Problem set
Sebastián Caballero
Axiomatization

Problem 1.

Show that for all $n, m \in \mathbb{N}$, m < n if and only if $m \subset n$

Solution.

 \Rightarrow) Suppose that m < n, so $m \in n$, and now suppose that $p \in m$. We have seen that in \mathbb{N} the relation \in is transitive, so $p \in n$, but this implies that $m \subset n$.

 \Leftarrow) Suppose that $m \subset n$, it is impossible that m = n because $(\exists x)(x \in n \land x \not\in m)$ and if n < m then $n \subset m$ but this would mean that $m \subset m$ which is absurd. So, we must conclude by the trichotomy that m < n.

Problem 2.

Show that for all $n \in \mathbb{N}$, if $x \in n$, then $x \in \mathbb{N}$.

Solution. For n=0, it is absurdly true. If n=1, then $n=\{0\}$ and $0\in\mathbb{N}$. Suppose this is true in general for n, and suppose that $x\in n^+$. Then, $x\in n$ or x=n. If $x\in n$, by the hypothesis $x\in\mathbb{N}$ and if x=n it is obvious that $x\in\mathbb{N}$.

Problem set Set Theory Caballero 2 of ??

Problem 3.

Show that for all $m, n \in \mathbb{N}$, $\min\{n, m\} = n \cap m$.

Solution. Without loss of generality, we can suppose that $n \le m$ and so $\min\{n, m\} = n$. This would implies that $n \subseteq m$ and therefore $n \cap m = n$, so $\min\{n, m\} = n \cap m$.

Problem set Set Theory Caballero 3 of ??

Problem 4.

Show that for all $m, n, a \in \mathbb{N}$:

- If a + m = a + n then m = n
- If a > 0 and $a \cdot m = a \cdot n$ then m = n
- If a > 1 and $a^m = a^n$ then m = n

Solution. Suppose that $m \neq n$, then m < n or n < m. Suppose with no loss of generality that m < n, so by the monotony laws we have:

- a + m < a + n
- If a > 0, $a \cdot m < a \cdot n$
- If a > 1, $a^m < a^n$

And since the relation < is irreflexive(In other words, that $n \nleq n$) then it is not possible that they are equal. So:

- $a+m \neq a+n$
- If a > 0, $a \cdot m \neq a \cdot n$
- If a > 1, $a^m \neq a^n$

Problem 5.

Let $n, m \in \mathbb{N}$:

- Show that m+n=0 if and only if m=n=0
- Show that $m \cdot n$ if and only if m = 0 or n = 0

Solution. It is obvious the left side of both propositions. Now, for prove the other sides:

• Suppose $n \neq 0$ and m could be or not 0. Since $n \neq 0$ then $(\exists x)(x \in \mathbb{N} \land x^+ = n)$. This implies that:

$$m + n = m + x^+$$
$$= (m + x)^+$$

And since $a^+ \neq 0$ for any $a \in \mathbb{N}$, we have that $m + n \neq 0$.

• Suppose $m \cdot n = 0$ and that $n \neq 0$. Then, we can assure that $(\exists x)(x \in \mathbb{N} \land x^+ = n)$ and therefore:

$$m \cdot n = m \cdot x^{+}$$
$$= (m \cdot x) + m = 0$$

So by the previous proposition we can conclude that $m \cdot x = 0$, and especially m = 0.

-

Problem 6.

Prove that for all $n, m \in \mathbb{N}$, $m \le n$ if and only if exists $k \in \mathbb{N}$ such that m + k = n.

Solution.

- \Rightarrow) For n=0 this is true easily true. Suppose it is true for n and suppose that $m \le n^+$. If $m=n^+$ it is obvious so if $m < n^+$ then m < n or m=n. For the first case, there is k such that m+k=n and then $m+(k+1)=n^+$. If m=n then $m+1=n^+$.
- \Leftarrow) The case for when n=0 is trivial. Suppose this is true n, so that for n^+ if there is k such that $m+k=n^+$ there are two possibilities. If k=0 then $m=n^+$. Else, $\exists x\in\mathbb{N}$ such that $x^+=k$ and therefore:

$$m + k = n^{+}$$

$$m + x^{+} = n^{+}$$

$$(m + x)^{+} = n^{+}$$

$$m + x = n$$

And by the induction hypothesis, we have that $m \leq n$ and since $n < n^+$ then $m \leq n^+$.

Problem 7.

Prove that for all $a, b \in \mathbb{N}$, if b > 0 then there exists unique q, r such that r < b and a = bq + r

Solution. For a fixed b > 0, it is easy to see that the proposition is true for a = 0, since $0 = b \cdot 0 + 0$. Suppose $a = b \cdot q + r$ for $q, r \in \mathbb{N}$ and r < b. There are two cases, if $r^+ = b$ then:

$$a = b \cdot q + r$$

$$a^{+} = b \cdot q + r^{+}$$

$$a^{+} = b \cdot q + b$$

$$a^{+} = b \cdot (q+1) + 0$$

But if $r^+ < b$ then

$$a = b \cdot q + r$$
$$a^{+} = b \cdot q + r^{+}$$

And in any case, the proposition is true. So, it is true for all a. To prove that this is unique, then take $a = b \cdot q + r$ and $a = b \cdot p + s$ such that $p, q, r, s \in \mathbb{N}$ and r, s < b. Assume that $r \le s$ so we would have that

$$b \cdot p + s = b \cdot q + r$$
$$\leq b \cdot q + s$$

And we conclude that $p \leq q$. In the other hand, we have:

$$b \cdot q \le b \cdot q + r$$

$$= b \cdot p + s$$

$$< b \cdot p + b$$

$$= b \cdot (p+1)$$

So $b \cdot q < b \cdot (p+1)$ and we would have that q < p+1, so we have in summary that $p \le q < p+1$ which is only possible if p = q. And now, it follows easily that r = s.