CS 577- Intro to Algorithms

Computational Intractability
(Part 4)

Dieter van Melkebeek

December 3, 2020

How to handle NP-complete problems

Instance structure

- ▶ Instance structure
- Parameter bounds

- Instance structure
- Parameter bounds
- Approximations

- Instance structure
- Parameter bounds
- Approximations
- Heuristics

Idea

Exploit structure of instances that occur in application setting.

Idea

Exploit structure of instances that occur in application setting.

Vertex Cover

Idea

Exploit structure of instances that occur in application setting.

Vertex Cover

Can be solved in polynomial time for

Idea

Exploit structure of instances that occur in application setting.

Vertex Cover

Can be solved in polynomial time for:

Trees

Idea

Exploit structure of instances that occur in application setting.

Vertex Cover

Can be solved in polynomial time for:

- Trees
- ► Bipartite graphs

Idea

Exploit structure of instances that occur in application setting.

Vertex Cover

Can be solved in polynomial time for:

- Trees
- Bipartite graphs
- Interval graphs

Idea

Exploit structure of instances that occur in application setting.

Vertex Cover

Can be solved in polynomial time for:

- Trees
- ► Bipartite graphs
- ► Interval graphs
- **.**..

Idea

Exploit bounds on parameters (other than input size) for instances that occur in application setting.

Idea

Exploit bounds on parameters (other than input size) for instances that occur in application setting.

Vertex Cover

Idea

Exploit bounds on parameters (other than input size) for instances that occur in application setting.

Vertex Cover

Idea

Exploit bounds on parameters (other than input size) for instances that occur in application setting.

Vertex Cover

Using vertex cover size k as additional parameter:

Polynomial-time solvable for each fixed k

Idea

Exploit bounds on parameters (other than input size) for instances that occur in application setting.

Vertex Cover

- ▶ Polynomial-time solvable for each fixed *k*
 - Exhaustively try all $\binom{n}{k} = \Theta(n^k)$ possible subsets of size k.

Idea

Exploit bounds on parameters (other than input size) for instances that occur in application setting.

Vertex Cover

- Polynomial-time solvable for each fixed k
 - Exhaustively try all $\binom{n}{k} = \Theta(n^k)$ possible subsets of size k.
- ► Fixed-parameter tractable

Idea

Exploit bounds on parameters (other than input size) for instances that occur in application setting.

Vertex Cover

- ▶ Polynomial-time solvable for each fixed *k*
 - Exhaustively try all $\binom{n}{k} = \Theta(n^k)$ possible subsets of size k.
- ► Fixed-parameter tractable
 - Running time $O(2^k \cdot (|V| + |E|))$

Idea

Exploit bounds on parameters (other than input size) for instances that occur in application setting.

Vertex Cover

- ▶ Polynomial-time solvable for each fixed *k*
 - Exhaustively try all $\binom{n}{k} = \Theta(n^k)$ possible subsets of size k.
- Fixed-parameter tractable
 - Running time $O(2^k \cdot (|V| + |E|))$
- Kernelization

Idea

Exploit bounds on parameters (other than input size) for instances that occur in application setting.

Vertex Cover

- ▶ Polynomial-time solvable for each fixed *k*
 - Exhaustively try all $\binom{n}{k} = \Theta(n^k)$ possible subsets of size k.
- Fixed-parameter tractable
 - Running time $O(2^k \cdot (|V| + |E|))$
- Kernelization
 - Kernel consisting of at most k^2 edges

Definition

Instances of bit-length n with parameter k can be solved in time $f(k)\cdot n^c$ for some $f:\mathbb{N}\to\mathbb{N}$ and $c\in\mathbb{N}$.

Definition

Instances of bit-length n with parameter k can be solved in time $f(k) \cdot n^c$ for some $f : \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$.

Vertex Cover

Definition

Instances of bit-length n with parameter k can be solved in time $f(k) \cdot n^c$ for some $f : \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$.

Vertex Cover

Recursive algorithm VC-Decision(V, E, k) based on principle of optimization applied to edge

Definition

Instances of bit-length n with parameter k can be solved in time $f(k) \cdot n^c$ for some $f : \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$.

Vertex Cover

- Recursive algorithm VC-Decision(V, E, k) based on principle of optimization applied to edge
 - 1. if $E = \emptyset$ then return "yes"
 - 2. if k = 0 then return "no"
 - 3. pick $e = (u, v) \in E$
 - 4. return VC-Decision($V, E \setminus (\{u\} \times V), k-1$) \vee VC-Decision($V, E \setminus (\{v\} \times V), k-1$)

Definition

Instances of bit-length n with parameter k can be solved in time $f(k) \cdot n^c$ for some $f : \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$.

