

SEQUENCE LISTING

<110> NEELAM, Beena et al

<120> ISOLATED HUMAN RAS-LIKE PROTEINS,
NUCLEIC ACID MOLECULES ENCODING THESE HUMAN RAS-LIKE
PROTEINS, AND USES THEREOF

<130> CL001112

<140> 09/778,963

<141> 2001-02-08

<160> 9

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 3082

<212> DNA

<213> Homo sapiens

<400> 1

ggcgtcgccg cgccccggaga aagaagccgc gcccagcccc gcgtccccgag cagcgcagg 60
gaggatcccc gcgcagtgac ccggggagcca ccacagactc tggggaggctc ggcggctgga 120
gcagcaggca gctcccccga gctcccccggcg ctccaggca gctctctgag ccgtgccaga 180
ggcccgcccc gccattccca gccccgagcc atgatgaaga ctttgcgtccag cgggaactgc 240
acgctcagtg tgcccgccaa aaactcatac cgcatggtg tgctgggtgc ctctcgggtg 300
ggcaagagct ccatcgtgtc tcgcttcctc aatggccgct ttgaggacca gtacacaccc 360
accatcgagg acttccaccc taaggtaaac aacatccgcg gcgacatgt a cccagctcgac 420
atccctggata cctctggcaa ccaccccttc cccgccttc gcaggctgtc catcctcaca 480
ggggatgtct tcatccttgt gttcagctg gataaccggg agtccttcga tgaggtcaag 540
cgccttcaga agcagatcct ggagggtcaag tcctgcctga agaacaagac caaggaggcg 600
gcccggctgc ccatggtcat ctgtggcaac aagaacgacc acggcgagct gtgcgcgg 660
gtgccccacca cccggggccga gctgctggtg tcgggcgacg agaactccgc ctacttcgag 720
gtgtcgccca agaagaacac caacgtggac gagatgtct acgtgctct cagcatggcc 780
aagctgccac acgagatgag ccccgccctg catcgcaaga tctccgtgca gtacgggtgac 840
gccttccacc ccaggccctt ctgcattgcgc cgcgtcaagg agatggacgc ctatggcatg 900
gtctcgccct tcgccccggc ccccgccgtc aacagtgacc tcaagtacat caaggccaag 960
gtccttcggg aaggccaggg cctgtgagagg gacaagtgc ccatccagtg agcgaggat 1020
gctggggccg ggcttggcca gtgccttcag ggagggtggcc ccagatgccc actgtgcgca 1080
tctccccacc gaggccccgg cagcagtctt gttcacagac cttaggcacc agactggagg 1140
cccccgccg ctggcctccg cacattcgtc tgccttcata cagtttcctt gagtccgctt 1200
gtccacagct ctttgttgtt ttcatctctt ctgtgggagg acacatctct cagcctcaa 1260
gagttaggca gagactcaag ttacacccctt ctctccctgg gttgaaatggaa atgttgcgt 1320
cagagggtg aggattgctg cgtcatatgg agcctccctgg gacaagcctc aggtgaaaa 1380
ggacacagaa ggccagatga gaaaggctc ctctctccgt gcataacacc cagcttgggt 1440
tgggtggcag ctgggagaac ttctctccca gccctgcaac tcttacgctc tggttcagct 1500
gcctctgcac cccctccac ccccgccaca cacacaagtt ggccccccagc tgcgcctgac 1560
attgagccag tggactctgt gtctgaagggg ggcgtggcca cacctccctag accacgccc 1620
ccacttagac cacggccacc tcctgaccgc gttcctcagc ctcctctccctt aggtccctcc 1680
gcccgcacgt tggctttgt tgggttgca gctgtttcg tgtcatgtat agtagtagaa 1740
atggaaatca ttgtactgta aaaggcttagt gactccctcc ttggccaggc cctcaccac 1800
ttcagatcca cggcctccac cggggacgccc ttccctccct gctcccaaac agggttccg 1860
tggcctgttt gcagctagac attgacccctt gccattgagc tccacgggtt acagacaatt 1920
gcacaaggcg ggggtggca gggcaggact gctttttttt aatgctccca tttcacagag 1980

