العلامة		01 - 11 1 11 11-					
مجموع	مجزأة	عناصر الإجابة الموضوع 01					
		التمرين الأول: (3.25ن)					
	0.25	$HA+H_2O=A^-+H_3O^+$ في الماء: HA في الماء: HA					
		ب- جدول تقدم التفاعل:					
		المعادلة $HA+H_2O=A^-+H_3O^+$					
		الحالة الابتدائية 0 بوفرة 0 الحالة الابتدائية					
	0.25	بوفرة n_0-x الحالة الانتقالية x x					
1.50		الحالة النهائية x_f بوفرة x_f بوفرة x_f الحالة النهائية					
	0.25	$ au_f = rac{10^{-pH}}{C_0}$: ج $-$ عبارة نسبة التقدم النهائي $ au_f$ بدلالة pH المحلول $ au_f$					
	0.25	$pH = pK_a + \log \frac{\left[A^{-}\right]}{\left[HA\right]} ; \left[A^{-}\right] = \tau_f.C_0 \rightarrow \left[HA\right] = C_0 - \tau_f.C_0$					
	0.25	: عيارة PH المحلول : المح					
	0.25	$pH = pK_a + \log\left(\frac{\tau_f}{1 - \tau_f}\right)$					
		ومنه $pK_a=4,2$ أ- استنتاج ثابت الحموضة K_a للثنائية $M_a=4$: بالمطابقة نجد $pK_a=4,2$ ومنه					
	0.25	$K_a = 6.3 \times 10^{-5}$					
	0.25	$pH > pKa$ بالتعويض نجد $ au_f = 0.7$ بالتعويض نجد					
1.75	0.25 0,25	الصفة الأساسية هي الغالبة (تقبل طرق صحيحة أخرى).					
	0.25	$ au_f = rac{10^{-pH}}{C} \Rightarrow C = rac{10^{-pH}}{ au_f} = 1,262 imes 10^{-4} mo\ell \cdot L^{-1} : C_0$ جـ $-$ التركيز المولي					
	0.25	$C_0 = F \cdot C = 2 \times 10^{-2} mo\ell \cdot L^{-1}$					
	0.25	C_6H_5COOH ه- الحمض المعني هو حمض البنزويك C_6H_5COOH					
		التمرين الثاني: (3.5 ن)					
0.75	$0.25 \\ 0.50$	$E_{lib} = \Delta m $. 931.5 MeV الطاقة المتحررة عن تفاعل انشطار نواة اليورانيوم: – تقبل الإجابة					
		وتقبل الإجابة السالبة. $E_{\ell ib} = \left(m_i - m_f ight)C^2 = 176,50 MeV$					
	$0.25 \\ 0.25$	2) أ- طاقة الربط للنواة هي الطاقة الواجب تقديمها لتفكيك النواة إلى مختلف نوياتها.					
		طاقة الربط لنواة اليورانيوم: E _I = (92mp + 143 mn -m(U)). 931.5 MeV = 1784 MeV					
1.00	0.25	$E_{l}(Zr) + E_{l}(Te) = E_{l}(U) + E_{lib} = 1960,5 \text{ MeV}$					
	0.25	$\Delta E_2 = -E_{\ell}(Zr) - E_{\ell}(Te) \implies \Delta E = \Delta E_2 + \Delta E_1 \Rightarrow \Delta E_2 = -1960,53407 MeV$					

المدة:04 ساعات و نصف

العلامة		عناصر الإجابة						
مجموع	مجزأة	الإجابة						
	0.25	: $\Delta t = 30 \ jours$ أ- كتلة اليورانيوم المستهلكة بعد مرور زمن $\Delta t = 30 \ jours$						
1.00		$E_e = P \cdot \Delta t = 7,776 \times 10^{13} j$						
	0.25	$\rho = \frac{E_e}{E} \Rightarrow E = \frac{E_e}{\rho} = 25,92 \times 10^{13} j$						
	$0.25 \\ 0.25$	į .						
