Project Report Format

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

8. TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9. RESULTS

9.1 Performance Metrics

10. ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX

Source Code

GitHub & Project Demo Link

1. INTRODUCTION:

1.1 PROJECT OVERVIEW:

In this project, we were asked to experiment with a real-world dataset, and to explore how machine learning algorithms can be used to find the patterns in data. This project helps the users to know about the career possibilities just by entering the required details such as marks and career option. The primary purpose is to discuss the prediction of student admission to university based on numerous factors and using logistic regression.

Many prospective students apply for university. The admission decision depends on criteria within the particular college or degree program. The independent variables in this study will be measured statistically to predict graduate school admission. Exploration and data analysis, if successful, would allow predictive models to allow better prioritization of the applicants screening process to university which in turn provides the admission to the right candidates.

1.2 PURPOSE:

As a commodity, a used car not only has its attributes that will affect the price, but also some external factors will also affect the value of the used car. Factors affecting the value of used cars should be fully considered, as well as the availability of indicator data. This paper will analyze the factors of the vehicle itself and the market and analyze the factors that affect the price of used cars in combination with the parameters of used cars, vehicle condition factors, and transaction factors.

2. LITERATURE SURVEY:

YEAR	AUTHORS	OBJECTIVES	METHODOLOGY	LIMITATIONS
2017	Mr.Pierpaolo	The principle	Cross industry standard	Student admission
	dondio	objective of the	process (CRISP) Methodology	predictor system will
		research is to	(Azevdo 2008) was followed	only take into
		help the students	in the research. Business	consideration the data
		who are aspiring	understanding , data	related to the Indian
		to pursue their	understanding , data	students pursuing
		education in the	preparation, modelling,	masters in computer
		USA. The SAP	evaluation and deployment.	science from
		system will help		universities in the
		them to evaluate		USA.
		the chances of		
		the success in the		
		particular		
		university		
		without being		
		depended on any		
		education		
		consultancy firm.		
		It will help them		
		in saving a huge		
		amount of time		
		and money spent		
		in the application		
		process.		

2020	Mr. Jubail	Earlier student	Earlier student performance	Despite the many
		performance	prediction can help decision	dedicated softwares
		prediction can	makers to provide needed	this is still not a
		help universities	actions at the right movement,	
		to provide timely	and to planning the appropriate	straight forward
		action, like	training order to improve the	process, involving
		planning for	student rate several studies	-
		appropriate	have been published in using	many directions.
		training to	data mining methods to predict	
		improve students	students academic success.	
		success gate.	One can observe several levels	
		Exploring	targeted.	
		educational data		
		can certainly help	~Degree Level	
		in achieving the		
		desired	~Year Level	
		educational goals.		
		(By applying	~Course Level	
		EDM		
		Techniques it is	~Exam Level	
		possible to		
		develop	In this study literature related	
		prediction models	to the exam level is excluded	
		to improve	as the outcome of a single	

		student success),	avam does not necessarily	
		However using	exam does not necessarily imply a negative outcome.	
		data mining	impry a negative outcome.	
		_		
		techniques can be		
		daunting and		
		challenging for non-technical		
		person.		
2021	Nasteski . V	The data analysis	Importing modules	As of now, the highest
2021	Nasteski. V	The data analysis	~Importing modules	As of now, the highest
		provides key insides to the	Loading the date	accuracy achieved in
			~Loading the data	the prediction
		applications about the	Commonicio e dete	modelling is
			~Summarizing data	approximately 78%.
		importance of	Data saismas	However, it should he
		various	~Data science	high as possible in
		parameters in the	-Outlier detection	order to get better
		admission	-Getting the correlated	predictor results.
		process and the	features	The data set is small
		weightage. The	-Exploratory data analysis	with just 500 column
		machine learning		of data for better
		modules helps the	~Standardization	supervised learning, it
		user to get real		is desired to have a
		time prediction	~Machine learning	large data in order to
		based on different	-Preparing ,Training	improve accuracy.
		models for their	,Testing data	
		profiles . This	-study various regression/	
		helps them to	classification / regressor models	
		know their	-Deploying and testing	
		chances of getting	models	
		admit from		
		various	~Shortlisting universities based	
		universities . The	on various users detail criteria	
		project also helps	ortanting the quaterns in malking	
		the applicants to	~Testing the system in real time	
		shortlist		
		universities based		
		on their profile.		

