수학 영역

정답

1	2	2	3	3	1	4	2	5	4
6	1	7	2	8	4	9	(5)	10	3
11	(5)	12	3	13	4	14	1	15	1
16	2	17	4	18	3	19	(5)	20	3
21	4	22	10	23	21	24	7	25	2
26	140	27	12	28	80	29	6	30	35

해설

1. [출제의도] 다항식 계산하기

 $A + B = (x^{2} - 2xy + y^{2}) + (x^{2} + 2xy + y^{2})$ $= 2x^{2} + 2y^{2}$

2. [출제의도] 복소수 계산하기

$$(3+i)+(1-3i) = (3+1)+\{1+(-3)\}i$$

= $4-2i$

3. [출제의도] 항등식의 성질 이해하기

 $x(x+1)+2(x+1)=x^2+3x+2=x^2+ax+b$ a=3 , b=2 따라서 a-b=3-2=1

4. [출제의도] 두 점 사이의 거리 계산하기

$$\overline{OA} = \sqrt{(5-0)^2 + \{(-5)-0\}^2} = \sqrt{50}$$
 $\overline{OB} = \sqrt{(1-0)^2 + (a-0)^2} = \sqrt{1+a^2}$
 $50 = 1+a^2$, $a = 7$

5. [출제의도] 선분의 내분점 계산하기

선분 AB를 2:1로 내분하는 점의 좌표가 (a,b)이므로

$$a = \frac{2 \times 5 + 1 \times (-4)}{2 + 1} = 2$$
,

$$b = \frac{2 \times 3 + 1 \times 0}{2 + 1} = 2$$

따라서 a+b=2+2=4

6. [출제의도] 절댓값을 포함한 일차부등식 이해하기

-7 < 2x+1 < 7, -4 < x < 3이므로 a=-4, b=3 따라서 $ab=-4\times 3=-12$

7. [출제의도] 다항식의 인수분해 이해하기

 $x^4 - x^2 - 12 = (x - 2)(x + 2)(x^2 + 3)$ a가 양수이므로 a = 2, b = 3따라서 a + b = 2 + 3 = 5

8. [출제의도] 이차방정식의 근과 계수의 관계 이해하기

이차방정식 $x^2+2x+k=0$ 의 서로 다른 두 근이 α , β 이므로 이차방정식의 근과 계수의 관계에 의하여 $\alpha+\beta=-2$, $\alpha\beta=k$

 $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = (-2)^{2} - 2k = 8$ k = -2

9. [출제의도] 두 직선의 평행 조건 이해하기

두 직선 3x+2y-5=0, 3x+y-1=0의 교점의 좌표는 (-1,4)직선 2x-y+4=0의 기울기는 2이므로 이 직선과 평행한 직선의 기울기도 2이다. 따라서 구하는 직선의 방정식은 $y=2\{x-(-1)\}+4=2x+6$ 이므로 y 절편은 6

10. [출제의도] 연립이차방정식 이해하기

$$\begin{cases} x-y+1=0 &\cdots \\ x^2-2y^2-2=0 &\cdots \\ \end{bmatrix}$$
 에서 $y=x+1$ 을 © 에 대입하면
$$x^2-2(x+1)^2-2=0 \ , \ (x+2)^2=0$$
 $x=-2 \ , \ y=-1$ 에서 $\alpha=-2 \ , \ \beta=-1$ 따라서 $\alpha+\beta=(-2)+(-1)=-3$

11. [출제의도] 연립이차부등식 이해하기

 $x^2 - 3x - 18 \le 0$ 에서 $-3 \le x \le 6$ \cdots ① $x^2 - 8x + 15 \ge 0$ 에서 $x \le 3$ 또는 $x \ge 5$ \cdots ① ① , ① 에서 $-3 \le x \le 3$ 또는 $5 \le x \le 6$ 정수 $x \ge -3$, -2, -1, 0, 1, 2, 3, 5, 6 따라서 모든 정수 x 의 값의 합은 (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 5 + 6 = 11

12. [출제의도] 이차방정식과 이차함수의 관계 이해하기

이차함수 $y=x^2+ax+b$ 의 그래프가 점 (1,0)에서 x 축과 접하므로 이차방정식 $x^2+ax+b=0$ 은 중근 x=1을 갖는다.

