A.03.04 – Modelos de Propriedades Energéticas

(Sistemas Fechados)

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-06-03 16h47m08s UTC

- Modelos de Propriedades Energéticas
 - Energia Interna
 - Entalpia

2 Tópicos de Leitura

O sistema fechado de massa *m*, ilustrado:

• Recebe uma diferencial de calor a volume constante: $(\delta q)_V$;

O sistema fechado de massa m, ilustrado:

- Recebe uma diferencial de calor a volume constante: $(\delta q)_V$;
- $m \in V$ constantes implicam em $v \equiv V/m$ constante, tal que $(\delta q)_V = (\delta q)_V$;

O sistema fechado de massa m, ilustrado:

- Recebe uma diferencial de calor a volume constante: $(\delta q)_V$;
- m e V constantes implicam em $v \equiv V/m$ constante, tal que $(\delta q)_V = (\delta q)_v$;
- A temperatura experimenta uma variação de $(dT)_{y}$.

O balanço de energia na forma diferencial do sistema fica:

O balanço de energia na forma diferencial do sistema fica:

$$\delta e_{ent} - \delta e_{sai} = de_{sist}$$

O balanço de energia na forma diferencial do sistema fica:

$$\delta e_{ent} - \delta e_{sai} = de_{sist}$$
 \rightarrow $(\delta q)_{v} = du.$

O balanço de energia na forma diferencial do sistema fica:

$$\delta e_{ent} - \delta e_{sai} = de_{sist}$$
 \rightarrow $(\delta q)_v = du.$

Assim, o calor transferido a volume constante a um sistema fechado é a variação de sua energia interna!

Define-se

Define-se

$$c_v \equiv \left(\frac{\partial u}{\partial T}\right)_v,$$

Define-se

$$c_{v} \equiv \left(\frac{\partial u}{\partial T}\right)_{v},$$

denominado de calor específico a volume constante da substância do sistema. Ainda,

Define-se

$$c_{\scriptscriptstyle \mathcal{V}} \equiv \left(rac{\partial u}{\partial T}
ight)_{\scriptscriptstyle \mathcal{V}},$$

denominado de calor específico a volume constante da substância do sistema. Ainda,

$$C_{v} \equiv \left(\frac{\partial U}{\partial T}\right)_{v} = mc_{v},$$

Define-se

$$c_{v} \equiv \left(\frac{\partial u}{\partial T}\right)_{v},$$

denominado de calor específico a volume constante da substância do sistema. Ainda,

$$C_{\nu} \equiv \left(\frac{\partial U}{\partial T}\right)_{\nu} = mc_{\nu},$$

é a capacidade térmical a volume constante do sistema.

Entalpia – Relação com Temperatura

Filler...

Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A.

Termodinâmica 7ª Edição. Seções 4-3 a 4-5.

AMGH. Porto Alegre. ISBN 978-85-8055-200-3.