		$m(U) = \frac{E \cdot M\left(\frac{235}{92}U\right)}{N_A \cdot E_{\ell ib}} = 3,6kg$						
0.50	0.25	المقصود بالنشاط eta^- : هو إصدار الكترون من نواة مشعة. eta^-						
	0.25 كك النواة $138 Te ightarrow \frac{138}{52} Te ightarrow \frac{138}{52} Te$ كك النواة $138 Te ightarrow \frac{138}{52} Te$ كك النواة							
		5) ذكر خطرين من أخطار الانشطار النووي: مختلف الأمراض والتشوهات التي تصيب الكائنات الحية و كل						
0.25	0.25	الأضرار الناجمة عن التلوث الاشعاعي للبيئة.						
		التمرين الثالث: (3.5 ن)						
0.50	0.25	1- القانون الأول: تتحرك الكواكب وفق مدارات إهليليجية تشغل الشمس أحد محرقيها.						
0.50	0.25	القانون الثاني: يمسح الشعاع الرابط بين الشمس والكوكب مساحات متساوية خلال مجالات زمنية متساوية.						
		P أ- بتطبيق القانون الثاني لنيوتن في المعلم الهيليومركزي على الكوكب P .						
	$0.25 \\ 0.25$	$\sum \vec{\mathbf{F}} = m \vec{a} \Rightarrow \overrightarrow{F_{S/P}} = m_P \vec{a}$						
	0.25 0.25 0.25 0.25	$G \; rac{M_S m_P}{r^2} \; = m_P . \; rac{v^2}{r} \; \; \; \Rightarrow \; \; v = \sqrt{rac{{ m G} M_S}{r}} $ عبارة السرعة						
	0.25	T^2 T $T=rac{2\pi r}{r}:$ ب $T=rac{2\pi r}{r}$						
		ν						
	0.25	$T^2 = rac{4\pi^2 r^2}{v^2} = rac{4\pi^2 r^3}{GM_S} \Rightarrow T = 2\pi r \sqrt{rac{r}{G.M_S}}$						
3.0	0.25	$rac{T^2}{r^3} = rac{4\pi^2}{GM_S} = extbf{Cte}$ استنتاج قانون کیبلر الثالث						
		- ج						
		الزهرة SI -2,97 الاستنتاج: قانون كيبلر الثالث محقق.						
	0.25	الأرض SI 2,97.10 ⁻¹⁹ ملاحظة: تقبل النتائج المحصورة بين						
	0.25	زحل 2.9 ×10 ⁻¹⁹ 2,97 ،10 ⁻¹⁹ SI و 3.0 ×10 ⁻¹⁹						
		2,57 .10 51						
	0.25	$\frac{T^2}{r^3} = \frac{4\pi^2}{GM_S} = K \implies M_S = \frac{4\pi^2}{GK} \implies M_S = \frac{4.10}{6,67.10^{-11} \cdot 2.97.10^{-19}} = 2.10^{30} \text{ kg} - 2$						
	0.25	$r^3 ext{ GM}_S ext{ GK} ext{ GK} ext{ 6,67.10}^{-11} ext{ 2.97.10}^{-19} ext{ EV}$						
	$0.25 \\ 0.25$	$\frac{T^2}{r^3} = \mathbf{K} \Rightarrow \mathbf{r}^3 = \frac{\mathbf{T}^2}{\mathbf{K}} \Rightarrow \mathbf{r} = \sqrt[3]{\frac{\mathbf{T}^2}{\mathbf{K}}} = 1,35.10^{11} m$ -2						

المدة: 04 ساعات و نصف

العلامة		عناصر الإجابة						
مجموع	مجزأة	المحاصر الإجباد						
		التمرين الرابع: (3.25 ن)						التمرين الرابع: (5
0.50	0.25 0.25	$n_0(acid) = \frac{m_0}{M} = \frac{24}{60} \; , \; \; n_0(acid) = 0,4moL$ حمية المادة الابتدائية : $\rho V_0 = 1,039 \times 41,6$						1 - كمية المادة الا
0.50	0.25 0.25	$n_0(alcool)=rac{ ho V_0}{M}=rac{1,039 imes41,6}{108}\ ,\ n_0(alcool)=0,4moL$ $\qquad \qquad \qquad$						
0.25	0.25	СН	$C_3COOH + C_6$	$H_5 - CH_2 - OI$	$H = CH_3CC$	20-C	_	+ <i>H</i> ₂ <i>O</i> : جدول التقدم
		المعادلة		CH ₃ COOH+	$C_6H_5-CH_2-$	-OH = C	CH ₃ COO – CH	$T_2 - C_6 H_5 + H_2 O$
		الحالة	التقدم			المادة L		
	0.25	الابتدائية	x = 0	0,4	0,4		0	0
0.75	0.25 0.25	الوسطية	x(t)	0,4-x(t)	0,4-x (t)	x(t)	x (t)
		النهائية	X_f	$0, 4 - x_f$	$0, 4-x_f$		X_f	x_f
	0.25	m K=4 گا من	أو انطالا $r=0,$	ىردود الأسترة 67	المولات ⇒ ه	متساوي ا	زيج الابتدائي ه	5- كحول أولي و الم
0.75	0.25	حمض	كحول	2	أستر		ماء	التركيب المولي
	0.25	0,13	0,13	3 (·		0,27	للمزيج عند التوازن
0.50	0.25 0.25	(تزايد الاستر).	ملاحظة: تقبل الإجابات مهما كان عدد الأرقام المعنوية. 6- أ. عند نزع الماء من المزيج يصبح Qr < K وبالتالي تنزاح الجملة في الاتجاه المباشر (تزايد الاستر). ب. يصبح التفاعل تام عند استبدال الحمض بكلور الأسيل.					
