

Exploratory Data Analysis

Bank Marketing Campaign

Maria Contractor 16 August 2023

Agenda

Problem Description
Business Understanding
Data Understanding
Cleansing Techniques
EDA
Recommendations

Proposed Model

Problem Description

ABC Bank wants to sell its term deposit product to customers and before launching the product they want to develop a model which help them in understanding whether a particular customer will buy their product or not (based on customer's past interaction with bank or other Financial Institution). To solve this problem, we will need to predict whether or not the client will subscribe to a term deposit.

Business Understanding

Bank wants to use ML model to shortlist customer whose chances of buying the product is more so that their marketing channel (tele marketing, SMS/email marketing, etc) can focus only to those customers whose chances of buying the product is more. This will increase productivity and efficiency in selling their products.

Data Understanding

The ABC Bank has data that includes bank client data and other attributes. The data includes 21 attributes/columns and has 41188 entries. Some of the attributes include age, job, marital status, housing, and other demographic information. It also includes economic data like price indexes and outcomes of previous campaigns. This data is either categorical or numeric. There is an output variable, which is a binary data value (Y/N).

Tabular data details: bank-additional-full.csv

41188
1
21
.csv
5.56 MB

Cleansing Techniques

Imputing Categorical Data

- Focused on age, job, and education
- Each of these factors allowed me to decrease the amount of unknown variables by predicting where some of them may be placed based on the existing data.

Replacing 'unknown' with NaN variables

Easier to read and adjust if necessary.

Cleansing

Before:

education	basic.4y	basic.6y	basic.9y	high.school	illiterate	professional.course	university.degree	unknown
job								
admin.	77	151	499	3329	1	363	5753	249
blue-collar	2318	1426	3623	878	8	453	94	454
entrepreneur	137	71	210	234	2	135	610	57
housemaid	474	77	94	174	1	59	139	42
management	100	85	166	298	0	89	2063	123
retired	597	75	145	276	3	241	285	98
self-employed	93	25	220	118	3	168	765	29
services	132	226	388	2682	0	218	173	150
student	26	13	99	357	0	43	170	167
technician	58	87	384	873	0	3320	1809	212
unemployed	112	34	186	259	0	142	262	19
unknown	52	22	31	37	0	12	45	131

Cleansing Techniques

After:

education	basic.4y	basic.6y	basic.9y	high.school	illiterate	professional.course	university.degree
job							
admin.	77	151	499	3329	1	363	5750
blue-collar	2369	1447	3654	878	8	453	94
entrepreneur	137	71	210	234	2	135	610
housemaid	516	77	94	174	1	59	139
management	100	85	166	298	0	89	2186
retired	598	75	145	276	3	241	285
self-employed	93	25	220	118	3	168	765
services	132	226	388	2830	0	218	173
student	26	13	99	357	0	43	170
technician	58	87	384	872	0	3317	1809
unemployed	112	34	186	259	0	142	262

EDA: Outlier Detection

Each of the red dots represents an outlier in the numerical data. From the data, we can see that there are many outliers in most of the numerical categories in bank_add_full_data.

EDA: Outlier Detection

• The summary statistics of the numerical data show some of the maximums, which can also be used to detect outliers. For example, the max of campaign is 56, whereas the mean is about 2.6

	age	campaign	pdays	previous	emp.var.rate	1
count	41188.00000	41188.000000	41188.000000	41188.000000	41188.000000	
mean	40.02406	2.567593	962.475454	0.172963	0.081886	
std	10.42125	2.770014	186.910907	0.494901	1.570960	
min	17.00000	1.000000	0.000000	0.000000	-3.400000	
25%	32.00000	1.000000	999.000000	0.000000	-1.800000	
50%	38.00000	2.000000	999.000000	0.000000	1.100000	
75%	47.00000	3.000000	999.000000	0.000000	1.400000	
max	98.00000	56.000000	999.000000	7.000000	1.400000	
	cons.price.id	x cons.conf.	idx euribo	or3m nr.emplo	yed	
count	41188.00000	0 41188.000	000 41188.000	0000 41188.000	000	
mean	93.57566	4 -40.502	600 3.621	291 5167.035	911	
std	0.57884	0 4.628	198 1.734	72.251	528	
min	92.20100	-50.800	000 0.634	4963.600	000	
25%	93.07500	-42.700	000 1.344	1000 5099.100	000	
50%	93.74900	-41.800	000 4.857	7000 5191.000	000	
75%	93.99400	-36.400	000 4.961	.000 5228.100	000	
max	94.76700	0 -26.900	000 5.045	5000 5228.100	000	

EDA: Marital Status, Job, and Campaign

EDA: Correlation Heatmap

• We can see that there is a high correlation between employment variation rate and euribor 3 month rate, euribor 3 month rate and number of employees, and employment variation rate and number of employees.

EDA: Customer Loans

A majority of individuals have housing loans, while few have personal loans.

Customers with housing loan

EDA: Age Group vs Subscriptions

We can see that individuals who are in the age groups of 30-39 and 40-49 have received the greatest count, while those who are aged 60+ have received the least count.

EDA: Job vs Subscriptions

Individuals who have jobs in either administration, blue collar, or technicians have been contacted the most. However, there is a much greater 'yes' outcomes for students.

EDA: Education vs Subscriptions

Individuals with a high school education or a university degree were amongst those who were contacted the most. They are also in the group of individuals who subscribed the most. However, those with a high school education had a greater subscription rate.

EDA: Contact Type vs Subscriptions

There is a higher rate of those who were contacted through cellular than telephone. Additionally, cellular roughly received more subscriptions

EDA: Day of Week vs Subscriptions

There was little difference of subscriptions based of the day of the week, however, Tuesdays and Thursdays seemed to be the most successful based on the graphs.

EDA: Month vs Subscriptions

There was a large amount of contact between the months of may and august. This also resulted in higher subscription rates. Additionally, if there was consistent contact throughout the year.

Recommendations

- By looking at the data, it is evident that the data is skewed, favoring the option 'no' or not subscribing to a term deposit.
- We can see that individuals who are in the age groups of 30-39 and 40-49 have received the greatest count, so it is recommended to contact individuals in these age groups rather than others.
- A majority of individuals have housing loans, while few have personal loans.
- Individuals who have jobs in either administration, blue collar, or technicians
 have been contacted the most, so it is recommended to keep contacting
 those. However, there is a much greater 'yes' outcomes for students, so it is
 recommended to contact more of them to maximize subscriptions.
- Individuals with a high school education or a university degree were amongst those who were contacted the most. They are also in the group of individuals who subscribed the most. However, those with a high school education had a greater subscription rate, so it is recommended to contact more high school educated individuals.
- There is a higher rate of those who were contacted through cellular than telephone. Additionally, cellular received more subscriptions, so it is recommended to contact more individuals through their cellular device.
- There was little difference of subscriptions based of the day of the week, however, Tuesdays and Thursdays seemed to be the most successful based on the graphs.
- There was a large amount of contact between the months of may and august. This also resulted in higher subscription rates, so it is recommended to continue contacting individuals between those months. Additionally, if there was consistent contact throughout the year, it would be more efficient to measure which month had the highest subscription success rate.

Proposed Model Building

- Logistic Regression
 - Binary classifications
- Decision Trees and Random Forest
 - Non-linear relationships
- Evaluation Metrics
 - Imbalances in data
- Gradient Boosting Algorithms
 - Classification and complex data

Thank You,

Maria Contractor

