Metric Spaces

Vu Tuong Vi Nguyen

University of North Florida yuuri.yu.196@gmail.com

December 12, 2024

Overview

- Why is Metric Space important?
- What is a Metric Space?
- Topological Properties
 - Openness and Closeness
 - Compactness
 - Connectedness
- Topological Spaces

Why is Metric Space Important?

- Introduced in 1906 by Maurice Frechet, and further developed by Felix Hausdorff.
- Generalize the notion of distance.
- Their properties are widely used such as in geometry or limit problems.

Definition of a Metric Space

Definition

A metric space is a set X together with a function $p: X \times X \longrightarrow \mathbb{R}$ (called the metric of X) which satisfies the following properties for all $x, y, z \in X$:

POSITIVE DEFINITE: $\rho(x,y) \ge 0$ with $\rho(x,y) = 0$ if and only if x = y, SYMMETRIC: $\rho(x,y) = \rho(y,x)$,

TRIANGLE INEQUALITY: $\rho(x, y) \le \rho(x, z) + \rho(z, y)$.

[Notice that by definition, $\rho(x, y)$ is finite valued for all $x, y \in X$.]

Example 1 - Discrete

Example

The set S is a metric space that is defined by $\rho: X \times X \longrightarrow \mathbb{R}$ such that

$$\rho(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{if } x \neq y. \end{cases}$$
 (1)

Example 1 (cont.)

Proof.

Positive definite: For $x, y \in S$, it is always true that $\rho(x, y) \ge 0$ where $\rho(x, y) = 0 \iff x = y$.

Symmetric: We observe that 0 and 1 are the only solutions of $\rho(x,y)$ such that the position of x and y are not important. Therefore,

$$\rho(x,y)=\rho(y,x).$$

Triangle inequality: Let $z \in S$. Since $max\{\rho(x,y)\}_{x,y\in S}=1$. We have the following cases:

Case
$$x = y = z$$
: Then $\rho(x, z) + \rho(z, y) = 0$. And having $\rho(x, y) = 0$. So $\rho(x, z) + \rho(z, y) = \rho(x, y)$.

Case
$$x \neq y \neq z$$
: Then $\rho(x, y) = 1 < \rho(x, z) + \rho(z, y) = 1 + 1 = 2$

Case one is difference: Assume x = y and $x \neq z$.

Then,
$$\rho(x, y) = 0 < \rho(x, z) + \rho(z, y) = 2$$

Assume $x \neq y$ and, WLOG x = z.

Then,
$$\rho(x, y) = \rho(x, z) + \rho(z, y) = 1$$

Therefore, $\rho(x, y) \leq \rho(x, z) + \rho(z, y)$.

Example 2 - Continuous

Example

 \mathbb{R}^2 is a metric space with the function ho(x,y)=|x-y| for $x,y\in\mathbb{R}$

Example 2 (cont.)

Proof.

Positive definite: For $x, y \in \mathbb{R}$, it is always true that $\rho(x, y) = |x - y| \ge 0$ where $\rho(x, y) = 0 \iff x = y$.

Symmetric: By definition of absolute value, we have:

$$\rho(x,y) = |x - y|$$

$$= |-(x - y)|$$

$$= |y - x|$$

$$= \rho(y,x)$$

Triangle inequality: Let $z \in \mathbb{R}$. We have:

$$\rho(x,z) + \rho(z,y) = |x - z| + |z - y|$$

$$\geq |x - z + z - y| = |x - y| = \rho(x,y)$$

Therefore, $\rho(x, y) \leq \rho(x, z) + \rho(z, y)$.

Openness and Closeness

Definition

Let $a \in X$ and r > 0. The open ball (in X) with center a and radius r is the set

$$B_r(a) := \{x \in X : \rho(x, a) < r\},\$$

and the *closed ball* (in X) with *center a* and *radius r* is the set $\{x \in X : \rho(x, a) \le r\}.$

Definition

- i) A set $V \subseteq X$ is said to be *open* if and only if for every $x \in V$ there is an $\epsilon > 0$ such that the open ball $B_{\epsilon}(x)$ is contained in V.
- ii) A set $E \subseteq X$ is said to be *closed* if and only if $E^c := X \setminus E$ is open.

Proposition

Every open ball is open, and every closed ball is closed.

Proof.

Let $B_r(a)$ be an open ball, $x \in B_r(a)$, and $\epsilon = r - \rho(x, a)$. For $y \in B_{\epsilon}(x)$, by the Triangle Inequality and chosen ϵ , we have:

$$\rho(y, a) \le \rho(y, x) + \rho(x, a)$$

$$< \epsilon + \rho(x, a)$$

$$= r$$

Thus, $y \in B_r(a)$. In other words, $B_{\epsilon}(x) \subseteq B_r(a)$.

By the definition of openness and closeness, $B_r(a)$ is open. Hence, every open ball is open.

Similarly, the set $\{x \in X : \rho(x, a) > r\}$ is open, so its complement $\{x \in X : \rho(x, a) \le r\}$ closed. Hence, every closed ball is closed.

Theorem

Let X be a metric space.

i) If $\{V_{\alpha}\}_{\alpha\in A}$ is any collection of open sets in X, then $\bigcup_{\alpha\in A}V_{\alpha}$

is open.

ii) If
$$\{V_k:=1,2,...,n\}$$
 is a finite collection of open sets in X , then
$$\bigcap_{k=1}^n V_k:=\bigcap_{k\in\{1,2,..,n\}} V_k$$
 is open.

Proof.

i) Let $x \in \bigcup_{\alpha \in A} V_{\alpha}$. Then, $x \in V_{\alpha}$ which is open for some $\alpha \in A$. Thus, there is an r > 0 such that $B_r(x) \subseteq \bigcup_{\alpha \in A} V_{\alpha}$.

