

Градиентный спуск

МЕТОДЫ ВЫПУКЛОЙ ОПТИМИЗАЦИИ

НЕДЕЛЯ 7

Даня Меркулов Пётр Остроухов

Повторение

Виды выпуклости

Рисунок 1. Примеры выпуклых функций

Рисунок 2. Иллюстрация Липшицевых парабол, между которыми зажата гладкая функция. Чаще нас интересует мажорирующая из них.

Определение: Будем говорить, что функция $f:\mathbb{R}^n o\mathbb{R}$ является L -гладкой, если $orall x,y\in\mathbb{R}^n$ выполнено:

$$\|\nabla f(y) - \nabla f(x)\| \leqslant L\|y - x\|$$

Рисунок 2. Иллюстрация Липшицевых парабол, между которыми зажата гладкая функция. Чаще нас интересует мажорирующая из них.

Определение: Будем говорить, что функция $f:\mathbb{R}^n o\mathbb{R}$ является L -гладкой, если $\forall x,y\in\mathbb{R}^n$ выполнено:

$$\|\nabla f(y) - \nabla f(x)\| \leqslant L\|y - x\|$$

Обратим внимание, что значение константы гладкости (Липшицевости градиента) зависит от выбора нормы.

Если $f:\mathbb{R}^n o \mathbb{R}$ - непрерывно дифференцируема и градиент Липшицев с константой L , то $\forall x,y \in \mathbb{R}^n$:

$$\|f(y)-f(x)-\langle\nabla f(x),y-x\rangle\|\leqslant \frac{L}{2}\|y-x\|^2$$

Рисунок 2. Иллюстрация Липшицевых парабол, между которыми зажата гладкая функция. Чаще нас интересует мажорирующая из них.

Определение: Будем говорить, что функция $f:\mathbb{R}^n o\mathbb{R}$ является L -гладкой, если $orall x,y\in\mathbb{R}^n$ выполнено:

$$\|\nabla f(y) - \nabla f(x)\| \leqslant L\|y - x\|$$

Обратим внимание, что значение константы гладкости (Липшицевости градиента) зависит от выбора нормы.

Если $f:\mathbb{R}^n o \mathbb{R}$ - непрерывно дифференцируема и градиент Липшицев с константой L , то $\forall x,y \in \mathbb{R}^n$:

$$\|f(y)-f(x)-\langle\nabla f(x),y-x\rangle\|\leqslant \frac{L}{2}\|y-x\|^2$$

Если зафиксируем $x_0 \in \mathbb{R}^n$, то:

$$\varphi_1(x) = f(x_0) + \langle f(x_0), x - x_0 \rangle - \frac{L}{2} \|x - x_0\|^2$$

$$\varphi_2(x) = f(x_0) + \langle f(x_0), x - x_0 \rangle + \frac{L}{2} \|x - x_0\|^2$$

Рисунок 2. Иллюстрация Липшицевых парабол, между которыми зажата гладкая функция. Чаще нас интересует мажорирующая из них.

Определение: Будем говорить, что функция $f:\mathbb{R}^n o\mathbb{R}$ является L -гладкой, если $\forall x,y\in\mathbb{R}^n$ выполнено:

$$\|\nabla f(y) - \nabla f(x)\| \leqslant L\|y - x\|$$

Обратим внимание, что значение константы гладкости (Липшицевости градиента) зависит от выбора нормы.

Если $f:\mathbb{R}^n o \mathbb{R}$ - непрерывно дифференцируема и градиент Липшицев с константой L, то $\forall x,y \in \mathbb{R}^n$:

$$\|f(y)-f(x)-\langle\nabla f(x),y-x\rangle\|\leqslant \frac{L}{2}\|y-x\|^2$$

Если зафиксируем $x_0 \in \mathbb{R}^n$, то:

$$\varphi_1(x) = f(x_0) + \langle f(x_0), x - x_0 \rangle - \frac{L}{2} \|x - x_0\|^2$$

$$\varphi_2(x) = f(x_0) + \langle f(x_0), x - x_0 \rangle + \frac{L}{2} \|x - x_0\|^2$$

Это две параболы, и для них верно, что

$$\varphi_1(x) \leqslant f(x) \leqslant \varphi_2(x) \; \forall x$$

Гладкость и сильная выпуклость

Гладкость и сильная выпуклость

Гладкая Выпуклая

Гладкая μ - сильно выпуклая

Негладкая Выпуклая

Негладкая μ - сильно выпуклая

Градиентный спуск

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h_i где $\|h\|_2=1$:

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $\|h\|_2=1$:

$$f(x+\alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h_i где $\|h\|_2=1$:

$$f(x+\alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Хотим, чтобы h было направлением убывания:

$$f(x+\alpha h)-f(x)<0$$

$$\alpha \langle \nabla f(x), h \rangle + o(\alpha) < 0$$

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $\|h\|_2=1$:

$$f(x + \alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Хотим, чтобы h было направлением убывания:

$$f(x + \alpha h) - f(x) < 0$$

$$\alpha \langle \nabla f(x), h \rangle + o(\alpha) < 0$$

Переходя к пределу при lpha o 0:

$$\langle \nabla f(x), h \rangle < 0$$

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $\|h\|_2=1$:

$$f(x+\alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Хотим, чтобы h было направлением убывания:

$$f(x + \alpha h) - f(x) < 0$$

$$\alpha \langle \nabla f(x), h \rangle + o(\alpha) < 0$$

Переходя к пределу при lpha o 0:

$$\langle \nabla f(x), h \rangle < 0$$

Более того, мы хотим, чтобы разница $f(x)-f(x+\alpha h)$ была максимальна:

$$h = \arg\max_h \left(- \langle \nabla f(x), h \rangle \right) = \arg\min_h \langle \nabla f(x), h \rangle.$$

Также из неравенства Коши-Буняковского получаем:

$$\begin{split} |\langle \nabla f(x), h \rangle| &\leq \|\nabla f(x)\|_2 \|h\|_2 \\ \langle \nabla f(x), h \rangle &\geq -\|\nabla f(x)\|_2 \|h\|_2 = -\|\nabla f(x)\|_2 \end{split}$$

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $\|h\|_2=1$:

$$f(x + \alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Хотим, чтобы h было направлением убывания:

$$f(x + \alpha h) - f(x) < 0$$

$$\alpha \langle \nabla f(x), h \rangle + o(\alpha) < 0$$

Переходя к пределу при lpha o 0:

$$\langle \nabla f(x), h \rangle < 0$$

Более того, мы хотим, чтобы разница $f(x)-f(x+\alpha h)$ была максимальна:

$$h = \arg\max_h \left(- \langle \nabla f(x), h \rangle \right) = \arg\min_h \langle \nabla f(x), h \rangle.$$

Также из неравенства Коши-Буняковского получаем:

$$\begin{split} |\langle \nabla f(x), h \rangle| &\leq \|\nabla f(x)\|_2 \|h\|_2 \\ \langle \nabla f(x), h \rangle &\geq -\|\nabla f(x)\|_2 \|h\|_2 = -\|\nabla f(x)\|_2 \end{split}$$

Таким образом, направление антиградиента

$$h = \arg\min_{h} \langle \nabla f(x), h \rangle = -\frac{\nabla f(x)}{\|\nabla f(x)\|_2}$$

представляет собой направление **наискорейшего локального** убывания функции f.

