Rajalakshmi Engineering College

Name: Praveen Kumar

Email: 240801247@rajalakshmi.edu.in

Roll no: 240801247 Phone: 7550385160

Branch: REC

Department: I ECE AF

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 5

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

In his computer science class, John is learning about Binary Search Trees (BST). He wants to build a BST and find the maximum value in the tree.

Help him by writing a program to insert nodes into a BST and find the maximum value in the tree.

Input Format

The first line of input consists of an integer N, representing the number of nodes in the BST.

The second line consists of N space-separated integers, representing the values of the nodes to insert into the BST.

Output Format

The output prints the maximum value in the BST.

Refer to the sample output for formatting specifications.

```
Sample Test Case
```

```
Input: 5
1051527
Output: 15
Answer
#include <stdio.h>
#include <stdlib.h>
struct TreeNode {
  int data:
  struct TreeNode* left:
  struct TreeNode* right;
};
struct TreeNode* createNode(int key) {
  struct TreeNode* newNode = (struct TreeNode*)malloc(sizeof(struct
TreeNode));
  newNode->data = key;
  newNode->left = newNode->right = NULL;
  return newNode;
struct TreeNode* insert(struct TreeNode* root, int key) {
  if(root == NULL) {
    return createNode(key);
  if(key < root->data) {
    root->left = insert(root->left, key);
  else if(key > root->data) {
    root->right = insert(root->right, key);
  return root;
```

```
240801241
if(root == NULL) {
    return NI || | |
     int findMax(struct TreeNode* root) {
       while(root->right != NULL) {
         root = root->right;
       return root->data;
     int main() {
       int N, rootValue;
struct TreeNode* root = NULL;

for (int i - ^ -
       scanf("%d", &N);
          int key;
          scanf("%d", &key);
          if (i == 0) rootValue = key;
          root = insert(root, key);
       }
       int maxVal = findMax(root);
       if (maxVal != -1) {
          printf("%d", maxVal);
                                                          240801241
      return 0;
```

Status: Correct Marks: 10/10

240801241

240801241

240801247

1,40801241

240801247