Contents

1	Ma	th and	Machine Learning Basics	3	
	1.1	Linear	Algebra (Quick Review)	4	
	1.2	Proba	bility & Information Theory (Quick Review)	6	
	1.3 Numerical Computation				
		1.3.1	Gradient-Based Optimization (4.3)	8	
	1.4	Machi	ne Learning Basics	10	
		1.4.1	Capacity, Overfitting, and Underfitting (5.2)	10	
		1.4.2	Estimators, Bias and Variance (5.4)	10	
		1.4.3	Bayesian Statistics (5.6)	12	
		1.4.4	Maximum Likelihood Estimation (5.5)	12	
		1.4.5	Supervised Learning Algorithms (5.7)	13	
2	Dee	ep Net	works: Modern Practices	15	
	2.1	Deep 2	Feedforward Networks	16	
		2.1.1	Back-Propagation (6.5)	17	
	2.2	Regula	arization for Deep Learning	18	
		2.2.1	Parameter Norm Penalties (7.1)	18	
		2.2.2	Sparse Representations (7.10)	19	
		2.2.3	Adversarial Training (7.13)	19	
	2.3	Convo	lutional Neural Networks	20	
	2.4	Seque	nce Modeling (RNNs)	21	
		2.4.1	Review: The Basics of RNNs	21	
		2.4.2	Encoder-Decoder Seq2Seq Architectures (10.4)	27	
		2.4.3	Challenge of Long-Term Deps. (10.7)	28	
		2.4.4	LSTMs and Other Gated RNNs (10.10)	29	
3	Dee	ep Leai	rning Research	30	

	3.1	Linear Factor Models	31
4	Cor	ndensed Summaries	32
	4.1	Conv Nets: A Modular Perspective	33
	4.2	Understanding Convolutions	34
	4.3	Deep Reinforcement Learning	36
	4.4	Deep Learning for Chatbots (WildML)	39
	4.5	WaveNet (Paper)	41
	4.6	Neural Style	45
	4.7	Neural Conversation Model (Paper)	47

MATH AND MACHINE LEARNING

Basics

CONTENTS

1.1	Linear	r Algebra (Quick Review)	4
1.2	Proba	bility & Information Theory (Quick Review)	6
1.3	Nume	rical Computation	8
	1.3.1	Gradient-Based Optimization (4.3)	8
1.4	Machi	ne Learning Basics	10
	1.4.1	Capacity, Overfitting, and Underfitting (5.2)	10
	1.4.2	Estimators, Bias and Variance (5.4)	10
	1.4.3	Bayesian Statistics (5.6)	12
	1.4.4	Maximum Likelihood Estimation (5.5)	12
	1.4.5	Supervised Learning Algorithms (5.7)	13

Math and Machine Learning Basics

Fall 2016

Linear Algebra (Quick Review): January 23

Table of Contents Local

Written by Brandon McKinzie

• For A^{-1} to exist, Ax = b must have <u>exactly</u> one solution for every value of b. Determining whether a solution exists $\forall b \in \mathbb{R}^m$ means requiring that the column space (range) of A be all of \mathbb{R}^m . It is helpful to see Ax expanded out explicitly in this way:

Unless stated otherwise, assume $A \in \mathbb{R}^{m \times n}$

$$\mathbf{A}\mathbf{x} = \sum_{i} x_{i} \mathbf{A}_{:,i} = x_{1} \begin{pmatrix} A_{1,1} \\ \vdots \\ A_{m,1} \end{pmatrix} + \dots + x_{m} \begin{pmatrix} A_{1,n} \\ \vdots \\ A_{m,n} \end{pmatrix}$$
(2.27)

- \rightarrow Necessary: **A** must have at least m columns $(n \ge m)$. ("wide").
- \rightarrow Necessary and sufficient: matrix must contain at least one set of m linearly independent columns.
- \rightarrow Invertibility: In addition to above, need matrix to be *square* (re: at most m columns \land at least m columns).
- A square matrix with linearly dependent columns is known as **singular**. A (necessarily square) matrix is singular if and only if one or more eigenvalues are zero.
- \bullet A norm is any function f that satisfies the following properties:

 $||x||_{\infty} = \max_i |x_i|$

$$f(x) = 0 \Rightarrow x = 0 \tag{1}$$

$$f(\boldsymbol{x} + \boldsymbol{y}) \le f(\boldsymbol{x}) + f(\boldsymbol{y}) \tag{2}$$

$$\forall \alpha \in \mathbb{R}, \ f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x}) \tag{3}$$

• An **orthogonal matrix** is a square matrix whose rows are mutually orthonormal and whose columns are mutually orthonormal:

Note that orthonorm cols implies orthonorm rows (if square). To prove, consider the relationship between A^TA and AA^T

$$\boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{A} \boldsymbol{A}^T = \boldsymbol{I} \tag{2.37}$$

$$\boldsymbol{A}^{-1} = \boldsymbol{A}^T \tag{2.38}$$

• Suppose square matrix $A \in \mathbb{R}^{n \times n}$ has n linearly independent eigenvectors $\{v^{(1)}, \dots, v^{(n)}\}$. The eigendecomposition of A is then given by

$$\mathbf{A} = \mathbf{V}\operatorname{diag}(\lambda) \ \mathbf{V}^{-1} \tag{2.40}$$

All real-symmetric *A* have an eigendecomposition, but it might not be unique!

¹This appear to imply that unless the columns of V are also normalized, can't guarantee that its inverse equals its transpose? (since that is the only difference between it and an orthogonal matrix)

In the special case where A is real-symmetric, $A = Q\Lambda Q^T$. Interpretation: $\boldsymbol{A}\boldsymbol{x}$ can be decomposed into the following three steps:

- 1) Change of basis: The vector $(\mathbf{Q}^T \mathbf{x})$ can be thought of as how \mathbf{x} would appear in the basis of eigenvectors of A.
- 2) Scale: Next, we scale each component $(\mathbf{Q}^T \mathbf{x})_i$ by an amount λ_i , yielding the new vector $(\boldsymbol{\Lambda}(\boldsymbol{Q}^T\boldsymbol{x}))$.
- 3) Change of basis: Finally, we rotate this new vector back from the eigenbasis into its original basis, yielding the transformed result of $Q\Lambda Q^T x$.

A common convention to sort the entries of Λ in descending order.

• Positive definite: all λ are positive; positive semidefinite: all λ are positive or zero.

• Any real matrix $A \in \mathbb{R}^{m \times n}$ has a singular value decomposition of the form,

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{D}\boldsymbol{V}^T \tag{10}$$

 $D \in \mathbb{R}^{m \times n}$

 $V \in \mathbb{R}^{n \times n}$

where both U and V are orthogonal matrices, and D is diagonal.

- The singular values are the diagonal entries D_{ii} .
- The left(right)-singular vectors are the columns of U(V).
- Eigenvectors of $\mathbf{A}\mathbf{A}^T$ are the L-S vectors. Eigenvectors of $\mathbf{A}^T\mathbf{A}$ are the R-S vectors. The eigenvalues of both $\mathbf{A}\mathbf{A}^T$ and $\mathbf{A}^T\mathbf{A}$ are given by the singular values squared.
- The Moore-Penrose pseudoinverse, denoted A^+ , enables us to find an "inverse" of sorts for a (possibly) non-square matrix A. Most algorithms compute A^+ via

$$\boldsymbol{A}^{+} = \boldsymbol{V}\boldsymbol{D}^{+}\boldsymbol{U}^{T} \tag{11}$$

• The determinant of a matrix is $\det(\mathbf{A}) = \prod_i \lambda_i$. Conceptually, $|\det(\mathbf{A})|$ tells how much [multiplication by] \mathbf{A} expands/contracts space. If $\det(\mathbf{A}) = 1$, the transformation preserves volume.

 A^+ is useful, e.g., when we want to solve Ax = y by left-multiplying each side to obtain x = By. It is far more likely for solution(s) to exist when \boldsymbol{A} is wider than it is tall.

$$\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^T \boldsymbol{x} \tag{4}$$

$$= \sum_{i} (\mathbf{Q}^{T} \mathbf{x})_{i} \lambda_{i} (\mathbf{Q}^{T} \mathbf{x})_{i} \tag{5}$$

$$= \sum_{i} (\mathbf{Q}^{T} \mathbf{x})_{i} \lambda_{i} (\mathbf{Q}^{T} \mathbf{x})_{i}$$

$$= \sum_{i} \lambda_{i} (\mathbf{Q}^{T} \mathbf{x})_{i}^{2}$$

$$(5)$$

Since all terms in the summation are non-negative and all $\lambda_i > 0$, we have that $\mathbf{x}^T \mathbf{A} \mathbf{x} = 0$ if and only if $(\mathbf{Q}^T \mathbf{x})_i = 0 = \mathbf{q}^{(i)} \cdot \mathbf{x}$ for all i. Since the set of eigenvectors $\{\mathbf{q}^{(i)}\}$ form an orthonormal basis, we have that \boldsymbol{x} must be the zero vector.

 $^{^{2}}$ I proved this and it made me happy inside. Check it out. Let A be positive definite. Then

Math and Machine Learning Basics

Fall 2016

Probability & Information Theory (Quick Review): January 24

Table of Contents Local Written by Brandon McKinzie

Expectation. For some function f(x), $\mathbb{E}_{x \sim P}[f(x)]$ is the mean value that f takes on when x is drawn from P. The formula for discrete and continuous variables, respectively is as follows:

$$\mathbb{E}_{x \sim P}\left[f(x)\right] = \sum_{x} P(x)f(x) \tag{3.9}$$

$$\mathbb{E}_{x \sim P}\left[f(x)\right] = \int p(x)f(x)dx \tag{3.10}$$

Variance. A measure of how much the values of a function of a random variable x vary as we sample different values of x from its distribution.

$$\operatorname{Var}\left[f(x)\right] = \mathbb{E}\left[\left(f(x) - \mathbb{E}\left[f(x)\right]\right)^{2}\right] \tag{3.11}$$

Covariance. Gives some sense of how much two values are *linearly* related to each other, as well as the *scale* of these variables.

$$Cov [f(x), g(x)] = \mathbb{E} [(f(x) - \mathbb{E} [f(x)]) (g(x) - \mathbb{E} [g(x)])]$$
(3.13)

- \rightarrow Large |Cov[f, g]| means the function values change a lot and both functions are far from their means at the same time.
- → Correlation normalizes the contribution of each variable in order to measure only how much the variables are related.

