DẠNG TOÁN DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI 9-10 ĐIỂM

Dạng 3. Biện luận tương giao hàm hợp, hàm ẩn chứa THAM SỐ

Câu 1. (Đề Tham Khảo 2019) Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình $f(\sin x) = m$ có nghiệm thuộc khoảng $(0;\pi)$ là

A.
$$(-1;3)$$

B.
$$[-1;1)$$

C.
$$[-1;3)$$

D.
$$(-1;1)$$

Lời giải

Chọn B

Đặt
$$t = \sin x \Rightarrow \forall x \in (0; \pi) \Rightarrow t \in (0; 1]$$

Vậy phương trình trở thành f(t) = m. Dựa và đồ thị hàm số suy ra $m \in [-1;1)$.

Câu 2. (**Mã 102 - 2020 Lần 2**) Cho hàm số y = f(x) có bảng biến thiên như hình vẽ:

Có bao nhiều giá trị nguyên của tham số m để phương trình $6f(x^2-4x)=m$ có ít nhất ba nghiệm thực phân biệt thuộc khoảng $(0;+\infty)$?

Lời giải

Chọn B

Ta đặt:
$$g(x) = f(x^2 - 4x)$$
.

$$g'(x) = (2x-4)f'(x^2-4x)$$

$$= 2(x-2)(x^2-4x+4)(x^2-4x+2)(x^2-4x)$$
 (dựa vào bảng biến thiên)

$$= 2(x-2)^3(x^2-4x+2)x(x-4).$$

NGUYỄN BẢO VƯƠNG - 0946798489

Mặt khác:

$$g(0) = f(0) = -3;$$

$$g(2-\sqrt{2})=g(2+\sqrt{2})=f(-2)=2;$$

$$g(2) = f(-4) = -2;$$

$$g(4) = f(0) = -3$$
.

Ta có bảng biến thiên:

Từ bảng biến thiên ta được: yêu cầu bài toán tương đương $-3 < \frac{m}{6} \le 2$

$$\Leftrightarrow$$
 $-18 < m \le 12$.

Vậy có tất cả 30 giá trị của tham số m thỏa mãn yêu cầu bài toán.

Câu 3. (**Mã 103 - 2020 Lần 2**) Cho hàm số f(x) có bảng biến thiên như sau

Có bao nhiều giá trị nguyên của tham số m để phương trình $3f(x^2-4x)=m$ có ít nhất ba nghiệm thực phân biệt thuộc khoảng $(0;+\infty)$?

Lời giải

<u>C</u>họn <u>A</u>

Đặt
$$u = x^2 - 4x$$
 (1)

Ta có BBT sau:

Ta thấy:

- + Với u < -4, phương trình (1) vô nghiệm.
- + Với u = -4, phương trình (1) có một nghiệm x = 2 > 0.
- + Với -4 < u < 0, phương trình (1) có hai nghiệm x > 0.
- + Vơi $u \ge 0$, phương trình (1) có một nghiệm x > 0

Khi đó
$$3f(x^2-4x) = m \Rightarrow f(u) = \frac{m}{3}$$
 (2), ta thấy:

- + Nếu $\frac{m}{3}$ = -3 \Leftrightarrow m = -9 , phương trình (2) có một nghiệm u = 0 nên phương trình đã cho có một nghiệm x > 0 .
- + Nếu $-3 < \frac{m}{3} < -2 \Leftrightarrow -9 < m < -6$, phương trình (2) có một nghiệm u > 0 và một nghiệm $u \in (-2,0)$ nên phương trình đã cho có ba ngiệm x > 0.
- + Nếu $\frac{m}{3} = -2 \Leftrightarrow m = -6$, phương trình (2) có một nghiệm u = -4, một nghiệm $u \in (-2;0)$ và một nghiệm u > 0 nên phương trình đã cho có bốn nghiệm x > 0.
- + Nếu $-2 < \frac{m}{3} < 2 \Leftrightarrow -6 < m < 6$, phương trình (2) có một nghiệm u < -4, hai nghiệm $u \in (-4;0)$ và một nghiệm u > 0 nên phương trình đã cho có năm nghiệm x > 0.
- + Nếu $\frac{m}{3} = 2 \Leftrightarrow m = 6$, phương trình (2) có một nghiệm u < -4, một nghiệm u = -2 và một nghiệm u > 0 nên phương trình đã cho có ba nghiệm x > 0.
- + Nếu $\frac{m}{3} > 2 \Leftrightarrow m > 6$, phương trình (2) có một nghiệm u < -4 và một nghiệm u > 0 nên phương trình đã cho có một nghiệm x > 0.

Vậy $-9 < m \le 6$ ⇒ có 15 giá trị m nguyên thỏa yebt.

Câu 4. (Mã 101 - 2020 Lần 2) Cho hàm số f(x) có bảng biến thiên như sau:

Có bao nhiều giá trị nguyên của tham số m để phương trình $5f(x^2-4x)=m$ có ít nhất 3 nghiệm phân biệt thuộc khoảng $(0;+\infty)$

Lời giải

$$\underline{\mathbf{C}}$$
họn $\underline{\mathbf{C}}$.

Đặt
$$t = x^2 - 4x$$
. Ta có $t' = 2x - 4 = 0 \Leftrightarrow x = 2$

Bảng biến thiên

$$\begin{array}{c|cccc}
x & 0 & 2 & +\infty \\
\hline
t' & - & 0 & + \\
\hline
t & 0 & & +\infty
\end{array}$$

NGUYĒN BẢO VƯƠNG - 0946798489

Với $t = x^2 - 4x$.

Dựa vào bảng biến thiên ta có $-3 < \frac{m}{5} \le 2 \Leftrightarrow -15 < m \le 10$. Vì m nguyên nên $m \in \{-14; -13;; 10\}$. Do đó có 25 giá trị nguyên của m thỏa mãn đề bài.

(Mã 104 - 2020 Lần 2) Cho hàm số f(x) có bảng biến thiên như sau: Câu 5.

Có bao nhiều giá trị nguyên của tham số m để phương trình $4f(x^2-4x)=m$ có ít nhất 3 nghiệm thực phân biệt thuộc khoảng $(0;+\infty)$?

A. 16.

B. 19.

<u>C</u>. 20 . Lời giải

D. 17.

Chon C

Ta có
$$4f(x^2-4x) = m \Leftrightarrow f(x^2-4x) = \frac{m}{4}$$

Đặt
$$t = x^2 - 4x \Rightarrow t' = 2x - 4 = 0 \Leftrightarrow x = 2$$

Vì
$$x \in (0; +\infty) \Rightarrow t \ge -4$$

Ta có
$$f(t) = \frac{m}{4}$$

Phương trình đã cho có ít nhất 3 nghiệm phân biệt thuộc khoảng $(0;+\infty)$

$$\Rightarrow -3 < \frac{m}{4} \le 2 \Leftrightarrow -12 < m \le 8 \text{ mà } m \text{ nguyên nên } m \in \{-11; -10; ...; 0; 1; ...; 8\}$$

Vậy có 20 giá trị nguyên của m thỏa mãn.

Câu 6. (Chuyên Biên Hòa - Hà Nam - 2020) Cho hàm số f(x). Hàm số y = f'(x) có đồ thị như hình sau.

Tìm tất cả các giá trị thực của tham số m để bất phương trình

$$2f\left(\sin x - 2\right) - \frac{2\sin^3 x}{3} + \sin x > m + \frac{5\cos 2x}{4} \text{ nghiệm đúng với mọi } x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right).$$

A.
$$m \le 2f(-3) + \frac{11}{12}$$
. **B.** $m < 2f(-1) + \frac{19}{12}$.

C.
$$m \le 2f(-1) + \frac{19}{12}$$
. **D**. $m < 2f(-3) + \frac{11}{12}$

Lời giải

Chọn C

Ta có

$$2f(\sin x - 2) - \frac{2\sin^3 x}{3} + \sin x > m + \frac{5\cos 2x}{4}$$

$$\Leftrightarrow m < 2f(\sin x - 2) - \frac{2\sin^3 x}{3} + \sin x - \frac{5(1 - 2\sin^2 x)}{4}$$

Đặt $t = \sin x - 2$ (với $x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ thì $t \in \left(-3; -1\right)$, khi đó bất phương trình được viết lại thành:

$$m < 2f(t) - \frac{2(t+2)^3}{3} + (t+2) - \frac{5[1-2(t+2)^2]}{4}$$
.

hay
$$m < 2f(t) - \frac{2}{3}t^3 - \frac{3}{2}t^2 + 3t + \frac{65}{12}$$
 (*).

Xét hàm số
$$g(t) = 2f(t) - \frac{2}{3}t^3 - \frac{3}{2}t^2 + 3t + \frac{65}{12}$$
 trên đoạn $[-3;-1]$.

Ta có
$$g'(t) = 2f'(t) - 2t^2 - 3t + 3$$
. Do đó $g'(t) = 0 \Leftrightarrow f'(t) = t^2 + \frac{3}{2}t - \frac{3}{2}$.

NGUYỄN BẢO VƯƠNG - 0946798489

Dựa vào sự tương giao của đồ thị hàm số y = f'(t) và parabol $y = t^2 + \frac{3}{2}t - \frac{3}{2}$ trên đoạn [-3;-1] thì $g'(t) = 0 \Leftrightarrow t \in \{-3;-1\}$.

Suy ra bảng biến thiên của hàm số g(t) trên đoạn [-3;-1] như sau:

	t	-3		-1
	g'(t)	0	_	0
-	g(t)	g(-3)		(-1)

Bất phương trình đã cho nghiệm đúng với mọi $x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ khi và chỉ khi bất phương trình (*) nghiệm đúng với mọi $t \in (-3; -1)$. Điều đó tương đương với $m \le g\left(-1\right) = 2f\left(-1\right) + \frac{19}{12}$ dựa vào tính liên tục của hàm số $g\left(t\right)$.

Câu 7. (Chuyên Biên Hòa - Hà Nam - 2020) Cho hàm số $y = f(x) = ax^3 + bx^2 + cx + d$ có đồ thị như hình dưới đây

Có tất cả bao nhiều giá trị nguyên của tham số $m \in (-5,5)$ để phương trình

 $f^{2}(x) - (m+4)|f(x)| + 2m + 4 = 0$ có 6 nghiệm phân biệt

A. 2.

B. 4.

<u>C</u>. 3.

<u>D</u>. 5.

Lời giải

Chọn C

Ta có: $f^2(x) - (m+4)|f(x)| + 2m + 4 = 0 \Leftrightarrow |f(x)|^2 - m|f(x)| - 4|f(x)| + 2m + 4 = 0$ $\Leftrightarrow (|f(x)| - 2)^2 - m(|f(x)| - 2) = 0 \Leftrightarrow (|f(x)| - 2)(|f(x)| - 2 - m) = 0$

$$\Leftrightarrow \begin{cases} |f(x)| - 2 = 0 \\ |f(x)| - 2 - m = 0 \end{cases} \Leftrightarrow \begin{cases} |f(x)| = 2 \quad (1) \\ |f(x)| = m + 2 \quad (2) \end{cases}$$

Dựa vào đồ thị hàm số $y = f(x) = ax^3 + bx^2 + cx + d$ ta có đồ thị hàm số y = |f(x)| như sau:

Dựa vào đồ thị hàm số y = |f(x)| suy ra phương trình (1) có 4 nghiệm phân biệt. Suy ra phương trình đã cho có 6 nghiệm phân biệt (2) có 2 nghiệm phân biệt khác các nghiệm của phương trình (1).

Ta có phương trình (2) là phương trình hoành độ giao điểm của hai đường y = |f(x)| và y = m + 2. Số nghiệm phương trình (2) là số giao điểm của 2 đồ thị hàm số y = |f(x)| và y = m + 2. Dựa vào hình vẽ đồ thị hàm số y = |f(x)| ta được phương trình |f(x)| = m + 2 có 2

nghiệm phân biệt khác các nghiệm của phương trình $|f(x)| = 2 \Leftrightarrow \begin{vmatrix} m+2=0\\ m+2>4 \Leftrightarrow \\ m+2\neq 2 \end{vmatrix}$ m=-2

Do $m \in \mathbb{Z}$ và $m \in (-5,5) \Rightarrow m \in \{-2,3,4\}$.

Vậy có 3 giá trị nguyên $m \in (-5, 5)$ thỏa mãn điều kiện bài toán.

(Chuyên Lam Sơn - 2020) Cho hàm số y = f(x), hàm số y = f'(x) liên tục trên \mathbb{R} và có đồ Câu 8. thị như hình vẽ bên. Bất phương trình $f(x) > x^2 - 2x + m$ (m là tham số thực) nghiệm đúng với mọi $x \in (1,2)$ khi và chỉ khi

A.
$$m \le f(2) - 2$$
. **B.** $m \le f(1) + 1$.

B.
$$m \le f(1) + 1$$

C.
$$m \le f(1) - 1$$
. **D.** $m \le f(2)$.

$$\underline{\mathbf{D}}$$
. $m \leq f(2)$

Lời giải

Chọn D

NGUYĒN <mark>BẢO</mark> VƯƠNG - 0946798489

Ta có: $f(x) > x^2 - 2x + m \ (\forall x \in (1,2)) \iff f(x) - x^2 + 2x > m \ (\forall x \in (1,2)) \ (*)$.

Gọi
$$g(x) = f(x) - (x^2 - 2x)$$

$$\Rightarrow g'(x) = f'(x) - (2x - 2)$$

Theo đồ thị ta thấy $f'(x) < (2x-2) \ (\forall x \in [1,2]) \Rightarrow g'(x) < 0 \ (\forall x \in [1,2])$.

Vậy hàm số y = g(x) liên tục và nghịch biến trên [1,2]

Do đó (*)
$$\Leftrightarrow m \le \min_{[1;2]} g(x) = g(2) = f(2)$$
.

Câu 9. (Chuyên Thái Bình - 2020) Cho hàm số y = f(x) liên tục trên đoạn [-1;4] và có đồ thị như hình vẽ.

Có bao nhiều giá trị nguyên của m thuộc đoạn [-10;10] để bất phương trình |f(x)+m|<2m đúng với mọi x thuộc đoạn [-1;4].

Chọn C

Để bất phương trình |f(x)+m| < 2m có nghiệm ta suy ra điều kiện m > 0.

$$|f(x)+m| < 2m \Leftrightarrow -2m < f(x)+m < 2m \Leftrightarrow \begin{cases} f(x) > -3m \\ f(x) < m \end{cases}$$

Bất phương trình |f(x)+m| < 2m đúng với mọi x thuộc đoạn $[-1;4] \Leftrightarrow \begin{cases} f(x) > -3m \\ f(x) < m \end{cases}$ đúng

với mọi
$$x$$
 thuộc đoạn $\left[-1;4\right] \Leftrightarrow \begin{cases} -3m < \min_{\left[-1;4\right]} f\left(x\right) \\ m > \max_{\left[-1;4\right]} f\left(x\right) \end{cases}$.

