A Concrete Introduction to Number Theory and Algebra- 群同构、群同态与商群

Libin Wang

School of Computer Science, South China Normal University

November 7, 2022

Table of contents

- Isomorphisms
- 2 Homomorphisms
- Quotient group
- 4 Isomorphism Theorem

Isomorphisms(同构.)

Motivation.

Many groups may have different appearances, however they are essentially same.

Isomorphisms(同构).

Definition of Isomorphism.

Two group (\mathbb{G},\cdot) and (\mathbb{H},\circ) are isomorphic if there exists a one-to-one and onto map $\phi:\mathbb{G}\mapsto\mathbb{H}$ such that the group operation is preserved; that is,

$$\phi(\mathbf{a} \cdot \mathbf{b}) = \phi(\mathbf{a}) \circ \phi(\mathbf{b})$$

for all a and b in \mathbb{G} . If \mathbb{G} is isomorphic to \mathbb{H} , we write $\mathbb{G} \cong \mathbb{H}$. The map ϕ is called an isomorphism.

Examples of Isomorphisms.

Example

 $\mathbb{Z}_4 \cong \langle i \rangle$, since we can define a bijective map $\phi : \mathbb{Z}_4 \mapsto \langle i \rangle$ by $\phi(n) = i^n$. The map ϕ is one-to-one and onto, since

$$\phi(0) = 1$$

$$\phi(1) = i$$

$$\phi(2) = -1$$

$$\phi(3) = -i$$

Moreover, ϕ preserves the group operation, since

$$\phi(m+n) = i^{m+n} = i^m i^n = \phi(m)\phi(n).$$

Examples of Isomorphisms.

Isomorphic groups.

Since $\mathbb{Z}_8^*=\{1,3,5,7\}$, $\mathbb{Z}_{12}^*=\{1,5,7,11\}$, we can find an isomorphism ϕ to show that:

$$\mathbb{Z}_8^*\cong\mathbb{Z}_{12}^*$$

An isomorphism $\phi: \mathbb{Z}_8^* \mapsto \mathbb{Z}_{12}^*$ is defined by :

$$\begin{array}{cccc}
1 & \mapsto & 1 \\
3 & \mapsto & 5 \\
5 & \mapsto & 7 \\
7 & \mapsto & 11
\end{array}$$

Can you find another isomorphism between these two groups?

Examples of Isomorphisms.

(Question.)

Do \mathbb{Z}_{61}^* isomorphic to \mathbb{Z}_{77}^* ? Why or why not?

Proposition

Let $\phi: \mathbb{G} \mapsto \mathbb{H}$ be an isomorphism of two groups, then the following statements are true.

- \bullet $\phi^{-1}: \mathbb{H} \mapsto \mathbb{G}$ is an isomorphism;
- **3** If \mathbb{G} is abelian, then \mathbb{H} is abelian;
- **4** If \mathbb{G} is cyclic, then \mathbb{H} is cyclic;
- \bullet if \mathbb{G} has a subgroup of order n, then \mathbb{H} has a subgroup of order n.

Proof.

Left as an exercise.

Theorem

All cyclic groups of infinite order are isomorphic to \mathbb{Z} .

Proof.

Suppose \mathbb{G} is a cyclic group with infinite order, and $g \in \mathbb{G}$ is a generator. Define $\phi : \mathbb{Z} \mapsto \mathbb{G}$ by $\phi : n \mapsto g^n$. Then

$$\phi(m+n) = g^{m+n} = g^m g^n = \phi(m)\phi(n).$$

Show ϕ is a bijective map. Left as an exercise.

Theorem

If $\mathbb G$ is a cyclic group of order n, then $\mathbb G$ is isomorphic to $\mathbb Z_n$.

Proof.

Let \mathbb{G} be a cyclic group with order n, generated by g. Define $\phi: \mathbb{Z}_n \mapsto \mathbb{G}$ by $\phi: k \mapsto g^k$, where $0 \le k < n$. Show ϕ is an isomorphism. Left as an exercise.

Corollary

If \mathbb{G} is a cyclic group of order p where p is a prime, then \mathbb{G} is isomorphic to \mathbb{Z}_p .

Proof.

Easy!

Theorem

The isomorphism of groups determines an equivalence relation on the class of all groups.

Proof.

