Nachklausur in Experimentalphysik 2

Prof. Dr. C. Pfleiderer Sommersemester 2016 13.10.2016

Zugelassene Hilfsmittel:

- 1 Doppelseitig handbeschriebenes DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Die Bearbeitungszeit beträgt 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

Aufgabe 1 (7 Punkte)

Gegeben sei ein zylindrischer Elektronenstrahl mit Radius R. Innerhalb des Elektronenstrahls sei die Ladungsdichte gegeben durch $\rho(r) = \rho_0 \left(1 + \frac{r^2}{R^2}\right)$, wobei $r = \sqrt{x^2 + y^2}$ den Abstand von der Zylinderachse in der x-y-Ebene bezeichnet. Außerhalb des Zylinders sei die Ladungsdichte gleich null.

- (a) Berechnen Sie Betrag und Richtung des elektrischen Feldes innerhalb und außerhalb des Elektronenstrahles in Abhängigkeit des Ortes.
- (b) Die Elektronen bewegen sich innerhalb des Strahles mit einer Geschwindigkeit v_0 in positive z-Richtung.

Berechnen Sie Betrag und Richtung des Magnetfeldes innerhalb und außerhalb des Elektronenstrahles in Abhängigkeit des Ortes.

Hinweis:Das Volumenelement in Zylinderkoordinaten ist $dV = rdrd\phi dz$.

Aufgabe 2 (7 Punkte)

Gegeben sei die folgende Schaltung:

- (a) Berechnen Sie die äquivalente Kapazität der Schaltung, d.h. die Kapazität zwischen den Punkten a und b. Dabei soll gelten: $C_1 = 6\mu F$, $C_2 = 4\mu F$ und $C_3 = 8\mu F$.
- (b) Die Kondensatoren werden durch eine 12V Batterie (zwischen a und b platziert) aufgeladen. Berechnen Sie jeweils die Ladung auf den Kondensatoren und die an ihnen abfallende Potentialdifferenz.
- (c) Nun wird die Batterie getrennt und zwischen dem Punkt a und C_1 ein Widerstand mit $R = 5 \mathrm{M}\Omega$ eingebaut. Anschließend wird der Schaltkreis zwischen a und b kurzgeschlossen. Stellen Sie die Differentialgleichung für das gegebene Problem auf und berechnen Sie die Zeit nach der die äquivalente Kapazität zur Hälfte entladen ist.

Aufgabe 3 (3 Punkte)

Die beiden natürlich vorkommenden Chlorisotope $^{37}{\rm Cl}~(m=37u=37\cdot 1,66\cdot 10^{-27}{\rm kg})$ und $^{35}{\rm Cl}~(m=35u=35\cdot 1,66\cdot 10^{-27}{\rm kg})$ sollen voneinander getrennt werden. Dazu wird zunächst eine natürliche Mischung dieser einfach ionisierte Chloratome (eine negative Ladung) durch Anlegen einer elektrischen Spannung U beschleunigt.

- (a) Leiten Sie einen Ausdruck für die Endgeschwindigkeit der Ionen in Abhängigkeit der angelegten Spannung her (klassisch).
- (b) Anschließend werden die Ionen durch ein senkrecht zur Flugbahn der Ionen ausgerichtetes Magnetfeld gelenkt. Bestimmen Sie den Radius r der Kreisbahn.
- (c) Die Ionen treffen nach dem Durchlaufen des Halbkreises auf einen Detektor. Wie groß muss die Beschleunigungsspannung U mindestens sein, damit der Abstand zwischen den beiden Isotopen auf dem Detektor mindestens 2 cm ist, wenn ein Magnetfeld von B=2T anliegt?

Aufgabe 4 (4 Punkte)

Eine magnetisierte Kugel mit Masse $m=50 \mathrm{kg}$ soll in einem Magnetfeld zum Schweben gebracht werden. Das Magnetfeld wird durch eine senkrecht stehende Spule mit Länge $L=10 \mathrm{cm}$ und Durchmesser $d=2 \mathrm{cm}$ erzeugt, welche von einem Strom I durchflossen wird. Die Spule ist inhomogen gewickelt und hat eine Windungsdichte von $\mathrm{d}N/\mathrm{d}z=2N_0z/L^2$, wobei $N_0=100$ die Gesamtanzahl der Windungen beschreibt.

