A Local Search Algorithm for the Witsenhausen's Counterexample

Shih-Hao Tseng, (pronounced as "She-How Zen") joint work with Kevin Tang

December 15, 2017

School of Electrical and Computer Engineering, Cornell University

Witsenhausen's Counterexample

 Witsenhausen's counterexample (Witsenhausen, 1968) is a 2-stage LQG control problem with the objective

$$\min \mathcal{J}[u_0, x_2] = \min \mathbb{E}[k^2 u_0(y_0)^2 + x_2^2].$$

Witsenhausen's Counterexample

 Witsenhausen's counterexample (Witsenhausen, 1968) is a 2-stage LQG control problem with the objective

$$\min \mathcal{J}[x_1, u_1]$$
= $\min \mathbb{E}\left[k^2 (x_1(x_0) - x_0)^2 + (x_1(x_0) - u_1 (x_1(x_0) + w))^2\right].$

Previous Attempts

- Witsenhausen showed that affine controllers can perform strictly worse than a non-linear controller.
- The optimal controller remains unknown since 1968.
- Bounds are established for different strategies, but they are all loose.
- Several numerical approximation methods are developed to realize good solutions in practice.

 Mostly, the methods target a class of functions and tune the parameters to find the best one within the class.

(a) Targeting step functions.

Source: Lee et al., "The Witsenhausen Counterexample: A Hierarchical Search Approach for Nonconvex Optimization Problems," 2001.

 Mostly, the methods target a class of functions and tune the parameters to find the best one within the class.

(b) Targeting discrete output functions.

Source: Karlsson et al., "Iterative Source-Channel Coding Approach to Witsenhausen's Counterexample," 2011.

 Mostly, the methods target a class of functions and tune the parameters to find the best one within the class.

(c) Targeting piecewise affine functions.

Source: Mehmetoglu et al., "A Deterministic Annealing Approach to Witsenhausen's Counterexample," 2014.

- Mostly, the methods target a class of functions and tune the parameters to find the best one within the class.
 - ⇒ What is the "right" class of functions we should focus on?
 - \Rightarrow How can we deal with some other parameter settings?

- Mostly, the methods target a class of functions and tune the parameters to find the best one within the class.
 - ⇒ What is the "right" class of functions we should focus on?
 - ⇒ How can we deal with some other parameter settings?
- The methods usually leverage the known property of the objective that the optimal second stage controller $u_1(y_1)$ is an MMSE estimator.
 - \Rightarrow How can we approach other problems with different objectives?

A General Approach to the Counterexample

 Instead of proposing a method specifically for the Witsenhausen's counterexample, we take a principled approach to find a (potentially non-linear) optimal controller for a control problem.

A General Approach to the Counterexample

- Instead of proposing a method specifically for the Witsenhausen's counterexample, we take a principled approach to find a (potentially non-linear) optimal controller for a control problem.
- Our idea is to specify the necessary conditions according to which local search can be performed.
 - \Rightarrow The necessary conditions show be general enough so that they can be applied to other functionals.

Necessary Conditions and Feedback

• Violating a necessary condition of the optimum usually implies a way to improve the solution.

Necessary Conditions and Feedback

- Violating a necessary condition of the optimum usually implies a way to improve the solution.
- A local search algorithm is similar to a feedback control: if the necessary condition is violated, improve the current solution accordingly to meet the condition.

Necessary Conditions and Feedback

- Violating a necessary condition of the optimum usually implies a way to improve the solution.
- A local search algorithm is similar to a feedback control: if the necessary condition is violated, improve the current solution accordingly to meet the condition.
- We propose the local search algorithm based on two specific necessary conditions and the corresponding improvement procedures:
 - ullet Local Nash minimizer o Alternative update.
 - ullet Local optimal function value o Local denoising.

Minimizers and Local Nash Minimizers

- Given arbitrary bounded functions $(\delta x_1, \delta u_1)$ (the variations), we say
 - (x_1, u_1) is a minimizer if

$$\mathcal{J}\left[x_1+\delta x_1,u_1+\delta u_1\right]\geq \mathcal{J}\left[x_1,u_1\right].$$

• (x_1, u_1) is a local Nash minimizer if

$$\mathcal{J}\left[x_1 + \delta x_1, u_1\right] \ge \mathcal{J}\left[x_1, u_1\right],$$

$$\mathcal{J}\left[x_1, u_1 + \delta u_1\right] \ge \mathcal{J}\left[x_1, u_1\right].$$

Necessary Condition: An optimal controller must be a local Nash minimizer.

