Introduksjon

Gjennomgås i dag

- Kursopplegget
- Datamaskinens bruksområder
- Datamaskinens bestanddeler
- Datamaskinen og PCens historie

Om Bengt Østby

- C-programmerer
- Windows system drivere
- 16 års erfaring fra anti-virus bransjen
- Jobbet med avansert video overvåking

- Lead Programmer, Norman
- Enterprise Architect Security CoE, AVG
- Foreleser NITH og Westerdals
- Security Concepts Group

Head of OffSec, Capgemini Cybersecurity

TK1100 – forkunnskaper

- Ingen formelle krav til forkunnskaper
- Har man lite forkunnskaper vil man måtte jobbe MYE mer med emnet
- Alle senere emner bygger på dette emnet

- Datamaskin virkemåte
- Binær matematikk
- Nettverksteknologier

Kurs-opplegget

- 12 uker undervisning og øving
 - 2-3 timer forelesning tirsdager fra 15:15, fulgt av
 - 1-2 timer veiledet øving
- Eksamen
 - Deleksamen 1, 2 timer Skriftlig eksamen
 - Dekker de 5 første forelesningene, teller 25% av karakter
 - Introduksjonen, Binære formater, tegnsett og enkoding, maskinarkitektur, og datamaskinens oppbygging
 - Deleksamen 2, 3 timer Skriftlig eksamen
 - Dekker de siste forelesningene, teller 75% av karakter
 - NB!!! Dersom du har rett til ekstra tid pga lese- / skrivevansker o.l. SØK OM DET NÅ MED EN GANG!!!!

Egenarbeid er VIKTIG (aktiviser kunnskap!)

Egenarbeid

- Fagplanen sier 200 timer arbeid i dette emnet
- 48 timer forelesning og øving
- Feks 110 timer forbredelse og arbeid ifm forelesninger; 10 timer til HVER forelesning
 - 2 timer hver mandag; repetisjon forrige forelesning
 - 8 timer hver tirsdag formiddag/kveld; forberedelse og etterarbeid for å sikre læring
- Feks 42 timer forbredelse til eksamen
 - 5 dager med 8 timers full jobbing til eksamen
 - 2 timer repetisjon siste kveld / morgen

Forbered deg på mye jobbing i TK fag!

- De første 4 forelesningene er det (for noen) vanskelig matematikk
- De neste 6 forelesningene er det MYE ny læring, og ganske mye pugging (TCP/IP ++)
- TK fagene er det flest studenter stryker på, hvis man ikke er i forelesning er det vanskelig å bestå (også de siste forelesningene!)
- Hvis man ikke jobber 10 timer ekstra i uken er det vanskelig å bestå
- Dette er et vanskelig fag, forbered deg på det!

Veiledere

- Alexander Bredesen
- Hans Ludvig
- Aleksander Omer Hauabakk-Anwar
- Jason Williams
- Sander Sjøthun
- Ben Nicholay Gyllenhaal Johansen
- Kjell-Olaf Slagnes
- Heidi Fikkan

Pensum?

- «Pensum» er fra Latin:
 - Pendere = en bestemt mengde ull man (typisk: en slave) skulle bearbeide i løpet av en dag.
 - M.a.o OPPGAVE
- Pensum er alle forelesninger i emnet (det er ikke noen egen lærebok som må kjøpes)
- Pensum er også å kunne besvare alle oppgaver som blir gitt i emnet i løpet av høsten
- Oppgavene er ofte en oppsummering av forelesning, og en del sett er multiple choice oppgaver av forskjellig oppbygging.
- I tillegg vil det være en del mer åpne oppgaver, både som egenstudier og tekstoppgaver som ligner mer på hva dere får på eksamen
- Det blir lagt ut anbefalte linker til websider som kan hjelpe til i oppgaveløsning
- Det ligger *kompendium* på emnesiden som <u>kortfattet</u> dekker flertallet av de viktigste kompetansemålene.
 - Skrevet av tidligere foreleser Bjørn Olav Listog, bedre enn å finne en lærebok i emnet da disse går spesifikt mot læringsmålene i TK1100

KOMPTANSESMÅL

TEMA i emnet TK1100

1. Digital representasjon av data

- Tall, tekst, lyd, bilder, ...
- primitive datatyper (de maskinvaren støtter direkte: boolsk, heltall og flyttall)
- Alt annet representeres ved hjelp av de primitive typene og forhåndsdefinerte formater/standarder (= KODING!)

