4

5

6

7

8

9

10

1

2

1

2

3

1

2

3

What is claimed is:

1	1.	A	method	for	CO	ating	an	impla	nt	com	pris	ing	the
2	steps of												
3		(a	a) cont	acti	na	the	imp	lant	wit	· h	an	amie	0119

- (a) contacting the implant with an aqueous solution of magnesium, calcium, and phosphate ions;
- (b) passing a gaseous weak acid through the aqueous solution;
 - (c) degassing the aqueous solution; and
- (d) allowing the magnesium, calcium, and phosphate ions to precipitate onto the implant to form a coating.
- 2. The method of claim 1 wherein the gaseous weak acid is carbon dioxide.
 - 3. The method of claim 1 wherein the implant is formed from one or more of metal, organic material, polymer or ceramic.
 - 4. The method according to claim 1 wherein the calcium and phosphate ions are present in the aqueous solution in a molar ratio of between about 1 to about 3.
- The method according to claim 1 wherein the calcium and phosphate ions are present in the aqueous solution in a molar ratio of between about 1.5 to about 2.5.
- 1 6. The method according to claim 1 wherein the 2 aqueous solution comprises about 0.5 to about 50 mM calcium 3 ions and about 0.5 to about 20 mM phosphate ions.
- 7. The method according to claim 1 wherein the aqueous solution comprises about 2.5 to about 25 mM calcium ions and about 1.0 to about 10 mM phosphate ions.

1

2

3

1

2

3

1

2

3

1

2

3

- 1 8. The method according to claim 1 wherein the 2 aqueous solution comprises about 0.1 to about 20 mM 3 magnesium ions.
- 9. The method according to claim 1 wherein the aqueous solution comprises about 1.5 to about 10 mM magnesium ions.
- 1 10. The method according to claim 1 wherein the aqueous solution comprises no carbonate ions or less than about 50 mM carbonate ions.
 - 11. The method according to claim 1 wherein the aqueous solution comprises no carbonate ions or less than about 42 mM carbonate ions.
 - 12. The method according to claim 1 wherein the aqueous solution comprises an ionic strength in the range of about 0.1 to about 2 M.
 - 13. The method according to claim 1 wherein the aqueous solution comprises an ionic strength in the range of about 0.15 to about 1.5 M.
 - 14. The method according to claim 1 wherein the gaseous weak acid is passed through the aqueous solution at a pressure of about 0.1 to about 10 bar.
- 1 15. The method according to claim 1 wherein the 2 gaseous weak acid is passed through the aqueous solution at 3 a pressure of about 0.5 to about 1.5 bar.
- 1 16. The method according to claim 1 wherein the 2 aqueous solution has a temperature in the range of between 3 about 5°C to about 80°C.

- 1 17. The method according to claim 1 wherein the 2 aqueous solution has a temperature in the range of between 3 about 5°C to about 50°C.
- 1 18. The method according to claim 1 wherein the implant is treated by a mechanical or chemical surface treatment prior to contacting the implant with the aqueous solution.
 - 19. The method of claim 18 wherein the implant is treated by sand-blasting, scoring, polishing or grounding.
 - 20. The method of claim 18 wherein the implant is treated by contacting with strong mineral acid or an oxidizing agent in a manner to etch the implant.
 - 21. The method of claim 1 wherein the coating comprises magnesium ions, calcium ions and phosphate ions and one or more ions selected from the group consisting of hydroxide, carbonate, chloride, sodium and potassium.
 - 22. The method of claim 1 wherein the coating comprises one or more of amorphous carbonate calcium phosphate, hydroxyapatite, calcium deficient and hydroxyl carbonate apatite, oroctacalcium phosphate, dicalcium phosphate dihydrate or calcium carbonate.
- 1 23. The method of claim 1 wherein the coating has a 2 thickness of about 0.5 to about 100 microns.
- 1 24. The method of claim 1 wherein the coating has a thickness of about 0.5 to about 50 microns.

25. The method of claim 1 further comprising the step										
of contacting a coated implant with a calcifying solution										
comprising calcium and phosphate ions, and allowing a										
precipitate layer of calcium and phosphate ions to form on										
the coated implant.										
26. A device for coating an implant comprising										
(a) reactor vessel;										
(b) heating element operatively connected to the										
reactor vessel;										
(c) implant support;										
(d) stirrer disposed within the reactor vessel;										
(f) inlet and outlet operatively connected to										
the reactor vessel; and										
(g) controlled source of carbon dioxide										
operatively connected to the inlet.										