Optimization

<u>Some slides courtesy of:</u> M. Davies, A. Storkey, S. Boyd, P. Patrinos

Optimization

- Why do we need it?
 - Demo:

http://www.benfrederickson.com/numericaloptimization/

- How common it is?
 - http://online.stanford.edu/course/convexoptimization-winter-2014
 - MSc in optimization (Univ. of Edinburgh)

Optimization in Learning

Most learning algorithms involve optimization, e.g.

- Minimizing an error function (Multi-Layer Perceptrons)
- Maximizing a Likelihood (Nonlinear regression)
- Minimizing an expected loss function (Bayesian Decision Th'y)

Can I use direct optimization? → Only for analytically solvable forms (e.g. quadratic)

In general analytical solutions **unavailable**.

Hence we need to use iterative schemes for optimization. e.g.

Back-propagation (i.e. gradient descent)

Iterative optimization

We will now look into the field of numerical optimization in more detail:

Problem: minimize the function **E(w)** with respect to **w**

The basis blocks of an iterative process in optimization:

- Currently at some position w_t.
- Choose a new position to go to w_{t+1}.
- Think of as choosing a direction to go in, and then a distance to go in that direction. Want to get as close to optimum.
- If we know the direction, but not sure how far, we can use line search.

Maxima and minima

A - D: stationary points of

$$E(w) \quad (i.e. \quad \frac{\partial E}{\partial w} = 0)$$

D,B: minima

B : global minimum

A cost function may have multiple minima and other stationary points (including saddles). Recall minimum implies

- 1. gradient $\nabla E = 0$
- 2. curvature $\nabla^2 E$ is positive $(v^T \nabla^2 E v > 0$, for any v).

In practice we generally have to make do with finding a <u>local</u> minimum.

1-D Optimization

1-dimensional versus multi-dimensional

1-D and multi-D optimization are fundamentally different.

Let x < y < z be three points on a 1-D cost function such that E(y) < E(x)& E(z). It follows that there must exist a minimum within the bracket (x, z).

No equivalent point-wise property exists in dimensions greater than one!

Bracket methods

Once we have a bracketed minimum we can proceed to find a new smaller bracket. There are various methods, e.g.

Golden section search:

Start with the triple (a,b,c) then suppose we choose $x \in (b,c)$ and evaluate E(x)

- if $f(b) < f(x) \rightarrow$ new triple (a,b,x)
- otherwise new triple (b,x,c).

How to choose x (and from which interval)? New bracket length will either be:

Hence choose x in largest interval.

either
$$x = a + \frac{3 - \sqrt{5}}{2}(b - a)$$
 or $x = c + \frac{3 - \sqrt{5}}{2}(b - c)$ (Golden mean)

convergence is linear (bracket guaranteed to be < 0.618 smaller)

Multi-dimensional methods: Local approximations

We can characterise a minimum locally by a quadratic approximation:

$$E(w_0 + \Delta w) \approx E(w_0) + \nabla E(w_0)^T \Delta w + \frac{1}{2} \Delta w^T \nabla^2 E(w_0) \Delta w + \dots$$

The gradient for E(w) can similarly be expressed as:

$$\nabla E(w_0 + \Delta w) \approx \nabla E(w_0) + \nabla^2 E(w_0) \Delta w + \dots$$

Suppose that w_0 is a minimum, by expanding around it:

$$E(w_0 + \Delta w) \approx E(w_0) + 0 + \frac{1}{2} \Delta w^T \nabla^2 E(w_0) \Delta w + \dots$$
no gradient

Hence at a minimum $\nabla^2 E(w_0)$ is positive definite $(v^T \nabla^2 E(w_0)v > 0, \forall v)$.

 \rightarrow any perturbation *must* increase E(w).

Multi-dimensional methods: complexity and function evaluation

We will be looking at a number of different optimization techniques. We note the following costs:

Evaluation of
$$E(w) \rightarrow O(NW)$$

Evaluation of
$$\nabla E(w) \rightarrow O(NW)$$

Evaluation of
$$\nabla^2 E(w) \rightarrow O(NW^2)$$

Inversion of
$$\nabla^2 E(w) \rightarrow O(W^3)$$

Where N is the number of data observations and W is the number of weights.

Multi-dimensional methods: Gradient descent with fixed step size

Recall gradient descent only uses linear approximation:

$$E(w_0 + \Delta w) \approx E(w_0) + \nabla E(w_0)^T \Delta w$$

For a fixed $|\Delta w|$ best approximate reduction in E(w) is:

$$w^{(k)} = w^{(k-1)} - \eta \nabla E(w^{(k-1)})$$

where η is a (small) step size.

Problem: no concept of a minimum.

Is there necessarily a good single value for η ? **Answer:** NO!

