随机过程学习笔记

原神不启动

更新: 2025年6月2日

目录

1	概统	运知识补充	8
	1.1	正态分布	8
		1.1.1 标准正态分布	8
		1.1.2 一般正态分布与标准正态分布的关系	9
	1.2	n 元正态分布性质	9
	1.3	泊松分布	10
		1.3.1 定义	10
		1.3.2 主要性质	10
	1.4	随机变量数字特征	10
		1.4.1 数学期望	11
		1.4.2 k 阶中心矩	11
		1.4.3 方差	11
	1.5	协方差与相关系数	12

2	随机过程基本概念					
	2.1	定义	12			
	2.2	均值函数和协方差函数	12			
		2.2.1 定义 1	13			
		2.2.2 定义 2	13			
		2.2.3 定义 3	14			
		2.2.4 定义 4	14			
3	马尔	·····································	15			
	3.1	定义	15			
	3.2	转移概率	16			
	3.3	C-K 方程	16			
	3.4	常返和暂留	16			
		3.4.1 概念	17			
		3.4.2 等价描述	17			

		3.4.3	互达等价类	18
		3.4.4	平稳分布	18
		3.4.5	吸收概率与平均吸收时间	20
4	泊松	过程与	布朗运动	21
	4.1	独立增	曾量过程	21
		4.1.1	独立增量过程的性质	21
	4.2	泊松过	世程	22
		4.2.1	泊松过程的性质	23
		4.2.2	与泊松过程相联系的若干分布	23
		4.2.3	泊松过程合成和分解	24
		4.2.4	非齐次泊松过程	24
	4.3	布朗运	运动	25
		4.3.1	布朗运动的定义及数字特征	25
		4.3.2	性质	26

		4.3.3	首次击中时间	27
		4.3.4	布朗运动的极值分布	29
		4.3.5	布朗桥 (Brownian Bridge)	30
5	平稳	过程的	定义	30
	5.1	严平稳	过程	30
		5.1.1	定义	30
		5.1.2	严平稳过程的等价条件	31
		5.1.3	严平稳过程的数字特征	31
	5.2	宽平稳	过程	31
		5.2.1	定义	31
		5.2.2	严平稳和宽平稳的等价关系	32
		5.2.3	宽平稳过程的性质	32
		5.2.4	联合 (宽) 平稳	32
	5.3	相关函	i数的性质	33

6	各态	各态历经性					
	6.1	时间均值和时间自相关函数	33				
	6.2	各态历经性	34				
	6.3	均值各态历经定理	35				
		6.3.1 定义	35				
		6.3.2 推论 (均值各态历经性判据)	35				
	6.4	自相关函数各态历经定理	36				
	6.5	均值各态历经定理 - 离散	36				
7 平稳过程的功率谱密度			36				
	7.1	傅里叶变换基础	37				
		7.1.1 确定性信号的功率与谱密度	37				
	7.2	平稳随机过程的功率谱密度	38				
	7.3	功率谱密度的性质(维纳一辛钦公式)	39				
	7.4	傅里叶变换的对偶性 (Duality Property)	41				

		7.4.1 性质表述 (基于角频率 ω)	41
		7.4.2 性质表述 (基于频率 f)	41
	7.5	δ函数 (单位冲激函数) 与其谱特性	42
	7.6	白噪声及其特性	43
	7.7	限带白噪声	43
	7.8	互功率谱密度(基于维纳一辛钦公式的推广)	44
8	线性	系统中的平稳过程	44
	8.1	线性时不变 (LTI) 系统	45
	8.2	LTI 系统输出过程的均值和相关函数	46
	8.3	LTI 系统输出过程的功率谱密度	47

1 概统知识补充

1.1 正态分布

若随机变量 X 服从均值为 μ 、方差为 σ^2 的正态分布,记为 $X \sim N(\mu, \sigma^2)$,其概率密度函数 (PDF) 为:

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < +\infty$$

1.1.1 标准正态分布

当均值 $\mu = 0$ 且方差 $\sigma^2 = 1$ 时,称为标准正态分布,记为 $Z \sim N(0,1)$ 。其概率密度函数 (PDF) 为:

$$\phi(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$

此时,累积分布函数 (CDF) 通常用 $\Phi(x)$ (或 $\Phi(z)$) 表示:

$$\Phi(x) = P(Z \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \int_{-\infty}^{x} \phi(t) dt$$

1.1.2 一般正态分布与标准正态分布的关系

若随机变量 $X \sim N(\mu, \sigma^2)$,则其累积分布函数 $F_X(x) = P(X \le x)$ 可以通过标准化转换为标准正态分布的累积分布函数:

$$F_X(x) = P\left(\frac{X-\mu}{\sigma} \le \frac{x-\mu}{\sigma}\right) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

特别地, 若随机变量 $X \sim N(0, \sigma^2)$ (即 $\mu = 0$), 则

$$P(X \le x) = \Phi\left(\frac{x}{\sigma}\right)$$

1.2 n元正态分布性质

- 1. 设 $(X_1, X_2, ..., X_n)$ 服从 n 元正态分布,则任意 k (k = 1, 2, ..., n) 分量服从正态分布。特别的,每一个分量 X_i 服从正态分布。反之,若 X_i (i = 1, 2, ..., n) 都服从正态分布,且相互独立,则 $(X_1, X_2, ..., X_n)$ 服从 n 元正态分布。
- 2. $(X_1, X_2, ..., X_n)$ 服从 n 元正态分布的充要条件是它的 n 个分量的任意线性组合均服从一元正态分布。
- 3. 若 $(X_1, X_2, ..., X_n)$ 服从 n 元正态分布, 设 $Y_1, Y_2, ..., Y_k$ 都是 $X_1, X_2, ..., X_n$ 的线性组合, 则 $(Y_1, Y_2, ..., Y_k)$ 也服从正态分布。
- **4.** 若 $(X_1, X_2, ..., X_n)$ 服从 n 元正态分布, 则 $X_1, X_2, ..., X_n$ 相互独立当且仅当它们两两不相关。

1.3 泊松分布

1.3.1 定义

若随机变量 X 服从参数为 λ (λ > 0) 的泊松分布,记为 $X \sim P(\lambda)$ 或 $X \sim Poisson(\lambda)$,其概率质量函数为:

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, \quad k = 0, 1, 2, \dots$$

