MAE 4300 Design Project

Introduction

The purpose of this design report is to analyze the output shaft of a gear box. The system was geared such that 720.29 in*lbf torque would result in 14586 in*lbf output torque. To do so, it required four gears and three shafts. The objective of this report was to analyze the last of the three shafts and determine proper tolerances such that the safety factor of each part would be exceed 1.5.

There are many obstacles to over come when developing a reliable output shaft. First the internal forces were found by determining the resulting forces acting on the shaft. Bearing must be fitted to the shaft that can withstand the Statics bearing force, from that a diameter can be determined from each point on the shaft I through R.

Output Shaft Design

Figure 1, A sketch of the shaft labeling analysis points

Table 1: material properties, moment, and torque at analysis points on the shaft

	Moment	Torque
	(in* lbf)	(in*lbf)
Ι	539.11	0
J	898.5243	0
K	1257.9341	0
G	2695.573	14586
L	1838.001	14586
M	1553.93	14586
N	1131.8152	14586
O	721.9903	14586
P	200	14586
Q	150	14586
R	100	14586

Table 2 Stating Selected Diameters

Selected Diameters (in)						
D1	D2	D3	D4	D5	D6	D7
1.5748	1.748	3.3955	3.059	3.059	2.7559	2.48

Table 2: Listing all the safety factors at points on the shaft

Safety	Against	Against
Factors	Fatigue	Yielding
Ι	7.8	11.162
J	8.32	12.04
K	28.8	45.21
L	19.71	30.942
M	2.18	3.04
N	7.03	4.519
О	4.24	2.597
P	3.24	1.866
Q	6.32	3.569
R	6.4	3.584

Table 3: computed bearing reaction forces, C10 loads, and bearing type

	Reaction Forces (lbf)	C10 _a (lbf)	Bearing Type:
A	1437.639	7822.5859	Cylindrical Roller Bearing
В	1112.5678	6053.7848	Cylindrical Roller Bearing

Table 4: Gear, Shaft key material, and dimensions

Feature	Material Name	Yield Strength (ksi)	Hight (in)	Width (in)	Length (in)	Death (in)
Key 1	1020 CD	57	3/4	3/4	0.6692	3/8
Key 2	1015 HR	27.5	5/8	5/8	2.0806	5/16
Gear	Not required by	contracted rubric	***	***	***	***

Calculations

Power input: H := 20 hp

Input Speed: $\omega_2 := 1750 \text{ rpm}$

Reverted gear train, gear and bearing life > 12,000 hours, shaft has infinite life.

Tooth Counts: $N_2 := 16$ $N_3 := 72$ $N_4 := 16$ $N_5 := 72$

Angular Velocities: $\omega_3 \coloneqq \omega_2 \cdot \frac{N_2}{N_3} = 388.89 \; \mathrm{rpm}$

$$\omega_5 := \omega_3 \cdot \frac{N_2}{N_3} = 86.42 \text{ rpm}$$

Rounded angular velocity: $\omega_5 := 86.42 \text{ rpm}$

Torques: $T_2 := \frac{H}{\omega_2} = 720.29 \text{ in lbf}$ rounded value: $T_2 := 720 \text{ in lbf}$

 $T_5 := \frac{H}{\omega_5} = 14585.83 \text{ in lbf}$ rounded value: $T_5 := 14586 \text{ in lbf}$

Gear 5 pitch diameter: $d_{5p} \coloneqq 12 \text{ in}$ Pressure angle: $\phi \coloneqq 20 \text{ deg}$

Transverse Force: $W_{45t} := \frac{T_5}{\frac{d_{5p}}{2}} = 2431 \text{ lbf}$ rounded value: $W_{45t} := 2431 \text{ lbf}$

_

Radial Force: $W_{45r} := W_{45t} \cdot \tan(\phi) = 884.81 \text{ lbf}$ rounded value: $W_{45r} := 885 \text{ lbf}$

Distances from the left bearing center: $L_{\tau} := 0.375 \text{ in}$

 $L_T := L_T + 0.25 \text{ in} = 0.625 \text{ in}$

 $L_K := L_D + 0.25 \text{ in} = 0.875 \text{ in}$

 $L_{\rm M} := L_{\rm K} + 2 \text{ in} = 2.875 \text{ in}$

 $L_L := L_M - 0.25 \text{ in} = 2.625 \text{ in}$

 $L_N := L_M + 0.375 \text{ in} = 3.25 \text{ in}$

 $L_O := L_M + 0.75 \text{ in} = 3.625 \text{ in}$

 $L_P := L_O + 1 \text{ in} = 4.625 \text{ in}$

 $L_O := L_P + 0.25 \text{ in} = 4.875 \text{ in}$

 $L_R := L_P + 0.5 \text{ in} = 5.125 \text{ in}$

 $L_F := L_p + 1.0 \text{ in} = 5.625 \text{ in}$ Distance to load F

 $L_G := L_K + 1 \text{ in} = 1.875 \text{ in}$ Distance to gear center

 $L_{\rm B} \coloneqq L_{\rm O} + {\rm 0.5\;in} = 4.125\;{\rm in}$ Distaance to bearing B

