1. Дайте определение линейной форме.

Пусть V – линейное пространство над полем \mathbb{K} .

Определение 1.1. Линейной формой на пространстве V называется такая функция $f: V \to \mathbb{K}$, что $\forall v, v_1, v_2 \in V$, $\forall \lambda \in \mathbb{K}$ выполняется:

- (a) Аддитивность: $f(v_1 + v_2) = f(v_1) + f(v_2)$.
- (б) Однородность: $f(\lambda v) = \lambda f(v)$.

2. Как находятся коэффициенты линейной формы?

Определение 1.2. Коэффициентами φ_i линейной формы f называются значения этой линейной формы на базисных векторах пространства.

$$f(e_i) = \varphi_i$$

3. Как найти значение линейной формы на векторе в заданном базисе?

Теорема 1.1. Задание линейной формы эквивалентно заданию ее значений на базисных формах, т.е. заданию ее коэффициентов.

Доказательство. Пусть в выбранном базисе $\{e_i\}_{i=1}^n$ линейного пространства V линейная форма f задана набором коэффициентов $\{\varphi_i\}_{i=1}^n$. Тогда $\forall v = \sum_{i=1}^n v^i e_i \in V$:

$$f(v) = f\left(\sum_{i=1}^{n} v^{i} e_{i}\right) = \sum_{i=1}^{n} f(v^{i} e_{i}) = \sum_{i=1}^{n} v^{i} f(e_{i}) = \sum_{i=1}^{n} v^{i} \varphi_{i}$$

Таким образом получаем, что образ любого вектора однозначно определен координатами этого векторами и коэффициентами линейной формы, где оба набора чисел найдены ϵ одном u том эке базисе.

4. Что такое сопряженное пространство?

Теорема 2.1. Множество линейных форм V^* , заданных на линейном пространстве V образует линейное (сопряженное) пространство.

5+6. Как определяется базис сопряженного пространства? Каким соотношением связаны сопряженные базисы?

Рассмотрим некоторый базис $\{e_i\}_{i=1}^n$ в пространстве V. Введем набор линейных форм $\{f^j\}_{j=1}^n$ следующим образом:

$$f^j(v) = v_i,$$

которая возвращает j-ю координату вектора $v \in V$ в базисе $\{e_i\}_{i=1}^n$. Очевидно, что для линейных форм из этого набора справедливо

$$f^j(e_i) = \delta_i^j = \begin{cases} 1, & \text{если} \quad i = j, \\ 0, & \text{если} \quad i \neq j \end{cases}$$

Лемма 2.2. Набор линейных форм $\{f^j\}_{j=1}^n$ является базисом в сопряженном пространстве V^* .

7. Как преобразуется базис сопряженного пространства при изменении базиса исходного пространства?

Теорема 2.2. Пусть $\{f^i\}_{i=1}^n$ и $\{\widetilde{f^l}\}_{l=1}^n$ – базисы V^* , сопряженные соответственно базисам $\{e^j\}_{j=1}^n$ и $\{\widetilde{e}^k\}_{k=1}^n$. Тогда

$$\widetilde{f}^l = \sum_{i=1}^n \sigma_i^l f^i$$

где $(\sigma_i^l)=S$ — элементы обратной матрицы перехода, полагая $(\tau_k^j)=T$ — матрица перехода из $\{e^j\}_{j=1}^n$ в $\{\widetilde{e}^k\}_{k=1}^n$.

8. Как преобразуются коэффициенты линейной формы при изменении базиса исходного пространства?

Теорема 2.3. Преобразование координат формы в V^* при переходе от базиса $\{f^i\}_{i=1}^n$ к базису $\{\widetilde{f}\}_{l=1}^n$ имеет вид

$$\widetilde{\eta_l} = \sum_{i=1}^n \tau_l^i \eta_i \qquad (\widetilde{\eta}^1, \widetilde{\eta}^2, \dots, \widetilde{\eta}^n) = (\eta^1, \eta^2, \dots, \eta^n) \cdot T$$

9. Что такое канонический изоморфизм?

Определение 3.1. Вторым сопряженным пространством называют $V^{**} = (V^*)^*$.

Элементами второго сопряженного пространства являются функции, также обладающие линейностью, от линейных форм.

Теорема 3.1. Между пространствами V и V^{**} можно установить изоморфизм без использования базиса (канонический изоморфизм).

10. Что такое билинейная форма?

Пусть V – линейное пространство над полем \mathbb{K} .

