Segmentation:

Mean-shift & watershed

Dr. Tushar Sandhan

Introduction

Number of segments?

Introduction

Number of segments?

Introduction

Number of segments?

- Mean-shift clustering
 - o iterative steepest ascent method
 - seeks peaks of probability density in feature space
 - finds modes or local maxima
 - o it tries to find all possible cluster centres
 - o no need of initial guess of K clusters

Non-parametric density estimation

Non-parametric density estimation

Non-parametric density gradient estimation

- Density estimation
 - o find the underlying distribution that generates the given data

- Non-parametric density estimation
 - use data points to define distribution
 - o put a small probability mass around each data-point via kernel
 - o e.g. Gaussian kernel

Data point density is similar to PDF value

Courtesy: T. Tappen

Data point density is similar to PDF value

Courtesy: T. Tappen

$$x_1 = x_0 + \eta \nabla f(x_0)$$

$$\hat{f}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

$$x_1 = x_0 + \eta \nabla f(x_0)$$

$$\hat{f}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

$$\hat{f}_{h,K}(\mathbf{x}) = \frac{c_{k,d}}{nh^d} \sum_{i=1}^n k \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

 $c_{k,d}$ is volume of unit sphere $\in R^d$

$$x_1 = x_0 + \eta \nabla f(x_0)$$

$$\hat{f}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

$$\hat{f}_{h,K}(\mathbf{x}) = \frac{c_{k,d}}{nh^d} \sum_{i=1}^n k \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

 $c_{k,d}$ is volume of unit sphere $\in R^d$

at the modes: $\nabla f(\mathbf{x}) = \mathbf{0}$

$$x_1 = x_0 + \eta \nabla f(x_0)$$

$$\hat{f}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

$$\hat{f}_{h,K}(\mathbf{x}) = \frac{c_{k,d}}{nh^d} \sum_{i=1}^n k \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

 $c_{k,d}$ is volume of unit sphere $\in R^d$

at the modes: $\nabla f(\mathbf{x}) = \mathbf{0}$

$$\hat{\nabla} f_{h,K}(\mathbf{x}) \equiv \nabla \hat{f}_{h,K}(\mathbf{x}) = \frac{2c_{k,d}}{nh^{d+2}} \sum_{i=1}^{n} (\mathbf{x} - \mathbf{x}_i) k' \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

$$x_1 = x_0 + \eta \nabla f(x_0)$$

$$\hat{f}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

$$\hat{f}_{h,K}(\mathbf{x}) = \frac{c_{k,d}}{nh^d} \sum_{i=1}^n k \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

 $c_{k,d}$ is volume of unit sphere $\in \mathbb{R}^d$

at the modes: $\nabla f(\mathbf{x}) = \mathbf{0}$

$$\hat{\nabla} f_{h,K}(\mathbf{x}) \equiv \nabla \hat{f}_{h,K}(\mathbf{x}) = \frac{2c_{k,d}}{nh^{d+2}} \sum_{i=1}^{n} (\mathbf{x} - \mathbf{x}_i) k' \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

$$x_1 = x_0 + \eta \nabla f(x_0)$$

$$\hat{f}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

$$\hat{f}_{h,K}(\mathbf{x}) = \frac{c_{k,d}}{nh^d} \sum_{i=1}^n k \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

 $c_{k,d}$ is volume of unit sphere $\in R^d$

at the modes: $\nabla f(\mathbf{x}) = \mathbf{0}$

$$\hat{\nabla} f_{h,K}(\mathbf{x}) \equiv \nabla \hat{f}_{h,K}(\mathbf{x}) = \frac{2c_{k,d}}{nh^{d+2}} \sum_{i=1}^{n} (\mathbf{x} - \mathbf{x}_i) k' \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

$$g(x) = -k'(x)$$

$$x_1 = x_0 + \eta \nabla f(x_0)$$

$$\hat{f}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

$$\hat{f}_{h,K}(\mathbf{x}) = \frac{c_{k,d}}{nh^d} \sum_{i=1}^n k \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

