

Europäisches Patentamt European Patent Office Office européen des brevets

REG'D **0 7 JAN 2005**WIPO PCT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein. The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet no

04104605.3

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

Anmeldung Nr:

Application no.: 04104605.3

Demande no:

Anmeldetag:

Date of filing: 22.09.04

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

OXFORD GENE TECHNOLOGY IP LIMITED
Begbroke Business & Science Park, Hirsch
Building
Sandy Lane, Yarnton, Oxford OX5 1PF
GRANDE BRETAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Derivatised Molecules for Mass Spectrometry

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

C07D207/00

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR LI

		2)		
			4	

DERIVATISED MOLECULES FOR MASS SPECTROMETRY

All documents cited herein are incorporated by reference in their entirety.

TECHNICAL FIELD

This invention relates to compounds useful in mass spectrometry.

5 BACKGROUND OF THE INVENTION

It is known that triphenylmethyl derivatives readily form ions. However, there remains a need for alternative and improved compounds which readily form ions and which are useful in mass spectrometry.

DISCLOSURE OF THE INVENTION

10 The invention provides compounds of formula (IIa):

$$(Ar^{2})_{n}$$
— C — $[Ar^{1}$ — $(L_{M}\{M\}_{p})_{q}]_{m}$
X (IIa);

where:

20

25

X is a group capable of being cleaved from the α-carbon atom to form an ion of formula (I')

$$(Ar^2)_n - C - [Ar^1 - (L_M\{M\}_p)_q]_m$$
(I');

15 C★ is a carbon atom bearing a single positive charge or a single negative charge;

M is independently a reactive functional group;

Ar¹ is independently an aromatic group or an aromatic group substituted with one or more A;

Ar² is independently an aromatic group or an aromatic group substituted with one or more A;

optionally wherein (a) two or three of the groups Ar^1 and Ar^2 are linked together by one or more L^5 , where L^5 is independently a single bond or a linker atom or group; and/or (b) two or three of the groups Ar^1 and Ar^2 together form an aromatic group or an aromatic group substituted with one or more A;

A is independently a substituent;

L_M is independently a single bond or a linker atom or group;

n=0, 1 or 2 and m=1, 2, or 3, provided the sum of n+m=3;

p independently = 1 or more; and

q independently = 1 or more.

The invention further provides compounds of formula (IIb):

$$(Ar^2)_n$$
— C — $[Ar^1$ — $(L_M\{M\}_p)_q]_m$
 $X \bigstar$ (IIb);

where:

X★is a counter-ion to C★;

and $C \star$, M, Ar^1 , Ar^2 , L_M , n, m, p and q are as defined above.

The compounds of formula (IIa) and (IIb) may form ions of formula (I') by either cleaving the C-X bond between X and the α -carbon atoms in the case of the compounds of formula (IIa) or dissociating $X \neq i$ in the case of compounds of formula (IIb).

Ions of formula (I') are stabilised by the resonance effect of the aromatic groups Ar^1 and Ar^2 . Electron-withdrawing groups, when $C \star$ is an anion, or electron-donating groups, when $C \star$ is a cation, may optionally be provided on Ar^1 and/or Ar^2 to assist this resonance effect.

10 The compounds of formula (IIa) and (IIb) are useful in the methods disclosed in UK patent application GB 03 284 14.8.

Solid Supports

The invention also provides solid supports of formula (IVai), (IVaii) or (IVaiii):

$$(Ar^{2})_{n} - C - [Ar^{1} - (L_{M}\{M\}_{p})_{q}]_{m}$$

$$S_{S}$$

$$(IVai);$$

$$(Ar^{2})_{n} - C - [Ar^{1} - (L_{M}\{M\}_{p})_{q}]_{m}$$

$$(Ar^{2})_{n} - C - [Ar^{1} - (L_{M}\{M\}_{p})_{q}]_{m-1}$$

$$X$$

$$(IVaii);$$

$$S_{S}$$

$$Ar^{2}$$

$$(Ar^{2})_{n-1} - C - [Ar^{1} - (L_{M}\{M\}_{p})_{q}]_{m}$$

(IVaiii);

20

15

where:

X, Ar¹, Ar², L_M, M, n, m, p and q are as defined above;

S_S is a solid support;

C---S_S comprises a cleavable bond between C and S_S:

S_S---Ar¹ comprises a cleavable bond between Ar¹ and S_S; and

 $S_{S^{\text{--}}}\text{-Ar}^2$ comprises a cleavable bond between Ar^2 and $S_{\text{S}}.$

The cleavable bond of C--- S_S , S_S --- Ar^1 or S_S --- Ar^2 may be a covalent, ionic, hydrogen, dipole-dipole or van der Waals bond.

The solid supports of formula (IVai), (IVaii) and (IVaiii) may form ions of formula (I'):

- (a) for modified solid supports of formula (IVai) by cleaving the C-S_S bond between the α -carbon atom of the modified solid support of formula (IVai) and the solid support S_S to form the ion of formula (I');
- (b) for modified solid supports of formula (IVaii) by, either simultaneously or sequentially, cleaving the C-X bond between X and the α -carbon atom and cleaving the S_{S^-} Ar^1 bond between the solid support and the Ar^1 group to form the ion of formula (I'); or
- (c) for modified solid supports of formula (IVaiii) by, either simultaneously or sequentially, cleaving the C-X bond between X and the α -carbon atom and cleaving the S_S- -Ar² bond between the solid support and the Ar² group to form the ion of formula (I').

The invention also provides solid supports of formula (IVbii) or (IVbiii):

5

10

where: $X \star$, Ar^1 , Ar^2 , L_M , M, n, m, p, q, S_S , C--- S_S , S_S --- Ar^1 and S_S --- Ar^2 are as defined above.

- 15 The solid supports of formula (IVbii) and (IVbiii) may form ions of formula (I'):
 - (a) for modified solid supports of formula (IVbii) by, either simultaneously or sequentially, dissociating $X \star$ from the derivative of formula (IVbii) and cleaving the S_{S^-} --Ar¹ bond between the solid support and the Ar¹ group to form an ion of formula (I'); or
- (b) for modified solid supports of formula (IVbiii) by, either simultaneously or sequentially, dissociating X★ from the derivative of formula (IVbiii) and cleaving the S_S---Ar² bond between the solid support and the Ar² group to form an ion of formula (I').

The invention also provides solid supports of formula (IVaiv) or (IVbiv):

$$\{M\}_{p-1}L_{M}M''---(S_{S})$$

$$Ar^{1}--(L_{M}\{M\}_{p})_{q-1}$$

$$(Ar^{2})_{n}--(C--[Ar^{1}--(L_{M}\{M\}_{p})_{q}]_{m-1}$$

$$X$$

$$\{M\}_{p-1}L_{M}M''---(S_{S})$$

$$Ar^{1}--(L_{M}\{M\}_{p})_{q-1}$$

$$(Ar^{2})_{n'}--(C--[Ar^{1}--(L_{M}\{M\}_{p})_{q}]_{m'}$$

$$X \bigstar \qquad (IVbiv);$$

where:

 $X,X\bigstar,\,Ar^1,\,Ar^2,\,L_M,\,M,\,p,\,q,\,n,\,m,$ and S_S are as defined above;

5 M"---S_S comprises a bond between M" and S_S; and

M" is the same as M except that S_S is bound to a portion of M which does not form part of the residue of M" remaining attached to the ion of formula (I') which residue is produced after reaction of group M".

In this embodiment of the invention, the solid support is bound to a part of group M" which does not go on to form part of the residue of M" remaining attached to the ion of formula (I') which residue is produced after reaction of group M".

The solid supports of formula (IVai), (IVaii), (IVbii), (IVbii), (IVaiv) and (IVbiv) are useful in the methods disclosed in UK patent application GB 03 284 14.8.

Further Embodiments

15 L_M bound to Ar^l by more than one bond

The above-mentioned embodiments of the invention may also be provided in which L_M is bound to Ar^1 by more than one covalent bond (e.g. 2 or 3 bonds) which are either single, double or triple covalent bonds, or one or more multiple bonds (e.g. double or triple covalent bonds). All the other features of the invention are the same except the groups which relate to the bond or bonds between Ar^1 and L_M .

Disclaimers

20

Preferably, all embodiments of the invention (including products of formulae (I') and (IIa)) involving or relating to the compound of formula (XI) are disclaimed

Preferably, all embodiments of the invention (including products of formulae (I') and (IIa)) involving or relating to the compound of formula (XIa) are disclaimed

5 Preferably, all embodiments of the invention (including products of formulae (I') and (IIa)) involving or relating to the compound of formula (XIb) are disclaimed.

Preferably, all embodiments of the invention (including products of formulae (I') and (IIa)) involving or relating to the compound of formula (XIc) are disclaimed

10

Preferably, all embodiments of the invention (including products of formulae (I') and (IIa)) involving or relating to the compound of formula (XId) are disclaimed

Preferably, all embodiments of the invention (including products of formulae (I') and (IIa)) involving or relating to the compound of formula (XIe) are disclaimed

Preferably, all embodiments of the invention (including products of formulae (I') and (IIa)) involving or relating to the compound of formula (XIe) are disclaimed

10 Preferably, all embodiments of the invention (including products of formulae (I') and (IIa)) involving or relating to the compound of formula (XIg-j) are disclaimed

Ar = p-anisyl

Formula	Base		
XIg	Uridine		
XIh	N ⁴ -benzoyl-cytidine		
XIi	N ⁶ -benzoyl-adenosine		
XIj	N ² -phenylacetyl-guanosine		

Preferably, all embodiments of the invention (including products of formulae (I') and (IIa)) involving or relating to the compound of formula (XIk-n) are disclaimed

Ar = p-anisyl

Formula	Base		
XIk	Uridine		
XII	N ⁴ -benzoyl-cytidine		
XIm	N ⁶ -benzoyl-adenosine		
XIn	N ² -phenylacetyl-guanosine		

10 Preferred Embodiments

Definition of C★

Preferably, C★ bears a single positive charge such that ions of the invention are cations and the ion of formula (I') has the following structure:

$$(Ar^2)_n$$
— C — $[Ar^1$ — $(L_M\{M\}_p)_q]_m$ (I')

and the compounds of formulae (IIb), (IVbii), (IVbiii) and (IVbiv) have the structures disclosed in table 1.

n, m, p and q

For the purposes of compounds of the invention having n-1 groups Ar², n may not be less than 1.

5 Preferably n = 2 and m = 1.

Preferably p = 1, 2 or 3. Preferably p = 1.

Preferably q = 1, 2 or 3. Preferably q = 1.

Preferably n = 2, m = 1, p = 1 and q = 1. The ion of formula (I') thus has the structure:

and the compounds of formulae (IIa), (IIb), (IVaii), (IVaii), (IVaiii), (IVaiii), (IVbiii) and (IVbiv) have the structures disclosed in table 2.

Group M

The group M is a reactive functional group. Reactive functional groups include groups capable of reacting to form a covalent linkage and groups capable of ionic bonding, hydrogen bonding, dipole-dipole bonding or van der Waals bonding. Particularly preferred groups M are those capable of reacting to form a covalent linkage.

The group M is bound to L_M by one or more covalent bonds (e.g. 2 or 3 bonds, especially 2 such

 $-L_M$ M as M, which are either single, double or triple covalent bonds (preferably single bonds). Preferably, M is bound to L_M by one single bond.

Alternatively, or in addition, M is bound by more than one L_M , such L_M either being attached to the same or different Ar^1 or Ar^2 . In a preferred embodiment M is bound by more than one L_M from different Ar^1 or Ar^2 , e.g.:

$$Ar^{2} \stackrel{L_{M}}{-} \stackrel{M}{\underset{\bigstar}{}} Ar^{1} \stackrel{L_{M}}{/}$$

Covalent Linkage

25 Particularly preferred groups M are those capable of reacting to form a covalent linkage.

Examples of group M bound to L_M by one bond include -NR₂ e.g. -NHR (e.g. -NHMe (e.g. compound 17b), especially -NH₂ (e.g. compounds 12c & 13b); -SR e.g. -SH; -OR e.g. -OH (e.g.

compound 3a); -B(R)Y; $-BY_2$; $-C(R)_2Y$; $-C(R)Y_2$; $-CY_3$; -C(=Z)Y e.g. -C(=O)Y; -Z-C(=Z)Y; -C(=Z)R e.g. -C(=Z)H, especially -C(=O)H; -C(R)(OH)OR; $-C(R)(OR)_2$; -S(=O)Y; -S(O)Y; -S(O)Y; -S(O)Y; -S(O)Y; -S(O)Y; -S(O)Y; -S(O)Y;

Other examples of group M bound to L_M by one bond are -P(ZR)Y e.g. -P(OH)Y; -PY2; -Z-P(ZR)Y; -Z-PY2; -P(R)Y e.g. -P(H)Y; -Z-P(R)Y. A particularly preferred group M is -Z-P(ZR)Y, especially a phosphoramidite group:

$$^{\text{N}}_{\text{O}}$$
 $^{\text{N}(iPr)_2}$ $^{\text{CN}}$ (e.g. compound 14c) bound to L_M by one bond is $-Y$. In part

Another example of group M bound to L_M by one bond is -Y. In particular, when group M is halo (especially iodo), M may be bound to an aliphatic (e.g. compound 17c) or aromatic carbon (e.g. compounds 28c & 28d). When M is halo (e.g. iodo) and is bound to an aromatic carbon, L_M may, for example, be a single bond.

Examples of group M bound to L_M by two bonds include -N(R)- e.g. -NH-; -S-; -O-; -B(Y)-; -C(R)(Y)-; -CY₂-; -C(=O)-; -C(OH)(OR)-; -C(OR)₂-.

Examples of group M bound to L_M by three bonds include -C(Y)—

Preferred groups M include electrophilic groups, especially those susceptible to SN₂ substitution reactions, addition-elimination reactions and addition reactions, e.g. -B(R)Y; -BY₂; -C(R)₂Y; -C(R)Y₂; -CY₃; -C(=Z)Y e.g. -C(=O)Y, especially -C(O)OH (e.g. compound 24b) and -C(O)NH₂ (e.g. compound 19e); -Z-C(=Z)Y; -C(=Z)R e.g. -C(=Z)H, especially -C(=O)H; -C(R)(OH)OR; -C(R)(OR)₂; -S(=O)Y; -Z-S(=O)Y; -S(=O)₂Y; -Z-S(=O)₂Y; -S(=O)₃Y; -Z-S(=O)₃Y; -P(=Z)(ZR)Y e.g. -P(=O)(OH)Y; -P(=Z)Y₂; -Z-P(=Z)(ZR)Y; -Z-P(=Z)Y₂; -P(=Z)(R)Y e.g. -P(=O)(R)Y; -Z-P(=Z)(H)Y; -N=C(=Z) e.g. -N=C(=O); -B(Y)-; -C(R)(Y)-; -CY₂-; -C(=O)-; -C(OH)(OR)-; -C(OR)₂-; or -C(Y)--.

25 Still further preferred examples of group M are orthoesters, e.g. -C(OR)₃. In a preferred embodiment, the R groups are linked together to form a hydrocarbyl group, e.g. a C₁₋₈alkyl group. A preferred example of group M in this embodiment is:

$$\begin{array}{c|c}
 & O \\
\hline
 & O \\
\hline
 & O \\
\hline
 & O \\
\hline
 & CH_3 \\
 & (e.g. compound 34a)
\end{array}$$

Another preferred group M is maleimido (e.g. compound 18d).

Y is independently a leaving group, including groups capable of leaving in an SN₂ substitution reaction or being eliminated in an addition-elimination reaction.

Preferred examples of Y include halogen (preferably iodo), C₁₋₈hydrocarbyloxy (*e.g.* C₁₋₈alkoxy), C₁₋₈hydrocarbyloxy substituted with one or more A, C₁₋₈heterohydrocarbyloxy, C₁₋₈heterohydrocarbyloxy substituted with one or more A, mesyl, tosyl, pentafluorophenyl, -O-succinimidyl (formula VII) or a sulfo sodium salt thereof (sulfoNHS – formula VIIa), -S-succinimidyl, or phenyloxy substituted with one or more A *e.g.* p-nitrophenyloxy (formula VIII) or pentafluorophenoxy (formula VIIIa) (*e.g.* compound 16).

10

Thus, preferred groups M are:

15

Other preferred examples of Y include –ZR. Particularly preferred examples of Y are –ZH (e.g. –OH or –NH₂) and -Z-C₁₋₈alkyl groups such as -NH-C₁₋₈alkyl groups (e.g. -NHMe) and -O-C₁₋₈alkyl

groups (e.g. -O-t-butyl). Thus, preferred groups M are -C(O)-NH-C₁₋₈alkyl (e.g. -C(O)NHMe) and -C(O)-O-C₁₋₈alkyl (e.g. -C(O)-O-t-butyl (e.g. compounds 24a & 33a)).

Other preferred examples of Y include –Z-ZR. Particularly preferred examples include –NR-NR₂, especially –NH-NH₂ (*e.g.* compounds 35Ab, 35Bc and 35Bd), and –ONR₂, especially –O-NH₂ (*e.g.* compounds 35Cc and 35Cd).

Z is independently O, S or N(R). Preferred (=Z) is (=O).

R is independently H, C_{1-8} hydrocarbyl (e.g. C_{1-8} alkyl) or C_{1-8} hydrocarbyl substituted with one or more A.

R is preferably H.

10 Particularly preferred groups M include -C(=O)Y, especially -C(=O)-O-succinimidyl and -C(=O)-O-(p-nitrophenyl).

In a further embodiment, M may be -Si(R)₂-Y, with Y being halo (e.g. chloro) being especially preferred. Preferred groups R in this embodiment are C₁₋₈alkyl, especially methyl. A particularly preferred group M in this embodiment is -Si(Me)₂Cl (e.g. compound 19d).

In a further embodiment, M may be $-C(Ar^2)_2X$. Preferred groups Ar^2 and X are set out below. In this embodiment it is preferred that L_M is a bond. A particularly preferred group M in this embodiment is:

Other groups M include groups capable of reacting in a cycloaddition reaction, especially a Diels-Alder reaction.

20 In the case of Diels-Alder reactions, the group M is either a diene or a dienophile. Preferred diene groups are

$$A^1$$
 A^1
 A^1
 A^1
 A^1
 A^1
 A^1
 A^1
 A^1

and multivalent derivatives formally formed by removal of one or more hydrogen atoms, where A^1 is $-R^1$ or $-Z^1R^1$, where R^1 and Z^1 are defined below.

Preferred dienophile groups are $-CR^1=CR^1_2$, $-CR^1=C(R^1)A^2$, $-CA^2=CR^1_2$, $-CA^2=C(R^1)A^2$ or $-CA^2=CA^2_2$, and multivalent derivatives formally formed by removal of one or more hydrogen atoms, where R^1 is defined below and A^2 is independently halogen, trihalomethyl, $-NO_2$, -CN, $-N^+(R^1)_2O^-$, $-CO_2H$, $-CO_2R^1$, $-SO_3H$, $-SO_R^1$, $-SO_2R^1$, $-SO_3R^1$, $-OC(=O)OR^1$, -C(=O)H, $-C(=O)R^1$, $-OC(=O)R^1$, $-OC(=O)NR^1_2$, $-N(R^1)C(=O)R^1$, $-C(=S)NR^1_2$, $-NR^1C(=S)R^1$, $-SO_2NR^1_2$, $-NR^1SO_2R^1$, $-N(R^1)C(=S)NR^1_2$, or $-N(R^1)SO_2NR^1_2$, where R^1 is defined below. A particularly preferred dienophile group is male imidyl.

10 Preferred examples of group M are shown in figures 2A and 2B.

Ionic Bonding

Where group M is a reactive functional group capable of ionic bonding, group M typically comprises one or more chelating ligands.

Suitable chelating ligands which can bind anions include polyamines and cryptands.

15 Suitable chelating ligands which can bind cations include polyacidic compounds (e.g. EDTA) and crown ethers.

Hydrogen Bonding

20

25

Where group M is a reactive functional group capable of hydrogen bonding, M will typically bear one or more hydroxy, amino or thio hydrogen atoms or a group bearing an atom having one or more lone pair of electrons (e.g. an oxygen, sulphur or nitrogen atom).

Preferred groups capable of hydrogen bonding include biotin, avidin and streptavidin.

Dipole-Dipole Bonding

Where group M is a reactive functional group capable of dipole-dipole bonding, the dipole-dipole bond may be formed between permanent dipoles or between a permanent dipole and an induced dipole.

Preferred groups M capable of dipole-dipole bonding comprise acid groups, or -(NMe₃)⁺, carboxy, carboxylate, phosphate or sulphate groups.

Van der Waals Bonding

Where group M is a reactive functional group capable van der Waals bonding, M will typically comprise a hydrocarbyl or heterohydrocarbyl group (usually a large hydrocarbyl group having at least ten carbon atoms up to about 50 carbon atoms), optionally substituted with one or more A. Polyfluorinated hydrocarbyl and heterohydrocarbyl groups are particularly preferred. Typically, the hydrocarbyl or heterohydrocarbyl groups are aryl or heteroaryl groups or groups of the formula

- $C(R^6)_2Ar^3$, - $C(R^6)(Ar^3)_2$ or - $C(Ar^3)_3$, where Ar^3 is independently defined the same as Ar^2 and R^6 is H, C_{1-8} hydrocarbyl, C_{1-8} hydrocarbyl substituted by one or more A, C_{1-8} heterohydrocarbyl substituted by one or more A.

A preferred group capable of van der Waals bonding is tetrabenzofullerene (formula X).

5

Other preferred groups capable of van der Waals bonding are adamantyl (e.g. 2-adamantyl (e.g. compound 36a)) and phenyl (e.g. example 37b).

Preferably, these groups are linked to a hydrocarbylene group (e.g. C_{1-8} alkylene group) which forms L_M or a part thereof.

10 Group M"

M'' is the same as M except that S_S is bound to a portion of M which does not from part of the residue of M'' remaining attached to the ion of formula (I') which residue is produced after reaction of group M''. Thus, M'' is a residue of M formable by the conjugation of M and S_S . However, M'' need not necessarily be formed by the conjugation of M and S_S .

15 M"---S_S comprises a covalent, ionic, dipole-dipole, hydrogen, or van der Waals bond. The covalent, ionic, hydrogen, dipole-dipole or van der Waals bond may be direct between M" and S_S or may be provided by one or more binding groups present on M" and/or S_S.

Examples of groups which can form these types of bond, and methods for cleaving these types of bond, are set out below in connection with C---S_S bonds, etc.

20 Preferred groups M" are groups M having a leaving group, wherein the group S_S is bound to the leaving group, e.g. groups M mentioned above having a leaving group Y, wherein the group S_S is bound to the leaving group Y.

A particularly preferred group M" is:

25 L_M

Where the group L_M is a linker atom or group, it has a sufficient number of linking covalent bonds to link L_M to the group Ar^1 by a single covalent bond (or more, as appropriate) and to link L_M to the p instances of M groups (which may be attached to L_M by one or more bonds).

The group L_M may be directly bound to the aromatic part of Ar^1 , bound to one or more of the substituents A of Ar^1 , or both. Preferably, L_M is bound directly to the aromatic part of Ar^1 .

In an alternative embodiment, L_M may be bound to L_5 .

30

When L_M is a linker atom, preferred linker atoms are O or S, particularly O.

5 When L_M is a linker group, preferred linker groups, in the orientation Ar¹-(L_M{M}_p)_q, are -E^M-, -(D^M)_t-, -(E^M-D^M)_t-, -(D^M-E^M)_t-, -E^M-(D^M-E^M)_t- or -D^M-(E^M-D^M)_t-, where a sufficient number of linking covalent bonds, in addition to the covalent bonds at the chain termini shown, are provided on groups E^M and D^M for linking the p instances of M groups.

D^M is independently C₁₋₈hydrocarbylene or C₁₋₈hydrocarbylene substituted with one or more A.

Preferred D^M are C₁₋₈alkylene, C₁₋₈alkenylene and C₁₋₈alkynylene, especially C₁₋₈alkylene and C₁₋₈alkynylene, each optionally substituted with one or more A (preferably unsubstituted). A preferred substituent A is ²H. Preferred L_M in the orientation Ar¹-(L_M{M}_p)_q are: -CH₂CH₂-(e.g. compounds 1a & 2a); -C≡C-CH₂CH₂CH₂- (e.g. compounds 6b, 6c, 6d, 7a, 7b & 7c); -(CH₂)₅-(e.g. compounds 8a, 8b & 8c);-CD₂CD₂CH₂CH₂CH₂-; -C≡C-CH₂- (e.g. compounds 12b & 12c)

and-CH₂CH₂-(e.g. compounds 4a, 5a, 13a & 13b).

 $E^{M}, \text{ in the orientation } Ar^{1}\text{-}(L_{M}\{M\}_{p})_{q}, \text{ is independently } -Z^{M}\text{-}, -C(=Z^{M})\text{-}, -Z^{M}C(=Z^{M})\text{-}, -C(=Z^{M})Z^{M}\text{-}, \\ -Z^{M}C(=Z^{M})Z^{M}\text{-}, -S(=O)\text{-}, -Z^{M}S(=O)\text{-}, -S(=O)Z^{M}\text{-}, -Z^{M}S(=O)Z^{M}\text{-}, -S(=O)_{2}\text{-}, -Z^{M}S(=O)_{2}\text{-}, -S(=O)_{2}Z^{M}\text{-}, \\ -Z^{M}S(=O)_{2}Z^{M}\text{-}, \text{ where } Z^{M} \text{ is independently } O, S \text{ or } N(R^{M}) \text{ and where } R^{M} \text{ is independently } H, \\ C_{1-8}\text{hydrocarbyl } (e.g. \ C_{1-8}\text{alkyl}) \text{ or } C_{1-8}\text{hydrocarbyl substituted with one or more } A. \text{ Preferably } E^{M} \text{ is,} \\ 0 \text{ in the orientation } Ar^{1}\text{-}(L_{M}\{M\}_{p})_{q}, -O\text{-}, -S\text{-}, -C(=O)\text{-}, -C(=O)\text{O-}, -C(=S)\text{-}, -C(=S)\text{O-}, -OC(=S)\text{-}, \\ -C(=O)S\text{-}, -SC(=O)\text{-}, -S(O)\text{-}, -S(O)_{2}\text{-}, -NR^{M}\text{-}, -C(=O)N(R^{M})\text{-}, -C(=S)N(R^{M})\text{-}, -N(R^{M})C(=O)\text{-}, \\ -N(R^{M})C(=S)\text{-}, -S(=O)N(R^{M})\text{-}, -N(R^{M})S(=O)\text{-}, -S(=O)_{2}N(R^{M})\text{-}, -N(R^{M})S(=O)_{2}\text{-}, -OC(=O)N(R^{M})\text{-}, \\ -N(R^{M})C(=S)N(R^{M})\text{-}, -N(R^{M})S(=O)N(R^{M})\text{-} \text{ or } -N(R^{M})S(=O)_{2}N(R^{M})\text{-}. \end{aligned}$

Alternative groups E^M to those defined above, in the orientation Ar^1 - $(L_M\{M\}_p)_q$, are $-Z^M$ -Si $(R^M)_2$ - Z^M -, -Si $(R^M)_2$ - Z^M - and - Z^M -Si $(R^M)_2$ -. The group -Si $(R^M)_2$ - Z^M - is particularly preferred. Z^M is preferably O. R^M is preferably C_{1-8} alkyl, preferably methyl. These groups E^M are particularly preferred in the groups - $(E^M$ - $D^M)_t$ -, especially when t=1 and D^M is C_{1-8} alkylene. The following group is especially preferred:

In addition to the above definition of D^M , D^M may also be C_{1-8} heterohydrocarbylene or C_{1-8} heterohydrocarbylene substituted with one or more A. In this embodiment,

 C_{1-8} cycloheteroalkylene groups are particularly preferred, e.g.: Thus, preferred L_M groups $-D^M-E^M-D^M-$ are, in the orientation $Ar^1-(L_M\{M\}_p)_q$, $-C_{1-8}$ alkylene- $C(O)-C_{1-8}$ cycloheteroalkylene (preferably where the hetero atom is N and is bound to the carboxy), especially:

$$Ar^1$$

(e.g. compounds 14b & 14c).

t = 1 or more, e.g. from 1 to 50, 1to 40, 1 to 30, 1 to 20 or 1 to 10. Preferably t = 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.

Preferably, L_M links one group M to Ar^1 , M is linked to L_M by a single covalent bond and therefore no additional bonds are required (e.g. $L_M\{M\}_1$ may be $-E^M-\{M\}$, $-(D^M)_{t-}\{M\}$, $-(E^M-D^M)_{t-}\{M\}$, $-(D^M-E^M)_{t-}\{M\}$, $-E^M-(D^M-E^M)_{t-}\{M\}$ or $-D^M-(E^M-D^M)_{t-}\{M\}$).

Where L_M includes a group which also falls within the definition of group M, the group M is preferably more reactive than the group included in L_M .

 L_M is preferably $-(D^M)_{t^-}$, $-(E^M-D^M)_{t^-}$, or $-D^M-(E^M-D^M)_{t^-}$.

5

When group L_M is $-(D^M)_{t-}$, t is preferably 1. D^M is preferably C_{1-8} alkylene, preferably C_{1-5} alkylene, preferably methylene or ethylene.

When group L_M is -(E^M-D^M)_t-, or -D^M-(E^M-D^M)_t-, E^M is preferably (in the orientation Ar¹-(L_M{M}_p)_q), -C(=O)N(R^M)- (e.g. -C(=O)NH-) or O (preferably O), and D^M is preferably C₁₋₈alkylene, preferably ethylene, propylene, butylene or pentylene. t is preferably 1. Especially preferred L_M are, in the orientation Ar¹-(L_M{M}_p)_q, -O-CH₂CH₂CH₂- (e.g. compounds 15a, 15b, 15c & 16a) and -O-CH₂CH₂CH₂CH₂- (e.g. compounds 10a, 10b, 10c, 11a, 11b & 11c).

Another preferred group $-D^M$ - $(E^M-D^M)_{t^-}$ is where D^M is C_{1-8} alkylene and t is 1. Preferred E^M in this group, in the orientation Ar^1 - $(L_M\{M\}_p)_q$, are $-Z^MC(=Z^M)$ - (especially $-N(R^M)C(=O)$ -, e.g. -N(Me)C(=O)-) and $-C(=Z^M)Z^M$ - (especially -C(=O)O-). Particularly preferred L_M groups are:

The group $-(D^M-E^M)_{t^-}$ is also preferred when D^M is C_{1-8} alkylene and t is 1. Preferred E^M in this group, in the orientation $Ar^1-(L_M\{M\}_p)_q$ are $-Z^MC(=Z^M)$ - and $-C(=Z^M)Z^M$ -, especially $-Z^MC(=Z^M)$ - (particularly $-N(R^M)C(=O)$ -, e.g. -N(Me)C(=O)-). A particularly preferred example is $-CH_2CH_2CH_2N(Me)C(O)$ -.

In an alternative embodiment it is preferred that L_M is a single covalent bond.

When Ar^2 is phenyl, L_M is preferably provided in a position ortho or para to $C \star$. When Ar^2 is other than phenyl, L_M is preferably attached to an atom which bears the charge in at least one of the resonance structures of the ions of formula (I').

Where $C \star$ is a cation, L_M is preferably an electron-donating group. Where $C \star$ is an anion, L_M is preferably an electron-withdrawing group.

15 Preferred examples of L_M are shown in figures 1A and 1B.

C--- S_S , S_S --- Ar^1 and S_S --- Ar^2 Bonds

C---S_S, S_S---Ar¹ and S_S---Ar² comprise a cleavable covalent, ionic, hydrogen, dipole-dipole or van der Waals bond (also known as a dispersion bond or a London forces bond). The covalent, ionic, hydrogen, dipole-dipole or van der Waals bond may be direct between C and S_S, Ar¹ and S_S, or Ar² and S_S, or may be provided by one or more binding groups present on C and/or S_S, Ar¹ and/or S_S, or Ar² and/or S_S, respectively.

Covalent Bonding

Where the bond is covalent, the bond may be direct (e.g. C-S_S, Ar¹-S_S or Ar²-S_S, respectively) or may be provided by a linker atom or group L⁴ (e.g. C-L⁴-S_S, Ar¹-L⁴-S_S or Ar²-L⁴-S_S, respectively).

25 When L⁴ is a linker group, preferred linker groups are $-E^4$ -, $-(D^4)_{t"}$ -, $-(E^4-D^4)_{t"}$ -, $-(D^4-E^4)_{t"}$ -,

 D^4 is independently $C_{1\text{--}8}$ hydrocarbylene or $C_{1\text{--}8}$ hydrocarbylene substituted with one or more A.

