Fablab Nürnberg Workshop

Elektronic-Lab: Grundlagen der Elektronik

Teil 1: Spannung und Strom, erste Schaltung

Vortragender:

Robert Weidenhöfer, Dipl.-Ing. Hardware- und Software-Entwickler

- (1) Spannung und Strom
- (2) Widerstand
- (3) Elektrische Leistung
- (4) Sicherheit in der Elektronik
- (5) Schaltung & Schaltplan
- (6) Messen von Strom und Spannung
- (7) Parallel- und Serien-Schaltung
- (8) Kirchhoffsche Regeln
- (9) Weitere Informationsquellen

- → (1) Spannung und Strom
 - (2) Widerstand
 - (3) Elektrische Leistung
 - (4) Sicherheit in der Elektronik
 - (5) Schaltung & Schaltplan
 - (6) Messen von Strom und Spannung
 - (7) Parallel- und Serien-Schaltung
 - (8) Kirchhoffsche Regeln
 - (9) Weitere Informationsquellen

(1.1) Spannung und Strom

- Physikalische Erlärung:
 - Wenn in einem ausgeglichenem Zustand elektrische Ladungen getrennt werden, dann baut sich dadurch eine Spannung auf, welche durch einen Strom wieder abgebaut wird.

(1.2) Spannung und Strom

Analogie zum elektrischen Strom: Wasser

Wasser	Elektrisch
Wasserdruck	Elektrische Spannung
Wassermenge je Zeit	Elektrischer Strom
Dicke bis zum Auslass (Schieber im Wasserhahn)	Widerstand

(1.3) Spannung und Strom

Symbole und Einheiten

Name	Symbol	Einheit	
Spannung	U	V (Volt),	auch mV, kV
Strom	Į	A (Ampere),	auch μΑ, mΑ, kΑ
Widerstand	R	Ohm,	auch kOhm, MOhm
Leistung Energie	P E	W (Watt), Ws (Watt-Sekunde), kWh	auch mW, kW, MW (Kilo-Watt-Stunde)
Zeit	Т	s (Sekunde)	

Einheit	Faktor	Einheit	Faktor
m (Milli)	0,001	k (Kilo)	1 000
μ (Mikro)	0,000 001	M (Mega)	1 000 000
n (Nano)	0,000 000 001	G (Giga)	1 000 000 000
p (Piko)	0,000 000 000 001	T (Tera)	1 000 000 000 000

(1.4) Spannung und Strom

- Spannungsquellen stellen eine "konstante" Spannung zur Verfügung:
 - Batterie, Akku (z.B. 1,5 V; 3,6 V; 12 V)
 - Steckdose (z.B. 230 V / 50 Hz; 110 V / 60 Hz)
 - Kraftwerke (z.B. 380 kV)
 - Elektrische Schaltungen (alles :-))
- Stromquellen (gleichbleibender Strom):
 - Elektrische Schaltungen

- (1) Spannung und Strom
- → (2) Widerstand
 - (3) Elektrische Leistung
 - (4) Sicherheit in der Elektronik
 - (5) Schaltung & Schaltplan
 - (6) Messen von Strom und Spannung
 - (7) Parallel- und Serien-Schaltung
 - (8) Kirchhoffsche Regeln
 - (9) Weitere Informationsquellen

(2.1) Elektrischer Widerstand

- Ohmsches Gesetz: R = U / I
- Bei vorgegebener Spannung begrenzt der Widerstand den Strom:
 I = U / R
- Bei vorgegebenem Strom fällt am Widerstand eine Spannung ab:
 U = I * R
- Beispiel: Wenn ich an einen 3,6V Lilon-Akku einen Widerstand von 100 Ohm anschließe, wird er mit 36 mA entladen (siehe I = U / R)

- (1) Spannung und Strom
- (2) Widerstand
- → (3) Elektrische Leistung
 - (4) Sicherheit in der Elektronik
 - (5) Schaltung & Schaltplan
 - (6) Messen von Strom und Spannung
 - (7) Parallel- und Serien-Schaltung
 - (8) Kirchhoffsche Regeln
 - (9) Weitere Informationsquellen

(3.1) Elektrische Leistung

- Elektrische Leistung: P = U * I
- Beispiel 1: Eine alte Glühlampe mit 100 W hat bei 230 V einen Strom von 435 mA
- Beispiel 2: Ein Prozessor mit 1,1 V und 45 A hat eine Leistung von 49,5 W
- Beispiel 3: Maximale Leistung an einer 230 V Dose, die mit 16 A abgesichert ist, beträgt kW

- (1) Spannung und Strom
- (2) Widerstand
- (3) Elektrische Leistung
- → (4) Sicherheit in der Elektronik
 - (5) Schaltung & Schaltplan
 - (6) Messen von Strom und Spannung
 - (7) Parallel- und Serien-Schaltung
 - (8) Kirchhoffsche Regeln
 - (9) Weitere Informationsquellen

(4.1) Sicherheit in der Eletronik

- Elektrischer Strom kann töten (Herzstillstand)!
- Kritisch sind Spannungen über 50 V, alles darunter ist unkritisch
- Spannungen über 50 V müssen gegen Berührung geschützt sein
- Wir arbeiten im Elab nur mit Spannungen, die nicht gefährlich sind (kleiner 50 V). Höhere Spannungen sind nur für Personen, die darin geschult sind!

