1 Elementary Probability

1.1 Lecture 1

This lecture I did not have a laptop yet, so I was unable to transcribe anything. Here is what I remember was discussed:

Definition 1.1 (Conditional Probability) For two events A, B, the probability of A given B is:

$$\mathbb{P}\left[A\mid B\right] = \frac{\mathbb{P}\left[A\cap B\right]}{\mathbb{P}\left[B\right]}$$

Definition 1.2 (MAP) We say the Most likely A Posteriori (MAP) estimate of a random variable X given Y = y, is:

$$\operatorname*{argmax}_{x}\mathbb{P}\left[X=x\mid Y=y\right]$$

Definition 1.3 (MLE) We say the Maximum Likelihood Estimate (MLE) of a random variable *X* given *Y*, is:

$$\operatorname*{argmax}_{x} \mathbb{P}\left[Y = y \mid X = x\right]$$

1.2 Lecture 2

1.2.1 Probability Fundamentals and Random Variables

We begin probability by defining a set Ω called the sample space. Elements of the sample space are termed outcomes. Subsets of Ω are termed as events.

For some event A, we can define the probability of A as follows:

$$\mathbb{P}\left[A\right] = \sum_{\omega \in A} \mathbb{P}\left[\omega\right]$$

Probability maps events to [0, 1] in a consistent manner, satisfying the following axioms:

- $\mathbb{P}[\Omega] = 1$
- $\mathbb{P}[\emptyset] = 0$
- For two disjoint events A_1, A_2 , we have $\mathbb{P}[A_1 \cup A_2] = \mathbb{P}[A_1] + \mathbb{P}[A_2]$

This is what we term a probability space. Often it is more helpful to work with events than with individual sample points (especially in the case of an uncountably infinite amount of sample points).

Definition 1.4 (Random Variable) A random variable $X : \omega \to B$ maps each outcome to elements of some other set (often \mathbb{R}). X = x for some x is an event, with a well-defined probability.

Definition 1.5 (Independence) Two random variables *X* and *Y* are independent if

$$\mathbb{P}\left[X = x | Y = x\right] = \mathbb{P}\left[X = x\right]$$

i.e.

$$\mathbb{P}\left[X=x,Y=y\right]=\mathbb{P}\left[X=x\right]\mathbb{P}\left[Y=y\right]$$

Example 1.1 Suppose you flip a coin 10 times. We will show that X, the amount of heads in the first 4 flips, and Y, the amount of heads in the last 6 flips, are independent.

Let a(x) be the amount of ways to get x heads in 4 flips and b(y) be the amount of ways to get y heads in 6 flips. Then,

$$\mathbb{P}[X = x] = \frac{a(x) \cdot 2^{6}}{2^{10}} = \frac{a(x)}{2^{4}}$$

$$\mathbb{P}[Y = y] = \frac{b(y) \cdot 2^{4}}{2^{10}} = \frac{b(y)}{2^{6}}$$

$$\mathbb{P}[X = x, Y = y] = \frac{a(x) \cdot b(y)}{2^{10}} = \mathbb{P}[X = x] \cdot \mathbb{P}[Y = y]$$

Thus, the random variables are independent.

Definition 1.6 (Expectation) The expectation of a (discrete) random variable is:

$$\mathbb{E}\left[X\right] = \sum_{x} x \mathbb{P}\left[X = x\right]$$

This is often called the mean or the average value.

Theorem 1.1 Properties of expectation:

- $\mathbb{E}[a] = a \text{ for } a \in \mathbb{R}$
- If the space is uniform, then $\mathbb{E}[X] = \frac{1}{N} \sum_{x} x$
- $\mathbb{E}[\alpha X + \beta Y] = \alpha \mathbb{E}[X] + \beta \mathbb{E}[Y]$ for $\alpha, \beta \in \mathbb{R}$
- $X \leq Y \Rightarrow \mathbb{E}[X] \leq \mathbb{E}[Y]$
- If *X* and *Y* are independent, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] \Rightarrow X, Y \text{ independent}$

There are two ways of thus computing expectation. You can either sum over sample points, or take a lot of measurements of your random variable, then divide by the amount of measurements. The reason this works is because of property 2 above.

