Metodo delle due fasi

- ▶ Il problema artificiale
- ▶ la fase I del Simplesso
- esempi

rif. Fi 3.2.5;

Problema artificiale

Dato un problema in forma standard $\min\{\mathbf{c}^T\mathbf{x}: \mathbf{A}\mathbf{x} = 0, \mathbf{x} \geq \mathbf{0}\}$, con $\mathbf{b} \geq \mathbf{0}$, definiamo *problema artificiale*:

$$w = \min \sum_{i=1}^{m} y_i$$
 s.t. $\mathbf{A}\mathbf{x} + \mathbf{I}\mathbf{y} = \mathbf{b}$ $\mathbf{x}, \mathbf{y} \ge \mathbf{0}$

le variabili y sono dette artificiali.

$$\min 3x_1 + 4x_2 + 6x_3$$
 s.t.
$$x_1 + 3x_2 + 4x_3 = 1$$

$$2x_1 + x_2 + 3x_3 = 2$$

$$x_1, x_2, x_3 \ge 0$$

$$\min y_1 + y_2$$
s.t.
$$x_1 + 3x_2 + 4x_3 + y_1 = 1$$

$$2x_1 + x_2 + 3x_3 + y_2 = 2$$

$$x_1, x_2, x_3, y_1, y_2 \ge 0$$

da cui il tableau:

sottraendo alla riga 0 le altre:

	_	-	-	-7	-4	-3
y_1	1	0	1	4	3	1
	2				1	2

forma canonica

Fase I

Possiamo quindi risolvere il problema artificiale col Metodo del Simplesso, ottenendo la soluzione $(\mathbf{x}^*, \mathbf{y}^*)$ di valore w^* . Sono possibili 2 casi:

- $w^* > 0$ non esiste una soluzione del prob. artificiale con $y_i = 0, i = 1, \dots, m$, quindi il sistema $\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}$ non ammette soluzione: il problema originale è inammissibile
- $w^* = 0$ quindi y = 0 e x^* è sol. ammissibile del problema originale.
 - 2 sottocasi per il tableau ottimo:
 - (a) tutte le variabili artificiali sono fuori base
 - (b) esiste una variabile y_h in base

Caso 2a: variabili artificiali fuori base

- eliminando le colonne corrispondenti alle var. artificiali il tableau in forma canonica risp. a una base
- sostituire la f.o. artificiale con quella originaria, portare la riga 0 in forma canonica
- applicare il Metodo del Simplesso (Fase II)

Esempio (continua)

scegliamo la var. entrante x_3 e $t = \arg\min\{1/4, 2/3\} = 1 \implies \text{var.}$ uscente y_1

scegliamo la var. entrante x_1 e $t = \arg\min\{1,1\} = 2 \implies \text{var.}$ uscente y_2

$$PIVOT (t = 2, 1) \Longrightarrow$$

	0	1	1	0	0	0
x_3	0	-1/4	2/5	1	1	0
x_1	1	-1/4 4/5	-3/5	0	-1	1

soluzione ottima

$$(1,0,0,0,0)$$
 di valore 0

Esempio (continua)

le variabili y_1, y_2 sono fuori base, quindi eliminiamo le corrisp. colonne e ripristiniamo la f.o. originaria

3	4	6	0	
0	1	1	0	x_3
1	-1	0	1	x_1

mettiamo in forma canonica sommando alla riga 0 le righe 1 e 2 moltiplicate per -6 e -3 risp.

	-3	0	1	0
x_3	0	1	1	0
x_1	1	0	-1	1

$$\begin{bmatrix} -1 & 0 & 1 \end{bmatrix} x$$

eseguiamo quindi la FASE II: $c \ge 0 \implies (1,0,0)$ è soluzione ottima

Caso 2b: variabile y_h in base

essendo $w^*=0$ deve essere $y_h^*=0$, quindi abbiamo un caso degenere. Se h=B(i), si ha:

x_1	 x_j	 x_n	$ y_1 $	 y_h	 y_n		
				0		0	-w
	:			:			
				0			
\bar{a}_{i1}	\bar{a}_{ih}	\bar{a}_{in}		1		0	y_h
				0			
	:			:			
				0			

Caso 2b: variabile y_h in base

- se esiste un $\bar{a}_{ij} \neq 0$, eseguiamo PIVOT(i,j) in modo da far uscire y_h dalla base.
 - ▶ possiamo farlo anche se $\bar{a}_{ij} < 0$ in quanto $\bar{b}_i = 0$, quindi rimane $\bar{\mathbf{b}} \geq \mathbf{0}$
 - il valore $w=w^*$ non cambia

ripetendo il procedimento per tutte le var artificiali in base ci si riconduce al caso (2a).

• se invece tutti i valori $\bar{a}_{i1},\ldots,\bar{a}_{in}$ sono nulli, eliminando le var. arificiali si ottiene una riga del tableau tutta nulla, cioè la corrispondente equazione era ottenibile come combinazione lineare delle altre e può essere eliminata ($\equiv \mathbf{A}$ non ha rango m)

$$\min 7x_1 - 3x_2 - 6x_3$$
 s.t.
$$3x_1 - 4x_2 - 2x_3 = 3$$

$$x_1 + x_2 + x_3 = 1$$

$$x_1, x_2, x_3 \ge 0$$

$$\min y_1 + y_2$$
s.t.
$$3x_1 - 4x_2 - 2x_3 + y_1 = 3$$

$$x_1 + x_2 + x_3 + y_2 = 1$$

$$x_1, x_2, x_3, y_1, y_2 \ge 0$$

da cui il tableau:

sottraendo alla riga 0 le altre:

	-4	0	0	1	3	-4
y_1	3	0	1	-2	-4	3
y_2	1	1	0	1	1	1

forma canonica

scegliamo la var. entrante x_1 e $t = \arg\min\{1,1\} = 2 \implies$ var. uscente y_2

OSS. la var artificiale y_1 rimane in base nel tableau ottimo del problema artificiale. Eseguiamo quindi un nuovo pivot:

tutte le var. artificiali sono fuori base

eliminiamo le var. artificiali e ripristiniamo la funzione obiettivo originaria:

7	-3	-6	0
0	7/5	1	0
1	-2/5	0	1

0	41/5	0	-7
0	7/5	1	0
1	-2/5	0	1

Inizia FASE II:

STOP: (1,0,0) soluzione ottima