

- Métodos computacionales: Alejandro Segura
- Sistemas Lineales y MonteCarlo
 - a) Incluir el código Notebook (.ipynb).
 - b) Guardar la información en una carpeta llamada Semana8_Nombre1_Nombre2
 - c) Comprimir en formato zip la carpeta para tenga el nombre final Semana8_Nombre1_Nombre2.zip
 - d) Hacer una sola entrega por grupo.

Contents

_	MonteCarlo 1.1 Generador de números aleatorios	3
	Linear-Systems 2.1 Over-relaxation	5

List of Figures

1	Correlación estimada para los primeros $k = 10$ vecinos del generador numpy	4
2	Optimización del parámetro de sobre-relajación para un dominio rectangular de la ecuación	
	de Laplace 2D	6

1 MonteCarlo

1.1 Generador de números aleatorios

1. Un test simple para probar la calidad de un generador de eventos es evaluar las correlaciones con los k-vecinos más cercanos, donde $k \sim 20$.

$$C(k) = \frac{1}{N} \sum_{i=1}^{N} x_i x_{i+k}, \ (k = 0, 1, 2...)$$
 (1)

Utilice logspace() para variar en ordenes de magnitud la generación de puntos.

- a) Implemente un código que estime los coeficientes de correlación para los primeros k=20 vecinos. Use $N=10^3$ eventos para ambos generadores (simple y drand48).
- b) Haga una gráfica entre el valor del coeficiente C(k) en función del número de eventos para cada momento de la distribución k. ¿Qué diferencia encuentra entre ambos generadores?
- 2. Para el generador de numpy calcule la correlación de los primeros k=10 vecinos como función del número de puntos aleatorios generados [1] para cada momento de la distribución. ¿Es numpy.random un buen generador de números aleatorios?

Figure 1: Correlación estimada para los primeros k = 10 vecinos del generador numpy.

2 Linear-Systems

2.1 Over-relaxation

1. Para el problema de la ecuación de Laplace 2D expuesto en clase, optimice el paramétro de sobrerelajación (ω) que mínimiza el número de iteraciones necesarias para alcanzar la precisión requerida. ¿Qué sucede con la convergencia si el paramétro $\omega \geq 2$?

Figure 2: Optimización del parámetro de sobre-relajación para un dominio rectangular de la ecuación de Laplace 2D.