0.25	0.25	التمرين الخامس: (3.5 ن) التمرين الخامس: \vec{R} نوتر النابض: \vec{F} رد فعل المستوي: \vec{R} الثقل: \vec{R} المعادلة التفاضلية \vec{R} : \vec{R} :						
0.75	0.25 0.25 0.25	$\sum \vec{\mathbf{F}} = m \vec{a} \Rightarrow \vec{F} + \vec{P} + \vec{R} = m \vec{a}$ بتطبیق القانون الثاني لنیون: $\frac{d^2x}{dt^2} + \frac{k}{m} x = 0 \iff -kx = ma$: x'x بالاسقاط على نام ما در التا الما الما تا الما الما تا الما الم						
	0.25 0.25	ملاحظة: يمكن تطبيق مبدأ انحفاظ الطاقة واستنتاج المعادلة النفاضلية. $T_0=2\pi\sqrt{rac{m}{k}}$: -1 عبارة الدور: بتعويض الحل في المعادلة النفاضلية نستنتج أن -1						
		<u> </u>						

العلامة		عناصر الإجابة					
مجموع	مجزأة	مانس الإجاب					
	0.25	$ \left[T_{0}\right]^{2} = \frac{[M]}{[F][L]^{-1}} = \frac{[M]}{[M][L][T]^{-2}[L]^{-1}} \Rightarrow \left[T_{0}\right] = [T] $ \vdots					
	0.25	$\mathbf{v}=-rac{2\pi}{T_0}\;X_0.sin(rac{2\pi t}{T_0})$ عبارة السرعة: $\mathbf{v}=-rac{2\pi}{T_0}$ عبارة طاقة الجملة بدلالة الزمن:					
1.75	0.25	$E_{T}(t) = E_{c}(t) + E_{pe}(t)$					
	0.25	$E_{T}(t) = \frac{1}{2} m \left(-\frac{2\pi}{T_{0}} X_{0} \sin\left(\frac{2\pi}{T_{0}} t\right) \right)^{2} + \frac{1}{2} k \left(X_{0} \cos\left(\frac{2\pi}{T_{0}} t\right) \right)^{2}$					
	0.25	$E_{T}(t) = \frac{1}{2}kX_0^2 = C^{te}$					
	0.25	$E_T = E_{pe}$ (max) من البيان وباعتماد الخاصية: $E_C = E_T/2$ من البيان وباعتماد الخاصية $x = \pm 1,4~cm$ نجد بالاسقاط:					
		ب- سرعة المرور بالموضع ذو الفاصلة $x = 1.1$ cm:					
0.75		$E_{\rm C} = 3.5 \times 10^{-3} { m j}$ من البيان: لما $x = 1.1~{ m cm}$ لدينا					
	0.25						
		$ u = \sqrt{\frac{2E_C}{m}} = \pm 0.17 \text{ m/s}$ ومنه نجد:					
		$E_{\rm T} = \frac{1}{2} k X_0^2 = 5.10^{-3} { m J}$ د -قیمة : k					
	0.25	k=25 N/mنستتج:					
		التمرين التجريبي:(3 ن)					
		المريق المسريق الكهربائية: نربط على التسلسل: -المولد كهربائي القاطعة - الناقل الأومي -1					
0.25	0.25	- المكثفة . نوصل القط التوتر بين طرفي الالناقل الأومي.					