2. Maskin-arkitektur og –organisering

- Oppbyggingen av maskinvaren og gangen i beregningene
- 3. Operativsystemet
 - Hva, hvorfor og hvordan
- 4. Internett
 - Oppbygging og protokoller

Oversikt over forelesninger

- Introduksjon til emnet (28. aug)
- 1: Binære data (4. sept)
- 2: Tegnsett, enkoding og media (11. sept)
- 3: Datamaskin arkitektur (18. sept)
- 4: Datamaskin oppbygging (25. sept)
- Eksamen del 1 (dato kommer)
- 5: Operativsystem (2. okt)
- 6: World Wide Web (9. okt)
- 7: Applikasjonslaget (16. okt)
- 8: Transportlaget (23. okt)
- 9: Nettverkslaget (30. okt)
- 10: Linklaget (6. nov)
- 11: Spørretime (26. nov) Mandag
- Eksamen del 2 (dato kommer)

Forkortelser (bokstavkjeks)

- Det er mange forkortelser i data-verdenen!
- Og ofte benyttes samme ord som betegnelse på vidt forskjellige ting!

Mål: Begreper

- For å beherske et fag må man (dessverre?)
 lære seg fagspråket
 - Bare slik kan man kommunisere med andre profesjonelle.
- Nivåer av kunnskap (forenklet)
 - Kunne ordene og forstå hva de betyr (definere)
 - ii. Kunne formulere egne påstander (teorier) og finne urimeligheter i andres (forstå teorier).
 - iii. Kunne lage ting selv (anvende).
 - iv. Kunne vurdere kvaliteten på andres arbeid.

Ex: Et begrep og en "teknikk"

System

 Et sett (en mengde) med komponenter som henger sammen på en slik måte at en endring i en komponent medfører en endring i en eller flere andre komponenter

Sort boks ("Black box")

- "Det vi tar for gitt, ikke bryr oss om hvordan innmaten fungerer i, og kun bryr oss om hva vi kan legge i og få ut av."
- Påstand: De fleste brukere "black-boxer" PCen sin.

DATA, INFORMASJON, SYSTEM

En systemforståelse av et PC-system

- Ytelse er like mye å flytte data og instruksjoner raskt mellom komponenter, som å prosessere dem raskt
- Kjapp CPU på et hovedkort med trege og trange busser gir dermed (likevel) dårlig ytelse, og vice versa.
- Målet er et balansert system

Hva er informasjon?

 Brukes i mange mange forskjellige betydninger – to ytterpunkter er:

- Informasjonsteoretisk (Shannon, 1948): Entropi (egen-informasjon)
 H = k*lg(N), N = antall tegn i tegnsettet, k antall tegn i meldingen.
- Folkelig: data forstått i en sammenheng, "meningsfulle data"

Hva vi kommer til snakke om

Generell bruk

 Datamaskinen brukes innen mange forskjellige områder

Elektronisk

Datamaskinen trenger elektrisitet for å fungere

Digital

 Datamaskinen er basert på binære logiske kretser (alt er representert som tall på bunnen)

Menneske-laget

 Datamaskinen er konstruert av mennesker for å gi resultater som mennesker er interessert i

Hovedmomenter med datamaskiner

- Hastighet: De utfører oppdrag meget fort
- Pålitelighet: De gjør ikke feil (bortsett fra når noe er galt med datamaskinen eller et menneske har gjort en tabbe, eller...!)
- Lagringsevne: De kan lagre store mengder informasjon (data) over lang tid
- Pris: De blir bedre og bedre til lavere pris
- Størrelse: De blir stadig mindre

Bruksområder for datamaskiner

- Brukes idag "overalt"
- Barnehager --> forskning
- Banker --> tungindustri
- Internett (email) --> mobiltelefon
- Trafikklys --> kjøleskap
- •

Datamaskin (PC) med tilbehør

DIGITALT?