 $y = x^2 + ax + b = (x - 1)^2 = x^2 - 2x + 1$ 이므로 a = -2, b = 1

그러므로 이차함수

 $y=x^2+x-2=(x+2)(x-1)$ 의 그래프가 x 축과 만나는 두 점은 (-2,0),(1,0) 따라서 두 점 사이의 거리는

 $\sqrt{\{1-(-2)\}^2+(0-0)^2}=3$

13. [출제의도] 점의 평행이동과 대칭이동을 활용하여 문제 해결하기

점 A(-3,4)를 직선 y=x에 대하여 대칭이동한 점 B의 좌표는 (4,-3)점 B(4,-3)을 x축의 방향으로 2만큼, y축의 방향으로 k만큼 평행이동한 점 C의 좌표는 (6,-3+k)두 점 A, B를 지나는 직선의 방정식은

 $y-4=\frac{-3-4}{4-(-3)}\{x-(-3)\}$

y=-x+1 세 점 A, B, C가 한 직선 위에 있으므로 -3+k=-5, k=-2

14. [출제의도] 점과 직선 사이의 거리 이해하기

점 (3,2)와 직선 2x-y+8=0 사이의 거리는 $\frac{\mid 2\times 3+(-1)\times 2+8\mid}{\sqrt{2^2+(-1)^2}}=\frac{12\sqrt{5}}{5}$

원의 반지름의 길이는 $\sqrt{5}$ 이므로 원 위의 점과 직선 2x-y+8=0 사이의 거리의 최솟값은 $\frac{12\sqrt{5}}{5}-\sqrt{5}=\frac{7\sqrt{5}}{5}$

15. [출제의도] 선분의 내분과 외분 이해하기

점 A 의 좌표를 $\left(x_1,y_1\right)$, 점 B의 좌표를 $\left(x_2,y_2\right)$ 라 하면 점 P는 선분 OA를 2:1로 외분하는 점이므로

$$\frac{2\!\times\! x_1\!-\!1\!\times\!0}{2\!-\!1}\!=2x_1\,,\ \frac{2\!\times\! y_1\!-\!1\!\times\!0}{2\!-\!1}\!=2y_1$$

점 P의 좌표는 $\left(2x_1,\,2y_1\right)$

점 Q 는 선분 OB를 2:1로 외분하는 점이므로 $\frac{2\times x_2-1\times 0}{2-1}=2x_2\,,\;\frac{2\times y_2-1\times 0}{2-1}=2y_2$

점 Q의 좌표는 $(2x_2, 2y_2)$

선분 PQ 의 중점의 좌표가 (4,5)이므로

$$\frac{2x_1 + 2x_2}{2} = x_1 + x_2 = 4,$$

$$\frac{2y_1 + 2y_2}{2} = y_1 + y_2 = 5$$

삼각형 OAB의 무게중심의 좌표 (a,b)는 $a = \frac{0 + x_1 + x_2}{3} = \frac{4}{3}$, $b = \frac{0 + y_1 + y_2}{3} = \frac{5}{3}$

따라서 $a+b=\frac{4}{3}+\frac{5}{3}=3$

16. [출제의도] 이차함수의 그래프와 직선의 위치 관계를 활용하여 문제 해결하기

점 C 의 좌표를 $(\alpha,0)$ 이라 하면 선분 CD 의 길이는 6이므로 점 D 의 좌표는 $(\alpha+6,0)$

직선 y = x 위의 두 점 $A(\alpha, \alpha), B(\alpha+6, \alpha+6) \stackrel{\diamond}{\leftarrow}$ 이차함수 $y = \frac{1}{2}(x-k)^2$ 의 그래프와

직선 y=x의 교점이므로 $\frac{1}{2}(x-k)^2=x$

이차방정식 $x^2 - 2(k+1)x + k^2 = 0$ 의 근과 계수의 관계에 의하여

 $\alpha + (\alpha + 6) = 2(k+1), \ \alpha = k-2 \cdots \bigcirc$

 $\alpha(\alpha+6)=k^2 \cdots \bigcirc$

→ 을 □ 에 대입하면

 $(k-2)(k+4)=k^2$, 2k-8=0, k=4

17. [출제의도] 점의 대칭이동을 활용하여 문제 해결하기

점 A 를 직선 y = x에 대하여 대칭이동한 점을 A'이라 하면 점 A'의 좌표는 (3, 2) 점 B를 x축에 대하여 대칭이동한 점을 B'이라

하면 점 B'의 좌표는 (-3, -1) $\overline{AD} = \overline{A'D}$, $\overline{BC} = \overline{B'C}$ 이므로

