1

WHAT IS CLAIMED IS:

1	1.	A method for a thermo-electric cooler coupled to a laser diode, the	
2	method comprising:		
3	operating the thermo-electric cooler in one of at least a low power mode and a		
4		standard mode, the laser diode configured to transmit signals in the low	
5		power mode and the standard mode; and	
6	switch	ning between the low power mode and the standard mode, wherein:	
7		the low power mode maintains a laser diode at a temperature within a	
8		predetermined range of temperatures; and	
9		the standard mode maintains the laser diode at a temperature that	
10		corresponds to a predetermined wavelength of light output from	
11		the laser diode.	
1	2.	The method of claim 1 wherein the low power mode is a Time	
2	Division Mul	tiplexing (TDM) mode.	
1	3.	The method of claim 1 wherein the standard mode is a Dense	
2	Wavelength 1	Divison Multipexing (DWDM) mode.	
1	4.	The method of claim 1 further comprising:	
2	opera	ting the thermo-electric cooler in a quasi-standard mode, the laser diode	
3		configured to transmit signals in the quasi-standard power mode.	
1	5.	The method of claim 1 wherein laser diode is configured in an OC-192	
2	transceiver li	ne card disposed in a synchronous optical network (SONET)	
3	communication system.		
1	6.	The method of claim 1 wherein the predetermined range of	
2	temperatures is a range of temperatures within which the laser diode has a user-		

 The method of claim 1 wherein the predetermined range of temperatures are input by one of a user and a system generated source.

defined power versus performance ratio.

4

5

7

Q

1

2

3

4

1

2

1

2

3

 The method of claim 1 wherein the predetermined range of 	
temperatures is determined by a user setting a temperature measure above and below	
a fixed temperature that corresponds to a wavelength of light output from the las	
diode.	

9. An apparatus comprising:

2 means for operating a thermo-electric cooler coupled to a laser diode in one of 3 a low power mode and a standard mode; and

means for switching between the low power mode and the standard mode,
wherein the low power mode maintains the laser diode at a temperature
within a predetermined range of temperatures and the standard mode
maintains the laser diode at a temperature that corresponds to a
predetermined wavelength of light output from the laser diode.

- 10. The apparatus of claim 9 wherein the predetermined range of temperatures is determined by a user setting a temperature measure above and below a fixed temperature that corresponds to a wavelength of light output from the laser diode.
- 11. The apparatus of claim 9 wherein the low power mode is a Time Division Multiplexing (TDM) mode.
- The apparatus of claim 9 wherein the standard mode is a Dense
 Wavelength Divison Multipexing (DWDM) mode.
 - The apparatus of claim 9 wherein laser diode is configured in an OC-192 transceiver line card disposed in a synchronous optical network (SONET) communication system.
 - An optical transceiver comprising:
- 2 a temperature circuit;
- 3 a thermo-electric cooler coupled to the temperature circuit; and

1

2

3

4

5

2

3

4

1

2

3

1

2

3

4

5

6

2

3

1

2

3

a la:	a laser diode coupled to the thermo-electric cooler, wherein the thermo-	
	electric cooler is responsive to inputs from the temperature circuit, the	
	inputs identifying one of at least a first mode and a second mode,	
	wherein a choice of mode is a function of a performance requirement.	

- 15. The optical transceiver of claim 14 wherein the performance requirement is one of the first mode, wherein the first mode is a standard mode for dense wavelength division multiplexing (DWDM) applications, and the second mode, wherein the second mode is a low-power mode for time domain multiplexing (TDM) applications.
 - 16. The optical transceiver of claim 14, further comprising:
 - a temperature circuit, the temperature circuit including a switch configured to alter the thermo-electric cooler between the first mode and the second mode.
- 17. The optical transceiver of claim 14 wherein the second mode is a dense wavelength division multiplexing (DWDM) mode and the first mode is a time-division multiplexed (TDM) mode.
 - 18. The optical transceiver of claim 14 further comprising:
 - a coupler coupled to the laser diode, the lens producing an optical signal; and an optical fiber coupled to the coupler; and
 - a wavelength signal circuit coupled to the coupler and the temperature circuit, the wavelength signal circuit configured to transmit feedback to the temperature circuit to maintain a stable wavelength of the laser diode.
- The optical transceiver of claim 14 wherein the optical transceiver is disposed on an OC-192 transceiver line card of a synchronous optical network (SONET) communication system.
- 20. The optical transceiver of claim 14 wherein the first mode is a low-power mode and the second mode is a standard mode, the first mode configured to permit a predetermined amount of wavelength drift.

2

3

1

2

1

2

3

4

1

2

3

2

3

ratio.

- The optical transceiver of claim 14 wherein the first mode is a lowpower mode in which the thermo-electric cooler dissipates less than 5 Watts under normal operating conditions.
- 22. The optical transceiver of claim 14 wherein the low power mode permits wavelength drift within operable parameters.
- 23. A method for providing thermo-electric cooled system for operating a laser diode comprising: operating a laser diode in one of a first mode and a second mode wherein the choice of mode is a function of a user-defined power and performance
- 24. The method of claim 23 wherein the function is a ratio of power versus performance wherein the power required to cool a laser diode is compared with the performance required for one of a plurality of laser diode applications.
- 25. The method of claim 24 wherein the plurality of laser diode applications include time division multiplexing (TDM), dense wavelength division multiplexing (DWDM) and wavelength division multiplexing (WDM) applications.