Paikallisuus hajautetuissa verkkoalgoritmeissa
Juhana Laurinharju
Tieteellinen kirjoittaminen HELSINGIN YLIOPISTO
Tietojenkäsittelytieteen laitos
Helsinki, 14. toukokuuta 2013

1 Johdanto

2 Määritelmiä

2.1 Verkko

Määritelmä 1. Suuntaamaton verkko on pari G = (V, E), missä V on solmujoukko ja E on kaarijoukko. Kaari solmusta $v \in V$ solmuun $u \in V$ on kaksikko $\{v, u\} \in E$. Kaarta voidaan myös merkitä lyhyemmin vu. Jos G on suuntaamaton verkko, niin sen solmujoukkoon voidaan viitata myös merkinnällä V(G) ja kaarijoukkoon merkinnällä E(G).

Esimerkiksi verkko G = (V, E), missä

$$\begin{split} V &= \{a,b,c,d\} \text{ ja} \\ E &= \{\{a,b\}\,,\{b,c\}\,,\{c,a\}\,,\{a,d\}\} \\ &= \{ab,bc,ca,ad\} \end{split}$$

näyttää seuraavalta

Määritelmä 2. Kaikilla posiitivisilla kokonaisluvuilla k merkitään:

$$[k] = \{1, \dots, k\}$$

2.2 Laskennan malli

Olkoon G=(V,E) suuntaamaton verkko. Verkon jokaisessa solmussa $v\in V$ on tietokone. Laskenta koostuu kommunikaatiokierroksista. Yhden kommunikaatiokierroksen aikana jokainen solmu voi

- 1. suorittaa mielivaltaista laskentaa,
- 2. lähettää viestin jokaiselle naapurilleen ja
- 3. vastaanottaa naapureiden lähettämät viestit.

Lisäksi jokaiselle solmulle $v \in V$ on annettu yksikäsitteinen tunniste $\mathrm{ID}(v) \in [|V|]$. Laskennan päätyttyä jokaisen solmun tulee tietää oma tulosteensa.

TODO: motivointia sille, että tarkastellaan vain kommunikaatiokierrosten lukumäärää aikavaativuutena.

2.3 Verkon väritys

Määritelmä 3. Verkko on *väritetty*, jos jokaiseen solmuun $v \in V$ on liitetty jokin $v \ddot{a} r \dot{c}(v) \in \mathbb{N}$ ja kahdella vierekkäisellä solmulla ei koskaan ole samaa väriä. Tarkemmin, verkon G = (V, E) solmuväritys on kuvaus $c \colon V \to [k]$ jollain luonnollisella luvulla $k \in \mathbb{N}$. Lisäksi vaaditaan, että jos verkossa on kaari solmusta v solmuun u, eli $v u \in E$, niin $c(v) \neq c(u)$.

Verkon voi värittää k:lla värillä jos löytyy yllä olevan ehdon täyttävä kuvaus $c\colon V\to [k]$. Tällaista väritystä kutsutaan k-väritykseksi.

Jos verkkoa väritetään hajautetulla algoritmilla, niin jokaisen solmun tulee tietää oma värinsä laskennan päätyttyä.

2.4 Sykli

Määritelmä 4. Verkko on *sykli*, jos se on yhtenäinen ja sen jokaisella solmulla on tasan kaksi naapuria.

Tarkemmin sanoen, n-sykli, missä $n \geq 3$, on verkko $C_n = (V, E)$ jolla

$$V = \{v_1, v_2, \dots, v_n\}$$

$$E = \{v_i v_{i+1} \mid 1 \le i < n\} \cup \{v_n v_1\}$$

Syklin voi aina värittää kolmella värillä.

TODO: tälle lähde?