其中k是非负整数,e是自然对数的底。参数 λ 通常表示在给定区间内某事件发生的平均次数。

1.3.2 主要性质

- 期望: $E[X] = \lambda$.
- **方差:** $Var(X) = \lambda$. (期望与方差相等是泊松分布的一个显著特征)
- **可加性:** 若 $X_1 \sim P(\lambda_1)$ 和 $X_2 \sim P(\lambda_2)$ 是两个相互独立的随机变量,则它们的和 $Y = X_1 + X_2$ 服从泊松分布 $P(\lambda_1 + \lambda_2)$ 。此性质可推广到任意有限个相互独立的泊松随机变量之和。
- 二项分布的极限: 当二项分布 B(n,p) 的试验次数 n 很大,而成功概率 p 很小时,若 $np = \lambda$ (一个常数),则该二项分布可以用参数为 λ 的泊松分布来近似。

1.4 随机变量数字特征

1.4.1 数学期望

离散型:

$$E(X) = \sum_{k=1}^{\infty} x_k P_k$$

连续型:

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

1.4.2 k 阶中心矩

若 $Y = X^k$, k = 1, 2, ... 的数学期望存在, 则称 $E(X^k)$ 为 X 的 k 阶 (原点) 矩。若 $E((X - E(X))^k)$ 存在, 则称它为 X 的 k 阶中心矩。

1.4.3 方差

二阶中心矩 $E((X - E(X))^2)$ 也称为方差, 记为 D(X)。计算公式:

$$D(X) = E(X^{2}) - [E(X)]^{2}$$

性质:

1.

$$D(aX + c) = a^2 D(X)$$

2.

$$D(X+Y) = D(X) + D(Y) + 2Cov(X,Y)$$

1.5 协方差与相关系数

随机变量 X 与 Y 的协方差定义为:

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

协方差计算公式为:

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

2 随机过程基本概念

2.1 定义

注 (**Tip**) 设 S 是样本空间, P 是概率, $T \subset R$, 如果对任何 $t \in T$, X(t) 是 S 上的随机变量, 则称 $\{X(t); t \in T\}$ 是 S 上的随机过程, T 称为参数集。用映射表示: $X(t,e): T \times S \to R$

2.2 均值函数和协方差函数

2.2.1 定义 1

注 对于任何 $t \in T$, 定义:

$$\mu_X(t) = E(X(t)),$$

$$\psi_X^2(t) = E(X^2(t))$$

$$\sigma_X^2(t) = D_X(t) = D(X(t)),$$

$$\sigma_X(t) = \sqrt{D(X(t))}$$

分别称为随机过程的均值函数,均方值函数,方差函数和标准差函数。

2.2.2 定义 2

注 对任何的 $t, s \in T$, 定义:

$$R_X(t,s) = E(X(t)X(s)),$$

$$C_X(t,s) = Cov(X(t),X(s))$$

分别称为随机过程的自相关函数和自协方差函数。

注(推论)

$$\psi_X^2(t) = R_X(t,t),$$

$$\sigma_X^2(t) = C_X(t,t)$$

$$C_X(t,s) = R_X(t,s) - \mu_X(t)\mu_X(s)$$

注 (Caution) 如果对任何 $t \in T$, $E(X^2(t))$ 存在, 则称随机过程 $\{X(t); t \in T\}$ 是二阶矩过程。二阶矩过程的均值函数, 自相关函数和自协方差函数都是存在的。

2.2.3 定义 3

注 设 $\{X(t); t \in T\}$ 是一随机过程, 如果对任何 n, 任何 $t_1, t_2, \ldots, t_n \in T$, $(X(t_1), X(t_2), \ldots, X(t_n))$ 服 从 n 元正态分布, 则称 $\{X(t); t \in T\}$ 是正态过程 (或高斯过程)。正态过程是二阶矩过程, 它的有限维分布完全由它的均值函数和自协方差函数确定。

2.2.4 定义 4

$$R_{XY}(t,s) = E(X(t)Y(s))$$
$$C_{XY}(t,s) = \text{Cov}(X(t), Y(s))$$

它们是 $T \times T$ 上的函数, 分别称为 $\{X(t); t \in T\}$ 和 $\{Y(t); t \in T\}$ 的互相关函数和互协方差函数。如果对任何 $t, s \in T, C_{XY}(t, s) = 0$, 则称两随机过程不相关。如果对任何 $m, n, t_1, \ldots, t_m \in T, s_1, \ldots, s_n \in T$, $\{X(t_1), \ldots, X(t_m)\}$ 与 $\{Y(s_1), \ldots, Y(s_n)\}$ 相互独立,则称两随机过程相互独立。一般的,两随机过程不相关,不能推出它们相互独立。但如果它们相互独立,且是二阶矩过程,则它们一定不相关。

3 马尔科夫链

3.1 定义

设随机过程 $\{X_n; n = 0, 1, ...\}$ 的状态空间 I 有限或可列, 如果它具有马尔可夫性, 即对于任何 $n \ge 1, i_0, ..., i_{n-1}, i, j \in I$, 有:

$$P(X_{n+1} = j | X_0 = i_0, \dots, X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i)$$

则称 $\{X_n; n=0,1,\ldots\}$ 是马尔科夫链。其具有无记忆性,体现在:

注 若以 n 代表现在的时刻, 记 $A = \{X_0 = i_0, \ldots, X_{n-1} = i_{n-1}\}$, $B = \{X_n = i\}$, $C = \{X_{n+1} = j\}$, 则 A 代表过去, B 代表现在, C 代表未来。我们可以推出: $P(A \cap C|B) = P(A|B)P(C|B)$ (此表示 A 和 C 在 B 条件下条件独立)。这个式子可以理解为: 知道现在状态的条件下, 过去与将来相互独立。需要注意的是, 马尔可夫性并不指过去与将来相互独立。

3.2 转移概率

记

$$p_{ij}(m, m+n) = P(X_{m+n} = j | X_m = i)$$

此式为 m 时处于状态 i 的条件下, 经过 n 步后转移到状态 j 的转移概率。若 $p_{ij} = P(X_{n+1} = j | X_n = i)$ 不依赖于 n, 则称 $\{X_n\}$ 是时齐的马尔科夫链, p_{ij} 称为从 i 到 j 的一步转移概率。

3.3 C-K 方程

对于时齐的马尔科夫链,可以通过 C-K 方程研究其有限维分布:

注 若采用 $p_{ij}^{(k)}$ 表示 k 步转移概率,则 C-K 方程为:

$$p_{ij}^{(m+l)} = \sum_{k} p_{ik}^{(m)} p_{kj}^{(l)}$$

由此还可以推出: (假定时齐, P 为一步转移概率矩阵)

$$P^{(m+n)} = P^{(m)}P^{(n)}$$

3.4 常返和暂留

3.4.1 概念

对于状态 i, 定义 $\tau_i = \inf\{n \geq 1; X_n = i\}$ 为 i 的首中时 (约定 $\inf(\emptyset) = \infty$)。

