Московский государственный технический университет имени Н. Э. Баумана

Факультет: Фундаментальные науки

Кафедра: Математическое моделирование Дисциплина: Математическая статистика

Теория к РК по модулю 2

Выполнила: Покасова А.И. Группа:ИУ7-61

Пусть X — случайная величина, закон распределения которой неизвестен (известен не полностью).

Определение 0.1. Статистической гипотезой называется любое утверждение относительно закона распределения случайной величины X.

Определение 0.2. Статистическая гипотеза называется простой, если она однозначно определяет закон распределения случайной величины X(однозначно задает функцию распределения случайной величины X как функцию своего аргумента). В противном случае статистическая гипотеза называется сложной.

Определение 0.3. Статистическая гипотеза называется параметрической, если она является утверждением относительно значений неизвестного параметра известного закона распределения.

1 Проверка статистических гипотез

Проверку статистической гипотез обычно формулируют следующим образом:

- 1. Формулируют основную гипотезу H_0
- 2. Формулируют конкурирующую гипотезу H_1 . $H_0 \cap H_1 = \emptyset$, но, возможно, H_0 и H_1 не исчерпывают все возможные случаи.
- 3. На основании имеющейся выборки $\vec{x} \in \chi_n$ принимают решение об истинности H_0 и H_1 .

Определение 1.1. Правило, посредством которого принимается решение об истинности H_0 или H_1 называется статистическим критерием проверки гипотезы.

Задают критерий проверки статистической гипотезы обычно с помощью критического множества $W \in \chi_n$. При этом решающее правило имеет вид:

ского множества
$$W \in \chi_n$$
. При этом решающее правило имеет вид: $\vec{x} \in W \Longrightarrow \left\{ \begin{array}{ll} \text{отклоняют } H_0 \\ \text{принимают } H_1 \end{array} \right. \quad \vec{x} \notin W \Longrightarrow \left\{ \begin{array}{ll} \text{принимают } H_0 \\ \text{отклоняют } H_1 \end{array} \right.$

Замечание. 1. Задать критерий проверки гипотез и задать критическое множество – одно и то же

- 2. При использовании любого критерия возможны ошибки двух видов:
 - (a) принять конкурирующую гипотезу при истинности основной гипотезы ошибка первого рода: $P\{\vec{x} \in W | H_0\} = \alpha$
 - (b) принять основную гипотезу при истинности конкурирующей ошибка второго рода: $P\{\vec{x} \notin W|H_1\} = \beta$

Определение 1.2. α называется уровнем значимости, а $1-\beta$ – мощностью критерия.

<u>Критерий Неймана-Пирсона</u> Пусть:

- 1. Х случайная величина
- 2. $F(x,\theta)$ функция распределения случайной величины X (известны общий вид функции F, но она зависит от неизвестного параметра θ)

При построении критерия для проверки статистических гипотез, как правило, исходят из необходимости максимизации его мощности $1-\beta$ (минимизация вероятности совершения ошибки второго рода) при фиксированном уровне значимости α критерия.

Введём в рассмотрение статистику:

$$\phi(\vec{X}) = \frac{L(\vec{X};\theta_1)}{L(\vec{X};\theta_0)},$$

где $L(\vec{X}; \theta)$ – функция правдоподобия.

Определение 1.3. Статистика $\phi(\vec{X})$ называется отношением правдоподобия.

Критическое множество должно иметь вид:

$$W = \{ \vec{x} \in \chi_n : \phi(\vec{X}) \ge C_\phi \},\$$

где константа С выбирается из условия

$$\alpha = P\{\phi(\vec{X}) \ge C_{\phi} | \theta = \theta_0\}$$

Пример. Пусть $X \sim N(m, \sigma^2)$, где m — неизвестно, σ^2 — известно.

