

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A1 C12N 15/38, C07K 14/045, A61K 39/245,

(11) International Publication Number:

WO 97/40165

C12N 15/86 // A61K 31/70

(43) International Publication Date:

30 October 1997 (30.10.97)

(21) International Application Number:

PCT/US97/06866

(22) International Filing Date:

22 April 1997 (22.04.97)

(30) Priority Data:

60/015,717

23 April 1996 (23.04.96)

US

(60) Parent Application or Grant

(63) Related by Continuation US

60/015,717 (CIP)

Filed on

23 April 1996 (23.04.96)

(71) Applicant (for all designated States except US): THE WISTAR INSTITUTE OF ANATOMY AND BIOLOGY [US/US]; 3601 Spruce Street, Philadelphia, PA 19104 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GONCZOL, Eva [US/US]; Radnor House, Apartment 916, 1030 E. Lancaster Avenue, Rosemont, PA 19010 (US). BERENCSI, Klara [HU/US]; Apartment 327, 1030 E. Lancaster Avenue, Rosemont, PA 19010 (US). KARI, Csaba [HU/US]; Apartment 327, 1030 E. Lancaster Avenue, Rosemont, PA 19010 (US).

(74) Agents: KODROFF, Cathy, A. et al.; Howson and Howson, Spring House Corporate Center, P.O. Box 457, Spring House, PA 19477 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, Fl. FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report. With amended claims and statement.

Date of publication of the amended claims and statement: 8 January 1998 (08.01.98)

(54) Title: NOVEL HUMAN CYTOMEGALOVIRUS DNA CONSTRUCTS AND USES THEREFOR

(57) Abstract

Novel DNA molecules for in vitro and in vivo expression of HCMV gB, gB transmembrane-deleted derivatives, pp65, pp150, and IE-exon-4 proteins are described. Preferably, the molecules are plasmids. Also described are methods of using these DNA molecules to induce immune responses to HCMV, and the use of a plasmid of the invention to prime immune responses to HCMV vaccines.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

					•	CI.	Claussia
AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	1.ithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑÜ	Australia	GA	Gabon	ŁV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	israel	MR	Mauritania	υG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon .		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ.	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

5

10

15

20

25

30

35

NOVEL HUMAN CYTOMEGALOVIRUS DNA CONSTRUCTS AND USES THEREFOR

Field of the Invention

This invention relates generally to compositions useful in preventing and treating human cytomegalovirus infection.

Background of the Invention

Cytomegalovirus (CMV) is one of a group of highly host specific herpes viruses that produce unique large cells bearing intranuclear inclusions. The envelope of the human cytomegalovirus (HCMV) is characterized by a major glycoprotein complex termed gB or gCI, which was previously referred to as gA.

Infection with HCMV is common and usually asymptomatic. However, the incidence and spectrum of disease in newborns and immunocompromised hosts establishes this virus as an important human pathogen. HCMV has also been suggested to be an important co-factor in the development of atherosclerosis and restenosis after angioplastic surgery.

Several HCMV vaccines have been developed or are in the process of development. Vaccines based on live attenuated strains of HCMV have been described. [See, e.g., S. A. Plotkin et al, Lancet, 1:528-30 (1984); S. A. Plotkin et al, J. Infect. Dis., 134:470-75 (1976); S. A. Plotkin et al, "Prevention of Cytomegalovirus Disease by Towne Strain Live Attenuated Vaccine", in Birth Defects, Original Article Series, 20(1):271-287 (1984); J. P. Glazer et al, Ann. Intern. Med., 91:676-83 (1979); and U. S. Patent 3,959,466.] A proposed HCMV vaccine using a recombinant vaccinia virus expressing HCMV glycoprotein B has also been described. [See, e.g., Cranage, M. P. et al, EMBO J., 5:3057-3063 (1986).] However, vaccinia vaccines are considered possible causes of encephalitis. Other recombinant HCMV vaccines have been described.

See, e.g., G. S. Marshall et al, <u>J. Infect. Dis.</u>, 162:1177-1181 (1990); K. Berencsi et al, <u>J. Gen. Virol.</u>, 74:2507-2512 (1993), which describe adenovirus-HCMV recombinants.

There remains a need in the art for additional compositions useful in preventing CMV infection by enhancing immune responses to HCMV vaccines and generating neutralizing antibody and/or cellular responses to CMV in the human immune system.

Summary of the Invention

The present invention provides a series of DNA molecules expressing human cytomegalovirus (HCMV) genome fragments, which are particularly useful in inducing HCMV-specific immune responses.

Thus, in one aspect, the invention provides a DNA molecule which is non-replicating in mammals and which comprises at least one human cytomegalovirus antigen which is operably linked to regulatory sequences which express the antigen in the mammal. Advantageously, the antigen elicits an immune response in said mammal. In one preferred embodiment, the DNA molecule is a plasmid.

In another aspect, the invention provides a plasmid, pTet-gB, containing the portion of the HCMV genome (UL55) encoding gB. This plasmid further contains a tetracycline regulatable HCMV-immediate early promoter, which is useful in controlling expression of gB. Another plasmid of the invention encoding the full-length gB subunit protein is a pARC-gB plasmid.

Yet another plasmid of the invention, $p\Delta RC-gB_{680}$, contains the portion of the HCMV genome encoding the N-terminal 680 amino acids of the gB protein (gB_{1-680}) .

The p Δ RC-pp65 plasmid of the invention contains the portion of the HCMV genome (UL83) encoding the HCMV pp65 tegument protein. The p Δ RC-pp150 plasmid contains the

5

10

15

20

25

5

10

15

20

30

portion of the HCMV genome (UL32) encoding the HCMV pp150 tegument protein.

The pARC-exon-4 contains the portion of the HCMV genome (truncated UL123) encoding HCMV immediate-early (IE) exon-4.

In yet another aspect, the present invention provides an immunogenic composition of the invention comprising at least one of the DNA molecules of the invention and a carrier.

In still another aspect, the present invention provides a method of inducing HCMV-specific immune responses in an animal by administering to the animal an effective amount of an immunogenic composition of the invention. Preferably, this composition contains $p\Delta RC-gB_{680}$, pTet-gB and/or $p\Delta RC-pp65$.

In yet a further aspect, the present invention provides a method of priming immune responses to a selected human cytomegalovirus immunogenic composition by administering an immunogenic composition of the invention prior to administration of the second immunogenic or vaccine composition.

Other aspects and advantages of the present invention are described further in the following detailed description of the preferred embodiments thereof.

25 Brief Description of the Drawings

Fig. 1 illustrates the construction of the pTet-gB plasmid.

Fig. 2 is a graph illustrating the results of pp65-specific CTL responses in BALB/c mice immunized with pARC-pp65. The circle represents VacWR-pp65-infected MC57 (MHC-mismatched) target cells; the diamond represents WT-Vac-infected P-815 cells; and the square represents VacWR-pp65-infected P-815 (MHC-mismatched) target cells.

Fig. 3A-3E provides the full-length DNA and amino acid sequences [SEQ ID NO:1 and 2] of a human cytomegalovirus virus gB gene.

Fig. 4A - B provide the full-length DNA and amino acid sequences [SEQ ID NO:3 and 4] of a human cytomegalovirus immediate-early exon-4.

Fig. 5 provides the full-length DNA and amino acid sequences of a human cytomegalovirus phosphoprotein (pp) 65 gene Towne strain on the top line [SEQ ID NO: 5 and 6], and, on the bottom line, the sequence of the pp65-AD169 strain where it differs from the Towne strain [SEQ ID NO: 7 and 8].

Fig. 6A - B provide the full-length DNA and amino acid sequences [SEQ ID NO: 9 and 10] of a human cytomegalovirus phosphoprotein (pp) 150 gene, AD169 strain.

Fig. 7A provides a circular map of the eukaryotic expression vector pCB11.

Fig. 7B provides a circular map of pCBqB.

Fig. 7C provides a circular map of pCBgB∆tm.

Fig. 8 provides a schematic representation of the gB protein (top line) and of its homolog which is deleted of the transmembrane domain (bottom line).

Fig. 9 is a graph illustrating the anti-gB titers in sera of BALB/c mice immunized with plasmids pCBgB and pCBgBAtm intramuscularly (IM) and intradermally (ID).

Detailed Description of the Invention

The present invention provides DNA molecules useful for *in vitro* and *in vivo* expression of antigenic fragments of the HCMV genome. Particularly desirable antigens include full-length and transmembrane-deleted fragments of gB such as gB₁₋₆₈₀, pp65, pp150, and IE-exon-4. Preferably, the DNA molecules of the invention are plasmids. The inventors have found that these DNA

5

10

15

20

25

PCT/US97/06866 WO 97/40165

molecules induce HCMV-specific immune responses, including ELISA and neutralizing antibodies and cytotoxic T lymphocytes (CTL), and are further useful in priming immune responses to subsequently administered HCMV immunogens and vaccines.

Thus, in one embodiment, the present invention provides a DNA molecule containing at least one HCMV antigen under the control of regulatory sequences which express the antigen in vivo or in vitro. Desirably, the DNA molecule is incapable of replicating in mammals. a particularly desirable aspect of this embodiment, the DNA molecule is a plasmid.

As defined herein, an HCMV antigen includes a portion of the HCMV genome or a protein or peptide encoded thereby which induces an immune response in a Desirably, the immune response induced is HCMVspecific and protective. However, non-protective immune responses are also useful according to the invention, e.g., for priming immune responses. Currently, preferred HCMV antiqens include full-length gB, a fragment or derivative of gB which lacks at least the transmembrane domain, pp65, pp150, and the immediate-early exon-4. Other suitable antigens may be readily selected by one of skill in the art.

The exemplary DNA molecules of invention, described herein, have been constructed using gene fragments derived from the Towne strain of HCMV. The Towne strain of HCMV, is particularly desirable because it is attenuated and has a broad antigenic spectrum. 30 strain is described in \underline{J} . Virol., $\underline{11}$ (6): 991 (1973) and is available from the ATCC under accession number VR-977. The Ad169 strain is also available from the ATCC, under accession number VR-538. However, other strains of CMV useful in the practice of this invention may be obtained

5

10

15

20

from depositories like the ATCC or from other institutes or universities, or from commercial sources.

Thus, the CMV gene fragment encoding the desired protein (e.g., gB, pp65, pp150) or protein fragment (e.g., gB_{1-680} or IE-exon-4) may be isolated from known HCMV strains. See, e.g., Mach et al, J. Gen. Virol., 67:1461-1467 (1986); Cranage, M. P. et al, EMBO J., 5:3057-3063 (1986); and Spaete et al, Virol., 167:207-225 (1987), which provide isolation techniques. For example, using a known HCMV sequence, the desired HCMV gene or gene fragment [e.g., pp65 (UL83)] is PCR amplified, isolated, and inserted into the plasmid vector or other DNA molecule of the invention using known techniques. Alternatively, the desired CMV sequences can be chemically synthesized by conventional methods known to one of skill in the art, purchased from commercial sources, or derived from CMV strains isolated using known techniques.

If desired, the DNA molecules of the invention may contain multiple copies of the HCMV gene or gene fragment. Alternatively, the recombinant plasmid may contain more than one HCMV gene/gene fragment, so that the plasmid may express two or more HCMV proteins. example, as shown herein, the presence of both gB- and pp65-specific ELISA antibodies and pp65-specific CTL in the mice inoculated with pTet-gB and pARC-pp65 in a mixture indicates that gB and pp65 do not mutually block antigen presentation or B and T cell stimulation when expressed in the same cells or in close proximity. gB (or gB₆₈₀) and pp65 proteins are particularly well suited for incorporation into a plasmid which expressed both protein (termed herein a chimeric vector). one particularly desirable embodiment of the present invention provides a DNA molecule containing the gB and the pp65 antigens. In another particularly desirable

5

10

15

20

25

30

embodiment, the DNA molecule contains a transmembrane-deleted gB fragment or derivative (e.g, gB_{680} or $gB\Delta tm$) and the pp65 antigens.

In the construction of the DNA molecules of the invention, one of skill in the art can readily select appropriate regulatory sequences, enhancers, suitable promoters, secretory signal sequences and the like. the examples below, the plasmids have been provided with a tetracycline repressor from E. coli. However, if desired, the plasmid or other DNA molecule may be engineered to contain another regulatable promoter, which "turns on" expression upon administration of an appropriate agent (e.g., tetracycline), permitting regulation of in vivo expression of the HCMV gene product. Such agents are well known to those of skill in The techniques employed to insert the HCMV gene into the DNA molecule and make other alterations, e.g., to insert linker sequences and the like, are known to one of skill in the art. See, e.g., Sambrook et al, "Molecular Cloning. A Laboratory Manual" (2d edition), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).

In one embodiment, the DNA molecules of the invention are plasmids. One exemplary plasmid is pTet-gB. Construction of this plasmid is described in more detail below. Plasmid TetotTA-gB contains the gene from HCMV (the unique long (UL) 55) encoding the full-length gB subunit protein and a tetracycline regulatable HCMV-immediate early promoter which controls expression of gB. For convenience, the sequences of the HCMV gene fragment encoding the full-length gB protein which were used in the examples below are provided in Fig. 3A-3E [SEQ ID NO: 1 and 2]. As discussed herein, this invention is not limited to this strain of HCMV. pTet-gB has been found to be useful alone, and in conjunction with the other DNA

5

10

15

20

25

30

molecules of the invention, and particularly the pARC-pp65 plasmid described below. pTet-gB is also particularly useful for priming immune responses to subsequently administered HCMV immunogenic compositions and vaccines.

The pTetotTA-gB plasmid has been deposited pursuant to the Budapest Treaty, in the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland, U.S.A. This deposit, designated ATCC 98029, was made on April 23, 1996 and is termed herein, pTet-gB.

Other plasmids provided herein, pARC-gB and pCBgB, also contain the HCMV gene encoding the gB protein. As demonstrated below, these DNA plasmids have been found to be highly potent immunogens for HCMV. See Examples 8 and 14.

Another plasmid of the invention, $pARC-gB_{680}$ contains the portion of the HCMV gene encoding the N-terminal 680 amino acids of the gB protein and is capable of expressing this fragment in vivo or in vitro. This gB fragment is designated herein gB_{1-680} . As illustrated in Figure 3A-E [SEQ ID NO:2], the full-length gB subunit protein consists of 907 amino acids. This plasmid, which expresses a secreted form of gB, has been found to be a more potent immunogen than the plasmids expressing the full-length gB.

Also provided herein is plasmid pCDgBAtm, which contains a deletion of the gB transmembrane region. This plasmid has been found to induce HCMV-specific neutralizing antibodies (see Example 14) and to be a more potent immunogen than the corresponding DNA plasmid encoding full-length gB.

Plasmid pARC-exon-4 plasmid contains the portion of the HCMV immediate-early (IE) gene encoding HCMV IE-exon-4 and is capable of expressing the gene product. The HCMV IE-exon-4 gene fragment has been described in

5

10

15

20

25

30

international patent application PCT/US94/02107, published August 18, 1994, which is incorporated by reference herein. The IE gene and the intron/exon junctions for Towne strain HCMV are provided in Stenberg et al, <u>J. Virol.</u>, <u>49</u>:190-199 (1984), and are available from GenBank under accession number K01484, M11828-30. The sequences of the IE-exon-4 gene fragment, Towne strain, are provided in Fig. 4A - B [SEQ ID NO: 3 and 4], for convenience. This invention is not limited to the use of the IE-exon-4 sequences from this viral strain.

Plasmid pARC-pp65 contains the HCMV gene encoding the HCMV phosphoprotein (pp) 65 tegument protein and is capable of expressing pp65 in vivo or in vitro. described herein, immunization with pARC-pp65 induced a reduction of virus titers in the mouse lung after intranasal challenge with vaccinia recombinants carrying the pp65 gene, suggesting the protective function of cell-mediated immunity in lung after DNA immunization. Further, in contrast to a prior art pp65-containing plasmid construct which induced ELISA antibodies in only about 60% of inoculation mice, nearly 100% of mice inoculated with pARC-pp65 responded with pp65-specific ELISA antibodies. The sequences of the pp65 gene, Towne and AD169 strains, have been described in H. Pande et al, <u>Virol.</u>, <u>181</u>(1):220-228 (1991) and are provided in Fig. 5 [SEQ ID NO: 5 - 8] for convenience. pp65 sequences may be readily isolated using known techniques from other HCMV strains, or obtained from commercial sources. strain from which the pp65 sequences are derived is not a limitation on the present invention.

