Independent Trial HSC 2009 Mathematics Extension 1 Marking Guidelines

Question 1

a. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
• rearranges in terms of known trigonometric limit	1
• evaluates limit	1

Answer

$$\lim_{x \to 0} \frac{\sin 3x}{2x} = \frac{3}{2} \lim_{x \to 0} \frac{\sin 3x}{3x} = \frac{3}{2} \times 1 = \frac{3}{2}$$

b. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
• identifies a and r for the G.P	1
• applies formula for limiting sum	1

Answer

$$\left(\frac{e}{e+1}\right) + \left(\frac{e}{e+1}\right)^2 + \left(\frac{e}{e+1}\right)^3 + \dots \qquad \text{is G.P. with } a = \frac{e}{e+1}, \quad \text{and} \quad r = \frac{e}{e+1} \implies 0 < r < 1$$

$$\therefore \text{ Limiting sum is } \frac{a}{1-r} = \frac{e}{e+1} \div \frac{1}{e+1} = e$$

c. Outcomes assessed: PE3

Marking Guidelines

Criteria	Marks
• expresses sum of reciprocals of roots in terms of sums of products	1
• evaluates using relationships between roots and coefficients	1

Answer

$$\alpha$$
, β and γ roots of $x^3 + 2x^2 + 3x + 6 = 0$.
$$\therefore \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta \gamma + \gamma \alpha + \alpha \beta}{\alpha \beta \gamma} = \frac{3}{-6} = -\frac{1}{2}$$

d. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
• substitutes values of gradients into formula for tangent of acute angle between the lines	1
• evaluates required angle	1

Answer

Acute angle θ between lines y = 2x and x + y - 3 = 0 is given by $\tan \theta = \left| \frac{2 - (-1)}{1 + 2 \cdot (-1)} \right| = 3$

 $\therefore \theta \approx 72^{\circ}$ (to the nearest degree)

e. Outcomes assessed: PE2, PE3

Marking Guidelines

Criteria Cri	Marks
i • quotes alternate segment theorem	1
ii • gives a sequence of deductions resulting in a test for a cyclic quadrilateral	1
• justifies these deductions by quoting geometric properties and tests	1
iii \bullet explains why BE subtends a right angle at A or at F	1

Answer

Let O be the centre of the circle.

i. The angle between the tangent at A and the chord AC is equal to the angle subtended by that chord in the alternate segment, hence $\angle EAC = \angle ABC$.

ii. $\angle EAC = \angle DEF$ (Corresp. \angle 's with parallel lines AC, EF are equal)

 $\therefore \angle DEF = \angle ABC$ (Both equal to $\angle EAC$)

 \therefore EABF is cyclic (Exterior \angle equal to interior opp. \angle)

iii. ∠BAE = 90° (Tangent to circle ABC at A is perpendicular to radius OA drawn to point of contact)

 \therefore BE is a diameter (subtends right \angle at circumference) of circle EABF.

Question 2

a. Outcomes assessed: H5

Marking Guidelines

Taxing Guidelines		
	Criteria Criteria	Marks
	• finds primitive	1
	• evaluates in surd form	1

Answer

$$\int_0^{\frac{\pi}{8}} \sec 2x \, \tan 2x \, dx = \frac{1}{2} \left[\sec 2x \right]_0^{\frac{\pi}{8}} = \frac{1}{2} \left(\sqrt{2} - 1 \right)$$

b. Outcomes assessed: PE3

Marking Guidelines

Criteria	Marks
• counts arrangements for one possible pattern of B's and G's	1
• adds number of arrangements for the second possible pattern of B's and G's	1

2

Answer

BGBGGB or BGGBGB $\therefore 2 \times 3! \times 3! = 72$ ways

c. Outcomes assessed: H5

Marking Guidelines

	Criteria	Marks
• finds x coordinate of P		1
• finds y coordinate of P		1

Answer

 \therefore P has coordinates $P(\frac{14}{5}, \frac{3}{5})$

d. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
• simplifies $1 - \cos x$ in terms of t	1
• completes simplification of given expression in terms of t to establish required result	1

