Overview

- Likelihood principle (11 lectures)
- Bayesian inference (2 lectures)
- Decision theory (3 lectures)
- Multivariate analysis (2 lectures)
- Nonparametric inference & Monte Carlo techniques (6 lectures)

Books:

- Theory of point estimation Lehmann & Casella
- "Asymptotic Statistics" van der Vaart
- "Statistical Inference" Casella & Berger
- "Intro to Multivariate Statistical Analysis" Anderson

Introduction

<u>Goal</u>: Make inference about unknown probability distributions based on access to random samples.

Consider a real valued random variable X on a probability space Ω with distribution function

$$F(t) = \mathbb{P}(\omega \in \Omega : X(\omega) \le t) \ \forall t \in \mathbb{R}$$

When X is discrete, $F(t) = \sum_{x \le t} f(x)$, where f is the pmf of X.

When X is continuous, $F(t) = \int_{-\infty}^{t} f(s) ds$, where f is the pdf of X.

For all the results in this course, we assume either pdf or pmf exists.

Often, the distribution of X is parameterised by an unknown value θ . The goal is to infer something about θ based on (iid) samples X_1, \ldots, X_n .

Definition. A statistical model for a sample from X is any family of probability distributions $\{P_{\theta} : \theta \in \Theta\}$ for the law of X. When P_{θ} has a pmf (pdf) $f(\cdot, \theta)$, this is also written as $\{f(\cdot, \theta) : \theta \in \Theta\}$. The index set Θ is the parameter space.

Example.

- (i) $\mathcal{N}(\theta, 1)$; $\theta \in \Theta = \mathbb{R}$.
- (ii) $\mathcal{N}(\mu, \sigma^2)$, $\theta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times (0, \infty)$.
- (iii) $\operatorname{Exp}(\theta)$; $\theta \in \Theta = (0, \infty)$.

(iv)
$$\mathcal{N}(\theta, 1)$$
; $\theta \in \Theta = [-1, 1]$.

Remark: for a variable X with distribution P, the model $\{P_{\theta} : \theta \in \Theta\}$ is correctly specified if there exists $\theta \in \Theta$ such that $P = P_{\theta}$. For instance, if $X \sim \mathcal{N}(2,1)$, the model in (i) is correctly specified, but the model in (iv) is not.

In the case of a correctly specified model, we often use θ_0 to denote the "true value" of the parameter. We also say $\{X_1, \ldots, X_n\}$ are iid from a model $\{P_\theta : \theta \in \Theta\}$ in the case of a correctly specified model.

Statistical goals:

- Estimation: construct $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ such that $\hat{\theta}$ is close to θ_0 when $X_i \sim P_{\theta_0}$.
- <u>Hypothesis testing</u>: determine whether the null hypothesis $H_0: \theta = \theta_0$ or the alternative hypothesis $H_1: \theta \neq \theta_0$ is true, using a test $\psi_n = \psi(X_1, \ldots, X_n)$ such that $\psi_n = 0$ when H_0 is true and $\psi_n = 1$ when H_1 is true, with high probability.
- <u>Inference</u>: find confidence intervals (confidence sets) $C_n = C(X_1, ..., X_n)$ such that for some $0 < \alpha < 1$ we have $\mathbb{P}_{\theta}(\theta \in C_n) \ge 1 \alpha$, for all $\theta \in \Theta$, where α is the significance level.

1 The Likelihood Principle

Suppose X_1, \ldots, X_n are iid from a Poisson model $\{\text{Poi}(\theta) : \theta \geq 0\}$ with numerical values $X_i = x_i$, for all $1 \leq i \leq n$. The joint distribution of the sample is

$$f(x_1, \dots, x_n; \theta) = \mathbb{P}_{\theta}(X_1, x_1, \dots, X_n = x_n) = \prod_{i=1}^n (e^{-\theta} \frac{\theta^{x_i}}{x_i!}) = e^{-n\theta} \prod_{i=1}^n \frac{\theta^{x_i}}{x_i!} = L_n(\theta)$$

We can think of $L_n(\theta)$ as a random function from Θ to \mathbb{R} , where the randomness comes from $\{X_i\}_{i=1}^n$. This is the probability of occurence of the observed sample $(X_1 = x_1, \ldots, X_n = x_n)$, as a function of the unknown parameter θ .

The idea of the likelihood principle is to find θ which maximises $L_n(\theta)$, or equivalently $l_n(\theta) = \overline{\log L_n(\theta)}$. In the example, we have

$$l_n(\theta) = -n\theta + \log(\theta) \sum_{i=1}^n x_i - \sum_{i=1}^n \log(x_i!)$$

Setting $l'_n(\theta) = 0$ gives

$$-n + \frac{1}{\theta} \sum_{i=1}^{n} x_i = 0$$

and the solution is $\hat{\theta}_{\text{mle}} = \frac{1}{n} \sum_{i=1}^{n} x_i$, which is the sample mean. One can also check that $l_n''(\theta) < 0$ for all $\theta > 0$. When all X_i 's are 0, one can check that maximising $l_n(\theta)$ is equivalent to maximising $-n\theta$, so $\hat{\theta}_{\text{mle}} = 0$ in this case.

Maximum likelihood estimator

Suppose $\{f(\cdot,\theta):\theta\in\Theta\}$ is a statistical model of pdfs/pmfs for the distribution of a random variable X, and X_1,\ldots,X_n are iid copies of X.

Define the likelihood function

$$L_n(\theta) = \prod_{i=1}^n f(x_i, \theta)$$

the log likelihood function

$$l_n(\theta) = \log L_n(\theta) = \sum_{i=1}^n \log f(x_i, \theta)$$

and the normalised log likelihood function

$$\bar{l}_n(\theta) = \frac{1}{n}l_n(\theta) = \frac{1}{n}\sum_{i=1}\log f(x_i, \theta)$$

Definition. The maximum likelihood estimator is any element $\hat{\theta} = \hat{\theta}_{\text{mle}} = \hat{\theta}_{\text{mle}}(X_1, \dots, X_n) \in \Theta$ for which $L_n(\hat{\theta}) = \max_{\theta \in \Theta} L_n(\theta)$.

Remark: the definition of MLE can be generalised to non-iid data, provided a joint pdf/pmf of (X_1, \ldots, X_n) can be specified.

Example.

- (i) For $X_i \sim \text{Poi}(\theta)$, $\theta \ge 0$, we calculated $\hat{\theta}_{\text{mle}} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}_n$.
- (ii) For $X_i \sim \mathcal{N}(\mu, \sigma^2)$, $\theta = (\mu, \sigma^2) \in \mathbb{R} \times (0, \infty)$, we have $\hat{\mu}_{\text{mle}} = \bar{X}_n$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X}_n)^2$ (see Example sheet).
- (iii) In the Gaussian linear model $Y = X\theta + \varepsilon$, with a known $X \in \mathbb{R}^{n \times p}$, unknown $\theta \in \mathbb{R}^p$, and $\varepsilon \sim \mathcal{N}(0, I_n)$, the observations (Y_1, \ldots, Y_n) are not iid, but a joint distribution $f(Y_1, \ldots, Y_n; \theta)$ can still be specified. The MLE is the least squares estimator (see Example sheet).

Definition. For $\Theta \subseteq \mathbb{R}^p$ and l_n differentiable at θ , the score function S_n is

$$S_n(\theta) = \begin{pmatrix} \frac{\partial}{\partial \theta_1} l_n(\theta) \\ \vdots \\ \frac{\partial}{\partial \theta_p} l_n(\theta) \end{pmatrix}$$

Solving for a root of $S_n(\theta)$ is a common heuristic for maximising $l_n(\theta)$. In many cases, it is a necessary and sufficient condition.

Note: derivatives are taken with respect to θ , <u>not</u> the x_i 's.

Information geometry

Recall that if X is a random variable with distribution P_{θ} on some space $\mathcal{X} \subseteq \mathbb{R}^d$, and $g: \mathcal{X} \to \mathbb{R}$ is a function, then

$$E_{\theta}[g(X)] = \int_{\mathcal{X}} g(x) dP_g(x) = \int_{\mathcal{X}} g(x) f(x, \theta) dx$$

if X has a pdf $f(x, \theta)$, and

$$\mathbb{E}_{\theta}[g(X)] = \sum_{x \in \mathcal{X}} g(x) f(x, \theta)$$

if X has a pmf $f(x, \theta)$

Theorem 1.1. Consider a model $\{f(\cdot,\theta):\theta\in\Theta\}$, where $f(\cdot,\theta)$ is a pdf/pmf and $f(x,\theta)>0$ for all x,θ . Also suppose the model is correctly specified, with θ_0 equal to the true parameter, and $\mathbb{E}_{\theta_0}[|\log(f(X,\theta))|] < \infty$ for all $\theta \in \Theta$. Then the function defined by $l(\theta) = \mathbb{E}_{\theta_0}[\log(f(X,\theta))]$ is maximised at θ_0 .

