Proof Portfolio MATH 347, Spring 2022

Shuzhen Zhang Version: January 5, 2023

Contents

L	Con	nmon Theorems
	1.1	Size of Power set
		Power set always bigger
		Inverse exists and is invertible
		Operations with modulos
	1.5	Fibonacci
2	My	own theorems
	2.1	Tricky GCD
	2.2	Closed form Of Taylor Series
		Injective relation
		Uncountable
	2.5	Inheritance of Equivalence Relation

1 Common Theorems

This section will contain five theorems common to everyone.

1.1 Size of Power set

Theorem 1. If |A| = n, then $|\mathcal{P}(A)| = 2^n$.

Proof. Assume there is a set B which is the subset of A, and |A| = n.

Every elements in the A would have 2 different possibilities, which could also in the B or not.

so the total different subsets of A in terms of B would be 2^n ;

since the $\mathscr{P}(A)$ is the all subset of A, $|\mathscr{P}(A)|$ will equal to the number of different set B which is 2^n .

1.2 Power set always bigger

Theorem 2. Let A be a set. Then there is no surjection $g: A \to \mathcal{P}(A)$.

Proof. Suppose $g: A \to \mathcal{P}(A)$ is surjective function.

Then $\forall y \text{ in } \mathscr{P}(A)$, there must exist a pre-image $x \in A$, and f(x) = y.

we can get $f(x) \in \mathcal{P}(A) \to f(x) \subseteq \mathcal{P}(A)$

let define a set $C \subseteq \mathcal{P}(A)$ and

$$C = \{x \in A | x \notin f(x)\} \tag{1}$$

 $\forall C \subseteq \mathscr{P}(A)$, there exist $x \in A : f(x) = C$.

Therefore, there are two situations here.

(1) if
$$x \in C$$
, $x \notin f(x) \rightarrow x \notin C$

(2) if
$$x \notin C$$
, $x \notin f(x) \to x \in C$

which generated contradiction statement; therefore, it is impossible for $g: A \to \mathcal{P}(A)$ contain surjection.

1.3 Inverse exists and is invertible

Theorem 3. Let $f: A \to B$ be an bijective function. Then there is a function $f^{-1}: B \to A$ has the property that

$$f^{-1}(f(x)) = x \quad \forall x \in A, \quad f(f^{-1}(y) = y) \quad \forall y \in B,$$

AND f^{-1} is an invertible function.

Proof. since $f: A \to B$ is a bijective function, then f(x) = f(z) if and only if x = z and $\forall x, z \in A$.

let define there exist a function that $g: B \to A$, and let $g(y) = x, \forall y \in B$ and $\forall x \in A$.

then we got: g(f(x)) = x and f(g(y)) = y

since f is bijective, so g(f(x)) = g(y) is also bijective.

and we can see g(y) just the invertible function of f(x).

1.4 Operations with modulos

Theorem 4. Let Z_n be the set $\{0,1,2,\ldots,n-1\}$ where we define two operations $+_n$ and $*_n$ where

$$x +_n y = (x + y) \pmod{n}, \quad x \times_n y = x \times y \pmod{n}.$$

Consider the relation on \mathbb{Z} given by

$$x \sim y \iff x \equiv y \pmod{n}$$
.

- 1. Show that \sim is an equivalence relation.
- 2. Let [x] be the equivalence class of x under this relation. Prove that

$$[x+y] = [x] +_n [y], \quad [x \times y] = [x] \times_n [y].$$

Proof. (1)

we can check the property of reflexive, symmetric, and transitive.

reflexive: $x \sim x$

 $x \equiv x \pmod{n} \rightarrow x - x = kn, \forall k \in \mathbb{Z}$.

symmetric: $x \sim y$ and $y \sim x$

if $x \equiv y \pmod{n} \rightarrow x - y = kn, \forall k \in \mathbb{Z}$, then

 $x - y = kn \rightarrow -(y - x) = kn \rightarrow y - x = -kn, y \equiv x \pmod{n} \forall k \in \mathbb{Z}.$

transitive: if $x \sim y$ and $y \sim z$, then $x \sim z$

let
$$x, y, z \in \mathbb{Z}$$
 and $x \sim y, y \sim z$, then $x \equiv y \pmod{n} \rightarrow x - y = kn, \forall k \in \mathbb{Z}$ and $y \equiv z \pmod{n} \rightarrow y - z = ln, \forall l \in \mathbb{Z}$ $x - y + y - z = kn + ln \rightarrow x - z = (k + l)n \rightarrow x \equiv z \pmod{n}$