2.5 Iteroitu logaritmi log*

Määritelmä 5. Iteroitu logaritmi log* kertoo kuinka monta kertaa luvusta täytyy ottaa logaritmi, kunnes lopputulos on korkeintaan yksi. Tarkemmin,

$$\log^* x = \begin{cases} 0, & \text{jos } x \le 1, \\ 1 + \log^*(\log x), & \text{muutoin.} \end{cases}$$

Esimerkiksi

$$\log^* 16 = \log^* 2^{2^2} = 1 + \log^* 2^2$$
$$= 2 + \log^* 2 = 3 + \log^* 1 = 3$$

ja

$$\log^* 65536 = \log^* 2^{2^{2^2}} = 1 + \log^* 16$$

= 4.

joten $\log^* n$ on arvoltaan pienempi kuin 5 kun $n < 2^{65536}$. Iteroitu logaritmi on siis äärimmäisen hitaasti kasvava funktio.

2.6 Näkymä

Määritelmä 6. Verkon G polku on jono $P=(p_1,\ldots,p_n)$, missä jokainen $p_i\in V(G)$ on verkon G solmu, kahden jonon perättäisen solmun välillä täytyy aina olla kaari ja lisäksi sama solmu ei saa esiintyä jonossa kahdesti. Siis kaikilla $i\in [n-1]$ täytyy olla voimassa ehto $p_ip_{i+1}\in E(G)$. Lisäksi kaikilla $i,j\in [n], i\neq j$ täytyy olla voimassa ehto $p_i\neq p_j$. Polku P on polku solmusta p_1 solmuun p_n .

Yllä olevassa kuvassa on polku (3, 4, 7, 6, 8, 9) solmusta 3 solmuun 9.

Määritelmä 7. Polun $P = (p_1, \dots, p_n)$ pituus on sen kaarten lukumäärä. Siis polun P pituus on n-1.

Edellisen kuvan polun pituus on 5.

Määritelmä 8. Kahden verkon G solmun $u, v \in V(G)$ välinen etäisyys verkossa G, on lyhimmän solmusta u solmuun v kulkevan polun pituus.

TODO: kuva lyhimmästä polusta ja etäisyydestä

TODO: Määrittele k-ympäristö

TODO: kuvia naapurustoista eri säteillä

Hajautetussa algoritmissa solmu $v \in V$ saa k:ssa kierroksessa selville oman k-ympäristönsä. Toisaalta solmu ei pysty tässä ajassa saamaan mitään selville solmuista, joiden etäisyys v:stä on yli k.

TODO: kuvasarja havainnollistamaan tätä

Hajautettu algoritmi, jonka ajoaika on k kierrosta on siis funktio, jonka lähtöjoukkona on solmujen mahdolliset k-ympäristöt.

TODO: tää kaipaa varmaan vähän selvennystä

Erityisesti syklissä algoritmi, jonka ajoaika on k kierrosta, tekee päätöksensä k:n edeltäjän, k:n seuraajan ja oman tunnisteensa perusteella. Toisin sanoen solmun $v_l \in V(C_n)$ tuloste on funktio arvoilta

$$(ID(v_{l-k}), ID(v_{l-k+1}), \dots, ID(v_{l-1}), ID(v_l), ID(v_{l+1}), \dots, ID(v_{l+k})),$$

Missä yhteen- ja vähennyslaskut suoritetaan modulo n.

TODO: Kuvasarja solmun näkymästä syklissä.

Erityisesti jos algoritmi tuottaa 3-värityksen syklissä k:ssa kierroksessa, niin täytyy olla olemassa sellainen funktio $f:[n]^{2k+1} \to [3]$, joka tuottaa laillisen 3-värityksen riippumatta siitä miten solmuille on annettu tunnisteet.

TODO: onko karteesinen potenssi kohdeyleisölle tuttu?

2.7 Naapurustoverkot

Määritelmä 9. Naapurustoverkko $B_{t,n} = (V, E)$ on verkko, jonka solmujoukon V muodostaa vektoreiden (x_1, \ldots, x_{2t+1}) joukko, missä x_i :t ovat keskenään erisuuria kokonaislukuja joukosta [n]. Verkossa $B_{t,n}$ solmut muotoa

$$(x_1,\ldots,x_{2t+1})$$
 ja $(y,x_1,x_2,\ldots,x_{2t})$

ovat naapureita, kun $y \neq x_{2t+1}$.

