4.1-2nd Order Linear Differentials

#UCLA #Y1Q3 #Math33B

2nd Order Linear Differentials

Key Definitions

Second-Order Linear Differential Equations - diff. eq. of the form:

$$Y''(T) + P(T)Y' + Q(T)Y = G(T)$$

Where p,q,g are coefficient functions and g(t) is the forcing term

If g(t)=0, the diff. eq. is homogenous

E.g. Simple Harmonic Motion:

$$Y'' + \Omega^2 Y = 0$$

$$Y_1(T) = \cos \Omega T \quad \text{and} \quad Y_2(T) = \sin \Omega T$$

$$Y(T) = C_1 \cos \Omega T + C_2 \sin \Omega T$$

Linear Combination – lin. comb. of 2 func. y_1, y_2 :

$$C_1 Y_1 + C_2 Y_2 : I \to \mathbb{R}$$

Linearly Independent – $y_1,y_2:I o\mathbb{R}$ are lin. indep. if:

$$C_1 Y_1 + C_2 Y_2 = 0$$

for all $t \in I$ else the funcs. are linearly dependent

Fundamental Set of Solutions – if y_1, y_2 are lin. indep. solutions to some 2nd order lin. diff. eq., and they "generate" all other sols., then the general solution is:

$$Y(T; C_1, C_2) = C_1 Y_1 + C_2 Y_2$$

Existence and Uniqueness Theorem: 2nd, Linear

Sps. $p,q,g:I\to\mathbb{R}$ are **cont.** w/ domain interval $I\subseteq\mathbb{R}$. Then, given $t_0\in I$ and any $y_0,y_1\in\mathbb{R}$ there is a unique func. $y:I\to\mathbb{R}$ which satisfies:

- y'' + py' + q = g
- $y(t_0) = y_0$ and $y'(t_0) = y_1$

Wronskian

Sps. $u,v:I\to\mathbb{R}$ are two diff. func. on interval $I\subseteq\mathbb{R}$. Then, the Wronskian of the two funcs. is $W:I\to\mathbb{R}$ s.t.

$$W(au) := ext{Det} egin{bmatrix} U(au) & V(au) \ U'(au) & V'(au) \end{bmatrix} := U(au) V'(au) - V(au) U'(au)$$

for all $t \in I$ s.t. if:

- $W(t_0)=0$ then u,v are lin. dep.
- $W(t_0)
 eq 0$ then u,v are lin. indep.