

«Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ФУНДАМЕНТАЛЬНЫЕ НАУКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА (ФН11)

НАПРАВЛЕНИЕ ПОДГОТОВКИ МАТЕМАТИКА И КОМПЬЮТЕРНЫЕ НАУКИ (02.03.01)

Отчет

по лабораторной работе № 4

Название лабораторной работы: Интервальные оценки для параметра биноминального закона.

Вариант № 9

Дисциплина:

Теория вероятности и математическая статистика

Студент группы ФН11-52Б		<u>Очкин Н.В.</u>
	(Подпись, дата)	(И.О. Фамилия)
Преподаватель		Облакова Т.В.
•	(Подпись, дата)	(И.О. Фамилия)

Задание

- 1. Используя выборку, сгенерированную вами в задаче 2 и считая параметр p неизвестным (k-дано), постройте для уровней доверия 1- α =0.9, 0.95 и 0.98 симметричные интервальные оценки Клоппера-Пирсона (\underline{p} ; \overline{p}) для вероятности успеха в одном испытании p.
- 2. Для тех же уровней найдите по ЦПТ приближенные доверительные интервалы для p.
- 3. Сравните полученные результаты и убедитесь, что полученные интервалы содержат истинное значение параметра.
- 4. Для одного из значений α постройте совмещенные графики функций распределения биномиальных законов $B(k,p),\,B(k,\overline{p}).$
- 5. Сформулируйте выводы.

Исходные данные

$$k=8$$
 $p=0.7$ $n=140$ $\alpha=0.1$, 0.05, 0.02, 0.01

	_			4		_	_
7	6	5	8	4	3	6	7
5	6	4	7	7	6	5	6
6	6	2	6	6	5	5	7
7	6	7	6	7	7	5	4
2	5	5	8	6	5	7	6
4	6	3	5	6	1	8	6
7	6	7	5	8	6	5	7
5	4	6	8	7	4	5	7
6	6	5	5	6	7	6	7
5	7	5	6	7	5	6	5
5	7	6	5	5	4	5	7
6	3	4	6	5	4	6	7
7	4	6	3	7	5	5	6
7	4	7	5	5	6	4	6
7	6	3	5	6	6	5	7
6	4	5	7	6	7	5	6
6	4	3	7	4	4	4	5
7	8	5	5	7	5		

Выполнение работы

По условию, параметр p подразумеваем неизвестным, в то время как значение k=8 считаем данным. В результате моделирования были получены значения выборочного среднего \overline{X} и статистики $K(\overrightarrow{X}_n)$.

```
overlineX = 1 / len(X) * sum(X)
K_Stat = sum(X)
```

$$\overline{X} = 5.593 \qquad K(\overrightarrow{X}_n) = 783$$

Приведем графики квантилей для $\alpha=0.01$ в зависимости от p и отметим значение $K(\overrightarrow{X}_n).$

Численно найдем точки пересечения для различных значений α . Таким образом найдем приближенные значения p и \overline{p} .

```
alphas_ = [0.1, 0.05, 0.02, 0.01]
quantile = lambda alpha, n, p : sp.stats.binom.ppf(alpha, n, p)
for alpha in alphas_:
```

```
foo1 = lambda p : quantile(1 - alpha / 2, n_*k_, p) - K_Stat
foo2 = lambda p : quantile(alpha/2, n_*k_, p) - K_Stat
underlineP = sp.optimize.brentq(foo1, 0, 1, xtol=1e-6)
overlineP = sp.optimize.brentq(foo2, 0, 1, xtol=1e-6)
```

$$\begin{array}{lll} \alpha = 0.1 & \underline{p} \approx 0.67664 & \overline{p} \approx 0.72168 \\ \alpha = 0.05 & \underline{p} \approx 0.6717 & \overline{p} \approx 0.72545 \\ \alpha = 0.02 & \underline{p} \approx 0.66665 & \overline{p} \approx 0.72985 \\ \alpha = 0.01 & \underline{p} \approx 0.66343 & \overline{p} \approx 0.7336 \end{array}$$

