Contents

1	Week $\#10$	CONCEPTUAL: FINAL	2
2	Correlation		3
3	Critical r values		3
4	Question #1		3
5	${\bf Question} \# {\bf 2}$		3
6	${\bf Question} \#3$		3
7	${\bf Question} \# 4$		3
8	${\bf Question} \# {\bf 5}$		3
9	${\bf Question} \# 6$		4
10	Question #7		4

1 Week #10

CONCEPTUAL:FINAL

- \bullet Give an example of two variables which would have a correlation of close to 1
- \bullet Give an example of two variables which would have a correlation of close to -1
- \bullet Give an example of two variable which would have a correlation of close to 0
- \bullet When isn't Pearson's r an appropriate measure?
- Why doesn't correlation imply causation? Does causation imply correlation?
- One sample has n = 10 and a variance of 20, the other has n = 15 and variance of 30; will the pooled variance be closer to 15 or 30 (rewrite this)
- Rank each set of scores:

4, 0, 4, 9, 3 3, 5, 3, 6, 3

Correlation $\mathbf{2}$

	7.00	5.00
$\bar{X} = \Sigma(X_i)/n$	6.00	1.00
· -//	2.00	4.00
df = n - 1	9.00	10.00
$SP = \Sigma[(X_i - \bar{X})(Y_i - \bar{Y})]$		
$SS_X = \Sigma[(X_i - \bar{X})^2]$	X_{i}	Y_i
[(, ,)]	6.00	6.00
$SS_Y = \Sigma[(Y_i - \bar{Y})^2]$	1.00	9.00
$r_{XY} = SP/\sqrt{SS_X \times SS_Y}$	3.00	8.00
	6.00	1.00

Critical r values 3

		α	
(n-2)	0.2	0.1	0.05
2	0.8	0.9	0.95
3	0.69	0.81	0.88
4	0.61	0.73	0.81

Question #1

Calculate r_{XY} and test H_0 : $\rho_{XY} = 0$ at $\alpha = 0.1$.

X_i	Y_i
1.00	4.00
2.00	8.00
2.00	5.00
7.00	7.00

Question #2 5

Calculate r_{XY} and test H_0 : $\rho_{XY} = 0$ at $\alpha = 0.2$.

Question #3

Calculate r_{XY} and test H_0 : $\rho_{XY} = 0$ at $\alpha = 0.1$.

Question #4

 X_i

 Y_i

5.00

Calculate r_{XY} and test H_0 : $\rho_{XY} = 0$ at $\alpha = 0.1$.

X_i	Y_i
2.00	9.00
6.00	9.00
2.00	7.00
9.00	6.00
1.00	4.00

Question #5

Calculate r_{XY} and test H_0 : $\rho_{XY} = 0$ at $\alpha = 0.1$.

X_i	Y_i
7.00	1.00
9.00	3.00
3.00	5.00
1.00	3.00

9 Question #6

Calculate r_{XY} and test H₀: $\rho_{XY}=0$ at $\alpha=0.1$.

 $\begin{array}{ccc} X_i & Y_i \\ 10.00 & 5.00 \\ 8.00 & 7.00 \\ 5.00 & 1.00 \\ 1.00 & 7.00 \\ 6.00 & 10.00 \end{array}$

10 Question #7

Calculate r_{XY} and test H₀: $\rho_{XY}=0$ at $\alpha=0.2$.