2.1 EXISTING PROBLEM:

As a commodity, a used car not only has its attributes that will affect the price, but also some external factors will also affect the value of the used car. Factors affecting the value of used cars should be fully considered, as well as the availability of indicator data. This paper will analyze the factors of the vehicle itself and the market and analyze the factors that affect the price of used cars in combination with the parameters of used cars, vehicle condition factors, and transaction factors.

.

2.2 REFERENCES:

- 1. M. Fowler, Refactoring: improving the design of existing code. Pearson Education India, 1999.
- 2. M. Zhang, T. Hall, and N. Baddoo, "Code bad smells: a review of current knowledge," Journal of Software Maintenance and Evolution: research and practice, vol. 23, no. 3, pp. 179–202, 2011.
- 3. M. Kessentini, R. Mahaouachi, and K. Ghedira, "What you like in design use to correct bad-smells," Software Quality Journal, vol. 21, no. 4, pp. 551–571, 2013.
- 4. D. Rattan, R. Bhatia, and M. Singh, "Software clone detection: A systematic review," Information and Software Technology, vol. 55, no. 7, pp. 1165–1199, 2013.

- 5. N. Moha, Y.-G. Gueh´ eneuc, A.-F. Le Meur, and L. Duchien, "A domain analysis to specify 'design defects and generate detection algorithms," in Fundamental Approaches to Software Engineering. Springer, 2008, pp. 276–291.
- 6. A. Yamashita and L. Moonen, "To what extent can maintenance problems be predicted by code smell detection?—an empirical study," Information and Software Technology, vol. 55, no. 12, pp. 2223–2242, 2013.
- 7. J. Kreimer, "Adaptive detection of design flaws," Electronic Notes in Theoretical Computer Science, vol. 141, no. 4, pp. 117–136, 2005.
- 8. M. V. Mantyl "a and C. Lassenius, "Subjective evaluation of software evolvabilityusing code "smells: An empirical study," Empirical Software Engineering, vol. 11,no. 3, pp. 395–431, 2006.
- 9. E. Murphy-Hill and A. P. Black, "An interactive ambient visualization for code smells," in Proceedings of the 5th international symposium on Software visualization. ACM, 2010, pp. 5–14.
- 10. C.-T. Chen, Y. C. Cheng, C.-Y. Hsieh, and I.-L. Wu, "Exception handling refactorings: Directed by goals and driven by bug fixing," Journal of Systems and Software, vol. 82, no. 2, pp. 333–345, 2009.

2.3 PROBLEM SOLUTION:

This is a Requirements Specification Document for a new Data science-based

University Admit Eligibility Predictor. It is an AI based application that asks for the

users to input their academic transcripts data and calculates their chances of admission

into the University Tier that they selected. It also provides an analysis of the data and

shows how chances of admissions can depend on various factors. This document

describes the scope, objectives and goals of the system. In addition to describing the

non-functional requirements.

Project Name: University Admit Eligibility Predictor

Development Platform: Jupyter Notebook and Anaconda application

In the current world scenario, it is not enough for a student to just have an Under

Graduate degree. Most employers now look for higher qualifications in their new

recruits. As a result, the demands for a good higher education are at an all time high.

A lot of students prefer to continue their higher education.

In order to get admitted to these universities, a set of academic requirements are

needed. However, because of the sheer number of universities of different levels,

students are often stuck in a dilemma till the very last minute as to whether or not

their applications will be accepted or not as no concrete documentation is available

which lists the requirements.

Our AI Model that was built after considering many leading Machine Learning

Algorithms, to provide the most accurate prediction of how much of a chance of

admissions does a student's current grades and other academic transcripts allow them

in the tier of universities of their choice.

8

The scope of this project is to allows the users to enter their academic data andget predictions of their chances of admissions in the university tier of their choosing.

Students- The people who will benefit the most from using this system are Indian students.

Administrators- The administrator shall be able to access all the data stored in the application.

The system will be available to all users from any location as long as they have an Internet connection. The administrator can also access the website from any location as long as he has the correct login credentials and access to the Internet.