Далее, согласно общему принципу построения доверительных интервалов, множество $\left\{C_1(p,\alpha) < K(\overrightarrow{X}_n) < C_2(p,\alpha)\right\}$ надо эквивалентным образом переписать в виде $\left\{\underline{p}(K(\overrightarrow{X}_n)) , что приводит к уравнениям Клоппера-Пирсона для <math>\underline{p}$ и \overline{p} :

$$\sum_{j=0}^{K(\overrightarrow{X}_n)} C_{nk}^j \overline{p}^j (1-\overline{p})^{nk-j} = \frac{\alpha}{2}$$

$$\sum_{j=0}^{K(\overrightarrow{X}_n)-1} C_{nk}^j \underline{p}^j (1-\underline{p})^{nk-j} = 1 - \frac{\alpha}{2}$$

Решая с использованием неполной бэта-функции, получим

$$B_{\underline{p}}\left(\sum_{k=1}^{n} X_{k}, nk - \sum_{k=1}^{n} X_{k} + 1\right) = \frac{\alpha}{2}$$
 (1)

$$B_{\overline{p}}\left(\sum_{k=1}^{n} X_k + 1, nk - \sum_{k=1}^{n} X_k\right) = 1 - \frac{\alpha}{2}$$
 (2)

Решим уравнения (1), (2) с использованием встроенной в библиотеку всіру функции stats.вета.ррf, обратной к $B_x(m,k)$.

$$\begin{array}{lll} \alpha = 0.1 & \underline{p} \approx 0.67575 & \overline{p} \approx 0.72169 \\ \alpha = 0.05 & \underline{p} \approx 0.6713 & \overline{p} \approx 0.72586 \\ \alpha = 0.02 & \underline{p} \approx 0.66611 & \overline{p} \approx 0.73068 \\ \alpha = 0.01 & p \approx 0.66256 & \overline{p} \approx 0.73394 \end{array}$$

Далее найдем границы доверительных интервалов для тех же значений α , что и при решении уравнений Клоппера – Пирсона, но теперь с использованием центральной предельной теоремы.

```
alphas_ = [0.1, 0.05, 0.02, 0.01]

def find_p(alpha):
    SE = np.sqrt(overlineX * (k_ - overlineX) / (n_ * k_)) / k_
    quantile = sp.stats.norm.ppf(alpha / 2)

    lowerBound = overlineX / k_ + quantile * SE
    upperBound = overlineX / k_ - quantile * SE

    return (lowerBound, upperBound)

for alpha in alphas_:
    underlineP, overlineP = find_p(alpha)
```

$$\begin{array}{lll} \alpha = 0.1 & \underline{p} \approx 0.67656 & \overline{p} \approx 0.72165 \\ \alpha = 0.05 & \underline{p} \approx 0.67225 & \overline{p} \approx 0.72597 \\ \alpha = 0.02 & \underline{p} \approx 0.66723 & \overline{p} \approx 0.73099 \\ \alpha = 0.01 & p \approx 0.66381 & \overline{p} \approx 0.73441 \end{array}$$

Для удобства анализа и представления полученные результаты приведем в виде таблицы

Доверительные интервалы для параметра биномиального закона на разных уровнях доверия

Уровень доверия	Доверительный интервал для p		
1 - α	Численно	По Клопперу - Пирсону	По ЦПТ
0.1	(0.67664, 0.72168)	(0.67575, 0.72169)	(0.67656, 0.72165)
0.05	(0.6717, 0.72545)	(0.6713, 0.72586)	(0.67225, 0.72597)
0.02	(0.66665, 0.72985)	(0.66611, 0.73068)	(0.66723, 0.73099)
0.01	(0.66343, 0.7336)	(0.66256, 0.73394)	(0.66381, 0.73441)
Истинное значение р		p=0.7	

Из данных таблицы следует, что с увеличением уровня доверия доверительные интервалы для параметра p расширяются и при этом всегда содержат истинное значение параметра. Как следствие, график истинной функции распределения B(k,p) расположен между графиками B(k,p) и B(k,p). Можно также заметить, что разница между доверительными интервалами Клоппера - Пирсона и приближенными доверительными интервалами очень незначительна, что объясняется большим объемом выборки.

