Decision Trees and Ensemble Learning

Shiwali Mohan

Computer Science and Engineering University of Michigan

May 25, 2012

Outline

- 1 Review
- 2 Decision Tree
- 3 Ensemble Learning
- 4 PAC

• What is a decision tree?

Review Decision Tree Ensemble Learning PAC

- What is a decision tree?
 - a function that takes as input a vector of attribute values and returns a output value
 - \bullet assumption: inputs are discrete and output is boolean
 - given a set of examples: value assignment to attributes in input and corresponding output value

Review Decision Tree Ensemble Learning PAC

- What is a decision tree?
 - a function that takes as input a vector of attribute values and returns a output value
 - \bullet assumption: inputs are discrete and output is boolean
 - given a set of examples: value assignment to attributes in input and corresponding output value
- Entropy of a random variable?

- What is a decision tree?
 - a function that takes as input a vector of attribute values and returns a output value
 - assumption: inputs are discrete and output is boolean
 - given a set of examples: value assignment to attributes in input and corresponding output value
- Entropy of a random variable?
 - measurement of uncertainty of a random variable
 - · acquisition of information corresponds to reduction in entropy

$$H(V) = -\sum_{k} P(v_k) \log_2 P(v_k)$$

- What is a decision tree?
 - a function that takes as input a vector of attribute values and returns a output value
 - assumption: inputs are discrete and output is boolean
 - given a set of examples: value assignment to attributes in input and corresponding output value
- Entropy of a random variable?
 - measurement of uncertainty of a random variable
 - acquisition of information corresponds to reduction in entropy

•
$$H(V) = -\sum_{k} P(v_k) \log_2 P(v_k)$$

• H(fair - coin)?

- What is a decision tree?
 - a function that takes as input a vector of attribute values and returns a output value
 - assumption: inputs are discrete and output is boolean
 - given a set of examples: value assignment to attributes in input and corresponding output value
- Entropy of a random variable?
 - measurement of uncertainty of a random variable
 - acquisition of information corresponds to reduction in entropy

•
$$H(V) = -\sum_{k} P(v_k) \log_2 P(v_k)$$

- H(fair coin)?
- H(tail only)?

- What is a decision tree?
 - a function that takes as input a vector of attribute values and returns a output value
 - assumption: inputs are discrete and output is boolean
 - given a set of examples: value assignment to attributes in input and corresponding output value
- Entropy of a random variable?
 - measurement of uncertainity of a random variable
 - acquisition of information corresponds to reduction in entropy

•
$$H(V) = -\sum_{k} P(v_k) \log_2 P(v_k)$$

- H(fair coin)?
- H(tail only)?
- *B*(*q*)

- What is a decision tree?
 - a function that takes as input a vector of attribute values and returns a output value
 - assumption: inputs are discrete and output is boolean
 - given a set of examples: value assignment to attributes in input and corresponding output value
- Entropy of a random variable?
 - measurement of uncertainty of a random variable
 - acquisition of information corresponds to reduction in entropy

•
$$H(V) = -\sum_{k} P(v_k) \log_2 P(v_k)$$

- H(fair coin)?
- H(tail only)?
- B(q)
 - \bullet entropy of a Boolean random variable that is true with a probability q
 - $B(q) = -(q \log_2 q + (1-q) \log_2 (1-q))$

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

• What is the entropy of the result attribute of the whole example set?

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is the entropy of the result attribute of the whole example set?
 - $B(\frac{5}{12})$

Shiwali Mohan Search 4/10

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is the entropy of the result attribute of the whole example set?
 - $B(\frac{5}{12})$
 - $-\frac{5}{12}\log_2\frac{5}{12} \frac{7}{12}\log_2\frac{27}{12} = 0.9803$

Search 4/10

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

• What is first attribute to split on?

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is first attribute to split on?
 - That attribute that gives us the most information gain, reduces the entropy by the largest amount.