 $c_{k,d}$ is volume of unit sphere $\in \mathbb{R}^d$

at the modes: $\nabla f(\mathbf{x}) = \mathbf{0}$

$$\hat{\nabla} f_{h,K}(\mathbf{x}) \equiv \nabla \hat{f}_{h,K}(\mathbf{x}) = \frac{2c_{k,d}}{nh^{d+2}} \sum_{i=1}^{n} (\mathbf{x} - \mathbf{x}_i) k' \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

$$g(x) = -k'(x)$$

$$\begin{split} \hat{\nabla} f_{h,K}(\mathbf{x}) \\ &= \frac{2c_{k,d}}{nh^{d+2}} \sum_{i=1}^{n} (\mathbf{x}_i - \mathbf{x}) g\left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right) \\ &= \frac{2c_{k,d}}{nh^{d+2}} \left[\sum_{i=1}^{n} g\left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right) \right] \left[\frac{\sum_{i=1}^{n} \mathbf{x}_i g\left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)}{\sum_{i=1}^{n} g\left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)} - \mathbf{x} \right] \end{split}$$

$$x_1 = x_0 + \eta \nabla f(x_0)$$

$$\hat{f}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

$$\hat{f}_{h,K}(\mathbf{x}) = \frac{c_{k,d}}{nh^d} \sum_{i=1}^n k \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

 $c_{k,d}$ is volume of unit sphere $\in R^d$

at the modes: $\nabla f(\mathbf{x}) = \mathbf{0}$

$$\hat{\nabla} f_{h,K}(\mathbf{x}) \equiv \nabla \hat{f}_{h,K}(\mathbf{x}) = \frac{2c_{k,d}}{nh^{d+2}} \sum_{i=1}^{n} (\mathbf{x} - \mathbf{x}_i) k' \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

$$g(x) = -k'(x)$$

$$\hat{\nabla} f_{h,K}(\mathbf{x})
= \frac{2c_{k,d}}{nh^{d+2}} \sum_{i=1}^{n} (\mathbf{x}_i - \mathbf{x}) g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_i}{h}\right\|^2\right)
= \frac{2c_{k,d}}{nh^{d+2}} \left[\sum_{i=1}^{n} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_i}{h}\right\|^2\right)\right] \left[\frac{\sum_{i=1}^{n} \mathbf{x}_i g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_i}{h}\right\|^2\right)}{\sum_{i=1}^{n} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_i}{h}\right\|^2\right)} - \mathbf{x}\right]$$

$$\mathbf{m}_{h,G}(\mathbf{x}) = \frac{\sum_{i=1}^{n} \mathbf{x}_{i} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{n} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)} - \mathbf{x}$$

$$x_1 = x_0 + \eta \nabla f(x_0)$$

$$\hat{f}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

$$\hat{f}_{h,K}(\mathbf{x}) = \frac{c_{k,d}}{nh^d} \sum_{i=1}^n k \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

 $c_{k,d}$ is volume of unit sphere $\in \mathbb{R}^d$

at the modes: $\nabla f(\mathbf{x}) = \mathbf{0}$

$$\hat{\nabla} f_{h,K}(\mathbf{x}) \equiv \nabla \hat{f}_{h,K}(\mathbf{x}) = \frac{2c_{k,d}}{nh^{d+2}} \sum_{i=1}^{n} (\mathbf{x} - \mathbf{x}_i) k' \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

$$g(x) = -k'(x)$$

$$\begin{split} \hat{\nabla} f_{h,K}(\mathbf{x}) \\ &= \frac{2c_{k,d}}{nh^{d+2}} \sum_{i=1}^{n} (\mathbf{x}_i - \mathbf{x}) g\left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right) \\ &= \frac{2c_{k,d}}{nh^{d+2}} \left[\sum_{i=1}^{n} g\left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right) \right] \left[\frac{\sum_{i=1}^{n} \mathbf{x}_i g\left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)}{\sum_{i=1}^{n} g\left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)} - \mathbf{x} \right] \end{split}$$

