Homework 10

Name: Shashank Singh¹ 36-705 Intermediate Statistics Due: Thursday, December 4, 2014

1. Since $R(g) = \mathbb{E}[|Y - g(X)|] = \mathbb{E}[\mathbb{E}[|Y - g(X)| \mid X]]$, it suffices to show that, for any X, $\mathbb{E}[|Y - g(X)| \mid X] \ge \mathbb{E}[|Y - m(X)| \mid X]$. If $m(X) \ge g(X)$, then

$$\begin{split} & \mathbb{E}[|Y - g(X)| \mid X] - \mathbb{E}[|Y - m(x)| \mid X] \\ & \geq \int_{-\infty}^{m(X)} |g(X) - m(X)| p(y|X) \, dy - \int_{m(X)}^{\infty} |g(X) - m(X)| p(y|X) \, dy = 0. \end{split}$$

where the equality is by definition of m. The case $g(X) \leq m(X)$ is identical up to signs.

2. For $i \in \{n+1,\ldots,2n\}$, let $Z_i := (Y_i - \hat{g}(X_i))^2$, and let $Z_i' = Z_i | \mathcal{D}_1$. Then, for all $n \in \mathbb{N}$, $\overline{Z'} = \overline{Z} | \mathcal{D}_1 = \hat{R} | \mathcal{D}_1$. Also, by the triangle inequality, $|Z'| \le (|Y| + |\hat{g}(X)|)^2 \le (B + C)^2$, and so all moments of Z' exist. Since $R = \mathbb{E}[Z']$, by the Weak Law of Large Numbers,

$$(\hat{R} - R)|\mathcal{D}_1 = (\overline{Z'} - \mathbb{E}[Z']) \to 0$$

in probability.

3. Let $\alpha := \mathbb{E}[Y|X=1] - \mathbb{E}[Y|X=0]$. Then,

$$\begin{split} \mathbb{E}[2X_iY_i] &= \mathbb{E}[2X_iY_i|X_i = 0]\mathbb{P}[X_i = 0] + \mathbb{E}[2X_iY_i|X_i = 1]\mathbb{P}[X_i = 1] \\ &= 0 \cdot \frac{1}{2} + 2\mathbb{E}[Y_i|X_i = 1] \cdot \frac{1}{2} = \mathbb{E}[Y_i|X_i = 1], \end{split}$$

and, similarly, $\mathbb{E}[2(1-X_i)Y_i] = \mathbb{E}[Y_i|X=0]$. Thus, by the Weak Law of Large Numbers, (assuming the necessary moments of Y are finite), $\hat{\alpha}$ is a consistent estimator of α .

Note that, given X, Y = Y(X), and, since X is randomly assigned, $\mathbb{E}[Y(1)|X=1] = \mathbb{E}[Y(1)]$ and $\mathbb{E}[Y(0)|X=0] = \mathbb{E}[Y(0)]$. Hence,

$$\begin{split} \alpha &= \mathbb{E}[Y|X=1] - \mathbb{E}[Y|X=0] \\ &= \mathbb{E}[Y(1)|X=1] - \mathbb{E}[Y(0)|X=0] = \mathbb{E}[Y(1)] - \mathbb{E}[Y(0)] = \theta. \end{split}$$

¹sss1@andrew.cmu.edu