#### Literatura

### W slajdach i materiałach wykorzystano wiedzę, materiały, przykłady zawarte m.in. w:

- 1. Fortuna, Z., B. Macukow, and J. Wasowski. "Metody numeryczne" WNT, Warszawa (2009).
- 2. Kincaid, David, David Ronald Kincaid, and Elliott Ward Cheney. Numerical analysis: mathematics of scientific computing. Vol. 2. American Mathematical Soc., 2009. (w. pol)
- 3. Chapra, Steven C., and Raymond P. Canale. Numerical methods for engineers. Boston: McGraw-Hill Higher Education,, 2010.
- 4. Hellevik, Leif Rune. "Numerical Methods for Engineers." Kompendium. NTNU (2020).
- 5. Stroud, Kenneth Arthur, and Dexter J. Booth. Advanced engineering mathematics. Palgrave, 2003
- 6. Bronsztejn, I. N., et al. "Nowoczesne kompendium matematyki, Wyd." Naukowe PWN, Warszawa (2007).

#### Narzędzia

- Python 3.7 lub wyżej
- Anaconda wygodne rozwiązanie
- Biblioteki: numpy, scipy, matplotlib
- Notatniki Jupyter









#### Organizacja zajęć - wykład

- 14h wykładów 7 spotkań (ostatnie kolokwium, pr. UPEL)
- Ze względu na wyjazdy służbowe, może nastąpić przesunięcie terminów. Przed każdym wykładem otrzymają Państwo maila z hasłem dostępowym.
- Wykłady odbywają się na platformie UPEL z wykorzystaniem QuickMeeting
- Pytania w trakcie wykładu, proszę pisać czacie oraz podnosić "wirtualną" rękę.
- Numeracja wykładów nie odzwierciedla terminów spotkań.
- Slajdy, notatniki i inne dodatkowe materiały będą udostępnianie za pomocą platformy UPEL – materiały są do użytku prywatnego, nie wolno ich rozprzestrzeniać, ani umieszczać w internecie.

#### Tematyka - wykład

- Błędy numeryczne, miejsca zerowe funkcji
- Różniczkowanie
- Interpolacja, aproksymacja, ekstrapolacja
- Całkowanie
- Układy równań, wartości i wektory własne
- Gradient, macierz Hessego, macierz Jacobiego
- Zadania optymalizacyjne, Metoda Najmniejszych Kwadratów
- Problem odstających danych (ang. outliers) RANSAC

#### Organizacja zajęć - lab

- Plan laboratorium zakłada 8 spotkań oraz dodatkowy termin zaliczeniowy.
- W ramach ćwiczeń laboratoryjnych prowadzący omawia krok po kroku implementacje poszczególnych algorytmów, po czym zadaje zadania do samodzielnego rozwiązania.
- W trakcie laboratorium wykorzystywany jest język Python oraz biblioteki NumPy/SciPy/Matplotlib/PyTorch.
- Przewidziane jest jedno kolokwium zaliczeniowe polegające na samodzielnej implementacji wybranych algorytmów według dostarczonej specyfikacji, wykorzystując doświadczenie zdobyte w trakcie laboratorium.
- Na ten moment, kolokwium planowane jest w formie stacjonarnej.

#### Organizacja zajęć - lab

- Laboratorium ma za zadanie pokazać praktyczne aspekty tematów poruszanych na laboratorium.
- Laboratorium rusza 15.10
- Zajęcia wspólne dla wszystkich grup odbywają się w czwartki w godzinach 19:45-22:00, obecność obowiązkowa (MS Teams/Click Meeting).
- Pozostałe terminy czwartek 08:00-11:00, 14:30-17:45, piątek 08:00-11:00 są zarezerwowane na nieobowiązkowe konsultacje. Konsultacje odbywają się w tygodniach, w których zaplanowane są spotkania obowiązkowe. Konsultacje odbywają siędomyslnie, wystarczy dołączy ć do spotkania.
- Z uwagi na konieczność archiwizacji zajęć prowadzonych zdalnie, wszystkie zajęcia będą nagrywane przez prowadzącego.

