Projet 4 : Anticipez les besoins en consommation électrique de bâtiments

Lancelot Leclerco

15 décembre 2021

Sommaire

- 1. Introduction
- 2. Nettoyage du jeu de données
- 3. Étapes des modélisations
- 4. Modélisation des émissions de carbone
- 5. Modélisation de la consommation énergétique
- 6. Conclusion

Introduction

Introduction

Problématique

- Objectif de la ville de Seattle : atteindre la neutralité en émissions de carbone
- La ville s'intéresse aux émissions des batiments non destinés à l'habitation
- Pour cela des relevés de consommation ont été réalisés mais ils sont couteux à obtenir
- Est-il possible de prédire les émissions et de la consommation d'énergie pour des batiments pour lesquels les relevés n'ont pas été réalisé à partir des relevés déjà obtenus

Jeu de données

- Base de données issue de l'initiative de la ville de Seattle de proposer ses données en accès libre (Open Data)
- Données concernant les batiments de la ville, caractérise :
 - le type,
 - la surface,
 - le nombre d'étages,
 - la consomation énergétique,
 - les émissions de carbone.
 - .
- Données des années 2015 et 2016

Nettoyage du jeu de données

Nettoyage du jeu de données

Nettoyage du jeu de données

Étapes des modélisations

Étapes des modélisations

Étapes des modélisations

Modélisation émissions

Modélisation émissions

Modèle Ridge

Variable non modifiée

←							
R²	RMSE	MAE	MAE%	FitTime(s)			
0.25	784.53	192.35	6.72	0.01			
paramètre		Ridge()					
ridge_	_alpha	1668.10					

R²	RMSE	MAE	MAE%	FitTime(s)
0.17	888.31	182.94	2.81	0.02
		pa	aramètre	Ridge()
			aramètre dgealpha	Ridge() 5590.81

Modèle Lasso

Variable non modifiée

Visualisation des données de TotalGHGEmissions prédites par le modèle Lasso()

R² RMSE MAE MAE% FitTime(s) 0.27 774.57 193.79 6.03 0.01

paramètre Lasso()
lasso alpha 64.28

₩

R²	RMSE	MAE	MAE%	FitTime(s)
0.13	900.77	182.60	2.99	0.02

paramètre Lasso()
lasso_alpha 0.34

Modèle ElasticNet

Variable non modifiée

alpha

 R²
 RMSE
 MAE
 MAE%
 FitTime(s)

 0.27
 774.96
 193.83
 6.05
 0.02

 paramètre
 ElasticNet()

 elasticnet_alpha elasticnet_l1_ratio
 65.79

 elasticnet_l1_ratio
 1.00

 \Leftarrow

R²	RMSE	MAE	MAE%	FitTime(s)
0.17	893.72	180.94	2.84	0.02

paramètre	ElasticNet()
elasticnetalpha	1.29
elasticnet I1 ratio	0.10

icnet__l1_ratio 0.10

paramètre

kneighborsregressor n neighbors

KNeighborsRegressor()

 \Rightarrow

Modèle kNeighborsRegressor

Variable non modifiée

Modèle RandomForestRegressor

Variable non modifiée

RMSE du modèle RandomForestRegressor pour la variable TotalGHGEmissions avec le paramètre max_features=log2 en fonction de l'hyperparamètre n estimators

Visualisation des données de TotalGHGEmissions prédites par le modèle RandomForestRegressor()

R² RMSE MAE MAE% FitTime(s) 0.42 687.32 135.01 2.24 0.25

	paramètre	RandomForestRegres
	randomforestregressorn_estimators randomforestregressormax_features	46 log2

				=
R²	RMSE	MAE	MAE%	FitTime(s)
0.66	738.02	132.49	1.04	4.42
aramètre			Ba	ndomForestR

parametre	nandomroresti	
randomforestregressorn_estimators randomforestregressormax_features	1000 log2	

Variable au log

RMSE du modèle RandomForestRegressor pour la variable TotalGHGEmissions_log avec le paramètre max_features=log2

Visualisation des données de TotalGHGEmissions_log prédites par le modèle RandomForestRegressor() vs les données test

 \Rightarrow

 \Rightarrow

Modèle AdaBoostRegressor

Variable non modifiée

n estimators

R² RMSE MAE MAE% FitTime(s)

0.44	679.78	210.35	6.90	0.11
paramè	etre		AdaBo	ostRegressor()
	ostregressor ostregressor	17 expone	ential	
←				

¢	=				=
	R ²	RMSE	MAE	MAE%	FitTime(s)
	0.34	793.85	168.49	1.64	0.09
	paramètre			AdaBoo	ostRegressor()

adaboostregressor_n_estimators 11 adaboostregressor_loss exponential

Variable au log

Visualisation des données de TotalGHGEmissions_log prédites par le modèle AdaBoostRegressor() vs les données test

n_estimators

Modèle GradientBoostingRegressor

Variable non modifiée

RMSE du modèle GradientBoostingRegressor pour la variable TotalGHGEmissions avec le paramètre loss=huber en fonction de l'hypernaramètre n' estimators