Answer

$$t = \tan\frac{x}{2}$$

$$1 - \cos x = 1 - \frac{1 - t^2}{1 + t^2}$$

$$= \frac{2t^2}{1 + t^2}$$

$$\sin x = \frac{2t}{1 + t^2}$$

$$\therefore \frac{\sin x}{1 - \cos x} = \frac{2t}{1 + t^2} \times \frac{1 + t^2}{2t^2}$$
$$= \frac{1}{t}$$
$$= \cot \frac{x}{2}$$

e. Outcomes assessed: PE3, PE4

Marking Guidelines

Criteria	Marks
i • finds $\frac{dy}{dx}$ as a function of t	1
dx	1
• finds equation of normal in required form	1
ii • finds coordinates of M	
• finds equation of locus of M	*

3

Answer

i.

$$y = at^{2} \Rightarrow \frac{dy}{dt} = 2at$$

$$x = 2at \Rightarrow \frac{dx}{dt} = 2a$$

$$\therefore \frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = t$$

 \therefore Normal at P has gradient $-\frac{1}{t}$ and equation

$$y - at^{2} = -\frac{1}{t}(x - 2at)$$

$$ty - at^{3} = -x + 2at$$

$$x + ty = 2at + at^{3}$$

ii.
$$N(0, 2a + at^2)$$
 $\therefore M(at, a + at^2)$
 $P(2at, at^2)$

Locus of
$$M$$
 has equation $y = a + a \left(\frac{x}{a}\right)^2$
 $x^2 = a(y - a)$

Question 3

a. Outcomes assessed: H5

Marking Guidelines

Criteria	Marks
• writes definite integral for the volume in terms of $\cos x$ and $\sin x$	1
• evaluates the integral.	1

Answer

$$V = \pi \int_0^{\frac{\pi}{4}} (\cos^2 x - \sin^2 x) dx$$
$$= \pi \int_0^{\frac{\pi}{4}} \cos 2x dx$$
$$= \frac{1}{2} \pi \left[\sin 2x \right]_0^{\frac{\pi}{4}}$$
$$= \frac{1}{2} \pi (1 - 0)$$

Volume is $\frac{\pi}{2}$ cubic units.

b. Outcomes assessed: HE2

Marking Guidelines

Criteria	Marks
• defines an appropriate sequence of statements $S(n)$ and shows the first member is true	1
• writes the LHS of $S(k+1)$ in terms of RHS of $S(k)$, conditional on truth of $S(k)$	1
• rearranges conditional expression for LHS of $S(k+1)$ to obtain RHS	1
• completes proof by Mathematical Induction	1

Answer

Let S(n), n = 2, 3, 4, ..., be the sequence of statements defined by

$$S(n)$$
: $2 \times 1 + 3 \times 2 + 4 \times 3 + ... + n(n-1) = \frac{n(n^2-1)}{3}$

Consider
$$S(2)$$
: $LHS = 2 \times 1 = 2$; $RHS = \frac{2(2^2 - 1)}{3} = 2$.

Hence S(2) is true.

If
$$S(k)$$
 is true: $2 \times 1 + 3 \times 2 + 4 \times 3 + ... + k(k-1) = \frac{k(k^2-1)}{3} *$

Consider
$$S(k+1)$$
: LHS = $\left\{2 \times 1 + 3 \times 2 + 4 \times 3 + \dots + k(k-1)\right\} + (k+1)k$
= $\frac{k(k^2 - 1)}{3} + (k+1)k$ if $S(k)$ is true, using *.
= $\frac{k(k+1)\left\{(k-1)+3\right\}}{3}$
= $\frac{(k+1)\left\{(k+1)^2 - 1\right\}}{3}$

Hence if S(k) is true then S(k+1) is true. But S(2) is true, and hence S(3) is true and so on. Hence by Mathematical Induction, S(n) is true for all positive integers $n \ge 2$.

