Adaptive Particle Markov Chain Monte Carlo for Jump-Diffusion Models

And a Shift to Differential Particle Filters

Michelle Ko

Supervised By Dr. Martin Lysy

University of Waterloo

May 29, 2023

Table of Contents

Motivation and Mathematical Background

Particle Filtering

Particle MCMC

Differentiable Particle Filters

Discussion

References and Appendix

Motivation

Goal: Recast asset price jump-diffusion as a state-space model to

- Recover the latent (unobserved) volatility, and
- Estimate model parameters,

based on observed asset price using a "particular" computational technique.

Example of a jump-diffusion model for asset price:

Exponential Ornstein-Uhlenbeck (ExpOU)

Log asset price: $dX_t = \alpha dt + \exp(Z_t)^{\frac{1}{2}} dW_t^x + V_t^x dN_t$ Log latent volatility: $dZ_t = \kappa(\theta - Z_t) dt + \sigma dW_t^z + V_t^z dN_t$

Working Example

Consider a synthetic stock's daily price over 5 years that follows an ${\sf ExpOU} + {\sf Jump}$ model.

Working Example

The differenced log price gives a close approximation for daily return percentage.

State-Space Representation

Volatility and log asset price, Z_t, X_t , are both continuous latent processes. Not a problem.

The observed log price, Y_t , is measured error-free \Rightarrow observation density is a Delta function. This becomes a problem later.

Particle Filtering

Estimation method for the filtering distribution $p(Z_{1:T} \mid X_{1:T}, \Theta)$ [Gordon et al., 1993, Del Moral et al., 2001,

Golightly and Wilkinson, 2008, Johannes et al., 2009].

- 1. **Propagate**: Sample from proposal $Z_t^{(i)} \sim q(Z_t \mid \tilde{Z}_{t-1}, X_t, \Theta)$
- 2. **Re-weight**: Calculate incremental importance weights:

$$w_t^{(i)} = \frac{p_{\text{obs}}(X_t \mid Z_t^{(i)}, \Theta) p_{\text{trans}}(Z_t^{(i)} \mid \tilde{Z}_{t-1}^{(i)}, \Theta)}{q(Z_t^{(i)} \mid \tilde{Z}_{t-1}, X_t, \Theta)}$$
(1)

3. **Resample**: Resample particles with probability $p_i \propto w_t^{(i)}$:

$$\tilde{Z}_t \sim Resampler(Z_t, w_t^{(i)})$$
 (2)

Importantly: The marginal log-likelihood of Θ given $X_{1:T}$ "can" be unbiasedly estimated,

$$\hat{\ell} = \sum_{t=1}^{T} \log(avg_i(w_t^{(i)})) \tag{3}$$

Prepare initial particles.

Propagate particles with transition density.

Re-weigh particles according to importance weights.

Resample particles based on importance weights.

Particle Filtering Visualized Repeat!

Transition Density: Discretizing Jump-Diffusions

Revisiting ExpOU with Jump...

- ightharpoonup m-1 inter-observations between each pair of observations
- ▶ Approximate the SDE using Euler-Maruyama scheme
- Use a Bernoulli distribution for jumps

Sampling from the transition density follows as [Golightly, 2009]:

- 1. Sample jump $J \sim Bernoulli(\lambda \Delta t)$ and jump sizes V^x, V^z
- 2. Sample (X_{i+1}, Z_{i+1}) conditional on $X_i, Z_i, J, V^x, V^z, \Theta$ using:

$$\pi(Z_{i+1} \mid Z_i, \Theta) = N(Z_i + \kappa(\theta - Z_i)\Delta t + V_{i+1}^z J_{i+1}, \sigma^2 \Delta t)$$

$$\pi(X_{i+1} \mid X_i, Z_i, \Theta) = N(X_i + \alpha \Delta t + V_{i+1}^x J_{i+1}, \exp(Z_i)\Delta t)$$

But what happens with no-error measurement?

