ВЛИЯНИЕ ОСНОВНОГО ЗАБОЛЕВАНИЯ НА ЗНАЧЕНИЕ ХИМЕРИЗМА ПОСЛЕ АЛЛОГЕННОЙ ТРАНСПЛАНТАЦИИ ГЕМОПОЭТИЧЕСКИХ СТВОЛОВЫХ КЛЕТОК

А. В. Пунько

Факультет компьютерных наук, ВШЭ, Москва

Введение

Аллогенная трансплантация гемопоэтических стволовых клеток (аллоТГСК) успешно применяется для лечения пациентов с незлокачественными заболеваниями, такими как апластическая анемия (АА) и первичные иммунодефициты (ПИД). У пациентов с АА при проведении аллоТГСК от HLA-идентичного сиблинга общая выживаемость составляет 80-95% [1], от неродственного донора — 75-96% [2]. У пациентов с ПИД при проведении аллоТГСК от HLA-идентичного сиблинга общая выживаемость составляет 79-90%, от неродственного донора — 46-69% [3].

После аллогенной трансплантации в организме пациента присутствует два типа клеток: клетки донора и свои собственные. Такое состояние существования клеток донора и реципиента после аллоТГСК называется химеризмом. Активное приживление трансплантата происходит обычно в течение первых 30 суток [4].

Исследование химеризма — определение соотношения клеток донора и реципиента, позволяет оценить приживление донорских клеток, восстановление гемопоэза, вероятность отторжения трансплантата, а также предсказать исход лечения. На основе результатов мониторинга химеризма возможно проведение своевременной и адекватной терапии, а также контролировать ее эффективность, что улучшит исход заболевания у пациентов после аллогенной трансплантации гемопоэтических стволовых клеток [5].

Для вычисления уровня химеризма, необходимо различать генотип клеток донора и реципиента. Были разработаны и стандартизированы панели ДНК-маркеров на базе повторов (STR и VNTR). Благодаря такой разработке стала возможной как качественная, так и количественная оценка смешанного гемопоэтического химеризма. STR-маркер — это короткая нуклеотидная последовательность ДНК, повторяющаяся от 4 до 50 раз [6]. Для проведения STR-ПЦР необходимо несколько пар праймеров, которые будут комплементарны участкам ДНК, фланкирующим короткие тандемные повторы, а также будут помечены разными флуоресцентными красителями. В результате STR-ПЦР образуются фрагменты, длина которых варьирует в зависимости от

количества повторяющихся последовательностей ДНК [7]. После этого проводят фрагментный анализ методом капиллярного электрофореза [6, 8].

Также широкое применение нашел такой молекулярно-генетический метод, как InDel-ПЦР. Он обладает большей чувствительностью, хорошей воспроизводимостью и высокой точностью [9] по сравнению с предыдущим методом [10]. Полиморфизм инсерция/делеция (InDel) — тип генетической вариации, при которой специфическая нуклеотидная последовательность присутствует (инсерция) или отсутствует (делеция). InDel находятся в кодирующей области гена и могут быть кратны и не кратны 3 нуклеотидам, что приводит к мутациям со сдвигом рамки считывания. Данный полиморфизм является мишенью при проведении полимеразной цепной реакции в реальном времени [8]. Особенностью этого метода является возможность количественного измерения ПЦР-продукта во время экспоненциальной фазы процесса амплификации.[11].

Цель: сравнение химеризма после аллогенной трансплантации гемопоэтических стволовых клеток у пациентов с апластической анемией и первичными иммунодефицитами, а также проверка наличия корреляции между результатами методов STR-ПЦР и InDel-ПЦР.

Материалы и методы

С 2011 по 2017 годы на базе ГУ «Республиканский научнопрактический центр детской онкологии, гематологии и иммунологии» 16 пациентам с ПИД и 18 пациентам с АА были проведены аллоТГСК. Забор материала производился у пациентов и их доноров до аллоТГСК и после аллоТГСК на +30 день. Определение химеризма проводилось методами ПЦР по InDel и STR маркерам в костном мозге и/или периферической крови.

Для количественного подсчета химеризма после проведения STR-ПЦР использовали формулу (1):

$$\Pi X$$
, %= $\Pi 1+\Pi 2/(\Pi 1+\Pi 2+P1+P2)x100\%$ (1)

где ДX – донорский химеризм, Д1 и Д2 – высота пиков аллелей донора, а P1 и P2-высота пиков аллелей реципиента до трансплантации.

Для подсчета химеризма после проведения InDel-ПЦР использовали формулу (2):

$$QU/QC = (1 + E) - (\Delta CtU - \Delta CtC) (2)$$

где QU — нормализованное количество исследуемой последовательности ДНК в неизвестном образце; QC - нормализованное количество исследуемой последовательности ДНК в калибраторе (в образце до трансплантации); ΔCt — Ct аллель-специфического маркера — Ct рефернсного гена; ΔCtU — значение ΔCt в неизвестном образце; ΔCtC - значение ΔCt в калибраторе (в образце до трансплантации); E — эффективность амплификации исследуемой последовательности ДНК.

