OMTC26 Syllabus and Format

Last updated: 7th September, 2025

At a Glance

The Oxford Mathematics Team Challenge is a competition between teams composed of four students, which consists of three rounds: the Lock-in, Maps and Guts round. The rounds occur after a warm-up session with a variety of puzzles, which do not count towards the competition, and the event is rounded up by a guest talk and the results ceremony.

The syllabus consists of most of the pure AS Level Mathematics, with the omission of all calculus, and with the addition of various topics from the GCSE and A-Level Mathematics curricula, among others. The following document details the specifics of the syllabus and format of the rounds. For more information for the overall competition and specimen papers, please visit

https://www.omtc.co.uk/prepare

In terms of *changes* from OMTC25:

- Syllabus. Added: the modulus function, function compositions, inverse functions (including inverse trig functions); simplifying rational expressions; subsets and supersets. Removed: linear Diophantine equations, the number of distinct factors of a number.
- Format. Removed the Individual round from the competition scoring; Lock-in now has 2 questions (from 4) and lasts 60 minutes (from 45); reworked the Maps board and scoring of it, and it now lasts 75 minutes (from 60). All rounds have been appropriately adjusted in difficulty.

Syllabus

The OMTC will assume *comfort* with the topics that follow. Any rows containing content not part of the AS Level Syllabus is marked with a red asterisk (*). You will not be penalised for using any techniques omitted by the syllabus.

N.B. This is not a list of what may come up in the OMTC – rather, this is a list of what we will expect you to be familiar with!

${\bf Geometry}$

Content	Conventions	Omitted			
Pythagoras' Theorem.					
2D geometry: similarity and congruence of shapes. Internal angles, angles of polygons. Parallelograms.		Circumcentre, orthocentre, incentre, centroid. Heron's formula.			
Circumference and area of circles; length of chords and arcs, area of circles, sectors and segments.		Radians.			
3D geometry: prisms, tetrahedra, cones, spheres; their surface areas and volumes. Vectors.		A more thorough usage of vectors, e.g. the dot product.			
Coordinate geometry: equations of lines and circles in the plane; constructions and loci.					
Circle Theorems: Central Angle Theorem, Same Segment Theorem, Thales' Theorem, cyclic quadrilaterals, Alternate Segment Theorem, chords and tangents.					
Trigonometry: the sine, cosine and tangent of an angle; $\tan x = \sin x / \cos x$, $\sin^2 x + \cos^2 x = 1$, $\sin(90^\circ - x) = \cos x$. Periodicity of sine, cosine and tangent; sine and cosine rules. The inverse functions arcsin, arccos and arctan.	arcsin instead of sin ⁻¹ (and similar for cosine and tangent).	sec, cosec, cot. Compound angle formulae.			
Rotations, reflections, enlargements and translations of shapes. Tessellation (e.g. of the plane).					

Algebra

Content	Conventions	Omitted			
Solving linear equations in up to two variables.					
Value and quantity. Distance as the product of constant speed and time. GBP.					
Mean, median and mode.					
Logarithms and exponents: their laws, solutions of x in $a^x = b$.	$\log x = \log_{10} x, \ln x = \log_e x$				
Rationalising surds. Decimal expansions, including recurring decimal expansions.					
Sequences and series: arithmetic, geometric, periodic, iterative formulae. Convergence of infinite geometric series.*					
Inequalities: sums of squares are non-negative. Bounds of standard functions (e.g. sine, cosine).		Cauchy-Schwarz inequality, HM-AM-GM-QM inequality.			
The modulus function.*					
Graphical interpretations of formulae and equations; determining equations and inequalities via graphs.					
Graph transformations: $f(x) \mapsto f(ax), f(x) \mapsto af(x), f(x) \mapsto f(x-a), f(x) \mapsto f(x) + a$ for any number a .					
Functions, including piece-wise, exponential and reciprocal. Compositions of functions; inverse functions. Recursively-defined functions.*	$f \colon X \to Y$ is a function from X to Y .				
Curve sketches; interpreting graphs of functions.		Use of calculus.			