 By definition, we can check if a solution is a local Nash minimizer by fixing one function and testing if the other minimizes J.

Necessary Condition: An optimal controller must be a local Nash minimizer.

 By definition, we can check if a solution is a local Nash minimizer by fixing one function and testing if the other minimizes J.

Alternative Update: Alternatively check if x_1 and u_1 form a local Nash minimizer. Improve x_1 or u_1 if the condition is not met.

• Start from an initial $x_1(x_0)$ and use revised Newton's method to update.

Figure 1: Alternative update: The updated $x_1(x_0)$ will change $\mathcal{J}[x_1,u_1]$ and hence $u_1(y_1)$ needs to be updated.

Figure 1: Alternative update: The updated $x_1(x_0)$ will change $\mathcal{J}[x_1,u_1]$ and hence $u_1(y_1)$ needs to be updated.

Figure 1: Alternative update: The updated $x_1(x_0)$ will change $\mathcal{J}[x_1,u_1]$ and hence $u_1(y_1)$ needs to be updated.

• Ideally, we want to start from an initial $x_1(x_0)$ and repeat alternative update to obtain a local minimizer of $\mathcal{J}[x_1, u_1]$, which may be close to a minimizer (an optimal controller).

- Ideally, we want to start from an initial $x_1(x_0)$ and repeat alternative update to obtain a local minimizer of $\mathcal{J}[x_1, u_1]$, which may be close to a minimizer (an optimal controller).
- However, the algorithm is sensitive to the initial function $x_1(x_0)$ and the sampling granularity (number of samples procured over the support to approximate continuous functions).

Figure 2: Alternative update is sensitive to the initial function $x_1(x_0)$.

Figure 3: Alternative update is sensitive to the sampling granularity.

Observation

• The resulting $x_1(x_0)$ looks like a function mixed with some noise. Intuitively, $x_1(x_0)$ should be "similar" within a local neighborhood, i.e., left- or right-continuous.

Local Optimal Function Value

ullet For a fixed u_1 , the functional $\mathcal{J}\left[x_1,u_1
ight]$ can be expressed as

$$\mathcal{J}[x_1, u_1] = \int C_X(x_1(x_0), x_0) dx_0.$$

Local Optimal Function Value

ullet For a fixed u_1 , the functional $\mathcal{J}[x_1,u_1]$ can be expressed as

$$\mathcal{J}[x_1, u_1] = \int C_X(x_1(x_0), x_0) dx_0.$$

ullet As such, each $x_1(x_0)$ must minimize C_X at x_0 , i.e.,

$$C_X(a,x_0) \ge C_X(x_1(x_0),x_0), \quad \text{for all } a \in \mathbb{R}.$$

In particular, for a given neighborhood $B_r(x_0)$ around x_0 , we have

$$C_X\left(x_1(x'),x_0\right) \geq C_X\left(x_1(x_0),x_0\right), \quad \text{for all } x' \in B_r(x_0).$$

Necessary Condition: $x_1(x_0)$ of an optimal controller must be the minimizer of $C_X(a, x_0)$ within $a \in \{x_1(x') : x' \in B_r(x_0)\}$.

Necessary Condition: $x_1(x_0)$ of an optimal controller must be the minimizer of $C_X(a,x_0)$ within $a \in \{x_1(x') : x' \in B_r(x_0)\}$.

Local Denoising: For each x_0 , check if $x_1(x_0)$ minimizes $C_X(a,x_0)$ within $a\in\{x_1(x'):x'\in B_r(x_0)\}$. Improve x_1 by the minimizer if the condition is not met.

• If there exists a minimizer $x_1(x')$, $x' \in B_r(x_0)$, such that

$$C_X(x_1(x_0), x_0) > C_X(x_1(x'), x_0),$$

then we set $x_1(x_0) = x_1(x')$.

Figure 4: Local denoising: $x_1(x_0)$ may get stuck at different local minima. We "denoise" the case by setting $x_1(x_0)$ to the best $x_1(x')$ where $x' \in B_r(x_0)$.

Figure 4: Local denoising: $x_1(x_0)$ may get stuck at different local minima. We "denoise" the case by setting $x_1(x_0)$ to the best $x_1(x')$ where $x' \in B_r(x_0)$.

