

NB-IoT技术交流 --物理层简介

FDD商用性能二部

- ■第一部分 NB-IoT操作模式
- 第二部分 下行物理层
 - 下行物理层总体
 - NRS
 - NPSS/NSSS/Channel Raster
 - NPBCH
 - NPDCCH
 - NPDSCH
- 第三部分 上行物理层
 - 上行物理层总体
 - NPUSCH
 - NPRACH

NB-IoT三种Operation mode

NB-IoT should support 3 different modes of operation:

- Stand-alone operation
- Guard band operation
- •In-band operation
 - •相同PCID
 - •不同PCID

Scenario 1: Stand-alone operation

Scenario 3: In-band operation

NB-IoT下行物理层总体

•OFDMA on the downlink 15 kHz sub-carrier spacing for all the modes

	NB-IoT	Legacy LTE (R8)
技术	OFDM	OFDM
带宽	180kHz	1.4M—20MHz(6种)
子载波间隔	15kHz	15kHz
子帧	1ms	1ms
Slot	0.5ms	0.5ms
循环前缀CP	Normal	Normal CP , Extend CP

NB-IoT下行帧结构

Same as LTE frame structure type1

NB-IoT下行物理信道汇总

	NB-IoT	Legacy LTE (R8)
PSS/SSS	Υ	Υ
PBCH	Υ	Υ
RS	NRS (Cell-specific)	CRS Cell-specific MBSFN reference signals UE-specific reference signals
PCFICH	N	Υ
PHICH	N	Υ
PDCCH	Υ	Υ
PDSCH	Υ	Υ

NRS

- •三种操作模式下: Stand-alone, In-band, Guard Band 都支持NRS。
- •NRS用于物理下行信道解调,RSRP/RSRQ测量。
- •支持1或者2天线端口,映射到Slot的最后两个OFDM符号。
- •NRS在频域与LTE CRS相同频率偏移: V-shift = PCID mod 6。
- •In-band相同PCI, NB-IoT使用天线端口0和1(和LTE CRS—致)
 - •此外情况, NB-IoT使用天线端口1000和1001

	NB-IoT	Legacy LTE
RS天线端口数	1, 2	1, 2, 4
Port号	0,1或者1000,1001	0,1,2,3
OFDM符号	5, 6	0, 1, 4
三种模式下 (更新)	#0,#4,#9(非NSSS)以及其它需要解调信道(PBCH/SIB1-NBPDSCH/NPDSCH/NPDCCH的子帧	

NRS

三种模式下,发送NRS的时域示意图

下行功率分配

- •NRS天线端口数量1
 - •NRS的EPRE和普通RE(NPBCH/NPDSCH/NPDCCH)相同
- •NRS天线端口数量2
 - •NRS的EPRE比普通RE (NPBCH/NPDSCH/NPDCCH) 高3dB
- •在In-band 且相同PCI情况下,
 - •LTE CRS也用于NB-IoT终端下行解调和测量
 - •默认LTE CRS和NRS天线端口数量相同
- •通过SIB消息中的nrs-CRS-PowerOffset-r13 字段通知UE {-6, -4.77, -3, -1.77, 0, 1, 1.23, 2, 3, 4, 4.23, 5, 6, 7, 8, 9} dB.

如果没有信令通知UE,默认LTE和NB-IoT功率相等。

NB-IoT RB power dynamic range for in-band or guard band operation

- •NB-IoT RB功率动态范围(俗称power boosting)定义为:
- •NB-IoT载波(In-band的一个PRB, guard band的180kHz带宽)功率和全带宽所有载波(包括LTE和NB)的平均功率的差值。

- •NB-IoT功率动态范围至少6dB;
- •6dB功率动态范围,仅针对一个NB-IoT的PRB

NPSS/SSS

101 55/ 555		
	NB-IoT	Legacy LTE (R8)
PSS/SSS频域	PSS 11 个子载波 SSS 12个子载波	中心频率的72 个子载波 实际使用上下各31个子载波
PSS时域	5子帧,占用11个symbols	每帧中0,5子帧,占1个symbol
SSS时域	9子帧,占用11个symbols	每帧中0,5子帧,占1个symbol
周期	PSS 10ms,SSS 20ms(偶数帧)	PSS 5ms, SSS 10ms
PSS Sequence	长度11的ZC序列	长度为63的ZC序列,确定 $N_{I\!D}^{(2)}$
SSS Sequence	长度为131的ZC序列和 Hadamard 序列组成	2个31长度m序列和PN序列组成确定 $N_{ID}^{(1)}$
PCI	0-503,由NSSS指示 由ZC root index and a binary scrambling sequence得到	$N_{ID}^{cell} = 3 N_{ID}^{(1)} + N_{ID}^{(2)}$
其它	NSSS通过4个时域循环偏移值 得到80ms边界	