Từ đồ thị hàm số y = f(x) ta suy ra $\min_{[-1;4]} f(x) = -2; \max_{[-1;4]} f(x) = 3$.

$$\Rightarrow \begin{cases} -3m < \min_{[-1;4]} f(x) \\ m > \max_{[-1;4]} f(x) \end{cases} \Leftrightarrow \begin{cases} -3m < -2 \\ m > 3 \end{cases} \Leftrightarrow m > 3 \text{ (thỏa mãn điều kiện } m > 0 \text{)}$$

$$m > 3 \end{cases}$$

Vậy trên đoạn [-10;10] có 7 giá trị nguyên của m thỏa mãn điều kiện bài toán.

(Chuyên Bến Tre - 2020) Cho hàm số y = f(x). Đồ thị hàm số y = f'(x) như hình vẽ. Cho bất Câu 10. phương trình $3f(x) \ge x^3 - 3x + m$ (m là tham số thực). Điều kiện cần và đủ để bất phương trình $3f(x) \ge x^3 - 3x + m$ đúng với mọi $x \in \left[-\sqrt{3}; \sqrt{3} \right]$ là

A.
$$m \ge 3 f(1)$$
.

B.
$$m \ge 3f\left(-\sqrt{3}\right)$$
. **C.** $m \le 3f\left(0\right)$. **D.** $m \le 3f\left(\sqrt{3}\right)$.

C.
$$m \le 3f(0)$$

$$\underline{\mathbf{D}}. \ m \leq 3f\left(\sqrt{3}\right).$$

Chon D

Ta có
$$3f(x) \ge x^3 - 3x + m \Leftrightarrow 3f(x) - x^3 + 3x \ge m$$

Đặt
$$g(x) = 3f(x) - x^3 + 3x$$
. Tính $g'(x) = 3f'(x) - 3x^2 + 3$

Có
$$g'(x) = 0 \Leftrightarrow f'(x) = x^2 - 1$$

Nghiệm của phương trình g'(x)=0 là hoành độ giao điểm của đồ thị hàm số y=f'(x) và parabol $y = x^2 - 1$

Dựa vào đồ thị hàm số ta có: $f'(x) = x^2 - 1 \Leftrightarrow \begin{bmatrix} x = -\sqrt{3} \\ x = 0 \end{bmatrix}$

NGUYỄN BẢO VƯƠNG - 0946798489

H	170407					
	x	$-\sqrt{3}$		-1		$\sqrt{3}$
	g'(x)	0	_	0	_	0
	g(x)	$g(-\sqrt{3})$			\	$g(\sqrt{3})$

Để bất phương trình nghiệm đúng với mọi $x \in \left[-\sqrt{3}; \sqrt{3}\right]$ thì $m \le \min_{\left[-\sqrt{3}; \sqrt{3}\right]} g\left(x\right) = g\left(\sqrt{3}\right) = 3f\left(\sqrt{3}\right)$.

Câu 11. (Chuyên Hùng Vương - Gia Lai - 2020) Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ bên dưới. Gọi S là tập hợp tất cả giá trị nguyên của tham số m để phương trình $f(\sin x) - m + 2 = 2\sin x$ có nghiệm thuộc khoảng $(0;\pi)$. Tổng các phần tử của S bằng

A. 4.

B. −1.

C, 3.

Lời giải

<u>D</u>. 2.

Chọn D

Đặt $t = \sin x$, với $x \in (0; \pi) \Rightarrow t \in (0; 1]$.

Ta được phương trình: $f(t)-2t = m-2 \Leftrightarrow f(t) = 2t + m-2$ (1)

Số nghiệm của phương trình bằng số giao điểm của đồ thị hàm số y = f(t) và đường thẳng y = 2t + m - 2 (r).

Gọi (p): y = 2x + 1 song song với đường thẳng (Δ) : y = 2t và đi qua điểm A(0;1).

Gọi q: y = 2x - 3 song song với đường thẳng $(\Delta): y = 2t$ và đi qua điểm B(1; -1).

Để phương trình $f(\sin x) - m + 2 = 2\sin x$ có nghiệm thuộc khoảng $(0;\pi)$ thì phương trình (1) phải có nghiệm $t \in (0;1]$, suy ra đường thẳng r nằm trong miền nằm giữa hai đường thẳng q và p (có thể trùng lên q và bỏ p)

$$\Rightarrow -3 \le m-2 < 1 \Leftrightarrow -1 \le m < 3 \Rightarrow m \in \{-1,0,1,2\} \Rightarrow S = \{-1,0,1,2\}.$$

Do đó tổng các phần tử là: -1+0+1+2=2.

- **Câu 12.** (Chuyên Hùng Vương Gia Lai 2020) Cho hàm số $f(x) = x^3 + x + 2$. Có tất cả bao nhiều giá trị nguyên của tham số m để phương trình $f(\sqrt[3]{f^3(x) + f(x) + m}) = -x^3 x + 2$ có nghiệm $x \in [-1;2]$?
 - <u>**A.**</u> 1750.
- **B.** 1748.
- **C.** 1747.
- **D.** 1746.

Lời giải

Chọn A

Xét hàm số $f(t) = t^3 + t + 2$, ta có $f'(t) = 3t^2 + 1 > 0$, $\forall t \in \mathbb{R}$.

Do đó hàm số f đồng biến trên \mathbb{R} .

Ta có
$$f\left(\sqrt[3]{f^3(x) + f(x) + m}\right) = f(-x)$$

$$\Leftrightarrow -x = \sqrt[3]{f^3(x) + f(x) + m} \Leftrightarrow f^3(x) + f(x) + x^3 + m = 0 \quad (1)$$

Xét $h(x) = f^{3}(x) + f(x) + x^{3} + m$ trên đoạn [-1;2].

Ta có
$$h'(x) = 3f'(x) \cdot f^2(x) + f'(x) + 3x^2 = f'(x) [3f^2(x) + 1] + 3x^2.$$

Ta có
$$f'(x) = 3x^2 + 1 > 0, \forall x \in [-1; 2] \Rightarrow h'(x) > 0, \forall x \in [-1; 2].$$

Hàm số h(x) đồng biến trên [-1;2] nên $\min_{[-1;2]} h(x) = h(-1) = m-1$, $\max_{[-1;2]} h(x) = h(2) = m+1748$.

Phương trình (1) có nghiệm khi và chỉ khi

$$\min_{[-1;2]} h(x) \cdot \max_{[-1;2]} h(x) \le 0 \quad \Leftrightarrow \quad h(-1) \cdot h(2)
\Leftrightarrow \quad (m-1)(1748+m) \le 0
\Leftrightarrow \quad -1748 \le m \le 1.$$

Do m nguyên nên tập các giá trị m thỏa mãn là $S = \{-1748; -1747; ...; 0; 1\}$.

Vậy có tất cả 1750 giá trị nguyên của *m* thỏa mãn.

Câu 13. (Chuyên Quang Trung - 2020) Cho hàm số f(x) liên tục trên [2;4] và có bảng biến thiên như hình vẽ bên. Có bao nhiêu giá trị nguyên của m để phương trình $x + 2\sqrt{x^2 - 2x} = m.f(x)$ có nghiệm thuộc đoạn [2;4]?

A. 6.

B. 5.

<u>C</u>. 4. Lời giải

D. 3.

Chọn C

NGUYĒN BẢO VƯƠNG - 0946798489

Dựa vào bảng biến thiên ta có $\underset{[2;4]}{Min} f(x) = f(4) = 2$ và $\underset{[2;4]}{Max} f(x) = f(2) = 4$

Hàm số $g(x) = x + 2\sqrt{x^2 - 2x}$ liên tục và đồng biến trên [2;4]

Suy ra
$$\min_{[2;4]} g(x) = g(2) = 2$$
 và $\max_{[2;4]} g(x) = g(4) = 4 + 4\sqrt{2}$

Ta có
$$x + 2\sqrt{x^2 - 2x} = m.f(x) \Leftrightarrow \frac{x + 2\sqrt{x^2 - 2x}}{f(x)} = m \Leftrightarrow \frac{g(x)}{f(x)} = m$$

Xét hàm số $h(x) = \frac{g(x)}{f(x)}$ liên tục trên [2;4]

Vì g(x) nhỏ nhất và f(x) lớn nhất đồng thời xảy ra tại x = 2 nên

$$\underset{[2;4]}{Min} h(x) = \frac{\underset{[2;4]}{Min} g(x)}{\underset{[2;4]}{Max} f(x)} = \frac{g(2)}{f(2)} = h(2) = \frac{1}{2}$$

Vì g(x) lớn nhất và f(x) nhỏ nhất đồng thời xảy ra tại x = 4 nên

$$\max_{[2;4]} h(x) = \frac{\max_{[2;4]} g(x)}{\min_{[2;4]} f(x)} = \frac{g(4)}{f(4)} = h(4) = 2 + 2\sqrt{2}$$

Từ đó suy ra phương trình h(x) = m có nghiệm khi và chỉ khi $\frac{1}{2} \le m \le 2 + 2\sqrt{2}$.

Vậy có 4 giá trị nguyên của m để phương trình có nghiệm.

Câu 14. (Chuyên Sơn La - 2020) Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Số giá trị nguyên của tham số m để phương trình $f^2(\cos x) + (m-2019)f(\cos x) + m-2020 = 0$ có đúng 6 nghiệm phân biệt thuộc đoạn $[0;2\pi]$ là

A. 1.

B. 3.

<u>C</u>. 2. Lời giải **D.** 5.

Chọn C

Ta có
$$f^2(\cos x) + (m - 2019)f(\cos x) + m - 2020 = 0 \Leftrightarrow \begin{bmatrix} f(\cos x) = -1 \\ f(\cos x) = 2020 - m \end{bmatrix}$$
 (1)

* Với $f(\cos x) = -1$

Dựa vào đồ thị ta có
$$f(\cos x) = -1 \Leftrightarrow \begin{bmatrix} \cos x = 0 \\ \cos x = x_1 & (x_1 > 1)(VN) \end{cases} \Leftrightarrow x = \frac{\pi}{2} + k\pi$$

Vì
$$x \in [0; 2\pi] \Rightarrow x \in \left\{\frac{\pi}{2}; \frac{3\pi}{2}\right\}$$

* Với
$$f(\cos x) = 2020 - m$$

Đặt
$$t = \cos x (t \in [-1;1])$$

Với $t \in (-1,1]$ thì phương trình $t = \cos x$ có hai nghiệm phân biệt thuộc $[0,2\pi]$.

Với t = -1 thì phương trình $t = \cos x$ có một nghiệm thuộc $[0; 2\pi]$

Phương trình trở thành f(t) = 2020 - m

Để phương trình (1) có tất cả 6 nghiệm phân biệt thì phương trình $f(\cos x) = 2020 - m$ có 4 nghiệm phân biệt, hay phương trình f(t) = 2020 - m có hai nghiệm $t \in (-1;1]$

Dựa vào đồ thị ta có để phương trình f(t) = 2020 - m có hai nghiệm $t \in (-1;1]$ thì $-1 < 2020 - m \le 1 \Leftrightarrow 2019 \le m < 2021$

Vì m nguyên nên $m \in \{2019; 2020\}$

Vậy có 2 giá trị nguyên của m thỏa mãn.

Câu 15. (Chuyên Vĩnh Phúc - 2020) Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Biết $f(-1) = 1; f\left(-\frac{1}{e}\right) = 2$. Tìm tất cả các giá trị của m để bất phương trình $f(x) < \ln(-x) + m$ nghiệm đúng với mọi $x \in \left[-1; \frac{-1}{e}\right]$.

A. $m \ge 2$.

B. $m \ge 3$.

C. m > 2.

Lời giải

D. m > 3.

<u>C</u>họn <u>B</u>

Ta có $f(x) < \ln(-x) + m \Leftrightarrow m > f(x) - \ln(-x)$.

Xét hàm số $g(x) = f(x) - \ln(-x)$ trên $\left(-1; -\frac{1}{e}\right)$.

Có $g'(x) = f'(x) - \frac{1}{x}$.

Trên $\left(-1; -\frac{1}{e}\right)$ có f'(x) > 0 và $\frac{1}{x} < 0$ nên $g'(x) > 0, \forall x \in \left(-1; -\frac{1}{e}\right)$

 \Rightarrow hàm số g(x) đồng biến trên $\left(-1; -\frac{1}{e}\right)$.

Vậy nên $f(x) < \ln(-x) + m$ nghiệm đúng với mọi $x \in (-1; -\frac{1}{e})$

 $\Leftrightarrow m \ge g(x), \forall x \in \left(-1; -\frac{1}{e}\right)$

 $\Leftrightarrow m \ge g\left(-\frac{1}{e}\right)$

 $\Leftrightarrow m \ge 3$.

Câu 16. (Sở Phú Thọ - 2020) Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn f(-1) = 5, f(-3) = 0 và có bảng xét dấu đạo hàm như sau:

Số giá trị nguyên dương của tham số m để phương trình $3f(2-x)+\sqrt{x^2+4}-x=m$ có nghiệm trong

khoảng (3;5) là

A. 16.

B. 17.

C. 0.

D. 15.

Lời giải

$\underline{\mathbf{C}}$ họn $\underline{\mathbf{D}}$

Đặt $g(x) = 3f(2-x) + \sqrt{x^2 + 4} - x \text{ với } x \in (3,5).$

Ta có: $g'(x) = -3f'(2-x) + \frac{x}{\sqrt{x^2+4}} - 1$.

Với $x \in (3;5)$:

Ta có: $2-x \in (-3,-1)$ nên f'(2-x) > 0 suy ra -3f'(2-x) < 0.

Ta có: $\frac{x}{\sqrt{x^2+4}} < \frac{x}{x} = 1$

Suy ra $g'(x) = -3f'(2-x) + \frac{x}{\sqrt{x^2+4}} - 1 < 0, \forall x \in (3,5)$ nên hàm số nghịch biến trên (3,5).

