- § 1 随机试验
- § 2 样本空间、随机事件
- § 3 频率与概率
- § 4 等可能概型(古典概型)
- § 5 条件概率
- § 6 独立性

§ 1 随机试验 (Experiment)

这里试验的含义十分广泛,它包括各种各种的科学试验,也包括对事物的某一特征的观察。 其典型的例子有:

E₁: 抛一枚硬币,观察正面 H (Heads)、反面 T (Tails) 出现的情况。

E₂: 将一枚硬币抛掷三次,观察正面、反面出现的情况。

E₃:将一枚硬币抛掷三次,观察出现正面的次数.

 \mathbf{E}_{4} : 抛一颗骰子,观察出现的点数。

 E_s :记录寻呼台一昼夜接到的呼唤次数。

随机试验

E₆:在一批灯泡中任意抽取一只,测试它的寿命。

E₇: 记录某地一昼夜的最高温度和最低温度。 这些试验具有以下特点:

- •可以在相同的条件下重复进行;
- ·每次试验的可能结果不止一个,并且能事先明 确试验的所有可能结果;
- •进行一次试验之前不能确定哪一个结果会出现。

我们把满足以上三个特点的试验称为随机试验。

§2 样本空间、随机事件

目录索引

- 一 样本空间
- 二随机事件
- 三 事件间的关系与运算

1 样本空间 (Space)

定义 将随机试验 E 的所有可能结果组成的集合 称为 E 的样本空间, 记为 S 。样本空间的

 $S_1: \{\overline{A}, \overline{A}, \overline{A}\}$ 即 E 的每个结果,称为样本点。

S₂: { HHH, HHT, HTH, THH, HTT, THT, TTT, THT, TTT}

 $S_3: \{0, 1, 2, 3\}$

 S_4 : { 1, 2, 3, 4, 5, 6 }

E、:记录寻呼台一昼夜接到的呼唤次数。

 E_{ϵ} :在一批灯泡中任意抽取一只,测试它的寿命。

E₇:记录某地一昼夜的最低温度和最高温度。

S₅: {0,1,2,3.....}

 $S_6:\{t\mid t\mid 0\}$

 S_7 : { (x, y) | T₀ \leq x \leq y \leq T₁}

2 、 随机事

造义:

•基本事件:有一个样本点组成的黑皮集;

•必然事件: 样本空间 S 本泉不发生)

•不可能事件:空集Ø。

我们称一个"随机事件发生"当且仅当它所包含的一个样本点在试验中出现。

例如:

S₂ 中事件 A={HHH,HHT,HTH,HTT} 表示 "第一次出现的是正面" B={THH,THT,TTH,TTT} 表示 "第一次出现的是反面"

 S_6 中事件 $B_1 = \{t | t < 1000\}$ 表示 "灯泡是次品"

事件 B₂={t|t 1000} 表示 "灯泡是合格品" 事件 B₃={t|t1500} 表示"灯泡是一级品"

3 、 事件间的关系与运算

- 1º 包含关系 A C B "A 发生必然导致 B 发生"
- 2^0 和事件 $A \cup B$ "A, B中至少有一发生"
- 3° 积事件 $A \cap B = AB$ "A 与 B 同时发生"
- 40 差事件 A-B "A发生但B不发生"
- 5° 互不相容 $A \cap B = \emptyset$ "A 与 B 不能同时发生"
- 6° 对立(互逆)事 $A \cap B = \emptyset \perp A \cup B = S$ 件 记 $A = \overline{B}$ 或 $B = \overline{A}$

