# EA721A - Princípios de Controle e Servomecanismos

Segundo Semestre de 2009 - Prova 3 - Prof. Paulo Valente

RA: Assinatura (como no RG):
Nome Legível:

Antes de começar a resolver a prova, atente para o seguinte:

- **Resoluções**. Na resolução das questões a seguir é **absolutamente imprescindível**, para fins de correção, que todos os resultados e afirmações estejam devidamente justificadas.
- Esboço do Lugar das Raízes. O esboço do LR deve incluir os pólos e zeros de malha aberta, os pontos e direções associadas a k = 0 e k → ∞, assíntotas (valores dos ângulos e ponto de intersecção), localização e sentidos dos ramos, ângulos de partida e chegada, pontos de cruzamento com o eixo imaginário e de entrada e/ou saída no eixo real.



Figura 1: Sistema de controle em malha fechada.

**Questão 1** (2,5 pt). Considere o sistema de controle em malha fechada da Figura 1 com  $C(s) = k_c$ , P(s) = (s+1)/[s(s-3)] e F(s) = 1.

- (1,5 pt) Esboce o Lugar das Raízes do sistema de controle em malha fechada em função de  $0 \le k_c < \infty$ .
- (1,0 pt) Determine os valores de  $k_c$  para os quais as raízes são complexas conjulgadas com partes reais estritamente negativas.

**Questão 2** (2,5 pt). Considere o sistema de controle em malha fechada da Figura  $1 \operatorname{com} C(s) = k_c, P(s) = 2/[s(s+1)] \operatorname{e} F(s) = 1.$ 

- a) (1,5 pt) Determine  $k_c$  para que a margem de fase do sistema de controle seja exatamente igual a  $45^o$ .
- **b**) (1,0 pt) Justifique uma possível desvantagem na utilização do controlador proporcional (estático) em detrimento de um controlador dinâmico para a finalidade descrita no item a).

**Questão 3** (2,5 pt). A Tabela 1 apresenta as respostas em frequência de uma planta de segunda ordem de fase mínima P(s) e de um compensador C(s) associado em série com P(s) com vistas a atingir especificações sobre margens de fase e de ganho de um sistema de controle com realimentação unitária. **Importante**. Ao recorrer à tabela, utilize sempre os valores numéricos mais próximos dos valores teóricos procurados.

- a) (0,5 pt) A resposta em frequência de C(s) corresponde a que tipo de compensador (proporcional, avanço, atraso, nenhum dos anteriores)?
- **b**) (1,0 pt) Determine as margens de fase e de ganho do sistema não compensado (correspondente ao ganho de malha  $G_1(s) = kP(s)$ , onde k é o ganho DC introduzido pelo compensador). O sistema não compensado é estável?
- c) (1,0 pt) Determine as margens de fase e de ganho do sistema compensado. Com quantos graus o compensador contribui (positiva ou negativamente) para a margem de fase do sistema?

**Questão 4** (1,0 pt). Considere o sistema em malha aberta  $\dot{x} = Ax + Bu$ , y = Cx, no qual

$$A = \left[ \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \alpha & \beta & \gamma \end{array} \right], \quad B = \left[ \begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right], \quad C = \left[ \begin{array}{ccc} 0 & 0 & 1 \end{array} \right].$$

Existem valores de  $\alpha$ ,  $\beta$  e  $\gamma$  tais que o sistema não é **controlável**? Excetuando-se  $\alpha = \beta = \gamma = 0$ , existem conjuntos de valores de  $\alpha$ ,  $\beta$  e  $\gamma$  para os quais o sistema não é **observável**?

Questão 5 (1,5 pt). Considere o sistema em malha aberta

$$\dot{x} = \begin{bmatrix} 0 & 0 \\ 1 & 3 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 0 & 1 \end{bmatrix} x.$$

Projete um controlador por realimentação de estados tal que o erro de regime do sistema em malha fechada para entradas constantes seja nulo. A ordem do sistema em malha fechada deve ser a menor possível e todos os pólos devem ser alocados em -3. Justifique a escolha do esquema de realimentação de estados.

