Filtros Lineares

Jefersson Alex dos Santos

jefersson@dcc.ufmg.br

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

¹Baseado nas aulas do Prof. Alexandre Xavier Falção

UF<u>m</u>G

Introdução

• Dada uma imagem cinza $\hat{I}=(D_I,I)$ e um kernel $\hat{K}=(\mathscr{A},K)$, a convolução $\hat{J}=(D_J,J)=\hat{I}*\hat{K}$ é uma **filtragem linear**.

Introdução

- Dada uma imagem cinza $\hat{I}=(D_I,I)$ e um kernel $\hat{K}=(\mathscr{A},K)$, a convolução $\hat{J}=(D_J,J)=\hat{I}*\hat{K}$ é uma **filtragem linear**.
- Para simplificar, podemos assumir que $D_J = D_I$ e que o **filtro** \hat{K} já está refletido em relação à origem de \mathscr{A} .

Introdução

- Dada uma imagem cinza $\hat{I}=(D_I,I)$ e um kernel $\hat{K}=(\mathscr{A},K)$, a convolução $\hat{J}=(D_J,J)=\hat{I}*\hat{K}$ é uma **filtragem linear**.
- Para simplificar, podemos assumir que $D_J = D_I$ e que o **filtro** \hat{K} já está refletido em relação à origem de \mathscr{A} .
- Nos próximos slides, a escolha do filtro passa a ser essencialmente a escolha da relação de adjacência \(\mathcal{A} \) e dos pesos em \(K \).

Introdução

- Dada uma imagem cinza $\hat{I}=(D_I,I)$ e um kernel $\hat{K}=(\mathscr{A},K)$, a convolução $\hat{J}=(D_J,J)=\hat{I}*\hat{K}$ é uma filtragem linear.
- Para simplificar, podemos assumir que $D_J = D_I$ e que o **filtro** \hat{K} já está refletido em relação à origem de \mathscr{A} .
- Nos próximos slides, a escolha do filtro passa a ser essencialmente a escolha da relação de adjacência A e dos pesos em K.
- A origem da relação de adjacência A é normalmente no centro da imagem de pesos.

Filtragem Linear

Filtro Passa-Baixas

- Frequências altas são atenuadas
- Transições abruptas e ruídos são minimizados
- Suaviza a imagem, causando "borramento"

Filtro Passa-Altas

- Frequências altas são amplificadas
- Transições abruptas e ruídos são maximizados
- Realça bordas, linhas, regiões de interesse

Roteiro da Aula

- 1 Filtros de Suavização
- 2 Filtros de Realce de Bordas

3 Filtros de Realce de Imagem

$UF_{\mathbf{m}}^{\mathbf{G}}G$

Filtros de suavização

Blurring, Passa-baixas

Reduzem ruído de alta freqüência, mas borram as bordas da imagem.

UF<u>m</u>G

Filtros de suavização

Blurring, Passa-baixas

Reduzem ruído de alta freqüência, mas borram as bordas da imagem.

Filtros da Média (filtros-caixa)

$$K = \frac{1}{9} * \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

UF<u>m</u>G

Filtros de suavização

Blurring, Passa-baixas

Reduzem ruído de alta freqüência, mas borram as bordas da imagem.

E se os pesos forem ponderados de acordo com a distância?

Ex:

$$K = \frac{1}{10} * \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$K = \frac{1}{16} * \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

Filtros Gaussianos

Os coeficientes da máscara são derivados a partir de uma função gaussiana bidimensional.

Função gaussiana discreta com média zero e desvio padrão σ :

$$G(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(\frac{-(x^2 + y^2)}{2\sigma^2}\right)$$

U F <u>m</u> G

Filtros Gaussianos

Aproximação dos coeficientes

Expansão binomial:

$$(a+b)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} a^{n-k} b^k$$

Triângulo de Pascal:

```
0 1
1 1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
```

Filtros Gaussianos

Máscara unidimensional pode ser obtida tomando-se a n-ésima linha do triângulo de Pascal, dividida por um fator de escala igual à soma dos coeficientes 2^{n-1}

Exemplos:

$$K = \frac{1}{4} * \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

$$K = \frac{1}{16} * [1 \ 4 \ 6 \ 4 \ 1]$$

U F <u>m</u> G

Filtros Gaussianos

Máscara Bidimensional

Pode ser obtida a partir de duas máscaras unidimensionais horizontal e vertical: Exemplo:

$$K = \frac{1}{16} * \begin{bmatrix} 1\\4\\6\\4\\1 \end{bmatrix} * \frac{1}{16} * \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$
$$= \frac{1}{256} * \begin{bmatrix} 1 & 4 & 6 & 4 & 1\\4 & 16 & 24 & 16 & 4\\6 & 24 & 36 & 24 & 6\\4 & 16 & 24 & 16 & 4\\1 & 4 & 6 & 4 & 1 \end{bmatrix}$$

Roteiro da Aula

- 1 Filtros de Suavização
- 2 Filtros de Realce de Bordas

3 Filtros de Realce de Imagem

Borda

É o limite ou a fronteira entre duas regiões com propriedades relativamente distintas de nível de cinza.

