TD1 : Équations de Cauchy–Riemann, séries entières, champs de vecteurs

Exercice 1

- 1. Soit f une fonction \mathcal{C}^1 sur un ouvert U de \mathbb{C} . Donner les relations entre $\frac{\partial f}{\partial z}, \frac{\partial \bar{f}}{\partial \bar{z}}, \frac{\partial f}{\partial \bar{z}}, \frac{\partial f}{\partial \bar{z}}$
- 2. Établir des formules pour les dérivées holomorphes et anti-holomorphes de composées.
- 3. Pour tout $z=x+iy\in\mathbb{C}^*$ on définit deux formes linéaires

$$dr = dr(z) = \frac{xdx + ydy}{\sqrt{x^2 + y^2}} \text{ et } d\theta = d\theta(z) = \frac{-ydx + xdy}{x^2 + y^2}.$$

On définit ainsi deux formes différentielles sur \mathbb{C}^* . Ces formes sont-elles fermées ? exactes ? Montrer qu'en tout $z \in \mathbb{C}^*$ les applications dr(z) et $d\theta(z)$ forment une \mathbb{C} -base de l'espace des applications \mathbb{R} -linéaires de \mathbb{C} dans \mathbb{C} . Si f est une fonction \mathcal{C}^1 sur un ouvert U de \mathbb{C}^* sa différentielle peut donc s'écrire

$$\mathrm{d}f = \frac{\partial f}{\partial r} \mathrm{d}r + \frac{\partial f}{\partial \theta} \mathrm{d}\theta.$$

Donner une interprétation géométrique de cette écriture.

- 4. Exprimer $\frac{\partial f}{\partial z}$ et $\frac{\partial f}{\partial \bar{z}}$ en fonction de $\frac{\partial f}{\partial r}$ et de $\frac{\partial f}{\partial \theta}$. Que deviennent les équations de Cauchy–Riemann en coordonnées polaires?
- 5. Discuter les ouverts connexes de \mathbb{C}^* sur les quels on peut définir un logarithme holomorphe. Faire de même pour les fonctions de la forme $z\mapsto z^\delta$ avec $\delta\in\mathbb{C}$. Comment différent les différentes déterminations de ces fonctions?

Exercice 2

Soient U un ouvert connexe de \mathbb{C} et f une fonction holomorphe sur U.

- 1. Montrer l'équivalence entre : f est constante ; $\Re(f)$ est constante ; $\operatorname{Im}(f)$ est constante ; et |f| est constante .
- 2. Que peut-on dire de f si \bar{f} est holomorphe?
- 3. On suppose qu'il existe une fonction $F \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ telle que pour tout $z \in U$ on a Im $(f(z)) = F(\Re(f(z)))$. Montrer que f est constante. Comment ce résultat s'interprète-t-il géométriquement?
- 4. Montrer que le résultat de la question 3 reste vrai sans hypothèse de régularité sur F.

Exercice 3

Soit U un ouvert connexe de \mathbb{C} . Soient f et g des fonctions holomorphes sur \mathbb{C} .

- 1. On suppose que $f(z) + \overline{g(z)}$ est réel pour tout $z \in U$. Montrer qu'il existe un réel c tel que f = g + c.
- 2. On suppose que g ne s'annule pas et que $f(z)\overline{g(z)}$ est réel pour tout $z \in U$. Montrer qu'il existe un réel c tel que f = cg.

Exercice 4

Soit m un entier naturel non-nul. Soient f_1, \ldots, f_m des fonctions sommes de séries entières sur le disque unité. On suppose que $|f_1|^2 + \cdots + |f_m|^2$ est constante sur le disque unité. Que peut-on dire de f_1, \ldots, f_m ?

Exercice 5

Soit U un ouvert connexe de \mathbb{C} et f une fonction analytique sur U tel que pour tout $z \in U$, un des coefficients du développement en série entière de f en z s'annule. Montrer que f est un polynôme.

