实验六 集成运算放大器的应用(一)

CastleStar14654

实验日期: 2020年11月2日 提交日期: 2020年11月9日

1 实验目的

- 了解运算放大器的基本特性;
- 学习并掌握运算放大器的运算关系和应用;
- 了解运算放大器实现有源滤波器的方法。

2 仪器设备

SS1792F 可跟踪直流稳定电源; KEITHLEY 2110 五位半双显示数字万用表; AFG3051C 任意 波形发生器; TDS1012C 数字存储示波器; 面包板。

μA741 运算放大器 1 只; 8.2 kΩ, 100 kΩ 电阻各 1 只; 10 kΩ, 20 kΩ 电阻各 2 只; 0.1 μF 电容 2 只。

3 实验原理

集成运算放大器是一种性能优良的直接耦合放大器。在分析电路时,常将其中的运放视作理想运放以简化电路。理想运放主要有这些特性: **1.** 开环电压放大倍数 $A_{vo}=\infty$; **2.** 差模与共模输入电阻 $R_{id}=\infty,R_{ic}=\infty$; **3.** 输出电阻 $R_o=0$; **4.** 共模抑制比 $K_{\rm CMR}=\infty$; **5.** 输入失调电压、输入失调电流以及它们的漂移均为零。当理想运放工作在线性区时,又有如下特点: **1.** 输入电流 i=0,即虚断路; **2.** 差动输入电压 $u_+-u_-=0$,即虚短路。

3.1 理想运放的加减运算

实验所用的最基本原理示意图为图 1,形成的是一个电压并联负反馈放大器。其中 R_P 为补偿电阻,其相应的选择要保证同相端和反相端的外接电阻相等,使运放对称工作。选择输入端输入信号可实现反相比例运算、同相比例运算、加法运算及加减比例运算。

反向比例运算 如图 1 所示, $R_P = R_F \parallel R_1$ 。可导得

$$u_o = -\frac{R_F}{R_1} u_i,\tag{1}$$

输出信号反相,大小与输入信号有一定的比例关系。

图 1: 反相比例运算

图 2: 同相比例运算

图 3: 加法比例运算

图 4: 加减比例运算

图 5: 有源低通滤波器

图 6: 有源高通滤波器

同相比例运算 如图 2 所示, $R_P \parallel R_3 = R_F \parallel R_1$ 。可导得, 在 R_P 的平衡条件满足时,

$$u_o = -\frac{R_F}{R_3}u_i,\tag{2}$$

输出信号同相, 大小与输入信号有一定的比例关系。

加法比例运算 如图 3 所示, $R_P = R_F \parallel R_1 \parallel R_2$ 。可导得, 在 R_P 的平衡条件满足时,

$$u_o = -R_F \left(\frac{u_{i1}}{R_1} + \frac{u_{i2}}{R_2} \right), \tag{3}$$

输出信号反相,大小是对各输入信号按不同的比例进行相加运算。

加减比例运算 如图 4 所示, $R_P \parallel R_3 = R_F \parallel R_1$ 。可导得, 在 R_P 的平衡条件满足时,

$$u_o = -R_F \left(\frac{u_{i1}}{R_1} - \frac{u_{i3}}{R_3} \right), \tag{4}$$

输出信号是对各输入信号按不同的比例进行相加减运算。

3.2 运放实现有源滤波

低通滤波 如图 5 是低通滤波器的一种实现方法。在满足 $R_1=R_2=R, C_1=C_2=C$ 时,有

$$\frac{u_o}{u_i} = \frac{1}{(1 + j\omega CR)^2}, \quad |K_u| = \left| \frac{u_o}{u_i} \right| = \frac{1}{1 + \omega^2 C^2 R^2}, \quad f_H = \frac{\sqrt{\sqrt{2} - 1}}{2\pi RC}.$$
 (5)

高通滤波 如图 6 是高通滤波器的一种实现方法。在满足 $R_1 = R_2 = R, C_1 = C_2 = C$ 时,有

$$\frac{u_o}{u_i} = \frac{1}{(1 + \frac{1}{i + CR})^2}, \quad |K_u| = \left| \frac{u_o}{u_i} \right| = \frac{\omega^2 C^2 R^2}{1 + \omega^2 C^2 R^2}, \quad f_L = \frac{\sqrt{\sqrt{2} + 1}}{2\pi RC}. \tag{6}$$

4 方法步骤

4.1 实现运放的加减运算

- 1. 按照图 7 插接电路。
- **2.** 反向比例运算。只有 u_{i1} 端输入信号,频率 f = 1 kHz, $u_{i1} = 150$ mV_{pp}。用示波器观察 u_o 与 u_{i1} 的相位关系,验证运算关系。
- **3.** 加法比例运算。加载信号频率 f = 1 kHz, $u_{i1} = u_{i2} = u_i = 150$ mV_{pp}。用示波器观察 u_o 与 u_{i1} 的相位关系,验证运算关系。
- **4.** 加减比例运算。加载信号频率 f=1 kHz, $u_{i1}=u_{i2}=u_{i3}=u_{i}=150$ mV_{pp}。用示波器观察 u_{o} 与 u_{i1} 的相位关系,验证运算关系。

