

00968055 **Image available**
PLATE-LIKE DISPLAYER

BEST AVAILABLE COPY

PUB. NO.: 57 -118355 [JP 57118355 A]
PUBLISHED: July 23, 1982 (19820723)
INVENTOR(s): SHINPO MASARU
KOBAYASHI KAZUTOSHI
KANBARA EIJI
APPLICANT(s): TOSHIBA CORP [000307] (A Japanese Company or Corporation), JP
(Japan)
APPL. NO.: 56-003140 [JP 813140]
FILED: January 14, 1981 (19810114)
INTL CLASS: [3] H01J-031/16
JAPIO CLASS: 42.3 (ELECTRONICS -- Electron Tubes); 44.9 (COMMUNICATION --
Other)
JOURNAL: Section: E, Section No. 138, Vol. 06, No. 215, Pg. 14,
October 28, 1982 (19821028)

ABSTRACT

PURPOSE: To decrease electric power consumption, and enhance the reliability of a plate-like display by placing a hot cathode group, plate-like electrodes and a plate-like panel parallel to each other, with insulating spacers interposed between them, so as to constitute the said plate-like display.

CONSTITUTION: A plate-like display is constituted of a hot cathode group 13, which is prepared by arranging hot cathodes regularly into an essential plate and is placed over the back surface of a base plate 8 with a spacer interposed between the plate 8 and the cathode group 13, plate-like electrodes 16, 18 and 20 which have holes at positions corresponding to the hot cathodes and are stacked by interposing plate-like insulating spacers 15, 17 and 19 each having holes between them, and a plate-like panel 25 which is coated with a fluorescent surface and is placed over the final electrode 20 by interposing a bar-like insulating spacer 21 between the electrode 20 and the panel 25. Thermions discharged from the hot cathodes are regulated and accelerated by means of the plate-like electrodes 16, 18 and 20 so as to make desired picture elements of the fluorescent surface to emit light.

THIS PAGE BLANK (USPTO)

3865284

Basic Patent (No,Kind,Date): JP 57118355 A2 820723 <No. of Patents: 001>

Patent Family:

Patent No	Kind	Date	Applie No	Kind	Date
JP 57118355	A2	820723	JP 813140	A	810114 (BASIC)

Priority Data (No,Kind,Date):

JP 813140	A	810114
-----------	---	--------

PATENT FAMILY:

JAPAN (JP)

Patent (No,Kind,Date): JP 57118355 A2 820723

PLATE-LIKE DISPLAYER (English)

Patent Assignee: TOKYO SHIBAURA ELECTRIC CO

Author (Inventor): SHINPO MASARU; KOBAYASHI KAZUTOSHI; KANBARA EIJI

Priority (No,Kind,Date): JP 813140 A 810114

Applie (No,Kind,Date): JP 813140 A 810114

IPC: * H01J-031/16

Derwent WPI Acc No: * G 82-L5031E

JAPIO Reference No: * 060215E000014

Language of Document: Japanese

THIS PAGE BLANK (USPTO)

DIALOG(R) File 351:DERWENT WPI
(c) 2000 Derwent Info Ltd. All rts. reserv.

003357006

WPI Acc No: 1982-L5031E/**198235**

Flat type display device using thermionic emission - has device to
prevent drift phenomenon of control voltage

Patent Assignee: TOKYO SHIBAURA ELECTRIC CO (TOKE)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
JP 57118355	A	19820723				198235 B

Priority Applications (No Type Date): JP 813140 A 19810114

Patent Details:

Patent No	Kind	Lan	Pg	Main IPC	Filing Notes
JP 57118355	A		9		

Title Terms: FLAT; TYPE; DISPLAY; DEVICE; THERMIONIC; EMIT; DEVICE; PREVENT
; DRIFT; PHENOMENON; CONTROL; VOLTAGE

Derwent Class: V05

International Patent Class (Additional): H01J-031/16

File Segment: EPI

THIS PAGE BLANK (USPTO)

BEST AVAILABLE COPY

⑨ 日本国特許庁 (JP)

