Темы урока

Цель урока	1
Схема и данные для работы в классе	2
Љ Виды функций в T-SQL	2
Скалярные функции T-SQL Строковые функции на примере LEN Функции даты и времени на примере YEAR	3 3 3
Агрегатные функции	3
Самостоятельная работа #1	3
Вложенные запросы в условии	4
Самостоятельная работа #2	4
Объединения	4
Самостоятельная работа #3	4
Группировка значений	4
Самостоятельная работа #4	5
Ломашнее залание	5

Цель урока

Дать больше практики для работы с SQL, особенный упор на агрегатные функции и объединения нескольких таблиц.

Схема и данные для работы в классе

Для работы в классе мы будем использовать БД, состоящую из четырёх таблиц, хранящих информацию о каталоге и продажах простого магазина:

Customer : клиент

Id: идентификатор

Name : имя

Product: продукт

Id : идентификаторName: наименование

o Price: цена

Order : заказ

Id: идентификатор

CustomerId : идентификатор клиента

OrderDate : дата заказаDiscount : размер скидки

• OrderItem: единичная позиция заказа

o Orderld: идентификатор заказа

ProductId : идентификатор продукта

NumberOfItems: количество единиц

Схему и данные предлагаю не создавать всем вместе, а просто дать как данность, потому что проектирование БД, всё-таки, уже было читано, а вот статистических (агрегатных) функций ещё нет.

Показываем им схему по слайду, даём скрипты на создание схемы и заполнение таблиц данными и начинаем уже непосредственно с запросов после небольшого перечисления самих функций.

Внешних ключей я здесь умышленно не вешал, чтобы не усложнять то, что не в фокусе урока.

Код создания схемы: L29_C01_LiveHeroTour2.Schema.sql Код для вставки данных: L29_C02_LiveHeroTour2.Data.sql

В T-SQL существует большое количество встроенных функций, помогающих решать различные задачи. Среди прочих хочется выделить две основные группы:

- Скалярные функции обрабатывают одиночное значение и возвращают одиночное значение,
- **Агрегатные** функции выполняют вычисление на наборе значений и возвращают одиночное значение.

Скалярные функции T-SQL

Ещё раз: скалярные функции обрабатывают и возвращают одиночное значение.

Для ознакомления мы рассмотрим две скаляр, чтобы уяснить подход к их использованию, также мы посмотрим на документацию, где можно ознакомиться с полным перечнем функций.

Код для демонстраций: L29_C03_Scalar-value_functions_LEN_YAER_demo.sql

Строковые функции на примере LEN

Объясняем по слайду и даём примеры.

△ Нажимаем F1 выделяя имя функции в MS SQL Server Management Studio, чтобы показать справку и смежные функции.

Функции даты и времени на примере YEAR

Объясняем по слайду и даём примеры.

△ Нажимаем F1 выделяя имя функции в MS SQL Server Management Studio, чтобы показать справку и смежные функции.

Агрегатные функции

Ещё раз: агрегатная функция выполняет вычисление на наборе значений и возвращает одиночное значение (за исключением COUNT, не учитывают значения NULL).

Сначала рассказываем по слайду назначение пяти наиболее востребованных агрегатных функций, а потом даём живую демонстрацию.

Код для демонстрации: L29_C04_Aggregate_function_demo.sql

Самостоятельная работа #1

Написать запросы, возвращающие следующие данные:

- 1. Полное количество записей в таблице OrderItem
- 2. Количество уникальных заказов (по таблице OrderItem)
- 3. Максимальный номер заказа (по таблице Order)
- 4. Средний размер скидки (по таблице Order)
- 5. Дата первой и последней продажи (по таблице Order)
- 6. Дата последней продажи в 2018 году (по таблице Order)
- 7. Максимальная длина наименования товара (по таблице Product)

Код примеров решения: L29_C05_Simple_Scalar_and_Aggregate_Functions_SF.sql

Вложенные запросы в условии

Вложенный запрос — это запрос, который используется внутри инструкции SELECT, INSERT, UPDATE или DELETE или внутри другого вложенного запроса.

Код для демонстрации: L29_C06_Sub-queries_demo.sql

Самостоятельная работа #2

Написать запросы, возвращающие следующие данные:

- 1. Номер заказа с максимальной скидкой в 2016 году
- 2. Номер первого заказа в 2019 году
- 3. ІD и имя клиента, получившего максимальную скидку в 2016 году
- 4. ID и имя клиента, сделавшего первый заказ в 2019 году

Код примеров решения: L29_C07_Sub-queries_SF.sql

Объединения

Ha базе INNER JOIN решаем на демонстрации следующую задачу:

 Найти список товаров с ценой, количеством и стоимостью для заказа с ID = 22, а также посчитать полную стоимость этого заказа

Код для демонстрации: L29_C08_Joins_demo.sql

Самостоятельная работа #3

Написать запросы, возвращающий следующие данные:

• Итоговая сумма, потраченная Марией

Код примеров решения: L29_C09_Joins_SF.sql

Тут нужно отметить, что это не совсем честно рассчитанное значение потраченных Марией денег, так как мы использовали для рассчётов цену товара без учёта скидок к каждому из заказов. Но применить скидку, в данном случае, не получится, так как в разных заказах она разная (среднее арифметическое нам не подойдёт:)

Без группировок эту задачу не решить. Так можно плавно перейти к группировкам.

Группировка значений

Рассказываем про группировку по слайду, больше там и не скажешь, лучше показать на живом примере.

Сначала простой вариант с COUNT

А затем прилюдно разобрать пример с честным расчётом денег, потраченных Марией.

Код: L29_C10_Group_By_demo.sql.

Рассказать 2 лайфхака:

- 1. Что в GROUP BY тупо пишутся все поля без агрегатных функций,
- 2. Использование псевдонимов для полей не допускается (нужно писать оригинальные столбцы или выражения, выводящиеся в полях без агрегатных функций).

Самостоятельная работа #4

1. Написать запрос, возвращающий полную итоговую сумму, потраченную каждым клиентом в формате:

- Id клиента
- Имя клиента
- Итоговая потраченная сумма
- 2. Добавить разбивку по годам и сортировку по имени, а затем по году.

Домашнее задание

Вообще можно их особенно не мучать, для расширения кругозора я им показал всё что необходимо.

Однако, если уж очень очень им захочется, можно, например, подумать вот над такими запросами:

- Найти год с самой большой выручкой
- Вывести все года, в которых были заказы и рядом id и имена клиентов с самым большим заказом по данному году.