

Outline

■ 关系闭包

iscrete Mathematics, 6 Relatio

关系闭包 闭包(closure): 包含一些给定对象,具有指定性质的最小集合"最小":任何包含同样对象,具有同样性质的集合,都包含这个闭包集合。 示例

Computer science

- Closure (computer programming), an abstraction binding a function to its scope
- Clojure, a dialect of the Lisp programming language
- Kleene closure
- Syntactic closure
- Google Closure Tools, a set of JavaScript tools created by Google
- Relational database model: Set-theoretic formulation and Armstrong's axioms for its use in database theory

In graph theory

In logic and computational complexity

In database query languages

Algorithms

Discrete Mathematics, 6 Relation

关系闭包

自反闭包: 包含给定关系R的最小自反关系, 称为R的自反闭包:

- (1) R ⊆ R';
- (2) R '是自反的;
- (3) $\forall S((R\subseteq S \land S 自反) \rightarrow R'\subseteq S).$

R'记作: r(R)

对称闭包 s(R)

传递闭包 t(R)

Discrete Mathematics, 6 Relatio

关系闭包

设R⊆A×A且A≠∅,则

- (1) R自反 ⇔ r(R) = R;
- (2) R对称 ⇔ s(R) = R;
- (3) R传递 ⇔ t(R) = R.
- (1) r(R)是R的自反闭包,

 $R \subseteq R \land R$ 自反 \Rightarrow $r(R) \subseteq R$, 且 $R \subseteq r(R)$, 所以, r(R) = R.

Discrete Mathematics 6 Relation

关系闭包

如何求闭包?

- (1) $r(R) = R \cup ?$
- (2) $s(R) = R \cup ?$
- (3) $t(R) = R \cup ?$

关系闭包

设 R⊆A×A 且 A≠∅,则

- (1) $r(R) = R \cup I_A$;
- (2) $s(R) = R \cup R^{-1}$;
- (3) $t(R) = R \cup R^2 \cup R^3 \cup$ (记为 R^+ , R的<u>自反</u>传递闭包记为 R^*)

>>>

证明: <mark>(1)</mark>

 $R \subseteq R \cup I_A \land R \cup I_A$ 自反 $\Rightarrow r(R) \subseteq R \cup I_A$;

 $R{\subseteq}r(\ R\) \land r(\ R\) \\ \\ \dot{R}{\subseteq}r(\ R\) \land I_{A}{\subseteq}\ r(\ R\) \\ \\ \Rightarrow R{\cup}I_{A}{\subseteq}r(\ R\)$

于是, r(R) = R∪I_A

Discrete Mathematics, 6 Relation

关系闭包

- (3) t(R) = $R \cup R^2 \cup R^3 \cup ...$
- 1) $R \subseteq R \cup R^2 \cup R^3 \cup ...$;
- 2) $(R \cup R^2 \cup R^3 \cup ...)^2 = R^2 \cup R^3 \cup ... \subseteq R \cup R^2 \cup R^3 \cup ...$
- ⇔ R∪R²∪R³∪…传递

R传递 ⇔ R²⊆R

- 3) 若有R', R⊆ R' ∧ R' 传递
- $\Rightarrow R {\subseteq} R' \ \, \wedge R^2 {\subseteq} R' \ \, \wedge R^3 {\subseteq} R' {\wedge} ...$
- $\Rightarrow R \cup R^2 \cup R^3 \cup ... \subseteq R'$ $\therefore t(R) = R \cup R^2 \cup R^3 \cup$

R ⊆G ∧ G传递 ⇒ Rn⊆G

|A|=n, $t(R) = \bigcup_{i=1}^{n} R^{i}$

iscrete Mathematics, 6 Relation

示例 A={a, b, c}, R={<a, b>,<b, c>,<c, a>},求r(R),S(R),t(R).

解: $r(R)=R\cup I_A=\{\langle a,b\rangle,\langle b,c\rangle,\langle c,a\rangle,\langle a,a\rangle,\langle b,b\rangle,\langle c,c\rangle\}$

 $s(R) = R \cup R^{-1} = \{ < a, \ b>, < b, \ a>, < b, \ c>, < c, \ b>, < c, \ a>, < a, \ c> \}$

为求t(R)先求R², R³, R⁴

即R²={<a, c>,<b, a>,<c, b>}

 $R^3 = \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle \}$

 $R^4=\{\langle a, b \rangle, \langle b, c \rangle, \langle c, a \rangle\}$

可见 $R=R^4=R^{3n+1}$, $R^2=R^5=R^{3n+2}$, $R^3=R^6=R^{3n+3}$

故t(R) = R\cup R 2\cup R 3

 $= \{ <a,\,a>,\,<b,\,b>,\,<c,\,c>,\,<a,\,b>,\,<b,\,c>,\,<c,\,a>,\,\,<a\,c>,\,<b,\,a>,\,<c,\,b> \}$

screte Mathematics, 6 Relation

Discrete Mathematics, 6 Relation

Warshall's Algorithm (pseudocode and analysis)

```
ALGORITHM Warshall(A[1.n, 1..n])

//Implements Warshall(A[1.n, 1..n])

//Implements Warshall's algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
R^{(0)} \leftarrow A

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] or (R^{(k-1)}[i, k] and R^{(k-1)}[k, j])

return R^{(n)}
```

Time efficiency: $\Theta(n^3)$

Space efficiency: Matrices can be written over their predecessors

iscrete Mathematics 6 Relation