THEORIE DE MORSE ET DECOMPOSITION DES 3-VARIETES

H. Abchir

Equipe de Géométrie, Topologie et Applications de l'université de Marrakech

Séminaire de Géométrie et Toplogie

Problème

- Problème
- ② Décompositions et diagrammes de Heegaard.

- Problème
- ② Décompositions et diagrammes de Heegaard.
- Théorie de Morse.

- Problème
- ② Décompositions et diagrammes de Heegaard.
- Théorie de Morse.
- Fonctions de Morse et diagrammes de Heegaard.

On se propose de comparer les 3-variétés topologiques.

On se propose de comparer les 3-variétés topologiques .

Une 3- variété topologique peut être munie d'une structure

On se propose de comparer les 3-variétés topologiques.

Une 3- variété topologique peut être munie d'une structure

pseudo-linéaire (i.e. objets de la catégorie PL),

On se propose de comparer les 3-variétés topologiques.

Une 3- variété topologique peut être munie d'une structure

- pseudo-linéaire (i.e. objets de la catégorie PL),
- ou différentielle ??.

On se propose de comparer les 3-variétés topologiques.

Une 3- variété topologique peut être munie d'une structure

- pseudo-linéaire (i.e. objets de la catégorie PL),
- ou différentielle ??.

Remarques:

Une 3-variété topologique ne supporte qu'une seule structure différentielle.

On se propose de comparer les 3-variétés topologiques.

Une 3- variété topologique peut être munie d'une structure

- pseudo-linéaire (i.e. objets de la catégorie PL),
- 2 ou différentielle ??.

Remarques:

- Une 3-variété topologique ne supporte qu'une seule structure différentielle.
- En dimensions 3 et 4 les structures PL et différentielles sont équivalentes, au sens que chaque structure différentielle détermine une structure PL et inversement.

■ 1900 : H. Poincaré conjecture que toute 3-variété M compacte connexe sans bord qui est une sphère d'homologie (i.e. a les mêmes groupes d'homologie que la sphère ou encore, vérifie H₁(M) = 0) est homéomorphe à S³.

- 1900 : H. Poincaré conjecture que toute 3-variété M compacte connexe sans bord qui est une sphère d'homologie (i.e. a les mêmes groupes d'homologie que la sphère ou encore, vérifie H₁(M) = 0) est homéomorphe à S³.
- 1904 : H. Poincaré publia un contre exemple à sa conjecture initiale.

- 1900 : H. Poincaré conjecture que toute 3-variété M compacte connexe sans bord qui est une sphère d'homologie (i.e. a les mêmes groupes d'homologie que la sphère ou encore, vérifie H₁(M) = 0) est homéomorphe à S³.
- 2 1904 : H. Poincaré publia un contre exemple à sa conjecture initiale.
- Forme finale de la conjecture :

- 1900 : H. Poincaré conjecture que toute 3-variété M compacte connexe sans bord qui est une sphère d'homologie (i.e. a les mêmes groupes d'homologie que la sphère ou encore, vérifie H₁(M) = 0) est homéomorphe à S³.
- 1904 : H. Poincaré publia un contre exemple à sa conjecture initiale.
- Torme finale de la conjecture : On dit qu'une 3-variété M compacte connexe sans bord est une sphère d'homotopie si $\pi_1(M) = 0$ (et donc $\pi_i(M) = \pi_i(S^3) \ \forall i$).

- 1900 : H. Poincaré conjecture que toute 3-variété M compacte connexe sans bord qui est une sphère d'homologie (i.e. a les mêmes groupes d'homologie que la sphère ou encore, vérifie H₁(M) = 0) est homéomorphe à S³.
- 1904 : H. Poincaré publia un contre exemple à sa conjecture initiale.
- Torme finale de la conjecture : On dit qu'une 3-variété M compacte connexe sans bord est une sphère d'homotopie si $\pi_1(M) = 0$ (et donc $\pi_i(M) = \pi_i(S^3) \ \forall i$).
- Remarque : toute sphère d'homotopie est une sphère d'homologie.

- 1900 : H. Poincaré conjecture que toute 3-variété M compacte connexe sans bord qui est une sphère d'homologie (i.e. a les mêmes groupes d'homologie que la sphère ou encore, vérifie H₁(M) = 0) est homéomorphe à S³.
- 2 1904 : H. Poincaré publia un contre exemple à sa conjecture initiale.
- Torme finale de la conjecture : On dit qu'une 3-variété M compacte connexe sans bord est une sphère d'homotopie si $\pi_1(M) = 0$ (et donc $\pi_i(M) = \pi_i(S^3) \ \forall i$).
- Remarque : toute sphère d'homotopie est une sphère d'homologie.

Theorem

ancienne conjecture de Poincaré : Toute sphère d'homotopie est homéomorphe à la sphère S^3 .

Décomposition de Heegaard,

- Décomposition de Heegaard,
- Théorème de Kirby :

- Décomposition de Heegaard,
- 2 Théorème de Kirby :

Theorem

Il y a une correspondance biunivoque entre les classes de difféomorphismes des 3-variétés compactes connexes orientées sans bord et les classes d'équivalence des entrelacs pondérés dans la sphie S³ modulo une relation d'équivalence engendrée par les isotopies ambiantes et des mouvements dits de Kirby.

- Décomposition de Heegaard,
- 2 Théorème de Kirby :

Theorem

Il y a une correspondance biunivoque entre les classes de difféomorphismes des 3-variétés compactes connexes orientées sans bord et les classes d'équivalence des entrelacs pondérés dans la sphre S³ modulo une relation d'équivalence engendrée par les isotopies ambiantes et des mouvements dits de Kirby.

Théorème de Hilden-Montesinos :

- Décomposition de Heegaard,
- 2 Théorème de Kirby :

Theorem

Il y a une correspondance biunivoque entre les classes de difféomorphismes des 3-variétés compactes connexes orientées sans bord et les classes d'équivalence des entrelacs pondérés dans la sphie S³ modulo une relation d'équivalence engendrée par les isotopies ambiantes et des mouvements dits de Kirby.

Théorème de Hilden-Montesinos :

Theorem

Pour toute 3-variété compacte orientée sans bord, il existe un revêtement cyclique ramifié d'ordre 3, $p: M \longrightarrow S^3$ de la sphère S^3 ramifié le long d'un nœud.

On commence par décrire des 3-variétés élémentaires appelés **corps en anses ou handlebodies**.

On commence par décrire des 3-variétés élémentaires appelés **corps en anses ou handlebodies**.

Definition

On appelle corps en anses de genre g, $g \in \mathbb{N}$, et on note H_g toute variété difféomorphe à un voisinage régulier d'un bouquet de g cercles dans \mathbb{R}^3 .

On commence par décrire des 3-variétés élémentaires appelés **corps en anses ou handlebodies**.

Definition

On appelle corps en anses de genre g, $g \in \mathbb{N}$, et on note H_g toute variété difféomorphe à un voisinage régulier d'un bouquet de g cercles dans \mathbb{R}^3 .

Remarques:

On commence par décrire des 3-variétés élémentaires appelés **corps en anses ou handlebodies**.

Definition

On appelle corps en anses de genre g, $g \in \mathbb{N}$, et on note H_g toute variété difféomorphe à un voisinage régulier d'un bouquet de g cercles dans \mathbb{R}^3 .

Remarques:

• Le bord d'un corps en anses H_g est la surface compacte connexe orientée sans bord de genre g notée Σ_g .

On commence par décrire des 3-variétés élémentaires appelés **corps en anses ou handlebodies**.

Definition

On appelle corps en anses de genre g, $g \in \mathbb{N}$, et on note H_g toute variété difféomorphe à un voisinage régulier d'un bouquet de g cercles dans \mathbb{R}^3 .

Remarques:

- Le bord d'un corps en anses H_g est la surface compacte connexe orientée sans bord de genre g notée Σ_g .
- Un corps en anses de genre g est difféomorphe à g tores solides recollés.

On commence par décrire des 3-variétés élémentaires appelés **corps en anses ou handlebodies**.

Definition

On appelle corps en anses de genre g, $g \in \mathbb{N}$, et on note H_g toute variété difféomorphe à un voisinage régulier d'un bouquet de g cercles dans \mathbb{R}^3 .

