

Fig 2b

3/15

Fig 3

Fig 4

710 5a

6/15

Fig 6A

1 atggcggccg aagcctcgga gagcgggcca gcgctgcatg agctcatgcg cgaggcggag 61 atcagcctgc tcgagtgcaa ggtgtgcttt gagaagtttg gccaccggca gcagcggcgc 121 ccgcgcaacc tgtcctgcgg ccacgtggtc tgcctggcct gcgtggccgc cctggcgcac 181 ccgcgcactc tggccctcga gtgcccattc tgcaggcgag cttgccgggg ctgcgacacc 241 aggraction tocoggigate graceteata gageteetgg geteageget tegecagtee 301 ccggccgcc atcgcgccgc ccccagcgcc cccggagccc tcacctgcca ccacaccttc 361 ggcggctggg ggaccctggt caaccccacc ggactggcgc tttgtcccaa gacggggcgt 421 gtcgtggtgg tgcacgacgg caggaggcgt gtcaagattt ttgactcagg gggaggatgc 481 gcgcatcagt ttggagagaa gggggacgct gcccaagaca ttaggtaccc tgtggatgtc 541 accatcacca acgactgcca tgtggttgtc actgacgccg gcgatcgctc catcaaagtg 601 tttgattttt ttggccagat caagcttgtc attggaggcc aattctcctt accttggggt 661 qtqqaqacca cccctcaqaa tqqqattqtq qtaactgatq cggaggcagg gtccctgcac 721 ctcctggacg tcgacttcgc ggaaggggtc cttcggagaa ctgaaaggtt gcaagctcat 781 ctgtgcaatc cccgaggggt ggcagtgtct tggctcaccg gggccattgc ggtcctggag 841 cacccctgg ccctggggac tggggtttgc agcaccaggg tgaaagtgtt tagctcaagt 901 atgcagettg teggeeaagt ggatacettt gggetgagee tetaetttee etecaaaata 961 actgcctccg ctgtgacctt tgatcaccag ggaaatgtga ttgttgcaga tacatctggt 1021 ccaqctatcc tttgcttagg aaaacctgag gagtttccag taccgaagcc catggtcact 1081 catggtcttt cgcatcctgt ggctcttacc ttcaccaagg agaattctct tcttgtgctg 1141 gacacagcat ctcattctat aaaagtctat aaagttgact gggggtgatg ggctggggtg 1201 ggtccctgga atcagaagca ctagtgctgc cattaatgaa ttgtttaacc ctggataagt 1261 cacttaaact catctatcca ggcagggata attaaaacca tctggcagac ttacaaagct 1321 tgggacagtt attggagatt aatctaccat ttattgaatg catactctgt gcaaggaaat 1381 ttgcaaatat tagcttattt aatctgtact atccagtgag gtaatttctt ccccccaag 1441 atagagtcaa gctctgtcac ccaggctgga gtgcagaagc atgatcacag ctcactacag

7/15

Fig 6A (cont'd)

1501 tttcaacgtc ccccgctcag gtggtccttc cacctcagcc tcccaagtag ctgggaccac
1561 aagtgtgcat taccacactc agctaatttt tgtattttgg cagagatggg gtttcaccat
1621 gttgcccagg ctggtctcaa actcctgagt tcaagcaatc caccttcctc ggcctcccaa
1681 agtactagga gtacaggcat agccacttgc tcagccataa tttttattat taatctcatt
1741 gtacaagtga gaaaactgag acccagagag cttaagtgac ttcctcgagg tcatagttac
1801 ttactgcctt agtcccaatt tgaattcaat tctgattcca aataagttgc gcttaaataa
1861 gacaacagat gtgggaaaaa tatgtgaatg tgtagtgttg ctatgtgtac tgtctttaca
1921 agtagctaat tatttagca caaagatgtg caaagaaagg agactttatg gagagttcag
1981 gagaaaaagg attttgtggt ggccatcact ttcattcaat ttgcgactgc tctgatggca
2041 cattagatga agttactgtt gatcctgagt tacgtgaata agaaaaacaa ttgaactgct
2101 tattaaaaaa gtaaacatgt

