Linear Algebra Done Right Axler, Sheldon

Notes by: Clay Curry

Contents

1	Vector Spaces	2
	1.1 $\mathbf{R^n}$, $\mathbf{C^n}$, and $\mathbf{F^n}$	 2

1 Vector Spaces

Linear algebra is the study of linear maps on finite-dimensional vector spaces. Vector spaces are defined in this chapter, and their basic properties are developed. Vector spaces are a generalization of the description of a plane using two coordinates, as published by Descartes in 1637.

1.1 $\mathbf{R^n}$, $\mathbf{C^n}$, and $\mathbf{F^n}$

Definition: Complex Number

A complex number is an ordered pair $(a, b) \in \mathbb{R}^2$, denoted a + bi.

• The set of all complex numbers is denoted by **C**:

$$\mathbf{C} = \{a + bi : a, b \in \mathbf{R}\}\$$

• Addition and multiplication on C are defined by

$$(a+bi) + (c+di) \equiv (a+c) + (b+d)i$$

$$(a+bi) \cdot (c+di) \equiv (ac-bd) + (ad+bc)i$$

The following properies are proven using the familiar properites of real numbers and the definition of complex addition and multiplication.

Property: Properties of Complex Numbers

- Commutativity: $\alpha + \beta = \beta + \alpha$ and $\alpha\beta = \beta\alpha$ for all $\alpha, \beta \in \mathbf{C}$
- Associativity: $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$ and $(\alpha \cdot \beta) \cdot \lambda = \alpha \cdot (\beta \cdot \lambda)$ for all $\alpha, \beta, \lambda \in \mathbf{C}$
- Identities : $\lambda + e_+ \equiv \lambda + 0 \equiv \lambda$ and $\lambda \cdot e_- \equiv \lambda \cdot 1 \equiv \lambda$ for all $\lambda \in \mathbb{C}$
- Additive Inverse: $\forall \alpha \in \mathbb{C}, \exists \beta \in \mathbb{C}, \text{ such that } \alpha + \beta = e_+ = 0$
- Multiplicative Inverse: $\forall \alpha \in \mathbb{C}, \exists \beta \in \mathbb{C}, \text{ such that } \alpha \cdot \beta = e = 1$
- Distributive Property $\lambda \cdot (\alpha + \beta) = \lambda \cdot \alpha + \lambda \cdot \beta$, for all $\alpha, \beta, \lambda \in \mathbf{C}$

Definition: Constructed Operations on C: Subtraction and Division

Let $\alpha, \beta \in \mathbf{C}$.

- Let $-\alpha$ denote the additive inverse of α . Thus, $-\alpha$ is the unique element of \mathbf{C} such that $\alpha + (-\alpha) = 0$.
- Subtraction on C is defined by

$$\beta - \alpha = \beta + (-\alpha)$$

- Let $(1/\alpha)$ denote the multiplicative inverse of α . Thus, $(1/\alpha)$ is the unique element of \mathbf{C} such that $\alpha \cdot (1/\alpha) = 1$.
- Division on C is defined by

$$\beta/\alpha = \beta \cdot (1/\alpha)$$

Throughout these notes, F stands for either R or C. The letter F is used because R and C are

Definiti	ion:			
Theore	m:			
Proof:				
Proper	ty:			

examples of the algebraic structure known as a **field**.