Ideia associada à maioria das técnicas é o cálculo de um operador local diferencial:

Borda

Em imagens reais, descontinuidades abruptas não são tão comuns.

As bordas são levemente borradas devido à amostragem.

A derivada primeira é:

- positiva nas transições da região escura para a região clara;
- negativa nas transições da região clara para escura;
- nula nas áreas de nível de cinza constante

A derivada segunda é:

- positiva na parte da transição associada ao lado escuro da borda
- negativa na parte da transição associada ao lado claro da borda
- nula nas áreas de nível de cinza constante
- magnitude da derivada primeira indica uma borda
- derivada segunda indica mudança de sinal na transição dos níveis de cinza

Gradiente

Vetor cuja direção indica os locais nos quais os níveis de cinza sofrem maior variação. A direção do gradiente é sempre perpendicular à direção tangente da borda.

Magnitude:

$$\nabla f(x,y) = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Gradiente

- Em razão do alto custo computacional, o cálculo da magnitude do gradiente é geralmente aproximado de várias maneiras para o caso discreto.
- Uma mudança em intensidade pode ser detectada pela diferença entre os valores de pixels adjacentes.

$$\nabla f(x,y) = \sqrt{[f(x,y) - f(x+1,y)]^2 + [f(x,y) - f(x,y+1)]^2}$$

Bordas verticais

Detectadas pela diferença horizontal entre pontos adjacentes

Bordas horizontais

Detectadas pela diferença vertical entre pontos adjacentes

Filtros

Aproximam o cálculo do gradiente de forma discreta (derivada primeira)

- Operadores cruzados de gradiente de Roberts (2x2)
- Operadores de Prewitt (3x3)
- Operadores de Sobel (3x3) Diferença ponderada

Definido por uma derivada de segunda ordem

Operador Laplaciano

Destacam bordas da imagem em uma dada direção, mas podem amplificar o ruído.

Realce por filtros de Sobel

$$K_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \quad K_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Destacam bordas da imagem em uma dada direção, mas podem amplificar o ruído.

Realce por filtros de Sobel

$$K_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \quad K_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

• K_x e K_y realçam bordas nas direções x (bordas verticais) e y (bordas horizontais), respectivamente.

U F <u>m</u> G

Filtros de realce de bordas

Destacam bordas da imagem em uma dada direção, mas podem amplificar o ruído.

Realce por filtros de Sobel

$$K_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \quad K_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

- K_x e K_y realçam bordas nas direções x (bordas verticais) e y (bordas horizontais), respectivamente.
- Sendo $\hat{G}_x = \hat{I} * \hat{K_x}$ e $\hat{G}_y = \hat{I} * \hat{K_y}$, $\vec{G}(p) = G_x(p)\vec{i} + G_y(p)\vec{j}$ é dito **vetor gradiente** em p, o qual aponta para a direção de maior crescimento de brilho na imagem \hat{I} em torno de p. Sua magnitude $|\vec{G}(p)|$ é muito usada.

Realce de bordas

Sobel em x

Sobel em y

Magnitude

A magnitude de um vetor gradiente realça bordas em todas as direções. De um modo mais geral:

A magnitude de um vetor gradiente realça bordas em todas as direções. De um modo mais geral:

Considerando uma adjacência circular, $q\in\mathscr{A}(p)$ se $\|q-p\|^2\leq r^2$ (ou esférica em 3D) de raio r, o vetor gradiente $\vec{G}(p)$ pode ser calculado por

A magnitude de um vetor gradiente realça bordas em todas as direções. De um modo mais geral:

Considerando uma adjacência circular, $q\in\mathscr{A}(p)$ se $\|q-p\|^2\leq r^2$ (ou esférica em 3D) de raio r, o vetor gradiente $\vec{G}(p)$ pode ser calculado por

$$\vec{G}(p) = \sum_{\forall q \in \mathscr{A}(p)} [I(q) - I(p)] \vec{pq},$$

onde
$$\vec{pq} = (\frac{x_q - x_p}{\sqrt{(x_q - x_p)^2 + (y_q - y_p)^2}}, \frac{y_q - y_p}{\sqrt{(x_q - x_p)^2 + (y_q - y_p)^2}}).$$

O filtro de Sobel em uma dada direção x, por exemplo, equivale a duas operações:

- ullet Uma suavização na direção y, calculada por filtragem linear com $K=\left[egin{array}{c}1\\2\\1\end{array}\right]$, e
- Uma derivada da imagem \hat{I} em x, $\hat{I_x}=(D_I,\frac{dI}{dx})$, calculada por filtragem linear com $K=\begin{bmatrix} & 1 & 0 & 1 \end{bmatrix}$.