External load on output shaft: F := 200 lbf

Summation of moments about A

$$R_{Bz} := -\frac{W_{45t} \cdot L_G}{L_B} = -1105 \text{ lbf}$$

$$R_{By} := \frac{F \cdot L_F - W_{45r} \cdot L_G}{L_R} = -129.55 \text{ lbf}$$

Summation of forces

$$R_{Az} := -W_{45t} - R_{Bz} = -1326 \text{ lbf}$$

$$R_{Av} := -W_{45r} - R_{Bv} + F = -555.45 \text{ lbf}$$

Vector Sum forces at bearins

$$R_{A} := \sqrt{R_{Az}^{2} + R_{Ay}^{2}} = 1437.64 \text{ lbf}$$

$$R_B := \sqrt{R_{Bz}^2 + R_{By}^2} = 1112.57 \text{ lbf}$$

Moments at analysis points:

$$M_I := \sqrt{(R_{AV} \cdot L_I)^2 + (R_{AZ} \cdot L_I)^2} = 539.11 \text{ in lbf}$$

$$M_J := \sqrt{(R_{AV} \cdot L_J)^2 + (R_{AZ} \cdot L_J)^2} = 898.5243 \text{ in lbf}$$

$$M_{K} := \sqrt{\left(R_{Ay} \cdot L_{K}\right)^{2} + \left(R_{Az} \cdot L_{K}\right)^{2}} = 1257.9341 \text{ in lbf}$$

$$\mathit{M}_{L} := \left(\sqrt{\left(\mathit{R}_{\mathsf{A}y} \cdot \mathit{L}_{L} + \mathit{W}_{\mathit{45r}} \cdot \left(\mathit{L}_{L} - \mathit{L}_{\mathit{G}}\right)\right)^{2} + \left(\mathit{R}_{\mathsf{A}z} \cdot \mathit{L}_{L} + \mathit{W}_{\mathit{45t}} \cdot \left(\mathit{L}_{L} - \mathit{L}_{\mathit{G}}\right)\right)^{2}}\right) = 1838.001 \text{ in lbf}$$

$$M_{M} := \left(\sqrt{\left(R_{Ay} \cdot L_{M} + W_{45r} \cdot \left(L_{M} - L_{G}\right)\right)^{2} + \left(R_{Az} \cdot L_{M} + W_{45t} \cdot \left(L_{M} - L_{G}\right)\right)^{2}}\right) = 1553.93 \text{ in lbf}$$

$$\mathit{M}_{N} := \left(\sqrt{\left(\mathit{R}_{\mathsf{A}_{Y}} \cdot \mathit{L}_{N} + \mathit{W}_{\mathit{45r}} \cdot \left(\mathit{L}_{N} - \mathit{L}_{\mathit{G}}\right)\right)^{2} + \left(\mathit{R}_{\mathsf{A}_{Z}} \cdot \mathit{L}_{N} + \mathit{W}_{\mathit{45t}} \cdot \left(\mathit{L}_{N} - \mathit{L}_{\mathit{G}}\right)\right)^{2}}\right) = 1131.8152 \text{ in lbf}$$

$$M_{O} := \sqrt{\left(R_{Ay} \cdot L_{O} + W_{45x} \cdot \left(L_{O} - L_{G}\right)\right)^{2} + \left(R_{Az} \cdot L_{O} + W_{45t} \cdot \left(L_{O} - L_{G}\right)\right)^{2}} = 721.9903 \text{ in lbf}$$

$$M_p := \sqrt{\left(F \cdot \left(L_F - L_p\right)\right)^2} = 200 \text{ in lbf}$$

$$M_Q := \sqrt{\left(F \cdot \left(L_F - L_Q\right)\right)^2} = 150 \text{ in lbf}$$

$$M_R := \sqrt{\left(F \cdot \left(L_F - L_R\right)\right)^2} = 100 \text{ in lbf}$$

$$\mathit{M}_{\mathit{G}} \coloneqq \sqrt{\left(\mathit{R}_{\mathit{A}\mathit{y}} \cdot \mathit{L}_{\mathit{G}}\right)^{2} + \left(\mathit{R}_{\mathit{A}\mathit{z}} \cdot \mathit{L}_{\mathit{G}}\right)^{2}} = 2695.573 \; \text{in lbf}$$

Torque Analysis

$$T_{\tau} := 0 \text{ in } 1bf = 0$$
 $T_{\tau} := T_{\tau} = 0$ $T_{\kappa} := T_{\tau} = 0$

$$T_L := T_G = 14586 \text{ in lbf}$$
 $T_N := T_G = 14586 \text{ in lbf}$ $T_C := T_G = 14586 \text{ in}$

Torque Analysis
$$T_{I} \coloneqq 0 \text{ in lbf} = 0 \qquad T_{J} \coloneqq T_{I} = 0 \quad T_{K} \coloneqq T_{J} = 0$$

$$T_{G} \coloneqq 14586 \text{ in lbf} \qquad T_{D} \coloneqq T_{G} = 14586 \text{ in lbf} \qquad T_{D} \coloneqq T_{G} = 14586 \text{ in lbf}$$

$$T_{L} \coloneqq T_{G} = 14586 \text{ in lbf} \quad T_{Q} \coloneqq T_{G} = 14586 \text{ in lbf}$$

$$T_{M} \coloneqq T_{G} = 14586 \text{ in lbf} \quad T_{C} \coloneqq T_{C} = 14586 \text{ in lbf}$$

$$T_{C} \coloneqq T_{C} = 14586 \text{ in lbf} \quad T_{C} \coloneqq T_{C} = 14586 \text{ in lbf}$$

$$M_{pp} := \begin{bmatrix} 0 & 0 \\ L_{I} \cdot \frac{1}{\ln} & M_{I} \cdot \frac{1}{\ln 1 b f} \\ L_{J} \cdot \frac{1}{\ln} & M_{J} \cdot \frac{1}{\ln 1 b f} \\ L_{K} \cdot \frac{1}{\ln} & M_{K} \cdot \frac{1}{\ln 1 b f} \\ L_{G} \cdot \frac{1}{\ln} & M_{G} \cdot \frac{1}{\ln 1 b f} \\ L_{L} \cdot \frac{1}{\ln} & M_{L} \cdot \frac{1}{\ln 1 b f} \\ L_{M} \cdot \frac{1}{\ln} & M_{M} \cdot \frac{1}{\ln 1 b f} \\ L_{N} \cdot \frac{1}{\ln} & M_{N} \cdot \frac{1}{\ln 1 b f} \\ L_{O} \cdot \frac{1}{\ln} & M_{O} \cdot \frac{1}{\ln 1 b f} \\ L_{Q} \cdot \frac{1}{\ln} & M_{Q} \cdot \frac{1}{\ln 1 b f} \\ L_{Q} \cdot \frac{1}{\ln} & M_{Q} \cdot \frac{1}{\ln 1 b f} \\ L_{K} \cdot \frac{1}{\ln} & M_{R} \cdot \frac{1}{\ln 1 b f} \\ L_{K} \cdot \frac{1}{\ln} & M_{R} \cdot \frac{1}{\ln 1 b f} \\ L_{K} \cdot \frac{1}{\ln} & M_{R} \cdot \frac{1}{\ln 1 b f} \\ L_{K} \cdot \frac{1}{\ln} & 0 \end{bmatrix}$$

