第十讲存储系统

CACHE、虚拟存储器技术

学习目标

- 了解缓存在计算机系统的作用和影响
- ●高速缓存的映射策略
 - ●直接映射
 - ●全相联
 - ●组相联
- Cache写策略、替换策略
- ●虚拟存储技术

C. Can Memory Hierarchy improves the Performance

```
assign-array-rows()
{
.....
for (i=0; i<M; i++)
    for (j=0; j<N; j++)
    sum= sum +a[i][j];
}

J first
```

```
assign-array-rows()
{
.....
for (j=0; j<N;j++)
for (i=0; i<M; i++)
sum= sum +a[i][j];
.....
}
```


Typical Memory Hierarchy

4.4高速缓存原理(cache)

 Spatial Locality —nearby items will tend to be referenced again soon.

```
for (i=0; i<N; i++)
a[i]= ...
```

Temporal Locality- items tend to be referenced again soon.

```
for (i=1; i<N; i++)
a[i]= f(a[i-1]);
```


Take Advantage of Locality

- Temporal Locality
 - Keep most recently accessed data items closer to the processor
- Spatial Locality
 - Move blocks consists of contiguous words to the faster levels

基本概念

- Cache命中 (Hit)
 - CPU访问存储器时在地址线上输出存储器的地址信息, Cache控制器将判断该地址是否与Cache中存放数据的地址一致。若一致
- Cache非命中 (Miss)
 - ■不一致
- ●命中率=命中cache次数/访问cache总次数
- 没有命中的数据,CPU只好直接从内存 获取。获取的同时,也把它拷进Cache, 以便下次访问。

Cache构成原理

- cache存储单元与内存存储单元之间建立某种地址 映像关系
 - ■直接映像(Direct Mapped)、
 - ■全相联 (Full Associative)
 - 组相联(Set Associative)

直接映像

- 主存与缓存分成相同大小的数据块。
- 主存容量是缓存容量的整数倍,将主存空间按缓存的容量分成页,主存中每一页的块数与缓存的总块数相等。

●主存中某页的一块存入缓存时只能存入缓存中块 号相同的位置。

直接映射Cache结构原理框图

4字节块组织的直接映射Cache结构原理框

地址对应关系

多个不同的页中处于同样行位置的数据访问比较频繁时,需要不停的更换同一个cache行的内容,cache替换操作频繁,命中率比较低。

全相联映像

- ●主存与缓存分成相同大小的数据块。
- ●主存的某一数据块可以装入缓存的任意一块空间中。

全相联映像cache结构原理

组相联映像

- ●主存和Cache按同样大小划分成块。
- 主存和Cache按同样大小划分成区(区数即为路 数)。各区中的块都从0开始编号
- 各区中相同块号的块属于同一组,组号即为区内的块号。
- ●当主存的数据调入缓存时,主存与缓存的组号应相等,也就是主存各区中的某一块只能存入缓存中同组号的块内,但组内各块则可以任意存放,即从主存的组到Cache的组之间采用直接映象方式。

4路组相联映像cache结构原理

Cache读策略

- Cache行填充 (Line Fill)
 - 当CPU所需的数据或代码不在Cache中而出现非命中时, Cache控制器就必须在主存储器中读取数据
 - ■当CPU由主存储器读入数据时,同时还要将该数据拷贝 到Cache中
 - Cache控制器总是要将主存储器中包含该字节的一个完整的Cache行复制到Cache中

例4. 假定cache的每行仅存储一个字节的数据,共8行。CPU共8位地址总线,可以访问256个字节空间。上电初始化时,cache中没有存储任何内存单元数据的拷贝,所有行的有效位都为0。假定cache各行的结构

内存中一段区域的初始数据

Byte

Tag

依次读取内存地址为: 0x26,0x22,0x26, 0x18, 0x16,0x18,0x02中的数据。

索引	标志	有效位	数据
000		0	
001		0	
010		0	
011		0	
100		0	
101		0	
110		0	
111		0	

索引	标志	有效位	数据
000		0	
001		0	
010		0	
011		0	
100		0	
101		0	
110	00100	1	0010 0000
111		0	

索引	标志	有效位	数据
000		0	
001		0	
010	00100	1	0010 0100
011		0	
100		0	
101		0	
110	00100	1	0010 0000
111		0	

CPU读取0x26单元没命中行填充

CPU读取0x22单元没命中行填充

索引	标志	有效位	数据
000	00011	1	0110 0100
001		0	
010	00100	1	0010 0100
011		0	
100		0	
101		0	
110	00100	1	0010 0000
111		0	

CPU读取0x18单元没命中行填充

索引	标志	有效位	数据
000	00011	1	01100100
001		0	
010	00100	1	0010 0100
011		0	
100		0	
101		0	
110	00010	1	1000 0100
111		0	