① 特許出願公開

② 公開特許公報 (A)

昭57-118355

⑤ Int. Cl.³
H 01 J 31/16

識別記号

厅内整理番号
7170-5C

④ 公開 昭和57年(1982)7月23日

発明の数 1
審査請求 未請求

(全 6 頁)

③ 平板状ディスプレイ装置

② 特 願 昭56-3140

② 出 願 昭56(1981)1月14日

② 発明者 新保優

川崎市幸区小向東芝町1 東京芝
浦電気株式会社総合研究所内

② 発明者 小林一甫

川崎市幸区堀川町72 東京芝浦電

気株式会社堀川町工場内

② 発明者 藩原英治

深谷市幡屋町1の9の2 東京芝
浦電気株式会社深谷プラウン管
工場内

② 出願人 東京芝浦電気株式会社

川崎市幸区堀川町72番地

② 代理人 弁理士 井上一男

明 著 告

1. 発明の名称

平板状ディスプレイ装置

2. 特許請求の範囲

(1) 実質的に平面をなすように規則的に配列された熱陰極管と、この熱陰極管のそれぞれの熱陰極に位置する孔部を有し、交互に嵌み合わされた絶縁物スペーサーと及び平面状電極板と、並び平面状電極板の最終電極に絶縁物スペーサーを介して嵌められた金属性を有する平板状パネルとからなると共に前記熱陰極乃至前記電極間に設けられた前記絶縁物スペーサー群の内少なくとも一つにドリフト現象を防止し得る手段が設けられていることを特徴とする平板状ディスプレイ装置。

(2) ドリフト現象を防止し得る手段が少なくとも絶縁物スペーサーの孔部の表面に所定の電気伝導性を持たせることであることを特徴とする特許請求の範囲第1項記載の平板状ディスプレイ装置。

(3) ドリフト現象を防止し得る手段が絶縁物スペーサーに所定の抵抗値をもたらし、前記絶縁物スペ

ーの孔部の表面に所定の電気伝導性を持たせることであることを特徴とする特許請求の範囲第1項記載の平板状ディスプレイ装置。

(4) ドリフト現象を防止し得る手段が孔部を含む絶縁物スペーサ表面に酸化する被膜を形成し前記絶縁物スペーサの孔部の表面に所定の電気伝導性を持たせることであることを特徴とする特許請求の範囲第1項記載の平板状ディスプレイ装置。

(5) 所定の電気伝導性が絶縁物スペーサの一つの孔部の表面を通して前記絶縁物スペーサを挟む電極間に 1.0 V を印加した時に測れる電流が 1.0 mA ~ 0.001 mA の範囲であることを特徴とする特許請求の範囲第2項乃至第4項に記載の平板状ディスプレイ装置。

3. 発明の詳細を説明

本発明は陰電子放出を利用して平板状ディスプレイ装置に係り、特に熱陰極管から放出された電子ビームを多数の孔部を有する平面状電極板により制御加速し、平面状電極板の所定の面素を発光させる電子加速式の平板状ディスプレイ装置に関するものである。

するものである。

テレビジョン用や各種文字、図形などの表示用としてのディスプレイ装置には従来主として陰極線管が使用されており、この陰極線管による表示は輝度、応答速度、走査の簡易性、分解能などの性能は優れているが、その反面画質面で比較し、実行が大きいこと、使用寿命が比較的短いなどの欠点がある。

近年信号増幅用の小電力電子管が半導体素子に代替されて以来、陰極線管も前述した欠点を克服する半導体と同様な固体のディスプレイ装置に代替されるものと広く期待され、エレクトロルミネッセンス現象を利用して表示する方式がこれに最も近いものとして長い間研究され、一部実用に供せられるようになり更に液晶、エレクトロクロミックなどが平板状ディスプレイ装置に応用されるものとして開発されている。またこれら固体、液体を利用するものではなく陰極線管と同じく真空外囲部内のアラズマ放電も発光に用いる方式が平板状ディスプレイ装置として開発され、特に文字表示用に

