IBBDD 2010 - Primer Parcial

Primer Fecha - 26/06/2010

Tema II

Dada la siguiente estructura perteneciente a una organización de archivo de registros de longitud variable:

tPersona = Record

dni: LongInt;

nombre: String

end;

tBloque = Record

cantRegs: Word;

{cantidad actual de registros en el bloque}

contenido: Array[1..CapacBloque] of Byte; {CapacBloque es una constante con un valor predefinido}

tPersonas = Record

arch: File of tBloque; {archivo de personas}

espLibre: File of Word; {archivo de control de bytes libres por bloque del archivo de personas}

bloque: tBloque;

{último bloque leído de personas}

iBloque: Word;

(índice de posición dentro del bloque)

espLibreBloque: Word;

Implemente las siguientes primitivas:

Procedure Primera(var pp: tPersonas; var p: tPersona); {Devuelve la primer persona del archivo.}

Procedure Siguiente(var pp: tPersonas; var p: tPersona); {Devuelve la siguiente persona del archivo o p.dni=0 en caso de que no hubiera más personas.}

2. Dado un árbol B+ con capacidades de 3 y 4 elementos en nodos internos y hoja respectivamente, muestre los estados sucesivos al realizar la siguiente secuencia de operaciones: baja 193, alta 815 y baja 459. Siempre que haya que balancear, agregar o eliminar nodos debe trabajarse con hermanos derechos, y ante disparidad de carga en particiones y balanceos debe quedar más cargado el hermano izquierdo.

NODO 0: (i, 1 elem.) 7 (740) 6

NODO 7: (i, 1 elem.) 2(459) 4

NODO 2: (h, 2 elem.) (52)(193) Sig. hoja: 4

NODO 4: (h, 3 elem.) (459)(471)(672) Sig. hoja: 1

NODO 6: (i, 1 elem.) 1(900) 5

NODO 1: (h, 4 elem.) (740)(791)(800)(836) Sig. hoja: 5

NODO 5: (h, 2 elem.) (900)(950) Sig. hoja: 0

Nota: Para cada paso justificar y dibujar el árbol resultante de manera completa.

3. Dado un archivo directo con cubetas para dos registros y dispersión lineal (saturación progresiva) con función de dispersión mod 9 y con el estado inicial de abajo, muestre su estado luego de cada operación, informando cuáles cubetas leyó y cuáles escribió para efectuar la: alta 661, alta 777, baja 741.

		Desbordado		
0		N ·		
1		N	523	694
. 2	,	, N	668	
3		N	741	246
4		N	. 814	229
5		N	734	
6		N		
7	10 C	N-	-	
8		N N	215	

Nota: Para cada paso justificar y dibujar la tabla resultante de manera completa.

 Se posce un archivo que tiene información de un censo a nivel mundial. Cada registro continue la siguiente información: Continente, País. Ciudad, Cantidad de Varones y Cantidad de Mujeres. El archivo está ordenado por Continente, País. Realice un modulo que reciba y abra el archivo correspondiente y liste en un archivo de texto la siguiente información:

Continen	te:	
País:		
Cuidad	Cantidad de Varones	Captidad de Mujeres
	****	***
Total de l	nabitantes País:	
Porcentaj	e de mujeres del País:	
País:		
***************************************	-	
Total Hal	pitantes Continente:	
Continen	te:	

Nota: Considere que no hay ciudades repetidas.

