ECE 498/598 Midterm 2 2023

Instructor: Vikas Dhiman

Nov 8th, 2023

(1) Student name:

Student email:

About the exam

- 1. There are total 4 problems. You must attempt all 4.
- 2. Maximum marks: 50.
- 3. Maximum time allotted: 50 min
- 4. Calculators are allowed.
- 5. One US Letter size or A4 size cheat sheet (both-sides) is allowed.

Problem 1 Find the 4x4 transformation matrix ${}^{1}T_{0}$ that transforms coordinates from coordinate frame 1 to coordinate frame 0 (5 marks).

I am going to write transform from frame 1 to frame 0. $^{0}T_{1}$

$${}^{0}T_{1} = \begin{bmatrix} 1 & 0 & 0 & -3.5 \\ 0 & -1 & 0 & 3 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (1)

The rotation matrix is obtained by writing the basis vectors of the destination coordinate system in the source coordinate system.

.

Problem 2 Consider a coordinate system OUVW whose ordered set of basis vectors given by $\mathbf{u} = [3/7, 2/7, 6/7]^{\top}$, $\mathbf{v} = [2/7, 6/7, 3/7]^{\top}$ and $\mathbf{w} = [4, 5, 6]^{\top}$. Another coordinate system OXYZ whose order set of basis vectors is, $\mathbf{x} = [2/7, 6/7, -3/7]^{\top}, \ \mathbf{y} = [-6/7, 3/7, 2/7]^{\top} \ and \ \mathbf{z} = [3/7, 2/7, 6/7]^{\top}.$ Find the rotation matrix ouvw R_{oxyz} that converts coordinates from frame OXYZ to frame OUVW. (10 marks)

$${}^{OUVW}R_{OPQR} = \begin{bmatrix} 3/7 & 2/7 & 4\\ 2/7 & 6/7 & 5\\ 6/7 & 3/7 & 6 \end{bmatrix}$$
 (2)

$${}^{OUVW}R_{OXYZ} = {}^{OUVW}R_{OPQR} ({}^{OXYZ}R_{OPQR})^{\top}$$

$$\tag{4}$$

$$= \begin{bmatrix} 3/7 & 2/7 & 4 \\ 2/7 & 6/7 & 5 \\ 6/7 & 3/7 & 6 \end{bmatrix} \begin{bmatrix} 2/7 & -6/7 & 3/7 \\ 6/7 & 3/7 & 2/7 \\ -3/7 & 2/7 & 6/7 \end{bmatrix}^{\top}$$

$$(5)$$

Problem 3 (Rodrigues formula) In the figure below, we are rotating point \mathbf{v} around axis unit-vector $\hat{\mathbf{k}}$ by an angle θ . A unit vector $\hat{\mathbf{w}}$ is perpendicular to the both \mathbf{v} and $\hat{\mathbf{k}}$. Another vector \mathbf{v}_{\perp} is the projection of \mathbf{v} onto a plane that is perpendicular to $\hat{\mathbf{k}}$. Note that \mathbf{v}_{\perp} is perpendicular to both $\hat{\mathbf{w}}$ and $\hat{\mathbf{k}}$. First, (a) write the unit-vector $\hat{\mathbf{w}}$ in terms of \mathbf{v} and $\hat{\mathbf{k}}$. (b) Then write the vector (including the correct magnitude) \mathbf{v}_{\perp} in terms of \mathbf{v} and $\hat{\mathbf{k}}$. (c) A vector $\mathbf{v}_{\perp,rot}$ is obtained by rotating \mathbf{v}_{\perp} by an angle θ . Write the vector $\mathbf{v}_{\perp,rot}$ in terms of \mathbf{v}_{\perp} , $\hat{\mathbf{w}}$ and θ . (15 marks)

$$\hat{\mathbf{w}} = \frac{\hat{\mathbf{k}} \times \mathbf{v}}{\|\hat{\mathbf{k}} \times \mathbf{v}\|} \tag{6}$$

Note that $\hat{\mathbf{k}} \times \mathbf{v}$ has the magnitude $\|\hat{\mathbf{k}} \times \mathbf{v}\| = |\hat{\mathbf{k}}| |\mathbf{v}| \sin(\alpha) = |\mathbf{v}| \sin(\alpha)$ where α is the angle between \mathbf{v} and $\hat{\mathbf{k}}$.

$$\mathbf{v}_{\perp} = -\hat{\mathbf{k}} \times (\hat{\mathbf{k}} \times \mathbf{v}) \tag{7}$$

The magnitude of \mathbf{v}_{\perp} is same as RHS because both $|\mathbf{v}_{\perp}| = |\mathbf{v}|\sin(\alpha)$ and $|-\hat{\mathbf{k}}\times(\hat{\mathbf{k}}\times\mathbf{v})| = |\mathbf{v}||\hat{\mathbf{k}}|^2\sin(\alpha)\sin(90^\circ) = |\mathbf{v}|\sin(\alpha)$ where α is the angle between \mathbf{v} and $\hat{\mathbf{k}}$.

$$\mathbf{v}_{\perp,rot} = \mathbf{v}_{\perp}\cos(\theta) + \hat{\mathbf{w}}|\hat{\mathbf{k}} \times \mathbf{v}|\sin(\theta)$$
(8)

Problem 4 The Euler angles of rotation YZX are given as θ , ϕ and ψ . Derive the rotation matrix corresponding to the Euler angle representation $R = R_x(\psi)R_z(\phi)R_y(\theta)$. Also derive an expression to convert the rotation matrix back to Euler angles. (20 marks).

$$R = R_x(\psi)R_z(\phi)R_y(\theta) \tag{9}$$

$$\implies \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\psi} & -s_{\psi} \\ 0 & s_{\psi} & c_{\psi} \end{bmatrix} \begin{bmatrix} c_{\phi} & -s_{\phi} & 0 \\ s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix}$$
(10)

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\psi} & -s_{\psi} \\ 0 & s_{\psi} & c_{\psi} \end{bmatrix} \begin{bmatrix} c_{\phi}c_{\theta} & -s_{\phi} & c_{\phi}s_{\theta} \\ s_{\phi}c_{\theta} & c_{\phi} & s_{\phi}s_{\theta} \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix}$$
(11)

$$\implies \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} c_{\phi}c_{\theta} & -s_{\phi} & c_{\phi}s_{\theta} \\ c_{\psi}s_{\phi}c_{\theta} + s_{\psi}s_{\theta} & c_{\psi}c_{\phi} & c_{\psi}s_{\phi}s_{\theta} - s_{\psi}c_{\theta} \\ s_{\psi}s_{\phi}c_{\theta} - c_{\psi}s_{\theta} & s_{\psi}c_{\phi} & s_{\psi}s_{\phi}s_{\theta} + c_{\psi}c_{\theta} \end{bmatrix}$$
(12)

$$\phi = \sin^{-1}(-r_{12}) \in [-\pi/2, \pi/2] \tag{13}$$

$$\theta = \arctan 2(r_{13}, r_{11}) \tag{14}$$

$$\psi = \arctan 2(r_{32}, r_{22}) \tag{15}$$