Статистические свойства оценок

Эконометрика. Лекция 2

Статистические свойства оценок коэффициентов

- стандартные предпосылки для модели линейной регрессии
- доверительные интервалы для коэффициентов
- гипотезы о коэффициентах

Условное математическое ожидание

- r одна случайная величина
- s одна случайная величина
- E(s|r) это такая функция от случайной величины r, которая наиболее похожа на случайную величину s

Условное математическое ожидание. Формально

E(s|r) — это случайная величина \tilde{s} :

- lacktriangledown представимая в виде $ilde{s} = f(r)$
- $E(\tilde{s}) = E(s)$
- $oldsymbol{O}$ $oldsymbol{Cov}(s- ilde{s},g(r))=0$ для любой g(r).

Или: $Cov(s,g(r)) = Cov(\tilde{s},g(r))$

На практике

Теорема:

Если величина r дискретна и принимает значения a, b или c, то

$$E(s|r) = egin{cases} E(s|r=a), & ext{если } r=a \ E(s|r=b), & ext{если } r=b \ E(s|r=c), & ext{если } r=c \end{cases}$$

Задача [у доски]

s, r	<i>r</i> = 1	<i>r</i> = 2
s=0	0.25	0.2
s = 10	0.25	0.3

Найдите: E(s|r), $E(s^2|r)$

Если величины непрерывны и есть совместная функция плотности

Теорема:

Если пара величин x, y имеет функцию плотности f(r,s), то

$$E(s|r) = \int_{-\infty}^{\infty} s \cdot f(s|r) dx$$

где f(s|r) = f(r,s)/f(r) — условная функция плотности

Свойства условного ожидания

Пусть a, b — константы, s, r — случайные величины. Идея: свойства E(s|r) аналогичны свойствам E(s), если считать r и любую функцию h(r) константой.

Свойства условного ожидания

- E(E(s|r)) = E(s)
- E(as + b|r) = aE(s|r) + b
- E(h(r)|r) = h(r)
- E(h(r)s|r) = h(r)E(s|r)

Условная дисперсия и ковариация

```
Обычная дисперсия: Var(s) = E(s^2) - (E(s))^2 Условная дисперсия. Var(s|r) = E(s^2|r) - (E(s|r))^2 Обычная ковариация: Cov(s_1, s_2) = E(s_1s_2) - E(s_1)E(s_2) Условная ковариация: Cov(s_1, s_2|r) = E(s_1s_2|r) - E(s_1|r)E(s_2|r)
```

Задача [у доски]

s, r	r = 1	<i>r</i> = 2
s=0	0.25	0.2
s = 10	0.25	0.3

Найдите: Var(s|r)

Свойства условной дисперсии

Пусть a, b — константы, s, r — случайные величины. Идея: свойства Var(s|r) аналогичны свойствам Var(s), если считать r и любую функцию h(r) константой.

Свойства условной дисперсии

$$Var(as + b|r) = a^{2}Var(s|r)$$

$$Var(s + h(r)|r) = Var(s|r)$$

$$Var(h(r)s|r) = h^{2}(r)Var(s|r)$$

$$Var(s) = Var(E(s|r)) + E(Var(s|r))$$

Геометрическая интерпретация [у доски]

Мораль геометрической интерпретации:

Если считать, что Cov(r,s) — скалярное произведение, то

- ullet квадрат длины случайной величины r дисперсия, Var(r)
- ullet косинус угла между случайными величинами корреляция, Corr(s,r)

Верны "школьные" теоремы: теорема Пифагора, Фалеса, еtc

Предпосылки на ошибки

- $E(\varepsilon_i|X)=0$
- $E(\varepsilon_i^2|X) = \sigma^2$ или $Var(\varepsilon_i|X) = \sigma^2$
- $E(arepsilon_i arepsilon_j | X) = 0$ или $Cov(arepsilon_i, arepsilon_j | X) = 0$