Proof. Consider the case when X has a pdf (discrete case is analogous). For all $\theta \in \Theta$, we have

$$l(\theta) - l(\theta_0) = \mathbb{E}_{\theta_0}[\log(f(X, \theta))] - \mathbb{E}_{\theta_0}[\log(f(X, \theta))]$$
$$= \mathbb{E}_{\theta_0}\left[\log\left(\frac{f(X, \theta)}{f(X, \theta)}\right)\right]$$

<u>Jensen's inequality</u>: $\mathbb{E}[\varphi(Z)] \leq \varphi(\mathbb{E}[Z])$ for any random variable Z and concave function φ .

Since log is concave,

$$l(\theta) - l(\theta_0) \le \log \left(\mathbb{E}_{\theta_0} \left[\frac{f(X, \theta)}{f(X, \theta_0)} \right] \right)$$
$$= \log \left(\int_{\mathcal{X}} \frac{f(x, \theta)}{f(x, \theta_0)} f(x, \theta_0) dx \right) = \log 1 = 0$$
 (*)

Remark: under the assumption of "strict identifiability of the model parameterisation", i.e,

$$f(\cdot, \theta) = f(\cdot, \theta') \iff \theta = \theta'$$

the inequality (*) is strict, since equality occurs in Jensen only when φ is linear or Z is constant.

Remark: the quantity $l(\theta_0) - l(\theta)$ computed above can be written as

$$\mathrm{KL}(P_{\theta_0}, P_{\theta}) = \int_{\mathcal{X}} f(x, \theta_0) \log \left(\frac{f(x, \theta_0)}{f(x, \theta)} \right) \mathrm{d}x$$

and is the Kullback-Leibler divergence in information theory. It is a "distance" between distributions. Maximising $l(\theta)$ is equivalent to minimising KL.

Fisher information

We consider the gradient and Hessian of the likelihood function.

Theorem 1.2. For a parametric model $\{f(\cdot,\theta):\theta\in\Theta\}$, "regular enough" so integration and differentiation can be interchanged, we have $\mathbb{E}_{\theta}[\nabla_{\theta}\log(f(X,\theta))] = 0$ for all $\theta\in \mathrm{int}(\Theta)$.

Proof. We write the expectation

$$\mathbb{E}_{\theta}[\nabla_{\theta} \log(f(X, \theta))] = \int_{\mathcal{X}} (\nabla_{\theta} \log f(x, \theta)) f(x, \theta) dx$$
$$= \int_{\mathcal{X}} \frac{\nabla_{\theta} f(x, \theta)}{f(x, \theta)} f(x, \theta) dx$$
$$= \nabla_{\theta} \left(\int_{X} f(x, \theta) dx \right) = \nabla_{\theta}(1) = 0$$

Remark: in particular, when $\theta_0 \in \text{int}(\Theta)$, then $\mathbb{E}_{\theta_0}[\nabla_{\theta} \log(f(X, \theta))] = 0$.

Definition. For a parameter space $\Theta \subseteq \mathbb{R}^p$, the Fisher information matrix is defined by

$$I(\theta) = \mathbb{E}_{\theta} \left[\left(\nabla_{\theta} \log f(X, \theta) \right) \left(\nabla_{\theta} \log f(X, \theta) \right)^{T} \right], \ \forall \theta \in \text{int}(\Theta)$$

in other words,

$$I_{ij}(\theta) = \mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta_i} \log f(X, \theta) \frac{\partial}{\partial \theta_j} \log f(X, \theta) \right]$$

Remark: in 1 dimension, we have

$$I(\theta) = \mathbb{E}_{\theta} \left[\left(\frac{\mathrm{d}}{\mathrm{d}\theta} \log f(X, \theta) \right)^2 \right] = \mathrm{Var}_{\theta} \left[\frac{\mathrm{d}}{\mathrm{d}\theta} \log f(X, \theta) \right]$$

Page 5

Thus I_{θ_0} describes random variations of $S_n(\theta_0)$ about its mean. This in turn will help quantify the precision of $\hat{\theta}$, a zero of $S_n(\hat{\theta}) = 0$, about θ_0 .

Theorem 1.3. Under the same regularity assumptions as the previous theorem

$$I(\theta) = -\mathbb{E}_{\theta} \left[\nabla_{\theta}^2 \log(f(X, \theta)) \right], \ \forall \theta \in \text{int}(\Theta)$$

i.e,

$$I_{ij}(\theta) = -\mathbb{E}_{\theta} \left[\frac{\partial^2}{\partial \theta_i \partial \theta_j} \log f(X, \theta) \right]$$

Proof. We write

$$\nabla_{\theta}^{2} \log f(X, \theta) = \nabla_{\theta} \left(\frac{\nabla_{\theta} f(X, \theta)}{f(X, \theta)} \right) = \frac{\nabla_{\theta}^{2} f(X, \theta)}{f(X, \theta)} - \frac{\nabla_{\theta} f(X, \theta) \nabla_{\theta} f(X, \theta)^{T}}{f(X, \theta)^{2}}$$

note that

$$\mathbb{E}\left[\frac{\nabla_{\theta}^2 f(X,\theta)}{f(X,\theta)}\right] = \int_{\mathcal{X}} \nabla_{\theta}^2 f(X,\theta) \mathrm{d}x = \nabla_{\theta}^2 \int_{\mathcal{X}} f(X,\theta) \mathrm{d}x = 0$$

Therefore

$$-\mathbb{E}_{\theta} \left[\nabla_{\theta}^{2} \log f(X, \theta) \right] = \mathbb{E}_{\theta} \left[\frac{\nabla_{\theta} f(X, \theta) \nabla_{\theta} f(X, \theta)^{T}}{f^{2}(X, \theta)} \right]$$

$$= \mathbb{E} \left[\frac{\nabla_{\theta} f(X, \theta)}{f(X, \theta)} \left(\frac{\nabla_{\theta} f(X, \theta)}{f(X, \theta)} \right)^{T} \right]$$

$$= \mathbb{E}_{\theta} \left[(\nabla_{\theta} \log f(X, \theta)) (\nabla_{\theta} \log f(X, \theta))^{T} \right]$$

$$= I(\theta)$$

Remark: continuing the previous remark, in 1 dimension

$$\operatorname{Var}_{\theta} \left[\frac{\mathrm{d}}{\mathrm{d}\theta} \log f(X, \theta) \right] = I(\theta) = -\mathbb{E}_{\theta} \left[\frac{\mathrm{d}^2}{\mathrm{d}\theta^2} \log f(X, \theta) \right]$$

this relates the variance of the score function and the curvature of l, both of which are relevant to describing the quality of the MLE $\hat{\theta}$ as an approximation to θ_0 .

Suppose now $X = (X_1, ..., X_n)$ is a vector of iid copies of a random variable. Let $I(\theta) = \mathbb{E}_{\theta}[(\nabla_{\theta} \log f(X_{i_1}, \theta))(\nabla_{\theta} \log f(X_{i_1}, \theta))^T]$ be the Fisher information of one copy of the random variable, and let

$$I_n(\theta) = \mathbb{E}_{\theta} \left[(\nabla_{\theta} \log f(X_1, \dots, X_n, \theta)) (\nabla_{\theta} \log f(X_1, \dots, X_n, \theta))^T \right]$$

denotes the Fisher information of the random vector X.

