

TEORIA DELLA COMPLESSITA' Linguaggi NP-completi: *UHAMPATH*

24 maggio 2022

UHAMPATH

È possibile definire una "versione non orientata" del problema del cammino Hamiltoniano.

 Un cammino Hamiltoniano in un grafo non orientato è un cammino che passa per ogni vertice del grafo una e una sola volta.

 $UHAMPATH = \{\langle G, s, t \rangle \mid G \text{ è un grafo non orientato}$ e ha un cammino Hamiltoniano da s a $t\}$

Per mostrare che *UHAMPATH* è *NP*-completo, definiamo una riduzione di tempo polinomiale da *HAMPATH* a *UHAMPATH*.

UHAMPATH

Teorema

 $UHAMPATH \in NP$

Dimostrazione.

Un algoritmo N che verifica UHAMPATH in tempo polinomiale: N = "Sull'input $\langle \langle G, s, t \rangle, c \rangle$, dove G = (V, E) è un grafo non orientato:

- 1 Verifica se $c = (u_1, \dots, u_{|V|})$ è una sequenza di |V| vertici di G, altrimenti rifiuta.
- 2 Verifica se i nodi della sequenza sono distinti, $u_1 = s$, $u_{|V|} = t$ e, per ogni i con $2 \le i \le n$, se $(u_{i-1}, u_i) \in E$, accetta in caso affermativo; altrimenti rifiuta."

 $\exists c : \langle \langle G, s, t \rangle, c \rangle \in L(N)$ se e solo se $\langle G, s, t \rangle \in UHAMPATH$. \square

UHAMPATH è NP-completo

Teorema *UHAMPATH* è *NP-completo*.

Dimostrazione

Abbiamo provato che *UHAMPATH* è in *NP*.

Per concludere la prova, dimostriamo che $HAMPATH \leq_P UHAMPATH$.

HAMPATH si riduce in tempo polinomiale a UHAMPATH

- La riduzione di tempo polinomiale associa a un grafo orientato G = (V, E) con vertici s e t un grafo non orientato G' = (V', E') con vertici s' e t'.
- Il grafo G ha un cammino Hamiltoniano da s a t se e solo se
 G' ha un cammino Hamiltoniano da s' a t'.
- Inoltre G' può essere costruito a partire da G in tempo polinomiale.

$HAMPATH \leq_{p} UHAMPATH$

cammino Hamiltoniano in un grafo non orientato

Dato grafo non orientato G' = (V', E') e due vertici s', t', esiste un cammino Hamiltoniano in G' da s' a t'?

Fatto. HAMPATH \leq_{P} UHAMPATH.

Dim. Dato un grafo orientato G = (V, E) con n vertici, costruiamo un grafo non orientato G' con 3(n-2) + 2 vertici.

(autore slide: Kevin Wayne)

$HAMPATH \leq_{p} UHAMPATH$

Costruzione di G':

- Ogni vertice u di G, diverso da s e t è rimpiazzato da tre vertici uⁱⁿ, u^{mid} e u^{out} in G'.
- I vertici s e t sono sostituiti con i vertici s^{out} e t^{in} in G'.
- Per ogni $u \in V \setminus \{s, t\}$, (u^{in}, u^{mid}) e (u^{mid}, u^{out}) sono in E'.
- Se $(u, v) \in E$ allora $(u^{out}, v^{in}) \in E'$.

$HAMPATH \leq_{D} UHAMPATH$

- Dimostriamo che G ha un cammino Hamiltoniano da s a t se e solo se G' ha un cammino Hamiltoniano da s^{out} a tⁱⁿ.
- Se G ha un cammino Hamiltoniano P da s a t:

$$P = s, u_1, u_2, \dots, u_k, t$$

allora P':

$$P' = s^{out}, u_1^{in}, u_1^{mid}, u_1^{out}, u_2^{in}, u_2^{mid}, u_2^{out}, \dots, u_k^{in}, u_k^{mid}, u_k^{out}, t^{in}$$

è un cammino Hamiltoniano in G' da s^{out} a t^{in} .

