Department of Electrical Engineering Indian Institute of Technology, Kanpur

EE 210 Assignment #1 Assigned: 13.1.21

For all problems in this course, assume T = 300 K (with $V_T = 26 \text{ mV}$), unless otherwise stated.

- 1. A pn junction diode has reverse saturation current $I_0 = 10$ pA. Determine the magnitude of the diode current (along with its direction) when it is under: i) forward bias of: a) 50 mV, and b) 500 mV; and ii) reverse bias of: a) 50 mV, and b) 500 mV.
- 2. Two diodes D_1 and D_2 are connected back to back with an applied bias of V_{AP} (= 5 V), as shown in the figure. Calculate the current I_D and the diode drops V_{D1} and V_{D2} . Data: $I_0(D_1) = 1$ pA, and $I_0(D_2) = 1$ nA.

3. A simple diode circuit is shown alongside. Perform a self-consistent analysis to find the diode current I_D and the diode voltage V_D . Take $I_0=10~pA$.

- 4. The measured junction capacitance C_{dep} (in μF) as a function of the applied voltage V_D (in volts) of an abrupt Si pn junction (area = 10 mm²) is given by $1/C_{dep}^2 = [2.5 \times 10^5 \times (4-6.25V_D)]$. Determine the built-in voltage and the depletion region width at zero bias.
- 5. Consider Prob.3. Assuming that the junction is linearly graded, determine the small-signal parameters of the diode, and draw its small-signal equivalent circuit. Data: $V_0 = 0.8 \text{ V}$, $C_{dep0} = 1 \text{ pF}$, and $\tau = 1 \text{ }\mu\text{sec}$.