使用されるようになってきた。

しかし、前述した有力な平板状ディスプレイ装置は陰極線管に比較して、いずれも発光効率、応答速度などの点ではつきりした性能格差があり、特にディスプレイ装置として最も高度な性能を要求されるテレビジョン用として陰極線管に代替し得るものにはなっていない。一方電算機の使用拡大による情報の高密度化や高性能化するテレビジョン放送のため、従来以上の高性説、大画面の平板状ディスプレイ装置の需要が高まっているのが現状である。

これらに対し、電子加速式の平板状ディスプレイ装置は例えば米国特許第2965801, 3408532, 3935500号各明細書などに示されているように平面状の電子放出部をもち、この電子放出部から真空中に電子ビームを放出し、これを多数の孔部を有する平面状電極群に与えた電圧の組合せにより制御し、更に後段で与える加速電圧により加速してエネルギーを付加し、平面状の電子放出部に對設した平面状発光面の所望の画面に射出し

発光させる基本的構造を持っている。これらの基本的な材料と物理的な原理は加速された電子ビームが発光面を発光させる處では陰極線管と同等であり、前述したエレクトロルミネッセンスなどが、今後の革新的材料の開発を持つ必要があるのに対して、現時点では陰極線管がもつている高い発光効率を引きつぎ実現し得る唯一の方式であるが、従来の電子加速式の平板状ディスプレイ装置としては冷陰極管基板の上に形成した熱陰極状の熱陰極などを使用しており、信頼性、消費電力、駆動方法などに問題があり、従来は小画面の平板状ディスプレイ装置が実験的に試作されている程度であり、白黒テレビジョン装置、カラーテレビジョン装置その他のコンピュータ装置などの画像表示装置などには、いまだ主として陰極線管が使用されているのが現状である。

本発明は前述した種々の問題点に直面されたものであり、信頼性の高い、消費電力の少ない、駆動方法が簡単であるなどの利点を有する大画面用に好適な平板状ディスプレイ装置を提供すること

を目的としている。

即ち本発明の平板状ディスプレイ装置は背面基板にスペーサーを介して取付けられ実質的に平面をなすように規則的に配列された熱陰極群と、この熱陰極群のそれぞれの熱陰極に対応する位置に孔部を有し、互いに孔部を有する板状の絶縁物スペーサーを介して積み重ねられた平面状電極群と、この平面状電極群の最底電極に複数の絶縁物スペーサーを介して取付けられた発光面の被覆形成された平板状パネルとからなり、それぞの熱陰極から射出される熱電子を平面状電極群により制御、加速して発光面の所望画面を発光させるようになされた平板状ディスプレイ装置であって、かかる平板状ディスプレイ装置を動作させたとき熱陰極群に對設された第1の電極と第2の電極による制御電圧が時間と共に変化するいわゆるドリフト現象を防止し得るようになされていることを特徴としている。

次に本発明の平板状ディスプレイ装置の一実施例について詳細に説明する。

BEST AVAILABLE COPY

用ち、第1回は対角長が約1.2mの大画面用の平板状ディスプレイ装置(1)の外観断視図であり、盤光面が内面に被覆形成された平団状パネル上に透明アクリル板、ガラスなどからなる保護板(2)及びとの保護板(2)の周縁部に設けた環状の支持体(3)と、この支持体(3)のフランジ部(4)に設けられた取付孔部(5)からなっている。

次に内部構造を第2図及び第3図によって説明すると、平板状ディスプレイ装置(1)は前面外周部を形成する金属板などからなる背面基板(6)にスペーサ(9)が固定され、ケーブル用空切部を形成し、このスペーザ(9)上に孔部(10a)を有し金属などからなる支持板(6)と、ガラスなどの無機物質からなる孔部(11a)を有する絕縁支持板(6)と、この第2の絶縁支持板(6)の後述する面裏間にヒータ支持体(12)が配設され、このヒータ支持体(12)は少なくとも一方が導電部よりなる2枚のリモン状の支持体(12a)(12b)から形成され、この内一方の支持体(12a)は図示しない半田ガラスなどにより、第2の支持体(12)に固定されている。そしてこの支持体

