

Licence de Mathématiques et Informatique 2020-2021

Analyse 3

TD4

Exercice 1. Soit $f: \mathbb{R} \setminus \{1/3\} \to \mathbb{R}$ telle que $f(x) = \frac{2x+3}{3x-1}$.

Prouver, en utilisant uniquement la définition de la limite (avec ε et δ) que la fonction f est continue en 0.

Solution détaillée : On commence par un calcul au brouillon :

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad |x - x_0| < \delta \Rightarrow |f(x) - (-3)| < \varepsilon$$

autrement dit la limite de f en $x_0 = 0$ est -3. Comme f(0) = -3 alors cela montre aussi que f est continue en $x_0 = 0$.

On nous donne un $\varepsilon > 0$, à nous de trouver ce fameux δ . Tout d'abord

$$|f(x) + 3| = \left| \frac{2x+3}{3x-1} + 3 \right| = \frac{11|x|}{|3x-1|}.$$

Donc notre condition devient :

$$|f(x)+3|$$

Comme nous voulons éviter les problèmes en $x = \frac{1}{3}$ pour lequel la fonction f n'est pas définie, nous allons nous placer "loin" de $\frac{1}{3}$. Considérons seulement les $x \in \mathbb{R}$ tel que $|x| < \frac{1}{6}$. Nous avons :

$$|x| < \frac{1}{6} \Rightarrow -\frac{1}{6} < x < +\frac{1}{6} \quad \Rightarrow \quad -\frac{3}{2} < 3x - 1 < -\frac{1}{2} \quad \Rightarrow \quad \frac{1}{2} < |3x - 1|.$$

Et maintenant explicitons δ : prenons $\delta < \varepsilon \cdot \frac{1}{2} \cdot \frac{1}{11}$. Alors pour $|x| < \delta$ nous avons

$$|x| < \delta = \varepsilon \cdot \frac{1}{2} \cdot \frac{1}{11} < \varepsilon \cdot |3x - 1| \cdot \frac{1}{11}$$

ce qui implique par les équivalences précédentes que $|f(x)+3|<\varepsilon$.

Il y a juste une petite correction à apporter à notre δ : au cours de nos calculs nous avons supposé que $|x|<\frac{1}{6}$, mais rien ne garantit que $\delta\leq\frac{1}{6}$ (car δ dépend de ε qui pourrait bien être très grand, même si habituellement ce sont les ε petits qui nous intéressent). Au final le δ qui convient est donc :

$$\delta = \min(\frac{1}{6}, \frac{\varepsilon}{22}).$$

Remarque finale : bien sûr on savait dès le début que f est continue en $x_0 = 0$. En effet f est le quotient de deux fonctions continues, le dénominateur ne s'annulant pas en x_0 . Donc nous savons dès le départ qu'un tel δ existe, mais ici nous avons fait plus, nous avons trouvé une formule explicite pour ce δ .

Exercice 2. Calculer les limites suivantes :

1.
$$\frac{1}{1-x} - \frac{2}{1-x^2}$$
 en 1

Solution : On factorise : $\frac{1}{1-x} - \frac{2}{1-x^2} = \frac{1}{1-x} \left(1 - \frac{2}{1+x}\right) = \frac{-1}{1-x} \left(\frac{1-x}{1+x}\right) = -\frac{1}{1+x}$. La limite recherchée est donc $-\frac{1}{2}$.

2.
$$\frac{\sqrt{x}-1}{x-1}$$
 en 1

Solution : $\frac{\sqrt{x}-1}{x-1} = \frac{1}{\sqrt{x}+1}$ et donc la limite cherchée est $\frac{1}{2}$.

