

TECHNICAL REPORT

Aluno: Alana Martinho dos Santos e João Santiago Souza Lúcio

1. Introdução

Parte A - Classificação:

O dataset "voice" tem como objetivo classificar vozes como masculinas ou femininas com base em características acústicas.

Parte B - Regressão

O dataset "insurance" é um conjunto de dados que é utilizado para a previsão dos custos de seguro médico individual com base em características da vida dos segurados.

2. Observações

Parte A - Classificação:

Os principais problemas foram a demora para alguns códigos serem processados, além de resultados diferentes dos mostrados nos gráficos.

Parte B - Regressão

Houve alguns problemas com a importação do dataset, por isso foi usado o caminho obtido ao clicar no arquivo, adicionou-se o "r" (raw string) antes do caminho, pois mesmo com o caminho colocado como está, ainda estava ocorrendo erro.

3. Resultados e discussão

Classificação:

3.1. Classificação:

O código inicia importando a biblioteca *pandas* e o dataset (voice.csv) é carregado para um DataFrame: df = pd.read_csv("./dataset/voice.csv").

Em seguida com o comando "print(df.isnull().sum" é verificado se há células vazias em cada coluna do dataframe. A saída mostra que não há valores ausentes nas colunas, assim não necessitando de tratamento. Ainda foi usado o comando "df =

df.dropna()", que removeria linhas com valores faltando, porém nesse caso o dataset não foi alterado, pois já estava com os valores completos.

Com o comando "print(df['label'].value_counts())" foi analisada a distribuição da variável alvo, definida como a coluna "label" que classifica as vozes em feminina e masculina. A saída mostra que o dataset contém 1584 amostras para a classe male e 1584 para a classe female, o que demonstra um dataset bem equilibrado.

Em seguida o foi verificado se havia colunas categóricas no dataset, mostrando a coluna "label", como object. O LabelEncoder da biblioteca scikit-learn foi utilizado para converter essas categorias em números.

Na etapa seguinte, A função df.describe() gera um resumo estatístico para todas as colunas numéricas. Count: Confirma que há 3.168 amostras em todas as colunas. Mean: Mostra a média de cada característica. A média da coluna label é 0.5, o que confirma novamente o balanceamento perfeito entre as classes (0 e 1). Std: Apresenta o desvio padrão, indicando a dispersão dos dados em torno da média. Min, 25%, 50% (mediana), 75%, max: fornecem uma visão sobre a distribuição dos valores de cada característica. Por exemplo, na coluna label, o mínimo é 0 ('female') e o máximo é 1 ('male').

	+"meanfreq"	sd	 modindx	label
count	3168.000000	3168.000000	3168.000000	3168.000000
mean	0.180907	0.057126	0.173752	0.500000
std	0.029918	0.016652	0.119454	0.500079
min	0.039363	0.018363	0.000000	0.000000
25%	0.163662	0.041954	0.099766	0.000000
50%	0.184838	0.059155	0.139357	0.500000
75%	0.199146	0.067020	0.209183	1.000000
max	0.251124	0.115273	0.932374	1.000000

Por fim, com o comando "df.to_csv("./dataset/classificacao_ajustado.csv", index=False)", o DataFrame processado é salvo como novo arquivo chamado "classificacao_ajustado.csv". O parâmetro index=False evita que o índice do DataFrame seja salvo como uma nova coluna no arquivo.

3.2. KNN manual com vária distâncias

No código, os dados são carregados, dessa vez usando o dataset ajustado. O dataset é dividido em treino e teste:

```
X_train, X_test, y_train, y_test = train_test_split(X,
y, test_size=0.2, random_state=42)
```

São definidas funções para o cálculos das distâncias:

```
#distancia euclidiana

def euclidean_distance(x1, x2):
    return np.sqrt(np.sum((x1 - x2)**2))

#distancia manhattan

def manhattan_distance(x1, x2):
    return np.sum(np.abs(x1 - x2))
```



```
#distancia chebyshev

def chebyshev_distance(x1, x2):
    return np.max(np.abs(x1 - x2))

#distancia mahalanobis

def mahalanobis_distance(x1, x2, cov_inv):
    diff = x1 - x2
    return np.sqrt(diff.T @ cov_inv @ diff)
```

