

BetterCrypto·org - Applied Crypto Hardening

Tobias Dussa • 60. DFN-Betriebstagung

Einleitung

Motivation

The NSA
The only part of government that actually listens.

Mit anderen Worten

- Sich nicht ohne Not unter Wert verkaufen,
- Angreifern das Leben so schwer wie (sinnvoll) möglich zu machen,
- auch an nicht ganz so gut ausgestattete Angreifer denken!

TL;DL – Eckpunkte auf einen Blick

Webseite des Projekts:

https://www.bettercrypto.org

Aktueller Draft des Dokuments:

https://bettercrypto.org/static/
applied-crypto-hardening.pdf

- Twitter/App.net: @bettercrypto
- Git-Repo:

https://git.bettercrypto.org

oder bei GitHub:

https://github.com/BetterCrypto/

Mailingliste/-Archiv:

https://lists.cert.at/cgi-bin/mailman/listinfo/ach

Wer ist BetterCrypto.org/ACH?

- Offene Gruppe von Beitragenden.
- Kein per se gewollter Schwerpunkt; aus »historischen« Gründen derzeit mit Masse europäisch.
- Initial Mitwirkende: Wolfgang Breyha (Uni Wien), David Durveaux (CERT.be), Tobias Dussa (KIT-CERT), L. Aaron Kaplan (CERT.at), Christian Mock (coretec), Daniel Kovacic (A-Trust), Manuel Koschuch (FH Campus Wien), Adi Kriegisch (VRVis), Ramin Sabet (A-Trust), Aaron Zauner (azet.org), Pepi Zawodsky (maclemon.at).

Ziele des Projekts

- Ein bisschen zur Sicherheit im Internet beitragen.
- Kryptographie- und Sicherheitseinstellungen in den am weitesten verbreitenen Diensten prüfen und verifizieren:
 - Webserver (Apache, Nginx, Lighttpd, ...)
 - IMAP-/POP-Server (Dovecot, Cyrus, ...)
 - OpenSSL allgemein
 - was sonst noch sinnvoll erscheint
- Für möglichst viele Dienste sinnvolle Konfigurationsschnipsel bereitstellen, die Administratoren einfach kopieren können.
- Die erarbeiteten Konfigurationsvorschläge von möglichst vielen unabhängig voneinander »begutachten« lassen.

Methodologie

Vorgehen

- Sämtliche Diskussion ist offen.
 - Grundsätzliche Diskussion findet auf der Mailingliste statt; kann frei subskribiert werden, die Archive sind öffentlich.
 - Von Zeit zu Zeit finden Face-to-face-Besprechungen statt, an denen auch per Telekonferenz teilgenommen werden kann.
- Die Ergebnisse der Diskussionen werden verteilt in ein Whitepaper eingepflegt.
 - Das Whitepaper ist von Stunde Null an via Git in Form seiner LaTeX-Sourcen (sowie einer Reihe anderer Ressourcen) öffentlich verfügbar.
 - Insbesondere sind damit sämtliche Änderungen transparent und leicht nachvollziehbar.
- Das Projekt zielt darauf ab, Empfehlungen und Best Practices nicht auf Steintafeln vom Berg Sinai zu tragen, sondern nachvollziehbar und begründet zu liefern.

Review

- Je häufiger das Whitepaper beziehungsweise die Empfehlungen reviewed werden, desto besser.
- Das Projekt ist daher auf Mitarbeit insbesondere in Form von Durchsichten angewiesen.

Diskussionen und Empfehlungen

- Das Whitepaper enthält derzeit Diskussionen beziehungsweise Empfehlungen zu den folgenden Bereichen:
 - allgemeine kryptographische Aspekte,
 - zu verwendende/zu meidende Chiffren,
 - Schlüssellängen,
 - (Pseudo-)Zufallszahlgeneratoren.
- Grundsätzlich sind im Zweifel zwei Varianten von Empfehlungen enthalten:
 - Variante A: Stärkere Verfahren, dafür aber weniger unterstützte Clientsysteme.
 - Variante B: Etwas schwächere Verfahren, dafür aber umfassenderer Clientsupport.