Рассмотрим задачу проверки двух простых гипотез $H_0 = \{m = m_0\}, \quad H_1 = \{m = m_1\},$ где $m_0 < m_1.$

В этом примере функция правдоподобия имеет вид:

$$L(X_1, \dots, X_n, m) = (\frac{1}{\sqrt{2\pi}\sigma})^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - m)^2}$$

Тогда отношение правдоподобия:

$$\phi(\vec{X}) = \frac{L(\vec{X}, m_1)}{L(\vec{X}, m_0)} = \frac{e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - m_1)^2}}{e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - m_0)^2}} =$$

$$e^{-\frac{1}{2\sigma^2}\sum_{i=1}^{n}[(x_i-m_1)^2-(X_i-m_0)^2]} = e^{-\frac{1}{2\sigma^2}\sum_{i=1}^{n}[x_i^2-2x_im_1+m_1^2-x_i^2+2x_im_0-m_0^2]} = e^{\frac{m_1-m_0}{\sigma^2}\sum_{i=1}^{n}x_i-\frac{n}{2\sigma^2}[m_1^2-m_0^2]}$$
(1)

Выше было показано, что критическое множество должно иметь вид

$$W = {\vec{X} : \phi(\vec{X}) \ge C_{\phi}},$$

где $C_{\phi} = const$ выбирается из условия

$$P\{\phi(\vec{X}) \ge C_{\phi}|H_0\} = \alpha$$

Условие

$$\phi(\vec{X}) \ge C_{\phi} <=> \ln \phi(\vec{X}) \ge \ln C_{\phi} <=> |\text{cm.}(2)| <=> \ln \left[e^{\frac{m_1 - m_0}{\sigma^2} \sum_{i=1}^n X_i - \frac{n}{2\sigma^2} (m_1^2 - m_0^2)}\right] \ge \ln C_{\phi} <=> \frac{m_1 - m_0}{\sigma^2} \sum_{i=1}^n X_i - \frac{n}{2\sigma^2} (m_1^2 - m_0^2) \ge \ln C_{\phi} <=> \frac{m_1^2 - m_0^2}{\sigma^2} \sum_{i=1}^n X_i \ge \ln C_{\phi} + \frac{n}{2\sigma^2 (m_1^2 - m_0^2) <=>}$$

С учетом того, что
$$m_1 > m_0 <=> \sum_{i=1}^n X_i \ge \frac{\sigma^2}{m_1 - m_0} [lnC_\phi - \frac{n}{2\sigma^2} [m_1^2 - m_0^2]], \quad C = const$$

Таким образом,

$$W = {\vec{X} \in \chi_n : \sum_{i=1}^n X_i \ge C_\phi},$$

где С выбирается из условия

$$\alpha = P\{\phi(\vec{X} \ge C_{\phi}|H_0)\} = P\{\sum_{i=1}^{n} X_i \ge C_{\phi}|m = m_0\}$$

Если истинна H_0 , т.е. $m=m_0$, то случайная величина $\sum_{i=1}^n X_i \sim N(nm_0, n\sigma^2) \mid X_i \sim$ $X \sim N(m_0, \sigma^2)$.

Таким образом, $\alpha = P\{\sum_{i=1}^n X_i \ge C | m = m_0\} = 1 - P\{\sum_{i=1}^n X_i \le C | m = m_0\} = 1 - \Phi(\frac{C - nm_0}{\sqrt{n\sigma^2}})$, то есть $\Phi(\frac{C - nm_0}{\sqrt{n\sigma^2}}) = 1 - \alpha$. Таким образом, $\frac{C - nm_0}{\sqrt{n\sigma^2}} = u_{1-\alpha}$, $C = \sigma u_{1-\alpha} \sqrt{n} + nm_0$. Таким образом, критерий имеет вид

$$\sum_{i=1}^{n} X_i \geq \sigma u_{1-\alpha} \sqrt{n} + n m_0 \rightarrow \{$$
принять H_1 , отклонить $H_0\}$

$$\sum_{i=1}^n < \sigma u_{1-lpha} \sqrt{n} + n m_0$$
 {принять H_0 , отклонить H_1 }

При этом вероятность совершения ошибки 1-го рода

$$p = P\{\vec{X} \notin W | H_1\} = P\{\sum_{i=1}^n < C | m = m_0\} = | C = \sigma u_{1-\alpha\sqrt{n}+nm_0}, \text{при} m = m_1 : \sum_{i=1}^n X_i \sim N(nm_1, n\sigma) \}$$

$$\Phi\left(\frac{\sigma u_{1-\alpha}\sqrt{n} - n(m_1 - m_0)}{\sigma\sqrt{n}}\right) = \Phi\left(u_{1-\alpha} - \sqrt{n}\frac{m_1 - m_0}{n}\right)$$

