

Algorithms: Design and Analysis, Part II

Approximation Algorithms for NP-Complete Problems

Analysis of a Dynamic Programming Heuristic for Knapsack

The Dynamic Programming Heuristic

Step 1: Set $\hat{v}_i = \lfloor \frac{v_i}{m} \rfloor$ for every item i.

Step 2: Compute optimal solution with respect to the \hat{v}_i 's using dynamic programming.

Plan for analysis:

- (1) Figure out how big we can take m, subject to achieving a $(1-\epsilon)$ -approximation
- (2) Plug in this value of m to determine running time

Quiz

Question: Suppose we round v_i to the value \hat{v}_i . Which of the following is true?

- A) \hat{v}_i is between $v_i m$ and v_i
- B) \hat{v}_i is between v_i and $v_i + m$
- C) $m\hat{v}_i$ is between $v_i m$ and v_i
- D) $m\hat{v}_i$ is between $v_i m$ and v_i

Accuracy Analysis I

From quiz: Since we rounded down to the nearest multiple of m, $m\hat{v}_i \in [v_i - m, v_i]$ for each item i.

Thus: (1)
$$v_i \ge m\hat{v}_i$$
, (2) $m\hat{v}_i \ge v_i - m$

Also: If $S^* = \text{optimal solution to the original problem (with the original } v_i$'s), and S = our heuristic's solution, then

(3)
$$\sum_{i \in S} \hat{v}_i \ge \sum_{i \in S^*} \hat{v}_i$$

[Since S is optimal for the \hat{v}_i 's] (recall Step 2)

Accuracy Analysis II

 $S = \text{our solution}, S^* = \text{optimal solution}$

$$\sum_{i \in S} v_i \overset{(1)}{\geq} m \sum_{i \in S} \hat{v}_i \overset{(3)}{\geq} m \sum_{i \in S^*} \hat{v}_i \overset{(2)}{\geq} \sum_{i \in S^*} (v_i - m)$$

contains at most *n* items

Thus:
$$\sum_{i \in S} v_i \ge (\sum_{i \in S^*} v_i) - mn$$

Constraint:
$$\sum_{i \in S} v_i \ge (1 - \epsilon) \sum_{i \in S^*} v_i$$

To achieve above constraint: Choose m small enough that

$$mn \le \epsilon \sum_{i \in S^*} v_i$$

unknown to algorithm, but definitely $\geq v_{\text{max}}$

Sufficient: Set m so that $mn = \epsilon v_{\text{max}}$, i.e., heuristic uses $m = \frac{\epsilon v_{\text{max}}}{n}$

Running Time Analysis

Point: Setting $m = \frac{\epsilon V_{\text{max}}}{n}$ guarantees that value of our solution is $\geq (1 - \epsilon)$ ·value of optimal solution.

Recall: Running time is $O(n^2 \hat{v}_{max})$

Note: For every item i, $\hat{v}_i \leq \frac{v_i}{m} \leq \frac{v_{\text{max}}}{m} = v_{\text{max}} \frac{n}{\epsilon v_{\text{max}}} = \frac{n}{\epsilon}$

Running time = $O(n^3/\epsilon)$