PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-220808

(43)Date of publication of application: 30.08.1996

(51)Int.CI.

G03G 9/087

G03G 9/09

603G 9/08

G03G 15/20

(21)Application number: 07-053371

(71)Applicant: KAO CORP

(22)Date of filing:

16.02.1995

(72)Inventor: OMATSU SHINICHIRO

SEMURA TETSUHIRO

(54) FULL-COLOR ELECTROPHOTOGRAPHIC TONER AND IMAGE FORMING METHOD (57) Abstract:

PURPOSE: To provide a full-color electrophotographic toner which has good meltability, improves the brightness of images, has excellent offset resistance, is adequately usable for a full-color electrophotographic system not equipped with an oil applicator and contributes to the simplification and miniaturization of devices.

CONSTITUTION: This full-color electrophotographic toner is formed by contg. at least a binder resin, release agent and coloring agents and does not require oil application as the release agent on a roller surface at the time of fixing by using the heat roller. The essential component of the binder resin is a linear polyester consisting of an aliphat. based satd. dicarboxylic acid having a softening point of 90 to 120° C by a flow tester recommended by the Society of Polymer Chemistry and/or its acid anhydride or lower alkyl ester as its constituting monomer. The release agent is carnauba wax.

LEGAL STATUS

[Date of request for examination]

03.09.1997

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2981831

[Date of registration]

24.09.1999

[Number of appeal against examiner's decision of rejection]

of rejection]

Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平8-220808

(43)公開日 平成8年(1996)8月30日

(51) Int.CL*		裁別記号	庁内整理番号	ΡI			技術表示質所
G03G	9/087			G03G	9/08	331	
	9/09				15/20	106	
	9/08				9/08	361	
	15/20	106				365	

審査請求 未請求 請求項の数5 FD (全10頁)

(21)出顧番号 特顧平7-53371 (71)出顧人 000000918 花王株式会社 東京都中央区日本概学場町1丁目14番10号 (72)発明者 尾松 真一部 和歌山県那賀椰岩田町畑毛283-13 (72)発明者 樹村 哲弘 和歌山市吹上5丁目1-45 (74)代理人 弁理士 細田 芳徳

(54) 【発明の名称】 フルカラー電子写真用トナー及び画像形成方法

(57)【要約】

【構成】少なくとも結着樹脂、離型剤及び着色剤を含有してなる、ヒートローラーを用いた定着の際に離型剤としてローラー表面へのオイル塗布を必要としないブルカラー電子写真用トナーであって、該結着樹脂の主成分が高化式フローテスターによる軟化点90~120℃の脂肪族系飽和ジカルボン酸及び/又はその酸無水物もしくは低級アルキルエステルを構成モノマーとする線型ボリエステルであり、該離型剤がカルナバワックスであることを特徴とするブルカラー電子写真用トナー、並びに該トナーを用いる画像形成方法。

【効果】本発明のトナーは、トナーの溶融性が良好であり画像の光沢性に優れ、かつ耐オフセット性に優れるため、オイル塗布装置のないフルカラー電子写真システムに好道に用いることができ、装置の簡略化、小型化が可能である。

【特許請求の範囲】

【請求項1】 少なくとも結音樹脂、離型剤及び着色剤 を露光させ、を含有してなる。ヒートローラーを用いた定着の際に離 型剤としてローラー表面へのオイル塗布を必要としない 呼ばれる着色を ではよって可能 成分が、脂肪族系ジカルボン酸(但し、飽和ジカルボン 転写紙等の転送 歴力等を用いて 素数 5 以上のものに限る)及び/又はその酸無水物もし くは低級アルキルエステルを構成モノマーとする。高化 式フローテスターによる軟化点90~120℃の線型ボ 10 相違している。リエステルであり、該離型剤がカルナバワックスである [0003]とことを特徴とするフルカラー電子写真用トナー。 を経ない直接が

1

【請求項2】 線型ポリエステルが、重合の際に炭素数3~30の主鎖及び側鎖を有する脂肪族系ジカルボン酸及び/又はその酸無水物もしくは低級アルキルエステルを構成モノマーとして全酸成分中25mol%以上使用して得られるものである請求項1記載のフルカラー電子写真用トナー。

【請求項3】 結着樹脂の他の成分として、炭素数2~30の側鎖を有する架橋構造の非線型ポリエステルを結 20 若樹脂中5~25重量%含有する請求項1又は2記載のフルカラー電子写真用トナー。

【請求項4】 カルナバワックスの含有量が、結着樹脂 100章量部に対して4~15章量部である請求項1~ 3いずれか記載のフルカラー電子写真用トナー。

【請求項5】 色の3原色又はこれに黒色を加えた4色からなるトナーを単独或いは重ね合わせて未定若画像を記録媒体上に形成した後、それを定若させてフルカラー画像を形成する画像形成方法において、請求項1~4いずれか記載のフルカラー電子写真用トナーを用いて未定 30 若画像を形成した後、オイル塗布装置を用いることなくヒートローラーにより熱圧力定着を行うことを特徴とする画像形成方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、フルカラー電子写真シ ステムに用いられるトナー及び画像形成方法に関し、更 に詳しくは、フルカラー電子写真システムにおいて形成 された静電潜像を現像するために用いられる耐オフセッ ト性に優れるフルカラー電子写真用トナー、及びそれを 40 に厳しくなっている。 用いる画像形成方法に関する。 【10071】このよう

[0002]

般的に光導電性絶縁層を一様に帯電させ、次いでその層を露光させ、その露光された部分上の電荷を消散させる 等により電気的な潜像を形成し、更に該潜像にトナーと呼ばれる着色された電荷をもった微粉末を付着させることによって可視化させ(現像工程)。得られた可視像を転写紙等の転写材に転写させた後(転写工程)。加熱、圧力等を用いて永久定着させる(定着工程)工程からなるのに対して、単機能型プロセスの場合、さらに現像前に行う色分解や転写後に行う混色が必要な点のみが主に相違している。

【0003】このような単機能型には、さらに転写工程を経ない直接方式と、転写紙に転写する転写方式があり、この転写方式には、さらにカラーゼログラフィー法による三回転写法と、色重ね現像法による一回転写法とがある。これらの方式では、いずれも定着時において、カラートナーを混色させる必要があり、通常、転写工程によりトナーを転写紙に転写させたのち、熱ローラ等で熱圧力定着することにより、トナーを溶融させ混色させている。

