Senior Project

เรื่อง

การวิเคราะห์ระบบกล้องคู่ยูเอวีเพื่อใช้ทำแผนที่และแบบจำลองอาคาร Analysis of UAV dual camera system for 3D mapping and building modeling

โดย

ถิรวัฒน์ บรรณกุลพิพัฒน์ 5930813021

อาจารย์ที่ปรึกษา: รศ.ดร.ไพศาล สันติธรรมนนท์ ลายเซ็นอาจารย์ที่ปรึกษา:

รายวิชา 2108499 Survey Engineering Project ประจำปีการศึกษา 2562 หลักสูตรวิศวกรรมศาสตร์บัณฑิต สาขาวิศวกรรมสำรวจ จุฬาลงกรณ์มหาวิทยาลัย

สารบัญ

หัวข้อเรื่อง	หน้า
สารบัญรูป	ๆ
สารบัญตาราง	ନ
อักษรย่อและคำอธิบายคำศัพท์ที่ใช้ในเนื้อหา	จ
บทคัดย่อ	ฉ
บทที่ 1 บทนำ	
1.1 ความเป็นมาและความสำคัญของปัญหา	1
1.2 วัตถุประสงค์	2
1.3 ขอบเขตในการศึกษา	3
1.4 ประโยชน์ที่คาดว่าจะได้รับ	3
บทที่ 2 ทฤษฎีและองค์ความรู้ที่เกี่ยวข้อง	
2.1 ทฤษฎีความรู้ที่เกี่ยวข้อง	4
2.2 งานวิจัยและกรอบความคิดที่เกี่ยวข้อง	10
บทที่ 3 ขั้นตอนการดำเนินการ	
3.1 เครื่องมือที่ใช้ในงานวิจัย	12
3.2 การออกแบบการทดลอง	13
3.3 ขั้นตอนการดำเนินงาน	15
บทที่ 4 ผลการวิเคราะห์ข้อมูล	
4.1 ผลการคำนวณความสัมพันธ์ของค่าพารามิเตอร์ของกล้องคู่บนยูเอวี	20
4.2 ผลการประมวลผลแผนที่มาตราส่วนใหญ่	22
4.3 ผลการประมวลผลแบบจำลองของอาคาร	30
บทที่ 5 อภิปรายผล สรุปผล และข้อเสนอแนะ	
5.1 อภิปรายผล	32
5.2 สรุปผลงานวิจัย	35
5.3 ข้อเสนอแนะ	36
เอกสารอ้างอิง	ช
ภาคผนวก ก (ขั้นตอนการตั้งค่าโปรแกรมในการประมวลผลภาพถ่ายจากระบบกล้องคู่ยูเอวี)	ฌ
ภาคผนวก ข (ตารางความแม่นยำของจุดตรวจสอบที่คำนวณจากโปรแกรมโดยใช้คำสั่ง rayCloud)	ល្ង

สารบัญรูป

ชื่อและคำอธิบายรูป	หน้า
รูปที่ 2.1 เรขาคณิตสามมิติของค่าพารามิเตอร์ภายนอกของกล้อง โดยพิจารณาจากจุด T ไปยังจุด X	5
รูปที่ 2.2 เรขาคณิตของกล้องที่ไม่ได้รับผลจากความผิดเพี้ยนของเลนส์ โดยพิจารณาจากจุด T'	
ไปยังจุด X' ซึ่งมีจุดกำเนิดของระบบพิกัดภาพอยู่ที่มุมซ้ายล่างของภาพ	6
รูปที่ 3.1 แผนการบินถ่ายภาพแบบกริดตามหลักการทางโฟโตแกรมเมตรีด้วยโปรแกรม	
Ardupilot ให้ครอบคลุมพื้นที่ที่ใช้ในการศึกษา	15
รูปที่ 3.2 อากาศยานไร้คนขับยี่ห้อ Foxtech Nimbus VTOL V2	16
รูปที่ 3.3 Semidetached Loading System สำหรับ Map-02 Mapping Camera	16
รูปที่ 3.4 กล้องที่ติดตั้งบนเครื่องยูเอวี Foxtech Map-02 Mapping Camera	16
รูปที่ 3.5 การกระจายตัวของจุดควบคุมภาคพื้นดินและจุดตรวจสอบในบริเวณพื้นที่ที่ศึกษา	17
รูปที่ 4.1 การอ้างอิงตำแหน่งของกล้องแต่ละตัวในมุมมองสามมิติ	20
รูปที่ 4.2 ลักษณะค่าพารามิเตอร์การหมุนสัมพัทธ์ของกล้องขวาที่ติดตั้งอยู่บนยูเอวีในมุมมองสองมิติ	21

สารบัญตาราง

ชื่อและค้าอธิบายรูป	หน้
ตารางที่ 4.1 ตารางความสัมพันธ์ของค่าพารามิเตอร์ภายนอกสัมพัทธ์ของกล้องทั้งสองตัว	20
ตารางที่ 4.2 ตารางค่าทางสถิติของระยะห่างของคู่ภาพที่ทำการถ่ายภาพบนยูเอวี	21
ตารางที่ 4.3 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบของจุดควบคุม	
ภาคพื้นดินและจุดตรวจสอบ โดยประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน	22
ตารางที่ 4.4 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางดิ่งของจุดควบคุม	
ภาคพื้นดินและจุดตรวจสอบ โดยประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน	22
ตารางที่ 4.5 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบของจุดควบคุม	
ภาคพื้นดินและจุดตรวจสอบ โดยประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน	23
ตารางที่ 4.6 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางดิ่งของจุดควบคุม	
ภาคพื้นดินและจุดตรวจสอบ โดยประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน	23
ตารางที่ 4.7 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบของข้อมูลค่าพิกัดที่ไป	
รังวัดภาคพื้นดินเทียบกับข้อมูลที่ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน	24
ตารางที่ 4.8 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางดิ่งของข้อมูลค่าพิกัดที่ไป	
รังวัดภาคพื้นดินเทียบกับข้อมูลที่ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน	25
ตารางที่ 4.9 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบของข้อมูลค่าพิกัดที่ไป	
รังวัดภาคพื้นดินเทียบกับข้อมูลที่ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน	26
ตารางที่ 4.10 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางดิ่งของข้อมูลค่าพิกัดที่ไป	
รังวัดภาคพื้นดินเทียบกับข้อมูลที่ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน	27
ตารางที่ 4.11 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบระหว่างแผนที่ที่	
ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกันและแบบจำลองกล้องคู่ที่อิสระ	
ต่อกัน	28
ตารางที่ 4.12 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางดิ่งระหว่างแผนที่ที่	
ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกันและแบบจำลองกล้องคู่ที่อิสระ	
ต่อกัน	28
ตารางที่ 4.13 ตารางการเปรียบเทียบแผนที่มาตราส่วนใหญ่ที่ผลิตผ่านการประมวลผลด้วยแบบจำลอง	
กล้องคู่ที่มีความสัมพันธ์ต่อกันและแบบจำลองกล้องคู่ที่อิสระต่อกัน	29

สารบัญตาราง (ต่อ)

ชื่อและคำอธิบายรูป	หน้า
ตารางที่ 4.14 ตารางการเปรียบเทียบแบบจำลองอาคารที่ผลิตผ่านการประมวลผลด้วยแบบจำลอง	
กล้องคู่ที่มีความสัมพันธ์ต่อกันและแบบจำลองกล้องคู่ที่อิสระต่อกัน (1)	30
ตารางที่ 4.15 ตารางการเปรียบเทียบแบบจำลองอาคารที่ผลิตผ่านการประมวลผลด้วยแบบจำลอง	
กล้องคู่ที่มีความสัมพันธ์ต่อกันและแบบจำลองกล้องคู่ที่อิสระต่อกัน (2)	31
ตารางที่ 5.1 ตารางการเปรียบเทียบค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบและทางดิ่ง	
ของจุดควบคุมภาคพื้นดินและจุดตรวจสอบระหว่างแผนที่ที่ประมวลผลด้วยแบบจำลอง	
กล้องคู่ที่มีความสัมพันธ์ต่อกันและแบบจำลองกล้องคู่ที่อิสระต่อกัน	33
ตารางที่ 5.2 ตารางการเปรียบเทียบค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบและทางดิ่ง	
ของจุดตรวจสอบที่ได้จากการรังวัดภาคพื้นดินระหว่างแผนที่ที่ประมวลผลด้วยแบบจำลอง	
กล้องคู่ที่มีความสัมพันธ์ต่อกันและแบบจำลองกล้องคู่ที่อิสระต่อกัน	33
ตารางที่ 5.3 ตารางการเปรียบเทียบค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบและทางดิ่ง	
ของจุดตรวจสอบที่คำนวณจากคำสั่ง rayCloud ในโปรแกรมระหว่างแผนที่ที่ประมวล	
ผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกันและแบบจำลองกล้องคู่ที่อิสระต่อกัน	34
ตารางที่ ข.1 ตารางความแม่นยำของจุดตรวจสอบที่คำนวณจากโปรแกรมโดยใช้คำสั่ง rayCloud	
ที่ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน	46
ตารางที่ ข.2 ตารางความแม่นยำของจุดตรวจสอบที่คำนวณจากโปรแกรมโดยใช้คำสั่ง rayCloud	
ที่ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน	46

อักษรย่อและคำอธิบายคำศัพท์ที่ใช้ในเนื้อหา

Camera Rig คือ ตัวจับยึดกล้อง

Facade คือ องค์ประกอบด้านหน้าอาคาร โดยปกติมักจะเรียกว่า เปลือกอาคาร ซึ่งแต่ละส่วน

ของเปลือกอาคารจะมีองค์ประกอบของงานทางสถาปัตยกรรมอยู่ด้วย เช่น ประตู

หน้าต่าง ระเบียง ระแนง ชายคา เป็นต้น

Omega angle (ω) คือ $\,\,$ มุมที่กระทำรอบแกน X

Phi angle $(oldsymbol{\phi})$ คือ มุมที่กระทำรอบแกน Y

Kappa angle (κ) คือ มุมที่กระทำรอบแกน Z

บทคัดย่อ

้ ปัจจุบันด้วยความก้าวหน้าทางเทคโนโลยีทำให้อากาศยานไร้คนขับหรือยูเอวีสามารถติดตั้งกล้องได้ มากกว่าหนึ่งตัวบนยูเอวีผ่านโครงสร้างตัวจับยึดกล้อง (Camera Rig) ซึ่งการที่มีกล้องมากกว่าหนึ่งตัวจะช่วยเพิ่ม ประสิทธิภาพการปฏิบัติงานภาคสนามและงานสำนักงาน ในงานวิจัยนี้จึงได้มีการทดสอบประสิทธิภาพในการ ประมวลผลข้อมูลภาพถ่ายเฉียงที่ได้จากยูเอวีที่เป็นระบบกล้องคู่ (UAV Dual Camera) โดยได้ทำการศึกษาการ ทำงานและวิธีการประมวลผลข้อมูลภาพถ่ายทางอากาศที่ได้จากระบบกล้องคู่ยูเอวี ความถูกต้องเชิงตำแหน่งและ ความสามารถในการลอกลายบนแผนที่มาตราส่วนใหญ่ รวมถึงประสิทธิภาพฟาซาดของแบบจำลองอาคารสามมิติ ที่ผลิตได้ โดยทำการเปรียบเทียบประสิทธิภาพที่ได้จากการประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อ ้กันกับแบบจำลองกล้องคู่ที่อิสระต่อกัน พบว่าความถูกต้องเชิงตำแหน่งของแผนที่ความถูกต้องทางดิ่งได้ค่าเท่ากัน แต่ความถูกต้องทางราบการประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันให้ค่าที่มีประสิทธิภาพมากกว่า แต่ เมื่อพิจารณาค่าระยะห่างของคู่ภาพนั้นแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกันสามารถคงลักษณะทางกายภาพ ได้ แสดงให้เห็นว่าควรเลือกใช้แผนที่ที่ผลิตด้วยวิธีการประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน ในส่วนของความสามารถในการลอกลายบนแผนที่จากการมองด้วยตาพบว่าทั้งสองการประมวลผลสามารถขีดเส้น รายละเอียดบนแผนที่ได้ แต่มีบางบริเวณบนแผนที่จะมีเส้นเหลี่ยมของวัตถุที่ไม่คมชัด แสดงให้เห็นว่าภาพถ่ายเฉียง ที่ใช้ในการประมวลผลเพื่อผลิตแผนที่ยังต้องมีการพัฒนาเพื่อเพิ่มประสิทธิภาพความคมชัดของวัตถุ และจากการ พิจารณาฟาซาดของแบบจำลองอาคารจากการมองด้วยตา พบว่าทั้งสองการประมวลผลไม่ได้มีความแตกต่างกัน มาก รวมถึงให้แบบจำลองอาคารที่มีประสิทธิภาพมากกว่าแบบจำลองอาคารที่ประมวลผลมาจากภาพถ่ายดิ่งจากยู เอวีทั่วไป แสดงให้เห็นว่าภาพถ่ายเฉียงและจำนวนภาพมากช่วยเพิ่มประสิทธิภาพในการผลิตแบบจำลองอาคาร

บทที่ 1

บทน้ำ

1.1 ความเป็นมาและความสำคัญของปัญหา

เนื่องจากในปัจจุบันอากาศยานไร้คนขับหรือยูเอวี (Unmanned aerial vehicle; UAV) ได้ถูกนำมา ประยุกต์ใช้กับการปฏิบัติงานทางด้านต่าง ๆ เช่น ทางด้านการเกษตรได้มีการใช้ยูเอวีช่วยในเรื่องของการ จัดการการเพาะปลูกเพื่อสังเกต ตรวจวัดและตอบสนองความต้องการของพืช ทางด้านการซื้อขายได้มีการนำยู เอวีไปใช้ในการส่งพัสดุ อาหารหรือสินค้าต่าง ๆ ให้ผู้บริโภคในระยะไกลได้ ซึ่งทางด้านวิศวกรรมก็ถูกนำมา ประยุกต์ใช้เช่นกัน โดยทางด้านวิศวกรรมสำรวจมีการนำยูเอวีมาประยุกต์ใช้ในเรื่องของการทำแผนที่และ แบบจำลองอาคาร (Nex, & Remondino, 2014; Remondino et al., 2011) เพื่อนำไปใช้ในการอ้างอิง ตำแหน่งพิกัดทางภูมิศาสตร์ของภูมิประเทศและนำไปใช้ในการออกแบบ รวมไปถึงการสร้างแบบจำลองของ อาคารที่สามารถทำได้โดยง่ายและช่วยลดระยะเวลาในการทำงานผ่านการทำงานของเทคโนโลยีและโปรแกรม ประมวลผลที่มีความสะดวกและรวดเร็ว ซึ่งถือว่ามีบทบาทที่สำคัญและมีประโยชน์อย่างมาก

