

1.5A STEP DOWN SWITCHING REGULATOR

- UP TO 1.5A STEP DOWN CONVERTER
- OPERATING INPUT VOLTAGE FROM 6.5V TO 28V
- PRECISE 1.26V (±1%) INTERNAL REFER-ENCE VOLTAGE
- OUTPUT VOLTAGE ADJUSTABLE FROM 1.26V TO 20V
- SWITCHING FREQUENCY ADJUSTABLE UP TO 300KHz
- VOLTAGE FEEDFORWARD
- ZERO LOAD CURRENT OPERATION
- INTERNAL CURRENT LIMITING (PULSE-BY-PULSE AND HICCUP MODE)
- INHIBIT FOR ZERO CURRENT CONSUMP-TION
- PROTECTION AGAINST FEEDBACK DIS-CONNECTION
- THERMAL SHUTDOWN
- SOFT START FUNCTION

DESCRIPTION

The L5971 is a step down monolithic power switching regulator delivering 1.5A at a voltage between 1.26V and 20V (selected by a simple external divider). Realized in BCD mixed technology, the device uses an internal power D-MOS transistor (with a typical Rdson of 0.25Ω) to obtain very high efficency and high switching speed.

A switching frequency up to 300KHz is achievable (the maximum power dissipation of the packages must be observed).

Features of this new generations of DC-DC converter include pulse-by-pulse current limit, hiccup mode for short circuit protection, voltage feedforward regulation, soft-start, protection against feedback loop disconnection, inhibit for zero current consumption and thermal shutdown.

The device is available in plastic dual in line, MINIDIP 8 for standard assembly, and SO16 for SMD assembly.

Typical Applications:

- High efficiency step-down converter
- Portable computers
- Battery charger
- Distributed power
- PDAs and Mobile Comminicators

TYPICAL APPLICATION CIRCUIT

August 2001 1/11

BLOCK DIAGRAM

PIN CONNECTIONS

PIN FUNCTIONS

DIP	SO (*)	Name	Function
1	2	GND	Ground
2	3	SS_INH	A logic signal (active low) disables the device (sleep mode operation). A capacitor connected between this pin and ground determines the soft start time. When this pin is grounded disables the device (driven by open collector/drain).
3	4	OSC	An external resistor connected between the unregulated input voltage and this pin and a capacitor connected from this pin to ground fix the switching frequency. (Line feed forward is automatically obtained)
4	5, 6	OUT	Stepdown regulator output
5	11	Vcc	Not regulated DC input voltage
6	12	BOOT	A capacitor connected between this pin and OUT allows to drive the internal VDMOS
7	13	COMP	E/A output to be used for frequency compensation
8	14	FB	Stepdown feedback input. Connecting directly this pin to the output 1.26V is obtained; a voltage divider is requested for higher output voltages

(*) Pins 1, 7, 8, 9, 10, 15 and 16 are not internally, electrically connected to the die.

5

THERMAL DATA

Symbol	Parameter	Minidip	SO16	Unit
R _{th(j-amb)}	Thermal Resistance Junction to ambient Max.	90 (*)	110 (*)	°C/W

^(*) Package mounted on board.

ABSOLUTE MAXIMUM RATINGS

Symbol		Parameter	Value	Unit	
Minidip	S016	raiailietei	value	Offic	
V ₅ , V ₃	V ₁₁ , V ₄	Input voltage		30	V
V ₄	V ₅ ,V ₆	Output DC voltage Output peak voltage at t = 0.1µs f=200KHz	-1 -5	V V	
l ₄	I ₅ ,I ₆	Maximum output current		int. limit.	
V ₆ -V ₅	V12-V ₁₁		14	V	
V ₆	V ₁₂	Bootstrap voltage	45	V	
V_7,V_2	V ₁₃ ,V ₃	Analogs input voltage (V _{CC} = 12V)		10	V
V ₈	V ₁₄ (V _{CC} = 20V)				V V
Р	tot	Power dissipation a T _{amb} ≤ 60°C	Minidip	1	W
			SO16	0.8	W
T_{j},T_{stg}		Junction and storage temperature		-40 to 150	°C

ELECTRICAL CHARACTERISTICS (Tj = 25° C, Cosc = 2.7nF, Rosc = 20k Ω , Vcc = 12V, unless otherwise specified.) * Specification Refered to Tj from 0 to 125° C

Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Unit
DYNAMIC	CHARACTERISTIC						
Vı	Operating input voltage range		*	6.5		28	V
Vo	Output voltage	$I_0 = 0.5A$		1.247	1.26	1.273	V
		I _o = 0.2 to 1.5A		1.235	1.26	1.285	V
		$V_{cc} = 6.5 \text{ to } 25V$	*	1.21	1.26	1.31	V
Vd	Dropout voltage	Vcc = 10V; lo = 1.5A			0.44	0.55	V
			*			0.88	V
li	Maximum limiting current	Vcc = 6.5 to 25V	*	2	2.5	3	Α
	Efficiency	Vo = 3.3V; Io = 1.5A			85		%
fs	Switching frequency		*	90	100	110	KHz
SVRR	Supply voltage ripple rejection	Vi = Vcc+2VRMS; Vo = Vref; Io = 1.5A; f ripple = 100Hz		60			dB
	Voltage stability of switching frequency	Vcc = 6.5 to 25V			3	6	%
	Temp. stability of switching frequency	T _j = 0 to 125°C			4		%
Soft Start							
	Soft start charge current			30	40	50	μА
	Soft start discharge current			6	10	14	μΑ
Inhibit					-		
VLL	Low level voltage		*			0.9	V
IsLL	Isource Low level		*		5	15	μА

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Unit
DC Charac	cteristics						
Ідор	Total operating quiescent current	Pin 5 (Pin 11)			3	4.5	mA
Ιq	Quiescent current	Duty Cycle = 0; V _{FB} = 1.7V			2.8	3.5	mA
I _{qst-by}	Total stand-by quiescent	V _{inh} <0.9V			100	200	μΑ
	current	Vcc = 25V; V _{inh} <0.9V			150	300	μΑ
Error Amp	lifier						
V_{FB}	Voltage Feedback Input			1.247	1.26	1.273	V
RL	Line regulation	Vcc = 6.5 to 25V			5	10	mV
	Ref. voltage stability vs temperature		*		0.4		mV/°C
VoH	High level output voltage	$V_{FB} = 0.8V$		8.7			V
VoL	Low level output voltage	V _{FB} = 1.7V				0.65	V
lo source	Source output current	$V_{comp} = 3V$; $V_{FB} = 0.8V$		180	250		μΑ
lo sink	Sink output current	$V_{comp} = 3V$; $V_{FB} = 1.7V$		200	300		μΑ
lb	Source bias current				2	3	μΑ
SVRR E/A	Supply voltage ripple rejection	$V_{comp} = V_{fb}$; $Vcc = 6.5$ to 25V		60	80		dB
	DC open loop gain	$R_L = \infty$		50	57		dB
gm	Transconductance	$I_{comp} = -0.1 \text{ to } 0.1 \text{mA}$ $V_{comp} = 6 \text{V}$			4.3		mS
Oscillator	Section						
	Ramp Valley			0.74	0.81	0.88	V
	Ramp peak	Vcc = 6.5V		1.80	1.87	1.94	V
		Vcc = 25V		4.72	4.79	4.86	V
	Maximum duty cycle			95	97		%
	Maximum Frequency	Duty Cycle = 0% R _{osc} = $13k\Omega$, C _{osc} = $820pF$				300	kHz

Figure 1. Test and valutation board circuit.

Figure 2. PCB and component layout of the figure 1.

Figure 3. Quiescent drain current vs. input voltage.

Figure 5. Stand-by drain current vs. input voltage

Figure 7. Switching frquency vs. R1 and C2

Figure 4. Quiescent current vs. junction temperature

Figure 6. Line Regulation

Figure 8. Switching Frequency vs. input voltage.

5/

Figure 9. Switching frequency vs. junction temperature.

Figure 11. Efficiency vs output voltage.

Figure 13. Efficiency vs output current.

Figure 10. Dropout voltage between pin 5 and 4.

Figure 12. Efficiency vs. output current.

Figure 14. Efficiency vs. output current.

Figure 15. Load transient.

Figure 16. Soft start capacitor selection vs. Inductor and V_{ccmax}

Figure 17. Soft start capacitor selection vs. Inductor and V_{ccmax}

Figure 18. Open loop frequency and phase of error amplifier.

DIM.	mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А		3.32			0.131		
a1	0.51			0.020			
В	1.15		1.65	0.045		0.065	
b	0.356		0.55	0.014		0.022	
b1	0.204		0.304	0.008		0.012	
D			10.92			0.430	
Е	7.95		9.75	0.313		0.384	
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			6.6			0.260	
ı			5.08			0.200	
L	3.18		3.81	0.125		0.150	
Z			1.52			0.060	

OUTLINE AND MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	2.35		2.65	0.093		0.104	
A1	0.1		0.3	0.004		0.012	
В	0.33		0.51	0.013		0.020	
С	0.23		0.32	0.009		0.013	
D	10.1		10.5	0.398		0.413	
Е	7.4		7.6	0.291		0.299	
е		1.27			0.050		
Н	10		10.65	0.394		0.419	
h	0.25		0.75	0.010		0.030	
L	0.4		1.27	0.016		0.050	
K	0° (min.)8° (max.)						

OUTLINE AND MECHANICAL DATA

4

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics © 2001 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

