(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 21. Oktober 2004 (21.10.2004)

(10) Internationale Veröffentlichungsnummer WO 2004/089837 A3

- (51) Internationale Patentklassifikation7: C03B 37/014, 37/012
- PCT/EP2004/003665 (21) Internationales Aktenzeichen:
- (22) Internationales Anmeldedatum: 6. April 2004 (06.04.2004)
- (25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

- (30) Angaben zur Priorität: 9. April 2003 (09.04.2003) 103 16 487.1
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): HERAEUS TENEVO AG [DE/DE]; Quarzstrasse 8, 63450 Hanau (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): SCHÖTZ, Gerhard [DE/DE]; Elsa-Brandström-Weg 21, 63741 Aschaffenburg (DE). BRÄUER, Karsten [DE/DE]; Königsberger Strasse 24, 63486 Bruchköbel (DE). HÜNERMANN, Michael [DE/DE]; Drosselweg 19, 63755 Alzenau (DE). SCHMIDT, Richard [DE/DE]; Hanauer Strasse 28, 63546 Hammersbach (DE). FABIAN, Heinz [DE/DE]; Westring 29, 63762 Grossostheim (DE). TREBER, Norbert [DE/DE]; Liesingstrasse 6, 63457 Hanau (DE).
- (74) Anwalt: STAUDT, Armin; Edith-Stein-Strasse 22, 63075 Offenbach/Main (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR THE PRODUCTION OF A BLANK MOLD FOR OPTICAL FIBERS
- (54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG EINER VORFORM FÜR OPTISCHE FASERN

(57) Abstract: In a known method for the production of a blank mold for optical fibers, a fluorine-doped SiO2 enveloping glass is produced on a core glass cylinder that rotates about its longitudinal axis, wherein a silicon-containing starting substance is fed to produced on a core glass cylinder that rotates about its longitudinal axis, wherein a shicon-containing starting substance is red to a plasma burner, said substance is then oxidized in a plasma flame assigned to the plasma burner to obtain SiO₂ particles, the SiO₂ particles are deposited by layers on the enveloping surface of the cylinder of the core glass cylinder in the presence of fluorine and sintered into the enveloping glass. The invention aims at providing an economical method, which builds upon the above-mentioned method, in order to produce a blank mold from which optical multi-mode fibers (52) can be obtained. In comparison with fibers (51) produced according to standard methods, said optical multi-mode fibers are characterized by high initial transmission in the UV wavelength range and good resistance with respect to brief UV radiation, more particularly in the 210-300 nm wavelength range. According to the invention, a plasma flame that irradiates an ultraviolet light having a wavelength of 214 nm with an intensity of at least 0.9 ?W -determined on the basis of plasma flame intensity measurement- is used for the formation and deposition of the Si02particles on the core glass.

WO 2004/089837 A3

KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PIH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der f\(\tilde{u}\)r \(\tilde{A}\)nderungen der Anspr\(\tilde{u}\)che geltenden
 Frist; \(\tilde{V}\)er\(\tilde{G}\)fentlichung wird wiederholt, falls \(\tilde{A}\)nderungen
 eintreffen
- (88) Veröffentlichungsdatum des internationalen Recherchenberichts: 20. Januar 2005

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) Zusammenfassung: Bei einem bekannten Verfahren zur Herstellung einer Vorform für optische Fasern wird ein mit Fluor dotiertes Si0₂-Mantelglases auf einem um seine Längsachse rotierenden Kernglaszylinder erzeugt, indem einem Plasmabrenner eine siliziumhaltige Ausgangssubstanz zugeführt wird, diese in einer dem Plasmabrenner zugeordneten Plasmaflamme zu Si0₂-Partikeln oxidiert und die Si0₂-Partikel unter Gegenwart von Fluor auf der Zylindermantelfläche des Kernglaszylinders schichtweise abgeschieden und zu dem Mantelglas gesintert werden. Um hiervon ausgehend ein wirtschaftliches Verfahren zur Herstellung einer Vorform bereitzustellen, aus der optische Multimodefasern (52) erhalten werden können, die sich gegenüber den nach dem Standardverfahren hergestellten Fasern (51) durch hohe Anfangstransmission im UV-Wellenlängenbereich und guter Beständigkeit gegenüber kurzweiliger UVStrahlung, insbesondere im Wellenlängenbereich zwischen 210 und 300 nm, auszeichnen, wird erfindungsgemäss vorgeschlagen, dass zur Bildung und Abscheidung der Si0₂-Partikel auf dem Kernglaszylinder eine Plasmaflamme eingesetzt wird, die ultraviolettes Licht einer Wellenlänge von 214 nm mit einer Intensität von mindestens 0,9 μW - ermittelt anhand der Plasmaflammenintensitätsmessung - abstrahlt.

WO 2004/089837

15

20

2/PRte

10/552539

PCT/EP2004/003665

Verfahren zur Herstellung einer Vorform für optische Fasern

Die Erfindung betrifft ein Verfahren zur Herstellung einer Vorform für optische Fasern durch Erzeugen einer mit Fluor dotierten SiO₂-Mantelglasschicht auf einem um seine Längsachse rotierenden Kernglaszylinder, indem einem Plasmabrenner eine siliziumhaltige Ausgangssubstanz zugeführt, diese in einer dem Plasmabrenner zugeordneten Plasmaflamme zu SiO₂-Partikeln oxidiert und die SiO₂-Partikel unter Gegenwart von Fluor auf der Zylindermantelfläche des Kernglaszylinders schichtweise abgeschieden und zu dem Mantelglas gesintert werden.

Ein derartiges Verfahren zur Herstellung einer Vorform für optische Fasern und eine gattungsgemäße Vorform sind in der DE 25 36 457 A1 beschrieben. Zur Herstellung der Vorform wird ein Kernglaszylinder aus undotiertem Quarzglas bereitgestellt, auf dessen Zylinderaußenmantel mit Fluor dotiertes Quarzglas als Mantelglasschicht abgeschieden wird. Zur Erzeugung der Mantelglasschicht wird ein induktionsgekoppelter Plasmabrenner eingesetzt, dem ein Gasstrom zugeführt wird, der eine wasserstofffreie Siliziumverbindung und Sauerstoff enthält. Außerdem wird in die dem Plasmabrenner zugeordnete Plasmaflamme eine fluorhaltige Verbindung eingeleitet. Aus den Ausgangssubstanzen bilden sich in der Plasmaflamme fluorhaltige SiO₂-Partikel. Diese werden auf dem um seine Längsachse rotierenden Kernglaszylinder schichtweise abgeschieden und unter Bildung der fluorhaltigen SiO₂-Mantelglasschicht auf der Kernglasschicht direkt gesintert.

Das beschriebene Verfahren zur Herstellung einer Vorform für optische Fasern
wird auch als "POD-Verfahren" (Plasma Outside Deposition) bezeichnet. Der
Kernglaszylinder wird in der Regel durch Oxidation oder durch Flammenhydrolyse
siliziumhaltiger Ausgangssubstanzen mittels Verfahren hergestellt, die unter der
Bezeichnung VAD-Verfahren (Vapor Phase Axial Deposition), OVD Verfahren
(Outside Vapor Phase Deposition), MCVD-Verfahren (Modified Chemical Vapor
Deposition) und PCVD Verfahren (oder auch PECVD-Verfahren; Plasma Enhanced- Chemical Vapor Deposition) allgemein bekannt sind. Der Kernglaszylinder

BESTÄTIGUNGSKOPIE

besteht meist aus undotiertem Quarzglas, kann aber auch die Brechzahl verändernde Dotierstoffe enthalten.

