ĐẠI HỌC QUỐC GIA THÀNH PHỐ HÒ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

BÁO CÁO ĐỔ ÁN CUỐI KÌ: SỐ HÓA TỬ SÁCH

NGUYỄN GIA BẢO NGỌC – 21520366 (33,3%) SINH VIÊN THỰC HIỆN: NGUYỄN QUỐC TRƯỜNG AN – 21521810 (33,3%)

NGUYĒN ĐỨC TÚ – 21521612 (33,3%)

LÓP: CS114.011

GIẢNG VIÊN HƯỚNG DẪN:

PhGS.TS Lê Đình Duy

ThS Phạm Nguyễn Trường An

TP. HÒ CHÍ MINH – Tháng 1 năm 2024

MUC LUC:

Danh	n mục ảnh:	III
Danh	n mục bảng	IV
	ÔNG QUAN ĐÒ ÁN	
	Các bài viết tham khảo:	
1.1	Bài viết tham khảo số 1:	1
1.2	2 Bài viết tham khảo số 2:	1
2.	Tổng quan đồ án	2
2.1	Mô tả đề tài và các ngữ cảnh ứng dụng:	2
2.2	2 Mô tả bộ dữ liệu:	3
2.3	Mô tả thuật toán máy học và các công cụ hỗ trợ:	4
2.4	Mục tiêu của đề tài:	5
II. C	HI TIẾT VÀ HIỆN THỰC ĐỔ ÁN	5
	Machine learning pipeline	
1.1	Pha 'Training':	6
1.2	Pha 'Serving':	6
2.	Xây dựng bộ dữ liệu	10
2.1	Thu thập dữ liệu ban đầu (Raw Data):	10
2.2	2 Kiểm định dữ liệu ban đầu (Data Validation):	10
2.3	Rút trích đặc trưng và đánh nhãn dữ liệu (Data Prepration):	11
3. 1	Huấn luyện và đánh giá mô hình Binary Classification	14
3.1	Các thuật toán được dùng để huấn luyện mô hình Binary Classification	14
3.2	2 Huấn luyện mô hình Binary Classification	14
3.3	B Đánh giá mô hình Binary Classification	16
III.	ĐÁNH GIÁ HỆ THỐNG VÀ KẾT LUẬN	17
1. ł	Đánh giá hệ thống	17
1.1	Đánh giá giai đoạn thứ nhất (Text Detection)	17
1.2	Dánh giá giai đoạn thứ hai (Classification)	17
1.3	B Đánh giá giai đoạn thứ ba (Text Extraction)	18
1.4	Đánh giá hệ thống	18
2. 1	Hướng phát triển tiếp theo và kết luận đề tài hiện tại	19

IV.THAM KHẢO					
		Kết luận đề tài hiện tại			
	2.1	Hướng phát triển tiếp theo	. 19		

Danh mục ảnh:

Hình 1 - Mô tả kết quả thực hiện đề tài	3
Hình 2 - Mô tả bộ dữ liệu	
Hình 3 - Mô tả cơ bản quá trình hoạt động của hệ thống	
Hình 4 - Machine Learning Pipeline	5
Hình 5 - Ví dụ về một mẫu dữ liệu ban đầu	
Hình 6 - Ví dụ về một mẫu dữ liệu ban đầu đã qua kiểm định	10
Hình 7 - Ví dụ về quá trình khoanh vùng văn bản và trích xuất dữ liệu	12
Hình 8 - file "map.txt"	13
Hình 9 - Dữ liệu thu được sau đánh nhãn	14
Hình 10 - Thông số các mô hình Binary Classification	16
Hình 11 - "Confusion matrix" của mô hình Binary Classification	16
Hình 12 - Ví dụ về cách đánh giá giai đoạn Text Detection	
Hình 13 - Kết quả đánh giá giai đoạn Text Extraction	
Hình 14 - Minh họa các tiêu chuẩn đánh giá hệ thống	

Danh mục bảng

Bång 1 - Hàm detect_text	7
Bång 2 - Pha Serving trong Machine Learning Pipeline	
Bảng 3 - Hàm "process_img"	
Bång 4 - Hàm "enhance_image_for_ocr"	
Bảng 5 - Hàm khoanh vùng và trích xuất đặc trưng từ vùng văn bản	
Bảng 6 - Khai báo các các đối tượng mô hình Máy học	
Bảng 7 - Tiến hành huấn luyện mô hình Binary Classification	
· · · · · · · · · · · · · · · · · · ·	

I. TỔNG QUAN ĐỒ ÁN

1. Các bài viết tham khảo:

1.1 Bài viết tham khảo số 1:

Title Extraction from Book Cover Images Using Histogram of Oriented Gradients and Color Information (Yen Do, Soo Hyung Kim, In Seop Na, School of Electronics & Computer Engineering, Chonnam National University Gwangju, 500-757 Korea)[1].

Hình ảnh bìa sách điển hình có thể chứa văn bản, hình ảnh, sơ đồ cũng như nền phức tạp và không đều. Ngoài ra, tính biến đổi cao của đặc điểm ký tự như độ dày, phông chữ, vị trí, nền và độ nghiêng của văn bản cũng khiến cho công việc trích xuất văn bản trở nên phức tạp hơn. Do đó, các tác giả đề xuất một phương pháp hiệu quả gồm hai bước sử dụng biểu đồ chuyển màu định hướng và thông tin màu sắc để tìm vùng tiêu đề. Đầu tiên, việc định dạng vị trí văn bản được thực hiện để tìm ra các vị trí có khả năng là tiêu đề. Cuối cùng, quá trình sàng lọc được thực hiện để tìm ra đủ các thành phần của vùng tiêu đề. Để có được kết quả tốt nhất, họ còn sử dụng các ràng buộc khác về kích thước, tỷ lệ giữa chiều dài và chiều rộng của tiêu đề. Các tác giả đã đạt được kết quả rất tốt trong việc trích xuất vùng tiêu đề từ ảnh bìa sách, chứng tỏ ưu điểm và hiệu quả của phương pháp đề xuất. Kết quả có thể ứng dụng trong việc quản lý và số hóa tủ sách, từ đó cho ra những thông tin cần thiết của cuốn sách cho người dùng.

1.2 Bài viết tham khảo số 2:

Vietnamese Text Extraction From Book Covers (Phan Thi Thanh Nga, Nguyen Thi Huyen Trang, Nguyen Van Phuc, Thai Duy Quy, Vo Phuong Binh, The Faculty of Information Technology, Dalat University, Lamdong, Vietnam, The Devsoft Company, Hochiminh City, Vietnam, The Research Management and International Cooperation Department, Dalat University, Lamdong, Vietnam)[2].

