Structural bioinformatics Project – Assignment 2: Sequence analysis.

1. Does your protein have an HMM available in the PFAM database?

We were going to get the fasta of the protein sequence, name it ATP_target.fa and use the following command to get the PFAM entry of ATP synthase.

\$hmmscan ~/Documents/databases/Pfam-A.hmm ATP target.fa > scanned ATP.out

However, we couldn't find the full sequence to use as a query, so we used the Interprot database to search for ATP synthase in the PFAM database. The entry that better fit our needs was PF00231 (https://www.ebi.ac.uk/interpro/entry/pfam/PF00231/). We looked at its short name (ATP-synt), that is what we would be using as the name in the hmmfetch command.

\$hmmfetch ~/Documents/databases/PFAM/Pfam-A.hmm ATP-synt ab > alpha.hmm

As we could find an entry in the PFAM database for ATP Synthase, it means that we have an HMM available in the PFAM database.

2. Choose a set of 6 to 8 amino acid sequences that belong to the protein family you are studying. These sequences should represent the evolutionary history of your protein family, so you want them to have some diversity between them and avoid redundant or highly similar pairs of sequences. You will use these sequences to build a multiple sequence alignment. From what database should you retrieve these sequences? Why?

For the database that we choose to take our amino acid sequences, we've decided to go with uniprot. The reason behind this, is that compared to its closest contestant pdb, Uniprot offers us the available sequences for our desired protein (in this case ATP synthase) Non-biased and Non-redundant.

PDB is biased towards proteins easier to crystallize or study structurally. On the other hand, Uniprot represents proteins from diverse organisms and sources, including proteins from a wide range of species, which should be useful for determining evolutionary history ,and most importantly it attempts to eliminate redundancy by collapsing similar or identical protein sequences into a single entry. This feature will help us by saving us a lot of time in finding sequences that are similar/identical, and directly skipping to substantially different proteins.

Steps:

Go to UniProt and search for ATP synthase (homo sapiens), and look for the subunit F1 alpha, download the fasta sequence as target alpha.fa do an alignment

\$hmmscan ~/Documents/databases/PFAM/Pfam-A.hmm target_alpha.fa > alpha HMM.out

We look into the .out file and pick the model with lowest E-value (highest score).

Model found: ATP-synt ab

We use the ID of the model to fetch its corresponding hidden markov model.

\$hmmfetch ~/Documents/databases/PFAM/Pfam-A.hmm ATP-synt ab > alpha.hmm

Now that we have the model created we will use it to look for similar sequences from the same protein family , we will use the hmmsearch command.

\$hmmsearch alpha.hmm ~/Documents/databases/UniProt/uniprot_sprot.fasta > prot_fam_ids.out

Results:

Q9UVJ8, P17255, P38078, P31406, P11592, Q5TTG1, P31400, P54647 \rightarrow subunit F0 chain A, which we will not use

As Alberto said, to focus on the F1 subunit, we looked for results that appear on that chain, even if they have lower E-values (to account for diversity we didn't pick IDs that were next to each other, or were from the same species), these are the IDs we found.

Real results:

Q8TWL6, A3CS71, A8AUJ7, C6A5E8, A7IAU8, O29101, Q0W363, \rightarrow for subunit F1 chain alpha.

We download the fasta files from the ID of the results and concatenate them into sequences_F1_chain_alpha.fa for use in the next exercises.

Now we do the same for the following parts of the protein:

subunit F1 beta:

B7IQV8, B7HFK1, Q814W2, A9VSA3, A0RL95, C1F0M8, C3LFH9, C3P1F4

3. Make a sequence alignment with the sequences you just obtained in the previous step. To create this alignment, use the HMM you found in PFAM and the programs from the HMMer package.

We will use the sequences in sequences fasta that we created in the last exercise using

\$cat Q8TWL6.fasta A3CS71.fasta A8AUJ7.fasta C6A5E8.fasta A7IAU8.fasta O29101.fasta Q0W363.fasta > sequences_F1_chain_alpha.fa

Then we will align the sequences against the hmm we created in exercise 1 using PFAM with the following command

\$hmmalign alpha.hmm sequences_F1_chain_alpha.fa > MSA_F1_alpha.sto

Then we would transform the file from stockholm format to an alignment using perl

\$perl ~/Documents/perl_scripts/aconvertMod2.pl -in h -out c <MSA_F1_alpha.sto > aln_F1_alpha.aln

We repeat this process for all chains in all subunits and name each one in the appropriate manner.