NPSS/SSS 时频域资源映射

In-band 模式, LTE 4 天线端口

In-band 模式下 NB-IoT PSS/SSS根据LTE天线端口数来避开LTE CRS Stand-alone 和Guard band模式下无需避开LTE CRS 其它信道要使用5,9子帧(偶数帧)发送的全部推迟

NPSS/SSS 序列 Binary Code Cover $\{S_l, 1 \le l \le 11\}$ NPSS序列 <u>A</u> Size-11 Zadoff-Chu Subcarrier CP *l*-th PSS Symbol **IFFT** Sequence (*u*=5) Mapping Insertion NSSS序列 Scrambling Subcarrier sequence IFFT mapping Subcarrier IFFT mapping extended Element-wise Cylic shift ZC of multiplication length 132 Subcarrier IFFT mapping

NPSS/SSS 序列

$$d_{l}(n) = S(l) \cdot e^{-j\frac{\pi u n(n+1)}{11}}, \quad n = 0,1,...,10$$

			S(3),,	S(1)	3)				
1	1	1	1	-1	-1	1	1	1	-1	1

NSSS序列
$$d(n) = b_q(m)e^{-j2\pi\theta_f n}e^{-j\frac{\pi u n'(n'+1)}{131}}$$

 $heta_f$ 频率循环移位,和帧号相关,四种间隔确定 $80 \mathrm{ms}$ 边界

$$b_q(n) = Hadamard_{s_q}^{128 \times 128} (\text{mod}(n, 128)), q = 0, 1, 2, 3$$

$$s_0 = 0, s_1 = 31, s_2 = 63, s_3 = 127$$

使用4条132长的Hadamard序列作为扰码序列, PCID 与 ZC序列的根索引和扰码序列索引的组合对应

$$n = 0,1,...,131$$

$$n' = n \mod 131$$

$$m = n \mod 128$$

$$u = N_{\rm ID}^{\rm Ncell} \bmod 126 + 3$$

$$q = \left| \frac{N_{\text{ID}}^{\text{Ncell}}}{126} \right|$$

NB-IoT—Channel Raster

The channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

$$F_{DL} = F_{DL_low} + 0.1(N_{DL} - N_{Offs-DL})$$

- •在三种操作模式下, UE都要满足100kHz channel raster要求
- •Stand-alone模式
 - •NPSS/NSSS中心频率直接对齐100kHz channel raster
- •Guard band 模式下
 - •传输NB-IoT载波的中心频率与LTE系统带宽中心的的偏移是fd kHz。
 - •每个fd对应的NB-IoT载波都在Guard band内,载波中心频率和100kHz的 channel taster的频率的频率偏移最多为7.5kHz。
 - •fd到LTE边缘频率偏移也满足15kHz的整数倍
 - •NB-IOT载波尽可能靠近LTE的PRB边缘,远离系统带宽边缘。

Channel Raster—Guard Band

Channel Bandwidth [MHz]

Channel Raster—Guard Band示例图

LTE system bandwidth	of LTE transmission	NB-IoT carrier centre frequency closest to 100kHz channel raster (kHz)		Edge-to-edge separation of LTE and NB-IoT (kHz)
5 MHz	±2257.5	±2392.5	7.5	45

NPBCH & PBCH

PBCH	NB-IoT	Legacy LTE
频域	12 个子载波	带宽中心附近72 个子载波
时域	0子帧	0子帧
周期	640ms	40ms
Symbol	子帧中第四个Symbol开始的11 个	子帧中后一个时隙的头4个 Symbol
长度	34 bit	24 bit
CRC校验	16bit,两种CRC掩码确定天线 端口数1,2	16bit,三种CRC掩码确定天 线端口数1,2,4
SFN	MIB SFN 4bit 8种扰码,3bit。NSSS,80ms	MIB SFN 高8bit 4种扰码确定SFN低2bit
编码	TBCC	TBCC
调制	QPSK调制	QPSK调制
多天线	单天线或者SFBC	单天线/SFBC/C-SFBC FSTD

NPBCH时频域映射

NPBCH内容

```
MasterInformationBlock-NB ::=
                                 SEQUENCE {+
    systemFrameNumber-MSB-r13
                                     BIT STRING (SIZE (4)),
    hyperSFN-LSB-r13
                                     BIT STRING (SIZE (2)), ₽
    schedulingInfoSIB1-r13
                                     INTEGER (0..15), ₽
    systemInfoValueTag-r13
                                     INTEGER (0..31), ₽
    ab-Enabled-r13
                                     BOOLEAN, +
    operationModeInfo-r13
                                     CHOICE {+
        inband-SamePCI-r13
                                          Inband-SamePCI-NB-r13, ₽
        inband-DifferentPCI-r13
                                          Inband-DifferentPCI-NB-r13, ₽
        quardband-r13
                                          Guardband-NB-r13, ₽
        standalone-r13
                                          Standalone-NB-r13+
    1, 4
    spare
                                     BIT STRING (SIZE (11)) ₽
```

