# CSCI4333 Database Design & Implement

Lecture 12 – Relational Algebra 1

Instructor: Dr. Yifeng Gao

### Relational Query Languages

- <u>Query languages</u>: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
  - Strong formal foundation based on logic.
  - Allows for much optimization.
- Query Languages != programming languages!
  - QLs not expected to be "Turing complete".
  - QLs not intended to be used for complex calculations.
  - QLs support easy, efficient access to large data sets.

# Formal Relational Query Languages

- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
- 1 Relational Algebra: More operational, very useful for representing execution plans.
- **2** <u>Relational Calculus</u>: Lets users describe what they want, rather than how to compute it. (Non-operational, <u>declarative</u>.)
- Understanding Algebra is key to understanding SQL, and query processing!

The Role of Relational Algebra in a DBMS



#### Algebra Preliminaries

• A query is applied to *relation instances*, and the result of a query is also a relation instance.

#### Relational Algebra

SQL is closely based

on relational algebra.

• Procedural language

• Five basic operators

• selection select

projection project

• union (why no intersection?)

• set difference difference

• cross product Cartesian product

• The are some other operators which are composed of the above operators. These show up so often that we give them special names.

• The operators take one or two relations as inputs and give a new relation as a result.

# Select Operation – Example

Relation r



•  $\sigma_{A=B} \wedge D > 5$  (r)

lowercase

Greek sigma

| A | В | С  | D  |
|---|---|----|----|
| α | α | 1  | 7  |
| β | β | 23 | 10 |

Intuition: The **select** operation allows us to retrieve some rows of a relation

#### Ex:

If I want to retrieve all the rows of the relation *r* where

- 1. the value in field A equals the value in field B,
- 2. the value in field *D* is greater than 5.

# Select Operation

- Notation:  $\sigma_p(r)$  lowercase Greek sigma  $\sigma$
- p is called the **selection** predicate
- Defined as:

$$\sigma_p(r) = \{t \mid t \in r \text{ and } p(t)\}$$

Where p is a formula consisting of *terms* connected by :

$$(\land)$$
(and),  $(\lor)$ (or),  $(\lnot)$ (not)

Each *term* is one of:

<attribute> op <attribute> or <constant>

where op is one of:  $=, \neq, >, \geq, <, \leq$ 

• Example of selection:

$$\sigma_{name=1ee}$$
 (professor)

#### Quick Question

- Notation:  $\sigma_p(r)$ ,
- What is *p*, *term*, *op*, *r* in the following query?

```
-\sigma_{A=B^{\wedge}D>5}(r)
```

$$-\sigma_{name=Lee}$$
 (professor)

$$- p = A = B \land D > 5$$

$$-$$
 D > 5, op ">"

# Project Operation – Example II

• Relation *r*:

•  $\pi_{A,C}(r)$ 



Intuition: The project operation removes the columns that are not listed in the notation. Duplicate rows are removed, since relations are sets.

Here there are two rows with  $A = \alpha$  and C = 1. So one was discarded.

### **Project Operation**

• Notation:

$$\pi_{A1, A2, \dots, Ak}(r)$$
 Greek lower-case pi

where  $A_1$ ,  $A_2$  are attribute names and r is a relation name.

- The result is defined as the relation of *k* columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets.

#### **Quick Question**

• What is result of:  $\pi_{A}(r)$ 



# Union Operation – Example

Relations *r*, *s*:





 $r \cup s$ 



Intuition: The union operation concatenates two relations vertically and removes duplicate rows (since relations are sets).

# **Union Operation**

- Notation:  $r \cup s$
- Defined as:

$$r \cup s = \{t \mid t \in r \text{ or } t \in s\}$$

For  $r \cup s$  to be valid.



- 1. r, s must have the same arity (same number of attributes)
- 2. The attribute domains must be *compatible* (e.g.,  $2^{nd}$  column of r deals with the same type of values as does the 2nd column of s).

Although the field types must be the same, the names can be different. For example:

```
professor(PID : string, name : string)
```

lecturer(LID : string, first\_name : string)

 $professor \cup lecturer$  is valid.

# Set Difference Operation – Example





r-s:



Intuition: The set difference operation returns all the rows that are in r but not in s.

#### Set Difference Operation

- Notation r-s
- Defined as:

$$r-s = \{t \mid t \in r \text{ and } t \notin s\}$$

- Set differences must be taken between *compatible* relations. "Union-compatible"
  - -r and s must have the same arity
  - attribute domains of r and s must be compatible
- Note that in general  $r-s \neq s-r$

#### Cross-Product Operation-Example

Relations *r, s*:





rxs:



Intuition: The **cross product** operation
returns all possible
combinations of rows in

T with rows in S.

In other words the result is every possible pairing of the rows of r and s.

#### Cross-Product Operation

- Notation r x s
- Defined as:

$$r \times s = \{t \mid q \mid t \in r \text{ and } q \in s\}$$

- Assume that attributes of r(R) and s(S) are disjoint. (That is,  $R \cap S = \emptyset$ ).
- If attributes names of r(R) and s(S) are not disjoint, then renaming must be used.

#### Composition of Operations

• We can build expressions using multiple operations

• Example:  $\sigma_{A=C}(r \times s)$ 



"take the cross product of *r* and *s*, then return only the rows where *A* equals *C*"

$$\sigma_{A=C}(rxs)$$

rxs:

| A        | В | С        | D  | E |
|----------|---|----------|----|---|
| α        | 1 | α        | 10 | a |
| $\alpha$ | 1 | β        | 10 | a |
| $\alpha$ | 1 | β        | 20 | b |
| $\alpha$ | 1 | γ        | 10 | b |
| β        | 2 | $\alpha$ | 10 | a |
| β        | 2 | β        | 10 | a |
| β        | 2 | β        | 20 | b |
| β        | 2 | γ        | 10 | b |

| A       | В | С                 | D  | E |
|---------|---|-------------------|----|---|
| α       | 1 | $\alpha$          | 10 | а |
| $\beta$ | 2 | $\mid \beta \mid$ | 10 | а |
| $\beta$ | 2 | $\beta$           | 20 | b |

# Question





What is result of:  $\sigma_{A=a}(r) \times \pi_{C,D}(\sigma_{E=a}(s))$ ?

# Question



What is result of:  $\pi_A(r) \cup \pi_C(s)$ ?