

Matemáticas para las Ciencias II Semestre 2020-2

Prof. Pedro Porras Flores Ayud. Irving Hernández Rosas

Tarea Examen III

Kevin Ariel Merino Peña¹ Armando Abraham Aquino Chapa² José Manuel Pedro Méndez³ 10 de octubre de 2020

Instrucciones: Realice las siguientes ejercicios escribiéndolos de manera clara, los puede realizar en L^AT_EX, en un cuaderno etc, pero debe de subir el archivo en la sesión de classrroom en formato pdf para su revisión.

Métodos de integración

Integración por partes (2.5 pts.)

1. Realice las siguientes integrales:

$$a) \int x \sin(x) dx$$

$$f = x$$
$$q = -\cos(x)$$

$$df = dx$$
$$dq = \sin(x)dx$$

$$= f \cdot g - \int g \cdot df$$

$$= x(-\cos(x)) - \int -\cos(x)dx$$

$$= -x\cos(x) + \int \cos(x)dx$$

$$= -x\cos(x) + \sin(x)$$

Empleando integración por partes

Reemplazando con los valores elegidos

Porque la integral es un operador lineal

La integral de cos(x) = sin(x)

$$\therefore \int x \sin(x) dx = \sin(x) - x \cos(x) + C, C \in \mathbb{R}$$

b)
$$\int x^2 e^x dx$$

$$f = x^2$$
$$g = e^x$$

$$df = 2xdx$$

$$dg = e^x dx$$

$$= f \cdot g - \int g \cdot df$$

$$= x^2 \cdot e^x - \int e^x \cdot 2x dx$$

$$= e^x x^2 - 2 \underbrace{\int x e^x dx}_{\text{outsign}}$$

Empleando integración por partes

Haciendo uso de las funciones elegidas

Sacando escalares por la linealidad de la integral

$$\int xe^x dx =$$

$$f = x$$
$$g = e^x$$

$$df = dx$$

$$dg = e^x dx$$

 $^{^{1}}$ Número de cuenta 317031326

 $^{^2}$ Número de cuenta 317058163

 $^{^3\}mathrm{Número}$ de cuenta 315073120

$$= f \cdot g - \int g \cdot df$$
 Empleando integración por partes
$$= x \cdot e^x - \int e^x \cdot dx$$
 Haciendo uso de las funciones elegidas
$$= xe^x - e^x$$
 Conocemos de Mate I la integral de e^x
$$= e^x(x-1)$$

$$e^x x^2 - 2 \int x e^x dx = e^x x^2 - 2 e^x (x-1)$$
 Reemplazando en el resultado anterior
$$= e^x (x^2 - 2(x-1))$$
 Factorizando
$$\therefore \int x e^x dx = e^x (x^2 - 2(x-1)) + C, C \in \mathbb{R}$$

c) $\int x^2 \sin(x) \, dx$

$$f = x^2$$

$$df = 2x dx$$

$$dg = -\cos(x)$$

$$dg = \sin(x) dx$$

$$= f \cdot g - \int g \, df$$
 Empleando integración por partes
$$= -x^2 \cos(x) - \int -\cos(x) 2x \, dx$$
 Haciendo uso de las funciones elegidas
$$= -x^2 \cos(x) + 2 \int x \cos(x) dx$$
 Sabemos que la integral es un operador lineal Integración por partes

$$\int x \cos(x) dx =$$

$$f = x$$

$$g = \sin(x)$$

$$df = dx$$

$$dg = \cos(x) dx$$

$$= f \cdot g - \int g \, df$$
 Empleando integración por partes
$$= x \sin(x) - \int \sin(x) \, dx$$
 Haciendo uso de las funciones elegidas
$$= x \sin(x) - (-\cos(x))$$
 De Mate I conocemos las integrales de las f. trigonométricas
$$= x \sin(x) + \cos(x)$$
 Operando signos

$$\int x^2 \sin(x) \, dx = -x^2 \cos(x) + 2 \int x \cos(x) dx$$
 Reemplazando en el resultado anterior
$$= -x^2 \cos(x) + 2(x \sin(x) + \cos(x))$$
 Factorizando
$$= \cos(x)(2 - x^2) + 2x \sin(x)$$

