FORMELSAMMLUNG DIFERENTIALGLEICHUNGEN

(aus Timischl et al, Ingenieur-Mathematik 4, Dorner Verlag 2018, S. 54, 68)

Inhomogene lineare DGL 1. Ordnung – partikuläre Lösung über Ansatz des Störterms

Störterm s(x)	Lösungsansatz für y _p
s(x) = A (konstante Funktion)	$y_p = a$
$s(x) = A \cdot x + B$	$y_p = a \cdot x + b$
$s(x) = A_n \cdot x^n + A_{n-1} \cdot x^{n-1} + + A_1 \cdot x + A_0$	$y_p = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + + a_1 \cdot x + a_0$
$s(x) = A \cdot sin(\omega \cdot x)$	$y_p = a \cdot \sin(\omega \cdot x) + b \cdot \cos(\omega \cdot x)$ oder $y_p = a \cdot \sin(\omega \cdot x + \phi)$
$s(x) = A \cdot cos(\omega \cdot x)$	
$s(x) = A \cdot sin(\omega \cdot x) + B \cdot cos(\omega \cdot x)$	
$s\left(x\right)=A\cdot e^{b\cdot x}$	$y_p = \begin{cases} a \cdot e^{b \cdot x} & \text{für } b \neq -p \\ a \cdot x \cdot e^{b \cdot x} & \text{für } b = -p \end{cases}$

Eine im Folgenden nützliche Formel:

$$a \cdot \sin \alpha + b \cdot \cos \alpha = A \cdot \sin (\alpha + \phi)$$
 mit $A = \sqrt{a^2 + b^2}$ und $\tan \phi = \frac{b}{a}$.

Beachte, dass im Zähler der Beziehung $\tan \varphi = \frac{b}{a}$ der Koeffizient des Kosinusterms und im Nenner jener des Sinusterms steht!

Homogene lineare DGL 2. Ordnung – charakteristische Gleichung entscheidet über Lösungsansatz

Allgemeine Lösung y einer homogenen linearen Differentialgleichung 2. Ordnung mit konstanten Koeffizienten: $y'' + p \cdot y' + q \cdot y = 0$:

Mit dem Exponentialansatz $y = C \cdot e^{\lambda \cdot x}$ gewinnt man die charakteristische Gleichung $\lambda^2 + p \cdot \lambda + q = 0$. Je nach Art ihrer Lösungen λ_1 , λ_2 sind drei Fälle zu unterscheiden:

1. Fall: $\lambda_1 \neq \lambda_2$ (reell) $y_h = C_1 \cdot e^{\lambda_1 \cdot x} + C_2 \cdot e^{\lambda_2 \cdot x}$

2. Fall: $\lambda_1 = \lambda_2 = \lambda_0$ (reell)

 $\begin{array}{ll} \text{2. Fall:} & \lambda_1 = \lambda_2 = \lambda_0 \text{ (reell)} & y_h = (C_1 + C_2 x) \cdot e^{\lambda_0 \cdot x} \\ \text{3. Fall:} & \lambda_{1,2} = \sigma \pm j \cdot \omega \text{ (konjugiert komplex)} & y_h = e^{\sigma \cdot x} \cdot \left[C_1 \cdot \cos (\omega \cdot x) + C_2 \cdot \sin (\omega \cdot x) \right] \\ \end{array}$

Inhomogene lineare DGL 2. Ordnung – partikuläre Lösung über Ansatz des Störterms finden

Störterm	Lösungsansatz für y _p
s(x) = A (konstante Funktion)	$y_p = a$
$s(x) = A \cdot x + B$	$y_p = a \cdot x + b$
$s(x) = A_n \cdot x^n + A_{n-1} \cdot x^{n-1} + + A_1 \cdot x + A_0$	$y_p = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + + a_1 \cdot x + a_0$
$s(x) = A \cdot \sin(\omega \cdot x)$ $s(x) = A \cdot \cos(\omega \cdot x)$ $s(x) = A \cdot \sin(\omega \cdot x) + B \cdot \cos(\omega \cdot x)$	$y_p = a \cdot \sin(\omega \cdot x) + b \cdot \cos(\omega \cdot x)$ oder $y_p = a \cdot \sin(\omega \cdot x + \phi)$ Wenn jw Lösung der charakteristischen Gleichung ist: $y_p = x \cdot [a \cdot \sin(\omega \cdot x) + b \cdot \cos(\omega \cdot x)]$
$s(x) = A \cdot e^{b \cdot x}$	$y_p = a \cdot e^{b \cdot x}$ (wenn b keine Lösung der charakteristischen Gleichung ist)