Homework 12

Problem 1. Let G be a pseudorandom generator of stretch ℓ such that $\ell(n) \geq 2n$.

- (a) Define G' as $G'(s) = G(s0^{|s|})$. Is G' necessarily a pseudorandom generator?
- (b) Define G'' as $G''(s) = G(s_1 \cdots s_{n/2})$ for $s = s_1 s_2 \cdots s_n$. Is G'' necessarily a pseudorandom generator?

Solution. (a) G' is not necessarily a pseudorandom generator. Consider the following counterexample. Let G_0 be a pseudorandom generator of stretch $\ell(n) \geq 2n$. Define

$$G_1(s) = \begin{cases} 0^{\ell(n)}, & \text{if } \forall i \ge n/2, s_i = 0, \\ G_0(s), & \text{otherwise.} \end{cases}$$

Then, $G_1(s)$ and $G_0(s)$ are only different by a portion of $\frac{2^{n/2}}{2^n} = \frac{1}{2^{n/2}}$, which is negligible in n. So any polynomial-time distinguisher \mathcal{A} can only distinguish G_1 and G_0 with negligible probability. Therefore, G_1 is also a pseudorandom generator.

However, if let G be G_1 , then $G'(s) \equiv 0^{\ell(n)}$, which is not a pseudorandom generator.

(b) G'' is necessarily a pseudorandom generator. Its stretch is

$$\ell''(n) = |G''(s)| = |G(s_1 \cdots s_{n/2})| = \ell(n/2) \ge n.$$

Since that G is a pseudorandom generator of stretch ℓ , we have

$$\left| \Pr_{s \in \{0,1\}^n} \left(\mathcal{A}(G''(s)) = 1 \right) - \Pr_{r \in \{0,1\}^{\ell''(n)}} \left(\mathcal{A}(r) = 1 \right) \right| \\
= \left| \Pr_{s \in \{0,1\}^n} \left(\mathcal{A}(G(s_1 s_2 \cdots s_{n/2})) = 1 \right) - \Pr_{r \in \{0,1\}^{\ell(n/2)}} \left(\mathcal{A}(r) = 1 \right) \right| \\
= \left| \Pr_{s'' \in \{0,1\}^{n/2}} \left(\mathcal{A}(G(s'')) = 1 \right) - \Pr_{r \in \{0,1\}^{\ell(n/2)}} \left(\mathcal{A}(r) = 1 \right) \right| \\
\leq \operatorname{negl}(n).$$

By definition, G'' is a pseudorandom generator.

Problem 2. A keyed family of functions F_k is a pseudorandom random permutation (PRP) if (a) $F_k(\cdot)$ and $F_k^{-1}(\cdot)$ are efficiently computable given the key k and (b) for any polynomial-time algorithm \mathcal{A} ,

$$\left| \Pr \left(\mathcal{A}^{F_k(\cdot), F_k^{-1}(\cdot)}(1^n) = 1 \right) - \Pr \left(\mathcal{A}^{f_n(\cdot), f_n^{-1}(\cdot)}(1^n) = 1 \right) \right| \le \operatorname{negl}(n).$$

Homework 12 熊泽恩

Consider the following encryption scheme

- 1. Sample key k uniformly at random.
- 2. On input plaintext $x \in \{0,1\}^{n/2}$, algorithm Enc_k samples randomness $r \in \{0,1\}^{n/2}$ and outputs ciphertext $F_k(r||x)$.

Solve the following problems assuming that F_k is a PRP.

- (a) Show how the decryption Dec_k works.
- (b) Prove that the encryption scheme is CPA-secure.

Solution. (a) The decryption Dec_k works as follows:

- 1. On input ciphertext $y \in \{0,1\}^n$, compute $r||x = F_k^{-1}(y)$.
- 2. Return x.
- (b) Proof by contradiction. Suppose the encryption scheme $\Pi=(Enc,Dec)$ is not CPA-secure. Then there exists a polynomial-time adversary \mathcal{A}_{Π} such that

$$\Pr(\mathcal{A}_{\Pi} \text{ succ}) \ge \frac{1}{2} + \frac{1}{\text{poly}(n)}.$$
 (1)

Consider the scheme $\widetilde{\Pi} = (\widetilde{\operatorname{Enc}}, \widetilde{\operatorname{Dec}})$ as the random permutation encryption scheme. Let r_c be the randomness used in the actual encryption, namely, $y = F_k(r_c || x)$. Suppose \mathcal{A} makes q(n) queries to $\operatorname{Enc}_k(\cdot)$ using randomness $r_1, r_2, \dots, r_{q(n)}$.

