

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

1

~

METEOROLOGICAL DATA REPORT

19318A MLRS Missile Mumbers 8N-225, BN-152, BN-162, BN-212, BN-222, BN-218 Mound Numbers V-378/07-7, V-379/07-8, V-389/07-9, V-381/07-10 V-382/67-11, V-383/07-12

98MALD C. KELLER Program Support Coordinator Phone Rumber (505) 679-9568 AVM Number 349-9568

ATHOSPHERIC SCIENCES LABORATORY WHITE SANDS MISSILE MANCE, NEW MEXICO

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM				
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
DR 1279	AD-A124 099				
A TITLE ((C AMAL)	MU-HILY OIT	5. TYPE OF REPORT & PERIOD COVERED			
4. TITLE (end Subtitle) 19318A MLRS, Missile Numbers BN-2 BN-162, BN-212, BN-22, BN-218, Ro V-378/OT-7, V-379/OT-8, V-380/OT- V-382/OT-11, V-383/OT-12	und Numbers	6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(*)			
White Sands Meteorological Team		DA Task 1F665702D127-02			
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK			
		AREA & WORK UNIT NUMBERS			
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE			
US Army Electronics Research & De Atmospheric Sciences Laboratory	veropment Cmd	December 1982			
White Sands Missile Range, New Me	vias 90000	13. NUMBER OF PAGES			
14. MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)			
US Army Electronics Research and Adelphi, MD 20783	UNCLASSIFIED				
		15a. DECLASSIFICATION/DOWNGRADING			
		SCHEDULE			
16. DISTRIBUTION STATEMENT (of this Report)					
DISTRIBUTION STATEMENT A Approved for public release; Distribution Unumited					
17. DISTRIBUTION STATEMENT (of the abetract entered	in Block 20, if different fro	m Report)			
		1			
Approved for public release; distribution unlimited.					
18. SUPPLEMENTARY NOTES					
19. KEY WORDS (Continue on reverse side if necessary and	nd identify by block number)				
Numbers BN-225, BN-152, BN-162, BN-7378/0T-7, V-379/0T-8, V-380/0T-9 are presented in tabular form.	the launching of N-212, BN-222, BN	-218. Round Humbers			

SECURITY CLASSIFICATION OF THIS	PAGE(When Date Entered)	
SECURITY CLASSIFICATION OF THIS	PAGE(When Date Entered		

CONTENTS	PAGE
INTRODUCTION	1
DISCUSSION	1
GENERAL AREA MAP	2
LAUNCH AREA DIAGRAM	3
TABLES:	
1. Surface Observations taken at 1709 MST at LC-33	4
2. Anemometer-Measured Wind Speed and Direction, LC-33 Fixed Poltaken at 1709 MST	le, 5
3. Anemometer-Measured Wind Speed and Direction, Tower Levels 1, 3, and 4, taken at 1709 MST	, 2, 5
4. Launch and Impact Pilot-Balloon Measured Wind Data	6
5. Aiming and T-Time Computer Met Messages	7
6. WSD Significant Level Data at 1515 MST	8
7. WSD Upper Air Data at 1515 MST	9
8. WSD Mandatory Levels at 1515 MST	10
9. WSD Significant Level Data at 1645 MST	11
10. WSD Upper Air Data at 1645 MST	12
11. WSD Mandatory Levels at 1645 MST	13

Acces	sion For					
NTIS	GRA&I					
DTIC	DTIC TAB					
Unannounced 🔲						
Justification						
By Distr	By					
Availability Codes						
	Avail and/or					
Dist	Special					
n						
IT	1 1 .					
1,	1 1 '					

BLANK PAUE

INTRODUCTION

19318A MLRS, Missile Numbers BN-225, BN-152, BN-162, BN-212, BN-222 and BN-218, Round Numbers V-378/OT-7, V-379/OT-8, V-380/OT-9, V-381/OT-10, V-382/OT-11 and V-383/OT-12, were launched from LC-33, White Sands Missile Range (WSMR), New Mexico, at 1709:03, 1709:07, 1709:12, 1709:16, 1709:21 and 1709:25 MST, 06 Dec 82. The scheduled launch times were 1645 MST. With a 4.5 second separation.

DISCUSSION

Meteorological data were recorded and reduced by the White Sands Meteorological Team, Atmospheric Sciences Laboratory (ASL), White Sands Missile Range, New Mexico. The data were obtained by the following methods:

1. Observations

911 18 F

- a. Surface
- (°C), relative humidity, dew point (°C), density (gm/m²), wind direction and speed, and cloud cover were made at the LC-33 Met Site at T-0 minutes;
- (29) Anemometer data were provided from existing pole-mounted and tower-mounted anemometers at LC-33. Monitor of wind speed and direction from one anemometer was also provided in the launch control room.
 - b. Upper Air
- (1) Low level wind data were obtained from Pilot-balloon observations at:

SITE AND ALTITUDE WSD 2km DON 2km

(2) Air structure data (rawinsonde) were collected at the following Met Sites.

SITE AND TIME WSD 1515 MST WSD 1645 MST

WSMR METEOROLOGICAL SITES

PPOJECT SURFACE OBSERVATION

TASLE 1										STA	STATICH LC-33	33		
	1									! >	19 080 V8V ->	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V= 105 057 72 H= 2005 00	2005 00
DATE 6		Dec 82	VEAR VEAR	ţ						\ <	104, 202, 0	-	67.766,60	0950
TINE	PRESSUPE mbs	ł	TE:PEF	TEMPERATURE OF OC	000 M m	DEW POINT OF OC		PELATIVE HUMIDITY %	DERSIJY gm/m3		DIRECTION degs In	WIND SPEED Kts	CHAPACTER kts	VISIBIL- ITY
1709	880.3			10.0			-1.7	44	1081		180	03		50
								•		-			· · · · · · · · · · · · · · · · · · ·	
						-				-				
		-				-								
	_				٦	CI OLIDS								
OBSTRUCTIC		1st L	AYER		2nd	LAYE	a'	[3rd	LAYER			REMARKS	S	
TO VISIBILITY	4	AMT TYPE HGT	PE 1 H	167	AMT	T TYPE HGT	HGI	A:T	ANT TYPE HGT	3.1				
	0	AS	I —	15.000	-	2	25,000							
	<u>'</u>		1 -		,									
	-	-	+-					 	-					

HIPUTATION						
ပ ၁	1710	10.0	4.5	5,5	-1.7	44
PSYCHROMETRIC COMPUTATION	111/5:	DRY BULB TEMP.	WET BULB TEMP.	WET BULB DEPR.	DEW POINT	RELATIVE HUMID.

TABLE 2 10-33 FIXED POLE AREMOMETER MEASONED WIRDS

1.29 3.90 1 . AGL		7 OLF #? X485,874.29 Y186.012.00 H4033.57 53.0 ft. AGL		POLE #3 485,877.29 Y186,116.06 H4063.92 83.6 ft. AGL			
DIR DEG	SPEED MOTS	T-TIME SEC	DIR DEG	SPEED KNOTS	T-TIME SEC	DIR DEG	SPEED KNOTS
171	04	T - 30	163	03	T -30	168	05
171	04	T -20	163	03	T -20	168	05
171	04	T -10	163	03	T -10	168	05
171	04	Τ 0.0	163	03	T 0.0	169	05
160	03	T +10	147	03	T +10	158	04
	3.90 1 AGL D1R DEG 171 171 171	3.90 AGL DIR SPEED DEG MOTS 171 04 171 04 171 04 171 04	X485,87 X485,87 Y186.01 H4033.5 53.0 ft DIR SPEED T-TIME DEG KNOTS SEC 171 04 T -30 171 04 T -10 171 04 T 0.0	X485,874.29 Y186.012.00 H4033.57 S3.0 ft. AGL DIR DEG RNOTS SEC DEG DEG T-71 O4 T-20 163 171 O4 T-10 163 171 O4 T-0.0 T-0	X485,874.29 Y186.012.00 H4033.57 S3.0 ft. AGL SPEED T-TIME D1R SPEED KNOTS SEC DEG KNOTS SEC DEG KNOTS SEC DEG KNOTS SEC DEG KNOTS SEC SEC	X435,874.29	X485,874.29

TABLE 3 LC-33 METEOROLOGICAL TOWER ANEMOMETER MEASURED WINDS (202 FT TOWER)

VEVEL #1, 13 x484,982.64		3, H3283.00 (base)	ZEVEL #2, 57 X484,982.64		3, H3983.00 (base)
I-TIME SEC	DIR DEG	SPEED KHOTS	T-TIME SEC	DIR DEG	SPEED KNOTS
T-30	182	03	T - 30	169	05
τ-20	182	03	T-20	169	05
T-10	182	03	I-10	169	05
To.0	182	03	T 0.0	169	05
T+10	182	03	T +10	168	05

HIVEL #3, 102 FELT X484,982.64, Y185,057.73, H3983.00 (base)			X484,982.64, Y185,057.73, H3983.30 (base)		
I-TIME SEC	DIR DEG	SPEED KNOTS	T-TIME SEC	DIR DEG	SPEED KNOTS
T-30	180	05	T -30	172	05
T-20	180	05	T -20	172	05
T - 10	180	05	T -10	172	05
To.0	180	05	T 0.0	173	05
[+]U	180	05	T +10	173	05

T-TIME PILOT-BALLOON MEASURED WIND DATA

DATE 6 Dec 82

SITE: WSD

1!MI: 1710 MST

WAIM COORDINATES:

438,852.29

184,982.45

3,993.75

SITE: DON

TIME 1710 MST

WSTM COORDINATES:

y 511,988.37

Y- 247,396.36

H. 3,996.83

EAYER MIDPOINT	DIRECTION	SPEED	
METERS AGE	DEGREES	KNOTS	
SURFACE	160	02	
150	190	07	
210	198	06	
<i>27</i> 0	180	03	
3.30	154	04	
3 40	171	08	
500	181	05	
6.50	226	03	
500	243	02	
950	213	11	
1450	213	16	
1350	213	15	
155()	215	18	
1750	221	15	
2000	227	15	

Data obtained from a NIKE-HERCULES Radar Tracked Pilot-Balloon observation.

LAYER MIDPOINT	DIRECTION	SPEED
METERS AGL	DEGREES	KNOTS
SURFACE		CALM
150	183	04
210	183	05
270	134	05
330	134	05
390	182	05
500	175	03
650	201	03
800	219	80
950	218	11
1150	216	10
1350	224	10
1550	228	10
1750	229	09
2000	255	10

Data obtained from a Single Theodolite Tracked Pilot-Balloon observation.

AIMING AND T-TIME COMPUTER MET MESSAGES 06 Dec 82

M20 1212	MS1	WSD 16	45 1151
METCM1324	064	METCM13	24064
062230122	830	0223801	.22880
00000000	28710880	0028400	28410880
01337005	23670870	0131400	8 28590869
02276004	28460844	0233000	5 28440844
03380004	28220804	0337600	3 28140804
04375014	28150757	0438601	7 28200757
05393014	27990713	0538701	.5 28000712
		0639301	5 27640670

9E0DETIL COON;;IMATES 32-40043 LAT (1EG 106-37033 LON (1EG									
A 1 A	HEL .INJM. PERCENT	41.0	31.0	33.0	34.0	16.0	17.0	16.0	16.0
SIGNIFICANT LEVEL DATA 3400020601 WHITE SANDS TABLE 6	TEMPERATURE AIR DEWPOIN) DEGKEES CENTIGRADE	•1	7.0-	6.4-	-7.0	-15.3	-10,2	-17.6	-19.7
SIGNIFI 3 WH TAE	TEMP AIR Degkees	13.0	13.0	11.4	7.9	9.5	7.2	6.3	3.7
1 2 F	PRESGURE GEOMETRIC ALTITUDE WILLIBARS HSL FEET	3989.0	4364•6	4047.2	0335.1	7334.2	n682.7	10209.9	11435.5
STATION ALITIUNE 3909+10 FFET MSL 6 DEC. F? 1515 HRS MST ASCLIBIUM NO. ONI	PRESSURE VILLIBARS	880.1						700.00	

STATION ALTITULE 6 DEC. 62 ASCENSION NO. 60	T11UL 39	3989.10 FELT 2SL 1515 HRS MST 1	.T :.SL MST	-	UPPER AIR DATA 340020601 WHITE SANDS TABLE 7	DμTA 01 Dü		νΕΟDE ΤΙ. 32 • 106 • 1	0E0DETIC COOKDINATES 32.40043 LAT UE6 106.37033 LON REG
GE UMETRIC ALTITUDE MSL PEET	PRESSURE MILLIBARS	TEMF AIR DECREES	PRESSURE TEMPERATUME AIR DEMPOINT MILLIWARS DECREES CENTISRADE	REL.HIM. PERCENT	DENSITY GM/CUBIC METER	SPEED OF SOUND KNOTS	*IND DATA UIRECTION S.	SPEEU KHOTS	INUFX OF REFRACTION
3969.0	800.1	13.0	•1	41.0	1068.0	6.659	0•	0.	1.000267
4000	879.7	13.0	=	40.7	1068.		2004	0.	1.000250
1,500,0	8,3.0	12.6	8.5	31.5	1051.0		70B*4	1.1	1.000256
5000	848.4	11.3	3.21	33.n	1037.1		4.0U2	2.1	1.000252
5500.0	032.9	10.0	-5°-3	33.4	1022.8		h•00%	3.1	1.000247
0.0000	817.8	6.7	-6.3	33.8	1008.8		5002	4.2	1.000243
0.0000	802.9	8.1	0.8-	31.0	6-266		4.802	5.5	1.000237
7000.0	788.2	8.8	-111.7	22.0	972.9		6.11.3	7.4	1.000229
7500.0	775.9	9.0	-15.4	16.1	954.8		214.4	10.0	1.0002
0.0000	7.867	8.2	-15+7	16.5	939.8		210.0	11.9	1.000218
0.0050	7 +2.8	7.5	-16.1	16.9	925.0	6.259	<17.5	12.4	1.000214
90000	732.1	7.0	-16.5	16.8	9.606		518.9	12.9	1.000211
950n.n		6.7	-17.0	16.5	893.B	0.750			1.000207
100001		6.4	-17.4	16.1	878.3				1.000203
10500.0		5.7	-13.1	16.0	864.4				1.000200
11000.0		· 4•6	-19.0	16.0	851.7				1.000196

GEODETIL CUOMDINATES 32-40043 LAT DEG 106-37033 LOH DEG	13.00	NOTS	0	#	2	
J.	ATHU DATA	S(TN) K		⊅• ¢		
		-	508.	500.4	217.	
61 61 85	KLL.HUM.		33.	29•	17.	16.
MANDATOPY LLIELS 3400020501 WHITE SANDS TABLE 8	TEMPERATURE ATR DEMOCIAL	DEGREES CENTIGRADE	-4.3	-8.6	-15.9	-17.6
٤		JEGREES (11.4	8.2	7.7	6.3
. T 195L MST	PRESSURE GEOPOTENTIAL	FE: T				10200.
STATION ALTITUDE 3989-00 FE,T MSE 6 JEC+ 82 ASCENSION NO - BOL	PRESCURE	MILLIMARS	n50•n	U•00u	150.0	V-002
51A 6 ASU						

ON ALTITUDE 3989.00 FRET MSL C. 82 1645 HRS MST SIUN NO. 002	JSL 1	SIGNIFIC 34 34 TAE	SIGNIFICANT LEVEL DATA 3400220602 WHITE SANDS TABLE 9	A . A	<pre>%EODETIC COUNDINATES 32.4U043 LAT DEG 106.37033 LON DEG</pre>
PRESSUM! MILLIBAR	PRESSUME GEOMETRIC ALTITUDE WILLIBARS MSL FEET	TEMPE AIR SEGREES	TEMPERATURE AIN DEWPOINT GEREES CENTIGRALE	REL.HUM. PERCENT	
6.43°		11.9	1.3	48.0	
874.0		13.0	-2.5	34.0	
850.0		11.2	5.4-	33.0	
786.2		6.2	-5.1	0.44	
771.1	7584.6	h•6	-15.9	15.0	
746.6		8.7	-16.5	15.0	
700.0		0•9	-17.9	16.0	
653.8		2.0	-21.1	16.0	
591.0		-4.2	-26.9	15.0	

