ESEMPI DI SPAZI VETTORIALI

(1) VETTORI GEOMETRICI DEL PIANO E DELLO SPAZIO

Albbionus studiats in dettaglio la sposio rettoriale dei vettori, geometrici del piono. In modo analogo si definiscono l'insiene dei rettori geometrici dello spazio e la corrispondenti operazioni di 1 + e · su di esso.

V = { Vettori openietrici? = { Segmenti orientati? } R3

2 L'n-SPAZIO NUMERICO SU IR (SU K)

 $n \in \mathbb{N}$, $n \geq 1$.

 $IR^n = IR \times \cdots \times IR = \int_{\Gamma} (2\alpha, \ldots, 2\alpha) : 2\alpha \in IR, \forall i = 1, \ldots, n$

Definians $+: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ $e : \mathbb{R} \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ $(24, ..., 2n+y_n) + (y_1, ..., y_n) := (x_1 + y_1, ..., z_n+y_n)$

2. (22, -- , 2m) = (2x1, -, 2xn)

Noi abbiano già verificato che per n=2 si ottiene un spatio vettoriale.

Analogamente é possibile verificare che V n≥1 (IRM, +,·) possiede la struttura di spazio vettoriale (cioè + e · soddisfano le B proprietà della definizione).

(R",+,.) è chiamato n-spasio vettoriale numerico sull

elemento neutro: Q = (0, ..., 0) (vettore nulla)

l'opposto di 2e = (24,..., 2n) e - 2e = (-24 ..., -2n)

Osservatione: Anche IR (N=1) è un esempio di IR-spatio vettoriale. In tal caso la moltipli catione per scalari non è altro che la moltiplication di numeri reali.

(Più in general coni campo K ha ma struttura di spazio vettoriale su se stesso

Possiano sostituire IR con un qualsiosi campo K e definire in maniera analoga le operazioni + e · su K" K" = Kx...xk = f (24,...,24): x; EK, Viq ∀ (x2, ..., xn), (y2,..., yn) ∈ K", Y λ∈K (xe, --, xn) + (ye, --, yn) := (xx+ye, --, xn+yn) $\lambda \cdot (x_1, \dots, x_n) := (\lambda x_1, \dots, \lambda x_n)$ (K",+,.) ha una struttura di spazio rettoriale su K. (K",+,.) é chiamato n-spasio vettoriale numerico su K. 3 FUNZIONI DA UN INSIEME A UN CAKPO Sia X un insience non voto queluque e K un campo V = of functioni f: X - K & in gresh exemples Definiano su V le operazioni segrenti; +: V × V -> V (1,9) + > f+9 dove f+9: X -> K BINARIA x - 3(x)+9(x) somma di K per de finire una funzione dobbione definire l'immagine (motio per cui scegliamo un camp come degli elementi di X codo mínio) : K×V →> V BINARIA (2,1) \leftarrow λ -j dove λ -j: \times \sim \times λ - λ -j(x)ESTERNA moltiplicazione di K Si noti che nel contesto di funtioni reali a variabile reale (cioè X=K=IR), siamo abituati a sommare funtioni e a moltiplicarle per scalari. Ad esempio siano f: IR ->IR , g: IR->IR , l=3, l=2, allora lijtlig è la funzione 2. f 1 2. g: R-R

x H- 3sin(x) + 2cos(x)

