

Universidade de Brasília Departamento de Estatística EST0077 - 2023/1

SOLUÇÃO DOS EXERCÍCIOS PARA ENTREGA 1

Igor de Oliveira Barros Faluhelyi Prof. George

A solução dos exercícios para entrega 1 - prova 1 - é requisitada como parte do processo avaliativo da disciplina de Tópicos 2 no primeiro semestre de 2023.

Sumário 3

Sumário

1 Exercício 3 da Lista 1	4
1.1 Exercício 1	4
1.2 Exercício 7	5
2 Exercício 24 da Lista 2	7
2.1 Represente graficamente e através de medidas descritivas	8
2.2 Obtenha a decomposição espectral e verifique se existe indicação de uma	
possível redução da dimensão do estudo em questão. Justifique	10

1 Exercício 3 da Lista 1

Fazer os seguintes exercícios do Capítulo 2 de James et al. (2021):

1.1 Exercício 1

Enunciado:

For each of parts (a) through (d), indicate whether we would generally expect the performance of a flexible statistical learning method to be better or worse than an inflexible method. Justify your answer.

- (a) The sample size n is extremely large, and the number of predictors p is small.
- (b) The number of predictors p is extremely large, and the number of observations n is small.
- (c) The relationship between the predictors and response is highly non-linear.
- (d) The variance of the error terms, i.e. $\sigma^2 = Var(\varepsilon)$, is extremely high.

Resposta:

- (a) Melhor: Um tamanho de amostra grande significa que um modelo flexível será capaz de se ajustar melhor aos dados
- (b) Pior: Um modelo flexível provavelmente teria um *overfit*. Modelos flexíveis geralmente obtêm melhores resultados quando há grandes conjuntos de dados disponíveis.
- (c) Melhor: Modelos flexíveis têm um desempenho melhor em conjuntos de dados nãolineares, pois possuem mais graus de liberdade para aproximar uma relação nãolinear.
- (d) Pior: Um modelo flexível provavelmente terá um overfit, devido a ajustar-se de forma mais precisa ao ruído nos termos de erro do que um modelo inflexível. Em outras palavras, seja f a função ideal para descrever os dados, as observações pontos do \mathbb{R}^n estarão distantes de f se a variância dos termos de erro for muito alta. Isso sugere que f é linear e, portanto, um modelo mais simples seria capaz de estimar melhor f.

¹James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An introduction to statistical learning (With applications in R), Springer, 2021.

1.2 Exercício 7

Enunciado:

The table below provides a training data set containing six observations, three predictors, and one qualitative response variable:

TABLE

Suppose we wish to use this data set to make a prediction for Y when X1 = X2 = X3 = 0 using K-nearest neighbors.

- (a) Compute the Euclidean distance between each observation and the test point, X1 = X2 = X3 = 0.
- (b) What is our prediction with K = 1? Why?
- (c) What is our prediction with K = 3? Why?
- (d) If the Bayes decision boundary in this problem is highly nonlinear, then would we expect the best value for K to be large or small? Why?

Resposta:

(a) A distância euclidiana é a distância em linha reta entre dois pontos. Ela pode ser calculada usando o teorema de Pitágoras.

Para o espaço em 3D, temos:

$$d(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2}$$

Utilizando a fórmula acima, obtemos as seguintes distâncias:

$$d(1, test) = 3$$

 $d(2, test) = 2$
 $d(3, test) = 3.16$
 $d(4, test) = 2.24$
 $d(5, test) = 1.41$
 $d(6, test) = 1.73$

o cálculo segue no arquivo .R.

- (b) Verde, pois a observação mais próxima é verde.
- (c) Vermelho. As três observações mais próximas são verde, vermelho e vermelho. A probabilidade do ponto de teste pertencer a vermelho é de 2/3 e verde é de 1/3.

Portanto, a predição é vermelho. O cálculo pela função knn do pacote class do R está no arquivo .R.

(d) Para fronteiras altamente não-lineares, esperamos que o melhor valor de K seja pequeno. Valores menores de K resultam em um modelo KNN mais flexível, o que produzirá uma fronteira de decisão não-linear. Um valor maior de K significa que mais pontos de dados são considerados pelo modelo KNN, o que resulta em uma fronteira de decisão mais próxima de uma forma linear.

2 Exercício 24 da Lista 2

Considere o seguinte conjunto de dados de Pacientes em Tratamento de Hemodiálise:

Idade	Proteína	Energia	Albumina	IMC
32	1.59	2738.86	4.2	24.1
61	0.49	824.26	3.9	29.8
51	1.14	1307.03	4.1	20.0
53	0.74	925.47	4.2	25.0
24	1.99	2787.46	3.8	21.5
65	1.00	1222.51	4.2	25.0
35	2.32	2038.28	4.1	18.7
45	0.93	1061.53	4.2	22.0
57	0.81	1657.73	4.2	31.2
32	1.23	1652.76	3.9	24.3
66	0.99	1636.25	4.1	27.7
27	1.40	1845.07	4.0	21.8
54	1.08	1542.30	3.9	29.0
55	1.22	1214.53	4.0	21.1
50	0.57	1451.17	4.0	27.1
48	0.83	1786.95	4.1	24.7
28	1.55	1975.26	3.5	18.8
66	1.10	1248.64	4.0	18.9
66	0.44	987.86	4.0	27.6
48	0.58	1067.10	4.3	26.4
60	0.43	968.62	4.0	35.9
59	0.66	836.94	3.9	25.3
50	1.81	1197.99	3.9	19.5
29	1.21	1818.31	4.2	21.8
40	0.98	1238.91	3.5	21.9
47	1.48	2153.47	3.5	17.3
52	0.98	1720.60	3.6	29.7
54	1.02	1906.30	4.5	31.9
53	0.82	981.85	3.9	26.2
47	0.46	1020.95	4.4	31.2
42	1.34	1028.10	3.6	18.1
79	1.48	1465.91	3.9	18.3
61	1.39	1456.12	3.9	24.9

2.1 Represente graficamente e através de medidas descritivas.

Descrição para variável Idade:

Estatística	Valor
Média	49.58
Desvio Padrão	13.23
Mínimo	24
1º Quartil	42
Mediana	51
3º Quartil	59
Máximo	79

Descrição para variável Proteína:

Estatística	Valor
Média	1.093
Desvio Padrão	0.46
Mínimo	0.43
1º Quartil	0.81
Mediana	1.02
3º Quartil	1.39
Máximo	2.32

Descrição para variável Energia:

Estatística	Valor
Média	1477.7
Desvio Padrão	499.96
Mínimo	824.3
1º Quartil	1061.5
Mediana	1451.2
3º Quartil	1787.0
Máximo	2787.5

Descrição para variável Albumina:

Estatística	Valor
Média	3.985
Desvio Padrão	0.25
Mínimo	3.500
1º Quartil	3.900
Mediana	4.000
3º Quartil	4.200
Máximo	4.500

Descrição para variável IMC:

Estatística	Valor
Média	24.45
Desvio Padrão	148,63
Mínimo	17.30
1º Quartil	21.10
Mediana	24.70
3º Quartil	27.60
Máximo	35.90

Figura 1: Boxplot das variáveis

Figura 2: Gráfico de dispersão das variáveis

2.2 Obtenha a decomposição espectral e verifique se existe indicação de uma possível redução da dimensão do estudo em questão. Justifique.