CycleGAN

ICCV

2017

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros Berkeley AI Research (BAIR) laboratory, UC Berkeley

Figure 1: Given any two unordered image collections X and Y, our algorithm learns to automatically "translate" an image from one into the other and vice versa: (*left*) Monet paintings and landscape photos from Flickr; (*center*) zebras and horses from ImageNet; (*right*) summer and winter Yosemite photos from Flickr. Example application (*bottom*): using a collection of paintings of famous artists, our method learns to render natural photographs into the respective styles.

Abstract

Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples. Our goal is to learn a mapping $G: X \to Y$ such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss. Because this mapping is highly under-constrained, we cou-

1. Introduction

What did Claude Monet see as he placed his easel by the bank of the Seine near Argenteuil on a lovely spring day in 1873 (Figure 1, top-left)? A color photograph, had it been invented, may have documented a crisp blue sky and a glassy river reflecting it. Monet conveyed his *impression* of this same scene through wispy brush strokes and a bright palette.

What if Monet had happened upon the little harbor in Cassis on a cool summer evening (Figure 1, bottom-left)?

A brief stroll through a gallery of Monet paintings makes it

CycleGAN

Background & Goal

Previous research limitation

- Obtaining paired dataset can be difficult and expensive.
- In some cases, it may even be practically impossible to acquire paired datasets.

Goal

Achieve image-to-image translation using unpaired dataset.

Fig 1. Examples of paired datasets that are impossible to acquire

Medical Artificial Intelligence Laboratory At Yonsei University

CycleGAN

Background & Goal

Fig 2. Traditional GAN architecture

Medical Artificial Intelligence Laboratory At Yonsei University

CycleGAN

Cycle Consistency

Summer C Winter

Fig 3. Cycle consistency that requires returning to the original

Medical Artificial Intelligence Laboratory At Yonsei University

CycleGAN

Network Architectures

CycleGAN

Loss Functions

GAN loss

- Mapping function $G: X \to Y$ and Discriminator D_Y
- Mapping function $F: Y \to X$ and Discriminator D_X

Fig 4. CycleGAN Architecture

$$\mathcal{L}_{GAN}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{\text{data}}(y)} \left[\log D_Y(y) \right] + \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[\log \left(1 - D_Y(G(x)) \right) \right]$$

Eq 1. Adversarial loss for G

$$\mathcal{L}_{GAN}(F, D_X, Y, X) = \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[\log D_X(x) \right] + \mathbb{E}_{y \sim p_{\text{data}}(y)} \left[\log (1 - D_X(G(y))) \right]$$

Eq 2. Adversarial loss for F

CycleGAN

Loss Functions

Cycle consistency loss

-
$$x \to G(x) \to F(G(x)) \approx x$$

-
$$y \to F(y) \to G(F(y)) \approx y$$

$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\|F(G(x)) - x\|_1] + \mathbb{E}_{y \sim p_{\text{data}}(y)} [\|G(F(y)) - y\|_1]$$

Eq 3. Cycle consistency loss

Medical Artificial Intelligence Laboratory At Yonsei University

CycleGAN

Loss Functions

Fig 6. GAN + Cycle consistency loss architecture

CycleGAN

Loss Functions

ldentity Loss

- $Y = G(Y) (G: X \to Y)$
- $X = F(X) (F: Y \to X)$

Fig 7. Idea of Identity

Identity loss

$$\mathcal{L}_{\text{identity}}(G, F) = \mathbb{E}_{y \sim p_{\text{data}}(y)}[\|G(y) - y\|_1] + \mathbb{E}_{x \sim p_{\text{data}}(x)}[\|F(x) - x\|_1]$$

Eq 4. Identity loss

 $G: X \to Y$ $F: Y \to X$

Medical Artificial Intelligence Laboratory At Yonsei University

CycleGAN

Loss Functions

Fig 8. Identity loss Architecture

Medical Artificial Intelligence Laboratory At Yonsei University

CycleGAN

Experiment Results

Fig 9. Cycled result images

Cycle consistency loss enforces that an image translated to the target domain and then back to the source domain remains unchanged.

- It helps the network preserve the original content while le arning the transformation.
- By requiring the image to return to its original form, it pre vents mode collapse.

Medical Artificial Intelligence Laboratory At Yonsei University

CycleGAN

Experiment Results

Fig 10. Comparison with conventional methods

Medical Artificial Intelligence Laboratory At Yonsei University

CycleGAN

Experiment Results

Identity loss enforces that data already belonging to the targ et domain remains unchanged.

- It helps the network better understand the fundamental c haracteristics of domain differences.
- It guides the model to suppress unnecessary transformat ions.

Fig 11. The effect of the identity loss

Medical Artificial Intelligence Laboratory At Yonsei University

CycleGAN

Limitations

Geometric change

- Failure in handling more diverse and extreme transformations, including geometric changes

Fig 12. Cases of failure in geometric transformation

Medical Artificial Intelligence Laboratory At Yonsei University

CycleGAN

Limitations

Dataset distribution

Sensitive to dataset distribution

Fig 13. Failure in transforming datasets not used during training