Trong bài báo này, các tác giả đã trình bày một phương pháp mới trong việc trích xuất văn bản tiếng Việt từ ảnh bìa sách được scan. Hệ thống được đề xuất chấp nhận ảnh chụp nhanh bìa sách, lọc hình ảnh đầu vào để nâng cao chất lượng, định vị các vùng có văn bản, sau đó sử dụng bộ nhận dạng ký tự quang học(OCR) để trích xuất văn bản. Bước cuối cùng là lọc văn bản được trích xuất kèm theo từ điển để có được kết quả văn bản cuối cùng. Việc thực hiện các thử nghiệm với hệ thống được đề xuất bằng bộ dữ liệu của các tác giả đã mang lại kết quả thử nghiệm rất tốt. Bằng cách triển khai VTEB từ đầu, các tác giả đã cho thấy và chỉ ra rằng dự án này có thể được coi là thử nghiệm ban đầu của hệ thống nhận dạng bìa sách. Họ đã cung cấp quy trình làm việc và cách triển khai để truy xuất văn bản rõ ràng từ hình ảnh bìa sách. Phép biến đổi Hough được triển khai để làm giảm độ lệch của hình ảnh. Đồng thời cũng sử dụng các bộ lọc khác nhau để giảm nhiễu, xóa nền và trích xuất các vùng văn bản. Imagemaker đã giúp đỡ rất nhiều trong việc làm sạch ảnh nguồn bằng các bộ lọc cơ bản. Việc sử dụng công cụ Tesseract giúp OCR văn bản từ hình ảnh đầu vào. Trong nguyên mẫu, các tác giả đã triển khai lỏng lẻo các bước xử lý hình ảnh, OCR và xử lý hậu kỳ hình ảnh. Tuy nhiên, mỗi bước này có thể được thay đổi độc lập để có kết quả phù

hợp. Thời gian đáp ứng của thuật toán biến đổi Hough chậm đáng kể trong trường hợp chúng ta đặt giá trị lớn cho góc. Bằng cách giả định rằng hầu hết các hình ảnh bị lệch đều nhận được giá trị nhỏ hơn 15 độ, họ đã giảm độ phức tạp của thuật toán bằng cách giới hạn các góc ở [-16, 16] độ và kích thước bước được đặt thành 0,2.

2. Tổng quan đồ án

Từ hai bài viết hai tham khảo vừa đề cập, đã giúp nhóm thực hiện đã tổng kết được những kiến thức cơ bản có liên quan, cũng như bước đầu tư duy về các bước thực hiện đề tài. Tuy nhiên hai bài viết trên tiếp cận bài toán với các hướng nghiên cứu đòi hỏi kĩ thuật cao, không phù với hợp sinh viên có mức trình độ nhập môn (các thành viên nhóm thực hiện), sau đây nhóm thực hiện sẽ nghiên cứu, thực hiện đề tài với hướng tiếp cận khác, phù hợp với sinh viên nhập môn Máy học. Toàn bộ thông tin về đề tài có thể được truy cập tại: https://github.com/ngbn111723/CS114.O11-21520366.git

2.1 Mô tả đề tài và các ngữ cảnh ứng dụng:

Đề tài đồ án của nhóm với mục tiêu là phát triển một hệ thống bao gồm mô hình Máy học cho phép người dùng đưa vào ảnh là trang bìa một cuốn sách, mô hình sẽ nhận dạng được và xuất ra tên cuốn sách đó, hỗ trợ việc lập danh sách quản lí sách.

• Input: Ånh bìa quyển sách.

• Output: Tên của quyển sách.

Ngữ cảnh ứng dụng: Sản phẩm của đề tài có thể ứng dụng cho các tổ chức, cá nhân có nhu cầu lập danh sách quản lí sách, văn bản có bìa như sách,... Ví dụ thực tế: Các tiệm sách cũ, các quán cà phê sách... có thể sở hữu hàng trăm thậm chí hàng nghìn tựa sách, từ nhiều nguồn như mua lại, được cho tặng,... Trong các trường hợp trên thường không có danh sách quản lý ngay từ ban đầu, việc đó thường gây khó khăn cho việc quản lý sách, bởi lẽ việc lập danh sách lúc này sẽ rất mất thời gian do phải viết bằng tay hoặc đánh máy. Sản phẩm của đề tài có thể ứng dụng để hỗ trợ các hiệu sách cũ trong việc quản lý mua bán, các mô hình kinh doanh liên quan đến sách hay các cá nhân muốn quản lý tủ sách.

Lý do sử dụng mô hình máy học: Trên một bìa sách có thể bao gồm rất nhiều kí tự chữ viết, nhưng không phải tên sách, bao gồm: Tên nhà xuất bản, tên tác giả hoặc cụm từ chỉ để trang trí hay marketing như: "Best Seller", "New Edition"... không có một chương trình lập trình truyền thống cụ thể nào có thể áp dụng cho việc phân loại các vùng văn bản trên bìa sách đâu thật sự là tên sách. Vì lý do trên cần áp dụng mô hình Máy học để phân loại được tên sách trong tất cả các vùng văn bản được nhận diện. Cụ thể hơn là mô hình Binary Classification để trả lời câu hỏi vùng văn bản vừa được nhận diện có phải là tên sách hay không (có hoặc không). Mô hình Binary Classification cũng chính là **nhiệm vụ chính và quan trọng nhất** mà nhóm đặt ra. Ngoài ra, để hỗ trợ cho việc phân loại các vùng văn bản cần có sự tham gia của các công cụ khác để nhận diện, khoanh vùng vùng văn bản trên ảnh bìa sách và để trích xuất văn bản đó ra. Cụ thể, hai giai đoạn vừa nêu sẽ được hỗ trợ bởi công cụ 'PyTesseract'- hỗ trợ việc nhận diện và khoanh vùng văn bản, công cụ 'EasyOCR'- hỗ trợ việc trích xuất vùng vừa văn bản. Hai công cụ trên sẽ được phối hợp với mô hình Máy học được nhóm phát triển, cho ra hệ thống có chức năng đúng như mục tiêu đề ra.

Hình 1 - Mô tả kết quả thực hiện đề tài

2.2 Mô tả bộ dữ liệu:

Tập dữ liệu được sử dụng cho việc huấn luyện mô hình Binary Classification bao gồm 5046 mẫu - tương ứng với các hàng, mỗi mẫu bao gồm các đặc trưng (feature) và mục tiêu (target) – tương ứng với các cột. Tập dữ liệu được xây dựng từ 700 ảnh bìa sách qua các bước xử lí, rút trích đặc trưng cho ra các phần tử là các đặc trưng của các vùng chứa văn bản trên ảnh bìa sách được đặt tên là: left, right, length, height, size, center (sẽ được giải thích chi tiết trong phần sau). Từ các đặc trưng được rút trích nhóm sẽ thực hiện việc đánh nhãn cho dữ liệu bằng cách điền giá trị cho cột 'title' (cột tương ứng với cột mục tiêu – 'target') thể hiện cho việc mẫu dữ liệu được thu thập, đại diện cho vùng văn bản có phải là vùng văn bản chứa tựa sách hay không (nếu là tựa sách sẽ được đánh giá trị 1 ngược lại là 0), lưu ý tựa sách có thể nằm trên nhiều vùng văn bản khác nhau. Tập dữ liệu thu được cuối cùng là tập dữ liệu gồm 5046 hàng (5046 mẫu) và 7 cột theo thứ tự từ trái sang phải 6 cột đầu tiên là 6 cột đặc trưng: 'left', 'right', 'length', 'height', 'size', 'center'; 1 cột cuối cùng là cột mục tiêu: 'title'. Ảnh bìa sách mà nhóm thu thập là các ảnh thực tế được chụp từ camera, nguồn thu thập đến từ Thư viện Trường Đại học Công nghệ Thông Tin, Thư viện Trung tâm ĐHQG - TP.HCM, các hội nhóm internet,...