Рассмотрим линейное приближение дифференцируемой функции f вдоль направления h, где $\|h\|_2=1$:

$$f(x+\alpha h) = f(x) + \alpha \langle \nabla f(x), h \rangle + o(\alpha)$$

Хотим, чтобы h было направлением убывания:

$$f(x + \alpha h) - f(x) < 0$$

$$\alpha \langle \nabla f(x), h \rangle + o(\alpha) < 0$$

Переходя к пределу при lpha o 0:

$$\langle \nabla f(x), h \rangle < 0$$

Более того, мы хотим, чтобы разница $f(x)-f(x+\alpha h)$ была максимальна:

$$h = \arg\max_h \left(- \langle \nabla f(x), h \rangle \right) = \arg\min_h \langle \nabla f(x), h \rangle.$$

Также из неравенства Коши-Буняковского получаем:

$$\begin{split} |\langle \nabla f(x), h \rangle| &\leq \|\nabla f(x)\|_2 \|h\|_2 \\ \langle \nabla f(x), h \rangle &\geq -\|\nabla f(x)\|_2 \|h\|_2 = -\|\nabla f(x)\|_2 \end{split}$$

Таким образом, направление антиградиента

$$h = \arg\min_{h} \langle \nabla f(x), h \rangle = -\frac{\nabla f(x)}{\|\nabla f(x)\|_2}$$

представляет собой направление **наискорейшего локального** убывания функции f.

Итерация метода имеет вид:

$$x^{k+1} = x^k - \alpha \, \nabla f(x^k)$$

Сходимость алгоритма градиентного спуска

 \clubsuit Код для построения анимации ниже. Сходимость существенно зависит от выбора шага lpha:

Точный линейный поиск (метод наискорейшего спуска)

$$\alpha_k = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^+} f\big(x^k - \alpha \, \nabla f(x^k)\big)$$

Подход скорее теоретический, чем практический: он удобен для анализа сходимости, но точный линейный поиск часто затруднён, если вычисление функции занимает слишком много времени или стоит слишком дорого.

Интересное теоретическое свойство этого метода заключается в том, что градиенты на соседних итерациях ортогональны. Условие оптимальности по α_k даёт

$$\left. \frac{d}{d\alpha} \, f\big(x^k - \alpha \, \nabla f(x^k)\big) \right|_{\alpha = \alpha_k} = 0.$$

Точный линейный поиск (метод наискорейшего спуска)

$$\alpha_k = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^+} f\big(x^k - \alpha \, \nabla f(x^k)\big)$$

Подход скорее теоретический, чем практический: он удобен для анализа сходимости, но точный линейный поиск часто затруднён, если вычисление функции занимает слишком много времени или стоит слишком дорого.

Интересное теоретическое свойство этого метода заключается в том, что градиенты на соседних итерациях ортогональны. Условие оптимальности по α_k даёт

$$\left.\frac{d}{d\alpha}\,f\big(x^k-\alpha\,\nabla f(x^k)\big)\right|_{\alpha=\alpha_k}=0.$$

Условия оптимальности:

Точный линейный поиск (метод наискорейшего спуска)

$$\alpha_k = \operatorname*{arg\,min}_{\alpha \in \mathbb{R}^+} f\big(x^k - \alpha \, \nabla f(x^k)\big)$$

Подход скорее теоретический, чем практический: он удобен для анализа сходимости, но точный линейный поиск часто затруднён, если вычисление функции занимает слишком много времени или стоит слишком дорого.

Интересное теоретическое свойство этого метода заключается в том, что градиенты на соседних итерациях ортогональны. Условие оптимальности по α_k даёт

$$\left.\frac{d}{d\alpha}\,f\big(x^k-\alpha\,\nabla f(x^k)\big)\right|_{\alpha=\alpha_k}=0.$$

Условия оптимальности:

$$\nabla f(x^{k+1})^\top \nabla f(x^k) = 0$$

Рисунок 3. Наискорейший спуск

Открыть в Colab 🜲

Сильно выпуклые квадратичные функции

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \ \mathrm{rge} \ A \in \mathbb{S}^d_{++}.$$

Рассмотрим следующую задачу квадратичной оптимизации:

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \ \mathrm{где} \ A \in \mathbb{S}^d_{++}.$$

• Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \ \mathrm{где} \ A \in \mathbb{S}^d_{++}.$$

- Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.
- Во-вторых, у нас есть спектральное разложение матрицы $A=Q\Lambda Q^T.$

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \ \mathrm{где} \ A \in \mathbb{S}^d_{++}.$$

- Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.
- Во-вторых, у нас есть спектральное разложение матрицы $A=Q\Lambda Q^T.$
- Покажем, что мы можем сделать сдвиг координат, чтобы сделать анализ немного проще. Пусть $\hat{x}=Q^T(x-x^*)$, где x^* точка минимума исходной функции, определяемая как $Ax^*=b$. При этом $x=Q\hat{x}+x^*$.

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \ \mathrm{где} \ A \in \mathbb{S}^d_{++}.$$

- Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.
- Во-вторых, у нас есть спектральное разложение матрицы $A = Q \Lambda Q^T$.
- Покажем, что мы можем сделать сдвиг координат, чтобы сделать анализ немного проще. Пусть $\hat{x}=Q^T(x-x^*)$, где x^* точка минимума исходной функции, определяемая как $Ax^*=b$. При этом $x=Q\hat{x}+x^*$.

$$f(\hat{x}) = \frac{1}{2}(Q\hat{x} + x^*)^{\top}A(Q\hat{x} + x^*) - b^{\top}(Q\hat{x} + x^*)$$

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ rge } A \in \mathbb{S}^d_{++}.$$

- Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.
- Во-вторых, у нас есть спектральное разложение матрицы $A=Q\Lambda Q^T.$
- Покажем, что мы можем сделать сдвиг координат, чтобы сделать анализ немного проще. Пусть $\hat{x}=Q^T(x-x^*)$, где x^* точка минимума исходной функции, определяемая как $Ax^*=b$. При этом $x=Q\hat{x}+x^*$.

$$\begin{split} f(\hat{x}) &= \frac{1}{2} (Q\hat{x} + x^*)^\top A (Q\hat{x} + x^*) - b^\top (Q\hat{x} + x^*) \\ &= \frac{1}{2} \hat{x}^T Q^T A Q\hat{x} + \frac{1}{2} (x^*)^T A (x^*) + (x^*)^T A Q\hat{x} - b^T Q\hat{x} - b^T x^* \end{split}$$

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \ \mathrm{где} \ A \in \mathbb{S}^d_{++}.$$

- Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.
- Во-вторых, у нас есть спектральное разложение матрицы $A=Q\Lambda Q^T.$
- Покажем, что мы можем сделать сдвиг координат, чтобы сделать анализ немного проще. Пусть $\hat{x}=Q^T(x-x^*)$, где x^* точка минимума исходной функции, определяемая как $Ax^*=b$. При этом $x=Q\hat{x}+x^*$.

$$\begin{split} f(\hat{x}) &= \frac{1}{2} (Q\hat{x} + x^*)^\top A (Q\hat{x} + x^*) - b^\top (Q\hat{x} + x^*) \\ &= \frac{1}{2} \hat{x}^T Q^T A Q\hat{x} + \frac{1}{2} (x^*)^T A (x^*) + (x^*)^T A Q\hat{x} - b^T Q\hat{x} - b^T x^* \\ &= \frac{1}{2} \hat{x}^T \Lambda \hat{x} + \frac{1}{2} (x^*)^T A (x^*) + (x^*)^T A Q\hat{x} - (x^*)^T A^T Q\hat{x} - (x^*)^T A x^* \end{split}$$

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \text{ rge } A \in \mathbb{S}^d_{++}.$$

- Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.
- Во-вторых, у нас есть спектральное разложение матрицы $A=Q\Lambda Q^T.$
- Покажем, что мы можем сделать сдвиг координат, чтобы сделать анализ немного проще. Пусть $\hat{x}=Q^T(x-x^*)$, где x^* точка минимума исходной функции, определяемая как $Ax^*=b$. При этом $x=Q\hat{x}+x^*$.