O Knn é calculado através das funções "predict_classification", "knn" e "calculate_accuracy".

predict_classification: prevê a classe de um único ponto de teste (test_row). Ela calcula a distância deste ponto para todos os pontos do conjunto de treino usando a distance_func fornecida. As distâncias são armazenadas junto com os rótulos correspondentes. A lista de distâncias é ordenada da menor para a maior. Os rótulos dos k vizinhos mais próximos são selecionados. A função retorna a classe que aparece com mais frequência entre os vizinhos (a "votação").

knn: gerencia o processo de classificação para todo o conjunto de teste (X_test). Ela itera sobre cada ponto no conjunto de teste e chama predict_classification para obter uma previsão para cada um. Caso a distância seja Mahalanobis, ela primeiro calcula a inversa da matriz de covariância dos dados de treino, que será usada em todas as predições. Ao final, retorna um array com todas as previsões.

calculate_accuracy: mede o desempenho, calculando a proporção de previsões corretas.

Acurácia = previsões corretas/ total de previsões

Na última parte do código, o K é fixado como 6 e o knn é calculado para cada distância. A acurácia é calculada e armazenada no dicionário "results".


```
Comparação dos Resultados (Acurácia)

Valor de K (vizinhos): 6

Distância Euclidiana: 0.7224 (72.24%)

Distância Manhattan: 0.7965 (79.65%)

Distância Chebyshev: 0.7003 (70.03%)

Distância Mahalanobis: 0.9779 (97.79%)

--- Conclusão ---

A melhor métrica de distância para este problema (com K=6) foi a de Mahalanobis, com uma acurácia de 97.79%.
```

3.3. Normalização, alteração do valor de K e efeito no KNN

Este código demandou um esforço maior, sobretudo pela velocidade do processamento.

O início do código carrega o dataset classificacao_ajustado.csv e reutiliza as funções do KNN manual desenvolvidas anteriormente (mahalanobis_distance, predict_classification, knn, calculate_accuracy). É utilizada a metrica de distância Mahalanobis, definida anteriormente como a melhor distância.

Foi criada uma função para ajudar a avaliar o knn, automatizando o processo de avaliação com as normalizações, ele encapsula o processo de normalizar os dados (se necessário), dividir em treino/teste, rodar o KNN manual com distância de Mahalanobis, calcular e exibir a acurácia obtida.


```
--- Avaliação de Acurácia com diferentes normalizações ---
Acurácia com sem normalização: 0.9826
Acurácia com logarítmica: 0.9763
Acurácia com MinMaxScaler: 0.9826
Acurácia com StandardScaler: 0.9826
```

A segunda parte do teste, deveria descobrir o melhor K para o KNN. Essa parte gerou problemas, primeiro pela demora no processamento, foi testado "k" com valores entre 1 e 21. Pela lentidão, foi decidido reduzir a amostra de dados, porém com a amostragem menor os resultados foram tendenciosos.

O teste então foi feito com o dataset completo e variação de valores de "k" entre 1 e 10. A saída entregou o melhor resultado com k= 5, porém no gráfico gerado percebe-se um melhor resultado quando k é igual a 7.

3.4. KNN com Sklearn e GridSearchCV

No código são utilizados o Pipeline e o GridSearch.

Pipeline: É uma ferramenta do scikit-learn que encadeia múltiplos passos de processamento em um único objeto. No código, ele primeiro aplica um normalizador (scaler) e depois treina o KNN. Ele garante que o normalizador seja ajustado (treinado) apenas com os dados de treino dentro de cada etapa da validação cruzada.

GridSearchCV: É uma técnica de otimização que realiza uma busca exaustiva por todas as combinações de parâmetros especificadas.

param_grid: Define os hiperparâmetros a serem testados. Aqui, ele testa todos os valores de K (n_neighbors) de 1 a 20.

```
param_grid = {
    'knn_n_neighbors': list(range(1, 21))
}
```

cv=5: Indica o uso de validação cruzada de 5 folds (5-fold cross-validation). O GridSearchCV divide os dados de treino em 5 partes, treina o modelo 5 vezes usando 4 partes para treino e 1 para validação, e calcula a média de desempenho.

