

计算机体系设计实践报告

2022 学年秋季学期

序号	学号	姓名	性名 专业		成绩
	20211120138	薛凡豪	网络空间安全		
	20211120148	罗安乔	网络空间安全		

指导教师: 冯立波

软件学院 计算机体系设计实践 王逍

二() 二一年九月

计算机体系设计实践

实验1加减运算及特征标志

实验操作

1. 下载实验资源

将通用文件"DE2-115_proj"解压缩到 E 盘或 F 盘。得到 DE2-115 工程文件夹。将加减运算及特征标志中文件解压到 DE2-115 工程文件夹中;解压后的 *lab2.vpl* 和 *lab2.bmp* 是留给实验调试软件使用的虚拟面板构图文件。

2. 实验电路设计与下载

在工程文件夹 DE2-115 中双击工程文件 DE2_115_Lab.qpf 打开实验电路的 QuartusII 工程。

点击工具栏中分析与综合(Start Analysis & Synthesis)按钮,检查语法错误,参阅实验指导书第五章 5.1.1 设计流程的"分析综合"。

分析综合通过后,直接点击工具栏中的全编译(Start Compilation)按钮,自动完成分析综合、布局布线、生成编程文件等整个过程,全编译完成后,点击工具栏中的编程按钮(Programmer),将生成的实验电路文件 *DE2 115 Lab.sof* 下载到实验板。

3. 实验电路功能验证

打开实验调试软件 JULAB3,选择逻辑部件实验类型,在"虚拟实验板"菜单的面板构图选项下,浏览选择工程文件夹中的 *lab2.vpl* 文件,打开本实验的虚拟面板,根据实验原理,控制虚拟面板的开关、按键,观察对应的指示灯,填写实验结果记录和分析。

实验记录

1. 运算功能和控制信号

根据实验原理分析各种运算对应的控制信号,填入下表。

运算指	运算功能	运算控制信号					
\$	色异切形	M3	M2	M1	M0		
ADD	F=dst+src	0	0	0	1		
SUB	F=dst-src	0	1	1	1		
ADDC	F=dst+src+进位	1	0	0	1		

SUBB	F=dst-src-借位	1	0	1	1
INC	F=dst+1	0	1	0	0
DEC	F=dst-1	0	0	1	0
无	F=dst	0	0	0	0

2

2. 数据传送

设置 M3~M0 实现数据传送,使加法器的输出 F=A。下表中双线左侧是输入信号,右侧是输出信号。按照表中给出的输入数据,通过拨动开关送给 FPGA 实验电路;将相关指示灯的结果,填入表格右部栏目。

	dst	src	Ci	M3~M0	В	C0	F	实验现象分析
1	1010	1111	_	0000	0	0	A	如果改变 src 的值,对B和C0的
2	1010	0010		0000	0	0	A	值 <u>没有</u> (有/没有)影响。

要将 dst 输入端的数据送到加法器的 F 输出端,需要使 M3~M0= $\underline{0000}$,这时 B= $\underline{0}$, C0= $\underline{0}$,因此 F = A 。

3. 加法运算结果的特征标志

设置 M3~M0 为加法运算,按下表步骤操作,观察加法运算的结果,填入下表,并写出计算数和结果的真值。

	1-4		C:	M2 M0	E		FL	AG		运算数和运算	算结果的真值	
	dst	src	Ci	M3~M0	F	S	Z	О	С	视为无符号数	视为补码	
1	1000	0001	_		1001	1	0	0	0	8+1=9	(-8)+1=-7	
2	1101	1100			1001	1	0	0	1	13+12=25	(-3)+(-4)= -7	
3	0100	0010			0110	0	0	0	0	4+2=6	4+2=6	
4	0000	0000			0000	0	1	0	0	0+0=0	0+0=0	
(5)	1111	0001		0001	0000	0	1	0	1	15+1=16	(-1)+1=0	
6	0011	0101		0001	1000	1	0	1	0	3+5=8	3+5=8	
7	1100	1011			0111	0	0	1	1	12+11=23	(-4)+(-5)= -9	
8	1100	0101			0001	0	0	0	1	12+5=17	(-4)+5=1	
9	0011	1011			1110	1	0	0	0	3+11=14	3+(-5)= -2	
10	1000	1000			0000	0	1	1	1	8+8=16	(-8)+(-8)= -16(0)	

提示: 为方便分析运算结果,可以事先列出负数的4 位补码与真值的对应关系:

1000	1001	1010	1011	1100	1101	1110	1111

0	7	(_	4	2	2	1
-8	- /	-6	-5	-4	-3	-2	-1

实验现象分析:

- (1) 负标志 SF 就是运算结果的 最高位 (最高位/最低位)。
- (2) 零标志 ZF 的生成和 F (F/CF/F及 CF) 有关。
- (3) 溢出标志 OF 和进位标志 没有 (有/没有)直接的联系。
- (4) 对照标志位和真值,可以看出溢出标志 OF 是按照 <u>补码</u>(无符号数/补码)的运算结果设置的;进位标志 CF 是按照 <u>无符号数</u>(无符号数/补码)运算的结果设置的。

也就是说,如果运算数是无符号数,运算结果是否溢出是由 CF (CF /OF) 反映的;如果运算数是有符号补码数,运算结果是否溢出是由 OF (CF /OF) 反映的。