Multi-dimensional methods: Convergence in gradient descent

We first introduce a change in coordinates, using an eigenvalue decomposition

$$\nabla^2 E_0 = U \Lambda U^T$$
, Λ – diagonal, U – rotation

So that $v = U^T w$ and:

$$E \approx E_0 + \left[\nabla E_0^T U^T\right] \Delta v + \frac{1}{2} \Delta v^T \left[U^T \nabla^2 E_0 U\right] \Delta v + \dots$$

Now the contribution of each component of Δv is independent:

$$E = E_0 + \sum_{k} (b_k \Delta v_k + \frac{1}{2} \Lambda_{k,k} \Delta v_k^2)$$

(where
$$b = \nabla E_0^T U^T = (U \nabla E_0)^T$$
).

For each component the optimal $\eta = 1/\Lambda_{kk}$, converging in a single step.

However gradient descent only allows us to set a single η .

Multi-dimensional methods: Effect of step-size in gradient descent

- If we choose it too small convergence is very slow.
- If we choose it too large the algorithm may become unstable (oscillate around) and never converge.

If all the eigenvalues, $\Lambda_{k,k}$ are similar then performance of gradient descent is okay.

If $\Lambda_{1.1}/\Lambda_{WW}>>1$, convergence will be bad!

Multi-dimensional methods: An example of gradient descent

• We start at [-0.1 0.6]^T

$$f(x_1, x_2) = 1 - e^{-(10x_1^2 + x_2^2)}.$$

Multi-dimensional methods: Newton's method

Alternatively we can find the minimum of the quadratic approximation explicitly:

$$\Delta w = w^{(k+1)} - w^{(k)} = -\left[\nabla^2 E(w^{(k)})\right]^{-1} \nabla E(w^{(k)}) = > w^{(k+1)} = w^{(k)} - \left[\nabla^2 E(w^{(k)})\right]^{-1} \nabla E(w^{(k)})$$

This is Newton's method (will need to iterate since quadratic is an approximation)

Figure 9.16 The function f (shown solid) and its second-order approximation \widehat{f} at x (dashed). The Newton step $\Delta x_{\rm nt}$ is what must be added to x to give the minimizer of \widehat{f} .

5-15

Multi-dimensional methods: Newton's method

Alternatively we can find the minimum of the quadratic approximation explicitly:

$$\Delta w = w^{(k+1)} - w^{(k)} = -\left[\nabla^2 E(w^{(k)})\right]^{-1} \nabla E(w^{(k)}) = > w^{(k+1)} = w^{(k)} - \left[\nabla^2 E(w^{(k)})\right]^{-1} \nabla E(w^{(k)})$$

This is Newton's method (will need to iterate since quadratic is an approximation)

Gradient descent does not point directly towards minimum (in reality a stationary point), whereas the Newton direction does.

Both methods belong to a general iterative family with $\Delta w = -M^{-1}\nabla E_0$.

For gradient descent, $M = \eta^{-1}I$, for Newton $M = \nabla^2 E_0$

$$w^{(k)} = w^{(k-1)} - \eta \nabla E(w^{(k-1)})$$

Multi-dimensional methods:

Newton's method

Compare this with the gradient decent result (few slides back is shown larger). The gradient points on a point of high gradient but not necessarily to a local stationary point. Thus, Newton methods have faster convergence but...they have problems. See next slide.

Multi-dimensional methods: Problems with Newton Algorithm

There are a number of problems associated with a direct application of Newton's method in nonlinear networks

- 1. Evaluating and inverting Hessian is **expensive** (*Order*(NW²) and *Order*(W³))
- 2. Convergence issues:
 - a) Newton is a zero-finding algorithm. May find a **maximum**.

b) May go **unstable** - step size may take the *w* outside the range where the quadratic approximation is reasonable

Multi-dimensional methods: regularizing the Newton method

To stabilize the Newton step we can restrict the region of search (and get good of both worlds [Newton and Gradient Descent]).

If M is symmetric +ve definite then $\Delta w = -M^{-1}\nabla E_0$ will point downhill.

Consider:
$$\Delta w^{(k+1)} = -\left[\nabla^2 E(w^{(k)}) + \gamma I\right]^{-1} \nabla E(w^{(k)})$$

If $\gamma \to 0$ then $M \to \nabla^2 E_0$ (Newton step)

If
$$\gamma \to \infty$$
 then $M \to (1/\gamma)I$ (gradient descent, $\gamma = 1/\gamma$)

 γ controls the size of the search region. We can choose γ adaptively.

e.g.

If
$$E(w^{(k)}) < E(w^{(k-1)})$$
 then
$$\rightarrow \gamma = \gamma \div 10$$

else

$$\rightarrow w^{(k)} = w^{(k-1)}$$
 and $\gamma = \gamma \times 10$

Multi-dimensional methods: Levenberg Marquardt method

We now specifically consider the sum-of-squared errors cost function.

$$E(w) = \frac{1}{2} \sum_{n} (f(x_n, w) - y_n)^2 = \frac{1}{2} \sum_{n} e_n^2$$
 This term might make Hessian not +ve definite

With derivatives:

$$\nabla E(w) = \frac{1}{2} \sum_{n} \frac{\partial e_n^2}{\partial w} = \sum_{n} \frac{\partial f(x_n, w)}{\partial w} e_n$$