Digitalisering

- I datamaskinen er alt representert som tall
 - Tall, bokstaver, bilder, lyd, film, instruksjoner...
- F.eks. så vil en MP3-fil være et langt tall som tolkes i forhold til et forhåndsdefinert format

ocuments	and Sett	ings\bli	stog\Mir	ne doku	menter\	Min mus	il-l-\NiTi	men mn	
ocuments.									
	0001	0203	0405	0607	0809	0A0B	0C0D	OEOF	0123456789ABCDEF
0x1920	10B4	473A	115A	FD5D	D2C8	CC5B	839C	A879	.´G:.Zý]ÒÈÌ[fœ¨y
0x1930	116D	4442	0C2F	267A	95 EF	OFEB	0400	3B61	.mDB./&z•ï.ë;a
0x1940	5CE5	0E14	68AC	9A96	D963	CA0B	273D	F35D	\åh¬š-ÙcÊ.'=ó]
0×1950	3E56	490D	9509	CD80	D1EB	A99E	5BDB	33A4	>vi.•.í∈Ñ멞[û3≈
0x1960	BA21	2383	744B	7cBc	D4D0	E204	2DC7	CF2E	°!#ftK ¼ôĐâÇÏ.
0x1970	EC25	E210	82 F4	4085	5C5E	BEEF	120B	1AC6	ì%â.,ô@\^¾ïÆ
0x1980	C457	44DD	EFB9	11BF	5121	FD37	E7C4	0708	ÄWDÝï¹.¿Q!ý7çÄ
0x1990	838C	B5C9	AOBE	B364	D440	0000	0000	08E4	fŒμÉ ¾°dÔ@ä
0x19A0	7E0E	D12A	4CB5	9A7B	5103	в989	172B	8B98	~.Ñ*Lμš{Q.¹‱.+<~
0x19B0	D72C	49FA	3CAC	BC81	2889	69F3	484B	23D2	×,Iú<¬≒□(‰ióHK#Ò
0x19C0	ABD3	E7FA	7277	FDBF	FFFB	FFFB	9264	4706	«Óçúrwý;ÿûÿû'dG.
0x19D0	62DB	5350	A9E3	1AFO	4A49	7A1D	30A2	5E50	bûsP©ã.ðJIz.O¢^P
0x19E0	6D87	3EC4	A12D	C93A	AB68	A891	95B9	FFFE	m‡>Ä;-É:≪h¨`•¹ÿþ
0x19F0	DEAF	BF66	A9C1	BD18	7c31	17D1	021B	406B	p [—] ¿f©Á½. 1.Ñ@k
0x1A00	FFDF	A32B	FFDA	2018	7840	A8 68	5425	1F0D	ÿߣ+ÿÚ .x@"hT%
0x1A10	9923	4A64	8DC9	E046	358B	3373	3ADD	0C5A	™#Jd□ÉàF5<3x:Ý.Z
0x1A20	1061	5DC4	3E69	11A8	E810	ACF3	4D52	D25C	.a]Ä≻i.¨è.⊣óMRÒ\
0x1A30	DE2D	00A1	064C	6456	F8BE	7329	9219	8E34	Þ¡.LdV∅¾s)′.Ž4