Plot of Peak Moments

Student ID: A02233404 Assigned Material: 1018 32 HR Steel

$$S_{ut} := 58 \text{ ksi}$$
 $S_v := 32 \text{ ksi}$

1018 HR 58 32

Combinind Eq. 6-19 and 6-20:

$$Sef\left(S_{ut}, d\right) := 2.7 \cdot \left(\frac{S_{ut}}{\text{ksi}}\right)^{-0.265} \cdot \text{if } d > 2 \text{ in} \\ 0.91 \cdot \left(\frac{d}{\text{in}}\right)^{-0.157} \cdot 0.5 \cdot S_{ut}$$

$$else$$

$$0.879 \cdot \left(\frac{d}{\text{in}}\right)^{-0.107}$$

Using Eq. 6-33, 6-34, 6-35, and 6-36, we get the following functions to compute Kf and Kfs.

$$Kff\left(S_{ut}, r, K_{t}\right) := 1 + \frac{K_{t} - 1}{1 + \left[0.246 - 3.08 \cdot 10^{-3} \cdot \frac{S_{ut}}{\text{ksi}} + 1.51 \cdot 10^{-5} \cdot \left(\frac{S_{ut}}{\text{ksi}}\right)^{2} - 2.67 \cdot 10^{-8} \cdot \left(\frac{S_{ut}}{\text{ksi}}\right)^{3}\right] \cdot \sqrt{\text{in}}}$$

$$Kfs\left(S_{ut}, r, K_{ts}\right) := 1 + \frac{K_{ts} - 1}{1 + \left[0.19 - 2.51 \cdot 10^{-3} \cdot \frac{S_{ut}}{\text{ksi}} + 1.35 \cdot 10^{-5} \cdot \left(\frac{S_{ut}}{\text{ksi}}\right)^{2} - 2.67 \cdot 10^{-8} \cdot \left(\frac{S_{ut}}{\text{ksi}}\right)^{3}\right] \cdot \sqrt{\ln t}}$$

Eq 7-5 assuming Ta = 0:
$$\sigma_{af}(K_f, M, D) := \frac{32 \cdot K_f \cdot M}{\pi \cdot D^3}$$

$$\text{Eq 7-6 assuming Mm = 0: } \sigma_{\text{mf}}\left(K_{\text{fs}}\text{, }T\text{, }D\right) \coloneqq \sqrt{3 \cdot \left(\frac{16 \cdot K_{\text{fs}} \cdot T}{\pi \cdot D^{3}}\right)^{2}}$$

Eq. 6-46 for fatigue safety factor using modified Goodman
$$n_{ff}\left(\sigma'_{a},\sigma'_{m},S_{e},S_{ut}\right) := \frac{1}{\frac{\sigma'_{a}}{S_{e}} + \frac{\sigma'_{m}}{S_{ut}}}$$

Eq. 6-49 for predicting yield (conservative approach):
$$n_{yf} \left(S_y, \sigma'_a, \sigma'_m \right) := \frac{S_y}{\sigma'_a + \sigma'_m}$$

Eq. 11-9 for C10 bearing loads

$$ratedLoad\left(\boldsymbol{a}_{\ell}\,,\,\boldsymbol{F}_{\!\scriptscriptstyle D}\,,\,\boldsymbol{R}_{\!\scriptscriptstyle D}\,,\,\boldsymbol{a}\,,\,\boldsymbol{b}\,,\,\boldsymbol{x}_{\!\scriptscriptstyle 0}\,,\,\boldsymbol{\theta}\,,\,\boldsymbol{x}_{\!\scriptscriptstyle D}\right) \coloneqq \boldsymbol{a}_{\ell}\cdot\boldsymbol{F}_{\!\scriptscriptstyle D}\cdot\left(\frac{\boldsymbol{x}_{\!\scriptscriptstyle D}}{\boldsymbol{x}_{\!\scriptscriptstyle D}}\right)\cdot\left(\ln\left(\frac{1}{R_{\!\scriptscriptstyle D}}\right)\right)^{\frac{1}{D}}\right)^{\frac{1}{D}}$$

Point Calculations

The diameter for bearing 1 at D₁ is 1.5748 in

The diameter for bearing 2 at D₆ is 2.7559 in

The rest of the bearings are calculated by guess and check

From the Bearing
$$D_1 \coloneqq 1.5748 \text{ in}$$
 $D_2 \coloneqq D_1 \cdot 1.11$ From the Bearing $D_6 \coloneqq 2.7559 \text{ in}$ $D_1 = 1.5748 \text{ in}$ $D_2 \coloneqq 1.11$ $D_2 \coloneqq 1.748 \text{ in}$ $D_3 \coloneqq D_4 \cdot 1.11$ $D_3 \coloneqq 3.3955 \text{ in}$ $D_5 \coloneqq D_4 \cdot 1$ $D_4 = 3.059 \text{ in}$ $D_7 \coloneqq 2.48 \text{ in}$ $D_6 = 2.7559 \text{ in}$ $D_7 = 2.48 \text{ in}$

