CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024 Lecture 13: Krylov subspace methods

Outline

- Krylov subspace methods
 - \bullet Lanczos algorithm
 - Block Krylov method

2 Linear system solvers

UT Austin CSE 392 Feb, 2024 3 / 20

Iterative methods

- Subspace iteration/ power method: multiple passes over the matrix A.
- \bullet With q iterations, we can achieve:

$$\|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{z}_q \boldsymbol{z}_q^\top\|_F \leq (1+\epsilon)\|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{v}_1\boldsymbol{v}_1^\top\|_F.$$

- if $q = O\left(\frac{\log d/\epsilon}{\gamma}\right)$ (if gap is large) or
- $q = O\left(\frac{\log d/\epsilon}{\epsilon}\right)$ (if gap is too small or for gap independent analysis).

UT Austin CSE 392 Feb, 2024 4 / 20

Krylov subspace methods

• Given a square matrix A and a starting vector z_1 , the Krylov Subspace of dimension q is given by:

$$\boldsymbol{K}_q(\boldsymbol{A}, \boldsymbol{z}_1) = \operatorname{span}\{\boldsymbol{z}_1, \boldsymbol{A}\boldsymbol{z}_1, \dots, \boldsymbol{A}^q \boldsymbol{z}_1\}$$

- Important class of projection methods for solving linear systems and for eigenvalue problems.
- Properties of \mathbf{K}_q :
 - $K_q = \{\mathbf{p}(A)z | \mathbf{p} = \text{polynomial of degree} \le q\}.$ $K_q = K_q$ for all q > q. Moreover, K_q is invariant up
 - $K_q = K_{q_1}$ for all $q \ge q_1$. Moreover, K_{q_1} is invariant under A.
- ullet For square matrix $oldsymbol{A}$: Arnoldi's Algorithm
- \bullet For symmetric matrix ${\boldsymbol A}$: Lanczos Algorithm
- For rectangular matrix $B \in \mathbb{R}^{n \times d}$ and SVD, we consider $A = B^{\top}B$.

UT Austin CSE 392 Feb, 2024 5 / 20

Lanczos algorithm

• Given a symmetric matrix $A \in \mathbb{R}^{d \times d}$ and a starting vector z_1 , compute an orthonormal basis Z_q of $K_q(A, z_1)$.

Lanczos algorithm

- Choose a starting vector z_1 , with unit norm. Set $\beta_1 = 0$, $z_0 = 0$.
- For l = 1, ..., q 1

$$\mathbf{y}_l = \mathbf{A}\mathbf{z}_l - \beta_l \mathbf{z}_{l-1}$$

$$lacksquare lpha_l = \langle oldsymbol{y}_l, oldsymbol{z}_l
angle$$

$$\mathbf{y}_l = \mathbf{y}_l - \alpha_l \mathbf{z}_l$$

$$\beta_{l+1} = \|y_l\|_2$$
. If $\beta_{l+1} = 0$ then stop

$$z_{l+1} = y_l/\beta_{l+1}$$

• Return
$$\boldsymbol{Z}_q = [\boldsymbol{z}_1, \dots, \boldsymbol{z}_q]$$

In theory z_i 's defined by 3-term recurrence are orthogonal. But in practice, we need reorthogonalization.

UT Austin CSE 392 Feb, 2024 6 / 20

Lanczos algorithm

• The Rayleigh Ritz-projection is given by:

$$oldsymbol{T}_q = oldsymbol{Z}_q^ op oldsymbol{A} oldsymbol{Z}_q.$$

• The Ritz matrix is a tridiagonal matrix:

- Let u be the top eigenvector of T_q .
- Eigenvector estimate of A will be $w = Z_q u$.
- If non-symmetric, Arnoldi's algorithm. T_q will be Upper Hessenberg matrix.

