

Departamento de Matemática, Universidade de Aveiro

Cálculo I-C — Exame Final (V1)

16 de janeiro de 2025

Duração: 2h45

-	N.º Mec.:				Nome:	·											
1	(Declaro que desisto:								_)	N	. folha	ıs suple	eme	entares	:		
	Questão [Cotação]	1 [60nts]	2 [15pts]	3 [10nts]	4a [13pts]	4b	5a	5b	6	7a	7b	7c	8a	8b			ificação lores)
l	[comţmo]	[oopto]	[10]	[10pto]	[10pts]	[1.]	[10]	[10]	[Tepto]	[10]	[12]	[ocpus]	[1-]/***	[zepis]		(,	
	– Na	ıs que	estões	s 2 a	8 justi	fique	toda	s as ı	espo	stas e	e indi	que o	s cál	culos	efe	tuado	os –
60pts]	segu (i) re (ii) r	inte: esposta espost	a corre	ta: 10 da: -3	assinal pontos pontos ta ou re	s; ;				o corre	eta. A	cotaçã	io a at	ribuir a	a ca	da res	posta é :
	(a) Seja f a função definida por $f(x)=\operatorname{arcsen}(\mathrm{e}^{1-x})$ e f^{-1} a sua inversa. Sendo $D_{f^{-1}}$ f^{-1} e $CD_{f^{-1}}$ o contradomínio de f^{-1} , podemos afirmar que:																
	(6)		x = 1 $x = 1$ $x = 1$	m — →0+	$\ln x$	— e i	guai a	•				2 1					
			$\frac{1}{4}$	e um v	alor aj	proxin	nado d	e arct	g(2) é	igual		$\frac{\pi - 1}{4}$ $\frac{\pi}{4}$	g(1 +	$x), T_0$	$f^{2}(f)$	(x)), 1	podemo
(d) Sendo $F(x) = \int_1^{x^2} e^{t^2} dt$, podemos afirmar que: $F \text{ \'e estritamente crescente em } \mathbb{R}.$ $F \text{ \'e estritamente decrescente em } \mathbb{R}.$						F tem mínimo global atingido em $x=0F$ tem máximo global atingido em $x=0$											
	(e)	equa	ções x	= -1	e <i>x</i> =	1, é d	lada po	or:		ções f	(x) =	$x^{2} - 1$	2 e g(:	x) = x	x ,	e pelas	s retas de
			$\int_{0}^{-1} (x^2)^{-1}$	- 2 +	(x) dx (x) dx	$+\int_{0}^{1}$											
		J	-1		(-2) dx $(-2) dx$												

	(f) O integral geral da equação diferencial $\frac{1}{x}y'+\frac{1}{y}=0$, com $x,y\in\mathbb{R}\setminus\{0\}$, é dado por:
[15pts]	2. Seja f a função definida por $f(x) = x - \arccos(x-2)$. Mostre que f tem exatamente um zero no intervalo $]1,3[$.
L	Continua na folha suplementar Nº
[10pts]	3. Sejam $a,b \in \mathbb{R}$ com $a < b$. Aplicando o Teorema de Lagrange, mostre que
Г	$ \cos(b) - \cos(a) \le b - a.$

Continua na folha suplementar No

N ° Mec:	Nomes	
IN IVIEC:	Nome:	

4. Calcule:

[13pts]

(a)
$$\int_0^1 x \arctan(x^2) \, dx.$$

Continua na folha suplementar Nº

[17pts]

$$\text{(b)} \int \frac{2x-9}{x(9+x^2)} \, dx$$

Continua na folha suplementar No

ts] 5	. (a)	Mostre que o integral impróprio $\int_1^{+\infty} \frac{1}{x^2} \mathrm{e}^{\frac{1}{x}} dx$ é convergente e indique o seu valor.
		Continua na folha suplementar N
s]	(h)	$f^{+\infty} \downarrow \pm \cos x$
	(0)	Sem usar a definição, estude a natureza do integral impróprio $\int_1^1 \frac{1+\cos x}{x^2} e^{\frac{1}{x}} dx$.
		Sem usar a definição, estude a natureza do integral impróprio $\int_1^{+\infty} \frac{1+\cos x}{x^2} \mathrm{e}^{\frac{1}{x}} dx$.
	(0)	Sem usar a definição, estude a natureza do integral impróprio $\int_1^{} \frac{1+\cos x}{x^2} \mathrm{e}^{\frac{1}{x}} dx.$
	(0)	Sem usar a definição, estude a natureza do integral impróprio $\int_1^{} \frac{1+\cos x}{x^2} \mathrm{e}^{\frac{1}{x}} dx.$
	(8)	Sem usar a definição, estude a natureza do integral impróprio $\int_1^{} \frac{1+\cos x}{x^2} \mathrm{e}^{\frac{1}{x}} dx.$
		Sem usar a definição, estude a natureza do integral impróprio $\int_1^{} \frac{1+\cos x}{x^2} \mathrm{e}^{\frac{1}{x}} dx.$
		Sem usar a definição, estude a natureza do integral impróprio $\int_1^{} \frac{1+\cos x}{x^2} \mathrm{e}^{\frac{1}{x}} dx.$
		Sem usar a definição, estude a natureza do integral impróprio $\int_1^{} \frac{1+\cos x}{x^2} \mathrm{e}^{\frac{1}{x}} dx.$
		Sem usar a definição, estude a natureza do integral impróprio $\int_1^{} \frac{1+\cos x}{x^2} \mathrm{e}^{\frac{1}{x}} dx.$
		Sem usar a definição, estude a natureza do integral impróprio $\int_1^{} \frac{1+\cos x}{x^2} \mathrm{e}^{\frac{1}{x}} dx.$
		Sem usar a definição, estude a natureza do integral impróprio $\int_1^{} \frac{1+\cos x}{x^2} \mathrm{e}^{\frac{1}{x}} dx.$
		Sem usar a definição, estude a natureza do integral impróprio $\int_1^{} \frac{1+\cos x}{x^2} \mathrm{e}^{\frac{i}{x}} dx.$
		Sem usar a definição, estude a natureza do integral impróprio $\int_1^{} \frac{1+\cos x}{x^2} \mathrm{e}^{\frac{1}{x}} dx.$