This is the Logic code to help:

if
$$D_2 \ge 1.1 \cdot D_1$$
 $\times D2D1 :=$ "WE GOOD" else $\times D2D1 :=$ "NOPE" $\times D2D1 :=$ "NOPE" $\times D2D1 :=$ "WE GOOD" if $D_3 \ge 1.1 \cdot D_4$ $\times D3D2 :=$ "WE GOOD" else $\times D3D2 :=$ "NOPE" $\times D3D2 :=$ "WE GOOD" if $D_5 \ge 1.1 \cdot D_6$ $\times D5D6 :=$ "We GOOD" else $\times D5D6 :=$ "We GOOD" $\times D5D6 :=$ "We GOOD"

Stress Concentration Factors are Selected From Table 7--1

Table 7-1

First Iteration Estimates for Stress-Concentration Factors K_t and K_t .

Warning: These factors are only estimates for use when actual dimensions are not yet determined. Do not use these once actual dimensions are available.

	Bending	Torsional	Axial
Shoulder fillet—sharp ($r/d = 0.02$)	2.7	2.2	3.0
Shoulder fillet—well rounded ($r/d = 0.1$)	1.7	1.5	1.9
End-mill keyseat $(r/d = 0.02)$	2.14	3.0	_
Sled runner keyseat	1.7	-	_
Retaining ring groove (use r=0.01 in)	5.0	3.0	5.0

Stress Analysis at Point I

Moment and Torque: $M := M_I = 539.1146 \text{ in lbf}$	$T := 0$ $K_t := 2.7$ $K_{ts} := 2.2$
Selected Diameter: $d := D_1 = 1.5748 \text{ in}$	
Stress Concentration Factors from Table 7-1	(Sharp Fillet): $r_d := 0.02 = 0.02$
Corrected Fatigue Stress Concentration Factor	ors using Eq. 6-35a and 6-35b $r_d \cdot d = 0.0315 \text{ in}$
$Kf := Kff\left(S_{ut}, r_d \cdot d, K_t\right) = 2.0389$	$Kfs := Kfs (S_{ut}, r_d \cdot d, K_{ts}) = 1.8125$
Alternating von Mises stress from Eq. 7-5:	$\sigma_{aI} := \sigma_{af} (Kf, M, d) = 2.8668 \text{ ksi}$
Midrange von Mises stress from Eq. 7-6:	$\sigma_{mI} := \sigma_{mf} (Kfs, T, d) = 0 \text{ ksi}$
Endurance Limit from Eq. 6-19 and 6-20:	$S_e := Sef\left(S_{ut}, d\right) = 22.3532 \text{ ksi}$
Safety Factor against fatigue, Eq. 6-46:	$n_{fI} \coloneqq n_{ff} \left(\left. \sigma_{aI} \right., \sigma_{mI}, S_{e} , S_{ut} \right) = 7 . 8$
Safety Factor against yielding, Eq. 6-49:	$n_{yI} := n_{yf} \left(S_y, \sigma_{aI}, \sigma_{mI} \right) = 11.162$

Stress Analysis at Point J

Moment and Torque: $M := M_J = 898.5243 \text{ in lbf}$ T := 0 $K_t := 1.7$ $K_{ts} := 1.5$

Selected Diameter: $d := D_2 = 1.748 \text{ in}$

Stress Concentration Factors from Table 7-1 (Rounded Fillet): $r_d := 0.02 = 0.02$

Corrected Fatigue Stress Concentration Factors using Eq. 6-35a and 6-35b $r_d \cdot d = 0.035 \text{ in}$

 $\mathit{Kff} \coloneqq \mathit{Kff}\left(S_{ut}\,,\,r_d\cdot d\,,\,K_t\right) = 1.4364 \qquad \qquad \mathit{Kfs} \coloneqq \mathit{Kfs}\left(S_{ut}\,,\,r_d\cdot d\,,\,K_{ts}\right) = 1.3442$

(ut · a · ts)

Alternating von Mises stress from Eq. 7-5: $\sigma_{aI} := \sigma_{af} (\textit{Kf}, \textit{M}, \textit{d}) = 2.4613 \text{ ksi}$

Midrange von Mises stress from Eq. 7-6: $\sigma_{mI} := \sigma_{mf} \left(\textit{Kfs, T, d} \right) = 0 \text{ ksi}$

Endurance Limit from Eq. 6-19 and 6-20: $S_e := Sef\left(S_{ut}, d\right) = 22.105 \text{ ksi}$

Safety Factor against fatigue, Eq. 6-46: $n_{fJ} := n_{ff} \left(\sigma_{aI}, \sigma_{mI}, S_e, S_{ut} \right) = 8.98$

Safety Factor against yielding, Eq. 6-49: $n_{yJ} := n_{yf} \left(S_y, \sigma_{aI}, \sigma_{mI} \right) = 13.001$

Stress Analysis at K

Moment and Torque: $M := M_K = 1257.9341$ in lbf T := 0 $K_t := 2.7$ $K_{ts} := 2.2$

Selected Diameter: $d := D_4 = 3.059 \text{ in}$

Stress Concentration Factors from Table 7-1 (Sharp Fillet): $r_d = 0.02 = 0.02$

Corrected Fatigue Stress Concentration Factors using Eq. 6-35a and 6-35b

 $Kf := Kff \left(S_{ut}, r_d \cdot d, K_t \right) = 2.1671$ $Kfs := Kfs \left(S_{ut}, r_d \cdot d, K_{ts} \right) = 1.8941$ $r_d \cdot d = 0.0612 \text{ in}$

Alternating von Mises stress from Eq. 7-5: $\sigma_{aI} := \sigma_{af} (\mathit{Kf}, M, d) = 0.97 \, \mathrm{ksi}$