Wszystkie udostępniane materiały, skrypty, notatniki są wyłącznie przeznaczone do użytku prywatnego w celu łatwiejszego opanowania wiedzy.

Nie wolno ich rozprzestrzeniać, ani umieszczać w Internecie.

## Zaczynamy

#### **ZASADNICZNE TWIERDZENIE ALGEBRY**

Stopień niezerowego wielomianu zespolonego jest równy sumie krotności jego zespolonych pierwiastków. Jest to równoważne temu, iż każdy wielomian zespolony stopnia n>0 można przedstawić w postaci iloczynu:

$$f(z) = a(z-z_1)(z-z_2) \dots (z-z_n)$$
 dla pewnych  $a, z_1, z_2, \dots, z_n \in \mathbb{C}$ 

- Konsekwencje:
  - n liczb (pierwiastków, ang. roots) spełnia równanie  $f(z)=0, z=z_1, \dots, z_n$
  - Pierwiastki nie muszą być różne,
  - Pierwiastki mogą być rzeczywiste, urojone lub zespolone

- Przykłady, równanie kwadratowe:
  - $z^2 + 5z + 6 = 0$  można przedstawić jako (z + 2)(z + 3) = 0, także mamy dwa różne pierwiastki z = -2 i z = -3
  - $z^2 4z + 4 = 0$  można przedstawić jako (z-2)(z-2) = 0, także mamy dwa takie same pierwiastki z=2 i z=2

•  $z^2 + z + 1 = 0$  można przedstawić jako (z + a)(z + b) = 0, także mamy dwa różne pierwiastki z = -a i z = -b

Musimy skorzystać z ogólnego wzoru na pierwiastki równania kwadratowego " $\left(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\right)$ ", współczynniki są równe 1, także:

$$z = \frac{1}{2} \pm i \frac{\sqrt{3}}{2}$$

a jak sobie poradzić z wyższymi stopniami?

- stopień 3 metoda Tartaglia 1535r.
- stopień 4 metoda Ferrari -1540r.
- stopień 5 i wyższe

METODY ANALITYCZNE

METODY NUMERYCZNE

#### **PRZYPOMNIENIE**

**Stopień wielomianu** jest to najwyższy ze stopni jego składników o niezerowych współczynnikach.

np.  $3x^3 + 2x^2 + x + 1$  – wielomian stopnia 3

#### **METODY NUMERYCZNE**

# Obliczenia inżynierskie Metody numeryczne

 Metody numeryczne – metody rozwiązywania problemów matematycznych za pomocą skończonej liczby operacji na liczbach.

 Metody numeryczne wykorzystywane są, gdy badany problem nie ma w ogóle rozwiązania analitycznego (danego wzorami) lub korzystanie z takich rozwiązań jest uciążliwe ze względu na ich złożoność.

### Obliczenia inżynierskie Metody numeryczne

 Dla inżynierów metody numeryczne są narzędziem służącym do formułowania i rozwiązywania praktycznych zagadnień obliczeniowych w różnych dziedzinach techniki.

 Wykorzystywane są również do przekształcania znanych modeli ciągłych do postaci dyskretnych.



# Obliczenia inżynierskie Metody numeryczne

- Typowe problemy inżynierskie rozwiązywane za pomocą metod numerycznych:
  - obliczanie całek
  - szukanie miejsc zerowych wielomianów wysokiego stopnia
  - rozwiązywania dużych układów równań
  - rozwiązywania równań i układów równań różniczkowych
  - znajdowania wartości i wektorów własnych
  - obliczanie wartości funkcji matematycznych

### Metody numeryczne

Prawie wszystkie (> 99.9%) rzeczywistych problemów w nauce i inżynierii jest zbyt skomplikowana/złożona żeby możne je rozwiązać analitycznie, jedyne co pozostaje to rozwiązania przybliżone, numeryczne.