4

c. Outcomes assessed: HE4

Marking Guidelines

<u>Criteria</u>	Marks
i • rearranges and interchanges x and y to obtain equation of inverse function	1
ii • sketches graph of $y = f(x)$ showing endpoints and intercepts	1
• sketches inverse function by reflection in $y = x$	1
 shows endpoints and intercepts for inverse function 	I
iii \bullet writes equation for x	1
• solves for x in simplest exact form	1

Answer

i.
$$f(x) = (x+2)^2 - 9$$
, $-2 \le x \le 2$.
 $(x+2)^2 = y+9$ and $0 \le x+2 \le 4$
 $x+2 = +\sqrt{y+9}$
 $\therefore x = -2 + \sqrt{y+9}$, $-9 \le y \le 7$
 $\therefore x \leftrightarrow y \implies f^{-1}(x) = -2 + \sqrt{x+9}$, $-9 \le x \le 7$

iii. Graphs intersect on the line y = x.

Hence
$$(x+2)^2 - 9 = x$$

 $x^2 + 3x - 5 = 0$

$$\therefore x > 0 \Rightarrow x = \frac{-3 + \sqrt{29}}{2}$$

ii. Graphs of inverse functions are reflections of each other in y = x

Question 4

a. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
• writes expression for probability in terms of binomial coefficients	1
• evaluates required probability	1

Answer

$$P(none\ in\ common) = \frac{^{34}C_6}{^{40}C_6} \approx 0.35$$
 (to 2 decimal places)

b. Outcomes assessed: HE6

Marking Guidelines

Marking Guidelines	
Criteria	Marks
• writes du in terms of dx and converts limits for x into limits for u	1
• finds equivalent definite integral in terms of u	1
• finds primitive and substitutes limits	
• simplifies exact answer	

Answer

$$u = \sin^2 x$$

$$du = 2\sin x \cos x \, dx$$

$$du = \sin 2x \, dx$$

$$x = \frac{\pi}{4} \implies u = \frac{1}{2}$$

$$x = \frac{\pi}{3} \implies u = \frac{3}{4}$$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin 2x}{1 + \sin^2 x} dx = \int_{\frac{1}{2}}^{\frac{3}{4}} \frac{1}{1 + u} du$$
$$= \left[\ln(1 + u) \right]_{\frac{1}{2}}^{\frac{3}{4}}$$
$$= \ln \frac{7}{4} - \ln \frac{3}{2}$$
$$= \ln \frac{7}{6}$$

c. Outcomes assessed: H5, PE3

Marking Guidelines

<u>Criteria</u>	Marks
i • finds area of $\triangle AOC$ in terms of $\sin 2\theta$	1
ullet uses area information to complete equation for $ heta$	1
ii • shows that $f(0.4)$, $f(0.5)$ have opposite signs	1
• notes that f is continuous, and deduces equation has one root θ , $0.4 < \theta < 0.5$	1
 iii • applies Newton's rule to write numerical expression for next approximation evaluates this approximation 	1 1

Answer

i.
$$\angle OCA = \theta$$
 (\angle 's opp. equal sides are equal in $\triangle AOC$)
 $\angle AOC = \pi - 2\theta$ (\angle sum of \triangle is π)
 $\angle BOC = 2\theta$ (adj. supp. \angle 's add to π)
Area sector $BOC + Area \triangle AOC = \frac{1}{4} Area circle$

$$\therefore \frac{1}{2} \times 1^2 \times 2\theta + \frac{1}{2} \times 1^2 \times \sin(\pi - 2\theta) = \frac{1}{4} \times \pi \times 1^2$$

$$\theta + \frac{1}{2} \sin 2\theta - \frac{\pi}{4} = 0$$

ii. Let
$$f(\theta) = \theta + \frac{1}{2}\sin 2\theta - \frac{\pi}{4}$$

 $f(0\cdot 4) \approx -0\cdot 03 < 0$
 $f(0\cdot 5) \approx 0\cdot 14 > 0$ and f is continuous
Also $f'(\theta) = 1 + \cos 2\theta > 0 \implies f$ monotonic increasing
 $\therefore f(\theta) = 0$ for exactly one value of θ , $0\cdot 4 < \theta < 0\cdot 5$

iii. Since
$$f'(\theta) = 1 + \cos 2\theta$$
,

$$\theta \approx 0.4 - \frac{f(0.4)}{f'(0.4)}$$

$$\approx 0.4 - \frac{-0.0267}{1.6967}$$

$$\approx 0.42 \text{ (to 2 dec. pl.)}$$

Question 5

a. Outcomes assessed: HE4

Marking Guidelines

Warking Guidelines	
Criteria	Marks
i ● shows correct shape and asymptotes	1
• shows intercepts on coordinate axes	1
ii • finds $\frac{dy}{dx}$ and evaluates for $x = 1$	1
• finds equation of tangent	1