	0.25	2- المعادلة التفاضلية:					
	0.25	$U_{\scriptscriptstyle R}$ $+U_{\scriptscriptstyle C}=E$ قانون التوترات					
1.00	0.25	$rac{dU_C}{dt} = rac{1}{RC}.U_R(t)$:باشتقاق المعادلة السابقة و علما أن					
	0.25	dt RC RC RC RC RC RC RC RC					
	0.25						
0.75	$0.25 \\ 0.25$	-3 عبارتا A و $ au$: بتعویض الحل في المعادلة التفاضلية					
0.75	$0.25 \\ 0.25$	واستخدام الشروط الابتدائية نجد:					
	0.25	$\tau = RC \rho A = E$					
0.75	$0.25 \\ 0.25 \\ 0.25$	$ au=0.10~{ m s}$ و E = 9 V رسم المنحنى البياني ثم نجد بيانيا: $ au=0.10~{ m s}$					
0.25	0.25	$C = 10 \mu F$ ومنه $C = \frac{\tau}{R}$					

العلامة				02.4	* 11 3 . 1 .	NI alia			
مجموع	مجزأة			02 8	جابة الموضوع	عقاصر الإ			
0.50	0.25 0.25	التمرين الأول: (3.5 ن) -1 التمرين الأول: (3.5 ن) -1 المنيوم: تتناقص إلى غاية بلوغ قيمة حدية (1.62 g). -1 المتفاعل المحد : يتبقى من الالمنيوم كتلة -1 -1 -1 وبمان التفاعل تام فالمتفاعل المحد هو -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1							
			المعادلة	2Δ1(s) ±	$-6H_3O^+(aq)$	- 2Δ1 ³⁺ (ac	a) + 3H (a)	+ 6H O(1)	
		الحالة	التقدم	2AI (5) 1	-	مية المادة بالمو		1 01120(1)	
		الابتدائية	x=0	n_0	C.V	0	0	بزيادة	
	0.25	الإنتقالية	x(t)	$n_0 - 2x$	CV - 6x	2x	3x	بزيادة	
		النهائية	X _f	$n_0 - 2x_f$	CV - 6x _f	$2x_f$	3x _f	بزيادة	
1.25							ائية:	يات المادة الابتد	ب- حساب کم
	0.25	$n_0(Al) = \frac{m}{M} = 0.15 \text{mol}$							
	0.25	1	$n_0(Al)$	$-2x_{\max} = n_f$	$(Al) \Rightarrow x_n$	$n_{\text{max}} = \frac{n_f(A)}{n_{\text{max}}}$	$\frac{1)-n_0(A1)}{2} =$	4,5x10 ⁻² mol	l
	0.25		_		$V = 6x_{\text{max}}$		n ₀ (H ₃ O	⁺)=0,27m	ol
	0.25	C	$C = \frac{n_0(H_3O^+)}{V} = 2.7 \text{ mol/L}$						
		$x = x_f/2$ لما $x = x_f/2$ لما $x = x_f/2$							
			1	$n(A\ell)_t = n_0$	$(A\ell)-2x(t)$	$= n_0(A\ell)$	$(1) - \frac{2x_f}{2}$		
	0.25 0.25		2	$\mathbf{x}_f = \frac{n_0 (A\ell)}{2}$	$\frac{(n-n(A\ell)_f)}{2}$	\Rightarrow	$m_{t_{1/2}} = \frac{m_0}{}$	$\frac{+m_f}{2}$	
0.75	0.25							$t_{1/2} =$	نجد 1 min
	0.25				حظتین ۵.۵. م	بین ا v_m =	$-\frac{\Delta}{2M\Delta t}$	توسطة للتفاعل:	4- السرعة الما
1.00	0.25 0.25		$v_m = -\frac{\Delta}{2M\Delta t}$ بين لحظتين -4 $v_m = -\frac{\Delta}{2M\Delta t}$ بين لحظتين -4 $v_m = -\frac{2,84-4,05}{2\times27(1-0)} = 0,02 \; \mathrm{mol.min^{-1}}$ $v_m = -\frac{1,94-2,84}{2\times27(3-1)} = 0,008 \; \mathrm{mol.min^{-1}}$						