Left as an exercise.

Theorem

(Cayley) Every group is isomorphic to a group of permutations.

Proof.

Omitted. Note that, it is important.

Homomorphisms. (同态)

Definition of Homomorphism.

Two group (\mathbb{G},\cdot) and (\mathbb{H},\circ) are homomorphic if there exists a map $\phi:\mathbb{G}\mapsto\mathbb{H}$ such that the group operation is preserved; that is,

$$\phi(\mathbf{a} \cdot \mathbf{b}) = \phi(\mathbf{a}) \circ \phi(\mathbf{b})$$

for all a and b in \mathbb{G} . The map ϕ is called a homomorphism.

(Basic idea.)

We relax the requirement that an isomorphism of groups be bijective, we have a homomorphism.

Examples of Homomorphisms.

Example

 \mathbb{Z} 是加法群,定义映射 $\phi: \mathbb{Z} \mapsto \mathbb{Z}$ 为 $\phi(k) = 2k$, $\forall k \in \mathbb{Z}$ 。可以验证 ϕ 是一种群同态,因为

$$\phi(i+j) = 2(i+j) = 2i + 2j = \phi(i) + \phi(j)$$

 ϕ 把整数映射为偶数。偶数在加法下成群。

Examples of Homomorphisms.

Example of Homomorphisms.

Let $\mathbb G$ be a group and $g\in\mathbb G$. Define a map $\phi:\mathbb Z\mapsto\mathbb G$ by $\phi(n)=g^n$. Then ϕ is a group homomorphism, since

$$\phi(m+n)=g^{m+n}=g^mg^n=\phi(m)\phi(n).$$

This homomorphism maps \mathbb{Z} onto the cyclic subgroup of \mathbb{G} generated by g.

Examples of Homomorphisms.

Example

设 p 为素数,定义映射 $\phi: \mathbb{Z}_p^* \mapsto \mathbb{Z}_p^*$ 为 $\phi(g) = g^2$, $\forall g \in \mathbb{Z}_p^*$ 。可验证, ϕ 是一种同态映射,因为对任意的 $g_1, g_2 \in \mathbb{Z}_p^*$ 满足: $\phi(g_1g_2) = (g_1g_2)^2 = g_1^2g_2^2 = \phi(g_1)\phi(g_2)$ 。

Normal subgroups.

Definition of normal subgroups.

A subgroup $\mathbb N$ of a group $\mathbb G$ is normal in $\mathbb G$ if $g\mathbb N=\mathbb N g$ for all $g\in\mathbb G.$

(Basic idea 1.)

A normal subgroup is a subgroup that the right cosets and the left cosets are precisely the same, and $g\mathbb{N}=\mathbb{N}g$ represents a kind of "communitive(交换性)".

Normal subgroups.

Definition of normal subgroups.

A subgroup $\mathbb N$ of a group $\mathbb G$ is normal in $\mathbb G$ if $g\mathbb N=\mathbb N g$ for all $g\in\mathbb G.$

(Basic idea 1.)

A normal subgroup is a subgroup that the right cosets and the left cosets are precisely the same, and $g\mathbb{N}=\mathbb{N}g$ represents a kind of "communitive(交换性)".

(Basic idea 2.)

A subgroup $\mathbb N$ of a group $\mathbb G$ is normal in $\mathbb G$ iff $\forall g \in \mathbb G$, $g\mathbb N g^{-1} \subset \mathbb N$. Moreover, for all $\forall g \in \mathbb G$, $g\mathbb N g^{-1} = \mathbb N$

Basic Properties of Normal Subgroup.

Proposition

Let \mathbb{G} be a group and \mathbb{N} be a subgroup of \mathbb{G} . Then the following statements are equivalent.

- **1** The subgroup $\mathbb N$ is a normal subgroup of $\mathbb G$, namely, $g\mathbb N=\mathbb N g$ for all $g\in\mathbb G$.
- **2** For all $g \in \mathbb{G}$, $g\mathbb{N}g^{-1} = \mathbb{N}$.

Basic Properties of Normal Subgroup.

Proof.

(Proof of last proposition.) $(1) \Longrightarrow (2)$. Since $\mathbb N$ is a normal subgroup of $\mathbb G$, $g\mathbb N = \mathbb N g$ for all $g \in \mathbb G$. Hence, for a given $g \in \mathbb G$ and $n \in \mathbb N$, there exists an $n' \in \mathbb N$ such that gn = n'g. Therefore, $gng^{-1} = n' \in \mathbb N$ or $g\mathbb N g^{-1} \subset \mathbb N$. For $n \in \mathbb N$, $g^{-1}ng = g^{-1}n(g^{-1})^{-1} \in \mathbb N$. Hence, $g^{-1}ng = n'$ for some $n' \in \mathbb N$. Therefore, $n = gn'g^{-1} \in g\mathbb N g^{-1}$, namely, $\mathbb N \subset g\mathbb N g^{-1}$. (2) \Longrightarrow (1). Suppose that for all $g \in \mathbb G$, $g\mathbb N g^{-1} = \mathbb N$. Then for any $n \in \mathbb N$ there exists an $n' \in \mathbb N$ such that $gng^{-1} = n'$. Consequently, gn = n'g which means $g\mathbb N \subset \mathbb N g$. Similarly, we can prove that $\mathbb N g \subset g\mathbb N$.

Proposition

Proposition 1. Let $\phi : \mathbb{G}_1 \mapsto \mathbb{G}_2$ be a homomorphism of groups. Then

- **1** If e is the identity of \mathbb{G}_1 , then $\phi(e)$ is the identity fo \mathbb{G}_2 ;
- ② For any element $g \in \mathbb{G}_1$, $\phi(g^{-1}) = [\phi(g)]^{-1}$;
- **3** If \mathbb{H}_1 is a subgroup of \mathbb{G}_1 , then $\phi(\mathbb{H}_1)$ is a subgroup of \mathbb{G}_2 ;
- If \mathbb{H}_2 is a subgroup of \mathbb{G}_2 , then $\phi^{-1}(\mathbb{H}_2)$ is a subgroup of \mathbb{G}_1 . Furtheremore, if \mathbb{H}_2 is normal in \mathbb{G}_2 , then $\phi^{-1}(\mathbb{H}_2)$ is normal in \mathbb{G}_1 .

Proposition

Proposition 1. Let $\phi: \mathbb{G}_1 \mapsto \mathbb{G}_2$ be a homomorphism of groups. Then

- **1** If e is the identity of \mathbb{G}_1 , then $\phi(e)$ is the identity fo \mathbb{G}_2 ;
- **2** For any element $g \in \mathbb{G}_1$, $\phi(g^{-1}) = [\phi(g)]^{-1}$;
- **3** If \mathbb{H}_1 is a subgroup of \mathbb{G}_1 , then $\phi(\mathbb{H}_1)$ is a subgroup of \mathbb{G}_2 ;
- If \mathbb{H}_2 is a subgroup of \mathbb{G}_2 , then $\phi^{-1}(\mathbb{H}_2)$ is a subgroup of \mathbb{G}_1 . Furtheremore, if \mathbb{H}_2 is normal in \mathbb{G}_2 , then $\phi^{-1}(\mathbb{H}_2)$ is normal in \mathbb{G}_1 .

Proof.

Omitted.

Definition

(Definition of Kernel.) Let $\phi: \mathbb{G} \mapsto \mathbb{H}$ be a group homomorphism and e is the identity of \mathbb{H} . By previous proposition, $\phi^{-1}(\{e\})$ is subgroup of \mathbb{G} . This subgroup is called the kernel of ϕ and denoted by ker ϕ .

Definition

(Definition of Kernel.) Let $\phi: \mathbb{G} \mapsto \mathbb{H}$ be a group homomorphism and e is the identity of \mathbb{H} . By previous proposition, $\phi^{-1}(\{e\})$ is subgroup of \mathbb{G} . This subgroup is called the kernel of ϕ and denoted by $\ker \phi$.

Example

设 p 为素数,同态映射 $\phi: \mathbb{Z}_p^* \mapsto \mathbb{Z}_p^*$ 定义为 $\phi(g) = g^2$, $\forall g \in \mathbb{Z}_p^*$ 。可验证, ϕ 把 $\{1, p-1\}$ 映射为群 $\phi(\mathbb{Z}_p^*)$ 的单位元 1,所以 Ker $\phi = \{1, p-1\}$ 。

Proposition

(Kernel.) Let $\phi : \mathbb{G} \mapsto \mathbb{H}$ be a group homomorphism. Then the kernel of ϕ is a normal subgroup of \mathbb{G} .

