

Gerade Pyramide mit quadratischem Grundriss Ermittlung und Darstellung des Kantenwinkels am Grat der Pyramide Der Winkel wird durch die Kanten- und die Seitenfläche aufgespannt.

Die Winkelebene schneidet den Grat der Pyramide rechtwinklig.

gegeben sind Höhe \boldsymbol{h} und Kantenlänge \boldsymbol{a} gesucht ist $\boldsymbol{\omega}$

Kantenwinkel am Grat einer geraden Pyramide mit quadratischem Grundriss, rechnerisch ermittelt Dez. 88; Jun. 93; Dez. 97; Aug. 10, zuletzt geändert am 03.09.15

$$h_a = \sqrt{\left(\frac{a}{2}\right)^2 + h^2}$$

$$\sin\alpha = \frac{h}{h_a}$$

 $Kantenwinkel \ {\it am Grat einer geraden} \ Pyramide \ {\it mit}$ quadratischem Grundriss, rechnerisch ermittelt

Dez. 88; Jun. 93; Dez. 97; Aug. 10, zuletzt geändert am 03.09.15

$$h_g = a * \sin \beta$$

Kantenwinkel am Grat einer geraden Pyramide mit quadratischem Grundriss, rechnerisch ermittelt Dez. 88; Jun. 93; Dez. 97; Aug. 10, zuletzt geändert am 03.09.15 Ermittlung und Darstellung des Kantenwinkels ω am Grat der Pyramide Veranschaulichung der Lage (der Ebene) des Winkels

Gerade Pyramide mit quadratischem Grundriss

$$h_a = \sqrt{\left(\frac{a}{2}\right)^2 + h^2}$$

$$\sin \alpha = \frac{h}{h_a}$$

$$g = \sqrt{\left(\frac{a}{2}\right)^2 + h_a^2}$$

$$\sin\beta = \frac{h_a}{g}$$

$$h_g = a * \sin \beta$$

$$\sin \omega = \frac{\frac{d}{2}}{h_g}$$

 $Kantenwinkel \ \ {\it am\ Grat\ einer\ geraden\ } Pyramide\ \ {\it mit\ }$ quadratischem Grundriss, rechnerisch ermittelt

Dez. 88; Jun. 93; Dez. 97; Aug. 10, zuletzt geändert am 03.09.15