Análisis de Datos, TP Integrador

Alumno: Silva Plata, Bruno Fernando

1.- Análisis exploratorio inicial

En esta etapa se exploró el dataset:

• La información:

#	Column	Non-Null Count	Dtype
0	Date	145460 non-null	object
1	Location	145460 non-null	object
2	MinTemp	143975 non-null	float64
3	MaxTemp	144199 non-null	float64
4	Rainfall	142199 non-null	float64
5	Evaporation	82670 non-null	float64
6	Sunshine	75625 non-null	float64
7	WindGustDir	135134 non-null	object
8	WindGustSpeed	135197 non-null	float64
9	WindDir9am	134894 non-null	object
10	WindDir3pm	141232 non-null	object
11	WindSpeed9am	143693 non-null	float64
12	WindSpeed3pm	142398 non-null	float64
13	Humidity9am	142806 non-null	float64
14	Humidity3pm	140953 non-null	float64
15	Pressure9am	130395 non-null	float64
16	Pressure3pm	130432 non-null	float64
17	Cloud9am	89572 non-null	float64
18	Cloud3pm	86102 non-null	float64
19	Temp9am	143693 non-null	float64
20	Temp3pm	141851 non-null	float64
21	RainToday	142199 non-null	object
22	RainTomorrow	142193 non-null	object

• La descripción:

	count	mean	std	min	25%	50%	75%	max
MinTemp	143975.0	12.194034	6.398495	-8.5	7.6	12.0	16.9	33.9
MaxTemp	144199.0	23.221348	7.119049	-4.8	17.9	22.6	28.2	48.1
Rainfall	142199.0	2.360918	8.478060	0.0	0.0	0.0	0.8	371.0
Evaporation	82670.0	5.468232	4.193704	0.0	2.6	4.8	7.4	145.0
Sunshine	75625.0	7.611178	3.785483	0.0	4.8	8.4	10.6	14.5
WindGustSpeed	135197.0	40.035230	13.607062	6.0	31.0	39.0	48.0	135.0
WindSpeed9am	143693.0	14.043426	8.915375	0.0	7.0	13.0	19.0	130.0
WindSpeed3pm	142398.0	18.662657	8.809800	0.0	13.0	19.0	24.0	87.0
Humidity9am	142806.0	68.880831	19.029164	0.0	57.0	70.0	83.0	100.0
Humidity3pm	140953.0	51.539116	20.795902	0.0	37.0	52.0	66.0	100.0
Pressure9am	130395.0	1017.649940	7.106530	980.5	1012.9	1017.6	1022.4	1041.0
Pressure3pm	130432.0	1015.255889	7.037414	977.1	1010.4	1015.2	1020.0	1039.6
Cloud9am	89572.0	4.447461	2.887159	0.0	1.0	5.0	7.0	9.0
Cloud3pm	86102.0	4.509930	2.720357	0.0	2.0	5.0	7.0	9.0
Temp9am	143693.0	16.990631	6.488753	-7.2	12.3	16.7	21.6	40.2
Temp3pm	141851.0	21.683390	6.936650	-5.4	16.6	21.1	26.4	46.7

Variables categóricas

Primero se vio acerca de la cardinalidad de las columnas categóricas, donde se obtuvo los siguientes datos:

Date: 3436 etiquetas
Location: 49 etiquetas
WindGustDir: 17 etiquetas
WindDir9am: 17 etiquetas
WindDir3pm: 17 etiquetas
RainToday: 3 etiquetas
RainTomorrow: 3 etiquetas

Para facilitar el feature engineering más adelante se realizó un tratamiento para Date, donde se obtiene directamente el mes y así evitar la alta cardinalidad.

En el caso de location (la segunda columna con mayor cardinalidad) se realizó su transformación a coordenadas con Geopy.goecorders, según la siguiente literatura

- https://amaral.northwestern.edu/blog/getting-long-lat-list-cities
- https://peterhaas-me.medium.com/how-to-geocode-with-python-and-pandas-4cd1d7 17d3f7
- https://geopy.readthedocs.io/en/stable/

Se visualizó la frecuencia de etiquetas en las columnas: WindGustDir, WindDir9am, WindDir3pm.

