Fast(er) Exact Decoding and Global Training for *TBDPs* via a Minimal Feature Set

Tianze Shi, Liang Huang, Lillian Lee

Cornell & Oregon State -- EMNLP17

https://github.com/tzshi/dp-parser-emnlp17

AntNLP -- Tao Ji

taoji.cs@gmail.com

Outline

- Transition-based Dependency Parsing
- Three Transition Systems
- Motivation
- A Minimal Feature Set
- Dynamic Programming for TBDPs
- Practical Optimal Algorithms
- Experiments & CoNLL 2017 Shared Task
- Conclusion

TBDPs

Configuration: (S, B, A)

Initial: $([], [0, 1, ..., n], \{])$

Terminal: (S, [], A)

Shift: $(S, i|B, A) \Rightarrow (S|i, B, A)$

Reduce: $(S|i,B,A) \Rightarrow (S,B,A)$

Right-Arc(k): $(S|i,j|B,A) \Rightarrow (S|i|j,B,A \cup \{(i,j,k)\})$

Left-Arc(k): $(S|i,j|B,A) \Rightarrow (S,j|B,A \cup \{(j,i,k)\})$

Projectivity

Arc-Eager

```
Configuration: (S, B, A) [S = Stack, B = Buffer, A = Arcs]
```

Initial:
$$([], [0, 1, ..., n], \{])$$

Terminal:
$$(S, [], A)$$

Shift:
$$(S, i|B, A) \Rightarrow (S|i, B, A)$$

Reduce:
$$(S|i,B,A) \Rightarrow (S,B,A)$$
 $h(i,A)$

Right-Arc(k):
$$(S|i,j|B,A) \Rightarrow (S|i|j,B,A \cup \{(i,j,k)\})$$

Left-Arc(k):
$$(S|i,j|B,A) \Rightarrow (S,j|B,A \cup \{(j,i,k)\}) \neg h(i,A) \land i \neq 0$$

Notation:
$$S|i = \text{stack with top } i \text{ and remainder } S$$

 $j|B = \text{buffer with head } j \text{ and remainder } B$
 $h(i,A) = i \text{ has a head in } A$

Arc-Standard

Configuration: (S, B, A) [S = Stack, B = Buffer, A = Arcs]

Initial: $([], [0, 1, ..., n], \{])$

Terminal: ([0], [], A)

Shift: $(S, i|B, A) \Rightarrow (S|i, B, A)$

Right-Arc(k): $(S|i|j,B,A) \Rightarrow (S|i,B,A \cup \{(i,j,k)\})$

Left-Arc(k**):** $(S|i|j,B,A) \Rightarrow (S|j,B,A \cup \{(j,i,k)\}) \quad i \neq 0$

Arc-Hybrid

$$sh[(\sigma, b_0|\beta, A)] = (\sigma|b_0, \beta, A)$$

$$re_{\neg}[(\sigma|s_1|s_0, \beta, A)] = (\sigma|s_1, \beta, A \cup \{(s_1, s_0)\})$$

$$re_{\neg}[(\sigma|s_0, b_0|\beta, A)] = (\sigma, b_0|\beta, A \cup \{(b_0, s_0)\})$$

Introduction

- Plug their minimal feature set into the dynamic-programming framework.
- Produce the first implementation of worst-case $O(n^3)$ exact decoders for arc-hybrid and arc-eager transition systems.
- With their minimal features, we also present ${\cal O}(n^3)$ global training methods.
- Their achieve the best UAS reported (to our knowledge) on the CTB and the "second-best-in-class" result on the PTB.
- Their had the top average performance on the four surprise languages and on the small treebank subset.

BIST Parser

Configuration:

Minimal Feature Set

Features	Arc-standard	Arc-hybrid	Arc-eager
$\{\vec{s}_2,\vec{s}_1,\vec{s}_0,\vec{b}_0\}$	$93.95_{\pm0.12}$	$94.08_{\pm0.13}$	$93.92_{\pm 0.04}$
$\{\stackrel{ ightarrow}{s}_1,\stackrel{ ightarrow}{s}_0,\stackrel{ ightarrow}{b}_0\}$	$94.13_{\pm 0.06}$	$94.08_{\pm 0.05}$	$93.91_{\pm 0.07}$
$\{\stackrel{\leftrightarrow}{s}_0,\stackrel{\rightarrow}{b}_0\}$	$54.47_{\pm 0.36}$	$94.03_{\pm 0.12}$	$93.92_{\pm 0.07}$
$\{\overrightarrow{b}_0\}$	$47.11_{\pm 0.44}$	$52.39_{\pm 0.23}$	$79.15_{\pm 0.06}$
Min positions	Arc-standard	Arc-hybrid	Arc-eager
K&G 2016a	-	4	-
C&H 2016a	3	-	-
our work	3	2	2