11

Kryptographie

Elliptic Curve Cryptography

- Aktuell andauernde Debatte.
- Vertrauenswürdigkeit ist unklar.
- Das grundsätzliche Verfahren (die Mathematik) scheint sicher zu sein,
- ABER der NIST-Standard schreibt ohne weitere Begründung als Hash-Seed
 - c49d3608 86e70493 6a6678e1 139d26b7 819f7e90 vor. Begründung: Optimierung von Rechenzeit.
- Es gibt ernstzunehmende Hinweise darauf, dass dieser Seed nicht zufällig vom Himmel gefallen ist.
- Prinzipiell sind auch andere Hash-Seeds möglich, aber die meisten Implementierungen verwenden den NIST-Standard.

Schlüssellängen I

- Schlüssellängen müssen sinnvoll aufeinander und auf die verwendeten Algorithmen abgestimmt sein.
- RSA mit 4096-Bit-Schlüsseln ist vergebene Liebesmühe, wenn mit DES und 56-Bit-Schlüsseln kombiniert.
- Schlüssellängen können schön auf dieser Webseite verglichen werden: http://www.keylength.com
- Aktuell sinnvoll erscheinend:
 - RSA: ≥ 3248 Bits (ECRYPT II)
 - ECC: ≥ 256 Bits
 - AES: ≥ 128 Bits
 - SHA: SHA2+ (SHA256 und besser)

Schlüssellängen II

Perfect Forward Secrecy I

- Ohne PFS kann bei Brechen eines Schlüssels sämtlicher Chiffretext auch früherer und zukünftiger Sessions mitgelesen werden.
- Schlecht, weil ein Angreifer (bekanntermaßen mindestens einschlägige TLAs) allen Verkehr mitschneiden.
- Nur eine Frage der Zeit, bis ein Schlüssel gebrochen wird:

Perfect Forward Secrecy II

- PFS wird erreicht beispielsweise mit DHE (Diffie-Hellman Ephemeral).
- Damit wird pro Schlüsselaustausch ein neuer Schlüssel gewürfelt.

Pseudozufallszahlengeneratoren

Allgemeines

PRNGs sind ein kritischer Punkt und werden nicht selten schlecht umgesetzt:

	Our TL	S Scan	Our SS	H Scans	
Number of live hosts	12,828,613	(100.00%)	10,216,363	(100.00%)	
using repeated keys	7,770,232	(60.50%)	6,642,222	(65.00%)	
using vulnerable repeated keys	714,243	(5.57%)	981,166	(9.60%)	
using default certificates or default keys	670,391	(5.23%)			
using low-entropy repeated keys	43,852	(0.34%)			
using RSA keys we could factor	64,081	(0.50%)	2,459	(0.03%)	
using DSA keys we could compromise			105,728	(1.03%)	
using Debian weak keys	4,147	(0.03%)	53,141	(0.52%)	
using 512-bit RSA keys	123,038	(0.96%)	8,459	(0.08%)	
identified as a vulnerable device model	985,031	(7.68%)	1,070,522	(10.48%)	
model using low-entropy repeated keys	314,640	(2.45%)			

- Hardware-RNG (Intel) vertrauenswürdig? Im Zweifel
 Systementropie »addieren« (kann nur besser werden).
- Außerdem klassisches Problem: Woher Entropie nehmen?
 - Embedded Devices direkt nach dem Systemstart?
 - Virtuelle Maschinen?

Cipher Suites

Grundsätzliches

- SSL 2.0 ist eine GANZ schlechte Idee.
- SSL 3.0 ist auch keine besonders gute Idee.
- TLS 1.0 und besser ist akzeptabel.
- TLS Compression ist angreifbar und sollte ausgeschaltet werden.
- HTTP Strict Transport Security (HSTS) sollte verwendet werden.
- Erinnerung: Das Whitepaper unterscheidet starke (A) und schwache (B) Varianten.
- Das Zusammenstellen von Cipher Suites ist keine triviale Aufgabe, sondern ein multidimensionales Optimierungsproblem mit (mindestens) den folgenden Parametern:
 - Kompatibilität von Clients und Servern,
 - bekannte mehr oder weniger kritische Schwachstellen von Algorithmen,
 - Verfügbarkeit von (hinreichend neuen) SSL-Bibliotheken (ist Selberbauen von Serversoftware eine akzeptable Alternative?).