$$\mathbf{m}_{h,G}(\mathbf{x}) = \frac{\sum_{i=1}^{n} \mathbf{x}_{i} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum_{i=1}^{n} g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right\|^{2}\right)} - \mathbf{x}$$

$$\hat{\nabla} f_{h,K}(\mathbf{x}) = \hat{f}_{h,G}(\mathbf{x}) \frac{2c_{k,d}}{h^2 c_{g,d}} \mathbf{m}_{h,G}(\mathbf{x}) \qquad \qquad \mathbf{m}_{h,G}(\mathbf{x}) = \frac{1}{2} h^2 c \frac{\hat{\nabla} f_{h,K}(\mathbf{x})}{\hat{f}_{h,G}(\mathbf{x})}$$

Algorithm

- o transform image into feature space
- o initialize window at each feature point
- o for each window
 - o compute mean shift vector m(x)
 - o move density estimation window by m(x)
 - o repeat till convergence
- o merge windows that end up near same peak

Pros

- o automatically finds various number of modes
- o no need of initial guessing of cluster centres
- does not assume spherical clusters
- robust to outliers
- o just a single para (window size w)

Cons

- o bandwidth or windows size is an imp. Para
 - slight change in w, translates varied output
- computationally expensive
 - complexity: $O(n^2T)$
- o not scalable with dimensionality

Mean-shift

- Watershed segmentation
 - o considers an image as a topological surface
 - o pixel intensities are heights (lowest level 0, highest peak 255)
 - segmenting overlapping objects
 - o consider each waterbody as a separate object

waterbodies via watershed

input

- Watershed segmentation
 - o considers an image as a topological surface
 - o pixel intensities are heights (lowest level 0, highest peak 255)
 - segmenting overlapping objects
 - o consider each waterbody as a separate object

waterbodies via watershed

input

courtesy: wiki

- Watershed segmentation
 - o considers an image as a topological surface
 - o pixel intensities are heights (lowest level 0, highest peak 255)
 - segmenting overlapping objects
 - o consider each waterbody as a separate object

waterbodies via watershed

input

gradient

watershed 2D

watershed 3D

courtesy: wiki

- Watershed segmentation
 - overlapping objects

input

thresholding or clustering

courtesy: JW Tay

- Watershed segmentation
 - overlapping objects

input

thresholding or clustering

watershed

courtesy: JW Tay

- Distance transform
 - o computes the distance between each pix and nearest nonzero pix

1.41	1	1.41	2.24	3.16
1	0	1	2	2.24
1.41	1	1.41	1	1.41
2.24	2	1	0	1
3.16	2.24	1.41	1	1.41

courtesy: JW Tay

- Distance transform
 - o computes the distance between each pix and nearest nonzero pix

1.41	1	1.41	2.24	3.16
1	0	1	2	2.24
1.41	1	1.41	1	1.41
2.24	2	1	0	1
3.16	2.24	1.41	1	1.41

1.41	1	1	1.41	2.24
1	0	0	1	1.4
1	0	0	0	1
1.41	1	0	0	1
2.24	1.41	1	1	1.4

- Distance transform
 - o computes the distance between each pix and nearest nonzero pix

1.41	1	1.41	2.24	3.16
1	0	1	2	2.24
1.41	1	1.41	1	1.41
2.24	2	1	0	1
3.16	2.24	1.41	1	1.41

1.41	1	1	1.41	2.24
1	0	0	1	1.41
1	0	0	0	1
1.41	1	0	0	1
2.24	1.41	1	1	1.41

- Distance transform
 - o computes the distance between each pix and nearest nonzero pix

1.41	1	1.41	2.24	3.16
1	0	1	2	2.24
1.41	1	1.41	1	1.41
2.24	2	1	0	1
3.16	2.24	1.41	1	1.41

0	0	0	0	0
0	1	1	0	0
0	1	1.41	1	0
0	0	1	1	0
0	0	0	0	0

1.41	1	1	1.41	2.24
1	0	0	1	1.41
1	0	0	0	1
1.41	1	0	0	1
2.24	1.41	1	1	1.41

- Distance transform
 - o computes the distance between each pix and nearest nonzero pix