O código itera sobre as normalizações (Log, MinMax, Standard), usando o GridSearchCV para encontrar o melhor K para cada uma delas e dá como saída:

Melhor configuração encontrada:

Normalização: MinMax

Melhor K: 6

Acurácia na Validação (CV): 0.9767

Acurácia no Teste: 0.9826

3.5. Cross-Validation e Avaliação Final

Para a cross-validation, foi aplicada a normalização MinMax, definida anteriormente como a que apresentou melhores resultados.

O modelo KNeighborsClassifier foi configurado com n_neighbors=6, o melhor valor de K encontrado no procedimento passado.

Foi utilizada validação cruzada com 5 folds (cv=5) para avaliar o desempenho geral do modelo:

Cross_val_score: calcula a acurácia média e desvio padrão.

Cross_val_predict: foi usado para gerar predições para toda a base, simulando como o modelo se comportaria em cada fold.

São exibidos média, desvio padrão, matriz de confusão e `classification_report`:

Acurácia média (Validação - CV): 0.9489

Desvio padrão: 0.0209

Isso significa que, em média, o modelo acerta 954,89% das classificações nos dados de validação. O desvio padrão de 2,09% indica que há baixa variabilidade entre os folds, o que sugere um modelo estável.

```
Matriz de Confusão:
[[1541 43]
[ 119 1465]]
```

Verdadeiros negativos (homens corretamente classificados): 1541

Falsos positivos (homens classificados como mulheres): 43

Falsos negativos (mulheres classificadas como homens): 119

Verdadeiros positivos (mulheres corretamente classificadas): 1465

O modelo erra mais em classificar mulheres como homens (FN = 119) do que o oposto (FP = 43), mas ambos os tipos de erro são relativamente baixos.

ecision	recall	f1-score	support
0.93	0.97	0.95	1584
0.97	0.92	0.95	1584
		0.95	3168
0.95	0.95	0.95	3168
0.95	0.95	0.95	3168
	0.93 0.97 0.95	0.93 0.97 0.97 0.92 0.95 0.95	0.93 0.97 0.95 0.97 0.92 0.95 0.95 0.95 0.95

Precisão maior para mulheres (0.97): quando o modelo prediz "female", ele acerta em 97% dos casos.

Revocação maior para homens (0.97): ele consegue identificar corretamente 97% dos homens.

F1-score equilibrado: 0.95 para ambas as classes, indicando bom equilíbrio entre precisão e recall.

Regressão:

3.6 Pré-processamento e Correlação

Script responsável por preparar o "insurance.csv" para a modelagem de regressão.

Aqui é importado o arquivo insurance, com ressalva do erro citado acima.

```
# Carregar o dataset

df = pd.read_csv(r"C:\Users\jsslu\oneDrive\Área de Trabalho\UFC\Inteligencia Artificial\git\IA-CD\AV1\datasets\insurance.csv")
```

É calculado o número dos valores ausentes em cada coluna, e caso haja valores ausentes, removendo os mesmo

```
# Tratar valores ausentes (verificação)
if df.isnull().sum().any():
    df = df.dropna()
```

Aqui é convertido variáveis categóricas em variáveis dummy(binárias)

```
# Codificar variáveis categóricas
df_codificado = pd.get_dummies(df, drop_first=True)
```

Primeiro é calculada a matriz de correlação entre todas as colunas, depois é selecionada a coluna alvo, classificando as correlações em ordem decrescente, mostrando quais as colunas têm maior correlação com a coluna alvo.


```
# Verificar correlação com a variável-alvo
correlação = df_codificado.corr()['charges'].sort_values(ascending=False)
print("\nCorrelação com 'charges':\n", correlação)
```

Aqui é separado as variáveis independentes com exceção da variável alvo e depois é definido qual é a variável alvo.

O *StandardScaler* é um padronizador que remove a média e escala os dados para a variância unitária. Isso é crucial para algoritmos que são sensíveis à escala dos dados.