20 【0004】 このとき、トナーの溶融不良が起こると、トナー粒子間にエアギャップが多くなり、空気との界面での光散乱により、トナー色素本来の色調が損なわれると共に、個像の光沢性が失われる。また、トナーの章なった部分では下層のトナーが上層のトナーに隠蔽され、色の再現性が低下するといった問題もある。

【0005】従って、このようなフルカラー電子写真用 トナーの結音樹脂には、下記の条件が必要となる。

(1) 定着したトナーが、光に対して乱反射して、色再現を妨げることのないように、トナー粒子の形が原形を留めないほど、完全溶融に近い状態となることが必要である。

(2) そのトナー層の下に存在する。異なった色調のトナー層の色調を妨げない程度の透明性を有するパインダー樹脂でなければならない。

【0006】このように結若樹脂は、定若温度領域が広いだけではなく、樹脂の透明性と、定若されたときに定若面がフラットになることが要求されており、モノカラープロセスで要求される。定若温度領域が広く耐オフセット性の高いという性能に加え、要求される条件がさらに関しくなっている。

【0007】このようにフルカラー電子写真用トナーは、モノカラートナーに比べ、特に結若樹脂の溶融性が良いことが必要であり、その一方、その定若温度が高めに設定されているのが一般的である。しかし、トナーの溶融性と耐オフセットは相反する性質のものであり、定若温度を高めに設定すると熱ローラ等による熱圧力定若において、トナーの一部が紙に完全に固若しないでローラー表面に付若し、次の紙に転移するというオフセット現象が生じる傾向がある。

の検討がなされている。即ち、モノクロプロセスは、- 50 【0008】かかるオフセット現象を防止するため、熱

ローラ等による熱圧力定着を採用するモノクロプロセス では、一般にオフセット防止剤用の離型剤をトナーに含 有させたり、また離型性の良い材料を熱ローラ表面に使 用したりして、オイル塗布を行うことなく定若を行って いる。しかし、上記のようにトナーの溶融性が要求され るフルカラー電子写真システムでは、かかるオフセット 現象を防止するには、これまで熱ローラ表面にオイル塗 布を行う以外に方法がなく、従来のシステムで、低温で 高い光沢を出すためには必ずオイル塗布装置が用いら れ、装置コストや装置の複雑化、大型化の点で問題があ 10 ステルを結着樹脂として用いると共に、離型剤としてカ った。

【①①①9】従って、フルカラー電子写真システムにお いて、定若工程でオイル塗布装置が不要となるような、 カラートナーが当業界では強く要請されていた。

【りり10】一方、トナーの耐オフセット性を向上させ るべく、これまで結着樹脂の改良や種々のオフセット防 止剤の開発が行われているが、その多くは以下のように モノクロプロセス用のものであり、そのままフルカラー トナーに適用できないのが現状である。

中に三次元構造を持たせることにより、トナーの耐オフ セット性を向上させる方法が、特開昭57-10982 5号公報、特公昭59-11902号公報に開示されて いる。しかし、これらの方法では耐オフセット性を向上 させることはできるが、架橋酸成分量が多いため、得ら れるトナーの弾性が大きくなり、従って比較的低温領域 では定着面はブラットにならず、フルカラートナー用と しては、色再現という面から問題があった。

【0012】また、カルナバワックスをオフセット防止 剤とする例としては、特開平5-341557号公報 に、結着樹脂としてポリエステルを含有し、離型剤(オ フセット防止剤)として酸価5以下の脱遊離脂肪酸型力 ルナバワックス、帯電制御剤として特定構造を有する化 合物を含有する電子写真現像用トナーが開示されてい る。そして、実施例において、オイル塗布装置のない普 通紙複写機で、カラートナーを用いて130℃で定着を 行い、オフセット現象のないことを確認しているが、こ の時のトナーの溶融性はモノクロプロセスに対しては十 分であるが、フルカラープロセスでは不十分であること れているトナーは、モノカラープロセスに用いられるこ とを前提としており、フルカラー電子写真システムに適 用できないものである。

【0013】その他、カルナバワックスをオフセット防 止剤として用いる従来技術は数多く存在するが(特別平 5-249745号公報、特開平5-142856号公 報等)、いずれもモノカラープロセス用であり、オイル 塗布装置のないフルカラー電子写真システムに用いるこ とができる、フルカラー電子写真用トナーはこれまで存 在しなかった。

【1)()14】本発明の目的は、前記の課題を解決すべ く、トナーの溶融性が良好であり画像の光沢性に優れ、 かつ耐オフセット性に優れるため、オイル塗布装置のな いフルカラー電子写真システムに用いることができるフ ルカラー電子写真用トナー及び画像形成方法を提供する ことにある。

[0015]

【課題を解決するための手段】本発明者らは、上記の目 的を達成するため鋭意研究した結果、特定の線型ポリエ ルナバワックスを用いることにより、前記課題が解決で きることを見いだし、本発明を完成するに至った。 【()()16】即ち、本発明の要旨は、

(1) 少なくとも結音樹脂、解型剤及び着色剤を含有 してなる、ヒートローラーを用いた定着の際に離型剤と してローラー表面へのオイル塗布を必要としないフルカ ラー電子写真用トナーであって、脂肪族系ジカルボン酸 (但し、飽和ジカルボン酸の場合数炭素数3以上、不飽 和ジカルボン酸の場合炭素数5以上のものに限る)及び 【0011】例えば多価カルボン酸を用いポリエステル 20 /又はその酸無水物もしくは低級アルキルエステルを構 成モノマーとする、高化式プローテスターによる軟化点 90~120℃の線型ポリエステルであり、該離型剤が カルナバワックスであることを特徴とするフルカラー電 子写真用トナー.

