Splošna topologija

 $Luka\ Horjak\ (luka.horjak@student.fmf.uni-lj.si)$

27. oktober 2021

Kazalo Luka Horjak

Kazalo

-	Pro	stori in preslikave	
	1.1	Topološki prostori	
	1.2	Zvezne preslikave	
	1.3	Homeomorfizmi	
	1.4	Baze in predbaze	

Uvod Luka Horjak

$\mathbf{U}\mathbf{vod}$

V tem dokumentu so zbrani moji zapiski s predavanj predmeta Splošna topologija v letu 2021/22. Predavatelj v tem letu je bil prof. dr. Petar Pavešić.

Zapiski niso popolni. Manjka večina zgledov, ki pomagajo pri razumevanju definicij in izrekov. Poleg tega nisem dokazoval čisto vsakega izreka, pogosto sem kakšnega označil kot očitnega ali pa le nakazal pomembnejše korake v dokazu.

Zelo verjetno se mi je pri pregledu zapiskov izmuznila kakšna napaka – popravki so vselej dobrodošli.

1 Prostori in preslikave

1.1 Topološki prostori

Definicija 1.1.1. Naj boXmnožica. Topologija naXje družina τ podmnožicX, ki zadošča pogojem:

- i) $\emptyset, X \in \tau$,
- ii) poljubna unija elementov τ je element τ ,
- iii) poljuben končen presek elementov τ je element τ .

 $Topološki \ prostor$ je par (X,τ) . Elementom τ pravimo $odprte \ množice$, njihovim komplementom pa zaprte.

Opomba 1.1.1.1. V metričnih prostorih (X, d) odprte množice¹ tvorijo topologijo τ_d .

Definicija 1.1.2. Topološki prostor (X, τ) je *metrizabilen*, če obstaja taka metrika d na X, da je $\tau = \tau_d$ pri zgornjih oznakah.

Opomba 1.1.2.1. Za metriko $d'(x, x') = \min \{d(x, x'), 1\}$ velja $\tau_d = \tau_{d'}$.

¹ Tu vzamemo definicijo odprtih množic v metričnih prostorih.

1.2 Zvezne preslikave

Definicija 1.2.1. Preslikava $f:(X,\tau)\to (X',\tau')$ je zvezna, če je praslika vsake odprte množice odprta, oziroma

$$V \in \tau' \implies f^{-1}(V) \in \tau.$$

Opomba 1.2.1.1. Zvezne preslikave med metričnimi prostori so zvezne tudi glede na z metrikami porojene topologije.

Opomba 1.2.1.2. Identiteta id: $(X, \tau) \to (X, \tau')$ je zvezna natanko tedaj, ko je $\tau' \subseteq \tau$. Pravimo, da je topologija τ finejša, τ' pa bolj groba.

Trditev 1.2.2. Kompozitum zveznih preslikav je zvezna preslikava.

Dokaz. Naj bosta $f:(X,\tau)\to (X',\tau')$ in $g:(X',\tau')\to (X'',\tau'')$ zvezni. Sledi

$$V \in \tau'' \implies g^{-1}(V) \in \tau' \implies (g \circ f)^{-1}(V) \in \tau.$$

Opomba 1.2.2.1. Množico vseh zveznih preslikav med (X, τ) in (Y, τ') označimo z $\mathcal{C}((X, \tau), (Y, \tau'))$, oziroma $\mathcal{C}(X, Y)$.

Izrek 1.2.3. Naslednje izjave so ekvivalentne:

- i) $f: (X, \tau) \to (Y, \tau')$ je zvezna,
- ii) $V \in \tau' \implies f^{-1}(V) \in \tau$,
- iii) $B^{c} \in \tau' \implies (f^{-1}(B))^{c} \in \tau$,
- iv) $\forall A \subseteq X : f(\overline{A}) \subseteq \overline{f(A)}$.

Dokaz. Prvi dve trditvi sta očitno ekvivalentni po definiciji zveznosti. 2. in 3. trditev sta očitno ekvivalentni, saj velja $f^{-1}(B^{c}) = f^{-1}(B)^{c}$. Dokažimo še ekvivalenco 3. in 4. trditve.

Naj bo $A \subseteq X$ poljubna in predpostavimo, da velja 3. trditev. Sledi, da je

$$A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\overline{f(A)}).$$

Desna stran je zaprta množica, zato je $\overline{A}\subseteq f^{-1}(\overline{f(A)})$ in

$$f(\overline{A}) \subseteq \overline{f(A)}$$
.

Sedaj predpostavimo, da velja 4. točka. Naj bo ${\cal B}$ poljubna zaprta podmnožica Y. Potem je

$$f(\overline{f^{-1}(B)}) \subseteq \overline{f(f^{-1}(B))} \subseteq \overline{B} = B.$$

Sledi, da je

$$\overline{f^{-1}(B)} \subseteq f^{-1}(B),$$

zato je $f^{-1}(B)$ zaprta.

1.3 Homeomorfizmi

Definicija 1.3.1. Funkcija $f: X \to X'$ določa homeomorfizem med prostoroma (X,τ) in (X',τ') , če je f bijekcija in obenem inducirana bijekcija $f: \tau \to \tau'$. Pišemo $(X,\tau) \approx (X',\tau)$ in pravimo, da sta prostora homeomorfna.

Definicija 1.3.2. Preslikava je odprta, če je slika vsake odprte podmnožice X odprta v X'. Simetrično definiramo zaprte preslikave.

Trditev 1.3.3. Naslednje izjave so ekvivalentne:

- i) $f: X \to X'$ je homeomorfizem,
- ii) f je bijekcija, f in f^{-1} sta zvezni,
- iii) f je zvezna, odprta bijekcija,
- iv) f je zvezna, zaprta bijekcija.

Dokaz. The proof is obvious and need not be mentioned.

Definicija 1.3.4. *Topološka lastnost* je vsaka lastnost topologije, ki se ohranja pri homeomorfizmih.

Opomba 1.3.4.1. Kompaktnost in povezanost sta topološki lastnosti, polnost pa ne.

Definicija 1.3.5. Definiramo naslednje množice:

- i) $B^n = {\vec{x} \in \mathbb{R}^n \mid ||\vec{x}|| \le 1} \text{zaprta enotska krogla}$
- ii) $\mathring{B}^n = \{ \overrightarrow{x} \in \mathbb{R}^n \mid ||\overrightarrow{x}|| < 1 \}$ odprta enotska krogla
- iii) $S^{n-1} = \{ \overrightarrow{x} \in \mathbb{R}^n \mid ||\overrightarrow{x}|| = 1 \}$ enotska sfera

Trditev 1.3.6. Velja $\mathring{B}^n \approx \mathbb{R}^n$.

Dokaz. Vzamemo bijekcijo

$$f(\vec{x}) = \frac{\vec{x}}{1 - \|\vec{x}\|}.$$

Trditev 1.3.7. Velja $S^{n-1} \setminus \{(0, 0, ..., 1)\} \approx \mathbb{R}^{n-1}$.

Dokaz. Naredimo inverzijo v točki $(0,0,\ldots,1)$.

Opomba 1.3.7.1. Zgornji preslikavi pravimo stereografska projekcija.

Opomba 1.3.7.2. Posebej velja $S^2 \approx \mathbb{C} \cup \{\infty\}$. Temu prostoru pravimo *Riemannova sfera*.

1.4 Baze in predbaze

Definicija 1.4.1. Družina odprtih množic $\mathcal{B} \subseteq \tau$ je *baza* topologije τ , če lahko vsak element τ dobimo kot unijo elementov \mathcal{B} .

Trditev 1.4.2. Naj bo \mathcal{B} baza topologije τ množice x. $A \subseteq X$ je odprta natanko tedaj, ko za vsak $x \in A$ obstaja $B \in \mathcal{B}$, za katero je $x \in B$ in $B \subseteq A$.

Dokaz. The proof is obvious and need not be mentioned.

Trditev 1.4.3. Naj bo $f:(X,\tau)\to (X',\tau')$, \mathcal{B} baza τ in \mathcal{B}' baza τ' . Potem velja

- i) f je zvezna natanko tedaj, ko je $f^{-1}(\mathcal{B}') \subseteq \tau$ in
- ii) f je odprta natanko tedaj, ko je $f(\mathcal{B}) \subseteq \tau'$.

Dokaz. The proof is obvious and need not be mentioned.

Definicija 1.4.4. Naj bo $\mathcal{B}_x \subseteq \tau$ neka poddružina topologije, katere elementi vsebujejo x. Pravimo, da je \mathcal{B}_x lokalna baza okolice pri x, če za vsak $U \in \tau$, ki vsebuje x, obstaja $B \in \mathcal{B}_x$, za katero je $B \subseteq U$.

Trditev 1.4.5. Naj bo \mathcal{B} družina podmnožic X in τ množica unij elementov \mathcal{B} . Potem je τ topologija natanko tedaj, ko je \mathcal{B} pokritje X in velja

$$\forall B_1, B_2 \in \mathcal{B}, x \in B_1 \cap B_2 \ \exists B \in \mathcal{B} \colon x \in B \land B \subseteq B_1 \cap B_2.$$

Dokaz. The proof is obvious and need not be mentioned.

Definicija 1.4.6. Naj bo \mathcal{P} neka družina podmnožic X. Množica \mathcal{B} vseh končnih presekov elementov \mathcal{P} je baza. Družini \mathcal{P} pravimo predbaza baze \mathcal{B} .

Trditev 1.4.7. Naj bo $f:(X,\tau)\to (X',\tau')$ in \mathcal{P}' podbaza za τ' . Potem je f zvezna natanko tedaj, ko je $f^{-1}(\mathcal{P}')\subseteq \tau$.

Dokaz. The proof is obvious and need not be mentioned.

Trditev 1.4.8. Preslikava $f: Z \to X_1 \times \cdots \times X_n$ je zvezna za produktno topologijo² natanko tedaj, ko so zvezne vse komponente f.

Dokaz. Očitno je trditev dovolj dokazati za n=2. Naj bo $f:Z\to X\times Y$ zvezna. Potem sta komponenti kartezični produkt projekcije z f, ki sta obe zvezni.

Če sta obe komponenti zvezni, pa ni težko videti, da so praslike pasov odprte, ti pa tvorijo predbazo. □

Definicija 1.4.9. Prostor je 1-števen, če za vsak x obstaja števna lokalna baza pri x. Prostor je 2-števen, če ima števno bazo.

² Produktna topologija je topologija, ki jo dobimo iz predbaze $\{U_1 \times \cdots \times U_n \mid \forall i : U_i \in \tau_i\}$.

Trditev 1.4.10. Naj bo X 1-števen. Potem za vsak $A \in x$ velja, da je $\overline{A} = L(A) = \{x \mid x \text{ je limita zaporejda v } A\}.$

Dokaz. Za vsak $x\in\overline{A}$ obstaja lokalna baza, zato lahko za vsak člen zaporedja preprosto izberemo poljuben

$$a_n \in A \cap \bigcap_{i=1}^n B_i.$$

Trditev 1.4.11. $f: X \to Y$ je zvezna natanko tedaj, ko za vsak $A \subseteq X$ velja $f(L(A)) \subseteq L(f(A))$.

Stvarno kazalo

\mathbf{P} Preslikava Odprta, zaprta, 6 Stereografska projekcija, 6 Zvezna, 5 \mathbf{T} Topologija, 4 Baza, 7 Lokalna, 7 Predbaza, 7 Finejša, bolj groba, 5 Homeomorfizem, 6 Odprte, zaprte množice, 4 Topološka lastnost, 6 Topološki prostor, 4 1, 2-števen, 7 Homeomorfen, 6 Metrizabilen, 4 Riemannova sfera, 6