FEM – metoda elementów skończonych

Źródło: https://www.uab.edu/engineering/bme/about-us



Figure 2: The 3D-printed lung phantom.

### Przetwarzanie i analiza sygnałów i obrazów

Źródło: https://www.aapm.org/GrandChallenge/MATCH/

#### Modelowanie

Źródło: https://www.engineering.unsw.engineering/research/our-research-priobiomonitoring-and-modelling-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-research/our-resear

#### PODSTAWOWE DZIAŁANIA W RACHUNKACH NUMERYCZNYCH

- Każdy proces numeryczny składa się ostatecznie z szeregu podstawowych działań (operacji).
- Problemy wynikają w szczególności ze skończoności systemu pozycyjnego w arytmetyce zmiennoprzecinkowej.

#### **PRZYPOMNIENIE**

**Znormalizowane liczby dziesiętne:** każda liczba rzeczywista  $x \neq 0$  daje się przedstawić jako liczba dziesiętna postaci:  $x = \pm 0$ ,  $b_1 b_2 \dots 10^E$  ( $b_1 \neq 0$ )

 $(b_1 \neq 0)$  – warunek określa, iż mamy **znormalizowaną liczbę dziesiętną** 

Liczbę  $0, b_1b_2$  ... nazywamy *mantysą*, tworzymy ją z cyfr  $b_i \in \{0,1,...,9\}$ .

Liczbę E jest liczbą całkowitą, tzw. cechą.

Komputery mogą pracować tylko ze skończonymi ciągami cyfr, konieczne jest ustalenie liczby cyfr mantysy t, oraz zakresu cechy E.

#### PODSTAWOWE DZIAŁANIA W RACHUNKACH NUMERYCZNYCH

- Załóżmy, że x i y są znormalizowanymi, nie obciążonymi błędami liczbami zmiennoprzecinkowymi tego samego znaku o wartości różnej od zera:
- $x = m_1 B^{E_1}$ ,  $y = m_2 B^{E_2}$

gdzie 
$$m_i = \sum_{k=1}^t a_{-k}^{(i)} B^{-k}$$
 ,  $a_{-1}^{(i)} \neq 0$ 

$$i a_{-k}^{(i)} = 0 \ lub \ 1 \ lub \ ... B - 1, dla \ k > 1, (i = 1,2)$$

#### PODSTAWOWE DZIAŁANIA W RACHUNKACH NUMERYCZNYCH

**DODAWANIE** (np.  $0.9604 \cdot 10^3 + 0.5873 \cdot 10^2$ ):

- Dla  $E_1>E_2$  drugi wykładnik dopasowujemy do  $E_1$ , ponieważ ze względu na normalizację możliwe jest tylko przesunięcie punktu w lewo  $0.9604\cdot 10^3 + 0.05873\cdot 10^3$
- Następnie dodajemy mantysy.

$$1,01913 \cdot 10^3$$

• Jeżeli 
$$B^{-1} \leq \left| m_1 + m_2 B^{-(E_1 - E_2)} \right| < 2$$
 i  $\left| m_1 + m_2 B^{-(E_1 - E_2)} \right| \geq 1$   $0,1 \leq \left| 0,9604 + 0,5873 \cdot 10^{-(3-2)} \right| < 2$  i  $\left| 0,9604 + 0,5873 \cdot 10^{-(3-2)} \right| > 1$   $0,1 \leq |1,01913| < 2$  i  $|1,01913| > 1$ 

to dokonujemy przesunięcia o jedną pozycję w lewo przy jednoczesnym podwyższeniu wykładnika o jeden (przepełnienie przy dodawaniu).  $0,1019\cdot 10^4$ 

