

IDPG: An Instance-Dependent Prompt Generation Method

Zhuofeng Wu^{1*} Sinong Wang² Jiatao Gu² Rui Hou² Yuxiao Dong^{2,3†} V.G. Vinod Vydiswaran^{4,1} Hao Ma²

¹School of Information, University of Michigan

²Meta Al ³Tsinghua University

⁴Department of Learning Health Sciences, University of Michigan

NAACL 2022

 $[^]st$ Work partially done while interning at Meta AI. † Work done when at Meta AI.

Motivation: fine-tuning has become expansive

• Pre-training a large model and fine-tuning it on different downstream tasks has become the primary transfer learning paradigm.

 However, as the model size proliferates, every time a new task comes, updating and storing the whole model becomes expansive.

Previous Approaches: manual prompt learning

(c) Prompt-based fine-tuning with demonstrations (our approach)

LM-BFF appends task-description words "It was [MASK]" to the end of input and

Figure from (Gao et al., 2021a).

predicts the masked tokens.

Previous Approaches: manual prompt learning

EFL reformulates tasks as entailment task to leverage rich NLI supervision data

^{*} Figure from (Wang et al., 2021).

Previous Approaches: drawbacks of manual prompt

- Manual prompt learning methods request either:
 - manual design -> hard to generalize
 - beam search -> time consuming & limited to few-shot setting

^{*} Figure from (Wang et al., 2021).

- To learn the optimized prompt for each task.
- Prepend **trainable** tokens to input.
- Learn embeddings of these virtual tokens via backpropagation.
- Keep rest of model fixed.

Previous Approaches:

Research gaps

• Assuming we already get optimized prompt $E_1^*, ..., E_t^*$, every time a new input x_i comes, we prepend $E_1^*, ..., E_t^*$ in front of it.

• Indeed, it is unlikely to see many different sentences with the same prefix in the pre-training corpus.

• Thus, a unified prompt may disturb the prediction.

Can we generate input-dependent prompts to smooth the domain difference?

Our method: Instance-Dependent Prompt Generation INFORMATION UNIVERSITY OF MICHIGAN

IDPG degenerates into traditional prompt tuning if setting prompt generator as a zero matrix.

Optimization #1: Parameterized Hypercomplex Multiplication (PHM) Layers

- Prompt tuning only prepends several tokens and trains them.
- The bottleneck structure takes millions of parameters.

Optimization #1: Parameterized Hypercomplex Multiplication (PHM) Layers

IDPG-DNN:

$$W_1 \in R^{\{m \times d\}}, W_2 \in R^{\{t \times m \times d\}}$$

$$d = 1024$$

$$m \in [16, 32, 64, 128, 256]$$

Optimization #1: Parameterized Hypercomplex Multiplication (PHM) Layers

IDPG-PHM:

$$W = \sum_{\{i=1\}}^{n} A_i \otimes B_i$$

$$A_i \in R^{\{n \times n\}}, B_i \in R^{\left\{\frac{m}{n} \times \frac{d}{n}\right\}}$$

⊗ : Kronecker product

param size:
$$n^3 + \frac{m \times d}{n}$$

$$W_1 \in R^{\{m \times d\}}, W_2 \in R^{\{t \times m \times d\}}$$

$$d = 1024$$

$$m \in [16, 32, 64, 128, 256]$$

• We insert the prompt into multi-layer in transformer.

Single sentence tasks

sentence pair tasks

Method	MPQA	Subj	CR	MR	SST-2	QNLI	RTE	MRPC	STS-B	QQP	Avg
Transformer Fine-tuning	β										
RoBERTa	$90.4_{\pm 0.2}$	$97.1_{\pm 0.1}$	$90.7_{\pm 0.7}$	91.7 _{±0.2}	$96.4_{\pm 0.2}$	94.7 _{±0.1}	85.7 _{±0.2}	91.8 _{±0.4}	$92.2_{\pm 0.2}$	91.0 _{±0.1}	92.2
EFL	$90.3_{\pm 0.2}$	$97.2_{\pm 0.1}$	$93.0_{\pm0.7}$	$91.7_{\pm0.2}$	96.5 $_{\pm 0.1}$	$94.4_{\pm 0.1}$	$85.6_{\pm 2.4}$	$91.2_{\pm 0.4}$	92.5 $_{\pm 0.1}$	$91.0_{\pm 0.2}$	92.3
Adapter											
Compacter	$91.1_{\pm 0.2}$	$97.5_{\pm 0.1}$	$92.7_{\pm 0.4}$	92.6 $_{\pm 0.2}$	$96.0_{\pm 0.2}$	$94.3_{\pm 0.2}$	$87.1_{\pm 1.4}$	$91.6_{\pm 0.6}$	$91.6_{\pm 0.1}$	$87.1_{\pm 0.2}$	92.2
Adapter	$90.8_{\pm0.2}$	$97.5_{\pm0.1}$	$92.8_{\pm0.3}$	$92.5{\scriptstyle\pm0.1}$	$96.1_{\pm 0.1}$	$94.8_{\pm0.2}$	$88.1_{\pm0.4}$	$91.8{\scriptstyle\pm0.6}$	$92.1_{\pm0.1}$	$89.9_{\pm0.1}$	92.6
Prompting											
Prompt-tuning	90.3 _{±0.2}	95.5 _{±0.4}	91.2 _{±1.1}	91.0 _{±0.2}	$94.2_{\pm 0.3}$	86.0 _{±0.3}	87.0 _{±0.4}	84.3 _{±0.3}	87.2 _{±0.2}	81.6 _{±0.1}	88.8
Prompt-tuning-134	$65.7_{\pm 19}$	$95.6_{\pm0.2}$	$86.7_{\pm 3.6}$	$89.7_{\pm 0.5}$	$92.0_{\pm 0.5}$	$83.0_{\pm1.1}$	$87.4_{\pm 0.5}$	$84.1_{\pm 0.5}$	$87.6_{\pm 0.5}$	$82.4_{\pm 0.3}$	85.4
Ptuningv2	$90.4_{\pm 0.3}$	$96.5_{\pm0.3}$	$92.7_{\pm0.3}$	$91.6_{\pm0.1}$	$94.4_{\pm 0.2}$	$92.9_{\pm 0.1}$	$78.4_{\pm 4.3}$	$91.4_{\pm0.4}$	$89.9_{\pm0.2}$	$84.4_{\pm 0.4}$	90.3
S-IDPG-PHM	$89.6_{\pm0.3}$	$94.4_{\pm 0.3}$	$90.3_{\pm0.2}$	$89.3_{\pm0.4}$	$94.7_{\pm 0.2}$	$90.7_{\pm0.3}$	$89.2_{\pm0.2}$	$84.3{\scriptstyle\pm0.8}$	$84.7_{\pm 0.9}$	$82.5_{\pm0.2}$	89.0
S-IDPG-DNN	$89.5_{\pm 0.7}$	$94.9_{\pm 0.4}$	$89.9_{\pm 1.5}$	$90.2_{\pm 0.6}$	$95.1_{\pm 0.2}$	$90.5_{\pm 0.5}$	$89.4_{\pm 0.4}$	$83.0_{\pm 0.5}$	$85.3_{\pm 0.7}$	$82.7_{\pm 0.3}$	89.1
M-IDPG-PHM-GloVe	$90.9_{\pm0.2}$	$97.4_{\pm 0.1}$	$93.3_{\pm0.1}$	92.6 $_{\pm 0.3}$	$95.4_{\pm 0.2}$	$94.4_{\pm 0.2}$	$82.1_{\pm 0.6}$	$92.1_{\pm0.4}$	$91.0_{\pm0.4}$	$86.3_{\pm0.2}$	91.6
M-IDPG-PHM	$91.2_{\pm 0.2}$	$97.5_{\pm0.1}$	$93.2_{\pm0.3}$	$92.6_{\pm 0.3}$	$96.0_{\pm 0.3}$	$94.5_{\pm 0.1}$	$83.5{\scriptstyle\pm0.7}$	$92.3_{\pm 0.2}$	$91.4_{\pm 0.4}$	$86.2 \scriptstyle{\pm 0.1}$	91.9
M-IDPG-DNN	$91.2_{\pm 0.3}$	97.6 ±0.2	$\underline{\textbf{93.5}}_{\pm0.3}$	$92.6_{\pm 0.1}$	$95.9_{\pm0.1}$	$\underline{94.5}_{\pm 0.2}$	$85.5_{\pm0.6}$	$91.8_{\pm0.3}$	$\underline{91.5}_{\pm 0.2}$	$\underline{86.9}_{\pm0.3}$	<u>92.1</u>