Answer

i.

ii.
$$y = \tan^{-1}(x-1)$$

$$\frac{dy}{dx} = \frac{1}{1 + (x - 1)^2}$$

$$\therefore \frac{dy}{dx} = 1$$
 when $x = 1$

.. Tangent at (1,0) has gradient 1 and equation y = x - 1

b. Outcomes assessed: HE5

Marking Guidelines

Criteria	Marks
i • shows by differentiation that a is constant	1
ii \bullet integrates to find a primitive function for t in terms of x	1
• evaluates constant of integration using initial conditions then writes x as a function of t	1
iii • evaluates x at $t = 2$ and $t = 3$ to find distance travelled in third second.	

Answer

i.
$$v = \sqrt{x} \implies \frac{1}{2}v^2 = \frac{1}{2}x$$

$$\therefore a = \frac{d}{dx} (\frac{1}{2} v^2) = \frac{1}{2} \quad \text{for all } x$$

Hence a is independent of x.

ii.
$$\frac{dx}{dt} = x^{\frac{1}{2}}$$

$$\frac{dt}{dx} = x^{-\frac{1}{2}}$$

$$t = 2x^{\frac{1}{2}} + c$$

$$\begin{vmatrix} t = 0 \\ x = 1 \end{vmatrix} \implies c = -2$$

$$\therefore t = 2\sqrt{x} - 2$$

$$\therefore t = 2\sqrt{x} - 2$$
$$x = \frac{1}{4}(t+2)^2$$

iii. Between t=2 and t=3, particle moves right from x=4 to $x=\frac{25}{4}$ Distance travelled in third second is 2.25 m.

c. Outcomes assessed: H5, HE5, HE7

Marking Guidelines

Criteria	Marks
i • finds AC and finds BC in terms of $\cot \alpha$	1
• uses Pythagoras' theorem and an appropriate trig. identity to find AB in terms of $\csc \alpha$	1
ii \bullet differentiates AB with respect to t using chain rule or implicit differentiation	1
substitutes given values and interprets result	1

Answer

i. In
$$\triangle ACD$$
,

$$\angle DAC = \angle ADC = \frac{\pi}{4}$$

$$\therefore AC = 15.$$

In $\triangle BCD$, $BC = 15\cot \alpha$.

 \therefore In $\triangle ABC$,

$$AB^{2} = 15^{2} + 15^{2} \cot^{2} \alpha$$
$$= 15^{2} (1 + \cot^{2} \alpha)$$

$$= 15 (1 + \cot \alpha)$$
$$= 15^2 \csc^2 \alpha$$

$$AB = 15 \csc \alpha$$

ii. When
$$\alpha = \frac{\pi}{3}$$
,

$$\frac{dAB}{dt} = -15\csc\alpha \cot\alpha \frac{d\alpha}{dt}$$

$$= -15 \times \frac{2}{\sqrt{3}} \times \frac{1}{\sqrt{3}} \times 0.01$$

$$= -0.1$$

.. AB is decreasing at a rate of $0.1\,\mathrm{ms^{-1}}$

Question 6

a. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
i • integrates v with respect to t to find expression for x	1
• uses initial conditions to evaluate the constant of integration, giving x as a function of t	1
• differentiates v with respect to t to get \ddot{x} then expresses \ddot{x} in terms of x	1
ii • states period	1
• states extremities	1 1
iii • solves trig. equation to find time to first return	1