$$\therefore \int x^2 \sin(x) \, dx = \cos(x)(2 - x^2) + 2x \sin(x) + C, C \in \mathbb{R}$$

$$d) \int x \ln(x) dx$$

$$f = \ln(x)$$

$$df = \frac{1}{x}dx$$

$$g = \frac{x^2}{2}$$

$$dg = xdx$$

$$= f \cdot g - \int g \, df$$
 Empleando integración por partes

$$= f \cdot g - \int g \, df$$
 Empleando integración por partes
$$= \frac{x^2 \ln(x)}{2} - \int \frac{x^2}{2} \frac{1}{x} \, dx$$
 Reemplazando por las funciones seleccionadas
$$= \frac{x^2 \ln(x)}{2} - \int \frac{x}{2} \, dx$$
 Opernado
$$= \frac{x^2 \ln(x)}{2} - \frac{1}{2} \int x \, dx$$
 Por la linealidad de la integral
$$= \frac{x^2 \ln(x)}{2} - \frac{1}{2} \cdot \frac{x^2}{2}$$
 Integración de polinomios

$$=\frac{x^2\ln(x)}{2}-\frac{x^2}{4}$$
 Opernado

$$\therefore \int x \ln(x) \, dx = \frac{x^2 \ln(x)}{2} - \frac{x^2}{4} + C, C \in \mathbb{R}$$

$$e) \int e^x \sin(x) dx$$

$$f = \sin(x)$$
 $df = \cos(x)dx$
 $g = e^x$ $dg = e^x dx$

$$= f \cdot g - \int g \, df$$
 Empleando integración por partes
$$= \sin(x)e^x - \underbrace{\int e^x \cos(x) \, dx}_{\text{Integración por partes}}$$
 Reemplazando por las funciones se

Reemplazando por las funciones seleccionadas

$$\int e^x \cos(x) \, dx$$

$$f = \cos(x)$$

$$df = -\sin(x) dx$$

$$dg = e^x dx$$

$$= f \cdot g - \int g \, df$$
 Empleando integración por partes
$$= \cos(x) e^x - \int e^x \sin(x) \, dx$$
 Reemplazando por las funciones seleccionadas

$$\int e^x \sin(x) \, dx = \sin(x) e^x - \cos(x) e^x - \int e^x \sin(x)$$
 Regresando a la integral incial
$$2 \int e^x \sin(x) \, dx = \sin(x) e^x - \cos(x) e^x$$
 Sumando en ambos miembros
$$= \frac{e^x (\sin(x) - \cos(x))}{2}$$

$$\therefore \int e^x \sin(x) \, dx = \frac{e^x (\sin(x) - \cos(x))}{2} + C, \quad C \in \mathbb{R}$$

Integración por sustitución (2.5 pts.)

2. Realice las siguientes integrales:

$$a) \int \frac{\ln(x)}{x} \, dx$$

$$u = \ln(x)$$

$$du = \frac{1}{x} dx$$

$$= \int u \, du$$
$$= \frac{u^2}{2}$$
$$= \frac{\ln(x)^2}{2}$$

Empleando sustitución de variable

Por integración en polinomios

$$\therefore \int \frac{\ln(x)}{x} \, dx = \frac{\ln(x)^2}{2} + C, C \in \mathbb{R}$$

b)
$$\int e^x \sin(e^x) \, dx$$

$$u = e^x$$

$$du = e^x dx$$

$$= \int sen(u)du$$
$$= -cos(u)$$
$$= -cos(e^x) + c$$

Empleando la sustitución

Regresando a la variable original

$$\therefore \int e^x \sin(e^x) \, dx = -\cos(e^x) + c$$

c)
$$\int xe^{-x^2} dx$$

$$u = -x^2$$

$$\frac{du}{dx} = -2x \to dx = \frac{du}{-2x}$$

$$\begin{split} &= \int x e^{u} (\frac{du}{-2x}) \\ &= \int e^{u} (\frac{du}{-2}) = \int \frac{e^{u}}{-2} du \\ &= -\frac{1}{2} \int e^{u} du \\ &= -\frac{1}{2} e^{u} = -\frac{1}{2} e^{-x^{2}} + c \end{split}$$

