Data Exploration

AnHai Doan

Motivation

id	name	loc
x ₁	Apple	CA
X_2	IBM	NY

id	cname	address	rev
y ₁	IBM Corp	CA	25
y ₂	Apple Inc	CA	51
y ₃	GE	NY	351

id	name	loc
x ₁	Apple	CA
x ₂	IBM	NY

id	cname	address	rev
y ₁	IBM Corp	CA	25
y ₂	Apple Inc	CA	51
y ₃	GE	NY	351

data cleaning: GE revenue: 351 → 35.1

schema matching: name = cname

loc = address

X(name, loc) schema merging:

Y(cname, address, rev) Z(name, loc, rev)

data matching:

xid	yid
x ₁	y ₂
\mathbf{x}_2	y ₁

data merging: for name, return the longer string from X.name and Y.cname

for loc, return X.loc

schema mapping: Z = select merge_name(X.name, Y.cname), X.loc, Y.rev

from X, Y, M

where X.id = M.xid and Y.id = M.yid

X

id	nam e	loc
x ₁	Apple	CA
x ₂	IBM	NY

Y

id	cname	addres s	rev
y ₁	IBM Corp	CA	25
y ₂	Apple Inc	CA	51
y ₃	GE	NY	351

Z

name	loc	rev
Apple Inc	CA	51
IBM Corp	NY	25

Another Example

The raw data to insight pipeline

is there any correlation between location and revenue?

Data hanalysis

Three Goals for Data Exploration

- Understand the data
 - basic characteristics, structure
- Find interesting stuff
- Find quality issues
- These help decide what to do later, influence downstream actions
- Data exploration is also often known as exploratory data analysis (EDA)

Basic Operations

- Browse and query
- Visualize
- Profile (mostly with automatic programs)
 - compute statistics
 - detect more stuff (e.g., meta-data such as keys) about the data
 - find data quality problems

Two papers to read

- a book chapter called "data exploration"
- a survey paper: "profiling relational data: a survey"
- will provide them later

Browse and Query

- The simplest operations
- Yet difficult to do well today
 - there is no good tool to browse a large table
 - no good tool to query large tables (e.g., 5G) quickly
 - no tool to allow users to ask NL queries (though they start appearing)
- Today most folks in industry still use Excel
 - show an example

Visualize

Why?

- can display a lot of information at once (dense information)
- can leverage human eyes, which are very good at detecting patterns and anomalies (thousands of years of evolution)

Basic types of visualization

- visualizing a single attribute (aka column)
- visualizing several attributes
- visualizing a large number of attributes

Visualizing a single attribute

histogram and more (see chapter)

Histogram Example

Histogram Example

```
In [60]: profile_table(B, 'year')

Number of unique values: 11
Number of missing values: 0

Unique values:
[1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 20003]
Frequency plot:
```


Visualizing Multiple Attributes

- Usually 2-4 attributes at the same time
- Scatterplot is a well-known technique

More in the book chapter

Basic Operations

- Browse and query
- Visualize
- Profile (mostly with automatic programs)
 - compute statistics
 - detect more stuff (e.g., meta-data such as keys) about the data
 - find data quality problems

Types of Profiling

More Types of Profiling

- Can target specifically at detecting certain data quality problems
- See the google doc "data-profiling-cleaning-examples"

More Advanced Stuff

- 30% of values in Salary column are missing, can you explain why?
 - 95% are missing for Temp workers in the state CA
 - suggest a systematic error here

Summary of Data Exploration

Basic operations

- Browse and query
- Visualize
- Profile (mostly with automatic programs)
 - compute statistics
 - detect more stuff (e.g., meta-data such as keys) about the data
 - find data quality problems
- Guidance on how to use them
- Systems that incorporate the above tools