Dynamic Pricing

Jianyu Xu

PhD Student

Computer Science Department, UC Santa Barbara

UC SANTA BARBARA

Generic Setting

For t = 1, 2, ..., T:

- Customers generate a valuation y_t secretly;
- We propose a price p_t ;
- If $p_t \le y_t$, then <u>we</u> get a reward $r_t = p_t$;
- Else $p_t > y_t$, then we get a reward $r_t = 0$.

3 Properties:

- Boolean-censored valuation
- Bandit feedback
- Direction sensitive reward

Identical or Various Items

- Identical items: no feature
 - Aim at a best fixed price.
 - Here ``dynamics'' come from explorations.

- Various items: with features
 - For each time, a vector $x_t \in \mathbb{R}^d$ describes the feature of current item, and helps our pricing.
 - Aim at a best ``feature → price'' policy.
 - Here ``dynamics'' come from different items, and explorations.

Non-feature dynamic pricing

→ Deal w/ highest price

Non-feature setting

There are mainly three categories:

1. Fixed valuation y_t is fixed but secret

2. Stochastic valuation

- \mathcal{J} y_t is drawn i.i.d. from a fixed unknown distribution.
- \mathcal{D}_t is drawn from adversarial unknown distribution \mathbb{D}_t 's.

3. Adversarial valuation y_t is obliviously arbitrarily chosen.

Non-feature setting -- Regret

Regret is defined as the difference between:

1. Max (expected) reward of a best **fixed** price, i.e.

$$\max_{p} \sum_{t=1}^{n} p \cdot 1 (p \le y_t)$$

2. (Expected) reward of our algorithm, i.e.

$$\sum_{t=1}^{n} p_t \cdot 1(p_t \le y_t)$$

Non-feature setting -- Regrets

	Fixed valuation	Stochastic valuation	Arbitrary valuation
Upper Bound	$O(\log \log T)$	$O\!\left(T^{2/3} ight)$ in general $O\!\left(\sqrt{T} ight)$ for \mathbb{C}^2 demand curve	$O(T^{2/3})$
	[KL03]	[KL03]	[KL03]
Lower Bound	$\Omega(\log\log T)$	$\Omega(T^{2/3})$ in general, and for Lipschitz demand curve	$\Omega(T^{2/3})$
	[KL03]		[KL03]

Fixed valuation: searching algorithm

- Intuitively, we may apply binary search.
- But binary search can be as expensive as $O(\log T)$.
 - Indeed, a binary search will approach y_t in the fastest rate: at most $O(\log T)$ times of trials.
 - But it might fail in all $O(\log T)$ trials.
- To match the $\Omega(\log \log T)$ lower bound, we instead applies a squaring search method.

Squaring search [KL03]

Stochastic/Adversarial valuation: bandit algorithm

- Discretize the price space as: $\{T^{-\alpha}, 2T^{-\alpha}, ..., 1 T^{-\alpha}, 1\}$, and play multi-armed bandits.
- Error caused by discretization intervals: $O(T^{1-\alpha})$;
- Error caused by multi-armed bandits: $O(\sqrt{TK}) = O(T^{\frac{1+\alpha}{2}})$
- Minimax regret = $O\left(\min_{\alpha} \max\{T^{1-\alpha}, T^{\frac{1+\alpha}{2}}\}\right) = O\left(T^{\frac{2}{3}}\right)$.

Feature-based dynamic pricing

→ Deal w/ highest price

Feature-based setting

We assume a linear model for the feature-valuation relationships: $y_t = x_t^T \theta^* + N_t$, where θ^* is fixed but unknown over time, and N_t can be:

- 1. $N_t \equiv 0, \forall t = 1, 2, ..., T$.
- 2. $N_t \sim_{i,i,d} \mathbb{D}$, where \mathbb{D} is fixed and could be:
 - 1 Totally known (e.g. Standard Gaussian)
 - 2 Parametric (e.g. Gaussian, or Laplacian)
 - 3 Totally unknown beside bounds

Feature-based setting -- Regret

In this setting, a regret is defined as the difference between:

Max expected reward of an omniscient seller, i.e.

$$\sum_{t=1}^{n} \max_{p_t^*} \mathbb{E}_{N_t \sim \mathbb{D}}[p_t^* \cdot 1(p_t^* \le x_t^\mathsf{T} \theta^* + N_t) | x_t, \theta^*, \mathbb{D}]$$

