Introduction

Rank&Selec Plan

Definition

LOUDS

Proof

Dynamic data

Principle
Simply typed
Richly typed
Conclusion

Proving tree algorithms for succinct data structures

Reynald Affeldt ¹ Jacques Garrigue ² Xuanrui Qi ³ Kazunari Tanaka ²

¹AIST

²Nagoya University

³Tufts University

October 19, 2018

Introduction

Rank&Select Plan Definitions

LOUDS

Proof

Dynamic data

Principle
Simply typed
Richly typed
Conclusion

Succinct data structures

- Optimized for both time and space
- "compressed with no need to decompress"
- Many uses in big data
- Examples
 - Data compression for data mining
 - Dictionary of Google Japanese input method

Introduction

Rank&Select Plan

Definitions

LOUD

Implementation Proof

Dynamic data Principle

Principle
Simply typed
Richly typed
Conclusion

Rank and Select

4日 > 4周 > 4 至 > 4 至 >

To provide fast access and search in bit sequences, 2 specific primitives are optimized. Usually work in constant time.

• rank(i) = number of 1's up to the ith bit

 select(i) = position of the ith 1 in the sequence: rank(select(i)) = i

Certified implementation [Tanaka A., Affeldt, Garrigue 2016]

Introduction

Rank&Select Plan Definitions

LOUDS

Proof

Dynamic data

Principle Simply typed Richly typed Conclusion

Today's story

Encoding and uses of trees in succinct data structures

Two viewpoints

Tree as sequence Encode the structure of a tree as a bit sequence, providing efficient navigation through rank and select

Sequence as tree Balanced trees (here red-black) can be used to encode dynamic bit sequences

- ullet Both implemented and proved in $\mathrm{Coq/SSReflect}$
- Can use the first on top of the second

Introduction
Rank&Select

Plan Definitions

LOUDS

Implementatio Proof

Dynamic data

Principle Simply typed Richly typed Conclusion

Basic CoQ definitions

rank can be defined easily. select is its inverse.

```
Variables (T : eqType) (b : T) (n : nat).
 Definition rank i s := count_mem b (take i s).
  Definition Rank (i : nat) (B : n.-tuple T) :=
    \#[\text{set } k : [1,n] \mid (k \le i) \& (\text{tacc } B k == b)]|.
 Lemma select_spec (i : nat) (B : n.-tuple T) :
    exists k, ((k \le n) \&\& (Rank b k B == i)) \mid \mid
               (k == n.+1) \&\& (count\_mem b B < i).
 Definition Select i (B : n.-tuple T) :=
    ex_minn (select_spec i B).
pred s y is the last b up to y. succ s y if the first b from y.
 Definition pred s v := select (rank v s) s.
 Definition succ s y := select (rank y.-1 s).+1 s.
```

Hard to set the indices correctly.

Here we use indices starting from 1, but it varies among books.

LOUDS

LOUDS

Level-Order Unary Degree Sequence [Navarro 2016, Chapter 8]

- Breadth first sequence of the unary representations of node arities
- Each node is represented by a 1's followed by a 0
- The structure of *n*-node tree is represented by exactly 2n + 2 bits
- Applications to dictionaries (cf. Google IME)

Introduction

Rank&Selec Plan Definitions

LOUDS

Implementation Proof

Principle Simply typed Richly typed Conclusion

Basic operations

We define a bijection between paths in the tree and positions in the LOUDS.

Required operations:

- Position of the root (2, just after the virtual root at 0)
- Position of ith child
- Position of the parent node
- Number of children

```
Variable B : seq bool.
Definition LOUDS_child v i :=
   select false (rank true (v + i) B).+1 B.
Definition LOUDS_parent v :=
   pred false B (select true (rank false v B) B).
Definition LOUDS_children v := succ false B v.+1 - v.+1.
```

Introduction

Rank&Select Plan Definitions

LOUDS

Implementation Proof

Dynamic data
Principle

Principle Simply typed Richly typed Conclusion

Basic operations

We define a bijection between paths in the tree and positions in the LOUDS.