UT Austin CSE 392 Feb. 2024 7 / 20

Convergence

Theorem (Lanczos algorithm Convergence)

Let $\gamma = \frac{\lambda_1 - \lambda_2}{\lambda_1}$ be the gap between the first and second largest eigenvalues of a matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$. If Lanczos algorithm is initialized with a random Gaussian vector then, with high probability, after $q = O\left(\frac{\log d/\epsilon}{\sqrt{\gamma}}\right)$ steps, we have for the estimate $\mathbf{w} = \mathbf{Z}_q \mathbf{u}$:

$$\|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{w}\boldsymbol{w}^{\top}\|_F^2 \leq (1 + \epsilon)\|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{v}_1\boldsymbol{v}_1^{\top}\|_F^2.$$

• Gapless: For $q = O\left(\frac{\log d/\epsilon}{\sqrt{\epsilon}}\right)$ steps, we obtain a w satisfying:

$$\|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{w}\boldsymbol{w}^{\top}\|_F^2 \le (1+\epsilon)\|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{v}_1\boldsymbol{v}_1^{\top}\|_F^2.$$

• Total runtime: $O(\text{nnz}(\boldsymbol{A})q) = O\left(\text{nnz}(\boldsymbol{A}) \cdot \frac{\log d/\epsilon}{\sqrt{\epsilon}}\right)$.

UT Austin CSE 392 Feb, 2024 8 / 20

Proof:

First, we have

Claim: Amongst all vectors in the span of the Krylov subspace (which are given by $w = Z_q x$), $w = Z_q u$ minimizes the error $||A - Aww^{\top}||_F^2$.

UT Austin CSE 392 Feb, 2024 9 / 20

Proof:

First, we have

Claim: Amongst all vectors in the span of the Krylov subspace (which are given by $w = Z_q x$), $w = Z_q u$ minimizes the error $||A - Aww^{\top}||_F^2$.

We know that, this is equivalent to maximizing $\|Aww^{\top}\|_F^2$. Next, u is the top eigenvector of $T_q = Z_q^{\top} A Z_q$.

Proof:

First, we have

Claim: Amongst all vectors in the span of the Krylov subspace (which are given by $w = Z_q x$), $w = Z_q u$ minimizes the error $||A - Aww^{\top}||_F^2$.

We know that, this is equivalent to maximizing $\|Aww^{\top}\|_F^2$. Next, u is the top eigenvector of $T_q = Z_q^{\top} A Z_q$.

Next, we show that, if we set $q = O\left(\frac{\log d/\epsilon}{\sqrt{\gamma}}\right)$ and compute \mathbf{Z}_q , then there a vector $\mathbf{w} = \mathbf{Z}_q \mathbf{x}$ such that $\langle \mathbf{v}_1, \mathbf{w} \rangle \geq 1 - \epsilon$. I.e., there is a \mathbf{w} in the Krylov subspace that has a large inner product with the top

I.e., there is a w in the Krylov subspace that has a large inner product with the top eigenvector v_1 .

UT Austin CSE 392 Feb, 2024 9 / 20

The vector \boldsymbol{w} can be written as

$$\boldsymbol{w} = p_q(\boldsymbol{A})\boldsymbol{z}_1,$$

where $p_q(\cdot)$ is called the Lanczos polynomial and has degree q.

For any q degree polynomial p_q , there is some \boldsymbol{x} such that $\boldsymbol{Z}_q \boldsymbol{x} = p_q(\boldsymbol{A}) \boldsymbol{z}_1$, because any linear combinations of $\boldsymbol{z}_1, \boldsymbol{A} \boldsymbol{z}_1, \dots, \boldsymbol{A}^q \boldsymbol{z}_1$ lie in the span of \boldsymbol{Z}_q .

The vector \boldsymbol{w} can be written as

$$\boldsymbol{w} = p_q(\boldsymbol{A})\boldsymbol{z}_1,$$

where $p_q(\cdot)$ is called the Lanczos polynomial and has degree q.

For any q degree polynomial p_q , there is some x such that $Z_q x = p_q(A)z_1$, because any linear combinations of $z_1, Az_1, \ldots, A^q z_1$ lie in the span of Z_q .