Ковариационная матрица

Ковариационная матрица вектора ε :

$$Var(\varepsilon) = \begin{pmatrix} Var(\varepsilon_1) & Cov(\varepsilon_1, \varepsilon_2) & Cov(\varepsilon_1, \varepsilon_3) & \dots \\ Cov(\varepsilon_2, \varepsilon_1) & Var(\varepsilon_2) & Cov(\varepsilon_2, \varepsilon_3) & \dots \\ Cov(\varepsilon_3, \varepsilon_1) & Cov(\varepsilon_3, \varepsilon_2) & Var(\varepsilon_3) & \dots \\ \vdots & & & \end{pmatrix}$$

Запись предпосылок с помощью ковариационной матрицы

$$Var(\varepsilon|X) = \begin{pmatrix} \sigma^{2} & 0 & 0 & \dots \\ 0 & \sigma^{2} & 0 & \dots \\ 0 & 0 & \sigma^{2} & \dots \\ \vdots & \vdots & \vdots & \dots \end{pmatrix} = \sigma^{2} \begin{pmatrix} 1 & 0 & 0 & \dots \\ 0 & 1 & 0 & \dots \\ 0 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \dots \end{pmatrix} = \sigma^{2} \cdot I_{n \times n}$$

Дисперсия и ковариация оценок коэффициентов

Предпосылки:

- $Var(\varepsilon|X) = \sigma^2 \cdot I_{n \times n}$
- $Var(\varepsilon_i|X) = \sigma^2$
- $Cov(\varepsilon_i, \varepsilon_i | X) = 0$
- $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$

Позволяют посчитать $Var(\hat{\beta}_j|X)$, $Cov(\hat{\beta}_j,\hat{\beta}_l|X)$

Пример вычислений в парной регрессии [у доски]

```
В модели y_i = \beta_1 + \beta_2 x_i + \varepsilon_i
Предположим, что: Var(\varepsilon_i|X) = \sigma^2, Cov(\varepsilon_i, \varepsilon_j|X) = 0
Найдите Var(\hat{\beta}_2|X), Cov(\hat{\beta}_1, \hat{\beta}_2|X), Var(\hat{\beta}_1|X)
```

Итого в парной регрессии:

•
$$Var(\hat{\beta}_2|X) = \frac{\sigma^2}{\sum (x_i - \bar{x})^2}$$

•
$$Cov(\hat{\beta}_1, \hat{\beta}_2|X) = \frac{-\bar{x}\sigma^2}{\sum (x_i - \bar{x})^2}$$

•
$$Var(\hat{\beta}_1|X) = \frac{\sigma^2 \sum x_i^2}{n \sum (x_i - \bar{x})^2}$$

Вопрос:

- Зачем придумали эту условную дисперсию, если все свойства аналогичны обычной дисперсии?
- А вот как раз и придумали, чтобы всё аналогично просто считалось! Настоящая безусловная дисперсия оценок коэффициентов — гораздо сложнее, чем условная.

Теорема (без доказательства):

$$Var(\hat{\beta}_j|X) = \sigma^2/RSS_j$$

 RSS_j — сумма квадратов остатков в регрессии j-ой объясняющей переменной на остальные объясняющие переменные (включая константу)

ЛИНАЛ. Ковариационная матрица оценок коэффициентов

Средствами линейной алгебры можно доказать, что: $Var(\hat{\beta}|X) = \sigma^2(X'X)^{-1}$

ЛИНАЛ. Предварительная информация к доказательству:

Свойство: $Var(Ay) = A \cdot Var(y) \cdot A'$ Это матричный аналог свойства $Var(a \cdot y_1) = a^2 \cdot Var(y_1)$. Напомним, что (AB)' = B'A' и $(A^{-1})' = (A')^{-1}$ Поэтому:

- (X'X)' = X'X'' = X'X
- $((X'X)^{-1})' = (X'X)^{-1}$

ЛИНАЛ. доказательство формулы [у доски]

Если оценки МНК существуют и единственны, $Var(\varepsilon|X) = \sigma^2 I_{n\times n}$ то ковариационная матрица равна:

$$Var(\hat{\beta}|X) = \sigma^2(X'X)^{-1}$$

Как оценить σ^2 ?

Константа σ^2 неизвестна.

