UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION, APRIL 2001 Third Year - Program 05

STA 387S - PROBABILITY AND STATISTICS

Examiner - S. Jain

LAST NAME	
FIRST NAME	
STUDENT NUMBER	

Instructions: One sheet of formulas is allowed. Please show all your work clearly in the space provided to obtain partial credit. A nonprogrammable calculator and statistical tables are also allowed. Attach your formulas sheet with the examination paper. Do all the questions.

1. Suppose that $X_1, X_2, \dots, X_{15} \text{ IID } X$, where X has probability density function (pdf)

$$f(x) = \begin{cases} \frac{3}{2}x^3, & -1 < x < 1, \\ 0, & \text{otherwise} \end{cases}$$

[6] (a) State the Central Limit Theorem as it pertains specifically to this situation.

[5] (b) Letting $T = \sum_{i=1}^{15} X_i$, compute $P[-0.3 < T \le 1.5]$.

[6] 2. (a) The lifetime X of a certain electronic component is a random variable with density function

$$f(x) = \begin{cases} \frac{1}{100} e^{-x/100}, & x > 0\\ 0, & \text{elsewhere} \end{cases}$$

Three of these components operate independently in a piece of equipment. The equipment fails if at least two of the components fail. Find the probability that the equipment operates for at least 200 hours without failure.

[5] (b) A fair die is tossed 100 times, find the probability that "6" comes up between 15 and 20 times.

- 3. Suppose that X and Y IID $\exp(1)$ and let $W = \frac{X}{Y}$ and V = Y.
- [6] (a) Determine the joint probability function for W and V.

[5] (b) Hence determine the marginal probability function for W and use it to evaluate $P(2 < W \le 3)$.

[6] 4. (a) Suppose that U_i IID uniform [0, 1], i = 1, 2, and $T = U_1 + U_2$. Determine and sketch the probability density function for T.

Question 4. (cont'd)

[3] 4. (b) Find the distribution of the random variable X and identify its parameters for each of the following moment generating functions

(i)
$$M_X(t) = \left[\frac{1}{3}e^t + \frac{2}{3}\right]^5$$

(ii)
$$M_X(t) = \frac{e^t}{2 - e^t}$$

(iii)
$$M_X(t) = e^{2(\epsilon^t - 1)}$$

[3] (c) Let $M_X(t) = \frac{1}{6}e^t + \frac{2}{6}e^{2t} + \frac{3}{6}e^{3t}$. Find the first and second moments of the random variables.

- 5. In each case below obtain a 99% confidence interval for θ .
- [6] (a) First suppose $X_1 \sim N(\mu_1, 1)$, $X_2 \sim N(\mu_2, 1)$, $X_3 \sim N(\mu_3, 1)$, where X_1, X_2, X_3 are mutually independent, and the data are $X_1 = 1.8$, $X_2 = 1.4$, $X_3 = 1.3$. In this case let $\theta = \frac{\mu_1 + \mu_2 + \mu_3}{3}$.

[5] (b) Now suppose $X \sim N(\theta, \sigma^2), \ Y \sim gamma(7; \sigma^2), \ X \| Y$ and the data are $X=8.0, \ Y=25.0.$

- 6. Suppose that we have two mutually independent samples $X_1, \ldots, X_7 \text{ IID} \exp(\theta_0)$ and $Y_1, \ldots, Y_3 \text{ IID} \exp(\theta_1)$ for which summary statistics $\overline{X} = 5.4$, and $\overline{Y} = 3.6$ were obtained.
- [6] (a) Test the hypothesis that $\theta_1 = 2\theta_0$.

[5] (b) Obtain a 95% confidence interval for the ratio θ_1/θ_0 .

- 7. Let X_1, \ldots, X_n be uniform on $[0, \theta]$
- [4] (a) . Find the method of moments estimate of θ and its mean and variance.

Question 7. Cont'd

[4] (b) Find the maximum likelihood estimate of θ , and probability density function of the MLE and calculate its mean and variance.

Question 7. Cont'd

[3] (c) Compare the variances obtained in (a) and (b). Which method has the smaller variance?