$$\begin{split} f(\hat{x}) &= \frac{1}{2} (Q\hat{x} + x^*)^\top A (Q\hat{x} + x^*) - b^\top (Q\hat{x} + x^*) \\ &= \frac{1}{2} \hat{x}^T Q^T A Q\hat{x} + \frac{1}{2} (x^*)^T A (x^*) + (x^*)^T A Q\hat{x} - b^T Q\hat{x} - b^T x^* \\ &= \frac{1}{2} \hat{x}^T \Lambda \hat{x} + \frac{1}{2} (x^*)^T A (x^*) + (x^*)^T A Q\hat{x} - (x^*)^T A^T Q\hat{x} - (x^*)^T A x^* \\ &= \frac{1}{2} \hat{x}^T \Lambda \hat{x} - \frac{1}{2} (x^*)^T A x^* \end{split}$$

$$\min_{x \in \mathbb{R}^d} f(x) = \min_{x \in \mathbb{R}^d} \frac{1}{2} x^\top A x - b^\top x + c, \ \mathrm{где} \ A \in \mathbb{S}^d_{++}.$$

- Во-первых, без ограничения общности мы можем установить c=0, что не повлияет на процесс оптимизации.
- Во-вторых, у нас есть спектральное разложение матрицы $A=Q\Lambda Q^T.$
- Покажем, что мы можем сделать сдвиг координат, чтобы сделать анализ немного проще. Пусть $\hat{x}=Q^T(x-x^*)$, где x^* точка минимума исходной функции, определяемая как $Ax^*=b$. При этом $x=Q\hat{x}+x^*$.

$$\begin{split} f(\hat{x}) &= \frac{1}{2} (Q\hat{x} + x^*)^\top A (Q\hat{x} + x^*) - b^\top (Q\hat{x} + x^*) \\ &= \frac{1}{2} \hat{x}^T Q^T A Q\hat{x} + \frac{1}{2} (x^*)^T A (x^*) + (x^*)^T A Q\hat{x} - b^T Q\hat{x} - b^T x^* \\ &= \frac{1}{2} \hat{x}^T \Lambda \hat{x} + \frac{1}{2} (x^*)^T A (x^*) + (x^*)^T A Q\hat{x} - (x^*)^T A^T Q\hat{x} - (x^*)^T A x^* \\ &= \frac{1}{2} \hat{x}^T \Lambda \hat{x} - \frac{1}{2} (x^*)^T A x^* \simeq \frac{1}{2} \hat{x}^T \Lambda \hat{x} \end{split}$$

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k$$

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \end{split}$$

$$x^{k+1}=x^k-lpha^k
abla f(x^k)=x^k-lpha^k\Lambda x^k \ =(I-lpha^k\Lambda)x^k \ x_{(i)}^{k+1}=(1-lpha^k\lambda_{(i)})\,x_{(i)}^k$$
 для i -й координаты

Теперь мы можем работать с функцией $f(x)=rac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для i-й координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для i-й координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. . .

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для i-й координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. . .

$$|1-\alpha\mu|<1$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для i-й координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. . .

$$\begin{aligned} |1-\alpha\mu| < 1 \\ -1 < 1-\alpha\mu < 1 \end{aligned}$$

Теперь мы можем работать с функцией $f(x)=rac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для i-й координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. . .

Помним, что
$$\lambda_{\min} = \mu > 0$$
, $\lambda_{\max} = L \geq \mu$.

$$\begin{aligned} |1 - \alpha \mu| &< 1 \\ -1 &< 1 - \alpha \mu < 1 \\ \alpha &< \frac{2}{\mu} \quad \alpha \mu > 0 \end{aligned}$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для i-й координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. . .

Помним, что
$$\lambda_{\min}=\mu>0$$
, $\lambda_{\max}=L\geq\mu.$

$$\begin{split} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & \\ \alpha < \frac{2}{\mu} & \alpha\mu > 0 \end{split}$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для i-й координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. . .

$$\begin{split} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & -1 < 1-\alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha\mu > 0 \end{split}$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для } i\text{-}\mathsf{\check{u}} \text{ координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. . .

$$\begin{split} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & -1 < 1-\alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha\mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{split}$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для } i\text{-}\mathsf{\check{u}} \text{ координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. . .

$$\begin{split} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & -1 < 1-\alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha\mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{split}$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

Выберем α , минимизирующий худший знаменатель прогрессии

 $\rho^* = \min \rho(\alpha)$

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для i-й координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. .

$$\begin{split} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & -1 < 1-\alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha\mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{split}$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

Выберем lpha, минимизирующий худший знаменатель прогрессии

 $\rho^* = \min \rho(\alpha) = \min \max_i |1 - \alpha \lambda_{(i)}|$

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для i-й координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. .

$$\begin{split} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & -1 < 1-\alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha\mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{split}$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

Выберем lpha, минимизирующий худший знаменатель прогрессии

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для i-й координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min_{\alpha} \max \big\{ |1 - \alpha \mu|, |1 - \alpha L| \big\} \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. .

$$\begin{split} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & -1 < 1-\alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha\mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{split}$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для i-й координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Выберем lpha, минимизирующий худший знаменатель прогрессии

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min_{\alpha} \max \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\} \\ \alpha^* : \quad 1 - \alpha^* \mu = \alpha^* L - 1 \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. .

$$\begin{split} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & -1 < 1-\alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha\mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{split}$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для i-й координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. .

Помним, что $\lambda_{\min} = \mu > 0$, $\lambda_{\max} = L \ge \mu$.

$$\begin{split} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & -1 < 1-\alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha\mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{split}$$

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min_{\alpha} \max \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\} \\ \alpha^* : \quad 1 - \alpha^* \mu = \alpha^* L - 1 \\ \alpha^* &= \frac{2}{\mu + L} \end{split}$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для i-й координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. .

Помним, что $\lambda_{\min} = \mu > 0$, $\lambda_{\max} = L \ge \mu$.

$$\begin{split} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & -1 < 1-\alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha\mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{split}$$

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min_{\alpha} \max \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\} \\ \alpha^* : \quad 1 - \alpha^* \mu = \alpha^* L - 1 \\ \alpha^* &= \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu} \end{split}$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для } i\text{-}\mathsf{\check{u}} \text{ координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. . .

Помним, что $\lambda_{\min} = \mu > 0$, $\lambda_{\max} = L \ge \mu$.

$$\begin{split} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & -1 < 1-\alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha\mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{split}$$

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min_{\alpha} \max \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\} \\ \alpha^* &: \quad 1 - \alpha^* \mu = \alpha^* L - 1 \\ \alpha^* &= \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu} \\ |x^k_{(i)}| &\leq \left(\frac{L - \mu}{L + \mu}\right)^k |x^0_{(i)}| \end{split}$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для } i\text{-}\mathsf{\check{u}} \text{ координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. . .

Помним, что $\lambda_{\min} = \mu > 0$, $\lambda_{\max} = L \geq \mu$.

$$\begin{split} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & -1 < 1-\alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha\mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{split}$$

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min_{\alpha} \max \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\} \\ \alpha^* : \quad 1 - \alpha^* \mu = \alpha^* L - 1 \\ \alpha^* &= \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu} \\ |x^k_{(i)}| &\leq \left(\frac{L - \mu}{L + \mu}\right)^k |x^0_{(i)}| \\ \|x^k\|_2 &\leq \left(\frac{L - \mu}{L + \mu}\right)^k \|x^0\|_2 \end{split}$$

Теперь мы можем работать с функцией $f(x)=\frac{1}{2}x^T\Lambda x$ с $x^*=0$ без ограничения общности (убрав крышку из \hat{x})

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) = x^k - \alpha^k \Lambda x^k \\ &= (I - \alpha^k \Lambda) x^k \\ x^{k+1}_{(i)} &= (1 - \alpha^k \lambda_{(i)}) \, x^k_{(i)} \quad \text{для i-й координаты} \\ x^k_{(i)} &= (1 - \alpha \, \lambda_{(i)})^k \, x^0_{(i)} \quad \text{при постоянном шаге } \alpha^k = \alpha \end{split}$$

Используем постоянный шаг $lpha^k=lpha$. Условие сходимости:

$$\rho(\alpha) = \max_i |1 - \alpha \lambda_{(i)}| < 1$$

. .

