\vec{x}		parr(=)	D2T(₹)
十六进制	二进制	$B2U_4(\vec{x})$	$B2T_4(\vec{x})$
0×E	[1110]	2 ³ +2 ² +2 ¹ =14	$-2^3+2^2+2^1=-2$
0×0			
0x5			
0x8			
0xD			
0×F		1	

图 2-14 展示了针对不同字长,几个重要数字的位模式和数值。前三个给出的是可表示的整数的范围,用 $UMax_w$ 、 $TMin_w$ 和 $TMax_w$ 来表示。在后面的讨论中,我们还会经常引用到这三个特殊的值。如果可以从上下文中推断出 w,或者 w 不是讨论的主要内容时,我们会省略下标 w,直接引用 UMax、TMin 和 TMax。

数	字长w				
	8	16	32	64	
$UMax_w$	0×FF	0×FFFF	0×FFFFFFF	0×FFFFFFFFFFFFF	
	255	65 535	4 294 967 295	18 446 744 073 709 551 615	
$TMin_w$	0x80	0x8000	0x80000000	0x80000000000000000	
	-128	-32 768	-2 147 483 648	-9 223 372 036 854 775 808	
$TMax_w$	0x7F	0x7FFF	0x7FFFFFFF	0x7FFFFFFFFFFFFF	
	127	32 767	2 147 483 647	9 223 372 036 854 775 807	
-1	0×FF	0×FFFF	0×FFFFFFF	0×FFFFFFFFFFFFFF	
0	0×00	0x0000	0x0000000	0x0000000000000000	

图 2-14 重要的数字。图中给出了数值和十六进制表示

关于这些数字,有几点值得注意。第一,从图 2-9 和图 2-10 可以看到,补码的范围是不对称的: |TMin| = |TMax| + 1,也就是说,TMin 没有与之对应的正数。正如我们将会看到的,这导致了补码运算的某些特殊的属性,并且容易造成程序中细微的错误。之所以会有这样的不对称性,是因为一半的位模式(符号位设置为 1 的数)表示负数,而另一半(符号位设置为 0 的数)表示非负数。因为 0 是非负数,也就意味着能表示的整数比负数少一个。第二,最大的无符号数值刚好比补码的最大值的两倍大一点: $UMax_w = 2TMax_w + 1$ 。补码表示中所有表示负数的位模式在无符号表示中都变成了正数。图 2-14 也给出了常数一1 和 0 的表示。注意一1 和 UMax 有同样的位表示——一个全 1 的串。数值 0 在两种表示方式中都是全 0 的串。