gataccacg agactcgag gggacacgt gaggcaccagg ccccacctt gtcccttagc 2040
 aaattcaggg tacagctcca cctagaacca ggctgcctc tactgtgctc gttcctaag 2100
 catttattaa gcacctactg ggtgctgggt tcactgtgtc ctaggaaacc aagagggtcc 2160
 ccagtctgg cctctgccc cccctgctc cccaccacct tctgcacaca cagcgggtggg 2220
 gaggcgggaa ggagcagctg ggacccagaa ctgagcctgg gagggatccg acagaaaagc 2280
 tcagggcggg tcttcctt gtgcccggg ttggctatg ctgggtacca ccatgtactc 2340
 aggcattgtg ggtttgaac ccataaacca aaggcccttg tcatcagctc ttaacaagta 2400
 tattttgtat ttaatctct ctaaacatat tgaagttta gggccctaag gaaccttagt 2460
 gatcttctat tgggtcttc tgaggttcag agagggttaag taacttcctc caggtcacac 2520
 agcaagtctg tgggtggcag aagcaagcta gcgcgtggca ttcaagtacat accacgatgt 2580
 gctccctctc ttgatgctt gcccctgggg cttcaggc ttgggacat cttgtcctca 2640
 accctctccc tagatcagtc tgtgagggtc cctgtagata ttgtgtacac catgcccatt 2700
 tatataacaag tacacacaga tgtacacaca gatgtacaca tgctccagcc ccagctctgc 2760
 atacctgcac ctgcacccca gccttggccc ctgcctgcgt ctgtgctcaa agcagcagct 2820
 ccaaccctgc ctctgtcccc ttccccaccc actgcctgag cttctgagc agaccaggt 2880
 ccttggctgc accggtgtgt ggcccgctc cacccaggca cagcccgcc accatggatc 2940
 tccgttaca ctatcaataa aagtgggtt gttacaaaaaa aaaaaaaaaa aaaaaaaaaa 3000
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3060
 aaaaaaaaaa aaaaaaaaaa aa 3082

<210> 2
 <211> 266
 <212> PRT
 <213> Homo sapiens

<400> 2

Met	Met	Lys	Thr	Leu	Ser	Ser	Gly	Asn	Cys	Thr	Leu	Ser	Val	Pro	Ala
1				5						10				15	
Lys	Asn	Ser	Tyr	Arg	Met	Val	Val	Leu	Gly	Ala	Ser	Arg	Val	Gly	Lys
					20			25						30	
Ser	Ser	Ile	Val	Ser	Arg	Phe	Leu	Asn	Gly	Arg	Phe	Glu	Asp	Gln	Tyr
					35			40				45			
Thr	Pro	Thr	Ile	Glu	Asp	Phe	His	Arg	Lys	Val	Tyr	Asn	Ile	Arg	Gly
					50			55			60				
Asp	Met	Tyr	Gln	Leu	Asp	Ile	Leu	Asp	Thr	Ser	Gly	Asn	His	Pro	Phe
	65				70				75				80		
Pro	Ala	Met	Arg	Arg	Leu	Ser	Ile	Leu	Thr	Gly	Asp	Val	Phe	Ile	Leu
					85				90			95			
Val	Phe	Ser	Leu	Asp	Asn	Arg	Glu	Ser	Phe	Asp	Glu	Val	Lys	Arg	Leu
					100				105			110			
Gln	Lys	Gln	Ile	Leu	Glu	Val	Lys	Ser	Cys	Leu	Lys	Asn	Lys	Thr	Lys
					115			120			125				
Glu	Ala	Ala	Glu	Leu	Pro	Met	Val	Ile	Cys	Gly	Asn	Lys	Asn	Asp	His
					130			135			140				
Gly	Glu	Leu	Cys	Arg	Gln	Val	Pro	Thr	Thr	Glu	Ala	Glu	Leu	Leu	Val
	145					150			155				160		
Ser	Gly	Asp	Glu	Asn	Ser	Ala	Tyr	Phe	Glu	Val	Ser	Ala	Lys	Lys	Asn
						165			170			175			
Thr	Asn	Val	Asp	Glu	Met	Phe	Tyr	Val	Leu	Phe	Ser	Met	Ala	Lys	Leu
						180			185			190			
Pro	His	Glu	Met	Ser	Pro	Ala	Leu	His	Arg	Lys	Ile	Ser	Val	Gln	Tyr
						195			200			205			
Gly	Asp	Ala	Phe	His	Pro	Arg	Pro	Phe	Cys	Met	Arg	Arg	Val	Lys	Glu
						210			215			220			
Met	Asp	Ala	Tyr	Gly	Met	Val	Ser	Pro	Phe	Ala	Arg	Arg	Pro	Ser	Val
	225					230				235			240		
Asn	Ser	Asp	Leu	Lys	Tyr	Ile	Lys	Ala	Lys	Val	Leu	Arg	Glu	Gly	Gln