Die Erfindung betrifft auch ein Verfahren zur Herstellung einer Vorform für optische Fasem, durch Bereitstellen eines Mantelglasrohres aus mit Fluor dotiertem

Quarzglas zur Umhüllung eines Kernglases, wobei zum Erzeugen des Mantelglasrohres einem Plasmabrenner eine siliziumhaltige Ausgangssubstanz zugeführt, diese in einer dem Plasmabrenner zugeordneten Plasmaflamme zu SiO₂-Partikeln oxidiert und die SiO₂-Partikel unter Gegenwart von Fluor auf der Zylindermantelfläche eines um seine Längsachse rotierenden Substratrohres aus Quarzglas schichtweise abgeschieden und gesintert werden.

Ein derartiges Verfahren ist in der US 6,253,580 B1 beschrieben. Zur Herstellung eines Mantelglasrohres aus fluordotiertem Quarzglas nach dem POD-Verfahren wird eine trockene Plasmaflamme erzeugt, in welcher SiCl₄ zu SiO₂-Partikeln oxidiert, und diese auf einem Substratrohr abgeschieden und sofort verglast werden.

- Durch Einleiten von Fluor in die Plasmaflamme wird ein Mantelglasrohr aus fluordotiertem Quarzglas erhalten. Das Substratrohr besteht aus dotiertem oder aus
 undotiertem Quarzglas. Das so erhaltene Mantelglasrohr wird als Umhüllungsmaterial für ein Kernglas für die Herstellung einer Vorform für optische Fasern
 verwendet.
- Durch Elongieren der Vorform in einem Ziehverfahren werden daraus optische Fasern erhalten. Diese werden unter anderem für die Übertragung energiereicher, ultravioletter Strahlung, beispielsweise für Anwendungen in der Spektroskopie, in der Medizintechnik oder in der Photolithographie zur Herstellung von Halbleiterbauelementen eingesetzt. Die entsprechenden Apparate und Maschinen sind häufig mit Excimerlasern bestückt, die energiereiche, gepulste Laserstrahlung einer Wellenlänge von 248 nm (KrF-Laser) oder von 193 nm (ArF-Laser) abgeben.
 - Kurzwellige UV-Strahlung im Wellenlängenbereich zwischen 190 nm und 250 nm kann im Quarzglas der Fasern Defekte erzeugen, die zu Absorptionen führen. Es sind verschiedene Schädigungsmechanismen und -verläufe beschrieben worden.
- Häufig zeigen die Quarzglasfasem eine allmähliche Abnahme der Transmission von Beginn der Bestrahlung an. Die Transmission verringert sich bis zu einem

25

"Plateauwert", ab dem sie sich åuch bei längerer Bestrahlung nur noch wenig verändert. Dieser Effekt wird als "Fotodegradation" bezeichnet. Das Ausmaß der Defektbildung und der Fotodegradation hängen von der Qualität des jeweiligen Quarzglases ab, die im Wesentlichen durch strukturelle Eigenschaften, wie Dichte, Brechzahlverlauf, Homogenität und chemische Zusammensetzung bestimmt wird. Ein wesentlicher Parameter ist dabei die Anzahl sogenannter "Vorläuferzentren". Darunter werden bereits anfänglich in der Quarzglasmatrix der Vorform oder der Faser vorhandene Defekte verstanden, die bei andauemder UV-Bestrahlung zum Anstieg der Absorption führen (induzierte Absorption). Es hat sich gezeigt, dass bei dem bekannten Verfahren - vermutlich infolge des UV-Anteils der Plasmaflamme - sowohl eine induzierte Absorption im UV-Wellenlängenbereich hervorgerufen wird, die zu einer geringen Anfangstransmission der optischen Faser führen kann, als auch "Vorläuferzentren" in großer Zahl im Kernglaszylinder während der Abscheidung der Mantelglasschicht erzeugt werden, die zu einer verstärkten Fotodegradation in der Faser führen. Die nach dem bekannten Verfahren hergestellten Vorformen führen daher häufig zu einem ungünstigen Verhalten der daraus gezogenen Faser gegenüber kurzwelliger UV-Strahlung.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein wirtschaftliches Verfahren zur Herstellung einer Vorform bereitzustellen, aus der Fasem mit hoher Anfangstransmission im UV-Wellenlängenbereich und mit guter Beständigkeit gegenüber kurzweiliger UVStrahlung erhalten werden können.

Diese Aufgabe wird ausgehend von dem eingangs genannten Verfahren erfindungsgemäß einerseits dadurch gelöst, dass zur Bildung und Abscheidung der SiO $_2$ -Partikel auf dem Kernglaszylinder eine Plasmaflamme eingesetzt wird, die ultraviolettes Licht einer Wellenlänge von 214 nm mit einer Intensität von mindestens 0,9 μ W – ermittelt anhand der Plasmaflammenintensitätsmessung – abstrahlt.

Bei einer ersten Variante des erfindungsgemäßen Verfahrens wird zur Bildung und Abscheidung der SiO₂-Partikel auf dem Kernglaszylinder eine Plasmaflamme erzeugt, die eine Mindestintensität an ultravioletter Strahlung von 0,9 µW bei der Wellenlänge von 214 nm abstrahlt. Eine geeignete Methode für die Messung der Plasmaflammenintensität im ultravioletten Wellenlängenbereich ist bisher in der

Fachliteratur noch nicht beschrieben worden. Um die von der Plasmaflamme abgestrahlte UV-Strahlung quantitativ bestimmen zu können, wurde daher eine Methode entwickelt, deren Messaufbau und Messbedingungen weiter unten anhand Figur 3 erläutert sind. Diese Messmethode wird im Folgenden auch als PFI-Methode (Plasma-Flammen-Intensitätsmessung) bezeichnet.

Anhand derartiger Messungen der Plasmaflammenintensität zeigte sich erwartungsgemäß, dass die abgestrahlte UV-Intensität mit der in das Plasma eingespeisten elektrischen Leistung zunimmt. Bei den bisherigen POD-Verfahren liegt die Intensität der UV-Strahlung dieser Wellenlänge standardmäßig bei etwa 0,8 µW. Es wurde gefunden, dass bei einer Erhöhung der Intensität an kurzwelliger UV-Strahlung der Plasmaflamme Vorformen erhalten werden, aus denen optische Fasern gezogen werden, die sich durch einen höhere Anfangstransmission im UV sowie ein besseres Schädigungsverhalten gegenüber energiereicher UV-Strahlung auszeichnen.