Required operations:

- Position of the root (2, just after the virtual root at 0)
- Position of ith child
- Position of the parent node
- Number of children

```
Variable B : seq bool.
Definition LOUDS_child v i :=
   select false (rank true (v + i) B).+1 B.
Definition LOUDS_parent v :=
   pred false B (select true (rank false v B) B).
Definition LOUDS_children v := succ false B v.+1 - v.+1.
```

Introduction

Rank&Select Plan

LOUDS

Implementation Proof

Dynamic data

Principle Simply typed Richly typed Conclusion

Concrete bijection

count_smaller t p counts the number of nodes appearing
before the one at path p in breadth first order

```
Definition LOUDS_position (t : tree) (p : seg nat) :=
  (count_smaller t p + (count_smaller t (rcons p 0)).-1).+2.
         0'5
                              1's
(*
                                                    virtual root *)
Definition LOUDS subtree B (p : seg nat) :=
  foldl (LOUDS child B) 2 p.
Theorem LOUDS positionE t (p : seg nat) :
  let B := LOUDS t in valid_position t p ->
  LOUDS_position t p = LOUDS_subtree B p.
Theorem LOUDS_parentE t (p : seg nat) x :
  let B := LOUDS t in valid_position t (rcons p x) ->
  LOUDS parent B (LOUDS position t (rcons p x)) = LOUDS position t p.
Theorem LOUDS childrenE t (p : seg nat) :
  let B := LOUDS t in valid_position t p ->
  children t p = LOUDS_children B (LOUDS_position t p).
```

Proof

Difficulties with LOUDS

Many problems

- Breadth-first traversal is far from the structure of the tree.
- One cannot use structural induction, only depth-induction on a forest
- The correspondance we defined is not "natural"
- Indices very hard to apprehend for a human brain

As a result

- The proof for LOUDS is about 800 lines
- Many lemmas require more than 50 lines
- Still looking for a better approach

Introduction

Rank&Select Plan Definitions

LOUDS

Implementation Proof

Dynamic data

Principle
Simply typed
Richly typed
Conclusion

Dynamic succinct data structures

- The optimal representation for static succinct data structures use arrays, which are not good for dynamic insertion/deletion
- There are concrete use case for dynamic succinct data structures
- We cannot have both constant time rank/select and efficient insertion/deletion
- Using balanced trees, all operations are $O(\log n)$

[Navarro 2016, Chapter 12]

Introduction

Rank&Select Plan

Definition

LOUDS

Proof

Dynamic data

Principle Simply typ

Richly typed Conclusion

Dynamic bit sequence as tree

num is the number of buts on the left, *ones* the number of 1's on the left

Principle

Implementation

- Use red-black trees to implement
 - complexity is the same for all balanced trees
 - easy to represent in a functional style
 - already several implementations in CoQ
 - however we need a different data layout with new invariants, so we had to reimplement
- Two implementations using types differently
 - 1 simply typed implementations, with invariants expressed as separate theorems
 - 2 dependent types, directly encoding all the required invariants
- We implemented rank, select, insert and delete

Introduction

Rank&Select Plan Definitions

LOUDS

Implementation Proof

Dynamic data

Principle
Simply typed
Richly typed
Conclusion

Simply typed implementation

A red-black tree for bit sequences Inductive color := Red | Black.

```
Inductive btree (D A : Type) : Type :=
| Bnode of color & btree D A & D & btree D A
| Bleaf of A.

Definition dtree := btree (nat * nat) (seq bool).
The meaning of the tree is given by dflatten

Fixpoint dflatten (B : dtree) :=
    match B with
| Bnode _ 1 _ r => dflatten 1 ++ dflatten r
| Bleaf s => s
end.
```

