

日本国特許庁
PATENT OFFICE
JAPANESE GOVERNMENT

#4 priority paper
L. Anderson
1/12/99

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日
Date of Application:

1998年 8月11日

出願番号
Application Number:

平成10年特許願第227202号

願人
Applicant(s):

株式会社村田製作所

RECEIVED
SEP 14 1999

TECHNOLOGY CENTER 2800

1999年 7月29日

特許庁長官
Commissioner,
Patent Office

伊佐山達志

出証番号 出証特平11-3053472

【書類名】 特許願
【整理番号】 27-0311
【提出日】 平成10年 8月11日
【あて先】 特許庁長官
【国際特許分類】 H01B 3/12
H01G 4/30
【発明の名称】 積層セラミックコンデンサ
【請求項の数】 7
【発明者】
【住所又は居所】 京都府長岡京市天神二丁目26番10号 株式会社村田
製作所内
【氏名】 和田 信之
【発明者】
【住所又は居所】 京都府長岡京市天神二丁目26番10号 株式会社村田
製作所内
【氏名】 柴田 将充
【発明者】
【住所又は居所】 京都府長岡京市天神二丁目26番10号 株式会社村田
製作所内
【氏名】 平松 隆
【発明者】
【住所又は居所】 京都府長岡京市天神二丁目26番10号 株式会社村田
製作所内
【氏名】 浜地 幸生
【特許出願人】
【識別番号】 000006231
【郵便番号】 617
【住所又は居所】 京都府長岡京市天神二丁目26番10号
【氏名又は名称】 株式会社村田製作所

【代表者】 村田 泰隆

【電話番号】 075-955-6731

【手数料の表示】

【予納台帳番号】 005304

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 積層セラミックコンデンサ

【特許請求の範囲】

【請求項1】 複数の誘電体セラミック層と、該誘電体セラミック層間に形成された内部電極と、該内部電極に電気的に接続された外部電極とを備えた積層セラミックコンデンサにおいて、

前記誘電体セラミック層が、次の組成式、

(但し、 Re_2O_3 は、 Y_2O_3 、 Gd_2O_3 、 Tb_2O_3 、 Dy_2O_3 、 Ho_2O_3 、 Er_2O_3 及び Yb_2O_3 の中から選ばれる少なくとも1種以上であり、 α 、 β 及び γ はモル比を表わし

$$0.001 \leq \alpha \leq 0.10$$

$$0.001 \leq \beta \leq 0.12$$

$$0.001 < \gamma \leq 0.12$$

$$1.000 < m \leq 1.035$$

$$0.005 < x \leq 0.22$$

の範囲内にある)で表わされ、かつ該誘電体セラミック層に用いる $\{Ba_{1-x}Ca_xO\}_mTiO_2$ 原料中のアルカリ金属酸化物の含有量が0.02重量%以下である主成分100重量部に対して、

第1の副成分を Li_2O -(Si 、 Ti) O_2 - MO 系(但し、 MO は Al_2O_3 及び ZrO_2 の中から選ばれる少なくとも1種である)の酸化物とし、第2の副成分を SiO_2 - TiO_2 - XO 系(XO は BaO 、 CaO 、 SrO 、 MgO 、 ZnO 及び MnO の中から選ばれる少なくとも1種である)の酸化物としたときに、該第1又は第2の副成分のどちらか一方を0.2~5.0重量部含有しており、

前記内部電極はニッケル又はニッケル合金からなることを特徴とする、積層セラミックコンデンサ。

【請求項2】 前記誘電体セラミック層に用いる $\{Ba_{1-x}Ca_xO\}_mTiO_2$ 原料の平均粒径は、0.1~0.7 μm であることを特徴とする、請求項1記載の積層セラミックコンデンサ。

【請求項3】 前記第1の副成分は、 $x \text{Li}_2\text{O} - y (\text{Si}_w\text{Ti}_{1-w}) \text{O}_2 - z \text{MO}$ （但し、x、y及びzはモル%であり、wは0.30 ≤ w ≤ 1.0の範囲内にある）で表わしたとき、それぞれの成分を頂点とする三元組成図の

- A (x = 20, y = 80, z = 0)
- B (x = 10, y = 80, z = 10)
- C (x = 10, y = 70, z = 20)
- D (x = 35, y = 45, z = 20)
- E (x = 45, y = 45, z = 10)
- F (x = 45, y = 55, z = 0)

（但し、直線A-F上の組成の場合は、wは0.3 ≤ w < 1.0の範囲内）で示される各点を結ぶ直線で囲まれた領域の内部又は線上にあることを特徴とする、請求項1又は請求項2記載の積層セラミックコンデンサ。

【請求項4】 前記第2の副成分は、 $x \text{SiO}_2 - y \text{TiO}_2 - z \text{XO}$ （但し、x、y及びzはモル%である）で表わしたとき、それぞれの成分を頂点とする三元組成図の

- A (x = 85, y = 1, z = 14)
- B (x = 35, y = 51, z = 14)
- C (x = 30, y = 20, z = 50)
- D (x = 39, y = 1, z = 60)

で示される各点を結ぶ直線で囲まれた領域の内部又は線上にあることを特徴とする、請求項1又は請求項2記載の積層セラミックコンデンサ。

【請求項5】 前記第2の副成分中には、前記 $\text{SiO}_2 - \text{TiO}_2 - \text{XO}$ 系の酸化物100重量部に対して、 Al_2O_3 及び ZrO_2 のうち少なくとも1種を合計で15重量部以下（但し、 ZrO_2 は5重量部以下）含有することを特徴とする、請求項4記載の積層セラミックコンデンサ。

【請求項6】 前記外部電極は、導電性金属粉末、又はガラスフリットを添加した導電性金属粉末の焼結層からなることを特徴とする、請求項1～5のうちいずれかに記載の積層セラミックコンデンサ。

【請求項7】 前記外部電極は、導電性金属粉末、又はガラスフリットを添加した導電性金属粉末の焼結層と、その上に形成されためっき層からなることを特徴とする、請求項1～5のうちいずれかに記載の積層セラミックコンデンサ。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、電子機器に用いられる積層セラミックコンデンサ、特に、ニッケル又は、ニッケル合金からなる内部電極を有する積層セラミックコンデンサに関する。