Empleando la sustitución

Utilizando las propiedades de la integral

Regresando a la variable original

$$\therefore \int xe^{-x^2} \, dx = -\frac{1}{2}e^{-x^2} + c$$

$$d) \int x\sqrt{1-x^2}\,dx$$

$$u = 1 - x^2$$

$$du = -2xdx \to \frac{du}{-2} = xdx$$

$$\begin{split} &= \int \sqrt{u} \frac{du}{-2} \\ &= -\frac{1}{2} \int \sqrt{u} du \\ &= -\frac{1}{2} \int u^{\frac{1}{2}} du \\ &= -\frac{1}{2} \left(\frac{u^{\frac{1}{2} + \frac{2}{2}}}{\frac{1}{2} + \frac{2}{2}} \right) \\ &= -\frac{1}{2} \cdot \frac{u^{\frac{3}{2}}}{\frac{3}{2}} \\ &= -\frac{1}{2} \cdot \frac{2}{3} \cdot u^{\frac{3}{2}} \\ &= -\frac{1}{3} u^{\frac{3}{2}} \\ &= -\frac{1}{3} \cdot (1 - x^2)^{\frac{3}{2}} + c \end{split}$$

Empleando la sustitución

Propiedades de la integral

Regresando a la variable original

$$\therefore \int x\sqrt{1-x^2} \, dx = -\frac{1}{3} \cdot (1-x^2)^{\frac{3}{2}} + c$$

$$e) \int \frac{1}{x \ln(x)} \, dx$$

$$f = \frac{1}{g(x)}$$

$$g(x) = \ln(x)$$

$$= \int_{\ln(a)}^{\ln(b)} \frac{1}{u} du$$

$$= \ln|u| \Big|_{\ln(a)}^{\ln(b)}$$

$$= \ln|\ln(b)| - \ln|\ln(a)|$$

Empeando sustitución de variable

Pues conocemos la integral de $\frac{1}{x}$

$$\therefore \int \frac{1}{x \ln(x)} dx = \ln|\ln(b)| - \ln|\ln(a)| + C, C \in \mathbb{R}$$

Integración por sustitución trigonométrica (2.5 pts.)

3. Realice las siguientes integrales:

$$a) \int_{\mathbb{T}} \sqrt{1-x^2} \, dx$$

Tomemos el siguiente cambio de variables con sustituciones trigonométricas

$$\begin{bmatrix} x = \cos(x) \\ dx = -\sin(x) \end{bmatrix}$$

Y recordemos las siguientes identidades trigonométricas

$$\sin^2(x) + \cos^2(x) = 1$$

$$\sin^2(x) = 1 - \cos^2(x)$$

$$\sin(x) = \sqrt{1 - \cos^2(x)}$$

(\alpha)

$$\sin^2(x) = \frac{1 - \cos(2x)}{2} \tag{\beta}$$

$$= \int \sqrt{1-\cos^2(x)} - \sin(x) \, dx$$
 Sustituyendo en la integral original
$$= -\int \sin(x) \sin(x)$$
 Empleando θ
$$= -\int \sin^2(x)$$
 Operando
$$= -\int \frac{1-\cos(2x)}{2}$$
 Empleando β Usando la linealidad de la integral
$$= -\frac{1}{2} \left(\int 1 - \int \cos(2x) \right)$$
 Nuevamente usando la linealidad de la integral
$$= -\frac{1}{2} \left(x - \frac{\sin(2x)}{2} \right)$$
 Integrando las funciones que ya conocemos

$$\therefore \int \sqrt{1-x^2} \, dx = -\frac{1}{2} \left(x - \frac{\sin(2x)}{2} \right) + C, C \in \mathbb{R}$$

b) $\int \sqrt{x^2 - 1} dx$ Tomemos la siguiente sustitución:

$$\begin{bmatrix} x = \sec(\theta) \\ dx = \sec(\theta)\tan(\theta) \end{bmatrix}$$