Статистическую обработку данных осуществляли с помощью программного обеспечения GraphPad Prism. Перед проведением тестов все выборки проверяли на нормальность и считали описательную статистику. В исследование включили 18 значений химеризма, которые были посчитаны у пациентов с AA, и 16 значений химеризма, которые были посчитаны у пациентов с ПИД.

Для оценки влияния заболевания на значение химеризма брали минимальные значения химеризма для периферической крови и костного мозга установленные методами STR-ПЦР и InDel-ПЦР. Далее проводили тест на сравнение выборок (U-тест Манна-Уитни). Для иллюстрации различий между значениями химеризма двух заболеваний (АА и ПИД) использовали библиотеку для визуализации данных Plotly.

Для исследования корреляции между результатами методов STR-ПЦР и InDel-ПЦР значения химеризма, посчитанные для периферической крови и костного мозга были усреднены. При анализе использовали корреляцию Спирмена и строили диаграмму рассеяния.

Результаты

1. Сравнение химеризма у пациентов с апластической анемией и первичными иммунодефицитами

При исследовании влияния заболевания на значение химеризма мы провели тесты на нормальность для двух выборок. По результатам тестов, указанных в таблице 1, можно сказать о том, что наши выборки не подчиняются нормальному распределению (низкое p-value говорит о том, что данные противоречат распределению Гаусса). Описательная статистика приведена в таблице 2.

Таблица 1 — Проверка нормальности

	AA	ПИД
D'Agostino & Pearson test		
P value	0,0043	< 0.0001
Passed normality test (alpha=0.05)?	No	No
Anderson-Darling test		
P value	< 0.0001	< 0.0001
Passed normality test (alpha=0.05)?	No	No
Shapiro-Wilk test		
P value	< 0.0001	< 0.0001
Passed normality test (alpha=0.05)?	No	No
Kolmogorov-Smirnov test		
P value	0,0003	< 0.0001
Passed normality test (alpha=0.05)?	No	No

Таблица 2 — Описательная статистика

	AA	пид
Number of values	18	16
Minimum	0,000	10,25
25% Percentile	72,69	94,68
Median	95,44	99,93
75% Percentile	99,86	99,97
Maximum	99,98	100,0
Range	99,98	89,75
10% Percentile	23,20	59,50
90% Percentile	99,94	100,0
Mean	79,97	91,81
Std. Deviation	30,71	22,46
Std. Error of Mean	7,237	5,615
Coefficient of variation	38.39%	24.46%
Skewness	-1,697	-3,617
Kurtosis	1,895	13,64

К тому, что наши распределения не подчиняются нормальным, может привести наличие выбросов. И по результатам программы, они у нас есть (Таблица 3). Однако исключить эти значения мы не можем, так как есть вероятность, что эти значения влиятельные. В связи с этим будем использовать непараметрические тесты.

Таблица 3 — Идентификация выбросов

	AA		пид
#1	0	#6	10,25
#2	25,78	#7	93,37
#6	27,68	#9	80,61
		#14	87,25
Method: ROUT (Q = 1%)			
Outliers	3		4

На рисунке 1 показаны различия между значениями химеризма для пациентов с AA и ПИД. Полный донорский химеризм чаще развивается у пациентов с ПИД, чем у пациентов с AA.

Рисунок 1 — Совместная гистограмма с двумя столбцами на карман

Для сравнения двух независимых выборок использовали U-тест Манна-Уитни. Результаты отображены в таблице 4.

Таблица 4 — U-тест Манна-Уитни

Mann Whitney test	
P value	0,0229
Exact or approximate P value?	Exact
P value summary	*
Significantly different $(P < 0.05)$?	Yes
One- or two-tailed P value?	Two-tailed
Sum of ranks in column A,B	249.5, 345.5
Mann-Whitney U	78,50
Difference between medians	
Median of column A	95.44, n=18
Median of column B	99.93, n=16
Difference: Actual	4,490
Difference: Hodges-Lehmann	0,6100

P-value(0.0229) < 0.05. Различия между двумя выборками статистически значимыми. Следовательно, основное заболевание может оказывать значительное влияние на приживление донорских клеток и уровень химеризма после аллоТГСК при незлокачественных заболеваниях, что может быть обусловлено генетическими дефектами клеток, особенностями гемопоэтического окружения реципиента и др.

2. Исследование наличия корреляции между результатами методов STR-ПЦР и InDel-ПЦР

При исследовании наличия корреляции между результатами методов мы провели тесты на нормальность для двух выборок. По результатам тестов, указанных в таблице 5, можно сказать о том, что наши выборки не подчиняются нормальному распределению (низкое p-value говорит о том, что данные противоречат распределению Гаусса). Описательная статистика приведена в таблице 6.

