Signals and Circuits

ENGR 35500

Current, Voltage and Resistance

Chapter 1

1-1 to 1-3 (Circuit Terminology)

1-5 (Voltage and Power)

Charge

All matter contains a mixture of Neutrons, positively charged protons, and negative charged electrons;

Electric charge is the physical property of matter that causes it to experience of a force when placed in an electromagnetic field.

➤ Like charges tend to repel each other; Opposite charges tend to attract each other.

Charge

- ➤ Charge is measured in Coulombs (C).
- ➤ The charge of one electron is:

$$e = -1.602 \times 10^{-19}$$
 Coulombs (C)

- The charge of a proton is equal in magnitude to the charge of an electron but opposite in sign (positive).
- ➤ Charge is always an integral multiple of e.

Ionization

- >The process of gaining or losing electrons.
- ➤ Significant in current flow.

Electric current is defined as the time rate of transfer of electric charge across a specified boundary.

Submultiples of the Amp

- Milliampere (mA)
 - Used more frequently than ampere.
 - Equal to 1/1000 of an ampere or .001 A.
- Microampere (μA)
 - Used more frequently than ampere.
 - Equal to 1/1,000,000 of an ampere or 0.000001 A.

Sign Convention

$$i_1 = -i_2$$

e.g. if $i_1 = 3A \rightarrow i_2 = -3A$

Variations of Current

- ➤DC (Direct Current)
- ➤ AC (Alternating Current)

Sinusoidal current → Alternating current (AC)

$$ightharpoonup ext{Since } i(t) = \frac{dq(t)}{dt} \Rightarrow q(t) = \int_{-\infty}^{t} i(t)dt + q(-\infty)$$

Where $q(-\infty)$ is the initial charge at the beginning of the time

Example: Let
$$q(t) = 12t C$$

$$i(t) = \frac{dq(t)}{dt} = 12 A$$

Example: Let i(t) = Mt A, $t \ge 0$, where M is a constant and q(0) = 0. Find the charge?

$$q(t) = \int_{-\infty}^{t} i(t)dt + qi = \int_{0}^{t} Mtdt + q(0) = \frac{Mt^{2}}{2} C$$

Exercise

If the current flowing through a given resistor in a circuit is given by $i(t) = 5(1 - e^{-2t})$ A for t>=0, determine the total amount of charge that passed through the resistor between t=0 and t=0.2s

$$\Delta Q(0, 0.2) = \int_0^{0.2} 5(1 - e^{-2t}) dt$$

$$= (5t + 2.5e^{-2t}) \Big|_0^{0.2}$$

$$= (5 * 0.2 + 2.5e^{-2*0.2}) - (5 * 0 + 2.5)e^{-2*0}$$

$$= 0.176C$$

Practice

The plot displays the cumulative amount of Charge q(t) that has entered a certain device up to time t. Please plot the current vs time.

Electromagnetic force

VS

Energy expenditure: dw

Charge involved: dq

Voltage is a measurement of the expenditure of energy relative to the amount of charge involved.

$$V_{ab} = \frac{dw}{dq} \leftarrow work \ in \ Joules \ (J)$$
 $\leftarrow charge \ in \ Coulombs \ (C)$
Voltage

Unit: $Volts (V) = \frac{J}{C} \leftarrow 1 J = 1N \cdot m (Newton Meter)$

Electromagnetic force

Energy expenditure: dw

Charge involved: dq

Voltage between location \boldsymbol{a} and location \boldsymbol{b} is the ratio of \boldsymbol{dw} to \boldsymbol{dq} , where \boldsymbol{dw} is the energy in joules required to move (positive) charge \boldsymbol{dq} from \boldsymbol{b} to \boldsymbol{a} (or negative charge from \boldsymbol{a} to \boldsymbol{b}).

$$V_{ab} = -V_{ba}$$

 v_{ab} emphasizes the fact that it is the voltage deference between points a and b; and point b is the reference.

$$v_{ab} = v_{ac} - v_{bc}$$

ground

Practice

- (a) What is the voltage at node V_2 ?
- (b) What is the voltage difference $V_{32} = V_3 V_2$?
- (c) What are the voltages at nodes 1, 3, 4, and 5 if node 2 is selected as the ground node instead of node 1?