2. Dado un árbol 8 con capacidades de 3 y 5 elementos en nodos internos y hoja respectivamente, muestre los estados sucesivos al realizar la siguiente secuencia de operaciones: alta 700, baja 623, baja 817, alta 900 y alta 750. Siempre que haya que bolancear, agregar o eliminar nodos priorizar hermanos derechos, y ante disparidad de cargo en particiones y bajanceos debe quedar más cargado el hiermano izquiento.

```
NODO 0 (i, 3 elemento/s)

I( 324) 4( 4.13) 3( 623) 2

NODO 1 (h, 3 elemento/s)

( 7)( 97)( 208)

NODO 4 (h, 2 elemento/s)

( 338)( 399)

NODO 3 (h, 2 elemento/s)

( 474)( 508)

NODO 2 (h, 5 elemento/s)

( 676)( 694)( 806)( 817)( 887)
```

3. Dado ou archivo directo con cubetas para tres registros y dispersión con área de desborde separada encadenada (el área de desborde posee capacidad para un sólo registro) con función de dispersión mod 9 y con el estado inicial de abajo, muestre su estado luego de cada operación, informando cuáles cubetas leyó y cuáles escribió para efectuar la: alta 156, alta 705, alta 107.

	Bloque Desborde	Contador			
0 [-1	3	459	270	954
1	-1	2	946	973	
2	-1	1	731		
3	-1	3,	741	426	462
4	-1	0			
5	-3	2, .	446	4(1)	
1	-1	2	123	789	
7 [-1	2	376	484	
3 1	-1	.3	458	305	809

- El depósito central de cierta cadena de supermercados posee un archivo de los productos que comercializa, de cada producto se registra: código de producto, descripción, stock actual y stock mínimo. Diariamente el depósito debe efectuar envios a cada uno de los tres supermercados que se encuentran en la ciudad. Para esto, cada supermercado envia un archívo con los pedidos de productos. Cada pedido contiene: código de producto y cantidad pedida. Se pide:
 - a) Realizar la declaración de tipos de datos correspondiente.
 - b) Realizar un módulo que reciba el archivo maestro y los tres archivos de detalle sin abrir y realice la actualización del archivo maestro en base a los tres detalles, obteniendo un informe por pantalla con oódigo de producto, descripción, stock actual, stock mínimo de aquellos productos que quedaron por debajo del stock mínimo, y el agregado "sin movimiento" para aquellos que no fueron solicitados.

NOTA 1: Todos los archivos están ordenados por código de producto y el archivo maestro debe recorrerse sólo una vez y en forma simultánea con los de detalle. Si la suma de las cantidades pedidas para un producto supera el stock actual del mismo, entonces, éste último queda en cero.

NOTA 2: En cada archivo de detalle puede no aparecer algún producto del maestro o aparecer en un único registro.

 Dado el árbol B, que se detalla más abejo, con orden 4, es decir, capacidad para 3 claves, muestre los estados sucesivos al realizar la siguiente secuencia de operaciones +28, +75, -85. Justifique brevemente cada operación.

Nodo 2: 2, i, 0(38)1(56)3

Nodo 0: 3, h, (23)(31)(35)

Nodo 1: 2, h, (49)(50)

Nodo 3: 3, h, (62)(70)(85)

 Dado el siguiente archivo dispersado más abajo, dibuje los estados sucesivos para las siguientes operaciones: +23, +56, +36. Función de dispersión: Clave MOD 11. Técnica de resolución de colisiones: Saturación progresiva encadenada. Al finalizar calcule la densidad de empaquetamiento. Juntifique brevenente cada operación.

Dirección	Registro	Enlace
0	22	-1
1	34	\$ 5
2	46	-1
3	36	-1
4	59	-1
5	20	46
6	23	-1
1	40	-1
8		-1
9		-1
10		-1

- 1. El depósito central de cierta cadena de supermercados posee un archivo de los productos que comercializa, de cada producto se registra: código de producto, descripción, stock actual y stock mínimo. Diariamente el depósito debe efectuar envíos a cada uno de los tres supermercados que se encuentran en la ciudad. Para esto, cada supermercado envía un archivo con los pedidos de productos. Cada pedido contiene: código de producto y cantidad pedida. Se pide:
 - a) Realizar la declaración de tipos de datos correspondiente.
 - b) Realizar un módulo que reciba el archivo maestro y los tres archivos de detalle sin abrir y realice la actualización del archivo maestro en base a los tres detalles, obteniendo un informe por pantalla con código de producto, descripción, stock actual, stock mínimo de aquellos productos que quedaron por debajo del stock mínimo, y el agregado "sin movimiento" para aquellos que no fueron solicitados.