Remarques:

- Le bord d'un corps en anses H_g est la surface compacte connexe orientée sans bord de genre g notée Σ_g .
- Un corps en anses de genre g est difféomorphe à g tores solides recollés.
- Le recollement de deux corps en anses de même genre g le long de leurs bords donne une 3-variété M compacte connexe orientée sans bord.

$$M=H_g^0\cup_{\Sigma_g}H_g^1.$$

Cette description de M est une décomposition de Heegaard de M_{\star}

Exemples:

7 / 23

Exemples:

• Décomposition de genre 0 de S^3 ,

$$S^3 = B^3 \cup_{S^2} B^3$$

Exemples:

1 Décomposition de genre 0 de S^3 ,

$$S^3 = B^3 \cup_{S^2} B^3$$

② Décomposition de genre 1 de S^3 ,

$$S^3 = (S^1 \times B^2) \cup_{S^1 \times S^1} (B^2 \times S^1)$$

1 Décomposition de genre 0 de S^3 ,

$$S^3 = B^3 \cup_{S^2} B^3$$

② Décomposition de genre 1 de S^3 ,

$$S^3 = (S^1 \times B^2) \cup_{S^1 \times S^1} (B^2 \times S^1)$$

L'espace lenticullaire L(p,q) admet une décomposition de Heegaard de genre 1.

Toute 3-variété compacte orientée sans bord admet une décomposition de Heegaard.

Toute 3-variété compacte orientée sans bord admet une décomposition de Heegaard.

Preuve:

Toute 3-variété compacte orientée sans bord admet une décomposition de Heegaard.

Preuve:

Remarques:

Toute 3-variété compacte orientée sans bord admet une décomposition de Heegaard.

Preuve:

Remarques:

 Une même 3-variété M admet différentes décompositions de Heegaard.

Toute 3-variété compacte orientée sans bord admet une décomposition de Heegaard.

Preuve:

Remarques:

- Une même 3-variété M admet différentes décompositions de Heegaard.
- Etant donnée une décomposition de Heegaard de genre g,

$$M=H_g^0\cup_{\Sigma_g}H_g^1,$$

On peut construire une autre décomposition de Heegaard de genre g + 1,

$$M = H_{g+1}^0 \cup_{\Sigma_{g+1}} H_{g+1}^1.$$

Toute 3-variété compacte orientée sans bord admet une décomposition de Heegaard.

Preuve:

Remarques:

- Une même 3-variété M admet différentes décompositions de Heegaard.
- Etant donnée une décomposition de Heegaard de genre g,

$$M=H_g^0\cup_{\Sigma_g}H_g^1,$$

On peut construire une autre décomposition de Heegaard de genre g + 1,

$$M = H_{g+1}^0 \cup_{\Sigma_{g+1}} H_{g+1}^1.$$

Preuve:

Definition

On dit que

$$H_{g+1}^0 \cup_{\Sigma_{g+1}} H_{g+1}^1$$

est une stabilisation de $M=H_g^0\cup_{\Sigma_g}H_g^1.$

Definition

On dit que

$$H_{g+1}^0 \cup_{\Sigma_{g+1}} H_{g+1}^1$$

est une stabilisation de $M = H_g^0 \cup_{\Sigma_g} H_g^1$.

Exemple : La décomposition de genre 1 de S^3 décrite précedemment est la stabilisation de la décomposition de genre 0.

Definition

On dit que

$$H_{g+1}^0 \cup_{\Sigma_{g+1}} H_{g+1}^1$$

est une stabilisation de $M = H_g^0 \cup_{\Sigma_g} H_g^1$.

Exemple : La décomposition de genre 1 de S^3 décrite précedemment est la stabilisation de la décomposition de genre 0.

Remarque : Pour tout entier naturel g, il existe une décomposition de Heegaard de genre g de la sphère S^3 .

Theorem

(Théorème de Singer) Soient (M, H_0, H_1) et (M, H'_0, H'_1) deux décompositions de Heegaard de M de genres respectif g et g'. Alors pour un entier k assez grand, la (k-g)-ième stabilisation de la première décomposition est difféomorphe à la (k-g')-ième stabilisation de la seconde décomposition.

Remarque: D'après le Théorème précédent, un invariant des décompositions de Heegaard qui ne change pas par stabilisation est en fait un invariant de 3-variété. Cependant pour un usage future, nous aurons besoin d'informations supplémentaires données par ce qu'on appelera les diagrammes.

Remarque: D'après le Théorème précédent, un invariant des décompositions de Heegaard qui ne change pas par stabilisation est en fait un invariant de 3-variété. Cependant pour un usage future, nous aurons besoin d'informations supplémentaires données par ce qu'on appelera les diagrammes.