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is first attribute to split on?
 - That attribute that gives us the most information gain, reduces the entropy by the largest amount.
 - Remainder(A) = $\sum_{k=1}^{d} \frac{p_k + n_k}{p + n} B(\frac{p_k}{p_k + n_k})$

Shiwali Mohan Search 5/10

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is first attribute to split on?
 - That attribute that gives us the most information gain, reduces the entropy by the largest amount.

•
$$Remainder(A) = \sum_{k=1}^{d} \frac{p_k + n_k}{p + n} B(\frac{p_k}{p_k + n_k})$$

•
$$Gain(A) = B(\frac{p_k}{p_k + n_k}) - Remainder(A)$$

Shiwali Mohan Search 5/10

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

• What is first attribute to split on?

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is first attribute to split on?
 - Remainder(Type)?

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is first attribute to split on?
 - Remainder(Type)?
 - $\frac{2}{12}B(\frac{1}{2}) + \frac{3}{12}B(\frac{2}{3}) + \frac{4}{12}B(\frac{1}{2}) + \frac{3}{12}B(0) = 0.6371$

Shiwali Mohan

Search 6/10

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is first attribute to split on?
 - Remainder(Type)?

•
$$\frac{2}{12}B(\frac{1}{2}) + \frac{3}{12}B(\frac{2}{3}) + \frac{4}{12}B(\frac{1}{2}) + \frac{3}{12}B(0) = 0.6371$$

• Remainder(Price)?

Shiwali Mohan

Search

6/10

-D ·	D 100	D 19	D 1/	T 1
Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is first attribute to split on?
 - Remainder(Type)?

•
$$\frac{2}{12}B(\frac{1}{2}) + \frac{3}{12}B(\frac{2}{3}) + \frac{4}{12}B(\frac{1}{2}) + \frac{3}{12}B(0) = 0.6371$$

- Remainder(Price)?
 - $\frac{5}{12}B(\frac{2}{5}) + \frac{3}{12}B(\frac{2}{3}) + \frac{4}{12}B(\frac{1}{4}) = 0.90448$
- Remainder(Rush)?

Shiwali Mohan

Search 6/10

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is first attribute to split on?
 - Remainder(Type)?

•
$$\frac{2}{12}B(\frac{1}{2}) + \frac{3}{12}B(\frac{2}{3}) + \frac{4}{12}B(\frac{1}{2}) + \frac{3}{12}B(0) = 0.6371$$

• Remainder(Price)?

•
$$\frac{5}{12}B(\frac{2}{5}) + \frac{3}{12}B(\frac{2}{3}) + \frac{4}{12}B(\frac{1}{4}) = 0.90448$$

- Remainder(Rush)?
 - $\frac{6}{12}B(\frac{1}{2}) + \frac{6}{12}B(\frac{2}{3}) = 0.9591$

Shiwali Mohan

Search 6/10

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is first attribute to split on?
 - Remainder(Type)?

•
$$\frac{2}{12}B(\frac{1}{2}) + \frac{3}{12}B(\frac{2}{3}) + \frac{4}{12}B(\frac{1}{2}) + \frac{3}{12}B(0) = 0.6371$$

• Remainder(Price)?

•
$$\frac{5}{12}B(\frac{2}{5}) + \frac{3}{12}B(\frac{2}{3}) + \frac{4}{12}B(\frac{1}{4}) = 0.90448$$

• Remainder(Rush)?

•
$$\frac{6}{12}B(\frac{1}{2}) + \frac{6}{12}B(\frac{2}{3}) = 0.9591$$

• Gain(Type)? Gain(Price)? Gain(Rush)?

Shiwali Mohan Search

6/10

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is first attribute to split on?
 - Remainder(Type)?

•
$$\frac{2}{12}B(\frac{1}{2}) + \frac{3}{12}B(\frac{2}{3}) + \frac{4}{12}B(\frac{1}{2}) + \frac{3}{12}B(0) = 0.6371$$

- Remainder(Price)?
 - $\frac{5}{12}B(\frac{2}{5}) + \frac{3}{12}B(\frac{2}{3}) + \frac{4}{12}B(\frac{1}{4}) = 0.90448$
- Remainder(Rush)?
 - $\frac{6}{12}B(\frac{1}{2}) + \frac{6}{12}B(\frac{2}{3}) = 0.9591$
- Gain(Type)? Gain(Price)? Gain(Rush)?
 - 0.3432, 0.07585, 0.0212

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

Shiwali Mohan

Search 7/10

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

 \bullet What is the weight of examples?

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is the weight of examples?
 - $\frac{1}{12}$

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is the weight of examples?
 - $\frac{1}{12}$
- What is the initial decision stump (use information gain)?

Shiwali Mohan

Search 7/10

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is the weight of examples?
 - $\frac{1}{12}$
- What is the initial decision stump (use information gain)?
 - Food type

Shiwali Mohan

Search 7/10

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is the weight of examples?
 - $\frac{1}{12}$
- What is the initial decision stump (use information gain)?
 - Food type
- What is the classification error?

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is the weight of examples?
 - $\frac{1}{12}$
- What is the initial decision stump (use information gain)?
 - Food type
- What is the classification error?
 - Sushi (good), Hamburger (good), Pizza (good), Gruel (bad)
 - $\frac{4}{12} = 0.333$

Shiwali Mohan Search

7/10

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is the weight of examples?
 - $\frac{1}{12}$
- What is the initial decision stump (use information gain)?
 - Food type
- What is the classification error?
 - Sushi (good), Hamburger (good), Pizza (good), Gruel (bad)
 - $\frac{4}{12} = 0.333$
- What is the weight of the hypothesis?

Shiwali Mohan Search 7/10

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

- What is the weight of examples?
 - $\frac{1}{12}$
- What is the initial decision stump (use information gain)?
 - Food type
- What is the classification error?
 - Sushi (good), Hamburger (good), Pizza (good), Gruel (bad)
 - $\frac{4}{12} = 0.333$
- What is the weight of the hypothesis?
 - $z[1] = \log(\frac{1 0.333}{0.333}) = 0.695$

Price	Food Type	Rush?	Results	Index
High	Sushi	Hurry	Good	x1
Low	Pizza	Hurry	Good	x2
Medium	Hamburger	Hurry	Good	x3
Medium	Pizza	Relax	Good	x4
High	Gruel	Relax	Bad	x5
High	Hamburger	Relax	Good	x6
Low	Gruel	Hurry	Bad	x7
Low	Sushi	Relax	Bad	x8
High	Pizza	Hurry	Bad	x9
High	Hamburger	Hurry	Bad	x10
Medium	Hamburger	Hurry	Bad	x11
Low	Gruel	Relax	Bad	x12

• How will the weight change?

Price	Food Type	Rush?	Results	Index	Weight
High	Sushi	Hurry	Good	x1	0.0625
Low	Pizza	Hurry	Good	x2	0.0625
Medium	Hamburger	Hurry	Good	x3	0.0625
Medium	Pizza	Relax	Good	x4	0.0625
High	Gruel	Relax	Bad	x5	0.0625
High	Hamburger	Relax	Good	x6	0.0625
Low	Gruel	Hurry	Bad	x7	0.0625
Low	Sushi	Relax	Bad	x8	0.125
High	Pizza	Hurry	Bad	x9	0.125
High	Hamburger	Hurry	Bad	x10	0.125
Medium	Hamburger	Hurry	Bad	x11	0.125
Low	Gruel	Relax	Bad	x12	0.0625

• How will the weight change?