- 如果 $P(\tau_i < \infty | X_0 = i) = 1$, 则称 i 常返, 否则暂留。
- 如果 i 常返, 令 $\mu_i = E(\tau_i | X_0 = i)$, 称其为状态 i 的平均回转时。如果 $\mu_i < \infty$ 称为正常返, 否则零常返。
- 令 $f_{ij}^{(n)} = P(X_n = j, X_k \neq j, \text{ for } 1 \leq k < n | X_0 = i)$, 表示从 i 出发第 n 步首次击中 j 的概率。令 $f_{ij} = P(\tau_j < \infty | X_0 = i) = \sum_{n=1}^{\infty} f_{ij}^{(n)}$, 表示从 i 出发有限步击中 j 的概率。状态 i 常返当且仅当 $f_{ii} = 1$ 。若 i 常返,则 $\mu_i = \sum_{n=1}^{\infty} n f_{ii}^{(n)}$ 。

3.4.2 等价描述

设 i 是某状态, 令 $N_i = \#\{n \ge 0; X_n = i\}$, 表示 i 访问的次数。

- 1. 状态 i 常返当且仅当 $P(N_i = \infty | X_0 = i) = 1$, 当且仅当 $\sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty$.
- 2. 状态 i 暂留当且仅当 $P(N_i < \infty | X_0 = i) = 1$, 当且仅当 $\sum_{n=0}^{\infty} p_{ii}^{(n)} < \infty$.
- 3. 状态 i 正常返当且仅当 $\lim_{N\to\infty} \frac{1}{N} \sum_{k=1}^{N} p_{ii}^{(k)} > 0$; (若 i 非周期,则等价于 $\lim_{n\to\infty} p_{ii}^{(n)} = 1/\mu_i > 0$)
- 4. 状态 i 零常返当且仅当 $\sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty$ 且 $\lim_{n\to\infty} p_{ii}^{(n)} = 0$ (若 i 非周期)。

3.4.3 互达等价类

1. 定义 1: 设 i, j 是两状态, 如果 i = j, 或存在 $n \ge 1$, 使得 $p_{ij}^{(n)} > 0$, 则称 i 可达 j, 记为 $i \to j$ 。如果 $i \to j$ 并且 $j \to i$, 则称 i, j 互达, 记为 $i \leftrightarrow j$ 。互达满足自反性, 对称性, 传递性。

注 对任何状态 i,j, i 和 j 的互达等价类不是相等就是互斥。因此状态空间可以表示为互不相交互达等价类的并。如果状态空间中任意两个状态互达,则称马尔科夫链不可约。

2. 定义 2: 定义状态 i 的周期 (period) d(i) 为集合 $\{n \geq 1 : p_{ii}^{(n)} > 0\}$ 中元素的最大公约数 (若该集合为空集,则定义 d(i) = 0)。如果 d(i) = 1,则称 i 非周期。如果所有 i 非周期,则称此马尔可夫链非周期。若状态 i 正常返且非周期,则称 i 为遍历状态。不可约非周期正常返的马尔可夫链称为遍历的马尔可夫链。

注 (一个判断常返的方法 (定理 3.3.3)) 如果 $i \leftrightarrow j$, 则

- 1. d(i) = d(j);
- 2. i 常返当且仅当 j 常返;
- 3. i 正常返当且仅当 j 正常返.

3.4.4 平稳分布

1. 定义: 设 $\{X_n; n = 0, 1, ...\}$ 是一时齐马尔可夫链, 设初始分布为 π , 转移矩阵为 P。若 $\pi P = \pi$, 此时 π 称为 $\{X_n\}$ 的平稳分布。设 $\pi = (\pi_j; j \in I)$ 满足 (1) $\pi_j \geq 0$, $\sum_{j \in I} \pi_j = 1$; (2) $\pi_j = \sum_{i \in I} \pi_i p_{ij}$, $\forall j \in I$, 则称 π 是 $\{X_n\}$ 的平稳分布。

注 一个不存在平稳分布的反例: 如果一个马尔科夫链的所有状态都是暂留态, 那么它通常不存在平稳分布。

2.

- **注(引理)** (a). 设状态 j 暂留或零常返,则: (a) 对所有状态 i, $\lim_{n\to\infty} p_{ij}^{(n)} = 0$; (b) 不论初始分布如何, 恒有 $\lim_{n\to\infty} P(X_n = j) = 0$; (c) 设 π 是 $\{X_n\}$ 的平稳分布,有 $\pi_i = 0$.
- (b). 若 $\{X_n\}$ 是有限马尔可夫链,则至少存在一个正常返态。
- (c). 若 $\{X_n\}$ 是不可约的有限马尔可夫链,则所有状态正常返。

3.

注 (关于常返判断和平均回转时的有用定理) 设 $\{X_n\}$ 不可约。

- (a). $\{X_n\}$ 存在平稳分布当且仅当 $\{X_n\}$ 正常返;
- (b). 当 $\{X_n\}$ 正常返时, 平稳分布 π 唯一且对任何状态 j 有 $\pi_j = \frac{1}{\mu_{jj}}$ (其中 μ_{jj} 是状态 j 的平均回转时间)。对任何 i,j:

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^{N} p_{ij}^{(k)} = \pi_j$$

- (c). 若 $\{X_n\}$ 遍历 (不可约、正常返、非周期),则对任何状态 i,j 有 $\lim_{n\to\infty} p_{ij}^{(n)} = \pi_j$ 。
- 4. 开集和闭集:
 - 定义: 称 I 的子集 C 为闭集, 如果对于 $i \in C$ 和 $j \notin C$, 都有 $p_{ij} = 0$ 。

定理 3.1 (重要)(a). 如果 i 常返,则 i 的互达等价类是闭的;

(b). 如果 i 的互达等价类是有限闭集,则 i 正常返。

3.4.5 吸收概率与平均吸收时间

- 1. 问题引入: 有限 Markov 链的状态分解: $I = T \cup C_1 \cup C_2 \cup \cdots \cup C_k$ 这里 T 是所有暂留态, C_1, C_2, \ldots, C_k 是所有闭的常返的互达等价类。如果 $X_0 \in T$, 则最终会进入某个 C_i 并将不再离开。问题: 1. 进入 C_1, \ldots, C_k 的概率分别是多少? 2. 进入 $C = C_1 \cup \cdots \cup C_k$ 的平均时间是多少?
- 2. 做题方法: 当 Markov 链有多个闭集时, 我们可以利用 Markov 性和全概率公式, 利用 1 步分析法建立方程, 计算被某一个特定闭集吸收的概率。也用类似的方法来计算平均吸收时间。