Eine mögliche Erklärung für diesen überraschenden Effekt besteht darin, dass 15 infolge der hohen UV-Intensität bei der Wellenlänge von 214 nm eine Defektbildung einsetzt, die von der Oberfläche des Kernglaszylinders nach Innen abnimmt. Es handelt sich dabei sowohl um solche Defekte, die eine Absorption im UV-Bereich erzeugen (induzierte Absorption), als auch um "Vorläuferdefekte". Diese Defekte bewirken wiederum eine Absorption mit einem Maximum, das ebenfalls 20 im Bereich der Wellenlänge von 214 nm liegt, und die insbesondere im oberflächennahen Bereich besonders wirksam ist. Die so erzeugte "Eigenabsorption" des Kernglaszylinders vermindert daher die weitere Einwirkung von energiereichem UV-Licht der Plasmaflamme, so dass das Eindringen der schädigenden UV-Strahlung in zentrale Schichten des Kernglaszylinders, wo die Ausbildung von Defekten und Vorläuferdefekten besonders kritisch ist, vermindert wird. Wesentlich ist, dass der Kernglaszylinder durch diese "Eigenabsorption" insbesondere von UV-Strahlung aus dem Wellenlängenbereich zwischen 190 und 240 nm abgeschirmt wird, denn diese Strahlung ist für das Auslösen von Defekten mit UV-Absorptionsbanden und deren Vorläuferdefekten im Kernglaszylinder entschei-30 dend. UV-Strahlung mit einer Wellenlänge unterhalb von etwa 190 nm wird durch

die Luft- oder Eigenabsorption der Plasmaflamme weitestgehend vom Kernglas-

zylinder ferngehalten, während der vergleichsweise längerwellige UV-Strahlungsanteil der Plasmaflamme oberhalb von 240 nm keine nennenswerten Defekte in Quarzglas erzeugt.

Beim erfindungsgemäßen Verfahren wird somit durch die rasche Erzeugung von UV-Strahlung absorbierenden Defekten die weitere Einwirkung schädlicher UV-Strahlung der Plasmaflamme auf den Kernglaszylinder verringert. Die aufgrund der hohen Intensität der Plasmaflamme verursachte Schädigung der Oberfläche des Kernglaszylinders bewirkt somit letztendlich nicht eine Erhöhung, sondern überraschenderweise eine Verringerung der mittleren effektiven Schädigungsdosis pro Volumen an Kernglaszylindermaterial im Vergleich zu der Verfahrensweise 10 nach dem Stand der Technik. Dabei ist die Phase des Abscheideprozesses entscheidend, bei dem noch keine oder eine nur dünne Mantelglasschicht auf dem Kernglaszylinder vorhanden ist. In einer späteren Phase des Abscheideprozesses kann die UV-Intensität der Plasmaflamme auch wieder abgesenkt werden. Das Plasma wird mittels hochfrequentem Wechselstrom erzeugt. Die UV-Intensität der 15 Plasmaflamme bei der Wellenlänge 214 nm wird durch die in das Plasma eingebrachte elektrische Leistung bestimmt. Je größer diese Leistung ist, um so größer ist im allgemeinen die UV-Intensität der Plasmaflamme, sofem keine dem entgegenwirkenden Maßnahmen getroffen werden, wie beispielsweise die Einleitung eines UV-absorbierenden Gases in die Plasmaflamme. Das erfindungsgemäße Verfahren erweist sich als besonders vorteilhaft bei Vorformen, aus denen optische Fasern hergestellt werden, die in Verbindung mit ultraviolettem Licht geringer Wellenlänge eingesetzt werden sollen. Die so erzeugte Vorform weist insbesondere im Zentrum eine vergleichsweise geringe Anzahl an Defekten und Vorläuferdefekten auf, so dass bei Einsatz einer Faser aus einer erfindungsgemäß hergestellten Vorform in Verbindung mit Excimerstrahlung von 248 nm und 193 nm sowohl eine hohe anfängliche Transmission im UV-Bereich als auch eine geringe induzierte Dämpfung beobachtet wird.

Dieses Ergebnis wurde für einen bestimmten Abstandsbereich zwischen der Oberfläche der sich bildenden Vorform (Kernglaszylinder bzw. darauf abgeschie-30 denes Mantelglas) und der Plasmaflamme gefunden. Es wird angenommen, dass dieser Abstand einen geringen Einfluss auf die defekterzeugende Wirkung der

UV-Strahlung hat, so dass sich bei anderen Abständen ähnliche oder geringfügig abweichende Resultate ergeben dürften. Die Plasmaflamme wird innerhalb einer Reaktionshülse erzeugt, die von einer Hochfrequenzspule umgeben ist. Diese gibt den Anregungsbereich für das Plasma vor, wenn auch der sichtbare Bereich der Plasmaflamme über das Ende der Hochfrequenzspule hinausragen kann. Zwecks einer definierten Angabe des Abstandes zwischen der Oberfläche der sich bildenden Vorform und der Plasmaflamme wird das der Vorform zugewandte Ende der Hochfrequenzspule als Ort der Plasmaflamme definiert. Gemessen von diesem Ort ergibt sich der in der Praxis eingestellte Abstandsbereich zwischen der Oberfläche der sich bildenden Vorform und der Plasmaflamme zwischen 60 mm und 90 mm

In einer bevorzugten Verfahrensweise wird eine Plasmaflamme eingesetzt, die Licht einer Wellenlänge von 214 nm mit einer Intensität im Bereich von 1,0 μW bis 1,4 μW abstrahlt.

UV-Strahlung von 214 nm oberhalb der angegebenen Intensitätsuntergrenze bewirkt eine besonders rasche Ausbildung der UV-Strahlung absorbierenden Schädigung, welche die weitere Einwirkung der UV-Strahlung der Plasmaflamme und die damit einhergehende Defektbildung im Zentrum des Kernglaszylinders vermindert. Bei einer Intensität oberhalb der genannten Obergrenze überwiegt die Stärke der im Randbereich verursachten Schädigungen deren absorbierende und abschirmende Wirkung.

Es hat sich auch als günstig erwiesen, die Zylindermantelfläche des Kernglaszylinders beim Abscheiden von SiO₂ auf einer Oberflächentemperatur im Bereich zwischen 1550°C und 2000°C, vorzugsweise im Bereich zwischen 1700°C und 1900°C, zu halten, mit der Maßgabe, dass der Kernglaszylinder einen Außendurchmesser von mindestens 40 mm, vorzugsweise von mindestens 60 mm aufweist.