1.00 t_1 و t_2 اكبر منها بين اللحظتين t_2 و t_3 لأن سرعة التفاعل تتناسب مع t_1 0.25 t_2 .						قيمة السرعة ال كمية المادة للمن			

		تابع الإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2016
و نصف	:04 ساعات	اختبار مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي (مكيف) المدة
مة	العلا	عناصر الإجابة
مجموع	مجزأة	حصصر الإجاب
		التمرين الثاني(3,0 نقطة)
1.50	$0.25 \\ 0.25$	$^{32}_{15}P ightarrow ^{32}_{16}S \ + \ ^{0}_{-1}e$. أ . معادلة التحول النووي الحادث:
1.50	0.25 0.25 0.25	$m=m_0e^{-\lambda t}$; $N=rac{m}{M}$. $N_{ m A}$; $N=N_0e^{-\lambda t}$: يا النتاقص الاشعاعي: ب $N=N_0e^{-\lambda t}$
	0,50	$\frac{E_l}{A} = \frac{1}{A} (15 \text{ m}_p + 17 \text{ m}_n - \text{m}(P)) \times 931.5 \; ; \; \frac{E_l}{A} = 8,46 \text{ MeV/nucl\'eon}$
0.50	0.50	$m' = m_0 - m = m_0 - m_0 e^{-\lambda t} = m_o (1 - e^{-\lambda t})$: إثبات العبارة المعطاة : .2
0.50	$0.25 \\ 0.25$	$^{32}_{17}Cl ightarrow ^{32}_{16}S + ^{0}_{+1}e$.32 النواة هي الكلور.33.
0.50	0.50	$\frac{A(t)}{A_O} = \frac{1}{4} \Leftrightarrow e^{-\lambda t} = \frac{1}{4} \Rightarrow \lambda . t = 2 . \ln 2 \Rightarrow t = 2 \frac{\ln 2}{\lambda} = 2t_{1/2} \tag{4}$
	0.25	التمرين الثالث: (3.5 نقاط) التمرين الثالث: (3.5 نقاط) الله المولد بين لبوسي المكثفة المتقابلين فرقا في الكمون الكهربائي، الشيء الذي يدفع بالإلكترونات الحرة للبوس ذو الكمون المرتفع (الموجب) بالتحرك نحو اللبوس الآخر عبر الدارة (يلعب المولد دور مضخة للالكترونات)، فتنشأ شحنة كهربائية موجبة على هذا اللبوس وفي نفس الوقت شحنة كهربائية سالبة على اللبوس المقابل. تتزايد هذه الشحنة بفعل التكهرب عن بعد بين اللبوسين (تكثيف الشحن الكهربائية) وخاصة بوجود عازل كهربائي، فيتزايد تدريجيا التوتر بين اللبوسين وتتوقف حركة الالكترونات عندما يبلغ هذا التوتر بينهما قيمة القوة المحركة الكهربائية للمولد . ب)-المعادلة التفاضلية للتيار (t):
	0.25	$u_{R_1} + u_{R_2} + u_C = E$; $(R_1 + R_2) i + u_C = E$
1.75	0.25	$(R_1 + R_2) \frac{di}{dt} + \frac{du_C}{dt} = 0$ $\frac{du_C}{dt} = \frac{i}{C} ; (R_1 + R_2) \frac{di}{dt} + \frac{i}{C} = 0$
	0.25	$\frac{di}{dt} + \frac{1}{(R_1 + R_2)C} i = 0$
	0.25	ج- بتعويض الحل في المعادلة التفاضلية و باستعمال الشروط الابتدائية نتحصل على: -

 $\beta = \frac{1}{(R_1 + R_2).C} \qquad \qquad \alpha = \frac{E}{R_1 + R_2}$ 0.25 0.25 $C = \frac{\tau}{(R_1 + R_2)} = 100 \ \mu F$ و نستنج نجد: $\tau = 0.5 \ s$ و نستنج نجد: $\tau = 0.5 \ s$ 1.25 $E = (R_1 + R_2).I_0 = 10 \text{ V}$ ${
