FMI, Info, Master I Logică avansată pentru informatică

T		ien
$\mathbf{H} \cdot \mathbf{V}$	วท	าคก
$\mathbf{L} \mathbf{L} \mathbf{\Lambda}$	CLLL.	ш

Nume:	_
Prenume:	
Grupa:	

P1	P2	P3	P4	P5	P6	P7	Oficiu	TOTAL
/3	/2	/1,5	/1,5	/2	/2	/2	1	/15

1 Logică de ordinul întâi

(P1) [3 puncte]

- (i) Să se arate că pentru orice limbaj $\mathcal L$ de ordinul I și orice formule φ , ψ ale lui $\mathcal L$, avem:
 - (a) $\forall x(\varphi \wedge \psi) \vDash \exists x\varphi \wedge \exists x\psi$, pentru orice variabilă x.
 - (b) $\forall x (\varphi \lor \psi) \vDash \varphi \lor \forall x \psi$, pentru orice variabilă $x \not\in FV(\varphi)$.
- (ii) Să se dea exemplu de limbaj $\mathcal L$ de ordinul I și de formule φ, ψ ale lui $\mathcal L$ astfel încât:

$$\exists x \varphi \wedge \exists x \psi \not\vDash \forall x (\varphi \wedge \psi).$$

Demonstrație:

(i) Fie $\mathcal A$ o $\mathcal L$ -structură și $e:V\to A.$

```
(a) Obţinem
           \mathcal{A} \vDash \forall x (\varphi \land \psi)[e] \Leftrightarrow \text{pentru orice } a \in A, \ \mathcal{A} \vDash (\varphi \land \psi)[e_{x \leftarrow a}]
                                                                pentru orice a \in A, (A \vDash \varphi[e_{x \leftarrow a}] \text{ si } A \vDash \psi[e_{x \leftarrow a}])
                                                                pentru orice a \in A, \mathcal{A} \models \varphi[e_{x \leftarrow a}] şi
                                                                 pentru orice a \in A, A \vDash \psi[e_{x \leftarrow a}]
                                                                există a \in A a.î. \mathcal{A} \models \varphi[e_{x \leftarrow a}] și
                                                                 există a \in A a.î. \mathcal{A} \models \psi[e_{x \leftarrow a}]
                                                                 \mathcal{A} \vDash (\exists x \varphi)[e] \text{ si } \mathcal{A} \vDash (\exists x \psi)[e]
                                                                 \mathcal{A} \models (\exists x \varphi \land \exists x \psi)[e].
(b) Obţinem
```

$$\mathcal{A} \vDash \forall x (\varphi \lor \psi)[e] \Leftrightarrow \text{ pentru orice } a \in A, \ \mathcal{A} \vDash (\varphi \lor \psi)[e_{x \leftarrow a}]$$

$$\Leftrightarrow \text{ pentru orice } a \in A, \ (\mathcal{A} \vDash \varphi[e_{x \leftarrow a}] \text{ sau } \mathcal{A} \vDash \psi[e_{x \leftarrow a}])$$

$$\Leftrightarrow \text{ pentru orice } a \in A, \ (\mathcal{A} \vDash \varphi[e] \text{ sau } \mathcal{A} \vDash \psi[e_{x \leftarrow a}])$$

$$\text{ conform Propoziției 1.26}$$

$$\Leftrightarrow \mathcal{A} \vDash \varphi[e] \text{ sau pentru orice } a \in A, \ \mathcal{A} \vDash \psi[e_{x \leftarrow a}]$$

$$\Leftrightarrow \mathcal{A} \vDash \varphi[e] \text{ sau } \mathcal{A} \vDash \forall x \psi[e]$$

