LELME2150 – Thermal cycles

Introduction to Homework 1

Date: September 15, 2021

Course instructor: *Prof. Yann Bartosiewicz*

Teaching assistant(s): Antoine Laterre

antoine.laterre@uclouvain.be

(Gauthier Limpens)

Thermal cycles are the main driver for electricity production

- Rankine cycles based systems
 - Coal power plant (ST)
 - Nuclear power plant (ST)
 - *Efficiency*: 33 to 40%
- Brayton cycles based systems
 - Natural gas power plant (GT)
 - Oil power plant (GT/ICE)
 - *Efficiency*: 35 to 43%
- Combination of cycles
 - Combined Cycles Gas Turbine (CCGT)
 - *Efficiency*: 52 to 60%

Thermal cycles have a role to play in the energy transition

- Production of electricity from renewable sources
 - Geothermal sources
 - Concentrated solar power (CSP)
 - Use of bio-fuels and e-fuels in heat engines (e.g. bio-gas, green hydrogen, ...)
 - Waste heat sources (e.g. from industrial processes, from cooling systems, ...)
- Electrical energy storage (and sector coupling)
 - Carnot batteries (heat pumps, thermal storage and heat engines)

HW1 aims to take over the representation of the basic cycles

- What do you remember from your basic thermodynamic classes?
- Can you remember how to model basic Rankine and Brayton cycles?
- Can you improve some assumptions? (e.g. constant c_p , fluid composition, ...)
- How can you conduct parametric analyses to study the cycle sensitivity to some parameters? (e.g. ambient temperature, maximum pressure and temperature, polytropic efficiencies, ...)

Numerical models are needed!

Start by writing the equations on a sheet and then code them in Python

• Results for GT: efficiency = 35.7% with default parameters

• Results for ST: efficiency = 21.5% with default parameters

The deadline is next Wednesday

- 1. Go on the Moodle page of the course (see the announcement for the links)
 - Find your groupmate and select a group;
 - 2. Download the homework statement;
 - Download the signatures (basic_cycles_group_xx.py);
 - 4. Download the test code (basic_cycles_test.py).
- 2. Fill the functions definitions and test <u>your code</u>
- Submit <u>one</u> code on Moodle for your group basic_cycles_group_xx.py (fill your group number)

Deadline?

Wednesday the 22nd of September (<u>S2</u>) at 23:59 + optional Q&A session (SUDo1) at 10:45 on Thursday 23rd