

HAI916I IA pour le génie logiciel

CP TD1

Auteur:

Canta Thomas

Master 2 - Génie Logiciel Faculté des sciences de Montpellier Année universitaire 2021/2022

Exercice 1

Question 1

 \bigcirc Variables : $X = X_1, X_2, ..., X_n$

 $\qquad \qquad \textbf{Domaines des variables}: D = \{1,..,n\} \mid D_i \in \mathbb{N}$

Contraintes:

 $igotimes X_i
eq X_j$ (une reine par ligne)

 $oldsymbol{\circ} \ |i-j|
eq |X_i-X_j|, orall i orall j, i < j \ ext{(pas deux reines sur la même diagonale)}$

Question 2

Déroulement de l'algorithme BT sur l'instance n=4 (A lire de gauche à droite).

Exercice 2

Question 1

Arr Variables : X = S, E, N, D, M, O, R, Y

 \bigcirc Domaines des variables : $D = \{0, ..., 9\} \mid D_i \in \mathbb{N}$

Contraintes :

 \circ $S \neq 0$

 \bigcirc $M \neq 0$

ullet all Different(X) (Toutes les lettres ont une valeur différente)

Si la somme de deux éléments est supérieur à 10, alors il y aura une retenue. On définit alors R comme l'ensemble des retenues, tels que R_i est la retenues obtenus à l'étape de calcul i.

 $OPD + E = Y + 10R_1$

 $\bigcirc R_3 + S + M = O + 10R_4$

Exercice 3

Question 1

ightharpoonup Variables : $X = \{X_1, ..., X_n\} \mid \forall i, X_i \in \mathbb{N}$

 \bigcirc Domaines des variables : $D = \{1, .., M\}$, M la borne supérieure de la distance max.

Contraintes :

 $X_1 = 0$

 \bullet $\forall i \in \mathbb{N}, X_i < X_{i+1}$, (les nombres de la règles sont dans l'ordre croissant)

 $all Different(|X_i - X_j|), \forall i, j \in \mathbb{N}$ et $i \neq j$ (toutes les différences entre marques sont différentes)

Question 3

Il est possible de rendre le modèle plus efficace en minimisant la valeur de la plus grande marque.

Exercice 4

Question 1

Variables :

Nous pouvons regrouper toutes les variables dans des ensembles :

 $C = \{blanche, rouge, verte, jaune, bleue\}$ (couleur)

 $N = \{norvgien, anglais, ukrainien, japonais, espagnol\}$ (nationalité)

 $A = \{cheval, renard, zebre, escargot, chien\}$ (animal)

 $B = \{the, lait, cafe, vin\}$ (boisson)

 $CI = \{kools, chester fields, old_golds, cravens, gitanes\}$ (cigarette)

L'ensemble de nos variables sera l'union de tout ses ensembles :

$$X = C \cup N \cup A \cup B \cup CI$$

 \bigcirc Domaine : $D = \{1, 2, 3, 4, 5\}$

C Contraintes :

- \bigcirc norvegien = 1
- \bigcirc norvegien + 1 = bleue
- \bigcirc lait = 3
- \bigcirc anglais = rouge
- \bigcirc jaune = kools
- \bigcirc blanche = verte + 1
- \bigcirc espagnol = chien
- \bigcirc ukrainien = the
- \bigcirc japonais = cravens
- \bigcirc old_golds = escargot
- \bigcirc gitanes = vin
- \bigcirc (chesterfields + 1) \vee (chesterfields 1) = renard
- $(kools + 1) \lor (kools 1) = cheval$
- \bigcirc all Different (C)
- \bigcirc all Different(N)
- \bigcirc all Different(A)
- \bigcirc all Different(B)
- \bigcirc all Different (CI)