

Examen final 10 Janvier 2016 - Durée 1h30

Exercise 1.

(1) Soient P et Q deux assertions. Montrer que $-(P + Q) \Leftrightarrow (P \land \neg Q)$ est une tautologie.

(2) Extine is neignation logique de la proposition $A: \forall x \in \mathbb{R}, \left(x > 0 \Rightarrow \frac{1}{x} > 0\right)$.

(2) Easier in inspirior registre on in proposition A: ∀X ∈ B; (X > 0 → √/2) Solt B: ∀A, U ∈ B; ((X > 0) ∧ (X > 0) → XU > 0). Monther que B → A.

Exercice 2.

 Saient E et F deux ensembles finis et f: E → F une application. Soit B ∈ P (F), où P (F) désigne l'ensemble des parties de F.

(a) Démontrer qu'un ensemble fini de cardinal n a 2º sous-ensembles. Combien y a-c-il d'applications de E dans F?

(b) Rappier la définition de l'image réciproque f⁻¹ (B), de B par f.

(i) Montrer que ∀B ∈ P (F) : f (f⁻¹ (B)) ⊂ B.
 (2) Soit φ : R² → R² définie par φ (x, y) = (x² + y, −x + y).

(a) Solt $(u,v) \in \mathbb{R}^2$. Déterminer $\phi^{-1}([(u,v)])$. (b) ψ est-elle injective? surjective?

(3) Solent $\alpha: E \to F$, $\beta: F \to G$ et $\gamma: G \to H$. On suppose que $\beta \circ \alpha$ et $\gamma \circ \beta$ nont dijectives. Démonstrer que α , β et γ sont dijectives.

Exercise 3. Sur l'ensemble $\mathbb Z$ des entiers relatifs, on définit deux relations, notées respectivement $\mathbb R$ et T, de la facos suivante :

 $\times Ry$ quand is somme x + y est paire $\times Ty$ quand is difference x - y est paire

(2) Déssentrer que R est une relation d'équivalence. Décrire ses classes d'équivalence.

(2) Déssentrer que R est une relation d'équivalence. Décrire ses classes d'équivalence.

Exercise 4. On définit our R, la loi de composition * par : $\forall x,y \in \mathbb{R}: x*y = x+y-2$.

(i) Montrer que (R,+) est un groupe abélien.

(2) Soit n ∈ N*. On pose x⁽¹⁾ = x et x⁽ⁿ⁺¹⁾ = x⁽ⁿ⁾ + x
(a) Calculer x⁽¹⁾, x⁽¹⁾ et x⁽ⁿ⁾.

(b) Montrer que 'n ∈ N° ; x⁽ⁿ⁾ = xx − 2(n − 1) .
(Y) Soy A = (x ∈ R : x ext naid). Montrer que (A, x) est un sour arroure de (R, x).

Barême : Exercice 1. (4 pts), Exercice 2. (7 pts), Exercice 3. (4 pts), Exercice 4. (5 pts).