Covariance Matrix of a random vector $\mathbf{x} \in \mathbb{R}^n$ is an $n \times n$ matrix, such that

$$Cov \left[\mathbf{x} \right]_{i,j} = Cov \left[x_i, \ x_j \right] \tag{3.14}$$

and if we want the "sample" covariance matrix taken over m data point samples, then

$$\Sigma := \frac{1}{m} \sum_{k=1}^{m} (x_k - \bar{x})(x_k - \bar{x})^T$$
 (12)

where m is the number of data points.

Measure Theory.

• A set of points that is negligibly small is said to have measure zero. In practical terms, think of such a set as occupying no volume in the space we are measuring (interested in).

In \mathbb{R}^2 , a line has measure

• A property that holds almost everywhere holds throughout all space except for on a set of measure zero.

Functions of RVs.

• Common mistake: Suppose $\mathbf{y} = g(\mathbf{x})$, and g is invertible/continuous/differentiable. It is NOT true that $p_y(\mathbf{y}) = p_x(g^{-1}(\mathbf{y}))$. This fails to account for the distortion of [probability] space introduced by g. Rather,

$$p_x(\mathbf{x}) = p_y(g(\mathbf{x})) \left| \frac{\partial g(\mathbf{x})}{\partial \mathbf{x}} \right|$$
 (3.47)

Math and Machine Learning Basics

Fall 2016

Numerical Computation: January 24

Table of Contents Local

Written by Brandon McKinzie

Some terminology. Underflow is when numbers near zero are rounded to zero. Similarly, overflow is when large [magnitude] numbers are approximated as $\pm \infty$. Conditioning refers to how rapidly a function changes w.r.t. small changes in its inputs. Consider the function $f(x) = A^{-1}x$. When A has an eigenvalue decomposition, its condition number is

$$\max_{i,j} \left| \frac{\lambda_i}{\lambda_j} \right| \tag{4.2}$$

which is the ratio of the magnitude of the largest and smallest eigenvalue. When this is large, matrix inversion is sensitive to error in the input [of f(x)].

1.3.1 Gradient-Based Optimization (4.3)

.

Jacobian and Hessian Matrices. For when we want partial derivatives of some function f whose input and output are both vectors. The **Jacobian matrix** contains all such partial derivatives. Sometimes we want to know about second derivatives too, since this tells us whether a gradient step will cause as much of an improvement as we would expect based on the gradient alone. The **Hessian matrix** H(f)(x) is defined such that³

$$f: \mathbb{R}^m \to \mathbb{R}^n$$

 $\boldsymbol{J} \in \mathbb{R}^{n \times m}$ where
 $J_{i,j} = \frac{\partial}{\partial x_j} f(\boldsymbol{x})_i$

The Hessian is the Jacobian of the gradient.

$$\boldsymbol{H}(f)(\boldsymbol{x})_{i,j} = \frac{\partial^2}{\partial x_i \partial x_j} f(\boldsymbol{x})$$
(4.6)

The second derivative in a specific direction $\hat{\boldsymbol{d}}$ is given by $\hat{\boldsymbol{d}}^T \boldsymbol{H} \hat{\boldsymbol{d}}$. It tells us how well we can expect a gradient descent step to perform. How so? Well, it shows up in the second-order approximation to the function $f(\boldsymbol{x})$ about our current spot, which we can denote $\boldsymbol{x}^{(0)}$. The standard gradient descent step will move us from $\boldsymbol{x}^{(0)} \to \boldsymbol{x}^{(0)} - \epsilon g$, where g is the gradient evaluated at $\boldsymbol{x}^{(0)}$. Plugging this in to the 2nd order approximation

³Recall that the directional derivative of f(x) in direction u is $u^T \nabla_x f(x)$

shows us how H can give information related to how "good" of a step that really was. Mathematically,

$$f(\mathbf{x}) \approx f(\mathbf{x}^{(0)}) + (\mathbf{x} - \mathbf{x}^{(0)})^T \mathbf{g} + \frac{1}{2} (\mathbf{x} - \mathbf{x}^{(0)})^T \mathbf{H} (\mathbf{x} - \mathbf{x}^{(0)})$$
 (4.8)

$$f(\boldsymbol{x}^{(0)} - \epsilon \boldsymbol{g}) \approx f(\boldsymbol{x}^{(0)}) - \epsilon \boldsymbol{g}^T \boldsymbol{g} + \frac{1}{2} \epsilon^2 \boldsymbol{g}^T \boldsymbol{H} \boldsymbol{g}$$
 (4.9)

If $\mathbf{g}^T \mathbf{H} \mathbf{g}$ is positive, then we can easily solve for the optimal $\epsilon = \epsilon^*$ that decreases the Taylor series approximation as

$$\epsilon^* = \frac{\boldsymbol{g}^T \boldsymbol{g}}{\boldsymbol{g}^T \boldsymbol{H} \boldsymbol{g}} \tag{4.10}$$

The best (and perhaps only) way to take what we learned about the "second derivative test" in single-variable calculus and apply it to the multidimensional case with \mathbf{H} is by using the *eigendecomposition of* \mathbf{H} . Why? Because we can examine the eigenvalues of the Hessian to determine whether the critical point $\mathbf{x}^{(0)}$ is a local maximum, local minimum, or saddle point⁴. If all eigenvalues are positive (remember that this is equivalent to saying that the Hessian is **positive definite**!), the point is a local minimum.

The condition number of the Hessian at a given point can give us an idea about how much the second derivatives (along different directions) differ from each other

⁴Emphasis on "values" in "eigen<u>values</u>" because it's important not to get tripped up here about what the eigenvectors of the Hessian mean. The reason for the decomposition is that it gives us an orthonormal basis (out of which we can get any direction) and therefore the magnitude of the second derivative along each of these directions as the eigenvalues.

Math and Machine Learning Basics

Fall 2016

Machine Learning Basics: January 25

Table of Contents Local Written by Brandon McKinzie

1.4.1 Capacity, Overfitting, and Underfitting (5.2)

Difference between ML and optimization is that, in addition to wanting low training error, we want generalization error (test error) to be low as well. The ideal model is an oracle that simply knows the true probability distribution $p(\mathbf{x}, y)$ that generates the data. The error incurred by such an oracle, due things like inherently stochastic mappings from \mathbf{x} to y or other variables, is called the Bayes error. The no free lunch theorem states that, averaged over all possible data-generating distributions, every classification algorithm has the same error rate when classifying previously unobserved points. Therefore, the goal of ML research is to understand what kinds of distributions are relevant to the "real world" that an AI agent experiences, and what kinds of ML algorithms perform well on data drawn from the relevant data-generating distributions.

1.4.2 ESTIMATORS, BIAS AND VARIANCE (5.4)

Point Estimation: attempt to provide "best" prediction of some quantity, such as some parameter or even a whole function. Formally, a point estimator or *statistic* is any function of the data:

$$\hat{\theta}_m = g\left(x^{(1)}, \dots, x^{(m)}\right)$$
 (5.19)

where, since the data is drawn from a random process, $\hat{\theta}$ is a random variable. **Function** estimation is identical in form, where we want to estimate some f(x) with \hat{f} , a point estimator in function space.

Bias. Defined below, where the expectation is taken over the data-generating distribution⁵. Bias measures the expected deviation from the true value of the func/param.

bias
$$\left[\hat{\theta}_m\right] = \mathbb{E}\left[\hat{\theta}_m\right] - \theta$$
 (5.20)

TODO: Figure out how to derive $\mathbb{E}\left[\hat{\theta}_{m}^{2}\right]$ for Gaussian distribution [helpful link].

Bias-Variance Tradeoff.

- → Conceptual Info. Two sources of error for an estimator are (1) bias and (2) variance, which are both defined as deviations from a certain value. Bias gives deviation from the *true* value, while variance gives the [expected] deviation from this *expected* value.
- \rightarrow Summary of main formulas.

bias
$$\left[\hat{\theta}_m\right] = \mathbb{E}\left[\hat{\theta}_m\right] - \theta$$
 (13)

$$\operatorname{Var}\left[\hat{\theta}_{m}\right] = \mathbb{E}\left[\left(\hat{\theta}_{m} - \mathbb{E}\left[\hat{\theta}_{m}\right]\right)^{2}\right]$$
(14)

 \rightarrow MSE decomposition. The MSE of the estimates is given by⁶

$$MSE = \mathbb{E}\left[(\hat{\theta}_m - \theta)^2 \right]$$
 (5.53)

$$= \operatorname{Bias}(\hat{\theta})^2 + \operatorname{Var}\left[\hat{\theta}_m\right] \tag{5.54}$$

and desirable estimators are those with low MSE.

$$MSE = \mathbb{E}\left[\hat{\theta}^2 + \theta^2 - 2\theta\hat{\theta}\right] \tag{15}$$

$$= \mathbb{E}\left[\hat{\theta}^2\right] + \theta^2 - 2\theta \mathbb{E}\left[\hat{\theta}\right] \tag{16}$$

$$= (\mathbb{E}\left[\hat{\theta}\right]^2 - \mathbb{E}\left[\hat{\theta}\right]^2) + \mathbb{E}\left[\hat{\theta}^2\right] + \theta^2 - 2\theta\mathbb{E}\left[\hat{\theta}\right]$$
(17)

$$= \left(\mathbb{E} \left[\hat{\theta} \right]^2 + \theta^2 - 2\theta \mathbb{E} \left[\hat{\theta} \right] \right) + \left(\mathbb{E} \left[\hat{\theta}^2 \right] - \mathbb{E} \left[\hat{\theta} \right]^2 \right) \tag{18}$$

$$= \operatorname{Bias}(\hat{\theta})^2 + \operatorname{Var}\left[\hat{\theta}_m\right] \tag{19}$$

⁵May want to double-check this, but I'm fairly certain this is what the book meant when it said "data," based on later examples.