การผลิตแผนที่จากข้อมูลภาพถ่ายทางอากาศที่ได้จากยูเอวีในสมัยก่อน ข้อมูลภาพถ่ายทางอากาศที่ใช้ ในการประมวลผลนั้นเป็นภาพถ่ายที่ถ่ายจากกล้องที่ติดบนยูเอวีเพียงตัวเดียว เมื่อนำมาประมวลผลผ่าน โปรแกรมจะให้ผลลัพธ์ด้วยกัน 3 อย่าง ได้แก่ 1. แผนที่ภาพถ่ายทางอากาศ (Orthophoto) 2. แบบจำลอง พื้นผิวภูมิประเทศ (Digital Surface Model; DSM) 3. แบบจำลองสามมิติ (3D Model) โดยผลลัพธ์ที่ได้มี ความถูกต้องเชิงตำแหน่งขึ้นอยู่กับปัจจัยต่าง ๆ ไม่ว่าจะเป็นเครื่องมือที่ใช้ในการสำรวจรังวัดหรือโปรแกรมที่ใช้ ในการประมวลผล จากการศึกษางานวิจัยที่ผ่านมาได้มีการศึกษาการใช้อากาศยานไร้คนขับในการผลิตแผนที่ ภูมิประเทศ โดยมุ่งเน้นไปที่เรื่องจำนวนจุดควบคุมภาพภาคพื้นดิน (Ground Control Point; GCP) จำนวน จุดตรวจสอบ (Check Point; CHK) ความถูกต้องเชิงตำแหน่ง (James et al., 2017; Forlani et al., 2018) เพื่อเพิ่มประสิทธิภาพความแม่นยำและความถูกต้องให้กับแผนที่ที่ผลิตขึ้นมา ในปัจจุบันด้วยความก้าวหน้าทาง เทคโนโลยีได้มีการผลิตยูเอวีที่ประกอบไปด้วยกล้องสองตัวที่เป็นระบบกล้องคู่ที่ใช้ในการถ่ายภาพทางอากาศ ซึ่งแตกต่างจากเดิมที่เป็นระบบกล้องเดี่ยวบินถ่ายภาพแบบดิ่งจริง (Nadir image) ทำให้ข้อมูลภาพถ่ายที่ได้ เป็นข้อมูลภาพถ่ายเฉียงที่ได้รับผลมาจากกล้องสองตัวที่ทำมุมกันบนโครงสร้างของยูเอวีที่ได้ผลิตขึ้นมา ซึ่งมุม ของกล้องที่ทำมุมกันมีขนาดที่คงที่ รวมถึงระยะห่างของกล้องสองตัวที่มีขนาดที่คงที่ตามโครงสร้างของยูเอวี ดังนั้นทำให้ต้องมีการศึกษาว่าระยะห่างระหว่างกล้องสองตัวที่ติดอยู่บนยูเอวีส่งผลต่อการระบุค่าตำแหน่งพิกัด

ภูมิศาสตร์หรือไม่ เพื่อให้การทำแผนที่ด้วยระบบกล้องคู่ยูเอวีให้ผลลัพธ์ที่มีความถูกต้องเชิงตำแหน่งที่สูงและมี ประสิทธิภาพ จะได้สามารถนำไปประยุกต์ใช้ในการออกแบบสิ่งต่าง ๆ ในทางวิศวกรรมได้

การที่อากาศยานไร้คนขับหรือยูเอวีมีการติดตั้งกล้องที่ใช้ในการถ่ายภาพมากกว่าหนึ่งตัวเป็นอีกหนึ่ง ทางเลือก ที่ใช้ในการเพิ่มประสิทธิภาพในการทำงาน ตั้งแต่ออกแบบแผนการบิน ระยะเวลาที่ใช้ในการบิน ถ่ายภาพที่น้อยลง จำนวนภาพถ่ายที่ได้ในปริมาณที่มากขึ้นส่งผลดีต่อการประมวลผลเนื่องจากมีภาพที่ใช้ใน การจับคู่ภาพมากขึ้น (Chen, 2017) ซึ่งจากการศึกษางานวิจัยพบว่ามีงานวิจัยที่เกี่ยวข้องกับอากาศยานไร้ คนขับที่ติดตั้งกล้องมากกว่าหนึ่งตัวจะเป็นการศึกษาและเพิ่มประสิทธิภาพของแบบจำลองสามมิติที่ผลิตขึ้น โดยมีการเข้าถึงบริเวณที่บินถ่ายอย่างจำกัดและต้องการความละเอียดสูง รวมถึงความรวดเร็วของขั้นตอนการ ได้มาซึ่งข้อมูล (Aicardi et al., 2016; Vacca, Dessì, & Sacco, 2017) แต่ยังไม่มีงานวิจัยที่ศึกษาการผลิต แผนที่มาตราส่วนใหญ่ที่ใช้ภาพถ่ายทางอากาศจากระบบกล้องคู่ยูเอวีในบริเวณพื้นที่ประเทศไทย

ดังนั้นในการศึกษาครั้งนี้จะทำการศึกษาโครงสร้างของระบบกล้องคู่ยูเอวี รวมถึงแผนที่มาตราส่วน ใหญ่และแบบจำลองอาคาร บริเวณพื้นที่บางขุนเทียน จังหวัดกรุงเทพมหานคร ซึ่งเป็นบริเวณที่มีอาคารและ สิ่งปลูกสร้างเป็นจำนวนมาก โดยจะวิเคราะห์ประสิทธิภาพของแผนที่มาตราส่วนใหญ่ที่ผลิตมาจากการ ประมวลผลด้วยภาพถ่ายเฉียงจากระบบกล้องคู่ผ่านการประเมินความถูกต้องเชิง ตำแหน่งและวิเคราะห์ ประสิทธิภาพของแบบจำลองอาคารผ่านการมองด้วยตาผ่านโปรแกรมที่ใช้ในการประมวลผล

1.2 วัตถุประสงค์

- 1.2.1 เพื่อศึกษาการทำงานและโครงสร้างของระบบกล้องของคู่ยูเอวีในการถ่ายภาพทางอากาศและวิธีการ ประมวลผลข้อมูลภาพถ่ายทางอากาศที่ได้จากระบบกล้องคู่ยูเอวี
- 1.2.2 เพื่อตรวจสอบความถูกต้องเชิงตำแหน่งของแผนที่มาตราส่วนใหญ่ที่ผลิตจากการประมวลผลด้วย ภาพถ่ายที่ได้จากระบบกล้องคู่ยูเอวี
- 1.2.3 เพื่อตรวจสอบความสามารถในการลอกลายบนแผนที่มาตราส่วนใหญ่ที่ผลิตจากการประมวลผลด้วย ภาพถ่ายที่ได้จากระบบกล้องคู่ยูเอวี
- 1.2.4 เพื่อศึกษาประสิทธิภาพของแบบจำลองอาคารสามมิติ โดยจะพิจารณาบริเวณฟาซาด (Facade) จาก การประมวลผลด้วยภาพถ่ายที่ได้จากระบบกล้องคู่ยูเอวี

1.3 ขอบเขตการศึกษา

ทำการศึกษาโครงสร้างของระบบกล้องคู่ยูเอวีที่ใช้ในการถ่ายภาพทางอากาศและทำการเปรียบเทียบ แผนที่และแบบจำลองอาคารที่ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันกับแบบจำลองกล้องคู่ที่มี ความสัมพันธ์ต่อกันจากภาพถ่ายเฉียงที่ถ่ายได้จากระบบกล้องคู่ยูเอวี โดยพื้นที่ที่ใช้ในการศึกษา คือ บริเวณ พื้นที่บางขุนเทียน จังหวัดกรุงเทพมหานคร เพื่อประเมินความถูกต้องเชิงตำแหน่งของแผนที่มาตราส่วนใหญ่ที่ ผลิตได้ผ่านการพิจารณาค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ย (Root Mean Square Error; RMSE) และตรวจสอบความสามารถในการลอกลายบนแผนที่มาตราส่วนใหญ่ รวมถึงศึกษาประสิทธิภาพของ แบบจำลองอาคารที่ผลิตได้ โดยพิจารณาบริเวณฟาซาด (Facade) ผ่านการรับรู้ด้วยตาผ่านโปรแกรมที่ใช้ใน การประมวลผล ซึ่งโปรแกรมที่ใช้ในการประมวลผลคือ โปรแกรม Pix4Dmapper

1.4 ประโยชน์ที่คาดว่าจะได้รับ

- 1.4.1 ได้เรียนรู้การใช้โปรแกรมในการประมวลผลภาพถ่ายทางอากาศให้ได้แผนที่และแบบจำลองอาคารได้ อย่างมีประสิทธิภาพ
- 1.4.2 ได้เรียนรู้ทักษะและเทคนิคการเขียนโค้ดด้วยภาษา Python เพื่อทำให้การแก้ปัญหาและการประมวลผล มีความแม่นยำและมีประสิทธิภาพ
- 1.4.3 เข้าใจหลักการและกระบวนการในการประมวลผลข้อมูลภาพถ่ายทางอากาศที่ได้จากระบบกล้องคู่ยูเอวี รวมไปถึงวิเคราะห์ลักษณะโครงสร้างของระบบกล้องคู่ยูเอวีได้ว่าส่งผลต่อความถูกต้องเชิงตำแหน่ง หรือไม่
- 1.4.4 สามารถผลิตแผนที่มาตราส่วนใหญ่จากภาพถ่ายที่ได้จากระบบกล้องคู่ยูเอวีที่มีความถูกต้องเชิงตำแหน่ง ได้
- 1.4.5 สามารถผลิตแบบจำลองอาคารที่ได้จากการประมวลผลด้วยภาพจากระบบกล้องคู่ยูเอวีที่มีประสิทธิภาพ ได้ โดยจะให้รายละเอียดในเรื่องของฟาซาดที่ชัดเจน

บทที่ 2

ทฤษฎีและองค์ความรู้ที่เกี่ยวข้อง

2.1 ทฤษฎีความรู้ที่เกี่ยวข้อง

- 2.1.1 ค่าพารามิเตอร์ภายในและภายนอกของกล้อง (The Internal and External Camera Parameters)
 - 2.1.1.1 ค่าพารามิเตอร์ภายนอกของกล้อง (Camera external parameters)

ค่าพารามิเตอร์ภายนอกของกล้องมีความแตกต่างกันไปในแต่ละภาพ ซึ่งประกอบไปด้วย 2 ค่าพารามิเตอร์ คือ

1. ค่าพารามิเตอร์เกี่ยวกับการเคลื่อนที่ (Transition)

ค่าพารามิเตอร์การเคลื่อนที่ คือ ค่าตำแหน่งของศูนย์ฉายภาพของกล้องในระบบพิกัดของ โลก ใช้สัญลักษณ์แทนด้วยตัวอักษร T ดังแสดงในสมการที่ (1)

$$T = (T_x, T_y, T_z) \tag{1}$$

2. ค่าพารามิเตอร์เกี่ยวกับการหมุน (Rotation)

 $R = R_X(\omega)R_Y(\varphi)R_Z(\kappa)$

ค่าพารามิเตอร์การหมุน คือ ค่าที่กำหนดการวางแนวของกล้องด้วยมุม ω , ϕ , κ โดยที่ ω คือ ค่ามุมที่กระทำในแนวแกน X, ϕ คือ ค่ามุมที่กระทำในแนวแกน Y และ κ คือค่ามุมที่กระทำในแนวแกน Z ซึ่งค่ามุมทั้งสามจะแสดงค่าผ่านเมทริกซ์การหมุน โดยใช้สัญลักษณ์แทนด้วยตัวอักษร R ดังแสดงในสมการที่ (2)

$$=\begin{pmatrix}1&0&0\\0&\cos(\omega)&-\sin(\omega)\\0&\sin(\omega)&\cos(\omega)\end{pmatrix}\begin{pmatrix}\cos(\varphi)&0&\sin(\varphi)\\0&1&0\\-\sin(\varphi)&0&\cos(\varphi)\end{pmatrix}\begin{pmatrix}\cos(\kappa)&-\sin(\kappa)&0\\\sin(\kappa)&\cos(\kappa)&0\\0&0&1\end{pmatrix}$$

$$=\begin{pmatrix} \cos(\kappa)\cos(\varphi) & -\sin(\kappa)\cos(\varphi) & \sin(\varphi) \\ \cos(\kappa)\sin(\omega)\sin(\varphi) + \sin(\kappa)\cos(\omega) & \cos(\kappa)\cos(\omega) - \sin(\kappa)\sin(\omega)\sin(\varphi) & -\sin(\omega)\cos(\varphi) \\ \sin(\kappa)\sin(\omega) - \cos(\kappa)\cos(\omega)\sin(\varphi) & \sin(\kappa)\sin(\omega)\sin(\varphi) + \cos(\kappa)\sin(\omega) & \cos(\omega)\cos(\varphi) \end{pmatrix}$$
 (2)

ถ้าหาก X คือพิกัดจุดสามมิติในระบบพิกัดของโลกที่มีค่า X = (X,Y,Z) แล้วตำแหน่งของจุดนี้ ในระบบพิกัดกล้องคือ X' = (X',Y',Z') สามารถคำนวณหาค่าได้จากสมการที่ (3)

$$X' = R^T (X - T) \tag{3}$$

รูปที่ 2.1. เรขาคณิตสามมิติของค่าพารามิเตอร์ภายนอกของกล้อง โดยพิจารณาจากจุด ⊤ ไปยังจุด X 2.1.1.2 ค่าพารามิเตอร์ภายในของกล้อง (Camera internal parameters)

ค่าพารามิเตอร์ภายในของกล้องจะแบ่งได้เป็น 2 ประเภท คือ ประเภทที่ไม่ได้รับผลกระทบทาง ความผิดเพี้ยนของเลนส์ และประเภทที่ได้รับผลกระทบทางความผิดเพี้ยนของเลนส์

1. ประเภทที่ไม่ได้รับผลกระทบทางความผิดเพี้ยนของเลนส์

กำหนดให้ u คือ พิกัดของจุดบนภาพถ่ายที่ได้จากการโปรเจกชั่นจุดสามมิติ โดยที่ไม่ได้รับ ผลกระทบทางความผิดเพี้ยนของเลนส์ พิกัดของ u สามารถคำนวณหาค่าได้จากสมการที่ (4)

$${x_u \choose y_u} = - \left(\frac{fX'}{Z'} \atop \frac{fY'}{Z'}\right) + {c_x \choose c_y}$$
 (4)