Overview of Document

This system is needed so as to answer the queries of students in a compete and concise manner as well as to provide them an as accurate as possible analysis of their chances of admissions to their universities.

The system is built on a limited data set, this could affect the accuracy of the predictions as a whole.

The system cannot guarantee that our predictions will be a 100% guarantee of admissions because a lot other factors such as the Personal Interview also plays a major role in the admissions procedure.

Other factors such as changes in policies by the university or by the college can also affect chances of admissions in a way that is beyond the scope of this project.

3. IDEATION & PROPOSED SOLUTION:

3.1 Empathy Map Canvas

3.2 IDEATION & BRAINSTORMING

3.3 PROPOSED SOLUTION:

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Students often worry about their chances of getting into college. The goal of this project is to help profile shortlisted college students. Predicted results give them a good idea of their likelihood of getting into a particular college. This analysis is also useful for students preparing or planning to prepare for a better image must. It also aims to connect students and universities directly, without intermediaries.
2.	Idea / Solution description	This project aims to calculate the likelihood of admission to a particular graduate school after evaluating a candidate's profile. The main attributes considered in decision making are: 1) GRE & TOEFL Scores 2) Undergraduate CGPA 3) SOP & LOR 4) Corporate Work Experience/Research ExperienceExtracurricular Activities 5) Extra-curriculars Determine Acceptance Rate, Logistic Regression, Multi linear, Use a variety of ML models such as regression, decision trees, and random forests, and use performance metrics such as accuracy score, precision, and retrieval to evaluate which model has the best accuracy.
3.	Novelty / Uniqueness	 We plan to develop a new hybrid model based on deep learning that is more accurate than existing traditional ML models. Students often have trouble narrowing down which colleges to apply to.

4.	Social Impact / Customer Satisfaction	• Students often struggle to narrow down which colleges to apply to and wonder if their profile matches the requirements of a particular college.
		• In addition, the cost of applying to universities is very high, and it is important for students to narrow down their universities based on their profile.
		 University Admit Eligibility Predictor Systems are very useful in determining the likelihood that a student will be admitted to a particular college.
		• The system reduces reliance on expensive educational consultancies to analyze candidate profiles and determine which colleges to apply to.
5.	Business Model (Revenue Model)	 Advertisements of different universities could be placed in the web-app to generate revenue through ads.
		• In the future, a separate premium plan could be created where the students can directly interact with the professors and alumni of the university through video calls.
6.	Scalability of the Solution	 Future updates will allow candidates, faculty, students, and alumni to interact and have a chat area where candidates can get their questions answered quickly.
		Cloud-based storage (IBM Cloud, AWS, GCP, AZURE) and NoSQL databases (MongoDB, Redis, etc.) to be able to handle large amounts of data (both applicant and university data) in the future.) can use traditional RDBMS storage
		 Alternatively, if the number of users using your website grows exponentially over time, you can consider distributed big data processing techniques.

3.4 PROBLEM SOLUTION FIT:

PROBLEM - SOLUTION FIT

1.CUSTOMER SEGMENT(S)	6.CUSTOMER CONSTRAINTS	5.AVAILABLE SOLUTIONS
completed their school or	accuracy or reliability of the predictors, which can hinder their use.	In addition to factors such as grades and GPA, we also consider IELTS/TOFEL, GRE, which play an important role in the admissions process of some colleges by further improving the reliability of predictors.
2.JOBS-TO-BE-DONE	9.PROBLEM ROOTCAUSE	7.BEHAVIOUR
Data collection is probably the most important step in designing predictors, so it's important to make sure it's done right	Confidence in predictors may be compromised if collected data are found to be inaccurate or if not enough factors are considered to assess suitability	The most important aspect of a predictor from the customer's point of view is its accuracy as it is approved based on its results.
3.TRIGGERS	10.YOUR SOLUTION	8.CHANNELS OF
User can provide a comparison between desired and actual results	Use collected data to design predictors and ensure their accuracy or reliability. Also, make sure the data you	Customers can find reliable online predictors of eligibility and rate them based on their
4 EMOTIONS - DEFOREMETER	collect from users is secure.	preferences.
4.EMOTIONS: BEFORE/AFTER Users will feel completely in control of the admissions process because they can trust the predictor with all their heart.		Students discuss such predictors in peer groups and whether they can find them.