Definition 1.7 (Variance and Standard Deviation) The variance of a random variable *X* is defined as:

$$\operatorname{Var}(X) = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right]^2\right]$$

The standard deviation of this random variable is:

$$\sigma_X = \sqrt{\text{Var}(X)}$$

The variance measures the spread away from the mean that a random variable may exhibit.

Theorem 1.2 Properties of variance:

- $Var(X) \ge 0$, with equality only if *X* is constant
- $\operatorname{Var}(X) = \mathbb{E}[X^2] (\mathbb{E}[X])^2$
- $Var(aX) = a^2 Var(X)$ for constant a
- If X and Y are independent, Var(X + Y) = Var(X) + Var(Y)
- In general, Var(X + Y) = Var(X) + Var(Y) 2Cov(X, Y)

Often we term $\mathbb{E}[X^k]$ as the kth moment of X, so the variance contains information about the second moment of X.

1.3 Lecture 3

1.3.1 Concentration Inequalities

Definition 1.8 (Indicator Random Variable) $\mathbb{1}_A$ is the indicator for event A, i.e. a random variable with the following values:

$$\mathbb{1}_A = \begin{cases} 1 & \text{if sample point in event } A \\ 0 & \text{otherwise} \end{cases}$$

Theorem 1.3 (Markov's Inequality) Consider random variable $X \ge 0$ and constant a > 0. Then,

$$\mathbb{P}\left[X \ge a\right] \le \frac{\mathbb{E}\left[X\right]}{a}$$

Proof Let $Y = \mathbb{1}_{X \ge a}$. Then we know:

$$\mathbb{E}[Y] = 0 \cdot \mathbb{P}[X < a] + 1 \cdot \mathbb{P}[X \ge a] = \mathbb{P}[X \ge a]$$

$$Y \le \frac{X}{a}$$

$$\mathbb{E}[Y] \le \mathbb{E}\left[\frac{X}{a}\right] = \frac{\mathbb{E}[X]}{a}$$

$$\mathbb{P}[X \ge a] \le \frac{\mathbb{E}[X]}{a}$$

Markov's inequality tends to be a coarse bound, and X, a have to be non-negative.

Theorem 1.4 (Chebyshev's Inequality) For random variable *X* and $\epsilon > 0$:

$$\mathbb{P}\left[\left|X - \mathbb{E}\left[X\right]\right|\right] \ge \epsilon\right) \le \frac{\operatorname{Var}\left(X\right)}{\epsilon^{2}}$$

Define $Z = |X - \mathbb{E}[X]|^2$, $a = \epsilon^2$, $\epsilon > 0$.

Proof Apply Markov's inequality:

$$\mathbb{P}\left[Z \ge \epsilon^2\right] \le \frac{\mathbb{E}\left[Z\right]}{\epsilon^2}$$

Note that

$$\mathbb{E}[Z] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \text{Var}(X)$$

This means that

$$\mathbb{P}\left[\sqrt{Z} \ge \epsilon\right] \le \frac{\operatorname{Var}\left(X\right)}{\epsilon^2}$$

which is exactly the statement of Chebyshev's.

Chebyshev's is generally a tighter bound than Markov's.

Theorem 1.5 (Weak Law of Large Numbers) Assume X_1, X_2, X_3, \ldots are independent random variables with the same expectation μ and the same variance σ^2 , and define $Y_n = \frac{(X_1 + X_2 + \cdots + X_n)}{n}$ Then, we have that for any

constant $\epsilon > 0$.

$$\lim_{n\to\infty} \mathbb{P}\left[|Y_n - \mu| \ge \epsilon\right] \to 0$$

This can be shown by Chebyshev's inequality, namely note that the expression in the limit is bounded by $\frac{\text{Var}(Y_n)}{\epsilon^2} = \frac{n\sigma^2}{n^2\epsilon^2} \to 0$.

In words, this means the probability of the sample mean being within ϵ of the true mean approaches 1.

1.3.2 Covariance and Estimation

Definition 1.9 (Covariance)

$$Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

If X and Y are independent, then Cov(X, Y) = 0. If the latter is true, then X and Y are uncorrelated. We also define the coefficient of correlation:

$$\rho_{xy} = \frac{\text{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

This is handy because $|\rho_{XY}| \le 1$.

