QUADERNO DI LABORATORIO

Davide Bazzanella Gruppo A10

A.A. 2014 - 2015

Università degli studi di Trento

Indice

1	Amplificatori Operazionali Ideali - 16.09.2014
	.1 Introduzione
	.2 Strumenti e materiali
	.3 Premessa sugli amplificatori operazionali ideali
	.4 Generatore di corrente
	.5 Sommatore Pesato
2	Γitolo - 24.09.2014
	2.1 Strumenti e materiali
	2.2 Conclusioni
3	Γitolo - 30.09.2014
	3.1 Strumenti e materiali
4	Conclusioni

1 Amplificatori Operazionali Ideali - 16.09.2014

1.1 Introduzione

In questa sessione di laboratorio abbiamo montato due circuiti con amplificatori operazionali e valutato la loro tensione di output.

1.2 Strumenti e materiali

- Oscilloscopio Agilent DSO-X 2002A (bandwidth 70 MHz, sample rate 2 GSa/s);
- Generatore di tensione continua Agilent E3631A (max $\pm 25 \text{ V} \text{ o } \pm 6 \text{ V}$);
- Generatore di forme d'onta Agilent 33120A con range di frequenza da 100 µHz a 15 MHz;
- Multimetro Agilent 34410A (utilizzato come amperometro e per verificare i valori delle resistenze);
- Un amplificatore operazionale UA741;
- Resistenze di vari valori;
- Due capacità da 0.1 μF;
- un trimmer (potenziometro);
- Breadboard e cablaggi vari.

1.3 Premessa sugli amplificatori operazionali ideali

Durante l'esperienza valuteremo l'amplificatore operazionale considerandolo come ideale. Infatti, in questa approssimazione (peraltro non eccessivamente limitante visti i valori di corrente in gioco nel nostro caso), valgono (considerando come A e B rispettivamente gli ingressi invertente e non invertente):

$$\Delta V_{AB} = 0 \tag{1}$$

$$I_{AB} = 0 (2)$$

cioè la ddp fra l'ingresso invertente e non invertente è portato ad essere nullo dall'amplificatore operazionale modificando il valore di tensione in output (il cosiddetto ground virtuale dato che nei nostri casi l'ingresso non invertente è collegato alla comune del circuito); e la corrente assorbita dall'amplificatore è nulla. Queste regole verranno utilizzate durante questa sessione per valutare la risposta del circuito a segnali in ingresso, e si intendono utilizzate per tutte le sessioni in cui l'amplificatore è considerato ideale.

Figura 1: Grafico dell'alimentazione dell'OPAMP. La tensione di alimentazione è fornita con il generatore di tensione costante, mentre le capacità sono $C_1 = C_2 = 0.1 \mu F$. Per maggiore chiarezza negli schemi circuitali, questa configurazione sarà nascosta negli schemi successivi, ma comunque presente sulla breadboard.

Inoltre, per maggiore chiarezza degli schemi circuitali, l'amplificatore si intende collegato all'alimentazione ($\pm 15V$); e, al fine di evitare problemi di noise durante l'alimentazione, abbiamo collegato l'alimentazione a due capacità come nello schema.

1.4 Generatore di corrente

In questo circuito montiamo un generatore di corrente costante, cioè un dispositivo in grado di erogare una corrente costante indipendentemente dal carico a cui è sottoposto. Per valutare la risposta a diverse resistenze di carico abbiamo dunque utilizzato come R_f una resistenza variabile di tipo trimmer. Lo schema circuitale è in figura.

Risolviamo ora il circuito. Dato che B si trova a potenziale di comune, per (1) anche A sarà allo stesso potenziale, che considereremo nullo. Dunque varrà

$$V_{qen} = IR_1 \tag{3}$$

Per (2) e la legge di Kirkhhoff sui nodi, avremo invece che la corrente passante per la resistenza di carico è uguale alla corrente I di (3).

Otteniamo dunque che la tensione di output si modificherà, ad opera dell'OPAMP, in modo da far passare sempre lo stesso valore di corrente attraverso R_2 ; ciò avviene per il fenomeno di retroazione negativa, che ci permette di controllare la tensione di output tramite la resistenza di feedback, che in questo caso è proprio R_2 , e di ottenere dunque una corrente costante passante per il circuito di feedback. Imponendo l'uguaglianza della corrente possiamo inoltre trovare il valore della tensione di uscita

Figura 2: Schema del generatore di corrente costante. Come valori abbiamo utilizzato $R1=3.85\pm0.01k\Omega$ e $V_{gen}=3.85V$, mentre R_2 è variabile. Come amperometro è utilizzato il multimetro, mentre per alimentare l'OPAMP e come generatore di tensione costante in figura, abbiamo utilizzato il generatore di tensione continua.

$$V_{out} = \frac{R_2}{R_1} V_{gen}$$

Durante l'esperienza abbiamo però deciso di misurare la corrente passante per la resistenza piuttosto che la tensione di uscita, ponendo un amperometro fra l'uscita dell'OPAMP e la resistenza di carico R_2 . Come valore di corrente abbiamo scelto 1mA in modo da discostarci dalla corrente massima in cui l'amplificatore operazionale potrebbe non comportarsi più in maniera ideale (10/20mA); e avendo a disposizione una resistenza $R_1 = 3.85 \pm 0.01k\Omega$, per (3), abbiamo utilizzato una tensione continua di 3.85V. Di seguito proponiamo alcuni valori sperimentali che confermano la capacità del circuito da noi creato di fornire alla resistenza di carico una corrente costante di 1mA (considerando gli errori sull'ultima cifra come unitari).

