Tutorial 4 and Assignment 2

March 8, 2024

Question 1

For each of the following functions determine whether it is convex, concave, quasiconvex, or quasiconcave.

- (a) $f(x) = e^x 1$ on **R**.
- (b) $f(x_1, x_2) = x_1 x_2$ on \mathbf{R}^2_{++} .
- (c) $f(x_1, x_2) = 1/(x_1x_2)$ on \mathbf{R}_{++}^2 .
- (d) $f(x_1, x_2) = x_1/x_2$ on \mathbf{R}^2_{++} .
- (e) $f(x_1, x_2) = x_1^2/x_2$ on $\mathbf{R} \times \mathbf{R}_{++}$.
- (f) $f(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha}$, where $0 \le \alpha \le 1$, on \mathbf{R}_{++}^2 .

Question 2

Prove that $f(X) = \mathbf{tr}(X^{-1})$ is convex on $\mathbf{dom} f = \mathbf{S}_{++}^n$.

Solution:

Define g(t) = f(Z + tV), where Z > 0 and $V \in S^n$.

$$g(t) = tr((Z + tV)^{-1}) = tr\{Z^{-1}[I + tZ^{-1/2}VZ^{-1/2}]^{-1}\}$$

$$= tr\{Z^{-1}Q(I + t\Lambda)^{-1}Q^{T}\} = tr\{Q^{T}Z^{-1}Q(I + t\Lambda)^{-1}\}$$

$$= \sum_{i=1}^{n} (Q^{T}Z^{-1}Q)_{ii}(1 + t\lambda_{i})^{-1},$$

where we used the eigenvalue decomposition $Z^{-1/2}VZ^{-1/2}=Q\Lambda Q^T$. Noting that $(1+t\lambda_i)^{-1}$ is convex, and $(Q^TZ^{-1}Q)_{ii}>0$, hence g(t) is convex.

Question 3

Show that for p > 1,

$$f(x,t) = \frac{|x_1|^p + \dots + |x_n|^p}{t^{p-1}} = \frac{\|x\|_p^p}{t^{p-1}}$$

is convex on $\{(x,t)|t>0\}$.

Solution:

This is the perspective function of $f(x) = ||x||_p^p = |x_1|^p + |x_n|^p$. (perspective function g(x,t) = tf(x/t) is convex if f is convex).

Question 4

Derive the conjugates of the following functions.

- (a) Max function. $f(x) = \max_{i=1,\dots,n} x_i$ on \mathbf{R}^n . Solution: $f^*(y) = 0$ if y > 0 and $\sum y_i = 1$, otherwise $f^*(y) = +\infty$. (try n = 2, 3 first, then prove it).
- (b) Piecewise-linear function on **R**. $f(x) = \max_{i=1,\dots,m} (a_i x + b_i)$ on **R**. You can assume that the a_i are sorted in increasing order, i.e., $a_1 \leq \dots \leq a_m$, and that none of the functions $a_i x + b_i$ is redundant, i.e., for each k there is at least one x with $f(x) = a_k x + b_k$.

Solution:

$$f^*(y) = -b_i - (b_{i+1} - b_i) \frac{y - a_i}{a_{i+1} - a_i}$$

if $y \in [a_i, a_{i+1}]$.

$$f^*(y) = +\infty$$

if $y < a_1$ or $y > a_m$.

(try n = 2, 3 first, then prove it).

(c) Power function. $f(x) = x^p$ on \mathbf{R}_{++} , where p > 1. Repeat for p < 0. when p > 1, $f^*(y) = (p-1)(y/p)^q$ if y > 0, = 0 if $y \le 0$. when p < 0, $f^*(y) = (p/q)(y/p)^q$ if $y \le 0$, $= +\infty$ if y > 0.

Question 5

Show that the conjugate of $f(X) = \mathbf{tr}(X^{-1})$ with $\mathbf{dom} f = \mathbf{S}_{++}^n$ is given by

$$f^*(Y) = -2\mathbf{tr}(-Y)^{1/2}, \quad \mathbf{dom} f^* = -\mathbf{S}_+^n.$$

Hint. The gradient of f is $\nabla f(X) = -X^{-2}$.

Pf:

• Suppose $Y \notin -S^n_+$ (i.e. the largest eigenvalue > 0. Do eigenvalue decomposition

$$Y = Q\Lambda Q^T = \sum \lambda_i q_i q_i^T$$

where $\lambda_1 > 0$. Let

$$X = Qdiag(t, 1, ..., 1)Q^{T} = tq_{1}q_{1}^{T} + \sum_{i=2}^{n} q_{i}q_{i}^{T}$$

Then

$$tr(XY) - tr(X^{-1}) = [t\lambda_1 + \sum_{i=2}^{n} \lambda_i] - [1/t + (n-1)]$$

it $\to +\infty$ as $t \to +\infty$. So when $y \notin -S_+^n$, $f^*(Y) = +\infty$.

• When $Y \in -S_{++}^n$. Noting that

$$\nabla_X tr(XY) = Y, \nabla f(X) = -X^{-2}$$

To find the maximum of

$$trXY - trX^{-1}$$

by setting the gradient to zero, we obtain $X = (-Y)^{-1/2}$, and then

$$f^*(Y) = -2tr[(-Y)^{1/2}]$$

• When $Y \in -S_+^n$. Using the closeness of epigraph to handle it (not required).

Question 6

Conjugate of negative normalized entropy. Show that the conjugate of the negative normalized entropy

$$f(x) = \sum_{i=1}^{n} x_i \log (x_i/\mathbf{1}^T x),$$

with $\mathbf{dom} f = \mathbf{R}_{++}^n$ is given by

$$f^*(y) = \begin{cases} 0 & \sum_{i=1}^n e^{y_i} \le 1\\ +\infty & \text{otherwise.} \end{cases}$$

Solution:

• When $\sum_{i=1}^{n} e^{y_i} > 1$, Let $x_i = te^{y_i}$.

$$y^{T}x - f(x) = t \sum_{i=1}^{n} e^{y_i} log(\sum_{k=1}^{n} e^{y_k})$$

 $\rightarrow +\infty$ as $t \rightarrow +\infty$. Thus $f^*(y) = +\infty$.

• When $\sum_{i=1}^n e^{y_i} \le 1$, Let $z_i = e^{y_i}$. Then

$$y^{T}x - f(x) = \sum_{i=1}^{n} x_{i} log[\frac{z_{i}(\sum_{k=1}^{n} x_{k})}{x_{i}}] = -D_{kl}(x, (\sum x_{k})z) + (\sum_{k} x_{k})(1 - \sum z_{j})$$

Noting that $\sum z_j \leq 1$ and $D_{kl} \geq 0$, $y^T x - f(x) \leq 0$ for all x > 0. Moreover, $y^T x - f(x) \to 0$ if x = (t, ..., t) and $t \to 0$. So:

$$f^*(x) = \sup_{x>0} [y^T x - f(x)] = 0$$