CPU读取0x16单元没命中行替换

索引	标志	有效位	数据
000	00011	1	0110 0100
001		0	
010	00000	1	0000 1000
011		0	
100		0	
101		0	
110	00010	1	10000100
111		0	

CPU读取0x02单元没命中行替换

Cache写策略

- Cache命中
 - ■透写
 - □既写Cache也写主存储器,能保持Cache与主存储器内容的一致
 - ■回写
 - □只写Cache,而不写主存储器,仅当Cache数据要被替换时才将 其写到主存储器
- Cache非命中
 - ■配写
 - □CPU将数据写到主存储器后,再由Cache控制器向Cache中拷贝 一个新的Cache行
 - ■不配写
 - □CPU只写主存储器而不写Cache。

Cache 替换策略

- ●随机替换
- 先入先出 (FIFO) 替换
- 最近最少使用 (LRU) 替换 (最常采用)

● 例4.5 假定具有采用三种映射方式的三个小容量 cache,每个cache具有4块,每块存储1个字节数据,试说明CPU访问以下连续内存地址空间时:0,8,0,6,8,每种cache未命中的次数。

直接映射

访问的内存地址相对于直接映射cache的行索引

内存地址	对应的cache行索引
0	(0%4) =0
8	(8%4) =0
6	(6%4) =2

央索引	
00	块0
01	块1
10	块2
11	块3

直接映射下cache的填充过程

内存地址	命中否	cache各块存	cache各块存放的数据		
		块0	块1	块2	块3
0	未命中	mem[0]			4
8	未命中	mem[8]			Д
0	未命中	mem[0]			
6	未命中	mem[0]		mem[6]	
8	未命中	mem[8]		mem[6]	

全相联cache

访问内存地址	命中否	cache各块存放的数据			
		块0	块1	块2	块3
0	未命中	mem[0]			
8	未命中	mem[0]	mem[8]		
0	命中	mem[0]	mem[8]		
6	未命中	mem[0]	mem[8]	mem[6]	
8	命中	mem[0]	mem[8]	mem[6]	

命中2次

2路组相联cache

内存地址相对于2路组相联cache的块索引

内存地址	对应cache的组索引
0	(0%2) =0
8	(8%2) =0
6	(6%2) =0

块索引		
第1组 00	块0	块0
第2组 01	块1	块1

2路组相联cache的填充过程(采用最近最少使用优先替换)

访址	i问内存地 :	命中否	cache各块 第0组	存放的数据	第1组	
			块0	块0	块1	块1
0		未命中	mem[0]			
8		未命中	mem[0]	mem[8]		
0		命中	mem[0]	mem[8]		
6		未命中	mem[0]	mem[6]		
8		未命中	mem[8]	mem[6]		

Cache影响程序性能

- ●分析以下两种cache大小分块组织方式下,short型数组a[M][N] 列优先内存分配,采用行、列优先访问策略,当M,N分别为16,2时,cache直接映像策略的命中率。
 - ■假定数据元素从内存地址0x0000 0000开始分配。
 - ■已知一个32B的cache,
 - □每块4个字节, 共8块; 或每块8个字节, 共4块。

每块4个字节,共8块的cache结构

• cache块大小为4字节,数组a[M][N]为short类型,即每个元素占据2个字节,当N为2时,每一行仅2个元素,因此一行数组元素占据4个字节正好对应cache的一块

数组元素	中	cache内容								
	否	块0	块1	块2	块3	块4	块5	块6	块7	
a[0][0]	否	a[0][0]								i
a[0][1]	中	a[0][1]								Ĺ
a[1][0]	否		a[1][0]							
a[1][1]	中		a[1][1]							
a[2][0]	否			a[2][0]						
a[2][1]	中			a[2][1]						
a[3][0]	否				a[3][0]					
a[3][1]	中				a[3][1]					
a[4][0]	否					a[4][0]				
a[4][1]	中					a[4][1]				
a[5][0]	否						a[5][0]			
a[5][1]	中						a[5][1]			
a[6][0]	否							a[6][0]		
a[6][1]	中							a[6][1]		
a[7][0]	否	a[0][0]							a[7][0]	
a[7][1]	中	a[0][1]							a[7][1]	
a[8][0]	否	a[8][0]	a[1][0]							
a[8][1]	中	a[8][1]	a[1][1]							
a[9][0]	否		a[9][0]	a[2][0]						ı
a[9][1]	中		a[9][1]	a[2][1]						ĺ
a[10][0]	否			a[10][0]	a[3][0]					ı
a[10][1]	中			a[10][1]	a[3][1]					i
a[11][0]	否				a[11][0]	a[4][0]				
a[11][1]	中				a[11][1]	a[4][1]				
a[12][0]	否					a[12][0]	a[5][0]			
a[12][1]	中					a[12][1]	a[5][1]			ĺ
a[13][0]	否						a[13][0]	a[6][0]		ĺ
a[13][1]	中						a[13][1]	a[6][1]		ĺ
a[14][0]	否							a[14][0]	a[7][0]	ĺ
a[14][1]	中							a[14][1]	a[7][1]	
a[15][0]	否								a[15][0]	
a[15][1]	中								a[15][1]	