Определение 1.1. Билинейной формой на пространстве V называется такая функция $b: V \times V \to \mathbb{K}$, что $\forall x, x_1, x_2, y, y_1, y_2 \in V, \forall \lambda_1, \lambda_2 \in \mathbb{K}$ выполняется:

(а) Линейность по первому аргументу:

$$b(\lambda_1 x_1 + \lambda_2 x_2, y) = \lambda_1 b(x_1, y) + \lambda_2 b(x_2, y)$$

(б) Линейность по второму аргументу:

$$b(x, \lambda_1 y_1 + \lambda_2 y_2) = \lambda_1 b(x, y_1) + \lambda_2 b(x, y_2)$$

11. Как найти значение линейной формы на паре векторов в заданном базисе?

Замечание 1.1. Билинейная форма при фиксировании одного из аргументов есть ничто иное как линейная форма согласно определению, которое было введено ранее.

Пример 1.1. Пусть $f, g \in V^*$ – линейные формы в пространстве $V(\mathbb{K})$. Билинейная форма может быть задана как

$$b: V \times V \to \mathbb{K}, \qquad b(x,y) = f(x) \cdot g(y)$$

12+13. Какая билинейная форма называется симметричной + Какая билинейная форма называется антисимметричной?

Лемма 1.2. Множество $\mathrm{Bil}_{\mathbb{K}}(V)$ наделено структурой линейного пространства.

Доказательство. Можно убедиться путем прямой проверки аксиом линейного пространства.

Определение 1.2. Билинейная форма $b \in \mathrm{Bil}_{\mathbb{K}}(V)$ называется симметричной, если выполняется b(x,y) = b(y,x).

Определение 1.3. Билинейная форма $b \in \operatorname{Bil}_{\mathbb{K}}(V)$ называется антисимметричной, если выполняется b(x,y) = -b(y,x).

14 + 15. Как построить симметричную билинейную форму из произвольной? Как построить антисимметричную билинейную форму из произвольной?

Из каждой билинейной формы может быть изготовлена симметричная форма:

$$b^{S}(x,y) = \frac{1}{2}(b(x,y) + b(y,x)), \qquad b^{S} \in \operatorname{Bil}_{\mathbb{K}}^{S}(V)$$

Аналогично может быть изготовлена антисимметричная форма:

$$b^{AS}(x,y) = \frac{1}{2}(b(x,y) - b(y,x)), \qquad b^{AS} \in \text{Bil}_{\mathbb{K}}^{AS}(V)$$

16. Что называется коэффициентами билинейной формы?

Определение 2.1. Коэффициентами β_{ij} билинейной формы b(x,y) называются значения этой линейной формы на базисных векторах пространства.

$$b(e_i, e_j) = \beta_{ij}$$

17. Как выглядит закон преобразования матрицы билинейной формы при замене базиса?

Теорема 2.2. Матрицы B и B' билинейной формы b(x,y), заданные в базисах $\{e_i\}_{i=1}^n$ и $\{e_j'\}_{j=1}^n$ связаны соотношением

$$B' = C^T B C$$

где $C=(c_j^i)$ - матрица перехода от базиса $\{e_i\}_{i=1}^n$ к базису $\{e_j'\}_{j=1}^n$.

18. Что такое квадратичная форма?

Определение 1.1. Квадратичной формой на линейном пространстве V называется отображение q(v), построенное из билинейной формы b(x,y) следующим образом:

$$q:V\to\mathbb{K}, \qquad q(v)=b(v,v), \qquad \forall x\in V$$

19. Какая функция называется однородным полиномом степени 2?

Лемма 1.1. Квадратичная форма является однородным полиномом степени 2 от координат вектора.

20. Как найти билинейную форму из квадратичной?

Лемма 1.2. По квадратичной форме q(v) однозначно восстанавливается симметричная компонента билинейной формы b(x, y).

Откуда

$$b(x,y) + b(y,x) = q(x+y) - q(x) - q(y)$$

21. Какие векторы называют ортогональными относительно билинейной формы?

Определение 2.1. Векторы $u, v \in V$ называются ортогональными относительно билинейной формы b (b-ортогональными), если b(u, v) = 0.