Beim Abscheideprozess kommt es zu einer Erwärmung des Kernglaszylinders, die dazu führt, dass Diffusionsvorgänge schneller ablaufen. Dadurch können beispielsweise Verunreinigungen leichter in das Zentrum des Kernglaszylinders gelangen, oder es können vorgegebene Konzentrationsprofile einer Dotierstoffver-

20

teilung beeinträchtigt werden. Daher ist es wünschenswert, die Erwärmung des Kernglaszylinders beim Abscheiden möglichst gering zu halten. Andererseits ist eine gewisse Erwärmung zum Abscheiden und Sintern der Mantelglasschicht unumgänglich. Die Temperatur nimmt von der Zylindermantelfläche des Kernglaszylinders aus nach innen hin ab. Im Innern des Kernglaszylinders herrscht somit eine niedrigere Temperatur als im Bereich der Zylindermantelfläche. Bei Einsatz eines Kernglaszylinders mit dem Außendurchmesser von mindestens 40 mm, vorzugsweise mindestens 60 mm und in Verbindung mit der genannten Oberflächentemperatur - die im Auftreffpunkt der Plasmaflamme auf der Oberfläche des Kernglaszylinders (oder im Auftreffpunkt der Verlängerung der Hauptausbreitungsrichtung der Plasmaflamme in Richtung auf die Oberfläche) - gemessen wird, herrscht im Zentrum des Kernglaszylinders offenbar eine so geringe Temperatur, dass sich Diffusionsvorgänge wenig bemerkbar machen. Dadurch werden Reinheit und Reproduzierbarkeit der Fasereigenschaften verbessert und die Einhaltung der Vorgaben für das Brechzahlprofil und der Dämpfungseigenschaften des Kernglaszylinders wird erleichtert.

Im Hinblick auf eine hohe Transmission hat es sich weiterhin als vorteilhaft erwiesen, wenn die SiO₂-Partikel auf der Zylindermantelfläche in Schichten mit einer Schichtdicke abgeschieden werden, derart, dass sie in der optischen Faser Lagen mit Lagenstärken von maximal 0,05 µm ergeben.

Durch die Ausbildung dünner Schichten auf der Zylindermantelfläche wird in Abhängigkeit vom Ausziehverhältnis zwischen Vorform und Faser erreicht, dass diese Schichten in der aus der Vorform gezogenen optischen Faser in Lagen mit Dicken von weniger als 0,05 µm vorliegen. Diese Lagenstärke liegt deutlich unterhalb der Wellenlänge des in der Faser geführten Lichts, so dass Wechselwirkungen zwischen den einzelnen Lagen und dem Licht vermieden werden. Im Gegensatz hierzu können dickere Schichten, welche in der optischen Faser zu Lagen mit einer Dicke von mehr als 0,1 führen, und die somit in der Größenordnung der Wellenlänge des darin geführten Lichtes liegen, die optische Transmission beeinträchtigen. Der Kerndurchmesser einer typischen Multimodefaser liegt bei 200 µm. Bei Einsatz eines Kernglaszylinder mit einem Außendurchmesser von 70 mm ergibt sich ein Ausziehverhältnis von 350, so dass bei diesem Beispiel vorteilhafte

. 25

Schichtdicken der Mantelglasschicht erfindungsgemäß bei weniger als 15 μm liegen.

Die oben angegebene Aufgabe wird ausgehend von dem eingangs beschriebenen Verfahren zur Herstellung einer Vorform unter Einsatz eines Mantelglasrohres erfindungsgemäß auch dadurch gelöst, dass das Mantelglasrohr auf den Kernglaszylinder aufkollabiert wird, und dass vor dem Aufkollabieren das Substratrohr entfernt wird.

Bei dieser Variante des erfindungsgemäßen Verfahrens wird als Träger für das POD-Verfahren nicht der Kernglaszylinder eingesetzt, sondern ein Substratrohr aus Quarzglas. Dabei kommt es infolge des UV-Anteils der Plasmaflamme beim Abscheideprozess zwangsläufig zu einer Bildung von Defekten in der Quarzglasmatrix des Substratrohres, wie oben bereits erläutert.

Dadurch, dass das Substratrohr vor dem Aufkollabieren des Mantelglasrohres entfernt wird, hat jedoch die Schädigung des Substratrohres keine Auswirkung auf das Kernglas der Vorform und auf die daraus erhaltene Faser. Der Kernglaszylinder bleibt bei dieser Verfahrensvariante somit vollkommen unbeeinflusst von der UV-Strahlung der Plasmaflamme.

Die im Mantelglas herstellungsbedingt erzeugten UV-absorbierenden Defekte und Vorläuferdefekte wirken sich auf die Dämpfung und Strahlenbeständigkeit der Faser nur wenig aus, da zum einen die Fluordotierung die Defektbildung vermindert und zu anderen die im Mantelglas geführte Intensität bei einer Multimodefaser mit einer typischen Numerischen Apertur (NA) von 0,22 und einem Kerndurchmesser von 200 µm gering ist. Die so erhaltenen Multimodefasern zeichnen sich durch eine geringe Absorption bei einer Wellenlänge von 214 nm aus, die bei deutlich weniger als 1 db/m, in der Regel sogar weniger als 0,7 db/m, liegt.

Das Substratrohr kann mechanisch (durch Schleifen, Polieren, Bohren) oder chemisch (durch Ätzen) entfernt werden. Die letztgenannte Verfahrensweise hat sich besonders bewährt.

Dadurch, dass das Substratrohr durch Ätzen entfernt wird, wird ein Eintragen von Verunreinigungen durch mechanische Werkzeuge oder Abrassivmittel in die auf dem Substratrohr abgeschiedene Mantelglasschicht vermieden.

Das Substratrohr kann nach Abschluss des POD-Verfahrens entfernt werden. Es hat sich aber als besonders günstig erwiesen, das Substratrohr während des Erzeugens des Mantelglasrohres durch Einleiten eines Ätzgases in dessen Innenbohrung abzuätzen.

Durch Abätzen des Substratrohres während des POD-Verfahrens wird die Prozesszeit - im Vergleich zu einem nachträglichen Abätzen - insgesamt verkürzt, 10 wodurch die Prozesskosten reduziert und eine unerwünschte Diffusion von Fluor infolge eines Heißprozesses verringert wird. Gleichzeitig kann das Ätzgas zur Stabilisierung der Innenbohrung einen vorgegebenen Innendruck erzeugen.

Als Ätzgas wird vorzugsweise SF₆ eingesetzt.

SF₆ bewirkt ein rasches Abätzen des Quarzglases unter Bildung von flüchtiger Verbindungen von Silizium und Fluor und es wirkt gleichzeitig einer Ausdiffusion von Fluor aus dem Mantelglasrohr entgegen.

Um einerseits eine ausreichende thermische Belastbarkeit des Substratrohres zu gewährleisten und andererseits das Abätzen zu erleichtern, wird ein Substratrohr eingesetzt, das eine Wandstärke im Bereich zwischen 2 und 10 mm aufweist.

- Bei der nach diesem Verfahren erhaltenen Vorform sind in der an die innere Mantelglasoberfläche angrenzenden Kontaktfläche keine oder wenige durch UV-Strahlung verursachten Defekte vorhanden, so dass eine aus dieser Vorform gezogene Multimodefaser bei einer Wellenlänge von 214 nm eine Dämpfung von maximal 1 db/m aufweist.
- Die erfindungsgemäß hergestellte Vorform wird besonders bevorzugt zur Herstel-25 lung von Fasern für die Übertragung von UV-Strahlung hoher Energiedichte im Wellenlängenbereich zwischen 190 und 250 nm eingesetzt. Sie ist aufgrund ihrer hohen Transmission und ihrer Strahlenbeständigkeit insbesondere für die Übertragung von energiereicher Excimerlaser-UV-Strahlung mit Wellenlängen von 248 nm und 193 nm gut geeignet.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und einer Patentzeichnung näher erläutert. In der Zeichnung zeigen im Einzelnen

- Figur 1 das POD-Verfahren zur Herstellung einer Vorform in schematischer Darstellung,
- 5 **Figur 2** einen radialen Querschnitt einer nach dem erfindungsgemäßen Verfahren hergestellten Vorform in schematischer Darstellung,
 - Figur 3 den zur Messung der Intensität der Plasmaflamme im UV-Wellenlängenbereich eingesetzten Messaufbau nach der PFI-Methode,
- 10 **Figur 4** ein Diagramm zur Absorption der im Kernglaszylinder erzeugten Schädigungen durch den UV-Anteil der Plasmaflamme, und
 - Figur 5 ein Diagramm zur optischen Dämpfung verschiedener optischer Fasern im Wellenlängenbereich zwischen 200 und 350 nm.