Soit H un corps en anses de genre g.

Remarque: D'après le Théorème précédent, un invariant des décompositions de Heegaard qui ne change pas par stabilisation est en fait un invariant de 3-variété. Cependant pour un usage future, nous aurons besoin d'informations supplémentaires données par ce qu'on appelera les diagrammes.

Soit H un corps en anses de genre g.

Definition

On appelle cercles d'attachements pour H un ensemble de courbes fermées $\{\gamma_1,\ldots,\gamma_g\}$ plongées dans $\Sigma_g=\partial H$ vérifiant les propriétés suivantes :

- Les courbes γ_i sont deux à deux disjointes.
- $\Sigma_g \setminus \{\gamma_1, \ldots, \gamma_g\}$ est connexe.
- **3** Les courbes γ_i bordent des disques disjoints plongés dans H.

Remarque: D'après le Théorème précédent, un invariant des décompositions de Heegaard qui ne change pas par stabilisation est en fait un invariant de 3-variété. Cependant pour un usage future, nous aurons besoin d'informations supplémentaires données par ce qu'on appelera les diagrammes.

Soit H un corps en anses de genre g.

Definition

On appelle cercles d'attachements pour H un ensemble de courbes fermées $\{\gamma_1,\ldots,\gamma_g\}$ plongées dans $\Sigma_g=\partial H$ vérifiant les propriétés suivantes :

- Les courbes γ_i sont deux à deux disjointes.
- $\Sigma_g \setminus \{\gamma_1, \ldots, \gamma_g\}$ est connexe.
- **3** Les courbes γ_i bordent des disques disjoints plongés dans H.

Exemple:

Definition

Soit (Σ_g, H_0, H_1) une décomposition de Heegaard de genre g de la 3-variété M. Un diagramme de Heegaard compatible est donné par Σ_g avec une collection de courbes $\{\alpha_1, \dots, \alpha_g, \beta_1, \dots, \beta_g\}$ telle que $\{\alpha_1, \dots, \alpha_g\}$ est un ensemble de cercles d'attachements pour H_0 et $\{\beta_1, \dots, \beta_g\}$ est un ensemble de cercles d'attachements pour H_1 .

Definition

Soit (Σ_g, H_0, H_1) une décomposition de Heegaard de genre g de la 3-variété M. Un diagramme de Heegaard compatible est donné par Σ_g avec une collection de courbes $\{\alpha_1, \ldots, \alpha_g, \beta_1, \ldots, \beta_g\}$ telle que $\{\alpha_1, \ldots, \alpha_g\}$ est un ensemble de cercles d'attachements pour H_0 et $\{\beta_1, \ldots, \beta_g\}$ est un ensemble de cercles d'attachements pour H_1 .

Remarque:

Definition

Soit (Σ_g, H_0, H_1) une décomposition de Heegaard de genre g de la 3-variété M. Un diagramme de Heegaard compatible est donné par Σ_g avec une collection de courbes $\{\alpha_1, \ldots, \alpha_g, \beta_1, \ldots, \beta_g\}$ telle que $\{\alpha_1, \ldots, \alpha_g\}$ est un ensemble de cercles d'attachements pour H_0 et $\{\beta_1, \ldots, \beta_g\}$ est un ensemble de cercles d'attachements pour H_1 .

Remarque:

lacktriangled une décomposition de Heegaard de genre g>1 admet plusieurs diagrammes de Heegaard compatibles distincts.

Definition

Soit (Σ_a, H_0, H_1) une décomposition de Heegaard de genre g de la 3-variété M. Un diagramme de Heegaard compatible est donné par Σ_{α} avec une collection de courbes $\{\alpha_1, \dots, \alpha_q, \beta_1, \dots, \beta_q\}$ telle que $\{\alpha_1,\ldots,\alpha_n\}$ est un ensemble de cercles d'attachements pour H_0 et $\{\beta_1,\ldots,\beta_q\}$ est un ensemble de cercles d'attachements pour H_1 .

