

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Student's Name: Shubham Shukla Mobile No: 8317012277

Roll Number: B20168 Branch: CSE

1 a.

	Prediction Outcome				
Label	81	27			
True	27	201			

Figure 1 KNN Confusion Matrix for K = 1

	Prediction Outcome				
Label	83	12			
True	25	216			

Figure 2 KNN Confusion Matrix for K = 3

1	
1	
1	
1	
1	
1	
1	
1	

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

	Prediction Outcome					
Label	82	9				
True	26	219				

Figure 3 KNN Confusion Matrix for K = 5

b.

Table 1 KNN Classification Accuracy for K = 1, 3 and 5

	Classification
K	Accuracy (in %)
1	83.929
3	88.988
5	89.583

Inferences:

- **1.** The highest classification accuracy is obtained with K = 5.
- 2. Increasing the value of K increases the prediction accuracy.
- 3. As it more clear the surrounding the of the data hence K increases the prediction accuracy.
- **4.** Classification accuracy increases with the increase in value of K infer does the number of diagonal elements increase.
- 5. Since the number of comparison increases and as we increase the value of k it will saturate to the real surrounding.
- 6. Increasing accuracy refers more approximate prediction and more near to the real data.
- **7.** As the classification accuracy increases the with the increasing value of k, thus off-diagonal elements decreases.

IC 272: DATA SCIENCE - III

LAB ASSIGNMENT - IV

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

2 a.

	Prediction Outcome				
Label	104	9			
True	4	219			

Figure 4 KNN Confusion Matrix for K = 1 post data normalization

	Prediction Outcome				
Label	104	6			
True	4	222			

Figure 5 KNN Confusion Matrix for K = 3 post data normalization

	Prediction Outcome				
Label	103	7			
True	5	221			

Figure 6 KNN Confusion Matrix for K = 5 post data normalization

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

b.

Table 2 KNN Classification Accuracy for K = 1, 3 and 5 post data normalization

К	Classification Accuracy (in %)
1	96.131
3	97.024
5	96.429

Inferences:

- 1. Data normalization increases classification accuracy.
- 2. Now the supression of values is not going to happen and each have same precidence.
- **3.** The highest classification accuracy is obtained with K = 3.
- **4.** Increasing the value of K increases the prediction accuracy.
- 5. As the surrounding data more clears with the real one.
- **6.** The classification accuracy increases with the increase in value of K infer the number of diagonal elements increase.
- **7.** Since our data is more to real one, the number of diagonal elements increase.
- **8.** As the classification accuracy increases with the increase in value of K the number of off-diagonal elements decreases as the data goes more real so less wrong prediction.

3

	Prediction Outcome				
Label	69	18			
True	39	210			

Figure 7 Confusion Matrix obtained from Bayes Classifier

The classification accuracy obtained from Bayes Classifier is 83.03 %.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Table 3 Mean for class 0 and class 1

S. No.	Attribute Name	Mean			
		Class 0	Class 1		
1.	X_Minimum	0.08	0.42		
2.	X_Maximum	0.16	0.43		
3.	Y_Minimum	0.14	0.11		
4.	Y_Maximum	0.05	0.11		
5.	Pixels_Areas	0.03	0.00		
6.	X_Perimeter	0.01	0.00		
7.	Y_Perimeter	0.07	0.00		
8.	Sum_of_Luminosity	0.26	0.00		
9.	Minimum_of_Luminosity	0.46	0.46		
10.	Maximum_of_Luminosity	0.32	0.43		
11.	Length_of_Conveyer	0.01	0.53		
12.	TypeOfSteel_A300	0.99	0.37		
13.	TypeOfSteel_A400	0.00 0.62			
14.	Steel_Plate_Thickness	0.13 0.23			
15.	Edges_Index	0.48	0.40		
16.	Empty_Index	0.59	0.44		
17.	Square_Index	0.12	0.50		
18.	Outside_X_Index	0.56	0.02		
19.	Edges_X_Index	0.50	0.62		
20.	Edges_Y_Index	0.29	0.82		
21.	Outside_Global_Index	0.67	0.61		
22.	LogOfAreas	0.62	0.40		
23.	Log_X_Index	0.42	0.32		
24.	Log_Y_Index	0.42	0.30		
25.	Orientation_Index	0.33	0.56		
26.	Luminosity_Index	0.54	0.53		
27.	SigmoidOfAreas	0.90	0.46		

In Fig. 8 and 9 representing covariance matrices for class 0 and class 1 respectively the column numbers and row numbers correspond to attribute with serial number as in Table 3.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

The covariance matrix for class 0 :