RoBERTa-large as backbone for all competing methods

Main results – IDPG vs traditional prompting methods INFORMATION UNIVERSITY OF MICHIGAN

		Single	senten	ce tasks			senter	nce pair	tasks		
											#params
Method	MPQA	Subj	CR	MR	SST-2	QNLI	RTE	MRPC	STS-B	QQP Avg	
Transformer Fine-tuning	g										
RoBERTa EFL	$90.4_{\pm 0.2} \\ 90.3_{\pm 0.2}$	$97.1_{\pm 0.1} \\ 97.2_{\pm 0.1}$	$90.7_{\pm 0.7} \\ 93.0_{\pm 0.7}$	$91.7_{\pm 0.2} \\ 91.7_{\pm 0.2}$	$96.4_{\pm 0.2}$ $96.5_{\pm 0.1}$	94.7 _{±0.1} 94.4 _{±0.1}	$85.7_{\pm 0.2}$ $85.6_{\pm 2.4}$	$91.8_{\pm 0.4} \\ 91.2_{\pm 0.4}$	$92.2_{\pm 0.2}$ $92.5_{\pm 0.1}$	$\begin{array}{c cccc} 91.0_{\pm 0.1} & 92.2 \\ 91.0_{\pm 0.2} & 92.3 \end{array}$	
Adapter											
Compacter Adapter	$91.1_{\pm 0.2} \\ 90.8_{\pm 0.2}$	$97.5_{\pm 0.1} \\ 97.5_{\pm 0.1}$	$92.7_{\pm 0.4} \\ 92.8_{\pm 0.3}$	92.6 _{±0.2} 92.5 _{±0.1}	$96.0_{\pm 0.2} \\ 96.1_{\pm 0.1}$	$94.3_{\pm 0.2} \\ 94.8_{\pm 0.2}$	$87.1_{\pm 1.4} \\ 88.1_{\pm 0.4}$	$91.6_{\pm 0.6} \\ 91.8_{\pm 0.6}$	$91.6_{\pm 0.1} \\ 92.1_{\pm 0.1}$	87.1 _{±0.2} 92.2 89.9 _{±0.1} 92.6	
Prompting											
Prompt-tuning Prompt-tuning-134	$90.3_{\pm 0.2}$ $65.7_{\pm 19}$	$95.5_{\pm 0.4}$ $95.6_{\pm 0.2}$	$91.2_{\pm 1.1} \\ 86.7_{\pm 3.6}$	$91.0_{\pm 0.2} \\ 89.7_{\pm 0.5}$	$94.2_{\pm 0.3} \\ 92.0_{\pm 0.5}$	$86.0_{\pm 0.3} \\ 83.0_{\pm 1.1}$	$87.0_{\pm 0.4}$ $87.4_{\pm 0.5}$	$84.3_{\pm 0.3}$ $84.1_{\pm 0.5}$	$87.2_{\pm 0.2}$ $87.6_{\pm 0.5}$	$81.6_{\pm 0.1}$ 88.8 $82.4_{\pm 0.3}$ 85.4	5K 134K
Ptuningv2 S-IDPG-PHM	$90.4_{\pm 0.3} \\ 89.6_{\pm 0.3}$	$96.5_{\pm 0.3} \\ 94.4_{\pm 0.3}$	$92.7_{\pm 0.3} \\ 90.3_{\pm 0.2}$	$91.6_{\pm 0.1} \\ 89.3_{\pm 0.4}$	$94.4_{\pm 0.2} \\ 94.7_{\pm 0.2}$	$92.9_{\pm 0.1} \\ 90.7_{\pm 0.3}$	$78.4_{\pm 4.3} \\ 89.2_{\pm 0.2}$	$91.4_{\pm 0.4} \\ 84.3_{\pm 0.8}$	$89.9_{\pm 0.2} \\ 84.7_{\pm 0.9}$	$\begin{array}{c c} 84.4_{\pm 0.4} & 90.3 \\ 82.5_{\pm 0.2} & 89.0 \end{array}$	120K
S-IDPG-DNN M-IDPG-PHM-GloVe	$89.5_{\pm 0.7}$ $90.9_{\pm 0.2}$	$94.9_{\pm 0.4}$ $97.4_{\pm 0.1}$	$89.9_{\pm 1.5}$ $93.3_{\pm 0.1}$	$90.2_{\pm 0.6}$ $92.6_{\pm 0.3}$	$95.1_{\pm 0.2}$ $95.4_{\pm 0.2}$	$90.5_{\pm 0.5}$ $94.4_{\pm 0.2}$	$\frac{89.4_{\pm 0.4}}{82.1_{\pm 0.6}}$	$83.0_{\pm 0.5}$ $92.1_{\pm 0.4}$	$85.3_{\pm 0.7}$ $91.0_{\pm 0.4}$	$82.7_{\pm 0.3}$ 89.1 $86.3_{\pm 0.2}$ 91.6	l
M-IDPG-PHM M-IDPG-DNN	$\frac{91.2_{\pm 0.2}}{91.2_{\pm 0.3}}$	$97.5_{\pm 0.1}$ $97.6_{\pm 0.2}$	$93.2_{\pm 0.3}$ $93.5_{\pm 0.3}$	$\frac{92.6}{92.6}_{\pm 0.1}$	$\frac{96.0_{\pm 0.3}}{95.9_{\pm 0.1}}$	$\frac{94.5}{94.5}_{\pm 0.2}$	$83.5_{\pm 0.7}$ $85.5_{\pm 0.6}$	$\frac{92.3}{91.8}_{\pm 0.3}$	$91.4_{\pm 0.4} \\ 91.5_{\pm 0.2}$	$86.2_{\pm 0.1}$ 91.9 $86.9_{\pm 0.3}$ 92.1	134K