注(方法一: 计算吸收概率) 设 $h_i = P(从状态 i 出发, 最终被吸收集A_{target} 吸收)。1. 定义变量与边界条件:$

- 对于 $k \in A_{\text{target}}$: $h_k = 1$.
- •对于 $k \in A_{\text{other}}$ (其他吸收集, 无法到达 A_{target}): $h_k = 0$ 。
- •对于所有其他暂留状态 $i: h_i$ 是待求未知数。
- 2. 建立方程 (一步分析): 对于每个非吸收暂留态 i:

$$h_i = \sum_{j \in I} p_{ij} h_j$$

3. 求解方程组。

注(方法二: 计算平均吸收时间) 设 $m_i = E(从状态 i 出发, 首次进入吸收集 C 的时间)。1. 定义变量与边界条件:$

- 对于 $k \in C$: $m_k = 0$.
- •对于所有其他暂留状态 $i: m_i$ 是待求未知数。
- 2. 建立方程 (一步分析): 对于每个非吸收暂留态 i:

$$m_i = 1 + \sum_{j \in I} p_{ij} m_j$$

3. 求解方程组。

4 泊松过程与布朗运动

4.1 独立增量过程

定义 4.1 对 $\forall n$ 和 $t_0 < t_1 < \cdots < t_n$,若随机变量序列 $X(t_1) - X(t_0), X(t_2) - X(t_1), \ldots, X(t_n) - X(t_{n-1})$ 相互独立,则称随机过程 $\{X(t)\}$ 为独立增量过程。

• 在互不重叠的区间上, 状态的增量是相互独立的。

4.1.1 独立增量过程的性质

若 $\{X(t), t \ge 0\}$ 是独立增量过程, 且 X(0) = 0, 则:

1. X(t) 的有限维分布函数族可以由增量 X(t) - X(s) $(0 \le s < t)$ 的分布所确定。

- 2. 设 $D_X(t) = \text{Var}(X(t))$ 已知, 则协方差函数 $C_X(s,t) = D_X(\min(s,t))$ 。
- 3. 若对 $\forall h$ 和 $\forall s < t$, $X(t+h) X(s+h) \stackrel{d}{=} X(t) X(s)$ (即增量的分布仅依赖于时间差 t-s), 称 $\{X(t)\}$ 为平稳增量过程 (或齐次增量过程)。
- 4. 独立增量过程 + 平稳增量过程 = 平稳(齐次)独立增量过程。

4.2 泊松过程

以 N(t) 表示在时间间隔 (0,t] 内事件发生的数目。 $\{N(t), t \geq 0\}$ 是一个取非负整数值的、时间连续的随机过程, 称为计数过程。

定义 4.2 (定义 1: 泊松过程) 计数过程 $\{N(t)\}$ 称作强度为 λ 的泊松过程, 如果:

- 1. N(0) = 0
- 2. $\{N(t)\}$ 是独立增量过程。
- 3. $P\{N(t+h) N(t) = 1\} = \lambda h + o(h)$ (稀有性)
- 4. $P\{N(t+h) N(t) \ge 2\} = o(h)$ (非聚集性)

定义 4.3 (定义 2: 泊松过程 (等价定义)) 称 $\{N(t), t \geq 0\}$ 是强度为 λ 的泊松过程, 若满足:

- 1. N(0) = 0
- 2. $\{N(t)\}$ 是独立增量过程。
- 3. 对任意的 $t > s \ge 0$, $N(t) N(s) \sim \text{Poisson}(\lambda(t-s))$ 。

4.2.1 泊松过程的性质

- 1. $E[N(t)] = \lambda t$
- 2. $D[N(t)] = \lambda t$
- 3. $C_N(s,t) = \operatorname{Cov}(N(s), N(t)) = \lambda \min(s,t)$
- 4. $R_N(s,t) = C_N(s,t) + \mu_N(s)\mu_N(t) = \lambda \min(s,t) + \lambda^2 st$, for $s,t \ge 0$.
- 5. $\forall t > s \ge 0, n \ge m$:

$$P\{N(s) = m|N(t) = n\} = \binom{n}{m} \left(\frac{s}{t}\right)^m \left(1 - \frac{s}{t}\right)^{n-m}$$

6. 对 $t > s \ge 0, n \ge m$: (因为 N(t) - N(s) 独立于 N(s))

$$P\{N(t) = n | N(s) = m\} = P\{N(t) - N(s) = n - m\} = e^{-\lambda(t-s)} \frac{(\lambda(t-s))^{n-m}}{(n-m)!}$$

4.2.2 与泊松过程相联系的若干分布

- 1. 等待时间: W_n 是第 n 个事件发生的时刻。
 - $F_{W_n}(t) = P(W_n \le t) = P(N(t) \ge n) = \sum_{k=n}^{\infty} e^{-\lambda t} \frac{(\lambda t)^k}{k!}, t \ge 0.$
 - 概率密度函数: $f_{W_n}(t) = \frac{\lambda(\lambda t)^{n-1}}{(n-1)!} e^{-\lambda t}, t > 0$, 即 $W_n \sim \Gamma(n, \lambda)$ 。
- 2. 相继到达时间间隔 (Inter-arrival Times): 记 $T_i = W_i W_{i-1}$ (for $i = 1, 2, ..., W_0 = 0$). 特别地, $T_1 = W_1$ 服从指数分布: $f_{W_1}(t) = \lambda e^{-\lambda t}, t > 0$.

定理 4.1 $\{N(t)\}$ 是强度为 λ 的泊松过程当且仅当其时间间隔 T_1, T_2, \ldots 独立同分布, 且服从均值 为 $1/\lambda$ 的指数分布。

3. 条件事件发生时刻:

$$P\{T_1 \le s | N(t) = 1\} = \frac{s}{t}, \quad 0 < s \le t.$$

即若已知在 (0,t] 内恰有一事件发生,则此事件发生的时刻在 (0,t] 内均匀分布。 $f_{T_1|N(t)=1}(s) = \frac{1}{t}, \quad 0 < s < t.$

4.2.3 泊松过程合成和分解

合成 设 $\{N_1(t)\}$ 和 $\{N_2(t)\}$ 是强度分别为 λ_1 和 λ_2 的泊松过程, 且相互独立, 则 $\{N(t) = N_1(t) + N_2(t)\}$ 是强度为 $\lambda_1 + \lambda_2$ 的泊松过程。

分解 设 $\{N(t)\}$ 是强度为 λ 的泊松过程。若每个事件独立地以概率 p 属于类型 1, 以概率 1-p 属于类型 2。令 $N_1(t)$ 和 $N_2(t)$ 分别表示到时刻 t 为止类型 1 和类型 2 事件发生的个数。则 $\{N_1(t)\}$ 和 $\{N_2(t)\}$ 分别是强度为 λp 和 $\lambda (1-p)$ 的泊松过程,且它们相互独立。

4.2.4 非齐次泊松过程

定义 4.4 计数过程 $\{N(t)\}$ 称作强度函数为 $\lambda(t)$ 的非齐次泊松过程, 如果:

1.
$$N(0) = 0$$

- 2. $\{N(t)\}$ 是独立增量过程。
- 3. $P{N(t+h) N(t) = 1} = \lambda(t)h + o(h)$
- 4. $P{N(t+h) N(t) \ge 2} = o(h)$

定义 4.5 (等价定义) $\{N(t), t \geq 0\}$ 是强度为 $\lambda(t)$ 的非齐次泊松过程当且仅当:

- 1. N(0) = 0
- 2. $\{N(t)\}$ 是独立增量过程。
- 3. 对任意的 $t > s \ge 0$, $N(t) N(s) \sim \text{Poisson}\left(\int_s^t \lambda(u) du\right)$.

令 $m(t) = \int_0^t \lambda(u) du$ 为均值函数,则 $N(t) - N(s) \sim \text{Poisson}(m(t) - m(s))$ 。

4.3 布朗运动

4.3.1 布朗运动的定义及数字特征

定义 4.6 随机过程 $\{X(t), t \geq 0\}$ 称为布朗运动 (Wiener Process), 如果:

- 1. X(0) = 0.
- 2. {X(t)} 独立增量。
- 3. 对于任意 $t > s \ge 0$, $X(t) X(s) \sim N(0, \sigma^2(t-s))$.
- 4. 样本轨道 $X(t,\omega)$ 在 t 上几乎处处连续。

如果 $\sigma^2 = 1$, 则为标准布朗运动, 记为 $\{B(t); t \geq 0\}$ 。

4.3.2 性质

- 1. 标准布朗运动 (SBM) 是一个齐次 (平稳) 独立增量过程。
- 2. 标准布朗运动是一个高斯过程。其分布由其均值函数和协方差函数完全确定。
- 3. 标准布朗运动 $\{B(t)\}$ 的数字特征:
 - 均值: $\mu_B(t) = E[B(t)] = 0$.
 - 方差: $D_B(t) = D[B(t)] = t$.
 - 协方差: $C_B(s,t) = \text{Cov}(B(s),B(t)) = \min(s,t)$ 。(由于 E[B(t)] = 0, 所以自相关函数 $R_B(s,t) = C_B(s,t)$)。
- 4. 标准布朗运动的等价定义: 一个具有连续样本路径的随机过程 $\{B(t); t \geq 0\}$ 是标准布朗运动, 当且仅当它是一个高斯过程, 且满足 E[B(t)] = 0 和 $E[B(t)B(s)] = \min(s,t)$ 。
- 5. 马尔可夫性: 对于任意固定的 s > 0, 过程 $X_s(t) = B(t+s) B(s)$ (其中 $t \ge 0$) 是一个标准布朗运动, 并且独立于 $\{B(u) : u \le s\}$ 。
- 6. 自相似性 (标度性质): 对于任意 $a \neq 0$, $X(t) = \frac{1}{\sqrt{|a|}} B(at)$ 也是标准布朗运动。(原 OCR 为 $X(t) = \frac{1}{a} B(a^2t)$, 此为 a > 0 时的情况)
- 7. 时间反演: 令

$$\tilde{B}(t) = \begin{cases} tB(1/t), & t > 0 \\ 0, & t = 0 \end{cases}$$

那么 $\{\tilde{B}(t); t \geq 0\}$ 是一个标准布朗运动。

4.3.3 首次击中时间

令 $T_a = \inf\{t: t > 0, B(t) = a\}$ 为标准布朗运动 $\{B(t); t \geq 0\}$ 首次达到水平 $a \neq 0$ 的时间。 T_a 是一个随机变量,其累积分布函数 (CDF) 为 $F_{T_a}(t) = P(T_a \leq t)$ 。

情况 1: a > 0 根据反射原理,对于 a > 0和 t > 0,有:

$$P(T_a \le t) = P\left(\max_{0 \le s \le t} B(s) \ge a\right) = 2P(B(t) \ge a)$$

由于标准布朗运动 $B(t) \sim N(0,t)$, 因此 $B(t)/\sqrt{t} \sim N(0,1)$ 。所以,

$$P(B(t) \ge a) = P\left(\frac{B(t)}{\sqrt{t}} \ge \frac{a}{\sqrt{t}}\right) = P\left(N(0, 1) \ge \frac{a}{\sqrt{t}}\right) = 1 - \Phi\left(\frac{a}{\sqrt{t}}\right)$$

其中 $\Phi(\cdot)$ 是标准正态分布的累积分布函数。因此,对于 a>0 和 t>0:

$$F_{T_a}(t) = P(T_a \le t) = 2\left(1 - \Phi\left(\frac{a}{\sqrt{t}}\right)\right)$$

情况 2: a < 0 如果 a < 0,我们可以考虑另一个标准布朗运动 B'(t) = -B(t)。则事件 $\{B(t)$ 首次达到 $a\}$ 等价于事件 $\{B'(t)$ 首次达到 $-a\}$ 。由于 a < 0,则 -a > 0。令 a' = -a = |a| > 0。令 $T_a^{(B)}$ 表示 B(t) 首次达到 a 的时间, $T_{a'}^{(B')}$ 表示 B'(t) 首次达到 a' 的时间。则 $T_a^{(B)} = T_{a'}^{(B')}$ 。由于 B'(t) 也是一个标准布朗运动,我们可以应用情况 1 的结果:

$$P(T_{a'}^{(B')} \le t) = 2\left(1 - \Phi\left(\frac{a'}{\sqrt{t}}\right)\right)$$

所以,对于a < 0和t > 0:

$$F_{T_a}(t) = P(T_a \le t) = 2\left(1 - \Phi\left(\frac{-a}{\sqrt{t}}\right)\right) = 2\left(1 - \Phi\left(\frac{|a|}{\sqrt{t}}\right)\right)$$

统一表达式 综合以上两种情况,对于任意 $a \neq 0$ 和 t > 0,首次击中时间 T_a 的累积分布函数为:

$$F_{T_a}(t) = P(T_a \le t) = 2\left(1 - \Phi\left(\frac{|a|}{\sqrt{t}}\right)\right)$$

并且,对于 $t \le 0$, $F_{T_a}(t) = 0$ (因为首次击中时间必然是正的)。

与最大/最小值过程的关系

• 对于 *a* > 0:

$$P\left(\max_{0 \le s \le t} B(s) \ge a\right) = P(T_a \le t) = 2P(B(t) \ge a) = 2\left(1 - \Phi\left(\frac{a}{\sqrt{t}}\right)\right)$$

• 对于 *a* < 0:

$$P\left(\min_{0 \le s \le t} B(s) \le a\right) = P(T_a \le t) = 2P(B(t) \le a) = 2\Phi\left(\frac{a}{\sqrt{t}}\right)$$