By the definition of openness and closeness, $\bigcup_{\alpha \in A} V_{\alpha}$ is open.

ii) Let $x \in \bigcap_{k=1}^n V_k$. Then $x \in V_k$ which is open for some k = 1, 2, ..., n. Thus, there are some numbers $r_k > 0$ such that $B_{r_k}(x) \subseteq V_k$. For any

 $r \in r_k$, r > 0 and $B_r(x) \subseteq V_k$.

By the definition of openness and closeness, $\bigcap_{k=1}^{n} V_k$ is open.

Compactness

Definition

Let $\nu = \{V_{\alpha}\}_{{\alpha} \in A}$ be a collection of subsets of a metric space X and suppose that E is a subset of X.

- i) ν is said to *cover E* (or be a *covering* of *E*) if and only if $E \subseteq \bigcup_{\alpha \in A} V_{\alpha}$
- ii) ν is said to be an *open covering* of E if and only if ν covers E and each V_{α} is open.
- iii) Let ν be a covering of E. ν is said to have a *finite* (respectively, countable) subcovering if and only if there is a finite (respectively, countable) subset A_0 of A such that $\{V_\alpha\}_{\alpha\in A_0}$ covers E.

Example

 $\nu = \{(\frac{1}{k+1}, \frac{k}{k+1})\}_{k \in \mathbb{N}}$ is an open covering of (0,1).

u is a covering of (0,1) since $(0,1)\subseteq\bigcup_{k\in\mathbb{N}}(\frac{1}{k+1},\frac{k}{k+1})$

And since $(\frac{1}{k+1}, \frac{k}{k+1})$ is open for every $k \in \mathbb{N}$, ν is an open covering.

Compact Sets

Definition

A subset H of a metric space X is said to be *compact* if and only if every open subcovering of H has a finite subcover.

Proposition

A compact set is always closed.

Theorem

Let H be a subset of a metric space X. If H is compact, then H is closed and bounded.

Proof.

Let H be a compact subset of a metric space X. By Proposition above, we know that a compact set is always closed, so H is closed.

Take $b \in X$ and note $\{B_n(b) : n \in N\}$ covers X.

As given that H is compact, we have:

$$H \subset \bigcup_{n=1}^{N} B_n(b)$$
 for some $N \in \mathbb{N}$.

Hence, $H \subset B_N(b)$ or H is bounded.

Therefore, H is closed and bounded.

Connectedness

Definition

Let X be a metric space.

- i) A pair of nonempty open sets U, V in X is said to separate X if and only if $X = U \cup V$ and $U \cap V = \emptyset$.
- ii) X is said to be *connected* if and only if X cannot be separated by any pair of open sets U, V.

Example

 $\mathbb R$ under discrete metric is separate because $(-\infty,0]$ and $(0,\infty)$ are both open subsets of $\mathbb R$ such that $\mathbb R=(-\infty,0]\cup(0,\infty)$ and $(-\infty,0]\cap(0,\infty)=\emptyset$.

 $\mathbb R$ under a continuous metric such as |x-y| is connected because the metric itself is continuous. So, S is not separated by any pairs of open sets U,V.

Definition of a Topological Space

Definition

Let X be a set. A *topology* on X is a collection τ of subsets of X satisfying the following conditions

- (T1) the total set, X, and the empty set, \emptyset , are elements of τ ;
- (T2) if $\{U_{\gamma}\}_{{\gamma}\in \Gamma}$ is a (possibly infinite) family of elements of τ , then $\bigcup_{{\gamma}\in \Gamma} U_{\gamma}\in \tau$;
- (T3) if $\{U_1,...,U_n\}\subseteq \tau$ is a finite family of elements of τ , then $\bigcap_{i=1}^n U_i \in \tau$.

A topological space is a pair (X, τ) where τ is a topology on X.

Example 1

Example

 (X, τ) is a topological space where $X = \{1, 2, 3\}$ and $\tau = \{\emptyset, X, \{2\}, \{1, 2\}, \{2, 3\}\}$

Proof.

- (T1): As we observe, $X, \emptyset \in \tau$.
- (T2): From the given τ , we have: $\bigcup_{\gamma=1}^{5} U_{\gamma} \in \tau$. That is the union of families of elements of τ is also in τ .
- (T3): Since any intersection of families of elements in τ is in τ , we conclude that $\bigcap_{i=1}^5 U_i \in \tau$.
- Thus, τ is a topology. Hence, (X, τ) is a topological space.

Example 2

Example

Let's consider the same set X with a different τ , say τ_0 .

We have $X = \{1, 2, 3\}$ and $\tau_0 = \{\emptyset, X, \{2\}, \{3\}\}$

(T1): We can see that $\emptyset, X \in \tau_0$.

(T2): $\{2\} \cup \{3\} = \{2,3\} \notin \tau_0$.

Thus, τ_0 is not a topology.

Hence, the pair (X, τ_0) is not a topological space.

Every Metric Space is a Topological Space

Proof.

Recall that the collection of all open sets of a metric space is closed under union and intersection.

For a metric space (X, ρ) , let τ be the collection of all open subsets of X which respect to metric ρ . Thus, τ is a topology on X.

Hence, the pair (X, τ) is a topological space.

References

William R.Wade (2010)

Pearson Prentice Hall

An Introduction to Analysis 10, 342 - 382.

Alex Gonzalez

Metric and Topological Spaces.

Stephan C. Carlson (2017)

Britannica.com.

Metric Space.

Stephan C. Carlson (2016)

Britannica.com.

Hausdorff Space.