Department of
Computer Science
& Engineering

计算机组成实验指导书-LAB3

	标题	文档编号	版本	页
—————————————————————————————————————	计算机组成实验指导书 LAB3	CSE-COA-LAB-003	0.3	1 of 15
リチルイナーノエイ主バ	作者	修改目期		\ \ \ \ \
Dept. of Computer Science & Engineering	WnSN Lab	9/21/2012		公升

1. OVERVIEW

1.1 实验名称

简单的类 MIPS 单周期处理器实现 - 控制器, ALU

- 1.2 实验目的
- 1. 理解 CPU 控制器, ALU 的原理
- 1.3 实验范围

本次实验将覆盖以下范围

- 1. ISE 的使用
- 2. Spartan-3E实验板的使用
- 3. 使用 Verilog HDL 进行逻辑设计
- 4. CPU 控制器的实现
- 5. ALU 的实现
- 1.4 实验预计时间

120~150分钟

1.5 实验报告与验收办法

需提交纸质报告,实验完毕需验收登记

1.6 注意事项

1. 本实验的逻辑设计工具为 Xilinx ISE13.4,但不仅限于此,学生可以使用自己喜欢的逻辑设计工具,如 Snyplify等。

	标题	文档编号	版本	页
——— 上海交通大学 ——— 计算机科学与工程系	计算机组成实验指导书 LAB3	CSE-COA-LAB-003	0.3	2 of 15
	作者	修改日期		۲
Dept. of Computer Science & Engineering	WnSN Lab	9/21/2012		公升

2. 新建工程

1 2 3

2.1 实验描述

2.1.1 新建工程

- 1. 启动 ISE 13.4。
- 2. 选择 File > New Project... 出现 New Project Wizard。
- 3. Project Name 填写 lab3,选择工程 Project Location,Top-level Source Type 选择 HDL。点击 Next。

4. Device Properties 中各属性填写如下:

Product Category: **ALL**

	标题	文档编号	版本	页
——— 上海交通大学 ——— 计算机科学与工程系	计算机组成实验指导书 LAB3	CSE-COA-LAB-003	0.3	3 of 15
	作者	修改日期		\ \ \ \ \
Dept. of Computer Science & Engineering	WnSN Lab	9/21/2012		公升

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.

Family: **Spartan3E**Device: **XC3S500E**Package: **FG320**

Speed: -4

 Synthesis Tool: **XST(VHDL/Verilog)**

Simulator: ISim (VHDL/Verilog), 也可用 Modelsim 仿真。

Preferred Language: Verilog

- 5. 点击 Next
- 6. 在 New Project Wizard Project Summary 中点击 Finish,结束建立工程

	标题	文档编号	版本	页
——— 上海交通大学 ——— 计算机科学与工程系	计算机组成实验指导书 LAB3	CSE-COA-LAB-003	0.3	4 of 15
月升加行于一工作示	作者	修改日期		1
Dept. of Computer Science & Engineering	WnSN Lab	9/21/2012		公升

3.1 实验描述

3.1.1 模块描述

R

J

主控制单元输入为指令的 opCode 字段,即操作码。操作码经过主控制单元的译码,给 ALUCtr,Data Memory,Registers,Muxs 等部件输出正确的控制信号。

орс	ode		rs			rt			rd	sh	amt		funct	
31	26	25		21	20		16	15	11	10	6	5		0
орс	ode		rs			rt				imm	ediate			
31	26	25		21	20		16	15						0
орс	ode					address								
31	26	25												0

Mips 基本指令格式

主控制模块(控制模块的 IO 定义)

	标题	文档编号	版本	页
—————————————————————————————————————	计算机组成实验指导书 LAB3	CSE-COA-LAB-003	0.3	5 of 15
计算机科字与上程系	作者	修改日期		/
Dept. of Computer Science & Engineering	WnSN Lab	9/21/2012		公升

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.

3.1.2 新建模块源文件

1. 新建文件命令: Project – New Source... 或: Hierarchy 窗口中,在正确设备名 (xc2vp30-7ff896 或类似)上右键鼠标,弹出菜单中点击 New Source...

Define module Specify ports for module. odule name Ctr					
Port Name	Direction	Bus	MSB	LSB	
pCode	input	T	5	0	_
regDst	output	┙			
duSrc	output	┙			
nemToReg	output	┓			
regWrite	output	J			
nemRead	output	J 🗆			
nemWrite	output	ॼ			
oranch	output	I			
alu0p	output	-	1	0	
ump	output				
	input				
	input				
					1

```
21 module Ctr(
      input [5:0] opCode,
22
      output regDst,
23
      output aluSrc,
24
      output memToReg,
25
26
      output regWrite,
      output memRead,
27
      output memWrite,
28
29
      output branch,
      output [1:0] aluOp,
30
      output jump
31
      );
32
33
34
   endmodule
35
```

	标题	文档编号	版本	页
——— 上海交通大学 ——— 计算机科学与工程系	计算机组成实验指导书 LAB3	CSE-COA-LAB-003	0.3	6 of 15
	作者	修改日期		41
Dept. of Computer Science & Engineering	WnSN Lab	9/21/2012		公升

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.

```
1
2
3
4
5
6
```

```
10
11
12
```

```
13
14
15
16
17
18
```

```
19
20
21
22
23
```



```
29
30
31
32
33
```

```
36
37
38
39
40
41
42
```

module Ctr(opCode, regDst, aluSrc, memToReg, regWrite, memRead, memWrite, branch, aluOp, jump);

3.1.3 编写译码功能

Input or output	Signal name	R-format	1w	SW	beq
Inputs	Op5	0	1	1	0
	Op4	0	0	0	0
	0p3	0	0	1	0
	Op2	0	0	0	1
	Op1	0	1	1	0
	ОрО	0	1	1	0
Outputs	RegDst	1	0	χ	Х
	ALUSrc	0	1	1	0
	MemtoReg	0	1	Х	Х
	RegWrite	1	1	0	0
	MemRead	0	1	0	0
	MemWrite	0	0	1	0
	Branch	0	0	0	1
	ALUOp1	1	0	0	0
	ALU0p0	0	0	0	1

主控制模块真值表(OpCode 与控制输出的编码关系)

注: Jump 指令编码是 000010, Jump 信号输出 1, 其余输出 0

指令	opCode
R型: add, sub, and, or, slt	000000
I型: lw	100011
I型: sw	101011
I型: beq	000100
」型: 」	000010

指令操作码

用 verilog 代码写出上述真值表内容。实现方式多种多样,这里给出一种使用 case 语 句的参考方案,如下图:

	标题	文档编号	版本	页
——— 上海交通大学 ——— 计算机科学与工程系	计算机组成实验指导书 LAB3	CSE-COA-LAB-003	0.3	7 of 15
	作者	修改日期		/
Dept. of Computer Science & Engineering	WnSN Lab	9/21/2012		公升

```
34
               reg regDst;
1
      35
               reg aluSrc;
                                                59
                                                              // add R type here
2
      36
               reg memToReg;
                                                60
                                                              // 6'bxxxxxx:
3
      37
               reg regWrite;
                                                              // begin
                                                61
               reg memRead;
     38
4
                                                62
                                                              // ..
     39
               reg memWrite;
                                                              // end
                                                63
5
               reg branch;
      40
                                                64
6
      41
               reg [1:0] aluOp;
                                                              // add lw here
                                                65
7
      42
               reg jump;
                                                              // add sw here
                                                66
8
      43
                                                67
                                                              // add beg here
9
      44
               always @ (opCode)
                                                68
                                                              default:
      45
               begin
10
                                                69
                                                              begin
                                                                  regDst = 0;
      46
               case (opCode)
                                                70
11
                   6'b000010: // jump
      47
                                                                  aluSrc = 0;
                                                71
12
      48
                   begin
                                                72
                                                                  memToReg = 0;
13
      49
                        regDst = 0;
                                                73
                                                                  regWrite = 0;
14
      50
                        aluSrc = 0;
                                                74
                                                                  memRead = 0;
15
     51
                        memToReg = 0;
                                                75
                                                                  memWrite = 0;
     52
                        regWrite = 0;
16
                                                76
                                                                  branch = 0;
                        memRead = 0;
                                                                  aluOp = 2'b00;
     53
                                                77
17
                        memWrite = 0;
     54
                                                78
                                                                  jump = 0;
18
     55
                        branch = 0;
                                                79
                                                              end
19
     56
                        aluOp = 2'bOO;
                                                80
                                                          endcase
20
     57
                        jump = 1;
                                                81
                                                          end
21
     58
                   end
                                                82
                                                     endmodule
```

3.1.4 添加 Testbench 仿真文件进行行为仿真

1. 右键选中 Hierarchy 窗口,点击 New Source, 创建 Testbench 文件

	标题	文档编号	版本	页
—————————————————————————————————————	计算机组成实验指导书 LAB3	CSE-COA-LAB-003	0.3	8 of 15
计算机科字与上程系	作者	修改日期		/\ *
Dept. or Computer Science & Engineering	WnSN Lab	9/21/2012		公升

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.