Remarque:

- \bullet une décomposition de Heegaard de genre q > 1 admet plusieurs diagrammes de Heegaard compatibles distincts.
- Réciproquement, un diagramme $\{\Sigma_a, \alpha_1, \dots, \alpha_a, \beta_1, \dots, \beta_a\}$ où les ensembles $\{\alpha_1, \dots, \alpha_q\}$ et $\{\beta_1, \dots, \beta_q\}$ vérifient les deux premières conditions de la définition des cercles d'attachements détermine de manière unique un diagramme de Heegaard et donc une 3-variété.

4 D > 4 A > 4 B > 4 B > B

• La décomposition de Heegaard de genre 1 de S^3 correspond au diagramme $\{\Sigma_1, \alpha, \beta\}$, où α et β sont respectivement méridien et parallèle de Σ_1 .

- La décomposition de Heegaard de genre 1 de S^3 correspond au diagramme $\{\Sigma_1, \alpha, \beta\}$, où α et β sont respectivement méridien et parallèle de Σ_1 .
- ② La décomposition de Heegaard de genre 1 de $S^1 \times S^2$ correspond au diagramme $\{\Sigma_1, \alpha, \alpha\}$, où α est le méridien de Σ_1 .

- La décomposition de Heegaard de genre 1 de S^3 correspond au diagramme $\{\Sigma_1, \alpha, \beta\}$, où α et β sont respectivement méridien et parallèle de Σ_1 .
- ② La décomposition de Heegaard de genre 1 de $S^1 \times S^2$ correspond au diagramme $\{\Sigma_1, \alpha, \alpha\}$, où α est le méridien de Σ_1 .
- **3** L'espace lenticullaire L(p,q) a un diagramme $\{\Sigma_1, \alpha, \beta\}$, où α rencontre β en p points tels que dans une base standard $\{x,y\}$ de $H_1(\Sigma_1) = \mathbb{Z} \oplus \mathbb{Z}$, $[\alpha] = y$ et $[\beta] = px + qy$.

Alors qu'un diagramme de Heegaard est un bon outil pour déterminer une 3-variété, une même 3-variété a plusieurs diagrammes distincts.

Alors qu'un diagramme de Heegaard est un bon outil pour déterminer une 3-variété, une même 3-variété a plusieurs diagrammes distincts. Il y a trois mouvements basiques sur les diagrammes qui ne modifient pas la 3-variété sous-jacente :

Alors qu'un diagramme de Heegaard est un bon outil pour déterminer une 3-variété, une même 3-variété a plusieurs diagrammes distincts. Il y a trois mouvements basiques sur les diagrammes qui ne modifient pas la 3-variété sous-jacente :

• les isotopies : deux diagrammes de Heegaard $\{\Sigma_g, A = (\alpha_1, \dots, \alpha_g), B = (\beta_1, \dots, \beta_g)\}$ et $B = \{\Sigma_g, A' = (\alpha'_1, \dots, \alpha'_g), B' = (\beta'_1, \dots, \beta'_g)\}$ sont dits isotopes s'il existe une isotopie F_t de Σ_g , $t \in [0, 1]$, telle que $F_0 = id_{\Sigma}$, $F_1(A) = A'$ et $F_1(B) = B'$.

Alors qu'un diagramme de Heegaard est un bon outil pour déterminer une 3-variété, une même 3-variété a plusieurs diagrammes distincts. Il y a trois mouvements basiques sur les diagrammes qui ne modifient pas la 3-variété sous-jacente :

- les isotopies : deux diagrammes de Heegaard $\{\Sigma_g, A = (\alpha_1, \ldots, \alpha_g), B = (\beta_1, \ldots, \beta_g)\}$ et $B = \{\Sigma_g, A' = (\alpha'_1, \ldots, \alpha'_g), B' = (\beta'_1, \ldots, \beta'_g)\}$ sont dits isotopes s'il existe une isotopie F_t de Σ_g , $t \in [0, 1]$, telle que $F_0 = id_{\Sigma}$, $F_1(A) = A'$ et $F_1(B) = B'$.
- **2** les glissements d'anses : un tel mouvement consiste en le choix de deux courbes dans A (ou B), par exemple α_1 et α_2 , puis le remplacement de α_1 par une courbe simple fermée $\tilde{\alpha_1}$ disjointe de $\{\alpha_1,\ldots,\alpha_g\}$ telle que $\tilde{\alpha_1}$, α_1 et α_2 bordent une paire de pantalons dans $\Sigma\setminus\{\alpha_3\cup\cdots\cup\alpha_g\}$.