Midrange von Mises stress from Eq. 7-6: $\sigma_{mI} := \sigma_{mf} \left(\mathit{Kfs} \, , \, \mathit{T} \, , \, \mathit{d} \, \right) = 0 \, \, \mathrm{ksi}$

Endurance Limit from Eq. 6-19 and 6-20: $S_e := Sef(S_{ut}, d) = 20.3825 \text{ ksi}$

Safety Factor against fatigue, Eq. 6-46: $n_{fK} := n_{ff} \left(\sigma_{aI}, \sigma_{mI}, S_e, S_{ut} \right) = 21.01$

Safety Factor against yielding, Eq. 6-49: $n_{yK} := n_{yf} \left(S_y, \sigma_{aI}, \sigma_{mI} \right) = 32.99$

 $I_{ts} := 3$

 $r_d = 0.01$

Stress Analysis at Point L

Moment and Torque:
$$M := M_L = 1838.001 \text{ in lbf}$$
 $T := 0$ $K_t := 2.14$ $K_{ts} := 2.14$

Selected Diameter:
$$d := D_4 = 3.059 \text{ in}$$

Stress Concentration Factors from Table 7-1 (Key Seat):
$$r_d := 0.02 = 0.02$$

$$\textit{Kf} := \textit{Kff} \left(S_{ut}, \, r_d \cdot d \, , \, K_t \right) = 1.7826 \qquad \qquad \textit{Kfs} := \textit{Kfs} \left(S_{ut}, \, r_d \cdot d \, , \, K_{ts} \right) = 2.4902 \qquad \qquad r_d \cdot d = 0.0612 \, \, \text{in}$$

Alternating von Mises stress from Eq. 7-5:
$$\sigma_{a\bar{I}} := \sigma_{af} (Kf, M, d) = 1.1659 \text{ ksi}$$

Midrange von Mises stress from Eq. 7-6:
$$\sigma_{mI} := \sigma_{mf} (Kfs, T, d) = 0 \text{ ksi}$$

Endurance Limit from Eq. 6-19 and 6-20:
$$S_e \coloneqq Sef\left(S_{ut}, d\right) = 20.3825 \text{ ksi}$$

Safety Factor against fatigue, Eq. 6-46:
$$n_{fL} := n_{ff} \left(\sigma_{aI}, \sigma_{mI}, S_e, S_{ut} \right) = 17.48$$

Safety Factor against yielding, Eq. 6-49:
$$n_{yL} := n_{yf} \left(S_y, \sigma_{aI}, \sigma_{mI} \right) = 27.448$$

Stress Analysis at Point M

Moment and Torque:
$$M := M_M = 1553.93 \text{ in lbf}$$
 $T := T_M$

Selected Diameter:
$$d := D_4 = 3.059 \text{ in}$$

Stress Concentration Factors from Table 7-1 (Grove):
$$r_d = 0.01 = 0.01$$

Corrected Fatigue Stress Concentration Factors using Eq.
$$6\text{--}35a$$
 and $6\text{--}35b$

$$Kf := Kff(S_{ut}, r_{d} \text{ in}, K_{t}) = 2.8784$$
 $Kfs := Kfs(S_{ut}, r_{d} \cdot d, K_{ts}) = 2.3479$

Alternating von Mises stress from Eq. 7-5:
$$\sigma_{al} := \sigma_{af} (Kf, M, d) = 1.5916 \text{ ksi}$$

Midrange von Mises stress from Eq. 7-6:
$$\sigma_{mT} := \sigma_{mf} (Kfs, T, d) = 10.5531 \text{ ksi}$$

Endurance Limit from Eq. 6-19 and 6-20:
$$S_e := Sef(S_{ut}, d) = 20.3825 \text{ ksi}$$

Safety Factor against fatigue, Eq. 6-46:
$$n_{fM} := n_{ff} \left(\sigma_{aI}, \sigma_{mI}, S_e, S_{ut} \right) = 3.85$$

Safety Factor against yielding, Eq. 6-49:
$$n_{yM} := n_{yf} \left(S_y, \sigma_{aI}, \sigma_{mI} \right) = 2.635$$

 $r_d \cdot d = 0.3059 \text{ in}$

Stress Analysis at Point N

 $K_t := 1.7$ $K_{ts} := 1.5$ Moment and Torque: $M := M_N = 1131.8152 \text{ in lbf}$ $T := T_N$

Selected Diameter: $d := D_5 = 3.059 \text{ in}$

Stress Concentration Factors from Table 7-1 (Rounded Fillet): $r_d := 0.1 = 0.1$

Corrected Fatigue Stress Concentration Factors using Eq. 6-35a and 6-35b

$$\mathit{Kfs} \coloneqq \mathit{Kff}\left(S_{ut},\,r_d\cdot d\,,\,K_t\right) = 1.5813 \qquad \qquad \mathit{Kfs} \coloneqq \mathit{Kfs}\left(S_{ut},\,r_d\cdot d\,,\,K_{ts}\right) = 1.4336$$

Alternating von Mises stress from Eq. 7-5: $\sigma_{aI} := \sigma_{af} (Kf, M, d) = 0.6368 \text{ ksi}$

Midrange von Mises stress from Eq. 7-6: $\sigma_{mI} := \sigma_{mf} (Kfs, T, d) = 6.4439 \text{ ksi}$

 $S_e := Sef(S_{ut}, d) = 20.3825 \text{ ksi}$ Endurance Limit from Eq. 6-19 and 6-20:

 $n_{fN} := n_{ff} (\sigma_{aI}, \sigma_{mI}, S_e, S_{ut}) = 7.03$ Safety Factor against fatigue, Eq. 6-46:

Safety Factor against yielding, Eq. 6-49: $n_{yN} := n_{yf} \left(S_y, \sigma_{aI}, \sigma_{mI} \right) = 4.519$