เมื่อ f คือ ระยะโฟกัสของกล้องและค่าพิกัดของ c คือค่าพิกัดของจุด principal point

ร**ูปที่ 2.2** เรขาคณิตของกล้องที่ไม่ได้รับผลจากความผิดเพี้ยนของเลนส์ โดยพิจารณาจากจุด T' ไปยังจุด X' ซึ่งมีจุดกำเนิดของระบบพิกัดภาพอยู่ที่มุมซ้ายล่างของภาพ

2. ประเภทที่ได้รับผลกระทบทางความผิดเพี้ยนของเลนส์

ความผิดเพี้ยนของเลนส์ (Lens Distortion) ภายใน แบ่งได้เป็น 2 ประเภท คือ

- 1. ความผิดเพี้ยนของเลนส์ในแนวรัศมี (Radial Lens Distortion) คือ ค่าความเพี้ยน ตามแนวรัศมีของเลนส์จากจุด Principal Point (PP) มีสาเหตุมาจากการขัดผิวของเลนส์ได้ไม่ ตามที่ออกแบบไว้ ทำให้จุดภาพเกิดผิดตำแหน่ง
- 2. ความผิดเพี้ยนของเลนส์ในแนวสัมผัส (Tangential Lens Distortion) คือ ค่าความ เพี้ยนของเลนส์ตามแนวสัมผัส เนื่องจากกล้องหนึ่งตัว ประกอบไปด้วยเลนส์หลายเลนส์ ซึ่งเลนส์ แต่ละเลนส์จะถูกนำมาซ้อนทับกัน ความเพี้ยนนี้จึงเป็นความเพี้ยนที่เกิดจากการซ้อนทับของ เลนส์ที่ไม่อยู่ในแนว center เดียวกัน

ซึ่งความผิดเพี้ยนของเลนส์ทั้งสองประเภทเป็นสิ่งที่ต้องนำไปประมวลผลเพื่อขจัดค่าความ ผิดเพี้ยนให้น้อยลง

กำหนดให้ h คือ พิกัดของจุดบนภาพถ่าย สามารถคำนวณหาค่าได้จากสมการที่ (5)

$$\binom{x_h}{y_h} = \binom{\frac{X'}{Z'}}{\frac{Y'}{Z'}} \tag{5}$$

ซึ่งสามารถหาความสัมพันธ์ทางรัศมีแบบสองมิติได้จากสมการที่ (6)

$$r^2 = x_h^2 + y_h^2 (6)$$

เนื่องจากได้รับผลกระทบจากความผิดเพี้ยนของเลนส์ซึ่งประกอบไปด้วยความผิดเพี้ยนทาง รัศมี ได้แก่ ตัวแปร R_1,R_2,R_3 และความผิดเพี้ยนในแนวสัมผัส ได้แก่ ตัวแปร T_1,T_2 โดย กำหนดให้จุดที่ได้รับผลกระทบจากความผิดเพี้ยนคือจุด (x_{hd},y_{hd}) ซึ่งคำนวณหาค่าได้จากสมการ ที่ (7)

โดย (x_d, y_d) คือ พิกัดของจุดบนภาพถ่ายที่ได้จากการโปรเจกชั่นจุดสามมิติ โดยที่ได้รับ ผลกระทบทางความผิดเพี้ยนของเลนส์ เพราะฉะนั้นจึงสามารถคำนวณหาค่าได้จากสมการที่ (8)

เมื่อ f คือ ระยะโฟกัสของกล้องและค่าพิกัดของ c คือค่าพิกัดของจุด principal point

2.1.2 Camera Rig

Camera Rig ประกอบไปด้วยกล้องหลายตัว ซึ่งมีความสัมพันธ์กันผ่านทางเรขาคณิต โดย camera rig มีลักษณะดังต่อไปนี้

- 1. มีกล้องหนึ่งตัวจะถูกใช้เป็นกล้องอ้างอิงตำแหน่งให้กับกล้องตัวที่เหลือ โดยกำหนดให้กล้อง อ้างอิงมีตำแหน่งการเคลื่อนที่คือ ตำแหน่ง T_m และมีการวางตัวในแนว R_m ในระบบพิกัด ของโลก
- 2. กล้องอื่น ๆ ที่ไม่ได้ถูกกำหนดให้เป็นกล้องอ้างอิงตำแหน่งจะถูกกำหนดให้เป็นกล้องรอง โดย มีตำแหน่งคือ $T_{\mathcal{S}}$ และมีการวางตัวในแนว $R_{\mathcal{S}}$ ในระบบพิกัดของโลก
- 3. สำหรับกล้องรองแต่ละตัว จะมีค่าการเคลื่อนที่และการหมุนที่มีความสัมพัทธ์กับกล้องอ้างอิง โดยค่าการเคลื่อนที่สัมพัทธ์ (Relative Translation) มีสัญลักษณ์คือ T_{rel} และค่าการหมุน สัมพัทธ์ (Relative Rotation) มีสัญลักษณ์คือ R_{rel}

โดยตำแหน่งและทิศทางของ Camera rig ของกล้องที่ไม่ได้ถูกกำหนดให้เป็นกล้องอ้างอิง สามารถหาได้จากสมการที่ (9) และสมการที่ (10) ตามลำดับ

$$T_s = T_m + R_m T_{rel} (9)$$

$$R_s = R_m R_{rel} \tag{10}$$

ตำแหน่ง X' ของจุดสามมิติในระบบพิกัดของกล้องอ้างอิงสามารถหาได้จากสมการที่ (11)

$$X' = R_m^T (X - T_m) \tag{11}$$

ตำแหน่ง X' ของจุดสามมิติในระบบพิกัดของกล้องรองสามารถหาได้จากสมการที่ (12)

$$X' = R_{rel}^{T} [R_m^{T} (X - T_m) - T_{rel}]$$
(12)

หลังจากคำนวณค่าหาจุดสามมิติในระบบพิกัดกล้องได้แล้วการนำไปใช้งานต่อในลำดับถัดไป จะมีการใช้งานในลักษณะเดียวกันกับกล้องอื่น ๆ ตามที่ได้กล่าวไป

2.1.3 ค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ย (Root Mean Square Error : RMSE)

ค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ย (RMSE) ใช้ประมาณค่าความถูกต้องเชิงตำแหน่ง ซึ่ง มีค่าเท่ากับรากที่สองของค่าเฉลี่ยของผลรวมกำลังสองของค่าต่างค่าที่วัดได้กับค่าตรวจสอบที่มีความ ถูกต้องสูงกว่า ซึ่งคำนวณได้ดังนี้

(2.1.3.1) ค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทาง $(RMSE_X)$ และ $(RMSE_Y)$

$$RMSE_X = \sqrt{\frac{\sum (X_{data} - X_{check})^2}{n}}$$
 (13)

$$RMSE_Y = \sqrt{\frac{\sum (Y_{data} - Y_{check})^2}{n}}$$
 (14)

2.1.3.2 ค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบ ($RMSE_H$)

$$RMSE_H = \sqrt{(RMSE_X)^2 + (RMSE_Y)^2}$$
 (15)

2.1.3.3 ค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางดิ่ง ($RMSE_Z$)

$$RMSE_Z = \sqrt{\frac{\sum (Z_{data} - Z_{check})^2}{n}}$$
 (16)

2.1.4 The National Standard for Spatial Data Accuracy (NSSDA)

มาตรฐาน NSSDA ได้เผยแพร่ในเดือนเมษายน 2541 ใช้สำหรับเป็นแนวปฏิบัติทางสถิติ และ วิธีการทดสอบความถูกต้องเชิงตำแหน่งของแผนที่ และข้อมูลภูมิสารสนเทศที่ได้จากภาพถ่ายทาง อากาศ ข้อมูลภาพถ่ายดาวเทียม หรือแผนที่ และวิธีการรายงานค่าความถูกต้อง ดังนั้นมาตรฐาน NSSDA จึงไม่ใช่มาตรฐานที่กำหนดค่าความถูกต้องแผนที่เช่นเดียวกับมาตรฐาน NMAS และ ASPRS แต่มีลักษณะเป็นแนวปฏิบัติถึงวิธีการ การทดสอบ และแนวปฏิบัติทางสถิติ มาตรฐาน NSSDA เป็น มาตรฐานการปฏิบัติที่ใช้กันแพร่หลาย โดยกล่าวถึงวิธีการและสมการคำนวณตัวชี้วัดค่าความถูกต้อง ของข้อมูลที่ระดับความเชื่อมั่น 95% ดังนี้

2.1.4.1 ความถูกต้องทางราบ โดยคำนวณเป็นความคลาดเคลื่อนวงกลม (CE)

ถ้าหากไม่มีความคลาดเคลื่อนระบบแฝงอยู่ และความคลาดเคลื่อนนี้มีลักษณะการแจกแจง แบบปกติ โดยที่ความคลาดเคลื่อนทางแกน X เป็นอิสระจากความคลาดเคลื่อนทางแกน Y แล้วค่า ความถูกต้องที่ระดับความเชื่อมั่น 95% คำนวณได้จากการคูณค่า RMSE ด้วยค่าคงที่ ดังแสดงใน สมการที่ (17)

$$Accuracy_H = 1.7308 x RMSE_H$$
 (17)

2.1.4.2 ค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางดิ่ง ($RMSE_Z$)

ถ้าหากไม่มีความคลาดเคลื่อนระบบแฝงอยู่ และความคลาดเคลื่อนนี้มีลักษณะการแจกแจง แบบปกติ ค่าความถูกต้องทางดิ่งที่ระดับความเชื่อมั่น 95% คำนวณได้จากการคูณค่า RMSE ด้วย ค่าคงที่ ดังแสดงในสมการที่ (18)

$$Accuracy_Z = 1.9600 x RMSE_Z$$
 (18)

2.2 งานวิจัยและกรอบความคิดที่เกี่ยวข้อง

2.2.1 งานวิจัยเรื่อง UAV Photogrammetry with Oblique Images : First Analysis on Data Acquisition and Processing

ในงานวิจัยนี้ได้มีการใช้ภาพแนวเฉียงที่ถ่ายได้จาก UAV เพื่อใช้ในการสำรวจวัตถุมรดกทาง วัฒนธรรม ซึ่งมีลักษณะการเข้าถึงที่จำกัดและความต้องการของรายละเอียดที่สูง รวมไปถึงความรวดเร็ว ของขั้นตอนของการได้มาด้วยเหตุผลนี้วิธีที่ใช้ในการออกแบบแผนการบินควรมีประสิทธิภาพ เนื่องจาก ต้องคำนึงถึงปัจจัยต่าง ๆ เช่น จำนวนของภาพที่จะนำมาซ้อนทับกัน, ค่า GSD ที่ใช้ โดยจะต้องพิจารณา มุมของแกนกล้องและพิจารณาจากความสูงของวัตถุ ความสูงของเที่ยวบิน ชนิดของสิ่งกีดขวาง ชนิดและ ตำแหน่งของรายละเอียดที่จะได้รับบนวัตถุ ยิ่งไปกว่านั้นสำหรับวัตถุที่เราสนใจจะต้องให้ความสนใจในการ สำรวจชิ้นส่วนที่อยู่ใกล้ที่สุดและห่างไกลที่สุดด้วย GSD ที่คล้ายกัน ซึ่งวิธีแก้ปัญหานี้ คือการเปลี่ยนความ ยาวโฟกัสของกล้องในเที่ยวบินเดียวกัน โดยใช้วิธีการวัดคะแนนด้วยเทคนิคอื่น ๆ

โดยได้มีการใช้ซอฟต์แวร์หลายซอฟต์แวร์ในการประมวลผล ซึ่งผลลัพธ์ที่ได้มีลักษณะที่คล้ายคลึง กัน ถึงแม้จะมีความแตกต่างกันเพียงเล็กน้อย แต่มีหนึ่งสิ่งที่ทุกซอฟต์แวร์จะให้ผลออกมาที่ไม่สามารถ นำไปใช้งานได้ทันที แต่ต้องรอการประมวลผลเพิ่มเติมเพื่อขจัดสิ่งที่รบกวนออกไปหรือที่เรียกว่า สัญญาณ รบกวน (noise)

2.2.2 งานวิจัยเรื่อง The Use of Nadir and Oblique UAV Images for Building Knowledge

ในงานวิจัยนี้มีวัตถุประสงค์ที่จะนำเสนอการศึกษาความแม่นยำของการวัดสิ่งปลูกสร้าง เช่น ความกว้าง ความสูง พื้นที่และปริมาตร ที่มาจากแบบจำลอง 3 มิติที่ได้จากการประมวลผลภาพที่ได้จาก ระบบ UAV โดยมีการนำเสนอกรณีศึกษา 2 กรณี กรณีแรกการศึกษาภาพถ่ายแนวดิ่งจริงที่ได้จากระบบ UAV บนพื้นที่ขนาดใหญ่และกรณีศึกษาที่สองจะศึกษาภาพถ่ายแนวดิ่งจริงและภาพถ่ายแนวเฉียงบริเวณ ของอาคาร โดยกรณีศึกษาแรกไม่สามารถประเมินผลลัพธ์ได้อย่างมีประสิทธิภาพ เนื่องจากข้อมูลที่มีความ เฉพาะสำหรับการตรวจสอบความถูกต้องและความไม่แน่นอนของที่มาของข้อมูล อย่างไรก็ตามการศึกษา และตรวจสอบลักษณะข้อมูลของโปรแกรมทั้งสองที่ใช้ในการประมวลผลภาพ คือ Agisoft PhotoScan และ Pix4Dmapper ผลลัพธ์ของโปรแกรมทั้งสอง มีความคล้ายกันในแง่ของความแม่นยำและเวลาในการ ประมวลผลข้อมูล

