Stochastic Approximation

John Stachurski

April 15, 2025

Overview

- Fixed point iteration
- Stochastic approximation
- Examples

Fixed point iteration

Let

- $T: \Theta \to \Theta$ be a contraction map of modulus β
- Θ be a closed subset of \mathbb{R}^n

We know that $T^k\theta \to \bar{\theta}$ as $k \to \infty$ where $\bar{\theta}$ is the unique fixed point

Alternatively, we can iterate on the damped sequence

$$\theta_{k+1} = (1 - \alpha)\theta_k + \alpha T\theta_k$$

$$= \theta_k + \alpha (T\theta_k - \theta_k)$$

• $\alpha \in (0, 1)$

To see that the damped sequence converges, let

$$F\theta = \theta + \alpha(T\theta - \theta)$$

Then

$$F\bar{\theta} = \bar{\theta} + \alpha(T\bar{\theta} - \bar{\theta}) = \bar{\theta}$$

and

$$\|F\theta - F\theta'\| \le (1 - \alpha)\|\theta - \theta'\| + \alpha\|T\theta - T\theta'\| \le (1 - \alpha + \alpha\beta)\|\theta - \theta'\|$$

Note

$$1 - \alpha + \alpha \beta < 1 \iff \beta < 1$$

Sometimes damped iteration is faster

This tends to be true when there are oscillations

For example, let's ordinary and damped iteration it with

$$T = A = \begin{pmatrix} 0.5 & 0.6 \\ 0.4 & -0.7 \end{pmatrix}$$
 and $\alpha = 0.7$

The fixed point is

$$\bar{\theta} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Stochastic Approximation

Suppose T is a map with fixed point $\bar{\theta}=T\bar{\theta}$

We can only evaluate T with noise:

input θ and receive $T\theta + W$

- (W_k) is a random (vector-valued) sequence
- We cannot observe W_k , only $T\theta + W_k$

Robbins–Monro algorithm to compute the fixed point $\bar{\theta}$:

$$\theta_{k+1} = \theta_k + \alpha_k [T\theta_k + W_k - \theta_k]$$

• (α_k) is a sequence in (0,1)

Side-by-side comparison:

Here's damped iteration:

$$\theta_{k+1} = \theta_k + \alpha (T\theta_k - \theta_k)$$

This is Robbins-Monro

$$\theta_{k+1} = \theta_k + \alpha_k (T\theta_k + W_k - \theta_k)$$

By our earlier analysis, $\theta_k \to \bar{\theta}$ if $W_k \equiv 0$ and $\alpha_k \equiv \alpha$

More generally, [Tsi94] proves that if:

- ullet T is an order-preserving contraction map with fixed point $ar{ heta}$
- $\mathbb{E}[W_{k+1} \mid \mathcal{F}_k] = 0$ for all $k \geqslant 0$
- $\sum_{k\geqslant 0} \alpha_k = \infty$ and $\sum_{k\geqslant 0} \alpha_k^2 < \infty$
- · some other technical assumptions,

then

 $\theta_k o \bar{\theta}$ with probability one

Example: Asset Pricing

The value of an asset is given by

$$V_{t} = \mathbb{E}_{t} M_{t+1} [V_{t+1} + D_{t+1}]$$

Assume that

- (X_t) is P-Markov on finite set X
- $M_{t+1} = m(X_{t+1})$ for all t
- $D_{t+1} = d(X_{t+1})$ for all t

(This is a version of a standard Lucas tree model.)

Then the solution has the form $V_t = v(X_t)$ where v solves

$$v(x) = \sum_{x'} m(x')[v(x') + d(x')]P(x, x')$$

With

$$(Kf)(x) := \sum_{x'} m(x') f(x') P(x, x') \quad \text{and} \quad b(x) := Kd$$

we can write the equation as

$$v = Tv$$
 where $Tv := Kv + b$

The solution has the form

$$v^* = (I - K)^{-1}b$$