m E(C)}=rac{1}{2}{
m C}\,{
m u}_{
m C}^{2}(t)\;\;;\;\;\;{
m E(C)}=rac{1}{2}{
m CE}^{2}(1{
m -e}^{-rac{t}{ au}})^{2}$: العبارة اللحظية للطاقة: -30.25 الطاقة الأعظمية: $u_c = E \implies E_{max}(C) = \frac{1}{2}C E^2$; $E_{max}(C) = 5x10^{-3} j$ 0.50 0.25

و نصف	:04 ساعات	اختبار مادة: العلوم الفيزيائية الشعبة: رياضيات وتقني رياضي (مكيف) المدة:					اختبار مادة: العلوم الف		
مة	العلا	عناصر الإجابة							
مجموع	مجزأة	4.44, 7							
		<u>التمرين الرابع:</u> (3,5 نقطة)							
0.25	0.25	خارج العمود: من صفيحة النحاس نحو صفيحة الألمنيوم.				1- جهة التيار خار			
	0.25	ان الاعتدال	2- دور الجسر الملحي: - غلق الدارة الكهربائية - مسلك لانتقال الشوارد بين نصفي العمود لضمان الاعتدال						
0.50			الكهربائي للمحلولين.						
0.50	0.25		Θ A	$l_{(s)}/Al^{3+}_{(aq)}//Cu$	$^{2+}$ (aq) $/$ $Cu_{(s)} \oplus$	الرمز الاصطلاحي:	تمثيل العمود-		
	0.25		2	$\times \left(A l_{(s)} = A l^{3+}\right)$	معد : (* عو _{ا (aq)}	مفيتان: عند المص	2- المعادلتان النص		
	0.25		3	$\times (Cu^{2+}_{(aq)} + 2e$	$_{-}=Cu_{(s)}):$ بط	عند المه			
0.75	0.25			$Al_{(s)} + 3 Cu^{2+}_{(a)}$	ŕ		معادلة التفاعل:		
					2		Stranger		
0.50	0.25		g	$Q_{r,i} = \frac{\Box (uq)}{\Box Cu^{2+}}$	$\left(\frac{1}{10^{-1}}\right)^3 = \frac{1}{\left(10^{-1}\right)^3}$	$\epsilon = 0.1$	4. القيمة الإبتدائية لكسر		
	0.25			ىسابق. سابق.	ر المباشر للتفاعل الد	تطور الجملة في الإتج	ت $Q_{ri} < K$ نما أن $-$		
	0.25				$=I.\Delta t = 0.4 \times 1$		2. أ - كمية الكهرباء:		
				·	·		ب- جدول التقدم:		
		معادلة	11	$2Al_{(s)}$	$+3 Cu^{2+}_{(aa)}$	$_{0}=2Al^{3+}$	'		
		حالة الجملة	التقدم	(3)		ر بود. كميات المادة ب	(5)		
		الإبتدائية	0	$n_0(Al)$	5	0,5	$n_0(Cu)$		
1.50	0.25	الإنتقالية	x	$n_0(Al)-2x$	5-3x	2x + 0.5	$n_0(Cu) + 3x$		
	0.25	النهائية	x_m	$n_0(Al)-2x_m$	$5-3x_m$	$2x_m + 0.5$	$n_0(Cu) + 3x_m$		
	0.05	$[Cu^{2+}] = ($	(5 - 3x)	ا و V/	[+] = (0.5 + 2x)	$^{\prime}$ ل يعبر الدارة †	ج- لما min = 30		
	$0.25 \\ 0.25$			بالتعويض نجد:	x = 1,24 mm	ol نجد: $Q = i$	$. \Delta t = 6.x.F$		
	0.25			$[Cu^{2+}] = 25,6 \text{ m}$.] و mol/L	Al^{3+}] = 59,6 mm	nol/L		
						3.5 ن)	التمرين الخامس: (5		
	0.25			AO	م (S) خلال الإنتقال	ثاني لنيوتن على الجسم	1 . أ ـ بتطبيق القانون ال		
	0.25	$\sum \vec{F} = m\vec{c}$	$\sum \vec{F} = m \vec{a} \implies \vec{P} + \vec{R} + \vec{f} = m \vec{a}$; \vec{f} فوة الاحتكاك ، قوة الاحتكاك ، \vec{P} القوى: الثقل \vec{P}						
