

How Does Lending Club Work?

Source: Kaggle

01. Discover business problem

02. Build model to solve problem

03. Result and Conclusion

Business Probelm

Loan Amount

How has the business performed over the years?

Business Probelm

Number of Transaction

Are the total number of transactions being handled on a growing or declining trend?

Define Default

Label = 1

Charged Off

Late

Default

Label = 0

Fully Paid 🗸

Business Problem

Default Rate

Has the Annual Default Rate of borrowers increased /decreased over the years?

Customer Portrait of Defaulted Records

Customer Portrait

Are borrowers belonging to grade A loans less likely to default?

Yes.

Discover the business problem

Customer Portrait

Do borrowers with Mortgage have the highest default rate?

No.

Discover the business problem

Customer Portrait

Is purpose for borrowers a factor that influence the default?

Yes.

Build model to solve problem

Logistic Regression & Deep Learning

Feature Selection & Data Cleaning

2.24m rows × 145 features 1.19m rows × 23 features

Log Transformation

- total accounts

Cut Numeric into Intervals

- annual income
- % trades never default

Drop NA

- employment length
- % trades never default

Categorization

- # default within past 2 yrs
- # charge-offs within 12 months

Baseline Model:Logistic Regression

Train Model

□ Training size: 50%

☐ Reason: imbalanced dataset (20% are label 1)

→ improved in model 2

Baseline Model

Tune Model

□ Validation size: 25%

□ Threshold: 0.23

□ Accuracy: 65%

□ Detection rate: 65%

Baseline Model

Test Model

☐ Test size: 25%

Among 100 truly defaulted people, we detected 65.

Among 100 people we predicted as default, only 35 are truly defaulted.

Baseline Model

What does the model tell us?

If a person

Borrows \$15,000 for 5years
Has 2-year work experience
verified annual income \$100,000

•••

His likelihood of default is 33.74% > 23%.

Based on our model, we will NOT lend him any loan.

Model2: Logistic regression by one-hot encoding

• Balanced sample:

Transform factor to numerics

[Morgage, Rent, Unkown]	One-hot encoding	[0,1,0]
Income	Standardize	(Income-mean)/sd
Credit grade (A.B.C.)	Ordinal encoding	[123]

- Create a new feature: monthly income/monthly debt
- Tune the parameters (penalty='l1' to prevent overfitting)

Model2 outperformed Baseline

Model2 outperformed Baseline

SCORE

Baseline model Model2

Accuracy

	Baseline model	Model2
Accuracy	0.65	0.64
Recall	0.65	0.82
Precision	0.35	0.60
F1	0.45	0.69
F2	0.55	0.76

* on test data

Deep Learning is Sexy?

Model3:Deep Learning Model

2 hidden layers first: 15 nodes second: 5 nodes

Result is not exciting

Accuracy: 0.6581 Detection: 0.663

Not better than model 2

Result and Conclusion

Select Logistic Regression model as final model

Select model 2 as final model

What is the ranking of key features?

Interest rate

Debt-covered ratio

Sub-grade

Annual income

Total-account

Loan amount

Percentage never delinquent

Employ length

Term

(By Random Forest Classifier)

Conclusion

Build a logistic regression model to predict the default rate. Although the accuracy is 60%, the detection rate (80%) is high.

We found the most important features that determine a person's default probability. Helpful to manually review applicants.

Collect more features that can measure the ability to pay. (e.g. past spending)
Apply more advanced model to improve accuracy.(Xgboost)

