Lecture 19 Transistor Amplifiers (I) Common-Source Amplifier

Outline

- Amplifier fundamentals
- Common-source amplifier
- Common-source amplifier with current-source supply

Reading Assignment:

Howe and Sodini; Chapter 8, Sections 8.1-8.4

Announcement:

Quiz #2: April 25, 7:30-9:30 PM at Walker. Calculator

Required. Open book.

Amplifier Fundamentals

- Source resistance R_S is associated *only* with small signal sources
- Choose $I_D = I_{SUP} ---> DC$ output current

$$- \quad I_{OUT} = 0$$

$$-V_{OUT} = 0$$

2. Common-Source Amplifier:

Consider the following circuit:

- Consider intrinsic voltage amplifier no loading
 - $\bullet R_S = 0$
 - $\bullet R_1 \longrightarrow \infty$
 - $V_{GS} = V_{BIAS}$ V_{SS}
- V_{BIAS} , R_D and W/L of MOSFET selected to bias transistor in saturation and obtain desired output bias point (i.e. $V_{OUT} = 0$).

Watch notation: $v_{OUT}(t)=V_{OUT}+v_{out}(t)$

Load line view of amplifier:

Transfer characteristics of amplifier:

Want:

- Bias point calculation;
- Limits to signal swing
- Small-signal gain;
- Frequency response [in a few days]

Bias point: choice of V_{BIAS} , W/L, and R_D to keep transistor in saturation and to get proper quiescent V_{OUT} .

Assume MOSFET is in saturation:

$$I_{D} = \frac{W}{2L} \mu_{n} C_{ox} (V_{BIAS} - V_{SS} - V_{T})^{2}$$

$$I_{R} = \frac{V_{DD} - V_{OUT}}{R_{D}}$$

If we select $V_{OUT}=0$:

$$I_D = I_R = \frac{W}{2L} \mu_n C_{ox} \left(V_{BIAS} - V_{SS} - V_T \right)^2 = \frac{V_{DD}}{R_D}$$

Then:

$$V_{BIAS} = \sqrt{\frac{2I_D}{\frac{W}{L}\mu_n C_{ox}}} + V_{SS} + V_T$$

Equation that allows us to compute needed $V_{\rm BIAS}$ given $R_{\rm D}$ and W/L.

• Upswing: limited by MOSFET going into cut-off.

$$v_{out, max} = V_{DD}$$

• Downswing: limited by MOSFET leaving saturation.

$$V_{DS,sat} = V_{GS} - V_{T} = \sqrt{\frac{2I_{D}}{\frac{W}{L}\mu_{n}C_{ox}}}$$

$$v_{out, min} - V_{SS} = V_{BIAS} - V_{SS} - V_{T}$$

Then:

$$v_{out, min} = V_{BIAS} - V_T$$

Generic view of the effect of loading on small-signal operation

Two-port network view of small-signal equivalent circuit model of a voltage amplifier:

R_{in} is input resistance R_{out} is output resistance A_{vo} is unloaded voltage gain

Voltage divider at input:
$$v_{in} = R_{in} \frac{v_s}{R_{in} + R_s}$$

Voltage divider at output:
$$v_{out} = R_L \frac{A_{vo}v_{in}}{R_{out} + R_L}$$

Loaded voltage gain:
$$\frac{v_{out}}{v_s} = \frac{R_{in}}{R_{in} + R_S} A_{vo} \frac{R_L}{R_L + R_{out}}$$

Small-signal voltage gain A_{vo} : draw small-signal equivalent circuit model: Remove R_L and R_S

$$v_{out} = -g_m v_t (r_o // R_D)$$

Then unloaded voltage gain:

$$A_{vo} = \frac{v_{out}}{v_t} = -g_m (r_o // R_D)$$

Input Resistance

- Calculation of input resistance, R_{in}:
 - Load amplifier with R_L
 - Apply test voltage (or current) at input, measure test current (or voltage).

For common-source amplifier:

$$i_t = 0 \Rightarrow R_{in} = \frac{v_t}{i_t} = \infty$$

No effect of loading at input.