In Figur 1 ist schematisch das Verfahren zur Herstellung einer Vorform für sogenannte Multimode-Fasern mit stufenförmigen Brechungsindexprofil dargestellt. Hierzu wird ein Stab 3 aus hochreinem, undotiertem synthetischem Quarzglas mit einem Durchmesser von 85 mm bereitgestellt und mittels eines "Plasma-Outside-Deposition-Verfahrens" (POD-Verfahren) mit einem Mantel 4 aus fluordotiertem Quarzglas beschichtet. Einem Plasmabrenner 1 werden hierzu SiCl4, Sauerstoff und SF₆ zugeführt und in einer dem Plasmabrenner 1 zugeordneten Brennerflamme 2 zu SiO₂-Partikeln umgesetzt. Die Hauptausbreitungsrichtung der Plasmaflamme 2 ist durch eine punktierte Linie 5 angedeutet. Indem der Plasmabrenner 1 entlang des Stabes 3 reversierend von einem Ende zum anderen Ende bewegt wird, werden die SiO₂-Partikel schichtweise auf der Zylindermantelfläche des um seine Längsachse 6 rotierenden Stabes 3 abgeschieden. Auf diese Weise 25 gelingt es, hohe Fluorkonzentrationen von mehr als 3 Gew.-% in dem Quarzglasnetzwerk des Mantels 4 einzubinden. Die Plasmaflamme 2 wird innerhalb einer Reaktionshülse 8 aus Quarzglas erzeugt, das von einer Hochfrequenzspule 7 umgeben ist. Die Hochfrequenzspule 7 hat eine Höhe von ca. 92 mm und sie wird von der Reaktionshülse 8 um ca. 7,5 mm überragt. Zwischen dem oberen Ende 30

15

der Hochfrequenzspule 7 und der Oberfläche des Stabes 3 wird ein Abstand von 65 mm eingestellt, der auch im Verlaufe des Abscheideprozesses nicht verändert wird.

Erfindungsgemäß wird die Stärke des Plasmas durch Einspeisen einer entsprechenden elektrischen Leistung so eingestellt, dass die Plasmaflamme 2 UV-Strahlung einer Wellenlänge von 214 nm mit einer Intensität von 1,3 µW abstrahlt. Dadurch werden in dem Stab 3 und insbesondere in den oberflächennahen Bereichen des Stabes 3 Defekte und Vorläuferdefekte erzeugt, die eine Absorption im Wellenlängenbereich zwischen 190 und 250 nm bewirken und die weiter unten anhand der Figuren 4 und 5 noch näher erläutert werden.

Im Bereich des Auftreffpunktes der Plasmaflamme 2 auf der Oberfläche des Stabes 3 bzw. des Mantels 4 wird mittels einer IR-Kamera kontinuierlich die Oberflächentemperatur gemessen. Mit zunehmendem Außendurchmesser der sich bildenden Vorform nimmt die Oberfläche zu und damit die Oberflächentemperatur ab. Um im Bereich der Oberfläche eine konstante Temperatur von 1800 °C aufrecht zu erhalten, wird die Intensität der Plasmaflamme 2 fortlaufend erhöht.

Die Rotationsgeschwindigkeit des Stabes 3 und die Translationsgeschwindigkeit des Plasmabrenners 1 werden so eingestellt, dass die einzelnen Mantelglasschichten eine mittlere Stärke von etwa 12 μm aufweisen. Diese führen bei einem Ausziehverhältnis von Vorform und Faser zu einer Multimodefaser mit einem Kerndurchmesser von 200 μm und zu Mantelglas-Lagen mit Lagenstärken um 0,03 μm, die deutlich unterhalb der Arbeitswellenlänge beim bestimmungsgemäßen Einsatz der Faser liegen und daher deren Transmissionseigenschaften nicht beeinträchtigen.

Figur 2 zeigt die nach dem Verfahren erhaltene Vorform in einem radialen Querschnitt. Die Bezugsziffer 21 ist der Vorform für optische Fasern insgesamt zugeordnet. Die Vorform besteht aus einem Kern 22 aus reinem Quarzglas, das einen Brechungsindex bei 633 nm von 1,4571 aufweist, und aus einem Mantel 23 aus fluordotiertem Quarzglas, das bei einer Wellenlänge von 633 nm einen Brechungsindex von 1,440 aufweist. Der Fluorgehalt des Mantelglases liegt bei 5 Gew.-%. Der Gehalt an Hydroxylgruppen im Kern 22 liegt bei 700 Gew.-ppm.

Der Kern 22 hat einen Durchmesser von 85 mm, und der Mantel 23 einen Außendurchmesser von 93,5 mm. Im Bereich der Kontaktfläche zwischen Kern 22 und Mantel 23 ist ein in den Kern 22 hineinreichender Bereich durch punktierte Linien angedeutet, der eine mit strukturellen Defekten besonders stark durchsetzte "Schädigungsschicht" 24 andeutet. Die Defekte der Schädigungsschicht 24 werden während des Abscheideprozesses infolge der hohen UV-Intensität der Plasmaflamme 2 erzeugt. Die Dichte dieser Defekte nimmt innerhalb der Schädigungsschicht 24 und auch innerhalb des Kerns 22 von außen nach innen ab, so dass eine genaue Dicke nicht angegeben werden kann.

Nachfolgend wird die für die Messung der UV-Intensität der Plasmaflamme verwendete Messmethode und der Messaufbau anhand von Figur 3 beschrieben:

Bei der hier eingesetzten PFI-Methode zur Plasmaflammenintensitätsbestimmung wird ein Teil des Flammenzentrums der Plasmaflamme 2 auf eine kalibrierte Fotodiode 31 abgebildet. Mit einer CaF₂-Linse 32, die sich in einem Abstand von 23 cm vom Zentrum der Plasmaflamme 2 befindet, wird ein Beobachtungspunkt aus dem Flammenzentrum auf eine Polymicro UVMI-Faser 33 einer Länge von 50 cm abgebildet. Das vordere Faserende hat von der Längsachse der CaF₂-Linse 32 einen Abstand von 9,48 cm. Das am anderen Faserende der UVMI-Faser 33 austretende Licht wird nach Durchlaufen eines Bandpassfilters 34, der ein Maximum der Transmission bei einer Wellenlänge um 214 nm aufweist, auf die Fotodiode 31 gelenkt. Die Fläche der Fotodiode 31 wird hierbei nicht vollständig ausgeleuchtet. Wichtige Kenngrößen der optischen Komponenten für diese Messung der UV-Intensität der Plasmaflamme bei einer Wellenlänge von 214 nm sind:

CaF₂-Linse 32:

15

20

25 Brennweite 94,8 mm; Transmission 92,4%

UVMI-Faser 33:

Länge: 0,5 m; Kerndurchmesser: 200 μm; Transmission 84,3%, NA = 0,22 Bandpassfilter 34:

Mittenwellenlänge: 214 nm; FWHM-Bandbreite: 10 nm; Transmission: 17,3 %

30 Fotodiode 31:

Photostrom/Lichtleistung: 0,77 mA/mW

Die eingesetzte UVMI-Faser 33 ist mit Wasserstoff beladen und weist im Messbereich der UV-Strahlung keine Fotodegradation auf. Die Fotodegradation der übrigen Komponenten ist zu vernachlässigen.