Let us write $\mathbf{z}_1 = \sum_{i=1}^d \mu_i \mathbf{v}_i$ and $p_q(\mathbf{A})\mathbf{z}_1 = \sum_{i=1}^d \rho_i \mathbf{v}_i$, then we have

$$\rho_i = \mu_i p_q(\lambda_i)$$

Claim: There is a $O\left(\sqrt{\frac{1}{\gamma}}\log(1/\epsilon')\right)$ degree polynomial \hat{p} such that $\hat{p}(1) = 1$ and $|\hat{p}(t)| \le \epsilon'$ for $0 \le t \le 1 - \gamma$.

UT Austin CSE 392 Feb, 2024 10 / 20

Polynomials

Plots are from https://www.chrismusco.com/amlds2023/notes/lecture11.html.

UT Austin CSE 392 Feb, 2024 11/20

We set $p_q(t) = \hat{p}(t/\lambda_1)$, and we have $\rho_i = \mu_i p_q(\lambda_i)$.

We follow similar steps as the power method proof.

$$\frac{|\rho_j|}{|\rho_1|} = \frac{p_q(\lambda_i)|\mu_i|}{p_q(\lambda_1)|\mu_1|} = \frac{\hat{p}_q(\lambda_i/\lambda_1)|\mu_i|}{|\mu_1|} \le \sqrt{\epsilon/d}.$$

For $O\left(\sqrt{\frac{1}{\gamma}}\log(1/\epsilon')\right)$ with $\epsilon' = \sqrt{\epsilon/d}/d^3$.

UT Austin CSE 392 Feb, 2024 12 / 20

Block Krylov method

• For larger $k \ge 1$ (finding the top-k singular vectors/values).

Block Lanczos Method

- Choose $S \in \mathbb{R}^{d \times k}$ a random Gaussian matrix .
- Set $K = [S, AS, ..., A^{q-1}S]$.
- $\boldsymbol{Z} = \operatorname{orth}(\boldsymbol{K})$
- Compute $T = Z^{\top}AZ$
- Set \tilde{U}_k to top k eigenvectors of T
- ullet Return $oldsymbol{Z}_q ilde{oldsymbol{U}}_k$

Total runtime: $O(\text{nnz}(\mathbf{A})kq)$. With $q = O\left(\frac{\log d/\epsilon}{\sqrt{\epsilon}}\right)$.

Krylov methods

Further Reading:

- Randomized Block Krylov Methods for Stronger and Faster Approximate Singular Value Decomposition by Cameron Musco, Christopher Musco.
- Structural Convergence Results for Approximation of Dominant Subspaces from Block Krylov Spaces by Petros Drineas, Ilse Ipsen, Eugenia-Maria Kontopoulou, Malik Magdon-Ismail.
- https://www.chrismusco.com/amlds2022/lectures/lanczos_method.html

Linear system solvers

• Given a square matrix $A \in \mathbb{R}^{d \times d}$ and a vector $b \in \mathbb{R}^d$, solve:

$$Ax = b$$
.

• Iterative methods: Solve for x iteratively as:

$$\boldsymbol{x}_{l+1} = \boldsymbol{x}_l + \alpha \boldsymbol{r}$$

r = a certain direction given some starting vector x_0 .

- Minimum residual methods: $\mathbf{x}(\alpha) = \mathbf{x} + \alpha \mathbf{r}$, with $\mathbf{r} = \mathbf{b} \mathbf{A}\mathbf{x}$. $\min_{\alpha} \|\mathbf{b} \mathbf{A}\mathbf{x}(\alpha)\|_2$ with some orthogonal condition.
- Steepest Descent:

$$egin{array}{lcl} m{r}_l &=& m{b} - m{A}m{x}_l \ &lpha &=& \langle m{r}_l, m{r}_l
angle / \langle m{A}m{r}_l, m{r}_l
angle \ m{x}_{l+1} &=& m{x}_l + lpham{r}_l \end{array}$$

