

	AV1	AV2	AV3
1ª Ch.			
2ª Ch.			

Curso:	Disciplina:	Código/Turma:
Professor/a:		Data:
Aluno/a:		Matrícula:

Os itens abaixo dizem respeito à Unidade de Execução enviada para o AVA.

Sabemos que o circuito tem a finalidade de realizar uma operação do tipo:

e que as lacunas são preenchidas de acordo com os 8 bits de instrução binária. Os 8 bits de da instrução binária são enumerados da direita para a esquerda como I_0 , I_1 , I_2 , I_3 , I_4 , I_5 , I_6 e I_7 e suas funções são:

I₀, I₁, I₂ e I₃ – Número de Entrada (Operando);

I₄ – Habilita a escrita no registrador B;

I₅ – Habilita a escrita no registrador A;

I₆ – Escolhe a primeira parcela da soma (A ou Operando);

I₇ – Escolhe a segunda parcela da soma (B ou 0);

1. Salve o valor 4 no registrador A.

Em outras palavras, faça o hardware cumprir a instrução A = 4.

2. Salve o valor – 6 no registrador B.

Em outras palavras, faça o hardware cumprir a instrução B = -6.

Para isso expresse o número – 6 em complemento de 2.

3. Salve o resultado do cálculo 4 – 6 no registrador A.

Em outras palavras, faça o hardware cumprir a instrução A = A + B.

Antes disso você deve ter salvo os valores 4 em A e – 6 em B.

- (Para casa) Salve no registrador B o resultado do cálculo armazenado no registrador A.
 Em outras palavras, faça o hardware cumprir a instrução B = A.
- 5. (Para casa) As instruções utilizadas até agora foram:

$$A = 4$$

$$B = -6$$

$$A = A + B$$

$$B = A$$

Escreva uma sequencia de instruções que calcule a expressão numérica: (4-6) x 3+2