Im Folgenden seien alle Vektorräume endlichdimensional.

Aufgabe 1. (Symmetrisch und Orthogonal)

Es sei $A \in O(n)$ symmetrisch und positiv definit. Zeigen Sie, dass bereits A = 1 gilt.

Aufgabe 2. (Selbstadjungierte Endomorphismen)

Es sei V ein Skalarproduktraum und $f,g\colon V\to V$ seien selbstadjungierte Endomorphismen.

- 1. Zeigen Sie, dass f = 0 gilt, falls f nilpotent ist
- 2. Zeigen Sie, dass $f^2 = id_V$ gilt, falls f orthogonal ist.
- 3. Zeigen Sie, dass f = g gilt, falls es ein $n \ge 0$ mit $(f g)^n = 0$ gibt.

Aufgabe 3. (Diagonalisierbarkeit und Selbstadjungiertheit)

- 1. Es sei V ein reeller Vektorraum. Zeigen Sie, dass es für jeden diagonalisierbaren Endomorphismus $f\colon V\to V$ ein Skalarprodukt auf V gibt, bezüglich dessen f selbstadjungiert ist.
- 2. Wieso gilt die analoge Aussage für komplexe Vektorräume nicht?

Aufgabe 4. (Charakterisierung antiselbstadjungierter Endomorphismen)

Es sei V ein unitärer Vektorraum und $f\colon V\to V$ ein Endomorphismus. Zeigen Sie, dass die folgenden Bedingungen äquivalent sind:

- 1. Der Endomorphismus f ist antiselbstadjungiert, d.h. es gilt $f^{ad} = -f$.
- 2. Der Endomorphismus f ist normal, und alle Eigenwerte von f sind rein imaginär (d.h. aus $i\mathbb{R}$).

Aufgabe 5. (Zerlegung von Matrizen)

Es sei $A \in \mathrm{M}_n(\mathbb{C})$. Zeigen Sie:

- 1. Es gibt eindeutige hermitesche Matrizen $B, C \in M_n(\mathbb{C})$ mit A = B + iC.
- 2. A ist genau dann normal, wenn B und C kommutieren.
- 3. Es gibt eine eindeutige hermitesche Matrix $D \in M_n(\mathbb{C})$ und schiefhermitesche Matrix $E \in M_n(\mathbb{C})$ (d.h. $E^* = -E$) mit A = D + E.
- 4. A genau dann normal ist, wenn D und E kommutieren.
- 5. Wie hängen die beiden Zerlegungen A = B + iC ud A = D + E zusammen?

 ${\bf Aufgabe~6.}~({\it Wurzeln~aus~negativ~semidefiniten~Matrizen})$

Es sei $A \in \mathcal{M}_n(\mathbb{C})$ hermitesch und negativ semidefinit.

- 1. Zeigen Sie, dass es eine schiefhermitesche Matrix $B\in \mathrm{M}_n(\mathbb{C})$ mit $B^2=A$ gibt. (Eine Matrix B heißt schiefhermitesch, wenn $B^*=-B$ gilt.)
- 2. Entscheiden Sie, ob ${\cal B}$ eindeutig ist.