Ejemplo de asignacion de polos con observacion de estado

Table of Contents

Se inicializan las variables simbolicas
Se describe el sistema en su representacion de estado
Se inicializan las variables con las que se crearan los polos para el controloador y el observador 1
Se calcula f para la retroalimentación de estado
Se calcula k para la inyeccion de salida
Se calcula el sistema retroalimentado
Se calcula la forma de Jordan del sistema en Lazo Cerrado

Se inicializan las variables simbolicas

```
clear
clc
syms s
```

Se describe el sistema en su representacion de estado

Se inicializan las variables con las que se crearan los polos para el controloador y el observador

```
tc = 1;

to = 10;
```

Se calcula f para la retroalimentacion de estado

```
f = [-tc^3 - 3*tc^2 - 3*tc];
```

```
Af = A+ b*f;
% Se muestra el polinomio caracteristico con esta retroalimentacion de
% estado
factor(det(s*I - Af))

ans =
   (s + 1)^3
```

Se calcula k para la inyeccion de salida

Primero se calcula la matriz en la forma observador con un cambio de base

```
Ao = A';
co = b'i
% Se calcula la matriz de observabilidad
Obs = [c;c*A;c*A^2];
Obso = [co;co*Ao;co*Ao^2];
% Se calcula la matriz de cambio de base para la forma observador
To = Obs \ Obso;
% Se calcula k y A en la forma observador
ko = [-to^3; -3*to^2; -3*to];
Ako = Ao + ko*co;
% Se muestra el polinomio caracteristico con la inyeccion de salida
factor(det(s*I - Ako))
% Se calcula k y A en la forma normal
k = To*ko;
Ak = A + k*c;
        ans =
        (s + 10)^3
```

Se calcula el sistema retroalimentado

Se calcula el sistema en lazo cerrado

Se calcula la forma de Jordan del sistema en Lazo Cerrado

[Tj J] = jordan(Alc)

Published with MATLAB® R2013a