图 7: 运放加减运算电路图

4.2 实现有源滤波器

- **1.** 有源低通滤波器。按照图 5 插接电路。测出滤波器的幅频特性曲线,并得到带宽上界频 f_H ,与理论值比较。
- **2.** 有源高通滤波器。按照图 6 插接电路。测出滤波器的幅频特性曲线,并得到带宽下界频 f_L ,与理论值比较。

5 数据分析

5.1 实现运放的加减运算

输入信号的频率均为 f=1 kHz。

反向比例运算 测得 $u_i=150~\mathrm{mV_{pp}},~u_o=-1.46~\mathrm{V_{pp}},~\frac{u_o}{u_i}=-9.73$ 。输入输出信号反相。 电阻阻值测得 $R_P=8.1010~\mathrm{k}\Omega,~R_F=102.11~\mathrm{k}\Omega,~R_1=9.9504~\mathrm{k}\Omega$ 。理论值为 $\frac{u_o}{u_i}=-\frac{R_F}{R_1}=-10.262$ 。

加法比例运算 测得 $u_{i1}=u_{i2}=150~\mathrm{mV_{pp}},~u_o=-2.18~\mathrm{V_{pp}},~\frac{u_o}{u_i}=-14.5$ 。输入输出信号反相。 电阻阻值测得 $R_2=19.766~\mathrm{k}\Omega$ 。理论值为 $\frac{u_o}{u_i}=-R_F\Big(\frac{1}{R_1}+\frac{1}{R_2}\Big)=-15.428$ 。

加减比例运算 测得 $u_{i1} = u_{i2} = u_{i3} = 150 \text{ mV}_{pp}, \ u_o = -1.50 \text{ V}_{pp}, \ \frac{u_o}{u_i} = -10.0$ 。输入输出信号反相。

电阻阻值测得
$$R_3=19.851~\mathrm{k}\Omega_\circ$$
 理论值为 $\frac{u_o}{u_i}=-R_F\Big(\frac{1}{R_1\parallel R_2}-\frac{1}{R_3}\Big)=-10.284_\circ$

5.2 实现有源滤波器

有源低通滤波器 测得的幅频数据见表 1, 绘制幅频曲线于图 8。得到最大振幅放大率为 0.961, $f_H = 107~{\rm Hz}$ 。

理论值
$$f'_H = \frac{\sqrt{\sqrt{2}-1}}{2\pi RC} = 103 \text{ Hz}_{\circ}$$

有源高通滤波器 测得的幅频数据见表 2, 绘制幅频曲线于图 9。得到最大振幅放大率为 0.973, $f_L=230~{
m Hz}$ 。

理论值
$$f'_L = \frac{\sqrt{\sqrt{2}+1}}{2\pi RC} = 247 \text{ Hz}_{\circ}$$

5.3 小结及误差分析

实验值和理论值整体比较接近。但实验时 R_P 并非使运放电路工作在平衡对称状态的精确值,运放零漂对结果有所影响。此外,信号发生器和示波器的带宽对幅频特性的测量也有所影响。

表 1: 低通滤波器的幅频关系

表 2: 高通滤波器的幅频关系

f (Hz)	$u_i (\text{mV}_{\text{pp}})$	$u_o \text{ (mV}_{pp})$	A_u	f (Hz)	$u_i (\text{mV}_{\text{pp}})$	$u_o \text{ (mV}_{pp})$	A_u
25	152	146	0.961	200	148	94.0	0.635
30	148	142	0.959	210	148	96.0	0.649
35	150	142	0.947	220	148	98.0	0.662
40	148	140	0.946	230	148	102	0.689
50	150	136	0.907	240	148	106	0.716
60	150	130	0.867	260	148	110	0.743
70	150	124	0.827	280	148	114	0.770
80	150	120	0.800	300	148	118	0.797
90	150	114	0.760	350	148	124	0.838
95	150	110	0.733	400	148	130	0.878
100	150	108	0.720	500	148	134	0.905
105	148	102	0.689	600	148	138	0.932
110	148	97.6	0.659	800	148	142	0.959
115	150	94.4	0.629	1000	148	143	0.966
120	150	92.0	0.613	1200	148	144	0.973

图 8: 低通滤波器的幅频曲线, $f_H=107~\mathrm{Hz}$

图 9: 高通滤波器的幅频曲线, $f_L=230~{
m Hz}$

6 思考题

- 1. R_P 为补偿电阻,合适的 R_P 能使运放工作在对称状态,消除偏置电流不对称以及零点漂移的影响。实验中固定 R_P 使得结果误差增大。
- **2.** 没有正反馈时,通频带中电压传输系数的模随频率的降低而减小。引入正反馈后,该传输系数的模增大,幅频特性改善。