Die Durchmesser D des Beobachtungspunktes resultiert aus der Numerischen Apertur (NA) der Faser 33 und der Brennweite der eingesetzten Linse 32 zu:

 $D = 2 \cdot \tan(\arcsin(NA)) \cdot 9,48 \text{cm} = 4,2 \text{cm}.$

Die Blickrichtung erfolgt nicht senkrecht zur vertikal verlaufenden Hauptausbreitungsrichtung 35 der Plasmaflamme 2, sondern in einem Winkel von ca. 82° dazu, wie dies die Winkelangabe zur Horizontalen 36 ausweist. Als Beobachtungspunkt innerhalb der Plasmaflamme 2 wird der Bereich maximaler Intensität am oberen Rand der Reaktionshülse 8 (und außerhalb dieser) gewählt, welche die Spule 7 um 5 -10 mm überragt. Es ist anzunehmen, dass innerhalb der Reaktionshülse 8 auch eine noch höhere UV-Intensität gemessen werden könnte, was aber in der Praxis nur mit großem Aufwand zu bestimmen ist. Die Messung liefert als Ergebnis eine integrale Intensität über einen Bereich der Plasmaflamme 2, der in Figur 3 als Projektion 30 des Messflecks auf die umhüllende der Plasmaflamme 2 angedeutet ist.

Das Diagramm von Figur 4 zeigt schematisch über dem Wellenlängenbereich zwischen 180 nm und 360 nm die relative Transmission (bezogen auf die Anfangstransmission) von Quarzglas nach der Schädigung infolge der UV-Strahlung der Plasmaflamme 2. Die dabei erzeugten Defekte rufen einen Absorptionsverlauf 41 hervor, für den eine ausgeprägte Absorptionsbande bei einer Wellenlänge von 214 nm charakteristisch ist. Es konnte gezeigt werden, dass sich die Absorptionsbande 41 im Wesentlichen durch die Überlagerung der Absorptionen zweier Defektarten ergibt. Die eine dieser Defektarten zeigt einen Absorptionsverlauf mit ausgeprägtem Absorptionsmaximum bei einer Wellenlänge von 214 nm (hervorgerufen durch sogenannte E'-Zentren; Linie 42) und die andere bewirkt im Wellenlängenbereich um 265 nm einen flachen Absorptionsverlauf (hervorgerufen durch sogenannte NBOH-Zentren; Linie 43). Insgesamt bewirken die so erzeugten Defekte nachfolgend eine Absorption UV-Strahlung der Plasmaflamme 2 im Wel-

lenlängenbereich zwischen 180 nm und 260 nm und damit eine Verringerung der UV-Belastung des Zentrums der Kernglasschicht 22 (Figur 2).

In dem Diagramm von Figur 5 ist auf der y-Achse die an optischen Fasern gemessene Dämpfung in dB/m, und auf der x-Achse die Wellenlänge aufgetragen.

Die obere der beiden dargestellten Kurven 51 zeigt den Dämpfungsverlauf über dem Wellenlängenbereich von 200 bis 350 nm bei einer nach dem Stand der Technik hergestellten optischen Faser mit einer Intensität der Plasmaflamme von 0,7 μW beim POD-Prozess. Die darunter liegende Kurve 52 zeigt den Dämpfungsverlauf bei einer optischen Faser, die aus einer nach dem erfindungsgemäßen Verfahren hergestellten Vorform hergestellt worden ist (mit einer Intensität der Plasmaflamme von 1,2 μW beim POD-Prozess).

Daraus ist ersichtlich, dass die optische Dämpfung, insbesondere bei kurzen Wellenlängen im Bereich zwischen 210 und 300 nm bei der nach dem erfindungsgemäßen Verfahren hergestellten optischen Fasern 52 geringer ist als bei der nach dem Standardverfahren hergestellten Faser 51. Die Faser 52 zeigt insbesondere im Bereich der Wellenlängen um 215 nm und 265 nm ein deutlich geringere Absorption und ist daher für Anwendungen für die Übertragung ultravioletter Strahlung, insbesondere für die Übertragung von energiereicher UV-Strahlung einer Wellenlänge von 248 nm und 193 nm, gut geeignet.

20 Alternativ zu dem anhand Figur 1 erläuterten Verfahren wird die Mantelglasschicht mittels POD-Verfahren auf einem Substratrohr aus Quarzglas abgeschieden. Das Substratrohr hat einen Außendurchmesser von 86 mm und eine Wandstärke von 4 mm.

Während des Abscheideprozesses wird in die Bohrung des Substratrohres ein Ätzgasstrom aus SF₆ eingeleitet. Auf dem Substratrohr wird wie anhand Figur 1 beschreiben eine Mantelglasschicht mit einer Dicke von ca. 4,3 mm erzeugt. Der Ätzgasstrom aus SF₆ ist so bemessen, dass unmittelbar vor Abschluss des Außenabscheideprozesses das Substratrohr vollständig abgetragen, und lediglich das Mantelglasrohr mit einer Wandstärke von ca. 4 mm erhalten wird.

Zur Herstellung einer Vorform wird das Mantelglasrohr auf einen Kernstab mit einem Durchmesser von 85 mm aufkollabiert. Die Vorform zeichnet sich dadurch

aus, dass ihr Kernglas trotz eines im POD-Verfahren erzeugten Mantels keinerlei Defekte aufweist, die durch UV-Strahlung – etwa der Plasmaflamme – entstanden sind. Aus der Vorform wird eine Multimodefaser mit einem Kerndurchmesser von 200 µm gezogen. Diese weist bei einer Wellenlänge von 214 nm eine anfängliche Dämpfung von 0,6 dB/m auf. Die Faser wurde außerdem einem UV-Bestrahlungstest unterworfen, wobei eine 2 m lange Faser mit 200 µm Kerndurchmesser vier Stunden lang mit einer Deuteriumlampe bestrahlt wurde. Die in die Faser eingekoppelte Leistung betrug hierbei 70 nW/nm bei der Wellenlänge 214 nm. Unter diesen Bedingungen wurde eine Zusatzdämpfung von 4dB bei 214 nm festgestellt.

Die aus der Vorform gezogenen Fasern zeichnen sich durch hohe Transmission für UV-Strahlung im Wellenlängenbereich zwischen 190 und 250 nm und durch eine gute UV-Strahlenbeständigkeit aus.