包含关系 $A \subset B$ 2° 和事件 $A \cup B$

S, 中事件

积事件 $A \cap B$

```
A={HHH,HHT,HTH,HTT},B={HHH,TTT}
A \cup B = \{ HHH, HHT, HTH, HTT, TTT \}
A \cap B = \{HHH\},
A - B = \{ HHT, HTH, HTT \}
```

$$\overline{A} = \{ THH, THT, TTH, TTT \}$$

4º 差事件 A - B

6° 对立事件 $A \cap B = \emptyset$

$$A \cap B = \emptyset$$

随机事件的运算规律

幂等律: $A \cup A = A$, $A \cap A = A$

交換律: $A \cup B = B \cup A$, $A \cap B = B \cap A$

结合律: $(A \cup B) \cup C = A \cup (B \cup C)$

 $(A \cap B) \cap C = A \cap (B \cap C)$

分配律: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

De Morgan 定律: $\overline{\bigcup A_{\alpha}} = \cap \overline{A_{\alpha}}, \quad \overline{\bigcap A_{\alpha}} = \overline{\bigcup A_{\alpha}}$

特别: $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$

注意:1、对立事件必为互不相容事件,

反之不 一定。

- 2、一个试验的基本事件是两两互不相容。的事件,它们的和事件是必然事件。
 - $3. \quad A-B=AB=A-AB,$
 - 4. 若A与B互不相容,则 $A \cup B$ 记为A + B.
 - 5. $A \cup \overline{A} = S$, $A \cap \overline{A} = \Phi$.

事件间的关系与运算举例;

P&S

例 1

"A,B,C中至少有一发生": $A \cup B \cup C$

"A,B,C中至少有两发生": $AB \cup BC \cup AC$

"A,B,C中最多有一发生":

$$A\overline{B}\overline{C} + \overline{A}B\overline{C} + \overline{A}\overline{B}C + \overline{A}\overline{B}C = \overline{AB \cup BC \cup AC}$$

例 2

(A)"甲种产品滞销,乙种 产品畅销";

(B)"甲、乙两种产品均畅 销";

(C)"甲种产品滞销";

(D)"甲种产品滞销或乙种 产品畅销".

答:应选(D)

§3 频率与概率

目录索引

- 一频率
- 二概率

一、频率

1) 频率的定义和性质

定义 在相同的条件下,进行了 n 次试验, 在这 n 次试验中,事件 A 发生的次数 n_A 称为 事件 A 发生的频数。比值 n_A/n 称为事件

A 发生的频率,并记成
$$n_n^{f_n(A)}$$
。
$$f_n(A) = \frac{A}{n}.$$

它具有下述性质:

$$1^{\circ} \quad 0 \leq f_n(A) \leq 1 \; ;$$

$$2^{\circ} \quad f_n(S) = 1;$$

 3° 若 A_1, A_2, \dots, A_k 是两两互不相容事件,则

$$f_n(A_1 \cup A_2 \cup \cdots \cup A_k)$$

$$= f_n(A_1) + f_n(A_2) + \cdots + f_n(A_k)$$

2) 频率的稳定性

n=500 时

P&S
TO S

$\mathbf{n}_{\mathbf{A}}$	251	249	256	253	251	246	244
$f_n(A)$	0.502	0.498	0.512	0.506	0.502	0.492	0.488
	0.002	-0.002	0.012	0.006	0.002	-0.008	-0.012

实验者	n _H	f _n (H)
德•摩根 2048	3 1061	0.5181
蒲 丰 4040	2048	0.5096
K•皮尔逊 12000	6019	0.5016
K•皮尔逊 24000	12012	0.5005

稳定值

事件发生 的频繁程度 事件发生 的可能性的大小

频率的性质

概率的公理化定义

概率

二、概率的(公理化)定义

1、定义

设 E 是随机试验,S 是它的样本空间,对于 E 的每一个事件 A 赋予一个实数,记为P(A),

称为事件 A 的概率,要求集合函数 $(^{\bullet})$ 满足下列条件:

- 1^0 $0 \le P(A)$; (非负性)
- 2^{0} P(S) = 1; (正则性或正规性)
- 3° 若 A_1, A_2, \cdots 是两两互不相容事件,则

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

(可列可加性)

2、 概率的性质与推广

性质 1 $P(\emptyset) = 0$;

性质 2 若 A_1, A_2, \dots, A_n 是两两互不相容事件,则 $P(A_1 \cup A_2 \cup \dots \cup A_n) \qquad (有限可加性)$ $= P(A_1) + P(A_2) + \dots + P(A_n)$

