- 1. Для процесса $Y_t = W_t^3 \cos W_t + t W_t$ найдите dY_t и выпишите ответ в полной форме записи.
- 2. Для процесса $Y_t = f(t) \exp(t + W_t)$ найдите dY_t и подберите функцию f(t) так, чтобы процесс Y_t был мартингалом.
- 3. Найдите $\mathsf{E}(\int_0^t W_s \cos s dW_s)$ и $\mathsf{Var}(\int_0^t W_s \cos s dW_s)$
- 4. Для броуновского движения W_t определим величину Y равную единице, если $W_2>0$, и нулю иначе. Найдите ${\rm Cov}(Y,W_3)$, ${\rm Cov}(Y,W_1)$.
- 5. The process X_t is given by

$$X_t = 2017 + t^2 W_t^2 + \int_0^t u \, dW_u$$

- (a) Find dX_t ;
- (b) Is X_t a martingale?
- (c) Find $E(X_t)$.
- 6. The process Y_t is given by $Y_t = 2W_t + 5t$. The stopping time τ is given by $\tau = \min\{t|Y_t^2 = 100\}$. Find the distribution of the random variable Y_τ and the expected value $\mathrm{E}(\tau)$.

Hint: you may find the martingales a^{Y_t} and $Y_t - f(t)$ useful

7. Consider the framework of the Black and Scholes model. You agreed with Warren Buffett that at fixed time T he will pay you the strange sum

$$X_T = \ln S_T \cdot \ln S_{T/2},$$

where S_t is the price of a share.

What is the non-arbitrage price X_0 of this agreement?