El modelo E-R

- El modelo Entidad-Relación (E-R)
 - Modelo de datos más extendido para el diseño conceptual:
 - Posee una gran capacidad expresiva
 - Es riguroso
 - Simple y fácil de emplear
 - Sirve para especificar las necesidades de información de una organización
 - Diseño apropiado
 - Diseño de calidad
 - Diseño fácil de transmitir

El modelo E-R

- · El modelo construido debe:
- Refleiar fielmente las necesidades de información de una organización:
 - Será usado como base para el desarrollo de un sistema
- Ofrecer un diseño independiente del posterior almacenamiento de los datos y sus métodos de acceso
 - Así se permite tomar decisiones objetivas acerca de la implementación más idónea.

El modelo E-R

Definición 4.1 (Modelo E-R). El modelo E-R es un mecanismo formal para representar y manipular información de manera general y sistemática.

El modelo E-R

- · Claves para hacer uso del modelo E/R:
- Datos
 - Recurso de la empresa de gran valía
 - Hay que analizarlos con detenimiento
 - Control de datos ventaja para el negocio
- Convenciones
 - Aplicar una notación rigurosa y normalizada
 - Seguir una línea de actuación sistemática
- Redundancia mínima
 - Cualquier dato o concepto debe ser modelado de una única manera

Elementos básicos del modelo

Definición 4.2 (Entidades). Una entidad se define como un objeto que existe y que es distinguible de los demás. Por ejemplo, un empleado, un libro, un departamento..

Elementos básicos del modelo

- · Conjuntos de entidades:
- Entidades que tienen las mismas cualidades
- Eiemplos:
 - Empleados
 - Libros
 - Departamentos
- Algunos autores los denominan tipos.

Elementos básicos del modelo

Empleado

Elementos básicos del modelo

Definición 4.3 (Atributos). Son las propiedades que caracterizan un conjunto de entidades.

Elementos básicos del modelo

- Eiemplos:
 - Conjunto de entidades empleados:
 - DNI
 - Nombre
 - Sueldo
- Conceptos relevantes:
- Dominio
 - Conjunto de valores permitidos para un determinado atributo
- Identificador
 - Atributo o conjunto de atributos cuyos valores sirven para identificar unívocamente a cada una de las entidades de un conjunto.
 - Eiemplos:
 - Empleados: DNI
 - Libros: ISBN

• Atributos e identificadores (notación)

Elementos básicos del modelo

Atributo compuesto (notación)

Elementos básicos del modelo

• Entidades fuertes y débiles

Definición 4.4 (Dependencia existencial). Sean A y B dos conjuntos de entidades. Decimos que **B depende existencialmente de A** si cumple:

- 1. $\exists T \in A \times B / \forall b \in B \Longrightarrow \exists a \in A / (a, b) \in T, y$
- 2. Es imposible identificar a b sin identificar previamente a a.

Laureia I Dianes Javia Comenda Dia Contilla Codos Com Maria Des Denial Si

Elementos básicos del modelo

Entidad fuerte	Entidad débil
Cuenta corriente	Movimientos
Factura	Lineas de detalle
Historia clínica	Ingresos
Avión	Asientos

Elementos básicos del modelo

Definición 4.5 (Asociaciones o relaciones). Una relación es una conexión semántica entre dos o más conjuntos de entidades.

Elementos básicos del modelo

- Relaciones
- Cardinalidad: Número máximo de entidades de un conjunto que se conecta o relaciona con una entidad de otro y viceversa.
- En el caso de las relaciones binarias:
 - Muchos a muchos (n:m)
 - Libros Autores
 - Uno a muchos (m:1)
 - Departamento Empleados
 - Uno a uno (1:1)
 - Persona Partida Nacimiento

I THE TAR A PROCEEDING MAD DITTO

Elementos básicos del modelo

· Relaciones (notación)

Elementos básicos del modelo

Relaciones (lectura)

Un empleado trabaja en un departamento

Elementos básicos del modelo

Relaciones (lectura)

