Efficient Streaming Language Models with Attention Sinks

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, Mike Lewis

MIT. Meta AI. CMU

December 7, 2023

Presented by Huan Liang

What is attention?

Scaled Dot-Product Attention

Multi-Head Attention

Linear

Concat

Scaled Dot-Product
Attention

Linear

Linear

Linear

Linear

Linear

What if we want take a pre-trained LLM and let it run forever?

A couple of problems:

- Poor performance on sequences longer than pretrained lengths (4K for Llama-2)
- Poor $O(T^2)$ time complexity, unsustainable as sequences increase in lengths
- Memory issues with caching key and value states of previous tokens

So, what have people done?

Window Attention

- Cache the most recent L tokens' KV
- Attend current token with those KVs
- Better time complexity, poor performance

So, what have people done?

Sliding Window Attention with Re-computation

- Recompute attention values for most recent L tokens,
- Use recomputed values for current token
- Better performance, poor time complexity

Why doesn't window attention work?

Attention Sink!

- Large amount of attention scores allocated to initial tokens
- Softmax operation, forces attention scores to sum to 1 (even if values are small)
- Why initial tokens?

Initial tokens are important

- In a autoregressive nature, initial tokens are visible to all subsequent tokens
- Absolute position matters more than semantics of first few tokens
- First four tokens is all you need

Llama-2-13B	PPL (↓)
0 + 1024 (Window)	5158.07
4 + 1020	5.40
4"\n"+1020	5.60

Cache Config	0+2048	1+2047	2+2046	4+2044	8+2040
Falcon-7B	17.90	12.12	12.12	12.12	12.12
MPT-7B Pythia-12B	460.29 21.62	14.99 11.95	15.00 12.09	14.99 12.09	14.98 12.02
Cache Config	0+4096	1+4095	2+4094	4+4092	8+4088
Llama-2-7B	3359.95	11.88	10.51	9.59	9.54

Learnable "sink" token

• One learnable sink token prepended helps

Cache Config	0+1024	1+1023	2+1022	4+1020
Vanilla	27.87	18.49	18.05	18.05
Zero Sink	29214	19.90	18.27	18.01
Learnable Sink	1235	18.01	18.01	18.02

Positional encodings

• StreamingLLM focuses on positions within the cache rather than those in the original text. This distinction is crucial for StreamingLLM's performance. For instance, if the current cache (Figure 4) has tokens [0, 1, 2, 3, 6, 7, 8] and is in the process of decoding the 9th token, the positions assigned are [0, 1, 2, 3, 4, 5, 6, 7], rather than the positions in the original text, which would be [0, 1, 2, 3, 6, 7, 8, 9].

StreamingLLM

$O(T^2)$ × PPL: 5641×

Has poor efficiency and performance on long text.

(b) Window Attention

$O(TL) \checkmark PPL: 5158 \times$

Breaks when initial tokens are evicted.

(c) Sliding Window w/ Re-computation

$O(TL^2)$ X PPL: 5.43 \checkmark

Has to re-compute cache for each incoming token.

(d) StreamingLLM (ours)

$O(TL)\checkmark$ PPL: 5.40 \checkmark

Can perform efficient and stable language modeling on long texts.

Language modeling on long texts across LLM Families and Scales

- PG19 test set (100 long books)
- Llama-2 with 2048 cache, Falcon, Pythia, MPT with 1024 cache

Results of pre-training with sink token

- Two 160M parameter language models, Pythia-160M codebased, 8xA6000 GPUs, Pile dataset
- One with Sink Token, one without

Figure 6: Pre-training loss curves of models w/ and w/o sink tokens. Two models have a similar convergence trend.

Table 4: Zero-shot accuracy (in %) across 7 NLP benchmarks, including ARC-[Challenge, Easy], HellaSwag, LAMBADA, OpenbookQA, PIQA, and Winogrande. The inclusion of a sink token during pre-training doesn't harm the model performance.

Methods	ARC-c	ARC-e	HS	LBD	OBQA	PIQA	WG
Vanilla	18.6	45.2	29.4	39.6	16.0	62.2	50.1
+Sink Token	19.6	45.6	29.8	39.9	16.6	62.6	50.8

Attention visualization

Results on streaming question answering with instruction-tuned models

Table 5: Accuracy (in %) on the ARC-[Easy, Challenge] datasets. Questions were concatenated and answered in a streaming manner to mimic a real-world chat setting. The dense baseline fails due to Out-of-Memory (OOM) errors. Window attention has poor accuracy. StreamingLLM has comparable results with the one-shot sample-by-sample baseline. Window attention and StreamingLLM use cache sizes of 1024.

Model	Llama-2	2-7B-Chat	Llama-2	2-13B-Chat	Llama-2	2-70B-Chat
Dataset	Arc-E	Arc-C	Arc-E	Arc-C	Arc-E	Arc-C
One-shot	71.25	53.16	78.16	63.31	91.29	78.50
Dense			(OOM		
Window	3.58	1.39	0.25	0.34	0.12	0.32
StreamingLLM	71.34	55.03	80.89	65.61	91.37	80.20

Efficiency results and cache sizes

Figure 9: Performance on the StreamEval benchmark. Accuracies are averaged over 100 samples.

Cache	4+252	4+508	4+1020	4+2044
Falcon-7B	13.61	12.84	12.34	12.84
MPT-7B	14.12	14.25	14.33	14.99
Pythia-12B	13.17	12.52	12.08	12.09
Cache	4+508	4+1020	4+2044	4+4092