Data transformation with dplyr

Practice with penguins

Bigabwamukama

Table of contents

Task 1: Create a subset of the data using filter()
Task 2: Add new columns with mutate()
Task 3: Summarize data with group_by() and summarize() & count() 9
Task 7: Data communication
Task 8: Stage, Commit & Push to GitHub
] : h(]
library(palmerpenguins)
library(dplyr)
Il everaiges in this assignment use the penguing data as a starting point
ll exercises in this assignment use the penguins data as a starting point.
1. Run all code chunks above.
2. Run the code chunk that contains glimpse(penguins).
3. How many variables are in the data set?
Answer: 8 variables (corresponds to number of columns)
4. How many observations are in the data set?
Answer: 344 observations (corresponds to number of rows)
5. What data types are contained in the variables? (Reminder: https://ds4owd-001.github.io/website/slides/lec-02-visualisation.html#/types-of-variables)
**Answer **: factor,double, integer
glimpse(penguins)

```
Rows: 344
Columns: 8
$ species
                                                                                       <fct> Adelie, 
$ island
                                                                                       <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torgerse~
                                                                                       <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.1, ~
$ bill_length_mm
$ bill_depth_mm
                                                                                       <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.1, ~
$ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, 186~
$ body_mass_g
                                                                                       <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 3475, ~
                                                                                       <fct> male, female, female, NA, female, male, female, male~
$ sex
                                                                                       <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007
$ year
```

```
nrow(penguins)
```

[1] 344

Task 1: Create a subset of the data using filter()

Use filter() to create a subset from penguins that only contains observations for Adelie penguins.

```
penguins |>
  filter(species == "Adelie")
```

A tibble: 152 x 8

	species	island	${\tt bill_length_mm}$	${\tt bill_depth_mm}$	${\tt flipper_length_mm}$	body_mass_g
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>
1	Adelie	Torgersen	39.1	18.7	181	3750
2	Adelie	Torgersen	39.5	17.4	186	3800
3	Adelie	Torgersen	40.3	18	195	3250
4	Adelie	Torgersen	NA	NA	NA	NA
5	Adelie	Torgersen	36.7	19.3	193	3450
6	Adelie	Torgersen	39.3	20.6	190	3650
7	Adelie	Torgersen	38.9	17.8	181	3625
8	Adelie	Torgersen	39.2	19.6	195	4675
9	Adelie	Torgersen	34.1	18.1	193	3475
10	Adelie	Torgersen	42	20.2	190	4250

[#] i 142 more rows

[#] i 2 more variables: sex <fct>, year <int>

Use filter() to create a subset from penguins that only contains observations where body mass is less than or equal to 2900 g.

```
penguins |>
  filter(body_mass_g <= 2900)</pre>
```

#	A tibble:	7 x 8				
	species	island	${\tt bill_length_mm}$	${\tt bill_depth_mm}$	flipper_length_mm	body_mass_g
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>
1	Adelie	Biscoe	34.5	18.1	187	2900
2	Adelie	Biscoe	36.5	16.6	181	2850
3	Adelie	Biscoe	36.4	17.1	184	2850
4	Adelie	Dream	33.1	16.1	178	2900
5	Adelie	Torgersen	38.6	17	188	2900
6	${\tt Chinstrap}$	Dream	43.2	16.6	187	2900
7	${\tt Chinstrap}$	Dream	46.9	16.6	192	2700
#	i 2 more v	variables:	sex <fct>, year</fct>	r <int></int>		