En un departamento trabajan muchos empleados

Elementos básicos del modelo

- Relaciones
 - Participación: Número mínimo de entidades de un conjunto que se conecta o relaciona con las entidades del otro
 - En el caso de las relaciones binarias:
 - parcial, 0: es posible que ninguna entidad de un lado se conecte con una o varias del otro; se lee como "puede"
 - total, 1: una entidad de un lado tiene que conectarse con una o varias del otro: se lee como "tiene que"

Elementos básicos del modelo

• Relaciones (lectura)

Un cliente **puede** tener varios vehículos

Elementos básicos del modelo

· Relaciones (lectura)

Un vehículo tiene que pertenecer a un cliente

Elementos básicos del modelo

- Las relaciones también pueden tener atributos que nos permitan caracterizarlas
 - Venta: cantidad, fecha
 - Matrícula: calificación

• ...

Elementos básicos del modelo

• Atributos en las relaciones (notación)

Otros elementos del modelo: EE/R

Definición 4.6 (Especialización). Formalmente, diremos que el conjunto de entidades A es una especialización del conjunto de entidades B, si $\forall a \in A \implies a \in B$. Es decir, el conjunto de entidades A está incluido en el conjunto de entidades B.

Otros elementos del modelo: EE/R

Generalización/especialización (notación)

Otros elementos del modelo: EE/R

- Generalización/especialización:
 - · Obligatoriedad:
 - parcial, p: puede haber entidades en el conjunto generalizado que no pertenezcan a ningún conjunto especializado
 - total, t: toda entidad del conjunto generalizado tiene que pertenecer a algún conjunto especializado

Otros elementos del modelo: EE/R

- Generalización/especialización:
 - Exclusividad:
 - exclusiva, e: una entidad de un conjunto especializado no puede pertenecer a otro conjunto especializado
 - solapada, s: una entidad de un conjunto especializado puede pertenecer a varios conjuntos especializados

Otros elementos del modelo: EE/R

- Combinaciones:
 - {t.e}: todo A es B o C, pero no ambos
 - {t,s}: todo A es B o C. o ambos
 - {p,e}: algunos A son B o C, pero no ambos
 - {p,s}: algunos A son B o C, o ambos

Otros elementos del modelo: EE/R

- Agregación:
- Sirve para expresar relaciones entre:
 - Relaciones y conjuntos de entidades
 - Relaciones v relaciones
- Puede resultar interesante considerar la agregación como una entidad genérica sin especificar su estructura interna:
- Caia negra de la cual sólo deben conocerse las claves primarias de los conjuntos de entidades a los que integra.

Otros elementos del modelo: EE/R

Heurísticas de modelado

- · Grado de una relación:
 - Número de entidades que están involucradas en la conexión. Normalmente, binarias,

Puede ser que sea necesario emplear relaciones de orden mayor.

- Ternarias
- Tetrarias
- La cardinalidad en una relación n-aria se analiza por partes:
 - El extremo de cada arista que acaba en un conjunto de entidades se obtiene fijando una entidad genérica de cada uno de los otros tipos de entidades que intervienen.

Heurísticas de modelado

- Ejemplo: Tres conjuntos de entidades.
 - Proveedores, Piezas y Proyectos
 - Relación de suministro entre ellos

Heurísticas de modelado

En cualquier caso, las relaciones de grado alto:

- Complican el diagrama
- Pueden esconder un mal diseño
 - Un conjunto de entidades que no se ha tenido en cuenta

Heurísticas de modelado

- Ciclos
 - La aparición de ciclos en los diagramas es
 - Deben analizarse cuidadosamente porque puede esconder situaciones peligrosas:
 - Refleiar información redundante

Heurísticas de modelado

- ¿Qué se puede esconder tras una agregación?
 - Las agregaciones son un elemento de abstracción potente.
 - No debemos abusar de ellas.
 - A veces una agregación oculta un conjunto de entidades que no se ha tenido en cuenta en el modelado.

Primitivas para el diseño conceptual

- El proceso de creación de un diagrama entidad-relación complejo puede no ser abordable en un solo paso.
- Es más deseable poder representar conceptos de manera más genérica para ir refinándolos posteriormente.