Theorem 1.4. In the setting described above, the Fisher information "tensorizes"

$$I_n(\theta) = nI(\theta)$$

Proof. By independence, $f(X_1, \ldots, X_n, \theta) = \prod_{i=1}^n f(X_i, \theta)$. Then $\log f(X_1, \ldots, X_n, \theta) = \sum_{i=1}^n \log f(X_i, \theta)$. We write

$$I_n(\theta) = \mathbb{E}_{\theta} \left[(\nabla_{\theta} \log f(X_1, \dots, X_n, \theta)) (\nabla_{\theta} \log f(X_1, \dots, X_n, \theta))^T \right]$$
$$= \mathbb{E}_{\theta} \left[\left(\sum_{i=1}^n \nabla_{\theta} \log f(X_i, \theta) \right) \left(\sum_{i=1}^n \nabla_{\theta} \log f(X_i, \theta) \right)^T \right]$$

Recall that $\mathbb{E}_{\theta} [\nabla_{\theta} \log f(X_i, \theta)] = 0$. Thus, by independence, all but the "diagonal" terms of the product remain, so

$$I_n(\theta) = \sum_{i=1}^n \mathbb{E}_{\theta} \left[(\nabla_{\theta} \log f(X_i, \theta)) (\nabla_{\theta} \log f(X_i, \theta))^T \right] = nI(\theta)$$

Cramer-Rao bound

Theorem 1.5 (Cramer-Rao bound). Let $\{f(\cdot,\theta):\theta\in\Theta\}$ be a "regular" statistical model with $\Theta\subseteq\mathbb{R}$. Let $\tilde{\theta}=\tilde{\theta}(X_1,\ldots,X_n)$ be an unbiased estimator of θ based on n iid observations from the model. For all $\theta\in\operatorname{int}(\theta)$, we have

$$\operatorname{Var}_{\theta}(\tilde{\theta}) = \mathbb{E}_{\theta}\left[(\tilde{\theta} - \theta)^2\right] \ge \frac{1}{nI(\theta)}$$

Proof. Recall the Cauchy-Schwarz inequality:

$$(\mathbb{E}[YZ])^2 \le \mathbb{E}[Y]^2 \mathbb{E}[Z]^2$$

for random variables Y, Z. In particular, we will take $Y = \tilde{\theta} - \theta$ and $Z = \frac{d}{d\theta} \log f(X_1, \dots, X_n, \theta)$.

Note that $\mathbb{E}_{\theta}[Y^2] = \mathbb{E}_{\theta}\left[(\tilde{\theta} - \theta)^2\right]$. Also, by the previous theorem,

$$\mathbb{E}_{\theta}[Z^2] = I_n(\theta) = nI_n(\theta)$$

Furthermore,

Furthermore,
$$\mathbb{E}_{\theta}[YZ] = \mathbb{E}_{\theta} \left[\tilde{\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \log f(X_1, \dots, X_n, \theta) \right] - \theta \underbrace{\mathbb{E}_{\theta} \left[\frac{\mathrm{d}}{\mathrm{d}\theta} \log f(X_1, \dots, X_n, \theta) \right]}_{=0}$$

$$= \int_{\mathcal{X}} \tilde{\theta}(X_1, \dots, X_n) \frac{\frac{\mathrm{d}}{\mathrm{d}\theta} f(X_1, \dots, X_n, \theta)}{f(X_1, \dots, X_n, \theta)} f(X_1, \dots, X_n) \mathrm{d}x_1 \dots \mathrm{d}x_n$$

$$= \frac{\mathrm{d}}{\mathrm{d}\theta} \int_{\mathcal{X}} \tilde{\theta}(X_1, \dots, X_n) f(X_1, \dots, X_n, \theta) \mathrm{d}x_1 \dots \mathrm{d}x_n = \frac{\mathrm{d}}{\mathrm{d}\theta} \mathbb{E}_{\theta}[\tilde{\theta}] = 1$$
and the result follows from Cauchy-Schwarz.

Remark: if $\tilde{\theta}$ is not unbiased, the same proof shows that

$$\operatorname{Var}_{\theta}(\tilde{\theta}) \ge \frac{\left(\frac{\mathrm{d}}{\mathrm{d}\theta} \mathbb{E}_{\theta}[\tilde{\theta}]\right)^2}{nI(\theta)}$$

The Cramer-Rao bound is about a variance of an estimate, hence is univariate in nature. Here is one multivariate generalisation. Suppose $\Theta \subseteq \mathbb{R}^p$ and $\Phi : \Theta \to \mathbb{R}$ is differentiable. Suppose $\tilde{\Phi}$ is an unbiased estimator of $\Phi(\theta)$ based on iid observations (X_1, \ldots, X_n) from a model $\{f(\cdot, \theta) : \theta \in \Theta\}$.

Theorem 1.6. For all $\theta \in \text{int}(\Theta)$, we have

$$\operatorname{Var}_{\theta}(\tilde{\Phi}) \geq \frac{1}{n} \nabla_{\theta} \Phi(\theta)^{T} \left(I^{-1}(\theta) \right) \nabla_{\theta} \Phi(\theta)$$

Proof. Omitted. Can be derived using Cauchy-Schwarz.

Example. Suppose $\Phi(\theta) = \alpha^T \theta$. Then $\nabla_{\theta} \Phi(\theta) = \alpha$ so the lower bound is

$$\operatorname{Var}_{\theta}(\tilde{\Phi}) \geq \frac{1}{n} \alpha^T I^{-1}(\theta) \alpha$$

In the example sheet, we will consider the special case of $\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim \mathcal{N}(\theta, \Sigma)$ where $\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} \in \mathbb{R}^2$ and $\Sigma \in \mathbb{R}^{2 \times 2}$ is a known matrix. Let the sample size be n=1.

<u>Case 1</u>: consider estimating θ_1 when θ_2 is known. This is a one-dimensional estimation problem, and we denote the Fisher information $I_1(\theta)$.

<u>Case 2</u>: consider estimating θ_1 when θ_2 is unknown. We can take $\Phi(\theta) = \theta_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \theta$ in the theorem above to obtain a lower bound

$$I_{\Phi}(\theta) = \nabla_{\theta} \Phi(\theta)^{T} I(\theta)^{-1} \nabla_{\theta} \Phi(\theta)$$

of the variance of an unbiased estimator.

We will show that $I_1(\theta)^{-1} < I_{\Phi}(\theta)$, unless X_1 and X_2 are independent (i.e unless Σ is diagonal).

Asymptotic theory of the MLE

Cramer-Rao is concerned with unbiased estimators, but not all estimators, even MLE's are unbiased.

On the other hand, a reasonable property to expect is asymptotic unbiasedness: $\mathbb{E}_{\theta}[\tilde{\theta}_n] \to \theta$ as $n \to \infty$, when $\tilde{\theta}_n$ is computed from n iid samples from P_{θ} .

A stronger but related concept is *consistency*: $\tilde{\theta}_n \to \theta$ as $n \to \infty$ (where convergence is defined in a precise way to be discussed later).

For consistent estimators, a reasonable optimality criterion is asymptotic efficiency: $n \operatorname{Var}_{\theta}(\tilde{\theta}_n) \to I(\theta)^{-1}$ as $n \to \infty$, when $\tilde{\theta}_n$ is computed from n iid samples from P_{θ} (and p = 1).

Note that Cramer-Rao does <u>not</u> imply that $\liminf_{n\to\infty} n \operatorname{Var}_{\theta}(\tilde{\theta}_n) \geq I(\theta)^{-1}$ for any consistent estimator. However, this is true under appropriate regularity conditions.

Now, we will show that the MLE is always (under regularity conditions) asymptotically efficient. In fact

$$\hat{\theta}_{\text{mle}} \approx \mathcal{N}\left(\theta, \frac{I(\theta)^{-1}}{n}\right)$$
, for any $\theta \in \text{int}(\Theta)$ and n sufficiently large

Stochastic Convergence

We now introduce several basic definitions/results that will be used without proof.

Definition. Let $\{X_n\}_{n\geq 0}$ and X be random vectors in \mathbb{R}^k , defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. So $X : \Omega \to \mathbb{R}^k$, \mathcal{A} is the set of measurable sets ("events").

1. We say X_n converges to X almost surely, or $X_n \xrightarrow{\text{a.s.}} X$ as $n \to \infty$, if

$$\mathbb{P}(\omega \in \Omega : ||X_n(\omega) - X(\omega)||_2 \to 0 \text{ as } n \to \infty)$$
$$= \mathbb{P}(||X_n - X||_2 \to 0 \text{ as } n \to \infty) = 1$$

2. We say that X_n converges to X in probability, or $X_n \xrightarrow{P} X$ as $n \to \infty$, if for all $\varepsilon > 0$,

$$\mathbb{P}(||X_n - X||_2 > \varepsilon) \to 0$$

3. We say that X_n converges to X in distribution, or $X_n \stackrel{d}{\to} X$ as $n \to \infty$, if

$$\mathbb{P}(X_n \prec t) \to \mathbb{P}(X \prec t), \ \forall t \text{ where } t \mapsto \mathbb{P}(X \prec t) \text{ is continuous}$$

we write $\{X \prec t\}$ as a shorthand for $\{X_{(1)} \leq t_1, \ldots, X_{(k)} \leq t_k\}$. For k = 1, this simply means

$$\mathbb{P}(X_n \le t) \to \mathbb{P}(X \le t)$$

i.e convergence of the usual cdf.