Exercice 6

Soit f une fonction somme sur $\mathbb C$ d'une série entière $\sum_{n\geq 0}a_nz^n$. Pour tout $r\geq 0$ on note

$$M(r) = \sup_{|z| \le r} |f(z)| \text{ et } A(r) = \sup_{|z| \le r} \Re(f(z)).$$

$$\tag{1}$$

1. Montrer que pour tout entier $n \ge 1$ on a :

$$a_n = \frac{1}{\pi r^n} \int_0^{2\pi} \Re\left(f\left(re^{i\theta}\right)\right) e^{-in\theta} d\theta.$$

2. On suppose dans cette question que f(0)=0. Montrer que pour tout entier $n\geq 1$ et tout r>0 on a $|a_n|\leq \frac{2A(r)}{r^n}$. En déduire que pour tous R>r>0 on

$$M\left(r\right) \leq \frac{2r}{R-r}A\left(R\right).$$

3. En déduire que, dans le cas général, on a pour tous R > r > 0

$$M\left(r\right) \leq \frac{R+r}{R-r}\left|f\left(0\right)\right| + \frac{2r}{R-r}A\left(R\right).$$

Il s'agit du lemme de la partie réelle..

Exercice 7

Soit f une fonction holomorphe sur le disque unité. On suppose qu'il existe $r \in]0,1[$ tel que f est bornée par M sur $\partial \mathbb{D}(0,r)$ et qu'il existe $a \in \mathbb{D}(0,r)$ tel que f(a) = 0. Montrer que

$$|a| \ge \frac{|f(0)|}{M + |f(0)|}r.$$

Exercice 8

Soit U un ouvert de $\mathbb C$ et X un champ de vecteurs $\mathcal C^\infty$ sur U. On note $(\varphi_t)_{t\in\mathbb R}$ le flot engendré par X et on suppose que X est complet (ainsi pour tout $t\in\mathbb R$ l'application φ_t est un difféomorphisme de U sur lui-même). Montrer que φ_t est holomorphe pour tout $t\in\mathbb R$ si et seulement si X, vu comme une application de U dans $\mathbb C$, est holomorphe. En déduire qu'un tel flot n'a pas de $\mathit{cycle limite}$, c'est-à-dire d'orbite périodique isolée non-réduite à un point.

Exercice 9

Montrer que les champs de vecteurs \mathcal{C}^{∞} irrotationnels sur le disque unité ouvert sont exactements les gradients de fonctions \mathcal{C}^{∞} . Quels sont les champs de vecteurs de divergence nulle sur ce même disque?

Exercice 10

Soit U un ouvert de \mathbb{C} et X un champ de vecteurs \mathcal{C}^{∞} sur U. On note $(\varphi_t)_{t\in\mathbb{R}}$ le flot engendré par X et on suppose que X est complet (ainsi pour tout $t\in\mathbb{R}$ l'application φ_t est un difféomorphisme de U sur lui-même). Montrer que X est de divergence nulle si et seulement si $(\varphi_t)_{t\in\mathbb{R}}$ préserve l'aire (i.e. pour tout borélien E de U et tout $t\in\mathbb{R}$, la mesure de Lebesgue de E est la même que celle de $\varphi_t(E)$).

Exercice 11

Soit λ un nombre complexe non-nul. On considère une série entière

$$F(z) = \lambda z + \sum_{n \ge 2} a_n z^n.$$

Montrer que si λ n'est pas une racine de l'unité alors il existe une série entière $\psi(z) = \sum_{n \geq 1} b_n z^n$ telle que $b_1 \neq 0$ et $F(\psi(z)) = \psi(\lambda z)$. On dit que F est formellement conjuguée à son modèle linéaire $z \mapsto \lambda z$. Montrer que si le rayon de convergece de F est non-nul et $|\lambda| < 1$ alors on peut choisir ψ avec un rayon de convergence non-nul.

Exercice 12

Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction \mathcal{C}^{∞} à support compact. Montrer qu'il existe une fonction $\tilde{f}: \mathbb{C} \to C$ à support compact et \mathcal{C}^{∞} telle que la restriction de \tilde{f} à \mathbb{R} est f et pour tout $N \geq 0$ il existe une constante $C_N > 0$ telle que pour tout $z \in \mathbb{C}$ on ait

$$\left| \frac{\partial \tilde{f}}{\partial \bar{z}}(z) \right| \le C_N \left| \operatorname{Im} z \right|^N.$$

On dit que \tilde{f} est une extension presque analytique pour f.