1.41	1	1.41	2.24	3.16
1	0	1	2	2.24
1.41	1	1.41	1	1.41
2.24	2	1	0	1
3.16	2.24	1.41	1	1.41

0	0	0	0	0
0	1	1	0	0
0	1	1.41	1	0
0	0	1	1	0
0	0	0	0	0

0	0	0	0	0
0	-1	-1	0	0
0	-1	-1.41	-1	0
0	0	-1	-1	0
0	0	0	0	0

1.41	1	1	1.41	2.24
1	0	0	1	1.41
1	0	0	0	1
1.41	1	0	0	1
2.24	1.41	1	1	1.41

- Distance transform
 - o computes the distance between each pix and nearest nonzero pix

1.41	1	1.41	2.24	3.16
1	0	1	2	2.24
1.41	1	1.41	1	1.41
2.24	2	1	0	1
3.16	2.24	1.41	1	1.41

0	0	0	0	0
0	1	1	0	0
0	1	1.41	1	0
0	0	1	1	0
0	0	0	0	0

0	0	0	0	0
0	-1	-1	0	0
0	-1	-1.41	-1	0
0	0	-1	-1	0
0	0	0	0	0

1.41	1	1	1.41	2.24
1	0	0	1	1.41
1	0	0	0	1
1.41	1	0	0	1
2.24	1.41	1	1	1.41

courtesy: JW Tay

• Algorithm: outline

- Requires:
 - o each obj must be a basin, coinciding basin's bottom with approx obj center
- Input: image I
- o convert *I* into inverted grey: $\hat{I} = L grey(I)$
- \circ compute the negative distance transform of \hat{I}
- o non-max suppression over shallow minima
- o fill basins & get watersheds
- update each segmented mask with watersheds

Algorithm: outline

- Requires:
 - o each obj must be a basin, coinciding basin's bottom with approx obj center
- Input: image I
- o convert *I* into inverted grey: $\hat{I} = L grey(I)$
- \circ compute the negative distance transform of \hat{I}
- o non-max suppression over shallow minima
- o fill basins & get watersheds
- update each segmented mask with watersheds

why non-max suppression?

- Algorithm: getting watersheds
- o Initialize:

- Minima points: $M_1, ..., M_R$
- Thresholded set: $T_h = \{p \in I | I(p) \le h\}$, where p is an pixel in I and h is some intensity level.
- Let's define Influence set

$$C(M_i)$$
 = cluster associated with M_i

$$IZ_{h+1}(M_i) = \{ p \in T_{h+1} | d(p, C(M_i)) < d(p, C(M_j)) \}$$

 $\forall j, i \neq j$

- Algorithm: getting watersheds
- o Initialize:
- A grey(I) having: $[h_{min} h_{max}]$
- Minima points: $M_1, ..., M_R$
- Thresholded set: $T_h = \{p \in I | I(p) \le h\}$, where p is an pixel in I and h is some intensity level.
- Let's define Influence set

$$C(M_i)$$
 = cluster associated with M_i

$$IZ_{h+1}(M_i) = \{ p \in T_{h+1} | d(p, C(M_i)) < d(p, C(M_j)) \}$$

 $\forall j, i \neq j$

- Run:
 - $h = h_{min}$
 - Immersed set: $X_h = X_{h_{min}} = T_{h_{min}}$ $= \{ p \in I | I(p) \le h_{min} \}$
 - Loop until h_{max}

$$X_{h+1} = X_h \bigcup IZ_{h+1}(M_1) \dots \bigcup IZ_{h+1}(M_R)$$

Influence set of minima M_1 at level h+1

• Watershed(I) = Set of all pixels in $I \setminus X_{hmax}$

courtesy: EPFL

- Mean-shift
- Watershed

Conclusion

- Mean-shift
- Watershed

Mean-shift

- Number of cluster specification is not needed
- Mode seeking algorithm
- Computationally expensive

- Precise boundaries even for overlapping similar objects
- Images treated as topological surfaces