Primitivas para el diseño conceptual: un ejemplo

 Supón que en una fase temprana del diseño, se representa la siguiente situación:

Primitivas para el diseño conceptual: un ejemplo

 Pero en un análisis más profundo de los requisitos, descubrimos que el cliente compra artículos en grupos, de modo que puede comprar el mismo artículo varias veces:

Primitivas para el diseño conceptual: un ejemplo

 A primera vista, los dos esquemas parecen estar relacionados:

Primitivas para el diseño conceptual: un ejemplo

 De hecho, los dos describen el mismo problema a distintos niveles de abstracción:

Primitivas para el diseño conceptual: refinamiento

 Al proceso de pasar de un esquema entidadrelación a otro relacionado con él siguiendo ciertas normas, se le conoce como refinamiento

Primitivas para el diseño conceptual: niveles de refinamiento

 A dos vistas distintas en un proceso de refinamiento, se les conoce como niveles de refinamiento

Primitivas para el diseño conceptual: primitiva

 A la transformación que permite refinar una parte de un entidad-relación, se le conoce como primitiva de refinamiento

Primitivas para el diseño conceptual: otro ejemplo

 Supón que en una fase temprana del diseño, se representa la siguiente situación en una empresa:

Primitivas para el diseño conceptual: otro ejemplo

 Sin embargo, nos dicen que hay dos tipos de empleados: conductores y operadores de máquina

Primitivas para el diseño conceptual: otro ejemplo

 ... que como equipos tenemos camiones y máguinas

Primitivas para el diseño conceptual: otro ejemplo

• ... y que los camioneros *conducen* camiones y los operadores *operan* máquinas

Primitivas para el diseño conceptual: otro ejemplo

• Si ponemos el refinamiento de los tres elementos juntos:

Primitivas para el diseño conceptual: transformación

 Llamamos transformación al conjunto de primitivas aplicadas a la vez al conjunto de primitivas aplicadas sobre elementos del mismo esquema.

Primitivas para el diseño conceptual: esquema inicial

• Al esquema original en la transformación, se le denomina esquema inicial.

Primitivas para el diseño conceptual: esquema resultante

• Al esquema original en la transformación, se le denomina esquema resultante.

Primitivas para el diseño conceptual: normas de transformación

 Si dos elementos en el esquema inicial están conectados entre sí, sus transformados tienen que estar conectados entre sí.

Primitivas para el diseño conceptual: normas de transformación

• A la línea discontinua que envuelve al refinamiento de un elemento mediante primitiva, se le llama frontera.

Primitivas para el diseño conceptual: normas de transformación

 Preservación de frontera del refinamiento: si entre dos elementos sin refinar hay una conexión, dicha conexión la hereda uno sólo de los elementos del esquema refinado.

Primitivas para el diseño conceptual: normas de transformación

• Preservación semántica: la semántica de un elemento sin refinar y la de su refinamiento, difieren únicamente en el grado de abstracción.

Primitivas para el diseño conceptual: tipos

- Según si permiten un diseño analítico o sintético, existen dos tipos básicos:
 - Primitivas descendentes
 - · Primitivas ascendentes

Primitivas para el diseño conceptual: primitivas descendentes

• Permiten llegar desde una visión genérica y abstracta de los datos de un sistema hasta una versión concreta o específica (como hemos visto en los dos eiemplos anteriores)

Primitivas para el diseño conceptual: primitivas descendentes

Visión específica

Primitivas para el diseño conceptual: primitivas descendentes

• T1: de entidad a entidades relacionadas

Primitivas para el diseño conceptual: primitivas descendentes

• T2: de entidad a especialización

Primitivas para el diseño conceptual: primitivas descendentes

• T3: de entidad a entidades no relacionadas

Primitivas para el diseño conceptual: primitivas descendentes

• T4: de relación a relaciones paralelas

Primitivas para el diseño conceptual: primitivas descendentes

• T5: de relación a entidad con relaciones

Primitivas para el diseño conceptual: primitivas descendentes

• T6: desarrollo de atributos

Primitivas para el diseño conceptual: primitivas descendentes

• T7: desarrollo de atributos compuestos

Primitivas para el diseño conceptual: primitivas descendentes

• T8: refinamiento de atributos

Primitivas para el diseño conceptual: primitivas descendentes

- Propiedades:
 - No son mínimas, es decir, algunas son redundantes (se puede conseguir la T5 a partir de la T1)
 - No son completas, es decir, no se puede generar cualquier diagrama sino sólo los basados en conexiones en serie y en paralelo. No todos los esquemas son producibles descendentemente.

