http://www.rgpvonline.com

Draw the minimum spanning tree for the following graph:

Apply Dijkstra's algorithm to the given graph and find the shortest path from a to z:

http://www.rgpvonline.com

http://www.rgpvonline.com

Total No. of Questions :8]

[Total No. of Printed Pages :4

Roll No

MCTA-101 M.E./M.Tech. I Semester

Examination, June 2016

Mathematical Foundations of Computer Application

Time: Three Hours

Maximum Marks: 70

http://www.rgpvonline.com

http://www.rgpvonline.com

Note: Attempt any five questions. All questions carry equal marks.

- A survey among the students of a college. 65 study Hindi, 45 study Spanish and 42 study Japanese, further 20 study Hindi and Spanish, 25 study Hindi and Japanese, 15 study Spanish and Japanese and 8 study all the languages.
 - i) How many students are studying at least one language?
 - ii) How many students are studying only Hindi?
 - If I be the set of all integers and if the relation R be defined over the set I by xRy if x-y is an even integer, where $x, y \in I$, show that R is an equivalence relation.
- Prove that in a distributed lattice (L, \wedge, \vee) , $(a \wedge b) \vee (b \wedge c) \vee (c \wedge a) = (a \vee b) \wedge (b \vee c) \wedge (c \vee a)$ holds for all $a, b, c \in L$.
 - Express in the principle disjunctive normal form: f(x, y, z) = (x' y)' (x' + xyz')
- Prove that the following statement is logically equivalent:

$$(p \rightarrow q) \lor r \equiv (p \lor r) \rightarrow (q \lor r)$$

PTC

http://www.rgpvonline.com

Show that the following proposition is tautology: $(p \land q) \lor (p \land \neg q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$

- Show that $L = \{a^K b^K | K \ge 1\}$ is not a finite state language.
 - Show that the two machines shown below are equivalent:

States	Input		Output States		Input		Output
	0	1			0	1	
Α	В	С	0	Α	Н	С	0
В	В	D	0	В	G	В	0
С	A	E	0	C	Α	В	0
D	В	E	0	D	D	С	0
E	F	Е	0	E	Н	В	0
F	A	D	1	F	D	Е	1
G	В	C	1	G	Н	С	1
				H	A	Е	0

- Draw finite state machine for
 - i) Set of string of 0's and 1's each of which ends with 011.
 - ii) Set of string of 0's and 1's with even 0's.
 - Determine the discrete numeric function corresponding to the following generating function:

i)
$$A(Z) = \frac{Z^5}{5 - 6Z + Z^2}$$

ii)
$$A(Z) = \frac{(1+Z)^2}{(1-Z)^4}$$

The solution of the recurrence relation is

$$a_r = A a_{r-1} + B 3^r, r \ge 1$$

$$a_r = C2^r + D2^{r+1}, r \ge 0$$

Given $a_0 = 19$, $a_1 = 50$, determine A, B, C, D.

Solve the recurrence relation

$$a_r - a_{r-1} - 6a_{r-2} = 3^r (r^2 + 2r - 1)$$

Given
$$a_0 = 0$$
, $a_1 = 1$

Determine the particular solution for the difference equation:

$$a_r - 2a_{r-1} = f(r)$$
 where $f(r) = 7r$

http://www.rgpvonline.com Determine a minimum Hamiltonian circuit for the graph given below:

http://www.rgpvonline.com