Hluboké zásobníkové automaty konečného indexu

Vendula Poncová

xponco00@stud.fit.vutbr.cz

Hluboký zásobníkový automat

Hluboký zásobníkový automat je sedmice $M=(Q,\Sigma,\Gamma,R,s,S,F)$, kde

Q je konečná množina stavů,

 Σ vstupní abeceda,

 Γ zásobníková abeceda, $\Sigma \subseteq \Gamma$, $Q \cap \Gamma = \emptyset$,

R je konečná množina pravidel,

 $s \in Q$ je počáteční stav,

 $S \in \Gamma$ počáteční zásobníkový symbol a

 $F \subseteq Q$ je množina koncových stavů.

Pravidla množiny R jsou tvaru:

$$mqA \rightarrow pv$$
, kde $m \in \{1, 2, 3, \dots, n\}$, $q, p \in Q$, $A \in (\Gamma - \Sigma)$, $v \in \Gamma^+$.

Hluboký zásobníkový automat

Příklad aplikace pravidla $2qA \rightarrow pBbCc$.

Konečný index

Hluboký zásobníkový automat konečného indexu je osmice $M=(Q,\Sigma,\Gamma,R,s,S,F,n)$, kde $n\in\{1,2,3,\dots\}$ je maximální počet nevstupních symbolů na zásobníku.

Konečný index

V hlubokém zásobníkovém automatu konečného indexu 3 nelze pravidlo $2qA \rightarrow pBbCc$ v aktuální konfiguraci aplikovat.

Omezení počtu nevstupních symbolů

Hluboký zásobníkový automat konečného indexu s jedním nevstupním symbolem $M_{\#}$.

Aplikace pravidla $2q\# \to p\#b\#c$ v aktuální konfiguraci.

Ekvivalence s hlubokými PDA

Je ekvivalentní s hlubokým zásobníkovým automatem konečného indexu?

- 1. Každý hluboký zásobníkový automat konečného indexu s jedním nevstupním symbolem splňuje definici pro obecný hluboký zásobníkový automat konečného indexu.
- 2. Existuje pro každý hluboký zásobníkový automat konečného indexu ekvivalentní s jedním nevstupním symbolem?

Převod na zredukovaný automat

Algoritmus:

```
Vstup: M = (Q, \Sigma, \Gamma, R, s, S, F, n)
Výstup: M_{\#} = (Q_{\#}, \Sigma, \{\#\} \cup \Sigma, R_{\#}, < s, \# >, \#, F_{\#}, n)
Pro každé pravidlo mqA \rightarrow pb_0B_1b_1B_2b_2\dots b_{j-1}B_jb_j \in R, kde
j \in \{0, 1, 2, ..., n\}, b_0, b_1, ..., b_i \in \Sigma^* \text{ a } B_1, B_2, ..., B_i \in (\Gamma - \Sigma), \text{ a každé}
(u,z) \in (\Gamma - \Sigma)^* \times (\Gamma - \Sigma)^*, kde |u| = m-1, |z| < n-m:
      přidej do R_{\#} pravidlo
 m < q, uAz > \# \rightarrow < p, uB_1B_2 \dots B_{j-1}B_jz > b_0\#b_1\#b_2 \dots b_{j-1}\#b_j,
      přidej do Q_{\#} stavy < q, uAz >, < p, uB_1B_2 ... B_{j-1}B_jz >,
       pokud p \in F, přidej do F_{\#} stav \langle p, uB_1B_2 \dots B_{j-1}B_jz \rangle,
      pokud q \in F, přidej do F_{\#} stav < q, uAz >.
```

Převod na zredukovaný automat

Převod pravidla $2qA \rightarrow pBbCc$ pro obsah zásobníku AaAA.

Programová gramatika

Programová gramatika je čtveřice G = (V, T, P, S), kde

 $V=T\cup N$ je úplná abeceda, T je abeceda terminálů, N je abeceda neterminálů, P je konečná množina pravidel, $S\in N$ je počáteční symbol.

Pravidla množiny P jsou tvaru $r: A \rightarrow v, g(r)$, kde

r je označení pravidla, A o v je pravidlo bezkontextové gramatiky a g(r) je množina značení těch pravidel, která mohou být provedena v dalším derivačním kroku po aplikaci pravidla r.

Konečný index

Programová gramatika konečného indexu n je programová gramatika G=(V,T,P,S), pro jejíž každou větnou formu $w\in L(G)$ existuje taková posloupnost derivačních kroků, která v žádném kroku neobsahuje více než n neterminálů.

Ekvivalence s PG

Je hluboký zásobníkový automat s jedním nevstupním symbolem ekvivalentní s programovými gramatikami konečného indexu?

Převod gramatiky na automat

Pro každé $q \in (Q \cup \{\varepsilon\})$ přidej do $F < q, \varepsilon >$.

Algoritmus:

```
Vstup: G = (T \cup N, T, P, S) konečného indexu n
Výstup: M = (Q, T, T \cup \{\#\}, R, <\sigma>, \#, F, n)
Pro každé p: S \to v, q(p) \in P:
      přidej do R < \sigma >_1 \# \rightarrow < p, S > \# a do Q < p, S >.
Pro každé p:A \rightarrow b_0B_1b_1B_2b_2\dots b_{j-1}B_jb_j, g(p) \in P, kde
j \in \{0, 1, 2, \dots\}, b_0, b_1, \dots, b_i \in T^* \text{ a } B_1, B_2, \dots, B_i \in N \text{ a pro každé}
(k, u, z) \in \{1, 2, 3, \dots, n - j + 1\} \times N^* \times N^*, \text{ kde } |u| = k - 1, |z| \le n - k:
      Pokud g(p) \neq \emptyset, pak pro každé q \in g(p):
      přidej do Q stavy < p, uAz >, < q, uB_1B_2 \dots B_{j-1}B_jz > a do R
       < p, uAz >_k \# \to < q, uB_1B_2 \dots B_{j-1}B_jz > b_0\#b_1\#b_2 \dots b_{j-1}\#b_j.
      Jinak přidej do Q < p, uAz >, < \varepsilon, uB_1B_2 \dots B_{j-1}B_jz > a do R
      < p, uAz >_k \# \to < \varepsilon, uB_1B_2 \dots B_{j-1}B_jz > b_0\#b_1\#b_2 \dots b_{j-1}\#b_j.
```

Hluboké zásobníkové automaty konečného indexu – p. 13

Převod automatu na gramatiku

Programová gramatika simuluje každý krok zásobníkového automatu sekvencí několika derivací.

Neterminály jsou ve tvaru:

<aktuální pozice, aktuální pozice výskytu #, celkový počet # v konfiguraci>.

Vlastní simulace probíhá následovně:

- 1. **Přečíslení.** Aktualizace pozice a celkového počtu nevstupních symbolů u všech neterminálů.
- 2. **Expanze.** Expanduje neterminál na příslušné pozici.
- 3. Finalizace. Přepis pomocného tvaru nonterminálů.

Postup jsem převzala z článku Generation of Languages by Rewriting Systems that Resemble Automata od Křivky.

Shrnutí

Vlastnosti hlubokého zásobníkového automatu konečného indexu s jedním nevstupním symbolem:

- Redukce nevstupních symbolů na jeden.
- Zjednodušení zápisu pravidel.
- Ekvivalence s hlubokým zásobníkovým automatem konečného indexu.
- Ekvivalence s programovými gramatikami.
- Nekonečná hierarchie jazyků.