Use filter() to create a subset from penguins that only contains observations for Adelie penguins with a bill length greater than 40 mm.

```
penguins |>
  filter(species == "Adelie" & bill_length_mm > 40)
```

```
# A tibble: 51 x 8
  species island
                     bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
  <fct>
           <fct>
                               <dbl>
                                             <dbl>
                                                                <int>
                                                                            <int>
                                40.3
1 Adelie Torgersen
                                              18
                                                                  195
                                                                             3250
2 Adelie Torgersen
                                42
                                              20.2
                                                                  190
                                                                             4250
3 Adelie
           Torgersen
                               41.1
                                              17.6
                                                                  182
                                                                             3200
                                42.5
4 Adelie
           Torgersen
                                              20.7
                                                                  197
                                                                             4500
5 Adelie Torgersen
                                46
                                              21.5
                                                                  194
                                                                             4200
6 Adelie Biscoe
                               40.6
                                              18.6
                                                                  183
                                                                             3550
7 Adelie Biscoe
                               40.5
                                              17.9
                                                                  187
                                                                             3200
8 Adelie Biscoe
                               40.5
                                              18.9
                                                                  180
                                                                             3950
9 Adelie Dream
                               40.9
                                              18.9
                                                                  184
                                                                             3900
10 Adelie Dream
                               42.2
                                              18.5
                                                                  180
                                                                             3550
# i 41 more rows
```

i 2 more variables: sex <fct>, year <int>

Use filter() to create a subset from penguins that excludes observations for chinstraps.

```
penguins |>
  filter(species != "Chinstrap")
```

A tibble: 276 x 8

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>
1	Adelie	Torgersen	39.1	18.7	181	3750
2	Adelie	Torgersen	39.5	17.4	186	3800
3	Adelie	Torgersen	40.3	18	195	3250
4	Adelie	Torgersen	NA	NA	NA	NA
5	Adelie	Torgersen	36.7	19.3	193	3450
6	Adelie	Torgersen	39.3	20.6	190	3650
7	Adelie	Torgersen	38.9	17.8	181	3625
8	Adelie	Torgersen	39.2	19.6	195	4675
9	Adelie	Torgersen	34.1	18.1	193	3475
10	Adelie	Torgersen	42	20.2	190	4250

i 266 more rows

i 2 more variables: sex <fct>, year <int>

Use filter() to create a subset from penguins that only contains gentoo penguins with a bill depth greater than or equal to 15.5 millimeters.

```
penguins |>
  filter(species == "Gentoo" & bill_depth_mm >= 15.5)
```

A tibble: 40 x 8

	species	${\tt island}$	${\tt bill_length_mm}$	${\tt bill_depth_mm}$	${\tt flipper_length_mm}$	body_mass_g
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>
1	Gentoo	${\tt Biscoe}$	50	16.3	230	5700
2	Gentoo	${\tt Biscoe}$	49	16.1	216	5550
3	Gentoo	Biscoe	49.3	15.7	217	5850
4	Gentoo	Biscoe	46.3	15.8	215	5050
5	Gentoo	Biscoe	59.6	17	230	6050
6	Gentoo	Biscoe	48.4	16.3	220	5400
7	Gentoo	Biscoe	44.4	17.3	219	5250
8	Gentoo	Biscoe	48.7	15.7	208	5350
9	Gentoo	Biscoe	49.6	16	225	5700
10	Gentoo	Biscoe	50.5	15.9	222	5550

[#] i 30 more rows

[#] i 2 more variables: sex <fct>, year <int>

Use filter() to create a subset from penguins that contains observations for male penguins recorded at Dream and Biscoe Islands.

```
penguins |>
  filter(sex == "male", island %in% c("Dream", "Biscoe"))
```

A tibble: 145 x 8

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>
1	Adelie	Biscoe	37.7	18.7	180	3600
2	Adelie	Biscoe	38.2	18.1	185	3950
3	Adelie	Biscoe	38.8	17.2	180	3800
4	Adelie	Biscoe	40.6	18.6	183	3550
5	Adelie	Biscoe	40.5	18.9	180	3950
6	Adelie	${\tt Dream}$	37.2	18.1	178	3900
7	Adelie	${\tt Dream}$	40.9	18.9	184	3900
8	Adelie	${\tt Dream}$	39.2	21.1	196	4150
9	Adelie	${\tt Dream}$	38.8	20	190	3950
10	Adelie	${\tt Dream}$	39.8	19.1	184	4650
	405					