También recordemos que $\sec^2(x) - \tan^2(x) = 1$

$$=\int \sqrt{\sec^2(\theta)-1} \cdot \sec(\theta) \tan(\theta) d\theta \qquad \qquad \text{Realizando la sustitución}$$

$$=\int \sqrt{\tan^2(\theta)} \cdot \sec(\theta) \tan(\theta) d\theta \qquad \qquad \text{Utilizando la propiedad mencionada}$$

$$=\int \tan^2(\theta) \cdot \sec(\theta) \tan(\theta) d\theta$$

$$=\int (\sec^2(\theta)-1) \cdot \sec(\theta) d\theta \qquad \qquad \text{Propiedad anterior}$$

$$=\int \sec^3(\theta) - \sec(\theta) d\theta \qquad \qquad \text{Propiedades de la integral}$$

$$=\int \sec^3(\theta) \tan(\theta) + \frac{1}{2} \ln(\sec(\theta) + \tan(\theta)) - \int \sec(\theta) d\theta$$

$$=\frac{1}{2} \cdot \sec(\theta) \tan(\theta) + \frac{1}{2} \ln(\sec(\theta) + \tan(\theta)) - \ln(\sec(\theta) + \tan(\theta))$$

$$=\frac{1}{2} \cdot \sec(\theta) \tan(\theta) - \frac{1}{2} \ln(\sec(\theta) + \tan(\theta))$$

Notemos (según la propiedad mencionada al comienzo del ejercicio) que: $\tan(\theta) = \sqrt{\sec^2(\theta) - 1}$. Y además $x = \sec(\theta)$. Entonces: $\tan(\theta) = \sqrt{x^2 - 1}$

$$\therefore \int \sqrt{x^2 - 1} \, dx = \frac{1}{2} \cdot x \sqrt{x^2 - 1} - \frac{1}{2} \cdot \ln(x + \sqrt{x^2 - 1}) + c$$

c) $\int \frac{\sqrt{1-x^2}}{x^2} dx$ Tomemos el siguiente cambio de variables con sustituciones trigonométricas

$$\begin{bmatrix} x = \cos(\theta) \\ dx = -\sin(\theta) \end{bmatrix}$$

Y recordemos las siguientes identidades trigonométricas

$$\sin^2(x) = 1 - \cos^2(x) \tag{\alpha}$$

$$\sin(x) = \sqrt{1 - \cos^2(x)} \tag{\theta}$$

$$\frac{1}{\cos^2(\theta)} = \sec^2(\theta) \tag{\beta}$$

$$= \int \frac{\sqrt{1-\cos^2(\theta)}}{\cos^2\theta} - \sin(\theta) \qquad \text{Sustituyendo en la integra original.}$$

$$= \int \frac{\sin(\theta)}{\cos^2\theta} - \sin(\theta) \qquad \text{Empleando } \beta.$$

$$= \int \frac{-\sin^2(\theta)}{\cos^2\theta} \qquad \text{Resolviendo la multiplicación.}$$

$$= \int \frac{\cos^2(\theta) - 1}{\cos^2\theta} d\theta \qquad \text{Ya que: } \cos^2(\theta) - 1 = \sin^2(\theta).$$

$$= \int \frac{\cos^2(\theta)}{\cos^2\theta} d\theta - \int \frac{1}{\cos^2(\theta)} d\theta \qquad \text{Por propiedad de derivada.}$$

$$= \int d\theta - \int \frac{1}{\cos^2(\theta)} d\theta \qquad \text{Empleando } \alpha.$$

$$= \theta - \tan(\theta) + c \qquad \text{Resolviendo la integral.}$$

Como $x = cos(\theta)$ entonces $arccos(x) = arccos(\theta)$ por lo que: $arccos(x) = \theta$.

$$= arccos(x) - \frac{sen(arccos(x))}{cos(arccos(x))} + c$$
 Sustituyendo θ .

$$= arccos(x) - \frac{sen(arccos(x))}{x} + c$$
 Ya que $cos(x)$ y $arccos(x)$ son funciones inversas.

$$= arccos(x) - \frac{\sqrt{1 - cos^2(arccos(x))}}{x} + c$$
 Ya que $cos(x)$ y $arccos(x)$ son funciones inversas.