Tallsystemer - desimaltall

- Desimaltall er basert på antall fingre (tær)
- Dusin, snes, og andre eldre måter å telle på
- Romertall
 - MCMLXXIV = 1974 (I=1, V=5, X=10, L=50, C=100, M=1000)
- 0 oppfunnet ca. 600 e. Kr. (indiske tall)
- Innført i Europa av Leonardo fra Pisa (Fibonacci) ca. 1200
- 1904 = 1*1000 + 9*100 + 0*10 + 4*1
- $= 1*10^3 + 9*10^2 + 0*10^1 + 4*10^0$

Tallsystemer - binærtall

- Basert på to tilstander (digital; digit = finger eller tå)
 - finger oppe, finger nede
 - av, på (lavt signal, høyt signal)
 - -0, 1
- $25_{10}=11001_2=1*16+1*8+0*4+0*2+1*1$
- = $1*2^4 + 1*2^3 + 0*2^2 + 0*2^1 + 1*2^0$
- Blir fort svært mange sifre
- Et binært siffer kalles <u>bit</u> (binary digit) (b)
- En gruppe på 8 binære sifre kalles byte (B)
 - (En byte består av to nibble)

Å telle med binære tall

0	01	10	11
100	101	110	111
1000	1001	1010	1011
1100	1101	1110	1111

Flyttall

 Windowskalkulatoren hevder at

$$(\sqrt{2})^2$$
-2=?

- Computere arbeider "alltid" med endelig presisjon!!!
- Flyttall er et kodingsformat!

To «binære tricks»

Browseren din kan kjøre Javascript...

COMPUTERE

Enheter og størrelser

- Bit (b) 0 eller 1
- Byte (B) = 8 bit
- Kilo = $10^3 = 1000 \approx 1024 = 2^{10}$
 - 1 km = 1000 m, 1 mm = 1/1000 m
- For enkelhets skyld "jukser" vi litt!
 - k = 1000, Ki = 1024, (anta at K = 1024 også)
- Kilobyte/KibiByte (KiB) = 2¹⁰ byte = 1024 byte
- Megabyte/MibiByte (MiB) = 2^{20} byte = 1024 KB = 1048576 byte
- Gigabyte/GibiByte (GiB) = 2^{30} byte = 1024 MB = 1073741824 byte
- Herz (Hz) = hendelser pr. sekund
- MIPS = Mega instruksjoner pr sekund.
- FLOPS = Mega flyttalloperasjoner pr sekund
- kbps = 1000 bit / sekund (bitrate, «båndbredde»)

Multiples of bytes v · d · e									
SI decimal pre	fixes	Binary	IEC binary pre	efixes					
Name	Value	usage	Name	Value					
(Symbol)			(Symbol)						
kilobyte (kB)	10 ³	2 ¹⁰	kibibyte (KiB)	2 ¹⁰					
megabyte (MB)	10 ⁶	2 ²⁰	mebibyte (MiB)	2 ²⁰					
gigabyte (GB)	10 ⁹	2 ³⁰	gibibyte (GiB)	2 ³⁰					
terabyte (TB)	10 ¹²	2 ⁴⁰	tebibyte (TiB)	2 ⁴⁰					
petabyte (PB)	10 ¹⁵	2 ⁵⁰	pebibyte (PiB)	2 ⁵⁰					
exabyte (EB)	10 ¹⁸	2 ⁶⁰	exbibyte (EiB)	2 ⁶⁰					
zettabyte (ZB)	10 ²¹	2 ⁷⁰	zebibyte (ZiB)	2 ⁷⁰					
yottabyte (YB)	10 ²⁴	2 ⁸⁰	yobibyte (YiB)	2 ⁸⁰					

1 EiB tilsvarer en 50.000 år lang video (DVD-kvalitet)!

Hvorfor bruker datamaskiner binær logikk?

- Det binære systemet er enkelt og pålitelig
- Enkle kretser gir billige kretser
- Større kompleksitet i basis byggesteiner øker sannsynligheten for feil
- Det er det (teoretisk sett) mest effektive symbolsystemet som finnes!