Beispiel für Variante A

EECDH+aRSA+AES256:EDH+aRSA+AES256:!SSLv3

ID	OpenSSL Name	Version	$\mathbf{Key}\mathbf{Ex}$	Auth	Cipher	Hash
0xC030	ECDHE-RSA-AES256-GCM-SHA384	TLSv1.2	ECDH	RSA	AESGCM(256)	AEAD
0xC028	ECDHE-RSA-AES256-SHA384	TLSv1.2	ECDH	RSA	AES(256)	SHA384
0x009F	DHE-RSA-AES256-GCM-SHA384	TLSv1.2	DH	RSA	AESGCM(256)	AEAD
0x006B	DHE-RSA-AES256-SHA256	TLSv1.2	DH	RSA	AES(256)	SHA256

Kompatibilität: Nur Clients, die TLS 1.2 unterstützen, können mit dieser Cipher Suite umgehen. Aktuell sind das etwa Chrome 30, Windows 7 und Windows 8.1, Opera 17, OpenSSL 1.0.1e, Safari 6/iOS 6.0.1, Safari 7/OS X 10.9.

Beispiel für Variante B

'EECDH+aRSA+AESGCM:EECDH+aRSA+SHA384:EECDH+aRSA+SHA256:EDH+CAMELLIA256:EECDH:
EDH+aRSA:+SSLv3:|aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP:!PSK:!SRP:!DSS:!RC4:!SEED
:!AES128:!CAMELLIA128:!ECDSA:AES256-SHA'

ID	OpenSSL Name	Version	KeyEx	Auth	Cipher	Hash
0xC030	ECDHE-RSA-AES256-GCM-SHA384	TLSv1.2	ECDH	RSA	AESGCM(256)	AEAD
0xC028	ECDHE-RSA-AES256-SHA384	TLSv1.2	ECDH	RSA	AES(256)	SHA384
0x009F	DHE-RSA-AES256-GCM-SHA384	TLSv1.2	DH	RSA	AESGCM(256)	AEAD
0x006B	DHE-RSA-AES256-SHA256	TLSv1.2	DH	RSA	AES(256)	SHA256
8800x0	DHE-RSA-CAMELLIA256-SHA	SSLv3	DH	RSA	Camellia(256)	SHA1
0xC014	ECDHE-RSA-AES256-SHA	SSLv3	ECDH	RSA	AES(256)	SHA1
0x0039	DHE-RSA-AES256-SHA	SSLv3	DH	RSA	AES(256)	SHA1
0x0035	AES256-SHA	SSLv3	RSA	RSA	AES(256)	SHA1

Viel breitere Kompatibilitätsbasis, enthält aber schwächere Algorithmen.