Suy ra $\min_{(3;5)} g(x) = g(5) = 3f(-3) + \sqrt{5^2 + 4} - 5 = \sqrt{29} - 5;$

$$\max_{(3;5)} g(x) = g(3) = 3f(-1) + \sqrt{3^2 + 4} - 3 = 12 + \sqrt{13}.$$

Để phương trình $3f(2-x)+\sqrt{x^2+4}-x=m$ có nghiệm thì $\sqrt{29}-5 \le m \le 12+\sqrt{13}$ mà m nguyên dương nên $m \in \{1,2,...,15\}$ tức là có 15 giá trị

Câu 17. (Sở Phú Thọ - 2020) Cho hàm số y = f(x) liên tục trên \mathbb{R} và thỏa mãn f(-1) = 1, $f\left(-\frac{1}{e}\right) = 2$. Hàm số f'(x) có đồ thị như hình vẽ. Bất phương trình $f(x) < \ln(-x) + x^2 + m$ nghiệm đúng với mọi $x \in \left(-1; -\frac{1}{e}\right)$ khi và chỉ khi

A. m > 0.

B.
$$m > 3 - \frac{1}{2}$$
.

 $\underline{\mathbf{C}}$. $m \ge 3 - \frac{1}{e^2}$.

 $\mathbf{D.} \ m \ge 0.$

Lời giải

<u>C</u>họn <u>C</u>

Điều kiện: $-x > 0 \Leftrightarrow x < 0$

Bất phương trình đã cho tương đương với $f(x) - \ln(-x) - x^2 < m$ (*).

Xét hàm số $g(x) = f(x) - \ln(-x) - x^2$ trên $\left(-1; -\frac{1}{e}\right)$.

Ta có $g'(x) = f'(x) - \frac{1}{x} - 2x$. Với $x \in \left(-1; -\frac{1}{e}\right)$ thì $f'(x) > 0; -\frac{1}{x} - 2x > 0$ nên g'(x) > 0.

Do đó hàm số g(x) đồng biến trên $\left(-1; -\frac{1}{e}\right)$.

Suy ra (*) nghiệm đúng với mọi $x \in \left(-1; -\frac{1}{e}\right)$ khi và chỉ khi $m \ge g\left(-\frac{1}{e}\right) = f\left(-\frac{1}{e}\right) - \ln\frac{1}{e} - \frac{1}{e^2} = 3 - \frac{1}{e^2}$.

Câu 18. (Sở Hà Tĩnh - 2020) Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ.

NGUYĒN BẢO VƯƠNG - 0946798489

Có bao nhiều giá trị nguyên của tham số m để phương trình $f(f(\cos x)) = m$ có nghiệm thuộc

khoảng
$$\left(\frac{\pi}{2}; \frac{3\pi}{2}\right)$$
?

A. 2.

B. 4.

C. 5.

D. 3.

Lời giải.

Chọn B

Khi
$$x \in \left(\frac{\pi}{2}; \frac{3\pi}{2}\right)$$
 thì $\cos x \in [-1; 0)$.

Dựa vào đồ thị hàm số y = f(x) ta thấy khi $\cos x \in [-1;0)$ thì $f(\cos x) \in [-1;1)$; khi đó $f(f(\cos x)) \in [-1;3)$.

Do đó phương trình $f(f(\cos x)) = m$ có nghiệm thuộc khoảng $(\frac{\pi}{2}; \frac{3\pi}{2})$ khi và chỉ khi $-1 \le m < 3$.

Vậy có 4 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

Câu 19. (Sở Ninh Bình) Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ.

Có tất cả bao nhiều giá trị nguyên của tham số m để phương trình $f(2|\sin x|) = f(m^2 + 6m + 10)$ có nghiệm?

A. 2.

B. 3.

C. 4.

D. 1.

Lời giải.

Chọn B

Từ đồ thị suy ra hàm số y = f(x) đồng biến trên nửa khoảng $[0; +\infty)$.

Do $2|\sin x| \ge 0$; $m^2 + 6m + 10 > 0$ nên $f(2|\sin x|) = f(m^2 + 6m + 10) \Leftrightarrow 2|\sin x| = m^2 + 6m + 10$.

Mà $0 \le 2 |\sin x| \le 2$ nên yêu cầu bài toán tương đương

 $0 \le m^2 + 6m + 10 \le 2 \iff m^2 + 6m + 8 \le 0 \iff -4 \le m \le -2$.

Vậy có 3 số nguyên m thỏa mãn.

Câu 20. (Sở Yên Bái - 2020) Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ bên. Có tất cả bao nhiều giá trị nguyên của tham số m để phương trình $f(x^3 - 3x^2 + m) + 3 = 0$ có nghiệm thuộc đoạn [-1; 2].

A. 7.

<u>**B**</u>. 8.

C. 10.

Lời giải

D. 5.

Chọn B

Từ hình vẽ, ta suy ra được hình vẽ là đồ thị của hàm số $y = x^3 - 3x^2 + 1$.

$$f(x^{3} - 3x^{2} + m) + 3 = 0 \Leftrightarrow f(x^{3} - 3x^{2} + m) = -3 \Leftrightarrow \begin{bmatrix} x^{3} - 3x^{2} + m = -1 \\ x^{3} - 3x^{2} + m = 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x^{3} - 3x^{2} + 1 = -m \\ x^{3} - 3x^{2} + 1 = -m + 3 \end{bmatrix}$$

Để phương trình đã cho có nghiệm thuộc đoạn $\begin{bmatrix} -1;2 \end{bmatrix}$ thì $\begin{bmatrix} -3 \le -m \le 1 \\ -3 \le -m + 3 \le 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -1 \le m \le 3 \\ 2 \le m \le 6 \end{bmatrix}$.

 $\Rightarrow m \in [-1;6].$

Do $m \in \mathbb{Z}$ nên có 8 giá trị m để phương trình đã cho có nghiệm.

Câu 21. (Sở Yên Bái - 2020) Cho hàm số y = f(x) liên tục trên $\mathbb R$ và có đồ thị như hình vẽ bên. Số các giá trị nguyên của tham số m để bất phương trình $16.8^{f(x)} \leq (-m^2 + 5m).4^{f(x)} - ((4 - f^2(x)).16^{f(x)}$ nghiêm đúng với mọi số thực x là

A. 3.

B. 5.

C. 1.

<u>D</u>. 4.

Lời giải

Chọn D

 $16.8^{f(x)} \le (-m^2 + 5m).4^{f(x)} - ((4 - f^2(x)).16^{f(x)} \Leftrightarrow -m^2 + 5m \ge 16.2^{f(x)} + (4 - f^2(x)).4^{f(x)}$

Vì. nên ta có $16.2^{f(x)} + \left(4 - f^2(x)\right).4^{f(x)} \le 16.2^{-2} + 0 = 4 \, \forall x \in \mathbb{R}$

 $\Rightarrow -m^2 + 5m \ge 4 \Leftrightarrow m^2 - 5m + 4 \le 0 \Leftrightarrow 1 \le m \le 4$

NGUYĚN BẢO VƯƠNG - 0946798489

Câu 22. (Hậu Lộc 2 - Thanh Hóa - 2020) Cho hàm số y = f(x), hàm số y = f'(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ bên. Bất phương trình $m + e^x < f(x)$ có nghiệm với mọi $x \in (-1;1)$ khi và chỉ khi.

$$\underline{\mathbf{A}}. \ m \le \min \left\{ f(1) - e; f(-1) - \frac{1}{e} \right\}.$$

B.
$$m < f(0) - 1$$

C.
$$m < \min \left\{ f(1) - e; f(-1) - \frac{1}{e} \right\}.$$

D.
$$m \le f(0) - 1$$
.

Lời giải

Chọn A

Ta có: $m + e^x < f(x) \Leftrightarrow m < f(x) - e^x$

Xét hàm số $g(x) = f(x) - e^x$ với $x \in (-1,1)$

$$g'(x) = f'(x) - e^x$$
; $g'(x) = 0 \Leftrightarrow f'(x) - e^x = 0 \Leftrightarrow f'(x) = e^x$

Dễ thấy với $x \in (-1;1)$; f'(0) = 1; $e^0 = 1 \Rightarrow x = 0$ là nghiệm của phương trình $f'(x) = e^x$ hơn nữa là nghiệm duy nhất (Minh họa bằng hình vẽ)

Dựa vào vị trí đồ thị hình vẽ trên ta có bảng biến thiên

x	-1		0		_1
g'(x))	+	0	_	
g(x)	g(-1))	g(0)		g(1)

Qua bảng biến thiên và chỉ xét trong khoảng (-1;1)

$$m < g(x) \Leftrightarrow m \le \min\{g(-1); g(1)\} \Leftrightarrow m \le \min\{f(1) - e; f(-1) - \frac{1}{e}\}.$$

Câu 23. (**Liên trường Nghệ An - 2020**) Cho hàm số f(x) là hàm số đa thức bậc bốn. Biết f(0) = 0 và đồ thị hàm số y = f'(x) có hình vẽ bên dưới.

Tập nghiệm của phương trình $f(|2\sin x - 1| - 1) = m$ (với m là tham số) trên đoạn $[0;3\pi]$ có tất cả bao nhiều phần tử?

. Lời giải

Chọn D

Đồ thị đã cho là đồ thị hàm số bậc ba có hai điểm cực trị x=0 và x=2 nên có dạng $f'(x)=ax^3+bx^2+cx+d$.

Lần lượt thay thế các dữ kiện từ hình vẽ, ta được $\begin{cases} d=2 \\ c=0 \\ 3 \cdot a \cdot 2^2 + 2 \cdot b \cdot 2 = 0 \end{cases} \Rightarrow \begin{cases} a=1 \\ b=-3 \\ c=0 \\ d=2 \end{cases}.$

Suy ra
$$f'(x) = x^3 - 3x^2 + 2 \Rightarrow f(x) = \frac{x^4}{4} - x^3 + 2x + C$$
.

Mà
$$f(0) = 0 \Rightarrow C = 0 \Rightarrow f(x) = \frac{x^4}{4} - x^3 + 2x$$
.

Ta có
$$f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 1 - \sqrt{3} \\ x = 1 + \sqrt{3} \end{bmatrix}$$

Suy ra bảng biến thiên

NGUYĒN BĀO VƯƠNG - 0946798489

	x	$-\infty$		$1-\sqrt{3}$		1		$1+\sqrt{3}$	3	$+\infty$
$\int f$	f'(x)		_	0	+	0	_	0	+	
f	f(x)	$+\infty$			/	$\sqrt{\frac{5}{4}}$		-1	/	+∞

Từ đó ta có bảng biến thiên của f(x-1)

x	$-\infty$		$2-\sqrt{3}$		2		2 +	/ 3	$+\infty$
f'(x-1)		-	0	+	0	_	0	+	
f(x-1)	+∞_		_1		$\sqrt{\frac{5}{4}}$		-1	/	+∞

Vì $-1 \le \sin x \le 1, \forall x \in [0, 3\pi]$ nên $0 \le |2\sin x - 1| \le 3$.

Đặt
$$t = |2\sin x - 1|, t \in [0,3]$$

Dựa vào bảng biến thiên, suy ra phương trình f(t-1)=m có tối đa 2 nghiệm t=h, t=k.

Do đó
$$\begin{bmatrix} 2\sin x - 1 = \pm h \\ 2\sin x - 1 = \pm k \end{bmatrix} \Leftrightarrow \begin{bmatrix} \sin x = \frac{\pm h + 1}{2} \\ \sin x = \frac{\pm k + 1}{2} \end{bmatrix}.$$

Trên $[0;3\pi]$, mỗi phương trình có nhiều nhất 4 nghiệm, do đó phương trình đã cho có nhiều nhất 16 nghiệm.

Câu 24. (Kìm Thành - Hải Dương - 2020) Cho hàm số y = f(x). Hàm số y = f'(x) có bảng biến thiên như hình vẽ:

Bất phương trình $e^{\sqrt{x}} \ge m - f(x)$ có nghiệm $x \in [4;16]$ khi và chỉ khi:

A.
$$m < f(4) + e^2$$
. **B.** $m \le f(4) + e^2$. **C.** $m < f(16) + e^2$. **D.** $m \le f(16) + e^2$. Lòi giải

Chon B

Từ BBT suy ra $f'(x) > 0, \forall x \in [4;16]$. Ta có: $e^{\sqrt{x}} \ge m - f(x) \Leftrightarrow m \le e^{\sqrt{x}} + f(x)$ (*).

$$\text{Dăt } g(x) = e^{\sqrt{x}} + f(x), \ \forall x \in [4;16] \Rightarrow g'(x) = \frac{e^{\sqrt{x}}}{2\sqrt{x}} + f'(x) > 0, \forall x \in [4;16]$$

Bảng biến thiên:

$$\begin{array}{c|cccc}
x & 4 & 16 \\
\hline
g'(x) & + & \\
\hline
g(x) & f(16) + e^4
\end{array}$$

(*) thỏa mãn khi $m \le \min_{[4;16]} g(x) = f(4) + e^2$.

Câu 25. (Kìm Thành - Hải Dương - 2020) Cho hàm số đa thức bậc bốn y = f(x) và y = g(x) có đồ thị như hình vẽ dưới đây đường đậm hơn là đồ thị hàm số y = f(x). Biết rằng hai đồ thị tiếp xúc với nhau tại điểm có hoành độ là -3 và cắt nhau tại hai điểm nữa có hoành độ làn lượt là -1 và 3. Tìm tập hợp tất các giá trị thực của tham số m để bất phương trình $f(x) \ge g(x) + m$ nghiệm đúng với mọi $x \in [-3;3]$.

A.
$$\left(-\infty; \frac{12-10\sqrt{3}}{9}\right]$$
. B. $\left[\frac{12-8\sqrt{3}}{9}; +\infty\right)$. C. $\left[\frac{12-10\sqrt{3}}{9}; +\infty\right)$. $\underline{\mathbf{D}}$. $\left(-\infty; \frac{12-8\sqrt{3}}{9}\right]$. Lời giải

Chọn D

Xét hàm số h(x) = f(x) - g(x).

Vì đồ thị hàm số f(x) tiếp xúc với đồ thị hàm số g(x) tại điểm có hoành độ -3 và cắt nhau tại hai điểm nữa có hoành độ lần lượt là -1 và 3 suy ra

$$h(x) = f(x) - g(x) = a(x+3)^{2}(x+1)(x-3).$$

Nhận xét từ đồ thị khi $x \to \pm \infty$ thì phần đồ thị f(x) nằm dười g(x) nên a < 0.

Mặt khác ta có
$$h(0) = 27a = -2 - (-1) = -1 \Rightarrow a = \frac{-1}{27}$$

Xét hàm
$$y = h(x) = \frac{-1}{27}(x+3)^2(x+1)(x-3) = \frac{-1}{27}(x^4+4x^3-6x^2-36x-27).$$

NGUYĒN <mark>BẢO</mark> VƯƠNG - 0946798489

Ta có
$$y' = h'(x) = \frac{-1}{27} (4x^3 + 12x^2 - 12x - 36) = \frac{-1}{27} (x+3) (4x^2 - 12).$$

Suy ra
$$y' = 0 \Rightarrow \begin{bmatrix} x = -3 \\ x = \sqrt{3} \\ x = -\sqrt{3} \end{bmatrix}$$
.

Bảng biến thiên

Vây tập hợp tất các giá trị thực của tham số m để bất phương trình

$$f(x) \ge g(x) + m \Leftrightarrow f(x) - g(x) \ge m$$
 nghiệm đúng với mọi $x \in [-3;3]$ là $m \le \frac{12 - 8\sqrt{3}}{9}$.

Câu 26. (Kìm Thành - Hải Dương - 2020) Cho hàm số $f(x) = x^5 + 3x^3 - 4m$. Có bao nhiều giá trị nguyên của tham số m để phương trình $f(\sqrt[3]{f(x)+m}) = x^3 - m$ có nghiệm thuộc đoạn [1;2]?

A. 18.

B. 17

C. 15.

D 16

Lời giải

Chon D

Xét phương trình
$$f(\sqrt[3]{f(x)+m}) = x^3 - m$$
 (1)

Đặt
$$t = \sqrt[3]{f(x) + m}$$
. Ta có
$$\begin{cases} f(t) = x^3 - m \\ f(x) = t^3 - m \end{cases} \Rightarrow f(t) + t^3 = f(x) + x^3 (2)$$

Xét hàm số
$$g(u) = f(u) + u^3 \Rightarrow g'(u) = f'(u) + 3u^2 = 5u^4 + 12u^2 \ge 0, \forall u$$
.

Khi đó (2)
$$\Leftrightarrow g(t) = g(x) \Leftrightarrow t = x \Leftrightarrow \sqrt[3]{f(x) + m} = x \Leftrightarrow x^3 - f(x) = m \Leftrightarrow x^5 + 2x^3 = 3m$$

Xét hàm số
$$h(x) = x^5 + 2x^3 \Rightarrow h'(x) = 5x^4 + 6x^2 \ge 0, \forall x$$

Ta có bảng biến thiên của hàm số h(x):

x	$-\infty$		0		1	2
h'(x)		+	0	+	+	
h(x)						48
					3	
	$ -\infty$	/				

Từ bảng biến thiên suy ra để (1) có nghiệm thuộc đoạn $[1;2] \Leftrightarrow 3 \leq 3m \leq 48 \Leftrightarrow 1 \leq m \leq 16$

Mà $m \in \mathbb{Z} \Rightarrow m \in \{1; 2; 3; ...; 16\}$ suy ra có 16 giá trị của m thỏa mãn bài toán.

Câu 27. (**Tiên Lãng - Hải Phòng - 2020**) Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ.

Số giá trị nguyên của tham số m để phương trình $f^2(\cos x) + (3-m)f(\cos x) + 2m-10 = 0$ có đúng 4 nghiệm phân biệt thuộc đoạn $\left[-\frac{\pi}{3};\pi\right]$ là

A. 5.

B. 6.

C. 7.

Lời giải

D. 4.

Chọn B

Xét $f^2(\cos x) + (3-m)f(\cos x) + 2m-10 = 0$. Ta có $\Delta = (m-7)^2$.

Do đó
$$\int f(\cos x) = m - 5 (1)$$
$$f(\cos x) = 2$$
(2)

Với
$$f(\cos x) = 2 \Leftrightarrow \begin{bmatrix} \cos x = a < -1 \\ \cos x = \frac{1}{2} \\ \cos x = 1 \end{bmatrix}$$

Trường hợp này được 3 nghiệm trong $\left[-\frac{\pi}{3};\pi\right]$.

Để phương trình đã cho có đúng 4 nghiệm phân biệt thuộc đoạn $\left[-\frac{\pi}{3};\pi\right]$ thì (1) có đúng 1 nghiệm trong $\left[-\frac{\pi}{3};\pi\right]$ và không trùng với nghiệm của các phương trình $\cos x = \frac{1}{2};\cos x = 1$ $\Leftrightarrow f\left(t\right) = m-5$ với $t = \cos x$ có đúng 1 nghiệm trong $\left[-1;\frac{1}{2}\right] \Rightarrow -4 \leq m-5 < 2 \Leftrightarrow 1 \leq m < 7$.

Do m nguyên nên có 6 giá trị của m thỏa mãn.

Câu 28. (Trần Phú - Quảng Ninh - 2020) Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để phương trình $y = f(\sin x) = 3\sin x + m$ có nghiệm thuộc khoảng $(0; \pi)$. Tổng các phần tử của S bằng

A. -5.

B. −8.

C. -6.

D. −10.

Lời giải

Chọn D

 $\text{Dặt } t = \sin x, \ x \in (0; \pi) \Leftrightarrow t \in (0; 1].$

Phương trình $f(\sin x) = 3\sin x + m$ có nghiệm thuộc khoảng $(0; \pi)$ khi và chỉ khi phương trình f(t) = 3t + m có nghiệm thuộc (0;1] khi và chỉ khi đồ thị hàm số y = f(x) và đường thẳng d: y = 3x + m có điểm chung với hoành độ $x \in (0,1]$.

 $\Delta_1: y = 3x - 4$ là đường thẳng qua điểm (1; -1) và $\Delta_2: y = 3x + 1$ là đường thẳng qua điểm (0; 1)

Đồ thị hàm số y = f(x) trên (0;1] là phần đường cong nằm giữa hai đường thẳng Δ_1 và Δ_2 .

Vậy phương trình f(t) = 3t + m có nghiệm thuộc nửa khoảng (0;1] khi và chỉ khi d dao động trong miền giới hạn bởi $\Delta_{\rm l}$ và $\Delta_{\rm 2}$ (không trùng với $\Delta_{\rm 2})$ khi và chỉ

$$khi-4 \le m < 1 \Leftrightarrow m \in \{-4; -3; -2; -1; 0\}$$
.

Vậy tổng các giá trị của S bằng -10.

(NK HCM-2019) Cho f(x) là một hàm số liên tục trên đoạn [-2;9], biết Câu 29. f(-1) = f(2) = f(9) = 3 và f(x) có bảng biến thiên như sau:

X	-2		0		6		9
f'(x)		+	0	_	0	+	
f(x)	-4	/	√ 6 \		4 –4		3

Tìm m để phương trình f(x) = f(m) có ba nghiệm phân biệt thuộc đoạn [-2;9].

A.
$$m \in (-2;9] \setminus ((-1;2) \cup \{6\})$$
.

B. $m \in [-2;9] \setminus ((-1;2) \cup \{6\})$.

C. $m \in (-2;9] \setminus \{6\}$.

D. $m \in [-2;9] \setminus \{-2;6\}$.

B.
$$m \in [-2; 9] \setminus ((-1; 2) \cup \{6\}).$$

C.
$$m \in (-2; 9] \setminus \{6\}.$$

D.
$$m \in [-2; 9] \setminus \{-2; 6\}$$

Lời giải

Chon A

Phương trình f(x) = f(m) có ba nghiệm phân biệt thuộc đoạn [-2,9] khi $-4 < f(m) \le 3$.

Trên (-2;0), hàm số f(x) đồng biến và f(-1)=3 nên $-4 < f(m) \le 3 \Leftrightarrow -2 < m \le -1$.

Trên (0;6), hàm số f(x) nghịch biến và f(2) = 3 nên $-4 < f(m) \le 3 \Leftrightarrow 6 > m \ge 2$.

Trên (6;9), hàm số f(x) đồng biến và f(9) = 3 nên $-4 < f(m) \le 3 \Leftrightarrow 6 < m \le 9$.

Vậy điều kiện của m là: $m \in (-2;-1] \cup [2;6) \cup (6;9] \Leftrightarrow m \in (-2;9] \setminus ((-1;2) \cup \{6\})$.

Câu 30. (Chuyên Đại học Vinh 2019) Cho hàm số y = f(x) có đồ thị như hình vẽ. Có bao nhiều số nguyên m để phương trình $f(x^3 - 3x) = m$ có 6 nghiệm phân biệt thuộc đoạn [-1;2]?

Chọn B

Đặt
$$t = g(x) = x^3 - 3x, x \in [-1, 2]$$

$$g'(x) = 3x^2 - 3 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -1 \end{bmatrix}$$

Bảng biến thiên của hàm số g(x) trên [-1;2]

x	-1		1		2
g'(x)		-	0	+	
g(x)	2 /	\ <u></u>	-2		²

Suy ra với t = -2, có 1 giá trị của x thuộc đoạn [-1;2].

 $t \in (-2;2]$, có 2 giá trị của x thuộc đoạn [-1;2].

Phương trình $f(x^3-3x)=m$ có 6 nghiệm phân biệt thuộc đoạn [-1;2] khi và chỉ khi phương trình f(t)=m có 3 nghiệm phân biệt thuộc (-2;2]. (1)

Dựa vào đồ thị hàm số y = f(x) và m nguyên ta có hai giá trị của m thỏa mãn điều kiện (1) là: m = 0, m = -1.

Câu 31. (Hội 8 trường chuyên ĐBSH 2019) Cho hàm số y = f(x) có đồ thị như hình vẽ bên dưới.

Số giá trị nguyên dương của m để phương trình $f(x^2-4x+5)+1=m$ có nghiệm là

A. Vô số.

B. 4.

C. 0.

Lời giải

D. 3.

Chọn D

Đặt
$$t = x^2 - 4x + 5$$
. Ta có $t = (x-2)^2 + 1 \ge 1$.

Phương trình $f(x^2-4x+5)+1=m$ (1) trở thành phương trình f(t)=m-1 (2).

Sử dụng các nhận xét ở trên và đồ thị của hàm số y = f(x) ta có

(1) có nghiệm \Leftrightarrow (2) có nghiệm thuộc $[1;+\infty)$

$$\Leftrightarrow m-1 \le 2 \Leftrightarrow m \le 3$$

Vậy tập hợp các giá trị nguyên dương của m thỏa yêu cầu bài toán là $\{1;2;3\}$.

Câu 32. Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có đồ thị như hình vẽ dưới. Có bao nhiều giá trị nguyên của m để phương trình $2f(3-4\sqrt{6x-9x^2})=m-3$ có nghiệm

- <u>A</u>. 13.
- **B.** 12.
- C. 8.
- **D.** 10.

Lời giải

$\underline{\mathbf{C}}$ họn $\underline{\mathbf{A}}$

Điều kiện: $6x - 9x^2 \ge 0 \Leftrightarrow 0 \le x \le \frac{2}{3}$

$$\text{Dặt } t = 3 - 4\sqrt{6x - 9x^2} \; ; \; 0 \le x \le \frac{2}{3}$$

Ta có: $t'(x) = \frac{12(3x-1)}{\sqrt{6x-9x^2}}$; $0 < x < \frac{2}{3}$; $t'(x) = 0 \Leftrightarrow t = \frac{1}{3}$ (nhận).

Trang 26 Fanpage Nguyễn Bảo Vương • https://www.facebook.com/tracnghiemtoanthpt489/

$$t(0) = 3; t(\frac{1}{3}) = -1; t(\frac{2}{3}) = 3.$$

Nên $-1 \le t \le 3$.

Mặt khác: $f(t) = \frac{m-3}{2}$, $t \in [-1;3]$ có nghiệm.

Từ đồ thị ta có $-5 \le \frac{m-3}{2} \le 1 \Leftrightarrow -7 \le m \le 5$.

Do m nguyên nên có 13 giá trị m là -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5.

(Chuyên Bắc Giang 2019) hàm số y = f(x) có bảng biến thiên Câu 33.

Tìm m để phương trình $f^2(2x)-2f(2x)-m-1=0$ có nghiệm trên $(-\infty;1)$

A.
$$(-1;+\infty)$$
.

$$\underline{\mathbf{B}}$$
. $[-2;+\infty)$

A.
$$(-1; +\infty)$$
. **B.** $[-2; +\infty)$. **C.** $(-2; +\infty)$. **D.** $[-1; +\infty)$.

D.
$$[-1; +\infty)$$
.

Lời giải

Chon B

Ta có:
$$f^2(2x)-2f(2x)-m-1=0 \Leftrightarrow f^2(2x)-2f(2x)-1=m(1)$$
.

Đặt
$$t = f(x)$$
, với $x \in (-\infty; 1)$ thì $2x \in (-\infty; 2)$, ki đó $t = f(2x) \in [0; +\infty)$.

Phương trình (1) trở thành: $t^2 - 2t - 1 = m(2)$.

(1) có nghiệm trên $(-\infty;1)$ tương ứng khi và chỉ khi (2) có nghiệm trên $[0;+\infty)$.

Xét
$$g(t) = t^2 - 2t - 1, t \in [0; +\infty)$$
, có $g'(t) = 2t - 2, g'(t) = 0 \Leftrightarrow t = 1$.

Bảng biến thiên của g(t):

\boldsymbol{x}	0		1		$+\infty$
y'		_	0	+	
y	-1		×-2/	7	+ ∞

Từ bảng biến thiên suy ra phương trình (2) có nghiệm $t \in [0; +\infty)$ khi và chỉ khi $m \ge -2$.

(Sở Hà Nam - 2019) Cho hàm số $f(x) = x^2 - 4x + 3$. Có bao nhiều giá trị nguyên của tham số Câu 34. m để phương trình $f^2(|x|)-(m-6)f(|x|)-m+5=0$ có 6 nghiệm thực phân biệt?

Lời giải

Chọn D

Hàm số $f(x) = x^2 - 4x + 3$ có bảng biến thiên

NGUYĒN BẢO VƯƠNG - 0946798489

Hàm số y = f(|x|) có bảng biến thiên

Đặt
$$t = f(|x|) \ge -1(*)$$

Nhận xét:

+ với
$$t_0 < -1 \xrightarrow{(*)} x \in \emptyset$$

+ với
$$t_0 = -1; t_0 > 3$$
—(*) 2 nghiệm

+ với
$$t_0 = 3$$
 (*) 3 nghiệm

+ với
$$t_0 \in (-1;3)$$
 4 nghiệm

Phương trình trở thành $t^2 - (m-6)t - m + 5 = 0 \Leftrightarrow \begin{bmatrix} t = -1 \\ t = m - 5 \end{bmatrix}$

Yêu cầu bài toán suy ra $-1 < m - 5 < 3 \Leftrightarrow 4 < m < 8 \xrightarrow{m \in \mathbb{Z}} m \in \{5, 6, 7\}$.