Resistenza variabile $[\Omega]$	0.54	35.1	412	1021	1996	3068	4170	4719
Corrente nel carico $[mA]$	1.002	1.002	1.002	1.002	1.002	1.002	1.002	1.002

1.5 Sommatore Pesato

Valutiamo ora il sommatore pesato, cioè un circuito che dati due segnali in ingresso li somma con relativi pesi dati dal rapporto fra la resistenza di feedback (R_f) e quella a loro associata $(R_1 \in R_2)$. Lo schema circuitale è in figura.

Figura 3: Schema del sommatore pesato. Come valori abbiamo utilizzato $R_f \approx R_1 = (99.9 \pm 0.1) k\Omega$ e $R_2 = (49.8 \pm 0.1) k\Omega$, dove per R_2 è stato necessario utilizzare un parallelo di due resistenza da $100 k\Omega$. Come GEN 1 abbiamo utilizzato l'oscilloscopio, mentre per GEN 2 il generatore di forme d'onda. Infine, per valutare la tensione in uscita abbiamo utilizzato l'oscilloscopio.

Per risolvere il circuito consideriamo, definendo le tensioni dei generatori 1 e 2 rispettivamente V_1 e V_2 , le seguenti equazioni derivanti dalle leggi di Kirkhhoff e dalla (2)

$$V_1 - V_A = I_1 R_1$$
 $V_2 - V_A = I_2 R_2$
 $V_A - V_{out} = (I_1 + I_2) R_f$

Per (1) vale inoltre che $V_A=V_B=0$; dunque otteniamo, sostituendo le correnti nell'ultima equazione sopra

$$V_{out} = -R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} \right)$$

Si potrebbe dunque definire un peso relativo ϕ_i ad ogni segnale dato dal rapporto fra R_f ed R_i (con i = 1, 2) e scrivere una formula del tipo

$$V_{out} = -\sum_{i=1}^{2} \frac{R_f}{R_i} V_i = -\sum_{i=1}^{2} \phi_i V_i$$

Durante l'esperienza abbiamo optato per valori semplici dei rapporti fra le resistenze. Abbiamo dunque utilizzato i seguenti valori di resistenza: $R_f = R_1 = 100k\Omega$ e $R_2 = 50k\Omega$; si ottengono dunque $\phi_1 = 1$ e $\phi_2 = 2$.

Presentiamo ora i grafici di alcune forme d'onda in uscita.

Figura 4: Grafico della tensione di uscita. Il generatore 1 (generatore dell'oscilloscopio) crea un'onda sinusoidale di $\nu=800Hz$ e $V_{pp}^1=250mV$; il generatore 2 (generatore di forme d'onda) crea invece un'onda sinusoidale di $\nu=100Hz$ e $V_{pp}^2=500mV$. Notiamo inoltre che l'ampiezza massima è pari a $\phi_1V_{pp}^1+\phi_2V_{pp}^2=1250mV$.

Figura 5: Grafico della tensione di uscita. Il generatore 1 (generatore dell'oscilloscopio) crea un'onda sinusoidale di $\nu=900Hz$ e $V_{pp}^1=250mV$; il generatore 2 (generatore di forme d'onda) crea invece un'onda quadra di $\nu=100Hz$ e $V_{pp}^2=500mV$. Notiamo inoltre che anche in questo caso l'ampiezza massima è pari a $\phi_1V_{pp}^1+\phi_2V_{pp}^2=1250mV$.

2 Titolo - 24.09.2014

2.1 Strumenti e materiali

- Oscilloscopio Agilent DSO-X 2002A (bandwidth 70 MHz, sample rate 2GSa/s);
- Generatore di tensione continua Agilent E3631A (max $\pm 25 \text{ V o} \pm 6 \text{ V}$);
- \bullet Generatore di forme d'onta Agilent 33120A con range di frequenza da 100 $\upmu{\rm Hz}$ a 15 MHz Mhz;
- Multimetro Agilent 34410A;
- Un amplificatore operazionale UA741;
- Resistenze di vari valori;
- Due capacità da $0.1 \,\mu\text{F}$;
- un trimmer (potenziometro);
- Breadboard e cablaggi vari.

2.2 Conclusioni

3 Titolo - 30.09.2014

3.1 Strumenti e materiali

- Oscilloscopio Agilent DSO-X 2002A (bandwidth 70 MHz, sample rate 2GSa/s);
- Generatore di tensione continua Agilent E3631A (max $\pm 25 \text{ V o } \pm 6 \text{ V}$);
- \bullet Generatore di forme d'onta Agilent 33120A con range di frequenza da 100 $\upmu{\rm Hz}$ a 15 MHz Mhz;
- Multimetro Agilent 34410A;
- Un amplificatore operazionale UA741;
- Resistenze di vari valori;
- Due capacità da $0.1 \,\mu\text{F}$;
- un trimmer (potenziometro);
- Breadboard e cablaggi vari.

4 Conclusioni