 $E^{4} \text{ is, in the orientation } C\text{-}L^{4}\text{-}S_{S}, \text{ independently } -Z^{4}\text{-}, -C(=Z^{4})\text{-}, -Z^{4}C(=Z^{4})\text{-}, -C(=Z^{4})Z^{4}\text{-}, -Z^{4}C(=Z^{4})Z^{4}\text{-}, -Z^{4}C(=Z^{4})Z^{4}\text{-}, -Z^{4}C(=Z^{4})Z^{4}\text{-}, -S(=O)\text{-}, -Z^{4}S(=O)\text{-}, -S(=O)\text{-}Z^{4}\text{-}, -Z^{4}S(=O)\text{-}Z^{4}\text{-}, -Z^{4}S(=O)\text{-}Z^{4}\text{-}, where } Z^{4} \text{ is independently } O, S \text{ or } N(R^{4}), \text{ and where } R^{4} \text{ is independently } H, C_{1\text{-}8}\text{hydrocarbyl } (e.g. C_{1\text{-}8}\text{alkyl}) \text{ or } C_{1\text{-}8}\text{hydrocarbyl substituted } \text{ with one or more } A. \text{ Preferably } E^{4} \text{ is, in the orientation } C\text{-}L^{4}\text{-}S_{S}, -O\text{-}, -S^{2}\text{-}C(=O)\text{-}, -C(=O)\text{-}, -C(=S)\text{-}, -C(=S)\text{-}, -C(=O)\text{-}, -S^{2}\text{-}C(=O)\text{-}, -S^{2}\text{-}C(=O)\text{-},$

10 t'' = 1 or more, e.g. from 1 to 50, 1to 40, 1 to 30, 1 to 20 or 1 to 10. Preferably t'' = 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.

Where L⁴ includes a group which also falls within the definition of group M, the group M is preferably more reactive than the group included in L⁵.

 L^4 is preferably a linker atom, preferably O or S, particularly O.

When the solid support S_S is gold, L^4 is preferably covalently attached to the S_S by a sulphide or disulphide group.

Ionic Bonding

Where the bond is ionic, the bond is typically direct (e.g. $C \star S_S \star$, where $S_S \star$ is a solid support counterion to $C \star$).

Alternatively, it may be provided by binding groups, e.g. chelating ligands, present on C or S_s , Ar^1 or S_s , or Ar^2 or S_s , respectively. In the case of C--- S_s bonds, the chelating ligand is typically only present on S_s and chelates with $C \star$.

Suitable chelating ligands which can bind anions include polyamines and cryptands.

Suitable chelating ligands which can bind cations include polyacidic compounds (e.g. EDTA) and crown ethers.

Hydrogen Bonding

Where the bond is a hydrogen bond, the bond is usually provided by binding groups present on C or S_S , Ar^1 or S_S , or Ar^2 or S_S , respectively.

Typically, in order to form the hydrogen bond, one of C or S_S, Ar¹ or S_S, or Ar² or S_S, as appropriate, will have a binding group bearing one or more hydroxy, amino or thio hydrogen atoms, and the other of C or S_S, Ar¹ or S_S, or Ar² or S_S, respectively, will have a binding group bearing an atom having one or more lone pair of electrons (e.g. an oxygen, sulphur or nitrogen atom). Preferably, one of C or S_S, Ar¹ or S_S, or Ar² or S_S, as appropriate, will have a binding group comprising biotin, and the other

of C or S_S , Ar^1 or S_S , or Ar^2 or S_S , respectively, will have a binding group comprising avidin or streptavidin.

Alternatively, the hydrogen bond may be direct.

Dipole-Dipole Bonding

Where the bond is a dipole-dipole bond, it may be formed between permanent dipoles or between a permanent dipole and an induced dipole.

Typically, in order to form the dipole-dipole bond, one of S_S and the compound of the invention has a permanent dipole and the other of S_S and the compound of the invention has an induced dipole or a permanent dipole, the attraction between the dipoles forming a dipole-dipole bond.

10 Preferably, S_S comprises binding groups (e.g. acid groups, -(NMe₃)⁺, carboxy, carboxylate, phosphate or sulphate groups) which produce a dipole at the surface of the solid support to bind the compound of the invention.

Van der Waals Bonding

Where the bond is a van der Waals bond, the bonding is usually provided by binding groups present on C or S_S, Ar¹ or S_S, or Ar² or S_S, respectively.

Typically, in order to form the van der Waals bond, at least one, but preferably both, of C or S_8 , Ar^1 or S_8 , or Ar^2 or S_8 , as appropriate, will have a hydrocarbyl or heterohydrocarbyl group (usually a large hydrocarbyl group having at least ten carbon atoms up to about 50 carbon atoms), optionally substituted with one or more A. Polyfluorinated hydrocarbyl and heterohydrocarbyl groups are particularly preferred. Typically, the hydrocarbyl or heterohydrocarbyl groups are aryl or heteroaryl groups or groups of the formula $-C(R^6)_2Ar^3$, $-C(R^6)(Ar^3)_2$ or $-C(Ar^3)_3$, where Ar^3 is independently defined the same as Ar^2 and R^6 is H, C_{1-8} hydrocarbyl, C_{1-8} hydrocarbyl substituted by one or more A, C_{1-8} heterohydrocarbyl or C_{1-8} heterohydrocarbyl substituted by one or more A.

A preferred binding group is tetrabenzofullerene (formula X).

25

Alternatively, the van der Waals bond may be direct.

Bond Cleavage

Preferably, the ions of formula (I') have a pK_{r+} value of at least zz, where zz is 0 or more (e.g. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14). More preferably, zz is 1 or more, still more preferably 2 or more, still more preferably 3 or more.

Preferably, the compounds of formula (IIa) or (IIb) or the solid supports of formula (IVai), (IVaii), (IVaii), (IVbii), (IVbii), (IVbii), (IVbii) or (IVbiv) provide ions of formula (I') having a pK_{r+} value of at least zz, where zz is defined above.

C-XBonds

10

5 The C-X bonds are cleavable by irradiation, electron bombardment, electrospray, fast atom bombardment (FAB), inductively coupled plasma (ICP) or chemical ionisation. Preferably, the C-X bonds are cleavable by irradiation or chemical ionisation.

The term 'irradiation' includes, for example, laser illumination, in particular as used in MALDI mass spectrometry. Laser light of about 340 nm is particularly preferred because it is typically used in MALDI mass spectrometers.

The term 'electron bombardment' includes, for example, bombardment with electrons having energy of about 70 ev.

Chemical ionisation can be effected, for example, by treatment with acid or acidic matrices (e.g. acidic matrices used in MALDI analysis).

- Preferably group X is halogen, hydroxy, C₁₋₈hydrocarbyloxy, C₁₋₈hydrocarbyloxy substituted with one or more A, C₁₋₈heterohydrocarbyloxy, C₁₋₈heterohydrocarbyloxy substituted with one or more A, mesyl, tosyl, pentafluorophenyl, -O-succinimidyl -S-succinimidyl, or phenyloxy substituted with one or more A *e.g.* p-nitrophenyloxy. The groups pentafluorophenyl, -O-succinimidyl, -S-succinimidyl, and p-nitrophenyloxy are preferred.
- Particularly preferred groups X are halogen, hydroxy, C₁₋₈hydrocarbyloxy. Especially preferred groups are hydroxy (e.g. compounds 61a & 62a), ethoxy (e.g. compound 62b) and chloro (e.g. compound 64b) groups.

Other preferred groups X are alkyl ethers, e.g.:

$$_{1}^{\text{P}}$$
 $_{1}^{\text{N}}$ $_{1}^{\text{N}}$

Group X may also be a -Q-oligonucleotide, where Q is O, S or N(R), where R is H, C₁₋₈hydrocarbyl or C₁₋₈hydrocarbyl substituted with one or more A. Q is preferably O.

Group X may also be a nucleoside, preferably where the nucleoside is bound via its 5' end, e.g.:

5

In some embodiments of the invention, X is not H. If X is H, preferably at least one of Ar1 and Ar2 is polycyclic, heterocyclic or unsubstituted.

Preferred examples of group X are shown in figure 4.

Ionic $C \star X \star Bonds$

X★ is any counterion for forming salts with compounds of the invention.

X★ includes ions having single charges and multiple charges. Typically ions having multiple charges will be associated with an appropriate number of compounds of formula (IIb), (IVbii), (IVbiii) or (IVbiv), in order to balance the charge. Ions having multiple charges include doubly charged ions (e.g. SO₄²-) and triply charged ions. X★ preferably has a single charge.

The counterion X★ may be dissociated from the derivative of formula (IIb), (IVbii), (IVbii), (IVbiv) or (Vbii) by irradiation, electron bombardment, electrospray, fast atom bombardment (FAB), inductively coupled plasma (ICP) or chemical ionisation. Preferably, the counterion X★ may be dissociated by irradiation.

When X★ is a cation, X★ is preferably H⁺ or Li⁺, especially Li⁺.

When $X \star$ is an anion, $X \star$ is preferably, BF_4 or ClO_4 , especially BF_4 (e.g. compounds 28b, 28c & 28d).

It is preferred that $X \star$ is an anion.

Preferred examples of group X * are shown in figure 4.

5
$$C$$
-- S_S , S_S -- Ar^1 or S_S -- Ar^2

The C- $-S_S$, S_{S^-} - $-Ar^1$ or S_{S^-} - $-Ar^2$ bonds are cleavable by irradiation, electron bombardment, electrospray, fast atom bombardment (FAB), inductively coupled plasma (ICP) or chemical ionisation. Preferably, the C--- S_S , S_{S^-} -- Ar^1 or S_{S^-} -- Ar^2 bonds are cleavable by irradiation or chemical ionisation.

Where appropriate, the C- - S_S , S_{S^-} - Ar^1 or S_{S^-} - Ar^2 bonds may be cleaved simultaneously or sequentially with the cleaving of the C-X bond or the dissociation of $X \star$, as appropriate, by selection of suitable cleaving/dissociating conditions.

In one embodiment of the invention, the C---S_S bond in the solid support of formula (Vai) may be cleaved in sub-steps of step (iia) so that in a first sub-step a residue X (where X is the leaving group defined above) is provided and in a second subsequent sub-step the C-X bond is cleaved thereby forming the ion of formula (I). If desired, the second sub-step may be carried out substantially (e.g. seconds, minutes, hours or even days) after the first sub-step.

 Ar^1 and Ar^2

 Ar^2

Ar² is independently an aromatic group or an aromatic group substituted with one or more A and is preferably independently cyclopropyl, cyclopropyl substituted with one or more A, aryl, aryl substituted with one or more A, heteroaryl, or heteroaryl substituted with one or more A.

Where aryl or substituted aryl, Ar^2 is preferably C_{6-30} aryl or substituted C_{6-30} aryl. Where heteroaryl or substituted heteroaryl, Ar^2 is preferably C_{6-30} heteroaryl or substituted C_{6-30} heteroaryl.

Examples of aryl and heteroaryl are monocyclic aromatic groups (e.g. phenyl or pyridyl), fused polycyclic aromatic groups (e.g. napthyl, such as 1-napthyl or 2-napthyl) and unfused polycyclic aromatic groups (e.g. monocyclic or fused polycyclic aromatic groups linked by a single bond, a double bond, or by a –(CH=CH)_r- linking group, where r is one or more (e.g. 1, 2, 3, 4 or 5).

Other examples of aryl groups are monovalent derivatives of aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, chrysene, coronene, fluoranthene, fluorene, as-indacene, s-indacene, indene, naphthalene, ovalene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene and rubicene, which groups may be optionally substituted by one or more A.

Other examples of heteroaryl groups are monovalent derivatives of acridine, carbazole, β -carboline, chromene, cinnoline, furan, imidazole, indazole, indole, indole, indole, isobenzofuran, isochromene,

isoindole, isoquinoline, isothiazole, isoxazole, naphthyridine, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinoline, quinolizine, quinoxaline, thiophene and xanthene, which groups may be optionally substituted by one or more A. Preferred heteroaryl groups are five- and six-membered monovalent derivatives, such as the monovalent derivatives of furan, imidazole, isothiazole, isoxazole, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine and thiophene. The five-membered monovalent derivatives are particularly preferred, *i.e.* the monovalent derivatives of furan, imidazole, isothiazole, isoxazole, pyrazole, pyrrole and thiophene. The heteroaryl groups may be attached to the remainder of the compound by any carbon or hetero (e.g. nitrogen) atom.

Ar² is preferably C_{6-30} aryl substituted by one or more A, preferably phenyl or napthyl (e.g. 1-napthyl or 2-napthyl, especially 2-napthyl) substituted by one or more A, more preferably phenyl substituted by one or more A. When Ar² is phenyl, A is preferably provided in a position ortho or para to C^{*} . When Ar² is other than phenyl, A is preferably attached to an atom which bears the charge in at least one of the resonance structures of the ions of formula (I).

Fused polycyclic aromatic groups, optionally substituted with one or more A, are particularly preferred.

A particularly preferred Ar² is unsubstituted pyrenyl or pyrenyl substituted with one or more A. Unsubstituted pyrenyl is preferred. The pyrenyl group may be 1-pyrenyl (e.g. compounds 38a, 38b, 39a, 41a & 41b), 2-pyrenyl (e.g. compounds 42a & 42b) or 4-pyrenyl (e.g. compounds 43a & 43b).

Preferred heteroaryl Ar² groups, whether substituted or unsubstituted, are pyridyl, pyrrolyl, thienyl and furyl, especially thienyl.

A preferred Ar² group is thiophenyl or thiophenyl substituted with one or more A. Unsubstituted thiophenyl is preferred. Examples of thiophenyl are thiophen-2-yl and thiophen-3-yl, with thiophen-2-yl being especially preferred (e.g. compounds 50a, 51a & 51b).

When substituted, Ar² is preferably substituted by 1, 2 or 3 A. Ar² is preferably:

When unsubstituted, Ar^2 is preferably:

30

15

20

25

In another preferred embodiment, Ar^2 is cyclopropyl or cyclopropyl substituted with one or more A. Unsubstituted cyclopropyl is preferred (e.g. compound 44a). One or more, preferably one, of Ar^2 may be cyclopropyl.

Preferred examples of group Ar² are shown in figures 3A and 3B.

 Ar^{l}

 Ar^1 is independently an aromatic group or an aromatic group substituted with one or more A. The definition of Ar^1 is the same as Ar^2 (as defined above), except that the valency of the group Ar^1 is adapted to accommodate the q instances of the linker L_M . Preferred Ar^2 groups are also preferred Ar^1 groups, (as defined above), except that the valency of the group Ar^1 is adapted to accommodate the q instances of the linker L_M .

When q = 1, Ar^1 is a divalent radical and is preferably independently cyclopropylene, cyclopropylene substituted with one or more A, arylene, arylene substituted with one or more A, heteroarylene, or heteroarylene substituted with one or more A.

Where arylene or substituted arylene, Ar^1 is preferably C_{6-30} arylene or substituted C_{6-30} arylene. Where heteroarylene or substituted heteroarylene, Ar^1 is preferably C_{6-30} heteroarylene or substituted C_{6-30} heteroarylene.

Examples of arylene and heteroarylene are monocyclic aromatic groups (e.g. phenylene or pyridylene), fused polycyclic aromatic groups (e.g. napthylene) and unfused polycyclic aromatic groups (e.g. monocyclic or fused polycyclic aromatic groups linked by a single bond, a double bond, or by a –(CH=CH)_r- linking group, where r is one or more (e.g. 1, 2, 3, 4 or 5).

Other examples of arylene groups are polyvalent derivatives (where the valency is adapted to accommodate the q instances of the linker L_M) of aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, chrysene, coronene, fluoranthene, fluorene, as-indacene, s-indacene, indene, naphthalene, ovalene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene and rubicene, which groups may be optionally substituted by one or more A.

Other examples of heteroarylene groups are polyvalent derivatives (where the valency is adapted to accommodate the q instances of the linker $L_{\rm M}$) of acridine, carbazole, β -carboline, chromene, cinnoline, furan, imidazole, indazole, indole, indolizine, isobenzofuran, isochromene, isoindole, isoquinoline, isothiazole, isoxazole, naphthyridine, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinolizine, quinoxaline, thiophene and xanthene, which groups may be optionally substituted by one or more A. Preferred heteroaryl groups are five- and six-membered polyvalent derivatives, such as the polyvalent derivatives of furan, imidazole, isothiazole, isoxazole, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine and thiophene. The five-membered polyvalent derivatives are particularly preferred, *i.e.* the polyvalent derivatives of furan, imidazole, isothiazole, isoxazole, pyrazole, pyrrole and thiophene. The heteroaryl groups may be attached to the remainder of the compound by any carbon or hetero (e.g. nitrogen) atom.

 Ar^1 is preferably C_{6-30} arylene substituted by one or more A, preferably phenylene or napthylene substituted by one or more A, more preferably phenylene substituted by one or more A. When Ar^1 is phenylene, A is preferably provided in a position ortho or para to $C \star$. When Ar^1 is other than phenylene, A is preferably attached to an atom which bears the charge in at least one of the resonance structures of the ions of formula (I).

When substituted, Ar1 is preferably substituted by 1, 2 or 3 A.

When unsubstituted, preferred Ar¹ are:

Preferred examples of group Ar¹ are shown in figures 3A and 3B.

Combinations of Ar

Optionally two or three of the groups Ar¹ and Ar² are linked together by one or more L⁵, where L⁵ is independently a single bond or a linker atom or group; and/or two or three of the groups Ar¹ and Ar² together form an aromatic group or an aromatic group substituted with one or more A.

When L⁵ is a linker group, preferred linker groups are -E⁵-, -(D⁵)_{t'}-, -(E⁵-D⁵)_{t'}-, -(D⁵-E⁵)_{t'}-, -E⁵-(D⁵-E⁵)_{t'}- or -D⁵-(E⁵-D⁵)_{t'}-.

 D^5 is independently $\mathrm{C}_{1\text{--}8}$ hydrocarbylene or $\mathrm{C}_{1\text{--}8}$ hydrocarbylene substituted with one or more A.

E⁵ is independently -Z⁵-, -C(=Z⁵)-, -Z⁵C(=Z⁵)-, -C(=Z⁵)Z⁵-, -Z⁵C(=Z⁵)Z⁵-, -S(=O)-, -Z⁵S(=O)-, -S(=O)Z⁵-, -Z⁵S(=O)Z⁵-, -S(=O)₂-, -S(=O)₂-, -S(=O)₂Z⁵-, -Z⁵S(=O)₂Z⁵-, where Z⁵ is independently O, S or N(R⁵) and where R⁵ is independently H, C₁₋₈hydrocarbyl or C₁₋₈hydrocarbyl substituted with one or more A. Preferably E⁵ is -O-, -S-, -C(=O)-, -C(=O)O-, -C(=S)-, -C(=S)O-, -OC(=S)-, -C(=O)S-, -SC(=O)-, -S(O)-, -S(O)₂-, -N(R⁵)-, -C(=O)N(R⁵)-, -C(=S)N(R⁵)-, -N(R⁵)C(=O)-, -N(R⁵)C(=S)-, -S(=O)N(R⁵)-, -N(R⁵)S(=O)-, -S(=O)N(R⁵)-, -N(R⁵)C(=O)N(R⁵)-, -N(R⁵)C(=S)N(R⁵)-, -N(R⁵)C(=S)N(R⁵)-, -N(R⁵)S(=O)N(R⁵)-, -N

10 t' = 1 or more, e.g. from 1 to 50, 1 to 40, 1 to 30, 1 to 20 or 1 to 10. Preferably t' = 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. Most preferably t'=1.

Where L^5 includes an atom or group which also falls within the definition of group M, the group M is preferably more reactive than the group included in L^5 .

L⁵ is preferably a linker atom, preferably O or S, particularly O.

15 When L⁵ is a linker group, a preferred L⁵ is -N(R⁵)-.

In another embodiment in which L⁵ is a linker group, L⁵ is -S(=0)- (e.g. compound 56b)

When two of the groups Ar^1 and Ar^2 are linked together by one or more (e.g. 2, 3 or 4) L^5 , they are preferably linked together by one L^5 , preferably O.

Preferred combinations of Ar are two Ar² (e.g. two Ar² phenyl groups) linked together by one L⁵ 20 (e.g. O or S).

Particularly preferred combinations of Ar are two Ar² phenyl groups, optionally substituted by one or more A (preferably unsubstituted), linked together by one L⁵ (e.g. O or S), where is L⁵ is ortho to C \star with respect to both phenyl groups. Especially preferred combinations of two Ar² groups are:

In another embodiment, at least one L_M is linked to an atom or group L^5 . In this embodiment, the preferred L^5 mentioned above are, where appropriate, modified to remove substituents R^5 in order to accommodate L_M , e.g. the R^5 substituent of the group -N(R^5)- is replaced by L_M . In this embodiment, the L^5 group to which L_M is bound is preferably:

$$L_{\rm M}$$
 — $N_{\rm r}^{\rm hyr}$ Ar^{1}/Ar^{2}

Preferred combinations of Ar¹ and/or Ar² in this embodiment are:

When two or three of the groups Ar¹ and Ar² together form an aromatic group or an aromatic group substituted with one or more A, the aromatic group may be a carbocyclic aromatic group or a carbocyclic aromatic group in which one or more carbon atoms are each replaced by a hetero atom. Typically, in an aromatic group in which one or more carbon atoms are each replaced by a hetero atom, up to three carbons are so replaced, preferably up to two carbon atoms, more preferably one carbon atom.

10 Preferred hetero atoms are O, Se, S or N, more preferably O, S or N.

When two or three of the groups Ar^1 and Ar^2 together form an aromatic group or an aromatic group substituted with one or more A, preferred aromatic groups are C_{8-50} aromatic groups.

The aromatic groups may be monocyclic aromatic groups (e.g. radicals of suitable valency derived from benzene), fused polycyclic aromatic groups (e.g. radicals of suitable valency derived from napthalene) and unfused polycyclic aromatic groups (e.g. monocyclic or fused polycyclic aromatic groups linked by a single bond, a double bond, or by a –(CH=CH)_r- linking group, where r is one or more (e.g. 1, 2, 3, 4 or 5).

When two or three of the groups Ar¹ and Ar² together form a carbopolycyclic fused ring aromatic group, preferred groups are radicals of suitable valency obtained from napthalene, anthracene or phenanthracene, chrysene, aceanthrylene, acenaphthylene, acephenanthrylene, azulene, fluoranthene, fluorene, as-indacene, s-indacene, indene, phenalene, and pleiadene.

When two or three of the groups Ar^1 and Ar^2 together form a carbopolycyclic fused ring aromatic group in which one or more carbon atoms are each replaced by a hetero atom, preferred groups are radicals of suitable polyvalency obtained from acridine, carbazole, β -carboline, chromene, cinnoline, indole, indolizine, isobenzofuran, isochromene, isoindole, isoquinoline, naphthyridine, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyrrolizine, quinazoline, quinolizine and quinoxaline.

Substitution of Ar^{1} and Ar^{2} – Anions and Cations

When $C \star$ is a cation, A is preferably an electron-donating group, including $-R^1$ or $-Z^1R^1$, where R^1 and Z^1 are defined below. Preferably, R^1 is C_{1-8} hydrocarbyl, more preferably C_{1-8} alkyl, especially methyl. Z^1 is preferably O, S or NR^1 . R^1 may be substituted with one or more S_{ub}^2 , but is preferably unsubstituted. When C★ is a cation, A is preferably -OMe (e.g. compound 55a), -SMe (e.g. compounds 53a, 53b, 53c, 53d & 53e), -N(Me)₂ (e.g. compounds 54a, 54b & 54c) or Me (e.g. compound 58a). When C★ is a cation, A, when an electron-donating group, is preferably provided (especially in relation to Ar^1 or Ar^2 being phenyl) in a position ortho or para to $C \star$, preferably para. Furthermore, when C★ is a cation, A, when an electron-withdrawing group (e.g. F (e.g. compound 57a)), is preferably provided (especially in relation to Ar¹ or Ar² being phenyl) in a position meta to $C \star$. Thus, preferred groups Ar^1 and Ar^2 are as follows:

When C★ is an anion, A is preferably an electron-withdrawing group, including halogen, trihalomethyl, -NO₂, -CN, -N⁺(R¹)₂O⁻, -CO₂H, -CO₂R¹, -SO₃H, -SOR¹, -SO₂R¹, -SO₃R¹, $-OC(=O)OR^{1}$, -C(=O)H, $-C(=O)R^{1}$, $-OC(=O)R^{1}$, $-C(=O)NH_{2}$, $-C(=O)NR_{2}^{1}$, $-N(R^{1})C(=O)OR_{2}^{1}$, $-N(R^{1})C(=O)NR^{1}_{2}, \quad -OC(=O)NR^{1}_{2}, \quad -N(R^{1})C(=O)R^{1}, \quad -C(=S)NR^{1}_{2}, \quad -NR^{1}C(=S)R^{1}, \quad -SO_{2}NR^{1}_{2}, \quad$ -NR¹SO₂R¹, -N(R¹)C(=S)NR¹₂, or -N(R¹)SO₂NR¹₂, where R¹ is defined below. When $C \star$ is an anion, A, when an electron-withdrawing group, is preferably provided (especially in relation to Ar1 or Ar^2 being phenyl) in a position ortho or para to $C \star$, preferably para. Furthermore, when $C \star$ is an anion, A, when an electron-donating group, is preferably provided (especially in relation to Ar¹ or Ar² being phenyl) in a position meta to $C \star$.

The group A may also comprise one or more isotopes of the atoms making up group A (e.g. example 60), thus, as discussed in more detail below, allowing the masses of the compounds of the invention to be varied. Preferred isotopes are ¹³C, ¹⁸O and ²H. When providing a series of compounds which differ only in their masses, ¹³C and ¹⁸O are particularly preferred as ²H atoms may cause a substantial change in the chemical properties of the compound due to the kinetic isotope effect.

Solid Supports

'Solid supports' for use with the invention include polymer beads, metals, resins, columns, surfaces (including porous surfaces) and plates (e.g. mass-spectrometry plates).

The solid support is preferably one suitable for use in a mass spectrometer, such that the invention can be conveniently accommodated into existing MS apparatus. Ionisation plates from mass spectrometers are thus preferred solid supports, e.g. gold, glass-coated or plastic-coated plates. Solid gold supports are particularly preferred.

Varying the mass of compounds of the invention

The masses of the compounds of the invention can be varied via L_M , Ar^1 and/or Ar^2 . Preferably, the masses of the compounds of the invention are varied by varying A on the groups Ar^1 and/or Ar^2 .

In this aspect of invention, compounds of the invention advantageously comprise one or more of F or I as substituents A of the groups Ar¹, Ar² or Ar³. F and I each only have one naturally occurring isotope, ¹⁹F and ¹²⁷I respectively, and thus by varying the number of F and I atoms present in the structure of the compounds, can provide a series of molecular mass labels having substantially identical shaped peaks on a mass spectrum.

Compounds of the invention may also include one or more ²H atoms, preferably as a substituent A or a part thereof of the groups L_M, Ar¹, Ar² or Ar³ (in particular L_M), in order to vary the masses of the compounds of the invention. The compounds of the invention may include isotopes of ¹³C and ¹⁸O, prefererably as a substituent A or a part thereof of the groups L_M, Ar¹, Ar² or Ar³ (in particular Ar¹, Ar² or Ar³), in order to vary the masses of the compounds of the invention. Compounds comprising ²H, ¹³C and ¹⁸O may also be used to provide a series of molecular mass labels having substantially identical shaped peaks on a mass spectrum, by varing the number of ²H, ¹³C and ¹⁸O atoms present in the structure of the compounds. When providing a series of compounds which differ only in their masses, ¹³C and ¹⁸O are particularly preferred as ²H atoms may cause a substantial change in the chemical properties of the compound due to the kinetic isotope effect.

In order to increase the molecular mass of the compounds of the invention and to increase the number of available sites for substitution by A, especially F and I, one or more of Ar¹ and Ar² may

be substituted by one or more dendrimer radicals of appropriate valency, either as substituent A or group L_M .

Preferred dendrimer radicals are the radicals obtained from the dendrimers of US 6,455,071 and PAMAM dendrimers.

5 Chemical Groups

The ions of the invention are stabilised by the resonance effect of the aromatic groups Ar^1 and Ar^2 . The term 'C \bigstar is a carbon atom bearing a single positive charge or a single negative charge' therefore not only includes structures having the charge localised on the carbon atom but also resonance structures in which the charge is delocalised from the carbon atom.

10 The term 'linker atom or group' includes any divalent atom or divalent group.

The term 'aromatic group' includes quasi and/or pseudo-aromatic groups, e.g. cyclopro pyl and cyclopropylene groups.

The term 'halogen' includes fluorine, chlorine, bromine and iodine.

The term 'hydrocarbyl' includes linear, branched or cyclic monovalent groups consisting of carbon and hydrogen. Hydrocarbyl groups thus include alkyl, alkenyl and alkynyl groups, cycloalkyl (including polycycloalkyl), cycloalkenyl and aryl groups and combinations thereof, *e.g.* alkylcycloalkyl, alkylpolycycloalkyl, alkylaryl, alkenylaryl, cycloalkylaryl, cycloalkylalkyl, polycycloalkylalkyl, arylalkenyl, arylalkenyl, arylcycloalkyl and arylcycloalkenyl groups. Preferred hydrocarbyl are C₁₋₁₄ hydrocarbyl, more preferably C₁₋₈ hydrocarbyl.

20 Unless indicated explicitly otherwise, where combinations of groups are referred to herein as one moiety, e.g. arylalkyl, the last mentioned group contains the atom by which the moiety is attached to the rest of the molecule.

The term 'hydrocarbylene' includes linear, branched or cyclic divalent groups consisting of carbon and hydrogen formally made by the removal of two hydrogen atoms from the same or different (preferably different) skeletal atoms of the group. Hydrocarbylene groups thus include alkylene, alkenylene and alkynylene groups, cycloalkylene (including polycycloalkylene), cycloalkenylene and arylene groups and combinations thereof, *e.g.* alkylenecycloalkylene, alkylenepolycycloalkylene, alkylenearylene, alkenylenearylene, cycloalkylenealkylene, polycycloalkylenealkylene, arylenealkylene and arylenealkenylene groups. Preferred hydrocarbylene are C₁₋₁₄ hydrocarbylene, more preferably C₁₋₈ hydrocarbylene.

The term 'hydrocarbyloxy' means hydrocarbyl-O-.

The terms 'alkyl', 'alkylene', 'alkenyl', 'alkenylene', 'alkynyl', or 'alkynylene' are used herein to refer to both straight, cyclic and branched chain forms. Cyclic groups include C_{3-8} groups, preferably C_{5-8} groups.

The term 'alkyl' includes monovalent saturated hydrocarbyl groups. Preferred alkyl are C_{1-8} , more preferably C_{1-4} alkyl such as methyl, ethyl, n-propyl, i-propyl or t-butyl groups.

Preferred cycloalkyl are C₅₋₈ cycloalkyl.

The term 'alkoxy' means alkyl-O-.