Polynomials

Content	Conventions	Omitted
Solving linear equations in up to two variables.		
Quadratics: completing the square, the discriminant.		Complex numbers.
Polynomial factorisations; use of the Factor Theorem and Remainder Theorem. Simplifying rational expressions.*		
The Binomial Theorem for positive whole exponents, combinations and binomial probabilities. The factorial function.	${}^{n}C_{r}$ means 'n choose r '	
Polynomial facts: an n th degree polynomial has at most n distinct roots.*		

Miscellaneous

Content	Conventions	$\mathbf{Omitted}$		
Combinatorics. Choices and permutations. Use of the Binomial Theorem in combinatorics. Probabilities.				
Number theory. Primes, basic rules for divisibility. The Fundamental Theorem of Arithmetic. Lowest common multiples, highest common factors.*		A more thorough usage of modular arithmetic. Fermat's Little Theorem.		
Sets. Use of the terms natural numbers (\mathbb{N}) , integers (\mathbb{Z}) , rational numbers (\mathbb{Q}) and real numbers (\mathbb{R}) . The fact that $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$. Unions, intersections, complements, subsets and supersets. Intervals.*	$\mathbb N$ does not include 0.			
Logic. Implications, statements and their converses; <i>if and only if</i> statements. Proofs by deduction, exhaustion and contradiction, and disproof by counterexample.*		Mathematical induction.		

Format

The OMTC consists of three rounds, which are below in order of occurrence. You are allowed to use pencils, erasers, sharpeners and pens to preference. Calculators, measuring instruments and squared paper are strictly forbidden.

The score breakdown per round is as follows:

Round	Lock-in	Maps	Guts
Raw score	60	200	180
Scaled score	???	???	???

At the end of the competition, three highest-scoring teams are declared the winning teams (in first, second and third). In the event of a tie for any of these positions, a tiebreaker is ran between any tying teams (the exact rules of a tiebreaker will feature in a later version).

Lock-in

Lock-in is the second round, consisting of two questions, which explore unfamiliar territories of mathematics in greater depth. Each question focusses on a specific concept: part of this round's difficulty comes from understanding a new concept and engaging with it.

The questions are split up into multiple parts which require teams to produce mathematical reasoning, mathematical explanation, or mathematical working. The parts will indicate what kind of answer and level of depth is expected, but the team will need to exercise their own judgement in determining the level of depth required.

There are 2 problems and 60 points in total; the round lasts 60 minutes.

Maps

Maps is the second round which teams solve problems in a 9×9 grid, called the map. The centremost cell is the free cell (labelled 'F' in the examples); black cells do not have questions.

Teams submit *integer answers* to all questions. Any correctly-answered question awards its points as indicated by the question paper or the map. If a correctly-answered question is connected to the free cell by a series of horizontal and vertical paths of correct answers, it scores twice as many points!

In the examples below, cells are labelled with a checkmark (\checkmark) if they were correctly answered, with a cross (\divideontimes) if incorrectly answered; (F) is the free cell, and other cells had no submission. The cells shaded in green scored full points for the teams; purple cells scored double.

There are 44 problems and 200 points (including double points) in total; the round lasts 75 minutes.

Guts

Guts is the last round of the competition, which requires competitors to be economical with their time. Teams submit *integer* answers to all 27 questions, grouped in triplets. The triplets progressively increase in difficulty, and their point value increases accordingly. The breakdown of points is as follows:

Round	1	2	3	4	5	6	7	8	9
Score per question	3	4	5	5	6	6	7	8	16

Each team sends one of their members to a problem station to pick up copies of the first set of problems. Teams can only begin the next problem set after having submitted their current one, and are **not** able to resubmit solutions.

The last triplet is an *estimathon* in which contestants offer an estimate to the actual answer – teams whose answer is closer to the actual value score higher. The exact formula is that your score is

$$16 \times \frac{\min\{A, E\}}{\max\{1, A, E\}}$$

rounded to the nearest integer, where A is the actual solution and E is the team's estimated guess.

Lastly, the top scores on this round are displayed live at the front, and are hidden in the last 20 minutes. No pressure!

There are 27 problems and 180 points; the round lasts 80 minutes.