Price	Food Type	Rush?	Results	Index	Weight
High	Sushi	Hurry	Good	x1	0.0625
Low	Pizza	Hurry	Good	x2	0.0625
Medium	Hamburger	Hurry	Good	x3	0.0625
Medium	Pizza	Relax	Good	x4	0.0625
High	Gruel	Relax	Bad	x5	0.0625
High	Hamburger	Relax	Good	x6	0.0625
Low	Gruel	Hurry	Bad	x7	0.0625
Low	Sushi	Relax	Bad	x8	0.125
High	Pizza	Hurry	Bad	x9	0.125
High	Hamburger	Hurry	Bad	x10	0.125
Medium	Hamburger	Hurry	Bad	x11	0.125
Low	Gruel	Relax	Bad	x12	0.0625

- How will the weight change?
 - $w[j] \leftarrow w[j] \cdot \frac{error}{(1-error)}$
 - NORMALIZE(w)

Shiwali Mohan

Search 9/10

Price	Food Type	Rush?	Results	Index	Weight
High	Sushi	Hurry	Good	x1	0.0625
Low	Pizza	Hurry	Good	x2	0.0625
Medium	Hamburger	Hurry	Good	x3	0.0625
Medium	Pizza	Relax	Good	x4	0.0625
High	Gruel	Relax	Bad	x5	0.0625
High	Hamburger	Relax	Good	x6	0.0625
Low	Gruel	Hurry	Bad	x7	0.0625
Low	Sushi	Relax	Bad	x8	0.125
High	Pizza	Hurry	Bad	x9	0.125
High	Hamburger	Hurry	Bad	x10	0.125
Medium	Hamburger	Hurry	Bad	x11	0.125
Low	Gruel	Relax	Bad	x12	0.0625

- How will the weight change?
 - $w[j] \leftarrow w[j] \cdot \frac{error}{(1-error)}$
 - NORMALIZE(w)
- New entropy of the sample

Shiwali Mohan

Search 9/10

Price	Food Type	Rush?	Results	Index	Weight
High	Sushi	Hurry	Good	x1	0.0625
Low	Pizza	Hurry	Good	x2	0.0625
Medium	Hamburger	Hurry	Good	x3	0.0625
Medium	Pizza	Relax	Good	x4	0.0625
High	Gruel	Relax	Bad	x5	0.0625
High	Hamburger	Relax	Good	x6	0.0625
Low	Gruel	Hurry	Bad	x7	0.0625
Low	Sushi	Relax	Bad	x8	0.125
High	Pizza	Hurry	Bad	x9	0.125
High	Hamburger	Hurry	Bad	x10	0.125
Medium	Hamburger	Hurry	Bad	x11	0.125
Low	Gruel	Relax	Bad	x12	0.0625

- How will the weight change?
 - $w[j] \leftarrow w[j] \cdot \frac{error}{(1-error)}$
 - NORMALIZE(w)
- New entropy of the sample
 - $-0.3125 \log_2(0.3125) 0.6875 \log_2(0.6875)$

Shiwali Mohan

Search 9/10

Price	Food Type	Rush?	Results	Index	Weight
High	Sushi	Hurry	Good	x1	0.0625
Low	Pizza	Hurry	Good	x2	0.0625
Medium	Hamburger	Hurry	Good	x3	0.0625
Medium	Pizza	Relax	Good	x4	0.0625
High	Gruel	Relax	Bad	x5	0.0625
High	Hamburger	Relax	Good	x6	0.0625
Low	Gruel	Hurry	Bad	x7	0.0625
Low	Sushi	Relax	Bad	x8	0.125
High	Pizza	Hurry	Bad	x9	0.125
High	Hamburger	Hurry	Bad	x10	0.125
Medium	Hamburger	Hurry	Bad	x11	0.125
Low	Gruel	Relax	Bad	x12	0.0625

- How will the weight change?
 - $w[j] \leftarrow w[j] \cdot \frac{error}{(1-error)}$
 - NORMALIZE(w)
- New entropy of the sample
 - $-0.3125 \log_2(0.3125) 0.6875 \log_2(0.6875)$
- Genrate the next stump.