注意: $P(B(t) \le a) = \Phi(a/\sqrt{t})$ 。而 $2(1 - \Phi(|a|/\sqrt{t})) = 2(1 - \Phi(-a/\sqrt{t})) = 2(1 - (1 - \Phi(a/\sqrt{t}))) = 2\Phi(a/\sqrt{t})$ 。所以两种表达是一致的。

4.3.4 布朗运动的极值分布

$$X(t) = -\min_{0 \le s \le t} B(s).$$

令
$$B_1(s) = -B(s)$$
, 它也是一个标准布朗运动。

$$\mathbb{N} X(t) = \max_{0 \le s \le t} B_1(s) \, .$$

对于y > 0,

$$P(X(t) \le y) = P\left(\max_{0 \le s \le t} B_1(s) \le y\right).$$

$$P(\max_{0 \le s \le t} B_1(s) \le y) = 1 - P(\max_{0 \le s \le t} B_1(s) > y).$$

$$=1-2P(B_1(t)\geq y)=1-2\left(1-\Phi\left(\frac{y}{\sqrt{t}}\right)\right)=2\Phi\left(\frac{y}{\sqrt{t}}\right)-1.$$

所以,

$$F_{X(t)}(y) = \begin{cases} 2\Phi\left(\frac{y}{\sqrt{t}}\right) - 1, & y > 0\\ 0, & y \le 0 \end{cases}$$

4.3.5 布朗桥 (Brownian Bridge)

定义 4.7 令 X(t) = B(t) - tB(1), 其中 $0 \le t \le 1$ 。过程 $\{X(t), 0 \le t \le 1\}$ 称为布朗桥。(它是一个在 t = 0 和 t = 1 时被"固定"为 0 的布朗运动)。

性质:

- 1. $X(0) = B(0) 0 \cdot B(1) = 0$, $X(1) = B(1) 1 \cdot B(1) = 0$,
- 2. $\{X(t)\}$ 是一个高斯过程 (因为 B(t) 是高斯过程)。
- 3. 均值: $E[X(t)] = E[B(t)] tE[B(1)] = 0 t \cdot 0 = 0$ 。 协方差: 对于 $0 \le s \le t \le 1$, $C_X(s,t) = Cov(X(s), X(t)) = min(s,t) st = s(1-t)$ 。

5 平稳过程的定义

5.1 严平稳过程

5.1.1 定义

若随机过程 $\{X(t), t \in T\}$, 对任意的 n = 1, 2, ..., 任意的 $t_1, ..., t_n \in T$ 和任意实数 h, 使得 $t_i + h \in T$, 随机向量 $(X(t_1), ..., X(t_n))$ 和 $(X(t_1 + h), ..., X(t_n + h))$ 具有相同的分布函数, 则称此过程为严平稳过程。

5.1.2 严平稳过程的等价条件

 $\{X_t\}$ 是严平稳过程当且仅当

- 1. 所有的 X_t 同分布。
- 2. 对任意 $n \ge 2$, $(X_{t_1}, \ldots, X_{t_n})$ 的分布仅与时间差 $t_2 t_1, \ldots, t_n t_{n-1}$ 有关, 而与起始时间 t_1 无关。

5.1.3 严平稳过程的数字特征

设严平稳过程 $\{X(t)\}$ 是二阶矩过程,则

- 1. 均值: $\mu_X(t) = E[X(t)] = E[X(0)] = \mu_X$ (常数)
- 2. 自相关函数: $R_X(t,t+\tau) = E[X(t)X(t+\tau)] = E[X(0)X(\tau)] = R_X(\tau)$ (仅与 τ 有关)

5.2 宽平稳过程

5.2.1 定义

给定二阶矩过程 $\{X(t), t \in T\}$, 如果对任意的 $t, t + \tau \in T$,

- 1. $E[X(t)] = \mu_X$ (常数)
- 2. $E[X(t)X(t+\tau)] = R_X(\tau)$ (仅与 τ 有关)

则称 $\{X(t), t \in T\}$ 为宽平稳过程。

5.2.2 严平稳和宽平稳的等价关系

- 1. 严平稳过程 + 二阶矩存在 ⇒ 宽平稳过程; 宽平稳过程 + 正态过程 ⇒ 严平稳过程;
- 2. 平稳过程通常指宽平稳过程。

5.2.3 宽平稳过程的性质

如果 $\{X(t)\}$ 是宽平稳过程,那么

- 1. $E[X(t)] = \mu_X$ (常数)
- 2. $E[X^2(t)] = R_X(0)$ (常数, 平均功率)
- 3. $D[X(t)] = R_X(0) \mu_X^2$ (常数, 方差)
- 4. $E[X_{t_1}X_{t_2}] = R_X(t_2 t_1)$
- 5. $Cov(X_{t_1}, X_{t_2}) = R_X(t_2 t_1) \mu_X^2 = C_X(t_2 t_1)$

5.2.4 联合(宽)平稳

X(t) 和 Y(t) 是两个平稳过程。如果它们的互相关函数也只是时间差的函数,即 $R_{XY}(t,t+\tau) = E[X(t)Y(t+\tau)] = R_{XY}(\tau)$,称 X(t) 和 Y(t) 是平稳相关的,或称这两个过程是联合(宽) 平稳的。

5.3 相关函数的性质

设 X(t) 和 Y(t) 是平稳相关过程:

- 1. $R_X(0) = E[X^2(t)] \ge 0$
- 2. $R_X(-\tau) = R_X(\tau)$ (自相关函数是偶函数) $R_{XY}(-\tau) = R_{YX}(\tau)$
- 3. $|R_X(\tau)| \le R_X(0)$ (自相关函数在 $\tau = 0$ 处取得最大模值) $|C_X(\tau)| \le C_X(0) = \sigma_X^2$ (自协方差函数) $|R_{XY}(\tau)|^2 \le R_X(0)R_Y(0)$ (柯西-施瓦茨不等式)
- 4. $R_X(\tau)$ 是非负定的: $\sum_{i=1}^n \sum_{j=1}^n R_X(t_i t_j) a_i a_j \ge 0$ for any a_i, t_i .
- 5. X(t) 是周期为 T_0 的平稳过程 (均方意义) $\Leftrightarrow R_X(\tau)$ 是周期为 T_0 的函数。

6 各态历经性

6.1 时间均值和时间自相关函数

设 $\{X(t): -\infty < t < \infty\}$ 为一个随机过程(通常在讨论时间平均时,我们关注的是其某个样本函数)。其时间均值和时间自相关函数定义如下:

时间均值 (Time Average)

对于过程的一个样本函数 x(t), 其时间均值定义为::

$$\langle x(t)\rangle_{t\geq 0} = \lim_{T\to\infty} \frac{1}{T} \int_0^T x(t)dt$$

