EECS 545: Machine Learning Lecture 2. Linear Regression

Honglak Lee & Michał Dereziński 1/10/2022

Announcement

- Homework #1 is due 11:55 pm, Jan. 25 (hard deadline with no late days allowed)
 - Form a study group and start early.
- Honor code
 - Collaboration and discussion is strongly encouraged, but you should write your own solution independently.
 - Do not refer to or copy solutions from any other people or other resources. In addition, please do not let other people copy your solution.

Announcement

- Tutorial/review sessions this week (optional)
 - Linear Algebra (available at Canvas, by Sudeep)
 - Probability (1/11 Tue 2-3PM, by Aabhaas)
 - Python (1/14 Fri 4-5PM, by Kevin)
- Please check out the <u>schedule</u> and <u>calendar</u>
- Questions?

Supervised Learning

- Goal:
 - Given data X in feature space and the labels Y
 - Learn to predict Y from X
- Labels could be discrete or continuous
 - Discrete-valued labels: classification
 - Continuous-valued labels: regression (today's topic)

Overview of Topics

- Linear Regression
 - Objective function
 - Vectorization
 - Computing gradient
 - Batch gradient vs. Stochastic Gradient
 - Closed form solution

Notation

In this lecture, we will use the following notation:

- $\mathbf{x} \in \mathbb{R}^D$: data (scalar or vector)
- $\phi(\mathbf{x}) \in \mathbb{R}^M$: features for \mathbf{x} (vector)
- $\phi_i(\mathbf{x}) \in \mathbb{R}$: j-th feature for **x** (scalar)
- $y \in \mathbb{R}$: continuous-valued label (i.e., target value)
- $\mathbf{x}^{(n)}$: denotes the n-th training example.
- $y^{(n)}$: denotes the n-th training label.

Linear regression (with 1d inputs)

- Consider 1d case (e.g. D=1)
- Given a set of observation $\{x^{(1)} \dots x^{(N)}\}$
- and corresponding target values $\{y^{(1)}\dots y^{(N)}\}$
- We want to learn a function $h(x,\mathbf{w}) pprox y$ to predict future values

 $y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_{M-1} x^{M-1} = \sum_{j=0}^{M-1} w_j x^j$

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

Linear Regression (general case)

$$h(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

- The function $h(\mathbf{x}, \mathbf{w})$ is linear in parameters \mathbf{w} .
 - Goal: find the best value for the weights, w.
- For simplicity, add a bias term (constant function):

 $\phi(\mathbf{x}) = (\phi_0(\mathbf{x}), ..., \phi_{M-1}(\mathbf{x}))^T$

$$h(\mathbf{x},\mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$

$$\mathbf{w} = (w_0,...,w_{M-1})^T$$
 (w and $\phi(\mathbf{x})$ are

column vectors)

Basis Functions

• The basis functions $\phi_j(\mathbf{x})$ doesn't need to be linear

$$\phi_i(x) = x^j$$

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

Objective: Sum-of-Squares Error Function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{1}^{N} \left\{ h(\mathbf{x}^{(n)}, \mathbf{w}) - y^{(n)} \right\}^{2}$$

We want to find w that minimizes $E(\mathbf{w})$ over the training data.

Linear regression via gradient descent (illustration)

Least squares problem

Objective function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$$

Gradient

$$rac{\partial E(w)}{\partial w_k} = rac{\partial}{\partial w_k} rac{1}{2} \sum_{n=1}^N \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight)^2$$

Least squares problem

Objective function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$$

Gradient

$$egin{aligned} rac{\partial E(w)}{\partial w_k} &= rac{\partial}{\partial w_k} rac{1}{2} \sum_{n=1}^N \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight)^2 \ &= \sum_{n=1}^N \left[\left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight) rac{\partial}{\partial w_k} \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight)
ight] \end{aligned}$$

Least squares problem

Objective function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$$

Gradient

$$egin{aligned} rac{\partial E(w)}{\partial w_k} &= rac{\partial}{\partial w_k} rac{1}{2} \sum_{n=1}^N \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight)^2 \ &= \sum_{n=1}^N \left[\left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight) rac{\partial}{\partial w_k} \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight)
ight] \ &= \sum_{n=1}^N \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight) \phi_k(\mathbf{x}^{(n)}) \end{aligned}$$

$$rac{\partial E(w)}{\partial w_k} = \sum_{n=1}^N \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight)\!\phi_k(\mathbf{x}^{(n)}).$$

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \begin{bmatrix} \frac{\partial}{\partial w_0} E(\mathbf{w}) \\ \frac{\partial}{\partial w_1} E(\mathbf{w}) \\ \vdots \\ \frac{\partial}{\partial w_n} E(\mathbf{w}) \end{bmatrix}$$

$$rac{\partial E(w)}{\partial w_k} = \sum_{n=1}^N \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight)\!\phi_k(\mathbf{x}^{(n)})$$

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \qquad \qquad \phi(\mathbf{x}^{(n)}) =$$

$$\begin{bmatrix} \frac{\partial}{\partial w_0} E(\mathbf{w}) \\ \frac{\partial}{\partial w_1} E(\mathbf{w}) \\ \vdots \\ \frac{\partial}{\partial w_{M-1}} E(\mathbf{w}) \end{bmatrix} = \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}) \begin{bmatrix} \phi_0(\mathbf{x}^{(n)}) \\ \phi_1(\mathbf{x}^{(n)}) \\ \vdots \\ \phi_{M-1}(\mathbf{x}^{(n)}) \end{bmatrix}$$

$$rac{\partial E(w)}{\partial w_k} = \sum_{n=1}^N \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight)\!\phi_k(\mathbf{x}^{(n)}).$$

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \qquad \qquad \phi(\mathbf{x}^{(n)}) =$$

$$\begin{bmatrix} \frac{\partial}{\partial w_0} E(\mathbf{w}) \\ \frac{\partial}{\partial w_1} E(\mathbf{w}) \\ \vdots \\ \frac{\partial}{\partial w_{M-1}} E(\mathbf{w}) \end{bmatrix} = \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}) \begin{bmatrix} \phi_0(\mathbf{x}^{(n)}) \\ \phi_1(\mathbf{x}^{(n)}) \\ \vdots \\ \vdots \\ \phi_{M-1}(\mathbf{x}^{(n)}) \end{bmatrix}$$

$$= \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}) \phi(\mathbf{x}^{(n)})$$

$$rac{\partial E(w)}{\partial w_k} = \sum_{n=1}^N \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}
ight)\!\phi_k(\mathbf{x}^{(n)})$$

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \phi(\mathbf{x}^{(n)}) =$$

$$\begin{bmatrix} \frac{\partial}{\partial w_0} E(\mathbf{w}) \\ \frac{\partial}{\partial w_1} E(\mathbf{w}) \\ \vdots \\ \frac{\partial}{\partial w_{M-1}} E(\mathbf{w}) \end{bmatrix} = \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}) \begin{bmatrix} \phi_0(\mathbf{x}^{(n)}) \\ \phi_1(\mathbf{x}^{(n)}) \\ \vdots \\ \phi_{M-1}(\mathbf{x}^{(n)}) \end{bmatrix}$$

$$= \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}) \phi(\mathbf{x}^{(n)})$$

$$= \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}) - y^{(n)}) \phi(\mathbf{x}^{(n)})$$

Batch Gradient Descent

- Given data (x, y), initial w
 - Repeat until convergence

$$\mathbf{w} := \mathbf{w} - \eta \nabla_{\mathbf{w}} E(\mathbf{w})$$

where

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \sum_{n=1}^{N} \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)} \right) \phi(\mathbf{x}^{(n)})$$
$$= \sum_{n=1}^{N} \left(\mathbf{w}^T \phi(\mathbf{x}^{(n)}) - y^{(n)} \right) \phi(\mathbf{x}^{(n)})$$

Stochastic Gradient Descent

- Main idea: instead of computing batch gradient (over entire training data), just compute gradient for individual example and update
- Repeat until convergence

$$-$$
 for $n=1,...,N$

$$\mathbf{w} := \mathbf{w} - \eta \nabla_{\mathbf{w}} E(\mathbf{w} | \mathbf{x}^{(n)})$$

where

e.g.,
$$\eta_t \propto rac{1}{t}$$

$$\nabla_{\mathbf{w}} E(\mathbf{w}|\mathbf{x}^{(n)}) = \left(\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)}\right) \phi(\mathbf{x}^{(n)})$$
$$= \left(\mathbf{w}^T \phi(\mathbf{x}^{(n)}) - y^{(n)}\right) \phi(\mathbf{x}^{(n)})$$

Batch gradient vs. Stochastic gradient

- Main idea:
 - Compute gradient and set gradient to 0. (condition for optimal solution)
 - Solve the equation in a closed form
- Objective function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$$

We will derive the gradient from matrix calculus

Objective function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$$

• Objective function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$$
$$= \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \phi(\mathbf{x}^{(n)}) - y^{(n)})^2$$

