	Homework 2 DUE NOV 11th at 11:59 PM You are expected to turn in a pdf version of this notebook with all your codes, results, and figures (Use the print option). Make sure the figures and results are visible as you want them to appear in the pdf before turning it in. Please do not modify the instructions as doing so will limit our ability to follow and grade your answers.						
In [191]:	Problem 1 (HW1 Problem 4) In this problem, you will work on the clustering problem using Bottom-up Agglomerative clustering and K-mean clustering. a) A 4-D dataset is given in 'iris.csv' with the last column being the ground truth label. Load the file. Store the data in a variable X and store the label in a variable y. Because clustering is an unsupervised task, there is no need for the labels during training. import numpy as np import pandas as pd import pandas as pd import matplotlib.pyplot as plt						
	data = pd.read_csv('iris.csv', header = None) X = data[range(4)].values y = data[4].values b) Train a clustering model using Bottom-up Agglomerative clustering. Visualize your clusters on a 2-D plot. Choose any 2 dimensions from the 4 dimensions to plot. Try to pick the 2 dimensions that best separate the data. Your plot should contains all the data points with points from the same predicted cluster haveing the same color.						
In [196]:	<pre>from sklearn.cluster import AgglomerativeClustering clustering = AgglomerativeClustering(n_clusters=3,affinity="euclidean",linkage="ward") clustering.fit(X) labels=clustering.labels_ plt.figure(figsize=(12,8)) plt.scatter(X[labels==0,3],X[labels==0,2],color='yellow') plt.scatter(X[labels==1,3],X[labels==1,2],color='blue') plt.scatter(X[labels==2,3],X[labels==2,2],color='red') <matplotlib.collections.pathcollection 0x7f118f4eb668="" at=""></matplotlib.collections.pathcollection></pre>						
	7 - 6 - 5 -						
	4 - 3 - 2 - 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4						
In [6]:	Repeat the visualization step above using the same 2 dimensions. This time, plot according to the ground truth classes. Comment on the performance of your model. plt.figure(figsize=(12,8)) plt.scatter(data[data[4]=="Versicolor"][3], data[data[4]=="Versicolor"][2], color='yellow') plt.scatter(data[data[4]=="Virginica"][3], data[data[4]=="Virginica"][2], color='red') plt.scatter(data[data[4]=="Setosa"][3], data[data[4]=="Setosa"][2], s=50, color="blue")						
Out[6]:	# As two graphs almost align, the performance is good especailly for Setosa, Versicolor and Virginica h ave some overlaps for three points. <matplotlib.collections.pathcollection 0x7f1191a00d30="" at=""> 7- 6-</matplotlib.collections.pathcollection>						
	3-						
	c) Train a clustering model using K-mean clustering.						
In [7]:	<pre>kmeans = KMeans(n_clusters=3, random_state=0).fit(X) klabels = kmeans.labels_ Visualize your clusters on a 2-D plot. Choose any 2 dimensions from the 4 dimensions to plot. Try to pick the 2 dimensions that best separate the data. Your plot should contains all the data points with points from the same predicted cluster haveing the same color. plt.figure(figsize=(12,8)) plt.scatter(X[klabels==0,3],X[klabels==0,2],color='red')</pre>						
Out[8]:	<pre>plt.scatter(X[klabels==1,2],color='blue') plt.scatter(X[klabels==2,3],X[klabels==2,2],color='yellow') <matplotlib.collections.pathcollection 0x7f1191979cc0="" at=""></matplotlib.collections.pathcollection></pre>						
	3-						
	Repeat the visualization step above using the same 2 dimensions. This time, plot according to the ground truth classes. Comment on the performance of your model.						
