การบันทึกข้อมูลสถานการณ์ผู้ติดเชื้อ COVID-19 ประจำวัน โดยใช้ Apache Airflow และ MySQL ด้วย Docker

นายวัฒนา แซ่อึง รหัสนักศึกษา 63606011

คณะเทคโนโลยีสารสนเทศ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง King Mongkut's Institute of Technology Ladkrabang

> เสนอ ดร.ชยานนท์ ทรัพย์อาภา

รายงานนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรวิทยา ศาสตร์มหาบัณฑิต

> สาขาวิชาเทคโนโลยีสารสนเทศ คณะเทคโนโลยีสารสนเทศ

สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

ประจำปีการศึกษา 2564

าเทน้า

สถานการณ์ผู้ติดเชื้อ COVID-19 ภายในประเทศไทยมียอดผู้ติดเชื้อรวมมากกว่า 2 ล้านคน ซึ่งอยู่ในเกณท์ที่น่าเป็นห่วง และยังต้องติดตามสถานการณ์อย่างใกล้ชิด ข้อมูลตัวเลขสถิติต่างๆที่เก็บบันทึกไว้จึงมีความสำคัญอยากมาก เช่น จำนวนผู้ติดเชื้อ รวม จำนวนผู้ติดเชื้อรายใหม่ หรือจำนวนผู้เสียชีวิต เนื่องจากข้อมูลนี้สามารถนำมาวิเคราะห์ เพื่อใช้วางแผน และคาดการณ์ สถานการณ์ล่วงหน้าได้ การบันทึกข้อมูลประจำวันจึงมีความสำคัญอยากมาก ดังนั้น ผู้จัดทำจึงมีความคิดที่จะออกแบบระบบ สำหรับบันทึกข้อมูลผู้ติดเชื้อ COVID-19 ประจำวัน โดยประกอบไปด้วยหัวข้อดังนี้

- 1. การเตรียมข้อมูล
- 2. การออกแบบระบบ
- 3. สรุปผล

1. การเตรียมข้อมูล

ขั้นตอนการเตรียมข้อมูล ผู้จัดทำได้ค้นหาข้อมูลผู้ติดเชื้อ COVID-19 จากเว็ปไซต์กรมควบคุมโรค กระทรวงสาธารณสุข https://covid19.ddc.moph.go.th ดังรูปที่ [1.1] ซึ่งเป็นข้อมูลที่มีความความถูกต้อง และน่าเชื่อถือ และเลือกเอาเฉพาะข้อมูล ผู้ติดเชื้อ COVID-19 ประจำวันเท่านั้น ผ่านรูปแบบ API โดยโครงสร้างข้อมูลเป็นแบบ JSON Format

รูปที่ 1.1 เว็ปไซต์กรมควบคุมโรค กระทรวงสาธารณสุข

สามารถดึงข้อมูลผ่านเว็ปไซต์โดยคลิกที่ลิงก์ https://covid19.ddc.moph.go.th/api/Cases/today-cases-all ดังรูป ที่[1.2] หรือดึงข้อมูลผ่านโปรแกรม Postman ดังรูปที่[1.3] เพื่อทดสอบว่าข้อมูลมีความพร้อมใช้งานหรือไม่

รูปที่1.2 การดึงข้อมูลผ่านเว็ปไซต์

https://covid19.ddc.moph.go.th/api/Cases/today-cases-all

รูปที่1.3 การดึงข้อมูลผ่านโปรแกรม Postman

โดยเว็ปไซต์กรมควบคุมโรค กระทรวงสาธารณสุขจะมีเอกสารคำอธิบายข้อมูลแต่ละบริการ ดังตารางที่ [1.1] เพื่อให้ ผู้ใช้งานสามารถเข้าไปดูรายละเอียดข้อมูลได้

เอกสารคำอธิบายข้อมูลแต่ละบริการ

คำอธิบาย: ข้อมูลจำนวนผู้ป่วยระลอก 1 ถึงระลอก 2 (ตั้งแต่ 12/01/2020 - 31/03/2021)

