FACULTADES DE CIENCIAS Y DE CIENCIAS ECONÓMICAS Y DE ADMINISTRACIÓN LICENCIATURA EN ESTADÍSTICA

Probabilidad II Primer semestre de 2018 Ejercicios sobre función característica

- 1. Calcular la parte real e imaginaria de $\frac{1}{a+bi}$; $(a+bi)^2$
 - Probar que $\overline{z_1z_2} = \overline{z_1} \ \overline{z_2}$ para todo $z_1, z_2 \in \mathbb{C}$.
 - \bullet Probar que $\overline{\overline{z}}=z$ para todo $z\in\mathbb{C}$
 - Probar que $|z_1 + z_2| \le |z_1| + |z_2|$ para todo $z_1, z_2 \in \mathbb{C}$
 - Probar que $|z_1z_2|=|z_1||z_2|$ para todo $z_1,z_2\in\mathbb{C}$.
- 2. Calcular las funciones características para las siguientes distribuciones
 - a) $X \sim Uni(-a, a)$ con $a \in \mathbf{R}^+$;
 - b) $X \sim Poi(\lambda)$;
 - c) $X \sim Bin(n, p)$; y
 - d) $X \sim N(\mu, \sigma^2)$.
- 3. Calcular la varianza de la v.a. X, con función característica $\psi(t) = (1 + \exp(3it))^2/4$.
- 4. Sean $\psi_1(t), \psi_2(t), \dots, \psi_n(t)$ funciones características y a_1, a_2, \dots, a_n constantes que verifican $\sum_{i=1}^n a_i = 1, a_i \ge 0$ para todo i. Demostrar que $\sum_{i=1}^n \psi_i(t) a_i$ es una función característica.
- 5. Determinar si las siguientes son funciones características
 - a) $\psi(t) = \exp(itc)$, con $c \in \mathbf{R}$;
 - b) $\psi(t) = \cos(t)$;
 - c) $\psi(t) = \operatorname{sen}(t)$;
 - d) $\psi(t) = \cos^2(t)$; y
 - e) $\psi(t) = (\exp(it) + \exp(2it))^3/8$.