⁶Derivation:

Consistency. As the number of training data points increases, we want the estimators to converge to the true values. Specifically, below are the definitions for *weak* and *strong* consistency, respectively.

$$\operatorname{plim}_{m \to \infty} \hat{\theta}_m = 0$$

$$p\left(\lim_{m \to \infty} \hat{\theta}_m = \theta\right) = 1$$
(5.55)

where the symbol plim means $P(|\hat{\theta}_m - \theta| > \epsilon) \to 0$ as $m \to \infty$.

1.4.3 Bayesian Statistics (5.6)

Distinction between frequentist and bayesian approach:

- Frequentist: Estimate $\theta \longrightarrow$ make predictions thereafter based on this estimate.
- Bayesian: Consider all possible values of θ when making predictions.

The prior. Before observing the data, we represent our knowledge of $\boldsymbol{\theta}$ using the prior probability distribution $p(\boldsymbol{\theta})$. Unlike maximum likelihood, which makes predictions using a point estimate of $\boldsymbol{\theta}$ (a single value), the Bayesian approach uses Bayes' rule to make predictions using full distribution over $\boldsymbol{\theta}$. In other words, rather than focusing on the most accurate value estimate of $\boldsymbol{\theta}$, we instead focus on pinning down a range of possible $\boldsymbol{\theta}$ values and how likely we believe each of these values to be.

It is common to choose a high-entropy prior, e.g. uniform.

1.4.4 Maximum Likelihood Estimation (5.5)

Consider set of m examples $\mathbb{X} = \{ \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m)} \}$ drawn independently from the true (but unknown) $p_{data}(\mathbf{x})$. Let $p_{model}(\mathbf{x}; \boldsymbol{\theta})$ be parametric family of probability distributions over the same space indexed by $\boldsymbol{\theta}$. The maximum likelihood estimator for $\boldsymbol{\theta}$ can be expressed as

$$\boldsymbol{\theta}_{ML} = \underset{\boldsymbol{\theta}}{\operatorname{arg}} \max_{\boldsymbol{x} \sim \hat{p}_{data}} \left[\log p_{model}(\boldsymbol{x}; \boldsymbol{\theta}) \right]$$
 (5.59)

where we've chosen to express with log for underflow/gradient reasons. One interpretation of ML is to view it as minimizing the dissimilarity, as measured by the KL divergence⁷, between \hat{p}_{data} and p_{model} .

$$D_{KL}(\hat{p}_{data}||p_{model}) = \mathbb{E}_{\mathbf{x} \sim \hat{p}_{data}}[\log \hat{p}_{data}(\mathbf{x}) - \log p_{model}(\mathbf{x})]$$
(5.60)

⁷ The KL divergence is given by

Any loss consisting of a negative log-likelihood is a **cross-entropy** between the \hat{p}_{data} distribution and the p_{model} distribution.

Conditional Log-Likelihood and MSE. We can readily generalize θ_{ML} to estimate a conditional probability $p(\mathbf{y} \mid \mathbf{x}; \boldsymbol{\theta})$ in order to predict \mathbf{y} given \mathbf{x} , since

We are assuming the examples are i.i.d. here.

$$\boldsymbol{\theta}_{ML} = \underset{\boldsymbol{\theta}}{\operatorname{arg max}} \sum_{i=1}^{m} \log P(\boldsymbol{y}^{(i)} \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta})$$
 (5.63)

Consider linear regression as viewed with ML: Instead of a single prediction value \hat{y} given input x, think of the model as producing a conditional distribution $p(y \mid x)^8$. To derive the standard linear regression algorithm, we define

$$p(y \mid \boldsymbol{x}) = \mathcal{N}\left(y; \ \hat{y}(\boldsymbol{x}; \boldsymbol{w}), \ \sigma^2\right)$$

Assume σ^2 is some fixed constant chosen by the

We can use this (and the i.i.d. assumption) to evaluate the conditional log-likelihood as

$$\sum_{i=1}^{m} \log p(y^{(i)} \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta}) = -m \log \sigma - \frac{m}{2} \log(2\pi) - \sum_{i=1}^{m} \frac{||\hat{y}^{(i)} - y^{(i)}||^2}{2\sigma^2}$$
 (5.65)

and we see that finding the w that maximizes the conditional log-likelihood is equivalent. Recall that the training to finding the \boldsymbol{w} that minimizes the training MSE.

MSE is $\frac{1}{m} \sum_{i=1}^{m} ||\hat{y}^{(i)} - y^{(i)}||^2$

Supervised Learning Algorithms (5.7) 1.4.5

Logistic Regression. We've already seen that linear regression corresponds to the family

$$p(y \mid \boldsymbol{x}) = \mathcal{N}\left(y; \; \boldsymbol{\theta}^T \boldsymbol{x}, \; \boldsymbol{I}\right) \tag{5.80}$$

which we can generalize to the binary classification scenario by interpreting as the probability of class 1. One way of doing this while ensuring the output is between 0 and 1 is to use the logistic sigmoid function:

$$p(y = 1 \mid \boldsymbol{x}; \boldsymbol{\theta}) = \sigma(\boldsymbol{\theta}^T \boldsymbol{x}) \tag{5.81}$$

Equation 5.81 is the definition of logistic regression

Unfortunately, there is no closed-form solution for θ , so we must search via maximizing the log-likelihood.

⁸After all, we might have several training points with the same value of x but different labels y.

Support Vector Machines. Driving by a linear function $\mathbf{w}^T \mathbf{x} + \mathbf{b}$ like logistic regression, but instead of outputting probabilities it outputs a class identity, which depends on the sign of $\mathbf{w}^T \mathbf{x} + \mathbf{b}$. SVMs make use of the kernel trick, the "trick" being that we can rewrite $\mathbf{w}^T \mathbf{x} + \mathbf{b}$ completely in terms of dot products between examples. The general form of our prediction function becomes

$$f(\boldsymbol{x}) = b + \sum_{i} \alpha_{i} k(\boldsymbol{x}, \boldsymbol{x}^{(i)})$$
 (5.83)

If our kernel function is just $k(x, x^{(i)}) = x^T x^{(i)}$ then we've just rewritten \boldsymbol{w} in the form $\boldsymbol{w} \to \boldsymbol{X}^T \boldsymbol{\alpha}$

where the *kernel* [function] takes the general form $k(\boldsymbol{x}, \boldsymbol{x}^{(i)}) = \phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{x}^{(i)})$. A major drawback to kernel machines (methods) in general is that the cost of evaluating the decision function $f(\boldsymbol{x})$ is linear in the number of training examples. SVMs, however, are able to mitigate this by learning an α with mostly zeros. The training examples with *nonzero* α_i are known as support vectors.

DEEP NETWORKS: MODERN

PRACTICES

Contents

2.1	Deep	Feedforward Networks	16
	2.1.1	Back-Propagation (6.5)	17
2.2	Regul	arization for Deep Learning	18
	2.2.1	Parameter Norm Penalties (7.1)	18
	2.2.2	Sparse Representations (7.10)	19
	2.2.3	Adversarial Training (7.13)	19
2.3	Convo	olutional Neural Networks	20
2.4	Seque	nce Modeling (RNNs)	21
	2.4.1	Review: The Basics of RNNs	21
	2.4.2	Encoder-Decoder Seq2Seq Architectures (10.4)	27
	2.4.3	Challenge of Long-Term Deps. (10.7)	28
	2.4.4	LSTMs and Other Gated RNNs (10.10)	29

Modern Practices Fall 2016

Deep Feedforward Networks: January 26

Table of Contents Local Written by Brandon McKinzie

The strategy/purpose of [feedforward] deep learning is to learn the set of features/representation describing \boldsymbol{x} with a mapping ϕ before applying a linear model. In this approach, we have a model

$$y = f(\boldsymbol{x}; \; \boldsymbol{\theta}, \boldsymbol{w}) = \phi(\boldsymbol{x}; \boldsymbol{\theta})^T \boldsymbol{w}$$

with ϕ defining a hidden layer.

ReLUs and their generalizations. Some nice properties of ReLUs are...

- Derivatives through a ReLU remain large and consistent whenever the unit is active.
- Second derivative is 0 a.e. and the derivative is 1 everywhere the unit is active, meaning the gradient direction is more useful for learning than it would be with activation functions that introduce 2nd-order effects (see equation 4.9)

Recall the ReLU activation function: $g(z) = \max\{0, z\}$

a.e. is short for "almost everywhere"

Generalizing to aid gradients when z < 0. Three such generalizations are based on using a nonzero slope α_i when $z_i < 0$:

$$h_i = g(\mathbf{z}, \boldsymbol{\alpha})_i = \max(0, z_i) + \alpha_i \min(0, z_i)$$
(20)

- \rightarrow Absolute value rectification: fix $\alpha_i = -1$ to obtain g(z) = |z|.
- \rightarrow Leaky ReLU: fix α_i to a small value like 0.01.
- \rightarrow Parametric ReLU (PReLU): treats α_i like a learnable parameter.

Logistic sigmoid and hyperbolic tangent. Sigmoid activations on hidden units is a bad idea, since they're only sensitive to their inputs near zero, with small gradients everywhere else. If sigmoid activations must be used, tanh is probably a better substitute, since it resembles the identity (i.e. a linear function) near zero.

2.1.1 Back-Propagation (6.5)

The chain rule. Suppose z = f(y) where y = g(x) (see margin for dimensions). Then⁹,

 $oldsymbol{x} \in \mathbb{R}^m$ $oldsymbol{y} \in \mathbb{R}^n$

$$z:\mathbb{R}^n o\mathbb{R}$$

$$\frac{\partial z}{\partial x_i} = (\nabla_{\boldsymbol{x}} z)_i = \sum_{j=1}^n \frac{\partial z}{\partial y_j} \frac{\partial y_j}{\partial x_i} = \sum_{j=1}^n (\nabla_{\boldsymbol{y}} z)_j \frac{\partial y_j}{\partial x_i} = \sum_{j=1}^n (\nabla_{\boldsymbol{y}} z)_j (\nabla_{\boldsymbol{x}} y_j)_i$$
(6.45)

$$a: \mathbb{R}^m \to \mathbb{R}^n$$

$$\rightarrow \nabla_{\boldsymbol{x}} z = \left(\frac{\partial \boldsymbol{y}}{\partial \boldsymbol{x}}\right)^T \nabla_{\boldsymbol{y}} z = \boldsymbol{J}_{y=g(\boldsymbol{x})}^T \nabla_{\boldsymbol{y}} z \tag{6.46}$$

From this we see that the gradient of a variable x can be obtained by multiplying a Jacobian matrix $\frac{\partial y}{\partial x}$ by a gradient $\nabla_y z$.

$$z = f(y_1, y_2, \dots, y_n)$$

⁹Note that we can view z = f(y) as a multi-variable function of the dimensions of y,

Modern Practices Fall 2016

Regularization for Deep Learning: January 12

Table of Contents Local

Written by Brandon McKinzie

Recall the definition of regularization: "any modification we make to a learning algorithm that is intented to reduce its generalization error but not its training error."

