MA262: Introduction to Stochastic Processes

Naman Mishra

January 2024

Contents

	The Course	2	
Ι	Discrete time Markov Chains	3	
	I.1 Stopping Times	13	
	I.2 Transience & Recurrence	21	
	I.2.1 Transience and Recurrence of the SSRW on \mathbb{Z}^d	27	
	I.3 Stationary distributions	28	
п	Branching Processes	29	
	II.1 The Structure of GWB Trees	30	Lecture 1. Thursday
			January 04

Chapter

The Course

Texts:

- Markov Chains, J. R. Norris
- Introduction to Stochastic Processes, Hoel, Port, Stone
- Karlin and Taylor

Grading:

- (20%) 2 quizzes
- (30%) 1 midterm
- (50%) Final

Chapter I

Discrete time Markov Chains

Definition I.1 (Stochastic matrix). Let \mathcal{S} be a state set (at most countable). A matrix $P = (p_{xy})_{x,y \in \mathcal{S}}$ is called a *stochastic matrix* if $p_{xy} \geq 0$ for all $x, y \in \mathcal{S}$ and $\sum_{y \in \mathcal{S}} p_{xy} = 1$ for all $x \in \mathcal{S}$.

Definition I.2 (Markov chain). Let \mathcal{S} be a state set, $P = (p_{xy})$ a stochastic matrix, and μ_0 a probability distribution on \mathcal{S} , *i.e.*, $\mu_0(x) \geq 0$ for all $x \in \mathcal{S}$ and $\sum_{x \in \mathcal{S}} \mu_0(x) = 1$.

Suppose X_0, X_1, \ldots are random variables defined on the same probability space taking values in S. Then $(X_n)_{n\in\mathbb{N}}$ is called a *Markov chain* with initial distribution μ_0 and transition matrix P, denoted $MC(\mu_0, P)$, if X_0 has distribution μ_0 and for all $n \geq 0$,

$$\Pr(X_{n+1} = x_{n+1} \mid X_n = x_n, \dots, X_0 = x_0) = p_{x_n x_{n+1}}$$
 whenever $\Pr(X_n = x_n, \dots, X_0 = x_0) > 0$.

Notation. Whenever writing $\Pr(X_n \in A \mid (X_0, \dots, X_{n-1}) \in B)$, it will be understood that only $\Pr((X_0, \dots, X_{n-1}) \in B) > 0$ is considered.

Theorem I.3.
$$(X_n)_{n=0}^N$$
 is $MC(\mu_0, P)$ iff
$$\Pr(X_0 = x_0, ..., X_N = x_N) = \mu_0(x_0) p_{x_0 x_1} ... p_{x_{N-1} x_N}$$
for all $x_0, ..., x_N \in \mathcal{S}$.

Proof. Both directions are proven by induction.

Suppose
$$(X_n)_{n=0}^N$$
 is $MC(\mu_0, P)$. Then $\Pr(X_0 = x_0) = \mu_0(x_0)$.
If $\Pr(X_0 = x_0) > 0$, then $\Pr(X_0 = x_0, X_1 = x_1) = \mu_0(x_0)p_{x_0x_1}$.
If $\Pr(X_0 = x_0) = 0$, then $\Pr(X_0 = x_0, X_1 = x_1) \leq \Pr(X_0 = x_0) = 0$, and so $\Pr(X_0 = x_0, X_1 = x_1) = 0 = \mu_0(x_0)p_{x_0x_1}$.

Induction: Suppose

$$P_j := \Pr(X_0 = x_0, \dots, X_j = x_j) = \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{j-1} x_j}.$$

If this is zero, so is P_{j+1} , and so it is equal to $\mu_0(x_0)p_{x_0x_1}\dots p_{x_{j-1}x_j}p_{x_jx_{j+1}}$. If not, then

$$P_{j+1} = P_j \Pr(X_{j+1} = x_{j+1} \mid X_0 = x_0, \dots, X_j = x_j)$$

= $P_j p_{x_j x_{j+1}}$
= $\mu_0(x_0) p_{x_0 x_1} \dots p_{x_{j-1} x_j} p_{x_j x_{j+1}}$,

closing the induction. In particular,

$$\Pr(X_0 = x_0, \dots, X_N = x_N) = \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{N-1} x_N}.$$

Now for the converse, suppose

$$\Pr(X_0 = x_0, \dots, X_N = x_N) = \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{N-1} x_N}$$

for all $x_0, \ldots, x_N \in \mathcal{S}$. Then for any $x_0, \ldots, x_{N-1} \in \mathcal{S}$,

$$\Pr(X_0 = x_0, \dots, X_{N-1} = x_{N-1}) = \sum_{x_N \in \mathcal{S}} \Pr(X_0 = x_0, \dots, X_N = x_N)$$

$$= \sum_{x_N \in \mathcal{S}} \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{N-2} x_{N-1}} p_{x_{N-1} x_N}$$

$$= \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{N-2} x_{N-1}}.$$

We have by backwards induction that for all $1 \le i \le N$,

$$\Pr(X_0 = x_0, \dots, X_i = x_i) = \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{i-1} x_i}$$

and $Pr(X_0 = x_0) = \mu_0(x_0)$. This allows us to deduce that

$$\Pr(X_{i+1} = x_{i+1} \mid X_0 = x_0, \dots, X_i = x_i) = p_{x_i x_{i+1}}$$

by definition of conditional probability.

Fact I.4 (Strong Law of Large Numbers). Suppose Z_1, Z_2, \ldots are iid \mathbb{R} -valued random variables and $\mathbb{E}[Z_1]$ exists. Then

$$\frac{Z_1 + \dots + Z_n}{n} \xrightarrow{a.s.} \mathrm{E}[Z_1]$$

as $n \to \infty$, that is,

$$\Pr\left\{\omega \in \Omega : \lim_{n \to \infty} \frac{Z_1(\omega) + \dots + Z_n(\omega)}{n} = \mathrm{E}[Z_1]\right\} = 1.$$

Fact I.5 (Weak Law of Large Numbers). Suppose Z_1, Z_2, \ldots are iid \mathbb{R} -valued random variables and $E[Z_1]$ exists. Then

$$\frac{Z_1 + \dots + Z_n}{n} \leadsto \mathrm{E}[Z_1]$$

as $n \to \infty$, that is, for any $\delta > 0$,

$$\lim_{n \to \infty} \Pr\left\{ \left| \frac{Z_1 + \dots + Z_n}{n} - \operatorname{E}[Z_1] \right| \le \delta \right\} = 1.$$

Fact I.6 (Central Limit Theorem). Suppose Z_1, Z_2, \ldots are iid \mathbb{R} -valued random variables and $\mathrm{E}[Z_1^2]$ exists. Then

$$Y_n := \frac{\sqrt{n}}{\sqrt{\operatorname{Var}(Z_1)}} \left(\frac{Z_1 + \dots + Z_n}{n} - \operatorname{E}[Z_1] \right) \xrightarrow{d} N(0, 1)$$

as $n \to \infty$, that is,

$$\lim_{n \to \infty} \Pr\{Y_n \le y\} = \Phi(y)$$

 $\lim_{n\to\infty} \Pr\{Y_n \leq y\} = \Phi(y)$ for all $y \in \mathbb{R}$, where Φ is the pdf of the standard normal distribution.

Examples.

• A two-state Markov chain.

This corresponds to the matrix

$$P = \begin{pmatrix} p & 1-p \\ 1-q & q \end{pmatrix}.$$

• A three-state Markov chain.

This has transition matrix

$$P = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 1/4 & 1/4 \\ 1/4 & 3/4 & 0 \end{pmatrix}.$$

• Simple random walk on \mathbb{Z} . Staring from some randomly chosen point, at each step, move right with probability p and left with probability q := 1 - p. That is,

$$\Pr(X_{n+1} = y \mid X_n = x) = \begin{cases} p & \text{if } y = x+1, \\ q & \text{if } y = x-1, \text{ and} \\ 0 & \text{otherwise.} \end{cases}$$

Such a simple random walk is called symmetric if $p = q = \frac{1}{2}$. A special case is where $\mu_0 = \delta_x$ for some $x \in \mathbb{Z}$ (where δ_x is the Krönecker delta).

Suppose that Y_1, Y_2, \ldots are iid with distribution $\begin{pmatrix} 1 & -1 \\ p & 1-p \end{pmatrix}$. Each Y_i has expectation 2p-1, and variance

$$E[Y_1^2] - (E[Y_1])^2 = 1 - (2p - 1)^2 = 4pq.$$

We have that $(X_n)_{n\in\mathbb{N}} \stackrel{d}{=} (\sum_{j=1}^n Y_j)_{n\in\mathbb{N}}$.

