*** Applied Machine Learning Fundamentals *** Evaluation of ML Models

Daniel Wehner, M.Sc.

SAPSE / DHBW Mannheim

Winter term 2020/2021

Find all slides on GitHub (DaWe1992/Applied ML_Fundamentals)

Lecture Overview

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Probability Density Estimation

Unit V Regression

Unit VI Classification I

Unit VII Evaluation

Unit VIII Classification II

Unit IX Clustering

Unit X Dimensionality Reduction

Agenda for this Unit

 Evaluation Methods and Data Splits Introduction Cross-Validation / LOO-Validation Data Splits

Evaluation Metrics

Confusion Matrices
Drawback of Accuracy
Precision, Recall and F1-Score
ROC and AUC

3 Cost-sensitive Evaluation

Misclassification Costs Expected Costs and Cost Ratio Selection of optimal Classifiers Calibration of Thresholds

Miscellaneous

Evaluation of Regressors Grid Search and Random Search Bias and Variance

Wrap-Up

Summary
Self-Test Questions
Lecture Outlook
Recommended Literature and further Reading
Meme of the Day

Section: Evaluation Methods and Data Splits

Evaluation of trained Models

- 1 Validation through experts: A domain expert checks plausibility
 - Subjective, time-intensive, costly
 - Often the only option
- Validation on data: Evaluate performance on a separate (!) test set
 - Labeled data is scarce, could be better used for training
 - Fast and simple, no domain knowledge needed
- 3 On-line validation: Test model in a fielded application
 - Bad models may be costly
 - Gives the best estimate for the overall utility

Out-of-Sample Testing

- The performance cannot be measured on the training data (⇒ overfitting!)
- Usually, a portion of the available data is reserved for testing
 - 2/3 for training, 1/3 for testing (evaluation)
 - The model is trained on the training set and evaluated on the test set
- Problems
 - Waste of data
 - Labeling may be expensive
- Solution: Cross-Validation (X-Val)

Cross-Validation (X-Val)

- Split the data set into k equally sized partitions $P = \{p_1, p_2, \dots, p_k\}$
- For each partition p_i do: use p_i for testing and $P \setminus \{p_i\}$ for training
- Average the results; e. g. 4-fold X-Val:

p_1	p_2	p_3	p_4

Leave-One-Out Cross-Validation (LOO X-Val)

- n-fold X-Val
 - *n* is the number of examples
 - Use n-1 examples for training. one example for testing

- Properties
 - Makes best use of the data
 - Very expensive for large data sets (large n)

If k-fold X-Val is performed, we get k trained models!

- Which model is used in production?
- Answer: None. X-Val is only used for error estimation. The final model is trained on the entire data set

Three Splits: Train, Dev/Validation, Test

In practice it is common to split the data into three portions:

Miscellaneous

Wrap-Up

- 1 Training set (used for training as before)
- 2 Dev/Validation set
 - Used for hyper-parameter tuning of the model
 - Using the test set for that would be cheating
- Test set
 - The final model is tested on the test set
 - Test set is used to estimate the generalization error

Stratified splits have the same class dist. as the entire data set

Section: Evaluation Metrics

Types of Errors

- Type I Error: False negatives
 - ullet An instance which is labeled \oplus is classified as \ominus
 - E.g. a spam e-mail is not detected

a. k. a. α/β error

- Type II Error: False positives
 - An instance which is labeled \ominus is classified as \oplus
 - E.g. a non-spam (ham) e-mail is classified as spam

Depending on the context the costs of false negatives and false positives can be different!

Wrap-Up

Confusion Matrices (two Classes)

- How often is class C_i confused with class C_j ?
- Calculate accuracy:

	Classified \oplus	Classified \ominus
ls ⊕	true positives (tp)	false negatives (fn)
ls ⊖	false positives (fp)	true negatives (tn)

$$accuracy = rac{tp+tn}{tp+tn+fp+fn}$$
 $error = 1-accuracy$

Wrap-Up

Confusion Matrices (multiple Classes)

	Α	В	С	D	$oldsymbol{\Sigma}$
Α	$n_{A,A}$	$n_{B,A}$	$n_{C,A}$	$n_{D,A}$	n_A
В	$n_{A,B}$	$n_{B,B}$	$n_{C,B}$	$n_{D,B}$	n_B
С	$n_{A,C}$	$n_{B,C}$	$n_{C,C}$	$n_{D,C}$	n _C
D	$n_{A,D}$	$n_{B,D}$	$n_{C,D}$	$n_{D,D}$	n_D
$oldsymbol{\Sigma}$	$\overline{n_A}$	$\overline{n_B}$	$\overline{n_C}$	$\overline{n_D}$	n

$$accuracy = \frac{n_{A,A} + n_{B,B} + n_{C,C} + n_{D,D}}{n}$$

Drawback of Accuracy

- Real-world data sets are usually imbalanced, i. e. some classes appear more frequently than others
- Example:
 - A data set \mathcal{D} contains two classes \mathcal{C}_1 and \mathcal{C}_2
 - C_1 appears 99 % of the time, C_2 1 % of the time
 - It is easy to reach 99 % accuracy by always predicting the majority class
 - Is this useful? Probably not...

