Contents

1	\mathbf{LTI}	TD	1
	1.1	Formule et al	2
	1.2	Risposte libere e forzate	2
	1.3	Conseguenze grazialcazzo della linearità, TD	3
2	LTI	TC	3
	2.1	Abusi di notazione	3
	2.2	Roba	4

1 LTI TD

abbiamo un sistema tempo-discreto descritto dalle solite equazioni per lo stato e uscita

$$x(t+1) = f(t, x(t), u(t))$$

$$y(t) = h(t, x(t), u(t))$$

Dato il titolo di questa sottosezione sappiamo che il sistema TD è LTI, lineare-tempo-invariante, quindi

$$x(t+1) = f(x(t), u(t))$$
$$y(t) = h(x(t), u(t))$$

con f(t) e h(t) funzioni lineari di f e u, vale a dire

$$x(t+1) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

con $A,\,B,\,C,$ eDmatrici di qualisiasi dimensione faccia tornare il problema.

Lo scopo di questa sottosezione è:

{Abbiamo lo stato, diciamo che ho anche l'input, se come varia lo stato con stato e input allora so come varia lo stato in generale,

se diciamo di avere anche lo stato iniziale allora ho tutti gli stati se ho tutti gli stati e so come va l'uscita allora ho tutto, ANALISI SISTEMI BOIII

1.1 Formule et al

Andando di

$$x(t+1) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

Per qualche passo ci si ritrova con

mi fa fatica scriverlo in latex, facciamo dopo, ok?¹

Visto che qui siamo *lineari* questo può essere diviso in 2 parti, che si sommano tra di loro

- La parte a cui non interessa l'input
- La parte a cui interessa l'input

Si può agire in modo simile anche per l'uscita, ottenendo una forma complessiva del sistema nella seguente forma

mi fa fatica farlo ora

Queste si dicono rispettivamente **risposta libera** e **risposta forzata** e avranno le forme *non mi va di farlo ora in latex* e *non mi va di farlo ora in latex*

1.2 Risposte libere e forzate

Evoluzione libera detta anche *a ingresso nullo*, visto che è quello che verrebbe fuori se l'input fosse nullo, quindi senza un cazzo di contributo

L' evoluzione forzata è detta anche *nello stato zero*, visto che è quello che verrebbe fuori se lo stato iniziale (e tutti i successivi, data la linearità) fosse nullo, e non desse quindi alcun contributo (mi sono scordato i conguingivi in seconda media, pardon)

Per la risposta hai la risposta libera, o evoluzione libera dell'uscita, e la risposta forzata, o evoluzione forzata dell'uscita

Se vuoi sembrare figo puoi dire principio di sovrapposizione degli effetti invece di conseguenze grazialcazzo della linearità

¹non lo fece dopo

1.3 Conseguenze grazialcazzo della linearità, TD

fai finta che abbia scritto qualcosa

2 LTI TC

un sistema LTI TC si descrive con

$$\begin{cases} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t) \end{cases}$$

abbiamo la condizione iniziale, abbiamo l'input, facciamo il solito.

Qui le cose si fanno un pochino complicate, per semplicità consideriamo il caso autonomo con una sola dimensione² quindi, con $x(t) \in \mathbb{R}$ e $a \in \mathbb{R}$, si ottiene

$$\dot{x}(t) = ax(t)$$

per non far arrabbiare i matematci tra i telespettatori possimao specificare una condizione iniziale

$$x(0) = x_0$$

essendo un'equazione differenziale di analisi 1 la risposta è e, in particolare

$$x(t) = e^{at}x_0$$

Magnifico e tutto, ma come faccio se ho una matrice? In situazioni come queste è necessario ricordarsi che la matematica è una materia in cui scopri cose nuove inventandoti merdate a caso

2.1 Abusi di notazione

La scoperta del numero e è stata fatta abbastanza ad hoc per problemi di derivate & Co. Vediti il video di 3b1b, non so che dirti

2.2 Roba

qui mette i modi naturali, gli introduce in modo umano, bla bla diagonalizzazione e da il contesto per sì e no il 70% dei calcoli fatti in questo corso, rivediti sta roba BENE, ma BENE, ma tanto BENE.

²sferico, nel vuoto, e senza effetti relativistici