√EODETIC COOKUINATES 32-40043 LAT DE6 106-37033 LON DE6	INUEX D OF S REFRACTION	1.9 1.000270	-		-	4.3 1.000249	5.3 1.000245	-	7.3 1.000239	10.2 1.000223	_	~	15.5 1.000210	16.0 1.000206			_	_	7	4.4 1.000187	1.000184	1.000181	1.000178	1.000175
υΕΟΛ 1	#IND DATA LIMECTION SPEED EGREESTIN) KNOTS	100.001														220.1 15			225.7					
UPPER AIR DAIA 3400020602 White Sanus TABLE 10	DENSITY SPEED OF GMZCUBIC SOUND METER KNOIS	1072.3 658.7	1071.0 658.U			1022.8 656.1	1008.4 654.7			954.4 654.0		920.9 654.2	906.5 653.3	892.4 652.4		865.3 650.4	852.6 649.1	840.1 647.8	827.9 046.5	815.8 645.1	804.0 043.6			769.6 639.3
D	KEL.HUM. PERCENT	48.0	47.2	33.6	33,3	35.9	38.5	41.1	43.7	19.7	15.0	15.0	15.3	15.6	15.9	16.0	16.0	16.0	16.0	15.8	15.6	15.4	15.2	15.0
T MSL N,ST	FEMPERATUPE H UEMPOINT EES CENTISRADE	1.3	1.1	-3.3	-t-5	-4.5	9•1	8 · ti -	-5-1	-13.0	-16.2	-16.5	-16.9	-17.3	-17.7	18.4	-19.3	-20.5	-21.1	-22.2	-23.3	-24.5	-25.6	-26.7
3989.00 FEET MSL 1645 HRS NST 2	FENF AIH DEGRÉES	11.9	12.0	12.2	11.1	6.6	8.7	7.5	6.3	8•9	1•6	8•6	7.9	7.1	6.3	5.3	۳. ۲	3.2	2.1	6	⇒ •1	-1.6	-2.8	0.4-
•	PRESSURE MILLISARS	879.9	879.5	865.7	948·1	832.7	817.5	802.6	787.9	773.5	759.4	743.6	731.9	714.5	705.3	692.3	679.4	660.8	654.4	642.1	6.629	610.0	p.009	594.9
STATION ALTITUDE 6 DEC. 82 ASCENSION NO. 0	GEGGETRIC ALITIDE 19L FEET	5989.0	40000	4500.0	00000	5500.0	0.0009	6500.0	7000.0	7500.0	800 0.0	8500.0	0.0006	9500.0	100001	10500.0	11000.0	11500.0	12000.0	12501.0	13000.0	13509.0	1.4000.0	14500.0

9E0DET1L COURDINATES 32-40043 LAT DEG 106-37033 LON DEG	WIND LATA JIRECTION SPEED ,EGREES(IN) KNOTS
MANDATORT LEVELS 3400020602 WHITE SANDS TABLE 11	TEMPERATURE KEL, HUM. WIND DATA AIR DEWPOINT PERCENT DIRECTION SPEED DEGREES CENTIGRADE , EGREES(TN) KNOTS
STATION ALTITUDE 3989.nO FE,T MSL 6 DEC. B2 ASCENSION NO. 002	PRESSURE GEOPOTFNTIAL TEMPERATURE AIR DEWPOINT MILLIARS FEET DEGREES CENTIGRAL

			ABLE 11			01
RESCURE	RESSURE GEUPOTFNIAL	TEM	TEMPERATURE	KEL. HU	WIND DATA	ATA
LLIAARS	FEET	DEGREES	DEGREES CENTIGRADE	PERCEN	LEGREES (TN)	KNOT
A50.0	4936.	11.2	5.4-	33.	196.5	3.2
600.0		7.3	6.4-	45.	214.6	0.5
750.0		8.8	-16.4	15.	215.9	14.8
700.0		6.9	-17.9	16.	219.3	15,9
650.0	12167.	1.6	-21.5	16.	226.5	14.6
600.0		-3.5	-56.2	15•		

END

DATE

2-83

DTIC