Universidade Estadual Vale do Acaraú - UVA

Disciplina: Matemática Discreta

Professor: Hudson Costa

Aula de Relações de Recorrência

- 1. Suponha que hoje (ano 0) o seu carro está avaliado em R\$10.000. A cada ano seu carro perde 10% do seu valor, mas ao final de cada ano você adiciona customizações ao carro que aumentam em R\$50 o seu valor. Escreva uma relação de recorrência para modelar essa situação.
- 2. Lembre que a função fatorial é definida como $n! = 1 \cdot 2 \cdot 3 \dots (n-1) \cdot n$ e que, por convenção 0! = 1. Dê uma relação de recorrência para n!.
- 3. Suponha que modelamos a propagação de um vírus em uma certa população da seguinte forma. No dia 1, uma pessoa é infectada. Em cada dia subsequente, cada pessoa infectada passa resfriado para outras duas pessoas.
 - a) Escreva a relação de recorrência para esse modelo.
 - b) Quais são algumas das limitações desse modelo? De que forma ele falha em ser realista?
- 4. Seja X um conjunto com n elementos. Seja $E \subseteq P(X)$ o conjunto de todos os subconjuntos de X com um número par de elementos, e sejam $O \subseteq P(X)$ os subconjuntos de X com número ímpar de elementos. Seja E(n) = |E| e O(n) = |O|.
 - a) Encontre uma relação de recorrência para E(n) em termos de O(n-1) e E(n-1).
 - b) Encontre uma relação de recorrência para O(n) em termos de O(n-1) e E(n-1).
 - c) Encontre os cinco primeiros valores de E(n) e O(n).
- 5. O grafo bipartido completo $K_{m,n}$ é o grafo simples não orientado com m+n vértices divididos em dois conjuntos V_1 e $V_2(|V_1|=m,|V_2|=n)$ tal que os vértices x, y compartilham uma aresta se e somente se $x \in V_1$ e $y \in V_2$. Por exemplo, $K_{3,4}$ é o grafo abaixo:

- a) Encontre uma relação de recorrência para o número de arestas em $K_{3,n}$.
- b) Encontre uma relação de recorrência para o número de arestas em $K_{n,n}$.