# A GRAPH-BASED METHOD FOR CROSS-ENTITY THREAT DETECTION

Herman Kwong, Ping Yan Salesforce



## **Account Takeover**





# **Detection is Key**



## **CrossLinks**

Unexpected common features, across unrelated user accounts / environments

#### Features:

IP, location, time zone, user agent, browser fingerprint, user action sequence, ...





# Why Graph(X)?

#### Why Graph?

- Classical pair-wise entity relationship measurement solutions require O(N²) computations
- Computation complexity dramatically reduced by localizing computations
- Highly extensible solution with a multigraph

#### Why GraphX?

- Spark ecosystem
- Scalability and performance
- Advanced Graph algorithms



## **Graph-theoretical Techniques**

- Graph analysis is of high interest in many social network contexts
  - Proximity-based approaches
  - Personalized pagerank: closeness of each node to the restart nodes
  - Simrank: similarity of contextual structures
- Bridge-Node anomaly [Akoglu, et al 2015]
  - Publication networks: authors from different research communities
  - Financial trading networks: cross-sector traders
  - Customer-product networks: cross-border products
  - Network intrusion detection: cut-vertices indicating nodes accessing multiple communities that they do not belong to



## **Bipartite Graph**

Bipartite: Application access data directly makes a *bipartite graph* where an edge represents V<sub>1</sub> accessing V<sub>2</sub>





## **Multigraph Formulation**

We can also formulate the relationship of application access data as a **multigraph** where an edge between two entities represents some features that the two entities have in common.





## **Anomaly Detection by Graph Change Detection**

Our objective is to quickly discover changes in the access graph over time

- Unexpected new cross-entity connections are of particular interest in security detection problems
- A naïve detector and a community-based algorithm were proposed for access anomaly detection with a graph



### **Naïve Detector**

```
REFERENCE GRAPH (TRAINING) - RG
DETECTION GRAPH (TESTING) - DG
MERGE OF RG & DG - RGDG
ANOMALY GRAPH (DEGREE INFO) - AG
CONNECTIVITY GRAPH (ENV-TO-ENV) - CG
```

#### Detection:

```
//outDegRG: count of neighbors in test nodes
//outDegRGDG: count of neighbors of nodes in the combination of test
data and reference data
//We like to calculate the difference between the two degree
//properties : outDegRGDG — outDegRG
```

## **Naïve Detector**



Anomaly Graph with Degree Info



Edges in red: edges in only the detection graph but not the reference graph.

Edges in blue: edges in both the detection graph and the reference graph.

Soork

# 2<sup>nd</sup>-Order Connectivity

Bipartite graph



Connectivity graph



# 2<sup>nd</sup>-Order Anomaly Graph



# 2<sup>nd</sup>-Order Anomaly Detector

Step 1: self join RG on the feature-of-interest (e.g., IP) to get the env-to-env connectivity graph.

Step 2: Build the Anomaly Graph as in the Naïve Detector algorithm ( $1^{st}$ -order anomalies).

Step 3\*: collapse the cluster of nodes into a single node on the Anomaly Graph.

Step 4: run the naive algorithm to get the updated node degrees to identify 2<sup>nd</sup>-order anomalies.

\*: ConnectedComponent to approximate clusters



## **Experiments**

- Reference Graph (RG) Number of vertices: 2,222,613
- RG Number of edges 2,156,104
- Connectivity Graph (CG) Number of vertices: 4,682
- CG Number of edges: 8,534
- CG Number of ConnectedComponents: 1146
- Number of 1<sup>st</sup>-order anomalies: ~700
- Number of 2<sup>nd</sup>-order anomalies: ~200
- Computing time: ~ 5 minutes on a Mac Air (1.7 GHz Intel Core i7, 8G memory)



## **Toolkit for Interactive Analysis**





# **Opportunities**

- GraphDB for real-time indexing and query
- Probabilistic edges to support complex semantics

id: 3973

Clustering on probabilistic graph for community detection



## References

[Akoglu et al 2015] Akoglu, Leman, Hanghang Tong, and Danai Koutra. "Graph based anomaly detection and description: a survey." Data Mining and Knowledge Discovery29.3 (2015): 626-688.

[Ding et al 2012] Ding, Qi, et al. "Intrusion as (anti) social communication: characterization and detection." Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012.



# THANK YOU.

hkwong@salesforce.com pyan@salesforce.com