时间自相关函数 (Time Autocorrelation Function)

对于过程的一个样本函数 x(t), 其时间自相关函数定义为:

$$\langle x(t)x(t+\tau)\rangle_{t\geq 0} = \lim_{T\to\infty} \frac{1}{T} \int_0^T x(t)x(t+\tau)dt$$

6.2 各态历经性

设 X(t) 是一平稳过程:

- 1. 均值具有各态历经性: $P\{\langle X(t)\rangle = \mu_X\} = 1$
- 2. 自相关函数具有各态历经性: $P\{\langle X(t)X(t+\tau)\rangle = R_X(\tau)\} = 1, \forall \tau$
- 3. 各态历经过程: 均值和自相关函数都具有各态历经性。

6.3 均值各态历经定理

6.3.1 定义

设 $\{X(t): -\infty < t < \infty\}$ 为平稳过程,则均值具有各态历经性的充要条件是:

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T C_X(\tau) d\tau = 0$$

(其中 $C_X(\tau) = R_X(\tau) - \mu_X^2$ 是自协方差函数)

6.3.2 推论(均值各态历经性判据)

对于广义平稳过程 X(t),其均值为 μ_X ,自相关函数为 $R_X(\tau)$,自协方差函数为 $C_X(\tau) = R_X(\tau) - \mu_X^2$ 。判断其均值是否具有各态历经性的一个常用推论如下:

前提条件: $\lim_{\tau\to\infty} R_X(\tau)$ 存在。

- **若** $\lim_{\tau\to\infty} R_X(\tau) = \mu_X^2$,则均值具有各态历经性。
- 若 $\lim_{\tau\to\infty} R_X(\tau) \neq \mu_X^2$,则均值不具有各态历经性。

6.4 自相关函数各态历经定理

设 $\{X(t); -\infty < t < \infty\}$ 是平稳过程, 对任给的 τ , $\{X(t)X(t+\tau)\}$ 也是平稳过程, 则 X(t) 的自相关函数 $R_X(\tau)$ 具有各态历经性的充要条件是:

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T [B(\tau_1) - R_X^2(\tau)] d\tau_1 = 0$$

其中 $B(\tau_1) = E[X(t)X(t+\tau)X(t+\tau_1)X(t+\tau+\tau_1)]$ 。

6.5 均值各态历经定理 - 离散

设离散平稳过程 $\{X_n\}$, 均值具有各态历经性的充要条件是:

$$\lim_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N-1} C_X(k) = 0$$

7 平稳过程的功率谱密度

7.1 傅里叶变换基础

傅里叶变换 (Fourier Transform):

$$F_X(\omega) = \int_{-\infty}^{+\infty} x(t)e^{-i\omega t}dt$$

傅里叶逆变换 (Inverse Fourier Transform):

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F_X(\omega) e^{i\omega t} d\omega$$

帕塞瓦尔等式 (Parseval's Theorem):

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |F_X(\omega)|^2 d\omega$$

7.1.1 确定性信号的功率与谱密度

截尾信号的傅里叶变换:

$$F_X(\omega, T) = \int_{-T}^{T} x(t)e^{-i\omega t}dt$$

确定性信号的功率谱密度:

$$S_X(\omega) = \lim_{T \to \infty} \frac{1}{2T} |F_X(\omega, T)|^2$$

确定性信号的平均功率:

$$P_x = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S_X(\omega) d\omega$$

7.2 平稳随机过程的功率谱密度

定义 7.1 (功率谱密度) 对于平稳随机过程 X(t), 其功率谱密度定义为:

$$S_X(\omega) = \lim_{T \to \infty} \frac{1}{2T} E\left[\left| \int_{-T}^T X(t) e^{-i\omega t} dt \right|^2 \right]$$

其中 $F_X(\omega,T) = \int_{-T}^T X(t)e^{-i\omega t}dt$ 是过程 X(t) 在 [-T,T] 上的傅里叶变换。

平稳过程的平均功率(总功率):与自相关函数在零点的关系:

$$E[X^2(t)] = R_X(0)$$

通过功率谱密度计算:

$$E[X^{2}(t)] = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{X}(\omega) d\omega$$

7.3 功率谱密度的性质(维纳一辛钦公式)

定理 7.1 (维纳—辛钦定理) 平稳随机过程 X(t) 的自相关函数 $R_X(\tau)$ 与其功率谱密度 $S_X(\omega)$ 构成一个 傅里叶变换对。

主要性质如下:

- 1. **实偶性与非负性:** $S_X(\omega)$ 是关于 ω 的实的、非负的偶函数,即:
 - $S_X(\omega) = S_X(-\omega)$ (偶函数)
 - $S_X(\omega) \geq 0$ (非负性)
 - $S_X(\omega)$ 是实函数。
- 2. 傅里叶变换对关系:

$$S_X(\omega) = \int_{-\infty}^{+\infty} R_X(\tau) e^{-i\omega\tau} d\tau$$
$$R_X(\tau) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S_X(\omega) e^{i\omega\tau} d\omega$$

自相关函数与谱密度对应表

图 1: 常用的自相关函数与谱密度函数对应表

7.4 傅里叶变换的对偶性 (Duality Property)

傅里叶变换的对偶性(或称对称性)描述了时域函数与其频域表示在变换形式上的内在联系。

7.4.1 性质表述 (基于角频率 ω)

若信号 x(t) 的傅里叶变换为 $X(\omega)$:

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)$$

其中 $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$.

则对偶性表明,如果将原频域函数 $X(\omega)$ 中的变量 ω 替换为 t 形成新的时域函数 X(t),那么这个新的时域函数 X(t) 的傅里叶变换为:

$$X(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi x(-\omega)$$

7.4.2 性质表述 (基于频率 f)

若傅里叶变换定义为 $X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft} dt$ 和 $x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df$,则对偶性表述为: 若 $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(f)$,则 $X(t) \stackrel{\mathcal{F}}{\longleftrightarrow} x(-f)$.

7.5 δ函数 (单位冲激函数) 与其谱特性

定义 7.2 (δ 函数) $\delta(t) = 0$, 当 $t \neq 0$, 且满足 $\int_{-\infty}^{+\infty} \delta(t) dt = 1$.

筛选性质:

$$\int_{-\infty}^{+\infty} \delta(t - \tau_0) f(t) dt = f(\tau_0)$$

傅里叶变换对示例:

- 若 $R_X(\tau) = A\delta(\tau)$, 则 $S_X(\omega) = A$.
- 若 $R_X(\tau) = A$, 则 $S_X(\omega) = 2\pi A\delta(\omega)$.