Случайная величина $\hat{\sigma}^2 = \frac{RSS}{n-k}$ — замечательная оценка для σ^2 . Замечательная в смыслах:

- $E(\hat{\sigma}^2) = \sigma^2$, в среднем оценивает верно
- $\hat{\sigma}^2 \to \sigma^2$ по вероятности с ростом n

Оценка ковариационной матрицы

Идея: заменим во всех формулах σ^2 на $\hat{\sigma}^2$:

- Истинная дисперсия: $Var(\hat{\beta}_j|X) = \sigma^2 \cdot f(X)$
- ullet Оценка дисперсии: $\widehat{Var}(\hat{eta}_j|X)=\hat{\sigma}^2\cdot f(X)$

а именно: $\widehat{Var}(\hat{eta}_j|X)=\hat{\sigma}^2/RSS_j$

• $se(\hat{\beta}_j) = \sqrt{\widehat{Var}(\hat{\beta}_j|X)}$

Например, в модели $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$: $se(\hat{\beta}_2) = \sqrt{\frac{\hat{\sigma}^2}{\sum (x_i - \bar{x})^2}}$

Оценка ковариационной матрицы

$$\widehat{Var}(\hat{\beta}|X) = \begin{pmatrix} \widehat{Var}(\hat{\beta}_1|X) & \widehat{Cov}(\hat{\beta}_1, \hat{\beta}_2|X) & \widehat{Cov}(\hat{\beta}_1, \hat{\beta}_3|X) & \dots \\ \widehat{Cov}(\hat{\beta}_2, \hat{\beta}_1|X) & \widehat{Var}(\hat{\beta}_2|X) & \widehat{Cov}(\hat{\beta}_2, \hat{\beta}_3|X) & \dots \\ \widehat{Cov}(\hat{\beta}_3, \hat{\beta}_1|X) & \widehat{Cov}(\hat{\beta}_3, \hat{\beta}_2|X) & \widehat{Var}(\hat{\beta}_3|X) & \dots \\ \vdots & & & \end{pmatrix}$$

- ЛИНАЛ: $\widehat{Var}(\hat{\beta}|X) = \hat{\sigma}^2 \cdot (X'X)^{-1}$
- B R: vcov(model)

БСХС — Большой Список Хороших Свойств

• Базовые:

верны даже на малых выборках без предположения о нормальности ε_i

• Асимптотические:

верны на больших выборках даже без предположения о нормальности ε_i

• При нормальности:

верны при нормальности ε_i даже на малых выборках

БСХС — предположение о связи у и регрессоров

Если:

- **①** Истинная зависимость имеет вид $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$
 - В матричном виде: $y = X\beta + \varepsilon$
- $oldsymbol{0}$ С помощью МНК оценивается регрессия y на константу, x_i, z_i
- В матричном виде: $\hat{\beta} = (X'X)^{-1}X'y$

ECXC — предположения на ε_i :

Если:

- lacktriangle Строгая экзогенность: $E(arepsilon_i|$ все регрессоры)=0
 - В матричном виде: $E(\varepsilon_i|X)=0$
- ullet Условная гомоскедастичность: $E(arepsilon_i^2|$ все регрессоры $)=\sigma^2$
 - В матричном виде: $E(\varepsilon_i^2|X) = \sigma^2$
- $Cov(\varepsilon_i, \varepsilon_j | X) = 0$ при $i \neq j$

БСХС — предположения на регрессоры

Если:

- $oldsymbol{0}$ векторы отдельных наблюдений (x_i, z_i, y_i) независимы и одинаково распределены
- с вероятностью 1 среди регрессоров нет линейно зависимых
- ullet Синонимы в матричном виде: rank(X)=k или det(X'X)
 eq 0 или $(X'X)^{-1}$ существует

БСХС — базовые свойства (т. Гаусса-Маркова)

To:

- ullet Оценки \hat{eta}_j линейны по y_i : $\hat{eta}_j = c_1 y_1 + \ldots + c_n y_n$
- ullet Оценки несмещены: $E(\hat{eta}_j|X)=eta_j$, и в частности $E(\hat{eta}_j)=eta_j$

БСХС — базовые свойства (т. Гаусса-Маркова)

To:

• Оценки эффективны среди линейных и несмещенных

Для любой линейной по y_i и несмещенной альтернативной оценки $\hat{\beta}^{alt}$:

$$Var(\hat{eta}_j^{alt}|X) \geq Var(\hat{eta}_j|X)$$
 и $Var(\hat{eta}_j^{alt}) \geq Var(\hat{eta}_j)$

БСХС — базовые свойства

To:

ullet Ковариационная матрица: $Var(\hat{eta}|X) = \sigma^2(X'X)^{-1}$

Диспрерсии: $Var(\hat{\beta}_j|X) = \sigma^2/RSS_j$

- $Cov(\hat{\beta}_j, \hat{\varepsilon}_i | X) = 0$
- $E(\hat{\sigma}^2|X) = \sigma^2$, и $E(\hat{\sigma}^2) = \sigma^2$

<u> БСХС</u> — асимптотические свойства

To при $n \to \infty$:

- $\hat{\beta}_j \to \beta_j$ по вероятности
- ullet $rac{\hat{eta}_j eta_j}{se(\hat{eta}_j)}
 ightarrow N(0,1)$ по распределению
- $\hat{\sigma}^2 \rightarrow \sigma^2$ по вероятности

$$\hat{\sigma}^2 = \frac{RSS}{n-k}$$

БСХС — при нормальности

Если дополнительно известно, что $\varepsilon_i \sim N(0, \sigma^2)$, то:

- Оценки эффективны среди несмещенных
- $\frac{\hat{\beta}_j \beta_j}{se(\hat{\beta}_j)} | X \sim t_{n-k}, \frac{\hat{\beta}_j \beta_j}{se(\hat{\beta}_j)} \sim t_{n-k}$ $RSS/\sigma^2 | X \sim \chi^2_{n-k}, RSS/\sigma^2 \sim \chi^2_{n-k}$

Доверительные интервалы для коэффициентов

Возможно строить в двух подходах:

- ullet Асимптотически: $t=rac{\hat{eta}_j-eta_j}{\mathsf{se}(\hat{eta}_i)} o \mathsf{N}(0,1)$
- ullet При нормальности: $t=rac{\hat{eta}_{j}-eta_{j}}{\mathsf{se}(\hat{eta}_{j})}\sim t_{n-k}$

Примерный 95%-ый интервал:

$$[\hat{\beta}_j - 2se(\hat{\beta}_j); \hat{\beta}_j + 2se(\hat{\beta}_j)]$$

Описание любого теста:

• предпосылки теста

например: асимптотический или требующий нормальности ошибок ε_i

- ullet проверяемая H_0 против H_a
- формула для вычисления статистики
- ullet закон распределения статистики при верной ${\cal H}_0$

Практическая последовательность действий

- выбираем уровень значимости α , $\alpha = P(H_0 \text{ отвергнута } | H_0 \text{ верна })$
- находим наблюдаемое значение статистики Sobs
- $oldsymbol{3}$ находим критическое значение статистики \mathcal{S}_{cr}
- lacktriangledown сравниваем критическое и наблюдаемое S_{obs} и S_{cr}

(можно сравнить Р-значение и уровень значимости α)

 $foldsymbol{0}$ вывод: " H_0 отвергается" или " H_0 не отвергается"

Проверка гипотез и построение доверительных интервалов [у доски]

```
\begin{array}{c} {\rm summary(model)} \\ {\rm Estimate~Std.~Error~t~value~Pr(>|t|)} \\ {\rm (Intercept)~59.86392~~3.98754~~15.013~~<2e-16~***} \\ {\rm Agriculture~0.10953~~0.07848~~1.396~~0.1698} \\ {\rm Catholic~~0.11496~~0.04274~~2.690~~0.0101~*} \\ {\rm Residual~standard~error:~11.07} \\ \end{array}
```

- проверьте гипотезу $\beta_a = 0$
- ullet постройте доверительный интервал для eta_{a}
- ullet постройте доверительный интервал для σ^2

стандартные ошибки часто выписывают под коэффициентами

$$\widehat{\textit{Fertility}}_i = \underset{(3.98)}{59.8} + \underset{(0.078)}{0.109} \textit{Agriculture}_i + \underset{(0.042)}{0.115} \textit{Catholic}_i$$