1.50	0.25				$mg \sin \alpha -$	f = ma نجد (Ox)	بالإسقاط على المحور (
	0.25					$= m(g \sin \alpha - a)$	ومنه		
	0.25				$a = \frac{\Delta V}{\Delta t} = 3$	مة التسارع $m.s^{-2}$,	ب ـ من القياسات نجد قي		
	0.25	$f_1 = 0.5(9.8\sin 45 - 3) = 1.96N$: \vec{f}_1 شدة قوة الإحتكاك :							
	0.25	$\vec{P}=m\vec{a} \Rightarrow m\vec{g}=m\vec{a} \Rightarrow \vec{a}=\vec{g}$: المعادلتان الزمنيتان: القانون الثاني لنيوتن - -2							
	0.23	V #							

المدة:04 ساعات و نصف

مة	العلا	عناصر الإجابة
مجموع	مجزأة	المِبَةِ المِبَاءِ المِبَاءِ المِبَاءِ المِبَاءِ المِبَاءِ المِبَاءِ المِبَاءِ المِبَاءِ المِبَاءِ ا
1.75	0.25 0.25 0.25	$y = \frac{g}{2v_0^2\cos^2\alpha}x^2 + (\tan\alpha)x$ معادلة $\begin{cases} x(t) = v_0\cos\alpha t \\ y(t) = \frac{1}{2}gt^2 + v_0\sin\alpha t \end{cases}$
	0.25	${ m v}_0=3,15m/s$: نعوض القيمتين x_N و y_N في معادلة المسار نجد ${ m v}_0=3,15m/s$
	0.25	$v_o^2 - v_A^2 = 2.a.d \implies a = \frac{v_o^2 - v_A^2}{2d} = 3.3 m/s : \vec{a}$ د ـ شدة شعاع التسارع
	0.25	$f=0.5(9.8\sin 45-3.3)=1.81N$: $ec{f}$ الإحتكاك $ec{f}$ الإحتكاك المدة شعاع قوة الإحتكاك المدة شعاع المدة ال
0.25	0.25	3 – النتيجتان مقبولتان لأنهما ضمن مجال حدود اخطاء التجربة.
		التمرين التجريبي:(03 نقاط)
0.25	0.25	نقطة التكافؤ:هي النقطة التي يتم فيها التفاعل الكلي للنوع الكيميائي المُعَايَر وفق المعاملات الستيوكيومترية. -1
	0.25	2- عند التكافؤ يتحقق:
0.75	0.25 0.25	$n_i(HA) = n_E(HO^-) \Rightarrow C_a V_a = C_b V_{bE} \Rightarrow V_{bE} = \frac{C_a V_a}{Cb} = 10 \ mL$ ($V_{bE} = 10 \ mL$; $pH_E = 8.4$) احداثیات نقطة النكافؤ:
	0.25	$ ho_{bE}=10^{\circ} HHz}, \; pH_E=0,4$ والثنائية : عند نصف التكافؤ : لما $V_b=V_{bE}/2$ لدينا $pk_a=3$
0.50	0.25	- من الجدول المرفق الحمض المعاير هو حمض الايثانويك CH ₃ COOH
	0.25	4- الحمض ضعيف لأن:
0.25	0.25	.p $H_0 > 2$
	0.25	$\mathrm{CH_3COOH(aq)} + \mathrm{HO^-(aq)} = \mathrm{CHCOO^-(aq)} + \mathrm{H_2O}(\ell)$ معادلة تفاعل المعايرة: -5
		ب-حساب ثابت التوازن :
1.25	0.25 0.25	$K = \frac{\left[CH_{3}COO^{-}\right]_{f}}{\left[CH_{3}COOH\right]_{f}\left[HO^{-}\right]_{f}} \cdot \frac{\left[H_{3}O^{+}\right]}{\left[H_{3}O^{+}\right]} = \frac{K_{a}}{K_{e}} \rightarrow K = 10^{(pK_{e}-pK_{a})} = 1,6.10^{9}$
	0.25	تفاعل تام $K > 10^4$
	0.25	ج – الكاشف المناسب لهذه المعايرة هو الفينول فتاليين