SSN COLLEGE OF ENGINEERING

Department of Mathematics

UNIT - 2: TWO-DIMENSIONAL RANDOM VARIABLES

SEC: 1 JOINT PDF, CDF & MARGINAL DISTRIBUTIONS

Two-dimensional random variable:

Let S be the sample space associated with a random experiment E. Let X = X(s) and Y = Y(s) be two functions each assigning a real number to each outcomes $s \in S$. Then, the pair (X, Y) is called a *two-dimensional random variable* (r.v) or a *bivariate r.v.*

Discrete and continuous two-dimensional r.v:

If the possible values of (X, Y) are finite or countably infinite. (X, Y) is called a *two-dimensional* discrete r.v. When (X, Y) is a two-dimensional discrete r.v., the possible values of (X, Y) may be represented as (x_i, y_j) , i = 1, 2, ..., n; j = 1, 2, ..., m.

If (X,Y) can assume all values in a specified region R in the xy-plane, (X,Y) is called a *two-dimensional continuous r.v.*

• Joint probability function of (X, Y):

If (X, Y) is a two-dimensional discrete r.v such that $P(X = x_i, Y = y_j) = p(x_i y_j) = p_{ij}$, then p_{ij} is called *joint probability mass function* or simply *joint probability function* of (X, Y) provided the following conditions are satisfied

- (i) $p_{ij} \ge 0$ for all i,j.
- (ii) $\sum_{i} \sum_{i} p_{ij} = 1$

• Joint probability distribution of (X, Y):

The set of triples $\{x_iy_j, p_{ij}\}, i = 1, 2, ..., n; j = 1, 2, ..., m$ is called the joint probability distribution of (X, Y) and it can be given in the form of table as given below

x y	y_1	y_2		\mathcal{Y}_m	$p(x_i)$	
x_1	p_{11}	p_{12}	•••	p_{1m}	<i>p</i> ₁ .	$P(X=x_1)$
x_2	p_{21}	p_{22}		p_{2m}	p_2 .	$P(X=x_2)$
:	:	:	٠,	:	: 1	
x_n	p_{n1}	p_{n2}		p_{nm}	p_n .	$P(X=x_n)$
$\mathbf{p}(\mathbf{y}_j)$	p. 1	p. 2		p _{•m}	1	
	$P(Y=y_1)$	$P(Y=y_2)$		$P(Y=y_m)$		

Marginal probability function of (X, Y):

If the joint probability distribution of two random variables X and Y is given, then the marginal probability of X is given by the set $\{x_i, p_{i\bullet}\}$ which can be given in the form of table as follows:

X	x_1	<i>x</i> ₂	 x_n
$P(X = x_i) \text{ or } p(x_i)$	p_1 .	p_2 .	 p_{n} .

`Similarly, the set $\{y_j, p_{\bullet j}\}$ is called the marginal distribution of Y and is given in the form of table as follows:

Y	y_1	y_2	•••	y_m
$P(Y = y_j) \text{ or } p(y_j)$	p.1	p .2		$p_{\bullet m}$

Conditional probabilities:

The conditional probability function of X given $Y = y_j$ is given by

$$P(X = x_i | Y = y_j) = P(X = x_i \cap Y = y_j) / P(Y = y_j)$$
$$= \frac{p_{ij}}{p_{\bullet i}}$$

It can also be denoted by

$$f(x/y) = \frac{f(x,y)}{f(y)}$$

Similarly the conditional probability function of Y given $X = x_i$ is given by

$$P(Y = y_j | X = x_i) = P(Y = y_j \cap X = x_i) / P(X = x_i)$$
$$= \frac{p_{ij}}{p_{i\bullet}}$$

It can also be denoted by

$$f(y/x) = \frac{f(x,y)}{f(x)}$$

NOTE:

Two random variables X and Y are said to be independent if $p_{ij} = p_{i\bullet}p_{\bullet j}$ for all i and j.

Joint probability density function:

If X and Y are continuous random variables then f(x, y) is said to be joint probability function or joint pdf of two random variables X and Y, if

$$P[a_1 \le X \le b_1, a_2 \le Y \le b_2] = \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x, y) dy dx$$

provided (i) $f(x, y) \ge 0$

(ii)
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dy dx = 1$$

Joint probability distribution for continuous r.vs X and Y:

The joint probability distribution function of two-dimensional r.vs (X, Y) is defined by $F(x, y) = P(X \le x, Y \le y)$

$$= \int_{-\infty}^{y} \int_{-\infty}^{x} f(x, y) dx dy$$

Properties:

(i)
$$F(-\infty, y) = 0$$
 (ii) $F(x, -\infty) = 0$ (iii) $F(\infty, \infty) = 1$

Relation between joint pdf and joint cdf:

$$f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y)$$

Marginal density function of X

$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

Marginal density function of Y

$$f(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

NOTE:

When finding the marginal density function of X and Y, if variables limits are given either for X or for Y in the joint p.d.f f(x, y), sketch the region of integration to get the limit in terms of x for y, to find f(x) and vice-versa.

Conditional probability distribution

The conditional probability function of *Y* given *X*, where *X* and *Y* are continuously distributed is given by $f\left(\frac{y}{x}\right) = \frac{f(x,y)}{f(x)}$, provided f(x) > 0.

• The conditional probability function of X given Y, where X and Y are continuously distributed is given by $f\left(\frac{x}{y}\right) = \frac{f(x,y)}{f(y)}$, provided f(y) > 0.

