Theoretische Informatik 2 2. Februar 2010

> 35 Punkte Aufgabe 4

Geben Sie eine kontextsensitive Grammatik für $L = \{x \# x^R \# x \mid x \in \{a, b\}^*\}$ an.

Probeklausur

Hinweise zur Klausur:

- Die Klausur findet am Dienstag, 23.02. 2010 um 9 Uhr in RUD26, 0'115 statt.
- Voraussetzung zur Teilnahme ist der Übungsschein.
- Die Bearbeitungszeit der Aufgaben wird 120 Minuten betragen.
- Hilfsmittel sind nicht zugelassen.
- Bitte bringen Sie zur Klausur Ihren Studenten- und einen Lichtbildausweis (Personalausweis, Reisepass oder Führerschein) mit.

Hinweis zur Probeklausur:

• Für die Probeklausur sollten Sie von einer Bearbeitungszeit von 180 Minuten ausgehen (d. h. 1 Punkt entspricht 1 Minute).

30 Punkte Aufgabe 1

Betrachten Sie den nebenstehenden NFA N.

- (a) Welche der Wörter ε , aa, abb und bbb gehören zu L(N)?
- (b) Wandeln Sie N mit der Potenzmengenkonstruktion in einen DFA M um.

- (c) Minimieren Sie M mit dem Verfahren aus der Vorlesung.
- (d) Geben Sie einen möglichst kurzen regulären Ausdruck für L(N) an.

25 Punkte Aufgabe 2

Gegeben ist die Grammatik $G = (\{S\}, \{1, +, \cdot, (\cdot, \cdot)\}, P, S)$ mit den Produktionen

- $P: S \to (S+S), S \to S \cdot S, S \to 1.$
- (a) Geben Sie einen PDA für die Sprache L = L(G) an.
- (b) Zeigen Sie mit dem Pumpinglemma, dass L nicht regulär ist.
- (c) Überführen Sie G in Chomsky-Normalform und prüfen Sie mit dem CYK-Algorithmus, ob das Wort $(1+1) \cdot 1$ zu L gehört.

Sind folgende Aussagen wahr oder falsch? Begründen Sie.

- (a) Wenn A kontextfrei ist, dann ist A^* regulär.
- (b) Wenn A regulär ist, dann ist $A^* A$ kontextfrei.
- (c) Aus $A \leq B$ und $B \in \mathsf{CSL}$ folgt $A \in \mathsf{CSL}$.

Aufgabe 3

- (d) Aus $A <^p SAT$ und $A \in NP$ folgt A ist NP-vollständig.
- (e) Aus $A \leq^p SAT$ und $SAT \leq^p A$ folgt A ist NP-vollständig.
- (f) Wenn A^* regulär ist, dann kann $A \cap \{1\}^*$ unentscheidbar sein.
- (g) A^* ist für jede Sprache $A \subseteq \{0,1\}^*$ semi-entscheidbar.

Aufgabe 5 30 Punkte

Bestimmen Sie, welche der folgenden Sprachen entscheidbar, semi-entscheidbar, oder nicht semi-entscheidbar sind. Begründen Sie.

- (a) $L_1 = \{ w \in \{0,1\}^* \mid \exists x \in \{0,1\}^* : M_w(x) = x \},$
- (b) $L_2 = \{ w \in \{0,1\}^* \mid \exists x \in \{0,1\}^* : M_w(x) \neq x \},$
- (c) $L_3 = \{w \in \{0,1\}^* \mid M_w(w) \text{ besucht kein Bandfeld mehrmals}\}.$
- (d) $L_4 = \{ w \in \{0,1\}^* \mid M_w(w) \neq w \},$
- (e) $L_5 = \{ w \in \{0,1\}^* \mid \forall x \in \{0,1\}^* : M_w(w) = x \},$
- (f) $L_6 = \{ w \in \{0,1\}^* \mid \exists v \in \{0,1\}^* : L(M_v) \subseteq L(M_w) \}.$

Aufgabe 6 Zeigen Sie:

20 Punkte

15 Punkte

- (a) HamPath \leq^p HamCycle,
- (b) DIHAMPATH $<^p$ HAMPATH.

Hinweis: Schlagen Sie die Definition der Probleme im Skript nach.

Aufgabe 7 25 Punkte

Bestimmen Sie für untenstehenden Graphen G die folgenden Parameter. Begründen Sie Ihre Antwort.

- (a) $\mu(G) = \max\{\|M\| \mid M \text{ ist ein Matching in } G\},$
- (b) $\omega(G) = \max\{\|C\| \mid C \text{ ist eine Clique in } G\},$
- (c) $\chi(G) = \min\{k \ge 1 \mid G \text{ ist } k\text{-färbbar}\},\$
- (d) $\alpha(G) = \max\{||S|| \mid S \text{ ist stabil in } G\},$
- (e) $\beta(G) = \min\{||K|| \mid K \text{ ist eine Kantenüberdeckung in } G\}$.

Geben Sie zudem an, ob G eine Eulerlinie, eine Eulertour, einen Hamiltonpfad oder einen Hamiltonkreis besitzt. Begründen Sie.