【0002】

【従来の技術】

積層セラミックコンデンサはセラミック素子と内部電極金属が積層されたものである。最近では、コスト低減のため内部電極に高価な貴金属であるAgやPdに代わって安価な卑金属であるNiが用いられるようになった。Niを電極に用いる場合には、Niが酸化されない還元雰囲気で焼成する必要がある。還元雰囲気中での焼成では、チタン酸バリウムからなるセラミックは本来、還元されて半導体化する。しかしながら、例えば、特公昭57-42588号公報に示されるような、チタン酸バリウム固溶体における、バリウムサイト／チタンサイトの比を化学量論比より過剰にした誘電体材料の非還元化技術が発明されて以来、Niを電極とした積層セラミックコンデンサの実用化が可能となり、その生産量が拡大している。

【0003】

【発明が解決しようとする課題】

近年のエレクトロニクスの発展に伴い電子部品の小型化が急速に進行し、積層セラミックコンデンサも小型化、大容量化の傾向が顕著である。又、これら積層セラミックコンデンサは、小型大容量化とともに静電容量の温度安定性が求められており、これまでの積層セラミックコンデンサ用のセラミック材料の開発は、誘電率の温度特性がよく、しかも高い誘電率を持たせることに主眼が置かれていた。そして温度特性のよい高誘電率材料として多くの材料が提案され、実用化さ

れてきた。これらは、いずれも誘電率が3000以上と高い材料である。そして、これらの材料が提供されたことによって、静電容量の温度変化が少なく高容量の積層セラミックコンデンサが可能となり、市場拡大に大いに貢献してきた。

【0004】

しかしながら、近年ではさらに小型大容量化の要求が強まり、誘電体セラミック層をさらに薄層化し、かつ多層化する必要が生じてきた。ところが、薄層化することにより誘電体には高電界強度の電圧が印加されることになり、従来の材料では誘電率が低下する、温度特性が悪化する、信頼性が低下するなどの不都合が生じ、積層セラミックコンデンサの大容量化にとって大きな支障となっていた。特に、積層セラミックコンデンサの誘電体層の厚みを5μm以下にまで薄層化すると、内部電極間のセラミック粒子の個数が10個以下程度と少なくなり、信頼性の低下が著しく、薄層化に限界が生じていた。このため、信頼性の高いしかも誘電率の電界強度に対する安定性に優れた材料の開発が望まれている。

【0005】

そこで、本発明の目的は、誘電体セラミック層を薄層にして高電圧を印加した場合でも誘電率の低下が小さく、実際の高電界がかけられた状態で安定した静電容量を示し、静電容量の温度特性がJIS規格で規定するB特性及びEIA規格で規定するX7R特性を満足し、信頼性の高い、誘電体セラミック層を薄層化した大容量の積層セラミックコンデンサを提供することにある。

【0006】

【課題を解決するための手段】

上記目的を達成するため、本発明の積層セラミックコンデンサは、複数の誘電体セラミック層と、該誘電体セラミック層間に形成された内部電極と、該内部電極に電気的に接続された外部電極とを備えた積層セラミックコンデンサにおいて、

前記誘電体セラミック層が、次の組成式、

(但し、 Re_2O_3 は、 Y_2O_3 、 Gd_2O_3 、 Tb_2O_3 、 Dy_2O_3 、 Ho_2O_3 、 Er_2O_3 及び Yb_2O_3 の中から選ばれる少なくとも1種以上であり、 α 、 β 及び γ は

モル比を表わし、 $0.001 \leq \alpha \leq 0.10$ 、 $0.001 \leq \beta \leq 0.12$ 、 $0.001 < \gamma \leq 0.12$ 、 $1.000 < m \leq 1.035$ 、 $0.005 < x \leq 0.2$ の範囲内にある)で表わされ、かつ該誘電体セラミック層に用いる $\{Ba_{1-x}Ca_xO\}TiO_2$ 原料中のアルカリ金属酸化物の含有量が0.02重量%以下である主成分100重量部に対して、第1の副成分を $Li_2O - (Si, Ti)O_2 - MO$ 系(但し、MOは Al_2O_3 及び ZrO_2 の中から選ばれる少なくとも1種である)の酸化物とし、第2の副成分を $SiO_2 - TiO_2 - XO$ 系(XOは BaO 、 CaO 、 SrO 、 MgO 、 ZnO 及び MnO の中から選ばれる少なくとも1種である)の酸化物としたときに、該第1又は第2の副成分のどちらか一方を0.2~5.0重量部含有しており、

前記内部電極はニッケル又はニッケル合金からなることを特徴とする。

【0007】

又、前記誘電体セラミック層に用いる $\{Ba_{1-x}Ca_xO\}TiO_2$ 原料の平均粒径は、 $0.1 \sim 0.7 \mu m$ であることを特徴とする。

【0008】

又、前記第1の副成分は、 $xLi_2O - y(Si_wTi_{1-w})O_2 - zMO$ (但し、x、y及びzはモル%であり、wは $0.30 \leq w \leq 1.0$ の範囲内にある)で表わしたとき、それぞれの成分を頂点とする三元組成図の、A($x=20$, $y=80$, $z=0$)、B($x=10$, $y=80$, $z=10$)、C($x=10$, $y=70$, $z=20$)、D($x=35$, $y=45$, $z=20$)、E($x=45$, $y=45$, $z=10$)、F($x=45$, $y=55$, $z=0$)、(但し、直線A-F上の組成の場合は、wは $0.3 \leq w < 1.0$ の範囲内)で示される各点を結ぶ直線で囲まれた領域の内部又は線上にあることを特徴とする。

【0009】

又、前記第2の副成分は、 $xSiO_2 - yTiO_2 - zXO$ 系(但し、x、y及びzはモル%である)で表わしたとき、それぞれの成分を頂点とする三元組成図の、A($x=85$, $y=1$, $z=14$)、B($x=35$, $y=51$, $z=14$)、C($x=30$, $y=20$, $z=50$)、D($x=39$, $y=1$, $z=60$)で示される各点を結ぶ直線で囲まれた領域の内部又は線上にあることを特徴とする。

【0010】

又、前記第2の副成分中には、前記 $\text{SiO}_2-\text{TiO}_2-\text{XO}$ 系の酸化物100重量部に対して、 Al_2O_3 及び ZrO_2 のうち少なくとも1種を合計で15重量部以下（但し、 ZrO_2 は5重量部以下）含有することを特徴とする。

