

Cinética Química: Exercícios

Quer ver este material pelo Dex? Clique aqui

Exercícios

1. A China, sede das Olimpíadas de 2008, foi o berço de muitas invenções e descobertas de grande impacto para a humanidade, como o papel, a bússola e a pólvora, entre outras. O uso bélico da pólvora implica a adequação da velocidade de sua queima ao tipo de arma a que se destina. Considerando-se a reação química da queima da pólvora, representada pela equação:

$$4KNO_3(s) + 7C(s) + S(s) \rightarrow 3CO_2(g) + 3CO(g) + 2N_2(g) + K_2CO_3(s) + K_2S(s)$$

identifique a alternativa que corresponde à melhor opção para aumentar a velocidade da explosão da pólvora.

- a) Promover a reação sob atmosfera de N2.
- b) Utilizar pólvora previamente refrigerada.
- c) Utilizar pólvora finamente pulverizada.
- d) Utilizar excesso de carvão.
- e) Usar uma solução supersaturada de pólvora.

2. Para as reações que ocorrem com troca de calor, sob pressão constante, a variação de entalpia (ΔH) é dada pela diferença entre a entalpia dos produtos (HP) e entalpia dos reagentes (HR), conforme indicado nas figuras a seguir.

Sobre reações que ocorrem com troca de calor e analisando os gráficos, é CORRETO afirmar que:

- a) ambos representam processos endotérmicos.
- **b)** no gráfico, a diminuição da barreira de energia de ativação pode ser atribuída à presença de um catalisador.
- c) processos exotérmicos absorvem calor do meio reacional.
- d) quanto maior a energia de ativação, mais rápida será a reação.
- e) o aumento da concentração dos reagentes não altera a velocidade das reações químicas; apenas o catalisador altera.
- **3.** O gás cloreto de carbonila, $COC\ell_2$ (fosgênio), extremamente tóxico, é usado na síntese de muitos compostos orgânicos. Conhecendo os seguintes dados coletados a uma dada temperatura:

Experimento	Concentração inicial (mol·L ⁻¹)		Velocidade inicial
Lxperimento	CO(g)	Cℓ ₂ (g)	(mol COC $\ell_2 \cdot L^{-1} \cdot s^{-1}$)
1	0,12	0,20	0,09
2	0,24	0,20	0,18
3	0,24	0,40	0,72

a expressão da lei de velocidade e o valor da constante k de velocidade para a reação que produz o cloreto de carbonila, $CO(g) + C\ell_2(g) \rightarrow COC\ell_2(g)$, são, respectivamente:

a)
$$v = k[CO(g)]^1 + [C\ell_2(g)]^2$$
; $k = 0.56 L^2 \cdot mol^{-2} \cdot s^{-1}$

b)
$$v = k[CO(g)]^2[C\ell_2(g)]^1; k = 31,3 L^2 \cdot mol^{-2} \cdot s^{-1}$$

c)
$$v = k[C\ell_2(g)]^2$$
; $k = 2,25 L^2 \cdot mol^{-2} \cdot s^{-1}$

d)
$$v = k[CO(g)]^{1}[C\ell_{2}(g)]^{2}; k = 18.8 L^{2} \cdot mol^{-2} \cdot s^{-1}$$

e)
$$v = k[CO(g)]^{1}[C\ell_{2}(g)]^{1}; k = 0,28 L^{2} \cdot mol^{-2} \cdot s^{-1}$$

4. Um estudante desejava estudar, experimentalmente, o efeito da temperatura sobre a velocidade de uma transformação química. Essa transformação pode ser representada por:

Após uma série de quatro experimentos, o estudante representou os dados obtidos em uma tabela:

	Número do experimento			
	1	2	3	4
temperatura (oC)	15	20	30	10
massa de catalisador (mg)	1	2	3	4
concentração inicial de A (moℓ/L)	0,1	0,1	0,1	0,1
concentração inicial de B (moℓ/L)	0,2	0,2	0,2	0,2
tempo decorrido até que a transformação se completasse (em segundos)	47	15	4	18

Que modificação deveria ser feita no procedimento para obter resultados experimentais mais adequados ao objetivo proposto?

