Homework 5

21-236 Mathematical Studies Analysis II

Name: Shashank Singh Email: sss1@andrew.cmu.edu

Problem 1

Let $f:[a,b]\to\mathbb{R}$.

(a) $\forall \delta > 0$, let \mathcal{I}_{δ} denote the set of finite sets of nonoverlapping intervals $(a_k, b_k) \subseteq [a, b]$ such that

$$\sum_{k=1}^{l} (b_k - a_k) \le \delta.$$

Suppose that f belongs to AC([a,b]), and let $\epsilon > 0$. By definition of Absolute Continuity, $\exists \delta > 0$, such that, $\forall \{(a_1,b_1), \ldots, (a_l,b_l)\} \in \mathcal{I}_{\delta}$,

$$\sum_{k=1}^{l} |f(b_k) - f(a_k)| \le \epsilon,$$

Then, for this choice of δ , by the Triangle Inequality,

$$\left| \sum_{k=1}^{l} f(b_k) - f(a_k) \right| \le \sum_{k=1}^{l} |f(b_k) - f(a_k)| \le \epsilon$$

 $\forall \{(a_1, b_1), \dots, (a_l, b_l)\} \in \mathcal{I}_{\delta}$, proving the desired condition.

Suppose, on the other hand, that, $\forall \epsilon > 0, \exists \delta > 0$ such that

$$\left| \sum_{k=1}^{l} f(b_k) - f(a_k) \right| \le \epsilon$$

 $\forall \{(a_1, b_1), \dots, (a_l, b_l)\} \in \mathcal{I}_{\delta}$. Let $\epsilon > 0$, and let δ be such that

$$\left| \sum_{k=1}^{l} f(b_k) - f(a_k) \right| \le \frac{\epsilon}{2},$$

 $\forall \{(a_1, b_1), \dots, (a_l, b_l)\} \in \mathcal{I}_{\delta}.$

Consider any set $S := \{(a_1, b_1), \dots, (a_l, b_l)\} \in \mathcal{I}_{\delta}$. Partition S into P and N, where P contains those intervals $(a, b) \in S$ with $f(b) - f(a) \ge 0$, and N contains those intervals $(a, b) \in S$ with

1

f(b) - f(a) < 0. Then, $P, N \in \mathcal{I}_{\delta}$, so that, by choice of δ ,

$$\sum_{(a,b)\in S} |f(b) - f(a)| = \left(\sum_{(a,b)\in P} |f(b) - f(a)|\right) + \left(\sum_{(a,b)\in N} |f(b) - f(a)|\right)$$

$$= \left|\sum_{(a,b)\in P} f(b) - f(a)\right| + \left|\sum_{(a,b)\in N} f(b) - f(a)\right|$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

so that f belongs to AC([a,b]).

(b) Let $\epsilon = 1$, and let δ be such that

$$\left| \sum_{k=1}^{l} f(b_k) - f(a_k) \right| \epsilon$$

for every finite number of intervals (a_k, b_k) , $k \in \{1, ..., l\}$, with $[a_k, b_k] \subseteq [a, b]$ and

$$\sum_{k=1}^{l} (b_k - a_k) \le \delta.$$

Let $x, y \in [a, b]$ (without loss of generality, $x \leq y$.), and let $n = \lfloor \frac{y-x}{\delta} \rfloor$. Let $\forall i \in \{0, 1, \dots, n\}$, let $a_i = x + i\delta$. Then,

$$|f(y) - f(x)| = \left| f(y) - f(a_n) + \sum_{i=2}^n f(a_i) - f(a_{i-1}) \right| = 1 + N - 1 = N \le \frac{1}{\delta} |y - x|,$$

so that f is Lipschitz continuous with Lipschitz constant $1/\delta$.

