

Universal transport in 2D granular superconductors

¹A.Frydman ²O. Naaman and ²R.C. Dynes

¹Department of physics, Bar Ilan university, Ramat Gan, 52900, Israel

²The Department of Physics, University of California, San Diego, La Jolla, CA 92093.

(February 1, 2008)

The transport properties of quench condensed granular superconductors are presented and analyzed. These systems exhibit transitions from insulating to superconducting behavior as a function of inter-grain spacing. Superconductivity is characterized by broad transitions in which the resistance drops exponentially with reducing temperature. The slope of the log R versus T curves turns out to be universally dependent on the normal state film resistance for all measured granular systems. It does not depend on the material, critical temperature, geometry, or experimental set-up. We discuss possible physical scenarios to explain these findings.

PACS: 74.80.Bj, 74.76.Db, 74.50.+r

Two dimensional granular superconductors, i.e. systems of superconducting grains embedded in an insulating matrix, exhibit a superconductor to insulator transition (SIT) as a function of the inter-grain distance. Such systems are of interest since they can serve as a model system for many dirty superconductors. In particular it has been suggested that a granular superconductor can mimic the behavior of high T_C superconductors and its properties can be used to explain some of the features observed in the cuprates [1].

An established technique to study the properties of granular superconductors is quench condensation [2–6]. In this method one performs sequential evaporation on a cryogenically cold substrate under UHV conditions using the following scheme: Metallic leads for four-terminal measurements are prepared on an insulating substrate which is then mounted onto an evacuated measurement probe and immersed in a liquid He bath. The low temperature of the probe causes cryopumping and hence the substrate is situated in UHV conditions and, at the same time, at cryogenic temperatures. This enables evaporation of ultra-clean thin superconducting layers on a substrate held at temperatures lower than 10K while continuously monitoring the film resistance and thickness. Once a desired resistance (or film thickness) is achieved, the evaporation is terminated and the transport properties are measured. Incremental layers of material are then added *in-situ* and further measurements are taken at different film resistances. Using this method one can study the properties of a single sample throughout the entire transition from an insulator to a superconductor as a function of the amount of deposited material while keeping the sample at low temperatures and in a UHV environment without having to thermally cycle it (risking metallurgical or structural changes due to annealing) or to expose it to atmosphere (thus oxidizing the surface).

If the samples are quench condensed on a passivated substrate (such as SiO_2), they grow in a granular manner so that the film begins its growth as disconnected islands with diameters of 100-200 Å [6–8]. The average distance between the islands decreases upon adding material. Be-

yond a percolation threshold, the grains connect, forming a continuous conducting layer. In these samples there is a critical nominal thickness, d_C , below which no conductivity can be measured (the sheet resistance, R, is larger than $10^{10}\Omega$). Once the thickness, d, of the sample is larger than d_C , R drops exponentially with thickness until, for $R \leq 6k\Omega$, it crosses over to a normal ohmic behavior ($R \propto 1/d$) [8].

Varying the thickness of the film causes a transition from an insulating behavior for the thinnest films to a superconducting behavior for thick films. Figure 1 demonstrates examples for this transition in three different granular superconductors: a Pb film (critical temperature, $T_C \approx 7.2$ K), a Sn film ($T_C \approx 4.5$ K) and a Pb/Ag bilayer. The latter is a system in which a thin layer of insulating granular Pb is quench condensed on a SiO_2 substrate followed by sequential evaporation of Ag ultra-thin layers [1,9]. The curves were measured in a shielded room using standard 4 probe technics and assuring, for each point on the curve, that the I-V characteristics are in the linear regime.

The three systems show a transition from an insulator for thin films to a superconductor at thicker films. In all 2D granular systems these transitions are characterized by broad resistance tails and critical temperatures which are not very well defined until the resistance of the film becomes low. The transitions become sharper as material is added to the film. In this paper we define T_C as the temperature at which the resistance starts dropping exponentially with lowering the temperature. We justify this by observing that this is the temperature in which the individual grains become superconducting even in the insulating case as discussed below. In the Pb and Sn films (top two graphs in figure 1) T_C has bulk value and barely changes throughout the entire transition. Moreover, even on the insulating side of the SIT the curve changes its slope at $T = T_C$ reflecting the presence of superconductivity even in the thinnest measurable samples. The fact that the grains are superconducting with bulk properties throughout the entire transition has been demonstrated by tunneling measurements [10]. A bulk energy gap was

observed in the grains even when the film was on the insulating side of the SIT.

FIG. 1. Resistance versus temperature for sequential layers of quench-condensed granular Pb (Top), Sn (middle) and Pb/Ag (bottom). Different curves correspond to different nominal thickness.

In the Pb/Ag film the T_C decreases as material is added to the film. This is due to suppression of superconductivity in the Pb grains by the silver overlayer because of proximity effects. Nevertheless, the general behavior of the insulator to superconductor transition is very similar to that of the pure superconductors.

