Amendments to the Claims

This listing of claims will replace all prior versions, and listings of claims in the application.

1. (Currently amended) Silylated carboxamides of the formula (I)

in which

- R represents is hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,
- L represents <u>is</u> a direct bond or represents <u>is</u> in each case optionally substituted straight-chain or branched alkylene (alkanediyl), alkenylene (alkenediyl) or alkynylene (alkyndiyl),
- R^1 and R^2 independently of one another represent are hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl or C_1 - C_6 -haloalkyl,
- R³ represents <u>is</u> hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₃-C₆-cycloalkyl, or represents <u>is</u> in each case optionally substituted phenyl or phenylalkyl,
- R^4 represents is hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, $C_{1}-C_{6}$ alkylsulphonyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 -cycloalkyl; C1-C6haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C1-C4haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, $(C_1-C_3-alkyl)$ carbonyl- $C_1-C_3-alkyl$, $(C_1-C_3$ alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms;

- (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-cycloalkyl)carbonyl; (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or -CH₂NR⁸R⁹,
- R⁵ represents is hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
- R⁶ and R⁷ independently of one another each represent <u>are</u> hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
- R⁶ and R⁷ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further nonadjacent heteroatoms from the group consisting of oxygen, sulphur and NR¹⁰,
- R⁸ and R⁹ independently of one another, represent <u>are</u> hydrogen, C₁-C₈-alkyl, C₃-C₈-cycloalkyl; C₁-C₈-haloalkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
- R⁸ and R⁹ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further nonadjacent heteroatoms from the group consisting of oxygen, sulphur and NR¹⁰,
- R¹⁰ represents is hydrogen or C₁-C₆-alkyl,
- A represents is the radical of the formula (A1)

$$\mathbb{R}^{11}$$
 (A1) in which

R¹¹ represents is hydrogen, halogen, hydroxyl, cyano, C₁-C₆-alkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy or C₁-C₄-haloalkylthio having in each case 1 to 5 halogen atoms,

or

A represents is the radical of the formula (A2)

$$R_{N}^{12}$$
(A2) in which

R¹² represents is chlorine[[,]] or iodine or dichloromethyl,

or

A represents is the radical of the formula (A3)

 R^{13} represents is C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or

A represents is the radical of the formula (A4)

$$\bigcirc$$
 (A4) in which

 R^{13} represents is C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or

A represents is the radical of the formula (A5)

$$(A5)$$
 in which

 R^{14} represents is C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl having 1 to 5 halogen atoms,

or A

represents is the radical of the formula (A6)

(A6) in which

R¹⁵ represents is hydrogen, halogen, C₁-C₄-alkyl or C₁-C₄-haloalkyl having 1 to 5 halogen atoms,

or

A represents is the radical of the formula (A7)

(A7) in which

R¹⁶ represents <u>is</u> halogen, hydroxyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio or C₁-C₄-haloalkoxy having in each case 1 to 5 halogen atoms,

or

A represents is the radical of the formula (A8)

(A8) in which

R¹⁷ represents is C₁-C₄-alkyl,

or A

represents is the radical of the formula (A9)

or

A represents is the radical of the formula (A10)

$$(A10)$$
 in which

X represents is O (oxygen) or S (sulphur),

or

A represents is the radical of the formula (A11)

- X represents is O (oxygen) or S (sulphur),
- R¹⁸ represents is iodine or methyl.
- 2. (Currently amended) Silylated A silylated caboxamide earboxamides of the formula (I) according to of Claim 1, characterized in that wherein
 - R represents is hydrogen, fluorine, chlorine, methyl or trifluoromethyl,
 - L represents is a direct bond or represents is in each case optionally halogensubstituted straight-chain or branched C₁-C₆-alkylene, C₂-C₆-alkenylene or C₂-C₆-alkynylene,
 - R^1 and R^2 independently of one another represent are C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl or C_1 - C_3 -alkyl or C_1 - C_3 -alkyl,
 - R³ represents is C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₁-C₃-alkyl, C₁-C₂-alkyl, C₁-C₃-alkyl, C₁-C₂-alkyl, C₂-alkyl, C₁-C₂-alkyl, C₂-alkyl, C₁-C₂-alkyl, C₂-alkyl, C
 - R^4 represents is hydrogen, C₁-C₆-alkyl, C₁-C₄-alkylsulphinyl, C₁-C₄- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_3 - C_6 -cycloalkyl; $C_{1}-C_{4}$ alkylsulphonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C1-C4haloalkyl. haloalkylsulphonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, $(C_1-C_3-alkyl)$ carbonyl- $C_1-C_3-alkyl$, $(C_1-C_3$ alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms;

 $(C_1-C_6-alkyl)$ carbonyl, $(C_1-C_4-alkoxy)$ carbonyl, $(C_1-C_3-alkoxy-C_1-C_3-alkyl)$ carbonyl, $(C_3-C_6-cycloalkyl)$ carbonyl, $(C_1-C_4-haloalkyl)$ carbonyl,