8. Suppose that X and Y IID Poisson (3). Determine

[5] (a)
$$P(X > 0|X + Y \le 3)$$

[3] (b)
$$E(3Y-4X)^2$$

[3] (c) Suppose that X, Y and Z IID geometric(5/6), determine $Var(X - \frac{Y+Z}{2})$

9. To compare ultimate tensile strengths of two classes of wire (class II and class III), fourteen specimens are randomly sampled from a roll of each type. The actual UTS measurements (in 1000 psi) are given as follows:

Class II: 49, 108, 110, 82, 93, 114, 134, 114, 96, 52, 101, 114, 120, 116 Class III: 133, 108, 93, 119, 119, 98, 106, 131, 87, 153, 116, 129, 97, 110

[6] (a) Estimate the difference between true mean UTS measurements for the two classes of wire, in a 95% confidence interval.

[5] (b) Do the true mean UTS measurements for the two classes of wire appear to differ? What assumptions are required for the valid use of the procedure you used to analyze this data set? Assume $\alpha = 0.05$.

(This page is intentionally left blank.)

‡

_

_

_

•

_

_

-

_

0

T A B L E 2
Cumulative Normal Distribution—Values of P Corresponding to \$\pi\$ for the Normal Curve

z is the standard normal variable. The value of P for $+z_0$ equals 1 minus the value of P for $+z_0$; for example, the P for -1.62 equals 1 - .9474 = .0526.

÷	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	5517	\$557	5596	.5636	5675	.5714	.5753
.2	5793	.5832	.5871	.5910	5948	.5987	.6026	.6064	.6103	.6141
3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.785
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.813
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.838
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.862
l.i	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.883
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.901
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.917
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.931
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.944
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.954
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.963
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.970
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.976
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.98
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.98
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.989
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.99
24	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.99
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.99
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.99
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.99
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.99
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.99
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.99
3.1	.9990	.9991	.9991	.999 t	.9992	.9992	.9992	.9992	.9993	.99
3.2	1	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.99
3.3		.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.99
3.4		.9997	.9997	.9997	.9997	.9997	9997	9997	.9997	1.99

T A B L E JPercentiles of the χ^2 Distribution—Values of χ^2 Corresponding to P

df	X ² 003	χ'n	χċœs	χès	X ² 10	X200	X ¹ n	X 975	X ² m	X 945
	.000039	.00016	.00098	.0039	.0158	2.71	3.84	5.02	6.63	7.88
2	.0100	.0201	.0506	.1026	.2107	4.61	5.99	7.38	9.21	10.60
3	.0717	.115	.216	.352	.584	6.25	7.81	9.35	11.34	12.84
4	.207	.297	.484	.711	1.064	7.78	9.49	11.14	13.28	14.86
5	.412	.554	.831	1.15	1.61	9.24	11.07	12.83	15.09	16.75
6	.676	.872	1.24	1.64	2.20	10.64	12.59	14.45	16.81	18.55
7	.989	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	17.28	19.68	21.92	24.73	26.76
12	3.07	3.57	4.40	5.23	6.30	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.26	7.26	8.55	22.31	25.00	27.4 9	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	23.54	26.30	28.85	32.00	34.27
18	6.26	7.01	8.23	9.39	10.86	25.99	28.87	31.53	34.81	37.16
20	7.43	8.26	9.59	10.85	1244	28.41	31.41	34.17	37.57	40.00
24	9.89	10.86	12.40	13.85	15.66	33.20	36.42	39.36	42.98	45.56
30	13.79	14.95	16.79	18.49	20.60	40.26	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	29.05	51.81	55.76	59.34	63.69	66.77
60	35.53	37.48	40.48	43.19	46.46	74.40	79.08	83.30	88.38	91.95
120	83.85	86.92	91.58	95.70	100.62	140.23	146.57	152.21	158.95	163.64

For large degrees of freedom,

$$\chi_F^2 = \frac{1}{4}(z_F + \sqrt{2v - 1})^2$$
 approximately,

where v = degrees of freedom and z_P is given in Table 2.

