Accelerating large graph algorithms on GPU using CUDA

Archisman Pathak Kousshik Raj Koustav Chowdhury Rounak Patra

Satyam Porwal Siddhant Agarwal Sriyash Poddar

Problem & Motivation

Table of Contents

Breadth First Search

Single Source Shortest Path

All Pair Shortest Path

O1Problem and Motivation

Understanding the Problem

. . .

Graph Algorithms

Graph algorithms are used to develop intelligent solutions and enhance various machine learning models.

Impractical Sequential Algorithms

Fast implementations of sequential graph algorithms are fast, but the hardware used in them is very expensive.

• • •

Understanding the Motivation

. .

CUDA

Nvidia CUDA provides a development environment for creating high performance GPU-accelerated applications.

Previous Works in Parallel Graph Algorithms

Previous works in parallel graph algorithms achieved practical times on basic graph operations but at high hardware cost.

• • •

CUDA Graph Representation

- Each value of posV contains an index of the posE array
- The pointer contains the number of neighbours of the node, say *n*.
- The next n elements are the ids of neighbouring vertices.

Graphs used for Experiments

APSP Graphs

(Due to time and memory constraints restricted the size)
*Graphs are numbered in increasing number of vertices

Graph Number	# Nodes	# Edges	Average Degree
1	2,700	1,808,853	1,340
2	4,039	88,234	44
3	4412	108,818	49
4	5,881	21,492	7
5	7,500	837,083	233

Graphs used for Experiments

BFS and SSSP Graphs
(No constraints on the size)
*Graphs are numbered in increasing number of vertices

Graph Number	# Nodes	# Edges	Average Degree
1	2,700	1,808,853	1,340
2	21,853	12,323,648	1,128
3	82,168	504,230	12
4	1,694,616	11,094,209	13
5	16,777,214	132,557,200	16

BREADTH FIRST SEARCH

Our Implementations

Parallel BFS

Queue BFS

Scan BFS

First Approach: Parallel BFS

. . .

Host

- Level-synchronous approach
- Runs O(V^2 +E) operations
- Vertex frontiers: Nodes that are currently being visited
- Edge frontiers : Nodes that will be visited in the next iteration
- flag checks for termination

Algorithm 1 parallelBFS_Host

- 1: Input: V_a, E_a, S
- ▶ The graph G(V, E) and source S
- Create distance array Dista, and parent array Pa of size |V|
- 3: Initialise all elements of Dista, Pa to ∞
- 4: $D_a[S] = 0$
- 5: level = 0
- 6: flag = True
- 7: while flag do
- 8: flag = False
- Invoke parallelBFS_kernel(level, Va,Ea,Dista,flag).
- level = level + 1

First Approach: Parallel BFS

Kernel

- Threads are launched for each vertex
- Each vertex checks if it is frontier vertex
- If yes, it updates the distances of neighbours and populates the edge frontiers
- Terminates when no *frontier* vertex updates its neighbour

Algorithm 2 parallelBFS_kernel

```
    Input: level, Va,Ea,Dista,flag

 2: tid = getThreadID
3: f = False
 4: if tid < Vasize and Dista [tid] = level then
       u = tid
       for all v = \text{neighbours of } u \text{ do}
           if level + 1 < Dist_a[v] then
               Dist_a[v] = level + 1
                f = True
       if f = True then
10:
           flag = True
11:
```

• • •

Second Approach: Queue BFS

Host

- Level-synchronous
- Runs O(V + E) operations
- Vertex frontier and edge frontier is maintained in form of a queue

- Intuition is similar to sequential BFS.
- Terminates when there are no vertex frontiers.

Algorithm 3 queueBFS_Host

- 1: Input: V_a, E_a, S
- ▶ The graph G(V, E) and source S
- Create cost array Dist_a and parent array P_a of size |V| and initialise all values to ∞
- Create two array cQ and nQ, and initialise it to S and null respectively.

. . .