Vertex Cover

- Recursive algorithm VC-Decision(V, E, k) based on principle of optimization applied to edge
 - 1. if $E = \emptyset$ then return "yes"
 - 2. if k = 0 then return "no"
 - 3. pick $e = (u, v) \in E$
 - 4. return VC-Decision($V, E \setminus (\{u\} \times V), k-1$) \vee VC-Decision($V, E \setminus (\{v\} \times V), k-1$)
- Running time: $O(2^k \cdot (|V| + |E|))$

Definition

Instances of bit-length n with parameter k can be reduced in time n^c to instances of size at most g(k) of the same problem, for some $g: \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$.

Definition

Instances of bit-length n with parameter k can be reduced in time n^c to instances of size at most g(k) of the same problem, for some $g: \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$.

Vertex Cover

Definition

Instances of bit-length n with parameter k can be reduced in time n^c to instances of size at most g(k) of the same problem, for some $g: \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$.

Vertex Cover

▶ Vertices of degree more than *k* need to be included.

Definition

Instances of bit-length n with parameter k can be reduced in time n^c to instances of size at most g(k) of the same problem, for some $g: \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$.

Vertex Cover

- ▶ Vertices of degree more than *k* need to be included.
- A graph G' in which each vertex has degree at most d and has a vertex cover of size s, can have at most s ⋅ d edges.

Kernelization

Definition

Instances of bit-length n with parameter k can be reduced in time n^c to instances of size at most g(k) of the same problem, for some $g: \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$.

- ▶ Vertices of degree more than *k* need to be included.
- A graph G' in which each vertex has degree at most d and has a vertex cover of size s, can have at most s ⋅ d edges.
- Reduction for VC-Decision:

Kernelization

Definition

Instances of bit-length n with parameter k can be reduced in time n^c to instances of size at most g(k) of the same problem, for some $g: \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$.

- Vertices of degree more than k need to be included.
- A graph G' in which each vertex has degree at most d and has a vertex cover of size s, can have at most s ⋅ d edges.
- Reduction for VC-Decision:
 - 1. $S \leftarrow \{v \in V : \deg(v) > k\}$
 - 2. $E' \leftarrow E \setminus S \times V$
 - 3. if $|E'| > (k |S|) \cdot k$ then return "no"
 - 4. return decision for (G', k |S|) where G' = (V(E'), E')

Kernelization

Definition

Instances of bit-length n with parameter k can be reduced in time n^c to instances of size at most g(k) of the same problem, for some $g: \mathbb{N} \to \mathbb{N}$ and $c \in \mathbb{N}$.

- ▶ Vertices of degree more than *k* need to be included.
- A graph G' in which each vertex has degree at most d and has a vertex cover of size s, can have at most s ⋅ d edges.
- Reduction for VC-Decision:
 - 1. $S \leftarrow \{v \in V : \deg(v) > k\}$
 - 2. $E' \leftarrow E \setminus S \times V$
 - 3. if $|E'| > (k |S|) \cdot k$ then return "no"
 - 4. return decision for (G', k |S|) where G' = (V(E'), E')
- ▶ Reduced instance G' has at most k^2 edges and $2k^2$ vertices.

Idea

Instead of finding exact optimum, find valid solution whose objective value is close to that of exact optimum.

Idea

Instead of finding exact optimum, find valid solution whose objective value is close to that of exact optimum.

Definition

A ρ -approximation algorithm is a polynomial-time algorithm that guarantees closeness to within a multiplicative factor of ρ .

Idea

Instead of finding exact optimum, find valid solution whose objective value is close to that of exact optimum.

Definition

A ρ -approximation algorithm is a polynomial-time algorithm that guarantees closeness to within a multiplicative factor of ρ .

Idea

Instead of finding exact optimum, find valid solution whose objective value is close to that of exact optimum.

Definition

A ρ -approximation algorithm is a polynomial-time algorithm that guarantees closeness to within a multiplicative factor of ρ .

Vertex Cover

Has 2-approximation algorithms:

Idea

Instead of finding exact optimum, find valid solution whose objective value is close to that of exact optimum.