T A B L E 4
Percentiles of the t Distribution

df	1.60	£,70	t.80	6,90	f.95	£,975	£.99	£ 995
1	.325	.727	1.376	3.078	6.314	12.706	31.821	63.657
- 1	.289	.617	1.061	1.886	2.920	4.303	6.965	9.925
2	.277	.584	.978	1.638	2.353	3.182	4.541	5.841
4	.271	.569	.941	1.533	2.132	2.776	3.747	4.604
5	.267	.559	.920	1.476	2.015	2.571	3.365	4.032
6	.265	.553	.906	1.440	1.943	2.447	3.143	3.707
7	.263	.549	.896	1.415	1.895	2.365	2.998	3.499
8	.262	.546	.889	1.397	1.860	2.306	2.896	3.355
9	.261	.543	.883	1.383	1.833	2.262	2.821	3.250
10	.260	.542	.879	1.372	1.812	2.228	2.764	3.169
11	.260	.540	.876	1.363	1.796	2.201	2.718	3.106
12	.259	-539	.873	1.356	1.782	2.179	2.681	3.055
13	.259	.538	.870	1.350	1.771	2.160	2.650	3.012
14	.258	.537	.868	1.345	1.761	2.145	2.624	2.977
15	.258	.536	.866	1.341	1.753	2.131	2.602	2.947
16	.258	.535	.865	1.337	1.746	2.120	2.583	2.921
17	.257	.534	.863	1.333	1.740	2.110	2.567	2.898
18	.257	<i>-5</i> 34	.862	1.330	1.734	2.101	2.552	2.878
19	.257	.533	.861	1.328	1.729	2.093	2.539	2.861
20	.257	.533	.860	1.325	1.725	2.086	2.528	2.845
21	.257	.532	.859	1.323	1.721	2.080	2.518	2.831
22	.256	.532	.858	1.321	1.717	2.074	2.508	2.819
23	.256	.532	.858	1.319	1.714	2.069	2.500	2.807
24	.256	.531	.857	1.318	1.711	2.064	2.492	2.797
25	.256	.531	.856	1.316	1.708	2.060	2.485	2.787
26	.256	.531	.856	1.315	1.706	2.056	2.479	2.779
27	.256	.531	.855	1.314	1.703	2.052	2.473	2.771
28	.256	.530	.855	1.313	1.701	2.048	2.467	2.763
29	.256	.530	.854	1.311	1.699	2.045	2.462	2.756
30	.256	.530	.854	1.310	1.697	2.042	2.457	2.750
40	.255	.529	.851	1.303	1.684	2.021	2.423	2.70
60	.254	.527	.848	1.296	1.671	2.000	2.390	2.66
120	.254	.526	.845	1.289	1.658	1.980	2.358	2.61
*	.253	.524	.842	1.282	1.645	1.960	2.326	2.57

 $T \land B \lor E \not= \{\text{Continued}\}$ Percentles of the F Distribution: $F_{\infty}(n_1, n_2)$

