Phased Array Project using 2 ADAR1000's

Software setup: -

For Windows:

- 1. Clone cn0566 branch of pyadi from darshiltrivedi/pyadi-iio (this is temporary) by writing:-
 - Git clone --branch cn0566 https://github.com/darshiltrivedi/pyadi-iio.git
- 2. Install libiio from https://github.com/analogdevicesinc/libiio
- 3. Build from source
 - Cd pyadi-iio
 - Write python3 setup.py install
- 4. Open cloned pyadi/examples/cn0566/Phased_Array.py
 - This file performs all the phased array beamforming demos
 - The file is well commented has detail guide on what method/function does what

Note:- Even If you are using Windows PC step 1 to 5 are needed to be done on the Pi for this project

For Raspberry Pi:

- 1. Install Latest version of Kuiper Linux on SD card
- 2. Build from source pyadi and pylibiio
 - Git clone --branch cn0566 https://github.com/darshiltrivedi/pyadi-iio.git
 - Cd pyadi-iio
 - sudo python3 setup.py install
 - cd ../
 - git clone https://www.github.com/analogdevicesinc/libiio
 - cd libiio
 - cmake.
 - make
 - sudo make install
- 3. Update pylibiio, sudo pip3 install pylibiio==0.23.1
 - sudo mv /lib/python3.7/site-packages/iio.py /lib/python3.7/site-packages/iio_save.py (After updating pylibiio previous version was present for me so do this hack to avoid dependencies)
- 4. Download overlay file from: -
 - https://github.com/darshiltrivedi/Phased-Array/blob/main/Phased-Array-Python/PhasedArray-python-Master/Source-code/Overlays/rpi-cn0566-overlay.dtbo
 - Move this to /boot/overlays of your RPI i.e. cd "directory where you downloaded overlay file"
 - Sudo mv rpi-cn0566-overlay.dtbo /boot/overlays/rpi-cn0566-overlay.dtbo

- 5. Enable that overlay in /boot/config.txt file
 - Sudo mousepad /boot/config.txt
 - Add this to config file at the end and save it, dtoverlay= rpi-cn0566-overlay
 - Reboot the Pi
- 6. Open cloned pyadi/examples/cn0566/Phased_Array.py
 - This file performs all the phased array beamforming demos
 - The file is well commented has detail guide on what method/function does what

Note: - cn0566 branch of pyadi from darshiltrivedi/pyadi-iio is temporary and finally will merge into analogdevicesinc/pyadi-iio

Pluto Rev.C: -

This hack needs to be done in order to enable 2nd channel of pluto

Detailed guide on how to do so is at: -

https://github.com/darshiltrivedi/Phased-Array/blob/main/Pluto%20Hacks/RevC_2r2t.txt

Hardware setup: -

Pluto: -

- 1. Pop open blue box of pluto rev C. you would see 2nd Rx and Tx channel.
- 2. Connect UFL to SMA connector. Drill sma size holes on blue box next to current channels and fit those 2nd pair in their.

ADF4159: -

1. Pop out R18, R19 and R9 resistor on adf4159 Eval board.

- 2. Connect CLK to spi-clock of rpi via external 330 Ohm resistor(you must connect external 330Ohm resistor for level shifting)
- 3. Connect data to MOSI of rpi via external 330 Ohm resistor. Leave MISO disconnected
- 4. Connect LE to gpio 27 of rpi via external 330 Ohm resistor. (It is chip select)

- 5. Adf4159 needs 3 power supply
 - a. 5V from usb connected to Pi
 - b. 5/5.5 V given to banana jacks below usb
 - c. +15V to Gnd as shown in figure

EVALUATION SETUP

ADAR1000

- 1. Connect CLK, MOSI, MISO of both the ADAR1000 to respective pin of RPI.
- 2. Connect CS of 1st adar1000(Beam0) to gpio 8 of Pi and CS of 2nd adar1000(Beam1) to gpio 27.
- 3. Set address of both adar1000 to 00 on eval-board i.e. Do not connect any pins.
- 4. (Connector P1 and P2 are identical) Short Chip_select pin of P2/P1 to OE pin of level-shifter i.e. Pin 1 of P5 using jumper cable. This needs to be done in order to avoid cross-talk between 2 adar. Do this for both adar1000

- 5. Connect +5, +3.3 and Gnd to both adar1000.
- 6. Connect all Rx channel of both adar1000 to antenna array in order i.e. 1st adar/beam0's channel 1 to 1st antenna array and so on.
- 7. Connect o/p of both adar1000 to 2 mixers.
- 8. Connect o/p of adf4159(which is labeled to spectrum analyzer in figure 2) to a 4-20GHz frequency splitter and those divided output to LO of both the mixers.
- 9. Connect IF of both the mixers to 2 Rx channels of Pluto.
- 10. Connect Pluto to device on which you are running source code i.e. if using windows to run connect pluto to windows machine.
- 11. Place Signal Frequency/ frequency Source to mechanical boresight of antenna array.
- 12. Run the Phased_Array.py from examples folder