Module 4

1. Explain Naïve bayes classifier.

- The naive Bayes classifier applies to learning tasks where each instance x is described by a conjunction of attribute values and where the target function f (x) can take on any value from some finite set V.
- A set of training examples of the target function is provided, and a new instance is presented, described by the tuple of attribute values (a₁, a₂...a_m).
- The learner is asked to predict the target value, or classification, for this new instance.

The Bayesian approach to classifying the new instance is to assign the most probable target value, VMAP, given the attribute values (a1, a2...am) that describe the instance

$$v_{MAP} = \underset{v_j \in V}{\operatorname{argmax}} P(v_j | a_1, a_2 \dots a_n)$$

Use Bayes theorem to rewrite this expression as

$$v_{MAP} = \underset{v_j \in V}{\operatorname{argmax}} \frac{P(a_1, a_2 \dots a_n | v_j) P(v_j)}{P(a_1, a_2 \dots a_n)}$$

$$= \underset{v_j \in V}{\operatorname{argmax}} P(a_1, a_2 \dots a_n | v_j) P(v_j) \quad \text{equ (1)}$$

• The naive Bayes classifier is based on the assumption that the attribute values are conditionally independent given the target value. Means, the assumption is that given the target value of the instance, the probability of observing the conjunction (ai,

$$P(a_1, a_2 \dots a_n | v_j) = \prod_i P(a_i | v_j)$$

a2...am), is just the product of the probabilities for the individual attributes:

Substituting this into Equation (1),

Naive Bayes classifier:

$$V_{NB} = \underset{\mathbf{v_j} \in \mathbf{V}}{\operatorname{argmax}} \mathbf{P}(\mathbf{v_j}) \prod_{\mathbf{i}} \mathbf{P}(\mathbf{a_i} | \mathbf{v_j}) \qquad \text{equ (2)}$$

Where, V_{NB} denotes the target value output by the naive Bayes classifier

2. Explain Brute force MAP learning.

1. For each hypothesis h in H, calculate the posterior probability

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

2. Output the hypothesis hmap with the highest posterior probability

$$h_{MAP} = \underset{h \in H}{\operatorname{argmax}} P(h|D)$$

In order specify a learning problem for the BRUTE-FORCE MAP LEARNING algorithm we must specify what values are to be used for P(h) and for P(D|h)?

Let's choose P(h) and for P(D|h) to be consistent with the following assumptions:

- The training data D is noise free (i.e., d_i = c(x_i))
- The target concept c is contained in the hypothesis space H
- Do not have a priori reason to believe that any hypothesis is more probable than any other.

What values should we specify for P(h)?

- Given no prior knowledge that one hypothesis is more likely than another, it
 is reasonable to assign the same prior probability to every hypothesis h in H.
- Assume the target concept is contained in H and require that these prior probabilities sum to 1.

$$P(h) = \frac{1}{|H|} \text{ for all } h \in H$$

What choice shall we make for P(D|h)?

- P(D|h) is the probability of observing the target values $D = (d_1 ... d_m)$ for the fixed set of instances $(x_1 ... x_m)$, given a world in which hypothesis h holds
- Since we assume noise-free training data, the probability of observing classification d_i given h is just 1 if d_i = h(x_i) and 0 if d_i ≠ h(x_i). Therefore,

$$P(D|h) = \begin{cases} 1 & \text{if } d_i = h(x_i) \text{ for all } d_i \in D \\ 0 & \text{otherwise} \end{cases}$$

Given these choices for P(h) and for P(D|h) we now have a fully-defined problem for the above BRUTE-FORCE MAP LEARNING algorithm.