NOTA 1: Todos los archivos están ordenados por código de producto y el archivo maestro debe recorrerse sólo una vez y en forma simultánea con los de detalle. Si la suma de las cantidades pedidas para un producto supera el stock actual del mismo, entonces, éste último queda en cero.

NOTA 2: En cada archivo de detalle puede no aparecer algún producto del maestro o aparecer en un único registro.

Dado el árbol B, que se detalla más abajo, con orden 4, es decir, capacidad para 3 claves, muestre los
estados sucesivos al realizar la siguiente secuencia de operaciones +28, +75, -85. Justifique brevemente
cada operación.

Nodo 2: 2, i, 0(38)1(56)3

Nodo 0: 3, h, (23)(31)(35)

Nodo 1: 2, h, (49)(50)

Nodo 3: 3, h, (62)(70)(85)

 Dado el siguiente archivo dispersado más abajo, dibuje los estados sucesivos para las siguientes operaciones: +23, +56, +36. Función de dispersión: Clave MOD 11. Técnica de resolución de colisiones: Saturación progresiva encadenada. Al finalizar calcule la densidad de empaquetamiento. Justifique brevemente cada operación.

Dirección	Registro	Enlace
0	22	-1
1	34	zl 5
2	46	-1
3	36	-1
4	59	-1
5	20	-46
6	2.3	-1
7	40	-1
8		-1
9		-1
10		-1

 Se posce un archivo que tiene información de un censo a nivel mundial. Cada registro contiene la siguiente información: Continente, Pela. Ciudad, Cantided de Viriones y Cantidad de Mujeres. El archivo está ordenado por Continente, País. Realice un modulo que reciba y abra el archivo correspondiente y liste en un archivo de texto la siguiente información:

Continen	te:	
Puís:		
Cuidad	Cantidad de Varones	Captidad de Mujeres
	4***	***
	***	teature.
Total de l	nabitantes País:	
Porcentaj	e de mujeres del País:	
País:		

Total Habitantes Continente:

Continente:

Nota: Considere que no hay ciudades repetidas.

2. Dado un árbol B con capacidades de 3 y 5 elementos en nodos internos y hoja respectivamente, muestre los estados sucesivos al realizar la siguiente secuencia de operaciones: alta 700, buja 623, haja 817, aita 900 y alta 750. Siempre que haya que bolancear, agregar o eliminar nodos priorizar hermanos derechos, y ante disparidad de carga en particiones y bajanceos debe quedar más cargado el hermano izquienzo.

NODO 0 (i, 3 clamento/s)

I(324) 4(4.13) 3(623) 2 NODO I (h, 3 elemento/s) (7)(97)(208) NODO 4 (h, 2 elemento/s) (338)(399) NODO 3 (h, 2 elemento/s) (474)(508) NODO 2 (h, 5 elemento/s)

(676)(694)(806)(817)(887)

3. Dado en archivo directo con cubetas para tres registros y dispensión con área de desborde separada encadenada (el área de desborde posee capacidad para un sólo registro) con función de dispersión mod 9 y con el estado inicial de abajo, muestre su estado luego de cada operación, informando cuáles cubetas leyó y cuáles escribió para efectuar la: alta 156, alta 705, alta 107.

