

National University of Computer & Emerging Sciences, Karachi.

MidTerm-1 Exam [KEY]

February 26th, 2019. 9:00 am – 10:00 am

Course Code: EE227 Course Name: Digital Logic Design
Instructors: Jawed Qureshi, Khalid Soomro, Rabia Tabassum, Behraj Khan, Shahbaz Siddiqui

Student Roll No: Section:

Time Allowed: 60 minutes. Max Marks/Points: 15/45

Question-1 (6-Points)

- i). The decimal number -37 as an 8-bit binary number in sign-magnitude is: 11011011₂.
- ii). The decimal equivalent of hex number 1A53₁₆ is: 6739₁₀.
- iii). The Hex equivalent of Octal 7348 is: 1 D C₁₆.
- iv). The 2's complement of the number 1101101_2 is: 0010011_2
- v). How many two-input (AND) and (OR) gates are required to realize: Y=CD+EF+G: 2, 1
- vi). Express 415 decimal numbers in sign-magnitude number: 11100111112.

Question-2 (12-Points)

i). Convert the sequence from 60_{10} to 63_{10} to Gray code. (4)

60 = 111100

Gray = 100010

61 = 111101

Gray = 100011

62 = 111110

Gray = 100001

63 = 111111

Gray = 100000

ii). Convert the following into BCD code and add: 295 + 157 (4)

0010	1001	0101
0001	0101	0111
0011	1110	1100
	0110	0110
0100	0101	0010

iii). Determine the value of the following single-precision floating-point binary number. (4)

1 10000010 01101101110001000000000 = Number = $(-1)^{s}(1+F)(2^{E-127})$ 10000010₂ = 130₁₀ = $(130 - 127 = 3_{10}) = (-1)^{1}(1.0110110001)(2^{3}) = -1011_{2} = -11_{10}$

Question-3 (7-Points)

i). Using Boolean algebra techniques, simplify the following expressions: (3)

$$[AB(C+BD)+\overline{AB}]C$$
BC

Solution

Step 1: Apply the distributive law to the terms within the brackets.

$$(A\overline{B}C + A\overline{B}BD + \overline{A}\overline{B})C$$

Step 2: Apply rule 8 ($\overline{B}B = 0$) to the second term within the parentheses.

$$(A\overline{B}C + A \cdot 0 \cdot D + \overline{A}\overline{B})C$$

Step 3: Apply rule 3 $(A \cdot 0 \cdot D = 0)$ to the second term within the parentheses.

$$(A\overline{B}C + 0 + \overline{A}\overline{B})C$$

Step 4: Apply rule 1 (drop the 0) within the parentheses.

$$(A\overline{B}C + \overline{A}\overline{B})C$$

Step 5: Apply the distributive law.

$$A\overline{B}CC + \overline{A}\overline{B}C$$

Step 6: Apply rule 7 (CC = C) to the first term.

$$A\overline{B}C + \overline{A}\overline{B}C$$

Step 7: Factor out $\overline{B}C$.

$$\overline{B}C(A + \overline{A})$$

Step 8: Apply rule 6 $(A + \overline{A} = 1)$.

$$\overline{B}C \cdot 1$$

Step 9: Apply rule 4 (drop the 1).

 $\overline{B}C$

ii). From the truth table in Table 3-1, determine the standard SOP expression and the equivalent standard POS expression. (4)

Inputs		Output		
A	\boldsymbol{B}	<i>C</i>	X	
0	0	0	0	-
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	1	(Table 3-1)
1	0	1	0	
1	1	0	1	
1	1	1	1	_

SOP: X=A'BC + AB'C' + ABC' + ABC

POS: X=(A+B+C) (A+B+C') (A+B'+C) (A'+B+C')

Question-4 (10-Points)

a). Use a Karnaugh map to simplify each Boolean function (5) $F(A, B, C, D) = \Sigma (0, 1, 2, 4, 5, 7, 11, 15)$

Solution:

b). convert into standard SOP form, apply DeMorgan's theorem where applicable: (5)
$$\overline{BCD} + \overline{ABCD} + A\overline{BCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

The first term B C D must be expanded into AB'C'D' and A'B'C'D' to get the standard SOP expression, which is then mapped; the cells are grouped as shown in figure below:

$$X = D' + B'C$$

Question-5 (10 points)

a). Write the output expression for the circuit given in Fig-5(b). Develop a truth table and simplify the resultant expression by applying DeMorgan's theorem. (8)

$$X = \overline{\overline{ABC} + \overline{CD}} = (\overline{ABC})(CD) = (\overline{A} + \overline{B}) CCD$$
$$X = \overline{ACD} + \overline{BCD}$$

=		_		
X : : 1	MC L	CO		
1	18	27	1)	X.
0	(3	()		()
0	()	()	1	0
0	64	1	ti	()
0	13	1	1	1
0	1	0	13	1)
0	1	()	1	1)
0	Í	1	()	()
()	1	1	1	1
1	()	()	()	()
1	()	0	1	()
1	()	1	()	()
1	0	1	1	1
1	1	()	()	0
1	1	0	1	()
1	1	1	()	()
1	1	1	1	()

b). The NAND and the negative-OR symbols represent equivalent operations, but they are functionally different. For the NOR symbol, look for at least one HIGH on the inputs to give a LOW on the output. For the negative-AND, look for two LOWs on the inputs to give a HIGH output. Using these two functional points of view, show that both gates in Figure-5(b) will produce the same output for the given inputs. **(2)**

Fig-5(b)

Solution:

А	В	\overline{A}	B	$\overline{A + B}$	$\overline{A} \overline{B}$
0	-0	1	1	1	
0	1	ı	0	0	0
1	0	()	-	0	O
1	I	0	Ð	0	0