Вывод

В ходе проделанной лабораторной работы были получены доверительные интервалы для значения параметра p биноминального распределения с помощью двух методов: по Клопперу – Пирсону и с использованием центральной предельной теоремы. Полученные результаты согласуются с истинным значением параметра p, границы доверительных интервалов найденные разными методами мало отличаются ввиду большого объема выборки, а сами доверительные интервалы становятся шире с увеличением степени доверия. Таким образом, показана хорошая применимость данных методов для нахождения границ доверительных интервалов для оценки значения неизвестного параметра распределения.

Приложение

Программный код, с помощью которого была выполнена данная лабораторная работа.

```
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from IPython.display import display, Math
np.set_printoptions(suppress=True)
PRECISION = 5
k_{-} = 8
p_{-} = 0.7
n_{-} = 140
alpha_ = 0.01
factorial = lambda x : sp.special.factorial(x)
          = lambda n, k : \
                factorial(n) / (factorial(k) * (factorial(n - k)))
          = lambda name, arr : \
cont
                print(f'{name}:\n {np.round(np.array(arr), PRECISION)}')
def decorate_plot(ax, xticks, loc=(-0.025, -0.3)):
    # Define font sizes
    SIZE_TICKS = 10
    # axis names
    ax.set_xlabel('p')
    ax.set_xticks(xticks)
    # Adjust the font size of the tick labels
    ax.tick_params(axis='both', which='major', labelsize=SIZE_TICKS)
    # plt.legend(fontsize=10, loc='lower left')
    plt.legend(fontsize=10, loc=loc)
    # Update font settings
    plt.rcParams.update({'font.family': 'serif', 'font.size': 12})
    # Adjust layout
    plt.tight_layout()
def B(k, p, n):
    q = 1 - p
    P = [Cnk(k, j) * p**j * (q)**(k - j) for j in range(k+1)]
    # cout('P', P)
```

```
Cumulative_P = [P[i] + sum(P[:i]) for i in range(k+1)]
    # cout('cumulative P', Cumulative_P)
    Y = np.random.uniform(low=0, high=1, size=n)
    # cout('Y', Y)
    def k_alg(u, r):
        i = 0
        for j in range(len(u)):
             if r < u[j]:</pre>
                 break
             i += 1
    X = [k_alg(Cumulative_P, Y[j]) for j in range(n)]
    # cout('X', X)
    return X
X = B(k_{-}, p_{-}, n_{-})
cout(f'B(\{k_{-}\},\{p_{-}\})) of size \{n_{-}\}', X)
overlineX = 1 / len(X) * sum(X)
display(Math(f'\\overline{{X}}: {overlineX}'))
K_Stat = sum(X)
display(Math(f'K(\\overrightarrow{{X}}_n): {K_Stat}'))
quantile = lambda alpha, n, p : sp.stats.binom.ppf(alpha, n, p) # n * k
def plot(filename):
    # Define colors
    RED = '#6F1D1B'
    GREEN = '#34623f'
    BLUE = '#0d00a4'
    # Create the figure and axis
    _, ax = plt.subplots(figsize=(8, 6))
    # alpha / 2
    alpha = alpha_ / 2
    x_values = np.linspace(0, 1, 100)
    y_values = [quantile(alpha, n_*k_, p) for p in x_values]
    ax.plot(x_values,
             y_values,
             color=BLUE,
             linestyle='-',
             linewidth=1.5,
    label=f'\$\backslash \{\{quantile\}\}(\{alpha\})\backslash \{\{for B\}\}(\{n_*k_\}, \ \ \}) \}')
    # 1 - alpha / 2
    alpha = 1 - alpha_ / 2
    x_values = np.linspace(0, 1, 100)
    y_values = [quantile(alpha, n_*k_, p) for p in x_values]
    ax.plot(x_values,
             y_values,
```

```
color = GREEN,
            linestyle='-',
            linewidth=1.5,
    label=f'\$\backslash \{\{quantile\}\}(\{alpha\})\backslash \{\{for B\}\}(\{n_*k_\}, \ \ \}) 
    # Draw the horizontal line y = K_Stat
    ax.axhline(y=K_Stat,