【0011】

又、前記外部電極は、導電性金属粉末、又はガラスフリットを添加した導電性金属粉末の焼結層からなることを特徴とする。

【0012】

さらに、前記外部電極は、導電性金属粉末、又はガラスフリットを添加した導電性金属粉末の焼結層と、その上に形成されためっき層からなることを特徴とする。

【0013】

【発明の実施の形態】

まず、本発明の積層セラミックコンデンサを、図面に基づき説明する。

図1は本発明の積層セラミックコンデンサの一例を示す断面図、図2は図1の積層セラミックコンデンサのうち、内部電極を有する誘電体セラミック層部分を示す平面図、図3は図1の積層セラミックコンデンサのうち、セラミック積層体部分を示す分解斜視図である。本発明の積層セラミックコンデンサ1は図1に示すように、内部電極4を介して複数枚の誘電体セラミック層2a、2bを積層して得られたセラミック積層体3の両端面に、外部電極5、並びに必要により第1のめっき層6及び第2のめっき層7が形成されたものである。

【0014】

誘電体セラミック層2a、2bは、チタン酸バリウムカルシウム $\{\text{Ba}_{1-x}\text{Ca}_x\text{O}\}_{m}\text{TiO}_2$ と、 Y_2O_3 、 Gd_2O_3 、 Tb_2O_3 、 Dy_2O_3 、 Ho_2O_3 、 Er_2O_3 及び Yb_2O_3 の中から選ばれる少なくとも1種類以上と、 MgO と、 MnO を主成分とし、副成分として Li_2O -(Si , Ti) O_2-MO 系(MO は Al_2O_3 、 ZrO_2 の中から選ばれる少なくとも1種類)の酸化物、又は $\text{SiO}_2-\text{TiO}_2-\text{XO}$ 系(XO は BaO 、 CaO 、 SrO 、 MgO 、 ZnO 及び MnO の

中から選ばれる少なくとも1種類)の酸化物のどちらか一方を含有させた誘電体磁器組成物で構成される。これによって、還元性雰囲気中で焼成しても、半導体化することなく焼成することができ、静電容量の温度特性がJIS規格で規定するB特性及びEIA規格で規定するX7R特性を満足し、室温及び高温の絶縁抵抗の高い、高信頼性で絶縁耐力の優れた積層セラミックコンデンサが得られる。

【0015】

ここで、チタン酸バリウムカルシウム原料として、平均粒径が0.1~0.7μmのものを用いることによって、誘電体セラミック層が薄く電界強度が高くなつた場合でも誘電率の電界による変化が小さく、又、信頼性の高い積層セラミックコンデンサが得られる。又、誘電体セラミックは、Re成分(但し、Reは、Y、Gd、Tb、Dy、Ho、Er及びYbの中から選ばれる少なくとも1種以上)が焼成時の拡散によって粒界近傍及び粒界に存在するコア・シェル構造を取る。

【0016】

又、チタン酸バリウムカルシウム原料として、Na₂O、K₂Oなどのアルカリ金属酸化物の含有量が0.02重量%以下のものを用いることによって、信頼性の高い誘電体が得られる。

【0017】

又、チタン酸バリウムカルシウム原料としての(バリウム+カルシウム)/チタンの比(n)は特に限定しない。粉末原料作製の安定性を考えた場合、nは0.990~1.035であれば、合成された粉末の粒径バラツキが小さく望ましい。

【0018】

又、上記主成分中に含有させたLi₂O-(Si, Ti)O₂-MO系の酸化物によって、1250℃以下と比較的低温度で焼結させることができ、高温負荷特性が向上する。又、上記主成分中に含有させたSiO₂-TiO₂-XO系の酸化物によって、焼結性がよくなるとともに、高温負荷特性及び耐湿負荷特性が向上する。さらに、前記SiO₂-TiO₂-XOの酸化物にAl₂O₃、ZrO₂を含有させることで、より高い絶縁抵抗が得られる。

【0019】

次に、内部電極4は、卑金属であるニッケル又はニッケル合金によって構成される。

【0020】

又、外部電極5は、Ag、Pd、Ag-Pd、Cu、Cu合金などの種々の導電性金属の焼結層、又は、上記導電性金属粉末と $B_2O_3-Li_2O-SiO_2-BaO$ 系、 $B_2O_3-SiO_2-BaO$ 系、 Li_2O-SiO_2-BaO 系、 $B_2O_3-SiO_2-ZnO$ 系などの種々のガラスフリットとを配合した焼結層によって構成される。そして、この焼結層の上に、めっき層を形成することも可能である。このめっき層としては、Ni、Cu、Ni-Cu合金などからなる第1のめっき層6のみでもよいし、さらにその上にはんだ、錫などの第2のめっき層7を形成してもよい。

【0021】

次に、本発明の積層セラミックコンデンサの製造方法について、図1~3を参照して製造工程順に説明する。

まず、誘電体セラミック用の原料として、酸化物や炭酸塩などを高温で反応させる固相法により作製した原料粉末や、アルコキシド法あるいは水熱合成法などの湿式合成法により作製した原料粉末を準備する。なお、添加剤などは、酸化物や炭酸塩などの粉末以外に、アルコキシド、有機金属などの溶液を用いることもできる。

【0022】

その後、準備した原料を所定の組成比率に秤量し混合した後、有機バインダを加えてスラリー化し、シート状に成形してグリーンシート（誘電体セラミック層2a、2b）を得る。次いで、グリーンシート（誘電体セラミック層2b）の一面にニッケル又はニッケル合金からなる内部電極4を形成する。なお、内部電極4を形成する方法は、スクリーン印刷などによる形成でも、蒸着、めっき法による形成でも構わない。

【0023】

その後、内部電極4を有するグリーンシート（誘電体セラミック層2b）を

必要枚数積層し、図3に示す如く、内部電極を有しないグリーンシート（誘電体セラミック層2a）に挟んで圧着し、積層体とする。そして、この積層体を還元雰囲気中、所定の温度にて焼成し、セラミック積層体3を得る。

【0024】

その後、セラミック積層体3の両端面に、内部電極4と電気的に接続するよう、一対の外部電極5を形成する。なお、一般的に、外部電極5は、材料となる金属粉末ペーストを焼成により得たセラミック積層体3に塗布して、焼き付けることによって形成されるが、焼成前に塗布して、セラミック積層体3と同時に形成することもできる。

【0025】

そして最後に、外部電極5上に必要に応じて、第1のめっき層6、第2のめっき層7を形成し、積層セラミックコンデンサ1を完成させる。

【0026】

【実施例】

(実施例1)

まず、出発原料として TiO_2 、 $BaCO_3$ 及び $CaCO_3$ を準備し、混合粉碎した後、1000°C以上の温度で加熱して、表1に示す9種類のチタン酸バリウムカルシウムを合成した。なお、原料の粒子径は走査型電子顕微鏡で観察し、その平均粒径を求めた。