Esercizio	: Hostrare a propri eta rettoriosu spazio vel	the te ode de d	50ddisfau f:vizione d vdi (V,+,.)	o le 8 i spessio è uno 3
3 POLINO		ICIENTI RE		INDETERMINATA
			ficienti real	li nell'indeter rupli del
	P(x) = anx	, + + O13	etas, ai e termine noto	EIR Y 1 SIEM
	Se an ≠0 e scriviau	diciamo $deg(P)=$ $deg(P(x))$		il grade di P(x)
			ë il w della : coeffic	assimb esponente orispondent on nulla
No tazione	: IR[x] = d	polinoui a	cælficien!	i reali Li grado arbitranis)
				un polinourio
	e su IR[x		per uno s	vali) di calare.
	e] × 1R[x] - (),Q(x)) 1		Q(z)	
	× 1R[x]			
	х) e λ·P(x)		à definite:	

```
Siavo
   P(x) = a_n x^n + --- + a_1 x + a_0, a_i \in \mathbb{R}.
   Q(x) = bpxp+---+ bxx+ bo, b; EIR.
Sia M=max & N, Pg. Allore possia mo scriver
   P(x) = am xm + - - . + a1x+ a0
   Q(x) = bm xm + ---- + bxx + bo
dore Qi = 0 V i > n e b: =0 V i > p

(facciano questo per far apparire la ze in P e Q

alla stessa potenza massina)
  Più concretemente stiamo facendo la cosa sequente
        P(x) = x^3 + 2x^2 + x - 1
        Q(x) = 3x+4 = 0.x3+0.x2+3x+4
 Allora definians:
  P(x) + Q(x) := (aut bm) xm + -... + (a+b) x+ (a+bo)
YZEIR, Z.P(x) := 2am xm+--+ 2ax+ 2as
             P(x) = x^3 + 2x^2 + x - 1, Q(x) = 3x + 4 \in \mathbb{R}[x]
esembio:
              P(x)+Q(x) = (1+0)x3+ (2+0)x2+ (1+3)x+ (-1+4)=
                          = 2e3+2x2+4x+3.
Ottenians che (IR[x], +, .) é una spazia veltariale
SU IR.
In mode analogo per agni campo k si definisce:
          K[x]:= depolinantia coefficienti in K?
dare
Chiamiano K[x] la spazio lettoriale de i pelinani
nell'indeterminata x a coefficienti in K.
```

Nella lezione informali):	2 avaarua dello/scritto (in maniera molto
	ni di matematica e física verificana proprietà:
Se V e allora c solutioni Problemi	w sono due soluzioni del problemo unche 14 m e 20, 2 E IR sono del problema. di questo tipo sono delti "linear".
Con la deliver lezione 3 possione di Manne di Manne strutto	niziane di spazio vettoriale introdotta vella zura one dire, più formalment, chel insieme delle nolli problemi di matematica e fisica na di spazio vettoriale:
Esempio 1:	2,4,2 CR: 9 x+ 2y - 2 = 0 sistema Cineare termini noti ruli
insieme delle selvitio	$S = \{(x,y,z) \in \mathbb{R}^3 : x+2y-z = 0 \in y+7z=0\} = $ $= \{(15t,-7t, t) : t \in \mathbb{R}^2 - S \text{ ha ma} $ $= shutter di$
Esempio 2:	Un piccolo spoiler per grando studiente in analisi le equazioni differenziali. Determiniano le funzioni y: R-IR (y= f(x)) toli che
	y-3y+2y=0 equation differentiale equation differentiale eineare ordinaria oneagned del secondo (deritalia secondo) costanti.
	imporente $S = Jy : R - 0R : \dot{y} - 3\dot{y} + 2y = 0\dot{\gamma} = \frac{1}{r} \sin \alpha u \alpha \ell \dot{s} \dot{s} \dot{\alpha}$ $J = J = \frac{1}{r} \sin \alpha u \ell \dot{s} \dot{s} \dot{\alpha}$ $J = J = \frac{1}{r} \cos \alpha u \ell \dot{s} \dot{\alpha}$ $J = J = \frac{1}{r} \cos \alpha u \ell \dot{s} \dot{\alpha}$ $J = J = \frac{1}{r} \cos \alpha u \ell \dot{s} \dot{\alpha}$ $J = J = \frac{1}{r} \cos \alpha u \ell \dot{s} \dot{\alpha}$ $J = J = \frac{1}{r} \cos \alpha u \ell \dot{s} \dot{\alpha}$ $J = J = \frac{1}{r} \cos \alpha u \ell \dot{s} \dot{\alpha}$ $J = J = \frac{1}{r} \cos \alpha u \ell \dot{s} \dot{\alpha}$ $J = J = \frac{1}{r} \cos \alpha u \ell \dot{s} \dot{\alpha}$ $J = J = \frac{1}{r} \cos \alpha u \ell \dot{s} \dot{\alpha}$ $J = J = \frac{1}{r} \cos \alpha u \ell \dot{s} \dot{\alpha}$ $J = \frac{1}{r} \cos \alpha u \ell \dot{s} \dot{\alpha}$