Ministério da Educação
Centro Federal de Educação Tecnológica Celso Suckow da Fonseca
UNED Nova Friburgo
Curso Técnico em Informática Integrado ao Ensino Médio

Apresentação da disciplina: Sistemas Operacionais

Prof. Bruno Policarpo Toledo Freitas bruno.freitas@cefet-rj.br
13 de maio de 2020

Objetivos da disciplina

- Apresentar conceitos básicos de sistemas operacionais (SO)
- Introduzir a utilização de SOs GNU/Linux
- Introduzir a utilização do terminal
- Configurar Sistemas Operacionais
- Instalar e configurar servidores web
- Introduzir noções de segurança em computadores

Avaliações

- Trabalhos em duplas
 - +- 3 por trimestre
- "Provas"

Conteúdo programático

Trimestre 1

- História
- Introdução ao GNU/Linux
- Introdução ao Terminal

Conteúdo programático

Trimestre 2

- Gerência de processos
- Arquivos e redirecionamentos
- Usuários, grupos e permissões

Conteúdo programático

Trimestre 3

- Redes em Linux e ferramentas
- Servidores web
- Provedores

Motivação

- Iremos concentrar nossos estudos nos Sistemas Operacionais GNU/Linux
- Por quê estudar GNU/Linux?

Custo

Tendência mundial

- A tendência mundial em Tecnologia da Informação (TI) é Open-Source
 - https://www.lpi.org/sites/default/files/Mind-The-Gap-Whitepaper.pdf

Linux, for example, is clearly no longer just a technology for webservers and open source evangelists; it is present throughout corporate giants like Google, Facebook and the US Government. Long-established proprietary behemoths like Oracle and SAP have also embraced Linux and other open source technologies.

Over 60% of IT professionals believe that open source technology is now essential to the tech industry – to allow freedom of choice, remove vendor lock-in and allow them to deliver the best solutions for businesses and organisations.

Tendência mundial

Windows 10 possui suporte ao bash

Compatibilidade de Hardware

https://www.microsoft.com/en-us/windowsforbusiness/end-of-windows-7-support

Supercomputação

www.top500.org

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
2	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P, NUDT National Super Computer Center in Guangzhou China	3,120,000	33,862.7	54,902.4	17,808
3	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 , Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	361,760	19,590.0	25,326.3	2,272.0
4	Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz , ExaScaler Japan Agency for Marine-Earth Science and Technology Japan	19,860,000	19,135.8	28,192.0	1,350.2
5	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x , Cray Inc. DOE/SC/Oak Ridge National Laboratory United States	560,640	17,590.0	27,112.5	8,209

Liberdade e filosofia

Software Livre vs. OpenSource

Aplicativos móveis

Desafios

Curva de aprendizado GNU/Linux

Troca de aplicações

- Nem sempre se consegue encontrar aplicativos GNU/Linux para equivalentes proprietários
 - Jogos
 - Aplicações na nuvem não são nativas
- · Porém, muitos deles possuem equivalentes
 - LibreOffice vs. Office
 - IDE's de programação
 - Aplicações de design gráfico

- ...

Primeiros passos

AVA

- https://eadfriburgo.cefet-rj.br/course/ view.php?id=241
- Senha: SO2020TINF

Máquina Virtual

- Vamos trabalhar em aula este ano com <u>Máquinas Virtuais</u>
 - VirtualBox
 - VMWare Player
- Instalem o VirtualBox

Distribuições GNU/Linux

- Vamos utilizar em aula as seguintes distribuições:
 - Ubuntu: Utilizaremos a <u>última versão LTS</u>
 (18.04)
 - Lubuntu : Versão "Leve" do Ubuntu
 - Aba Ubuntu Flavors
 - Xubuntu : Outra versão leve do Ubuntu
- ISO's disponíveis no meu servidor local
- Instalem o LUbuntu!

Criação da Máquina Virtual

Criação da máquina virtual

- Coloquem o nome da máquina de AulaSO-TINF-[SEU NOME]
- Mínimo de 1024 MB de Memória
 - Verificar a quantidade de RAM do computador
 - Melhor opção: 4096 MB de memória
- Disco rígido de 10GB
- Término da instalação vai aparecer o ícone da máquina

Configuração da rede

Configurações → Rede

Aceleração de vídeo

Configurações → Monitor

Sistema - Processador

Configurações → Sistema

Sistema - Aceleração

- Configurações → Sistema
- MUITO IMPORTANTE!

Seleção da ISO

- Normalmente, ao iniciar a máquina pela primeira vez é perguntado qual a imagem de instalação
- Caso não selecione, para escolher de novo a imagem:

Instalem o SO ...

Criar ponto de restauração inicial

Exportar Appliance

- Necessário alguém já ter criado uma Máquina Virtual
 - Arquivo → Exportar Appliance
- Usuário seleciona a Máquina Virtual criada e a importa
 - Arquivo → Importar Appliance

Boot pela USB

- Melhor desempenho
 - Windows: não permite salvar dados
- Tutorial via USB
 - https://tutorials.ubuntu.com/tutorial/tutorial-cre ate-a-usb-stick-on-windows#0
- Basicamente, usar o instalador via USB:
 - https://rufus.ie/

Boot pela USB