- (2) 線型ポリエステルが、宣台の際に炭素数3~3 ()の主鎖又は合計炭素数3~3()の主鎖及び側鎖を有す る脂肪族系ジカルボン酸及び/又はその酸無水物もしく は低級アルキルエステルを構成モノマーとして全酸成分 中25mol%以上使用して得られるものである前記
- (1)記載のフルカラー電子写真用トナー。
- (3) 結着樹脂の他の成分として、炭素数2~30の 側鎖を有する架橋構造の非線型ポリエステルを結着樹脂 中5~25 重量%含有する前記(1)又は(2)記載の フルカラー電子写真用トナー、
- (4) カルナバワックスの含有量が、結若樹脂100 **煮量部に対して4~15重量部である前記(1)~**
- (3)いずれか記載のフルカラー電子写真用トナー、並 UK
- (5) 色の3原色又はこれに黒色を加えた4色からな が確認された(比較例3)。つまり、当該公報に開示さ 40 るトナーを単独或いは重ね合わせて未定着画像を記録媒 体上に形成した後、それを定着させてブルカラー画像を 形成する画像形成方法において、前記(1)~(4)い ずれか記載のフルカラー電子写真用トナーを用いて未定 若画像を形成した後、オイル塗布装置を用いることなく ヒートローラーにより熱圧力定者を行うことを特徴とす る画像形成方法。に関する。

【()()17】本発明のフルカラー電子写真用トナーは、 少なくとも結着樹脂、離型剤及び着色剤を含有してな る。ヒートローラーを用いた定若の際に離型剤としてロ 50 ーラー表面へのオイル塗布を必要としないフルカラー電

30

子写真用トナーであって、設結着樹脂の主成分が、脂肪 族系ジカルボン酸(但し、飽和ジカルボン酸の場合数炭 素数3以上、不飽和ジカルボン酸の場合炭素数5以上の ものに限る)及び/又はその酸無水物もしくは低級アル キルエステルを構成モノマーとする。 高化式フローテス ターによる軟化点90~120℃の線型ポリエステルで あり、該離型剤がカルナバワックスであることを特徴と するものである。

【0018】まず、本発明で用いられる結若樹脂につい て説明する。結若樹脂の主成分としては、高化式フロー 10 テスターによる軟化点90~120℃の線型ポリエステ ルが用いられ、好ましくは軟化点90~110℃であ り、更に好ましくは軟化点95~105℃のものであ る。軟化点が9.0 °C未満では、トナーの保存安定性が悪 く、例えば保存温度45℃、湿度60%の環境下で2週 間放置すると、トナーがブロック状になり、パウダーテ スターによる疑巣度が50%前後になり、実用上の弊害 となり、更に定着時においては紙に転写されたトナーの 上層部分のみが溶融し、定着ローラー表面に転移する、 所謂コールドオフセットを起こしてしまう。また、軟化 20 点が120℃を越えると、トナーの溶融性が悪くなるた め、定温定者性が劣ると共に、得られる画像の光沢性も 悪くなるばかりでなく、発色が不十分なためくすんだ色 になり、また〇HP透明性も劣ってしまう。

【0019】とこで用いる高化式フローテスターとは、 樹脂等の溶融準動が各温度で簡単に再現性良く測定で き、トナー用バインダー樹脂の評価には非常に有効な装 置である。高化式フローテスターについては、JIS K 72 10に概略が記載されているが、本発明では具体的に次の ようにして測定を行う。高化式フローテスター(島津製 30 作所製)を用いて1 c m'の試料を昇温速度6℃/m I nで加熱しながら、プランジャーにより30kg/cm * の荷章を与え、直径1mm、長さ1mmのノズルを押 し出すようにし、これにより、プランジャー降下量(流 れ値)-温度曲線を描き、そのS字曲線の高さをInとす るとき、h/2に対応する温度(樹脂の半分が流出した 温度)を軟化温度としたものである。

[0020]本発明における結若樹脂の主成分である線 型ポリエステルとは、その構成モノマーが直鎖状のジカ からなる構造をもつポリエステルをいい、場合によって は、3価以上の単量体やその他の架橋剤を構成モノマー にもつ3次元架橋を行った非線型ポリエステルをプレン ドすることも可能である。

【0021】このように本発明において、線型ポリエス テルを結若樹脂の主成分として使用しているのは、架橋 成分として3価以上の単量体等を用いて架牆密度を上げ すぎると、ポリエステルの弾性が大きくなると共に、溶 融速度が低下するため、定若面の平滑性、光沢性が損な われるからである。しかし、架牆型非線型ボリエステル 50 酸無木物もしくは低級アルキルエステルを構成モノマー

は、高温側のボットオフセット防止に優れており、これ を適量プレンドすることにより、定着面の平滑性、光沢 性が実用上損なわれない程度に溶融速度の低下を抑える ことが可能である。

【0022】本発明における模型ポリエステルを構成し ている単量体のうち、アルコール成分としては、例えば エチレングリコール、ジエチレングリコール、トリエチ レングリコール、1、2ープロピレングリコール、1。 3-プロピレングリコール、1,4-プタンジオール、 ネオペンチルグリコール、1、4 - ブテンジオール、 1.5-ペンタンジオール、1.6-ヘキサンジオール 等のジオール類、ビスフェノールA、水素添加ビスフェ ノールA、ポリオキシエチレン化ビスフェノールA、ポ リオキシブロビレン化ビスフェノールA等のビスフェノ ールAアルキレンオキシド付加物、その他の二価のアル コールを挙げることができる。これらのうち、好ましく はエチレングリコール、ポリオキシエチレン化ビスフェ ノールA、ポリオキシプロビレン化ビスフェノールAな どである。

【0.023】一方、酸成分としては、炭素数3以上の脂 肪族系胞和ジカルボン酸もしくは炭素数5以上の脂肪族 系不飽和ジカルボン酸、及び/又はその酸無水物もしく は低級アルキルエステルが用いられる、炭素数3以上の 脂肪族系飽和ジカルボン酸としては、例えばコハク酸、 アジビン酸、セパチン酸、アゼライン酸、マロン酸、n - ドデシルコハク酸等のアルキルコハク酸類等が挙げち れ、他にこの酸無水物もしくは低級アルキル(炭素数1 ~5)エステルが用いられる。また、炭素数5以上の脂 肪族系不飽和ジカルボン酸としては、例えばシトラコン 酸、イタコン酸、グルタコン酸、n-ドデセニルコハク 酸等のアルケニルコハク酸類が挙げられ、他にこの酸無 水物もしくは低級アルキル(炭素数1~5)エステルが 用いられる。また、この必須成分に加えて、任意の酸成 分として炭素数のより小さいマレイン酸、フマル酸等の 脂肪族系不飽和シカルボン酸等:芳香族系シカルボン酸 (フタル酸、イソフタル酸、テレフタル酸等) ; 脂環式 ジカルボン酸 (シクロヘキサンジカルボン酸等) 並びに これらの酸無水物および低級アルキル(炭素数1~5) エステルからなる群より選ばれる少なくとも一種を使用 ルボン酸及び/又は未官能性の側鎖をもつジカルボン酸 40 することができる。この場合において、酸成分中におけ る脂肪族系ジカルボン酸(但し、飽和ジカルボン酸の場 台数炭素数3以上、不飽和ジカルボン酸の場合炭素数5 以上のものに限る)又はこの酸無水物もしくは低級アル キル (炭素数1~5) エステルの量は5~9(1モル%の 範囲が本発明の効果を得る為に好ましい。