Проверка сложных параметрических гипотез

Пусть

- Х случайная величина
- \bullet $F(x,\theta)$ функция распределения случайной величины X(общий вид функции Fизвестен, но F зависит от неизвестного параметра θ)

Рассмотрим задачу проверки двух сложных гипотез: $H_0 = \{\theta \in \Theta_0\}$ и $H_1 = \{\theta \in \Theta_1\}$, где $\theta_0 \cap \theta_1 = 0$

- $\theta_0 = \{\theta > \theta_0\}, \theta_1 = \{\theta < \theta_1\}$
- $\theta = \{\theta < \theta_0\}, \theta_1 = \{\theta > \theta_1\},$ где $\theta_0 < \theta_1$.

В этом случае критерий как и раньше задается с использованием критического множества W, а решающее правило имеет вид:

$$\vec{X} \in W \to \{\text{принять } H_1, \text{ отклонить } H_0\}$$

 $\vec{X} \notin W \to \{\text{принять } H_0, \text{ отклонить } H_1\}$

При этом ошибки первого и второго рода определяются как и раньше, но теперь их вероятности зависят от θ .

$$\alpha(\theta) = P\{\vec{X} \in W | \theta \in \Theta_0\},\$$

$$\beta(\theta) = P\{\vec{X} \in \chi_n | W | \theta \in \Theta_1\}.$$

Определение 1.4. Величина $\alpha = \sup_{\theta \in \Theta_0} \alpha(\theta)$ называется размером критерия.

Определение 1.5. Функция $M(\theta) = P\{\vec{X} \in W | \theta\}(*)$ называется функцией мощности критерия.

Замечание 1. 1) Условие (*), принятое в математической статистике удачней было бы записать в виде

$$M(t) = P\{\vec{X} \in W | \theta = t\},\$$

то есть $M(\theta)$ – вероятность события $\{\vec{X} \in W\}$ при условии, что неизвестный параметр имеет значение θ .

2) Через функцию мощности можно выразить вероятности совершения ошибок первого и второго рода.

$$\alpha(\theta) = M(\theta), \quad \theta \in \Theta_0 \qquad \beta(\theta) = 1 - M(\theta), \quad \theta \in \Theta_1.$$

Определение 1.6. Критерий, который при заданном размере α максимизирует функцию мощности одновременно по всем возможным критериям при всех $\theta \in \Theta_1$ называется равномерно наиболее мощным критерием.

Пример 1. Пусть $X \sim N(m, \sigma^2)$, где m – неизвестно, σ^2 – известна.

Рассмотрим задачу проверки гипотез $H_0 = \{m = m_0\} \ u \ H_1 = \{m > m_0\}.$

1) Ранее была решена задача проверки двух параметрических гипотез $H_0 = \{m = m_0\}$ и $H_1 = \{m = m_1\}$, где $m_1 > m_0$. При этом критическое множество имеет вид:

$$W = \{\vec{X} \in \chi_n : \sum_{i=1}^n x_i \ge nm_0 + u_{1-\alpha}\sigma\sqrt{n}\}(*)$$

2) Так как построенное выше критическое множество не зависит от m_1 , то фактически этот критерий является равномерно наиболее мощным для проверки гипотез

$$H_0 = \{m = m_0\}$$
 $H_1 = \{m > m_0\}$

Таким образом, для рассмотренной задачи критическое множество имеет вид (*).

Пример 2. Пусть $X \sim N(m, \sigma^2)$, где m – неизвестно, σ^2 – неизвестна. Рассмотрим задачу проверки гипотез

$$H_0 = \{m = m_0\} \quad vs \quad H_1 = \{m > m_0\}$$

В этом примере целесообразно воспользоваться статистикой

$$T(\vec{X}) = \frac{\overline{X} - m_0}{S(\vec{X})} \sqrt{n} \sim (npu\ ucmunhocmu\ H_0) St(n-1)$$

Аналогично предыдущим примерам, критическое множество можно задать в виде

$$W = {\vec{X} \in \chi_n : T(\vec{X}) \ge t_{1-\alpha}^{n-1}},$$

 $\epsilon \partial e\ t_{1-lpha}^{n-1}$ – квантиль уровня 1-lpha распределения St(n-1)

