Professora Marielle Ap. Silva

Exercício 1. Seja o plano $\pi: 2x - y + 3z + 1 = 0$. Calcular

- a) O ponto de π que tem abcissa 4 e ordenada 3
- b) O ponto de π que tem abcissa 1 e cota 2
- c) O valor de k para que o ponto P(2, k+1, k) pertença a π
- d) O ponto de abcissa zero e cuja ordenada é o dobro da cota

Exercício 2. Determinar a equação geral do plano que satisfaça as seguintes condições:

- a) É paralelo ao plano $\pi: 2x-3y-z+5=0$ e contém o ponto A(4,-1,2).
- b) É perpendicular à reta r: $\begin{cases} x=2y-3\\ z=-y+1 \end{cases}$ e contém o ponto A(1,2,3).
- c) É paralelo ao eixo dos x e contém os pontos A(-2,0,2) e B(0,-2,1).
- d) É perpendicular ao eixo dos y e contém o ponto A(3,4,-1).
- e) Contém os pontos A(-1,2,0), B(2,-1,1) e C(1,1,-1).
- f) Contém os pontos A(2,1,3), B(-3,1,3) e C(4,2,3).
- g) Passa pelos pontos A(-3,1,-2) e B(-1,2,1) e é paralelo ao vetor $\vec{v}=2\vec{i}-3\vec{k}$.
- h) Passa pelos pontos A(1, -2, 2) e B(-3, 1, -2) e é perpendicular ao plano $\pi: 2x+y-z+8=0$.
- i) Contém o ponto A(4,1,0) e é perpendicular aos planos $\pi_1: 2x-y-4z-6=0$ e $\pi_2:$ x + y + 2z - 3 = 0.
- j) Contém as retas r: $\begin{cases} x=-3+t\\y=-t\\z=4 \end{cases}$ e s: $\begin{cases} \frac{x+2}{2}=\frac{y-1}{-2};z=0\\2x+y-z+7=0 \end{cases}$ k) Contém o ponto A(3,-2,-1) e a reta r: $\begin{cases} x+2y+z-1=0\\2x+y-z+7=0 \end{cases}$
- 1) Contém o ponto A(-1,2,0) e a reta interseção dos planos $\pi_1: 2x-y=0$ e $\pi_2: x+y-z-4=0$.

Exercício 3. Estabelecer as equações paramétricas dos seguintes planos:

- a) Determinado pelos pontos A(1,1,0), B(2,1,3) e C(-1,-2,4).
- b) Contém a reta $r:\begin{cases} y=2x-3\\ z=-x+2 \end{cases}$ e é perpendicular ao plano $\pi_1:2x+y-z+5=0.$

Exercício 4. Determinar um vetor unitário ortogonal ao plano $\pi:\sqrt{2}x+y-z+5=0$.

Exercício 5. Determinar o ângulo entre os seguintes planos:

- a) $\pi_1: x + 2y + z 10 = 0$ e $\pi_2: 2x + y z + 1 = 0$
- b) $\pi_1: 2x 2y + 1 = 0 \ \text{e} \ \pi_2: 2x y z = 0$
- c) $\pi_1 : 3x + 2y 6 = 0$ e $\pi_2 :$ plano xOz
- d) $\pi_1: 3x + 2y 6 = 0$ e $\pi_2:$ plano yOz

Exercício 6. Determinar o ângulo que a reta

$$r: \left\{ \frac{x-2}{3} = \frac{y}{-4} = \frac{z+1}{5} \right.$$

forma com o plano $\pi: 2x - y + 7z - 1 = 0$.

Exercício 7. Dados os planos $\pi_1: -4x + 4y - 4 = 0$ e $\pi_2: -2x + y + z = 0$, determine:

- a) a interseção entre π_1 e π_2 .
- b) o ângulo entre π_1 e π_2 .

Exercício 8. Determinar as equações paramétricas da reta que passa pelo ponto A(-1,0,0) e é paralela aos planos $\pi_1 : 2x - y - z + 1 = 0$ e $\pi_2 : x + 3y + z - 5 = 0$.

Exercício 9. Calcular os valores de m e n para que a reta

$$r: \begin{cases} y = 2x - 3 \\ z = -x + 4 \end{cases}$$

esteja contida no plano $\pi: nx + my - z - 2 = 0$

Exercício 10. Estabelecer as equações reduzidas, sendo x a variável independente, da reta interseção dos planos $\pi_1 : 3x - y + z - 3 = 0$ e $\pi_2 : x + 3y + 2z + 4 = 0$.

Exercício 11. Determinar o ponto de interseção da reta r: $\begin{cases} x=t\\ y=1-2t & \text{com o plano } \pi:2x+y-t\\ z=-t \end{cases}$ z - 4 = 0.

Exercício 12. O plano $\pi: x+y-z-2=0$ intercepta os eixos cartesianos nos pontos A, B e C. Calcular a área do triângulo ABC.

