Notes Topics in Algebraic Geometry

Jonas van der Schaaf

February-May 2024

Contents

1	Tor	ic Geometry	2
	1.1	Monoids	2
		Rational polyhedral cones	
		1.2.1 Duality and faces	3

1 Toric Geometry

1.1 Monoids

Definition 1.1.1. A commutative monoid is a triple (M, +, 0) with $+: M^2 \to M$ and $0 \in M$ such that

- \bullet + is associative,
- + is commutative,
- 0 is an identity element.

Example 1.1.2. The following are examples of monoids:

- $(\mathbb{Z}_{>0},\cdot,1)$
- $(\mathbb{Z}_{\geq 0}, +, 0)$

Lemma 1.1.3. Let R be a ring. Then the functor

$$\mathbf{Alg}_R \to \mathbf{Mon} : R \mapsto (R, \cdot, 1)$$

has a right adjoint

$$R[-]: \mathbf{Alg}_R \leftarrow \mathbf{Mon}: M \mapsto R[M]$$

Proof. We construct R[M] as a ring:

As an additive group it is the linearization R[M] with multiplication given by

$$\sum_{i} x_i m_i \cdot \sum_{j} y_i n_i = \sum_{i,j} x_i y_j (m_i + y_j)$$

which is well-defined by finite support of exact sequences.

Example 1.1.4. For a ring R, we have natural isomorphisms:

$$\begin{split} \operatorname{Hom}_{\mathbf{Alg}_R}(R[\mathbb{N}],A) &\cong \operatorname{Hom}_{\mathbf{Mon}}(\mathbb{N},(A,\cdot)) \\ &\cong A \\ &\cong \operatorname{Hom}_{\mathbf{Alg}_R}(R[x],A). \end{split}$$

Therefore, we conclude by the Yoneda lemma that $R[\mathbb{N}] \cong R[x]$.

1.2 Rational polyhedral cones

Definition 1.2.1. Let M be a free finitely generated abelian group with $v_1, \ldots, v_s \in M$. The cone generated by the v_i is

$$\left\{\sum_{i} r_{i} v_{i} : r_{i} \in \mathbb{R}_{\geq 0}\right\} \subseteq M \otimes_{\mathbb{Z}} \mathbb{R} =: M_{\mathbb{R}}.$$

We identity M with the inclusion

$$M \hookrightarrow M_{\mathbb{R}} : m \mapsto m \otimes 1.$$

A subset $\sigma \subseteq M_{\mathbb{R}}$ is a rational polyhedron (RP) cone if $\exists s \in \mathbb{N}$ and $v_1, \ldots, v_s \in M$ such that σ is of this form.

Proposition 1.2.2 (Gordon's lemma). If $\sigma \in M_{\mathbb{R}}$ is an RP cone then $\sigma \cap M$ is a finitely generated monoid. The generators of σ don't necessarily generate $\sigma \cap M$!

1.2.1 Duality and faces

Definition 1.2.3. For any monoid we can define

$$M^{\vee} = \operatorname{Hom}(M, \mathbb{Z})$$

and

$$M_{\mathbb{R}}^{\vee} = \operatorname{Hom}(M_{\mathbb{R}}, \mathbb{R})$$

Given a cone $\sigma \subseteq M_{\mathbb{R}}$ we define

$$\sigma^{\vee} = \{ n \in M_{\mathbb{R}}^{\vee} : \forall m \in \sigma, m \cdot n = n(m) \ge 0 \}$$

Lemma 1.2.4. The dual cone σ^{\vee} is an RP cone.

$$(\sigma^{\vee})^{\vee} = \sigma.$$

Definition 1.2.5. We write $\langle v_1, \ldots, v_n \rangle \subseteq M_{\mathbb{R}}$ to be the cone generated by the v_i , concretely:

$$\langle v_1, \dots, v_n \rangle = \left\{ \sum_i r_i v_i : \forall i, r_i \ge 0 \right\}.$$

A face of σ is a cone of the form $\sigma \cap \langle -\tau \rangle^{\vee}$ for any $\tau \in \sigma^{\vee}$.

Lemma 1.2.6. A face of an RP cone is an RP cone.

Lemma 1.2.7. Let σ be an RP cone and $(\sigma') = \sigma \cap \langle -\tau \rangle^{\vee}$ a face. Then $\sigma^{\vee} \subseteq (\sigma')^{\vee}$ and the map

$$R[\sigma^{\vee} \cap N] \to R[(\sigma')^{\vee} \cap N]$$

is the localization at the multiplicative subset

$$S = \langle \tau, -\tau \rangle \cap N \subseteq M^{\vee} \cap N.$$

Remark 1.2.8. There is a nice trick for computing duals of cones. Let $M = \mathbb{Z}^n$ and $\sigma \subseteq M_{\mathbb{R}} \cong \mathbb{R}^n$ a cone generated by the elements $v_1, \ldots, v_n \in M$.

We have an isomorphism $M_{\mathbb{R}} \cong M_{\mathbb{R}}^{\vee}$ given by $v \mapsto \langle v, - \rangle$. Take any $v \in M$, there is then a line through the origin perpendicular to v. The dual $\langle v \rangle^{\vee}$ corresponds to the half plane H_v corresponding to that line in which v lies.

Figure 1: The dual of a cone $\langle v \rangle$.

For a general cone $\sigma = \langle v_1, \dots, v_n \rangle$ one can then compute the dual as the intersection of the half planes:

$$\sigma^{\vee} = \bigcap_{i} H_{v_i}.$$

The right to left inclusion is easy to see: if $n \in \bigcap_i H_{v_i}$ then for all $(r_i) \in \mathbb{R}^n$

$$n \cdot \left(\sum_{i} r_{i} v_{i}\right) = \sum_{i} r_{i} (n \cdot v_{i})$$

$$> 0$$

because $n \in H_{v_i}$ so $n \cdot v_i \ge 0$.

Conversely, suppose $n \in \sigma^{\vee}$. Then $n \cdot v_i \geq 0$ by assumption so $n \in \langle v_i \rangle^{\vee} = H_{v_i}$ for all i so n is also in the intersection.

Figure 2: The dual of the cone $\langle v_1, v_2 \rangle$ is the doubly shaded region.