370	235	1479	255	377145	0	0
72	1598	1990	575	1144250	1	1
493	2095	1370	218	298660	1	1
0	0	2375	3251	7721125	0	0
1561	64	4	189	756	0	0
51	180	2064	980	2022720	0	0
1807	80	86	19	1634	0	0
51	70	1514	431	652534	0	0
594	86	1232	199	245168	0	0
512	221	1351	229	309379	0	0

Hình 2 - Mô tả bộ dữ liệu

2.3 Mô tả thuật toán máy học và các công cụ hỗ trợ:

Như đã trình bày ở phần mô tả đề tài, để thực hiện được mục tiêu đặt ra, đề tài cần sự phối hợp của mô hình máy học và các công cụ hỗ trợ để tạo thành một hệ thống. Cụ thể là, đề tài được nhóm thực hiện bao gồm 3 giai đoạn được đặt tên như sau: Giai đoạn thứ nhất (Text Detection), Giai đoạn thứ hai (Binary Classification), Giai đoạn thứ ba (Text Extraction). Trong đó, Binary Classification là phần nhiệm vụ chính của nhóm, cùng với việc phối hợp với các công cụ hỗ trợ cho ra một hệ thống hoàn chỉnh. Chức năng của các giai đoạn:

- Giai đoạn thứ nhất (Text Detection): Ảnh bìa sách đưa vào được xử lí để nhận diện ra vùng chứa văn bản. Giai đoạn này được thực hiện bằng công cụ Pytesseract để phát hiện và khoanh vùng văn bản trên bìa sách, đồng thời cho biết các đặc trưng của vùng đó.
- Giai đoạn thứ hai (Binary Classification): Nhóm sẽ thực hiện huấn luyện mô hình để từ các vùng văn bản được nhận diện là kết quả của giải đoạn thứ nhất phân loại đâu là vùng chứa tên sách (dựa vào các đặc trưng của vùng đó). Việc phân loại này có thể được liên tưởng đến việc trả lời câu hỏi "vùng văn bản có phải là tên của quyển sách hay không?", câu trả lời là "có hoặc không" vùng văn bản sẽ được phân vào hai lớp: "có" hoặc "không" tương ứng với giá trị '1' hoặc '0' tại cột mục tiêu trong tập dữ liệu, từ những phân tích trên có thể thấy giai đoạn này sử dụng mô hình máy học 'Binary Classification' để thực hiện là phù hợp nhất. Đây là giai đoạn mà nhóm sẽ tiến hành thu thập dữ liệu và tự huấn luyện mô hình sau đó cài đặt vào hệ thống.
- Giai đoạn thứ ba (Text Extraction): Sau khi đã biết được vùng văn bản nào là vùng chứa tên sách, ở giai đoạn này sẽ sử dụng công cụ hỗ trợ là Easy OCR để tách chữ từ vùng nhận diện được trong ảnh thành văn bản, cho ra kết quả cuối cùng là tựa của quyển sách.

Hình 3 - Mô tả cơ bản quá trình hoạt động của hệ thống

2.4 Mục tiêu của đề tài:

Mục tiêu nhóm hướng đến trong đề tài lần này bao gồm hai điều quan trọng nhất:

- Thực hiện thành công mô hình Binary Classification: thu thập được bộ dữ liệu, chọn ra được thuật toán phù hợp, thông số đánh giá nằm trên mức trung bình.
- Phối hợp giữa mô hình máy học và các công cụ để tạo ra hệ thống hoàn chỉnh: đạt được mô tả đồ án là đầu vào dữ liệu là ảnh của quyển sách sau đó cho ra tên sách.

Trong đồ án này, nhóm không đặt mục tiêu sẽ đem đề tài ứng dụng thực tế vì còn hạn chế nhiều về mặc kiến thức và thời gian để có thể phát triển một mô hình đủ tốt. Vì thế độ chính xác của hệ thống không phải mục tiêu mà nhóm hướng tới.

II. CHI TIẾT VÀ HIỆN THỰC ĐỒ ÁN

1. Machine learning pipeline

Trong phần "2.3 Mô tả mô hình thuật toán máy học và các công cụ hỗ trợ" đã nêu lên những cơ bản nhất về hệ thống mà nhóm phát triển. Trong phần này sẽ đi sâu vào chi tiết những công đoạn mà nhóm đã nghiên cứu và thực hiện để cho ra kết quả cuối cùng, hình sau là Machine Learning Pipeline của nhóm (bản thiết kế của đề tài):

Hình 4 - Machine Learning Pipeline

1.1 Pha 'Training':

Trong phạm vi đề tài, đây là pha mô tả việc huấn luyện mô hình Binary Classification được sử dụng trong giai đoạn thứ hai của hệ thống, đây cũng là phần chiếm nhiều thời gian và công sức thực hiện nhất.

Trong đó "Raw data" là chính là 700 ảnh bìa sách mà nhóm thu thập được, chưa qua bất cứ công đoạn xử lí nào, chỉ là ảnh vừa được chụp từ camera. Công đoạn kế tiếp là "Data Validation" đây là công đoạn xử lí dữ liệu đầu tiên, mang tính xác minh dữ liệu. Tại công đoạn "Data Validation" những phần thừa không liên quan đến ảnh bìa sách sẽ được cắt bỏ hay những ảnh mờ sẽ được loại bỏ. Công đoạn "Data Preparation" là công đoạn mà nhóm sẽ tiến hành rút trích đặc trưng và đánh nhãn cho dữ liệu. Những tấm ảnh bìa sách ban đầu qua các công đoạn xử lí đã được xác minh và rút trích đặc trưng của các vùng văn bản có chứa trên ảnh bìa sách, được đánh nhãn và tạo thành bộ dữ liệu phù hợp cho việc huấn luyện mô hình máy học. Tập dữ liệu sau xử lí sẽ được chia thanh 2 tập nhỏ hơn là tập "Training Data" và "Test Data" nhằm mục đích huấn luyện và đánh giá mô hình Máy học. Tới đây mô hình Binary Classification đã sẵn sàng được huấn luyện. Các công đoạn vừa nêu trên là những công đoạn quan trọng hàng đầu của đồ án, sẽ được trình bày cụ thể trong phần "2. Xây dựng bộ dữ liệu".

Sau khi hoàn thành việc xây dựng bộ dữ liệu, tiếp tục đến với công đoạn huấn luyện để hoàn thiện mô hình Binary Classification. Nhóm sẽ tiến hành huấn luyện mô hình Binary Classification bằng cách huấn luyện cả 6 mô hình dựa trên 6 thuật toán bao gồm: Logistic Regression, Support Vector Machines, Decision Trees, Random Forest, Naive Bayes, K-Nearest Neighbor sau đó chọn ra mô hình tốt nhất dựa trên thông số F1-score để chọn làm mô hình Binary Classification của hệ thống. Lưu ý 6 mô hình dựa trên các thuật toán: Logistic Regression, Support Vector Machines, Decision Trees, Random Forest, Naive Bayes, K-Nearest Neighbor là những mô hình Máy học đã Scikit-learn hỗ trợ, nhóm chỉ tiến hành cài đặt và không xây dựng lại từ đầu. Các công đoạn liên quan đến huấn luyện mô hình máy học sẽ được nhóm trình bày rõ hơn trong phần "3. Thực hiện training và đánh giá model Classification".

1.2 Pha 'Serving':

Đây là pha mô tả việc hệ thống thực hiện chức năng của mình như thế nào. Sau khi hoàn thành việc huấn luyện mô hình Binary Classification, các giai đoạn của hệ thống đã hoàn thiện, hệ thống đã sẵn sàng. 'Raw data' tại đây cũng là ảnh bìa sách chưa qua xử lí (không trùng lại với những ảnh đã dùng để huấn luyện mô hình Máy học). Sau đó sẽ đi đến giai đoạn 'Text Detection' đồng thời cũng là giai đoạn thứ nhất của hệ thống xử lí để xác định các vùng có chứa văn bản, cụ thể hơn công việc đó sẽ được xử lí bằng cách áp dụng công cụ PyTesseract với câu lệnh cụ thể là:

'd=pytesseract.image_to_data(image,output_type=pytesseract.Output.DICT)', trong đó:

- image là ảnh bìa sách được truyền vào.
- output_type=pytesseract.Output.DICT để xác định dữ liệu đầu ra là kiểu từ điển.
- Biến 'd' mang thông tin của tất cả các vùng có chứa văn bản trong ảnh.

Bước tiếp theo, biến 'd' mang giá trị kiểu từ điển lưu thông tin các vùng được nhận diện là có chứa văn bản, tuy nhiên nó bao gồm nhiều cấp độ văn bản như: kí tự, từ, đoạn văn bản,... Theo đó tựa sách sẽ nằm ở cấp độ là đoạn văn bản, vì thế ta cần tiếp câu lệnh: 'if d['level'][i] == 2:' để đảm bảo tránh các trường hợp dữ liệu xấu (trường hợp đã nhận diện đoạn văn bản và tiếp tục nhận diện các kí tự, các từ trong đoạn văn bản đó). Kết thúc giai đoạn này ta sẽ được kết quả là thông tin đặc trưng của những vùng văn bản được nhận diện (trong Pipeline Machine Learning là 'Text Data'), là dữ liệu sẽ được sử dụng cho giai đoạn tiếp theo. Giai đoạn này được thực hiện trong 'notebook' bằng đoạn mã sau:

Bång 1 - Hàm detect_text

```
def detect text (image path):
 image = cv2.imread(image_path)
 image = process_img(image)
height, width = image.shape
 image center = (width / 2, height / 2) #tâm ånh
 min_distance = float('inf')
 center box = None
 d = pytesseract.image to data(image, output type=pytesseract.Output.DICT)
 box = []
 boxes_with_distances = []
 for i in range(len(d['level'])):
     if d['level'][i] == 2:
      (x, y, w, h) = (d['left'][i], d['top'][i], d['width'][i], d['height'][i])
      box.append((x, y, w, h, w*h))
      box_center = (x + w / 2, y + h / 2)
      distance = np.sqrt((box center[0]) - image center[0])**2 + (box center[1] - image center[1])**2)
      boxes_with_distances.append(((x, y, w, h), distance))
 boxes with distances.sort(key=lambda x: x[1])
 final\_box = ()
  # Lấy 3 hộp gần trung tâm nhất
 closest boxes = boxes with distances[:3]
  # Lấy các tọa độ box từ closest boxes để so sánh
 closest coords = [box[0]] for box in closest boxes
  # Thêm 1 nếu box nằm trong closest boxes, ngược lại thêm 0 tạo feture center
 final_boxes = [box + (1,) if box[:4] in closest_coords else box + (0,) for box in box]
return final boxes
Các giá trị trả về sẽ là (x, y, w, h, w*h, 1 hoặc 0) các giá trị này sẽ tương ứng với các đặc trưng của vùng
văn bản là: left, right, length, height, size, center trong bộ dữ liệu dùng để huấn luyện mô hình máy học. Các
đặc trưng này sẽ được giải thích ở phần sau.
```

Sau công đoạn nhận diện vùng văn bản, các thông tin của vùng chứa văn bản sẽ được trích xuất và trở thành dữ liệu đầu vào cho giai đoạn thứ hai của hệ thống cũng là công đoạn 'Classification' trong Pipeline Machine Learning. Dựa vào những thông tin nhận được mô hình Binary Classification sẽ phân loại xem vùng văn bản ấy có phải là tựa của quyển sách hay không. Công đoạn "Text Extract" (giai đoạn thứ 3 của hệ thống) sẽ dựa vào giá trị đầu vào là kết quả phân loại và dữ liệu về vùng văn bản để hoạt động. Cụ thể nếu mô hình Binary Classification cho ra kết quả phân loại là 1, nghĩa là vùng văn bản được phân loại là tựa sách thì văn bản trên ảnh sẽ được

tách ra. Tựa sách được tách ra cũng là kết quả cuối cùng của hệ thống. Để có thể lấy được văn bản trên ảnh công cụ hỗ trợ sẽ là EasyOCR với các câu lệnh cụ thể là:

```
"reader = easyocr.Reader(['en','vi'])
```

text_extarcted= reader.readtext(enhance_image_for_ocr(handled_image))", trong dó:

- "reader= easyocr.Reader(['en','vi'])", là câu lệnh dùng để khởi tạo một đối tượng 'Reader' từ thư viện 'easyocr' với ngôn ngữ là tiếng Anh ('en') và tiếng Việt ('vi').
- "text_extarcted= reader.readtext(enhance_image_for_ocr(handled_image))" là câu lệnh với mục đích đọc và lưu các thông tin về văn bản được đọc ra từ ảnh.

Pha 'Serving' có thể được mô tả trong đoạn mã Python sau:

Bång 2 - Pha Serving trong Machine Learning Pipeline

```
target_size = (480, 270) #dài rộng
sum\_acc = 0
count = 0
for i in range(1, 71):
#-----GIAI ĐOAN TEXT EXTRACTION------
print('-----'+' book '+str(i)+' -----')
data= detect_text('/content/img ('+str(i)+').JPG')
image = cv2.imread('/content/img ('+str(i)+').JPG')
img height, img width = image.shape[:2]
df = pd.DataFrame(data, columns=['left', 'top', 'width', 'height', 'size', 'center'])
df temp = df
df.info
         -----GIAI ĐOẠN CLASSIFICATION-----
ss_train = StandardScaler()
df = ss train.fit transform(df)
models[best_model_key].fit(X_train, y_train)
predictions = models[best model key].predict(df)
       -----GIAI ĐOẠN TEXT EXTRACTION-----
title = "
for index, row in df_temp[predictions == 1].iterrows():
   # Các thông số để cắt ảnh
   left, top, width, height = row['left'], row['top'], row['width'], row['height']
   left = max(row['left'] - 10, 0) # Giảm left nhưng không để nó âm
   top = max(row['top'] - 10, 0)
   width = min(row['width']+20, img_width-left)
   height = min(row['height']+20, img_height-top)
   # Cắt ảnh
   handled image = image[top:top+height, left:left+width]
   handled_image = cv2.resize(handled_image, target_size)
   # Đoc văn bản từ ảnh
   reader = easyocr.Reader(['en','vi'])
   text_extarcted= reader.readtext(enhance_image_for_ocr(handled_image))
   for text in text_extarcted:
    sum_acc = text[2]
    count+=1
    if text[2] > 0.1:
     title += text[1]+''
```

```
# Hiển thị ảnh được dự đoán là tựa sách cv2_imshow(handled_image)
print('title: '+title)
print("Accuracy of text extraction: ", sum_acc/count)
Lưu ý: ảnh được truyền vào phải được đặt tên theo đúng cú pháp "img ([i]).JPG" trong đó 'i' là biến đếmthees hiện cho ảnh thứ i. Ngoài 3 giai đoạn là: Text Detection, Classification, Text Extraction là 3 nội dung chính, đoạn mã trên còn bao gồm một số bước phụ như tạo "data frame", cắt ảnh,...
```

Để hỗ trợ cho việc phát hiện vùng văn bản và tách văn bản ra khỏi ảnh, cần một số bước tinh chỉnh ảnh trong đó hàm "process_img" được dùng cho việc tinh chỉnh ảnh cho giai đoạn "*Text Dection*", hàm "enhance_image_for_ocr" được dùng cho giai đoạn "*Text Extraction*". Đoạn mã cho hai hàm trên có nội dung như sau:

Bång 3 - Hàm "process_img"

```
def process_img (image):
image= cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image= cv2.bitwise_not(image)
kernel = np.ones((2, 2), np.uint8)
image = cv2.dilate(image, kernel, iterations=1)
image = cv2.erode(image, kernel, iterations=1)
return image
```

Bång 4 - Hàm "enhance_image_for_ocr"

```
def enhance_image_for_ocr(image):

# Chuyển đổi sang grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# Áp dụng denoising
denoised = cv2.medianBlur(gray, 1)

# Tăng độ tương phản
alpha = 1.5 # Hệ số tương phản
beta = 0 # Độ sáng
contrast = cv2.convertScaleAbs(denoised, alpha=alpha, beta=beta)
return contrast
```

2. Xây dựng bộ dữ liệu

2.1 Thu thập dữ liệu ban đầu (Raw Data):

Dữ liệu ban đầu được thu thập bằng cách chụp ảnh bìa sách từ thực tế. Nguồn dữ liệu được lấy từ sách có trong các thư viện như Thư viện Trường Đại học Công nghệ Thông Tin, Thư viện Trung tâm ĐHQG - TP.HCM, Thư viện Trung tâm ĐHQG - TP.HCM chi nhánh KTX khu B, là chủ yếu nhất. Ngoài ra còn đến từ nguồn sách cá nhân, từ các nhà sách và các nguồn internet khác nhưng đảm bảo ảnh được chụp từ camera. Ngôn ngữ được sử dụng trên bìa sách có thể là tiếng Việt hoặc tiếng Anh, trong đó tiếng Việt chiếm đa số.

Hình 5 - Ví dụ về một mẫu dữ liệu ban đầu

2.2 Kiểm định dữ liệu ban đầu (Data Validation):

Dữ liệu ban đầu được thu thập là các ảnh bìa sách, tập dữ liệu này cần phải được kiểm định lại. Trong các ảnh được thu thập có thể bao gồm nhiều phần không liên quan đến bìa sách ví dụ như: chụp dính tay người chụp, mặt bàn,... những phần này cần được cắt bỏ. Các ảnh quá mờ hoặc do điều kiện bên ngoài khác như chói sáng dẫn đến không thấy rõ được tựa sách,... các ảnh này cần được loại bỏ. Nhóm đã tiến hành chụp ảnh thu thập dữ liệu **hơn 1000** tựa sách khác nhau, tuy nhiên tổng kết thu thập được **770** ảnh đạt chất lượng, **700** ảnh sẽ được rút trích đặc trưng để tạo dữ liệu cho việc huấn luyện và kiểm tra mô hình Binary Classification, **70** ảnh còn lại dùng để kiểm tra thống kê số liệu cho toàn bộ hệ thống.

Hình 6 - Ví dụ về một mẫu dữ liệu ban đầu đã qua kiểm định

2.3 Rút trích đặc trưng và đánh nhãn dữ liệu (Data Prepration):

2.3.1 Rút trích đặc trưng

Dữ liệu là các ảnh sau khi được kiểm định sẽ tiếp tục được rút trích đặc trưng thông qua công cụ PyTesseract và câu các câu lệnh tương tự như giai đoạn "*Text Detection*" đã được trình bày ở trên. PyTesseract cung cấp các thông tin về các đặc trưng của vùng chứa văn bản là: 'left', 'top', 'width', 'height', đó cũng chính là những đặc trưng cơ bản nhất đã được nhắc đến ở các phần trên (vùng văn bản là vùng hình chữ nhật giới hạn văn bản ở bên trong). Trong đó:

- 'left' là khoảng cách từ điểm ở góc trên bên trái của vùng văn bản đến cạnh bên trái của ảnh.
- 'top' là khoảng cách từ điểm ở góc trên bên trái của vùng văn bản đến cạnh bên trên của ảnh.
- 'width' là chiều rộng (có thể xem là chiều dài tùy theo quy ước) của vùng chứa văn bản.
- 'height' là chiều cao (có thể xem là chiều rộng tùy theo quy ước) của vùng chứa văn bản.

Từ các đặc trưng cơ bản nhất trên, nhóm tiếp tục tạo nên đặc trưng mới (Feature Engineering) là đặc trưng 'size' thể hiện diện tích vùng chứa văn bản từ hai đặc trưng cơ bản là 'width' và 'height' bằng cách nhân hai đặc trưng này lại với nhau, đây là một đặc trưng mang ý nghĩa quan trọng, diện tích vùng văn bản thường thể hiện mức độ nổi bật của vùng chứa văn bản (tựa sách thường là vùng mang diện tích lớn hơn cả).

Ngoài 5 đặc trưng trên, nhóm tiếp tục rút trích đặc trưng 'center'mà không từ đặc trưng nào có sẵn (Feature Generation), đặc trưng này mang ý nghĩa về vị trị của vùng văn bản có nằm gần vị trí trung tâm của ảnh hay không (tựa sách thường sẽ nằm ở vị trí trung tâm sách, có thể lệch trên hoặc lệch dưới). Đặc trưng này thể hiện vùng văn bản có là 1 trong 3 vùng văn bản gần trung tâm ảnh nhất hay không (phải thì đặc trưng mang giá trị 1, không thì đặc trưng mang giá trị 0). Mức độ "trung tâm" của vùng văn bản, được đánh giá dựa trên khoảng cách từ tâm vùng chứa văn bản đến tâm ảnh. Tuy vậy, đặc trưng này sẽ được đánh giá bằng năng lực của con người trong giai đoan đánh nhãn dữ liêu.

Sau bước rút trích các đặc trưng thu được là: 'left', 'top', 'width', 'height', 'size' và 'center', cũng sẽ là các cột tương ứng trong tập dữ liệu. Các đặc trưng này cũng sẽ là các đặc trưng theo nhóm là đủ để đánh giá vùng văn bản được nhận diện trên ảnh bìa sách có phải là tựa sách hay không. Trước khi được rút trích dữ liệu ảnh bìa sách sẽ được lược bỏ màu (màu sắc trong cách tiếp cận của đề tài không quan trọng cho việc phân loại tựa sách), tinh chỉnh thêm một số yếu tố khác nhằm phục vụ cho việc trích xuất đặc trưng được hiệu quả. Hình sau là ví dụ về một bìa sách đã được khoanh vùng vùng chứa văn bản, vùng được tô đậm hơn thể hiện vùng văn bản là 1 trong 3 vùng văn bản gần trung tâm ảnh nhất. Ảnh bên phải thể hiện các đặc trưng của các vùng văn bản được nhận diện bên trái, theo thứ tự lần lượt là: 'left', 'top', 'width', 'height', 'size'.


```
box1 (1004, 365, 294, 39) 11466
box2 (682, 446, 619, 82) 50758
box3 (596, 561, 691, 56) 38696
box4 (745, 969, 569, 88) 50072
box5 (153, 1086, 1163, 393) 457059
box6 (0, 1658, 1449, 648) 938952
```

Hình 7 - Ví dụ về quá trình khoanh vùng văn bản và trích xuất dữ liệu

Đoạn mã sau được dùng để nhận diện vùng văn bản và trích xuất đặc trưng từ vùng văn bản ấy, cho ra kết quả như hình 7:

Bảng 5 - Hàm khoanh vùng và trích xuất đặc trưng từ vùng văn bản

```
def box text (image path, d):
 global t
 image = cv2.imread(image_path)
 image = process_img(image)
 height, width = image.shape
 image\_center = (width / 2, height / 2)
 min_distance = float('inf')
 center_box = None
 d = pytesseract.image_to_data(image, output_type=pytesseract.Output.DICT)
 box = []
 boxes with distances = []
c = 0
 n boxes = len(d['level'])
 for i in range(n boxes):
    if d['level'][i] == 2:
      (x, y, w, h) = (d['left'][i], d['top'][i], d['width'][i], d['height'][i])
      #cv2_imshow(image[y:y+h, x:x+w])
      #print(pytesseract.image_to_string(image[y:y+h, x:x+w], lang='vie'))
      box.append((x, y, w, h))
      text = f'Box \{c+1\}'
      c+=1
      t+=1
      box_center = (x + w / 2, y + h / 2)
      distance = np.sqrt((box_center[0] - image_center[0])**2 + (box_center[1] - image_center[1])**2)
      boxes_with_distances.append(((x, y, w, h), distance))
      cv2.putText(image, text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 255, 255), 5)
      cv2.rectangle(image, (x, y), (x + w, y + h), (255, 0, 0), 2)
      fo_.write(str(t)+' '+str(d_) +'\n')
      fo.write(('box'+ str(c)).ljust(8, ' ')+str(x).ljust(8, ' ')+str(y).ljust(8, ' ')+str(w).ljust(8, ' ')
```

```
+str(h).ljust(8, '')+str(w*h).ljust(8, '')+ '0'.ljust(8, '')+ '0'.ljust(8, '') + '\n')
print ('box'+ str(c), ((x, y, w, h)), w*h)

boxes_with_distances.sort(key=lambda x: x[1])
# Lấy 3 hộp gần trung tâm nhất
closest_boxes = boxes_with_distances[:3]

for box in closest_boxes:
    x, y, w, h = box[0]
    cv2.rectangle(image, (x, y), (x + w, y + h), (255, 0, 0), 12) # Sử dụng màu đỏ để phân biệt
cv2_imshow(image)
```

Như đã nêu ở trên, ảnh bìa sách cần được tinh chỉnh để phục vụ cho việc khoanh vùng và trích xuất đặc trưng được hiệu quả hơn, việc đó được thực hiện thông qua hàm 'process_img' được đề cập trong *Bảng 3 - Hàm "process_img"*.

Sau khi rút trích đặc trưng, thông tin về các đặc trưng sẽ được ghi vào file "dataset.txt" để tiến hành bước đánh nhãn dữ liệu. Ngoài ra trong quá trình rút trích đặc trưng còn sinh ra file "map.txt"- đây là file được dùng để đánh dấu mẫu dữ liệu trong tập dữ liệu được lấy ra từ ảnh nào trong 700 ảnh được chọn để rút trích đặc trưng. Trong file "map.txt" cột bên trái là thứ tự của mẫu dữ liệu (thứ tự hàng) trong tập dữ liệu, bên phải là thứ tự ảnh, từ file "map.txt" ta có thể biết được mẫu dữ liệu tại bất cứ hàng nào trong tập dữ liệu được trích xuất từ ảnh nào trong 700 ảnh được chọn để rút trích đặc trưng.

```
80 10
81 10
82 10
83 10
84 10
85 10
86 10
87 11
88 11
89 11
90 11
91 11
92 11
93 11
```

Hình 8 - file "map.txt"

2.3.1 Đánh nhãn dữ liệu

Sau khi đã có các đặc trưng về vùng văn bản được nhận diện, công việc kế tiếp là đánh nhãn cho các mẫu dữ liệu đó (mỗi mẫu đại diện cho 1 vùng văn bản). Việc đánh nhãn tương ứng với việc gán giá trị cho cột 'title'. Nhãn dữ liệu sẽ được đánh giá dựa trên năng lực của con người, nếu vùng văn bản được nhận diện là tựa sách sẽ gán giá trị cho cột 'title' là 1 ngược lại là 0. Ngoài việc đánh nhãn cho dữ liệu đồng thời cũng tiến hành việc đánh nhãn cho đặc trưng 'center', sở dĩ cần làm vậy bởi vì có một số trường hợp vùng văn bản được đánh dấu là 'center' không phù hợp như: không phải vùng chứa văn bản như mong muốn (một số trường hợp vùng được nhận diện là chứa văn bản lại là toàn bộ bìa sách); sách có ít hơn bằng 3 vùng văn bản, thì cả ba vùng đều là 3 vùng văn bản gần tâm nhất, khi đó vùng nào là trung tâm cần được xét lại. Sau công đoạn đánh nhãn dữ liệu sẽ thu được tập dữ liệu giống như mô tả ở phần "2.2 Mô tả bộ dữ liệu". Dữ liệu sau đó sẽ được chia theo tỉ lệ 75% cho việc huấn luyện mô hình Binary Classification và 25% cho việc kiểm tra.

370	235	1479	255	377145	0	0
72	1598	1990	575	1144250	1	1
493	2095	1370	218	298660	1	1
0	0	2375	3251	7721125	0	0
1561	64	4	189	756	0	0
51	180	2064	980	2022720	0	0
1807	80	86	19	1634	0	0
51	70	1514	431	652534	0	0
594	86	1232	199	245168	0	0
512	221	1351	229	309379	0	0

Hình 9 - Dữ liêu thu được sau đánh nhãn

3. Huấn luyện và đánh giá mô hình Binary Classification

3.1 Các thuật toán được dùng để huấn luyện mô hình Binary Classification

Để có được mô hình Binary Classification tốt nhất, nhóm đã thực hiện huấn luyện 6 mô hình Binary Classification dựa trên 6 thuật toán khác nhau trên tập dữ liệu có được để chọn ra mô hình tốt nhất cho hệ thống. Cu thể 6 thuật toán được áp dung là:

- Logistic regression
- Support Vector Machine
- Decision Tree
- Random Forest
- Naïve Bayes
- K-nearest Neighbor

Các mô hình Binary Classification này đều đã được tích hợp sẵn trong thư viện 'sklearn' nhóm sẽ tiến hành sử dụng như sử dụng các đối tượng bình thường khác.

3.2 Huấn luyện mô hình Binary Classification

Tiến hành quá trình huấn luyện mô hình Binary Classification, như đã trình bày ở mục 3.1 các mô hình Máy học áp dụng có thuật toán như Logistic regression, Support Vector Machine, Decision Tree, Random Forest, Naïve Bayes, K-nearest Neighbor sẽ được gọi như các đối tượng

trong thư viện 'sklearn' và được huấn luyện với bộ dữ liệu có sẵn. Các đoạn mã quan trọng nhất để khai báo đối tượng và huấn luyện các mô hình được trình bày trong 'notebook' như sau:

Bảng 6 - Khai báo các các đối tượng mô hình Máy học

```
models = \{\}
# Logistic Regression
from sklearn.linear_model import LogisticRegression
models['Logistic Regression'] = LogisticRegression()
# Support Vector Machines
from sklearn.svm import LinearSVC
models['Support Vector Machines'] = LinearSVC()
# Decision Trees
from sklearn.tree import DecisionTreeClassifier
models['Decision Trees'] = DecisionTreeClassifier()
# Random Forest
from sklearn.ensemble import RandomForestClassifier
models['Random Forest'] = RandomForestClassifier()
# Naive Bayes
from sklearn.naive bayes import GaussianNB
models['Naive Bayes'] = GaussianNB()
# K-Nearest Neighbors
from sklearn.neighbors import KNeighborsClassifier
models['K-Nearest Neighbor'] = KNeighborsClassifier()
Khai báo các đối tượng mô hình Máy học phổ biến để cho bài toán Binary Classification
```

Bảng 7 - Tiến hành huấn luyện mô hình Binary Classification

```
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

accuracy, precision, recall, f1_s = {}, {}, {}, {}

for key in models.keys():

# Fit the classifier
models[key].fit(X_train, y_train)

# Make predictions
predictions = models[key].predict(X_test)

# Calculate metrics
accuracy[key] = accuracy_score(predictions, y_test)
precision[key] = precision_score(predictions, y_test)
recall[key] = recall_score(predictions, y_test)
f1_s[key] = f1_score(predictions, y_test)
best_model_key = max(f1_s, key=f1_s.get)
print(Best model is: '+best_model_key)
```

X_train và y_train là tập dữ liệu lần lượt tương ứng với cột đặc trưng và mục tiêu trong 75% tập dữ liệu dùng để huấn luyện mô hình. Tất cả mô hình Máy học được khai báo ở trên đều được huấn luyện với cùng 1 tập dữ liệu. Các thông số Accuracy, Precision, Recall, F1-score sẽ được thu thập để làm dữ kiện đánh giá mô hình, trong đó thông số F1 score được dùng để chọn ra mô hình tốt nhất.

3.3 Đánh giá mô hình Binary Classification

Tập dữ liệu để huấn luyện mô hình là tập dữ liệu lệch (các mẫu được phân vào lớp '0' nhiều hơn so với lớp '1') nên việc đánh giá mô hình bằng thông số độ chính xác (Accuracy) có thể không phản ánh đầy đủ khả năng của mô hình. Mô hình sẽ được đánh giá dựa trên 4 thông số là: Accuracy, Precision, Recall, F1-score. Theo đó:

- Accuracy là thông số thể hiện tỉ lệ giữa số lượng mẫu dữ liệu được phân lớp đúng trên tất cả dữ liệu được phân lớp.
- **Precision** là thông số thể hiện tỉ lệ giữa số lượng mẫu dữ liệu được phân lớp đúng cho lớp **1** trên tất cả các phân lớp cho lớp **1** được thực hiện.
- Recall là thông số thể hiện tỉ lệ trường hợp phân lớp đúng cho lớp 1 trên tất cả các tất cả các mẫu thật sự thuộc lớp 1.
- **F1-score** là thông số kết hợp giữa Precision và Recall. F1_score cao thể hiện mô hình có độ chính xác cao, làm tốt trong cả việc tránh dự đoán sai và tránh bỏ sót các trường hợp quan trọng. Đây cũng là thông số được dùng để chọn ra mô hình tốt nhất trong đề tài.

Hình sau là kết quả các thông số Accuracy, Precision, Recall, F1-score thu được từ 6 mô hình Binary Classification đã huấn luyện.

	Accuracy	Precision	Recall	F1-score
Logistic Regression	0.851030	0.588448	0.687764	0.634241
Support Vector Machines	0.851030	0.592058	0.686192	0.635659
Decision Trees	0.851030	0.707581	0.646865	0.675862
Random Forest	0.889857	0.732852	0.757463	0.744954
Naive Bayes	0.830428	0.837545	0.578554	0.684366
K-Nearest Neighbor	0.883518	0.765343	0.721088	0.742557

Hình 10 - Thông số các mô hình Binary Classification

Mô hình Binary Classification áp dụng thuật toán Random Forest cho tỉ lệ F1-score cao hơn cả, sẽ được chọn là mô hình Binary Classification cho hệ thống.

Hình 11 - "Confusion matrix" của mô hình Binary Classification

III. ĐÁNH GIÁ HỆ THỐNG VÀ KẾT LUẬN

1. Đánh giá hệ thống

Để đánh giá toàn bộ hệ thống một cách chi tiết nhất, nhóm thực hiện đánh giá từng giai đoạn: Text Detection, Classification, Text Extraction và Đánh giá giai đoạn Text Detection phối hợp giai đoạn Classification, cuối cùng là đánh giá toàn bộ hệ thống.

1.1 Đánh giá giai đoạn thứ nhất (Text Detection)

Giai đoạn Text Detection có chức năng chính là nhận diện vùng có văn bản, trong những vùng đó phải bao gồm vùng có tựa sách. Tiêu chuẩn đánh giá của nhóm chỉ chọn những ảnh bìa sách khi qua giai đoạn này mà tựa sách nằm trong các vùng văn bản được nhận diện. Dựa vào chức năng của giai đoạn, nhóm đưa ra phương pháp đánh giá là tính tỉ lệ giữa các ảnh bìa sách đạt tiêu chuẩn trên tổng các ảnh bìa sách dùng để kiểm tra. Dưới đây ảnh ví dụ về 2 bìa sách đạt chuẩn đánh giá của nhóm (bên trái) và không đạt chuẩn đánh giá của nhóm (bên phải).

Hình 12 - Ví dụ về cách đánh giá giai đoạn Text Detection

Nhóm thực hiện đánh giá giai đoạn Text Detection trên tập hợp **100** ảnh bìa sách, thu được **66** ảnh đạt chuẩn. Qua đánh giá có thể kết luận giai đoạn Text Detection có hiệu suất là **66%**.

1.2 Đánh giá giai đoạn thứ hai (Classification)

Giai đoạn Text Detection với chức năng nhận diện vùng văn bản, giai đoạn Classification (giai đoạn thứ hai) có chức năng phân loại vùng văn bản có phải tựa sách hay không. Kết hợp 2 giai đoạn trên sẽ thu được kết quả là ảnh vùng chứa văn bản là tựa của sách (ảnh đã đã được cắt chỉ còn lại vùng văn bản). Khác với việc đánh giá mô hình Binary Classification là đánh giá độ chính xác của việc phân loại vùng có văn bản có phải tựa sách hay không (đánh giá theo từng mẫu). Việc đánh giá giai đoạn 2 này là đánh giá xem từ ảnh bìa sách có vùng văn bản nào được phân loại là tựa sách hay không (không có vùng nào được phân loại là tựa sách sẽ không dẫn đến giai đoạn thứ ba). Tiêu chuẩn của nhóm dùng cho việc đánh giá giai đoạn này là mỗi ảnh bìa sách phải có ít nhất một vùng được nhận diện là tựa sách. Tiêu chí đánh giá cho giai đoạn này sẽ là tỉ lệ số ảnh đạt chuẩn trên tổng số ảnh dùng để kiểm tra. Tiến hành kiểm tra trên mẫu gồm 70 ảnh (tập

ảnh này là tập ảnh đã đạt tiêu chuẩn tại giai đoạn thứ nhất) thu được 57 ảnh đạt tiêu chuẩn đề ra, hiệu suất của giai đoạn này đạt khoảng 81%

1.3 Đánh giá giai đoạn thứ ba (Text Extraction)

Giai đoạn Text Extraction có chức năng là xuất ra văn bản có trên ảnh được đưa vào. Công cụ EasyOCR ngoài cung cấp chức xuất ra văn bản còn cung cấp chức năng cho biết tỉ lệ chính xác của văn bản vừa được xuất ra. Dựa vào chức năng này nhóm đưa ra tiêu chí đánh giá cho giai đoạn Text Extraction là trung bình độ chính xác của các vùng văn bản được xuất ra (được tính toán tại đoạn mã tại "Bảng 2 - Pha Serving trong Machine Learning Pipeline" thông qua hai biến 'sum_acc' và 'count'). Qua đánh giá trên tập **70** ảnh (tập ảnh này là tập ảnh đã đạt tiêu chuẩn tại giai đoạn thứ nhất) thu độ chính xác của giai đoạn Text Extraction thu được khoảng **44%**.

Hình 13 - Kết quả đánh giá giai đoạn Text Extraction

1.4 Đánh giá hệ thống

Mục tiêu cuối cùng của hệ thống là trích xuất được tựa của sách dựa trên ảnh bìa sách. Dựa vào mục tiêu đó nhóm sẽ đưa ra tiêu chí đánh giá là tỉ lệ giữa số lượng sách được trích xuất đạt tiêu chuẩn chia cho tổng số lượng sách được trích xuất. Tiêu chuẩn đánh giá của nhóm sẽ được chia thành 2 tiêu chuẩn là đánh giá 'mềm' và đánh giá 'cứng', các ảnh bìa sách đạt tiêu chuẩn đánh giá 'mềm' là những ảnh cho tựa được trích xuất ra không giống hoàn toàn so với tựa sách thực tế nhưng người đọc có thể hiểu được, các ảnh bìa sách đạt tiêu chuẩn đánh giá 'cứng' phải giống tuyệt đối với tựa sách thực tế. Hình bên dưới là các ví dụ về các bìa sách đạt tiêu chuẩn đánh giá 'cứng' (bên trái), đạt tiêu chuẩn đánh giá 'mềm' (ở giữa), và không đạt (bên phải).

Hình 14 - Minh họa các tiêu chuẩn đánh giá hệ thống

Tiến hành đánh giá hệ thống trên tập **70** ảnh (tập ảnh này là tập ảnh đã đạt tiêu chuẩn tại giai đoạn thứ nhất) kết quả thu được số lượng ảnh bìa sách đạt tiêu chuẩn đánh giá 'mềm' là **24**, số lượng ảnh bìa sách đạt tiêu chuẩn đánh giá 'cứng' là **5.** Tiêu chuẩn đánh giá 'cứng' sẽ là tiêu chuẩn đánh giá được sử dụng để kết luận hiệu suất của hệ thống, từ đó kết luận được độ chính xác của hệ thống là khoảng **7%**.

2. Hướng phát triển tiếp theo và kết luận đề tài hiện tại

2.1 Hướng phát triển tiếp theo

Sau quá trình làm việc, nhóm thực hiện đã phát triển được hệ thống đạt được những yêu cầu đề ra từ đầu, là từ ảnh bìa sách (ngõ vào) trích xuất ra được tựa quyển sách (ngõ ra), tuy độ chính xác của hệ thống là không cao nhưng đó không phải là mục tiêu mà nhóm đặt ra từ đầu. Điểm yếu của hệ thống đến từ giai đoạn thứ nhất và giai đoạn thứ ba, hai giai đoạn này chịu ảnh hưởng lớn bởi chất lượng ảnh bìa sách. Ảnh được nhóm thu thập là những ảnh sách thực thế được chụp từ camera, chất lượng ảnh chịu tác động bởi nhiều yếu tố như: góc chụp, ánh sáng, độ sắc nét,... Các yếu tố trên bìa sách như: bìa sách bị nhào, bị bẩn,.. cũng tác động đáng kể. Ngoài ra 'font' chữ, cách thiết kế trang bìa sách cũng tác động rất lớn. Từ các yếu tố trên có thể thấy chất lượng ảnh bìa sách bị chi phối bởi rất nhiều yếu tố, ảnh bìa sách là một loại ảnh phức tạp, việc tinh chỉnh ảnh cơ bản là không đủ để khắc phục có hiệu quả các yếu tố trên. Để khác phục những yếu tố trên có hiệu quả, nhóm thực hiện đề xuất nên thêm vào các bước xử lí ảnh chuyên biệt trước các giai đoạn thứ nhất và thứ hai, đây sẽ là những hướng phát triển tiếp theo cho đề tài trong tương lai.

2.2 Kết luận đề tài hiện tại

Tuy đề tại hiện tại còn nhiều điểm yếu và chưa đủ khả năng để áp dụng vào thực tế, tuy nhiên đó không phải mục tiêu mà nhóm thực hiện đề ra, bởi sự hạn chế về kiến thức và thời gian để nhóm có thể phát triển một mô hình đủ khả năng ứng dụng. Các hạn chế của của hệ thống đã được nhóm đánh giá và phân tích kĩ lưỡng, tạo nền tảng cho những hướng phát triển tiếp theo.

Dựa vào những mục tiêu đã đề ra tại phần "2.4 Mục tiêu của đề tài", đến đây có thể kết luận nhóm đã hoàn thành được những mục tiêu đề ra: phát triển được một hệ thống hoàn chỉnh cho phép trích xuất từ ảnh bìa sách (tại ngõ vào) cho ra tên sách (tại ngõ ra); phát triển được mô hình máy học Binary Classification có khả năng dựa vào các đặc trưng của vùng văn bản trên bìa sách phân loại ra vùng văn bản có phải là tên của sách hay không.

IV. THAM KHẢO

- [1] Title Extraction from Book Cover Images Using Histogram of Oriented Gradients and Color Information. Có sẵn tại:

 https://www.researchgate.net/publication/271130671_Title_Extraction_from_Book_Cover_Images_
 Using_Histogram_of_Oriented_Gradients_and_Color_Information (Truy cập: 18 Tháng một 2024).
- [2] (PDF) Vietnamese text extraction from book covers researchgate. Có sẵn tại: https://www.researchgate.net/publication/339359700_VIETNAMESE_TEXT_EXTRACTION_FR OM_BOOK_COVERS (Accessed: 18 Tháng một 2024).