TODO: pari kuvaa näistä verkoista pienillä parametrien arvoilla

Naapurustoverkon $B_{t,n}$ solmu on siis syklissä ajetun hajautetun algoritmin näkymä t kierroksen jälkeen. Kahden näkymän välillä on naapurustoverkossa kaari, jos ne ovat vierekkäisten solmujen näkymät jossain yksikäsitteisillä tunnisteilla varustetussa n-syklissä.

TODO: havainnollista kuvalla syklin naapurisolmujen näkymiä ja naapurustoverkon vastaavia solmuja

Määritelmä 10. Solmun $v \in V(G)$ asteluku on sen naapureiden lukumäärä verkossa G. Tarkemmin, solmun $v \in V(G)$ asteluku on

$$|\{e \in E(G) \mid v \in e\}|.$$

Verkossa $B_{t,n}$ on

$$n(n-1)(n-2)\cdots(n-2t)$$

solmua ja sen kaikkien solmujen asteluku on 2(n-2t-1).

TODO: onko asteluvusta puhuminen olennaista?

TODO: epäkonsistenttia: kierrosmäärä on välillä k ja välillä t

Hajautettu algoritmi, joka 3-värittää syklin t kierroksessa antaa jokaiselle solmulle värin tarkastelemalla vain sen t-ympäristön tunnisteita. Väritysalgoritmi on siis todellisuudessa funktio $c: V(B_{t,n}) \to [3]$, sillä naapurustoverkossa $B_{t,n}$ on solmuina kaikki mahdolliset n-syklin t-naapurustot.

Nyt c on myös laillinen 3-väritys verkolle $B_{t,n}$, sillä jos c antaa solmuille

$$(x_1,\ldots,x_{2t},x_{2t+1})$$
 ja (y,x_1,\ldots,x_{2t})

saman värin, niin se antaa myös syklissa kahdelle vierekkäiselle solmulle saman värin kun syklissä esiintyy pätkä

$$y, x_1, x_2, \ldots, x_{2t+1}$$
.

Siis jos näytetään, että verkkoa $B_{t,n}$ ei voi 3-värittää, niin ei voi myöskään olla hajautettua algoritmia joka värittäisi n-syklin kolmella värillä t kierroksessa.

2.8 Suunnattu verkko

Suunnatto verkko G=(V,E) on verkko, jossa kaarilla on suunta. Suunnatussa verkossa on kaari solmusta $u\in V$ solmuun $v\in V$ jos $(u,v)\in E$. Suunnatulla kaarella $e=(u,v)\in E$ on $k\ddot{a}rki$

$$head(e) = v$$

ja *häntä*

$$tail(e) = u$$

TODO: kuva suunnatusta verkosta ja havainnollistava kuva kärjestä ja hännästä

$$tail(e)$$
 head(e)

2.9 Väritysluku $\chi(G)$

Verkon G väritysluku $\chi(G)$ on pienin määrä värejä, jolla sen voi värittää.

3 Sykliä ei voi 3-värittää alle $\log^* n$ kierroksessa

Väritysluvun $\chi(B_{t,n})$ alaraja todistetaan käyttäen suunnattujen verkkojen $D_{s,n}$ perhettä. Suunnatut verkot $D_{s,n}$ liittyvät läheisesti naapurustoverkkoihin $B_{t,n}$. Verkon $D_{s,n}$ solmujoukon $V(D_{s,n})$ muodostavat kaikki vektorit muotoa

$$(a_1, a_2, \ldots, a_s),$$

joilla pätee

$$1 \le a_1 < a_2 < \dots < a_s \le n.$$

Solmusta (a_1, \ldots, a_s) lähtee kaari muotoa

$$(a_2,\ldots,a_s,b)$$

oleviin solmuihin, joilla $a_s < b \le n$.

Lemma 11. Naapurustoverkko $B_{t,n}$ pitää sisällään aliverkkona suunnatun verkon $D_{2t+1,n}$.

Todistus. Olkoon

$$\bar{x} = (x_1, \dots, x_{2t+1}) \in V(D_{2t+1,n})$$

verkon $D_{2t+1,n}$ solmu. Koska verkossa $D_{2t+1,n}$ on solmuvektoreilla suuruusjärjestysehto

$$x_1 < x_2 < \dots < x_{2t+1},$$

niin erityisesti nämä vektorin alkiot ovat keskenään erisuuria, joten vektori \bar{x} on myös verkon $B_{t,n}$ solmu.

Lisäksi jos solmulla \bar{x} on verkossa $D_{2t+1,n}$ naapuri

$$\bar{y} = (x_2, \dots, x_{2t+1}, y) \in V(D_{2t+1,n}),$$

eli verkossa $D_{2t+1,n}$ on suunnattu kaari $(\bar{x},\bar{y}) \in E(D_{2t+1,n})$, niin tällöin myös verkossa $B_{t,n}$ on näiden solmujen välillä kaari. Tämä johtuu siitä, että suunnatun verkon $D_{2t+1,n}$ kaarien suuruusjärjestysehdon nojalla $y > x_1$, joten erityisesti $y \neq x_1$.

Tästä erityisesti seuraa, että jokainen verkon $B_{t,n}$ väritys on myös verkon $D_{2t+1,n}$ väritys.

Lemma 12.

$$\chi(B_{t,n}) \ge \chi(D_{2t+1,n})$$

Todistus. Olkoon $c: V(B_{t,n}) \to [k]$ verkon $B_{t,n}$ väritys. Nyt jos

$$(x,y) \in E(D_{2t+1,n})$$

on verkon $D_{2t+1,n}$ kaari, niin äskeisen lemman nojalla solmujen x ja y välillä on kaari myös verkossa $B_{t,n}$. Koska c on verkon $B_{t,n}$ väritys, niin $c(x) \neq c(y)$. Siis c on väritys myös verkolle $D_{2t+1,n}$ ja erityisesti verkon $D_{2t+1,n}$ voi siis myös värittää k:lla värillä.

3.1 Suunnatun verkon kaariverkko

Suunnatun verkon G kaariverkko DL(G) on verkko, jonka solmuja ovat alkuperäisen verkon G kaaret ja kahden kaariverkon solmun

$$u, v \in V(\mathrm{DL}(G)) = E(G)$$

välillä on kaari, jos head(u) = tail(v).

TODO: havainnollistava kuva

Tarkemmin ilmaistuna,

$$V(\mathrm{DL}(G)) = E(G)$$

$$E(\mathrm{DL}(G)) = \{(v, u) \in E(G) \times E(G) \mid \mathrm{head}(v) = \mathrm{tail}(u)\}.$$

Lemma 13. $D_{1,n}$ on n:n solmun täydellinen verkko, jossa kaaret on suunnattu pienemmästä solmusta suurempaan.

Todistus. Verkon $D_{s,n}$ määritelmä s:n arvolla 1 antaa seuraavan verkon:

$$V(D_{1,n}) = \{(k) \mid 1 \le k \le n\}$$

$$E(D_{1,n}) = \{((k), (l)) \mid k < l\}.$$

Tässä verkossa jokaisen kahden solmun välillä on kaari tasan yhteen suuntaan.

Määritelmä 14. Kaksi suunnattua verkkoa G ja H ovat isomorfiset jos niiden solmujoukkojen välillä on olemassa kuvaus $\varphi\colon V(G)\to V(H)$ joka toteuttaa seuraavat ehdot

- 1. φ on bijektio
- 2. $(u,v) \in E(G)$ jos ja vain jos $(\varphi(u), \varphi(v)) \in E(H)$.

Nämä ehdot toteuttavaa kuvausta kutsutaan isomorfismiksi.