Definition I.7. Suppose Z_1, \ldots, Z_k are random variables taking values in a state set S defined on a probability space $(\Omega, \mathcal{F}, \Pr)$. and $\tilde{Z}_1, \ldots, \tilde{Z}_k$ are rvs taking values in a state set S defined on a probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$. Then (Z_1, \ldots, Z_k) and $(\tilde{Z}_1, \ldots, \tilde{Z}_k)$ are said to be identically distributed if

$$\Pr(Z_1 = x_1, \dots, Z_k = x_k) = \Pr(\tilde{Z}_1 = x_1, \dots, \tilde{Z}_k = x_k).$$

This is denoted as

$$(Z_1,\ldots,Z_k)\stackrel{d}{=} (\tilde{Z}_1,\ldots,\tilde{Z}_k).$$

Then from the weak law of large numbers,

$$\frac{X_n}{n} \to \mathrm{E}[Y_1] = 2p - 1.$$

From the central limit theorem,

$$\frac{X_n - n(p-q)}{\sqrt{n}\sqrt{4pq}} \xrightarrow{d} N(0,1).$$

On a graph, a simple symmetric random walk is a random walk on a

graph where each

$$p_{xy} = \begin{cases} \frac{1}{\deg(x)} & \text{if } y \sim x, \\ 0 & \text{otherwise.} \end{cases}$$

On \mathbb{Z}^2 , a simple random walk is given by p_N , p_E , p_S , p_W , where $p_N + p_E + p_S + p_W = 1$. At each step, move up with probability p_N , right with probability p_E , down with probability p_S , and left with probability p_W .

• Consider a shooting game with 4 modes: N (normal), D (distance), W (windy) and DW (distance and windy). The game changes mode randomly to a mode different from the current mode with directed graph K_4 with some edge weights.

Theorem I.8. If $(X_n)_{n\in\mathbb{N}}$ is a DTMC with transition matrix P, then

$$\Pr_{\mu_0}(X_n = y) = (\mu_0 P^n)_y.$$

In particular, $\Pr_x(X_n = y) = (P^n)_{x,y} =: p_{xy}^{(n)}$

Here, μ_0 is viewed as a row vector, and \Pr_{μ_0} is the distribution under the assumption that $X_0 \sim \mu_0$. Also, \Pr_x is under the assumption that $\mu_0 = \delta_x$.

Proof.

$$\Pr_{\mu_0}(X_n = y) = \sum_{x_0, \dots, x_{n-1} \in \mathcal{S}} \Pr(X_0 = x_0, \dots, X_{n-1} = x_{n-1}, X_n = y)$$

$$= \sum_{x_0, \dots, x_{n-1} \in \mathcal{S}} (\mu_0)_{x_0} p_{x_0 x_1} \dots p_{x_{n-1} y}$$

$$= (\mu_0 P^n)_y$$

Theorem I.9 (Markov property). Let $(X_n)_{n\in\mathbb{N}}$ be $MC(\mu_0, P)$. Then for any $n \geq 0$, $l \geq 1$, $x_n, \ldots, x_{n+l} \in \mathcal{S}$ and $A \subseteq \mathcal{S}^n$,

$$\Pr_{\mu_0}(X_i = x_i, n < i \le n + l \mid X_n = x_n, (X_0, \dots, X_{n-1}) \in A)$$

$$= \Pr_{x_n}(X_1 = x_{n+1}, \dots, X_l = x_{n+l})$$

In other words, conditioning on $X_n = x_n$ and $(X_0, \ldots, X_{n-1}) \in A$, the process (X_n, X_{n+1}, \ldots) is $MC(\delta_{x_n}, P)$.

Proof.

$$\Pr_{\mu_0}(X_{n+l} = x_{n+l}, \dots, X_n = x_n, (X_0, \dots, X_{n-1}) \in A)$$

$$= \sum_{(x_0, \dots, x_{n-1}) \in A} p_{x_n x_{n+1}} \dots p_{x_{n+l-1} x_{n+l}} \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{n-1} x_n}$$

$$= \left(\sum_{(x_0, \dots, x_{n-1}) \in A} \mu_0(x_0) p_{x_0 x_1} \dots p_{x_{n-1} x_n} \right) p_{x_n x_{n+1}} \dots p_{x_{n+l-1} x_{n+l}}$$

$$= \Pr_{\mu_0}(X_n = x_n, (X_0, \dots, X_{n-1}) \in A) \cdot p_{x_n x_{n+1}} \dots p_{x_{n+l-1} x_{n+l}}.$$

By the definition of conditional probability,

$$\Pr_{\mu_0}(X_{n+l} = x_{n+l}, \dots, X_n = x_n \mid X_n = x_n, (X_0, \dots, X_{n-1}) \in A)
= p_{x_n x_{n+1}} \dots p_{x_{n+l-1} x_{n+l}}
= \delta_{x_n}(x_n) p_{x_n x_{n+1}} \dots p_{x_{n+l-1} x_{n+l}}
= \Pr_{x_n}(X_1 = x_{n+1}, \dots, X_l = x_{n+l}). \qquad \square$$

Lecture 2.

Tuesday January 09

Definition I.10 (Sigma algebra). A σ -algebra over a set Ω is a collection \mathcal{F} of subsets of Ω such that

- (i) $\varnothing \in \mathcal{F}$,
- (ii) if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$,
- (iii) if $\mathcal{A} \subseteq \mathcal{F}$ is countable, then $\bigcup \mathcal{A} \in \mathcal{F}$.

Proposition I.11. Let \mathcal{F} be a σ -algebra over Ω . Then if $\mathcal{A} \subseteq \mathcal{F}$ is countable, then $\cap \mathcal{A} \in \mathcal{F}$.

Proof. Let $B = \bigcap \mathcal{A}$. Then $B^c = \bigcup \{A^c : A \in \mathcal{A}\}$. By closure under complements, each $A^c \in \mathcal{F}$. By closure under countable unions, $B^c \in \mathcal{F}$. Thus $B = (B^c)^c \in \mathcal{F}$.

Definition I.12 (Probability space). A probability space is a triple $(\Omega, \mathcal{F}, \Pr)$, where Ω is a set, \mathcal{F} is a σ -algebra over Ω , and \Pr is a probability measure over (Ω, \mathcal{F}) .

Definition I.13 (Random variable). Given a probability space $(\Omega, \mathcal{F}, \Pr)$ and a measurable space (E, \mathcal{E}) , a random variable is a measurable function $X : \Omega \to E$, which means that for all $B \in \mathcal{E}, X^{-1}(B) \in \mathcal{F}$.

For our purposes, $E = \mathcal{S}$ and $\mathcal{E} = 2^{\mathcal{S}}$. Notice that if $(X_i)_{i=1}^n$ are random variables, then for any $B \in \mathcal{E}^n$,

$$(X_1, \dots, X_n)^{-1}(B) = \{ \omega \in \Omega : X_1(\omega) \in B_1, \dots, X_n(\omega) \in B_n \}$$

= $X_1^{-1}(B_1) \cap \dots \cap X_n^{-1}(B_n) \in \mathcal{F},$

by closure under intersections. Thus (X_1, \ldots, X_n) is a random variable onto the product space (E^n, \mathcal{E}^n) .

In fact this holds for any countable collection of random variables.

Definition I.14. Let X_1, X_2, \ldots and X be random variables over a probability space $(\Omega, \mathcal{F}, \Pr)$. We define

Almost sure convergence. $X_n \xrightarrow{\text{a.s.}} X$ if

$$\Pr\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\} = 1.$$

Convergence in probability. $X_n \leadsto X$ if for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \Pr\{|X_n - X| \le \varepsilon\} = 1.$$

Convergence in distribution. $X_n \xrightarrow{d} X$ if for every x,

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x),$$

where F's are cumulative distribution functions and F_X is continuous.

Exercise I.15 (Chapman-Kolmogorov equation). Recall that $p_{ij}^{(n)} := \Pr_i(X_n = j)$. Derive the Chapman-Kolmogorov equation

$$p_{xy}^{(m+n)} = \sum_{z \in \mathcal{S}} p_{xz}^{(m)} p_{zy}^{(n)}$$

for all $x, y \in \mathcal{S}$ and $m, n \in \mathbb{N}$.

Solution. We have

$$p_{xy}^{(m+n)} = P_{xy}^{m+n}$$

$$= (P^m P^n)_{xy}$$

$$= \sum_{z \in S} P_{xz}^m P_{zy}^n$$

$$= \sum_{z \in S} p_{xz}^{(m)} p_{zy}^{(n)}.$$

Exercise I.16. Let $(X_n)_{n\in\mathbb{N}}$ be $MC(\mathcal{S}, \mu_0, P)$. Show that for any $k \geq 1$, $(X_{kn})_{n\in\mathbb{N}}$ is $MC(\mathcal{S}, \mu_0, P^k)$.

Solution. Let $Y_n = X_{kn}$. Let $N \in \mathbb{N}$. Then

$$\Pr_{\mu_0}(Y_0 = y_0, \dots, Y_N = y_N) = \Pr_{\mu_0}(X_0 = y_0, \dots, X_{kN} = y_N)
= \mu_0(y_0) p_{y_0 y_1}^{(k)} \cdots p_{y_{kN} y_N}^{(k)}
= \mu_0(y_0) (P^k)_{y_0 y_1} \cdots (P^k)_{y_{kN} y_N}.$$

Thus by theorem I.3, $(Y_n)_{n\in\mathbb{N}}$ is $MC(\mathcal{S}, \mu_0, P^k)$.

