

Information Sharing Across Tasks

From Multi-tasking to Meta-learning

Anshul Thakur

Department of Engineering Science University of Oxford

8th Nov, 2022

Multi-tasking

Multi-tasking: Challenges

Bridge between multi-tasking and meta-learning

Multi-tasking

Multi-tasking: Challenges

Bridge between multi-tasking and meta-learning

Multi-tasking Architectures

DEPARTMENT OF ENGINEERING SCIENCE OXFORD

- ► Multi-tasking architectures are characterised by:
 - A shared feature extractor "trunk"
 - ► Tasks-specific layers working on same feature representation

Figure: Illustration of a typical multi-tasking architecture.

Multi-tasking: Under the hood

- \triangleright **x**: input examples. (y_1, y_2, \dots, y_n) : corresponding task labels
- lacktriangle Model $f_{\theta,\phi_i}()$ outputs task-specific predictions: ${f p}_1,{f p}_2,\ldots,{f p}_n$
- \blacktriangleright θ : shared parameters, ϕ_i : task-specific parameters for *i*th task
- ► Loss function is an aggregate of task-specific losses:

$$\mathcal{L} = \sum_{i=1}^{n} \alpha_i \mathcal{L}_i(y_i, \mathbf{p}_i), \tag{1}$$

where α_i is the coefficient for task *i*.

Multi-tasking: Under the hood

► Computing gradients for shared parameters:

$$abla_{ heta}\mathcal{L} = \sum_{i=1}^{n} lpha_{i}
abla_{ heta} \mathcal{L}_{i}(y_{i}, \mathbf{p})$$

(2)

 $ightharpoonup \alpha_i$ are usually constrained to be the convex coefficients

$$\theta_1$$
 θ_2
 θ_3
 θ_4

 \mathcal{L}^{θ_3}

Figure: Deviation between optimal parameters and shared parameters learned by MTL.

Why do we need multi-tasking?

- ▶ Predicting multiple outcomes for a patient from a single input:
 - Avoids firing multiple models
 - Lesser storage complexity
- Regularises the training
 - Avoids over-fitting
 - Root cause of this regularisation is learning common representation
- Another way to look at it:
 - ► MTL adds noise to noisy gradients
 - Further increasing the chances of arriving at wider local minima

Multi-tasking

Multi-tasking: Challenges

Bridge between multi-tasking and meta-learning

Challenges in Multi-tasking: Shared Representation

- ► Is it always possible to learn a good shared representation?
 - ▶ Of-course not!
- ► A good shared representation could be obtained if tasks are similar
 - Our and machine's perception of task similarity could be different!
- ▶ Less similar tasks result in shared parameters that are not be helpful to any task
- ► **Solution:** Task Affinity Groupings¹
 - Identify similar tasks and use them for MTL
 - Strategy: Update shared layers using a task-specific loss and analysing the impact of the updated representation on other losses

Challenges in Multi-tasking: Shared Representation

Figure: Mixture of Experts for multi-tasking

Challenges in Multi-tasking: Optimisation Issues

Figure: Gradient conflicts

Source: Yu et al., Gradient Surgery for Multi-Task Learning, Neurips 2020.

Challenges in Multi-tasking: Optimisation Issues

Figure: Gradient conflicts

Source: Yu et al., Gradient Surgery for Multi-Task Learning, Neurips 2020.

Challenges in Multi-tasking: Gradient Washout

- ► Loss of one of the tasks may overwhelm the other losses²
- Multi-tasking objective will mostly be optimised for this dominating tasks
- ▶ **Solution**: Meta-learn coefficients to make sure every task gets importance

²Navon et al., Multi-Task Learning as a Bargaining Game, ICML 2022.

Challenges in Multi-tasking: Label Availability

- Availability of all labels for an example is rare
- In healthcare informatics, it's possible that a patient may not exhibit all the outcomes that we are modelling
- MTL can only use a subset of all the available data

Multi-tasking

Multi-tasking: Challenges

Bridge between multi-tasking and meta-learning

Meta-learning: Learning To Learn

- ► Interpretation: Training a model using gradients computed by other models
- ▶ Purpose: Learning a common model across multiple tasks
 - Global/common model can be quickly adapted to new unseen tasks
 - Proposed to mimic the learning in humans
- ► Why are we interested in meta-learning?:
 - Provides common/shared model across multiple tasks
 - Alleviate example-labels requirement of MTL
 - Information sharing across tasks in an example-independent manner

First Order Meta-learning: REPTILE³

- $lackbox{}{} f_{ heta}():$ Global model parameterised by heta
- $\triangleright \mathcal{D}_t = \{\mathbf{x}_i, y_i\}_{i=1}^n$: Task t dataset

$$\label{eq:fort} \begin{split} \overline{\text{for } t \leftarrow 1 : T \, \text{do}} \\ \theta_t &= \theta \\ \mathcal{B} \leftarrow \text{SAMPLE-BATCHES}(\mathcal{D}_t) \\ \text{for any } (\mathbf{b}, \mathbf{l}) \in \mathcal{B} \, \text{do} \\ L &= \mathcal{L}(f_{\theta_t}(\mathbf{b}, \mathbf{l})) \\ \theta_t &= \theta_t - \alpha \nabla_{\theta_t} L \\ \\ \phi &= \sum_{t=1}^T (\theta_t - \theta) \end{split}$$

 $\theta = \theta + \alpha \phi$

Multi-tasking to Meta-learning

- ► All inner-loop updates can be summaries as one single gradient update
- ightharpoonup Meta-grad for task t, $\phi_t = -(\theta \theta_t) = \nabla_{\theta_t} L$
- ► REPTILE update can be written as:

$$\nabla \mathcal{L}_{\theta} = \sum_{t=1}^{T} \nabla_{\theta_{t}} L = \sum_{t=1}^{T} \alpha_{i} \nabla_{\theta_{t}} L$$
 (3)

► REPTILE/MAML, MTL and FedAvg are identical w.r.t. optimisation

Meta-learning as Information Sharing Mechanism

- ► All tasks are trained independently
- ► No requirement of one example and multiple labels
- We can share information across tasks even if patients are different
- All other problems of MTL also exist in MAML/REPTILE

Multi-tasking

Multi-tasking: Challenges

Bridge between multi-tasking and meta-learning

- ► Example Independent: Unlike multi-tasking, like meta-learning
- ▶ No Optimisation Issues: Unlike multi-tasking and meta-learning
- No Gradient Aggregation Issues: Unlike multi-tasking, meta-learning and FedAvg
- Heterogeneity: Unlike multi-tasking, meta-learning and FedAvg
- Domain-agnostic
- Models performing multiple tasks is not the target

Epilogue

- ► At CHI lab, we are working on realising an ideal information sharing framework
- Federated learning, Meta-learning and Multi-tasking deal with same issues
- Reach out at anshul.thakur@eng.ox.ac.uk for collaboration