Explanation of problem 5

Submitted by, AMIT KUMAR

ROLL NO.: 224103303

FLUID & THERMAL

The given function is-

$$f(x) = 4x^4 - 4x^2$$

The roots of the function are -1, 0, +1.

Solving the given equation by NR method by taking differentinitial guesses.

(1) If we take the initial guess between point -1 to -
$$\frac{\sqrt{2}}{2}$$
 and + $\frac{\sqrt{2}}{2}$ to +1.

Point G is in between points A and B i.e. -1 and - $\frac{\sqrt{2}}{2}$, the tangent corresponding to this point is in such a way that it will lead to the convergence to -1. Similarly point H is in between points E and D i.e. + $\frac{\sqrt{2}}{2}$ and +1, the tangent corresponding to this point is in such a way that it will lead to the convergence to +1.

(2) If we take initial guess between - $\frac{\sqrt{21}}{7}$ to + $\frac{\sqrt{21}}{7}$.

Point "I" is in between points C and F i.e. $-\frac{\sqrt{21}}{7}$ and $+\frac{\sqrt{21}}{7}$, the tangent corresponding to the point "I" is in such a way that it will lead to the convergence to Zero .

(3) If we take the initial guess as $\pm \frac{\sqrt{21}}{7}$.

In above figure, point C and point F represent the - $\frac{\sqrt{21}}{7}$ and + $\frac{\sqrt{21}}{7}$ respectively. If we take initial guess as - $\frac{\sqrt{21}}{7}$ it will iterate the solution to + $\frac{\sqrt{21}}{7}$ that will again iterate to the solution to - $\frac{\sqrt{21}}{7}$ and process will keep on repeating or it will oscillate between these two values hence it will not converge to correct solution.

(4) If we take initial guess between $\frac{\sqrt{21}}{7}$ and $\frac{\sqrt{2}}{2}$.

In the above figure, the points F and E represents the $\frac{\sqrt{21}}{7}$ and $\frac{\sqrt{2}}{2}$ respectively. If we take initial guess as point K which is between these two points then there are infinitely many open intervals of points attracted to -1.