列优先访问填充过程

命中率50%

数组元素	命中否	cache内容							
		块0	块1	块2	块3	块4	块5	块6	块7
[0][0]	否	a[0][0] a[0][1]							
[1][0]	否	a[0][0] a[0][1]	a[1][0] a[1][1]						
[2][0]	否	a[0][0] a[0][1]	a[1][0] a[1][1]	a[2][0] a[2][1]					
[3][0]	否	a[0][0] a[0][1]	a[1][0] a[1][1]	a[2][0] a[2][1]	a[3][0] a[3][1]				
[4][0]	否	a[0][0] a[0][1]	a[1][0] a[1][1]	a[2][0] a[2][1]	a[3][0] a[3][1]	a[4][0] a[4][1]			
[5][0]	否	a[0][0] a[0][1]	a[1][0] a[1][1]	a[2][0] a[2][1]	a[3][0] a[3][1]	a[4][0] a[4][1]	a[5][0] a[5][1]		
[6][0]	否	a[0][0] a[0][1]	a[1][0] a[1][1]	a[2][0] a[2][1]	a[3][0] a[3][1]	a[4][0] a[4][1]	a[5][0] a[5][1]	a[6][0] a[6][1]	
[7][0]	否	a[0][0] a[0][1]	a[1][0] a[1][1]	a[2][0] a[2][1]	a[3][0] a[3][1]	a[4][0] a[4][1]	a[5][0] a[5][1]	a[6][0] a[6][1]	a[7][0] a[7][1]
[8][0]	否	a[8][0] a[8][1]	a[1][0] a[1][1]	a[2][0] a[2][1]	a[3][0] a[3][1]	a[4][0] a[4][1]	a[5][0] a[5][1]	a[6][0] a[6][1]	a[7][0] a[7][1]
[9][0]	否	a[8][0] a[8][1]	a[9][0] a[9][1]	a[2][0] a[2][1]	a[3][0] a[3][1]	a[4][0] a[4][1]	a[5][0] a[5][1]	a[6][0] a[6][1]	a[7][0] a[7][1]
[10][0]	否	a[8][0] a[8][1]	a[9][0] a[9][1]	a[10][0] a[10][1]	a[3][0] a[3][1]	a[4][0] a[4][1]	a[5][0] a[5][1]	a[6][0] a[6][1]	a[7][0] a[7][1]
[11][0]	否	a[8][0] a[8][1]	a[9][0] a[9][1]	a[10][0] a[10][1]	a[11][0] a[11][1]	a[4][0] a[4][1]	a[5][0] a[5][1]	a[6][0] a[6][1]	a[7][0] a[7][1]
[12][0]	否	a[8][0] a[8][1]	a[9][0] a[9][1]	a[10][0] a[10][1]	a[11][0] a[11][1]	a[12][0] a[12][1]	a[5][0] a[5][1]	a[6][0] a[6][1]	a[7][0] a[7][1]
[13][0]	否	a[8][0] a[8][1]	a[9][0] a[9][1]	a[10][0] a[10][1]	a[11][0] a[11][1]	a[12][0] a[12][1]	a[13][0] a[13][1]	a[6][0] a[6][1]	a[7][0] a[7][1]
[14][0]	否	a[8][0] a[8][1]	a[9][0] a[9][1]	a[10][0] a[10][1]	a[11][0] a[11][1]	a[12][0] a[12][1]	a[13][0] a[13][1]	a[14][0] a[14][1]	a[7][0] a[7][1]
[15][0]	否	a[8][0] a[8][1]	a[9][0] a[9][1]	a[10][0] a[10][1]	a[11][0] a[11][1]	a[12][0] a[12][1]	a[13][0] a[13][1]	a[14][0] a[14][1]	a[15][0] a[15][1]
[0][1]	否	a[0][0] a[0][1]	a[9][0] a[9][1]	a[10][0] a[10][1]	a[11][0] a[11][1]	a[12][0] a[12][1]	a[13][0] a[13][1]	a[14][0] a[14][1]	a[15][0] a[15][1]
[1][1]	否	a[0][0] a[0][1]	a[1][0] a[1][1]	a[10][0] a[10][1]	a[11][0] a[11][1]	a[12][0] a[12][1]	a[13][0] a[13][1]	a[14][0] a[14][1]	a[15][0] a[15][1]
[2][1]	否	a[0][0] a[0][1]	a[1][0] a[1][1]	a[2][0] a[2][1]	a[11][0] a[11][1]	a[12][0] a[12][1]	a[13][0] a[13][1]	a[14][0] a[14][1]	a[15][0] a[15][1]