M-IDPG-PHM consistently outperforms task-specific prompt tuning methods by 1.6–3.1 points

Single sentence tasks

sentence pair tasks

												#params
Method	MPQA	Subj	CR	MR	SST-2	QNLI	RTE	MRPC	STS-B	QQP	Avg	
Transformer Fine-tunin	g											
RoBERTa	$90.4_{\pm 0.2}$	97.1 _{±0.1}	$90.7_{\pm 0.7}$	91.7 _{±0.2}	$96.4_{\pm 0.2}$	94.7 _{±0.1}	85.7 _{±0.2}	91.8 _{±0.4}	$92.2_{\pm 0.2}$	91.0 _{±0.1}	92.2	355M
EFL	$90.3_{\pm0.2}$	$97.2_{\pm0.1}$	$93.0_{\pm0.7}$	$91.7_{\pm0.2}$	96.5 _{±0.1}	$94.4_{\pm 0.1}$	$85.6_{\pm 2.4}$	$91.2_{\pm0.4}$	92.5 _{±0.1}	91.0 _{±0.2}	92.3	
Adapter												
Compacter	91.1 _{±0.2}	97.5 _{±0.1}	92.7 _{±0.4}	92.6 _{±0.2}	$96.0_{\pm 0.2}$	94.3 _{±0.2}	87.1 _{±1.4}	91.6 _{±0.6}	91.6 _{±0.1}	87.1 _{±0.2}	92.2	
Adapter	$90.8_{\pm0.2}$	$97.5_{\pm0.1}$	$92.8_{\pm0.3}$	$92.5_{\pm0.1}$	$96.1_{\pm0.1}$	$94.8_{\pm0.2}$	$88.1_{\pm0.4}$	$91.8_{\pm0.6}$	$92.1_{\pm0.1}$	$89.9_{\pm0.1}$	92.6	
Prompting												
Prompt-tuning	90.3 _{±0.2}	95.5 _{±0.4}	91.2 _{±1.1}	91.0 _{±0.2}	$94.2_{\pm 0.3}$	86.0 _{±0.3}	87.0 _{±0.4}	84.3 _{±0.3}	87.2 _{±0.2}	81.6 _{±0.1}	88.8	
Prompt-tuning-134	$65.7_{\pm 19}$	$95.6_{\pm 0.2}$	$86.7_{\pm 3.6}$	$89.7_{\pm 0.5}$	$92.0_{\pm0.5}$	$83.0_{\pm1.1}$	$87.4_{\pm 0.5}$	$84.1_{\pm 0.5}$	$87.6_{\pm 0.5}$	$82.4_{\pm 0.3}$	85.4	
Ptuningv2	$90.4_{\pm 0.3}$	$96.5_{\pm0.3}$	$92.7_{\pm0.3}$	$91.6_{\pm 0.1}$	$94.4_{\pm 0.2}$	$92.9_{\pm0.1}$	$78.4_{\pm 4.3}$	$91.4_{\pm 0.4}$	$89.9_{\pm0.2}$	$84.4_{\pm 0.4}$	90.3	
S-IDPG-PHM	$89.6_{\pm0.3}$	$94.4_{\pm 0.3}$	$90.3_{\pm0.2}$	$89.3_{\pm 0.4}$	$94.7_{\pm 0.2}$	$90.7_{\pm 0.3}$	$89.2_{\pm0.2}$	$84.3_{\pm 0.8}$	$84.7_{\pm 0.9}$	$82.5_{\pm 0.2}$	89.0	
S-IDPG-DNN	$89.5_{\pm 0.7}$	$94.9_{\pm 0.4}$	$89.9_{\pm 1.5}$	$90.2_{\pm 0.6}$	$95.1_{\pm 0.2}$	$90.5_{\pm 0.5}$	$89.4_{\pm 0.4}$	$83.0_{\pm 0.5}$	$85.3_{\pm 0.7}$	$82.7_{\pm 0.3}$	89.1	
M-IDPG-PHM-GloVe	$90.9_{\pm 0.2}$	$97.4_{\pm 0.1}$	$93.3_{\pm 0.1}$	92.6 $_{\pm 0.3}$	$95.4_{\pm 0.2}$	$94.4_{\pm 0.2}$	$82.1_{\pm 0.6}$	$92.1_{\pm 0.4}$	$91.0_{\pm 0.4}$	$86.3_{\pm 0.2}$	91.6	
M-IDPG-PHM	91.2 _{+0.2}	$97.5_{\pm 0.1}$	93.2+0.3	92.6 _{+0.3}	$96.0_{\pm 0.3}$	$94.5_{\pm 0.1}$	$83.5{\scriptstyle\pm0.7}$	92.3 _{+0.2}	$91.4_{\pm 0.4}$	$86.2_{\pm0.1}$	91.9	134K, ~0.037%
M-IDPG-DNN	91.2 _{±0.3}	97.6 ±0.2	93.5 ±0.3	92.6 ±0.1	$95.9_{\pm0.1}$	$94.5_{\pm 0.2}$	$85.5_{\pm 0.6}$	$91.8_{\pm 0.3}$	$91.5_{\pm 0.2}$	$86.9_{\pm 0.3}$	<u>92.1</u>	

