2. PROBABILIDAD

_		,
2.01	Probabilidad clásica	$P(A) = \frac{\#A}{\#\Omega}$
2.02	Probabilidad frecuencial	$P(A) = \frac{k}{n}$
2.03	Propiedad del suceso opuesto	P(A) + P(A') = 1
2.04	Regla general de la adición (para dos eventos)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
2.05	Regla general de la adición (para tres eventos)	$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$
2.06	Probabilidad condicionada	$P(B/A) = \frac{P(A \cap B)}{P(A)} \qquad si \ P(A) > 0$
2.07	Regla general de la multiplicación (para dos eventos)	$P(A \cap B) = P(A).P(B/A) si \ P(A) > 0$ $P(A \cap B) = P(B).P(A/B) si \ P(B) > 0$
2.08	Regla general de la multiplicación (para tres eventos)	$P(A \cap B \cap C) = P(A).P(B/A).P(C/A \cap B)$ si A, B y C son eventos no vacíos
2.09	Teorema de las probabilidades totales	Si B_1 , B_2 ,, B_k es una partición de Ω con: $P(B_i) \neq 0 (i = 1, 2,, k)$ $P(A) = \sum_{i=1}^k P(B_i).(A/B_i)$
2.10	Teorema de Bayes	Si B_1 , B_2 ,, B_k es una partición de Ω con: $P(B_i) \neq 0$ ($i = 1, 2,, k$) y $P(A) \neq 0$ $P(B_r/A) = \frac{P(B_r).P(A/B_r)}{\sum_{i=1}^k P(B_i).P(A/B_i)} para \ r = 1, 2,, k$