Stress Analysis at Point O

 $K_t := 2.7$ $K_{ts} := 2.2$ Moment and Torque: $M := M_0 = 721.9903$ in lbf $T := T_{O}$

Selected Diameter: $d := D_6 = 2.7559 \text{ in}$

 $r_d = 0.02 = 0.02$ Stress Concentration Factors from Table 7-1 (Sharp Fillet):

Corrected Fatigue Stress Concentration Factors using Eq. 6-35a and 6-35b

 $r_d \cdot d = 0.0551 \text{ in}$ $Kf := Kff(S_{ut}, r_d \cdot d, K_t) = 2.1478$ $Kfs := Kfs (S_{ut}, r_d \cdot d, K_{ts}) = 1.8821$

Alternating von Mises stress from Eq. 7-5: $\sigma_{aT} := \sigma_{af} (Kf, M, d) = 0.7546 \text{ ksi}$

 $\sigma_{mI} := \sigma_{mf} (Kfs, T, d) = 11.5694 \text{ ksi}$ Midrange von Mises stress from Eq. 7-6:

 $S_e := Sef\left(S_{ut}, d\right) = 20.7192 \text{ ksi}$ Endurance Limit from Eq. 6-19 and 6-20:

Safety Factor against fatigue, Eq. 6-46: $n_{fO} := n_{ff} \left(\sigma_{aI}, \sigma_{mI}, S_e, S_{ut} \right) = 4.24$

 $n_{yo} := n_{yf} \left(S_y, \sigma_{aI}, \sigma_{mI} \right) = 2.597$ Safety Factor against yielding, Eq. 6-49:

Stress Analysis at Point P

 $T := T_p$

Moment and Torque: $M := M_p = 200 \text{ in lbf}$

Selected Diameter: $d := D_6 = 2.7559 \text{ in}$ Stress Concentration Factors from Table 7-1 (Grove):

 $r_d = 0.01 = 0.01$

Corrected Fatigue Stress Concentration Factors using Eq. 6-35a and 6-35b

$$Kf := Kff(S_{ut}, r_{d} in, K_{t}) = 2.8784$$

$$Kfs := Kfs (S_{ut}, r_d \cdot d, K_{ts}) = 2.3247$$

 $r_d = 0.01$

Alternating von Mises stress from Eq. 7-5: $\sigma_{aI} := \sigma_{af} (Kf, M, d) = 0.2802 \text{ ksi}$

$$\sigma_{aI} := \sigma_{af} (K$$

$$\sigma_{mT} := \sigma_{mf} (Kfs, T, d) = 14.2905 \text{ ksi}$$

Midrange von Mises stress from Eq. 7-6:

Endurance Limit from Eq. 6-19 and 6-20:
$$S_e := Sef(S_{ut}, d) = 20.7192 \text{ ksi}$$

Safety Factor against fatigue, Eq. 6-46:

$$n_{fP} := n_{ff} \left(\sigma_{aI}, \sigma_{mI}, S_e, S_{ut} \right) = 3.85$$

Safety Factor against yielding, Eq. 6-49:

$$n_{VP} := n_{Vf} (S_V, \sigma_{aI}, \sigma_{mI}) = 2.196$$

Stress Analysis at Point Q

Moment and Torque: $M := M_O = 150 \text{ in lbf}$

 $T := T_{O}$

 $K_t := 2.7$ $K_{ts} := 2.2$

 $r_d := 0.02 = 0.02$

Selected Diameter: $d := D_7 = 2.48 \text{ in}$

Stress Concentration Factors from Table 7-1 (Sharp Fillet):

Corrected Fatigue Stress Concentration Factors using Eq. 6-35a and 6-35b

$$Kf := Kff \left(S_{ut}, r_d \cdot d, K_t\right) = 2.128$$

$$Kfs := Kfs (S_{ut}, r_d \cdot d, K_{ts}) = 1.8696$$

 $r_d \cdot d = 0.0496 in$

Alternating von Mises stress from Eq. 7-5: $\sigma_{aT} := \sigma_{af} (Kf, M, d) = 0.2132 \text{ ksi}$

$$\sigma_{aT} := \sigma_{af} (Kf, M, d) = 0.2132 \text{ ksi}$$

Midrange von Mises stress from Eq. 7-6:

$$\sigma_{mI} := \sigma_{mf} (Kfs, T, d) = 15.7709 \text{ ksi}$$

Endurance Limit from Eq. 6-19 and 6-20:

$$S_e := Sef(S_{ut}, d) = 21.0652 \text{ ksi}$$

Safety Factor against fatigue, Eq. 6-46:

$$n_{fQ} := n_{ff} \left(\sigma_{aI}, \sigma_{mI}, S_{e}, S_{ut} \right) = 3.55$$

Safety Factor against yielding, Eq. 6-49:

$$n_{yQ} := n_{yf} \left(S_y, \sigma_{aI}, \sigma_{mI} \right) = 2.002$$

Stress Analysis at Point R

Moment and Torque: $M := M_R = 100 \text{ in lbf}$

 $T := T_{R}$

 $K_{+} := 2.14$

 $K_{ts} := 3$

Selected Diameter: $d := D_7 = 2.48 \text{ in}$

Stress Concentration Factors from Table 7-1 (Key Seat):

 $r_d = 0.02 = 0.02$

Corrected Fatigue Stress Concentration Factors using Eq. 6-35a and 6-35b

$$Kf := Kff \left(S_{ut}, r_d \cdot d, K_t\right) = 1.7564$$

$$Kfs := Kfs (S_{ut}, r_d \cdot d, K_{ts}) = 2.4493$$

 $r_d \cdot d = 0.0496 in$

Alternating von Mises stress from Eq. 7-5: $\sigma_{aI} := \sigma_{af} (Kf, M, d) = 0.1173 \text{ ksi}$