245 250 255
Ala Arg Glu Arg Asp Lys Cys Thr Ile Gln
260 265

<210> 3
<211> 11221
<212> DNA
<213> Homo sapiens

<400> 3
ctctctgact ctttgccctcc tctctgactc cctgcctcct ctctctgtct ccctgcctcc 60
tctgtctgac tccctgcctc ccctctctgt ctcactgcct cctctctctg actctctgcc 120
tcctctctct gactccctgc ctccctctctc tgattccctg cctctttgac cctctgcctc 180
ctctctttga ctcccctgcct cctctctccg attctctgcg tctttgactc cctgcctccct 240
ctctctgact ccctgaagct cattcagtca ttgctatcaa ctcgtctgtta ccaagctcta 300
ggctggaggc tgggcagggc aatgatggag acaaatactg tccctggagg cttctggccc 360
ctttccatc ctgttttagac agaagtgacc gccagcagag tcaagctgtc tgcagaagga 420
cttggggagg gggctgtcat gggtagggc ttctttcccc ccatctctgc tgaaggccca 480
ggctggctga gacagccccg gcagagactg agaagggttc cctgctgtgg tctggcagcc 540
ccctctccac ctcctctct ctcatttcct gcctccaca cgtatgcctt gggcacctca 600
tcagggctgc ctcaggggag ggccctccctt ggcacagccc ctggggccagt caggtggttg 660
aggctgagga gagaagggtcc cagagtgggg cttcaggcaa acccaaagac agagcccttt 720
gccatttgat gaatgcacag accctttatt gagcccttc tctgttcatg gcatggcagt 780
tttgtggat aaattcaaag acagctttag gtggagctg ggtggggat gtgggggtct 840
taggcttcaa ctactaccca gcctcctttt ttaaccaaatg agctagtcac gtgccttct 900
gagctcgaaa cagaccacct gggatcaaac ctctccctctg ctggttactg gctgtgcaac 960
tgtaagcaag taatttaacc tctctgtgcc tcagttcct catctgtaaa ttggagaata 1020
acaccacctg ctttctgggg ttatgaaggg agaaaataggt taacatgtgt gcagcactta 1080
gaacactctg gcatattttt gctgaaaaat gaatgccagc tatgattatt tctataactta 1140
gtgcggggct tggcacactg catggctca agtggcagca gttgtcgtcc ttgtggctcc 1200
aggcctgggg tccgcccgtgt gctgagctgg cttattgtgc aegtccctt gtgattcatt 1260
catcgaagtc acatttagtag cttagaagtgc accgtagttgg gagcatttac gccatggaaa 1320
ttggcaatag ggcttttaac aaaggtaattt ttgagagccg gtttcctgca cagaggctgg 1380
tagttggca gggtagcag atccagatgt gtgccaggaa ctcgcacgca ggcaatctct 1440
ccacctccag tggccatctc agacccatgc ttcatgatag ccaggaagcg atgggtttgg 1500
aaagcgcctt gggtaatgg gcgaggact caagggaaacc gacttggggc atcctgggt 1560
ggggaccggag ttgggcaca tacagccctt tgtgtgaatt taaaaacagt gcctttccct 1620
ctacacaaga tggccatctc tctggatac agcccccacc tctggatgc agccccact 1680
tgcccaccca gccatgcgcc ttgtgcagta tccaaacctgc acaacctgtg gcagcctgtg 1740
gaagaccggag gggattgata tttcagcagg cctgtgccc tttgcagttc aggggctgga 1800
aagctctctt ctggagaggg gagggattcc tgcaagggtg aggagatcag agaggccttc 1860
agagagcagg tggcaacttgc gccagaccct gaaacataag gggaaagaggg tggctgcag 1920
aggggtggca tgagcaaagg agtggaggct gatctcagca gagctcaaac tgacgagggt 1980
gactggggctc aggggttctg gggcggggat tctgggtggc gctaaggtag gaaaggaggg 2040
agggctgggc tgtgaagagc ctttgggtg agcctgggttgg agcctgcggg tttgcttata 2100
caagagcttgc gatccatgtc ggcccttttc atgaggtcaa gaggctccca tagaaagctc 2160
tgagtttgc ccagaaccat aacccttggaa gatgggaggg aagcttgcgc cagccatggg 2220
tcgttccca ttccacatcc tctactccgg gcctctgggt ctccctggagg caagtaaaca 2280
cctaggccct gggaggccaa aatatccggg caggtcatgg agcggaggg gcccggcaga 2340
tgcagagcac aggtctaaag gtgggtcctc ctgaggtggc tgcaggagca accccaggca 2400
ttgggcttgg agcatgcggc gtggacatag cttcccttc ttcccaggag ggctgaatgg 2460
ccacagaacc accccctgccc ccaggcttaa gaaatgcattt ctgtgcctt ccccatgtct 2520
tatccatgaa tcacaggctc cgggaaagcc agatggatga accagggaaa gaacggattc 2580
tcaccatgaa taccattttt gagatttcac catgtgctga gccctttgca acaactctat 2640
gaattggggct cattttgcag atgagaaaag tgacttctag agaggttaag ctactagccc 2700
aagatcgttgc gctagaggca aggcaaggat tcaaatccca ggagtccggc gcttgcataa 2760