Стандартная табличка в любом статистическом пакете [у доски]

```
Estimate Std. Error t value \Pr(>|\mathbf{t}|) (Intercept) 59.86392 3.98754 15.013 <2e-16 *** Agriculture 0.10953 0.07848 1.396 0.1698 Catholic 0.11496 0.04274 2.690 0.0101 *
```

Особые моменты при проверки гипотез

- Плохое устоявшееся название гипотез
- Смысл формулировки "Но не отвергается"
- Значимость и существенность разные вещи
- Проблема множественных сравнений

Плохое устоявшееся название

Проверка значимости — на самом деле проверка незначимости:

- "Мы проверили значимость коэффициента при доходе"
- Мы проверили $H_0: \beta_{inc} = 0.$

Смысл " H_0 не отвергается"

- ullet недостаточно данных чтобы отвергнуть H_0
- ullet имеющиеся данные не противоречат H_0

Вполне возможно, что данные не противоречат H_a (!)

Значимость и существенность

• Коэффициент может быть значимым и совершенно несущественным

На огромных выборках как правило все коэффиценты значимы

• Коэффициент может быть существенным, но незначимым

Значимость — статистическое отвержение гипотезы о точном равенстве

Существенность — насколько данное отличие от нуля важно в прикладном смысле

Стандартизированные коэффициенты

Существенность — можно придать разный математический смысл Например:

• стандартизировать переменные:

$$y_i^{st} := \frac{y_i - \bar{y}}{sd(y)}, x_i^{st} := \frac{x_i - \bar{x}}{sd(x)}, z_i^{st} := \frac{z_i - \bar{z}}{sd(z)}$$

• переоценить модель:

$$y_i^{st} = \beta_1^{st} + \beta_2^{st} x_i^{st} + \beta_3^{st} z_i^{st} + \varepsilon_i^{st}$$

Проблема множественных сравнений

- Исследователь хочет проверить гипотезу о том, что $\beta_{42}=0$. Ok.
- Исследователь хочет выяснить какие регрессоры из 100 значимы. Плохой метод.

Проверка гипотезы об одном ограничении

Хотим проверить гипотезу о $\beta_2 - \beta_3$. Статистика $t = \frac{\hat{\beta}_2 - \hat{\beta}_3 - (\beta_2 - \beta_3)}{\text{se}(\hat{\beta}_2 - \hat{\beta}_3)}$ распределена

- ullet асимптитически N(0,1)
- ullet при нормальности t_{n-k}

Переформулировка модели

Хотим проверить гипотезу $\beta_2=\beta_3$ или $\beta_2-\beta_3=0$ Всегда можно переформулировать модель так, что $\beta_2-\beta_3$ станет новым коэффициентом $\beta_2'=\beta_2-\beta_3$.

Пример проверки гипотезы о связи коэффициентов [у доски]

```
summary(model)
        Estimate Std. Error t value Pr(>|t|)
(Intercept) 59.86392 3.98754 15.013 <2e-16 ***
Agriculture 0.10953 0.07848 1.396 0.1698
Catholic 0.11496 0.04274 2.690 0.0101 *
vcov(model)
         (Intercept) Agriculture Catholic
(Intercept) 15.900471817 -0.256680712 -0.006998292
Agriculture -0.256680712 0.006159437 -0.001345371
Catholic -0.006998292 -0.001345371 0.001826622
Residual standard error: 11.07
```

Проверьте гипотезу $\beta_a = \beta_c$ (два способа)

Мораль лекции 2:

В этой лекции мы научились:

- строить доверительные интервалы
- проверять гипотезы об отдельном коэффициенте
- сформулировали стандартные предпосылки

В следующей:

- более сложные гипотезы
- прогнозирование

Источники мудрости:

- Артамонов Н.В., Введение в эконометрику: главы 1.3
- Борзых Д.А., Демешев Б.Б. Эконометрика в задачах и упражнениях: глава 2, 3
- Катышев П.К., Пересецкий А. А. Эконометрика. Начальный курс: главы 2.4, 2.5, 2.6, 3.2, 3.3
- Себер Дж., Линейный регрессионный анализ: главы 3.2, 3.3, 3.4