[#] i 135 more rows

Use filter() to create a subset from penguins that contains observations for female Adelie penguins with bill lengths less than 35 mm.

```
penguins |>
  filter(sex == "female", species == "Adelie", bill_length_mm < 35)</pre>
```

```
# A tibble: 7 x 8
```

	species	island	bill_length_mm	${\tt bill_depth_mm}$	${\tt flipper_length_mm}$	body_mass_g
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>
1	Adelie	Torgersen	34.4	18.4	184	3325
2	Adelie	Biscoe	34.5	18.1	187	2900
3	Adelie	Torgersen	33.5	19	190	3600
4	Adelie	Torgersen	34.6	17.2	189	3200
5	Adelie	Dream	34	17.1	185	3400
6	Adelie	Dream	33.1	16.1	178	2900
7	Adelie	Dream	32.1	15.5	188	3050

[#] i 2 more variables: sex <fct>, year <int>

[#] i 2 more variables: sex <fct>, year <int>

Use filter() to create a subset from penguins containing observations for female chinstrap penguins on Dream and Torgersen Islands.

A tibble: 34 x 8

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>
1	${\tt Chinstrap}$	${\tt Dream}$	46.5	17.9	192	3500
2	${\tt Chinstrap}$	${\tt Dream}$	45.4	18.7	188	3525
3	${\tt Chinstrap}$	${\tt Dream}$	45.2	17.8	198	3950
4	${\tt Chinstrap}$	${\tt Dream}$	46.1	18.2	178	3250
5	${\tt Chinstrap}$	${\tt Dream}$	46	18.9	195	4150
6	${\tt Chinstrap}$	${\tt Dream}$	46.6	17.8	193	3800
7	${\tt Chinstrap}$	${\tt Dream}$	47	17.3	185	3700
8	${\tt Chinstrap}$	${\tt Dream}$	45.9	17.1	190	3575
9	${\tt Chinstrap}$	${\tt Dream}$	58	17.8	181	3700
10	${\tt Chinstrap}$	${\tt Dream}$	46.4	18.6	190	3450
	. 04					

[#] i 24 more rows

Use filter() to create a subset from penguins that contains penguins that are either gentoos OR have a body mass greater than 4500 g.

```
penguins |>
  filter(species == "Gentoo" | body_mass_g > 4500)
```

A tibble: 133 x 8

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>
1	Adelie	Torgersen	39.2	19.6	195	4675
2	Adelie	Dream	39.8	19.1	184	4650
3	Adelie	Dream	39.6	18.8	190	4600
4	Adelie	Torgersen	42.9	17.6	196	4700
5	Adelie	Biscoe	41	20	203	4725
6	Adelie	Biscoe	43.2	19	197	4775
7	Adelie	Biscoe	45.6	20.3	191	4600
8	Gentoo	Biscoe	46.1	13.2	211	4500

[#] i 2 more variables: sex <fct>, year <int>

9 Gentoo	Biscoe	50	16.3	230	5700
10 Gentoo	Biscoe	48.7	14.1	210	4450
# i 123 mo	re rows				
# i 2 more	variables: sex <fct< td=""><td>>, year <int></int></td><td></td><td></td><td></td></fct<>	>, year <int></int>			

Task 2: Add new columns with mutate()

Add a column to penguins that contains a new column flipper_m, which is the flipper_length_mm (flipper length in millimeters) converted to units of meters.

```
penguins |>
  mutate(flipper_m = flipper_length_mm / 1000)
```

# 1	# A tibble: 344 x 9					
	species	island	${\tt bill_length_mm}$	${\tt bill_depth_mm}$	${\tt flipper_length_mm}$	body_mass_g
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>
1	Adelie	Torgersen	39.1	18.7	181	3750
2	Adelie	Torgersen	39.5	17.4	186	3800
3	Adelie	Torgersen	40.3	18	195	3250
4	Adelie	Torgersen	NA	NA	NA	NA
5	Adelie	Torgersen	36.7	19.3	193	3450
6	Adelie	Torgersen	39.3	20.6	190	3650
7	Adelie	Torgersen	38.9	17.8	181	3625
8	Adelie	Torgersen	39.2	19.6	195	4675
9	Adelie	Torgersen	34.1	18.1	193	3475
10	Adelie	Torgersen	42	20.2	190	4250
# :	# i 334 more rows					

