

Paint defects and challenges

- Identifying paint defects on petrol tank.
 - 1. Runs
 - 2. Dust
 - 3. Craters

Runs

Dust

Crater

OK

Challenges

- Glare on specular curved surface hides paint defects.
- Reflections on specular tank surface surfaces change pixel intensities of image.

Defect inspection method

Monitor

Vision System for Paint finish inspection

Features of Vision System

- High Accuracy
- Low inference time
- Cost effective
- Simple Layout
- Reliable

Inspection system

- Visual representation of paint defect
- Data collection by camera
- Data transfer through a channel
- Data processing unit
- Defect classification

Camera

Pixel size & camera resolution "At least 2 pixels must fit in an defect"

- Work depth(WD)=500mm.
- Field of view(FOV)=300mm
- Focal length(FL)=16mm
- FOV* FL=Sensor* WD
- Pixel size=5 microns
- Pixel size= Sensor/Resolution
- Resolution>=6MP

Defect	Dimension (micrometer)
Dust	20
Pinhole	50
Crater	100
Solvent popping	10-50

- Selected Resolution can easily find minimum size defect.
- Defects like runs can be detected by 5MP resolution as well.

Camera

1.CMOS Sensor

- Compact size.
- High processing speed.
- Consumes less power.
- · Glare resistant.
- Better image resolution and field of view.
- Global Shutter.

2. Interface

	USB 3.0	GigE
Bandwidth (Mbps)	400	125
Camera Cost	Low	Low
Cable Cost	Low	Low
CPU Usage	Low	Medium
Multicamera Setup	Excellent	Good
Cable length	4.6m	100m

• **USB 3.0** is selected for low cost.

Low cost

Sensor

- CMOS sensor has less cost than CCD sensor.
- CMOS sensor is widely manufactured and offers more varieties.

Resolution

- Right sizing of camera prevents over sizing of camera specifications.
- Detailed study was done in camera resolution instead of going for higher resolution cameras like 21MP.
- 6MP resolution has been chosen with exactly matching our requirements.

Interface

USB 3.0 is least cost interface for higher bandwidth.

Camera and Lighting

Resolution: 6MP

• Focal length: 16mm

Sensor size: 2/3"

Sensor: CMOS

• USB 3.0

acA3088-57uc - Basler ace

- 1.LED light is chosen as light source.
- High life span
- High efficiency
- High CRI
- 2. Bright field illumination is the illumination technique
- 3. Dome light is chosen as light source geometry.

Edge computing

Edge Computing Solution

- Placing computing device near to camera.
- Decreases inference time and interface cost.
- Enables real time service.
- Device will perform Image preprocessing and classification.
- Python code will be uploaded to the device.
- Edge computing devices: Raspberry pi and Nvidia Jetson nano.

Key features

- Latency
- Scalability
- Cost effective

Image preprocessing

Image classification

Low cost

- Right sized processing device has been chosen for image processing.
- Standard machine vision processing units come along with PC costing more.
- Right sizing allows to reduce cost significantly.
- Provided solution allows scalability at lower cost.
- Low cost solution for multi camera setup.

Defect Inspection

TEMPLATE MATCHING

- Comparing all frames captured with image dataset.
- Passing selected frames to classification algorithms.

Library: open-cv and matplotlib, Statistics

Frame

Template matching with sample image and calculating score

avg.score>=threshold
Defect

avg.score<threshold
No defect

Image preprocessing

- Open-cv
- Skimage
- Matplolib
- Numpy

Preparing image for classification

Cost

- All methods and algorithms are self developed.
- Open source software.

Deep learning models for classification

Criteria for Selection

- 1. High accuracy
- 2. Low inference time
- 3. Low space requirement

Model Selection

Model with lowest inference time, space requirement with enough accuracy to classify our image.

Deep learning models for image classification

- Squeeze Net, Resnet-18, MobileNetv2 and Shuffle Net have low inference time and low space.
- Resnet-18 and MobileNetv2 have good accuracy for our application.
- Both models can be easily deployed on raspberry pi and Nvidia Jetson Nano.

Convolution neural network(CNN)

Deep learning models

Classification

Model training and validation accuracy

	Train accuracy	Validation accuracy	Inference time(sec)
Resnet-18	0.8648	0.9412	3.4
Quantized Resnet-18	0.9082	0.9504	2.5
MobileNetV2	0.9846	0.9917	1.3

MobileNetv2 has better accuracy than resnet-18 and requires less space than resnet-18

Cost

MobileNetV2 allows to reduce RAM cost for CPU and provides good latency reducing production cost.

