

#### Before class

Homework is available!

- Week 6 redo:
  - Same materials but with slides
  - Recordings are available
- When using Google Colab, we need to update "statsmodels" (code included in the notebook):

```
1 # if running in Google Colab, please run the following line
2 # !pip install --upgrade statsmodels
```

## Forecasting





### What we will talk about

Time series features

Exponential Smoothing

AutoRegresison

Week 7

Week 8



# Our journey begins with...

What is time series data?



# A summary of smoothing

| Trend Component         | Seasonal Component |            |                  |  |
|-------------------------|--------------------|------------|------------------|--|
|                         | N                  | A          | M                |  |
|                         | (None)             | (Additive) | (Multiplicative) |  |
| N (None)                | (N,N)              | (N,A)      | (N,M)            |  |
| A (Additive)            | (A,N)              | (A,A)      | (A,M)            |  |
| $A_d$ (Additive damped) | $(A_d, N)$         | $(A_d,A)$  | $(A_d,M)$        |  |

From Table 8.5 of Hyndman and Athanasopoulos (2018)



### What features did we talk about?

• Trend + Seasonality



#### What features did we talk about?

- Autocorrelation:
  - Correlation with lagged self





# Autocorrelation Diagram



#### Partial Autocorrelation

- Partial autocorrelation of lag k:
  - Correlation between  $y_t$  and  $y_{t-k}$
  - Controlling for prior correlations
- Example
  - Lag-1 partial autocorr is the same as Lag-1 autocorr.
  - Lag-2 partial autocorr is the correlation between  $y_t$  and  $y_{t-2}$  controlling for autocorr between  $y_t$  and  $y_{t-1}$



# Partial Autocorrelation Diagram







# Our very first AutoReg model: AR(p)

#### Constant "trend": like an intercept

$$y_t = const + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \epsilon_t$$
$$= const + \epsilon_t + \sum_{i=1}^p \phi_i y_{t-i}$$

$$\phi_i = \alpha(1 - \alpha)^i$$

Isn't this familiar? Do you remember the simple exp smoothing method?

$$\hat{y_{t+1}} = \alpha y_t + \alpha (1-lpha) \hat{y_{t-1}} + lpha (1-lpha)^2 y_{t-2} + \dots$$



# Try it out: Set p to 1



|         |                  | o. Observations:    | 127      |
|---------|------------------|---------------------|----------|
| Model:  | AutoHeg(1)       | Log Likelihood      | -805.182 |
| Method: | Conditional MLE  | S.D. of innovations | 144.228  |
| Date:   | Tue, 01 Mar 2022 | AIC                 | 1616.364 |
| Time:   | 16:29:05         | BIC                 | 1624.873 |
| Sample: | 02-28-1991       | HQIC                | 1619.821 |
|         | - 07-31-2001     |                     |          |
|         |                  |                     |          |



|           |    | coef     | std err | z     | P> z  | [0.025  | 0.975]   |  |
|-----------|----|----------|---------|-------|-------|---------|----------|--|
| cons      | st | 889.4105 | 140.756 | 6.319 | 0.000 | 613.535 | 1165.286 |  |
| dership.L | 1  | 0.5018   | 0.079   | 6.368 | 0.000 | 0.347   | 0.656    |  |

## Parameter Selection: Pick a p

 The interpretations of PACF and AR model coefficients are the same...

$$y_t = const + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \epsilon_t$$

 The correlation between lagged variables controlling for others...



Then we can just pick a number by looking at the PACF

#### Intuition for the AR identification

How do we interpret linear regression coefficients?

$$IQ = 5.95 \times MomHighSchool + 0.56 \times MomIQ + 25.73$$

Same for the AR model!

"MomIQ" is correlated with 0.56 unit increase in "IQ" controlling for "MonHighSchool"

$$y_t = const + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \epsilon_t$$

This is just the same as PACF for lag-p

Correlation between lag-p time series  $y_{t-p}$  and the time series value  $y_t$  controlling for  $y_{t-1}$ ,  $y_{t-2}$ , ..., which are lower orders of lagged values...



# Parameter Selection: Pick a p



# Let's see if it gets better with p=7



# Moving Average: MA(q)

$$y_t = const + \epsilon_t + \sum_{j=1}^q \theta_j \epsilon_{t-j}$$

Intuition: we can forecast future time series values based on our past mistakes

$$y_{t} = \phi_{1}y_{t-1} + \epsilon_{t} + const$$

$$= \phi_{1}(\phi_{1}y_{t-2} + \epsilon_{t-1}) + \epsilon_{t} + const$$

$$= \phi_{1}^{2}y_{t-2} + \phi_{1}\epsilon_{t-1} + \epsilon_{t} + const$$

$$= \phi_{1}^{2}(\phi_{1}y_{t-3} + \epsilon_{t-2}) + \phi_{1}\epsilon_{t-1} + \epsilon_{t} + cr$$

$$= \phi_{1}^{3}y_{t-3} + \phi_{1}^{2}\epsilon_{t-2} + \phi_{1}\epsilon_{t-1} + \epsilon_{t} + rst$$

$$= \dots$$

$$= \epsilon_{t} + \phi_{1}\epsilon_{t-1} + \phi_{1}^{2}\epsilon_{t-2} + \dots$$

The equivalence between AR(1) and  $MA(\infty)$ .