Proposition

(Kernel.) Let $\phi : \mathbb{G} \mapsto \mathbb{H}$ be a group homomorphism. Then the kernel of ϕ is a normal subgroup of \mathbb{G} .

Proof.

Trivial. Since the trivial subgroup of \mathbb{H} is normal.

Quotient Groups.(商群)

Definition

If $\mathbb N$ is a normal subgroup of a group $\mathbb G$, then the cosets of $\mathbb N$ in $\mathbb G$ form a group $\mathbb G/\mathbb N$ under the operation $(a\mathbb N)(b\mathbb N)=ab\mathbb N$. This group is call the *quotient group* or *factor group* of $\mathbb G$ and $\mathbb N$.

Quotient Groups.(商群)

Definition

If $\mathbb N$ is a normal subgroup of a group $\mathbb G$, then the cosets of $\mathbb N$ in $\mathbb G$ form a group $\mathbb G/\mathbb N$ under the operation $(a\mathbb N)(b\mathbb N)=ab\mathbb N$. This group is call the *quotient group* or *factor group* of $\mathbb G$ and $\mathbb N$.

Understand the operation.

How to understand the operation $(a\mathbb{N})(b\mathbb{N}) = ab\mathbb{N}$?

Quotient Groups.(商群)

Definition

If $\mathbb N$ is a normal subgroup of a group $\mathbb G$, then the cosets of $\mathbb N$ in $\mathbb G$ form a group $\mathbb G/\mathbb N$ under the operation $(a\mathbb N)(b\mathbb N)=ab\mathbb N$. This group is call the *quotient group* or *factor group* of $\mathbb G$ and $\mathbb N$.

Understand the operation.

How to understand the operation $(a\mathbb{N})(b\mathbb{N}) = ab\mathbb{N}$? Since \mathbb{N} is normal, then:

$$(a\mathbb{N})(b\mathbb{N}) = (\mathbb{N}a)(b\mathbb{N}) = (ab\mathbb{N})\mathbb{N} = ab\mathbb{N}$$

Example for Quotient Groups.

(Example of Quotient Groups).

Consider the normal subgroup $3\mathbb{Z}$ of \mathbb{Z} . The cosets of $3\mathbb{Z}$ in \mathbb{Z} are

$$0 + 3\mathbb{Z} = \{\cdots, -3, 0, 3, 6, \cdots\}$$
$$1 + 3\mathbb{Z} = \{\cdots, -2, 1, 4, 7, \cdots\}$$
$$2 + 3\mathbb{Z} = \{\cdots, -1, 2, 5, 8, \cdots\}.$$

The group $\mathbb{Z}/3\mathbb{Z}$ is given by the multiplicative table below.

+	$0+3\mathbb{Z}$	$1+3\mathbb{Z}$	$2+3\mathbb{Z}$
$0+3\mathbb{Z}$	$0+3\mathbb{Z}$	$1+3\mathbb{Z}$	$2+3\mathbb{Z}$
$1+3\mathbb{Z}$	$1+3\mathbb{Z}$	$2+3\mathbb{Z}$	$0+3\mathbb{Z}$
$2+3\mathbb{Z}$	$2+3\mathbb{Z}$	$0+3\mathbb{Z}$	$1+3\mathbb{Z}$

Theorem

(Quotient Groups). If $\mathbb N$ is a normal subgroup of a group $\mathbb G$, then the cosets of $\mathbb N$ in $\mathbb G$ form a group $\mathbb G/\mathbb N$ of order $[\mathbb G:\mathbb N]$.

Proof.

(Basic ideas.)

① What is the group operation? $(a\mathbb{N})(b\mathbb{N}) = ab\mathbb{N}$

Proof.

(Basic ideas.)

- **①** What is the group operation? $(a\mathbb{N})(b\mathbb{N}) = ab\mathbb{N}$
- 2 Prove this operation is well-defined; that is group operation must be independent of the choice of coset representative. Let $a\mathbb{N} = b\mathbb{N}$, $c\mathbb{N} = d\mathbb{N}$. We must prove that

$$(a\mathbb{N})(c\mathbb{N}) = ac\mathbb{N} = bd\mathbb{N} = (b\mathbb{N})(d\mathbb{N})$$

Proof.