Plasmid pARC-pp150 contains the portion of the HCMV gene encoding the HCMV pp150 tegument protein and is capable of expressing pp150 in vivo or in vitro. The sequences of the pp150 gene, Ad169 strain, have been described in G. Jahn et al, <u>J. Virol.</u>, 61(5):1358-1367

10

15

20

25

30

(1987) and are provided in Fig. 6A - B for convenience [SEQ ID NO: 9 and 10]. pp150 sequences may be readily isolated using known techniques from another HCMV strain, or obtained from commercial sources. The strain from which the pp150 sequences are derived is not a limitation on the present invention.

The DNA molecules, and particularly the plasmids described herein, may be used for expression of the gB, gB₁₋₆₈₀ fragment, pp65, pp150, or IE-exon-4 in vitro. The molecules are introduced by conventional means into the desired host cell [see, Sambrook et al, cited above]. Suitable host cells include, without limitation, bacterial cells, mammalian cells and cell lines, e.g., A549 (human lung carcinoma) or 293 (transformed human embryonic kidney) cells.

The host cell, once transfected with the recombinant plasmid (or other DNA molecule) of the present invention, is then cultured in a suitable medium, such as Minimal Essential Medium (MEM) for mammalian cells. The culture conditions are conventional for the host cell and allow the expressed HCMV protein, e.g., gB, to be produced either intracellularly, or secreted extracellularly into the medium. Conventional protein isolation techniques are employed to isolate the expressed subunit from the selected host cell or medium.

Alternatively, transfected host cells are themselves used as antigens, e.g., in *in vitro* immunological assays, such as enzyme-linked immunosorbent assays (ELISA). Such assay techniques are well known to those of skill in the art.

In yet another embodiment, one or more of the DNA molecules (e.g., plasmids) described herein may be used directly as immunogens in an immunogenic composition or directly for priming the immune response to a subsequently administered immunogenic or vaccine

5

10

15

20

25

30

composition. According to this embodiment of the invention, the DNA molecule (e.g., plasmid) containing the HCMV gene or gene fragment is introduced directly (i.e., as "naked DNA") into the animal by injection. 5 DNA molecule of the invention, when introduced into an animal, transfects the host's cells and produces the CMV protein in those cells. Methods of administering socalled 'naked DNA', are known to those of skill in the [See. e.g., J. Cohen, Science, 259:1691-1692 (March 10 19, 19930; E. Fynan et al, Proc. Natl. Acad. Sci., 90:11478-11482 (Dec. 1993); J. A. Wolff et al, Biotechniques, 11:474-485 (1991); International Patent Application PCT W094/01139, which are incorporated by reference herein for purposes of described various 'naked 15 DNA' delivery methods.]

immunogenic composition, having appropriate pH,
isotonicity, stability and other conventional
characteristics is within the skill of the art.

Currently, in a preferred embodiment, one or more of the
recombinant plasmids (or other DNA molecules) of the
invention is suspended in an acceptable carrier such as
isotonic water, phosphate buffered saline, or the like.
Optionally, although currently less preferred, such a

The preparation of a pharmaceutically acceptable

25 composition may contain other components, such as adjuvants, e.g., aqueous suspensions magnesium hydroxides.

An effective amount of an immunogenic composition of the invention preferably contains between 10 μg and 10 mg, and preferably between about 80 μg and 150 μg of DNA of the invention per inoculation. Desirably, for each inoculation, the DNA of the invention is formulated in about 100 μl of a suitable carrier. In a particularly preferred embodiment, each patient is administered 100 μg DNA, which is administered three times at about 4 week

30

intervals. Alternatively, the dosage regimen involved in the method for immunizing with the recombinant DNA molecule (e.g., plasmid) of the present invention can be determined considering various clinical and environmental factors known to affect vaccine administration. For example, following a first administration of an immunogenic composition of the invention, boosters may be administered approximately 2- to 15-weeks later. These boosters may involve an administration of the same immunogenic composition as was first administered, or may involve administration of an effective amount of another immunogenic composition of the invention. Additional doses of the vaccines of this invention may also be administered where considered desirable by the physician.

In another aspect, the present invention provides a method of inducing HCMV-specific immune responses in an animal. The method involves administering to an animal an effective amount of an immunogenic composition containing one or more of the DNA molecules of the invention, as described above. The immunogenic composition is administered by any suitable route, including oral, nasal routes, subcutaneous and intraperitoneal. However, currently preferred are the intramuscular and intradermal routes of administration.

In a particularly preferred embodiment of this aspect, the method of inducing an HCMV-specific immune response of the invention involves the administration of one or more immunogenic compositions of the invention. These compositions may be formulated so as to contain a single DNA molecule of the invention, or may contain mixtures of the DNA molecules of the invention. In one desirable embodiment, the composition contains $pARc-gB_{680}$ or $pCBgB\Delta tm$. In another desirable embodiment, the composition contains a plasmid containing pp65 according to the invention. As illustrated in the examples below,

administration of pARC-pp65 has been found to induce a potent HCMV-specific immune response. In another desirable embodiment of the invention, the combined administration of pTet-gB and pARC-pp65 invention (which may be formulated in a single composition, or preferably, administered separately) induces potent HCMV-specific ELISA and neutralizing antibodies to both proteins. In yet another desirable embodiment, the present invention provides a composition containing a chimeric plasmid which expresses pp65 and gB₆₈₀ or gB. Yet another desired embodiment involves combined administration of pARC-gB₆₈₀ and pARC-pp65.

In another aspect of this invention, a method of priming immune responses to a human cytomegalovirus immunogenic or vaccinal composition is provided. method involves administering an immunogenic composition of the invention prior to administration of a second immunogenic or vaccinal composition. Desirably, an effective amount of an immunogenic composition of the invention, e.g., containing pTet-gB, is administered between about 4 and 15 weeks prior to administration of the immunogenic or vaccinal composition. The second immunogenic or vaccinal composition, for which the immune response is enhanced or primed by the method of the invention, may be an immunogenic composition of the invention or a conventional immunogenic or vaccine composition. For example, such a composition may contain one or more HCMV proteins (e.g., the isolated, purified gB protein described in the examples below), a whole virus (e.g., semipurified Towne strain HCMV virion), or Suitable recombinant viruses recombinant HCMV viruses. are well known to those of skill in the art and include, e.g., the Ad-gB virus [G. Marshall et al, (1990), cited above, and EP 389 286; the Ad-gB-IE-exon-4 virus [WO 94/17810]; the Ad-gB fragment viruses [WO 94/23744].

5

10

15

20

25

30

Other suitable HCMV vaccinal compositions are well known to those of skill in the art.

These examples illustrate the preferred methods for preparing and using the plasmids of the invention. These examples are illustrative only and do not limit the scope of the invention.

Example 1 - Construction of pTet-qB plasmid

The full-length HCMV-gB gene was obtained from the plasmid pAd-gB [Marshall et al., <u>J. Infect. Dis.</u>, 162:1177-1181 (1990)] by XbaI-XbaI-digestion.

The full length HCMV-gB was inserted into the plasmid pUHD10-3 [Gossen and Bujard, Proc. Natl. Acad. Sci. USA, 12:5547-5551 (1992)]. This plasmid contains:

- (a) a tetracycline regulatable promoter (HCMV minimal promoter, 53 relative to the start site, with heptamerized tet-operon derived from the regulatory region of tet^R gene of transposon -10);
- (b) a multiple cloning site (including an XbaI site); and
- 20 (c) an SV40 polyadenylation signal downstream of the polycloning site.

After inserting the HCMV-gB (referred to as pTeto-gB), the plasmid was digested with Hind III followed by blunt-ending, then digested with PvuI and the fragment containing the tetracycline regulatable promoter-HCMV-gB-SV40 polyA signal sequences was isolated and inserted into the plasmid pUHD15-1 [Gossen and Bujard, cited above]. This latter plasmid (hereafter referred to as ptTA) contains the HCMV-IE promoter-enhancer which constitutively drives the tTAgene followed by the SV40 polyA signal. The tTA-gene codes for a fusion protein consisting of the tetracycline repressor from E. coli and the carboxy-terminal 130 amino acids of the herpes simplex virus protein 16 gene (HSV

5

10

15

25

10

15

20

25

30

VP-16). This fusion protein is a powerful transactivator of the tetracycline regulatable promoter of pTeto (which drives the HCMV-gB gene), because of the specific and high affinity attachment of the tetracycline repressor to the tetracycline operator sequences ensures the activation of transcription from the minimal HCMV promoter by the transactivator domain of HSV VP-16 gene (fused to the tetracycline repressor). The gene activation is specific for the pteto promoter. In the presence of low, non-toxic concentration of tetracycline (1 μ g/ml or less), however, the transactivation is switched off, since tetracycline prevents the attachment of the tetracycline repressor to the teto sequences and no or very low gene expression is allowed (i.e., only the minimal HCMV promoter basal activity which is negligible in almost all cell types investigated so far).

To obtain the gB-expression plasmid regulatable by tetracycline, ptTA was cut just upstream of the HCMV-IE promoter/enhancer by XhoI, blunt-ended and cut with PvuI. The large fragment containing the HCMV-IE promoter-enhancer-tTA fusion protein gene followed by the SV40 polyA signal and the E. coli sequences of the plasmid (i.e., the replication origin and the betalactamase genes) were isolated. This isolated fragment was ligated with the fragment of pUHD10-3 containing the gB gene by the competent blunt-end and PvuI ends, resulting in the plasmid pteto-gB-tTA. The resulting plasmid contains both the transactivator and the HCMV-gB gene. The structure of the plasmid is, in addition to the E.coli-part, tetracycline-regulatable promoter (7 teto + minimal HCMV promoter) followed by the HCMV-gB gene, followed by the SV40 polyA signal, followed by the HCMV-IE promoter-enhancer, followed by the tTA gene and ending with the SV40 polyA signal.

5

10

15

20

25

30

The tetracycline-controllable expression system has been found to work correctly in vivo in the mouse as well [J. Dhawan et al, Somatic Cell and Molecular Genetics, 21:233-240 (1995)]. The pTet-gB plasmid is suitable to control naked DNA immunization. It is possible to give tetracycline to mice in their drinking water in concentrations not toxic for the animals but reaching sufficient levels able to regulate expression in muscle tissues [J. Dhawan et al., Somatic Cell and Molecular Genetics, 21: 233-240 (1995)]. By tetracycline treatment of transfected cultures or inoculated mice the time of antigen exposure can be manipulated. The silent presence of the inoculated plasmid can be tested. Without tetracycline treatment, however, this plasmid simply serves as a plasmid DNA immunogen or vaccine.

Example 2 - Construction of further Plasmids

A. Construction of pRC-qB

pRC/CMV (Invitrogen Corporation) contains the HCMV-IE promoter. The full length gB gene (XbaI-XbaI fragment from pAd5-gB) was obtained using conventional techniques [SEQ ID NO:1] and inserted into pRC/CMV according to manufacturer's directions. The resulting plasmid is termed herein pRC-gB.

B. Construction of pARC-qB

pARC/CMV was derived from pRC/CMV plasmid by deleting the PvuII 1290 - PvuII 3557 fragment to obtain more unique restriction sites. The full gB [SEQ ID NO:1], derived from the plasmid pAd-gB [Marshall et al., J. Infect. Dis., 162:1177-1181 (1990)], was subcloned using conventional techniques, inserted into pUC-8 (commercially available), then obtained as a HindIII-BamHI fragment and inserted into the HindIII-BamHI digested pARC/CMV vector. The resulting plasmid is termed pARC-gB.

C. Construction of pARC-qB₆₈₀

 $p\Delta RC-gB_{680}$ expresses the N-terminal 680 amino acids of the gB protein [SEQ ID NO:2]. The plasmid was derived from $p\Delta RC-gB$, by deleting the C-terminal 227 amino acids of the gB by Xho-digestion, Klenow polymerase filling, removing the C-terminal portion of the gB gene, and religation of the 5400 bp fragment. The insert is approximately 2200bp.

Example 3 - Construction of pARC-pp65 and pARC-pp150

A. $p\Delta RC - pp65$

10

15

20,..

The plasmid pARC-pp65, which expresses the pp65 tegument protein of HCMV, was constructed as follows.

H. Pande et al, <u>Virology</u>, <u>182(1):220-228 (1991)</u>, which provides the nucleotide sequences of the pp65 gene, is incorporated by reference herein [SEQ ID NO: 5 and 6].

The pp65 gene was isolated from the HCMV genome using conventional polymerase chain reaction techniques and inserted into a suitable expression plasmid. In this experiment, the 1696-bp pp65 gene was excised from the pUC-8-pp65 expression plasmid [Virogenetics] by NruI - BamHI digestion. The vector was blunt-ended with Klenow polymerase, digested with BamHI, and the pp65 gene inserted.

B. $p\Delta RC-pp150$

The plasmid, pARC-pp150, which expresses the pp150 tegument protein of HCMV, was constructed as follows. The pp150 gene was isolated from the HCMV genome using conventional polymerase chain reaction techniques and inserted into a suitable expression plasmid. One of skill in the art can readily isolate this gene from a desired HCMV strain making use of the published sequences in G. Jahn et al, <u>J. Virol.</u>, 61(5):1358-1367 (1987) (which provides the nucleotide

sequences of the Ad169 HCMV pp150 gene and is incorporated by reference herein). See, also Fig. 6A-B herein [SEQ ID NO: 9 and 10].

In this experiment, the isolated HCMV-pp150 gene was inserted into the XbaI-restricted p Δ RCd [Virogenetics]. The insert is approximately 3200 bp [SEQ ID NO: 10].

Example 4 - Construction of pARC-IE-Exon-4

The plasmid, pARC-IE-Exon-4, which expresses the

HCMV-IE exon4 product [SEQ ID NO:4], was constructed as follow. The gene was obtained from pAd5-IE-Exon-4

[International Patent Application W094/17810, published August 18, 1994 and Berencsi et al., Vaccine, 14:369-374

(1996)], by XbaI-digestion [SEQ ID NO:3]. The insert is

1230 bp.

Example 5 - Production of plasmid preparation stocks

E. coli DH5alfa competent cells (Gibco BRL, Gaithersburg, MD) were transformed with the constructed plasmids. Purified plasmid preparations were prepared on Plasmid Giga Kits (Qiagen Inc. Chatsworth, CA).

Example 6 - Expression of HCMV-proteins after transient transfection of 293 cells with the purified plasmid preparations

Transient transfections were performed by the purified plasmid preparations, 1.5 μ g/3x10⁵ cells, using lipofectamine (Gaithersburg, MD). Cells were tested for HCMV-protein expression 2 days after transfection by an immunofluorescence test as described in E. Gonczol et al, Science, 224:159-161 (1984). The antibodies used in this test include the monoclonal pp65-specific Ab [VIROSTAT, Portland, Maine, stock # 0831], monoclonal gB-specific Ab [Advanced Biotechnologies, Columbia, MD], and anti-pp150

20

25

monoclonal Ab [Virogenetics Corporation]. The IE-Exon-4-specific monoclonal Ab P63-27 was provided by W. Britt, University of Alabama at Birmingham.

The pTet-gB plasmid expresses the full-length HCMV-gB gene under the control of a tetracycline regulatable HCMV-IE promoter. The other plasmids express the inserted gene in transfected 293 cells under the control of the HCMV-IE promoter. Expression of gB, pp65 and pp150 was found to be strong using all plasmids.

After transfection with pTet-gB, 10-12% and <1% of cells expressed gB protein in the absence and presence, respectively, of 1μg tetracycline [Tetracycline hydrochloride, Sigma, St. Louis, MO]. Sixty to seventy percent and 40-50% of cells transfected with pΔRC-gB and pΔgB₆₈₀ plasmids, respectively, expressed gB. pp65 protein was expressed in 70-80% of cells transfected with pΔRC-pp65.

