Homework 5

Ryan Ellis

Spring semester 2023

1 Python

1.1

• The coefficient on the endogenous mpg is -22.21. A unit increase in mpg corresponds to a decrease in price of \$22.21.

1.2

• We should be concerned primarily with omitted variable bias, or equivalently, the possibility that mpg is a confounder correlated with both price and the error term. It's unlikely that we have measurement error or simultaneity in this particular application.

1.3

	Dependent variable: price		
	(1)	(2)	(3)
car	-4676.09***	-4732.67***	-90156.39
	(574.37)	(573.29)	(226687.35)
const	17627.64***	17441.23***	-264024.20
	(1754.87)	(1751.12)	(746919.27)
$\hat{mpg}(a)$	150.43**		
10()	(62.16)		
$\hat{mpg}(b)$, ,	157.06**	
15()		(62.02)	
$\hat{mpg}(c)$,	10165.74
			(26559.83)
First-stage F	[[75.4640828]]	[[75.76900674]]	[[0.0003864]]
Observations	1,000	1,000	1,000
R^2	0.20	0.20	0.19
Adjusted \mathbb{R}^2	0.19	0.19	0.19
Residual Std. Error	3481.08	3480.12	3491.04
F Statistic	121.62***	121.97***	118.09***
Note:	*p<0.1; **p<0.05; ***p<0.01		

1.4

• Using GMM, the second-stage coefficient of interest (mpg) is 150.43, with S.E. 63.05. The point estimate is identical to treatment (1) in the table above, but with slightly larger errors, likely due to a suboptimal weighting matrix in the GMM estimation. GMM is more efficient than 2SLS when there are multiple instruments. In this case, there is only one.

2 Stata

2.1

	(1)
VARIABLES	price
mpg	150.4**
	(63.05) -4,676***
car	-4,676***
	(589.7)
Constant	17,628***
	(1,773)
Observations	1,000
R-squared	0.104
Robust standard	errors in parentheses

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1

2.2

• The MOP effective F-statistic is 78.362. The 5% critical value is 37.418, so we reject the null hypothesis (that *weight* is a weak instrument).