- a) Manter as amostras à mesma temperatura em todos os experimentos.
- b) Manter iguais os tempos necessários para completar as transformações.
- c) Usar a mesma massa de catalisador em todos os experimentos.
- d) Aumentar a concentração dos reagentes A e B.
- e) Diminuir a concentração do reagente B.

5. Compostos naturais são muito utilizados na denominada *Medicina Naturalista*. Povos indígenas amazônicos há muito fazem uso da casca da Quina (*Coutarea hexandra*) para extrair quinina, princípio ativo no tratamento da malária. Antigos relatos chineses também fazem menção a uma substância, a artemisina, encontrada no arbusto Losna (*Artemisia absinthium*), que também está relacionada ao tratamento da malária.

Em estudos sobre a cinética de degradação da quinina por ácido, foram verificadas as seguintes velocidades em unidades arbitrárias:

Quinina	Ácido	Velocidade	
(mol L ⁻¹)	(mol L ⁻¹)	(u.a.)	
1,0 x 10 ⁻⁴	5,0 x 10 ⁻³	2,4 x 10 ⁻³	
1,0 x 10 ⁻⁴	1,0 x 10 ⁻²	9,6 x 10 ⁻³	
0,5 x 10 ⁻⁴	1,0 x 10 ⁻²	4,8 x 10 ⁻³	
2,0 x 10 ⁻⁴	2,5 x 10 ⁻³	1,2 x 10 ⁻³	

A partir desses dados, pode-se concluir que a lei de velocidade assume a forma

- a) $V = K [quinina]^2$
- **b)** $V = K \frac{[quinona]^2}{[ácido]}$
- **c)** V = K2 [quinina]²
- d) V = K [quinina] [ácido]²
- e) $V = K \frac{\left[\text{ácido}\right]^2}{\left[\text{quinona}\right]}$

6.

Nos bovinos, as condições do ambiente ruminal inviabilizam a produção de álcool a partir da fermentação dos açúcares da cevada. Por outro lado, em dornas de fermentação, para que esse processo ocorra, é essencial que o meio contenha

- a) ácido acético.
- b) dióxido de carbono.
- c) catalisadores biológicos.
- d) ácido lático.
- e) condições aeróbicas.

7. Considere a reação a seguir, que está ocorrendo a 556 K.

$$2HI(g) \rightarrow H_2(g) + I_2(g)$$

Essa reação tem a sua velocidade monitorada em função da concentração, resultando na seguinte tabela.

[HI] (mol L ⁻¹)	Veloc. (mol L ⁻¹ s ⁻¹)
0,01	3,5 x 10 ⁻¹¹
0,02	14 x 10 ⁻¹¹

Nessas condições, o valor da constante cinética da reação, em L mol⁻¹ s⁻¹, é

- a) 3.5×10^{-11} .
- **b)** 7,0 x 10⁻¹¹.
- **c)** 3.5×10^{-9} .
- **d)** 3.5×10^{-7} .
- **e)** 7.0×10^{-7} .

8. Os dados empíricos para a velocidade de reação, v, indicados no quadro a seguir, foram obtidos a partir dos resultados em diferentes concentrações de reagentes iniciais para a combustão do gás A, em temperatura constante.

EXPERIMENTO	[A] (moℓ·L ⁻¹)	[O ₂] (moℓ ⁻¹)	v (mol·L-1·min-1)
1	1,0	4,0	4·10 ⁻⁴
2	2,0	4,0	32·10-4
3	1,0	2,0	2·10-4

A equação de velocidade para essa reação pode ser escrita como $\mathbf{v} = \mathbf{k} [\mathbf{A}]^{\mathbf{x}} \cdot [\mathbf{O}_2]^{\mathbf{y}}$, em que \mathbf{x} e \mathbf{y} são, respectivamente, as ordens de reação em relação aos componentes A e O_2 .