Alors qu'un diagramme de Heegaard est un bon outil pour déterminer une 3-variété, une même 3-variété a plusieurs diagrammes distincts. Il y a trois mouvements basiques sur les diagrammes qui ne modifient pas la 3-variété sous-jacente :

- les isotopies : deux diagrammes de Heegaard $\{\Sigma_g, A = (\alpha_1, \ldots, \alpha_g), B = (\beta_1, \ldots, \beta_g)\}$ et $B = \{\Sigma_g, A' = (\alpha'_1, \ldots, \alpha'_g), B' = (\beta'_1, \ldots, \beta'_g)\}$ sont dits isotopes s'il existe une isotopie F_t de Σ_g , $t \in [0, 1]$, telle que $F_0 = id_{\Sigma}$, $F_1(A) = A'$ et $F_1(B) = B'$.
- es glissements d'anses : un tel mouvement consiste en le choix de deux courbes dans A (ou B), par exemple α_1 et α_2 , puis le remplacement de α_1 par une courbe simple fermée $\tilde{\alpha_1}$ disjointe de $\{\alpha_1,\ldots,\alpha_g\}$ telle que $\tilde{\alpha_1}$, α_1 et α_2 bordent une paire de pantalons dans $\Sigma\setminus\{\alpha_3\cup\cdots\cup\alpha_g\}$.

Exemple:

3 et les stabilsations.

3 et les stabilsations.

La stabilisation dans le contexte des diagrammes de Heegaard est définie comme suit :

On étend la surface Σ en considérant la somme connexe $\Sigma' = \Sigma \cup E$ où E est une surface de genre 1 et on remplace $\{\alpha_1,\ldots,\alpha_g\}$ et $\{\beta_1,\ldots,\beta_g\}$ respectivement par $\{\alpha_1,\ldots,\alpha_{g+1}\}$ et $\{\beta_1,\ldots,\beta_{g+1}\}$ où α_{g+1} et β_{g+1} est une paire de courbes dans E qui s'intersectent transversalement en un seul point.

3 et les stabilsations.

La stabilisation dans le contexte des diagrammes de Heegaard est définie comme suit :

On étend la surface Σ en considérant la somme connexe $\Sigma' = \Sigma \cup E$ où E est une surface de genre 1 et on remplace $\{\alpha_1,\ldots,\alpha_g\}$ et $\{\beta_1,\ldots,\beta_g\}$ respectivement par $\{\alpha_1,\ldots,\alpha_{g+1}\}$ et $\{\beta_1,\ldots,\beta_{g+1}\}$ où α_{g+1} et β_{g+1} est une paire de courbes dans E qui s'intersectent transversalement en un seul point.

Proposition

Soit H un corps en anses de genre g. Soient $(\alpha_1, \ldots, \alpha_g)$ et $(\alpha'_1, \ldots, \alpha'_g)$ deux ensembles de cercles d'attachements pour H. Alors les deux familles sont reliées par une suite d'isotopies et de glissements d'anses.

Proposition

Soit H un corps en anses de genre g. Soient $(\alpha_1, \ldots, \alpha_g)$ et $(\alpha'_1, \ldots, \alpha'_g)$ deux ensembles de cercles d'attachements pour H. Alors les deux familles sont reliées par une suite d'isotopies et de glissements d'anses.

Theorem

Soit M une 3-variété compacte orientée sans bord. Soient :

$$\{\Sigma_{g}, \alpha_{1}, \dots, \alpha_{g}, \beta_{1}, \dots, \beta_{g}\}, \ \{\Sigma_{g'}, \alpha'_{1}, \dots, \alpha'_{g}, \beta'_{1}, \dots, \beta'_{g}\}$$

deux diagrammes de Heegaard de M. En appliquant une suite d'isotopies de glissements d'anses et de stabilisations on peut changer les diagrammes ci-dessus tels que les nouveaux diagrammes soient difféomorpheS.

Théorie de Morse

Théorie de Morse

Soit $F: M \longrightarrow N$ une application différentiable (i.e. C^{∞}).