$$\Leftrightarrow \mathcal{A} \vDash (\varphi \lor \forall x \psi)[e].$$

- (ii) Considerăm $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{\times}, \dot{S}, \dot{0}), \mathcal{L}_{ar}$ -structura $\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0)$ și $e: V \to \mathbb{N}$ o evaluare arbitrară. Fie $\dot{2}:=\dot{S}\dot{S}\dot{0}, \ \varphi:=\neg(x\dot{<}\dot{0})$ și $\psi := (\dot{x} \dot{<} \dot{2})$. Obţinem că
 - $\mathcal{N} \models (\exists x \varphi \land \exists x \psi)[e] \Leftrightarrow \mathcal{N} \models (\exists x \varphi)[e] \text{ si } \mathcal{N} \models (\exists x \psi)[e] \Leftrightarrow \text{exist} \check{\mathbf{a}}$ $n \in \mathbb{N} \ \text{a.i.} \ n \geq 0$ și există $n \in \mathbb{N} \ \text{a.i.} \ n < 2$, amândouă adevărate. Prin urmare, $\mathcal{N} \models (\exists x \varphi \land \exists x \psi)[e]$
 - $\mathcal{N} \models \forall x (\varphi \land \psi)[e] \Leftrightarrow \text{pentru orice } n \in \mathbb{N} \text{ avem } (\varphi \land \psi)[e_{x \leftarrow n}] \Leftrightarrow$ pentru orice $n \in \mathbb{N}$ avem $(n \ge 0 \text{ si } n < 2)$, ceea ce nu este adevărat (luăm n := 3, de exemplu). Prin urmare, $\mathcal{N} \not\vDash \forall x (\varphi \land \psi)[e]$.

(P2) [2 puncte] Fie \mathcal{L} un limbaj de ordinul întâi care conține:

- (i) două simboluri de relații unare Q, R și un simbol de relație binară S;
- (ii) un simbol de constantă d.
- (i) Să se găsească o formă normală prenex pentru următoarea formulă a lui \mathcal{L} :

$$\varphi \ = \ \exists x (S(x,d) \land S(x,z)) \to (\forall y R(y) \to \neg \forall z \neg Q(z)).$$

(ii) Să se găsească o formă normală Skolem pentru enunțul

$$\psi = \exists v_1 \forall v_3 \exists v_2 \forall v_4 \exists v_5 ((S(v_1, v_2) \to S(v_2, v_5)) \lor R(v_4) \land \neg (Q(v_5) \to Q(v_3))).$$

Demonstrație:

(i)

$$\varphi_{2} \quad \exists \quad \forall x \bigg(S(x,d) \land S(x,z) \rightarrow (\forall y R(y) \rightarrow \neg \forall z \neg Q(z)) \bigg)$$

$$\exists \quad \forall x \bigg(S(x,d) \land S(x,z) \rightarrow (\forall y R(y) \rightarrow \exists z \neg \neg Q(z)) \bigg)$$

$$\exists \quad \forall x \bigg(S(x,d) \land S(x,z) \rightarrow \exists y (R(y) \rightarrow \exists z \neg \neg Q(z)) \bigg)$$

$$\exists \quad \forall x \bigg(S(x,d) \land S(x,z) \rightarrow \exists y \exists z (R(y) \rightarrow \neg \neg Q(z)) \bigg)$$

$$\exists \quad \forall x \exists y \bigg(S(x,d) \land S(x,z) \rightarrow \exists z (R(y) \rightarrow \neg \neg Q(z)) \bigg)$$

$$\exists \quad \forall x \exists y \exists y \bigg(S(x,d) \land S(x,z) \rightarrow \exists v (R(y) \rightarrow \neg \neg Q(v)) \bigg)$$

$$\exists \quad \forall x \exists y \exists v \bigg(S(x,d) \land S(x,z) \rightarrow (R(y) \rightarrow \neg \neg Q(v)) \bigg)$$