Performance: 91.9 vs 92.2

#Params: 134K vs 355M

Single sentence task	(S
----------------------	----

sentence pair tasks

)			,				#param
Method	MPQA	Subj	CR	MR	SST-2	QNLI	RTE	MRPC	STS-B	QQP	Avg	
Transformer Fine-tuning	g											
RoBERTa	$90.4_{\pm 0.2}$	97.1 _{±0.1}	$90.7_{\pm 0.7}$	91.7 _{±0.2}	$96.4_{\pm 0.2}$	94.7 _{±0.1}	85.7 _{±0.2}	91.8 _{±0.4}	$92.2_{\pm 0.2}$	91.0 _{±0.1}	92.2	
EFL	$90.3_{\pm0.2}$	$97.2_{\pm0.1}$	$93.0_{\pm0.7}$	$91.7_{\pm0.2}$	$\textbf{96.5}_{\pm0.1}$	$94.4_{\pm0.1}$	$85.6_{\pm2.4}$	$91.2_{\pm0.4}$	$\textbf{92.5}_{\pm0.1}$	$\textbf{91.0}_{\pm 0.2}$	92.3	
Adapter												
Compacter	91.1 _{±0.2}	97.5+0.1	$92.7_{\pm 0.4}$	92.6 _{±0.2}	$96.0_{\pm 0.2}$	94.3 _{±0.2}	$87.1_{\pm 1.4}$	91.6 _{±0.6}	$91.6_{\pm 0.1}$	87.1 _{±0.2}	92.2	149K
Adapter	$90.8_{\pm0.2}$	$97.5_{\pm0.1}$	$92.8_{\pm0.3}$	$92.5_{\pm0.1}$	$96.1_{\pm0.1}$	$94.8{\scriptstyle\pm0.2}$	$88.1_{\pm 0.4}$	$91.8_{\pm0.6}$	$92.1_{\pm0.1}$	$89.9_{\pm0.1}$	92.6	1.55M
Prompting												
Prompt-tuning	90.3 _{±0.2}	95.5 _{±0.4}	91.2 _{±1.1}	91.0 _{±0.2}	$94.2_{\pm 0.3}$	86.0 _{±0.3}	87.0 _{±0.4}	84.3 _{±0.3}	87.2 _{±0.2}	81.6 _{±0.1}	88.8	
Prompt-tuning-134	$65.7_{\pm 19}$	$95.6_{\pm 0.2}$	$86.7_{\pm 3.6}$	$89.7_{\pm0.5}$	$92.0_{\pm 0.5}$	$83.0_{\pm 1.1}$	$87.4_{\pm 0.5}$	$84.1_{\pm 0.5}$	$87.6_{\pm 0.5}$	$82.4_{\pm 0.3}$	85.4	
Ptuningv2	$90.4_{\pm 0.3}$	$96.5_{\pm 0.3}$	$92.7_{\pm0.3}$	$91.6_{\pm0.1}$	$94.4_{\pm 0.2}$	$92.9_{\pm 0.1}$	$78.4_{\pm 4.3}$	$91.4_{\pm 0.4}$	$89.9_{\pm0.2}$	$84.4_{\pm0.4}$	90.3	
S-IDPG-PHM	$89.6_{\pm 0.3}$	$94.4_{\pm 0.3}$	$90.3_{\pm 0.2}$	$89.3_{\pm 0.4}$	$94.7_{\pm 0.2}$	$90.7_{\pm 0.3}$	$89.2_{\pm 0.2}$	$84.3_{\pm 0.8}$	$84.7_{\pm 0.9}$	$82.5_{\pm 0.2}$	89.0	
S-IDPG-DNN	$89.5_{\pm 0.7}$	$94.9_{\pm 0.4}$	$89.9_{\pm 1.5}$	$90.2_{\pm 0.6}$	$95.1_{\pm0.2}$	$90.5_{\pm 0.5}$	89.4 $_{\pm 0.4}$	$83.0_{\pm 0.5}$	$85.3_{\pm 0.7}$	$82.7_{\pm 0.3}$	89.1	
M-IDPG-PHM-GloVe	$90.9_{\pm 0.2}$	$97.4_{\pm 0.1}$	$93.3_{\pm 0.1}$	92.6 $_{\pm 0.3}$	$95.4_{\pm0.2}$	$94.4_{\pm 0.2}$	$82.1_{\pm 0.6}$	$92.1_{\pm0.4}$	$91.0_{\pm 0.4}$	$86.3_{\pm 0.2}$	91.6	
M-IDPG-PHM	91.2 _{+0.2}	$97.5_{\pm 0.1}$	$93.2_{\pm 0.3}$	92.6 _{+0.3}	$96.0_{\pm 0.3}$	$94.5_{\pm 0.1}$	$83.5_{\pm 0.7}$	92.3 _{+0.2}	$91.4_{\pm 0.4}$	$86.2_{\pm 0.1}$	91.9	134K
M-IDPG-DNN	91.2 _{±0.3}	97.6 ±0.2	93.5 ±0.3	92.6 ±0.1	$95.9_{\pm 0.1}$	$\underline{94.5}_{\pm0.2}$	$85.5_{\pm0.6}$	$91.8_{\pm 0.3}$	$\underline{91.5}_{\pm 0.2}$	$\underline{86.9}_{\pm0.3}$	92.1	

Performance: 91.9 vs 92.2

#Params: 134K vs 149K

Observation – Multi-layer insertion helps

Single sentence tasks

		Jiligie	Senten	ce tasks	•		3611661	ice pair	tasks		
					1						
Method	MPQA	Subj	CR	MR	SST-2	QNLI	RTE	MRPC	STS-B	QQP	Avg
Transformer Fine-tunin	g										
RoBERTa	$90.4_{\pm 0.2}$	97.1 _{±0.1}	90.7 _{±0.7}	91.7 _{±0.2}	96.4 _{±0.2}	94.7 _{±0.1}	85.7 _{±0.2}	91.8 _{±0.4}	$92.2_{\pm 0.2}$	91.0 _{±0.1}	92.2
EFL	$90.3_{\pm0.2}$	$97.2_{\pm0.1}$	$93.0_{\pm0.7}$	$91.7_{\pm0.2}$	$\textbf{96.5}_{\pm0.1}$	$94.4_{\pm0.1}$	$85.6_{\pm2.4}$	$91.2_{\pm0.4}$	$\textbf{92.5}_{\pm0.1}$	$\textbf{91.0}_{\pm0.2}$	92.3
Adapter											
Compacter	$91.1_{\pm 0.2}$	$97.5_{\pm 0.1}$	$92.7_{\pm 0.4}$	92.6 $_{\pm 0.2}$	$96.0_{\pm 0.2}$	$94.3_{\pm 0.2}$	$87.1_{\pm 1.4}$	$91.6_{\pm 0.6}$	$91.6_{\pm 0.1}$	$87.1_{\pm 0.2}$	92.2
Adapter	$90.8_{\pm0.2}$	$97.5_{\pm0.1}$	$92.8_{\pm0.3}$	$92.5_{\pm0.1}$	$96.1_{\pm0.1}$	$94.8_{\pm0.2}$	$88.1_{\pm0.4}$	$91.8_{\pm0.6}$	$92.1_{\pm0.1}$	$89.9_{\pm0.1}$	92.6
Prompting											
Prompt-tuning	90.3 _{±0.2}	95.5 _{±0.4}	91.2 _{±1.1}	$91.0_{\pm 0.2}$	94.2 _{±0.3}	86.0 _{±0.3}	87.0 _{±0.4}	84.3 _{±0.3}	87.2 _{±0.2}	81.6 _{±0.1}	88.8
Prompt-tuning-134	$65.7_{\pm 19}$	$95.6_{\pm0.2}$	$86.7_{\pm 3.6}$	$89.7_{\pm 0.5}$	$92.0_{\pm 0.5}$	$83.0_{\pm1.1}$	$87.4_{\pm 0.5}$	$84.1_{\pm0.5}$	$87.6_{\pm 0.5}$	$82.4_{\pm0.3}$	85.4
Ptuningv2	$90.4_{\pm 0.3}$	$96.5_{\pm0.3}$	$92.7_{\pm0.3}$	$91.6_{\pm0.1}$	$94.4_{\pm 0.2}$	$92.9_{\pm 0.1}$	$78.4_{\pm 4.3}$	$91.4_{\pm 0.4}$	$89.9_{\pm0.2}$	$84.4_{\pm 0.4}$	90.3
S-IDPG-PHM	$89.6_{\pm0.3}$	$94.4_{\pm 0.3}$	$90.3_{\pm0.2}$	$89.3_{\pm0.4}$	$94.7_{\pm 0.2}$	$90.7_{\pm 0.3}$	$89.2_{\pm 0.2}$	$84.3_{\pm0.8}$	$84.7_{\pm 0.9}$	$82.5_{\pm0.2}$	89.0
S-IDPG-DNN	$89.5_{\pm0.7}$	$94.9_{\pm0.4}$	$89.9_{\pm 1.5}$	$90.2_{\pm0.6}$	$95.1_{\pm 0.2}$	$90.5_{\pm0.5}$	89.4 _{±0.4}	$83.0_{\pm0.5}$	$85.3_{\pm 0.7}$	$82.7_{\pm 0.3}$	89.1
M-IDPG-PHM-GloVe	$90.9_{\pm0.2}$	$97.4_{\pm 0.1}$	$93.3_{\pm 0.1}$	92.6 $_{\pm 0.3}$	$95.4_{\pm 0.2}$	$94.4_{\pm 0.2}$	$82.1_{\pm0.6}$	$92.1_{\pm0.4}$	$91.0_{\pm0.4}$	$86.3_{\pm 0.2}$	91.6
M-IDPG-PHM	91.2 _{+0.2}	$97.5_{\pm 0.1}$	$93.2_{\pm 0.3}$	92.6 _{+0.3}	$96.0_{\pm 0.3}$	$94.5_{\pm 0.1}$	$83.5{\scriptstyle\pm0.7}$	92.3 _{+0.2}	$91.4_{\pm 0.4}$	86.2+01	91.9
M-IDPG-DNN	91.2 _{±0.3}	97.6 ±0.2	$93.5_{\pm 0.3}$	92.6 ±0.1	$95.9_{\pm 0.1}$	$94.5_{\pm 0.2}$	$85.5_{\pm 0.6}$	$91.8_{\pm 0.3}$	$91.5_{\pm 0.2}$	$86.9_{\pm 0.3}$	92.1