Primitivas para el diseño conceptual: primitivas ascendentes

 Permiten llegar desde una visión concreta o específica de los datos de un sistema hasta una versión conectada del sistema.

Primitivas para el diseño conceptual: primitivas ascendentes

• B1: de generación de entidad

Primitivas para el diseño conceptual: primitivas ascendentes

• B2: de generación de relación

Primitivas para el diseño conceptual: primitivas ascendentes

• B3: de generación de generalización

Primitivas para el diseño conceptual: primitivas ascendentes

• B4: de agregación de atributos

Primitivas para el diseño conceptual: primitivas ascendentes

• B5: de agregación de atributo compuesto

Primitivas para el diseño conceptual: primitivas ascendentes

- Propiedades:
 - Son mínimas, es decir, no hay ninguna redundante.
 - Son completas, es decir, se puede generar cualquier diagrama.
 - Todos los esquemas son *producibles* ascendentemente.

Primitivas para el diseño conceptual: Estrategia de diseño

- · Son de dos tipos:
 - **Descendente**: consiste en aplicar las primitivas descendentes a todos los elementos de un refinamiento conceptual (a un nivel de refinamiento), y aplicarlo a cada refinamiento hasta que todos los requisitos queden representados.
 - Ascendente: consiste en aplicar las primitivas ascendentes a todos los elementos de un refinamiento conceptual (a un nivel de refinamiento), y aplicarlo a cada refinamiento hasta que todos los requisitos queden representados.

Primitivas para el diseño conceptual: Estrategia de diseño descendente

Primitivas para el diseño conceptual: Estrategia de diseño descendente

• No es posible porque no todos los elementos se refinan a la vez.

Primitivas para el diseño conceptual: Estrategia de diseño descendente

- Propiedades:
 - Todos los conceptos están presentes en todos los pasos de refinamiento.
 - El proceso termina cuando todos los requisitos han quedado representados explícitamente en el sistema.

Primitivas para el diseño conceptual: Estrategia de diseño ascendente

Primitivas para el diseño conceptual: Estrategia de diseño ascendente

Primitivas para el diseño conceptual: Estrategia de diseño ascendente

- · Propiedades:
 - Permite pasar de conceptos sencillos a conceptos complejos.
 - Es sencillo inicialmente y permite versiones preliminares del esquema.
 - · Requiere mucha reestructuración de esquema, que es difícil en esquemas complejos.

Primitivas para el diseño conceptual: Estrategia de diseño centrífuga

 Modificación de la estrategia de diseño ascendente que permite centrarse en una serie de conceptos, modelarlos y pasar al siguiente de conceptos conectados con los primeros.

Primitivas para el diseño conceptual: Estrategia de diseño centrífuga

Primitivas para el diseño conceptual: Estrategia de diseño centrífuga

Primitivas para el diseño conceptual: Estrategia de diseño centrífuga

- · Propiedades:
 - Permite aplicar un orden en la aplicación de los refinamientos.
 - Requiere un grado de abstracción similar en cada refinamiento.

Primitivas para el diseño conceptual: Estrategia de diseño mixta

- Combina las estrategias ascendente y descendente:
 - Dividir los requisitos en dos conjuntos.
 - Se produce un esquema armazón que aglutine todos los requisitos y las conexiones entre las dos particiones.
 - Se modela cada partición usando las primitivas descendentes.
 - Se conecta el modelado de cada partición con las demás usando las primitivas ascendentes, siguiendo las instrucciones del armazón.

THE TAR A PROCEEDING MAD BOTH

Primitivas para el diseño conceptual: Estrategia de diseño mixta

Primitivas para el diseño conceptual: Estrategia de diseño mixta

Primitivas para el diseño conceptual: Estrategia de diseño mixta

Primitivas para el diseño conceptual: Comparativa de las estrategias

- Descendente: para entornos altamente estructurados y niveles de estructura iguales.
- Ascendente: para organizaciones informales.
- La mixta permite una mayor flexibilidad.