Замечание 2. Пусть в условиях предыдущего примера требуется проверить следующие гипотезы:

- $H_0 = \{m = m_0\}$ vs $H_1 = \{m < m_0\}$
- $H_0 = \{m = m_0\}$ vs $H_1 = \{m \neq m_0\}$

Рассуждая аналогично, с использованием статистики

$$T(\vec{X}) = \frac{\overline{X} - m_0}{S(\vec{X})} \sqrt{n}$$

зададим критические множества в виде:

• $W = {\vec{X} \in \chi_n : T(\vec{X} \le -t_{1-\alpha}^{n-1})}$

•
$$W = {\vec{X} \in \chi_n : |T(\vec{X})| \ge t_{1-\alpha/2}^{n-1}}$$

Пример 3. Пусть

- $X \sim N(m_1, \sigma_1^2)$
- $Y \sim N(m_2, \sigma_2^2)$
- m_1, m_2 неизвестны, σ_1, σ_2 известны

Рассмотрим задачу проверки следующих гипотез:

- $H_0 = \{m_1 = m_2\}$ vs $H_1 = \{m_1 > m_2\}$
- $H_0 = \{m_1 = m_2\}$ vs $H_1 = \{m_1 < m_2\}$
- $H_0 = \{m_1 = m_2\}$ vs $H_1 = \{m_1 \neq m_2\}$

Paccмотрим случайную величину Z = X - Y; MZ = MX - MY, поэтому сформулированные задачи эквивалентны задачам:

- $H_0 = \{m = 0\}$ vs $H_1 = \{m > 0\}$
- $H_0 = \{m = 0\}$ vs $H_2 = \{m < 0\}$
- $H_0 = \{m = 0\}$ vs $H_3 = \{m \neq 0\},$

 $r\partial e \ m = M[Z].$

Рассмотрим статистику

$$T(\vec{X}, \vec{Y}) = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1}{n_1} + \frac{\sigma_2^2}{n_2}}},$$

где n_1 – объем выборки \vec{X} , n_2 – объем выборки \vec{Y} .

Закон распределения случайной величины T при истинности H_0 :

Т является линейно наибольшей нормированной случайной величиной, следовательно Т сама имеет нормальное распределение.

$$M[T] = \frac{1}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} (M\overline{X} - M\overline{Y}) = npu \ ucmunnocmu \ H_0 = 0$$

$$D[T] = \frac{1}{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} [D\overline{X} + D\overline{Y}] = \frac{1}{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} [\frac{\sigma_1}{n_1} + \frac{\sigma_2^2}{n_2}] = 1$$

Таким образом, при истинности H_0 статистика $T \sim N(0,1)$. По этой причине критические множества в каждой из рассмотренных задач имеют вид:

- $W = \{(\vec{X}, \vec{Y}) \in \chi_n : T(\vec{x}, \vec{y}) \ge u_{1-\alpha}\}$
- $W = \{(\vec{X}, \vec{Y}) \in \chi_n : T(\vec{x}, \vec{y}) \le -u_{1-\alpha}\}$
- $W = \{(\vec{X}, \vec{Y}) \in \chi_n : |T(\vec{x}, \vec{y})| \ge u_{1-\alpha/2}\}$

2 Критерии согласия

Определение 2.1. Первая задача математической статистики.

Дано: X – случайная величина, закон распределения которой неизвестен. Требуется найти закон распределения случайной величины X.

Определение 2.2. Вторая задача математической статистики.

Дано: X — случайная величина, закон распределения которой известен с точностью до вектора $\vec{\theta}$ неизвестных параметров.

Требуется оценить значение θ .

Решение первой задачи связано с проверкой основной гипотезы:

$$H_0 = \{ F(t) \equiv F_0(t) \} = \{ (\forall t \in \mathbb{R}) (F(t) = F_0(t)) \},$$

где

- ullet F(t) функция распределения случайной величины X
- $F_0(t)$ некоторая функция распределения

против конкурирующей гипотезы:

$$H_1 = \neg H_0 = \{ (\exists t \in \mathbb{R}) (F(t) \neq F_0(t)) \}$$

Гипотеза может быть сложной и иметь вид:

$$H_0 = \{ (\exists \vec{\theta_0}) (\forall t \in \mathbb{R}) (F(t) = F_0(t, \vec{\theta}) \},$$

где

- ullet F(t) функция распределения случайной величины ${\bf X}$
- $F_0(t, \vec{\theta})$ некоторая функция распределения, известная с точностью до вектора распределения θ

При этом конкурирующая гипотеза

$$H_1 = \neg H_0 = \{ (\forall \vec{\theta}) (\exists t \in \mathbb{R}) (F(t) \neq F_0(t, \vec{\theta})) \}$$

Проверка основной гипотезы H_0 сводится к оценке величины

$$\Delta(F_n, F_0)$$

рассогласования эмпирической функции распределения и предполагаемой функции распределения F_0 .