Visualisation des données de TotalGHGEmissions prédites par le modèle GradientBoostingRegressor()

RMSE MAF MAF% FitTime(s) 694.86 153.06 3.02 2.81 0.41

paramètre	GradientBoostingRe
gradientboostingregressorn_estimators	316
gradientboostingregressorloss	huber

`					\Rightarrow
	R²	RMSE	MAE	MAE%	FitTime(s)
	0.68	650.17	117.39	0.95	11.09

paramètre	GradientBoostingRe	
gradientboostingregressorn_estimators	3162	
gradientboostingregressorloss	squared_error	

Variable au log

RMSE du modèle GradientBoostingRegressor pour la variable TotalGHGEmissions log avec le paramètre loss=squared error

Visualisation des données de TotalGHGEmissions log prédites par le modèle GradientBoostingRegressor() vs les données test

Comparaison des résultats selon que la variable est au log ou non

Influence de l'EnergyStar score sur la prédiction des Émissions

Modélisation consommation

Modélisation consommation

RMSE

9498871.94

MAE%

1.66

3764.94

MAF

ridge_alpha

4216742.65

Modèle Ridge

Variable non modifiée

R²

0.66

Variable au log

----- RMSE movenne

- ScoresSolit1

- ScoresSolit2

Modèle Lasso

Variable non modifiée

paramètre	Lasso()
lassoalpha	0.11

Modèle ElasticNet

Variable non modifiée

aloha

ElasticNet()	
0.89	
0.10	

Variable au log

Visualisation des données de SiteEnergyUse prédites par le modèle ElasticNet()

Modèle kNeighborsRegressor

Variable non modifiée

R² RMSE MAE MAE% FitTime(0.58 10545930.52 3852872.12 0.96 0.0 paramètre KNeighborsRegressor() kneighborsregressor_n_neighbors 3

paramètre KNeighborsRegressor()
kneighborsregressor n neighbors

 \Rightarrow

Variable au log

Visualisation des données de SiteEnergyUse_log prédites par le modèle KNeighborsRegressor()

auto

 \Rightarrow

Modèle RandomForestRegressor

Variable non modifiée

RMSE du modèle Randomforestflegressor pour la variable SitefaergyUse avec le paramètre max features-auto en fonction de l'hyperparamètre n_estimators — RMSE moyene 45M — Souvesigni — Souv

R² RMSE

randomforestregressor max features

	R ²	RMSE	MAE	MAE%	FitTime(s
	0.77	7897252.92	2655419.73	0.65	5.50
	parame	ètre		RandomForestRegres	
Ī	randomforestregressor		n estimators	464	

_

	R²	RMSE	MAE	MAE%	FitTime
	0.81	6699738.26	2444802.20	0.43	5
	paramètre randomforestregressorn_estimators randomforestregressormax_features			RandomF	orestRegi
				1000 sqrt	

Variable au log

n estimators

Visualisation des données de SiteEnergyUse_log prédites par le modèle RandomForestRegressor() vs les données test

SiteEnergyLise pred

R²

0.54

MAE%

0.80

FitTime

 \Rightarrow

0.0

Modèle AdaBoostRegressor

Variable non modifiée

Visualisation des données de SiteEnergyUse prédites par le modèle AdaBoostRegressor()

n estimators

R² RMSE MAF MAE% FitTime(s 0.66 9577498.02 4797313.47 2.14 0.06 paramètre AdaBoostRegressor() adaboostregressor n estimators adaboostregressor loss exponential \Rightarrow

MAE

4171710 66

paramètre AdaBoostRegressor()

adaboostregressor_n_estimators 9
adaboostregressor loss exponential

RMSE

11946475 76

Variable au log

Visualisation des données de SiteEnergyUse_log prédites par le modèle AdaBoostRegressor() vs les données test

10000

huber

 \Rightarrow

Modèle GradientBoostingRegressor

Variable non modifiée

Visualisation des données de SiteEnergyUse prédites par le modèle GradientBoostingRegressor() vs les données test

n estimators

R² RMSE MAF MAF% FitTime/ 0.62 10038705.95 2819213.14 0.89 paramètre GradientBoostingBo gradientboostingregressor n estimators 1000 gradientboostingregressor loss squared error R² **RMSE** MAF MAE% FitTime(s 0.79 5284322.90 1713173 55 0.37 77.93 paramètre GradientBoostingRe

gradientboostingregressor n estimators

gradientboostingregressor loss

Variable au log

Visualisation des données de SiteEnergyUse_log prédites par le modèle GradientBoostingRegressor() vs les données test

Comparaison des résultats selon que la variable est au log ou non

Conclusion

Conclusion

Conclusion