Definition I.17 (Communication). Let $(X_n)_{n\in\mathbb{N}}$ be $MC(\mathcal{S}, \mu_0, P)$. For $x, y \in \mathcal{S}$, we say that x leads to y if $\Pr_x(X_n = y \text{ for some } n \geq 0) > 0$.

We say that x communicates with y if $x \to y$ and $y \to x$, and write $x \leftrightarrow y$.

Theorem I.18. Suppose $x, y \in \mathcal{S}$ and $x \neq y$. Then the following are equivalent:

- (i) $x \to y$,
- (ii) there exists an $n \ge 1$ such that $(P^n)_{xy} = p_{xy}^{(n)} > 0$,
- (iii) there exists an $n \geq 1$ and $x_1, \ldots, x_{n-1} \in \mathcal{S}$ such that

$$p_{xx_1}p_{x_1x_2}\cdots p_{x_{n-1}y} > 0.$$

Proof.

$$\Pr_x(X_n = y \text{ for some } n \ge 0) \le \sum_{n=0}^{\infty} \Pr_x(X_n = y) = \sum_{n=0}^{\infty} p_{xy}^{(n)}.$$

The sum is zero iff all terms are zero. Thus (i) and (ii) are equivalent. Now since $p_{xy}^{(n)} = (P^n)_{xy}$, we have

$$p_{xy}^{(n)} = \sum_{x_1,\dots,x_{n-1}\in\mathcal{S}} p_{xx_1} p_{x_1x_2} \cdots p_{x_{n-1}y}.$$

Thus $p_{xy}^{(n)}$ is zero iff all paths from x to y of length n have zero probability. This proves that (ii) \iff (iii).

Corollary I.19. If $x \to y$ and $y \to z$, then $x \to z$.

Proof. By theorem I.18, there exist $n, m \ge 1$ such that $p_{xy}^{(n)} > 0$ and $p_{yz}^{(m)} > 0$. Then by exercise I.15, $p_{xz}^{(n+m)} > 0$ so $x \to z$.

Corollary I.20. Communication is an equivalence relation.

Proof. Reflexivity and symmetry are immediate. Transitivity follows from the previous corollary. $\hfill\Box$

Definition I.21 (Communicating class). The equivalence classes of \leftrightarrow are called *communicating classes*.

A communicating class C is *closed* if for all $x \in C$ and $y \in S$, $x \to y$ implies $y \in C$.

A state x is absorbing if $\{x\}$ is a closed communicating class.

A markov chain is *irreducible* if its state space is itself a communicating class.

Definition I.22 (Period). Let $(X_n)_{n\in\mathbb{N}}$ be $MC(\mathcal{S}, \mu_0, P)$. For each $x \in \mathcal{S}$, let $F_x = \{n \in \mathbb{N}^* : p_{xx}^{(n)} > 0\}$. The *period* of x is defined as $d_x = \gcd F_x$, where $\gcd \varnothing$ is considered to be 0.

A state x is aperiodic if $d_x = 1$. A Markov chain is aperiodic if all its states are aperiodic.

Examples.

- The simple random walk on \mathbb{Z} is periodic with period 2.
- Consider the walk on \mathbb{Z} given by

0 is aperiodic. 0's aperiodicity induces aperiodicity on all other states. Thus the chain is aperiodic.

Theorem I.23. If $x \leftrightarrow y$, then $d_x = d_y$.

Proof. Trivial when x = y. Suppose $x \neq y$ and let $n, m \in \mathbb{N}$ be lengths of paths from x to y and from y to x, respectively. Note that $d_x, d_y \neq 0$. By the Chapman-Kolmogorov equation, $p_{xx}^{(n+m)} \geq p_{xy}^{(n)} p_{yx}^{(m)} > 0$, so $d_x \mid n + m$.

the Chapman-Kolmogorov equation, $p_{xx}^{(n+m)} \ge p_{xy}^{(n)} p_{yx}^{(m)} > 0$, so $d_x \mid n+m$. Now let p be a path length from p to itself. Then $p_{xx}^{(n+m+p)} \ge p_{xy}^{(n)} p_{yy}^{(p)} p_{yx}^{(m)} > 0$, so $d_x \mid n+m+p$. This implies $d_x \mid p$. Since p was arbitrary, $d_x \mid d_y$. By symmetry, $d_y \mid d_x$, so $d_x = d_y$.

Theorem I.24. If $d_x \geq 1$, then there exists an $N \in \mathbb{N}^*$ such that for all $n \geq N$, $p_{xx}^{(nd_x)} > 0$.

As a special case, if p is aperiodic, then $p_{xx}^{(n)} > 0$ for all large enough n.

We first prove a general number-theoretic result.

Theorem I.25 (Schur's Lemma). Suppose $S \subseteq \mathbb{N}^*$ and denote gcd(S) by g_S . Then there exists an $m_s \in \mathbb{N}^*$ such that for all $m \geq m_s$, there exist $k \in \mathbb{N}^*$, $e_1, \ldots, e_k \in \mathbb{N}^*$ and $s_1, \ldots, s_k \in S$ such that $mg_S = \sum_{i=1}^k e_i s_i$.

We prove the following lemma to restrict S to a finite set.

Lemma I.26. Let $S \subseteq \mathbb{N}^*$. Then there exists a finite set $S' \subseteq S$ such that gcd(S) = gcd(S').

Proof. Let $g_S = \gcd(S)$. For any finite set $S' \subseteq S$, we either have $\gcd(S') = g_S$ in which case we are done, or $\exists s \in S \setminus S'$ such that $\gcd(S') \nmid s$. In the latter case, we can add s to S' and continue, producing a sequence of finite sets with *strictly decreasing* gcds. Since the gcd can decrease only a finite number of times, this process must terminate with a finite set whose gcd is g_S .

We will also use the following characterization of the gcd.

Lemma I.27. Let $X \subseteq \mathbb{N}^*$ and let $Y = X \cup \{n\}$. Then $gcd(Y) = gcd\{gcd(X), n\}$.

Proof. Let $g = \gcd(Y)$ and $\tilde{g} = \gcd\{\gcd(X), n\}$.

- Since $\tilde{g} \mid \gcd(X)$ and $\tilde{g} \mid n$, we have $\tilde{g} \mid y$ for all $y \in Y$. Thus $g \mid \tilde{g}$.
- Since $g \mid y$ for all $y \in Y$, we have $g \mid \gcd(X)$ and $g \mid n$. Thus $\gcd\{\gcd(X), n\} = \tilde{g} \mid g$.

We are now ready to prove Schur's Lemma.

Proof of Schur's Lemma. Let $S = \{s_1, s_2, \dots, s_k\}$. Define \tilde{g}_S to be the minimum positive linear combination of S over \mathbb{Z} . That is,

$$\tilde{g}_S = \min\left([1,\infty) \cap \left\{\sum_{i=1}^j a_i x_i \mid 1 \le j \le k, a_i \in \mathbb{Z}, x_i \in S\right\}\right).$$

We claim that $\tilde{g}_S = g_S$.

- $q_S \mid \tilde{q}_S$ by definition.
- Let $s \in S$ be decomposed as $s = q\tilde{g}_S + r$ with $0 \le r < \tilde{g}_S$. Then $r = s q\tilde{g}_S$. However, this is a linear combination of S over \mathbb{Z} , so r = 0. Thus $\tilde{g}_S \mid g_S$.

Thus we can write $g_S = \sum_{s \in S} a_s s$ where $a_s \in \mathbb{Z}$.

Lecture 3. Thursday January 11

.... First consider the case |S| = 2. Let $S = \{s_1, s_2\}$. We know that $g_S = as_1 + bs_2$ for some $a, b \in \mathbb{Z}$. Now for any $m \in \mathbb{N}^*$,

$$mg_S = mas_1 + mbs_2 + ks_1s_2 - ks_1s_2$$

= $(ma - ks_2)s_1 + (mb + ks_1)s_2$

Choose $k \in \mathbb{N}$ such that $0 \le ma - ks_2 < s_2$. We can write $mg_S = a_m s_1 + b_m s_2$ where $0 \le a_m < s_2$.

Let m_0 be such that $m_0g_S > s_1s_2$. Then for all $m \ge m_0$, $mg_S - a_ms_1 > (s_2 - a)s_1 > 0$, so that $b_m > 0$. Thus $m_S = m_0$ works.

Suppose the lemma holds for all sets of size l-1.

Let $S = \{s_1, s_2, \ldots, s_l\}$ and $F = S \setminus \{s_l\}$. Then by the previous lemma, $g_S = \gcd(g_F, s_l)$.

Let m_0 be such that $mg_S - m_F g_F \ge m_{\{g_F, s_l\}}$. Then

$$mg_S - m_F g_F = ag_F + bs_l$$
 for some $a \in \mathbb{N}, b \in \mathbb{N}^*$
 $mg_S = (a + m_F)g_F + bs_l$

but $a + m_F \ge m_F$, so we can write

$$mg_S = \sum_{i=1}^{l-1} a_i s_i + b s_l$$

where all a_i s are non-negative integers. This closes the induction.