> 【1) 024】本発明における線型ポリエステルは、重合 の際に、炭素数3~30/特に炭素数3~12の主鎖又 は合計炭素数3~30、特に合計炭素数3~20の主鎖 及び側鎖を有する脂肪族系ジカルボン酸及び/又はその

として全酸成分中25m01%以上使用して得られるも のが好ましく。より好ましくは50~100mo1%便 用して得られるものである。脂肪族系ジカルボン酸等の

量がこの範囲より少ない場合には、樹脂が脆くなるとと もに、トナーの溶融性、定着性も劣る傾向がある。

【0025】とのように脂肪族系ジカルボン酸等が、本 発明における線型ボリエステルの酸成分として有効な理 由は、樹脂中にフレキシブルなセグメントが多く含まれ ると、芳香族系ジカルボン酸使用の場合に比べ、数平均 分子量 (Mn) が大きくなるので、低い軟化温度と良好 10 な溶融性を維持しながら硬い樹脂(粉砕性指数の大きい

樹脂)を得ることができるためである。

【()()26】本発明における線型ポリエステルは、通常 公知のエステル化反応、エステル交換反応等を利用して **宣合することができる。具体的には、例えば反応温度 1** 70~220℃、反応圧力5mmHg~常圧にて、適宜 触媒等を用いながら縮重合等を行い(最適温度、圧力は モノマーの反応性等で決める)、所定の物性になった時 点で反応を終了すればよい。

[()()27] 本発明における結者樹脂は、上記のような 20 線型ポリエステルを主成分とするが、本発明の効果を損 なわない範囲で、例えば、非線型ポリエステル、ステレ ン-アクリル樹脂等のような他の樹脂を併用してもよ い。本発明では結若樹脂の他の成分として、炭素数2~ 31)の側鎖を有する架橋構造の非線型ポリエステルを結 若樹脂中5~25重量%。特に10~20重量%含有さ せることが好ましい。非線型ボリエステルをプレンドす ると、前記のようにホットオフセットが低減されるが、 その量が増加すると同時に定着時の光沢性が悪くなる。 つまり、線型ポリエステルと非線型ポリエステルをブレー30 なり、高温側ではオイルブリー定若は不可能となる。ま ンドする際、それぞれの軟化点の差が光沢性に影響を及 ぼす。トナーとしての軟化点が同じであっても、両者の 軟化点の差が40℃以上ある場合、定着時の光沢性が著 しく減少する。この軟化点の差は、30℃以下が好まし く」より好ましくは20℃以下、更に好ましくは10℃ 以下である。炭素数2~30の側鎖を有する非線型ポリ エステルを用いるのは、とのような軟化点を調整して定 若時の光沢性を高めるためである。例えば非様型ポリエ ステルと線型ポリエステルをプレンドする場合。その比 率を線型ポリエステルの量で8()~9()重量%。軟化点 40 の差を10℃とするのが最適である。

【1) 028】かかる非線型ポリエステルは通常、前記の 2価のモノマーに加え3価以上のモノマーを用いて製造 され、いずれかのモノマーに炭素数2~30の側鎖を有 するものを用いればよい。3価以上のモノマーとして は、無水トリメリット酸、2,5,7 -ナフタレントリカル ボン酸等の3価のカルボン酸もしくはその誘導体。グリ セロール、トリメチロールプロパン等の3 価のアルコー ル等が挙げられる。また炭素数2~31)の側鎖を有する モノマーとしては、ドデセニル無水琥珀酸等が挙げられ。50 ロー14、C. I.ソルベントイエロー30、C. I.

【()()29】本発明における線型ポリエステルは、保存 安定性などの理由より、ガラス転移温度(Tg)が5() ℃以上であることが好ましい。

【① 030】本発明における線型ボリエステルは、透明 性や保存安定性等の理由より、ゲルバーミエーションク ロマトグラフィー(以下「GPC」と略す)による重量 分子量が、8000~3000であることが好まし

【0031】本発明における線型ポリエステルは、酸価 が40KOHmg/g以下、水酸基価が40KOHmg /8以下であるものが好ましく、より好ましくは. 酸価 が25KOHmg/g以下であり、水酸基価が25KO Hmg/g以下のものである。酸価及び水酸基価がそれ ぞれこの範囲を越えるものは、高温高温又は低温低湿下 等の環境下において環境の影響を受けやすく、画像の劣 化を招き易くなる。

[10032]尚、本発明におけるポリエステル樹脂の酸 価、水酸基価はJIS K 0070の方法に準じて測定される。 【0033】次に、本発明で用いられる解型剤について 説明する。本発明では、上記の結着樹脂の軟化点より1 ○℃~20℃以上低い融点を有するカルナバワックス が、オフセットを防止するための離型剤として用いられ る。結着樹脂の軟化点はおよそ100℃前後であり、カ ルナバワックスの融点は約83℃である。

【1)()34】また、カルナバワックスの含有量は、前記 の結若樹脂100重量部に対して4~15重量部である ことが好ましく、より好ましくは5~11章世部であ る。この範囲より少ないと非オフセット域が著しく狭く た。この範囲より多いと、保存安定性や粉砕性、混練性 に支障を来す。

【0035】とのように、前記の線型ポリエステルとカ ルナバワックスを組み合わせることにより、樹脂が溶融 する前にカルナバワックスがトナーからにじみ出(ブリ ード)るため、オイルフリー環境で広い非オフセット温 皮域を持たせることができる。

【()()36】本発明のトナーは、前記のような結着樹脂 と離型剤を含有するが、さらに必須成分である着色剤を 含有すると共に、尚電制御剤、および必要に応じて解型 剤、流動化剤等が添加される。