$$x = m_1 B^{E_1}, \qquad y = m_2 B^{E_2}$$

#### PODSTAWOWE DZIAŁANIA W RACHUNKACH NUMERYCZNYCH

**ODEJMOWANIE** (np.  $0,1004 \cdot 10^3 - 0,9988 \cdot 10^2$ ):

Podobnie jak przy dodawaniu po zrównaniu wykładników mantysy się odejmuje

 $0,1004 \cdot 10^3 - 0,09988 \cdot 10^3 = 0,00052 \cdot 10^3$ 

• Jeżeli  $\left|m_1-m_2B^{-(E_1-E_2)}\right|<1-B^{-t}$  i  $\left|m_1-m_2B^{-(E_1-E_2)}\right|< B^{-1}$   $\left|0,1004-0,9988\cdot 10^{-(3-2)}\right|<1-10^{-5}$  i  $\left|0,1004-0,9988\cdot 10^{-(3-2)}\right|<0,1$   $\left|0,00052\right|<0,99999$  i  $\left|0,00052\right|<0,1$ 

to dokonujemy przesunięcia o maksymalnie t pozycji w prawo wraz z odpowiadającym mu obniżeniem wykładnika

 $0,00052 \cdot 10^3 = 0,5200 \cdot 10^0$ 

Przykład pokazuje przypadek krytyczny kasowania zer nieznaczących (utrata cyfr znaczących).. Ze względu na ograniczoną liczbę pozycji ( w tym wypadku 4) przeciągnięciu w prawą stronę ulegają zera,

które tylko wydają się cyframi znaczącymi

$$x = m_1 B^{E_1}, \qquad y = m_2 B^{E_2}$$

#### PODSTAWOWE DZIAŁANIA W RACHUNKACH NUMERYCZNYCH

**MNOŻENIE** (np.  $0.3176 \cdot 10^3 * 0.2504 \cdot 10^5$ ):

- Wykładniki dodajemy, mantysy mnożymy  $0.3176 \cdot 10^3 * 0.2504 \cdot 10^5 = 0.07952704 \cdot 10^8$
- Jeżeli  $m_1m_2 < B^{-1}$  to przecinek przy jednoczesnym obniżeniu wykładnika o jeden ulega przesunięciu o jedną pozycję w prawo (niedopełnienie przy mnożeniu)

 $0,7953 \cdot 10^7$ 

#### PODSTAWOWE DZIAŁANIA W RACHUNKACH NUMERYCZNYCH

**DZIELENIE** (np.  $0.3176 \cdot 10^3 / 0.2504 \cdot 10^5$ ):

Wykładniki odejmujemy, mantysy dzielimy

$$\frac{0,3176 \cdot 10^3}{0,2504 \cdot 10^5} = 1,2683706 \dots \cdot 10^{-2}$$

• Jeżeli  $\frac{m_1}{m_2} \ge B^{-1}$  to przecinek przy jednoczesnym podniesieniu wykładnika o jeden ulega przesunięciu o jedną pozycję w lewo (przepełnienie przy dzieleniu)

 $0,1268 \cdot 10^{-1}$ 

$$x = m_1 B^{E_1}, \qquad y = m_2 B^{E_2}$$

# PODSTAWOWE DZIAŁANIA W RACHUNKACH NUMERYCZNYCH BŁĄD WYNIKU

Dla czterech działań podstawowych, przy braku obciążenia błędami wielkości wejściowych, błąd jest wynikiem procedur zaokrąglania.

Dla błędu względnego przy liczbie pozycji t i podstawie B otrzymujemy ograniczenie

 $\frac{B}{2}B^{-t}$ 



#### **Tutorial jupyter:**

Przykład obliczeniowy:

$$x = m_1 B^{E_1}, \qquad y = m_2 B^{E_2}$$

### Błędy numeryczne

#### DOKŁADNOŚĆ W OBLICZENIACH NUMERYCZNYCH

Metody numeryczne są obarczone błędami.