We can now prove theorem I.24.

Proof. Applying Schur's lemma to F_x , we have the existence of an N such that nd_x can be written as a non-negative integer combination of elements of F_x , for all $n \geq N$. Let $nd_x = \sum_{i=1}^k a_i f_i$. Then since $p_{ij}^{(m)} = (P^m)_{ij}$,

$$p_{xx}^{(nd_x)} \ge \underbrace{p_{xx}^{(f_1)} \dots p_{xx}^{(f_1)}}_{a_1 \text{ times}} \dots \underbrace{p_{xx}^{(f_k)} \dots p_{xx}^{(f_k)}}_{a_k \text{ times}}$$

$$\ge \prod_{i=1}^k (p_{xx}^{(f_i)})^{a_i}$$

$$> 0$$

I.1 Stopping Times

Definition I.28 (The Extended Reals). The *extended real line* is the set of real numbers along with 2 formal sumbols $+\infty$ and $-\infty$, denoted by

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}.$$

 $\overline{\mathbb{R}}$ will be endowed with the order

$$-\infty < x < \infty$$
 for all $x \in \mathbb{R}$,

along with the usual order on \mathbb{R} . We extend the algebraic operations on \mathbb{R} to $\overline{\mathbb{R}}$.

- $x + \infty = +\infty$, $x \infty = -\infty$ for all $x \in \mathbb{R}$.
- $x \cdot (+\infty) = +\infty$, $x \cdot (-\infty) = -\infty$ for all $x \in \mathbb{R}$, x > 0.
- $x \cdot (+\infty) = -\infty$, $x \cdot (-\infty) = +\infty$ for all $x \in \mathbb{R}$, x < 0.
- $\frac{x}{+\infty} = \frac{x}{-\infty} = 0$, for all $x \in \mathbb{R}$.

If $E \subseteq \mathbb{R}$ is not bounded above in \mathbb{R} , we say $\sup E = +\infty$. If $E = \emptyset$, we say $\inf E = +\infty$.

Definition I.29 (Filtration). Let $(\Omega, \mathcal{F}, \Pr)$ be a probability space. A collection $(\mathcal{F}_n)_{n\in\mathbb{N}}$ of σ -algebras over Ω is called a *filtration* if $\mathcal{F}_n\subseteq \mathcal{F}_{n+1}\subseteq \mathcal{F}$ for all $n\in\mathbb{N}$.

Definition I.30 (Natural filtration). Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of S-valued random variables defined on $(\Omega, \mathcal{F}, \Pr)$. For $n \in \mathbb{N}$, define

$$\mathcal{F}_n = \{(X_0, X_1, \dots, X_n)^{-1}(A) \mid A \subseteq \mathcal{S}^{n+1}\} = \sigma(X_0, X_1, \dots, X_n)$$

Here, $(X_0, ..., X_n)^{-1}(A) = \{ \omega \in \Omega \mid (X_0(\omega), ..., X_n(\omega)) \in A \}.$

This sequence of σ -algebras is called the *natural filtration* of $(X_n)_{n\in\mathbb{N}}$.

Remark. Note that elements of \mathcal{F}_n are subsets of Ω , not elements of Ω .

(GUESS) \mathcal{F}_n is the set of all subsets of Ω subject to one condition: if $(X_0, \ldots, X_n)(\omega_1) = (X_0, \ldots, X_n)(\omega_2)$, then any set in \mathcal{F}_n containing ω_1 must also contain ω_2 .

$$\mathcal{F}_n = \{ A \subseteq \Omega \mid \forall \omega_1, \omega_2 \in \Omega : (\omega_1 \in A) \oplus (\omega_2 \in A) \to (X_0, \dots, X_n)(\omega_1) \neq (X_0, \dots, X_n)(\omega_2) \}$$

Why is \mathcal{F}_n a σ -algebra? The empty set is in \mathcal{F}_n because $\emptyset \in \mathcal{S}^{n+1}$, and the set of pre-images of the null set is the null set. The complement of any set in \mathcal{F}_n is in \mathcal{F}_n because $(X_0, \ldots, X_n)^{-1}(A)^c = (X_0, \ldots, X_n)^{-1}(A^c)$.

Why is $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$? For any $A \subseteq \mathcal{S}^{n+1}$, we have

$$(X_0,\ldots,X_n)^{-1}(A)=(X_0,\ldots,X_n,X_{n+1})^{-1}(A\times\mathcal{S}).$$

Definition I.31 (Stopping time). Suppose $(X_n)_{n\in\mathbb{N}}$ is a sequence of S-valued random variables on $(\Omega, \mathcal{F}, (\mathcal{F}_n)_{n\in\mathbb{N}}, \Pr)$ where $(\mathcal{F}_n)_{n\in\mathbb{N}}$ is the natural filtration of $(X_n)_{n\in\mathbb{N}}$.

Then $\tau \colon \Omega \to \mathbb{N} \cup \{\infty\}$ is called a *stopping time* with respect to $(\mathcal{F}_n)_{n \in \mathbb{N}}$ if for all $n \in \mathbb{N}$,

$$\{\omega \in \Omega \mid \tau(\omega) \le n\} \in \mathcal{F}_n.$$

This is equivalent to saying that for all $n \in \mathbb{N}$,

$$\mathbf{1}_{\{\tau < n\}} = \mathbf{1}_{\{(X_0, \dots, X_n) \in A\}}$$
 for some $A \in \mathcal{S}^{n+1}$.

(GUESS) In keeping with the previous guess, it is equivalent to the following: if $\omega, \omega' \in \Omega$ with $\tau(\omega) = n < \tau(\omega')$, then

$$(X_0,\ldots,X_n)(\omega)\neq(X_0,\ldots,X_n)(\omega').$$

Intuitively, a stopping time is a time at which we can decide whether or not to stop the process based on the information available up to that time (in measurable terms).

Consider the simple random walk $(X_n)_{n\in\mathbb{N}}$ on \mathbb{Z} . Then the event that the hitting time of 10 is at most n is

$${T_{10} \le n} = \bigcup_{i=1}^{n} {X_i = 10}.$$

Examples.

• Let $(X_n)_{n\in\mathbb{N}}$ be an S-valued stochastic process and let $A\subseteq S$. Let $T_A:=\inf\{n\geq 1\mid X_n\in A\}$ (where we take $\inf\varnothing$ to be $+\infty$). Then T_A is a stopping time with respect to the natural filtration associated with $(X_n)_{n\in\mathbb{N}}$. That is, for all $n\in\mathbb{N}$,

$$\{T_A \le n\} = \bigcup_{i=1}^n \{X_i \in A\} \in \mathcal{F}_n.$$

Intuitively, say we stop as soon as we hit a desired state. Then we can decide whether or not to stop at time n based on the information available up to time n.

• SRW(p) started at the origin. Then $L = \sup\{n \ge 1 \mid X_n < 7\}$ is NOT a stopping time. Intuitively, L is the *last* time we are below 7, which cannot be determined based on the information available from the past.

Proposition I.32. τ is a stopping time iff for all $n \in \mathbb{N}$,

$$\{\tau=n\}\in\mathcal{F}_n.$$

Proof. Suppose τ is a stopping time. Then $\{\tau = n\} \in \mathcal{F}_n$ for all $n \in \mathbb{N}$. This is because

$$\{\tau = n\} = \{\tau \le n\} \cap \{\tau \le n - 1\}^c$$

where both sets are in $\mathcal{F}_n \supseteq \mathcal{F}_{n-1}$, and therefore so is their intersection (de Morgan's law).

Conversely, suppose $\{\tau = n\} \in \mathcal{F}_n$ for all $n \in \mathbb{N}$. Since $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$, we have $\{\tau = i\} \in \mathcal{F}_n$ for all $i \leq n$. Hence so is

$$\{\tau \le n\} = \bigcup_{i=0}^{n} \{\tau = i\}.$$

Proposition I.33. If τ_1 and τ_2 are stopping times, then so are $\tau_1 \wedge \tau_2$, $\tau_1 \vee \tau_2$ and $\tau_1 + \tau_2$.

Proof. We have

$$\{\tau_{1} \wedge \tau_{2} \leq n\} = \{\tau_{1} \leq n\} \cup \{\tau_{2} \leq n\}$$

$$\{\tau_{1} \vee \tau_{2} \leq n\} = \{\tau_{1} \leq n\} \cap \{\tau_{2} \leq n\}$$

$$\{\tau_{1} + \tau_{2} \leq n\} = \bigcup_{i=0}^{n} \{\tau_{1} \leq i\} \cap \{\tau_{2} \leq n - i\}$$

We can interpret the above operations as follows.

- $\tau_1 \wedge \tau_2$ is the stopping time if we stop when either of our conditions are met.
- $\tau_1 \vee \tau_2$ is the stopping time if we stop when both of our conditions are met.
- $\tau_1 + \tau_2$ is the stopping time if we stop when we have waited for τ_1 before we started looking for τ_2 .

