Math 221 Worksheet 26 December 8, 2020 Section 5.2: Volumes

1.	Let R denote the region bounded by the curves $y = x^2$, $x = 2$, and $y = 0$.	0. Fi	ind the	volume of	the	solid	whose
	horizontal base is R and whose vertical cross sections are semi-disks.						

2. Find the volume of the solid whose horizontal base is a disk of radius r and whose vertical cross sections are equilateral triangles. (Hint: The area of an equilateral triangle with side-length s is $\frac{\sqrt{3}s^2}{4}$).

3.	Find a formula	for the volume	of a righ	t pyramid	whose	base i	is an	equilateral	triangle	of side-length	s and	whose
	height is h .											

4. Find the volume of the solid obtained by revolving the region bounded by the curves $y = \sqrt{9 - x^2}$ and y = 0 about the x-axis.

5. Find the volume of the solid obtained by revolving the region enclosed by the curves $x = \sqrt{2\sin(2y)}$ $(0 \le y \le \frac{\pi}{2})$ and x = 0 about the y-axis.

6. Find the volume of the solid obtained by revolving the region bounded by the curves $y = \sqrt{\cos(x)}$ $(0 \le x \le \frac{\pi}{2})$, y = 0, and x = 0 about the x-axis.

7.	7. Write down an integral that represents the volume of the solid obtained by revolving the region	n bounded by the
	curves $y = 4 - x^2$ and $y = 2 - x$ about the x-axis.	

8. Write down an integral that represents the volume of the solid obtained by revolving the region bounded by the curves $y = x^2$ and y = 1 about the line y = -2.

9. Write down an integral that represents the volume of the solid obtained by revolving the region bounded by the curves $y = \sqrt{x}$, y = 2, and x = 0 about the line x = 4.