(12a)(12b)は約2.5mmのコイル状ヒーターの少なくとも所定部に熱電子放出物質を塗布形成した熱電極(13)(以下コイル状ヒーターと云う)の加熱用熱電電極を構成すると共に、このコイル状ヒーター(13)を空間的に支持するようになっている。この場合、コイル状ヒーター(13)の両端間の電圧は0.5V位であり、従来のものに比較して極めて低電圧であり、IC動作に適しているし、消費電力も少なくてよい。

次に、このコイル状ヒーター(13)上にはガラスなどの無機物質からなり、コイル状ヒーター(13)の有効部に對応する位置に孔部を有する板状の第1の絶縁物スペーザ(14)が設けられ、この板状の第1の絶縁物スペーザ(14)上には平板状ディスプレイ装置(1)の垂直方向に多数のリモン状の第1の電極(15)が互いに独立し平面状電極を形成するように多数配設されており、この第1の電極(15)にはコイル状ヒーター(13)の有効部に対応する位置にそれぞれ板状の第1の絶縁物スペーザ(14)の孔部より、やや小さな径をもつ孔部(16a)が設けられている。

次に、この第1の電極(15)からなる平面状電極上には前述した板状の第1の絶縁物スペーザ(14)と同様な板状の第2の絶縁物スペーザ(17)が設けられ、この板状の第2の絶縁物スペーザ(17)上には平板状ディスプレイ装置(1)の水平方向に多数のリモン状の第2の電極(18)が互いに独立し、平面状電極を形成するよう配設され、この第2の電極(18)には前述した第2の電極(18)の孔部(16a)と同様な孔部(18a)が設けられている。

次に、この第2の電極(18)からなる平面状電極上には多数の孔部(19a)が設けられた板状の第3の絶縁物スペーザ(19)を介して、第2の電極(18)の孔部(18a)に対応する位置に孔部(20a)を有する平面状の第3電極(20)が設けられている。

最後に、この第3の電極(20)上には板状の第4の絶縁物スペーザ(21)を介して内面にタルバッタ層(22)を介して盤光面が被覆形成されされ、面裏側を形成する平面状ガラス(23)が設けられている。この面裏側の数とこれに対応するコイル状ヒーター(13)乃至第3の電極(20)の孔部の数は白黒表示の場合的

250KP、カラー表示の場合、約750KPとなっている。

前述した構造の平板状ディスプレイ装置(1)は1面裏、1版面からなり、コイル状ヒーター(13)からの熱電子を第1の電極(15)、第2の電極(18)、及び第3の電極(20)で射出し、この第3の電極(20)と、高電圧の印加されたタルバッタ層(22)により加速され、盤光体からなる盤光部に射出する最も簡単な電子加速式の構造になっている。

この様な平板状ディスプレイ装置を動作させたとき第1の電極(15)と第2の電極(18)による制御電圧が点灯時間と共に変化する所蔵ドリフト現象が観察される場合がある。この現象を示したもののが第4図であり、第1の電極(15)の電圧を横軸にとり、第2の電極(18)の電圧を縦軸にとったとき、電子ビームが盤光面に到達しなくなる所蔵カットオフ特性は点火直後において(0'-0')線で示されるが、発光動作を10分間継続した時は(0'-0')線で示されるようカットオフ電圧が零に近づく。またすべての進電を止めてから10分間以上保持した

板に再び動作させると(図-4)端で示される特性に因る。この原因をしらべた結果、コイル状ヒータ⑩から第3の電極に至る各電極間の絶縁物スペーサ⑨⑩⑪⑫の孔部(15a)(17a)(19a)の盤面に電子が付着し、空間電荷を変える結果、カットオフ電圧がドリフトすることがわかった。すなわち動作状態に保持すると盤面に電子が充満し、電子流の流れを反発させる力が働くからカットオフ電圧が低くなる。一方不動作状態を保険すると盤面の電子がゆっくりと消滅し、カットオフ特性が回復してくる。この対策として絶縁物スペーサ⑨⑩⑪⑫の少なくとも孔部(15a)(17a)(19a)の内壁をわずかに導電性とし、付着した電子を速やかに除去することでドリフト現象がなくなることがわかった。