Column Name	Data Type	comment
txn_date	date	วันแถลง
province	Varchar(100)	จังหวัดกักกัน
new_case	Int	จำนวนผู้ป่วยรายใหม่
total_case	Int	จำนวนผู้ป่วยสะสม
new_case_excludeabroad	Int	จำนวนผู้ป่วยรายใหม่(ไม่นับมาจากต่างประเทศ)
total_case_excludeabroad	Int	จำนวนผู้ป่วยสะสม(ไม่นับมาจากต่างประเทศ)
new_death	Int	จำนวนผู้ป่วยตายรายใหม่
total_death	Int	จำนวนผู้ป่วยตายสะสม
new_recovered	Int	จำนวนผู้ป่วยรักษาหายรายใหม่
total_recovered	Int	จำนวนผู้ป่วยรักษาหายสะสม

ตารางที่ 1.1 เอกสารคำอธิบายข้อมูลแต่ละบริการ

2. การออกแบบระบบ

ในการออกแบบระบบ ผู้จัดทำได้ใช้ Docker ซึ่งเป็นแพลตฟอร์มซอฟต์แวร์ที่ช่วยให้สร้าง ทดสอบ และติดตั้งแอปพลิเค ชันใช้จริงได้อย่างรวดเร็ว โดยติดตั้งซอตฟ์แวร์ Apache Airflow เพื่อใช้สำหรับงานด้านวิศวกรรมข้อมูล และฐานข้อมูล MySQL โดยมีขั้นตอนดังนี้

- 2.1 การติดตั้งซอฟต์แวร์ Docker, Apache Airflow และ MySQL
- 2.2 การเขียนโปรแกรมบันทึกข้อมูลผู้ติดเชื้อ COVID-19 ด้วยภาษา Python
- 2.3 การทดสอบระบบ

- 2.1 การติดตั้งซอฟต์วร์ Docker, Apache Airflow และ MySQL
 - 2.1.1 ดาวน์โหลดและติดตั้งซอฟต์แวร์ Docker ผ่านเว็ปไซต์ ดังรูปที่[2.1]

https://docs.docker.com/desktop/windows/install/

รูปที่ 2.1 ดาวน์โหลด Docker ผ่านเว็ปไซต์

2.1.2 หลังจากติดตั้งเสร็จแล้ว เปิดโปรแกรมโดยคลิกที่ Docker Desktop ดังรูปที่ [2.2] โดยส่วนการทำงานหลักของ Docker ประกอบไปด้วย Container, Image และ Volumes

รูปที่ 2.2 โปรแกรม Docker Desktop

2.1.3 ตั้งซอฟต์แวร์ Apache Airflow และฐานข้อมูล MySQL ผ่าน Docker Compose โดยดาวน์โหลดไฟล์ docker-compose.yaml ผ่านเว็ปไซต์ ดังรูปที่ [2.3] https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html

รูปที่ 2.3 ดาวน์โหลดไฟล์ docker-compose.yaml

- 2.1.4 สร้าง Project Docker ดังรูปที่ [2.4] โดยมีโครงสร้างดังนี้
 - Project
 - |-- airflow
 - |--- Docerfile
 - -- dags
 - |--- covid19_daily.py
 - |-- mysql
 - |--- Docerfile
 - |-- plugins
 - |-- docker-compose.yaml

ดังรูปที่ 2.4 โครงสร้างของโปรเจค

- 2.1.5 ไฟล์ Docerfile ใน Folder airflow ระบุค่าพารามิเตอร์ ดังรูปที่ [2.5] โดยมีรายละเอียดดังนี้
 - ติดตั้ง Ubuntu เวอร์ชัน 20.04
 - ติดตั้ง Python เวอร์ชัน 3.8
 - กำหนด username: admin และ password: password สำหรับ login เข้าระบบ

รูปที่ 2.5 ไฟล์ Docerfile ใน Folder airflow

- 2.1.6 ไฟล์ Docerfile ใน Folder mysql ระบุค่าพารามิเตอร์ ดังรูปที่ [2.6] โดยมีรายละเอียดดังนี้
 - ติดตั้ง MySQL เวอร์ชัน 5.7
 - กำหนด username: admin และ password: password สำหรับ login เข้าระบบ