Przyjmijmy że:

x wartość ścisła pewnej wielkości (często niewiadoma)

 $\tilde{x}$  wartość przybliżona dla x

Błąd bezwzględny:  $\epsilon(x) = |\Delta x| = |x - \tilde{x}|$ 

Błąd względny:  $\epsilon_{rel}(x) = \left| \frac{\Delta x}{x} \right| = \left| \frac{x - \tilde{x}}{x} \right|$ 

### Błędy numeryczne

DOKŁADNOŚĆ W OBLICZENIACH NUMERYCZNYCH RODZAJE BŁĘDÓW



### Błędy numeryczne –błędy wejścia

**BŁĘDY WEJŚCIA** – błąd wyników spowodowany obciążeniem błędami danych wejściowych.

**ZAGADNIENIE PROSTE TEORII BŁĘDÓW** - Wyznaczenie błędu wejścia na podstawie danych wejściowych.

**ZAGADNIENIE ODWROTNE** – określenie jak duże mogą być błędy danych, aby nie został przekroczony dopuszczalny błąd wyniku końcowego.

#### Błędy numeryczne – błędy wejścia

Dla badanej funkcji rzeczywistej y = f(x) gdzie  $x = (x_1, ... x_n)^T$  bezwzględny błąd wejścia wynosi:

$$|\Delta y| = |f(x_1, \dots, x_n) - \tilde{f}(\tilde{x}_1, \dots, \tilde{x}_n)| = \left|\sum_{i=1}^n \frac{\partial f}{\partial x_i}(\gamma_1, \dots, \gamma_n)(x_i - \tilde{x}_i)\right| \le \sum_{i=1}^n \left(\max_x \left|\frac{\partial f}{\partial x_i}(x)\right|\right) |\Delta x_i|$$

 $(\gamma_1, \dots, \gamma_n)$  są wartościami pośrednimi  $(\tilde{x}_1, \dots, \tilde{x}_n)$  przybliżenia wartości  $(x_1, \dots x_n)$ . Wartości przybliżone reprezentują obciążone błędami dane wejściowe.

### Błędy numeryczne –błędy wejścia

Błędy wejścia są związane ze skończoną dokładnością przyrządów pomiarowych (->patrz Metrologia).

#### Dla podstawowych operacji arytmetycznych błąd wejścia jest znany.

| Operacja                 | Błąd bezwzględny                                                                                       | Błąd względny                                                                                                    |
|--------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Dodawanie<br>odejmowanie | $\varepsilon(x \pm y) = \varepsilon(x) \pm \varepsilon(y)$                                             | $\varepsilon_{rel}(x \pm y) = \frac{x\varepsilon_{rel}(x) \pm y\varepsilon_{rel}(y)}{x \pm y}$                   |
| Mnożenie                 | $\varepsilon(xy) = y\varepsilon(x) \pm x\varepsilon(y) + \varepsilon(x)\varepsilon(y)$                 | $\varepsilon_{rel}(xy) = \varepsilon_{rel}(x) + \varepsilon_{rel}(y) + \varepsilon_{rel}(x)\varepsilon_{rel}(y)$ |
| Dzielenie                | $\varepsilon\left(\frac{x}{y}\right) = \frac{1}{y}\varepsilon(x) - \frac{x}{y^2}\varepsilon(y) + wwrz$ | $\varepsilon_{rel}\left(\frac{x}{y}\right) = \varepsilon_{rel}(x) - \varepsilon_{rel}(y) + wwrz$                 |

Mały błąd względny danych wejściowych -> przy mnożeniu/dzieleniu mały błąd względny wyniku.

Przy dodawaniu i odejmowaniu błąd względy sumy i różnicy może być duży gdy  $|x \pm y| \ll |x| + |y|$ . Ryzyko kasowania pozycji.

#### Błędy numeryczne –błędy metody

Błędy metody są związane z koniecznością numerycznej aproksymacji wartości ciągłych jak i granicznych.

- błędy urywania procesów granicznych (błąd odcięcia)
  - metody iteracyjne
  - obliczanie szeregów
- błędy dyskretyzacji
  - aproksymacja struktur ciągłych za pomocą układów dyskretnych
  - całkowanie numeryczne

#### Błędy numeryczne –błędy zaokrągleń

Błędy zaokrągleń powstają w wyniku koniecznego zaokrąglania wyników cząstkowych (z wyjątkiem ograniczonego zbioru liczb całkowitych).