<pre>In [9]: Out[9]:</pre>	<pre>plt.figure(figsize=(12,8)) plt.scatter(data[data[4]=="Versicolor"][3], data[data[4]=="Versicolor"][2], color='yellow') plt.scatter(data[data[4]=="Virginica"][3], data[data[4]=="Virginica"][2], color='red') plt.scatter(data[data[4]=="Setosa"][3], data[data[4]=="Setosa"][2], s=50, color="blue") # As two graphs almost align, the performance is good especially for Setosa. Versicolor and Virginica h ave some overlaps for three points. <matplotlib.collections.pathcollection 0x7f11918f1128="" at=""></matplotlib.collections.pathcollection></pre>						
	5 -						
	3 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -						
	d) Perform Principle Component Analysis (PCA) on the data. Project the original data on the 2 largest principle components. Store this new projected 2-D data in a variable <i>X_projected</i> . from sklearn.decomposition import PCA pca = PCA(n_components=2).fit(X) X_pca = pca.transform(X) X_pca array([[-2.68412563, 0.31939725],						
Out[10]:	[-2.71414169, -0.17700123], [-2.88899057, -0.14494943], [-2.74534286, -0.31829898], [-2.72871654, 0.32675451], [-2.28085963, 0.74133045], [-2.82053775, -0.08946138], [-2.62614497, 0.16338496], [-2.88638273, -0.57831175], [-2.6727558, -0.11377425], [-2.50694709, 0.6450689], [-2.61275523, 0.01472994],						
	[-2.78610927, -0.235112], [-3.22380374, -0.51139459], [-2.64475039, 1.17876464], [-2.38603903, 1.33806233], [-2.62352788, 0.81067951], [-2.64829671, 0.31184914], [-2.19982032, 0.87283904], [-2.5879864, 0.51356031], [-2.31025622, 0.39134594], [-2.54370523, 0.43299606], [-3.21593942, 0.13346807], [-2.30273318, 0.09870885], [-2.35575405, -0.03728186],						
	[2.5337343,						
	[-2.80068412, 0.26864374], [-2.98050204, -0.48795834], [-2.59000631, 0.22904384], [-2.77010243, 0.26352753], [-2.84936871, -0.94096057], [-2.99740655, -0.34192606], [-2.40561449, 0.18887143], [-2.20948924, 0.43666314], [-2.71445143, -0.2502082], [-2.53814826, 0.50377114], [-2.538946217, -0.22794557], [-2.54308575, 0.57941002],						
	[-2.70335978, 0.10770608], [1.28482569, 0.68516047], [0.93248853, 0.31833364], [1.46430232, 0.50426282], [0.18331772, -0.82795901], [1.08810326, 0.07459068], [0.64166908, -0.41824687], [1.09506066, 0.28346827], [-0.74912267, -1.00489096], [1.04413183, 0.2283619], [-0.0087454, -0.72308191], [-0.50784088, -1.26597119],						
	[0.51169856, -0.10398124], [0.26497651, -0.55003646], [0.98493451, -0.12481785], [-0.17392537, -0.25485421], [0.92786078, 0.46717949], [0.66028376, -0.35296967], [0.23610499, -0.33361077], [0.94473373, -0.54314555], [0.04522698, -0.58383438], [1.11628318, -0.08461685], [0.35788842, -0.06892503], [1.29818388, -0.32778731],						
	[0.92172892, -0.18273779], [0.71485333,						
	[0.80685831,						
	[-0.90646986, -0.75609337], [0.29900084, -0.34889781], [2.53119273, -0.00984911], [1.41523588, -0.57491635], [2.61667602, 0.34390315], [1.97153105, -0.1797279], [2.35000592, -0.04026095], [3.39703874, 0.55083667], [0.52123224, -1.19275873], [2.93258707, 0.3555], [2.32122882, -0.2438315], [2.91675097, 0.78279195],						
	[1.66177415,						
	[3.49992004, 0.4606741], [1.38876613, -0.20439933], [2.2754305 , 0.33499061], [2.61409047, 0.56090136], [1.25850816, -0.17970479], [1.29113206, -0.11666865], [2.12360872, -0.20972948], [2.38800302, 0.4646398], [2.84167278, 0.37526917], [3.23067366, 1.37416509], [2.15943764, -0.21727758], [1.44416124, -0.14341341],						
	[1.78129481, -0.49990168], [3.07649993,						
In [11]:	[1.76434572, 0.07885885], [1.90094161, 0.11662796], [1.39018886, -0.28266094]]) Repeat part b on the new 2-D data. Train the Bottom-up Agglomerative model and visualize your results. from sklearn.cluster import AgglomerativeClustering clustering = AgglomerativeClustering(n_clusters=3, affinity="euclidean", linkage="ward") clustering.fit(X_pca) labels_pca=clustering.labels_						
Out[11]:	<pre>plt.figure(figsize=(12,8)) plt.scatter(X_pca[labels_pca==0,0],X_pca[labels_pca==0,1],color='yellow') plt.scatter(X_pca[labels_pca==1,0],X_pca[labels_pca==1,1],color='blue') plt.scatter(X_pca[labels_pca==2,0],X_pca[labels_pca==2,1],color='red') <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre></pre></pre></pre>						
	0.5 -						
	Repeat part c on the new 2-D data. Train the K-means model and visualize your result.						