Price	Food Type	Rush?	Results	Index	Weight
High	Sushi	Hurry	Good	x1	0.0625
Low	Pizza	Hurry	Good	x2	0.0625
Medium	Hamburger	Hurry	Good	x3	0.0625
Medium	Pizza	Relax	Good	x4	0.0625
High	Gruel	Relax	Bad	x5	0.0625
High	Hamburger	Relax	Good	x6	0.0625
Low	Gruel	Hurry	Bad	x7	0.0625
Low	Sushi	Relax	Bad	x8	0.125
High	Pizza	Hurry	Bad	x9	0.125
High	Hamburger	Hurry	Bad	x10	0.125
Medium	Hamburger	Hurry	Bad	x11	0.125
Low	Gruel	Relax	Bad	x12	0.0625

- How will the weight change?
 - $w[j] \leftarrow w[j] \cdot \frac{error}{(1-error)}$
 - NORMALIZE(w)
- New entropy of the sample
 - $-0.3125 \log_2(0.3125) 0.6875 \log_2(0.6875)$
- Genrate the next stump.

•
$$Remainder(A) = \sum_{k=1}^{d} \frac{p_k + n_k}{p + n} B(\frac{p_k}{p_k + n_k})$$

Shiwali Mohan Search 9/1

Review Decision Tree Ensemble Learning PAC

PAC Hypothesis

Shiwali Mohan

• Size of the hypothesis space of this problem.

- Size of the hypothesis space of this problem.
 - 2^{3*4*2}

- Size of the hypothesis space of this problem.
 - 2^{3*4*2}
- If a hypothesis classifies more than 3 samples wrong, it is a bad hypothesis. What is the epsilon?

- Size of the hypothesis space of this problem.
 - 2^{3*4*2}
- If a hypothesis classifies more than 3 samples wrong, it is a bad hypothesis. What is the epsilon?
 - $\frac{3}{24}$

- Size of the hypothesis space of this problem.
 - 2^{3*4*2}
- If a hypothesis classifies more than 3 samples wrong, it is a bad hypothesis. What is the epsilon?
 - $\frac{3}{24}$
- After 12 examples are observed, what is the hypothesis space?

- Size of the hypothesis space of this problem.
 - 2^{3*4*2}
- If a hypothesis classifies more than 3 samples wrong, it is a bad hypothesis. What is the epsilon?
 - $\frac{3}{24}$
- After 12 examples are observed, what is the hypothesis space?
 - 2¹²

- Size of the hypothesis space of this problem.
 - 2^{3*4*2}
- If a hypothesis classifies more than 3 samples wrong, it is a bad hypothesis. What is the epsilon?
 - $\frac{3}{24}$
- After 12 examples are observed, what is the hypothesis space?
 - 2¹²
- How many of these are approximately correct?

- Size of the hypothesis space of this problem.
 - 2^{3*4*2}
- If a hypothesis classifies more than 3 samples wrong, it is a bad hypothesis. What is the epsilon?
 - $\frac{3}{24}$
- After 12 examples are observed, what is the hypothesis space?
 - 2¹²
- How many of these are approximately correct?
 - $1+12+\binom{12}{2}$

- Size of the hypothesis space of this problem.
 - 2^{3*4*2}
- If a hypothesis classifies more than 3 samples wrong, it is a bad hypothesis. What is the epsilon?
- After 12 examples are observed, what is the hypothesis space?
 - 2¹²
- How many of these are approximately correct?
 - $1+12+\binom{12}{2}$
- What is the probability that a randomly-chosen hypothesis that is consistent with the 8 examples seen so far will be approximately correct?

- Size of the hypothesis space of this problem.
 - 23*4*2
- If a hypothesis classifies more than 3 samples wrong, it is a bad hypothesis. What is the epsilon?
- After 12 examples are observed, what is the hypothesis space?
 - 2¹²
- How many of these are approximately correct?
 - $1+12+\binom{12}{2}$
- What is the probability that a randomly-chosen hypothesis that is consistent with the 8 examples seen so far will be approximately correct?
 - $\frac{1+12+\binom{12}{2}}{2}$