Wielkość błędów zależy:

- dokładności reprezentacji
- sposobu zaokrąglania wyniku
- rodzaju przeprowadzanej operacji

Lemat Wilkinsona – błędy zaokrągleń powstające podczas wykonywania działań zmiennopozycyjnych są równoważne zastępczemu zaburzeniu liczb, na których wykonujemy działania.

| Operacja                 | Błąd względny zaokrągleń                                                                                            |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| Dodawanie<br>odejmowanie | $\frac{fl(x) \pm fl(y) - (x \pm y)}{x \pm y} = \frac{x\varepsilon_{rel}(x) \pm y\varepsilon_{rel}(y)}{x \pm y}$     |  |
| Mnożenie                 | $\frac{fl(x)fl(y)-xy}{xy} = \varepsilon_{rel}(x) + \varepsilon_{rel}(y) + \varepsilon_{rel}(x)\varepsilon_{rel}(y)$ |  |
| Dzielenie                | $\frac{fl(x)/fl(y) - x/y}{x/y} \approx \varepsilon_{rel}(x) - \varepsilon_{rel}(y)$                                 |  |

Wykonywanie kolejnych operacji na wynikach poprzednich operacji prowadzi do kumulacji błędów zaokrągleń.

### Błędy numeryczne –błędy zaokrągleń

Jeden z najbardziej tragicznych przykładów błędów zaokrągleń:

Naukowcy i inżynierowie często chcą wierzyć, że wyniki liczbowe obliczeń komputerowych, zwłaszcza te otrzymane jako wynik pakietu oprogramowania, nie zawierają błędów, a przynajmniej nie są one znaczące lub niedopuszczalne.

Nieostrożne obliczenia numeryczne czasami prowadzą do katastrof. Jedną z bardziej spektakularnych katastrof była awaria rakiety Patriot w Dharanie w Arabii Saudyjskiej 25 lutego 1991 r., W wyniku której zginęło 28 osób. Ostatecznie przyczyną tego niepowodzenia było niewłaściwe obchodzenie się z błędami zaokrąglania w oprogramowaniu pocisku.



Źródło<u>:</u>
<a href="http://www-users.math.umn.edu/~arnold//disasters/patriot.html">http://www-users.math.umn.edu/~arnold//disasters/patriot.html</a>

Szczegółowe informacje jak doszło do katastrofy można znaleźć na stronie: <a href="http://www-users.math.umn.edu/~arnold//disasters/patriot.html">http://www-users.math.umn.edu/~arnold//disasters/patriot.html</a>

#### Błędy numeryczne – Python

Wpływ dyskutowanych zagadnień i pułapki występujące praktycznie przeanalizujemy na przykładzie Pythona



```
Przykłady: W1_2_Floating_Python.ipynb
```

## Miejsca zerowe funkcji

#### Pierwiastki równania

Znajdź x, dla którego f(x) = 0 "Metoda" graficzna:















#### Metoda równego podziału (metoda bisekcji)

Jak wiemy, dla argumentu będącego miejscem zerowym następuje zmiana znaku.



Jeżeli f(x) jest rzeczywistą funkcją, ciągłą w przedziale  $[x_l,x_u]$  i  $f(x_l)$  oraz  $f(x_u)$  mają przeciwne znaki  $f(x_l)f(x_u)<0$  to jest przynajmniej jeden pierwiastek rzeczywisty pomiędzy  $x_l$  i  $x_u$ 

Przyrostowe metody wyszukiwania wykorzystują tę obserwację, lokalizując przedział gdzie funkcja zmienia znak.

#### Metoda równego podziału (metoda bisekcji)

Metoda bisekcji, jest przykładem przyrostowych metod wyszukiwania, w których występuje interwał zawsze podzielony na pół.

Jeśli funkcja zmienia znak w przedziale, w punkcie środkowym wyznaczana jest wartość funkcji. Lokalizacja pierwiastka jest określana jako punkt środkowy podprzedziału, w którym następuje zmiana znaku.

Proces jest powtarzany, aż do uzyskania określonej dokładności.





#### Warunek stopu:

- błąd estymacji na określonym poziomie nie znamy wartości prawdziwej
- możemy wyznaczyć przybliżoną wartość błędu względnego:

$$\varepsilon_{rel} = \left| \frac{x_r^{new} - x_r^{old}}{x_r^{new}} \right| 100\%$$

jeżeli błąd względny będzie mniejszy od przyjętego kryterium $\varepsilon_s$ to przerywamy obliczenia.

#### Dokładność estymacji:

• Miejsce zerowe znajduje się gdzieś w przedziale  $\frac{x_u - x_l}{2} = \frac{\Delta x}{2}$  czyli błąd estymacji wynosi  $\pm \frac{\Delta x}{2}$ 



#### Dokładność estymacji:

- Co więcej wartość błędu bezwzględnego może zostać wyznaczona a priori  $\varepsilon=x_u^0$   $x_l^0=\Delta x^0$
- Z każdą iteracją błąd będzie się zmniejszał 2-krotnie:

$$\varepsilon_n = \frac{\Delta x^0}{2^n}$$

• Jeżeli  $\varepsilon_{set}$  będzie dokładnością jaką chcemy uzyskać to liczba koniecznych iteracji wynosi:

$$n = \frac{\log_2 \frac{\Delta x^0}{\varepsilon_{set}}}{\log_2 2} = \log_2 \frac{\Delta x^0}{\varepsilon_{set}}$$

| • | Metoda bisekcji v   | vymaga zdef   | iniowania          | przedziału | poszukiwań. |
|---|---------------------|---------------|--------------------|------------|-------------|
|   | Trictoda bischoji t | vyiiiaga zaci | IIII O VV a I II a | przedziara | poszakiwan  |

- Każda iteracja poprawia dokładność estymacji (jest zbieżna).
- Istnieją metody, które wymagają tylko podania wartości początkowej lub przedziału, ale niekoniecznie zawierającego pierwiastek.
- Metody te nie zawsze są zbieżne, ale jak już są, to są dużo szybsze niż metody przedziałowe.

• Załóżmy, że naszą wartością początkową jest  $x_i$ . Z definicji funkcji tangens możemy wyznaczyć współczynnik kierunkowy stycznej w  $x_i$ , który jest równocześnie pochodną funkcji w punkcie  $x_i$ 

$$f'(x_i) = \frac{f(x_i) - 0}{x_i - x_{i+1}}$$

Przekształcając otrzymujemy:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$



• Jako warunek stopu można wykorzystać klasyczne podejście w metodach iteracyjnych:

$$\varepsilon = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| 100\%$$

• Przybliżona wartość błędu wynosi:

$$E_{t,i+1} \cong \frac{-f''(x_r)}{f'(x_r)} E_{t,i}^2$$

Zbieżność kwadratowa



- Metoda bardzo wydajna, natomiast mogą być sytuacje gdzie algorytm będzie miał problemy.
- Szybka zbieżność blisko miejsca zerowego.



#### Szczegóły implementacyjne:

- Po ostatniej iteracji powinno się podstawić wyliczony argument do funkcji, żeby sprawdzić czy wartość jest bliska zeru. (częściowa ochrona przed wolną lub oscylującą zbieżnością mała wartość  $\varepsilon$ , ale daleko od miejsca zerowego)
- Zawsze powinien być górny limit iteracji. (oscylacje)
- Alarmowanie o sytuacji gdy  $f'(x) \approx 0$ .

Podstawiając za  $f'(x_i)$  przybliżenie metodą różnic skończonych wstecz  $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} = x_i - \frac{f(x_i)(x_{i-1}-x_i)}{f(x_{i-1})-f(x_i)}$  otrzymamy **metodę siecznych**.