# Behavioral Approach to System Theory

Ivan Markovsky

### About the course

#### lectures

- give enough background information for the exercises
- extras: optional presentations on special topics

#### exercises

- the core part of the course
- extras: open-ended explorations

### mini-projects

- for those who need evaluation
- and for those who want to learn more

### **Outline**

Introduction: the need

Basics: notation and conventions

Data-driven interpolation and approximation

### **Outline**

Introduction: the need

Basics: notation and conventions

Data-driven interpolation and approximation

# The classical approach views system as input-output map



the system is a signal processor

accepts input and produces output signal

intuition: the input causes the output

# The input-output map view of the system is deficient: it ignores the initial condition

example: mass driven by external force

- ▶ input ↔ force
- ▶ output ↔ position

input-output maps assume zero initial condition

how to account for nonzero initial condition?

# Taking into account the initial condition leads to the state-space approach



paradigm shift from "classical" to "modern"

classical: scalar transfer function

modern: multivariable state-space

# The modern state-space paradigm brought new theory, problems, and methods

### state-space theory

- manifests the "finite memory" structure of the system
- brought the concepts of controllability and observability
- deals seamlessly with time-varying and MIMO systems

### new problems / solution methods

- linear quadratic optimal control (LQ control)
- optimal state estimation (the Kalman filter)
- balanced model reduction

### amenable for numerical computations

# A case in point: optimal filtering (signal from noise separation)

### Wiener filter (1942)

- transfer functions approach
- assumes stationarity
- no practical real-time method



### Kalman filter (1960)

- state-space approach
- non-stationary processes
- recursive real-time solution



# There are other awkward things with the input/output thinking

modeling from first principles leads to relations

the input/output partitioning is not unique

interconnection of systems is variables sharing

# First principles modeling leads to relations

natural phenomena rarely operate as signal processors the variables of interest satisfy relations, not functions example: planetary orbits





# More basic example: Ohmic resistor voltage and current satisfy relation

to-be-modeled variables: voltage V and current I

#### Ohm's law:

- $\triangleright$  V = RI, with R the resistance
- ▶ I = CV, with C := 1/R the conductance

Q: how to fit the limit cases

- ▶ open circuit  $R = \infty$ , C = 0
- ▶ short circuit R = 0,  $C = \infty$

neatly in a unified framework?

A: *V*, *I* satisfy (linear) relation

# The behavioral approach was put forward by Jan C. Willems in the 1980's

3-part, 70-page, 1986-1987 Automatica paper:

Part I. Finite dimensional linear time invariant systems Part II. Exact modelling

Part III. Approximate modelling

From Time Series to Linear System—
Part I. Finite Dimensional Linear Time Invariant
Systems\*

#### JAN C. WILLEMS†

Dynamical systems are defined in terms of their behaviour, and input/output systems appear as particular representations. Finite dimensional linear time invariant systems are characterized by the fact that their behaviour is a linear shift invariant complete (equivalently closed) subspace of  $(\mathbb{R}^q)^2$  or  $(\mathbb{R}^q)^2+$ .



Jan C. Willems (1939-2013)

## Critical revision of the input/output thinking

simple idea: the system is set of trajectories

- variables not partitioned into inputs and outputs
- the system is separated from its representations

the input/output approach is a special case

relevant for the emerging data-driven paradigm

### The behavior is all that matters

"The operations allowed to bring model equations in a more convenient form are exactly those that do not change the behavior. Dynamic modeling and system identification aim at coming up with a specification of the behavior. Control comes down to restricting the behavior."

J. C. Willems, "The behavioral approach to open and interconnected systems: Modeling by tearing, zooming, and linking," Control Systems Magazine, vol. 27, pp. 46–99, 2007.

## Analogy with solution of systems of equations

Q: what operations are allowed?

A: the ones that don't change the solution set (for linear systems, the "elementary operations")

the solution set is all that matters

# Classical definition of linear system $S: u \mapsto y$ is linear $\iff S$ is linear function

for all u, v and  $\alpha, \beta \in \mathbb{R}$ ,

$$S: \alpha u + \beta v \mapsto \alpha S(u) + \beta S(v)$$



### The classical definition is deficient

## (silently) assumes

- zero initial condition
- controllability

doesn't apply to autonomous systems

relaxing the assumptions requires state-space

# Behavioral definition of linear system $\mathscr{B}$ is linear $\iff \mathscr{B}$ is subspace

for all 
$$w,v\in\mathscr{B}$$
 and  $lpha,eta\in\mathbb{R}$   $lpha w+eta v\in\mathscr{B}$ 

#### fixes the issues with

- nonzero initial condition
- autonomous systems
- controllable systems



## Separating problems from solution methods

different representations  $\rightsquigarrow$  different methods

- ▶ with different properties (efficiency, robustness, ...)
- their common feature is that they solve the same problem

clarifies links among methods

leads to new methods

## Summary: behavioral approach

## detach the system from its representations

- define properties and problems in terms of the behavior
- lead to new, more general, definitions and problems
- avoid inconsistencies of the classical approach

## separate problem from solution methods

- different representations lead to different methods
- show links among different methods
- lead to new solutions

## naturally suited for the "data-driven paradigm"

# Paradigms shifts

| 1940–1960 | classical   | SISO transfer function  |
|-----------|-------------|-------------------------|
| 1960–1980 | modern      | MIMO state-space        |
| 1980–2000 | behavioral  | the system as a set     |
| 2000-now  | data-driven | using directly the data |

### **Outline**

Introduction: the need

Basics: notation and conventions

Data-driven interpolation and approximation

# We will use the notation $(\mathbb{R}^q)^{\mathscr{T}}$ for the space of signals $w: \mathscr{T} \to \mathbb{R}^q$

- $\mathcal{T}$  time axis
  - $ightharpoonup \mathbb{R}_+$  or [0, T] continuous-time
  - $ightharpoonup \mathbb{Z}$  or  $\mathbb{N}$  or  $\{1, \dots, T\}$  discrete-time

 $(\mathbb{R}^q)^{\mathscr{T}}$  — real-valued q-variate signals

example:  $w \in (\mathbb{R}^2)^{\mathbb{N}}$  means

$$w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \left( \begin{bmatrix} w_1(1) \\ w_2(1) \end{bmatrix}, \dots, \begin{bmatrix} w_1(t) \\ w_2(t) \end{bmatrix}, \dots \right)$$

# It's a mistake to say "the signal w(t)"

let 
$$w \in (\mathbb{R}^q)^{\mathbb{N}}$$
 and  $t \in \mathbb{N}$   
then,  $w(t) \in \mathbb{R}^q$  is the *value* of  $w$  at time  $t$   
 $w(t)$  is not signal (in  $(\mathbb{R}^q)^{\mathbb{N}}$ ), but vector (in  $\mathbb{R}^q$ )

 $w(\cdot)$  — specifies explicitly the time dependence of w

## Use short, unambiguous, consistent notation

"
$$w = v$$
" means

"
$$w(t) = v(t)$$
, for all  $t \in \mathcal{T}$ "

shift operator  $\sigma$ 

$$(\sigma w)(t) := w(t+1)$$
, for all  $t \in \mathscr{T}$ 

## For example

### ℓ-th order vector difference equation

$$R_0w+R_1\sigma w+\cdots+R_\ell\sigma^\ell w=0$$
 
$$\updownarrow$$
  $R_0w(t)+R_1w(t+1)+\cdots+R_\ell w(t+\ell)=0, \text{ for all } t\in\mathbb{N}$ 

