# 1、实验名称及目的

Windows 平台图像发送与 NX 主机(Linux 环境)接收图片实验: 根据 config.xlsx 使用 MATLAB 自动生成代码,通过在 Windows 平台下调用接口进行图像数据的请求转发,然后 在多个 NX(Linux 环境)下进行图像数据的接收完成图像的传输。

#### 2、实验原理

Windows 平台发送图像数据,可通过不同的传输方式以及不同的平台进行图像的接收

#### 3、实验效果

以例程1为例,两架飞机均起飞,且由于启动存在一定的时间差,一架飞机会先起来另外一架会慢一点,随后两架飞机一前一后进行穿环。



# 4、文件目录

| 文件夹/文件名称                     | 说明                            |
|------------------------------|-------------------------------|
| AllSourceFile                | MATLAB 自动生成代码使用的模板源文件         |
| 1-SITLUdpDemo_local_2V2C     | 代码配置文件: UDP +软件在环+本地+两架飞机两个相机 |
| 2-SITLUdpDemo_Remote_2V2C    | 代码配置文件: UDP +软件在环+远程+两架飞机两个相机 |
| 3-HITLSerialDemo_Remote_2V2C | 代码配置文件:串口+硬件在环+远程+两架飞机两个相机    |
| 4-SITLUdpDemo_local_4V4C     | 代码配置文件: UDP+软件在环+本地+四架飞机四个相机  |
| 5-SITLUdpDemo_Remote_4V4C    | 代码配置文件: UDP +软件在环+远程+四架飞机四个相机 |
| 6-HITLSerialDemo_Remote_4V4C | 代码配置文件:串口+硬件在环+远程+四架飞机四个相机    |
| Config.xlsx                  | 自动生成代码的参数配置文件                 |
| Config.json                  | 相机配置文件                        |

# 5、运行环境

| 序号 软件要求 |                  | 硬件要求                  |    |
|---------|------------------|-----------------------|----|
| ה או    | <b>秋</b>         | 名称                    | 数量 |
| 1       | Windows 10 及以上版本 | 笔记本/台式电脑 <sup>①</sup> | 1  |
| 2       | RflySim 平台免费版    |                       |    |

**6**: 推荐配置请见: <a href="https://doc.rflysim.com/1.1InstallMethod.html">https://doc.rflysim.com/1.1InstallMethod.html</a>

### 6、实验步骤

以 1-SITLUdpDemo\_local\_2V2C 为例

# Step 1:

在 1-SITLUdpDemo\_local\_2V2C 目录下有如下文件

| Config.json   | 2022/6/11 23:46  | JSON 源文   |
|---------------|------------------|-----------|
| Config.pdf    | 2023/10/17 16:21 | QQBrows   |
| Config.xlsx   | 2023/10/25 11:25 | Microsoft |
| ConfigWrite.m | 2022/1/16 20:13  | MATLAB    |

打开 Config.xlsx 文件更改如下 Windows 主机 IP 地址,以及 NX 主机地址 IP



Windows 主机的 IP 地址可在命令行输入 ipconfig 进行查询,Linux 系统可使用 ifconfig 进行查找。完成填写后保存更改并关闭 Excel,有几架飞机就填几个 NX 主机 IP 地址(一台 NX 主机可控 n 个飞机,也就是 IP 地址可用同一个,但要写上 n 个相同的地址)。

#### Step 2:

打开 MATLAB 定位到 1-SITLUdpDemo\_local\_2V2C 目录下的 ConfigWrite.m 文件右键点击运行



运行完成会在当前目录下生成一个名为 VisionDemo2 的文件夹, 内部为自动生成的 Windows 主机和 NX 主机的可执行代码文件夹



其生成的文件个数与 Config.xlsx 的参数配置有关,若飞机数量为 n,则生成的文件包含 WindowsPC1、LinuxNXX1、LinuxNXX2、…… 、LinuxNXXn。

#### Step 3:

进入 WindowsPC1 目录下,可见如下文件



右键点击 client\_ue4\_SITL.bat 文件,选择以管理员身份运行,即可启动软件在环仿真(若为硬件在环则启动 client\_ue4\_HITL.bat),会开启两个 CopterSim,仿真界面出现两架飞机。



待 CopterSim 软件出现如下语句



回到 WindowsPC1 目录下,使用 VS Code 启动 client\_ue4.py 脚本,或双击 Python38Run.bat 脚本启动 python 环境,在 python 环境下输入 python client\_ue4.py 启动脚本,开始发送图像。

# Step 4:

将上文中 LinuxNXX1 和 LinuxNXX2 文件夹拷贝到 Linux 主机上任意位置(这里仅用单台 NNX 主机做演示, 若有多台可拷贝到不同的 NX 主机上进行下面的步骤), 分别进入到 LinuxNXX1 与 LinuxNXX2 目录下



右键点击空白处输入如下语句 chmod +x server\_ue4.py, 为 server\_ue4.py 脚本赋权限, 使 其可作为可执行程序, 输入如下语句 python3 server\_ue4.py 启动脚本, 可看到从 Windows 主机传输过来的传感器收到的图像, 同时可看到 RflySim3D 仿真中两架飞机均起飞飞到空中, 且一前一后开始穿环。



上述步骤即为 1-SITLUdpDemo\_local\_2V2C 例程的完整步骤,e3\_AnyVehilces 目录下除 AllSourceFile 为 MATLAB 自动生成代码的代码源外, 其他文件使用步骤皆与上相同, 硬件在环仿真则需要将飞控与 Windows 主机相连接,除此之外步骤基本一致,其连接方式如下图。

