Exercises

Chapter 4

- 1. Show that the firing-rate distribution that maximizes the entropy when the firing rate is constrained to lie in the range $0 \le r \le r_{\text{max}}$ is given by equation 4.22, and that its entropy for a fixed resolution Δr is given by equation 4.23. Use a Lagrange multiplier (see the Mathematical Appendix) to constrain the integral of p[r] to one.
- 2. Show that the firing-rate distribution that maximizes the entropy when the mean of the firing rate is held fixed is an exponential, and compute its entropy for a fixed resolution Δr . Assume that the firing rate can fall anywhere in the range from 0 to ∞ . Use Lagrange multipliers (see the Mathematical Appendix) to constrain the integral of p[r] to 1 and the integral of p[r]r to the fixed average firing rate.
- 3. Show that the distribution that maximizes the entropy when the mean and variance of the firing rate are held fixed is a Gaussian, and compute its entropy for a fixed resolution Δr . To simplify the mathematics, allow the firing rate to take any value between $-\infty$ and $+\infty$. Use Lagrange multipliers (see the Mathematical Appendix) to constrain the integral of p[r] to 1, the integral of p[r]r to the fixed average firing rate $\langle r \rangle$, and the integral of $p[r](r \langle r \rangle)^2$ to the fixed variance.
- 4. Using Fourier transforms, solve equation 4.37, using equation 4.36, to obtain the result of equation 4.42.
- 5. Suppose the filter $L_s(\vec{a})$ has a correlation function that satisfies equation 4.37. Consider a new filter constructed in terms of this old one by writing

$$L'_{\rm s}(\vec{a}) = \int \! d\vec{c} \, U(\vec{a}, \vec{c}) L_{\rm s}(\vec{c}) \,. \tag{1}$$

Show that if $U(\vec{a}, \vec{c})$ satisfies the condition of an orthogonal transformation,

$$\int d\vec{c} \, U(\vec{a}, \vec{c}) \, U(\vec{b}, \vec{c}) = \delta(\vec{a} - \vec{b}) \,, \tag{2}$$

the correlation function for this new filter also satisfies equation 4.37.

6. Consider a stimulus $s_{\rm r}=s_{\rm s}+\eta$ that is given by the sum of a true stimulus $s_{\rm s}$ and a noise term η . Values of the true stimulus $s_{\rm s}$ are drawn from a Gaussian distribution with mean 0 and variance $Q_{\rm ss}$. Values of the noise term η are also obtained from a Gaussian distribution, with mean 0 and variance $Q_{\eta\eta}$. The two terms η and $s_{\rm s}$ are independent of each other. Using the formula for the continuous entropy of a Gaussian random variable calculated in problem 3, calculate the mutual information between $s_{\rm r}$ and $s_{\rm s}$.

- 7. Consider a multivariate signal s_s drawn from a Gaussian distribution with mean 0 and covariance matrix Q_{ss} . Compute the continuous entropy of s in terms of the eigenvalues of Q_{ss} , up to the usual resolution term for a continuous entropy.
- 8. Suppose that a stimulus at one point on the retina, and at a given time, $s_r = s_s + \eta$, is the sum of a true stimulus s_s and a noise term η , as in exercise 6. Model the retinal processing at this particular location as producing a signal at the thalamus

$$s_1 = D_{\rm s} s_{\rm r} + \eta_1,$$

where D_s is a parameter called the transfer constant, and η_1 represents an additional, independent source of noise that can be modeled as being drawn from a Gaussian distribution with mean 0 and variance $Q_{\eta_1\eta_1}$. Calculate the mutual information I_1 between s_1 and s_s as a function of D_s . The power of the signal produced by the retina is defined as $P_r = \langle (D_s s_r)^2 \rangle$. By maximizing

$$I_1 - kP_r$$

as a function of D_s , find the transfer constant that maximizes the mutual information for a given value of k (with k > 0), a parameter that controls the trade-off between information and power. What happens when Q_{ss} , describing the visual signal, gets much smaller than $Q_{\eta\eta}$? (Based on a problem from Dawei Dong.)

9. Consider two independent inputs s and s' drawn from Gaussian distributions with means 0 and with different variances Q_{ss} and $Q_{s's'}$. These generate two thalamic signals, as in exercise 8.

$$s_1 = D_s s + \eta$$
 and $s'_1 = D_{s'} s' + \eta'$,

defined by two separate transfer constants, D_s and $D_{s'}$, and two independent noise terms with variances $Q_{\eta\eta}$ and $Q_{\eta'\eta'}$. Find the transfer constants that maximize the total mutual information $I_l + I'_l$ for a fixed total power $P_r + P'_r$, where the non-primes and primes denote the information and power for s_l and s'_l , respectively.