Помним, что $\lambda_{\min} = \mu > 0$, $\lambda_{\max} = L \geq \mu$.

$$\begin{split} |1-\alpha\mu| < 1 & |1-\alpha L| < 1 \\ -1 < 1-\alpha\mu < 1 & -1 < 1-\alpha L < 1 \\ \alpha < \frac{2}{\mu} & \alpha\mu > 0 & \alpha < \frac{2}{L} & \alpha L > 0 \end{split}$$

$$\begin{split} \rho^* &= \min_{\alpha} \rho(\alpha) = \min_{\alpha} \max_{i} |1 - \alpha \lambda_{(i)}| \\ &= \min_{\alpha} \max \left\{ |1 - \alpha \mu|, |1 - \alpha L| \right\} \\ \alpha^* : \quad 1 - \alpha^* \mu = \alpha^* L - 1 \\ \alpha^* &= \frac{2}{\mu + L} \quad \rho^* = \frac{L - \mu}{L + \mu} \\ |x^k_{(i)}| &\leq \left(\frac{L - \mu}{L + \mu}\right)^k |x^0_{(i)}| \\ \|x^k\|_2 &\leq \left(\frac{L - \mu}{L + \mu}\right)^k \|x^0\|_2 \quad f(x^k) \leq \left(\frac{L - \mu}{L + \mu}\right)^{2k} f(x^0) \end{split}$$

Таким образом, имеем линейную сходимость по аргументу со скоростью $\frac{\varkappa-1}{\varkappa+1}=1-\frac{2}{\varkappa+1}$, где $\varkappa=\frac{L}{\mu}$ — число обусловленности квадратичной задачи.

и	ho	Итераций до уменьшения ошибки по аргументу в $10\mathrm{pas}$	Итераций до уменьшения ошибки по функции в 10
1.1	0.05	1	1
2	0.33	3	2
5	0.67	6	3
10	0.82	12	6
50	0.96	58	29
100	0.98	116	58
500	0.996	576	288
1000	0.998	1152	576

Число обусловленности ${\mathcal U}$

Случай PL-функций

PL-функции. Линейная сходимость градиентного спуска без выпуклости

Говорят, что f удовлетворяет условию Поляка-Лоясиевича (PL), если для некоторого $\mu>0$ выполняется

$$\|\nabla f(x)\|^2 \geq 2\mu (f(x) - f^*) \quad \forall x$$

Интересно, что градиентный спуск может сходиться линейно даже без выпуклости.

Следующие функции удовлетворяют условию PL, но не являются выпуклыми. **РК**од

$$f(x) = x^2 + 3\sin^2(x)$$

PL-функции. Линейная сходимость градиентного спуска без выпуклости

Говорят, что f удовлетворяет условию Поляка-Лоясиевича (PL), если для некоторого $\mu>0$ выполняется

$$\|\nabla f(x)\|^2 \geq 2\mu (f(x) - f^*) \quad \forall x$$

Интересно, что градиентный спуск может сходиться линейно даже без выпуклости.

Следующие функции удовлетворяют условию PL, но не являются выпуклыми. **РК**од

$$f(x) = x^2 + 3\sin^2(x)$$

Function, that satisfies
Polyak- Lojasiewicz condition

8

6 $\stackrel{\cancel{\times}}{=}$ 4

2

0 $\stackrel{-3}{=}$ -3 -2 -1 0 1 2 3

$$f(x,y) = \frac{(y - \sin x)^2}{2}$$

Non-convex PL function

1 Theorem

Рассмотрим задачу

$$\min_{x \in \mathbb{R}^d} f(x)$$

и предположим, что f является PL-функцией с константой μ и L-гладкой, для некоторых $L \ge \mu > 0$.

Рассмотрим последовательность $(x^k)_{k\in\mathbb{N}}$, сгенерированную методом градиентного спуска из точки x^0 с постоянным шагом α , удовлетворяющим $0<\alpha\leq \frac{1}{L}$. Пусть $f^*=\min_{x\in\mathbb{R}^d}f(x)$. Тогда:

$$f(x^k)-f^*\leq (1-\alpha\mu)^k(f(x^0)-f^*).$$

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2$$

$$\begin{split} f(x^{k+1}) & \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2 \\ & = f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2 \end{split}$$

$$\begin{split} f(x^{k+1}) & \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2 \\ & = f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2 \\ & = f(x^k) - \frac{\alpha}{2} \left(2 - L\alpha\right) \|\nabla f(x^k)\|^2 \end{split}$$

$$\begin{split} f(x^{k+1}) & \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2 \\ & = f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2 \\ & = f(x^k) - \frac{\alpha}{2} \left(2 - L\alpha\right) \|\nabla f(x^k)\|^2 \\ & \leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2, \end{split}$$

$$\begin{split} f(x^{k+1}) & \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2 \\ & = f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2 \\ & = f(x^k) - \frac{\alpha}{2} \left(2 - L\alpha\right) \|\nabla f(x^k)\|^2 \\ & \leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2, \end{split}$$

Используем L-гладкость вместе с правилом обновления, чтобы записать:

$$\begin{split} f(x^{k+1}) & \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2 \\ & = f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2 \\ & = f(x^k) - \frac{\alpha}{2} \left(2 - L\alpha\right) \|\nabla f(x^k)\|^2 \\ & \leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2, \end{split}$$

где в последнем неравенстве использована гипотеза о шаге $\alpha L \leq 1.$

Используем L-гладкость вместе с правилом обновления, чтобы записать:

$$\begin{split} f(x^{k+1}) & \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|^2 \\ & = f(x^k) - \alpha \|\nabla f(x^k)\|^2 + \frac{L\alpha^2}{2} \|\nabla f(x^k)\|^2 \\ & = f(x^k) - \frac{\alpha}{2} \left(2 - L\alpha\right) \|\nabla f(x^k)\|^2 \\ & \leq f(x^k) - \frac{\alpha}{2} \|\nabla f(x^k)\|^2, \end{split}$$

где в последнем неравенстве использована гипотеза о шаге $\alpha L \leq 1$.

Теперь используем свойство PL-функции и получаем:

$$f(x^{k+1}) \leq f(x^k) - \alpha \mu (f(x^k) - f^*).$$

Вычтя f^* из обеих частей этого неравенства и применив рекурсию, мы получим искомый результат.

Если функция f(x) дифференцируема и μ -сильно выпукла, то она является PL-функцией.

Доказательство

По критерию сильной выпуклости первого порядка:

$$f(y) \geq f(x) + \nabla f(x)^T (y-x) + \tfrac{\mu}{2} \|y-x\|_2^2$$

$$f(x^*) \geq f(x) + \nabla f(x)^T (x^* - x) + \tfrac{\mu}{2} \|x^* - x\|_2^2$$

Если функция f(x) дифференцируема и μ -сильно выпукла, то она является PL-функцией.

Доказательство

По критерию сильной выпуклости первого порядка:

$$f(y) \geq f(x) + \nabla f(x)^T (y-x) + \tfrac{\mu}{2} \|y-x\|_2^2$$

$$\begin{split} f(x^*) &\geq f(x) + \nabla f(x)^T (x^* - x) + \tfrac{\mu}{2} \|x^* - x\|_2^2 \\ f(x) - f(x^*) &\leq \nabla f(x)^T (x - x^*) - \tfrac{\mu}{2} \|x^* - x\|_2^2 = \end{split}$$

Если функция f(x) дифференцируема и μ -сильно выпукла, то она является PL-функцией.