3.
$$\frac{x \sin x}{1 - \cos x}$$
 en 0

Solution : En révisant ses DL de sin et cos en 0 (à connaître par coeur!), il vient $\frac{x \sin x}{1-\cos x} = \frac{x^2+o(x^2)}{\frac{x^2}{2}+o(x^2)} = \frac{1+o(1)}{\frac{1}{2}+o(1)} \to 2$ pour $x \to 0$

$$4. \ \frac{\tan x - \sin x}{x^3} \ \text{en } 0$$

Solution : Il faut au minimum connaître le DL de $\tan(x)$ en 0 suivant : $\tan(x) = x + \frac{x^3}{3} + o(x^3)$. Il se retrouve par composition de DL à partir de la définition $\tan(x) = \frac{\sin(x)}{\cos(x)}$. Posez-vous la question de savoir si vous savez effectivement faire ce calcul.

On a
$$\frac{\tan x - \sin x}{x^3} = \frac{x + \frac{x^3}{3} + o(x^3) - \left(x - \frac{x^3}{6} + o(x^3)\right)}{x^3} = \frac{1}{2} + o(1) \to \frac{1}{2}$$
.

5.
$$\frac{\sin x - \sin(2x)}{x^2}$$
 en 0

Solution : On a $\frac{\sin x - \sin(2x)}{x^2} = \frac{x + o(x) - 2x + o(x)}{x^2} = -\frac{1}{x} + o\left(\frac{1}{x}\right)$, ce qui n'admet pas de limite pour $x \to 0$. Mais $\frac{\sin x - \sin(2x)}{x^2} \to -\infty$ pour $x \to 0, x > 0$ et $\frac{\sin x - \sin(2x)}{x^2} \to +\infty$ pour $x \to 0, x < 0$.

6.
$$\frac{x^3 + x + 5}{5x^3 + 7x^2 + 8}$$
 en $+\infty$

Solution : En divisant de chaque côté par le terme de plus haut degré, la limite cherchée est $\frac{1}{5}$.

7.
$$\sqrt{x^2 + 2x} - x \text{ en } +\infty$$

Solution : On multiplie par le "conjugué" : $\sqrt{x^2 + 2x} - x = \frac{2x}{\sqrt{x^2 + 2x} + x} \to 1$ pour $x \to \infty$.

8.
$$\frac{\tan(4x)}{\sin x}$$
 en 0

Solution : On a $\frac{\tan(4x)}{\sin x} = \frac{4x + o(x)}{x + o(x)} \to 4$ pour $x \to 0$.

9.
$$\frac{e^{3x} + 2x + 7}{e^x + e^{-x}}$$
 en $+\infty$

Solution : En divisant par e^x de chaque côté, on obtient $\frac{e^{3x}+2x+7}{e^x+e^{-x}}=\frac{e^{2x}+2xe^{-x}+7e^{-x}}{1+e^{-2x}}\sim e^{2x}\to\infty$.

10.
$$\frac{\sin x - \sin(5x)}{\sin x + \sin(5x)}$$
 en 0

Solution : On a $\frac{\sin x - \sin(5x)}{\sin x + \sin(5x)} = \frac{-4x + o(x)}{6x + o(x)} \rightarrow -\frac{2}{3}$.

11.
$$\frac{\sin(x \ln x)}{x}$$
 en 0^+

Solution : Par théorème de croissance comparée, on a $x \ln x \to 0$ pour $x \to 0, x > 0$. Par conséquent, en utilisant un DL de $\sin(u)$ pour $u \to 0$, $\frac{\sin(x \ln x)}{x} = \frac{x \ln x + o(x \ln x)}{x} = \ln x + o(\ln(x) \sim \ln(x)$. Donc $\frac{\sin(x \ln x)}{x} \to -\infty$.

12.
$$\left(1+\frac{1}{x}\right)^x$$
 en $+\infty$

Solution : Un grand classique : $\left(1+\frac{1}{x}\right)^x = \exp\left(x\ln\left(1+\frac{1}{x}\right)\right)$. Comme $\frac{1}{x} \to 0$ pour $x \to \infty$, on obtient $\left(1+\frac{1}{x}\right)^x = \exp\left(x\left(\frac{1}{x}+o\left(\frac{1}{x}\right)\right)\right) = \exp\left(1+o\left(1\right)\right) \to e$.