- (a) Wie lautet die Formel für das Magnetfeld $\vec{B}(z)$ im Spuleninneren in Abhängigkeit von z? Hinweis: Statt N/L bei einer homogen gewickelten Spule ist hier $\mathrm{d}N/\mathrm{d}z$ zu verwenden.
- (b) Berechnen Sie in Abhängigkeit des Stroms I die Kraft $\vec{F}_B = (\vec{\mu}_M \cdot \vec{\nabla}) \vec{B}$, die das Magnetfeld auf die Kugel ausübt. Gehen Sie dabei davon aus, dass das magnetische Moment der Kugel $\vec{\mu}_M$ in Magnetfeldrichtung zeigt und einen Betrag von $|\vec{\mu}_M| = 5,5$ J/T hat.
- (c) Welcher Strom I muss in der Spule fließen, damit die Kugel in der Spule schwebt?

Aufgabe 5 (5 Punkte)

Die Abbildung zeigt verschiedene Situationen, in denen Leiter (a-d,g) oder Leiterschleifen (e,f) in unterschiedlich orientierten homogenen Magnetfeldern der Flussdichte $B=50\,\mathrm{mT}$ bewegt werden. Geben Sie jeweils die induzierte Spannung U(t) zwischen den Leiterenden an! Die Länge der geraden Leiter beträgt $b=10\,\mathrm{cm}$, die Kantenlänge der quadratischen Leiterschleifen ist $a=8\,\mathrm{cm}$. Der Geschwindigkeitsbetrag der Translationsbewegungen (a-e) beträgt jeweils $v=0.5\,\mathrm{m/s}$ und die Winkelgeschwindigkeit der Rotationsbewegungen ist $\omega=0.3\,\mathrm{rad/s}$ (f,g).

Aufgabe 6 (6 Punkte)

Gegeben sei ein Widerstand R, ein Kondensator mit Kapazität C und eine Spule mit Induktivität L in der skizzierten Anordnung.

- (a) Berechnen Sie den komplexen Widerstand Z der Schaltung.
- (b) Berechnen Sie das Verhältnis von Ausgangs- zu Eingangsspannung U_{out}/U_{in} und zwar sowohl den Betrag $|U_{out}/U_{in}|$ als auch die Phase ϕ als Funktion der Kreisfrequenz ω .
- (c) Skizzieren Sie den Betrag $|U_{out}/U_{in}|$ als Funktion der Frequenz f. Wozu kann man diese Schaltung verwenden?

Aufgabe 7 (5 Punkte)

Eine sich in x-Richtung ausbreitende elektromagnetische Welle kann man durch ein elektrisches und ein magnetisches Feld der Form $\vec{E}(\vec{r},t) = \vec{E}_0 \cos\left(2\pi\left(ft-\frac{x}{\lambda}\right)\right)$ und $\vec{B}(\vec{r},t) = \vec{B}_0 \cos\left(2\pi\left(ft-\frac{x}{\lambda}\right)\right)$ darstellen. λ ist dabei die Wellenlänge, die mit der Frequenz über $\lambda = c/f$ zusammenhängt. \vec{E} besitzte ohne Beschränkung der Allgemeinheit nur eine Komponente in z-Richtung. Verwenden Sie im Weiteren die differentielle Darstellung des Faraday'schen Induktionsgesetztes $\nabla \times \vec{E} = -\frac{\partial}{\partial t} \vec{B}$.

- a) Zeigen Sie mit dem Faradayschen Gesetz, dass \vec{B} senkrecht auf \vec{E} und ebenso senkrecht auf der Ausbreitungsrichtung steht.
- b) Zeigen Sie, dass $|\vec{E}| = c|\vec{B}|$ gilt.

Konstanten

$$\begin{split} \epsilon_0 &= 8.85 \cdot 10^{-12} \text{CV}^{-1} \text{m}^{-1} \\ e &= 1.60 \cdot 10^{-19} \text{C} \\ m_e &= 9.11 \cdot 10^{-31} \text{kg} \end{split}$$

$$\mu_0 = 1, 26 \cdot 10^{-6} \text{mkgs}^{-2} \text{A}^{-2}$$

$$c = 3 \cdot 10^8 \text{m/s}$$