Доказательство

По критерию сильной выпуклости первого порядка:

$$f(y) \geq f(x) + \nabla f(x)^T (y-x) + \tfrac{\mu}{2} \|y-x\|_2^2$$

$$\begin{split} f(x^*) &\geq f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} \|x^* - x\|_2^2 \\ f(x) - f(x^*) &\leq \nabla f(x)^T (x - x^*) - \frac{\mu}{2} \|x^* - x\|_2^2 = \\ &= \left(\nabla f(x) - \frac{\mu}{2} (x^* - x)\right)^T (x - x^*) = \end{split}$$

Если функция f(x) дифференцируема и μ -сильно выпукла, то она является PL-функцией.

Доказательство

По критерию сильной выпуклости первого порядка:

$$f(y) \geq f(x) + \nabla f(x)^T (y-x) + \tfrac{\mu}{2} \|y-x\|_2^2$$

$$\begin{split} f(x^*) &\geq f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} \|x^* - x\|_2^2 \\ f(x) - f(x^*) &\leq \nabla f(x)^T (x - x^*) - \frac{\mu}{2} \|x^* - x\|_2^2 = \\ &= \left(\nabla f(x) - \frac{\mu}{2} (x^* - x)\right)^T (x - x^*) = \\ &= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x) - \sqrt{\mu} (x^* - x)\right)^T \sqrt{\mu} (x - x^*) \end{split}$$

Если функция f(x) дифференцируема и μ -сильно выпукла, то она является PL-функцией.

Доказательство

По критерию сильной выпуклости первого порядка:

$$f(y) \geq f(x) + \nabla f(x)^T (y-x) + \tfrac{\mu}{2} \|y-x\|_2^2$$

$$\begin{split} f(x^*) &\geq f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} \|x^* - x\|_2^2 \\ f(x) - f(x^*) &\leq \nabla f(x)^T (x - x^*) - \frac{\mu}{2} \|x^* - x\|_2^2 = \\ &= \left(\nabla f(x) - \frac{\mu}{2} (x^* - x)\right)^T (x - x^*) = \\ &= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x) - \sqrt{\mu} (x^* - x)\right)^T \sqrt{\mu} (x - x^*) \end{split}$$

i Theorem

Если функция f(x) дифференцируема и μ -сильно выпукла, то она является PL-функцией.

Доказательство

По критерию сильной выпуклости первого порядка:

$$f(y) \geq f(x) + \nabla f(x)^T (y-x) + \tfrac{\mu}{2} \|y-x\|_2^2$$

Пусть
$$a=\frac{1}{\sqrt{\mu}}\nabla f(x)$$
 и
$$b=\sqrt{\mu}(x-x^*)-\frac{1}{\sqrt{\mu}}\nabla f(x)$$

Положим $y = x^*$:

$$\begin{split} f(x^*) &\geq f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} \|x^* - x\|_2^2 \\ f(x) - f(x^*) &\leq \nabla f(x)^T (x - x^*) - \frac{\mu}{2} \|x^* - x\|_2^2 = \\ &= \left(\nabla f(x) - \frac{\mu}{2} (x^* - x)\right)^T (x - x^*) = \\ &= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x) - \sqrt{\mu} (x^* - x)\right)^T \sqrt{\mu} (x - x^*) \end{split}$$

1 Theorem

Если функция f(x) дифференцируема и μ -сильно выпукла, то она является PL-функцией.

Доказательство

По критерию сильной выпуклости первого порядка:

$$f(y) \geq f(x) + \nabla f(x)^T (y-x) + \tfrac{\mu}{2} \|y-x\|_2^2$$

Положим $y = x^*$:

$$\begin{split} f(x^*) &\geq f(x) + \nabla f(x)^T (x^* - x) + \frac{\mu}{2} \|x^* - x\|_2^2 \\ f(x) - f(x^*) &\leq \nabla f(x)^T (x - x^*) - \frac{\mu}{2} \|x^* - x\|_2^2 = \\ &= \left(\nabla f(x) - \frac{\mu}{2} (x^* - x)\right)^T (x - x^*) = \\ &= \frac{1}{2} \left(\frac{2}{\sqrt{\mu}} \nabla f(x) - \sqrt{\mu} (x^* - x)\right)^T \sqrt{\mu} (x - x^*) \end{split}$$

Пусть
$$a=\frac{1}{\sqrt{\mu}}\nabla f(x)$$
 и
$$b=\sqrt{\mu}(x-x^*)-\frac{1}{\sqrt{\mu}}\nabla f(x)$$
 Тогда $a+b=\sqrt{\mu}(x-x^*)$ и
$$a-b=\frac{2}{\sqrt{\mu}}\nabla f(x)-\sqrt{\mu}(x-x^*)$$

Любая μ -сильно выпуклая дифференцируемая функция является PL-функцией

$$f(x) - f(x^*) \leq \frac{1}{2} \left(\frac{1}{\mu} \| \nabla f(x) \|_2^2 - \left\| \sqrt{\mu} (x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x) \right\|_2^2 \right)$$

Любая μ -сильно выпуклая дифференцируемая функция является PL-функцией

$$\begin{split} f(x) - f(x^*) &\leq \frac{1}{2} \left(\frac{1}{\mu} \|\nabla f(x)\|_2^2 - \left\| \sqrt{\mu} (x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x) \right\|_2^2 \right) \\ f(x) - f(x^*) &\leq \frac{1}{2\mu} \|\nabla f(x)\|_2^2, \end{split}$$

Любая μ -сильно выпуклая дифференцируемая функция является PL-функцией

$$\begin{split} f(x) - f(x^*) &\leq \frac{1}{2} \left(\frac{1}{\mu} \|\nabla f(x)\|_2^2 - \left\| \sqrt{\mu} (x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x) \right\|_2^2 \right) \\ f(x) - f(x^*) &\leq \frac{1}{2\mu} \|\nabla f(x)\|_2^2, \end{split}$$

$$\begin{split} f(x) - f(x^*) & \leq \frac{1}{2} \left(\frac{1}{\mu} \|\nabla f(x)\|_2^2 - \left\| \sqrt{\mu}(x - x^*) - \frac{1}{\sqrt{\mu}} \nabla f(x) \right\|_2^2 \right) \\ f(x) - f(x^*) & \leq \frac{1}{2\mu} \|\nabla f(x)\|_2^2, \end{split}$$

которое является точным условием PL. Это означает, что мы уже имеем доказательство линейной сходимости для любой сильно выпуклой функции.

Выпуклый гладкий случай

Выпуклый гладкий случай

1 Theorem

Предположим, что $f:\mathbb{R}^d o \mathbb{R}$ является выпуклой и L-гладкой функцией, для некоторого L>0.

Пусть $(x^k)_{k\in\mathbb{N}}$ — последовательность итераций, сгенерированная методом градиентного спуска из точки x^0 с постоянным шагом lpha, удовлетворяющим $0<lpha\leq \frac{1}{L}$. Тогда для всех $k\in\mathbb{N}$ справедливо:

$$f(x^k) - f(x) \le \frac{\|x^0 - x\|^2}{2\alpha k}.$$

Заметим, что мы здесь никак не упоминаем точку минимума. То есть, это сходимость $\forall x \in \mathbb{R}^d$ (в том числе и до точки минимума).