- 5 The term 'alkenyl' includes monovalent hydrocarbyl groups having at least one carbon-carbon double bond and preferably no carbon-carbon triple bonds. Preferred alkenyl are C_{2-4} alkenyl.
 - The term 'alkynyl' includes monovalent hydrocarbyl groups having at least one carbon-carbon triple bond and preferably no carbon-carbon double bonds. Preferred alkynyl are C_{2-4} alkynyl.
- The term 'aryl' includes monovalent aromatic groups, such as phenyl or naphthyl. In general, the aryl groups may be monocyclic or polycyclic fused ring aromatic groups. Preferred aryl are C₆-C₁₄aryl.
 - Other examples of aryl groups are monovalent derivatives of aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, chrysene, coronene, fluoranthene, fluorene, as-indacene, s-indacene, indene, naphthalene, ovalene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene and rubicene.
- 15 The term 'alkylene' includes divalent saturated hydrocarbylene groups. Preferred alkylene are C₁₋₄ alkylene such as methylene, ethylene, n-propylene, i-propylene or t-butylene groups.
 - Preferred cycloalkylene are C₅₋₈ cycloalkylene.
 - The term 'alkenylene' includes divalent hydrocarbylene groups having at least one carbon-carbon double bond and preferably no carbon-carbon triple bonds. Preferred alkenylene are C_{2-4} alkenylene.
- 20 The term 'alkynylene' includes divalent hydrocarbylene groups having at least one carbon-carbon triple bond and preferably no carbon-carbon double bonds. Preferred alkynylene are C₂₋₄ alkynylene.
 - The term 'arylene' includes divalent aromatic groups, such phenylene or naphthylene. In general, the arylene groups may be monocyclic or polycyclic fused ring aromatic groups. Preferred arylene are C_6 - C_{14} arylene.
- Other examples of arylene groups are divalent derivatives of aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, chrysene, coronene, fluoranthene, fluorene, as-indacene, s-indacene, indene, naphthalene, ovalene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene and rubicene.
 - The term 'heterohydrocarbyl' includes hydrocarbyl groups in which up to three carbon atoms, preferably up to two carbon atoms, more preferably one carbon atom, are each replaced independently by O, S, Se or N, preferably O, S or N. Heterohydrocarbyl groups thus include heteroalkyl, heteroalkenyl and heteroalkynyl groups, cycloheteroalkyl (including polycycloheteroalkyl), cycloheteroalkenyl and heteroaryl groups and combinations thereof, e.g. heteroalkylcycloalkyl, alkylcycloheteroalkyl, heteroalkylpolycycloalkyl, alkylpolycycloheteroalkyl,

heteroalkylaryl, alkylheteroaryl, heteroalkenylaryl, alkenylheteroaryl, cycloheteroalkylaryl, cycloalkylheteroaryl. heterocycloalkenylaryl, cycloalkenylheteroaryl. cycloalkylheteroalkyl. cycloheteroalkylalkyl, polycycloalkylheteroalkyl, polycycloheteroalkylalkyl, arylheteroalkyl, heteroarylalkyl, arylheteroalkenyl, heteroarylalkenyl, arylcycloheteroalkyl, heteroarylcycloalkyl, arylheterocycloalkenyl and heteroarylcycloalkenyl groups. The heterohydrocarbyl groups may be attached to the remainder of the compound by any carbon or hetero (e.g. nitrogen) atom.

The term 'heterohydrocarbylene' includes hydrocarbylene groups in which up to three carbon atoms, preferably up to two carbon atoms, more preferably one carbon atom, are each replaced independently by O, S, Se or N, preferably O, S or N. Heterohydrocarbylene groups thus include heteroalkylene, heteroalkenylene and heteroalkynylene groups, cycloheteroalkylene (including 10 polycycloheteroalkylene), cycloheteroalkenylene and heteroarylene groups and combinations thereof, e.g. heteroalkylenecycloalkylene, alkylenecycloheteroalkylene, heteroalkylenepolycycloalkylene, alkylenepolycycloheteroalkylene, heteroalkylenearylene, alkyleneheteroarylene, heteroalkenylenearylene, alkenyleneheteroarylene, cycloalkyleneheteroalkylene, cycloheteroalkylene, polycycloalkyleneheteroalkylene, polycycloheteroalkylenealkylene, 15 aryleneheteroalkylene, heteroarylenealkylene, aryleneheteroalkenylene, heteroarylenealkenylene groups. The heterohydrocarbylene groups may be attached to the remainder of the compound by any carbon or hetero (e.g. nitrogen) atom.

Where reference is made to a carbon atom of a hydrocarbyl or other group being replaced by an O, S, 20 Se or N atom, what is intended is that:

-CH= is replaced by -N=; or

-CH₂- is replaced by -O-, -S- or -Se-.

The term 'heteroalkyl' includes alkyl groups in which up to three carbon atoms, preferably up to two carbon atoms, more preferably one carbon atom, are each replaced independently by O, S, Se or N, preferably O, S or N.

The term 'heteroalkenyl' includes alkenyl groups in which up to three carbon atoms, preferably up to two carbon atoms, more preferably one carbon atom, are each replaced independently by O, S, Se or N, preferably O, S or N.

30 The term 'heteroalkynyl' includes alkynyl groups in which up to three carbon atoms, preferably up to two carbon atoms, more preferably one carbon atom, are each replaced independently by O, S, Se or N, preferably O, S or N.

The term 'heteroaryl' includes aryl groups in which up to three carbon atoms, preferably up to two carbon atoms, more preferably one carbon atom, are each replaced independently by O, S, Se or N,

preferably O, S or N. Preferred heteroaryl are C_{5-14} heteroaryl. Examples of heteroaryl are pyridyl, pyrrolyl, thienyl or furyl.

Other examples of heteroaryl groups are monovalent derivatives of acridine, carbazole, β -carboline, chromene, cinnoline, furan, imidazole, indazole, indole, indolizine, isobenzofuran, isochromene, isoindole, isoquinoline, isothiazole, isoxazole, naphthyridine, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinoline, quinolizine, quinoxaline, thiophene and xanthene. Preferred heteroaryl groups are five- and six-membered monovalent derivatives, such as the monovalent derivatives of furan, imidazole, isothiazole, isoxazole, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine and thiophene. The five-membered monovalent derivatives are particularly preferred, *i.e.* the monovalent derivatives of furan, imidazole, isothiazole, isoxazole, pyrazole, pyrrole and thiophene.

The term 'heteroalkylene' includes alkylene groups in which up to three carbon atoms, preferably up to two carbon atoms, more preferably one carbon atom, are each replaced independently by O, S, Se or N, preferably O, S or N.

The term 'heteroalkenylene' includes alkenylene groups in which up to three carbon atoms, preferably up to two carbon atoms, more preferably one carbon atom, are each replaced independently by O, S, Se or N, preferably O, S or N.

The term 'heteroalkynylene' include alkynylene groups in which up to three carbon atoms, 20 preferably up to two carbon atoms, more preferably one carbon atom, are each replaced independently by O, S, Se or N, preferably O, S or N.

The term 'heteroarylene' includes arylene groups in which up to three carbon atoms, preferably up to two carbon atoms, more preferably one carbon atom, are each replaced independently by O, S, Se or N, preferably O, S or N. Preferred heteroarylene are C_{5-14} heteroarylene. Examples of heteroarylene are pyridylene, pyrrolylene, thienylene or furylene.

25

Other examples of heteroarylene groups are divalent derivatives (where the valency is adapted to accommodate the q instances of the linker L_M) of acridine, carbazole, β-carboline, chromene, cinnoline, furan, imidazole, indazole, indole, indolizine, isobenzofuran, isochromene, isoindole, isoquinoline, isothiazole, isoxazole, naphthyridine, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinoline, quinolizine, quinoxaline, thiophene and xanthene. Preferred heteroarylene groups are five- and six-membered divalent derivatives, such as the divalent derivatives of furan, imidazole, isothiazole, isoxazole, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrrolizine, pyrrolizine and thiophene. The five-membered divalent derivatives are particularly preferred, *i.e.* the divalent derivatives of furan, imidazole, isothiazole, isoxazole, pyrazole, pyrrole and thiophene.

Substitution

A is independently a substituent, preferably a substituent Sub1. Alternatively, A may be 2H.

 $S_{ub}^{1} \text{ is independently halogen, trihalomethyl, -NO}_{2}, -CN, -N^{+}(R^{1})_{2}O^{-}, -CO_{2}H, -CO_{2}R^{1}, -SO_{3}H, -SOR^{1}, -SO_{2}R^{1}, -SO_{3}R^{1}, -OC(=O)OR^{1}, -C(=O)H, -C(=O)R^{1}, -OC(=O)R^{1}, -NR^{1}_{2}, -C(=O)NH_{2}, -C(=O)NR^{1}_{2}, -C(=O)NR^{1}_{2},$

 $-N(R^{1})C(=O)OR^{1}, -N(R^{1})C(=O)NR^{1}_{2}, -OC(=O)NR^{1}_{2}, -N(R^{1})C(=O)R^{1}, -C(=S)NR^{1}_{2}, -NR^{1}C(=S)R^{1}, -SO_{2}NR^{1}_{2}, -NR^{1}SO_{2}R^{1}, -N(R^{1})C(=S)NR^{1}_{2}, -N(R^{1})SO_{2}NR^{1}_{2}, -R^{1} \text{ or } -Z^{1}R^{1}.$

 Z^1 is O, S, Se or NR^1 .

 R^1 is independently H, C_{1-8} hydrocarbyl, C_{1-8} hydrocarbyl substituted with one or more S_{ub}^2 , C_{1-8} heterohydrocarbyl or C_{1-8} heterohydrocarbyl substituted with one or more S_{ub}^2 .

Where reference is made to a substituted group, the substituents are preferably from 1 to 5 in number, most preferably 1.

Preferred examples of substituent group A are shown in figure 5.

20 Miscellaneous

or $-Z^1C_{1-6}$ alkyl.

A may optionally be a monovalent dendrimer radical or a monovalent dendrimer radical substituted with one or more substituents $S_{ub}^{\ 1}$.

General

The term "comprising" means "including" as well as "consisting" e.g. a composition "comprising" X may consist exclusively of X or may include something additional e.g. X + Y.

The term "about" in relation to a numerical value x means, for example, $x\pm 10\%$.

The word "substantially" does not exclude "completely" e.g. a composition which is "substantially free" from Y may be completely free from Y. Where necessary, the word "substantially" may be omitted from the definition of the invention.

Tables

Table 1 — $C \star$ is a cation

Formula	Structure	
Formula (I')	$(Ar^{2})_{n}$ C $(Ar^{1}$ $(L_{M}\{M\}_{p})_{q}]_{m}$ $(Ar^{2})_{n}$ C $(Ar^{1}$ $(L_{M}\{M\}_{p})_{q}]_{m}$	
Formula (IIb)	$(Ar^2)_n$ — C — $[Ar^1$ — $(L_M\{M\}_p)_q]_m$ $X\Theta$	
Formula (IVbii)	$(Ar^{2})_{n} \stackrel{{\longleftarrow} (L_{M}\{M\}_{p})_{q}}{\bigoplus} (Ar^{2})_{n} \stackrel{{\longleftarrow} (L_{M}\{M\}_{p})_{q}]_{m-1}}{\bigoplus}$	
Formula (IVbiii)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} Ar^2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ X \ominus \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ $	
Formula (IVbiv)	$\{M\}_{p-1}L_{M}M'^{1}\left(S_{S}\right)$ $Ar^{1}\left(L_{M}\{M\}_{p}\right)_{q-1}$ $(Ar^{2})_{n'}\left(L_{M}\{M\}_{p}\right)_{q}\right]_{m'}$ $X \ominus$	

Table 2 — n = 2, m = 1, p = 1 and q = 1

Formula	Structure
Formula (I')	Ar^{2} Ar^{2} C Ar^{1} $L_{M}M$
Formula (IIa)	$\begin{array}{c} Ar^2 \\ Ar^2 - \overset{ }{{{{{{{}{{$

	Ar^{2} Ar^{2} C Ar^{1} $L_{M}M$ $X \bigstar$
Formula (IVai)	Ar^{2} Ar^{2} C S_{S}
Formula (IVaii)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} Ar^1 - L_M M \\ \end{array} \\ Ar^2 - \begin{array}{c} C - Ar^2 \\ X \end{array} \end{array}$
Formula (IVaiii)	S_S Ar^2 Ar^2 C Ar^1 Ar^1 X
Formula (IVaiv)	$ \begin{array}{c} L_{M}M'^{1} \overline{S_{S}} \\ Ar^{1} \\ Ar^{2} - \overline{C} - Ar^{2} \\ X \end{array} $
Formula (IVbii)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} Ar^1 - L_M M \\ Ar^2 - C - Ar^2 \\ \end{array} \\ \end{array} \\ X \bigstar \end{array}$
Formula (IVbiii)	S_S Ar^2 $Ar^2 - C - Ar^1 - L_MM$ $X \star$

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A and 1B show preferred examples of group L_{M} .

Figures 2A and 2B show preferred examples of group M.

5 Figures 3A and 3B shows preferred examples of groups Ar^1 and Ar^2 .

Figure 4 shows preferred examples of groups X and X*.

Figure 5 shows preferred examples of substituent group A.

MODES FOR CARRYING OUT THE INVENTION

The compounds of the invention may be prepared by a number of processes as described below.

 L_{M}

$$L_M = -CH_2CH_2$$
-

5 Example 1

3-(4-Bromophenyl)propionic acid. 4-Bromobenzaldehyde (92.5 g, 0.50 mol) and Meldrum's acid (72.0 g, 0.50 mol) were dissolved in triethylamine—formic acid reagent (1.5 L) and the mixture was refluxed for 20 h, then diluted with water (4 L) and acidified with 6N HCl (1 L) until pH reached 2.
The precipitated solid was filtered off, washed with diluted HCl, and dissolved in 5% NaHCO₃. The aqueous salt solution was washed with ether (4x400 mL), filtered and acidified with diluted HCl. The resulting 3-(4-bromophenyl)propionic acid was filtered off and dried *in vacuo* over KOH and P₄O₁₀, yield 69.4 g (60 %). The compound was pure according to NMR. R_f 0.33 (CHCl₃–EtOAc, 9:1). An analytical sample was crystallyzed from toluene and showed mp 134°C. NMR (DMSO-d₆): 9.52 (br. s, 1H, OH); 8.00 (d, 2H, J = 8.1 Hz, ArH); 7.73 (d, 2H, J = 8.1 Hz, ArH), 3.41 (t, 2H, J = 7.5 Hz, ArCH₂), 3.14 (t, 2H, J = 7.5 Hz, CH₂CO).

(3-Methyl-3-oxetanyl)methyl 3-(4-bromophenyl)propionate. 3-(4-Bromophenyl)propionic acid chloride was prepared in usual manner from 3-(4-bromophenyl)propionic acid (5.50 g, 24 mmol) and oxalyl chloride (4.2 ml, 50 mmol) in benzene (30 mL) with following evaporation. 3-Methyl-3-oxetanemethanol (2.30 ml, 23 mmol) and pyridine (3.8 mL, 48 mmol) were dissolved in DCM (50 mL) and crude 3-(4-bromophenyl)propionyl chloride in DCM (10 mL) was added dropwise within 30 min with stirring and cooling on a water bath. The mixture was stirred for 16 h, then diluted with CHCl₃ (200 mL), washed with water (2x200 mL), 5% NaHCO₃ (2x200 mL), 5% citric acid (3x100 mL) and 10% NaHCO₃ (100 mL), dried over Na₂SO₄, evaporated and chromatographed on silica gel in CHCl₃. Yield 5.90 g (82%). Colorless oil which solidifies upon storage, mp around 30°C. R_f 0.20 (toluene–EtOAc, 9:1). NMR (CDCl₃): 7.39 (d, 2H, J = 8.2 Hz, ArH); 7.07 (d, 2H, J = 8.2 Hz, ArH); 4.44 (d, 2H, J = 6.0 Hz), 4.34 (d, 2H, J = 6.0 Hz) (CH₂OCH₂); 4.13 (s, 2H, CH₂OCO); 2.91 (t, 2H, J = 7.6 Hz, ArH₂), 2.66 (t, 2H, J = 7.6 Hz, CH₂CO); 1.27 (s, 3H, CH₃).

30

20

1-[2-(4-Bromophenyl)ethyl]-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane. 3-Methyl-3-oxetanyl)-methyl 3-(4-bromophenyl)propionate (31.32 g, 100 mmol) was dissolved in dry DCM (100 mL), cooled on NaCl-ice bath to -15°C, and boron trifluoride diethyl etherate (3.1 mL, 25 mmol) was added in one portion. The mixture was stirred for 1h, then allowed to warm to room temperature, quenched with triethylamine (14 mL, 100 mmol) and diluted with diethyl ether (150 mL). The boron trifluoride-diethyl ether complex was filtered off, the solution was evaporated, and the residue was purified by flash chromatography on silica gel in toluene. Finally, the compound was crystallyzed from toluene-petroleum ether to give colorless needles (24.86 g, 79%), mp 184°C (toluene-petroleum ether). R_f 0.35 (toluene-EtOAc, 9:1). NMR (DMSO- d_6): 7.43 (d, 2H, J = 8.3 Hz, ArH); 7.14 (d, 2H, J = 8.3 Hz, ArH); 3.84 (s, 6H, CH₂O); 2.62 (m, 2H, ArCH₂); 1.82 (m, 2H, ArCH₂CH₂); 0.76 (s, 3H, CH₃).

 $1-(2-\{4-[Hydroxy-bis(4-methoxyphenyl]methyl]phenyl\}ethyl)-4-methyl-2,6,7-trioxabicyclo-phenyllyddiaethyl-p$

[2.2.2] octane. Magnesium turnings (0.30 g, 12.5 mmol) was placed in a three-neck flask (250 mL) and activated by heating with a iodine crystal. The flask was then equipped with dropping funnel, reflux condenser, and argon inlet. THF (20 mL) was added to magnesium and 5–7 mL of the solution of 1-[2-(4-bromophenyl)ethyl]-4-methyl-2,6,7-trioxabicyclo[2.2.2] octane (3.13 g, 10 mmol) in THF (40 mL) was added. The mixture was heated under Ar near to boiling until a reaction started, then the remaining aryl bromide was added dropwise and the mixture was refluxed for 30 min. Using Ar pressure, the solution was filtered through glass wool in a 250 mL flask containing a solution of 4,4'-dimethoxybenzophenone (2.42 g, 10 mmol) in THF (40 mL). The mixture was refluxed for 2 h, then cooled, quenched with 5% NaHCO₃ (200 mL), and extracted with EtOAc (2x100 mL). The organic layer was separated, dried over Na₂SO₄, and evaporated. The residue was chromatographed on silica gel column (2 \rightarrow 10% EtOAc in toluene containing 0.5% Et₃N). The resulting oil was triturated in petroleum ether to give the desired to give the desired tritanol (1.50 g, 31%) colorless crystals, mp 145°C (dec.). R_f 0.44 (toluene–EtOAc, 1:1). NMR (DMSO- d_6): 7.07 (m, 8H, ArH); 6.83 (d, 4H, J= 8.8 Hz, ArH); 6.11 (s, 1H, OH); 3.84 (s, 6H, CH₂O); 3.72 (s, 6H, OCH₃); 2.62 (m, 2H, ArCH₂); 1.81 (m, 2H, ArCH₂CH₂); 0.76 (s, 3H, CCH₃).

20

25

Example 2

OMe OMe OMe OMe OMe ONG SO3-ONG
$$\frac{1. \text{ CF}_3\text{CO}_2\text{H} / \text{THF} / \text{H}_2\text{O}}{2. \text{ NaOH} / \text{EtOH} / \text{H}_2\text{O}}$$
A. DSSC / Et₃N / solvent OMe OMe

3-{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenyl}propionic acid, N-oxysulfosuccinimide 1-(2-{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenyl}ethyl)-4-methyl-2,6,7-trioxabicyclo-[2.2.2]octane (2.38 g, 5.0 mmol) was dissolved in the THF-water mixture (9:1, 10mL), and trifluoroacetic acid (0.77 mL, 10 mol) was added. After stirring for 10 min the mixture was evaporated and diluted with 10 % NaOH in ethanol-water (8:2, 30mL). The reaction mixture was refluxed for 30 min, cooled, and evaporated, the residue was diluted with water (50 mL), washed with Et₂O (2x50 mL), filtered, acidified with 5% oxalic acid, and extracted with ethyl acetate (3x50 mL). The solution was dried with Na₂SO₄, evaporated, and the residue was dissolved in dry MeCN (30 mL). Triethylamine (1.4 mL, 10 mmol) and N,N'-disulfosuccinimidyl carbonate (1.28 g, 5.0 mmol) were added and the mixture was stirred until the reaction is complete (monitoring by TLC in toluene-tert-butanol, 9:1), then evaporated, dissolved in EtOAc (200 mL), washed with 5% NaHCO₃ (100 mL) and water (100 mL), dried with Na₂SO₄, evaporated, and the residue was purified by column chromatography (10 to 40% EtOAc in toluene). Yield 2.05 g (86%), white amorphous solid. $R_{\rm f}$ 0.31 (toluene-EtOAc, 1:1). NMR (DMSO- d_6): 7.20 (d, 2H, J=8.3 Hz, ArH); 7.12-7.05 (m, 6H, ArH); 6.83 (d, 4H, J = 9.0 Hz, ArH); 6.15 (s, 1H, OH); 3.73 (s, 6H, OCH₃); 3.02-2.90 (m, 4H, $ArCH_2CH_2$); 2.81 (s, 4H, $COCH_2CH_2CO$).

 $L_M = -CH_2CH_2-C(O)O-CH_2C(Me)-(CH_2-)_2$

20 Example 3

Alternatively, the intermediate diolester could be isolated by chromatography as a colorless oil: 3-{4-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl}propionic acid, 2-hydroxymethyl-2-methyl-3-hydroxypropyl ester. NMR (DMSO-d₆): 7.15-7.04 (m, 8H, ArH); 6.83 (m, 4H, ArH); 6.13 (s, 1H, COH); 4.44 (t, 2H, J = 5.4 Hz, CH₂OH); 3.87 (s, 2H, CH₂OCO); 3.72 (s, 6H, OCH₃); 3.24 (m, 4H, CH₂OH); 2.83 (t, 2H, J = 7.6 Hz, ArCH₂); 2.61 (t, 2H, J = 7.6 Hz, COCH₂); 0.74 (s, 3H, CCH₃).

 $L_M = -OCH_2CH_2CH_2$ -

Example 4

4-(4-Bromophenoxy)butyronitrile. To a solution of 4-bromophenol (17.3 g, 0.10 mol) in dry acetone (300 mL) dry K_2CO_3 (70 g, 0.5 mol) and 4-bromobutyronitrile (16.3 g, 0.11 mol) were added, and the mixture was refluxed for approximately 10h, until starting 4-bromophenol consumes (monitoring by TLC in CHCl₃). The mixture was cooled, filtered, and solid inorganic salts were washed with acetone. The combined filtrate was evaporated, and the residue was dissolved in CHCl₃ (100 mL), filtered again, and evaporated. The residue was triturated in petroleum ether, filtered, and dried *in vacuo* to give desired aryl alkyl ether (22.3 g, 93%) as colorless crystals, mp 62°C, R_f 0.57 (toluene–EtOAc, 4:1). NMR (DMSO- d_6): 7.45 (d, 2H, J = 9.0 Hz, ArH); 6.92 (d, 2H, J = 9.0 Hz, ArH); 4.02 (t, 2H, J = 6.1 Hz, OC H_2); 2.64 (t, 2H, J = 7.1 Hz, C H_2 CN); 2.01 (m, 2H, CH $_2$ CH $_2$); NMR (CDCl₃): 7.37 (d, 2H, J = 8.9 Hz, ArH); 6.77 (d, 2H, J = 8.9 Hz, ArH); 4.03 (t, 2H, J = 5.7 Hz, OC H_2); 2.57 (t, 2H, J = 7.1 Hz, C H_2 CN); 2.01 (m, 2H, C H_2 CH $_2$).

1-[3-(4-Bromophenoxy)propyl]-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane. An ice cooled solution of 4-(4-bromophenoxy)butyronitrile (15.4 g, 64 mmol) in dry Et₂O (50 mL) and dry MeOH (2.6 mL, 64 mmol) was saturated with dry HCl within 3 h and then kept overnight at ambient temperature. The precipitate formed was filtered off, washed with Et₂O, and suspended in the mixture of Et₂O (70 mL) and MeOH (20 mL), then refluxed for 48 h and cooled. The solid was filtered off, the filtrate was evaporated, diluted with petroleum ether (100 mL) and filtered again. The filtrate was evaporated, dissolved in dry MeOH (30 mL), then 1,1,1-tris(hydrohymethyl)ethane (9.01 g, 75 mmol) and BF₃ etherate (0.15 mL, 1.1 mmol) were added. The mixture was stirred for 3 h, evaporated, and the residue was chromatographed on silica gel column in 0→5% EtOAc in toluene containing 1% Et₃N to yield the desired orthoester (6.13 g, 28%) as a colorless solid, mp 93°C, R_f 0.55 (toluene–EtOAc, 4:1). NMR (DMSO-d₆): 7.41 (d, 2H, J = 8.9 Hz, ArH); 6.87 (d, 2H, J = 8.9 Hz, ArH); 3.94 (t, 2H, J = 6.3 Hz, ArOCH₂); 3.82 (s, 6H, OCH₂); 1.80–1.67 (m, 4H, OCH₂CH₂CH₂); 0.74 (s, 3H, CH₃).

1-(3-{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenoxy}propyl)-4-methyl-2,6,7trioxabicyclo[2.2.2]octane. To a stirred and coolled to -70°C mixture of THF (40 mL) and 0.9M 0 BuLi in hexane (11.1 mL, 10 mmol) the solution of 1-[3-(4-Bromophenoxy)propyl]-4-methyl-2,6,7--40trioxabicyclo[2.2.2]octane (1.716 g, 5.0 mmol) in THF (50 mL) was added dropwise within 30 min. The mixture was then heatet to -40°C and kept for 1h, cooled to -70°C and the solution of 4,4'-dimethoxybenzophenone (1.211 g, 5.0 mmol) in THF (50 mL) was added dropwise within 30 min. The mixture was allowed to warm to room temperature and stirred overnight at ambient temperature. The solution was evaporated to dryness, the residue was dissolved in EtOAc (200 mL), washed with 5% NaHCO₃ (2×200 mL), water (2×200 mL), dried with Na₂SO₄, and evaporated. The residue was dissolved in toluene containing 1% Et₃N (10 mL) and applied to a silicagel column. The column was eluted with stepwise gradient 5 \rightarrow 10 \rightarrow 15% EtOAc in toluene containing 1% Et₃N. The desired product was triturated in petroleum ether filtered off and dried *in vacuo*. Yield 720 mg (28%), colorless crystals, mp 132°C (dec.). R_f 0.40 (toluene–EtOAc, 1:1).

Example 5

4-{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenoxy}butanoic acid, *N*-oxysuccinimide ester. 1-(3-{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenoxy}propyl)-4-methyl-2,6,7-trioxabicyclo-

[2.2.2]octane (1.01 g, 2.0 mmol) was dissolved in the THF-water mixture (4:1, 50 mL), and trifluoroacetic acid (0.23 mL, 3 mmol) was added. After stirring for 1 h the mixture was half evaporated and diluted with EtOAc (200 mL), washed with water (100 mL), 5% NaHCO₃ (2×100 mL), evaporated. The resudue was dissolved in EtOH (100 mL), and NaOH (1.0 g, 25 mmol) was added and dossolved in the mixture. The solution was stirred overnight at ambient temperature, filtered and evaporated. The residue was dissolved in water (200 mL), washed with Et₂O (2×100 mL), acidified with solid citric acid to pH 3.5, and extracted with EtOAc (3×100 mL). A combined organic lauer was dried over Na₂SO₄ and evaporated to volume 20 mL. Triethylamine (0.7 mL, 5.0 mmol) and *N,N*'-disuccinimidyl carbonate (0.64 g, 2.5 mmol) were added and the mixture was stirred until the reaction is complete (monitoring by TLC in toluene–acetone, 2:1), then evaporated, dissolved in EtOAc (200 mL), washed with 5% NaHCO₃ (100 mL) and water (100 mL), dried with Na₂SO₄, evaporated, and the residue was purified by column chromatography (10 to 30% EtOAc in toluene). Yield 0.800 g (77%), white amorphous solid. *R*_f 0.30 (toluene–EtOAc, 1:1).

 $L_M = -C \equiv CCH_2CH_2CH_2$ -

Example 6

tert-Butyl 5-hexynoate. To a solution of 5-hexynoic acid (5.44 g, 48.5 mmol) in DCM (50 mL) a solution of tert-butyl trichloroacetimidate (17.4 mL, 97 mmol) in petroleum ether (200 mL) and trifluoride diethyl etherate (300 μ L, 2.4 mmol) were added in one portion. The mixture was stirred for 2h, filtered, half-evaporated, diluted with Et₂O (150 mL), washed with 5% NaHCO3 (3×100 mL), dried over sodium sulphate, and evaporated. The residue was chromatographed in petroleum ether – ethyl acetate (24:1). Yield 5.20 g (64%). NMR (DMSO- d_6): 2.77 (t, 1H, J= 2.6 Hz, CH); 2.28 (t, 2H, J= 7.5 Hz, COC H_2); 2.17 (dt, 2H, J1 = 2.6 Hz, J2 = 7.1 Hz, \equiv CC H_2); 1.65 (m, 2H, CH₂CH₂CH₂); 1.40 (s, 9H, CH₃).

6-{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenyl}-5-hexynoic acid, tert-butyl ester. To a solution of 4-iodophenyl-bis(4-methoxyphenyl)methanol (1.785 g, 4.0 mmol), tert-butyl 5-hexynoate (1.010 g, 6.0 mmol) and triethylamine (1.67 mL, 12 mmol) in DMF (50 mL) under argon were successively added Pd(PPh₃)₄ (925 mg, 0.8 mmol) and CuI (305 mg, 1.6 mmol), and the reaction mixture was stirred for 16 h at room temperature. Then the mixture was diluted with DCM (300 mL), washed with 3% aqueous EDTA-(NH₄)₂ (5×200 mL) and water (5×200 mL), dried, and evaporated to dryness. The residue was chromatographed on a silica gel column (4.5×15 cm) in a 0 \rightarrow 6% gradient of EtOAc in toluene to give the desired compound as a colorless oil (1.671 g, 86%). NMR (DMSO- d_6): 7.30 (d, 2H, J = 8.3 Hz, ArH); 7.15 (d, 2H, J = 8.3 Hz, ArH); 7.06 (d, 4H, J = 8.8 Hz, ArH); 6.84 (d, 4H, J = 8.8 Hz, ArH); 6.27 (s, 1H, OH); 3.73 (s, 6H, OCH₃); 2.43 (t, 2H, J = 7.1 Hz), 2.34 (t, 2H, J = 7.4 Hz), (CH₂CH₂CH₂); 1.74 (m, 2H, CH₂CH₂CH₂); 1.40(s, 9H, CCH₃).

6-{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenyl}-5-hexynoic acid, N-oxysuccinimide ester. To a stirred solution of tert-butyl 6-{4-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl}-5-hexynoate (1.46 g; 3.0 mmol) in dry DCM (4 mL) trifluoroacetic acid (4 mL) was added in one portion and the mixture was stirred at ambient temperature for 3 h, then evaporated, and co-evaporated with DCM (4×50 mL). The crude acid was dissolved in DCM (50 mL), washed with water (10 mL), dried over Na₂SO₄, and half-evaporated. Triethylamine (0.85 mL, 6.0 mmol) and N,N'-disuccinimidyl carbonate (0.77 g, 3.0 mmol) were added and the mixture was stirred until the reaction is complete (monitoring by TLC in toluene– EtOAc, 2:1), then evaporated, dissolved in EtOAc (200 mL), washed with 5% NaHCO₃ (100 mL) and water (100 mL), dried with Na₂SO₄, evaporated, and the residue was purified by column chromatography (5 to 15% EtOAc in toluene). Yield 1.110 g (70%), white amorphous solid. NMR (DMSO-d₆): 7.33 (d, 2H, J= 8.3 Hz, ArH); 7.16 (d, 2H, J= 8.3 Hz, ArH); 7.06 (d, 4H, J= 8.8 Hz, ArH); 6.84 (d, 4H, J= 8.8 Hz, ArH); 6.27 (s, 1H, OH); 3.73 (s, 6H, OCH₃); 2.82 (m, 6H), 2.54 (t, 2H, J= 7.1 Hz), (CH₂CH₂CH₂COCH₂COCH₂CO); 1.90 (m, 2H, CH₂CH₂CH₂).

Example 7

15

20

6-{2-Methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl}-5-hexynoic acid, tert-butyl ester. To a stirred solution 3-[5-(tert-butyloxycarbonyl)pent-1-ynyl]-4,4'-dimethoxy benzophenone (1.18 g; 2.88 mmol) in dry THF (20 mL) 0.9 M 4-methoxyphenylmagnesium bromide (5.8 mL, 4.0 mmol) was added in one portion under argon, and the mixture was kept at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:3). The reaction was diluted with water (50 mL) and 5% citric acid (15 mL), and extracted with EtOAc (100 mL). The organic phase was dried over Na₂SO₄, evaporated, and chromatographed on silica gel in 0 \rightarrow 5% EtOAc in toluene with 1% of Et₃N to give the desired compound as a colourless oil. Yield 516 mg (35%). NMR (DMSO- d_6): 7.12 (d, 1H, 4J = 2.1 Hz, Ar 4J); 7.09–7.02 (m, 5H, Ar 4J); 6.92 (d, 1H, 4J = 8.9 Hz, Ar 4J); 6.84 (d, 4H, 4J = 8.9 Hz, Ar 4J); 6.16 (s, 1H, O 4J); 3.78 (s, 3H), 3.73 (s, 6H) (OC 4J); 2.40 (t, 2H, 4J = 7.0 Hz, 4J = 7.5 Hz, COC 4J); 1.70 (m, 2H, CH₂CH₂CH₂); 1.39 (s, 9H, CC 4J).