### first order state equation

$$\sigma x = Ax + Bu$$
 
$$\updownarrow$$
 
$$x(t+1) = Ax(t) + Bu(t), \text{ for all } t \in \mathbb{N}$$

## Compact notation for difference equation

$$R_0w + R_1\sigma w + \cdots + R_\ell\sigma^\ell w = 0$$

$$\updownarrow$$

$$R(\sigma)w = 0$$

polynomial operator

$$R(\sigma) = R_0 + R_1 \sigma + \cdots + R_\ell \sigma^\ell$$

kernel of polynomial operator

$$\ker R(\sigma) := \{ w \mid R(\sigma)w = 0 \}$$

# We identify a dynamical system with its behavior, *i.e.*, the set of trajectories

real-valued system  $\mathscr{B}$  with q variables and time-axis  $\mathscr{T}$  is a subset of  $(\mathbb{R}^q)^{\mathscr{T}}$ 

in particular, we use set theoretic notation

 $w \in \mathcal{B} \iff w \text{ is a trajectory of } \mathcal{B} \iff \mathcal{B} \text{ is an exact model of } w$ 

## ... and specify $\mathscr{B}$ by representations

representation of the system  $\mathscr{B} \subseteq (\mathbb{R}^q)^{\mathscr{T}}$ 

$$\mathscr{B} = \{ w \in (\mathbb{R}^q)^{\mathscr{T}} \mid \text{"constraints on } w$$
" $\}$ 

### for example

kernel (KER) representation

$$\mathscr{B} = \ker R(\sigma) := \{ w \mid R_0 w + R_1 \sigma w + \dots + R_\ell \sigma^\ell w = 0 \}$$

► input/state/output (I/S/O) representation

$$\mathscr{B} = \left\{ w = \Pi \begin{bmatrix} u \\ y \end{bmatrix} \; \middle| \; \exists \; x \in (\mathbb{R}^n)^{\mathbb{N}}, \; \begin{bmatrix} \sigma x \\ y \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \right\}$$

# Equivalence of representations and transformations among them



## How to check if $w \in \mathcal{B}$ ?

depends on what representation of  $\mathcal{B}$  is used

different repr. leads to different methods

## for example

if \( \mathscr{B} \) is specified by vector difference equation

$$w \in \mathscr{B} \iff R_0 w + R_1 \sigma w + \cdots + R_\ell \sigma^\ell w = 0$$

if \( \mathscr{B} \) is specified by input/state/output representation

$$\mathbf{W} \in \mathscr{B} \iff \exists \mathbf{X} \in (\mathbb{R}^n)^{\mathbb{N}}, \begin{bmatrix} \sigma \mathbf{X} \\ \mathbf{Y} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{U} \end{bmatrix}$$

# Linearity and time-invariance are naturally defined in terms of $\mathcal{B}$

$$\mathscr{B}$$
 is linear system  $\iff \mathscr{B}$  is subspace

$${\mathscr B}$$
 is time-invariant  $\iff \sigma^{\tau}{\mathscr B}:={\mathscr B}$  for all  $\tau$ 

$$\sigma\mathscr{B} = \big\{ \sigma w \mid w \in \mathscr{B} \big\}$$

 $\mathcal{L}^q$  — set of LTI systems with q variables

# The finite-horizon behavior $\mathcal{B}|_L$ is used for both analysis and computations

restriction of w to finite interval [1, L]

$$w|_L := (w(1), \ldots, w(L)) \in (\mathbb{R}^q)^L$$

restriction of  $\mathcal{B}$  to [1, L]

$$\mathscr{B}|_L := \{ w|_L \mid w \in \mathscr{B} \} \subset (\mathbb{R}^q)^L$$

if  $\mathscr{B}$  is linear,  $\mathscr{B}|_L$  is a subspace of  $(\mathbb{R}^q)^L$ 

# $\mathcal{B}|_L$ can be obtained experimentally by collecting "informative" data

collect  $N \ge qL$  random trajectories

$$w_d^1, \ldots, w_d^N \in \mathscr{B}|_L$$

by the linearity of  $\mathcal{B}$ , we have

span 
$$\{w_d^1, \dots, w_d^N\} \subseteq \mathscr{B}|_L$$

with probability one equality holds

# Discrete-time LTI systems over finite horizon can be studied using linear algebra only

$$\underbrace{\begin{bmatrix} w_{\mathsf{d}}^1 & \cdots & w_{\mathsf{d}}^N \end{bmatrix}}_{W} \in \mathbb{R}^{qL \times N}$$
— "trajectory matrix"

 $\widehat{\mathscr{B}}|_L = \operatorname{image} W - \operatorname{"data-driven model"} \operatorname{of} \mathscr{B}|_L$ 

now, we can do explorations using Matlab

## What is the dimension of $\mathcal{B}|_L$ ? take a random LTI system

```
m = 2; p = 5; n = 20; B = drss(n, p, m);
```

### generate qL random trajectories of length L

```
L = 100; q = m + p; W = []; vec = @(a) a(:);
for i = 1:q*L
    u = rand(L, m); xini = rand(n, 1);
    y = lsim(B, u, [], xini);
    w = [u y]; W = [W vec(w')];
end
```

## assuming that image $W = \mathcal{B}|_L$ , find dim $\mathcal{B}|_L$

```
for t = 1:L, d(t) = rank(W(1:q*t, :)); end stem(d)
```

## $\dim \mathcal{B}|_L$ is a piecewise affine function of L



in particular,  $\dim \mathcal{B}|_{L} = mL + n$ , for all  $L \ge \ell$ 

# The set of linear time-invariant systems $\mathscr L$ has structure characterized by set of integers

the dimension of  $\mathscr{B} \in \mathscr{L}$  is determined by

$$\mathbf{m}(\mathscr{B})$$
 — number of inputs

$$\mathbf{n}(\mathscr{B})$$
 — order (= minimal state dimension)

$$\ell(\mathcal{B})$$
 — lag (= observability index)

J.C. Willems, From time series to linear systems.

Part I, Finite dimensional linear time invariant systems, Automatica, 22(561–580), 1986

$$\mathscr{B}_1$$
 less complex than  $\mathscr{B}_2 \iff \mathscr{B}_1 \subset \mathscr{B}_2$ 

in the LTI case, complexity ↔ dimension

$$\mathbf{c}(\mathscr{B}) := \big(\mathbf{m}(\mathscr{B}), \mathbf{n}(\mathscr{B}), \boldsymbol{\ell}(\mathscr{B})\big)$$

 $\mathscr{L}_c$  — bounded complexity LTI model class

$$\mathscr{L}^q_c := \{\mathscr{B} \in \mathscr{L}^q \mid \mathbf{c}(\mathscr{B}) \leq c\}$$

## Finite vs infinite dimensional LTI systems

$$\mathscr{B} \in \mathscr{L}^q$$
 finite-dimensional  $:\iff \frac{\mathbf{m}(\mathscr{B}) < q}{\mathbf{n}(\mathscr{B}) < \infty}$ 

#### equivalently

- $\triangleright$   $\mathscr{B}$  has bounded complexity  $\mathbf{c}(\mathscr{B})$
- ▶ *𝒯* admits KER and I/S/O representations

parametric representations of  $\mathscr{B} \in \mathscr{L}^q_c$ 

## Summary

$$w \in (\mathbb{R}^q)^{\mathscr{T}}$$
 —  $q$ -variate signal

$$\mathscr{B} \in \mathscr{L}^q$$
 —  $q$ -variate LTI system

$$\dim \mathscr{B}|_{L} = \mathbf{m}(\mathscr{B})L + \mathbf{n}(\mathscr{B}), \text{ for all } L \geq \ell(\mathscr{B})$$

## Initial conditions specified by "past" trajectory



## How long should $w_p$ be in order to specify the initial conditions for $w_f$ ?

answer: at least  $\ell(\mathcal{B})$  samples

in general, there are infinitely many  $w_p$ 's that specify the same initial condition

 $w_p$  is a non-minimal state vector

## Input/output partitioning of the variables

```
w =: \Pi \begin{bmatrix} u \\ y \end{bmatrix}, with \Pi permutation, such that u is input := free variable y is output := uniquely defined by \mathscr{B}, w_{\text{ini}}, and u simulation problem: (\mathscr{B}, w_{\text{ini}}, u) \mapsto y parametrization of w by u and w_{\text{ini}}
```

## Initial conditions recovery (observer)

given  $\mathscr{B}$  and  $w_f \in \mathscr{B}|_{\mathcal{T}_f}$ , find  $w_p \in (\mathbb{R}^q)^{\mathcal{T}_p}$ , s.t.

$$w_p \wedge w_f \in \mathscr{B}|_{T_p + T_f}$$

feasibility problem, solution always exists (why?)

in general, it is not unique (is this an issue?)