4. REQUIREMENT ANALYSIS:

4.1 FUNCTIONAL REQUIREMENTS:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Profile	Complete user profile by providing the Student
		Academic details.
FR-2	User Search	Search for desired University based on their Academic
		Performance and eligibility criteria.
FR-3	User Preference	Search for Universities based on their location preference.
FR-4	Result	The list of universities is filtered based on the eligibility
		of the students where the order of the list will be based on the ratings of the university.

4.2 NON-FUNCTIONAL REQUIREMENTS:

Following are the Non-functional requirements of the proposed solution.

NFR No.	Non-Functional Requirement	Description
NFR-1	Usability	Filters the universities based on the user profile.
NFR-2	Security	User details are secured from unauthorized parties.
NFR-3	Reliability	The users can find universities based on their preferred location and results.
NFR-4	Performance	The website will provide the list of universities within 30 seconds.
NFR-5	Availability	Students across India can access the website anytime and anywhere.
NFR-6	Scalability	The solution will be helpful for the students in India to know the details about universities they are eligible.

5. PROJECT DESIGN:

5.1 DATA FLOW DIAGRAM:

5.2 SOLUTION & TECHNICAL ARCHITECTURE:

WORKING ALGORITHM

5.3 USER STORIES:

6. PROJECT PLANNING & SCHEDULING:

6.1 SPRINT DELIVERY PLANNING AND ESTIMATE:

Sprint	Total Story Point s	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 OCT 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 NOV 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 NOV 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	17 NOV 2022

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

FEATURE-1:

```
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Admission Prediction</title>
<style>
.login{
    text-align:center;
    margin:auto;
```

```
width:100%;
    }
    .button{
      border: none;
      color:black;
      padding:5px;
      text-align: center;
      text-decoration: none;
      display: inline-block;
      font-size: 14px;
      margin: 4px 2px;
      cursor: pointer;
    }
 </style>
</head>
<body style="background-color:powderblue;">
 <div class="login">
   <h1>University AdmissionPrediction</h1>
   <form action="{{ url_for('y_predict')}}" method="post">
   <label for="gre"><b>ENTER GRE SCORE:</b></label><br>
   <input type="text" name="GRE_score" placeholder="GRE_score" id="gre"</pre>
```

```
required="required" /><br><br>
   <label for="toefl"><b>ENTER TOEFL SCORE:</b></label><br>
   <input type="text" name="TOEFL_score" placeholder="TOEFL_score" id="toefl"</pre>
required="required" /><br><br>
   <label for="rating"><b>ENTER THE UNIVERSITY RATING:</b></label><br/>br>
   <select name="University_rating" id="rating" required="required">
      <option value="">Choose Rating</option>
      <option value=1>1</option>
      <option value=2>2</option>
      <option value=3>3</option>
      <option value=4>4</option>
      <option value=5>5</option>
   </select><br><br>
   <label for="sop"><b>ENTER SOP:</b></label><br/>br>
   <input type="text" name="sop" placeholder="sop" id="sop" required="required"
/><br>
   <label for="lor"><b>ENTER LOR:</b></label><br
   <input type="text" name="lor" placeholder="lor" id="lor" required="required"
/><br>
   <label for="gpa"><b>ENTER CGPA:</b></label><br/>br>
   <input type="text" name="cgpa" placeholder="cgpa" id="gpa" required="required" />
<br>><br>>
   <label for="research"><b>HAVE YOU DONE ANY RESEARCH:</label><br/>b>
   <select name="Research" id="research" required="required">
```

```
<option value="">Research</option>
     <option value=1>YES</option>
     <option value=0>NO</option>
  </select><br><br>
  <button type="submit" class="button">Predict</button>
  </form>
  <br>
  <br>>
 {{prediction_text}}
</div>
</body>
```

