10

S

දකුණු පළාත් අධනාපන දෙපාර්තමේන්තුව බනුශ් භාෂාකාශ් සහ්ශ්වේ නිකාශ්ෂය ශාෂ් Southern Provincial Department of Education

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය (නව විෂය නිර්දේශය) General Certificate (Adv. Level) Examination (New Syllabus)

පළමු වාර පරිකුණය - 2022

ි 13 ශේණිය

සංයුක්ත ගණිතය - II Combined Mathematics - II පැය 03 03 hours

(අමතර කියවීම් කාලය මිනිත්තු 10)

විභාග අංකය					ශුේණිය	
						-

නම

අයදුම්කරුවන් සඳහා උපදෙස් :-

★ මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ.

A කොටස (පුශ්න 1 - 10) සහ **B** කොටස (පුශ්න 11 - 17)

⋆ A කොටස :

සියලුම පුශ්න සඳහා පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිතා කළ හැකිය.

* Bකොටස:

පුශ්ත පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු **A කොටසෙහි** පිළිතුරු පතුය, **B කොටසෙහි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාරදෙන්න.
- \star මෙම පුශ්න පතුයේ B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

	(10) 600 600	
කොටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	
A	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	
	පුතිශතය	
	පුතිශතය	

(10) සංයක්ත ගණිතය II

I පතුය	
II පතුය	
එකතුව	
අවසාන ලකුණු	

අවසාෘ	ා ලකුණු
ඉලක්කමෙන්	
අකුරින්	

සංකේත අං	කය
උත්තර පතු පරීඤක	
පරීකෂා කලේ	1. 2.
අධීකුණය කළේ	

Δ	രമ്പ	റക
		$-\omega$

01.	එකිනෙකට $10\mathrm{km}$ ක් ඇතින් පිහිටි A හා B නම් දුම්රිය ස්ථාන 2 ක් අතර දුම්රියක් ධාවනය වේ. එය U ආරම්භක
	පුවේගයෙන් A සිට ගමන් අරඹා මුල් තත්පර 40 ක් තුළ $1 { m ms}^{-2}$ ඒකාකාර ත්වරණයකින් ගමන් කර වේගය $60{ m ms}^{-1}$ ට
	ළඟා වේ. ඊළඟ තත්පර T තුළ එම වේගය පවත්වාගෙන ඉන් අනතුරුව $\frac{1}{2}~\mathrm{ms}^{-2}$ ඒකාකාර මන්දනයෙන් ගමන්කර
	B හිදී නිශ්චලතාවට පත්වේ.
	i) දුම්රියේ චලිතය සඳහා පුවේග කාල පුස්ථාරයක් අඳින්න.
	ii) පුස්ථාරය භාවිතයෙන් U සහ T සොයන්න.
02	
02.	පුක්ෂිප්තයක් පුක්ෂේපන ලක්සේ සිට a තිරස් දුරකින් ද $\frac{a}{2}$ සිරස් උසකින් ද පතිත වන පරිදි $\sqrt{2ag}$ පුවේගයෙන්
	පුක්ෂේපණය කරන ලදී. විය හැකි පුක්ෂේපණ කෝණ දෙක ගණනය කරන්න. මෙම ගමන් මාර්ග දෙක ඔස්සේ
	චලිතයට ගතවන කාල අතර අනුපාතය සොයන්න.
£3nr/	ක්ත ගණිතය - දකුණු පළාත

03.	පිළිවෙලින් ස්කන්ධ m හා $4m$ වූ A හා B නම් ඒකාකාර කුඩා සුමට ගෝල 2 ක් පිළිවෙලින් $2u$ හා $6u$ පුවේගවලින්
	එකිනෙක දෙසට චලනය වේ. ගෝල අතර පුත්හාගති සංගුණකය $\frac{1}{2}$ වේ.
	i) ගැටුමෙන් පසු ${f B}$ හි පුවේගය සොයන්න.
	ii) ගෝල අතර ආවේගය ගණනය කරන්න.
04.	ස්කන්ධය $1200~{ m kg}$ වන මෝටර් රථයක් $24~{ m kmh}^{-1}$ ක නියත පුවේගයෙන් තිරස් මාර්ගයක ගමන් කරයි. රථයේ
	චලිතයට එරෙහි පුතිරෝධය $600\mathrm{N}$ වේ.
	i) රථයේ එන්ජිමේ ජවය කිලෝවොට් වලින් සොයන්න.
	ii) ඉන්පසු රථය තිරසට $lpha$ ආනතියක් ඇති කන්දක ඉහළට ගමන් කරයි. මෙහි $\sinlpha=rac{1}{24}$ ද ගුරුත්වාකර්ෂණ
	බලය හැර $600\mathrm{N}$ නියත පුතිරෝධයක් චලිතයට එරෙහිව කිුයා කරයි. එන්ජීම $30\mathrm{kW}$ ජවයෙන්
	කියාකරන්නේ නම් මෝටර් රථයේ පුවේගය 20ms ⁻¹ වන විට එහි ත්වරණය සොයන්න.