atattgagtg agtgagtgga tgaaggaagg agtcaaaggag 2820
tgaatgagag ggtagaactc caagacccct tagaacctcg tctgtatgttc 2880
gacagaaaac tgagtcctag acagaggcct agaggaggcc aagagggtgg 2940
ctgatgcctg cttctctcg tttgttgcag cccccgagcca 3000
tttgtccagc gggaaactgca cgctcagtgt gcccgc当地 aactcatacc 3060
tgc当地 gctgggtgcc tctcgggtgg gcaagagctc catcggtct cgcttc当地 3120
atggccgctt tgaggaccag tacacaccca ccatcgagga ctccaccgt aaggtaataca 3180
acatcccgccg cgacatgtac cagctcgaca tcctggatac ctctggcaac cacccttcc 3240
ccgcatcgcc caggctgtcc atcctcacag gtgaggccca ctgggtc当地 ggctggggcg 3300
gcaggccag ggc当地 ggggactg cggagtgcc tgggacttgc gcaagttgca tagacttgca 3360
tagccatcgct tgagacagg cgatccct gcacaatgag gtcagagag gtttgc当地 3420
gtgctggaaa tagtcatgaa gtc当地 gggcc cggattccat tctgttagac tccagatcg 3480
ttactcatgg ctgtcgccg cgc当地 cc当地 atcaggagct gataccagca tgccccagg 3540
atattccctt cttaggaaaca gaatgatgcc ctgggtc当地 ct当地 cccgaaagatg 3600
acccaccaga gtc当地 cccggc ccaaggtcag tccacggg tcaaggctcc cacacccag 3660
gccttgc当地 cctcctagag aggtaaaggc aggacccagg cagtgatcac caaaggaaag 3720
ggggcttggg catggtc当地 gtatggtga tggacta tgc当地 acttat cagaagctat 3780
gggcttgc当地 ctgttcttag agcttggcat gtattttt ttgaaacaga gtctcgctct 3840
gtcaccagg ctggagtgca gtggcgc当地 ct当地 tgcaacctct gc当地 ccccccgg 3900
ttcaaggat tctcctgc当地 cagtc当地 agtagtggg actacaggca cgtgccacca 3960
tgccc当地 ct当地 attttttta ttttactag agacgggatt tcaccatgtt agccaggatg 4020
gtctcgatct cctgacctcg tgatc当地 acctcagcct cccaaagtgca tgagattaca 4080
ggcgtcagcc acccgccgca gccagcatgt agttat当地 ccctc当地 agtgc当地 4140
tc当地 attccctt ttacagggt gggaaactga agccc当地 agaga ggttaagtaa ctcactccag 4200
tggtagaca gtc当地 taaag gcagtc当地 tttgttgc当地 cagaca当地 agc 4260
cctctcagcc ctgctgggaa gggtaaggag ggacaggag gttgggggaa agaagggtg 4320
agtggagctg agggctgtg cc当地 ttta cactgcatta gcatggtagc taagaggaca 4380
agccccc当地 ccagcacctg ggtgtgagcc ctgggtccgc tgcttccctgg ctttgtacct 4440
cgaggcaagg gat当地 tatct ccttgc当地 tgc当地 ct当地 atctgtaaga ctgc当地 caccaca 4500
tcaacactca tc当地 aaaggg actgtgagac ttaatgaaat gaatataatgt aaggcgc当地 4560
gtgagcagat agtaaatgca caataaaatcc ccaagtc当地 ttttgc当地 ttttgc当地 4620
gtgggc当地 tacgggttac acgatc当地 ccaagtc当地 gccc当地 tggaaag 4680
gggataaggg aaggagtgag caggcaactc tctaggc当地 attcagataa cccccc当地 4740
gaggtacttc tatacagaga aaccatgcc actccc当地 ctgctgccc当地 4800
agactgaggc tgccgggtgg cccctc当地 tggaggct ct当地 caggcttgc当地 4860
agcatctgac ccagacagca gtcaagtttcc cggctccacc cc当地 agtggcttgc当地 4920
atgtagatag gagagccctg ggtc当地 acctg ttttgc当地 ct当地 tggacttgc当地 4980
aaatgtgtga ccagaggcac atgc当地 cctg tctgagtc当地 agc当地 cccccc当地 5040
gggcttaacc tc当地 accccg caggaggct gtgaggactg caagaaggct tggc当地 cggg 5100
gcttccagca cgtgacgggt attgc当地 tgg ttttgc当地 cccaggcttgc当地 5160
tgggtacccg ctgcaatgaa taaggctaa gacagaggga aggagagggg agatgttagag 5220
aggaagcaca tgcatatttt cagc当地 ttttgc当地 ttttgc当地 acaagtaata cccaaacaca 5280
ccctc当地 tggc当地 aacgctacag ataaagctaa tgccccc当地 acccatgtcc ccaatccag 5340
gctctgccc ctgccccggc ggtggccacc ctggc当地 ggc当地 tggc当地 5400
tccgtgacta caccggcatt cgtatttgc当地 tccccacaat ggagaggatt ttttgc当地 5460
tctttttat ggc当地 catatc attctgagca cagtc当地 tggc当地 ttttgc当地 5520
caccaacccg tgctc当地 tccaaacctgg tggaaacctca ttttgc当地 ctc当地 ttttgc当地 5580
tgctgctc当地 gaaattctga aagccattaa ttccactgcc agcttctt ccagctgcca 5640
gacggggcga tctctgatgc ttggc当地 tggc当地 agtctc当地 ttgaaatatgt caaggccac 5700
agtc当地 cagg gggccggat tagc当地 aacg ggtggggtt tggc当地 gccc当地 5760
gttgc当地 aacg tggc当地 tggc当地 ct当地 caggacttgc当地 5820
ccatcacctc ccatccattc aggcttccctt ggttaacact gactgtgtcc caggccctgg 5880
ggagaccagg acgactgggt gatggaaacc ttctctgtcc cggagctgtt tggagcac 5940
ctttgatctg gacaccattc tgaatgtgcc atgtgccatt aaatgggggt aatgtatgt 6000
ctctgggggt gcaaggaaag gtggcagccca ttctgccc当地 agctggaact ggttgc当地 6060
cttctcaaga atttggccaa attgctgatt cctctggcc tcaaggacttcttcatctgatgt 6120
acaggatct tgc当地 acacca caaggctatc aagagttga gcaaaagtg 6180