Exercise I.34. Give an example of two stopping times τ_1 and τ_2 such that $\Pr(\tau_1 \leq \tau_2) = 1$ but $\tau_2 - \tau_1$ is not a stopping time.

Solution. Consider the SRW(p) started at the origin, with

$$\tau_1 = \inf\{n \ge 1 \mid X_n = 1\},
\tau_2 = \inf\{n \ge 1 \mid X_n = 2\}.$$

Theorem I.35 (Strong Markov property).

Let $(X_n)_{n\in\mathbb{N}}$ be $MC(\mu_0, P)$, and let τ be a stopping time. Let $A\subseteq\mathbb{N}$. Then

$$\Pr_{\mu_0}(X_{\tau+1} = x_1, \dots, X_{\tau+n} = x_n \mid \tau \in A, X_{\tau} = x)$$

$$= \Pr_x(X_1 = x_1, \dots, X_n = x_n)$$

Remark. The SMP is equivalent to

$$\mathbb{E}_{\mu_0} \Big[f\Big((X_{\tau+j})_{j \in \mathbb{N}} \Big) \mid \tau \in A, X_{\tau} = x \Big] = \mathbb{E}_x \Big[f\Big((X_j)_{j \in \mathbb{N}} \Big) \Big]$$

for any bounded function $f: \mathcal{S}^{\infty} \to \mathbb{R}$.

Proof.

$$\Pr_{\mu_0}(X_{\tau+1} = x_1, \dots, X_{\tau+n} = x_n, \tau \in A, X_{\tau} = x)$$

$$= \sum_{m \in A} \Pr_{\mu_0}(X_{m+1} = x_1, \dots, X_{m+n} = x_n, \tau = m, X_m = x)$$

$$= \sum_{m \in A} \Pr_{\mu_0}(\tau = m, X_m = x)$$

$$\times \Pr_{\mu_0}(X_{m+1} = x_1, \dots, X_{m+n} = x_n \mid \tau = m, X_m = x)$$

$$= \sum_{m \in A} \Pr_{\mu_0}(\tau = m, X_m = x) \Pr_{x}(X_1 = x_1, \dots, X_n = x_n)$$

by the Markov property, since $\tau = m$ is equivalent to (X_0, \ldots, X_m) belonging to some set in \mathcal{F}_m . Summing over A gives

$$= \Pr_{\mu_0}(\tau \in A, X_{\tau} = x) \Pr_{x}(X_1 = x_1, \dots, X_n = x_n)$$

and dividing by $\Pr_{\mu_0}(\tau \in A, X_{\tau} = x)$ yields the result.

Definition I.36. Suppose X takes values in $\mathbb{N} \cup \{\infty\}$, and let $p_k := \Pr(X = k), k \in \mathbb{N} \cup \{\infty\}$. Then the probability generating function of X is defined as

$$G_X(s) = p_0 + p_1 s + p_2 s^2 + \dots, \quad s \in (-1, 1)$$

= $E[s^X]$

where we take $s^{\infty} = 0$ for |s| < 1.

Remark. The left limit $G_X(1^-) = \lim_{s \uparrow 1} G_X(s) = 1 - p_{\infty}$. If $p_{\infty} > 0$, then $E[X] = \infty$. Otherwise,

$$E[X] = \sum_{k=0}^{\infty} k p_k = \sum_{k=0}^{\infty} p_k k(1)^{k-1} = G_X'(1^-)$$

Theorem I.37. Let X, Y be two random variables taking values in $\mathbb{N} \cup \{\infty\}$ and $G_X(s) = G_Y(s) \ \forall s \in (-1,1)$. Then $X \stackrel{d}{=} Y$.

Proof. Since $G_X, G_Y \in C^{\infty}(-1,1)$, we have

$$G_X^{(n)} = G_Y^{(n)}$$
 for all $n \in \mathbb{N}$.

But
$$G_X^{(n)}(0) = n! p_n^X$$
. Thus $p_n^X = p_n^Y$ for all $n \in \mathbb{N}$.

Exercise I.38. Suppose $(X_n)_{n\in\mathbb{N}}$ is an SRW(p) on \mathbb{Z} started at the origin. Find $G_{T_{-1}}$, where T_{-1} is the first hitting time of -1.

Solution. Denote $G_{T_{-1}}$ by G for simplicity.

$$G(s) = \mathcal{E}_0[s^{T_{-1}}]$$

$$= p \mathcal{E}_0[s^{T_{-1}} \mid X_1 = 1] + q \mathcal{E}_0[s^{T_{-1}} \mid X_1 = -1]$$

$$= p \mathcal{E}_1[s^{1+T_{-1}}] + qs$$

$$= ps \mathcal{E}_1[s^{T_{-1}}] + qs$$

$$= ps \mathcal{E}_0[s^{T_{-2}}] + qs$$

Since $s^{\infty} = 0$ by our convention, we have

$$\begin{aligned} \mathbf{E}_{0}[s^{T-2}] &= \mathbf{E}_{0}[s^{T-2}\mathbf{1}_{T-1} < \infty] \\ &= \sum_{m} \mathbf{E}_{0}[s^{T-2}\mathbf{1}_{T-1} = m] \\ &= \sum_{m} \Pr_{0}(T_{-1} = m) \, \mathbf{E}_{-1}[s^{m+T-2}] \\ &= \sum_{m} \Pr_{0}(T_{-1} = m) s^{m} \, \mathbf{E}_{-1}[s^{T-2}] \\ &= \mathbf{E}_{0}[s^{T-1}] \sum_{m} \Pr_{0}(T_{-1} = m) s^{m} \\ &= G(s)^{2} \end{aligned}$$

Thus

$$G(s) = psG(s)^{2} + qs$$

$$G(s) = \frac{1 \pm \sqrt{1 - 4pqs^{2}}}{2ps}$$

Claim:
$$G(s) = \frac{1 - \sqrt{1 - 4pqs^2}}{2ps}$$
 for all $s \in (-1, 1) \setminus \{0\}$.

We get several results from this exercise. The probability of ever hitting -1 is

Lecture 4.
Tuesday
January 16

$$1 - \Pr_0(T_{-1} = \infty) = \lim_{s \uparrow 1} G(s)$$

$$= \frac{1 - \sqrt{1 - 4pq}}{2p}$$

$$= \frac{1 - |2p - 1|}{2p}$$

$$= \begin{cases} 1 & \text{if the walk is left-biased,} \\ \frac{q}{p} & \text{otherwise.} \end{cases}$$

$$= \frac{q}{p} \wedge 1$$

Another way to see the left-biased case is to note that X_n 's are sums of iid

 $Ber_{\pm}(p)$ random variables, and so by the strong law of large numbers,

$$\frac{X_n}{n} \xrightarrow{\text{a.s.}} p - q.$$

Thus if p < q, then $X_n \xrightarrow{\text{a.s.}} -\infty$.

Exercise I.39. Consider the SRW(p) on \mathbb{Z} started at the origin. Show that $T_{-2} \stackrel{d}{=} \tau_1 + \tau_2$, where τ_1 and τ_2 are iid copies of T_{-1} .

Solution.

$$\begin{split} \mathbf{E}_{0}[s^{T-2}] &= \mathbf{E}_{0}[s^{T-2}\mathbf{1}_{T_{-1}<\infty}] \\ &= \sum_{m} \mathbf{E}_{0}[s^{T-2}\mathbf{1}_{T_{-1}=m}] \\ &= \sum_{m} \Pr_{0}(T_{-1}=m) \, \mathbf{E}_{-1}[s^{m+T-2}] \\ &= \sum_{m} \Pr_{0}(T_{-1}=m) s^{m} \, \mathbf{E}_{-1}[s^{T-2}] \\ &= \mathbf{E}_{0}[s^{T-1}] \sum_{m} \Pr_{0}(T_{-1}=m) s^{m} \\ &= G(s)^{2} \end{split}$$

On the other hand, $E_0[s^{\tau_1+\tau_2}] = E_0[s^{\tau_1}]^2 = G(s)^2$ by independence. Thus, $T_{-2} \stackrel{d}{=} \tau_1 + \tau_2$ by theorem I.37.

Exercise I.40. Consider the SRW(p) on \mathbb{Z} started at the origin. Find $Pr_0(T_{-1} = n)$, $n \in \mathbb{N}$.

Solution. We have $G(s) = \frac{1 - \sqrt{1 - 4pqs^2}}{2ps}$. We first need a nice expression for $\binom{1/2}{k}$ in order to use the binomial theorem.

$$\binom{1/2}{k} = \frac{\frac{1}{2}(\frac{1}{2} - 1)\dots(\frac{1}{2} - k + 1)}{k!}$$
$$= \frac{1}{2^k} \frac{1(1 - 2)\dots(1 - 2k + 2)}{k!}$$
$$= \frac{(-1)^{k-1}}{2^k} \frac{(2k - 3)!!}{k!}$$

We can rewrite (2k-3)!! as

$$(2k-3)!! = \frac{(2k-3)!}{(2k-4)!!}$$
$$= \frac{(2k-3)!}{2^{k-2}(k-2)!}$$

so that

$$\binom{1/2}{k} = \frac{(-1)^{k-1}}{2^{2k-2}} \frac{(2k-3)!}{k!(k-2)!}$$
$$= \frac{(-1)^{k-1}}{2^{2k-2}k} \binom{2k-3}{k-2}$$

but multiplying by $\frac{2k-2}{2(k-1)}$ yields an even nicer

$$= \frac{(-1)^{k-1}}{2^{2k-1}} \frac{1}{k} \binom{2k-2}{k-1}$$

The expression doesn't make sense for k = 0, for which the coefficient is 1, and the derivation doesn't make sense for k = 1, but for which the expression happens to match the coefficient.