(Basic ideas.)

- **①** What is the group operation? $(a\mathbb{N})(b\mathbb{N}) = ab\mathbb{N}$
- 2 Prove this operation is well-defined; that is group operation must be independent of the choice of coset representative. Let $a\mathbb{N} = b\mathbb{N}$, $c\mathbb{N} = d\mathbb{N}$. We must prove that

$$(a\mathbb{N})(c\mathbb{N}) = ac\mathbb{N} = bd\mathbb{N} = (b\mathbb{N})(d\mathbb{N})$$

3 Why we need "well-defined"?

Proof.

(Basic ideas.)

- **①** What is the group operation? $(a\mathbb{N})(b\mathbb{N}) = ab\mathbb{N}$
- 2 Prove this operation is well-defined; that is group operation must be independent of the choice of coset representative. Let $a\mathbb{N} = b\mathbb{N}$, $c\mathbb{N} = d\mathbb{N}$. We must prove that

$$(a\mathbb{N})(c\mathbb{N}) = ac\mathbb{N} = bd\mathbb{N} = (b\mathbb{N})(d\mathbb{N})$$

- Why we need "well-defined"?
- Oheck the axioms of group. Easy!

Theorem of Quotient Groups.

Remark

(良定义操作.) 所谓良定义的操作,就是要求操作独立于所参与操作的代表元。比如,对任意群 \mathbb{G} 和其上的某种操作 $\psi:\mathbb{G}\mapsto\mathbb{G}$,要求 ψ 良定义就是要求对任意的群元 $a,b\in\mathbb{G}$,如 果 a=b,则 $\psi(a)=\psi(b)$ 。一眼看上去,这个要求很无理,毫无意义,但是对于商群来说就必不可少。请注意,商群中操作的是 陪集, $a\mathbb{H}=b\mathbb{H}$ 并不意味 a=b。

Theorem of Quotient Groups.

Remark

(Some details.) Let $a\mathbb{N}=b\mathbb{N}$, $c\mathbb{N}=d\mathbb{N}$. We must prove that

$$(a\mathbb{N})(c\mathbb{N}) = ac\mathbb{N} = bd\mathbb{N} = (b\mathbb{N})(d\mathbb{N})$$

Theorem of Quotient Groups.

Remark

(Some details.) Let $a\mathbb{N}=b\mathbb{N}$, $c\mathbb{N}=d\mathbb{N}$. We must prove that

$$(a\mathbb{N})(c\mathbb{N}) = ac\mathbb{N} = bd\mathbb{N} = (b\mathbb{N})(d\mathbb{N})$$

For $a = bn_1$ and $c = dn_2$ for some n_1 and n_2 in \mathbb{N} . Hence,

$$ac\mathbb{N} = bn_1dn_2\mathbb{N}$$
 $= bn_1d\mathbb{N}$
 $= bn_1\mathbb{N}d$
 $= b\mathbb{N}d$
 $= bd\mathbb{N}$

Example for Quotient Groups.

(Quotient Groups of \mathbb{Z}_n^*).

Let n=15, then $\mathbb{Z}_n^*=\{1,2,4,7,8,11,13,14\}$. Let g=2, we set $\mathbb{S}=\langle g\rangle=\{1,2,4,8\}$ which is a subgroup of \mathbb{Z}_n^* . Then $\mathbb{Z}_n^*/7\mathbb{S}=\{\mathbb{S},7\mathbb{S}\}$, please check that \mathbb{S} is the identity, $7\mathbb{S}$'s inverse is itself, namely $(7\mathbb{S})(7\mathbb{S})=4\mathbb{S}=\mathbb{S}$.

Canonical Homomorphism.

(Canonical Homomorphism.)

Let $\mathbb H$ be a normal subgroup of $\mathbb G$, define a map

$$\phi: \mathbb{G} \mapsto \mathbb{G}/\mathbb{H}$$

by

$$\phi(g) = g\mathbb{H}.$$

This map is indeed a homomorphism, check it! We call this map a natural or canonical homomorphism, and $\ker \phi = \mathbb{H}$.

First Isomorphism Theorem.