【0027】

【表1】

チタン酸バリウムカルシウムの種類	$(Ba_{1-x}Ca_xO)_nTiO_2$	$(Ba+Ca)/Ti$	不純物含有量(重量%)	平均粒径(μm)
			アルカリ金属酸化物	
A	0.003	1.000	0.003	0.50
B	0.100	1.000	0.010	0.50
C	0.200	0.998	0.012	0.50
D	0.250	0.998	0.015	0.50
E	0.100	1.000	0.062	0.50
F	0.080	1.005	0.003	0.15
G	0.100	1.008	0.020	0.25
H	0.100	1.000	0.010	0.75
I	0.100	1.000	0.010	0.08

【0028】

又、第1の副成分として $0.25\text{Li}_2\text{O}-0.65(0.30\text{TiO}_2 \cdot 0.70\text{SiO}_2)-0.10\text{Al}_2\text{O}_3$ （モル比）の組成割合になるように、各成分の酸化物、炭酸塩及び水酸化物を秤量し、混合粉碎して粉末を得た。同様に、第2の副成分として、 $0.66\text{SiO}_2-0.17\text{TiO}_2-0.15\text{BaO}-0.02\text{MnO}$ （モル比）の組成割合になるように、各成分の酸化物、炭酸塩及び水酸化物を秤量し、混合粉碎して粉末を得た。次に、これら第1及び第2の副成分の粉末を別々の白金ルツボ中において、 1500°C まで加熱した後、急冷し、粉碎することによって、平均粒径が $1\mu\text{m}$ 以下のそれぞれの酸化物粉末を得た。

【0029】

次に、チタン酸バリウムカルシウムとしての（Ba, Ca）/ Ti モル比mを調整するための BaCO_3 あるいは TiO_2 、及び純度99%以上の Y_2O_3 、 Gd_2O_3 、 Tb_2O_3 、 Dy_2O_3 、 Ho_2O_3 、 Er_2O_3 、 Yb_2O_3 、 MgO 及び MnO を準備した。これらの原料粉末と第1又は第2の副成分である上記酸化物粉末を表2に示す組成になるように秤量した。なお、第1、及び第2の副成分の添加量は、主成分 $[\{\text{Ba}_{1-x}\text{Ca}_x\text{O}\}]_m\text{TiO}_2+\alpha\text{Re}_2\text{O}_3+\beta\text{MgO}+\gamma\text{MnO}]$ 100重量部に対する添加重量部数である。そして、この秤量物にポリビニルブチラール系バインダー及びエタノールなどの有機溶剤を加えて、ボールミルにより湿式混合し、セラミックスラリーを調整した。このセラミックスラリーをドクターブレード法によりシート成形し、厚み $4.5\mu\text{m}$ の矩形のグリーンシートを得た。次に、このセラミックグリーンシート上に、Niを主体とする導電ペーストを印刷し、内部電極を構成するための導電ペースト層を形成した。

【0030】

【表2】

試料 番号	(Ba _{1-x} Ca _x O) _m ·TiO ₂ + α Re ₂ O ₃ + β MgO+ γ MnO								第1の副成分 (重量部)	第2の副成分 (重量部)	
	チタン酸バリウム の種類	X	m	Y ₂ O ₃	Gd ₂ O ₃	Tb ₂ O ₃	Dy ₂ O ₃	Ho ₂ O ₃	Er ₂ O ₃	Yb ₂ O ₃	
*1 A	0.003	1.01	0	0	0	0.02	0	0	0.02	0.005	1
*2 D	0.250	1.01	0	0	0	0.02	0	0	0.02	0.005	1
*3 B	0.100	1.01	0	0	0	0.0005	0	0	0.02	0.005	-1
*4 B	0.100	1.01	0	0	0	0.11	0	0	0.02	0.005	-1
*5 B	0.100	1.01	0	0	0	0.02	0	0	0.0008	0.005	-1
*6 B	0.100	1.01	0	0	0	0.02	0	0	0.13	0.005	-1
*7 B	0.100	1.01	0	0	0	0.02	0	0	0.02	0.0008	1
*8 B	0.100	1.01	0	0	0	0.02	0	0	0.02	0.13	-1
*9 B	0.100	0.995	0	0	0	0.02	0	0	0.02	0.005	-1
*10 B	0.100	1	0	0	0	0.02	0	0	0.02	0.005	-1
*11 B	0.100	1.036	0	0	0	0.02	0	0	0.02	0.005	-1
*12 B	0.100	1.01	0	0	0	0.02	0	0	0.02	0.005	0
*13 B	0.100	1.01	0	0	0	0.02	0	0	0.02	0.1	0
*14 B	0.100	1.01	0	0	0	0.02	0	0	0.02	0.005	5.5
*15 B	0.100	1.01	0	0	0	0.02	0	0	0.02	0.005	0
*16 E	0.100	1.01	0	0	0	0.02	0	0	0.02	0.005	-1
17 H	0.100	1.01	0	0	0	0.02	0	0	0.02	0.005	-1
18 I	0.100	1.01	0	0	0	0.02	0	0	0.02	0.005	-1
19 G	0.100	1.025	0.025	0	0	0	0	0	0.02	0.005	-1
20 G	0.100	1.02	0	0.08	0	0	0	0	0.05	0.008	4
21 G	0.100	1.015	0	0	0.05	0	0	0	0.05	0.005	3
22 B	0.100	1.01	0	0	0	0.02	0	0	0.02	0.005	2
23 B	0.100	1.01	0	0	0	0	0	0.02	0	0.05	-1
24 C	0.200	1.005	0	0	0	0	0	0	0.03	0.02	0.05
25 C	0.200	1.005	0.005	0	0	0.02	0	0	0	0.02	0.005
26 F	0.080	1.015	0.005	0.015	0	0	0	0	0	0.02	0.005
27 F	0.080	1.015	0	0	0.02	0	0	0	0.02	0.005	2

*印は本発明の範囲外

【0031】

その後、導電ペースト層が形成されたセラミックグリーンシートを導電ペースト層の引き出されている側が互い違いとなるように複数枚積層し、積層体を得た

。この積層体を、 N_2 雰囲気中にて350°Cの温度に加熱し、バインダーを燃焼させた後、酸素分圧 $10^{-9} \sim 10^{-12}$ MPaの $H_2-N_2-H_2O$ ガスからなる還元性雰囲気中において表3に示す温度で2時間焼成し、セラミック焼結体を得た。