- (1) Spannung und Strom
- (2) Widerstand
- (3) Elektrische Leistung
- (4) Sicherheit in der Elektronik
- → (5) Schaltung & Schaltplan
 - (6) Messen von Strom und Spannung
 - (7) Parallel- und Serien-Schaltung
 - (8) Kirchhoffsche Regeln
 - (9) Weitere Informationsquellen

(5.1) Schaltung und Schaltplan

Schaltung 1: Spannungsquelle und Widerstand

Berechnungen:

- Strom durch Widerstand I₁ = _____
- Verlustleistung am Widerstand: P₁ = _____

(5.2) Schaltung und Schaltplan

Schaltung 1: Spannungsquelle und Widerstand

```
I_1 = U_1 / R_1
= 2 V / 20 Ohm
= 0,1 A = 100 mA
P_1 = U_1 * I_1 = U_1 * U_1 / R_1 = U_1^2 / R_1
= (2 V)<sup>2</sup> * 20 Ohm
= 0,2 W = 200 mW
```

(5.3) Schaltung und Schaltplan

Schaltung 2: Batterie+LED+Widerstand

(5.4) Schaltung und Schaltplan

Schaltung 2: Batterie+LED+Widerstand

- (1) Spannung und Strom
- (2) Widerstand
- (3) Elektrische Leistung
- (4) Sicherheit in der Elektronik
- (5) Schaltung & Schaltplan
- (6) Messen von Strom und Spannung
 - (7) Parallel- und Serien-Schaltung
 - (8) Kirchhoffsche Regeln
 - (9) Weitere Informationsquellen

(6.1) Messen von Strom und Spannung

- Meßgeräte:
 - Für zeitunabhängige Messungen von U, I und R: Digitales Multimeter
 - Für Spannungssignalverläufe: Oszilloskop
 - Und viele weitere Meßgeräte für Spezialaufgaben,
 z.B. Digitaltechnik, Hochfrequenztechnik / Funk

(6.1) Messen von Strom und Spannung

Beispiel LED-Schaltung:

(6.2) Messen von Strom und Spannung

Beispiel LED-Schaltung:

- (1) Spannung und Strom
- (2) Widerstand
- (3) Elektrische Leistung
- (4) Sicherheit in der Elektronik
- (5) Schaltung & Schaltplan
- (6) Messen von Strom und Spannung
- → (7) Parallel- und Serien-Schaltung
 - (8) Kirchhoffsche Regeln
 - (9) Weitere Informationsquellen

(7.1) Parallel und Serienschaltung

Schaltung	Parallel	Seriell
Schaltplan		
Spannung	U _{ges} =	U _{ges} =
Strom	I _{ges} =	I _{ges} =
Widerstand	R _{ges} =	R _{ges} =
Leistung	P _{ges} =	P _{ges} =

(7.2) Parallel und Serienschaltung

Schaltung	Parallel	Seriell
Schaltplan		
Spannung	$U_{ges} = U_{R1} = U_{R2} = U_{R3} =$	$U_{ges} = U_{R1} + U_{R2} + U_{R3} +$
Strom	$I_{ges} = I_{R1} + I_{R2} + I_{R3} + \dots$	$I_{ges} = I_{R1} = I_{R2} = I_{R3} = \dots$
Widerstand	1 / R _{ges} = 1 / R1 + 1 / R2 + 1 / R3 +	R _{ges} = R1 + R2 + R3 +
Leistung	$P_{ges} = P_{R1} + P_{R2} + P_{R3} +$	$P_{ges} = P_{R1} + P_{R2} + P_{R3} +$

- (1) Spannung und Strom
- (2) Widerstand
- (3) Elektrische Leistung
- (4) Sicherheit in der Elektronik
- (5) Schaltung & Schaltplan
- (6) Messen von Strom und Spannung
- (7) Parallel- und Serien-Schaltung
- → (8) Kirchhoffsche Regeln
 - (9) Weitere Informationsquellen

(8.1) Kirchhoffsche Regeln

- Strom (Knotenregel):
 Die Summe der Ströme in einen Knoten ist immer 0
- Spannung (Maschenregel):
 Die Summe der Spannungen in einer Masche ist immer 0

- (1) Spannung und Strom
- (2) Widerstand
- (3) Elektrische Leistung
- (4) Sicherheit in der Elektronik
- (5) Schaltung & Schaltplan
- (6) Messen von Strom und Spannung
- (7) Parallel- und Serien-Schaltung
- (8) Kirchhoffsche Regeln
- (9) Weitere Informationsquellen

(9.1) Weitere Informationen

- Einsteigerwissen mit vielen weiterführenden Links:
 - https://www.mikrocontroller.net
 - .../articles/Absolute_Beginner
- Auch viele Artikel zur Elektrotechnik, meist auf höherem Niveau:
 - http://wikipedia.de
- Bauteilinformationen, wenn man weiss, was man braucht:
 - http://digikey.de
 - http://conrad.de
- Datenblätter von Bauteil-Herstellern (v.a. bei ICs)