## Optimisation: Ice on Mars

Deckers, Roel Zarate, Caryl Lou



Researchers have identified thousands of glacier-like formations on the planet. The ice in the glaciers is equivalent to over 150 billion cubic meters of ice — that much ice could cover the entire surface of Mars with 1.1 meters of ice. The ice at the mid-latitudes is therefore an important part of Mars' water reservoir.

# Shallow Ice Approximation



A nonlinear relationship can be established between the thickness H(x) and the mass balance function on the surface a(x) that

$$a(x) = -\frac{2A}{n+2} (\rho g)^n H(x)^{n+2} \left| \frac{\mathrm{d}h}{\mathrm{d}x} \right|^{n-1} \frac{\mathrm{d}h}{\mathrm{d}x},\tag{1}$$

# Objective Function

$$\min_{n} \|H(x) - H_{obs}(x)\|_{2}^{2}.$$

$$H(x) = \left(\frac{-a(x)(n+2)}{2A(\rho g)^n \left|\frac{dh}{dx}\right|^{n-1} \frac{dh}{dx}}\right)^{\frac{1}{n+2}}$$

#### In Matlab,

diff =  $((-a.*(n+2)./(2*A*(rho*g).^n.*abs(dhdx).^(n-1).*dhdx)).^(1/(n+2)))-H_obs;$ dH = sum(diff.^2);

## Optimizing the optimization

- Rescale the domain
  - n = 0.1\*x0(1)
  - $A \rightarrow 10^{x}0(2)$
- Compute the gradient?
  - Horrible expression, much more expensive to evaluate than finite differences.

### Set A = 1e-25, initial n = 3

| Solver             | fminunc | Isqnonlin |
|--------------------|---------|-----------|
| n                  | 2.76327 | 2.76303   |
| Iterations         | 5       | 12        |
| Function calls     | 18      | 34        |
| Objective function | 13.1875 | 13.1875   |

#### Set A = 1e-25, initial n = 1

| Solver                 | fminunc | Isqnonlin |
|------------------------|---------|-----------|
| n                      | 2.76327 | 2.76306   |
| Iterations             | 4       | 13        |
| Function calls         | 30      | 37        |
| In(Objective function) | 13.1875 | 13.1875   |



### Set n = 3, initial A = 1e-25

| Solver                 | fminunc  | Isqnonlin |
|------------------------|----------|-----------|
| log10(A)               | -26.0987 | -26.0989  |
| Iterations             | 5        | 6         |
| Function calls         | 16       | 20        |
| In(Objective function) | 13.1661  | 13.1661   |



### Initial n = 1, A = 1e-25

| Solver                 | fminunc | Isqnonlin |
|------------------------|---------|-----------|
| n                      | 66      | 1.8       |
| log10(A)               | -320    | -20.5     |
| Iterations             | 20      | 210       |
| Function calls         | 243     | 772       |
| In(Objective function) | 12.9    | 13.3      |

### Initial n = 3, A = 1e-25

| Solver                 | fminunc | Isqnonlin |
|------------------------|---------|-----------|
| n                      | 65.8    | 3.13      |
| log10(A)               | -320    | -26.7     |
| Iterations             | 21      | 209       |
| Function calls         | 289     | 755       |
| In(Objective function) | 12.9    | 13.2      |

In(objective function)





### Consider part of the observation



n = 2.8042

A = -25.0447

Obj = 1.807e + 5