Proof. (2)

let x^i in equivalence class[x], we can obtain $x \sim x^i$ and $x = x^i + kn$, $k \in \mathbb{Z}$ let y^i in equivalence class[y], we can obtain $y \sim y^i$ and $y = y^i + ln$, $l \in \mathbb{Z}$

$$x + y = x' + y' + (k+l)n$$
 (2)

$$(x+y) \sim (x'+y') \tag{3}$$

since $(x^{y} + y^{y})$ is one element of $[x] +_n [y]$ in the equivalence class [x + y], $[x + y] = [x] +_n [y]$

let x^i in equivalence class[x], we can obtain $x \sim x^i$ and $x = x^i + kn$, $k \in \mathbb{Z}$ let y^i in equivalence class[y], we can obtain $y \sim y^i$ and $y = y^i + ln$, $l \in \mathbb{Z}$

$$x * y = (x' + kn) * (y' + ln)$$
 (4)

$$\to x * y - x' * y' = x' l n + y' k n + k l n^2$$
 (5)

$$\to x * y - x' * y' = (x'l + y'k + kln) * n \tag{6}$$

$$(x*y) \sim (x'*y') \tag{7}$$

since $(x^n * y^n)$ is one element of $[x] *_n [y]$ in the equivalence class [x * y], $[x * y] = [x] *_n [y]$

1.5 Fibonacci

Definition. *Define the Fibonacci numbers* $(F_n)_{n\geq 1}$ *by:*

$$F_1 = 1$$
, $F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$.

Theorem 5. The Fibonacci number F_n is even iff n is a multiple of 3.

Proof. Let proof by induction:

Base case:

At n=3, $F_3 = F_2 + F_1 = 1 + 1 = 2$, base case passed; Induction process:

suppose F_n is divisible by 2 for n= 3,6,9...,3k-3,3k , $k \in \mathbb{Z}$ $F_{3k+3} = F_{3k+2} + F_{3k+1}$ $= F_{3k} + F_{3k+1} + F_{3k-1} + F_{3k}$ $= 2F_{3k} + F_{3k} + F_{3k-1} + F_{3k-2} + F_{3k-3}$ since $F_{3k} = F_{3k-1} + F_{3k-2}$ $= 2F_{3k} + F_{3k} + F_{3k} + F_{3k-3}$ since F_{3k} and F_{3k-3} both divisible by 2, F_{3k+3} is divisible by 2; Therefore, for all F_n is divisible by 2 iff n is a multiple of 3.

2 My own theorems

This chapter will contain five theorems chosen by you.

2.1 Tricky GCD

Theorem 6. gcd(2n, n + 1) = 2 when n is odd, and gcd(2n, n + 1) = 1 when n is even.

Proof. since we need to proof something with GCD, let's reform it by Euclidean theorem.

$$2n = 1 * (n+1) + (n-1) \tag{8}$$

$$n+1 = 1 * (n-1) + 2 \tag{9}$$

then, do one more step

$$(n-1) = 2 * q + r \tag{10}$$

 $r \in [0,1]$,so there are two cases:

case 1: if r = 0, n-1 must be an even, n must be an odd. Moreover the Non-zero remainder would be 2.

case2: if r = 1, n - 1 must be an add, n must be an even. The remainder is 1.

2.2 Closed form Of Taylor Series

Theorem 7. for $\sum_{i=0}^{n} \frac{1}{2^i} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n}$, there exist a closed form that $\sum_{i=0}^{n} \frac{1}{2^i} = 2 - \frac{1}{2^n}$.

Proof. Let proof by induction: at n=0

$$\sum_{i=0}^{n} 1/(2^{i}) = 1/(2^{0}) = 1/1 = 1.$$
(11)

$$2 - 1/(2^n) = 2 - 1/(2^0) = 2 - 1 = 1. (12)$$

Induction process:

suppose $\sum_{i=0}^{n} 1/(2^{i})=2-(\frac{1}{2^{n}})$ for n=0,1,2,3.....k; at n=k+1,

$$\sum_{i=0}^{n} 1/(2^{i}) = \sum_{i=0}^{k+1} 1/(2^{i}) = 1/(2^{k+1}) + \sum_{i=0}^{k} 1/(2^{i})$$
(13)

$$=1/(2^{k+1})+2-1/(2^k)$$
 (14)

$$=2-1/(2(2^{k+1}))+1/(2^{k+1})$$
(15)

$$=2-1/(2^{k+1})\tag{16}$$

induction success theorem correct.

