Project Development Phase

Delivery of Sprint 2

Date	8 November 2022
Team ID	PNT2022TMID10109
Project Name	Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation

Task 1:

Model Building:

Adding CNN Layers:

Code:

#ADDING CNN LAYERS

model.add(Conv2D(32,(3,3),input_shape=(64,64,3),activation='relu'))#con volution layer model.add(MaxPooling2D(pool_size=(2,2)))#MaxPooling2D for downsampling the input

 $model.add(Conv2D(32,\!(3,\!3),\!activation='relu'))$

model.add(MaxPooling2D(pool_size=(2,2)))

model.add(Flatten())#flatten the dimension of the image

Adding Dense Layers:

Code:

#ADDING DENSE LAYERS

model.add(Dense(32))#deeply connected neural network layers. model.add(Dense(6,activation='softmax'))

Model Summary:

Code:

#MODEL SUMMARY

model.summary()#summary of the model

Output:

Configure the Learning Process:

Code:

#CONFIGURE THE LEARNING PROCESS
model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=
['accuracy'])

Train the Model:

Code:

#TRAIN THE MODEL model.fit_generator(generator=x_train, steps_per_epoch = len(x_train), epochs=10, validation_data=x_test, validation_steps = len(x_test))

Output:

Save the Model:

Code:

#SAVE THE MODEL model.save('ECG.h5')

Test the Model:

Code:

```
#TEST THE MODEL

#LOAD NECESSARY LIBRARIES from

tensorflow.keras.models import load_model from

tensorflow.keras.preprocessing import image

model = load_model("ECG.h5") #loading the model for testing

#IMAGE AS INPUT img = image.load_img(r"/content/data/test/Premature

Atrial Contraction/ fig_100.png",target_size=(64,64))#loading of the image x = image.img_to_array(img)#image to array x = np.expand_dims(x,axis = 0)#changing the shape pred = model.predict(x)#predicting the classes pred

#PREDICTING THE OUTPUT index=['Left Bundle Branch

Block','Normal','Premature Atrial Contraction',

'Premature Ventricular Contractions','Right Bundle Branch Block'
,'Ventricular Fabrillation']

result=str(index[np.argmax(pred)]) result
```

Output:

