FILTROS DIGITAIS FIR e IIR

André Heidemann larozinski

CURITIBA 2015

1. Introdução

O objetivo do trabalho consiste na captura de um áudio com uma fonte poluidora para posteriormente ser filtrado através de um filtro digital desenvolvido no MATLAB.

2. Desenvolvimento

De início foi utilizado um software em um smartphone para gerar a fonte poluidora, um sinal de 8kHz utilizado para treinamento de animais de estimação.

Foi gravado então no MATLAB a locução das palavras "um, dois, três, quatro, cinco" durante 5 segundos com o sinal de 8KHz simultaneamente. A taxa de amostragem utilizada foi de 44100Hz para a captação do áudio.

O espectro do sinal pode ser visto abaixo através da FFT obtida.

O código utilizado para o procedimento foi o seguinte:

```
% freq de amostragem
fs=44100;
recc = audiorecorder(44100, 16, 1);
disp('inicio da gravacao')
recordblocking(recc, 5);
                           % duração da gravação: 5 seg
disp('fim da gravacao');
u = getaudiodata(recc);
S = fft(u);
                                        % normalizando S
L = length(S);
P2 = abs(S/L);
P = P2(1:L/2+1);
P(2:end-1) = 2*P(2:end-1);
f = fs*(0:(L/2))/L;
plot(f,P)
                                      % plotando a FFT de OHz até fs/2
```

O áudio foi salvo na variável "u".

Em seguida foi projetado o filtro FIR cujos parâmetros foram os seguintes:

- -Atenuação mínima de 40 dB na banda de rejeição
- -Atenuação máxima de 2 dB na banda passante
- -fs (freq. de borda da banda de passagem) foi definida como 7kHz
- -fs (freq. de borda da banda de rejeição) foi definida como 7.5kHz

Segue abaixo o algoritmo desenvolvido para o filtro FIR:

```
% Filtro passa baixas FIR
fa = 44100; % frequencia de amost
s1 = u; %% sinal gravado
fp = 7000; % frequência de passagem
fs = 7500; % frequência de corte
% normalização das frequências
wp = (fp/(fa/2))*pi
ws = (fs/(fa/2))*pi
bt = ws - wp; %banda de transição
M = ceil((6.6*pi/bt)) + 1; % M de acordo com a tabela das janelas
wc = (ws + wp)/2; %frequência de corte intermediária
alfa = (M-1)/2; %% filtro passa baixas ideal
n=0:M-1;
m = n - alfa + eps;
hd = sin(wc*m) ./ (pi*m) ; % resposta impulsiva do fpb ideal
jan = hamming(M)'; %calcula a janela de hamming
h = hd.*jan; % multiplicação entre os vetores
sinal filtrado = conv(h,s1); %convolução entre os sinais
sound(sinal filtrado,fa);
S = fft(sinal filtrado);
L = length(S);
                                     % normalizando S
P2 = abs(S/L);
P = P2(1:L/2+1);
P(2:end-1) = 2*P(2:end-1);
f = fa*(0:(L/2))/L;
plot(f,P) % plotando a FFT do sinal filtrado de OHz até fs/2
```

Em seguida foi projetado o filtro Butterworth IIR cujos parâmetros foram os seguintes:

- -Atenuação mínima de 40 dB na banda de rejeição
- -Atenuação máxima de 2 dB na banda passante
- -wp foi definido como 0.3*pi pois:

fs/2*0.3 = 6615Hz, a voz humana é considerada uma faixa de frequência de 400 até 3.4KHz mas optei por escolher uma frequência acima para preservar a qualidade da voz e remover somente a fonte poluidora.

-ws foi definido com 0.35*pi =7717Hz (garante fonte poluidora na faixa de rejeição)

Abaixo o algoritmo desenvolvido para o filtro IIR:

```
%%% filtro passa-baixa IIR butterworth
rp=2;
as=30;
%%% freq de borda da banda de rejeição
T=1;
wap = wp/T;
was = ws/T;
%% prototipo do filtro anlogico ( isso é o qe muda p/ butter, cheby e elip)
N = ceil(log10 ((10^{(rp/10)} -1) / (10^{(as/10)} -1)) / (2*log10(wp/ws)));
wc = (wp/(((10^{(rp/10)-1)})^{(1/(2*N))});
[z,p,k] = buttap(N); \% retorna os zeros, os polos e o ganho
                     % numerador da func de transf Ha(s)
num = real(poly(z));
num = num*(wc^N)*k;
den= real(poly(p*wc));
                          %%% denomidador da funcao de transf
[numd,dend] = impinvar(num,den,T); %% discretrizando
sys =tf(numd,dend);
x=filter(numd,dend,u); % filtragem do sinal
sound(x, 44100);
w=0:pi/100:pi;
                        %% Ha(s)
H = freqz(numd, dend, w);
Hma = abs(H);
Hfase = angle(H);
Hmdb = 20*log10((Hma+eps)/(max(Hma)));
plot(w/pi, Hmdb); % filtro em dB
```

3.Resultados

O filtro FIR funcionou conforme o esperado, filtrou completamente a fonte poluidora e atingiu os requisitos do projeto. A resposta espectral do sinal filtrado foi a seguinte:

Já o filtro Butterworth apresentou alguns problemas para as frequências escolhidas. Com atenuação de 25 dB na banda de rejeição o filtro respondeu da seguinte forma:

Na figura acima, está indicado ws.

Com atenuação de 30 dB o filtro ficou no limite da estabilidade:

Acima de 30 dB o filtro ficava instável e tive que alterar a frequência de borda da banda de passagem de wp=0.3*pi para wp=0.25*pi o que resultou em uma perda de espectro da voz, que foi de 6615Hz para 5512Hz de frequência de borda. Após esta alteração o filtro funcionou corretamente e cumpriu os requisitos do projeto.

Abaixo o filtro com wp=0.25*pi:

Abaixo o sinal filtrado com o filtro Butterworth corrigido:

