Лекция Обработка текста

Проектирование интеллектуальных систем
Терехов Валерий Игоревич
Канев Антон Игоревич

Предобработка текста

Три варианта предобработки текста:

- Стемминг. Заключается в отбрасывании окончания
- **N-граммы**. Разделение текста на последовательности по n-слов (word2vec), либо на n-символов (вместо морфологии).
- Морфологический анализ. Нахождение начальной формы слова (леммы) и грамматических категорий (число, род, падеж и тд)

N-граммы

Character n-grams

- Building a good stemmer is hard
- Cheap alternative:
 - take every n-character substring of the word
 - related words → many of the same n-grams
 - n=4,5 works well for European languages

```
docu ocum cume umen ment will desc escr scri crib ribe ...

description: desc escr scri crip ript ipti ptio tion prescribing: pres resc escr scri crib ribi ibin bing descent: desc esce scen cent cribbage: crib ribb ibba bbag bage
```

• N-граммы слов

• N-граммы символов

Стеммер Портера

- Простой стеммер ищет флективную форму в таблице поиска. Недостаток нужно перечислить все формы в таблице, поэтому незнакомые слова не обработаются
- Алгоритмы усечения окончаний хранят список «правил», по которым отбрасываются окончания, чтобы найти его основу
- Алгоритм стеммера Портера опубликован в 1980 году Мартином Портером. Он по правилам отсекает окончания и суффиксы

Bag-of-words

- Для Bag-of-words составляется словарь из слов текста и указывается, какое количество раз каждое из них употребляется.
- В примере три рецензии. Необходимо подсчитать количество слов в каждой

	1 This	2 movie	3 is	4 very	5 scary	6 and	7 Iong	8 not	9 slow	10 spooky	11 good	Length of the review(in words)
Review 1	1	1	1	1	1	1	1	0	0	0	0	7
Review 2	1	1	2	0	0	1	1	0	1	0	0	8
Review 3	1	1	1	0	0	0	1	0	0	1	1	6

TF-IDF

Далее вычисляем метрику TF — частота употребления слова в документе

$$ext{tf}(t,d) = rac{n_t}{\sum_k n_k}$$

Term	Review 1	Review 2	Review 3	TF (Review 1)	TF (Review 2)	TF (Review 3)
This	1	1	1	1/7	1/8	1/6
movie	1	1	1	1/7	1/8	1/6
is	1	2	1	1/7	1/4	1/6
very	1	0	0	1/7	0	0
scary	1	1	0	1/7	1/8	0
and	1	1	1	1/7	1/8	1/6
long	1	0	0	1/7	0	0
not	0	1	0	0	1/8	0
slow	0	1	0	0	1/8	0
spooky	0	0	1	0	0	1/6
good	0	0	1	0	0	1/6

где n_t есть число вхождений слова t в документ, а в знаменателе — общее число слов в данном документе.

TF-IDF

Далее вычисляется метрика IDF, и ее значение умножается на TF

$$\operatorname{idf}(t,D) = \log rac{|D|}{|\set{d_i \in D \mid t \in d_i}|}$$

Term	Review 1	Review 2	Review 3	IDF	TF-IDF (Review 1)	TF-IDF (Review 2)	TF-IDF (Review 3)
This	1	1	1	0.00	0.000	0.000	0.000
movie	1	1	1	0.00	0.000	0.000	0.000
İS	1	2	1	0.00	0.000	0.000	0.000
very	1	0	0	0.48	0.068	0.000	0.000
scary	1	1	0	0.18	0.025	0.022	0.000
and	1	1	1	0.00	0.000	0.000	0.000
long	1	0	0	0.48	0.068	0.000	0.000
not	0	1	0	0.48	0.000	0.060	0.000
slow	0	1	0	0.48	0.000	0.060	0.000
spooky	0	0	1	0.48	0.000	0.000	0.080
good	0	0	1	0.48	0.000	0.000	0.080

- IDI число документов в коллекции;
- $|\{\,d_i\in D\mid t\in d_i\,\}|$ число документов из коллекции D, в которых встречается t (когда $n_t
 eq 0$).

$$\operatorname{tf-idf}(t,d,D) = \operatorname{tf}(t,d) imes \operatorname{idf}(t,D)$$

Word embedding

- Классическое представление bag-of-words плохо подходит для представления данных для обучения нейронных сетей.
- Размерность такого пространства признаков оказывается очень большой, равной количество слов в словаре.
- Поэтому оказывается очень полезным использовать векторное представление слов (embedding). Помимо сокращения пространства признаков это позволяет близкие к друг друг слова располагать ближе в этом пространстве.