Таблица 5 — Проверка нормальности

	STR-ПЦР	InDel-ПЦР
D'Agostino & Pearson test		
P value	< 0.0001	< 0.0001
Passed normality test (alpha=0.05)?	No	No
Anderson-Darling test		
P value	< 0.0001	< 0.0001
Passed normality test (alpha=0.05)?	No	No
Shapiro-Wilk test		
P value	< 0.0001	< 0.0001
Passed normality test (alpha=0.05)?	No	No
Kolmogorov-Smirnov test		
P value	< 0.0001	< 0.0001
Passed normality test (alpha=0.05)?	No	No

Таблица 6 — Описательная статистика

	STR-ПЦР	InDel-ПЦР
Number of values	21	21
Minimum	96,05	91,80
25% Percentile	99,48	100,0
Median	99,92	100,0
75% Percentile	99,96	100,0
Maximum	99,98	100,0
Range	3,935	8,205
10% Percentile	97,11	94,32
90% Percentile	99,97	100,0
Mean	99,40	99,06
Std. Deviation	1,105	2,319
Std. Error of Mean	0,2411	0,5060
Coefficient of variation	1.112%	2.341%
Skewness	-2,256	-2,433
Kurtosis	4,268	4,957

Для исследования наличия корреляции между результатами методов использовали корреляцию Спирмена. Результаты отображены в таблице 7 и на рисунке 2. Результаты методов STR-ПЦР и InDel-ПЦР статистически значимо коррелируют между собой.

Таблица 7 — корреляция Спирмена

Spearman r	
r	0,6301
95% confidence interval	0.2598 to 0.8388
D 1	
P value	
P (two-tailed)	0,0022
P value summary	**
Exact or approximate P value?	Approximate
Significant? (alpha = 0.05)	Yes
Number of XY Pairs	21

XY data: Correlation of PCR Methods

Рисунок 2 — Диаграмма рассеяния

Выводы

Исследование химеризма после аллогенной трансплантации гемопоэтических стволовых клеток при незлокачественных заболеваниях позволяет определить приживление донорских клеток и риск отторжения трансплантата, а также служит критерием для назначения иммунотерапии.

По результатам данного исследования можно сделать следующие выводы: 1) Основное заболевание может оказывать значительное влияние на уровень химеризма, что может быть обусловлено генетическими дефектами иммунокомпетентных клеток реципиента, особенностями гемопоэтического окружения и др. Полный донорский химеризм чаще развивается у пациентов с ПИД, чем у пациентов с АА. 2) Результаты методов STR-ПЦР и InDel-ПЦР статистически значимо коррелируют между собой.

Список использованных источников

- 1. Current outcome of HLA identical sibling versus unrelated donor transplants in severe aplastic anemia: an EBMT analysis / A. Bacigalupo [et al.] // Haematologica. − 2015. − Vol. 100, № 5. − P. 696–702.
- 2. Similar outcome of upfront-unrelated and matched sibling stem cell transplantation in idiopathic paediatric aplastic anaemia. A study on behalf of the UK Paediatric BMT Working Party, Paediatric Diseases Working Party and Severe Aplastic Anaemia Working Party of EBMT / C. Dufour [et al.] // Br. J. Haematol. 2015. Vol. 171, N = 4. P. 585 594.
- 3. Transplantation of hematopoietic stem cells and longterm survival for primary immunodeficiencies in Europe: Entering a new century, do we do better? / A. R. Gennery [et al.] // J. Allergy Clin. Immunol. 2010. Vol. 126, N = 3. P. 602–610.
- 4. Принципы молекулярно-генетической оценки гемопоэтического химеризма и области его применения в гематологии / А. Б. Чухловин [и др.] // Вопросы гематологии, онкологии и иммунопатологии в педиатрии. 2002. N01. С. 70—74.
- 5. Молекулярно-генетический метод диагностики приживления и отторжения трансплантата у пациентов после аллогенной трансплантации гемопоэтических стволовых клеток / О. В. Алейникова [и др.] // Онкогематология. 2013. N24. C. 1-7.
- 6. Assessing quantitative chimerism longitudinally: technical considerations, clinical applications and routine feasibility / D. Kristt [et al.] // Bone Marrow Transplantat. 2007. Vol. 39, № 5. P. 255–268.
- 7. Establishment of complete and mixed donor chimerism after allogeneic lymphohematopoietic transplantation: Recommendations from a workshop at the 2001 tandem meetings of the international bone marrow transplant registry and the American society of blood and marrow transplantation / J. H. Antin [et al.] // Biol Bone Marrow Transplant. $-2001.-Vol.\ 7$, $Nol.\ 9.-P.\ 473-485$.
- 8. Количественный анализ химеризма после аллогенной трансплантации гемопоэтических стволовых клеток молекулярногенетическими методами / В. А. Лавриненко [и др.] // Онкогематология. 2014. N2. С. 29—36.
- 9. Reliable quantification of hematopoietic chimerism after allogeneic transplantation for acute leukemia using amplification by real-time PCR of null alleles and insertion / deletion polymorphism / A. Jiménez-Velasco [et al.] // Leukemia. -2005. Vol. 19, N 3. P. 336-343.
- 10. Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction / M. Alizadeh [et al.] // Blood. -2002. Vol. 99, N 12. P. 4618–4625.
- 11. Молекулярно-генетический метод диагностики приживления и отторжения трансплантата у пациентов после аллогенной трансплантации гемопоэтических стволовых клеток / О. В. Алейникова [и др.] // Онкогематология. 2013. N04. С. 1–7.