

# Linear Regression

Nazgul Rakhimzhanova



### COURSE SCHEDULE

| week      | Mid Term (weeks 01-07)                                          | End Term (weeks 08-14)                       | week      |  |  |
|-----------|-----------------------------------------------------------------|----------------------------------------------|-----------|--|--|
| 01        | Intro: Data Science Area and open source tools for Data Science | Feedback review                              | 08        |  |  |
| 02        | NumPy package for data science                                  | Sampling and Estimation                      | 09        |  |  |
| 03        | Pandas package for data science                                 | Visualization II. Correlation and Covariance | 10        |  |  |
| 04        | Visualization with matplotlib                                   | Hypothesis testing                           | 11        |  |  |
| 05        | Statistics: Distribution – Normal                               | Decision tree                                | 12        |  |  |
| 06        | Exploratory Data Analysis (EDA)                                 | Linear Regression                            | 13        |  |  |
| <u>07</u> | Summary for 6 weeks QA session                                  | Summary for 6 weeks QA session               | <u>14</u> |  |  |
| 15        | Course summary                                                  |                                              |           |  |  |

#### PREVIOUSLY



- Confidence Intervals
- Hypothesis Testing (z-test, chis.test)

#### **IDEA**



•Often, we want to be able to predict an outcome relying on available information. Like our ancestors practiced to predict harvest quality based on 'surrounded natural' features.



# Linear Regression

#### **IDEA**



- •In supervised machine learning we have two different algorithms than can help us to predict Regression and classification.
- Regression predicts continuous value outputs
- <u>Classification</u> predicts discrete outputs

#### REGRESSION



- •When there is only one dependent and one explanatory variable, that's simple regression
- •When we have more than one explanatory variable that's multiple regression
- •If there is more than one dependent variable, that's multivariate regression

#### LINEAR REGRESSION



- •Linear Regression
  - ·Least square method

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

Where  $\pmb{\beta}_0$  is the intercept,  $\pmb{\beta}_1$  is the parameter associated with x1,  $\pmb{\beta}_2$  is the parameter associated with x2, and  $\pmb{\varepsilon}$  is the residual due to random variation or other unknown factors.

#### LINEAR REGRESSION



Linear Regression: Single Variable



Linear Regression: Multiple Variables

$$\widehat{y} = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon$$

### RESIDUALS





### LINEAR REGRESSION



Given a sequence of values for y and sequences for  $x_1$  and  $x_2$ , we can find the parameters,  $\beta_0$ ,  $\beta_1$  and  $\beta_2$ , that minimize the sum of  $\varepsilon^2$ . This process is called **ordinary** least squares.



### LINEAR REGRESSION metrics



- The various metrics used to evaluate the results of the prediction are:
  - Mean Squared Error (MSE)
  - Root-Mean-Squared-Error (RMSE).
  - Mean-Absolute-Error (MAE) .
  - R<sup>2</sup> or Coefficient of Determination.

### LINEAR REGRESSION metrics



$$MSE = \frac{1}{n} \sum \left( y - \widehat{y} \right)^{2}$$
The square of the difference between actual and predicted

$$MAE = \underbrace{\frac{1}{n} \sum_{\substack{\text{Sum} \\ \text{of}}} \underbrace{y - \widehat{y}}_{\text{The absolute value of the residual}}^{\text{Divide by the total number of data points}}$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}}$$

$$R^2 = 1 - \frac{\text{MSE(model)}}{\text{MSE(baseline)}}$$

#### LINEAR REGRESSION



- •Linear Regression
  - •Least square method
    - Gradient descent
    - Stochastic gradient descent





## Steps of Linear Regression model

- 1 step: import necessary packages
- 2 step: **read** your data **handle nans'** and encode categorical values.
- 3 step: **prepare** your data split your data into training and testing parts
- 4 step: **fit** your model (teach your model) on train data
- 5 step: **predict** on test data
- 6 step: evaluate your model with metrics
- 7 step: **improve** your model
- 8 step: **repeat** steps 3-7

#### REGRESSION



Before you attempt to perform linear regression, Your data must pass through certain required assumptions.