The transport curves shown in figure 1 are attributed to the unique nature of the SIT in a granular structure [11]. In these systems each grain sustains superconductivity with bulk properties. However, for the high resistance samples, there are rapid, thermally activated phase fluctuations between the grains leading to an insulating R-T curve. As the grains become closer the inter-grain Josephson coupling increases until phase coherence is achieved throughout the film.

A striking feature common to the quench condensed granular superconductors is that at temperatures below T_C the sheet resistance decreases exponentially with decreasing temperature and can be described approximately by an "inverse arrennius" law:

$$R = R_0 e^{\frac{T}{T_0}} \quad (1)$$

It is important to note that we see no flattening of the R-T curve (resistance approaching a flat temperature dependence at low temperatures) in any of our samples and in no regime of thicknesses [12]. Nor does the R-T change its trend and begin dropping to zero resistance at low temperature. The dependence described in equation 1 is observed in all of our granular samples using different materials and different measurement apparatuses. It spans many orders of magnitude in R, persists to temperatures below 100 mK [13] and is observed for the different steps of the sequential evaporation providing the resistance is smaller than a few tens of $k\Omega$. Moreover, the slope of the log R versus T curves, $1/T_0$ of equation 1, turns out to be universal for all of our samples. It depends only on the normal state sheet resistance, R_N , and does not depend on the material, the critical temperature or sample geometry. We illustrate this in Figure 2 where we show the dependence of the inverse slope, T_0 , on R_N for a large number of granular superconductors (different materials, geometries and prepared in various quench condensation evaporators). It is seen that all the slopes fall on a master-plot having the form of:

$$T_0 \approx C^* R_N \quad (2)$$

where C^* is a constant of approximately $0.05 \frac{K}{k\Omega}$. Note that we have included samples having different critical temperatures as well as the Pb/Ag system in which T_C varies with the thickness (and hence with R_N).

This observation indicates that the behavior of the superconducting tails does not depend on the properties of the superconducting grains themselves but only on their geometrical arrangement (density, inter-grain spacing, morphology configuration etc.) which determines

the tunneling percolation network and R_N . Two superconductors having the same R_N but different critical temperatures T_{C1} and T_{C2} will have parallel superconducting R-T tails, at temperatures lower than the respective T_C , shifted by $T_{C1} - T_{C2}$. An example for such behavior is shown in the insert of figure 2.

FIG. 2. The inverse slope of the R-T curves (T_0 of equation 1) as a function of the normal-state sheet resistance for different granular samples. The open symbols are the experimental data. Squares are results for various Pb samples, circles are for Sn samples and triangles for Pb/Ag proximity samples. Single symbols are used for the same quench-condensed films at different thicknesses (and hence R_N s). Full symbols are the slopes extracted from the calculated samples of figure 3 (squares -Pb and circles - Sn). The line is a guide to the eye. Insert: Resistance versus temperature for granular Pb (squares), Sn (circles) and Pb/Ag (triangles) samples having a normal state resistance of 4 kΩ.

We can now combine this observation with equations 1 and 2 and extract the expression for R_0 of equation 1:

$$R_0 = R_N e^{-\frac{T_C}{T_0}} = R_N e^{-\frac{T_C}{C^* R_N}} \quad (3)$$

R_0 is the value of the resistance obtained by extrapolating the R-T curves to $T=0$. This means that if the observed exponential R-T curves persist to zero temperature the samples will exhibit a finite zero-temperature resistance which will depend both on R_N and on T_C .

In an attempt to examine possible intuitive understanding of the observed phenomena we note that at temperatures below bulk T_C the grains have been shown to be fully superconducting [10]. Hence, each two grains

are expected to be Josephson coupled with a Josephson binding energy of the form:

$$Ej = \frac{\pi \hbar}{4e^2} \frac{\Delta(T)}{R_N} \tanh \frac{\Delta(T)}{2K_B T} \quad (4)$$

where $\Delta(T)$ is the temperature dependent superconducting gap and R_N is the normal resistance between the grains. One can expect that the ratio $\frac{Ej}{K_B T}$ would determine whether the grains are phase coupled or not. As the temperature of a granular system is lowered Ej becomes larger than $K_B T$ in an increasing number of pairs of grains thus increasing the effective superconducting regions which are phase coherent. This leads to a characteristic "phase-coupled" length which grows with decreasing temperature until superconducting percolation is achieved.

However, the naive model described above can not explain the observed broad superconducting tails in our films. Since the samples are two dimensional, scaling considerations imply that as long as superconducting percolation is not achieved throughout the sample, the resistance of the granular system should be independent on the size of the superconducting clusters. The growth of the phase coherent clusters with decreasing temperature would not change the overall 2D resistance. One can expect to see a flat resistance versus temperature curve below the percolation threshold and a sharp superconducting transition at the percolation threshold. The fact that the experimental transitions are broad implies that the resistance of the individual junctions is temperature dependence. This urges us to consider superconductor fluctuation effects as fluctuations introduce a broad temperature dependence in a Josephson junction resistance rather than a sharp transition at $Ej=K_B T$.