• Objective function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \phi(\mathbf{x}^{(n)}) - y^{(n)})^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \phi(\mathbf{x}^{(n)}))^2 - \sum_{n=1}^{N} y^{(n)} \mathbf{w}^T \phi(\mathbf{x}^{(n)}) + \frac{1}{2} \sum_{n=1}^{N} y^{(n)2}$$

Objective function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \phi(\mathbf{x}^{(n)}) - y^{(n)})^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \phi(\mathbf{x}^{(n)}))^2 - \sum_{n=1}^{N} y^{(n)} \mathbf{w}^T \phi(\mathbf{x}^{(n)}) + \frac{1}{2} \sum_{n=1}^{N} y^{(n)2}$$

$$= \frac{1}{2} \mathbf{w}^T \Phi^T \Phi \mathbf{w} - \mathbf{w}^T \Phi^T \mathbf{y} + \frac{1}{2} \mathbf{y}^T \mathbf{y}$$

Trick: vectorization (by defining data matrix)

The data matrix

- The design matrix is an NxM matrix, applying
 - the M basis functions (columns)
 - to N data points (rows)

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \dots & \phi_{M-1}(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \dots & \phi_{M-1}(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(N)}) & \phi_1(\mathbf{x}^{(N)}) & \dots & \phi_{M-1}(\mathbf{x}^{(N)}) \end{pmatrix}$$

 $\Phi \mathbf{w} \approx \mathbf{y}$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \dots & \phi_{M-1}(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \dots & \phi_{M-1}(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(N)}) & \phi_1(\mathbf{x}^{(N)}) & \dots & \phi_{M-1}(\mathbf{x}^{(N)}) \end{pmatrix}$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{j=1}^{N} (\sum_{i=1}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \dots & \phi_{M-1}(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \dots & \phi_{M-1}(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(N)}) & \phi_1(\mathbf{x}^{(N)}) & \dots & \phi_{M-1}(\mathbf{x}^{(N)}) \end{pmatrix}$$

$$\langle \phi_0(\mathbf{x}^{(N)}) | \phi_1(\mathbf{x}^{(N)}) | \dots | \phi_{M-1}(\mathbf{x}^{(N)}) \rangle$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \phi(\mathbf{x}^{(n)}) - y^{(n)})^2$$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \dots & \phi_{M-1}(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \dots & \phi_{M-1}(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(N)}) & \phi_1(\mathbf{x}^{(N)}) & \dots & \phi_{M-1}(\mathbf{x}^{(N)}) \end{pmatrix}$$

 $E(\mathbf{w}) = \frac{1}{2} \sum_{j=1}^{N} (\sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$

$$= \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}) - y^{(n)})^{2}$$

$$= \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{T} \phi(\mathbf{x}^{(n)}))^{2} - \sum_{n=1}^{N} y^{(n)} \mathbf{w}^{T} \phi(\mathbf{x}^{(n)}) + \frac{1}{2} \sum_{n=1}^{N} y^{(n)2}$$

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \dots & \phi_{M-1}(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \dots & \phi_{M-1}(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(N)}) & \phi_1(\mathbf{x}^{(N)}) & \dots & \phi_{M-1}(\mathbf{x}^{(N)}) \end{pmatrix}$$

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}^{(n)}) - y^{(n)})^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \phi(\mathbf{x}^{(n)}) - y^{(n)})^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \phi(\mathbf{x}^{(n)}))^2 - \sum_{n=1}^{N} y^{(n)} \mathbf{w}^T \phi(\mathbf{x}^{(n)}) + \frac{1}{2} \sum_{n=1}^{N} y^{(n)2}$$

$$= \frac{1}{2} \mathbf{w}^T \Phi^T \Phi \mathbf{w} - \mathbf{w}^T \Phi^T \mathbf{y} + \frac{1}{2} \mathbf{y}^T \mathbf{y}$$

Useful trick: Matrix Calculus

- Idea so far:
 - Compute gradient and set gradient to 0.
 (condition for optimal solution)
 - Solve the equation in a closed form using matrix calculus
- Need to compute the first derivative in matrix form

Matrix calculus: The Gradient

• Suppose that $f: R^{m \times n} \to R$ is a function that takes as input a matrix A of size m × n and returns a real value (scalar). Then the gradient of f (with respect to $A \in \mathbb{R}^{m \times n}$) is the matrix of partial derivatives, defined as:

$$\nabla_{A} f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \cdots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$
$$(\nabla_{A} f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ij}}$$

Matrix calculus: The Gradient

Note that the size of $\nabla_A f(A)$ is always the same as the size of A. So if, in particular, A is just a vector $x \in \mathbb{R}^n$,

$$\nabla_x f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}.$$

- $\nabla_x(f(x) + g(x)) = \nabla_x f(x) + \nabla_x g(x)$.
- For $t \in \mathbb{R}$, $\nabla_x(t f(x)) = t\nabla_x f(x)$.