 $\overline{AD} + \overline{CD} + \overline{BC} = \overline{A'D} + \overline{DC} + \overline{CB'}$ $\geq \overline{A'D'} + \overline{D'C'} + \overline{C'B'}$ $= \overline{A'B'}$

 $= \sqrt{\{(-3)-3\}^2 + \{(-1)-2\}^2}$ $= 3\sqrt{5}$

따라서 $\overline{AD} + \overline{CD} + \overline{BC}$ 의 최솟값은 $3\sqrt{5}$

18. [출제의도] 이차방정식의 판별식을 활용하여 문제 해결하기

두 이차방정식 f(x) = 0, g(x) = 0의 판별식을 각각 D_1 , D_2 라 하면

 $D_1 = 4^2 - 4(-3k^2 - 12k + 40)$ $=12(k-2)(k+6) \cdots \bigcirc$

 $D_2 = (-12)^2 - 4(3k^2 - 36k + 96)$

=-12(k-10)(k-2) ...

(i) 두 함수 y = f(x), y = g(x)의 그래프와 x 축이 만나는 점의 개수가 0으로 같은 경우

 $\int 12(k-2)(k+6) < 0$ \bigcirc , \bigcirc 에서 $\begin{cases} 12(k-2)(k+0) < 0 \\ -12(k-10)(k-2) < 0 \end{cases}$ 의 해가 -6 < k < 2이므로 정수 k는 -5, -4, -3,

-2, -1, 0, 1이고 그 개수는 7 (ii) 두 함수 y = f(x), y = g(x)의 그래프와 x 축이 만나는 점의 개수가 1로 같은 경우

k=2이므로 정수 k의 개수는 1

(iii) 두 함수 y = f(x), y = g(x)의 그래프와 x 축이 만나는 점의 개수가 2로 같은 경우

2 < k < 10이므로 정수 k = 3, 4, 5, 6, 7, 8,9이고 그 개수는 7

정답 및 해설

따라서 (i), (ii), (iii)에 의하여 모든 정수 k의 개수는 15

19. [출제의도] 직선의 방정식을 활용하여 추론하기

두 점 B(-3,0)과 D(1,3)을 지나는 직선의 기울기는 $\frac{3}{4}$ 이므로 점 A(-1,4)를 지나고

두 점 B와 D를 지나는 직선에 수직인 직선 l_1 의 방정식은 $y = \left[-\frac{4}{3}x + \frac{8}{3} \right]$ 이다.

점 A(-1,4)를 중심으로 하고 반지름의 길이가 $\overline{\mathrm{BD}} = 5$ 인 원을 C라 하면

 $C: (x+1)^2 + (y-4)^2 = 25$

 $\begin{cases} x = 2 \\ y = 0 \end{cases}$ 또는 $\begin{cases} x = -4 \\ y = 8 \end{cases}$ 이므로

원 C와 직선 l_1 이 만나는 두 점의 좌표는 (2,0), (-4,8)

두 점 중 점 C(0, -2) 와의 거리가 더 작은 점이 E이므로 점 E의 좌표는 (2,0)두 점 C(0, -2)와 E(2, 0)을 지나는 직선을

 l_2 라 하면 직선 l_2 의 방정식은 y = x-2이다.

두 점 B와 D에서 직선 l_2 에 내린 수선의 발을 각각 R, S 라 하자.

직선 $l_2: y = x - 2$ 의 기울기가 1이므로 점 B(-3,0)을 지나고 직선 l_2 에 수직인 직선의 방정식은

y = -x - 3

이를 직선 l_2 의 방정식과 연립하여 풀면

$$R\left(-\frac{1}{2}, -\frac{5}{2}\right)$$

15

점 D(1,3)을 지나고 직선 l_2 에 수직인 직선의 방정식은

y = -x + 4

이를 직선 l_2 의 방정식과 연립하여 풀면 S(3, 1)

점 A(-1,4)를 지나고 직선 l_2 와 평행한 직선을 l_3 이라 하면 직선 l_3 의 방정식은

두 점 B와 D에서 직선 l_3 에 내린 수선의 발을 각각 Q, P라 하자.