Logo após, é calculado a média e o desvio padrão de cada feature, e depois os dados são transformados usando esses valores.

```
# Normalizar (padronizar) os dados (exceto variável-alvo)
features = df_codificado.drop('charges', axis=1)
alvo = df_codificado['charges']

scaler = StandardScaler()
features_scaled = scaler.fit_transform(features)
```

Os dados resultantes da padronização são convertidos de volta em um dataset, mantendo os nomes das colunas originais, sendo combinados com a variável-alvo.

```
# Combinar novamente em um DataFrame
features_scaled_df = pd.DataFrame(features_scaled, columns=features.columns)
df_final = pd.concat([features_scaled_df, alvo], axis=1)
```

O pré processamento dos dados foi bem sucedido, preparando os dados para a modelagem. A variável smoker_yes (indica se o indivíduo é fumante) é a que mais se relaciona com a variável charges.


```
Correlação com 'charges':
 charges
                     1.000000
smoker yes
                    0.787251
age
                    0.299008
bmi
                    0.198341
region southeast
                    0.073982
children
                    0.067998
sex male
                    0.057292
region northwest
                   -0.039905
region southwest
                   -0.043210
Name: charges, dtype: float64
```

3.7 Regressão Linear Simples

Importando o dataset gerado na questão anterior.

```
# Carregar dados pré-processados
df = pd.read_csv(r"C:\Users\jsslu\OneDrive\Área de Trabalho\UFC\Inteligencia Artificial\git\IA-CD\AV1\datasets\regressao_ajustado.csv")
```

É calculado as correlações com a variável-alvo, removendo a correlação desta variável consigo mesma.

Se pega o valor absoluto das correlações para encontrar a feature com a maior correlação com a variável alvo.

Retorna-se o nome da feature que obtém o maior valor absoluto.

```
# Identificar a feature mais correlacionada com a variável-alvo
correlacao = df.corr()['charges'].drop('charges')
feature_mais_correlacionada = correlacao.abs().idxmax()
print(f"Feature mais correlacionada: {feature_mais_correlacionada}")
```

É separado um DataFrame contendo apenas a feature mais correlacionada e um contendo a variável-alvo.


```
# Separar variáveis independentes e alvo
X = df[[feature_mais_correlacionada]]
y = df['charges']
```

São separados os conjuntos de treino e teste, na proporção 80-20

```
# Dividir em treino e teste
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

É inicializado o modelo de regressão linear, treinando o modelo com os dados de treino e fazendo predições no conjunto de testes.

```
# Regressão Linear
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```

Primeiro se calcula o Erro Quadrático Médio(MSE), depois é calculado a Raiz do Erro Quadrático Médio(RMSE), que está na mesma unidade da variável-alvo e é mais interpretável que o MSE.

Calcula-se o Coeficiente de Determinação (R²).

```
# Avaliação
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
r2 = r2_score(y_test, y_pred)
print(f"\nRMSE: {rmse:.2f}")
print(f"R<sup>2</sup>: {r2:.4f}")
```

Ao analisar a váriavel *smoker_yes* nota-se que cerca de 66% da variância nos custos médicos é explicável pela condição de fumante do indivíduo. O RMSE indica que, em média, as previsões geradas pelo modelo se desviam cerca de \$7262 dos valores reais.

Feature mais correlacionada: smoker_yes

RMSE: 7262.64 R²: 0.6602

Regressão Linear Simples

3.8 Linear vs Ridge vs Lasso

Se importa novamente o dataset pré-processado, separando novamente as features e a variável-alvo.

```
# Carregar dados pré-processados

df = pd.read_csv(r"C:\Users\jsslu\OneDrive\Área de Trabalho\UFC\Inteligencia Artificial\git\IA-CD\AV1\datasets\regressao_ajustado.csv")

X = df.drop('charges', axis=1)

y = df['charges']
```

São definidos os modelos, aplicado penalidades ao Modelo Rigde e ao Modelo Lasso.


```
# Modelos
models = {
    'LinearRegression': LinearRegression(),
    'Ridge': Ridge(alpha=1.0),
    'Lasso': Lasso(alpha=0.1)
}
```

É realizada uma validação cruzada K-Fold, dividindo o dataset em 5 partes, 4 para treino e 1 para teste.

```
# Avaliação com Cross-Validation (5 folds)
results = []
for name, model in models.items():
    neg_mse = cross_val_score(model, X, y, scoring='neg_mean_squared_error', cv=5)
    r2 = cross_val_score(model, X, y, scoring='r2', cv=5)

rmse_scores = np.sqrt(-neg_mse)
    results.append({
        'Modelo': name,
        'RMSE Médio': rmse_scores.mean(),
        'R² Médio': r2.mean()
})
```