Theorem

(First Isomorphism Theorem.) If $\psi: \mathbb{G} \mapsto \mathbb{H}$ is a group homomorphism with $\mathbb{K} = \ker \psi$, then \mathbb{K} is normal in \mathbb{G} . Let $\phi: \mathbb{G} \mapsto \mathbb{G}/\mathbb{K}$ be the canonical homomorphism. Then there exists a unique isomorphism $\eta: \mathbb{G}/\mathbb{K} \mapsto \psi(\mathbb{G})$ such that $\psi = \eta \phi$.

First Isomorphism Theorem.

(Proof ideas.)

- **①** Define $\eta: \mathbb{G}/\mathbb{K} \mapsto \psi(\mathbb{G})$ by $\eta(g\mathbb{K}) = \psi(g)$;
- **2** Prove η is well-defined;
- **3** Prove that η is a homomorphism and is a bijective map.

First Isomorphism Theorem.

Figure: A diagrammatic interpretation of First Isomorphism Theorem.

(Homomorphism from Cyclic Group.)

设 \mathbb{G} 是由生成元 g 生成的循环群。定义映射 $\phi: \mathbb{Z} \mapsto \mathbb{G}$ 为 $n \mapsto g^n, \ \forall n \in \mathbb{Z}$ 。 ϕ 是同态映射,因为:

$$\phi(m+n)=g^{m+n}=g^mg^n=\phi(m)\phi(n).$$

 ϕ 显然是满射。如果 \mathbb{G} 的阶为 m,因为 g 是生成元,则 ord(g) = m。于是, $g^m = e$,且有 $Ker \phi = m\mathbb{Z}$ 。根据第一同构定 理,则有:

$$\mathbb{Z}/\mathsf{Ker}\ \phi=\mathbb{Z}/m\mathbb{Z}\cong\mathbb{G}$$
 .

如果 \mathbb{G} 是无限阶,则 g 也是无限阶,则 $\mathrm{Ker} \phi = \{0\}$,则 \mathbb{Z} 与 \mathbb{G} 同构。因此,两个循环群同构当且仅当它们有相同的阶。在同构的意义上,只有两种循环群: \mathbb{Z} 和 \mathbb{Z}_n 。

(Homomorphism from \mathbb{Z}_p^* to \mathbb{Z}_p^* .)

Let p be a prime, \mathbb{Z}_p^* is a cyclic group. Define a map $\phi: \mathbb{Z}_p^* \mapsto \mathbb{Z}_p^*$ by $\phi(g) = g^2$ for all $g \in \mathbb{Z}_p^*$. Then ϕ is a group homomorphism, since

$$\phi(g_1g_2) = (g_1g_2)^2 = g_1^2g_2^2 = \phi(g_1)\phi(g_2).$$

Clearly ϕ is not onto, and Ker $\phi=\{1,p-1\}$ is a normal subgroup of \mathbb{Z}_p^* . We know Ker ϕ because we believe that the following equation

$$x^2 \equiv 1 \pmod{p}$$

has only two solutions, namely 1 and p-1. Check that $\mathbb{S}=\{\phi(g): \text{for all } g\in \mathbb{Z}_p^*\}$ is a group. What is the order of \mathbb{S} ? By the First Isomorphism Theorem, $|\mathbb{S}|=|\mathbb{Z}_p^*/\text{Ker }\phi|=|\mathbb{Z}_p^*|/|\text{Ker }\phi|$.

(Homomorphism from \mathbb{Z}_n^* to \mathbb{Z}_n^* .)

Let n=pq be a composite integer, p and q are two primes, and \mathbb{Z}_n^* is a group. Define a map $\phi: \mathbb{Z}_n^* \mapsto \mathbb{Z}_n^*$ by $\phi(g) = g^2$ for all $g \in \mathbb{Z}_n^*$. Then ϕ is a group homomorphism. $\mathbb{S} = \{\phi(g) : \text{for all } g \in \mathbb{Z}_n^*\}$, if we know the order of Ker ϕ , then we know the order of $\mathbb{S} = |\mathbb{Z}_n^*|/|\text{Ker }\phi|$ by the First Isomorphism Theorem. How many solutions does the following equation have?

$$x^2 \equiv 1 \pmod{n}$$

Unfortunately, we do not solve it until we learn CRT.

