Machine Learning for Engineering and Science Applications

Why Linear Algebra?
Scalars, Vectors, Tensors

Why linear algebra is useful

- In many Machine Learning algorithms, the input and the output are both represented as vectors
 - Maps, therefore, require matrices
- By vectors we simply mean a collection of numbers
- Part of the problem is to convert a seemingly qualitative input (such as a picture, sound, colour, etc) into a number
- Let us see an example....

From image to vector

https://upload.wikimedia.org/wikipedia/commons/2/27/MnistExamples.png

https://upload.wikimedia.org/wikipedia/commons/thumb/0/05/India_geo_stub.svg/538px-India_geo_stub.svg.png

Notation

Scalar: Single number.

Example: Let $\alpha \in \mathbb{R}$, be the learning rate

Let $n \in \mathbb{N}$, be the number of hyperparameters

Vector: In ML, array of numbers.

Example: Let $\vec{x} \in \mathbb{R}^n$, be the input vector.

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}$$

Matrix: In ML, 2-D array of numbers.

Example: Let $W = \mathbb{R}^{m \times n}$ be the matrix of weights

Tensors: In ML, array of numbers with dimensions greater than 2

Example : $A_{i,j,k}$

Scalars, Vectors, Matrices, Tensors

Scalar (0th order tensor)

$$\alpha = 3$$

Vector (1st order tensor)

$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

Dimension of the example vector is?

Matrices, Tensors

Matrix (2nd order tensor)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 5 \end{bmatrix}$$

Tensors (3rd and higher order tensors)

Example: Colour images, Video data

Implications of tensor representation

- We represent both vectors and transformations as tensors
 - Transformations between vectors -> vectors are naturally represented as matrices
- Could be high dimensional representations
 - Need algorithms that work well in high dimensions
- Lets us go back and forth between images and numbers
 - Very useful for engineering applications