Von Neumann arkitekturen

Von Neumann (utvidet)

- Vi legger inn hovedtypene busser også
- Kun en prinsippskisse, men den hjelper deg å tenke klart

PCens hovedbestanddeler (eksempel)

Datamaskin - hovedinndeling

- Datasystemet kan tenkes delt i 2 hoved-deler
- Maskinvare (hardware)
 - Elektroniske og elektro-mekaniske komponenter som får computer-miljøet til å fungere
 - Input/Output, Lagring (HD, RAM), Beregning (CPU, GPU)
- Programvare (software)
 - Applikasjoner som utnytter de muligheter som maskinvaren gir for å utføre spesielle oppgaver
 - Applikasjoner er programmer som er laget i språk som datamaskinen "forstår"

Funksjonsorientert modell

• Lag 5	Brukerprogran	nnivå
---------	---------------	-------

- Lag 4 Kompilatornivå/interpreter
- Lag 3 Operativsystemnivå
- Lag 2 Instruksjonsnivå
- (Lag 1 Mikroinstruksjonsnivå)
- Lag 0 Digitalt *krets*nivå

- Her fokuserer vi på hva slags oppgaver som løses på ulike nivåer.
- 0-2 er HW
- 3-5 er SW

Maskinvareorientert modell

Navn på nivået	Komponenter	IC tetthet	Informasjons-enheter	Tidsenheter
Portnivå (Gate)	Logiske kretser, Flip-Flops,	SSI	Bit	10 ⁻¹⁰ - 10 ⁻⁸ Sek
Registernivå	Registre, sekvensielle og kombinatoriske kretser	MSI	Ord (Words)	10 ⁻⁹ - 10 ⁻⁶ Sek
Prosessornivå	CPU, Minne, busser, I/O	LSI/VLSI	Grupper av ord	10 ⁻⁶ - 10 ³ Sek

Applikasjoner

- Tekstbehandling (Word, Notepad,)
- Regneark (Excel,....)
- Database-systemer (Oracle, Access,)
- Grafikk (PhotoEditor,)
- Nettleser (Chrome, Internet Explorer,)
- Elektronisk post (Outlook,)
- Spesial-programmer
 - Virus-sjekker, multi-media, programmeringsverktøy,

CPU - Central Processing Unit

Prosessoren

- Den "utførende" del av datamaskinen
- Kalles ofte datamaskinens «hjerne», men kan like gjerne oppfattes som en hovedmotor («regnemølle»).
- Består av kretser og elektronikk som kan utføre oppdrag (instruksjoner)
- Instruksjonene kan bearbeide data
- Begrepspar: instruksjon <-> data

Prosessorens virkemåte

- Instruksjoner til prosessoren = programmering
- Hentes inn i prosessoren fra minnet (RAM)
- Maskinspråk (IA32, IA64, m.fl.)
- Assemblerspråk (hver kommando tilsvarer en maskininstruksjon: mov eax, [00AF3B13])
- Lavnivåspråk
 - C, C++ (og flere)
 - Kompileres over til maskin-instruksjoner
- Høynivåspråk
 - C#, JAVA (og veldig mange andre)
 - Interpreteres i et miljø (feks en virtual machine)
- Andre "språk"
 - Excel, SQL, skriptspråk

Minne

- Lagring av data og programmer
 - Ferritt-kjerner
 - RAM (Random Access Memory)

- ROM (Read Only Memory), PROM, EPROM, Flash-RAM
- «Virtuelt minne»
- Raskt mellomlager (cache)
 - Level 1 internt (on-die, on-chip); ~KB
 - Level 2 internt/eksternt; ~ MB
 - Level 3 eksternt ~10 MB

Transportsystemet

- "Kabler" med parallelle "ledninger"
- Bredde * Hastighet = Båndbredde/bitrate
 - -64 bit (8 Byte) * 133 MHz = 1064 MiBps

Masselager

- Brukes for permanent lagring av store datamengder
 - Hullkort
 - Hullbånd
 - Magnetbånd (spolebånd, kassett)
 - Diskett
 - Disk
 - USB stick
 - CD, DVD
- Overføring til prosessoren via en kontroller
 - IDE/EIDE, SATA, SCSI,...