This is optional.

## Parameter Selection: Pick a q

• For this model, we need to look at the ACF (autocorrelation):



#### Intuition for MA identification



The coefficient is essentially the correlation between these two lagged series, which is therefore ACF!



# Parameter Selection: Pick a q

• Compare performance with different parameters for the MA model.



#### ARMA: The combination of AR and MA

Intuition: we can forecast future time series values based on past patterns.

$$y_t = const + \epsilon_t + \sum_{i=1}^p \phi_i y_{t-i} + \sum_{j=1}^q \theta_j \epsilon_{t-j}$$

Intuition: we can forecast future time series values based on past patterns.



# Use q = 6; p = 7



## Well, what else can we add to ARMA?

Did we talk about trend? Not yet!

- Is our dataset stationary?
  - In fact, most real-world time series datasets are non-stationary!



# Stationarity and Differencing

Which one is stationary?



Before differencing: 0.010 After differencing: 0.100



Check p-value of the KPSS test!

Lag-1 differencing:

## Compare the trend component

Trends by STL decomposition





#### How about we add this to ARMA?

 AR-I-MA, where "I" is for "integrated", the reverse of differencing

$$y_{t} = const + \epsilon_{t} + \sum_{i=1}^{p} \phi_{i} y_{t-i} + \sum_{j=1}^{q} \theta_{j} \epsilon_{t-j}$$
Differenced time series values
$$y'_{t} = const + \epsilon_{t} + \sum_{i=1}^{p} \phi_{i} y'_{t-} + \sum_{j=1}^{q} \theta_{j} \epsilon_{t-j}$$



#### ARIMA: The Final Model

- Three parameters ARIMA(p, d, q):
  - -The AR order p
  - —The differencing order *d*
  - -The MA order q

• In Python, it is easy to use:

```
arima = sm.tsa.SARIMAX(amtrak_train, order=(p, d, q), trend='c').fit(disp=False)
```



#### ARIMA: Parameter Selection

- The AR order p
  - Look at PACF cutoff.

• The differencing order *d* 

– Do we need to de-trend?

Sometimes we may even need double differencing

• The MA order qLook at ACF cutoff.

## ARIMA identification in practice



What does this figure tell us? (which parameter(s) can we decide?)



## ARIMA identification in practice

The ACF and PACF of the differenced (if any) time series







What does this figure tell us? (which parameter(s) can we decide?)

#### ARIMA Demo



## Advanced Topics: Seasonal ARIMA

• What we have so far: ARIMA(p, d, q)

- What if there is any seasonality?
  - Add more parameters!
  - -How?



## Advanced Topics: Seasonal ARIMA

• Add seasonal parameters to ARIMA(p,d,q)

The meta model:

$$ARIMA(p,d,q)(P,D,Q)_m$$

These are similar to the previous parameters but focus on seasonal components!



## Again: the Amtrak ridership data





There seems to be having a 12-month periodic cycle, i.e., seasonality





Autocorrelation



## Over-differencing

- Currently, we find a need for double differencing:
  - At the level of lag-1 to de-trend
  - At the level of lag-12 to de-seasonality
- But we do not want to do over-differencing.

If the lag-1 autocorrelation is -0.5 or more negative, the series may be over-differenced

BEWARE OF OVERDIFFERENCING!!

https://people.duke.edu/~rnau/411arim2.htm



# Over-differencing?





## Now let's just do seasonal diff...









ARIMA $(p, d, q)(P, D, Q)_m$   $\downarrow$ ARIMA $(7,0,6)(1,1,0)_{12}$ 



# Is it good?

#### A lower MSF!





# Advanced Topics: Vector AutoReg

 When we have multiple time series values, what should we do?

They may affect each other: Endogenous

$$y_{t} = const_{1} + \phi_{11}y_{t-1} + \phi_{12}z_{t-1} + \epsilon_{1t}$$

$$z_{t} = const_{1} + \phi_{21}y_{t-1} + \phi_{21}z_{t-1} + \epsilon_{2t}$$



```
N_train = int(0.9 * oj_data.shape[0])
N_test = oj_data.shape[0] - N_train
oj_train = oj_data.iloc[:N_train].copy(deep=True)
din 3ms, finished 00:07:41 2022-03-03

var = sm.tsa.VAR(oj_train).fit(maxlags=2)
```

Easy to do with statsmodels!





## Suggested References

- Hyndman, R.J., & Athanasopoulos, G. (2021) *Forecasting:* principles and practice, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3.
- Nau, R. (n.d.) Statistical forecasting: notes on regression and time series analysis <a href="https://people.duke.edu/~rnau/411home.htm">https://people.duke.edu/~rnau/411home.htm</a>
- Business analytics using forecasting: <a href="https://youtube.com/playlist?list=PLoK4oIB1jeK0LHLbZW3DTT">https://youtube.com/playlist?list=PLoK4oIB1jeK0LHLbZW3DTT</a>

   05e4srDYxFq





### The End

專業 創新 胸懷全球 Professional·Creative For The World