Recalling Bayes theorem, we have

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

Consider the case where h is inconsistent with the training data D

$$P(h|D) = \frac{0 \cdot P(h)}{P(D)} = 0$$

The posterior probability of a hypothesis inconsistent with D is zero

$$P(h|D) = \frac{1 \cdot \frac{1}{|H|}}{P(D)} = \frac{1 \cdot \frac{1}{|H|}}{\frac{|VS_{H,D}|}{|H|}} = \frac{1}{|VS_{H,D}|}$$

Consider the case where h is consistent with D

Where, VS_{H,D} is the subset of hypotheses from H that are consistent with D

To summarize, Bayes theorem implies that the posterior probability P(h|D) under our assumed P(h) and P(D|h) is

$$P(D|h) = \begin{cases} \frac{1}{|V | S|_{H,D}|} & \text{if h is consistent with D} \\ 0 & \text{otherwise} \end{cases}$$

3. Discuss Minimum description length principle.

- A Bayesian perspective on Occam's razor
- Motivated by interpreting the definition of hMAP in the light of basic concepts from information theory.

$$h_{MAP} = \underset{h \in H}{\operatorname{argmax}} \ P(D|h)P(h)$$

which can be equivalently expressed in terms of maximizing the log2

$$h_{MAP} = \underset{h \in H}{\operatorname{argmax}} \ \log_2 P(D|h) + \log_2 P(h)$$

or alternatively, minimizing the negative of this quantity

$$h_{MAP} = \underset{h \in H}{\operatorname{argmin}} - \log_2 P(D|h) - \log_2 P(h) \qquad \qquad \text{equ (1)}$$

This equation (1) can be interpreted as a statement that short hypotheses are preferred, assuming a particular representation scheme for encoding hypotheses and data

- $-log_2P(h)$: the description length of h under the optimal encoding for the hypothesis space H, LcH (h) = $-log_2P(h)$, where CH is the optimal code for hypothesis space H.
- $-\log_2 P(D \mid h)$: the description length of the training data D given hypothesis h, under the optimal encoding from the hypothesis space H: LcH $(D \mid h) = -\log_2 P(D \mid h)$, where

C DIH is the optimal code for describing data D assuming that both the sender and receiver know the hypothesis h.

• Rewrite Equation (1) to show that h_{MAP} is the hypothesis h that minimizes the sum given by the description length of the hypothesis plus the description length of the data given the hypothesis.

$$h_{MAP} = \underset{h \in H}{\operatorname{argmin}} L_{C_H}(h) + L_{C_{D|h}}(D|h)$$

Where, CH and CDh are the optimal encodings for H and for D given h

The Minimum Description Length (MDL) principle recommends choosing the hypothesis that minimizes the sum of these two description lengths of equ.

$$h_{MAP} = \underset{h \in H}{\operatorname{argmin}} \ L_{C_H}(h) + L_{C_{D|h}}(D|h)$$

Minimum Description Length principle:

$$h_{MDL} = \operatorname*{argmin}_{h \in H} L_{C_1}(h) + L_{C_2}(D \mid h)$$

Where, codes C₁ and C₂ to represent the hypothesis and the data given the hypothesis

The above analysis shows that if we choose C_1 to be the optimal encoding of hypotheses C_1 , and if we choose C_2 to be the optimal encoding $C_{D|h}$, then $h_{MDL} = h_{MAP}$

4. Explain Bayesian belief networks and conditional independence with example.

- The naive Bayes classifier makes significant use of the assumption that the values of the attributes a₁...a_n are conditionally independent given the target value v.
- This assumption dramatically reduces the complexity of learning the target function

A Bayesian belief network describes the probability distribution governing a set of variables by specifying a set of conditional independence assumptions along with a set of conditional probabilities

Bayesian belief networks allow stating conditional independence assumptions that apply to subsets of the variables

Notation

- Consider an arbitrary set of random variables Y₁ . . . Y_n , where each variable Yi can take on the set of possible values V(Y_i).
- The joint space of the set of variables Y to be the cross product $V(Y_1) \times V(Y_2) \times ... V(Y_n)$.
- In other words, each item in the joint space corresponds to one of the possible

assignments of values to the tuple of variables $(Y_1 ... Y_n)$. The probability distribution over this joint' space is called the joint probability distribution.

