Impact of Pre-existing Health Conditions and Demographic on COVID-19 Outcome

PRESENTED BY: ERIC MWANGI GITHINJI

Background

- Studies shows that pre-existing medical conditions can influence the severity of COVID-19. The study on "Impact of Pre-exisiting Health Conditions in Adults" found that, among COVID-19 cases, the three most common underlying health conditions are cardiovascular disease (32%), diabetes (30%), and chronic lung disease (18%). Among COVID-19 hospitalizations, the three most common underlying conditions are hypertension (57.7%), obesity (47.8%), and metabolic disease (42.9%).
- $> Ref: \ {\it https://sph.uth.edu/research/centers/dell/legislative-initiatives/COVID-19\%20Impact\%20on\%20pre-existing\%20conditions_Adults_8_27_2021.pdf}$
- Demographic factors e.g. age and sex can as well influence the severity of COVID-19. For example, Adults are at a high risk of contracting the disease compared to younger people. Although adults aged older than 65 years represent only about 16% of the US population, they account for 31% of reported cases, 45% of hospitalizations, 53% of intensive care unit (ICU) admissions, and 80% of COVID-19-associated deaths.

> Ref: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633621/#:~:text=Early%20and%20late%20reports%20showed,also%20differ%20in%20older%20adults.

Analysis Objective

- To analyze the relationship between demographic factors (such as age and sex) and Covid-19 outcome.
- To investigate the impact of pre-existing medical conditions on Covid-19 outcomes.
- To study the timeline from symptom onset to death and its impact on patient outcomes.

Analysis Approach

Data Exploration and Cleaning

- > Getting to know the dataset, structure, types of data in each column.
- Fildentify and handle missing values, outliers and incorrect data entries.

• Descriptive Analysis

- ➤ Summarizing data and finding patterns or relationships.
- ➤ Use visualization to better understand the data.

Comparative Analysis

Comparing different groups to identify significance differences.

• Time-to-Event Analysis

> Survival analysis using cox proportional hazards model to analyze time-to-event.

Data Exploration and Cleaning

Covid-19 Mexico Data (10000 rows X 23 columns)

```
Rows: 10,000
 Columns: 23
 $ id
                                                                                                                                                                                                    <chr> "0dd249", "0957d9", "0ad2eb", "1646ba", "1e31dd", "16287e", "107c1f", "08cd...
                                                                                                                                                                                                    <chr> "Male", "Female", "Female", "Female", "Male", "Male", "Female", "Male", 
 $ sex
                                                                                                                                                                                                    <chr> "Outpatient", "Outpatien
 $ patient type
$ entry date
                                                                                                                                                                                                    <chr> "24-05-2020", "18-06-2020", "11-05-2020", "24-06-2020", "17-05-2020", "13-0...
 $ date symptoms
                                                                                                                                                                                                    <chr> "18-05-2020", "16-06-2020", "11-05-2020", "19-06-2020", "16-05-2020", "07-0...
 $ date died
                                                                                                                                                                                                     $ intubed
                                                                                                                                                                                                    <chr> "Yes", "No", "No", "No", "No", "No", "No", "No", "Yes", "No", "No", "No", "...
 $ pneumonia
 $ age
                                                                                                                                                                                                     <dbl> 29, 45, 25, 11, 28, 9, 28, 58, 76, 30, 47, 34, 46, 38, 28, 68, 51, 44, 44, ...
                                                                                                                                                                                                    $ pregnancy
                                                                                                                                                                                                    <chr> "No", "Yes", "No", "N...
 $ diabetes
 $ copd
                                                                                                                                                                                                    <chr> "No", 
                                                                                                                                                                                                    <chr> "No", "No", "No", "Yes", "No", "No",
 $ asthma
                                                                                                                                                                                                    <chr> "No", 
 $ inmsupr
                                                                                                                                                                                                    <chr> "No", "Ye...
$ hypertension
$ other disease
                                                                                                                                                                                                    <chr> "No", 
$ cardiovascular
                                                                                                                                                                                                    <chr> "No", 
 $ obesity
                                                                                                                                                                                                    <chr> "No", "No", "No", "No", "No", "No", "No", "No", "Yes", "Yes", "Yes", "No", "No", "...
                                                                                                                                                                                                    <chr> "No", 
 $ renal chronic
 $ tobacco
                                                                                                                                                                                                    <chr> "Yes", "No", "No",
$ contact_other_covid <chr> "Yes", NA, "Yes", "Yes", "Yes", "Yes", "No", "Yes", "Yes", "Yes", NA, "No",...
 $ covid res
                                                                                                                                                                                                    <chr> "Negative", "Negative", "Positive", "Negative", "Negative", "Po...
$ icu
```

Summary Statistics

Variable	N	Mean	Std. Dev.	Min	Pctl. 25	Pctl. 75	Max
age	10000	43	20	-67	31	53	856

Summary Statistics for Categorical Variable			À
Variable	N	Percent	
sex	10000		
Female	4764	48%	
Femalee	111	1%	
Male	5073	51%	
Males	52	1%	
patient_type	10000		
Inpatient	2140	21%	
Outpatient	7860	79%	
intubed	2137		
No	1956	92%	
v	101	00/	¥