【0032】

焼成後、得られたセラミック焼結体の両端面に $B_2O_3-Li_2O-SiO_2-BaO$ 系のガラスフリットを含有するAgペーストを塗布し、 N_2 雰囲気中で600°Cの温度で焼付け、内部電極と電気的に接続された外部電極を形成した。

【0033】

このようにして得られた積層セラミックコンデンサの外形寸法は幅：5.0mm、長さ：5.7mm、厚さ：2.4mmであり、内部電極間に介在する誘電体セラミック層の厚みは3μmであった。又、有効誘電体セラミック層の総数は5であり、一層当たりの対向電極の面積は $16.3 \times 10^{-6} m^2$ であった。

【0034】

次に、これらこれら積層セラミックコンデンサの電気的特性を測定した。静電容量及び誘電損失($\tan\delta$)は自動ブリッジ式測定器を用い、JIS C 5102にしたがって測定し、得られた静電容量から誘電率を算出した。又、絶縁抵抗計を用い、10Vの直流電圧を2分間印加して25°Cでの絶縁抵抗を求め、比抵抗(ρ)を算出した。

【0035】

又、DCバイアス特性を測定した。即ち、直流電圧を15V印加(即ち、5kV/mm印加)した状態での静電容量を求め、直流電圧を印加しない場合の静電容量に対する容量変化率($\Delta C\%$)を求めた。

【0036】

又、温度変化に対する静電容量の変化率を測定した。この容量温度変化率については、20°Cでの静電容量を基準とした-25°Cから85°C間の変化率の最大値($\Delta C/C_{20}$)と、25°Cでの静電容量を基準とした-55°Cから125°C間の変化率の最大値($\Delta C/C_{25}$)を求めた。

【0037】

又、高温負荷試験として、温度150°Cにて直流電圧を30V印加して、その

絶縁抵抗の経時変化を測定した。なお、高温負荷試験では、各試料の絶縁抵抗値が $10^5\Omega$ 以下になったときの時間を寿命時間とし、複数の試料についての平均寿命時間を求めた。

【0038】

さらに、昇圧速度100V/秒でDC電圧を印加し、絶縁破壊電圧を測定した。以上の結果を表3に示す。

【0039】

【表3】

試料番号	焼成温度(°C)	誘電率 損失 $\tan \delta$	誘電 損失 5KV/mm	容量変化率		容量・温度変化率		比抵抗 ρ DC ($\Omega \cdot \text{cm}$)	絶縁破壊電圧 (kV/mm)	平均寿命 (h)
				$\Delta C\%$	$\Delta C/C20\%$	$\Delta C/C25\%$	$\log \rho$			
				DC -25~+85°C	-55~-25°C	(%)	(%)			
*1	1300	3360	4.5	-65	-9.7	-15.6	13.2	14	3	
*2	1250	1130	9.3	-35	-4.5	-6.5	13.1	15	23	
*3	1250	2430	4.6	-55	-1.5	-10.6	13.2	14	2	
*4	1250	1220	3.1	-37	-18.1	-23.3	13.5	15	15	
*5	1250	2570	3.6	-63	-15.6	-24.7	12.9	12	65	
*6	1350	1780	4.4	-45	-7.8	-14.6	13.1	14	2	
*7	1250	1950	4.7	-57	-9.6	-15.4	11.8	14	17	
*8	1250	1730	3.8	-56	-13.6	-19.7	11.2	14	8	
*9	1250	2100	5.6	-60	-12.3	-18.6	11.2	8	-	
*10	1250	2060	5.3	-62	-12.2	-17.5	11.6	9	-	
*11	1300	1950	4.4	-50	-8.6	-14.4	12.3	9	1	
*12	1350	1530	5.1	-45	-8.8	-13.7	11.4	10	-	
*13	1350	1470	5.3	-47	-8.9	-14.2	11.5	9	-	
*14	1200	1680	3.2	-48	-14.5	-30.6	13.1	14	5	
*15	1200	1740	3.4	-42	-13.3	-26.8	13.1	14	3	
*16	1250	1750	3.7	-48	-10.5	-15.1	13.1	14	21	
17	1250	2370	4.7	-51	-4.7	-6.7	13.1	13	52	
18	1150	1040	2.5	-30	-8.4	-14.2	13.5	15	174	
19	1175	1410	2.2	-35	-9.5	-14.4	13.2	14	85	
20	1150	1260	2.3	-33	-8.8	-13.7	13.2	15	110	
21	1175	1260	2.3	-36	-9.2	-14.6	13.2	14	105	
22	1200	1900	2.1	-42	-8.6	-13.4	13.2	14	85	
23	1250	2010	2.5	-44	-8.5	-13.8	13.2	15	80	
24	1250	1430	1.8	-34	-7.8	-11.4	13.1	14	110	
25	1250	1450	1.9	-31	-8.2	-11.1	13.2	15	120	
26	1175	1260	1.7	-32	-9.5	-14.5	13.2	14	92	
27	1175	1340	1.6	-33	-9.2	-13.5	13.2	14	95	

*印は本発明の範囲外

- : 測定不能

【0040】

又、得られた積層セラミックコンデンサの断面を研磨し化学エッチングして、誘電体セラミックのグレイン径を走査型電子顕微鏡で観察したところ、本発明

の範囲内の試料においては、いずれも原料であるチタン酸バリウムカルシウムの粒子径とほとんど同じであった。

【0041】

表1～表3から明らかなように、本発明による積層セラミックコンデンサでは、温度に対する静電容量の変化率が-25℃～+85℃の範囲でJIS規格に規定するB特性規格を満足し、-55℃～125℃の範囲内でEIA規格に規定するX7R特性規格を満足する。しかも、5kV/mmのDC電圧を印加した場合の容量変化率が51%以内と小さく、薄層での使用に際しても静電容量の変化が小さい。さらに、高温負荷試験での平均寿命時間は52時間以上と長く、焼成温度も1250℃以下の温度で焼成可能である。

【0042】

ここで、本発明の組成限定理由について説明する。

$\{Ba_{1-x}Ca_xO\}_mTiO_2 + \alpha Re_2O_3 + \beta MgO + \gamma MnO$
 (但し、 Re_2O_3 は、 Y_2O_3 、 Gd_2O_3 、 Tb_2O_3 、 Dy_2O_3 、 Ho_2O_3 、 Er_2O_3 及び Yb_2O_3 の中から選ばれる少なくとも1種以上であり、 α 、 β 及び γ はモル比を表わす)において、