$$\therefore \int \frac{\sqrt{1-x^2}}{x^2} dx = \arccos(x) - \frac{\sqrt{1-x^2}}{x} + C, C \in \mathbb{R}$$

$$d) \int \frac{1}{x^2\sqrt{1-x^2}} dx$$

Fomemos el siguiente cambio de variables con sustituciones trigonométricas:

$$\begin{bmatrix} x = \sin(\theta) \\ dx = \cos(\theta) \end{bmatrix}$$

Y recordemos las siguientes identidades trigonométricas

$$\csc^2(x) = \frac{1}{\sin^2(x)} \tag{a}$$

$$\cos(x) = \sqrt{1 - \sin^2(x)} \tag{\theta}$$

y

$$\cot(\arcsin(x)) = \frac{\sqrt{1-x^2}}{x} \tag{\beta}$$

$$= \int \frac{1}{\sin^2(\theta)\sqrt{1-\sin^2(\theta)}} \cos(\theta) d\theta$$
 Sustituyendo en la integral original.
$$= \int \frac{\cos(\theta)}{\sin^2(\theta)\cos(\theta)} d\theta$$
 Empleando θ .
$$= \int \frac{1}{\sin^2(\theta)} d\theta$$
 Empleando α .
$$= -\cot(\theta)$$
 Empleando α . Resolviendo la integral.

Como $x = sin(\theta)$ entonces $arcsin(x) = arcsin(\theta)$ por lo que: $arcsin(x) = \theta$.

$$= -\cot(\arcsin(x))$$
Sustituyendo θ .
$$= -\frac{\sqrt{1-x^2}}{x}$$
Empleando β .
$$\therefore \int \frac{1}{x^2\sqrt{1-x^2}} dx = -\frac{\sqrt{1-x^2}}{x} + C, C \in \mathbb{R}$$

e) $\int \frac{1}{\sqrt{x^2-1}} dx$ Tomemos la siguiente sustitución:

$$\begin{bmatrix} x = \sec(\theta) = \frac{1}{\cos(\theta)} \\ dx = \sec(\theta)\tan(\theta)d\theta \end{bmatrix}$$

También recordemos que $\sec^2(\theta) - 1 = \tan^2(\theta)$

$$= \int \frac{1}{\sqrt{\sec^2(\theta) - 1}} \cdot \sec(\theta) \tan(\theta) d\theta$$
 Realizando la sustitución
$$= \int \frac{1}{\sqrt{\tan^2(\theta)}} \sec(\theta) \tan(\theta) d\theta$$
 Utilizando la propiedad anterior
$$= \int \frac{1}{\tan(\theta)} \sec(\theta) \tan(\theta) d\theta$$

$$= \int \sec(\theta) d\theta = \ln(\sec(\theta) + \tan(\theta))$$

Notemos (según la propiedad mencionada al comienzo del ejercicio) que: $\tan(\theta) = \sqrt{\sec^2(\theta) - 1}$. Y además $x = \sec(\theta)$. Entonces: $\tan(\theta) = \sqrt{x^2 - 1}$

$$\therefore \int \frac{1}{\sqrt{x^2 - 1}} dx = \ln(x + \sqrt{x^2 - 1}) + c$$

Integración por fracciones parciales (2.5 pts.)

4. Realice las siguientes integrales:

a)
$$\int \frac{x}{x^2 + 5x + 6} dx$$

$$\int \frac{x}{x^2 + 5x + 6} = \frac{x}{(x+2)(x+3)}$$

$$= \frac{A}{(x+2)} + \frac{B}{(x+3)}$$

$$= \frac{Ax + 3A + Bx + 2B}{(x+2)(x+3)}$$

$$= \frac{x(A+B) + 2B + 3A}{(x+2)(x+3)}$$

Factorizando el dividendo

Expresando en forma de suma el dividendo

Sumando ambas fracciones

Reordenando el numerador

$$A + B = 1$$
$$3A + 2B = 0$$
$$A = 1 - B$$

Obteniendo las ecuaciones

$$B = 3 \implies A = -2$$

$$\int \frac{x}{x^2 + 5x + 6} \, dx = \int \left(-\frac{2}{(x+2)} + \frac{3}{(x+3)} \right) \qquad \text{Sustituyendo en la integral inicial}$$