Invariants on the internal representation

Introduction

Plan

Definitions

LOUDS

Implementation Proof

Dynamic dat

Principle Simply typed Richly typed Conclusion

Simply typed basic operations

```
Fixpoint drank (B : dtree) (i : nat) :=
  match B with
  \mid Bnode _{1} (num, ones) r \Rightarrow
    if i < num then drank l i
                else ones + drank r (i - num)
  | Bleaf s =>
    rank true i s
  end.
Lemma dtree ind (P : dtree -> Prop) :
  (forall c 1 r num ones,
   num = size (dflatten 1) ->
   ones = count mem true (dflatten 1) ->
   wf_dtree 1 /\ wf_dtree r ->
   Pl \rightarrow Pr \rightarrow P(Bnode\ c\ l\ (num.\ ones)\ r)) \rightarrow
  (forall s, (w^2)./2 \le size s < (w^2).*2 -> P(Bleaf_s)) ->
  forall B, wf_dtree B -> P B.
Lemma drankE (B : dtree) i :
  wf dtree B -> drank B i = rank true i (dflatten B).
```

All proofs are only a few line long

Introduction

Rank&Select Plan Definitions

LOUD!

Implementation Proof

Dynamic data

Principle
Simply typed
Richly typed
Conclusion

Simply typed basic operations

```
Fixpoint dselect_1 (B : dtree) (i : nat) :=
  match B with
  | Bnode 1 (num, ones) r \Rightarrow
    if i <= ones then dselect 1 l i
                 else num + dselect_1 r (i - ones)
  | Bleaf s => select true i s
  end.
Fixpoint dselect 0 (B : dtree) (i : nat) :=
  match B with
  \mid Bnode _1 (num, ones) r \Rightarrow
    let zeroes := num - ones in
    if i <= zeroes then dselect 0 l i
                   else num + dselect 0 r (i - zeroes)
  | Bleaf s => select false i s
  end.
Lemma dselect 1E B i :
  wf dtree B -> dselect 1 B i = select true i (dflatten B).
Lemma dselect 0E B i :
wf dtree B -> dselect 0 B i = select false i (dflatten B).

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥○○○
```

Introduction

Plan

Definitions

LOUD

Implementation Proof

Proof

Principle

Simply typed Richly typed Conclusion

Simplify typed insertion

```
Fixpoint dins (B : dtree) b i w : dtree :=
  match B with
  | Bleaf s =>
    let s' := insert1 s b i in
    if size s + 1 == 2 * (w^2)
    then let n := (size s') \%/ 2 in
         let sl := take n s' in
         let sr := drop n s' in
         Bnode Red (Bleaf _ sl)
               (size sl, rank true (size sl) sl)
               (Bleaf sr)
    else Bleaf s'
    Bnode c 1 (num. ones) r \Rightarrow
    if i < num then <pre>balanceL c (dins l b i w) r
               else balanceR c l (dins r b (i - num) w)
  end.
Definition dinsert (B : dtree) b i w : dtree :=
  match dins B b i w with
  | Bleaf s => Bleaf s
   Bnode l d r => Bnode Black l d r
  end.
```

Introduction

Rank&Select Plan Definitions

LOUDS

Implementation Proof

Dynamic data

Principle
Simply typed
Richly typed
Conclusion

Balancing

- Number of cases is the main difficulty for red-black trees
- Expanding balanceL generates 11 cases
- \bullet Following $\mathrm{SSReflect}$ style, we avoid opaque automation

```
Ltac decompose_rewrite :=
  let H := fresh "H" in
  case/andP || (move=>H; rewrite ?H ?(eqP H)).
Lemma balanceL_wf c (1 r : dtree) :
  wf_dtree 1 -> wf_dtree r -> wf_dtree (balanceL c l r).
Proof.
case: c => /= wfl wfr. by rewrite wfl wfr ?(dsizeE,donesE,eqxx).
case: 1 wfl =>
  [[[[] 111 []]n 110] []r|[]A] []n 10] [[] 1r] []rn 1ro] [rr|[]rA]
   | | 11 [ln lo] lr] | 1A] /=;
  rewrite wfr; repeat decompose_rewrite;
  by rewrite ?(dsizeE, donesE, size_cat, count_cat, eqxx).
Qed.
                                       4□ > 4□ > 4 ≡ > 4 ≡ > □
900
```