4. Search for conserved regions in your alignment. Do these regions correspond with the essential regions you described in the previous assignment (question 6)? Why do you think this is happening? Provide images of your alignment to support your explanation. In these images, the alignments should be in clustalw format, use the perl script we learnt in practice 2 to change the format of the alignments produced by hmmer programs.

Subunit F1 chain alpha:

For the alignment of subunit F1 chain alpha, we can observe that the beginning and ending of the sequence has 0 conservation, however the middle sequence has almost 100% conservation. From position 223 to 500 we can see that almost everything is conserved apart from very small parts of nucleotides that are not conserved (the biggest gap is of 7 aa and the rest are like 2 aa approximately).

From that we can speculate that the region of F1 alpha is either the part of the protein that is involved in the synthesis of ATP from ADP and Pi, or a vital region in protein-protein interactions inside of the protein.

3 sp 08TWL6 VATA METKA	-msnsvkgeivkiagpvveavgcegakmyevfrvgdegligeviniesdratigvyeett	43 sp Q8TWL6 VATA METKA	SNMPVAAREACIYTGITMAEYYRDMGYDVALMADSTSRWAEALREISGRLEEMPGEEGYP
4 sp A3CS71 VATA METMJ	mdkgkenraggvlkrisgpvvtavgldahmydvvkvgneelmgevikiggeniiigv	44 SPIA3CS71 VATA METMJ	SNMPVAAREASVYTGITIAEYFRDMGYDVSLMADSTSRWAEAMREISSRLEEMPGEEGYP
5 sp A8AUJ7 VATA STRGC	msqqkiikvsqplvlasqmqeaniqdicrvqdlqliqeiiemrrdqasiqvyeets	45 sp[A8AUJ7[VATA STRGC	SNMPVAAREASIYTGITIAEYFRDMGYSVAIMADSTSRWAEALREMSGRLEEMPGDEGYP
6 SP C6ASER VATA THESM	mgkivrvtgplvvademrgsrmyevvrvgelgligelirlegdkavigvyeeta	46 SP C6ASE8 VATA THESM	SNMPVAAREASIYTGITIAEYFRDMGYNVALMADSTSRWAEALREISGRLEEMPGEEGYP
7 sp A7IAU8 VATA METB6	mevkangaketkkgvlkriagpvvtavnldahmydvvrvgnealmgevikiggdnviigv	47 sp A7IAU8 VATA METB6	SNMPVAAREASVYTGITIAEYFRDMGYDVSLMADSTSRWAEAMREISSRLEEMPGEEGYP
8 sp 029101 VATA ARCFU	mevkeagyvgeiyrisgplvvaeglkarmydlckvgeeglmgevvglvggkvligvy	48 sp 029101 VATA ARCFU	SNMPVAAREASVYTGITIAEYFRDMGYDVAIQADSTSRWAEAMREISGRLEEMPGEEGYP
9 SP QOW363 VATA METAR	msqqqtiyrvaqpvvtavqlnarmydvvkvqneqlmqevieidndkaiiqvy	49 SP 00W363 VATA METAR	SNMPVAAREASCYTGITIAEYYRDMGYGVSLMADSTSRWAEAMREISSRLEEMPGEEGYP
10	113 3 3 3 3 3 3 1 1 1	50	
