

DLI Accelerated Data Science Teaching Kit

Lecture 15.6 - UMAP

The Accelerated Data Science Teaching Kit is licensed by NVIDIA, Georgia Institute of Technology, and Prairie View A&M University under the <u>Creative Commons Attribution-NonCommercial 4.0 International License.</u>

UMAP for Dimensional Reduction

- Matrix Factorization
 - Example: Principle Component Analysis
 - Good at capturing the Global Structure of the data
 - Only keeping the principle component, meaning there is a loss in information
- Neighbor Graph
 - Example: UMAP, t-SNE
 - Good at capturing the Local Strcutre of the data
 - Simplices: Topological structure in multi dimentional space
 - Nerve Theorem: We can keep all information in the topological space

UMAP Overview

Uniform Manifold Approximation and Projection

- Based on creating simplex in high-dimensional space
 - Points are connected with a line if the distance between them is under a certain threshold
 - We can use different distance metrics (e.g., Euclidean)
- Problem: Data are not usually uniformly distanced
 - We can have points that are disconnected from other points

Uniform Manifold

- Solution: Uniform Manifold & Riemannian Metrics
- Stretching or shrinking according to where the data appear sparser or denser
- We define a Uniform Manifold where each points are equally distanced from each other

Manifold & Riemannian Metrics

Distance in the manifold projected onto the real space

Fixed Radius vs. Fuzzy cover

- We can now generate a simplex where all data points are connected
- Problem: Cannot differentiate distance in this simplex.
 - We are using a fixed radius to determine if two data points should be connected.
- Solution: Fuzzy cover
 - We still need the manifold to be locally connected

Fuzzy Cover

Fuzzy Cover + Locally connected

Edges with incompatible weight (Differentiate by different color)

UMAP Adjunction

Problem: Local metrics are not compatible

Solution: UMAP Adjunction

• We can combine weights in different edges in this form: $f(\alpha, \beta) = \alpha + \beta - \alpha\beta$

Graph with combined weight

UMAP Hyperparameter

n_neighbors

- The number of approximate nearest neighbors used to construct the initial high-dimensional graph
- Most important
- Local versus global structure
- Low: focus more on local structure
- High: focus more on global structure

min_dist

- The minimum distance between points in low-dimensional space
- How tightly UMAP clumps points together
- Low: More tightly packed embeddings
- High: More loosely packed embeddings

UMAP Hyperparameter

n_neighbors

- The number of approximate nearest neighbors used to construct the initial high-dimensional graph
- Most important
- Local versus global structure
- Low: focus more on local structure
- High: focus more on global structure

min_dist

- The minimum distance between points in low-dimensional space
- How tightly UMAP clumps points together
- Low: More tightly packed embeddings
- High: More loosely packed embeddings

UMAP Hyperparameter (n_neighbors)

UMAP Hyperparameter (min_dist)

Performance

	t-SNE	UMAP
COIL20	20 seconds	7 seconds
MNIST	22 minutes	98 seconds
Fashion MNIST	15 minutes	78 seconds
GoogleNews	4.5 hours	14 minutes

UMAP speed up over t-SNE		
COIL20	3x	
MNIST	13x	
Fashion MNIST	11x	
GoogleNews	19x	

https://www.youtube.com/watch?v=nq6iPZVUxZU

DLI Accelerated Data Science Teaching Kit

Thank You