Diskusjonsoppgave: Hva er dette?

Ikonet for lagring (Save) ser slik ut:

 Hva er dette bilde av, og hvorfor betyr det ikonet å lagre filen man har endret?

Periferiutstyr

- Skjerm
- Tastatur
- Mus
- Skriver
- Modem
- Annet utstyr
 - Høyttaler, mikrofon, joystick, plotter, scanner.....

Operativsystemet

- Kjernen er det eneste som har full tilgang til Hardware!!!
- Gir et brukergrensesnitt
- Gir muligheter for sikkerhet og pålitelighet
- Kjører applikasjoner (tilbyr et API)
- Administrerer ressursene
 - Prosessor, hukommelse, eksterne lager, I/O-enheter
- Håndterer nettverk
- Ikke alle anvendelser av datamaskiner trenger et OS

Datamaskiner i nettverk

- Datamaskiner kan koples sammen i nettverk
 - Samme bygning = LAN (Local Area Network)
 - Hele verden = Internett (nettverk av nettverk)
- Kan overføre data mellom maskinene protokoller
 - Tekst, bilder, musikk, mail,
- Strekker egne kabler (LAN), benytter generelt tilgjengelige linjer(telefon, kabel-tv,) eller bruker trådløse nett
- WWW (World Wide Web) er den mest brukte tjenesten på Internett = Filoverføring ihht HTTPprotokollen

WLAN skisse (fra gamle skolebygget)

LITT HISTORIE

Historie

 Den moderne datamaskinen kan ses på som en løsning på tre (historisk sett) forskjellige problemer:

1) Beregningsproblemet

 hvordan utføre kompliserte beregninger raskt og pålitelig

2) Massedataproblemet

Hvordan lagre og behandle store mengder data

3) Reguleringsproblemet

 Hvordan styre og automatiser industrielle o.a. prosesser

Regnemaskiner

- Abacus (ca -3500)
- "Tabeller"
 - John Napier, 1600 (staver)
 - Willian Oughtree, 1622 (regnestav)
- "Tannhjul-maskiner"
 - Pascal, 1642
 - Leibniz, 1694

Regnemaskiner (2)

- Mekaniske
 - Charles Babbage (1791 1871)
 - Difference Engine 1822
 - Analytical_Engine 1833
 - Augusta Ada King, countess of Lovelace
- Elektromekaniske
 - Zuse, 1936-
 - Atanasoff, 1940-

Massedata

- Herman Hollerith (hullkort) 1890
 - Folketelling
 - Forløper til IBM

Regulering

- Jacqard-veven (ca. 1810)
 - hullkort/automatisering
- Maxwell, ca. 1880
 - teori/diff. Lign for maskinstabilitet
- Norbert Wiener, 1946
 - kybernetikk(reguleringsteknikk)
- Mikrokontrollere overalt!
 - 1971 og utover

Typisk historisk fremstilling

- Inndeling i generasjoner/epoker basert på:
 - Ny hardware
 - Nye anvendelser
- «Koevolusjon av maskin- og myk-vare»

1. Generasjon (1940-1950)

- Elektromekaniske reléer og radiorør (vacuum tube)
- Conrad Zuse
 - Z1- 1936; Z4 1945
 - Plankalkül
- Alan Turing
 - Universell Turingmaskin 1937
 - Colossus 1943
- Howard H. Aiken
 - (Mark 1) 1944
- John Presper Eckert & John W. Mauchly
 - ENIAC 1944
- John von Neumann
 - EDVAC 1945
 - UNIVAC 1951 -