【りり37】本発明で用いられる岩色剤としては、公知 の有機顔料や染料を使用することができ、またこれらの 併用も可能である。通常、イエロートナー、マゼンタト ナー、シアントナーにそれぞれ対応する色彩のものが用 いられる。なお、本発明は下記の有機顔料や染料に限定 されるものではない。

【0038】イエロートナー用としては、例えばC. 1. ビグメントイエロー12、C. I. ピグメントイエ ソルベントイエロー77などが単品で或いは併用して使 用できる。

[0039]マゼンタトナー用としては、例えばC. 1. ビグメントレッド122、C. I. ピグメントレッ F48:2、C. I. ピグメントレッド58:2.12 2. C. L. ソルベントレッド49. C. L. ソルベン トレッド52などが単品で或いは併用して使用できる。 【0040】シアントナー用としては、例えばC。 1. ピグメントプルー15:3. C. 1. ピグメントブルー 15:4、C. I. ピグメントブルー15:1.12 2. C. 1. ソルベントブルー69. C. 1. ソルベン トプルー23などが単品で或いは併用して使用できる。 【0041】又、本発明において黒色トナーを調製する 場合には、サーマルブラック法、アセチレンブラック 法、チャンネルブラック法、シングブラック法等により 製造される各種のカーボンブラック。カーボンブラック の表面を樹脂で被覆しているグラフト化カーボンブラッ クを用いることができる。

【10042】更に、現像機構上又は画像を向上せしめる きる。該磁性紛体としてはフェライト、マグネタイト等 強磁性を示す元素を含む合金あるいは化合物を挙げるこ とができ、該磁性体は平均粒径(). ()5~1μmの微粉 末の形で熱可塑性樹脂中にり、05~10、00重量% の量を分散せしめて用いる事ができる。

【0043】また、用いられる正の荷電制御剤として は、低分子化合物から高分子化合物(ポリマーも含む) まで特に制限はない。例えば、ニグロシン系の染料であ る「ニグロシンベースEX」、「オイルブラックB 社製)や、トリフェニルメタン系染料、4級アンモニウ ム化合物、アミノ基を有するビニル系ポリマー等が挙げ られる。

【0044】また、負の荷電制御剤としては、モノアゾ 染料の金属錯塩、エトロフミン酸及びその塩、エトロ基 やハロゲン元素を持った物質、スルホン化銅フタロシア ニン、無水マレイン酸コポリマー等が挙げられる。

[0045]また、本発明のトナー中に含有される公知 の特性改良剤として、流動化剤、熱特性改良剤(例えば 3.5-ジーtertープチルサリチル酸クロム錯体等 40 の金属錯体や酸化亜鉛等の金属酸化物) 等があるが、適 **宜用いても何ら本発明を阻害するものではない。**

【10046】本発明のトナーの製造方法としては、混練 粉砕法、スプレイドライ法、宣合法等の従来より公知の 製造法が使用可能である。例えば、一般的な例として は、まず結若樹脂、離型剤、若色剤、帯電制御剤等を公 知のボールミル等の混合機で均一に分散混合し、次いで 混合物を密閉式ニーダー或いは1軸または2軸の押出機 等で溶融混練し、冷却後、粉砕し、分級すればよい。ま

【()()47】その結果、平均粒径5~15μmの着色粉 体、即ち本発明のトナーが得られるが、そのまま一成分 系現像剤として用いることができる。また、乾式二成分 系の現像剤組成物とする場合、該トナーをキャリア、つ まり鉄粉、フェライト、マグネタイト、あるいは樹脂等 をコアとし、コアのまま又はコアにシリコーン樹脂やア クリル樹脂、ポリエステル樹脂などをコートした不定形 もしくは真球の形状を有する磁性粉体と適宜プレンドし 10 現像剤組成物として用いられる。

10

【① 0 4 8 】本発明のフルカラー電子写真用トナーは、 定着時の離型用オイル塗布を全く行う必要がなく、しか も非オフセット域が通常80℃程度と広く、且つ150 *C程度の低温定着で高い光沢を得ることができる。具体 的には、光沢は、VG-2PD(日本電色工業製)を用 いて光沢度測定条件60°/60°で測定され、トナー 付着量0.7mg/cm 以上のベタ師で15以上の光 沢が得られる。

【1)049】本発明の画像形成方法は、色の3原色又は 目的の為、磁性微粉体をトナー中に含有せしめる事がで 20 これに黒色を加えた4色からなるトナーを単独或いは重 ね合わせて未定着画像を記録媒体上に形成した後、それ を定着させてフルカラー画像を形成する画像形成方法に おいて、以上のフルカラー電子写真用トナーを用いて未 定若画像を形成した後、オイル塗布装置を用いることな くヒートローラーにより熱圧力定若を行うことを特徴と するものである。

【0050】とこで、具体的な画像形成方法としては、 色分解機能、潜像形成機能およびインキング機能がそれ ぞれ機能分離されている単機能型のフルカラー電子写真 S」、「オイルブラックSO」(以上、オリエント化学 30 システムが利用でき、転写紙に転写する転写方式であれ は、カラーゼログラフィー法による三回転写法、色堂ね 現像法による一回転写法のいずれでもよい。即ち、転写 工程によりトナーを転写紙に転写させたのち、熱ローラ 等で熱圧力定着することにより、トナーを溶融させ混色 させている方式であれば、公知のいずれの方式であって もよい。

> 【① 051】図1は、本発明の画像形成方法に用いられ る装置の一例の概略図を示すものである。この装置は、 カラーゼログラフィー法による多重現像方式を採用する ものであるが、本発明はこの方式に限定されるものでは ない。

【0052】以下、図面を参照しながら概要を説明す る。カラーゼログラフィー法においても、感光体を帯電 させる帯電工程と、前記感光体を露光する露光工程と、 前記息光体上に形成された静電潜像にトナーを付着させ てトナー像を形成する現像工程と、形成されたトナー像 を記録抵等の記録媒体に転写する転写工程、および転写 されたトナー像を記録媒体に定着する定着工程とから基 本的に構成されている点は、モノクロプロセスと変わり 50 ない。そして、色分解等を露光前に行う点、トナー像を

特闘平8-220808

多重に形成する現像工程。および定着時に混色を行う点 が主に相追している。

11

【① 0 5 3】 1 は感光体であり、感光体には一般にセレ ン系。シリコン系、有機系などが実用化されており、い ずれのものも用いることができる。

【0054】7は帯電装置であり、感光体1に対向して 設けられている。帯電手段としては特に制限されるもの ではなく、例えばコロナ帯電器やブラシ帯電器。ローラ 帯電器等を利用することが出来る。