Example 7 - Immunization Procedures and Assay Methods

A. Immunization procedure

BALB/c or CBA mice were first pretreated i.m. with 100 μl of Bupivacaine HCl [0.25% Sensorcaine-MPF (ASTRA Pharmaceutical Products, Inc. Westborough, MA)]. In some experiments, identified below, no Bupivicaine pretreatment was used. One day later DNA was inoculated i.m. on the site of Bupivacaine infiltration. The dose for mice was 50-80 μg plasmid DNA/ inoculation. Booster inoculations were given i.m. 2x, without pretreatment with Bupivacaine. Mice immunized with pARC-gB plasmid were boosted 1 x. Mice were bled by retroorbital puncture at the indicated times.

B. ELISA

Semipurified HCMV virions and purified gB proteins may be prepared by immunoaffinity column chromatography as described in E. Gonczol et al, <u>J.</u>

<u>Virol.</u>, <u>58</u>:661-664 (1986). Alternatively, one of skill in the art can readily obtain suitable virions and gB proteins by alternative techniques.

Semipurified HCMV virions (Towne strain) or purified gB protein preparation were used as coating antigen for detection of gB-specific antibodies. OD values higher than mean OD values ± 2SD of preimmune sera were considered positive, or OD values >0.05, whichever was higher. Lysates of 293 cells transiently transfected with pARC-pp65 were used as coating antigen for detection of pp65-specific antibodies, lysates prepared from untransfected 293 cells served as control antigen. OD values obtained on control antigen-coated wells were subtracted from OD values obtained on pp65 antigen-coated wells and were considered positive if the resulting value was higher than 0.05.

C. <u>Microneutralization assay</u>

This assay was performed as described in E. Gonczol et al., <u>J. Virol. Methods</u>, <u>14</u>:37-41 (1986). A neutralizing titer higher than 1:8 was considered positive.

D. Cytotoxic T lymphocyte assay

This assay was performed as described in K. Berencsi et al., <u>J. Gen Virol.</u>, <u>74</u>:2507-2512 (1993). Briefly, spleen cells of immunized mice were restimulated in vitro with VacWR-pp65-infected (m.o.i. = 0.2-0.5) autologous spleen cells (effector:stimulator ratio, 2.:1) for 5 days in 24-well plates. Cytolytic activity of nonadherent spleen cells was tested in a 4-h ⁵¹Cr-release assay. Target cells (P815 MHC class I-matched, MC57 MHC class I-mismatched) were infected with VacWR-pp65 or VT-Vac WR (m.o.i. = 4-8). Percentage of specific ⁵¹Cr-release was calculated as [(cpm experimental release -

5

10

15

20

25

cpm spontaneous release)/(cpm maximal release - cpm spontaneous release) x 100]. A pp65-specific cytotoxicity higher than 10% was considered positive.

Example 8 - Induction of HCMV-Specific Immune Responses by the Plasmid Constructs Expressing the qB Protein

BALB/c mice were inoculated 2 times at 0 and 5 weeks with 80 μ g pARC-gB preparation. Serum samples at 5, 9 and 19 weeks after the first inoculation were tested for HCMV-specific ELISA antibodies and neutralizing antibodies (NA). The results are provided in Table 1 below, in which the ELISA antigen used was semipurified virions. The OD of responders is provided as the mean±SD at a serum dilution of 1:80. Mean ± 2SD of the 6 preimmunization sera at a dilution of 1:80 gave an OD value of 0.080. "GM" indicates the geometric mean.

Table 1
pARC-gB induces HCMV-specific ELISA and neutralizing antibodies (antigen: semipurified virion).

weeks after first inoculation	No. of ELISA responders/ total	OD of resp. dil 1:80	No. of NA resp. resp.	GM of NA
0	0/6	0.036±0.022	0/6	NA
5	5/6	0.314±0.188	2/2	19
9	6/6	1.387±0.810	6/6	34
19	ND	ND	4/4.	22

These data demonstrate that all mice responded with both ELISA antibody and NA after the booster inoculation. The pARC-gB plasmid seems to be a highly potent immunizing construct.

5

10

Table 2
pTet-gB and p∆RC-pp65 induces insert-specific ELISA
antibodies

± 0.257
± 0.625
± 0.682
± 0.505
± 0.070
± 0.387
± 0.216

WO 97/40165

HCMV-specific ELISA antibodies were detected in 9 of 10 mice at 8 weeks after the first inoculation with pTet-gB (Table 2). HCMV neutralizing antibodies were detected in 4 of 10 mice, with titers between 1:16 and 1:48 (not shown). All mice immunized with the pARC-pp65 responded with pp65-specific ELISA antibodies. At 13 weeks (pp65-and gB-specific) and up to 31 weeks (gB-specific), OD values remained positive. In a separate experiment pp65-specific ELISA antibodies were also detected during the whole observation period (31 weeks) in 10 of the 10 immunized mice.

Example 9 - Induction of HCMV-Specific Immune Responses by the Plasmid Constructs Expressing pp65

To test whether the combination of the pTet-gB and p Δ RC-pp65 results in reduced responses to the individual components, mice were immunized with both plasmids mixed together or inoculated separately. Groups of mice were inoculated with Bupivacaine (100 μ l/mouse, 50 μ l/leg),

20

25

30

^{*} Mean OD ± SD of serum samples at dilution 1:40.

10

and 2 days later, with either a mixture of both plasmids (80 μ g of each DNA/mouse, 40 μ g of each DNA/leg, 160 μ g DNA/mouse) or each plasmid inoculated into two different legs (80 μ g DNA of each plasmid/mouse, a total of 160 μ g DNA/mouse inoculated in left and right legs). A similar booster was given 4 weeks later. The time course of both the gB- and pp65-specific ELISA antibody response was very similar in both groups, with nearly all mice developing antibodies by 8 or 13 weeks after the first inoculation (Table 3). In another experiment using the combination of the two plasmids, comparable OD values were observed up to 31 weeks after the first inoculation.

Table 3

pTet-gB and pARC-pp65 inoculated into the same animal induce gB and pp65-specific antibodies

	Antigen, Inoculation	Weeks after 1st Inoc.	<pre># gB- ELISA resp. /Total</pre>	OD* of responders	<pre># pp65- ELISA resp. /Total</pre>	OD of Responders
20	pTet-gB+ pARC-pp65,					
	mixed	4	4/10	0.087±0.024	5/10	0.078±0.033
		8	10/10	0.220±0.143	10/10	0.400±0.321
		13	10/10	0.392±0.152	9/10	0.303±0.224
25	pTet-gB+ pARC-pp65,					
	separately	4	8/10	0.076±0.021	6/10	0.210±0.124
		8	9/10	0.202±0.268	8/10	0.452±0.333
		13	10/10	0.309±0.202	8/10	0.308±0.212
30						·

 $^{^*}$ The mean OD \pm SD of serum samples at dilution 1:40.

Of six mice inoculated with p Δ RC-pp65 alone at a single site, 3 mice responded with pp65-specific lysis of target cells (Fig. 2). In a second similar experiment, 3 of 9 mice immunized with p Δ RC-pp65 alone showed strong

pp65-specific CTL responses. pp65-specific CTL were also detected in 4 of 5 tested mice inoculated with the mixture of pΔRC-pp65 and pTet-gB. When the pΔRC-pp65 and pTet-gB were inoculated separately into two different legs, 4 of 6 mice tested developed pp65-specific CTL response. These results establish that: 1) pp65-specific CTL responses are induced after DNA immunization; 2) there is no antigenic competition between the gB and pp65 proteins in the induction of antibody and CTL responses; and 3) gB protein expression in the cells at the inoculation site does not interfere with the presentation of pp65-specific T cell epitopes by MHC class I molecules to T cells.

Example 10 - Priming effect of pTet-qB

One inoculation of naked plasmid DNA in mice did not result significant antibody responses in a high percentage of mice. To find out whether the immune system of the nonresponder mice was specifically primed by the DNA inoculation, mice inoculated with pTet-gB were boosted 4 weeks later with either purified gB protein (5 µg gB/mouse in Alum s.c.) or with the Towne strain of HCMV (20 µg/mouse in Alum s.c.).

Table 4
Inoculation of mice with pTet-gB primes the immune system

5	Antigen	wks after priming	No. of NA responder/all	GM of NA/ responder
	Teto-gB/*	4	0/10	5
	Teto-gB	8	4/10	21
	Teto-gB/*	4	0/10	4
10	gB+Alu	8	8/10	77
	- / *	4	0/10	NA
	gB+Alu	8	1/10	16
	Teto-gB/**	. 12	1/5	16
	Towne+Alu	14	5/5	97
15	_ / **		٠.	
	Towne+Alu	12	0/5	NA
	•	14	3/5	25

^{*} second inoculations were given 4 weeks after the first 20 inoculation ** Towne was given 12 weeks after the first inoculation

This data demonstrates that pTet-gB inoculation primes immune-responses. In other words, the combination of Teto-gB priming and gB+Alu or Towne+Alu booster gave higher number of responder mice and slightly higher NA titers than TetotTA-gB given 2 times.

Example 11 - DNA immunization decreases replication of the corresponding vaccinia recombinant in mice

Vaccinia virus recombinants expressing either HCMV-gB or pp65 were prepared using the methods described in WO 94/17810, published August 18, 1994. Briefly, the VacWR-gB and VacWR-pp65 recombinants were constructed as described [Gonczol et al, Vaccine, 9:631-637 (1991)], using the L variant of the neurovirulent WR strain of vaccinia virus as vector [Panicali et al, J. Virol.,

30

37(3):1000-1010 (1981)] and the gB or pp65 genes (HCMV Towne strain) as inserts cloned into the nonessential BamHI site in the HindIII F region [Panicali and Paoletti, Proc. Natl. Acad. Sci., 79:4927-4931 (1982)] under the control of the vaccinia H6 early/late promoter. Vaccinia recombinant viruses and the parental wild-type WR strain were grown on Vero cells and purified as described [Gonczol et al, cited above].

After plasmid immunization, vaccinia virus recombinants expressing either HCMV-gB or pp65 were used 10 for challenge in the model described in WO 94/23744, published October 27, 1994. Vaccinia virus WR strain replicates in mouse lung after intranasal inoculation and immune protection can be evaluated by virus titrations of 15 the lung. Eight-week old female CBA and BALB/c mice were first pretreated with Bupivacaine, then 1 day later immunized either with p Δ RC-gB or p Δ RC-pp65 (80 μ g/mouse). Mice were boosted 8 days later with DNA. Eight days after the second DNA dose mice were i.n. challenged either with 5x106 pfu of Vaccinia WR-gB or Vaccinia 20 WR-pp65. Lungs were taken at the time of virus challenge (day 0) and at days 1, 3, 4, 5, and 7 after challenge for virus titration. Lungs were homogenized, freeze-thaw 3 times and virus titer determined on Vero cells by plaque 25 titration.

Table 5 Virus titers in the lungs of BALB/c mice immunized with pARC-gB or pARC-pp65 and challenged i.n. with Vac-gB

		Vac-gB tit	er (log+SD) in	lungs*
5	days after challenge	p∆RC-gB- immunized	p∆RC-pp65- immunized	Diff. in titer (log)
	0	3.29±2.83	3.29±2.83	0
10	1	2.24±2.9	2.76±2.51	-0.25
	3	4.86±4.61	5.60±5.45	0.53
	4	4.54±4.47	5.24±4.9	1.13
	5	4.33±3.82	5.03±4.9	1.43
	7	2.85±2.84	4.17±4.27	1.04
15				

*Mean of titer (log) ± SD of 3 or 4 mice

Table 6

Virus titers in the lungs of BALB/c mice immunized with pARC-gB or pARC-pp65 and challenged i.n. with Vac-pp65

20	•	65 titer (log±SD)	in lungs*
	days after challenge	p∆RC-gB- immunized	p∆RC-pp65- immunized
25	0	5.52±4.83	5.52±4.83
•	1	4.31±4.3	4.56±3.5
	. 3	7.68±6.75	7.15±7.11
	4	7.7±7.66	6.57±6.56
	-5	7.45±6.79	6.02±6.14
30	7	7.17±6.17	6.23±6.08

*Mean of titer (log) ± SD of 3 or 4 mice

This data demonstrate that immunization with either plasmid reduced the titer of the corresponding challenge virus by 0.5-1.4 log on days 3, 4, 5 and 7 after the challenge.

5 Example 12 - Secreted form of gB is more potent immunogen than membrane-bound gB

To test whether gB bound to the membranes of gB-expressing cells or truncated form of gB lacking the transmembrane region of the molecule (it is secreted from the cell) induce stronger immune responses, mice were immunized with pARC-gB (expressing membrane-bound gB) or with pARCgB₆₈₀ (expressing the secreted form of gB) and ELISA and neutralizing antibody responses were evaluated as follows.

Plasmids paRC-gB (expressing the whole gB) and ΔRC-gB₆₈₀ (expressing N-terminal 680 amino acids of the gB molecule and lacking the transmembrane region) were used in the following immunization protocol. Groups of 10 mice (BALB/c, female, 8 weeks old, purchased from HSD), were inoculated i.m. in the left leg with 50 μg plasmid DNA/mouse/inoculation. Mice were not inoculated with bupivacaine prior to DNA inoculation. Two months later a booster immunization was given (same dose, route).

Sera were tested in the gB-specific ELISA assay described above before the booster inoculation and 1 month after booster. The results are shown in Table 7, which shows the OD values of serum dilutions of 1:40 of individual mice. Preimmune serum samples of 40 mice were included. Cut off value: OD = 0.15.

25

Table 7

HCMV ELISA antibodies induced by plasmids expressing membrane-bound or secreted form of gB

pARC-qB				pARC-gB ₆₈₀	
# of mouse	before booster	after booster	# of mouse	before booster	after <u>booster</u>
1	0.31	0.55	1	0.83	>3.00
2	0.09	0.10	2	0.52	>3.00
3	0.09	0.13	3	1.65	>3.00
4	0.06	0.08	4	0.06	0.09
5	0.07	0.07	5	1.29	>3.00
6	0.04	0.04	6	1.92	>3.00
7	0.08	0.17	7	2.31	>3.00
8	0.51	1.88	8	1.22	>3.00
9	0.07	0.07	9	0.62	>3.00
10	0.06	0.06	10	1.50	>3.00

The results in Table 7 show that ten mice immunized with the pARC-gB₆₈₀ were positive for stronger gB-specific antibody responses than mice immunized with pARC-gB.

Table 8 provides the results following the immunization protocol above, where the mice had been boosted after 2 months using the same protocol as described for the first immunization. Sera obtained 1 and 2 month after the booster were tested in a HCMV-microneutralization assay. Preimmune sera were included as negative controls, NA titers \geq 12 are considered positive.

Table 8

paRC-gB $_{680}$ expressing secreted form of gB induce stronger neutralizing antibody responses than paRC-gB expressing membrane-bound gB

	NA tit	ers of sera booster imm	of mice 1 and unized with	2 month after	
	pal	RC-gB	paRC-gB680		
	1M	2M	1M	2M	
	16	24	128	64	
	8	<8	64	32	
	4	<4	256	192	
	4	8	<4	12	
	8	4	128	96	
	4	4	64	64	
	8	24	64	32	
	48	48	48	ND	
	6	4	96	96	
	<6	4	16	24	
ı					

As shown in Table 8, nine of the pARC-gB₆₈₀immunized mice developed gB-specific antibodies, but only 3 of 10 responded in the pARC-gB-immunized group. neutralizing antibody titers were also higher in the paRC-gB₆₈₀-immunized mice, 9 of 10 developed significant NA responses versus 3 of 10 in the paRC-gB-immunized group (Table 8).

These data show that the paRC-gB₆₈₀ plasmid expressing the N-terminal 680 amino acids of gB (lacking the transmembrane region of the protein) given intramuscularly induces more potent antibody responses to gB than the pARC-gB plasmid expressing the full gB.

