2. Basic Image Features

Eun Yi Kim

Differencing 1D Signals

Zero Crossing Operators

Motivation: The zero crossings of the second derivative
of the image function are more precise than
the peaks of the first derivative.

How do we estimate the Second Derivative?

• Laplacian Filter: $\nabla f = \partial f / \partial x + \partial f / \partial y$

0	1	0
1	-4	1
0	1	0

- Standard mask implementation
- Derivation: In 1D, the first derivative can be computed with mask [-1 0 1]
- The 1D second derivative is [1 -2 1]
- The Laplacian mask estimates the 2D second derivative.

Detecting Edges with Laplacian Operator

Edge Detection Background

- Classical gradient edge detection
 - Sobel, Prewitt, Kirsch and Robinson
- Zero-crossing based methods
 - Laplacian, LoG
- Gaussian based filters
 - Marr and Hildreth
 - Canny operator
- •

Effect of Noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

Effect of Noise

- Finite difference filters respond strongly to noise
 - -Image noise results in pixels that look very different from their neighbors
 - -Generally, the larger the noise the stronger the response

What is to be done?

Effect of Noise

- Finite difference filters respond strongly to noise
 - -Image noise results in pixels that look very different from their neighbors
 - -Generally, the larger the noise the stronger the response
- What is to be done?
 - -Smoothing the image should help, by forcing pixels difference to their neighbors (=noise pixels?) to look more like neighbors

Solution: smooth first

- Where is the edge?
 - -Look for peaks

Laplacian of Gaussian (LoG) : Marr and Hildreth Operator

- First smooth the image via a Gaussian convolution.
- Apply a Laplacian filter (estimate 2nd derivative).
- Find zero crossings of the Laplacian of the Gaussian.
 - -Only the zero crossings whose corresponding 1st derivative is above a specified threshold are considered
- Edge location can be estimated with subpixel resolution using linear interpolation

- Where is the edge?
 - -Zero-crossing of bottom graph

Scale space

5 x 5 LoG filter

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

17 x 17 LoG filter

0	0	0	0	0	0	-1	-1	-1	-1	-1	0	0	0	0	0
0	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0
0	0	-1	-1	-1	-2	-3	-3	-3	-3	-3	-2	-1	-1	-1	0
0	0	-1	-1	-2	-3	-3	-3	-3	-3	-3	-3	-2	-1	-1	0
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1
0	-1	-2	-3	-3	-3	0	2	4	2	0	-3	-3	-3	-2	-1
-1	-1	-3	-3	-3	0	4	10	12	10	4	0	-3	-3	-3	-1
-1	-1	-3	-3	-2	2	10	18	21	18	10	2	-2	-3	-3	-1
-1	-1	-3	-3	-3	4	12	21	24	21	12	4	-3	-3	-3	-1
-1	-1	-3	-3	-2	2	10	18	21	18	10	2	-2	-3	-3	-1
-1	-1	-3	-3	-3	0	4	10	12	10	4	0	-3	-3	-3	-1
0	-1	-2	-3	-3	-3	0	2	4	2	0	-3	-3	-3	-2	-1
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1
0	-1	-1	-2	-3	-3	-3	-2	-3	-2	-3	-3	-3	-2	-1	-1
0	_	-	-2 -1	-3 -1	-3 -2	-3 -3	-2 -3	-3 -3	-2 -3	-3 -3	-3 -2	-3 -1	-2 -1	-1 -1	-1 0

Scale (o)

Scale space

Original Image

LoG Filter

Zero Crossings

Scale (o)

Original gray scale

Additive Gaussian Noise

- Roberts operator
 - Poor robustness to noise, low detection

- Sobel operators
 - Better robustness to noise, better detection

- LoG operator
 - Better robustness to noise, better detection

Implementation issues

- The gradient magnitude is large along a thick "trail" or "ridge", so how do we identify the actual edge points?
- How do we link the edge points to form curves?

Canny Edge Operators on Kidney