設置され、感光体上に静電潜像を形成する装置である。 露光装置2としてはレーザ、LED又はELアレイ等の 光源を作像光学系と組み合わせて使用される。もしくは カラー原稿を色分解フィルター等で色分解した光像を投 影する光学系等の装置を用いる字が出来る。いずれの場 台も、各トナーの色彩成分に相当する露光が行われる。

【0056】3は現像器であり、感光体1に対向して設 置され感光体面上に形成した静電潜像をトナーで可視化 せしめる為の現像装置であり、各色彩のトナーに対応し てそれぞれ設けられる。現像装置としては通常使用され 20 た。 ている2成分磁気ブラシ現像器、1成分磁気ブラシ現像 器、1成分非磁性現像器等いずれの現像器も使用する字 が出来る。

【0057】現像工程により感光体上に形成されたトナ 一像は、現像工程後図示していない所定の駆動手段によ り、図中に示した方向に一定の周速で移動する感光体の 回転に伴って扱送される。この装置では、トナー像を多 堂に形成するため、上記の帯電工程から現像工程まで が、用いるトナーの種類に応じて複数回繰り返される。

[0058] このようにして形成されたトナー像は転写 30 部まで搬送され、トナー像に同期するように搬送ベルト 9で搬送された記録媒体6に転写される。転写は、転写 装置8により、コロナ転写やバイアスローラ転写等の静 電転写等により行われ、トナーを単独或いは重ね合わせ た未定若画像が形成される。

【0059】定着部は、ヒートローラ4と圧力ローラ5 からなり、ヒートローラはシリコーンゴム、フッ素樹 脂。ポリイミド樹脂、ポリアミド樹脂。ポリアミドイミ ド樹脂等の耐熱性樹脂で披覆されており、内部には熱源 を有する。圧力ローラ5は、耐熱性シリコーンゴムなど 40 を使用することができる。本発明では未定若画像を形成 した後、オイル釜布装置を用いることなくヒートローラギ

<樹脂A:線型ポリエステル>

1050g

5206 1 6

#1 9X4シナ ロビ レン(2、2)=2、2=ビ ス(4=ヒド ロキシフェニル)ブ ロベン

フマル酸 ハイドロキノン(章台禁止剤)

【①066】以上の物質(フマル酸が全酸成分中100 mol%)を通常のエステル化触媒(酸化ジブチルス ズ)と共にガラス製31の4つ口フラスコに入れ、温度 計、ステンレス製機拌模、流下式コンデンサー及び窒素 50 O. IKOHmg/g、水酸基価8. GKOHmg/

* 一により熱圧力定着を行う。

【()()6()】転写工程後、感光体上に残存する敞量のト ナーを除去するため、クリーニングウェブ等のクリーニ ング装置を配設することができ、残存する電荷を中和す るため除電ランプなどの除電装置を配設することもでき る。また、このようにして記録媒体6上にトナーが定着 された後は、所定の排紙手段により装置外へ排出され る.

【① 061】本発明の画像形成方法によると、定着時に 【0055】2は露光装置であり、感光体1に対向して 10 離型用オイル塗布を全く行う必要がなく、しかも非オフ セット域が広く、且つ低温で高い光沢を有する画像を形 成することができる。

[0062]

g) とした。

【実施例】以下、製造例、実施例、および比較例により 本発明をさらに詳しく説明するが、本発明はこれらの実 施例等によりなんら限定されるものではない。尚、実施 例等に示す組成割合は特に明示しない限り重量部を表 す。また実施例等で得られた樹脂のガラス転移温度(T g)、GPCによる分子量の測定は、下記に従って行っ

【0063】ガラス転移温度(Tg) 示差走査熱量計 (「DSC 200型」、セイコー電子 工業社製)を用いて1(10)でまで昇温し、その温度で3 分間放置した後、降温速度10℃/mm.で室温まで冷却 したサンブルを、昇温速度10°C/mm.で測定した際 に、ガラス転移温度以下のベースラインの延長線とピー クの立ち上がり部分からビークの頂点までの間での最大 傾斜を示す接線との交点の温度を、ガラス転移温度(T

[1)064] GPCによる分子量測定 4 () *Cの恒温指中でカラムを安定させ、溶離液としてク ロロホルムを毎分1mlの流速で流し、試料濃度(). ()5 ~()、5章量%に調整した試料のクロロホルム溶液を1 ()() µ | 注入して測定を行った。試料の分子量は、あち かじめ作成した後量線に基づき、リテンションタイムか ち決定したその分子量分布より算出した。このときの検 量線は、数種類の単分散ポリスチレンを標準試料として 作成したものである。

分折カラム:GMHL+G3000HXL(東ソー (株) 社製) 【0065】樹脂製造例1

導入管を取付、電熱マントルヒーター中で窒素気流下、 前半230℃常圧、後半200℃減圧にて機律しつつ反 応を進めた。得られた線型ポリエステル樹脂は酸価1

http://www6.ipdl.jpo.go.jp/tjcontentdb.ipdl?N0000=20&N0400=image/gif&N0401=/NS/... 02/01/31

特開平8-220808

g、高化式フローテスター軟化温度112、8℃、ガラ *0000であった。 ス転移温度66.1℃、GPCによる重量平均分子量3米 【0067】樹脂製造例2

<樹脂B:側鎖ソフトセグメントモノマー含有非線型ポリエステル>

4608 # りまもシナ のと レン(2.2)-2,2-ビ ス(4-EF ロキシフェニル)ブ ロベン 4256 #" ワメキシュチレシ(2.2)=2,2=6" ス(4=ヒト" ロモシワュニー&)プ ロパン 486 無水トリメリット酸 165 g テレフタル酸 496 ジメチルテレフタル酸 2686 ドデセニル無水琥珀酸 16 酸化ジブチル錫

【1) () 6 8 】以上の物質(ドデセニル無水琥珀酸が全酸 成分中40m01%)を用い、製造例1と同様の装置、 同様の方法にて反応を進めた。得られた非様型ポリエス