- 4: $Dist_a[S] = 0$
- 5: $P_a[S] = -1$
- 6: l = 0

> Start with the source vertex

- 7: while $cQ_{size} > 0$ do
- 8: Invoke queueBFS($l, V_a, E_a, Dist_a, P_a, cQ, nQ$)
- swap(cQ, nQ)
- 10: Set nQ to null
- 11: l = l + 1

Second Approach: Queue BFS

- Threads are launched for each node in vertex frontier queue
- For all the neighbours of the node, update the distance if the node can be reached in fewer steps
- Add that node in the edge frontier queue
- Involves atomic operations

Algorithm 4 queueBFS_kernel

```
1: Input: l, V_a, E_a, Dist_a, P_a, cQ, nQ > The graph G(V, E) and source S
```

```
2: tid = getThreadID
```

4:
$$u = cQ[tid]$$

5: **for all**
$$v =$$
neighbours of u **do**

if
$$Dist_a[v] = \infty$$
 and $atomicMin(Dist_a[v], l + 1) = \infty$

then

$$P_a[v] = u$$

8:
$$pos = atomicAdd(nQ_{size}, 1)$$

9:
$$nQ[pos] = v$$

• •

Third Approach: Scan BFS

Host

- Level-synchronous approach
- Needs 4 global synchronization
- Perform O(V + E) operations
- Improves on parallelBFS by populating vertex and edge frontier queue in linear operations
- Terminates when there are no vertex frontiers.

Algorithm 5 ScanBFS_Host

1: Input: V_a, E_a, S

- ▶ The graph G(V, E) and source S
- Create updating cost array Dega, PreDega of size |V| and initialise all values to 0
- 3: Create cost array Dist_a of size |V| and initialise all values to ∞
- Create mask array P_a of size |V| and initialise all values to −1
- 5: Create two array cQ and nQ, and initialise it to S and null respectively.
- 6: $Dist_a[S] = 0$
- 7: $P_a[S] = -1$
- 8: l = 0

Start with the source vertex

- 9. while $cQ_{size} > 0$ do
- Invoke nextLayer(l, V_a, E_a, P_a, Dist_a, cQ)
- 11: Invoke countDegrees(Va, Ea, Pa, cQ, Dega)
- Invoke scanDegrees(cQ_{size}, Deg_a, PreDeg_a)
- 13: Perform Prefix Sum on Dega, and store the results in PreDega
- 14: $nQ = PreDeg_a[cQ_{size}/NUM_THREADS]$
- 15: Invoke populateNextQueue(V_a , E_a , P_a , cQ,nQ, Deg_a , $PreDeg_a$)
- 16: cQ = nQ
- 17: l = l + 1

Third Approach: Scan BFS

Kernels

- Threads are launched for each node in the vertex frontier
- Uses Blelloch's prefix sum on the number of edge frontiers contributed by a vertex.
- Fills up the the edge frontier using the computed prefix sum.

• • •

Algorithm 6 nextLayer

Algorithm 7 countDegrees

1: Input: Va, Ea, Pa, cQ, Dega

```
2: tid = getThreadId()  \Rightarrow Get the Id of the thread

3: if tid < cQ_{size} then

4: u = cQ[tid]

5: d = 0

6: for all v = neighbours of u do

7: if P_a[v] = E_a.index(v)andv \neq u then

8: d = d + 1

9: Deg_a[tid] = d
```


Third Approach: Scan BFS

Kernels

Algorithm 9 populateNextQueue

```
1: Input: Va, Ea, Pa, cQ, nQ, Dega, PreDega
2: tid = getThreadId()
                                         Get the Id of the thread
3: if tid < cQsize then
       Initialise a shared variable i
       if threadId.x = 0 then
5:
           i = PreDeg_a[NUM\_THREADS]
       sync_threads
       s = 0
       if threadId.x \neq 0 then
           s = Deg_a[tid - 1]
10:
       u = cQ[tid]
11:
       c = 0
12:
       for all v = \text{neighbours of } u \text{ do}
13:
           if P_a[v] = E_a.index(v) and v \neq u then
14:
               nQ[i+s+c]=v
15:
               c = c + 1
```

```
Algorithm 8 scanDegrees
```

```
1: Input: cQsize, Dega, PreDega
2: tid = getThreadId()
```

