Name: shi qiu Access ID: sbq5043

Recitation: 7

Problem 1 Points:

Group members: zimeng liu

non-class material: https://www.cpp.edu/ ftang/courses/CS240/lectures/analysis.htm https://www.geeksforgeeks.org/different between-big-oh-big-omega-and-big-theta/

Problem 2

Points:

- $1.f = \Omega(g)$
- $2.f = \Omega(g)$
- 3.f = O(g)
- $4.f = \Omega(g)$
- $5.f = \Theta(g)$
- $6.f = \Omega(g)$
- $7.f = \Omega(g)$
- 8.f = O(g)
- $9.f = \Omega(g)$
- $10.f = \Theta(g)$
- 11.f = O(g)
- $12.f = \Omega(g)$
- 13.f = O(g)
- $14.f = \Omega(g)$
- 15.f = O(g)

Problem 3

Points:

1. true

if
$$f(n) = log(n)$$
, $g(n) = n^2$, $h(n) = 2^n$

then f = O(h)

2. false

if
$$f(n) = n$$
, $g(n) = 2n$,

then $2^{f(n)} = 2n$, while $\Theta(2^{g(n)}) = 4^n$.

- 3. false
- 4. true

Problem 4

Points:

1. for i: 1 to n do

it is n steps

j: = i;

n*(n-1)/2

and run time is $\Theta(n^2)$

2.

simmiar and still $\Theta(n^2)$

3.

another loop and be $\Theta(n^3)$

4.

maybe still $\Theta(n^2)$