☑ 返回主目录

性质 3
$$A \subset B \Rightarrow P(B-A) = P(B) - P(A)$$
 (包含可减性 $P(B) P(A)$ (非降性)

$$\mathbf{ii}: \qquad P(B) = P[(B-A) + A] = P(B-A) + P(A)$$

$$\therefore P(B-A) = P(B) - P(A)$$

$$P(B-A) = P(B) - P(A) \quad 0$$

 $\therefore P(B) P(A)$

性质 4
$$P(A) \le 1$$
; $(: P(A) \le P(S) = 1)$

性质 5 $P(\overline{A}) = 1 - P(A)$; (逆事件的概率公式)

$$(: P(A) + P(\overline{A}) = P(S) = 1)$$

性质 6
$$P(A \cup B) = P(A) + P(B) - P(AB)$$
。
(加法公式) $(:A \cup B = A + (B - AB))$

重要推广

1)
$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

 $-P(AB) - P(AC) - P(BC)$
 $+P(ABC)$ (加法公式)

$$2) P(B\overline{A}) = P(B - A) = P(B) - P(AB)$$

$$: B = BA + BA,$$

$$\therefore P(B) = P(BA) + P(B\overline{A})$$

加法公式的推广

对任意n个事件 A_1 , A_2 , ..., A_n , 有

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i})$$

$$-\sum_{1 \leq i < j \leq n} P(A_{i}A_{j}) + \sum_{1 \leq i < j < k \leq n} P(A_{i}A_{j}A_{k})$$

$$-\cdots + (-1)^{n-1} P(A_{1}A_{2}\cdots A_{n})$$

例已知 A、B、C 是三个事件,理(AB) = 0,
$$P(AC) = P(BC) = \frac{1}{8}, P(A) = P(B) = P(C) = \frac{1}{4},$$
求 A、B、C 全不发生的概率。
$$解P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

$$-P(AB) - P(AC) - P(BC)$$

$$= \frac{3}{4} - \frac{2}{8} + 0 = \frac{1}{2}$$

$$P(\overline{ABC}) = 1 - P(A \cup B \cup C) = 1 - \frac{1}{2} = \frac{1}{2}$$

例 2 已知
$$P(AB) = P(\overline{AB})$$
, $P(A) = p$, 则 $P(B) = ?$

解
$$P(AB) = P(\overline{AB}) = 1 - P(A \cup B)$$

$$= 1 - P(A) - P(B) + P(AB)$$

$$P(B) = 1 - P(A) = 1 - p.$$

例 3 已知
$$P(A) = a, P(B) = b, P(A \cup B) = c,$$
 则 $P(A\overline{B}) = ?$

答:
$$P(A\overline{B}) = c - b$$

例 3 已知
$$P(A) = a, P(B) = b, P(A \cup B) = c,$$
 则 $P(A\overline{B}) = ?$

解

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

$$P(AB) = P(A) + P(B) - P(A \cup B)$$

$$= a + b - c.$$

$$P(AB) = P(A) - P(AB)$$

$$= a - a - b + c = c - b.$$

例 4已知 A、 B是两个事件,且

$$P(A) = 0.7, P(A - B) = 0.3, \quad \text{II} \ P(\overline{AB}) = ?$$

解
$$P(\overline{AB}) = 1 - P(AB)$$

 $P(A - B) = P(A) - P(AB)$
 $P(\overline{AB}) = 1 - P(A) + P(A - B)$
 $= 1 - 0.7 + 0.3 = 0.6$

例 5已知 A 、 B 是两个事件 ,且
$$P(A) + P(B) = 0.9 , P(AB) = 0.2.$$

$$P(\overline{A}B) + P(A\overline{B}) = ?$$

$$\mathbf{F}(\overline{A}B) + P(A\overline{B})$$

$$= P(B) - P(AB) + P(A) - P(AB)$$

$$= P(A) + P(B) - 2P(AB)$$

$$= 0.9 - 2 \times 0.2 = 0.5$$

 p_{24} 1 (2)(4), 2, 4.