Machine Learning Course basic track

Lecture 6: Ensembles

Radoslav Neychev

07.10.2019, MIPT Moscow, Russia

Outline

- 1. Bagging & Random Forest
- 2. Stacking.
- 3. Blending.
- 4. Gradient boosting

Bootstrap

Consider the errors unbiased and uncorrelated:

$$\mathbb{E}_x \varepsilon_j(x) = 0;$$

$$\mathbb{E}_x \varepsilon_i(x) \varepsilon_j(x) = 0, \quad i \neq j.$$

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x).$$

$$N = N \sum_{j=1}^{\infty} o_j(x)$$

$$\begin{pmatrix} 1 & n \end{pmatrix}^2$$

$$E_N = \mathbb{E}_x \left(\frac{1}{N} \sum_{j=1}^n b_j(x) - y(x) \right)^2 =$$

$$= \mathbb{E}_x \left(\frac{1}{N} \sum_{j=1}^N \varepsilon_j(x) \right)^2 =$$

$$\int_{\overline{r_2}} \mathbb{E}_x \left(\sum_{j=1}^N \varepsilon_j^2(x) + \sum_{i \neq j} \varepsilon_i(x) \varepsilon_j(x) \right)$$

$$= \frac{1}{N^2} \mathbb{E}_x \left(\sum_{j=1}^N \varepsilon_j^2(x) + \sum_{i \neq j} \varepsilon_i(x) \varepsilon_j(x) \right) =$$

$$(x)\varepsilon_j(x)$$
 =

Bootstrap

Consider the errors unbiased and uncor

$$\mathbb{E}_x \varepsilon_i(x) = 0;$$
 Because this is a lie

$$\mathbb{E}_x \varepsilon_i(x) \varepsilon_j(x) = 0, \quad i \neq j.$$

$$\stackrel{\prime}{=} j$$
.

The final model averages all predictions:

$$E_N = \mathbb{E}_x \left(\frac{1}{N} \sum_{j=1}^n b_j(x) - y(x) \right)^2 =$$

$$\mathbb{E}_x \left(\frac{1}{N} \sum_{j=1}^N b_j(x) - y(x) \right)^2$$

$$= \mathbb{E}_x \left(\frac{1}{N} \sum_{j=1}^N \varepsilon_j(x) \right)^2 =$$

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x).$$

$$= \frac{1}{N^2} \mathbb{E}_x \left(\sum_{j=1}^N \varepsilon_j^2(x) + \sum_{i \neq j} \varepsilon_i(x) \varepsilon_j(x) \right) =$$

Bagging = Bootstrap aggregating

Decreases the variance if the basic algorithms are not correlated.

RSM - Random Subspace Method

Same approach, but with features.

Bagging + RSM = Random Forest

One of the greatest "universal" models.

- One of the greatest "universal" models.
- There are some modifications: Extremely Randomized Trees, Isolation Forest, etc.

- One of the greatest "universal" models.
- There are some modifications: Extremely Randomized Trees, Isolation Forest, etc.
- Allows to use train data for validation: OOB

- One of the greatest "universal" models.
- There are some modifications: Extremely Randomized Trees, Isolation Forest, etc.
- Allows to use train data for validation: OOB

OOB =
$$\sum_{i=1}^{\ell} L\left(y_i, \frac{1}{\sum_{n=1}^{N} [x_i \notin X_n]} \sum_{n=1}^{N} [x_i \notin X_n] b_n(x_i)\right)$$

Random Forest Classifier

3-Nearest Neighbors

Bias-variance tradeoff

Bias-variance decomposition

The dataset $X=(x_i,y_i)_{i=1}^\ell$ with $y_i\in\mathbb{R}$ for regression problem.

Denote loss function
$$L(y,a) = (y-a(x))^2$$

The corresponding risk estimation is

$$R(a) = \mathbb{E}_{x,y} \Big[\big(y - a(x) \big)^2 \Big] = \int_{\mathbb{Y}} \int_{\mathbb{Y}} p(x,y) \big(y - a(x) \big)^2 dx dy.$$

Denote $\mu:(\mathbb{X} imes\mathbb{Y})^\ell o\mathcal{A}$, where $\mathcal A$ is some family of algorithms.

So
$$L(\mu) = \mathbb{E}_X \left[\mathbb{E}_{x,y} \left[\left(y - \mu(X)(x) \right)^2 \right] \right]$$
 , where X dataset.

$$L(\mu) = \underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{noise}} + \underbrace{\mathbb{E}_x \Big[\big(\mathbb{E}_X \big[\mu(X) \big] - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{bias}} + \underbrace{\mathbb{E}_x \Big[\big(\mu(X) - \mathbb{E}_X \big[\mu(X) \big] \big)^2 \Big]}_{\text{variance}}.$$

This exact form of bias-variance decomposition is correct for square loss in regression.

However, it is much more general. See extra materials for more exotic cases.

Bias-variance tradeoff

Bagging + RSM = Random Forest

How to build an ensemble from *different* models?

Use different datasets (or datasets parts) for different level models.

- Use different datasets (or datasets parts) for different level models.
- Experiment with different models (linear, trees ensembles, simple networks, etc.)