ChannelRasterOffset-NB-r13 ::= ENUMERATED {khz-7dot5, khz-2dot5, khz2dot5, khz7dot5}

```
Guardband-NB-r13 ::=
                            SEQUENCE {
                            ChannelRasterOffset-NB-r13,
   rasterOffset-r13
                            BIT STRING (SIZE (3))
   spare
Inband-SamePCI-NB-r13 ::=
                               SEQUENCE {
   eutra-CRS-SequenceInfo-r13
                                  INTEGER (0..31)
Inband-DifferentPCI-NB-r13 ::= SEQUENCE {
   eutra-NumCRS-Ports-r13
                                  ENUMERATED (same, four),
   rasterOffset-r13
                            ChannelRasterOffset-NB-r13,
                            BIT STRING (SIZE (2))
   spare
Standalone-NB-r13 ::=
                            SEQUENCE {
                            BIT STRING (SIZE (5))
   spare
```


In Band模式下PRB偏置和Channel Raster

In Band/相同PCI, eutra-CRS-SequenceInfo

取值↩	奇数/偶数带宽₽	PRB偏置₽	信道Raster偏置₽
0₽	odd₽	-35₽	7.5 kHz ₽
1₽	odd₽	-30₽	7.5 kHz ₽
2₽	odd₽	-25₽	7.5 kHz ₽
3₽	odd₽	-20₽	7.5 kHz ₽
4₽	odd₽	-15₽	7.5 kHz ₽
5₽	odd₽	-10₽	7.5 kHz ₽
6₽	odd₽	-5₽	7.5 kHz ₽
7₽	odd₽	5₽	-7.5kHz₽

NPDCCH&PDCCH

PDCCH	NB-IoT	Legacy LTE (R8)
频域	12 个子载波	全带宽
时域	In-Band 下SIB1消息指示开始 的OFDM符号 其它模式,全部symbols	CFI=[1,2,3]
资源映射	支持NCCE0和NCCE1	频域4个RE组成REG 时频域9个REG组成CCE
REG	不支持	支持
聚合等级	1 CCE & 2 CCE	1, 2 , 4 , 8 CCE聚合等级
调度特点	跨子帧调度	同子帧调度
搜索空间	CSS & USS	CSS & USS
重复传输	支持	不支持
调制	QPSK调制	QPSK调制

NPDCCH—NCCE时频域资源映射

NPDCCH所使用的CCE频域上大小为6个子载波

Stand-alone/Guard band模式下,使用所有OFDM符号

In-Band模式下, SIB1配置的起始OFDM符号(LTE control region size)。

Stand-alone/Guard Band 模式

In-Band 模式

NPDCCH—Format

NPDCCH format	Number of NCCEs
0	1
1	2

- •NPDCCH最大聚合等级: 2, AL=2的两个CCE位于相同子帧
- •重复传输仅支持AL=2

NPDCCH Format 0

NPDCCH Format 1

NPDCCH—DCI内容

所有覆盖类型,所有操作模式下,DCI大小相同; 通过1 bit区分UL Grant和DL Grant

- •Format N0 (UL Grant)
- •Format N1 (DL Grant)
- •Format N2 (Paging DCI)

DCI Forma) UL Grant内容

Field	Size
CRC	16
UL/DL differentiation flag	1
New data indicator	1
Sub-carriers indication	15 kHz子载波间隔,用5bits表示资源分配 3.75kHz子载波间隔,用6bits表示资源分配
Scheduling delay between end of NPDCCH transmission and start of data transmission	最小值为8ms。取值集合为{8, 16, 32, 64},单位为ms
Number of resource units	3 bits to indicate one among {1, 2, 3, 4, 5, 6, 8, 10}
Repetition number	3 bits to indicate one among {1, 2, 4, 8, 16, 32, 64, 128}
DCI subframe repetition number	2bit,取值为Rmax、Rmax/2、Rmax/4、Rmax/8
Modulation and coding scheme	4 bits
Redundancy Versions	1 bit
26	© ZTE All rights reserved ZTE中兴

NPDCCH搜索空间

- •定义三种搜索空间,
 - •UE-specific search space, USS
 - •Type1-NPDCCH common search space, CSS for Paging
 - Type2-NPDCCH common search space, CSS for RAR
- •仅在AL=2时,可以配置重复传输
- •在无NPDCCH重复传输的情况下,任何子帧中,3种盲检候选集
- •在NPDCCH重复传输的情况下,任何子帧中,4种盲检候选集
- •盲检候选集 定义 {AL, #repetition, #blind decodes}

