

Abstract

The invention relates to an endovascular implant, which is at least largely biodegradable and whose in vivo degradation can be controlled. To achieve this, the implant comprises a tubular base body, open on its end faces and consisting of at least one biodegradable material, said base body having an in vivo, location-dependent first degradation characteristic $D_1(x)$, in addition to a coating that covers the base body completely or in sections and consists of a biodegradable material, said coating having an in vivo, location-dependent second degradation characteristic $D_2(x)$. According to the invention, a location-dependent cumulative degradation characteristic $D(x)$ in one location (x) is made up of the sum of the respective degradation characteristics $D_1(x)$ and $D_2(x)$ in said location (x) and the location-dependent cumulative degradation characteristic $D(x)$ is predetermined by a variation of the second degradation characteristic $D_2(x)$ in such a way that the degradation in the given location (x) of the implant takes place over a predetermined time period at a predetermined degradation rate.