A few thoughts on CABLE

Ying-Ping Wang
CSIRO Ocean and Atmosphere
Flagship, Aspendale, Vic 3195

Our goal

- Develop a world-class global land surface model that is competitive in comprehensiveness and performance
- Where we are now?
 - World class only in some parts; such as biophysical and biogeochemical processes
 - Poor and absent in other areas, crops, land management, soil hydrology ...

1: Nonlinear soil microbial models

Nonlinear soil microbial modeling has been a very hot topic for the last 2 years since Allison et al. (2010), Nature Geoscience. Microbes are important.

Hagerty et al. (2012). Nature Climate Change. MGE does not but microbial turnover rate increases with warming

Wieder et al. (2013). Nature Climate Change. *Microbes are important*. Frey et al. (2013), Nature Climate Change. *MGE declines with warming Karhu et al. (2014)*. Nature. T-sensitivbity of microbe community increase SOC –T sensitivity

Sulman et al. (2014). Nature Climate change. Priming is important! Tang and Riley (2014) Nature Climate Change. Microbial and abiotic interactions

What is the issue?

1: Nonlinear soil microbial models

Linear soil carbon model: $dC/dt = input - \mu_1C$

$$dC_b/dt = \varepsilon \mu_1 C - \mu_b C_b$$

Nonlinear soil carbon model: $dC/dt = input - \mu_1 C_b C/(C + K_c)$

$$dC_b/dt = \varepsilon \,\mu_1 C_b C/(C + K_c) - \mu_b C_b$$

Why nonlinear models?

- •More realistically representing the process of carbon decomposition (an enzyme-facilitated biochemical process)
- Priming response
- •More flexible response of soil carbon to warming and increased litter input

However

- Unrealistic oscillation (see Wang et al. (2014))
- •Not validated as well as the linear models.

Contrasting response to warming

Nonlinear model

$$C_b = \frac{\varepsilon I}{\mu_b}$$

$$C = \frac{K_c}{\varepsilon}$$

$$\frac{\varepsilon}{\mu_l - 1}$$

Linear model

$$C_b = \frac{\mathcal{E}I}{\mu_b}$$

$$C = \frac{I}{\mu_l}$$

In response to warming

Nonlinear model: $\varepsilon \downarrow$ or $\mu_b \uparrow$, or both, $\to C \uparrow$;
Linear model: $\mu_b \uparrow$

Linear model: $\mu_l \uparrow$

The controversy: SOC in a warmer world?

Figure 4 | The relative change in soil organic C (SOC) and microbial biomass C (MBC) from 5 to 20 °C under three scenarios using the AWB model. In the constant turnover, constant microbial growth efficiency (MGE) scenario there is no change in MBC with temperature.

Source: Hagerty et al. NCC 2014

2. Root functioning

Root functions in uptake of water and nutrients are poorly represented in nearly all global land surface models.

Tuzet-Leuning model:

$$g_{co2} = g_0 + \frac{aA}{c_i - \Gamma} \cdot f_{\psi v}$$

$$f_{\Psi V} = \frac{1 + \exp[s_f \psi_f]}{1 + \exp[s_f (\psi_f - \psi_V)]}$$

Advantage:

- •More realistically linking soil water supply with stomatal conductance;
- •Observations are available for sapwood conductance as one of key plant traits;
- •Can simulate mid-day depression of stomatal conductance

3. Disturbance and nutrient cycling

Questions: what happened to litter and soil N and P during and after fires?

Table 3 Percentage reduction in indices of N cycling caused by five repeated low-severity fires applied at three yr intervals, compared with the absence of fire for 14 yr (after Raison et al. 1993a).

N cycling indicator	Reduction (%)
N mineralization – soil	50(a)
– litter	57
N concentration in	
expanded leaves	13
N stock in foliage	17
N in annual leaf fall	17

⁽a) 35% reduction after two fires, each 7 yr apart.

If fire frequency and intensity will change with climate change, so will the effects of fire on forest nutrient cycling.

Trait-based plant functional types

- •Global database of key plant traits now **are available** and have been **used** to analyze the costs and benefit of different plant strategies, GPP globally (Wright et al. 2004; Wang et al. 2012);
- •Use of traits provide a **more objective** approach to define plant functional types and changes in the types and to simulate competition among different PFTs under past, present or future climate conditions;
- •Reduce the empirical relationships in the current DGVM;
- Australia has some world leaders in the field

A few key traits can explain the biogeography of evergreen forests

LU et al. unpublished data

More ensemble simulations

Why do we need ensemble simulations?

- •To address model uncertainties from observations, parameter values and model formulations.
- •It is particularly important for identifying signals from noisy data, such as large differences in the from different models, or one model with different parameters

Detecting the signal of land NEE trend under a noisy climate forcing

Source: Lombardozzi et al. 2014, NCC

CABLE applications

- Interactions with the integrated assessment models (IAMs):
- many questions in climate mitigation can not be addressed by the current ESMs alone, such as
 - how much land can we use for sequestering carbon?
 - Alternative energy sources?

Model benchmarking: beyond flux towers

TABLE 4. Observationally based datasets used to validate models. The spatial resolution is given as latitude × longitude.

Variables	Reference	Temporal window	Spatial resolution	Temporal resolution
Temperature	CRU (Mitchell and Jones 2005)	1901–2006	Global (land), $0.5^{\circ} \times 0.5^{\circ}$	Monthly
Precipitation	CRU (Mitchell and Jones 2005)	1901-2006	Global (land), $0.5^{\circ} \times 0.5^{\circ}$	Monthly
SST	HadISST (Rayner et al. 2003)	1870-2011	Global, 1° × 1°	Monthly
MLD	de Boyer Montégut et al. (2004)	1941-2008	Global, 2°×2°	Climatology
GPP	MTE (Jung et al. 2009)	1982-2008	Global, $0.5^{\circ} \times 0.5^{\circ}$	Monthly
LAI	LAI3g (Zhu et al. 2013)	1981-2011	Global, $\sim 0.08^{\circ} \times \sim 0.08^{\circ}$	15 days
NBP	Inversion (Gurney et al. 2004)	1995-2008	Global, $0.5^{\circ} \times 0.5^{\circ}$	Monthly
	GCP (Le Quéré et al. 2009)	1959-2008	Global, spatial average	Yearly
Soil carbon	HSWD, (Nachtergaele et al. 2012)	_	Global, $1 \text{km} \times 1 \text{km}$	Annual value
Vegetation carbon	NDP-017b (Gibbs 2006)	_	Global, 0.5×0.5	Annual value
fgCO ₂	Inversion (Gurney et al. 2004)	1995-2008	Global, $0.5^{\circ} \times 0.5^{\circ}$	Monthly
0 -	GCP (Le Quéré et al. 2009)	1959-2008	Global, spatial average	Yearly
	Takahashi (Takahashi et al. 2009)	2000	Global, $4^{\circ} \times 5^{\circ}$	Climatology
NPP	SeaWiFS. (Behrenfeld and Falkowski 1997)	1998-2007	Global, $6 \times 6 \mathrm{km}$	Monthly

Global dataset of carbon cycle benchmarking. Source: Anav et al. 2013

Model score

Anav et al. 2013 J of Climate

Final comments

- It has been a journey of learning for all of us
- We must continue to work together and be creative and active internationally with
 - Original ideas
 - Novel applications