รูปที่ 2.6 ไฟล์ Docerfile ใน Folder mysql

2.1.7 ไฟล์ initdb.sql ใน Folder mysql ระบุค่าพารามิเตอร์ ดังรูปที่ [2.7] โดยมีรายละเอียดดังนี้
- คำสั่งสร้าง table covidtoday สำหรับบันทึกข้อมูล

รูปที่ 2.7 ไฟล์ initdb.sql

- 2.1.8 ในไฟล์ docker-compose.yaml ผู้จัดทำระบุเฉพาะ service ที่ใช้งานเท่านั้น ดังรูปที่ [2.8] โดยมีรายละเอียด ดังนี้
 - -airflow ระบุ port 8080
 - -mysql ระบุ port 3306
 - -phpmyadmin ระบุ port 8088

รูปที่ 2.8 ไฟล์ docker-compose.yaml

- 2.1.9 เปิด Terminal พิมพ์คำสั่ง ดังรูปที่ [2.9] ดังนี้
 - docker-compose up airflow-init
 - docker-compose up #เพื่อรัน service ภายใน docker-compose.yaml

รูปที่ 2.9 พิมพ์คำสั่ง docker-compose up เพื่อรัน service ภายใน docker-compose.yaml

รูปที่ 2.10 รัน service ภายใน docker-compose.yaml เสร็จสิ้น

รูปที่ 2.11 service ที่รันภายใน docker ทั้งหมด

- 2.2 การเขียนโปรแกรมบันทึกข้อมูลผู้ติดเชื้อ COVID-19 ด้วยภาษา Python
 - 2.2.1 ไฟล์ covid19_daily.py ใน Folder dags โดยมีรายละเอียดดังนี้
 - ฟังก์ชันการดึงข้อมูล API จากเว็ปไซต์ https://covid19.ddc.moph.go.th/api/Cases/today-cases-all และบันทึกเป็นโครงสร้างแบบ JSON Format ดังรูปที่ [2.12]
 - ฟังก์ชันการดึงข้อมูลจากฐานข้อมูล MySQL ดังรูปที่ [2.13]
 - ฟังก์ชันการบันทึกข้อมูลลงฐานข้อมูล MySQL ดังรูปที่ [2.13]

```
| File | Edit | Selection | View | Go | Run | Terminal | Help | Cowid19_daily.py | bode_project-final-Visual Studio Code | D \circ U \circ Aigs \circ P \circ Cowid19_daily.py \circ X \circ Aigs \circ P \circ Cowid19_daily.py \circ X \circ D \circ U \circ Aigs \circ P \circ Cowid19_daily.py \circ X \circ D \circ V \circ U \ci
```

รูปที่ 2.12 ฟังก์ชันการดึงข้อมูล API

จากเว็ปไซต์ https://covid19.ddc.moph.go.th/api/Cases/today-cases-all

```
covid19_daily.py ×
         dags > 👶 covid19_daily.py > .
24 return data
                       hook = MySqlHook("mysql_default")
sql = """
SELECT * FROM `covidtoday`
                         with open('data.json') as f:
data = json.load(f)[0]
                         print(data)
hook = MySqlHook('mysql_default')
                          hook.run(sql, parameters=('TH',

int(data['new_case']),
 int(data['total_case']),
 int(data['total_case']),
 int(data['total_case_excludeabroad']),
 int(data['total_case_excludeabroad']),
 int(data['total_dath']),
 int(data['total_dath']),
 int(data['total_case_excludeabroad']),
 int(data['total_dath']),
 int(data['total_dath']),
 int(data['total_dath']),
 data['update_date'],
 ))
```

รูปที่ 2.13 ฟังก์ชันการดึงข้อมูล และฟังก์ชันการบันทึกข้อมูลลงฐานข้อมูล MySQL

```
File Edit Selection View Go Run Terminal Help
     e covid19_daily.py ×
        with DAG('covid19_daily',

schedule_interval='@daily',

default_args_default_args,

description='A simple data pipeline for COVID-19 report',

catchup=False) as dag:
                         t1 = PythonOperator(
   task_id='get_covid19_report_today',
   python_callable=get_covid19_report_today
                          t2 = PythonOperator(
   task_id='select_data',
   python_callable=select_data
                          t3 = PythonOperator(
    task_id='insert_data',
    python_callable=insert_data
```