(ii) Obţinem

$$\psi^{1} = \forall v_{3} \exists v_{2} \forall v_{4} \exists v_{5} \big((S(c, v_{2}) \to S(v_{2}, v_{5})) \lor R(v_{4}) \land \neg (Q(v_{5}) \to Q(v_{3})) \big),$$
 unde c este un nou simbol de constantă
$$\psi^{2} = \forall v_{3} \forall v_{4} \exists v_{5} \big((S(c, f(v_{3})) \to S(f(v_{3}), v_{5})) \lor R(v_{4}) \land \neg (Q(v_{5}) \to Q(v_{3})) \big),$$
 unde f este un nou simbol de operație unară
$$\psi^{3} = \forall v_{3} \forall v_{4} \big((S(c, f(v_{3})) \to S(f(v_{3}), h(v_{3}, v_{4}))) \lor R(v_{4}) \land \neg (Q(h(v_{3}, v_{4})) \to Q(v_{3})) \big),$$
 unde h este un nou simbol de operație binară.

Cum ψ^3 este enunţ universal, rezultă că ψ^3 este o formă normală Skolem pentru ψ .

(P3) [1,5 puncte] Să se dea exemplu de mulţime Γ de $\mathcal{L}_{=}$ -enunţuri ce are proprietatea că pentru orice $\mathcal{L}_{=}$ -structură finită \mathcal{A} , avem:

 $\mathcal{A} \models \Gamma \iff \mathcal{A}$ conţine un număr par de elemente.

Demonstrație: Considerăm mulțimea de enunțuri

$$\Gamma = \left\{ \bigvee_{k \le l} \exists^{-2k} \lor \exists^{\ge 2l} \mid l \in \mathbb{N}^* \right\}.$$

"\(\infty\)" Fie $\mathcal{A}=(A)$ o $\mathcal{L}_=$ -structură finită a.î $|A|=2n\ (n\geq 1)$, deci $\mathcal{A}\vDash\exists^{=2n}$. Trebuie să arătăm că $\mathcal{A}\vDash\Gamma$. Fie $l\in\mathbb{N}^*$ arbitrar. Vom demonstra că

$$\mathcal{A} \vDash \bigvee_{k \le l} \exists^{=2k} \lor \exists^{\ge 2l}.$$

Avem următoarele cazuri:

- (i) n < l. Deoarece $\exists^{=2n} \in \{\exists^{=2k} \mid k \leq l\}$, rezultă că $\vDash \exists^{=2n} \to \bigvee_{k \leq l} \exists^{=2k}$ și, evident, $\vDash \bigvee_{k \leq l} \exists^{=2k} \to \bigvee_{k \leq l} \exists^{=2k} \lor \exists^{\geq 2l}$.

 Deoarece $\mathcal{A} \vDash \exists^{=2n}$, obținem imediat că $\mathcal{A} \vDash \bigvee_{k < l} \exists^{=2k} \lor \exists^{\geq 2l}$.
- (ii) $n \geq l$. Deoarece $2n \geq 2l$, rezultă că $\vDash \exists^{=2n} \to \exists^{\geq 2l}$ și, evident, $\vDash \exists^{\geq 2l} \to \bigvee_{k \leq l} \exists^{=2k} \lor \exists^{\geq 2l}$. Rezultă că $\mathcal{A} \vDash \bigvee_{k \leq l} \exists^{=2k} \lor \exists^{\geq 2l}$.

" \Rightarrow " Fie $\mathcal{A}=(A)$ o $\mathcal{L}_{=}$ -structură finită a.î. $\mathcal{A} \models \Gamma$. Presupunem prin reducere la absurd că \mathcal{A} conține un număr impar de elemente, deci că |A|=2n+1 $(n \in \mathbb{N})$ Cum $\mathcal{A} \models \Gamma$, în particular (luând l:=n+1), obținem

$$\mathcal{A} \vDash \bigvee_{k \leq n+1} \exists^{=2k} \lor \exists^{\geq 2(n+1)},$$

deci

$$\mathcal{A} \vDash \bigvee_{k \le n+1} \exists^{=2k} \quad \text{sau} \quad \mathcal{A} \vDash \exists^{\ge 2(n+1)}.$$

Rezultă că fie există $k \leq n+1$ astfel încât \mathcal{A} conține 2k elemente, fie \mathcal{A} conține cel puțin 2(n+1) = 2n+2 elemente. Cum știm că \mathcal{A} conține 2n+1 elemente, am ajuns la o contradicție.

