Universidad Nacional de Río Negro - Profesorados de Física y Química

Física I A Guía 06 - Cantidad de Movimiento

Asorey - Cutsaimanis

2016

- 34. Calcule el vector cantidad de movimiento total \vec{p}_T en cada uno de los siguientes casos:
 - a) un cuerpo de masa $m = 2 \text{ kg que se mueve con velocidad } \vec{v} = 5 \hat{i} \text{ m s}^{-1}$,
 - b) un automóvil de masa $m = 1200 \,\mathrm{kg}$ y velocidad $\vec{u} = 100 \,\hat{i}$ km h⁻¹
 - c) dos automóviles de masa $m_1 = 1000 \,\mathrm{kg}$ y $m_2 = 1600 \,\mathrm{kg}$ y velocidades $\vec{u}_1 = 20 \,\hat{i}$ m s⁻¹ y $\vec{u}_2 = 40 \,\hat{i}$ m s⁻¹
 - d) dos automóviles de masa $m_1 = 1000 \,\mathrm{kg}$ y $m_2 = 1600 \,\mathrm{kg}$ y velocidades $\vec{u}_1 = 40 \,\hat{i}$ m s⁻¹ y $\vec{u}_2 = -20 \,\hat{i}$ m s⁻¹
 - e) dos automóviles de masa $m_1 = 1000 \text{ kg y } m_2 = 1600 \text{ kg y velocidades } \vec{u}_1 = 40 \hat{i} \text{ m s}^{-1}$ y $\vec{u}_2 = 20 \hat{j} \text{ m s}^{-1}$
 - f) un automóvil de masa $m=900~{
 m kg}$ y velocidad $u=130~{
 m km}$ h $^{-1}$ y un camión de masa $M=30000~{
 m kg}$ y velocidad $u=80~{
 m km}$ h $^{-1}$ con igual dirección pero sentidos opuestos
 - g) Ocho esferas de igual masa m = 1 kg, que se mueven cada una con la misma rapidez 1 s^{-1} y en sentido N, NE, E, SE, S, SO, O y NO respectivamente.
- 35. Imagine dos cuerpos de masas m_1 y $m_2=3m_1$ que se encuentran en reposo ($u_1=u_2=0$). Ambos cuerpos están unidos por un resorte de masa despreciable y cuya constante elástica vale $k=1000\,\mathrm{N}\,\mathrm{m}^{-1}$. El resorte está comprimido $\Delta x=0,5\,\mathrm{m}$ respecto de su posición de equilibrio. Una vez liberado el resorte, encuentre la relación entre las velocidades \vec{v}_1 y \vec{v}_2 de cada cuerpo. Luego calcule dichas velocidades y, suponiendo que $m_1=10\,\mathrm{kg}$, calcule la energía cinética de cada cuerpo. Finalmente, compare la energía cinética del sistema con la potencial elástica inicial. ¿Qué conclusiones puede sacar?
- 36. Un fuego artificial de masa m=1 kg se encuentra en reposo en el instante en que estalla, separándose en 100 partes de masa que podemos suponer iguales entre si, es decir $m_i=m/100$. Luego de la explosión, estos fragmentos se mueven en distintas direcciones y sentidos pero todos con la misma rapidez $v=1\,\mathrm{m\,s^{-1}}$. Calcule el vector cantidad de movimiento total \vec{p}_f luego de la explosión. Justifique.
- 37. Un péndulo balístico es un dispositivo utilizado para determinar el poder de fuego de un arma. Consiste en un péndulo formado por una bloque de madera de masa M=5,98 kg que pende de un hilo de longitud d=1,5 m (considerar que esa es la distancia entre el anclaje del péndulo y el centro del bloque). Una bala de masa m=20 g es disparada por un revolver e impacta en el centro del bloque de madera. Tras el impacto, el bloque se eleva hasta formar un ángulo de $\theta=15^{\circ}$ respecto a la vertical. ¿Cuál es la velocidad de la bala al salir del revolver?

- 38. Dos astronautas de masas $m_1 = 70 \, \mathrm{kg}$ y $m_2 = 80 \, \mathrm{kg}$, se encuentran originalmente en reposo entre si, trabajando fuera de la estación espacial. El astronauta de masa m_1 le pide a m_2 que le alcance un martillo, de masa $m_m = 3 \, \mathrm{kg}$, quien se lo lanza con velocidad $v_m = 2 \, \mathrm{m \, s^{-1}}$. El astronauta m_1 lo ataja sin dificultad. Calcule el vector velocidad final del astronauta 1 (con el martillo) y del astronauta 2.
- 39. Un fiat uno de masa $m_1 = 600$ kg se encuentra originalmente en reposo ($u_1 = 0$ m/s) en el medio de la ruta por un problema mecánico. El conductor, que bajó a realizar una llamada telefónica al auxilio mecánico, nota que un camión de masa $m_2 = 30000$ kg se desplaza hacia el fiat con velocidad $u_2 = 100$ km/h. El desastre fue inevitable. Calcule la velocidad final v del amasijo ($m_1 + m_2$) resultante, y la variación de energía cinética del sistema.
- 40. Repita los cálculos anteriores pero ahora suponga que el camión está detenido y el fiat uno es el que choca al camión. ¿Que puede decir de la transferencia de cantidad de movimiento en cada caso? ¿y con las pérdidas de energía cinética?
- 41. Un cuerpo de masa m_1 se desplaza con velocidad u_1 y experimenta una colisión totalmente inelástica con un cuerpo de masa m_2 que se mueve con velocidad u_2 . Calcule la velocidad final del cuerpo resultante, de masa $m_1 + m_2$, en cada uno de los siguientes casos: a) $m_1 = m_2$ y $u_1 = u_2$; b) $m_1 = m_2$ y $u_1 = -u_2$; c) $m_1 = 10m_2$ y $u_1 = u_2$; d) $m_1 = 10m_2$ y $u_2 = 0$; e) $m_1 = 10m_2$ y $u_1 = 10u_2$.
- 42. Una bola de billar de masa $m_1 = 0.2$ kg se mueve con velocidad inicial $u_1 = 1$ m/s y colisiona frontal y elásticamente con otra bola de billar de masa m_2 que se encuentra inicialmente en reposo ($u_2 = 0$). Calcule la velocidad final de cada bola en los siguientes casos: a) $m_2 = 0.001 m_1$; b) $m_2 = 0.05 m_1$; c) $m_2 = 0.9 m_1$; d) $m_2 = m_1$; f) $m_2 = 1.1 m_1$; g) $m_2 = 20 m_1$; h) $m_2 = 1000 m_1$.
- 43. En un reactor nuclear los neutrones ($m_1 = 1 \text{ uma}^1$), chocan frontal y elásticamente con moléculas de agua pesada (D_2O , $m_2 = 20 \text{ uma}$) en un proceso denominado moderación. Suponiendo que la velocidad del neutrón es $u_1 = 1000 \text{ m s}^{-1}$ y las moléculas de agua pesada están inicialmente en reposo ($u_2 = 0$), calcule:
 - *a*) Las velocidades de la molécula de agua y del neutrón luego de la primer colisión, y la variación de energía cinética para el neutrón y la molécula de agua pesada
 - b) El número de colisiones necesarias para que la velocidad del neutrón se reduzca al 0.1% de u_1 .

 $^{^{1}}$ La uma (unidad de masa atómica) es una unidad de masa ampliamente utilizada en química, bioquímica (usualmente se la llama Dalton), y en física nuclear, y que equivale a la masa de doceava parte del átomo de 12 C, $1 \text{ uma} \simeq 1,67 \times 10^{-27} \text{ kg}$