Theorem 1.7. Almost sure convergence implies convergence in probability, which implies convergence in distribution. i.e

$$X_n \xrightarrow{a.s} X \implies X_n \xrightarrow{P} X \implies X_n \xrightarrow{d} X$$

Proof. See Probability & Measure.

Theorem 1.8 (Continuous mapping theorem). If $\{X_n\}$ and X take values in $\mathcal{X} \subseteq \mathbb{R}^d$ and $g: \mathcal{X} \to \mathbb{R}$ is continuous, then

$$X_n \xrightarrow{a.s/P/d} X \implies g(X_n) \xrightarrow{a.s/P/d} g(X)$$

Proof. See Probability & Measure.

Theorem 1.9 (Slutsky's lemma). Let $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d} c$, where c is deterministic (i.e non-stochastic). As $n \to \infty$, we have

- 1. $Y_n \xrightarrow{P} c$
- 2. $X_n + Y_n \xrightarrow{d} X + c$
- 3. When Y_n is one-dimensional, $X_nY_n \xrightarrow{d} cX$, and if $c \neq 0$, $\frac{X_n}{Y_n} \xrightarrow{d} \frac{X}{c}$
- 4. If $\{A_n\}_{n\geq 0}$ are random matrices such that $\{A_n\}_{ij} \xrightarrow{P} A_{ij}$ for all (i,j), where A is deterministic, then $A_nX_n \xrightarrow{d} AX$

Proof. See Probability & Measure.

Theorem 1.10. If $X_n \stackrel{d}{\to} X$ as $n \to \infty$, then $\{X_n\}_{n \ge 0}$ is bounded in probability, or $X_n = 0_p(1)$: for all $\varepsilon > 0$, there exists $M(\varepsilon) < \infty$ such that for all $n \ge 0$

$$\mathbb{P}(||X_n||_2 > M(\varepsilon)) < \varepsilon$$

Proof. See Probability & Measure.

Law of Large Numbers (LLN)

Many results in statistics are based on convergence of averages of iid random variables.

Theorem 1.11 (Weak LLN). Let X_1, \ldots, X_n be iid copies of X with $\text{Var}(X) < \infty$. As $n \to \infty$, we have $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{P} \mathbb{E}(X)$.

Theorem 1.12 (Strong LLN). Let X_1, \ldots, X_n be iid copies of $X \sim P$ on \mathbb{R}^k , such that $\mathbb{E}[||X||_2] < \infty$. Then as $n \to \infty$ we have

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{a.s} \mathbb{E}[X]$$

We only prove the weak law or large numbers:

Proof. We will apply Chebyshev's inequality:

$$\mathbb{P}(|Z - \mu| \ge \varepsilon) \le \frac{\operatorname{Var}(Z)}{\varepsilon^2}$$

where $\mu = \mathbb{E}[Z]$. Take $Z_n = \frac{1}{n} \sum_{i=1}^n (X_i - \mathbb{E}(X))$ for a fixed $\varepsilon > 0$. Then

$$\mathbb{P}(|\bar{X}_n - \mathbb{E}(X)| \ge \varepsilon) = \mathbb{P}(|Z_n| \ge \varepsilon) \le \frac{\operatorname{Var}(Z_n)}{\varepsilon^2}$$

So if suffices to show $Var(Z_n) \to 0$. By independence of the X_i 's, we have

$$\operatorname{Var}(Z_n) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) = \frac{\operatorname{Var}(X)}{n} \to 0$$

since $Var(X) < \infty$.

Central Limit Theorem (CLT)

We now present a finer-grained characterisation of the behaviour of \bar{X}_n . The stochastic fluctuations of \bar{X}_n around $\mathbb{E}(X)$ are of the order $\frac{1}{\sqrt{n}}$ and look normally distributed.

Theorem 1.13 (CLT). Let X_1, \ldots, X_n be iid copies of $X \sim P$ on \mathbb{R} , such that $Var(X) = \sigma^2 < \infty$. As $n \to \infty$, we have

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mathbb{E}(X)\right) \xrightarrow{d} \mathcal{N}(0,\sigma^{2})$$

Proof. Omitted.

Remark: the CLT is useful for constructing confidence intervals. Suppose X_1, \ldots, X_n is a sequence of iid copies of a random variable with mean μ_0 and variance σ^2 , and let $\alpha \in (0,1)$. Define the confidence region

$$C_n = \left\{ \mu \in \mathbb{R} : |\mu - \bar{X}_n| \le \frac{\sigma z_\alpha}{\sqrt{n}} \right\}$$

where z_{α} is defined such that $\mathbb{P}(|Z| \leq z_{\alpha}) = 1 - \alpha$, for $Z \in \mathcal{N}(0,1)$. Then we can compute

$$\mathbb{P}(\mu_0 \in \mathcal{C}_n) = \mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^n \frac{X_i - \mu_0}{\sigma}\right| \le \frac{z_\alpha}{\sqrt{n}}\right)$$
$$= \mathbb{P}\left(\sqrt{n}\left|\frac{1}{n}\sum_{i=1}^n \tilde{X}_i - \mathbb{E}(\tilde{X})\right| \le z_\alpha\right)$$
$$\to \mathbb{P}(|Z| \le z_\alpha) = 1 - \alpha$$

where $\tilde{X}_i = \frac{X_i - \mu_0}{\sigma}$, is a zero mean, variance 1 random variable. So C_n is an asymptotic level $(1 - \alpha)$ confidence interval.

Theorem 1.14 (Multivariate CLT). Let X_1, \ldots, X_n be iid copies of $X \sim P$ on \mathbb{R}^k , such that $\text{Cov}(X) = \Sigma$ is positive definite. As $n \to \infty$ we have

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mathbb{E}(X)\right)\xrightarrow{d}\mathcal{N}(0,\Sigma)$$

Remark: recall that a random vector $X \in \mathbb{R}^k$ has a normal distribution with mean $\mu \in \mathbb{R}^k$ and covariance $\Sigma \in \mathbb{R}^{k \times k}$, denoted by $X \sim \mathcal{N}(\mu, \Sigma)$, if the pdf is

$$f(x) = \frac{1}{(2\pi)^{k/2}} \frac{1}{|\det(\Sigma)|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Remark: as a consequence of one of the theorems above, we also have

$$\frac{1}{n}\sum_{i=1}^{n} X_i - \mathbb{E}(X) = \mathcal{O}_p\left(\frac{1}{\sqrt{n}}\right)$$

Consistency of the MLE

Definition. Consider iid draws X_1, \ldots, X_n from the parametric model $\{P_{\theta} : \theta \in \Theta\}$. An estimator $\tilde{\theta}_n = \tilde{\theta}_n(X_1, \ldots, X_n)$ is consistent if $\tilde{\theta}_n \stackrel{P}{\longrightarrow} \theta$ as $n \to \infty$, whenever the X_i 's are drawn from P_{θ} . We also write $\tilde{\theta}_n \stackrel{P_{\theta}}{\longrightarrow} \theta$.

We will show that the MLE is unique and consistent under the following regularity assumptions:

Let $\{f(\cdot,\theta):\theta\in\Theta\}$ be a statistical model of pdf's/pmf's on $\mathcal{X}\subseteq\mathbb{R}^d$ such that

- 1. $f(x,\theta) > 0$ for all $x \in \mathcal{X}, \theta \in \Theta$
- 2. The function $f(x,\cdot):\theta\mapsto f(x,\theta)$ is continuous for all $x\in\mathcal{X}$.
- 3. The set $\Theta \subseteq \mathbb{R}^p$ is compact.
- 4. For any $\theta, \theta' \in \Theta$, $f(\cdot, \theta) = f(\cdot, \theta')$ if and only if $\theta = \theta'$ (strict identifiability)
- 5. $\mathbb{E}_{\theta} \left[\sup_{\theta'} \left| \log f(X, \theta') \right| \right] < \infty \text{ for all } \theta \in \Theta.$

These will be referred to as "the usual regularity conditions" in this course and its Examples sheets/Exams.

Remarks:

- Assumptions 1 and 4 are required to apply the strict version of Jensen's inequality to deduce that θ_0 is the unique maximum of $l(\theta) = \mathbb{E}_{\theta_0} [\log f(X, \theta)]$.
- Assumption 5 implies that continuity of the function $\theta \mapsto \log f(x,\theta)$ carries over to continuity of $\theta \mapsto \mathbb{E}_{\theta} [\log f(X,\theta)] = l(\theta)$, according to the Dominated Convergence Theorem.