5

25

5

10

15

20

25

30

Example 13 - pARC-gB₆₈₀ mixed with pARC-pp65 and given at one site or inoculated separately induce both gB- and pp65-specific antibodies

As shown above, pTet-gB and p $_{\Delta}$ RC-pp65 plasmids mixed and inoculated at one site induced immune responses to both gB and pp65 indicating that there is no antigenic competition between gB and pp65. In this experiment whether the p $_{\Delta}$ RC-gB $_{680}$ (expressing the secreted form of gB) is suitable for immunization in a mixture with p $_{\Delta}$ RC-pp65 was tested.

Groups of 10 BALB/c mice (female, HSD, 9-10 weeks old) were inoculated either with a mixture of two plasmids containing 50 μ g of each in 200 μ l: 100 μ l (50 μ g) into the left leg, 100 μ l (50 μ g) into the right leg; or the two different plasmids were inoculated separately: one kind of DNA (100 μ l/50 μ g) into the left leg, the other kind of plasmid (100 μ l/50 μ g) into the right leg. A booster immunization was given 1 month later. The plasmids used in this study were paRC-pp65, paRC-gB, and paRC-gB₆₈₀. Table 9 shows results obtained with sera taken 8 days after booster. The ELISA antigen was purified gB. Cut off value: 0.081.

The results show that mice immunized with mixtures of paRC-gB and paRC-pp65 developed both gB and pp65 ELISA antibodies. Similar responses were observed in mice immunized with the two plasmids given at separate sites (Table 10 below). HCMV-gB-specific antibody responses in mice immunized with paRC-gB₆₈₀ either given in mixture with paRC-pp65 or at separate sites were stronger than in mice immunized with the full-gB-expressing paRC-gB (these results confirm that the secreted form of gB is a stronger immunogen than the membrane-bound form).

Table 9 $p_{\Delta}RC\text{-}gB_{680} \text{ mixed with } p_{\Delta}RC\text{-}pp65 \text{ and given at one site or inoculated separately induce } gB\text{-}specific antibodies}$

5	gB-specific antibody (OD at serum dilutions of 1:40)								
		noculat B and p				mice inoculated with paRC-gB ₆₈₀ and paRC-pp65			
10	mouse	at one site	mouse	at two <u>sites</u>	mouse _	at one site	mouse	at two sites	
*	#326	0.085	#356	0.115	#341	1.280	#336	1.058	
	#327	0.193	#357	0.082	#342	1.070	#337	0.550	
	#328	0.121	#358	0.099	#343	1.385	#338	0.193	
	#329	0.060	#359	0.107	#344	1.190	#339	1.039	
15	#330	0.115	#360	0.107	#345	2-588	#340	0.207	
	#331	0.093	#361	NT	#351	1.037	#346	0.288	
	#332	0.061	#362	0.092	#352	0.771	#347	0.220	
	#333	0.089	#363	0.065	#353	0.493	#348	0.513	
	#334	0.078	#364	0.152	#354	0.560	#349	0.223	
20	#335	0.088	#365	0.082	#355	0.933	#350	0.719	
	Mean OD:	0.098		0.100		1.130		0.521	

Mice immunized as above with the mixture of paRCgB₆₈₀ and paRC-pp65 showed gB-specific antibody responses similar to those observed in mice immunized with the two kinds of plasmids given at separate sites. Results of pp65-specific antibody responses showed that mice responded to the pp65 antigen regardless of immunization with a mixture or with plasmids given at separate sites (Table 10). Table 10 shows results obtained with sera taken 8 days after booster (cut off value: 0.050).

25

Table 10 $p_{\Delta}RC\text{-}gB_{680} \text{ mixed with } p_{\Delta}RC\text{-}pp65 \text{ and given at one site or inoculated separately induce pp65-specific antibodies}$

5	pp65-specific antibody (OD at serum dilutions of 1:40)									
		noculat B and p				mice inoculated with paRC-gB ₆₈₀ and paRC-				
10	mouse	at one site	mouse	at two <u>sites</u>	mouse	at one <u>site</u>	mouse	at two sites		
	#326	0.037	#356	0.000	#341	0.389	#336	0.276		
	#327	0.149	#357	0.000	#342	0.238	#337	0.295		
	#328	0.002	#358	0.508	#343	0.440	#338	0.000		
15	#329	0.000	#359	0.008	#344	0.077	#339	0.009		
	#330	0.009	#360	0.176	#345	0.008	#340	0.030		
	#331	0.007	#361	dead	#351	0.081	#346	0.051		
	#332	0.014	#362	0.009	#352	0.077	#347	0.124		
	#333	0.000	#363	0.028	#353	0.049	#348	0.281		
20	#334	0.000	#364	0.097	#354	0.016	#349	0.118		
	#335	0.008	#365	0.201	#355	0.178	#350	0.014		
	Mean OD:	0.014	· .	0.109		0.154		0.111		

The data show that mice develop significant immune responses both to gB and pp65 after immunization with a mixture of paRC-gB₆₈₀ and paRC-pp65, indicating that these two HCMV antigens are able to induce parallel immune responses when introduced by expression plasmids to the immune system.

Example 14 - Immunization Studies in Mice Immunized with HCMV Plasmid Vectors Expressing Full-Length and Transmembrane-Deleted qB

As shown in the studies described above, full-length gB and transmembrane-deleted gB have been found to induce a strong and long-term antibody response when delivered by plasmid DNA. The following experiments provide further evidence of this effect.

A. pCBqB and pCB-qBAtm

10 The gB open reading frame (ORF, nucleotides 1-2724) was obtained from the CMV Towne strain [SEQ ID NO: 1] using conventional techniques. The gBAtm (transmembrane-deleted gB) was obtained from the wild type gene by deleting in frame the sequences coding for 15 the hydrophobic transmembrane domain of the protein [nucleotides 2143 - 2316 were deleted from the gB ORF, SEQ ID NO:1]. These two coding sequences were introduced into the polylinker of the eukaryotic expression vector pCB11 corresponding to a commercially 20 available pUC backbone with the HCMV IE1 promoter/enhancer sequences and the terminator sequences from the bovine growth hormone gene (Fig. 7A). resulting plasmids, pCBgB and pCBgB∆tm expressing the full-length gB and its truncated version, respectively, 25 are shown in Fig. 8. Protein expression from pCBgB and from pCBgBAtm was confirmed by immunofluorescence and immunoprecipitation after transfection into cultured CHO-The immunoprecipitation experiment indicated that only pCBgBAtm gave rise to a secreted form of qB which could be recovered from the cell culture medium. 30

B. <u>Immunization</u>

The study described below was performed with pCBgB and pCBgB Δ tm in 6-8 week old female BALB/c mice. Anesthetized (xylazine + ketamine) mice (8 per group) received three administrations of 50 μ g pCBgB or pCBgB Δ tm

35

10

20

at three week intervals (days 0, 21 and 42) either intramuscularly (IM) or intradermally (ID). administration, DNA in $50\mu l$ of saline was injected into the quadriceps with a Hamilton syringe equipped with a 20 gauge needle. For ID administration, DNA in a total volume of 100 μ l of saline was injected into 5 sites of shaved dorsal skin with a pneumatic jet injector.

In each group, mice were labeled and bled on days 14 (following 1 injection), 35 (following 2 injections), 56 (following 3 injections), 116 and 202. The anti-urease IgG antibody response was followed by ELISA against recombinant gB produced in MRC5 cells infected with ALVAC-gB. The sera collected on days 116 and 202 were analyzed for hCMV neutralization in 15 complement dependent microneutralization assay [Gonczol et al, cited above (1986)]. The data is provided in Table 11 and summarized in Fig. 9.

TABLE 11

INDIVIDUAL ELISA TITERS IN MICE IMMUNIZED WITH HCMV GB PLASMID VECTORS

	<u>Day</u>	# Mouse	Intra pCBqB ELISA	muscular pCBgBAtm ELISA		radermal pCBgB∆tm ELISA	neg. serum ELISA
• •							
	14	1	50	50	<50	<50	<50
25		2	<50	200	<50	<50	<50
		3	100	9600	100	<50	
		4	<50	300	<50	<50	
			100	100	<50	<50	•
		5 6	<50	75	<50	50	
30			100	75	<50	<50	
30		. 7 8	50	<50	<50	<50	
	35	1	100	100	75	50	<50
		2	150	900	150	600	<50
35	•	3	200	12800	6400	2400	
		4	150	3200	1600	200	
		5	400	1200	100	1600	
		6	100	1200	1200	6400	
		7	150	300	75	100	
40		8	150	100	200	150	

WO 97/40165 PCT/US97/06866

TABLE 11 (con't)

INDIVIDUAL ELISA TITERS IN MICE IMMUNIZED WITH HCMV GB PLASMID VECTORS

		4 1	Intr	amuscular	In In	tradermal	neg.
5		#	pCBqB	<u>pCBqB∆tr</u>	n pCBqB	pCBqBAtm	serum
	<u>Day</u>	Mouse	ELISA	ELISA	ELISA	ELISA	ELISA
	56	1	150	1600	200	1200	<50
		2	200	2400	200	38400	<50
		3	200	38400	6400	12800	
10		4	75	61200	6400	12800	
		5	400	2400	1200	4800	
		6	100	38400	3200	9600	
		7	200	19200	600	1600	•
		8	600	4800	1200	4800	
15							
	116	1	<50	1200	75	600	<50
		2 .	1600	800	37.5	12800	<50
		3	400	9600	1200	640	
		4	<50	25600	2400	4800	
20		5	25	1600	150	800	
		6	<50	25600	1600	4800	
		7	<50	6400	300	800	
		8	200	1200	200	800	
25	202	1	<50	1000	50	250	<50
		2	400	1000	25	8000	<50
		3	1600	8000	800	3000	
		4	<50	64000	1600	1500	
		4 5	25	1500	50	500	
30		6	<50	24000	1200	3000	
		7 .	<50	4000	200	375	
		8		1000	150	375	

As illustrated in Table 11 above and in Fig. 9,

pCBgB and pCBgB∆tm plasmids induced serum IgGs against recombinant gB protein after IM or ID administration in BALB/c mice [pCBgB∆tm/ID ≥ pCBgB∆tm/IM >> pCBgB/ID ≥ pCBgB/IM]. pCBgB and pCBgB∆tm plasmids induced detectable neutralizing antibodies to hCMV (in vitro assay) after IM or ID administration in BALB/c mice [pCBgB∆tm > pCBgB].

5

10

15

pCB-gB and pCB-gBAtm have been observed to induce a strong and long-term antibody response. pCBgB and especially pCB-gBAtm induce neutralizing antibodies.

The nature of the response (IgG_1/IgG_{2a}) differs between pCB-gB and pCB-gB Δ tm. Particularly, pCB-gB has been observed to induce an IgG_1 (T_{H2}) response which is approximately equivalent to the IgG_{2a} (T_{H1}) response induced. In contrast, pCB-gB Δ tm has been observed to induce an IgG_1 response that is significantly stronger that the IgG_{2a} response induced.

Numerous modifications and variations of the present invention are included in the above-identified specification and are expected to be obvious to one of skill in the art. Such modifications and alterations to the compositions and processes of the present invention are believed to be encompassed in the scope of the claims appended hereto.

1

International Application No: PCT/

MICROOF	RGANISMS
Oplional Sheet in connection with the microorganism referred to o	on page 8
A. IDENTIFICATION OF DEPOSIT 1 pTet-gB	
Further deposite are identified on an additional sheet	
Name of depositary institution 4	
American Type Culture Collecti	ion
Address of depositary institution (including postal code and country	۱۲۷) ٠
12301 Parklawn Drive Rockville, Maryland 20852 US	5A
Date of deposit *	Accession Number 4
April 23, 1996	98029
B. ADDITIONAL INDICATIONS ! (leave blank II not applicable	e). This information is continued on a separate attached sheet
	·
C. DESIGNATED STATES FOR WHICH INDICATIONS AR	E MADE * (If the indications are not for all designated States)
	į
	·
•	,
D. SEPARATE FURNISHING OF INDICATIONS + (leave big	nk il not applicable)
The indications listed below will be submitted to the Internations "Accession Number of Deposit")	el Bureau later * (Specify the general nature of the indications e.g.,
•	
E. X This sheet was received with the international application	when filed (to be checked by the receiving Office)
EN	
	PAUL F. URRUTIA GAU
	(Authorized Officer)
The date of receipt (from the applicant) by the internations	il Bureeu **
was	
	(Authorized Officer)
<u> </u>	

WHAT IS CLAIMED IS:

1. A DNA molecule which is non-replicating in mammals and comprises a sequence encoding a human cytomegalovirus antigen,

wherein the sequence is operably linked to regulatory sequences for expressing the antigen in mammals and wherein the antigen elicits an immune response in the mammal.

- 2. The DNA molecule according to claim 1 which is a plasmid.
- 3. The DNA molecule according to claim 1 or claim 2 wherein said antigen is selected from the group consisting of:
 - (a) gB;
- (b) a gB derivative lacking at least the transmembrane domain;
 - (c) pp65;
 - (d) pp150;
 - (e) immediate-early exon-4; and
 - (f) combinations of (a) (e).
- 4. The DNA molecule according to claim 3 which comprises a sequence encoding the gB and the pp65 antigens.
- 5. The DNA molecule according to claim 3 which comprises a sequence encoding the gB derivative and a sequence encoding the pp65 antigen.

WO 97/40165 PCT/US97/06866

6. A pTet-gB DNA plasmid, said plasmid comprising the human cytomegalovirus (HCMV) gB gene and a tetracycline regulatable HCMV-immediate early promoter, said promoter controlling the expression of gB.

- 7. A p Δ RC/CMV DNA plasmid, said plasmid comprising the human cytomegalovirus (HCMV) gB gene and capable of expressing gB.
- 8. A pARC-gB₆₈₀ plasmid, said plasmid comprising the portion of the human cytomegalovirus (HCMV) gene encoding the N-terminal 680 amino acids of the gB protein (gB_{1-680}) and capable of expressing gB_{1-680} .
- 9. A pARC-pp65 plasmid, said plasmid comprising the human cytomegalovirus (HCMV) gene encoding the HCMV pp65 tegument protein and capable of expressing pp65.
- 10. A pARC-pp150 plasmid, said plasmid comprising the human cytomegalovirus (HCMV) gene encoding the HCMV pp150 tegument protein and capable of expressing pp150.
- 11. A pARC-exon-4 plasmid, said plasmid comprising the portion of the human cytomegalovirus (HCMV) gene encoding HCMV immediate-early (IE)-exon-4 and capable of expressing IE-exon-4.
- 12. An immunogenic composition comprising a carrier and a DNA molecule according to any of claims 1-5.

- 13. The immunogenic composition according to claim 12 wherein the DNA molecule is selected from the group consisting of:
 - (a) p∆RC-gB;
 - (b) pTet-gB;
 - (c) $p\Delta RC-pp65$;
 - (d) $p\Delta RC gB_{680}$;
 - (e) $p\Delta RC-pp150$; and
 - (f) $p\Delta RC-exon-4$.
- 14. The immunogenic composition according to claim 12 or 13 comprising two or more DNA molecules.
- 15. The immunogenic composition according to claim 14 comprising a first DNA molecule which comprises a sequence encoding the gB antigen or a gB derivative, and a second DNA molecule which comprises a sequence encoding the pp65 antigen.
- 16. The immunogenic composition according to any of claims 12 to 15 wherein the carrier is selected from the group consisting of saline and isotonic water.
- 17. A method of inducing human cytomegalovirusspecific (HCMV) immune responses in an animal, comprising the step of administering to said animal an effective amount of a first immunogenic composition according to any of claims 12 to 16.
- 18. The method according to claim 17 wherein the composition comprises pTet-gB and pARC-pp65.