2.2.1 Parameter Norm Penalties (7.1)

Limiting Model Capacity. Recall that **Capacity** [of a model] is the ability to fit a wide variety of functions. Low cap models may struggle to fit training set, while high cap models may overfit by simply memorizing the training set. We can limit model capacity by adding a parameter norm penalty $\Omega(\theta)$ to the objective function J:

$$\widetilde{J}(\theta; X, y) = J(\theta; X, y) + \alpha \Omega(\theta) \quad \text{where} \quad \alpha \in [0, \infty)$$
 (7.1)

where we typically choose Ω to only penalize the weights and leave biases unregularized.

L2-Regularization. Defined as setting $\Omega(\theta) = \frac{1}{2}||w||_2^2$. Assume that J(w) is quadratic, with minimum at w^* . Since quadratic, we can approximate J with a second-order expansion about w^* .

$$\hat{J}(w) = J(w^*) + \frac{1}{2}(w - w^*)^T H(w - w^*)$$
(7.6)

$$\nabla_w \hat{J}(w) = H(w - w^*) \tag{7.7}$$

where $H_{ij} = \frac{\partial^2 J}{\partial w_i w_j}\Big|_{w^*}$. If we add in the [derivative of] the weight decay and set to zero, we obtain the solution

$$\widetilde{w} = (H + \alpha I)^{-1} H w^* \tag{7.10}$$

$$= Q(\Lambda + \alpha I)^{-1} \Lambda Q^T w^* \tag{7.13}$$

which shows that the effect of regularization is to rescale the i eigenvectors of H by $\frac{\lambda_i}{\lambda_i + \alpha}$. This means that eigenvectors with $\lambda_i >> \alpha$ are relatively unchanged, but the eigenvectors with $\lambda_i << \alpha$ are shrunk to nearly zero. In other words, only directions along which the parameters contribute significantly to reducing the objective function are preserved relatively intact.

2.2.2 Sparse Representations (7.10)

Weight decay acts by placing a penalty directly on the model parameters. Another strategy is to place a penalty on the *activations* of the units, encouraging their activations to be sparse. It's important to distinguish the difference between sparse parameters and sparse *representations*. In the former, if we take the example of some $\mathbf{y} = \mathbf{B}\mathbf{h}$, there are many zero entries in some parameter matrix \mathbf{B} while, in the latter, there are many zero entries in the representation vector \mathbf{h} . The modification to the loss function, analogous to 7.1, takes the form

$$\widetilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{h}) \text{ where } \alpha \in [0, \infty)$$
 (7.48)

2.2.3 ADVERSARIAL TRAINING (7.13)

Even for networks that perform at human level accuracy have a nearly 100 percent error rate on examples that are intentionally constructed to search for an input x' near a data point x such that the model output for x' is very different than the output for x.

$$x' \leftarrow x + \epsilon \cdot \operatorname{sign}(\nabla_x J(\boldsymbol{\theta}; \boldsymbol{x}, \boldsymbol{y}))$$
 (21)

In many cases, x' can be so similar to x that a human cannot tell the difference!

In the context of regularization, one can reduce the error rate on the original i.i.d. test set via adversarial training – training on adversarially perturbed training examples.

Modern Practices Fall 2016

Convolutional Neural Networks: January 24

Table of Contents

Written by Brandon McKinzie

We use a 2-D image I as our input (and therefore require a 2-D kernel K). Note that most neural networks do not technically implement convolution 10, but instead implement a related function called the cross-correlation, defined as

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$
 (9.6)

Convolution leverages the following three important ideas:

• Sparse interactions[/connectivity/weights]. Individual input units only interact/connect with a subset of the output units. Accomplished by making the kernel smaller than the input. It's important to recognize that the receptive field of the units in the deeper layers of a convolutional network is larger than the receptive field of the units in the shallow layers, as seen below.

- Parameter sharing.
- Equivariance (to translation). Changes in inputs [to a function] cause output to change in the same way. Specifically, f is equivariant to q if f(q(x)) = q(f(x)). For convolution, g would be some function that translates the input.

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

$$= (K * I)(i,j) = \sum_{m} \sum_{n} I(i-m,j-n)K(m,n)$$
(9.4)

$$= (K * I)(i, j) = \sum_{m} \sum_{n} I(i - m, j - n) K(m, n)$$
(9.5)

where 9.5 can be asserted due to commutativity of convolution.

¹⁰Technically the convolution output is defined as

Modern Practices Fall 2016

Sequence Modeling (RNNs): January 15

Table of Contents Local Written by Brandon McKinzie

2.4.1 Review: The Basics of RNNs

Notation/Architecture Used.

- U: input \rightarrow hidden.
- W: hidden \rightarrow hidden.
- V: hidden \rightarrow output.
- Activations: tanh [hidden] and softmax [after output].
- Misc. Details: $x^{(t)}$ is a *vector* of inputs fed at time t. Recall that RNNs can be unfolded for any desired number of steps τ . For example, if $\tau = 3$, the general functional representation output of an RNN is $s^{(3)} = f(s^{(2)}; \theta) = f(f(s^{(1)}; \theta); \theta)$. Typical RNNs read information out of the state h to make predictions.

Shape of $\boldsymbol{x}^{(t)}$ fixed, e.g. vocab length.

Black square on recurrent connection \equiv interaction w/delay of a single time step.

Forward Propagation & Loss. Specify initial state $h^{(0)}$. Then, for each time step from t = 1 to $t = \tau$, feed input sequence $\mathbf{x}^{(t)}$ and compute the output sequence $\mathbf{o}^{(t)}$. To determine the loss at each time-step, $L^{(t)}$, we compare softmax($\mathbf{o}^{(t)}$) with (one-hot) $\mathbf{y}^{(t)}$.

$$\boldsymbol{h}^{(t)} = \tanh(\boldsymbol{a}^{(t)})$$
 where $\boldsymbol{a}^{(t)} = b + W\boldsymbol{h}^{(t-1)} + U\boldsymbol{x}^{(t)}$ (10.9/8)
 $\hat{\boldsymbol{y}}^{(t)} = \operatorname{softmax}(\boldsymbol{o}^{(t)})$ where $\boldsymbol{o}^{(t)} = c + V\boldsymbol{h}^{(t)}$ (10.11/10)

Note that this is an example of an RNN that maps input seqs to output seqs of the same length¹¹. We can then compute, e.g., the log-likelihood loss $L = \sum_t L^{(t)}$ over all time

¹¹Where "same length" is related to the number of timesteps (i.e. τ input steps means τ output steps), not anything about the actual shapes/sizes of each individual input/output.

steps as:

$$L = -\sum_{t} \log \left(p_{model} \left[y^{(t)} \mid \{ \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(t)} \} \right] \right)$$
 (10.12/13/14)

Convince yourself this is identical to cross-entropy.

where $y^{(t)}$ is the **ground-truth** (one-hot vector) at time t, whose probability of occurring is given by the corresponding element of $\hat{y}^{(t)}$

Back-Propagation Through Time.

- 1. **Internal-Node Gradients**. In what follows, when considering what is included in the chain rule(s) for gradients with respect to a node N, just need to consider paths from it [through its **descendents**] to loss node(s).
 - Output nodes. For any given time t, the node $o^{(t)}$ has only one direct descendant, the loss node $L^{(t)}$. Since no other loss nodes can be reached from $o^{(t)}$, it is the only one we need consider in the gradient.

$$\begin{split} \left(\nabla_{\boldsymbol{o}^{(t)}}L\right)_{i} &= \frac{\partial L}{\partial \boldsymbol{o}_{i}^{(t)}} & \text{Ground-truth } \boldsymbol{y}^{(t)} \text{ here is a scalar, interpreted as the index of the correct label of output vector.} \\ &= \frac{\partial L}{\partial L^{(t)}} \cdot \frac{\partial L^{(t)}}{\partial \boldsymbol{o}_{i}^{(t)}} \\ &= (1) \cdot \frac{\partial L^{(t)}}{\partial \boldsymbol{o}_{i}^{(t)}} \\ &= \frac{\partial}{\partial \boldsymbol{o}_{i}^{(t)}} \left\{ -\log \left(\hat{\boldsymbol{y}}_{\boldsymbol{y}^{(t)}}^{(t)}\right) \right\} \\ &= -\frac{\partial}{\partial \boldsymbol{o}_{i}^{(t)}} \left\{ \log \left(\frac{e^{\boldsymbol{o}_{\boldsymbol{y}^{(t)}}^{(t)}}}{\sum_{j} e^{\boldsymbol{o}_{j}^{(t)}}} \right) \right\} \\ &= -\frac{\partial}{\partial \boldsymbol{o}_{i}^{(t)}} \left\{ \boldsymbol{o}_{\boldsymbol{y}^{(t)}}^{(t)} - \log \left(\sum_{j} e^{\boldsymbol{o}_{j}^{(t)}} \right) \right\} \\ &= -\left\{ \mathbf{1}_{i,\boldsymbol{y}^{(t)}} - \frac{\partial}{\partial \boldsymbol{o}_{i}^{(t)}} \log \left(\sum_{j} e^{\boldsymbol{o}_{j}^{(t)}} \right) \right\} \end{split}$$

$$= -\left\{\mathbf{1}_{i,y^{(t)}} - \frac{1}{\sum_{j} e^{\boldsymbol{o}_{j}^{(t)}}} \frac{\partial \sum_{j} e^{\boldsymbol{o}_{j}^{(t)}}}{\partial \boldsymbol{o}_{i}^{(t)}}\right\}$$

$$= -\left\{\mathbf{1}_{i,y^{(t)}} - \frac{e^{\boldsymbol{o}_{i}^{(t)}}}{\sum_{j} e^{\boldsymbol{o}_{j}^{(t)}}}\right\}$$

$$= -\left\{\mathbf{1}_{i,y^{(t)}} - \hat{\boldsymbol{y}}_{i}^{(t)}\right\}$$

$$= \hat{\boldsymbol{y}}_{i}^{(t)} - \mathbf{1}_{i,y^{(t)}}$$

$$(10.18)$$

which leaves all entries of $o^{(t)}$ unchanged except for the entry corresponding to the true label, which will become negative in the gradient. All this means is, since we want to increase the probability of this entry, driving this value up will decrease the loss (hence negative) and driving any other entries up will increase the loss proportional to its current estimated probability (driving up an [incorrect] entry that is already high is "worse" than driving up a small [incorrect entry]).