	-1	1 3	459	270	954
-	-1	2	946	973	1
	-1	1	731		
	-1	3.	741	426	462
	-1	. 0			
	-1	2.	446	4(1)	
	-1	2	123	789	
	-1] 2	376	484	
	- 1	1 ,3	458	305	809

IBBDD 2010 - Primer Parcial

Primer Fecha - 26/06/2010

Tema II

1. Dada la siguiente estructura perteneciente a una organización de archivo de registros de longitud variable:

tPersona = Record dni: LongInt; nombre: String

end;

tBloque = Record

cantRegs: Word;

{cantidad actual de registros en el bloque}

contenido: Array[1..CapacBloque] of Byte; {CapacBloque es una constante con un valor predefinido}

tPersonas = Record

arch: File of tBloque; {archivo de personas}

espLibre: File of Word; {archivo de control de bytes libres por bloque del archivo de personas}

bloque: tBloque;

{último bloque leído de personas}

iBloque: Word;

(indice de posición dentro del bloque)

espLibreBloque: Word;

end;

Implemente las siguientes primitivas:

Procedure Primera(var pp: tPersonas; var p: tPersona); {Devuelve la primer persona del archivo.}

Procedure Siguiente(var pp: tPersonas; var p: tPersona); {Devuelve la siguiente persona del archivo o p.dni=0 en caso de que no hubiera más personas.}

2. Dado un árbol B+ con capacidades de 3 y 4 elementos en nodos internos y hoja respectivamente, muestre los estados sucesivos al realizar la siguiente secuencia de operaciones: baja 193, alta 815 y baja 459. Siempre que haya que balancear, agregar o eliminar nodos debe trabajarse con hermanos derechos, y ante disparidad de carga en particiones y balanceos debe quedar más cargado el hermano izquierdo.

NODO 0: (i, 1 elem.) 7 (740) 6

NODO 7: (i, 1 elem.) 2(459) 4

NODO 2: (h, 2 elem.) (52)(193) Sig. hoja: 4

NODO 4: (h, 3 elem.) (459)(471)(672) Sig. hoja: 1

NODO 6: (i, 1 elem.) 1(900) 5

NODO 1: (h, 4 elem.) (740)(791)(800)(836) Sig. hoja: 5

NODO 5: (h, 2 elem.) (900)(950) Sig. hoja: 0

Nota: Para cada paso justificar y dibujar el árbol resultante de manera completa.

3. Dado un archivo directo con cubetas para dos registros y dispersión lineal (saturación progresiva) con función de dispersión mod 9 y con el estado inicial de abajo, muestre su estado luego de cada operación, informando cuáles cubetas leyó y cuáles escribió para efectuar la: alta 661, alta 777, baja 741.

	Desbordado	٦	- - -}
0	N	- /	
1	N	523	694
2	N	668	
3	N S	741	246
4	N S	814	229
5	N	734	60
6	N	777	
7	N		
8	N	215	

Nota: Para cada paso justificar y dibujar la tabla resultante de manera completa.

IBBDD 2010 - Primer Parcial

Primer Fecha - 26/06/2010

Tema I

1. Dada la siguiente estructura perteneciente a una organización de archivo de registros de longitud variable:

```
tPersona = Record
    dni: Longlnt;
   nombre: String
end:
tBloque = Record
   cantRegs: Word: 17.
                                              (cantidad actual de registros en el bloque)
   contenido: Array[L.CapacBloque] of Byte; (CopacBloque es una constante con un valor predefinido)
end;
tPersonas = Record
        arch: File of (Blogue; {archivo de personas}
        espLibre: File of Word: {archivo de control de bytes libres por bloque del archivo de personas}
        bloque: (Bloque;_
                                (último bloque leido de personas)
        iBloque: Word;
                                (indice de posición dentro del bloque)
        espl.ibreBloque: Word;
end:
```

Implemente la siguiente primitiva:

Procedure Agregar (var pp: tPersonas; p: tPersona); {Agrega una persona en el primer bloque que tenga espacio or si no hay ninguno, en un bloque nuevo al final del archivo, sin validagiunicidad de registros.}

