#### Automatic Chord Recognition using Neural Networks

Audio Signal Processing

Ayoub Ghriss

MVA, 2017

#### Contents

- 1 Introduction
- 2 Features Extraction
- 3 Features Processing
- **4** Learning Architecture
- **5** Conclusion

### Introduction

# A bit of music and history

- Automatic Chord Recognition, first start in 1991
- Classic methods: KNN, Logistic, HMM
- Leap in precision with the introduction of Neural Networks

#### Chords and Pitch

- Pitch: subjective perception of a note's height
- The pitch system is composed of 12 classes,
- An octave means a doubling of the frequency, each octave :  $f_n = 2^{\frac{1}{12}} f_{n-1}$
- Define an equivalence relation between notes
- A chord is combination of 2 or more pitches

### Chords and Pitch



|       |        |        | 0.1    |        |         |
|-------|--------|--------|--------|--------|---------|
|       | Octave |        |        |        |         |
| Note  | 2      | 3      | 4      | 5      | 6       |
| С     | 66 Hz  | 131 Hz | 262 Hz | 523 Hz | 1046 Hz |
| C♯/D♭ | 70 Hz  | 139 Hz | 277 Hz | 554 Hz | 1109 Hz |
| D     | 74 Hz  | 147 Hz | 294 Hz | 587 Hz | 1175 Hz |
| D♯/E♭ | 78 Hz  | 156 Hz | 311 Hz | 622 Hz | 1245 Hz |
| E     | 83 Hz  | 165 Hz | 330 Hz | 659 Hz | 1319 Hz |
| F     | 88 Hz  | 175 Hz | 349 Hz | 698 Hz | 1397 Hz |
| F♯/G♭ | 93 Hz  | 185 Hz | 370 Hz | 740 Hz | 1480 Hz |
| G     | 98 Hz  | 196 Hz | 392 Hz | 784 Hz | 1568 Hz |
| G♯/A♭ | 104 Hz | 208 Hz | 415 Hz | 831 Hz | 1661 Hz |
| A     | 110 Hz | 220 Hz | 440 Hz | 880 Hz | 1760 Hz |
| A♯/B♭ | 117 Hz | 233 Hz | 466 Hz | 932 Hz | 1865 Hz |
| В     | 124 Hz | 247 Hz | 494 Hz | 988 Hz | 1976 Hz |

#### Features Extraction

#### Short-Time Fourier Transform

- Discrete FT on equally spaced segments of the song
- Frequency mapping can be scaled (Mel, Logarithmic)

#### Drawbacks:

- Constant resolution and frequency difference
- Not suited to represent the pitch class concept

### Constant Q Transform

$$f_k = f_{min}.2^{\frac{k}{B}} \tag{1}$$

where k is the frequency index,B is the number of bins per octave.

$$X(k;r) = \frac{1}{N_k} \sum_{n} x(nr)w(n)e^{j2\pi nQ/N_k} \qquad (2)$$

$$Q=rac{1}{2^B-1}$$
, and the resolution  $^{-1}N_k=[Qrac{f_s}{f_t}]$ 

## PCP, the first ACR System

- Can be seen as 1-bin Constant Q Transform
- Uses pitches pattern matching using NN and hand crafted score
- Takuya Fujishima, Realtime Chord Recognition of Musical Sound

## CQT vs STFT : who's the best ?



Muhammad Huzaifah, Comparison of Time-Frequency Representations.

# Features Processing

# Pre-processing

- Time slicing: concatenating adjacent frames
- First low pass filter :  $y_n = \alpha y_{n-1} + (1 \alpha)x_n$
- A pair of low pass filters: exponentially weighted mean

$$\sum_{i=-r} ra^{-|i|} x[.+r]$$

Other papers : Geometric mean/ Median filter

# Learning Architecture

#### Bottleneck Layer



# Deep Belief Networks

- Layers of fully connected layers of Restricted Boltzmann Machines
- A stochastic neural network :
- One layer of visible units : chords
- One layer of hidden units: latent variables
- the hidden units of layer i are the visible for the layer i+1
- Seen as an out-dated model in the Deep community

## Deep architectures

- Recurrent Neural Networks
  - Nicolas Boulanger-Lewandowski, Audio Chord Recognition with Recurent Neural Networks.
- Convolutional NN:
  - Anis Rojb al., Music Transcription by Deep Learning with Data and "Artificial Semantic" Augmentation

# Conclusion

#### Conclusions

- Improvement with the introduction with neural networks
- little difference in performance between different structures
- Smoothness of solutions to be improved
  - Matthias Mauch & Katy Noland & Simon Dixon (2009) Using Musical Structure to Enhance Automatic Chord Transcription.

#### Conclusions