6-{2-Methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl}-5-hexynoic acid, N-oxysulfosuccinimide ester, sodium salt. To a stirred solution of tert-butyl ester of 6-{2-methoxy-5-

[hydroxy-bis(4-methoxyphenyl)methyl]phenyl}-5-hexynoic acid (516 mg; 1.0 mmol) in dry DCM (3.5 mL) trifluoroacetic acid (3.5 mL) was added in one portion and the mixture was stirred at ambient temperature for 5 h, then evaporated, and co-evaporated with DCM (4×20 mL) to give free acid. Product were dissolved in DCM (10 mL), and triethylamine (0.42 mL, 3.0 mmol) and N_i N-disulfosuccinimidyl carbonate (384 mg, 1.5 mmol) were added and the mixture was stirred overnight, then evaporated, dissolved in EtOAc (50 mL), washed with 5% NaHCO₃ (50 mL) and water (50 mL), dried over Na₂SO₄, evaporated, and the residue was purified by column chromatography (5 \rightarrow 10% acetone in toluene). Yield 218 mg (39%), white amorphous solid. NMR (DMSO- d_6): 7.14 (d, 1H, d_1 J = 2.1 Hz, ArH); 7.09 \rightarrow 7.02 (m, 5H, ArH); 6.93 (d, 1H, d_2 J = 8.8 Hz, ArH); 6.84 (d, 4H, d_3 J = 8.7 Hz, ArH); 6.17 (s, 1H, OH); 3.79 (s, 3H), 3.73 (s, 6H) (OCH₃); 2.83 (m, 2H, CH₂CO); 2.51 (t, 2H, d_3 J = 7.0 Hz, d_3 CCH₂); 1.86 (m, 2H, CH₂CH₂CH₂).

 $L_M = -CH_2CH_2CH_2CH_2CH_2$

Example 8

15

Methyl 3-iodo-4-methoxybenzoate.

To a solution of methyl 4-methoxybenzoate (29.7 g, 0.18 mol) in CCl₄ (110 mL) iodine (22.7 g, 0.89 mol) was added and the mixture was stirred for 10 min. Nitric acid (58%, 50 mL) was added dropwise wiwhin 30 min and the mixture was refluxed for 3 h. The mixture was cooled to room temperature and precipitate formed was filtered off. The organic layer was separated, washed with 5% Na₂SO₃ (100 mL), dried over CaCl₂ and evaporated. The residue was combined with the precipitate and recrystallized twice from EtOH. Yield 30.4 g (58%).

3-Iodo-4-methoxybenzoyl chloride.

Methyl 3-iodo-4-methoxybenzoate (29.2 g, 0.1 mol) was suspended in EtOH (150 mL), the solution of NaOH (4.4 g, 0.11 mol) was added in one portion. The mixture was stirred and heated at 40°C overnight, then cooled, diluted with water (400 mL). 3-Iodo-4-methoxybenzoic acid was precipitated with conc. HCl, filtered off, washed with cold water, and dried over P₄O₁₀. The acid was suspended in CHCl₃ (150 mL), and SOCl₂ (9.5 mL, 0.13 mmol) was added. The mixture was stirred overnight,

then evaporated and the residue was distilled under reduced pressure to give the desired acid chloride as a solid (mp ca. 50°C, bp 145–150°C/1 Torr). Yield 18.2 g (61%).

3-Iodo-4,4'-dimethoxybenzophenone.

25

A. The mixture of 3-iodo-4-methoxybenzoyl chloride (14.8 g, 0.05 mol), anisole (11.0 mL, 0.1 mol) and iodine (0.5 g) was refluxed for 10 h, then cooled to 60°C, diluted with iPrOH (200 mL), refluxed for 30 min, cooled and kept in freezer overnight. The precipitate was filtered off, washed with cold iPrOH (10 mL), dried, and recrystallized from EtOH. Yield 10.4 (56.5%), off-white solid. NMR (DMSO-d₆): 8.09 (d, 1H, ⁴J = 2.1 Hz, ArH); 7.75–7.68 (m, 3H, ArH); 7.14 (d, 1H, J = 8.7 Hz, ArH); 7.09 (d, 2H, J = 8.7 Hz, ArH); 3.93 (s, 3H), 3.86 (s, 3H) (OCH₃).

B. 4,4'-Dimethoxybenzophenone (18.1 g, 75 mmol) was dissolved in dioxane (70 mL) at 60°C, iodine (9.9 g, 39 mmol) was added and the mixture was stirred for 15 min. Water (20 mL) was added, and 58% HNO₃ (41 mL) was added dropwise within 2 h. The mixture was stirred at 60°C until iodine colouring disappears (ca. 6-7 h). The flask was evacuated to remove nitrogen oxides, the mixture was diluted with water (100 mL), cooled, and the precipitate was filtered off, washed with 5% NaHCO₃ and water. The solid was suspended in EtOH (200 mL), refluxed for 15 min, filtered hot, and cooled in freezer to 4°C. The solid (16 g) was filtered off and dried. It contains (GLC) 75% of desired 3-iodo-4,4'-dimethoxybenzophenone, 24% of starting 4,4'-dimethoxybenzophenone and 0.7% of 3,3'-diiodo-4,4'-dimethoxybenzophenone. This was purified by column chromatography in toluene. Yield 11.2 g (40%).

3-[5-(tert-Butyloxycarbonyl)pent-1-ynyl]-4,4'-dimethoxybenzophenone.

To a solution of 3-iodo-4,4'-dimethoxybenzophenone (4.50 g, 12.2 mmol) and *tert*-butyl 5-hexynoate (2.10 g, 12.5 mmol) in DMF (50 mL) Pd(PPh₃)₄ (1.40 g, 1.22 mmol), CuI (465 mg, 2.44 mmol), Et₃N (2.55 mL, 18.3 mmol) were subsequently added. The mixture was stirred overnight under argon, then diluted with water (200 mL) and extracted with EtOAc (200 mL). The organic layer was washed with water (4×200 mL), 0.1 M solution (NH₄)₂EDTA (4×200 mL) and dried over Na₂SO₄. The residue was chromatographed column in gradient of EtOAc in toluene (0 to 5%). Yield 3.43 g, viscous yellowish oil (69%). NMR (DMSO- d_6): 7.72–7.67 (m, 3H, ArH); 7.64 (d, 1H, 4J = 2.3 Hz, ArH); 7.17 (d, 1H, J = 8.7 Hz, ArH); 7.08 (d, 2H, J = 9.0 Hz, ArH); 3.91 (s, 3H, OCH₃); 3.86 (s, 3H, OCH₃); 2.47 (t, 2H, J = 7.0 Hz, \equiv CCH₂); 2.38 (t, 2H, J = 7.4 Hz, COCH₂); 1.75 (m, 2H, CH₂CH₂CH₂); 1.39 (s, 9H, CCH₃).

3-[5-(tert-Butyloxycarbonyl)pentyl]-4,4'-dimethoxybenzophenone.

3-[5-(tert-Butyloxycarbonyl)pent-1-ynyl]-4,4'-dimethoxybenzophenone (2.027 g, 4.96 mmol) was dissolved in EOAc (40 mL), and 10% Pd/C (100 mg) was added. Hydrogen gas was bubbled through the mixture

with stirring. PdCl₂ (50 mg portions) were added after 2 and 4 h. The mixture was hydrogenated for additional 4 h, filtered, diluted with EtOAc (150 mL), washed with washed with 5% NaHCO₃ (100 mL) and 0.1 M (NH₄)₂EDTA (100 mL), dried over Na₂SO₄, evaporated, and the residue was purified by column chromatography (0 \rightarrow 10% EtOAc in toluene). Yield 1.493 g (73%), colourless oil. NMR (DMSO- d_6): 7.69 (d, 2H, J = 8.7 Hz, ArH); 7.57 (m, 1H, ArH); 7.53 (m, 1H, ArH); 7.06 (m, 3H, ArH); 3.87 (s, 3H, OC H_3); 3.85 (s, 3H, OC H_3); 2.58 (t, 2H, J = 7.4 Hz, ArC H_2); 2.15 (t, 2H, J = 7.3 Hz, COC H_2); 1.50 (m, 4H, COC H_2 CH₂CH₂CH₂); 1.35 (s, 9H, CC H_3); 1.28 (m, 2H, COC H_2 CH₂CH₂CH₂CH₂).

6-{2-Methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl}hexanoic acid, tert-butyl ester.

10

15

20

To a stirred solution 3-[5-(tert-butyloxycarbonyl)pentyl]-4,4'-dimethoxybenzophenone (412 mg; 1.0 mmol) in dry THF (10 mL) 1 M 4-methoxyphenylmagnesium bromide (1.2 mL, 1.2 mmol) was added in one portion under argon, and the mixture was kept at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:3). The reaction was diluted with water (50 mL) and saturated aq. NH₄Cl (20 mL), and extracted with EtOAc (2×100 mL). The organic phase was dried over Na₂SO₄, evaporated, and chromatographed on silica gel in 0 \rightarrow 7% EtOAc in toluene with 0.5% of Et₃N to give the desired compound as a colourless oil. Yield 274 mg (53%). NMR (DMSO- d_6): 7.06 (m, 4H, ArH); 6.97 (d, 1H, 4J = 1.9 Hz, ArH); 6.88–6.79 (m, 6H, ArH); 6.02 (s, 1H, OH); 3.74 (s, 3H, OCH₃); 3.72 (s, 6H, OCH₃); 2.45 (t, 2H, J = 7.5 Hz, ArCH₂); 2.12 (t, 2H, J = 7.3 Hz, COCH₂); 1.44 (m, 4H, COCH₂CH₂CH₂CH₂CH₂CH₂); 1.37 (s, 9H, CCH₃); 1.20 (m, 2H, COCH₂CH₂CH₂CH₂).

$6-\{2-Methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl\}hexanoic acid, N-oxysuccinimide ester.$

To a stirred solution of *tert*-butyl ester of 6-{2-methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl}hexanoic acid (274 mg; 0.53 mmol) in dry DCM (2 mL) trifluoroacetic acid (2 mL) was added in one portion and the mixture was stirred at ambient temperature for 3 h, then evaporated, and co-evaporated with DCM (4x50 mL) to give free acid. Product were dissolved in DCM (15 mL), and triethylamine (0.60 mL, 4.3 mmol) and *N,N*-disuccinimidyl carbonate (556 mg, 2.17 mmol) were added and the mixture was stirred overnight, then evaporated, dissolved in EtOAc (50 mL), washed with 5% NaHCO₃ (50 mL) and water (50

mL), dried over Na₂SO₄, evaporated, and the residue was purified by column chromatography (15 \rightarrow 30% EtOAc in toluene). Yield 277 mg (93%), pink amorphous solid. NMR (DMSO- d_6): 7.71 (d, 1H, J= 8.9 Hz, ArH); 7.07 (d, 4H, J= 8.9 Hz, ArH); 6.99 (d, 1H, 4J = 2.1 Hz, ArH); 6.89–6.78 (m, 5H, ArH); 6.02 (s, 1H, OH); 3.89 (s, 3H), 3.86 (s, 6H) (OC H_3); 2.80 (s, 4H, COC H_2 CH₂CO); 5 2.61 (t, 2H, J= 7.3 Hz), 2.46 (t, 2H, J= 7.6 Hz) (ArC H_2 CH₂CH₂CH₂CH₂); 1.54 (m, 2H), 1.44 (m, 2H), 1.32 (m, 2H) (ArC H_2 CH₂CH₂).

 $L_M = -CD_2CD_2CH_2CH_2CH_2-$

Example 9

Same as for L_M = -CH₂CH₂CH₂CH₂CH₂- (example 8), but D₂ gas (Aldrich) was used to reduce the triple bond of 3-[5-(*tert*-Butyloxycarbonyl)pent-1-ynyl]-4,4'-dimethoxybenzophenone instead of hydrogen. All other synthetic procedures were identical. MS (MALDI-TOF) of equimolar mixture of 'light' (¹H) and 'heavy' (²H) NHS esters: 543.94 (95); 547.98 (93).

 $L_M = -OCH_2CH_2CH_2CH_2CH_2$

Example 10

15

20

30

6-Bromohexanoic acid was prepared from cyclohexanone as described in the literature (Krayevsky et al. Zh. Obshch. Khim., 1964, 1180–1183).

6-Bromohexanoyl chloride. 6-Bromohexanoic acid was treated with 2 mol SOCl₂ overnight, the excess of SOCl₂ was evaporated, and the residue was distilled under reduced pressure, bp 85–90/1 mm Hg. Yield 90–95%.

tert-Butyl 6-bromohexanoate. 6-Bromohexanoyl chloride (21.4 g, 0.10 mol) was added dropwise to a solution of tert-butanol (7.4 g, 0.1 mol) and diisopropylethylamine (13 g, 0.1 mol) in diethyl ether (200 mL) within 1 h and the mixture was stirred overnight. The precipitate formed was filtered off, washed with ether (100 mL), the combined ether solution was washed with 5% NaHCO₃ (2×50 mL), 5% citric acid (50 mL) and water (50 mL), dried over CaCl₂, and passed through silica gel layer (5 cm) to give the desired ester as an oil (26.5 g, 72%).

4-[5-(tert-Butyloxycarbonyl)pentyloxy]benzophenone. To a solution of 4-hydroxybenzophenone (1.98 g, 10.0 mmol) in in dry acetone (80 mL) dry K₂CO₃ (14 g, 0.1 mol) and tert-butyl 6-bromohexanoate (3.76 g, 15 mmol) were added, and the mixture was stirred for 48 h at ambient temperature, then filtered, and the solid was washed with acetone. The combined filtrate was

evaporated, and the residue was dissolved in CHCl₃ (100 mL), filtered, and evaporated. The residue was chromatographed on silica gel in $0\rightarrow6\%$ EtOAc in toluene to give desired product (3.10 g, 84%). NMR (DMSO- d_6): 7.73 (d, 2H, J=8.7 Hz, ArH); 7.70–7.62 (m, 3H, ArH); 7.54 (t, 2H, J=7.6 Hz, ArH); 7.06 (d, 2H, J=8.7 Hz, ArH); 4.07 (t, 2H, J=6.4 Hz, OCH₂); 2.21 (t, 2H, J=7.4 Hz, COCH₂); 1.74 (m, 2H), 1.56 (m, 2H), 1.42 (m, 2H) (OCH₂CH₂CH₂CH₂); 1.39 (s, 9H, CH₃).

6-{4-[Hydroxy-(4-methoxyphenyl)-phenyl-methyl]phenoxy}hexanoic acid, tert-butyl ester. To a stirred solution of 4-[5-(tert-butyloxycarbonyl)pentyloxy]benzophenone (1.84 g; 5.0 mmol) in dry THF (30 mL) 1 M 4-methoxyphenylmagnesium bromide (7.0 mL, 7.0 mmol) was added in one portion under Ar, and the mixture was kept at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:4). The reaction was diluted with water (300 mL) and 5% citric acid (20 mL), and extracted with EtOAc (2×100 mL). The organic phase was dried over Na₂SO₄, evaporated, and chromatographed on silica gel in 0 \rightarrow 5% EtOAc in toluene with 0.5% of Et₃N to give the desired compound as a colourless oil. Yield 1.597 g (67%). NMR (DMSO- d_6): 7.26 (m, 2H, ArH); 7.20 (m, 3H, ArH); 7.07 (m, 4H, ArH); 6.83 (m, 4H, ArH); 6.17 (s, 1H, OH); 3.92 (t, 2H, J = 6.4 Hz, OCH₂); 3.73 (s, 3H, OCH₃); 2.20 (t, 2H, J = 7.3 Hz, COCH₂); 1.70 (m, 2H, OCH₂CH₂), 1.54 (m, 2H, COCH₂CH₂), 1.39 (m, 2H, OCH₂CH₂); 1.38 (s, 9H, CH₃).

10

15

6-{4-[Hydroxy-(4-methoxyphenyl)-phenyl-methyl]phenoxy}hexanoic acid, N-oxysuccinimide 6-{4-[hydroxy-(4-methoxyphenyl)-phenyltert-butyl stirred solution of To 20 ester. methyl]phenoxy}hexanoate (953 mg; 2.0 mmol) in dry DCM (3 mL) trifluoroacetic acid (3 mL) was added in one portion and the mixture was stirred at ambient temperature for 3 h, then evaporated, and co-evaporated with DCM (4×50 mL) to give the desired acid. This was dissolved in EtOAc (40 mL), washed with water (10 mL), dried over Na₂SO₄, and evaporated to volume 15 mL. Triethylamine (0.7 mL, 5.0 mmol) and N,N'-disuccinimidyl carbonate (0.64 g, 2.5 mmol) were added and the mixture was stirred until the reaction is complete (monitoring by TLC in toluene-EtOAc, 2:1), then evaporated, dissolved in EtOAc (200 mL), washed with 5% NaHCO₃ (100 mL) and water (100 mL), dried with Na₂SO₄, evaporated, and the residue was purified by column chromatography (5→15% EtOAc in toluene). Yield 743 mg (72%), white amorphous solid. NMR (DMSO-d₆): 7.26 (m, 2H, ArH); 7.20 (m, 3H, ArH); 7.07 (m, 4H, ArH); 6.83 (m, 4H, ArH); 6.17 (s, 1H, OH); 3.93 (t, 2H, J= 6.2 Hz, OC H_2); 3.73 (s, 3H, OC H_3); 2.81 (s, 4H, COC H_2 C H_2 CO); 2.69 (t, 2H, J = 7.2 Hz, COC H_2); 1.78–1.64 (m, 4H, OC H_2 C H_2 C H_2 C H_2), 1.51 (m, 2H, OC H_2 C H_2 C H_2).

Example 11

4-[5-(tert-Butyloxycarbonyl)pentyloxy]-4'-methoxybenzophenone. To a solution of 4-hydroxy-4'methoxybenzophenone (5.84 g, 25.6 mmol) in in dry acetone (250 mL) dry K₂CO₃ (17.7 g, 0.128 mol) and tert-butyl 6-bromohexanoate (7.05 g, 28.1 mmol) were added, and the mixture was stirred for 96 h at ambient temperature, then filtered, and the solid was washed with acetone. The combined filtrate was evaporated, and the residue was dissolved in CHCl₃ (150 mL), filtered, and evaporated. The residue was chromatographed on silica gel in 0→20% EtOAc in toluene to give the desired 10 product (1.99 g, 19.5%). NMR (DMSO- d_6): 7.70 (m, 4H, ArH); 7.06 (m, 4H, ArH); 4.06 (t, 2H, J=6.4 Hz, OC H_2); 3.86 (s, 3H, OC H_3); 2.21 (t, 2H, J = 7.3 Hz, COC H_2); 1.75 (m, 2H), 1.56 (m, 2H), 1.42 (m. $(OCH_2CH_2CH_2CH_2);$ 1.39 (s, 9H. CCH_3). 4-Methoxy-4'-[5-(4methoxybenzoylphenoxycarbonyl)pentyloxy]benzophenone was isolated as a side product. NMR (DMSO- d_6): 7.78 (m, 8H, ArH); 7.19 (d, 2H, J = 8.2 Hz, ArH); 6.95 (m, 6H, ArH); 4.07 (t, 2H, J =15 6.1 Hz, OC H_2); 3.88; 3.87 (2s, 6H, OC H_3); 2.64 (t, 2H, J=7.3 Hz, COC H_2); 1.88 (m, 4H, $OCH_2CH_2CH_2CH_2$); 1.64 (m, 2H, $OCH_2CH_2CH_2$).

6-{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenoxy}hexanoic acid, tert-butyl ester. To a stirred solution of 4-[5-(tert-butyloxycarbonyl)pentyloxy]-4'-methoxybenzophenone (400 mg; 1.0 mmol) in dry THF (10 mL) 1 M 4-methoxyphenylmagnesium bromide (1.2 mL, 1.2 mmol) was added in one portion under Ar, and the mixture was kept at ambient temperature overnight

(monitoring by TLC in EtOAc-toluene 1:4). The reaction was diluted with water (100 mL) and 5% citric acid (5 mL), and extracted with EtOAc (2×500 mL). The organic phase was dried over Na₂SO₄, evaporated, and chromatographed on silica gel in $0\rightarrow15\%$ EtOAc in toluene with 0.5% of Et₃N to give the desired compound as a colourless oil. Yield 334 mg (66%). NMR (DMSO- d_6): 7.06 (m, 6H, ArH); 6.82 (m, 6H, ArH); 6.07 (s, 1H, OH); 3.92 (t, 2H, J=6.2 Hz, OCH₂); 3.72 (s, 6H, OCH₃); 2.20 (t, 2H, J=7.3 Hz, COCH₂); 1.69 (m, 2H), 1.54 (m, 2H), 1.39 (m, 2H), (OCH₂CH₂CH₂CH₂); 1.37 (s, 9H, CCH₃).

6-{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenoxy}hexanoic acid, N-oxysuccinimide ester. To a stirred solution of tert-butyl 6-{4-[hydroxy-bis(4-methoxyphenyl)methyl]phenoxy}hexanoate (253 mg; 0.5 mmol) in dry DCM (1.5 mL) trifluoroacetic acid (1.5 mL) was added in one portion and the mixture was stirred at ambient temperature for 4 h, then evaporated, and co-evaporated with DCM (4×20 mL) to give the corresponding acid. The latter was dissolved in EtOAc (30 mL), washed with water (10 mL), dried over Na₂SO₄, and evaporated. The residue was dissolved in DCM (15 mL), and triethylamine (0.30 mL, 2.2 mmol) and N,N-disuccinimidyl carbonate (256 mg, 1.0 mmol) were added and the mixture was stirred overnight, then evaporated, dissolved in EtOAc (50 mL), washed with 5% NaHCO₃ (50 mL) and water (50 mL), dried over Na₂SO₄, evaporated, and the residue was purified by column chromatography (10 \rightarrow 25% EtOAc in toluene). Yield 240 mg (88%), white amorphous solid. NMR (DMSO-d₆): 7.06 (m, 6H, ArH); 6.83 (m, 6H, ArH); 6.07 (s, 1H, OH); 3.93 (t, 2H, J=6.2 Hz, OCH₂); 3.72 (s, 3H, OCH₃); 2.80 (s, 4H, COCH₂CH₂CO); 2.69 (t, 2H, J=7.3 Hz, CH₂CO₂); 1.70 (m, 4H, OCH₂CH₂CH₂CH₂); 1.50 (m, 2H, OCH₂CH₂CH₂).

 $L_M = -C \equiv CCH_2$ -

Example 12

25 3-Iodo-4-methoxyphenyl-bis(4-methoxyphenyl)methanol.

To a solution of 3-iodo-4,4'-dimethoxybenzophenone (1.00 g, 2.72 mmol) in THF (20 mL) 0.86 M solution of 4-methoxyphenylmagnesium bromide in THF (6.2 mL, 5.44 mmol) was added in one portion. The mixture was kept at ambient temperature overnight, then diluted with saturated NaHCO₃ solution (200 mL) and extracted with EtOAc (200 mL). The organic layer was washed with water (3×200 mL) and dried over Na₂SO₄. The residue was chromatographed on silica gel in gradient of EtOAc in toluene (0 to 5%) with addition of 1% of Et₃N. Yield 1.00 g (77%), viscous yellowish oil. NMR (DMSO- d_6): 7.64 (d, 1H, 4J = 2.1 Hz, ArH); 7.07 (d, 4H, J= 8.7 Hz, ArH); 7.04 (d, 1H, J= 8.7

Hz, 4J = 2.1 Hz, ArH); 6.90 (d, 1H, J = 8.7 Hz, ArH); 6.85 (d, 4H, J = 8.7 Hz, ArH); 6.24 (s, 1H, OH); 3.80 (s, 3H), 3.73 (s, 6H) (OCH₃).

 $\label{lem:normalize} N-(\textit{tert}-\textbf{Butyloxycarbonyl})-3-\{2-methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]-phenyl\}-2-propynylamine.$

To a solution of 3-iodo-4-methoxyphenyl-bis(4-methoxyphenyl)methanol (0.92 g, 1.93 mmol) and N-Boc-propargylamine (0.60 g, 3.86 mmol) in DMF (20 mL) Pd(PPh₃)₄ (223 mg, 0.193 mmol), CuI (74 mg, 0.386 mmol), Et₃N (404 μL, 2.90 mmol) were subsequently added. The mixture was stirred overnight under argon, then diluted with water (100 mL) and extracted with EtOAc (150 mL). The organic layer was washed with 0.1 M solution (NH₄)₂EDTA (4×100 mL), water (4×100 mL), and dried over Na₂SO₄. The residue was chromatographed on silica gel in gradient of EtOAc in toluene (0 to 30%) with addition of 1% of Et₃N. Yield 820 mg, viscous yellow oil (84%). NMR (DMSO-d₆): 7.25 (m, 1H, ArH); 7.19–7.09 (m, 2H, ArH, NH); 7.07 (d, 4H, J= 8.8 Hz, ArH); 6.95 (d, 1H, J= 8.8 Hz, ArH); 6.84 (d, 4H, J= 8.8 Hz, ArH); 3.93 (m, 2H, ≡CCH₂); 3.78 (s, 3H), 3.73 (s, 6H) (OCH₃); 1.37 (s, 9H, CCH₃).

15 3-{2-Methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl-2-propynylamine.

To a solution of *N*-(*tert*-butyloxycarbonyl)-3-{2-methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl-2-propynylamine (800 mg, 1.59 mmol) in DCM (5 mL) CF₃CO₂H (5 mL) was added. After completing of the deblocking (TLC control) the reaction mixture was evaporated in vacuo, dissolved in EtOAc (100 mL), washed with saturated aq. NaHCO₃ (3×100 mL), water (100 mL), and dried over Na₂SO₄. The residue was chromatographed on silica gel in gradient (0 to 20%) of methanol in toluene containing 1% Et₃N. Yield 385 mg, yellow foam (60%).

 $L_M = -CH_2CH_2CH_2-$

Example 13

25 3-[3-(tert-Butyloxycarbonylamino)propyn-1-yl]-4,4'-dimethoxybenzophenone.

To a solution of 3-iodo-4,4'-dimethoxybenzophenone (2.50 g, 6.79 mmol) and N-Boc-propargylamine (1.26 g, 8.15 mmol) in DMF (100 mL) Pd(PPh₃)₄ (785 mg, 0.68 mmol), CuI (258 mg, 1.35 mmol), Et₃N (1.5 mL, 10.7 mmol) were subsequently added. The mixture was stirred overnight under argon, then diluted with water (200 mL) and extracted with EtOAc (200 mL). The organic layer was washed with 0.1 M solution (NH₄)₂EDTA (3×150 mL), water (3×150 mL), and dried over Na₂SO₄. The residue was chromatographed on silica gel in gradient of EtOAc in toluene (0 to 20%). Yield 1.83 g (68%), viscous yellowish oil. NMR (DMSO- d_6): 7.72 (dd, 1H, J = 8.8 Hz, 4J = 2.1 Hz, ArH); 7.70 (d, 2H, J = 8.8 Hz, ArH); 7.65 (d, 1H, 4J = 2.1 Hz, ArH); 7.32 (br.s, 1H,

NH); 7.20 (d, 1H, J = 8.8 Hz, ArH); 7.08 (d, 2H, J = 8.8 Hz, ArH); 4.00 (m, 2H, CH₂N); 3.91 (s, 3H), 3.86 (s, 3H) (OCH₃); 1.39 (s, 9H, CCH₃).

3-[3-(tert-Butyloxycarbonylamino)propyl]-4,4'-dimethoxybenzophenone. To a solution of 3-[3-(tert-butyloxycarbonylamino)propyn-1-yl]-4,4'-dimethoxybenzophenone (1.78 g, 4.5 mmol) in EtOAc (100 mL) 10%Pd/C (500 mg) was added and the mixture was hydrogenated for 24 h at ambient pressure. The mixture was filtered, evaporated and the residue was chromatographed on silica gel (0 to 20% gradient of EtOAc in toluene) to give the desired compound as a viscous colourless oil (980 mg, 55%). NMR (DMSO-d₆): 7.70 (d, 2H, J = 8.8 Hz, ArH); 7.59 (m, 2H, ArH); 7.06 (m, 3H, ArH); 6.80 (br.s, 1H, NH); 3.87 (s, 3H), 3.85 (s, 3H) (OCH₃); 2.94 (m, 2H, CH₂NH); 2.60 (t, 2H, J = 7.6 Hz, ArCH₂); 1.66 (m, 2H, ArCH₂CH₂); 1.36 (s, 9H, CCH₃).

$3\hbox{-}[3\hbox{-}(\textit{tert}\text{-}Butyloxy carbonylamino}) propyl]\hbox{-}4\hbox{-}methoxy phenyl-bis (4\hbox{-}methoxy phenyl) methanol.$

To a solution of 3-[3-(tert-butyloxycarbonylamino)propyl]-4,4'-dimethoxybenzophenone (940 mg, 2.35 mmol) in THF (20 mL) 0.86 M solution of 4-methoxyphenylmagnesium bromide in THF (8.20 mL, 7.05 mmol) was added in one portion. The mixture was kept at ambient temperature overnight, then diluted with saturated NaHCO₃ solution (200 mL) and extracted with EtOAc (200 mL). The organic layer was washed with water (3×200 mL) and dried over Na₂SO₄. The residue was chromatographed on silica gel in gradient of EtOAc in toluene (0 to 20%) with addition of 1% of Et₃N. Yield 625 mg (52%), yellowish foam.

3-(3-Aminopropyn-1-yl)-4-methoxyphenyl-bis(4-methoxyphenyl)methanol.

25

To a stirred solution of 3-[3-(tert-butyloxycarbonylamino)propyl]-4-methoxyphenyl-bis(4-methoxyphenyl)methanol (610 mg; 1.20 mmol) in dry DCM (5 mL) trifluoroacetic acid (5 mL) was added in one portion and the mixture was stirred at ambient temperature for 5 h, then evaporated, and co-evaporated with DCM (4×20 mL) to give 415 mg (85%) of desired amine as an orange solid. NMR (DMSO- d_6): 7.08 (m, 6H, ArH); 6.94 (m, 1H, ArH); 6.85 (d, 4H, J = 9.0 Hz, ArH); 6.18 (s, 1H, OH); 3.78 (s, 3H), 3.73 (s, 6H) (OCH₃); 3.46 (s, 2H, CH₂N); 1.86 (br. s, 2H, NH₂).

$L_M = -CH_2CH_2CON((CH_2)_2)_2CH_2$

Example 14

 $1-(3-\{4-[Ethoxy-bis(4-methoxyphenyl)-methyl]phenyl\} propionyl)-4-hydroxypiperidine.\\$ 5 stirred solution of N-oxysuccinimide 3-{4-[ethoxy-bis(4ester methoxyphenyl)methyl]phenyl}propionic acid (820 mg; 1.59 mmol) in dry DCM (50 mL) 4hydroxypiperidine (322 mg, 3.18 mmol) was added and the mixture was stirred at ambient temperature 12 h (monitored by TLC in methanol-CHCl₃ 1:19). The reaction was diluted with CHCl₃ (100 mL), resulting solution was washed with water (2×100 mL) and dried over Na₂SO₄, evaporated, 10 and chromatographed on silica gel in CHCl₃ with 2% MeOH and 1% Et₃N to give the desired compound as a colorless oil. Yield 410 mg (51%). NMR (DMSO-d₆): 7.23 (m, 6H, ArH); 7.16 (d, 2H, J = 8.2 Hz, ArH); 6.87 (d, 4H, J = 8.7 Hz, ArH); 4.68 (d, 1H, J = 3.9 Hz, OH); 3.88 (m, 1H, H-2a (piperidine)); 3.73 (s, 6H, OCH₃); 3.68-3.56 (m, 2H, H-4, H-6a (piperidine)); 3.05 (m, 1H, H-6b (piperidine)); 3.02-2.92 (m, 3H, H-2b (piperidine), CH₃CH₂); 2.76 (m, 2H), 2.57 (m, 2H) (CH_2CH_2CO) ; 1.63 (m, 2H), 1.21 (m, 2H) (H-3, H-5 (piperidine)); 1.15 (t, 3H, J = 6.8 Hz, CH_3CH_2).