[15pts]	6.	. Resolva a seguinte equação diferencial de Bernoulli: $y'-y=\mathrm{e}^{-x}y^2$.	
			1 270
		Continua na folha sup	olementar N°
	7.	. Considere a equação diferencial: $y'' + 4y = sen(x)$.	
[10pts]	7.	. Considere a equação diferencial: $y''+4y=\mathrm{sen}(x)$. (a) Resolva a equação diferencial homogénea associada.	
[10pts]	7.		

[12pts]	 (b) Usando o Método dos Coeficientes Indeterminados, determir equação diferencial completa. 	ne uma soluçao particular da
		Continua na folha suplementar N°
03pts]	(c) Indique a solução geral da equação diferencial completa.	

8.	Considere o seguinte problema de valores iniciais	$\begin{cases} y'' - 2y' - 8y = 0 \\ y(0) = 3 \\ y'(0) = 6. \end{cases}$
	(a) Mostro aug. $\mathcal{L}(v(t))(s) = 3s$	1

[12pts]

(a) Mostre que
$$\mathcal{L}\{y(t)\}(s)=\frac{3s}{(s+2)(s-4)}, \quad s>4.$$

Continua na folha suplementar Nº

[13pts] (b) Usando a Transformada de Laplace inversa, resolva o problema de valores iniciais.

Continua na folha suplementar Nº

Função	Primitiva	Função	Primitiva	Função	Primitiva
$ \begin{array}{ c c } u^r u' \\ (r \neq -1) \end{array} $	$\frac{u^{r+1}}{r+1}$	$\frac{u'}{u}$	$\ln u $	$u'e^u$	e^u
$u'a^u$	$\frac{a^u}{\ln a}$	$u'\cos u$	$\operatorname{sen} u$	$u' \operatorname{sen} u$	$-\cos u$
$u'\sec^2 u$	$\operatorname{tg} u$	$u'\csc^2 u$	$-\cot g u$	$u' \sec u$	
$u' \operatorname{cosec} u$	$-\ln \csc u + \cot g u $	$\frac{u'}{\sqrt{1-u^2}}$	$-\arccos u$ ou $\arcsin u$	$\frac{u'}{1+u^2}$	rctg u ou $-rccotg u$
$u' \sec u \operatorname{tg} u$	$\sec u$	$u' \operatorname{cosec} u \operatorname{cotg} u$	$-\csc u$		

$$\sec x = \frac{1}{\cos x}$$

$$\cos(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$

$$1 + tg^2 x = \sec^2 x$$

$$\cos(2x) = 2 \sin x \cos x$$

$$\cos(2x) = \cos^2 x - \sin^2 x$$

$$\sin^2 x = \frac{1 - \cos(2x)}{2}$$

$$1 + \cot^2 x = \csc^2 x$$

Função	Transformada	Função	Transformada	Função	Transformada
t^n $(n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}$ $(s>0)$	e^{at} $(a \in \mathbb{R})$	$\frac{1}{s-a}$ $(s>a)$	$ \begin{array}{c c} \operatorname{sen}(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{a}{s^2 + a^2}$ $(s > 0)$
$ \begin{array}{c} \cos(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{s}{s^2 + a^2}$ $(s > 0)$	$ senh(at) (a \in \mathbb{R}) $	$\frac{a}{s^2 - a^2}$ $(s > a)$	$ \begin{array}{c} \cosh(at) \\ (a \in \mathbb{R}) \end{array} $	$\frac{s}{s^2 - a^2}$ $s > a $

Propriedades da Transfe $F(s) = \mathcal{L}\{f(t)\}(s), \operatorname{com} s > s_f$ e	<u>*</u>					
$\mathcal{L}\lbrace f(t) + g(t)\rbrace(s) = F(s) + G(s), \ s > \max\lbrace s_f, s_g \rbrace$						
$\mathcal{L}\{\mathrm{e}^{\lambda t}f(t)\}(s) = F(s-\lambda),\; s>s_f+\lambda\;\mathrm{e}\;\lambda\in\mathbb{R}$	$\mathcal{L}\{t^n f(t)\}(s) = (-1)^n F^{(n)}(s) , \ s > s_f \ \mathbf{e} \ n \in \mathbb{N}$					
$\mathcal{L}\{H_a(t) \cdot f(t-a)\}(s) = e^{-as}F(s), \ s > s_f \ e \ a > 0$	$\mathcal{L}\lbrace f(at)\rbrace(s) = \frac{1}{a} F\left(\frac{s}{a}\right), \ s > a s_f \mathbf{e} a > 0$					
$\mathcal{L}\{f^{(n)}(t)\}(s) = s^n F(s) - s^{n-1} f(0) - s^{n-1}$	$\mathcal{L}\{f^{(n)}(t)\}(s) = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$					

$$\mathcal{L}\{(f*g)(t)\}(s) = F(s)\cdot G(s), \quad \text{onde} \quad (f*g)(t) = \int_0^t f(\tau)g(t-\tau)\,d\tau, \ t\geq 0$$

 $\operatorname{com} s > \max\{s_f, s_{f'}, s_{f''} \dots, s_{f^{(n-1)}}\}, n \in \mathbb{N}$