We need some more sophisticated evaluation metrics!

Precision and Recall

Precision: Ratio of tp to all instances predicted as \oplus

$$Precision (P) = \frac{tp}{tp + fp} \tag{1}$$

Recall (Sensitivity): Ratio of tp to all instances actually labeled as \oplus

$$Recall (R) = \frac{tp}{tp + fn}$$
 (2)

Precision-Recall-Trade-Off

There is a trade-off between precision and recall:

It is very easy to get 100 % precision:

- Simply classify one instance as ⊕ where you are absolutely sure
- But recall is bad... (many ⊕-instances are not detected)

It is also quite easy to achieve 100 % recall:

- Classify all instances as ⊕
- But precision is bad... (many ⊖-instances are detected)

Precision-Recall Curves / P-R-Curves

- Visualization of the Precision-Recall-trade-off
- Influence precision and recall by changing thresholds
- Example:
 - Consider a ranker, e.g. a logistic regression classifier
 - It outputs probabilities for each class
 - The threshold when to predict ⊕ can be changed
 - This has an influence on precision and recall

A P-R-curve plots precision and recall for all possible thresholds.

Precision-Recall Curves / P-R-Curves (Ctd.)

Combining Precision and Recall: F1-Score

- When to use precision, when recall?
- This depends on the cost of fp and fn
 - If fp are expensive \Rightarrow use precision!
 - If fn are expensive \Rightarrow use recall!
- F1-score (harmonic mean of precision and recall)

$$F_1 = \frac{2 \cdot P \cdot R}{P + R}$$
 $F_\beta = (1 + \beta^2) \cdot \frac{P \cdot R}{(\beta^2 \cdot P) + R}$ $(\beta \in \mathbb{R}^+)$ (3)

• Large β emphasizes recall

Why the harmonic mean?

Calculation for multiple Classes (Example Precision)

- Precision must be calculated for each class separately
- For $|\mathcal{C}|$ classes we get $|\mathcal{C}|$ results. How to combine?
 - Macro average: Calculate P for each class and average the result

$$P_{macro} = \frac{P_A + P_B + P_C + P_D}{|\mathcal{C}|} \tag{4}$$

Micro average: Sum all tp and fp for all classes and calculate P

$$P_{micro} = \frac{tp_A + tp_B + tp_C + tp_D}{(tp_A + tp_B + tp_C + tp_D) + (fp_A + fp_B + fp_C + fp_D)}$$
(5)

 $P_A = \frac{40}{40 + 48} = 0.45$

Calculation for multiple Classes (Example Precision)

Wrap-Up

	Α	В	С	D	$oldsymbol{\Sigma}$
Α	40	12	4	8	64
В	7	51	2	0	60
С	2	17	27	11	57
D	39	4	15	8	66
$\boldsymbol{\varSigma}$	88	84	48	27	247

Cols: Prediction Rows: Gold label

$$P_B = 0.61$$
 $P_C = 0.56$
 $P_D = 0.30$
 $P_{macro} = \frac{0.45 + 0.61 + 0.56 + 0.30}{4} = 0.48$
 $P_{micro} = \frac{40 + ... + 8}{(40 + ... + 8) + (48 + ... + 19)} = 0.51$

ROC-Curves

- ROC = Receiver Operating Characteristic
- Borrowed from signal theory (hence the name)
- Uses true positive rate (recall) and false positive rate = $\frac{fp}{fp+tn}$

General procedure:

- Rank test instances by decreasing certainty of class ⊕
- Start at the origin (0,0)
- If the next instance in the ranking is ⊕: move 1/|⊕| up
- If the next instance in the ranking is ⊖: move 1/|⊖| right

Sample ROC-Curve I

Rank	Prob.	True class
Italik	1 100.	True class
1	0.95	\oplus
2	0.85	\ominus
3	0.78	\oplus
4	0.75	\oplus
5	0.62	\ominus
6	0.41	\ominus
7	0.37	\oplus
8	0.22	\ominus
9	0.15	\oplus
10	0.05	Θ

Sample ROC-Curve II

ROC-Curve Interpretation

- AUC can be interpreted as the probability of a positive example always being listed before a negative example
- A high AUC value entails a good class separation:

```
AUC = 1.0: All \oplus listed before all \ominus (desiderata)
```

```
AUC = 0.5: Random ordering
```

AUC = 0.0: All \ominus listed before all \oplus (not the worst case \Rightarrow Invert classification)

Analogy: It is like a quiz. But you can answer those questions first where you feel the most certain (ranking). If you answer the first questions wrong, you don't perform well ⇒ small AUC.