Определение 2.3. Критерием согласия называется статистический критерий, предназначенный для проверки корректности гипотезы о том, что предполагаемый закон распределения $F_0(t, \vec{\theta})$ случайной величины X соответствует экспериментальным данным, представленным эмпирической функцией распределения $F_n(t)$.

2.1 Критерий Колмогорова

Для простой гипотезы:

Пусть:

- Х непрерывная случайная величина
- ullet $ec{X}$ случайная выборка из генеральной совокупности $ec{X}$.

Рассмотрим задачу проверки гипотезы

$$H_0 = \{ F(t) \equiv F_0(t) \}$$
 vs $H_1 = \neg H_0$

Замечание 3. Здесь $F_0(t)$ – полностью известная функция распределения, которая не зависит ни от каких неизвестных параметров. По этой причине H_0 – простая гипотеза.

Для решения этой задачи рассмотрим статистику

$$\Delta(\vec{X}),$$

реализации которой определяются соотношением

$$\Delta(\vec{X}) = \sup_{t \in \mathbb{R}} |F_n(t) - F_0(t)|,$$

где $F_n(t)$ – эмпирическая функция распределения, построенная по выборке \vec{x} .

Очевидно. что «малое» значение статистики Δ свидетельствуют об истинности H_0 , а «большие» – об истинности H_1 .

По этой причине критическое множество имеет вид

$$W = \{ \vec{x} \in \chi_n : \Delta(\vec{X}) \ge \delta_{1-\alpha} \},\$$

где $\delta_{1-\alpha}$ – квантиль уровня $1-\alpha$ закона распределения случайной величины $\Delta(\vec{X})$. При этом решающее правило имеет вид:

$$\vec{x} \in W \to$$
 принять H_1 , отклонить H_0 , $\vec{x} \in \overline{W} \to$ принять H_0 , отклонить H_1

2.2 Критерий χ^2 для простой гипотезы

Пусть

- Х дискретная случайная величина
- X может принимать конечное множество значений $a_1, \ldots a_n$ с неизвестными вероятностями p_1, \ldots, p_l .

Требуется проверить основную гипотезу

$$H_0 = \{p_1 = p_1^0, \dots, p_l = p_l^0\},\$$

где p_1^0, \dots, p_l^0 — некоторые известные значения, против

$$H_1 = \neg H_0 = \{k \in \{1, \dots, l\} : p_k \neq p_k^0\}$$

Для решения этой задачи рассмотрим статистики

$$n_1(\vec{X}), \ldots, n_l(\vec{X}),$$

гле

 $n_k(\vec{x}) = \{$ количество элементов выборки \vec{x} , которые имеют значение $a_k\}$ Замечание 4. Очевидно, что

$$n_1(\vec{X}) + \dots + n_l(\vec{X}) = n,$$

поэтому случайные величины $n_1(\vec{X}), \ldots, n_l(\vec{X})$ – зависимы.

Теорема Пирсона. Пусть выполняются сделанные выше предположения.

Тогда при истинности H_0 последовательность случайных величин

$$\sum_{i=1}^{l} \frac{n_k (\vec{X} - np_k)^2}{np_k}$$

слабо сходится к случайной величине, имеющей распределение $\chi^2(l-1)$

Согласно этой теореме, при $n \longrightarrow \inf$ случайная величина

$$\Delta(\vec{X}) = \sum_{i=1}^{l} \frac{(n_k(\vec{X}) - np_k^0)^2}{np_k} = n \sum_{i=1}^{l} \frac{\frac{n_k(\vec{X})}{n} - p_k^0}{p_k^0}$$

сходится к случайной величине, распределенной по закону $\chi^3(l-1)$.