sentence nair tasks

M-IDPG-PHM vs S-IDPG-PHM: +2.9 points while +29K params

Observation – PHM performs slightly worse while saving params

Single sentence tasks	sentence pair tasks
511.612 5511551155 tole115	

#params

Method	MPQA	Subj	CR	MR	SST-2	QNLI	RTE	MRPC	STS-B	QQP	Avg
Transformer Fine-tunin	g										
RoBERTa	$90.4_{\pm 0.2}$	97.1 _{±0.1}	$90.7_{\pm 0.7}$	91.7 _{±0.2}	96.4 _{±0.2}	94.7 _{±0.1}	85.7 _{±0.2}	91.8 _{±0.4}	$92.2_{\pm 0.2}$	91.0 _{±0.1}	92.2
EFL	$90.3_{\pm0.2}$	$97.2_{\pm0.1}$	$93.0_{\pm0.7}$	$91.7_{\pm0.2}$	$\textbf{96.5}_{\pm0.1}$	$94.4_{\pm0.1}$	$85.6_{\pm2.4}$	$91.2_{\pm0.4}$	$\textbf{92.5}_{\pm0.1}$	91.0 $_{\pm 0.2}$	92.3
Adapter											
Compacter	91.1 _{±0.2}	97.5 _{±0.1}	92.7 _{±0.4}	92.6 _{±0.2}	$96.0_{\pm 0.2}$	94.3 _{±0.2}	87.1 _{±1.4}	91.6 _{±0.6}	91.6 _{±0.1}	87.1 _{±0.2}	92.2
Adapter	$90.8_{\pm0.2}$	$97.5{\scriptstyle\pm0.1}$	$92.8_{\pm0.3}$	$92.5_{\pm0.1}$	$96.1_{\pm0.1}$	$94.8_{\pm0.2}$	$88.1_{\pm0.4}$	$91.8_{\pm0.6}$	$92.1_{\pm0.1}$	$89.9_{\pm 0.1}$	92.6
Prompting											
Prompt-tuning	$90.3_{\pm 0.2}$	95.5 _{±0.4}	$91.2_{\pm 1.1}$	$91.0_{\pm 0.2}$	94.2 _{±0.3}	86.0 _{±0.3}	87.0 _{±0.4}	84.3 _{±0.3}	87.2 _{±0.2}	81.6 _{±0.1}	88.8
Prompt-tuning-134	$65.7_{\pm 19}$	$95.6_{\pm 0.2}$	$86.7_{\pm 3.6}$	$89.7_{\pm0.5}$	$92.0_{\pm0.5}$	$83.0_{\pm1.1}$	$87.4_{\pm 0.5}$	$84.1_{\pm0.5}$	$87.6_{\pm 0.5}$	$82.4_{\pm 0.3}$	85.4
Ptuningv2	$90.4_{\pm 0.3}$	$96.5_{\pm 0.3}$	$92.7_{\pm0.3}$	$91.6_{\pm 0.1}$	$94.4_{\pm 0.2}$	$92.9_{\pm 0.1}$	$78.4_{\pm 4.3}$	$91.4_{\pm 0.4}$	$89.9_{\pm0.2}$	$84.4_{\pm 0.4}$	90.3
S-IDPG-PHM	$89.6_{\pm 0.3}$	$94.4_{\pm 0.3}$	$90.3_{\pm0.2}$	$89.3_{\pm 0.4}$	$94.7_{\pm 0.2}$	$90.7_{\pm 0.3}$	$89.2{\scriptstyle\pm0.2}$	$84.3_{\pm 0.8}$	$84.7_{\pm 0.9}$	$82.5_{\pm 0.2}$	89.0
S-IDPG-DNN	$89.5_{\pm 0.7}$	$94.9_{\pm 0.4}$	$89.9_{\pm1.5}$	$90.2_{\pm0.6}$	$95.1_{\pm 0.2}$	$90.5_{\pm 0.5}$	$89.4_{\pm 0.4}$	$83.0_{\pm 0.5}$	$85.3_{\pm 0.7}$	$82.7_{\pm 0.3}$	89.1
M-IDPG-PHM-GloVe	$90.9_{\pm0.2}$	$97.4_{\pm 0.1}$	$93.3_{\pm0.1}$	92.6 $_{\pm 0.3}$	$95.4_{\pm 0.2}$	$94.4_{\pm 0.2}$	$82.1_{\pm 0.6}$	$92.1_{\pm0.4}$	$91.0_{\pm0.4}$	$86.3_{\pm 0.2}$	91.6
M-IDPG-PHM	91.2 _{+0.2}	$97.5_{\pm0.1}$	$93.2_{\pm 0.3}$	92.6 _{+0.3}	$96.0_{\pm 0.3}$	$94.5_{\pm 0.1}$	$83.5{\scriptstyle\pm0.7}$	92.3 _{+0.2}	$91.4_{\pm 0.4}$	$86.2_{\pm0.1}$	91.9
M-IDPG-DNN	91.2 _{±0.3}	97.6 _{+0.2}	93.5+03	92.6+01	$95.9_{\pm 0.1}$	$94.5_{\pm 0.2}$	$85.5_{\pm 0.6}$	$91.8_{\pm 0.3}$	91.5+02	$86.9_{\pm 0.3}$	<u>92.1</u>

M-IDPG-PHM vs M-IDPG-DNN: -0.3 points while -82K params

134K 216K

Intrinsic Study – what is the efficient way to get the input of prompt generator?

 Using a pre-trained model requires twice of the FLOPS than traditional prompt tuning.

Observation – our method doesn't benefit a lot from a strong contextual LM

Single sentence tasks

		5.1.0.5									
Method	MPQA	Subj	CR	MR	SST-2	QNLI	RTE	MRPC	STS-B	QQP	Avg
Transformer Fine-tunin	g										
RoBERTa EFL	$90.4_{\pm 0.2} \\ 90.3_{\pm 0.2}$	$97.1_{\pm 0.1} \\ 97.2_{\pm 0.1}$	$90.7_{\pm 0.7} \\ 93.0_{\pm 0.7}$	$91.7_{\pm 0.2} \\ 91.7_{\pm 0.2}$	$96.4_{\pm 0.2}$ $96.5_{\pm 0.1}$	94.7 _{±0.1} 94.4 _{±0.1}	$85.7_{\pm 0.2}$ $85.6_{\pm 2.4}$	$91.8_{\pm 0.4} \\ 91.2_{\pm 0.4}$	$92.2_{\pm 0.2}$ $92.5_{\pm 0.1}$	$\begin{array}{c} 91.0_{\pm 0.1} \\ 91.0_{\pm 0.2} \end{array}$	92.2 92.3
Adapter											
Compacter Adapter	$91.1_{\pm 0.2} \\ 90.8_{\pm 0.2}$	$97.5_{\pm 0.1} \\ 97.5_{\pm 0.1}$	$92.7_{\pm 0.4} \\ 92.8_{\pm 0.3}$	92.6 _{±0.2} 92.5 _{±0.1}	$96.0_{\pm 0.2} \\ 96.1_{\pm 0.1}$	$94.3_{\pm 0.2} \\ 94.8_{\pm 0.2}$	$87.1_{\pm 1.4} \\ 88.1_{\pm 0.4}$	$91.6_{\pm 0.6} \\ 91.8_{\pm 0.6}$	$91.6_{\pm 0.1} \\ 92.1_{\pm 0.1}$	$87.1_{\pm 0.2} \\ 89.9_{\pm 0.1}$	92.2 92.6
Prompting											
Prompt-tuning Prompt-tuning-134	$90.3_{\pm 0.2}$ $65.7_{\pm 19}$	$95.5_{\pm 0.4}$ $95.6_{\pm 0.2}$	$91.2_{\pm 1.1} \\ 86.7_{\pm 3.6}$	$91.0_{\pm 0.2}$ $89.7_{\pm 0.5}$	$94.2_{\pm 0.3}$ $92.0_{\pm 0.5}$	$86.0_{\pm 0.3}$ $83.0_{\pm 1.1}$	$87.0_{\pm 0.4}$ $87.4_{\pm 0.5}$	$84.3_{\pm 0.3}$ $84.1_{\pm 0.5}$	$87.2_{\pm 0.2}$ $87.6_{\pm 0.5}$	$81.6_{\pm 0.1} \\ 82.4_{\pm 0.3}$	88.8 85.4
Ptuningv2 S-IDPG-PHM	$90.4_{\pm 0.3} \\ 89.6_{\pm 0.3}$	$96.5_{\pm 0.3} \\ 94.4_{\pm 0.3}$	$92.7_{\pm 0.3} \\ 90.3_{\pm 0.2}$	$91.6_{\pm 0.1} \\ 89.3_{\pm 0.4}$	$94.4_{\pm 0.2} \\ 94.7_{\pm 0.2}$	$92.9_{\pm 0.1} \\ 90.7_{\pm 0.3}$	$78.4_{\pm 4.3}$ $89.2_{\pm 0.2}$	$91.4_{\pm 0.4} \\ 84.3_{\pm 0.8}$	$89.9_{\pm 0.2}$ $84.7_{\pm 0.9}$	$84.4_{\pm 0.4} \\ 82.5_{\pm 0.2}$	90.3 89.0
S-IDPG-DNN	$89.5_{\pm0.7}$	$94.9_{\pm0.4}$	$89.9_{\pm 1.5}$	$90.2_{\pm 0.6}$	$95.1_{\pm0.2}$	$90.5_{\pm0.5}$	$89.4_{\pm 0.4}$	$83.0_{\pm0.5}$	$85.3_{\pm0.7}$	$82.7_{\pm0.3}$	89.1
M-IDPG-PHM-GloVe M-IDPG-PHM	$90.9_{\pm 0.2}$ $91.2_{\pm 0.2}$	$97.4_{\pm 0.1} \\ 97.5_{\pm 0.1}$	$93.3_{\pm 0.1} \\ 93.2_{\pm 0.3}$	92.6 _{+0.3}	$95.4_{\pm 0.2} \\ 96.0_{\pm 0.3}$	$94.4_{\pm 0.2} \\ 94.5_{\pm 0.1}$	$82.1_{\pm 0.6} \\ 83.5_{\pm 0.7}$	$92.1_{\pm 0.4}$ $92.3_{\pm 0.2}$	$91.0_{\pm 0.4}$ $91.4_{\pm 0.4}$	$86.3_{\pm 0.2} \\ 86.2_{\pm 0.1}$	91.6 91.9
M-IDPG-DNN	$91.2_{\pm 0.3}$	97.6 ±0.2	$93.5_{\pm 0.3}$	92.6 ±0.1	$95.9_{\pm 0.1}$	$94.5_{\pm 0.2}$	$85.5_{\pm 0.6}$	$91.8_{\pm 0.3}$	$91.5_{\pm 0.2}$	$86.9_{\pm 0.3}$	92.1