ในส่วนของกรณีศึกษาที่สองทำให้สามารถตรวจสอบรายละเอียดของผลลัพธ์ได้มากขึ้นผ่าน แบบจำลอง 3 มิติที่ได้จากภาพถ่ายแนวดิ่งจริงและภาพถ่ายแนวเฉียง ความแตกต่างนี้อธิบายได้ผ่าน จำนวนของจุดข้อมูล (Point cloud) ที่สร้างขึ้นจากโปรแกรม Agisoft PhotoScan และ Pix4Dmapper ซึ่งพิจารณาจากผลลัพธ์ที่ได้จากโปรแกรมทั้งสองที่แตกต่างกันพบว่าค่า RMSE ของระยะทางที่ทำการ ตรวจสอบของภาพแนวดิ่งจริงอยู่ในระดับ 6 ซม. สำหรับการประมวลผลด้วย Agisoft PhotoScan และ อยู่ในระดับ 7 ซม. สำหรับการประมวลผลด้วย Pix4Dmapper ในส่วนของภาพถ่ายแนวเฉียงระยะทางอยู่ ที่ประมาณ 3 ซม. สำหรับการประมวลผลด้วย Agisoft PhotoScan และอยู่ในระดับ 2 ซม. สำหรับการ ประมวลผลด้วย Pix4Dmapper จากผลลัพธ์เหล่านี้สรุปได้ว่าการเพิ่มขึ้นของความแม่นยำในการสร้างผิว ข้างของอาคาร สามารถใช้รูปภาพแบบเฉียงเป็นเครื่องมือที่จะช่วยสำหรับการสร้างแบบจำลองอาคาร 3 มิติ โดยเฉพาะอย่างยิ่งหากมีลักษณะเฉพาะด้วยการเข้าถึงที่จำกัด ต้องการข้อมูลที่รวดเร็วและต้นทุนต่ำ

บทที่ 3 ขั้นตอนการดำเนินการ

3.1 เครื่องมือที่ใช้ในงานวิจัย

3.1.1 ข้อมูลที่ใช้ในการวิจัย

3.1.1.1 ข้อมูลภาพถ่ายของระบบกล้องคู่ยูเอวี

ภาพถ่ายที่ได้จากการบันทึกการถ่ายจากระบบกล้องคู่ยูเอวีที่ครอบคลุมทั้งพื้นที่ที่ใช้ใน การศึกษาบริเวณพื้นที่บางขุนเทียน จังหวัดกรุงเทพมหานคร

3.1.1.2 ข้อมูลค่าพิกัดของจุดควบคุมภาพถ่ายและจุดตรวจสอบ

ข้อมูลค่าพิกัดของจุดควบคุมภาคพื้นดิน (Ground Control Point; GCP) และจุด ตรวจสอบ (Check Point; CHK) ในพื้นที่ที่ใช้ในการศึกษาที่ได้จากการรังวัดด้วยดาวเทียมชนิด สองความถี่ ด้วยวิธีการแบบจลน์ในทันที (Real-Time Kinematic; RTK)

3.1.1.3 ข้อมูลค่าพิกัดที่ไปรังวัดภาคพื้นดินเพื่อใช้ในการตรวจสอบความถูกต้อง

ข้อมูลค่าพิกัดที่ไปรังวัดภาคพื้นดินในพื้นที่ที่ใช้ในการศึกษา โดยค่าพิกัดทางราบและค่า พิกัดทางดิ่งได้จากการรังวัดด้วยดาวเทียมชนิดสองความถี่ ด้วยวิธีการแบบจลน์ในทันที (Real-Time Kinematic: RTK)

3.1.2 โปรแกรมคอมพิวเตอร์

โปรแกรม Pix4Dmapper โดยใช้คำสั่งพื้นฐานต่าง ๆ และใช้ชุดคำสั่งเสริม ได้แก่ คำสั่ง สำหรับการประมวลผลภาพถ่ายที่คำนวณค่าตัวจับยึดกล้องที่ใช้หลักการ Relative Position of the Camera Rig, คำสั่ง rayCloud ที่ใช้หลักการ Multiple View Geometry (MVG) ในการ คำนวณหาค่าพิกัดตำแหน่งของจุดที่สนใจ

3.2 การออกแบบการทดลอง

3.2.1 กรณีศึกษา

ในการศึกษาครั้งนี้จะศึกษาแผนที่มาตราส่วนใหญ่และแบบจำลองของอาคารที่ประมวลผลด้วย แบบจำลองกล้องคู่ที่อิสระต่อกันกับแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกันจากภาพถ่ายเฉียงที่ถ่ายได้ จากระบบกล้องคู่ยูเอวี ซึ่งใช้จุดควบคุมภาคพื้นดินและจุดตรวจสอบในการประมวลผลด้วย โดยจะแบ่ง กรณีศึกษาได้ดังนี้

- 3.2.1.1 กรณีศึกษาความถูกต้องเชิงตำแหน่งของแผนที่มาตราส่วนใหญ่ สามารถแบ่งได้ดังนี้
- 1) ความถูกต้องเชิงตำแหน่งของจุดควบคุมภาคพื้นดินและจุดตรวจสอบที่ใช้ในการ ประมวลผล
- 2) ความถูกต้องเชิงตำแหน่งของข้อมูลค่าพิกัดที่ไปรังวัดภาคพื้นดินเทียบกับข้อมูลที่ ประมวลผลขึ้นได้
- 3) ความถูกต้องเชิงตำแหน่งของจุดตรวจสอบที่คำนวณได้จากชุดคำสั่งเสริมของ โปรแกรมที่ใช้ในการประมวลผลระหว่างแผนที่ที่ผลิตด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันกับ แบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน
- 3.2.1.2 กรณีศึกษาความสามารถในการลอกลายบนแผนที่ (Delineation) จะพิจารณาแผนที่ มาตราส่วนใหญ่ที่ผลิตขึ้นว่าสามารถขีดเส้นของแผนที่หรือสามารถลากเส้นไปตามรายละเอียดบนแผนที่ได้
- 3.2.1.3 กรณีศึกษาแบบจำลองอาคารโดยพิจารณาบริเวณฟาซาด จะพิจารณาอาคารสิ่งปลูก สร้างหนึ่งหลังในพื้นที่ที่ทำการศึกษา เพื่อศึกษาฟาซาดของอาคารสิ่งปลูกสร้างที่ประมวลผลขึ้นได้

3.2.2 จุดมุ่งหมายในการประมวลผล

3.3 ขั้นตอนการดำเนินการ

3.3.1 ออกแบบแผนการบินและบินถ่ายภาพ

ทำการออกแบบแผนการบินถ่ายภาพแบบกริดตามหลักการทางโฟโตแกรมเมตรีด้วย โปรแกรม Ardupilot ให้ครอบคลุมพื้นที่ที่ใช้ในการศึกษาและบินถ่ายภาพด้วยอากาศยานไร้คนขับ Foxtech Nimbus VTOL V2 for Mapping and Survey ที่ ติ ด ตั้ง Semidetached Loading System เพื่อใช้ในการจับยึดกล้องทั้งสองตัว กำหนดความสูงของการบินที่ระดับความสูงเฉลี่ย 215 เมตร ทำการถ่ายภาพให้มีระยะส่วนซ้อนของภาพ (Overlap) 80% และส่วนเกย (Side lap) 60% ประกอบด้วยแนวบินจำนวน 6 แนว (นำมาใช้ประมวลผลเพียง 5 แนวบิน) โดยทำการบินถ่ายเมื่อ วันที่ 17 มิถุนายน 2562 ภาพถ่ายเฉียงที่บันทึกได้สามารถครอบคลุมพื้นที่ออกไปได้ไกลกว่า ตำแหน่งจุดเปิดถ่ายภาพเป็นอย่างมาก โดยสามารถครอบคลุมพื้นที่ได้ถึง 1.4 ตารางกิโลเมตร (โดย ในส่วนของการออกแบบและลงภาคสนาม เพื่อไปเก็บข้อมูลต่าง ๆ ได้ใช้ข้อมูลจากงานวิจัยของนิสิต ปริญญาโทนายจเด็จ ไพศาลสิทธิกานต์)

รูปที่ 3.1 แผนการบินถ่ายภาพแบบกริดตามหลักการทางโฟโตแกรมเมตรีด้วยโปรแกรม Ardupilot ให้ ครอบคลุมพื้นที่ที่ใช้ในการศึกษา

รูปที่ 3.2 อากาศยานไร้คนขับยี่ห้อ Foxtech Nimbus VTOL V2

รูปที่ 3.3 Semidetached Loading System สำหรับ Map-02 Mapping Camera

รูปที่ 3.4 กล้องที่ติดตั้งบนเครื่องยูเอวี Foxtech Map-02 Mapping Camera

3.3.2 กำหนดตำแหน่งและทำการรังวัดจุดควบคุมภาคพื้นดินและจุดตรวจสอบ

กำหนดตำแหน่งจุดควบคุมภาคพื้นดินและจุดตรวจสอบให้กระจายและครอบคลุมพื้นที่ ลง พื้นที่จริงเพื่อทำการรังวัดจุดควบคุมภาคพื้นดินและจุดตรวจสอบ เพื่อให้ได้ค่าพิกัดของจุดมาใช้ใน การประมวลผลในโปรแกรมเป็นจุดควบคุมภาคพื้นดินและจุดตรวจสอบที่มีค่าพิกัดทางราบและทาง ดิ่ง ซึ่งทำการรังวัดจุดมาทั้งหมด 11 จุด แต่เลือกใช้เพียง 9 จุด เลือกเฉพาะจุดที่เห็นได้ชัดบนภาพ และกระจายอยู่ในพื้นที่ที่ทำการศึกษา โดยแบ่งเป็นจุดควบคุมภาคพื้นดิน 5 จุดและจุดตรวจสอบ ความถูกต้อง 4 จุด ทำการรังวัดด้วยดาวเทียมชนิดสองความถี่ ด้วยวิธีการแบบจลน์ในทันที (Real-Time Kinematic; RTK) (โดยในส่วนของการออกแบบและลงภาคสนาม เพื่อไปเก็บข้อมูลต่าง ๆ ได้ใช้ข้อมูลจากงานวิจัยของนิสิตปริญญาโทนายจเด็จ ไพศาลสิทธิกานต์)

รูปที่ 3.5 การกระจายตัวของจุดควบคุมภาคพื้นดินและจุดตรวจสอบในบริเวณพื้นที่ที่ศึกษา

3.3.3 การประมวลผลภาพถ่ายทางอากาศ

ทำการประมวลผลภาพถ่ายจากอากาศยานไร้คนขับ โดยใช้โปรแกรม Pix4Dmapper มี ขั้นตอนในการประมวลผล ดังนี้

- 1) นำเข้าข้อมูลภาพถ่ายและข้อมูลค่าพิกัดของจุดควบคุมภาคพื้นดินและจุดตรวจสอบ เพื่อทำการประมวลผลข้อมูล โดยแบ่งการประมวลผลเป็น 2 แบบ ได้แก่ ประมวลผลด้วย แบบจำลองกล้องคู่ที่อิสระต่อกันและประมวลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน ซึ่ง ใช้ภาพถ่ายทั้งหมด 430 ภาพ จุดควบคุมภาพถ่าย 5 จุด และจุดตรวจสอบ 4 จุด
- 2) เริ่มต้นการประมวลผลข้อมูลโดยเลือก Initial Processing เพื่อทำการจัดเรียงแนว ภาพถ่ายรวมถึงคำนวณค่าพารามิเตอร์ต่าง ๆ
- 3) ทำการรังวัดจุดควบคุมภาคพื้นดินและจุดตรวจสอบให้ครบทุกรูป เพื่อนำไปใช้ในการ ประมวลผลในการตรึงค่าพิกัดเชิงตำแหน่ง หลังจากนั้นทำการ Reoptimize และทำการตรวจสอบ Quality Report
- 4) ทำการประมวลผลข้อมูล Point Cloud, DSM และ Orthophoto โดยเลือก Point Cloud and Mesh และ DSM, Orthomosaic and Index หลังจากที่โปรแกรมประมวลผลข้อมูล จนถึงขั้นตอนสุดท้ายจะได้ผลลัพธ์ของข้อมูลคือ แผนที่ภาพถ่ายทางอากาศและแบบจำลองอาคาร บริเวณพื้นที่ที่ใช้ในการประมวลผล

3.3.4 วิเคราะห์และเปรียบเทียบผลลัพธ์ที่ได้จากการประมวลผลด้วยระบบกล้องคู่ยูเอวี

3.3.4.1 วิเคราะห์และเปรียบเทียบความถูกต้องเชิงตำแหน่งของแผนที่ที่ได้จากการ ประมวลผลด้วยระบบกล้องคู่ยูเอวี ได้แก่ ความถูกต้องเชิงตำแหน่งของจุดควบคุมภาคพื้นดินและ จุดตรวจสอบที่ใช้ในการประมวลผล, ความถูกต้องเชิงตำแหน่งของข้อมูลค่าพิกัดที่ไปรังวัด ภาคพื้นดินเทียบกับข้อมูลที่ประมวลผลขึ้นได้ และความถูกต้องเชิงตำแหน่งของจุดตรวจสอบที่ คำนวณได้จากชุดคำสั่งเสริมของโปรแกรมที่ใช้ในการประมวลผลระหว่างแผนที่ที่ผลิตจากการ ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันกับแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน

- 3.3.4.2 วิเคราะห์ความสามารถในการลอกลายบนแผนที่ โดยพิจารณาแผนที่มาตราส่วน ใหญ่ที่ผลิตขึ้นว่าสามารถขีดเส้นของแผนที่หรือสามารถลากเส้นไปตามรายละเอียดบนแผนที่ได้ผ่าน การมองด้วยตา
- 3.3.4.3 วิเคราะห์แบบจำลองอาคารโดยพิจารณาบริเวณฟาซาด โดยพิจารณาอาคารสิ่ง ปลูกสร้างหนึ่งหลังในพื้นที่ที่ทำการศึกษา เพื่อศึกษาฟาซาดของอาคารสิ่งปลูกสร้างที่ประมวลผลขึ้น ได้ผ่านการมองด้วยตา

บทที่ 4 ผลการวิเคราะห์ข้อมูล

4.1 ผลการคำนวณความสัมพันธ์ของค่าพารามิเตอร์ของกล้องคู่บนยูเอวี

4.1.1 ค่าพารามิเตอร์ภายนอกที่สัมพัทธ์กันของกล้องคู่บนยูเอวี จากการคำนวณด้วยโปรแกรม Pix4Dmapper ทำให้สามารถหาค่าพารามิเตอร์ที่มีความสัมพันธ์กันของตัวจับยึดกล้อง (Camera Rig) หรือค่าที่กล้องสองตัวมี ตำแหน่งและทิศทางที่สัมพัทธ์กันได้ตามตารางที่แสดงด้านล่าง

Camera Rig								
Exterior orienta	tion parameters	Camera Right	Camera Left					
Translation	Х	0.060						
Translation	Y	0.000						
(meter)	Z	0.000	Reference					
Dotation	ω	31.644	Camera					
Rotation	φ	31.866						
(degree)	К	-87.566						