(1)

Наш инструментарий:

1. Выпуклость:

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle, \ \forall x, y.$$

24

Наш инструментарий:

1. Выпуклость:

$$f(x) \ge f(y) + \left\langle \nabla f(y), x - y \right\rangle, \ \forall x, y. \tag{1}$$

2. Гладкость:

$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} \|x - y\|^2, \ \forall x, y. \tag{2}$$

Наш инструментарий:

1. Выпуклость:

$$f(x) \geq f(y) + \left\langle \nabla f(y), x - y \right\rangle, \ \forall x, y. \tag{1}$$

2. Гладкость:

$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} \|x - y\|^2, \ \forall x, y.$$
 (2)

3. 3-point identity (по сути, квадрат разности):

$$\|a-b\|^2 = \|a-c-(b-c)\|^2 = \|a-c\|^2 - 2\langle a-c,b-c\rangle + \|b-c\|^2$$

переносим справа все кроме $\|b-c\|^2$ налево и меняем местами все факторы внутри каждого из перенесенных членов:

$$||b - c||^2 = ||b - a||^2 + 2\langle c - a, c - b\rangle - ||c - a||^2.$$
(3)

Наш инструментарий:

1. Выпуклость:

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle, \ \forall x, y. \tag{1}$$

2. Гладкость:

$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} \|x - y\|^2, \ \forall x, y.$$
 (2)

3. 3-point identity (по сути, квадрат разности):

$$\|a-b\|^2 = \|a-c-(b-c)\|^2 = \|a-c\|^2 - 2\langle a-c,b-c\rangle + \|b-c\|^2$$

переносим справа все кроме $\|b-c\|^2$ налево и меняем местами все факторы внутри каждого из перенесенных членов:

$$\|b - c\|^2 = \|b - a\|^2 + 2\langle c - a, c - b\rangle - \|c - a\|^2.$$
 (3)

• Подставляем в (3) $b\equiv x$, $c\equiv x^{k+1}$, $a\equiv x_k$ и домножаем все на $\frac{1}{2}$:

(4)

Наш инструментарий:

1. Выпуклость:

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle, \ \forall x, y.$$
 (1)

2. Гладкость:

$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} \|x - y\|^2, \ \forall x, y.$$
 (2)

3. 3-point identity (по сути, квадрат разности):

$$\|a-b\|^2 = \|a-c-(b-c)\|^2 = \|a-c\|^2 - 2\langle a-c,b-c\rangle + \|b-c\|^2$$

переносим справа все кроме $\|b-c\|^2$ налево и меняем местами все факторы внутри каждого из перенесенных членов:

$$||b - c||^2 = ||b - a||^2 + 2\langle c - a, c - b\rangle - ||c - a||^2.$$
(3)

• Подставляем в (3) $b\equiv x$, $c\equiv x^{k+1}$, $a\equiv x_k$ и домножаем все на $\frac{1}{2}$:

$$\frac{1}{2}\|x - x^{k+1}\|^2 = \frac{1}{2}\|x - x^k\|^2 + \langle x^{k+1} - x^k, x^{k+1} - x \rangle - \frac{1}{2}\|x^{k+1} - x^k\|^2$$
(4)

Наш инструментарий:

1. Выпуклость:

$$f(x) \geq f(y) + \left\langle \nabla f(y), x - y \right\rangle, \ \forall x, y. \tag{1}$$

2. Гладкость:

$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} \|x - y\|^2, \ \forall x, y.$$
 (2)

3. 3-point identity (по сути, квадрат разности):

$$\|a-b\|^2 = \|a-c-(b-c)\|^2 = \|a-c\|^2 - 2\langle a-c,b-c\rangle + \|b-c\|^2$$

переносим справа все кроме $\|b-c\|^2$ налево и меняем местами все факторы внутри каждого из перенесенных членов:

$$||b - c||^2 = ||b - a||^2 + 2\langle c - a, c - b\rangle - ||c - a||^2.$$
(3)

• Подставляем в (3) $b\equiv x$, $c\equiv x^{k+1}$, $a\equiv x_k$ и домножаем все на $\frac{1}{2}$:

$$\begin{split} \frac{1}{2}\|x - x^{k+1}\|^2 &= \frac{1}{2} \|x - x^k\|^2 + \langle x^{k+1} - x^k, x^{k+1} - x \rangle - \frac{1}{2} \|x^{k+1} - x^k\|^2 \\ &= \frac{1}{2} \|x - x^k\|^2 - \alpha \left\langle \nabla f(x^k), x^{k+1} - x \right\rangle - \frac{1}{2} \|x^{k+1} - x^k\|^2 \,. \end{split} \tag{4}$$

$$-\left.\alpha\left\langle\nabla f(x^k),x^{k+1}-x\right\rangle=\alpha\left(\left\langle\nabla f(x^k),x-x^k\right\rangle+\left\langle\nabla f(x^k),x^k-x^{k+1}\right\rangle\right)$$

$$\begin{split} - & \alpha \left\langle \nabla f(x^k), x^{k+1} - x \right\rangle = \alpha \left(\left\langle \nabla f(x^k), x - x^k \right\rangle + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \\ & \stackrel{\text{(1)}}{\leq} \alpha \left(f(x) - f(x^k) + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \end{split}$$

$$\begin{split} - & \alpha \left\langle \nabla f(x^k), x^{k+1} - x \right\rangle = \alpha \left(\left\langle \nabla f(x^k), x - x^k \right\rangle + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \\ & \stackrel{\text{(1)}}{\leq} \alpha \left(f(x) - f(x^k) + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \\ & \stackrel{\text{(2)}}{\leq} \alpha \left(f(x) - f(x^{k+1}) + \frac{L}{2} \left\| x^{k+1} - x^k \right\|^2 \right), \end{split}$$

• Посмотрим внимательнее на скалярное произведение $-\alpha \left\langle \nabla f(x^k), x^{k+1} - x \right\rangle$ и воспользуемся сначала выпуклостью (1), а потом – гладкостью (2):

$$\begin{split} - & \alpha \left\langle \nabla f(x^k), x^{k+1} - x \right\rangle = \alpha \left(\left\langle \nabla f(x^k), x - x^k \right\rangle + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \\ & \stackrel{\text{(1)}}{\leq} \alpha \left(f(x) - f(x^k) + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \\ & \stackrel{\text{(2)}}{\leq} \alpha \left(f(x) - f(x^{k+1}) + \frac{L}{2} \left\| x^{k+1} - x^k \right\|^2 \right), \end{split}$$

• Подставляем это все обратно в (4) и используем условие на размер шага $\alpha \leq \frac{1}{L}$:

• Посмотрим внимательнее на скалярное произведение $-\alpha \left\langle \nabla f(x^k), x^{k+1} - x \right\rangle$ и воспользуемся сначала выпуклостью (1), а потом – гладкостью (2):

$$\begin{split} -\alpha \left\langle \nabla f(x^k), x^{k+1} - x \right\rangle &= \alpha \left(\left\langle \nabla f(x^k), x - x^k \right\rangle + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \\ &\stackrel{\text{(1)}}{\leq} \alpha \left(f(x) - f(x^k) + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \\ &\stackrel{\text{(2)}}{\leq} \alpha \left(f(x) - f(x^{k+1}) + \frac{L}{2} \left\| x^{k+1} - x^k \right\|^2 \right), \end{split}$$

• Подставляем это все обратно в (4) и используем условие на размер шага $\alpha \leq \frac{1}{L}$:

$$\frac{1}{2}\left\|x-x^{k+1}\right\|^2 \leq \frac{1}{2}\left\|x-x^k\right\|^2 + \alpha\left(f(x)-f(x^{k+1})\right) + \left(\frac{\alpha L}{2} - \frac{1}{2}\right)\left\|x^{k+1} - x^k\right\|^2$$

• Посмотрим внимательнее на скалярное произведение $-\alpha \left\langle \nabla f(x^k), x^{k+1} - x \right\rangle$ и воспользуемся сначала выпуклостью (1), а потом – гладкостью (2):

$$\begin{split} - & \alpha \left\langle \nabla f(x^k), x^{k+1} - x \right\rangle = \alpha \left(\left\langle \nabla f(x^k), x - x^k \right\rangle + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \\ & \stackrel{\text{(1)}}{\leq} \alpha \left(f(x) - f(x^k) + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \\ & \stackrel{\text{(2)}}{\leq} \alpha \left(f(x) - f(x^{k+1}) + \frac{L}{2} \left\| x^{k+1} - x^k \right\|^2 \right), \end{split}$$