Очевидно, что истинность основной гипотезы H_0 ассоциируется с малыми значениями статистики $\Delta(\vec{X})$, а истинность конкурирующей гипотезы H_1 – с «большими» положительными значениями. По этой причине критическое множество можно задать в следующем виде:

$$W = \{ \vec{x} \in \chi_n : \Delta(\vec{x}) \ge h_{1-\alpha}^{l-1} \},$$

где h_{1-lpha} – квантиль уровня 1-lpha распределения $\chi^2(l-1)$

2.3 Критерий Колмогорова для сложной гипотезы

Требуется проверить гипотезу о принадлежности закону распределения случайной величины X заданному классу. По этой причине основная гипотеза H_0 будет сложной:

$$H_0 = \{ (\exists \vec{\theta}) (\forall t \in \mathbb{R}) (F(t) = F_0(t, \theta)) \},$$

где

- F(t) теоретический (расово верный) закон распределения случайной величины X
- ullet $F_0(t)$ предполагаемый закон распределения случайной величины ${
 m X}$
- θ вектор параметров закона F_0

Конкурирующая гипотеза $H_1 = \neg H_0$. Для решения задачи:

1. построить точечную оценку $\hat{\vec{X}}$ для значения вектора параметров $\vec{\theta}$

2. использовать критерий Колмогорова для проверки простой гипотезы

$$H_0 = \{ F(t) \equiv F_0(t, \hat{\vec{\theta}}(\vec{X})) \},$$

где $\hat{\vec{\theta}}$ – выборочное значение построенной оценки.

Недостаток: критерии перестают быть параметрическими, так как распределение модифицированной статистики

$$\Delta(\vec{X}) = \sup_{t \in \mathbb{R}} |F(t) - F_0(t, \hat{\vec{\theta}})|$$

зависит от выбранной точечной оценки, то есть от закона распределения случайной величины $\hat{\vec{\theta}}$.

Однако можно показать, что, если

- 1. $\hat{\vec{\theta}}$ оценка максимального правдоподобия для вектора θ
- 2. Элементы $F_0(t, \vec{\theta})$ параметрического семейства получаются из какого-нибудь одного своего представителя с использованием преобразований сдвига и масштаба (вдоль оси O t), то есть

$$F_0(t, \vec{\theta}) = \tilde{F}_0(\frac{t-a}{b}),$$

где \tilde{F}_0 — какая-то фиксированная функция рассматриваемого семейства $F_0(t,\vec{\theta})$, а в-е значения которых зависят от значения $\vec{\theta}$ в левой части, то для использования критерия Колмогорова достаточно иметь только одну таблицу квантилей для каждого семейства.

2.4 Критерий χ^2 для сложной гипотезы

Пусть

- 1. Х дискретная случайная величина
- 2. X может принимать значения a_1, \ldots, a_l с неизвестными вероятности p_1, \ldots, p_l
- 3. эти вероятности $p_k, k = \overline{1;l}$, зависят от неизвестных параметров $\vec{\theta}$, где $\vec{\theta} \in \Theta$, то есть в отличии от критерия для простой гипотезы теперь $p_k = p_k(\vec{\theta}), \theta \in \Theta, k = \overline{1;l}$

По этой причине основную гипотезу можно записать в виде:

$$H_0 = \{ P\{X = a_k\} = p_{k_0}(\vec{\theta}), k = \overline{1; l} \},$$
(2)

где $p_{k_0}(\vec{\theta})$ — известные функции, предполагаемые в зависимости вероятностей p_k от параметров $\vec{\theta}$.

 $P\{X=a_k\}=p_k(\vec{\theta})$ – теоретические(расово верные) зависимости этих вероятностей от параметров; эти зависимости нам неизвестны.