In [12]: Out[12]:	<pre>kmeans = KMeans(n_clusters=3, random_state=0).fit(X_pca) klabels_pca = kmeans.labels_ plt.figure(figsize=(12,8)) plt.scatter(X_pca[klabels_pca==0,0], X_pca[klabels_pca==0,1], color='red') plt.scatter(X_pca[klabels_pca==1,0], X_pca[klabels_pca==1,1], color='blue') plt.scatter(X_pca[klabels_pca==2,0], X_pca[klabels_pca==2,1], color='yellow')</pre>						
	0.5						
	-0.5 -						
	Compare the quality of 4-D and 2-D clusterings. When would the ideas of projection and dimensionality reduction be useful? PCA used in combination with K means clustering dimension reduction was very useful and increase accuracy, but when PCA used with Bottom-up Agglomerative clustering doesn't change much. Overall, 2-D has better partision than 4-D. Thus PCA will be slightly better. The higher dimension, the more useful PCA will be as better clustering would be formed.						
	Problem 2 In this problem, you will first implement the Naive Bayes (NB) algorithm from scratch. We will use a dataset for classifying if a patient has breast cancer. Each instance (row) in the dataset is a patient described by the 9 following features (with their corresponding values). 1. Clump Thickness: 1 - 10 2. Uniformity of Cell Size: 1 - 10 3. Uniformity of Cell Shape: 1 - 10 4. Marginal Adhesion: 1 - 10 5. Single Epithelial Cell Size: 1 - 10 6. Bare Nuclei: 1 - 10						
	6. Bare Nuclei: 1 - 10 7. Bland Chromatin: 1 - 10 8. Normal Nucleoli: 1 - 10 9. Mitoses: 1 - 10 Given these features, we will classify a car into one of the 2 classes: 0 (benign) or 1 (malignant). NB is a very simple algorithm. Consider a feature X . For each value x_i of X and each class label y_j , NB calculates the value of $P(X = x_i Y = y_j)$. For example, take the feature Mitoses , NB will calculate all the following values: • P(Mitoses = 1 Class = 0), P(Mitoses = 2 Class = 0), P(Mitoses = 3 Class = 0),, P(Mitoses = 10 Class = 0) • P(Mitoses = 1 Class = 1), P(Mitoses = 2 Class = 1), P(Mitoses = 3 Class = 1),, P(Mitoses = 10 Class = 1)						
	Repeat this calculation for all the features. In the end, NB keep a recording of all possible $P(X Y)$. The calculation itself is intuitive: $P(X=x_i Y=y_j) = \frac{\text{Number of rows with } X=x_i \text{ and } Y=y_j}{\text{Number of rows with } Y=y_j}$ In addition, NB also calculate the priors probability $P(Y=y_j)$. Again, intuitively: $P(Y=y_i) = \frac{\text{Number of rows with } Y=y_j}{\text{Number of rows in the dataset}}$ Given a test example $X_{test} = \{X_0 = x_0, X_1 = x_1, \dots, X_i = x_i\}$, for each class label y_j , NB calculate: $P(Y=y_j X_{test}) = P(X_{test} Y=y_j)P(Y=y_j)$						
	$=P(X_0=x_0 Y=y_j)P(X_1=x_1 Y=y_j)\dots P(X_i=x_i Y=y_j)P(Y=y_j)$ Such calculation is easy since we have bookkept all $P(X Y)$ and all $P(Y)$ in previous steps. The output of the model is simply: $\operatorname*{argmax}_{y_j}P(Y=y_j X_{test})$ You will do each of these steps following this problem. We will use Pandas to deal with the data in this problem. Pandas can do queries like "Get all the rows in which Clump Thickness = 2 and Class = 1" with minimal syntax. a) First let's load the dataset and store it in a Pandas dataframe. Play with the dataframe and get used to the queries (this part is not graded). This guide is a good place to start:						