定理 7.2 (均值与功率谱密度的关系) 对于一个广义平稳随机过程 X(t),其均值为 $\mu_X = E[X(t)]$,自相关函数为 $R_X(\tau) = E[X(t)X(t+\tau)]$,功率谱密度为 $S_X(\omega) = \mathcal{F}\{R_X(\tau)\}$.

1. 随机过程 X(t) 的自相关函数 $R_X(\tau)$ 可以表示为零均值过程 $Y(t) = X(t) - \mu_X$ 的自相关函数 $R_Y(\tau)$ 与均值平方之和:

$$R_X(\tau) = R_Y(\tau) + \mu_X^2$$

2. 随机过程 X(t) 的功率谱密度 $S_X(\omega)$ 可以表示为零均值过程 Y(t) 的功率谱密度 $S_Y(\omega)$ 与一个在 $\omega = 0$ 处的冲激函数之和:

$$S_X(\omega) = S_Y(\omega) + 2\pi \mu_X^2 \delta(\omega)$$

其中 $S_Y(\omega) = \mathcal{F}\{R_Y(\tau)\}$, 且 $\delta(\omega)$ 是狄拉克 δ 函数。

- 3. 因此,随机过程 X(t) 的均值 μ_X 非零的充要条件是其功率谱密度 $S_X(\omega)$ 在 $\omega=0$ 处包含一个冲激 函数项 $2\pi\mu_X^2\delta(\omega)$ 。
- 4. 推论:如果功率谱密度 $S_X(\omega)$ 在 $\omega = 0$ 处不包含冲激函数 $\delta(\omega)$ (即 $S_X(\omega)$ 在 $\omega = 0$ 处是有限的,或者 $\delta(\omega)$ 项的系数为零),则该随机过程的均值 $\mu_X = 0$ 。

7.6 白噪声及其特性

定义 7.3 (白噪声) 均值为零,且功率谱密度为常数 $S_X(\omega) = S_0$ (其中 $S_0 > 0$) 的平稳过程。

自相关函数:

$$R_X(\tau) = S_0 \delta(\tau)$$

这意味着不同时刻的白噪声是不相关的。

7.7 限带白噪声

定义 7.4 (限带白噪声) 谱密度仅在某些有限频率范围内取非零常数的平稳过程。

例 7.1 (理想低通白噪声) 功率谱密度为:

$$S_X(\omega) = \begin{cases} S_0, & |\omega| \le \omega_1 \\ 0, & |\omega| > \omega_1 \end{cases}$$

其自相关函数为:

$$R_X(\tau) = S_0 \frac{\sin(\omega_1 \tau)}{\pi \tau} = \frac{S_0 \omega_1}{\pi} \operatorname{sinc}\left(\frac{\omega_1 \tau}{\pi}\right)$$

(注: $\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$ 或 $\frac{\sin(x)}{x}$, 这里采用 $\frac{\sin(\omega_1 \tau)}{\pi \tau}$ 形式)

7.8 互功率谱密度(基于维纳一辛钦公式的推广)

对于两个联合平稳随机过程 X(t) 和 Y(t),其互相关函数 $R_{XY}(\tau)$ 和互功率谱密度 $S_{XY}(\omega)$ 也构成 傅里叶变换对:

$$S_{XY}(\omega) = \int_{-\infty}^{+\infty} R_{XY}(\tau) e^{-i\omega\tau} d\tau$$

$$R_{XY}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{XY}(\omega) e^{i\omega\tau} d\omega$$

性质:

- 1. **共轭对称性:** $S_{XY}(\omega) = S_{YX}^*(\omega)$ (其中 $S_{YX}^*(\omega)$ 表示 $S_{YX}(\omega)$ 的复共轭)。
- 2. **实部与虚部奇偶性:** $S_{XY}(\omega)$ 的实部 $Re[S_{XY}(\omega)]$ 是偶函数,虚部 $Im[S_{XY}(\omega)]$ 是奇函数。
- 3. 相关幅度的约束 (施瓦茨不等式形式): $|S_{XY}(\omega)|^2 \leq S_X(\omega)S_Y(\omega)$.

8 线性系统中的平稳过程

8.1 线性时不变 (LTI) 系统

• 线性:

$$L[ax_1(t) + \beta x_2(t)] = aL[x_1(t)] + \beta L[x_2(t)]$$

• 时不变: 若 y(t) = L[x(t)], 则

$$y(t+\tau) = L[x(t+\tau)]$$

• 頻率响应: $H(\omega)$

若输入 $x(t) = e^{i\omega t}$, 则输出

$$y(t) = H(\omega)e^{i\omega t}$$

•脉冲响应:

$$h(t) = L[\delta(t)]$$

• 输出:

$$y(t) = x(t) * h(t) = \int_{-\infty}^{+\infty} x(\tau)h(t - \tau)d\tau$$

• 关系 $(H(\omega)$ 与 h(t) 的关系):

$$H(\omega) = \mathcal{F}[h(t)]$$

8.2 LTI 系统输出过程的均值和相关函数

设输入为平稳过程 X(t) (均值 μ_X , 自相关函数 $R_X(\tau)$), 输出过程为 Y(t)。

- •Y(t) 是平稳过程。
- (*X*(*t*), *Y*(*t*)) 是联合平稳过程。

均值:

$$\mu_Y = \mu_X \int_{-\infty}^{+\infty} h(u) du = \mu_X H(0)$$

互相关函数:

$$R_{XY}(\tau) = E[X(t)Y(t+\tau)]$$

$$= \int_{-\infty}^{+\infty} h(u)R_X(\tau - u)du$$

$$= R_X(\tau) * h(\tau)$$

注 (关于定义的说明) 互相关函数定义为 $R_{XY}(\tau) = E[X(t)Y(t+\tau)]$ 时,其傅里叶变换对应 $S_{XY}(\omega) = H(\omega)S_X(\omega)$,卷积形式为 $R_X(\tau)*h(\tau)$ 。如果采用定义 $R_{XY}(\tau) = E[X(t-\tau)Y(t)]$,则卷积形式会变为 $R_X(\tau)*h(-\tau)$ 。本笔记遵循前一种定义。

自相关函数:

$$R_Y(\tau) = \int_{-\infty}^{+\infty} h(v)R_{XY}(\tau + v)dv \quad (利用R_{XY} 定义)$$
$$= R_X(\tau) * h(\tau) * h(-\tau)$$

8.3 LTI 系统输出过程的功率谱密度

设输入平稳过程 X(t) 的功率谱密度为 $S_X(\omega)$, 输出过程为 Y(t)。

输出谱密度:

$$S_Y(\omega) = |H(\omega)|^2 S_X(\omega)$$

互谱密度:

$$S_{XY}(\omega) = H(\omega)S_X(\omega)$$

$$S_{YX}(\omega) = H^*(\omega)S_X(\omega) \quad (H^*(\omega) 表示 H(\omega) 的共轭)$$