### Initial conditions estimation (smoothing)

given  $\mathscr{B}$  and  $w_f \in (\mathbb{R}^q)^{T_f}$ , find  $w_p \in (\mathbb{R}^q)^{T_p}$  that

minimize over 
$$\widehat{w}_p$$
,  $\widehat{w}_f \quad ||w_f - \widehat{w}_f||$  subject to  $\widehat{w}_p \wedge \widehat{w}_f \in \mathscr{B}|_{\mathcal{T}_p + \mathcal{T}_f}$ 

as byproduct we find "smoothed" trajectory  $\widehat{\textit{w}}_{\text{f}}$ 

errors-in-variables (EIV) smoother

## Projection on ®

given 
$$\mathscr{B}$$
 and  $w \in (\mathbb{R}^q)^T$ , find  $\widehat{w} \in (\mathbb{R}^q)^T$  that

$$\begin{array}{ll} \text{minimize} & \text{over } \widehat{w} & \|w - \widehat{w}\| \\ \text{subject to} & \widehat{w} \in \mathscr{B}|_{\mathcal{T}} \end{array}$$

equivalent to the EIV smoothing problem

### prior knowledge about the initial conditions

- completely unknown
- uncertain (mean value and covariance are given)
- given exactly

## Most powerful unfalsified model of $\mathscr{B}_{mpum}(w_d)$

### exact identification problem

$$\mathscr{B}_{\mathsf{mpum}}(w_{\mathsf{d}}) := \arg\min_{\widehat{\mathscr{B}} \in \mathscr{L}} \mathsf{c}(\widehat{\mathscr{B}}) \quad \mathsf{subject to} \quad \underbrace{w_{\mathsf{d}} \in \widehat{\mathscr{B}}}_{\mathsf{unfalsified model}}$$

#### multi-objective optimization problem

- complexities are compared in the lexicographic order
- more inputs imply higher complexity irrespective of order

### feasibility and uniqueness are guaranteed

$$\mathscr{B}_{\mathsf{mpum}}(w_{\mathsf{d}}) := \mathsf{span}\{w_{\mathsf{d}}, \sigma w_{\mathsf{d}}, \sigma^2 w_{\mathsf{d}}, \dots\}$$

## There is a problem with $\mathcal{B}_{mpum}(w_d)$ in case of finite data

$$\widehat{\mathscr{B}} := \mathscr{B}_{\mathsf{mpum}}(w_{\mathsf{d}})$$
 is autonomous

solution: impose the upper bound

$$\ell(\widehat{\mathscr{B}}) \leq \ell_{\mathsf{max}} := \left| \frac{T+1}{q+1} \right|$$

### What means that $\mathscr{B}$ is controllable?

controllability is the property of "patching" any past trajectory with any future trajectory





# Compare with the classical definition: transfer from any initial to any terminal state

### property of a state-space representation of ${\mathscr{B}}$

- is lack of controllability due to a "bad" choice of the state or due to an intrinsic issue with the system?
- in the LTI case, does it make sense to talk about controllability of a transfer function representation?
- how to quantify the "distance" to uncontrollability?

does not apply to infinite dimensional system

## Methods for checking controllability

how to check controllability of an LTI system?

#### using state-space representation:

- 1. ensure minimality (in the behavioral sense)
- 2. perform rank test for the controllability matrix

### using matrix fraction representation:

$$\mathscr{B} = \{ w = \Pi \begin{bmatrix} u \\ y \end{bmatrix} \in (\mathbb{R}^q)^{\mathbb{N}} \mid N(\sigma)u = D(\sigma)y \}$$

- ▶ facts: \$\mathscr{B}\$ is controllable \$\leftrightarrow\$ N\$ and D are co-prime
- ► → rank test for the (generalized) Sylvester matrix

## Summary

"past" trajectory — specifies initial conditions

simulation: with  $w =: \Pi \begin{bmatrix} u \\ y \end{bmatrix}, (\mathscr{B}, w_{\text{ini}}, u) \mapsto y$ 

inverse problem:  $w_d \mapsto \mathcal{B}_{mpum}(w_d)$ 

#### **Outline**

Introduction: the need

Basics: notation and conventions

Data-driven interpolation and approximation

# The new "data-driven" paradigm obtains desired solution directly from given data



### Data-driven does not mean model-free

data-driven problems do assume model
however, specific representation is not fixed
the methods we review are non-parametric

## Data-driven representation (infinite horizon)

data: exact infinite trajectory  $w_d$  of  $\mathcal{B} \in \mathcal{L}$ 

$$\widehat{\mathscr{B}} = \mathscr{B}_{mpum}(w_d) = span\{w_d, \sigma w_d, \sigma^2 w_d, \dots\}$$

identifiability condition:  $\mathscr{B} = \widehat{\mathscr{B}}$ 

## Consecutive application of $\sigma$ on finite $w_d$ results in Hankel matrix with missing values

$$\begin{array}{c|cccc} \sigma^0 w_{\rm d} & \sigma^1 w_{\rm d} & \cdots & \sigma^{T_{\rm d}-1} w_{\rm d} \\ \hline w_{\rm d}(1) & w_{\rm d}(2) & \cdots & w_{\rm d}(T_{\rm d}) \\ \hline w_{\rm d}(2) & \vdots & \ddots & ? \\ \vdots & w_{\rm d}(T_{\rm d}) & \ddots & \vdots \\ \hline w_{\rm d}(T_{\rm d}) & ? & \cdots & ? \\ \hline \end{array}$$

for 
$$w_d = (w_d(1), \dots, w_d(T))$$
 and  $1 \le L \le T$ 

$$\mathscr{H}_L(w_d) := \left[ (\sigma^0 w_d)|_L \ (\sigma^1 w_d)|_L \ \cdots \ (\sigma^{T-L} w_d)|_L \right]$$

## Data-driven representation (finite horizon)

the finite horizon data-driven representation

$$\mathscr{B}|_{L} = \widehat{\mathscr{B}}|_{L} := \operatorname{image} \mathscr{H}_{L}(w_{d})$$
 (DD-REPR)

holds if and only if

$$\operatorname{rank} \mathscr{H}_L(w_d) = L\mathbf{m}(\mathscr{B}) + \mathbf{n}(\mathscr{B}) \tag{GPE}$$

I. Markovsky and F. Dörfler, Identifiability in the Behavioral Setting, 2020

## Identifiability condition verifiable from $w_d \in \mathcal{B}|_{\mathcal{T}}$ and $(m, \ell, n)$

fact: 
$$\mathscr{B} = \mathscr{B}' \iff \mathscr{B}|_{\ell+1} = \mathscr{B}'|_{\ell+1}$$
, then

$$\begin{split} \widehat{\mathscr{B}} = \mathscr{B} &\iff & \widehat{\mathscr{B}}|_{\ell+1} = \mathscr{B}|_{\ell+1} \\ &\iff & \dim \widehat{\mathscr{B}}|_{\ell+1} = \dim \mathscr{B}|_{\ell+1} \end{split}$$

 $\mathscr{B}$  is identifiable from  $w_d \in \mathscr{B}|_{\mathcal{T}}$  if and only if

$$\operatorname{rank} \mathscr{H}_{\ell+1}(w_{\mathsf{d}}) = (\ell+1)m + n$$

## The "fundamental lemma" is an input design result

#### sufficient conditions for (DD-REPR)

1. 
$$w_d = \begin{bmatrix} u_d \\ y_d \end{bmatrix}$$

2. B controllable

3. 
$$\mathcal{H}_{l+n}(u_d)$$
 full row rank

(PE condition)

J.C. Willems et al., A note on persistency of excitation Systems & Control Letters, (54)325–329, 2005