Конкурирующую гипотезу выбирают такой: $H_1 = \neg H_0$ Для решения:

- 1. сначала строят оценку максимального правдоподобия для вектора $\vec{\theta}: \hat{\vec{\theta}}(\hat{\vec{X}})$
- 2. вычисляют выборочное значение $\vec{\theta}(\vec{x})n_k(\vec{x})$

3. рассматривают статистику

$$\chi^{2}(\vec{X}) = \sum_{i=1}^{l} \frac{[n_{k}(\vec{X} - np_{k}(\hat{\vec{\theta}}(\vec{X}))]^{2}}{np_{k_{0}}(\hat{\vec{\theta}}(\vec{X}))} = n \sum_{i=1}^{l} \frac{[\frac{n_{k}(\vec{X})}{n} - p_{k_{0}}(\hat{\vec{\theta}})(\vec{X})]^{2}}{p_{k_{0}}(\hat{\vec{\theta}}(\vec{X}))},$$

которая в случае выполнения определенных условий гладкости функций $p_{k_0}(\vec{\theta})$ при $n \longrightarrow \inf$ слабо сходится к случайной величине, имеющей распределение χ^{2l-r-1} , где r – размерность вектора θ .

4. поскольку при истинности основной гипотезы H_0 статистика $\chi^2(\vec{X})$ принимает «малые» значения, а при истинности H_1 – «большие» положительные значения, критическое множество можно записать в виде

$$W = {\vec{x} : \chi^2(\vec{x}) \ge h_{1-\alpha}^{l-r-1}},$$

где $h_{1-\alpha}^{l-r-1}$ – квантиль уровня $1-\alpha$ распределения $chi^2(l-r-1)$

Замечание 5. О построении оценки максимального правдоподобия в рассматриваемом случае.

При истинности H_0 функция правдоподобия имеет следующий вид:

$$L(\vec{X}, \vec{\theta}) = \prod_{j=1}^{n} P\{X = X_j\} = \frac{n!}{n_1! \cdot \dots \cdot n_k!} \prod_{k=1}^{l} [p_{k_0}(\vec{\theta})]^{n_k(\vec{X})},$$

где $\sum_{k=1}^l n_k(\vec{X}) = n.$

Тогда уравнения правдоподобия

$$\frac{\partial lnL}{\partial \theta_j} = 0, \quad j = \overline{1; r},$$

примут вид:

$$\sum_{k=1}^{l} \frac{n_k(\vec{X})}{p_{k_0}(\vec{\theta})} \cdot \frac{\partial p_{k_0}(\theta)}{\partial \theta_j} = 0, \quad j = \overline{1; r}$$

2.5 Критерий Смирнова

Пусть

- 1. Х, У случайные величины
- 2. F(t) функция распределения случайной величины X, G(t) функция распределения случайной величины Y
- 3. \vec{X} случайная выборка из генеральной совокупности X (объем n_1), \vec{Y} случайная выборка из генеральной совокупности Y (объем n_2)

Требуется проверить гипотезу

$$H_0 = \{X, Y$$
одинаково распределены $\} = \{(\forall t \in \mathbb{R})(F(t) = G(t))\}$ vs $H_1 = \neg H_0$

Если случайные величины X и Y непрерывны, то для решения этой задачи можно использовать статистику $\Delta(\vec{X},\vec{Y})$, выборочное значение которой определяется формулой

$$\Delta(\vec{X}, \vec{Y}) = \sup_{t \in \mathbb{R}} |F_{n_1}(t) - G_{n_2}(t)|, \tag{3}$$

где $F_{n_1}(t)$, $G_{n_2}(t)$ – эмпирические функции распределения, отвечающие выборкам \vec{x} и \vec{y} . Если истинно H_0 , то в соответствии с теоремой о сходимости эмпирической функции распределения к теоретической функции распределения заключаем, что при достаточно больших n_1, n_2 значения статистики должны быть «малыми», а при истинности H_1 – «большими». По этой причине критическое множество можно задать в виде:

$$W = \{ (\vec{x}, \vec{y}) : \Delta(\vec{X}, \vec{Y}) \ge \delta_{1-\alpha} \},$$

где $\alpha \in (0,1)$ – заданный уровень значимости критерия, а $\delta_{1-\alpha}$ – квантиль уровня $1-\alpha$ закона распределения статистики Δ при истинности H_0 .

Замечание 6. О законе распределения статистики $\Delta(\vec{X}, \vec{Y})$.