Theorem 1.15 (*Dominated Convergence Theorem*). If a sequence of (measurable) functions $\{f_n\}$ converges pointwise to a function $f: \mathcal{X} \to \mathbb{R}$ such that $|f_n(x)| \leq g(x)$ for all $x \in \mathcal{X}$, for some function $g: \mathcal{X} \to \mathbb{R}$ such that $\mathbb{E}[|g(X)|] < \infty$, where X is a random variable taking values in \mathcal{X} , then

$$\mathbb{E}|f_n(X) - f(X)| \to 0 \text{ as } n \to \infty$$

In particular, for any sequence $\theta_n \to \theta$ in Θ , we can define $f_n(x) = \log(f(x, \theta_n))$ and $g(x) = \sup_{\theta'} |\log f(x, \theta')|$ and conclude that $l(\theta_n) \to l(\theta)$.

Theorem 1.16. Let X_1, \ldots, X_n be iid samples of a model $\{f(\cdot, \theta) : \theta \in \Theta\}$ satisfying the above assumptions. Then an MLE exists, and any MLE is consistent

Proof. Note that the mapping $\theta \mapsto \bar{l}_n(\theta) = \frac{1}{n} \sum_{i=1}^n \log f(x_i, \theta)$ is continuous on the compact set Θ . Thus a maximiser exists, so the MLE is well-defined.

To prove consistency, let θ_0 denote the true parameter. We use (without proof) the fact that under the regularity assumptions, we have the uniform convergence

$$\sup_{\theta \in \Theta} |\bar{l}_n(\theta) - l(\theta)| \xrightarrow{P_{\theta_0}} 0$$

(This is somewhat stronger than the LLN, which concerns convergence just at fixed θ)

Now define $\Theta_{\varepsilon} = \{\theta \in \Theta : ||\theta - \theta_0||_2 \ge \varepsilon\}$, for arbitrary $\varepsilon > 0$. We will show that for any sequence of MLE's $\{\hat{\theta}_n\}$, we have $\mathbb{P}(\hat{\theta}_n \in \Theta_{\varepsilon}) \to 0$ as $n \to \infty$.

Note that since Θ_{ε} is the intersection of Θ with a closed set, it is also compact. Thus, there exists $\theta_{\varepsilon} \in \Theta_{\varepsilon}$ such that $l(\theta_{\varepsilon}) = \sup_{\theta \in \Theta_{\varepsilon}} l(\theta) := c(\varepsilon) < l(\theta_0)$, since θ_0 is the unique maximiser of l.

Let $\delta(\varepsilon) > 0$ be such that $\delta(\varepsilon) < \frac{l(\theta_0) - c(\varepsilon)}{2}$. We now write

$$\sup_{\theta \in \Theta_{\varepsilon}} \bar{l}_n(\theta) \le \sup_{\theta \in \Theta_{\varepsilon}} l(\theta) + \sup_{\theta \in \Theta_{\varepsilon}} (\bar{l}_n(\theta) - l(\theta))$$
$$\le \sup_{\theta \in \Theta_{\varepsilon}} l(\theta) + \sup_{\theta \in \Theta} |\bar{l}_n(\theta) - l(\theta)|$$

Consider the sequence of events

$$A_n(\varepsilon) = \left\{ \sup_{\theta \in \Theta} \left| \bar{l}_n(\theta) - l(\theta) \right| \le \delta(\varepsilon) \right\}$$

By the assumed uniform convergence statement, we have $\mathbb{P}(A_n(\varepsilon)) \to 1$ as $n \to \infty$.

We now argue that $A_n(\varepsilon) \subseteq \{\hat{\theta}_n \not\in \Theta_{\varepsilon}\}$, which then implies the desired result.

Indeed, on the events $\{A_n(\varepsilon)\}\$, we have

$$\sup_{\theta \in \Theta_{\varepsilon}} \bar{l}_n(\theta) \le c(\varepsilon) + \delta(\varepsilon) < l(\theta_0) - \delta(\varepsilon) \le \bar{l}_n(\theta_0)$$

Thus, the MLE cannot lie in Θ_{ε} , completing the proof.

Remark: the proof can be simplified under additional properties of the likelihood function, such as differentiability and/or uniqueness of zeros. This can be useful in situations where Θ is not compact (see Example sheet).

Uniform Law of Large Numbers

In the proof of consistency of the MLE, we assumed

$$\sup_{\theta \in \Theta} |\bar{l}_n(\theta) - l(\theta)| \xrightarrow{P_{\theta_0}} 0$$

Theorem 1.17 (ULLN). Let Θ be a compact set in \mathbb{R}^p and let $q: \mathcal{X} \times \Theta \to \mathbb{R}$ be continuous in θ for all x. Suppose $\mathbb{E}\left[\sup_{\theta \in \Theta}|q(X,\theta)|\right] < \infty$, where X is a random variable defined over \mathcal{X} . Suppose X_1, \ldots, X_n are drawn iid according to the distribution of X. Then as $n \to \infty$

$$\sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{i=1}^{n} q(X_i, \theta) - \mathbb{E}[q(X, \theta)] \right| \xrightarrow{a.s.} 0$$

We now discuss the proof of the theorem (*Non-examinable*). The main idea is that since Θ is compact, it can be covered by a finite subcover up to a fixed precision (Heine-Borel Theorem).

Beginning of non-examinable section

Proof. It is relatively easy to show that for a finite set $\{\theta_1, \ldots, \theta_M\} \subseteq \Theta$, we have

$$\max_{1 \le j \le M} \left| \frac{1}{n} \sum_{i=1}^{n} q(X_i, \theta_j) - \mathbb{E}[q(X, \theta_j)] \right| \xrightarrow{\text{a.s.}} 0 \tag{*}$$

Let $h_j(\cdot) = q(\cdot, \theta_j)$. Let A_j be the event that $\frac{1}{n} \sum_{i=1}^n h_j(X_i) - \mathbb{E}[h_j(X)] \to 0$. Then $\mathbb{P}(A_j) = 1$ by the Strong LLN. Letting $A = \bigcap_{i=1}^M A_j$, we have

$$\mathbb{P}(A^c) = \mathbb{P}\left(\bigcup_{j=1}^M A_j^c\right) \le \sum_{j=1}^M \mathbb{P}(A_j^c) = 0$$

For a general class \mathcal{H} of functions $h: \mathcal{X} \to \mathbb{R}$, we say that a family of *brackets* $\{[\underline{h}_j, \overline{h}_j]\}_{j=1}^N$ covers \mathcal{H} if for all $h \in \mathcal{H}$, there exists j such that

$$\underline{h}_j(x) \le h(x) \le \overline{h}_j(x), \ \forall x \in \mathcal{X}$$

Theorem 1.18. Suppose \mathcal{H} is a class of functions such that for all $\varepsilon > 0$, there exist finitely many brackets $\{[\underline{h}_j, \overline{h}_j]\}_{i=1}^{N(\varepsilon)}$ which cover \mathcal{H} , and such that for all $1 \leq j \leq N(\varepsilon)$

1. $\mathbb{E}|\underline{h}_j(X)| < \infty$, $\mathbb{E}|\bar{h}_j(X)| < \infty$

2.
$$\mathbb{E}|\bar{h}_j(X) - \underline{h}_j(X)| < \varepsilon$$

If X_1, \ldots, X_n are iid copies of X, then

$$\sup_{h \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^{n} h(X_i) - \mathbb{E}[h(X)] \right| \xrightarrow{a.s} 0$$

Proof. For a given $\varepsilon > 0$, consider the set of $N := N(\varepsilon/3)$ brackets guaranteed to exist by the hypothesis of the theorem. By the convergence result (*), we know that almost surely we have

$$\max_{1 \le j \le N} \left| \frac{1}{n} \sum_{i=1}^{n} \bar{h}_{j}(X) - \mathbb{E}[\bar{h}_{j}(X)] \right| < \frac{\varepsilon}{3}$$

$$\max_{1 \leq j \leq N} \left| \frac{1}{n} \sum_{i=1}^{n} \underline{h}_{j}(X) - \mathbb{E}[\underline{h}_{j}(X)] \right| < \frac{\varepsilon}{3}$$