2. Dado un árbol B+ con capacidades de 3 y 4 elementos en nodos internos y hoja respectivamenta muestre los estados sucesivos al realizar la siguiente secuencia de operaciones alta 900, haja 732 y baja 54d. Siempre que haya que balancear, agregar o eliminar nodos debe trabajarse con hermanos derechos, y ante disparidad de carga en particiones y balanceos debe quedar más cargado el hermano izquierito.

```
NODO 0: (i, 3 elem.) 2 ( 459) 4( 672) 3( 740) 1

NODO 2: (h, 3 elem.) ( 52)( 134)( 193) Sig. hoja: 4

NODO 4: (h, 3 elem.) ( 459)( 471)( 548) Sig. hoja: 3

NODO 3: (h, 2 elem.) ( 672)( 732) Sig. hoja: 1

NODO 1: (h, 4 elem.) ( 740)( 791)( 836)( 950) Sig. hoja: 0
```

Nota: Para cada paso justificar y dibujor el árbol resultante de manera completa.

 Dado un archivo directo con cubetas para dos registros y dispersión fineal (saturación progresiva) con función de dispersión mod 9 y con el estado inicial de abajo, muestre su estado (tlego de cada operación, informando cuá les cubetas leyó y cuáles escribió para efectuar la: alta 318, alta 661, bata 246.

0 1 2	-
N :	
N 523 694	
2 N 668	-
3 N 741 246	
4 N 814 229	
5 N 734	17
6 N	
7 N 11	
8 N 215	191

Nota: Para cada paso justificar y dibujar la tabla resultante de mariera completa.

ISBDD 2009 - Primer Parcial

Primer Fecha - 15/03/2009

Tema i

- 1. Se dispone de un archivo maestro con la información de camiones pertenecientes a una empresa de logistica, de cada camión se sabe: patente, marca, modelo-serie, modelo-año, modelo-motor, kilometraje y cantidad de viajes realizados. Además, se cuenta con cuatro (4) archivos detalles donde se registran los viajes realizados por los camiones, de cada viaje se registra: numero de viaje, patente y kilómetros recorridos. Todos los archivos están ordenados por patente y en los detalles puede haber 0, 1 o más registros por cada camión del maestro. Realice un programa que:
 - Actualice el archivo maestro con los cuatro detalies.
 - Informar la patente, marca y kilometraje de aquerios camiones con más de 100.000 kms.

NOTA: Todos los archivos deben recorrerse una sola vez.

- Dado el árbol B+ de abajo, que puede tener hasta 4 claves en las hojas como máximo (y 2 como mínimo) y hasta 3 claves en los nodos internos como máximo (y 1 como mínimo):
 - A Dibuje cómo queda el árbol resultante para el alta de la clave 100.
 - B Dibuje cómo queda el árbol resultante del punto A para la baja de la clave 599.
 - C Dibuje cóme queda el árbol resultante del punto A para la baja de la clave 534.

NODO 6 (i, 5 elementors)

2 (sucesor izquierdo del primer elemento) (289) 3(477) 1(599) 4

NODO 2 (h, 4 elemento/s)

(32)(50)(262)(270)

Siguiente hoja: 3

NODO 3 (h, 2 clemento/s)

(289)(473)

Signiferno hoje. !

NODO 1 (h, 3 elemento/s),

(477)(534)(545)

Signifente hoja: 4

NODO 4 (h, 3 elemento/s)

-(**599)(* 636)

Siguiente hoja: 0

NOTA: Justifique y explique como obtiene el resultado en cada operación realizada sobre el árhol.

Suponga que esta dispersando un archivo de N registros, y que utiliza el método de saturación linea!
progresiva para la administración de colisiones. Además, se sabe que cada nodo o cubeta tiene capacidad para
2 registros. A continuación se detallan un conjunto de elementos que llegan al archivo y se indica, atlemás, la
dirección de la cubeta donde debe residir.

Orden	Clave	Cubeta	Orden	Clave	Cubeta
i	A	20	8	1	20
2	8	21	9	3	21
3	C	21	iO	K	22
4	D	22	11	L	20
5	F	20	1 12	М	22
6	G	20	13	N	22
7	Fi.	2!	14	0	22

NOTA: Justifique y explique como obtiene el resultado en cada operación realizada.

wining some