Sitat: Thomas Watson 1943

Thomas Watson, president IBM, 1943:

"I think there is a world market for maybe five computers"

2. Generasjon (1950 - 1964)

- Transistor 1947
- Den første kompilatoren (A-0, Grace Hopper) – 1951
- IBM 701 1953
- IBM og "de syv dvergene": Sperry-Rand, Burroughs, Control Data, Honeywell...
- Fortran 1957
- Cobol, Lisp, Algol,...
- IBM 1401 1960. Datamaskinens "T-Ford"

3. Generasjon (1964 - 1971)

- Integrerert krets 1958
- Basic (interpretert språk!) –
 1964
- IBM 360 1964
- Intel 1968
- Interaktive terminaler!!!
- ARPAnet 1969
- PDP, DEC, Data General,...

4. Generasjon (1971 -)

- Mikroprosessor
- Intel 4004 1971
- IBM 370 1971
 - MVS, VM
- UNIX 1971
- Altair 8800 1975
- Apple, Radio Shack, Commodore
- VisiCalc 1979
- WWW 1991

(5.) PC (1981-)

- IBM PC, DOS 1981
- Apple Macintosh 1984
- Windows 1 1985; 3.0 1991
- Linux 1.0 1994
- Java 1.0 1995

- Prosessor-"ytelsen" dobles (ca) hvert annet år
- Antall transistorer pr
 cm2 dobles ca hvert 2. år

Prosessor - CPU

- 1971 Intel 4004
- 1973 Intel 8008, 8080 (Altair)
- 1981 IBM PC, 8086, 8088, 4 MHz
 - 8086: 16 bit databuss, 20 bit adressebuss = 1 MB
 - 8088: 8 bit databuss
- 1982 80286, 8 MHz
 - 24 bit adressebuss = 16 MB
- 1985/86 80386, 12-40 MHz
 - 1-4 GB virtuelt minne
 - $-0.8 \mu m$
 - Multitasking; Real Mode, Protected Mode

Prosessor - CPU

- 1985 80386, 12,5 30 MHz
 - 32 bit databuss og adressebuss(4 GB)
 - Virtual Real Mode
 - SX (1988); 16 bit ekstern databuss, 24 bit adressebuss
- 1989 80486, 25 50 MHz(DX2, DX4)
 - Innebygget flyttall ko-prosessor
 - 8 KiB cache
- CISC og RISC

Prosessor - CPU

- 1993 Pentium, 75 MHz →
 - RISC nærmer seg CISC
 - Dual Independent Bus, L1 og L2 cache, Dynamic Execution
 - MMX (Multimedia = masseregning parallellt.
- 2001
 - Pentium 4 passerer 2 GHz
 - Intel Itanium (Merced), 64 bit prosessor → McKinley
 - AMD tar det private 64 bits markedet
- Ikke bare Intel
 - AMD, VIA (Cyrix), +++
 - Apple (MacIntosh), Alpha, SPARC, +++
- Pr 2013 er Skjermkort i gang med å overta for supercomputere!

Intel Core i7

Intel® Core™ i7 Processor

Performance/Features:

- 8 processing threads via Intel* Hyper-Threading Technology (Intel* HT)
- 4 cores
- Intel Turbo Boost Technology operation
- Intel® QuickPath Interconnect (Intel*QPI) to Intel* X58 Express Chipset
- Integrated Memory Controller (IMC) – 3ch DDR3
- 7 more SSE4 instructions
- Overspeed Protection Removed

Socket:

New LGA1366 Socket

Power:

- 130W TDP
- VRD 11.1

Platform Compatibility:

- Intel® X58 Express Chipset
- ICH10 / ICH10R

Targeted Segment:

- Extreme and performance demanding users
- Ultimate gaming, multimedia creation, compute intensive applications

- Parallellisering
 - 4 kjerner
- Multimedia
- 710 millioner transistorer
- ~ 3GHz
- 45 nm
- L1 & L2 pr kjerner, L3 felles

DISKUTER

 Hva er problemet med denne («hardwaremåten») fremstillingen av historien?