• Hidden nodes. First, consider the simplest hidden node to take the gradient of, the last one, $h^{(\tau)}$ (simplest because only one descendant [path] reaching any loss node(s)).

$$(\nabla_{\boldsymbol{h}^{(\tau)}} L)_{i} = \frac{\partial L}{\partial L^{(\tau)}} \sum_{k=1}^{n_{out}} \frac{\partial L^{(\tau)}}{\partial \boldsymbol{o}_{k}^{(\tau)}} \frac{\partial \boldsymbol{o}_{k}^{(\tau)}}{\partial \boldsymbol{h}_{i}^{(\tau)}}$$

$$= \sum_{k=1}^{n_{out}} (\nabla_{\boldsymbol{o}^{(\tau)}} L)_{k} \frac{\partial \boldsymbol{o}_{k}^{(\tau)}}{\partial \boldsymbol{h}_{i}^{(\tau)}}$$

$$= \sum_{k=1}^{n_{out}} (\nabla_{\boldsymbol{o}^{(\tau)}} L)_{k} \frac{\partial}{\partial \boldsymbol{h}_{i}^{(\tau)}} \left\{ c_{k} + \sum_{j=1}^{n_{hid}} V_{kj} \boldsymbol{h}_{j}^{(\tau)} \right\}$$

$$= \sum_{k=1}^{n_{out}} (\nabla_{\boldsymbol{o}^{(\tau)}} L)_{k} V_{ki}$$

$$= \sum_{k=1}^{n_{out}} (V^{T})_{ik} (\nabla_{\boldsymbol{o}^{(\tau)}} L)_{k}$$

$$= (V^{T} \nabla_{\boldsymbol{o}^{(t)}} L)_{i}$$

$$(10.19)$$

Before proceeding, notice the following useful pattern: If two nodes a and b, each containing n_a and n_b neurons, are fully connected by parameter matrix $W_{n_b \times n_a}$ and directed like $a \to b \to L$, then $\nabla_a L = W^T \nabla_b L$. Using

$$\nabla_a L = (\frac{\partial b}{\partial a})^T \nabla_b L$$

¹²More generally,

this result, we can then iterate and take gradients back in time from $t = \tau - 1$ to t = 1 as follows:

$$\nabla_{\boldsymbol{h}^{(t)}} L = \left(\frac{\partial \boldsymbol{h}^{(t+1)}}{\partial \boldsymbol{h}^{(t)}}\right)^{T} \left(\nabla_{\boldsymbol{h}^{(t+1)}} L\right) + \left(\frac{\partial \boldsymbol{o}^{(t)}}{\partial \boldsymbol{h}^{(t)}}\right)^{T} \left(\nabla_{\boldsymbol{o}^{(t)}} L\right)$$

$$= W^{T} \left(\nabla_{\boldsymbol{h}^{(t+1)}} L\right) \operatorname{diag}(1 - \tanh^{2}(\boldsymbol{a}^{(t+1)})) + V^{T} \left(\nabla_{\boldsymbol{o}^{(t)}} L\right)$$

$$= W^{T} \left(\nabla_{\boldsymbol{h}^{(t+1)}} L\right) \operatorname{diag}\left(1 - (\boldsymbol{h}^{(t+1)})^{2}\right) + V^{T} \left(\nabla_{\boldsymbol{o}^{(t)}} L\right)$$

$$(10.20) \quad \frac{\mathrm{d}}{\mathrm{d}x} \tanh(x) = 1 - \tanh^{2}(x)$$

$$= W^{T} \left(\nabla_{\boldsymbol{h}^{(t+1)}} L\right) \operatorname{diag}\left(1 - (\boldsymbol{h}^{(t+1)})^{2}\right) + V^{T} \left(\nabla_{\boldsymbol{o}^{(t)}} L\right)$$

$$(10.21) \quad (\mathrm{diag}(\boldsymbol{a}))_{ii} \triangleq a_{i}$$

- 2. **Parameter Gradients**. Now we can compute the gradients for the parameter matrices/vectors, where it is crucial to remember that a given parameter matrix (e.g. U) is shared across all time steps t. We can treat tensor derivatives in the same form as previously done with vectors after a quick abstraction: For any tensor \mathbf{X} of arbitrary rank (e.g. if rank-4 then index like $\mathbf{X}_{ijk\ell}$), use single variable (e.g. i) to represent the complete tuple of indices¹³.
 - Bias parameters [vectors]. These are nothing new, since just vectors.

$$(\nabla_{\mathbf{c}}L) = \sum_{t} \left(\frac{\partial \mathbf{o}^{(t)}}{\partial \mathbf{c}^{(t)}}\right)^{T} \left(\nabla_{\mathbf{o}^{(t)}}L\right)$$
$$= \sum_{t} \left(\nabla_{\mathbf{o}^{(t)}}L\right)$$
(10.22)

$$(\nabla_{c}L) = \sum_{t} \left(\frac{\partial \boldsymbol{h}^{(t)}}{\partial \boldsymbol{b}^{(t)}}\right)^{T} \left(\nabla_{\boldsymbol{h}^{(t)}}L\right)$$
$$= \sum_{t} \operatorname{diag}\left(1 - (\boldsymbol{h}^{(t)})^{2}\right) \left(\nabla_{\boldsymbol{h}^{(t)}}L\right)$$
(10.23)

which is a good example of how vector derivatives map into a matrix. For example, let $a \in \mathbb{R}^{n_a}$ and $b \in \mathbb{R}^{n_b}$. Then

$$\frac{\partial oldsymbol{b}}{\partial oldsymbol{a}} \in \mathbb{R}^{n_b imes n_a}$$

$$\nabla_{\mathbf{X}} z = \sum_{i} (\nabla_{\mathbf{X}} Y_{i}) \frac{\partial z}{\partial Y_{i}}$$

¹³More details on tensor derivatives: Consider the chain defined by $\mathbf{Y} = g(\mathbf{X})$, and $z = f(\mathbf{Y})$, where z is some vector. Then

• V $(n_{out} \times n_{hid})$.

$$\nabla_{\mathbf{V}}L = \sum_{t}^{\tau} \nabla_{\mathbf{V}}L^{(t)} \tag{23a}$$

$$= \sum_{t}^{\tau} \nabla_{\mathbf{V}} L^{(t)}(\boldsymbol{o}_{1}^{(t)}, \dots, \boldsymbol{o}_{n_{out}}^{(t)})$$
(23b)

$$= \sum_{t}^{\tau} \sum_{i}^{n_{out}} \left(\nabla_{\boldsymbol{o}^{(t)}} L \right)_{i} \nabla_{\mathbf{V}} \boldsymbol{o}_{i}^{(t)}$$
(23c)

$$= \sum_{t}^{\tau} \sum_{i}^{n_{out}} \left(\nabla_{\boldsymbol{o}^{(t)}} L \right)_{i} \nabla_{\mathbf{V}} \left\{ c_{i} + \sum_{j=1}^{n_{hid}} V_{ij} \boldsymbol{h}_{j}^{(t)} \right\}$$
(23d)

$$= \sum_{t}^{\tau} \sum_{i}^{n_{out}} \left(\nabla_{\boldsymbol{o}^{(t)}} L \right)_{i} \begin{bmatrix} 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ \boldsymbol{h}_{1}^{(t)} & \boldsymbol{h}_{2}^{(t)} & \dots & \boldsymbol{h}_{n_{hid}}^{(t)} \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$
(23e)

NOTE: In equation 23e,

all rows are 0 except the *i*th row, which is $(\boldsymbol{h}^{(t)})^T$. (See footnote for more)

$$= \sum_{t}^{\tau} \left(\nabla_{\boldsymbol{o}^{(t)}} L \right) (\boldsymbol{h}^{(t)})^{T}$$
 (23f)

where if 23e confuses you, see the footnote¹⁴.

• W $(n_{hid} \times n_{hid})$. This one is a bit odd, since W is, in a sense, even more "shared" across time steps than V^{15} . The authors here define/choose, when evaluating $\nabla_{\mathbf{W}} h_i^{(t)}$ to only concern themselves with $\mathbf{W} := \mathbf{W}^{(t)}$, i.e. the direct

$$\sum_{i} \nabla_{\mathbf{W}} \left[(\mathbf{W}x)_{i} \right] = \begin{bmatrix} \mathbf{x}^{T} \\ \mathbf{x}^{T} \\ \vdots \\ \mathbf{x}^{T} \end{bmatrix}$$

$$(24)$$

where, of course, the output has the same dimensions as W.

¹⁵Specifically, $h^{(t)}$ is both

- (a) An explicit function of the parameter matrix $\mathbf{W}^{(t)}$ directly feeding into it.
- (b) An implicit function of all other $W^{t=i}$ that came before.

This is different than before, where we had $o^{(t)}$ not implicitly depending on earlier $V^{(t=i)}$. In other words, $h^{(t)}$ is a <u>descendant</u> of all earlier (and current) W.