But if we look closely, we see that this is just

$$\frac{(-1)^{k-1}}{2^{2k-1}}C_{k-1}$$

where C_{k-1} is the (k-1)th Catalan number!

From the binomial theorem,

$$(1-x)^{\frac{1}{2}} = \sum_{k=0}^{\infty} {1/2 \choose k} (-x)^k$$
$$= 1 - \sum_{k=1}^{\infty} \frac{1}{2^{2k-1}} C_{k-1} x^k$$

but more interestingly,

$$(1-4x)^{\frac{1}{2}} = 1 - 2\sum_{k=1}^{\infty} C_{k-1}x^k$$

In fact, this gives that

$$\frac{1-\sqrt{1-4x}}{2x}$$
 is the generating function for $(C_k)_{k\in\mathbb{N}}$.

Getting back to the problem at hand, we have

$$G(s) = \frac{1 - \sqrt{1 - 4pqs^2}}{2ps}$$
$$= qs \sum_{k=0}^{n} C_k (pqs^2)^k$$

So we have

$$\Pr_{0}(T_{-1} = n) = \begin{cases} 0 & \text{if } n \text{ is even} \\ p^{k} q^{k+1} C_{k} & \text{if } n = 2k+1 \end{cases}$$

In the case of $p = q = \frac{1}{2}$, this in fact proves that the number of SRW paths of length 2n from the origin to the origin, that never go below the origin, is

the *n*th Catalan number. Why? Because each such path can be extended bijectively to a path of length 2n + 1 that hits -1 for the first time at time 2n + 1.

I.2 Transience & Recurrence

Definition I.41. Let $(X_n)_{n\in\mathbb{N}}$ be $MC_{\mathcal{S}}(\mu_0, P)$. Define $T_y = ??? = \inf\{n \in \mathbb{N}^* \mid X_n = y\}$, where we take $\inf \emptyset$ to be $+\infty$.

For $x, y \in \mathcal{S}$, define $f_{xy} = \Pr_x(T_y < \infty)$. A state $x \in \mathcal{S}$ is said to be recurrent if $f_{xx} = 1$, and transient otherwise.

A state x is said to be absorbing if $f_{xy} > 0$ only when x = y. (This is equivalent to $\{x\}$ being a communicating class.)

We further define

$$N_y = \#\{n \in \mathbb{N}^* \mid X_n = y\},\$$

$$G(x, y) = \mathcal{E}_x[N_y].$$

 $G \colon \mathcal{S}^2 \to \mathbb{R}$ is called the *Green's function*.

Lemma I.42. For all $x, y \in \mathcal{S}$, $G(x, y) = \sum_{n \in \mathbb{N}} p_{xy}^{(n)}$.

Proof. We write N_y as $\sum_{n=1}^{\infty} \mathbf{1}_{X_n=y}$. Then,

$$G(x,y) = E_x \left[\sum_{n=1}^{\infty} \mathbf{1}_{X_n = y} \right]$$

$$= \sum_{n=1}^{\infty} E_x [\mathbf{1}_{X_n = y}]$$

$$= \sum_{n=1}^{\infty} \Pr_x (X_n = y)$$

$$= \sum_{n=1}^{\infty} p_{xy}^{(n)}$$
(MCT)

The interchange of the sum and the expectation is justified by the monotone convergence theorem stated below. \Box

Fact I.43 (Monotone convergence theorem). Let $(\Omega, \mathcal{F}, \Pr)$ be a probability space. Let $X_n \colon \Omega \to [0, \infty]$ be a sequence of random variables and $X \colon \Omega \to [0, \infty]$ be another random variable. Suppose that $X_n(\omega) \leq X_{n+1}(\omega)$ for each n and ω , and that $X_n(\omega) \to X(\omega)$ for each ω . Then, $E[X_n] \to E[X]$.

Remark. The statement holds even if $X_n \xrightarrow{\text{a.s.}} X$.

Proof. We consider the case where $X_n \colon \Omega \to [0, \infty)$ and $X \colon \Omega \to [0, \infty)$. Since $X_n \le X_{n+1} \le X$, we have

$$E[X_n] \le E[X_{n+1}] \le E[X].$$

Thus the sequence $(E[X_n])_{n\in\mathbb{N}}$ is increasing and bounded and so converges to some limit $L \leq E[X]$

What does this have to do with the Green's function?

$$\operatorname{E}_{x}\left[\sum_{n=1}^{\infty}\mathbf{1}_{X_{n}=y}\right]=\operatorname{E}_{x}\left[\lim_{n\to\infty}S_{n}\right]$$

where S_n 's are the partial sums. Note that $S_n \leq S_{n+1}$ and $S_n \to \sum_{n=1}^{\infty} p_{xy}^{(n)}$. Thus applying the monotone convergence theorem, we get

$$E_x \left[\sum_{n=1}^{\infty} \mathbf{1}_{X_n = y} \right] = \lim_{n \to \infty} E_x [S_n]$$

$$= \lim_{n \to \infty} \sum_{m=1}^{n} E_x [\mathbf{1}_{X_m = y}]$$

$$= \sum_{m=1}^{\infty} E_x [\mathbf{1}_{X_m = y}].$$

Theorem I.44. For all $x, y \in \mathcal{S}$,

$$\Pr_{x}(N_{y} = m) = \begin{cases} 1 - f_{xy} & \text{if } m = 0\\ f_{xy} f_{yy}^{m-1} (1 - f_{yy}) & \text{if } m \in \mathbb{N}^{*}\\ f_{xy} [f_{yy} = 1] & \text{if } m = +\infty \end{cases}$$

Proof. $N_y = 0$ if and only if $T_y = +\infty$. This occurs with probability $1 - f_{xy}$. We define $T_y^{(1)} = T_y$ and for $m \ge 1$,

$$T_y^{(m+1)} = \inf \{ n > T_y^{(m)} \mid X_n = y \}.$$

Note that $T_y^{(m)} = +\infty$ implies $T_y^{(m+1)} = +\infty$. Now

$$\begin{split} \Pr_x(T_y^{(m+1)} < \infty) &= \Pr_x(T_y^{(m)} < \infty \text{ and } T_y^{(m+1)} < \infty) \\ &= \Pr_x(T_y^{(m)} < \infty) \Pr_y(T_y < \infty) \text{ (Strong Markov property)} \end{split}$$

and by induction,

$$\Pr_{x}(N_{y} \ge m) = \Pr_{x}(T_{y}^{(m)} < \infty)$$

$$= f_{xy}f_{yy}^{m-1}.$$
(*)

The result follows by taking the difference. Or more directly,

$$\Pr_{x}(N_{y}=m) = \Pr_{x}(T_{y}^{(m)} < \infty) \Pr_{y}(T_{y}=+\infty) = f_{xy}f_{yy}^{m-1}(1-f_{yy}).$$

Finally,

$$\Pr_{x}(N_{y} = +\infty) = 1 - \sum_{m=0}^{\infty} \Pr_{x}(N_{y} = m)$$

$$= 1 - (1 - f_{xy}) - f_{xy}(1 - f_{yy}) \sum_{m=0}^{\infty} f_{yy}^{m}$$

$$= \begin{cases} f_{xy} & \text{if } f_{yy} = 1\\ 0 & \text{if } f_{yy} < 1 \end{cases}$$

$$= f_{xy}[f_{yy} = 1].$$

Theorem I.45.

- (1) Suppose y is transient. Then for all $x \in \mathcal{S}$, $\Pr_x(N_y < \infty) = 1$ and $G(x,y) = \frac{f_{xy}}{1 f_{yy}} < \infty$.
- (2) Suppose y is recurrent. Then $\Pr_y(N_y = \infty) = 1$ and $G(y, y) = +\infty$. Further, for all $x \in \mathcal{S} \setminus \{y\}$, $\Pr_x(N_y = \infty) = f_{xy}$ and

$$G(x,y) = \begin{cases} 0 & \text{if } f_{xy} = 0, \\ \infty & \text{if } f_{xy} > 0. \end{cases}$$

Proof.