	X_Minimum	X_Maximum	Y_Minimum	Y_Maximum	Pixels_Areas	X_Perimeter	Y_Perimeter	Sum_of_Luminosity	Minimum_of_L
X_Minimum	0.025253	0.020780	-0.004258	-0.004258	-0.002575	-1.792637e-03	-5.639324e-04	-0.003783	-
X_Maximum	0.020780	0.019719	-0.004088	-0.004088	-0.001339	-8.703683e-04	-2.599672e-04	-0.001922	
Y_Minimum	-0.004258	-0.004088	0.017106	0.017106	-0.000398	-2.977369e-04	-1.310943e-04	-0.000681	
Y_Maximum	-0.004258	-0.004088	0.017106	0.017105	-0.000398	-2.976181e-04	-1.310514e-04	-0.000681	
Pixels_Areas	-0.002575	-0.001339	-0.000398	-0.000398	0.001217	8.749690e-04	3.094660e-04	0.001906	
X_Perimeter	-0.001793	-0.000870	-0.000298	-0.000298	0.000875	6.843134e-04	2.416359e-04	0.001377	
Y_Perimeter	-0.000564	-0.000260	-0.000131	-0.000131	0.000309	2.416359e-04	8.680679e-05	0.000490	
Sum_of_Luminosity	-0.003783	-0.001922	-0.000681	-0.000681	0.001906	1.376911e-03	4.903121e-04	0.003003	
Minimum_of_Luminosity	0.018324	0.012240	-0.001851	-0.001852	-0.004196	-2.883249e-03	-9.714039e-04	-0.006238	
Maximum_of_Luminosity	0.007318	0.005992	-0.003005	-0.003005	-0.000133	2.000258e-05	4.744353e-05	0.000004	
Length_of_Conveyer	0.003400	0.003126	-0.001783	-0.001783	0.000407	4.198247e-04	1.733616e-04	0.000659	
TypeOfSteel_A300	0.003072	0.002805	-0.000296	-0.000296	-0.000154	-1.095074e-04	-3.363343e-05	-0.000232	
TypeOfSteel_A400	-0.003072	-0.002805	0.000296	0.000296	0.000154	1.095074e-04	3.363343e-05	0.000232	
Steel_Plate_Thickness	0.000440	0.000461	-0.000101	-0.000101	-0.000004	5.051883e-07	-9.774968e-07	-0.000013	
Edges_Index	0.020677	0.015388	-0.004498	-0.004499	-0.003139	-2.170752e-03	-6.878351e-04	-0.004630	
Empty_Index	-0.011170	-0.006047	0.001240	0.001241	0.002559	2.260272e-03	7.806130e-04	0.003980	
Square_Index	0.008023	0.004510	-0.007609	-0.007608	0.003501	3.180093e-03	1.243806e-03	0.006043	
Outside_X_Index	-0.006302	-0.001492	0.000294	0.000294	0.001710	1.271029e-03	4.170007e-04	0.002569	
Edges_X_Index	0.014575	0.012143	0.000549	0.000548	-0.006191	-5.064918e-03	-1.821559e-03	-0.009830	
Edges_Y_Index	0.024008	0.017222	-0.003270	-0.003271	-0.004504	-3.385043e-03	-1.131684e-03	-0.006776	
Outside_Global_Index	0.027131	0.020267	-0.010761	-0.010761	0.001901	2.194723e-03	1.047396e-03	0.003847	
Log0fAreas	-0.015797	-0.010513	0.003022	0.003023	0.003779	2.660501e-03	8.995469e-04	0.005681	
Log_X_Index	-0.018449	-0.011810	0.004004	0.004004	0.003429	2.395761e-03	7.785508e-04	0.005056	
Log_Y_Index	-0.007884	-0.004881	0.000877	0.000877	0.002595	1.944573e-03	6.820760e-04	0.004000	
Orientation_Index	0.013311	0.009640	-0.005741	-0.005740	0.001229	1.302539e-03	5.811746e-04	0.002370	
Luminosity_Index	0.008843	0.006907	-0.002801	-0.002802	-0.000633	-3,399458e-04	-7.846055e-05	-0.000750	
Sigmoid0fAreas	-0.030012	-0.022223	0.008729	0.008730	0.004499	3.132852e-03	1.025232e-03	0.006565	

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

The covariance matrix for class 1:

	X_Minimum	X_Maximum	Y_Minimum	Y_Maximum	Pixels_Areas	X_Perimeter	Y_Perimeter	Sum_of_Luminosity	Minimum_of_
X_Minimum	0.025253	0.020780	-0.004258	-0.004258	-0.002575	-1.792637e-03	-5.639324e-04	-0.003783	
X_Maximum	0.020780	0.019719	-0.004088	-0.004088	-0.001339	-8.703683e-04	-2.599672e-04	-0.001922	
Y_Minimum	-0.004258	-0.004088	0.017106	0.017106	-0.000398	-2.977369e-04	-1.310943e-04	-0.000681	
Y_Maximum	-0.004258	-0.004088	0.017106	0.017105	-0.000398	-2.976181e-04	-1.310514e-04	-0.000681	
Pixels_Areas	-0.002575	-0.001339	-0.000398	-0.000398	0.001217	8.749690e-04	3.094660e-04	0.001906	
X_Perimeter	-0.001793	-0.000870	-0.000298	-0.000298	0.000875	6.843134e-04	2.416359e-04	0.001377	
Y_Perimeter	-0.000564	-0.000260	-0.000131	-0.000131	0.000309	2.416359e-04	8.680679e-05	0.000490	
Sum_of_Luminosity	-0.003783	-0.001922	-0.000681	-0.000681	0.001906	1.376911e-03	4.903121e-04	0.003003	
Minimum_of_Luminosity	0.018324	0.012240	-0.001851	-0.001852	-0.004196	-2.883249e-03	-9.714039e-04	-0.006238	
Maximum_of_Luminosity	0.007318	0.005992	-0.003005	-0.003005	-0.000133	2.000258e-05	4.744353e-05	0.000004	
Length_of_Conveyer	0.003400	0.003126	-0.001783	-0.001783	0.000407	4.198247e-04	1.733616e-04	0.000659	
TypeOfSteel_A300	0.003072	0.002805	-0.000296	-0.000296	-0.000154	-1.095074e-04	-3.363343e-05	-0.000232	
TypeOfSteel_A400	-0.003072	-0.002805	0.000296	0.000296	0.000154	1.095074e-04	3.363343e-05	0.000232	
Steel_Plate_Thickness	0.000440	0.000461	-0.000101	-0.000101	-0.000004	5.051883e-07	-9.774968e-07	-0.000013	
Edges_Index	0.020677	0.015388	-0.004498	-0.004499	-0.003139	-2.170752e-03	-6.878351e-04	-0.004630	
Empty_Index	-0.011170	-0.006047	0.001240	0.001241	0.002559	2.260272e-03	7.806130e-04	0.003980	
Square_Index	0.008023	0.004510	-0.007609	-0.007608	0.003501	3.180093e-03	1.243806e-03	0.006043	
Outside_X_Index	-0.006302	-0.001492	0.000294	0.000294	0.001710	1.271029e-03	4.170007e-04	0.002569	
E dges_X_Index	0.014575	0.012143	0.000549	0.000548	-0.006191	-5.064918e-03	-1.821559e-03	-0.009830	
E dges_Y_Index	0.024008	0.017222	-0.003270	-0.003271	-0.004504	-3.385043e-03	-1.131684e-03	-0.006776	
Outside_Global_Index	0.027131	0.020267	-0.010761	-0.010761	0.001901	2.194723e-03	1.047396e-03	0.003847	
Log0fAreas	-0.015797	-0.010513	0.003022	0.003023	0.003779	2.660501e-03	8.995469e-04	0.005681	
Log_X_Index	-0.018449	-0.011810	0.004004	0.004004	0.003429	2.395761e-03	7.785508e-04	0.005056	
Log_Y_Index	-0.007884	-0.004881	0.000877	0.000877	0.002595	1.944573e-03	6.820760e-04	0.004000	
Orientation_Index	0.013311	0.009640	-0.005741	-0.005740	0.001229	1.302539e-03	5.811746e-04	0.002370	
Luminosity_Index	0.008843	0.006907	-0.002801	-0.002802	-0.000633	-3.399458e-04	-7.846055e-05	-0.000750	
SigmoidOfAreas	-0.030012	-0.022223	0.008729	0.008730	0.004499	3.132852e-03	1.025232e-03	0.006565	

Inferences:

- **1.** Bayes has an accuracy of about 83.04, less than KNN as bayes work on similarity founding between the data values while KNN is more practical and near to inherent nature.
- 2. The diagonal values are positive means variable data.
- 3. The off-diagonal values are very low showing less relation between the other attribute.
- **4.** Max covariance attributes are Y_maximum and sum_of_luminosity for both classes.

IC 272: DATA SCIENCE - III

LAB ASSIGNMENT - IV

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

4

Table 4 Comparison between classifiers based upon classification accuracy

S. No.	Classifier	Accuracy (in %)	
1.	KNN	89.4	
2.	KNN on normalized data	97.32	
3.	Bayes	83.04	

Inferences:

- 1. Highest is of KNN on normalization and lowest Is of bayes.
- 2. Bayes < KNN < KNN(normalized)
- **3.** As Bayes work on similarity founding between the data values while KNN is more practical and near to inherent nature.