(P4) [1,5 puncte] Fie T teoria ordinii parțiale (în limbajul \mathcal{L}_{\leq}). Să se găsească un $\mathcal{L}_{<}$ -enunț φ astfel încât

$$T\not\vDash\varphi\ \ \text{si}\ \ T\not\vDash\neg\varphi.$$

Demonstrație: O \mathcal{L}_{\leq} -structură $\mathcal{A}=(A,\leq)$ este model al lui T ddacă \mathcal{A} este mulțime parțial ordonată. Fie

$$\varphi := \exists v_0 \forall v_1 (v_0 \leq v_1).$$

Pentru orice mulțime parțial ordonată $\mathcal{A}=(A,\leq)$, avem că $\mathcal{A}\vDash\varphi$ ddacă \mathcal{A} admite minim.

Considerăm următoarele două mulțimi parțial ordonate: $\mathcal{N}=(\mathbb{N},\leq)$ și $\mathcal{Z}=(\mathbb{Z},\leq)$. Obținem:

- (i) \mathcal{N} are minim, prin urmare $\mathcal{N} \vDash \varphi$. Rezultă că $\mathcal{N} \not\vDash \neg \varphi$. Deoarece $\mathcal{N} \vDash T$, avem că $T \not\vDash \neg \varphi$.
- (ii) \mathcal{Z} nu are minim, prin urmare $\mathcal{Z} \vDash \neg \varphi$. Rezultă că $\mathcal{Z} \not\vDash \varphi$. Deoarece $\mathcal{Z} \vDash T$, avem că $T \not\vDash \varphi$.

2 Logică modală

- (P5) [2 puncte] Demonstrați că următoarele formule nu sunt valide în clasa tuturor cadrelor:
 - (i) $\Diamond p \to \Box p$;
 - (ii) $\Diamond \Box p \to \Box \Diamond p$.

Demonstrație:

(i) Trebuie să găsim un model și o stare din acest model în care formula este falsă. Fie modelul

$$\mathcal{M} = (W, R, V)$$
, unde $W = \{1, 2, 3\}$, $R = \{(1, 3), (1, 2)\}$, $V(p) = \{2\}$.

Cum $2 \in V(p)$ şi R12, rezultă că $\mathcal{M}, 1 \Vdash \Diamond p$.

Avem că $\mathcal{M}, 1 \Vdash \Box p \iff$ pentru orice $v \in W$, R1v implică $\mathcal{M}, v \Vdash p$. Observăm că R13, dar $\mathcal{M}, 3 \not\Vdash p$, deoarece $3 \not\in V(p)$. Prin uramre $\mathcal{M}, 1 \not\Vdash \Box p$.

Am demonstrat astfel că $\mathcal{M}, 1 \not\Vdash \Diamond p \to \Box p$.

(ii) Fie modelul

$$\mathcal{M} = (W, R, V)$$
, unde $W = \{1, 2\}$, $R = \{(1, 2)\}$, $V(p) = \{2\}$.

Demonstrăm, în continuare, că $\mathcal{M}, 1 \not\Vdash \Diamond \Box p \to \Box \Diamond p$.

Avem că

$$\mathcal{M}, 1 \Vdash \Diamond \Box p \iff \text{există } v \in W \text{ a.î. } R1v \text{ și } \mathcal{M}, v \Vdash \Box p \iff \mathcal{M}, 2 \Vdash \Box p \text{ (fiindcă 2 este singurul } v \in W \text{ a.î. } R1v \text{)}.$$