Dynamic Programming

- If beam search reduces search errors, why not exact inference?
- Dynamic programming for transition-based parsers:
 - Using a graph-structured stack [Huang and Sagae 2010]
 - Using push-computations [Kuhlmann et al. 2011]
- Adds constraints on feature representations

Features

Overlapping Subproblems

Optimal Substructure

Deduction System for Arc-Eager Parsing

Items:
$$[i^b, j] \Leftrightarrow (S, i|B, A) \Rightarrow^* (S|i, j|B', A')$$

$$b = \begin{cases} 1 & \text{if } \llbracket h(i) \in A' \rrbracket \\ 0 & \text{otherwise} \end{cases}$$

Goal: $[0^0, n+1]$

Axiom: $[0^0, 1]$

Rules: Shift: $[i^b, j] \Rightarrow [j^0, j+1]$

Reduce: $[i^b, m] \land [m^1, j] \Rightarrow [i^b, j]$

Right-Arc: $[i^b, j] \Rightarrow [j^1, j+1]$

Left-Arc: $[i^b, m] \wedge [m^0, j] \Rightarrow [i^b, j]$

[Kuhlmann et al. 2011]

Axiom
$$[0^0, 1]$$
 0^0

Inference Rules

sh
$$\frac{[i^b,j]}{[j^0,j+1]} \qquad \frac{\overset{i^b}{\smile} \overset{j}{\smile}}{\overset{j^0}{\smile} j+1} \quad j\leqslant n$$

ra
$$\frac{[i^b,j]}{[j^1,j+1]} \qquad \frac{\overset{i}{\int} \overset{j}{\int}}{\overset{j^1}{\int} j+1} \quad \overset{i \overset{j}{\cap} j}{j \leqslant n}$$

re
$$\frac{[k^b,i] \ [i^1,j]}{[k^b,j]}$$
 $\frac{k^b \ i^b \ j}{k^b \ 0^0 \ n+1}$

Deduction System

Axiom [0, 0, 1]

$$\begin{smallmatrix} 0 \\ 0 & & 1 \end{smallmatrix}$$

Inference Rules

sh
$$rac{[i,h,j]}{[j,j,j+1]}$$

$$\frac{i \stackrel{h}{ }_{j}}{\underset{j \stackrel{h}{ } \downarrow j+1}{ }} \quad j \leqslant n$$

re
$$\frac{[i,h_1,k] \quad [k,h_2,j]}{[i,h_2,j]} \quad \frac{i \overset{h_1}{ riangle} k \overset{h_2}{ riangle}}{i \overset{h_1}{ riangle} h_2} \quad h_1 \overset{h_2}{ riangle}$$

Goal
$$[0, 0, n+1]$$

(a) Arc-standard

Axiom [0, 1]

$\stackrel{0}{\bigsqcup}^{1}$

Inference Rules

$$\text{sh} \qquad \frac{[i,j]}{[j,j+1]} \qquad \frac{\overset{i}{ \smile} \overset{j}{ \smile}}{\overset{j}{ \smile} +1} \quad j \leqslant n$$

re
$$\frac{[k,i] \quad [i,j]}{[k,j]}$$

re...
$$\frac{[k,i] \quad [i,j]}{[k,j]} \quad \frac{ }{k} \quad \frac{j}{j} \quad i \quad j$$

Goal
$$[0, n+1]$$

n+1

Exact Decoding

$$rac{[i^b,j]:v}{[j^0,j+1]:0} (ext{sh}) \ rac{[k^b,i]:v_1 \quad [i^0,j]:v_2}{[k^b,j]:v_1+v_2+\Delta} (ext{re}_{oldsymbol{\sim}})$$

Configuration

Global Training

$$\begin{aligned} \max_{\mathbf{t}} \left(F(\mathbf{t}) + cost(\mathbf{t}^{\text{gold}}, \mathbf{t}) - F(\mathbf{t}^{\text{gold}}) \right) \\ \frac{\left[k^b, i \right] : v_1 \ \left[i^0, j \right] : v_2}{\left[k^b, j \right] : v_1 + v_2 + \Delta'} (\text{re}) \end{aligned}$$

where $\Delta' = \Delta + \mathbf{1} (head(w_i) \neq w_j)$.