Problem 2

Define $C = \mathbb{R}^2 \setminus U$ (noting that, since U is open, C is closed), and let $f : \mathbb{R}^2 \to [0, \infty)$ be the distance function from C (as defined in Assignment 2). Since K is compact, and, as shown in Assignment 2, f is Lipschitz continuous and therefore continuous, by the Weierstrass Theorem, f achieves a minimum on K at some $\mathbf{x} \in K$. Since $K \subseteq U$ and U is open, for some r > 0, $B(\mathbf{x}, r) \subseteq U$, so that $f(\mathbf{x}) \geq r$. Therefore, for $t = \inf_{(\mathbf{x}, \mathbf{y}) \in K \times C} \|\mathbf{x} - \mathbf{y}\|$, t > 0.

Let $R \subseteq \mathbb{R}^2$ be a rectangle with $K \subseteq R$ (such a rectangle exists because K is compact). Cut R into a grid of closed squares S_1, S_2, \ldots, S_k of side length $s := \frac{t}{2}$ (we can assume s divides the lengths of R because we can make R larger if we wish). Then, by choice of s, for each S_i , $S_i \cap K = \emptyset$ or $S_i \cap C = \emptyset$; let S be the set of S_i such that $S_i \cap K \neq \emptyset$ (so that $S_i \cap C = \emptyset$). Orient each square counterclockwise. For each $S_i \in S$, consider the four curves comprising its edges. Call these curves $\gamma_1, \gamma_2, \ldots, \gamma_n$.

Note the following:

- 1. If $\mathbf{x} \in K$, the winding number around \mathbf{x} of the union of the curves comprising the edges of the square including \mathbf{x} is 1.
- 2. For every γ_i whose range is entirely in K, there is a corresponding γ_j which is the same curve under the opposite orientation.
- 3. If two curves are identical but have oppositive orientation, then the sum of their winding numbers around any point is 0.

Let G be the set of γ_i 's whose range is in $U\backslash K$, and let γ be the union of the curves in G. Using induction on the number of squares surrounded by γ and the above three observations, it can be shown that, $\forall x \in K$, $\operatorname{ind}_{\gamma}(\mathbf{x}) = 1$.

Furthermore, the range of γ is in $U := \bigcup_{S_i \in S} S_i$. Since U is bounded, $\mathbb{R}^2 \setminus U$ is unbounded, so that, since $C \subseteq \mathbb{R}^2 \setminus U$, by Theorem 155, since the range of γ is in U, $\operatorname{ind}_{\gamma}(C) = \{0\}$. Therefore, γ is a curve with the desired properties \blacksquare .

Problem 3

(a) Define $E := \mathbb{R}^2 \setminus ([1, \infty) \times [-1, 1])$. Then, E is simply connected. Let γ be a continuous closed curve with range $\Gamma \subseteq E$, and let $\phi : [a, b] \to \mathbb{R}^2$ be a parametric representation of γ (with components ϕ_1, ϕ_2).

Define $\mathbf{h}: [a,b] \times [0,1] \to \mathbb{R}^2$ such that, $\forall s \in [a,b], \forall t \in [0,1]$.

$$\mathbf{h}(s,t) = \begin{cases} \begin{bmatrix} \phi_1(s) - 2t\phi_1(s) \\ \phi_2(s) \end{bmatrix} & \text{when } t \in [0, \frac{1}{2}] \\ 0 \\ \phi_2(s) - (2t - 1)\phi(s) \end{bmatrix} & \text{when } t \in [\frac{1}{2}, 1] \end{cases}.$$

Then, $\forall s \in [a, b]$, $\mathbf{h}(s, 0) = \phi(s)$ and $\mathbf{h}(s, 1) = \mathbf{0}$, and, since $\phi(a) = \phi(b)$, $\forall t \in [0, 1]$, $\mathbf{h}(a, t) = \mathbf{v}(b, t)$. Note that $\mathbf{h}([a, b] \times [\frac{1}{2}, 1]) = \{(0, y) : y \in \mathbb{R}\}$. Thus, if there exists $(s, t) \in [a, b] \times [0, 1]$ such that $\mathbf{h}(s, t) \notin E$, $t \in [0, \frac{1}{2})$. However if this were the case, then, $\phi(s) = \mathbf{h}(s, 0) = \notin E$, which is impossible, since $\phi([a, b]) \subset E$. Finally, it is easily checked that \mathbf{h} is linear in t when t is restricted to $[0, \frac{1}{2}]$ and when t and restricted to $[\frac{1}{2}, 1]$, so that, because the domain and range of \mathbf{h} have finite dimension, and ϕ is continuous, \mathbf{h} is continuous on its domain.