05.	අරය $9~\mathrm{cm}$ ද ස්කන්ධය W ද වන ගෝලයක් තිරසට 30° ක ආනත සුමට තලයක් මත සමතුලිතව පවතියි. මෙම
	ගෝලය මතුපිට ලක්ෂෳයකට ගැටගසා ඇති තන්තුවක අනෙක් කෙළවර ගෝලයේ හා තලයේ ස්පර්ශ ලක්ෂෳයේ
	සිට 12 cm ඇතින් ආනත තලයේ වූ ලක්ෂායකට ගැට ගසා ඇත. ගෝලය මත කිුයාකරන බල ලකුණු කරන්න.
	ගෝලයේ සමතුලිතතාවය සඳහා බල තිුකෝණයේ ඇඳීමෙන්,
	i) තන්තුවේ ආතතිය
	ii) තලය හා ගෝලය අතර පුතිකිුයාව සොයන්න.
	unquu.
06.	රූපයේ දක්වා ඇති පරිදි සුමට තිරස් මේසයක් මත නිශ්චලව ඇති ස්කන්ධය m
	වූ A අංශුවකට එක් කෙළවරක් සම්බන්ධ කරන ලද ලුහු අවිතනා තන්තුවක් $A(m)$
	මේස දාරයේ වූ අචල සුමට කප්පියක් මතින් ද ලුහු සුමට C කප්පියක් යටින් ද
	යවා තන්තුවේ අනෙක් කෙළවර සීලිමේ වූ අචල ලක්ෂයකට ගැට ගසා ඇත. $f C$
	කප්පිය ස්කන්ධය M වූ B අංශුවක් දරයි. පද්ධතිය නිශ්චලතාවෙන් මුදා හළ
	පසුව C කප්පියේ ත්වරණයත්, තන්තුවේ ආතතියත් සොයන්න. $egin{array}{c} \mathbf{B} & \mathbf{L} \\ \mathbf{M} & \mathbf{M} \end{array}$
చింది	ක්ත ගණිතය - දකුණු පළාත 4 පිටුව

07.	$ m A$ නැවක් $ m 40~kmh^{-1}$ නියත පුවේගයෙන් නැගෙනහිර දිශාවට චලිත වේ. එක්තරා මොහොතකදී $ m A$ ට $ m 20~km$ ක්
	නැගෙනහිර දෙසින් ${ m B}$ නැවක් දර්ශනය වේ. පැය භාගයකට පසු ${ m A}$ ට ${ m B}$ දර්ශනය වූයේ ${ m 20km}$ දුරක් නැගෙනහිරින්
	60° ක් උතුරට වූ දිශාවකිනි.
	B ගේ පුවේගයේ විශාලත්වය සහ දිශාව සොයන්න.
	A සහ B අතර ඇතිවන කෙටිතම දුර සොයා එය ඇති වීමට ගතවන කාලය ද සොයන්න.
08.	$6l$ දිගැති සැහැල්ලු අවිතන $lpha$ තන්තුවක එක් කෙළවරක් සුමට තිරස් මේසයක් මත වූ $3 ext{m}$ ස්කන්ධයකට ද අනෙක්
	කෙළවර $2 \mathrm{m}$ ස්කන්ධයකට ද ගැටගසා ඇත. $2 \mathrm{m}$ ස්කන්ධය මේසයේ කෙළවරට ආසන්නව එල්ලෙමින් ද $3 \mathrm{\ m}$
	ස්කන්ධය මේසයේ කෙළවර සිට $5l$ දුරින් ද තන්තුව බුරුල්ව පවතින පරිදි තබා නිසලතාවයේ සිට මුදාහරී.
	තන්තුව තද වී මොහොතකට පසු අංශු වල වේගය $rac{2}{5}\sqrt{2{ m g}l}$ බව පෙන්වන්න.
	3

