Complete HMM Forward/Backtracking Table

Given:

- States: Sunny, Cloudy, Rainy
- Observations (3 days):
 - 1. Day 1: Walk
 - 2. Day 2: Umbrella
 - 3. Day 3: Walk
- Initial Distribution: $\pi(Sunny) = \pi(Cloudy) = \pi(Rainy) = 1/3 \approx 0.333$
- Transition Probabilities P(To|From):

From\To	Sunny	Cloudy	Rainy
Sunny	0.25	0.50	0.25
Cloudy	0.33	0.33	0.33
Rainy	0.33	0.33	0.33

• Emission Probabilities P(Behavior|Weather):

Weather	Walk	Umbrella
Sunny	1.00	0.00
Cloudy	0.67	0.33
Rainy	0.33	0.67

1. Forward Algorithm (α)

We compute $\alpha_t(s) = P(O_1,O_2,...,O_t,q_t=s)$. Below is a table of **partial sums** and **final** α **values** for each day.

Day	Observation	Computation	α(Sunny)	α(Cloudy)	α(Rainy)
V0(?)	Initial	$\pi(S) = \pi(C) = \pi(R) = 0.333$	0.333	0.333	0.333
1	Walk	α ₁ (S)=0.333×1.00=0.333 α ₁ (C)=0.333×0.67=0.223 α ₁ (R)=0.333×0.33=0.110	0.333	0.223	0.110
2	Umbrella	For Sunny : Sum = $(0.333 \times 0.25 + 0.223 \times 0.33 + 0.110 \times 0.33) = 0.19314 \rightarrow \times P(U$	$S)=0 \rightarrow \alpha_2(S)=0.000$ For Cloudy: Sum==0.27639 \rightarrow ×0.33=0.09121 For Rainy: Sum==0.19314 \rightarrow ×0.67=0.12940	0.000	0.0912
3	Walk	For Sunny : Sum= $(0.000\times0.25 + 0.0912\times0.33 + 0.1294\times0.33)=0.0728 \rightarrow \times P(W$	S)=1.00=0.0728 For Cloudy : Sum==0.0728 → ×0.67=0.0488 For Rainy : Sum==0.0728 → ×0.33=0.0240	0.0728	0.0488

Total Probability of observations (Walk, Umbrella, Walk):

 $[\ P(0)\ ;=; \alpha_3(\text{text}\{\text{Sunny}\}) + \alpha_3(\text{text}\{\text{Cloudy}\}) + \alpha_3(\text{text}\{\text{Rainy}\})\ ;=; 0.0728 + 0.0488 + 0.0240\ ;=; 0.1456.\]$

2. Backward Algorithm (β)

We compute $\beta_t(s)$ = P(0_{t+1},...,0_t | q_t=s). Initialize β_t =1 at the last time step, then move backward.

Day	Observation Computation	β(Sunny)	β (Cloudy) β (Rainy)
-----	-------------------------	----------	----------------------------------

Вау	Observation Walk	Oborrhotutrations, so $\beta_3(S) = \beta_3(C) = \beta_3(R) = 1$	β(Sunny) 1.0000	B(Cloudy)	β(Rainy)
2	Umbrella	$\beta_2(S)=\sum [a(S\rightarrow j)\times P(Walk$	$\begin{array}{c} j)\times\beta_3(j)]\\ =0.25\times1.0\times1+0.50\times0.67\times1+0.25\times0.33\times1=0.6675\\ \beta_2(C)==0.66\\ \beta_2(R)==0.66 \end{array}$	0.6675	0.6600
1	Walk	$\beta_1(S) = \sum [a(S \rightarrow j) \times P(Umbrella)]$	$\begin{array}{c} j) \times \beta_2(j)] \\ = 0.25 \times 0.00 \times 0.6675 + 0.50 \times 0.33 \times 0.66 + \\ 0.25 \times 0.67 \times 0.66 = 0.21945 \\ \beta_1(C) = \approx 0.2178 \\ \beta_1(R) = \approx 0.2178 \end{array}$	0.2195	0.2178

 $\begin{tabular}{ll} $[P(0) = \sum_{s \in \{S,C,R\}\}} \alpha_1(s), \beta_1(s) = 0.333 \times 0.2195 + 0.223 \times 0.2178 + 0.110 \times 0.2178 \approx 0.1456,] \end{tabular} $$ $[P(0) = \sum_{s \in \{S,C,R\}\}\} \alpha_1(s), \beta_1(s) = 0.333 \times 0.2195 + 0.223 \times 0.2178 + 0.110 \times 0.2178 \approx 0.1456,] \end{tabular} $$ $$ $[P(0) = \sum_{s \in \{S,C,R\}\}\} \alpha_1(s), \beta_1(s) = 0.333 \times 0.2195 + 0.223 \times 0.2178 + 0.110 \times 0.2178 \approx 0.1456,] \end{tabular} $$ $$ $$ $[P(0) = \sum_{s \in \{S,C,R\}\}\} \alpha_1(s), \beta_1(s) = 0.333 \times 0.2195 + 0.223 \times 0.2178 + 0.110 \times 0.2178 \approx 0.1456,] \end{tabular} $$ $$ $$ $[P(0) = \sum_{s \in \{S,C,R\}\}\} \alpha_1(s), \beta_1(s) = 0.333 \times 0.2195 + 0.223 \times 0.2178 + 0.110 \times 0.2178 \approx 0.1456,] \end{tabular} $$ $$ $$ $[P(0) = \sum_{s \in \{S,C,R\}\}\} \alpha_1(s), \beta_1(s) = 0.333 \times 0.2195 + 0.223 \times 0.2178 + 0.110 \times 0.2178 \approx 0.1456,] \end{tabular} $$ $$ $[P(0) = \sum_{s \in \{S,C,R\}\}\} \alpha_1(s), \beta_1(s) = 0.333 \times 0.2195 + 0.223 \times 0.2178 + 0.110 \times 0.2178 \approx 0.1456,] \end{tabular} $$ $$ $[P(0) = \sum_{s \in \{S,C,R\}\}\} \alpha_1(s), \beta_1(s) = 0.333 \times 0.2195 + 0.223 \times 0.2178 + 0.2178 \times 0.2178 = 0.2178 = 0.2178 \times 0.2178 = 0$

MDP Process Table

Iteration	State	V(s)	Q(State,C)	Q(State,A)	Policy(s)
0	Low	0.00	-	-	N/A
	Medium	0.00	-	-	N/A
	High	0.00	-	-	N/A
1	Low	-1.00	-1.18	-0.46	Aggressive (A)
	Medium	3.00	6.24	6.60	Aggressive (A)
	High	5.00	9.32	8.96	Conservative(C)
2	Low	-0.46	-0.1432	1.1276	Aggressive (A)
	Medium	6.60	9.6744	10.164	Aggressive (A)
	High	9.32	13.1432	12.6536	Conservative(C)
3	Low	1.12	1.62	3.26	Aggressive (A)
	Medium	10.16	12.94	13.48	Aggressive (A)
	High	13.14	16.54	16.007	Conservative(C)