U F <u>m</u> G

Filtros de realce de bordas

Em 3D, as fatias do filtro ao longo de x seriam:

$$K_{x,1} = \begin{bmatrix} -1 & -2 & -1 \\ -2 & -4 & -2 \\ -1 & -2 & -1 \end{bmatrix}$$

$$K_{x,2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$K_{x,3} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

^{*} Similarmente ao longo de y e z.

O realce de bordas em 8 direções pode ser ainda representado pelos seguintes filtros.

Norte

$$\left[\begin{array}{cccc}
1 & 1 & 1 \\
1 & -2 & 1 \\
-1 & -1 & -1
\end{array}\right]$$

Nordeste

$$\left[\begin{array}{cccc}
1 & 1 & 1 \\
-1 & -2 & 1 \\
-1 & -1 & 1
\end{array}\right]$$

O realce de bordas em 8 direções pode ser ainda representado pelos seguintes filtros.

Leste

$$\left[
\begin{array}{ccc}
-1 & 1 & 1 \\
-1 & -2 & 1 \\
-1 & 1 & 1
\end{array}
\right]$$

Sudeste

$$\begin{bmatrix}
-1 & -1 & 1 \\
-1 & -2 & 1 \\
1 & 1 & 1
\end{bmatrix}$$

O realce de bordas em 8 direções pode ser ainda representado pelos seguintes filtros.

Sul

$$\left[\begin{array}{rrrr}
-1 & -1 & -1 \\
1 & -2 & 1 \\
1 & 1 & 1
\end{array}\right]$$

Sudoeste

$$\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & -2 & -1 \\
1 & 1 & 1
\end{array}\right]$$

O realce de bordas em 8 direções pode ser ainda representado pelos seguintes filtros.

Oeste

$$\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & -2 & -1 \\
1 & 1 & -1
\end{array}\right]$$

Noroeste

$$\begin{bmatrix}
 1 & 1 & 1 \\
 1 & -2 & -1 \\
 1 & -1 & -1
 \end{bmatrix}$$

Os filtros anteriores realçam bordas com deslocamento em relação à posição real delas. Os filtros Laplacianos equivalem à derivada segunda da imagem (e.g., $\frac{d^2I}{dx^2} + \frac{d^2I}{dx^2}$), localizando as bordas entre valores negativos e positivos (*zero crossings*). Exemplos de kernels:

$$\begin{bmatrix}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0
\end{bmatrix}$$

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

No entanto, a imagem é normalmente suavizada antes do Laplaciano, para reduzir a amplificação de ruído.

O Laplaciano da Gaussiana (LoG) é usado no caso geral de uma adjacência $\mathscr{A}:q\in\mathscr{A}(p)$ se $\|q-p\|^2\leq r^2$ (circular ou esférica).

$$K(q-p) = -\frac{1}{\pi\sigma^4} \left[1 - \frac{\|q-p\|^2}{2\sigma^2} \right] \exp\left(\frac{-\|q-p\|^2}{2\sigma^2} \right)$$

onde $\sigma = r/3$ e p é o centro (origem) de \mathscr{A} .

UF<u>m</u>G

Filtros de realce de bordas

Outra forma de realce de bordas, bastante popular, é a **Diferença de Gaussianas** (**DoG**) (chapéu mexicano). Explorando a propriedade $\hat{I}*\hat{K_1}-\hat{I}*\hat{K_2}=\hat{I}*(\hat{K_1}-\hat{K_2})$, o *kernel* $\hat{K}=(\hat{K_1}-\hat{K_2})$ pode ser definido como:

- $\mathscr{A}: q \in \mathscr{A}(p)$ se $||q-p||^2 \le r^2$.
- K(q-p), $q \in \mathcal{A}(p)$, p sendo a origem de \mathcal{A} :

$$K(q-p) = \frac{1}{2\pi\sigma_1^2} \exp\left(\frac{-\|q-p\|^2}{2\sigma_1^2}\right) - \frac{1}{2\pi\sigma_2^2} \exp\left(\frac{-\|q-p\|^2}{2\sigma_2^2}\right)$$

onde $\sigma_2 > \sigma_1$ e $\sigma_2 = r/3$.

Diferença de Gaussianas

Original

Magnitude de Sobel

DoG

Roteiro da Aula

- 1 Filtros de Suavização
- 2 Filtros de Realce de Bordas

3 Filtros de Realce de Imagem

Filtro de realce de imagem

A soma da imagem com o realce de bordas causa uma melhor definição do contraste na imagem (**sharpness**).

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Filtro de realce de imagem

Outros exemplos são:

$$\begin{bmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 \\ -1 & -2 & 17 & -2 & -1 \\ 0 & -1 & -2 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 \\ -1 & -2 & 17 & -2 & -1 \\ 0 & -1 & -2 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$