Cum 2 este stare finală (adică nu există $u \in W$ a.î. R2u), obținem că $\mathcal{M}, 2 \Vdash \Box p$. Deci,

$$(*)$$
 $\mathcal{M}, 1 \Vdash \Diamond \Box p.$

Avem că

$$\mathcal{M}, 1 \Vdash \Box \Diamond p \iff \text{pentru orice } v \in W, R1v \text{ implică } \mathcal{M}, v \Vdash \Diamond p \iff \mathcal{M}, 2 \Vdash \Diamond p \text{ (fiindcă 2 este singurul } v \in W \text{ a.î. } R1v).$$

Deoarece 2 este stare finală, rezultă că \mathcal{M} , $2 \not\Vdash \Diamond p$. Deci,

$$(**)$$
 $\mathcal{M}, 1 \not\Vdash \Box \Diamond p.$

Din (*) şi (**) rezultă că $\mathcal{M}, 1 \not\Vdash \Diamond \Box p \to \Box \Diamond p$.

(P6) [2 puncte]

(i) Demonstrați următoarea regulă de deducție derivată în sistemul modal $\mathbf{K}:$

$$\{p \to q\} \vdash \Diamond p \to \Diamond q.$$

(ii) Arătați că următoarea formulă este K-demonstrabilă:

$$\Box(p \land q) \to (\Box p \land \Box q).$$

Demonstrație:

- (i) Trebuie să demonstrăm că $\vdash_{\mathbf{K}} \varphi \to \psi$ implică implică $\vdash_{\mathbf{K}} \Diamond \varphi \to \Diamond \psi$. A se vedea (S6.3).(ii).
- (ii) Notăm cu LP logica propozițională. Folosim notațiile

$$\chi_1 := \Box(p \land q) \to \Box p, \ \chi_2 := \Box(p \land q) \to \Box q \ \text{şi}$$

$$\chi_1 := \Box(p \land q) \to (\Box p \land \Box q).$$

Trebuie să demonstrăm că $\vdash_{\mathbf{K}} \chi_3$.

- $(1) \vdash_{\mathbf{K}} (p \land q) \to p$ tautologie
- $(2) \vdash_{\mathbf{K}} \chi_1$ $(3) \vdash_{\mathbf{K}} (p \land q) \to q$ (S6.3).(i): (1)
- tautologie
- $(4) \vdash_{\mathbf{K}} \chi_2$ (S6.3).(i): (3)
- (5) $\vdash_{\mathbf{K}} \chi_1 \wedge \chi_2$ Propoziția 2.52: (2), (4) și faptul că $\chi_1 \wedge \chi_2$ este deductibilă în LP din χ_1, χ_2
- $(6) \vdash_{\mathbf{K}} (\chi_1 \land \chi_2) \to \chi_3$ tautologie: $((\sigma_1 \to \sigma_2) \land (\sigma_1 \to \sigma_3)) \to (\sigma_1 \to (\sigma_2 \land \sigma_3)),$ unde $\sigma_1 := \Box(p \land q), \ \sigma_2 := \Box p, \ \sigma_3 := \Box q$
- $(7) \vdash_{\mathbf{K}} \chi_3$ (MP): (5), (6).

(P7) [2 puncte] Fie Γ o Λ -MCS. Demonstrați că:

$$\Gamma \vdash_{\Lambda} \varphi \iff \varphi \in \Gamma.$$

"

—" Evident, conform Propoziției 2.54.(iii). Demonstrație:

"⇒" Avem că $\Gamma \vdash_{\Lambda} \varphi$. Presupunem prin reducere la absurd că $\varphi \notin \Gamma$. Deoarece Γ este o Λ-MCS şi Γ este o submulţime proprie a lui $\Gamma \cup \{\varphi\}$, trebuie să avem că $\Gamma \cup \{\varphi\}$ este Λ -inconsistentă. Aplicând Propoziția 2.59.(ii), rezultă că $\Gamma \vdash_{\Lambda} \neg \varphi$. Am obținut astfel atât $\Gamma \vdash_{\Lambda} \varphi$ cât și $\Gamma \vdash_{\Lambda} \neg \varphi$. Rezultă, din Propoziția 2.58, că Γ este Λ -inconsistentă, ceea ce este o contradicție.