

CTMTAIDS SII P1: Advanced Machine Learning for Cyber Security and Forensics

T	each	ning	Sch	neme	Evaluation Scheme									
L	Т	P	С	тсн	Theory							Practical		
					Internal Exams					University Exams		University Exams (LPW)		Total
					TA-1		MSE		TA-2 *	Manlag	II	Maula	11	
					Marks	Hrs	Marks	Hrs	Marks	Marks	Hrs	Marks	Hrs	
03	00	00	03	03	25	00:45	50	01:30	25	100	03:00	-	-	200

^{*} Note: TA-2 will be in form of assignments or workshops.

Objectives

- 1. To focus on recent advances in deep learning with neural networks.
- 2. To apply the concepts of machine learning for forensic investigation.
- 3. To understand a range of machine learning algorithms along with their strengths and weaknesses for computer forensics.
- 4. To understand and apply advanced machine learning algorithms to particular scenarios such phishing and spam filtering.
- 5. To identify machine learning methods to use and apply them rigorously in order to solve cyber security problems.

UNIT -I

Introduction to Machine Learning, Examples of Machine Learning applications Learning associations, Classification, Regression, Unsupervised Learning, Reinforcement Learning. Supervised learning- Input representation, Hypothesis class, Version space.

UNIT-II

Advanced machine learning topics: Bayesian modelling and Gaussian processes, randomized methods, Bayesian neural networks, approximate inference. Deep learning: regularization, convolutional neural networks, recurrent neural networks, variational autoencoders, generative models, applications.

UNIT-III

Applications of machine learning in natural language processing: recurrent neural networks, backpropagation through time, long short term memory, attention

networks, memory networks, neural Turing machines, machine translation, question answering, speech recognition, syntactic and semantic parsing.

UNIT-IV

Introduction to Internet architecture, measuring Internet traffic behavior and anomaly detection, Live Demonstration: Analyze internet network traffic using unsupervised learning techniques, Applications of machine learning to network security, Supervised learning examples: Spam filtering, phishing, Unsupervised learning examples: Anomaly detection

UNIT-V

Fairness, Transparency, and Explainability in cybersecurity ML models, Privacy definitions and how to actualize privacy for cybersecurity applications in industry, Externalities and implications of errors in ML models for cybersecurity.

Reference Books: -

- Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press 2012
- 2. Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. MIT Press 2016
- 3. A Primer on neural networks for natural language processing, by Yaov Goldbeg.
- 4. R. G. Cowell, A. P. Dawid, S. L. Lauritzen and D. J. Spiegelhalter. "Probabilistic Networks and Expert Systems". Springer-Verlag. 1999.
- 5. M. I. Jordan (ed). "Learning in Graphical Models". MIT Press. 1998. Collection of papers. These appear collated here.
- 6. J. Pearl. "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference." Morgan Kaufmann. 1988.
- 7. Graphical models by Lauritzen, Oxford science publications
- 8. F. V. Jensen. "Bayesian Networks and Decision Graphs". Springer. 2001.
- 9. Neural Networks and Deep Learning by Michael Nilson