ตารางที่ 4.1 ตารางความสัมพันธ์ของค่าพารามิเตอร์ภายนอกสัมพัทธ์ของกล้องทั้งสองตัว

รูปที่ 4.1 การอ้างอิงตำแหน่งของกล้องแต่ละตัวในมุมมองสามมิติ

รูปที่ 4.2 ลักษณะค่าพารามิเตอร์การหมุนสัมพัทธ์ของกล้องขวาที่ติดตั้งอยู่บนยูเอวีในมุมมองสองมิติ

4.1.2 ความสัมพันธ์ของระยะห่างของภาพที่ถ่ายจากกล้องทั้งสองที่ติดตั้งอยู่บนยูเอวี

รปแบบการประมวลผล	ระยะห่างระหว่างกล้องทั้งสองตัว						
រឺ ក <i>ខ</i> ក ករ រ ។ ១ ។ ១ ។ ១ ២ ២ ១	Min (m.)	Max (m.)	Mean (m.)	Standard Deviation (m.)			
ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน	0.060	0.060	0.060	0.000			
ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน	0.488	2.953	1.552	0.380			

ตารางที่ 4.2 ตารางค่าทางสถิติของระยะห่างของคู่ภาพที่ทำการถ่ายภาพบนยูเอวี

4.2 ผลการประมวลผลแผนที่มาตราส่วนใหญ่

- 4.2.1 กรณีศึกษาความถูกต้องเชิงตำแหน่งของแผนที่มาตราส่วนใหญ่ สามารถแบ่งได้ดังนี้
 - 1.) ความถูกต้องเชิงตำแหน่งของจุดควบคุมภาคพื้นดินและจุดตรวจสอบที่ใช้ในการประมวลผล

Point label	Point Description	GCP measured X	GCP estimated X	Diff in X	Diff in X^2	GCP measured Y	GCP estimated Y	Diff in Y	Diff in Y^2	Diff in X^2 + Diff in Y^2
DOL-03	Ground Control Point	655357.171	655357.1686	0.002	0.000006	1503643.234	1503643.234	0.000	0.000000	0.000006
DOL-06	Ground Control Point	655311.938	655311.9455	-0.007	0.000056	1503978.675	1503978.677	-0.002	0.000005	0.000061
DOL-11	Ground Control Point	655500.982	655500.9762	0.006	0.000034	1504125.499	1504125.5	-0.001	0.000001	0.000035
DOL-16	Ground Control Point	655368.926	655368.9284	-0.002	0.000006	1504348.763	1504348.762	0.001	0.000000	0.000006
DOL-19	Ground Control Point	655005.050	655005.0483	0.002	0.000003	1503774.511	1503774.508	0.003	0.000009	0.000012
							•		Sum	0.000
									Average	0.000
									RMSE XY (m.)	0.005
Point label	Type Point	CHK measured X	CHK estimated X	Diff in X	Diff in X^2	CHK measured Y	CHK estimated Y	Diff in Y	RMSE XY (m.) Diff in Y^2	0.005 Diff in X^2 + Diff in Y^2
Point label DOL-02	Type Point Check Point	CHK measured X 655155.374	CHK estimated X 655155.440	Diff in X -0.066	Diff in X^2 0.004293		CHK estimated Y 1503706.269	Diff in Y		
	,					1503706.269			Diff in Y^2	Diff in X^2 + Diff in Y^2
DOL-02	Check Point	655155.374	655155.440	-0.066	0.004293	1503706.269 1503814.071	1503706.269	0.000	Diff in Y^2 0.000000	Diff in X^2 + Diff in Y^2 0.004293
DOL-02 DOL-07	Check Point Check Point	655155.374 655366.687	655155.440 655366.709	-0.066 -0.022	0.004293 0.000489	1503706.269 1503814.071	1503706.269 1503814.126	0.000	Diff in Y^2 0.000000 0.002991	Diff in X^2 + Diff in Y^2 0.004293 0.003481 0.004053
DOL-02 DOL-07 DOL-09	Check Point Check Point Check Point	655155.374 655366.687 655129.315	655155.440 655366.709 655129.324	-0.066 -0.022 -0.009	0.004293 0.000489 0.000088	1503706.269 1503814.071 1504161.883	1503706.269 1503814.126 1504161.820	0.000 -0.055 0.063	Diff in Y^2 0.000000 0.002991 0.003966	Diff in X^2 + Diff in Y^2 0.004293 0.003481 0.004053
DOL-02 DOL-07 DOL-09	Check Point Check Point Check Point	655155.374 655366.687 655129.315	655155.440 655366.709 655129.324	-0.066 -0.022 -0.009	0.004293 0.000489 0.000088	1503706.269 1503814.071 1504161.883	1503706.269 1503814.126 1504161.820	0.000 -0.055 0.063	Diff in Y^2 0.000000 0.002991 0.003966 0.000046	Diff in X^2 + Diff in Y^2 0.004293 0.003481 0.004053

ตารางที่ 4.3 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบของจุดควบคุมภาคพื้นดินและจุดตรวจสอบ โดยประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน

Point label	Point Description	GCP measured Z	GCP estimated Z	Diff in Z	Diff in Z^2
DOL-03	Ground Control Point	1.054	1.05720948	-0.003	0.0000
DOL-06	Ground Control Point	1.034	1.033436905	0.001	0.0000
DOL-11	Ground Control Point	1.352	1.347268443	0.005	0.0000
DOL-16	Ground Control Point	0.224	0.227826919	-0.004	0.0000
DOL-19	Ground Control Point	1.197	1.195229717	0.002	0.0000
				Sum	0.000
				Average	0.000
				RMSE Z (m.)	0.003
Point label	Type Point	CHK measured Z	CHK estimated Z	Diff in Z	Diff in Z^2
DOL-02	Check Point	0.914	0.936992943	-0.023	0.0005
DOL-07	Check Point	0.915	0.859679212	0.055	0.0031
DOL-09	Check Point	1.191	0.928098192	0.263	0.0691
DOL-10	Check Point	0.339	0.222905842	0.116	0.0135
				Sum	0.086
				Average	0.022
				RMSE Z (m.)	0.147

ตารางที่ 4.4 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางดิ่งของจุดควบคุมภาคพื้นดินและจุดตรวจสอบ โดย ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน

Point label	Point Description	GCP measured X	GCP estimated X	Diff in X	Diff in X^2	GCP measured Y	GCP estimated Y	Diff in Y	Diff in Y^2	Diff in X^2 + Diff in Y^2
DOL-03	Ground Control Point	655357.171	655357.1682	0.003	0.000008	1503643.234	1503643.234	0.000	0.000000	0.000008
DOL-06	Ground Control Point	655311.938	655311.9485	-0.011	0.000111	1503978.675	1503978.672	0.003	0.000007	0.000118
DOL-11	Ground Control Point	655500.982	655500.9792	0.003	0.000008	1504125.499	1504125.502	-0.003	0.000011	0.000019
DOL-16	Ground Control Point	655368.926	655368.924	0.002	0.000004	1504348.763	1504348.762	0.001	0.000002	0.000006
DOL-19	Ground Control Point	655005.05	655005.0471	0.003	0.000008	1503774.511	1503774.512	-0.001	0.000000	0.000009
									Sum	0.000
									Average	0.000
									RMSE XY (m.)	0.006
Point label	Type Point	CHK measured X	CHK estimated X	Diff in X	Diff in X^2	CHK measured Y	CHK estimated Y	Diff in Y	Diff in Y^2	Diff in X^2 + Diff in Y^2
DOL-02	Check Point	655155.374	655155.4429	-0.069	0.004749	1503706.269	1503706.214	0.055	0.003014	0.007763
DOL-07	Check Point	655366.687	655366.775	-0.088	0.007753	1503814.071	1503814.125	-0.054	0.002872	0.010625
DOL-09	Check Point	655129.315	655129.3577	-0.043	0.001824	1504161.883	1504161.746	0.137	0.018860	0.020684
DOL-10	Check Point	655326.822	655326.8794	-0.057	0.003294	1504156.9	1504156.85	0.050	0.002477	0.005771
									Sum	0.045
									Average	0.011
									RMSE XY (m.)	0.106

ตารางที่ 4.5 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบของจุดควบคุมภาคพื้นดินและจุดตรวจสอบ โดยประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน

Point label	Point Description	GCP measured Z	GCP estimated Z	Diff in Z	Diff in Z^2
DOL-03	Ground Control Point	1.054	1.053724044	0.000	0.000
DOL-06	Ground Control Point	1.034	1.032258942	0.002	0.000
DOL-11	Ground Control Point	1.352	1.353596627	-0.002	0.000
DOL-16	Ground Control Point	0.224	0.223597227	0.000	0.000
DOL-19	Ground Control Point	1.197	1.19782316	-0.001	0.000
				Sum	0.000
				Average	0.000
				RMSE Z (m.)	0.001
Point label	Type Point	CHK measured Z	CHK estimated Z	Diff in Z	Diff in Z^2
DOL-02	Check Point	0.914	0.991384159	-0.077	0.0060
DOL-07	Check Point	0.915	0.634828782	0.280	0.0785
DOL-09	Check Point	1.191	1.203579548	-0.013	0.0002
DOL-10	Check Point	0.339	0.319778121	0.019	0.0004
				Sum	0.085
				Average	0.021
				RMSE Z (m.)	0.146

ตารางที่ 4.6 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางดิ่งของจุดควบคุมภาคพื้นดินและจุดตรวจสอบ โดย ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน

2) ความถูกต้องเชิงตำแหน่งของข้อมูลค่าพิกัดที่ไปรังวัดภาคพื้นดินเทียบกับข้อมูลที่ประมวลผลขึ้นได้

Point label	Point Description	measured X Ground Survey	measured X Manual TiePoint	Diff in X	Diff in X^2	measured Y Ground Survey	measured Y Manual Tie Point	Diff in Y	Diff in Y^2	Diff in X^2+ Diff in
CHK-1	Check Point	655240.430	655240.347	0.083	0.006856	1504511.892	1504511.913	-0.021	0.000432	0.007288
CHK-2	Check Point	655217.661	655217.611	0.050	0.002485	1504428.989	1504428.993	-0.004	0.000015	0.002500
CHK-3	Check Point	655178.444	655178.488	-0.044	0.001970	1504409.979	1504409.910	0.069	0.004811	0.006780
CHK-4	Check Point	655148.369	655148.260	0.109	0.011784	1504263.127	1504263.244	-0.117	0.013708	0.025491
CHK-5	Check Point	655150.573	655150.550	0.023	0.000541	1504217.397	1504217.491	-0.094	0.008855	0.009396
CHK-6	Check Point	655129.978	655130.016	-0.038	0.001414	1504153.586	1504153.531	0.055	0.002977	0.004391
CHK-7	Check Point	655090.539	655090.495	0.044	0.001949	1504133.213	1504133.323	-0.110	0.012135	0.014084
CHK-8	Check Point	655101.088	655101.183	-0.095	0.009077	1504067.117	1504067.214	-0.097	0.009483	0.018560
CHK-9	Check Point	655067.292	655067.254	0.038	0.001458	1503958.943	1503958.885	0.058	0.003341	0.004799
CHK-10	Check Point	655168.861	655168.900	-0.039	0.001533	1503933.644	1503933.688	-0.044	0.001908	0.003441
CHK-11	Check Point	655238.469	655238.506	-0.037	0.001342	1503996.007	1503996.101	-0.094	0.008917	0.010259
CHK-12	Check Point	655011.229	655011.246	-0.017	0.000277	1503888.318	1503888.278	0.040	0.001604	0.001881
CHK-13	Check Point	655006.553	655006.671	-0.118	0.013927	1503780.685	1503780.611	0.074	0.005450	0.019377
CHK-14	Check Point	654984.292	654984.343	-0.051	0.002648	1503705.489	1503705.594	-0.105	0.011044	0.013692
CHK-15	Check Point	654966.963	654966.952	0.011	0.000122	1503636.313	1503636.409	-0.096	0.009286	0.009409
CHK-16	Check Point	655078.472	655078.564	-0.092	0.008528	1503708.793	1508708.714	0.079	0.006242	0.014770
CHK-17	Check Point	655177.002	655177.075	-0.073	0.005368	1503702131	1503702209	-0.078	0.006053	0.011421
CHK-18	Check Point	655185.961	655185.930	0.031	0.000980	1503846.500	1503846.533	-0.033	0.001107	0.002087
CHK-19	Check Point	655281.288	655281.237	0.051	0.002634	1503835.179	1503835.232	-0.053	0.002771	0.005405
CHK-20	Check Point	655371.067	655371.098	-0.031	0.000969	1503818359	1503818.259	0.100	0.010086	0.011055
CHK-21	Check Point	655386.120	655386.177	-0.057	0.003252	1503789.585	1503789.562	0.023	0.000515	0.003766
CHK-22	Check Point	655352682	655352.737	-0.055	0.003036	1503653.489	1503653.401	0.088	0.007780	0.010816
CHK-23	Check Point	655447.819	655447.942	-0.123	0.015087	1503796.346	1503796.436	-0.090	0.008022	0.023109
CHK-24	Check Point	655459.834	655459.753	0.081	0.006626	1503856.969	1503856.949	0.020	0.000393	0.007019
CHK-25	Check Point	655146.705	655146.786	-0.081	0.006493	1504308329	1504308343	-0.014	0.000189	0.006682
									Sum	0.151
									Average	0.006
									RMSE XY (m.)	0.078

ตารางที่ 4.7 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบของข้อมูลค่าพิกัดที่ไปรังวัดภาคพื้นดินเทียบกับ ข้อมูลที่ประมวลผลขึ้นได้ด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน

Point label	Point Description	measured Z Ground Survey	measured Z Manual TiePoint	Diff in Z	Diff in Z^2
CHK-1	CheckPoint	1.287	0.797	0.4899	0.2400
CHK-2	CheckPoint	1.227	0.746	0.4811	0.2315
CHK-3	CheckPoint	1.307	1.103	0.2042	0.0417
CHK-4	CheckPoint	1.928	1.764	0.1642	0.0270
CHK-5	CheckPoint	1.284	1.216	0.0677	0.0046
CHK-6	CheckPoint	1.089	0.836	0.2531	0.0640
CHK-7	CheckPoint	1.196	0.743	0.4529	0.2051
CHK-8	CheckPoint	1.137	1.968	-0.8308	0.6903
CHK-9	CheckPoint	1.131	0.848	0.2831	0.0801
CHK-10	CheckPoint	1.199	1.067	0.1318	0.0174
CHK-11	CheckPoint	1.334	1.309	0.0255	0.0006
CHK-12	CheckPoint	1.481	1.408	0.0728	0.0053
CHK-13	CheckPoint	1.215	1.093	0.1219	0.0149
CHK-14	CheckPoint	1.289	1.206	0.0834	0.0070
CHK-15	CheckPoint	1.232	1.187	0.0453	0.0021
CHK-16	CheckPoint	1.122	1.367	-0.2449	0.0600
CHK-17	CheckPoint	0.905	1.323	-0.4176	0.1744
CHK-18	CheckPoint	0.963	0.956	0.0070	0.0000
CHK-19	CheckPoint	1.048	1.059	-0.0111	0.0001
CHK-20	CheckPoint	0.836	0.681	0.1547	0.0239
CHK-21	CheckPoint	1.347	1.144	0.2026	0.0411
CHK-22	CheckPoint	1.030	1.313	-0.2832	0.0802
CHK-23	CheckPoint	0.862	1.203	-0.3406	0.1160
CHK-24	CheckPoint	0.972	1.120	-0.1479	0.0219
CHK-25	CheckPoint	2.716	2.338	0.3775	0.1425
				Sum	0.690
				Average	0.028
		с		RMSE Z (m.)	0.166

ตารางที่ 4.8 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางดิ่งของข้อมูลค่าพิกัดที่ไปรังวัดภาคพื้นดินเทียบกับ ข้อมูลที่ประมวลผลขึ้นได้ด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน

Point label	Point Description	measured X Ground Survey	measured X Manual TiePoint	Diff in X	Diff in X^2	measured Y Ground Survey	measured Y Manual TiePoirt	Diff in Y	Diff in Y^2	Diff in X^2+ Diff in
CHK-1	Check Point	655240.430	655240:378	0.052	0.002683	1504511.892	1504511.830	0.062	0.003871	0.006554
CHIF-2	Check Point	655217.661	655217.701	-0.040	0.001612	1504428.989	1504428.912	0.077	0.005948	0.007560
CHIG3	Check Point	655178.444	655178.364	0.080	0.006339	1504409.979	1504409.929	0.050	0.002536	0.008876
CHI64	Check Point	655148.369	655148.390	-0.021	0.000460	1504263.127	1504263.166	-0.039	0.001527	0.001987
CHIV-5	Check Point	655150.573	655150.656	-0.083	0.006846	1504217.397	1504217.469	-0.072	0.005199	0.012045
CHIG6	Check Point	655129.978	655130.096	-0.118	0.013830	1504153.586	1504153.676	-0.090	0.008179	0.022008
CHK-7	Check Point	655090.539	655090.585	-0.046	0.002102	1504133.213	1504133.297	-0.084	0.007083	0.009185
CHK-8	Check Point	655101.088	655101.150	-0.062	0.003878	1504067.117	1504067.149	-0.032	0.001048	0.004926
CHIG9	Check Point	655067.292	655067.371	-0.079	0.006211	1503958.943	1503958.979	-0.036	0.001310	0.007522
CHK-10	Check Point	655168.861	655168.857	0.004	0.000015	1503933.644	1503933.553	0.091	0.008339	0.008354
CHK-11	Check Point	655238.469	655238.532	-0.063	0.003923	1503996.007	1503996.052	-0.045	0.002064	0.005987
CHK-12	Check Point	655011.229	655011.210	0.019	0.000374	1503888.318	1503888.392	-0.074	0.005469	0.005843
CHK-13	Check Point	655006.553	655006.483	0.070	0.004898	1503780.685	1503780.716	-0.031	0.000972	0.005870
CHK-14	Check Point	654984.292	654984.188	0.104	0.010721	1503705.489	1503705.579	-0.090	0.008116	0.018837
CHK-15	Check Point	654966.963	654966.944	0.019	0.000363	1503636.313	1503636.447	-0.134	0.018054	0.018418
CHK-16	Check Point	655078.472	655078.407	0.065	0.004180	1503708.793	1503708.736	0.057	0.003.250	0.007430
CHK-17	Check Point	655177.002	655177.033	-0.031	0.000978	1503702.131	1503702.235	-0.104	0.010775	0.011753
CHK-18	Check Point	655185.961	655185.916	0.045	0.002053	1503846.500	1503846.604	-0.104	0.010872	0.012924
CHK-19	Check Point	655281.288	655281.272	0.016	0.000267	1503835.179	1503835.103	0.076	0.005831	0.006098
CHK-20	Check Point	655371.067	655371.013	0.054	0.002902	1503818.359	1503818.282	0.077	0.005995	0.008897
CHK-21	Check Point	655386.120	655386.156	-0.036	0.001298	1503789.585	1503789.511	0.074	0.005429	0.006727
CHK-22	Check Point	655352.682	655352787	-0.105	0.011046	1503653.489	1503653.424	0.065	0.004252	0.015298
CHK-23	Check Point	655447.819	655447.826	-0.007	0.000047	1503796.346	1503796.309	0.037	0.001401	0.001448
CHK-24	Check Point	655459.834	655459.781	0.053	0.002852	1503856.969	1503857.041	-0.072	0.005209	0.008060
CHK-25	Check Point	655146.705	655146.643	0.062	0.003896	1504308.329	1504308.397	-0.068	0.004591	0.008488
									Sum	0.142
									Average	0.006
									RMSE XY (m.)	0.075

ตารางที่ 4.9 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบของข้อมูลค่าพิกัดที่ไปรังวัดภาคพื้นดินเทียบกับ ข้อมูลที่ประมวลผลขึ้นได้ด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน

Point label	Point Description	measured Z Ground Survey	measured Z Manual TiePoint	Diff in Z	Diff in Z^2
CHK-1	Check Point	1.287	0.919	0.368	0.1353
CHK-2	Check Point	1.227	0.937	0.290	0.0842
CHK-3	Check Point	1.307	1.219	0.088	0.0078
CHK-4	Check Point	1.928	2.250	-0.322	0.1036
CHK-5	Check Point	1.284	1.133	0.151	0.0227
CHK-6	Check Point	1.089	0.812	0.277	0.0768
CHK-7	Check Point	1.196	0.546	0.650	0.4224
CHK-8	Check Point	1.137	3.227	-2.090	4.3673
CHK-9	Check Point	1.131	1.297	-0.166	0.0275
CHK-10	Check Point	1.199	1.196	0.003	0.0000
CHK-11	Check Point	1.334	0.344	0.990	0.9810
CHK-12	Check Point	1.481	1.234	0.247	0.0609
CHK-13	Check Point	1.215	0.977	0.238	0.0566
CHK-14	Check Point	1.289	1.643	-0.354	0.1250
CHK-15	Check Point	1.232	1.292	-0.060	0.0036
CHK-16	Check Point	1.122	0.768	0.354	0.1254
CHK-17	Check Point	0.905	1.545	-0.640	0.4091
CHK-18	Check Point	0.963	0.704	0.259	0.0671
CHK-19	Check Point	1.048	1.022	0.026	0.0007
CHK-20	Check Point	0.836	0.571	0.265	0.0700
CHK-21	Check Point	1.347	0.676	0.671	0.4498
CHK-22	Check Point	1.030	1.918	-0.888	0.7890
CHK-23	Check Point	0.862	1.057	-0.195	0.0379
CHK-24	Check Point	0.972	1.164	-0.192	0.0368
CHK-25	Check Point	2.716	2.079	0.637	0.4052
				Sum	3.618
				Average	0.145
				RMSE Z (m.)	0.380

ตารางที่ 4.10 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางดิ่งของข้อมูลค่าพิกัดที่ไปรังวัดภาคพื้นดินเทียบกับ ข้อมูลที่ประมวลผลขึ้นได้ด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน

3) ความถูกต้องเชิงตำแหน่งของจุดตรวจสอบที่คำนวณได้จากชุดคำสั่งเสริมของโปรแกรมที่ใช้ในการ ประมวลผล (ชุดคำสั่งที่ใช้คือคำสั่ง rayCloud) ระหว่างแผนที่ที่ผลิตจากการประมวลผลด้วยแบบจำลอง กล้องคู่ที่อิสระต่อกันและแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน

Point label	Point Description	measured X Model_1	measured X Model_2	Diff in X	Diff in X^2	measured Y Model_1	measured Y Model_2	Diff in Y	Diff in Y^2	Diff in X^2 + Diff in Y^2
CHK-1	Check Point	655137.263	655137.255	0.008	0.00006	1504260.062	1 504 260.051	0.011	0.000121	0.000185
CHK-2	Check Point	654988.710	654988.694	0.016	0.00026	1503747.397	1 503747.403	-0.006	0.000036	0.000292
CHK-3	Check Point	655244.998	655244.97 2	0.026	0.00068	1504150.438	1 5041 50.404	0.034	0.001156	0.001832
CHK-4	Check Point	655240.255	655240.180	0.075	0.00562	1504548.811	1 504548.755	0.056	0.003136	0.008761
CHK-5	Check Point	655299.382	655299.34 2	0.040	0.00160	1504717.632	1 504717.534	0.098	0.009604	0.011204
CHK-6	Check Point	655136.886	655136.907	-0.021	0.00044	1503871.798	1 503871.750	0.048	0.00 2304	0.002745
CHK-7	Check Point	655448.133	655448.128	0.005	0.00003	1503799.813	1 503799.77 2	0.041	0.001681	0.001706
CHK-8	Check Point	655055.671	655055.618	0.053	0.00281	1503944.446	1 503944.367	0.079	0.006241	0.009050
CHK-9	Check Point	655080.837	655080.811	0.026	0.00068	1503564.756	1 503564.744	0.012	0.000144	0.000820
CHK-10	Check Point	655164.142	655164.084	0.058	0.00336	1504146.389	1 504146.320	0.069	0.004761	0.008125
								Sum	0.045	
	Model_1 : ประมวลด้วยแบบจำลองกล้องศูที่มีความสัมพันธ์ต่อกัน , Model_2 : ประมวลด้วยแบบจำลองกล้องศูที่อิสระต่อกัน								Average	0.004
								RMSE XY (m.)	0.067	

ตารางที่ 4.11 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบระหว่างแผนที่ที่ประมวลผลด้วยแบบจำลอง กล้องคู่ที่อิสระต่อกันและแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน

Point label	Point Description	measured Z Model_1	measured Z Model_2	Diff in Z	Diff in Z^2
CHK-1	Check Point	1.048	0.915	0.133	0.0177
CHK-2	Check Point	1.640	1.567	0.073	0.0053
CHK-3	Check Point	0.341	0.302	0.039	0.0015
CHK-4	Check Point	1.578	1.288	0.290	0.0841
CHK-5	Check Point	1.676	1.340	0.336	0.1129
CHK-6	Check Point	0.815	0.544	0.271	0.0734
CHK-7	Check Point	1.025	1.211	-0.186	0.0346
CHK-8	Check Point	1.490	1.305	0.185	0.0342
CHK-9	Check Point	1.338	1.180	0.158	0.0250
CHK-10	Check Point	0.300	0.144	0.156	0.0243
	Model_1:ประมวลด้ว	Sum	0.413		
	Model 2: ประมวลด์	Average	0.041		
	MOGEC_2: 09811789	RMSE Z (m.)	0.203		

ตารางที่ 4.12 ตารางการคำนวณค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางดิ่งระหว่างแผนที่ที่ประมวลผลด้วยแบบจำลอง กล้องคู่ที่อิสระต่อกันและแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน

4.2.2 กรณีศึกษาความสามารถในการลอกลายบนแผนที่ (Delineation) ของแผนที่มาตราส่วนใหญ่

ตารางที่ 4.13 ตารางการเปรียบเทียบแผนที่มาตราส่วนใหญ่ที่ผลิตผ่านการประมวลผลด้วยแบบแบบจำลองกล้องคู่ที่อิสระต่อกัน และแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน

4.3 ผลการประมวลผลแบบจำลองของอาคาร

กรณีศึกษาแบบจำลองอาคารโดยพิจารณาบริเวณฟาซาดของอาคารสิ่งปลูกสร้าง

ตารางที่ 4.14 ตารางการเปรียบเทียบแบบจำลองอาคารที่ผลิตผ่านการประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันและ แบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน (1)

ตารางที่ 4.15 ตารางการเปรียบเทียบแบบจำลองอาคารที่ผลิตผ่านการประมวลผล ด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันและ แบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน (2)

บทที่ 5

อภิปรายผล สรุปผล และข้อเสนอแนะ

จากผลการศึกษางานวิจัยบทที่ 4 ผลการดำเนินงานวิจัย ในหัวข้อการวิเคราะห์ระบบกล้องคู่ยูเอวีเพื่อใช้ ทำแผนที่และแบบจำลองอาคารสามารถสรุปผล อภิปรายผลและข้อเสนอแนะการศึกษาได้ดังนี้

5.1 อภิปรายผล

5.1.1 ความสัมพันธ์ของค่าพารามิเตอร์ภายนอกของกล้อง

จากการประมวลผลภาพถ่ายด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกันพบว่าโปรแกรม Pix4Dmapper สามารถประมวลผลค่าพารามิเตอร์ภายนอกของกล้องได้ใกล้เคียงกับลักษณะความเป็นจริง ทางกายภาพของตัวจับยึดกล้องที่ติดตั้งอยู่บนยูเอวี ซึ่งมีค่าพารามิเตอร์ภายนอกของกล้องขวาเทียบกับกล้อง ซ้ายคือค่าการเคลื่อนที่ (แกน \times มีค่าเท่ากับ 0.060 เมตร, แกน \times และแกน \times มีค่าเท่ากับ 0.000 เมตร) ค่า การหมุน (มุม \times มีค่าเท่ากับ 31.644 องศา, มุม \times มีค่าเท่ากับ 31.866 องศาและมุม \times มีค่าเท่ากับ -87.566 องศา)

5.1.2 ความสัมพันธ์ของระยะห่างของภาพที่ถ่ายจากกล้องทั้งสองที่ติดตั้งอยู่บนยูเอวี

หลังจากนำภาพไปประมวลผลผ่านโปรแกรมจนครบทุกขั้นตอนได้นำข้อมูลตำแหน่งของภาพแต่ ละภาพที่โปรแกรมคำนวณได้มาศึกษา เพื่อวิเคราะห์ความเป็นจริงทางกายภาพของระบบกล้องคู่ยูเอวีพบว่า ระยะห่างของภาพซ้ายและภาพขวาที่จุดเปิดถ่ายเดียวกัน เมื่อประมวลผลด้วยแบบจำลองกล้องคู่ที่มี ความสัมพันธ์ต่อกันจะมีค่าระยะห่างเท่ากับ 6 เซนติเมตรทุกคู่ภาพ ซึ่งตรงกับลักษณะความเป็นจริงทาง กายภาพของระบบกล้องคู่ ในทางกลับกันค่าระยะห่างที่ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันให้ ค่าระยะห่างในระดับเมตรที่ไม่ตรงกับลักษณะความเป็นจริงทางกายภาพของระบบกล้องคู่

5.1.3 ความถูกต้องเชิงตำแหน่งของแผนที่มาตราส่วนใหญ่

			رو		
	ש פ	0 1	4 6	ଲାର ହର	
1)	000010000011000		0.00.000.000.000.000.000	ะจุดตรวจสอบที่ใช้ในการเ	1000000
- 1 - 1	VP	9	אווורופערוערושו וזורושור	(91091091) 1916 917 17/11/9117 17 17 17	เวะมานเน
1./	110 10001111110 10 0 11	7 100 1 100 1 10 10 10 1	011000111111101100010	, niii g g ngio o ii g g g ii i g g	וסואוסס וסשס כ
	ข	9	9	9	

ประเภทของจด	ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน		ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน		
ก ระยา พ.ก.ศ. ส์ พ	RMSE XY (m.)	RMSE Z (m.)	RMSE XY (m.)	RMSE Z (m.)	
จุดควบคุมภาคพื้นดิน (5 จุด)	0.006	0.001	0.005	0.003	
จุดตรวจสอบ (4 จุด)	0.106	0.146	0.058	0.147	

ตารางที่ 5.1 ตารางการเปรียบเทียบค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบและทางดิ่งของจุดควบคุมภาคพื้นดินและ จุดตรวจสอบระหว่างแผนที่ที่ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันและแบบจำลองกล้องคู่ที่มี ความสัมพันธ์ต่อกัน

ค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบและทางดิ่งของจุดควบคุมภาคพื้นดินมีค่าอยู่ ในระดับมิลลิเมตรทั้งการประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันและแบบจำลองกล้องคู่ที่มี ความสัมพันธ์ต่อกัน ในส่วนของจุดตรวจสอบค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบการ ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันให้ค่าคลาดเคลื่อนที่น้อยกว่าแบบจำลองกล้องคู่ที่มี ความสัมพันธ์ต่อกัน ทางดิ่งมีค่าใกล้เคียงกันทั้งการประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันและ แบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน

2.) ความถูกต้องเชิงตำแหน่งของข้อมูลค่าพิกัดที่ไปรังวัดภาคพื้นดินเทียบกับข้อมูลที่ประมวลผลขึ้นได้

ประเภทของจด	ประมวลผลด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน		ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน		
ก ระยเพ กด/ สั่งเ	RMSE XY (m.)	RMSE Z (m.)	RMSE XY (m.)	RMSE Z (m.)	
จุดตรวจสอบจากข้อมูลที่ได้จาก	0.075	0.380	0.078	0.166	
การรังวัดภาคพื้นดิน (25 จุด)					

ตารางที่ 5.2 ตารางการเปรียบเทียบค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบและทางดิ่งของจุดตรวจสอบที่ได้จากการ รังวัดภาคพื้นดินระหว่างแผนที่ที่ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันและแบบจำลองกล้องคู่ที่มี ความสัมพันธ์ต่อกัน

ค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบของจุดตรวจสอบที่ได้จากการรังวัด ภาคพื้นดินมีค่าใกล้เคียงกันทั้งการประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันและแบบจำลองกล้องคู่ที่ มีความสัมพันธ์ต่อกัน ในส่วนของทางดิ่งการประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันให้ค่า คลาดเคลื่อนที่น้อยกว่าแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกันประมาณสองเท่า

3.) ความถูกต้องเชิงตำแหน่งของจุดตรวจสอบที่คำนวณได้จากชุดคำสั่งเสริมของโปรแกรมที่ใช้ในการ ประมวลผล

	แผนที่ที่ผลิตมาจากการประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันและแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน		
ประเภทของจุด	RMSE XY (m.)	RMSE Z (m.)	
จุดตรวจสอบ (10 จุด) ที่คำนวณ จากคำสั่ง rayCloud ในโปรแกรม	0.067	0.203	

ตารางที่ 5.3 ตารางการเปรียบเทียบค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบและทางดิ่งของจุดตรวจสอบที่คำนวณจาก คำสั่ง rayCloud ในโปรแกรมระหว่างแผนที่ที่ประมวลผลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันและแบบจำลอง กล้องคู่ที่มีความสัมพันธ์ต่อกัน

จุดตรวจสอบที่ได้จากการคำนวณผ่านโปรแกรมด้วยคำสั่ง rayCloud ที่เปรียบเทียบความถูกต้อง เชิงตำแหน่งระหว่างแผนที่ที่ผลิตจากการประมวลด้วยแบบจำลองกล้องคู่ที่อิสระต่อกันและแบบจำลองกล้อง คู่ที่มีความสัมพันธ์ต่อกันมีค่าความคลาดเคลื่อนรากที่สองของค่าเฉลี่ยทางราบ 0.067 เมตร และทางดิ่ง 0.203 เมตร

5.1.4 ความสามารถในการลอกลายบนแผนที่ (Delineation) จะพิจารณาแผนที่มาตราส่วนใหญ่ที่ผลิตขึ้นว่า สามารถลอกลายบนแผนที่หรือสามารถลากเส้นไปตามรายละเอียดบนแผนที่ได้

จากการดูและพิจารณาแผนที่ที่ผลิตขึ้นพบว่าแผนที่ที่ผลิตด้วยแบบจำลองกล้องคู่ที่อิสระต่อกัน และแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกันสามารถผลิตแผนที่ที่สามารถลอกลายรายละเอียดบนแผนที่ได้ แต่ในบางบริเวณของแผนที่จะมีเส้นเหลี่ยมของวัตถุที่ไม่คมชัด เนื่องมาจากการผลิตแผนที่จะสร้างมาจาก แบบจำลองพื้นผิว (Digital Surface Model; DSM) ที่โปรแกรมได้สร้างขึ้น ถ้าโปรแกรมสามารถสร้าง แบบจำลองพื้นผิวได้มีประสิทธิภาพสูงจะส่งผลให้แผนที่ที่ผลิตขึ้นมีประสิทธิภาพสูงด้วย กล่าวคือแผนที่ที่ได้ แก้ไขความคลาดเคลื่อนที่เกิดจากความสูงต่ำของภูมิประเทศและแบบจำลองพื้นผิวของสิ่งปลูกสร้าง ซึ่งการ ผลิตแผนที่ส่วนมากจะใช้ภาพถ่ายดิ่งจริง (Nadir image) ในการประมวลผล แต่การประมวลผลครั้งนี้ใช้ ภาพถ่ายเฉียง (Oblique image) ในการประมวลผลพื้นผิวที่ทำให้แผนที่ที่ผลิตขึ้นมีบางส่วนที่เส้น เหลี่ยมไม่คมชัด ซึ่งส่งผลมากจากแบบจำลองพื้นผิวที่ประมวลผลขึ้นจากภาพถ่ายเฉียงที่ยังไม่มีประสิทธิภาพ พอ

5.1.5 แบบจำลองอาคารโดยพิจารณาบริเวณฟาซาด จะพิจารณาอาคารสิ่งปลูกสร้างหนึ่งหลังในพื้นที่ที่ ทำการศึกษา เพื่อศึกษาฟาซาดของอาคารสิ่งปลูกสร้างที่ประมวลผลขึ้นได้

จากการดูและพิจารณาแบบจำลองอาคารที่ผลิตขึ้นพบว่าแบบจำลองอาคารที่ผลิตขึ้นทั้ง แบบจำลองกล้องคู่ที่อิสระต่อกันและแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกันให้แบบจำลองอาคารในเรื่อง ของฟาซาดไปในทิศทางเดียวกันก็คือมีประสิทธิภาพของฟาซาดที่มากขึ้นกว่าแบบจำลองอาคารที่ผลิตขึ้นมา จากภาพถ่ายที่ถ่ายจากยูเอวีที่เป็นระบบกล้องเดี่ยวในการทำงานแผนที่ทั่วไป เนื่องจากภาพถ่ายที่ถ่ายได้มา จากระบบกล้องคู่เป็นภาพถ่ายเฉียง ทำให้ภาพสามารถบันทึกฟาซาดของอาคารสิ่งปลูกสร้างได้มากขึ้น รวมถึงมีจำนวนภาพถ่ายที่มากขึ้นจากการถ่ายภาพด้วยระบบกล้องคู่ ส่งผลให้เมื่อนำไปประมวลผลใน โปรแกรมสามารถจับคู่ภาพที่ตำแหน่งใด ๆ ได้มากขึ้นทำให้สามารถผลิตแบบจำลองได้อย่างมีประสิทธิภาพ

5.2 สรุปผลงานวิจัย

5.2.1 สรุปผลการวิจัยความถูกต้องเชิงตำแหน่งของแผนที่มาตราส่วนใหญ่

จากการศึกษาวิธีการประมวลภาพถ่ายที่ถ่ายมาจากระบบกล้องคู่ยูเอวีพบว่าสามารถประมวลผล ภาพถ่ายโดยให้โปรแกรมคำนึงถึงลักษณะความเป็นจริงทางกายภาพของระบบกล้องคู่ได้ เพื่อให้การ ประมวลผลในการผลิตแผนที่และแบบจำลองของอาคารมีความถูกต้องเชิงตำแหน่งที่ตรงกับความเป็นจริง โดยแผนที่ที่ผลิตด้วยแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกันให้ค่าความถูกต้องทางราบ 18 เซนติเมตร ทาง ดิ่ง 29 เซนติเมตร และแบบจำลองกล้องคู่ที่อิสระต่อกันให้ค่าความถูกต้องทางราบ 10 เซนติเมตร ทางดิ่ง 29 เซนติเมตร (คิดค่าความถูกต้องที่ระดับความเชื่อมั่นที่ 95%) จากค่าที่คำนวณได้จะเห็นได้ว่าแบบจำลองกล้อง คู่ที่อิสระต่อกันจะให้ค่าความคลาดเคลื่อนที่น้อยกว่าแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกัน แต่เมื่อ พิจารณาค่าระยะห่างของคู่ภาพแต่ละคู่ พบว่าแบบจำลองกล้องคู่ที่มีความสัมพันธ์ต่อกันสามารถคงลักษณะ ความเป็นจริงทางกายภาพได้ ซึ่งแสดงให้เห็นว่าถึงแม้ค่าความคลาดเคลื่อนของแบบจำลองกล้องคู่ที่อิสระต่อ กันมีค่าที่น้อยกว่า แต่เมื่อคำนวณระยะห่างของคู่ภาพพบว่ามีค่าระยะห่างที่ไม่คงที่เหมือนกับลักษณะความ เป็นจริงทางกายภาพ เพราะฉะนั้นควรเลือกใช้แผนที่ที่ผลิตด้วยวิธีการประมวลผลด้วยแบบจำลองกล้องคู่ที่มี ความสัมพันธ์ต่อกัน

5.2.2 สรุปผลการวิจัยความสามารถในการลอกลายบนแผนที่มาตราส่วนใหญ่

จากการพิจารณาแผนที่มาตราส่วนใหญ่จากการมองด้วยตาที่ผลิตขึ้นจากการใช้ภาพถ่ายเฉียง พบว่าสามารถขีดเส้นหรือลากเส้นรายละเอียดบนแผนที่ได้ แต่มีบางส่วนของแผนที่จะมีเส้นเหลี่ยมของวัตถุที่ ไม่คมชัด ซึ่งสามารถทำให้มีความคมชัดขึ้นได้ผ่านการหาภาพถ่ายทางอากาศที่บินถ่ายในมุมอื่น ๆ มาทดแทน โดยบริเวณของแผนที่ที่ต้องการเพิ่มความคมชัดให้เลือกบริเวณนั้นของภาพถ่ายทางอากาศที่บินถ่ายมา โดยที่

บริเวณนั้นต้องเป็นบริเวณกลางภาพ เนื่องจากบริเวณกลางภาพมีความคลาดเคลื่อนที่เกิดจากความสูงต่ำของ ภูมิประเทศ (Relief displacement) น้อยที่สุด ซึ่งบางครั้งเรียกบริเวณนี้ว่า "Neat Area"

5.2.3 สรุปผลการวิจัยแบบจำลองอาคารโดยพิจารณาบริเวณฟาซาด

จากการพิจารณาฟาซาดของแบบจำลองอาคารจากการมองด้วยตาที่ผลิตขึ้นจากการใช้ภาพถ่าย เฉียงในการประมวลผลทั้งสองแบบพบว่าไม่ได้มีความแตกต่างกัน รวมถึงแบบจำลองที่สร้างได้มีประสิทธิภาพ ของฟาซาดที่ดีกว่าแบบจำลองอาคารที่ประมวลผลมาจากภาพถ่ายดิ่งที่ถ่ายจากยูเอวีทั่วไป แสดงให้เห็นว่า ภาพถ่ายเฉียงและจำนวนภาพที่มากขึ้นช่วยเพิ่มประสิทธิภาพในการผลิตแบบจำลองอาคาร

5.3 ข้อเสนอแนะ

- 1. จำนวนพื้นที่ที่ทำการบิน จำนวนจุดควบคุมภาคพื้นดิน และจำนวนจุดตรวจสอบที่ใช้ในงานวิจัยนี้มี จำนวนน้อย ซึ่งอาจทำให้ผลการวิจัยออกมาไม่มีความถูกต้องมากนัก โดยเฉพาะความถูกต้องเชิงตำแหน่ง ของแผนที่ ในการวิจัยครั้งต่อไปควรมีขนาดพื้นที่ที่กว้างขึ้นและจำนวนจุดที่มากกว่านี้
- 2. ในการบินถ่ายครั้งหน้าควรบินถ่ายด้วยยูเอวีที่เป็นระบบกล้องเดี่ยวด้วยในพื้นที่ที่ทำการศึกษา จะได้ สามารถนำมาศึกษาและเปรียบเทียบความแตกต่างของแผนที่และแบบจำลองอาคารที่ผลิตขึ้นได้
- 3. ในกรณีการศึกษาความสามารถในการลอกลายบนแผนที่อาจเพิ่มประสิทธิภาพความคมชัดของวัตถุบน แผนที่ให้ดียิ่งขึ้น โดยลองบินถ่ายภาพให้ค่าระยะส่วนซ้อนของภาพ (Overlap) และส่วนเกย (Side lap) มีค่าที่มากขึ้น ซึ่งส่งผลให้มีภาพที่ซ้อนทับมากขึ้นและจำนวนภาพที่มากขึ้นในการประมวลผลข้อมูล
- 4. ในกรณีการศึกษาประสิทธิภาพฟาซาดของอาคารต้องทำการศึกษาภาพที่ใช้ในการประมวลผลหลาย ประเภท รวมถึงรูปแบบการบินหลายรูปแบบ เช่น ภาพถ่ายดิ่งจริงบินแบบกริด, ภาพถ่ายเฉียงบินแบบ กริด และภาพถ่ายเฉียงบินเป็นวงกลมรอบอาคารสิ่งปลูกสร้าง เป็นต้น
- 5. เพิ่มประสิทธิภาพระบบบันทึกการถ่ายภาพของระบบกล้องคู่ยูเอวีที่ทำการเชื่อมต่อรายละเอียดข้อมูลที่ ถ่ายภาพจากระบบกล้องให้ผู้ใช้สามารถติดตามผลได้ เนื่องจากการเชื่อมต่อรายละเอียดข้อมูลภาพถ่ายใน การปฏิบัติครั้งนี้ผู้ใช้ไม่ทราบการทำงานระหว่างที่ระบบทำการเชื่อมต่อรายละเอียดข้อมูลในขณะที่มีการ ถ่ายภาพ

เอกสารอ้างอิง

- Aicardi, I., Chiabrando, F., Grasso, N., Lingua, A. M., Noardo, F., & Spanò, A. (2016). UAV

 Photogrammetry with Oblique Images: First Analysis on Data Acquisition and Processing.