Se visualizo a su vez la frecuencia de etiquetas en RainToday, RainTomorrow:

Vemos que la columna "RainTomorrow" tiene un desbalance en los datos. Posteriormente en la etapa de las métricas se utilizará F1 Score para contrarrestar el desbalance.

Variables numéricas

Se visualizó la matriz de correlación entre las variables:

Se observó que las columnas 'MinTemp', 'MaxTemp', 'Temp9am', 'Temp3pm', 'WindGustSpeed', 'WindSpeed3pm', 'Pressure9am', 'Pressure3pm' son las que más correlación tienen, por lo que se visualizó una gráfica del mismo:

Se realizó un Análisis Bivariable entre:

MaxTemp y RainToday

MinTemp y RainToday

Se vio por histograma la distribución de ciertas columnas:

2.- Limpieza y preparación de datos / ingeniería de features

Primero se visualizó la cantidad de valores nulos por columna:

Se eliminaron las columnas: 'Evaporation', 'Sunshine', 'Cloud9am', 'Cloud3pm' por tener más del 35% de registros nulos.

Se visualizaron Box Plots para las columnas numéricas, y en base a eso realizar el llenado de datos con la media o mediana, todo acorde al gráfico:

Para el tratamiento de la variables categóricas se realizaron dos técnicas:

 La primera fue one hot encoding en las columnas de 'WindGustDir","WindDir9am","WindDir3pm"

- La segunda fue convertir a 0,1 los valores en la columna target (RainTomorrow) y rellenar los datos faltantes con KNN imputer. Se siguió la siguiente literatura:
 - https://towardsdatascience.com/preprocessing-encode-and-knn-impute-all-categ
 orical-features-fast-b05f50b4dfaa
 - https://machinelearningmastery.com/knn-imputation-for-missing-values-in-machine-learning/

3.- Esquema de validación

Se realizo la partición de los datos en 30% para el conjunto de testeo y 70% para el conjunto de entrenamiento.

4.- Entrenamiento del modelo

Para el entrenamiento del modelo se seleccionó:

- Regresión Logística
- Random Forest

Donde se obtuvo los siguientes resultados:

Modelo	Accuracy
Logistic Regression	83,59%
Random Forest	84,91%

5.- Resultados del modelo

Se usó como métrica F1 Score, esto por el desbalance que se vio previamente en la columna target. Los resultados de F1 Score con average "weighted" son los siguientes:

Modelo	F1 Score, average "weighted"			
Logistic Regression	81,91%			
Random Forest	83,41%			

También se visualizó la tabla de classification report:

Regresión Logística:

	precision	recall	f1-score	support	
0	0.86	0.95	0.90	23907	
1	0.00	0.00	0.00	237	
2	0.00	0.00	0.00	102	
3	0.71	0.48	0.57	6721	
accuracy			0.83	30967	
macro avg	0.39	0.36	0.37	30967	
weighted avg	0.82	0.83	0.82	30967	

Random Forest:

	precision	recall	fl-score	support
0	0.86	0.96	0.91	23907
1	0.83	0.16	0.27	237
2	0.71	0.15	0.24	102
3	0.76	0.49	0.59	6721
accuracy			0.85	30967
macro avg	0.79	0.44	0.50	30967
weighted avg	0.84	0.85	0.83	30967

6.- Conclusiones

Se visualizaron los datos para tener una imagen general de que procedimientos aplicar a la misma.

Se implementaron distintos métodos en el tratamiento de los datos para obtener un resultado óptimo. Por el lado de las columnas categóricas se trato de reducir la cardinalidad en las columnas que presentaban mayor número de etiquetas. Por el lado de las columnas numéricas se reemplazaron los datos faltantes con la media y mediana, dependiendo de cada caso.

Se entrenó con dos modelos para clasificación ya que la columna target era de este tipo de Machine Learning Supervisado. Se usó F1 Score para tener una métrica más realista, ya que los datos en la columna target estaban desbalanceados.

Los resultados obtenidos son buenos tanto en Regresión Logística como en Random Forest, aunque pudo ser mejor. Un factor que pudo haber influido es el desglose de las columnas correspondientes a Wind, un distinto tratamiento quizá influiría en los resultados.

÷