Image classification

- Image dataset(Train and validation)
- Image transformation to tensors.
- Importing pre trained model in pytorch.
- Modifying model for our application.
- Result: Type of defect or OK image

Results

Predictions obtained have 100% accuracy.

Defect detection


```
import os
import cv2
import numpy as np
from matplotlib import pyplot as plt
DATADIR="C:/Users/User pc/Desktop/Data science/Tank Images/Train/NOK RUN"
path=os.path.join(DATADIR)
score=[]
for img in os.listdir(path):
    img1=cv2.imread(os.path.join(path,img))
    img2=cv2.imread("opencv frame 1.png")
    h1,w1,c1=img1.shape[::1]
    c2,w2,h2=img2.shape[::-1]
    w=int((w1+w2)/2)
    h=int((h1+h2)/2)
    img1 = cv2.resize(img1, (w, h))
    img2 = cv2.resize(img2, (w, h))
    #gray image=cv2.cvtColor(img1,cv2.COLOR BGR2GRAY)
    #template=cv2.cvtColor(img2,cv2.COLOR BGR2GRAY)
   method=cv2.TM CCORR NORMED
    res=cv2.matchTemplate(img1,img2,method)
    min val, max val, min loc, max loc = cv2.minMaxLoc(res)
    score.append(max val)
import statistics as s
average=s.mean(score)
if (average>=0.90):
    print("NOT OK")
else:
    print("OK")
```


Image Pre processing


```
img2=cv2.imread("opencv frame 1.png")
gray scale=cv2.cvtColor(img2,cv2.COLOR BGR2GRAY)
edge=cv2.Canny(gray scale,80,100)
plt.imshow(edge)
from skimage import morphology
kernel=np.ones((42,42),np.uint8)
opening=cv2.morphologyEx(edge,cv2.MORPH CLOSE,kernel)
cleaned = morphology.remove small objects(opening, min size=25000, connectivity=10000)
plt.imshow(cleaned)
from PIL import Image
im1, contours, hierarchy = cv2.findContours(cleaned, cv2.RETR EXTERNAL, cv2.CHAIN APPROX SIMPLE)
c = max(contours, key=cv2.contourArea)
height, width=img2.shape[:2]
mask = np.ones([height,width,3], dtype="uint8")
mask=cv2.drawContours(mask,[c],-1,(255,255,255),-1)
print(height, width)
plt.imshow(mask)
image=cv2.bitwise and(img2,mask)
plt.imshow(image)
```


Machine learning model

MobileNetV2

```
model_ft = models.mobilenet_v2(pretrained=True)
model ft.classifier=nn.Sequential(nn.Dropout(p=0.2,inplace=False),
                                 nn.Linear(in_features=1280,out_features=3,bias=True))
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer ft = optim.SGD(model ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                       num epochs=25)
```

```
Epoch 22/24
Train Loss: 0.0508 Acc: 0.9903
val Loss: 0.0046 Acc: 1.0000
Epoch 23/24
Train Loss: 0.0141 Acc: 0.9981
val Loss: 0.0085 Acc: 1.0000
Epoch 24/24
Train Loss: 0.0150 Acc: 1.0000
val Loss: 0.0091 Acc: 1.0000
Training complete in 134m 57s
Best val Acc: 1.000000
```


Output


```
def visualize model(model, num images=6):
    was training = model.training
    model.eval()
    images so far = 0
    fig = plt.figure()
    with torch.no grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)
            outputs = model(inputs)
            , preds = torch.max(outputs, 1)
            for j in range(inputs.size()[0]):
                images so far += 1
                ax = plt.subplot(num images//2, 2, images so far)
                ax.axis('off')
                ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                imshow(inputs.cpu().data[j])
                if images so far == num images:
                    model.train(mode=was training)
                    return
        model.train(mode=was training)
```


Cost reduction

 Solution functions effectively and accurately on defect images and provides low cost real time detection of defects.

Component	Component
Camera	CMOS sensor is chosen against CCD sensor for its low cost. Least possible camera resolution is chosen for application.
Interface	USB 3.0 is the least cost interface for higher bandwidth against camera link, CoaXPress.
Computing	Raspberry pi and Nvidia Jetson Nano have less cost than standard PC systems.
Artificial Intelligence & Machine learning	All codes and algorithms have been self developed. ML model of low size is chosen to reduce RAM size.
Software	Open source software is used for model development.