Definition

A ρ -approximation algorithm is a polynomial-time algorithm that guarantees closeness to within a multiplicative factor of ρ .

Vertex Cover

Has 2-approximation algorithms:

Greedy

Idea

Instead of finding exact optimum, find valid solution whose objective value is close to that of exact optimum.

Definition

A ρ -approximation algorithm is a polynomial-time algorithm that guarantees closeness to within a multiplicative factor of ρ .

Vertex Cover

Has 2-approximation algorithms:

- Greedy
- Linear programming relaxation

ightharpoonup Consider maximal matching M in G, i.e., matching that cannot be extended.

- ightharpoonup Consider maximal matching M in G, i.e., matching that cannot be extended.
- ▶ OPT $\geq |M|$

- ightharpoonup Consider maximal matching M in G, i.e., matching that cannot be extended.
- ▶ OPT ≥ |*M*|
- \blacktriangleright Let S be set of all endpoints of edges in M.

- ightharpoonup Consider maximal matching M in G, i.e., matching that cannot be extended.
- ▶ OPT ≥ |M|
- ▶ Let S be set of all endpoints of edges in M.
 - *S* is a vertex cover.

- Consider maximal matching M in G, i.e., matching that cannot be extended.
- ▶ OPT ≥ |M|
- ▶ Let S be set of all endpoints of edges in M.
 - S is a vertex cover.
 - $\circ |S| \leq 2 \cdot |M|$

- Consider maximal matching M in G, i.e., matching that cannot be extended.
- ▶ OPT ≥ |M|
- ▶ Let S be set of all endpoints of edges in M.
 - S is a vertex cover.
 - ∘ $|S| \le 2 \cdot |M|$
 - $\circ |S| \le 2 \cdot |M| \le 2 \cdot \mathsf{OPT}$

▶ Optimizing a linear objective function over \mathbb{R}^n under linear inequality constraints.

- ▶ Optimizing a linear objective function over \mathbb{R}^n under linear inequality constraints.
- ► Widely used algorithm: simplex

- ▶ Optimizing a linear objective function over \mathbb{R}^n under linear inequality constraints.
- ► Widely used algorithm: simplex
- Can be solved in polynomial time.

- ▶ Optimizing a linear objective function over \mathbb{R}^n under linear inequality constraints.
- ► Widely used algorithm: simplex
- Can be solved in polynomial time.
- No strongly polynomial-time algorithm known.

Integral LP for Vertex Cover

▶ Variables: $x_v \in \mathbb{R}$ for each $v \in V$

- ▶ Variables: $x_v \in \mathbb{R}$ for each $v \in V$
- ▶ Objective: min f(x) where $f(x) \doteq \sum_{v \in V} x_v$

- ▶ Variables: $x_v \in \mathbb{R}$ for each $v \in V$
- ▶ Objective: min f(x) where $f(x) \doteq \sum_{v \in V} x_v$
- Constraints:

$$\circ (\forall e = (u, v) \in E) x_u + x_v \ge 1$$

- ▶ Variables: $x_v \in \mathbb{R}$ for each $v \in V$
- ▶ Objective: min f(x) where $f(x) \doteq \sum_{v \in V} x_v$
- Constraints:
 - $\circ \ (\forall e = (u, v) \in E) x_u + x_v \ge 1$
 - $\circ (\forall v \in V) 0 \le x_v \le 1$

- ▶ Variables: $x_v \in \mathbb{R}$ for each $v \in V$
- ▶ Objective: min f(x) where $f(x) \doteq \sum_{v \in V} x_v$
- ► Constraints:
 - $\circ (\forall e = (u, v) \in E) x_u + x_v \ge 1$
 - $\circ (\forall v \in V) 0 \leq x_v \leq 1$
 - All x_v are integral.

Integral LP for Vertex Cover

- ▶ Variables: $x_v \in \mathbb{R}$ for each $v \in V$
- ▶ Objective: min f(x) where $f(x) \doteq \sum_{v \in V} x_v$
- Constraints:
 - $\circ \ (\forall e = (u, v) \in E) x_u + x_v \ge 1$
 - $\circ (\forall v \in V) 0 \leq x_v \leq 1$
 - All x_v are integral.

Integral LP for Vertex Cover

- ▶ Variables: $x_v \in \mathbb{R}$ for each $v \in V$
- ▶ Objective: min f(x) where $f(x) \doteq \sum_{v \in V} x_v$
- Constraints:
 - $\circ (\forall e = (u, v) \in E) x_u + x_v \ge 1$
 - $\circ (\forall v \in V) 0 \leq x_v \leq 1$
 - All x_v are integral.