11 sp Q8TWL6 VATA METKA	glapgepvkgtgellsvelgpglltgifdgigrplpeirkevgdfvergilvsaldrkkk	51 sp Q8TWL6 VATA_METKA	AYLASRLAEFYERAGRVvclGSDDRVGSVTVVGAVSPPGGDFSEPVTQNTLRIVKVFWAL
12 sp A3CS71 VATA METMJ	yedtagirpgesvgntglslavelgpglltsiydgigrplevlvdkmgnfiergvsapgl	52 sp A3CS71 VATA_METMJ	AYLAARLSEFYERAGRViSLNGEGGSVSVIGAVSPPGGDFSEPVTQNTLRIVKVFWAL
13 sp A8AUJ7 VATA STRGC	glapgepvittgsplsvelapglisamfdgiarplerfatitesdflvrgvalpnldret	53 sp A8AUJ7 VATA_STRGC	AYLGSRIAEYYERAGRVktlGSTAREGSITAIGAVSPPGGDISEPVTQNTLRIVKVFWGL
14 sp C6A5E8 VATA THESM	gikpgepvmgtgaslsvelgpglltsiydgiqrpleilrsgsgdfigrgltapalsrdkk	54 sp C6A5E8 VATA_THESM	AYLASKVAEFYERAGRVrtlGSDDRIGSVSVIGAVSPPGGDLSDPVVQNTLRVVKVFWAL
15 sp A7IAU8 VATA METB6	yedttgikpgepvsntglslavelgpglltsiydgigrplevlvnkmgnfiergvsapgl	55 sp A7IAU8 VATA_METB6	AYLAARLSEFYERAGLVeTLNHQSGSVSVIGAVSPPGGDFSEPVTQNTLRIVKVFWAL
16 sp 029101 VATA ARCFU	edtegvkpgdkventgmplsvelgpglirniydgvqrplpvlkevsgdfigrgieapgld	56 sp 029101 VATA_ARCFU	AYLASRLAEFYERAGRVkTLAGNIGSVTVVGAVSPPGGDFSEPVTQNTLRIVKVFWAL
17 sp Q0W363 VATA_METAR	edtsgvrpgepventgmplsvelgpglltsiydgiqrplevlkekmgnfitrgvsapgls	57 sp Q0W363 VATA_METAR	AYLAARLSEFYERAGRV\TPIGKEGSVTVIGAVSPAGGDISEPVTQNTLRIVKVFWAL
18		58	
19 sp Q8TWL6 VATA_METKA	weftpkvkegekveegdvlgtvpetefiehkimvppgvsgevieiaadgeytvedtiavi		DSKLADRRHFPAINWLQSYSlylddvekwwheeiggdwrelrdeameilqreseleeivq
20 sp A3CS71 VATA_METMJ	shekkwefvptvkkgdevkagdilgtvqetnivhkvmvppkakggkikkisggsftvdet	60 sp A3CS71 VATA_METMJ	DAKLSQRRHFPAINWLNSYSlyldalnewydkevspewnplrawamgvlqkeaelgelvq
21 sp A8AUJ7 VATA_STRGC	kwnfvpslsvgdaveagdilgtvqetnlvehrimvpvgvsgrlanisagsftveetvyei	61 sp A8AUJ7 VATA_STRGC	DAQLAQRRHFPAINWLSSYSlyldevgayidqhekiawaekvtkamnilqkeselqeivr
22 sp C6A5E8 VATA_THESM	whftpkvkvgdkvvggdiigvvpetsiiehkimippeiegeiieivgegdytieeviakv	62 sp C6A5E8 VATA_THESM	DADLARRRHFPAINWLTSYSlyvdsikdwwqnnvdpewkamrdeamallqkeseleeivr
23 sp A7IAU8 VATA_METB6	shekkwtfkpvvkagdkvepgailgevqetnivhkvmlppnvkagvvktikagdftvdei	63 sp A7IAU8 VATA_METB6	DAKLSQRRHFPAINWLNSYSlyldalhdwydknvspdwnklrswamgvlqkeaelqeivq
24 sp 029101 VATA_ARCFU	rkakwefkplvkkgekvkpgeligtvqetevveqkilvppnvkegvlaelyegsftvedt	64 sp 029101 VATA_ARCFU	DAKLAARRHFPAINWLQSYSlyvdtlkdwfaenvseewnelrrwamevlqeeanlqeivq
25 sp Q0W363 VATA_METAR	rtkkwkfvpvvkagdkvkggivigtvqetktivhkimvppnvgettikdikegeftvedv	65 sp Q0W363 VATA_METAR	DAKLAQRRHFPSINWLNSYSlyqdslkdwydknispewnqlkaesmellqreselqeivq
26		66	