Word2vec

- Разработано в Google в 2013 году. По большому корпусу данных вычисляется векторное представление слов (embedding), обучаясь на этих данных.
- Каждому слову соответствует вектор в этом пространстве. Схожие по смыслу слова находятся в этом пространстве рядом.
- Используется модель из одного скрытого слоя.
- Между представлениями для разных языков также наблюдается зависимость

CBOW и Skip-gram

• Используется два вида представления: CBOW (Continuous Bag of Words) и Skip-Gram. Эти два представления оперируют с определенным окном

входных данных.

- CBOW предсказывает слово исходя из контекста.
- Skip-Gram предлагает список вероятного контекста в рамках окна для выбранного слова.
- В обоих случаях порядок слов не анализируется.

"A dog barked at a cat."

[1, 10, 7, 4, 1, 8]

DICTIONARY

- A
- 8. CAT
- 2. **AN**
- 9. CATS
- 3. AND
- 10. **DOG**

4. **AT**

- 11. DOGS
- 5. ATE
- 12. **EAT**
- 6. BARK
- 7. BARKED

- **A**
- e. AN
- 3. **AND**
- 4. AT
- 5. ATE
- 6. BARK
- 7. BARKED

- 8. **CAT**
 - 9. CATS
 - 10. **DOG**
 - 11. DOGS
 - 12. EAT

- A.
- AN
- B. AND
- 4. **AT**
- 5. ATE
- 6. BARK
- 7. BARKED

- 8. CAT
 - 9. CATS
 - 10. **DOG**
 - 11. DOGS
 - 12. **EAT**

BIGGER DICTIONARY

A	CAT	
AN	CATS	
AND	DOG	
ΑT	DOGS	
ATE	EAT	1
BARK	EATEN	
BARKED	A	
CAT	AN	
CATS	AND	
DOG	AT	
DOGS	ATE	-
EAT	BARK	
EATEN	BARKED	
A	CAT	
AN	CATS	
AND	DOG	
AT	DOGS	
ATE	EAT	
BARK	EATEN	
BARKED	A	
CAT	AN	
CATS	AND	
DOG	AT	
DOGS	ATE	
EAT	BARK	
EATEN	BARKED	
A	CAT	
AN	CATS	
AND	DOG	
AT	DOGS	
ATE	EAT	
BARK	EATEN	
BARKED	A	

- A.
 - AN
- 3. **AND**
- 4. **AT**
- 5. ATE
- 6. BARK
- 7. BARKED

- 8. CAT
 - 9. CATS
 - 10. **DOG**
 - 11. DOGS
 - 12. **EAT**

RNN

• Рекуррентная нейронная сеть учитывает состояние ячейки

"Cats say ____."

"Dogs say ____." DICTIONARY

- CATS
- DOGS
- MEOW
- 4. SAY
- 5. WOOF

"Cats say ____."

"Dogs say ____."

- 1. CATS
- 2. DOGS
- 3. MEOW
- 4. SAY
- 5. WOOF

"Cats say ____."

"Dogs say ____."

- 1. CATS
- 2. DOGS
- 3. MEOW
- 4. SAY
- 5. WOOF

"Cats say ____."

"Dogs say ____."

- CATS
- 2. DOGS
- 3. MEOW
- 4. SAY
- 5. WOOF

"Cats say ____."

"Dogs say ____."

- CATS
- 2. DOGS
- 3. MEOW
- 4. SAY
- 5. WOOF

Seq2seq

Для машинного перевода