> Get the Id of the thread

3: if tid < cQsize then

Create a shared array preSum of size NUM_THREADS

m = threadIdx5:

 $preSum[m] = Deg_a[tid]$ sync_threads

n=2

while $n \leq NUM$ THREADS do

preSum[m] + = preSum[tid + (2 * n)]

if bitwiseAnd(m, n-1) = 0 and $tid + (2*n) < cO_{size}$

then

12:

13:

14:

15:

16:

17:

18:

23:

24:

sync_threads

n = 2 * n

if m = 0 then

 $PreDeg_a[tid/NUM_THREADS + 1] = preSum[m]$

n = NUM THREADSwhile n > 1 do

if bitwiseAnd(m, n-1) = 0 and $tid + (n/2) < cQ_{size}$

then

19:

preSum[m] + = preSum[tid + (n/2)]20:

preSum[tid + (n/2)] = temp21: 22:

sync threads

n = n/2

 $Deg_a[tid] = preSum[m]$

temp = preSum[m]

Results and Analysis

Various Observations:

- parallelBFS gives the best results for all possible graphs
- queueBFS performs well on dense graphs
- scanBFS performs well on sparse graphs

Our Approach

Bugged Parallel Dijkstra Coarsening Approach Corrected **Version**

First Approach: Bugged Parallel Dijkstra

- Algorithm proposed by Harish et. al.
- Uses an updating cost array U_a as intermediate to update the actual cost array C_a. Prevents RAW and WAR data hazards.
- Operates in two sequential phases over multiple iterations.
- The boolean array M_a and variable
 flag determines the termination of the algorithm.

Algorithm 10 SSSP_Host

- 1: **Input:** V_a , E_a , W_a , S \Rightarrow The graph G(V, E, W) and source S
- 2: Create updating cost array U_a of size |V| and initalise all values to ∞
- 3: Create cost array C_a of size |V| and initalise all values to ∞
- 4: Create mask array M_a of size |V| and initialise all values to false
- 5: $U_a[S] = 0$
- 6: $C_a[S] = 0$
- 7: $M_a[S] = flag = true$

▶ Start with the source vertex

- 8: while flag do
- 9: flag = false
- 10: **for all** $v \in V$ in parallel **do**
- Invoke SSSP_Phase1(V_a , E_a , W_a , C_a , U_a , M_a)
- 12: Invoke SSSP_Phase2(C_a , U_a , M_a , flag)

. . .

. . .

First Approach: Bugged Parallel Dijkstra

. .

- In Phase 1, the vertices in $\mathbf{M_a}$ are treated as potential intermediaries for a shortest path.
- The distance to neighbours of such vertices are updated (Line 5 7).
- In Phase 2, C_a is updated using U_a , and corresponding bit is set in M_a .
- If no such update, the algorithm is terminated through the flag variable.

Algorithm 11 SSSP_Phase1

- 1: Input: V_a , E_a , W_a , C_a , U_a , M_a
- 2: tid = getThreadId()

▶ Get the Id of the thread

- 3: **if** $M_a[tid] = true$ **then**
- 4: $M_a[tid] = false$
- for all neighbours *nid* of *tid* do \triangleright Line 6, 7 must be atomic
- if $U_a[nid] > C_a[tid] + W_a[nid]$ then $U_a[nid] = C_a[tid] + W_a[nid]$

Algorithm 12 SSSP_Phase2

- 1: **Input:** C_a , U_a , M_a , flag
- 2: *tid* = getThreadId()
- 3: **if** $C_a[tid] > U_a[tid]$ **then**
- 4: $M_a[tid] = flag = true$
- 5: $C_a[tid] = U_a[tid]$

▶ Get the Id of the thread

••

Second Approach: Corrected Parallel Dijkstra

. .