$$= -\int \frac{2}{(x+2)} + \int \frac{3}{(x+3)} \qquad \text{Empleando la linealidad de la integral}$$

$$= -2 \int \frac{1}{(x+2)} + 3 \int \frac{3}{(x+3)} \qquad \text{Nuevamente empleando la linealidad de la integral}$$

$$= -2 \ln(x+2) + 3 \ln(x+3) \qquad \text{Calculando las integrales que ya conocemos}$$

$$\therefore \int \frac{x}{x^2 + 5x + 6} \, dx = -2 \ln(x+2) + 3 \ln(x+3) + C, \quad C \in \mathbb{R}$$

b)
$$\int \frac{x^2+2}{x(x+2)(x-1)} dx$$

Utilizando el método de fracciones parciales tenemos que:

$$\frac{x^2+2}{x(x+2)(x-1)} = \frac{A}{x} + \frac{B}{x+2} + \frac{C}{x-1}$$

$$(x(x+2)(x-1))(\frac{x^2+2}{x(x+2)(x-1)}) = \frac{A}{x} + \frac{B}{x+2} + \frac{C}{x-1})$$

$$x^2+2 = (x+2)(x-1)A + x(x-1)B + x(x+2)C$$

$$x^2+2 = Ax^2 + Ax - 2A + Bx^2 - Bx + Cx^2 + 2Cx$$

$$x^2+2 = Ax^2 + Bx^2 + Cx^2 + Ax - Bx + 2Cx - 2A$$

$$x^2+2 = (A+B+C)x^2 + (A-B+2C)x - 2A$$

Obtenemos el siguiente sistema de ecuaciones:

$$1 = A + B + C$$
$$0 = A - B + 2C$$
$$2 = -2A$$

$$2-B=C$$

$$1=-B+2C$$

$$A=-1$$

$$2-B=C$$

$$1=-B+4-2B$$

$$A=-1$$

$$C=1$$

$$B=1$$

$$A=-1$$

Sustituyendo en (1), tenemos que $\frac{-1}{x} + \frac{1}{x+2} + \frac{1}{x-1}$ Por lo tanto, tenemos que resolver la siguiente integral.

$$\int \frac{x^2 + 2}{x(x+2)(x-1)} dx = \int \frac{-1}{x} + \frac{1}{x+2} + \frac{1}{x-1} dx$$

$$= -\int \frac{1}{x} dx + \int \frac{1}{x+2} dx + \int \frac{1}{x-1} dx \qquad \text{Utilizando propiedades de la integral}$$

$$= -\ln(x) + \ln(x+2) \ln(x-1)$$

$$\therefore \int \frac{x^2 + 2}{x(x+2)(x-1)} dx = -\ln(x) + \ln(x+2) \ln(x-1) + c$$

c) $\int \frac{x+1}{x^2(x-1)^3} dx$ Utilizando el método de fracciones parciales tenemos que:

$$\frac{x^2+2}{x(x+2)(x-1)} = (\frac{A}{x} + \frac{B}{x^2}) + (\frac{C}{x-1} + \frac{D}{(x-1)^2} + \frac{E}{(x-1)^3}) \qquad (\tilde{\mathbf{N}})$$

$$= \frac{Ax+B}{x^2} + (\frac{Cx-C+D}{(x-1)^2} + \frac{E}{(x-1)^3}) \qquad \text{Resolviendo sumas.}$$

$$= \frac{Ax+B}{x^2} + (\frac{Cx^2-2Cx+C+Dx-D+E}{(x-1)^3}) \qquad \text{Resolviendo sumas.}$$

$$= \frac{Cx^4-2Cx^3+Cx^2+Dx^3-Dx^2+Ex^2+Ax^4-3Ax^3+3Ax^2+Ax+Bx^3-3Bx^2+3Bx-B}{(x^2)(x-1)^3}$$

