Zakrevsky AlA 15022025-091554

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.533	166.8	5.967	75.6	0.051	56.7	0.274	-43.8
1.6	0.557	145.3	3.754	59.4	0.074	54.7	0.253	-50.7
2.2	0.596	128.6	2.704	45.0	0.098	50.2	0.237	-62.5
2.8	0.639	113.9	2.096	31.5	0.119	44.6	0.222	-77.5
3.4	0.682	101.9	1.698	19.7	0.138	39.1	0.212	-95.3
4.0	0.723	92.0	1.409	8.2	0.156	33.5	0.215	-115.0
4.6	0.752	83.4	1.190	-2.1	0.171	28.2	0.227	-134.2

Выбрать Γ -образный четырёхполюсник (см. рисунок 1), который может обеспечить согласование со стороны плеча 2 на частоте 1 $\Gamma\Gamma$ ц.

Рисунок 1 – Различные реализации Г-образного четырёхполюсника

- 1) A
- 2) B
- 3) C
- 4) D

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.1	0.511	-116.9	23.653	107.3	0.027	51.4	0.500	-59.5

Требуется выбрать согласованный аттенюатор с минимальным затуханием, подключения которого будет docmamouno, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

- 1) аттенюатор с затуханием 2.9 дБ, подключённый к плечу 1;
- 2) аттенюатор с затуханием 3.6 дБ, подключённый к плечу 1;
- 3) аттенюатор с затуханием 2.5 дБ, подключённый к плечу 1;
- 4) аттенюатор с затуханием 2.9 дБ, подключённый к плечу 1.

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -10.3$ дБ.

Ко входу этой цепи подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью 11.7 дБм.

Какая мощность рассеивается внутри цепи коррекции?

- 1) 1.1 mB_T
- 2) 13.4 mB_T
- 3) 1.4 mB_T
- 4) 2.7 мBт

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 2) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 2 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 3 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) а 2) b 3) с 4) d

Рисунок 3 – Различные реализаци и Г-образной цепи согласования

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\rm h}=5$ ГГц и $f_{\rm b}=5.6$ ГГц, используя рисунок 4.

Рисунок 4 – Частотная характеристика усиления

- 1) 0.5 дБ
- 2) 0.3 дБ
- 3) 1.3 дБ
- 4) 1 дБ

Дано значение коэффициента отражения от входа реактивной цепи коррекции

$$s_{11} = 0.12 + 0.22i$$
.

Найти модуль (в дБ) коэффициента передачи s_{21} .

- 1) -1.9 дБ
- 2) -0.6 дБ
- 3) -0.3 дБ
- 4) -0.9 дБ