Exercice 3. Calculer les limites suivantes :

1.
$$\lim_{x \to 1} (x^2 + x - 2) \tan \left(\frac{\pi x}{2} \right)$$

Solution : La méthode utilisée dans cette question est à connaître par coeur. Notons qu'il s'agit d'une forme indéterminée du type $0 \times \pm \infty$. Pour lever cette forme indéterminée, nous avons besoin de développements limités. Il s'agit d'obtenir des DL de $\sin(x\pi/2)$ et $\cos(x\pi/2)$ au voisinage de 1 (et non pas au voisinage de 0 comme vous en avez l'habitude!). Ceci pourrait se faire via l'application des formules de Taylor (exercice : faites-le). Une façon plus simple de procéder est de se ramener à un DL en 0 via un changement de variables : en posant x=1+h, considérer x au voisinage de 1 revient à considérer h au voisinage de 0. Mais alors pour h>0 (resp. pour h<0), il vient $\tan(x\pi/2)=\tan(h\pi/2+\pi/2)=\frac{\sin(h\pi/2+\pi/2)}{\cos(h\pi/2+\pi/2)}=\frac{\cos(h\pi/2)}{\sin(h\pi/2)}$. Par ce changement de variables, nous nous sommes ramenés à un DL en 0 pour h. Ainsi, $\tan(x\pi/2)=-\frac{\cos(h\pi/2)}{\sin(h\pi/2)}=-\frac{1+o(1)}{h\pi/2+o(h)}$ (on le voit dans la suite, un DL de cos à l'ordre 0 suffit). Et donc, $(x^2+x-2)\tan\left(\frac{\pi x}{2}\right)=(x-1)(x+2)\tan\left(\frac{\pi x}{2}\right)=-h(h+3)\frac{1+o(1)}{h\pi/2+o(h)}=-(h+3)\frac{1+o(1)}{\pi/2+o(1)}\to -\frac{6}{\pi}$.

2.
$$\lim_{x\to 0, x>0} \frac{(\sin x)^x - 1}{x^x - 1}$$

Solution : Il y a de multiples façons d'écrire des horreurs pour cette question : plutot que de les énumérer toutes, rappelons les principes suivants : 1) on privilégie les DL aux équivalents. 2) on se méfie particulièrement des passages aux équivalents dans les logarithmes et les exponentielles.

Notons déjà que pour $x \to 0, x > 0$, la fonction est bien définie car $\sin(x) > 0$. Considérons le numérateur : $(\sin x)^x - 1 = \exp(x \ln(\sin(x))) - 1$. Par croissance comparée,

 $x \ln(\sin(x)) \to 0$ pour $x \to 0$, x > 0. Mais alors, comme $\exp(u) = 1 + u + o(u)$ pour $u \to 0$, il vient $(\sin(x))^x - 1 = x \ln(\sin(x)) + o(x \ln(\sin x))$. Or $x \ln(\sin(x)) = x \ln(x + o(x)) = x \ln(x) + x \ln(1 + o(1))$. Or $x \ln(1 + o(1)) = o(x \ln(x))$ (faites le rapport des deux pour vérifier que cela tend vers 0). Ainsi, $(\sin x)^x - 1 = x \ln(x) + o(x \ln(x))$. De même, $x^x - 1 = x \ln(x) + o(x \ln(x))$ et donc le rapport des deux tend vers 1.

3.
$$\lim_{x \to +\infty} \left(\frac{x^2 - 1}{x^2 + 1} \right)^{\frac{x}{2}}$$

Solution : On écrit $\left(\frac{x^2-1}{x^2+1}\right)^{\frac{x}{2}} = \exp\left(\frac{x}{2}\ln\left(\frac{1-\frac{1}{x^2}}{1+\frac{1}{x^2}}\right)\right)$ et on applique des DL successifs : pour $u \to 0$, $\frac{1}{1+u} = 1 - u + o(u)$, donc $\frac{1}{1+\frac{1}{x^2}} = 1 - \frac{1}{x^2} + o\left(\frac{1}{x^2}\right)$. Mais alors, $\frac{1-\frac{1}{x^2}}{1+\frac{1}{x^2}} = 1 - \frac{2}{x^2} + o\left(\frac{1}{x^2}\right)$. Or, $\ln(1+v) = v + o(v)$ pour $v \to 0$ donc $\frac{x}{2}\ln\left(\frac{1-\frac{1}{x^2}}{1+\frac{1}{x^2}}\right) = -\frac{1}{x} + o\left(\frac{1}{x}\right) \to 0$ pour $x \to \infty$. Par continuité de exp, la limite demandée est 1.