10

20

25

Patentansprüche

- 1. Verfahren zur Herstellung einer Vorform für optische Fasern, durch Erzeugen eines mit Fluor dotierten SiO₂-Mantelglases (4) auf einem um seine Längsachse (6) rotierenden Kernglaszylinder (3), indem einem Plasmabrenner (1) eine siliziumhaltige Ausgangssubstanz zugeführt wird, diese in einer dem Plasmabrenner (1) zugeordneten Plasmaflamme (2) zu SiO₂-Partikeln oxidiert und die SiO₂-Partikel unter Gegenwart von Fluor auf der Zylindermantelfläche des Kernglaszylinders (3) schichtweise abgeschieden und zu dem Mantelglas (4) gesintert werden, dadurch gekennzeichnet, dass zur Bildung und Abscheidung der SiO₂-Partikel auf dem Kernglaszylinder (3) eine Plasmaflamme (2) eingesetzt wird, die ultraviolettes Licht einer Wellenlänge von 214 nm mit einer Intensität von mindestens 0,9 μW ermittelt anhand der Plasmaflammenintensitätsmessung abstrahlt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Plasmaflamme (2) eingesetzt wird, die Licht einer Wellenlänge von 214 nm mit einer Intensität im Bereich von 1,0 μW bis 1,4 μW abstrahlt.
 - 3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zylindermantelfläche des Kernglaszylinders (3) beim Abscheiden von SiO₂ auf einer Oberflächentemperatur im Bereich zwischen 1550°C und 2000°C gehalten wird, und dass der Kernglaszylinder (3) einen Außendurchmesser von mindestens 40 mm aufweist.
 - 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Zylindermantelfläche des Kernglaszylinders (3) beim Abscheiden von SiO₂ auf einer Oberflächentemperatur im Bereich zwischen 1700°C und 1900°C gehalten wird, und dass der Kernglaszylinder (3) einen Außendurchmesser von mindestens 60 mm aufweist.

- 5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die SiO₂-Partikel auf der Zylindermantelfläche in Schichten mit einer Schichtdicke abgeschieden werden, derart, dass sie in der optischen Faser Lagen mit Lagenstärken von maximal 0,05 µm ergeben.
- 5 6. Verfahren zur Herstellung einer Vorform für optische Fasem, durch Bereitstellen eines Mantelglasrohres aus mit Fluor dotiertem Quarzglas zur Umhüllung eines Kernglases, wobei zum Erzeugen des Mantelglasrohres einem Plasmabrenner eine siliziumhaltige Ausgangssubstanz zugeführt, diese in einer dem Plasmabrenner zugeordneten Plasmaflamme zu SiO₂-Partikeln oxidiert und die SiO₂-Partikel unter Gegenwart von Fluor auf der Zylindermantelfläche eines um seine Längsachse rotierenden Substratrohres aus Quarzglas schichtweise abgeschieden und gesintert werden, dadurch gekennzeichnet, dass das Mantelglasrohr auf den Kernglaszylinder aufkollabiert wird, und dass vor dem Aufkollabieren das Substratrohr entfernt wird.
- Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Substratrohr durch Ätzen entfernt wird.
 - 8. Verfahren nach Anspruch 6 oder7, dadurch gekennzeichnet, dass das Substratrohr während des Erzeugens des Mantelglasrohres durch Einleiten eines Ätzgases in dessen Innenbohrung abgeätzt wird.
- Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als Ätzgas SF₆
 eingesetzt wird.
 - 10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass ein Substratrohr eingesetzt wird, das eine Wandstärke im Bereich zwischen 2 mm und 10 mm aufweist.

1/2

INTERNATIONAL SEARCH REPORT

International application No. EP2004/003665

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)				
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:					
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:				
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Вох П	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
	mational Searching Authority found multiple inventions in this international application, as follows:				
2.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:				
4. X	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1- 5				
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.				

INTERNATIONAL SEARCH REPORT

International application No.

EP2004/003665

The International Searching Authority has determined that this international application contains multiple (groups of) inventions, namely

1. Claims 1-5

method of producing a preform by plasma deposition on a core glass rod using a particular plasma flame.

2. Claims 6-10

method of producing a preform by plasma deposition on a cladding substrate pipe, collapse of the pipe onto a core glass cylinder, the substrate pipe being removed prior to the collapse.

IN RNATIONAL SEARCH REPORT

Intermental Application No PCT/EP2004/003665

A CLASSIFICATION OF SUBJECT MATTER IPC 7 C03B37/014 C03B37/012

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC\ 7\ CO3B$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-In	ternal, PAJ		
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		·
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
A	US 4 162 908 A (RAU KARLHEINZ 31 July 1979 (1979-07-31) cited in the application claim 1	ET AL)	1
A	US 6 253 580 B1 (DANILOV EVGUEN BORISOVICH ET AL) 3 July 2001 (2001-07-03) cited in the application column 5, line 62 - column 6, l claim 1 column 4, line 38 - line 46	1	
A	WO 99/52832 A (GOUSKOV MIKHAIL DANILOV EVGUENI BORISOVICH (RU) MO) 21 October 1999 (1999-10-21 claims 1,5	; ASLAMI	1
X Furth	ner documents are listed in the continuation of box C.	X Patent family members are listed i	n annex.
"A" docume considi "E" earlier difiling di "L" docume which i citation "O" docume other n	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"T" later document published after the inte or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the do "Y" document of particular relevance; the cannot be considered to involve an inventive step when the document is combined with one or moments, such combination being obvious in the art. "&" document member of the same patent.	the application but sory underlying the laimed invention be considered to curnent is taken alone laimed invention ventive step when the re other such docuus to a person skilled family
	actual completion of the international search 8 July 2004	Date of mailing of the international sea	11. 2004
Name and m	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Stroud, J	

INSTERNATIONAL SEARCH REPORT

International Application No PCT/EP2004/003665

		PC1/EP2004/003003					
	C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Continuation of decrement with indication where appropriate, of the relevant passages Relevant to claim No.						
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Helevant to daim No.					
A	PATENT ABSTRACTS OF JAPAN vol. 1995, no. 02, 31 March 1995 (1995-03-31) & JP 6 321553 A (FUJIKURA LTD), 22 November 1994 (1994-11-22) abstract	1					
A	PATENT ABSTRACTS OF JAPAN vol. 0130, no. 56 (C-566), 8 February 1989 (1989-02-08) & JP 63 248733 A (HITACHI CABLE LTD), 17 October 1988 (1988-10-17) abstract						
A	PATENT ABSTRACTS OF JAPAN vol. 0130, no. 15 (C-559), 13 January 1989 (1989-01-13) & JP 63 222035 A (SUMITOMO ELECTRIC IND LTD), 14 September 1988 (1988-09-14) abstract	1					
A	BIRYUKOV A S ET AL: "USE OF A MICROWAVE DISCHARGE AT ATMOSPHERIC PRESSURE TO OBTAIN OPTICAL FIBERS WITH FLUOROSILICATE GLASS REFLECTING CLADDING" SOVIET TECHNICAL PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 17, no. 3, March 1991 (1991-03), pages 188-189, XP000242111 the whole document						