Proposal Density: Diffusion Bridge with Jumps

How to deal with this?

- ightharpoonup Create a bridge conditioned on the next observation $Y_{t+1} = X_{t+1}$
- ▶ This prevents all particle weights reducing to zero

The latent process in $(t_j, t_M]$ is proposed [Golightly, 2009]: For $i = j, \ldots, M-1$, first simulate M jumps and jump sizes. Then simulate Z_{i+1}^* recursively from its transition density. Then draw:

$$X_{i+1}^* \sim N(X_i^* + rac{X_M - X_i^*}{M - i} + V_{i+1}^* J_{i+1}^* - rac{\sum_{k=i+1}^M V_k^{x*} J_k^*}{M - i}, \ rac{M - i - 1}{M - i} Z_i^* \Delta t)$$

Takeaway

We represent jump-diffusion model as a state-space model to:

▶ Use a particle filter.

We build a particle filter to:

- ▶ Recover the latent states given observation,
- Integrate over the latent states to obtain the marginal log-likelihood, which is almost always analytically intractable.

We construct a diffusion bridge to:

▶ Do the above even when observations are error-free.

Particle MCMC

Particle Markov Chain Monte Carlo \Rightarrow When particle filtering is used within Markov chain Monte Carlo for drawing the posterior of the parameters [Andrieu et al., 2010]

- Particle Marginal Metropolis-Hastings (PMMH): Metropolis-Hastings that uses the marginal likelihood estimated by particle filtering in the acceptance ratio
- ▶ Particle Gibbs (PG):
 Alternate sampling between parameter and latent state using particle filters, i.e. draw parameter, draw a path based on parameter drawn, draw parameter based on path drawn...

Other options are Particle Metropolis-within-Gibbs, SMC², etc.

Adaptive PMCMC

PMCMC algorithms usually have tuning parameters:

- ► PMMH:
 - The step size σ_{rw} if the parameter proposal is a random walk
- Particle Gibbs (PG):

Dependent on how parameter conditioned on path is sampled With methods proposed in [Roberts and Rosenthal, 2009], parameter tuning can be automatically done based on target acceptance rates, empirical covariance structure, etc.

Preliminary Results

With a synthetic dataset generated by Heston + Jump model, Adaptive Particle Gibbs (APG) ran for around 9 minutes with:

- ▶ Number of observations: 300
- Resolution: 5
- ▶ Number of particles: 100
- ightharpoonup \Rightarrow 150,000 operations per one marginal log-likelihood evaluation
- ▶ Number of MCMC iterations: 20,000

Obstacles:

- Extremely low acceptance rate on some parameters
- Computationally expensive to obtain plausible posterior

Preliminary Results

New Focus on Differentiable Particle Filters

Why do we want this?

- ▶ If the PF-estimated marginal log-likelihood is differentiable, it turns into an optimization problem
- Gradient-based methods can be used, Autograd already well-implemented JAX, a high performance Python package [Bradbury et al., 2018]

How can we get this?

- 1. Resampling method in the particle filter is differentiable
- 2. Random variables in the model have differentiable densities

Multinomial resampling is one of the traditional methods in particle filtering for the resampling step, i.e. choosing particle "ancestors":

- ightharpoonup Multinomial($\{w_t^{(i)}\}$)
- Unbiased but NOT differentiable!

Consider instead a Gaussian approximation of the weighted particle distribution:

- $ightharpoonup N(mean(\{Z_t^{(i)}\}, \{w_t^{(i)}\}), var(\{Z_t^{(i)}\}, \{w_t^{(i)}\}))$
- May be biased in some cases but differentiable!

When particles are resampled with Multinomial distribution:

When particles are resampled with Gaussian approximation:

Marginal Negative Log Likelihood Projection: Gaussian Resampler

The two together:

Why still jagged?