[3][1]	否	a[0][0] a[0][1]	a[1][0] a[1][1]	a[2][0] a[2][1]	a[3][0] a[3][1]	a[12][0] a[12][1]	a[13][0] a[13][1]	a[14][0] a[14][1]	a[15][0] a[15][1]
[4][1]	否	a[0][0] a[0][1]	a[1][0] a[1][1]	a[2][0] a[2][1]	a[3][0] a[3][1]	a[4][0] a[4][1]	a[13][0] a[13][1]	a[14][0] a[14][1]	a[15][0] a[15][1]
[5][1]	否	a[0][0] a[0][1]	a[1][0] a[1][1]	a[2][0] a[2][1]	a[3][0] a[3][1]	a[4][0] a[4][1]	a[5][0] a[5][1]	a[14][0] a[14][1]	a[15][0] a[15][1]
[6][1]	否	a[0][0] a[0][1]	a[1][0] a[1][1]	a[2][0] a[2][1]	a[3][0] a[3][1]	a[4][0] a[4][1]	a[5][0] a[5][1]	a[6][0] a[6][1]	a[15][0] a[15][1]
[7][1]	否	a[0][0] a[0][1]	a[1][0] a[1][1]	a[2][0] a[2][1]	a[3][0] a[3][1]	a[4][0] a[4][1]	a[5][0] a[5][1]	a[6][0] a[6][1]	a[7][0] a[7][1]
[8][1]	否	a[8][0] a[8][1]	a[1][0] a[1][1]	a[2][0] a[2][1]	a[3][0] a[3][1]	a[4][0] a[4][1]	a[5][0] a[5][1]	a[6][0] a[6][1]	a[7][0] a[7][1]
[9][1]	否	a[8][0] a[8][1]	a[9][0] a[9][1]	a[2][0] a[2][1]	a[3][0] a[3][1]	a[4][0] a[4][1]	a[5][0] a[5][1]	a[6][0] a[6][1]	a[7][0] a[7][1]
[10][1]	否	a[8][0] a[8][1]	a[9][0] a[9][1]	a[10][0] a[10][1]	a[3][0] a[3][1]	a[4][0] a[4][1]	a[5][0] a[5][1]	a[6][0] a[6][1]	a[7][0] a[7][1]
[11][1]	否	a[8][0] a[8][1]	a[9][0] a[9][1]	a[10][0] a[10][1]	a[11][0] a[11][1]	a[4][0] a[4][1]	a[5][0] a[5][1]	a[6][0] a[6][1]	a[7][0] a[7][1]
[12][1]	否	a[8][0] a[8][1]	a[9][0] a[9][1]	a[10][0] a[10][1]	a[11][0] a[11][1]	a[12][0] a[12][1]	a[5][0] a[5][1]	a[6][0] a[6][1]	a[7][0] a[7][1]
[13][1]	否	a[8][0] a[8][1]	a[9][0] a[9][1]	a[10][0] a[10][1]	a[11][0] a[11][1]	a[12][0] a[12][1]	a[13][0] a[13][1]	a[6][0] a[6][1]	a[7][0] a[7][1]
[14][1]	否	a[8][0] a[8][1]	a[9][0] a[9][1]	a[10][0] a[10][1]	a[11][0] a[11][1]	a[12][0] a[12][1]	a[13][0] a[13][1]	a[14][0] a[14][1]	a[7][0] a[7][1]
[15][1]	否	a[8][0] a[8][1]	a[9][0] a[9][1]	a[10][0] a[10][1]	a[11][0] a[11][1]	a[12][0] a[12][1]	a[13][0] a[13][1]	a[14][0] a[14][1]	a[15][0] a[15][1]

行优先访问填充过程

命中率 0

School of Electronic Information and Communications

● cache块大小变为8字节,一次将拷贝两行数组元素进入cache块,因此,程序段A顺序访问两行数组元素时,只有第一个元素未命中,后面三个元素命中,命中率提高为75%,而程序段B的cache命率提高为50%.

Chap4 虚拟存储器技术

当微处理器需要访问内 存时,需要首先在内存 中查找页目录和页表, 然后才能形成内存单元 的物理地址,最后才能 访问到实际的内存数据, 这种方式降低了微处理 器访问内存的效率。为 弥补这个缺陷, 微处理 器在cache中建立映射表 缓冲区 (TLB) 保存最近 使用的内存页的映射关 系来减少内存访问次数, 从而提高内存数据的访 问效率。

作业

● 10, 11