직선 $l_3: y = x + 5$ 의 기울기가 1이므로 점 B(-3,0)을 지나고 직선 l_3 에 수직인 직선의 방정식은

y = -x - 3

이를 직선 l_3 의 방정식과 연립하여 풀면

Q(-4,1)

점 D(1,3)을 지나고 직선 l_3 에 수직인 직선의

y = -x + 4

이를 직선 l_3 의 방정식과 연립하여 풀면

$$P\Big(-\frac{1}{2}\,,\,\frac{9}{2}\Big)$$

사각형 PQRS는 네 점 A, B, C, D가 각각 네 변 PQ, QR, RS, SP 위에 있고 한 변의 길이가

$$\overline{PQ} = \overline{QR} = \boxed{\frac{7\sqrt{2}}{2}}$$
 인 정사각형이다.

$$f(x){=}-\,\frac{4}{3}\,x+\frac{8}{3}\ ,\ g(x){=}\,x-2\ ,\ \alpha=\frac{7\,\sqrt{2}}{2}$$

따라서
$$\frac{3}{4}f(\alpha)-g(\alpha)=4-7\sqrt{2}$$

20. [출제의도] 나머지정리를 활용하여 문제 해결하기

f(x) 를 x+1, x^2-3 으로 나눈 몫을 각각 $Q_1(x)$, $Q_2(x)$, 나눈 나머지를 R라 하자.

 $f(x) = (x+1)Q_1(x) + R$ 에서

 $f(x) - R = (x+1)Q_1(x)$

 $f(x) = (x^2 - 3)Q_2(x) + R$ 에서

 $f(x)-R=(x^2-3)Q_2(x)$ 이므로

 $f(x) - R = (x+1)(x^2-3)(x+a) \cdots \bigcirc$

f(x+1)-5를 x^2+x 로 나눈 몫을 $Q_3(x)$ 라

하면 $f(x+1)-5=(x^2+x)Q_3(x)$... ©

 \bigcirc 에서 x=-1, x=0을 대입하면

f(0) = 5, f(1) = 5 \bigcirc 에서 x=0, x=1을 대입하면

f(0)=-3a+R=5, f(1)=-4-4a+R=5

R = -7, a = -4따라서 $f(x)=(x+1)(x^2-3)(x-4)-7$ 이고 f(4) = -7

21. [출제의도] 직선의 방정식과 원의 방정식을 활용하여 추론하기

ㄱ. 직선 AC의 방정식은 x-3y+5=0이므로 점 B와 직선 AC 사이의 거리는 $2\sqrt{10}$ (참) ㄴ. 원 $x^2 + y^2 = 25$ 위의 점 P 에서의 접선이 직선 AC와 평행할 때, 사각형 PABC의 넓이가 최대가 된다. ... (*)

선분 AC와 두 선분 PB, PO가 만나는 점을

각각 Q, R라 하자.

원 위의 점 P에서의 접선과 직선 AC는 평행하고, 원의 반지름 OP와 각각 서로 수직이다.

삼각형 PQR에서 \angle R = 90°, \angle Q < 90°이므로 직선 PB와 직선 AC는 서로 수직이 아니다. (거짓)

ㄷ. 사각형 PABC의 넓이는

삼각형 ABC의 넓이와 삼각형 ACP의 넓이의 합과 같다.

삼각형 ABC의 넓이는

 $\overline{AC} = 3\sqrt{10}$ 이고 ㄱ에 의하여

$$\frac{1}{2} \times 3\sqrt{10} \times 2\sqrt{10} = 30 \cdots \bigcirc$$

삼각형 ACP의 넓이의 최댓값은 (*)에 의하여

$$\overline{OR} = \frac{|1 \times 0 + (-3) \times 0 + 5|}{\sqrt{1^2 + (-3)^2}} = \frac{\sqrt{10}}{2}$$

$$\overline{PR} = 5 - \overline{OR} = 5 - \frac{\sqrt{10}}{2}$$

$$\frac{1}{2} \times 3\sqrt{10} \times \left(5 - \frac{\sqrt{10}}{2}\right) = \frac{15(\sqrt{10} - 1)}{2} \cdots \bigcirc$$

사각형 PABC의 넓이의 최댓값은 ①, ② 에

의하여
$$\frac{15(3+\sqrt{10})}{2}$$
 (참)

따라서 옳은 것은 ㄱ, ㄷ

22. [출제의도] 나머지정리 이해하기

 $f(x) = x^3 - x^2 - 10x + a$ 라 하면 f(x)가 x-1로 나누어떨어지므로 나머지정리에 의하여 $f(1)=1^3-1^2-10\times 1+a=0$ 따라서 a=10

23. [출제의도] 연립부등식 계산하기

x-1>8에서 x>9 … \bigcirc $2x-16 \le x+a$ ①, ① 에서 $9 < x \le a + 16$ a+16=28, a=12, b=9따라서 a+b=12+9=21

24. [출제의도] 이차방정식의 판별식 이해하기

이차방정식 $x^2 - (k+2)x + k + 5 = 0$ 의 판별식을 D라 하자.

이차방정식이 서로 다른 두 허근을 가지기

위해서는 $D = \{-(k+2)\}^2 - 4(k+5) < 0$

 $k^2 - 16 < 0$. -4 < k < 4

따라서 모든 정수 k는

-3, -2, -1, 0, 1, 2, 3이코

그 개수는 7

25. [출제의도] 이차함수의 최대, 최소를 활용하여 문제 해결하기

두 점 A(2t, -3)과 B(-1, 2t)에 대하여 $l = \sqrt{(-1-2t)^2 + \{2t - (-3)\}^2}$

 $=\sqrt{8t^2+16t+10}$

 $l^2 = 8t^2 + 16t + 10 = 8(t+1)^2 + 2$ 따라서 t=-1일 때, l^2 의 최솟값은 2

26. [출제의도] 점의 대칭이동을 활용하여 문제 해결하기

 $\angle A_1BC_1 = 90^\circ$, $\angle A_2BC_2 = 90^\circ$

두 선분 A_1C_1 , A_2C_2 는 원의 지름이고

 $\overline{OA_1} = \overline{OC_1}$, $\overline{OA_2} = \overline{OC_2}$ 이므로

두 점 A₁, A₂를 원점에 대하여 대칭이동한 점은 각각 C₁, C₂이다.

점 A_1 의 좌표는 $(3, \sqrt{91})$

점 A_2 의 좌표는 $(7, \sqrt{51})$ 이므로

점 C_1 의 좌표는 $(-3, -\sqrt{91})$

점 C₂의 좌표는 $(-7, -\sqrt{51})$

 $a = -\sqrt{91}$. b = -7

따라서 $a^2 + b^2 = (-\sqrt{91})^2 + (-7)^2 = 140$

27. [출제의도] 사차방정식을 활용하여 문제

 $x^{4} + (2a+1)x^{3} + (3a+2)x^{2} + (a+2)x = 0$

 $x(x+1)(x^2+2ax+a+2)=0$ 이므로 사차방정식의 서로 다른 실근의 개수가 3이 되기 위해서는 주어진 사차방정식이 한 개의 중근을 가져야 한다.

(i) x = 0 이 사차방정식의 중근인 경우 x = 0은 이차방정식 $x^2 + 2ax + a + 2 = 0$ 의 해이므로

 $0^2 + 2a \times 0 + a + 2 = 0$, a = -2

사차방정식의 서로 다른 세 실근은

x = -1, x = 0 (중근), x = 4

(ii) x = -1이 사차방정식의 중근인 경우 x = -1은 이차방정식 $x^2 + 2ax + a + 2 = 0$ 의 해이므로

 $(-1)^2 + 2a \times (-1) + a + 2 = 0$, a = 3사차방정식의 서로 다른 세 실근은

x = -5, x = -1 (중근), x = 0

(iii) 사차방정식이 $x \neq 0$ 이고 $x \neq -1$ 인 중근을

이차방정식 $x^2 + 2ax + a + 2 = 0$ 이 중근을 가져야 하므로

이차방정식 $x^2 + 2ax + a + 2 = 0$ 의 판별식을 D 라 하면 $D = (2a)^2 - 4(a+2) = 0$ a = -1 또는 a = 2ⓐ a =-1 인 경우 사차방정식의 서로 다른 세 실근은 x = -1, x = 0, x = 1 (중근) ⓑ *a* = 2 인 경우 사차방정식의 서로 다른 세 실근은 x = -2 (중근), x = -1, x = 0(i), (ii), (iii)에 의하여 실수 a는 -2, -1, 2, 3

28. [출제의도] 원과 직선의 위치 관계를 활용하여 문제 해결하기

따라서 모든 실수 a의 값의 곱은 12

워의 중심을 A 라 하자.

점 P의 좌표를 (a, 0)이라 하면 점 A의 좌표는

원점 O와 점 A를 지나는 직선을 l_1 이라 하면

직선 l_1 의 방정식은 $y = \frac{2}{a}x$

직선 PQ 는 점 P를 지나고 직선 l_1 과 수직이므로

직선 PQ의 방정식은 $y=-\frac{a}{2}(x-a)$

직선 PQ가 y축과 만나는 점 R의 좌표는

$$\left(0, \frac{a^2}{2}\right)$$

삼각형 ROP의 넓이가 16이므로

$$\frac{1}{2} \times a \times \frac{a^2}{2} = \frac{a^3}{4} = 16$$
, $a = 4$

점 A(4,2)와 직선 mx-y=0 사이의 거리는 원의 반지름의 길이 2와 같으므로

$$\frac{|4m-2|}{\sqrt{m^2+(-1)^2}} = 2$$

m=0 또는 $m=\frac{4}{3}$

m > 0 이므로 $m = \frac{4}{2}$

따라서 $60m = 60 \times \frac{4}{2} = 80$

[다른 풀이]

원의 중심을 A(a, 2)라 하자. 삼각형 ROP와 삼각형 OPA에서 $\angle ROP = \angle OPA = 90^{\circ}$, ∠PRO = ∠AOP = 90° - ∠RPO 이므로 삼각형 ROP와 삼각형 OPA는 닮음이다.

따라서 RO: OP = OP: PA

삼각형 ROP의 넓이는

$$\frac{1}{2} \times a \times \overline{\text{RO}} = 16$$
, $\overline{\text{RO}} = \frac{32}{a}$ 이므로

$$\frac{32}{a}$$
: $a = a : 2$, $a = 4$

점 A(4,2)와 직선 mx-y=0 사이의 거리는 원의 반지름의 길이 2와 같으므로

$$\frac{|4m-2|}{\sqrt{m^2+(-1)^2}} = 2$$

$$m = 0$$
 또는 $m = \frac{4}{3}$

$$m > 0$$
 이므로 $m = \frac{4}{3}$

따라서
$$60m = 60 \times \frac{4}{3} = 80$$

29. [출제의도] 이차방정식의 실근과 허근을 활용하여 문제 해결하기

이차방정식 $x^2 + ax + b = 0$ 의 서로 다른 두 근이 α , β 이므로 근과 계수의 관계에 의하여

 $\alpha + \beta = -a \cdots \bigcirc$, $\alpha\beta = b \cdots \bigcirc$

이차방정식 $x^2 + 3ax + 3b = 0$ 의 서로 다른 두 근이 $\alpha+2$, $\beta+2$ 이므로 근과 계수의 관계에 의하여

 $(\alpha+2)+(\beta+2)=-3a \cdots \square$

 $(\alpha+2)(\beta+2)=3b \cdots \supseteq$

①, ⓒ에서

-a+4=-3a, a=-2

①, ①을 ②에 대입하면

 $b+2\times 2+4=3b$, b=4

 $\alpha + \beta = 2$, $\alpha \beta = 4$

 $\alpha^2 - 2\alpha + 4 = 0$ 에서 $\alpha^3 = -8$

$$\beta^2 - 2\beta + 4 = 0$$
 에서 $\beta^3 = -8$ 이므로

 $\alpha + \beta = 2$

 $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 2^2 - 2 \times 4 = -4$

 $\alpha^3 + \beta^3 = (-8) + (-8) = -16$

 $\alpha^4 + \beta^4 = \alpha^3 \times \alpha + \beta^3 \times \beta = -8(\alpha + \beta) = -16$

 $\alpha^{5} + \beta^{5} = \alpha^{3} \times \alpha^{2} + \beta^{3} \times \beta^{2} = -8(\alpha^{2} + \beta^{2}) = 32$

 $\alpha^6 + \beta^6 = (\alpha^3)^2 + (\beta^3)^2 = (-8)^2 + (-8)^2 = 128$

 $\alpha^7 + \beta^7 = (\alpha^3)^2 \times \alpha + (\beta^3)^2 \times \beta = 64(\alpha + \beta)$

= 128따라서 $\alpha^6 + \beta^6 = \alpha^7 + \beta^7 = 128$ 이므로 조건을 만족시키는 자연수 n의 최솟값은 6

30. [출제의도] 이차함수의 그래프를 활용하여 추론하기

함수 $f(x)=x^2+ax+b(a, b 는 상수)$ 라 하면 함수 $q(x) = -x^2 + ax - b$

곡선 y = f(x)의 꼭짓점의 x 좌표는 $-\frac{a}{2}$

곡선 y = g(x)의 꼭짓점의 x 좌표는 $\frac{a}{2}$

두 곡선 y = f(x), y = g(x)의 교점의 x 좌표

lpha , eta와 $-rac{a}{2}$, $rac{a}{2}$ 의 대소 관계에 의하여 방정식

f(x)=g(x)가 서로 다른 두 실근을 갖는 경우는 다음과 같다.

 $e \frac{a}{2} \le \alpha < \beta \le -\frac{a}{2}$

(i) @, ⓒ 인 경우

방정식 $h(x)=h(\beta)$ 의

서로 다른 실근의 개수는 2

(ii) ⓑ 인 경우

방정식 $h(x)=h(\beta)$ 의

서로 다른 실근의 개수는 3

(iii) **@** 인 경우

방정식 $h(x)=h(\beta)$ 의

서로 다른 실근의 개수는 1

(iv) @ 인 경우

방정식 $h(x)=h(\beta)$ 의

서로 다른 실근의 개수는 1 또는 2

(i), (ii), (iii), (iv)에 의하여 ⓑ 인 경우만 서로 다른 실근의 개수가 3이다.

방정식 f(x)=g(x)의 두 실근이 α , β 이므로 $f(\alpha) = g(\alpha)$, $f(\beta) = g(\beta)$ 이고

 $f(x)-g(x)=2(x-\alpha)(x-\beta)=2x^2+2b$ $\alpha = -\beta$, $b = \alpha\beta$... \bigcirc

 (\neg) $x < \alpha$ 또는 $x > \beta$ 일 때,

방정식 $h(x)=h(\beta)$ 는 $f(x)=h(\beta)$ 이고 $x^2 + ax + b - h(\beta) = 0$ 의 한 근이 β 이므로 근과 계수의 관계에 의하여 나머지 한 근은 $-a-\beta$

(ㄴ) $\alpha \leq x \leq \beta$ 일 때,

방정식 $h(x)=h(\beta)$ 는 $g(x)=h(\beta)$ 이고 $-x^2+ax-b-h(\beta)=0$ 의 한 근이 β 이므로

근과 계수의 관계에 의하여 나머지 한 근은 $a - \beta$

 (\neg) , (L) 에 의하여 방정식 $h(x) = h(\beta)$ 의 서로 다른 세 실근은

 $-a-\beta$, $a-\beta$, β

조건 (가)에 의하여

 $(-a-\beta)+(a-\beta)+\beta=-4$

 $\beta = 4 \cdots \bigcirc$

①, 心에 의하여

 $\alpha = -4$, b = -16 ··· ©

 $\alpha \le x \le \beta$ 에서 함수 g(x)의 최솟값은 $g(\alpha)$ 이고 조건 (나)에 의하여

 $g(\alpha) = g(-4) = -16 - 4a + 16 = -8$ $a=2 \cdots ②$

□, □, ②에 의하여

 $f(x) = x^2 + 2x - 16$ $g(x) = -x^2 + 2x + 16$

 $h(x) = \begin{cases} x^2 + 2x - 16 & (x < -4 \ \text{\mathbb{E}} = x > 4) \\ -x^2 + 2x + 16 & (-4 \le x \le 4) \end{cases}$

따라서 h(2)+h(5)=35