Suppose we want to estimate a random variable Y by \hat{Y} given a correlated random variable Y.

We want to minimize $\mathbb{E}\left[\left(Y-\hat{Y}\right)^2\right]$ but have a linear relationship. This yields LLSE:

Theorem 1.6 (Linear Least Squares Estimate) The LLSE

$$\hat{Y} = \mathbb{E}[Y] + \frac{\operatorname{Cov}(X, Y)}{\operatorname{Var}(X)}(X - \mathbb{E}[X])$$

is the best linear estimate of Y given X.

2 Basic Probability

2.1 Lecture 3, Continued

2.1.1 Infinite Collections of Events and Borel-Cantelli

There are some important consequences of the axioms of probability.

Theorem 2.1 (Infinite Sub-Events) Consider some set A where $A = \bigcup_{n=1}^{\infty} A_n$ where:

$$A_1 \subseteq A_2 \subseteq \dots$$

Then, $\mathbb{P}[A_n] \to \mathbb{P}[A]$.

Furthermore, consider some set B where $B = \bigcap_{n=1}^{\infty} B_n$ where:

$$B_1 \supseteq B_2 \supseteq \dots$$

Then, $\mathbb{P}[B_n] \to \mathbb{P}[A]$.

Theorem 2.2 (Borel-Cantelli Theorem) Let $\{A_n\}_{n=1}^{\infty}$ be a collection of events such that $\sum_{n=1}^{\infty} \mathbb{P}[A_n] < \infty$, then $\mathbb{P}[A_n \text{ infinitely often}] = 0.$

 $\{A_n \text{ infinitely often}\}\$ is the following event:

$$\{\omega \mid \exists N(\omega) \text{ such that } \forall n > N(\omega), \omega \notin A_n\}$$

In English, the set describes all outcomes where you can assign a number to that outcome such that after A_N , you have no set membership.

The theorem claims that you CAN assign such a number (max event) to any outcome with nonzero probability.

Proof Define

$$B_n = \bigcup_{m > n} A_m$$

Note that $B_1 \supseteq B_2 \supseteq B_3 \dots$ Calling,

$$B = \bigcap_{n} B_n = B_n$$

Note that $\omega \in \{A_n \text{ io}\}\$ if and only if $\omega \in B_n$ for all n. But this means that $\omega \in B$. This means that $\{A_n \text{ io}\} = B$. So we must calculate $\mathbb{P}[B]$. However, note that $\mathbb{P}[B_n] \to \mathbb{P}[B]$ as $n \to \infty$. Thus, we must compute:

$$\mathbb{P}[B] = \lim_{n \to \infty} \mathbb{P}[B_n]$$

$$\mathbb{P}[B_n] \le \sum_{m=n}^{\infty} \mathbb{P}[A_m] \to 0$$

$$\mathbb{P}[B] = 0$$

The second step is justified by the following result from analysis. For non-negative sequence a_n , if $\sum_{i=1}^{\infty} a_i < \infty$, then $\lim_{n\to\infty} \sum_{m=n}^{\infty} a_m \to 0$. Our result shows that $\mathbb{P}[A_n \text{ io}] = 0$

Consider the following example for coin flips:

Example 2.1 (Infinite Coin Flips) Consider the experiment of flipping a coin infinitely many times. Let

$$A_n = \{n \text{th flip is heads}\}\$$

Then, in this experiment, the event $\{A_n \text{ infinitely often }\}$ (which we denote as $\{A_n \text{ io}\}$)

 $\{A_n \text{ io}\} = \{\omega \mid \text{ heads never stop after some } N(\omega)\}\$

Here are some sequences that are in that event:

$$\omega = 0, 0, 1, 1, 1, 1, \dots$$

$$\omega = 0, 1, 0, 1, 0, 1, \dots$$

$$\omega = 0, 0, \quad \dots, 1, 0, 0, \quad \dots, 1, \dots$$
1 million 0's 1 million 0's

Now consider the assigning the following probabilities to each heads (instead of the normal, uniform probability space):

$$\mathbb{P}\left[A_n\right] = \frac{1}{n^2}$$

 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, so by Borel-Cantelli, $\mathbb{P}[A_n \text{ io}] = 0$, i.e. the heads ALWAYS stop.