Resumen de la Clase 3: Modelos Probabilísticos

Profesor: Reinaldo B. Arellano-Valle

1. Modelo de Probabilidad y Medida de Probabilidad

1.1. Definición

Sea (Ω, \mathcal{A}) un espacio medible. Una función $P : \mathcal{A} \to [0, 1]$ es una medida de probabilidad si cumple los siguientes axiomas:

A1 No negatividad: $P(A) \ge 0$ para todo $A \in \mathcal{A}$.

A2 Normalización: $P(\Omega) = 1$.

A3 Aditividad contable: Para cualquier secuencia contable de eventos dos a dos disjuntos $A_1, A_2, \ldots \in \mathcal{A}$,

$$P\Big(\bigcup_{i=1}^{\infty} A_i\Big) = \sum_{i=1}^{\infty} P(A_i).$$

La terna (Ω, \mathcal{A}, P) se denomina modelo de probabilidad o espacio de probabilidad.

2. Propiedades Básicas de la Medida de Probabilidad

2.1. Teorema 1.1

En un modelo de probabilidad se verifican:

P1 $P(\emptyset) = 0$.

P2 Para una secuencia finita de eventos dos a dos disjuntos A_1, A_2, \ldots, A_n ,

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i).$$

Esbozo de demostración: Para $P(\emptyset)$, se observa que \emptyset puede escribirse como una unión infinita de conjuntos vacíos. Aplicando la aditividad contable y teniendo en cuenta la no negatividad, se concluye que $P(\emptyset) = 0$.

2.2. Teorema 1.2

Se deducen las siguientes propiedades:

■ P3 (Complemento):

$$P(A^c) = 1 - P(A).$$

- P4 (Monotonía): Si $A \subseteq B$ entonces $P(A) \le P(B)$.
- P5 (Inclusion-Exclusión): Para dos eventos cualesquiera,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Demostraciones: Estas propiedades se obtienen combinando la aditividad (finita o contable) con la definición de complemento y la inclusión de conjuntos.

2.3. Lema 1.1

Dada una secuencia de eventos $A_1, A_2, \ldots \in \mathcal{A}$, se definen

$$B_1 = A_1, \quad B_i = A_i \setminus (A_1 \cup \cdots \cup A_{i-1}), \quad i \ge 2.$$

Entonces:

- 1. Los B_i son dos a dos disjuntos.
- 2. Se tiene que

$$\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i.$$

2.4. Teorema 1.3: Continuidad de la Medida

Sean $\{A_n\}$ secuencias de eventos en \mathcal{A} :

1. $(A_n \text{ crecientes})$ Si $A_1 \subseteq A_2 \subseteq \cdots$, entonces

$$P\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} P(A_n).$$

2. $(A_n \text{ decrecientes})$ Si $A_1 \supseteq A_2 \supseteq \cdots$, entonces

$$P\Big(\bigcap_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} P(A_n).$$

2.5. Teorema 1.4

Se establecen dos propiedades adicionales:

P1 **P7:** Para cualquier partición $\{B_i\}_{i=1}^{\infty}$ de Ω ,

$$P(A) = \sum_{i=1}^{\infty} P(A \cap B_i).$$

P2 P8 (Desigualdad de Boole):

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} P(A_i).$$

3. Modelos de Probabilidad Discreto y Equiprobable

3.1. Modelo de Probabilidad Discreto (Teorema 1.5)

Sea Ω finito (o contable) y defínase la función masa de probabilidad $p:\Omega\to[0,1]$ tal que

$$\sum_{\omega \in \Omega} p(\omega) = 1.$$

Entonces, para cualquier $A \subseteq \Omega$,

$$P(A) = \sum_{\omega \in A} p(\omega).$$

3.2. Modelo de Probabilidad Equiprobable (Definición 1.2)

Si Ω es finito y cada uno de sus elementos tiene la misma probabilidad, se tiene que

$$P(\{\omega\}) = \frac{1}{N(\Omega)} \quad \text{para todo } \omega \in \Omega,$$

de donde para cualquier $A \subseteq \Omega$,

$$P(A) = \frac{N(A)}{N(\Omega)},$$

donde N(A) es el número de elementos de A.

4. Técnicas de Conteo

4.1. Principio Multiplicativo (Teorema 1.7)

Si un experimento aleatorio se compone de dos etapas, donde la primera tiene N_1 resultados posibles y la segunda N_2 resultados, entonces el espacio muestral tiene

$$N(\Omega) = N_1 \times N_2$$
.

4.2. Extensión a *n* Etapas (Teorema 1.8)

Para un experimento con n etapas, donde la etapa i tiene N_i resultados, el número total de resultados es

$$N(\Omega) = \prod_{i=1}^{n} N_i.$$

5. Aplicación al Muestreo Aleatorio

En el contexto del muestreo aleatorio se consideran distintas formas de extraer una muestra de n sujetos de una población de N elementos. Dependiendo de si el muestreo es ordenado o no, y con o sin devolución, se tienen las siguientes fórmulas (**Teorema 1.9**):

1. Muestras ordenadas sin devolución (variaciones sin repetición):

$$(N)_n = \frac{N!}{(N-n)!}.$$

2. Muestras ordenadas con devolución:

$$N^n$$
.

3. Muestras no ordenadas sin devolución (combinaciones sin repetición):

$$\binom{N}{n} = \frac{N!}{n!(N-n)!}.$$

4. Muestras no ordenadas con devolución (combinaciones con repetición):

$$\binom{N+n-1}{n} = \frac{(N+n-1)!}{n!(N-1)!}.$$

La demostración de estas fórmulas se basa en el principio multiplicativo y en la relación entre muestras ordenadas y no ordenadas (a través de la consideración del número de permutaciones).

6. Conclusión

En esta clase se ha construido la base teórica de los modelos probabilísticos, enfatizando la definición formal de una medida de probabilidad y sus propiedades esenciales (como la aditividad, el complemento, y la continuidad). Se han presentado además los modelos discretos y equiprobables, junto con las técnicas fundamentales de conteo que permiten determinar el número de resultados en experimentos aleatorios y su aplicación en el muestreo aleatorio.