Experiments

Model	Training Footures	Features	PTB		СТВ	
Wiodei I	Training	reatures	UAS (%)	UEM (%)	UAS (%)	UEM (%)
Arc-standard	Local	$\{\vec{s}_2,\vec{s}_1,\vec{s}_0,\vec{b}_0\}$	$93.95_{\pm 0.12}$	$52.29_{\pm 0.66}$	$88.01_{\pm 0.26}$	$36.87_{\pm0.53}$
Arc-hybrid	Local	$\{\stackrel{\rightarrow}{s}_2,\stackrel{\rightarrow}{s}_1,\stackrel{\rightarrow}{s}_0,\stackrel{\rightarrow}{b}_0\}$	$93.89_{\pm0.10}$	$50.82_{\pm 0.75}$	$87.87_{\pm0.17}$	$35.47_{\pm0.48}$
	Local	$\{\stackrel{\leadsto}{s}_0,\stackrel{\leadsto}{b}_0\}$	$93.80_{\pm0.12}$	$49.66_{\pm 0.43}$	$87.78_{\pm0.09}$	$35.09_{\pm 0.40}$
	Global	$\{\stackrel{\rightarrow}{s}_0,\stackrel{\rightarrow}{b}_0\}$	$94.43_{\pm 0.08}$	$53.03_{\pm0.71}$	$88.38_{\pm0.11}$	$36.59_{\pm0.27}$
	Local	$\{\stackrel{ ightarrow}{s}_2,\stackrel{ ightarrow}{s}_1,\stackrel{ ightarrow}{s}_0,\stackrel{ ightarrow}{b}_0\}$	$93.80_{\pm0.12}$	$49.66_{\pm 0.43}$	$87.49_{\pm0.20}$	$33.15_{\pm 0.72}$
Arc-eager	Local	$\{\stackrel{ ightarrow}{ec{s}}_0,\stackrel{ ightarrow}{ec{b}}_0\}$	$93.77_{\pm0.08}$	$49.71_{\pm0.24}$	$87.33_{\pm0.11}$	$34.17_{\pm 0.41}$
Gl	Global	$\{\stackrel{\rightarrow}{s}_0,\stackrel{\rightarrow}{b}_0\}$	$94.53_{\pm 0.05}$	$53.77_{\pm 0.46}$	$88.62_{\pm 0.09}$	$37.75_{\pm 0.87}$
Edge-factored	Global	$\{\stackrel{\rightarrow}{h},\stackrel{\rightarrow}{m}\}$	94.50 $_{\pm 0.13}$	$53.86_{\pm0.78}$	$88.25_{\pm 0.12}$	$36.42_{\pm 0.52}$

Experiments

Following Dozat and Manning (2017), we use a deep bi-affine scoring function:

$$score^{MST}(h, m) = v_h^{\mathsf{T}} U v_m + b_h \cdot v_h + b_m \cdot v_m + b$$

where

$$v_h = ext{MLP}^{ ext{MST-head}}(\overset{\leftarrow}{h})$$
 $v_m = ext{MLP}^{ ext{MST-mod}}(\overset{\leftarrow}{m})$

$$v_m = \text{MLP}^{\text{MST-mod}}(\vec{m})$$

	UAS F1	LAS F1	Official Ranking
Big Treebanks	85.16	79.85	2
Small Treebanks	70.59	61.49	1
PUD Treebanks	80.17	71.49	2
Surprise Languages	58.40	47.54	1
Overall	80.35	75.00	2

Target	Source	UAS F1	LAS F1	Official Ranking
bxr	hi	50.79	31.98	2
hsb	CS	69.45	61.70	1
kmr	fa	54.51	47.53	1
sme	fi	58.85	48.96	1
Average		58.40	47.54	1

Thank you!

Q&A