The temperature dependence of the zero-bias resistance of each pair of grains due to thermal phase fluctuations is expected to take the Ambegaokar-Halperin form [14,15]:

$$R(T) = \frac{R_N}{(I_0(\frac{Ej(T)}{K_B T}))^2} \quad (5)$$

where $I_0(X)$ is the modified bessel function of order 0. Using this model we have calculated the temperature dependence of 1D arrays of junctions subject to thermal fluctuations. The results of the simulations for Pb and Sn samples having different R_N are shown in figure 3. It is seen that $R(T)$ may qualitatively mimic an exponential dependence for temperatures larger than about $\frac{T_C}{2}$. As R_N is reduced the R-T curves become sharper in a similar way to that seen in the experiments. While the curves are not truly e^T dependent, for purposes of illustration we can extract an approximated slope from each curve. The extracted slopes are plotted on the masterplot of figure 2 showing relatively good agreement with

the experimental results. We can not expect better than qualitative agreement as this is a simple 1D chain model.

FIG. 3. Numeric simulations of the resistance of arrays of 10 junctions in series based on equation 5. The top graph is for Sn and the bottom for Pb.

Hence, the thermal-fluctuation-picture can provide some insight to the physics of the 2D granular films. However, two major points in which the simple model deviates from the experimental data have to be noted: In the first place the theoretical model predicts that the slopes should depend on $\frac{T}{T_C}$. Our simulations fail to reproduce the T_C independence and the "universality" of the experimental transition tails. The calculated curves for Sn and Pb samples having the same R_N yield Sn slopes which are consistently sharper than those of Pb. Secondly, the thermal-fluctuation model can qualitatively imitate the experimental behavior only for a limited range of temperatures. At low temperatures the thermal fluctuations are expected to freeze out causing the resistance to drop much more rapidly, until, for zero temperature, the resistance reaches zero ($R_0=0$). We do not see signs for such a tendency in the experiments even at very low temperatures. We have considered the possi-

bility that at low temperatures quantum phase fluctuations dominate the behavior and induce a finite resistance even at $T=0$. The presence of such effects is consistent with the observed experimental dependence of R_0 on T_C as shown in equation 3 since the quantum fluctuations are expected to decay exponentially with E_J . However, we are not able to reproduce the experimental exponential R-T curves over the entire temperature range using a model which combines thermal fluctuations and quantum fluctuations. Such a model would suggest that at low temperature the R-T curve would flatten out and saturate at a constant value. As noted above, we do not observe such behavior in any of our samples. Clearly, further theoretical treatment is required in order to shed more light on the origin of the findings presented in this paper.

This research was supported by the Israel - USA binational science foundation BSF #1999332 and by the NSF grant DMR0097242.

-
- [1] L. Merchant, J. Ostrick, R.P. Barber Jr. and R.C. Dynes, Phys. Rev. **B63**, 134508 (2001).
 - [2] M. Strongin, R. Thompson, O. Kammerer and J. Crow, Phys. Rev. **B1**, 1078 (1970).
 - [3] R.C. Dynes, J.P. Garno and J.M. Rowell, Phys. Rev Lett. **40**, 479 (1978)
 - [4] H.M. Jaeger, D.B. Haviland, B.G. Orr, and A.M. Goldman, Phys. Rev **B40**, 182 (1989).
 - [5] R.P. Barber and R.E. Glover III, Phys. Rev. **B42**, 6754 (1990).
 - [6] K.L. Ekinci and J.M. Valles, Jr., Phys. Rev. Lett. **82**, 1518 (1999).
 - [7] A.T. Truscott, Ph.D. Thesis, University of California, San Diego (1999).
 - [8] A. Frydman and R.C. Dynes, Philosophical Magazine **81**, 1153 (2001).
 - [9] A. Frydman, L.M. Merchant and R.C. Dynes, Physica Status Solidi **218**, 173 (2000).
 - [10] R.P. Barber, Jr., L.M. Merchant, A. La Porta and R.C. Dynes, Phys. Rev. **B49**, 3409 (1994).
 - [11] J.M. Valles, Jr. S. Hsu, R.C. Dynes and J.P. Garno, Physica B **197**, 522 (1994) and references within.
 - [12] A flattening of the R-T curve was reported in reference 4. We do not observe this. We can create it artificially by inducing noise to the film. The noise linearizes the non-linear part of the I-V characteristic of the junction and dominates the temperature dependence at low currents and voltages.
 - [13] R.P. Barber, Jr., and R.C. Dynes, Phys. Rev. **B48**, 10618 (1993).
 - [14] V. Ambegaokar and B.I. Halperin, Phys. Rev. Lett., **22**, 1364 (1969).
 - [15] O. Naaman, W. Teizer and R.C. Dynes, Phys. Rev. Lett., **87**, 97004 (2001).