PE — persistency of excitation, GPE — generalized PE

# Generic data-driven problem: trajectory interpolation/approximation

```
given: "data" trajectory w_d \in \mathcal{B}|_T partially specified trajectory w|_{I_{\text{given}}} (w|_{I_{\text{given}}} selects the elements of w, specified by I_{\text{given}})
```

aim: minimize over 
$$\widehat{w} \| w|_{I_{\text{given}}} - \widehat{w}|_{I_{\text{given}}} \|$$
 subject to  $\widehat{w} \in \mathcal{B}|_{L}$ 

$$\widehat{\mathbf{w}} = \mathscr{H}_{L}(\mathbf{w}_{d})(\mathscr{H}_{L}(\mathbf{w}_{d})|_{I_{\text{given}}})^{+} \mathbf{w}|_{I_{\text{given}}}$$
 (SOL)

## Special cases

#### simulation

- given data: initial condition and input
- to-be-found: output (exact interpolation)

#### smoothing

- given data: noisy trajectory
- ▶ to-be-found:  $\ell_2$ -optimal approximation

### tracking control

- given data: to-be-tracked trajectory
- ▶ to-be-found:  $\ell_2$ -optimal approximation

#### Generalizations

multiple data trajectories 
$$w_d^1, \dots, w_d^N$$

$$\mathscr{B} = \text{image} \underbrace{\left[\mathscr{H}_L(w_d^1) \cdots \mathscr{H}_L(w_d^N)\right]}_{\text{mosaic-Hankel matrix}}$$

#### w<sub>d</sub> not exact / noisy

maximum-likelihood estimation

- $\leadsto$  Hankel structured low-rank approximation/completion nuclear norm and  $\ell_1$ -norm relaxations
- → nonparametric, convex optimization problems

### nonlinear systems

results for special classes of nonlinear systems: Volterra, Wiener-Hammerstein, bilinear, ...

## Summary: data-driven signal processing

#### data-driven representation

leads to general, simple, practical methods

### interpolation/approximation of trajectories

simulation, filtering and control are special cases assumes only LTI dynamics; no hyper parameters

### dealing with noise and nonlinearities

nonlinear optimization convex relaxations

## The data $w_d$ being exact vs inexact / "noisy"

### w<sub>d</sub> exact and satisfying (GPE)

- "system theory" problems
- ▶ image  $\mathcal{H}_L(w_d)$  is nonparametric finite-horizon model
- data-driven solution = model-based solution

#### w<sub>d</sub> inexact, due to noise and/or nonlinearities

- naive approach: apply the solution (SOL) for exact data
- ▶ rigorous: assume noise model ~→ ML estimation problem
- heuristics: convex relaxations of the ML estimator

## The maximum-likelihood estimation problem in the errors-in-variables setup is nonconvex

errors-in-variables setup: 
$$w_d = \overline{w}_d + \widetilde{w}_d$$

- $ightharpoonup \overline{w}_d$  true data,  $\overline{w}_d \in \mathcal{B}|_T$ ,  $\mathcal{B} \in \mathcal{L}_c^q$
- $ightharpoonup \widetilde{w}_d$  zero mean, white, Gaussian measurement noise

ML problem: given  $w_d$ , c, and  $w|_{I_{given}}$ 

$$\begin{split} & \underset{g}{\text{minimize}} & & \|w|_{I_{\text{given}}} - \mathscr{H}_L(\widehat{w}_{\text{d}}^*)|_{I_{\text{given}}} g \| \\ & \text{subject to} & & \widehat{w}_{\text{d}}^* = \arg\min_{\widehat{w}_{\text{d}},\widehat{\mathscr{B}}} & \|w_{\text{d}} - \widehat{w}_{\text{d}}\| \\ & & \text{subject to} & & \widehat{w}_{\text{d}} \in \widehat{\mathscr{B}}|_{\mathcal{T}} \text{ and } \widehat{\mathscr{B}} \in \mathscr{L}_c^q \end{split}$$

# The ML estimation problem is equivalent to Hankel structured low-rank approximation

$$\begin{split} & \underset{g}{\text{minimize}} & & \|w|_{I_{\text{given}}} - \mathscr{H}_L(\widehat{w}_{\text{d}}^*)|_{I_{\text{given}}} g\| \\ & \text{subject to} & & \widehat{w}_{\text{d}}^* = \arg\min_{\widehat{w}_{\text{d}},\widehat{\mathscr{B}}} & \|w_{\text{d}} - \widehat{w}_{\text{d}}\| \\ & & \text{subject to} & & \widehat{w}_{\text{d}} \in \widehat{\mathscr{B}}|_{\mathcal{T}} \text{ and } \widehat{\mathscr{B}} \in \mathscr{L}_c^q \\ & & & \updownarrow \\ \\ & & & & \updownarrow \\ \\ & & & \text{minimize} & \|w|_{I_{\text{given}}} - \mathscr{H}_L(\widehat{w}_{\text{d}}^*)|_{I_{\text{given}}} g\| \\ & & & \text{subject to} & & & & \|w_{\text{d}} - \widehat{w}_{\text{d}}\| \\ & & & & \text{subject to} & & & & \|w_{\text{d}} - \widehat{w}_{\text{d}}\| \\ & & & & & \text{subject to} & & & & \text{rank} \mathscr{H}_{\ell+1}(\widehat{w}_{\text{d}}) \leq (\ell+1)m+n \end{split}$$

### Solution methods

#### local optimization

- choose a parametric representation of  $\widehat{\mathscr{B}}(\theta)$
- optimize over  $\widehat{w}$ ,  $\widehat{w_d}$ , and  $\theta$
- depends on the initial guess

#### convex relaxation based on the nuclear norm

minimize over 
$$\widehat{w}_{\mathsf{d}}$$
 and  $\widehat{w} = \|w|_{I_{\mathsf{given}}} - \widehat{w}|_{I_{\mathsf{given}}} \| + \|w_{\mathsf{d}} - \widehat{w}_{\mathsf{d}}\| + \gamma \cdot \| \left[ \mathscr{H}_{\Delta}(\widehat{w}_{\mathsf{d}}) - \mathscr{H}_{\Delta}(\widehat{w}) \right] \right\|_{*}$ 

### convex relaxation based on $\ell_1$ -norm (LASSO)

minimize over 
$$g = \|w|_{I_{\mathrm{given}}} - \mathscr{H}_{\mathrm{L}}(w_{\mathrm{d}})|_{I_{\mathrm{given}}} g \| + \lambda \|g\|_1$$

## Empirical validation on real-life datasets

|   | data set name       | T    | m | p |
|---|---------------------|------|---|---|
| 1 | Air passengers data | 144  | 0 | 1 |
| 2 | Distillation column | 90   | 5 | 3 |
| 3 | pH process          | 2001 | 2 | 1 |
| 4 | Hair dryer          | 1000 | 1 | 1 |
| 5 | Heat flow density   | 1680 | 2 | 1 |
| 6 | Heating system      | 801  | 1 | 1 |

B. De Moor, et al. DAISY: A database for identification of systems. Journal A, 38:4–5, 1997

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

## $\ell_1$ -norm regularization with optimized $\lambda$ achieves the best performance

$$\textit{e}_{\mathsf{missing}} \coloneqq \frac{\|\textit{w}|_{\textit{I}_{\mathsf{missing}}} - \widehat{\textit{w}}|_{\textit{I}_{\mathsf{missing}}}\|}{\|\textit{w}|_{\textit{I}_{\mathsf{missing}}}\|} \ 100\%$$

|   | data set name       | naive | ML    | LASSO |
|---|---------------------|-------|-------|-------|
| 1 | Air passengers data | 3.9   | fail  | 3.3   |
| 2 | Distillation column | 19.24 | 17.44 | 9.30  |
| 3 | pH process          | 38.38 | 85.71 | 12.19 |
| 4 | Hair dryer          | 12.35 | 8.96  | 7.06  |
| 5 | Heat flow density   | 7.16  | 44.10 | 3.98  |
| 6 | Heating system      | 0.92  | 1.35  | 0.36  |

