COG	NOMS:																			
	NOM:											DNI/	/NIE:							
emp que bord de le auto	ezar el no haya les. Use os recu mática,	examen a tachor un únic adros, t	atentan Escribe es ni be co cuadr todo lo uir corre	a un so orrone: o en bl que h	lo cará s y que anco p aya fue	cter p cada ara se era de	or re caráo parao e ello	cuad cter r los os es	lro, en quede apellid ignor	may enm os y ado.	rúscu narca nom La i	ilas y lo ido der ibres co dentifi	o más ntro d ompu cació	s clar de su uesto n de	ramo u reo os si el al	ente cuadr es el	posibl o sin caso.	le. Es Ilega No e	impo r a to scrib	ortante ocar los oa fuera
Una cons ha s oper resp	empres iste en eleccion aciones uesta y	a de au procesa nado un s de pur niveles	tomoció ir imáge model nto flota s de se cesitaría	enes pro o conc ante pa guridad	oveniei reto de ira lo q I signif	ntes de CPU. ue se icativa	e una Prod eject amen	a cán cesar utan te si	nara m r una s un tot uperio	iedia sola i tal do res a	nte i imag e 15:	una red gen me x10 ⁹ in	d neu diant istruc	rona te la ccion	el. P red ies.	ara r I neu Para	ealizai ronal garan	r el p requ itizar	roce: iere tiem	sado se 10x10 ⁹ ipos de
a)			dimiento																	
imag	gen y se 0 GHz.	ha estir	nal tiene nado qu (instruce	ie para	poder _l	oroces	sar 10) imá	igenes,	/s sei	ria ne	ecesari	o que	e la C	PU	funci	onase	a un	a fred	cuencia
func que apro	ionar a la CPU d vecha l	un frecu lispone uno. De	la tecno lencia m de 4 pro spués d el 4% re	náxima ocesado le muc	de 5GF ores int ho esfu	Iz. La e egrado ierzo,	empros os (co se h	esa h ores) a co	na cont , pero (nsegui	rata que l do p	do ui a imp arale	n ingen plemen elizar e	niero ntació el 96%	de co ón se % de	omp cue	utad ncial	ores d de la r	ue ha	a obs	servado nal solo
c)		-	ed-up al dores (c	-	sar una	image	en co	n la '	versiói	n par	alela	respe	cto a	la ve	ersió	ón se	cuenc	ial er	ı un s	sistema
Los p	Calcula	a cuanto	sugiere s proce	-				_					-		-			_		
	a 5 GH	Z																		

El director del proyecto argumenta que una CPU con tantos cores no sería viable para el proyecto por el coste hardware y por el elevado consumo. El ingeniero de computadores propone programar los bucles principales en ensamblador para aprovechar las instrucciones SIMD de 256 bits. Con 256 bits es posible empaquetar 8 datos de simple precisión. Se ha observado que las instrucciones SIMD solo son aplicables a la parte paralela. El 80% del tiempo de la parte paralela son instrucciones de punto flotante que se han podido implementar completamente con SIMD consiguiendo un speed-up de 8x, el 20% restante ha visto reducido su tiempo de ejecución a la mitad debido a la reducción de las iteraciones de los bucles principales.

e) Calcula el speed	-up de la parte par	ralela al optimiz	ar el código usando instrucciones SIMD
			ar la CPU en un sistema con 4 cores e instrucciones SIMD de 256 ara procesar 10 imágenes/s
	se alimenta con		nales, es posible procesar 10 imágenes/s haciendo funcionar la a carga capacitiva equivalente de 15 nano Faradios (nF) y una
_		tencia de conmu	itación y la potencia total de la CPU
careara la poterio	cia de ragas, la por	tericia de comme	reaction y to potential total de la ci o
La siguiente tabla mu fallo en horas:	estra los compone	entes del sistem	a, la cantidad de componentes usados y el tiempo medio hasta
			1
Componente	Cantidad	MTTF	
CPU	1	1.000.000	
Placa Base	1	200.000	
DIMM de memoria	2	500.000	
Fuente alimentación	1	100.000	
h) Calcula el tiemp	o medio hasta fallo	o del sistema (M	ITTF)
I			

COGNOMS:															
NOM:								D	NI/N	IIE:					

Problema 2. (3 puntos)

Dado el siguiente código escrito en C:

```
typedef struct {
```

	<pre>char *a; short *b;</pre>
	short int c[2019];
	char d;
}	X;
X	S;
a)	Dibuja la estructura S identificando claramente el tamaño de la estructura, el tamaño de cada elemento y el offset de cada elemento respecto al inicio de la estructura.
b)	Escribe UNA ÚNICA INSTRUCCIÓN que permita almacenar S.d en la parte baja del registro %eax suponiendo que la
D)	dirección de la estructura S está almacenada en el registro %ebx .
	Indica claramente la expresión aritmética que has usado para el cálculo de la dirección de S.d.
c)	Escribe una instrucción que permita almacenar S.c[i] en la parte baja del registro %edi suponiendo que la dirección de la estructura S está almacenada en el registro %ebx y que la variable i está almacenada en el registro %ecx . Indica claramente la expresión aritmética que has usado para el cálculo de la dirección.
	maica ciaramente la expresión antinetica que has asado para el calculo de la dirección.

Problema 3. (3 puntos)

Dado el siguiente código escrito en C

```
void traspuesta(int A[10][10],int B[10][10],int dim);
int d,A[10][10],B[10][10];
int main(){
    ...
    traspuesta(A,B,d);
}
void traspuesta(int A[10][10],int B[10][10],int dim){
    int i,j;
    for( i = 0; i < dim; i++ )
        for( j = 0; j < dim; j++ )
        B[j][i]=A[i][j];
}</pre>
```

- a) **Enmarca** qué instrucciones en ensamblador del IA32 se corresponden con los 13 pasos de la Gestión de Subrutinas. Enmarca las instrucciones como se muestra para el caso **(6)**. Marca un paso sin instrucciones con una caja vacía.
 - (1) Paso de parametros
 - (2) Llamada subrutina
 - (3) Enlace dinamico, puntero bloque de activacion
 - (4) Reserva espacio variables locales
 - (5) Salvar estado llamador
 - (6) Cuerpo subrutina
 - (7) Mover resultado a eax
 - (8) Restaura estado
 - (9) Elimina variables locales
 - (10) Deshacer enlace dinamico
 - (11) Retorno de subrutina
 - (12) Elimina parametros
 - (13) Recoger/usar el resultado

```
main:
                                    movl 8(%ebp), %ebx
 pushl d
                                    movl 12(%ebp), %esi
 pushl $B
                                                                        (6)
 pushl $A
                                    movl 16(%ebp), %edi
 call traspuesta
                                    # resto de instrucciones
                                    # del cuerpo de la subrutina
 addl $12, %esp
. . .
                                    popl %edi
traspuesta:
                                    popl %esi
 pushl %ebp
                                    popl %ebx
 movl %esp, %ebp
                                    movl %ebp, %esp
 subl $8, %esp
                                    popl %ebp
 pushl %ebx
 pushl %esi
                                    ret
 pushl %edi
```

b)	Traduce a ensamblador del IA32 las instrucciones de la rutina traspuesta que faltan en la caja etiquetada como (6) en el apartado a).