Minimum Cut

郭至軒(KuoEO)

KuoE0.tw@gmail.com KuoE0.ch

cut (undirected)

undirected graph

undirected graph

undirected graph

weight = number of edges or sum of weight on edges

cut (directed)

directed graph

directed graph

directed graph

weight = number of edges or sum of weight on edges

S-t CUIt

1. one side is **SOURCE**

2. another side is **Sink**

3. cut-set only consists of edges going from source's side to sink's side

flow network

flow network

flow network

cut-set only consists of edges going from source's side to sink's side

cut-set only consists of edges going from source's side to sink's side

Max-Flow Min-Cut Theorem

The network flow sent across any cut is equal to the amount reaching sink.

The network flow sent across any cut is equal to the amount reaching sink.

The network flow sent across any cut is equal to the amount reaching sink.

total flow = 6, flow on cut = 3 + 4 - 1 = 6

The network flow sent across any cut is equal to the amount reaching sink.

total flow = 6, flow on cut = 3 + 4 - 1 = 6

The network flow sent across any cut is equal to the amount reaching sink.

The network flow sent across any cut is equal to the amount reaching sink.

The network flow sent across any cut is equal to the amount reaching sink.

The network flow sent across any cut is equal to the amount reaching sink.

Then the value of the flow is at most the capacity of any cut.

It's trivial!

Then the value of the flow is at most the capacity of any cut.

It's trivial!

Observation 3

Let f be a flow, and let (S,T) be an s-t cut whose capacity equals the value of f.

(S,T) is the minimum cut

Observation 3

Let f be a flow, and let (S,T) be an s-t cut whose capacity equals the value of f.

Max-Flow

EQUAL

Min-Cut

Example

Maximum Flow = 6

Residual Network

find a s-t cut

Maximum Flow = 6

Travel on Residual Network

start from source

don't travel through full edge

don't travel through full edge

no residual edge

no residual edge

s-t cut

s-t cut

result of starting from sink

result of starting from sink

Minimum cut is non-unique!

time complexity: based on max-flow algorithm

Ford-Fulkerson algorithm

O(EF)

Edmonds-Karp algorithm

 $O(VE^2)$

Dinic algorithm

 $O(V^2E)$

Stoer Wagner

only for undirected graph

time complexity: $O(N^3)$ or $O(N^2log_2N)$

Practice Now

UVa 10480 - Sabotage

Problem List

```
UVa 10480
UVa 10989
POJ 1815
POJ 2914
POJ 3084
POJ 3308
POJ 3469
```

Reference

- http://www.flickr.com/photos/dgjones/335788038/
- http://www.flickr.com/photos/njsouthall/3181945005/
- http://www.csie.ntnu.edu.tw/~u91029/Cut.html
- http://en.wikipedia.org/wiki/Cut_(graph_theory)
- http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
- http://www.cs.princeton.edu/courses/archive/spr04/cos226/lectures/ maxflow.4up.pdf
- http://www.cnblogs.com/scau20110726/archive/ 2012/11/27/2791523.html

Thank You for Your Listening.