WO 97/40165 PCT/US97/06866

19. The method according to claim 16 further comprising the step of administering a second immunogenic composition to said animal, said second immunogenic composition comprising a plasmid selected from the group consisting of:

- (a) $p\Delta RC-gB$;
- (b) pTet-gB;
- (c) $p\Delta RC-pp65$;
- (d) $p\Delta RC gB_{680}$;
- (e) p∆RC-pp150; and
- (f) $p\Delta RC-IE-Exon-4$.
- 20. The method according to claim 17, wherein said second immunogenic composition is administered between about 2 to about 15 weeks following administration of said first immunogenic composition.
- 21. The use of a DNA molecule according to any of claims 1 to 5 or a plasmid according to any of claims 6 to 11 in the preparation of a medicament to treat a cytomegalovirus infection.
- 22. A method of priming immune responses to a selected human cytomegalovirus immunogenic composition, comprising the steps of:

administering a first immunogenic composition according to any of claims 12 to 16 and administering the selected human cytomegalovirus immunogenic composition.

23. The method according to claim 22 wherein the first immunogenic composition is administered between about 4 and 15 weeks prior to administration of the selected immunogenic composition.

- 24. The method according to claim 22 or claim 23 wherein the first immunogenic composition comprises pTetqB.
- 25. The method according to claim 24, wherein pTet-gB is administered in an amount between about 50 μg to about 160 μg .
- 26. The method according to claim 22, wherein the selected immunogenic composition comprises an immunogen selected from the group consisting of a recombinant virus comprising an HCMV immunogen, an HCMV protein, and HCMV virions.
- 27. The method according to claim 26 wherein the HCMV protein is gB.
- 28. The method according to claim 26 wherein the recombinant virus is selected from the group consisting of Ad5.gb and Ad5-IE-exon-4.

AMENDED CLAIMS

[received by the International Bureau on 25 November 1997 (25.11.97); original claims 13-28 replaced by new claims 13-32; remaining claims unchanged (4 pages)]

- 13. A pCBgBΔtm plasmid, said plasmid comprising the human cytomegalovirus (HCMV) gB gene containing a deletion in the transmembrane domain.
- 14. An immunogenic composition comprising a carrier and a DNA molecule according to any of claims 1-5.
- 15. The immunogenic composition according to claim 14 wherein the DNA molecule is selected from the group consisting of:
 - (a) $p\Delta RC-gB$;
 - (b) pTet-gB;
 - (c) $p\Delta RC-pp65$;
 - (d) $p\Delta RC-gB_{680}$;
 - (e) $p\Delta RC-pp150$;
 - (f) pCBgB;
 - (g) pCBgBΔtm; and
 - (h) $p\Delta RC$ -exon-4.
- 16. The immunogenic composition according to claim 14 or 15 comprising two or more DNA molecules.
- 17. The immunogenic composition according to claim 15 comprising a first DNA molecule which comprises a sequence encoding the gB antigen or a gB derivative, and a second DNA molecule which comprises a sequence encoding the pp65 antigen.
- 18. The immunogenic composition according to any of claims 13 to 17 wherein the carrier is selected from the group consisting of saline and isotonic water.

- 19. A method of inducing human cytomegalovirus-specific (HCMV) immune responses in an animal, comprising the step of administering to said animal an effective amount of a first immunogenic composition according to any of claims 14 to 18.
- 20. The method according to claim 19 wherein the composition comprises pTet-gB and pΔRC-pp65.
- 21. The method according to claim 19 further comprising the step of administering a second immunogenic composition to said animal, said second immunogenic composition comprising a plasmid selected from the group consisting of:
 - (a) $p\Delta RC-gB$;
 - (b) pTet-gB;
 - (c) $p\Delta RC-pp65$;
 - (d) $p\Delta RC-gB_{680}$;
 - (e) $p\Delta RC$ -pp150;
 - (f) pCBgB;
 - (g) $pCBgB\Delta tm$; and
 - (h) $p\Delta RC$ -IE-Exon-4.
- 22. The method according to claim 19, wherein said second immunogenic composition is administered between about 2 to about 15 weeks following administration of said first immunogenic composition.
- 23. The use of a DNA molecule according to any of claims 1 to 5 or a plasmid according to any of claims 6 to 13 in the preparation of a medicament to treat a cytomegalovirus infection.

24. A method of priming immune responses to a selected human cytomegalovirus immunogenic composition, comprising the steps of:

administering a first immunogenic composition according to any of claims 14 to 18 and administering the selected human cytomegalovirus immunogenic composition.

- 25. The method according to claim 24 wherein the first immunogenic composition is administered between about 4 and 15 weeks prior to administration of the selected immunogenic composition.
- 26. The method according to claim 24 or claim 25 wherein the first immunogenic composition comprises pTet-gB.
- 27. The method according to claim 26, wherein pTet-gB is administered in an amount between about 50 μg to about 160 μg.
- 28. The method according to claim 24, wherein the selected immunogenic composition comprises an immunogen selected from the group consisting of a recombinant virus comprising an HCMV immunogen, an HCMV protein, and HCMV virions.
 - 29. The method according to claim 28 wherein the HCMV protein is gB.
- 30. The method according to claim 28 wherein the recombinant virus is selected from the group consisting of Ad5.gb and Ad5-IE-exon-4.

- 31. A DNA molecule which is non-replicating in mammals and comprises a sequence encoding a human cytomegalovirus antigen selected from the group consisting of:
 - (a) pp65;
 - (b) pp150;
 - (c) immediate-early exon-4;
 - (d) gB and an antigen of (a) to (c);
- (e) a gB derivative lacking at least the transmembrane domain and an antigen of (a) to (c); and
 - (f) a combination of antigens (a) to (c).
- 32. An immunogenic composition comprising a carrier and at least two DNA molecules, wherein said DNA molecules are selected from the group consisting of:
 - (a) gB;
 - (b) a gB derivative lacking at least the transmembrane domain;
 - (c) pp65;
 - (d) pp150; and
 - (e) immediate-early exon-4.

STATEMENT UNDER ARTICLE 19

Following entry of the attached replacement pages, claims 1 - 32 are pending.

The claims have been amended to recite two plasmid constructs disclosed throughout the application, but not previously claimed. See, new claims 12 and 13, amended claims 15 and 21. Particularly, pCBgB and pCBgBΔtm are supported in Example 14, page 34, line 1 through page 37, line 10 of the specification as filed. No new matter is added by this amendment. Inclusion of these two claims requires addition of two additional inventors, as requested in the attached letter.

In addition, two new independent claims have been added, which are supported by original claims 1 and 12, but are of narrower scope. These claims are believed to overcome the prior art cited in the International Search Report.

FIG. I

SUBSTITUTE SHEET (RULE 28)

FIGURE 3A

ATG Met	GAA Glu	TCC Ser	AGG Arg	ATC Ile 5	TGG Trp	TGC Cys	CTG Leu	GTA Val	GTC Val 10	TGC Cys	GTT Val	AAC Asn	TTG Leu	TGT Cys 15	45
Ile	Val	Cys	Leu	Gly 20	Ala	Ala	vaı	ser	25	Ser	SEI	1111	CGT	30	90
ACT Thr	TCT Ser	GCT Ala	ACT Thr	CAC His 35	AGT Ser	CAC His	CAT His	TCC Ser	TCT Ser 40	CAT His	ACG Thr	ACG Thr	TCT Ser	GCT Ala 45	135
Ala	His	Ser	Arg	Ser 50	Gly	Ser	Val	ser	55	Arg	Val	1111	TCT Ser	60	180
Gln	Thr	Val	Ser	His 65	Gly	Val	Asn	GIU	70	TIE	TYL	ASII	ACT	75	225
Leu	Lys	Tyr	Gly	Asp 08	Val	Val	Gly	Val	85	THE	THE	пуs	TAC Tyr	90	270
TAT Tyr	CGC Arg	GTG Val	TGT Cys	TCT Ser 95	ATG Met	GCA Ala	CAG Gln	GGT Gly	ACG Thr 100	GAT Asp	CTT Leu	ATT Ile	Arg	TTT Phe 105	315
GAA Glu	CGT Arg	AAT Asn	ATC Ile	GTC Val 110	TGC Cys	ACC Thr	TCG Ser	ATG Met	AAG Lys 115	CCC Pro	ATC Ile	AAT Asn	GAA Glu	GAC Asp 120	360
Leu	Asp	Glu	Gly	Ile 125	Met	Val	Val	Tyr	130	Arg	ASII	116	GTC Val	135	
His	Thr	Phe	Lys	Val 140	Arg	Val	Tyr	GIn	145	vai	reu	TILL	TTT Phe	150	**
Arg	Ser	Tyr	Ala	Tyr 155	Ile	His	Thr	Thr	160	Leu	Leu	Gry	AGC Ser	165	495
Thr	Glu	Tyr	Val	Ala 170	Pro	Pro	Met	Trp	175	TIE	nis,	uis	ATC Ile	180	540
Ser	His	Ser	Gln	Cys 185	Tyr	Ser	Ser	Tyr	190	Arg	Val	TIE	GCA Ala	195	58 5
ACG Thr	GTT Val	TTC Phe	GTG Val	GCT Ala 200	TAT Tyr	CAT	AGG Arg	GAC Asp	AGC Ser 205	TAT	GAA Glu	AAC Asn	AAA Lys	ACC Thr 210	630

FIGURE 3B

ATG Met	CAA Gln	TTA Leu	ATG Met	CCC Pro 215	GAC Asp	GAT Asp	TAT Tyr	TCC Ser	AAC Asn 220	ACC Thr	CAC His	AGT Ser	ACC Thr	CGT Arg 225	675
TAC Tyr	GTG Val	ACG Thr	GTC Val	AAG Lys 230	GAT Asp	CAA Gln	TGG	CAC His	AGC Ser 235	CGC Arg	GGC Gly	AGC Ser	ACC	TGG Trp 240	720
CTC Leu	TAT Tyr	CGT Arg	GAG Glu	ACC Thr 245	TGT Cys	AAT Asn	CTG Leu	AAT Asn	TGT Cys 250	ATG Met	GTG Val	ACC Thr	ATC Ile	ACT Thr 255	7 65
ACT Thr	GCG Ala	CGC Arg	TCC Ser	AAG Lys 260	TAT Tyr	CCC Pro	TAT Tyr	CAT His	TTT Phe 265	TTC Phe	GCA Ala	ACT Thr	TCC Ser	ACG Thr 270	810
GGT Gly	GAT Asp	GTG Val	GTT Val	GAC Asp 275	ATT Ile	TCT Ser	CCT Pro	TTC Phe	TAC Tyr 280	AAC Asn	GGA Gly	ACT Thr	AAT Asn	CGC Arg 285	855
AAT Asn	GCC Ala	AGC Ser	TAT Tyr	TTT Phe 290	GGA Gly	GAA Glu	AAC Asn	GCC Ala	GAC Asp 295	AAG Lys	TTT Phe	TTC Phe	ATT Ile	TTT Phe 300	900
CCG Pro	AAC Asn	TAC Tyr	ACT Thr	ATC Ile 305	GTC Val	TCC Ser	GAC Asp	TTT Phe	GGA Gly 310	AGA Arg	CCG Pro	AAT Asn	TCT Ser	GCG Ala 315	945
TTA Leu	GAG Glu	ACC Thr	CAC His	AGG Arg 320	TTG Leu	GTG Val	GCT Ala	Phe	CTT Leu 325	GAA Glu	CGT Arg	GCG Ala	GAC Asp	TCA Ser 330	990
GTG Val	ATC Ile	TCC Ser	TGG Trp	GAT Asp 335	ATA Ile	CAG Gln	GAC Asp	GAG Glu	AAG Lys 340	AAT Asn	GTT Val	ACT Thr	TGT Cys	CAA Gln 345	1035
CTC Leu	ACT Thr	TTC Phe	TGG Trp	GAA Glu 350	GCC Ala	TCG Ser	GAA Glu	CGC Arg	ACC Thr 355	ATT Ile	CGT Arg	TCC Ser	GIU	GCC Ala 360	1080
GAG Glu	GAC Asp	TCG Ser	TAT Tyr	CAC His 365	TTT Phe	TCT Ser	TCT Ser	GCC Ala	AAA Lys 370	ATG Met	ACC Thr	GCC Ala	ACT Thr	TTC Phe 375	1125
TTA Leu	TCT Ser	AAG Lys	AAG Lys	CAA Gln 380	GAG Glu	GTG Val	AAC Asn	ATG Met	TCC Ser 385	GAC Asp	TCT Ser	GCG Ala	CTG Leu	GAC Asp 390	1170
TGT Cys	GTA Val	CGT Arg	GAT Asp	GAG Glu 395	GCC Ala	ATA Ile	AAT Asn	AAG Lys	TTA Leu 400	CAG Gln	CAG Gln	ATT Ile	TTC Phe	AAT Asn 405	1215
ACT Thr	TCA Ser	TAC Tyr	AAT Asn	CAA Gln 410	ACA Thr	TAT Tyr	GAA Glu	AAA Lys	TAT Tyr 415	GGA Gly	AAC Asn	GTG Val	TCC Ser	GTC Val 420	1260

FIGURE 3C

TTT Phe	GAA Glu	ACC Thr	ACT Thr	GGT Gly 425	GGT Gly	TTG Leu	GTG Val	GTG Val	TTC Phe 430	TGG Trp	CAA Gln	GGT Gly	ATC Ile	AAG Lys 435	1305
CAA Gln	AAA Lys	TCT Ser	CTG Leu	GTG Val 440	GAA Glu	CTC Leu	GAA Glu	CGT Arg	TTG Leu 445	GCC Ala	AAC Asn	CGC A rg	TCC Ser	AGT Ser 450	1350
CTG Leu	AAT Asn	CTT Leu	ACT Thr	CAT His 455	AAT Asn	AGA Arg	ACC Thr	AAA Lys	AGA Arg 460	AGT Ser	ACA Thr	GAT Asp	GGC	AAC Asn 465	1395
AAT Asn	GCA Ala	ACT Thr	CAT His	TTA Leu 470	TCC Ser	AAC Asn	ATG Met	GAG Glu	TCG Ser 475	GTG Val	CAC His	AAT Asn	CTG Leu	GTC Val 480	1440
TAC Tyr	GCC	CAG Gln	CTG Leu	CAG Gln 485	TTC Phe	ACC Thr	TAT Tyr	GAC Asp	ACG Thr 490	TTG Leu	CGC Arg	GGT Gly	TAC Tyr	ATC Ile 495	1485
AAC Asn	CGG Arg	GCG Ala	CTG Leu	GCG Ala 500	CAA Gln	ATC Ile	GCA Ala	GAA Glu	GCC Ala 505	TGG	TGT Cys	GTG Val	GAT Asp	CAA Gln 510	1530
CGG Arg	CGC Arg	ACC Thr	CTA Leu	GAG Glu 515	GTC Val	TTC Phe	AAG Lys	GAA Glu	CTT Leu 520	AGC Ser	AAG Lys	ATC Ile	AAC Asn	CCG Pro 525	1575
TCA Ser	GCT Ala	ATT Ile	CTC Leu	TCG Ser 530	GCC Ala	ATC Ile	TAC Tyr	AAC Asn	AAA Lys 535	CCG Pro	ATT Ile	GCC Ala	GCG Ala	CGT Arg 540	1620
TTC Phe	ATG Met	GGT Gly	GAT Asp	GTC Val 545	CTG Leu	GGT Gly	CTG Leu	GCC Ala	AGC Ser 550	TGC Cys	GTG Val	ACC Thr	ATT Ile	AAC Asn 555	1665
CAA Gln	ACC Thr	AGC Ser	GTC Val	AAG Lys 560	GTG Val	CTG Leu	CGT	GAT Asp	ATG Met 565	AAT Asn	GTG Val	AAG Lys	GAA Glu	TCG Ser 570	1710
Pro	Gly	Arg	Cys	Tyr 575	Ser	Arg	Pro	Val	GTC Val 580	Ile	Pne	ASN	Pne	585	1755
AAC Asn	AGC Ser	TCG Ser	TAC Tyr	GTG Val 590	CAG Gln	TAC Tyr	GGT Gly	CAA Gln	CTG Leu 595	GGC Gly	GAG Glu	GAT Asp	AAC Asn	GAA Glu 600	1800
ATC Ile	CTG Leu	TTG Leu	GGC Gly	AAC Asn 605	CAC His	CGC Arg	ACT Thr	GAG Glu	GAA Glu 610	TGT Cys	CAG Gln	CTT Leu	CCC Pro	AGC Ser 615	1845
CTC Leu	AAG Lys	ATC Ile	TTC Phe	ATC Ile 620	GCC Ala	GGC Gly	AAC Asn	TCG Ser	GCC Ala 625	TAC Tyr	GAG Glu	TAC Tyr	GTG Val	GAC Asp 630	1890