</html>

Feature -2:

```
Chances.html:
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1,</pre>
user-scalable=no">
  link rel="stylesheet" type="text/css" rel="noopener" target="_blank"
href="/Users/aaronraja/Desktop/data science projects/University Admit Eligibility
Predictor/untitled folder/static/css/styles.css">
  k href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css"
rel="stylesheet" integrity="sha384-
Zenh87qX5JnK2Jl0vWa8Ck2rdkQ2Bzep5IDxbcnCeuOxjzrPF/et3URy9Bv1WTRi"
crossorigin="anonymous">
  <title>University Admit Eligibility Predictor</title>
</head>
<body>
  <nav class="navbar navbar-expand-lg bg-light">
    <div class="container-fluid">
       <a class="navbar-brand text-responsive-h" href="/">
```

 University Admission Eligibility Prediction System

```
</a>
    </div>
  </nav>
  {% block body %}
  <h1> Index Page </h1>
  {% endblock %}
  <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/js/bootstrap.bundle.min.js"</pre>
integrity="sha384-
OERcA2EqjJCMA+/3y+gxIOqMEjwtxJY7qPCqsdltbNJuaOe923+mo//f6V8Qbsw3"
crossorigin="anonymous"></script>
</body>
</html>
Nochance.html:
{% extends 'index.html' %}
{% block body %}
<div class="container text-center p-4">
  <div class="d-flex justify-content-center">
```

Demo.html:

Enter your details and get probability of your admission

```
</h2>
```

Students are often worried about their chances of admission to University. The aim of this project is to help students in shortlisting universities with their profiles. The predicted output gives them a fair idea about their admission chances in a particular

university. This analysis should also help students who are currently preparing or will be preparing to get a better idea.

```
<div class="d-flex justify-content-right">
         <img
src="https://media2.giphy.com/media/ysyMmtuCA0AK9diW0I/giphy.gif"
border="0" alt="..." />
       </div>
    </div>
    <div class="col-8">
       <div class="card p-2 ms-2 my-2">
         <div class="card-body">
           <h5 class="card-title pb-4">
              Enter the details
           </h5>
           <form action="/" method="post" id="theForm">
```

<div class="row mb-3"> <label for="gre" class="col-lg-2 col-form-label">GRE Score:</label> <div class="col-lg-10"> <input type="number" class="form-control" id="gre"</pre> name="gre" min="250" max="340" placeholder="250 to 340" required> </div> </div> <div class="row mb-3"> <label for="tofel" class="col-lg-2 col-form-label">TOFEL Score:</label> <div class="col-lg-10"> <input type="number" class="form-control" id="tofel"</pre> name="tofel" min="50" max="120" placeholder="50 to 120" required> </div> </div><div class="row mb-3"> <label for="university_rating" class="col-lg-2 col-formlabel">University Rating:</label> <div class="col-lg-10"> <input type="number" class="form-control" id="university_rating" step="0.01" name="university_rating" min="1" max="5" placeholder="1 to 5" required>

```
</div>
             </div>
             <div class="row mb-3">
                           for="sop" class="col-lg-2 col-form-
               <label
label">SOP:</label>
               <div class="col-lg-10">
                 <input type="number" class="form-control" id="sop"</pre>
name="sop" step="0.01" min="1" max="5" placeholder="1 to 5" required>
               </div>
             </div>
             <div class="row mb-3">
                           for="lor"
                                         class="col-lg-2 col-form-
               <label
label">LOR:</label>
               <div class="col-lg-10">
                 <input type="number" class="form-control" id="lor"
name="lor" step="0.01" min="1" max="5" placeholder="1 to 5" required>
               </div>
             </div>
             <div class="row mb-3">
               <label
                          for="cgpa"
                                          class="col-lg-2
                                                             col-form-
label">CGPA:</label>
               <div class="col-lg-10">
```

```
<input type="number" class="form-control" id="cgpa"</pre>
name="cgpa" step="0.01" min="5" max="10" placeholder="5 to 10" required>
                </div>
              </div>
              <fieldset class="row mb-3">
                < legend
                             class="col-form-label
                                                        col-sm-2
                                                                      pt-
0">Research:</legend>
                <div class="col-sm-10">
                  <div class="form-check">
                                class="form-check-input"
                                                             type="radio"
                     <input
name="yes_no_radio" id="gridRadios1" value="1">
                    <label class="form-check-label" for="yes_no_radio">
                       Yes
                       </label>
                  </div>
                  <div class="form-check">
                                                            type="radio"
                                class="form-check-input"
                     <input
name="yes_no_radio" id="gridRadios2" value="0" checked>
                    <label class="form-check-label" for="yes_no_radio">
                       No
                       </label>
                  </div>
```

```
</div>
              </fieldset>
              <div class="row lg-3">
                <div class="col-lg-2 mb-2 me-3">
                              type="submit"
                                                              btn-primary"
                   <button
                                                class="btn
id="button">Predict</button>
                </div>
                <div class="col-lg-2" id="spinner">
                           class="spinner-border
                                                     text-primary
                  <div
                                                                     m-1"
role="status">
                     <span class="visually-hidden">Loading...</span>
                   </div>
                  <div class="spinner-grow text-primary m-1" role="status">
                     <span class="visually-hidden">Loading...</span>
                  </div>
                </div>
           </form>
           </div>
         </div>
       </div>
    </div>
```