$$= \frac{(C+A)x^4+(-2C+D-3A+B)x^3+(C-D+E+3A-3B)x^2+(-A+3B)x-B}{(x^2)(x-1)^3}$$

De ahí obtenemos el siguiente sistema de ecuaciones:

$$C + A = 0$$

$$-3A + B - 2C + D = 0$$

$$3A - 3B + C - D + E = 0$$

$$-A + 3B = 1$$

$$-B = 1$$

Resolviendo este sistema, tenemos que:

$$B = -1$$

$$-A = 1 - 3(-1) = 4 \implies A = -4$$

$$C = 0 - (-4) \implies C = 4$$

$$D = 3(-4) - (-1) + 2(4) = (-12) + 1 + 8 \implies D = -3$$

$$E = 2$$

Sustituyendo en $(\tilde{\mathbf{N}})$, tenemos que: $\frac{-4}{x} + \frac{-1}{x^2} + \frac{4}{x-1} + \frac{-3}{(x-1)^2} + \frac{2}{(x-1)^3}$ Por lo tanto, tenemos que resolver la siguiente integral.

$$\int \left(\frac{-4}{x} + \frac{-1}{x^2}\right) + \left(\frac{4}{x-1} + \frac{-3}{(x-1)^2} + \frac{2}{(x-1)^3}\right) dx$$

Empleando la linealidad de la intergral tenemos

$$= -4 \int (\frac{1}{x})dx - \int (\frac{1}{x^2})dx + 4 \int (\frac{1}{x-1})dx - 3 \int (\frac{1}{(x-1)^2})dx - 3 \int (\frac{1}{(x-1)^3})dx$$

Resolviendo integrales que ya conocemos:

$$= -4ln(x) - \frac{1}{x} + \frac{3}{x-1} - \frac{1}{(x-1)^2} + 4ln(x-1) + C$$

$$\therefore \int \frac{x+1}{x^2(x-1)^3} \, dx = -4ln(x) - \frac{1}{x} + \frac{3}{x-1} - \frac{1}{(x-1)^2} + 4ln(x-1) + C, C \in \mathbb{R}$$

$$d) \int \frac{x^3 - 4x + 3}{x^2(x+1)^2} \, dx$$

Utilizando el método de fracciones parciales tenemos que:

$$\int \frac{x^3 - 4x + 3}{x^2(x+1)^2} dx = \left(\frac{A}{x} + \frac{B}{x^2}\right) + \left(\frac{C}{x-1} + \frac{D}{(x-1)^2}\right)$$
 (M)

$$= \frac{Ax+B}{x^2} + \frac{C(x+1)+D}{(x-1)^2}$$
 Resolviendo sumas.

$$= \frac{(Ax+B)(x+1)^2 + x^2(C(x+1)+D)}{x^2(x-1)^2}$$
 Resolviendo sumas.

$$= \frac{Ax^3 + 2x^2 + Ax + Bx^2 + 2Bx + B + Cx^3 + Cx^2 + Dx^2}{x^2(x-1)^2}$$
 R

 $\frac{x^2}{}$ Resolviendo las multiplicaciones.

$$=\frac{(A+C)x^3+(2A+B+C+D)x^2+(A+2B)x+B}{(x^2)(x-1)^2}$$

Agrupando en terminos comunes.

De ahí obtenemos el siguiente sistema de ecuaciones:

$$C + A = 1$$
$$2A + B + C + D = 0$$
$$A - 2B = -4$$
$$B = 3$$

Resolviendo este sistema, tenemos que:

$$A = -4 - 2(3) \implies A = -10$$

$$B = 3$$

$$C = 1 - (-10) \implies C = 11$$

$$D = -11 - 3 + 20 \implies D = 6$$

Sustituyendo en (M), tenemos que:
$$\frac{10}{x} + \frac{3}{x^2} + \frac{11}{x-1} + \frac{6}{(x-1)^2}$$
 (M)

Por lo tanto, tenemos que resolver la siguiente integral.