13

※1.5KOHm 8/6、高化式フローテスター軟化温度 102.8℃ ガラス転移温度57.8℃、GPCによ る平均分子量25000であった。

【0069】樹脂製造例3

テル樹脂は酸価20.4KOHmg/8、水酸基価3.※ <樹脂C:主鎖ソフトセグメントモノマー含有線型ポリエステル>

#* g対キシナ dピ レン(2、2)-2、2-ピ ス (4-ヒト゚ ロキシフュニル)プ ロベン 9996 #* ワメキラュチレシ(2.2)=2,2=6* ス(4=6ト* ロキシンメニール)プ ロパン፦ 486 156¢ フマル酸 1268 テレフタル酸 1536 アジビン酸 16 酸化ジブチル錫

【0070】以上の物質(フマル酸とアジピン酸が全酸 成分中80m01%)を用い、製造例1と同様の装置、 同様の方法にて反応を進めた。得られた観型ポリエステ ル樹脂は酸価15.8KOHmg/g.水酸基価12. 2KOHmg/g、高化式フローテスター軟化温度10 4. 9℃、ガラス転位温度55.8℃.GPCによる平 均分子置15000であった。

【0071】トナー製造例1

(1) イエロートナー1

樹脂A100重量部に対して、カルナバワックス(融点 83℃) を4部. ベンジジン系イエロー顔料3部. 電荷 調整剤(日本カートリッジ社製、LR-147)(). 5 部を2輪押し出し機にで混練し、冷却後通常の粉砕、分 級工程を経て平均粒径7μmの微粉を得た。 これをシリ カ (キャボット社製、TS-53()) で表面処理して、 イエロートナー 1 とした。

(2) マゼンタトナー1

ベンジジン系イエロー顔料3部に代えてキナクリドン顔 料6部を用いる以外は、上記(1)と同様にして、シリ 40 樹脂B16、樹脂C84重量部に対して、カルナバワッ カによる表面処理まで行ない、平均粒径7 mmのマゼン タトナー1を得た。

(3)シアントナー1

ベンジジン系イエロー顔料3部に代えて銅フタロシアニ ンシアン顔料3部を用いる以外は、上記(1)と同様に して、シリカによる表面処理まで行ない、平均粒径7 μ mのシアントナー1を得た。

[0072]トナー製造団2

(1) イエロートナー2

(融点130℃) を4部. ベンジジン系イエロー顔料3 部、電荷調整剤(日本カートリッジ社製、LR-14 7) 0. 5部を2輪押し出し機にて混練し、冷却後通常 の粉砕、分級工程を経て平均粒径7μmの微粉を得た。 これをシリカ (キャボット社製、TS-530) で表面 処理して、イエロートナー2とした。

(2) マゼンタトナー2

ベンジジン系イエロー顔料3部に代えてキナクリドン顔 30 料6部を用いる以外は、上記(1)と同様にして、シリ カによる表面処理まで行ない、平均粒径7 μ mのマゼン タトナー2を得た。

(3)シアントナー2

ベンジジン系イエロー顔料3部に代えて銅フタロシアニ ンシアン顔料3部を用いる以外は、上記(1)と同様に して、シリカによる裏面処理まで行ない、平均粒径7 μ mのシアントナー2を得た。

【0073】トナー製造例3

(1) イエロートナー3

クス (融点83℃) を10部、ベンジジン系イエロー顔 料3部、電荷調整剤(日本カートリッジ社製、LR-1 47)()、5部を2軸押し出し機にて混練し、冷却後通 富の粉砕、分級工程を経て平均粒径7 μmの微粉を得 た。これをシリカ (キャボット社製、TS-530) で 表面処理して、イエロートナー3とした。

(2) マゼンタトナー3

ベンジジン系イエロー顔料3部に代えてキナクリドン顔 料6部を用いる以外は、上記(1)と同様にして、シリ 樹脂A100重量部に対して、ボリプロピレンウックス 50 力による表面処理まで行ない、平均粒径7 u mのマゼン タトナー3を得た。

(3)シアントナー3

ベンジジン系イエロー顔料3部に代えて銅フタロシアニ ンシアン顔料3部を用いる以外は、上記(1)と同様に して、シリカによる表面処理まで行ない、平均粒径7 4 mのシアントナー3を得た。

15

【0074】トナー製造例4

(1) イエロートナー4

樹脂A100重量部に対して、カルナバワックス(融点 83℃)を10部、ベンジジン系イエロー顔料3部、電 10 ーラーに残存するオイル分が試験に影響無いほど除去で 荷調整剤(日本カートリッジ社製、LR-147)(). 5部を2軸押し出し機にて混練し、冷却後通常の粉砕、 分級工程を経て平均粒径7 µmの微粉を得た。これをシ リカ (キャボット社製、TS-530) で表面処理し て、イエロートナー4とした。

(2) マゼンタトナー4

ベンジジン系イエロー顔料3部に代えてキナクリドン顔 料6部を用いる以外は、上記(1)と同様にして、シリ カによる表面処理まで行ない、平均粒径7μmのマゼン タトナー4を得た。

(3)シアントナー4

ベンジジン系イエロー顔料3部に代えて銅フタロシアニ ンシアン顔料3部を用いる以外は、上記(1)と同様に して、シリカによる表面処理まで行ない、平均粒径7 μ mのシアントナー4を得た。

【0075】トナー製造例5

(1) イエロートナー5

樹脂B30、樹脂C70重量部に対して、カルナバワッ クス (融点83℃) を10部、ベンジジン系イエロー顔 料3部、電荷調整剤(日本カートリッジ社製、LR-1 30 とき光沢度20以上の高光沢性を有していた。 47)(). 5部を2軸押し出し機にて混練し、冷却後通 常の粉砕、分級工程を経て平均粒径7 μmの微粉を得 た。これをシリカ(キャボット社製。TS-530)で 表面処理して、イエロートナー5とした。

(2) マゼンタトナー5

ベンジジン系イエロー顔料3部に代えてキナクリドン顔 料6部を用いる以外は、上記(1)と同様にして、シリ カによる表面処理まで行ない、平均粒径7 μ mのマゼン タトナー5を得た。

(3)シアントナー5

ペンジジン系イエロー顔料3部に代えて銅フタロシアニ ンシアン顔料3部を用いる以外は、上記(1)と同様に して、シリカによる表面処理まで行ない、平均粒径7 # mのシアントナー5を得た。