In [211]:	https://medium.com/python-in-plain-english/filtering-rows-and-columns-in-pandas-python-techniques-you-must-know-6cdfc32c614c Split the dataset into a training set and a testing set. Use 10% of the data as the testing set (The splitting is graded). import pandas as pd from sklearn.model_selection import train_test_split data = pd.read_csv("breast-cancer-wisconsin.csv") X = data.iloc[:,0:9] y = data.iloc[:,9] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.10, random_state=42)						
	b) Now we will build up the bookkeeping. Let's start with the priors $P(Y=y_j)$, $y_j \in \{0,1\}$. For each of these labels, calculate $P(Y=y_j)$ by simply counting the number of times y_j appears in the dataset divided by the size of the dataset. You can bookkeep the priors in a dictionary with keys being y_j .						
In [229]:	Now let's calculate the conditional probability $P(X=x_i Y=y_j)$. If you do the query with Pandas, this counting should be simple. This time, store the conditional probability in another dictionary with keys (x_i,y_j) or any data structure that you prefer.						
	<pre>x1 = X_train[(X_train[i] == j) & (y_train ==1)] x0 = X_train[(X_train[i] == j) & (y_train ==0)] v1 = x1[i].size / y_train[y_train == 1].size v0 = x0[i].size / y_train[y_train == 0].size ones.append(v1) zeros.append(v0) ones_m = pd.DataFrame(np.resize(ones, [9,10])) ones_m.columns = [1,2,3,4,5,6,7,8,9,10] ones_m.index = ["Clump Thickness", " Uniformity of Cell Size", " Uniformity of Cell Shape", " Marginal Adhesion", " Single Epithelial Cell Size", " Bare Nuclei", " Bland Chromatin", " Normal Nucleoli", " Mitoses"] print(ones_m)</pre>						
	zeros_m = pd.DataFrame(np.resize(zeros, [9,10])) zeros_m.columns = [1,2,3,4,5,6,7,8,9,10] zeros_m.index = ["Clump Thickness", " Uniformity of Cell Size", " Uniformity of Cell Shape", " Margina l Adhesion", " Single Epithelial Cell Size", " Bare Nuclei", " Bland Chromatin", " Normal Nucleoli", " Mitoses"] print(zeros_m) 1						
	Bare Nuclei 0.069124 0.036866 0.036866 0.557604 Bland Chromatin 0.009217 0.032258 0.050691 0.082949 Normal Nucleoli 0.175115 0.023041 0.064516 0.248848 Mitoses 0.557604 0.119816 0.000000 0.055300 [9 rows x 10 columns]						
	Bare Nuclei 0.868932 0.048544 0.000000 0.007282 Bland Chromatin 0.332524 0.351942 0.000000 0.000000 Normal Nucleoli 0.885922 0.065534 0.002427 0.000000 Mitoses 0.973301 0.014563 0.000000 0.000000 0.000000 [9 rows x 10 columns] That's it! You have successfully "trained" a NB model. Let's test our model on the test dataset. Implement a predict function that returns $\mathop{\rm argmax}_{y_j} P(Y=y_j X_{test})$ (refer to the description above).						
