3. Folgen und Reihen: Inhalt

- Folgen und Reihen
 - Folgen
 - Grenzwerte
 - Eigenschaften von Folgen
 - Reihen

Definition und Beispiele

Folge

Eine Vorschrift, die jeder natürlichen Zahl n = 1, 2, 3, ... eine Zahl a_n zuordnet, heißt (unendliche) **Folge.**

Schreibweisen: $a_1, a_2, \ldots, a_n, a_{n+1}, \ldots$ oder $\{a_n\}$.

Rekursive Definition: Das erste Glied der Folge ist gegeben, jedes weitere Glied wird aus dem vorigen erzeugt.

Explizites Bildungsgesetz: Rechenvorschrift für jedes Glied der Folge unabhängig von den anderen.

Beispiele:

- Arithmetische Folge: $a_n = a_0 + n \cdot d$
- Geometrische Folge: $a_n = a_0 q^n$
- Harmonische Folge: $a_n = \frac{1}{n}$

Grenzwert

Definition

Der **Grenzwert** g einer Folge $\{a_n\}$ ist die endliche Zahl, der sich die Glieder der Folge beliebig gut nähern:

$$\lim_{n\to\infty} a_n = g \tag{48}$$

Nullfolge: eine Folge mit Grenzwert Null.

Eulersche Zahl:
$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 2,71828...$$

Eigenschaften und Sätze

Beschränktheit: Es existieren A, B mit $A \le a_n \le B \quad \forall n \in \mathbb{N}$

Monotonie: $a_n \leq a_{n+1}$ oder $a_n \geq a_{n+1}$ $\forall n \in \mathbb{N}$

Konvergenz: Die Folge hat einen Grenzwert.

- ullet Eine Folge ist divergent, wenn sie gegen ∞ geht oder oszilliert.
- Summen, Differenzen, Produkte und Quotienten mit Nenner ungleich Null von konvergenten Folgen sind auch konvergent.

Cauchysches Konvergenzkriterium:

$$\{a_n\}$$
 konvergiert $\iff \forall \, \epsilon > 0$ existiert $N(\epsilon) \in \mathbb{N}$ mit $|a_n - a_m| < \epsilon \ \forall \, n, m > N(\epsilon)$

Satz: Jede konvergente Folge ist beschränkt.

Satz: Jede beschränkte und monotone Folge ist konvergent.

Eigenschaften und Sätze

Beispiel: Eigenschaften der Folge $\{a_n\} = \left\{\frac{n}{n+1}\right\}$

- Es gelten $a_n = \frac{n}{n+1} \ge 0$ und $a_n < 1$ für alle Folgenglieder.
 - ⇒ Die Folge ist beschränkt.

•
$$a_{n+1} - a_n = \frac{n+1}{n+2} - \frac{n}{n+1} = \frac{(n+1)^2 - n(n+2)}{(n+1)(n+2)}$$

= $\frac{n^2 + 2n + 1 - n^2 - 2n}{(n+1)(n+2)} = \frac{1}{(n+1)(n+2)} > 0$ für alle $n \in \mathbb{N}$.

- ⇒ Die Folge ist monoton steigend.
- Die Folge hat den Grenzwert

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{n+1} = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1 - \lim_{n \to \infty} \frac{1}{n+1} = 1.$$

Definition und Konvergenz

Reihen

Eine Reihe ist die unendliche Summe der Glieder einer Folge:

$$s = a_1 + a_2 + \cdots + a_n + \cdots = \sum_{i=1}^{\infty} a_i$$
 (49)

Eine Reihe kann auch als Folge der Teilsummen $s_m = \sum_{i=1}^m a_i$ interpretiert werden.

Eine Reihe konvergiert, wenn die Folge der Teilsummen konvergiert.

Beispiele:

Die arithmetische Reihe divergiert, weil $s_n = a_0(n+1) + d\frac{n(n+1)}{2}$.

Die geometrische Reihe konvergiert für |q| < 1 und hat den Wert $\frac{1}{1-q}$. Die harmonische Reihe divergiert.

Konvergenz der geometrischen Reihe

Beispiel: Konvergenz der geometrischen Reihe

Die geometrische Reihe ist gegeben durch $s = \sum_{i=0}^{\infty} q^{i}$.

Die Teilsummen $s_m = \sum_{i=0}^m q^i$ werden mit einem Trick berechnet:

$$(1-q) s_{m} = \sum_{i=0}^{m} q^{i} - \sum_{i=0}^{m} q^{i+1} = 1 - q + q - \dots - q^{m} + q^{m} - q^{m+1} = 1 - q^{m+1}$$

$$\implies s_{m} = \sum_{i=0}^{m} q^{i} = \frac{1 - q^{m+1}}{1 - q}$$

Für |q| < 1 konvergiert die geometrische Reihe damit wie folgt:

$$s = \sum_{i=0}^{\infty} q^i = \lim_{m \to \infty} s_m = \lim_{m \to \infty} \frac{1 - q^{m+1}}{1 - q} = \frac{1}{1 - q}.$$