27 sp Q8TWL6 VATA_METKA	edeegeehevtmmqewpvrkprpykrkldpeepliTGQRVIDTFFPVAKGGTAAIPGPFG	67 sp Q8TWL6 VATA_METKA	$lvgpdalpeser lilevar {\tt miredflqqnafhevdtycppekqyemlktilhfkeraeea}$
28 sp A3CS71 VATA_METMJ	vcvledgteiamlqrwpvrvprpvtqklnpdipliTGQRILDGLFPIAKGGTAAIPGPFG	68 sp A3CS71 VATA_METMJ	lvgs dalp de eqv tie var mireiflqqnay dav dt fc pmskqydmmkaikhyadlarta
29 sp A8AUJ7 VATA_STRGC	eqaegsifkgtlmqkwpvrrgrpfaqklipveplvTGQRVIDTFFPVTKGGAAAVPGPFG	69 sp A8AUJ7 VATA_STRGC	lvgldslsekdrltmnaakmiredylqqnafddvdtytsfkkqvallsniltfdaeanra
30 sp C6A5E8 VATA_THESM	kapngeikevrmyqrwpvrmkrpykqklppevplvTGQRTIDTFFPQAKGGTAAIPGPFG	70 sp C6A5E8 VATA_THESM	ivgp dalperekaill varmlredylqqdafhevd tyclpkkqvtmmrviln fyrhtmra
31 sp A7IAU8 VATA_METB6	iviledgreypmiqrwpvrvprpvkekknptipllTGQRILDGLFPIAKGGTAAIPGPFG	71 sp A7IAU8 VATA_METB6	$lvgs dalpet eqiti evar {\tt mireiflqqnay} davdt fcd {\tt mqkqydmmkairlysdlanta}$
32 sp 029101 VATA_ARCFU	iavledgtelklyhkwpvriprpyveklppvvpliTGQRILDTFFPVAKGGTAAIPGPFG	72 sp 029101 VATA_ARCFU	lvgsdalpesqrvllevariirevyliqyayhpvdtycsvqkqydmlkaikqindwfyqa
33 sp Q0W363 VATA_METAR	ighlengtelklmhkwpvrvprpyveklrpdipliTGQRVLDGLFPIAKGGTAAIPGPFG	73 sp Q0W363 VATA_METAR	lvgs dalped qqltie iar mire iflqqnay hevd tycsldkqlk mlk simqf gayarta
34		74	
35 sp Q8TWL6 VATA_METKA	SGKTVTQQQLAKWADAQVVVYIGCGERGNEMTEVLEDFpeledprTGRPLMERTILVANT	75 sp Q8TWL6 VATA_METKA	vdkgvpvdeilkldviddiarmkvipneeakekiqeirkkideqfeelieeas
36 sp A3CS71 VATA_METMJ	SGKTVTQQQLAKWSDAEIVVYIGCGERGNEMTEVLTEFpeledpkTGKPLMERTVLIANT	76 sp A3CS71 VATA_METMJ	qtggatpqqvigirsknelpqikfirdyepelakimkdmeaefdamrav
37 sp A8AUJ7 VATA_STRGC	AGKTVVQHQVAKFANVDIVIYVGCGERGNEMTDVLNEFpelidpsTGQSIMQRTVLIANT	77 sp A8AUJ7 VATA_STRGC	lelgayfreimegtvelrdriarskfvhedqlekiqalsqtieetlhqilaqggldnerh
38 sp C6A5E8 VATA_THESM	SGKTVTQHQLAKWSDAEVVVYIGCGERGNEMTDVLEEFpklkdprTGKPLMERTVLIANT	78 sp C6A5E8 VATA_THESM	idagipveeiaklpvreeigrmkynpnieeiavlmektkeqfeelfkkyge
39 sp A7IAU8 VATA_METB6	SGKTVTQQQLAKWSDAKIVVYIGCGERGNEMTEVLTEFphledptSGKPLMERTVLIANT	79 sp A7IAU8 VATA_METB6	qaagvspaqittikaknelpqikfvkdykqplakiekdmdaefnalrsaa
40 sp 029101 VATA_ARCFU	SGKTVTQHQLAKWSDAQIVVYIGCGERGNEMTEVLEEFpeledprTGKPLMERTVLVANT	80 sp 029101 VATA_ARCFU	leagktidelagvegleefarakfeedykpameaalekirknllge
41 sp Q0W363 VATA_METAR	SGKTVTQQQLAKWSDAEIVVYIGCGERGNEMTEVLAEFphltdpkTGNPLMDRTVLIANT	81 sp Q0W363 VATA_METAR	lasgvpmskilninskndlakvkfeanydayltkvnddmkkefksleaa