22+23+24+25. Что такое нормальный вид билинейной формы? Что такое сигнатура квадратичной формы? Какая квадратичная форма называется положительно определенной? Какая квадратичная

форма называется отрицательно определенной? $a_i = q(e_i)$

Лемма 2.1. В поле $\mathbb{K} = \mathbb{C}$ любая квадратичная форма может быть приведена κ виду

$$q(v) = (\widetilde{v}^1)^2 + \ldots + (\widetilde{v}^r)^2,$$

где r – количество ненулевых a_i .

Следовательно в \mathbb{R} квадратичная форма может быть приведена только к виду

$$q(v) = \sum_{i=1}^{r_{+}} (\widetilde{v}^{i})^{2} - \sum_{j=r_{+}+1}^{r_{-}} (\widetilde{v}^{j})^{2}$$

Определение 2.3. Указанные виды квадратичной формы в \mathbb{C} и \mathbb{R} называются нормальным видом квадратичной формы, а числа r_+ и r_- – положительным и отрицательными индексами инерции вещественной квадратичной функции. Набор этих чисел (r_+, r_-) также называют сигнатурой квадратичной формы.

26. Сформулируйте критерий Сильвестра.

Теорема 2.2. (Критерий Сильвестра) Вещественная квадратичная форма q, имеющая матрицу A_q в некотором базисе, положительно определена тогда и только тогда, когда все угловые миноры матрицы A_q положительны.

27. Что такое оператор присоединенный к билинейной форме?

Пусть E_V – евклидово пространство со скалярным произведением $\langle \cdot, \cdot \rangle$. Определим также в этом пространстве линейный оператор $\varphi \in \text{End}(V)$. Определим при помощи него билинейную функцию b_{φ}

$$b_{\varphi}(u,v) = \langle u, \varphi(v) \rangle, \quad \forall u, v \in V$$

28. Что такое полилинейная форма типа (p,q)?

Пусть X - конечномерное линейное пространство над полем \mathbb{K} .

Полилинейной формой, типа (p,q) на X назовем полилинейное отображение вида

$$U: \underbrace{X \times \ldots \times X}_{p} \times \underbrace{X^{*} \times \ldots \times X^{*}}_{q} \to \mathbb{K}$$

иными словами функцию U, определенную на p векторах пространства X и q линейных формах пространства X^* , которая линейна по каждому из аргументов

29. Как вводится операция умножения полилинейных форм?

Произведением полилинейных форм $U \in \Omega^{p_1}_{q_1}$ и $V \in \Omega^{p_2}_{q_2}$ называют отображение $W = U \cdot V$ вида

$$W(x_1, \dots, x_{p_1}, x_{p_1+1}, \dots x_{p_1+p_2}; \varphi^1, \dots, \varphi^{q_1}, \varphi^{q_1+1}, \dots \varphi^{q_1+q_2}) = U(x_1, \dots, x_{p_1}; \varphi^1, \dots, \varphi^{q_1}) \cdot V(x_{p_1+1}, \dots x_{p_1+p_2}; \varphi^{q_1+1}, \dots \varphi^{q_1+q_2})$$

30. Как можно ввести базис полилинейных форм?

Помимо определения компонент тензора в выбранной паре базисов можно также задать набор тензоров ${s_1, s_2, ..., s_p \brace t_1, t_2, ..., t_q}$, которые действуют на набор аргументов следующим образом

$${}^{s_1,s_2,\ldots,s_p}_{t_1,t_2,\ldots,t_q}W(x_1,x_2,\ldots,x_p;\varphi^1,\varphi^2,\ldots,\varphi^q)=\xi_1^{s_1}\xi_2^{s_2}\ldots\xi_p^{s_p}\eta_{t_1}^1\eta_{t_2}^2\ldots\eta_{t_q}^q$$

Иными словами, тензор $t_1,t_2,...,t_q$ и определим как отображение возвращающее произведение t_1 -ой координаты первого вектора, на t_2 -ю координату второго вектора и т.д.

Теорема 4.4. Набор тензоров ${s_1, s_2, ..., s_p \brace t_1, t_2, ..., t_q}$ является базисом пространства Ω_q^p .

31. Как определяется тензор полилинейной формы?

Тензором полилинейной формы W валентности (p,q) называется набор из n^{p+q} скаляров, определяемые как

$$\omega_{i_1 i_2 \dots i_q}^{j_1 j_2 \dots j_q} = W(e_{i_1}, e_{i_2}, \dots, e_{i_p}; f^{j_1}, f^{j_2}, \dots, f^{j_q}),$$

где индексы i_1, i_2, \ldots, i_p и j_1, j_2, \ldots, j_q принимают значения $1, \ldots, n$, где $n = \dim X$ - размерность пространства X.

