Design and Fabrication of an Automated Discharge Collection Unit of the Synthetic Hydro-Experimental Machine

FYP-18-3
Project Presentation

Kipng'eno Erick Koech ENM221-0068/2017 Juma Joel Mwimali ENM221-0060/2017 27th October 2022

Department of Mechatronic Engineering, JKUAT

Presentation Outline

- Objectives
- Deliverables
- Final Design

Designs | Exploded View.

Production Plan

Currents Tasks | Next Tasks

Accomplished Tasks

Synthetic Hydro-Experimental Machine

Introduction: Objectives

Main Objective

To automate the discharge collection process of the Synthetic Hydro-Experimental Machine.

Specific Objectives

- To design an automated discharge flow control unit that can turn the ball valve in steps of less than 1° and divert the flow in less than 1 second.
- To design and fabricate a discharge handling unit with automated weight, time, and temperature measurements, and a discharge collection tank that can discharge in the shortest time possible.
- To design a graphical user interface and a robust control algorithm to integrate the units

Deliverables

Deliverable	Status
A discharge flow control mechanism that can turn in steps of less than 1 degree.	
A diversion mechanism that can divert in less than a second	
A discharge collection tank can collect more than 0.02m ³ of the discharge.	
A weight measurement device with a gauge factor of more than 2.	
A graphical user interface for controlling the system and displaying the results.	

J. J. Mwimali, K.E. Koech: Design and Fabrication of an automated Discharge Collection Unit of the Synthetic Hydro Experimental Machine.

Final Design

J. J. Mwimali, K.E. Koech: Design and Fabrication of an automated Discharge Collection Unit of the Synthetic Hydro Experimental Machine.

Final Design

J. J. Mwimali, K.E. Koech: Design and Fabrication of an automated Discharge Collection Unit of the Synthetic Hydro Experimental Machine.

Final Design: Electrical

Production Plan

Veek	Tasks/Activities Main activity Acquistion of materials		Materials Required	Special Equipment	Simultaneous Activity	Status
1]						
		a) Ordering.	Poly-Actic Acid(PLA)		Design for production	
		b) Scraps	Stainless Steel sheet			Done
2 1	Main activity	3D Printing(Discharge Flow Control)				
		a) Straps	PLA	3D printer	Circuit Assembly	Done
		b) MG996R Servo motor holder	PLA		GUI Development	
		c) Mounting rods	PLA			
		d) Interface	PLA			
		e) Nuts	PLA			
3 1	Main activity	3D Printing(Discharge Diversion)				Done
		a) LA-T8 Holder	PLA	3D printer	Circuit Assembly	
		b) Diversion support	PLA		GUI Development	
		c) Straps	PLA			
		d) Nuts	PLA			
		e) Flap holder	PLA			
		f) Flap	PVC			
		+ f · •				

Production Plan

Week	Tasks/A	ctivities	Material	Special Equipment	Simultaneo	ous Activity Status
5	Main activ	Mechanic	al assembly	on site	Firmware de	evelopment Done
		a) Flow co	ontrol			
		b) Flow d	iversion			
		c) Dischar	rge handling	g		
6	Main activ	Electrical.	Assembly			Done
		a) Circuit	developme	ent		
		b) Circuit	Assembly			
7	Main activ	Final Asse	embly and	calibration	Testing	Ongoing
		a) Calibra	tion			
		b) Testing				
		c) Etherne	et Support			
8	Main activ	Ethernet S	Support		Troubleshoo	oting Ongoing
		a) Deskto	p GUI			
		b) Etherne	et - Black_	f407ve comm.		

Task Accomplished

J. J. Mwimali, K.E. Koech: Design and Fabrication of an automated Discharge Collection Unit of the Synthetic Hydro Experimental Machine.

Tasks Accomplished

J. J. Mwimali, K.E. Koech: Design and Fabrication of an automated Discharge Collection Unit of the Synthetic Hydro Experimental Machine.

Task Accomplished

Task Accomplished

Project Firmware Source code.

https://github.com/EricoDeMecha/FYP18-03-Software

Budget

Item No	Item	Description	Unit Cost	Qty	Estimated Cost	True cost
1	Servo Motor	MG996R(4.8Kg/cm)	800	1	800	800
2	Linear Actuator	LA-T8 Linear Actuator	3500	1	3500	3500
3	Load cells	50 Kg Load cells	150	4	600	600
4	Load cell Amplifier	HX711	100	1	100	100
5	Temperature Sensor	DS18B20 Immersible	300	1	300	300
6	Solenoid valve	3/4" Plastic	900	1	900	X
7	MCU	STM32F407VET6	4400	1	4400	4400
8	LCD	320x240 Touch LCD	1200	1	1200	1200
9	Power MOSFET	IRF520 N-ch	550	3	1650	X
10	Voltage Regulator	XL/1015 DC-DC adjustable buck module	400	3	1200	800
11	Transformer	AC 220V TO DC 12V 5A Transformer Power Supply	1100	1	1100	1100
12	Fabrication Cost	3D printing & Others	10000	1	10000	6000
Total					22600	18800

J. J. Mwimali, K.E. Koech: Design and Fabrication of an automated Discharge Collection Unit of the Synthetic Hydro Experimental Machine.