FIGURE 3D

TAC Tyr	CTC Leu	TTC Phe	AAA Lys	CGC Arg 635	ATG Met	ATT Ile	GAC Asp	CTC Leu	AGC Ser 640	AGC Ser	ATC Ile	TCC	ACC	GTC Val 645	193 5
GAC Asp	AGC Ser	ATG Met	ATC Ile	GCC Ala 650	CTA Leu	GAC Asp	ATC Ile	GAC Asp	CCG Pro 655	CTG Leu	GAA Glu	AAC Asn	ACC	GAC Asp 660	1980
TTC Phe	AGG Arg	GTA Val	CTG Leu	GAA Glu 665	CTT Leu	TAC Tyr	TCG Ser	CAG Gln	AAA Lys 670	GAA Glu	TTG Leu	CGT Arg	TCC Ser	AGC Ser 675	2025
AAC Asn	GTT Val	TTT Phe	GAT Asp	CTC Leu 680	GAG Glu	GAG Glu	ATC Ile	ATG Met	CGC Arg 685	GAG Glu	TTC Phe	AAT Asn	TCG Ser	TAT Tyr 690	2070
AAG Lys	CAG Gln	CGG Arg	GTA Val	AAG Lys 695	TAC Tyr	GTG Val	GAG Glu	GAC Asp	AAG Lys 700	GTA Val	GTC Val	GAC Asp	ccg Pro	CTG Leu 705	2115
CCG Pro	CCC Pro	TAC Tyr	CTC Leu	AAG Lys 710	GGT Gly	CTG Leu	GAC Asp	GAC Asp	CTC Leu 715	ATG Met	AGC Ser	GGC Gly	CTG Leu	GGC Gly 720	2160
GCC Ala	GCG Ala	GGA Gly	AAG Lys	GCC Ala 725	GTT Val	GGC Gly	GTA Val	GCC	ATT Ile 730	GGG Gly	GCC Ala	GTG Val	GGT Gly	GGC Gly 735	2205
GCG Ala	GTG Val	GCC Ala	TCC Ser	GTG Val 740	GTC Val	GAA Glu	GGC Gly	GTT Val	GCC Ala 745	ACC Thr	TTC Phe	CTC Leu	AAA Lys	AAC Asn 750	2250
CCC Pro	TTC Phe	GGA Gly	GCC Ala	TTC Phe 755	ACC Thr	ATC Ile	ATC Ile	CTC Leu	GTG Val 760	GCC Ala	ATA Ile	GCC Ala	GTC Val	GTC Val 765	229 5
ATT	ATC Leu	ATT Ile	TAT Tyr	TTG Thr 770	ATC Arg	TAT Gln	ACT Arg	Arg	CAG Leu 775	CGG Cys	CGT Met	CTC Gln	TGC Pro	ATG Leu 780	2340
CAG Ile	CCG Ile	CTG Ile	CAG Gln	AAC Asn 785	CTC Leu	TTT Phe	CCC Pro	TAT Tyr	CTG Leu 790	GTG Val	TCC Ser	GCC Ala	GAC Asp	GGG Gly 795	2385
ACC	ACC Thr	GTG Val	ACG Thr	TCG Ser 800	GGC Gly	AAC Asn	ACC Thr	AAA Lys	GAC Asp 805	ACG Thr	TCG Ser	TTA Leu	CAG Gln	GCT Ala 810	2430
CCG Pro	CCT Pro	TCC Ser	TAC Tyr	GAG Glu 815	GAA Glu	AGT Ser	GTT Val	TAT Tyr	AAT Asn 820	TCT Ser	GGT Gly	CGC Arg	AAA Lys	GGA Gly 825	2475
CCG Pro	GGA Gly	CCA Pro	CCG Pro	TCG Ser 830	TCT Ser	GAT Asp	GCA Ala	TCC Ser	ACG Thr 835	GCG Ala	GCT Ala	ccg Pro	CCT	TAC Tyr 840	2520

FIGURE 3E

ACC Thr	AAC Asn	GAG Glu	CAG Gln	GCT Ala 845	TAC Tyr	CAG Gln	ATG Met	CTT Leu	CTG Leu 850	GCC Ala	CTG Leu	GTC Val	CGT Arg	CTG Leu 855	25 65
GAC Asp	GCA Ala	GAG Glu	CAG Gln	CGA Arg 860	GCG Ala	CAG Gln	CAG Gln	AAC Asn	GGT Gly 865	ACA Thr	GAT Asp	TCT	TTG Leu	GAC Asp 870	2610
GGA Gly	CAG Gln	ACT Thr	GGC Gly	ACG Thr 875	CAG Gln	GAC Asp	AAG Lys	GGA Gly	CAG Gln 880	AAG Lys	CCC Pro	AAC Asn	CTG Leu	CTA Leu 885	2655
GAC Asp	CGA Arg	CTG Leu	CGA Arg	CAC His 890	CGC Arg	AAA Lys	AAC Asn	GGC Gly	TAC Tyr 895	CGA Arg	CAC His	TTG Leu	AAA Lys	GAC Asp 900	2700
TCC Ser	GAC Asp	GAA Glu	GAA Glu	GAG Glu 905	AAC Asn	GTC Val	TGA							•	2724

FIGURE 4A

ATG Met	AAA Lys	CAG Gln	ATT Ile	AAG Lys 5	GTT Val	CGA Arg	GTG Val	GAC Asp	ATG Met 10	CTG Leu	CGG Arg	CAT His	AGA Arg	ATC Ile 15	45
AAG Lys	GAG Glu	CAC His	ATG Met	CTG Leu 20	AAA Lys	AAA Lys	TAT Tyr	ACC Thr	CAG Gln 25	ACG Thr	GAA Glu	GAG Glu	AAA Lys	TTC Phe 30	90
ACT	GGC Gly	GCC Ala	TTT Phe	AAT Asn 35	ATG Met	ATG Met	GGA Gly	GGA Gly	TGT Cys 40	TTG Leu	CAG Gln	AAT Asn	GCC Ala	TTA Leu 45	135
GAT Asp	ATC Ile	TTA Leu	GAT Asp	AAG Lys 50	GTT Val	CAT His	GAG Glu	CCT Pro	TTC Phe 55	GAG Glu	GAG Glu	ATG Met	AAG Lys	TGT Cys 60	180
ATT Ile	GGG Gly	CTA Leu	ACT Thr	ATG Met 65	CAG Gln	AGC Ser	ATG Met	TAT Tyr	GAG Glu 70	AAC Asn	TAC Tyr	ATT Ile	GTA Val	CCT Pro 75	225
GAG Glu	GAT Asp	AAG Lys	CGG Arg	GAG Glu 80	ATG Met	TGG Trp	ATG Met	GCT Ala	TGT Cys 85	ATT Ile	AAG Lys	GAG Glu	CTG Leu	CAT His 90	270
GAT Asp	GTG Val	AGC Ser	AAG Lys	GGC Gly 95	GCC Ala	GCT Ala	AAC Asn	AAG Lys	TTG Leu 100	GGG Gly	GGT Gly	GCA Ala	CTG Leu	CAG Gln 105	315
GCT Ala	AAG Lys	GCC Ala	CGT Arg	GCT Ala 110	AAA Lys	AAG Lys	GAT Asp	GAA Glu	CTT Leu 115	AGG Arg	AGA Arg	AAG Lys	ATG Met	ATG Met 120	360
TAT Tyr	ATG Met	TGC Cys	TAC Tyr	AGG Arg 125	AAT Asn	ATA Ile	GAG Glu	TTC Phe	TTT Phe 130	ACC Thr	AAG Lys	AAC Asn	TCA Ser	GCC Ala 135	405
TTC Phe	CCT Pro	AAG Lys	ACC Thr	ACC Thr 140	AAT Asn	GGC Gly	TGC Cys	AGT Ser	CAG Gln 145	GCC Ala	ATG Met	GCG Ala	GCA Ala	TTG Leu 150	450
CAG Gln	AAC Asn	TTG Leu	CCT Pro	CAG Gln 155	TGC Cys	TCC Ser	CCT Pro	GAT Asp	GAG Glu 160	ATT Ile	ATG Met	GCT Ala	TAT Tyr	GCC Ala 165	495
CAG Gln	AAA Lys	ATA	TTT Phe	AAG Lys 170	ATT Ile	TTG Leu	GAT Asp	GAG Glu	GAG Glu 175	AGA Arg	GAC Asp	AAG Lys	GTG Val	CTC Leu 180	540
ACG Thr	CAC His	ATT Ile	GAT Asp	CAC His 185	ATA Ile	TTT Phe	ATG Met	GAT Asp	ATC Ile 190	CTC Leu	ACT Thr	ACA Thr	TGT Cys	GTG Val 195	585
GAA Glu	ACA Thr	ATG Met	TGT Cys	AAT Asn 200	GAG Glu	TAC Tyr	AAG Lys	GTC Val	ACT Thr 205	AGT Ser	GAC Asp	GCT Ala	TGT Cys	ATG Met 210	630

FIGURE 4B

ATG Met	ACC Thr	ATG Met	TAC Tyr	GGG Gly 215	GGC Gly	ATC Ile	TCT Ser	CTC Leu	TTA Leu 220	AGT Ser	GAG Glu	TTC Phe	TGT Cys	CGG Arg 225	675
GTG Val	CTG Leu	TCC	TGC Cys	TAT Tyr 230	GTC Val	TTA Leu	GAG Glu	GAG Glu	ACT Thr 235	AGT Ser	GTG Val	ATG Met	CTG Leu	GCC Ala 240	720
AAG Lys	CGG Arg	CCT Pro	CTG Leu	ATA Ile 245	ACC Thr	AAG Lys	CCT Pro	GAG Glu	GTT Val 250	ATC Ile	AGT Ser	GTA Val	ATG Met	AAG Lys 255	765
CGC Arg	CGC Arg	ATT Ile	GAG Glu	GAG Glu 260	ATC Ile	TGC Cys	ATG Met	AAG Lys	GTC Val 265	TTT Phe	GCC Ala	CAG Gln	TAC Tyr	ATT Ile 270	810
CTG Leu	GGG Gly	GCC Ala	GAT Asp	CCT Pro 275	CTG Leu	AGA Arg	GTC Val	TGC Cys	TCT Ser 280	CCT Pro	AGT Ser	GTG Val	GAT Asp	GAC Asp 285	85 5
CTA Leu	CGG Arg	GCC Ala	ATC Ile	GCC Ala 290	GAG Glu	GAG Glu	TCA Ser	GAT Asp	GAG Glu 295	GAA Glu	GAG Glu	GCT Ala	ATT Ile	GTA Val 300	900
GCC Ala	TAC Tyr	ACT Thr	TTG Leu	GCC Ala 305	ACC Thr	CGT Arg	GGT Gly	GCC Ala	AGC Ser 310	TCC Ser	TCT Ser	GAT Asp	TCT	CTG Leu 315	945
GTG Val	TCA Ser	ccc Pro	CCA Pro	GAG Glu 320	TCC Ser	CCT Pro	GTA Val	CCC Pro	GCG Ala 325	ACT Thr	ATC Ile	CCT Pro	CTG Leu	TCC Ser 330	990
TCA Ser	GTA Val	ATT Ile	GTG Val	GCT Ala 335	GAG Glu	AAC Asn	AGT Ser	GAT Asp	CAG Gln 340	GAA Glu	GAA Glu	AGT Ser	GAG Glu	CAG Gln 345	1035
AGT Ser	GAT Asp	GAG Glu	GAA Glu	GAG Glu 350	GAG Glu	GAG Glu	Gly	GCT Ala	CAG Gln 355	GAG Glu	GAG Glu	CGG Arg	GAG Glu	GAC Asp 360	1080
ACT	GTG Val	TCT Ser	GTC Val	AAG Lys 365	TCT Ser	GAG Glu	CCA Pro	GTG Val	TCT Ser 370	GAG Glu	ATA Ile	GAG Glu	GAA Glu	GTT Val 375	1125
GCC Ala	CCA Pro	GAG Glu	GAA Glu	GAG Glu 380	GAG Glu	GAT Asp	GGT Gly	GCT Ala	GAG Glu 385	GAA Glu	ccc Pro	ACC Thr	GCC Ala	TCT Ser 390	1170
GGA Gly	GGC Gly	AAG Lys	AGC Ser	ACC Thr 395	CAC His	CCT Pro	ATG Met	GTG Val	ACT Thr 400	AGA Arg	AGC Ser	AAG Lys	GCT Ala	GAC Asp 405	1215
CAG Gln	TAA				-						-				1221

FIGURE 5A

GCC	Met	Ala	TCC Ser	GTA Val	Leu	GGT Gly	CCC	ATT Ile	TCG Ser	Gly	His	GTG Val	CTG Leu	AAA Lys	45
	1	ATA Ile			.:					10				·	
GCC Ala 15	GTG Val	TTT Phe	AGT Ser	CGC	GGC Gly 20	GAC Asp	ACG Thr	CCG Pro	GTG Val	CTG Leu 25	Pro	CAC His	GAG Glu	ACG Thr	90
CGA Arg 30	CTC Leu	CTG Leu	CAG Gln	ACG Thr	GGT Gly 35	ATC Ile	CAC His	GTG Val A	CGC Arg	GTG Val 40	AGC Ser	CAG Gln	·CCC Pro	TCG Ser	135
CTG Leu 45	ATC Ile	CTG Leu T	GTG Val	TCG Ser	CAG Gln 50	TAC Tyr	ACG Thr	CCC Pro	GAC Asp	TCG Ser 55	ACG Thr	CCA Pro	TGC Cys	CAC His	180
CGC Arg 60	GGC Gly	GAC Asp	AAT Asn	CAG Gln	CTG Leu 65	CAG Gln	GTG Val	CAG Gln	CAC His	ACG Thr 70	TAC Tyr	TTT Phe	ACG Thr	GGC Gly	225
AGC Ser 75	GAG Glu	GTG Val	GAG Glu	AAC Asn	GTG Val 80	TCG Ser	GTC Val	AAC Asn	GTG	CAC	ice-d AAC Asn	CCC	ACG	GGC Gly	270
CGG Arg 90 A	AGC Ser	ATC	TGC	CCC	AGC Ser 95	CAA	GAG Glu	CCC Pro	ATG Met	TCG Ser 100	ATC Ile	TAT Tyr	GTG Val	TAC Tyr	315
					ATG Met 110										360
					GCC Ala 125										405
					CAC His 140										450
CGT Arg 150	CTC Leu	ACG Thr	GTC Val	TCG Ser	GGA Gly 155	CTG Leu	GCC Ala	TGG Trp	Thr	CGT Arg 160	CAG Gln	CAG Gln	AAC Asn	CAG Gln	495

