Control Systems

G V V Sharma*

CONTENTS

Signal Flow Graph

1 Signal Flow Graph

2 Gain of Feedback Circuits

•	Signal 110 W Graph	1
2	Gain of Feedback Circuits 2.1 Voltage Amplifiers	2.1 Voltage Amplifiers 1 2.1.1. We are given with
3	Bode Plot	shown in 2.1.1.W with $R_1 + R_2 >> 1$
4	Second order System	4
5	Routh Hurwitz Criterion	4
6	State-Space Model	4
7	Nyquist Plot	4
8	Compensators	4
9	Gain Margin	4
10	Phase Margin	4
11	Oscillator	4
12	Root Locus	4
13	Polar Plot	4
14	PID Controller	$V_{S} \uparrow $
16	seturant. This manual is an introduction to acc	ntrol

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/codes

2.1.2. part(a): We have to find the expressions for G(open loop gain) , H(the feedback factor) and hence the amount of feedback.

^{1.1.} We are given with a feedback voltage amplifier shown in 2.1.1. We can neglect r_o and given with $R_1 + R_2 >> R_D$. V_i

Fig. 2.1.1

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Solution: For this , first we have to draw the Small-Signal Model for the above Circuit, we ground all constant voltage sources and open all constant current sources. All Small-Signal paramters are obtained from DC-Analysis of the circuit.In Small-Signal Analysis a N-MOSFET is modelled as a Current Source with value of current equal to $g_m v_{gs}$ flowing from Drain to Source. Whereas a P-MOSFET is modelled as a Current Source with value of current equal to $g_m v_{sg}$ flowing from Source to Drain.

$$H = \frac{V_f}{V_o}$$
 (2.1.5.1)

$$V_f = \frac{R_1}{R_1 + R_2} V_o (2.1.5.2)$$

$$H = \frac{R_1}{R_1 + R_2} \tag{2.1.5.3}$$

Amount of feedback is defined as : 1 + GH

$$1 + GH = 1 + \frac{g_m R_D R_1}{R_1 + R_2}$$
 (2.1.5.4)

Fig. 2.1.2: Small Signal Model

Fig. 2.1.5: CG amplifier

2.1.3. For finding open loop gain (G) and the feedback factor (H).

Solution: For finding the open loop gain we have to remove R_2 and R_1 and the gate should be grounded.

2.1.4. Finding the open loop gain(G)

Solution:

$$V_o = -g_m V_{gs} * R_D (2.1.4.1)$$

$$V_{gs} = -V_S {(2.1.4.2)}$$

$$G = \frac{V_o}{V_s}$$
 (2.1.4.3)

$$G = g_m R_D \tag{2.1.4.4}$$

2.1.5. Finding the Expression for the feedback factor *H*.

Solution:

2.1.6. Part(b): We have to eliminate the feedback by removing R_1 and R_2 and connecting the gate of Q to a constant DC voltage (signal ground). We have to find the expression of the input resistance R_i and the output resistance R_o of the open loop amplifier.

Solution:

When the R_1 and R_2 and gate of Q is connected to a constant DC voltage (signal ground) it becomes a CG(Common gate amplifier) without feedback. We can directly see from the 2.1.5 the expression of input resistance R_i and output resistance R_o .

For finding input resistance, output constant voltages are grounded and hence the only current flowing is $g_m V_{gs}$. Hence R_i is:

$$I_{in} = -g_m V_{gs} (2.1.6.1)$$

$$V_{in} = V_S$$
 (2.1.6.2)

$$V_S = -V_{gs} (2.1.6.3)$$

$$R_i = \frac{V_{in}}{I_{in}} {(2.1.6.4)}$$

$$R_i = \frac{1}{g_m} \tag{2.1.6.5}$$

Similarly, for finding output R_o , V_{in} that is V_S will be zero and hence $g_m V_{gs}$ will be zero. Hence only R_D will be left which is the output resistance.

$$R_o = R_D$$
 (2.1.6.6)

2.1.7. Part(c): Using standard circuit analysis that is without using feedback approach we have to find the input resistance R_{if} and output resistance R_{of} and how they relate to R_i and R_o , which we find earlier.

Solution:

We will find them one by one.