 $1-(3-\{4-[Ethoxy-bis(4-methoxyphenyl)-methyl]phenyl\}propionyl)-4-(diisopropylamino-2-cyanethoxyphosphinoxy)piperidine. To a stirred solution of $N-(3-\{4-[ethoxy-bis(4-methoxyphenyl)-methyl]phenyl\}propionyl)-4-hydroxypiperidine (400 mg, 0.794 mmol) in dry $N-(3-\{4-[ethoxy-bis(4-methoxyphenyl]phenyl[phenyl]phenyl[ph$

acetonitrile (25 mL) diisopropylammonium tetrazolide (204 mg, 1.19 mmol) and bis(diisopropylamino)-2-cyanethoxyphosphine (281 mg, 1.19 mmol) were subsequently added under argon. The mixture was stirred at ambient temperature overnight (monitoring by TLC in Et₃N-CHCl₃ 1:9). After completion of the reaction the mixture was evaporated to dryness, dissolved in ethylacetate (100 mL), washed with water (100 mL), 5% NaHCO₃ (100 mL), and water (100 mL). The resulting solution was dried over Na₂SO₄, evaporated and chromatographed on silica gel in

CHCl₃ with 1% of Et₃N to give the desired compound as a viscous colorless oil. Yield 290 mg (51%). 31 P NMR (MeCN- d_3): 147.1452, 147.1085.

 $L_M = -O-CH_2CH_2CH_2-$ (two L_M -containing Ar^l groups)

Example 15

- 4,4'-Bis[3-(tert-butyloxycarbonyl)propoxy]benzophenone. Sodium (1.15 g, 50 mmol) was dissolved in MeOH and the resulting solution of MeONa was added to a solution of 4,4'-dihydroxybenzophenone (4.24 g, 20 mmol) in methanol (50 mL). The mixture was evaporated to dryness, the residue was dissolved in HMPA (30 mL) and tert-butyl 4-chlorobutyrate (8.04 g, 45 mmol) was added in one portion. The mixture was heated at 100° C for 5 h, then cooled, diluted with water (300 mL) and extracted with EtOAc (2x200 mL). The combined organic layers were washed with water (5x100 mL), dried over Na₂SO₄, and evaporated. The residue was chromatographed on silica gel in $2\rightarrow5\%$ EtOAc in toluene to give the desired compound as white crystalline solid, mp 92°C. Yield 5.49 g (55%). NMR (DMSO- d_6): 7.69 (d, 4H, J = 8.8 Hz, ArH); 7.05 (d, 2H, J = 8.8 Hz, ArH); 4.08 (t, 4H, J = 6.4 Hz, OCH₂); 2.38 (t, 4H, J = 7.3 Hz, COCH₂); 1.97 (m, 4H, CH₂CH₂CH₂); 1.41 (s, 18H, CH₃).
- 4-Methoxy-4',4''-bis[3-(tert-butyloxycarbonyl)propoxy]triphenylmethanol. To a stirred solution of 4,4'-bis[3-(tert-butylocarbonyl)propoxy]benzophenone (2.49 g; 5.0 mmol) in dry (freshly distilled over sodium benzophenone ketyl) THF (30 mL) 1 M 4-methoxyphenylmagnesium bromide (7.0 mL, 7.0 mmol) was added in one portion under Ar, and the mixture was kept at ambient temperature until completion of the reaction (TLC in EtOAc-toluene 1:4). The reaction was diluted with water (300 mL) and 5% citric acid (20 mL), and extracted with EtOAc (2x100 mL). The organic phase was dried over Na₂SO₄, evaporated, and chromatographed on silica gel in 3→7% EtOAc in toluene to give the desired compound as a colorless oil. Yield 1.88 g (62%).
 - 4-Methoxy-4',4''-bis(3-carboxypropoxy)triphenylmethanol. To a stirred solution of 4,4'-bis[3-(tert-butyloxycarbonyl)propoxy]-4''-(4-methoxybenzoyl)tritanol (1.21 g; 2.0 mmol) in dry DCM (5 mL) trifluoroacetic acid (3 mL) was added in one portion and the mixture was stirred at ambient temperature for 3 h, then evaporated, and co-evaporated with DCM (4x50 mL) to give the desired

acid (988 mg, 100%). NMR (DMSO- d_6): 7.10–7.04 (m, 6H, ArH (phenyl)); 6.86–6.81 (m, 6H, ArH (phenyl)); 6.07 (s, 1H, OH); 3.93 (m, 4H, OCH₂); 3.72 (s, 3H, OCH₃); 2.40–2.30 (m, 4H, COCH₂); 1.95–1.85 (m, 4H, CH₂CH₂CH₂), 1.40 (s, 18H, CCH₃).

4-Methoxy-4',4''-bis{[3-(N-succinimidyl)oxycarbonyl]propoxy}triphenylmethanol. To a stirred solution of 4,4'-bis(3-carboxypropoxy)-4''-(4-methoxybenzoyl)tritanol (742 mg; 1.5 mmol) in dry DCM (20 mL) triethylamine (0.56 mL, 4.0 mmol) and N,N'-disuccinimidyl carbonate (1.27 g, 5.0 mmol) were added and the mixture was stirred overnight, then evaporated, dissolved in EtOAc (150 mL), washed with 5% NaHCO₃ (50 mL) and water (50 mL), dried over Na₂SO₄, evaporated, and the residue was purified by column chromatography (20 \rightarrow 30% EtOAc in toluene). Yield 826 mg (80%), white amorphous solid. R_f 0.18 (toluene–EtOAc, 1:1). NMR (DMSO- d_6): 7.10–7.04 (m, 6H, ArH (phenyl)); 6.88–6.81 (m, 6H, ArH (phenyl)); 6.09 (s, 1H, OH); 4.03 (t, 4H, J = 5.3 Hz, OCH₂); 3.73 (s, 3H, OCH₃); 2.87–2.77 (m, 12H, COCH₂CH₂CO, COCH₂); 2.11–2.03 (m, 4H, CH₂CH₂CH₂C).

Example 16

4,4'-Bis[3-(pentafluorophenyloxyacarbonyl)propoxy]-4''-methoxy-tritanol. This compound was made in the same way as the previous one except the pentafluorophenol was used instead of the N-hydroxysuccinimide. To a stirred solution of 4,4'-bis(3-carboxypropoxy)-4''-methoxy-tritanol (742 mg; 1.5 mmol) in dry DCM (20 mL) triethylamine (0.56 mL, 4.0 mmol) pentafluorophenyl carbonate (1.97 g, 5.0 mmol) were added and the mixture was stirred overnight, then evaporated, coevaporated with DCM and chromatographed on solica gel (5→10% EtOAc in toluene). Yield 980 mg (79%), dark red oil R_f 0.25 (toluene-EtOAc, 3:1).

 $L_M = -CH_2CH_2CH_2N(Me)-C(O)-CH_2-CH_2$

Example 17

- 3-[3-(N-Methyl-*tert*-butyloxycarbonylamino)propyn-1-yl]-4,4'-dimethoxybenzo-phenone. To a solution of 3-iodo-4,4'-dimethoxybenzophenone (1.84 g, 5.00 mmol) and N-methyl-N-Boc-propargylamine (1.35 g, 8.0 mmol) in DMF (50 mL) Pd(PPh₃)₄ (577 mg, 0.50 mmol), CuI (191 mg, 1.0 mmol), Et₃N (1.5 mL, 10.7 mmol) were successively added and the mixture was stirred overnight under Ar, then diluted with water (150 mL) and extracted with EtOAc (100 mL). The organic layer was washed with 0.1 M solution (NH₄)₂EDTA (3×50 mL), water (3×50 mL), and dried over Na₂SO₄. The residue was chromatographed on silica gel using 0→8% of EtOAc in toluene to give the desired compound as viscous yellowish oil (1.430 g, 70%).
- 3-[3-(N-Methyl-*tert*-butyloxycarbonylamino)propyl]-4,4'-dimethoxybenzophenone. To a solution of 3-[3-(N-Methyl-*tert*-butyloxycarbonylamino)propyn-1-yl]-4,4'-dimethoxybenzo-phenone (1.228 g, 3.0 mmol) in EtOAc (100 mL) 10%Pd/C (350 mg) was added and the mixture was hydrogenated for 24 h at ambient pressure. The mixture was filtered, evaporated and the residue was chromatographed on silica gel (0 to 10% gradient of EtOAc in toluene) to give the desired compound as a viscous colourless oil (920 mg, 74%). NMR (DMSO-*d*₆): 7.70 (d, 2H, *J* = 8.5 Hz, Ar*H*, H-2', 6'); 7.59 (dd, 1H, *J* = 8.6 Hz, ⁴*J* = 2.1 Hz, Ar*H*, H-6); 7.56 (d, 1H, ⁴*J* = 2.1 Hz, Ar*H*, H-2); 7.10 (d, 1H, *J* = 8.6 Hz, Ar*H*, H-5); 7.07 (d, 2H, *J* = 8.5 Hz, Ar*H*, H-3', 5'); 3.89 (s, 3H), 3.86 (s, 3H) (OC*H*₃); 3.19 (t, 2H, *J* = 7.3 Hz, ArC*H*₂); 2.76 (br.s, 3H, NC*H*₃); 2.56 (t, 2H, *J* = 7.3 Hz, NC*H*₂); 1.73 (m, 2H, ArCH₂C*H*₂); 1.33 (br.s, 9H, CC*H*₃).
- 3-[3-(N-Methyl-tert-butyloxycarbonylamino)propyl]-4-methoxyphenyl)methanol. To a solution of 3-[3-(N-Methyl-tert-butyloxycarbonylamino)propyl]-4,4'-dimethoxybenzophenone (827 mg, 2.0 mmol) in THF (20 mL) 0.5 M solution of 4-methoxyphenylmagnesium bromide in THF (5.0 mL, 2.5 mmol) was added in one portion. The mixture was kept at ambient temperature overnight, then quenched with water (1 mL), evaporated, the residue was partitioned between with saturated NaHCO₃ solution (150 mL) and EtOAc (150 mL). The organic layer was washed with water (2×100 mL) and dried over Na₂SO₄. The residue was chromatographed on silica gel in gradient of EtOAc in toluene (0 to 5%) with addition of 1% of Et₃N. Yield 876 mg (84%), yellowish foam.
- 3-[3-Iodoacetyl(methyl]aminopropyl)-4-methoxyphenyl-bis(4-methoxyphenyl)methanol. To a stirred solution of 3-{3-[tert-butyloxycarbonyl(methyl)amino]propyl}-4-methoxyphenyl-bis(4-methoxyphenyl)methanol (261 mg, 0.50 mmol) in dry DCM (2 mL) trifluoroacetic acid (2 mL) was added in one portion and the mixture was stirred at ambient temperature for 5 h, then evaporated, and co-evaporated with DCM (4×20 mL) to give desired amine as trifluoroacetic salt (orange solid). This was partitioned between toluene (150 mL) and 5% NaOH (150 mL). The organic phase was dried over Na₂SO₄ and evaporated. The residue was dissolved in dry THF (5 mL) iodoacetic acid *N*-oxysuccinimide ester (170 mg, 0.6 mmol) and DIEA (105 μL, 0.6 mmol) were added in one portion and the mixture was stirred at ambient temperature for 3 h, then evaporated, diluted with EtOAc (100

mL), washed with with 5% NaHCO₃ solution (50 mL), water (100 mL), dried over Na₂SO₄, and evaporated. The residue was chromatographed on silica gel in 5→15% EtOAc in toluene in the presence of 0.5% pyridine. Yield 221 mg (75%), yellowish foam.

$$L_M = -CH_2CH_2CH_2N(Me) - C(O) - CH_2CH_2-$$

5 Example 18

15

20

3-{3-[tert-Butyloxycarbonyl(methyl)amino]propyn-1-yl}-4,4'-dimethoxybenzo-phenone. To a solution of 3-iodo-4,4'-dimethoxybenzophenone (1.84 g, 5.00 mmol) and N-methyl-N-Boc-propargylamine (1.35 g, 8.0 mmol) in DMF (50 mL) Pd(PPh₃)₄ (577 mg, 0.50 mmol), CuI (191 mg, 1.0 mmol), Et₃N (1.5 mL, 10.7 mmol) were succesively added and the mixture was stirred overnight under Ar, then diluted with water (150 mL) and extracted with EtOAc (100 mL). The organic layer was washed with 0.1 M solution (NH₄)₂EDTA (3×50 mL), water (3×50 mL), and dried over Na₂SO₄. The residue was chromatographed on silica gel using 0→8% of EtOAc in toluene to give the desired compound as viscous yellowish oil (1.430 g, 70%).

3-{3-[tert-Butyloxycarbonyl(methyl)amino]propyl}-4,4'-dimethoxybenzophenone. To a solution of 3-{3-[tert-butyloxycarbonyl(methyl)amino]propyn-1-yl}-4,4'-dimethoxybenzo-phenone. (1.228 g, 3.0 mmol) in EtOAc (100 mL) 10%Pd/C (350 mg) was added and the mixture was hydrogenated for 24 h at ambient pressure. The mixture was filtered, evaporated and the residue was chromatographed on silica gel (0 to 100% gradient of EtOAc in toluene) to give the desired compound as a viscous colourless oil (920 mg, 74%).

3-{3-[tert-Butyloxycarbonyl(methyl)amino]propyl}-4-methoxyphenyl-bis(4-methoxyphenyl)methanol. To a solution of 3-{3-[tert-butyloxycarbonyl(methyl)amino]propyl}-4,4'-dimethoxybenzophenone (827 mg, 2.0 mmol) in THF (20 mL) 0.5 M solution of 4-methoxyphenylmagnesium bromide in THF (5.0 mL, 2.5 mmol) was added in one portion. The

mixture was kept at ambient temperature overnight, then quenched with water (1 mL), evaporated, the residue was partitioned between with saturated NaHCO₃ solution (150 mL) and EtOAc (150 mL). The organic layer was washed with water (2×100 mL) and dried over Na₂SO₄. The residue was chromatographed on silica gel in gradient of EtOAc in toluene (0 to 5%) with addition of 1% of Et₃N. Yield 876 mg (84%), yellowish foam.

3-(3-Methylaminopropyl)-4-methoxyphenyl-bis(4-methoxyphenyl)methanol.

To a stirred solution of 3-{3-[tert-butyloxycarbonyl(methyl)amino]propyl}-4-methoxyphenyl-bis(4-methoxyphenyl)methanol (782 mg, 1.50 mmol) in dry DCM (5 mL) trifluoroacetic acid (5 mL) was added in one portion and the mixture was stirred at ambient temperature for 5 h, then evaporated, and co-evaporated with DCM (4×20 mL) to give 780 mg (96%) of desired amine as trifluoroacetic salt (orange solid).

- 3-[3-Iodoacetyl(methyl]aminopropyl)-4-methoxyphenyl-bis(4-methoxyphenyl)methanol. To a stirred solution of 3-(3-methylaminopropyl)-4-methoxyphenyl-bis(4-methoxyphenyl)methanol trifluoroacetate (267 mg, 0.50 mmol) in dry THF (5 mL) iodoacetic acid N-oxysuccinimide ester (170 mg, 0.6 mmol) and DIEA (105 μL, 0.6 mmol) were added in one portion and the mixture was stirred at ambient temperature for 3 h, then evaporated, diluted with EtOAc (100 mL), washed with with 5% NaHCO₃ solution (50 mL), water (100 mL), dried over Na₂SO₄, and evaporated. The residue was chromatographed on silica gel in 5→15% EtOAc in toluene in the presence of 0.5% pyridine. Yield 221 mg (75%), yellowish foam.
- 3-(3-Maleimidopropyl)-4-methoxyphenyl-bis(4-methoxyphenyl)methanol. To a stirred solution of 3-(3-methylaminopropyl)-4-methoxyphenyl-bis(4-methoxyphenyl)methanol trifluoroacetate (267 mg, 0.50 mmol) in dry THF (5 mL) 3-maleimidopropionic acid N-oxysuccinimide ester (136 mg, 0.6 mmol) and DIEA (105 μL, 0.6 mmol) were added in one portion and the mixture was stirred at ambient temperature for 5 h, then evaporated, diluted with EtOAc (100 mL), washed with with 5% NaHCO₃ solution (50 mL), water (100 mL), dried over Na₂SO₄, and evaporated. The residue was chromatographed on silica gel in 5→25% EtOAc in toluene in the presence of 0.5% pyridine. Yield 202 mg (71%), yellowish foam.

Example 19

4-Iodophenyl-bis(4-methoxyphenyl)methanol. To a stirred and cooled to -70°C solution of 1,4-diiodobenzene (1.65 g, 5.0 mmol) in dry THF (50 mL) 1M BuLi in hexanes (10.0 mL, 10.0 mmol) was added dropwise within 30 min. The mixture was left for 1h at -70°C and the solution, then warmed to -40°C for 30 min and cooled to -70°C again. The solution of 4,4'-dimethoxybenzophenone (1.210 g, 5.0 mmol) in THF (50 mL) was added dropwise within 30 min.
The mixture was allowed to warm to room temperature and stirred overnight at ambient temperature. The solution was evaporated to dryness, the residue was dissolved in EtOAc (200 mL), washed with 5% NaHCO₃ (100 mL), water (2×200 mL), dried with Na₂SO₄, and evaporated. The residue was dissolved in toluene containing 1% Et₃N (10 mL) and the desired tritanol was isolated by a column chromatography using stepwise gradient 0→2→4% EtOAc in toluene containing 0.5% Et₃N. Yield
915 mg (41%), colourless oil. NMR (DMSO-d₆): 7.64 (d, 2H, J= 8.4 Hz, ArH); 7.07 (d, 4H, J= 8.8 Hz, ArH); 7.00 (d, 2H, J= 8.4 Hz, ArH); 6.84 (d, 4H, J= 8.8 Hz, ArH); 6.28 (s, 1H, OH); 3.73 (s, 6H, CH₃).

Methyl 4-iodophenyl-bis(4-methoxyphenyl)methyl ether. A solution of 4-iodophenyl-bis(4-methoxyphenyl)methanol (670 mg, 1.5 mmol) in toluene (5 mL) and acetyl chloride (5 mL) was refluxed for 4 h, then cooled to room temperature, diluted with hexanes (150 mL) and cooled to -18°C. The solvent was decanted and the residue was washed with hexane (30 mL), dissolved in dry DCM (5 mL) and added dropwise to a mixture of MeOH (2mL) and pyridine (10 mL). The mixture was stirred for 1 h, then diluted with EtOAc (150 mL), washed with 5% NaHCO₃ (2×100 mL), water (2×100 mL), dried with Na₂SO₄, and evaporated and coevaporated with toluene (100 mL). The residue was chromatographed on silica gel in toluene containing 0.5% Et₃N to give the title compound (545 mg, 79%) as a white foam.

Methyl 4-[(3-aminocarbonylpropoxy)dimethylsilyl]phenyl-bis(4-methoxyphenyl) methyl ether. A solution of methyl 4-iodophenyl-bis(4-methoxyphenyl)methyl ether (460 mg, 1.0 mmol) in THF

(10 mL) was cooled to -70°C and 1M BuLi in hexanes (1.1 mL, 1.1 mmol) was added dropwise within 10 min. The mixture was warmed and kept at -40°C for 1 h. The solution of dichlorodimethylsilane (130 mg, 1.0 mmol) in THF (2 mL) was added dropwise within 10 min. The mixture was allowed to warm to 0°C (approximately 1 h), and the solution of 4-hydroxybutyramide (206 mg, 2 mmol) in pyridine was added dropwise within 30 min. The mixture was allowed to warm to room temperature, evaporated, diluted with with EtOAc (100 mL), washed with 5% NaHCO₃ (2×50 mL), water (2×50 mL), dried with Na₂SO₄, and evaporated and coevaporated with toluene (100 mL). The residue was chromatographed on silica gel in 0→5→10% EtOAc in toluene containing 0.5% Et₃N to give the desired compound (235 mg, 48%) as a off white foam.

10 Group M

M = hydroxyl

Example 20

- 3-{4-[Ethoxy-bis(4-methoxyphenyl)methyl]phenyl}propionic acid, N-oxysuccinimide ester. 3-{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenyl}propionic acid, N-oxysuccinimide ester (978 mg, 2.0 mmol) was dissolved in ethyl acetate (50 mL) and absolute ethanol (5 mL). Triethyl orthoformiate (600 mg, 4 mmol) and acetyl chloride (25 μL) were added to the mixture and this was left with stirring overnight at ambient temperature. The mixture was evaporated and the residue was chromatographed on silica gel column in 30% EtOAc in toluene. Yield 724 mg (70%).
 - 3-{4-[Ethoxy-bis(4-methoxyphenyl)methyl]phenyl}propanol. 3-{4-[Ethoxy-bis(4-methoxyphenyl)methyl]phenyl}propionic acid, N-oxysuccinimide ester (517 mg, 1.0 mmol) was dissolved in methanol (5 mL) and sodium borohydride (190 mg, 5.0 mmol) was added in one portion. The mixture was left overnight, then evaporated, diluted with water (100 mL) and ethyl acetate (100 mL). The organic layer was separated and washed with 5% NaHCO₃ (100 mL), then dried over Na₂SO₄ and evaporated. The residue was chromatographed on silica gel in 5→15% EtOAc in toluene. Yield 390 mg (96%), colourless oil.

Example 21

Example 3 relates to compound 3a in which M is hydroxyl.

M = amino

Example 22

Examples 12 and 13 relate to compounds 12c and 13b in which M is amino.

M = methylamino

5 Example 23

Example 17 relates to compound 17b in which M is methylamino

 $M = carboxyl \ or \ NHS \ ester \ groups$

Example 24

- 4-{4-[Hydroxy-(4-dimethylaminophenyl)-phenyl-methyl]phenoxy}butanoic acid, tert-butyl ester. To a stirred solution of 4-[3-(tert-butyloxycarbonyl)propoxy]benzophenone (1.36 g; 4.0 mmol) in dry THF (30 mL) 0.5 M 4-dimethylaminophenylmagnesium bromide (10.0 mL, 5.0 mmol) was added in one portion under Ar, and the mixture was kept at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:9). The reaction was diluted with water (200 mL) and 5% NaHCO₃ (100 mL), and extracted with EtOAc (2×100 mL). The organic phase was dried over Na₂SO₄, evaporated, and chromatographed on silica gel in toluene with 1.0% of Et₃N to give the desired compound as a pinkish oil. Yield 1.809 g (98%). NMR (DMSO-d₆): 7.26 (m, 2H, ArH); 7.19 (m, 3H, ArH); 7.07 (d, 2H, J= 8.8 Hz, ArH); 6.96 (d, 2H, J= 8.8 Hz, ArH); 6.81 (d, 2H, J= 8.8 Hz, ArH); 6.62 (d, 2H, J= 8.8 Hz, ArH); 6.02 (s, 1H, OH); 3.94 (t, 2H, J= 6.3 Hz, OCH₂); 2.86 (s, 6H, NCH₃); 2.35 (t, 2H, J= 7.3 Hz, COCH₂); 1.91 (m, 2H, CH₂CH₂CH₂), 1.40 (s, 9H, CCH₃).
 - 4-{4-[Hydroxy-(4-dimethylaminophenyl)-phenyl-methyl]phenoxy}butanoic acid, N-oxysuccinimide ester. To a stirred solution of tert-butyl 4-{4-[hydroxy-(4-dimethylaminophenyl)-phenyl-methyl]phenoxy}butanoate (923 mg; 2.0 mmol) in dry DCM (3 mL) trifluoroacetic acid (3 mL) was added in one portion and the mixture was stirred at ambient temperature for 1 h, then evaporated, and co-evaporated with DCM (4×50 mL) to give the desired acid. This was dissolved in DCM (40 mL), water (2 mL) and Et₃N (5 mL), washed with water (2×50 mL), dried over Na₂SO₄, and evaporated to dryness. The residue was dissolved in DCM (15 mL), triethylamine (0.7 mL, 5.0

mmol) and *N*,*N*'-disuccinimidyl carbonate (0.77 g, 3 mmol) were added and the mixture was stirred until the reaction is complete (monitoring by TLC in toluene–EtOAc, 2:1), then evaporated, dissolved in EtOAc (100 mL), washed with 5% NaHCO₃ (100 mL) and water (100 mL), dried with Na₂SO₄, evaporated, and the residue was purified by column chromatography (5→10→15% EtOAc in toluene). Yield 458 mg (43%), pink amorphous solid. NMR (DMSO-*d*₆): 7.26 (m, 2H, Ar*H*); 7.19 (m, 3H, Ar*H*); 7.07 (d, 2H, *J* = 8.7 Hz, Ar*H*); 6.96 (d, 2H, *J* = 8.7 Hz, Ar*H*); 6.84 (d, 2H, *J* = 8.7 Hz, Ar*H*); 6.62 (d, 2H, *J* = 8.7 Hz, Ar*H*); 6.03 (s, 1H, O*H*); 4.02 (t, 2H, *J* = 6.3 Hz, OC*H*₂); 2.88–2.79 (m, 12H, NC*H*₃, CH₂CH₂CO, COC*H*₂C*H*₂CO); 2.06 (m, 2H, CH₂CH₂CH₂).

M = sulfoNHS ester

10 Example 25

3-{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenyl}propionic acid, N-oxysulfosuccinimide ester, sodium salt. The starting 1-(2-{4-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl}ethyl)-4-methyl-2,6,7-trioxabicyclo-[2.2.2]octane (0.96 g, 2.0 mmol) was hydrolysed as above (Example 1).

The crude acid obtained was dissolved in dry DMF (20 mL), then N-oxysulfosuccinimide sodium salt (435 mg, 2.0 mmol) and DCC (678 mg, 3.3 mmol) were added and the mixture was left under stirring overnight, cooled to +4°C, and the precipitate formed was filtered off. The solution was diluted with dry Et₂O (300 mL) and the desired compound was collected by filtration, washed with ether and dried *in vacuo*. Yield 793 mg (67%), brown solid, R_f 0.54 (n-propanol-EtOAc-water, 8:1:1).

M = amido

Example 26

Example 19 relates to compound 19e in which M is amido.

M = aliphatic or aromatic iodide

Example 27

Example 17 relates to compound 17c in which M is an aliphatic iodide.

Example 28

5

Tris(2,6-dimethoxyphenyl)carbenium tetrafluoroborate was prepared from 2,2',2",6,6',6"-hexamethoxytriphenylmethanol as described [Chem. Eur. J., 7(8), 1773–1783 (2001)], yield 96%.

10-(4-Iodophenyl)-9-(2,6-dimethoxyphenyl)acridinium tetrafluoroborate was prepared similar to known procedure for corresponding methyl derivative [Tetrahedron Lett., 44(1), 17–21 (2003)]. Tris(2,6-dimethoxyphenyl)carbenium tetrafluoroborate (250 mg, 0.49 mmol) and 4-iodoaniline (135 mg, 0.62 mmol) were suspended in 2,6-lutidine (2 mL). The mixture was refluxed for 2h under Ar, then cooled and diluted with ether-heptane (1:1, 30 mL). The precipitate was collected and washed with ether. The crude material (250 mg) was dissolved in MeCN (2 mL) and precipitated by succesive addition of ether (30 mL) and petroleum ether (15 mL). The precipitated oil was triturated to crystals in cooled petroleum ether. The crystalline solid was filtered off, washed with peproleum ether and dried *in vacuo*. Yield 209 mg (64%).

4-(4-Iodophenyl)-4-aza-8,12-dioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyrenium

tetrafluoroborate. 10-(4-Iodophenyl)-9-(2,6-dimethoxyphenyl)acridinium tetrafluoroborate (118 mg, 0.18 mmol) and pyridinium hydrochloride (3.0 g) was heated at 170–180°C for 2h and poored into ice/water (25 mL). 50% HBF₄ (2 mL) was added and the precipitate formed was filtered off, washed with water (10 mL), and dried in desiccator over P₄O₁₀ overnight. Yield 93 mg (91%). NMR (DMSO-d₆): 8.32–8.21 (m, 5H, H-2,6,10,3',5'); 7.73 (d, 4H, J=8.5 Hz, H-1,7,9,11); 7.49 (d, 2H, J=8.2 Hz, H-2',6'); 6.95 (d, 2H, J=8.5 Hz, H-3,5).

25 M = pentafluorophenyl ester

Example 29

Example 16 relates to compound 16a in which M is a pentafluorophenyl ester group.

M = maleimido group

Example 30

30 Example 18 relates to compound 18d in which M is a maleimido group.

Example 30A

15

20

3-[5-(2-Tetrahydropyranyl)oxypentyl]-4,4'-dimethoxybenzophenone. To a solution of 3-(5-hydroxypentyl)-4,4'-dimethoxybenzophenone (542 mg, 1.65 mmol) in DCM (10 mL) DHP (0.17 mL, 1.82 mmol) and TsOH·H₂O (16 mg, 0.08 mmol) were added and the mixture was stirred for 1.5 h at ambient temperature (TLC control in 10% EtOAc in toluene). Solid NaHCO₃ (0.5 g) was added and after 5 min the mixture was filtetred, evaporated, and the residue was chromatographed on silica gel (3% EtOAc and 1% Et₃N in toluene) to give the desired compound as a colorless oil (441 mg, 65%). NMR (DMSO-d₆): 7.78 (d, 2H, J= 8.5 Hz, H-2',6'); 7.63 (m, 2H, ⁴J_{2,6} = 1.8 Hz, H-2,6); 6.95 (d, 2H, J= 8.5 Hz, ArH, H-3',5'); 6.87 (d, 1H, J = 8.2 Hz, H-5); 4.56 (m, 1H, OCHO); 3.92–3.82 (m, 7H, CH₃, OCHH); 3.73 (m, 1H), 3.48 (m, 3H), 3.38 (m, 3H) (OCHH); 2.64 (t, 2H, J= 7.6 Hz, ArCH₂); 1.88–1.38 (m, 12H, OCH₂CH₂CH₂CH₂).

3-[5-(2-Tetrahydropyranyl)oxypentyl]-4,4',4''-trimethoxytritanol. To a solution of 3-[5-(2-tetrahydropyranyl)oxypentyl]-4,4'-dimethoxybenzophenone (363 mg, 0.88 mmol) in THF (5 mL) 1.6 M 4-methoxyphenylmagnesium bromide in THF (0.75 mL, 1.2 mmol) in one portion and the mixture was kept overnight at ambient temperature. The mixture was quenched by addition of water (1 mL) and evaporated. The residue was dissolved in EtOAc (30 mL), washed with 5% NaHCO₃ (2×10 mL), dried over Na₂SO₄ and evaporated. The desired compound was isolated by column chromatography on silica gel (5% EtOAc + 1% Et₃N in toluene). The desired compound was isolated as a colourless oil (304 mg, 66%).

5-{2-Methoxy-5-[methoxy-bis(4-methoxyphenyl)methyl]phenyl}pentanol. To a stirred solution of 3-[5-(2-tetrahydropyranyl)oxypentyl]-4,4',4"-trimethoxytritanol (304 mg; 0.58 mmol) in MeOH (20 mL) TsOH·H₂O (10 mg) was added, and the mixture was kept at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:9). Solid K₂CO₃ (300 mg) was added ant the mixture was evaporated and chromatographed on silica gel in 20% EtOAc + 1% Et₃N in toluene. Yield 254 mg (97%).

N-(5-{2-Methoxy-5-[methoxy-bis(4-methoxyphenyl)methyl]phenyl}pentyl)maleimide. To a stirred solution of 5-{2-methoxy-5-[methoxy-bis(4-methoxyphenyl)methyl]-phenyl}pentanol (206 mg; 0.46 mmol) in THF (5 mL) maleimide (49 mg, 0.50 mmol), PPh₃ (131 mg, 0.5 mmol) were added followed by DEAD (0.08 mL, 0.53 mmol). The mixture was kept at ambient temperature for 24 h (monitoring by TLC in Me₂CO-toluene 1:9), evaporated and chromatographed on silica gel in 2% EtOAc + 1% Et₃N in toluene. Yield 37 mg (6%).

M = aryldialkylsilyl chloride

Example 31

Example 19 relates to compound 19d in which M is a aryldialkylsilyl chloride group.

$10 \quad M = trityl group$

Example 32

1,6-Di(4-methoxybenzoyl)pyrene. To an ice-cooled solution of pyrene (5.06 g, 25 mmol) and 4-methoxybenzoyl chloride (9.20 g, 54 mmol) in dichloromethane (150 mL) powdered AlCl₃ (8.00 g, 60 mmol) was added in small portions within 30 min, so that internal reaction mixture temperature was not higher than 5°C. The mixture was allowed to warm to room temperature and was left to react for 2 days, then poured on ice (300 g) and conc. HCl (50 mL). DCM layer was separated, and aqueous phase was extracted with EtOAc (2×150 mL). Combined organic layers were washed with 5% NaHCO₃ (200 mL), water (200 mL), dried over CaCl₂ and evaporated. The residue was applied to a silica gel column and eluted with CHCl₃ with 0→10% EtOAc. Fractions containing di(4-methoxybenzoyl)pyrenes (several isomers) were combined, evaporated, and the residue was crystallized twice from EtOAc to give the desired compound as brownish yellow solid. Yield 440 mg (3.7%). NMR (CDCl₃): 8.32 (d, 2H, J = 9.2 Hz, H-5,10 (pyrene)); 8.23 (d, 2H, J = 7.8 Hz, H-2,7 (pyrene)); 8.11 (d, 2H, J = 9.2 Hz, H-4,9 (pyrene)); 8.08 (d, 2H, J = 7.8 Hz, H-3,8 (pyrene)); 7.88 (d, 2H, J = 8.7 Hz, ArH (phenyl)); 6.95 (d, 2H, J = 8.7 Hz, ArH (phenyl)); 3.88 (s, 6H, OCH₃).