FIGURE 5B

TGG Trp 165	Lys	GAG Glu	CCC	GAC Asp	GTC Val 170	TAC	TAC	ACG Thr	TCA Ser	GCG Ala 175	Phe	GTG Val	TTT	CCC Pro	540
ACC Thr 180	AAG Lys	GAC Asp	GTG Val	GCA Ala	CTG Leu 185	CGG	CAC	GTG Val	GTG Val	TGC Cys 190	Ala	CAC His	GAG Glu	CTG Leu	585
GTT Val 195	TGC Cys	TCC Ser	ATG Met	GAG Glu	AAC Asn 200	ACG Thr	CGC Arg	GCA Ala	ACC	AAG Lys 205	ATG Met	CAG Gln	GTG Val	ATA Ile	630
GGT Gly 210	GAC Asp	CAG Gln	TAC	GTC Val	AAG Lys 215	GTG Val	TAC Tyr	CTG Leu	GAG Glu	TCC Ser 220	TTC Phe	TGC Cys	GAG Glu	GAC Asp	67 5
GTG Val 225	CCC Pro	TCC Ser	GGC Gly	AAG Lys	CTC Leu 230	TTT Phe	ATG Met	CAC His	GTC Val	ACG Thr 235	CTG Leu	GGC Gly	TCT Ser	GAC Asp	720
GTG Val 240	GAA Glu	GAG Glu	GAC Asp	CTG Leu	ACG Thr 245	ATG Met	ACC Thr	CGC Arg	AAC Asn	CCG Pro 250	CAA	CCC Pro	TTC Phe	ATG Met	765
CGC Arg 255	CCC Pro	CAC His	GÄG Glu	CGC Arg	AAC Asn 260	GGC Gly	TTT Phe	ACG Thr	GTG Val	TTG Leu 265	TGT Cys	CCC Pro	AAA Lys	AAT Asn	810
ATG Met 270	ATA Ile	ATC Ile	AAA Lys	CCG Pro	GGC Gly 275	AAG Lys	ATC Ile	TCG Ser	CAC His	ATC Ile 280	ATG Met	CTG Leu	GAT Asp	GTG Val	855
GCT Ala 285	TTT Phe	ACC Thr	TCA Ser	CAC His	GAG Glu 290	CAT His	TTT Phe	GGG Gly	CTG Leu	CTG Leu 295	TGT Cys	CCC Pro	AAG Lys	AGC Ser	900
ATC Ile 300	Pro	GGC Gly	CTG Leu	Ser	ATC Ile 305	TCA Ser	GGT Gly	AAC Asn	CTA Leu G	Leu 310	ATG Met	AAC Asn	GGG Gly	CAG Gln	945
CAG Gln 315	ATC Ile	TTC Phe	CTG Leu	GAG Glu	GTG Val 320 A	CAA Gln	GCG Ala C	ATA Ile	CGC	GAG Glu 325	ACC Thr	GTG Val	GAA Glu	CTG Leu	990
CGT Arg 330	CAG Gln	TAC Tyr	GAT Asp	CCC Pro	GTG Val 335	GCT Ala	GCG Ala	CTC Leu	Phe	TTT Phe 340	TTC Phe	GAT Asp	ATC Ile	GAC Asp	1035

FIGURE 5C

	ı Let					Pro					His			TTC Phe	1080
	Ser					Gln					Tyr			ACC Thr	1125
	Asp										Asp			GTC Val	1170
	Thr								Glu					GAG Glu	1215
	Lys													GCC Ala	1260
											TCC Ser			ACG Thr	1305
											CTT Leu			GAG Glu	1350
											GAT Asp			AAC Asn	1395
GAA Glu 465	Ile	His	Asn	CCG Pro	Ala	Val	Phe	Thr	Trp	CCG Pro 475	CCC Pro	TGG Trp	CAG Gln	GCC Ala	1440
				Arg					Met		GCT . Ala				1485
				Lys					Phe		GAC (Asp)				1530

FIGURE 5D

ATC T Ile T 510	rac ryr	CGC	ATC Ile	TTC Phe	GCC Ala 515	GAA Glu	TTG	GAA Glu	GGC	GTA Val 520	TGG Trp	CAG Gln	CCC Pro	GCT Ala	1575
GCG C Ala G 525	CAA	CCC Pro	AAA Lys	CGT Arg	CGC Arg 530	CGC	CAC His	CGG Arg	CAA Gln	GAC Asp 535	GCC Ala	TTG Leu	CCC Pro	GGG Gly	1620
CCA T Pro C 540												TGAG	CCAC	CC	1666
GCCGC	GCA A G		TTAG	GACG	A CI	CTAT	' AAA A'	ACC	CACG	TCC	ACTO	AGAC	AC		1716
GCGAC' A	TTT	TG G	CCGC	CACA	C CT	'GTCG A		TGC	TATA	TTT	GCGA	CAGI	TG		1766
CCGGA	ACC	CT T	CCCG	ACCT	c cc	ACGA	AGAC	CCG	TTCA	CCT	TTGC	GCAT	CC		1816
CCTGA(CCC	cc c	CCCT	CATC	c cg	CCTT	'CGCG					Ser	TCC Ser		1867
		T	С				A								
CCC GC Pro GI 50	GT (ly (60	GAG (Glu (GGA Gly	CCC Pro	Ser	TCG Ser 565	GAA Glu	GCG Ala	GCC Ala	Ala	ATC Ile 570	AGC Ser	GAG (Glu /	GCC Ala	1912
GAA GO	la 7	Ala :		GG <u>A</u> _								,			1932

FIGURE 6A

TAG	GATC	ACCG	ATA	CAAAE	rtt .	ACACO	AGG	CC A	CGCC	GCCC	GC	AACA	GCCA		50
CT	GTT	CTG	AGT	ACGAT	CAA	aggg1	AGCA	C AC	TAAC	SCGT	AG	AAAA!	rtag		100
TAC	GAGT	GAG	GTT	GTC	TG :	LAAA 1	GGTG	G G	CGTC	SAATA	GC	CAAGO	CACG		150
CG?	ATTC	TGA	GCAG	CTGC	GT (SATCA	ACAC	CA TO	GGCG	TTA	GT	GAC	CGCC		200
CAC	CGAAG	ATG	ATGA	ATGI	GT I	rgagi	ACGG	C TI	CGGI	rggti	CGI	ATG	CGA		250
ATA	GCGG	ccc	TGTC	ATGT	TG C	CAAGT	GTCA	T TG	ATGI	GCGG	AGG	AGTO	TTG		300
TTG	CGGG	TCT	GGGC	GGAA	.CA G	CACA	CGGG	G CG	AAAA	AACA	GAA	GAAA	CAA		350
GTC	AGCG	GCG	CTTA	AAAG	AA A	ACCG	CGTA	T CC	GCCT	ccec		>>>> 'TAAA			400
ccc	cccc	TCC	CTCT	AGGT		GCGC		C GA	GTTG	TGGA	TGA	TGGT	GTC		450
CAT	CGTG	GGC	GAAT	AGCA	_	CGCG		C AG	TCCG	GGGC	GAC	GACG	CTT		500
CCG	GGTT	CTG	GAGA	AAAG	CC A									TA CAG eu Gln	
	Arg					Leu								ACG Thr	595
	Lys					CTC Leu								AAA Lys	640
						CTG Leu					Val				685
						GGA Gly									730
						GTG Val									7 75

FIGURE 6B

GGT Gly 100	Lys	GCG Ala	CGT Arg	GAC Asp	CAC His 105	Leu	Ala	GTG Val	Leu	GAC Asp 110	Arg	ACC Thr	GAA	RI TTC Phe	865
GAT Asp 115	ACG Thr	GAC Asp	GTG Val	CGC Arg	CAC His 120	GAT Asp	GCC Ala	GAG Glu	ATC Ile	GTG Val 125	GAA Glu	CGC Arg	GCG Ala	CTC Leu	910
GTA Val 130	AGC Ser	GCG Ala	GTC Val	ATT Ile	CTG Leu 135	GCC Ala	AAG Lys	ATG Met	TCG Ser	GTG Val 140	CGC Arg	GAG Glu	ACG Thr	CTG Leu	955
GTC Val 145	ACA Thr	GCC Ala	ATC Ile	GGC Gly	CAG Gln 150	ACG Thr	GAA Glu	CCC Pro	ATC Ile	GCC Ala 155	TTT Phe	GTG Val	CAC His	CTC Leu	1000
AAG Lys 160	GAT Asp	ACG Thr	GAG Glu	GTG Val	CAG Gln 165	CGC Arg	ATT Ile	GAA Glu	GAA Glu	AAC Asn 170	CTG Leu	GAG Glu	GGT Gly	GTG Val	1045
CGC Arg 175	CGT Arg	AAC Asn	ATG Met	TTC Phe	TGC Cys 180	Val	AAA Lys	CCG Pro	CTC Leu	GAC Asp 185	CTT Leu	AAC Asn	CTG Leu	GAC Asp	1090
CGG Arg 190	CAC His	GCC Ala	AAC Asn	ACG Thr	GCG Ala 195	CTG Leu	GTC Val	AAC Asn	GCC Ala	GTC Val 200	AAC Asn	AAG Lys	CTC Leu	GTG Val	1135
TAC Tyr 205	ACG Thr	GGC Gly	CGT Arg	CTC Leu	ATC Ile 210	ATG Met	AAC Asn	GTG Val	CGC Arg	AGG Arg 215	TCT Ser	TGG Trp	GAG Glu	GAG Glu	1180
CTG Leu 220	GAG Glu	CGC Arg	AAA Lys	TGT Cys	CTG Leu 225	GCG Ala	CGC Arg	ATT Ile	CAG Gln	GAG Glu 230	CGC Arg	TGC Cys	AAG Lys	CTG Leu	1225
CTG Leu 235	GTC Val	AAG Lys	Glu	Leu	CGC Arg 240	Met	Cys	Leu	Ser	Phe	Asp	TCC Ser	AAC Asn	TAC Tyr	1270
Cys 250	Arg	Asn	Ile	Leu	AAG Lys 255	His	Ala	Val	Glu	Asn 260	Gly	Asp	Ser	Ala	1315
GAC Asp 265	ACG Thr	CTG Leu	TTG Leu	GAG Glu	CTG Leu 270	CTC Leu	ATC Ile	GAG Glu	GAC Asp	TTT Phe 275	GAT Asp	ATC Ile	TAC Tyr	GTG Val	1360

FIGURE 6C

Ser			Ala			ı Gly		TCG Ser	1405
 Ser			Asp			Lev		GGC	1450
Gly						His		ACG Thr	1495
Pro						Pro		GGA Gly	1540
Lys						Leu		GCC Ala	158 5
						GGC Gly		GAC Asp	1630
						GTG Val		GAG Glu	1675
		Glu				TGG Trp			1720
	CTG	CAG				CCG Pro		GCA Ala	1765
						TCC Ser			1810
						ATC Ile			1855
						GCT Ala			1900
		Ile			Leu	TCG Ser			1945

FIGURE 6D

AAA Lys 475	CCG Pro	ACC Thr	AGC Ser	GGT Gly	CCC Pro 480	TTG Leu	AAC	ATC	CCG Pro	CAA Gln 485	CAA Gln	CAA	CAG Gln	CGT Arg	1990
CAC His 490	GCG Ala	GCT Ala	TTC Phe	AGT Ser	CTC Leu 495	GTC Val	TCC Ser	CCG Pro	CAG Gln	GTG Val 500	ACC	AAG Lys	GCC Ala	AGC Ser	2035
CCG Pro 505	GGA Gly	AGG Arg	GTC Val	CGT Arg	CGG Arg 510	GAC Asp	AGC Ser	GCG Ala	TGG Trp	GAC Asp 515	GTG Val	AGG Arg	CCG Pro	CTC Leu	2080
ACG Thr 520	GAG Glu	ACC Thr	AGA Arg	GGG Gly	GAT Asp 525	CTT Leu	TTC Phe	TCG Ser	GGC Gly	GAC Asp 530	GAG Glu	GAT Asp	TCC Ser	GAC Asp	2125
AGC Ser 535	TCG Ser	GĀT Asp	GGC Gly	TAT Tyr	CCC Pro 540	CCC Pro	AAC Asn	CGT Arg	CAA Gln	GAT Asp 545	CCG Pro	CGT Arg	TTC Phe	ACC Thr	2170
GAC Asp 550	ACG	CTG Leu	GTG Val	GAC Asp	ATC Ile 555	ACG Thr	GAT Asp	ACC	GAG Glu	ACG Thr 560	AGC Ser	GCC Ala	AAA Lys	CCG Pro	2215
CCC Pro 565	GTC Val	ACC Thr	ACC Thr	GCG Ala	TAC Tyr 570	AAG Lys	TTC Phe	GAG Glu	CAA Gln	CCG Pro 575	ACG Thr	TTG Leu	ACG Thr	TTC Phe	2260
GGC Gly 580	GCC Ala	GGA Gly	GTT Val	AAC Asn	GTT Val 585	CCT Pro	GCT Ala	GGC Gly	GCC Ala	GGC Gly 590	GCT Ala	GCC Ala	ATC Ile	CTC Leu	2305
ACG Thr 595	CCG Pro	ACG Thr	CCT Pro	GTC Val	AAT Asn 600	CCT Pro	TCC Ser	ACG Thr	GCC Ala	CCC Pro 605	GCT Ala	CCG Pro	GCC Ala	CCG Pro	2350
ACA Thr 610	CCT Pro	ACC Thr	TTC Phe	GCG Ala	GGT Gly 615	ACC Thr	CAA Gln	ACC Thr	ccg Pro	GTC Val 620	AAC Asn	GGT Gly	AAC Asn	TCG Ser	2395
CCC Pro 625	TGG Trp	GCT Ala	CCG Pro	ACG Thr	GCG Ala 630	CCG Pro	TTG Leu	CCC Pro	GGG Gly	GAT Asp 635	ATG Met	AAC Asn	CCC Pro	GCC Ala	2440
AAC Asn 640	TGG Trp	CCG	CGC Arg	GAA Glu	CGC Arg 645	GCG Ala	TGG Trp	GCC Ala	CTC Leu	AAG Lys 650	AAT Asn	CCT Pro	CAC His	CTG Leu	2485
GCT Ala 655	TAC Tyr	TAA naA	CCC Pro	TTC Phe	AGG Arg 660	ATG Met	CCT Pro	ACG Thr	ACT Thr	TCC Ser 665	ACG Thr	GCT Ala	TCT Ser	CAA Gln	2530

FIGURE 6E

AAC Asn 670	Thr	GTG Val	TCC Ser	ACC Thr	ACC Thr 675	Pro	CGG	AGG Arg	CCG Pro	TCG Ser 680	Thr	CCA Pro	CGC Arg	GCC Ala	2575
GCG Ala 685	Val	ACA Thr	CAA Gln	ACA Thr	GCG Ala 690	TCT Ser	CGG Arg	GAC Asp	GCC	GCT Ala 695	Asp	GAG Glu	GTT Val	TGG	2620
GCT Ala 700	TTA Leu	AGG Arg	GAC Asp	CAA Gln	A <u>CT</u>	Pst GCA Ala	_GAG	TCA Ser	CCG Pro	GTC Val 710	GAA Glu	GAC Asp	AGC Ser	GAG Glu	2665
GAG Glu 715	GAA Glu	GAC Asp	GAC Asp	GAC Asp	TCC Ser 720	TCG Ser	GAC Asp	ACC Thr	GGC Gly	TCC Ser 725	GTC Val	GTC Val	AGC Ser	CTG Leu	2710
														TCG Ser	275 5
CCT Pro 745	CCC Pro	AGT Ser	CAG Gln	ACG Thr	CCC Pro 750	GAG Glu	CAG Gln	TCG Ser	ACG Thr	CCG Pro 755	TCC Ser	AGA Arg	ATA Ile	CGT Arg	2800
														CAG Gln	2845
AAA Lys 775	CCG Pro	GTG Val	CTG Leu	GGC Gly	AAG Lys 780	CGA Arg	GTC Val	GCG Ala	ACG Thr	CCG Pro 785	CAC His	GCG Ala	TCC Ser	GCC Ala	2890
								CCG Pro						GAG Glu	2935
								ACG Thr	Val					TTG Leu	2980
								ACG Thr							3025
				Gly				GCT Ala	Ser						3070