試料番号1のように、 CaO 量 x が0.005以下の場合には、電圧印加による容量変化率が大きく、平均寿命時間が極端に短かくなり好ましくない。一方、試料番号2のように CaO 量 x が0.22を超える場合には、誘電損失が大きくなり好ましくない。したがって、 CaO 量 x は $0.005 < x \leq 0.22$ の範囲が好ましい。

【0043】

又、試料番号3のように、 Re_2O_3 量 α が0.001未満の場合には、平均寿命時間が極端に短くなり好ましくない。一方、試料番号4のように Re_2O_3 量 α が0.10を超える場合には、温度特性がB特性/X7R特性を満足せず、平均寿命時間が短くなり好ましくない。したがって、 Re_2O_3 量 α は $0.001 \leq \alpha \leq 0.10$ の範囲が好ましい。

【0044】

又、試料番号5のように、 MgO 量 β が0.001未満の場合には、電圧印

加による容量変化率が大きく、温度特性がB特性/X7R特性を満足しなくなり好ましくない。一方、試料番号6のように、MgOの添加量 β が0.12を超える場合には、焼結温度が高くなつて平均寿命時間が極端に短くなり好ましくない。したがつて、MgO量 β は $0.001 \leq \beta \leq 0.12$ の範囲が好ましい。

【0045】

又、試料番号7のように、MnO量 γ が0.001以下の場合には、比抵抗が低く、平均寿命時間が短くなり好ましくない。一方、試料番号8のように、MnO量 γ が0.12を超える場合には、温度特性がB特性/X7R特性を満足せず、比抵抗が低くなり、平均寿命時間が短くなり好ましくない。したがつて、MnO量 γ は $0.001 < \gamma \leq 0.12$ の範囲が好ましい。

【0046】

又、試料番号9、10のように、(Ba, Ca)/Ti比mが1.000以下の場合には、温度特性がB特性/X7R特性を満足せず、比抵抗が低くなり、さらに高温負荷試験では電圧印加すると即短絡不良となるため好ましくない。一方、試料番号11のように、(Ba, Ca)/Ti比mが1.035を超える場合には、焼結性が不足して平均寿命時間が極端に短くなり好ましくない。したがつて、(Ba, Ca)/Ti比mは $1.000 < m \leq 1.035$ の範囲が好ましい。

【0047】

又、試料番号12、13のように、第1及び第2の副成分の量が0の場合、焼結が不十分であり、比抵抗が低く、さらに高温負荷試験では電圧印加すると即短絡不良となるため好ましくない。一方、試料番号14、15のように、第1及び第2の副成分の量が5.0重量部を超える場合には、ガラス成分に基づく二次相の生成が増大し、温度特性がB特性/X7R特性を満足せず、平均寿命時間が極端に短くなり好ましくない。したがつて、第1又は第2の副成分のどちらか一方の含有量は0.2~5.0重量部の範囲が好ましい。

【0048】

又、チタン酸バリウムカルシウム中に不純物として含まれるアルカリ金属酸化物の含有量を0.02重量%以下としたのは、試料番号16のように、アルカリ

金属酸化物の含有量が0.02重量%を超える場合には、平均寿命時間が短くなるからである。

【0049】

なお、試料番号17のように、チタン酸バリウムカルシウムの平均粒径が0.7μmを越える場合には、平均寿命時間が52時間とやや悪い。一方、試料番号18のように、チタン酸バリウムカルシウムの平均粒径が0.1μm未満の場合には、誘電率が1040とやや小さい。したがって、チタン酸バリウムカルシウムの平均粒径は0.1~0.7μmの範囲内がより好ましい。

【0050】

(実施例2)

誘電体粉末として、表1のBのチタン酸バリウムカルシウムを用いて ($Ba_{0.90}Ca_{0.10}O$) $1.010 \cdot TiO_2 + 0.02Dy_2O_3 + 0.02MgO + 0.01MnO$ (モル比) の原料を準備した。これに1200~1500°Cで加熱して作製した表4に示す平均粒径1μm以下の第1の副成分としてのLi₂O-(Si, Ti)O₂-MO系の酸化物を添加して、その他は実施例1と同様にして積層セラミックコンデンサを作製した。なお、作製した積層セラミックコンデンサの寸法形状は、実施例1と同様である。そして、実施例1と同様にして電気的特性を測定した。その結果を表5に示す。

【0051】

【表4】

試料番号	第1の副成分				
	組成(モル%、但しWを除く)				
(重量部)	Li2O	(SiwT1-w)	w	Al2O3	ZrO2
101	1	20	80	0.3	0
102	1	10	80	0.6	5
103	1	10	70	0.5	20
104	2	35	45	1	10
105	2	45	45	0.5	10
106	2	45	55	0.3	0
107	1.5	20	70	0.6	5
108	1.5	20	70	0.4	10
109	2	30	60	0.7	5
110	2	30	60	0.8	10
111	2	40	50	0.6	5
112	2	40	50	0.9	0
113	2	10	85	0.4	5
114	2	5	75	0.6	10
115	3	20	55	0.5	25
116	3	45	40	0.8	0
117	3	50	45	0.7	5
118	2	25	75	0.9	0
119	2	25	75	1	0
120	2	35	65	0.9	0
121	2	35	65	1	0
122	1	20	70	0.2	0

【0052】

【表5】

試料番号	焼成温度(°C)	誘電率 tan δ	誘電損失 5kV/mm	容量変化率		容量温度変化率		比抵抗 ρ DC (Ω·cm)	絶縁破壊電圧 (kV/mm)	平均寿命 (h)
				ΔC %	ΔC/C20 %	ΔC/C25 %	LOG ρ			
101	1250	1920	2.4	-43	-8.2	-12.8	13.2	14	82	
102	1250	1910	2.4	-42	-7.8	-12.6	13.1	15	86	
103	1250	1870	2.5	-41	-7.7	-12.3	13.2	14	84	
104	1225	1850	2.4	-41	-7.5	-12.5	13.5	15	88	
105	1225	1870	2.4	-42	-7.2	-11.7	13.2	14	90	
106	1225	1870	2.4	-40	-7.8	-12.0	13.1	14	80	
107	1250	1910	2.4	-42	-8.1	-12.1	13.3	14	85	
108	1250	1910	2.3	-42	-7.8	-11.8	13.2	14	90	
109	1225	1890	2.5	-41	-7.7	-11.7	13.3	14	90	
110	1225	1900	2.5	-42	-7.9	-12.1	13.2	14	95	
111	1225	1890	2.4	-42	-7.8	-12.1	13.2	15	91	
112	1225	1850	2.3	-40	-7.6	-11.8	13.3	14	87	
113	1300	1620	2.2	-42	-7.9	-12.2	11.5	9	-	
114	1300	1460	2.4	-41	-8.0	-12.6	10.8	8	-	
115	1300	1330	2.6	-42	-7.8	-12.5	10.6	8	-	
116	1300	1420	2.8	-43	-7.8	-12.2	10.8	8	-	
117	1300	1360	2.4	-43	-8.6	-12.4	11.2	8	-	
118	1250	1920	2.3	-43	-7.8	-11.7	13.2	15	88	
119	1300	1450	2.1	-40	-8.2	-11.6	11.1	9	-	
120	1250	1900	2.5	-42	-7.6	-11.7	13.2	14	88	
121	1300	1350	2.1	-44	-8.5	-12.8	10.2	8	-	
122	1350	1420	2.1	-44	-8.2	-11.5	10.2	8	-	

