NON-CONFIGURABLES

 p_{mean} : mean unit price

 p_{std} : unit price standard deviation q_{mean} : mean product quality

 q_{std} : product quality standard deviation

 q_{max} : maximum product quality

 ρ : price quality correlation, range: [0, 1]

 $C_{resources}$: cost of resources to produce an unit

 $c_{logistics}$: logistics cost to store/produce/transport/sell an unit

 $c_{best_equipment}$: cost of best equipments c_{best_worker} : wage of best workers

 $c_{best_architect}$: cost of best architects designing production facilities $c_{best_constractor}$; cost of best contractors building production facilities $c_{most_marketing}$: marketing spending that would enable full coverage

 $c_{best_research}$: R&D spending that would result in maximum product quality

 n_{market} : market size

 $n_{equipment_per_unit}$: number of equipments needed to produce an unit

 $n_{worker_per_unit}$: number of workers needed to produce an unit

 w_{emit} : carbon emmission per unit produced (in kgs) w_{waste} : industrial waste per unit produced (in kgs):

 c_{emit} : emmision cost per kg c_{waste} : waste disposal cost per kg

CONFIGURABLES

p: unit price

 $n_{equipment}$: number of equipments to buy $q_{equipment}$: equipment quality, range: [0, 1]

 n_{worker} : number of workers to hire c_{worker} : wage of workers being hired

 $S_{marketing}$: marketing budget $s_{research}$: R&D spending s_{design} : facility design spending

 $s_{construction}$: facility construction spending

PROFIT ESTIMATION

revenue = $p \cdot \min(n_{product}, n_{demand})$

profit = revenue - cost

 $cost = s_{facility} + s_{research} + s_{operating} + s_{marketing} + s_{environmental}$

 $\begin{aligned} & \text{worker skill level: } q_{worker} = \min\left(\frac{C_{worker}}{c_{best_worker}}, 1\right) \\ & \text{product quality: } q = \max(\min(s_{research}, 1) \cdot q_{max}, 1) \cdot q_{equipment} \cdot q_{worker} \\ & \text{facility efficiency: } q_{facility} = \min\left(\frac{s_{design}}{c_{best_architect}} \cdot \frac{s_{construction}}{c_{best_constractor}}, 1\right) \\ & \text{quantity produced: } n_{product} = floor \left(q_{facility} \cdot \min\left(\frac{n_{equipment}}{n_{equipment_per_unit}}, \frac{n_{worker}}{n_{worker_per_unit}}, 1\right)\right) \\ & \text{equipments cost: } s_{equipment} = n_{equipment} \cdot q_{equipment} \cdot c_{best_equipment} \\ & \text{facility cost: } s_{facility} = s_{design} + s_{construction} + s_{equipment} \\ & \text{payroll: } s_{worker} = n_{worker} \cdot c_{worker} \\ & \text{logistics cost: } s_{logistics} = n_{product} \cdot c_{logistics} \\ & \text{manufacture cost: } s_{manufacture} = c_{resources} \cdot \\ & \text{operating cost: } s_{operating} = s_{manufacture} + s_{worker} + s_{logistics} \\ & \text{enviromental cost: } s_{enviromental} = n_{product} \cdot (w_{emit} \cdot c_{emit} + w_{waste} \cdot c_{waste}) \\ & \text{\%_sat} = \int_{-\infty}^{q} \int_{p}^{\infty} \frac{1}{2\pi p_{std} q_{std} \sqrt{1 - \rho^2}} \exp\left(-\frac{1}{2(1 - \rho^2)} \left[\left(\frac{x - p_{mean}}{p_{std}}\right)^2 - 2\rho\left(\frac{x - p_{mean}}{p_{std}}\right)\left(\frac{y - q_{mean}}{q_{std}}\right) + \left(\frac{y - q_{mean}}{q_{std}}\right)^2\right]\right) dx dy \\ & \text{\%_cover} = \min\left(\frac{s_{marketing}}{s_{most_marketing}}, 1\right) \\ & \text{market demand: } n_{demand} = \%_sat \cdot \%_cover \cdot n_{market} \end{aligned}$

NON-CONFIGURABLES: Wafer Manufacturing

 $\begin{array}{l} p_{mean} \colon \$20,000 \\ p_{std} \colon \$4,000 \\ q_{mean} \colon 1.6 \\ q_{std} \colon 0.2 \\ q_{max} \colon 2.0 \\ \rho \colon 0.75 \end{array}$

 $c_{resources}$: \$2,000 $c_{logistics}$: \$6,000

 $c_{best_equipment} \colon \$160,000,000$

 $\begin{array}{l} c_{best_worker} \colon \$80,000 \\ c_{best_architect} \colon \$20,000,000 \\ c_{best_constractor} \colon \$4,000,000,000 \\ c_{most_marketing} \colon \$30,000,000 \\ c_{best_research} \colon \$20,000,000,000 \\ \end{array}$

 n_{market} : 15,000,000

 $n_{equipment_per_unit}$: 0.00005

 $n_{worker_per_unit}$: 0.01

 $w_{emit}: 1 \text{ kg}$ $w_{waste}: 200 \text{ kgs}$ $c_{emit}: \$0.001$ $c_{waste}: \$0.05$