8. Hagyományos szabályozók tervezése

1. Legyen az irányítandó folytonos folyamat átviteli függvénye

$$P(s) = \frac{1}{(s+1)(s+10)}.$$

Határozza meg azt a póluskiejtéses, a PD szabályozót FS taggal közelítő szabályozót, amelynek a póluseltolási aránya 10 és amely mellett a nyitott rendszer fázistartaléka 60°! Egységugrás alakú alapjel esetén adja meg a beavatkozójel értékét a t=0 időpillanatban!

2. Legyen az irányítandó folytonos folyamat átviteli függvénye

$$P(s) = \frac{1}{(s+1)(s+10)}.$$

Határozza meg azt a póluskiejtéses PI szabályozót, amely mellett a nyitott rendszer fázistartaléka $60^{\circ}!$ Egységugrás alakú alapjel esetén adja meg a beavatkozójel értékét a t=0 időpillanatban! Mekkora lesz $\lim_{t\to\infty} u(t)$ értéke?

- 3. Egy zárt szabályozási kör hurokátviteli függvénye $L(s) = \frac{Ke^{-st_d}}{s}$. Határozza meg az ω_c vágási körfrekvencia, a ϕ_t fázistartalék és a g_t erősítési tartalék értékét!
- 4. Egy zárt szabályozási kör hurokátviteli függvénye $L(s) = K \frac{1}{s(s+1)}$. Vázolja fel a zárt kör pólusainak gyökhelygörbéjét és adja meg azt a K erősítést, ahol a gyökhelygörbe elválik a valós tengelytől!
- 5. Egy zárt szabályozási kör hurokátviteli függvénye $L(s) = K \frac{1}{s(1+sT)}$. A zárt kör másodrendű lengő tagot eredményez. Írja fel a zárt rendszer ξ csillapítási tényezőjét K és T függvényében!
- 6. Egy zárt szabályozási kör hurokátviteli függvénye $L_1(s)$, fázistartaléka $\phi_t = 60^\circ$, az ω_c vágási körfrekvencia $\omega_c = 0.1$ rad/sec. Mekkora lesz az $L(s) = L_1(s)H(s)$ hurokátvitelű rendszer fázistartaléka, ha $H(s) = e^{-3s}$?
- 7. Egy $P(s) = \frac{K}{s^2}$ átviteli függvénnyel adott szakaszt egy $C_{PD}(s) = A_{PD} \frac{1 + sT_D}{1 + sT}$ átviteli függvényű, soros közelítő PD szabályozóval szabályozunk ($T_D > T$). A felnyitott kör fázistartaléka $\phi_t = 45^\circ$. Vázolja fel a felnyitott kör Nyquist diagramját!