根据Rmax配置的不同,UE需要监控的候选集 {AL, #repetition, #blind decodes}如下:

$$\{1,\,1,\,2\},\,\{2,\,1,\,1\} \qquad \qquad \qquad \text{for $R_{max}=1$} \\ \{1,\,1,\,2\},\,\{2,\,1,\,1\},\,\{2,\,2,\,1\} \qquad \qquad \qquad \qquad \text{for $R_{max}=2$} \\ \{2,\,1,\,1\},\,\{2,\,2,\,1\},\,\{2,\,4,\,1\} \qquad \qquad \qquad \qquad \qquad \text{for $R_{max}=4$} \\ \{2,\,R_{max}\,/8,\,1\},\,\{2,\,R_{max}\,/4,\,1\},\,\{2,\,R_{max}\,/2,\,1\},\,\{2,\,R_{max},\,1\} \qquad \qquad \text{for $R_{max}>=8$} \\ \label{eq:continuous}$$

- ●对于重复次数为Ri的NPDCCH候选集,UE需要从搜索空间起始到结束, 对每个Ri(Repetition重复次数) Valid子帧进行盲检。
- ●Rmax 表示的是valid子帧。
- ●R_{max} 取值范围 {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}
- ●R_{max}和Start of NPDCCH search space 通过RRC信令通知UE。

Start of NPDCCH USS

Candidates {AL, #repetition, #blind decodes}

R1 {1, 1, 2}

R1 {2, 1, 1}

RMax = 1

Start of NPDCCH USS R1 R1 R1 R1 R1 R1 R1 R2 R2 R2 R2 R3 R3 **R4**

RMax = 16

Candidates {AL, #repetition, #blind decodes}

R1 {2, 2, 1}

R2 {2, 4, 1}

R3 {2, 8, 1}

R4 {2, 16, 1}

NPDCCH—公共搜索空间

Type2-NPDCCH 公共搜索空间 (CSS for RAR/Msg3 retransmission/Msg4)

Type1-NPDCCH 公共搜索空间 (CSS for Paging)

```
\{2, 1, 1\}
                                                                                                      for Rmax = 1
{2, 1, 1}, {2, 2, 1}
                                                                                                      for Rmax = 2
{2, 1, 1}, {2, 2, 1}, {2, 4, 1}
                                                                                                      for Rmax = 4
{2, 1, 1}, {2, 2, 1}, {2, 4, 1}, {2, 8, 1}
                                                                                                      for Rmax = 8
{2, 1, 1}, {2, 2, 1}, {2, 4, 1}, {2, 8, 1}, {2, 16, 1}
                                                                                                      for Rmax = 16
{2, 1, 1}, {2, 2, 1}, {2, 4, 1}, {2, 8, 1}, {2, 16, 1}, {2, 32, 1}
                                                                                                     for Rmax = 32
{2, 1, 1}, {2, 2, 1}, {2, 4, 1}, {2, 8, 1}, {2, 16, 1}, {2, 32, 1}, {2, 64, 1}
                                                                                                     for Rmax = 64
{2, 1, 1}, {2, 2, 1}, {2, 4, 1}, {2, 8, 1}, {2, 16, 1}, {2, 32, 1}, {2, 64, 1}, {2, 128, 1}
                                                                                                     for Rmax = 128
{2, 1, 1}, {2, 4, 1}, {2, 8, 1}, {2, 16, 1}, {2, 32, 1}, {2, 64, 1}, {2, 128, 1}, {2, 256, 1}
                                                                                                     for Rmax = 256
{2, 1, 1}, {2, 4, 1}, {2, 16, 1}, {2, 32, 1}, {2, 64, 1}, {2, 128, 1}, {2, 256, 1}, {2, 512, 1}
                                                                                                     for Rmax = 512
{2, 1, 1}, {2, 8, 1}, {2, 32, 1}, {2, 64, 1}, {2, 128, 1}, {2, 256, 1}, {2, 512, 1}, {2, 1024, 1}
                                                                                                     for Rmax = 1024
{2, 1, 1}, {2, 8, 1}, {2, 64, 1}, {2, 128, 1}, {2, 256, 1}, {2, 512, 1}, {2, 1024, 1}, {2, 2048,1}
                                                                                                     for Rmax = 2048
```

