

Conceptos fundamentales en informática gráfica

Imagen digital
Luz, color y percepción visual
Información gráfica
Software gráfico
Tipos de datos y operaciones

Imagen digital

- Es una función de R² en C (espacio de color)
- Informáticamente se representa como un conjunto ordenado de bloques de bits (píxeles) que se interpretan como colores en un espacio rectangular discreto, matriz 2D, llamado Pixmap
- Características
 - Dimensiones: número de píxeles (ancho x alto)
 - Relación de aspecto: (ancho: alto)
- Píxel
 - Coordenadas
 - Profundidad de color
 - Canal alfa
 - Formato
 - Otros canales: z, id objeto, normal, etc

Adquisición

 Proceso de obtención de una imagen digital a partir de una imagen real mediante un dispositivo de captura

Procesado

 Proceso que toma como entrada una imagen y obtiene otra diferente (tratamiento) o extrae información de aquella (análisis y reconocimiento)

Síntesis

 Proceso por el que se obtiene una imagen digital a partir de información cualquiera

Representación

 Proceso por el que se visualiza una imagen digital en un dispositivo de salida

Representación

Resoluciones típicas

High-Definition

Name	x (px)	y (px)	х:у	x×y (Mpx)
nHD	640	360	16:9	0.230
qHD	960	540	16:9	0.518
HD	1280	720	16:9	0.921
HD+	1600	900	16:9	1.44
FHD	1920	1080	16:9	2.073
QHD	2560	1440	16:9	3.686
WQXGA+	3200	1800	16:9	5.760
UHD (4K)	3840	2160	16:9	8.294
UHD+	5120	2880	16:9	14.745
	5760	3240	16:9	18.662
FUHD (8K)	7680	4320	16:9	33.178
QUHD (16K)	15360	8640	16:9	132.72

Luz, color y percepción

Espectro

- La energía de un fotón en un medio depende de su longitud de onda. Llamamos espectro electromagnético al continuo de longitudes de onda (frecuencias) que puede llevar el fotón
- La luz es visible (humano) en radiaciones de longitudes entre 380 y 740 nm, aproximadamente.

Medición de la luz

¿Cómo se mide la luz?

- Radiometría: Medición de la energía radiante de los cuerpos. Es independiente del observador
- Fotometría: Medición de la sensación subjetiva al percibir, visualmente, la energía radiada

Magnitudes radiométricas

Flujo o potencia radiante de una fuente luminosa (vatio): La energía radiada por unidad de tiempo que depende de la temperatura y naturaleza de los materiales Flujo radiante espectral: energía espectral por unidad de tiempo

Eficacia luminosa <mark>relat</mark>iva : Relación entre flujo radiante y el luminoso

Magnitudes fotométricas

Flujo luminoso (lumen): Parte del flujo radiado percibida por el ojo humano

Curva de rendimiento luminoso del flujo radiante monocromático $V(\lambda)$ k=684 lúmenes/watt para λ =555nm máxima sensibilidad

$$F = k \int_{380}^{770} V(\lambda) P(\lambda) d\lambda$$

Caracterización de la luz percibida

¿Qué es el color?

- Llamaremos color a la sensación experimentada al recibir una radiación luminosa a través del sentido de la vista
- Características del color
 - Claridad o luminosidad: Se refiere a la cantidad de luz. Se asocia a la luminancia total
 - Cromaticidad: Diferencias apreciables en la distribución espectral de la luminancia
 - Matiz o tono: Lo que significamos al decir color verde, amarillo o rojo. Se asocia a la longitud de onda dominante
 - Pureza o grado de saturación: Lo que significamos al decir color pálido o fuerte. Se asocia a la mayor o menor presencia de gris. Se llama color puro o saturado a la radiación monocromática
- Observador estándar: Se promedian experiencias para obtener la curva de rendimiento luminoso

Información gráfica

Raster

- Descripción de la información gráfica mediante uno (o varios) Pixmap
- Depende de la resolución de la imagen tanto en dimensión como en profundidad de color
- Su representación es directa

Vectorial

- Descripción de la información gráfica mediante órdenes de dibujo
- Es independiente de la resolución de la imagen
- Su representación pasa por la síntesis (Rendering) de una imagen

Conversión

- Vectorial a raster : rendering
- Raster a vectorial : análisis de imagen y extracción de características

Codificación

- Para su almacenamiento en fichero se siguen los dos modelos
 - Raster
 - Extensos
 - Compactos
 - Sin pérdida
 - Con pérdida
 - Vectorial
 - 2D y texto
 - ▶ 3D

Software gráfico

Capa de acceso al dispositivo (tarjeta gráfica)

OpenGL http://www.opengl.org/

OpenGL ES
http://www.khronos.org/opengles/

WebGL http://www.khronos.org/webgl/

DirectX <u>www.microsoft.com</u>

Motores

- Se montan sobre APIs
- Ofrecen grafo de escena
- Ofrecen mecanismos de intercambio
- Ejemplos

Open Scene Graph <u>www.openscenegraph.org</u>

▶ G3D <u>g3d.sourceforge.net</u>

ThreeJS
<u>threejs.org</u>

Ogre <u>www.ogre3d.org</u>

Aplicaciones

- Se montan sobre un motor
- Ofrecen interfaz de edición del grafo y sus objetos
- Algunos ejemplos

▶ Unity <u>unity3d.com</u>

Blender <u>www.blender.org</u>

Rhinoceros <u>www.rhinosc.com</u>

Cryengine <u>www.crytek.com/cryengine</u>

▶ 3DS MAX <u>www.autodesk.com</u>

Tipos de datos y operaciones

Tipos de datos básicos

Puntos

 Un punto es una entidad geométrica que indica una posición

Vectores

 Un vector es una entidad geométrica que indica una dirección y magnitud de un desplazamiento