UT Austin CSE 392 Feb, 2024 15 / 20

Krylov subspace methods

- Lanczos Algorithm: For symmetric matrix A, orthonormal basis Z_q and tridiagonal matrix T_q . (Arnoldi's method for non-symmetric)
- From Petrov-Galerkin condition, we get:

$$oldsymbol{x}_l = oldsymbol{x}_0 + oldsymbol{Z}_q oldsymbol{T}_q^{-1} oldsymbol{Z}_q^ op oldsymbol{r}_0$$

• Select $z_1 = r_0/||r_0||$, then

$$\boldsymbol{x}_l = \boldsymbol{x}_0 + \boldsymbol{Z}_q \boldsymbol{T}_q^{-1} \boldsymbol{e}_1$$

• Several algorithms mathematically equivalent/similar to this approach: Full Orthogonalization method (FOM), Incomplete OM (IOM), GMRES, Orthmin, Axelsson's CGLS, Conjugate Gradient (CG), and others.

UT Austin CSE 392 Feb, 2024 16 / 20

Lanczos Method

Lanczos Method for Linear Systems

- Compute $r_0 = b Ax_0, \beta_1 = ||r_0|| \text{ and }, z_1 = r_0/\beta_1.$
- For l = 1, ..., q

$$\mathbf{y}_l = \mathbf{A}\mathbf{z}_l - \beta_l\mathbf{z}_{l-1}$$

$$lacksquare lpha_l = \langle oldsymbol{y}_l, oldsymbol{z}_l
angle$$

$$\mathbf{y}_l = \mathbf{y}_l - \alpha_l \mathbf{z}_l$$

$$\beta_{l+1} = \|y_l\|_2$$
. If $\beta_{l+1} = 0$ then stop

$$\boldsymbol{z}_{l+1} = \boldsymbol{y}_l/\beta_{l+1}$$

- Set $\mathbf{Z}_q = [\mathbf{z}_1, \dots, \mathbf{z}_q]$ and $\mathbf{T}_q = \operatorname{tridiag}(\beta_j, \alpha_j, \beta_{j+1})$.
- Compute $\mathbf{w}_q = \beta \mathbf{T}_q^{-1} \mathbf{e}_1$ and $\mathbf{x}_q = \mathbf{x}_0 + \mathbf{Z}_q \mathbf{w}_q$.

Conjugate Gradient Method

Popular variant of the Krylov subspace methods when the input matrix is S.P.D.

Conjugate Gradient Algorithm

- Compute $r_0 = b Ax_0, p_0 = r_0$.
- Iterate: Until Convergence

$$\qquad \alpha_l = \langle \boldsymbol{r}_l, \boldsymbol{r}_l \rangle / \langle \boldsymbol{A} \boldsymbol{p}_l, \boldsymbol{p}_l \rangle$$

$$\mathbf{x}_{l+1} = \mathbf{x}_l + \alpha_l \mathbf{p}_l$$

$$\mathbf{r}_{l+1} = \mathbf{r}_l - \alpha_l \mathbf{A} \mathbf{p}_l$$

$$eta_l = \langle oldsymbol{r}_{l+1}, oldsymbol{r}_{l+1}
angle / \langle oldsymbol{r}_l, oldsymbol{r}_l
angle$$

$$\mathbf{p}_{l+1} = \mathbf{r}_{l+1} + \beta_l \mathbf{p}_l$$

The p_l 's are A-conjugate with $\langle Ap_l, p_j \rangle = 0$ for $l \neq j$.

Convergence: with condition number $\kappa = \lambda_{\text{max}}/\lambda_{\text{min}}$.

$$\|x^* - x_q\|_{A} \le 2 \left[\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right]^q \|x^* - x_0\|_{A}$$

Iterative methods

Further Reading:

- Iterative methods for sparse linear systems by Yousef Saad.
- Numerical Methods for Large Eigenvalue Problems by Yousef Saad.
- Iterative Methods for Optimization by C.T. Kelly.

Matlab Demo