For $n \geq n_0(\varepsilon)$. Now take $h \in \mathcal{H}$ arbitrarily. From the above inequalities, we have (for some j)

$$\frac{1}{n} \sum_{i=1}^{n} h(X_i) - \mathbb{E}[h(X)] \leq \frac{1}{n} \sum_{i=1}^{n} \bar{h}_j(X) - \mathbb{E}[\bar{h}_j(X)] + \left(\mathbb{E}[\bar{h}_j(X)] - \mathbb{E}[h(X)]\right)$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} \bar{h}_j(X) - \mathbb{E}[\bar{h}_j(X)] + \left(\mathbb{E}[\bar{h}_j(X)] - \mathbb{E}[\underline{h}_j(X)]\right)$$

$$< \frac{\varepsilon}{3} + \mathbb{E}\left|\bar{h}_j(X) - \underline{h}_j(X)\right|$$

$$< \frac{2\varepsilon}{3}$$

Similarly,

$$\frac{1}{n} \sum_{i=1}^{n} h(X_i) - \mathbb{E}[h(X)] \ge \frac{1}{n} \sum_{i=1}^{n} \underline{h}_j(X) - \mathbb{E}[\underline{h}_j(X)] + \left(\mathbb{E}[\underline{h}_j(X)] - \mathbb{E}[h(X)]\right) \\
\ge -\frac{\varepsilon}{3} - \mathbb{E}\left[|\bar{h}_j(X) - \underline{h}_j(X)|\right] > -\frac{2\varepsilon}{3}$$

So almost surely,

$$\sup_{h \in \mathcal{H}} \left| \frac{1}{n} \sum_{i=1}^{n} h(x_i) - \mathbb{E}[h(X)] \right| < \frac{2\varepsilon}{3} < \varepsilon, \text{ for } n \ge n_0(\varepsilon)$$

Since ε was arbitrary, this implies the result.

To move from the preceding theorem to the proof of the ULLN, we need to find an appropriate bracketing cover for the set of functions $\mathcal{H} = \{q(\cdot, \theta) : \theta \in \Theta\}$.

We define the open balls

$$B_{\eta}(\theta) = \{ \theta' \in \Theta : ||\theta - \theta'||_2 < \eta \}$$

Now define the functions

$$u_{\eta}(x,\theta) = \sup_{\theta' \in B_{\eta}(\theta)} q(x,\theta')$$

$$l_{\eta}(x,\theta) = \inf_{\theta' \in B_{\eta}(\theta)} q(x,\theta')$$

By assumption, $\mathbb{E}[|u_{\eta}(X,\theta)|] < \infty$ and $\mathbb{E}[|l_{\eta}(X,\theta)|] < \infty$ for each θ, η . Furthermore, by continuity of $q(X,\cdot)$, together with the Dominated Convergence Theorem, we can choose a radius $\eta_{\varepsilon}(\theta)$ for each θ such that the (expected) width of the corresponding brackets is bounded by ε .

Then by compactness of Θ , we can define a finite set $\{\theta_1, \dots, \theta_N\} \subseteq \Theta$ constituting a subcover of Θ . Applying the preceding theorem completes the proof.

End of non-examinable section

Asymptotic normality of the MLE

Assumptions: Let $\{f(\cdot, \theta) : \theta \in \Theta\}$ be a statistical model of pdfs/pmfs on $\mathcal{X} \subseteq \mathbb{R}^d$ such that, in addition to the assumptions stated for consistency of the MLE, we have

- 1. The true θ_0 belongs to $int(\Theta)$.
- 2. There exists an open set $U \subseteq \Theta$ containing θ_0 such that $\theta \mapsto f(x,\theta)$ is twice continuously differentiable with respect to $\theta \in U$, for each $x \in \mathcal{X}$.
- 3. The Fisher information matrix $I(\theta_0) \in \mathbb{R}^{p \times p}$ is non-singular, and

$$\mathbb{E}_{\theta_0} \left[|| (\nabla_{\theta} \log f(X, \theta)) |||_{\theta = \theta_0} \right] < \infty$$

4. There exists a compact ball $K \subseteq U$ with $int(K) \neq \emptyset$ centred at θ_0 , such that

$$\mathbb{E}_{\theta_0} \left[\sup_{\theta \in K} ||\nabla_{\theta}^2 \log f(X, \theta)||_2 \right] < \infty$$
$$\int_{\mathcal{X}} \sup_{\theta \in K} ||\nabla_{\theta} \log f(X, \theta)||_2 \mathrm{d}x < \infty$$
$$\int_{\mathcal{X}} \sup_{\theta \in K} ||\nabla_{\theta}^2 \log f(X, \theta)||_2 \mathrm{d}x < \infty$$

These assumptions are stated only for rigor, and are *non-examinable*.

Theorem 1.19. Suppose the statistical model $\{f(\cdot,\theta):\theta\in\Theta\}$ satisfies the above regularity conditions, and let $\hat{\theta}_n$ be an MLE based on n iid observations X_1,\ldots,X_n with distribution P_{θ_0} . As $n\to\infty$, we have $\sqrt{n}(\hat{\theta}_n-\theta_0)\stackrel{d}{\to} \mathcal{N}(0,I(\theta_0)^{-1})$.

Proof. Idea: "Mean Value Theorem + Central Limit Theorem".

Define $\varepsilon > 0$ such that the ball of radius ε around θ_0 is contained in K. Let $E_n = \{||\hat{\theta}_n - \theta_0||_2 \le \varepsilon\}$. Then $\mathbb{P}(E_n) \to 1$ since $\hat{\theta}_n \xrightarrow{P_{\theta_0}} \theta_0$.

We can focus on these events $\{E_n\}$ for the rest of the proof, since we are trying to show something about convergence of cdf's. On these events, the regularity assumptions imply $\nabla_{\theta} \bar{l}_n(\hat{\theta}_n) = 0$, by the first-order optimality condition. Applying the Mean Value Theorem coordinate-wise between θ_0 and $\hat{\theta}_n$, we have

$$0 = \nabla_{\theta} \bar{l}_n(\hat{\theta}_n) = \nabla_{\theta} \bar{l}_n(\theta_0) + \bar{A}_n \left(\hat{\theta}_n - \theta_0\right)$$

where \bar{A}_n is defined coordinate-wise as

$$(\bar{A}_n)_{ij} = \frac{\partial^2}{\partial \theta_i \partial \theta_j} \bar{l}_n(\theta^{(i)}), \text{ for some } \theta^{(i)} \in [\theta_0, \hat{\theta}_n]$$

Rearranging gives

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) = \left(-\bar{A}_n^{-1}\right)\sqrt{n}\nabla_{\theta}\bar{l}_n(\theta_0)$$

Note that

$$\sqrt{n}\nabla_{\theta}\bar{l}_n(\theta_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \left(\nabla_{\theta} \log f(X_i, \theta) - \underbrace{\mathbb{E}_{\theta_0} \left[\nabla_{\theta} \log f(X, \theta_0) \right]}_{=0} \right)$$

Thus, by the multivariate CLT

$$\sqrt{n}\nabla_{\theta}\bar{l}_n(\theta_0) \xrightarrow{d} \mathcal{N}(0, \text{Cov}_{\theta_0}(\nabla_{\theta}\log f(X, \theta_0))) = \mathcal{N}(0, I(\theta_0))$$

Now it suffices to show

$$\bar{A}_n \xrightarrow{P} \mathbb{E}_{\theta_0} [\nabla_{\theta}^2 \bar{l}_n(\theta_0)] = -I(\theta_0)$$

Since then by the continuous mapping theorem $(\bar{A}_n)^{-1} \xrightarrow{P} -I(\theta_0)^{-1}$. Then by Slutsky's Lemma

$$\sqrt{n}\nabla_{\theta}\bar{l}_n(\theta_0) \xrightarrow{d} I(\theta_0)^{-1}(0, I(\theta_0)) = \mathcal{N}(0, I(\theta_0)^{-1})$$

The rest of this proof is *non-examinable*. It suffices to prove the convergence $\bar{A}_n \xrightarrow{P} = I(\theta_0)$ for each entry of \bar{A}_n .