Câu 35. Cho hàm số $f(x) = ax^3 + bx^2 + cx + d$ có đồ thị như hình vẽ

Gọi S là tập hợp các giá trị của $m(m \in \mathbb{R})$ sao cho

$$(x-1)\left[m^3f(2x-1)-mf(x)+f(x)-1\right] \ge 0, \forall x \in \mathbb{R}.$$

Số phần tử của tập S là

A. 0.

B. 3.

<u>C</u>. 2

D. 1.

Lời giải

Chon C

Từ đồ thị ta thấy f(x)=1. Đặt $g(x)=m^3f(2x-1)-mf(x)+f(x)-1$.

$$(x-1)\left[m^3f(2x-1)-mf(x)+f(x)-1\right] \ge 0, \forall x \in \mathbb{R} \quad (*)$$

Τừ giả

thiết ta có điều kiện

để

cần

(*)

 $\operatorname{la} g\left(1\right) = 0 \iff m^{3} f\left(1\right) - mf\left(1\right) + f\left(1\right) - 1 = 0 \iff m^{3} - m = 0 \iff \begin{bmatrix} m = 0 \\ m = \pm 1 \end{bmatrix}$

Điều kiện đủ:

+) Với
$$m = 0$$
 ta có (*) $\Leftrightarrow g(x) = (x-1) \lceil f(x) - 1 \rceil \ge 0$ đúng với mọi $x \in \mathbb{R}$.

Do đó m = 0 thỏa mãn.

+)Với
$$m = 1$$
 ta có $(x-1)[f(2x-1)-1] = \frac{1}{2}[(2x-1)-1][f(2x-1)-1] \ge 0 \ \forall x \in \mathbb{R}$. Do đó $m = 1$ thỏa mãn.

+) Với
$$m = -1$$
, (*) \Leftrightarrow $(x-1)[-f(2x-1)+2f(x)-1] \ge 0$ (**).

Xét
$$x > 1$$
 ta có $\lim_{x \to +\infty} \frac{f(2x-1)+1}{2f(x)} = \lim_{x \to +\infty} \frac{a(2x-1)^3 + b(2x-1)^2 + c(2x-1) + d + 1}{2(ax^3 + bx^2 + cx + d)} = 4 > 0$

$$\Rightarrow \exists \alpha \in \mathbb{R}, \alpha > 1: f(2\alpha - 1) + 1 > 2f(\alpha) \text{ hay } 2f(\alpha) - f(2\alpha - 1) - 1 < 0$$

$$\Rightarrow (\alpha - 1) \lceil 2f(\alpha) - f(2\alpha - 1) - 1 \rceil < 0 \text{ (không thỏa mãn (**))}.$$

Do đó m = -1 không thỏa mãn

Vậy S có 2 phần tử.

Câu 36. Cho hàm số $y = f(x) = ax^3 + bx^2 + cx + d$ có đồ thị như hình bên dưới

Có bao nhiều giá trị nguyên của tham số m để phương trình $f^2(x) - (m+5)|f(x)| + 4m + 4 = 0$ có 7 nghiệm phân biệt?

Chon C

Phương trình tương đương với

$$f^{2}(x)-5|f(x)|+4-m(|f(x)|-4)=0$$

$$\Leftrightarrow (|f(x)|-4)(|f(x)|-1)-m(|f(x)|-4)=0$$

$$\Leftrightarrow (|f(x)|-4)(|f(x)|-1-m)=0 \Leftrightarrow \begin{bmatrix} |f(x)|=4 & (1) \\ |f(x)|=m+1 & (2) \end{bmatrix}$$

Từ đồ thị hàm số y = f(x), ta suy ra đồ thị hàm số y = |f(x)| như sau

Dựa vào đồ thị hàm số y = |f(x)|, suy ra phương trình (1) luôn có 3 nghiệm phân biệt.

Vì vậy, yêu cầu bài toán tương đương với phương trình (2) có 4 nghiệm phân biệt khác 4.

Suy ra
$$0 < m+1 < 4 \Leftrightarrow -1 < m < 3 \Rightarrow m = 0, 1, 2$$
.

Vậy có 3 giá trị nguyên của tham số m thỏa bài toán.

Câu 37. Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ

Có bao nhiều giá trị nguyên của tham số m để phương trình

$$f\left(\left|\frac{3\sin x - \cos x - 1}{2\cos x - \sin x + 4}\right|\right) = f\left(m^2 + 4m + 4\right) \text{ có nghiệm.}$$

A. 4

B. 5

C. Vô số.

D. 3.

Lời giả

<u>C</u>họn <u>D</u>

Ta có $\left| \frac{3\sin x - \cos x - 1}{2\cos x - \sin x + 4} \right| \ge 0$, $\forall x$ và $m^2 + 4m + 4 = (m+2)^2 \ge 0$, $\forall m$. Nhìn vào đồ thị hàm số

y = f(x) ta thấy hàm số đã cho đồng biến trên $[0; +\infty)$ suy ra phương trình đã cho tương đương

$$\left| \frac{3\sin x - \cos x - 1}{2\cos x - \sin x + 4} \right| = m^2 + 4m + 4 \quad (1)$$

$$\text{Dăt } P = \frac{3\sin x - \cos x - 1}{2\cos x - \sin x + 4} (*)$$

 $vi 2\cos x - \sin x + 4 > 0, \forall x$

nên (*)
$$\Leftrightarrow$$
 $(3-P)\sin x - (1+2P)\cos x = 4P+1$ (2)

Phương trình (2) có nghiệm $\Leftrightarrow (4P+1)^2 \le (3-P)^2 + (1+2P)^2 \Leftrightarrow \frac{-9}{11} \le P \le 1 \Rightarrow |P| \le 1$

Suy ra phương trình (1) có nghiệm $\Leftrightarrow m^2 + 4m + 4 \le 1 \Leftrightarrow m \in [-3; -1] \Rightarrow$ Có ba giá trị nguyên của m thỏa mãn bài toán.

Câu 38. Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình bên.

Phương trình $f(2\sin x) = m$ có đúng ba nghiệm phân biệt thuộc đoạn $[-\pi, \pi]$ khi và chỉ khi

- **<u>A.</u>** $m \in \{-3;1\}..$ **B.** $m \in (-3;1)..$
- **C.** $m \in [-3;1)$.. **D.** $m \in (-3;1]$.

Lời giải

Chọn A

 $\text{D} \notin t = 2 \sin x \ (*), \ x \in [-\pi, \pi] \Rightarrow t \in [-2, 2].$

Khi đó phương trình $f(2\sin x) = m$ trở thành f(t) = m (1). Số nghiệm của PT(1) bằng số giao điểm của đồ thị hàm số y = f(t) và đường thẳng y = m.

Nhân thấy:

Với $t \in \{-2, 2\}$ thì PT(*) có 1 nghiệm $x \in [-\pi, \pi]$

Với t = 0 thì PT(*) có 3 nghiệm phân biệt $x \in [-\pi, \pi]$.

Với $t \in (-2,2) \setminus \{0\}$ thì PT(*) có 2 nghiệm phân biệt $x \in [-\pi,\pi]$.

Do đó, dưa vào đồ thi đã cho ta có:

- +) TH 1: m < -3 thì phương trình (1) có một nghiệm t < -2. Suy ra m < -3 bị loại
- +) TH 2: m = -3 thì PT(1) có hai nghiệm là t = 1 và t = -2. Suy ra m = -3 là giá tri thỏa mãn.
- +) TH 3: -3 < m < 1 thì phương trình (1) có ba nghiệm phân biệt thuộc khoảng (-2; 2). Suy ra - 3 < m < 1 bi loai.
- +) TH 4: Xét trường hợp m = 1 thì PT(1) có hai nghiệm là t = -1 và t = 2. Suy ra m = 1 là giá trị thỏa mãn.
- +) TH 5: m > 1 thì phương trình (1) có một nghiệm t > 2. Do đó m > 1 bị loại.

Vậy các giá trị m cần tìm là $m \in \{-3,1\}$. Chọn. **A.**

Câu 39. Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của m để phương trình $2.f\left(3-3\sqrt{-9x^2+30x-21}\right)=m-2019$ có nghiệm.

A. 15.

B. 14.

C. 10 Lời giải **<u>D</u>**. 13.

Chọn D

Ta có:
$$\sqrt{-9x^2 + 30x - 21} = \sqrt{4 - (3x - 5)^2} \implies 0 \le \sqrt{-9x^2 + 30x - 21} \le 2$$

$$\Rightarrow -3 \le 3 - 3\sqrt{-9x^2 + 30x - 21} \le 3.$$

Đặt
$$t = 3 - 3\sqrt{-9x^2 + 30x - 21}$$
 ⇒ $t \in [-3, 3]$.

Khi đó, phương trình $2.f(3-3\sqrt{-9x^2+30x-21}) = m-2019$ (1) $\Leftrightarrow 2f(t) = m-2019$

$$\Leftrightarrow f(t) = \frac{m - 2019}{2}$$
 (2)

Phương trình (1) có nghiệm khi và chỉ khi phương trình (2) có nghiệm $t \in [-3;3]$.

Dựa vào đồ thị hàm số $y=f\left(x\right)$ ta có, phương trình $\left(2\right)$ có nghiệm $t\in\left[-3;3\right]$ khi và chỉ khi

$$-5 \le \frac{m - 2019}{2} \le 1 \Leftrightarrow -10 \le m - 2019 \le 2 \Leftrightarrow 2009 \le m \le 2021$$

Vì $m \in \mathbb{Z}$ nên $m \in \{2009, 2010, ..., 2021\}$. Vậy có 13 giá trị m nguyên thỏa mãn yêu cầu bài toán.

Câu 40. (**Thi thử cụm Vũng Tàu - 2019**) Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có đồ thị như hình vẽ bên. Có bao nhiều giá trị nguyên của m để phương trình $2f(3-4\sqrt{6x-9x^2})=m-3$ có nghiệm.

<u>**A**</u>. 9.

B. 17.

C. 6. Lời giải **D.** 5.

Chọn A

Điều kiện: $6x - 9x^2 \ge 0 \Leftrightarrow 0 \le x \le \frac{2}{3}$.

$$\text{Dăt } t = 3 - 4\sqrt{6x - 9x^2}, x \in \left[0; \frac{2}{3}\right].$$

Ta có:
$$t' = -4$$
. $\frac{6-18x}{2\sqrt{6x-9x^2}} = 0 \Rightarrow x = \frac{1}{3} \in \left(0; \frac{2}{3}\right)$.

Bảng biến thiên cho
$$t = 3 - 4\sqrt{6x - 9x^2}$$
. Vì $x \in \left[0; \frac{2}{3}\right] \Rightarrow t \in \left[-1; 3\right]$

Phương trình trở thành:
$$2f(t) = m - 3 \Leftrightarrow f(t) = \frac{m-3}{2}, t \in [-1;3].$$
 (*)

Phương trình
$$2f(3-4\sqrt{6x-9x^2})=m-3$$
 có nghiệm $\Leftrightarrow f(t)=\frac{m-3}{2}$ có nghiệm $t \in [-1;3]$

$$\Leftrightarrow -6 \le \frac{m-3}{2} \le -2 + a \Leftrightarrow -12 \le m-3 \le -4 + 2a \Leftrightarrow -9 \le m \le -1 + 2a, \text{v\'oi}$$

$$\max_{[-1;3]} f(t) = a + 2, a \in \left(0; \frac{1}{2}\right).$$

Mà $m \in \mathbb{Z} \Rightarrow m \in \{-9; -8; -7; ...; -1\} \Rightarrow$ có 9 giá trị m nguyên thỏa ycbt.

Câu 41. (SGD Điện Biên - 2019) Cho hàm số $y = f(x) = ax^4 + bx^3 + cx^2 + dx + e$ với $(a,b,c,d,e \in \mathbb{R})$. Biết hàm số y = f'(x) có đồ thị như hình vẽ, đạt cực trị tại điểm O(0;0) và cắt trục hoành tại A(3;0). Có bao nhiều giá trị nguyên của m trên [-5;5] để phương trình $f(-x^2 + 2x + m) = e$ có bốn nghiệm phân biệt.

A. 0.

B. 2.

C. 5. Lời giải

D. 7.

<u>Chon</u> <u>B</u>.

Theo hình vẽ ta có y = f'(x) là hàm số bậc ba nên $a \neq 0$.

$$f'(x) = 4ax^3 + 3b^2x + 2cx + d \Rightarrow f''(x) = 12ax^2 + 6bx + 2c$$

Theo giả thiết, ta có:
$$\begin{cases} f'(0) = 0 \\ f'(3) = 0 \\ f''(0) = 0 \end{cases} \Leftrightarrow \begin{cases} d = 0 \\ 108a + 27b + 6c + d = 0 \\ c = d = 0 \end{cases} \Leftrightarrow \begin{cases} b = -4a \\ c = d = 0 \end{cases}.$$

$$\Rightarrow f(x) = ax^4 - 4ax^3 + e$$
.

NGUYĒN BẢO VƯƠNG - 0946798489

$$\Rightarrow f(x) = e \Leftrightarrow ax^4 - 4ax^3 = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 4 \end{bmatrix}.$$

Khi đó
$$f(-x^2 + 2x + m) = e(1)$$

$$\Leftrightarrow \begin{bmatrix} -x^2 + 2x + m = 0 \\ -x^2 + 2x + m = 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} (x-1)^2 = 1 + m \\ (x-1)^2 = m - 3 \end{bmatrix}$$

PT (1) có bốn nghiệm phân biệt
$$\Leftrightarrow$$

$$\begin{cases} 1+m>0\\ m-3>0 & \Leftrightarrow m>3\\ 1+m\neq m-3 \end{cases}$$

Mà
$$m \in \mathbb{Z} \cap [-5;5] \Rightarrow m \in \{4;5\}$$
.

Vậy có 2 giá trị m thỏa đề bài.

Câu 42. Cho hàm số y = f(x) liên tục và có đạo hàm trên đoạn [-2; 4] và có bảng biến thiên như sau

x	-2	0	1		2	4
f'(x)	+	0	-	-	0	+
f(x)	-3	× 2 ·	1,:	5	1 /	6

Có bao nhiều giá trị nguyên của tham số m để hệ phương trình $\begin{cases} \frac{9}{x^2} - 4 \ge 0 \\ 6f(-2x+1) - 8x^3 + 6x - m = 0 \end{cases}$ có ba

nghiệm phân biệt?

A. 9.

B. 11.

C. 10.

Lời giải

<u>**D**</u>. 8.