- Using U_a prevents RAW and WAR in C_a, but does nothing for WAW dependencies in U_a (Line 6 and 7).
- During simultaneous update of U_a[nid] in Line 7, we need the smallest value to be retained.
- Solve it indirectly, by executing Line
 6 and 7 atomically.

Algorithm 11 SSSP_Phase1

```
1: Input: V_a, E_a, W_a, C_a, U_a, M_a
```

2: tid = getThreadId()

▶ Get the Id of the thread

3: **if** $M_a[tid] = true$ **then**

4: $M_a[tid] = false$

for all neighbours nid of tid do > Line 6, 7 must be atomic

. . .

6: **if** $U_a[nid] > C_a[tid] + W_a[nid]$ **then**

 $U_a[nid] = C_a[tid] + W_a[nid]$

• • •

Results and Analysis

Observations

- Heavily dependent on number of edges (Graph 2 vs Graph 3 & 4)
- Speedup of GPU compared to CPU is dependent on the density of graph.
- Lower the density, higher the speedup offered.
- Density [G1(0.5) >> G5(10⁻⁶)],
 SpeedUp [G1(4x) << G5(95x)]

Third Approach: Thread Coarsening

- Smaller number of more Coarse-grained threads are being executed
- Instructions executed by a number of different threads are merged into a single thread.
- For finding the optimal thread coarsening factor, we used the manual approach of merging.

Results and Analysis

Various Observations:

- A consistent fall of performance with increase in the thread coarsening factor (c.f).
- Reason can be reduction in parallelism with increasing c.f
- Another reason can the subsequent increase in pressure on the kernel.

First Approach: Using SSSP

What if we call SSSP on all the vertices?

Works well on sparse graphs.

 Serial time complexity: 0(V² log V + EV)

Algorithm 13 APSP_Using_SSSP

```
1: Input: V_a, E_a, W_a > The graph G(V, E, W)
```

- 2: Create updating cost array U_a of size |V|
- 3: Create cost array Ca of size |V|
- Create mask array M_a of size |V| and initialise all values to false
- Create a 2d output array O_a of size |V| x |V|

for all $S \in V$ do

```
 Assign ∞ to all values of U<sub>a</sub> and C<sub>a</sub>
```

8:
$$U_a[S] = C_a[S] = 0$$

$$M_a[S] = flag = true$$

Start with the source vertex

10: while flag do

11: flag = false

for all $v \in V$ in parallel do

13: Invoke SSSP_Phase1(V_a , E_a , W_a , C_a , U_a , M_a)

14: Invoke SSSP_Phase2(Ca, Ua, Ma, flag)

15: Copy the distances in C_a to $O_a[S]$

Second Approach: Floyd Warshall

. .

Floyd Warshall in Brief

all intermediate vertices in $\{1, 2, \dots, k-1\}$ all intermediate vertices in $\{1, 2, \dots, k-1\}$

p: all intermediate vertices in $\{1, 2, \dots, k\}$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

Second Approach: Floyd Warshall

• •

Implementing FW in GPU

- Uses the adjacency matrix representation rather than the adjacency list representation discussed earlier.
- $O(|V|^2)$ threads and O(|V|) iterations.

. . .

A deeper look into FW

		1		
1	2		4	5
		3		
		4		
		5		

Solution: Use Tiling

Phases when block (1,1) is the self-dependent block

Phases when block (t,t) is the self-dependent block

Independent Phase

K = 1 to 4

Partially dependent Phase

K = 1 to 4

Double dependent Phase

K = 1 to 4

Results and Analysis

Various Observations:

- Naive GPU FW performs better than using SSSP for dense graphs.
- Blocked FW has a massive improvement in performance.

• FW does not depend on sparsity of the graph.

