R. Collé

Radioactivity Group

NIST Physics Lab

Notes for ICRM LS Techniques WG

Paris 8-9 January 2007

LS & otherwise

²⁰⁹Po and ²¹⁰Pb problems

+ ⁶³Ni highlights if interested

209Po

World needs a Po tracer standard!

²¹⁰Po

0.4 a

5.3 MeV α

²⁰⁸Po

2.9 a

5.1 MeV α

²⁰⁹Po

102 a

4.9 MeV α + junk

Andre, Huizenga, et al. 1956 Phys Rev. 101, 645-651

²⁰⁸Po/²⁰⁹Po activity ratios 5 %

"private communication"

with
$$T_{1/2}(^{208}\text{Po}) = (2.93 \pm 0.03) \text{ a}$$
,
got $T_{1/2}(^{208}\text{Po}) = 103 \text{ a}$

Compiler M. Martin, 1991

with
$$T_{1/2}(^{208}\text{Po}) = 2.898 \pm 0.002 \text{ a}$$
,

got
$$T_{1/2}(^{208}\text{Po}) = (102 \pm 5) \text{ a}$$

must be wrong

Fig. 2. Partial decay scheme for the 219 Po alpha and electron capture branch decays.

Fig. 6. Comparison of the 209Po LS spectra obtained with the

1995

Fig. 12. LS counting rate concentrations $R_{\alpha e}$ and R_{α} as a function of m_s (analogous to that of Fig. 11) as obtained with the Packard instrument.

Fig. 11. LS counting rate concentrations $R_{\alpha e}$ (closed triangles) and R_{α} (closed circles) obtained with the Beckman instrument for the N series samples as a function of m, (and sample quenching). The solid lines are linear regressions fitted to the data.

Same in 2005

Fig. 13. LS counting rate concentrations $R_{\alpha e}$ and R_{α} obtained with the two LS systems for the P and Q series samples in 1994. Closed squares ($R_{\alpha e}$) and open squares (R_{α}) represent the mean values for samples Q5 through Q8 with the Packard; closed and open triangles represent $R_{\alpha e}$ and R_{α} , respectively, for samples P1 through P5 with the Packard; closed and open triangles ($R_{\alpha e}$ and R_{α}) are for samples Q1 through Q4 with the Beckman; and closed and open circles ($R_{\alpha e}$ and R_{α}) are for samples P1 through P5 with the Beckman. Each plotted value corresponds to the mean of 5 to 18 replicate measurements on each sample. The error bars represent standard deviation uncertainty intervals on the means. The solid lines are unweighted linear fits to the data. Although the $R_{\alpha e}$ values vary with the instrument used to perform the measurements (Packard or Beckman) and with sample compositions, all of the R_{α} values are statistically equivalent and invariant.

15 march 1994
$$R_{\alpha} = (85.42 \pm 0.18) \text{ s}^{-1}\text{g}^{-1}$$

15 November 2005
$$R_{\alpha} = (80.20 \pm 0.22) \text{ s-1g-1}$$

2 point fit gives

$$T_{1/2} = 128 \text{ a}$$

$$U = 5.5 \% (7 a)$$

Not considered a new determination

²⁰⁹Po half-life in error by 25 %!!

Result supported by work on ²¹⁰Pb – next story

Collé, Laureano, Outola, Appl. Radiat. Isot. In press

New determination urgently needed

$$\frac{A/N = \lambda}{\frac{(link)}{}}$$

Collaboration with Polish Academy of Sciences labs
Institute of Nuclear Physics (Krakow)
Institute of Geological Sciences (Warsaw)
not going well ...

210Pb

LS results (CN2003 code)

Pb-210

Series	Average	sd (%)	Normal	nc	ns	Counter	Scint	Age start	Age end	f _{H2O}	ε _{H-3}
	9037.397	0.029	Υ	3	11	Packard	HS	0.21	2.12		
	9043.779	0.008	Υ	3	11	Beckman	HS	2.95	4.65	1	
	9041.030	0.014	Υ	3	11	Wallac	HS	10.76	12.4	0.1	0.36-0.30
1	9030.169	0.021	Y*	3	11	Packard	HS	13	14.9	1	
	9030.377	0.017	Y*	5	11	Packard	HS	17.22	20.46	1	
	9046.129	0.007	Y*	3	11	Wallac	HS	26.93	28.57		
2	9034.269	0.031	N	5	7	Packard	PCS	0.11	4.06	0.01	
	9035.597	0.035	Υ	5	7	Packard	PCS	0.11	4.06	0.04	1
	9039.466	0.027	N	3	7	Wallac	PCS	4.78	6.91	0.01	1
	9044.048	0.014	Υ	3	7	Wallac	PCS	4.78	6.91	0.04	0.40-0.22
	9040.539	0.026	no	3	7	Beckman	PCS	10.74	12.83	0.01	1
	9041.935	0.026	yes	3	7	Beckman	PCS	10.74	12.83	0.04	
	9032.072	0.056	no	5	7	Packard	PCS	14.17	18.6	0.01	
	9026.263	0.034	yes	5	7	Packard	PCS	14.17	18.6	0.04	

* Data normal after removing sample with unstable cocktail

436 determinations

Series	Average	SD	SD (%)	Normal
1	9038.147	6.7577	0.07477	Yes
2	9036.774	5.8702	0.06496	Yes
Total	9037.362	6.0511	0.06696	Yes

CN2003 vs EFFY4 code differences

(just Beta efficiency part)

EFFY 4 CN 2003

Corne A

differences not due to spectra

CN2003 vs EFFY4 code differences – due to assumed Quench function

²¹⁰Pb massic activity results

	kBq/g (k = 2)	diff from LS	
LS (CN2003)	9.037 ± 2.4 %		
γ-spect (HPGe)	9.46 ± 8.3 %	+ 4.7 %	Big unc. if don't use 210 Pb γ std
4πβ(LS)-γ(NaI) anticoincidence (attempt)	9.10 ± 3.3 %	+ 0.7 %	might be wishful thinking
α -spect	8.77	- 3.0 %	$T_{1/2} = 102 \text{ a}$
(Po tracer)	± 1 %		
	8.92	- 1.3 %	$T_{1/2}$ = 128 a

Relatively large 2.4 % uncertainty because of

- (1) LS cocktail composition effects
- (2) tracing code differences & assumptions,
- (3) lack of good confirmatory measurements,

63Ni

38 years of ⁶³Ni results

Fin