# Tuning of $\lambda$ and sparsity of g (datasets 1, 2)









# Tuning of $\lambda$ and sparsity of g (datasets 3, 4)



## Tuning of $\lambda$ and sparsity of g (datasets 5, 6)





## Summary: convex relaxations

## $w_d$ exact $\rightsquigarrow$ system theory

- exact analytical solution
- current work: efficient real-time algorithms

## *w*<sub>d</sub> inexact → nonconvex optimization

- subspace methods
- local optimization
- convex relaxations

## empirical validation

- the naive approach works (surprisingly) well
- parametric local optimization is not robust
- $ightharpoonup \ell_1$ -norm regularization gives the best results

#### **Extras**

Constructive proof of the fundamental lemma

Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

## **Outline**

### Constructive proof of the fundamental lemma

Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

# The fundamental lemma gives data-driven finite horizon representation of LTI system ${\mathscr B}$

$$\mathscr{B}|_L = \operatorname{image} \mathscr{H}_L(w_d)$$
 (DD-REPR)

## assumptions:

A0  $w_d = \begin{bmatrix} u_d \\ y_d \end{bmatrix}$  is a trajectory of an LTI system  $\mathscr{B}$ 

A1 B is controllable

A2  $u_d$  is persistently exciting of order L+n

# Decoding the notation $\mathcal{B}|_L = \text{image } \mathcal{H}_L(w_d)$

 $\mathscr{B}|_L$  — restriction of  $\mathscr{B}$  to the interval [1, L]

 $w_d := (w_d(1), \dots, w_d(T_d))$  — "data" trajectory

$$\mathscr{H}_L(\mathbf{w}_d) := \begin{bmatrix} w_d(1) & w_d(2) & \cdots & w_d(T_d - L + 1) \\ \vdots & \vdots & & \vdots \\ w_d(L) & w_d(L + 1) & \cdots & w_d(T_d) \end{bmatrix}$$

 $PE(u_d) := \max L$ , such that  $\mathcal{H}_L(u_d)$  is f.r.r.

## We address the following issues/questions

## proof by contradiction

What is the meaning/interpretation of the conditions?

## sufficiency of the conditions

How conservative are they? Can they be improved?

#### conjecture

The extra PE of order n is generically not needed. What are the nongeneric cases when it is needed?

## **Answers**

## constructive proof in the single-input case

$$\mathsf{PE}(u_\mathsf{d}) = n_u \iff u_\mathsf{d} \in \mathscr{B}_u|_{T_\mathsf{d}}, \text{ where } \mathscr{B}_u \text{ is }$$
 autonomous LTI of order  $n_u$ 

shows that the FL is nonconservative conjecture: it is conservative in the multi-input case

characterizes the nongeneric cases they correspond to special initial conditions

# Necessary and sufficient condition for the data-driven representation

$$\operatorname{rank} \mathscr{H}_L(w_d) = mL + n, \qquad (GPE)$$

nonconservative (necessary and sufficient) general no I/O partitioning and controllability verifiable from  $w_d$  with prior knowledge of (m, n)

I. Markovsky and F. Dörfler, Identifiability in the Behavioral Setting, 2020

## The fundamental lemma is input design result

## input design problem

choose u<sub>d</sub>, so that (DD-REPR) holds for any initial cond.

## refined problem statement

find nonconservative conditions on  $u_d$  and  $\mathcal{B}$ , under which

for  $\forall w_{d,ini}, w_{d,ini} \land w_d \in \mathscr{B}|_{T_{ini} + T_d}$  satisfies (GPE) (GOAL)

subproblem: find  $w_{\text{ini}}$  that minimize rank  $\mathcal{H}_L(w_d)$ 

## Obvious necessary conditions

A0: exact representation requires exact data and input design requires input/output partition

## A1: for uncontrollable $\mathscr{B} = \mathscr{B}_{ctr} \oplus \mathscr{B}_{aut}$

- $ightharpoonup W_d \in \mathscr{B} \implies W_d = W_{d,ctr} + W_{d,aut}, W_{d,ctr} \in \mathscr{B}_{ctr}, W_{d,aut} \in \mathscr{B}_{aut}$
- $ightharpoonup w_{d,aut}$  is completely determined by  $w_{d,ini}$
- ▶ there is  $w_{d,ini}$ , such that  $w_{d,aut} = 0 \implies (GPE)$  doesn't hold

## A2': $u_d$ is persistently exciting of order L

- ightharpoonup since u is an input,  $\Pi_{u}\mathscr{B}|_{L} = \mathbb{R}^{\mathbf{m}(\mathscr{B})L}$
- ▶ for (GPE) to hold true, image  $\mathcal{H}_L(u_d) = \mathbb{R}^{\mathbf{m}(\mathcal{B})L}$
- equivalently,  $\mathcal{H}_L(u_d)$  must be full row-rank

# Find the minimal k, such that (GOAL) holds under A0, A1, and $PE(u_d) = L + k$

first, we solve the subproblem find  $w_{ini}^*$  that minimize  $rank \mathcal{H}_L(w_d)$ 

then, we check (GPE) for  $w_{\text{ini}}^*$ 

 $\rightsquigarrow$  minimal  $k \implies$  nonconservative PE condition

# The PE condition is equivalent to existence of an LTI input model

$$u_{\mathsf{d}} \in (\mathbb{R})^{T_{\mathsf{d}}}$$
 and  $\mathsf{PE}(u_{\mathsf{d}}) = n_{u}$ 

 $u_{d} \in \mathscr{B}_{u}|_{T_{d}}$  — autonomous LTI,  $T_{d} \geq 2n_{u} - 1$  $\mathscr{B}_{u} = \mathscr{B}_{ss}(A_{u}, C_{u})$  with  $(A_{u}, x_{u, ini})$  controllable



## Augmented system with the input model

$$\mathscr{B}_{\mathsf{ext}} = \mathscr{B}_{\mathsf{SS}}(A_{\mathsf{ext}}, C_{\mathsf{ext}}), \ \mathsf{with} \ x_{\mathsf{ext}} = \left[ egin{smallmatrix} x_u \\ x_u \end{smallmatrix} \right]$$
  $A_{\mathsf{ext}} = \left[ egin{smallmatrix} A_u & 0 \\ BC_u & A \end{smallmatrix} \right] \quad C_{\mathsf{ext}} = \left[ egin{smallmatrix} C_u & 0 \\ DC_u & C \end{smallmatrix} \right]$ 

$$\mathscr{B}_{\mathsf{ext}} = \mathscr{B}_{\mathsf{ss}}\left(\mathbf{A}_{\mathsf{ext}}', \mathbf{C}_{\mathsf{ext}}'\right)$$
, where  $\mathbf{x}_{\mathsf{ext}}' = \left[\begin{smallmatrix} \mathbf{x}_{u} \\ V\mathbf{x}_{u} + \mathbf{x} \end{smallmatrix}\right]$ 

V is solution of the Sylvester equation  $AV - VA_u = BC_u$ 

# The nongeneric cases correspond to special initial conditions $x_{ini} = -Vx_{u,ini}$

which eliminates from  $w_d$  the transient due to  $\mathscr{B}$ 

then, rank 
$$\mathcal{H}_L(w_d) \leq PE(u_d) = n_u$$

next, we show that rank  $\mathcal{H}_L(w_d) = n_u$ 

## assume simple eigenvalues $\lambda_{u,1}, \dots, \lambda_{u,n_u}$ of $\mathscr{B}_u$

$$u_{\mathsf{d}} = \sum_{i=1}^{n_u} a_i \exp_{\lambda_{u,i}}$$

assume simple eigenvalues  $\lambda_1, \ldots, \lambda_n$  of  $\mathscr{B}$ 

$$y_{d} = \sum_{i=1}^{n_{u}} b_{i} \exp_{\lambda_{u,i}} + \underbrace{\sum_{j=1}^{n} c_{j} \exp_{\lambda_{j}}}_{\text{transient}}$$