4.
$$\lim_{x\to 0^+} x^{\frac{1}{x^x-1}}$$

Solution : On a $x^{\frac{1}{x^x-1}} = \exp\left(\frac{\ln(x)}{x^x-1}\right) = \exp\left(\frac{\ln(x)}{x\ln(x)+o(x\ln(x))}\right) = \exp\left(\frac{1}{x+o(x)}\right) \to +\infty.$

5.
$$\lim_{x \to +\infty} \left(1 + \frac{a}{x}\right)^x$$
 où $a \in \mathbb{R}$

Solution : La limite est e^a (déjà fait dans un exercice précédent).

6.
$$\lim_{x \to +\infty} \left(\frac{a^x + b^x}{2} \right)^{\frac{1}{x}} \text{ avec } a, b > 0$$

Solution : On écrit $\left(\frac{a^x+b^x}{2}\right)^{\frac{1}{x}} = \exp\left(\frac{1}{x}\ln\left(\frac{a^x+b^x}{2}\right)\right)$. Supposons dans un premier temps, $a \neq b$. Sans perte de généralité, on peut supposer a > b. Mais alors, $\frac{a^x+b^x}{2} = \frac{a^x}{2}(1+o(1))$ et donc $\frac{1}{x}\ln\left(\frac{a^x+b^x}{2}\right) = \ln(a) + o(1)$ et donc la limite cherchée est a. Si maintenant a = b, la fonction est constante, égale à a.

7.
$$\lim_{x \to 0^+} \left(\frac{a^x + b^x}{2} \right)^{\frac{1}{x}}$$
 avec $a, b > 0$

Solution : On écrit $\left(\frac{a^x+b^x}{2}\right)^{\frac{1}{x}} = \exp\left(\frac{1}{x}\ln\left(\frac{a^x+b^x}{2}\right)\right)$. Or, $a^x = 1 + x\ln(a) + o(x)$, donc la limite demandée est $\exp\left(\frac{\ln(a) + \ln(b)}{2}\right) = \sqrt{ab}$.

Exercice 4. Étudier la limite à droite en 0 des fonctions suivantes :

$$1. $f(x) = E\left(\frac{1}{x}\right)$$$

Solution : On a $\frac{1}{x} - 1 < f(x)$ et donc $f(x) \to \infty$ par théorème du gendarme.

$$2. \ g(x) = xE\left(\frac{1}{x}\right)$$

Solution : On a $\frac{1}{x} - 1 < E\left(\frac{1}{x}\right) \le \frac{1}{x}$ et donc on conclut en multipliant par x > 0 et utilisant le théorème des gendarmes que que $g(x) \to 1$.

3. $h(x) = x^2 E\left(\frac{1}{x}\right)$

Solution: $h(x) = xg(x) \rightarrow 0$.

Exercice 5. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = E(x) + \sqrt{x - E(x)}$. Étudier la continuité de f.

Solution : La fonction f est continue en tout point qui n'est pas entier, par composées de fonctions continues.

Il suffit donc d'étudier la continuité de f en un point entier. En notant que pour tout k entier, f(x+k)=f(x)+k, on voit qu'il suffit d'étudier la continuité en x=0 et donc on peut étudier séparément la fonction sur]0,1[et]-1,0[.

Pour $x \in]0,1[$, $f(x) = \sqrt{x}$ qui admet une limite à droite en 0 qui vaut 0 = f(0). Pour $x \in]-1,0[$, $f(x) = -1 + \sqrt{x+1}$ qui admet une limite à gauche en 0 qui vaut 0 = f(0). Par conséquent, f est continue en 0, donc en tout entier, donc sur \mathbb{R} tout entier.

Exercice 6. Dire si les fonctions suivantes sont prolongeables par continuité à \mathbb{R} tout entier :

1. $f(x) = (\sin x) \sin \left(\frac{1}{x}\right) \sin x \neq 0$

Solution : Oui, en posant f(0) = 0 : en effet, $f(x) \to 0$ pour $x \to 0, x \ne 0$, car il s'agit du produit d'une fonction bornée par une fonction qui tend vers 0.

2. $g(x) = \cos x + \cos\left(\frac{1}{x}\right) \text{ si } x \neq 0$

Solution : Non, cette fonction n'admet pas de limite en 0, car si c'était le cas, $\cos\left(\frac{1}{x}\right)$ aurait une limite finie en 0, ce qui n'est pas vrai (exercice : reprouvez-le, pensez à la caractérisation séquentielle de la limite).

3. $h(x) = \sin(x+1) \ln|1+x| \text{ si } x \neq -1$

Solution : Oui : $\sin(x+1) \sim x+1$ et on conclut par croissance comparée que $h(x) \to 0$.

Exercice 7. Soient $f, g : \mathbb{R} \to \mathbb{R}$ deux fonctions continues. Montrer que $\inf(f, g)$ et que $\sup(f, g)$ sont continues.

Solution : Il suffit de se rappeler que $\max(x,y) = \frac{x+y+|x-y|}{2}$ et $\min(x,y) = \frac{x+y-|x-y|}{2}$.

Exercice 8. Soit $f : \mathbb{R} \to \mathbb{R}$ continue en 0 telle que $\forall x \in \mathbb{R}, f(x) = f(2x)$. Montrer que f est constante.

Solution: On a pour tout x, f(x) = f(x/2) et par une récurrence immédiate, pour tout $n \ge 1$, $f(x) = f\left(\frac{x}{2^n}\right)$. Or $\frac{x}{2^n} \to 0$ pour $n \to \infty$ et donc, comme f est continue en 0, $f\left(\frac{x}{2^n}\right) \to f(0)$ pour $n \to \infty$. Donc f(x) = f(0) et ce, pour tout x, donc f est constante.

Exercice 9. Soit $f : \mathbb{R} \to \mathbb{R}$ définie par f(x) = 1 si $x \in \mathbb{Q}$ et f(x) = 0 si $x \notin \mathbb{Q}$. Montrer que f est discontinue en tout point.

5

Solution : Pour tout $x \in \mathbb{R}$, montrons que f est discontinue en x. Deux cas à considérer : Soit $x \in \mathbb{Q}$ (et donc f(x) = 1). Mais alors $y_n = x + \frac{\sqrt{2}}{n}$ est une suite d'irrationnels (car sinon y_n serait rationnel, et donc $\sqrt{2}$ le serait aussi, absurde) qui converge vers x. Mais alors $f(y_n) = 0$ ne converge pas vers f(x) = 1.

Second cas : x est irrationnel (et donc f(x) = 0). Soit x_n une suite de rationnels qui tend vers x (par exemple la suite d'approximation décimale par défaut de x). Mais alors $f(x_n) = 1$ ne tend pas vers f(x) = 0.

Exercice: tracer le graphe de cette fonction.

Exercice 10. Étant donnés une fonction $f: \mathbb{R} \to \mathbb{R}$ et un réel x_0 , on dit que f est semi-continue inférieurement (sci) en x_0 si et seulement si

$$(\forall \varepsilon > 0) \ (\exists \alpha > 0) \ (\forall x \in \mathbb{R}) \ (|x - x_0| < \alpha \Longrightarrow f(x) > f(x_0) - \varepsilon)$$

1. 1.1. Montrer que si f est continue en un point, elle y est aussi sci.