Jump occurrence is a Bernoulli random variable:

- Definitely NOT differentiable!
- Explains the jagged-ness of the marginal negative log-likelihood

We can employ a reparameterization trick:

- ▶ Gumbel-Softmax—comes with a tuning parameter τ [Jang et al., 2017]
- As $\tau \to 0$, the distribution becomes Bernoulli
- Adds bias but differentiable!

Distribution of $(1 + \exp((L + \log \frac{1-p}{p})\tau^{-1}))^{-1}$, $L \sim logistic(0,1)$

With $\tau=0.1$, the minima is slightly shifted in some projection plots.

Increasing τ means smoother marginal in λ .

Bias is prominent in α as τ increases.

Results

With a slight modification of λ , Gradient Descent ran for around 10 minutes with:

Number of observations: $252 \times 3 = 756$

▶ Resolution: 5

Number of particles: 200

ightharpoonup ightharpoonup 756,000 operations for one marginal log-likelihood evaluation

Parameter	α	θ	κ	σ
True	0.11	-1.9	0.014	0.27
Estimated	0.18	-2.75	0.017	0.22

Parameter	λ	μ_{x}	σ_{x}	μ_z
True	0.050	-3.1	0.60	0.64
Estimated	0.063	-3.75	1.43	0.59

Filtered Latent States

With true parameters:

Filtered Latent States

With parameter estimates obtained from Reparameterized model:

Filtered Log Price and Log Volatility Log Asset Price (Scaled) Latent Log Price 160 140 120 Log Asset Price 100 40 20 Log Volatility Latent Log Volatility 5 Latent Log Volatility -10 -15 500 1000 1500 Ó 2000 2500 3000 3500

Time

Discussion

Cases that did not work well:

- ▶ Small λ : Jumps are too rare
- ▶ Small τ : Not enough smoothing
- ▶ Small μ_x, μ_z : Jump sizes are negligent
- Other factors: Wrong model specification, "bad seed", etc.

Areas of further investigation:

- ▶ Tradeoff between τ and bias: Bias correction?
- ▶ Distribution of Ô: Run optimizer with different seeds?
- Real life data: Daily SP 500 data?
- ▶ Correlated processes: Between X_t, Z_t or between jump sizes?
- Portfolio: Multiple assets that follow jump diffusion?

Acknowledgement

The PFJAX team:

- Martin Lysy
- ▶ Jonathan Ramkissoon
- Pranav Subramani
- ► Mohan Wu
- Kanika Chopra

References I

- Andrieu, C., Doucet, A., and Holenstein, R. (2010).

 Particle markov chain monte carlo methods.

 Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342.
- Bradbury, J., Frostig, R., Hawkins, P., Johnson, M., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018).

 Jax: composable transformations of Python+NumPy programs.
- Del Moral, P., Jacod, J., and Protter, P. (2001). The monte-carlo method for filtering with discrete-time observations.

Probability Theory and Related Fields, 120:346–368.

References II

Bayesian filtering for jump-diffusions with application to stochastic volatility.

Journal of Computational and Graphical Statistics, 18:384–400.

Golightly, A. and Wilkinson, D. (2008).

Bayesian inference for nonlinear multivariate diffusion models observed with error.

Computational Statistics and Data Analysis, 52:1674–1693.

Gordon, N., Salmond, D., and Smith, A. (1993).

Novel approach to nonlinear/non-gaussian bayesian state estimation.

IEE Proceedings-F, 140:107–113.

Jang, E., Gu, S., and Poole, B. (2017).
Categorical reparameterization with gumbel-softmax.

References III

Review of Financial Studies, 22:2759-2799.

Roberts, G. and Rosenthal, J. (2009).

Examples of adaptive mcmc.

Journal of Computational and Graphical Statistics, 18:349–367.

Background

State-space model is specified by:

- ▶ Latent state with transition density: $p_{trans}(Z_t \mid Z_{t-1}, \Theta)$
- ▶ Observation density: $p_{obs}(X_t \mid Z_t, \Theta)$

We are interested in the estimation of the model parameter Θ and latent state $Z_{1:T}$.