Section: Cost-sensitive Evaluation

Cost-Sensitive Evaluation

- Predicting class C_i instead of the correct class C_j is associated with a cost-factor $c(C_i|C_j)$
- Usually, there are only costs for wrong predictions
- 0/1-Loss:

$$c(\mathcal{C}_i|\mathcal{C}_j) = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } i \neq j \end{cases}$$

General case (two class problems):

	Classified \oplus	$Classified \; \ominus$
ls ⊕	$c(\oplus \oplus)$	$c(\ominus \oplus)$
ls ⊖	$c(\oplus \ominus)$	$c(\ominus \ominus)$

Cost-Sensitive Evaluation Examples

Loan applications

Rejecting applicants who will not pay back Accepting applicants who will pay back Accepting applicants who will not pay back Rejecting applicants who would pay back

- \rightarrow no costs
- ightarrow gain
- \rightarrow big loss
- \rightarrow loss

- Spam-mail filtering
- Medical diagnosis
- ..

Expected Costs / Loss and Cost Ratio

Expected loss L:

$$\mathcal{L} = tpr \cdot c(\oplus|\oplus) + fpr \cdot c(\oplus|\ominus) + fnr \cdot c(\ominus|\oplus) + tnr \cdot c(\ominus|\ominus)$$
 (6)

• If there are no costs for a correct classification:

$$\mathcal{L} = fpr \cdot c(\oplus | \ominus) + fnr \cdot c(\ominus | \oplus) \tag{7}$$

• Cost ratio (false positives are r times as expensive as false negatives)

$$r = \frac{c(\oplus|\ominus)}{c(\ominus|\oplus)} = \frac{c_{fp}}{c_{fn}} \tag{8}$$

Classifiers in ROC-Space – Example

Classifiers in ROC-Space – Example (Ctd.)

Classifiers in ROC-Space – Example (Ctd.)

Classifiers on the convex hull minimize costs for some cost ratio.

Classifiers below the convex hull are always suboptimal.

Classifiers in ROC-Space (Ctd.)

- It is possible to reach any point on the convex hull
- Interpolation of two adjacent classifiers in ROC-space:
 - Classifier 1: tpr₁ and fpr₁
 - Classifier 2: tpr2 and fpr2
 - If classifier 1 is used to predict $q \cdot 100\%$ and classifier 2 for the rest:

$$tpr_{inter} = q \cdot tpr_1 + (1-q) \cdot tpr_2$$

$$\textit{fpr}_{\textit{inter}} = q \cdot \textit{fpr}_1 + (1-q) \cdot \textit{fpr}_2$$

Calibrating Thresholds

Rank	Prob.	True class
1	0.95	\oplus
2	0.85	Θ
3	0.78	\oplus
4	0.75	\oplus
5	0.62	Θ
6	0.41	\ominus
7	0.37	\oplus
8	0.22	\ominus
9	0.15	\oplus
10	0.05	Θ

Section: Miscellaneous

Evaluation of Regressors

• Coefficient of determination R²:

$$R^{2} = \frac{\sum_{i=1}^{n} (h_{\theta}(\mathbf{x}^{(i)}) - \overline{\mathbf{y}})^{2}}{\sum_{i=1}^{n} (\mathbf{y}^{(i)} - \overline{\mathbf{y}})^{2}} = \frac{\text{Variance explained by model}}{\text{Total variance}} \qquad R^{2} \in [0, 1]$$
 (9)

• Root mean square error (RMSE):

$$RMSE = \left(\frac{1}{n} \cdot \sum_{i=1}^{n} \left(h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)}\right)^{2}\right)^{1/2}$$
(10)

Mean absolute error (MAE):

$$MAE = \frac{1}{n} \cdot \sum_{i=1}^{n} |h_{\theta}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)}|$$
 (11)

Evaluation of Regressors (Ctd.)