NPDCCH—CSS for Paging

•对于CSS for paging, UE只需要从搜索开始位置, 盲检每个重复次数Ri对应的候选集

NPDCCH—搜索空间起始位置

搜索空间(USS/CSS for RAR)的起始子帧,满足以下公式

$$(10n_f + \lfloor n_s/2 \rfloor) \mod T = \lfloor \alpha_{\text{Offset}} T \rfloor$$

n_f 帧号, n_s时隙号, T= R_{max}*G(Start of NPDCCH USS)

$$G = \{1.5, 2, 4, 8, 16, 32, 48, 64\}$$

αoffset is signaled via RRC {0, 1/8, 1/4, 3/8}

以R_{max} = 8 , G=2 , T (Period) = 16, Offset = 1/8为例

NPDCCH—DL GAP配置

- •为防止NPDCCH/NPDSCH长时间连续传输阻塞其它用户的下行信道传输。
- •增加一些Gap子帧作为无效子帧,以用于其它用户。
- •当NPDCCH/NPDSCH重复传输的子帧,和GAP子帧重叠时, NPDCCH/NPDSCH推迟到下个valid子帧发送。
- •GAP配置参数通过SIB信令下发

GAP门限(X1)	GAP周期	GAP Size
{32,64,128,256}	{64,128,256,512}	{1/8, 1/4, 3/8, 1/2} *GAP周期

- •当NPDCCH的Rmax大于等于X1门限后,GAP生效;
- •在Multi-PRB配置时,可以对于Anchor PRB和Non-Anchor PRB单独配置DL GAP
- •DL GAP配置不影响上下行之间的时间计算关系
- •DL GAP不用于SIB传输
- •GAP配置对paging 的NPDCCH和PDSCH都有效

NPDCCH—DL GAP配置时域示例

GAP门限配置 = 32 UE的NPDCCH重发次数Rmax= 64,GAP生效;GAP周期512,GAP size= 1/8 $\left(10\ n_{\rm f} + \left\lfloor n_{\rm s}/2 \right\rfloor\right) {
m mod}\ T_{\rm g} = 0$

Valid/Invalid子帧配置

- •在In-band模式下,UE不知道MBMS业务所使用的子帧,为避开干扰,在SIB1-NB消息中下发Valid/Invalid子帧配置位图。
- •Guard band和Stand-alone模式下,没有此需求,为了保持前向兼容性,也保留位图配置。
- •40ms for inband,即{11111。。。。111111001111}表示
- •10ms for stand-alone/Guard band,即{11111111111}表示
- •在位图配置的invalid子帧上, NPSS/NSSS/NPBCH/SIB1-NB都要推 迟发送

NPDSCH & PDSCH

PDSCH	NB-IoT	Legacy LTE (R8)
频域	12 个子载波	可以使用全带宽
时域	除NPSS/NSSS/ NPBCH/NPDCCH以外的, 下行Valid子帧。 每个子帧中起始OFDM Symbol根据规则确定	每个子帧Data Region中的OFDM Symbol
编码	TBCC	1/3 Turbo
调制	QPSK	QPSK , 16QAM , 64QAM
传输模式	单端口 2端口, SFBC	TM1,2,3,4,6等
资源分配单位	Resource Unit RU	PRB
RV版本	不支持	RV版本0,1,2,3

NPDSCH时域

Stand-alone/Guard Band

In-Band模式下 SIB1-NB使用的NPDSCH子帧 从/=3 symbol开始

In-Band模式下 非SIB1-NB使用的NPDSCH子帧 起始位置由eutraControlRegionSize决定

NPDSCH delay

NPDCCH和NPDSCH之间的调度时延由DCI指示,使用3bits指。

n表示NPDCCH空间所有重复的最后一个子帧 ,在n+5下行子帧结束后,解码

N个NPDSCH子帧 k_i , i=0,1,...,N-1。

DCI中的调度延时字段 I_{Delay} , 决定 k_{o}

I .	k_0				
I Delay	$R_{\rm max} < 128$	$R_{\text{max}} \ge 128$			
0	0	0			
1	4	16			
2	8	32			
3	12	64			
4	16	128			
5	32	256			
6	64	512			
7	128	1024			

DL TB Size & MCS

In-band模式下支持 I_{TBS} 0-9 Stand-alone和Guard band模式下支持0-12

NB-IoT MCS index (LTE R11 MCS index) I _{MCS}	Modulation order Q _m	NB-IoT TBS index (LTE R11 MCS index) I _{TBS}
0(0)	2	0(0)
1(1)	2	1(1)
2(2)	2	2(2)
3(3)	2	3(3)
4(4)	2	4(4)
5(5)	2	5(5)
6(6)	2	6(6)
7(7)	2	7(7)
8(8)	2	8(8)
9(9)	2	9(9)
10	2	10(10)
11	2	11(11)
12	2	12(12)