<u>C</u>họn <u>D</u>

Ta có:
$$\frac{9}{x^2} - 4 \ge 0 \Leftrightarrow \frac{9 - 4x^2}{x^2} \ge 0 \Leftrightarrow \begin{cases} 9 - 4x^2 \ge 0 \\ x \ne 0 \end{cases} \Leftrightarrow \begin{cases} -\frac{3}{2} \le x \le \frac{3}{2} \Leftrightarrow x \in \left[-\frac{3}{2}; \frac{3}{2} \right] \setminus \{0\} \end{cases}.$$

Xét phương trình $6f(-2x+1)-8x^3+6x-m=0 \Leftrightarrow m=6f(-2x+1)-8x^3+6x$ (1)

Xét hàm số
$$g(x) = 6f(-2x+1) - 8x^3 + 6x$$
, với $x \in \left[-\frac{3}{2}; \frac{3}{2}\right] \setminus \{0\}$.

Ta có
$$g'(x) = -12f'(-2x+1) - 24x^2 + 6 = -6[2f'(-2x+1) + 4x^2 - 1]$$

Từ giả thiết ta suy ra
$$f'(-2x+1) < 0 \Leftrightarrow \begin{cases} -2x+1 < 2 \\ -2x+1 > 0 \end{cases} \Leftrightarrow -\frac{1}{2} < x < \frac{1}{2};$$

$$f'(-2x+1) > 0 \Leftrightarrow \begin{bmatrix} -2 < -2x+1 < 0 \\ 2 < -2x+1 < 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \frac{1}{2} < x < \frac{3}{2} \\ -\frac{3}{2} < x < -\frac{1}{2} \end{bmatrix}.$$

Bảng biến thiên của hàm số $g(x) = 6f(-2x+1) - 8x^3 + 6x$ trên $\left[-\frac{3}{2}; \frac{3}{2}\right] \setminus \{0\}$.

x	$-\frac{3}{2}$		$-\frac{1}{2}$		0		$\frac{1}{2}$		$\frac{3}{2}$
f'(-2x+1)		+	0	_		-	0	+	
$4x^2 - 1$		+	0	_	•	_	0	+	
g'(x)		_	0	+		+	0	-	
g(x)	54		4		9		¹⁴ \		-36

Từ bảng biến thiên ta suy ra hệ có đúng ba nghiệm \Leftrightarrow (1) có đúng ba nghiệm $x \in \left[-\frac{3}{2}; \frac{3}{2}\right] \setminus \{0\}$ $\Leftrightarrow \begin{cases} 4 < m < 14 \\ m \neq 9 \end{cases}. \text{ Vì } m \in \mathbb{Z} \Rightarrow m = 5; 6; 7; 8; 10; 11; 12; 13. \text{ Vậy có } 8 \text{ số nguyên } m.$

Câu 43. (Hậu Lộc 2-Thanh Hóa 2019) Cho hàm số y = f(x) liên tục trên đoạn [0,5] và có bảng biến thiên như hình sau:

Có bao nhiều giá trị nguyên dương của tham số m để bất phương trình $mf(x) + \sqrt{3x} \le 2019 f(x) - \sqrt{10 - 2x}$ nghiệm đúng với mọi $x \in [0; 5]$.

Lời giải

Chọn A

Trên [0;5], ta có:
$$mf(x) + \sqrt{3x} \le 2019 f(x) - \sqrt{10-2x} \iff m \le 2019 - \frac{\sqrt{3x} + \sqrt{10-2x}}{f(x)}$$
.

Xét hàm số $g(x) = \sqrt{3x} + \sqrt{10 - 2x}$ trên đoạn [0,5].

$$g'(x) = \frac{3}{2\sqrt{3x}} - \frac{1}{\sqrt{10 - 2x}} = \frac{3\sqrt{10 - 2x} - 2\sqrt{3x}}{2\sqrt{3x}.\sqrt{10 - 2x}}$$

NGUYỄN BẢO VƯƠNG - 0946798489

Cho $g'(x) = 0 \Leftrightarrow x = 3 \in [0, 5].$

Do $g(0) = \sqrt{10}$, g(3) = 5 và $g(5) = \sqrt{15}$ nên $\max_{[0,5]} g(x) = g(3) = 5$.

Mặt khác $\min_{[0,5]} f(x) = f(3) = 1$ nên

$$m \le 2019 - \frac{\sqrt{3x} + \sqrt{10 - 2x}}{f(x)}, \ \forall x \in [0, 5]$$

$$\Leftrightarrow m \le \min_{[0:5]} \left(2019 - \frac{\sqrt{3x} + \sqrt{10 - 2x}}{f(x)} \right) = 2019 - \frac{5}{1} = 2014.$$

Câu 44. (**Hậu Lộc 2-Thanh Hóa -2019**) Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ bên. Số giá trị nguyên của tham số m để phương trình $f^2(cosx) + (m-2018) f(cosx) + m-2019 = 0$ có đúng 6 nghiệm phân biệt thuộc đoạn $[0; 2\pi]$ là

A. 5.

B. 3.

C. 2

D. 1.

Lời giả

Chọn C

Ta có
$$f^{2}(cosx) + (m-2018) f(cosx) + m-2019 = 0 \Leftrightarrow \begin{bmatrix} f(cosx) = -1 \\ f(cosx) = 2019 - m. \end{bmatrix}$$

Dựa vào đồ thị ta có:
$$f(\cos x) = -1 \Leftrightarrow \begin{bmatrix} \cos x = 0 & (1) \\ \cos x = k > 1 & (2) \end{bmatrix}$$

PT có 2 nghiệm thỏa mãn, PT vô nghiệm.

Yêu cầu: phương trình $f(\cos x) = 2019 - m(2019 - m \neq 1)$ có thêm 4 nghiệm thuộc $[0; 2\pi]$.

Nhận xét:

- + Với mỗi $t \notin [-1;1]$, phương trình cosx=t vô nghiệm.
- + Với mỗi $t \in (-1,1]$, phương trình cosx=t có 2 nghiệm $x \in [0,2\pi]$.
- + Với t = -1, phương trình $\cos x = t$ có đúng 1 nghiệm $x \in [0, 2\pi]$.

Như vậy, $-1 < 2019 - m \le 1 \iff 2018 \le m \le 2020$.

Câu 45. (THPT Gia Lộc Hải Dương 2019) Cho hàm số y = f(x) có bảng biến thiên như sau

Tìm m để phương trình 2f(x+2019)-m=0 có 4 nghiệm phân biệt.

- **A.** $m \in (0;2)$.
- **B.** $m \in (-2;2)$.
- $\underline{\mathbf{C}}$. $m \in (-4;2)$.
- **D.** $m \in (-2;1)$.

Lời giải

$$2f(x+2019)-m=0 \iff f(x+2019)=\frac{m}{2}$$
 (*).

Ta có bảng biến thiên của hàm số y = g(x) = f(x + 2019) như sau:

Phương trình (*) có 4 nghiệm phân biệt khi $-2 < \frac{m}{2} < 1 \iff -4 < m < 2$.

Câu 46. Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ dưới đây. Tập hợp tất cả các giá trị thực của tham số m để phương trình $f(x^2 + 2x - 2) = 3m + 1$ có nghiệm thuộc khoảng [0;1].

- **A.** [0;4].
- **B.** [-1;0].
- **C.** [0;1].
- $\underline{\mathbf{D}}$. $\left[-\frac{1}{3};1\right]$

Lời giải

Đặt
$$t = x^2 + 2x - 2$$
. Với $x \in [0;1] \Rightarrow t \in [-2;1]$

Phương trình $f(x^2+2x-2)=3m+1$ có nghiệm thuộc đoạn [0;1] khi và chỉ khi phương trình f(t)=3m+1 có nghiệm thuộc $[-2;1] \Leftrightarrow -\frac{1}{3} \leq m \leq 1$.

Câu 47. (THPT Lê Quý Đôn Đà Nẵng 2019) Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Tập hợp các giá trị thực của tham số m để phương trình $f(\sqrt{4x-x^2}-1)=m$ có nghiệm là

A. [-2;0].

<u>C</u>. [-4;0].

D.
$$[-1;1]$$
.

Lời giải

Phương trình $f(\sqrt{4x-x^2}-1)=m$ có điều kiện $0 \le x \le 4$. Ta có bảng biến thiên

Từ bảng biến thiên suy ra, với $0 \le x \le 4$ thì $-1 \le \sqrt{4x - x^2} - 1 \le 1$. Đặt $t = \sqrt{4x - x^2} - 1$, $-1 \le t \le 1$. (Có thể biến đổi $t = \sqrt{4 - \left(x - 2\right)^2} - 1 \Rightarrow -1 \le t \le 1$).

Phương trình đã cho trở thành f(t) = m (1). Phương trình đã cho có nghiệm \Leftrightarrow (1) có nghiệm $t \in [-1;1] \Leftrightarrow -4 \leq m \leq 0$.

Câu 48. (Sở Hà Nội 2019) Cho hàm số bậc bốn y = f(x) có đồ thị như hình vẽ. Số giá trị nguyên của tham số m để phương trình f(|x+m|) = m có 4 nghiệm phân biệt là

A. 2.

B. Vô số.

<u>C</u>. 1. Lời giải **D.** 0.

Đặt
$$t = |x + m| \ge 0$$

Với
$$t = 0 \Rightarrow x = m$$

Với mỗi giá trị t > 0 sẽ ứng với 2 giá trị x

Ta có phương trình : $f(t) = m \ (t \ge 0)$ (*)

Để phương trình có 4 nghiệm phân biệt thì (*) có 2 nghiệm phân biệt dương

Từ đồ thị của hàm số
$$y = f(t)$$
 trên miền $t \ge 0 \Rightarrow \begin{bmatrix} m = \frac{3}{4} \\ m = -1 \end{bmatrix}$

Vậy có 1 giá trị nguyên thỏa mãn

(Chuyen Phan Bội Châu 2019) Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ Câu 49. dưới đây.

Tập hợp tất cả các giá trị thực của tham số m để phương trình $f(\sqrt{4-x^2}) = m$ có nghiệm thuộc nửa khoảng $[-\sqrt{2};\sqrt{3})$ là:

B.
$$[-1; f(\sqrt{2})]$$
.

B.
$$[-1; f(\sqrt{2})]$$
. **C.** $(-1; f(\sqrt{2})]$. **D.** $(-1; 3]$.

Đặt
$$t = g(x) = \sqrt{4 - x^2}$$
 với $x \in [-\sqrt{2}; \sqrt{3})$.

Suy ra:
$$g'(x) = \frac{-x}{\sqrt{4-x^2}}$$
.

$$g'(x) = 0 \Leftrightarrow x = 0 \in [-\sqrt{2};3)$$
.

Ta có:

$$g(0) = 2$$
, $g(-\sqrt{2}) = \sqrt{2}$, $g(\sqrt{3}) = 1$.

Mà hàm số g(x) liên tục trên $[-\sqrt{2};\sqrt{3})$

Suy ra, $t \in (1;2]$.

Từ đồ thị, phương trình f(t) = m có nghiệm thuộc khoảng (1;2] khi $m \in (-1;3]$.

Câu 50. (Chuyên Dại Học Vinh 2019) Cho hàm số y = f(x) có đồ thị như hình vẽ.

Có bao nhiều số nguyên m để phương trình $\frac{1}{3}f\left(\frac{x}{2}+1\right)+x=m$ có nghiệm thuộc đoạn [-2;2]?

A. 11

B. 9

<u>C</u>. 8 Lời giải **D.** 10

Chọn C

Đặt $t = \frac{x}{2} + 1$, khi $-2 \le x \le 2$ thì $0 \le t \le 2$.

Phương trình đã cho trở thành $\frac{1}{3}f(t)+2t-2=m \iff f(t)+6t-6=3m$.

Xét hàm số g(t) = f(t) + 6t - 6 trên đoạn [0;2].

Ta có g'(t) = f'(t) + 6. Từ đồ thị hàm số y = f(x) suy ra hàm số f(t) đồng biến trên khoảng (0;2) nên $f'(t) > 0, \forall t \in (0;2) \Rightarrow g'(t) > 0, \forall t \in (0;2)$ và g(0) = -10; g(2) = 12.

Bảng biến thiên của hàm số g(t) trên đoạn [0;2]

Phương trình đã cho có nghiệm thuộc đoạn [-2;2] khi và chỉ khi phương trình g(t) = 3m có nghiệm thuộc đoạn [0;2] hay $-10 \le 3m \le 12 \iff \frac{10}{3} \le m \le 4$.

Mặt khác m nguyên nên $m \in \{-3; -2; -1; 0; 1; 2; 3; 4\}$.

Vậy có 8 giá trị m thoả mãn bài toán.

Câu 51. (THPT Thiệu Hóa – Thanh Hóa 2019) Có bao nhiều số nguyên m để phương trình $x^2(|x|-3)+2-m^2(|m|-3)=0$ có 4 nghiệm phân biệt.

A. 3

B. 12

C. T = 7

D. 5

Lời giải

Chọn A

Ta có $x^2(|x|-3)+2-m^2(|m|-3)=0 \Leftrightarrow |x|^3-3|x|^2+2=|m|^3-3|m|^2$ (*)

Xét hàm số: $y = f(x) = |x|^3 - 3|x|^2 + 2$ có đồ thị như hình vẽ:

Từ đồ thị của hàm số ta có: Phương trình (*) có 4 nghiệm phân biệt $\Leftrightarrow -2 < |m|^3 - 3 |m|^2 < 2$

Mà $m \in \mathbb{Z} \Rightarrow |m|^3 - 3|m|^2 \in \mathbb{Z} \Leftrightarrow m^2(|m| - 3) \in \mathbb{Z}$

$$\Rightarrow m^{2}(|m|-3) \in \{-1;0;1\} \Rightarrow \begin{bmatrix} |m|=3 \\ m=0 \\ m=1 \quad (l) \\ m=-1 \quad (l) \end{bmatrix}$$

Câu 52. Cho hàm số y = f(x) có đồ thị như hình vẽ. Tìm số giá trị nguyên của m để phương trình $f(x^2 - 2x) = m$ có đúng 4 nghiệm thực phân biệt thuộc đoạn $\left[-\frac{3}{2}; \frac{7}{2} \right]$.

A. 1.

B. 2.

C. 3.

Lời giải

D. 4.

Chọn B

Xét phương trình $f(x^2 - 2x) = m$ (1)

Đặt
$$t = x^2 - 2x$$
, với $x \in \left[-\frac{3}{2}; \frac{7}{2} \right]$.

Ta có t' = 2x - 2; $t' = 0 \Leftrightarrow x = 1$.

Bảng biến thiên của hàm số $t = x^2 - 2x$ trên đoạn $\left[-\frac{3}{2}; \frac{7}{2} \right]$

Dựa vào bảng biến thiên suy ra $t \in \left[-1; \frac{21}{4}\right]$.

