7

Birla Institute of Technology & Science, Pilani Mid Semester Test (Closed Book), Second Semester 2016 – 2017 Mathematics-II (MATH F112)

Date: 10th March, 2017

Max. Time: 90 Minutes

Max. Marks: 105

Note. Answer all questions. Start answering each question on a fresh page.

- 1. (a) Consider the system of equations AX = B, where $A \in M_{m \times n}$, $X \in \mathbb{R}^n$ and $B \neq 0_m \in \mathbb{R}^m$. Let $u, v \in \mathbb{R}^n$ are two solutions of this system and $\lambda, \mu \in \mathbb{R}$. What condition(s) should be imposed on λ and μ so that $\lambda u + \mu v$ is also a solution of AX = B? Justify. [6]
 - (b) Determine the condition(s) on a, b and c so that the following system has a solution(s):

$$x+2y-3z=a$$

$$2x+6y-11z=b$$

$$x-2y+7z=c.$$

Does this system has a unique solution? Justify.

[8]

- (c) Let $V = \mathbb{R}^2$ with operations $(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ and $c \odot v = c(Av)$, where $A = \begin{bmatrix} -3 & 1 \\ 5 & -2 \end{bmatrix}$. Prove or disprove that (V, \oplus, \odot) is a vector space. [7]
- 2. Let V be a subspace of \mathbb{R}^3 spanned by the set $S = \{(2, 1, -1), (0, -1, 2)\}$ and W be a subspace of \mathbb{R}^3 spanned by the set $T = \{(x, y, z) | x + y = 2, y + z = 1, x, y, z \in \mathbb{R}\}$. Then
 - (a) Find the vectors $v \in V$ and $w \in W$ such that v + w = (2, 4, 5). [16]
 - (b) Find a vector $u \in T$ such that $S \cup \{u\}$ spans \mathbb{R}^3 . [5]
- 3. (a) Consider the subspaces $W_1 = \{(a, b, c, d) : b 2c + d = 0\}$ and $W_2 = \{(a, b, c, d) : a = d, b = 2c\}$ of \mathbb{R}^4 . Find a basis and the dimension of $W_1 \cap W_2$. [8]
 - (b) Consider the matrix $A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & -1 & 0 \\ 1 & -2 & 0 \end{pmatrix}$.
 - i. Find all the eigenvalues of A.
 - ii. Find the eigenspace corresponding to the smallest eigenvalue of A.

[3+10]

- 4. (a) Let $B = \{(1,0,1),(1,1,0),(0,1,1)\}$, $C = \{(1,1,1),(0,1,1),(1,0,1)\}$ be two ordered bases for the vector space \mathbb{R}^3 . Find the transition matrix from the basis B to the basis C. [10]
 - (b) Let $L: \mathbb{R}^3 \to P_2$ be a linear transformation defined by $L(x_1, x_2, x_3) = x_1 + (x_1 x_2)x + (x_2 x_3)x^2$. Let $B = \{(1, 1, 1), (1, 2, 3), (1, 0, 0)\}$ and $C = \{x + 1, x^2 + x + 1, x^2 - x\}$ be the ordered bases for \mathbb{R}^3 and P_2 respectively. Then find the matrix of the above linear transformation L with respect to P_2 and P_3 .
- 5. (a) Let V be a vector space with ordered basis $B = \{v_1, v_2, \dots, v_n\}$. Let $L: V \to V$ be a linear operator defined by

$$L(\nu_1) = \nu_3, \ L(\nu_2) = \nu_4, \ \dots, \ L(\nu_{n-2}) = \nu_n, \ L(\nu_{n-1}) = \nu_1, \ L(\nu_n) = \nu_2.$$

Find Range(L) and Ker(L)?

[7] [3]

- (b) Does there exist a linear operator $L: \mathbb{R}^3 \to \mathbb{R}^3$ such that $\ker(L) = \operatorname{range}(L)$? Justify
- (c) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by

$$T(x_1, x_2, x_3) = (x_1 + x_3, -2x_1 + 3x_2, 2x_2 + x_3).$$

i. Find T^{-1} , if exists. If it does not exist, justify your answer.

ii. Is T an isomorphism? Justify.

[9+2]