1 Singularities

Theorem 1 (Riemann's Theorem on removeable singularities). f(z) has an isolated singularity at z_0 , bounded in punctured neighborhood of z_0 , then f can be extended to a holomorphic function at z_0 .

Lemma 2. If F(s,z) is continuous in $[0,1] \times \Omega$, such that $\Omega \subset \mathbb{C}$ open, and holomorphic in z, then $\int_0^1 F(s,z) ds$ is holomorphic in Ω

One argument: write integral as a limit of Riemann sums (obviously holomorphic in z) \implies the limit is holomorphic if we can show uniform convergence on compact subsets of Ω

Another argument:

- (1) $\int_0^1 \mathsf{F}(s,z) dz$ continuous in Ω . Choose $\overline{\mathbb{D}}$ such that $z \in \overline{\mathbb{D}} \subset \Omega$. $\mathsf{F}(s,z)$ is uniformly continuous on $[0,1] \times \Omega$. $\forall \epsilon \exists \delta$ such that if $|z'-z| < \delta$ then $|\mathsf{F}(s,z') \mathsf{F}(s,z)| < \epsilon \ \forall s \in [0,1] \implies \left| \int_0^1 \mathsf{F}(s,z') \mathsf{F}(s,z) dz \right| \le \int_0^1 |\mathsf{F}(s,z') \mathsf{F}(s,z)| ds < \int_0^1 dz \epsilon = \epsilon 0 = \epsilon \implies \int_0^1 \mathsf{F}(s,z) ds$ continuous in z.
- (2) By Morera's Theorem, it suffices to check $\int_{\mathsf{T}} \left(\int_0^1 \mathsf{F}(s,z) \, \mathrm{d}s \right) \, \mathrm{d}z = 0, \mathsf{T} \subset \Omega$ with its interior. By Frobinius $= \int_0^1 \left(\int_{\mathsf{T}} \mathsf{F}(s,z) \, \mathrm{d}z \right) \, \mathrm{d}s = 0$. Interior integral is zero by Cauchy or Goursat, so entire integral is 0, and f is holomorphic by Morera's.

Corollary 3. z_0 is a pole of $f(z) \iff \lim_{z \to z_0} |f(z)| = \infty$

 z_0 is a pole of $f(z) \implies z_0$ is a zero of $\frac{1}{f(z)} \implies \lim_{z \to z_0} \frac{1}{f(z)} = 0 \implies \lim_{z \to z_0} |f(z)| = \infty$.

If $\lim_{z \to z_0} |f(z)| = \infty \implies \lim_{z \to z_0} \left| \frac{1}{f(z)} = 0 \right| \implies \frac{1}{f(z)}$ is bounded near $z_0 \implies \frac{1}{f(z)}$ can be extended to a holomorphic function at z_0 , all if g(z), $g(z_0) = \lim_{z \to z_0} g(z) = 0 \implies f(z) = \frac{1}{g(z)}$ has a pole at z_0 .

Definition 4. Refined classification of isolated singularities at z_0 .

- (1) removable \iff f(z) is bounded near $z_0 \iff$ f(z) is holomorphic at z_0 (last by Riemann)
- (2) pole \iff $f(z) = \frac{1}{g(z)}$, g(z) is holomorphic, $g(z_0) = 0 \iff \lim_{z \to z_0} |f(z)| = \infty$
- (3) Essential singularities? (holo on deleted neighborhood but not remov sing. or pole)

Example 5. $e^{1/z}$ at z = 0

Theorem 6 (Casorati-Weierstrass). z_0 is an essential singularity of $f(z) \implies f(0 < |z - z_0| < r)$ dense in $\mathbb{C} \forall r$.

Argue by contradiction: suppose $\exists w_0$ and R such that $|f(z) - w_0| > R \forall z$ such that $0 < |z - z_0| < r$ $\frac{1}{f(z) - w_0} < R$ is bounded in same annulus. So by Riemann's Theorem, = g(z), which is holomorphic for $|z - z_0| < r$ (by Riemann's Theorem). So $f(z) = w_0 + \frac{1}{g(z)}$. If $g(z_0) \neq 0$, then f is holomorphic at z_0 . If $g(z_0) = 0 \implies w_0 + \frac{1}{g(z)}$ has a pole at z_0 , which is a contradiction

Theorem 7 (Picard's Theorem). Every $\alpha \in \mathbb{C}$, with at most one exception, belongs to the image $f(0 < |z - z_0| < r) \forall r$, and occurs infinitely many times

Covers all for given r, shrink r, covers all by Picard's, shrink, etc.