[#] i 3 more variables: sex <fct>, year <int>, flipper_m <dbl>

Add a new column to penguins that contains a new column body_mass_kg, which is the body_mass_g (body mass in grams) converted to units of kilograms.

```
penguins |>
  mutate(body_mass_kg = body_mass_g / 1000)
```

2 Adelie	Torgersen	39.5	17.4	186	3800
3 Adelie	Torgersen	40.3	18	195	3250
4 Adelie	Torgersen	NA	NA	NA	NA
5 Adelie	Torgersen	36.7	19.3	193	3450
6 Adelie	Torgersen	39.3	20.6	190	3650
7 Adelie	Torgersen	38.9	17.8	181	3625
8 Adelie	Torgersen	39.2	19.6	195	4675
9 Adelie	Torgersen	34.1	18.1	193	3475
10 Adelie	Torgersen	42	20.2	190	4250
# i 334 mo	re rows				

[#] i 3 more variables: sex <fct>, year <int>, body_mass_kg <dbl>

Add a new column to penguins that contains a new column bill_ratio, which is the ratio of bill length to bill depth.

```
penguins |>
  mutate(bill_ratio = bill_length_mm / bill_depth_mm)
```

```
# A tibble: 344 x 9
   species island
                      bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
   <fct>
           <fct>
                               <dbl>
                                              <dbl>
                                                                  <int>
                                                                              <int>
 1 Adelie
                                39.1
           Torgersen
                                               18.7
                                                                    181
                                                                               3750
2 Adelie
           Torgersen
                                39.5
                                               17.4
                                                                    186
                                                                               3800
3 Adelie
           Torgersen
                                40.3
                                               18
                                                                    195
                                                                               3250
4 Adelie
           Torgersen
                                                                    NA
                                NA
                                               NA
                                                                                 NA
5 Adelie
           Torgersen
                                36.7
                                               19.3
                                                                    193
                                                                               3450
6 Adelie
           Torgersen
                                39.3
                                               20.6
                                                                   190
                                                                               3650
           Torgersen
                                38.9
                                               17.8
                                                                    181
                                                                               3625
7 Adelie
                                39.2
8 Adelie
           Torgersen
                                               19.6
                                                                   195
                                                                               4675
9 Adelie
           Torgersen
                                34.1
                                               18.1
                                                                    193
                                                                               3475
10 Adelie
           Torgersen
                                42
                                               20.2
                                                                    190
                                                                               4250
# i 334 more rows
```

i 3 more variables: sex <fct>, year <int>, bill_ratio <dbl>

Add a new column called id to penguins with a sequence of values from 1 to the length of the data frame. Use relocate() to move the column to the first position in the data frame.

```
penguins |>
  mutate(id = 1:n()) |>
  relocate(id)
```

```
# A tibble: 344 x 9
      id species island
                            bill_length_mm bill_depth_mm flipper_length_mm
   <int> <fct>
                  <fct>
                                      <dbl>
                                                     <dbl>
                                                                        <int>
                                       39.1
                                                      18.7
 1
       1 Adelie
                 Torgersen
                                                                          181
2
       2 Adelie
                 Torgersen
                                       39.5
                                                      17.4
                                                                          186
3
       3 Adelie
                                       40.3
                                                                          195
                 Torgersen
                                                      18
 4
       4 Adelie
                 Torgersen
                                       NA
                                                      NA
                                                                           NA
5
       5 Adelie
                 Torgersen
                                       36.7
                                                      19.3
                                                                          193
6
       6 Adelie
                                       39.3
                                                      20.6
                                                                          190
                 Torgersen
7
       7 Adelie
                 Torgersen
                                       38.9
                                                      17.8
                                                                          181
8
                                       39.2
                                                                          195
       8 Adelie
                 Torgersen
                                                      19.6
9
       9 Adelie
                 Torgersen
                                       34.1
                                                      18.1
                                                                          193
10
                 Torgersen
                                       42
                                                      20.2
                                                                          190
      10 Adelie
# i 334 more rows
# i 3 more variables: body_mass_g <int>, sex <fct>, year <int>
```

