III. kolo kategorie Z9

Z9–III–1

Doplňte do čtverečků přirozená čísla tak, aby:

- ⊳ součet všech doplněných čísel byl 44,
- ⊳ součet čísel v každém čtyřčtverečkovém čtverci byl stejný,
- ⊳ nejmenší doplněné číslo bylo liché,
- ▷ uprostřed čtverce bylo jednociferné číslo.

	7	
8		4
	2	

(S. Bednářová)

ŘEŠENÍ. Označme x číslo v prostředním čtverečku a a číslo v levém horním čtverečku. Potom je součet čísel v levém horním čtyřčtverečkovém čtverci a+7+8+x=a+x+15.

Dále určíme číslo v pravém horním čtverečku. Aby byl součet čísel v pravém horním čtyřčtverečkovém čtverci stejný jako v předchozím (tj. a+x+15), musí být v pravém horním čtverečku napsané číslo a+4 (čísla 7 a x jsou v obou dvou čtvercích, musí tedy být součet zbývajících dvou čísel 8+a).

Stejným způsobem určíme, že v levém dolním čtverečku je číslo a+5 (čísla 8 a x jsou v obou čtyřčtverečkových čtvercích — levém horním i levém dolním, součet zbývajících dvou čísel je a+7).

Nakonec doplníme i číslo do pravého dolního čtverečku: a+9 Součet všech doplněných čísel je podle zadání 44, odtud:

$$x + a + (a + 4) + (a + 5) + (a + 9) = 44,$$

 $x + 4a + 18 = 44,$
 $x + 4a = 26,$
 $x = 26 - 4a.$

Možné dvojice čísel x, a uvádí následující tabulka:

Nejmenší z doplněných čísel má být liché. Dále víme, že uprostřed (tj. x) má být jednociferné číslo. Vyhovuje jen jediná dvojice: a=5 a x=6.

Po doplnění všech čísel dostaneme:

5	7	9
8	6	4
10	2	14

Z9-III-2

Určete obsah šedého měsíčku z obrázku, pokud víte, že průměr AB větší polokružnice má délku 2 cm, průměr CD menší polokružnice má délku 1 cm a platí $AB \parallel CD$.

(P. Tlustý)

ŘEŠENÍ. Označme S střed úsečky AB. Trojúhelník SCD je rovnostranný (s délkou strany 1 cm). Obsah šedého měsíčku vypočítáme tak, že od obsahu menšího půlkruhu (s průměrem 1 cm) odečteme obsah úseče většího kruhu.

Obsah menšího půlkruhu:

$$S_M = \frac{1}{2}\pi \cdot \left(\frac{1}{2}\right)^2 = \frac{\pi}{8} \,\mathrm{cm}^2.$$

Obsah úseče: Vypočteme ho jako rozdíl obsahu příslušné kruhové výseče (šestina obsahu většího kruhu) a obsahu rovnostranného trojúhelníku SCD.

Obsah výseče:

$$S_V = \frac{1}{6}\pi \cdot 1^2 = \frac{\pi}{6} \,\text{cm}^2.$$

Obsah trojúhelníku: strana měří 1 cm, výška $\frac{1}{2}\sqrt{3}$ cm,

$$S_{\triangle} = \frac{1}{2} \cdot 1 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} \operatorname{cm}^2.$$

Obsah šedého měsíčku:

$$S = S_M - (S_V - S_\triangle) = \frac{\pi}{8} - \left(\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right) = \left(\frac{\sqrt{3}}{4} - \frac{\pi}{24}\right) \text{cm}^2$$

Z9-III-3

Kuba našel ve sklepě tři krabice tvaru kvádru se čtvercovou podstavou. První byla dvakrát vyšší než druhá. Druhá byla 1,5krát širší než první. Třetí byla třikrát vyšší než první a dvakrát užší než první. V jakém poměru jsou objemy krabic? (M. Raabová)

Řešení. Zadání zaneseme do přehledné tabulky:

krabice	délka podstavné hrany	výška
první	a_1	$v_1 = 2v_2$
druhá	$a_2 = 1,5a_1$	v_2
třetí	$a_3 = 0.5a_1$	$v_3 = 3v_1$

Rozměry nádob vyjádříme pomocí a_3 a v_2 :

krabice	délka podstavné hrany	výška
první	$a_1 = 2a_3$	$v_1 = 2v_2$
druhá	$a_2 = 3a_3$	v_2
třetí	a_3	$v_3 = 6v_2$

Pomocí těchto údajů vyjádříme objemy všech krabic:

první nádoba: $V_1 = (2a_3)^2 \cdot 2v_2 = 8a_3^2v_2$, druhá nádoba: $V_2 = (3a_3)^2 \cdot v_2 = 9a_3^2v_2$, třetí nádoba: $V_3 = a_3^2 \cdot 6v_2 = 6a_3^2v_2$.

Je zřejmé, že objemy nádob jsou v poměru 8:9:6.

Z9-III-4

Při přijímacích zkouškách na univerzitu je každému zájemci o studium přidělován krycí kód složený z pěti číslic. Zkoušky organizoval důkladný, leč pověrčivý docent, který se před přidělováním kódů rozhodl vyřadit ze všech možných kódů (tj. 00000 až 99999) ty, které v sobě obsahovaly číslo 13, tedy číslici 3 bezprostředně následující po číslici 1. Kolik kódů musel docent vyřadit?

(L. Šimůnek)

Řešení. Nejprve zjistíme, kolik kódů obsahuje jednou číslo 13:

Kódy typu 13***: Na třetím, čtvrtém a pátém místě může být každá z deseti číslic, tedy $10 \cdot 10 \cdot 10 = 1\,000$ kódů.

Kódy typu *13**: Stejným způsobem zjistíme, že jich je opět 1000.

Kódy typu **13*: 1000 kódů.

Kódy typu ***13: 1000 kódů.

Celkem 4000 kódů. V nich jsou ovšem započítány i ty, které obsahují dvě čísla 13. Nyní zjistíme, kolik takových kódů je:

kódy typu 1313*: 10 kódů, kódy typu 13*13: 10 kódů,

kódy typu *1313: 10 kódů.

Celkem 30 kódů se dvěma čísly 13. Tyto kódy jsme předtím započítali dvakrát. A protože jsme už vyčerpali všechny možnosti, je celkový počet kódů $4\,000-30=3\,970$.

Pověrčivý docent vyřadil 3970 kódů.