Unsupervised Learning of Manifolds

CS365A

What are manifolds?

- A manifold is a topological space that is locally Euclidean (i.e., around every point, there is a neighborhood that is topologically the same as the open unit ball in Rⁿ)
- Consider the ancient belief that the earth is flat it is locally flat at any point on the small scale that we see.
- We will be trying to find these manifolds from images obtained from a robot's camera

Visualizing manifolds

The Swiss roll

Why learn manifolds?

- Easy to analyse and compute in the manifold space
- Removes the curse of dimensionality
- Gives easy way of inferring certain information (the spatial location and orientation of the robot in this HW)

$$(x,y,\theta) = (-50,-100,60^{\circ})$$

FOV = 120

The Isomap algorithm

- → Find neighbours of a point and construct neighbourhood graph
 - ◆ All points within sphere of some radius
 - ♦ K-nearest neighbours
 - The neighbourhood graph is denoted by G

The Isomap algorithm

- → Compute shortest path

 - ♦ Then for each value of k = [1, 2, ..., N] in turn, replace all entries $d_g(i, j)$ by $min\{d_g(i, j), d_g(i, k) + d_g(k, j)\}$.

 The matrix of final values $D_g = \{d_g(i, j)\}$ will contain the shortest path distances between all pairs of points in G

The Isomap algorithm

- → Construct d-dimensional embedding
 {Using MDS multidimensional scaling}
 - ◆ Find coordinate vectors y_i that best preserves the manifold's estimated intrinsic geometry
 - Minimize $E = ||T(D_G)-T(D_Y)||_{L^2}$ T - converts distances to inner products
 - Reaches global minima on setting D_{γ} to top d eigenvectors of $T(D_{G})$

The Isomap algorithm

Fig. taken from http://science.sciencemag.org/content/sci/290/5500/2319.full.pdf

The homework

- Find this lower dimensional manifolds in a variety of settings
- Visualize the obtained manifolds rings? cylinder? torus?
- Given an input image infer the coordinate vector that would have generated this image using your learned manifold.