รูปที่ 2.14 ฟังก์ชัน DAG การจัดลำดับคิวการทำงาน

2.3 การทดสอบระบบ

2.3.1 เข้า Apache Airflow ผ่านลิงก์ http://localhost:8080/ และ login เข้าสู่ระบบ ดังรูปที่ [2.15]

รูปที่ 2.15 โปรแกรม Airflow

- 2.3.2 เพิ่ม Connections Database MySQL โดยทำตามขั้นตอนดังนี้
 - คลิกที่ปุ่ม Admin ightarrow Connections ดังรูปที่ [2.16]
 - เลือก Conn_id: mysql_default 🗲 Edit ดังรูปที่ [2.17]

รูปที่ 2.16 เพิ่ม Connections Database MySQL

รูปที่ 2.17 ระบุ Connections Database MySQL

- 2.3.3 ในส่วนการทำงาน DAGs ดังรูปที่ [2.15] ประกอบไปด้วย DAG ต่างๆ ที่อยู่ภายใน Folder dags เมื่อคลิกที่ covid19_daily จะแสดงแทสก์งาน ดังรูปที่ [2.18[โดยมีรายละเอียดดังนี้
 - get_covid19_report_today #ดึงข้อมูลผู้ป่วย COVID-19 จาก API
 - insert_data #บันทึกข้อมูลลงฐานข้อมูล MySQL
 - select_data #ดึงข้อมูลจากฐานข้อมูล MySQL

รูปที่ 2.18 แสดงแทสก์งาน ภายใน DAG covid19_daily

2.3.4 คลิกที่ปุ่ม Trigger DAG เพื่อรัน DAG covid19_daily ดังรูปที่ [2.19] โดยสามารถสังเกตุสถานะการทำงาน

- สีเทา #รอคิว
- สีเขียวอ่อน #กำลังทำงาน
- สีเขียวเข้ม #ทำงานเสร็จสิ้น
- สีแดง #ทำงานล้มเหลว

รูปที่ 2.19 คลิกปุ่ม Trigger DAG เพื่อรัน DAG covid19_daily

รูปที่ 2.20 DAG covid19_daily ทำงานเสร็จสิ้น (ขึ้นสีเขียวเข้มทั้งหมด)

2.3.5 เข้า phpMyAdmin ผ่านลิงก์ http://localhost:8088/ และ login เข้าสู่ระบบ ดังรูปที่ [2.21] เพื่อตรวจสอบ ข้อมูลว่าบันทึกเข้าถูกต้องหรือไม่

รูปที่ 2.21 phpMyAdmin

2.3.6 เมื่อดูข้อมูลจาก table covidtoday จะมีข้อมูลที่ได้จากรัน DAG covid19_daily บันทึกอยู่ ดังรูปที่ [2.22]

3. สรุปผล

การจากออกแบบระบบการบันทึกข้อมูลสถานการณ์ผู้ติดเชื้อ COVID-19 ประจำวัน โดยใช้ Apache Airflow และ MySQL ด้วย Docker พบว่าระบบสามารถดึงข้อมูลจาก API และบันทึกลงฐานข้อมูลได้ โดยระบบ ทำงานได้อย่างรวดเร็ว มีประสิทธิภาพ สามารถนำไปประยุกต์ใช้ในงานอื่นๆได้ และสุดท้ายขอขอบคุณ ดร.ชยา นนท์ ทรัพย์อาภา อาจารย์วิชา Big Data Engineer ที่สอนหลักทฤษฎีและปฏิบัติ ในการทำงานด้านวิศวกรรม ข้อมูล

บรรณานุกรม

- 1. สถานการณ์ผู้ติดเชื้อ COVID-19 อัพเดทรายวัน รูปแบบ API(Json/CSV Data Format) : https://covid19.ddc.moph.go.th/
- 2. Data Engineer Lab: https://github.com/seedgit/data-engineer-lab
- 3. Docker Install: https://docs.docker.com/desktop/windows/install/
- 4. Apache Airflow Install: https://airflow.apache.org/docs/apache-airflow/stable/start/docker.html
- 5. MySQL Install: https://hub.docker.com/_/mysql