基礎数理 C, 第4回演習問題

2024/5/9 担当:那須

1 次の行列は直交行列であることを示せ.

$$(1) \quad \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \qquad (2) \quad \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \\ 2 & 1 & -2 \end{pmatrix} \qquad (3) \quad \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{pmatrix}$$

- ② 次の行列が直交行列になるように定数 a,b の値を定めよ: (1) $\begin{pmatrix} a & -b \\ a & b \end{pmatrix}$ (2) $\begin{pmatrix} a & -b \\ b & b \end{pmatrix}$
- $\boxed{3}$ 次のベクトルの定める \mathbb{R}^3 , \mathbb{R}^4 または $\mathbb{R}[x]_2$ の基底をシュミットの方法を用いて正規直交化せよ.

(1)
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$,

(2)
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$,

(3)
$$\mathbf{x}_1 = \begin{bmatrix} -1\\1\\1\\1\\1 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix}$, $\mathbf{x}_4 = \begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix}$,

(4)
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{x}_4 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$,

(5)
$$f_1 = x^2$$
, $f_2 = x$, $f_3 = 1$

4 P,Q が直交行列ならば、積 PQ、および逆行列 P^{-1} も直交行列であること示せ.

0解答:

- $\fbox{1}$ 与えられた行列を A として, A^tA が単位行列になることを確認する.
- [2] (1) $(a,b) = \frac{1}{\sqrt{2}}(\pm 1, \pm 1)$ (複合任意) (2) $(a,b) = \pm \frac{1}{\sqrt{2}}(1,1)$

4 教科書 p.120, 問題 6.2-5,6 参照