Output Resistance

- Calculation of output resistance, R_{out}:
 - Load amplifier with R_S
 - Apply test voltage (or current) at output, measure test current (or voltage).
 - Set input source equal zero

For common-source amplifier:

$$Rs \geqslant v_{gs} \qquad \qquad \downarrow g_{m}v_{gs} \geqslant (r_{o}/\!/R_{D}) \qquad \qquad \uparrow v_{t}$$

$$v_{gs} = 0 \Rightarrow g_m v_{gs} = 0 \Rightarrow v_t = i_t (r_o // R_D)$$

$$R_{out} = \frac{v_t}{i_t} = r_o // R_D$$

Two-port network view of common-source amplifier Voltage Amplifier

$$\frac{v_{out}}{v_{s}} = \frac{R_{in}}{R_{in} + R_{S}} A_{vo} \frac{R_{L}}{R_{L} + R_{out}}$$

$$\frac{v_{out}}{v_{s}} = -g_{m} (r_{o} // R_{D}) \frac{R_{L}}{R_{L} + r_{o} // R_{D}} = -g_{m} (r_{o} // R_{D} // R_{L})$$

Current Source Supply

I—V characteristics of current source:

Equivalent circuit models:

- $i_{SUP} = 0$ for $v_{SUP} \le 0$
- $i_{SUP} = I_{SUP} + v_{SUP} / r_{oc} \text{ for } v_{SUP} > 0$
- High small-signal resistance r_{oc.}

3. Common-source amplifier with current-source supply

Loadline View

Use PMOS for current source supply

Bias point: Assume both transistors in saturation $V_{OUT} = 0$. Choose I_{SUP} and determine V_{B} .

$$I_{SUP} = -I_{Dp} = \left(\frac{W}{2L}\right)_{p} \mu_{p} C_{ox} \left(V_{DD} - V_{B} + V_{Tp}\right)^{2}$$

Set
$$-I_{Dp} = I_{Dn}$$
 for $V_{OUT} \sim 0$

$$I_{SUP} = I_{Dn} = \left(\frac{W}{2L}\right)_{n} \mu_{n} C_{ox} \left(V_{BIAS} - V_{SS} - V_{Tn}\right)^{2}$$

$$V_{BIAS} = \sqrt{\frac{2I_{SUP}}{\left(\frac{W}{L}\right)_{n} \mu_{n} C_{ox}}} + V_{SS} + V_{T}$$

Signal swing:

• Upswing: limited by PMOS leaving saturation.

$$V_{SD,sat} = V_{SG} + V_{Tp} = V_{DD} - V_B + V_{Tp}$$

$$V_{DD} - v_{out, \max} = V_{DD} - V_B + V_{Tp}$$

 $v_{out, \max} = V_B - V_{Tp}$

- Downswing: limited by NMOS leaving saturation.
- Same result as with resistive supply current.

$$v_{out,min} = V_{BIAS} - V_T$$

3. Common-source amplifier with current-source supply (contd.)

Current source characterized by high output resistance: r_{oc} . Significantly higher than amplifier with resistive supply.

p-channel MOSFET: $r_{oc} = 1/\lambda I_{Dp}$ $V_{B} \longrightarrow V_{DD}$ signal source $R_{S} \longrightarrow V_{DD}$ $v_{S} \longrightarrow V_{DD}$ $V_{BIAS} \longrightarrow V_{DD}$ $V_{DD} \longrightarrow V_{DD}$

• Voltage gain: $A_{vo} = -g_m (r_o // r_{oc})$.

• Input resistance : $R_{in} = \infty$

• Output resistance: $R_{out} = r_o / / r_{oc}$.

6.012 Spring 2007 Lecture 19 16

Vss

Relationship between circuit figures of merit and device parameters

Remember:

$$g_{m} = \sqrt{2I_{D} \frac{W}{L} \mu_{n} C_{ox}}$$

$$r_{o} \approx \frac{1}{\lambda_{n} I_{D}} \propto \frac{L}{I_{D}}$$

Then:

	Circuit Parameters		
Device* Parameters	A _{vo}	R _{in}	R _{out}
	$g_{\rm m}(r_{\rm o}//r_{\rm oc})$	\propto	$r_{\rm o}//r_{\rm oc}$
$I_{SUP} \uparrow$	\downarrow	_	\
w ↑	\uparrow	_	-
L↑	\uparrow	-	\uparrow

^{*} adjustments are made to V_{BIAS} so that none of the other parameters change

CS amplifier with current source supply is a good voltage amplifier (R_{in} high and $|A_{vo}|$ high), but R_{out} high too \Rightarrow voltage gain degraded if $R_L \ll r_o//r_{oc}$.

What did we learn today?

Summary of Key Concepts for CS amplifier

- Bias Calculations
- Signal Swing
- Small Signal Circuit Parameters
 - Voltage Gain A_{VO}
 - Input Resistance R_{in}
 - Output Resistance R_{out}
- Relationship between small signal circuit and device parameters