- (5) 4 位补码能表示数值的范围是 $\underline{-8\sim7}$,4 位无符号数能表示数值的范围是 $0\sim15$ 。
 - (6) 运算器电路是否"知道"运算数是有符号数还是无符号数? 不知道

4. 减法运算

减法运算是转换为加法计算的。设置 $M3\sim M0$ 为减法运算,注意观察 B 操作数、C0 和 FLAG 的 CF (进位)标志位。

	dst	src	Ci	M3~M0	C0	В	F	CF	实验现象分析
1)	0010	0001		0111	1	1110	0001	1	<u>有</u> (有/无)借位
2	0001	0010			1	1101	1111	0	<u>无</u> (有/无)借位

- (1) 减法运算时,B=<u>src</u> (src/src),C0=<u>1</u> (1/Ci),所以 F= <u>dst-src</u>。
- (2) CF 标志与减法运算有没有产生借位 \underline{a} (有/没有)关系,没有产生借位时, $CF=\underline{0}$;减法运算产生借位时, $CF=\underline{1}$ 。

5. 带借位的减法运算

设置 M3~M0 为带借位的减法运算,注意观察 F 和 Ci 的关系。

	dst	src	Ci	M3~M0	C0	В	F	CF	实验现象分析
1	0101	0011	1	1011	1	1100	0010	0	无借位(5-3-0=2)
2	0101	0011	0	1011	0	1100	0001	1	有借位(5-3-1=1)

实验现象分析:

在带借位的减法运算中,Ci 代表的是 <u>借位的逻辑反</u> (借位/借位的逻辑反)。从实验结果可以看出,当 Ci=1 时,F=dst – src – <u>0</u> (1/0) 当 Ci=0 时,F=dst – src – <u>1</u> (1/0)。请解释这个实验结果:

减法换成加法计算,F=dst-src-借位=dst+src 的反+1-借位=dst+src 取反+借位的逻辑 反。

带借位的减法运算中, Ci 代表的是借位的逻辑反。即 F=dst+src 的反+Ci,借位为 1 时设置 Ci 为 0: 借位为 0 时设置 Ci 为 1.

当Ci=1 时,无借位,所以结果不需要减借位,故F=dst-src-0.

当Ci=0时,有借位,结果需要减去借位的1,故F=dst-src-1.

6. 加1和减1运算

	111777							
	dst	src	Ci	M3~M0	C0	В	F	FLAG
① INC	0010	0101	1		1	0000	0011	0000
1	0010	1010	0	0100	1	0000	0011	0000
INC ②					0	1111	0001	0001
DEC	0010	1010	0	0010				
2				0010	0	1111	0001	0001
DEC	0010	0101	1					

实验现象分析:

- (1) 加 1 运算时, B 始终为 0000, C0 始终为 1, 所以 F = A + B + C0 = A + 1。
- (2) 减1运算时, B 始终为 1111 即-1, C0 始终为 0, 所以F=A+B+C0=A-1。
- (3) 改变 src 的值,对结果 没有 (有/没有)影响。

实验小结及实验分工

(一) 实验小结

1. 心得体会

- (1)首先,学习了试验箱的使用和安装,包括线路的连接、插排等使用方法。然后在老师发的文件里找到代码,然后把代码复制到 QuartusII 里面,编译成功以后,下载 USB-Blaster 驱动器。
- (2) 然后还要在调试器里面更换 vpl 文件,否则会出现不兼容的状况,要在 DE2-115 proj中找到 lab2 verilog 里面的 lab2. vpl 文件。
- (3)最后还学习到了 JULAB 的使用方法,并且在调试全加器过程中,发现全加器控制命令和实验板信号的对应,还学习到了全加器里面不同操作对应的运算方式,还有不同标志表

示的不同意思。其中 ZF 对应零标志, OF 对应溢出标志, CF 对应进位标志。在加减运算中, 溢出标志 OF 和进位标志没有直接的联系, 在减法中, CF 标志着减法运算中借位的问题。

2.问题:

- (1)实验中,一开始遇到的问题是 usb-blaster 驱动不存在,然后在网上查资料,发现是驱动没更新,最后在设备管理器的其他设备里面找到 usb-blaster 驱动,然后更新以后,就解决了找不到 usb-blaster 驱动的问题。
- (2)在打开虚拟实验板实验的时候,一直出现调试器不兼容的问题,最后在老师的帮助下,在 DE2-115_proj 中找到 lab2_verilog 里面的 lab2.vpl 文件使用,就解决了不兼容的问题。
- (3)在全加器的测试中,刚开始没搞明白各个选项的作用,后面参考课本和反复实验, 终于搞明白了每个控制信号和输入信号的意义,但是没搞明白怎么实现减法操作,后来发现 减法可以通过对第二个输入取反,然后结果自增一的方式从加法的角度实现减法操作。

(二) 实验分工

1. 薛凡豪:

主要负责 QuartusII 和 JULAB 两个软件的安装和调试,做了驱动安装更新和虚拟实验板的调试,做了一部分加减测试,并且完成了一部份实验报告的撰写。

2. 罗安乔

主要负责实验板的组装,负责进行实验数据的记录,做了一部分加减测试,并且完成了 一部分实验报告的撰写。