Tabela 1. Respostas em frequencia de P(s) e C(s), Questão 3.

|                        | $\frac{1}{1}$ D( $\frac{1}{1}$ ) $\frac{1}{1}$ |                         | . , . ,             |                         |
|------------------------|------------------------------------------------|-------------------------|---------------------|-------------------------|
| $\omega(\text{rad/s})$ | $ P(j\omega)  \text{ (dB)}$                    | $\angle P(j\omega)(Gr)$ | $ C(j\omega) $ (dB) | $\angle C(j\omega)(Gr)$ |
| 0,0100                 | 46,0205                                        | -90,2865                | 20,0000             | 0,0991                  |
| 0,0127                 | 43,9691                                        | -90,3628                | 20,0000             | 0,1255                  |
| 0,0160                 | 41,9178                                        | -90,4594                | 20,0001             | 0,1590                  |
| 0,0203                 | 39,8663                                        | -90,5818                | 20,0001             | 0,2013                  |
| 0,0257                 | 37,8148                                        | -90,7368                | 20,0001             | 0,2549                  |
| 0,0326                 | 35,7630                                        | -90,9330                | 20,0002             | 0,3228                  |
| 0,0412                 | 33,7111                                        | -91,1815                | 20,0004             | 0,4088                  |
| 0,0522                 | 31,6587                                        | -91,4960                | 20,0006             | 0,5177                  |
| 0,0661                 | 29,6056                                        | -91,8943                | 20,0009             | 0,6556                  |
| 0,0838                 | 27,5514                                        | -92,3984                | 20,0015             | 0,8302                  |
| 0,1061                 | 25,4956                                        | -93,0362                | 20,0024             | 1,0512                  |
| 0,1343                 | 23,4369                                        | -93,8428                | 20,0038             | 1,3311                  |
| 0,1701                 | 21,3739                                        | -94,8620                | 20,0061             | 1,6852                  |
| 0,2154                 | 19,3038                                        | -96,1483                | 20,0098             | 2,1333                  |
| 0,2728                 | 17,2226                                        | -97,7681                | 20,0157             | 2,6999                  |
| 0,3455                 | 15,1237                                        | -99,8014                | 20,0251             | 3,4157                  |
| 0,4375                 | 12,9970                                        | -102,3404               | 20,0402             | 4,3187                  |
| 0,5541                 | 10,8276                                        | -105,4854               | 20,0643             | 5,4552                  |
| 0,7017                 | 8,5934                                         | -109,3335               | 20,1026             | 6,8804                  |
| 0,8886                 | 6,2638                                         | -113,9561               | 20,1632             | 8,6573                  |
| 1,1253                 | 3,8004                                         | -119,3651               | 20,2585             | 10,8523                 |
| 1,4251                 | 1,1604                                         | -125,4718               | 20,4066             | 13,5258                 |
| 1,8047                 | -1,6946                                        | -132,0619               | 20,6327             | 16,7113                 |
| 2,2855                 | -4,7872                                        | -138,8110               | 20,9695             | 20,3847                 |
| 2,8943                 | -8,1156                                        | -145,3547               | 21,4536             | 24,4219                 |
| 3,6652                 | -11,6548                                       | -151,3802               | 22,1177             | 28,5653                 |
| 4,6416                 | -15,3651                                       | -156,6894               | 22,9785             | 32,4252                 |
| 5,8780                 | -19,2038                                       | -161,2091               | 24,0242             | 35,5401                 |
| 7,4438                 | -23,1333                                       | -164,9609               | 25,2100             | 37,4843                 |
| 9,4267                 | -27,1244                                       | -168,0215               | 26,4649             | 37,9744                 |
| 11,9378                | -31,1559                                       | -170,4892               | 27,7042             | 36,9375                 |
| 15,1178                | -35,2136                                       | -172,4638               | 28,8463             | 34,5272                 |
| 19,1448                | -39,2880                                       | -174,0361               | 29,8285             | 31,0889                 |
| 24,2446                | -43,3729                                       | -175,2842               | 30,6177             | 27,0749                 |
| 30,7029                | -47,4644                                       | -176,2730               | 31,2137             | 22,9312                 |
| 38,8816                | -51,5600                                       | -177,0554               | 31,6401             | 19,0035                 |
| 49,2388                | -55,6583                                       | -177,6740               | 31,9327             | 15,4986                 |
| 62,3551                | -59,7581                                       | -178,1629               | 32,1272             | 12,4995                 |
| 78,9652                | -63,8590                                       | -178,5491               | 32,2536             | 10,0051                 |
| 100,0000               | -67,9605                                       | -178,8542               | 32,3346             | 7,9691                  |

