Missing Roads

- Given: undirected graph G and an integer k
- Find: set of k cities $\{v_1, v_2, ..., v_k\}$ and edges $\{e_1, e_2, ..., e_k\}$ such that
 - a) each city v_i is adjacent to the edge e_i
 - b) the sum

$$\sum_{i=1}^{k} cost(e_i)$$

- Given: undirected graph G and an integer k
- Find: set of k cities $\{v_1, v_2, ..., v_k\}$ and edges $\{e_1, e_2, ..., e_k\}$ such that
 - a) each city v_i is adjacent to the edge e_i
 - b) the sum

$$\sum_{i=1}^{k} cost(e_i)$$

- Given: undirected graph G and an integer k
- Find: set of k cities $\{v_1, v_2, ..., v_k\}$ and edges $\{e_1, e_2, ..., e_k\}$ such that
 - a) each city v_i is adjacent to the edge e_i
 - b) the sum

$$\sum_{i=1}^{k} cost(e_i)$$

- Given: undirected graph G and an integer k
- Find: set of k cities $\{v_1, v_2, ..., v_k\}$ and edges $\{e_1, e_2, ..., e_k\}$ such that
 - a) each city v_i is adjacent to the edge e_i
 - b) the sum

$$\sum_{i=1}^{k} cost(e_i)$$

- Create auxiliary bipartite graph *B*:
 - one side vertices of *G*
 - the other side edges of G (now as vertices in B)
 - ullet edge between vertex v and an edge e if they are adjacent in G

- Create auxiliary bipartite graph *B*:
 - one side vertices of *G*
 - the other side edges of G (now as vertices in B)
 - edge between vertex v and an edge e if they are adjacent in G

- Create auxiliary bipartite graph *B*:
 - one side vertices of *G*
 - the other side edges of G (now as vertices in B)
 - edge between vertex v and an edge e if they are adjacent in G

- Create auxiliary bipartite graph *B*:
 - one side vertices of *G*
 - the other side edges of G (now as vertices in B)
 - edge between vertex v and an edge e if they are adjacent in G

- Create auxiliary bipartite graph *B*:
 - one side vertices of *G*
 - the other side edges of G (now as vertices in B)
 - edge between vertex v and an edge e if they are adjacent in G

- Create auxiliary bipartite graph *B*:
 - one side vertices of *G*
 - the other side edges of G (now as vertices in B)
 - edge between vertex v and an edge e if they are adjacent in G

- Create auxiliary bipartite graph *B*:
 - one side vertices of *G*
 - the other side edges of G (now as vertices in B)
 - edge between vertex v and an edge e if they are adjacent in G

- Create auxiliary bipartite graph *B*:
 - one side vertices of *G*
 - the other side edges of G (now as vertices in B)
 - ullet edge between vertex v and an edge e if they are adjacent in G

- Create auxiliary bipartite graph *B*:
 - one side vertices of *G*
 - the other side edges of G (now as vertices in B)
 - ullet edge between vertex v and an edge e if they are adjacent in G

- Create auxiliary bipartite graph *B*:
 - one side vertices of G
 - the other side edges of G (now as vertices in B)
 - edge between vertex v and an edge e if they are adjacent in G

- Find a cheapest matching of size k
 - 1. If all costs are the same = check if the maximum matching is of size at least k

- Create auxiliary bipartite graph B:
 - one side vertices of G
 - the other side edges of G (now as vertices in B)
 - edge between vertex v and an edge e if they are adjacent in G

- Find a cheapest matching of size k
 - 1. If all costs are the same = check if the maximum matching is of size at least k
 - 2. Otherwise...

- Create auxiliary bipartite graph *B*:
 - one side vertices of G
 - the other side edges of G (now as vertices in B)
 - ullet edge between vertex v and an edge e if they are adjacent in G

- Find a cheapest matching of size k
 - 1. If all costs are the same = check if the maximum matching is of size at least k
 - 2. Otherwise... reduce the problem to the min-cost max-flow

- Find a cheapest matching of size k
 - 1. If all costs are the same = check if the maximum matching is of size at least k
 - 2. Otherwise... reduce the problem to the min-cost max-flow

- Find a cheapest matching of size k
 - 1. If all costs are the same = check if the maximum matching is of size at least k
 - 2. Otherwise... reduce the problem to the min-cost max-flow