Soit $F: M \longrightarrow N$ une application différentiable (i.e. C^{∞}). La différentielle DF définit en tout point $x \in M$ une application linéaire

$$DF_X: T_XM \longrightarrow T_{F(X)}N.$$

Soit $F: M \longrightarrow N$ une application différentiable (i.e. C^{∞}). La différentielle DF définit en tout point $x \in M$ une application linéaire

$$DF_X: T_XM \longrightarrow T_{F(X)}N.$$

Definition

Soit $F: M \longrightarrow N$ une application différentiable (i.e. C^{∞}). La différentielle DF définit en tout point $x \in M$ une application linéaire

$$DF_X: T_XM \longrightarrow T_{F(X)}N.$$

Definition

• Un élémentt $x \in M$ est dit point critique de F si

rang $D_x F < min(dim M, dim N)$.

Soit $F: M \longrightarrow N$ une application différentiable (i.e. C^{∞}). La différentielle DF définit en tout point $x \in M$ une application linéaire

$$DF_X: T_XM \longrightarrow T_{F(X)}N.$$

Definition

1 Un élémentt $x \in M$ est dit point critique de F si

 $rang D_x F < min(dim M, dim N).$

Un élément $x \in M$ est dit point régulier s'il n'est pas critique.

Soit $F: M \longrightarrow N$ une application différentiable (i.e. C^{∞}). La différentielle DF définit en tout point $x \in M$ une application linéaire

$$DF_X: T_XM \longrightarrow T_{F(X)}N.$$

Definition

• Un élémentt $x \in M$ est dit point critique de F si

 $rang D_x F < min(dim M, dim N).$

Un élément $x \in M$ est dit point régulier s'il n'est pas critique.

② Un élément $y \in N$ est dit valeur critique de F si $F^{-1}(y)$ contient un point critique de F.

Soit $F: M \longrightarrow N$ une application différentiable (i.e. C^{∞}). La différentielle DF définit en tout point $x \in M$ une application linéaire

$$DF_X: T_XM \longrightarrow T_{F(X)}N.$$

Definition

1 Un élémentt $x \in M$ est dit point critique de F si

 $rang D_x F < min(dim M, dim N).$

Un élément $x \in M$ est dit point régulier s'il n'est pas critique.

② Un élément y ∈ N est dit valeur critique de F si F⁻¹(y) contient un point critique de F. Un élément y ∈ N est dit valeur réqulière de F s'il n'est pas une

valeur critique de F.

Un sous ensemble S de N est dit négligeable si pour tout plongement ouvert différentiable $\Phi: \mathbb{R}^n \longrightarrow N$, où n = dimN, l'image réciproque $\Phi^{-1}(S)$ est de mesure nulle pour la mesure de Lebesgue dans \mathbb{R}^n .

Un sous ensemble S de N est dit négligeable si pour tout plongement ouvert différentiable $\Phi: \mathbb{R}^n \longrightarrow N$, où n = dimN, l'image réciproque $\Phi^{-1}(S)$ est de mesure nulle pour la mesure de Lebesgue dans \mathbb{R}^n .

Notations:

Un sous ensemble S de N est dit négligeable si pour tout plongement ouvert différentiable $\Phi: \mathbb{R}^n \longrightarrow N$, où n = dimN, l'image réciproque $\Phi^{-1}(S)$ est de mesure nulle pour la mesure de Lebesgue dans \mathbb{R}^n .

Notations:

Cr_F: ensemble des points critiques de F.

Un sous ensemble S de N est dit négligeable si pour tout plongement ouvert différentiable $\Phi: \mathbb{R}^n \longrightarrow N$, où n = dimN, l'image réciproque $\Phi^{-1}(S)$ est de mesure nulle pour la mesure de Lebesgue dans \mathbb{R}^n .

Notations:

- \mathbf{Cr}_F : ensemble des points critiques de F.
- Δ_F : ensemble des valeurs critiques de F, dit discriminant de F.

Theorem

(Morse-Sard-Federer). Soit $F: M \longrightarrow N$ une application différentiable avec $n = \dim N$. Alors la dimension de Hausdorff de l'ensemble discriminant Δ_F est au plus n-1. En particulier l'ensemble discriminant est négligeable dans N. De plus si F(M) est d'intérieur non vide, alors l'ensemble des valeurs régulières est dense dans F(M).

Soit M une variété différentielle. Soit X un champ de vecteurs sur M. Si $f: M \longrightarrow \mathbb{R}$ est une application différentiable, on appelle dérivée de la fonction f le long de X, la fonction Xf définie par

$$Xf(p) = X_p f = \sum_{i=1}^m X^i(p) \frac{\partial f}{\partial x^i}(p)$$

dans une carte de coordonnées $(U,(x^i))$.