$\boldsymbol{x}^{(i)}$	$\mathbf{y}^{(i)}$	$h_{\boldsymbol{\theta}}(\boldsymbol{x}^{(i)})$
0.47	1.10	1.28
0.58	1.50	1.35
1.00	1.67	1.60
1.50	1.75	1.90
3.07	2.55	2.84
3.67	3.63	3.20
3.72	3.25	3.23
4.01	3.30	3.41
4.16	3.49	3.50
4.25	3.63	3.55
$\overline{y} = 2.59$		

Evaluation of Regressors (Ctd.)

Coefficient of determination:

$$R^{2} = \frac{(1.28 - 2.59)^{2} + \dots + (3.55 - 2.59)^{2}}{(1.10 - 2.59)^{2} + \dots + (3.63 - 2.59)^{2}} = \frac{7.97}{8.89} = 0.90$$
 (12)

Root mean square error:

$$RMSE = \left(\frac{1}{10} \cdot \left[(1.28 - 1.10)^2 + \dots + (3.55 - 3.63)^2 \right] \right)^{1/2} = 0.19$$
 (13)

Mean absolute error:

$$MAE = \frac{1}{10} \cdot (|1.28 - 1.10| + \dots + |3.55 - 3.63|) = 0.15$$
 (14)

Grid Search

- Grid search is applied to find optimal parameter settings
- For the optimization the dev data set is used
- We have to specify the search space / ranges of parameter values
- Grid search will try all parameter combinations to find the best model
 - Computationally very expensive
 - Scikit-learn provides parameters to parallelize the search (n_jobs=-1 ⇒ use all cores available)
 - May not find the optimal setting ⇒ random search

Grid Search vs. random Search

Bias and Variance

Model 1... Model 2... Model 3... ...on Training data. ...on Training data. 2 ...on Training data. ■ 30 ■ 10 error: 22.5% ■ 37 ■ 3 error: 7.5% ■ 37 ■ 0 error: 0% ■ 37 ■ 0 acc.: 100% • 32 • 8 acc.: 77.5% • 37 • 3 acc.: 92.5% ...on Test data. 4 ...on Test data. 🚯 ...on Test data. 6 ■ 32 ■ 8 error: 23.8% 34 * 6 error: 21.3% 29 • 11 acc.: 78.7% ■ 37 ■ 3 error: 11.3% • 29 • 11 acc.: 76.2% • 34 • 6 acc : 88.7% Model 2 good model prediction error Model 3 overfitting high variance low bias Model underfitting low variance high bias high

model complexity

Use early stopping!

Section: Wrap-Up

Summary

- Out-of-sample testing: Split data into train, dev and test sets
- Cross-validation makes maximum use of the data
- Confusion matrices reveal which classes are frequently confused
- Precision, recall and F1 are more robust w. r. t. imbalanced data sets
- ROC curves are used for the evaluation of rankers
- Different classifiers can be optimal assuming a different cost model
- Hyper-parameters are optimized using grid search or random search
- Keep the bias-variance trade-off in mind!

Sumary
Self-Test Questions
Lecture Outlook
Recommended Literature and further Reading
Meme of the Day

Self-Test Questions

- Why should you split the data into train, dev and test sets?
- 2 You perform 10-fold cross validation. How many models do you have to learn? Which one do you use in production?
- What is the problem with accuracy?
- 4 Why do we apply the harmonic mean to compute the F1 score?
- **5** Your model gets an AUC value of 0. What does this mean?
- 6 Random search is usually preferred to optimize hyper-parameters. Why?
- 7 Your model does not perform well due to its high bias. Your boss suggests adding more training data. How would you respond?

Summary Self-Test Questions **Lecture Outlook** Recommended Literature and further Readin, Meme of the Day

What's next...?

Unit I Machine Learning Introduction

Unit II Mathematical Foundations

Unit III Bayesian Decision Theory

Unit IV Probability Density Estimation

Unit V Regression

Unit VI Classification I

Unit VII Evaluation

Unit VIII Classification II

Unit IX Clustering

Unit X Dimensionality Reduction

Summary Self-Test Questions Lecture Outlook Recommended Literature and further Reading Meme of the Day

Recommended Literature and further Reading I

[1] Machine Learning

Tom Mitchell. McGraw-Hill Science. 1997.

 \rightarrow <u>Link</u>, cf. chapter 5

Meme of the Day

Thank you very much for the attention!

Topic: *** Applied Machine Learning Fundamentals *** Evaluation of ML Models

Term: Winter term 2020/2021

Contact:

Daniel Wehner, M.Sc.
SAPSE / DHBW Mannheim
daniel.wehner@sap.com

Do you have any questions?