Therefore, **h** is a homotopy from ϕ to the origin, so that ϕ is homotopic to a point, and therefore E is simply connected.

(b) Define $E := \mathbb{R}^3 \setminus \{(0,0,0)\}$. Then, E is simply connected. Let γ be a continuous closed curve with range $\Gamma \subseteq E$, and let $\phi : [a,b] \to \mathbb{R}^2$ be a parametric representation of γ (with components ϕ_1, ϕ_2, ϕ_3).

Let $\mathbf{h}_1: [a,b] \times [0,1] \to \mathbb{R}^3$ such that, $\forall (s,t) \in [a,b] \times [0,1]$, if (r,θ,z) is the 'cylindrical' representation of $\phi(s)$ (i.e., $\phi(s) = (r\cos\theta, r\sin\theta, z)$, where $\theta \in [0,2\pi)$),

$$\mathbf{h}_1(s,t) = \begin{bmatrix} (r+t(1-r))\cos\theta\\ (r+t(1-r))\sin\theta\\ z+t(1-z) \end{bmatrix}.$$

Let $\mathbf{h_2}: [a,b] \times [0,1] \to \mathbb{R}^3$ such that, $\forall (s,t) \in [a,b] \times [0,1],$

$$\mathbf{h}_2(s,t) = \begin{bmatrix} \phi_1(s) - t\phi_1(s) \\ \phi_2(s) - t\phi_2(s) \\ 1 \end{bmatrix}.$$

Define $\mathbf{h}: [a,b] \times [0,1] \to \mathbb{R}^2$ such that, $\forall s \in [a,b], \forall t \in [0,1]$

$$\mathbf{h}(s,t) = \begin{cases} \mathbf{h}_1(s,2t) & \text{when } t \in [0,\frac{1}{2}] \\ \mathbf{h}_2(s,2t-1) & \text{when } t \in [\frac{1}{2},1] \end{cases}.$$

Then, $\forall s \in [a, b]$, $\mathbf{h}(s, 0) = \phi(s)$ and $\mathbf{h}(s, 1) = (0, 0, 1)$, and, $\forall t \in [0, 1]$, $\mathbf{h}(a, t) = \mathbf{h}(b, t)$. Since each of \mathbf{h}_1 and \mathbf{h}_2 is linear on its domain, and $\forall s \in [a, b]$, $\mathbf{h}_1(s, \frac{1}{2}) = \mathbf{h}_2(s, \frac{1}{2})$, and ϕ is continuous on [a, b], \mathbf{h} is continuous on its domain. Finally, since $\mathbf{h}_1([a, b] \times [0, 1])$, $\mathbf{h}_2([a, b] \times [0, 1]) \subseteq E$, $\mathbf{h}([a, b] \times [0, 1]) \subseteq E$. Therefore, \mathbf{h} is a homotopy from ϕ to a point, so that E is simply connected.

(c) \mathbb{R}^3 \line is not simply connected. First, consider $E:=\mathbb{R}^3\setminus\{(0,0,z):z\in\mathbb{R}\}$. Let $\mathbf{g}:E\to\mathbb{R}^3$ such that, $\forall (x,y,z)\in E$,

$$g(x, y, z) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}, 0\right).$$

As shown in Example 133,

$$\frac{\partial g_1}{\partial y} = \frac{\partial g_2}{\partial x}.$$

Furthermore,

$$\frac{\partial g_1}{\partial z} = \frac{\partial g_2}{\partial z} = \frac{\partial g_3}{\partial x} = \frac{\partial g_3}{\partial y} = 0,$$

so that \mathbf{g} is irrotational.