09.	සුපුරුදු අංකනයෙන් $3\underline{i}$ හා $2\underline{i}+3\underline{j}$ යනු O අවල මූලයකට අනුබද්ධයෙන් පිළිවෙලින් A හා B ලඎය දෙකක
	පිහිටුම් දෛශික යයි ගනිමු. C යනු $\stackrel{\wedge}{OCA} = \frac{\pi}{2}$ වන පරිදි OB සරල රේඛාව මත පිහිටි ලක්ෂාය යැයි ගනිමු.
	\longrightarrow OC දෙශිකය i හා j ඇසුරෙන් සොයන්න.
	5 6 6 7 mm to 10 1 5 4 c 21 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10.	ABC යනු පාදයක දිග $2a$ වූ සමපාද තිකෝණයකි. $P, 2P$ හා $3P$ යන බල පිළිවෙලින් $\overrightarrow{AB}, \overrightarrow{BC}$ හා \overrightarrow{CA} ඔස්සේ
	ක්යාකරයි.
	කියාකරයි. i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.
	i) බල පද්ධතියේ සම්පුයුක්ත බලයේ විශාලත්වය හා දිශාව නිර්ණය කරන්න.

B කොටස

- ★ පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.
- 11. (a) A,B බස්නැවතුම් දෙකක් අතර දුර මීටර් S වේ. නිසලතාවයෙන් A නැවතුමෙන් ආරම්භ වූ බස්රථයක් B නැවතුමේ දී නිසලතාවයට පත්වේ. බස්රථයේ ත්වරණය $a_1 \, \mathrm{ms}^{-2}$ වේ. උපරිම මන්දනය $a_2 \, \mathrm{ms}^{-2}$ වේ. S දුර ගෙවායාමට බස්රථය ගන්නා අවම කාලය $\left[2S\left(\underline{a_1+a_2}\right)\right]^{1/2}$ බව පෙන්වන්න.
 - (b) ළමයෙක් එක්තරා පුවේගයකින් උතුරු දිශාවට චලිත වන විට සුළඟ නැගෙනහිරින් α උතුරු දිශාවට හමන බව ළමයාට දැනේ. ළමයා පළමු පුවේගයෙන්ම නැගෙනහිරට චලිත වන විට සුළඟ උතුරින් β නැගෙනහිරට හමන බව ළමයාට දැනේ. සුළඟේ දිශාව බටහිරින් θ දකුණු දිශාවෙන් නම්, $\tan \theta = \frac{1 + \tan \alpha}{1 + \tan \beta} \ \ \,$ බව පෙන්වන්න.
- 12. (a) අවල සුමට A කප්පියක් මතින් පන්නා ඇති ලුහු අවිතනා තන්තුවක එක් කෙළවරක ස්කන්ධය 6 kg අංශුවක් එල්ලා ඇති අතර තන්තුව ස්කන්ධය 2kg වූ B නම් සවල සුමට කප්පියකට සම්බන්ධ කර ඇත. B කප්පිය මතින් පැන්නූ තවත් ලුහු අවිතනා තන්තුවක දෙකෙළවරින් 1kg හා 3kg වූ අංශු දෙකක් ගැටගසා ඇත. නිදහස් තන්තු කොටස් සියල්ල සිරස්ව ඇදී පවතී. පද්ධතිය සීරුවෙන් නිශ්චලතාවෙන් මුදාහැරිය පසු B කප්පියේද, අංශුවල ද ත්වරණ සොයන්න.

- (b) ස්කන්ධය 5kg වන ඒකාකාර හරස්කඩක් ඇති සුමට කුඤ්ඤයක් සුමට තිරස් මේසයක් මත තබා ඇත. කුඤ්ඤයේ ගුරුත්ව කේන්දුය හරහා වූ සිරස්කඩ $B \stackrel{\wedge}{A} C = \frac{\pi}{2}$ ද, $A \stackrel{\wedge}{B} C = \cos^{-1}\left(\frac{4}{5}\right)$ වන අතර, BC පිහිටි මුහුණත මේසයට ස්පර්ශව ඇත. ස්කන්ධ පිළිවෙලින් 1kg හා 2kg වන P, Q අංශු දෙක AB හා AC මත තබා ලුහු අවිතනා තන්තුනක ඈඳා තන්තුව තදව පවතින සේ තබා නිශ්චලතාවයෙන් මුදාහරි. අංශුවල ත්වරණය හා තන්තුවේ ආතතිය සොයන්න.
- 13. (a) දිග 2a වන අවිතනා තන්තුවක දෙකෙළවර එකම තිරස් රේඛාවේ A, B ලස්සය දෙකකට සවිකර ඇත. තන්තුවේ මධා ලස්සයේ ස්කන්ධය mkg වන P අංශුව සවිකර සමතුලිතව එල්ලේ $PAB = PBA = \alpha$ වේ. PB තන්තුව සෂණිකව කැපූ විට PA හි ආතතිය මුල් ආතතියෙන් $\frac{1}{4}$ ක් වේ නම් $\alpha = \sin^{-1}\left(\frac{1}{2\sqrt{2}}\right)$ බව පෙන්වන්න. තන්තුව නැවත සිරස් වන විට එහි ආතතිය හා අංශුවේ වේගය සොයන්න.