### **Dados**

- 1. Função de Transferência de Fase Mínima. Uma função de transferência é de fase mínima se, à exceção de pólos em s=0, todos os zeros e pólos da função têm partes reais negativas.
- 2. Lugar das Raízes. Considere

$$1 + kG(s) = 1 + k\frac{N(s)}{D(s)} = 1 + k\frac{\prod_{j=1}^{m}(s - z_j)}{\prod_{i=1}^{n}(s - p_i)} = 0, \quad k > 0.$$

- (a) Magnitude e fase: |kG(s)| = 1,  $\angle G(s) = 180^{\circ} \times r$ ,  $r = \pm 1, \pm 3, \ldots$
- (b) Ângulos e Interseção de Assíntotas:

$$\theta = \frac{180^{\circ} r}{n-m}, r = \pm 1, \pm 3, \dots, \quad \sigma_a = \frac{\sum_{i=1}^{n} p_i - \sum_{j=1}^{m} z_j}{n-m}.$$

(c) Ângulos de partida e chegada: satisfazem

$$\sum_{j=1}^{m} \phi_{z_j} - \sum_{i=1}^{n} \phi_{p_i} = 180^{\circ} r, r = \pm 1, \pm 3, \dots,$$

onde  $\phi_{z_j}$   $(\phi_{p_i})$  são os ângulos entre os zeros (pólos) de G(s) e o ponto de interesse.

- (d) Pontos de entrada e saída no eixo real: entre as raízes de D'(s)N(s)-D(s)N'(s)=0.
- (e) Pontos de cruzamento com o eixo imaginário devem ser determinados por meio do Critério de Routh-Hurwitz.

3. Compensação Avanço: 
$$C(s)=k_c\alpha\frac{Ts+1}{\alpha Ts+1}, T>0, 0<\alpha<1$$

$$\operatorname{sen} \phi_m = \frac{1-\alpha}{1+\alpha}, \quad \omega_m = \frac{1}{T\sqrt{\alpha}}, \quad 20 \log \left| \frac{jT\omega + 1}{j\alpha T\omega + 1} \right|_{\omega = \omega_m} = 20 \log \frac{1}{\sqrt{\alpha}}.$$

4. Compensação Atraso: 
$$C(s)=k_c\beta \frac{Ts+1}{\beta Ts+1}, T>0, \, \beta>1$$

$$20 \log \left| \frac{jT\omega + 1}{j\beta T\omega + 1} \right| = -20 \log \beta \qquad (\omega >> 1/T).$$

5. Matrizes de Controlabilidade e Observabilidade.

$$C = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}, \quad \mathcal{O} = \begin{bmatrix} C & CA \\ CA & \vdots \\ CA^{n-1} \end{bmatrix}$$

6. Formas Canônicas.

$$\frac{Y(s)}{U(s)} = \frac{b_n s^n + b_{n-1} s_+^{n-1} \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$

#### Controlável

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u,$$

$$y = [b_0 - a_0b_n \quad b_1 - a_1b_n \quad \cdots \quad b_{n-1} - a_{n-1}b_n]x + b_nu$$

### Observável

$$\dot{x} = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix} x + \begin{bmatrix} b_0 - a_0 b_n \\ b_1 - a_1 b_n \\ \vdots \\ b_{n-1} - a_{n-1} b_n \end{bmatrix} u,$$

$$y = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} x + b_n u$$

## 7. Controle por Realimentação de Estados com Ação Proporcional

$$u = -Kx + k_1r = -\tilde{K}x + k_1(r - x_1), \quad y = x_1.$$

8. Controle por Realimentação de Estados com Ação Integral

$$u = -Kx + K_I \xi,$$
  $\begin{bmatrix} \dot{x} \\ \dot{\xi} \end{bmatrix} = \begin{bmatrix} A - BK & BK_I \\ -C & 0 \end{bmatrix} \begin{bmatrix} x \\ \xi \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r.$ 

Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em Em branco, Em branco, Em branco, Em branco, Em branco, Em branco, Em