</div>

<script type="text/javascript" src="/Users/aaronraja/Desktop/data science
projects/University Admit Eligibility Predictor/untitled folder/static/js/script.js"
async></script>

{% endblock %}

8. TESTING

Test cases:

The Results are cross checked by using previous year's datasets and outputs. user expected results and result are verified using sample test cases.

9. RESULTS

Performance Metrics:

IT	Information Technology	174.75	154.25	171.5	161.5		107.5
ME	Mechanical Engineering	174	166.5	169.5	167.5	162.25	130
CS	Computer Science and Engg.	178.75	170.5	176	165.5		113.5
EI	Electronics and Instru Engg.	180	174.25	176.5	169.5		121.75
IT	Information Technology	184.75	179.75	182	173.25		129.75
ME	Mechanical Engineering	186.5	182.75	183.5	178.5		155.25
AU	Automobile Engineering	177	171.25	169.5	164.25		129
CE	Civil Engineering	180.5	173.25	175	174.5		146.75
CS	Computer Science and Engg.	188	182.75	186	177	152.25	146.5
EC	Electronics and Comm Engg.	190.75	176.75	188.25	184.25	95.5	163.75
EE	Electrical and Elec. Engg.	186.25	178	183.5	178.25		152
ME	Mechanical Engineering	184	180.25	179.5	169.5	112.5	138.75
EE	Electrical and Elec. Engg.	185.75	175.5	183	167.75	102.25	129.75
EC	Electronics and Comm Engg.	192	182.75	189.5	181.25	139.25	137.5
CS	Computer Science and Engg.	189.25	182.25	187.25	176.5	129	132.5
IT	Information Technology	185	175.5	183.75	166.75		120.5
CE	Civil Engineering	183	179	179.75	169.75	115.25	148.75
CS	Computer Science and Engg.	172.5	116.25	163	125.25	137.75	84.25
EE	Electrical and Elec. Engg.	164.5	158.25	145	116.75	138.5	87.5
IT	Information Technology	161.5	107.75	152.5	104	113.75	129.75
ВМ	Bio Medical Engineering	183	173.25	173	161	143	103.75
CE	Civil Engineering	150.75	135.25	128.25	100.5	120	109
ME	Mechanical Engineering	161		140.5	133.75	133.75	113
EC	Electronics and Comm Engg.	172.5	108.5	159	113.25	134	98.5

10. ADVANTAGES & DISADVANTAGES

Advantages:

- Reach to geographically scattered student.: One of the important objectives of the admission system is communicate with all the students scattered geographically.
- Reducing time in activities: Reduce the time taken process the applications of students, admitting a student as they already know about their possibilities of getting into the colleges.
- Centralized data handling: Transfer the data smoothly to all the departments involved and handle the data centralized way.
- Operational efficiency: Improve the operational efficiency by improving the quality of the process as it is easy to use with a basic knowledge about the system. The students can fill the details by themselves and check the desired career in desired college.

Disadvantages:

The model has some draw back when grade system of the corresponding university changes, the prediction can't be accurate.

11. CONCLUSION

The prediction of this model is compared with the test dataset created by picking random values from the original dataset and the evaluation of the prediction is further evaluated using different methods. After a complete evaluation of the predictive model, we can conclude that the accuracy of this model is very and Random Forest and Decision Tree algorithm is one of the best algorithms for regression problems. These two algorithms are highly accurate and fast in prediction irrespective of the size of the dataset.