Answer

i.
$$v = -12\sin(2t + \frac{\pi}{3})$$

 $x = 6\cos(2t + \frac{\pi}{3}) + c$ $\ddot{x} = -24\cos(2t + \frac{\pi}{3})$
 $t = 0, \ x = 5 \Rightarrow c = 2$
 $\therefore x = 2 + 6\cos(2t + \frac{\pi}{3})$ $\therefore \ddot{x} = -4(x - 2)$

ii. Period is π seconds. $-4 \le x \le 8$

iii.
$$x = 5 \Rightarrow \cos(2t + \frac{\pi}{3}) = \frac{1}{2}$$

 $2t + \frac{\pi}{3} = \frac{\pi}{3}, 2\pi - \frac{\pi}{3}, ...$
 $t = 0, \frac{2\pi}{3}, ...$

First return after $\frac{2\pi}{3}$ seconds.

b. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
i • sketches graph of correct shape with correct vertical intercept	1
• shows asymptote for limiting population size	1
ii • differentiates with respect to t	1
iii • writes and solves equation for N	1

Answer

ii. $N = 500 - 400e^{-0.1t}$ $\frac{dN}{dt} = 0.1 \times 400e^{-0.1t}$

= 0.1(500 - N)

iii.

Initial rate of growth is $0 \cdot 1 (500 - 100) = 0 \cdot 1 \times 400$ ∴ want N such that $0.1(500 - N) = 0.1 \times 200$ 500 - N = 200N = 300

c. Outcomes assessed: H5, HE4

Marking Guidelines

Criteria	Marks
• uses inverse trig. identity to simplify equation	1
• uses trig. expansion to evaluate x in terms of k	1

Answer

$$\cos^{-1} x - \sin^{-1} x = k, \quad -\frac{\pi}{2} \le k \le \frac{3\pi}{2}$$
$$\cos^{-1} x + \sin^{-1} x = \frac{\pi}{2}$$

$$\therefore 2\cos^{-1} x = k + \frac{\pi}{2}$$
$$\cos^{-1} x = \frac{k}{2} + \frac{\pi}{4}$$
$$x = \cos(\frac{k}{2} + \frac{\pi}{4})$$

8

$$\therefore x = \cos\frac{k}{2}\cos\frac{\pi}{4} - \sin\frac{k}{2}\sin\frac{\pi}{4}$$
$$= \frac{1}{\sqrt{2}}(\cos\frac{k}{2} - \sin\frac{k}{2})$$

Question 7

a. Outcomes assessed: HE3

Marking Guidelines

<u>Criteria</u>	Marks
i • uses integration to find expressions for \dot{x} and x	1
• uses integration to find expressions for \dot{y} and y	1
ii • writes simultaneous equations for V and θ	1
• finds the value of V	1
ullet finds the value of eta	î
iii • finds the values of \dot{x} and \dot{y} just before impact	1
• uses Pythagoras' theorem to find the magnitude of v	1 1
• uses trigonometry to find the direction of v as an angle relative to the horizontal	

Answer

i.

$$\begin{aligned} \ddot{x} &= 0 \\ \dot{x} &= c_1 \\ \dot{x} &= Vt\cos\theta + c_2 \end{aligned} & \ddot{y} &= -10 \\ \dot{x} &= c_1 \\ \dot{x} &= V\cos\theta \end{aligned} & \begin{aligned} \dot{y} &= -10t + c_3 \\ \dot{x} &= 0 \\ \dot{x} &= 0 \end{aligned} \Rightarrow \begin{aligned} \dot{y} &= -10t + c_3 \\ t &= 0 \\ \dot{y} &= V\sin\theta \end{aligned} \Rightarrow \begin{aligned} \dot{y} &= -5t^2 + Vt\sin\theta + c_4 \\ \dot{y} &= 0 \\ \dot{y} &= 0 \end{aligned} \Rightarrow c_4 = 0 \\ \dot{y} &= Vt\sin\theta \end{aligned} & \therefore \dot{y} &= Vt\sin\theta - 5t^2 \end{aligned}$$

ii. When t = 8

$$x = 288 y = 64$$
 $\Rightarrow 8V \cos \theta = 288$ $\therefore V^2(\cos^2 \theta + \sin^2 \theta) = 36^2 + 48^2$ $\tan \theta = \frac{48}{36} = \frac{4}{3}$ $\theta = \tan^{-1} \frac{4}{3}$

iii. When t = 8 $\dot{x} = 60 \times \frac{3}{5} = 36$ $\dot{y} = -80 + 60 \times \frac{4}{5} = -32$