(1) Since y is transient, $f_{yy} < 1$. Thus by the previous theorem, $\Pr_x(N_y = \infty) = 0$. Then,

$$G(x,y) = \sum_{m=1}^{\infty} m \Pr_{x}(N_{y} = m)$$

$$= f_{xy}(1 - f_{yy}) \sum_{m=1}^{\infty} m f_{yy}^{m-1}$$

$$= f_{xy}(1 - f_{yy}) \frac{1}{(1 - f_{yy})^{2}}$$

$$= \frac{f_{xy}}{1 - f_{yy}}.$$

Alternatively, we use equation (*) to write

$$G(x,y) = \sum_{m=1}^{\infty} \Pr_{x}(N_{y} \ge m)$$
$$= \sum_{m=1}^{\infty} f_{xy} f_{yy}^{m-1}$$
$$= \frac{f_{xy}}{1 - f_{yy}}.$$

(2) Since y is recurrent, $f_{yy} = 1$. By the previous theorem, for any $x \in \mathcal{S}$,

$$\Pr_{x}(N_{y} = m) = \begin{cases} 1 - f_{xy} & \text{if } m = 0, \\ 0 & \text{if } m \in \mathbb{N}^{*}, \\ f_{xy} & \text{if } m = +\infty. \end{cases}$$

Thus $G(x,y)=+\infty$ if $f_{xy}>0$ and 0 otherwise.

Corollary I.46. A state x is recurrent iff $G(x,x) = \sum_{m=1}^{\infty} p_{xx}^{(m)} = +\infty$.

Definition I.47. A DTMC is said to be *recurrent* (resp. *transient*) if all its states are recurrent (resp. transient).

Theorem I.48. If $|S| < \infty$, then there exists a recurrent state.

Proof. Suppose not. Then for all $x, y \in \mathcal{S}$, $G(x, y) = \sum_{m=0}^{\infty} p_{xy}^{(m)} < \infty$. Then the individual terms of the series must tend to 0. Thus

$$\sum_{y \in \mathcal{S}} \lim_{m \to \infty} p_{xy}^{(m)} = 0$$

$$\implies \lim_{m \to \infty} \sum_{y \in \mathcal{S}} p_{xy}^{(m)} = 0.$$

The interchange of the limit and the sum is justified since the sum is finite. But $\sum_{y \in \mathcal{S}} p_{xy}^{(m)} = 1$ for all m. Thus we have a contradiction.

Theorem I.49. Suppose $x \neq y \in \mathcal{S}$, x is recurrent and $x \rightarrow y$. Then y is recurrent, $y \rightarrow x$ and $f_{xy} = f_{yx} = 1$.

Proof. Since $x \to y$, there exists $n \in \mathbb{N}^*$ and x_1, \ldots, x_{n-1} distinct from x such that $p_{xx_1}p_{x_1x_2}\ldots p_{x_{n-1}y} > 0$. Since x is recurrent,

$$0 = \Pr_{x}(T_{x} = +\infty) \ge p_{xx_{1}}p_{x_{1}x_{2}}\dots p_{x_{n-1}y}\Pr_{y}(T_{x} = +\infty)$$

so $\Pr_y(T_x = +\infty)$ must be 0. Thus $y \to x$ with $f_{yx} = 1$. If y is recurrent, then f_{xy} would be 1 by the same argument. Thus we need only show that y is recurrent. We can show this by showing that $G(y, y) = +\infty$. Let

 $p_{yx}^{(n_1)} > 0$ and $p_{xy}^{(n_2)} > 0$.

$$G(y,y) \ge \sum_{m=n_1+n_2+1}^{\infty} p_{yy}^{(m)}$$

$$\ge \sum_{r=1}^{\infty} p_{yx}^{(n_1)} p_{xx}^{(r)} p_{xy}^{(n_2)}$$

$$= p_{yx}^{(n_1)} p_{xy}^{(n_2)} G(x,x)$$

$$= +\infty.$$

Lecture 5.
Sunday
February 04

Definition I.50. A recurrent state x is said to be *null recurrent* if $\mathrm{E}_x[T_x] = \infty$.

It is said to be *positive recurrent* if $E_x[T_x] < \infty$.

Theorem I.51. Suppose $x, y \in \mathcal{S}$. Then let

$$N_y^{(n)} = \sum_{j=1}^n \mathbf{1}_{X_j = y},$$

$$G^{(n)}(x, y) = \mathbf{E}_x[N_y^{(n)}] = \sum_{j=1}^n p_{xy}^{(j)}.$$

Then under Pr_x ,

$$\frac{N_y^{(n)}}{n} \xrightarrow{a.s.} \frac{\mathbf{1}_{T_y < \infty}}{\mathrm{E}_y[T_y]}.$$

Further,

$$\frac{G^{(n)}(x,y)}{n} \to \frac{f_{xy}}{\mathrm{E}_y[T_y]}.$$

We are using the convention that $\frac{1}{\infty} = 0$, which makes both the limits zero for transient and null recurrent states.

Proof. Suppose y is transient. Then

$$G(x,y) = \mathcal{E}_x[N_y] = \frac{f_{xy}}{1 - f_{yy}} < \infty$$

so

$$\frac{N_y^{(n)}}{n} \leq \frac{N_y}{n} \xrightarrow{\text{a.s.}} 0.$$

Similarly

$$\frac{G^{(n)}(x,y)}{n} \le \frac{G(x,y)}{n} \to 0.$$

Now suppose y is recurrent. Define $T_y^{(1)} = T_y$, and for $m \ge 2$, define

$$T_y^{(m)} = \inf\{n > T_y^{(m-1)} \mid X_n = y\}.$$

Then

$$N_y^{(n)} = m \iff T_y^{(m)} \le n < T_y^{(m+1)}$$

If $T_y = \infty$, then obviously $N_y^{(n)} = 0$ for all n, so

$$\frac{N_y^{(n)}}{n} \xrightarrow{\text{a.s.}} 0.$$

Suppose $T_y < \infty$.

$$\frac{T_y^{(m)}}{m} \le \frac{n}{m} < \frac{T_y^{(m+1)}}{m} < \frac{T_y^{(m+1)}}{m+1}$$

Then as $n \to \infty$, $m \to \infty$, and

$$\frac{T_y^{(m)}}{m} \xrightarrow{\text{a.s.}} E_y[T_y].$$

So

$$\frac{n}{m} \xrightarrow{\text{a.s.}} E_y[T_y].$$

Thus

$$\frac{N_y^{(n)}}{n} \xrightarrow{\text{a.s.}} \frac{1}{\mathbf{E}_y[T_y]}.$$

Similarly

$$\begin{aligned}
\mathbf{E}_{x}[N_{y}^{(n)}] &= \mathbf{E}_{x}[\mathbf{1}_{T_{y}<\infty}N_{y}^{(n)}] \\
&= \mathbf{E}_{x}[\mathbf{1}_{T_{y}<\infty}] \,\mathbf{E}_{x}[N_{y}^{(n)} \mid T_{y} < \infty] \\
\frac{G^{(n)}(x,y)}{n} &\to \frac{f_{xy}}{\mathbf{E}_{y}[T_{y}]}.
\end{aligned} \qquad \Box$$

Fact I.52 (Dominated convergence theorem). Suppose Z, X and $(X_n)_{n\in\mathbb{N}}$ are \mathbb{R} -valued random variables defined on the probability space $(\Omega, \mathcal{F}, \Pr)$. Further assume that

$$X_n \xrightarrow{a.s.} X$$

$$\forall n (|X_n| \le Z \text{ almost surely})$$

$$E[Z] < \infty.$$

Then

$$E[X_n] \to E[X] \in \mathbb{R}.$$

Theorem I.53. Suppose $x \to y$ and x is positive recurrent. Then y is positive recurrent.

Proof. We will use the previous theorem. We know from theorem I.49 that y is recurrent and $y \to x$. Let $p_{xy}^{(n_1)} > 0$ and $p_{yx}^{(n_2)} > 0$.

Then
$$p_{yy}^{(n_1+m+n_2)} \ge p_{xy}^{(n_1)} p_{xx}^{(m)} p_{yx}^{(n_2)}$$
.

$$\frac{G^{(n)}(y,y)}{n} \ge \frac{1}{n} \sum_{m=0}^{n-n_1-n_2} p_{xy}^{(n_1)} p_{xx}^{(m)} p_{yx}^{(n_2)}$$
$$= \frac{1}{n} p_{xy}^{(n_1)} p_{yx}^{(n_2)} G^{(n-n_1-n_2)}(x,x)$$

Taking limits,

$$\frac{1}{\mathrm{E}_y[T_y]} \ge \frac{p_{xy}^{(n_1)} p_{yx}^{(n_2)}}{\mathrm{E}_x[T_x]} > 0.$$

Thus $E_y[T_y] < \infty$.

Corollary I.54. Let C be a communicating class. Then either all states in C are transient, or all are null recurrent, or all are positive recurrent.

Theorem I.55. Let C be a finite communicating class. Then all states in C are positive recurrent.

Proof. Let $x \in \mathcal{C}$.

$$\sum_{y \in \mathcal{C}} \frac{G^{(n)}(x, y)}{n} = \frac{1}{n} \sum_{y \in \mathcal{C}} \sum_{j=1}^{n} p_{xy}^{(j)}$$
$$= \frac{1}{n} \sum_{j=1}^{n} \sum_{y \in \mathcal{C}} p_{xy}^{(j)}$$
$$= 1.$$

Taking limits,

$$\sum_{y \in \mathcal{C}} \frac{f_{xy}}{\mathrm{E}_y[T_y]} = 1.$$

The interchange of the sum and limit is justified by the fact that the sum is finite. If all $E_y[T_y]$ were infinite, then the sum would be zero. Thus there exists at least one positive recurrent state in C, which forces all states to be positive recurrent.