- Use different datasets (or datasets parts) for different level models.
- Experiment with different models (linear, trees ensembles, simple networks, etc.)
- Or just different GBT ensembles (hola, kaggle :)

Just combine several *strong/complex* models.

Weights should sum up to 1 and come from [0; 1]

$$a(x) = \sum_{t=1}^{I} \alpha_t b_t(x)$$

Just combine several *strong/complex* models.

Weights should sum up to 1 and come from [0; 1]

$$a(x) = \sum_{t=1}^{I} \alpha_t b_t(x)$$

Simple and intuitive ensembling method

Just combine several *strong/complex* models.

Weights should sum up to 1 and come from [0; 1]

$$a(x) = \sum_{t=1}^{I} \alpha_t b_t(x)$$

- Simple and intuitive ensembling method.
- Finding optimal weights could be tricky.

Just combine several *strong/complex* models.

Weights should sum up to 1 and come from [0; 1]

$$a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$$

- Simple and intuitive ensembling method.
- Finding optimal weights could be tricky.
- Linear composition is not always enough.

Gradient boosting

$$a_n(x) = h_1(x) + \dots + h_n(x)$$

Boosting: intuition

Binary classification problem. Models - decision stumps.

Boosting: intuition

Boosting: intuition

Boosting: intuition

Boosting: intuition

Binary classification problem. Models - decision stumps.

Denote dataset $\{(x_i, y_i)\}_{i=1,...,n}$, loss function L(y, f).

Denote dataset $\{(x_i, y_i)\}_{i=1,...,n}$, loss function L(y, f).

Optimal model:

$$\hat{f}(x) = \underset{f(x)}{\operatorname{arg\,min}} L(y, f(x)) = \underset{f(x)}{\operatorname{arg\,min}} \mathbb{E}_{x,y}[L(y, f(x))]$$

Denote dataset $\{(x_i, y_i)\}_{i=1,...,n}$, loss function L(y, f).

Optimal model:

$$\hat{f}(x) = \underset{f(x)}{\operatorname{arg \, min}} \ L(y, f(x)) = \underset{f(x)}{\operatorname{arg \, min}} \ \mathbb{E}_{x,y}[L(y, f(x))]$$

Let it be from parametric family: $\hat{f}(x) = f(x, \hat{\theta}),$

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,min}} \mathbb{E}_{x,y}[L(y, f(x, \theta))]$$

$$\hat{f}(x) = \sum_{i=0}^{t-1} \hat{f}_i(x),$$

$$(\rho_t, \theta_t) = \arg\min \mathbb{E}_{x,y} [L(y, \hat{f}(x) + \rho \cdot h(x, \theta))],$$

$$\hat{f}_t(x) = \rho_t \cdot h(x, \theta_t)$$

$$\hat{f}(x) = \sum_{i=0}^{t-1} \hat{f}_i(x),$$

$$(\rho_t, \theta_t) = \underset{\rho, \theta}{\operatorname{arg\,min}} \mathbb{E}_{x,y}[L(y, \hat{f}(x) + \rho \cdot h(x, \theta))],$$

$$\hat{f}_t(x) = \rho_t \cdot h(x, \theta_t)$$

What if we could use gradient descent in space of our models?

What if we could use gradient descent in space of our models?

$$\hat{f}(x) = \sum_{i=1}^{t-1} \hat{f}_i(x),$$

$$r_{it} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = \hat{f}(x)}, \quad \text{for } i = 1, \dots, n,$$

$$\theta_t = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^n (r_{it} - h(x_i, \theta))^2,$$

$$\rho_t = \underset{\rho}{\operatorname{arg\,min}} \sum_{i=1}^n L(y_i, \hat{f}(x_i) + \rho \cdot h(x_i, \theta_t))$$

In linear regression case with MSE loss:

$$r_{it} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f(x) = \hat{f}(x)} = -2(\hat{y}_i - y_i) \propto \hat{y}_i - y_i$$

What we need:

- Data.
- Loss function and its gradient.
- Family of algorithms (with constraints on hyperparameters if necessary).
- Number of iterations M.
- Initial value (GBM by Friedman): constant.

Gradient boosting: example

What we need:

- Data: toy dataset $y = cos(x) + \epsilon, \epsilon \sim \mathcal{N}(0, \frac{1}{5}), x \in [-5, 5]$
- Loss function: MSE
- Family of algorithms: decision trees with depth 2
- Number of iterations M = 3
- Initial value: just mean value

Gradient boosting: example

Left: full ensemble on each step.

Right: additional tree decisions.

Spam Data

California Housing Data

Boosting with linear classification methods

Technical side: training in parallel

Which of the ensembling methods could be parallelized?

Technical side: training in parallel

Which of the ensembling methods could be parallelized?

Random Forest: parallel on the forest level (all trees are independent)

Technical side: training in parallel

Which of the ensembling methods could be parallelized?

- Random Forest: parallel on the forest level (all trees are independent)
- Gradient boosting: parallel on one tree level

Recap: ensembling methods

- 1. Bagging.
- 2. Random subspace method (RSM).
- 3. Bagging + RSM + Decision trees = Random Forest.
- 4. Gradient boosting.
- 5. Stacking.
- 6. Blending.

Great demo: http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html

Extra lecture about feature engineering and ML techniques is coming next week. Stay tuned.