Midrange von Mises stress from Eq. 7-6:

 $\sigma_{mI} := \sigma_{mf} (Kfs, T, d) = 20.6611 \text{ ksi}$

Endurance Limit from Eq. 6-19 and 6-20:

 $S_e := Sef(S_{ut}, d) = 21.0652 \text{ ksi}$

Safety Factor against fatigue, Eq. 6-46:

 $n_{fR} := n_{ff} \left(\sigma_{aI}, \sigma_{mI}, S_e, S_{ut} \right) = 2.76$

Safety Factor against yielding, Eq. 6-49:

 $n_{yR} := n_{yf} \left(S_y, \sigma_{aI}, \sigma_{mI} \right) = 1.54$

$$n_{fT} = 7.8$$

$$n_{fN} = 7.03$$

$$n_{yI} = 11.162$$
 $n_{yN} = 4.519$

$$n_{_{VM}} = 4.519$$

$$n_{fJ} = 8.98$$

$$n_{f,I} = 8.98$$
 $n_{f,O} = 4.24$

$$n_{v,7} = 13.001$$

$$n_{VO} = 2.597$$

$$n_{fK} = 21.01$$

$$n_{fP} = 3.85$$

$$n_{vK} = 32.99$$

$$n_{yP} = 2.196$$

$$n_{fL} = 17.48$$
 $n_{fO} = 3.55$

$$n_{fo} = 3.55$$

$$n_{vL} = 27.448$$

$$n_{vo} = 2.002$$

$$n_{vM} = 2.635$$
 $n_{fR} = 2.76$

$$n_{ep} = 2.76$$

$$n_{fM} = 3.85$$

$$n_{_{V\!R}} = 1.54$$

didITWork = "YES!!!"

Bearing Calculations

Calculating C10 bearing Loads

Eq. 11-2b:

$$L_D := 12000 \text{ hr} \cdot \omega_5 = 3.9095 \cdot 10^8$$

$$L_{10} := 1 \cdot 10^6 \text{ rev}$$

Item # NF208, Cylindrical Roller Bearing - Separable Inner Ring w/ Two Ribs, Outer Ring w/ One Rib

Caluation or Bearing A

Eq. 11-9 for C10 bearing loads Table 11-6 with a Ball Bearing

$$a_{fa} := 1$$
 $F_{Da} := R_A = 1437.639 \text{ lbf}$ $a_a := \frac{10}{3}$ $\theta_a := 4.459$ $\theta_a := 1.483$ $\theta_a := 1.483$

$$R_{Da} := .99$$

$$a_a := \frac{10}{3}$$
 $a := 4.43$

$$\mathbf{x}_{Da} := \frac{L_D}{L_{10}} = 62.2224$$

$$C_{10a} := a_{fa} \cdot F_{Da} \cdot \left(\frac{x_{Da}}{x_{Oa} + (\theta_a - x_{Oa}) \cdot \left(\ln \left(\frac{1}{R_{Da}} \right) \right)} \right)^{\frac{1}{a_a}} = 7822.5859 \text{ lbf}$$

Caluation or Bearing B $_{\text{Two Ribs}}^{\text{Item # NF214, Cylindrical Roller Bearing - Separable Inner Ring w/}}$ $a_{fa} \coloneqq 1$ $F_{Da} \coloneqq R_B = 1112.5678 \text{ lbf}$ $a_a \coloneqq \frac{10}{3}$ $\theta_a \coloneqq 4.459$ $R_{Da} \coloneqq .99$ $\theta_a \coloneqq 1.483$ $\theta_a \coloneqq 0.02$ $\theta_a \coloneqq \frac{L_D}{L_{10}} = 62.2224$

$$a_{fa} := 1$$
 $F_{Da} := R_B = 1112.5678 \text{ lbf}$

$$a_a := \frac{10}{3}$$
 $\theta_a := 4.459$

$$R_{Da} := .99$$

$$b_1 := 1.483 \quad x_{01} := 0.02$$

$$x_{Da} := \frac{L_D}{L_{10}} = 62.2224$$

$$x_{Da} := \frac{1}{L_{10}} = 62.2224$$

$$C_{10a} := a_{fa} \cdot F_{Da} \cdot \left(\frac{x_{Da}}{x_{Da}} - \left(\frac{1}{R_{Da}} \right) \cdot \left(\ln \left(\frac{1}{R_{Da}} \right) \right)^{\frac{1}{D_a}} \right)$$

Key Length Calculations

Key Slot 1 Calculation

n := 1.5 $t := \frac{3}{4} \text{ in}$ $D_4 = 3.059 \text{ in}$

Shaft	Diameter	Key	Size	
Over	To (Incl.)	w	h	Keyway Depth
2 3/4	$3\frac{1}{4}$			
		3/4	34	38

Use a safety factor of 1.5 and assume the key material is 1006 HR steel with Sy=24 ksi.

key length for the gear exceeds 1.75-inch you can shift to a higher strength key material

Table A-20 $S_{y\mathrm{Ke}y} \coloneqq 57 \mathrm{\ ksi}$

 $S_{SY} := \frac{S_{YKeY}}{\sqrt{3}} = 32.909 \text{ ksi}$ $F := \frac{T}{D_4 \cdot 0.5} = 9536.2971 \text{ lbf}$

300 (43) CD G10100 370 (53)

Shear

Crushing

 $L := \frac{F \cdot n}{S_{SY} \cdot t} = 0.5796 \text{ in} \qquad L_C := \frac{2 \cdot F \cdot n}{S_{Y \text{Key}} \cdot t} = 0.6692 \text{ in}$

Key Slot 2 Calculation

n := 1.5 $t := \frac{1}{2} \text{ in}$ $D_7 = 2.48 \text{ in}$

Shaft	Diameter	Key	Size	
Over	To (Incl.)	w	h	Keyway Depth
$2\frac{1}{4}$	$2\frac{3}{4}$			
		<u>5</u> 8	<u>5</u> 8	5 16

