Bivariate Descriptive Statistics

K. Gibert

Department of Statistics and Operation Research

Knowledge Engineering and Machine Learning group

Universitat Politècnica de Catalunya, Barcelona

karina.gibert@upc.edu

www.eio.upc.edu/homepages/karina

Guió

- 0. Two numerical variables
 - 1. Graphical descriptive tools
 - 2. Numerical descriptive tools
- 1. One numerical variable and one categorical
 - 1. Graphical descriptive tools
 - 2. Numerical descriptive tools
- 2. Two categorical variables
 - 1. Graphical descriptive tools
 - 2. Numerical descriptive tools
- 3. Two categorical and one numerical
- 4. Two numerical and one categorical

Bivariate Descriptive analysis

Compact and Informative view of the variables

RELATIONSHIP

DATA= FIT+ ERROR

General Pattern

Deviations

Structural Component

Random Component

Tools

1. Graphical

Visualitze variable's relationship

2. Numerical

Quantify what is observed in he graphs

Cases

- 1. Two numerical variables
- 2. Two categorical variables
- 3. One categorica and one numerical

Roles of variables

- Symmetrical
- Response vs Explanatory variable

Two numerical variables Plot

Reading a plot

- 1. Direction: Direct (positive) or inverse (negative)
- 2. Form: Central trend (structural component) (pass a thread)
 - 1. Linear
 - 2. Polynomic
 - 3. Exponential: The 70 rule: Given a raising factor R, constakes time 70/R from Y to 2Y
- 3. Intensity: Deviations arround central trend (Variable)

(spaghetti vs big sausage)

- 4. Trend changes
- 5. Ranges for X and Y
- 6. Bivariate outliers
- 7. Symmetry

Plot Case Studies

Plot Case Studies

Matrix Plot

□ Plot Zoom

Reading a plot

- 1. Direction Direct (positive) or inverse (negative)
- 2. Form: Central trend (structural component) (pass a thread)
 - 1. Linear
 - 2. Polynomic
 - 3. Exponential: The 70 rule: Given a raising factor R, constakes time 70/R from Y to 2Y
- 3. Intensity: Deviations arround central trend (Variable)

(spaghetti vs big sausage)

- 4. Trend changes
- 5. Ranges for X and Y
- 6. Bivariate outliers
- 7. Symmetry

Association between numerical variables

Quantify by Correlations test

Consider general coefficients if required

Interpreting Correlation

Covariance: Dimensional depends on data measurement units

Correlation: Adimensional
Assumes Linear relationship

Sign: Indicates Direction of relationship (>0: positive)

Magnitude: Indicates Intensity

|1| perfect linear association

0: Linear independence

Two categorical variables Multiple barplot

Two categorical variables

Multiple barplot

Contingency tables (Cross Tables)

Estado.civil

Tipo.trabajo	solter	casat s	eparat	divorcia	t vidu E	CUnkn	own
autonom	154	815	34	7	13	1	
fixe	605	2056	84	28	33	0	
temporal	188	252	8	3	1	0	
altres sit	29	118	4	0	20	0	
WTUnknown	2	0	0	0	0	0	A dia
						C	ontingents

Conditional

proprotions

Contingency tables (Margins)

Estat_civil										
Vivenda	solter	casat	vidu s	eparat (divorciat	Total	Row!			
lloguer	174	723	11	50	15	973	21.9			
escriptura	167	1839	50	38	12	2106	47.49			
contr_privat	26	212	3	4	1	246	5.59			
ignora_cont	1	. 18	0	0	1	20	0.49			
pares	507	238	0	30	7	782	17.69			
altres viv	98	208	3	8	2	319	7.29			
Total	973	3238	67	130	38	4446				
Columns %	21.9%	72.8%	1.5%	2.9%	0.9%					

Assessing association between categorical variables

Assessing association between categorical variables The Simpson's Paradox

Apparently independent

or

Apparently dependent

One categorical variable and one numerical

Multiple boxplot

One categorical and one numerical

Descriptive by groups

aggregate(Antiguedad.Trabajo, by=list(Dictamen), FUN=mean)

Group.1 x

1 negatiu 4.586922

2 positiu 9.319062

aggregate(Antiguedad.Trabajo, by=list(Dictamen), FUN=sd)

Group.1 x

1 negatiu 6.118022

2 positiu 8.487919

aggregate(Antiguedad.Trabajo, by=list(Dictamen), FUN=max)

Group.1 x

1 negatiu 43

2 positiu 48

aggregate(Antiguedad.Trabajo, by=list(Dictamen), FUN=median)

Group.1 x

1 negatiu 2

2 positiu 7

Assessing association between one categorical variable and one numerical

The F Test

Consider Kruskall-Wallis test when required

Two numerical and one categorical Letter-plot

Bivariate Statistics

Karina Gibert

Dpt. Statistics and Operation Research
Knowledge Engineering and Machine Learning Research group
Universitat Politècnica de Catalunya-BarcelonaTech (Spain)

karina.gibert@upc.edu

www.eio.upc.edu/homepages/karina

Are there any questions?...