- (C₁-C₄-haloalkoxy)carbonyl, (halo-C₁-C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms, or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or -CH₂NR⁸R⁹,
- R⁵ represents is hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
- R⁶ and R⁷ independently of one another each represent <u>are</u> hydrogen, C₁-C₆-alkyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
- R⁶ and R⁷ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms which is optionally mono- to tetrasubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulphur and NR¹⁰,
- R⁸ and R⁹ independently of one another represent are hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl; C₁-C₄-haloalkyl, C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms,
- R⁸ and R⁹ furthermore together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 or 6 ring atoms which is optionally mono- or polysubstituted by identical or different substituents from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle may contain 1 or 2 further non-adjacent heteroatoms from the group consisting of oxygen, sulphur and NR¹⁰,
- R¹⁰ represents is hydrogen or C₁-C₄-alkyl,
- A represents is the radical of the formula (A1)

R¹¹ represents <u>is</u> hydrogen, fluorine, chlorine, bromine, iodine, hydroxyl, cyano, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or C₁-C₂-haloalkylthio having in each case 1 to 5 fluorine, chlorine and/or bromine atoms,

or A

represents is the radical of the formula (A2)

(A2) in which

R¹² represents is chlorine, or iodine or dichloromethyl,

or

A represents is the radical of the formula (A3)

(A3) in which

R¹³ represents is methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A represents is the radical of the formula (A4)

(A4) in which

R¹³ represents is methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A represents is the radical of the formula (A5)

$$(A5)$$
 in which

R¹⁴ represents is methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

or A

represents is the radical of the formula (A6)

(A6) in which

R¹⁵ represents is hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂-haloalkyl having 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A represents is the radical of the formula (A7)

(A7) in which

R¹⁶ represents <u>is</u> fluorine, chlorine, bromine, iodine, hydroxyl, C₁-C₄-alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy having in each case 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A represents is the radical of the formula (A8)

(A8) in which

R¹⁷ represents is methyl, ethyl, n-propyl or isopropyl,

or A

represents is the radical of the formula (A9)

or

A represents is the radical of the formula (A10)

$$(A10)$$
 in which

X represents is O (oxygen) or S (sulphur),

or

A represents is the radical of the formula (A11)

X represents is O (oxygen) or S (sulphur),

R¹⁸ represents is iodine or methyl.

- 3. (Currently amended) Process A process for preparing silylated carboxamides of the formula (I) according to Claim 1, characterized in that comprising reacting
 - a) carboxylic acid derivatives of the formula (II)

$$A \xrightarrow{X^1}$$
 (II)

in which

 X^1 represents is halogen or hydroxyl and

A is as defined in Claim 1 are reacted with amines of the formula (III)

$$\begin{array}{c|c}
 & R \\
 & R^4 & C \\
 & R^3 & R^2
\end{array}$$
(III)

in which R, L, R^1 , R^2 , R^3 and R^4 are as defined in Claim 1,

if appropriate optionally in the presence of a catalyst, if appropriate optionally in the presence of a condensing agent, if appropriate optionally in

the presence of an acid binder and if appropriate optionally in the presence of a diluent,

or

b) silylated carboxamides of the formula (I-1)

in which R, L, R^1 , R^2 , R^3 and A are as defined in Claim 1, are reacted with halides of the formula (VIII)

$$R^{4a} - X^2$$
 (VIII)

in which

X² represents is chlorine, bromine or iodine,

 $R^{4a} \\$ represents is C_1 - C_8 -alkyl, C_1 - C_6 -alkylsulphinyl, $C_{1}-C_{6}$ alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈-cycloalkyl; C₁-C₆haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄haloalkylsulphonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C₃-C₈halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl- $(C_1-C_3-alkoxy)$ carbonyl- $C_1-C_3-alkyl$; halo- $(C_1-C_3-$ C₁-C₃-alkyl, alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms;

(C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-cycloalkyl)carbonyl; (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or -CH₂NR⁸R⁹, where R⁵, R⁶, R⁷, R⁸ and R⁹ are as defined in Claim 1.

in the presence of a base and in the presence of a diluent.

- 4. (Currently amended) Compositions A composition for controlling unwanted microorganisms, characterized in that they comprise comprising at least one silylated carboxamide of the formula (I) according to Claim 1, in addition to extenders and/or surfactants.
- 5. (Currently amended) Use of silylated carboxamides of the formula (I) according to Claim 1 for controlling unwanted microorganisms. A method of controlling unwanted microorganisms comprising applying the composition of claim 4 to said unwanted microorganism or their habitat, or both.
- 6. (Currently amended) Method A method for controlling unwanted microorganisms, characterized in that comprising applying the silylated carboxamides of the formula (I) according to Claim 1 are applied to the microorganisms, and/or their habitats, or both.
- 7. (Original) Process A process for preparing compositions for controlling unwanted microorganisms, characterized in that comprising mixing the silylated carboxamides of the formula (I) according to Claim 1 are mixed with extenders, and/or surfactants, or both.