INMERNATIONAL SEARCH REPORT

Information on patent family members

Internation No PCT/EP2004/003665

<u></u>				20047005005
Patent document cited in search report	Publication date		Patent family member(s)	Publication date
US 4162908 A	31-07-1979	DE CH FR GB JP NL US	2536457 A1 620181 A5 2321459 A1 1492920 A 52024217 A 7609083 A ,B, RE30883 E	17-02-1977 14-11-1980 18-03-1977 23-11-1977 23-02-1977 18-02-1977 16-03-1982
US 6253580 B1	03-07-2001	AU AU BR CN DE GB HK JP WO WO ZA	1832899 A 7093000 A 9807783 A 2281541 A1 1129558 B 29823926 U1 2351287 A ,B 2337047 A 1037598 A1 2001512414 T 2217391 C2 575529 B 0116039 A1 9932412 A1 9811653 A	12-07-1999 26-03-2001 07-05-2002 01-07-1999 03-12-2003 13-01-2000 27-12-2000 10-11-1999 09-08-2002 21-08-2001 27-11-2003 11-02-2004 08-03-2001 01-07-1999 18-06-1999
WO 9952832 A	21-10-1999	AU BR CA CN EP JP RU WO US ZA	750390 B2 3488499 A 9909569 A 2328143 A1 1332702 T 1086053 A1 2003510234 T 2235071 C2 9952832 A1 6536240 B1 9902666 A	18-07-2002 01-11-1999 05-11-2002 21-10-1999 23-01-2002 28-03-2001 18-03-2003 27-08-2004 21-10-1999 25-03-2003 13-10-1999
JP 6321553 A	22-11-1994	JP	3428066 B2	22-07-2003
JP 63248733 A	17-10-1988	NONE		
JP 63222035 A	14-09-1988	JP JP	2114585 C 8032572 B	06-12-1996 29-03-1996

Internationales Aktenzeichen PCT/EP2004/003665

Feld II Bernerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1
Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
2. Ansprüche Nr. weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld III Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
siehe Zusatzblatt
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt: 1- 5
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

Die internationale Recherchenbehörde hat festgestellt, dass diese internationale Anmeldung mehrere (Gruppen von) Erfindungen enthält, nämlich:

1. Ansprüche: 1-5

Verfahren zur Herstellung einer Vorform durch Abscheidung mittels Plasma auf einem Kernglasstab, wobei eine bestimmte Plasmaflamme eingesetzt wird

2. Ansprüche: 6-10

Verfahren zur Herstellung einer Vorform durch Abscheidung mittels Plasma auf einem Mantelsubstratrohr, Aufkollabieren des Rohres auf einen Kernglaszylinder, wobei vor dem Kollabieren das Substratrohr von dem Mantelglas entfernt wird

Internationales Aktenzeichen PCT/EP2004/003665

A KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C03B37/014 C03B37/012 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C03B Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evt). verwendete Suchbegriffe) EPO-Internal, PAJ C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. US 4 162 908 A (RAU KARLHEINZ ET AL) 31. Juli 1979 (1979-07-31) Α in der Anmeldung erwähnt Anspruch 1 US 6 253 580 B1 (DANILOV EVGUENIC BORISOVICH ET AL) 3. Juli 2001 (2001-07-03) in der Anmeldung erwähnt Spalte 5, Zeile 62 - Spalte 6, Zeile 2; Anspruch 1 Spalte 4, Zeile 38 - Zeile 46 1 WO 99/52832 A (GOUSKOV MIKHAIL IVANOVICH; Α DANILOV EVGUENI BORISOVICH (RU); ASLAMI MO) 21. Oktober 1999 (1999-10-21) Ansprüche 1,5 Siehe Anhang Patentfamilie Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definlert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung soll oder die aus einem anderen besonderen Grund angegeben ist (wie kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist dem beanspruchten Prioritätsdatum veröffentlicht worden ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche **26.11.200**4 28. Juli 2004 Bevollmächtigter Bediensteter Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Stroud, J Fax: (+31-70) 340-3016

Internationales Aktenzeichen PCT/EP2004/003665

		/EP2004/003005
C.(Fortsetz	rung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie°	Bezeichnung der Veröftentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Te	eile Betr. Anspruch Nr.
A	PATENT ABSTRACTS OF JAPAN Bd. 1995, Nr. 02, 31. März 1995 (1995-03-31) & JP 6 321553 A (FUJIKURA LTD), 22. November 1994 (1994-11-22) Zusammenfassung	
A	PATENT ABSTRACTS OF JAPAN Bd. 0130, Nr. 56 (C-566), 8. Februar 1989 (1989-02-08) & JP 63 248733 A (HITACHI CABLE LTD), 17. Oktober 1988 (1988-10-17) Zusammenfassung	1
A	PATENT ABSTRACTS OF JAPAN Bd. 0130, Nr. 15 (C-559), 13. Januar 1989 (1989-01-13) & JP 63 222035 A (SUMITOMO ELECTRIC IND LTD), 14. September 1988 (1988-09-14) Zusammenfassung	1
A	BIRYUKOV A S ET AL: "USE OF A MICROWAVE DISCHARGE AT ATMOSPHERIC PRESSURE TO OBTAIN OPTICAL FIBERS WITH FLUOROSILICATE GLASS REFLECTING CLADDING" SOVIET TECHNICAL PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Bd. 17, Nr. 3, März 1991 (1991-03), Seiten 188-189, XP000242111 das ganze Dokument	

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP2004/003665

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 4162908 A	31-07-1979	DE CH FR GB JP NL US	2536457 A1 620181 A5 2321459 A1 1492920 A 52024217 A 7609083 A ,B, RE30883 E	17-02-1977 14-11-1980 18-03-1977 23-11-1977 23-02-1977 18-02-1977 16-03-1982
US 6253580 B1	03-07-2001	AU BR CA CN DE GB HK JP RU WO WO ZA	1832899 A 7093000 A 9807783 A 2281541 A1 1129558 B 29823926 U1 2351287 A ,B 2337047 A 1037598 A1 2001512414 T 2217391 C2 575529 B 0116039 A1 9932412 A1 9811653 A	12-07-1999 26-03-2001 07-05-2002 01-07-1999 03-12-2003 13-01-2000 27-12-2000 10-11-1999 09-08-2002 21-08-2001 27-11-2003 11-02-2004 08-03-2001 01-07-1999 18-06-1999
WO 9952832 A	21-10-1999	AU AU BR CA CN EP JP RU WO US	750390 B2 3488499 A 9909569 A 2328143 A1 1332702 T 1086053 A1 2003510234 T 2235071 C2 9952832 A1 6536240 B1 9902666 A	18-07-2002 01-11-1999 05-11-2002 21-10-1999 23-01-2002 28-03-2001 18-03-2003 27-08-2004 21-10-1999 25-03-2003 13-10-1999
JP 6321553 A	22-11-1994	JP	3428066 B2	22-07-2003
JP 63248733 A	17-10-1988	KEIN	E	
JP 63222035 A	14-09-1988	JP JP	2114585 C 8032572 B	06-12-1996 29-03-1996