Table-1 : Regulatory DNA elements

Element	Properties	Detection methods	References
Promoters: Start-sites for RNA polymerase. DNA elements that control the initiation of transcription.	 core-promoters (sites for assembly of RNAP-II complex) extend usually a hundred base-pairs around transcription start sites (TSS) and contain certain well-studied DNA motifs. Classified structurally into "broad" and "sharp" Classified functionally into "tissue-specific" (low CpG content in mammals, sharp TSS, and TATA-box enrichment), "ubiquitous" (CpG islands in mammals, broad TSS, and TATA-box depletion), and "developmental" (large CpG island in mammals, and Inr elements). 	CAGE, GRO-seq, RNAP-II ChIP-seq	184, 185, 186, 158, 187
Enhancers: DNA elements that enhance the expression of a gene	 Binding sites for transcription factors. Can be present near or far from target genes Control developmental and tissue specific genes or activate genes in response to signalling pathways Participate in chromatin looping 	ChIP-Seq, STARR-seq	188, 189, 190, 191 , 192, 26,193, 194
Insulators: DNA elements that block the effects of enhancers and protect a gene from encroachment of neighbouring silencing or activating signals	 Organize chromatin into independent domains Enhancer blocking or barrier activity Multiple elements identified in flies, such as su(Hw), BEAF32 and Zw5 CTCF as a single prominent insulator in mammals . 	ChIP-Seq, In-situ Hi-C	195, 196, 26, 197,198

Silencers: Regions that nucleate the silencing of gene expression, mainly by recruiting the repressive chromatin marks	 Silencers promote establishment of heterochromatin through interaction with Polycomb and HP1 proteins. Shown to be required for inheritance of repressed state in yeast 	ChIP-Seq	199, 200
Transposons: Mobile genetic elements in the genome.	 Propagate themselves in the "host" genome via wide range of mechanisms during evolution provide various means of gene regulation, including silencing through the spread of heterochromatin, genomic imprinting, paramutation and acting as hotspots for recombination . Important role in the evolution of species 	RNA-seq, DNA-seq	201, 202, 203, 204