Assim, de acordo com os dados empíricos obtidos, os valores de x e y são, respectivamente,

- **a)** 1 e 3.
- **b)** 2 e 3.
- **c)** 3 e 1.
- **d)** 3 e 2.
- e) 2 e 1.
- **9.** Alguns fatores podem alterar a rapidez das reações químicas. A seguir, destacam-se três exemplos no contexto da preparação e da conservação de alimentos:
 - A maioria dos produtos alimentícios se conserva por muito mais tempo quando submetidos à refrigeração. Esse procedimento diminui a rapidez das reações que contribuem para a degradação de certos alimentos.
 - 2. Um procedimento muito comum utilizado em práticas de culinária é o corte dos alimentos para acelerar o seu cozimento, caso não se tenha uma panela de pressão.
 - **3.** Na preparação de iogurtes, adicionam-se ao leite bactérias produtoras de enzimas que aceleram as reações envolvendo açúcares e proteínas lácteas.

Com base no texto, quais são os fatores que influenciam a rapidez das transformações químicas relacionadas aos exemplos 1, 2 e 3, respectivamente?

- a) Temperatura, superfície de contato e concentração.
- b) Concentração, superfície de contato e catalisadores.
- c) Temperatura, superfície de contato e catalisadores.
- d) Superfície de contato, temperatura e concentração.
- e) Temperatura, concentração e catalisadores.

10. A amônia é matéria-prima para a fabricação de fertilizantes como a ureia (CON₂H₄), o sulfato de amônio [(NH₄)₂ SO₄)] e o fosfato de amônio [(NH₄)₃ PO₄)]. A reação de formação da amônia se processa em duas etapas, conforme equações químicas fornecidas abaixo.

$$N_{2(g)} + 2 \ H_{2(g)} \to N_2 H_{4(g)}$$

$$N_2H_{4(g)} + H_{2(g)} \rightarrow 2 NH_{3(g)}$$

Dessa forma, a velocidade da equação global $N_{2(g)}+3H_{2(g)}\rightarrow 2NH_{3(g)}$ é dada pela seguinte expressão:

$$\mathbf{a)} \quad \mathbf{v} = \mathbf{k} \cdot \left[\mathbf{N}_2 \right] \cdot \left[\mathbf{H}_2 \right]^2$$

$$\mathbf{b)} \quad \mathbf{v} = \mathbf{k} \cdot \left[\mathbf{NH}_3 \right]^2$$

$$\mathbf{c)} \quad \mathbf{v} = \mathbf{k} \cdot [\mathbf{N}_2] [\mathbf{H}_2]^3$$

d)
$$v = k \cdot [NH_3]^2 / [N_2] \cdot [H_2]^3$$

e)
$$v = k \cdot [N_2 H_4] / [N_2] \cdot [H_2]^2$$

Gabarito

1. C

Quanto maior a superfície de contato dos reagentes no estado sólido, maior a velocidade da reação.

2. B

O catalisador diminui a energia de ativação, o que é verificado no gráfico (b).

3. D

De acordo com a tabela fornecida no enunciado podemos observar que:

Experimento	Concentração inicial (mol⋅ L ⁻¹)		Velocidade inicial
Lxperimento	CO(g)	Cℓ ₂ (g)	(mol COC $\ell_2 \cdot L^{-1} \cdot s^{-1}$)
1	v 2 (0,12	0,20 cto	0,09
2	$\sqrt{2} \sqrt{0.24}$	0,20 Cte	V 1 (0,18)
3	0,24	0,40	0,72

Como a concentração de CO "dobra" e a velocidade também "dobra" concluímos que $[CO]^1$. Como a concentração de $C\ell_2$ "dobra" e a velocidade "quadruplica" concluímos que $[C\ell_2]^2$.

Então:
$$v = k[CO_{(q)}][C\ell_{2(q)}]^2$$
.

