Elementary Mathematical functions

MATLAB has several built-in functions, such as square root, sine, cosine, exponential, etc., functions.

Elementary math functions.

Type "help elfun" (elementary math functions) in the Command window

round(x)	Rounds x to the nearest integer	
floor(x)	Rounds x down to nearest integer	
ceil(x)	Rounds x up to nearest integer	
rem(y,x)	Remainder after dividing y by x (eg: remainder of 17/3 is 2)	
sign(x)	Returns -1 if x; returns 0 if $x=0$; returns 1 if $x>0$.	
rand or rand(1)	Generates a random number between 0 and 1	
exp(x)	Exponential function e ^x	
log(x)	Natural logarithm function, y=lnx (where e ^y =x)	
sqrt(x)	Square root function,	
abs(x)	Absolute value function,	
sin(x)	sine function sinx	
cos(x)	cos function cosx	
tan(x)	tan function tanx	

Data analysis and statistics functions

- [val idx]=max(X) returns maximum value and its index from a vector.
- If X is a matrix, a row vector containing the maximum element from each column is returned.

- >> x = [1, 5, 3; 2, 4, 6]; y = [10,2,4; 1, 8, 7];
- >> max(x,y) Each element in the resulting matrix contains the maximum value from the corresponding positions in x and y.

Similarly for min() function.

Data analysis and statistics functions

- mean(x)- Computes the mean value (or average value) of a vector x
- median(x) -Finds the median of the elements of a vector x
- mode(x)- Finds the value that occurs most often in an array
- std(x) Computes the standard deviation of the values in a vector x
- var(x) Calculates the variance of the data in x

Sorting functions

- sort(x) -Sorts the elements of a vector x into ascending order
- sort(x,'descend')- Sorts the elements in descending order (column wise for matrix)
- sortrows(x) -Sorts the rows in a matrix in ascending order based on the values in the first column, and keeps each row intact
- sortrows(x,n) Sorts the rows in a matrix on the basis of the values in column n

Convert Complex Number from Rectangular Form to Polar (Trigonometric) Form

$$z = x + yi$$
 (rectangular form)

$$r = |z| = \sqrt{x^2 + y^2}$$

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$z = r(\cos\theta + i\sin\theta)$$
 (polar form)

Complex numbers

Function	Description	Example
i,j	Imaginary unit. As the basic imaginary unit SQRT(-1), i and j are used to enter	>>z=2+4i
	complex numbers. For example, the expressions 3+2i, 3+2*i, 3+2j, 3+2*j and 3+2*sqrt(-1) all have the same value.	>>z=2+4j
abs	abs(x) is the absolute value of the elements of x. When x is complex, abs(x) is the complex modulus (magnitude) of the elements of X.	>>z=2+4i >>abs(z)
angle	Phase angle. angle(z) returns the phase angles, in radians	>>z=2+4i >>angle(z)
imag	Complex imaginary part. imag(z) is the imaginary part of z.	>>z=2+4i >>b=imag(z)
real	Complex real part. real(z) is the real part of z.	>>z=2+4i >>a=real(z)
conj	Complex conjugate. conj(x) is the complex conjugate of x.	>>z=2+4i >>z_con=conj(z)
complex	Construct complex result from real and imaginary parts. c = complex(a,b) returns the complex result A + Bi	>>a=2; >>b=3;
		>>z=complex(a,b)

Discrete mathematics

factor(x) - Finds the prime factors of x.

gcd(x,y) Finds the greatest common denominator of x and y.

Icm(x,y) Finds the least common multiple of x and y.

rats(x) Represents x as a fraction (1.5 as ½)

Discrete mathematics

- factorial(x) Finds the value of x factorial (x!).
- nchoosek(n,k) Finds the number of possible combinations of k items from a group of n items.
- primes(x) Finds all the prime numbers less than x.

• **isprime**(x) Checks to see if x is a prime number. If it is, the function returns 1; if not, it returns 0.