Missing Values

Missing Values

```
List of 23
$ id
                      : int 0
                     : int 0
$ sex
$ patient_type
                     : int 0
                     : int 0
$ entry date
 $ date_symptoms
                     : int 0
 $ date died
                     : int 9361
$ intubed
                     : int 7863
                     : int 1
 $ pneumonia
                     : int 0
 $ age
                     : int 5159
 $ pregnancy
 $ diabetes
                     : int 35
                     : int 31
 $ copd
 $ asthma
                     : int 32
                     : int 34
 $ inmsupr
 $ hypertension
                     : int 32
$ other_disease
                     : int 44
 $ cardiovascular
                     : int 34
$ obesity
                     : int 31
$ renal_chronic
                     : int 33
$ tobacco
                     : int 34
$ contact other covid: int 3107
$ covid res
                     : int 0
$ icu
                     : int 7863
```

Duplicated Values

	id	sex	patient_type	entry_date	date_symptoms	date_died	intubed	pneumonia	age	pregnancy	diabete
	<chr>></chr>	<chr>></chr>	<chr></chr>	<date></date>	<date></date>	<date></date>	<chr>></chr>	<chr></chr>	<dbl></dbl>	<chr></chr>	<chr></chr>
1	0.00	Fema	Outpatient	2020-06-09	2020-06-05	NA	NA	No	34	No	No
2	0.00	Male	Inpatient	2020-06-25	2020-06-22	NA	No	No	48	NA	No
3	0.00	Fema	Outpatient	2020-06-26	2020-06-15	NA	NA	No	41	No	No
4	0.00	Male	Outpatient	2020-05-25	2020-05-23	NA	NA	Yes	16	NA	No
5	1.34	Fema	Inpatient	2020-06-13	2020-06-06	NA	No	Yes	55	No	No
6	0.00	Fema	Outpatient	2020-05-20	2020-05-18	NA	NA	No	40	No	No
7	1.34	Fema	Outpatient	2020-04-08	2020-04-06	NA	NA	No	47	No	No
8	0.00	Male	Outpatient	2020-05-22	2020-05-16	NA	NA	No	40	NA	No

Variables Id, sex and entry_date merged to create a unique variable ID, hence eliminating duplicates.

Missing value handled differently for different variables.

Descriptive statistics GENDER*

Male = 5125(51.25%) Female = 4875(48.78%) N= 10000

Figure 1: This bar chart represents the number of patients by Gender.

Descriptive statistics AGE*

Figure 2: The histogram illustrates the age distribution of patients in the dataset

Mean=42.62 Sd = 16.82 Min= 0 Max= 107 N= 10000

Descriptive statistics Symptoms Period

Figure 3: The histogram illustrates days before a patient vist a unit care after symptopsm

Days between symptoms and entry date.

Descriptive statistics Survival Period

Figure 4: The histogram illustrates the distribution of survival period

Mean=12.06 Sd = 7.89 Min= 0 Max= 44 N= 463

Days between symptoms and death of a patient.

Descriptive statistics COVID-19 Results

Figure 6: This bar chart represents the number of patients by their test results.

Awaiting Results=1122 (11.22%) Negative = 5013 (50.13%) Positive= 3865 (38.65%) N= 10000

13

Correlation Analysis

Comparative Analysis Group Means

Difference in Mean (Age)		Difference in Mean (Symptoms_stage)	
Covid Results	AGE	Covid Results	Symptoms_stage
POSITIVE	45.58	POSITIVE	4.21
AWAITING RESULTS	43.85	AWAITING RESULTS	3.98
NEGATIVE	40.05	NEGATIVE	3.12

Is the difference significant?

Comparative Analysis One-Way ANOVA

Anova assumptions: Homogeneity of Variance (Equal variance) between groups)

Bartlett's test: H0> All groups have equal variance H1> Not all groups have equal variance

P-value = 0.4418 > 0.05. Fail to reject null hypothesis.

Model Summary											
Parameter	Sum_Squares	df	Mean_Square	F	Р						
covid_res	68759.24	2	34379.62	124.54	< .001						
Residuals	2.76e+06	9997	276.06								
Anova Table (Type 1 tests)											

Tukey multiple comparisons of means

	diff	lwr	upr	p adj
Negative-Awaiting Results	-3.805	-5.091	-2.519	0.000
Positive-Awaiting Results	1.728	0.407	3.049	0.006
Positive-Negative	5.533	4.700	6.367	0.000

Comparative Analysis Welch's ANOVA

Figure 8: The box plot shows a slight difference in symptoms_stage among the three groups

Anova assumptions: Homogeneity of Variance (Equal variance between groups)

Bartlett's test: H0> All groups have equal variance H1> Not all groups have equal variance

P-value =0.00 > 0.05. Reject null hypothesis.