DL TB Size

T	$N_{ m SF}$								
I_{TBS}	1	2	3	4	5	6	8	10	
0	16	32	56	88	120	152	208	256	
1	24	56	88	144	176	208	256	344	
2	32	72	144	176	208	256	328	424	
3	40	104	176	208	256	328	440	568	
4	56	120	208	256	328	408	552	680	
5	72	144	224	328	424	504	680	N/A	
6	88	176	256	392	504	600	N/A	N/A	
7	104	224	328	472	584	680	N/A	N/A	
8	120	256	392	536	680	N/A	N/A	N/A	
9	136	296	456	616	N/A	N/A	N/A	N/A	
10	144	328	504	680	N/A	N/A	N/A	N/A	
11	176	376	584	N/A	N/A	N/A	N/A	N/A	
12	208	440	680	N/A	N/A	N/A	N/A	N/A	

SIB1-NB消息发送

- •In-Band模式下, SIB1-NB 从#3 Symbol开始
- •Stand-alone和Guard Band模式下, SIB1-NB 从#0 Symbol开始
- •SIB1-NB TB块映射到8个子帧上发送,为连续16个无线帧中每隔一个无线帧的子帧上发送。8个子帧是连续的16个物理无线帧中过的8个奇数无线帧或8个偶数无线帧中的子帧#4。
- •SIB1-NB的周期是256个无线帧(16*16), 支持的重复次数R_{SIB1-NB} 4,8,16
- •MIB-NB中指示SIB1-NB的TBS和重复次数,不同TBS的数目是4个。
- •在一个SIB1-NB周期内, SIB1-NB的重复在时间上是等间隔出现。重复的起始帧号依赖于PCID。
 - •对于SIB1-NB以外的SIB消息,调度信息在SIB1-NB中指示。
 - •一个SIB1-NB消息的传输块在连续的8个有效下行子帧发送,支持重复发送, 重复次数和重复间隔配置。
 - •NB-IoT中不使用SI-RNTI加扰的PDCCH调度SI消息的发送

SIB1-NB消息

PCID确定SIB1-NB重复开始的无线帧

R _{SIB1-NB}	PCID	重复开始的无线帧
	PCID mod 4 = 0	SFN mod 256 = 0
1	PCID mod 4 = 1	SFN mod 256 = 16
4	PCID mod $4 = 2$	SFN mod 256 = 32
	PCID mod $4 = 3$	SFN mod 256 = 48
0	PCID mod 2 = 0	SFN mod 256 = 0
8	PCID mod 2 = 1	SFN mod 256 = 16
16	PCID mod 2 = 0	SFN mod 256 = 0
16	PCID mod 2 = 1	SFN mod 256 = 1

发送SIB1-NB的NPDSCH TBS表

$I_{ m TBS}$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
TBS	208	208	208	328	328	328	440	440	440	680	680	680	Reserved			

- ■第一部分 NB-IoT操作模式
- 第二部分 下行物理层
 - 下行物理层总体
 - NRS
 - NPSS/NSSS/Channel Raster
 - NPBCH
 - NPDCCH
 - NPDSCH
- 第三部分 上行物理层
 - 上行物理层总体
 - NPUSCH
 - NPRACH

NB-IoT上行物理层总体

	NB-IoT	Legacy LTE (R8)
技术	SC-FDMA	SC-FDMA
带宽	180kHz	1.4M—20MHz(6种)
子载波间隔	15kHz (Multi tone) 15kHz (Single tone) 3.75kHz (Single tone) 3.75kHz (PRACH)	15 kHz 1.25kHz (PRACH)
СР	Normal CP	Normal /Extend CP
调制	PI/2 BPSK (Single tone) PI/4 QPSK (Single tone) QPSK (Multi tone)	QPSK 16QAM 64QAM
DMRS	Υ	Υ

NB-IoT—上行物理信道

	NB-IoT	Legacy LTE (R8)
PRACH	Υ	Υ
PUCCH	N	Υ
PUSCH	NPUSCH Format 1 NPUSCH Format 2	Υ
Sounding RS	N	Υ
DMRS	Υ	Υ

NPUSCH modulation schemes

NPUSCH format	$N_{ m sc}^{ m RU}$	Modulation scheme
1	1	BPSK, QPSK
1	>1	QPSK
2	1	BPSK

ZTE中兴

NPUSCH- Resource Grid

时隙slot number

$$\Delta f = 15 \text{ kHz}$$

$$n_{s} \in \{0,1,...,19\}$$

$$\Delta f = 3.75 \text{ kHz}$$
 $n_s \in \{0,1,...,4\}$

NPUSCH- 时隙结构

Subcarrier spacing	$N_{ m sc}^{ m UL}$	$T_{ m slot}$
$\Delta f = 3.75 \mathrm{kHz}$	48	$61440 \cdot T_{\rm s}$
$\Delta f = 15 \text{kHz}$	12	$15360 \cdot T_{\mathrm{s}}$