1,6-Di[hydroxy-bis(4-methoxyphenyl)methyl]pyrene. To a suspension 1,6-di(4-methoxybenzoyl)pyrene (235 mg, 0.5 mmol) in dry THF (20 mL) the solution of 0.9 M 4-methoxyphenylmagnesium bromide (1.45 mL, 1.0 mmol) was added in one portion under argon, and the mixture was refluxed for 3h, then cooled and evaporated. The residue was partitioned between water (200 mL) and EtOAc (200 mL); the organic phase was dried over Na₂SO₄, evaporated, and the

residue was separated by column chromatography. The desired compound was obtained as a yellowish solid (46 mg, 13%). NMR (DMSO- d_6): 8.58 (d, 2H, J= 9.4 Hz, H-5,10 (pyrene)); 7.96 (d, 2H, J= 8.3 Hz, H-2,7 (pyrene)); 7.81 (d, 2H, J= 9.4 Hz, H-4,9 (pyrene)); 7.30 (d, 2H, J= 8.3 Hz, H-3,8 (pyrene)); 7.14 (d, 8H, J= 8.8 Hz, ArH (phenyl)); 6.87 (m, 10H, ArH (phenyl), OH); 3.74 (s, 5 12H, OC H_3).

M = ester group

Example 33

4-{4-[Hydroxy-(thiophen-2-yl)-(4-methoxyphenyl)-methyl]phenoxy}butanoic acid, *tert*-butyl ester. To a stirred solution of 4-[3-(*tert*-butyloxycarbonyl)propoxy]-4'-methoxybenzophenone (1.85 g; 5.0 mmol) in dry THF (50 mL) 1.0 M 2-thienylmagnesium bromide (7.5 mL, 7.5 mmol) was added in one portion under nitrogene, and the mixture was kept at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:9). After addition of water (10 mL) the reaction mixture was evaporated, dissolved in EtOAc (200 mL) and washed with 5% NaHCO₃ (3×100 mL). The solution was dried over Na₂SO₄, evaporated, and chromatographed on silica gel in toluene with 1.0% of Et₃N to give the desired compound as a violet oil. Yield 1.33 g (58%). NMR (DMSO-*d*₆): 7.40 (m, 1H, H-5 (thiophene)); 7.15 (m, 4H, Ar*H* (phenyl)); 6.93 (m, 1H, H-4 (thiophene)); 6.84 (m, 4H, Ar*H* (phenyl)); 6.62 (m, 1H, H-3 (thiophene)); 6.52 (s, 1H, O*H*); 3.94 (t, 2H, *J* = 6.4 Hz, OC*H*₂); 3.73 (s, 3H, OC*H*₃); 2.35 (t, 2H, *J* = 7.3 Hz, COC*H*₂); 1.91 (m, 2H, CH₂CH₂CH₂), 1.39 (s, 9H, CC*H*₃).

20 M = orthoester group

Example 34

4-{4-[Hydroxy-bis(4-methylthiophenyl)methyl]phenoxy}butyric acid, *N*-oxysuccinimide ester. To a stirred and coolled to -70°C mixture of THF (40 mL) and 0.9M BuLi in hexane (11.1 mL, 10 mmol) the solution of 1-[3-(4-Bromophenoxy)propyl]-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane (1.716 g, 5.0 mmol) in THF (50 mL) was added dropwise within 30 min. The mixture was left for 1h at -70°C and the solution of 4,4'-bis(methylthio)benzophenone (1.372 g, 5.0 mmol) in THF (50 mL) was added dropwise within 30 min. The mixture was allowed to warm to room temperature and stirred overnight at ambient temperature. The solution was evaporated to dryness, the residue was dissolved in EtOAc (200 mL), washed with 5% NaHCO₃ (2×200 mL), water (2×200 mL), dried with

Na₂SO₄, and evaporated. The residue was dissolved in toluene containing 1% Et_3N (10 mL) and the desired tritanol ortho ester was isolated by a column chromatography. The column was eluted with stepwise gradient $8\rightarrow12\rightarrow15\%$ EtOAc in toluene containing 1% Et_3N . The isolated 1-(3-{4-[hydroxy-bis(4-methylthiophenyl)methyl]phenyl}propoxy)-4-methyl-2,6,7-

trioxabicyclo[2.2.2]octane (810 mg, 1.5 mmol, 30% yield) was dissolved in the THF-water mixture (19:1, 10mL), and trifluoroacetic acid (0.08 mL, 1 mmol) was added. After stirring for 10 min the mixture was evaporated, the residue was dissolved with EtOAc (200 mL), washed with 5% NaHCO₃ (100 mL) and water (2x100 mL), dried over Na2SO4, evaporated, diluted with 10 % NaOH in ethanol-water (8:2, 10mL), stirred overnight, then evaporated, coevaporated with water (2x50 mL), dissolved in water (100 mL), washed with ether (2x100 mL), and then acidified with solid citric acid 10 to pH 4. The reaction mixture was extracted with EtOAc (2x100 mL), the combined organic layers were washed with water (50 mL), dried over Na₂SO₄ and evaporated to dryness. The resulting acid was dissolved in dry DCM (30 mL). Triethylamine (0.7 mL, 5 mmol) and N,N'-disuccinimidyl carbonate (0.51 g, 2.0 mmol) were added and the mixture was stirred until the reaction is complete (monitoring by TLC in toluene-EtOAc, 1:1), then evaporated, dissolved in EtOAc (200 mL), washed 15 with 5% NaHCO₃ (100 mL) and water (100 mL), dried with Na₂SO₄, evaporated, and the residue was purified by column chromatography (10 to 40% EtOAc in toluene). Yield 348 mg (42% from ortho ester), white amorphous solid. NMR (DMSO- d_6): 7.18 (d, 4H, J=8.5 Hz, ArH); 7.12 (d, 4H, J=8.5Hz, ArH); 7.07 (d, 2H, J = 8.9 Hz, ArH); 6.87 (d, 2H, J = 8.9 Hz, ArH); 6.27 (s, 1H, OH); 4.03 (t, 2H, J = 6.2 Hz, OC H_2); 2.87–2.79 (m, 6H, COC H_2 , COC H_2 CO); 2.45 (s, 6H, C H_3); 2.10–2.03 20 $(m, 2H, CH_2CH_2CH_2).$

M = phosphoramidite group

Example 35

Example 14 relates to compound 14c in which M is a phosphoramidite group.

25 $M = -NHNH_2$

Example 35A

6-{2-Methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl}hexanoic acid hydrazide. To a stirred solution of 6-{2-methoxy-5-[hydroxy-bis(4-methoxyphenyl)methyl]phenyl}hexanoic acid, N-oxysuccinimide ester (562 mg; 1.00 mmol) in THF (10 mL) hydrazine hydrate (120 mg, 2 mmol) was added in one portion and the mixture was stirred at ambient temperature for 1 h, then diluted

with water (100 mL). The gummy precipitate was washed with water by decantation (4×50 mL) and dried in evacuated desiccator over P_4O_{10} to give pure hydrazide as white solid. Yield 466 mg (97%). NMR (DMSO- d_6): 8.28 (br. s, 1H, CONH); 7.69 (d, 1H, J = 8.8 Hz, ArH); 7.08 (d, 4H, J = 8.8 Hz, ArH); 6.97 (d, 1H, $^4J = 2.1$ Hz, ArH); 6.92–6.81 (m, 5H, ArH); 6.00 (s, 1H, OH); 3.99 (br. s, 2H, NH₂); 3.88 (s, 3H), 3.85 (s, 6H) (OCH₃); 2.61 (t, 2H, J = 7.3 Hz), 2.46 (t, 2H, J = 7.6 Hz) (ArCH₂CH₂CH₂CH₂CH₂); 1.54 (m, 2H), 1.44 (m, 2H), 1.32 (m, 2H) (ArCH₂CH₂CH₂CH₂).

Example 35B

5-{2-Methoxy-5-[methoxy-bis(4-methoxyphenyl)methyl]phenyl}pentyl carbazate. To a stirred solution of 5-{2-methoxy-5-[methoxy-bis(4-methoxyphenyl)methyl]phenyl}pentanol (450 mg; 1.0 mmol) in DCM (20 mL) CDI (194 mg, 1.2 mmol) was added, and the mixture was stirred for 2 h at ambient temperature (monitoring by TLC in EtOAc-toluene 1:4). When formation of imidazolide is complete, hydrazine hydrate (100 μL) was added and the solution was stirred for 1 h, then diluted with water (150 mL), and extracted with toluene (3×50 mL). The combined organic layer was dried over Na₂SO₄, evaporated, dissolved in THF (10 mL), and 6 N HCl (200 μL) was added. The mixture was evaporated and coevaporated with toluene (3×50 mL) to give carbazate hydrochloride. Yield 466 mg (88%).

 $M = -ONH_2$

20

Example 35C

N-(5-{2-Methoxy-5-[methoxy-bis(4-methoxyphenyl)methyl]phenyl}pentyloxy)-phthalimide. To a stirred solution of 5-{2-methoxy-5-[methoxy-bis(4-methoxyphenyl)methyl]-phenyl}pentanol (206

mg; 0.46 mmol) in THF (5 mL) N-hydroxyphthalimide (82 mg, 0.50 mmol), PPh₃ (131 mg, 0.5 mmol) were added followed by DEAD (0.08 mL, 0.53 mmol). The mixture was kept at ambient temperature for 24 h (monitoring by TLC in Me₂CO-toluene 1:9), evaporated and chromatographed on silica gel in 1—4% EtOAc + 1% Et₃N in toluene. Yield 182 mg (66%).

O-(5-{2-Methoxy-5-[methoxy-bis(4-methoxyphenyl)methyl]phenyl}pentyl)-hydroxylamine. To a stirred solution of N-(5-{2-methoxy-5-[methoxy-bis(4-methoxyphenyl)methyl]phenyl}pentyloxy)phthalimide (120 mg; 0.20 mmol) in THF (2 mL) hydrazine hydrate (50 μL) was added and the solution was stirred for 48 h, then diluted with water (50 mL), and extracted with toluene (2×30 mL). The combined organic layer was dried over Na₂SO₄, evaporated, dissolved in THF (2 mL), and 6 N HCl (40 μL) was added. The mixture was evaporated and coevaporated with toluene (3×20 mL) to give pure hydroxylamine hydrochloride (87 mg, 90%).

M = adamantyl (a hydrophobic group)

Example 36

15

30

4-[2-(Adamantan-1-yl)ethoxy]benzophenone. In a round-bottom flask equipped with magnetic stirrer, room temperature water bath and dropping funnel 4-hydroxybenzophenone (1.98 g, 10 mmol), 1-adamantaneethanol (1.98 g, 11 mmol) and triphenylphosphine (3.15 g, 12 mmol) were dissolved in dry dioxane (50 mL). DIAD (2.46 ml, 12.5 mmol) was added dropwise within 20 min with stirring. The reaction mixture was heated to $40-45^{\circ}$ C until starting benzophenone is consumed according to TLC (CHCl₃-MeOH 9:1), then cooled to room temperature; the precipitate formed was filtered off, washed successively with cold dioxane and MeOH and dried *in vacuo*. The solid was purified by column chromatography on silica gel (eluation with benzene). The appropriate fractions were combined and evaporated. The residue was triturated in petroleum ether to give the desired product (1.91 g, 53%), colorless crystals, mp 96°C. R_f 0.17 (toluene), 0.57 (toluene-EtOAc, 9:1), 0.64 (toluene-EtOAc, 4:1). NMR (DMSO- d_6): 7.74 (d, 2H, J = 8.7 Hz, ArH); 7.70–7.62 (m, 3H, ArH); 7.55 (m, 2H, ArH); 7.07 (d, 2H, J = 8.7 Hz, ArH); 4.14 (t, 2H, J = 7.2 Hz, OC H_2); 1.93 (br. s, 3H, H-3,5,7 (adamantane)); 1.70–1.60 (m, 6H, H-4,6,10 (adamantane)); 1.58–1.50 (m, 8H, H-2,8,9 (adamantane), OCH₂C H_2).

4-[2-(Adamantan-1-yl)ethoxy]phenyl-(4-dimethylaminophenyl)-phenyl-methanol. To a stirred solution of 4-[2-(adamantan-1-yl)ethoxy]benzophenone (721 mg; 2.0 mmol) in dry THF (20 mL) 0.5 M 4-dimethylaminophenylmagnesium bromide (6.0 mL, 3.0 mmol) was added in one portion under Ar, and the mixture was kept at ambient temperature overnight (monitoring by TLC in EtOActoluene 1:9). The reaction was diluted with water (100 mL) and 5% NaHCO₃ (50 mL), and extracted with EtOAc (2×50 mL). The organic phase was dried over Na₂SO₄, evaporated, and chromatographed on silica gel in toluene with 1.0% of Et₃N to give the desired compound as a pink oil. Yield 684 mg (71%). NMR (DMSO-d₆): 7.26 (m, 2H, ArH); 7.20 (m, 3H, ArH); 7.06 (d, 2H, J= 8.8 Hz, ArH); 6.96 (d, 2H, J= 9.0 Hz, ArH); 6.80 (d, 2H, J= 9.0 Hz, ArH); 6.62 (d, 2H, J= 8.8 Hz, ArH); 6.01 (s, 1H, OH); 3.98 (t, 2H, J= 7.1 Hz, OCH₂); 2.86 (s, 6H, NCH₃); 1.92 (br. s, 3H, H-3,5,7 (adamantane)); 1.70–1.56 (m, 6H, H-4,6,10 (adamantane)); 1.55 (m, 6H, H-2,8,9 (adamantane)); 1.50 (m, 2H, OCH₂CH₂).

M = phenylalkyl (a hydrophobic group)

Example 37

15

4-{4-[Hydroxy-(4-dimethylaminophenyl)-(4-methoxyphenyl)-methyl]phenoxy}butanoic acid, 4-To a stirred solution of 4-{4-[hydroxy-(4-dimethylaminophenyl)-(4phenylbutylamide. methoxyphenyl)-methyl]phenoxy}butanoic acid (245 mg, 0.56 mmol) in dry DMF (10 mL) N,Ndiisopropylethylamine (145 µL, 0.84 mmol) and PyBOP (350 mg, 0.67 mmol) were subsequently 20 added. The mixture was stirred 10 min at ambient temperature, and 4-phenylbutylamine (167 μ L, 1.12 mmol) was added. The mixture was stirred then 1 h, diluted with EtOAc (200 mL), washed with water (4×100 mL), dried over Na₂SO₄, and chromatographed on silica gel in toluene with 10→15% of EtOAc and 0.5% Et₃N. The product was obtained as pale pink oil (275 mg), yield 86%. NMR (DMSO- d_6): 7.80 (m, 1H, NH); 7.30–7.10 (m, 5H, ArH); 7.06 (m, 4H, ArH); 6.95 (d, 2H, J = 8.8 Hz, 25 ArH); 6.80 (m, 4H, ArH); 6.61 (d, 2H, J = 8.8 Hz, ArH); 5.91 (s, 1H, OH); 3.91 (t, 2H, J = 6.3 Hz, OCH₂); 3.72 (s, 3H, OCH₃); 3.06 (m, 2H, NCH₂); 2.85 (s, 6H, NCH₃); 2.55 (m, 2H, PhCH₂); 2.20 (t, 2H, J = 7.3 Hz, COC H_2); 1.91 (m, 2H, COC H_2 C H_2), 1.54 (m, 2H, PhC H_2 C H_2), 1.39 (m, 2H, NCH_2CH_2).

4-{4-[Hydroxy-(4-dimethylaminophenyl)-(4-methoxyphenyl)-methyl]phenoxy} butanoic acid, 4-(acetylamino)butylamide. NMR (DMSO- d_6): 7.81 (m, 1H, NH); 7.77 (m, 1H, NH); 7.06 (m, 4H, ArH); 6.95 (d, 2H, J = 8.7 Hz, ArH); 6.81 (m, 4H, ArH); 6.61 (d, 2H, J = 8.7 Hz, ArH); 5.92 (s, 1H, OH); 3.92 (t, 2H, J = 6.4 Hz, OCH₂); 3.72 (s, 3H, OCH₃); 3.00 (m, 4H, NCH₂); 2.85 (s, 6H, NCH₃);

2.21 (t, 2H, J = 7.3 Hz, COC H_2); 1.91 (m, 2H, COC H_2 C H_2), 1.77 (s, 3H, COC H_3); 1.36 (m, 4H, NC H_2 C H_2 C H_2).

Ar1 and Ar2

 $Ar^{1}/Ar^{2} = 1$ -Pyrenyl

5 Example 38

10

15

1-(4-Methoxybenzoyl)pyrene. To an ice-cooled solution of recrystallized pyrene (5.06 g, 25 mmol) and 4-methoxybenzoyl chloride (4.60 g, 27 mmol) in dichloromethane (50 mL) powdered AlCl₃ (4.00 g, 30 mmol) was added in small portions within 30 min, so that internal reaction mixture temperature was not higher than 5°C. The mixture was allowed to warm to room temperature, then poured on ice (200 g) and conc. HCl (25 mL). DCM layer was separated, and aqueous phase was extracted with DCM (2×40 mL). Combined organic layers were washed with 5% NaHCO₃ (100 mL), water (100 mL), dried over CaCl₂ and evaporated. The residue was purified by column chromatography on silica gel in CHCl₃ with $0\rightarrow2\%$ EtOAc to give the desired compound as light yellow crystals, mp 153°C, (NMR (DMSO- d_6): 8.41–8.05 (m, 9H, H (pyrene)); 7.77 (d, 2H, J = 9.0 Hz, ArH (phenyl)); 7.06 (d, 2H, J = 9.0 Hz, ArH (phenyl)); 3.85 (s, 3H, CH₃).

1-(3-{4-[Hydroxy-4-methoxyphenyl-(pyren-1-yl)methyl]phenoxy}propyl)-4-methyl-2,6,7-

trioxabicyclo[2.2.2]octane was prepared using the above procedure for bis(methylthio) compound, yield 17%. NMR (DMSO- d_6): 8.60 (d, 1H, J= 9.6 Hz, H-10 (pyrene)); 8.25 (d, 1H, J= 7.6 Hz, H-6,8 (pyrene)); 8.17 (d, 1H, J= 7.6 Hz, H-6,8 (pyrene)); 8.14 (d, 1H, J= 9.0 Hz, H-2,3 (pyrene)); 8.10 (d, 1H, J= 9.0 Hz, H-2,3 (pyrene)); 8.08 (d, 1H, J= 8.0 Hz, H-4 or H-5 (pyrene)); 8.03 (t, 1H, J= 7.6

Hz, H-7 (pyrene)); 7.90 (d, 1H, J = 9.6 Hz, H-9 (pyrene)); 7.35 (d, 1H, J = 8.0 Hz, H-4 or H-5 (pyrene)); 7.17–7.10 (m, 4H, ArH (phenyl)); 6.90–6.82 (m, 4H, ArH (phenyl)); 3.96–3.90 (m, 2H, ArOC H_2); 3.81 (s, 6H, OC H_2); 3.74 (s, 3H, OC H_3); 1.83–1.68 (m, 4H, OC H_2 C H_2 C H_2); 0.74 (s, 3H, C H_3). This was then hydrolysed and converted to 4-{4-[Hydroxy-4-methoxyphenyl-(pyren-1-yl)methyl]phenoxy} butyric acid, N-oxysuccinimide ester, 46% yield from ortho ester. NMR (DMSO- d_6): 8.62 (d, 1H, J = 9.4 Hz, H-10 (pyrene)); 8.17 (d, 1H, J = 7.6 Hz, H-6,8 (pyrene)); 8.15 (d, 1H, J = 7.6 Hz, H-6,8 (pyrene)); 8.14 (d, 1H, J = 9.0 Hz, H-2,3 (pyrene)); 8.08 (d, 1H, J = 8.0 Hz, H-4 or H-5 (pyrene)); 8.03 (t, 1H, J = 7.6 Hz, H-7 (pyrene)); 7.91 (d, 1H, J = 9.4 Hz, H-9 (pyrene)); 7.36 (d, 1H, J = 8.2 Hz, H-4 or H-5 (pyrene)); 7.19–7.13 (m, 4H, ArH (phenyl)); 6.92–6.85 (m, 4H, ArH (phenyl)); 4.04 (t, 2H, J = 6.1 Hz, OC H_2); 3.75 (s, 3H, C H_3); 2.88–2.78 (m, 6H, COC H_2 , COC H_2 CO); 2.12–2.04 (m, 2H, CH $_2$ CH $_2$ C).

Example 39

10

9-Hydroxy-3-methoxy-9-(pyren-1-yl)thioxantene. 1-Bromopyrene (1.12 g, 4.00 mmol) was dissolved in THF (40 mL), cooled to -80°C, and the solution of t-BuLi in pentane (1.4 M, 6 mL, 2.2 mmol) was added dropwise followed by 3-methoxyxanthen-9-one (968 mg, 4.00 mmol) in THF (40 mL). The mixture was allowed to warm to room temperature and the stirring was continued for 24 h. The mixture was quenched by addition of water (20 mL) and evaporated to 50 mL, and extracted with EtOAc (100 mL). The organic solution was washed with water (2×50 mL) and brine (50 mL), dried over Na₂SO₄, evaporated, and the residue was chromatographed on silica gel (1% Et₃N in toluene). Yield 944 mg (53%), pink foam. NMR (DMSO-d₆): 8.92 (d, 1H, J = 8.2 Hz, ArH); 8.46 (d, 1H, J = 8.0 Hz, ArH); 8.24 (m, 2H, ArH); 8.16 (m, 1H, ArH); 8.07 (m, 1H, ArH); 7.99 (m, 1H, ArH); 7.75 (d, 1H, J = 9.4 Hz, ArH); 7.49 (m, 2H, ArH); 7.20 (m, 1H, ArH); 7.05 (d, 2H, ⁴J = 2.7 Hz, ArH); 6.91 (m, 1H, ArH); 6.79 (m, 1H, ArH); 6.68 (d, 1H, J = 8.8 Hz, ArH); 6.57 (s, 1H, OH); 6.51 (dd, 1H, ⁴J = 2.7 Hz, J = 8.8 Hz, ArH); 3.72 (s, 6H, OCH₃).

Example 40

1,6-Di(4-methoxybenzoyl)pyrene. To an ice-cooled solution of pyrene (5.06 g, 25 mmol) and 4-methoxybenzoyl chloride (9.20 g, 54 mmol) in dichloromethane (150 mL) powdered AlCl₃ (8.00 g, 60 mmol) was added in small portions within 30 min, so that internal reaction mixture temperature was not higher than 5°C. The mixture was allowed to warm to room temperature and was left to react for 2 days, then poured on ice (300 g) and conc. HCl (50 mL). DCM layer was separated, and aqueous phase was extracted with EtOAc (2×150 mL). Combined organic layers were washed with 5% NaHCO₃ (200 mL), water (200 mL), dried over CaCl₂ and evaporated. The residue was applied to a silica gel column and eluted with CHCl₃ with $0\rightarrow10\%$ EtOAc. Fractions containing di(4-methoxybenzoyl)pyrenes (several isomers) were combined, evaporated, and the residue was crystallized twice from EtOAc to give the desired compound as brownish yellow solid. Yield 440 mg (3.7%). NMR (CDCl₃): 8.32 (d, 2H, J = 9.2 Hz, H-5,10 (pyrene)); 8.23 (d, 2H, J = 7.8 Hz, H-2,7 (pyrene)); 8.11 (d, 2H, J = 9.2 Hz, H-4,9 (pyrene)); 8.08 (d, 2H, J = 7.8 Hz, H-3,8 (pyrene)); 7.88 (d, 2H, J = 8.7 Hz, ArH (phenyl)); 6.95 (d, 2H, J = 8.7 Hz, ArH (phenyl)); 3.88 (s, 6H, OCH₃).

1,6-Di[hydroxy-bis(4-methoxyphenyl)methyl]pyrene. To a suspension 1,6-di(4-methoxybenzoyl)pyrene (235 mg, 0.5 mmol) in dry THF (20 mL) the solution of 0.9 M 4-methoxyphenylmagnesium bromide (1.45 mL, 1.0 mmol) was added in one portion under argon, and the mixture was refluxed for 3h, then cooled and evaporated. The residue was partitioned between water (200 mL) and EtOAc (200 mL); the organic phase was dried over Na₂SO₄, evaporated, and the residue was separated by column chromatography. The desired compound was obtained as a yellowish solid (46 mg, 13%). NMR (DMSO- d_6): 8.58 (d, 2H, J = 9.4 Hz, H-5,10 (pyrene)); 7.96 (d, 2H, J = 8.3 Hz, H-2,7 (pyrene)); 7.81 (d, 2H, J = 9.4 Hz, H-4,9 (pyrene)); 7.30 (d, 2H, J = 8.3 Hz, H-3,8 (pyrene)); 7.14 (d, 8H, J = 8.8 Hz, ArH (phenyl)); 6.87 (m, 10H, ArH (phenyl), OH); 3.74 (s, 12H, OCH₃).

Example 41

10

15

20

25

 $\hbox{$6-\{2-Methoxy-5-[hydroxy-(4-methoxyphenyl)-(1-pyrenyl)-methyl]phenyl}$ hexanoic $$ acid, $$ tert-butyl ester.$

To a stirred and coolled to -75°C mixture of 1.4M tert-BuLi in pentane (2.40 mL, 3.32 mmol) and THF (20 mL) the solution of 1-bromopyrene (467 mg, 1.66 mmol) in THF (20 mL) was added. The temperature was raised to -40°C, then lowered again to -75°C, and the solution of 3-[5-(tertbutyloxycarbonyl)pentyl]-4,4'-dimethoxybenzophenone (685 mg, 1.66 mmol) in THF (40 mL) was 5 added dropwise. The mixture was allowed to warm to room temperature and stirred overnight at ambient temperature. The solution was poured into water (150 mL), extracted with ETOAc (100 mL). Organic layer was washed with 5% NaHCO₃ (2×150 mL), water (100 mL), dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography (toluene). Yield 750 mg (73%), yellowish foam. NMR (DMSO- d_6): 8.61 (d, 1H, J = 9.6 Hz, H-10 (pyrene)); 8.24 (d, 1H, J = 7.1 Hz), 10 8.17 (m, 1H) (H-6,8 (pyrene)); 8.11 (m, 2H, H-4,5 (pyrene)); 8.08 (m, 1H, H-2 or H-3 (pyrene)); 8.02 (t, 1H, J = 7.6 Hz, H - 7 (pyrene)); 7.90 (d, 1H, J = 9.6 Hz, H - 9 (pyrene)); 7.36 (d, 1H, J = 8.2Hz, H-3 or H-2 (pyrene)); 7.16 (d, 2H, J = 8.8 Hz, H - 2'', 6''); 7.08 (d, 1H, $^4J = 2.3$ Hz, H - 2'); 6.93 (dd, 1H, J = 8.6 Hz, ${}^{4}J = 2.3$ Hz, H - 6'); 6.87 (d, 2H, J = 8.8 Hz, H - 3'', 5''); 6.86 (d, 1H, J = 8.6 Hz, H - 5'); 6.82 (s, 1H, OH); 3.76 (s, 3H), 3.74 (s, 3H) (OCH₃); 2.45 (m, 2H, ArCH₂); 2.01 (t, 2H, J = 7.4 Hz, 15 COCH₂); 1.46–1.36 (m, 4H, ArCH₂CH₂CH₂CH₂CH₂); 1.35 (s, 9H, CCH₃); 1.12 (m, 2H, ArCH₂CH₂CH₂). 6-{2-Methoxy-5-[hydroxy-(4-methoxyphenyl)-(1-pyrenyl)-methyl]phenyl}hexanoic oxysuccinimide ester.

To a stirred solution of tert-butyl ester of 6-{2-methoxy-5-[hydroxy-(4-methoxyphenyl)-(1-pyrenyl)methyl]phenyl}hexanoic acid (730 mg; 1.19 mmol) in dry DCM (5 mL) trifluoroacetic acid (5 mL) was added in one portion and the mixture was stirred at ambient temperature for 3 h, then evaporated, and co-evaporated with DCM (3×20 mL) to give free acid. Product were dissolved in THF (40 mL), and triethylamine (495 µL, 3.57 mmol) and N,N'-disuccinimidyl carbonate (460 mg, 1.79 mmol) were added and the mixture was stirred overnight, then evaporated, dissolved in EtOAc (100 mL), washed with 5% NaHCO₃ (50 mL) and water (50 mL), dried over Na₂SO₄, evaporated, and the residue was purified by column chromatography (0-20% EtOAc in toluene). Yield 520 mg (67%), 6-{2-Methoxy-5-[hydroxy-(4-methoxyphenyl)-(1-pyrenyl)amorphous solid. yellowish methyl]phenyl}hexanoic acid, N-oxysuccinimide ester. NMR (DMSO- d_6): 8.61 (d, 1H, J = 9.6 Hz, H-10 (pyrene)); 8.24 (d, 1H, J = 7.1 Hz, ArH (pyrene)); 8.20–8.06 (m, 4H, ArH (pyrene)); 8.02 (t, 1H, J = 7.6 Hz, H - 7 (pyrene)); 7.90 (d, 1H, J = 9.6 Hz, H - 9 (pyrene)); 7.36 (d, 1H, J = 8.2 Hz, ArH(pyrene)); 7.16 (m, 2H, H-2",6"); 7.10 (d, 1H, 4J = 2.3 Hz, H-2"); 6.92 (dd, 1H, J = 8.7 Hz, 4J = 2.3 Hz, H-6'); 6.87 (d, 2H, J= 8.9 Hz, H-3",5"); 6.85 (d, 1H, J= 8.7 Hz, H-5'); 6.81 (s, 1H, OH); 3.76 (s, 3H), 3.74 (s, 3H) (OCH₃); 2.80 (s, 4H, COCH₂CH₂CO); 2.48 (m, 2H, ArCH₂, COCH₂); 1.52 (m, 2H), 1.45 (m, 2H), 1.23 (m, 2H) ArCH₂CH₂CH₂CH₂).

 $Ar^{1}/Ar^{2} = 2$ -Pyrenyl

35 Example 42

2-Bromopyrene was prepared according to published procedure (Harwey R.G. et al., Synth. Commun., 18(18), 2207-2209 (1988).

 $6-\{2-Methoxy-5-[hydroxy-(4-methoxyphenyl)-(2-pyrenyl)-methyl]$ hexanoic acid, tert-butyl ester.

To a stirred and cooled to -75°C mixture of 1.4M tert-BuLi in pentane (1.70 mL, 2.35 mmol) and THF (15 mL) the solution of 2-bromopyrene (326 mg, 1.16 mmol) in THF (15 mL) was added. The temperature was raised to -40°C, then lowered again to -75°C, and the solution of 3-[5-(tert-butyloxycarbonyl)pentyl]-4,4'-dimethoxybenzophenone (480 mg, 1.16 mmol) in THF (30 mL) was added dropwise. The mixture was allowed to warm to room temperature and stirred overnight at ambient temperature. The solution was poured into water (150 mL), extracted with ETOAc (100 mL). Organic layer was washed with 5% NaHCO₃ (2×100 mL), water (100 mL), dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography (toluene). Yield 450 mg (63%), yellow foam.

 $6-\{2-Methoxy-5-[hydroxy-(4-methoxyphenyl)-(2-pyrenyl)-methyl]$ hexanoic acid, N- oxysuccinimide ester.

To a stirred solution of *tert*-butyl ester of 6-{2-methoxy-5-[hydroxy-(4-methoxyphenyl)-(2-pyrenyl)-methyl]phenyl}hexanoic acid (400 mg; 0.651 mmol) in dry DCM (5 mL) trifluoroacetic acid (5 mL) was added in one portion and the mixture was stirred at ambient temperature for 3 h, then evaporated, and co-evaporated with DCM (3×15 mL) to give free acid. Product were dissolved in THF (30 mL), and triethylamine (280 μL, 2.00 mmol) and *N,N'*-disuccinimidyl carbonate (250 mg, 0.973 mmol) were added and the mixture was stirred overnight, then evaporated, dissolved in EtOAc (100 mL), washed with 5% NaHCO₃ (40 mL) and water (40 mL), dried over Na₂SO₄, evaporated, and the residue was purified by column chromatography (0→20% EtOAc in toluene). Yield 162 mg (38%), yellowish amorphous solid.

