Lóp: CS112.P11.CTTN

Nhóm: 14

Sinh viên: Lê Nguyễn Anh Khoa. MSSV: 23520742 Sinh viên: Cáp Kim Hải Anh. MSSV: 23520036

BÀI TÂP

Phân tích độ phức tạp của thuật toán đệ quy

- 1. Bài 1:
- a. Tóm tắt đề bài
- Cho n là độ dài của chuỗi số và s là chuỗi số nguyên dương
- Yêu cầu: Hãy tìm tất cả các tổ hợp số có thể được tạo thành bằng các chữ số theo cùng một thứ tự.
- VD: "123" -> ["1", "2", "3", "12", "13", "23", "123"]
- b. Lời giải:
- Với mỗi chữ số gán cho một số nguyên 0 hoặc 1 với:
- + "0": Không chọn chữ số này vào tổ hợp
- + "1": Chọn chữ số này vào tổ hợp
- Ghép các số và cho vào tập hợp (Có thể dùng **set** để lưu tập hợp)
- c. Phân tích độ phức tạp
- Với mỗi chữ số trong chuỗi, có ${\bf 2}$ trường hợp là ${\bf 0}$ hoặc ${\bf 1}$ nên sẽ có tổng cộng là ${\bf 2}^n$ trường hợp.
- Nếu dùng **set** thông thường sẽ có độ phức tạp để lưu các số là **n.**
- Kết hợp 2 điều trên, thuật toán sẽ có độ phức tạp là $O(n. 2^n)$.
- 2. Bài 2:
- a. Tóm tắt đề bài:
- Cho một tập hợp các ký tự ${f s}$ và một số nguyên dương ${f k}$.
- Yêu cầu: hãy in ra tất cả các chuỗi có độ dài **k** có thể được tạo thành từ tập hợp đã cho.
- VD: $s = "12", k = 1 \rightarrow ["1", "2"]$
- b. Lời giải:
- Duyệt qua từng vị trí (có k vị trí).
- Với mỗi vị trí gán từng kí tự trong s.
- c. Phân tích độ phức tạp
- Có tổng cộng k vị trí.
- Có tổng cộng n kí tự cho mỗi vị trí.
- \Rightarrow Độ phức tạp là $O(n^k)$.
- 3. Bài 5: Tháp Hà Nội:
- a. Tóm tắt đề bài:

- Có n đĩa và 3 cột A, B, C. Lúc đầu n đĩa này đang ở cột A. Cần chuyển tất cả các đĩa sang cột C
- Nguyên tắc: Chỉ sử dụng 3 cọc để chuyển, một lần chỉ được di chuyển một đĩa nằm trên cùng từ cọc này sang cọc khác, một đĩa chỉ được đặt lên một đĩa lớn hơn.

b. Lời giải:

- Hướng giải dễ thấy của bài này là ta sẽ sử dụng đệ quy.
- Đề bài yêu cầu chúng ta cần phải chuyển n đĩa cọc sang cọc C. Giả sử bắt đầu xét đĩa to nhất (đĩa thứ n), ta sẽ cần phải chuyển đĩa này sang cọc C trước tiên, có 2 trường hợp xảy ra:
- + Đĩa đã nằm ở cọc C: ta sẽ không cần di chuyển đĩa này nữa và xét đến đĩa n 1.
- + Đĩa không nằm ở cọc C: ta cần dồn tất cả (n 1) đĩa còn lại sang cọc trung gian (ở đây nếu đĩa n nằm ở cọc A thì đĩa trung gian ở cọc B và ngược lại) để có thể chuyển được đĩa n sang cọc C. Sau đấy thì bắt đầu bước dồn n 1 đĩa còn lại từ cọc trung gian sang cọc C.
- + Từ đó, khi xét đến đĩa thứ x, ta cần quan tâm 2 điều: vị trí hiện tại của đĩa x và cột mục tiêu ta cần chuyển đĩa x sang.

c. Phân tích đô phức tạp:

- Với mỗi đĩa, trường hợp xấu nhất là ta cần chuyển x 1 đĩa sang
 cọc trung gian và chuyển x 1 đĩa sang cọc C.
- Vậy sẽ có 2 thao tác cần làm ở mỗi lần đệ quy nên độ phức tạp là $\mathbf{O}(2^n)$.