Fig. 2.1.7

2.1.8. finding expression for R_{if}

Solution:

To obtain R_{if} consider the figure 2.1.7: We gave test input voltage V_x and current I_x to find the input resistance from the input side to find R_i .

$$R_{if} = \frac{V_x}{I_x}$$
 (2.1.8.1)

$$I_x = -g_m V_{gs} (2.1.8.2)$$

$$V_o = I_x R_D (2.1.8.3)$$

$$V_f = \frac{V_o R_1}{R_1 + R_2} = \frac{I_x R_D R_1}{R_1 + R_2}$$
 (2.1.8.4)

$$V_x = -V_{gs} + V_f (2.1.8.5)$$

$$V_x = \frac{I_x}{g_{yy}} + \frac{I_x R_D R_1}{R_1 + R_2}$$
 (2.1.8.6)

$$\frac{V_x}{I_x} = \frac{1}{g_m} + \frac{R_D R_1}{R_1 + R_2} \tag{2.1.8.7}$$

$$rearranging:$$
 (2.1.8.8)

$$R_{if} = \frac{1}{g_m} (1 + \frac{g_m R_D R_1}{R_1 + R_2})$$
 (2.1.8.9)

$$R_{if} = R_i(1 + GH)$$
 (2.1.8.10)

The input impedance is increased by a factor of (1 + GH). R_{if} is related to R_i by :

$$R_{if} = R_i(1 + GH) (2.1.8.11)$$

Fig. 2.1.8

2.1.9. finding expression for R_{of}

Solution:

To obtain R_{of} consider the figure 2.1.8 : We gave test input voltage V_x and current

 I_x from the output side to find the output resistance and made the input constant voltages as zero.

$$R_{of} = \frac{V_x}{I_x} \qquad (2.1.9.1)$$

$$I_x = g_m V_{gs} (\frac{V_x}{R_1 + R_2}) + (\frac{V_x}{R_D}) \qquad (2.1.9.2)$$

$$V_{gs} = \frac{R_1 V_x}{R_1 + R_2} \qquad (2.1.9.3)$$

$$I_x = \frac{g_m R_1 V_x}{R_1 + R_2} + \frac{V_x}{R_1 + R_2} + (\frac{V_x}{R_D})$$
 (2.1.9.4)

$$I_x = V_x(\frac{g_m R_1 + 1}{R_1 + R_2} + \frac{1}{R_D})$$
 (2.1.9.5)

$$R_{of} = \frac{V_x}{I_x}$$
 (2.1.9.6)

$$R_{of} = \frac{1}{\frac{g_m R_1 + 1}{R_1 + R_2} + \frac{1}{R_D}}$$
 (2.1.9.7)

rearranging and multiply both the numerator and denominator by R_D

$$R_{of} = \frac{R_D}{\frac{g_m R_1 R_D}{R_1 + R_2} + 1 + \frac{R_D}{R_1 + R_2}}$$
(2.1.9.8)

since
$$R_1 + R_2 \gg R_D \implies \frac{R_D}{R_1 + R_2} = 0$$

$$R_{of} = \frac{R_D}{1 + \frac{g_m R_1 R_D}{R_1 + R_2}}$$
 (2.1.9.9)

$$R_{of} = \frac{R_o}{1 + GH} \tag{2.1.9.10}$$

The output impedance is decreased by a factor of (1 + GH). R_{of} is related to R_o by :

$$R_{of} = \frac{R_o}{1 + GH} \tag{2.1.9.11}$$

The table showing all the expressions we find out in this problem :

G	$g_m R_D$
Н	R_1
11	$\overline{R_1 + R_2}$
_	1
R_i	_
	g_m
R_o	R_D
D	$1 g_m R_D R_1$
R_{if}	$(\frac{1}{g_m})(1 + \frac{g_m R_D R_1}{R_1 + R_2})$
	R_D
R_{of}	
	$1 + \frac{g_m R_D R_1}{R_1 + R_2}$
	$1+\frac{1}{R_1+R_2}$
	$1 \qquad N_1 + N_2$

TABLE 2.1.9

- 3 Bode Plot
- 4 SECOND ORDER SYSTEM
- 5 ROUTH HURWITZ CRITERION
 - 6 STATE-SPACE MODEL
 - 7 Nyquist Plot
 - 8 Compensators
 - 9 Gain Margin
 - 10 Phase Margin
 - 11 OSCILLATOR
 - 12 Root Locus
 - 13 Polar Plot
 - 14 PID Controller