 Es una matriz columna de números reales que refieren un punto o un vector a un sistema de referencia

Sistemas de referencia

- Base vectorial: Matriz columna de vectores linealmente independientes
- Sistema de coordenadas: Un punto origen y una base vectorial

$$c = \begin{bmatrix} x \\ y \end{bmatrix}$$
 $c^T = \begin{bmatrix} x & y \end{bmatrix}$

$$\vec{b} / \vec{f} = \begin{bmatrix} \vec{a} \\ \vec{b} \end{bmatrix}$$

$$\vec{v} = x\vec{a} + y\vec{b} = \vec{f}^T c$$

Transformaciones lineales

Matrices 3x3

 Representan trasformaciones lineales de un vector en otro

Cambio de base

- Si se aplica la trasformación a una base vectorial se obtiene otra base vectorial
- Podemos expresar un vector en diferentes bases

$$\boldsymbol{L} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$$

$$\vec{v}' = M(\vec{v}) = \vec{f}^T L c$$

$$\vec{f}'^T = \vec{f}^T L$$

$$\vec{v} = \vec{f}^T c = \vec{f}'^T L^{-1} c$$

Trasformaciones lineales

Rotaciones

- Una rotación de un ángulo α respecto a un eje de giro \vec{k} preserva los productos escalares (de base a base ortonormal)
- La inversa es la traspuesta
- Fórmula de Rodrigues

Escalados

- No se preservan los ángulos

Normales

Las normales se trasforman con la traspuesta de la inversa de la trasformación lineal

$$R_{(\alpha,\vec{k})}(\vec{v}\cdot\vec{u})=\vec{v}\cdot\vec{u}$$

$$\mathbf{R}_{(\alpha,\vec{k})}^{-1} = \mathbf{R}_{(\alpha,\vec{k})}^{T}$$

$$\mathbf{R}_{(\alpha,\vec{k})} = (1 - \cos \alpha)\mathbf{k}\mathbf{k}^T + \cos \alpha \mathbf{I} + \sin \alpha \mathbf{k}^*$$

$$\mathbf{k}^* = \begin{bmatrix} 0 & -k_z & k_y \\ k_z & 0 & -k_x \\ -k_y & k_x & 0 \end{bmatrix}$$

No se preservan los ángulos

Factores de escala en diagonal principal
$$S_{(s=[sx\ sy\ sz]^T)} = Is = \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & sz \end{bmatrix}$$

Inversa: invertir diagonal principal

$$\bar{L}(\vec{n}) = \vec{f}^T (L^{-1})^T c$$

Trasformaciones afines

Sistema de coordenadas para puntos (afín)

- ightharpoonup Debemos fijar un origen \dot{o}
- Cualquier punto se alcanza sumando un vector al punto origen

Matrices 4x4

- Si la última fila es [0,0,0,1] la matriz trasforma un punto en otro
- Si la matriz se aplica al sistema de referencia hay un cambio de sistema
- Si la última columna es [0,0,0,1]^T la trasformación es lineal

$$\dot{p} = \dot{o} + \vec{v} = \begin{bmatrix} \vec{x} & \vec{y} & \vec{z} & \dot{o} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \vec{f}^T c$$

$$\dot{p}' = A(\dot{p}) = \overrightarrow{f}^T A c$$

$$A = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\vec{f}'^T = \vec{f}^T A$$

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{L} & \boldsymbol{0} \\ \boldsymbol{0}^T & 1 \end{bmatrix}$$

Trasformaciones afines

Traslaciones

 Los desplazamientos se indican en la última columna

$$\boldsymbol{T}_{(tx,ty,tz)} = \begin{vmatrix} tx \\ I & ty \\ tz \\ \mathbf{0}^T & 1 \end{vmatrix}$$

Trasformación afín

 Es una composición de una trasformación lineal y un desplazamiento

$$A = \begin{bmatrix} L & t \\ \mathbf{0}^T & 1 \end{bmatrix} = \begin{bmatrix} I & t \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} L & \mathbf{0} \\ \mathbf{0}^T & 1 \end{bmatrix} = TL$$

 Llamamos trasformación rígida cuando la parte lineal es una rotación

$$A = TR$$

 Siempre están referidas a un sistema de referencia. Trasformación respecto a ...

$$A(\dot{p}, \overrightarrow{f}) \neq A(\dot{p}, \overrightarrow{g})$$

Trasformación afín

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
escalado en x

$$\dot{p}' \neq \dot{p}''$$
!

Sistemas de referencia

Modelo

- Sistema donde es fácil dar coordenadas o direcciones
- Es compuesto cuando el objeto se compone de partes

Escena o Mundo

Observador

Solidario a la cámara virtual

 $\overrightarrow{\boldsymbol{w}}^T$

 \vec{e}^T

trasformación de la vista

trasformación del modelo

Trasformación de normales

Vectores normales

- Perpendiculares a la superficie del objeto
- Muy importantes en iluminación y textura
- Matriz de trasformación de la normal
 - Al trasformar el vector debe conservarse la perpendicularidad
 - La matriz de trasformación del objeto no conserva, en general, la perpendicularidad (escalados)
 - Usar la inversa traspuesta

$$\dot{p}' = A(\dot{p}) = \vec{f}^T A c$$

$$\vec{n}' = \vec{f}^T (A^{-1})^T n$$

Resumen

Conceptos fundamentales

- Imagen, píxel y características
- Luz, espectro y proceso
- Percepción visual y color
- Información gráfica raster y vectorial
- Software gráfico
- Vectores y puntos
- Sistemas de referencia
- Trasformaciones