2. Expected reward of our algorithm, i.e.

$$\sum_{t=1}^{n} \mathbb{E}_{N_t \sim \mathbb{D}}[p_t \cdot 1(p_t \le x_t^{\mathsf{T}} \theta^* + N_t)]$$

Feature-based setting -- Regrets

	Deterministic	Noisy			
		Known distribution	Parametric distribution	Non-parametric distribution	
Upper Bound	$O(\log \log T)$	$O(\log T)$	$O(\sqrt{T})$ for sub-Gaussian noise	$O\left(T^{\frac{3}{4}}\right)$	
	[PLS 18]	[CLPL16] [JN19] [XW21]	[JN19]		
Lower Bound	$\Omega(\log\log T)$	$\Omega(\log T)$	$\Omega(\sqrt{T})$ for Gaussian noise	$\Omega(T^{\frac{2}{3}})$	
	[KL 03]	[JN19]	[BR12] [XW21]	[KL03]	

Shallow Pricing: for small-variance noise [CLPL16]

• For noises with small $\left(O\left(\frac{1}{T\log T}\right)\right)$ variance, we may directly apply binary search with compromission.

EMLP: for Known $\mathbb D$ and Stochastic x_t

• Since we know the noise distribution, we can use **Max Likelihood Estimate** to achieve a $\hat{\theta}$.

•
$$||\hat{\theta}_t - \theta^*|| = O\left(\frac{1}{\sqrt{t}}\right)$$

- We upper bound the regret with $C \cdot ||\hat{\theta}_t \theta^*||^2$.
- The regret bound is then = $O\left(\sum_{t=1}^{T} \frac{1}{t}\right) = O(\log T)$

ONSP: for Known $\mathbb D$ and Adversarial x_t

- Since x_t is adversarial, for MLE we do not necessarily have $\hat{\theta} \rightarrow \theta^*$.
- However, we can make use of likelihood functions as surrogation loss, i.e. $Regret(\hat{\theta}) \leq C' \cdot \left(L(\theta^*) L(\hat{\theta})\right)$
 - On the one hand, $L(\theta)$ is exp-concave (strongly convex).
 - On the other hand, we upper bound the regret with $C \cdot ||\hat{\theta}_t \theta^*||^2$.
- We apply Online Newton Steps (ONS) to optimize $L(\theta)$.

For unknown noise distribution: why not a contextual bandits model?

- Action space
 - In contextual bandits, actions are discrete.
 - In dynamic pricings, actions are continuous. Extra discretization suffers an error-action trade-off.
- Policy set
 - In contextual bandits, we have a finite set of policies.
 - In feature-based dynamic pricing, we do not have a finite set of policies.

For unknown noise distribution: our approach

- Continuous action space
 - We discretize the action space at a rational scale.
- Unknown/infinite policy set
 - Define a policy as `` $\hat{\theta}$ and \mathbb{D} ''.
 - Use covering number to finitely cover all policies.
 - Use Catalan number to count the finite subset.
 - Apply contextual bandits.
- There is still a huge gap.
 - Upper bound: $O(T^{\frac{3}{4}})$; Lower bound: $\Omega(T^{\frac{2}{3}})$

Reference

[KL03] Kleinberg, R., & Leighton, T. (2003, October). The value of knowing a demand curve: Bounds on regret for online posted-price auctions. In *44th FOCS*, 2003. *Proceedings*. (pp. 594-605). IEEE.

[BR12] Broder, J., & Rusmevichientong, P. (2012). Dynamic pricing under a general parametric choice model. *Operations Research*, 60(4), 965-980.

[CLPL16] Cohen, Maxime C., Ilan Lobel, and Renato Paes Leme. "Feature-based dynamic pricing." *Management Science* 66.11 (2020): 4921-4943.

[PLS18] Leme, Renato Paes, and Jon Schneider. "Contextual search via intrinsic volumes." 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2018.

[JN19] Javanmard, Adel, and Hamid Nazerzadeh. "Dynamic pricing in high-dimensions." *The Journal of Machine Learning Research* 20.1 (2019): 315-363.

[XW21] Xu, Jianyu, and Yu-Xiang Wang. "Logarithmic Regret in Feature-based Dynamic Pricing." *arXiv preprint arXiv:2102.10221* (2021).

UC SANTA BARBARA