Introduction aux problèmes combinatoires

H. Fargier, C. Pralet, S. Roussel, G. Verfaillie

Plan

- 1 Exemples de problème d'optimisation
- 2 Cadre de représentation
- Programme du module

Chemin d'un aéroport à un autre

Données

- aéroports de décollage et d'atterrissage,
- points de passage,
- segments possibles entre les aéroports et les points de passage,
- longueurs des segments.

Objectif

Trouver un chemin de longueur totale minimum

Chemin d'un aéroport à un autre

Problème générique

Chemin le plus court dans un graphe pondéré : problème facile

Planification des décollages dans un aéroport

Données

- une seule piste de décollage,
- un ensemble d'avions qui doivent décoller sur un horizon temporel,
- des durées minimum entre les décollages (dépendant du type d'avion),
- les heures de décollage au plus tôt.

Objectif

Planifier les décollages de manière à minimiser le délai maximum atteint sur l'ensemble d'avions (la différence entre l'heure de décollage prévue et l'heure de décollage réelle).

Planification des décollages dans un aéroport

Problème générique

Ordonnancement de tâches avec des durées et des heures de démarrage au plus tôt - minimisation du *makespan*; voif le problème du voyageur de commerce : problème difficile

Maintenance d'une flotte d'avions

Données

- une flotte d'avions,
- des besoins de maintenance sur un horizon temporel,
- des ressources humaines et physiques,
- ses contraintes de maintenance.

Objectif

Construire un plan de maintenance satisfaisant

- les besoins de maintenance
- et les contraintes

et minimisant

- la durée totale de non-disponibilité de la flotte
- ou les le nombre maximum d'avions indisponibles au cours de l'horizon temporel
- \rightarrow problème difficile

Programme du module

Connectivité entre des équipements

Données

- des équipements,
- des connexions possibles entre les équipements,
- des coûts associés aux connexions.

Objectif

Connecter tous les équipements en minimisant le coût total des connexions.

Connectivité entre des équipements

Problème générique

Trouver l'arbre couvrant de poids minimum dans un graphe pondéré : problème facile

Management d'un projet de conception

Données

Exemples de problème d'optimisation

- des tâches de conception,
- des durées de réalisation associées aux tâches.
- des contraintes de précédence entre les tâches,
- des ressources : besoins et contraintes.

Objectif

Organiser les tâches dans le temps de manière à minimiser la durée totale du projet.

Management d'un projet de conception

Problème générique

Management de projet : problème facile sans les contraintes de ressources (chemin le plus long dans un graphe pondéré dirigé acyclique), problème difficile sinon.

Planification de production

Données

- des produits finaux possibles,
- des contraintes de production (par exemple, quantité de matière premières disponibles),
- des coûts (par exemple, coût des matières premières),
- les prix de vente des produits finaux.

Objectif

Décider de la quantité de chaque produit final à produire de manière à maximiser le **profit** sur un horizon temporel donné.

Gestion de portfolio financier

Données

- une somme d'argent disponible,
- des produits financiers possibles,
- les profits espérés et profits minimum,
- les limites d'investissement.

Objectif

Décider de l'investissement sur chaque produit financier de manière à maximiser le **profit espéré** et éventuellement minimiser le risque.

Plan

- 1 Exemples de problème d'optimisation
- 2 Cadre de représentation
- 3 Programme du module

Caractéristiques communes

- un ensemble S d'alternatives : l'espace de recherche ;
- un ensemble *Co* de contraintes à satisfaire (représentant soit des limitations physiques soit des prérequis de l'utilisateur);
 - ullet une contrainte $c \in \mathit{Co}$ est une fonction de S dans $\mathbb B$;
 - une solution est une alternative satisfaisant toutes les contraintes de Co;
- un ensemble *Cr* de critères à satisfaire du mieux possible (représentant des préférences de l'utilisateur);
 - un critère $c \in Cr$ est une fonction de S dans n'importe quel ensemble totalement ordonné qui doit être minimisé ou maximisé;
- une requête classique : produire une solution satisfaisant les critères au mieux;
 - dans le cas d'un critère unique c, produire une solution optimale (i.e. solution qui minimise ou maximise c);
 - dans le cas de plusieurs critères, agréger les critères pour se ramener au premier cas (problème difficile).

Cadre de représentation classique

Ensemble V de variables

- On associe à chaque variable v de V un domaine de valeurs d_v ;
- Une alternative est une instanciation de chaque variable v par une des valeurs de son domaine d_v .
- L'espace de recherche S est donc $\Pi_{v \in V} d_v$

Exemple

- $V = \{x, y, z\}$;
- \bullet $x, y, z \in \mathbb{N}$;
- $0 \le x, y, z \le 10$.

Cadre de représentation classique

Contrainte

Equation logique ou arithmétique sur un sous-ensemble de V

Exemple

$$(x \ge y+1) \lor (y \ge x+2)$$

Critère

Equation logique ou arithmétique sur un sous-ensemble de $\it V$

Exemple

Minimiser max(x+2, y+1, z+3)

→ Représentation **compacte**, non énumérative.