- Доказано, что при истинности H_0 закон распределения статистики Δ не зависит от F(t) теоретического закона распределения случайной величины X
- ullet для небольших n_1, n_2 соответствующие распределения табулированы
- Смирнов доказал, что для t > 0

$$P\{\sqrt{\frac{n_1 n_2}{n_1 + n_2}} \Delta(\vec{X}, \vec{Y}) < t\} \rightarrow_{n_1 \to \infty, n_2 \to \infty} K(t),$$

где
$$K(t) = \sum_{k=-\infty}^{\infty} (-1)^k e^{-2k^2t^2}$$

При достаточно больших n_1, n_2 можно считать, что случайная величина

$$A = \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \Delta(\vec{X}, \vec{Y})$$

имеет своей функцией распределения K(t), t > 0.

3 Регрессионный анализ

Основные задачи регрессионного анализа – задачи, связанные с установкой стохастических зависимостей между случайной величиной Y и детерминированными X_1, \ldots, X_p , носящими количественный характер.

Определение 3.1. Y стохастически зависит от X_1, \ldots, X_p , если на изменение значений X_1, \ldots, X_p реагирует изменением своего закона распределения.

Определение 3.2. Модель $\Phi(t) = \theta_1 \Psi_1(t) + \dots + \theta_p \Psi(t)$, где $\Psi_j(t)$ – известная базовая функция, $\theta_j, j = 1, p$ – неизвестные параметры, называется линейной по параметрам, если каждый входящий в правую часть параметр входит линейно.

Определение 3.3. Оценкой, полученной методом наименьших квадратов(МНК - оценкой) вектора $\vec{\theta}$ называется такое его значение $\hat{\theta}$, которое дост. наим. значение функционалу $S(\vec{\theta})$, т.е. $S(\hat{\theta}) = min_{\vec{\theta} \in \mathbb{R}^p} S(\vec{\theta})$, где $S(\hat{\theta})$ — мера близости аппроксимирующей функции $\hat{\Phi}$ и истинной Φ .

$$S(\vec{\theta}) = \sum_{i=1}^{n} (y_i - \hat{\Phi}(t_i))^2$$

Чем более удачно $\vec{\theta}$, тем меньше $S(\vec{\theta})$.

Теорема о вычислении МНК. Пусть $rg\Psi=p$, тогда $\hat{\theta}=(\Psi^t\Psi)^{-1}\Psi^T\vec{y}$. Теорема о свойствах МНК-оценок. Пусть

- 1. $\varepsilon \sim N(0, \sigma^2)$
- 2. Реал. сл. величина ε в серии из n наблюдений незав.
- 3. $rg\Psi = p$
- 4. $\hat{\theta} = (\Psi^T \Psi)^{-1} \Psi^T \vec{y}$ линейная оценка для θ

Тогда

- 1. $\hat{\vec{\theta}}$ несмещенная оценка θ
- 2. $\hat{\vec{\theta}} \sim N(\vec{\theta}, \varepsilon)$ нормальная случайная величина, где $\varepsilon = \sigma^2(\Psi^T\Psi)^{-1}$
- 3. Интервальная оценка уровня $1-\alpha$ для параметра θ_j имеет вид

$$(\hat{\theta_j} - \Delta_j, \hat{\theta_j} + \Delta_j)$$

где

•
$$\Delta_j = t_{1-\alpha}^{n-p} \sqrt{\frac{d_j}{n-p} S(\hat{\vec{\theta}})}$$

- $t_{1-\alpha}^{n-p}$ квантиль уровня $1-\alpha$ St(n-p)
- ullet d_j j-й элемент главной диагонали матрицы $(\Psi^T\Psi)^{-1}.$

4 Примечания составителя

- Основная часть шпоры составлялась к 27.05.19, содержала значительное количество ошибок. В последней версии убраны старые ошибки, добавлены новые (верность данных уже особо не проверяется, т.к. РК я сдала, мне не актуально).
- Пункт «Пример» в секции «Критерий Неймана-Пирсона» относится к вопросу №3! Все остальное относится к вопросу №2.

Уже 2 человека наебнулись на этом.

Берегите себя и своих близких.

- «расово верный» шутка, никогда не пишите так в РК(я серьезно, в лекциях этого нет, это все шутки составителя, т.е меня)
- Шпоры распространяются под лицензией WTFPL, делайте с ними что хотите
- Если найдете ошибки в шпорах, создавайте issue в репозитории mathstat user-a Euclidophren, или скачайте .tex файл и правьте сами(таки WTFPL), или напишите мне в телеграме(@neoisalie), я исправлю (или нет, идите нахуй).