Solution détaillée: Soit x_0 un point de continuité de f. Montrons qu'elle y est sci. Soit $\varepsilon > 0$ quelconque; il faut montrer qu'il existe $\alpha > 0$ tel que

$$(\forall x \in \mathbb{R})(|x - x_0| < \alpha \Longrightarrow f(x) > f(x_0) - \varepsilon) \tag{1}$$

Comme f est continue en x_0 , il existe par définition un réel $\alpha_1 > 0$ tel que

$$(\forall x \in \mathbb{R})(|x - x_0| < \alpha_1 \Longrightarrow |f(x) - f(x_0)| < \varepsilon)$$
 (2)

Or l'inégalité $|f(x) - f(x_0)| < \varepsilon$ implique $f(x) > f(x_0) - \varepsilon$. Il suffit donc de poser $\alpha = \alpha_1$ pour déduire de .

Remarque

On peut définir d'une façon analogue la semi-continuité supérieure (scs); f est scs si -f est sci. Montrer que f est continue (en x_0) si et ssi f est sci et scs (en x_0).

1.2. La fonction $x \to 1_{]0,+\infty[}(x)$ est-elle sci sur \mathbb{R} ? Et la fonction $x \to 1_{[0,+\infty[}(x)$? (On rappelle que si I est un sous-ensemble de \mathbb{R} , alors $1_I(x) = 1$ si $x \in I$ et $1_I(x) = 0$ sinon)

Solution détaillée: Les fonctions $1_{]0,+\infty[}$ et $1_{[0,+\infty[}$ sont continues sur \mathbb{R}^* ; elles y sont a fortiori sci d'après la question précédente. Qu'en est-il en 0? Comme la fonction $1_{[0,+\infty[}$ est positive, et que $1_{[0,+\infty[}(0)=0$, on a

$$(\forall \varepsilon > 0) (\forall x \in \mathbb{R}) (1_{]0,+\infty[}(x) > 1_{]0,+\infty[}(0) - \varepsilon)$$

Autrement dit, l'assertion est vérifiée en $x_0 = 0$ et $f = 1_{]0,+\infty[}$ pour toute valeur de α . La fonction $1_{]0,+\infty[}$ est donc sci en 0. Contrairement à la fonction $1_{[0,+\infty[}$. En effet, comme $1_{[0,+\infty[}(0) = 1$, la négation de la semi-continuité inférieure en 0 s'écrit

$$(\exists \varepsilon > 0) (\forall \alpha > 0) (\exists x \in \mathbb{R}) (|x| < \alpha \text{ et } 1_{[0, +\infty[}(x) \le 1 - \varepsilon))$$

Vérifions-le avec $\varepsilon = 1$. Quel que soit $\alpha > 0$, il suffit de choisir $x = -\frac{\alpha}{2}$ pour avoir bien $|x| < \alpha$ et $1_{[0,+\infty[}(x)) = 0 \le 1 - \varepsilon = 1 - 1 = 0$.

2. Soient f et g deux fonctions sci en un point $x_0 \in \mathbb{R}$.

Montrer que $\inf(f,g)$, $\sup(f,g)$, f+g et λf (avec λ une constante positive quelconque) sont sci en x_0 .

Solution détaillée: En tout point $x_0 \in \mathbb{R}$ où f est sci, et pour tout $\varepsilon > 0$, on notera $\alpha(f, x_0, \varepsilon)$ une valeur de $\alpha > 0$ telle que soit vraie. On définit de même $\alpha(g, x_0, \varepsilon)$. Montrons que f + g est sci en x_0 si f et g sont sci en x_0 . Soit $\varepsilon > 0$ quelconque. On pose

$$\alpha = \min \left\{ \alpha \left(f, x_0, \frac{\varepsilon}{2} \right), \alpha \left(g, x_0, \frac{\varepsilon}{2} \right) \right\}$$

Alors, quel que soit $x \in \mathbb{R}$, $|x - x_0| < \alpha$ implique $f(x) > f(x_0) - \frac{\varepsilon}{2}$ et $g(x) > g(x_0) - \frac{\varepsilon}{2}$. En sommant ces deux inégalités, on en déduit $(f + g)(x) > (f + g)(x_0) - \varepsilon$. En résumé, on a montré que

$$(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in \mathbb{R})(|x - x_0| < \alpha \Longrightarrow (f + g)(x) > (f + g)(x_0) - \varepsilon)$$

La fonction f + g est donc bien sci en x_0 .