Subunit F1 chain beta:

After doing the alignment for subunit F1 beta we can see that the conserved region is in the middle, between position 144 and 383, being 1-144 and 383-503 being non conserved regions. From that we can speculate that the region of F1 beta 144-383 is either the part of the protein that is involved in the synthesis of ATP from ADP + Pi, or a vital region in

protein-protein interactions inside the protein. Essentially the same as alpha.

39 sp B7IQV8 ATPB_BACC2	QGQDVLLFIDNIFRFTQAGSEVSALLGRMPSAVGYQPTLATEMGQLQERITSTNKG	3	sp B7IQV8 ATPB_BACC2	-mnkgrvtqimgpvvdvkfdggklpeiynaltvkqsnengsmnltfevalhlgddtvrtv
40 sp B7HFK1 ATPB_BACC4	QGQDVLLFIDNIFRFTQAGSEVSALLGRMPSAVGYQPTLATEMGQLQERITSTNKG	- 4	sp B7HFK1 ATPB_BACC4	-mnkgrvtqimgpvvdvkfdggklpeiynaltvkqsnengsmnltfevalhlgddtvrtv
41 sp Q814W2 ATPB_BACCR	QGQDVLLFIDNIFRFTQAGSEVSALLGRMPSAVGYQPTLATEMGQLQERITSTNKG	- 5	sp Q814W2 ATPB_BACCR	-mnkgrvtqimgpvvdvkfdggklpeiynaltvkqsnengsmnltfevalhlgddtvrtv
42 sp A9VSA3 ATPB BACMK	QGQDVLLFIDNIFRFTQAGSEVSALLGRMPSAVGYQPTLATEMGQLQERITSTNKG	6	sp A9VSA3 ATPB_BACMK	mnkgrvtqimgpvvdvkfdggklpeiynaltvkqsnengasinltfevalhlgddtvrtv
43 sp A0RL95 ATPB_BACAH	QGQDVLLFIDNIFRFTQAGSEVSALLGRMPSAVGYQPTLATEMGQLQERITSTNKG	7	sp A0RL95 ATPB_BACAH	mnkgrvtqimgpvvdvkfdggklpeiynaltvkqsnengtsinltfevalhlgddtvrtv
44 sp C1F0M8 ATPB_BACC3	QGQDVLLFIDNIFRFTQAGSEVSALLGRMPSAVGYQPTLATEMGQLQERITSTNKG	8	sp C1F0M8 ATPB_BACC3	mnkgrvtqimgpvvdvkfdggklpeiynaltvkqsnengtsinltfevalhlgddtvrtv
45 sp C3LFH9 ATPB_BACAC	QGQDVLLFIDNIFRFTQAGSEVSALLGRMPSAVGYQPTLATEMGQLQERITSTNKG	9	sp C3LFH9 ATPB_BACAC	mnkgrvtqimgpvvdvkfdggklpeiynaltvkqsnengtsinltfevalhlgddtvrtv
46 sp C3P1F4 ATPB_BACAA	QGQDVLLFIDNIFRFTQAGSEVSALLGRMPSAVGYQPTLATEMGQLQERITSTNKG	10	sp C3P1F4 ATPB_BACAA	mnkgrvtqimgpvvdvkfdggklpeiynaltvkqsnengtsinltfevalhlgddtvrtv
47		11		
48 sp B7IQV8 ATPB_BACC2	SITSIQAVYVPADDYTDPAPATTFAHLDATTNLERRLTQMGIYPAVDPLASTSralspei	12	sp B7IQV8 ATPB_BACC2	ams stdglvrg tevedtgkalsvpvgdvtlgrvfnvlgdaidldgelpadvhrdpihrqa
49 sp B7HFK1 ATPB_BACC4	SITSIQAVYVPADDYTDPAPATTFAHLDATTNLERRLTQMGIYPAVDPLASTSralspei	13	sp B7HFK1 ATPB_BACC4	${\sf amsstdglvrgtevedtgkaisvpvgdatlgrvfnvlgdaidldgelpadvhrdpihrqa}$
50 sp Q814W2 ATPB_BACCR	SITSIQAVYVPADDYTDPAPATTFAHLDATTNLERRLTQMGIYPAVDPLASTSralspei	14	sp Q814W2 ATPB_BACCR	${\tt amsstdglvrgtevedtgkaisvpvgdatlgrvfnvlgdaidldgelpadvhrdpihrqa}$
