Example: Ising model

Ising model

The model is a 2D lattice. Each dot y_i can take in either -1 or 1.

Ising model

Normalization constant

$$p(y) = \frac{1}{Z}\phi(y)$$

^ because we want to get all the possible states. This sounds infeasible.

Mean field

$$p(y) \approx q(y) = \prod_{i} q_i(y_i)$$

We want to use an MFA to approximate p(y).

I feel negative field on me

R

Технический слайд (5 минут на доску)

$$\log q_{i}(y_{i}) = \mathbb{E}_{y \setminus y_{i}} p(y) + \text{const}$$

$$= \mathbb{E}_{y \setminus y_{i}} J \sum_{j \in \text{Nbr}(i)} y_{i} y_{j} + b_{i} y_{i} + \text{const}$$

$$= J \sum_{j \in \text{Nbr}(i)} y_{i} \mathbb{E} y_{j} + b_{i} y_{i} + \text{const}$$

$$= J \sum_{j \in \text{Nbr}(i)} y_{i} \mu_{j} + b_{i} y_{i} + \text{const}$$

$$= y_{i} \left(J \sum_{j \in \text{Nbr}(i)} \mu_{j} + b_{i} \right) + \text{const}$$

$$= M y_{i} + \text{const}$$

Технический слайд

$$q_i(y_i) = \text{const} \cdot e^{My_i}$$

 $q_i(+1) + q_i(-1) = \text{const}(e^M + e^{-M}) = 1$

$$q_i(+1) = \frac{e^M}{e^M + e^{-M}} = \sigma(2M)$$

$$q_i(-1) = \frac{e^{-M}}{e^M + e^{-M}} = 1 - \sigma(2M)$$

$$M = \left(J \sum_{j \in Nbr(i)} \mu_j + b_i\right)$$

Технический слайд

$$g_{k}(y_{k}) \propto exp(Jy_{k}) \int_{j \in NR(k)}^{M_{j}} f(y_{k}) = exp(y_{k}M) \int_{j \in NR(k)}^{M_{j}} f(y_{k}M) \int_{j \in NR(k)}^{M_{j}$$

Example

Example

$$J = -0.05$$

Example

$$J = 0.1$$

Optimization solutions

Optimization solutions Captures statistics Mode has high probability

Optimization solutions

$$\mathcal{KL}(q \parallel p^*) = \int q(z) \log \frac{q(z)}{p^*(z)} dz = +\infty$$