Ar1/Ar2 = 4-Pyrenyl

25 Example 43

4-Bromopyrene was prepared as described from 1,2,3,6,7,8-hexahydropyrene (JOC, 44 (1979), No. 13, 2158-2160)

4-Bromo-1,2,3,6,7,8-hexahydropyrene.

To a suspension of 1,2,3,6,7,8-hexahydropyrene (6.06g, 29.1 mmol) in AcOH (75 mL) a solution of bromine (1.57 mL, 30 mmol) in AcOH (75 mL) was added dropwise within 1 h. The mixture was kept at room temperature for 30 min, then heated to 100°C (the precipitate dissolves), then cooled and diluted with water (75 mL). The solid was filtered off and dried. Yield ca 90%.

4-Bromopyrene. To a solution 4-bromo-1,2,3,6,7,8-hexahydropyrene (2.01 g, 7.0 mmol) in toluene (135 mL) DDQ (5.30 g, 23 mmol) was added in one portion, the flask was flushed with argon and the mixture was refluxed for 20 min, then cooled and filtered. The solution was washed with 10% NaOH (30mL), water (50 mL), and dried over CaCl₂, then evaporated and the residue was flash chromatographed on silica gel in toluene. Yield 1.14 g (58%).

6-{2-Methoxy-5-[hydroxy-(4-methoxyphenyl)-(4-pyrenyl)-methyl]phenyl}hexanoic acid, tertbutyl ester.

To a stirred and cooled to -75°C mixture of 1.4M tert-BuLi in pentane (2.40 mL, 3.32 mmol) and THF (20 mL) the solution of 1-bromopyrene (467 mg, 1.66 mmol) in THF (20 mL) was added. The temperature was raised to -40°C, then lowered again to -75°C, and the solution of 3-[5-(tert-butyloxycarbonyl)pentyl]-4,4'-dimethoxybenzophenone (685 mg, 1.66 mmol) in THF (40 mL) was added dropwise. The mixture was allowed to warm to room temperature and stirred overnight at ambient temperature. The solution was poured into water (150 mL), extracted with ETOAc (100 mL). Organic layer was washed with 5% NaHCO₃ (2×150 mL), water (100 mL), dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography (toluene). Yield 610 mg (60%), yellow foam. NMR (DMSO-d₆): 8.66 (d, 1H, J = 8.0 Hz, H-3 (pyrene)); 8.25 (dd, 1H, J = 7.1 Hz, ⁴J = 1.6 Hz, H-6 or H-8 (pyrene)); 8.16 (d, 1H, J = 7.1 Hz, H-1 (pyrene)); 8.14 (m, 2H, J = 9.1 Hz, H-25 (pyrene)); 7.99–7.93 (m, 2H, H-7, H-8 or H-6 (pyrene)); 7.80 (t, 1H, J = 7.9 Hz, H-2 (pyrene)); 7.42 (s, 1H, H-5 (pyrene)); 7.26 (d, 2H, J = 8.2 Hz, H-2",6''); 7.18 (m, 1H, H-2'); 7.03 (d, 1H, J = 8.2

Hz, H-6'); 6.88 (d, 2H, J = 8.2 Hz, H-3",5"); 6.86 (d, 1H, J = 8.7 Hz, H-5'); 6.76 (s, 1H, OH); 3.76 (s, 3H), 3.75 (s, 3H) (OC H_3); 2.46 (m, 2H, ArC H_2); 2.03 (t, 2H, J = 7.4 Hz, COC H_2); 1.47–1.35 (m, 4H, ArCH₂CH₂CH₂CH₂); 1.34 (s, 9H, CCH₃); 1.13 (m, 2H, ArCH₂CH₂CH₂).

6-{2-Methoxy-5-[hydroxy-(4-methoxyphenyl)-(4-pyrenyl)-methyl]phenyl}hexanoic acid. Noxysuccinimide ester.

To a stirred solution of tert-butyl ester of 6-{2-methoxy-5-[hydroxy-(4-methoxyphenyl)-(4-pyrenyl)methyl]phenyl}hexanoic acid (600 mg; 0.976 mmol) in dry DCM (5 mL) trifluoroacetic acid (5 mL) was added in one portion and the mixture was stirred at ambient temperature for 3 h, then evaporated, and co-evaporated with DCM (3×20 mL) to give free acid. Product were dissolved in THF (40 mL), and triethylamine (410 µL, 2.93 mmol) and N,N'-disuccinimidyl carbonate (375 mg, 1.46 mmol) were added and the mixture was stirred overnight, then evaporated, dissolved in EtOAc (100 mL), washed with 5% NaHCO3 (50 mL) and water (50 mL), dried over Na2SO4, evaporated, and the residue was purified by column chromatography (0→20% EtOAc in toluene). Yield 230 mg (36%), yellowish 6-{2-Methoxy-5-[hydroxy-(4-methoxyphenyl)-(4-pyrenyl)amorphous solid. 15 methyl]phenyl}hexanoic acid, N-oxysuccinimide ester. NMR (DMSO- d_6): 8.67 (d, 1H, J = 8.0 Hz, *H*-3 (pyrene)); 8.24 (dd, 1H, J = 6.6 Hz, ${}^4J = 1.8$ Hz, *H*-6 or *H*-8 (pyrene)); 8.17 (d, 1H, J = 7.6 Hz, H-1 (pyrene)); 8.14 (m, 2H, H-9,10 (pyrene)); 7.96 (m, 2H, H-7, H-8 or H-6 (pyrene)); 7.81 (t, 1H, J = 7.9 Hz, H-2 (pyrene)); 7.44 (s, 1H, H-5 (pyrene)); 7.27 (d, 2H, J= 8.2 Hz, H-2",6"); 7.20 (m, 1H, H-2'); 7.05 (m, 1H, H-6'); 6.89 (d, 2H, J=8.9 Hz, H-3",5"); 6.87 (d, 1H, J=8.6 Hz, H-5'); 6.77 (s, 1H, OH); 3.77 (s, 3H), 3.75 (s, 3H) (OCH₃); 2.79 (s, 4H, COCH₂CH₂CO); 2.49 (m, 2H, ArCH₂, COCH₂); 1.53 (m, 2H), 1.45 (m, 2H), 1.23 (m, 2H) ArCH₂CH₂CH₂CH₂).

Ar1/Ar2 = cyclopropyl

Example 44

10

20

4-Chloro-4'-methoxybutyrophenone. To a stirred, ice cooled solution of anisole (5.41 g, 50 mmol) 25 and 4-chlorobutyryl chloride (7.8 g, 55 mmol) in dry DCM (200 mL) anhydrous AlCl₃ (7.60 g, 57 mmol) was added within 1 h maintaining the temperature below 5°C. The mixture was allowed to warm to 15°C (2 h), and then was poured on ice (300 g). Conc. HCl (10 mL) was added, the organic layer was separated, washed with 5% NaHCO3 (200 mL), dried over CaCl2, and evaporated. The residue was purified by column chromatography in toluene to give the desired ketone as a colourless oil which solidifies on storage (9.55g, 90%).

Cyclopropyl-(4-methoxyphenyl)-ketone. To a solution of 4-chloro-4'-methoxybutyrophenone (2.13 g, 10 mmol) in dry THF (50 mL) potassium tert-butoxide (1.23 g, 11 mmol) was added and the mixture was refluxed for 1h, then cooled and evporated. The residue was dissolved in EtOAc (100 mL), washed with 5% citric acid (50 mL) and water (50 mL), dried over CaCl₂, and evaporated. The residue was purified by column chromatography in toluene to give the desired ketone as a colourless crystalline solid (1.34g, 76%).

(2,4-Dimethoxyphenyl)-cyclopropyl-(4-methoxyphenyl)-methanol. To a solution of cyclopropyl-(4-methoxyphenyl)-ketone (176 mg, 1.0 mmol) in dry THF (10 mL) 0.5 M 2,4-dimethoxyphenylmagnesium bromide in THF (2.5 mL, 1.25 mmol) was added dropwise within 15 min via a suringe under Ar. The mixture was kept at ambient temperature for 3h. TLC (3% EtOAc in toluene showed the starting compound is consumed. The mixture was quenched by addition of water (1 mL) and evaporated. The residue was dissolved in EtOAc (100 mL), washed with 5% NaHCO₃ (2×50 mL), dried over NaHCO₃ and evaporated. The desired compound was isolated by column chromatography on silica gel (0→1% EtOAc in toluene). Yield 302 mg (96 colourless crystalline solid.

 $Ar^{1}/Ar^{2} = Phenyl$

15 <u>Example 45</u>

Example 24 relates to compounds 24a, 24b and 24c in which Ar¹ and Ar² are phenyl groups.

 $Ar^{1}/Ar^{2} = 9$ -acridinium

Example 46

Example 28 relates to compound 28c in which Ar¹ and Ar² is a 9-acridinium group.

 $20 \quad Ar^{1}/Ar^{2} = 4-Aza-8, 12-dioxa-4, 8, 12, 12c-tetrahydrodibenzo[cd,mn]pyrenium$

Example 47

4-[4-(5-tert-Butyloxycarbonylpentyn-1-yl)phenyl]-4-aza-8,12-dioxa-4,8,12,12c-

tetrahydrodibenzo[cd,mn]pyrenium tetrafluoroborate. To a solution of 4-(4-iodophenyl)-4-aza-8,12-dioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyrenium tetrafluoroborate (34 mg, 0.06 mmol; see Example RFG9 in Section 2) in DMF (2.0 mL) tert-butyl 5-hexynoate (42 mg, 0.23 mmol), triethylamine (20 μL, 0.13 mmol), Pd(PPh₃)₄ (14 mg, 0.012 mmol) and CuI (10 mg, 0.04 mmol) were added, and the reaction mixture was stirred for 24 h at room temperature under Ar. The reaction was monitored by TLC in 25% MeOH in DCM. Then the mixture was diluted with ether (15 mL), the precipitate was filtered off and purified by preparative TLC eluted with 20% MeOH in CHCl₃. Yield

19 mg (52%). NMR (DMSO- d_6): 8.28 (t, 1H, J = 8.5 Hz, H-10); 8.25 (t, 2H, J = 8.5 Hz, H-2,6); 7.91 (d, 2H, J = 8.5 Hz, ArH (C₆H₄)); 7.74 (d, 4H, J = 8.5 Hz, H-1,7,9,11); 7.67 (d, 2H, J = 8.5 Hz, ArH (C₆H₄)); 6.93 (d, 2H, J = 8.5 Hz, H-3,5); 2.56 (t, 2H, J = 7.1 Hz), 2.42 (t, 2H, J = 7.4 Hz), (C H_2 CH₂CH₂); 1.83 (m, 2H, CH₂CH₂CH₂); 1.43 (s, 9H, C H_3).

5 $Ar^{1}/Ar^{2} = Thioxanthen-9-yl$

Example 48

3-[4-(9-Hydroxythioxanthen-9-yl)phenyl] propionic acid, N-oxysuccinimide ester was prepared from alkyl orthoester and thioxanthone. NMR (DMSO- d_6): 8.02 (d, 2H, J=7.8 Hz, ArH (thioxanthene)); 7.46–7.38 (m, 4H, ArH (thioxanthene)); 7.35–7.28 (m, 2H, ArH (thioxanthene)); 7.07 (d, 2H, J=8.2 Hz, ArH (phenyl)); 6.78 (m, 2H, ArH (phenyl)); 5.75 (s, 1H, OH); 2.93–2.86 (m, 2H, Ar H_2); 2.85–2.74 (m, 6H, Ar H_2 C H_2 , COC H_2 C H_2 CO).

A byproduct, 2,2-bis(9-{4-[2-(N-succinimidyloxycarbonyl)ethyl]phenyl}thioxanthen-9-yloxymethyl)propanol, was isolated and its structure was confirmed by NMR (DMSO- d_6): 7.39 (d, 5 4H, J = 7.8 Hz, ArH); 7.30–7.23 (m, 8H, ArH); 7.18–7.05 (m, 12H, ArH); 4.35 (t, 1H, J = 4.9 Hz, OH); 3.33 (m, 2H, C H_2 OH); 2.97–2.85 (m, 2H, Ar H_2 C H_2 C H_2 C), 0.93 (s, 3H, C H_3).

 $Ar^{1}/Ar^{2} = Xanthen-9-yl$

Example 49

3-[4-(9-Hydroxy-6-methoxyxanthen-9-yl)phenyl] propionic acid, N-oxysuccinimide ester (49a) was prepared from alkyl orthoester and xanthone as described above. NMR (DMSO- d_6): 8.02 (d, 2H, J=7.8 Hz, ArH (thioxanthene)); 7.46–7.38 (m, 4H, ArH (thioxanthene)); 7.35–7.28 (m, 2H, ArH

(thioxanthene)); 7.21 (d, 2H, J = 8.2 Hz, ArH (phenyl)); 6.92 (m, 2H, ArH (phenyl)); 5.75 (s, 1H, OH); 3.41 (s, 3H, OC H_3), 2.93–2.86 (m, 2H, ArC H_2); 2.85–2.74 (m, 6H, ArC H_2 C H_2 CO H_3 CO

 $Ar^{1}/Ar^{2} = Thiophen-2-yl$

5 Example 50

20

4,4'-Bis[3-(tert-butyloxycarbonyl)propoxy]benzophenone. Sodium (1.15 g, 50 mmol) was dissolved in MeOH and the resulting solution of MeONa was added to a solution of 4,4'-dihydroxybenzophenone (4.24 g, 20 mmol) in methanol (50 mL). The mixture was evaporated to dryness, the residue was dissolved in HMPA (30 mL) and tert-butyl 4-chlorobutyrate (8.04 g, 45 mmol) was added in one portion. The mixture was heated at 100°C for 5 h, then cooled, diluted with water (300 mL) and extracted with EtOAc (2x200 mL). The combined organic layers were washed with water (5x100 mL), dried over Na₂SO₄, and evaporated. The residue was chromatographed on silica gel in 2→5% EtOAc in toluene to give the desired compound as white crystalline solid, mp 92°C. Yield 5.49 g (55%). NMR (DMSO-d₆): 7.69 (d, 4H, J= 8.8 Hz, ArH); 7.05 (d, 2H, J= 8.8 Hz, ArH); 4.08 (t, 4H, J= 6.4 Hz, OCH₂); 2.38 (t, 4H, J= 7.3 Hz, COCH₂); 1.97 (m, 4H, CH₂CH₂CH₂); 1.41 (s, 18H, CH₃).

Thiophen-2-yl-bis{4-[3-(tert-butyloxycarbonyl)propoxy]phenyl}methanol. To a stirred solution of 4,4'-bis[3-(tert-butyloxycarboxy)propoxy]benzophenone (2.49 g; 5.0 mmol) in dry THF (50 mL) 1.0 M 2-thienylmagnesium bromide (7.5 mL, 7.5 mmol) was added in one portion under nitrogene, and the mixture was kept at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:9). After addition of water (10 mL) the reaction mixture was evaporated, dissolved in EtOAc (200 mL) and washed with 5% NaHCO₃ (3×100 mL). The solution was dried over Na₂SO₄, evaporated, and chromatographed on silica gel in toluene with 1.0% of Et₃N to give the desired compound as a violet oil. Yield 2.86 g (98%). NMR (DMSO- d_6): 7.40 (m, 1H, H-5 (thiophene)); 7.15 (d, 4H, J = 8.9 Hz, ArH (phenyl)); 6.93 (m, 1H, H-4 (thiophene)); 6.83 (d, 4H, J = 8.9 Hz, ArH (phenyl)); 6.61 (m, 1H, H-3 (thiophene)); 6.52 (s, 1H, OH); 3.94 (t, 4H, J = 6.3 Hz, OCH₂); 2.35 (t, 4H, J = 7.3 Hz, COCH₂); 1.91 (m, 4H, CH₂CH₂CH₂), 1.39 (s, 18H, CCH₃).

Example 51

2-Thienyl-4',4"-bis[3-(N-succinimidylcarbonyl)propoxy]triphenylmethanol. To a stirred solution of 2-thienyl-4',4"-bis[3-(tert-butyloxycarbonyl)propoxy]triphenylmethanol (2.50 g; 4.29 mmol) in dry DCM (5 mL) trifluoroacetic acid (5 mL) was added in one portion and the mixture was stirred at ambient temperature for 3 h, then evaporated, and co-evaporated with DCM (4x50 mL) to give free acid. Product were dissolved in DCM (50 mL), and triethylamine (1.2 mL, 8.6 mmol) and N_i N-disuccinimidyl carbonate (1.65 g, 6.4 mmol) were added and the mixture was stirred overnight, then evaporated, dissolved in EtOAc (150 mL), washed with 5% NaHCO₃ (100 mL) and water (100 mL), dried over Na₂SO₄, evaporated, and the residue was purified by column chromatography (10 \rightarrow 50% EtOAc in toluene). Yield 2.05 g (72%), pink amorphous solid. NMR (DMSO- d_6): 7.41 (m, 1H, H-5 (thiophene)); 7.16 (d, 4H, J = 8.8 Hz, ArH); 6.93 (dd, 1H, J_{4,5} = 4.8 Hz, J_{3,4} = 3.7 Hz, H-4 (thiophene)); 6.87 (d, 4H, J = 8.8 Hz, ArH); 6.63 (m, 1H, H-3 (thiophene)); 6.54 (s, 1H, OH); 4.03 (t, 4H, J = 6.2 Hz, OCH₂); 2.87–2.78 (m, 12H, COCH₂, COCH₂COCH₂CO); 2.07 (m, 4H, CH₂CH₂CH₂).

15 Ar1/Ar2 = 2-Naphthyl

Example 52

10

Bis-4-methoxyphenyl-2-naphthylmethanol. To a solution of 4,4'-dimethoxybenzophenone (2.420 g, 10.0 mmol) in THF (35 mL) 0.5 M solution of 2-naphthylmagnesium bromide in THF (22.0 mL, 11 mmol) was added in one portion. The mixture was kept at ambient temperature overnight, then quenched with water (1 mL), evaporated, the residue was partitioned between with saturated NaHCO₃ solution (150 mL) and EtOAc (150 mL). The organic layer was washed with water (2×100 mL) and dried over Na₂SO₄. The residue was chromatographed on silica gel in gradient of EtOAc in toluene (0 to 10%) with addition of 1% of Et₃N. Yield 2.95 g (80%), a white solid. NMR (DMSO-25 d₆): 7.86 (m, 1H, H-5 or H-8 (naphthalene)); 7.81 (d, 1H, J=8.7 Hz, H-4 (naphthalene)); 7.79 (m, 1H, H-8 or H-5 (naphthalene)); 7.64 (br.s, 1H, H-1 (naphthalene)); 7.47 (m, 2H, H-6,7 (naphthalene)); 7.41 (dd, 1H, J=8.7 Hz, ⁴J=1.9 Hz, H-3 (naphthalene)); 7.14 (d, 4H, J=8.8 Hz, ArH (C₆H₄)); 6.86 (d, 4H, J=8.8 Hz, ArH (C₆H₄)); 6.36 (d, 4H, J=8.8 Hz, ArH (C₆H₄)); 6.36 (s, 1H, OH); 3.73 (s, 6H, CH₃).

Substituent Groups A

A = thiomethyl

Example 53

5 1-(2-{4-[Hydroxy-bis(4-methylthiophenyl)methyl]phenyl}ethyl)-4-methyl-2,6,7-

trioxabicyclo[2.2.2]octane. To a stirred and coolled to -70°C mixture of THF (20 mL) and 0.9M BuLi in hexane (7.0 mL, 6.3 mmol) the solution of 1-[2-(4-bromophenoxy)ethyl]-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane (1.566 g, 5.0 mmol) in THF (50 mL) was added dropwise within 30 min. The mixture was then stirred for 30 min, and the solution of 4,4'-dimethylthiobenzophenone (1.372 g, 5.0 mmol) in THF (50 mL) was added dropwise within 30 min. The mixture was allowed to warm to room temperature and stirred overnight at ambient temperature. The solution was evaporated to dryness, the residue was dissolved in EtOAc (200 mL) with few drops of triethylamine, washed with 5% NaHCO₃ (2×200 mL), water (2×200 mL), dried over Na₂SO₄, and evaporated. The residue was dissolved in toluene containing 1% Et₃N (10 mL) and chromatographed on a silica gel column. The column was eluted with stepwise gradient 2→2.5→3.5→4.0→4.5→5.0% Me₂CO in toluene containing 0.5% Et₃N. The desired product was triturated in petroleum ether filtered off and dried *in vacuo*. Yield 1.249 g (49.1%), amorphous solid. R_f 0.53 (toluene–EtOAc, 4:1). NMR (DMSO-d₆): 7.20–7.05 (m, 12H, ArH); 6.30 (s, 1H, OH); 3.84 (s, 6H, CH₂O); 2.63 (m, 2H, ArCH₂); 2.44 (s, 6H, SCH₃); 1.81 (m, 2H, ArCH₂CH₂); 0.76 (s, 3H, CCH₃).

3-{4-[Hydroxy-bis(4-methylthiophenyl)methyl]phenyl}propionic acid, N-oxysuccinimide ester. 1-(2-{4-[Hydroxy-bis(4-methylthiophenyl)methyl]phenyl}ethyl)-4-methyl-2,6,7-trioxabicyclo-[2.2.2]octane (1.08 g, 2.0 mmol) was dissolved in the THF-water mixture (19:1, 10mL), and trifluoroacetic acid (0.08 mL, 1 mmol) was added. After stirring for 10 min the mixture was

evaporated, the residue was dissolved with EtOAc (200 mL), washed with 5% NaHCO₃ (100 mL) and water (2x100 mL), dried over Na₂SO₄, evaporated, and chromatographed on silica gel column in 10 40% Me₂CO in toluene to give 3-{4-[hydroxy-bis(4methylthiophenyl)methyl]phenyl}propionic acid 2-hydroxymethyl-2-methyl-3-hydroxypropyl ester as a colorless oil, yield 895 mg (85%). NMR (DMSO- d_6): 7.20-7.07 (m, 12H, ArH); 6.32 (s, 1H, trityl OH); 4.43 (m, 2H, CH₂OH); 3.87 (s, 2H, CH₂OCO); 3.24 (m, 4H, CH₂OH); 2.84 (m, 2H, ArCH₂); 2.62 (m, 2H, CH₂CO); 2.44 (s, 6H, SCH₃); 0.74 (s, 3H, CCH₃). The ester was dissolved in 10% NaOH in ethanol-water (8:2, 10mL), stirred overnight, then evaporated, coevaporated with water (2x50 mL), dissolved in water (100 mL), washed with ether (2x100 mL), and then acidified with solid citric acid to pH 4. The reaction mixture was extracted with EtOAc (2x100 mL), the 10 combined organic layers were washed with water (50 mL), dried over Na₂SO₄ and evaporated to dryness. The resulting 3-{4-[hydroxy-bis(4-methylthiophenyl)methyl]phenyl}propionic acid was obtained as a colorless oil, 637 mg (88%). NMR (DMSO- d_6): 12.09 (s, 1H, CO₂H); 7.20-7.08 (m, 12H, ArH); 6.32 (s, 1H, trityl OH); 2.81 (m, 2H, ArCH2); 2.52 (m, 2H, CH2CO); 2.44 (s, 6H, SCH3). This was dissolved in anhydrous DCM (20 mL) and triethylamine (0.35 mL, 2.5 mmol) and N,N'-15 disuccinimidyl carbonate (512 g, 2.0 mmol) were added and the mixture was stirred until the reaction is complete (monitoring by TLC in toluene-EtOAc, 1:1), then evaporated, dissolved in EtOAc (200 mL), washed with 5% NaHCO₃ (100 mL) and water (100 mL), dried over Na₂SO₄, evaporated, and the residue was purified by column chromatography (5 to 10% EtOAc in toluene). Yield 542 mg (69%), white crystalline solid, mp 137°C. Rf 0.36 (toluene-EtOAc, 4:1). NMR (DMSO-d6): 7.24-20 7.10 (m, 12H, ArH); 6.34 (s, 1H, OH); 3.02-2.91 (m, 4H, ArCH₂CH₂); 2.81 (s, 4H, COCH₂CH₂CO); 2.45 (s, 6H, SCH_3).

3-{4-[Hydroxy-bis(4-methylthiophenyl)methyl]phenyl}propionic acid, *N*-oxysulfosuccinimide ester, sodium salt. The 3-{4-[hydroxy-bis(4-methylthiophenyl)-methyl]phenyl}propionic acid (425 mg, 1.0 mmol), prepared as above, was dissolved in dry DMF (2.5 mL), then *N*-oxysulfosuccinimide sodium salt (250 mg, 1.17 mmol) and DCC (375 mg, 1.8 mmol) were added and the mixture was left under stirring overnight, then cooled to +4°C and stirred for 2 h, and the precipitate formed was filtered off. The solution was diluted with EtOAc (10 mL), cooled to +4°C overnight, filtered, and diluted with dry Et₂O (200 mL). The mixture was kept at ambient temperature for 2-3 h and the desired compound was collected by filtration, washed with ether and dried *in vacuo*. Yield 412 mg (66%), white solid, *R*_f 0.58 (*n*-propanol–EtOAc–water, 8:1:1). NMR (DMSO-*d*₆): 7.24–7.08 (m, 12H, Ar*H*); 6.35 (s, 1H, O*H*); 3.94 (br., 1H, COC*HS*); 3.15 (br., 1H, COCH*H*CHS); 3.02–2.83 (m, 4H, Ar*CH*₂C*H*₂, COC*H*HCHS); 2.45 (s, 6H, SC*H*₃).

A = dialkylamino

Example 54

4-{4-[Hydroxy-(4-dimethylaminophenyl)-(4-methoxyphenyl)-methyl]phenoxy}butano-ic 4-[3-(tert-butyloxycarbonyl)propoxy]-4'ester. To a stirred solution of 5 tert-butyl mL) mmol) dry THF (30 4.0 in (1.48)methoxybenzophenone g; dimethylaminophenylmagnesium bromide (10.0 mL, 5.0 mmol) was added in one portion under Ar, and the mixture was kept at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:9). The reaction was diluted with water (200 mL) and 5% NaHCO₃ (100 mL), and extracted with EtOAc (2×100 mL). The organic phase was dried over Na₂SO₄, evaporated, and chromatographed on silica gel in toluene with 1.0% of Et₃N to give the desired compound as a colourless oil. Yield 1.514 g (77%). NMR (DMSO- d_6): 7.07 (m, 4H, ArH); 6.95 (d, 2H, J = 8.8 Hz, ArH); 6.81 (m, 4H, ArH); 6.62 (d, 2H, J = 8.8 Hz, ArH); 5.91 (s, 1H, OH); 3.94 (t, 2H, J = 6.3 Hz, OCH₂); 3.72 (s, 3H, OCH₃); 2.85 (s, 6H, NCH₃); 2.35 (t, 2H, J = 7.3 Hz, COCH₂); 1.91 (m, 2H, CH₂CH₂CH₂), 1.40 (s, 9H, 15 CCH_3).

4-{4-[Hydroxy-(4-dimethylaminophenyl)-(4-methoxyphenyl)-methyl]phenoxy}butano-ic acid, N-oxysuccinimide ester. To a stirred solution of tert-butyl 4-{4-[hydroxy-(4-dimethylaminophenyl)-(4-methoxyphenyl)-methyl]phenoxy}butanoate (983 mg; 2.0 mmol) in dry DCM (3 mL) trifluoroacetic acid (3 mL) was added in one portion and the mixture was stirred at ambient temperature for 1 h, then evaporated, and co-evaporated with DCM (4×50 mL) to give the desired acid. This was dissolved in DCM (40 mL), water (2 mL) and Et₃N (5 mL), washed with water (2×50 mL), dried over Na₂SO₄, and evaporated to dryness. The residue was dissolved in DCM (15 mL), triethylamine (0.7 mL, 5.0 mmol) and N,N'-disuccinimidyl carbonate (0.77 g, 3 mmol) were added and the mixture was stirred until the reaction is complete (monitoring by TLC in toluene-EtOAc, 2:1), then evaporated, dissolved in EtOAc (100 mL), washed with 5% NaHCO₃ (100 mL) and water (100 mL), dried with Na₂SO₄, evaporated, and the residue was purified by column chromatography (10→15% EtOAc in toluene). Yield 660 mg (62%), violet amorphous solid. NMR (DMSO-d₆): 7.07 (m, 4H, ArH); 6.95 (d, 2H, J=8.7 Hz, ArH); 6.82 (m, 4H, ArH); 6.62 (d, 2H, J=8.7 Hz, ArH); 5.92

(s, 1H, O*H*); 4.02 (t, 2H, J = 6.3 Hz, OC*H*₂); 3.72 (s, 3H, OC*H*₃); 2.88–2.79 (m, 12H, NC*H*₃, CH₂CH₂CO, COC*H*₂CH₂CO); 2.06 (m, 2H, CH₂CH₂CH₂).

A = methoxyl

Example 55

5

15

(4-Dimethylaminophenyl)-(4-methoxyphenyl)-(pyren-1-yl)-methanol. To a stirred solution of 1-(4-methoxybenzoyl)pyrene (673 mg; 2.0 mmol) in dry THF (20 mL) 0.5 M 4-dimethylaminophenylmagnesium bromide (6.0 mL, 3.0 mmol) was added in one portion under Ar, and the mixture was kept at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:9). The reaction was diluted with water (100 mL) and 5% NaHCO₃ (50 mL), and extracted with EtOAc (2×50 mL). The organic phase was dried over Na₂SO₄, evaporated, and chromatographed on silica gel in 2% EtOAc in toluene with 1.0% of Et₃N to give the desired compound as a dark green oil. Yield 595 mg (65%). NMR (DMSO-d₆): 8.65 (d, 1H, J= 9.5 Hz, H-10 (pyrene)); 8.24 (d, 1H, H-7.8 Hz, H-2 (pyrene)); 8.19–8.06 (m, 4H, H-4,5,6,8 (pyrene)); 8.02 (m, 1H, H-7 (pyrene)); 7.89 (d, 1H, H-9.5 Hz, H-9 (pyrene)); 7.39 (d, 1H, H-7.8 Hz, H-3 (pyrene)); 7.15 (d, 2H, H-8.7 Hz, ArH (phenyl)); 7.04 (d, 2H, H-8.7 Hz, ArH (phenyl)); 6.86 (d, 2H, H-8.9 Hz, ArH (phenyl)); 6.72 (s, 1H, OH); 6.66 (d, 2H, H-8.9 Hz, ArH (phenyl)); 3.73 (s, 3H, OCH₃); 2.87 (s, 6H, NCH₃).

A = sulfoxide

Example 56

20

$1-\{2-[4-(9-Hydroxy-3-methoxythioxanthen-9-yl)phenyl] ethyl\}-4-methyl-2,6,7-trioxabicyclo \cite{Continuous} and the continuous properties of the continuous prop$

To a stirred and cooled to -80°C solution of 1-[2-(4-bromophenoxy)ethyl]-4-methyl-2,6,7-25 trioxabicyclo[2.2.2]octane (845 mg, 2.70 mmol) in THF (30 mL) 1.4M tert-BuLi in pentane (3.86 mL, 5.40 mmol) was added dropwise. The temperature was raised to -40°C, then lowered again to -

80°C, and the solution of 3-methoxythioxanthone (653 g, 2.70 mmol) in THF (40 mL) was added dropwise. The mixture was allowed to warm to room temperature and stirred overnight at ambient temperature. The solution was evaporated to dryness, the residue was dissolved in EtOAc (150 mL) with few drops of triethylamine, washed with 5% NaHCO₃ (2×100 mL), water (2×100 mL), dried over Na₂SO₄, and evaporated. The residue was dissolved in toluene containing 1% Et₃N (10 mL) and chromatographed on a silica gel. The column was eluted with 10% acetone in toluene containing 0.5% Et₃N. Yield 1.14 g (94%), white amorphous solid. NMR (DMSO-*d*₆): 7.98 (d, 1H, *J* = 7.8 Hz, *H*-8 (thioxanthene)); 7.86 (d, 1H, *J* = 8.7 Hz, *H*-1 (thioxanthene)); 7.42–7.36 (m, 1H, *H*-5,7 (thioxanthene)); 7.29 (m, 1H, *H*-6 (thioxanthene)); 7.00–6.94 (m, 2H, ⁴*J* = 2.6 Hz, *H*-2,4 (thioxanthene)); 6.93 (d, 2H, *J* = 8.0 Hz, Ar*H* (C₆H₄)); 6.77 (d, 2H, *J* = 8.0 Hz, Ar*H* (C₆H₄)); 6.63 (s, 1H, O*H*); 3.81 (s, 6H, OC*H*₂); 3.78 (s, 3H, OC*H*₃); 2.52 (m, 2H, ArC*H*₂); 1.71 (m, 2H, ArCH₂C*H*₂); 0.74 (s, 3H, CC*H*₃).