 $v^{2} = 36^{2} + 32^{2} \qquad \tan \alpha = \frac{8}{9}$ $v = 4\sqrt{145} \qquad \alpha \approx 41 \cdot 6^{\circ}$

Velocity of rocket just before impact is approximately 48 ms⁻¹ inclined at 42° below the horizontal.

b. Outcomes assessed: HE3

Marking Guidelines

Criteria	Marks
i • writes a typical term in x' in the expansion of the RHS of the identity	1
\bullet collects like terms to find coefficient of x^r , then equates to coefficient of x^r on LHS	1
ii • writes single binomial coefficient for sum on LHS	1
 writes single binomial coefficient for sum on RHS then deduces result 	1

Answer

i.
$$(1+x)^{m+n} = (1+x)^m (1+x)^n$$

For
$$0 \le r \le m$$
 and $0 \le r \le n$,

terms in x^r in expansion of the RHS have the form ${}^mC_k x^k \times {}^nC_{r-k} x^{r-k}$, k = 0, 1, 2, ..., r.

Collecting such like terms gives the coefficient of x^r as $\sum_{k=0}^{r} {}^{m}C_k {}^{n}C_{r-k}$.

The coefficient of x^r in the expansion of the LHS is ${}^{m+n}C_r$.

Hence equating coefficients of x^r on both sides of the identity gives $^{m+n}C_r = \sum_{k=0}^r {^mC_k}^n C_{r-k}$.

ii. Using i., for
$$m \ge 2$$
 and $n \ge 2$,

$${}^{m+1}C_0 {}^nC_2 + {}^{m+1}C_1 {}^nC_1 + {}^{m+1}C_2 {}^nC_0 = {}^{(m+1)+n}C_2 \quad \text{and} \quad {}^mC_0 {}^{n+1}C_2 + {}^mC_1 {}^{n+1}C_1 + {}^mC_2 {}^{n+1}C_0 = {}^{m+(n+1)}C_2$$

$$:: {}^{m+1}C_0 {}^nC_2 + {}^{m+1}C_1 {}^nC_1 + {}^{m+1}C_2 {}^nC_0 = {}^mC_0 {}^{n+1}C_2 + {}^mC_1 {}^{n+1}C_1 + {}^mC_2 {}^{n+1}C_0 = {}^{m+n+1}C_2$$

Question	Marks	Content	Mapping G Syllabus	Targeted
			Outcomes	Performance Bands
1 a	2	Trigonometric functions	H5	E2-E3
b	2	Series and applications	H5	E2-E3
c	2	Polynomials	PE3	E2-E3
d	2	Angle between two lines	H5	E2-E3
еi	1	Circle geometry	PE3	E2-E3
ii	2	Circle geometry	PE2, PE3	E2-E3
iii	1	Circle geometry	PE3	E2-E3
2 a	2	Trigonometric functions	H5	E2-E3
b	2	Permutations and combinations	PE3	E2-E3
С	2	Division of an interval	H5	E2-E3
d	2	Trigonometric functions	H5	E2-E3
e i	2	Parametric representation	PE3, PE4	E2-E3
ii	2	Parametric representation	PE3, PE4	E2-E3
3 a	2	Trigonometric functions	H5	E2-E3
b	4	Induction	HE2	E3-E4
c i	1	Inverse functions	HE4	E2-E3
ii	3	Inverse functions	HE4	E2-E3
iii	2	Inverse functions	HE4	E2-E3
4 a	2	Further probability	HE3	E2-E3
Ъ	4	Methods of integration	HE6	E2-E3
c i	2	Trigonometric functions	H5	E2-E3
ii	2	Polynomials	PE3	E2-E3
iii	2	Polynomials	PE3	E2-E3
5 ai	2	Inverse functions	HE4	E2-E3
ii	2	Inverse functions	HE4	E2-E3
bі	1	Velocity and acceleration as functions of displacement	HE5	E2-E3
ii	2	Velocity and acceleration as functions of displacement	HE5	E2-E3