Exercício 13. Determine a posição relativa entre:

a) as retas
$$r: \begin{cases} x = -1 \\ y = 3 \end{cases}$$
 e $s: \begin{cases} y = 4x + 7 \\ z = x \end{cases}$

a) as retas
$$r:$$

$$\begin{cases} x=-1\\y=3 \end{cases}$$
 e $s:$
$$\begin{cases} y=4x+7\\z=x \end{cases}$$
 b) a reta $r:$
$$\begin{cases} x=1+3t\\y=-1-2t \end{cases}$$
 e o plano $\pi:x+2y+z+1=0$ $z=t$

c) os planos
$$\pi_1 : -2x + 3y + 4z = 9$$
 e $\pi_2 : 3x - 2y + 3z = 10$

d) a reta
$$r:$$

$$\begin{cases} x-1=\frac{y+1}{-2}\\ z=0 \end{cases}$$
 e o plano $\pi:2x+y-3z-1=0$ e) a reta $s:$
$$\begin{cases} y=2x-3\\ z=-x+4 \end{cases}$$
 e o plano $\pi:3x-2y-z-2=0$

e) a reta
$$s:$$

$$\begin{cases} y=2x-3\\ z=-x+4 \end{cases}$$
 e o plano $\pi:3x-2y-z-2=0$

Exercício 14. Considere as retas

$$r: \begin{cases} x=1 \\ z=2y-6 \end{cases}$$
 ; $s: \begin{cases} x=-1+t \\ y=-1+3t \\ z=6-t \end{cases}$ e $t: \frac{x+2}{2} = \frac{y-1}{6} = \frac{z}{-2}$

- a) Determine a posição relativa das retas a seguir e, se houver, seu ponto de interseção:
 - i) r e s
 - ii) r e t
 - iii) s e t
- b) Determine, se houver, a equação do plano que contém as retas:
 - i) r e s
 - ii) r e t
 - iii) s e t

Exercício 15. Determine as equações simétricas de uma reta l que é ortogonal a r, forma uma ângulo de 60° com o eixo das ordenadas e intercepta o eixo das abcissas em x=2.

Exercício 16. Classifique as afirmações abaixo em verdadeiras ou falsas e justifique sua resposta.

- a) A reta que passa pelos pontos A(2,1,3) e B(2,4,3) é paralela ao plano coordenado xz.
- b) O plano que passa pelos pontos C(1,0,0), D(0,0,4) e E(2,3,-4) é paralelo ao eixo y.
- c) O plano que contém a reta $\begin{cases} x=2\\ z=4 \end{cases}$ e passa pelo ponto $F\left(1,3,4\right)$ é paralelo ao plano xy.

Exercício 17. No paralelepípedo da figura abaixo tem-se E = (0,0,3) e B = (2,4,0).

- a) Determine a equação do plano que passa pelos pontos $O, P \in D$.
- b) Determine a equação da reta que passa pelo ponto médio do segmento \overline{OA} e é perpendicular ao plano z=3.
- c) Determine a equação do plano que contém a face BCDP.

Gabarito:

1. a)
$$(4,3,-2)$$
 b) $(1,9,2)$ c) $k=-2$ d) $(0,-2,-1)$

2. a)
$$2x - 3y - z - 9 = 0$$

b)
$$2x + y - z - 1 = 0$$

c)
$$y - 2z + 4 = 0$$

d)
$$y = 4$$

e)
$$4x + 5y + 3z - 6 = 0$$

f)
$$z = 3$$

g)
$$3x - 12y + 2z + 25 = 0$$

h)
$$x - 12y - 10z - 5 = 0$$

i)
$$2x - 8y + 3z = 0$$

j)
$$2x + 2y + z + 2 = 0$$

k)
$$2x + 3y + z + 1 = 0$$

1)
$$2x - 7y + 4z + 16 = 0$$

3. a)
$$\pi : \begin{cases} x = 1 + h - 2t \\ y = 1 - 3t \\ z = 3h + 4t \end{cases}$$

b) $\pi : \begin{cases} x = t + 2h \\ y = -3 + 2t + h \\ z = 2 - t - h \end{cases}$

4.
$$\pm \frac{1}{2} \left(\sqrt{2}, 1, -1 \right)$$

5. a)
$$60^{\circ}$$

c)
$$\arccos\left(\frac{2}{\sqrt{13}}\right)$$

d) $\arccos\left(\frac{3}{\sqrt{13}}\right)$

d)
$$\arccos\left(\frac{3}{\sqrt{13}}\right)$$

7. a)
$$\begin{cases} x = z + 1 \\ y = z + 2 \end{cases}$$

b)
$$\theta = \frac{\pi}{6}$$
 rad

8.
$$r: \begin{cases} x = 2t - 1 \\ y = -3t \\ z = 7t \end{cases}$$

9.
$$m = -2 e n = 3$$

10.
$$r: \begin{cases} y = x - 2 \\ z = -2x + 1 \end{cases}$$

11.
$$(3, -5, -3)$$

12.
$$2\sqrt{3}$$
 u.a.

b)
$$r$$
 está contida no plano

- e) s está contida no plano
- 14. a) (i) concorrentes com I(1,5,4) (ii) reversas (iii) paralelas b) (i) -7x+2y-z+1=0 (ii) não existe plano (iii) -16x+7y+5z-39=0
- 15. $l: \frac{x-2}{\sqrt{11}} = \frac{y}{-2} = z$.
- a) Falsa, a reta é ortogonal ao plano xz.
 - b) Verdadeira
 - c) Verdadeira
- 17.
- a) -3y + 4z = 0b) $r: \begin{cases} x = 1 \\ y = 0 \end{cases}$ c) y = 4