3-[4-(9-Hydroxy-10-oxo-3-methoxythioxanthen-9-yl)phenyl] propionic acid, N-oxysuccinimide ester.

15 1-{2-[4-(9-Hydroxy-3-methoxythioxanthen-9-yl)phenyl]ethyl}-4-methyl-2,6,7trioxabicyclo[2.2.2]octane (1.14 g, 2.54 mmol) was dissolved in the THF-water mixture (4:1, 60 mL), and trifluoroacetic acid (290 μL, 3.82 mmol) was added. After stirring for 1 h the mixture was half evaporated, the residue was dissolved with EtOAc (100 mL), washed with 5% NaHCO3 (100 mL) and water (2×100 mL), dried over Na₂SO₄ and evaporated. The residue was dissolved in EtOH (120 mL), and NaOH (1.22 g, 30.5 mmol) was added. The solution was stirred overnight at ambient 20 temperature, filtered and evaporated. The residue was dissolved in water (100 mL), washed with EtOAc (50 mL), acidified with solid citric acid to pH 3, and extracted with EtOAc (3×50 mL). Combined organic layers were dried over Na₂SO₄ and evaporated to volume 30 mL. Triethylamine (1.76 mL, 13.7 mmol) and N,N'-disuccinimidyl carbonate (1.95 g, 7.60 mmol) were added and the mixture was stirred until the reaction is complete (monitoring by TLC), then dissolved in EtOAc (50 25 mL), washed with 5% NaHCO₃ (2×50 mL) and water (50 mL), dried over Na₂SO₄, evaporated, and the residue was dissolved in ether/H₂O₂ (10%) and stirred for an hour. Hydrogen peroxide was quenched, the reaction mixture was evaporated and purified by column chromatography (15% EtOAc in toluene). Yield 528 mg (45%), white amorphous solid. NMR (DMSO- d_6): 7.99 (d, 1H, J = 7.8 Hz, ArH (thioxanthene)); 7.87 (d, 1H, J = 8.7 Hz, H-1 (thioxanthene)); 7.48 (m, 2H, ArH (thioxanthene)); 7.29 (m, 1H, ArH (thioxanthene)); 7.07 (d, 2H, J = 8.2 Hz, ArH (C₆H₄)); 7.00 (d, 1H, J = 2.5 Hz, H-4 (thioxanthene)); 6.96 (dd, 1H, J = 8.7 Hz, $^4J = 2.5$ Hz, H-2 (thioxanthene)); 6.81 (d, 2H, J = 8.2 Hz, ArH (C₆H₄)); 6.67 (s, 1H, OH); 3.79 (s, 3H, OCH₃); 2.90 (m, 2H, ArCH₂); 2.81 (m, 6H, $COCH_2$).

A = fluoro

Example 57

3-Fluoro-4,4'-dimethoxybenzophenone. A mixture of 2-fluoroanisole (6.30 g, 50 mmol), 4-methobybenzoyl chloride (9.4 g, 55 mmol) and iodine (2.0 g) was refluxed for 10 h, then cooled, and diluted with CHCl₃ (300 mL). The solution was washed with 5% NaHCO₃ (2x150 mL), 5% NaHSO₃ (150 mL), and water (150 mL), dried with CaCl₂, and evaporated. The residue was purified by column chromatography in CHCl₃ and triturated in petroleum ether togive pure benzophenone as white solid (6.25g, 48%). R_f 0.06 (toluene), R_f 0.30 (toluene–EtOAc, 9:1), mp 135°C (petroleum ether). NMR (DMSO- d_6): 7.73 (d, 2H, J = 8.8 Hz, ArH); 7.57–7.52 (m, 2H, ArH); 7.31 (m, 1H, ArH); 7.08 (d, 2H, J = 8.8 Hz, ArH); 3.94 (s, 3H), 3.86 (s, 3H) (C H_3).

The title trityl was then synthesized as described above (for example, see L1 in Section 1) with a total yield of 12%.

A = methyl

15 Example 58

9-Hydroxy-9-(4-methylphenyl)-6-alkoxy-thioxantene. Corresponding ketone (1.06 g) was dissolved in dry THF (100 mL) and 1 M solution in THF of 4-methylphenylmagnesium bromide (6 mL, 6 mmol) was added under N_2 within 5 min. The workup was as above. The desired compound isolated by chromatography in toluene (+0.5 % Et₃N). Fractions containing product were evaporated, and the residue was filtered, washed with hexane, and dried *in vacuo*. Yield 1.38 g (91 %), mp 168–171°C. NMR (DMSO- d_6): 8.05–8.00 (m, 2H, H–1,8 (thioxanthene)); 7.46–7.38 (m, 4H, H–2,4,5,7 (thioxanthene)); 7.35–7.28 (m, 2H, H–3,6 (thioxanthene)); 6.93 (d, 2H, J = 8.2 Hz, ArH (phenyl)); 6.74 (d, 2H, J = 8.2 Hz, ArH (phenyl)); 6.70 (s, 1H, OH); 2.16 (s, 3H, CH₃).

A = alkoxy

Example 59

5 4,4'-Bis[3-(tert-butyloxycarbonyl)propoxy]benzophenone. Sodium (1.15 g, 50 mmol) was dissolved in MeOH and the resulting solution of MeONa was added to a solution of 4,4'-dihydroxybenzophenone (4.24 g, 20 mmol) in methanol (50 mL). The mixture was evaporated to dryness, the residue was dissolved in HMPA (30 mL) and tert-butyl 4-chlorobutyrate (8.04 g, 45 mmol) was added in one portion. The mixture was heated at 100°C for 5 h, then cooled, diluted with water (300 mL) and extracted with EtOAc (2x200 mL). The combined organic layers were washed with water (5x100 mL), dried over Na₂SO₄, and evaporated. The residue was chromatographed on silica gel in 2→5% EtOAc in toluene to give the desired compound as white crystalline solid, mp 92°C. Yield 5.49 g (55%). NMR (DMSO-d₆): 7.69 (d, 4H, J = 8.8 Hz, ArH); 7.05 (d, 2H, J = 8.8 Hz, ArH); 4.08 (t, 4H, J = 6.4 Hz, OCH₂); 2.38 (t, 4H, J = 7.3 Hz, COCH₂); 1.97 (m, 4H, CH₂CH₂CH₂); 1.41 (s, 18H, CH₃).

4-Dimethylaminophenyl-bis{4-[3-(tert-butyloxycarbonyl)propoxy]phenyl}methanol. To a stirred solution of 4,4'-bis[3-(tert-butyloxycarbonyl)propoxy]benzophenone (2.49 g; 5.0 mmol) in dry THF (50 mL) 0.5 M 4-(N,N-dimethylamino)phenylmagnesium bromide (15 mL, 7.5 mmol) was added in one portion under nitrogen, and the mixture was kept at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:4). After addition of water (10 mL) the reaction mixture was evaporated, dissolved in EtOAc (200 mL) and washed with 5% NaHCO₃ (3×100 mL). The solution was dried over Na₂SO₄, evaporated, and chromatographed on silica gel in toluene with 5% of EtOAc and 1% of Et₃N to give the desired compound as pale violet oil. Yield 2.22 g (71%). NMR (DMSO-d₆): 7.06 (d, 4H, J= 8.7 Hz, ArH); 6.94 (d, 2H, J= 8.8 Hz, ArH); 6.80 (d, 4H, J= 8.7 Hz, ArH); 6.61
25 (d, 2H, J= 8.8 Hz, ArH); 5.91 (br.s, 1H, OH); 3.93 (t, 2H, J= 6.2 Hz, OCH₂); 2.85 (s, 6H, NCH₃); 2.34 (t, 4H, J= 7.2 Hz, COCH₂); 1.91 (m, 4H, CH₂CH₂CH₂), 1.40 (s, 18H, CCH₃).

4-(N,N-Dimethylaminophenyl)-4',4"-bis[3-carboxypropoxy]triphenylmethanol. To a stirred solution of 4-(N,N-dimethylaminophenyl)-4',4"-bis[3-(tert-butyloxycarbonyl)propoxy]-triphenylmethanol (1.55 g, 2.5 mmol) in dry DCM (5 mL) trifluoroacetic acid (5 mL) was added in one portion and the mixture was stirred at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:4). The solution was evaporated to dryness, and co-evaporated with DCM (4×30)

mL) to give desired acid as dark violet oil. Yield 1.23 g (97 %). NMR (DMSO- d_6): 7.49 (d, 2H, J = 9.6 Hz, ArH); 7.33 (d, 4H, J = 8.9 Hz, ArH); 7.27 (d, 2H, J = 9.6 Hz, ArH); 7.21 (d, 4H, J = 8.9 Hz, ArH); 4.18 (t, 4H, J = 6.4 Hz, OC H_2); 3.46 (s, 6H, NC H_3); 2.43 (t, 4H, J = 7.2 Hz, COC H_2); 2.01 (m, 4H, CH₂C H_2 CH₂).

5 $A = {}^{18}O^{13}CH_2^{13}CH_2$

Example 60

2,2-Di(4-bromophenyl)-1,3-dioxolane. 4,4'-Dibromobenzophenone (3.40 g, 10.0 mmol), ethylene glycol (0.84 mL, 15 mmol) and TsOH (50 mg) in toluene (200 mL) were refluxed with Dean-Stark apparatus for 6 h. The mixture was cooled, the solid K_2CO_3 (200 mg) was added and the solution was filtered and evaporated. The residue was purified by short column chromatography in toluene to give dioxolane as a colourless oil (3.52 g, 92%). NMR (DMSO- d_6): 7.55 (d, 4H, J = 8.8 Hz, ArH); 7.26 (d, 4H, J = 8.8 Hz, ArH); 3.92 (m, 4H, OC H_2).

4,4'-Di[¹⁸O]hydroxy-benzophenone. To a stirred and cooled to -75°C solution of 2,2-di(4-bromophenyl)-1,3-dioxolane (1.92 g, 5.0 mmol) in in dry THF (100 mL) 1.4 M tert-BuLi in pentane (12.5 mL, 200 mmol) was added dropwise under argon. The temperature was raised to -40°C for 1 h and [¹⁸O]oxygen (115 mL, 5.0 mmol) was introduced slowly by needle through a rubber septum and allowed to consume. After 3 h the cooling was removed and the solution was stirred overnight. The mixture was quenched by water (3 mL), evaporated, diluted with 5% HCl and refluxed for 1 h, then evaporated and the residue was purified by column chromatography (toluene-methanol 7:1) to give dihydroxybenzophenone as a white solid. Yield 120 mg (11%). NMR (DMSO-d₆): 10.33 (br.s, 2H, OH), 7.70 (d, 4H, J= 8.8 Hz, ArH); 7.02 (d, 4H, J= 8.8 Hz, ArH).

4,4'-di[¹⁸O][¹³C]ethoxy-benzophenone. To a solution of 4,4'-di[¹⁸O]hydroxy-benzophenone (109 mg, 0.5 mmol) in in dry acetone (5 mL) dry K₂CO₃ (0.7 g, 5.0 mol) and [¹³C]ethyl bromide (166 mg,

1.5 mmol) were added, and the mixture was stirred for 48 h at ambient temperature, then filtered, and the solid was washed with acetone. The combined filtrate was evaporated, and the residue was dissolved in CHCl₃ (10 mL), filtered, and evaporated. The residue was chromatographed on silica gel in $0\rightarrow4\%$ EtOAc in toluene to give desired product (120 mg, 86%). NMR (DMSO- d_6): 7.78 (d, 4H, J=8.7 Hz, ArH); 6.95 (d, 4H, J=8.7 Hz, ArH); 4.21 (q, 4H, J=6.9 Hz, OC H_2); 1.59 (t, 6H, J=6.9 Hz, C H_3).

 $1-[2-(4-\{Hydroxy-bis[4-([^{18}O][^{13}C]ethoxy)phenyl]methyl\}phenyl)ethyl]-4-methyl-2,6,7-(-1)$

trioxabicyclo[2.2.2]octane. To a stirred and cooled to -75°C mixture of 1.4 M tert-BuLi in pentane (0.5 mL, 0.7 mmol) and THF (2 mL) the solution of 1-[2-(4-bromophenyl)ethyl]-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane (109 mg, 0.35 mmol) in THF (2 mL) was added. The temperature was raised to -40°C, then lowered again to -75°C, and the solution of 4,4'-di[¹⁸O][¹³C]ethoxy-benzophenone (98 mg, 0.35 mmol) in THF (3 mL) via a suringe. The mixture was allowed to warm to room temperature and stirred overnight at ambient temperature. The solution was poured into water (10 mL), extracted with EtOAc (10 mL). Organic layer was washed with 5% NaHCO₃ (2×10 mL), water (10 mL), dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography (3% EtOAc in toluene). Yield 142 mg (79%).

3-(4-{Hydroxy-bis[4-([¹8O][¹³C]ethoxy)phenyl]methyl}phenyl)propionic acid, *N*-oxysuccinimide ester. 1-[2-(4-{Hydroxy-bis[4-([¹8O][¹³C]ethoxy)phenyl]methyl}phenyl)ethyl]-4-methyl-2,6,7-trioxabicyclo[2.2.2]octane. (128 mg, 0.25 mmol) was dissolved in the THF-water mixture (9:1, 0.5 mL), and trifluoroacetic acid (0.05 mL) was added. After stirring for 10 min the mixture was evaporated and diluted with 10 % NaOH in ethanol-water (8:2, 3mL). The reaction mixture was refluxed for 1 h, cooled, and evaporated, the residue was diluted with water (5 mL), washed with Et₂O (2×5 mL), filtered, acidified with 5% citric acid, and extracted with ethyl acetate (2×5 mL). The solution was dried with Na₂SO₄, evaporated, and the residue was dissolved in dry DCM (2 mL). Triethylamine (0.14 mL, 1 mmol) and *N*,*N*'-disuccinimidyl carbonate (128 mg, 0.5 mmol) were added and the mixture was stirred until the reaction is complete (monitoring by TLC in toluene-acetone, 9:1), then evaporated, dissolved in EtOAc (10 mL), washed with 5% NaHCO₃ (10 mL) and water (10 mL), dried with Na₂SO₄, evaporated, and the residue was purified by column chromatography (5 to 20% of acetone in toluene). Yield 85 mg (65%), white amorphous solid.

30 X and X★ Groups

25

X = hydroxyl

Example 61

6-{4-[Hydroxy-(4-methoxyphenyl)-phenyl-methyl]phenoxy}hexanoic acid, tert-butyl ester. To a stirred solution of 4-[5-(tert-butyloxycarbonyl)pentyloxy]benzophenone (1.84 g; 5.0 mmol) in dry THF (30 mL) 1 M 4-methoxyphenylmagnesium bromide (7.0 mL, 7.0 mmol) was added in one portion under Ar, and the mixture was kept at ambient temperature overnight (monitoring by TLC in EtOAc-toluene 1:4). The reaction was diluted with water (300 mL) and 5% citric acid (20 mL), and extracted with EtOAc (2×100 mL). The organic phase was dried over Na₂SO₄, evaporated, and chromatographed on silica gel in 0-5% EtOAc in toluene with 0.5% of Et₃N to give the desired compound as a colourless oil. Yield 1.597 g (67%).

10 $X = ethyl \ ether$

Example 62

3-{4-[Ethoxy-bis(4-methoxyphenyl)methyl]phenyl}propionic acid, N-oxysuccinimide ester. 3- {4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenyl}propionic acid, N-oxysuccinimide ester (978 mg, 2.0 mmol) was dissolved in ethyl acetate (50 mL) and absolute ethanol (5 mL). Triethyl orthoformiate (600 mg, 4 mmol) and acetyl chloride (25 μL) were added to the mixture and this was left with stirring overnight at ambient temperature. The mixture was evaporated and the residue was chromatographed on silica gel column in 30% EtOAc in toluene. Yield 724 mg (70%).

$X = alkyl \ ether$

Example 63

5'-O-{4,4'-Dimethoxy-4"-[2-(N-succinimidyloxycarbonyl)ethyl]trityl}thymidine. 3-{4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenyl}propionic acid, N-oxysuccinimide ester (1.81 g, 3.7 mmol was dissolved in freshly distilled AcCl (20 mL) and the mixture was refluxed (4 h), then diluted with hexane (50 mL) and cooled to room temperature. The trityl chloride was filtered off, washed with hexane, and dried *in vacuo*. Yield 1.42 g (76%). Thymidine (727 mg, 3.0 mmol) was coevaporated with dry pyridine (2×20 mL), dissolved in pyridine (30 mL), half-evaporated, and cooled on ice bath. 3-{4-[Chloro-bis(4-methoxyphenyl)methyl]phenyl} propionic acid, N-oxysuccinimide ester (1.42 g, 2.8 mmol) was added in one portion with stirring, and the stirring was continued for 4 h. The mixture was warmed to room temperature, diluted with CHCl₃ (150 mL), washed with water (2×100 mL), dried over Na₂SO₄, evaporated, and the residue was purified by column chromatography (elution with 20→35% EtOAc in toluene, then 15→30% acetone in EtOAc-toluene (1:2), and, finally, with acetone-toluene (1:1)). Yield 1.35 g (68%), white amorphous solid. NMR (DMSO-d₆): 11.3 (s, 1H, NH); 7.50 (s, 1H, H-6); 7.32-7.20 (m, 8H, ArH); 6.88 (m, 4H, ArH); 6.20 (apparent t, 1H, J = 6.7 Hz, H-1'); 5.30 (d, 1H, J = 4.4 Hz, OH); 4.31 (m, 1H, H-3'); 3.88 (m, 1H, H-4'); 3.74 (s, 6H, OCH₃);

3.25-3.13 (m, 2H, H-5'); 3.03-2.89 (m, 4H, ArC H_2 C H_2); 2.81 (s, 4H, COC H_2 C H_2 CO); 2.3-2.1 (m, 2H, H-2'); 1.45 (s, 3H, CC H_3).

 $5°-O-\{4,4°-Dimethoxy-4°°-[2-(N-succinimidyloxycarbonyl)ethyl] trityl\}-3°-O-(diisopropylamino-partial properties of the properties of the$ 2-cyanethoxyphosphinyl)thymidine. To a solution 5'-O-{4,4'-dimethoxy-4"-[2-(N- \mathbf{of} 5 succinimidyloxycarbonyl)ethyl]trityl} thymidine (250 mg, 0.35 mmol) in dry DCM (10 mL) and DIEA (85 μ L, 0.49 mmol) 2-cyanoethyl diisopropylchlorophosphoramidite (54 μ L, 0.49 mmol) was added dropwise. After 2 h the reaction mixture was diluted with CHCl₃ (50 mL), washed with washed with water (2×50 mL), dried over Na₂SO₄, evaporated, and the residue was dissolved in DCM (2 mL) and precipitated in hexane (200 mL). The solid was filteres off and dried in vacuo. Yield 310 mg, white amorphous solid. NMR (DMSO-d₆): 8.96 (s, 1H, NH); 7.47 (m, 1H, H-6); 7.39 (m, 2H, ArH); 7.33 (m, 4H, ArH); 7.24 (m, 2H, ArH); 6.89 (m, 4H, ArH); 6.26 (m, 1H, J = 6.7 Hz, H-1'); 4.64 (m, 1H, H-3'); 4.12 (m, 0.5H, H-4'); 4.07 (m, 0.5H, H-4'); 3.82-3.50 (m, 10H, OCH₃, NCH, POCH₂); 3.39-3.24 (m, 2H, H-5'); 3.05-2.90 (m, 4H, ArCH₂CH₂); 2.78 (s, 4H, COCH₂CH₂CO); 2.66 (m, 1H, CH₂CN); 2.54 (m, 1H, CH₂CN); 2.48-2.33 (m, 2H, H-2'); 1.54-0.88 (m, 12H, C(CH₃)₂). ³¹P NMR (MeCN-d₃): 149.3144, 148.2837. 15

1-(4-Hydroxybutyryl)-4-hydroxypiperidine. A solution of 4-hydroxypiperidine (4.05 g, 40 mmol), γ-butyrolactone (6.89 g, 80 mmol) and DMAP (20 mg) in MeOH (20 mL) was refluxed for 48 h. The mixture was evaporated, and the residue was purified on silica gel column (30% MeOH in CHCl₃). Yield 5.54 g (74%), colorless oil. NMR (DMSO-d₆): 4.69 (d, 1H, J=4.1 Hz, CHOH); 4.41 (t, 1H, J = 5.3 Hz, CH₂OH); 3.90 (m, 1H, NCHH); 3.67 (m, 2H, CHOH, NCHH); 3.39 (m, 2H, CH₂OH); 3.12 (m, 1H, NCHH); 2.96 (m, 1H, NCHH); 2.31 (t, 2H, J=7.4 Hz, COCH₂); 1.72 (m, 1H, NCH₂CHH); 1.63 (m, 3H, CH₂CH₂CH₂, NCH₂CHH); 1.31 (m, 1H, NCH₂CHH); 1.21 (m, 1H, NCH₂CHH).

1-(4-{4,4'-Dimethoxy-4"-[2-(N-succinimidyloxycarbonyl)ethyl]trityloxy}butyryl)-4-hydroxypiperidine. 1-(4-Hydroxybutyryl)-4-hydroxypiperidine (169 mg, 0.90 mmol) was tritylated with N-oxysuccinimide ester of 3-{4-[chloro-bis(4-methoxyphenyl)methyl]phenyl} propionic acid (300 mg, 0.65 mmol) in pyridine as above. The product was eluted with 30% acetone in toluene. Yield 140 mg (33%), white amorphous solid.

1-(4-{4,4'-Dimethoxy-4"-[2-(N-succinimidyloxycarbonyl)ethyl]trityloxy}butyryl)-4(diisopropylamino-2-cyanethoxyphosphinyloxy)piperidine. 1-(4-{4,4'-Dimethoxy-4"-[2-(N-succinimidyloxycarbonyl)ethyl]trityloxy}butyryl)-4-hydroxypiperidine (120 mg, 0.18 mmol) was phosphitylated in DCM (5 mL) as above with DIEA (42 μL, 0.25 mmol) and 2-cyanoethyl diisopropylchlorophosphoramidite (27 μL, 0.25 mmol). The compound was dissolved in DCM (1 mL) and precipitated in hexane (100 mL). Yield 100 mg (65%), white amorphous solid.

X = chloride

Example 64

6-{4-[Chloro-bis(4-methoxyphenyl)methyl]phenoxy}hexanoic acid, *N*-oxysuccinimide ester. 6 - {4-[Hydroxy-bis(4-methoxyphenyl)methyl]phenoxy}hexanoic acid, *N*-oxysuccinimide ester (1.095 g, 2.0 mmol was dissolved in freshly distilled AcCl (10 mL) and the mixture was refluxed (2 h), then diluted with petroleum ether (30 mL) and cooled to room temperature. The trityl chloride was filtered off, washed with petroleum ether, and dried *in vacuo*. Yield 962 mg (85%).

 $X \star = tetrafluoroborate$

10 <u>Example 65</u>

Example 28 relates to compounds 28b, 28c and 28d in which X★ is tetrafluoroborate.

It will be understood that the invention is described above by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention.

CLAIMS

1. A compound of formula (IIa):

$$(Ar^{2})_{n}$$
— C — $[Ar^{1}$ — $(L_{M}\{M\}_{p})_{q}]_{m}$
X (IIa);

where:

10

5 X is a group capable of being cleaved from the α-carbon atom to form an ion of formula (I')

$$(Ar^2)_n - C - [Ar^1 - (L_M\{M\}_p)_q]_m$$
(I'):

C★ is a carbon atom bearing a single positive charge or a single negative charge;

M is independently a reactive functional group;

Ar1 is independently an aromatic group or an aromatic group substituted with one or more A;

Ar² is independently an aromatic group or an aromatic group substituted with one or more A; optionally wherein (a) two or three of the groups Ar¹ and Ar² are linked together by

one or more L⁵, where L⁵ is independently a single bond or a linker atom or group; and/or (b) two or three of the groups Ar¹ and Ar² together form an aromatic group or an aromatic group substituted with one or more A;

15 A is independently a substituent:

L_M is independently a single bond or a linker atom or group;

n = 0, 1 or 2 and m = 1, 2, or 3, provided the sum of n+m = 3;

p independently = 1 or more; and

q independently = 1 or more.

20 2. A compound of formula (IIb):

$$(Ar^{2})_{n} - C - [Ar^{1} - (L_{M}\{M\}_{p})_{q}]_{m}$$

$$X \star \qquad (IIb);$$

where:

X★is a counter-ion to C★;

C★ is a carbon atom bearing a single positive charge or a single negative charge;

25 M is independently a reactive functional group;

Ar1 is independently an aromatic group or an aromatic group substituted with one or more A;

Ar² is independently an aromatic group or an aromatic group substituted with one or more A;

optionally wherein (a) two or three of the groups Ar¹ and Ar² are linked together by one or more L⁵, where L⁵ is independently a single bond or a linker atom or group; and/or (b)

two or three of the groups Ar^1 and Ar^2 together form an aromatic group or an aromatic group substituted with one or more A;

A is independently a substituent;

L_M is independently a single bond or a linker atom or group;

n = 0, 1 or 2 and m = 1, 2, or 3, provided the sum of n+m = 3;

p independently = 1 or more; and

q independently = 1 or more.

3. An ion of formula (I'):

$$(Ar^2)_{n} - C - [Ar^1 - (L_M\{M\}_p)_q]_m$$

$$(I')$$

10 where:

15

5

C★ is a carbon atom bearing a single positive charge or a single negative charge;

M is independently a reactive functional group;

Ar1 is independently an aromatic group or an aromatic group substituted with one or more A;

Ar² is independently an aromatic group or an aromatic group substituted with one or more A;

optionally wherein (a) two or three of the groups Ar^1 and Ar^2 are linked together by one or more L^5 , where L^5 is independently a single bond or a linker atom or group; and/or (b) two or three of the groups Ar^1 and Ar^2 together form an aromatic group or an aromatic group substituted with one or more A;

A is independently a substituent;

20 L_M is independently a single bond or a linker atom or group;

n = 0, 1 or 2 and m = 1, 2, or 3, provided the sum of n+m = 3;

p independently = 1 or more; and

q independently = 1 or more.

4. A solid support of formula (IVai), (IVaii) or (IVaiii):

$$(Ar^2)_n - C - [Ar^1 - (L_M\{M\}_p)_q]_m$$

$$(IVai);$$

25

$$\begin{array}{c|c} & & \\ & & \\ & & \\ & & \\ (Ar^2)_n & & \\$$

$$S_S$$

$$Ar^2$$

$$(Ar^2)_{n-1}$$

$$C$$

$$K$$

$$[Ar^1 - (L_M\{M\}_p)_q]_m$$

$$K$$
(IVaiii);

where:

5

10

X is a group capable of being cleaved from the α -carbon atom of the compound of formula (II) to form an ion of formula (I')

$$(Ar^2)_n$$
— C — $[Ar^1$ — $(L_M\{M\}_p)_q]_m$ (I');

C★ is a carbon atom bearing a single positive charge or a single negative charge;

M is independently a reactive functional group;

 Ar^1 is independently an aromatic group or an aromatic group substituted with one or more A; Ar^2 is independently an aromatic group or an aromatic group substituted with one or more A;

optionally wherein (a) two or three of the groups Ar¹ and Ar² are linked together by one or more L⁵, where L⁵ is independently a single bond or a linker atom or group; and/or (b) two or three of the groups Ar¹ and Ar² together form an aromatic group or an aromatic group substituted with one or more A;

A is independently a substituent;

15 L_M is independently a single bond or a linker atom or group;

n = 0, 1 or 2 and m = 1, 2, or 3, provided the sum of n+m = 3;

p independently = 1 or more;

q independently = 1 or more;

 S_S is a solid support;

20 C---S_S comprises a cleavable bond between C and S_S;

 S_{S^-} -- Ar^1 comprises a cleavable bond between Ar^1 and S_{S} ; and

S_S---Ar² comprises a cleavable bond between Ar² and S_S.

5. A solid support of formula (IVbii) or (IVbiii):

where: $X \star$, Ar^1 , Ar^2 , L_M , M, n, m, p, q, S_S , C--- S_S , S_S --- Ar^1 and S_S --- Ar^2 are as defined above.

X★is a counter-ion to C★;

C★ is a carbon atom bearing a single positive charge or a single negative charge;

5 M is independently a reactive functional group;

 Ar^{1} is independently an aromatic group or an aromatic group substituted with one or more A; Ar^{2} is independently an aromatic group or an aromatic group substituted with one or more A;

optionally wherein (a) two or three of the groups Ar¹ and Ar² are linked together by one or more L⁵, where L⁵ is independently a single bond or a linker atom or group; and/or (b) two or three of the groups Ar¹ and Ar² together form an aromatic group or an aromatic group substituted with one or more A;

A is independently a substituent;

L_M is independently a single bond or a linker atom or group;

n = 0, 1 or 2 and m = 1, 2, or 3, provided the sum of n+m = 3;

p independently = 1 or more;

10

q independently = 1 or more;

S_S is a solid support;

C---Ss comprises a cleavable bond between C and Ss;

 $S_{S^{\text{--}}}\text{-}Ar^{1}$ comprises a cleavable bond between Ar^{1} and $S_{S}\text{;}$ and

20 S_{S} ---Ar² comprises a cleavable bond between Ar² and S_{S} .

6. A solid support of formula (IVaiv) or (IVbiv):

$$\{M\}_{p-1}L_{M}M'^{\underline{1}}--(S_{S})$$

$$Ar^{\underline{1}}-(L_{M}\{M\}_{p})_{q-1}$$

$$(Ar^{2})_{n'}--(Ar^{2}-(L_{M}\{M\}_{p})_{q}]_{m'}$$

$$X \bigstar \qquad (IVbiv);$$

where:

5

10

X is a group capable of being cleaved from the α -carbon atom of the compound of formula (II) to form an ion of formula (I')

 $(Ar^2)_n - C - [Ar^1 - (L_M\{M\}_p)_q]_m$ (I');

 $X \star is$ a counter-ion to $C \star$;

C★ is a carbon atom bearing a single positive charge or a single negative charge;

M is independently a reactive functional group;

Ar1 is independently an aromatic group or an aromatic group substituted with one or more A;

Ar² is independently an aromatic group or an aromatic group substituted with one or more A;

optionally wherein (a) two or three of the groups Ar^1 and Ar^2 are linked together by one or more L^5 , where L^5 is independently a single bond or a linker atom or group; and/or (b) two or three of the groups Ar^1 and Ar^2 together form an aromatic group or an aromatic group substituted with one or more A;

15 A is independently a substituent;

 $L_{\rm M}$ is independently a single bond or a linker atom or group;

n = 0, 1 or 2 and m = 1, 2, or 3, provided the sum of n+m = 3;

p independently = 1 or more;

q independently = 1 or more;

 S_S is a solid support;

M"--- S_S comprises a bond between M" and S_S ; and

M" is the same as M except that S_S is bound to a portion of M which does not form part of the residue of M" remaining attached to the ion of formula (I') which residue is produced after reaction of group M".

			1
			4
		· · · · · · · · · · · · · · · · · · ·	
	2		
		<u>.</u>	
		·	
		<u>.</u> .	
		· · · · ·	
		.	

ABSTRACT

DERIVATISED MOLECULES FOR MASS SPECTROMETRY

Compounds of formula (IIa):

$$(Ar^{2})_{n}$$
— C — $[Ar^{1}$ — $(L_{M}\{M\}_{p})_{q}]_{m}$
X (IIa);

5 are provided where:

X is a group capable of being cleaved from the α-carbon atom to form an ion of formula (I')

$$(Ar^2)_n$$
— C — $[Ar^1$ — $(L_M\{M\}_p)_q]_m$ (I');

C★ is a carbon atom bearing a single positive charge or a single negative charge;

The invention further provides compounds of formula (IIb):

$$(Ar^{2})_{n} - C - [Ar^{1} - (L_{M}\{M\}_{p})_{q}]_{m}$$

$$X \bigstar \qquad (IIb);$$

10

15

where:

 $X \star is$ a counter-ion to $C \star$.

The compounds of formula (IIa) and (IIb) may form ions of formula (I') by either cleaving the C-X bond between X and the α -carbon atoms in the case of the compounds of formula (IIa) or dissociating $X \star$ in the case of compounds of formula (IIb).

Figure 1A

Figure 1B

Figure 2A

Figure 2B

Figure 3A

Figure 3B

Figure 4

Figure 5