- The joint probability distribution specifies the probability for each of the possible variable bindings for the tuple $(Y_1 ... Y_n)$.
- A Bayesian belief network describes the joint probability distribution for a set of variables.

Conditional Independence

Let X, Y, and Z be three discrete-valued random variables. X is conditionally independent of Y given Z if the probability distribution governing X is independent of the value of Y given a value for Z, that is, if

$$(\forall x_i, y_i, z_k) P(X = x_i | Y = y_i, Z = z_k) = P(X = x_i | Z = z_k)$$

Where,

$$x_i \in V(X), y_j \in V(Y), \text{ and } z_k \in V(Z).$$

The above expression is written in abbreviated form as

$$P(X|Y,Z)=P(X|Z)$$

Conditional independence can be extended to sets of variables. The set of variables $X_1 \dots X_l$ is conditionally independent of the set of variables $Y_1 \dots Y_m$ given the set of variables $Z_1 \dots Z_n$ if

$$P(X_1 \ldots X_l | Y_1 \ldots Y_m, Z_1 \ldots Z_n) = P(X_1 \ldots X_l | Z_1 \ldots Z_n)$$

The naive Bayes classifier assumes that the instance attribute A_1 is conditionally independent of instance attribute A_2 given the target value V. This allows the naive Bayes classifier to calculate $P(A_1, A_2 \mid V)$ as follows,

$$P(A_1, A_2|V) = P(A_1|A_2, V)P(A_2|V)$$

= $P(A_1|V)P(A_2|V)$

5. What is bayes theorem and maximum posterior hypothesis?

Bayes theorem provides a way to calculate the probability of a hypothesis based on its prior probability, the probabilities of observing various data given the hypothesis, and the observed data itself.

Notations

- P(h) prior probability of h, reflects any background knowledge about the chance that h is correct
- P(D) prior probability of D, probability that D will be observed
- P(D|h) probability of observing D given a world in which h holds

 P(h|D) posterior probability of h, reflects confidence that h holds after D has been observed

Bayes theorem is the cornerstone of Bayesian learning methods because it provides a way to calculate the posterior probability P(h|D), from the prior probability P(h), together with P(D) and P(D|h).

Bayes Theorem:

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- P(h|D) increases with P(h) and with P(D|h) according to Bayes theorem.
- P(h|D) decreases as P(D) increases, because the more probable it is that D will be observed independent of h, the less evidence D provides in support of h.

Maximum a Posteriori (MAP) Hypothesis

- In many learning scenarios, the learner considers some set of candidate hypotheses H and is interested in finding the most probable hypothesis h ∈ H given the
 observed data
 - D. Any such maximally probable hypothesis is called a maximum a posteriori (MAP) hypothesis.
- Bayes theorem to calculate the posterior probability of each candidate hypothesis is hmap is a MAP hypothesis provided

$$h_{MAP} = \underset{h \in H}{argmax} \ P(h|D)$$

$$= \underset{h \in H}{argmax} \ \frac{P(D|h)P(h)}{P(D)}$$

$$= \underset{h \in H}{argmax} \ P(D|h)P(h)$$

- P(D) can be dropped, because it is a constant independent of h
- 6. Explain maximum likelihood.

Maximum Likelihood (ML) Hypothesis

- In some cases, it is assumed that every hypothesis in H is equally probable a priori (P(h_i) = P(h_j) for all h_i and h_j in H).
- In this case the below equation can be simplified and need only consider the term P(D|h) to find the most probable hypothesis.

Download VTU IN POCKETS from PlayStore

$$h_{MAP} = \mathop{argmax}_{h \in H} P(D|h)P(h)$$

the equation can be simplified

$$h_{ML} = \mathop{argmax}_{h \in H} P(D|h)$$

P(D|h) is often called the likelihood of the data D given h, and any hypothesis that maximizes P(D|h) is called a maximum likelihood (ML) hypothesis