• Подставляем это все обратно в (4) и используем условие на размер шага $lpha \leq \frac{1}{L}$:

$$\begin{split} &\frac{1}{2} \left\| x - x^{k+1} \right\|^2 \leq \frac{1}{2} \left\| x - x^k \right\|^2 + \alpha \left(f(x) - f(x^{k+1}) \right) + \left(\frac{\alpha L}{2} - \frac{1}{2} \right) \left\| x^{k+1} - x^k \right\|^2 \\ &\frac{1}{2} \left\| x - x^{k+1} \right\|^2 - \frac{1}{2} \left\| x - x^k \right\|^2 \leq \alpha \left(f(x) - f(x^{k+1}) \right) + \left(\frac{\alpha L}{2} - \frac{1}{2} \right) \left\| x^{k+1} - x^k \right\|^2 \end{split}$$

• Посмотрим внимательнее на скалярное произведение $-\alpha \left\langle \nabla f(x^k), x^{k+1} - x \right\rangle$ и воспользуемся сначала выпуклостью (1), а потом – гладкостью (2):

$$\begin{split} -\alpha \left\langle \nabla f(x^k), x^{k+1} - x \right\rangle &= \alpha \left(\left\langle \nabla f(x^k), x - x^k \right\rangle + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \\ &\stackrel{\text{(1)}}{\leq} \alpha \left(f(x) - f(x^k) + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \\ &\stackrel{\text{(2)}}{\leq} \alpha \left(f(x) - f(x^{k+1}) + \frac{L}{2} \left\| x^{k+1} - x^k \right\|^2 \right), \end{split}$$

• Подставляем это все обратно в (4) и используем условие на размер шага $lpha \leq rac{1}{L}$:

$$\begin{split} \frac{1}{2} \left\| x - x^{k+1} \right\|^2 &\leq \frac{1}{2} \left\| x - x^k \right\|^2 + \alpha \left(f(x) - f(x^{k+1}) \right) + \left(\frac{\alpha L}{2} - \frac{1}{2} \right) \left\| x^{k+1} - x^k \right\|^2 \\ \frac{1}{2} \left\| x - x^{k+1} \right\|^2 &- \frac{1}{2} \left\| x - x^k \right\|^2 \leq \alpha \left(f(x) - f(x^{k+1}) \right) + \left(\frac{\alpha L}{2} - \frac{1}{2} \right) \left\| x^{k+1} - x^k \right\|^2 \\ &\leq \frac{1}{L} \left(f(x) - f(x^{k+1}) \right). \end{split}$$

• Посмотрим внимательнее на скалярное произведение $-\alpha \left\langle \nabla f(x^k), x^{k+1} - x \right\rangle$ и воспользуемся сначала выпуклостью (1), а потом – гладкостью (2):

$$\begin{split} -\alpha \left\langle \nabla f(x^k), x^{k+1} - x \right\rangle &= \alpha \left(\left\langle \nabla f(x^k), x - x^k \right\rangle + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \\ &\stackrel{\text{(1)}}{\leq} \alpha \left(f(x) - f(x^k) + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \\ &\stackrel{\text{(2)}}{\leq} \alpha \left(f(x) - f(x^{k+1}) + \frac{L}{2} \left\| x^{k+1} - x^k \right\|^2 \right), \end{split}$$

• Подставляем это все обратно в (4) и используем условие на размер шага $lpha \leq rac{1}{L}$:

$$\begin{split} \frac{1}{2} \left\| x - x^{k+1} \right\|^2 &\leq \frac{1}{2} \left\| x - x^k \right\|^2 + \alpha \left(f(x) - f(x^{k+1}) \right) + \left(\frac{\alpha L}{2} - \frac{1}{2} \right) \left\| x^{k+1} - x^k \right\|^2 \\ \frac{1}{2} \left\| x - x^{k+1} \right\|^2 &- \frac{1}{2} \left\| x - x^k \right\|^2 \leq \alpha \left(f(x) - f(x^{k+1}) \right) + \left(\frac{\alpha L}{2} - \frac{1}{2} \right) \left\| x^{k+1} - x^k \right\|^2 \\ &\leq \frac{1}{L} \left(f(x) - f(x^{k+1}) \right). \end{split}$$

• Переносим правую часть влево, левую - вправо и домножаем на L:

25

• Посмотрим внимательнее на скалярное произведение $-\alpha \left\langle \nabla f(x^k), x^{k+1} - x \right\rangle$ и воспользуемся сначала выпуклостью (1), а потом – гладкостью (2):

$$\begin{split} -\alpha \left\langle \nabla f(x^k), x^{k+1} - x \right\rangle &= \alpha \left(\left\langle \nabla f(x^k), x - x^k \right\rangle + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \\ &\stackrel{\text{(1)}}{\leq} \alpha \left(f(x) - f(x^k) + \left\langle \nabla f(x^k), x^k - x^{k+1} \right\rangle \right) \\ &\stackrel{\text{(2)}}{\leq} \alpha \left(f(x) - f(x^{k+1}) + \frac{L}{2} \left\| x^{k+1} - x^k \right\|^2 \right), \end{split}$$

• Подставляем это все обратно в (4) и используем условие на размер шага $lpha \leq rac{1}{L}$:

$$\begin{split} \frac{1}{2} \left\| x - x^{k+1} \right\|^2 &\leq \frac{1}{2} \left\| x - x^k \right\|^2 + \alpha \left(f(x) - f(x^{k+1}) \right) + \left(\frac{\alpha L}{2} - \frac{1}{2} \right) \left\| x^{k+1} - x^k \right\|^2 \\ \frac{1}{2} \left\| x - x^{k+1} \right\|^2 &- \frac{1}{2} \left\| x - x^k \right\|^2 \leq \alpha \left(f(x) - f(x^{k+1}) \right) + \left(\frac{\alpha L}{2} - \frac{1}{2} \right) \left\| x^{k+1} - x^k \right\|^2 \\ &\leq \frac{1}{L} \left(f(x) - f(x^{k+1}) \right). \end{split}$$

• Переносим правую часть влево, левую - вправо и домножаем на L:

$$f(x^{k+1}-f(x)) \leq \frac{L}{2} \left(\left\|x-x_k\right\|^2 - \left\|x-x_{k+1}\right\|^2 \right).$$

• Берем среднее от левой и правой частей от по всем k от 0 до N-1:

(5)

• Берем среднее от левой и правой частей от по всем k от 0 до N-1:

$$\frac{1}{N} \sum_{k=0}^{N-1} \left(f(x^{k+1}) - f(x) \right) \leq \frac{L}{2N} \sum_{k=0}^{N-1} \left(\left\| x - x^k \right\|^2 - \left\| x - x^{k+1} \right\| \right)$$

(5)

(5)

• Берем среднее от левой и правой частей от по всем k от 0 до N-1:

$$\begin{split} \frac{1}{N} \sum_{k=0}^{N-1} \left(f(x^{k+1}) - f(x) \right) &\leq \frac{L}{2N} \sum_{k=0}^{N-1} \left(\left\| x - x^k \right\|^2 - \left\| x - x^{k+1} \right\| \right) \\ &= \frac{L}{2N} \left(\left\| x - x^0 \right\|^2 - \left\| x - x^{k+1} \right\|^2 \right) \end{split}$$

• Берем среднее от левой и правой частей от по всем k от 0 до N-1:

$$\frac{1}{N} \sum_{k=0}^{N-1} \left(f(x^{k+1}) - f(x) \right) \le \frac{L}{2N} \sum_{k=0}^{N-1} \left(\left\| x - x^k \right\|^2 - \left\| x - x^{k+1} \right\| \right) \\
= \frac{L}{2N} \left(\left\| x - x^0 \right\|^2 - \left\| x - x^{k+1} \right\|^2 \right) \\
\le \frac{L}{2N} \left\| x - x^0 \right\|^2.$$
(5)