[0076]定若試験装置

現像は、転写ドラム方式のレーザープリンターを用い た。また、プリンターでは、定着装置を取り外し、単色 の画像は未定着のままで取り出し、この画像を外部定着 機にて定着させた。ここで言う、外部定着機とは、定着

る。外部定着機は、上下ソフトシリコンローラで、上が 径4() 4のヒートローラのものを用いた。

【()()77】定着試験方法 1

定若試験1は、外部定若機の新品ヒートローラーにA4 白紙を100枚単位で通紙し、枚数に対して定着可能か 否かの判断によるものである。定着条件は、ヒートロー ラー表面の定着温度-150℃、線速は100mm/se c固定とした。また、定着は完全なオイル未供給状態で 実行した。尚、A4白紙通紙が700~1000枚でロ きることは確認済みである。

[0078]定若試験方法2

定着試験2は、外部定着機の新品ヒートローラーにA4 白紙を700~1000枚通紙し、ローラーの残存オイ ル分を除去した後、ヒートローラー表面温度を100~ 200℃の範囲で未定着画像を定着させて非オフセット 温度域を測定した。根速は100mm/sec固定とし

【①079】実施例1

20 上記のマゼンタトナー3で単色での定着性試験1.2を 行った。定着試験1の結果より、側鎖ソフトセグメント モノマー含有非線型ポリエステルである樹脂Bと主鎖ソ フトセグメントモノマー含有模型ポリエステル樹脂Cの プレンド系であるマゼンタトナー3では、白紙通紙20 ()()枚以上でも定着可能であった。また、定若試験2の 結果より、マゼンタトナー3では非オフセット温度域が 120~200℃であった。また、定若温度150℃に おいて、ベタ部画像では、入射測定角が60°/60° の条件でトナー付着量が0.7~0.8mg/cm゚の

【0080】比較例1

上記のマゼンタトナー1で単色での定着性試験1.2を 行った。定着試験1の結果より、カルナバワックスを用 いたマゼンタトナー1では、白紙通紙1500枚以上で も定着可能であった。また、定着試験2の結果より、マ ゼンタトナー1では非オフセット温度域が120~16 ○であり、実用上問題のある範囲であった。

[0081]比較例2

上記のマゼンタトナー4で単色での定着性試験1.2を 40 行った。定着試験1の結果より、カルナバワックスを用 いたマゼンタトナー4では、白紙通紙1500枚以上で も定着可能であった。また、定着試験2の結果より、マ ゼンタトナー4では非オフセット温度域が120~18 (1℃であり、実用上問題のある範囲であった。

【0082】比較例3

上記のマゼンタトナー2で単色での定着性試験1、2を 行った。定着試験1の結果より、比較例1のマゼンタト ナー1では白紙通紙1500枚以上でも定着可能であっ たのに対し、プロピレンワックスを用いたマゼンタトナ 50 -2では、白紙通紙700枚で定着不可能になった。ま

た、定着試験2の結果より、非オフセット温度域が12 ()~14()℃と極端に狭かった。

【0083】比較例4

上記のマゼンタトナー5で単色での定着性試験1.2を 行った。定着試験1の結果より、側鎖ソフトセグメント モノマー含有非線型ポリエステルである樹脂Bと主鎖ソ フトセグメントモノマー含有線型ポリエステル樹脂Cの ブレンド系であるマゼンタトナー5では、白紙通紙20 (1) 枚以上でも定着可能であった。また、定着試験2の 結果より、マゼンタトナー5では非オフセット温度域が 10 120~200℃であったが、非線型樹脂の割合が多い ため定着温度150℃におけるベタ部画像で光沢度は1 ①程度と低かった(入射測定角60°/60°.トナー 付着量0.7~0.8mg/cm²の条件)。

【0084】 実施例2

上記イエロートナー3、マゼンタトナー3及びシアント ナー3を用いて、三色量ね合わせて定着性試験2を行っ た。その結果、三色重ね合わせてフルカラー画像を形成 させたところ。完全なオイル未供給状態で定若温度12 ()~2()()℃の範囲でホットオフセットを起こさずに定 20 若可能であった。

【0085】比較例5

上記イエロートナー1、マゼンタトナー1及びシアント ナー1を用いて、三色章ね合わせて定着性試験2を行っ た。その結果、三色堂ね合わせてフルカラー画像を形成 させたところ。完全なオイル未供給状態では定着温度1 70℃まで定着可能であったが、光沢性等の点で実用上 問題があった。

【() () 8 6 】比較例6

上記イエロートナー4、マゼンタトナー4及びシアント 30 4 ヒートローラ ナー4を用いて、三色重ね合わせて定着性試験2を行っ た。その結果、三色章ね合わせてフルカラー画像を形成 させたところ、完全なオイル未供給状態では定着温度1 80℃まで定着可能であったが、光沢性等の点で実用上 問題があった。

【0087】比較例7

*上記イエロートナー2、マゼンタトナー2及びシアント ナー2を用いて、三色量ね合わせて定着性試験2を行っ た。その結果、三色堂ね合わせてフルカラー画像を形成 させたところ、完全なオイル未供給状態では何れの温度 でもホットオフセットが生じ定若不可能となった。

[0088]比較例8 上記イエロートナー5、マゼンタトナー5及びシアント ナー5を用いて、三色堂ね合わせて定着性試験2を行っ た。その結果、三色重ね合わせてフルカラー画像を形成 させたところ、完全なオイル未供給状態での定着は12 ()~2()()℃まで可能であったが、中心の定岩温度であ る150℃での定着条件では全体の画像に光沢が見られ ず、発色も劣っており、フルカラー画像形成用トナーと しては使用不可であった。

[0089]

【発明の効果】本発明のフルカラー電子写真用トナー は、トナーの溶融性が良好であり画像の光沢性に優れ、 かつ耐オフセット性に優れるため、オイル途布装置のな いフルカラー電子写真システムに好道に用いることがで きる。従って、該トナーを用いる本発明の画像形成方法 は、オイル塗布の必要がなく、装置の簡略化、小型化が 可能であり、装置コストを低く抑えることができる。

【図1】図1は、本発明の画像形成方法に用いられる装 置の一例の観略図を示すものである。

【符号の説明】

【図面の簡単な説明】

- 1 感光体
- 露光装置
- 3 現像器
- 5 圧力ローラ
- 6 記錄媒体
- 7 帯電装置
- 8 転写装置

[図1]

*