Gradient of Linear Functions

• Linear function: $f(\mathbf{x}) = \sum_{i=1}^n b_i x_i = \mathbf{b}^T \mathbf{x}$

• Gradient:
$$\frac{\partial f(\mathbf{x})}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n b_i x_i = b_k$$

• Compact form: $\nabla_{\mathbf{x}} f(\mathbf{x}) = \mathbf{b}$

Gradient of Quadratic Functions

• Linear function: $f(\mathbf{x}) = \sum_{i,j=1}^n x_i A_{ij} x_j = \mathbf{x}^T \mathbf{A} \mathbf{x}$

• Gradient:
$$\dfrac{\partial f(\mathbf{x})}{\partial x_k} = 2\sum_{j=1}^n A_{kj}x_j = 2(\mathbf{A}\mathbf{x})_k$$

• Compact form: $\nabla_{\mathbf{x}} f(\mathbf{x}) = \mathbf{A}\mathbf{x}$

Putting together: Solution via matrix calculus

Compute gradient and set to zero

$$\nabla_{\mathbf{w}} E(\mathbf{w}) = \nabla_{\mathbf{w}} \left(\frac{1}{2} \mathbf{w}^T \Phi^T \Phi \mathbf{w} - \mathbf{w}^T \Phi^T \mathbf{y} + \frac{1}{2} \mathbf{y}^T \mathbf{y} \right)$$
$$= \Phi^T \Phi \mathbf{w} - \Phi^T \mathbf{y}$$
$$= 0$$

Solve the resulting equation (normal equation)

$$\Phi^T \Phi \mathbf{w} = \Phi^T \mathbf{y}$$
$$\mathbf{w}_{ML} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{y}$$

This is the Moore-Penrose pseudo-inverse: ${f \Phi}^\dagger = ({f \Phi}^T {f \Phi})^{-1} {f \Phi}^T$

applied to: $\Phi \mathbf{w} pprox \mathbf{y}$

Geometric Interpretation

- Assuming many more observations (N) than the M basis functions $\phi_j(x)$ (j=0,...,M-1)
- View the observed target values $\mathbf{y} = \{y^{(1)}, ..., y^{(N)}\}$ as a vector in an N-dim. space.
- The M basis functions $\phi_i(x)$ span the N-dimensional subspace.
 - Where the N-dim vector for ϕ_i is $\{\phi_i(\mathbf{x}^{(1)}), ..., \phi_i(\mathbf{x}^{(N)})\}$
- Φw_{ML} is the point in the subspace with minimal squared error from y.
- It's the projection of y onto that subspace.

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}^{(1)}) & \phi_1(\mathbf{x}^{(1)}) & \dots & \phi_{M-1}(\mathbf{x}^{(1)}) \\ \phi_0(\mathbf{x}^{(2)}) & \phi_1(\mathbf{x}^{(2)}) & \dots & \phi_{M-1}(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}^{(N)}) & \phi_1(\mathbf{x}^{(N)}) & \dots & \phi_{M-1}(\mathbf{x}^{(N)}) \end{pmatrix}$$

Slide credit: Ben Kuipers

Back to curve-fitting examples

Polynomial Curve Fitting

$$h(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_{M-1} x^{M-1} = \sum_{j=0}^{M-1} w_j x^j$$

Oth Order Polynomial

1st Order Polynomial

3rd Order Polynomial

9th Order Polynomial

Over-fitting

Root-Mean-Square (RMS) Error:

$$E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

Polynomial Coefficients

	M=1	M=2	M=4	M=10
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Data Set Size: N = 15

9th Order Polynomial

Data Set Size: N = 100

9th Order Polynomial

Q. How do we choose the degree of polynomial?

Rule of thumb

- If you have a small number of data points, then you should use low order polynomial (small number of features).
 - Otherwise, your model will overfit
- As you obtain more data points, you can gradually increase the order of the polynomial (more features).
 - However, your model is still limited by the finite amount of the data available (i.e., the optimal model for finite data cannot be infinite dimensional polynomial).
- Controlling model complexity: regularization