(5)

• Берем среднее от левой и правой частей от по всем k от 0 до N-1:

$$\begin{split} \frac{1}{N} \sum_{k=0}^{N-1} \left(f(x^{k+1}) - f(x) \right) &\leq \frac{L}{2N} \sum_{k=0}^{N-1} \left(\left\| x - x^k \right\|^2 - \left\| x - x^{k+1} \right\| \right) \\ &= \frac{L}{2N} \left(\left\| x - x^0 \right\|^2 - \left\| x - x^{k+1} \right\|^2 \right) \\ &\leq \frac{L}{2N} \left\| x - x^0 \right\|^2. \end{split}$$

• Так как для выпуклых функций (1) градиентный спуск монотонен:

$$f(x^{k}) \ge f(x^{k+1}) + \langle \nabla f(x^{k+1}), x^{k} - x^{k+1} \rangle$$

= $f(x^{k+1}) + \alpha \|\nabla f(x^{k+1})\|^{2}$
 $\ge f(x^{k+1}),$

(5)

• Берем среднее от левой и правой частей от по всем k от 0 до N-1:

$$\begin{split} \frac{1}{N} \sum_{k=0}^{N-1} \left(f(x^{k+1}) - f(x) \right) &\leq \frac{L}{2N} \sum_{k=0}^{N-1} \left(\left\| x - x^k \right\|^2 - \left\| x - x^{k+1} \right\| \right) \\ &= \frac{L}{2N} \left(\left\| x - x^0 \right\|^2 - \left\| x - x^{k+1} \right\|^2 \right) \\ &\leq \frac{L}{2N} \left\| x - x^0 \right\|^2. \end{split}$$

• Так как для выпуклых функций (1) градиентный спуск монотонен:

$$\begin{split} f(x^k) &\geq f(x^{k+1}) + \left< \nabla f(x^{k+1}), x^k - x^{k+1} \right> \\ &= f(x^{k+1}) + \alpha \left\| \nabla f(x^{k+1}) \right\|^2 \\ &\geq f(x^{k+1}), \end{split}$$

$$\text{ To } \tfrac{1}{N} \sum_{i=0}^{N-1} \left(f(x^{k+1}) - f(x) \right) \geq \min_{i=0,\dots,N-1} f(x^{i+1}) - f(x) = f(x^N) - f(x).$$

• Берем среднее от левой и правой частей от по всем k от 0 до N-1:

$$\frac{1}{N} \sum_{k=0}^{N-1} \left(f(x^{k+1}) - f(x) \right) \le \frac{L}{2N} \sum_{k=0}^{N-1} \left(\left\| x - x^k \right\|^2 - \left\| x - x^{k+1} \right\| \right) \\
= \frac{L}{2N} \left(\left\| x - x^0 \right\|^2 - \left\| x - x^{k+1} \right\|^2 \right) \\
\le \frac{L}{2N} \left\| x - x^0 \right\|^2.$$
(5)

• Так как для выпуклых функций (1) градиентный спуск монотонен:

$$\begin{split} f(x^k) &\geq f(x^{k+1}) + \left\langle \nabla f(x^{k+1}), x^k - x^{k+1} \right\rangle \\ &= f(x^{k+1}) + \alpha \left\| \nabla f(x^{k+1}) \right\|^2 \\ &\geq f(x^{k+1}), \end{split}$$

то $\frac{1}{N}\sum_{i=0}^{N-1}\left(f(x^{k+1})-f(x)\right)\geq \min_{i=0,\dots,N-1}f(x^{i+1})-f(x)=f(x^N)-f(x).$ Подставляя это в (5), получаем искомый результат.

Итог

Градиентный спуск:

$$\min_{x \in \mathbb{R}^n} f(x)$$

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k)$$

гладкий (не выпуклый)	гладкий и выпуклый	гладкий и сильно выпуклый (или PL)
$\ \nabla f(x^k)\ ^2 \sim \mathcal{O}\left(\frac{1}{k}\right)$	$f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{k}\right)$	$\ x^k - x^*\ ^2 \sim \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$
$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$k_{arepsilon} \sim \mathcal{O}\left(arkappa \log rac{1}{arepsilon} ight)$

$$\min_{x\in\mathbb{R}^n}\left\{f(x)=\frac{1}{2}x^TAx-b^Tx\right\},\ \mu=0,\ L=100.$$

Convex quadratics. n=60, random matrix.

$$\min_{x\in\mathbb{R}^n}\left\{f(x)=\frac{1}{2}x^TAx-b^Tx\right\},\ \mu=10,\ L=110.$$

Strongly convex quadratics. n=60, random matrix.

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) = \frac{1}{2} x^T A x - b^T x \right\}, \; \mu = 10, \; L = 1000.$$

Strongly convex quadratics. n=60, random matrix.

$$\min_{x\in\mathbb{R}^n}\left\{f(x)=\frac{1}{2}x^TAx-b^Tx\right\},\ \mu=10,\ L=1000.$$

Strongly convex quadratics. n=60, clustered matrix.

$$\min_{x\in\mathbb{R}^n}\left\{f(x)=\frac{1}{2}x^TAx-b^Tx\right\},\ \mu=10,\ L=1000.$$

Strongly convex quadratics. n=600, clustered matrix.

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) = \frac{1}{2} x^T A x - b^T x \right\}, \; \mu = 10, \; L = 1000.$$

Strongly convex quadratics. n=60, uniform spectrum matrix.

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) = \frac{1}{2} x^T A x - b^T x \right\}$$

Strongly convex quadratics. n=60, Hilbert matrix.

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) = \frac{\mu}{2} \|x\|_2^2 + \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i \langle a_i, x \rangle)) \right\}$$

Convex binary logistic regression. mu=0.

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) = \frac{\mu}{2} \|x\|_2^2 + \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i \langle a_i, x \rangle)) \right\}$$

Strongly convex binary logistic regression. mu=0.1.

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) = \frac{\mu}{2} \|x\|_2^2 + \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i \langle a_i, x \rangle)) \right\}$$

Regularized binary logistic regression. n=300. m=1000. μ =0

$$\min_{x \in \mathbb{R}^n} \left\{ f(x) = \frac{\mu}{2} \|x\|_2^2 + \frac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i \langle a_i, x \rangle)) \right\}$$

Regularized binary logistic regression. n=300. m=1000. μ =1

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x(t)). \tag{GF}$$

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x(t)). \tag{GF}$$

Дискретизируем его на равномерной сетке с шагом α :

$$\frac{x^{k+1}-x^k}{\alpha}=-\nabla f(x^k),$$

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x(t)). \tag{GF}$$

Дискретизируем его на равномерной сетке с шагом α :

$$\frac{x^{k+1} - x^k}{\alpha} = -\nabla f(x^k),$$

где $x^k\equiv x(t_k)$ и $\alpha=t_{k+1}-t_k$ — шаг сетки. Отсюда получаем выражение для x^{k+1} :

$$x^{k+1} = x^k - \alpha \, \nabla f(x^k),$$

являющееся точной формулой обновления градиентного спуска.

Открыть в Colab 🖺

Рассмотрим дифференциальное уравнение градиентного потока:

$$\frac{dx}{dt} = -\nabla f(x(t)). \tag{GF}$$

Дискретизируем его на равномерной сетке с шагом α :

$$\frac{x^{k+1}-x^k}{\alpha}=-\nabla f(x^k),$$

где $x^k \equiv x(t_k)$ и $\alpha = t_{k+1} - t_k$ — шаг сетки. Отсюда получаем выражение для x^{k+1} :

$$x^{k+1} = x^k - \alpha \, \nabla f(x^k),$$

являющееся точной формулой обновления градиентного спуска. Открыть в Colab \clubsuit