14. (a) a හා b ශූනා නොවන හා සමාන්තර නොවන දෙශික යැයි ද $\lambda, \mu \in R$ යැයි ද ගනිමු. $\lambda a + \mu b = 0 \ \text{නම}, \ \lambda = 0 \ \text{හා} \ \mu = 0 \ \text{බව පෙන්වන්න}.$

 \overrightarrow{ABC} තිකෝණයක් යයි ගනිමු. \overrightarrow{AB} හි මධා ලක්ෂාය D ද \overrightarrow{CD} හි මධා ලක්ෂාය E ද වේ. \overrightarrow{AE} (දික් කළ) හා \overrightarrow{BC} රේඛා F හිදී හමුවේ. $\overrightarrow{AB}=a$ හා $\overrightarrow{AC}=b$ යයි ගනිමු. තිකෝණ ආකලන නියමය භාවිතයෙන් $\overrightarrow{AE}=\frac{a+2b}{4}$ බව පෙන්වන්න.

 $\overrightarrow{AF} = \alpha \overrightarrow{AE}$ හා $\overrightarrow{CF} = \beta \overrightarrow{CB}$ වන්නේ ඇයි දැයි පැහැදිලි කරන්න. මෙහි $\alpha, \beta \in R$ වේ.

ACF තුිකෝණය සැලකීමෙන් $(\alpha$ - 4β) $a+2(\alpha+2\beta-2)b=0$ බව පෙන්වන්න. ඒනයින් α හා β හි අගයන් සොයන්න.

(b) A, B, C හා D යනු පැත්තක දිග මීටර a වන සමචතුරසුයක ශීර්ෂ වේ. E යනු CD = DE වන ආකාරයට දික්කරන ලද CD මත පිහිටි ලක්ෂාය වෙයි. විශාලත්ව නිව්ටන $P, 2P, 3P, \mathit{IP}, mP$ හා nP වන බල පිළිවෙලින් AB, AD, CD, AC, EA හා BC පාද දිගේ අක්ෂර අනුපිළිවෙලින් දැක්වෙන දිශා අතට කිුයාකරයි. පද්ධතිය සමතුලිතතාවේ පවතී නම් I, m හා n හි අගයන් සොයන්න.

EA දිගේ කිුයා කරන බලය DB දිගේ අක්ෂර අනුපිළිවෙලින් දැක්වෙන දිශා අතට කිුයාකරන එකම විශාලත්වයක් සහිත බලයක් මගින් පුතිස්ථාපනය කෙරේ. පද්ධතිය සමතුලිතතාවේ පවත්වා ගැනීම සඳහා යෙදිය යුතු යුග්මයේ විශාලත්වය හා අත සොයන්න.

15. (a) AE = BC = 2a හා ED = CD = 2b වන ඒකක දිගක බර w වූ ඒකාකාර දඬුවලින් නිදහස් ලෙස සන්ධි කළ ABCDE පංචාසුයක ආකාරයේ රාමුවක් රූපයේ දැක්වේ.

 $A,\ B$ හා D ශීර්ෂවල කෝණ එක එකක් 120° වේ. AB හි මධා ලක්ෂයෙන් රාමුව සමතුලිතව එල්වා සමමිතික හැඩය පවත්වා ගනු ලබන්නේ C හා E සන්ධි යා කරන දිග $2b\sqrt{3}$ වන සැහැල්ලු දණ්ඩක් මගිනි.

 ${
m D}$ සන්ධියේ පුතිකිුයාවෙහි විශාලත්වය ${
m b}\sqrt{3}\,{
m w}$ බව පෙන්වා ${
m CE}$ සැහැල්ලු දණ්ඩේ තෙරපුම සොයන්න.

(b) යාබද රූපයෙහි පෙන්වා ඇති රාමුසැකිල්ල AB, BC, AC, CD හා AD සැහැල්ලු දඬු පහක් ඒවායේ කෙළවරවලින් නිදහසේ සන්ධි කර සාදා ඇත.

AB = a, BC = 2a, AC = CD හා $CAD = 30^{\circ}$ බව දී ඇත. බර w වූ භාරයක් D හි එල්ලෙන අතර පිළිවෙලින් A හා B හිදී රූපයේ දක්වා ඇති දිශාවලට කිුයාකරන P හා Q සිරස් බලවල ආධාරයෙන් AB තිරස්ව හා AC සිරස්ව රාමු සැකිල්ල සිරස් තලයක සමතුලිතව තිබේ. Q හි අගය w ඇසුරෙන් සොයන්න.