The general lesson learned here is that, for some matrix $\mathbf{W} \in \mathbb{R}^{a \times b}$ and vector $\mathbf{x} \in \mathbb{R}^b$,

connections to h at time t.

$$\nabla_{\mathbf{W}} L = \sum_{t}^{\tau} \nabla_{\mathbf{W}} L^{(t)} \tag{25a}$$

$$= \sum_{t}^{\tau} \sum_{i}^{n_{hid}} \left(\nabla_{\boldsymbol{h}^{(t)}} L \right)_{i} \nabla_{\mathbf{W}^{(t)}} \boldsymbol{h}_{i}^{(t)}$$
(10.25)

$$= \sum_{t}^{\tau} \sum_{i}^{n_{hid}} \left(\nabla_{\boldsymbol{h}^{(t)}} L \right)_{i} \begin{pmatrix} \operatorname{diag} \left(1 - (\boldsymbol{h}^{(t)})^{2} \right) \begin{bmatrix} 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ \boldsymbol{h}_{1}^{(t-1)} & \boldsymbol{h}_{2}^{(t-1)} & \dots & \boldsymbol{h}_{n_{hid}}^{(t-1)} \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \right)$$
(25b)

$$= \sum_{t}^{\tau} \operatorname{diag}\left(1 - (\boldsymbol{h}^{(t)})^{2}\right) \left(\nabla_{\boldsymbol{h}^{(t)}} L\right) (\boldsymbol{h}^{(t-1)})^{T}$$

$$(10.26)$$

• U $(n_{hid} \times n_{in})$. Very similar to the previous calculation.

$$\nabla_{\mathbf{U}}L = \sum_{t}^{\tau} \nabla_{\mathbf{U}}L^{(t)} \tag{26a}$$

$$= \sum_{t}^{\tau} \sum_{i}^{n_{hid}} \left(\nabla_{\boldsymbol{h}^{(t)}} L \right)_{i} \nabla_{\mathbf{U^{(t)}}} \boldsymbol{h}_{i}^{(t)}$$
(10.27)

$$= \sum_{t}^{\tau} \operatorname{diag} \left(1 - (\boldsymbol{h}^{(t)})^{2}\right) \left(\nabla_{\boldsymbol{h}^{(t)}} L\right) (\boldsymbol{h} \boldsymbol{x}^{(t)})^{T}$$
(10.28)

RNNs as Directed Graphical Models. The advantage of RNNs is their efficient parameterization of the joint distribution over $\mathbf{y}^{(i)}$ via parameter sharing. This introduces a built-in assumption that we can model the effect of $\mathbf{y}^{(i)}$ in the distant past on the current $\mathbf{y}^{(t)}$ via its effect on \mathbf{h} . We are also assuming that the conditional probability distribution over the variables at t+1 given the variables at time t is **stationary**. Next, we want to know how to draw samples from such a model. Specifically, how to sample from the conditional distribution $(\mathbf{y}^{(t)}$ given $\mathbf{y}^{(t-1)})$ at each time step. The author then only discusses methods of determining stopping conditions for sampling (pg. 380), and not really "how to draw samples," which I suppose is self-explanatory.

Bidirectional RNNs. In many applications, it is desirable to output a prediction of $\mathbf{y}^{(t)}$ that may depend on the whole sequence. For example, in speech recognition, the interpretation of words/sentences can also depend on what is about to be said. Below is a typical bidirectional RNN, where the inputs $\mathbf{x}^{(t)}$ are fed both to a "forward" RNN (\mathbf{h}) and a "backward" RNN (\mathbf{g}) .

Notice how the output units $o^{(t)}$ have the nice property of depending on both the past and future while being most sensitive to input values around time t.

2.4.2 Encoder-Decoder Seq2Seq Architectures (10.4)

Here we discuss how an RNN can be trained to map an input sequence to output sequence which is not necessarily the same length. (Not really much of a discussion...figure below says everything.)

2.4.3 Challenge of Long-Term Deps. (10.7)

Gradients propagated over many stages either vanish (usually) or explode. We saw how this could occur when we took parameter gradients earlier, and for weight matrices \boldsymbol{W} further along from the loss node, the expression for $\nabla_{\boldsymbol{W}}L$ contained multiplicative Jacobian factors. Consider the (linear activation) repeated function composition of an RNN's hidden state in 10.36. We can rewrite it as a power method (10.37), and if \boldsymbol{W} admits an eigendecomposition (remember \boldsymbol{W} is necessarily square here), we can further simplify as seen in 10.38.

$$\boldsymbol{h}^{(t)} = \boldsymbol{W}^T \boldsymbol{h}^{(t-1)} \tag{10.36}$$

$$= (\boldsymbol{W}^t)^T \boldsymbol{h}^{(0)} \tag{10.37}$$

$$= \mathbf{Q}^T \mathbf{\Lambda}^t \mathbf{Q} \mathbf{h}^{(0)} \tag{10.38}$$

 \mathbf{Q} : Explain interp. of mult. \mathbf{h} by \mathbf{Q} as opposed to the usual \mathbf{Q}^T explained in the linear algebra review.

Any component of $h^{(0)}$ that isn't aligned with the largest eigenvector will eventually be discarded. ¹⁶

If, however, we have a non-recurrent network such that the state elements are repeatedly multiplied by different $w^{(t)}$ at each time step, the situation is different. Suppose the different $w^{(t)}$ are i.i.d. with mean 0 and variance v. The variance of the product is easily seen to be $\mathcal{O}(v^n)^{17}$. To obtain some desired variance v^* we may choose the individual weights with variance $v = \sqrt[n]{v^*}$.

$$\operatorname{Var}\left[w^{(i)}\right] = v = \mathbb{E}\left[\left(w^{(i)}\right)^{2}\right] - \mathbb{E}\left[w^{(i)}\right]^{2} \tag{27}$$

$$\operatorname{Var}\left[\prod_{t}^{n} w^{(t)}\right] = \mathbb{E}\left[\left(\prod_{t}^{n} w^{(t)}\right)^{2}\right] = \prod_{t}^{n} \mathbb{E}\left[\left(w^{(t)}\right)^{2}\right] = v^{n}$$
(28)

 $^{^{16}}$ Make sure to think about this from the right perspective. The largest value of $t = \tau$ in the RNNs we've seen would correspond with either (1) the largest output sequence or (2) the largest input sequence (if fixed-vector output). After we extract the output from a given forward pass, we reset the clock and either back-propagate errors (if training) or get ready to feed another sequence.

¹⁷Quick sketch of (my) proof:

2.4.4 LSTMs and Other Gated RNNs (10.10)

While leaky units have connection weights that are either manually chosen constants or are trainable parameters, gated RNNs generalize this to connection weights that may change at each time step. Furthermore, gated RNNs can learn to both accumulate and forget, while leaky units are designed for just accumulation¹⁸

LSTM (10.10.1). The idea is we want self-loops to produce paths where the gradient can flow for long durations. The self-loop weights are **gated**, meaning they are controlled by another hidden unit, interpreted as being conditioned on *context*. Listed below are the main components of the LSTM architecture.

- Forget gate $f_i^{(t)}$.
- Internal state $s_i^{(t)}$.
- External input gate $g_i^{(t)}$.
- Output gate $q_i^{(t)}$.

The subscript, i, identifies the cell. The superscript, t, denotes the time.

¹⁸Q: Isn't choosing to update with higher relative weight on the present the same as forgetting? A: Sort of. It's like "soft forgetting" and will inevitably erase more/less than desired (smeary). In this context, "forget" means to set the weight of a specific past cell to zero.

DEEP LEARNING RESEARCH

CONTENTS

3.1	Linear Factor Mod	lels .			 										3

Deep Learning Research

Fall 2016

Linear Factor Models: January 12

Table of Contents Local

Written by Brandon McKinzie

Overview. Much research is in building a *probabilistic model* of the input, $p_{model}(x)$. Why? Because then we can perform *inference* to predict stuff about our environment given any of the other variables. Some also have **latent variables**, h, with

$$p_{model}(x) = \sum_{h} \Pr(h) \Pr(x \mid h) = \mathbb{E}_{h} \left[p_{model}(x \mid h) \right]$$
 (29)

So what? Well, the latent variables provide another means of data representation, which can be useful. **Linear factor models** are some of the simplest probabilistic models with latent variables.

A linear factor model is defined by the use of a stochastic linear decoder function that generates x by adding noise to a linear transformation of h.

CONDENSED SUMMARIES

Contents

4.1	Conv Nets: A Modular Perspective	33
4.2	Understanding Convolutions	34
4.3	Deep Reinforcement Learning	36
4.4	Deep Learning for Chatbots (WildML)	39
4.5	WaveNet (Paper)	41
4.6	Neural Style	45
4.7	Neural Conversation Model (Paper)	47

Condensed Summaries

Fall 2016

Conv Nets: A Modular Perspective: December 21

Table of Contents Local

Written by Brandon McKinzie

From this post on Colah's Blog.

The title is inspired by the following figure. Colah mentions how groups of neurons, like A, that appear in multiple places are sometimes called **modules**, and networks that use them are sometimes called modular neural networks. You can feed the output of one convolutional layer into another. With each layer, the network can detect higher-level, more abstract features.

- \longrightarrow Function of the A neurons: compute certain features.
- → Max pooling layers: kind of "zoom out". They allow later convolutional layers to work on larger sections of the data. They also make us invariant to some very small transformations of the data.

Condensed Summaries

Fall 2016

Understanding Convolutions: December 21

Table of Contents Local

Written by Brandon McKinzie

From Colah's Blog.

Ball-Dropping Example. The posed problem:

Imagine we drop a ball from some height onto the ground, where it only has one dimension of motion. How likely is it that a ball will go a distance c if you drop it and then drop it again from above the point at which it landed?

From basic probability, we know the result is a sum over possible outcomes, constrained by a + b = c. It turns out this is actually the definition of the convolution of f and g.

$$Pr(a + b = c) = \sum_{a+b=c} f(a) \cdot g(b)$$
(30)

$$(f * g)(c) = \sum_{a+b=c} f(a) \cdot g(b)$$
(31)

$$= \sum_{a} f(a) \cdot g(c-a) \tag{32}$$

Visualizing Convolutions. Keeping the same example in the back of our heads, consider a few interesting facts.

• Flipping directions. If f(x) yields the probability of landing a distance x away from where it was dropped, what about the probability that it was dropped a distance x from where it landed? Apparently¹⁹ it is f(-x).

• Above is a visualization of one term in the summation of (f * g)(c). It is meant to show how we can move the bottom around to think about evaluating the convolution for different c values.

We can relate these ideas to image recognition. Below are two common kernels used to convolve images with.

0	0	0	0	0
0	1/9	1/9	1/9	0
0	1/9	1/9	1/9	0
0	1/9	1/9	1/9	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
0	-1	1	0	0
0	0	0	0	0
0	0	0	0	0

On the left is a kernel for *blurring* images, accomplished by taking simple averages. On the right is a kernel for *edge detection*, accomplished by taking the difference between two pixels, which will be largest at edges, and essentially zero for similar pixels.

