Let us consider a sample dataset have 1 input (Xi) and one output (Yi) and number of samples 4. Develop a simple linear regnession model using

momentum optimiser

Sample(i)	x;a	yia
	0.2	3.4
2	0.4	3.8
3	0.6	4.2
4	0.8	4.6
	-	

. Do manual calculations for 2 iterations with 1st 2 samples

Step 1: [x, y] m=1, C=-1, 7=0.1, epochu=2, 8=0.9, Vm=Vc=0, ns=2

step 2: it = 1

step 3: Sample = !

step
$$4: g_m = \frac{\partial \epsilon}{\partial m} = -(y; -mx; -c)x;$$

= $-(3.4 - (1)(0.2) + i)(0.2)$

$$g_{c} = \frac{\partial \epsilon}{\partial c} = -(y_{1} - mx_{1} - c)$$

$$= -(3.4 - 0.2 + 1)$$

= - 4.2

$$V_{c} = \frac{1}{3}V_{c} = n_{d}c$$
 $= 0.9 \times 0 - (-0.1)(-4.12)$
 $= -0.916$
 $C = C + V_{c}$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -1.0.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -0.1.42$
 $= -$

```
step 8: if (sample >ns)
        Joto step 9
      else goto step4
step 4: gm=-(3.8-(0.293)(0.4)+3.615)(0.4)
    9 = - (3.8 - (0.293) (0.4) + 3.615
step 5: V_{m} = (0.9)(-0.353) - [-0.1x - 2.919]
       V, = (0.9)(-1.332)-[-0.1x-7.297]
         = -1.9285
        0.293-0.609 = -0.316
         -3.615 = 1.928 = -5.543
step 7: Sample + = 1
step 8: if (sample > ns)
 step 9: it + =1
 Step 10: if (it's > epoches)
step 11: print m, c
            =-0.316, ==
```