බෝ අංකනය භාවිතයෙන් පුතුසාබල සටහනක් ඇඳ ඒ නයින් දඬු පහේ පුතුසාබල සොයා මෙම පුතුසාබල ආතතිද තෙරපුම් ද යන්න පුකාශ කරන්න.

- 16. (a) සමාන m ස්කන්ධ සහිත A, B හා C අංශු තුනක් AB = BC = d වන පරිදි සුමට තිරස් මේසයක් මත සරල රේඛාවක පිහිටන සේ තබා ඇත. B හි දිශාවට u පුවේගයෙන් A පුක්ෂේපනය කරයි. B ද ඒ මොහොතේම C දෙසට u පුවේගයෙන් මේසය දිගේ පුක්ෂේප කරනු ලැබේ. කවර හෝ අංශු දෙකක් අතර පුතාාගති සංගුණකය e නම්,
 - i) A,B සමග ගැටීමට ගත වූ කාලය සොයන්න.
 - ii) ඉහත ගැටුම සිදුවන තුරු A චලිත වූ දුර සොයන්න.
 - $iii)\ B$ හා C අතර තවත් ගැටුමක් ඇති වන බව පෙන්වන්න.
 - (b) ස්කන්ධය m වූ P අංශුවක් කේන්දුය O සහ අරය a වූ අචල කුහර ගෝලයක සුමට ඇතුළු පෘෂ්ඨය මත O කේන්දුය අඩංගු සිරස් වෘත්තයක චලනය වේ. අංශුව ගෝලයේ පහත්ම ලක්ෂායේ u තිරස් පුවේගයෙන් පුක්ෂේපණය කරනු ලැබේ. මෙහි $u^2 > 2ag$ වේ. OP උඩු සිරස සමග θ කෝණය සාදන විට අංශුවේ පුවේගය v ද ගෝලය සහ අංශුව අතර අභිලම්බ පුතිකියාව R වේ. v හා R සඳහා m, a, u, θ හා g ඇසුරෙන් පුකාශන ලබාගන්න. $u^2 < 5ag$ නම් ගෝලයේ උපරිම ලක්ෂයට ළඟාවීමට පෙර අංශුව ගෝලයෙන් ඈත් වන බව පෙන්වන්න. අංශුව ගෝලයෙන් ඉවත්වන විට $\cos\theta$ හි අගය u, a හා g ඇසුරෙන් සොයන්න. අංශුව A ලක්ෂායේ දී ගෝලයෙන් ඇත් වී පුක්ෂේපිත මඟ AB විෂ්කම්භයේ වන පරිදි B හි දී හමුවේ නම් AB සමග AB වී සාදන බව පෙන්වා එවිට AB හි අගය සොයන්න.
- 17. (a) සැහැල්ලු අවිතනා තන්තුවක එක් කෙළවරක් අරය a වූ ඒකාකාර බර ගෝලයක පෘෂ්ඨය මත වූ ලක්ෂායකට සවිකර ඇත. තන්තුවේ අනෙක් කෙළවර රළු බිත්තියක පිහිටි ලක්ෂායකට සවිකර ඇත. එම ලක්ෂායකට සිරස්ව පහළින් වූ h දුරකින් වූ ලක්ෂාය ස්පර්ශ කරමින් ගෝලය නිසලව පවතියි. ගෝලය බිත්තියේ පහළට ලිස්සා යන අවස්ථාවේ ඇත. බිත්තිය හා ගෝලය අතර ඝර්ෂණ සංගුණකය μ නම් තන්තුව සිරස සමග සාදන කෝණය සොයන්න.

 $\mu=rac{h}{2a}$ ද ගෝලයේ බර w ද නම් තන්තුවේ ආතතිය $rac{w}{2\mu}\sqrt{1+\mu^2}$ බව පෙන්වන්න.

(b) දිග 4a ද බර W ද වූ ඒකාකාර දණ්ඩක් අරය $2\sqrt{2}a$ වූ සුමට ගෝලයක් තුළ තබා දණ්ඩේ මධා ලක්ෂායේ සිට a දුර වූ ලක්ෂායේ w භාරයක් ඈඳා පද්ධතිය ගෝලයේ කේන්දුය ඔස්සේ වූ සිරස් තලයක සමතුලිතව තබා ඇත.

දණ්ඩේ ති්රසට ආනතිය heta නම්, $an heta = rac{W}{2(W+W)}$ බව පෙන්වන්න.