Relaxation

Dropping integrality constraints yields genuine LP.

Integral LP for Vertex Cover

- ▶ Variables: $x_v \in \mathbb{R}$ for each $v \in V$
- ▶ Objective: min f(x) where $f(x) \doteq \sum_{v \in V} x_v$
- Constraints:
 - $\circ (\forall e = (u, v) \in E) x_u + x_v \ge 1$
 - $\circ (\forall v \in V) 0 \leq x_v \leq 1$
 - All x_v are integral.

- Dropping integrality constraints yields genuine LP.
- ▶ Find solution of LP: x_v^* for $v \in V$.

Integral LP for Vertex Cover

- ▶ Variables: $x_v \in \mathbb{R}$ for each $v \in V$
- ▶ Objective: min f(x) where $f(x) \doteq \sum_{v \in V} x_v$
- Constraints:
 - $\circ \ (\forall e = (u, v) \in E) x_u + x_v \ge 1$
 - $\circ (\forall v \in V) 0 \leq x_v \leq 1$
 - All x_v are integral.

- Dropping integrality constraints yields genuine LP.
- ▶ Find solution of LP: x_v^* for $v \in V$.
- ▶ $f(x^*) \leq \mathsf{OPT}$

Integral LP for Vertex Cover

- ▶ Variables: $x_v \in \mathbb{R}$ for each $v \in V$
- ▶ Objective: min f(x) where $f(x) \doteq \sum_{v \in V} x_v$
- Constraints:
 - $\circ \ (\forall e = (u, v) \in E) x_u + x_v \ge 1$
 - $\circ (\forall v \in V) 0 \leq x_v \leq 1$
 - All x_v are integral.

- Dropping integrality constraints yields genuine LP.
- ▶ Find solution of LP: x_v^* for $v \in V$.
- ▶ $f(x^*) \leq \mathsf{OPT}$
- ▶ Let $S \doteq \{v \in V : x_v^* \ge 1/2\}$.

Integral LP for Vertex Cover

- ▶ Variables: $x_v \in \mathbb{R}$ for each $v \in V$
- ▶ Objective: min f(x) where $f(x) \doteq \sum_{v \in V} x_v$
- ► Constraints:
 - $\circ \ (\forall e = (u, v) \in E) x_u + x_v \ge 1$
 - $\circ (\forall v \in V) 0 \le x_v \le 1$
 - All x_v are integral.

- Dropping integrality constraints yields genuine LP.
- ▶ Find solution of LP: x_v^* for $v \in V$.
- ▶ $f(x^*) \leq \mathsf{OPT}$
- ▶ Let $S \doteq \{v \in V : x_v^* \ge 1/2\}$.
 - S is a vertex cover.

Integral LP for Vertex Cover

- ▶ Variables: $x_v \in \mathbb{R}$ for each $v \in V$
- ▶ Objective: min f(x) where $f(x) \doteq \sum_{v \in V} x_v$
- Constraints:
 - $\circ \ (\forall e = (u, v) \in E) x_u + x_v \ge 1$
 - $\circ (\forall v \in V) 0 \leq x_v \leq 1$
 - All x_v are integral.

- Dropping integrality constraints yields genuine LP.
- ▶ Find solution of LP: x_v^* for $v \in V$.
- ▶ $f(x^*) \leq \mathsf{OPT}$
- ▶ Let $S \doteq \{v \in V : x_v^* \ge 1/2\}$.
 - S is a vertex cover.
 - ∘ $|S| \le 2 \cdot \sum_{v \in S} x_v^* \le 2 \cdot \sum_{v \in V} x_v^* = 2 \cdot f(x^*) \le 2 \cdot \mathsf{OPT}$

► Algorithms that have returned good results in some cases, but no known guarantees.

- Algorithms that have returned good results in some cases, but no known guarantees.
- Often combine local search with restarts to get out of local optimum, using randomness.

- Algorithms that have returned good results in some cases, but no known guarantees.
- Often combine local search with restarts to get out of local optimum, using randomness.
- Often based on physical processes that minimize energy or entropy.

- Algorithms that have returned good results in some cases, but no known guarantees.
- Often combine local search with restarts to get out of local optimum, using randomness.
- Often based on physical processes that minimize energy or entropy.
- Examples: Metropolis, simulated annealing, etc.