tggctcatgc ctgtaatccc agctttgg gaggccgagg tggcagatc tctttaggtc 6240
 aggagttcaa gaccagcctg gctaacacag taaaacaccg tctctactaa aaaataaaaa 6300
 aaattagcca ggtgtggtga tggcacctg taatcccaagt tactcgggag gctgaggcag 6360
 gagaatctct tgaacccagg aggtggaggt tgcaatgagc tgagatctt ccattgcatt 6420
 ccaggctggg caacaagagt gaaactctgt ctcagaaaaat aaataaataaa ataaataaaaa 6480
 aatagctagg catggtgaca ggcgcctgta atccccagctg ctccagaggg tgaggcagga 6540
 gaatcgctta aacccaggag gtggaaatgg cagttagcca agatcacacc actgcactcc 6600
 agcctggcc acagagaaaag actccatctc aaaaaaaaaa aaaaaaaaaa aaaaagttt 6660
 agcaaaaatgt aggaagggtgc ttattaaaag ctggaaatca ggatggaggt accagtcac 6720
 acagcctccc caccacccca ccgtctccac agcagccct gttcagatt cacaagcctg 6780
 ccttgagtga tgcaatgagttatccctggag gcagtgtggg ccttggaggg cagcactcac 6840
 ttttcatcc tatgatttat ttgagaagca gagagcacct accgggtgcc aggaacgagc 6900
 taggtgagaa cagaatcagg tagaaatctc agcctagcca cacggaagct gtgtgatctt 6960
 gggcaggctg catacccttt ctgagcctca gtttgcac ctgtaatgca aaggttaacaa 7020
 aatcttgaca gaggcatagt gaggaaatcaa gagaacaacg ggcctggagc atacacccag 7080
 tgcttagccc ccagtaggccc ctcactctca tcattactga cacctgaggt cactgagcat 7140
 gtgccactgt ccattcatta tcttcataa ctcccaaaaat catcctgcaa ggtaatattt 7200
 catcttcatg aaacagacag agaaaactgag gttacagagg tttcgtgatc tgcccaagtc 7260
 tgctggcagc taagcggatg aggccagatg caaacttaggc attgagcaag acaggcagga 7320
 cccctgtct catagaaatg atttttatta ttatctgaac acagtccaca caagtgcacct 7380
 acccctctcc agccctgcaa agaaaatgtga agtgagttaa ctgtatatttga accaagtgg 7440
 ccacgtgtta gctatgcgac tgtgaacagg ggcttcaacc ccctcagcct cagtttcctg 7500
 tcctggaaa taatcgcagg gagaataatc gcagctaccc cgaagagtcg ctgtgttagt 7560
 taaagcagtt atgcccata actgcttcag ggcacettgtg actcccaatc cttagggtcg 7620
 atgttctgtg gccagaggag ggcagggggtt gcagctggcc ggtgaactca ctacctggc 7680
 tctctccctg cagggatgtt ctcatcctg gtgttcagcc tggataaccg ggagtccctc 7740
 gatgaggtca agcgcctca gaagcagatc ctggaggtca agtcctgcct gaagaacaag 7800
 accaaggagg cgccggagct gcccattggc atctgtggca acaagaacga ccacggcgag 7860
 ctgtccgc aggtgcccac caccgaggcc gagctgctgg tgtcggcgca cgagaactgc 7920
 gcctacttcg aggtgtccgc caagaagaac accaacgtgg acgagatgtt ctacgtgctc 7980
 ttcagcatgg ccaagctgcc acacgagatg agcccccccc tgcatcgcaa gatctccgtg 8040
 cagtaggtg acgccttcca ccccaaggcccc ttctgcattgc gccgcgtcaa ggagatggac 8100
 gcctatggca tggctcgcc ctgcggccgc cgccccagcg tcaacagtga cctcaagtac 8160
 atcaaggcca aggtccttcg ggaaggccag gcccgtgaga gggacaagtg caccatccag 8220
 tgagcgaggg atgctggggc ggggcttggc cagtccttc agggaggtgg ccccaagatgc 8280
 ccactgtcg catctccccca ccgaggcccc ggcagcagtc ttgttcacag acctttaggca 8340
 ccagacttgg aggccccccgg cgctggccctc cgacattcg tctgccttc cacagcttc 8400
 ctgagtcgc ttgtccacag ctcccttggt gttcatctc ctctgtggga ggacacatct 8460
 ctgcagcctc aagagtttagg cagagactca agttacaccc tcccttcctg gggtttggaaag 8520
 aaatgttcatg gccagagggg tgaggattgc tgcaatgatcat gggccctctt gggacaagcc 8580
 tcaggatgaa aaggacacag aaggccagat gagaagggtc tccctcttc tggcataaca 8640
 cccagcttgg tttgggtggc agctgggaga acttctctcc cagccctgca actcttacgc 8700
 tctggttcag ctgcctctgc acccccctccc acccccaagca cacacacaag ttggccccc 8760
 gctgcgcctg acattgagcc agtggactct gtgtctgaag ggggcgtggc cacacctctt 8820
 agaccacgcc caccacttag accacgcccc cctcctgacc gcgttccctca gcctccctc 8880
 cttagtccctt ccggccgaca gttgtgtttt gttgtgggtt cagtcgtttt cgtgtcatgt 8940
 atagtagtag aaatggaaat cattgtactg taaaagccta gtgactccct cttggccag 9000
 gccctcaccc agttcagatc cacggcctcc acccgggacg cttccctctt ctgctccaa 9060
 acagggtttc cgtggccctgt ttgcagctag acattgaccc cgcgcattga gctccacgg 9120
 ttacagacaa ttgcacaagc gtgggggtggg caggccagga ctgtttttt ttaatgctcc 9180
 catttcacag aggataccac cgagactcgg aggggacacg atgagcacca ggccccaccc 9240
 ttgtccctta gcaaatttcg ggtacagctc cacctagaac caggctgccc tctactgtgc 9300
 tcgtccctca agcattttt aagcacctac tgggtgttgg gttcaatgtgc tccttaggaaa 9360
 ccaagagggt ccccaagtcctt ggcctctgccc cgccccctgtc gcccacccac cttctgcaca 9420
 cacagcggtg gggaggccggg gaggagcagc tgggacccag aactgagccct gggagggtac 9480
 cgacagaaaaa gctcaggccgc ggtcttctcc ttgtggccgg gattgggcta tgctgggtac 9540
 caccatgtac tcaggcatgg tgggtttga acccataaaac caaaggccct tgcattcagc 9600

tcttaacaag tatattttgt attttaatct ctctaaacat attgaagttt tagggcccta 9660
 aggaaccta gtgatctctt atgggtctt tctgagggtc agagagggtt agtaacttcc 9720
 tccaggtcac acagcaagtc tgggggtggc agaagcaagc tagcgctggg cattcagtac 9780
 ataccacat gtgctccctc tcttgatgtc tggcccctgg ggccttcagg gctttggac 9840
 atcttgtcct caaccctctc cctagatcag tctgtgaggg tccctgtaga tatttgtac 9900
 accatgccca tgtatataca agtacacaca gatgtacaca cagatgtaca catgtccag 9960
 ccccagctct gcataacctgc acctgcaccc cagccttgc ccctgcctgc gtctgtgctc 10020
 aaagcagcag ctccaacccct gcctctgtcc ccttccccac ccactgcctg agccttctga 10080
 gcagaccagg taccttggtc gcacccgggt gtggcccgct ctcacccagg cacagccccg 10140
 ccaccatgga tctccgtgtc cactatcaat aaaagtgggt ttgttacaaa gccgtgtcct 10200
 tgcccatgtg tatttttgtt atttccaaga ggaggtgtgc cccttccag accaaagctg 10260
 gccttcctt cccaaaatgc acctgcccgtg taccctggcc ctgagggtca gcactgagtc 10320
 caccttcaag tgtaagtgtg gggagagggg gataagtccc ccagatggaa ggtgatgccc 10380
 tccttcagcc tggccctccct gggcctcccg ggtgtgtgtc ccgaggtgtc tgggtccaca 10440
 aagaaggggc ccccggtggac cattagctcc aggaggatct ccgtgtctga gttcttgtg 10500
 attcctgtac agcagcaatt tcacccgcag gggacagttt gcaatctctg gaaacctttt 10560
 ccaagcctgg ggctggggct gctactctca tctgggtgggt ggaggccagg gacaccattc 10620
 agtacccctcc aacgcacagg atgcccctcc accccccaccc cactgagaat tatctggcct 10680
 caaatgccaa gcgtgggcag ccttacttag actcacccca ggggctggga cacgccccca 10740
 cctgcgtgtg atggatttgtt tggaccacat tctggacgga acccacagca taagcactcc 10800
 tgtgaagtga gacaggatgt gggtgaggat ggaaagtggaa ggctgaggga gaaggcttgg 10860
 gcccctgacca acacggaaatg tgccccctgg gactgaggg cttccctggg cagaggaaaa 10920
 ggaggaagtc agtgaggtaa aatactccct gtgtttta cccagcgagt ctcacgccccat 10980
 cctatcaccc agccccgggg gaagcccaact catgttcacc ccatctgagc atttaggctc 11040
 agagagctca atatcttgc caagatggca cagctgggtga agtggcagat cagagattca 11100
 acaccagagg ctgtctgatt tccgtctggc tgaagaaaaga ttttgcacatca gggaggtgg 11160
 aaccatctgt gctttgtatc agcaaatgcc accagcagga tcagggagcc aggccataaaa 11220
 g 11221