In [230]:	<pre>results = [] X_test= X_test.reset_index(drop=True) for i in range (0, len(y_test)): rones = 1 rzeros = 1 for j in X_test.columns: v = X_test.at[i,j] rones *= ones_m.at[j,v] rzeros *= zeros_m.at[j,v] rones *= ones_percent rzeros *= zeros_percent if (rones < rzeros): results_percent(0)</pre>						
	results.append(0) else: results.append(1) Predict the label of all the instances in the test dataset, calculate and print out the accuracy. accuracy_score(y_test, results) 0.9857142857142858						
	Problem 3 In this problem, you will implement the Logistic Regression (LR) algorithm from scratch. Similar to NB, LR relies on $P(Y X)$ to predict the class of an example. However, unlike NB, a generative model, LR is a discriminative model so it does not need to estimate $P(X Y)$ and $P(Y)$. LR assumes the form of the conditional probability $P(Y X)$ to be: $P(Y X) = f(X) = \frac{1}{1 + e^{-(\alpha X + \beta)}}$ $f(X)$ returns a value in (0,1). The model classifies X as 1 if $f(X)$ is closer to 1 and 0 otherwise. We have to estimate the model parameters: the vector α and β from the data, which we will do via stochastic gradient descent (SGD). In SGD, a training example is shown to the model each at a time. The model makes a prediction on the training example and the error between the prediction and the ground-						
	truth label is used to update the model's parameters. We use the log-likelihood loss to estimate the error in this problem. In particular, the log-likelihood loss for classifying the $X^{(i)}$ example with the ground-truth $y^{(i)}$ is: $LL(y^{(i)},f(X^{(i)})) = -(y^{(i)}\log(f(X^{(i)})) + (1-y^{(i)})\log(1-f(X^{(i)})))$ In our case, the updating is as the followings: $\alpha_j(t+1) = \alpha_j(t) - \frac{\partial LL}{\partial \alpha_j} \times rate$ $\beta(t+1) = \beta(t) - \frac{\partial LL}{\partial \beta} \times rate$ where $rate$ is the how much change we want to make to the parameters in each update. Whenever we finish looping through all the						
	instances in the dataset to update the parameters, we finish a training epoch. We may do many training epochs (looping through the dataset many times), until the model parameters converge. First, we need to derive the formula for $\frac{\partial LL}{\partial \alpha_j}$ and $\frac{\partial LL}{\partial \beta}$. To keep the problem simple, these are provided to you: $\frac{\partial LL}{\partial \alpha_j} = -(y^{(i)} - f(X^{(i)}))X_j^{(i)}$ $\frac{\partial LL}{\partial \beta} = -(y^{(i)} - f(X^{(i)}))$ a) We use the same dataset for predicting breast cancer in Problem 2 for this problem. Load the dataset and split it into a training set and a						
In [88]:	testing set.						
In [891·	<pre>from sklearn.model_selection import train_test_split data = pd.read_csv("breast-cancer-wisconsin.csv") X = data.iloc[:,0:9] y = data.iloc[:,9] X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.30)</pre> b) Learn the model parameters using SGD. A skeleton for SGD is provided to help you understand the process (You don't have to use the provided code).						
	<pre>data = pd.read_csv("breast-cancer-wisconsin.csv") X = data.iloc[:,0:9] y = data.iloc[:,9] X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.30) b) Learn the model parameters using SGD. A skeleton for SGD is provided to help you understand the process (You don't have to use the provided code). from math import exp epochs = 20 rate = 0.01 SGD = pd.concat([X_train,y_train], axis=1).to_numpy() coefficient = np.zeros(len(SGD[0])) def predict(row, coefficient): y_ = coefficient[0] # beta for i in range(1,len(row)): # alpha for corresponding to each x</pre>						
	<pre>data = pd.read_csv("breast-cancer-wisconsin.csv") X = data.iloc[:,0] y = data.iloc[:,0] X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.30) b) Learn the model parameters using SGD. A skeleton for SGD is provided to help you understand the process (You don't have to use the provided code). from math import exp epochs = 20 rate = 0.01 SGD = pd.concat([X_train,y_train], axis=1).to_numpy() coefficient = np.zeros(len(SGD[0])) def predict(row, coefficient): y_ = coefficient[0]</pre>						
	<pre>data = pd.read csv("breast-cancer-wisconsin.csv") X = data.iloc[:,0:3] y = data.iloc[:,0:3] X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.30) b) Learn the model parameters using SGD. A skeleton for SGD is provided to help you understand the process (You don't have to use the provided code). from math import exp epochs = 20 rato = 0.01 SGD = pd.concat(X_train,y_train], axis=1).to_numpy() coefficient = np.zeros(len(8GD[0])) def predict(row, coefficient): y_ = coefficient[0]</pre>						
In [189]:	data = pd.read_csv("breast-cancer-wisconsin.csv") X = data.iloc[:,0:9] Y = data.iloc[:,9:9] X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.30) b) Learn the model parameters using SGD. A skeleton for SGD is provided to help you understand the process (You don't have to use the provided code). from math import exp epochs = 20 rate = 0.01 SGD = pd.concat([X_train,y_train], axis=1).to_numpy() coefficient = np.zeros(len(9GD[0])) def predict(row, coefficient): y = coefficient[0]						
In [189]: Out[189]:	data = pd. nonl_cov("broazbecanutives' scorpsinmx") X = data.iloc(5.049) y = data.iloc(5.049) X_tenu.iloc(5.049) Di Learn the model parameters using SGD. A skeleton for SGD is provided to help you understand the process (You don't have to use the provided code) from math import inty: capacity = 0.00 cata = 0.						
