The Randomized z-Buffer

Interactive Rendering of Highly Complex Scenes

Michael Wand Matthias Fischer Friedhelm Meyer auf der Heide Straßer Ingmar Peter Wolfgang

WSI / GRIS University of Tübingen

Heinz Nixdorf Institute University of Paderborn

Scene Complexity

10⁶ triangles

10⁸ triangles

10¹⁴ triangles

Highly detailed scenes:

- Visualization, Games, CAD, ...
- Interactive walkthrough, editing
- Efficient rendering needed

Output-Sensitive Rendering 2001 EXPLORE INTERACTION AND DIGITAL IMAGES

Complexity parameters: (triangle sc

- Number of triangles: *n*
- Projected area (visible + occluded)

Z-Buffer-Algorithm:

- Rendering time $\Theta(n + a)$
- Not suitable for large scenes

Conclusion:

- We need output-sensitive algorithms
- Weak dependence of rendering time on scene complexity

4/27

Randomized z-Buffer

triangles

sample point selection

sample points

bitmap

Outline of our algorithm:

- Select sample points dynamically, approximately uniformly distributed on the projected areas of the objects
- Reconstruct an image out of the sample points

Running time: $O(a \cdot \log n)$

Related Techniques

Multi-resolution point sample rendering:

- QSplat [Rusinkiewicz, Levoy 2000]
- Surfels [Pfister et al. 2000]

Approach:

 Precomputed hierarchy of point samples

Open problems:

- Fixed resolution
- Memory consumption
- Dynamic updates are expensive

Our Contribution

Randomized z-buffer:

- Fast on-the-fly generation of sample points
- Sampling time $O(a \cdot \log n)$ with O(n) storage
- Efficient dynamic scene modifications
- Fallback to hardware z-buffer rendering for large triangles

Example:

PC)

• 10¹⁴ triangles

• Sampling time: 4.3 sec

• Rendering time: 0.4 sec

Image Reconstruction

Sample points

Two problems:
1. Reconstruction

- of occlusion
- 2. Filling

Remove adjacent points with larger depth

Scattered data interpolation

Per-Pixel Reconstruction SIGGRAPHICAL PROPERTY OF THE PROPERTY

Per-pixel reconstruction:

Draw sample points into z-buffer

To cover all foreground area: $a \cdot \ln v$ sample points

- *a* Projected area (visible *and* occluded) [pixels]
- v Visible projected area [pixels]

Splatting

Splatting: Draw colored splats of constant depth

$$d = 1$$
 (110 msec)

$$d = 2$$

(30 msec)
($d =$ splat size)

$$d = 5$$
 (7 msec)

Gaussian Filtering

Gaussian Reconstruction:

- Use weighted averages in filling step
- Removes noise & aliasing
- Non-interactive reconstruction times (1-2 minutes)

z-Buffer

Per-pixel reconstruction

Gaussian reconstruction

noosing Sample Points 13/27

Projection Factor

Goal: Sample points uniformly distributed on the objects in the image plane

Projection factor: Factor by which an area fragment is scaled during perspective projection

Approximation (1)

Chose sample points: Projection factor as probability density in the view frustum

Efficient solution: Approximation algorithm

Idea: Approximation of the ideal distribution

- Do not fall below minimum sampling density
- Exceeding the ideal sampling density leads to

longer rendering time "only

Approximation (2)

Approximation strategy:

- Precomputed hierarchical clustering of objects
- Online: choose groups of similar projection factor, calculate maximum projection factor
- In each group: distribution by unprojected area

Choosing Groups

Choosing Triangles

Grouping Objects

Spatial classification:

- Precomputed octree
- Choose boxes, in which $1/z^2$ does not vary by more than a constant
- $O(\log \tau)$ time, $\tau = \text{minimal viewing}$ distance / scene diameter

Classification by orientation:

- Orientation classes
- Useful in special cases only

Analysis: neglect orientation factor

- Uniformly distributed surface normals
 - \Rightarrow overestimation factor = 4

Selection by Unprojected

Precomputation: Distribution List

List of cumulated area values

Dynamic triangle selection:

- Chose random number uniformly from [0, maxarea]
- Binary search
- $O(\log n)$ running time for n triangles!

Sample point: Random linear combination

Performance

Handling of large triangles:

- Projected area: triangle area × projection factor
- Classification by unprojected area
- Rasterize large triangles with z-buffer hardware

additional classification by triangle area:

Sample caching:

- Cache samples in spatial hierarchy nodes
- Speedup of up to factor 10
- Realtime performance on PChardware

20/27

Enhanced Data

Dynamic modifications:

- Substitute dynamic search tree for distribution lists
- Insertion, deletion, modification in O(h)(h = height of the spatial octree)

Efficient storage of highly complex scenes:

- Scene-graph based instantiation
- Storage O(|SG|) instead of O(n), |SG| =size of scene graph

Phong lighting, per pixel reconstruction, rendering time: 19.2 sec

Complexity: 400 million triangles

Example: Landscap

diffuse lighting, splatting (d=2), sample caching,

Gaussian reconstruction, rendering time: 120 sec

Complexity: 10¹⁴ triangles

Hardware: 800Mhz PC,

Example: Forrest

Scene

splatting, d = 2, sample caching, rendering time: 0.41 sec

Future Work

Future Directions:

- Modeling techniques for highly complex scenes
- Software framework
- Occlusion culling
- Global illumination