<210> 4
 <211> 266
 <212> PRT
 <213> Homo sapiens

<400> 4
 Met Met Lys Thr Leu Ser Ser Gly Asn Cys Thr Leu Ser Val Pro Ala
 1 5 10 15
 Lys Asn Ser Tyr Arg Met Val Val Leu Gly Ala Ser Arg Val Gly Lys
 20 25 30
 Ser Ser Ile Val Ser Arg Phe Leu Asn Gly Arg Phe Glu Asp Gln Tyr
 35 40 45
 Thr Pro Thr Ile Glu Asp Phe His Arg Lys Val Tyr Asn Ile Arg Gly
 50 55 60
 Asp Met Tyr Gln Leu Asp Ile Leu Asp Thr Ser Gly Asn His Pro Phe
 65 70 75 80
 Pro Ala Met Arg Arg Leu Ser Ile Leu Thr Gly Asp Val Phe Ile Leu
 85 90 95
 Val Phe Ser Leu Asp Asn Arg Glu Ser Phe Asp Glu Val Lys Arg Leu
 100 105 110
 Gln Lys Gln Ile Leu Glu Val Lys Ser Cys Leu Lys Asn Lys Thr Lys
 115 120 125
 Glu Ala Ala Glu Leu Pro Met Val Ile Cys Gly Asn Lys Asn Asp His
 130 135 140
 Gly Glu Leu Cys Arg Gln Val Pro Thr Thr Glu Ala Glu Leu Leu Val
 145 150 155 160
 Ser Gly Asp Glu Asn Cys Ala Tyr Phe Glu Val Ser Ala Lys Lys Asn
 165 170 175