51 sp A9VSA3 ATPB_BACMK	SITSIQAVYVPADDYTDPAPATTFAHLDATTNLERRLTQMGIYPAVDPLASTSralspei	15	sp A9VSA3 ATPB_BACMK	$\verb amsstdg vrgtevedtgka is vpvgdvt grvfnv gdaid ldgdvpadvrrdpihrqa $
52 sp A0RL95 ATPB_BACAH	SITSIQAVYVPADDYTDPAPATTFAHLDATTNLERRLTQMGIYPAVDPLASTSralspei	16	sp A0RL95 ATPB_BACAH	amsstdglvrgtevedtgkaisvpvgdatlgrvfnvlgdaidldgevpadvrrdpihrqa
53 sp C1F0M8 ATPB_BACC3	SITSIQAVYVPADDYTDPAPATTFAHLDATTNLERRLTQMGIYPAVDPLASTSralspei	17	sp C1F0M8 ATPB_BACC3	${\tt amsstdglvrgtevedtgkaisvpvgdatlgrvfnvlgdaidldgevpadvrrdpihrqa}$
54 sp C3LFH9 ATPB_BACAC	SITSIQAVYVPADDYTDPAPATTFAHLDATTNLERRLTQMGIYPAVDPLASTSralspei	18	sp C3LFH9 ATPB_BACAC	ams stdglvrg tevedtgkais vpvgdatlgrv fnvlgdaidldgevpadvrrdpihrqa
55 sp C3P1F4 ATPB_BACAA	SITSIQAVYVPADDYTDPAPATTFAHLDATTNLERRLTQMGIYPAVDPLASTSralspei	19	sp C3P1F4 ATPB_BACAA	ams stdglvrg tevedtgkalsvpvg datlgrv fnvlgdaidldgevpadvrrdpihrqa
56		20		
57 sp B7IQV8 ATPB_BACC2	vgeehyevarqvqqtlqrykelqdiiailgmdelseedklvvhrarriqfflsqnfhvae	21	sp B7IQV8 ATPB_BACC2	pafeelstkveileTGIKVVDLLAPYIKGGKIGLFGGAGVGKTVLIQELINNIAQEHGgi
58 sp B7HFK1 ATPB_BACC4	vgeehyevarqvqqtlqrykelqdiiailgmdelseedklvvhrarriqfflsqnfhvae	22	sp B7HFK1 ATPB_BACC4	pafeelstkveileTGIKVVDLLAPYIKGGKIGLFGGAGVGKTVLIQELINNIAQEHGgi
59 sp Q814W2 ATPB_BACCR	vgeehyevarqvqqtlqrykelqdiiailgmdelseedklvvhrarriqfflsqnfhvae	23	sp Q814W2 ATPB_BACCR	pafeelstkveileTGIKVVDLLAPYIKGGKIGLFGGAGVGKTVLIQELINNIAQEHGgi
60 sp A9VSA3 ATPB_BACMK	vgeehyevarqvqqtlqrykelqdiiailgmdelseedklvvhrarriqfflsqnfhvae	24	sp A9VSA3 ATPB_BACMK	pafeelstkveileTGIKVVDLLAPYIKGGKIGLFGGAGVGKTVLIQELINNIAQEHGgi
61 sp A0RL95 ATPB_BACAH	vgeehyevarqvqqtlqrykelqdiiailgmdelseedklvvhrarriqfflsqnfhvae	25	sp A0RL95 ATPB_BACAH	pafeelstkveileTGIKVVDLLAPYIKGGKIGLFGGAGVGKTVLIQELINNIAQEHGgi
62 sp C1F0M8 ATPB_BACC3	vgeehyevarqvqqtlqrykelqdiiailgmdelseedklvvhrarriqfflsqnfhvae	26	sp C1F0M8 ATPB_BACC3	pafeelstkveileTGIKVVDLLAPYIKGGKIGLFGGAGVGKTVLIQELINNIAQEHGgi
63 sp C3LFH9 ATPB_BACAC	vgeehyevarqvqqtlqrykelqdiiailgmdelseedklvvhrarriqfflsqnfhvae	27	sp C3LFH9 ATPB_BACAC	pafeelstkveileTGIKVVDLLAPYIKGGKIGLFGGAGVGKTVLIQELINNIAQEHGgi
64 sp C3P1F4 ATPB_BACAA	vgeehyevarqvqqtlqrykelqdiiailgmdelseedklvvhrarriqfflsqnfhvae	28	sp C3P1F4 ATPB_BACAA	pafeelstkveileTGIKVVDLLAPYIKGGKIGLFGGAGVGKTVLIQELINNIAQEHGgi
65		29		
66 sp B7IQV8 ATPB_BACC2	qftgqkgsyvpvkntvsgfkeilegkyddlpedafrlvggieevienakkmma	30	sp B7IQV8 ATPB_BACC2	sVFAGVGERTREGNDLYHEMSDSGVIKKTAMVFGQMNEPPGARQRVALTGLTMAEHFRDe