Introduction

Rank&Selec Plan Definitions

LOUDS

Implementatio Proof

Principle Simply typed Richly typed

Dependently typed definition

All the invariants are in the tree

- as a dynamic bit sequence
- as a red-black tree

```
Definition is_black c := if c is Black then true else false. Definition color_ok parent child := is\_black\ parent\ ||\ is\_black\ child.
```

Introductio Rank&Select

Plan
Definitions

LOUDS

Implementation Proof

Dynamic data

Principle Simply typed Richly typed Conclusion

Dependently typed operations

- Definition of basic operations almost unchanged
- No need for dtree_ind
- Could define dins using the Program environment

```
Program Fixpoint dinsert' {n m d c} (B : tree n m d c) (b : bool) i 
 {measure (size_of_tree B)} : { B' : near_tree n.+1 (m + b) d c} 
 | dflattenn B' = insert1 (dflatten B) b i } := ...
```

Generates 20 proof obligations, for a total of about 90 lines

- Defining balanceL and balanceR
 - The Program environment is almost unusable there
 - Could define (and prove) it in 17 lines of Ltac

```
Definition balanceL {nl ml d cl cr nr mr} (p : color)

(l : near_tree nl ml d cl) (r : tree nr mr d cr) :

color_ok p (fix_color l) -> color_ok p cr ->

{tr : near_tree (nl + nr) (ml + mr) (inc_black d p) p

| dflattenn tr = dflattenn l ++ dflatten r}.

destruct r as [s1 o1 s2 o2 s3 o3 d' x y z | s o d' c' cc r'].

+ case: p => //= cpl cpr.

(* 11 more lines of definition/proof *)

Defined.
```

19 / 21

LOUDS Implementation

Dynamic data

Principle Simply typed Richly typed Conclusion

Deletion

The mysterious side

- Omitted in Okasazi's Book
- Enigmatic algorithm by Stefan Kahrs, with an invariant but no details

Chose to rediscover it

- Start with the dependently typed version
 4 definitions: merge_arrays, delete_leaves, balanceL2,
 balanceR2, ddelete; all huge
- Use extraction to retrieve the computational part
- Rewrite and prove the simply typed version
 Proofs are small, except for the final one, 25 lines long

```
Lemma ddel_is_nearly_redblack' B i n c :
  0 < n -> is_redblack B c n ->
  is_nearly_redblack' (ddel B i) c n.
```

Introduction

Rank&Select Plan Definitions

LOUDS

Implementatio Proof

Dynamic data

Principle Simply typed Richly typed Conclusion

Dynamic bit sequences perspectives

- Simply typed approach
 - SSReflect style worked well, providing short and readable proofs
 - proof of balancing is more intuitive than in previous approaches
 - however many small lemmas are required
- Dependently typed version
 - all properties are in the types, no need for dispersed proofs
 - due to limitations in the Program environment, the definition must be rewritten
 - · fixing the proofs after changes is painful
- Future work
 - We have not yet started working on complexity
 - First step: what would be a good definition?

Introduction

Plan
Definitions

LOUDS

Implementation Proof

Dynamic data

Principle Simply typed Richly typed Conclusion

Dynamic bit sequences perspectives

- Simply typed approach
 - SSReflect style worked well, providing short and readable proofs
 - proof of balancing is more intuitive than in previous approaches
 - however many small lemmas are required
- Dependently typed version
 - all properties are in the types, no need for dispersed proofs
 - due to limitations in the Program environment, the definition must be rewritten
 - fixing the proofs after changes is painful
- Future work
 - We have not yet started working on complexity
 - First step: what would be a good definition?