$$\int (\frac{10}{x} + \frac{3}{x^2} + \frac{11}{x-1} + \frac{6}{(x-1)^2}) dx$$

Empleando la linealidad de la intergral tenemos:

$$= -\int \frac{10}{x} dx + \int \frac{3}{x^2} dx + \int \frac{11}{x-1} dx + \int \frac{6}{(x-1)^2} dx$$

$$= -10ln(x) + 3x^{-1} + 11ln(x+1) - 6(x+1)^{-1} + C$$

$$\therefore \int \frac{x^3 - 4x + 3}{x^2(x+1)^2} dx = -10ln(x) + 3x^{-1} + 11ln(x+1) - 6(x+1)^{-1} + C, C \in \mathbb{R}$$

e) $\int \frac{3x^2+1}{(x^2+1)(x^2+x+1)} dx$ Utilizando el método de fracciones parciales tenemos que:

$$\int \frac{3x^2 + 1}{(x^2 + 1)(x^2 + x + 1)} dx = \left(\frac{A + Bx}{x^2 + 1} + \frac{C + Dx}{x^2 + x + 1}\right)$$
(N)
$$= \frac{(A + Bx)(x^2 + x + 1) + (C + Dx)(x^2 + 1)}{(x^2 + 1)(x^2 + x + 1)}$$
 Resolviendo sumas.
$$= \frac{Ax^2 + Ax + A + Bx^3 + Bx^2 + Bx + Cx^2 + C + Dx^3 + Dx}{(x^2 + 1)(x^2 + x + 1)}$$
 Resolviendo las multiplicaciones.
$$= \frac{(B + D)x^3 + (2A + B + C)x^2 + (A + B + D)x + (A + C)}{(x^2 + 1)(x^2 + x + 1)}$$
 Agrupando en terminos comunes.

Agrupando en terminos comunes.

De ahí obtenemos el siguiente sistema de ecuaciones:

$$B + D = 0$$

$$A + B + C = 3$$

$$A + B + D = 0$$

$$A + C = 1$$

Resolviendo este sistema, tenemos que:

$$B = 3 - 1 \implies B = 2$$

$$D = 0 - 2 \implies D = -2$$

$$A = -(-2) - 2 \implies A = 0$$

$$D = 1 - 0 \implies C = 1$$

Sustituyendo en (N), tenemos que:
$$\int \frac{3x^2 + 1}{(x^2 + 1)(x^2 + x + 1)} dx = \left(\frac{0 + 2x}{x^2 + 1} + \frac{1 + (-2)x}{x^2 + x + 1}\right)$$
 (N)

Por lo tanto, tenemos que resolver la siguiente integral:

$$\int (\frac{2x}{x^2+1} + \frac{1-2x}{x^2+x+1}) dx$$

$$= \int \frac{2x}{x^2+1} dx + \int \frac{1-2x}{x^2+x+1} dx \qquad \text{Empleando la linealidad de la intergral tenemos:}$$

$$= 2\int \frac{x}{x^2+1} dx \quad \textbf{(a)} - \int \frac{2x-1}{x^2+x+1} dx \quad \textbf{(b)} \qquad \text{Empleando la linealidad de la intergral tenemos:}$$

$$= 2(\frac{1}{2}ln(x^2+1)) - \int \frac{2x-1}{x^2+x+1} dx \quad \textbf{(b)} \qquad \text{Resolviendo (a)}$$

$$= ln(x^2+1)) - \int \frac{2x+1-2}{x^2+x+1} dx \qquad \text{Expresando de otra manera a(b)}$$

$$= \ln(x^2+1)) - (\int \frac{2x+1}{x^2+x+1} dx - 2 \int \frac{1}{x^2+x+1} dx)$$
 Nuevamente empleando la linealidad de la integral.
$$= \ln(x^2+1)) - \ln(x^2+x+1) + \frac{4\arctan(\frac{2x+1}{\sqrt{3}})}{\sqrt{3}} + C$$
 Resolviendo las integrales.

$$\therefore \int \frac{3x^2 + 1}{(x^2 + 1)(x^2 + x + 1)} \ln(x^2 + 1) - \ln(x^2 + x + 1) + \frac{4\arctan(\frac{2x + 1}{\sqrt{3}})}{\sqrt{3}} + C, C \in \mathbb{R}$$