Xét t = -1 khi đó phương trình (1) thành $f(-1) = m \Rightarrow 4 = m$.

Với
$$m = 4$$
 phương trình $f(x^2 - 2x) = 4 \Leftrightarrow \begin{bmatrix} x^2 - 2x = -1 \\ x^2 - 2x = a \end{bmatrix}$ (*) với $2 < a < 3$.

Dễ thấy (*) có tối đa 3 nghiệm (không thỏa mãn yêu cầu).

$$X \text{\'et } t_0 \in \left(-1; \frac{21}{4}\right].$$

Nhận xét với mỗi $t_0 \in \left(-1; \frac{21}{4}\right]$ thì có 2 giá trị $x \in \left[-\frac{3}{2}; \frac{7}{2}\right]$ thỏa mãn $t_0 = x^2 - 2x$.

Do đó phương trình $f\left(x^2-2x\right)=m$ có 4 nghiệm thực phân biệt thuộc đoạn $\left[-\frac{3}{2};\frac{7}{2}\right]$ khi phương trình $f\left(t\right)=m$ có 2 nghiệm phân biệt $t\in\left(-1;\frac{21}{4}\right]$. Hay đường thẳng y=m phải cắt đồ thị hàm số $y=f\left(t\right)$ tại 2 điểm với $t\in\left(-1;\frac{21}{4}\right]$.

Mà $m \in \mathbb{Z}$ nên từ đồ thị hàm số y = f(x) ta có m = 3; m = 5 thỏa mãn yêu cầu.

KL: Có 2 giá trị nguyên của m thỏa mãn yêu cầu bài.

Câu 53. (Chuyên Lam Sơn Thanh Hóa 2019) Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} . Biết f(0) = 0 và f'(x) được cho như hình vẽ bên. Phương trình |f(|x|)| = m (với m là tham số) có nhiều nhất bao nhiêu nghiệm?

A. 8

B. 6

C. 2 Lời giải **D.** 4

Chọn B

BBT của hàm số y = f(x)

_	, ,) (11)						
	$\boldsymbol{\mathcal{X}}$	-∞		0		3		∞
	y'		+	0	+	0	_	
						f(3)		
	У			0		-		
		$-\infty$		→				$-\infty$

BBT của hàm số y = f(|x|)

\boldsymbol{x}	$-\infty$		-3		0		3		$+\infty$
<i>y</i> '		+	0	-	0	+	0	_	
у			f(3)		0		f(3)		_∞

BBT của hàm số y = |f(|x|)|

Suy ra phương trình |f(|x|)| = m có nhiều nhất là 6 nghiệm.

Câu 54. (Thanh Tường Nghệ An 2019) Cho hàm số y = f(x) là hàm đa thức với hệ số thực. Hình vẽ bên dưới là một phần đồ thị của hai hàm số: y = f(x) và y = f'(x).

Tập các giá trị của tham số m để phương trình $f(x) = me^x$ có hai nghiệm phân biệt trên [0;2] là nửa khoảng [a;b). Tổng a+b gần nhất với giá trị nào sau đây?

A. -0.81.

B. -0.54.

<u>C</u>. -0.27.

D. 0.27.

Nhận xét: Đồ thị hàm y = f'(x) cắt trục hoành tại điểm x_0 thì x_0 là điểm cực trị của hàm y = f(x). Dựa vào hai đồ thị đề bài cho, thì (C_1) là đồ thị hàm y = f(x) và (C_2) là đồ thị hàm y = f'(x).

Xét phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và $y = me^x$ ta có:

$$f(x) = me^x \Leftrightarrow m = \frac{f(x)}{e^x}$$
.

Đặt
$$g(x) = \frac{f(x)}{e^x}$$
 ta có:

$$g'(x) = \frac{f'(x) - f(x)}{e^x}.$$

$$g'(x) = 0 \Leftrightarrow f'(x) = f(x) \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 2 \\ x = x_0 \in (-1;0) \end{bmatrix}$$

Dựa vào đồ thị của hai hàm số: y = f(x) và y = f'(x) ta được:

$$\begin{array}{c|cccc}
x & 0 & 1 & 2 \\
\hline
g'(x) & + & 0 & - \\
\hline
g(x) & f(0) & & & \frac{f(2)}{e^2}
\end{array}$$

Yêu cầu bài toán ta suy ra: $\frac{f(2)}{e^2} \le m < 0$ (dựa vào đồ thị ta nhận thấy $f(0) = f(2) \approx -2$)

$$\Leftrightarrow$$
 $-0,27 \le m < 0$.

Suy ra:
$$a = -0,27, b = 0$$
.

Vậy
$$a+b=-0.27$$
.

Câu 55. (VTED 2019) Cho hai hàm số y = f(x) và y = g(x) là các hàm xác định và liên tục trên \mathbb{R} và có đồ thị như hình vẽ bên (trong đó đường cong đậm hơn là đồ thị của hàm số y = f(x)). Có bao nhiều số nguyên m để phương trình f(1-g(2x-1))=m có nghiệm thuộc đoạn $\left[-1;\frac{5}{2}\right]$.

A. 8

B. 3

C. 6

D. 4

Chọn B

Với
$$x \in \left[-1; \frac{5}{2}\right] \Rightarrow 2x - 1 \in \left[-3; 4\right] \Rightarrow g\left(2x - 1\right) \in \left[-3; 4\right] \Rightarrow t = 1 - g\left(2x - 1\right) \in \left[-3; 4\right]$$

Vậy ta cần tìm m để phương trình f(t) = m có nghiệm thuộc đoạn

 $\left[-3;4 \right] \Leftrightarrow \min_{[-3;4]} f\left(t\right) \leq m \leq \max_{[-3;4]} f\left(t\right) \Leftrightarrow \min_{[-3;4]} f\left(t\right) \leq m \leq 2 \ \text{trong dó } \min_{[-3;4]} f\left(t\right) \in \left(-1;0\right). \ \text{Vậy các số nguyên cần tìm là } a \in \left\{0,1,2\right\}$

Câu 56. (THPT Yên Khánh A - Ninh Bình - 2019) Cho hàm số y = f(x) liên tục trên đoạn [-1;9] và có đồ thị là đường cong trong hình vẽ dưới đây

Có bao nhiều giá trị nguyên của tham số m để bất phương trình $16.3^{f(x)} - \left[f^2(x) + 2f(x) - 8 \right] \cdot 4^{f(x)} \ge \left(m^2 - 3m \right) \cdot 6^{f(x)}$ nghiệm đúng với mọi giá trị thuộc [-1;9]?

A. 32.

B. 31

C. 5.

D. 6.

Lời giải

Chọn B

Dễ thấy $-4 \le f(x) \le 2$, $\forall x \in [-1;9]$ (1) nên $-\lceil f(x) + 4 \rceil \cdot \lceil f(x) - 2 \rceil \ge 0$, $\forall x \in [-1;9]$.

Do đó $- [f^2(x) + 2f(x) - 8] \ge 0, \forall x \in [-1; 9]$ (2).

Ta có $16.3^{f(x)} - [f^2(x) + 2f(x) - 8].4^{f(x)} \ge (m^2 - 3m).6^{f(x)}$ nghiệm đúng với mọi $x \in [-1; 9]$

 $\Leftrightarrow 16.\left(\frac{1}{2}\right)^{f(x)} - \left[f^2(x) + 2f(x) - 8\right].\left(\frac{2}{3}\right)^{f(x)} \ge m^2 - 3m \text{ nghiệm đúng với mọi } x \in [-1;9]$

 $\Leftrightarrow \alpha = \min_{x \in [-1; 9]} \left\{ 16 \cdot \left(\frac{1}{2}\right)^{f(x)} - \left[f^2(x) + 2f(x) - 8\right] \cdot \left(\frac{2}{3}\right)^{f(x)} \right\} \ge m^2 - 3m (3).$

Từ (1) và (2) ta có $\left(\frac{1}{2}\right)^{f(x)} \ge \left(\frac{1}{2}\right)^2$ và $-\left[f^2(x) + 2f(x) - 8\right] \cdot \left(\frac{2}{3}\right)^{f(x)} \ge 0, \forall x \in [-1; 9].$

Suy ra 16. $\left(\frac{1}{2}\right)^{f(x)} - \left[f^2(x) + 2f(x) - 8\right] \cdot \left(\frac{2}{3}\right)^{f(x)} \ge 4, \forall x \in [-1; 9].$

Dấu "=" xảy ra khi và chỉ khi $f(x) = 2 \Leftrightarrow x = -1 \lor x = a \ (7 < a < 8)$.

Do đó $\alpha = 4$ và (3) $\Leftrightarrow 4 \ge m^2 - 3m \Leftrightarrow -1 \le m \le 4$. Vì m nguyên nên $m \in \{-1; 0; 1; 2; 3; 4\}$.

Câu 57. (THPT Yên Khánh A - Ninh Bình - 2019) Cho hàm số y = f(x) liên tục trên [-1;3] và có đồ thi như hình vẽ.

Bất phương trình $f(x) + \sqrt{x+1} + \sqrt{7-x} \ge m$ có nghiệm thuộc [-1;3] khi và chỉ khi

 $\underline{\mathbf{A}}$. $m \le 7$.

B. $m \ge 7$.

C. $m \le 2\sqrt{2} - 2$. **D.** $m \ge 2\sqrt{2} - 2$.

Chọn A

Bất phương trình $f(x) + \sqrt{x+1} + \sqrt{7-x} \ge m$ có nghiệm thuộc [-1;3] khi và chỉ khi

$$m \le \max_{[1;3]} \left(f\left(x\right) + \sqrt{x+1} + \sqrt{7-x} \right).$$

Xét hàm số $g(x) = \sqrt{x+1} + \sqrt{7-x}$ trên đoạn [-1;3].

Ta có
$$g'(x) = \frac{1}{2\sqrt{x+1}} - \frac{1}{2\sqrt{7-x}} = \frac{\sqrt{7-x} - \sqrt{x+1}}{2\sqrt{7-x} \cdot \sqrt{x+1}}$$
.

$$g'(x) = 0 \Leftrightarrow \sqrt{7-x} - \sqrt{x+1} = 0 \Leftrightarrow x = 3.$$

$$g(-1) = \sqrt{8} = 2\sqrt{2}$$
, $g(3) = 2 + 2 = 4$.

Suy ra
$$\max_{[-1;3]} g(x) = 4 \text{ tại } x = 3. (1)$$

Mặt khác, dựa vào đồ thị của f(x) ta có $\max_{[-1;3]} f(x) = 3$ tại x = 3.(2)

Từ (1) và (2) suy ra
$$\max_{[1;3]} \left(f(x) + \sqrt{x+1} + \sqrt{7-x} \right) = 7$$
 tại $x = 3$.

Vậy bất phương trình đã cho có nghiệm thuộc [-1;3] khi và chỉ khi $m \le 7$.

(THPT Yên Khánh A - Ninh Bình - 2019) Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn Câu 58. [-3,3] và đồ thị hàm số y = f'(x) như hình vẽ dưới đây

Biết f(1) = 6 và $g(x) = f(x) - \frac{(x+1)^2}{2}$. Mệnh đề nào sau đây là **đúng?**

- **A.** Phương trình g(x) = 0 có đúng hai nghiệm thuộc đoạn [-3;3].
- **B.** Phương trình g(x) = 0 không có nghiệm thuộc đoạn [-3;3].
- **C.** Phương trình g(x) = 0 có đúng một nghiệm thuộc đoạn [-3,3].
- **D.** Phương trình g(x) = 0 có đúng ba nghiệm thuộc đoạn [-3;3].

Lời giải

Chọn C

Ta có $g(1) = f(1) - \frac{(1+1)^2}{2} = f(1) - 2 = 4$ và g'(x) = f'(x) - (x+1). Từ đồ thị hàm số

$$y = f'(x)$$
 và $y = x + 1$ ta có $g'(x) = 0 \Leftrightarrow f'(x) = x + 1 \Leftrightarrow \begin{bmatrix} x = -3 \\ x = 1 \end{bmatrix}$.

Xét hình phẳng giới hạn bởi đồ thị y = f'(x); y = x + 1; x = -3; x = 1 có diện tích

$$S_1 > 4 \Leftrightarrow \int_{-3}^{1} \left| f'(x) - (x+1) \right| dx > 4 \Leftrightarrow \int_{-3}^{1} \left| g'(x) \right| dx > 4 \Leftrightarrow g(1) - g(-3) > 4 \Rightarrow g(-3) < g(1) - 4 = 0.$$

Xét hình phẳng giới hạn bởi đồ thị y = f'(x); y = x + 1; x = 1; x = 3 có diện tích $S_2 < 4$

$$\Leftrightarrow \int_{1}^{3} \left| f'(x) - (x+1) \right| dx < 4 \Leftrightarrow \int_{1}^{3} \left| g'(x) \right| dx < 4 \Leftrightarrow -g(3) + g(1) < 4 \Rightarrow g(3) > g(1) - 4 = 0.$$

Dựa vào đồ thị ta có bảng biến thiên của hàm y = g(x) trên [-3;3]

x	-3		1		3
g'(x)	0	+	0	S=3	0
g(x)	10 10	/	* 4 \		
	g(-3)<0			•	g(3)>0

Từ bảng biến thiên suy ra phương trình g(x) = 0 có đúng một nghiệm thuộc đoạn [-3;3].

(Chuyên Sơn La - Lần 2 - 2019) Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vē.

Các giá trị của tham số m để phương trình $\frac{4m^3 + m}{\sqrt{2f^2(x) + 5}} = f^2(x) + 3$ có ba nghiệm phân biệt là

$$\underline{\mathbf{A}}$$
. $m = \frac{\sqrt{37}}{2}$.

B.
$$m = \pm \frac{3\sqrt{3}}{2}$$

A.
$$m = \frac{\sqrt{37}}{2}$$
. **B.** $m = \pm \frac{3\sqrt{3}}{2}$. **C.** $m = \pm \frac{\sqrt{37}}{2}$. **D.** $m = \frac{\sqrt{3}}{2}$.

D.
$$m = \frac{\sqrt{3}}{2}$$
.

Chon A

$$\frac{4m^3 + m}{\sqrt{2f^2(x) + 5}} = f^2(x) + 3 \Leftrightarrow 4m^3 + m = (f^2(x) + 3)\sqrt{2f^2(x) + 5}$$

$$\Leftrightarrow (2m)^3 + 2m = (2f^2(x) + 5)\sqrt{2f^2(x) + 5} + \sqrt{2f^2(x) + 5}$$

Xét hàm số $f(t) = t^3 + t, \forall t \in \mathbb{R} \Rightarrow f'(t) = 3t^2 + 1 > 0, \forall t \in \mathbb{R}$

$$\Rightarrow f(2m) = f(\sqrt{2f^2(x) + 5}) \Leftrightarrow 2m = \sqrt{2f^2(x) + 5}$$

$$\Leftrightarrow \begin{cases} m > 0 \\ f^{2}(x) = \frac{4m^{2} - 5}{2} \end{cases} \Leftrightarrow \begin{cases} m > 0 \\ f(x) = \pm \sqrt{\frac{4m^{2} - 5}{2}} \end{cases}$$

Với $f(x) = -\sqrt{\frac{4m^2 - 5}{2}}$ từ đồ thị ta thấy chỉ có 1 nghiệm.