"Singularity at ∞": in book

"Riemann Sphere" $S^2 = \mathbb{CP}^1 = \mathbb{C}$ disjoint union $\{\infty\}$.

f(z) has an isolated singularity at $\infty \iff f(\frac{1}{z})$ is holomorphic for $0 < \left|\frac{1}{z}\right| < \frac{1}{R} \iff f(z)$ is holomorphic for |z| > R for some R.

f(z) has a removable singularity at $\infty \iff f(z)$ is bounded for $|z| > R \iff f(\frac{1}{z})$ is holomorphic at $z = 0 \iff f(\frac{1}{z}) = \sum_{n \geqslant 0} a_n \left(\frac{1}{z}\right)^n$ converges for $\frac{1}{z} < r$

f(z) has a pole at $\infty \iff f(\omega)$ has a pole at $0, \omega = 1/z \iff \lim \omega \to 0 |f(\omega)| = \infty \iff \lim_{z \to \infty} |f(z)| = \infty$.

 $f(\omega) = \frac{a_{-n}}{\omega^n} + \ldots + \frac{a_{-1}}{\omega} + H(\omega)$ holo at $\omega \iff$ bounded near 0. $f(z) = a_{-n}z^n + \ldots + a_{-1}z + H(\frac{1}{z})$ bounded at ∞ (for |z| > R for some R)

Theorem 3.4.

argument principle

Theorem 8 (Roche Theorem). Suppose f(z) and g(z) are holomorphic in Ω , which contains a simple closed curve γ and its interior. Suppose $|f(z)| > |g(z)| \forall z \in \gamma$. Then f(z) and f(z) + g(z) have the same number of zeros (counted with multiplication) inside γ .

Let $f_s(z) = f(z) + sg(z), s \in [0,1]$. $f_s(z)$ is holomorphic in $\Omega \forall s \in [0,1]$. $\forall z \in \gamma |f_s(z)| = |f(z) + sg(z)| \geqslant |f(z) - s|g(z)| \geqslant 0 \implies f_s(z)$ doesn't vanish along $\gamma \implies$ the number of zeros of $f_s(z)$ inside γ (with multiplication) is equal to $=\frac{1}{2\pi}\int_{\gamma}\frac{f'(z) + sg'(z)}{f(z) + sg(z)}dz$. The integral is a continuous function of (z,s) on $\gamma \times [0,1]$ (compact)

 $\implies \frac{1}{2\pi} \int_{\gamma} \frac{f'(z) + sg'(z)}{f(z) + sg(z)} dz$ is continuous in S. But it takes integer values $\implies \frac{1}{2\pi} \int_{\gamma} \frac{f'(z) + sg'(z)}{f(z) + sg(z)} dz$ is constant in S. In particular, the same for f(z) (where s = 0) and f(z) + g(z) (where s = 1)

Example 9. Find the number of zeros inside |z| < 1 of $z^{100} + 4z^3 - z + 1 = f(z) + g(z)$. $f(z) = 4x^3$, with 3 zeros with multiplication, and $g(x) = z^{100} - z + 1$. $|4z^3| = 4$. $|g(x)| \le 3 < 4$.

Theorem 10 (Open Mapping Theorem). *If* f(z) *is holomorphic in connected open* Ω *and nonconstant* \implies $f: \Omega \rightarrow f(\Omega)$ *is an open map (sends open sets to open sets).*

Remark 11. We want connected to avoid something like HW1P4

It suffices to show that $f(\Omega)$ is open. Say $f(z_0) = \omega_0$. Show the image of f contains some neighborhood of ω_0 , or $\exists r > 0$ such that $\{|\omega - \omega_0| < r\} \subset f(\Omega)$. Equivalent to sayint that $f(z) - \omega$ has a root in $\Omega \ \forall \omega$ such that $|\omega - \omega_0| < r$. $f(z) - \omega$ has a solution z_0 . Chose a circle $|z - z_0| = \delta$. $f(z) - w_0$ has a zero inside the circle. Apply Rouche theorem.

We know $\exists \delta$ such that $f(z) - \omega_0 \neq 0$ for some z, $|z - z_0| = \delta$ because roots form discrete set. Take $r = \min |f(z) - \omega_0|$, chain inequalities, apply Rouche Theorem