67 sp B7HFK1 ATPB_BACC4	qftgqkgsyvpvkntvsgfkeilegkyddlpedafrlvggieevienakkmma	31	sp B7HFK1 ATPB_BACC4	sVFAGVGERTREGNDLYHEMSDSGVIKKTAMVFGQMNEPPGARQRVALTGLTMAEHFRDe
68 sp Q814W2 ATPB_BACCR	qftgqkgsyvpvkntvsgfkeilegkyddlpedafrlvggieevienakkmma	32	sp Q814W2 ATPB_BACCR	sVFAGVGERTREGNDLYHEMSDSGVIKKTAMVFGQMNEPPGARQRVALTGLTMAEHFRDe
69 SP A9VSA3 ATPB_BACMK	qftgqkgsyvpvkntvsgfkeilegkyddlpedafrlvgsieevienakkmma	33	sp A9VSA3 ATPB_BACMK	sVFAGVGERTREGNDLYHEMSDSGVIKKTAMVFGQMNEPPGARQRVALTGLTMAEHFRDe
70 sp AORL95 ATPB_BACAH	qftgqkgsyvpvketvrgfkeilegkyddlpedafrlvggieevienakkmma	34	sp A0RL95 ATPB_BACAH	sVFAGVGERTREGNDLYHEMSDSGVIKKTAMVFGQMNEPPGARQRVALTGLTMAEHFRDe
71 sp[C1F0M8 ATPB_BACC3	qftgqkgsyvpvketvrgfkeilegkyddlpedafrlvggieevienakkmma	35	sp C1F0M8 ATPB_BACC3	SVFAGVGERTREGNDLYHEMSDSGVIKKTAMVFGQMNEPPGARQRVALTGLTMAEHFRDe
72 sp C3LFH9 ATPB_BACAC	qftgqkgsyvpvketvrgfkeilegkyddlpedafrlvggieevienakkmma	36	sp C3LFH9 ATPB_BACAC	sVFAGVGERTREGNDLYHEMSDSGVIKKTAMVFGQMNEPPGARQRVALTGLTMAEHFRDe
73 sp C3P1F4 ATPB_BACAA	qftgqkgsyvpvketvrgfkeilegkyddlpedafrlvggieevienakkmma	37	sp C3P1F4 ATPB_BACAA	sVFAGVGERTREGNDLYHEMSDSGVIKKTAMVFGQMNEPPGARQRVALTGLTMAEHFRDe

5. Work with the mutation you choose in the previous assignment (assignment 1, question 7). Find where this mutation would happen in the alignment you created in question 3. Compare the mutated amino acid with the amino acids that you find at that position in your alignment, do they share similar properties or not? Make a hypothesis of how this mutation is affecting the function of the protein. Provide images of your alignment to support your explanation.

In ex 7 we used subunit F0 a and for the alignments we used subunit F1 alpha and beta. Therefore, we would need to break our workflow in order to do this exercise. Also because we were recommended to focus on the workings of the protein we will put our efforts in that instead of looking for mutations. At the final project we might consider talking about mutations.

Disclaimer: in this part of the practice we mainly focused on learning how to deal with the whole protein. We had a bunch of problems because we didn't know how to deal with the fact that the protein subunits are partitioned).

Now that we have learned how to work correctly with our protein, we might include a study of how the proton gradient is done and how it affects our protein (subunit F0 C1, C2, C3)