ASSIGNMENT 2 MATRIX MULTIPLICATION

NAME: L.Y.T. NIRMAL

INDEX NO: 19/ENG/072

REGISTRATION NO: EN 93921

SUBMISSION DATE: 24/12/2021

In this assignment, matrix multiplication was done by using single thread and multiple thread method. This code support both integer and decimal numbers. And there are two methods for filling matrices which are two text files inputs or random number generator.

In Single threaded processes it executes instructions in a single sequence (one command processed at one time).

In multiple threaded processes it allows the execution of multiple parts of a program at the same time. In here number of multiplication threads are equal to first matrices row count. For this POSIX Pthreads are used in here.

To demonstrate the execution times between single thread and multiple threads 100 matrices were generated from size 0 to 1000000. (0 \times 0,10 \times 10,20 \times 20,20 \times 30)

FIGURE 1: ANALYSIS ON SINGLE THREAD AND MULTI-THREAD MATRICES MULTIPLICATION

TABLE 1 : EXECUTION TIMES FOR MULTIPLYING MATRICES USING SINGLE THREAD AND MULTITHEADING

		1	
No. of	Single	Multi	
Elements	Thread	Thread	
0	0.000	0.000	
100	0.000	0.001	
400	0.000	0.001	
900	0.000	0.001	
1600	0.001 0.001		
2500	0.001	0.002	
3600	0.001	0.002	
4900	0.002	0.002	
6400	0.002	0.003	
8100	0.003	0.003	
10000	0.003	0.004	
12100	0.005	0.006	
14400	0.005	0.007	
16900	0.011	0.007	
19600	0.009	0.008	
22500	0.013	0.007	
25600	0.015	0.008	
28900	0.017	0.011	
32400	0.02	0.008	
36100	0.029	0.011	
40000	0.037	0.011	
44100	0.037	0.013	
48400	0.041	0.015	
52900	0.045	0.018	
57600	0.071	0.023	
62500	0.07	0.029	
67600	0.064	0.017	
72900	0.079	0.025	
78400	0.078	0.022	
84100	0.087	0.031	
90000	0.088	0.026	
96100	0.117	0.029	
102400	0.118	0.053	
108900	0.127	0.043	
115600	0.146	0.066	
122500	0.197	0.064	
129600	0.264	0.08	
136900			
		•	

144400 152100 160000	0.308 0.338	0.075		
	0.338			
160000	0.550	0.086		
100000	0.258	0.074		
168100	0.257	0.079		
176400	0.263	0.113		
184900	0.293	0.087		
193600	0.335	0.087		
202500	0.412	0.102		
211600	0.481	0.115		
220900	0.383	0.119		
230400	0.386	0.106		
240100	0.431	0.124		
250000	0.424	0.136		
260100	0.471	0.141		
270400	0.497	0.153		
280900	0.529	0.143		
291600	0.58	0.161		
302500	0.765	0.248		
313600	1.047	0.235		
324900	0.665	0.248		
336400	0.736	0.197		
348100	0.781	0.212		
360000	0.787	0.227		
372100	0.819	0.235		
384400	0.899	0.261		
396900	0.973	0.255		
409600	0.978	0.266		
422500	1.033	0.336		
435600	1.715	0.322		
448900	1.141	0.314		
462400	1.334	0.341		
476100	1.271	0.347		
490000	1.302	0.386		
504100	1.349	0.366		
518400	2.114	0.408		
532900	1.571	0.439		
547600	1.742	0.441		
562500	1.743	0.451		
577600	1.738	0.481		
592900	900 2.46 0.483			

608400	1.932	0.504		
624100	2.027	0.516		
640000	2.072	0.541		
656100	2.222 0.817			
672400	2.731 0.623			
688900	2.369	0.629		
705600	2.446	0.62		
722500	3.268	0.802		
739600	2.65	0.67		
756900	2.726	0.702		
774400	2.979	1.041		
792100	3.229	0.76		
810000	3.362 0.937			
828100	3.455	1.011		
846400	5.425	0.9		
864900	3.97	0.921		
883600	4.699	0.975		
902500	3.675	1.364		
921600	4.073	0.984		
940900	4.501	1.039		
960400	4.686	1.212		
980100	4.486	1.263		
1000000	4.841	1.097		

According to the Figure 01 and the Table 01, at the beginning of the execution, the single thread execution is more efficient than the multi thread execution. The reason is since there is small workload at the beginning it can be easily handled by using single thread. Because Multithreading take some time to do its works like creating, initializing and joining the threads.

But when considering larger workload or when the matrices size getting bigger, the multithreading gets better and better compared to single thread. This happens because the increasing work can be divided parallel, so the overhead is very small when comparing to the calculation time.

In this scenario, multiplication is done in row wise, and then the solutions for multiple rows will be calculated parallelly and all the solutions will be joined together. This way code can preform a big task in smaller time compared to single thread execution.

So as a conclusion, multi-threaded matrices multiplication is better for large matrices and single thread is better for small matrices.

```
C:\Users\timni\CLionProjects\untitled1\cmake-build-debug\untitled1.exe
Enter Matrix 1 size (ex. 3 4) :5 5
Enter Matrix 2 size (ex. 4 3) :5 5
[5][5] x [5][5] are Multipliable
        1 - Fill Matrix with Text File
        2 - Fill Matrix with random values
        Select your option :1
Text Read Matrices
----- 1st Matrix -----
        21
                                                      60
                                                                      23
                       26
        69
                                       22
                                                      27
                                                                      21
                       29
                                       60
                                                      28
                                                                      73
        99
                                                                      19
                       13
                                       29
                                                      36
                       25
                                       19
                                                      21
```

2nd Matrix						
82	52	8	28	2		
36	89	5	28	70		
24	6	6	72	22		
28	32	25	83	20		
34	10	22	0	10		
Multiplied	Matrix					
5960	5766	2514	8816	4062		
7980	5595	1866	6009	2002		
6160	4827	2851	7596	4650		
10936	7821	2349	8212	2656		
2292	3197	854	3895	2624		
Matrix Size :	25					
Time taken for Single Thread : 0.000 s						
Time taken for Mul	ti Thread :	0.001 s				
Process finished wi	th exit code 0					

Figure 02 : Input File Demo

```
Enter Matrix 1 size (ex. 3 4) :3 4
Enter Matrix 2 size (ex. 4 3) :4 3
[3][4] \times [4][3] are Multipliable
      1 - Fill Matrix with Text File
       2 - Fill Matrix with random values
       Select your option :2
----- 1st Matrix -----
      56
                    4.577776 10.986664 15.869625
       53
                                  80
                     16
                                                 19.531845
                                                 25.025177
                     19
                                  85
       66
 ----- 2nd Matrix -----
      18
                    2.441481
                                  93
       76
                     29
                                   21.057772
       6.714072
                                   7.324442
                 18.921476
       5.798517
                                   11
```

```
------Multiplied Matrix------

1521.696533 602.715149 5559.435059
2820.381592 1202.969849 6066.729980
3347.805176 1440.651001 7435.952148

Matrix Size : 9
Time taken for Single Thread : 0.000 s
Time taken for Multi Thread : 0.000 s

Process finished with exit code 0
```

Figure 03 : Random Generated Matrix Demo