Task 3: Summarize data with group_by() and summarize() & count()

Starting with penguins, group the data by species, then create a summary table containing the maximum and minimum length of flippers (call the columns flip_max and flip_min). How will you handle NA values?

```
penguins |>
    group_by(species) |>
    summarize(flip_max = max(flipper_length_mm, na.rm = TRUE),
               flip_min = min(flipper_length_mm, na.rm = TRUE))
# A tibble: 3 x 3
 species
            flip_max flip_min
  <fct>
               <int>
                         <int>
1 Adelie
                 210
                           172
2 Chinstrap
                 212
                           178
3 Gentoo
                 231
                           203
```

Starting with penguins, group the data by species and year, then create a summary table containing the mean bill depth (call this bill_depth_mean), the mean bill length (call this bill_length_mean), and the count for each group. How will you handle NA values?

```
penguins |>
  filter(!is.na(bill_depth_mm), !is.na(bill_length_mm)) |>
```

```
group_by(species, year) |>
    summarize(bill_depth_mean = mean(bill_depth_mm),
               bill_length_mean = mean(bill_length_mm),
               count = n()
# A tibble: 9 x 5
# Groups:
            species [3]
             year bill_depth_mean bill_length_mean count
  species
  <fct>
            <int>
                             <dbl>
                                               <dbl> <int>
1 Adelie
             2007
                              18.8
                                                38.8
                                                        49
2 Adelie
             2008
                              18.2
                                                38.6
                                                        50
3 Adelie
             2009
                              18.1
                                                39.0
                                                        52
4 Chinstrap 2007
                              18.5
                                                48.7
                                                        26
5 Chinstrap 2008
                              18.4
                                                48.7
                                                        18
6 Chinstrap 2009
                              18.3
                                                49.1
                                                        24
7 Gentoo
                                                47.0
             2007
                              14.7
                                                        34
8 Gentoo
             2008
                              14.9
                                                46.9
                                                        46
9 Gentoo
             2009
                              15.3
                                                48.5
                                                        43
```

Use the count() function to count the number of observations for each species in penguins.

penguins |>

Use the count() function to count the number of observations for each species and island in penguins.

```
penguins |>
  count(species, island)
```

```
# A tibble: 5 x 3
  species
             island
                            n
  <fct>
             <fct>
                        <int>
1 Adelie
            Biscoe
                           44
2 Adelie
            Dream
                           56
3 Adelie
            Torgersen
                           52
4 Chinstrap Dream
                           68
5 Gentoo
            Biscoe
                          124
```

Use filter() to create a subset from penguins that contains observations for female penguins recorded at Torgersen and Biscoe Islands. Then use add the pipe |> and count() to verify that you written the correct code.

```
penguins |>
  filter(sex == "female", island %in% c("Torgersen", "Biscoe")) |>
  count(sex, island)

# A tibble: 2 x 3
  sex island n
  <fct> <fct> <fct> <int>
1 female Biscoe 80
2 female Torgersen 24
```

Task 7: Data communication

In the YAML header (between the three dashes at the top of the document)

- 1. Add your name as the author of this document
- 2. Render the document and fix any errors

Task 8: Stage, Commit & Push to GitHub

- 1. Open the Git pane in RStudio. It's in the top right corner in a separate tab.
- 2. **Stage** your changes by checking appropriate box next to all files (if you select one file with your mouse, you can then highlight them all with Ctrl + A on your keyboard and check all boxes).
- 3. Write a meaningful commit message (e.g. "Completed part a of homework assignment 03.) in the **Commit message** box.
- 4. Click **Commit**. Note that every commit needs to have a commit message associated with it.