NPUSCH--Resource Unit

NPUSCH format	Δf	$N_{ m sc}^{ m RU}$	$N_{ m slots}^{ m UL}$	时长	$N_{ m symb}^{ m UL}$
	3.75 kHz	1	16	32 ms	
		1	16	8 ms	
1	15 kHz	3	8	4 ms	
	TO KUZ	6	4	2 ms	7
		12	2	1 ms	
2	3.75 kHz	1	4	8 ms	
Z	15 kHz	1	4	2ms	

NPUSCH--Resource Unit

对于NPUSCH Format1 RU

ZTE中兴

UL TBSize & MCS

Multi tone

	1	
I_{MCS}	Modulation	$ m I_{TBS}$
0	QPSK	0
1	QPSK	1
2	QPSK	2
3	QPSK	3
4	QPSK	4
5	QPSK	5
6	QPSK	6
7	QPSK	7
8	QPSK	8
9	QPSK	9
10	QPSK	10
11	QPSK	11
12	QPSK	12

Single tone

I_{MCS}	Modulation	I_{TBS}
0	pi/2-BPSK	0
1	pi/2-BPSK	2
2	pi/4-QPSK	1
3	pi/4-QPSK	3
4	pi/4-QPSK	4
5	pi/4-QPSK	5
6	pi/4-QPSK	6
7	pi/4-QPSK	7
8	pi/4-QPSK	8
9	pi/4-QPSK	9
10	pi/4-QPSK	10

UL TBSize

T	N _{RU}							
I_{TBS}	1	2	3	4	5	6	8	10
0	16	32	56	88	120	152	208	256
1	24	56	88	144	176	208	256	344
2	32	72	144	176	208	256	328	424
3	40	104	176	208	256	328	440	568
4	56	120	208	256	328	408	552	696
5	72	144	224	328	424	504	680	872
6	88	176	256	392	504	600	808	1000
7	104	224	328	472	584	712	1000	
8	120	256	392	536	680	808		
9	136	296	456	616	776	936		
10	144	328	504	680	872	1000		
11	176	376	584	776	1000			
12	208	440	680	1000				

© ZTE All rights reserved

NPUSCH

- •NPUSCH,支持两个RV版本0和RV2
- •对于Multi tone和single tone, RVO和RV2分别由1bit DCI来指示。

RV2支持所有I_{TBS}

- •DCI用 4bits表示I_{TBS}
- 对于multi tone , 支持I_{TBS} 范围0-12
- 对于single tone , 支持I_{TBS} 范围0-10
- PI/BPSK 用于I_{TBS} 0和2
- PI/4 QPSK,用于其它的I_{TBS}

上行调度时延

•NPDCCH DCI N0结束子帧n,UE在n+k₀子帧结束后发送NPUSCH

format 1;

$$N = N_{\rm Rep} N_{\rm RU} N_{\rm slots}^{UL}$$

•发送N个连续NB-IoT UL slots n_i with i = 0, 1, ..., N-1;

 k_0 for DCI format N0

$I_{ m Delay}$	k_0
0	8
1	16
2	32
3	64

NPUSCH & PUSCH

PUSCH	NB-IoT	Legacy LTE R8
频域	两种子载波间隔 3.75k间隔, single tone 15k间隔, Single tone 15k间隔, 12/6/3 tones	15kHz子载波间隔, RB,12个子载波
时域	15kHz和Legacy LTE对齐 3.75kHz下,定义2ms Slot	1ms子帧调度周期
信息	NPUSCH 1 上行数据 NPUSCH 2 ACK/NACK	PUSCH上行数据,也可以携带 ACK/NACK
资源分配	按照RU分配资源 不同频域带宽对应不同RU资 源时长	按RB分配资源 RB数量为2, 3, 5倍数
编码	1/3 Turbo	1/3 Turbo
调制	Single Tone Pi/2-BPSK Pi/4-QPSK Multi Tone QPSK	QPSK , 16QAM
RV版本	支持RV0, RV2	支持RV 0,1,2,3

NB-DMRS

- •NPUSCH format 1,每个NB-Slot有1个符号用于DMRS
- •NPUSCH format 2,每个NB-Slot有3个符号用于DMRS

NPUSCH	Values for 1			
format	$\Delta f = 3.75 \mathrm{kHz}$	$\Delta f = 15 \text{ kHz}$		
1	4	3		
2	0, 1, 2	2, 3, 4		

NPRACH时域

NPRACH采用single tone方式发送,子载波间隔3.75kHz NPRACH支持时频域划分复用,不支持Preamble码分复用。针对不同小区大小,支持2种CP长度,66.7us和266.7us Symbol Group 定义如下:

Preamble format	T_{CP}	$T_{ m SEQ}$
0	$2048 T_{\rm s}$	$5 \cdot 8192 T_{\rm s}$
1	8192 T _s	$5 \cdot 8192 T_{\rm s}$

4个Symbol Group组成一个NPRACH信道

NPRACH -Symbol Group时域

NPRACH -频域

180kHz 45kHz 12 子载波 12*3.75

频域参数

 $nprach-SubcarrierOffset \ N_{\rm scoffset}^{\rm NPRACH}$ $nprach-NumSubcarriers \ N_{\rm sc}^{\rm NPRACH}$

NPRACH频域配置

子载波	频率位置子载波偏移						
数量	0	12	24	36	2	18	34
12	0 – 11	12 – 23	24 – 35	36 – 47	2 – 13	18 – 29	34 – 45
24	0 – 23	12 – 35	24 – 47	Invalid	2 – 25	18 – 41	Invalid
36	0 – 35	12 – 47	Invalid	Invalid	2 – 37	Invalid	Invalid
48	0 – 47	Invalid	Invalid	Invalid	Invalid	Invalid	Invalid

NPRACH频域配置

为支持multi-tone MSG3 传输, NPRACH频域子载波分为两个集合

- ·引入一个新的参数:
- •prach-SubcarrierRangeStart {0, 1/3, 2/3, 1} $N_{\rm MSG3}^{\rm NPRACH}$ 仅支持single tone MSG3 UE使用频域下部的子载波集合 支持multi-tone MSG3 UE使用频域上面的子载波集合

NPRACH -跳频示例

NPRACH—时分/频分复用示例

NPRACH时域周期配置

nprach-Periodicity	Periodicity of an NPRACH resource	{40, 80, 160, 240, 320, 640, 1280, 2560}
nprach-StartTime	NPRACH resource starting time after period	{8, 16, 32, 64, 128, 256, 512, 1024}
PRACH CP length	Cyclic prefix length for NPRACH transmission	{66.7, 266,7}
nprach-NumRepetitions	Number of repetitions for NPRACH transmission	{1, 2, 4, 8, 16, 32, 64, 128}

NPRACH 周期起始帧号满足

$$n_{\rm f} \bmod \left(N_{\rm period}^{\rm NPRACH} / 10\right) = 0$$

短CP,周期40ms,重复传输2次时域示意图

NPRACH & PRACH

PRACH	NB-IoT	Legacy LTE R8
频域	3.75kHz 子载波间隔 1个PRACH Band 45kHz, 最多配置4个 band Offset可配置	1.25kHz 子载波间隔 6个RB,使用了839个子载波 Offset可配置
时域	CP+5 Symbols为一个Symbol group 时域上4个Symbol groups为一个信道 两种CP长度	FDD有四种格式,对应不同CP, Sequence和Guard长度。 通过PRACH Index配置出现周 期和Format
Preamble Sequence	常数序列,不同Symbol group上不变	长度为839的ZC序列,由根索引 和循环移位根据规则生成
信道(资源)数量	根据频域和时域配置确定。	一个小区64个Preamble
复用方式	不同UE通过FDM/TDM复用, 不支持Preamble复用	相同时频资源,不同Preamble 码分复用

UL GAP

NPUSCH UL GAP

•In case of NPUSCH repetitions, after transmissions of $256 \cdot 30720T_{\rm S}$ time units, a gap of $40 \cdot 30720T_{\rm S}$ time units shall be inserted where the NPUSCH transmission is postponed.

NPRACH UL GAP

•In case of NPRACH repetitions, after transmissions of $64(T_{\rm CP}+T_{\rm SEQ})$ time units(358.4/409.6), a gap of $40\cdot30720T_{\rm S}$ time units shall be inserted where the NPRACH transmission is postponed.

NB-IoT 多载波操作

- •In-Band/Guard Band模式下, NB-IoT支持多载波操作。
 - •NB-IoT UE在RRC_IDLE下, 驻留在发送NPSS/NSSS/NPBCH/SIB-NB的载波, 也称为Anchor 载波。
 - •UE在RRC_CONNECTED状态下,可以通过UE专用RRC信令,配置到一个不同于Anchor载波的PRB上,也称为Non-anchor载波。
- •Non-anchor载波无需满足100kHz channel raster要求。
- •Non-anchor载波可以配置不同于Anchor载波的GL GAP,也可以不配置。
- •In-band模式下, Non-anchor载波的位置待确定。
- •目前来看支持In-band + In-band , In-band + Guard band , Stand alone + stand alone载波的组合。
- •不支持Stand-alone + In-band /Guard band的组合。
- Stand alone + stand alone频率间隔不超过20M

微信扫描以下二维码,免费加入【5G 俱乐部】,还赠送整套:5G 前沿、NB-loT、4G+(Vol.TE)资料。