Lemma 15. Verkko $D_{s+1,n}$ on verkon $D_{s,n}$ kaariverkko. Tarkemmin,

$$D_{s+1,n} = \mathrm{DL}(D_{s,n}).$$

Todistus. Ideana on samaistaa kaariverkon $\mathrm{DL}(D_{s,n})$ kaari

$$((x_1,\ldots,x_s),(x_2,\ldots,x_s,y))$$

verkon $D_{s+1,n}$ solmun (x_1,\ldots,x_s,y) kanssa. Määritellään siis verkkojen välille kuvaus

$$\varphi \colon V(\mathrm{DL}(D_{s,n}) \to V(D_{s+1,n})$$

asettamalla

$$\varphi((x_1,\ldots,x_s),(x_2,\ldots,x_s,y))=(x_1,\ldots,x_s,y).$$

Näytetään, että φ on isomorfismi. Ensinnäkin φ on bijektio, sillä sille löytyy seuraava käänteiskuvaus $\psi \colon D_{s+1,n} \to \mathrm{DL}(D_{s,n})$:

$$\psi(x_1,\ldots,x_n,x_{n+1}) = ((x_1,\ldots,x_n),(x_2,\ldots,x_{n+1})).$$

Kuvaus ψ on kuvauksen φ käänteiskuvaus, sillä

$$(\psi \circ \varphi)((x_1, \dots, x_n), (x_2, \dots, x_n, y)) = \psi(\varphi((x_1, \dots, x_n), (x_2, \dots, x_n, y)))$$

= $\psi(x_1, \dots, x_n, y)$
= $((x_1, \dots, x_n), (x_2, \dots, x_n, y))$

ja

$$(\varphi \circ \psi)(x_1, \dots, x_n, x_{n+1}) = \varphi(\psi(x_1, \dots, x_n, x_{n+1}))$$

= $\varphi((x_1, \dots, x_n), (x_2, \dots, x_n, x_{n+1}))$
= $(x_1, \dots, x_n, x_{n+1}).$

Vielä täytyy näyttää, että kuvaus toteuttaa isomorfiaehdon. Olkoon

$$\bar{x}_1 = (x_1, \dots, x_n) \in V(D_{s,n}),$$

 $\bar{x}_2 = (x_2, \dots, x_{n+1}) \in V(D_{s,n}),$
 $\bar{y}_1 = (y_1, \dots, y_n) \in V(D_{s,n})$ ja
 $\bar{y}_2 = (y_2, \dots, y_{n+1}) \in V(D_{s,n})$

verkon $D_{s,n}$ solmuja. Tällöin erityisesti

$$(\bar{x}_1, \bar{x}_2) \in V(\mathrm{DL}(D_{s,n}))$$
 ja
 $(\bar{y}_1, \bar{y}_2) \in V(\mathrm{DL}(D_{s,n}))$

ovat kaariverkon $\mathrm{DL}(D_{s,n})$ solmuja. Jos $((\bar{x}_1,\bar{x}_2),(\bar{y}_1,\bar{y}_2))\in E(\mathrm{DL}(D_{s,n}))$ on kaariverkon $\mathrm{DL}(D_{s,n})$ kaari, niin kaariverkon määritelmän nojalla

head
$$((\bar{x}_1, \bar{x}_2)) = \text{tail}((\bar{y}_1, \bar{y}_2))$$
 \Longrightarrow
 $\bar{x}_2 = \bar{y}_1$ \Longrightarrow
 $(x_2, \dots, x_{n+1}) = (y_1, \dots, y_n)$ \Longrightarrow
 $y_1 = x_2, \dots$ ja $y_n = x_{n+1}$.

Koska $\bar{x}_1 \in V(D_{s,n})$ ja $\bar{y}_2 \in V(D_{s,n})$, niin $x_1 < y_1 = x_2$ ja $y_n < y_{n+1}$. Tällöin

$$(\varphi(\bar{x}_1, \bar{x}_2), \varphi(\bar{y}_1, \bar{y}_2)) = ((x_1, \dots, x_{n+1}), (y_1, \dots, y_{n+1}))$$
$$= ((x_1, y_1, y_2, \dots, y_n), (y_1, \dots, y_{n+1})) \in E(D_{s+1,n}).$$

Ollaan siis näytetty ensimmäinen kahdesta implikaatiosta:

$$((\bar{x}_1, \bar{x}_2), (\bar{y}_1, \bar{y}_2)) \in E(DL(D_{s,n})) \implies (\varphi(\bar{x}_1, \bar{x}_2), \varphi(\bar{y}_1, \bar{y}_2)) \in E(D_{s+1,n}).$$

