Intro to Machine Learning

Girish Varma
IIIT Hyderabad
http://bit.ly/2tzcXHu

A Machine Learning Problem

Given a image of a handwritten digit, find the digit.

No well defined function from input to output.

Programming vs Machine Learning

Programming:

Find the shortest path in an input graph **G**.

• Implement Dijkstra's algorithm for shortest path in a programming language.

Machine Learning:

Find the handwritten digit in an image.

- Collect (image, digit) pairs (dataset).
- Train a machine learning model to fit the dataset.
- Given a new image, apply the model to get the digit (testing or inference).

Dataset

Consist of (x,y) pairs, x is the input and y is called the label.

- Examples
 - MNIST: x is a 28x28 b/w image of a handwritten digit, y is a digit in 0 to 9.
 - CIFAR10: x is a 32x32 color image, y is a label in {aeroplane, there is a mapping between the numbers and the correct label.
- Divided into train, test and validation.

bird

cat

deer dog

frog

ship

truck

Tensors

All data, intermediate outputs, learnable parameters are represented by a tensor.

A machine learning model transforms an input tensor to an output tensor.

Tensors have a shape.

- 1. Tensor T with shape [10,10] is equivalent to a 10x10 matrix. It can be indexed by 2 numbers. T[i,j] is a real number.
- 2. Tensor can be 3D. T with shape [5, 10, 15] can be indexed by 3 numbers i, j, k (i <= 5, j <=10, k <= 15).
- 3. Tensor can have arbitrary shape. T with shape [100, 32, 32, 3] can represent 100 color images each 32x32 in size.

Model

The function that maps the input to the output.

$$y = f_{\theta}(x)$$

A model has learnable parameters, θ .

- 1. Fit a line to a set of points.
 - Slope and offset are learnable parameters.
- 2. Fit a degree 4 polynomial.
 - Coefficients are learnable parameters.
- 3. Fit a Multilayered perceptron.
 - Weights and biases are learnable parameters

The Neural Network Model

Neuron or Perceptron

- Input X is n dimensional, Y is 1 dimensional.
- Has learnable parameters $W = (W_1, W_2, ..., W_n)$ (weights) and b (bias).
- $\circ Y = \sigma(\sum W_i X_i + b)$
- \circ σ is a non linear activation function.

Fully Connected or Linear

- Y is also multidimensional (dimension m).
- Has learnable parameters $W = (W_{ij})$ and $b = (b_j)$ where $i \le n$, $j \le m$
- $\circ Y = \sigma(WX + b)$

MNIST Classification

Input: x is a [28,28] shaped tensor, giving pixel values of the image

Output: y is a [10] shaped tensor, giving the probabilities of being 0 to 9.

If the dataset gives y as a digit, convert it to probability vector by one hot encoding.

Use Softmax function for converting real valued output to probabilities.

Multilayered Network

Complex data fits only more complex models.

Obtain complex models by layering multiple linear layers.

Multilayered Perceptron (MLP)

- Multiple Linear layers one following the other.
- $Y = \sigma(V \sigma(WX + b) + c)$
- Intermediate outputs are called hidden units.

A MLP model for MNIST

Predicted probabilities for different digits

Training a Model

The process of finding the right parameters for the model.

Loss Function

- Loss Function: A function that computes the difference between the predicted output and the correct output.
 - Eg: Mean Squared Error $(f(x) y_{correct})^2$. $y_{correct}$ is also called the ground truth.
 - Eg: Cross Entropy Loss $\sum_{i} y_{correct}(i) \log y_{pred}(i)$

Gradient Descent

Gradient Descent: Change the parameters θ slightly such that the loss function decreases. Gradients are the partial derivatives of the loss function wrt. the parameters.

Backpropagation

Backpropagation: The process of finding the gradients of parameters in a multilayered network.

Training Algorithm

1. Initialize model with random parameters.

2. Repeat

- a. Take a small random subset of the dataset that will fit in memory (minibatch).
- Forward Pass : pass the subset through the model and obtain predictions
- Compute the mean loss function for the subset
- d. Backward Pass: compute the gradients of the parameters, last layer to the first.
- e. Update the gradients using learning rate

Overfitting

Testing or Inference

Some References

http://bit.ly/2tzcXHu [This presentation]

https://ml.berkeley.edu/blog/2016/11/06/tutorial-1/

https://ml.berkeley.edu/blog/2016/12/24/tutorial-2/

https://ml.berkeley.edu/blog/2017/02/04/tutorial-3/