I.2.1 Transience and Recurrence of the SSRW on \mathbb{Z}^d

Theorem I.56. The SSRW on \mathbb{Z}^d is null recurrent if d = 1, 2 and transient if $d \geq 3$.

I.3 Stationary distributions

Let \mathcal{S} be a countable state space and P a transition matrix on \mathcal{S} . Then any function $\lambda \colon \mathcal{S} \to [0, \infty]$ corresponds to a measure on \mathcal{S} , by setting

$$\lambda(A) = \sum_{x \in A} \lambda(x).$$

Conversely, any measure on S is of this form. (Why?)

A measure λ can be thought of as a row vector $(\lambda(x))_{x \in \mathcal{S}}$. Then

$$(\lambda P)_y = \sum_{x \in \mathcal{S}} \lambda(x) P(x, y)$$

also gives a measure on S.

A probability distribution π on S is a measure such that $\pi(S) = 1$.

Definition I.57. A measure λ on \mathcal{S} is *invariant* for a DTMC with transition matrix P is $\lambda P = \lambda$. That is,

$$\sum_{x \in \mathcal{S}} \lambda(x) P(x, y) = \lambda(y) \quad \forall y \in \mathcal{S}.$$

If λ is a probability distribution, it is called a stationary distribution.

Proposition I.58. If $(X_n)_{n\in\mathbb{N}}$ is $MC(\pi, P)$ where π is a stationary distribution, then

$$X_0 \stackrel{d}{=} X_1 \stackrel{d}{=} \cdots \sim \pi.$$

Chapter II

Branching Processes

Definition II.1 (Branching process). Let $\underline{p} = (p_i)_{i \in \mathbb{N}}$ be a probability distribution on \mathbb{N} and let $X_{n,i} \sim \underline{p}$ be iid random variables for each $n, i \in \mathbb{N}$. We define the *branching process* $(Z_n)_{n \in \mathbb{N}}$ by

$$Z_0 = 1$$
, $Z_{n+1} = \sum_{i=1}^{Z_n} X_{n,i}$.

 \underline{p} is called the *offspring/progeny distribution*. The associated random tree (the *i*th node on the *n*th level, if it exists, having $X_{n,i}$ children) is called the *Galton-Watson tree* or the *Bienaymé tree*.

Lecture 6. Thursday February 08

Clearly Z_{n+1} depends only on Z_n , so the process is a Markov chain.

Definition II.2 (Extinction). The extinction probability of a branching process $(Z_n)_{n\in\mathbb{N}}$ is

$$\eta = \Pr(Z_n = 0 \text{ for some } n \in \mathbb{N}).$$

Proposition II.3 (Expectation). Let
$$\mu = \mathbb{E}_{X \sim \underline{p}}[X] = \mathbb{E}[Z_1]$$
. Then $\mathbb{E}[Z_n] = \mu^n$.

Proof. By induction, $E[Z_0] = 1 = \mu^0$. Then

$$E[Z_{n+1} \mid Z_n] = E\left[\sum_{i=1}^{Z_n} X_{n,i} \mid Z_n\right] = Z_n E[X_{n,1}] = Z_n \mu.$$

So

$$E[Z_{n+1}] = E[E[Z_{n+1} \mid Z_n]] = E[Z_n \mu] = \mu E[Z_n]$$

and by induction follows the result.

Proposition II.4. If $E[Z_1] < 1$, then the process becomes extinct with probability 1.

Proof. Markov's inequality gives

$$\Pr(Z_n \ge 1) \le \mathrm{E}[Z_n] = \mu^n.$$

So

$$\lim_{n \to \infty} \Pr(Z_n \neq 0) = 0.$$

Theorem II.5. Consider a branching process with $p_1 < 1$. Let G be the pgf of Z_1 . Then the extinction probability η is the smallest solution to G(s) = s in [0, 1].

Further,

$$\eta = 1 \text{ if } E[Z_1] \le 1,
\eta < 1 \text{ if } E[Z_1] > 1.$$

Proof. Let A be the event that the branching process goes extinct. Then

$$\eta = \Pr(A) = E[\Pr(A \mid Z_1)] = E[\eta^{Z_1}] = G(\eta).$$

Thus the extinction probability is a fixed point of G. The second last equality is because

$$\Pr(A \mid Z_1 = k) = \Pr\{\text{each of the } k \text{ children goes extinct}\},$$

which are independent events.

which are independent events.
Let
$$\eta_n := \Pr(Z_n = 0)$$
. Since $\{Z_n = 0\} \subseteq \{Z_{n+1} = 0\} \subseteq A$, $\eta_n \le \eta_{n+1} \le \eta$ and $\eta_n \uparrow \eta$.

Definition II.6 (Criticality). An offspring distribution is called *critical* if $E[Z_1] = 1$. It is called *subcritical* (resp. *supercritical*) if $E[Z_1] < 1$ (resp. $E[Z_1] > 1).$

Lecture 7. Tuesday February 13

II.1 The Structure of GWB Trees

Definition II.7 (Conjugate distribution). Let $p = (p_i)_{i \in \mathbb{N}}$ be a pmf on \mathbb{N} with $p_0 > 0$ (hence $\eta > 0$). Then $\tilde{p} = (\eta^{i-1}p_i)_{i \in \mathbb{N}}$ is called the *conjugate* $distribution ext{ of } p.$

Exercise II.8. Show that \tilde{p} is a pmf.

Solution.

$$\sum_{i=1}^{\infty} \eta^{i-1} p_i = \frac{1}{\eta} \sum_{i=1}^{\infty} \eta^i p_i$$
$$= \frac{1}{\eta} \operatorname{E}_{X \sim \underline{p}} [\eta^X]$$
$$= \frac{1}{\eta} G(\eta)$$

Lecture 7: Structure of GWB Trees

but
$$G(\eta) = \eta$$

$$= 1.$$

For a more intuitive proof, recall that $G(\eta) = \eta$ because $E[\eta_1^Z] = \eta$.

Exercise II.9. Show that \tilde{p} is a critical or subcritical offspring distribution.

Proof. If $\eta = 1$, then $\underline{\tilde{p}} = \underline{p}$. But $\eta = 1 \iff E[Z_1] \leq 1$. Thus $\underline{\tilde{p}}$ is critical.

Suppose $\eta < 1$, so that $p_0 + p_1 < 1$ (otherwise the process would die off, since each node produces either one child, or, with positive probability, no children. Alternatively, $E[Z_1] < 1$). Then

$$E[Z_1] = \sum_{k} k \eta^{k-1} p_k$$
$$= \frac{d}{d\eta} E[\eta^X]$$
$$= G'(\eta)$$

If $G'(\eta) > 1$, then $G'(s) > 1 \ \forall s \in (\eta, 1)$. Why? Because $p_0 + p_1 < 1$, so G is strictly convex. But $G(\eta) = \eta$, so there exists a $\xi \in (\eta, 1)$ such that $G'(\xi) = 1$, a contradiction. Thus $G'(\eta) \le 1$ so $E[Z_1] \le 1$.

Theorem II.10. Let $\underline{\tilde{p}}$ be the conjugate distribution of \underline{p} . Let $\mathcal{T}_{\underline{p}}$ and $\mathcal{T}_{\underline{\tilde{p}}}$ be the GWB trees with offspring distributions \underline{p} and $\underline{\tilde{p}}$ respectively.

$$(\mathcal{T}_{\underline{p}} \mid it \ is \ finite) \stackrel{d}{=} \mathcal{T}_{\underline{\tilde{p}}}.$$

Exercise II.11. Find the conjugate distribution of Bin(r,p) where $p \in (\frac{1}{r},1)$.

Definition II.12 (Breadth-first walk). Let \underline{t} be a plane (rooted) tree. Label its vertices $1, 2, \ldots, n$ in breadth-first order. Let $C_j(\underline{t})$ be the number of children of vertex j in \underline{t} . Then the *breadth-first walk* of \underline{t} is the sequence

$$S_{j}(\underline{t}) = \begin{cases} 1 & \text{if } j = 0, \\ S_{j-1} + C_{j}(\underline{t}) - 1 & \text{otherwise.} \end{cases}$$
$$= 1 + \sum_{i=1}^{j} (C_{i}(\underline{t}) - 1).$$

It is obvious that $S_n(\underline{t}) = 0$.

Theorem II.13. There exists a bijection between the set of finite plane trees and the set S of sequences $(s_n)_{n\in\mathbb{N}}$ such that

- $s_0 = 1$,
- $s_{n+1} \ge s_n 1$, there is an n_0 such that $s_n = 0 \iff n \ge n_0$.

 $This\ bijection\ is\ such\ that\ each\ tree\ corresponds\ to\ its\ breadth-first$