Use a safety factor of 1.5 and assume the key material is 1006 HR steel with Sy=24 ksi.

key length for the gear exceeds 1.75-inch you can shift to a higher strength key material Table A-20 $S_{yKey} := 27.5 \text{ ksi}$

$$S_{SY} := \frac{S_{yKey}}{\sqrt{3}} = 15.8771 \text{ ksi}$$
 $F := \frac{T}{D_4 \cdot 0.5} = 9536.2971 \text{ lbf}$

Crushing

 $L := \frac{F \cdot n}{S_{SY} \cdot t} = \text{1.8019 in} \qquad \quad L_C := \frac{2 \cdot F \cdot n}{S_{yKey} \cdot t} = \text{2.0806 in}$

UNS No.	SAE and/or AISI No.	Process- ing	Strength, MPa (kpsi)	
G10060	1006	HR	300 (43)	170 (24)
		CD	330 (48)	280 (41)
G10100	1010	HR	320 (47)	180 (26)
		CD	370 (53)	300 (44)
G10150	1015	HR	340 (50)	190 (27.5)

Appendix

Selected bearings

Bearing One for D₁

Item # NF208, Cylindrical Roller Bearing - Separable Inner Ring w/ Two Ribs, Outer Ring w/ One Rib

d	1.5748 in 40.000 mm
D	3.1496 in 80.000 mm
В	0.7087 in 18.000 mm
Ew	2.7559 in 70.000 mm
J	2.1339 in 54.200 mm
r	0.0433 in 1.100 mm
da min	1.8307 in 46.500 mm
db min	1.8307 in 46.500 mm

Туре	Cylindrical Roller Bearing
Bore Type	Round
Material	Hardened Alloy Steel
Cage Material	Pressed Steel
Limiting Speed - Oil	11000 RPM
Limiting Speed - Grease	9400 RPM
Configuration	One
Tolerance	ISO Class 0 (RBEC 1)

Da max	2.8937 in 73.500 mm
Db max	2.8937 in 73.500 mm
Db min	2.8346 in 72.000 mm
r1as max	0.0433 in 1.100 mm

Oil Hole	w/o Oil Hole
Radial Internal Clearance	CN
Static Load Rating	9650 lbf 43000 N 43.00 kN
Dynamic Load Rating	9800 lbf 43500 N 43.50 kN
Enclosure	Open
Weight	0.847 lb 0.384 kg

Bearing Two for D₆

Item # NF214, Cylindrical Roller Bearing - Separable Inner Ring w/ Two Ribs, Outer Ring w/ One Rib

d	2.7559 in 70.000 mm
D	4.9213 in 125.000 mm
В	0.9449 in 24.000 mm
Ew	4.3504 in 110.500 mm
J	3.5276 in 89.600 mm
r	0.0591 in 1.500 mm
da min	3.0709 in 78.000 mm
db min	3.0709 in 78.000 mm

Туре	Cylindrical Roller Bearing
Bore Type	Round
Material	Hardened Alloy Steel
Cage Material	Pressed Steel
Limiting Speed - Oil	6500 RPM
Limiting Speed - Grease	5500 RPM
Configuration	One
Tolerance	ISO Class 0 (RBEC 1)

Da max	4.6063 in 117.000 mm
Db max	4.6063 in 117.000 mm
Db min	4.4882 in 114.000 mm
r1as max	0.0591 in 1.500 mm

Oil Hole	w/o Oil Hole
Radial Internal Clearance	CN
Static Load Rating	21400 lbf 95000 N 95.00 kN
Dynamic Load Rating	18800 lbf 83500 N 83.50 kN
Enclosure	Open
Weight	2.571 lb 1.166 kg

Selected Retaining Clips

 $D_7 = 2.48 in$

AT point M

Part Number	WS-318
Ring Type	External Ring
D _s : Shaft Diameter (in)	3.187
D _g : Groove Diameter (in)	3.089 +/-,006
w: Groove Width (in)	0.068 +.005/000
D _i : Free Inside Diameter (in)	3.061 +.000/030
t: Ring Thickness (in)	0.061 +/003
b: Ring Radial Wall (in)	0.178 +.004/006
# of Turns	2
Crimp	Yes
Ring Shear (lb)	25650 (safety factor of 3)
Groove Yield (lb)	11040 (groove material yield strength of 45,000 psi and safety factor of 2)

WS-318

AT POINT P

$D_7 = 2.48 in$

Part Number	WS-256
Ring Type	External Ring
D _s : Shaft Diameter (in)	2.562
Dg: Groove Diameter (in)	2.476 +/006
w: Groove Width (in)	0.056 +.004/000
D _i : Free Inside Diameter (in)	2.452 +.000/025
t: Ring Thickness (in)	0.049 +/003
b: Ring Radial Wall (in)	0.148 +.003/005
# of Turns	2
Crimp	Yes
Ring Shear (lb)	16560 (safety factor of 3)
Groove Yield (lb)	7790 (groove material yield strength of 45,000 psi and safety factor of 2)

WS-256

At D1

$$D_1 = 1.5748 in$$

Part Number	WS-162
Ring Type	External Ring
D _s : Shaft Diameter (in)	1.625
D _g : Groove Diameter (in)	1.566 +/005
w: Groove Width (in)	0.056 +.004/000
D _i : Free Inside Diameter (in)	1.549 +.000/020
t: Ring Thickness (in)	0.049 +/003
b: Ring Radial Wall (in)	0.108 +.003/005
# of Turns	2
Crimp	Yes
Ring Shear (lb)	10510 (safety factor of 3)
Groove Yield (lb)	3450 (groove material yield strength of 45,000 psi and safety factor of 2)