- The variables should be measured at a continuous level. Examples of continuous variables are time, sales, weight and test scores.
- Use a scatterplot to find out quickly if there is a linear relationship between those two variables.
- The observations should be independent of each other (that is, there should be no dependency).
- Your data should have no significant outliers.
- Check for homoscedasticity a statistical concept in which the variances along the best-fit linear-regression line remain similar all through that line.
- The residuals (errors) of the best-fit regression line follow normal distribution.

#### HOW TO IMPROVE LR



- Drop outliers
- Drop unnecessary data
- Try polynomial features
- Try to train on different sets of independent variables (cross validation)
- Check correlation coefficient
- Check for confounding variable

## Polynominal functions



#### **Graphs of Polynomial Functions:**



Constant Function (degree = 0)



Cubic Function (deg. = 3)



Linear Function (degree = 1)



Quartic Function (deg. = 4)



Quadratic Function (degree = 2)



Quintic Function (deg. = 5)

### Output of OLS()



#### OLS Regression Results

| Dep. Variable:    | )                | / R-square            | ed:                |         | 1.000     |  |  |  |  |
|-------------------|------------------|-----------------------|--------------------|---------|-----------|--|--|--|--|
| Model:            | OLS              | Adj. R-               | Adj. R-squared:    |         | 1.000     |  |  |  |  |
| Method:           | Least Squares    | F-stati               | stic:              |         | 4.020e+06 |  |  |  |  |
| Date:             | Fri, 13 Mar 2020 | Prob (F               | -statistic)        | :       | 2.83e-239 |  |  |  |  |
| Time:             | 13:54:01         | Log-Lik               | elihood:           |         | -146.51   |  |  |  |  |
| No. Observations: | 100              | AIC:                  |                    |         | 299.0     |  |  |  |  |
| Df Residuals:     | 97               | BIC:                  |                    |         | 306.8     |  |  |  |  |
| Df Model:         |                  | 2                     |                    |         |           |  |  |  |  |
| Covariance Type:  | nonrobust        |                       |                    |         |           |  |  |  |  |
|                   |                  |                       |                    |         |           |  |  |  |  |
| coe               | f std err        | t                     |                    | [0.025  | 0.975]    |  |  |  |  |
| const 1.342       |                  |                       |                    | 0.722   | 1.963     |  |  |  |  |
| x1 -0.040         | 2 0.145          | -0.278                | 0.781              | -0.327  | 0.247     |  |  |  |  |
| x2 10.010         | 3 0.014          | 715.745               | 0.000              | 9.982   | 10.038    |  |  |  |  |
| Omnibus:          | 2.042            | :=====:<br>! Durbin-\ | =======<br>Watson: | ======  | 2.274     |  |  |  |  |
| Prob(Omnibus):    | 0.366            | ) Jarque-I            | Bera (JB):         |         | 1.875     |  |  |  |  |
| Skew:             | 0.234            | Prob(JB               | ):                 |         | 0.392     |  |  |  |  |
| Kurtosis:         | 2.519            | •                     | •                  |         | 144.      |  |  |  |  |
|                   |                  |                       |                    | ======= |           |  |  |  |  |

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

### Output of LinearRegression()



Out:

```
Coefficients: [938.23786125]
```

Mean squared error: 2548.07

Coefficient of determination: 0.47

#### READINGS



- <a href="https://machinelearningmastery.com/implement-linear-regression-stochastic-gradient-descent-scratch-python/">https://machinelearningmastery.com/implement-linear-regression-stochastic-gradient-descent-scratch-python/</a>
- shorturl.at/djLNS
- shorturl.at/ehkqz
- <a href="https://scikit-learn.org/stable/modules/model">https://scikit-learn.org/stable/modules/model</a> evaluation.html#regression-metrics