Celdas Intemperie Elecond

PLANILLA DE INTERCONEXIONES P.E. 4803-01

RECONQUISTA:

Domicilio Comercial y Administración: Patricio Diez 175 Tel. Rot. (03482) 421940 • Fax: (03482) 421944 Planta Industrial: Parque Industrial Reconquista

Tel./Fax Rot.: (03482) 429810 • 3560 Reconquista - Sta. Fe - Argentina

AVELLANEDÀ:

San Martin 900 • Tel. (03482) 482482 • 3561 Avellaneda - Sta. Fe - Argentina

Management System ISO 9001:2015

> www.tuv.com ID 9105073234

CA	CABLE N°.: P1/P2 FORMACION:											
	ORIGEN			DESTINO								
	PASO1		PASO2									
/ENA	BORNE	NUMERO	BORNE	VENA	NUMERO	TENSION	TAG		OBSERVA	CIONES		
1	XB1/1-1- 82	200e	XB1/2-2- 81	1	200e	110VCC		1,5mm²				
2	2											
3	3											
4	4											
	******		Cliente:					Fecha	Manahas	Denominación:	N° Plano:	Uoio NIº:
PROY	Electroli		Chente:	EL ECC++	D	Dibuis		10/4/2025	Nombre G.MIÑO			Hoja N°:
11	Cicona	185	ΛC1 C	ELECON		Dibujo		10/4/2025	G.MINO	Interconexiones		1
			CELL	AS INTE	VIPERIE	Reviso				ETAPA1-ETAPA	2 Reemplaza:	
						Aprobo						5

C	ABLE N°.:	D/P1			FO	RMACION:				ı	NOTAS:		
	ORIGEN		l c	DESTINO									
	OUCTO ENTR			ETAPA 1									
/ENA	BORNE	NUMERO	BORNE	VENA	NUMERO	TENSION	TAG		OBSERVA	ACIONES			
1	XB3- 221	200b	XB1/1-1- 81	1	200b	+110VCC		1,5mm²					
2	XB1- 52	PIC0/1	XB5/1-1- 401	3	PIC0/1	F- 220Vca		2,5mm²					
3	XB5- 408	PIC2A/1	XB5/1-1- 401	4	PIC2A/1	F- 220Vca		1,5mm²					
4	XB1- 56	NIC0/1	XB5/1-1- 404/5	5	NIC0/1	N- 220Vca		2,5mm²					
5	XB6/1-511	129/1	XB6/1-1-511	6	129/1	+110VCC		1,5mm ²					
6	XB6/1-512	130/1	XB6/1-1-512	7	130/1	+110VCC		1,5mm ²					
7	XB1/1-80	216/1	XB1/1-1-80	8	216/1	+110VCC		1,5mm ²					
8	XB1/1- 14	NC4/1	XB1/1-1 13	9	NC4/1	-110VCC		1,5mm ²					
9	XB2/1- 101	101/1	XB2/1-1- 101	10	101/1	+110VCC		1,5mm²					
10	XB2/1- 102	102/1	XB2/1-1- 102	11	102/1	-110VCC		1,5mm²					
11	XB2/1- 103	103/1	XB2/1-1- 103	12	103/1	-110VCC		1,5mm²					
12	XB2/1- 104	104/1	XB2/1-1- 104	13	104/1	-110VCC		1,5mm²					
13	XB2/1- 105	105/1	XB2/1-1- 105	14	105/1	-		1,5mm ²					
14	XB2/1- 106	106/1	XB2/1-1- 106	15	106/1	-110VCC		1,5mm²					
15	XB2/1- 107	107/1	XB2/1-1- 107	16	107/1	-110VCC		1,5mm²					
16	XB2/1- 108	108/1	XB2/1-1- 108	17	108/1	-110VCC		1,5mm²					
17	XB2/1- 110	110/1	XB2/1-1- 110	18	110/1	-110VCC		1,5mm²					
18	XB2/1- 113	113/1	XB2/1-1- 113	19	113/1	+110VCC		1,5mm ²					
19	XB2/1- 114	114/1	XB2/1-1- 114	20	114/1	+110VCC		1,5mm ²					
20	XB2/1- 115	115/1	XB2/1-1- 115	21	115/1	+110VCC		1,5mm²					
21	XB2/1- 116	116/1	XB2/1-1- 116	22	116/1	+110VCC		1,5mm ²					
22	XB2/1- 117	117/1	XB2/1-1- 117	23	117/1	+110VCC		1,5mm ²					
23	XB2/1- 118	118/1	XB2/1-1- 118	24	118/1	+110VCC		1,5mm ²					
24	XB2/1- 119	119/1	XB2/1-1- 119	25	119/1	+110VCC		1,5mm ²				•	
PRO.	AECCION -		Cliente:					Fecha	Nombre	Denominación:		N° Plano:	Hoja N°:
	Electrol	110		ELECON		Dibujo		10/4/2025	G.MIÑO	Interconexiones		-	2
			CELD.	AS INTEI	MPERIE	Reviso		<u> </u>		DUCTO ENTRADA - E	ETAPA1	Reemplaza:	
						Aprobo							5