 $m_{\rm c}=4$ kgrees of freedom for numerator

8	254.3	35.50	8.53	563	4 36	367	3.23	2.93	2.71	2.54	2.40	0,5	122	7 1 1	2.07	10?	\$	1.92	88	3	1.8	1.78	1.76	1.33	1.7	69 1	1.67	1.65	<u>2</u>	1.62	15.1	1.39	1.25	60
120	253.3	67.6	8.55	\$ 66	4 40	3.70	3.27	297	2.75	2.58	2.45	7. 7	2.25	2 18	711	£ ~	201	1 97	193	8	187	2	- 8	1.79	1.11	1.75	1.73	-2	1.70	35	1.58	1.47	1.15	1 22
8	252.2			5.69	4.43	1.74	3.30	3.01	2.79	2.62	2 49	2.3R	01.2	222	2.16	2 11	£ ~	2 0 2	86 1	1.95	28	- 83	1. R6	- 84	1.82	08.1	1 79	1.77	1.75	7.	2	1.53	1.43	1.32
0+	1 152	≂		\$ 72	4.46	3.77	Z.	5	2 8.3	2	2.53	2.47	2 34	111	2 20	2.15	2 40	208	2.03	8	8	3	6	<u>\$</u>	1.87	1.85	26	1.82	1.8	1.79	1.69	1.59	05.1	1 30
30	1.052	19.46	8.62	\$ 7.5	5.5	381	3.38	3.08	2.86	2.70	2.57	2 47	2.18	3.11	2.25	5 10	2.15	2 11	2 0 7	2.04	2.01	85	8	<u>\$</u>	1.92	8	1.88	1.87	1.85	- 34	1.74	1.65	1.55	94.
*	249.1	19.45	3	5.77	451	1.83	341	3.12	2.90	2.74	2.61	2 \$ 1	2 4 2	2.15	2 29	2.24	2 19	2.15	2.11	2.08	2.05	2.03	2.01	1.98	8	1.95	1.93	161	<u>-</u>	- 68	1.79	1.70	19-	1.52
20	248.0	9.45	96 86	٧.	4 56	3.87	3.44	115	2 94	277	2.65	F > 2	2 4K	2 19	2 111	2 28	2.2.1	2.19	2.16	2 12	2.10	203	2.05	2.0.3	2.01	8	1 97	8	76	193	7X -	1.75	\$	1.57
1.5	2459	1943	8 70	5.86	4 62	3 94	3.51	1 22	301	2.85	2.72	2 62	157	7 4h	2.40	2.15	2 11	2 27	221	2 20	2 18	2.15	2.13	2 1 1	5 OS	2.07	2.06	2 04	2.03	10.5	1 92	1.84	1.75	1.67
12	41.9	19.41	8 74	8.9	% 7	8	1.57	1 2R	107	2.9	2 79	269	Ē	2 5 3	87	247	2 18	2 14	2.11	2 28	2.25	2.2.1	2	2.18	2 16	2.15	2.13	2 12	2.10	2 03	2.00	1.92	<u>«</u>	1.75
10	241.9	19 40	9 79	8	4.7.4	\$	2	1.15	7	2 98	2.85	2.75	2 6.7	2 (40)	7.	2.41)	2.45	2.41	2 18	2.35	2.12	2 10	2.27	2 25	2.24	2.22	2 20	5 10	2.18	2 16	2 08	<u>\$</u>	161	181
6	240.5	9.18	8.81	600	4 77	4.10	3.68	1 30	81.6	1.02	2.98	. × c	2 71	597	65 ?	1 54	2.49	2 46	2.12	2 19	2 17	2.14	2.12	2.30	2 2K	2 27	2.25	2 24	2 2 2	2 21	212	7 (19	\$	1 88
∞	2,18.9	19.37	8 85	200	4 82	4.15	1,73	1 43	3.23	107	3 6 2	2.85	277	2.70	2 (*1	2 50	2 \$\$	2.51	2 48	2.45	2.42	2.40	2.17	2 36	2.14	2.12	2.31	5.29	2 2R	2.27	2.18	2 10	2 0 2	1 94
					8C 97	4.21	2.70	<u>F.</u>	3.29	7	ō	291	281	2.76	17.5	÷.	192	2.58	2.54	2.51	2 49	2.46	2 44	2 47	2 40	5 39	2.37	2.36	2.35	2.33	2.25	2 17	2.09	201
×c	2340	20	76 ×	6.16	4 95	4 28	1.87	1 5.9	77.	1 22	Ē	Ē	2 9.7	2 N S	2.79	2.74	2 70	Ę ~	192	09.7	2.57	2.55	2.51	15.2	2.49	2.47	246	2.45	2.43	2.42	2.34	2.25	2 17	5 10 J
ν,		9	106	6.26	\$05	6 7	3.97	160	1 4x	183	1 20	Ξ	ű.	ķ.	9 00	2 X S	2 81	277	2.74	2.71	2 68	2 (16	2 (34	2 62	2 60	2.59	2.57	2.56	2.55	2.53	2 45	2 33	2 29	2 21
~		19 25	9.12	68.9	61 \$	57	4.12	184	163	1 48	٦ ٢	אנ ו	<u>×</u>	=	Š	101	2.06	2 9 3	2 90	2.87	2 84	2.82	2.80	2.78	2.76	2 74	2 7.1	17.7	2 70	2 69	197	2.53	2 45	2 17
~.	2157	≎		¢	5.41	4 76	4.35	4.07	98 (171	3.5	08.	£ .	3.34	3 20	3.24	1 20	<u>د</u>	2.5	01.5	3.07	5	101	3.01	5 99	2 98	2 %	2.95	2.0.1	2 6 2	2 84	2.76	2 6.B	260
2		5	9.55	6.94	4 19	× 14	4 74	446	4 26	= 7	80.	08.0	× -	1 7.4	<u>ر</u> ۵	3	1 40	1.55	1.52	1.49	147	3.44	147	140	1,30	1,37	£3;	3.14	<u> </u>	3.32	1.2.3	\$1.5	1.07	100
_			101	_	199	Ž,	65.5	5 12	\$ 12	÷	2 84	4.75	46	6.5	4 5.4	440	4 45	7	4 18	4.35	4.12	÷	4 28	1 26	4 24	4.23	4 21	4 20 1	œ.	4 17	80 F	90	3.92	184
	_	~		*	<u>,</u>	٠	, ,	 191	 ⇒			.;		٦ ا			2 2			— ≳ 8əp				₹.	\$2	×	27	2.8	۶,	25,	ç	ક	13.0	_