Welch's ANOVA

F	df	df_error	p	Method
132.932	2	3035.957	0	One-way analysis of means (not assuming equal variances)

Post-Hoc Welch's Anova

. y.	group1	group2	n1	n2	statistic	df	p	p.adj
symptoms_stage	AWAITING RESULTS	NEGATIVE	1122	5013	7.83	1528.73	0.00	0.00
symptoms_stage	AWAITING RESULTS	POSITIVE	1122	3865	-2.00	1833.90	0.05	0.14
symptoms_stage	NEGATIVE	POSITIVE	5013	3865	-15.73	7666.32	0.00	0.00

Comparative Analysis Proportion Tables

Diabetic Patients		
Covid results for patiens with diabitics	Cond	dition
COVID-19 Results	No	Yes
AWAITING RESULTS	0.1114923	0.1163934
NEGATIVE	0.5188107	0.3762295
POSITIVE	0.3696970	0.5073770
Total	1.0000000	1.0000000

Pneumonia Patients

Covid results of patiens with pnemonia	C	ondition
COVID-19 Results	No	Yes
AWAITING RESULTS	0.1159489	0.0917906
NEGATIVE	0.5356129	0.3135100
POSITIVE	0.3484382	0.5946994
Total	1.0000000	1.0000000

YES

- Approximately 11.64% are still awaiting results.
- About 37.62% have tested negative for Covid-19.
- Around 50.74% have tested positive for Covid-19

YES

- Approximately 9.17% are still awaiting results.
- About 31.35% have tested negative for Covid-19.
- Palladium Around 59.46% have tested positive for Covid-19

Time-to-Event Analysis (Survival Analysis)

Significan	- 0			C		1 B /		_
Significan		redictors	ın	31111	/IV/al	I IVI	COCT	e_{1}
organican.		I COICCOID		2011	TIVE		~~	-

	coef	exp(coef)	se(coef)	z	Pr(> z)
sexMALE	0.2352	1.2652	0.0856	2.7493	0.0060
patient_typeOutpatient	-2.4677	0.0848	0.1572	-15.6954	0.0000
intubedYes	0.7405	2.0969	0.1118	6.6254	0.0000
pneumoniaYes	0.6627	1.9400	0.1048	6.3227	0.0000
age	0.0308	1.0313	0.0028	11.1274	0.0000
other_diseaseYes	0.3115	1.3654	0.1523	2.0452	0.0408
renal_chronicYes	0.3309	1.3922	0.1518	2.1804	0.0292
covid_resNEGATIVE	-0.4287	0.6514	0.1819	-2.3567	0.0184
covid_resPOSITIVE	0.4706	1.6010	0.1608	2.9274	0.0034
symptoms_stage	-0.0298	0.9706	0.0118	-2.5268	0.0115

A positive coefficient indicates an increase in the hazard rate, and a negative coefficient indicates a decrease in the hazard rate.

At a given point in time someone who is male is 1.2652 times likely to die as someone who is female adjusting for other variable.

At a given point in time someone who is male is 26.52% more times likely to die as someone who is female adjusting for other variable.

At a given point in time the probability of dying for someone who is 1 year Old is 1.0313 times higher than someone who is 1 year young.

Time-to-Event Analysis (Survival Analysis)

Survival Probability

The y-axis represents the probability of survival. A survival probability of 1 means all individuals are alive, while a survival probability of 0 means all individuals have experienced the event

Classification Model

Confusion Matrix and Statistics

Reference Prediction 0 1 0 697 374 1 287 406

Accuracy: 0.6253

95% CI: (0.6022, 0.6479)

No Information Rate : 0.5578 P-Value [Acc > NIR] : 5.358e-09

Kappa : 0.2315

Mcnemar's Test P-Value : 0.0008228

Sensitivity: 0.7083 Specificity: 0.5205 Pos Pred Value: 0.6508 Neg Pred Value: 0.5859

Prevalence: 0.5578 Detection Rate: 0.3951

Detection Prevalence : 0.6071

Balanced Accuracy: 0.6144

'Positive' Class: 0

Summary

Demographic Factors

The average age of patients diagnosed with COVID-19 is notably higher, indicating a potential agerelated vulnerability to the virus.

Pre-existing Conditions

Our data suggests a correlation between pre-existing conditions such as diabetes and pneumonia, and an increased number of positive COVID-19 cases. This means that these conditions may make people more likely to get sick from the virus..

Survival Probability

- The presence of pre-existing conditions appears to negatively impact the survival rate among COVID-19 patients, suggesting these conditions could complicate the disease progression.
- A delay in seeking medical attention seems to decrease the survival probability for COVID-19 patients. This underscores the importance of timely medical intervention in improving patient outcomes.

Recommendations

- Public health measures should consider age and pre-existing conditions as significant factors of COVID-19 outcome. This could include prioritizing older individuals and those with pre-existing for vaccination and implementing targeted protective measures for such cases.
- Healthcare providers should be prepared to provide enhanced care for patients with Pre-existing conditions. This could include closer monitoring, more aggressive treatment strategies, and comprehensive post-recovery care.
- Public health campaigns should emphasize the importance of seeking medical attention at the earliest signs of symptoms, and healthcare systems should be prepared to respond swiftly to new cases.