Soit M une variété différentielle. Soit X un champ de vecteurs sur M. Si $f: M \longrightarrow \mathbb{R}$ est une application différentiable, on appelle dérivée de la fonction f le long de X, la fonction Xf définie par

$$Xf(p) = X_p f = \sum_{i=1}^m X^i(p) \frac{\partial f}{\partial x^i}(p)$$

dans une carte de coordonnées $(U,(x^i))$.

Lemma

Soit $f: M \longrightarrow \mathbb{R}$ une application différentiable et soit $p_0 \in M$ un point critique de f. Alors, pour tous champs de vecteurs X, X', Y et Y' sur M tels que

$$X(p_0) = X'(p_0), \ Y(p_0) = Y'(p_0),$$

On a

$$(XYf)(p_0) = (X'Y'f)(p_0) = (YXf)(p_0)$$

- ◀ □ ▶ ◀ 🗇 ▶ ◀ 필 Þ → 토 → 釣 ٩ (

Si p_0 est un point critique d'une fonction différentiable $f: M \longrightarrow \mathbb{R}$, alors on définit la Hessienne de f en p_0 comme étant l'application

$$H_{f,p_0}: T_{p_0}M \times T_{p_0}M \longrightarrow \mathbb{R}$$

telle que

$$H_{f,p_0}(X_0, Y_0) = (XYf)(p_0),$$

où X et Y sont des champs de vecteurs sur M tels que $X(p_0)=X_0$ et $Y(p_0)=Y_0$.

• The set of the critical points of a Morse function is closed discrete in *M*. So, it is finite if *M* is compact.

- The set of the critical points of a Morse function is closed discrete in M. So, it is finite if M is compact.
- ② If $p \in M$ is a critical point, the matrix $(\partial^2 f/\partial x_i \partial x_j(p))_{1 \le i,j \le n}$ is symmetric.

Let p be a critical point of M. The index of f at p is the number of strictly negative eigenvalues of the matrix $(\partial^2 f/\partial x_i \partial x_j(p))_{1 \le i,j \le n}$.

Let p be a critical point of M. The index of f at p is the number of strictly negative eigenvalues of the matrix $(\partial^2 f/\partial x_i \partial x_j(p))_{1 \le i,j \le n}$.

Lemma

Let $p \in M$ be a non degenerate critical point for f. Then there is a chart $(x = (x_1, \dots, x_n), U)$ of M at p with x(p) = 0 and such that the identity

$$f = f(p) - x_1^2 - \dots - x_k^2 + x_{k+1}^2 + \dots + x_n^2$$

holds throughout U, where k is the index of f at p.

Definition

Une fonction de Morse est dite auto-indéxante si, pour pour tout point critique P, on a f(P) = indice(P).

Definition

Une fonction de Morse est dite auto-indéxante si, pour pour tout point critique P, on a f(P) = indice(P).

Proposition

Toute variété différentielle M de dimension n admet une fonction de Morse auto-indexante. De plus si M est connexe sans bord, alors on peut choisir f qui possède un seul point critique d'indice 0 et un seul point critique d'indice n.

Definition

Une fonction de Morse est dite auto-indéxante si, pour pour tout point critique P, on a f(P) = indice(P).

Proposition

Toute variété différentielle M de dimension n admet une fonction de Morse auto-indexante. De plus si M est connexe sans bord, alors on peut choisir f qui possède un seul point critique d'indice 0 et un seul point critique d'indice n.

Proposition

Si $f: M \longrightarrow [0,3]$ est une fonction auto-indexante sur M avec un seul minimum et un seul maximum, alors f induit une décomposition de Heegaard avec comme surface $\Sigma = f^{-1}(3/2)$ et comme corps en anses $H_0 = f^{-1}([0,3/2])$ et $H_1 = f^{-1}([3/2,3])$

Remarque : Si la surface Σ est de genre g, alors f a g points critiques d'indice 1 et g points critiques d'indice 2.

Remarque : Si la surface Σ est de genre g, alors f a g points critiques d'indice 1 et g points critiques d'indice 2.

Lemma

La fonction de Morse et une métrique Riemannienne sur une 3-variété M induisent un diagramme de Heegaard pour M.