

Retconning Game

การทดสอบความสามารถในการแก้ปัญหาโดยการเขียนโปรแกรม

เขียนวันที่ 2 ส.ค. 2566

ในสถานีอวกาศ คุณได้คิดค้นเกมส์สำหรับเล่นกับเพื่อนร่วมงานในช่วงเวลาพักผ่อนขึ้นมา เกมส์นี้เป็นการควบคุมเครื่องจำลอง แรงโน้มถ่วงขนาดเล็ก มีการกำหนดขนาดพื้นที่ $M \times N \times O$ ช่อง แบ่งเป็น M แถว (แนวแกน x) N หลัก (แนวแกน y) O ชั้น (แนวแกน z) แต่ช่องอาจจะมีลูกอมขนาด 1×1 ลอยอยู่ ในการเล่นเกมส์ดังกล่าว ผู้เล่นสามารถเลือกเปิดแล้วปิดเครื่องจำลอง แรงโน้มถ่วงในแต่ละทิศทางภายในพื้นที่ให้ลูกอมไปตามทิศแกนใดก็ได้ คุณอยากทราบว่าจากสถานะของเกมเมื่อตอนเริ่มต้น ถ้า ผู้เล่นเปิดปิดเครื่องจำลองแรงโน้มถ่วงดึงลูกอมไปในทิศต่างๆ จำนวน C คำสั่ง สถานะของเกมจะเปลี่ยนไปเป็นอย่างไร

ให้เขียนโปรแกรมรับรับสถานะของเกมส์เริ่มต้น มุมมอง (หันหน้าไปทิศ Y, ทิศที่ชี้ไปด้านบนจากทิศที่มอง P) และคำสั่งการ เปลี่ยนแปลงของแรงโน้มถ่วงจำลอง จากนั้นคำนวณหาสถานะของเกมส์หลังจากได้เปิดปิดเครื่องจำลองแรงโน้มถ่วงตามคำสั่ง ครบแล้ว โดยแสดงข้อมูลจำลองในทิศที่กล้องในพื้นที่หันหน้าเข้าถ่าย F มีทิศ R เป็นทิศชี้ไปด้านบนจากทิศที่มอง

ข้อมูลนำเข้า

บรรทัดแรกระบุจำนวนเต็ม M N O Y P F R และ C (2 ≤ M, N, O, C ≤ 10; Y, P, F, R ∈ {±x, ±y, ±z})

บรรทัดที่สองระบุชุดคำสั่งการเปิดปิดเครื่องจำลองแรงโน้มถ่วงตามลำดับจำนวน C คำสั่ง กล่าวคือคำสั่งที่ C_i สำหรับ $1 \le i \le C$ จะระบุคำสั่งในรูปของ $\{\pm x, \pm y, \pm z\}$

หมายเหตุ: M, N, O อาจมีการเปลี่ยนแปลงตามทิศทางการแสดงสถานะของเกมส์

ข้อมูลส่งออก

มีหลายบรรทัด (ชิ้นอยู่กับทิศที่หันหน้าไปและทิศที่ชี้ไปทางด้านบนของทิศที่สังเกต) ระบุสถานะของเกมไล่ไปทีละแกนจากบน ซ้ายสุดไปล่างขวาสุดของด้านที่สังเกต แสดงตำแหน่งที่มีลูกอมทั้งหมดในแต่ละชั้นของแถวและหลักนั้นๆ โดยการนับเป็น ตำแหน่งจากใกล้ด้านที่สังเกตที่สุดออกไป แล้วแปลงเป็นเลขฐานสิบ (ในรูปแบบเดียวกันกับข้อมูลนำเข้า)

เงื่อนไขการทำงาน

โปรแกรมต้องทำงานภายใน 2 วินาที ใช้หน[่]วยความจำไม[่]เกิน 512 MB

ตัวอย่าง 1

Input	Output
4 4 4 +z +y +z +y 3	0 0 0 8
+z +x -y	0 8 8 8
8 0 0 0	0 8 8 12
8 0 2 8	8 12 12 12
2 0 9 8	
3 5 12 1	

ตัวอย่าง 2

Input	Output
5 7 8 +x -z +y +z 5	1 63 127 127 127
-z -x +y -y +z	0 0 15 31 63
1 1 9 22 8 0 0	0 0 0 3 31
4 1 1 0 17 1 0	0 0 0 1 7
0 25 0 0 4 12 4	0 0 0 0 1
0 8 6 0 16 0 1	0 0 0 0 0
0 0 4 21 17 0 9	0 0 0 0 0
0 8 12 0 16 8 5	0 0 0 0 0
16 17 12 0 0 1 8	
2 0 8 1 2 1 24	