Natural Language Processing & Word Embeddings

Quiz, 10 questions

~	Congratulations! You passed!	Next Item
~	1 / 1 points	
1.		
	se you learn a word embedding for a vocabulary of 10000 words. Then the em dimensional, so as to capture the full range of variation and meaning in those	
	True	
0	False	
	ect dimension of word vectors is usually smaller than the size of the vocabulary. I d vectors ranges between 50 and 400.	Most common sizes for
~	1 / 1 points	
2.		
What i	s t-SNE?	
	A linear transformation that allows us to solve analogies on word vectors	
0	A non-linear dimensionality reduction technique	
Corr Yes	ect	
	A supervised learning algorithm for learning word embeddings	
	An open-source sequence modeling library	

points

National Janguage Processing & Word Fmbeddings ained on a huge corpus of text. You then Quily se this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

True

False

Correct

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic would contain a positive/happy connotation which will probably make your model classified the sentence as a "1".

1/1 points

4.

Which of these equations do you think should hold for a good word embedding? (Check all that apply)

$$e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$$

Correct

Yes!

$$e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$$

Un-selected is correct

$$e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$$

Correct

Yes!

Natural 1	Language	Processing	& Word	Embeddings

Quiz,	10	que £i թŋs—	$e_{brother}$	\approx	e_{sister}	_	e_{girl}
-------	----	--------------------	---------------	-----------	--------------	---	------------

Un-selected is correct

1/1 points

5.

Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E*o_{1234}$ in Python?

It is computationally wasteful.

Correct

Yes, the element-wise multiplication will be extremely inefficient.

- The correct formula is $E^T * o_{1234}$.
- This doesn't handle unknown words (<UNK>).
- None of the above: calling the Python snippet as described above is fine.

1/1 points

6

When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.

True

Correct

False

1/1 points

7.

In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t
Natural Language Processing & Wi	ard Embeddings

NaturaloLanguager Prioces single by Word Embeddings	τ
Quiz, 10 questions c is a sequence of several words immediately before $t.$	
igcap c is the one word that comes immediately before $t.$	
igcap c is the sequence of all the words in the sentence before $t.$	
$igcup_c$ and t are chosen to be nearby words.	
Correct	
1/1 points	
Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2v model uses the following softmax function: $P(t \mid c) = \frac{e^{\theta_t^T e_c}}{\sum_{t'=1}^{10000} e^{\theta_t^T e_c}}$	vec
Which of these statements are correct? Check all that apply.	
$igcup_t$ and e_c are both 500 dimensional vectors.	
Correct	
$igcup_t$ and e_c are both 10000 dimensional vectors.	
Un-selected is correct	
$igcup_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.	
Correct	

After training, we should expect $heta_t$ to be very close to e_c when t and c are the same word.

Un-selected is correct

Natural Language Processing & Word Embeddings

Quiz, 10 questions

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$$

Which of these statements are correct? Check all that apply.

oxedge and e_j should be initialized to 0 at the beginning of training.

Un-selected is correct

 $oxedsymbol{ heta}_i$ and e_j should be initialized randomly at the beginning of training.

Correct

 $igwedge X_{ij}$ is the number of times word i appears in the context of word j.

Correct

The weighting function f(.) must satisfy f(0)=0.

Correct

The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.

1/1 points

10.

You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

 \bigcap $m_1 >> m_2$

Correct

 $m_1 \ll m_2$

Natural Language Processing & Word Embeddings

Quiz, 10 questions