Beispiel für Variante B – Kompatibilität

Bing Oct 2013	TLS 1.0	TLS DHE RSA WITH AES 256 CBC SHA (0x39) FS	25
Chrome 31 / Win 7	TLS 1.0	TLS ECDHE RSA WITH AES 256 CBC SHA (0xc014) FS	21
Firefox 10.0.12 ESR / Win 7	TLS 1.0	TLS DHE RSA WITH CAMELLIA 256 CBC SHA (0x88) FS	25
Firefox 17.0.7 ESR / Win 7	TLS 1.0	TLS DHE RSA WITH CAMELLIA 256 CBC SHA (0x88) FS	25
Firefox 21 / Fedora 19	TLS 1.0	TLS DHE RSA WITH CAMELLIA 256 CBC SHA (0x88) FS	21
	TLS 1.0	TLS DHE RSA WITH CAMELLIA 256 CBC SHA (0x88) FS	25
Firefox 24 / Win 7	TLS 1.0	TLS ECOHE RSA WITH AES 256 CBC SHA (0xe014) FS	25
Googlebot Oct 2013	TLS 1.0	TES_ECOME_MSA_WITH_AES_256_CBC_SHA (0xc014) FS	-
IE 6 / XP No FS 1 No SNI 2			Fa
IE 7 / Vista	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	2
IE 8 / XP No FS 1 No SNI 2			Fa
IE 8-10 / Win 7	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	25
IE 11 / Win 7	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA(0xc014) FS	25
IE.11 / Win 8.1	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	2
Java 6u45 No SNI 2			Fa
Java 7u25			Fa
OpenSSL 0.9.8y	TLS 1.0	TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x39) FS	2
OpenSSL 1.0.1e	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030) FS	2
Opera 17 / Win 7	TLS 1.2	TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 (0x6b) FS	25
Safari 5.1.9 / OS X 10.6.8	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	2
Safari 6 / IOS 6.0.1	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028) FS	25
Safari 6.0.4 / OS X 10.8.4	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA(0xc014) FS	2
Safari 7 / OS X 10.9	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028) FS	25
Tor 17.0.9 / Win 7	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	25
Yahoo Slurp Oct 2013	TLS 1.0	TLS DHE RSA WITH CAMELLIA 256 CBC SHA (0x88) FS	25

Konfigurationsschnipsel

Bereits verfügbar

BetterCrypto hat bereits fertige Konfigurationsschnipsel für die folgenden Softwarepakete:

- Webserver: Apache, nginx, lighttpd, MS IIS
- Mailserver: Dovecot, cyrus, Postfix, Exim
- DB-Systeme: MySQL, Oracle, PostgreSQL, DB2
- VPN-Lösungen: OpenVPN, IPSec, Checkpoint
- Proxy-Server: Squid, Pound
- IM-Server: Jabber, IRC
- GnuPG
- SSH

Noch nicht vorhanden

Auf der Wunschliste stehen insbesondere noch Schnipsel für:

- Exchange
- SIP
- RDP

Außerdem auf der Liste:

- Schnipsel nicht nur im PDF, sondern auch als HTML verfügbar machen – leichter zu kopieren!
- Ein webbasierter Konfigurator zum individuellen Erstellen von Konfigurationsschnipseln.

Beispiel: Konfigurationsschnipsel für Apache

Cipher Suites konfigurieren:

```
SSLProtocol All -SSLv2 -SSLv3
SSLHonorCipherOrder On
SSLCompression off
# Add six earth month HSTS header for all users...
Header add Strict-Transport-Security "max-age=15768000"
# If you want to protect all subdomains, use the following header
# ALL subdomains HAVE TO support https if you use this!
# Strict-Transport-Security: max-age=15768000 ; includeSubDomains

SSLCipherSuite 'EECDH+aRSA+AESGCM:EECDH+aRSA+SHA384:EECDH+aRSA+SHA256:EDH
+CAMELLIA256:EECDH:EDH+aRSA:+SSLv3:!aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP
:!PSK:!SRP:!DSS:!RC4:!SEED:!AES128:!CAMELLIA128:!ECDSA:AES256-SHA'
```

Redirect von HTTP auf HTTPS konfigurieren:

Testen und Verifizieren

Motivation

»... aber unsere Einstellungen sind doch super! Die haben wir von BetterCrypto.org kopiert!«
Ja. aber:

- Auch bei Copy-and-Paste passieren Fehler.
- Konfigurationen müssen auch an der richtigen Stelle stehen.
- Gelegentlich sind Konfigurationsmöglichkeiten auch sehr unklar dokumentiert.

Darüber hinaus:

- Ist es möglicherweise eine gute Idee, den Ist-Zustand der eigenen Infrastruktur genauer kennenzulernen, um gezielte Verbesserungen durchzuführen.
- Ist es immer gut zu verifizieren, dass die Konfiguration, die man glaubt ausgerollt zu haben, auch tatsächlich gezogen wird.

