Critical values, d_{alpha} ; $(n)^a$, of the maximum absolute difference between sample $F_n(x)$ and population F(x) cumulative distribution.

Number of trials, n	Level of significance, α			
	0.10	0.05	0.02	0.01
25	0.23768	0.26404	0.29516	0.31657
26	0.23320	0.25907	0.28962	0.31064
27	0.22898	0.25438	0.28438	0.30502
28	0.22497	0.24993	0.27942	0.29971
29	0.22117	0.24571	0.27471	0.29466
30	0.21756	0.24170	0.27023	0.28987
31	0.21412	0.23788	0.26596	0.28530
32	0.21085	0.23424	0.26189	0.28094
33	0.20771	0.23076	0.25801	0.27677
34	0.20472	0.22743	0.25429	0.27279
35	0.20185	0.22425	0.26073	0.26897
36	0.19910	0.22119	0.24732	0.26532
37	0.19646	0.21826	0.24404	0.26180
38	0.19392	0.21544	0.24089	0.25843
39	0.19148	0.21273	0.23786	0.25518
40^{b}	0.18913	0.21012	0.23494	0.25205

^aValues of $d_{\alpha}(n)$ such that $p(\max)|F^{n}(x) - F(x)|d^{\alpha}(n) = \alpha$.

 $^{^{}b}N > 40 \approx \frac{1.22}{N^{1/2}}, \frac{1.36}{N^{1/2}}, \frac{1.51}{N^{1/2}}$ and $\frac{1.63}{N^{1/2}}$ for the four levels of significance.