- $\blacktriangleright$   $b_i = H(e^{i\lambda_{u,i}})a_i$ , where  $H(z) := C(Iz A)^{-1}B + D$
- $ightharpoonup w_{\text{ini}} = w_{\text{ini}}^* \implies c_j = 0$

## using Vandermonde matrix, we rewrite $(u_d, y_d)$

$$u_{d} = \underbrace{\begin{bmatrix} \lambda_{u,1}^{1} & \cdots & \lambda_{u,n_{u}}^{1} \\ \vdots & & \vdots \\ \lambda_{u,1}^{T} & \cdots & \lambda_{u,n_{u}}^{T} \end{bmatrix}}_{V_{T}(\lambda_{u})} \underbrace{\begin{bmatrix} a_{1} \\ \vdots \\ a_{n_{u}} \end{bmatrix}}_{a} = V_{T}(\lambda_{u})a$$

and

$$y_{d} = V_{T}(\lambda_{u}) \underbrace{\begin{bmatrix} H(e^{i\lambda_{u,1}}) & & & \\ & \ddots & & \\ & & H(e^{i\lambda_{u,n_{u}}}) \end{bmatrix}}_{H(\lambda_{u})} \begin{bmatrix} a_{1} & & \\ \vdots & & \\ a_{n_{u}} \end{bmatrix}$$

$$= V_{T}(\lambda_{u}) \underbrace{H(\lambda_{u})a}_{L} = V_{T}(\lambda_{u})b$$

## then, for $w_d$ , we obtain

$$w_{d} = \Pi_{T} \begin{bmatrix} V_{T}(\lambda_{u}) \\ V_{T}(\lambda_{u})H(\lambda_{u}) \end{bmatrix} a$$

 $\Pi_{\mathcal{T}} \in \mathbb{R}^{2\mathcal{T} \times 2\mathcal{T}}$  permutation, such that  $\textit{w}_{d} = \Pi_{\mathcal{T}} \left[ \begin{smallmatrix} \textit{u}_{d} \\ \textit{y}_{d} \end{smallmatrix} \right]$ 

## finally, the Hankel matrix is expressed as

$$\mathscr{H}_{L}(w_{d}) = \underbrace{\Pi_{L} \begin{bmatrix} V_{L}(\lambda_{u}) \\ V_{L}(\lambda_{u})H(\lambda_{u}) \end{bmatrix}}_{W_{l}} \underbrace{\begin{bmatrix} a & \Lambda_{u}a & \Lambda_{u}^{2}a & \cdots & \Lambda_{u}^{T-L}a \end{bmatrix}}_{\text{controllability matrix of } (\Lambda_{u}, a)}$$

$$\Lambda_u := \operatorname{diag}(\lambda_{u,1}, \ldots, \lambda_{u,n_u})$$

## $(\Lambda_u, a)$ is controllable because $PE(u_d) = n_u$

- 1.  $a_i \neq 0$  for all i
- 2.  $\lambda_{u,i} \neq \lambda_{u,j}$  for all  $i \neq j$

## for $k \le n$ , $W_L$ is full column rank

- with  $W_L = \begin{bmatrix} w^1 & \dots & w^{n_u} \end{bmatrix}$ ,  $w^i$  are trajectories  $(w^i \in \mathcal{B}|_L)$
- lacktriangledown  $\lambda_{u,i} 
  eq \lambda_{u,j}$  for all  $i 
  eq j \implies \text{independent responses}$

$$\operatorname{rank} \mathscr{H}_L(w_d) = \begin{cases} L+k, & \text{for } k = 1, \dots, n \\ L+n, & \text{for } k = n+1, \dots \end{cases}$$

k = n is the minimal value for (GPE) to hold

#### Comments

the zeros of  $\mathcal{B}$  don't play role in the analysis

simple eigenvalues assumptions can be relaxed

"robustifying" the conditions

exact condition: robust version:

 $a_i \neq 0$ , for all i  $a_i > \varepsilon$ 

 $\lambda_{u,i} \neq \lambda_{u,j}$ , for all  $i \neq j$  the  $\lambda_{u,i}$ 's are "well spread"

conjecture: in multi-input case, A2 can be tightened,  $PE(u_d) = n + \text{controllability index } \mathcal{B}$ 

### **Outline**

Constructive proof of the fundamental lemma

Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

# The goal is to predict free fall trajectory without knowing the laws of physics

## object with mass m, falling in gravitational field

- ▶ y position
- $\mathbf{v} := \dot{\mathbf{y}}$  velocity
- $\triangleright$  y(0), v(0) initial condition

## task: given initial condition, find the trajectory y

- ▶ model-based approach:
   1. physics → model
   2. model + ini. cond. → y
- ▶ data-driven approach: data  $y_d^1,...,y_d^N$  + ini. cond.  $\mapsto y$

# Modeling from first principles leads to affine time-invariant state-space model

second law of Newton + the law of gravity

$$m\ddot{y} = m\left[ \begin{smallmatrix} 0 \\ 9.81 \end{smallmatrix} \right] + f, \quad \text{where} \quad y(0) = y_{\text{ini}} \text{ and } \dot{y}(0) = v_{\text{ini}}$$

- 9.81 gravitational constant
- $f = -\gamma v$  force due to friction in the air

state 
$$x := (y_1, \dot{y}_1, y_2, \dot{y}_2, x_5)$$
, where  $x_5 = -9.81$ 

initial state 
$$x_{\text{ini}} := (y_{\text{ini},1}, v_{\text{ini},1}, y_{\text{ini},2}, v_{\text{ini},2}, -9.81)$$

# Modeling from first principles leads to affine time-invariant state-space model

$$\dot{x} = \begin{bmatrix} 0 & 1 & & & \\ 0 & -\gamma/m & & & \\ & & 0 & 1 & \\ & & 0 & -\gamma/m & 1 \\ & & & 0 \end{bmatrix} x, \qquad x(0) = \begin{bmatrix} y_{\text{ini},1} \\ v_{\text{ini},1} \\ y_{\text{ini},2} \\ v_{\text{ini},2} \\ -9.81 \end{bmatrix}$$
$$y = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix} x$$

data: N, T-samples long discretized trajectories

## Simulation setup and data

#### write a function fall that simulates free fall

```
y = fall(y0, v0, t, m, gamma)
```

## simulate N=10, T=100-samples long trajectories

```
m = 1; gamma = 0.5;
N = 10; T = 100; t = linspace(0, 1, T);
for i = 1:N,
    y{i} = fall(rand(2,1), rand(2,1), t,gamma,m);
end
```

## and to-be-predicted trajectory

```
y_new = fall(rand(2,1), rand(2,1), t,gamma,m);
```

## Data-driven free fall prediction method

data "informativity" condition:

$$\operatorname{rank}\underbrace{\begin{bmatrix} y_{\mathsf{d}}^1 & \cdots & y_{\mathsf{d}}^N \end{bmatrix}}_{D} = 5$$

## algorithm for data-driven prediction:

1. solve 
$$\begin{bmatrix} y_{d}^{1}(1) & \cdots & y_{d}^{N}(1) \\ y_{d}^{1}(2) & \cdots & y_{d}^{N}(2) \\ y_{d}^{1}(3) & \cdots & y_{d}^{N}(3) \end{bmatrix} g = \underbrace{ \begin{bmatrix} y(1) \\ y(2) \\ y(3) \end{bmatrix}}_{\text{ini. cond.}}$$

2. define y := Dg

## Verify that the data-driven prediction "works"

check the data "informativity" condition

```
[rank(D) rank([vec(y_new') D])] % -> [ 5 5 ]
```

implement the data-driven computation method

verify the computed solution

## Summary: prediction of free fall trajectory

## first principles modeling

- use the second law of Newton and the law of gravity
- in particular, the Earth's gravitational constant is used
- lead to an autonomous affine time-invariant system

#### data-driven methods

- bypass the knowledge of the physical laws
- automatically infer and use them
- no hyper-parameters to tune

### **Outline**

Constructive proof of the fundamental lemma

Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

# My interest in dynamic measurement started from a textbook problem

"A thermometer reading 21°C, which has been inside a house for a long time, is taken outside. After one minute the thermometer reads 15°C; after two minutes it reads 11°C. What is the outside temperature?"