Usando o primeiro experimento e substituindo os valores fornecidos na equação da velocidade, teremos:

$$0,09 = k(0,12) \cdot (0,20)^2$$

$$k = 18,75 = 18,8 L^2 mol^{-2} s^{-1}$$

4. C

Como o estudante desejava estudar, experimentalmente, o efeito da temperatura sobre a velocidade de uma transformação química, não haveria a necessidade de se alterar a massa do catalisador, pois neste caso ele é utilizado para diminuir a energia de ativação da reação, uma vez adicionado na quantidade necessária, seu excesso não altera o processo.

5. D

A partir da análise da segunda e da terceira linha da tabela (de baixo para cima), teremos:

Quinina	Ácido	Velocidade
(mol L ⁻¹)	(mol L ⁻¹)	(u.a.)
1,0 x 10 ⁻⁴ (dobrou)	1,0 x 10 ⁻² (constante)	9,6 x 10 ⁻³ (dobrou)
0,5 x 10 ⁻⁴	1,0 x 10 ⁻² (constante)	4,8 x 10 ⁻³

Como a concentração de quinina dobrou e a velocidade também, concluímos que o expoente da quinina é 1.

A partir da análise da primeira e da segunda linha da tabela (de cima para baixo), teremos:

Quinina	Ácido	Velocidade
(mol L ⁻¹)	(mol L ⁻¹)	(u.a.)
1,0 x 10 ⁻⁴ (constante)	0,5 x 10 ⁻²	2,4 x 10 ⁻³
1,0 x 10 ⁻⁴ (constante)	1,0 x 10 ⁻² (dobrou)	9,6 x 10 ⁻³ (quadruplicou)

Como a concentração do ácido dobrou e a velocidade quadruplicou, concluímos que o expoente do ácido é 2.

6. C

Os catalisadores biológicos aceleram as reações de fermentação.

7. D

Podemos notar que a concentração de HI dobra e a velocidade quadruplica, então:

velocidade = k[HI]², a partir da segunda linha da tabela, teremos:

$$14 \times 10^{-11} = k(0.02)^2$$

$$k = \frac{14 \times 10^{-11}}{(2 \times 10^{-2})^2} = 3.5 \times 10^{-7}$$

8. (

Observe a resolução algébrica dada a seguir.

De acordo com a tabela e pela equação da velocidade, vem:

$$4 \times 10^{-4} = K[1,0]^{x}[4,0]^{y}$$
 (1)

$$32 \times 10^{-4} = K[2,0]^{x}[4,0]^{y}$$
 (2)

Dividindo (2) por (1), teremos:

$$8 = 2^x \Rightarrow 2^3 = 2^x \Rightarrow x = 3$$

Como x = 3, então

$$4 \times 10^{-4} = K[1,0]^{3}[4,0]^{y}$$
 (3)

$$32 \times 10^{-4} = K[2,0]^{3}[4,0]^{y}$$
 (4)

Dividindo (3) por (4), teremos:

$$2 = \frac{[4,0]^y}{[2,0]^y} \Longrightarrow 2 = 2 \cdot \frac{(2,0)^y}{(2,0)^y}$$

$$2^1 = 2^y \implies y = 1$$

Conclusão, x = 3 e y = 1.

Outra resolução:

Pela tabela percebemos que:

Quando a [A] fica constante, [O₂] dobra e v também, logo o expoente é 1, ou seja, y = 1.

Quando $[O_2]$ fica constante, [A] dobra e v octuplica, logo o expoente é 3, ou seja, x = 3.

9. 0

São fatores que aceleram a velocidade das reações químicas: aumento da temperatura e da superfície de contato e a presença de catalisadores.

10. A

A reação de formação da amônia ocorre em 2 etapas, ou seja, trata-se de uma reação não elementar. Quando uma reação ocorre em mais de uma etapa e a determinante da velocidade é a lenta, assim a equação da velocidade ocorre a partir da equação 1.

$$v = k \cdot \begin{bmatrix} N_2 \end{bmatrix} \cdot \begin{bmatrix} H_2 \end{bmatrix}^2$$