Figure 5: Each x_0 looks vertically during alternative update and horizontally during local denoising.

Figure 6: The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5)$.

Figure 6: The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5)$.

Figure 6: The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5)$.

Figure 6: The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5)$.

Figure 6: The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5)$.

Figure 6: The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5)$.

 y_1^0 **Figure 6:** The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5).$

10

20

Figure 6: The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5)$.

20

Figure 6: The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5)$.

Figure 6: The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5)$.

Figure 6: The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5)$.

Figure 6: The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5)$.

Figure 6: The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5)$.

Figure 6: The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5)$.

Figure 6: The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5)$.

Figure 6: The evolution of x_1 and u_1 under the local search algorithm $(k = 0.2 \text{ and } \sigma = 5)$.

Numerical Results

- x_1 and u_1 are supported on [-25, 25] and [-30, 30]. 16000 points are chosen to partition the supports evenly so that x_1 and u_1 are approximated by step functions.
- The standard deviation of x_0 is $\sigma = 5$; The initial function $x_1(x_0) = x_0$.

Numerical Results

Table 1: Our Result and Major Prior Results (k = 0.2)

Source	Total Cost ${\mathcal J}$
Our result	0.166897
Mehmetoglu et al., 2014	0.16692291
Karlsson et al., 2011	0.16692462
Baglietto et al., 2001	0.1701
Witsenhausen, 1968	0.40425320

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Figure 7: The resulting $x_1(x_0)$ given by the local search algorithm under different k.

Piecewise Non-linear Rather than Piecewise Affine

Figure 8: $x_1(x_0)$ is not piecewise affine (k = 0.733 as an example).

(a) Initialize $x_1(x_0) = x_0$, resulting cost: 0.166897.

(b) Initialize $x_1(x_0) = 0$, resulting cost: 0.959991.

Figure 9: Different initial functions can still lead to different local optima.

(a) Initialize $x_1(x_0) = x_0$, resulting cost: 0.166897.

(c) Initialize $x_1(x_0) = e^{x_0}$, resulting cost: 0.168075.

Figure 9: Different initial functions can still lead to different local optima.

(a) Initialize $x_1(x_0) = x_0$, resulting cost: 0.166897.

(b) Initialize $x_1(x_0) = x_0 + 2$, resulting cost: 0.166898.

Figure 10: The local search algorithm converges to local optima with similar cost.

Figure 11: Initializing the local search algorithm with $x_1(x_0) = x_0 + \eta_X$ results in similar cost $\mathcal{J}[x_1, u_1] = 0.166897 + \eta_{\mathcal{J}}$.

Application to Inventory Control

 We apply the local search algorithm to the inventory control problem, which has the objective

$$\mathcal{J}[u_0, u_1] = \mathbb{E}\left[\sum_{m=0}^{1} u_m(x_m) + |x_m + u_m(x_m) - w_m|\right].$$

Application to Inventory Control

Figure 12: The local search algorithm finds the optimal controllers of the inventory control problem.

Conclusion

- Instead of heuristics as in the previous attempts, we propose a local search algorithm based on two necessary conditions, which are not tied to the counterexample.
- Simulation results show that our method outperforms all existing methods on the Witsenhausen's counterexample.
- Our results also manifest some non-linear structural properties of the first stage state variable.
- Since the necessary conditions are general, our local search algorithm can be applied to other problems such as the inventory control problem.

Questions & Answers

References

H. S. Witsenhausen, "A counterexample in stochastic optimum control," SIAM J. Control, vol. 6, no. 1, pp. 131–147, 1968.

J. T. Lee, E. Lau, and Y.-C. Ho, "The Witsenhausen counterexample: A hierarchical search approach for nonconvex optimization problems," IEEE Trans. Autom. Control, vol. 46, no. 3, pp. 382–397, 2001.

J. Karlsson, A. Gattami, T. J. Oechtering, and M. Skoglund, "Iterative source-channel coding approach to Witsenhausen's counterexample," in *Proc. IEEE ACC*, 2011, pp. 5348–5353.

References

M. Baglietto, T. Parisini, and R. Zoppoli, "Numerical solutions to the Witsenhausen counterexample by approximating networks," *IEEE Trans. Autom. Control*, vol. 46, no. 9, pp. 1471–1477, 2001.