¹⁹Not entirely sold on the generalization of this, or even how true it is here.

Condensed Summaries

Fall 2016

Deep Reinforcement Learning: December 23

Table of Contents Local

Written by Brandon McKinzie

Link to tutorial – Part I of "Demystifying deep reinforcement learning."

Reinforcement Learning. Vulnerable to the *credit assignment problem* - i.e. unsure which of the preceding actions was responsible for getting some reward and to what extent. Also need to address the famous *explore-exploit dilemma* when deciding what strategies to use.

Markov Decision Process. Most common method for representing a reinforcement problem. MDPs consist of states, actions, and rewards. Total reward is sum of current (includes previous) and *discounted* future rewards:

$$R_t = r_t \gamma(r_{t+1} + \gamma(r_{t+2} + \ldots)) = r_t + \gamma R_{t+1}$$
(33)

Q - learning. Define function Q(s, a) to be best possible score at end of game after performing action a in state s; the "quality" of an action from a given state. The recursive definition of Q (for one transition) is given below in the Bellman equation.

$$Q(s, a) = r + \gamma \max_{a'} Q(s', a')$$

and updates are computed with a learning rate α as

$$Q(s_t, a_t) = (1 - \alpha) \cdot Q(s_{t-1}, a_{t-1}) + \alpha \cdot (r + \gamma \max_{a'} Q(s'_{t+1}, a'_{t+1}))$$

Deep Q Network. Deep learning can take deal with issues related to prohibitively large state spaces. The implementation chosen by DeepMind was to represent the Q-function with a neural network, with the states (pixels) as the input and Q-values as output, where the number of output neurons is the number of possible actions from the input state. We can optimize with simple squared loss:

$$L = rac{1}{2} [\underbrace{r + max_{a'}Q(s', a')}_{ ext{target}} - \underbrace{Q(s, a)}_{ ext{prediction}}]^2$$

and our algorithm from some state s becomes

- 1. First forward pass from s to get all predicted Q-values for each possible action. Choose action corresponding to max output, leading to next s'.
- 2. Second forward pass from s' and again compute $\max_{a'} Q(s', a')$.
- 3. **Set target output** for each action a' from s'. For the action corresponding to max (from step 2) set its target as $r + \gamma \max_{a'} Q(s', a')$, and for all other actions set target to same as originally returned from step 1, making the error 0 for those outputs. (Interpret as update to our guess for the best Q-value, and keep the others the same.)
- 4. Update weights using backprop.

Experience Replay. This the most important trick for helping convergence of Q-values when approximating with non-linear functions. During gameplay all the experience $\langle s, a, r, s' \rangle$ are stored in a replay memory. When training the network, random minibatches from the replay memory are used instead of the most recent transition.

Exploration. One could say that initializing the Q-values randomly and then picking the max is essentially a form of exploitation. However, this type of exploration is greedy, which can be tamed/fixed with ε -greedy exploration. This incorporates a degree of randomness when choosing next action at all time-steps, determined by probability ε that we choose the next action randomly. For example, DeepMind decreases ε over time from 1 to 0.1.

Deep Q-Learning Algorithm.

```
initialize replay memory {\it D}
initialize action-value function \mathcal{Q} with random weights
observe initial state s
repeat
      select an action a
            with probability \ensuremath{\varepsilon} select a random action
            otherwise select a = \operatorname{argmax}_{a'}Q(s, a')
      carry out action a
      observe reward r and new state s^{\prime}
      store experience \langle s, a, r, s' \rangle in replay memory D
      sample random transitions <ss, aa, rr, ss'> from replay memory D
      calculate target for each minibatch transition
            if ss' is terminal state then tt = rr
            otherwise tt = rr + \gamma \max_{a'} Q(ss', aa')
      train the Q network using (tt - Q(ss, aa))^2 as loss
      s = s'
until terminated
```

Fall 2016

Deep Learning for Chatbots (WildML): January 15

Table of Contents Local

Written by Brandon McKinzie

Overview.

- Model. Implementing a retrieval-based model. Input: conversation/context c. Output: response r.
- Data. Ubuntu Dialog Corpus (UDC). 1 million examples of form (context, utterance, label). The label can be 1 (utterance was actual response to the context) or a 0 (utterance chosen randomly). Using NLTK, the data has been . . .
 - \rightarrow Tokenized: dividing strings into lists of substrings.
 - \rightarrow Stemmed. IDK
 - \rightarrow Lemmatized. IDK

The test/validation set consists (context, ground-truth utterance, [9 distractors (incorrect utterances)]). The distractors are picked at random²⁰

Dual-Encoder LSTM.

- 1. **Inputs**. Both the context and the response text are split by words, and each word is embedded into a vector and fed into the same RNN.
- 2. **Prediction**. Multiply the [vector representation ("meaning")] c with param matrix M to predict some response r'.
- 3. **Evaluation**. Measure similarity of predicted r' to actual r via simple dot product. Feed this into sigmoid to obtain a probability [of r' being the correct response]. Use (binary) cross-entropy for loss function:

$$L = -y \cdot \ln(y') - (1 - y) \cdot \ln(1 - y') \tag{34}$$

 $^{^{20}}$ Better example/approach: Google's Smart Reply uses clustering techniques to come up with a set of possible responses.

where y' is the predicted probability that r' is correct response r, and $y \in \{0, 1\}$ is the true label for the context-response pair (c, r).

Data Pre-Processing. Courtesy of WildML, we are given 3 files after preprocessing: train.tfrecords, validation.tfrecords, and test.tfrecords, which use TensorFlow's 'Example' format. Each Example consists of . . .

- context: Sequence of word ids.
- context_len: length of the aforementioned sequence.
- utterance: seq of word ids representing utterance (response).
- utterance_len.
- label: only in training data. 0 or 1.
- distractor_[N]: Only in test/validation. N ranges from 0 to 8. Seq of word ids reppin the distractor utterance.
- distractor_[N]_len.

Fall 2016

WaveNet (Paper): January 15

Table of Contents Local

Written by Brandon McKinzie

Abstract.

- What's WaveNet? A deep neural network for generating raw audio waveforms.
- How does it generate them? IDK
- What's it good for? Text-to-speech, generating music, any waveform really.

Introduction.

- Inspired by recent advances in neural autoregressive generative models, and based on the PixelCNN architecture.
- Long-range dependencies dealt with via "dilated causal convolutions, which exhibit very large receptive fields."

WaveNet. The joint probability of a waveform $x = \{x_1, \ldots, x_T\}$ is factorised as a product of conditional probabilities,

$$p(x) = \prod_{t=1}^{T} p(x_t \mid x_1, \dots, x_{t-1})$$
(35)

which are modeled by a stack of convolutional layers (no pooling).

The model outputs a categorical distribution over the next value xt with a softmax layer and it is optimized to maximize the log-likelihood of the data w.r.t. the parameters.

Main ingredient of WaveNet is *dilated* causal convolutions, illustrated below. Note the absence of recurrent connections, which makes them faster to train than RNNs, but at the cost of requiring many layers, or large filters to increase the receptive field²¹.

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Excellent concise definition from paper:

A dilated convolution (a convolution with holes) is a convolution where the filter is applied over an area larger than its length by skipping input values with a certain step. It is equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros, but is significantly more efficient. A dilated convolution effectively allows the network to operate on a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but here the output has the same size as the input. As a special case, dilated convolution with dilation 1 yields the standard convolution.

Softmax distributions. Chose to model the conditional distributions $p(x_t \mid x_1, \ldots, x_{t-1})$ with a softmax layer. To deal with the fact that there are 2^{16} possible values, first apply a " μ -law companding transformation" to data, and then quantize it to 256 possible values:

$$f(x_t) = sign(x_t) \frac{\ln(1 + \mu |x_t|)}{\ln(1 + \mu)}$$
(36)

which (after plotting in Wolfram) looks identical to the sigmoid function.

²¹Loose interpretation of receptive fields here is that large fields can take into account more info (back in time) as opposed to smaller fields, which can be said to be "short-sighted"

Gated activation and res/skip connections. Use the same gated activation unit as PixelCNN:

$$z = \tanh(W_{f,k} * x) \odot \sigma(W_{g,k} * x)$$
(37)

where * denotes conv operator, \odot denotes elem-wise mult., k is layer index, f, g denote filter/gate, and W is learnable conv filter. This is illustrated below, along with the residual/skip connections used to speed up convergence/enable training deeper models.

Conditional Wavenets. Can also model conditional distribution of x given some additional h (e.g. speaker identity).

$$p(x \mid h) = \prod_{t=1}^{T} p(x_t \mid x_1, \dots, x_{t-1}, h)$$
(38)

 \rightarrow Global conditioning. Single h that influences output dist. across all times. Activation becomes:

$$z = \tanh\left(W_{f,k} * x + V_{f,k}^T h\right) \odot \sigma\left(W_{g,k} * x + V_{g,k}^T h\right)$$
(39)

 \rightarrow Local conditioning (confusing). Have a second time-series h_t . They first transform this h_t using a "transposed conv net (learned unsampling) that maps it to a new time-series y = f(h) w/same resolution as x.

Experiments.

- Multi-Speaker Speech Generation. Dataset: multi-speaker corpus of 44 hours of data from 109 different speakers²². Receptive field of 300 milliseconds.
- **Text-to-Speech**. Single-speaker datasets of 24.6 hours (English) and 34.8 hours (Chinese) speech. Locally conditioned on *linguistic features*. Receptive field of 240 milliseconds. Outperformed both LSTM-RNN and HMM.
- Music. Trained the WaveNets to model two music datasets: (1) 200 hours of annotated music audio, and (2) 60 hours of solo piano music from youtube. Larger receptive fields sounded more musical.
- Speech Recognition. "With WaveNets we have shown that layers of dilated convolutions allow the receptive field to grow longer in a much cheaper way than using LSTM units."