32. Как преобразуется тензор при замене базиса?

Покажем связь компонент тензора в новом базисе $\omega_{i_1i_2...i_p}^{j_1j_2...j_q}$ с компонентами тензора в старом базисе $\omega_{k_1k_2...k_p}^{l_1l_2...l_q}$

$$\begin{split} \omega_{i_1 i_2 \dots i_p}^{\prime j_1 j_2 \dots j_q} &= W(e'_{i_1}, e'_{i_2}, \dots, e'_{i_p}; f'^{j_1}, f'^{j_2}, \dots, f'^{j_q}) = \\ &= W(e_{k_1} \tau_{i_1}^{k_1}, e_{k_2} \tau_{i_2}^{k_2}, \dots, e_{k_p} \tau_{i_p}^{k_p}; f^{l_1} \sigma_{l_1}^{j_1}, f^{l_2} \sigma_{l_2}^{j_2}, \dots, f^{l_q} \sigma_{l_q}^{j_q}) = \\ &= \tau_{i_1}^{k_1} \tau_{i_2}^{k_2} \dots \tau_{i_p}^{k_p} \sigma_{l_1}^{j_1} \sigma_{l_2}^{j_2} \dots \sigma_{l_q}^{j_q} W(e_{k_1}, e_{k_2}, \dots, e_{k_p}; f^{l_1}, f^{l_2}, \dots, f^{l_q}) = \\ &= \tau_{i_1}^{k_1} \tau_{i_2}^{k_2} \dots \tau_{i_p}^{k_p} \sigma_{l_1}^{j_1} \sigma_{l_2}^{j_2} \dots \sigma_{l_q}^{j_q} \omega_{k_1 k_2 \dots k_p}^{l_1 l_2 \dots l_q} \end{split}$$

33. Что такое свертка тензора?

Сверткой полилинейной формы $W \in \Omega^p_q$ называется отображение, результатом которого является функция \tilde{W} от p-1 векторного аргумента и q-1 ковекторного аргумента, определяемое как

$$\tilde{W}(x_1, ..., x_{k-1}, x_{k+1}, ... x_p; \varphi^1, ..., \varphi^q) =$$

= $W(x_1, ..., x_{k-1}, \mathbf{e_r}, x_{k+1}, ..., x_p; \varphi^1, ..., \varphi^{l-1}, \mathbf{f^r}, \varphi^{l+1}, ..., \varphi^q)$

полагая, что в правой части производится суммирование по немому индексу r.

34. Чему равно количество различных полных сверток тензора валентности (p,p)?

Nota bene Количество различных полных сверток полилинейной формы валентности (p, p) равно p!.

35. Как выполняется операция транспонирования тензора?

Транспонированием полилинейной формы W по (r, s)-м аргументам называется операция, позволяющая получить полилинейную форму $W^{T_{rs}}$ вида

$$W^{T_{rs}}(\ldots, x_s, \ldots, x_r, \ldots; \varphi^1, \ldots, \varphi^q) = W(\ldots, x_r, \ldots, x_s, \ldots; \varphi^1, \ldots, \varphi^q)$$

(я так понял перестановка просто компонентов х)

36. Какая полилинейная форма называется симметричной?

Полилинейная форма $U \in \Omega^p_0$ называется симметричной, если ее значения не зависят от порядка следования аргументов, т.е.

$$U(x_1, x_2, \dots, x_p) = U(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(p)}), \quad \sigma \in S_n$$

37. Какая полилинейная форма называется антисимметричной?

Полилинейная форма $U \in \Omega_0^p$ называется антисимметричной, если она меняет знак при любой транспозиции любых двух ее аргументов, т.е.

$$V(x_1, x_2, ..., x_p) = (-1)^{N(\sigma)} V(x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(p)}), \quad \sigma \in S_n$$

38. Как вводится операция симметризации?

Операцией симметризации называется отображение $V=\operatorname{Sym} U$, действующее как

$$V(x_1, x_2, \dots, x_p) = \frac{1}{p!} \sum_{\sigma} U(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(p)})$$

39. Как вводится операция альтернирования?

Операцией альтернирования (асимметризации) называется отображение $W = \operatorname{Asym} U$, действующее как

$$W(x_1, x_2, ..., x_p) = \frac{1}{p!} \sum_{\sigma} (-1)^{N(\sigma)} U(x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(p)})$$