Heart Disease Diagnostic Analysis

Details of the Dataset : Attribute Information: age sex chest pain type (4 values) resting blood pressure serum cholestoral in mg/dl fasting blood sugar > 120 mg/dl resting electrocardiographic results (values 0,1,2)

maximum heart rate achieved

exercise induced angina

oldpeak = ST depression induced by exercise relative to rest the slope of the peak exercise ST segment

number of major vessels (0-3) colored by flourosopy

thal: 0 = normal; 1 = fixed defect; 2 = reversable defect

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from google.colab import files
uploaded = files.upload()

Choose Files No file chosen Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to

df=pd.read_csv('/content/Heart Disease data.csv')

Data Exploration

df.head()

df.tail()

df.describe()

→ *	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak
count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.000000	1025.000000	1025.000000	1025.000000
mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.529756	149.114146	0.336585	1.071512
std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.527878	23.005724	0.472772	1.175053
min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.000000	71.000000	0.000000	0.000000
25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.000000	132.000000	0.000000	0.000000
50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.000000	152.000000	0.000000	0.800000
75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.000000	166.000000	1.000000	1.800000
max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.000000	202.000000	1.000000	6.200000
f columns										

```
df.columns
Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
           dtype='object')
df.info()
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1025 entries, 0 to 1024
     Data columns (total 14 columns):
      # Column
                    Non-Null Count Dtype
     ---
         -----
      0
         age
                    1025 non-null
                                     int64
      1
          sex
                    1025 non-null
                                     int64
      2
          ср
                    1025 non-null int64
          trestbps 1025 non-null
                    1025 non-null
          fbs
                    1025 non-null
                                     int64
          restecg 1025 non-null
                                     int64
                    1025 non-null
                                     int64
          thalach
                    1025 non-null
                                     int64
      8
          exang
          oldpeak
                    1025 non-null
                                     float64
                    1025 non-null
                                     int64
      10 slope
      11 ca
                    1025 non-null
                                     int64
      12 thal
                    1025 non-null
                                     int64
      13 target
                    1025 non-null
     dtypes: float64(1), int64(13) memory usage: 112.2 KB
missing_values = df.isnull().sum()
print("Missing Values\n", missing_values)
→ Missing Values
      age
     sex
                 0
                 0
     ср
     trestbps
                 0
     chol
                 0
     fbs
     restecg
                 0
     thalach
                 0
     exang
                 0
     oldpeak
                 0
     slope
                 0
                 0
     thal
                 0
     target
                 0
     dtype: int64
duplicate_values = df.duplicated().sum()
print('Number of duplicates', duplicate_values)
→ Number of duplicates 723
df = df.drop_duplicates()
duplicate_values = df.duplicated().sum()
print('Number of duplicates', duplicate_values)

→ Number of duplicates 0
```

```
Data Analysis
```

Number of people with heart disease

```
df['target'].value_counts()
\overline{\mathbf{T}}
                 count
       target
          1
                   164
          0
                   138
hd = sns.countplot(x=df['target'])
for i in hd.containers:
     hd.bar_label(i,)
     plt.show()
\overline{\Rightarrow}
                                                                          164
          160
                                  138
           140
           120
           100
        count
           80
            60
            40
            20
             0
                                    ò
                                                                           i
                                                     target
```

From here, we can see that more than half of the population have Heart disease.

Number of Male and Female

```
df['sex'].value_counts()

count

sex
    1    206
    0   96

dd = sns.countplot(x=df['sex'])
for i in gd.containers:
    gd.bar_label(i,)
plt.xticks([0,1],['Female','Male'])
plt.show()
```


We can conclude, Males suffer more from Heart Disease than Females.

Age Distribution

```
sns.histplot(df['age'],bins=10)
plt.show()
```


From the above graph, we can observe that maximum number of people lie between the age of 50-60.

Chest Pain Types

```
sns.countplot(x=df['cp'])
plt.xticks([0,1,2,3],['Typical Angina','Atypial Angina','Non-Anginal Pain','Asymptomatic'])
plt.xticks(rotation=75)
plt.show()
```


From the above plot, we can clearly observe that Chest Pain Type(0), i.e. Typical Angina is more common.

Resting Blood Pressure Distribution

df['trestbps'].hist()

Resting Blood Pressure Vs. Sex

```
g= sns.FacetGrid(df,hue='sex',aspect=4)
g.map(sns.kdeplot,'trestbps',shade=True)
plt.legend(labels=['Male','Female'])
plt.show()
```

```
/usr/local/lib/python3.10/dist-packages/seaborn/axisgrid.py:854: FutureWarning:

`shade` is now deprecated in favor of `fill`; setting `fill=True`.

This will become an error in seaborn v0.14.0; please update your code.

func(*plot_args, **plot_kwargs)
/usr/local/lib/python3.10/dist-packages/seaborn/axisgrid.py:854: FutureWarning:

`shade` is now deprecated in favor of `fill`; setting `fill=True`.

This will become an error in seaborn v0.14.0; please update your code.

func(*plot_args, **plot_kwargs)

0.025 -
```


From the above plot, we can observe that the Women have lower resting blood pressure as compared to men. For Women, around 120 and for Men, little less than 140.

Distribution of Serum Cholestrol

df['chol'].hist()

Chest Pain distribution as per target variable

```
\label{lem:countplot} $$ss.countplot(x='cp',hue='target',data=df)$ plt.legend(labels=['No Disease','Disease'])$ plt.show()
```


Correlation

0

fbs