Beispiel

Tools

- openssl s_client bzw. GNUTLS-CLI
- ssllabs.com
- xmpp.net
- sslscan
- SSLyze

openssl s_client

openssl s_client -connect git.bettercrypto.org:443

```
New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Server public key is 4096 bit
Compression: NONE
Expansion: NONE
    Protocol : TLSv1.2
    Master-Key: 8F06DE9669BD6BF9628A38DF4F92C2CEBA6B7EA91F465164440CF31F7E8F55F2A67E7320B388D6E7AC4BC141C2FF3F68
   Kev-Arg : None
    PSK identity: None
    PSK identity hint: None
    SRP username: None
    TLS session ticket lifetime hint: 300 (seconds)
    TLS session ticket:
    0000 - fe 5b 93 84 a8 c6 ab 4a-74 b8 59 81 dc 3e 52 40
    0010 - 0e dd f6 59 b4 a1 d2 54-65 df 9a 1b c9 fb 0d 2e
   0020 - 64 9c 65 cf 1c 0d d9 19-57 a6 cd 50 a5 d9 16 a4
    0030 - 17 b6 e8 38 ac e5 76 15-a4 9d d5 62 ee 51 55 09
    0040 - 52 36 58 84 04 0f 93 94-7b a9 dc e3 6f 8e 2f 7a
    0050 - 9f bf 3d 4f a1 e1 bb 83-21 0f 7d f2 bd 02 48 a6
    0060 - 5a 96 82 fd dc a6 5a 55-77 b3 9f fb 60 0d 86 66
    0070 - f1 68 42 e2 90 93 8b f6-25 aa 85 cf 08 07 c6 76
    0080 - 06 62 37 32 09 4f ac 23-28 9c db b9 29 c0 23 1b
    0090 - e4 c3 d2 a3 a4 b4 87 b5-0e 5c 68 16 73 07 96 90
    Timeout : 300 (sec)
```

sslscan

Command-line-Tool zum Testen von Cipher-Parametern von Webservern.

```
Festing SSL server git.bettercrypto.org on port 443
                                DES-CBC3-MD5
                      168 bits
                                IDEA-CBC-MD5
                      128 bits
   Failed
                      128 bits
                                RC2-CBC-MD5
                     128 bits
                                RC4-MD5
              SSL<sub>v2</sub>
                     56 bits
                                DES-CBC-MD5
   Failed
              SSL<sub>v2</sub>
                     40 bits
                                EXP-RC2-CBC-MD5
   Failed
                     40 bits
                                EXP-RC4-MD5
                     256 bits
                                ECDHE-RSA-AES256-GCM-SHA384
                                ECDHE-ECDSA-AES256-GCM-SHA384
              SSLv3
                     256 bits
              SSL v3
                     256 hits
                                ECDHE-RSA-AES256-SHA384
   Failed
              SSLv3
                     256 bits
                     256 bits
                     256 bits
```

ssllabs.com

Online-Variante von sslscan, auch zum Testen des eigenen Browsers

geeignet.

ssllabs.com – etwas mehr Detail

ssllabs.com - ... und mal ein schlechtes Beispiel

Authentication

Wrap-Up

Ausblick

- Erster Public Draft ist soweit fertig.
- Präsentationen unter anderem auf dem 30C3 und dem TF-CSIRT-Treffen in Zürich.
- Verbindung mit der IETF aufgenommen.
- Debian-Entwicklerteam hat Interesse bekundet, die Empfehlungen grundsätzlich als Standard zu übernehmen.
- HTML-Variante des Whitepapers ist noch zu erarbeiten.
- und natürlich immer Aufräum- und Housekeeping-Arbeiten.

Mitwirkung

- Ja, bitte! Wir brauchen Kryptographen und Admins, die das Whitepaper reviewen.
- Der LaTeX-Source des Whitepapers ist komplett frei als Git-Repoverfügbar.
- Die Mailingliste kann ebenfalls frei subskribiert werden.
- Neue Konfigurationsschnipsel bitte zunächst auf Variante B basieren und als Diffs verfügbar machen.

C'est Ça

Fragen?

Vielen Dank für die Aufmerksamkeit!

tobias.dussa@kit.edu; Telefon 0721-608-42479

PGP-Fingerprint:

0D29 63BE DB07 1264 DD1C

EFE0 34E7 F72A 2366 36AE