この様に絶縁物スペーサ⑨⑩⑪⑫の少なくとも孔部(15a)(17a)(19a)の内壁を導電性にすることはその分だけ電極間の漏れ電流が増加することになる。しかし、コイル状ヒータ⑩乃至第3の電極⑬までの一つの孔部近傍を1個の電子流と考えると

漏れ電流を相対する電極間または電極と絶縁間でそれぞれ10mA以下であるようによりすることにより平板状ディスプレイ装置(1)の動作特性に悪影響を及ぼさないことが実験の結果確かめられた。

この様に絶縁物スペーサ⑨⑩⑪⑫の少くとも孔部(15a)(17a)(19a)の内壁または絶縁物スペーサ⑨⑩⑪⑫それ自体の導体化の効果はコイル状ヒータ⑩と第1の電極⑭、第1の電極⑭と第2の電極⑮、第2の電極⑮と第3の電極⑬との間に均等に認められる。要がってこれらの全てに適用することが好ましいが、例えばコイル状ヒータ⑩と第1の電極⑭間にだけ適用してもドリフト減少の効果がある。この場合、第3の電極⑬と加速度電極であるメタルパック脚⑯間の絶縁物スペーサ⑨⑩⑪⑫も導体化することで表面チャージによる電子流の偏向が防かれ画質に好ましい影響を与えることが出来る。

前述した絶縁物スペーサをわずかに導体化する手段としては、例えば電子導電性のグラスやセラミックを絶縁物スペーサとして使用することができる。しかし大面積で、かつ微細な加工が要求

される平板状ディスプレイ装置の部品としては通常のガラスなどの絶縁物スペーサの孔部の盤面に導電性の被膜を形成させることができ現実的である。実験の結果では酸化すずを主成分とする導電性被膜がこの目的に合うことがわかった。そしてこの導電性被膜の被膜方法としては、例えばオクタノール溶媒(約0.1M/Lの濃度)に多數の孔部を穿設したガラス製の絶縁物スペーサを浸し、ゆっくり引き上げて乾燥せた後、空気雰囲気中で450°Cで焼成すればよい。この方法で直径0.5mm、厚さ0.3mmの孔部の盤面の抵抗は 10^6 ~ 10^{10} オームになり、10Vを印加した場合、10~0.001AAの電流値が得られた。この他、B₂O₃-SiO₂-TiO₂などでも同様な結果が得られた。この場合、添加成分はブトキシ化合物などの有機金属塗として、前記すず溶漿に0.05M/Lを越えない範囲で加えた。

前述の導電性被膜を得る他の手段としては、たとえばすずの塩化物や有機化合物の蒸気を加熱された孔部を有する絶縁物スペーサにあてて分解さ

せ酸化物被膜を形成させる方法があるが、この場合には抵抗が低くなりすぎる場合が多いので被膜の形成や付着条件を厳密に管理する必要がある。

このようにして得られた絶縁物スペーサを使用して組立てられた平板状ディスプレイ装置はカットオフ特性のドリフト現象が皆無であり極めて品位の高いディスプレイを得ることが出来た。

4. 製図の簡単な説明

第1図は本発明の平板状ディスプレイ装置の一実施例の外観を示す斜視図、第2図は第1図の平板状ディスプレイ装置の内部構造の説明用斜視図、第3図は第1図の平板状ディスプレイ装置の要部拡大断面図、第4図は第1の電極と第2の電極に印加されるそれぞれの電圧を軸及び横軸とした時のカットオフ特性のドリフト現象の一例を示す折線図である。

8...背面基板	13...コイル状ヒーター
15, 17, 19, 21...絶縁物スペーサ	
16...第1の電極	18...第2の電極
20...第3の電極	22...メタルパック脚

代理人 办理士 井上一男

BEST AVAILABLE COPY

第3図

第4図

