ECS7024 Statistics for Artificial Intelligence and Data Science

Topic 5: Discrete Distributions

William Marsh

Outline

- Aims:
 - Introduce discrete probability distributions
- Coin flipping: Bernoulli distribution
- Multiple flips: the i. i. d. assumption
- Binomial distribution

Flip a Coin

Flip a Coin

- Probability of heads is 50%
 - Provided coin is fair
- Generalise: flip(p)
 - p is probability

 $y_1, y_2, y_3, y_{41} \sim bernoulli(0.5)$

Aside: random numbers from computers

Repeatedly Flipping

Repeatedly (10 times) try 4 flips

```
p = 0.5
rv = stats.bernoulli(p)
for x in range(0, 10):
    print(rv.rvs(4))
```

```
[0 0 1 0]
[1 0 1 1]
[0 1 0 1]
[0 1 0 1]
[0 1 1 0]
[0 1 0 0]
[0 0 0 1]
[1 1 1 1]
[1 1 0 0]
[0 1 1 1]
```

Repeatedly Flipping (p=0.3)

Repeatedly (10 times) try 4 flips

```
p = 0.3
rv = stats.bernoulli(p)
for x in range(0, 10):
    print(rv.rvs(4))
```

```
[0 0 0 0]
[0 0 0 0]
[0 1 0 1]
[0 0 0 1]
[1 1 1 0]
[1 1 1 0]
[1 1 1 0]
[1 1 1 0]
[0 0 0 0]
[0 1 0 1]
```

Probability of Outcome

- Suppose p is 0.3
 - Result of 4 flips: 1, 0, 0, 1
 - Probability?

$$Pr(1,0,0,1) = 0.3 \times 0.7 \times 0.7 \times 0.3$$

= $0.3^2 \times 0.7^2$

- Probability does not depend on order
 - Assumed independence (i.i.d)
 - Only count of '1' outcomes

Probably of Outcome II

Any p, any number of flips N

$$Pr(n \text{ from } N \mid p) = p^n . (1-p)^{N-n}$$

- Sufficient statistic
 - Number of positive 'n' outcomes from 'N' trials

Binomial Distribution

Probability distribution for outcomes of coin flipping (Bernoulli) trials

Probabilities of Outcomes of 4 Flips

Calculate probabilities of all outcomes

But not a probability distribution

A Trial of 4 Flips

- 16 possible outcomes (incl order)
- 5 different 'number of successes'
 - Two extremes outcomes (0 or 4 successes)
 occur once
 - Two success occur more often
- Intuition: 2 heads and 2 tails of a coin more likely

Number of successes

Probability Distribution of Outcomes

- Now a probability distribution
- 'Binomial'

n successes

Pr of one outcome with n successes

Number of outcomes with n successes

Successes	P_Outcome_Once	Combinations	P_Outcome	
0	0.2401	1.0	0.2401	
1	0.1029	4.0	0.4116	
2	0.0441	6.0	0.2646	
3	0.0189	4.0	0.0756	
4	0.0081	1.0	0.0081	

Outcome probability

Binomial Distribution

- Distribution of outcome of a binary variable
 - Number of 'trials' (e.g. coin flips) N
 - Probability of success (e.g. 50%) p

binom(4, 0.5)

Sampling

Flip a coin – sample from Bernoulli(0.5)

 $coin \sim Bernoulli(0.5)$

 Run a Bernoulli trial, 5 flips – sample from Binomial

 $successes \sim Binomial(5, 0.5)$

50 Samples from Binom(20, 0.5)

Quiz 1

Every lecture will have a 'learning reflection' slide

Understanding Selection

.loc[]

Selection

The general form of the .loc call is:

```
- .loc[row selector, column selector]

| The column selector is ignored if it is omitted all rows
```

The 'selectors' can be either:

Index!!

- a value or list of values
- an expression that is true or false

```
expression such as
df.Area == 'Tower Hamlets'
Evaluates to a series of True / False
```

Binomial Probability Mass Function

Binomial PMF

- For a trial of 4 flips, there are 5 possible outcomes
 - 0, 1, 2, 3, 4 successes
 - Distribution shows the probability of each outcome
- Probability of n successes in a trial of N flips,
 with success probability p:

 Prob of n successes

Num of trial outcomes with n successes

$$\binom{N}{n} p^n (1-p)^{(N-n)}$$

Prob of N-n failures

$$N=10$$

 $p=0.5$
 $stats.binom(N, p).pmf(3)$

Expected Value and Skew

Expected Value

- Simple formula for expected (average) number of successes
 - Trial of N flips
 - Probability of success p
 - E[n] = N.p

Skew of Binomial Distribution

- Skew depends on n and p
- Case 1:
 expected
 value
 close to
 N/2

N = 10 p = 0.5 E[n] = 5

Skew of Binomial Distribution

- Skew depends on n and p
- Case 2:
 expected
 value
 close to 0

N = 10 p = 0.05E[n] = 0.5

Skew of Binomial Distribution

- Skew depends on n and p
- Case 3:
 expected
 value
 close to N

N = 10 p = 0.95 E[n] = 9.5

Poisson Distribution

What if N is not limited?

- A hospital serves a large population
- Most people stay well
- We collect data on the average rate (people / day) of admission to hospital
- What is the distribution of daily admissions?

 $x \sim Poisson(\lambda)$

Integer result: 0 upwards

Rate: real

number >= zero

Poisson Example

• Expected value = λ

Quiz 2

Summary

Probability Distribution

- A mathematical formula describing a probability distribution
- Each corresponds to different assumptions about how variation arises
- Some common distributions

Name	Туре	Description
categorical(ps)	Discrete	Generalisation of the Bernoulli to >2 outcomes
binomial(n, p)	Discrete	Outcome of n trials, which probability p
poisson(λ)	Discrete	Number of events, occurring at average rate λ
$normal(\mu, \sigma)$	Continuous	Measurements with mean μ and standard deviation σ
exponential(λ)	Continuous	Time between events, occurring at average rate λ

Summary

- Bernoulli (or flip) distribution
 - Binary outcome probability p
 - Simplest of all
- Binomial distribution
 - First example of a parametric distribution
 - Result of a Bernoulli trial (flipping repeatedly)
- Idea of sampling