Gaussian Process Programing Assignment

Equations follow the development in Marsland Machine Learning CRC Press 2014

1. The data format

The data is organized by subject. Each subject traced the curve 5 times. The horizontal index indexes the position data for markers sequentially in x-y-z format. The vertifical index is time. The scale is in video frames at $\frac{1}{60}$ secpnd per frame. Sometimes the motion capture device misses data and this is usually indicated with a blank space.

2. The learning algorithm By choosing sample points and hyper parameters you can construct a covariance K. The goal is to pick hyper parameters that maximize the log probability of seeing the data, which is specified by

$$\log P(\mathbf{y}|\mathbf{f},\theta) = \frac{1}{2}\mathbf{f}^T(\mathbf{K} + \sigma_n^2)^{-1}\mathbf{f} - \frac{1}{2}\log|\mathbf{K} + \sigma_n^2| - \mathsf{constant}$$

Where σ is a hyper parameter the strategy is to compute $\frac{\partial P}{\partial \sigma}$ and use gradient descent to find a local optimum. However computing these dirivative takes several steps. Examining the formula, we can see that we will need the derivatives of \mathbf{K}^{-1} and \mathbf{K} . This preess is fairly involved and takes several steps. Writing $\mathbf{Q} = \mathbf{K} + \sigma_n^2$ allows us to specify these derivatives as

$$\frac{\partial \mathbf{Q}}{\partial \sigma} = -\mathbf{Q}^{-1} \frac{\partial \mathbf{Q}}{\partial \sigma} \mathbf{Q}^{-1}$$

and

$$\frac{\partial \log |\mathbf{Q}|}{\partial \sigma} = \text{trace } \left(\mathbf{Q}^{-1} \frac{\partial \mathbf{Q}}{\partial \sigma} \right)$$

Almost done; just have to differentiate the kernel function containing the hyper parameters

First the kerenel:

$$k(\mathbf{t}, \mathbf{t}') = \exp(\sigma_f) \exp\left(-\frac{1}{2} \exp(\sigma_l)|\mathbf{t} - \mathbf{t}'|^2\right) + \exp(\sigma_n)\mathbf{I}$$
$$= k' + \exp(\sigma_n)\mathbf{I}$$

Now, finally we go for $\frac{\partial \mathbf{Q}}{\partial \sigma}$:

$$\frac{\partial k}{\partial \sigma_f} = k'$$

$$\frac{\partial k}{\partial \sigma_l} = k' \left(-\frac{1}{2} \exp(\sigma_l) |\mathbf{t} - \mathbf{t}'|^2 \right)$$

$$\frac{\partial k}{\partial \sigma_n} = \exp(\sigma_n) \mathbf{I}$$

All these steps have to be combined to get your derivatives.

3. Getting things to work

Compared to the examples covered in lecture, the data is much more dense, so you might have to play with it to get a nice result. One way would be to subsample the data but you want to be care full not to filter out the possibly changing statistics over time. Credit-wise, you can get almost full points by juts getting the learning algorithm to work and come up with a reasonable hyper parameters estimate. For Jedi-level, you should test the hypothesis that allowing the hyperparameters to vary in time is a better model than just having a global set.

There is too much data in the data set. A suggestion is to just pick one marker and one coordinate and fit that, extending your analyses if that works out. Good luck.