- 1. Case 1(Repeat). This is the case where $r_c \in \{r_1, r_2, \dots, r_{q(n)}\}$. Then $\mathcal{A}_{\widetilde{\Pi}}$ can obtain r_c , so it can successfully distinguish $\widetilde{\Pi}$ from a random permutation. However, the chance of this case is at most $\frac{q(n)}{2^{n/2}}$.
- 2. Case 2(No Repeat). Then this is equivalent to the case where adversary doesn't know r_c , which is the same as a perfect OTP. Therefore,

$$\Pr(\mathcal{A}_{\widetilde{\Pi}} | \text{succ} | \text{no repeat}) = \frac{1}{2}.$$

Concluding the two cases above, we have

$$\Pr(\mathcal{A}_{\widetilde{\Pi}} \text{ succ}) = \Pr(\mathcal{A}_{\widetilde{\Pi}} \text{ succ } \wedge \text{ repeat}) + \Pr(\mathcal{A}_{\widetilde{\Pi}} \text{ succ } \wedge \text{ no repeat})$$

$$\leq \Pr(\text{repeat}) + \Pr(\mathcal{A}_{\widetilde{\Pi} \text{ succ}} | \text{ no repeat})$$

$$\leq \frac{1}{2} + \frac{q(n)}{2^n}.$$
(2)

Homework 12 熊泽恩

Combining (1) and (2), we have

$$\left| \Pr(\mathcal{A}_{\Pi} \text{ succ}) - \Pr(\mathcal{A}_{\widetilde{\Pi}} \text{ succ}) \right| \ge \frac{1}{\text{poly}(n)}.$$
 (3)

We will design a distinguisher \mathcal{D} to show that (3) is impossible. Distinguisher \mathcal{D} has oracle access to \mathcal{O} and \mathcal{O}^{-1} , with input 1^n .

- 1. Run $\mathcal{A}(1^n)$ and whenever \mathcal{A} queries $\mathrm{Enc}_k(\cdot)$ with randomness r, answer the query in the following way:
 - (a) Choose $r \in \{0,1\}^{n/2}$ uniformly at random.
 - (b) Query $\mathcal{O}(r||x)$ and obtain response s'.
 - (c) Return s' to A.
- 2. When \mathcal{A} outputs x_0, x_1 , choose $b \in \{0, 1\}$ uniformly at random and then:
 - (a) Choose $r \in \{0,1\}^{n/2}$ uniformly at random.
 - (b) Query $\mathcal{O}(r||x_b)$ and obtain response s'.
 - (c) Return s' to \mathcal{A} .
- 3. Continue answering any queries of \mathcal{A} as before. When \mathcal{A} outputs b', output 1 if b'=b and 0 otherwise.

Therefore, \mathcal{D} simulates the experiment with Π and $\widetilde{\Pi}$. If $\mathcal{O} = F_k(\cdot)$, then the view of \mathcal{A} is identical to the view of \mathcal{A} in the experiment with Π . If $\mathcal{O} = f_n(\cdot)$, then the view of \mathcal{A} is identical to the view of \mathcal{A} in the experiment with $\widetilde{\Pi}$.

Hence,

$$\begin{split} & \left| \Pr(\mathcal{D}^{f_n(\cdot), f_n^{-1}(\cdot)}(1^n) = 1) - \Pr(\mathcal{D}^{F_k(\cdot), F_k^{-1}(\cdot)}(1^n) = 1) \right| \\ &= \left| \Pr(\mathcal{A}_{\widetilde{\Pi}} \text{ succ}) - \Pr(\mathcal{A}_{\Pi} \text{ succ}) \right| \\ &= \frac{1}{\text{poly}(n)}, \end{split}$$

which contradicts to the assumption that F_k is a PRP. So the encryption scheme is CPA-secure.