Zadanie: NSK Nowe Szaty Króla

Warsztaty ILO 2017-2018, grupa olimpijska, dzień 15.

Zawuażmy, że nasze zadanie sprowadza się do znalezienia minimalnej liczby pół koniecznej do zablokowania aby na planszy istniał dokładnie jeden cykl Hamiltona.

Rozwiązanie wzorcowe O(1)

Zauważmy, że wynik dla n=1 to -1, bo nie istnieje żaden cykl Hamilotna na takiej planszy. Zauważmy, że wynik dla n=2 to 0, bo nie trzeba blokować żadnych pól. Reszta przypadków nie jest już taka prosta, ale nie jest też trudna:

Po pierwsze wykażmy, że:

Twierdzenie.1. wynikiem nie może być 1.

Dowód. Zauważmy, że każde przejście do pola obok, zmienia parzystość pola (dla pola (x,y) jest to (x+y) mod 2) na którym stoimy, z tego wynika, że żeby skończyć na tym samym polu na którym zaczniemy, cykl musi mieć parzystą długość bo te pole ma ustaloną parzystość. A z tego wynika, że liczba pól które mamy przejść na planszy musi być parzysta, a $4 \cdot n - 1$ nie jest parzyste, więc usunięcie jednego pola nie wystarczy.

Okazuje się, że:

Twierdzenie.2. wynikiem jest 2

Dowód. Jeśli n jest parzyste możemy zablokować pola (4,1) oraz (4,n). Jeśli zamalujemy te pola i zaczniemy rysować ścieżkę wymuszoną przez te pola, to narysujemy cały cykl i będzie on jednoznaczny. Dla nieparzystego n można zastosować podobną technikę – zablokujmy pola (4,1) oraz (3,n-2). Rysując wymuszoną ścieżke od lewej strony planszy okaże się że dojdziemy do drugiego zablokowanego pola i reszta też będzie wymuszona.