HAMPATH si riduce in tempo polinomiale a UHAMPATH

Viceversa se G' ha un cammino Hamiltoniano P' da s^{out} a tⁱⁿ,
 è facile vedere che P' deve essere della forma

$$P' = s^{out}, u_1^{in}, u_1^{mid}, u_1^{out}, u_2^{in}, u_2^{mid}, u_2^{out}, \dots, u_k^{in}, u_k^{mid}, u_k^{out}, t^{in}$$

- La prova è per induzione su k. Infatti P' ha come primo vertice s^{out} il quale è connesso solo a vertici della forma uⁱⁿ_i.
 Quindi il secondo vertice è uⁱⁿ_i per qualche i. I vertici successivi devono essere u^{mid}_i, u^{out}_i perché u^{mid}_i è connesso solo a uⁱⁿ_i e u^{out}_i.
- Ma se P' ha la forma suddetta allora

$$P = s, u_1, u_2, \dots, u_k, t$$

 \Box

è un cammino Hamiltoniano da s a t.

Problemi NP – completi

- > SAT (Cook-Levin)
- \triangleright SAT_{CNF}
- > 3SAT (il libro adatta la dim del teorema di CK)
- CLIQUE (da 3SAT coi gadget)
- VERTEX-COVER (da 3SAT coi gadget)
- SUBSET-SUM (da 3SAT coi gadget)
- HAMPATH (da 3SAT coi gadget)
- UHAMPATH (da HAMPATH)

Teoria della complessità: argomenti trattati

- Definizione di complessità di tempo
- La complessità di tempo dipende dal modello di calcolo; useremo decisori e modelli polinomialmente equivalenti
- La complessità di tempo dipende dalla codifica utilizzata: useremo codifica in binario o polinomialmente correlata
- TIME (f(n)) = insieme dei linguaggi decisi in tempo O(f(n))
- La classe P = U TIME(n^k) e sua robustezza

 $k \ge 0$

- La classe EXPTIME
- Algoritmi di verifica e la classe NP
- Il concetto di riduzione polinomiale
- Il concetto di NP-completezza
- Linguaggi NP-completi

Classi di complessità

The Extended Chomsky Hierarchy

Contenuto del corso

MODELLI DI COMPUTAZIONE:

AUTOMI FINITI DETERMINISTICI E NON DETERMINISTICI.
ESPRESSIONI REGOLARI. PROPRIETÀ DI CHIUSURA DEI LINGUAGGI REGOLARI. TEOREMA
DI KLEENE. PUMPING LEMMA PER I LINGUAGGI REGOLARI.

MACCHINA DI TURING DETERMINISTICA A NASTRO SINGOLO. IL LINGUAGGIO RICONOSCIUTO DA UNA MACCHINA DI TURING. VARIANTI DI MACCHINE DI TURING E LORO EQUIVALENZA.

- IL CONCETTO DI COMPUTABILITÀ: FUNZIONI CALCOLABILI, LINGUAGGI DECIDIBILI E LINGUAGGI TURING RICONOSCIBILI. LINGUAGGI DECIDIBILI E LINGUAGGI INDECIDIBILI. IL PROBLEMA DELLA FERMATA. RIDUZIONI. TEOREMA DI RICE.
- IL CONCETTO DI COMPLESSITÀ: MISURE DI COMPLESSITÀ: COMPLESSITÀ IN TEMPO DETERMINISTICO E NON DETERMINISTICO. RELAZIONI DI COMPLESSITÀ TRA VARIANTI DI MACCHINE DI TURING. LA CLASSE P. LA CLASSE NP. RIDUCIBILITÀ IN TEMPO POLINOMIALE. DEFINIZIONE DI NP-COMPLETEZZA. RIDUZIONI POLINOMIALI. ESEMPI DI LINGUAGGI NP-COMPLETI.

Fine del corso....