Conclusion (verbatim): "This paper has presented WaveNet, a deep generative model of audio data that operates directly at the waveform level. WaveNets are autoregressive and combine causal filters with dilated convolutions to allow their receptive fields to grow exponentially with depth, which is important to model the long-range temporal dependencies in audio signals. We have shown how WaveNets can be conditioned on other inputs in a global (e.g. speaker identity) or local way (e.g. linguistic features). When applied to TTS, WaveNets produced samples that outperform the current best TTS systems in subjective naturalness. Finally, WaveNets showed very promising results when applied to music audio modeling and speech recognition."

²²Speakers encoded as ID in form of a one-hot vector

Fall 2016

Neural Style: January 22

Table of Contents Local

Written by Brandon McKinzie

Notation.

• Content image: p

- Filter responses: the matrix $P^l \in \mathcal{R}^{N_l \times M_l}$ contains the activations of the filters in layer l, where P^l_{ij} would give the activation of the ith filter at position j in layer l. N_l is number of feature maps, each of size M_l (height \times width of the feature map)²³.
- Reconstructed image: x (initially random noise). Denote its corresponding filter response matrix at layer l as P^l .

Content Reconstruction.

- 1. Feed in content image p into pre-trained network, saving any desired filter responses during the forward pass. These are interpreted as the various "encodings" of the image done by the network. Think of them analogously to "ground-truth" labels.
- 2. Define x as the generated image, which we first initialize to random noise. We will be changing the pixels of x via gradient descent updates.
- 3. Define the loss function. After each forward pass, evaluate with squared-error loss between the two representations at the layer of interest:

$$\mathcal{L}_{content}(\boldsymbol{p}, \boldsymbol{x}, l) = \frac{1}{2} \sum_{i,j} (F_{ij}^l - P_{ij}^l)^2$$
 (1)

$$\frac{\partial \mathcal{L}_{content}}{\partial F_{ij}^l} = \begin{cases} (F^l - P^l)_{ij} & F_{ij}^l > 0\\ 0 & F_{ij}^l < 0 \end{cases}$$
 (2)

where it appears we are assuming ReLU activations (?).

4. Compute iterative updates to x via gradient descent until it generates the same response in a certain layer of the CNN as the original image p.

²³If not clear, M_l is a scalar, for any given value of l.

Style Representation. On top of the CNN responses in each layer, the authors built a style representation that computes the correlations between the different [aforementioned] filter responses. The correlation matrix for layer l is denoted in the standard way with a Gram matrix $G^l \in \mathcal{R}^{N_l \times N_l}$, with entries

$$G_{ij}^l = \langle F_i^l, F_j^l \rangle = \sum_k F_{ik}^l F_{jk}^l \tag{3}$$

To generate a texture that matches the style of a given image, do the following.

- 1. Let \boldsymbol{a} denote the original [style] image, with corresponding A^l . Let \boldsymbol{x} , initialized to random noise, denote the generated [style] image, with corresponding G^l .
- 2. The contribution to the loss of layer l, denoted E_l , to the total loss, denoted \mathcal{L}_{style} , is given by

$$E_l = \frac{1}{4N_l^2 M_l^2} \sum_{ij} (G_{ij}^l - A_{ij}^l)^2$$
 (4)

$$\mathcal{L}_{style}(\boldsymbol{a}, \boldsymbol{x}) = \sum_{l=0}^{L} w_l E_l$$
 (5)

$$\frac{\partial E_l}{\partial F_{ij}^l} = \begin{cases} \frac{1}{N_l^2 M_l^2} \left((F^l)^T (G^l - A^l) \right)_{ji} & F_{ij}^l > 0\\ 0 & F_{ij}^l < 0 \end{cases}$$
 (6)

where w_l are [as of yet unspecified] weighting factors of the contribution of layer l to the total loss.

Mixing content with style. Essentially a joint minimization that combines the previous two main ideas.

- 1. Begin with the following images: white noise \boldsymbol{x} , content image \boldsymbol{p} , and style image
- 2. The loss function to minimize is a linear combination of 1 and 5:

$$\mathcal{L}_{total}(\boldsymbol{p}, \boldsymbol{a}, \boldsymbol{x}, l) = \alpha \mathcal{L}_{content}(\boldsymbol{p}, \boldsymbol{x}, l) + \beta \mathcal{L}_{style}(\boldsymbol{a}, \boldsymbol{x})$$
(7)

Note that we can choose which layers L_{style} uses by tweaking the layer weights w_l . For example, the authors chose to set $w_l = 1/5$ for 'conv[1, 2, 4, 5]_1' and 0 otherwise. For the ratio α/β , they explored 1×10^{-3} and 1×10^{-4} .

Fall 2016

Neural Conversation Model (Paper): February 8

Table of Contents Local

Written by Brandon McKinzie

Reminder: red text means I need to come back and explain what is meant, once I understand it.

Abstract. This paper presents a simple approach for conversational modeling which uses the sequence to sequence framework. It can be trained end-to-end, meaning fewer hand-crafted rules. The **lack of consistency** is a common failure of our model.

Introduction. Major advantage of the seq2seq model is it requires little feature engineering and domain specificity. Here, the model is tested on chat sessions from an IT helpdesk dataset of conversations, as well as movie subtitles.

Related Work. The authors' approach is based on the following (linked and saved) papers on seq2seq:

- Kalchbrenner & Blunsom, 2013.
- Sutskever et al., 2014. (Describes Seq2Seq model)
- Bahdanau et al., 2014.

Model. Succinctly described by the authors:

The model reads the input sequence one token at a time, and predicts the output sequence, also one token at a time. During training, the true output sequence is given to the model, so learning can be done by backpropagation. The model is trained to maximize the cross entropy of the correct sequence given its context. During inference, in which the true output sequence is not observed, we simply feed the predicted output token as input to predict the next output. This is a greedy inference approach.

Example of less greedy approach: **beam search**.

The thought vector is the hidden state of the model when it receives [as input] the end of sequence symbol $\langle eos \rangle$, because it stores the info of the sentence, or thought, "ABC". The authors acknowledge that this model will not be able to "solve" the problem of modeling dialogue due to the objective function not capturing the actual objective achieved through human communication, which is typically longer term and based on exchange of information [rather than next step prediction]²⁴.

Ponder: what would be a reasonable objective function & model for conversation?

Reminder: Check out this git repo

IT Data & Experiment.

- **Data Description**: Customers talking to IT support, where typical interactions are 400 words long and turn-taking is clearly signaled.
- Training Data: 30M tokens, 3M of which are used as validation. They built a vocabulary of the most common 20K words, and introduced special tokens indicating turn-taking and actor.
- Model: A single-layer LSTM with 1024 memory cells.
- Optimization: SGD with gradient clipping.
- **Perplexity**: At convergence, achieved **perplexity** of 8, whereas an n-gram model achieved 18.

²⁴I'd imagine that, in order to model human conversation, one obvious element needed would be a *memory*. Reminds me of DeepMind's DNC. There would need to be some online filtering & output process to capture the crucial aspects/info to store in memory for later, and also some method of retrieving them when needed later. The method for retrieval would likely be some inference process where, given a sequence of inputs, the probability of them being related to some portion of memory could be trained. This would allow for conversations that stretch arbitrarily back in the past. Also, when storing the memories, I'd imagine a reasonable architecture would be some encoder-decoder for a sparse distributed representation of memory.

APPENDIX A - QUESTIONS AND STUFF I ALWAYS FORGET

Questions:

- Q: What's the deal with **mixture models**? Why use them? [Context: Wavenet paper]
- Q: In general, how can one tell if a matrix A has an eigenvalue decomposition? [insert more conceptual matrix-related questions here . . .]
- Q: Let A be real-symmetric. What can we say about A?
 - Proof that eigendecomposition $A = Q\Lambda Q^T$ exists: Wow this is apparently quite hard to prove according to many online sources. Guess I don't feel so bad now that it wasn't (and still isn't) obvious.
 - Eigendecomposition not unique. This is apparently because two or more eigenvectors may have same eigenvalue.

This is the principal axis theorem: if A symmetric, then orthonorm basis of e-vects exists.

Stuff I Forget:

- Existence of eigenvalues/eigenvectors. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$.
 - λ is an eigenvalue of A iff it satisfies $\det(\lambda \mathbf{I} \mathbf{A}) = 0$. Why? Because it is an equivalent statement as requiring that $(\lambda \mathbf{I} \mathbf{A})\mathbf{x} = 0$ has a nonzero solution for \mathbf{x} .
 - The following statements are equivalent:
 - * A is diagonalizable.
 - * A has n linearly independent eigenvectors.
 - The eigenspace of A corresponding to λ is the solution space of the homogeneous system $(\lambda I A)x = 0$.
 - -A has at most n distinct eigenvalues.
- Diagonalizability notes from 5.2 of advanced linear alg. book (261). Recall that \boldsymbol{A} is defined to be diagonalizable if and only if there exists and ordered basis β for the space consisting of eigenvectors of \boldsymbol{A} .
 - If the standard way of finding eigenvalues leads to k distinct λ_i , then the corresponding set of k eigenvectors v_i are guaranteed to be linearly independent (but might not span the full space).
 - If \mathbf{A} has n linearly independent eigenvectors, then \mathbf{A} is diagonalizable.
 - The characteristic polynomial of any diagonalizable linear operator splits (can be factored into product of linear factors). The **algebraic multiplicity** of an eigenvalue λ is the largest positive integer k for which $(t \lambda)^k$ is a factor of f(t).

Most info here comes from chapter 5 of your "Elementary Linear Algebra" textbook (around pg305)

Recall that a linear operator is a special case of a linear map where the input space is the same as the output space.

APPENDIX B - GLOSSARY OF CONFUSING TERMS

Gaussian mixture model: each of the components/dists $p(x \mid c = i)$ are Gaussians, each with (possibly) different mean μ and covariance Σ . The params of a GM specify the **prior** probability p(c = i), so-called since expresses belief about c before it has observed x.

Latent variable: A random variable that we cannot observe directly (DL pg. 65).

No free lunch theorem:

MISC. PROJECT IDEAS

- \bullet Household-chore robots \longrightarrow world-domination robots.
- MagicMirrors-R-Us
- \bullet Deep Reinforcement Learning 2048
- Website that displays np.info output.
- Build small humanoid desk robot that I can talk to. I'm not lonely, I'm just an academic.
- Scrape the graduate.com. (Stanford—Berkeley—MIT—CMU—Columbia) (EECS—CS—EE—ECE)