Vậy để phương trình có 3 nghiệm phân biệt thì phương trình

$$f(x) = \sqrt{\frac{4m^2 - 5}{2}}$$
 phải có hai nghiệm $\Leftrightarrow \sqrt{\frac{4m^2 - 5}{2}} = 4 \Leftrightarrow m = \frac{\sqrt{37}}{2}, (m > 0)$.

(THPT Ngô Quyền - Ba Vì - 2019) Cho hàm số $f(x) = ax^3 + bx^2 + cx + d$ có đồ thị như hình vẽ Câu 60. sau đây. Hỏi có bao nhiều giá trị nguyên của tham số thực m để phương trình f(f(x)) = m có 4 nghiệm phân biệt thuộc đoạn [-1;2]?

A. 5.

B. 4.

C. 0. Lời giải <u>**D**</u>. 3.

Chon D

Đặt
$$g(x) = f(f(x))$$
.

$$g'(x) = f'(f(x)).f'(x).$$

Cho
$$g'(x) = 0 \Leftrightarrow f'(f(x)).f'(x) = 0 \Leftrightarrow \begin{bmatrix} f'(x) = 0 \\ f'(f(x)) = 0 \end{bmatrix}$$

+
$$f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = -1 \end{bmatrix}$$
 (hoành độ các điểm cực trị).

+
$$f'(f(x)) = 0 \Leftrightarrow \begin{bmatrix} f(x) = 1 \\ f(x) = -1 \end{bmatrix}$$

Dựa vào đồ thị, ta có:

+ Khi
$$f(x) = 1 \Leftrightarrow x = 0$$
; $x = a \in (-2, -1)$; $x = b \in (1, 2)$.

+ Khi
$$f(x) = -1 \Leftrightarrow x = 1$$
; $x = -2$.

Bảng biến thiên

Phương trình f(f(x)) = m có 4 nghiệm phân biệt thuộc đoạn [-1;2]

$$\Leftrightarrow$$
 $-1 < m < 3$.

Mà m là số nguyên nên $m \in \{0;1;2\}$.

Vậy có 3 giá trị của m thỏa đề bài.

Câu 61. (THPT Nguyễn Đức Cảnh - Thái Bình - 2019) Cho hàm số $g(x) = 2x^3 + x^2 - 8x$. Có bao nhiều số nguyên m để phương trình $\sqrt{g(g(x)+3)-m} = 2g(x)+7$ có đúng 6 nghiệm thực phân biệt

A. 7.

B. 8.

C. 24.

D. 25.

Lời giải

<u>C</u>họn <u>D</u>

Đặt
$$t = g(x) + 3 \Rightarrow t = 2x^3 + x^2 - 8x + 3 \Rightarrow t' = 6x^2 + 2x - 8$$
.

$$t' = 0 \Leftrightarrow \begin{bmatrix} x = -\frac{4}{3} \\ x = 1 \end{bmatrix}.$$

Ta có bảng biến thiên

Từ bảng biến thiên suy ra mỗi giá trị $t \in \left(-2; \frac{289}{27}\right)$ sẽ có tương ứng 3 giá trị x.

$$\sqrt{g(g(x)+3)-m} = 2g(x)+7 \Leftrightarrow \sqrt{g(t)-m} = 2(t+3)+7 \Leftrightarrow \begin{cases} t \ge -\frac{1}{2} \\ g(t)-m = (2t+1)^2 \end{cases}$$

$$\Leftrightarrow \begin{cases} t \ge -\frac{1}{2} \\ m = 2t^{3} + t^{2} - 8t - 4t^{2} - 4t - 1 \end{cases} \Leftrightarrow \begin{cases} t \ge -\frac{1}{2} \\ m = 2t^{3} - 3t^{2} - 12t - 1 \ (1) \end{cases}.$$

Phương trình đã cho có 6 nghiệm thực phân biệt khi và chỉ khi phương trình (1) có 3 nghiệm phân biệt $t \in \left[-\frac{1}{2}; \frac{289}{27}\right]$.

Xét hàm số
$$f(t) = 2t^3 - 3t^2 - 12t - 1$$
 với $t \in \left[-\frac{1}{2}; \frac{289}{27} \right]$.

$$f'(t) = 6t^2 - 6t - 12 \Rightarrow f'(t) = 0 \Leftrightarrow \begin{bmatrix} t = -1 \\ t = 2 \end{bmatrix}$$
.

Ta có bảng biến thiên

Từ bảng biến thiên, phương trình đã cho có 6 nghiệm thực phân biệt $m \in (-21;4]$.

Mà $m \in \mathbb{Z} \Rightarrow m \in \{-20; -19; -18; ...; 4\} \Rightarrow$ có 25 số nguyên thỏa mãn.

Câu 62. (**THPT Hà Nam - 2019**) Cho hàm số $f(x) = x^2 - 4x + 3$. Có bao nhiều giá trị nguyên của tham số m để phương trình $f^2(|x|) - (m-6)f(|x|) - m + 5 = 0$ có 6 nghiệm thực phân biệt?

A. 1.

B. 2.

C. 4.

<u>**D**</u>. 3.

Lời giải

Chọn D

Hàm số $f(x) = x^2 - 4x + 3$ có bảng biến thiên

Hàm số y = f(|x|) có bảng biến thiên

Đặt
$$t = f(|x|) \ge -1(*)$$

Nhận xét:

$$+ v \acute{o}i \ t_0 < -1 \xrightarrow{(*)} x \in \emptyset + v \acute{o}i \ t_0 = -1; t_0 > 3 \xrightarrow{(*)} 2 \text{ nghiệm}$$

$$+$$
 với $t_0 = 3 \xrightarrow{(*)} 3$ nghiệm $+$ với $t_0 \in (-1;3) \xrightarrow{(*)} 4$ nghiệm

Phương trình trở thành
$$t^2 - (m-6)t - m + 5 = 0 \iff \begin{bmatrix} t = -1 \\ t = m - 5 \end{bmatrix}$$

Yêu cầu bài toán suy ra $-1 < m - 5 < 3 \Leftrightarrow 4 < m < 8 \xrightarrow{m \in \mathbb{Z}} m \in \{5, 6, 7\}$

Câu 63. (Sở GD Bạc Liêu - 2019) Cho hàm số $f(x) = 2x^3 + x^2 - 8x + 7$. Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m để phương trình $\sqrt{f(f(x)-3)+m} = 2f(x)-5$ có 6 nghiệm thực phân biệt. Tổng các phần tử của S bằng

A. 25.

B. -66.

C. 105.

D. 91.

Lời giải

Chọn D

$$\text{D} \check{\mathbf{a}} \mathbf{t} \, t = f(x) - 3.$$

*
$$t = f(x) - 3 \Leftrightarrow t = 2x^3 + x^2 - 8x + 4$$
 (1)

$$\text{Dặt } g(x) = 2x^3 + x^2 - 8x + 4 \quad ; g'(x) = 6x^2 + 2x - 8 \quad ; g'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 1 \Rightarrow y = -1 \\ x = -\frac{4}{3} \Rightarrow y = \frac{316}{27} \end{bmatrix}$$

Bảng biến thiên

Số nghiệm của phương trình (1) chính là số giao điểm của đồ thị hàm số y = g(x) và y = tDựa vào bảng biến thiên ta có

$$+ t < -1$$
 hoặc $t > \frac{316}{27}$ thì phương trình (1) có 1 nghiệm.

$$+ t = -1$$
 hoặc $t = \frac{316}{27}$ thì phương trình (1) có 2 nghiệm.

$$+$$
 $-1 < t < \frac{316}{27}$ thì phương trình (1) có 3 nghiệm phân biệt.

* Ta có
$$\sqrt{f(f(x)-3)+m} = 2f(x)-5 \Leftrightarrow \sqrt{f(t)+m} = 2t+1$$
 (2)

Điều kiện để phương trình (2) có nghiệm $t \ge -\frac{1}{2}$

$$(2) \Leftrightarrow f(t) + m = 4t^2 + 4t + 1 \Leftrightarrow m = 4t^2 + 4t + 1 - f(t) \Leftrightarrow m = -2t^3 + 3t^2 + 12t - 6$$

Đặt
$$h(t) = -2t^3 + 3t^2 + 12t - 6$$
 ; $h'(t) = -6t^2 + 6t + 12$; $h(t) = 0$ ⇔ $\begin{bmatrix} t = -1 \\ t = 2 \end{bmatrix}$

Bảng biến thiên

Số nghiệm

của phương trình (2) chính là số giao điểm của đồ thị hàm số y = h(t) và y = m

Dưa vào bảng biến thiên ta có

- + m > 14 thì phương trình (2) vô nghiệm.
- + m = 14 hoặc m < -11 thì phương trình (2) có 1 nghiệm.
- $+ -11 \le m < 14$ thì phương trình (1) có 2 nghiệm phân biệt.

Phương trình $\sqrt{f(f(x)-3)+m} = 2f(x)-5$ có 6 nghiệm thực phân biệt khi phương trình (1) có 3 nghiệm phân biệt và phương trình (2) có 2 nghiệm phân biệt.

Vậy phương $\sqrt{f(f(x)-3)+m} = 2f(x)-5$ có 6 nghiệm thực phân biệt khi phương trình (2) có hai nghiệm phân biệt $-\frac{1}{2} \le t < \frac{316}{27}$.

Dựa vào bảng biến thiên ta được kết quả là $-11 \le m < 14$. Suy ra $S = \{1; 2; ...; 13\}$

Tổng các phần tử của S = 1 + ... + 11 + 12 + 13 = 91.

(Quang Trung - Bình Phước - 2019) Cho hàm số f(x) liên tục trên \mathbb{R} . Hàm số f'(x) có đồ Câu 64. thi như hình vẽ:

Bất phương trình $f(2\sin x) - 2\sin^2 x < m$ đúng với mọi $x \in (0, \pi)$ khi và chỉ khi

A.
$$m > f(0) - \frac{1}{2}$$
. **B.** $m > f(1) - \frac{1}{2}$. **C.** $m \ge f(1) - \frac{1}{2}$. **D.** $m \ge f(0) - \frac{1}{2}$.

B.
$$m > f(1) - \frac{1}{2}$$

C.
$$m \ge f(1) - \frac{1}{2}$$

D.
$$m \ge f(0) - \frac{1}{2}$$
.

Chọn B

Đặt $2\sin x = t$. Vì $x \in (0, \pi)$ nên $t \in (0, 2)$.

Bất phương trình trở thành $f(t) - \frac{t^2}{2} < m$. Đặt $g(t) = f(t) - \frac{t^2}{2}$ với $t \in (0,2)$.

Bất phương trình đúng với mọi $t \in (0,2)$ khi và chỉ khi $\max_{(0,2)} g(t) < m$.

Ta có g'(t) = f'(t) - t.

 $g'(t) = 0 \Leftrightarrow f'(t) = t$. Nghiệm phương trình này trên khoảng (0;2) là hoành độ giao điểm của đồ thị y = f'(t) và đường thẳng y = t với $t \in (0,2)$.

Dựa vào đồ thị ta được nghiệm $t = 1 \in (0, 2)$.

Cũng dựa vào đồ thị ta thấy khi $t \in (0,1)$ thì $f'(t) > t \Rightarrow g'(t) > 0$, khi $t \in (1,2)$ thì $f'(t) < t \Rightarrow g'(t) < 0$.

Bảng biến thiên:

t	0		1		2	
g'(t)		+	0	-		
g(t)			$ \nearrow f(1) - \frac{1}{2} $	$f(1)-\frac{1}{2}$		

Dựa vào bảng biến thiên ta thấy $\max_{(0;2)} g(t) = g(1) = f(1) - \frac{1}{2}$.

Vậy bất phương trình đã cho đúng với mọi $x \in (0; \pi)$ khi và chỉ khi $m > f(1) - \frac{1}{2}$.

- **Câu 65.** (**Lương Thế Vinh Hà Nội 2019**) Cho hàm số $f(x) = x^5 + 3x^3 4m$. Có bao nhiều giá trị nguyên của tham số m để phương trình $f(\sqrt[3]{f(x) + m}) = x^3 m$ có nghiệm thuộc [1;2]?
 - **A.** 15.

- **B**. 16.
- **C.** 17.
- **D.** 18.

Lời giải

Chọn B

Ta có hệ
$$\begin{cases} t^3 = f(x) + m \\ x^3 = f(t) + m \end{cases} \Rightarrow f(x) + x^3 = f(t) + t^3.$$

Xét hàm số $g(x) = f(x) + x^3, x \in [1;2] \Rightarrow g'(x) = f'(x) + 3x^2 > 0 \quad \forall x \in [1;2].$

 \Rightarrow Hàm số g(x) đồng biến trên đoạn [1;2].

Vi
$$g(x) = g(t) \Leftrightarrow x = t \implies f(x) = x^3 - m$$

$$\Leftrightarrow x^5 + 3x^3 - 4m = x^3 - m \Rightarrow 3m = x^5 + 2x^3$$
 (1)

Xét hàm số $h(x) = x^5 + 2x^3, x \in [1; 2] \Rightarrow h'(x) = 5x^4 + 6x^2 > 0 \ \forall x \in [1; 2].$

Phương trình (1) có nghiệm $\Leftrightarrow h(1) \le 3m \le h(2) \Leftrightarrow 3 \le 3m \le 48 \Leftrightarrow 1 \le m \le 16$.

Do $m \in Z \Rightarrow m \in \{1, 2, 3, 4, ..., 16\}$.

Vậy có 16 giá trị nguyên của tham số m.

BAN HỌC THAM KHẢO THÊM DANG CÂU KHÁC TAI

*https://drive.google.com/drive/folders/15DX-hbY5paR0iUmcs4RU1DkA1-7QpKlG?usp=sharing

Theo dõi Fanpage: Nguyễn Bảo Vương 🍲 https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương 🕶 https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) * https://www.facebook.com/groups/703546230477890/

Án sub kênh Youtube: Nguyễn Vương

* https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view_as=subscriber

ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!

Agy of Bio Violite