 The International Archives of the Photogrammetry, Remote Sensing and Spatial

 Information Sciences, Volume XLI-B1.
- Vacca, G., Dessì, A., & Sacco, A. (2017). The Use of Nadir and Oblique UAV Images for Building Knowledge. International Journal of Geo-Information.
- Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., & Sarazzi, D. (2011). UAV Photogrammetry for Mapping and 3D Modeling. *International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, Volume XXXVIII-1/C22.
- James, M. R., Robson, S., d'Oleire-Oltmanns, S., & Niethammer, U. (2017). UAV Topographic Surveys Processed with Structure-From-Motion: Ground Control Quality, Quantity and Bundle Adjustment. Geomorphology 280, pp. 51-66.
- Forlani, G., Dall'Asta, E., Diotri, F., Morra di Cella, U., Roncella, R., & Santise, M. (2018). Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning. Remote Sensing 10(2), 311.
- Nex, F., & Remondino, F. (2014). UAV for 3D Mapping Applications: a Review, Applied Geomatics 6(1), pp. 1-15
- Chen, L. (2017). Ultra-Efficient Photogrammetry with Pix4Dmapper Pro's Multi-Camera Rig Processing. Retrieved from http://www.gisresources.com/ultra-efficient-photogrammetry-pix4dmapper-pros-multi-camera-rig-processing/
- How are the Internal and External Camera Parameters defined?. (2019, November 2). Retrieved from https://support.pix4d.com/hc/en-us/articles/202559089-How-are-the-Internal-and-External-Camera-Parameters-defined

- Foxtech Nimbus VTOL V2 for Mapping and Survey. (2019, November 2). Retrieved from https://gettbs.in/product/foxtech-nimbus-vtol-v2-for-mapping-and-surveyx9d-combo/
- Foxtech Map-02 Mapping Camera. (2019, November 2). Retrieved from https://www.foxtechfpv.com/foxtech-map-01-camera.html
- Semidetached Loading System for Map-02 Mapping Camera. (2019, November 2). Retrieved from https://www.foxtechfpv.com/semidetached-loading-system-for-map-02-mapping-camera.html
- วิชัย เยี่ยงวีรชน. (2557). การสำรวจทางวิศวกรรม 1 (พิมพ์ครั้งที่ 2). กรุงเทพมหานคร: สำนักพิมพ์แห่ง จุฬาลงกรณ์มหาวิทยาลัย.

ภาคผนวก ก

ขั้นตอนการตั้งค่าโปรแกรมในการประมวลผลภาพถ่ายจากระบบกล้องคู่ยูเอวี

หลังจากที่ได้ทำการลงพื้นที่ไปบินถ่ายภาพจนเสร็จเรียบร้อยแล้ว ให้นำข้อมูลภาพถ่ายออกจากตัวกล้องลง คอมพิวเตอร์ที่ใช้ในการประมวลผลและทำการเปลี่ยนชื่อภาพให้ไม่เหมือนกัน เนื่องจากระบบกล้องคู่ยูเอวีตัวกล้อง ที่ใช้ในการถ่ายภาพจะทำการถ่ายภาพและบันทึกภาพที่มีชื่อที่เหมือนกันทั้งสองกล้องที่ทำการถ่าย ถ้าหากไม่ทำการเปลี่ยนชื่อจะส่งผลต่อขั้นตอนในการประมวลผล คือ จะทำให้ไฟล์ชื่อภาพที่ได้จากกล้องซ้ายและขวาซ้ำกัน โปรแกรมจะแยกภาพไม่ออกว่ามาจากกล้องซ้ายหรือกล้องขวา ทำให้โมเดลไม่เป็นระเบียบไม่สามารถประมวลผล ในลำดับต่อไปได้ โดยต้องเข้าไป rename ในตัว exif ไฟล์ ในกรณีนี้ยูเอวีประกอบไปด้วยกล้องสองตัว ได้แก่ กล้อง ซ้ายและกล้องขวา จึงเปลี่ยนชื่อภาพที่มาจากกล้องซ้ายโดยเพิ่มตัวอักษร L (Left) จาก DSC00039_geotag_LJPG และเปลี่ยนชื่อภาพที่มาจากกล้องขวาโดยเพิ่มตัวอักษร R (Right) จาก DSC00039_geotag_LJPG เป็น DSC00039_geotag_RJPG โดยให้ทำการเปลี่ยนชื่อไฟล์ภาพทั้งหมดที่จะใช้ในการ ประมวลผล และบันทึกภาพแยกไว้เป็นโฟลเดอร์กล้องซ้ายและกล้องขวา เพื่อเตรียมความพร้อมให้กับข้อมูลที่ใช้ใน การประมวลผล

ขั้นตอนการตั้งค่าโปรแกรมในการประมวลผลภาพถ่าย

1. ทำการคลิกไปที่โปรแกรม Pix4Dmapper ที่ติดตั้งอยู่บนคอมพิวเตอร์ หลังจากนั้นให้กดไปที่ New Project (กรอบสีแดง) เพื่อทำการสร้างโปรเจคงานที่จะทำขึ้น

2. หลังจากกดคำสั่ง New Project โปรแกรมจะแสดงหน้าต่างใหม่ขึ้นมาให้ทำการตั้งชื่อโปรเจค กำหนด โฟลเดอร์ที่ทำการบันทึกโปรเจค และต้องเลือก Project Type แบบ New Project with Camera Rig เพื่อให้โปรแกรมเข้าใจว่าการประมวลผลในครั้งนี้โปรแกรมจะต้องประมวลผลด้วยแบบจำลองกล้องคู่ที่มี ความสัมพันธ์ต่อกัน

3. หลังจากนั้นโปรแกรมจะแสดงหน้าต่างใหม่ขึ้นมา เพื่อให้ผู้ใช้เลือกภาพถ่ายที่จะใช้ในการประมวลผล ซึ่ง จากขั้นตอนการเตรียมข้อมูลที่ได้ทำการสร้างโฟลเดอร์กล้องซ้ายและกล้องขวาไว้แล้ว ในขั้นตอนนี้ให้ทำ การเลือกโฟลเดอร์ของภาพที่ได้ทำการสร้างไว้แล้ว โดยคลิกที่ปุ่ม Add Directories (กรอบสีแดง)

4. หลังจากเลือกโฟลเดอร์ของภาพเสร็จแล้วให้กดปุ่ม Next โปรแกรมจะทำการโหลดข้อมูลภาพถ่ายเข้ามา ในโปรแกรม

5. โปรแกรมจะแสดงหน้าต่างใหม่ขึ้นมา ซึ่งเป็นหน้าต่างที่ให้ผู้ใช้กำหนดพารามิเตอร์ต่าง ๆ ของการ ประมวลผลแบบคำนวณค่าตัวจับยึดกล้อง บรรทัดแรก คือ สามารถสร้างหรือกำหนด Camera Rig Model ขึ้นได้ โดยคลิกที่ปุ่ม New แล้วทำการตั้งชื่อโมเดลในช่อง Rig Model Name บรรทัดต่อมาแสดง ให้เห็นถึงจำนวนกล้องที่ผู้ใช้ใช้ในการประมวลผล โปรเจคนี้ก็คือ 2 กล้อง ในบรรทัดต่อมาจะแสดงถึงการ เลือกใช้กล้องหมายเลขใดเป็นกล้องอ้างอิง โดยกล้องที่ไม่ได้ถูกเลือกให้เป็นกล้องอ้างอิงจะมีค่าพารามิเตอร์ ภายนอกสัมพัทธ์กับกล้องอ้างอิง บรรทัดถัดมาเป็นส่วนของ Processing Mode จะอธิบายในข้อที่ 6. และ ส่วนสุดท้ายคือตารางที่กำหนดค่าพารามิเตอร์ของการเคลื่อนที่และการหมุน ทั้งหมดที่กล่าวมาผู้ใช้ สามารถกำหนดค่าต่าง ๆ ได้เองเพื่อให้ตรงกับลักษณะความเป็นจริงทางกายภาพ

- 6. ในส่วนของการกำหนด Processing Mode จะมีให้เลือกทั้งหมด 6 โหมดขึ้นอยู่กับความต้องการในการ ประมวลผลข้อมูล ได้แก่
 - 1. Rely on relatives คือ โหมดที่จะคำนวณค่าพารามิเตอร์สัมพัทธ์ที่ผู้ใช้กำหนด โดยจะอ้างอิงตาม ค่านั้น ไม่มีการปรับแก้ค่าหรือเพิ่มประสิทธิภาพของค่าพารามิเตอร์ต่าง ๆ
 - 2. Optimize Relative Rotation คือ โหมดที่จะทำการปรับแก้ค่าหรือเพิ่มประสิทธิภาพของ ค่าพารามิเตอร์การหมุน โดยอ้างอิงภาพทุกภาพในโปรเจค ซึ่งคงค่าพารามิเตอร์การเคลื่อนที่ไว้
 - 3. Optimize Relative Rotation with a subset of secondaries คือ โหมดที่ใช้หลักการคล้ายกับ โหมด Optimize Relative Rotation แต่จะไม่อ้างอิงภาพทุกภาพในโปรเจค เพื่อเป็นการ ประหยัดเวลาในการประมวลผล เหมาะกับ Multispectral cameras
 - 4. Optimize Independently คือ โหมดที่คำนวณค่าพารามิเตอร์สัมพัทธ์ทั้งหมด โดยจะเหมาะกับ การประมวลผลภาพถ่ายที่มาจากกล้องที่มีขนาดและน้ำหนักกล้องที่มาก เพราะโหมดนี้สามารถ คำนึงถึงเรื่องการสั่นสะเทือนได้
 - 5. Disable rig คือ โหมดที่ไม่สนใจค่าพารามิเตอร์ที่กำหนดและทำการวัดสอบกล้อง
 - 6. Calibrate rig คือ โหมดที่ใช้วัดสอบกล้อง ซึ่งโปรแกรมจะช่วยประมาณค่าพารามิเตอร์ต่าง ๆ ที่ สัมพัทธ์กันในตัวจับยึดกล้องให้ โหมดนี้ต้องใช้หมุดควบคุมภาคพื้นดินประมวลผลด้วย

7. หลังจากกำหนดค่าต่าง ๆ เสร็จแล้วให้กดปุ่ม Save to DB และกดปุ่ม OK เป็นอันเสร็จขั้นตอนในการตั้ง ค่าโปรแกรมในการประมวลผลภาพถ่ายจากระบบกล้องคู่ยูเอวี

8. ขั้นตอนหลังจากนี้จะเหมือนกับการประมวลผลภาพถ่ายผ่านโปรแกรม Pix4Dmapper ทั่วไปที่ใช้ในงาน ทางด้านวิศวกรรม

ภาคผนวก ข

ตารางความแม่นยำของจุดตรวจสอบที่คำนวณจากโปรแกรมโดยใช้คำสั่ง rayCloud

Deint lab al	Point label Point Description	Number of Marked Images	Theoretical Error (m.)		
Point label			Х	Y	Z
CHK-1	Check Point	16	0.008	0.005	0.01
CHK-2	Check Point	15	0.011	0.008	0.013
CHK-3	Check Point	10	0.010	0.009	0.021
CHK-4	Check Point	13	0.003	0.002	0.005
CHK-5	Check Point	10	0.039	0.023	0.052
CHK-6	Check Point	12	0.003	0.003	0.005
CHK-7	Check Point	10	0.037	0.040	0.054
CHK-8	Check Point	10	0.010	0.006	0.015
CHK-9	Check Point	16	0.013	0.014	0.023
CHK-10	Check Point	16	0.013	0.011	0.017

ตารางที่ ข.1 ตารางความแม่นยำของจุดตรวจสอบที่คำนวณจากโปรแกรมโดยใช้คำสั่ง rayCloud ที่ประมวลผลด้วยแบบจำลอง กล้องคู่ที่อิสระต่อกัน

Point labol	Point label Point Description	Number of Marked Images	Theoretical Error (m.)		
Point tabet			Х	Y	Z
CHK-1	Check Point	16	0.117	0.070	0.154
CHK-2	Check Point	15	0.037	0.027	0.047
CHK-3	Check Point	10	0.083	0.069	0.153
CHK-4	Check Point	13	0.115	0.068	0.159
CHK-5	Check Point	10	0.585	0.392	0.914
CHK-6	Check Point	12	0.104	0.090	0.183
CHK-7	Check Point	10	0.101	0.090	0.151
CHK-8	Check Point	10	0.048	0.027	0.085
CHK-9	Check Point	16	0.113	0.128	0.208
CHK-10	Check Point	16	0.082	0.061	0.097

ตารางที่ ข.2 ตารางความแม่นยำของจุดตรวจสอบที่คำนวณจากโปรแกรมโดยใช้คำสั่ง rayCloud ที่ประมวลผลด้วยแบบจำลอง กล้องคู่ที่มีความสัมพันธ์ต่อกัน