44-44-44-64-6-beta-10.85-twist-1

October 30, 2024

The autoreload extension is already loaded. To reload it, use: %reload_ext_autoreload

For reference with integration method the following surface tensions were computed

```
z_1\colon\thinspace\alpha_{o-o}/T^3(\beta=10.85)=1.2316804724774406 z_2\colon\thinspace\alpha_{o-o}/T^3(\beta=10.85)=1.5433288477348852
```

1 Load data

```
utility.display_markdown_title(folder)
```

2 SU(4), $V = [44', 44', 64', 6'], \beta = 10.85$, twist coeff = 1

2.1 Perform post processing

2.2 Plot Fourier modes for different smearing steps

```
[9]: %matplotlib widget
smearing_levels = list(fourier_profiles.keys())
show_plot = True
data = {
    "smearing": smearing_levels,
    "linear": [
        fourier_surface.compute_fourier_profile(
            modes, f_n, volume, errors=error, beta=10.85, fit_range=3,_
 ⇒smearing=smear, show_plot=show_plot
        ) for f_n, error, smear in zip( f_n_list, errors_list, smearing_levels)
    ]
    # "exponential": [
          fourier_surface.compute_fourier_profile_exponential_fit(
              n_2, f_n, volume, errors=error, beta=10.85, smearing=smear,
 ⇒show_plot=show_plot
          ) for n_2, f_n, error, smear in zip(n_2_list, f_n_list, errors_list,_u
 ⇔smearing levels)
    # 7
df = pd.DataFrame(data)
utility.print_df_as_markdown_fourier_modes(df)
fourier_surface.global_fig = None
```

smearing	Linear fit (σ/T^3)
5	1.444 ± 0.2001
10	1.118 ± 0.09239
20	1.107 ± 0.0183
30	1.168 ± 0.009021
40	1.224 ± 0.02271
50	1.28 ± 0.03291

[]: