EE 219 Large-Scale Data Mining: Models and Algorithms

Project 5
Popularity Prediction on Twitter
Winter 2017

Guanqun Mao, Jianing Liu 204777289 804759999

March 22nd 2017

Section A: Introduction

Twitter provides a platform to predict popularity of future topics and events. Knowing current and previous tweet activities with a hashtag(#), we can predict whether this topic will become more trendy in the future and by how much.

In this project, we analyze the data collected by querying popular hash-tags related to the 2015 Super Bowl from Twitter, from two weeks before the game to a week after the game. We will use this data set to train a regression model and then use this model to predict behaviors of other hashtags. The test data consists of tweets with a hashtag in a specified time frame. We will use our model to predict number of tweets with these hashtags posted within one hour immediately after the given time frame.

Section B: Popularity Prediction

Part 1 Tweet Data Statistics

In this part, we download the training tweet data to calculate for each hashtag the following statistics: average number of tweets per hour, average number of followers of users posting the tweets, and average number of retweets.

In order to keep track of the hour count, we use an hour-window approach, since the tweets are sorted in the order of their posting time (firstpost_date). The first tweet is considered and the 1st hour-windows is created using the formula:

$$end_{time} = start_{time} + 3600$$

We iterate through each tweet and compare the post-time of the tweets with the end time of the current window. If it lies within the window, we increase the hour-count; if it doesn't we create a new window by using the above equation and adding 3600 (1 hour in UNIX time) to the end-time. A counter is kept to track the number of followers of the users (author/followers) and the number of re-tweets (metrics/citations/total) for each tweet.

The training data set has six hashtags: #gohawks, #gopatriots, #nfl, #patriots, #sb49 and #superbowl. The three statistics calculated for all six hashtags are shown in Table 1.1.

Hashtag	Total Tweets	Avg. # Tweets/hr	Avg. # of Followers	Avg. # of Retweets
---------	--------------	---------------------	------------------------	-----------------------

#gohawks	188135	193.54379644	1596.44360357	2.01462779387
#gopatriots	26231	38.3832405913	1292.20316579	1.40013724219
#nfl	259023	279.550300946	4394.25396783	1.53853904866
#patriots	489712	499.420031779	1607.44073544	1.7828192897
#sb49	826950	1419.88619047	2229.69488328	2.51115182296
#superbowl	1348766	1401.24455475	3675.33948006	2.38827417061

Table 1.1 Statistics of Six Hashtags

Analysis of the Statistics

- 1. Most tweeted hashtags per hour: #sb49, #superbowl
- 2. Most followers of users for hashtag: #nfl, #superbowl
- 3. All of the tweet data collected have tweets that are not re-tweeted or are re-tweeted by very few users therefore making the average re-tweet count about 2

In order to visualize the number of tweets in an hour, we plot the histograms for #superbowl and #nfl. We can see a steep-rise in both graphs at the same time which coincides with the hour of the event.

Figure 1.1 Histogram of #superbowl

Figure 1.2 Histogram of #nfl

For #NFL, there is an additional peak - the last weekend before SuperBowl's final game. This implies that people tend to talk more about NFL the weekend before the final, which is intuitive to understand, as the final game is always the most exciting one and people tend to have more available time to tweet during the weekend.

Part 2 Linear Regression

We create a linear regression model using 5 features to predict number of tweets in the next hour, with features extracted from tweet data in the previous hour. The features we use are:

- 1. Number of tweets (Class Variable)
- 2. Total number of retweets (metrics/citations/total)
- 3. Sum of the number of followers of the users (authors/followers)
- 4. Maximum number of followers of the users
- 5. Time of the data obtained using the post-time of the tweet

The same hour-window approach is used here to calculate all features. The output variable for each hour-window is the tweet for the next window. The model is trained using the OLS statsmodel library. T-test describes the significance of each feature and P-value describes the accuracy of each feature. The model accuracy are shown in Table 2.1.

HashTag	Accuracy
#gohawks	41.78

#gopatriots	43.16
#nfl	54.69
#patriots	43.14
#sb49	58.46
#superbowl	66.01

Table 2.1 Model Accuracy of Hashtags

The p-value and t-value for each feature are shown in Table 2.2 and 2.3.

hashtag/feature	# of Retweets	Sum of # of Followers of the Users	Max. # of Followers of Users	Time of the Data
#gohawks	4.27343522	5.35547595	-4.87196979	2.86729647
#gopatriots	11.24719656	-8.38659191	7.27891607	0.17092002
#nfl	8.26674332	1.78715533	-0.80934704	4.25396111
#patriots	18.05368198	-7.60264257	4.26331804	0.71040951
#sb49	17.64706329	-12.37425173	8.22281528	-1.85560124
#superbowl	31.35608131	-26.50428285	16.14506699	-1.80517618

Table 2.2 T-tests of Different Hashtags

hashtag/feature	# of Re-tweets	Sum of # of Followers of the Users	Max. # of Followers of Users	Time of the Data
#gohawks	2.11565802e-05	1.06694073e-07	1.29088771e-06	4.23004469e-03
#gopatriots	8.73217859e-27	3.51758538e-16	1.04826618e-12	8.64343706e-01
#nfl	4.77555207e-16	7.42411515e-02	4.18524590e-01	2.31480681e-05
#patriots	4.43245562e-63	6.80726659e-14	2.20983673e-05	4.77620115e-01

#sb49	4.68187282e-56	2.32906554e-31	1.32046476e-15	6.40201369e-02
#superbowl	4.89704326e-14	1.61268413e-11	4.85350481e-05	7.13613102e-00
	9	6	2	2

Table 2.3 P-values of Different Hashtags

Analysis of Staistics

- 1. Based on the definition of p-value and t-value, we can see that the most contributing feature towards the regression model in all hashtag files is the Number of Retweets with a hashtag.
- 2. Most hashtags have fairly low accuracy. This may be due to the window size of one-hour, since in the initial hours, the average number of tweets are low and creating a good model for these sparse features is more tricky.

Part 3 Regression Model with Extra Features

In this part we need to design a new regression model with extra features and the original features we used in Part 2, based on our observation of the data and consultation with academic papers. The new features are:

- 1. Number of tweets (Class Variable)
- 2. Total number of re-tweets (metrics/citations/total)
- 3. Sum of the number of followers of the users (author/followers)
- 4. Maximum number of followers of the users posting the hashtag
- 5. Time of the data obtained using the post-time of the tweet
- 6. Ranking score (metrics/ranking score)
- 7. Impression count (metrics/impression) measures the number of times a user is served a Promoted Tweet either in time-line or on search
- 8. Favorite count (tweet/favorite count) number of tweets favored by users
- 9. Number of users per hour (tweet/user/id) number of users postng per hour
- 10. Number of long tweets per hour (title) number of tweets with length > 100 characters

We use a total of 9 features to create the new regression model and follow the same approach in Part 2 - collecting features using one-hour window. The last hour window can't predict a tweet-count value, so it is removed when creating the model. The model accuracy is shown in Table 3.1

HashTag	Accuracy
#gohawks	78.39
#gopatriots	53.12
#nfl	64.84
#patriots	58.45
#sb49	70.44
#superbowl	77.01

Table 3.1 Model Accuracy of Hashtags

We can see that the model accuracy has significantly increased for each hashtag. This is because the features are not sparse and now have a well-defined distribution throughout the SuperBowl. Metrics used in the tweet data are used to model the importance of the tweet for a given window and thus increases the accuracy. To visualize the contribution of features in the model, we create scatter plots for the top 3 features for each hashtag. The initial hours have fewer tweets, therefore all the plots show clustering of data points near low of tweets/hour.

#gohawks

Figure 3.1 Top 3 Features for #gohawks (# of followers, # of re-tweets, # of long tweets)

#gopatriots

Figure 3.2 Top 3 Features for #gopatriots (# of long tweets, # users tweeting, ranking score)

#nfl

Figure 3.3 Top 3 Features for #nfl (favorite count, # of re-tweets, # of long tweets)

#patriots

Figure 3.4 Top 3 Features for #patriots (max # of followers, # of users tweeting, ranking score)

#sb49

Figure 3.5 Top 3 Features for #sb49 (# of long tweets, # of users tweeting, ranking score)

#superbowl

Figure 3.6 Top 3 Features for #superbowl (max # of followers, # of users tweeting, ranking score)

Analysis of Scatter Plots

Hashtag	Analysis
#gohawks	There is a linear proportionality in the scatter plot, implying a good relationship between the top 3 features.
#gopatriots	All 3 features have almost identical scatter plots, with clustering around the origin.
#nfl	There is a constant relationship for features favorite count and # of long tweets, whereas there is a linear relationship for # of retweets.
#patriots	There is a constant relationship for max # of followers and # of users tweeting but a constant relationship for the last feature.
#sb49	Similar to #patriots.
#superbowl	Max # of followers and ranking score show a clustered region with a tiny linear deviation, while # of users tweeting seems to have a constant relationship. Large number of instances fits a better regression model and thus leads to better accuracy.

Table 3.2 Analysis of Top 3 Features

Part 4 Cross Validation

In the first half of Part 4, we use the same features used in Part 3 and perform a 10-fold cross validation on the data set. The accuracy result of different hashtags and over every fold are shown in Table 4.1.

Fold Number	#gopatriots	#gohawks	#nfl	#patriots	#sb49	#superbow 1
1	7.7824849	20.127615	23.921507	180.85575	101.45728	229.98050
	657829436	680308633	284201926	184910365	833000119	534535864
2	8.4380414	46.514162	1.3767474	84.489863	150.84411	255.88116
	376842001	499367508	196434517	890106108	631333566	080226337
3	10.145220	4.8140594	3.1815704	31.927206	159.24000	337.87083
	880328852	232694545	732446028	639141783	942898178	509307303
4	204.98564	2.2450556	28.109584	52.189900	173.92132	397.13645
	358880208	24512232	165383914	889932687	419864723	625529108
5	15.497373	117.97881	185.83362	265.85588	219.97513	361.33939
	086519449	852948235	314325186	292731927	460862953	65810788
6	41.759471	629.26754	133.98044	997.12509	498.19533	2506.9280
	335536269	769887157	846553503	137624181	197249837	498273729
7	19.302637	147.07959	93.183840	687.34151	1551.6943	1168.8498
	56919458	033140153	04337679	160036799	239681038	417695128
8	18.391338	171.12006	194.82715	466.04622	9580.9973	2756.2481
	972596763	998034039	346973973	179761867	555324887	524516911
9	30.380979	850.13197	524.83807	2046.5374	1273.7807	19664.687
	397477986	21032404	754497707	36429488	444704313	30630253
10	247.47628	5.0990396	137.61212	176.49866	473.80186	1661.4691
	487133889	415662547	970592561	518473621	642784986	721465799
Average	60.415947	199.43779	132.68646	498.88675	1418.3907	2934.0390
Error	6105	3151	8172	3258	4953	8766

Table 4.1 Average Error of 10-Fold Cross Validation

Analysis of Statistics

- 1. We can see that there exists a relationship between the number of tweets with a hashtag and the average error of cross validation. The greater the number of tweets are, the higher the absolute average error the hashtag has.
- 2. For each hashtag, the error of one of the cross-validation fold is too high because the dataset is unevenly distributed. A fold might consider a split in which the test data has all high values for the class (tweets during the game time of Super Bowl) and training data has all low values (tweets before and after the game), therefore giving out a high error value for that fold (e.g. Fold 9 for #gopatriots).

Part 4 Cross Validation with Time Periods

In the second half of Part 4, we analyze the regression models created for different time frames during the Super Bowl. Three different time frames are chosen for our model:

- 1. Before 02/01, 8:00 am.
- 2. Between 02/01, 8:00 am and 8:00 pm.
- 3. After 02/01, 8:00 pm.

The tweets are segregated based on the time it was posted and then split into different windows of one hour. The models are tested using the 10-fold cross validation. The average errors are shown in Table 4.2

Hashtag	Before	Between	After
#gohawks	16.2173277678	238.102571339	1760.68249394
#gopatriots	167.189881517	7022.1632622	2607.69218748
#nfl	75.919653634	753.944462613	533.593886399
#patriots	190.869282731	93528.0776912	9745.06592167
#sb49	39.8330230088	51166.8783903	12012.4491342
#superbowl	203.754003253	12861.8776544	11834.395444

Table 4.2 Average Error of 10-Fold Cross Validation with Time Periods

Analysis of Statistics

- 1. The between time frame only has 12 one-hour time windows, the number of instances in this time frame for model creation is very low. Therefore the model created has high values of errors
- 2. The before time frame has a greater number of instances, the model created has considerably lower average errors.

Part 5 Making Predictions

In this part, we download the test data and run our model to make predictions for the next hour in each case. Since the entire data are of 6-hour window, each testing data-set have less than 6 instances. Each period will be compared with the corresponding model created in Part 4 for each hashtag.

The test data has all the hashtags mixed, therefore we need to apply only the models that fit appropriately. Alternatively, we can apply all the models and check the error of predicted values of the first 6 hours to estimate the performance of the 7th hour. The predicted values for the th hour is shown in Table 5.1. The values with the least error with respect to the 6-hour data are highlighted to indicate the estimated predicted value.

Hashtag	S1_P1	S2_P2	S3_P3	S4_P1	S5_P1
#gohawks	290.54723881	2383960.826 3	34608.24866 31	1602.209686 81	393.1403473 39
#gopatriots	365.35180009	-858140.983	-1814.66229	93.04122062	409.4032442
	6	553	845	13	95
#nfl	174.14199364	2178909.082	-1567.13104	284.8604405	280.9063031
	3	61	741	98	76
#patriots	242.04548400	173637.8960	6571.395693	219.4026907	231.5767444
	2	99	39	72	21
#sb49	111.77970273	-1486543.40	1488.885691	143.8324254	172.1052825
	2	811	58	35	45
#superbowl	15.384872729	-1283467.82	1240.606602	50.76483654	37.70063743
	8	453	88	6	76

Table 5.1 Predicted Value of the 7th Hour

Hashtag	S6_P2	S7_P3	S8_P1	S9_P2	S10_P3
#gohawks	-21993.4691	-87.6430194	-109.984042	57966.76370	58.70634876
	141	729	497	08	81
#gopatriots	-3672.59481	-32.5831353	295.1204358	-20145.2250	-31.6957891
	742	284	3	068	454
#nfl	886782.0469	102.6652490	105.7485776	50099.68385	-17.3106902
	4	65	16	92	154
#patriots	-91159.9062	-50.5818731	151.4775347	-26168.7791	932.5112675
	761	978	88	243	82
#sb49	-87872.1061	197.3389553	40.01902629	-28214.7526	1939.845357
	525	24	46	228	26
#superbowl	-374372.274	207.1318640	81.62443564	-25818.8441	1482.711251
	777	66	27	148	46

Table 5.1 Predicted Value of the 7th Hour

Analysis of Statistics

- 1. The highlighted values in the table correspond to the predicted values for the 7th hour. The model with the least error is highlighted.
- 2. As previously stated in the between period, P2 has a training dataset of 12 instances, thus the values predicted for all the P2 test data have high variations.

Section 3: Fan Base Prediction

Part 6 Location Prediction

The textual content of a tweet often reveals some information about its offer. If the users tweeting on the same topic have different or opposing views, we can get more information from them. Therefore, fans of different teams during a game would express different emotions using different terms. We realize that the team a person supports has certain correlation with the person's location, thus we use the textual content of the tweet posted by a user to predict the

user's location. We consider all the tweets with #superbowl posted by people in Washington or Massachusetts.

We use the techniques employed in Project 2 to train our classifier to make location predictions. Specifically, we used 3 different classification algorithms in our approach: svm, gaussian naive bayes and logistic regression. The results are as follows.

Svm:

Figure 7.1 ROC Curve of SVM

	Predicted Comp	Predicted Rect
Actual Comp	2307	194
Actual Rect	953	703

Table 7.1.A Confusion Matrix of SVM

Precision	74%
Recall	72%
Accuracy	72%

Table 7.1.B Statistics of SVM

Naive bayes:

Figure 7.2 ROC Curve of Naive Bayes

	Predicted Comp	Predicted Rect
Actual Comp	1728	773
Actual Rect	670	986

Table 7.2.A Confusion Matrix of Naive Bayes

Precision	66%
Recall	65%
Accuracy	65%

Table 7.2.B Statistics of Naive Bayes

Logistic regression:

Figure 7.3 ROC Curve of Logistic Regression

	Predicted Comp	Predicted Rect
Actual Comp	2368	133
Actual Rect	948	708

Table 7.3.A Confusion Matrix of Logistic Regression

Precision	77%
Recall	74%
Accuracy	74%

Table 7.3.B Statistics of Logistic Regression

Analysis of Statistics

- 1. The precision and accuracy of 3 classification algorithms are not very ideal, ranging from 65% to 77%. The low precision and accuracy of svm may due to the low balance of the datasets, when the difference between numbers of users in two locations is too large.
- 2. Naive bayes estimates the maximum likelihood probability of a class given a document with feature set based on the assumption that given the class, the features are statistically independent.

This assumption may be too simple for our huge dataset, therefore causing the low precision and accuracy.

- 3. Logistic regression measures the relationship between the categorical dependent variable and one or more independent variables by estimating probabilities using a logistic function, which is the cumulative logistic distribution. Intuitively, logistic regression gives the best result of all three algorithms and also has the largest AUC.
- 4. To improve the precision and accuracy values, in future we could use the combination of two algorithms to eliminate the disadvantages of applying only one.

Part 7 Event Sequencing - Evaluating the Flow of the Events with Twitter

Problem Statement

We are interested in what Twitter users say and what their emotions are at the time, which will be a sentiment analysis and can be used in a various occasions. For example, the candidates want to know what people's reactions are during a presidential campaign, which will give them insight of the next steps in their campaign. In this part, we try to detect the emotion changes from fans of both teams during and after the final game of the SuperBowl with the twitter data we have.

Procedure

We use the tweet matadata in the json files we are given, which represents the content of the tweet. The following preprocessing steps are needed before analysis:

- 1. Tokenize the tweet text make all letters lowercase, remove the stop words and punctuations, and tokenize the text with regular expressions
- 2. Calculate the term frequency for each term in the tweet
- 3. Calculate the term co-occurrences for each term in the tweet

Pointwise Mutual Information

We define the Semantic Orientation (SO) of a word as the difference between its associations with positive and negative words. We want to calculate how close a word is to words like "good" and "bad". We measure closeness with Pointwise Mutual Information (PMI):

$$PMI(t_1, t_2) = log(\frac{P(t_1 \cap t_2)}{P(t_1) * P(t_2)})$$

The SO of a word is calculated against positive and negative words. Let V^+ be the set of positive words and V^- be the set of negative words. The SO of a word is then:

$$SO(t) = \sum_{t' \in V^{+}} PMI(t, t') - \sum_{t' \in V^{-}} PMI(t, t')$$

We define the Document Frequency (DF) of a word to be the number of documents in which the word occurs, so the probabilities are:

$$P(t) = \frac{DF(t)}{|D|}$$

$$P(t_1 \cap t_2) = \frac{DF((t_1 \cap t_2))}{|D|}$$

Results and Discussions

We choose #gohakws and #patriots as the supporting hashtag for the two teams (the number of data in #gopatriots is too small). The data is split into one-hour time windows and we only consider the 24 hours around the game duration. We plot the semantic orientation of every hour for the tweets from fans of two teams and compare them.

Figure 7.1 shows the results. We can see that at first, hawks fans are more positive than patriots fans. However, 3 hours after the game started. we have a turning point at 6:30 pm is a turning point. We enlarge this time frame to have a closer look at it in Figure 7.2. We can see that after 6:30 pm, patriots fans became more positive than hawks fans. This makes sense because at that time, patriots fought back and eventually won the championship.

Figure 7.1 Emotion Changes in 24 Hours

Figure 7.2 Emotion Changes from 0 hours to 8 hours after the game started

Table 7.1 shows some facts from the 2015 game. We can see that 190 minutes into the game, the hawks led the patriots by 24:14, after which point they no longer got points. The patriots fought back and won the game. This justifies why hawks fans started to go negative and patriots fans positive at around 6:30 pm, which is reflected in their tweets.

Minutes After the Game Started	Patriots : Hawks
88	7:0
105	7:7
120	14:7
130	14:14
175	14:17

190	14:24
227	21:24
243	28:24
END	28:24

Table 7.1 Game Facts of 2015 SuperBowl