8/15

Fig 6B

EPM2B protein sequence

MAAEASESGPALHELMREAEISLLECKVCFEKFGHRQQRRPRNLSCGHVV CLACVAALAHPRTLALECPFCRRACRGCDTSDCLPVLHLIELLGSALRQS PAAHRAAPSAPGALTCHHTFGGWGTLVNPTGLALCPKTGRVVVVHDGRRR VKIFDSGGGCAHQFGEKGDAAQDIRYPVDVTITNDCHVVVTDAGDRSIKV FDFFGQIKLVIGGQFSLPWGVETTPQNGIVVTDAEAGSLHLLDVDFAEGV LRRTERLQAHLCNPRGVAVSWLTGAIAVLEHPLALGTGVCSTRVKVFSSS MQLVGQVDTFGLSLYFPSKITASAVTFDHQGNVIVADTSGPAILCLGKPE EFPVPKPMVTHGLSHPVALTFTKENSLLVLDTASHSIKVYKVDWG

9/15

Fig 7A

Promoter (5') sequence:

1	CCCCAAGGCC	CCCCGGCCC	CCAGGCAACC	CCAGGCCCCC	AGGCAACCCA
51	AGGCCCCCG	GCCCCAAGCC	CCCCAGGTTC	CCGGCCCCAA	GAACCAAGCC
101	CCCCGGCCCC	CCGCCCCAG	CACCCAGCAC	CAAGCCCCCG	CCCCCCCCC
151	CAAGCACCCA	GCCCCAGCAC	CCAGCCCCG	CCCCAGCCCC	AGCCCCAGCA
201	CCCAGCCCCC	GCCCCAGCAC	CCAGCCCCAG	CACCCAGCCC	CCGCCCCAGC
251	CCCAGCCCCC	GTCCCCCCC	CCAGCACCCA	GCCCCAGCCC	CAGCAGCAGC
301	ACCCAGCAGG	GGACTGCAAA	GCGTAGGCTA	CCCCAGGTGG	AACACCGTGT
351	TCTAGTTTTG	CTTTGCCGTT	TGCAGCCTGG	GCGATCGGGG	GCCACCGCTC
401	GAGCCTGTTT	CCCGTCGCGG	AAAGCGGAGC	CGCCCCGCCC	CGCCCCCCC
451	CTGCCTGAAG	GTCACGGGCC	TGGGCCTGCG	GCGCGCGGTG	CGGCCCGCGA
501	GCGTCCGCTC	CCGCGCCCTC	CGCAGTCAGC	GCCCGCCCGC	CCGCCGGGG
551	ACCGCAGGCC	GCGGCCGAGA	GGCTGCGCGC	TGCGCCCGCG	ACGTCAGGCC
601	CCGCCCCGCC	CCGCCCGCC	CCGTGACCGG	CCCCGGCCCC	GGCCCCGGCC
651	ccacccca	ACCGAGCGGC	GCCCGCGGA	GCGGCGGCGG	CCGCGCG

Coding sequence:

ATG 701 GGGGCCGAAG CGGCGGGGAG CGGGCGGGCG CTGCGGGAGC TGGTGCGCGA 751 GGCCGAGGTC AGCTTGCTCG AGTGCAAGGT GTGCTTCGAG AGGTTCGGCC 801 ACCGCCAGCA GCGGCGCCCG CGCAACcTGC CCTGCGGCCA CGTGGTGTGC 851 CTGGCCTGCG TGGCGGCCCT GGCGCACCCG CGGACGCTGG CCCTGGAGTG 901 CCCCTTCTGC CGCCGGGCCT GCCGCGGCTG CGACACCAGC GACTGCCTGC 951 CGGTGCTTCA CCTCCTGGAG CTCCTGGGCT CGGCGCTGCG CCCAGCCCCC 1001 GCCGCCCCC GCGCCGCCC CCGCGCCGCC CCCTGCGCCC CGGGCGCCCCT 1051 CGCCTGCCAT CACGCGTTCG GAGGCTGGGG GACCCTGGTC AACCCCACGG 1101 GGCTGGCGCT GTGCCCCAAG ACCGGGCGGG TCGTGGTGGT GCACGACGGC 1151 AGGAGGCGGG TCAAGATCTT TGACTCCGGG GGAGGATGCG CCCATCAGTT 1201 TGGAGAGAAG GGGGAGGCTG CCCAGGACAT TAGGTACCCC CTGGACGTCG 1251 CCGTCACCAA CGACTGCCAC GTGGTTGTCA CCGACGCCGG CGACCGCTCC 1301 ATCAAAGTGT TTGATTTCTT TGGCCAGATC AAGCTCGTCA TTGGAGACCA 1351 GTTTTCCTTA CCTTGGGGCG TGGAGACCAC CCCTCAGAAT GGGGTCGTGG 1401 TAACTGACGC CGAGGCAGGG TCGCTGCACC TGCTGGAAGT CGACTTTGCA 1451 GAAGGAGCCC TCCAGAGGAC TGAAAAGCTG CAAGGTCATC TGTGCAACCC 1501 GCGAGGGGTG GCCGTGTCCT GGCTCACTGG GGCCATTGCG GTCCTGGAGC 1551 ACCCTCCGGG GCTGGGGGGCT GGGGCGGGCA GCACCGCCGT GAAGGTGTTC 1601 AGCCCAACTA TGCAGCTGAT CGGCCAGGTG GATACCTTTG GGCTCAGCCT 1651 CTTTTTCCCC TCTAGAATAA CCGCCTCCGC CGTGACCTTT GATCACCAGG 1701 GGAATGTGAT TGTTGCAGAT ACTTCTAGTC AGGCCGTCCT ATGCTTGGGA 1751 CAGCCTGAGG AATTTCCAGT CCTGAAGCCC ATCATCACCC ATGGTCTTTC 1801 CCATCCTGTG GCACTGACCT TCACCAAGGA GAATTCTCTT CTTGTGCTGG 1851 ACAGTGCAGC CCATTCCGTA AAAGTCTACA AGGCTGACTG GGGGTAA

10/15

Fig 7A (cont'd)

3' UTR:

	TGG				
1901	GGTGTGGTGG	GGGTCCTGGA	ACTGCCACTA	ATCCAGTTTA	ACCCTGGATG
1951	AATTAATCCC		CGGGGATCAT	TATAACTGCC	TGACAGACTT
2001	ATAAAGGTTG	AAGGTAATTA	TTAAAGAATA	ATAATGAAGT	CTACCGTTTA
2051	TTGAGTTATG	TGCTCCCTGT	GCTAGGAAAC	TTTGCAAATA	TTAGCTCAGC
2101	GTGTCCTTAC	AGTGGTACCC	AGGGAGGTAA	TGCCCATCAT	TAATCCCATT
2151	TTAGAGATGA	GAAAACTGAG	ACCCGAGGGT	TTAAGTGATT	CTCTGAAGGT
2201	CATGTTTACT	TACTGTGACA	GTCACAATGG	GAACTCTATT	CTGACTCCCC
2251	AATCCCTTGC	TCCTAAGTAG	GATAACAGAT	GTGAGAAAAC	GACAGCATGT
2301	GTCTATATGT	TGTTACTGTG	TGTACTCTCT	TTACAGGTAG	CTATTTCTCT
2351	TGGTTGGACG	TGCAGAGAAA	GGAGACTTTC	TAGAGAGTTC	AAGAGGAAAA
2401	AGGGTAGTGT	GATGAGCATG	GACGTGAGTG	TCATTGAACT	TGCTGGTTCT
2451	TTGATGTCAC	AGTAGGTAGA	ATGACTGTGG	ATCCTTCAAC	TGCCCTTGGG
2501	AAAGGTAAAC	ATGTCTGTTG	GGACCTGGAT	GTCCTCCATC	ATAGGAACCC
2551	AGGAAATACT	AGTTGGTTGC	TGCAGAAAGG	CTTGTGTGGA	CATAAGTTCA
2601	AAACTACTGC	CGACCACCGT	ACATTCACAC	ACCTCCAGTG	GGAGATGGCT
2651	GGAAGACAGT	CCTGTGACAG	GTCTGCATTC	ATAGAACAAG	ANGCCGCCAC
2701 [.]	CGTTGGTTCA	CGGCAGAATG	AGTTTGCCTG	CCTCTTCATA	ATCTGTGNCN
2751	ACCCGAAACC	CTTTTGTGAT	AGAGTTTTTC	TCTGTGCCAT	TTNAATTTGT
2801	CCCATTGCAC	ACACTGTTTT	CCCCTAACCA	GCTCCCTTGA	TGCTNAGCTA
2851	GCATTTAGGC	CACTGGTAAA	CCCCTGTATA	CTTCTTGAGT	TGAAGTTAAG
2901	CTTTGACCCA	GATAANGNCT	GCTTTAATAC	NTGCAGTCGA	NTGGACCGAA
2951	TAAGGGGGAA	ATTTCAGGTG	AGGTGGCCGG	GTTCTTTATN	AACCGGTTTT
3001	GGTTTGTA				