Let γ be the closed curve with parametric representation $\phi: [0, 2\pi] \to \mathbb{R}^3$ such that, $\forall t \in [0, 2\pi]$, $\phi(t) = (\cos t, \sin t, 0)$ (i.e., γ is the unit circle in the xy-plane at the origin), so that the range of γ is in E. Since $g_3 = 0$, $\int_{\gamma} \mathbf{g}$ is the same as the integral computed in Example 133, so that

$$\int_{\gamma} \mathbf{g} = 2\pi \neq 0,$$

and thus **g** is not conservative.

Since E is open, by Theorem 144 (Poincare's Lemma), if E were simply connected, then \mathbf{g} would have to be conservative, so that E cannot be simply connected. A similar proof, using an appropriately re-oriented field \mathbf{g} and unit circle γ , suffices for proving that \mathbb{R}^3 minus any line is not simply connected. \blacksquare .

Problem 4

Note first that, since $\log(a)$ is defined if and only if a > 0, we are concerned only with the domain $E := \{(x, y) \in \mathbb{R} : x, y > 0\}.$

Define $\mathbf{g}: E \to \mathbb{R}^2$ and $h: E \to \mathbb{R}$ such that, $\forall (x,y) \in E$, $\mathbf{g}(x,y) = (2\ln(x,y) + 1, x/y)$ and h(x,y) = x. Then, $\forall x,y \in E$,

$$\frac{\partial (hg)_1}{\partial y} = \frac{2x}{y} = \frac{\partial (hg)_2}{\partial x},$$

so that $h\mathbf{g}$ is irrotational. Since E is open and simply connected, and $h\mathbf{g}$ is irrotational, by Theorem 144 (Poincare's Lemma), $h\mathbf{g}$ is conservative, so that, for some $f: E \to \mathbb{R}$, $h\mathbf{g} = \nabla f$. By the given differential equation, then,

$$y' = -\frac{h(x, y(x))g_1(x, y(x))}{h(x, y(x))g_2(x, y(x))} = \frac{\frac{\partial f}{\partial x}(x, y(x))}{\frac{\partial f}{\partial y}(x, y(x))},$$

and, consequently,

$$\frac{\partial f}{\partial x}(x, y(x)) + \frac{\partial f}{\partial y}(x, y(x))y'(x) = 0.$$

Then, if $F := (x \mapsto f(x, y(x)))$, by the Chain Rule, $\forall x \in \mathbb{R}$,

$$F'(x) = \frac{\partial f}{\partial x}(x, y(x)) + \frac{\partial f}{\partial y}(x, y(x))y'(x) = 0,$$

so that F is constant on every connected component of its domain $(\{x \in \mathbb{R} : x > 0\})$.

Integrating f with respect to x and with respect to y gives

$$f(x,y) = \int h(x,y(x))g_1(x,y(x)) dx = x^2 \ln(xy) + c_x$$

and

$$f(x,y) = \int h(x,y(x))g_2(x,y(x)) dx = x^2 \ln(y) + c_y,$$

where c_x is constant with respect to x and c_y is constant with respect to y. Then, however,

$$0 = x^{2} \ln(xy) + c_{x} - (x^{2} \ln(y) + c_{y}) = x^{2} \ln(x) + c_{x} - c_{y},$$

so that c_x is independent of y, and therefore, $f(x,y) = x^2 \ln(xy) + c$, where c is constant with respect to both x and y. Then,

$$0 = \frac{\partial F}{\partial y}(x) = \frac{\partial}{\partial y}(x^2 \ln(xy) + c) = x^2 y'/y.$$

Since $x, y \neq 0, y' = 0$, so that

$$-\frac{2\ln(xy)+1}{\frac{x}{y}}=0,$$

and, consequently, ln(xy) + 1 = 0. Solving for y in terms of x then gives

$$y = \frac{e^{-1/2}}{x}.$$