Short Course on Molecular Dynamics Simulation

Lecture 7: Initialization and Equilibrium

Professor A. Martini Purdue University

High Level Course Outline

- MD Basics
- 2. Potential Energy Functions
- Integration Algorithms
- 4. Temperature Control
- Boundary Conditions
- 6. Neighbor Lists
- 7. Initialization and Equilibrium
- Extracting Static Properties
- Extracting Dynamic Properties
- 10. Non-Equilibrium MD

MD Basics

Initialization

- Atomic positions
 - Experiment/theoretical modeling
 - Default lattice
 - Monte Carlo
- Atomic velocities
 - Randomization by temperature

Initial Positions – Lattice

- Assign to lattice positions
 - Unit cell, typically fcc

$$\rho = \frac{n}{a^3}$$

Initial Positions – Lattice

- Implementation
 - This approach requires an equilibration phase (called melting)

$$r_1 = (0,0,0)$$

$$r_2 = (0, \frac{1}{2}a, \frac{1}{2}a)$$

$$r_3 = (\frac{1}{2}a, 0, \frac{1}{2}a)$$

$$r_4 = (\frac{1}{2}a, \frac{1}{2}a, 0)$$

Initial Positions – Monte Carlo

Simulation "randomly" inserts/deletes/ translates molecules in the volume and then either accepts or rejects the move based on energy change criteria

Initial Velocities

- Initial velocities must be set such that
 - They comprise the desired temperature
 - The total linear momentum is zero
- Methods
 - Use trajectories from a previous simulation
 - Assign a uniform distribution
 - Assign a Maxwell-Boltzmann distribution

Initial Velocities

Maxwell-Boltzmann distribution

$$f_{v}(v_{x}) = \sqrt{\frac{m}{2\pi kT}} \exp\left[\frac{-mv_{x}^{2}}{2kT}\right]$$

Initial Velocities

- Uniform distribution
 - Take random numbers r over the interval [-1,+1]
 - Scale to the desired temperature

$$v_{reduced} = r\sqrt{T_{reduced}}$$

Scale to zero total linear momentum

$$v_i^{init} = v_i - \frac{1}{N} \sum_j v_j$$

Equilibrate

- Measurements should be taken from MD only after the system has equilibrated
- 100% confidence of equilibration is not possible
- Instead check many different criteria are met
 - Total energy constant (in NVE)
 - Average velocity distribution
 - Average positional disorder
 - Thermodynamic properties
 - Average properties stable to small perturbations

Equilibration of initially assigned velocities

Boltzmann's H-function

$$H_x = \sum_{\Delta v_x} f(v_x) \ln f(v_x) \Delta v_x$$

$$H = \frac{1}{3} \left(H_x + H_y + H_z \right)$$

Positional disorder
$$\lambda_{x,fcc} = \frac{1}{N} \sum_{i=1}^{N} \cos\left(\frac{4\pi x_i}{a}\right) \quad \lambda = \frac{1}{3} (\lambda_x + \lambda_y + \lambda_z)$$

- Thermodynamic properties (e.g. temperature and pressure) should fluctuate about stable averages
 - Independent of initial positions and velocities
 - Fluctuation magnitude related to system size

- Property averages should be stable to small perturbations
 - E.g. adding or removing a small amount of heat