Montrons que la fonction λf est sci en x_0 si f est sci en x_0 . C'est évident si $\lambda = 0$. Sinon, soit $\varepsilon > 0$ quelconque. On pose

$$\alpha = \alpha \left(f, x_0, \frac{\varepsilon}{\lambda} \right)$$

Alors, quel que soit $x \in \mathbb{R}$, $|x - x_0| < \alpha$ implique $\lambda f(x) > \lambda f(x_0) - \varepsilon$. On en déduit le résultat annoncé.

Montrons que $\sup(f,g)$ et $\inf(f,g)$ sont sci en x_0 si f et g sont sci en x_0 . Soit $\varepsilon > 0$ quelconque. On pose cette fois

$$\alpha = \min\{\alpha(f, x_0, \varepsilon), \alpha(g, x_0, \varepsilon)\}\$$

Alors, quel que soit $x \in \mathbb{R}$, $|x - x_0| < \alpha$ implique $f(x) > f(x_0) - \varepsilon$ et $g(x) > g(x_0) - \varepsilon$.

• D'une part, comme $\sup(f,g)(x) \ge f(x)$ et $\sup(f,g)(x) \ge g(x)$, on en déduit

$$\sup(f,g)(x) > f(x_0) - \varepsilon$$
 et $\sup(f,g)(x) > g(x_0) - \varepsilon$

D'où l'inégalité

$$\sup(f,g)(x) > \sup\{f(x_0) - \varepsilon, g(x_0) - \varepsilon\} = \sup(f,g)(x_0) - \varepsilon$$

La conclusion en résulte pour $\sup(f,g)$.

• D'autre part, comme $f(x_0) \ge \inf(f,g)(x_0)$ et $g(x_0) \ge \inf(f,g)(x_0)$, on en déduit

$$f(x) > \inf(f, g)(x_0) - \varepsilon$$
 et $g(x) > \inf(f, g)(x_0) - \varepsilon$

D'où l'inégalité

$$\inf(f,g)(x) > \inf(f,g)(x_0) - \varepsilon$$

qui permet de conclure pour $\inf(f,g)$.

Remarque

Considérons une famille $(f_i)_{i\in\mathbb{N}}$ de fonctions sci (par exemple continues...). On peut montrer que sup $\{f_i, i \in \mathbb{N}\}$ est encore une fonction sci (utiliser la définition de la borne supérieure), mais qu'en général ce n'est pas le cas de $\inf\{f_i, i \in \mathbb{N}\}$ (trouver un contre-exemple).

3. Soit $(f_n)_{n\in\mathbb{N}}$ une famille de fonctions réelles sci en un même point $x_0\in\mathbb{R}$. On suppose que quel que soit $x\in\mathbb{R}$, la famille $(f_n(x), n\in\mathbb{N})$ est majorée, et on définit la fonction ϕ par

$$\phi : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \sup_{n \in \mathbb{N}} \{ f_n(x) \}$$

Montrer que ϕ est sci en x_0 .

Solution détaillée : Soit $\varepsilon>0$. D'après les propriétés de la borne supérieure, il existe $n\in\mathbb{N}$ tel que

$$\phi(x_0) \ge f_n(x_0) > \phi(x_0) - \frac{\varepsilon}{2}.$$

Comme f_n est sci en x_0 , il existe $\alpha>0$ tel que

$$\forall x \in]x_0 - \alpha, x_0 + \alpha[, f_n(x) > f_n(x_0) - \frac{\varepsilon}{2}.$$

Soit $x \in]x_0 - \alpha, x_0 + \alpha[$. Alors :

$$\phi(x) \ge f_n(x) > f_n(x_0) - \frac{\varepsilon}{2} > \phi(x_0) - \frac{\varepsilon}{2} - \frac{\varepsilon}{2} = \phi(x_0) - \varepsilon.$$

Cela démontre que ϕ est sci en x_0 .