For each entry, we write

$$(\bar{A}_n)_{jk} = \frac{1}{n} \sum_{i=1}^n \left(\frac{\partial^2}{\partial \theta_j \partial \theta_k} \log f(X_i, \theta^{(j)}) - \mathbb{E}_{\theta_0} \left[\frac{\partial^2}{\partial \theta_j \partial \theta_k} \log f(X, \theta^{(j)}) \right] \right)$$

$$+\mathbb{E}_{\theta_0}\left[\frac{\partial^2}{\partial \theta_j \partial \theta_k} \log f(X, \theta^{(j)})\right] - \mathbb{E}_{\theta_0}\left[\frac{\partial^2}{\partial \theta_j \partial \theta_k} \log f(X, \theta_0)\right] + (-I(\theta_0))_{jk}$$

Denoting $q(X,\theta) = \frac{\partial^2}{\partial \theta_j \partial \theta_k} \log f(x,\theta)$, the regularity assumptions imply continuity of $q(x,\theta)$ and $\mathbb{E}_{\theta_0}[q(x,\theta)]$ for all $x \in \mathcal{X}$. We can then conclude by the ULLN that

$$\frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial^{2}}{\partial \theta_{j} \partial \theta_{k}} \log f(X_{i}, \theta^{(j)}) - \mathbb{E}_{\theta_{0}} \left[\frac{\partial^{2}}{\partial \theta_{j} \partial \theta_{k}} \log f(X, \theta^{(j)}) \right] \right) \xrightarrow{\text{a.s.}} 0$$

(and so also converges in probability). Now note

$$|\mathbb{E}_{\theta_0}[q(X,\theta^{(j)})] - \mathbb{E}_{\theta_0}[q(X,\theta_0)]| \xrightarrow{P} 0$$

using the fact that $\theta^{(j)} \xrightarrow{P} \theta_0$ (by consistency of $\hat{\theta}_n$ and the continuous mapping theorem).

By the theorem, we conclude that the MLE is both asymptotically normal and asymptotically efficient.

Definition. In a parametric model $\{f(\cdot,\theta):\theta\in\Theta\}$, a consistent estimator $\tilde{\theta}_n$ is asymptotically efficient if $n\operatorname{Var}_{\theta}(\tilde{\theta}_n)\to I(\theta)^{-1}$ for all $\theta\in\operatorname{int}(\Theta)$ (if p=1) or when p>1 $n\operatorname{Cov}_{\theta}(\tilde{\theta}_n)\to I(\theta)^{-1}$ fo all $\theta\in\operatorname{int}(\Theta)$.

Remarks:

- 1. At the expense of more complicated proofs, can reduce the regularity conditions required for the function $\theta \mapsto f(x,\theta)$. In particular, this allows us to consider Laplace distributions, where the log-likelihood is not everywhere differentiable, since the pdf is proportional to $\exp(-|x-\theta|)$.
- 2. Some notion of regularity is required: the uniform distribution on $[0, \theta]$ with density $f(x, \theta) = \frac{1}{\theta} \mathbf{1}_{[0, \theta]}$, the likelihood is discontinuous. The asymptotic theory breaks down in this case (see Example sheet).
- 3. For θ_0 at the boundary of Θ , asymptotics also might not be normal. In the case of the model $\mathcal{N}(\theta, 1)$ for $\theta \in [0, \infty)$, when $\theta_0 = 0$ (see Example sheet).
- 4. Although it can be shown that the optimal asymptotic variance for a "regular" estimator is indeed $\frac{1}{n}I^{-1}(\theta_0)$, estimators outside this class could have smaller variances. For example, Hodge's estimator: let $\hat{\theta}_n$ be the MLE. Consider

$$\tilde{\theta}_n = \begin{cases} \hat{\theta}_n & |\hat{\theta}_n| > n^{-1/4} \\ 0 & \text{otherwise} \end{cases}$$

This is not a very sensible estimator and does not satisfy the regularity assumptions. However it is "superefficient", i.e has smaller asymptotic variance than the MLE under the above $\mathcal{N}(\theta,1)$ model for certain values in Θ (see Example sheet).

However the Hodges' estimator does worse than the MLE in terms of another criterion, the minimax risk.

Plug-in MLE & Delta Method

Now consider the following estimation problem: for a parametric model $\{f(\cdot,\theta): \theta \in \Theta\}$, we wish to estimate $\Phi(\theta)$, where $\Phi: \Theta \to \mathbb{R}^k$ and $\Theta \subseteq \mathbb{R}^p$. First consider a special case, and introduce the following definition:

Definition. For $\Theta = \Theta_1 \times \Theta_2$, and $\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}$, define the *profile likelihood*, for $\Phi(\theta) = \theta_1$ by $L^{(p)}(\theta_1) = \sup_{\theta_2 \in \Theta_2} L(\theta_1, \theta_2)$.

Note that maximising $L^{(p)}$ is equivalent to maximising L and taking the first argument of the maximiser.

Example. $\mathcal{N}(\mu, \sigma^2)$, where $\theta = (\mu, \sigma^2) \in \mathbb{R} \times (0, \infty)$. Recall (from the Example sheet) $\hat{\mu}_{\text{MLE}} = \bar{X}_n$ and $\hat{\sigma}_{\text{MLE}}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$.

For general function Φ , can show that if Φ is injective, an MLE in the new parameterisation in ϕ , given by $\{f(\cdot,\phi): \phi=\Phi(\theta), \theta\in\Theta\}$, is obtained by taking $\Phi(\hat{\theta}_{\text{MLE}})$ (see Example sheet). For the above example, could take $\Phi: (\mu, \sigma^2) \mapsto (\mu, \sigma)$.

In fact when Φ is not injective, can also define an MLE for ϕ and state a similar result: $\Phi(\hat{\theta}_{\text{MLE}})$ is always an MLE for the *induced likelihood function* $L^*(\phi) = \sup_{\theta:\Phi(\theta)=\phi} L(\theta)$ - e.g see the profile likelihood above.

Definition. For a statistical model $\{f(\cdot,\theta):\theta\in\Theta\}$ and a function $\Phi:\Theta\to\mathbb{R}^k$, the *plug-in MLE* of Φ is the estimator $\Phi(\hat{\theta}_{\text{MLE}})$.

Theorem 1.20 (Delta Method). Let $\Phi: \Theta \to \mathbb{R}$ be continuously differentiable at θ_0 , with gradient satisfying $\nabla_{\theta}\Phi(\theta_0) \neq 0$. Let $\{\hat{\theta}_n\}$ be a sequence of estimators such that $\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \stackrel{d}{\to} Z$, where Z is a random vector in \mathbb{R}^p . Then

$$\sqrt{n} \left(\Phi(\hat{\theta}_n) - \Phi(\theta_0) \right) \xrightarrow{d} \nabla_{\theta} \Phi(\theta_0)^T Z$$

Proof. By the MVT, for some $\tilde{\theta}_n$ in the line segment $[\theta_0, \hat{\theta}_n]$, we have

$$\sqrt{n} \left(\Phi(\hat{\theta}_n) - \Phi(\theta_0) \right) = \nabla_{\theta} \Phi(\tilde{\theta}_n)^T \sqrt{n} (\hat{\theta}_n - \theta_0)$$

Since $\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \xrightarrow{d} Z$, we have $\sqrt{n}(\hat{\theta}_n - \theta_0) = \mathcal{O}_p(1)$. Thus, for any $\varepsilon, \delta > 0$ there exists $M(\delta)$ such that

$$\mathbb{P}\left(\sqrt{n}\|\hat{\theta}_n - \theta_0\|_2 > M(\delta)\right) < \delta, \ \forall n \in \mathbb{N}$$

So if we choose n large enough such that $\frac{M(\delta)}{\sqrt{n}} < \varepsilon$, we have

$$\mathbb{P}\left(\|\hat{\theta}_n - \theta_0\|_2 > \varepsilon\right) \le \mathbb{P}\left(\|\hat{\theta}_n - \theta_0\|_2 > \varepsilon\right) \le \mathbb{P}\left(\|\hat{\theta}_n - \theta_0\|_2 > \frac{M(\delta)}{\sqrt{n}}\right)$$

Implying that $\tilde{\theta}_n \xrightarrow{P} \theta_0$. By the Continuous Mapping Theorem, we have $\nabla_{\theta}\Phi(\tilde{\theta}_n) \xrightarrow{P} \nabla_{\theta}\Phi(\theta_0)$. The result then follows by Slutsky's Lemma.