- 2. 下一个窗口选择 Ctr 模块,点击 Next。工具会自动为 Ctr 创建 Testbench 模板文件。
- 3. 在该文件下添加如下激励,即输入信号的控制。

```
initial begin
55
          // Initialize Inputs
56
57
           opCode = 0;
58
           // Wait 100 ns for global reset to finish
59
           #100;
60
61
           #100 opCode = 6'b000010; //jump
62
           // Add other stimuluses here
63
64
```

- 4. 在 View:栏中选中 Simulation, Hierarchy 窗口中选择 test_for_Ctr 文件。
- 5. 在 Processes:窗口中选择 Simulate Behavioral Model,双击开始仿真。
- 6. 若需要可选中 Process Properties 调整仿真运行时间。
- 7. 得到 ISim 仿真图,观察波形,查看仿真结果是否满足当初的设计。如果有错,检查并修改代码,重新仿真。(操作小技巧:小键盘-,+,快速缩放波形视野)
- 8. 下面给出一个仿真波形样例:

Ctr 的仿真波形

3.2 实验报告

	标题	文档编号	版本	页
——— 上海交通大学 ——— 计算机科学与工程系	计算机组成实验指导书 LAB3	CSE-COA-LAB-003	0.3	9 of 15
	作者	修改日期		/\ *
Dept. of Computer Science & Engineering	WnSN Lab	9/21/2012		公升

1 2 3

4.1 实验描述

4.1.1 模块描述

AluCtr 根据主控制器的 ALUOp 来判断指令类型。根据指令的后 6 位区分 R 型指令。综合这两种输入,控制 ALU 做正确的操作。

R	орсо	de		rs			rt		rd shamt		funct				
	31	26	25		21	20		16	15	11	10	6	5		0
1	орсо	de		rs			rt		immediate						
	31	26	25		21	20		16	15						0
J	орсо	de				address									
	31	26	25												0

ALU 控制模块的 IO 定义

4.1.2 新建模块源文件

略

	标题	文档编号	版本	页
——— 上海交通大学 ——— 计算机科学与工程系	计算机组成实验指导书 LAB3	CSE-COA-LAB-003	0.3	10 of 15
	作者	修改日期		/\ *
Dept. of Computer Science & Engineering	WnSN Lab	9/21/2012		公升

我们约定 aluCtrOut[3:0]的值与 ALU 操作的对应关系如下:

ALU control lines	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	set on less than
1100	NOR

aluCtrOut 和 alu 操作的对应关系

Instruction opcode	ALUOp	Instruction operation	Funct field	Desired ALU action	ALU control input
LW	00	load word	XXXXXX	add	0010
SW	00	store word	XXXXXX	add	0010
Branch equal	01	branch equal	XXXXXX	subtract	0110
R-type	10	add	100000	add	0010
R-type	10	subtract	100010	subtract	0110
R-type	10	AND	100100	and	0000
R-type	10	OR	100101	or	0001
R-type	10	set on less than	101010	set on less than	0111

根据 ALUOp 控制位和 R 型指令的不同功能码来设 ALU 控制位

注: ALU control input 实际上是 ALU 的输入,aluCtr 的输出

AL	.UOp	Funct field						
ALUOp1	ALUOp0	F5	F4	F3	F2	F1	FO	Operation
0	0	Х	Х	Х	Х	Х	Х	0010
Х	1	Х	Х	Х	Х	Х	Χ	0110
1	Х	Х	Х	0	0	0	0	0010
1	Х	Х	Х	0	0	1	0	0110
1	Х	Х	Х	0	1	0	0	0000
1	Х	Х	Х	0	1	0	1	0001
1	Х	Х	Х	1	0	1	0	0111

输入输出真值表

用 verilog 代码写出上述真值表内容。

实现方式多种多样,这里给出一种使用 casex 语句的参考方案,如下图:

	标题	文档编号	版本	页
——— 上海交通大学 ——— 计算机科学与工程系	计算机组成实验指导书 LAB3	CSE-COA-LAB-003	0.3	11 of 15
	作者	修改日期		۲
Dept. of Computer Science & Engineering	WnSN Lab	9/21/2012		公升

```
module AluCtr(aluOp, funct, aluCtr);
21
22
         input [1:0] aluOp;
23
         input [5:0] funct;
24
         output [3:0] aluCtr;
25
26
         reg [3:0] aluCtr;
27
28
         always @ (aluOp or funct)
29
         casex ({aluOp, funct})
30
             8'b00xxxxxx: aluCtr = 4'b0010;
             // add other 7 situations here
31
32
         endcase
33
34
    endmodule
```

注: {a,b}是位拼接运算符

4.1.4 仿真

- 1. 根据之前叙述的方法进行行为级仿真。新建文件 test_for_aluCtr。
- 2. 在 Testbench 中设定不同的输入。请覆盖所有的情况,以保证逻辑的正确。
- 3. 观察波形是否满足逻辑。如果有错,修改代码,重新仿真。

4. 下面给出仿真样例:

仿真波形(A)

仿真波形 (B)

5. 注意图 A 和图 B 的代码区别。

4.2 实验报告

	标题	文档编号	版本	页
—————————————————————————————————————	计算机组成实验指导书 LAB3	CSE-COA-LAB-003	0.3	12 of 15
计算机科字与上程系	作者	修改日期		/\ *
Dept. of Computer Science & Engineering	WnSN Lab	9/21/2012		公升

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.

5.1 实验描述

5.1.1 模块描述

根据 aluCtr,对两个输入做对应的操作。aluRes 输出结果。如果是减法操作,若结果为 0, zero 输出置为 1.

输入: input1 (32bit), input2 (32bit), aluCtr (4bit)

输出: zero(1bit), aluRes (32bit)

5.1.2 新建模块源文件

略

	标题	文档编号	版本	页
——— 上海交通大学 ——— 计算机科学与工程系	计算机组成实验指导书 LAB3	CSE-COA-LAB-003	0.3	13 of 15
月子加州于一工住示	作者	修改日期		// *
Dept. of Computer Science & Engineering	WnSN Lab	9/21/2012		公升

5.1.3 实现功能

ALU control lines	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	set on less than
1100	NOR

注: beq 实际是个减法操作

用 verilog 代码实现 ALU 功能。实现方式多种多样,比如 case 语句。这里给出另一种参考方案,如下图:

```
module Alu(input1, input2, aluCtr, zero, aluRes);
21
22
         input [31:0] input1;
23
         input [31:0] input2;
         input [3:0] aluCtr;
24
25
         output zero;
26
         output [31:0] aluRes;
27
         reg zero;
28
         reg [31:0] aluRes;
29
30
         always @ (input1 or input2 or aluCtr)
31
         begin
             if (aluCtr == 4'b0010) // add
32
                 aluRes = input1 + input2;
33
34
             else if(aluCtr == 4'b0110) // sub
35
             begin
36
                 aluRes = input1 - input2;
37 >
                 if (aluRes == 0)
38
                      zero = 1;
39
                 else
40
                      zero = 0;
41
             end
42
             // add and, or, slt here
43
         end
44
    endmodule
45
```

5.1.4 仿真

- 1. 根据之前叙述的方法新建文件 test_for_Alu
- 2. 在 testBench 中设定不同的输入。覆盖所有不同控制的情况,多选取一些输入数据,以保证逻辑的正确。

	标题	文档编号	版本	页
——— 上海交通大学 ——— 计算机科学与工程系	计算机组成实验指导书 LAB3	CSE-COA-LAB-003	0.3	14 of 15
	作者	修改日期		۲
Dept. of Computer Science & Engineering	WnSN Lab	9/21/2012		公升

Copyright © 2012 SJTU Department of Computer Science & Engineering. All rights reserved.

4. 下面给出仿真样例:

Han e	Value	0 ps	200 000 ps	400 000 ps	600 000 ps	800 000 ps	1 000 000 ps 1
🖟 zero	1						
aluRes[31:0]	0	0	170 255	2 (85	0	1 X	4294967294
input1[31:0]	1	0	255	1 255	1 255	170	0
input2[31:0]	1	0	170	1 (170	1 (170	255	1
Similar [3:0]	0110	0000	0001	0010 01	10 (01	11	1100

Alu仿真波形

5.2 实验报告

	L- HZ	·	uc	
	标题	文档编号	版本	页
一 上海交通大学 — 计算机科学与工程系 Dept. of Computer Science & Engineering	计算机组成实验指导书 LAB3	CSE-COA-LAB-003	0.3	15 of 15
	作者	修改日期		ハガ
	WnSN Lab	9/21/2012		公开