- : 測定不能

【0053】

表4、5から明らかなように、図4に示す $\text{Li}_2\text{O} - (\text{Si}_w\text{Ti}_{1-w})\text{O}_2 - \text{M}$ O系の酸化物の三元組成図のA ($x = 20$ 、 $y = 80$ 、 $z = 0$)、 B ($x = 10$ 、 $y = 80$ 、 $z = 10$)、 C ($x = 10$ 、 $y = 70$ 、 $z = 20$)、 D ($x = 35$ 、 $y = 45$ 、 $z = 20$)、 E ($x = 45$ 、 $y = 45$ 、 $z = 10$)、 F ($x = 45$ 、 $y = 55$ 、 $z = 0$) (但し、 x 、 y 、 z はモル%、 直線A-F上の組成の場合、 w は0. $3 \leq w < 1.0$ の範囲内) で示される各点を結ぶ直線で囲まれた領域の内部又は線上にある酸化物が添加された試料番号101～112、118、1

20のものは、誘電率が1850以上と大きく、温度に対する静電容量の変化率が-25°C～+85°Cでの範囲でJIS規格に規定するB特性規格を満足し、-55°Cと125°Cでの範囲内でEIA規格に規定するX7R特性規格を満足する。しかも、5kV/mmのDC電圧を印加した場合の容量変化率が43%以内と小さく、薄層での使用に際しても静電容量の変化が小さい。さらに、高温負荷試験での平均寿命時間は80時間以上と長く、焼成温度も1250°C以下の温度で焼成可能である。

【0054】

これに対して、 $\text{Li}_2\text{O} - (\text{Si}, \text{Ti})\text{O}_2 - \text{MO}$ 系の酸化物が上記組成範囲外の場合には、試料番号113～117、119、121～122のように、焼結不足となって高温負荷試験で電圧を印加すると即短絡不良となる。

【0055】

(実施例3)

誘電体粉末として、表1のBのチタン酸バリウムカルシウムを用いて ($\text{Ba}_{0.90}\text{Ca}_{0.10}^{10})_{1.010} \cdot \text{TiO}_2 + 0.02\text{Gd}_2\text{O}_3 + 0.05\text{MgO} + 0.01\text{MnO}$ (モル比) の原料を準備した。これに1200～1500°Cで加熱して作成した表6に示す平均粒径1μm以下の第2の副成分としての $\text{SiO}_2 - \text{TiO}_2 - \text{XO}$ 系(Al_2O_3 、 ZrO_2 を添加含有させた場合も含む)の酸化物を添加して、その他は実施例1と同様にして積層セラミックコンデンサを作製した。なお、作製した積層セラミックコンデンサの寸法形状は、実施例1と同様である。そして、実施例1と同様にして電気的特性を測定した。その結果を表7に示す。

【0056】

【表6】

試料 番号	第2の副成分							添加剤 (重量部)			
	組成(モル%)							Al2O3	ZrO2		
	SiO2	TiO2	XO	BaO	CaO	SrO	MgO	ZnO	MnO	合計	
201	1	85	1	1	0	0	0	4	9	14	0
202	1	35	51	0	10	0	0	0	4	14	0
203	1	30	20	0	30	0	15	4	1	50	0
204	1	39	1	20	20	2	0	13	5	60	0
205	1	70	10	5	5	0	0	10	0	20	0
206	1	45	10	0	0	0	0	15	30	45	0
207	1	50	20	10	10	3	7	0	0	30	0
208	1	50	30	0	16	0	0	0	4	20	0
209	1	35	30	25	10	0	0	0	0	35	0
210	1	40	40	10	0	0	0	5	5	20	0
211	1	45	22	3	30	0	0	0	0	33	15
212	1	45	22	3	30	0	0	0	0	33	10
213	1	65	25	5	5	0	0	0	0	10	0
214	1	25	40	15	0	10	0	5	5	35	0
215	1	30	10	30	25	0	0	5	0	60	0
216	1	50	0	35	15	0	0	0	0	50	0
217	1	45	22	30	0	0	3	0	0	33	25
218	1	45	22	30	0	3	0	0	0	33	0
219	1	30	60	10	0	0	0	0	0	10	0

【0057】

【表7】

試料番号	焼成温度 (°C)	誘電率 損失 $\tan \delta$ (%)	誘電 容量 $\Delta C\%$ DC 5kV/mm	容量変化率		容量温度変化率		$\log \rho$	比抵抗 DC	絶縁破壊電圧 (kV/mm)	平均寿命 (h)
				$\Delta C/C20\%$	$\Delta C/C25\%$	$\Delta C/C20\%$	$\Delta C/C25\%$				
				-25~+85°C	-55~+125°C	(%)	(%)				
201	1250	1940	2.4	-41	-7.7	-11.2	13.2	14	92		
202	1250	1910	2.3	-42	-7.5	-11.2	13.2	15	96		
203	1250	1950	2.4	-42	-8.1	-11.6	13.3	14	88		
204	1250	1920	2.3	-44	-7.8	-11.5	13.2	15	85		
205	1250	1930	2.3	-41	-8.1	-11.5	13.2	14	91		
206	1250	1890	2.2	-40	-8.0	-12.1	13.4	14	95		
207	1250	1910	2.3	-43	-8.1	-11.7	13.3	14	88		
208	1250	1900	2.3	-42	-8.3	-11.8	13.3	14	92		
209	1250	1930	2.3	-43	-8.1	-11.9	13.3	14	88		
210	1250	1920	2.3	-43	-8.1	-12.5	13.3	14	85		
211	1250	1880	2.2	-41	-7.5	-11.1	13.5	15	96		
212	1250	1920	2.3	-42	-8.3	-11.8	13.6	14	92		
213	1300	1620	3.1	-42	-7.2	-12.1	11.2	8	-		
214	1300	1530	2.9	-42	-7.3	-11.8	11.1	8	-		
215	1300	1460	2.7	-40	-7.2	-12.5	11.4	9	-		
216	1300	1470	2.7	-40	-7.8	-12.9	11.3	9	-		
217	1300	1430	2.9	-38	-7.1	-11.7	11.5	8	-		
218	1300	1510	2.8	-41	-6.6	-11.2	11.4	8	-		
219	1300	1480	3.1	-40	-7.1	-12.2	11.2	8	-		