This term might make so we ignore it

and

$$\nabla^2 E(w) = \frac{\partial}{\partial w} \left(\sum_{n} \frac{\partial f(x_n, w)}{\partial w} e_n \right) = \sum_{n} \left(\frac{\partial f(x_n, w)}{\partial w} \frac{\partial f(x_n, w)}{\partial w} + e_n \frac{\partial^2 f(x_n, w)}{\partial w^2} \right)$$

Ignoring second term Gives:

$$w^{(k+1)} = w^{(k)} - \left[\sum_{n} \frac{\partial f(x_n, w)}{\partial w} \frac{\partial f(x_n, w)}{\partial w}^T + \gamma I \right]^{-1} \sum_{n} \frac{\partial f(x_n, w)}{\partial w} e_n$$

 $\frac{\partial f(x_n, w)}{\partial f(x_n, w)}$ is just gradient (e.g. calculated using *backpropagation*). Note

Multiple dimensions and line searches

In gradient descent we progressed a small way down in one direction and then selected a new direction, but can we **instead also** decide how much to move down?

Alternative approach - continue along direction until a *line minimum* is found. We already know how to do this using bracketing methods!

Line searching:

- 1. Choose a direction d₁
- 2. Perform line minimisation on $E(w_1 + \lambda d_1)$ e.g. using a bracketing method
- 3. Select new search direction and repeat.

How do we select the new direction? *Gradient Descent?*

Line searches and gradient descent

A naive approach to line searching is to search along the steepest direction:

However each new search MUST be orthogonal to the last.

Why orthogonal?

line search minimum

$$\frac{\partial}{\partial \eta_k} E(w_{k+1}) = \nabla E(w_{k+1})^T \cdot \frac{\partial w_{k+1}}{\partial \eta_k} = \nabla E(w_{k+1})^T d_k$$

$$\rightarrow \nabla E(w_{k+1})^T d_k = 0$$

Hence d_k, d_{k+1} orthogonal

We are re-searching directions previously minimised (zigzag downhill)!

Conjugate directions I

Can we construct directions that preserve the previous minimization work? Amazingly the answer is yes....

The idea of conjugate directions is to choose a direction $_{W} = _{W_{\iota}} + \lambda d_{_{\iota}}$ such that:

$$\nabla E(w_k + \lambda d_k)^T d_j = 0, \forall j < k$$

Which implies (with quadratic approx.)

$$(\nabla E(w_k) + \nabla^2 E(w_k) \lambda d_k)^T d_j = 0$$

And hence

$$d_k^T \nabla^2 E(w_k) d_j = 0$$

Conjugate gradient algorithm I

Suppose we have a quadratic function:

$$E(w) = E_0 + b^T w + \frac{1}{2} w^T H w$$

Starting at w_i and searching in direction d_i the line minimum is:

$$w_{i+1} = w_i + \alpha_i d_i$$

denoting the gradient at w_i as $g_i = \nabla E(w_i) = b + Hw_i$ we can solve for α_i

$$g_{i+1}^T d_i = (b + H(w_i + \alpha_i d_i))^T d_i = g_i^T d_i + \alpha_i d_i^T H d_i = 0$$

Hence:

$$\alpha_i = -\frac{g_i^T d_i}{d_i^T H d_i}$$

Conjugate gradient algorithm II

We now choose a d_{i+1} that is conjugate to d_i we will try a modified gradient:

$$d_{i+1} = -g_{i+1} + \beta_i d_i$$

for some β_i . Solving for conjugacy gives:

$$\left(-g_{i+1} + \beta_i d_i\right)^T H d_i = 0$$

Hence:

$$\beta_i = \frac{g_{i+1}^T H d_i}{d_i^T H d_i}$$

In fact this choice of direction is conjugate with all d_j , j < i.

Finally we can write:

$$\beta_{i} = \frac{g_{i+1}^{T}(\alpha_{i}Hd_{i})}{d_{i}^{T}(\alpha_{i}Hd_{i})} = \frac{g_{i+1}^{T}(g_{i+1} - g_{i})}{d_{i}^{T}(g_{i+1} - g_{i})}$$

since $g_{j+1} - g_j = H(w_{j+1} - w_j) = \alpha_j H d_j$ (no need to use H)

Conjugate gradient algorithm

Summary 0. Choose initial weight w_1 and search direction $d_1 = -\nabla E(w_1)$

... at step *j*

- 1. Find line minimum for $E(w_j + \alpha_j d_j)$, setting $w_{j+1} = w_j + \alpha_j d_j$ (if not at minimum)
 - 2. Evaluate new gradient, $g_{j+1} = \nabla E(w_{j+1})$
 - 3. Calculate new search direction, $d_{j+1} = -g_{j+1} + \beta_j d_j$,

using the formula:
$$\beta_j = \frac{g_{i+1}^T (g_{i+1} - g_i)}{d_i^T (g_{i+1} - g_i)}$$

4. repeat from step 3 (or after W steps begin again with step 2)

Note: the algorithm may also need to be iterated many more times (c.f. Newton method). The search directions may deteriorate, therefore it is sensible to re-start the algorithm every W steps (other strategies also exist) $\frac{1}{5-27}$