Remarks:

- 1. The Delta Method can be generalised to other estimators, taking a sequence $r_n \to \infty$ instead of \sqrt{n} (obvious from the proof).
- 2. In the case of the MLE, combining with the theorem about asymptotic normality, we have

$$\sqrt{n} \left(\Phi(\hat{\theta}_n) - \Phi(\theta_0) \right) \xrightarrow{d} \mathcal{N}(0, \nabla_{\theta} \Phi(\theta_0)^T I^{-1}(\theta_0) \nabla_{\theta} \Phi(\theta_0))$$

So when θ is one-dimensional

$$\sqrt{n}\left(\Phi(\hat{\theta}_n) - \Phi(\theta_0)\right) \xrightarrow{d} \mathcal{N}\left(0, \frac{\Phi'(\theta_0)^2}{I(\theta_0)}\right)$$

3. The previous calculation also shows that the plug-in MLE is asymptotically efficient. Recall the "multivariate" Cramer-Rao lower bound from before:

$$\operatorname{Var}_{\theta_0}\left(\Phi(\hat{\theta}_n)\right) \ge \frac{1}{n} \nabla_{\theta} \Phi(\theta_0)^T I^{-1}(\theta_0) \nabla_{\theta} \Phi(\theta_0)$$

- 4. We don't really use the fact that $\nabla_{\theta}\Phi(\theta_0) \neq 0$ in the proof. But in that case, we have convergence in distribution to 0, so this is not very informative (so should rescale by something bigger than \sqrt{n})
- 5. The proof of the Delta Method extends to multivariate functions in a straightforward manner.

Example. Consider the model $\mathcal{N}(\theta,1)$, $\Theta = \mathbb{R}$. Then $\hat{\theta}_{\text{MLE}} = \bar{X}_n$. SO $\sqrt{n}(\hat{\theta}_{\text{MLE}} - \theta_0) \xrightarrow{d} \mathcal{N}(0,1)$. Suppose $\Phi(\theta) = \theta^2$. Then the Delta Method implies $\sqrt{n}(\hat{\theta}_{\text{MLE}} - \theta_0^2) \xrightarrow{d} 2\theta_0 \mathcal{N}(0,1) = \mathcal{N}(0,4\theta_0^2)$. Consider the distribution of $n(\bar{X}_n^2 - 0)$. Then $n\bar{X}_n^2 = \left(\frac{X_1 + \ldots + X_n}{\sqrt{n}}\right)^2 \xrightarrow{d} \chi_1^2$, by the CLT and continuous mapping theorem.

Asymptotic Inference

For the MLE $\hat{\theta}_n$, under regularity assumptions,

$$\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \xrightarrow{d} \mathcal{N}(0, I(\theta_0)^{-1})$$

Let e_i denote the jth canonical basis vector. Then

$$\sqrt{n}(\hat{\theta}_{j} - (\theta_{0})_{j}) = e_{j}^{T} \sqrt{n}(\hat{\theta} - \theta_{0}) \xrightarrow{d} \mathcal{N}(0, e_{j}^{T} I(\theta_{0})^{-1} e_{j}) = \mathcal{N}(0, (I(\theta_{0})^{-1})_{jj})$$

Let

$$C_n = \left\{ \nu \in \mathbb{R} : |\nu - \hat{\theta}_{n,j}| \le \frac{(I(\theta_0)^{-1})_{jj}^{1/2}}{\sqrt{n}} z_\alpha \right\}$$

Where z_{α} is such that $\mathbb{P}(Z \leq z_{\alpha}) = 1 - \alpha$. This is a valid asymptotic confidence interval since

$$\mathbb{P}_{\theta_0}(\theta_{0,j} \in \mathcal{C}_n) = \mathbb{P}_{\theta_0}\left(\sqrt{n}(I(\theta_0)^{-1})_{j,j}^{-1/2}|\hat{\theta}_{n,j} - \theta_{0,j}| \le z_{\alpha}\right) \to \mathbb{P}(Z \le z_{\alpha}) = 1 - \alpha$$

In order to construct this confidence interval, we need to evaluate $I(\theta)$ at θ_0 . But we don't know θ_0 ! Instead we will estimate the required quantity by plugging in $\hat{\theta}_{\text{MLE}}$.

Definition. The observed Fisher information is the $p \times p$ matrix

$$i_n(\theta) = \frac{1}{n} \sum_{i=1}^{n} (\nabla_{\theta} \log f(X_i, \theta)) (\nabla_{\theta} \log f(X_i, \theta))^{T}$$

It is common to use $\hat{i}_n = i_n(\hat{\theta}_{\text{MLE}})$ as an estimator of $I(\theta_0)$.

Theorem 1.21. Under the usual regularity conditions, we have $\hat{i}_n \xrightarrow{P_{\theta_0}} I(\theta_0)$ as $n \to \infty$. In particular, a confidence interval based on \hat{i}_n will be asymptotically valid.

Proof. Let $q(X, \theta) = (\nabla_{\theta} \log f(X, \theta)) (\nabla_{\theta} \log f(X, \theta))^{T}$. For all $\theta \in \Theta$ we have

$$i_n(\theta) = \frac{1}{n} \sum_{i=1}^n q(X_i, \theta), \ I(\theta) = \mathbb{E}_{\theta_0}[q(X, \theta)]$$

Thus

$$\hat{i}_n - I(\theta_0) = \left(i_n(\hat{\theta}_{\text{MLE}}) - I(\hat{\theta}_{\text{MLE}})\right) + \left(I(\hat{\theta}_{\text{MLE}}) - I(\theta_0)\right)$$

The first term is upper bounded by

$$\left|i_n(\hat{\theta}_{\text{MLE}}) - I(\hat{\theta}_{\text{MLE}})\right| \le \sup_{\theta \in \Theta} \left|\frac{1}{n} \sum_{i=1}^n q(X_i, \theta) - \mathbb{E}_{\theta_0} \left[q(X_i, \theta)\right]\right| \xrightarrow{P_{\theta_0}} 0$$

by the ULLN. The second term also converges in probability to 0, by consistency of the MLE combined with the continuous mapping theorem. \Box

Remark: it is also possible to use $\hat{j}_n(\theta) = j_n(\hat{\theta}_{\text{MLE}})$, where

$$j_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \nabla_{\theta}^2 \log f(X_i, \theta)$$

This is also a consistent estimator of $I(\theta_0)$ with a similar proof.

Definition. For all $\theta \in \Theta$, we define the Wald statistic as

$$W_n(\theta) = n \left(\hat{\theta}_{\text{MLE}} - \theta \right)^T \hat{i}_n \left(\hat{\theta}_{\text{MLE}} - \theta \right)$$

The Wald statistic is a quadratic form with positive semi-definite \hat{i}_n , so its level sets are ellipsoids that can be used to construct confidence sets for θ_0 .

Theorem 1.22. Let θ_0 be p-dimensional. Under the usual regularity conditions, the confidence region

$$C_n = \{\theta : W_n(\theta) \le \xi_\alpha\}$$

where ξ_{α} is such that

$$\mathbb{P}(\chi_n^2 \le \xi_\alpha) \le 1 - \alpha$$

is an asymptotically valid confidence region for θ_0 .

Proof. Compute

$$\mathbb{P}(\theta_0 \in \mathcal{C}_n) = \mathbb{P}_{\theta_0} \left(W_n(\theta) \le \xi_{\alpha} \right)$$

Under the assumptions, we have $\sqrt{n}\left(\hat{\theta}_n - \theta_0\right) \xrightarrow{d} \mathcal{N}(0, I(\theta_0)^{-1})$, and $\hat{i}_n \xrightarrow{P_{\theta_0}} I(\theta_0)$. We can decompose the Wald statistic as

$$W_n(\theta_0) = \sqrt{n}(\hat{\theta}_n - \theta_0)^T I(\theta_0) \sqrt{n}(\hat{\theta}_n - \theta_0) + \sqrt{n}(\hat{\theta}_n - \theta_0)^T \left(\hat{i}_n - I(\theta_0)\right) \sqrt{n} \left(\hat{\theta}_n - \theta_0\right)^T I(\theta_0)$$

By the continuous mapping theorem, the first term converges in distribution to $U^TU=U_1^2+\ldots+U_p^2$, with $U\sim\mathcal{N}(0,I_p)$, hence has a χ_p^2 distribution.

The second term is a product of $\sqrt{n}(\hat{\theta}_n - \theta_0)^T(\hat{i}_n - I(\theta_0))$ which converges in distribution (hence also in probability) to 0 by Slutsky's lemma, and applying Slutsky's lemma again the whole of the second term goes to 0. So $W_n(\theta_0) \stackrel{d}{\to} \chi_p^2$.

Remark: the Wald statistic can also be used to design a test for

$$H_0: \theta = \theta_0$$

$$H_1: \theta \in \Theta \setminus \{\theta_0\}$$

where H_0 is rejected when $W_n(\theta_0) > \xi_{\alpha}$, since $\mathbb{P}_{\theta_0}(W_n(\theta_0) > \xi_{\alpha}) \to \alpha$.