Machine Learning for Geosciences

By Francisco Mendoza

mentofran@gmail.com

Course material:

https://github.com/mathphysmx/teaching-ml

Basic concepts

All previous concepts used in statistics such as (in)?dependent variable, input/output variables, etc plus the following,

Machine learning. Introduction

Model selection

Over-fitting?

Concepts review

Type of problems, data types

Unsupervised

ID	x_1	 x_n	Category	ID	
1	3.532	А	Catx	1	
2	7.234	Н	Caty	2	
:	:	:	:	÷	

What is ML

Machine Learning is the science (and art) of programming computers so they can learn from data.

Here is a slightly more general definition:

[Machine Learning is the] field of study that gives computers the ability to learn without being explicitly programmed.

—Arthur Samuel, 1959

And a more engineering-oriented one:

A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

—Tom Mitchell, 1997

Related areas. Data Science

- Data manipulation (50 80 %)
- Machine Learning
- Deep learning

Applications in this course

Hydrology, geothermal, radioactive waste disposal, oil and gas, CO2 sequestration, mining

- Fluid volume production from a well
- Porosity from depth (Pyrcz)
- ...

Mostly based on

- https://github.com/GeostatsGuy
- Guangren Shi, 2014. Data Mining and Knowledge Discovery for Geoscientists

Types of Machine learning algorithms

- Supervised
 - k-Nearest Neighbors
 - Linear Regression
 - Logistic Regression
 - Support Vector Machines (SVMs)
 - Decision Trees, Ensemble methods
 - Neural networks
- Unsupervised
 - Clustering: K-means, Hierarchical Cluster Analysis (HCA)
 - Visualization and dimensionality reduction (Kernel)? PCA, t-distributed Stochastic Neighbor Embedding (t-SNE)
- Reinforcement learning
- Batch and Online learning

Figure 1-5. A labeled training set for supervised learning (e.g., spam classification)

Figure 1-6. Regression

Grading

- 20% Theoretical
- 20% Computational exercises
- 20% Exams
- 20% Oral presentation of application of ML in Geosciences
- 20% MOOC (Coursera, Udemy, ...)

Current research (Journals)

- Mathematical Geosciences
 - Neural Networks
 - Machine learning
- Computer and Geosciences
 - Neural networks
 - TensorFlow
 - Machine learning
- Computational Geosciences
 - Neural Networks
 - <u>TensorFlow</u>
 - Machine learning

Table of Content (TOC)

Índice Temático							
		Horas					
Unidad	Tema	Teóricas	Prácticas				
1	Panorama general sobre machine learning	2	0				
2	Proyecto aplicado de machine learning	4	4				
3	Modelos lineales y regresión logística	3	3				
4	Máquinas de soporte vectorial (Support Vector Machines)	3	3				
5	Métodos basados en árboles de decisión	6	6				
6	Modelos basados en teoría de gráficas	3	3				
7	Aprendizaje no supervisado	3	3				
8	Reducción de la dimensionalidad	3	3				
9	Redes neuronales y aprendizaje profundo	6	6				
	Total de horas:						
	Suma total de horas:	64					

Bibliography

Companies

All big companies +

- Well spacing
- Earth models
- Seismic horizons interpretation

100

throughout the cube

Concepts review

Software stack

pandas

Visual Studio Code

See also

- YouTube Michael Pyrcz 00 Machine Learning: Introduction
- YouTube Michael Pyrcz 06 Machine Learning: Intro to Machine Learning

Machine Learning for Geosciences

By Francisco Mendoza

mentofran@gmail.com

Course material:

https://github.com/mathphysmx/teaching-ml