Homomorphism for Signed Group

Let n be a positive integer. For $x \in \mathbb{Z}_n$, we define |x| as the absolute value of x, where x is represented as a signed integer in the set $\{-(n-1)/2, \cdots, (n-1)/2\}$. From \mathbb{Z}_n^* , we define the set \mathbb{T}_n^+ as

$$\mathbb{G}^+ = \{ |x| : x \in \mathbb{Z}_n^* \}$$

with the following operations

$$g \circ h = |g \cdot h \bmod n|,$$

where $g, h \in \mathbb{G}^+$. We know that (\mathbb{G}^+, \circ) is indeed a group. What is the order of the group, and why?

Find the order of \mathbb{G}^+ .

$$\mathbb{G}^+ = \{ |x| : x \in \mathbb{Z}_n^* \}$$

Answer.

We observe that taking absolute value is a homomorphism, since

$$\phi(x \cdot y) = |x \cdot y| = |x| \circ |y| = \phi(x) \circ \phi(y)$$

Since $-1 \in \mathbb{Z}_n^*$, $\operatorname{Ker} \phi = \{1, -1\}$. Then the oder of \mathbb{G}^+ is $|\mathbb{Z}_n^*|/2$.

Second Isomorphism Theorem.

Theorem

(第二同构定理.) \mathbb{H} 是群 \mathbb{G} 的子群(不必然是正规子群), \mathbb{K} 是 群 \mathbb{G} 的正规子群。则 $\mathbb{H}\mathbb{K}$ 是群 \mathbb{G} 的子群, $\mathbb{H} \cap \mathbb{K}$ 是 \mathbb{H} 的正规子群,且

 $\mathbb{H}/(\mathbb{H}\cap\mathbb{K})\cong\mathbb{H}\mathbb{K}/\mathbb{K}$.

Correspondence Theorem.

Correspondence Theorem. (对应定理)

Let $\mathbb N$ be a normal subgroup of a group $\mathbb G$. Then $\mathbb H \mapsto \mathbb H/\mathbb N$ is a one-to-one correspondence between the set of subgroups $\mathbb H$ containing $\mathbb N$ and the set of subgroups of $\mathbb G/\mathbb N$. Furthermore, the normal subgroups of $\mathbb G$ containing $\mathbb N$ correspond to normal subgroups of $\mathbb G/\mathbb N$.

Correspondence Theorem.(对应定理)

Understanding Correspondence Theorem.

① What is the map $\mathbb{H} \mapsto \mathbb{H}/\mathbb{N}$?

Correspondence Theorem.(对应定理)

Understanding Correspondence Theorem.

- **①** What is the map $\mathbb{H} \mapsto \mathbb{H}/\mathbb{N}$?
- ② A map: {the set of subgroups \mathbb{H} containing \mathbb{N} } \mapsto {the set of subgroups of \mathbb{G}/\mathbb{N} }

Correspondence Theorem.(对应定理)

Understanding Correspondence Theorem.

- **①** What is the map $\mathbb{H} \mapsto \mathbb{H}/\mathbb{N}$?
- $\textbf{2} \ \, \text{A map: } \{ \text{the set of subgroups } \mathbb{H} \text{ containing } \mathbb{N} \} \mapsto \\ \{ \text{the set of subgroups of } \mathbb{G}/\mathbb{N} \}$
- **3** To understand what is a subgroup of \mathbb{G}/\mathbb{N} ?

Correspondence Theorem.

Proof ideas of the Correspondence Theorem.

- **1** \mathbb{H}/\mathbb{N} is a subgroup of \mathbb{G}/\mathbb{N} ;
- **2** The map $\mathbb{H} \mapsto \mathbb{H}/\mathbb{N}$ is one-to-one and onto;
- **3** \mathbb{H} is normal in \mathbb{G} , if and only if \mathbb{H}/\mathbb{N} is normal in \mathbb{G}/\mathbb{N} .

Third Isomorphism Theorem.

Theorem

 $(第三同构定理) \mathbb{H}$ 和 \mathbb{K} 是群 \mathbb{G} 的正规子群,且 $\mathbb{K} \subset \mathbb{H}$ 。则:

$$\mathbb{G}/\mathbb{H}\cong rac{\mathbb{G}/\mathbb{K}}{\mathbb{H}/\mathbb{K}}$$
.