Fields and Vector Spaces

Definition 2-1

A field consists of a set, denoted by \mathcal{F} , of elements called *scalars* and two operations called addition "+" and multiplication "."; the two operations are defined over \mathcal{F} such that they satisfy the following conditions:

- 1. To every pair of elements α and β in \mathscr{F} , there correspond an element $\alpha + \beta$ in \mathscr{F} called the *sum* of α and β , and an element $\alpha \cdot \beta$ or $\alpha\beta$ in \mathscr{F} , called the *product* of α and β .
- 2. Addition and multiplication are respectively commutative: For any α , β in \mathcal{F} ,

$$\alpha + \beta = \beta + \alpha$$
 $\alpha \cdot \beta = \beta \cdot \alpha$

3. Addition and multiplication are respectively associative: For any α , β , γ in \mathcal{F} ,

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \qquad (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$

4. Multiplication is distributive with respect to addition: For any α , β , γ in \mathcal{F} ,

$$\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$$

- 5. \mathscr{F} contains an element, denoted by 0, and an element, denoted by 1, such that $\alpha + 0 = \alpha$, $1 \cdot \alpha = \alpha$ for every α in \mathscr{F} .
- **6.** To every α in \mathcal{F} , there is an element β in \mathcal{F} such that $\alpha + \beta = 0$. The element β is called the *additive inverse*.
- 7. To every α in \mathscr{F} which is not the element 0, there is an element γ in \mathscr{F} such that $\alpha \cdot \gamma = 1$. The element γ is called the *multiplicative inverse*.

Definition 2-2

A linear space over a field \mathscr{F} , denoted by $(\mathscr{X}, \mathscr{F})$, consists of a set, denoted by \mathscr{X} , of elements called *vectors*, a field \mathscr{F} , and two operations called *vector addition* and *scalar multiplication*. The two operations are defined over \mathscr{X} and \mathscr{F} such that they satisfy all the following conditions:

- 1. To every pair of vectors \mathbf{x}_1 and \mathbf{x}_2 in \mathcal{X} , there corresponds a vector $\mathbf{x}_1 + \mathbf{x}_2$ in \mathcal{X} , called the sum of \mathbf{x}_1 and \mathbf{x}_2 .
- 2. Addition is commutative: For any x_1 , x_2 in \mathcal{X} , $x_1 + x_2 = x_2 + x_1$.
- . 3. Addition is associative: For any x_1 , x_2 , and x_3 in \mathcal{X} , $(x_1 + x_2) + x_3 = x_1 + (x_2 + x_3)$.
 - 4. \mathcal{X} contains a vector, denoted by 0, such that 0 + x = x for every x in \mathcal{X} . The vector 0 is called the zero vector or the origin.
 - 5. To every x in \mathcal{X} , there is a vector \bar{x} in \mathcal{X} , such that $x + \bar{x} = 0$.
 - 6. To every α in \mathcal{F} , and every \mathbf{x} in \mathcal{X} , there corresponds a vector $\alpha \mathbf{x}$ in \mathcal{X} called the scalar product of α and \mathbf{x} .
 - 7. Scalar multiplication is associative: For any α , β in \mathcal{F} and any x in \mathcal{X} , $\alpha(\beta x) = (\alpha \beta) x$.
 - 8. Scalar multiplication is distributive with respect to vector addition: For any α in \mathscr{F} and any \mathbf{x}_1 , \mathbf{x}_2 in \mathscr{X} , $\alpha(\mathbf{x}_1 + \mathbf{x}_2) = \alpha \mathbf{x}_1 + \alpha \mathbf{x}_2$.
 - 9. Scalar multiplication is distributive with respect to scalar addition: For any α , β in \mathcal{F} and any \mathbf{x} in \mathcal{X} , $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$.
 - 10. For any x in \mathcal{X} , 1x = x, where 1 is the element 1 in \mathcal{F} .

Cher, Par &

Chen, Pape 2
2nd Edition