In [189]: Out[189]:	casts = rod.read_cay(*rotest-radices**siscons.d.cov*) X = data.loc(lot(sis)) Do Learn the model parameters using SGD.A skeeten for SGD is provided in help you understand the process (You don't have to use the provided code) from each import wap epochs = 20 casts = 1.01 day = pot-casts (fs creating tradicity, wais=1) to crumpy() coefficients = up, access(lot(sis)) y = coefficients() f : Pota for is a range(j, lot(rear)) f * data.lot for neareographing to cash x settern 1.01 (lot-day lot(sis)) for cpoth in range(graphin) all_press = 1 for is a range(j, lot(sis)) y = pota.lot(lot(sis)) y = pota.lot(lot(sis)) coefficient() = yi all_press = 1 for is a range(j, lot(sis)) coefficient() = yi all_press = 1 for is a range(j, lot(sis)) coefficient() = -rate*errorry*(yi*-1)*row(t*-1) coefficient() = -crost** coefficient() = -rate*errorry*(yi*-1)*row(t*-1) coefficient() = -crost** coefficient() = -rate*errorry*(y*-1)*row(t*-1) coefficient() = -crost** coefficient() = -crost** coefficient() = -rate*errorry*(y*-1)*row(t*-1) coefficient() = -crost** coefficient() = -cros						
In [189]: Out[189]: In [116]:	data = vol.read row (*Bureat values #isonabil.com*) X = volt.liv(1)(1)(1) X = volt.liv(1)(1)(1)(1) X = volt.liv(1)(1)(1)(1) X = volt.liv(1)(1)(1)(1) X = volt.liv(1)(1)(1)(1)(1)(1) X = volt.liv(1)(1)(1)(1)(1)(1)(1) X = volt.liv(1)(1)(1)(1)(1)(1)(1)(1) X = volt.liv(1)(1)(1)(1)(1)(1)(1)(1) X = volt.liv(1)(1)(1)(1)(1)(1)(1)(1)(1)(1) X = volt.liv(1)(1)(1)(1)(1)(1)(1)(1)(1) X = volt.liv(1)(1)(1)(1)(1)(1)(1)(1)(1) X = volt.liv(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1) X = volt.liv(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1) X = volt.liv(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(
In [189]: In [116]:	Description						
In [189]: In [116]:	Second Content Seco						
In [189]: In [116]:	The control co						
In [189]: In [62]: In [117]: Out[117]:	And the control of th						
In [189]: In [62]: In [117]: Out[117]:	The product of the pr						
In [189]: In [116]: In [117]: Out [117]:	Situation from and variously and a SDL A decide for BDD is provided in the concentration the process (Year on There is used to concentrate on the process (Year on There is used to concentrate						

Parameters: the num	sed to BallTree or KDTrinber of centroid, measure function we used to $\in N_k(x,\hat{x})$ $\delta(t_i,c)$	ıre of distance, decisi	on boundary	vski or Manhattan.