CA	ABLE N°.:	D/P1			FO	RMACION:		1,5 mm²		NOTAS):	
	ORIGEN			DESTINO								
DUCTO ENTRADA		ETAPA 1										
ENA	BORNE	NUMERO	BORNE	VENA	NUMERO	TENSION	TAG		OBSERV <i>A</i>	ACIONES		
25	XB2/1- 120	120/1	XB2/1-1- 120	25	120/1	+110VCC		1,5mm ²				
26	XAM-1	1RM1/1	XAM/1-1	26	1RM1/1	-		4mm²				
27	XAM-2	1ROM1/1	XAM/1-1	27	1ROM1/1	-		4mm²				
28	XB1/1-2	PC3/1	-	28	PC3/1	+110VCC		1,5mm ²		PULSADOR		
29	XB1/1-79	215A/1	XB1/1-1-79	29	215A/1	+110VCC		1,5mm ²				
אט ממ	ECCION		Cliente:					Fecha	Nombre	Denominación:	N° Plano:	Hoja N°:
L HOI	Electrol		Olierite.	ELECON	ח	Dibujo		10/4/2025	G.MIÑO	Interconexiones	in i iaiio.	3
11			CELE	AS INTE		Reviso		10/4/2023	G.WIINO	DUCTO ENTRADA - ETAPA1	Reemplaza:	_
			CELL	AS INIE	VII. LIVIE	Aprobo				DOCTO LINTRADA - ETAPAT	i veempiaza.	5 5

C	ABLE N°.:	D/P2			FO	RMACION:		1,5 mm²		N	OTAS:		
	ORIGEN		l r	DESTINO									
				ETAPA 2									
/ENA	BORNE	NUMERO	BORNE	VENA	NUMERO	TENSION	TAG		OBSERV	ACIONES			
1	XB3- 222	200h	XB1/2-2- 82	1	200h	+110VCC		1,5mm ²					
2	XB1- 52	PIC0/2	XB5/2-2- 401	3	PIC0/2	F- 220Vca		2,5mm ²					
3	XB5- 408	PIC2A/2	XB5/2-2- 401	4	PIC2A/2	F- 220Vca		1,5mm²					
4	XB1- 56	NIC0/2	XB5/2-2- 404	5	NIC0/2	N- 220Vca		2,5mm ²					
5	XB6/2-511	129/2	XB6/2-2-511	6	129/2	+110VCC		1,5mm ²					
6	XB6/2-512	130/2	XB6/2-2-512	7	130/2	+110VCC		1,5mm ²					
7	XB1/2-80	218/2	XB1/1-2-80	8	218/2	+110VCC		1,5mm ²					
8	XB1/2- 13	NC4/2	XB1/1-2- 13	9	NC4/2	-110VCC		1,5mm ²					
9	XB2/2- 101	101/2	XB2/2-2- 101	10	101/2	+110VCC		1,5mm²					
10	XB2/2- 102	102/2	XB2/2-2- 102	11	102/2	-110VCC		1,5mm²					
11	XB2/2- 103	103/2	XB2/2-2- 103	12	103/2	-110VCC		1,5mm²					
12	XB2/2- 104	104/2	XB2/2-2- 104	13	104/2	-110VCC		1,5mm ²					
13	XB2/2- 105	105/2	XB2/2-2- 105	14	105/2	-		1,5mm ²					
14	XB2/2- 106	106/2	XB2/2-2- 106	15	106/2	-110VCC		1,5mm²					
15	XB2/2- 107	107/2	XB2/2-2- 107	16	107/2	-110VCC		1,5mm²					
16	XB2/2- 108	108/2	XB2/2-2- 108	17	108/2	-110VCC		1,5mm²					
17	XB2/2- 110	110/2	XB2/2-2- 110	18	110/2	-110VCC		1,5mm²					
18	XB2/2- 113	113/2	XB2/2-2- 113	19	113/2	+110VCC		1,5mm ²					
19	XB2/2- 114	114/2	XB2/2-2- 114	20	114/2	+110VCC		1,5mm ²					
20	XB2/2- 115	115/2	XB2/2-2- 115	21	115/2	+110VCC		1,5mm²					
21	XB2/2- 116	116/2	XB2/2-2- 116	22	116/2	+110VCC		1,5mm ²					
22	XB2/2- 117	117/2	XB2/2-2- 117	23	117/2	+110VCC		1,5mm ²					
23	XB2/2- 118	118/2	XB2/2-2- 118	24	118/2	+110VCC		1,5mm²					
24	XB2/2- 119	119/2	XB2/2-2- 119	25	119/2	+110VCC		1,5mm ²					
PRO.	(ECCION		Cliente:					Fecha	Nombre	Denominación:	N° Pla	no: H	oja N°:
Electroliz ELE			ELECON		Dibujo		10/4/2025	G.MIÑO	Interconexiones			4	
			CELD	AS INTEI	MPERIE	Reviso				DUCTO ENTRADA - E	TAPA2 Reem	olaza: D	
						Aprobo							5

CA	ABLE N°.:	D/P2			FO	RMACION:		1,5 mm²		NOTA	NS:	
	ORIGEN		l i	DESTINO								
DUCTO ENTRADA				ETAPA 2								
ENA	BORNE	NUMERO	BORNE	VENA	NUMERO	TENSION	TAG		OBSERVA	CIONES		
25	XB2/2- 120	120/2	XB2/2-2- 120	25	120/2	+110VCC		1,5mm²				
26	XAM/2-1	1RM1/2	XAM/2-2	26	1RM1/2	-		4mm²				
27	XAM2-2	1R0M1/2	XAM/2-2	27	1R0M1/2	-		4mm²				
28	XB1/2-2	PC3/2	-	28	PC3/2			1,5mm ²		PULSADOR		
29	XB1/1-79	217A/2	XB1/2-79	29	217A/2			1,5mm ²				
PROY	ECCION	<u> </u>	Cliente:					Fecha	Nombre	Denominación:	N° Plano:	Hoja N°:
(Electron	AL.		ELECON	D	Dibujo		10/4/2025	G.MIÑO	Interconexiones	-	5
1			CELD	AS INTEI	MPERIE	Reviso		1		DUCTO ENTRADA - ETAPA	A2 Reemplaza:	: De:
						Aprobo				1		5