sentence pair tasks

M-IDPG-PHM-GloVe vs M-IDPG-PHM: -0.3 points while reducing half FLOPS

Method	MPQA	Subj	CR	MR	SST-2	QNLI	RTE	MRPC	STS-B	QQP	Avg	
<i>K</i> = 100												
Fine-tuning (EFL)	86.2 _{±0.4}	$88.4_{\pm 0.8}$	$83.7_{\pm 2.4}$	$81.4_{\pm 1.0}$	$86.2_{\pm 1.3}$	$77.7_{\pm 1.5}$	$84.2_{\pm 1.2}$	$72.6_{\pm 3.7}$	84.1 _{±1.6}	78.1 _{±0.4}	82.2	
Adapter-tuning (Compacter)	$81.0_{\pm 2.9}$	$88.7_{\pm 0.8}$	84.7 $_{\pm 2.1}$	$83.7_{\pm 0.7}$	$85.7_{\pm 0.9}$	$75.6_{\pm 0.8}$	$84.7_{\pm 0.6}$	$80.0_{\pm0.9}$	$78.1_{\pm 1.4}$	$77.1_{\pm 0.6}$	81.9	
prompt tuning	$75.9_{\pm 1.6}$	$86.8_{\pm 0.8}$	$72.9_{\pm 1.4}$	$74.1_{\pm 1.4}$	$82.9_{\pm 2.0}$	$82.7_{\pm 0.2}$	$86.5_{\pm 0.6}$	$80.0_{\pm 1.3}$	$70.2_{\pm 3.1}$	$76.5_{\pm 0.4}$	78.9	
P-Tuningv2	$74.3_{\pm 2.9}$	$89.7_{\pm 0.8}$	$80.1_{\pm 1.0}$	$82.5_{\pm 1.1}$	$85.1_{\pm 1.6}$	$78.2_{\pm 0.5}$	$83.6_{\pm 0.7}$	$80.1_{\pm 0.6}$	$78.8_{\pm 3.0}$	$76.8_{\pm 0.5}$	80.9	
S-IDPG-PHM	$79.0_{\pm 3.7}$	$87.6_{\pm 1.1}$	$75.0_{\pm 1.6}$	$76.2_{\pm 1.3}$	$87.6_{\pm 1.3}$	$80.4_{\pm 1.2}$	$86.3_{\pm0.5}$	$79.3_{\pm 0.4}$	$70.9_{\pm 2.5}$	$76.1_{\pm 0.6}$	79.8	
S-IDPG-DNN	$78.0_{\pm 2.1}$	$84.2_{\pm 1.6}$	$76.3_{\pm 4.5}$	$77.4_{\pm 0.5}$	89.6 \pm 1.2	$81.1_{\pm 0.8}$	$87.4_{\pm 0.8}$	$78.8_{\pm 1.3}$	$70.6_{\pm 2.8}$	$74.1_{\pm 0.9}$	79.8	
M-IDPG-PHM-GloVe	$76.6_{\pm2.0}$	$90.7_{\pm 0.4}$	$80.6_{\pm 2.6}$	$83.0_{\pm 1.5}$	$85.6_{\pm 0.8}$	$77.9_{\pm 1.3}$	$84.4_{\pm0.9}$	$79.6_{\pm 0.9}$	$77.8_{\pm 1.6}$	$76.1_{\pm 0.7}$	81.2	
M-IDPG-PHM	$75.5_{\pm4.6}$	$90.5_{\pm0.6}$	$80.2_{\pm 1.5}$	$82.5_{\pm1.1}$	$85.9_{\pm1.2}$	$78.8_{\pm1.6}$	$84.0_{\pm0.4}$	$79.9_{\pm0.8}$	$\underline{79.3}_{\pm 0.4}$	$77.1_{\pm 0.2}$	81.4	-0.8
K = 500												
Fine-tuning (EFL)	85.1 _{±1.7}	94.1 _{±0.4}	90.9 _{±0.6}	87.6 _{±0.5}	92.5 _{±0.6}	85.7 _{±0.6}	57.5 _{±1.0}	82.3 _{±0.6}	88.8 _{±0.5}	79.0 _{±0.3}	84.3]
Adapter-tuning (Compacter)	$\textbf{86.0}_{\pm0.8}$	$94.9_{\pm 0.2}$	$89.5_{\pm 1.0}$	$88.5_{\pm0.2}$	$91.9_{\pm0.9}$	$82.2_{\pm 0.6}$	$83.9_{\pm0.8}$	$82.7_{\pm 0.5}$	$86.6_{\pm0.5}$	$78.9_{\pm 0.3}$	86.5	_
prompt tuning	$82.4_{\pm 1.3}$	$91.2_{\pm 0.1}$	$86.8_{\pm 0.4}$	$84.6_{\pm 0.8}$	$88.6_{\pm 1.0}$	86.3 _{±0.4}	$86.5_{\pm 0.4}$	$80.0_{\pm 0.4}$	$77.4_{\pm 1.9}$	$77.8_{\pm 0.3}$	84.2	
P-Tuningv2	$84.0_{\pm 1.3}$	$94.6_{\pm 0.3}$	$89.0_{\pm1.8}$	$88.1_{\pm0.5}$	$91.3_{\pm 0.7}$	$84.6_{\pm 0.8}$	$84.2_{\pm 1.5}$	$83.2_{\pm 0.7}$	$83.8_{\pm 0.5}$	$78.6_{\pm 0.3}$	86.1	
S-IDPG-PHM	$81.6_{\pm 2.7}$	$91.4_{\pm 0.7}$	$85.8_{\pm 2.0}$	$85.8_{\pm 0.5}$	$88.5_{\pm 1.3}$	$85.0_{\pm 0.4}$	$86.3_{\pm 1.3}$	$81.9_{\pm0.8}$	$78.3_{\pm 1.5}$	$78.1_{\pm 0.3}$	84.3	