- : 測定不能

【0058】

表6、表7から明らかなように、図5に示す $\text{SiO}_2 - \text{TiO}_2 - \text{XO}$ 系の酸化物の三元組成図の A ($x = 85$ 、 $y = 1$ 、 $z = 14$)、 B ($x = 35$ 、 $y = 51$ 、 $z = 14$)、 C ($x = 30$ 、 $y = 20$ 、 $z = 50$)、 D ($x = 39$ 、 $y = 1$ 、 $z = 60$) (但し、 x 、 y 、 z はモル%) で示される各点を結ぶ直線で囲まれた領域の内部又は線上にある酸化物が添加された試料番号 201 ~ 210 のものは、誘電率が 1890 以上と大きく、温度に対する静電容量の変化率が -25°C ~ +85°C での範囲で JIS 規格に規定する B 特性規格を満足し、 -55°C と 125°C での範囲で JIS 規格に規定する C 特性規格を満足する。

5°Cでの範囲内でEIA規格に規定するX7R特性規格を満足する。しかも、5kV/mmのDC電圧を印加した場合の容量変化率が4.4%以内と小さく、薄層での使用に際しても静電容量の変化が小さい。さらに、高温負荷試験での平均寿命時間は85時間以上と長く、焼成温度も1250°C以下の温度で焼成可能である。

【0059】

これに対して、 $\text{SiO}_2-\text{TiO}_2-\text{XO}$ 系の酸化物が上記組成範囲外の場合には、試料番号213~216、219のように、焼結不足となって高温負荷試験で電圧を印加すると即短絡不良となる。

【0060】

又、試料番号211、212のように、 $\text{SiO}_2-\text{TiO}_2-\text{XO}$ 系の酸化物に、 Al_2O_3 、 ZrO_2 を含有させることで、比抵抗を高めることができるが、試料番号217、218のように、 Al_2O_3 の添加量が15重量部を越えるか、又は ZrO_2 の添加量が5重量部を越えると、焼結不足となって高温負荷試験で電圧を印加すると即短絡不良となる。

【0061】

なお、上記実施例1~3で得られた本発明の範囲内の試料について、その誘電体セラミックの粒子を透過型電子顕微鏡で分析した結果、いずれの試料においてもRe成分（但し、Reは、Y、Gd、Tb、Dy、Ho、Er及びYbの中から選ばれる少なくとも1種以上）が粒界近傍および粒界に拡散したコア・シェル構造を取っていることが確認された。

【0062】

【発明の効果】

以上の説明で明らかなように、本発明によれば、積層セラミックコンデンサの誘電体セラミック層が還元雰囲気中で焼成しても還元されず、半導体化しない誘電体磁器組成物から構成されているので、電極材料として卑金属であるニッケル又はニッケル合金を用いることができ、しかも1250°C以下と比較的低温で焼成可能であるため、積層セラミックコンデンサのコストダウンを図ることができる。

【0063】

又、この誘電体磁器組成物を用いた積層セラミックコンデンサは、薄層にして高電界がかけられた場合でも誘電率即ち静電容量の減少が小さく、しかも信頼性が高い。したがって、小型薄層で大容量の積層セラミックコンデンサを得ることができる。

【図面の簡単な説明】

【図1】

本発明の積層セラミックコンデンサの一例を示す断面図である。

【図2】

図1の積層セラミックコンデンサのうち内部電極を有する誘電体セラミック層部分を示す平面図である。

【図3】

図1の積層セラミックコンデンサのうちセラミック積層体部分を示す分解斜視図である。

【図4】

$\text{Li}_2\text{O} - (\text{Si}_w\text{Ti}_{1-w})\text{O}_2 - \text{MO}$ 系の酸化物の三元組成図である。

【図5】

$\text{SiO}_2 - \text{TiO}_2 - \text{XO}$ 系の酸化物の三元組成図である。

【符号の説明】

- 1 積層セラミックコンデンサ
- 2 a, 2 b 誘電体セラミック層
- 3 セラミック積層体
- 4 内部電極
- 5 外部電極
- 6, 7 めっき層

【書類名】 図面

【図1】

1

【図2】

【図3】

【図4】

【図5】

【書類名】 要約書

【要約】

【課題】 高電界強度下での誘電率の低下が小さく、信頼性に優れ、B特性及びX7R特性を満足する、内部電極にNiを使用した積層セラミックコンデンサを提供する。

【解決手段】 誘電体は、 $\{Ba_{1-x}Ca_xO\}_mTiO_2 + \alpha Re_2O_3 + \beta MgO + \gamma MnO$ （但し、 Re_2O_3 は、 Y_2O_3 、 Gd_2O_3 、 Tb_2O_3 、 Dy_2O_3 、 Hf_2O_3 、 Er_2O_3 、 Yb_2O_3 のうち少なくとも1種）で表される主成分100重量部に対して、 $Li_2O - (Si, Ti)O_2 - MO$ （MOは Al_2O_3 、 ZrO_2 のうち少なくとも1種）酸化物、又は $SiO_2 - TiO_2 - XO$ （XOは BaO 、 CaO 、 SrO 、 MgO 、 ZnO 、 MnO のうち少なくとも1種）酸化物を0.2～5.0重量部含有した材料からなる。

【選択図】 図1

【書類名】 職権訂正データ
【訂正書類】 特許願

<認定情報・付加情報>

【特許出願人】 申請人
【識別番号】 000006231
【住所又は居所】 京都府長岡京市天神二丁目26番10号
【氏名又は名称】 株式会社村田製作所

出願人履歴情報

識別番号 [000006231]

1. 変更年月日 1990年 8月28日

[変更理由] 新規登録

住 所 京都府長岡京市天神二丁目26番10号

氏 名 株式会社村田製作所