FIGURE 6F

Ser	GCC Ala	TCG Ser	GCG Ala	TCC Ser	GTT Val 855	TTG Leu	TCG Ser	CCC	ACG Thr	GAG Glu 860	GAT Asp	GAT Asp	GTC Val	GTG Val	3115
850					655										
		يمند			000	ome	maa	አመሮ	C/D/III	mcc	mcn.	GCC	ருமு	CCG	3160
TCC	CCC	GCC	ACA	1706	CCG	CTG	100	AIG	CII	200	COX	312	Cor	CCG	3100
	Pro	Ala	Thr	ser		ren	Ser	met	Ten	261	Set	Ala	Ser	Pro	
865					870					875					
				> cm		000	000	mem	000	CTC	ממג	GGC	ccc	GGC	3205
TCC	CCG	GCC	AAG	AGT	310	Dwa	Dwo	101	DEC	Val	Tue	Glv	Ara	Glv	3200
	Pro	Ala	гÃг	Ser		PIO	PIO	SeT	FIU	890	ב ענב	Gry	1119	Gly	
880					885					690		-			
300	000	CMC	CCT	COUR	CCT	mcc	ጥጥር	222	CCT	ልሮሞ	ጥጥር	GGC	GGC	AAG	3250
AGC .	2000	<u> </u>	Cly	Val	Dro	Ser	T.e11	T.VS	Pro	Thr	Leu	Glv	Glv	Lys	
	Arg	vai	GIY	Val	900	261	Deu	ny s		905		1	1	-1-	
895					900					703					
CCC /	CMC	CITIA	CCT	CGA	ccc	CCC	TCG	GTC	CCC	GTG	AGC	GGT	AGC	GCG	3295
330	<u> </u>	ULA	Clar	AVA	Pro	Pro	Ser	Val	Pro	Val	Ser	Glv	Ser	Ala	
910	vaı	vaı	GIY	Arg	915	110	Der	141	110	920	5 01	1			
910					713										
CCC (CCT	CGC	CTC	ጥርር	GGC	AGC	AGC	CGG	GCC	GCC	TCG	ACC	ACG	CCG	3340
Pro	C) 17	Ara	TAN	Ser	Gly	Ser	Ser	Arg	Ala	Ala	Ser	Thr	Thr	Pro	
	Gry	Arg	Dea	Der	930		J-0-2			935					
925					930					,					
ACC !	ייי בייי	CCC	GCG	СТА	ACC	ACC	GTT	TAC	CCA	CCG	TCG	TCT	ACG	GCC	3385
Thr '	ውንም ተ	Dro	Ala	Val	Thr	Thr	Val	Tvr	Pro	Pro	Ser	Ser	Thr	Ala	
940	ı yı	FIO	ALG	V 44 4	945		,	-1-		950					
940															
222	AGC	AGC	GTA	TCG	AAT	GCG	CCG	CCT	GTG	GCC	TCC	CCC	TCC	ATC	3430
Lys	Ser	Ser	Val	Ser	Asn	Ala	Pro	Pro	Val	Ala	Ser	Pro	Ser	Ile	
955				7.	960					965					
,,,,							•						•		
CTG Z	AAA	CCG	GGG	GCG	AGC	GCG	GCT	TTG	CAA	TCA	CGC	CGC	TCG	ACG	3475
Leu l	Lvs	Pro	Gly	Ala	Ser	Ala	Ala	Leu	Gln	Ser	Arg	Arg	Ser	Thr	
970	- <u>.</u> -		•		975					980					
GGG A	ACC	GCC	GCC	GTA	GGT	TCC	CCC	GTC	AAG	AGC	ACG	ACG	GGC	ATG	3520
Gly ?	Thr	Ala	Ala	Val	Gly	Ser	Pro	Val	Lys	Ser	Thr	Thr	Gly	Met	•
985					990				-	995					
•						*				•					
AAA A	ACG	GTG	GCT	TTC	GAC	CTA	TCG	TCG	CCC	CAG	AAG	AGC	GGT	ACG	3565
Lys !	Thr	Val	Ala	Phe	Asp	Leu	Ser	Ser	Pro	Gln	Lys	Ser	Gly	Thr	
1000					1005	i				1010	1				
GGG (CCG	CAA	CCG	GGT	TCT	GCC	GGC	ATG	GGG	GGC	GCC	AAA	ACG	CCG	3610
Gly I	Pro	Gln	Pro	Gly			Gly	Met	Gly			Lys	Thr	Pro	
1015					1020	l				1025	•				
											~ ~ ~		3 mm		2655
TCG C	GAC	GCC	GTG	CAG	AAC	ATC	CTC	CAA	AAG	AT'C	GAG	AAG	AT.I.	AAG	3655
Ser A	Asp	Ala	val	GIN			ьeu	GID	гÀг			ъys	TTE	пÃе	
1030					1035					1040	1				

FIGURE 6G

AAC ACG GA Asn Thr Gl 1045	G GAA TAGTT u Glu	AAGAA ACACA	CACGC AGACG	TACTT TTTAATGAAA	3707
CCATCGGATA	GTGACGTGTC	GGGAAAGGAG	GACGGACGGA	GGGTCAGGGA	3757
TGGGGAGACG	TGAGAAAGTT	GTCCGCGGGC	AATTGCATGT	CGCCCAGAAA	3807
GAACGTGGTT	GTTCCGGCGG	CGTGCATCTG	CCGAAACACC	GTGTGGTGGT	3857
TGTACGAGTA	CACGTTACCG	TCGCCCTCGG	TAATTTGATA	CAACGTGGCG	3907
ATGGGGGTGC	CCTGCGGGAT	CACGATGGAA	CGCGTGCGCG	TCCACAGCGT	3957
GACTTTGAGC	GGCTCGCCGC	CGCGCCACAC	GCTGAGCCCC	GTGTAAAAGG	4007
CGTCCTCGTG	TGGCAAGTTG	GCCACCAAGA	AACACCGGTC	TGTGATCTGC	4057
ACGTAGCGCA	AGTCCAACTC	CACCGTCTGC	CGCGGTTGCA	CCCCGAAGTG	4107
GATATCGTAA	GGCGCGTGCA	CCGTGAGCGA	AAACACGTTG	GGCTCATTGA	4157
GAAGCGGACA	GTTGAGCGCG	TCGCCGCTAA	AAAAGAGTGA	CGGGTTGCGG	4207
CTGAATCGCA	GGTCGTACCC	GCGCTGCGCG	CTCGTCAGCA	GGTAGAAGGA	4257
AAAAGÇGCGC	GGCATGTTGC	GCGCCGTGAT	CTTGTCCGAG	ACGCGGTGAC	4307
AGAAGGAGGT	GGCCACGGTG	CCCAGCAGTT	GGCGCTGTTC	CGCGTCCACG	4357
CATAGTGAAT	CCACGTTGAC	GGTGAAAATG		co RI <u>attc</u> gtactg	4407
CACGTTTTTG	GACGCGATCC	ACGCTTCGTC	CTCGCCGGGT	AGCGCTGCCT	4457
CGTCGTCGTC	CATCGTGCCG	CGGAACTGCG	CGAGGTAGCG	CGTAATTTTT	4507
TTGTGTCCGT	ACGTGGTTAC	GCGCTTACTG	ATCCAGGTCA	GATGGTCCAC	4557
GCGACATAGC	AGCGTCGCGC	CATGCCGCGT	GACGCTGACC	CGTCCAAAGG	4607
GCGCCGCCTC	CTCCAACCCC	GCAACGCCGC	TCGGAGCACC	GCCGCAGCCC	4657
GGCTTTCCCG	GCGTCGTGAA	AGGCACGGCG	TAATGCGGGC	AGGCGTGCGG	4707
CACGAAGGGC	ACCATGACCA	GTTGTGTGTG	CAGAAAACCG	ATCTGCACCG	47 57
CCTGCGACTG	CCGCATGGTT	TCCTCGTCGT	AAACCGCCAT	GGACGAGCAG	4807
AGCCCGCCCT	TGGTGATGAG	CGGTTGCAGC	ACCACGGAGC	TCTCGCTGGT	4857

FIGURE 6H

GGAGCAGAGC	AGAAAGAAGA	GCTCGGCGTA	CGCCGCCTTG	GGCGTCACCA	490
CGTTGGACCA	GTCGTACTTG	TAGCCGCAGC	CCTGCGTGTT	GTTGTAAATG	4951
			Hin	d III	
ACGGGAAACG	AGAGAAAGAT	GCAGCCCTGC	ACGTACG <u>AAG</u>	CTTTCTCCGT	5007
CACGTTCGAG	GCCGTGTTGT	ACTGCTCGGT	GATGGACACC	AAGTACGACT	5057
CGTAGGCCGT	CAGGTGCGAG	GCCGAACGGT	GAATCTTGGC	GTGGCGCACG	5107
CAGCGACCGT	AGTTGTCGCG	GTCCGCGTCG	CGTAGCGCTT	CGATCCACGA	5157
GGTCACCACG	TCCTGCGCCG	GCAGACGATA	GTCCTGCTCG	GGGTCCATGT	5207
GGCGGCACAG	CCGCAGGCGC	TCTGCCAGTT	GGCGAGGGAT	ACCGTCGTGC	5257
GACCTTTTGA	CCGCGGTGGT	GCCTGTCGTC	CTCGTCTCCC	CTCCTTCGTT	5307
			Bam HI		
CTCCCTGTTT	TCTCTTCTCT	CATTCCCGGT		GCAGCCGCTA	5357
CCTCTTGCTC	CGCGGTTTTC	TCGCCCACCT	CGCTCGTCGC	TGTCGCCGCC	5407
ACCGCAGCGG	CGGCGACGGA	CGGCGGCGGT	AACAACAGCT	CCGTGAAGCT	5457
GACGAGCGGC	AGCGGCGACG	ACGGTGGCGG	CGACGACACG	GCGACGGTCA	5507
ACAGGGTCAC	AAGCGTGGGT	TTGTCCCCCA	TAATCTGGTC	GCCGCCACCG	5557
CCGTCGTTGC	CGGTCCCCGT	TTCCTCCGGC	GTCGCGGTTT	CCGCCGTCTC	5607
CGGATGAGCG	GCCGCGCGC	GGGCTCGGCG	TCCCGCCGTC	CGAGACGGTG	5657
TATATAAACC	GCGTCGGCCT	CGCCGGCCCG	AGCGCGCCGG	GGAGAAGAAC	5 7 07
CTCTTCCCGG	GCCCGCGTT	CAAGACGGCG	TGCCGTGACG	CTCGATGGGT	5757
CCGCTTCATC	AGACTGCGTA	CGCTTTGGAG	CGTCAGACCC	AGGGCGCATG	5807
PAGCCGACTT	GGAGGACTTT	GCCGCCTTTT	ATCGCACCCT	CTCGGACAGT	5857
GAGCAGCAGG	AGTTCGAGCA	AGAAGCCGAA	CTCGCCTCCC	GCTCACAACG	5907
CGTGCAACAC	CTGCGCGAGG	CCCGGCGCCA	GCTCAAGATG	GACCTGATGT	5957
GTCACGGCGG	TTGAAAACGC	GCATGATCTC	GCGAAGCCAT	CTACGCGCCT	6007
TCAGGGGGA	TGACGACATC	AGCGATGACG	GCTCCTGATA	CGCGCCGGCA	6057

FIGURE 6I

PST I G <u>CTGCAG</u> CAC	GTGGAGACGC	TGCGTCGGTT	TCTGCGCGGC	GACAGCTGCT	6107
TTGTGCACGA	TCTCCCGGC	ATGATGGACT	ATCACGACGG	GCTCTCGCGC	6157
CGTCAACAGC	GTGCCTTTTG	CCGCGCGAGT	CGCGTGTTGA	CGGACCCGGA	6207
•		**	***		
GCCCATCCAG	AGCGAAGCGG	AGGGGGAGAA	TAAACAGTTŢ	ACGGAGCACA	6257

CACACAAAGT	AGTCTCGTTT	TTTATTAAAA	GTGTCTTTGT	ATTTCCCTAT	6307
				•	
CTTGTGTTGC	CCAACTGCTG	TCAGGTCTCC	GTAGATCGCT	CCCGGGTGCC CGA	6360

2255-2920: hCMV IE1 enhancer/promoter

2923-2951: Multiple cloning sites 2952-3650: BGH terminator 3651-4051 and 1-2254: pUC19

FIG. 7A

FIG. 7C

FIG. 8

SUBSTITUTE SHEET (RULE 26)

anon No International A PCT/US 97/06866

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/38 C07K14/045 //A61K31/70 C12N15/86 A61K39/245 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1,3,12, "Preclinical GÖNCZÖL, E. ET AL.: Х 16,17, evaluation of an ALVAC (canarypox)-human 20-23, cytomegalovirus glycoprotein B vaccine 26,27 candidate" VACCINE., vol. 13, 1995, GUILDFORD pages 1080-1085, XP004057496 22,23, see the whole document Y 26-28 -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 01.10.97 18 September 1997 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL · 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Form PCT/ISA/218 (second sheet) (July 1992)

Andres, S

1

International / cation No PCT/US 97/06866

		PC1/US 9//U0000
C.(Continua	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	BERENCSI, K. ET AL.: "The N-terminal 303 amino acids of the human cytomegalovirus envelope glycoprotein B (UL55) and the exon 4 region of the major immediate early protein 1 (UL123) induce a cytotoxic T-cell response" VACCINE	22,23, 26-28
	vol. 14, April 1996, GUILDFORD GB, pages 369-374, XP004057290 cited in the application see the whole document	
(EP 0 609 580 A (CHIRON CORP) 10 August 1994	1-3,12, 16,17, 21-23, 26,27
	see page 8, column 1 - column 45 see examples	
x, c	GONCZOL, E. ET AL.: "Preclinical evaluation of an ALVAC (canarypox)-human cytomegalovirus glycoprotein B vaccine candidate; immune response elicited in a prime/boost protocol with the glycoprotein B subunit." SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES, SUPPLEMENT 99, 1995, (110-112)., XP002041029 see the whole document	1,3,12, 16,17, 21-23, 26,27
1	DHAWAN, J. ET AL.: "Tetracycline-regulated gene expression following direct gene transfer into mouse skeletal muscle" SOMATIC CELL AND MOLECULAR GENETICS, vol. 21, 1995, pages 233-240, XP002041030 cited in the application	
Α .	BERENCSI, K. ET AL.: "MURINE CYTOTOXIC T CELL RESPONSE SPECIFIC FOR HUMAN CYTOMEGALOVIRUS GLYCOPROTEIN B (GB) INDUCED BY ADENOVIRUS AND VACCINIA VIRUS RECOMBINANTS EXPRESSING GB" JOURNAL OF GENERAL VIROLOGY, vol. 74, 1993, pages 2507-2512, XP002026070 cited in the application	
	-/	

1

International A sation No
PCT/US 97/06866

		PCT/US 97/06866				
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT						
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to daim No.			
A	PANDE, H. ET AL.: "HUMAN CYTOMEGALOVIRUS STRAIN TOWNE PP65 GENE: NUCLEOTIDE SEQUENCE AND EXPRESSION IN ESCHERICHIA COLI" VIROLOGY, vol. 182, no. 1, May 1991, pages 220-228, XP000561310					
A	GOSSEN M ET AL: "TIGHT CONTROL OF GENE EXPRESSION IN MAMMALIAN CELLS BY TETRACYCLINE-RESPONSIVE PROMOTERS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 89, no. 12, 15 June 1992, pages 5547-5551, XP000564458					
A	EP 0 252 531 A (BEHRINGWERKE AG) 13 January 1988		·			
			~ .			
	·					
•						
		•				

Internatic application No.

PCT/US 97/06866

Box	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)					
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:						
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim(s) 17-28 is(are) directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged					
2.	effects of the compound/composition. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:					
3	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).					
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)					
	emational Searching Authority found multiple inventions in this international application, as follows:					
The mic						
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.					
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.					
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:					
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:					
Remari	con Protest The additional search fees were accompanied by the applicant's protest.					
	No protest accompanied the payment of additional search fees.					

information on patent family members

International A sation No PCT/US 97/06866

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0609580 A	10-08-94	AU 641121 B AU 3041389 A DK 179290 A EP 0436537 A JP 2607712 B JP 3503478 T WO 8907143 A US 5547834 A	16-09-93 25-08-89 28-09-90 17-07-91 07-05-97 08-08-91 10-08-89 20-08-96
EP 0252531 A	13-01-88	AU 605155 B AU 7412887 A DE 3644924 A DE 3782867 A ES 2044881 T JP 62296893 A	10-01-91 17-12-87 14-04-88 14-01-93 16-01-94 24-12-87