11/15

Fig 7B

Met Gly Ala Glu Ala Ala Gly Ser Gly Arg Ala Leu Arg Glu Leu Val Arg Glu Ala Glu Val Ser Leu Leu Glu Cys Lys Val Cys Phe Glu Arg 25 Phe Gly His Arg Gln Gln Arg Arg Pro Arg Asn Leu Pro Cys Gly His 40 Val Val Cys Leu Ala Cys Val Ala Ala Leu Ala His Pro Arg Thr Leu Ala Leu Glu Cys Pro Phe Cys Arg Arg Ala Cys Arg Gly Cys Asp Thr 75 70 Ser Asp Cys Leu Pro Val Leu His Leu Leu Glu Leu Leu Gly Ser Ala 85 Leu Arg Pro Ala Pro Ala Ala Pro Arg Ala Ala Pro Arg Ala Ala Pro 105 100 Cys Ala Pro Gly Ala Leu Ala Cys His His Ala Phe Gly Gly Trp Gly 120 115 Thr Leu Val Asn Pro Thr Gly Leu Ala Leu Cys Pro Lys Thr Gly Arg 130 135 Val Val Val His Asp Gly Arg Arg Val Lys Ile Phe Asp Ser 160 145 Gly Gly Cys Ala His Gln Phe Gly Glu Lys Gly Glu Ala Ala Gln 175 165 170 Asp Ile Arg Tyr Pro Leu Asp Val Ala Val Thr Asn Asp Cys His Val 190 180 Val Val Thr Asp Ala Gly Asp Arg Ser Ile Lys Val Phe Asp Phe Phe 195 Gly Gln Ile Lys Leu Val Ile Gly Asp Gln Phe Ser Leu Pro Trp Gly 210 215

12/15

Fig 7B (cont'd)

Val 225	Glu	Thr	Thr	Pro	Gln 230	Asn	Gly	Val	Val	Val 235	Thr	Asp	Ala	Glu	Ala 240
Gly	Ser	Leu	His	Leu 245	Leu	Glu	Val	Asp	Phe 250	Ala	Glu	Gly	Ala	Leu 255	Gln
Arg	Thr	Glu	Lys 260	Leu	Gln	Gly	His	Leu 265	Cys	Asn	Pro	Arg	Gly 270	Val	Ala
Val	Ser	Trp 275	Leu	Thr	Gly	Ala	Ile 280	Ala	Val	Leu	Glu	His 285	Pro	Pro	Gly
Leu	Gly 290	Ala	Gly	Ala	Gly	Ser 295	Thr	Ala	Val	Lys	Val 300	Phe	Ser	Pro	Thr
Met 305	Gln	Leu	Ile	Gly	Gln 310	Val	Asp	Thr	Phe	Gly 315	Leu	Ser	Leu	Phe	Phe 320
		_		325					330		_		Gln	335	
			340	_				345					Leu 350	_	
		355					360					365	Gly		
	370		•			375		•			380		Leu		
Asp 385	Ser	Ala	Ala	His	Ser 390	Val	Lys	Val	Tyr	Lys 395	Ala	Asp	Trp	Gly	

13/15

Fig 8

14/15

Fig 9

15/15

Fig 10

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

•
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.