NOTE:

- Two r.vs X and Y are independent if $f(x, y) = f(x) \cdot f(y)$.
- $P(a < X < b/Y = y) = \int_a^b [f(x/y)]_{Y=y} dx$
- $P[(a < X < b) \cap (c < Y < d)] = \int_c^d \int_a^b f(x, y) dx dy$
- $P[(a < X < b)/(c < Y < d)] = \frac{P[(a < X < b) \cap (c < Y < d)]}{P(c < Y < d)}$

SEC 2: FUNCTION OF RANDOM VARIABLES:

Here two random variables X and Y with their joint p.d.f f(x, y) will be given. Let the two new random variables U and V are given by the transformation U = u(x, y) and V = v(x, y). Now our problem is to find the p.d.f of U and V or p.d.f of V.

The joint p.d.f of the transformed variables U and V is given by g(u, v) = |J| f(x, y) where

$$J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$
 is the Jacobian of the transformation.

Marginal density function of U and V can be obtained from the joint p.d.f. g(u,v)

NOTE:

If the r.v *U* is of the form *XY* or X + Y, we preferably take the auxiliary r.v *V* as *X*. If *U* is of the form $\frac{X}{Y}$ or X - Y then we take *V* as *Y*.

SEC 3: COVARIANCE, CORRELATION & REGRESSION

Covariance:

$$COV(X,Y) = E(XY) - E(X).E(Y)$$

If X & Y are discrete,

$$E(X) = \frac{\sum x_i}{n}$$
 $E(Y) = \frac{\sum y_j}{n}$ $E(XY) = \frac{\sum x_i y_j}{n}$

If X & Y are continuous,

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
 $E(Y) = \int_{-\infty}^{\infty} y f(y) dy$ $E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) dx dy$

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x, y) dx dy$$

If X & Y are discrete with probability values,

Then
$$E(X) = \sum xp(x)$$

$$E(Y) = \sum yp(y)$$

Then
$$E(X) = \sum xp(x)$$
 $E(Y) = \sum yp(y)$ $E(XY) = \sum \sum x_i y_i p(x_i y_i)$

NOTE:

If *X* and *Y* are independent then COV(X,Y) = 0, but not vice-versa.

Coefficient of correlation:

$$r(X,Y) = \frac{cov(X,Y)}{\sigma_x \sigma_y}$$

Where
$$\sigma_x^2 = var(X) = E(X^2) - (E(X))^2$$

$$\sigma_y^2 = var(Y) = E(Y^2) - (E(Y))^2$$

Also, If X is discrete, $E(X^2) = \sum x^2 p(x)$ if probability is given, otherwise $E(X) = \frac{\sum x_i^2}{n}$

If X is continuous, $E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$. Similarly, we can define $E(Y^2)$.

NOTE:

- $-1 \le r(X,Y) \le 1$
- If r(X, Y) = 0, then X and Y are said to be uncorrelated.

Regression:

There are 2 lines of regression

1. Line of regression of *Y* on *X*

$$y - \bar{y} = b_{vx}(x - \bar{x})$$

2. Line of regression of *X* on *Y*

$$x - \bar{x} = b_{xy}(y - \bar{y})$$

Here b_{yx} and b_{xy} are said to be **regression coefficient** of Y on X and X on Y respectively and are given by

$$b_{yx}=rrac{\sigma_y}{\sigma_x}$$
 and $b_{xy}=rrac{\sigma_x}{\sigma_y}$.

Also
$$\bar{x} = E(X)$$
 and $\bar{y} = E(Y)$

NOTE:

- 1. $r = \sqrt{b_{xy}b_{yx}}$
- 2. The point of intersection of 2 regression lines is (\bar{x}, \bar{y}) , that is solving 2 regression lines, we get mean of X and mean of Y.
- 3. If θ is the angle between 2 regression lines of 2 variables X and Y, then

$$tan\theta = \left(\frac{1-r^2}{r}\right)\frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$$

Regression Curve (NOT IN SYLLABUS):

The regression curve Y on X is $y = E(Y/x) = \int_{-\infty}^{\infty} y f(y/x) dy$

The regression curve X on Y is $x = E(X/y) = \int_{-\infty}^{\infty} x f(x/y) dy$

SEC.4: CENTRAL LIMIT THEOREM (CLT)

Liapounoff's form:

If $X_1, X_2, ..., X_n$ is a sequence of independent random variables with $E(X_i) = \mu_i$ and $Var(X_i) = \sigma_i^2$, i = 1, 2, ..., n and if $S_n = X_1 + X_2 + \cdots + X_n$ then under certain general conditions S_n follows a normal distribution with mean $\mu = \sum_{i=1}^n \mu_i$ and variance $\sigma^2 = \sum_{i=1}^n \sigma_i^2$ as n tends to infinity.

Lindeberg-Levy's form:

If $X_1, X_2, ..., X_n$ is a sequence of independent identically distributed (i.i.d) random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$, i = 1, 2, ..., n and if $S_n = X_1 + X_2 + ... + X_n$ then under certain general conditions S_n follows a normal distribution with mean $n\mu$ and variance $n\sigma^2$ as n tends to infinity.

REMARK:

If $\bar{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$ then the mean or average \bar{X} follows normal distribution with mean μ and variance $\frac{\sigma^2}{n}$.

NOTE:

For problems, n is the sample size, $E(X_i)$ is the mean of the sample and $Var(X_i)$ is the variance of the sample then

- Sum, S_n follows a normal distribution with mean $\mu = nE(X_i)$ and variance $\sigma^2 = nVar(X_i)$ as n tends to infinity.
- Average \bar{X} follows normal distribution with mean $\mu = E(X_i)$ and variance $\sigma^2 = \frac{Var(X_i)}{n}$.