2.3 Injective relation

Theorem 8. suppose function $h: \mathbb{Z} \to \mathbb{Z}$ is injective, then function $f: \mathbb{Z} \to \mathbb{Z}$ by f(x,y) = (h(x) - y, 3h(x) + 1) also is injective.

Proof. Let (x,y) and (p,q) be elements of \mathbb{Z} and suppose f(x,y) = f(p,q), then

$$(h(x) - y, 3h(x) + 1) = (h(p) - q, 3h(p) + 1);$$
(17)

which means:

$$3h(x) + 1 = 3h(p) + 1 \rightarrow h(x) = h(p)$$
(18)

since $h : \mathbb{Z} \to \mathbb{Z}$ is injective function, x = p. and

$$h(x) - y = h(p) - q \tag{19}$$

Therefore,

$$h(x) - y = h(p) - q \rightarrow -y = -q \rightarrow y = q$$
 (20)

since x = p and y = q, (x, y) = (p, q)

which means $f: \mathbb{Z} \to \mathbb{Z}$ by f(x, y) = (h(x) - y, 3h(x) + 1) is injective.

2.4 Uncountable

Theorem 9. the cardinality of \mathbb{P} (irrationals) is uncountable.

Proof. lemma. \mathbb{R} is uncountable

proof of lemma:

let [0,1) be the set of $(r_1,r_2,r_3...,r_m...)$

 $r_1 = 0.d_{11}d_{12}d_{13}...d_{1n}...$

 $r_2 = 0.d_{21}d_{22}d_{23}...d_{2n}...$

 $r_3 = 0.d_{31}d_{32}d_{33}...d_{3n}...$

 $r_m = 0.d_{m1}d_{m2}d_{m3}...d_{mn}...$

Assume [0,1) is countable, then let's define a decimal sequence E.

 $E = 0.e_{11}e_{22}e_{33}...e_{kk}... \in [0, 1).$

the d in the E have the property that

if $d_{11} = 1$, then $e_{11} = 2$.

if $d_{11} \neq 1$, then $e_{11} = 1$. then, E would disjoint with the any decimal sequence in [0,1).

so [0,1) is uncountable.

since [0,1) is a subset of \mathbb{R} , \mathbb{R} is also uncountable.

we can define the \mathbb{R} is the union of \mathbb{Q} and \mathbb{P} .

since the $|\mathbb{Q}| = |\mathbb{N}|$, \mathbb{Q} is countable.

since \mathbb{R} is uncountable we proof by lemma, \mathbb{P} would be uncountable.

2.5 Inheritance of Equivalence Relation

Theorem 10. Let R and S be two equivalence relations on a set A. Define T and U as:

$$xTy \iff xRy \cap xSy, \tag{21}$$

$$xUy \iff xRy \cup xSy, \tag{22}$$

The relations T would be equivalence relations but U may not.

Proof. to the both T and U, they own the property of reflexive and symmetric since R and S are equivalence relations.

however, when we consider the property of tansition between T and U, it would be different.

for the T, if xTy and yTz, then xRy, yRz, and xSy, ySz.

Since R and S are equivalence relations,

$$xRy, yRz \rightarrow xRz$$
 (23)

$$xSy, ySz \rightarrow xSz$$
 (24)

Then $xRz \cap xSz \rightarrow xTz$ T is reflexive, symmetric and transitive, would be a equivalence relation.

however, things happen with U would be different.

for the U, if xUy and yUz, then it means $xRy \cup xSy$ and $yRz \cup ySz$.

if we have xRy, yRz or xSy, ySz, we can obtain xRz or xSz, which U would be equivalence relations.

But, if we consist xUy with xRy, x Sy and yUz with y Rz, ySz. we would get

$$xRv, vSz \rightarrow xRz, xSz$$
 (25)

then the property of transitive would be fail for U, which means U is not equivalence relations in some situation.