Toisaalta jos

$$\bar{x} = (x_1, \dots, \bar{x}_{n+1}) \in V(D_{s+1,n})$$
 ja
 $\bar{y} = (y_1, \dots, \bar{y}_{n+1}) \in V(D_{s+1,n}).$

ovat verkon $D_{s+1,n}$ solmuja joiden välillä on kaari, eli $(\bar{x}, \bar{y}) \in E(D_{s+1,n})$, niin tällöin

$$x_2 = y_1, \dots$$
 ja $x_{n+1} = y_n.$

Nyt

$$\bar{x}_1 = (x_1, \dots, x_n),$$

 $\bar{x}_2 = (x_2, \dots, x_{n+1}),$
 $\bar{y}_1 = (y_1, \dots, y_n)$ ja
 $\bar{y}_2 = (y_2, \dots, y_{n+1})$

ovat verkon $D_{s,n}$ solmuja joilla pätee

$$(\bar{x}_1, \bar{x}_2) \in E(D_{s,n}) \implies (\bar{x}_1, \bar{x}_2) \in V(\mathrm{DL}(D_{s,n}))$$
 ja
 $(\bar{y}_1, \bar{y}_2) \in E(D_{s,n}) \implies (\bar{y}_1, \bar{y}_2) \in V(\mathrm{DL}(D_{s,n})).$

Koska $\bar{x}_2 = \bar{y}_1$, niin kaariverkossa $DL(D_{s,n})$ on kaari

$$((\bar{x}_1, \bar{x}_2), (\bar{y}_1, \bar{y}_2)) \in E(DL(D_{s,n})).$$

Koska

$$(\bar{x}_1, \bar{x}_2) = \varphi^{-1}(\bar{x})$$
 ja
 $(\bar{y}_1, \bar{y}_2) = \varphi^{-1}(\bar{y})$

niin väite on todistettu. Ollaan siis näytetty, että jos $(\bar{x}, \bar{y}) \in E(D_{s+1,n})$ on verkon $D_{s+1,n}$ kaari, niin sen solmujen alkukuvien välillä on myös kaari. Tarkemmin sanottuna

$$(\bar{x}, \bar{y}) \in E(D_{s+1,n}) \implies (\varphi^{-1}(\bar{x}), \varphi^{-1}(\bar{y})) \in E(DL(D_{s,n})).$$

Ollaan siis näytetty, että löytyy bijektio $\varphi \colon V(\mathrm{DL}(D_{s,n})) \to D_{s+1,n}$ joka toteuttaa isomorfiaehdon, joten verkot $\mathrm{DL}(D_{s,n})$ ja $D_{s+1,n}$ ovat isomorfisina olennaisesti sama verkko.

TODO: todista erikseen, että $D_{2,n} = DL(D_{1,n})$?

Verkkojen $D_{s,n}$ välillä on nyt siis tarkkaan tunnettu yhteys, kun s:n arvot vaihtelevat. Lisäksi verkko $D_{1,n}$ on rakenteeltaan yksinkertainen täydellinen verkko.

Lemma 16.

$$\chi(D_{1,n}) = n.$$

Todistus. Koska täydellisessä verkossa on kaari verkon jokaisen solmuparin välillä, täytyy sen jokaisella solmulla olla eri väri kuin millään muulla solmulla. Siispä verkon $D_{1,n}$ värittämiseen tarvitaan n väriä.

Seuraavan lemman avulla saadaan yhteys verkkojen $D_{s,n}$ ja $D_{s+1,n}$ värityslukujen välille.

Lemma 17. Olkoon G kaariverkko. Tällöin

$$\chi(\mathrm{DL}(G)) \ge \log \chi(G)$$
.

Todistus. Olkoon $\Psi: DL(G) \to [k]$ kaariverkon DL(G) k-väritys. Koska verkko DL(G) on verkon G kaariverkko, niin kuvaus Ψ antaa jokaiselle verkon G kaarelle värin. Jos $u, v \in E(G)$ ovat verkon G perättäisiä kaaria, eli head(u) = tail(v), niin Ψ antaa niille eri värit, $\Psi(u) \neq \Psi(v)$.

