# Enhanced Digital Discriminator

- Future possible FPGA-based algorithms for EDD:
  - NSOT (number of samples over threshold)
  - v-NSOT (one sample over one threshold, next one over another)
  - Area
  - Digital filtering

# Digital Filtering

- Infinite Impulse Response (IIR)
  - Use a sum of current and N earlier digitizations to arrive at new filtered waveform
    - N = 1 here: First order
  - Advantages & Disadvantages:
    - Advantages: fast, simple, easy to implement
    - Disadvantages: can be unstable
- Finite Impulse Response (FIR)
  - Convolve current waveform with template (noise-free) waveform
  - Advantages and Disadvantages
    - Advantages: stable
    - Disadvantages: slow, harder to implement

### IIR

- Algorithm (provided by Tyler):
  - y[0] = x[0]\*T/tau
  - $y[t] = \exp[-T/tau]*y[t-T] + x[t]*T/tau$

x = input, y=output,t = time, T = sampling period,tau = filter time const.



This plot was shown earlier by Steven Wren.

### IIR

- What would make the IIR unstable?
  - Keeping the "order" low improves stability
    - The filter used here is order 1 (see slide 2)
- We could test possible instability-inducing scenarios by manipulating waveforms
  - E.g., adding a sharp bipolar pulse
- Suggestions for testing instability welcome

### **FIR**

### Algorithm

- Create a template waveform
  - Done here using an average waveform
- Convolve template with incoming digitizations
  - Implies performing a convolution at the digitization rate (yikes)
    - Each convolution involves O(100) multiplications (yikes<sup>2</sup>)
      - Assumes a template with O(10) bins
  - Before talking about feasibility in an FPGA, let's see how algorithm works in regular software

## FIR

#### Template waveform



### Sample pure noise and ~SPE waveforms





## FIR in an FPGA

- Does FIR have a hope of being fast enough?
  - Quartus has documentation for implementing an FIR in an FPGA
    - Uses altmult\_add "megafunction" (<u>link</u>)
  - Not sure how well this would port to Tyler's implementation with the input signal split into 4 phase-shifted branches...
- With help from Graham Miller (Manchester), Steven Wren and I are going to investigate FIR (and IIR) implementation in the FPGA
  - Steven is working on characterizing the PMT now
  - Anticipate starting FIR/IIR investigation next week