1)m \right] \text{ on } \left[\sum_{k=0}^{M} Ri + km \cdot Ri + (k+1)m \right] - 0.25$$

$$\hat{\sigma}_{g} = \sqrt{\frac{18M+7}{12(M+1)}} ; \quad Z_{0} = \frac{\hat{S}_{im}}{\hat{\sigma}_{s}^{2}} \quad Z_{0} < zinit \text{ then accept}$$

then accept