               color=RED,
               linestyle='-',
               label=f'$K(\\overrightarrow{{X}}_n): {K_Stat}$')
    # Call the decoration function
    decorate_plot(ax, np.arange(0, 1+0.1, 0.1))
    plt.grid(linestyle='-', linewidth=0.25)
    # Save the figure
    plt.savefig(f'{filename}.png', dpi=300, transparent=True)
    # Show the plot
    plt.show()
plot('quantiles')
# numerically
alphas_ = [0.1, 0.05, 0.02] + [alpha_]
for alpha in alphas_:
    foo1 = lambda p : quantile(1 - alpha / 2, n_*k_, p) - K_Stat
    foo2 = lambda p : quantile(alpha/2, n_*k_, p) - K_Stat
    underlineP = sp.optimize.brentq(foo1, 0, 1, xtol=1e-6)
    overlineP = sp.optimize.brentq(foo2, 0, 1, xtol=1e-6)
    print(f'{alpha}: {np.round(underlineP, PRECISION)}',end=' '*5)
    print(f'{alpha}: {np.round(overlineP, PRECISION)}')
# Klopper-Pirson
for alpha in alphas_:
    underlineP = lambda alpha : \
                    sp.stats.beta.ppf(alpha/2,
                                       K_Stat,
                                       n_* * k_ - K_Stat + 1)
    overlineP = lambda alpha : \
                     sp.stats.beta.ppf(1-alpha/2,
                                       K_Stat + 1,
                                       n_* k_- - K_Stat
    print(f'{alpha}: {np.round(underlineP(alpha), PRECISION)}',end=' '*5)
    print(f'{alpha}: {np.round(overlineP(alpha), PRECISION)}')
```

```
# CPT
def find_p(alpha):
    SE = np.sqrt(overlineX * (k_ - overlineX) / (n_ * k_)) / k_
    quantile = sp.stats.norm.ppf(alpha / 2)
    lowerBound = overlineX / k_ + quantile * SE
    upperBound = overlineX / k_ - quantile * SE
    return (lowerBound, upperBound)
for alpha in alphas_:
    underlineP, overlineP = find_p(alpha)
    print(f'{alpha}: {np.round(underlineP, PRECISION)}',end=' '*5)
    print(f'{alpha}: {np.round(overlineP, PRECISION)}')
def plot(filename):
    # Define colors
    RED = '#6F1D1B'
    GREEN = '#34623f'
    BLUE = '#0d00a4'
    # Create the figure and axis
    _, ax = plt.subplots(figsize=(10, 6))
    underlineP = lambda alpha : \
                     sp.stats.beta.ppf(alpha/2,
                                       K_Stat,
                                       n_* * k_ - K_Stat + 1)
    overlineP = lambda alpha : \
                     sp.stats.beta.ppf(1-alpha/2,
                                       K_Stat + 1,
                                       n_ * k_ - K_Stat)
    x_values = np.linspace(0, k_+1, 1000)
    # B(k, p)
    y_values = sp.stats.binom.cdf(x_values, k_, p_)
    ax.plot(x_values,
            y_values,
            color=RED,
            linestyle='-',
            linewidth=1.5,
            label=f'B(\{k_{-}\}, \{p_{-}\})')
    # B(k, underline p)
    p = underlineP(alpha_)
    y_values = sp.stats.binom.cdf(x_values, k_, p)
    ax.plot(x_values,
            y_values,
            color=GREEN,
            linestyle='-',
            linewidth=1.5,
            label=f'B(\{k_{-}\}, \{p\})')
```

```
# B(k, overline p)
    p = overlineP(alpha_)
    y_values = sp.stats.binom.cdf(x_values, k_, p)
    ax.plot(x_values,
            y_values,
            color=BLUE,
            linestyle='-',
            linewidth=1.5,
            label=f'B(\{k_{-}\}, \{p\})')
    # Call the decoration function
    decorate_plot(ax, np.linspace(0, k_+1, 10))
    plt.grid(linestyle='-', linewidth=0.25)
    # Save the figure
    plt.savefig(f'{filename}.png', dpi=300, transparent=True)
    # Show the plot
    plt.show()
plot('B_step')
```