S-IDPG-DNN	$84.8_{\pm 0.7}$	$90.8_{\pm 0.6}$	$89.7_{\pm 1.0}$	$86.1_{\pm 2.8}$	$90.4_{\pm 1.6}$	$84.8_{\pm 0.3}$	$87.7_{\pm 0.7}$	$82.0_{\pm 1.4}$	$79.1_{\pm 2.3}$	$77.1_{\pm 0.4}$	85.3	
M-IDPG-PHM-GloVe	$84.0_{\pm 1.7}$	$95.0_{\pm 0.2}$	$89.0_{\pm 1.1}$	$88.1_{\pm0.5}$	$90.4_{\pm 1.3}$	$85.1_{\pm 0.1}$	$84.0_{\pm 1.0}$	$82.3_{\pm 0.5}$	$84.1_{\pm0.8}$	$78.2_{\pm 0.8}$	86.0	_
M-IDPG-PHM	$\underline{85.2}_{\pm 1.1}$	$94.6_{\pm0.0}$	$89.1_{\pm1.6}$	$\underline{\textbf{88.8}}_{\pm0.4}$	$\underline{91.6}_{\pm 1.1}$	$84.9_{\pm0.9}$	$83.9_{\pm0.7}$	$82.5_{\pm0.5}$	$\underline{84.2}_{\pm 0.5}$	$78.6_{\pm 0.3}$	86.3	+2.0
K = 1000												
Fine-tuning (EFL)	87.7 _{±0.7}	95.1 _{±0.2}	89.8 _{±1.2}	89.2 _{±0.5}	93.6 _{±0.4}	88.0 _{±0.7}	87.3 _{±1.3}	87.9 _{±0.9}	90.8 _{±0.2}	79.8 _{±0.3}	88.9]
Adapter-tuning (Compacter)	88.2 $_{\pm 0.6}$	$95.6_{\pm 0.3}$	89.9 $_{\pm 1.4}$	90.0 $_{\pm 0.3}$	$92.9_{\pm 0.2}$	$85.2_{\pm 0.7}$	$86.8_{\pm0.7}$	$86.1_{\pm0.6}$	$89.6_{\pm0.5}$	79.9 $_{\pm 0.3}$	88.4	_
prompt tuning	$83.9_{\pm 2.0}$	$92.6_{\pm 0.4}$	$87.2_{\pm 1.4}$	$86.7_{\pm 0.3}$	$89.9_{\pm 1.0}$	$86.9_{\pm 0.1}$	$86.4_{\pm 0.7}$	$82.5_{\pm 0.3}$	$82.9_{\pm 1.3}$	$78.6_{\pm 0.3}$	85.8	
P-Tuningv2	$87.0_{\pm 0.9}$	$95.9_{\pm 0.4}$	$88.3_{\pm 1.5}$	$89.5_{\pm 0.3}$	$93.2_{\pm 0.5}$	$87.4_{\pm 0.4}$	$85.1_{\pm 1.1}$	$82.6_{\pm 1.1}$	$87.8_{\pm 0.3}$	$79.3_{\pm 0.4}$	87.6	
S-IDPG-PHM	$83.4_{\pm 1.7}$	$93.4_{\pm 0.9}$	$89.2_{\pm0.8}$	$88.0_{\pm 0.9}$	$90.2_{\pm1.0}$	$85.5_{\pm 0.6}$	$86.9_{\pm0.6}$	$83.1_{\pm 0.4}$	$83.9_{\pm 0.8}$	$78.9_{\pm 0.4}$	86.3	
S-IDPG-DNN	$85.9_{\pm 0.8}$	$93.3_{\pm1.2}$	$89.9_{\pm 0.8}$	$89.6_{\pm 1.1}$	$92.2_{\pm 0.8}$	$85.2_{\pm 1.3}$	$87.7_{\pm 0.8}$	$82.5_{\pm 0.9}$	$84.7_{\pm 0.9}$	$78.0_{\pm0.8}$	86.9	
M-IDPG-PHM-GloVe	$86.5_{\pm 0.7}$	$95.5_{\pm 0.3}$	$87.7_{\pm 1.3}$	$89.3_{\pm 0.4}$	$93.4_{\pm 0.3}$	$87.5_{\pm 0.3}$	$84.9_{\pm 0.9}$	$82.7_{\pm 0.7}$	$87.6_{\pm 0.3}$	$79.1_{\pm 0.7}$	87.4	
M-IDPG-PHM	$87.7_{\pm 0.5}$	$95.6_{\pm 0.2}$	$89.2_{\pm 1.2}$	$89.8_{\pm 0.4}$	93.7 _{±0.6}	$87.2_{\pm 0.5}$	$85.6_{\pm 0.6}$	$82.5_{\pm 0.9}$	$87.8_{\pm 0.8}$	$79.1_{\pm 0.4}$		-1.1

 Compare a vanilla model w/o prompts with M-IDPG-PHM

 Sort all sentence pairs in STS-B dev set in descending order by the cosine similarity scores

Compute top-200 score distribution

- We **first** factor in an **instance-dependent prompt**, which is robust to data variance.
- Parameterized Hypercomplex Multiplication (PHM) is applied to shrink the training parameters.
- Despite adding few parameters on traditional prompt tuning, IDPG shows consistent improvement.
- It is also on par with the lightweight adapter tuning methods such as **Compacter** while using a similar amount of trainable parameters.

Thanks
July 26, 2022

Q & AJuly 26, 2022