SLUTTEMA: PASSORD

Ukens sikkerhetstema: Passord

- En vanlig måte å måle kvaliteten på et passord er bitstyrke
- Uttrykker hvor mange forsøk en tilfeldig angriper maximalt trenger for å gjette ("brute force") passordet.
- Bitstyrke = lg₂(forskjellige tegn mulige i passorde)* antall tegn i passordet.
- F.eks. PIN-kode bruker 10 tegn (0-9) og 4 tegn => bitstyrke = $lg_2(10)^*4 = 3.32^*4 = 13.28$
 - NB! Praktisk enhet pga kombinatorisk eksplosjon
 - 2^bitstyrke=antall mulige passord som kan lages
- Anbefalt bitstyrke i våre dager er ca 80, mao ca tolv bokstaver og tegn!
 - I tillegg bør man selvsagt unngå alt som er knyttet til din egen person, alle vanlige ord (de som finnes i ordbøker) mm

"Sikre passord"

Bør inneholde tegn fra minst tre av gruppene under:

Group	Example
Lowercase letters	a, b, c,
Uppercase letters	A, B, C,
Numerals	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Non-alphanumeric (symbols)	() ` ~ ! @ # \$ % ^ & * - + = \ { } [] : ; " ' < > , . ? /
Unicode characters	€, Γ , f , and λ

Passfrase er enda bedre: "I re@lly want to buy 11 Dogs!"

Eller lær deg et fint dikt utenatt!!!

XKCD: kommenterer

Kombinatorisk eksplosjon?

- I sjakk har hvit 20 forskjellige mulige åpningstrekk, svart like mange mulige svar.
 - Etter ett trekk finnes det da 20x20 = 400 mulige stillinger/brett
 - Hvor mange mulige sjakkspill-stillinger finnes det?
 - - Disse kan anslagsvis inngå i 10¹²³ ulike lovlige spill
 - Antall partikler i universet er anslått til 10⁸⁰
- Det finnes dermed ingen mulighet for at en computer kan teste ut alle mulige spill («traversere alle spilltrær»)
- Se f.eks. Claude Shannon (1950). <u>"Programming a Computer for Playing Chess"</u>. Philosophical Magazine 41 (314)
- Det finnes mange slike problemer som er oversiktlige, men uløselige innen rimelig tid!

AVSLUTTNING

Oppsummering: «Teori»

- System
- Digitalisering
- Informasjon og data
- Data og Instruksjoner
- Hardware og software
- Abstraksjonsnivåer

Oppsummering: Historikk

- Tre hovedområder: beregning, massedata, regulering
- Moores lov
- Maskinvare og programvare har drevet hverandre frem ("koevolusjon")

Dagens Øving

- Spørsmålsark, fordel å diskutere i grupper
- Skriv ned svar (dere trenger det om 3 mnd…)
- Primært repetisjon av forelesningen for å sikre god innlæring
- Søk forskjellige kilder på nettet for å lære temaene mer i dybden! Du må i dybden for å FORSTÅ temaet, ikke bare pugge foilene...
- JA, det dukker opp «nytt stoff» i øvingene!!
- JA, dere kan få (direkte og indirekte) spørsmål fra øvingene på eksamen

Neste gang

- Data-representasjon
- Tall-systemer /Boolsk algebra/Koding/dekoding
- Hjemmelekse

```
8-4-2-1, 8.4.2.1., 8 4 2 1 ->pugg!!!!!!!!
```

```
128-64-32-16- 8- 4- 2- 1
1 0 1 0 0 1 1 0 =????
```

- Ta med penn og papir!!!!
 - Det meste av det vi gjør neste gang er mye enklere å få til på et ark, enn å forsøke å gjøre på «skjermen»

