

GHULAM ISHAQ KHAN INSTITUTE FACULTY OF COMPUTER SCIENCE

AND ENGINEERING

FYP'23

Cutting Edge Real-Time Reinforcement Learning Model Implementation On Autonomous Rover

Awaiz Adnan 2019095 Jahanzaib Khan Ludin 2019187 Zain ul Furqan 2019554 Faiz ul Hasan Gardezi 2019123

Supervisor: Dr Farhan

Co-Supervisor: Engr. Badre Munir

Problem Statement

- Reinforcement Learning is not currently used with real time functionality
- Offline models are typically used and the online models used are not trained dynamically, e.g. Tesla
- Current RL models drawback: the agent has to cross the obstacle atleat once
- Existing models don't account for unknown/unprecedented environment

- For Example: Tesla cars cannot operate efficiently in third world countries where roads are riddled with unknown dependencies and conditions
- Our proposed solution: develop a dynamic RL Model that takes real time sensor data as inputs and trains in sync with the simulated environment to propose the optimal pathway

Project Overview

Basic Theory

Our approach is to attempt to develop a system whereby the sensor data is collected and a simulation of the environment is created in real-time. Our RL Model will then take this data as input tensors and perform iterations with our rover as a simulated agent which in turn gives us the optimal pathway. This pathway is then mapped onto the rover as output.

Hardware Fabrication

To demonstrate our Model capability we will be building a Rover with custom designed electronics and hardware. Our primary sensors will be LIDAR and SONAR to work in sync to generate the simulation of nearby environment. The rover will have autonomous navigation, obstacle avoidance and geolocating capabilities, and can be mapped later onto more specific tasks.

Motivation/Justification and Ethical Impact

Efficiency

There should be a complete model to replace a human in cases of unknown territory

Perform self driving task in sub-optimal environment like a typical road in a third world country

Technologic Advancement:

Will improve human lives in applications like medical logistics

Jobs might be affected:

This project aims towards autonomy so it might replace human jobs

Literature Review

- Real-Time Interactive Reinforcement Learning for Robots by Andrea Lockerd Thomaz, Guy Hoffman, and Cynthia Breazeal
- Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: a Survey by Wenshuai Zhao, Jorge Pena Queralta, Tomi Westerlund
- UGV Navigation Optimization Aided by Reinforcement Learning-Based Path Tracking
- Implementation of Reinforcement Learning Simulated Model on Physical UGV Using Robot Operating System for Continual Learning by Edgar M. Perez, Abhijit
 Majumdar, Patrick Benavidez and Mo Jamshidi
- Reinforcement Learning and the Reward Engineering
 Principle by Daniel Dewey

Comparison of Existing Approaches with our Novel Approach

Existing Online Learning and RL Models don't account for unknown environments and agent has to cross obstacle atleast once

Real-time training of a dynamic RL Model has never been implemented for autonomy and path-finding

Our Model will be impartial to the environment and needs no prior training, hence it can work in inhospitable and unknown situations

Our Model is dynamic and constantly updates in accordance with the environment as it trains in real time whenever an obstacle is encountered

Training Dataset

- We will be using our sensor fleet to generate our own dataset pereodically, in the form of a constantly updating CSV file
- The csv file will then be used to extract input tensor for our model
- The csv file will also be used to construct the virtual 2D Map of the environment

In case of failure to generate our own dataset, we intend to use pre-trained models

In Depth Engineering/Computing Knowledge

We will have to be fluent in python and its libraries like Tensorflow, OpenCV and also in virtual simulator engines like Unity.

We will have to be familiar with hardware and electronic design and fabrication

Hard Tools

- 3D Printer
- CNC router, laser cutting
- PCB Fabrication Tools

Soft Tools

- IDEs: Arduino, PyCharm, Mujoco, Linux terminal
- Languages: Python, C++ and MATLAB

- Wide ranging/conflicting technical issues
- No obvious solution
- Diverse group of stakeholders
- Components and subparts

Justification

- There is no microcontroller able to handle on-board training plus we have to generate our own dataset
- There is no pre-defined solution for real-time model training (online learning)
- There is no pre-defined solution for real-time model training (online learning)

Rover Fabrication Progress as yet...

TimeTable and Gantt Chart

	Project Start Date:	28-Sep-22		Oct			Oct			Nov				Dec				Jan			Feb				Mar					
	Project Name:	eal Time RL Model Impementation on Auto					28-Sep	S-Oct	11-0ct	12-Oct	19-Oct	26-Oct	2-Nov	3-Nov	10-Nov	17.Nov	24-Nov	1-Dec	8 Dec	28-Dec	10-Jan	20-Jan	27-Jan	3-Feb	10-Feb	17-Feb	24-Feb	2-Mar	9-Mar	16-Mar
=	Activity	Start	End	Days	Status	% Done																								
1	Research and Discussion	28-Sep-22	11-Oct-22	1.0	In-Progress	50%																								
2	Familiarizing with IDEs and Languages	12-Oct-22	2-Nov-22	16	Not-Started	0%																								
3	ML and RL Theory and Implementation	3-Nov-22	1-Dec-22	21	Not-Started	0%																								
4	Hardware Design and Fabrication	2-Dec-22	28-Dec-22	19	Not-Started	096																								
5	Sensor Data Collection and Simulation	10-Jan-22	20-Jan-22	9	Not-Started	0%																								
6	Testing Hardware on Pre-trained Models	23-Jan-22	30-Jan-22	5	Not-Started	0%																								
7	Developing our Custom RL Model	31-Jan-22	6-Feb-22	5	Not-Started	0%																								
8	Testing this Model on Rover	7-Feb-22	14-Jul-22	114	Not-Started	0%																								
9	Optimizing and Fine Tuning the Finalized Rover	15-Feb-22	1-Mar-22	11	Not-Started	0%																								
10	Writing final report and/or Research Paner	2-Mar-22	17-Mar-22	12	Not-Started	096																								

Workload Distribution

01

Awaiz Adnan

- Hardware and Electronics
- RL Model Development
- Hardware and Software Interfacing
- Simulation
- Cloud Deployment

02

Faiz ul Hasan Gardezi

- CAD Modeling
- Harware/Chasis Fabrication
- Documentation

Zain ul Furqan Shahid

- Python Implementation of ML and RL Models
- RL Model Development
- Testing and Debugging

Jahanzaib Khan Ludin

- Pycharm and Tensorflow
- RL Model Development
- Front-end Development
- Testing

Thank You

.

.