According to Newton's law of cooling, an object of higher temperature than its environment cools at a rate that is proportional to the difference in temperature.

# Main idea: predict the steady-state value from the first few samples of the transient

## textbook problem:

- ► 1st order dynamics
- 3 noise-free samples
- batch solution

#### generalizations:

- $ightharpoonup n \ge 1$  order dynamics
- $ightharpoonup T \ge 3$  noisy (vector) samples
- recursive computation

## implementation and practical validation

## Thermometer: first order dynamical system

environmental heat transfer thermometer's temperature  $\bar{u}$  reading y

measurement process: Newton's law of cooling

$$y = a(\bar{u} - y)$$

heat transfer coefficient a > 0

## Scale: second order dynamical system



$$(M+m)\frac{\mathrm{d}}{\mathrm{d}\,t}y+dy+ky=g\bar{u}$$

# The measurement process dynamics depends on the to-be-measured mass



# Dynamic measurement: take into account the dynamical properties of the sensor

to-be-measured measurement process measured variable u wariable u wariable u wariable u assumption 1: measured variable is constant  $u(t) = \bar{u}$  assumption 2: the sensor is stable LTI system assumption 3: sensor's DC-gain u (calibrated sensor)

# The data is generated from LTI system with output noise and constant input

$$y_d$$
 =  $y$  +  $e$ 

measured true measurement noise

 $y$  =  $u$  +  $v$ 0

true steady-state transient response

assumption 4: e is a zero mean, white, Gaussian noise

using a state space representation of the sensor

$$x(t+1) = Ax(t),$$
  $x(0) = x_0$   
 $y_0(t) = cx(t)$ 

we obtain

$$\underbrace{\begin{bmatrix} y_{d}(1) \\ y_{d}(2) \\ \vdots \\ y_{d}(T) \end{bmatrix}}_{Y_{d}} = \underbrace{\begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}}_{T_{T}} \bar{u} + \underbrace{\begin{bmatrix} c \\ cA \\ \vdots \\ cA^{T-1} \end{bmatrix}}_{C_{T}} x_{0} + \underbrace{\begin{bmatrix} e(1) \\ e(2) \\ \vdots \\ e(T) \end{bmatrix}}_{e}$$

#### Maximum-likelihood model-based estimator

solve approximately

$$\begin{bmatrix} \mathbf{1}_T & \mathscr{O}_T \end{bmatrix} \begin{bmatrix} \widehat{u} \\ \widehat{x}_0 \end{bmatrix} \approx y_{\mathsf{d}}$$

standard least-squares problem

minimize over 
$$\widehat{y}$$
,  $\widehat{u}$ ,  $\widehat{x}_0 \quad \|y_d - \widehat{y}\|$  subject to  $\begin{bmatrix} \mathbf{1}_T & \mathscr{O}_T \end{bmatrix} \begin{bmatrix} \widehat{u} \\ \widehat{x}_0 \end{bmatrix} = \widehat{y}$ 

recursive implementation  $\rightsquigarrow$  Kalman filter

### Subspace model-free method

goal: avoid using the model parameters  $(A, C, \mathcal{O}_T)$ 

in the noise-free case, due to the LTI assumption,

$$\Delta y(t) := y(t) - y(t-1) = y_0(t) - y_0(t-1)$$

satisfies the same dynamics as  $y_0$ , *i.e.*,

$$x(t+1) = Ax(t),$$
  $x(0) = \Delta x$   
 $\Delta y(t) = cx(t)$ 

# Hankel matrix—construction of multiple "short" trajectories from one "long" trajectory

$$\mathcal{H}(\Delta y) := egin{bmatrix} \Delta y(1) & \Delta y(2) & \cdots & \Delta y(\mathrm{n}) \\ \Delta y(2) & \Delta y(3) & \cdots & \Delta y(\mathrm{n}+1) \\ \Delta y(3) & \Delta y(4) & \cdots & \Delta y(\mathrm{n}+2) \\ \vdots & \vdots & & \vdots \\ \Delta y(T-\mathrm{n}) & \Delta y(T-\mathrm{n}) & \cdots & \Delta y(T-1) \end{bmatrix}$$

fact: if rank  $\mathcal{H}(\Delta y) = n$ , then

image 
$$\mathcal{O}_{T-n} = \text{image } \mathcal{H}(\Delta y)$$

#### model-based equation

$$\begin{bmatrix} \mathbf{1}_T & \mathscr{O}_T \end{bmatrix} \begin{bmatrix} \bar{u} \\ \widehat{\mathbf{x}}_0 \end{bmatrix} = \mathbf{y}$$

#### data-driven equation

$$\begin{bmatrix} \mathbf{1}_{T-n} & \mathscr{H}(\Delta y) \end{bmatrix} \begin{bmatrix} \bar{u} \\ \ell \end{bmatrix} = y|_{T-n} \tag{*}$$

#### subspace method

solve (\*) by (recursive) least squares

### **Empirical validation**

dashed — true parameter value  $\bar{u}$ 

solid — true output trajectory  $y_0$ 

dotted — naive estimate  $\hat{u} = G^+ y$ 

dashed — model-based Kalman filter

bashed-dotted — data-driven method

estimation error: 
$$e := \frac{1}{N} \sum_{i=1}^{N} \|\bar{u} - \hat{u}^{(i)}\|$$

(for N = 100 Monte-Carlo repetitions)

# Simulated data of dynamic cooling process



 $e(t) \rightarrow 0$  as  $t \rightarrow \infty$  at different rates

best is the Kalman filter (maximum likelihood estimator)

# Simulation with time-varying parameter



# Proof of concept prototype



# Results in real-life experiment



### Summary

#### dynamic measurement

steady-state value prediction

#### the subspace method is applicable for

- high order dynamics
- noisy vector observations
- online computation

#### future work / open problems

- numerical efficiency
- real-time uncertainty quantification
- generalization to nonlinear systems

#### **Outline**

Constructive proof of the fundamental lemma

Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

#### Problem formulation

given: "data" trajectory  $(u_d, y_d) \in \mathcal{B}|_{T_d}$  and  $z \in \mathbb{C}$ 

find: H(z), where H is the transfer function of  $\mathcal{B}$ 

# Direct data-driven solution we are interested in trajectory

$$w = \begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} \exp_z \\ \widehat{H} \exp_z \end{bmatrix} \in \mathscr{B}, \text{ where } \exp_z(t) := z^t$$

using the data-driven representation, we have

$$\begin{bmatrix} \mathscr{H}_{L}(u_{\mathsf{d}}) \\ \mathscr{H}_{L}(y_{\mathsf{d}}) \end{bmatrix} g = \begin{bmatrix} \mathbf{z} \\ \widehat{H}\mathbf{z} \end{bmatrix}, \quad \text{where } \mathbf{z} := \begin{bmatrix} z^1 \\ \vdots \\ z^L \end{bmatrix}$$

which leads to the system

$$\begin{bmatrix} 0 & \mathcal{H}_{L}(u_{d}) \\ -\mathbf{z} & \mathcal{H}_{L}(y_{d}) \end{bmatrix} \begin{bmatrix} \widehat{H} \\ g \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ 0 \end{bmatrix}$$
 (SYS)

# Solution method: solve (SYS) for $\widehat{H}$

under (GPE) with 
$$L \ge \ell + 1$$
,  $\widehat{H} = H(z)$ 

without prior knowledge of  $\ell$ 

$$L = L_{\text{max}} := \lfloor (T_{d} + 1)/3 \rfloor$$

#### trivial generalization to

- multivariable systems
- ► multiple data trajectories  $\{w_d^1, ..., w_d^N\}$
- evaluation of H(z) at multiple points in  $\{z_1, ..., z_K\} \in \mathbb{C}^K$

