Unit 3

Mon-paramenic Techniques

* Density Estimation

- Density estimation is the process of estimating the probability density Function PDF play of a random variable based on observed data.
- Tor the underlying distribution, non-parametric density estimation techniques make fewer assumptions and instead estimate the density from the data.
 - is to occur by Doowing at the number of nearby data point.
- -> Mathematically , the probability that & falls within a region R can be written as:

$$P = \int_{R} p(x) dx$$

The estimate depends on counting the number of sample points that Pall within a small region Rn around x, and then dividing by both the total number of samples and the Volume Un of that region

i.
$$e$$
 $p(x) = \frac{kn|n}{V_0}$

un = no. of data points inside Rn

n = total no. of sample points

Vn is the rowmo of the region Rn.

Conditions for Convergence

To ensure that the estimated density p(x) converges to the true density p(x) as the number of samples n increases, certain conditions must be satisfied.

(1) Shrinking region : volume of region un must shrink to 0

1.0 am Vn = 0

The no. of points inside the region knownstance increase indefinitely as no on i.e liminous known to

3 Small Fraction of Tolai Points: The Raction of tolai points

Inside the region must go to O.

en kn/n=0.

This ensures that the region does not cover too large an area and remains focused on the local structure around x.

+ Aspects By Deasing Exproparion

C.) Bido - Nacyando Luxando A. C.

* Parzen Window Method

- a non-parametric approach to density estimation.
- The works by placing a window (kerner) function y around each data point and summing up the contributions from all windows to estimate the density at a point x.

Formally,

- -> define a window (fremel) function 4(u), which determines the shape of the region around each data point.
- a Gaussian Remol
 - The volume of this region is Vn = hn, where hn is the window wid th.

The density estimate using Parzen's window is diverby:

$$Pn(x) = \frac{1}{n}$$
 $\leq \frac{1}{\ln v_n}$ $\left(\frac{x - xi}{\ln n}\right)$

hn = window width

The value of hn plays a critical role in determining the smoothness of the estimate:

(1) If his is too large - restimate will be overly smooth and might miss important details (under fitting)

(ii) If his is too small, the estimate will be too sensitive to noise in the data (overfitting)

A Applications of Parsen window Method

- (i) pattern recognition & classification estimate class conditional densition of different classed
- (ii) probability density estimation
- (iii) Data smoothing- smooth noisy data while proserving

* Aspects & Density Estimation.

- (i) Blas-Variance Tradeoff choice of window width a num neighbors controls the balance between bias and variance.

 small window | kn -> high variance => overfitting

 Rarge window | kn -> high bias => anderfitting
- (ii) Convergence The estimate Prila) converges to the true density as now i provided certain conditions are met
- (iii) Dimensionality Non parametric methods strugglo in high-dimensional spaces due to the curse of dimensionality. The no. It samples required grows exponen wally well the dimensionality of the feature space.