Exemple illustratif : le problème du sac-à-dos (Knapsack Problem)

Données

- un ensemble O d'objets à placer dans le sac-à-dos;
- un ensemble D de dimensions à considérer (poids, volume, etc.);
- pour chaque dimension $d \in D$, une capacité maximum Ca_d ;
- pour chaque objet $o \in O$ et chaque dimension $d \in D$ une consommation $Co_{o,d}$;
- ullet pour chaque objet $o \in O$, une valeur V_o représentant son importance.

Objectif

Décider quels objets placer dans le sac-à-dos de manière à maximiser la somme des valeurs des objets placés en respectant les capacités.

Exemple illustratif : le problème du sac-à-dos (Knapsack Problem)

Variables

 $\forall o \in O : p_o \in \{0,1\}$

Contraintes

 $\forall d \in D : \sum_{o \in O} p_o \cdot Co_{o,d} \leq Ca_d$

Critère

maximize $\sum_{o \in O} p_o \cdot V_o$

Plusieurs cas

- optimisation pure : pas de contrainte;
- satisfaction pure : pas de critère;
- optimisation sous contrainte : présence de contraintes de critère (cas classique).

- optimisation continue : espace de recherche continu;
- optimisation discrète : espace de recherche discret;
- optimisation dans des domaines finis : espace de recherche fini.

Solution analytique

Solution analytique

 Dans le cas général, il n'existe pas de solution analytique, i.e. une expression donnant la(les) solution(s) optimale(s) en fonction des paramètres du problème.

Exemples

- Pour les polynômes de degré 3, utilisation des méthodes de Cardan
- Pour les polynômes de degré 2, calcul des racines à l'aide du déterminant
- Équation différentielle linéaire d'ordre 1

Difficultés

Difficultés

- S'il n'existe pas de solution analytique, il est possible d'utiliser la puissance de calcul machine pour calculer des solutions optimales ou approchées.
- Même si l'espace de recherche est fini, il peut être immense.
- L'énumération des alternatives (pour les vérifier, les comparer et trouver la meilleure) peut être impossible en pratique.
- Parfois, trouver une solution peut être un défi.

Exemple : le problème du voyageur de commerce (Traveling Salesman Problem - TSP)

Données

- un ensemble de villes qui doivent être visitées;
- une matrice de distance entre les villes;

Objectif

Trouver un circuit de longueur minimum qui part d'une ville v, finit dans cette ville et passe par toutes les autres villes une et une seule fois (circuit hamiltonien).

Exemple : le problème du voyageur de commerce (Traveling Salesman Problem - TSP)

Espace de recherche

- Un circuit peut être vu comme une permutation sur l'ensemble des villes;
- Taille de l'espace de recherche s'il y a n villes = n!

Temps de calcul si énumération

Hypothèse optimiste

 10^{-12} secondes pour produire et évaluer un circuit.

Temps de calcul

Nombre de villes	Temps de calcul (en secondes)
10	$3.63 \cdot 10^{-6}$
15	1.31
20	2432902
30	265252859812191058636

- 2432902 sec. = 0.77 année.
- 265252859812191058636 sec. = 84111130077 millénaires = plus de 500 fois l'âqe de l'univers!
- ⇒ Explosion combinatoire

Défi

Être capable de produire des solutions optimales ou approchées sans explorer explicitement l'espace de recherche entier.

Plusieurs approches

Approche possible

- développer un algorithme d'optimisation spécifique pour chaque problème d'optimisation concret
- ightarrow algorithmes efficaces pour la résolution
- ightarrow coûteux en terme de développement

Une autre approche

- existence de cadres de modélisation génériques
- existence d'algorithmes de résolution génériques dédiés
- modélisation de chaque problème concret dans un cadre adapté
- utilisation d'un algorithme dédié, éventuellement paramétré pour traiter le problème concret au mieux.

Plusieurs approches

Dernière approche

- utilisation d'outils dédiés :
 - décomposition du problème en sous-problèmes plus faciles à résoudre
 - appels à plusieurs outils en parallèle ou en séquence
 - utilisation/adaptation de bibliothèques d'algorithmes existantes
 - définition d'un algorithme spécifique exploitant les caractéristiques du problème

Cadres de modélisation considérés

Continu DISCRET Programmation Programmation linéaire en nombres LINÉAIRE linéaire (PL) entiers (PLNE) Graphes Programmation Programmation par Non linéaire contrainte (PPC) non linéaire (PNL)

Méthodes de résolution dédiées

Plan

- 1 Exemples de problème d'optimisation
- 2 Cadre de représentation
- 3 Programme du module

Problèmes combinatoires

Programme du module

- 1 Introduction (Cours)
- 2-3 Complexité (Cours)
- 4-9 Programmation Linéaire en Nombre Entiers (Cours + PC)
- 10-12 1^{er} BE noté
- **13-17 Programmation par contraintes** (Cours + PC)
- 18-20 2^{eme} BE noté
- 21-22 **Examen**