알고리즘 시간복잡도와 암호의 안정성

2019. 05. 12. 권혁동

Contents

시간복잡도 개념

알고리즘 별 시간복잡도

시간복잡도 위협 요소

• 실행 시간의 관점에서 알고리즘의 효율을 측정

• 시간복잡도가 낮을 수록 좋은 알고리즘

O(1) 상수(constant)

 $O(N^2)$

다차(polynomial)

O(log N) 로그(logarithmic)

 $O(2^{N})$

지수(exponential)

O(N)

선형(linear)

O(N!)

계승(factorial)

O(N log N) 선형로그(log linear)

시간	1	2	4	8	16	32	64
O(1)	1	1	1	1	1	1	1
O(log N)	0	1	2	3	4	5	6
O(N)	1	2	4	8	16	32	64
O(N log N)	0	2	8	24	64	160	384
$O(N^2)$	1	4	16	64	256	1024	4096
O(2 ^N)	2	4	16	256	66536	42949672976	1.84*10 ¹⁹
O(N!)	1	2	24	40320	2.09*10 ¹³	2.63*10 ³⁵	1.27*1089

- 알고리즘의 반복 횟수를 계산
- 모든 반복 횟수를 더한 다음 최고차항만 잔류

```
int i, j // 1 for(i = 0 to n - 1) // n for(j = I + 1 to n) // (n - 1) * n
```

$$N^2 + 1 -> O(N^2)$$

- 일반적인 알고리즘은 시간복잡도가 낮을수록 좋다
 - 동작속도가 빠름을 의미
- 암호 알고리즘은 시간복잡도가 높아야 한다
 - 시간복잡도가 높을 수록 키를 계산하기 어렵기 때문
- 암호 알고리즘의 시간복잡도는 대체로 키 길이에 비례

- DES
- 1975년 IBM에서 개발
- 56비트 키를 사용하므로 O(2⁵⁶)
- 1993년 Matshi의 계산 O(2⁴⁷)
- 2001년 Junod의 계산 O(2³⁹) ~ O(2⁴³)

P. Junod, "On the Complexity of Matsui's Attack"

- Triple-DES
- DES를 3회 반복하는 형식
- 1, 3회의 DES 키가 동일한 2키 방식을 주로 사용
- 1981년 Merkle과 Hellman이 제시
 - $2^{56} * 2^{56} = 2^{112} -> O(2^{112})$
- 단, 첫번째 키를 찾는 시간에 따라 최소 O(2⁵⁶)까지 감소

Ralph C. Merkle, Martin E. Hellman, "On the security of multiple encryption"

- AES
- 2001년 Rijndael 알고리즘
- 128, 192, 256비트 키 길이 지원
- Bicilique 공격에 대해서 각각 O(2^{126.1}), O(2^{189.7}), O(2^{254.4})
- Related-key 공격에 대해서 O(2¹²⁶)

A. Bogdanov, D. Khovratovich, C. Rechberger, "Biclique Cryptanalysis of the Full AES" A. Biryukov, D. Khovratovich, "Related-Key Cryptanalysis of the Full AES-192 and AES-256"

- SEED
- 1999년 한국정보보호센터에서 개발
- 128, 256비트 키 길이 지원
- SEED-128의 차분 공격에 대해서 O(2¹²²)

J. Sung, "Differential cryptanalysis of eight-round SEED"

- ARIA
- 2004년 한국인터넷진흥원에서 개발
- 128, 192, 256비트 키 길이 지원
- MITM 공격의 5, 6, 7, 8라운드에 대해서

 $O(2^{265.4}), O(2^{121.5}), O(2^{185.3}), O(2^{251.6})$

X. Tang, B. Sun, R. Li, C. Li, "A Meet-in-the-Middle Attack on ARIA."

- LEA
- 2013년 한국인터넷진흥원에서 개발
- 128, 192, 256비트 키 길이 지원
- 각 키에 대해 오류 주입 공격에 대해서 O(2³⁵), O(2⁹⁹), O(2¹⁶³)

M. Park, J. Kim, "Differential Fault Analysis of the Block Cipher LEA"

시간복잡도 위협요소

- 쇼어 알고리즘
- 피터 쇼어가 제안한 양자 알고리즘
- 크기 N인 정수를 소인수 분해 시 O(log³ N)
- 공개키 암호에 위협적
- 단, 아직 실존하는 알고리즘이 아님

시간복잡도 위협요소

- 그로버 알고리즘
- N개의 데이터를 가진 DB에서 검색 시간이 O(√ N)
- 대칭키 암호, 해시 함수에 위협적
 - 대칭키: 키 길이를 2배로 증가
 - 해시: 역상 공격 N/2 | 충돌쌍 공격 N/3을 지닐 수 있도록 출력 길이 증가
- 단, 아직 실존하는 알고리즘이 아님

시간복잡도 위협요소

- P-NP 문제
- 시간복잡도 NP인 문제가 시간복잡도 P에 속할 수 있는가
- 결정 문제의 분류
- 아직 암호 알고리즘은 NP에 속하기에 안전
- 단, P-NP 문제가 참으로 밝혀진다면 붕괴 가능성 존재