Muodostetaan verkolle G väritys $c: G \to \mathcal{P}([k])$ joka värittää $G:n \ 2^k$ värillä. Olkoon $x \in V(G)$ verkon G solmu. Määritellään x:n väri seuraavasti:

$$c(x) = \{\Psi(u) \mid tail(u) = x\}.$$

Solmun x väri on siis joukko, jossa on kaikkien solmusta x lähtevien kaarten värit värityksessä Ψ . Jotta c olisi laillinen väritys, se ei saa antaa samaa väriä kahdelle naapurisolmulle. Olkoon $u=(x,y)\in E(G)$ verkon G kaari ja siis $y\in V(G)$ solmun x naapuri. Nyt tail(u)=x, joten u:n väri kuuluu x:n värijoukkoon. Tarkemmin ilmaistuna, $\Psi(u)\in c(x)$.

Toisaalta jos $\Psi(u) \in c(y)$, niin tällöin löytyy kaari $v \in E(G)$, joka lähtee solmusta y, eli tail(v) = y ja lisäksi jolle Ψ antaa saman värin kuin u:lle, eli $\Psi(x) = \Psi(y)$. Tämä ei kuitenkaan ole mahdollista, sillä head(u) = y = tail(v), jolloin Ψ ei olisikaan laillinen verkon DL(G) väritys. Siis c antaa vierekkäisille solmuille aina toisistaan eroavan värin, joten se täyttää väritysehdon.

TODO: Tämä on vähän wall of text, voisi keventää jotenkin

Väritys c antaa verkon G solmuille väriksi jonkin osajoukon värityksen Ψ väreistä. Koska k:n alkion joukolla on yhteensä 2^k osajoukkoa, niin c värittää verkon G korkeintaan 2^k värillä.

Ollaan siis näytetty, että jos verkon G kaariverkon $\mathrm{DL}(G)$ voi värittää k:lla värillä, niin G:n voi värittää 2^k värillä. Toisin sanoen

$$\chi(G) \le 2^{\chi(\mathrm{DL}(G))} \Longrightarrow \log \chi(G) \le \chi(\mathrm{DL}(G))$$

Aikaisemmista lemmoista saadaan nyt lopulta verkkojen $D_{s,n}$ väritysluvulle $\chi(D_{s,n})$ alaraja.

Korollaari 18.

$$\chi(D_{s+1,n}) \ge \log \chi(D_{s,n}).$$

Erityisesti, koska $\chi(D_{1,n})=n,$ niin edellisestä korollaarista seuraa, että

$$\chi(D_{s,n}) \ge \log^{(s)} \chi(D_{1,n}) \implies \chi(D_{s,n}) \ge \log^{(s)} n$$

TODO: esittele notaatio $\log^{(n)}$

Lause 19. Hajautettu algoritmi ei voi värittää n:n solmun sykliä kolmella värillä alle $\log^* n$ kierroksessa.

Todistus. Hajautettu algoritmi voi värittää n-syklin kolmella värillä t kierroksessa jos verkon $B_{t,n}$ voi värittää kolmella värillä. Yhdistämällä edellisten lemmojen tulokset saadaan seuraava yhtälö:

$$3 \ge \chi(B_{t,n}) \ge D_{2t+1,n} \ge \log^{(2t)} n.$$

Josta voidaan edelleen päätellä seuraavaa:

$$\log^{(2t)} n \le 3 \implies \log^{(2t+1)} n \le 2 \implies \log^{(2t+2)} n \le 1.$$

Luku $\log^* n$ on pienin määrä toistokertoja, jolla luvusta n saadaan logaritmeja ottamalla korkeintaan 1. Äskeisen nojalla 2(t+1) toistokertaa varmasti riittää tähän, joten

$$\log^* n \le 2(t+1) \implies \frac{1}{2}\log^* n - 1 \le t.$$

Ollaan siis näytetty, että hajautettu algoritmi joka värittää n-syklin kolmella värillä käyttää siihen aikaa vähintään $\frac{1}{2}\log^*n-1$ kierrosta.

4 Lähteet