São apresentados os resultados médios de RMSE e R² para cada modelo em um dataframe.

```
# Exibir resultados
results_df = pd.DataFrame(results)
print("\nComparação dos Modelos:")
print(results_df.sort_values(by='RMSE Médio'))
```

O resultado da validação cruzada mostra que nos três modelos o desempenho é semelhante. A pequena diferença entre eles sugere que a regularização não teve impacto significativo na performance, o que pode indicar que o modelo linear já é uma boa escolha para o dataset.


```
Modelo RMSE Médio R² Médio
1 Ridge 6072.381790 0.746869
2 Lasso 6072.404096 0.746862
0 LinearRegression 6072.409387 0.746862
```

3.9 Coeficientes e Seleção de Atributos

Se importa novamente o dataset pré-processado, separando novamente as features e a variável-alvo.

```
# Carregar dados pré-processados

df = pd.read_csv(r"C:\Users\jsslu\OneDrive\Área de Trabalho\UFC\Inteligencia Artificial\git\IA-CD\AV1\datasets\regressao_ajustado.csv")

X = df.drop('charges', axis=1)

y = df['charges']
```

É inicializado o Modelo Lasso com *alpha=0.1*. Um valor pequeno em *alpha* indica menos regularização. Treina-se o modelo em todo o dataset.

```
# Treinar modelo Lasso
lasso = Lasso(alpha=0.1)
lasso.fit(X, y)
```

lasso.coef_ é o atributo que contém os coeficientes que o modelo atribuiu a cada feature. É criado uma Série pandas para associar os coeficientes aos nomes das colunas. Os coeficientes são filtrados em ordem decrescente, mostrando os atributos com maior impacto.

```
# Coeficientes
coef = pd.Series(lasso.coef_, index=X.columns)
coef_nonzero = coef[coef != 0].sort_values(ascending=False)
print("\nAtributos mais relevantes (coeficientes diferentes de zero):")
print(coef_nonzero)
```

O modelo Lasso confirma a importância das seguintes variáveis:

- smoker_yes: de longe o atributo mais impactante, com um coeficiente positivo muito alto, sugerindo que ser fumante está associado a um aumento substancial nos custos médicos;
- age: indica o aumento de custos médicos de acordo com a idade;
- bmi: sugere que um peso elevado se associa a maiores custos médicos;
- indica que ter filhos também está associado a o aumento dos custos médicos, mas com menor influência.
- sex_male: com um coeficiente negativo, indica que se comparado com a cadegoria base(sexo feminino) está associado a custos menores.

```
Atributos mais relevantes (coeficientes diferentes de zero):
smoker yes
                    9623.802081
Atributos mais relevantes (coeficientes diferentes de zero):
smoker yes
                    9623.802081
smoker yes
                    9623.802081
                    3607.394258
age
                    3607.394258
age
bmi
                    2067.542650
children
                     572.895789
sex male
                     -65.539505
region northwest
                    -151.051206
region southwest
                    -411.378792
region southeast
                    -460.235480
dtype: float64
```

O gráfico reforça que *smoker_yes, age* e *bmi* são as variáveis mais importantes dos custos médicos apresentados no dataset.

4. Conclusões

Os resultados esperados foram satisfeitos? Se não, qual o motivo? Qual a sua análise?

4.1 Classificação

Em parte os resultados foram satisfatórios, embora alguns cálculos possam ter apresentado erros, sobretudo em relação ao KNN, o modelo pôde ser bem avaliado. A matriz de confusão e os valores de precision, recall e f1-score indicam um bom equilíbrio e estabilidade no modelo, embora haja uma leve tendência de erro na classificação de vozes femininas como masculinas

4.2 Regressão

Em parte, os resultados foram sim satisfatórios. Os códigos foram executados e insights foram obtidos com base na influência das variáveis. Sem sombra de dúvidas, a característica do tabagismo, além de outros aspectos como idade avançada, está fortemente atrelada aos altos custos médicos dos indivíduos contidos no dataset.