Thr	Asn	Val	Asp	Glu	Met	Phe	Tyr	Val	Leu	Phe	Ser	Met	Ala	Lys	Leu	
180								185						190		
Pro	His	Glu	Met	Ser	Pro	Ala	Leu	His	Arg	Lys	Ile	Ser	Val	Gln	Tyr	
195								200						205		
Gly	Asp	Ala	Phe	His	Pro	Arg	Pro	Phe	Cys	Met	Arg	Arg	Val	Lys	Glu	
210								215						220		
Met	Asp	Ala	Tyr	Gly	Met	Val	Ser	Pro	Phe	Ala	Arg	Arg	Pro	Ser	Val	
225								230						235		240
Asn	Ser	Asp	Leu	Lys	Tyr	Ile	Lys	Ala	Lys	Val	Leu	Arg	Glu	Gly	Gln	
								245						250		255
Ala	Arg	Glu	Arg	Asp	Lys	Cys	Thr	Ile	Gln							
								260						265		

<210> 5
<211> 266
<212> PRT
<213> Rattus norvegicus

<400>	5															
Met	Met	Lys	Thr	Leu	Ser	Ser	Gly	Asn	Cys	Thr	Leu	Asn	Val	Pro	Ala	
1								5						10		15
Lys	Asn	Ser	Tyr	Arg	Met	Val	Val	Leu	Gly	Ala	Ser	Arg	Val	Gly	Lys	
								20						25		30
Ser	Ser	Ile	Val	Ser	Arg	Phe	Leu	Asn	Gly	Arg	Phe	Glu	Asp	Gln	Tyr	
								35						40		45
Thr	Pro	Thr	Ile	Glu	Asp	Phe	His	Arg	Lys	Val	Tyr	Asn	Ile	His	Gly	
								50						55		60
Asp	Met	Tyr	Gln	Leu	Asp	Ile	Leu	Asp	Thr	Ser	Gly	Asn	His	Pro	Phe	
								65						70		75
Pro	Ala	Met	Arg	Arg	Leu	Ser	Ile	Leu	Thr	Gly	Asp	Val	Phe	Ile	Leu	
								85						90		95
Val	Phe	Ser	Leu	Asp	Ser	Arg	Glu	Ser	Phe	Asp	Glu	Val	Lys	Arg	Leu	
								100						105		110
Gln	Lys	Gln	Ile	Leu	Glu	Val	Lys	Ser	Cys	Leu	Lys	Asn	Lys	Thr	Lys	
								115						120		125
Glu	Ala	Ala	Glu	Leu	Pro	Met	Val	Ile	Cys	Gly	Asn	Lys	Asn	Asp	His	
								130						135		140
Ser	Glu	Leu	Cys	Arg	Gln	Val	Pro	Ala	Met	Glu	Ala	Glu	Leu	Leu	Val	
								145						150		155
Ser	Gly	Asp	Glu	Asn	Cys	Ala	Tyr	Phe	Glu	Val	Ser	Ala	Lys	Lys	Asn	
								165						170		175
Thr	Asn	Val	Asn	Glu	Met	Phe	Tyr	Val	Leu	Phe	Ser	Met	Ala	Lys	Leu	
								180						185		190
Pro	His	Glu	Met	Ser	Pro	Ala	Leu	His	His	Lys	Ile	Ser	Val	Gln	Tyr	
								195						200		205
Gly	Asp	Ala	Phe	His	Pro	Arg	Pro	Phe	Cys	Met	Arg	Arg	Thr	Lys	Val	
								210						215		220
Ala	Gly	Ala	Tyr	Gly	Met	Val	Ser	Pro	Phe	Ala	Arg	Arg	Pro	Ser	Val	
								225						230		235
Asn	Ser	Asp	Leu	Lys	Tyr	Ile	Lys	Ala	Lys	Val	Leu	Arg	Glu	Gly	Gln	
								245						250		255
Ala	Arg	Glu	Arg	Asp	Lys	Cys	Ser	Ile	Gln							
								260						265		

<210> 6

<211> 7
<212> PRT
<213> Homo sapiens

<220>
<221> VARIANT
<222> (1) ... (7)
<223> Xaa = Any Amino Acid

<400> 6
Gly Xaa Xaa Xaa Xaa Gly Lys
1 5

<210> 7
<211> 5
<212> PRT
<213> Homo sapiens

<400> 7
Asp Thr Ala Gly Gln
1 5

<210> 8
<211> 4
<212> PRT
<213> Homo sapiens

<220>
<221> VARIANT
<222> (1) ... (4)
<223> Xaa = Any Amino Acid

<400> 8
Asn Lys Xaa Asp
1

<210> 9
<211> 5
<212> PRT
<213> Homo sapiens

<220>
<221> VARIANT
<222> (1) ... (5)
<223> Xaa = Any Amino Acid

<400> 9
Glu Xaa Ser Ala Xaa
1 5