# Comparison with classical nonparametric frequency response estimation methods

ignored initial/terminal conditions  $\leadsto$  leakage

DFT grid → limited frequency resolution

improvements by windowing and interpolation

- the leakage is not eliminated
- the methods involve hyper-parameters

# Generalization of (SYS) to noisy data

### preprocessing: rank-mL + n approx. of $\mathcal{H}_L(w_d)$

- ▶ hyper-parameters  $L \ge \ell + 1$  and n
- if the approximation preserves the Hankel structure, the method is maximum-likelihood in the EIV setting

#### regularization with $||g||_1$

hyper-parameter: the 1-norm regularization parameter

### regularization with the nuclear norm of $\mathcal{H}_L(\widehat{w_d})$

hyper-parameters: L and the regularization parameter

# Matlab implementation

```
function Hh = dd_frest(ud, yd, z, n)
L = n + 1; t = (1:L)';
m = size(ud, 2); p = size(yd, 2);
%% preprocessing by low-rank approximation
H = [moshank(ud, L); moshank(yd, L)];
[U, \sim, \sim] = svd(H); P = U(:, 1:m * L + n);
%% form and solve the system of equations
for k = 1:length(z)
  A = [[zeros(m*L, p); -kron(z(k).^t, eye(p))] P];
  hg = A \setminus [kron(z(k).^t, eye(m)); zeros(p*L, m)];
  Hh(:, :, k) = hq(1:p, :);
end
```

- effectively 5 lines of code
- MIMO case, multiple evaluation points
- ightharpoonup L = n+1 in order to have a single hyper-parameter

# Example: EIV setup with 4th order system

#### dd\_frest is compared with

- ident parametric maximum-likelihood estimator
- ▶ spa nonparameteric estimator with Welch filter





# Monte-Carlo simulation over different noise levels and number of samples



#### **Outline**

Constructive proof of the fundamental lemma

Pedagogical example: Free fall prediction

Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

### Kernel representation

#### LTI systems

$$\mathcal{B} = \ker R(\sigma) := \left\{ w \mid R(\sigma)w = 0 \right\}$$
$$= \left\{ w \mid R_0w + R_1\sigma w + \dots + R_\ell\sigma^\ell w = 0 \right\}$$

#### nonlinear time-invariant system

$$\mathscr{B} = \left\{ w \mid R(\underbrace{w, \sigma w, \dots, \sigma^{\ell} w}_{x}) = 0 \right\}$$

#### linearly parameterized R

$$R(x) = \sum \theta_i \phi_i(x) = \theta^{\top} \phi(x), \quad \begin{array}{ccc} \phi & -- & \text{model structure} \\ \theta & -- & \text{parameter vector} \end{array}$$

# Polynomial SISO NARX system

$$\mathscr{B}(\theta) = \left\{ w = \begin{bmatrix} u \\ y \end{bmatrix} \mid y = f(u, \sigma w, \dots, \sigma^{\ell} w) \right\}$$

split f into 1st order (linear) and other (nonlinear) terms

$$f(x) = \theta_{\mathsf{li}}^{\top} x + \theta_{\mathsf{nl}}^{\top} \phi_{\mathsf{nl}}(x)$$

 $\phi_{nl}$  — vector of monomials

### Special cases

#### Hammerstein

$$\phi_{\mathsf{nl}}(x) = egin{bmatrix} \phi_{\mathsf{u}}(x) & \phi_{\mathsf{u}}(\sigma u) & \cdots & \phi_{\mathsf{u}}(\sigma^\ell u) \end{bmatrix}^ op$$

#### FIR Volterra

$$\phi_{\mathsf{nl}}(x) = \phi_{\mathsf{nl}}(x_u), \quad \mathsf{where} \ x_u := \mathsf{vec}(u, \sigma u, \dots, \sigma^\ell u).$$

#### bilinear

$$\phi_{\mathsf{nl}}(x) = x_u \otimes x_y, \quad \mathsf{where} \ x_y := \mathsf{vec}(y, \sigma y, \dots, \sigma^{\ell-1} y)$$

#### generalized bilinear

$$\phi_{\mathsf{nl}}(x) = \phi_{u,\mathsf{nl}}(x_u) \otimes x_y$$

# LTI embedding of polynomial NARX system

$$\mathscr{B}_{\text{ext}}(\theta) := \left\{ \left. \mathbf{\textit{w}}_{\text{ext}} = \left[ \begin{smallmatrix} \textit{u} \\ \textit{u}_{\text{nl}} \\ \textit{y} \end{smallmatrix} \right] \; \middle| \; \sigma^{\ell} \textit{y} = \theta_{\text{li}}^{\top} \textit{x} + \theta_{\text{nl}}^{\top} \textit{u}_{\text{nl}} \right. \right\}$$

define:  $\Pi_w w_{\text{ext}} := w$  and  $\Pi_{u_{\text{nl}}} w_{\text{ext}} := u_{\text{nl}}$ 

fact:  $\mathscr{B}(\theta) \subseteq \Pi_{\mathsf{W}} \mathscr{B}_{\mathsf{ext}}(\theta)$ , moreover

$$\mathscr{B}(\theta) = \Pi_{W} \{ w_{\mathsf{ext}} \in \mathscr{B}_{\mathsf{ext}}(\theta) \mid \Pi_{U_{\mathsf{nl}}} w_{\mathsf{ext}} = \phi_{\mathsf{nl}}(x) \}$$

# FIR Volterra data-driven simulation given

data  $w_d = (u_d, y_d)$  of lag- $\ell$  FIR Volterra system  $\mathscr{B}$   $\phi_{nl}$  — system's model structure

assume ID conditions for  $\mathcal{B}_{ext}$  hold

then,  $\mathcal{B}|_{L} = \text{image } M$ , where

$$M(w_{\text{ini}}, u) := \mathscr{H}_{L}(\sigma^{\ell} y_{\text{d}}) \underbrace{ \begin{bmatrix} \mathscr{H}_{\ell}(w_{\text{d}}) \\ \mathscr{H}_{L}(\sigma^{\ell} u_{\text{d}}) \\ \mathscr{H}_{\ell}(\phi_{\text{nI}}(x_{u_{\text{d}}})) \\ \mathscr{H}_{L}(\sigma^{\ell} \phi_{\text{nI}}(x_{u_{\text{d}}})) \end{bmatrix}^{\dagger} \begin{bmatrix} w_{\text{ini}} \\ u \\ \phi_{\text{nI}}(x_{u_{\text{ini}}}) \\ \phi_{\text{nI}}(x_{u_{\text{ini}}}) \end{bmatrix}}_{g}$$

#### proof

$$\begin{bmatrix} \mathcal{H}_{\ell}(w_{\mathsf{d}}) \\ \mathcal{H}_{L}(\sigma^{\ell}u_{\mathsf{d}}) \\ \mathcal{H}_{\ell}(\phi_{\mathsf{nl}}(x_{u_{\mathsf{d}}})) \\ \mathcal{H}_{L}(\sigma^{\ell}\phi_{\mathsf{nl}}(x_{u_{\mathsf{d}}})) \\ \mathcal{H}_{L}(\sigma^{\ell}y_{\mathsf{d}}) \end{bmatrix} g = \begin{bmatrix} w_{\mathsf{ini}} \\ u \\ \phi_{\mathsf{nl}}(x_{u_{\mathsf{ini}}}) \\ \phi_{\mathsf{nl}}(x_{u}) \\ y \end{bmatrix} \} \mathsf{B3}$$

- B1 constraint on g, such that  $w_\mathsf{ini} \wedge (u, \mathscr{H}_\mathsf{L}(\sigma^\ell y_\mathsf{d})g) \in \mathscr{B}_\mathsf{ext}$
- B2 constraint  $u_{nl} = \phi_{nl}(x) \iff \mathscr{B}_{ext} = \mathscr{B}(\theta)$
- B3 defines the to-be-computed output y

#### generalized bilinear models

also tractable because B2:  $u_{nl} = \phi_{nl}(x)$  is still linear in y