João Miguel Clemente de Sena Esteves
Análise de Circuitos
= Licenciatura em Engenharia Física =
Exercícios
Março de 2022

1. Preencha os quadros anexos às figuras.

As ligações deste circuito ao exterior são apenas o terminal A e os terminais onde existem 5V e 15V.

- 2. Relativamente ao circuito da figura:
 - 2.1 Determine o número de correntes que existem neste circuito.
 - 2.2 Determine o número de tensões que existem neste circuito.
 - 2.3 Determine a tensão, a corrente e a potência em jogo em cada componente do circuito.
 - 2.4 Verifique quais são os componentes que absorvem energia ao circuito e quais são os componentes que lhe fornecem energia.

- 3. Determine o valor da potência em jogo numa resistência de $47k\Omega$ percorrida por uma corrente constante de 5A.
- 4. Determine o valor da potência em jogo numa fonte ideal de tensão de 120V que alimenta uma resistência de 100Ω .
- 5. Determine o valor da energia absorvida durante duas horas por uma resistência de $22k\Omega$ sujeita a uma tensão constante de 54V.
- 6. Admitindo que o preço da energia eléctrica é de 0,15€/kWh, determine o custo mensal devido ao funcionamento de uma lâmpada de 60W que está ligada 8 horas por dia, 5 dias por semana.
- 7. Determine o valor da energia fornecida a um circuito, durante cinco horas, por uma fonte ideal de corrente de 30A que se encontra curto-circuitada com um condutor ideal.
- 8. Determine o valor da energia absorvida durante 90s por um condutor ideal percorrido por uma corrente constante de 200A.

- 9. Relativamente ao circuito da figura:
 - 9.1 Com o interruptor **K aberto**, determine:
 - 9.1.1 o sentido e o valor da corrente I;
 - 9.1.2 a tensão e a potência em jogo em cada componente do circuito.
 - 9.2 Com o interruptor **K fechado**, determine:
 - 9.2.1 o sentido e o valor da corrente **I**;
 - 9.2.2 a tensão e a potência em jogo em cada componente do circuito.

- 10. Relativamente ao circuito da figura:
 - 10.1 Com o interruptor **K aberto**, determine:
 - 10.1.1 o sentido e o valor da corrente I;
 - 10.1.2 a tensão e a potência em jogo em cada componente do circuito.
 - 10.2 Com o interruptor **K fechado**, determine:
 - 10.2.1 o sentido e o valor da corrente **I**;
 - 10.2.2 a tensão e a potência em jogo em cada componente do circuito.

11. Preencha os quadros anexos às figuras.

U =

As ligações deste circuito ao exterior são apenas os terminais T, W, X, Y e Z.

As ligações deste circuito ao exterior são apenas os terminais A, B, C, G, H e F.

A fonte ideal de tensão de 8V recebe energia do circuito ou fornece-lhe energia?

As ligações deste circuito ao exterior são apenas o terminal A e o terminal onde existem 25V.

A fonte ideal de corrente recebe energia do circuito ou fornece-lhe energia?

$U_A =$	U ₁ =
$U_B =$	$U_2 =$
$U_C =$	U ₃ =
$U_D =$	U ₄ =
$\mathbf{U_E} =$	E =

Medidas com multímetro ideal a funcionar como voltímetro no modo DC:

Ponta vermelha	Ponta preta	Leitura
A	C	
В	D	
C	В	

Indique os pontos onde ligar os terminais das pontas de prova de um osciloscópio (a funcionar no modo DC) para medir as tensões referidas, nos casos em que tal medição é possível. Indicar também o estado (ON ou OFF) dos botões INV e ADD (marcar com um X a opção correcta).

Nota: a massa do osciloscópio encontra-se ligada ao terminal C da fonte de 2V.

U ₂ e U ₃ simultaneamente U ₁ e U ₄ simultaneamente			$U_3 e U_4$	simultaı	neamen	te					
Não é possível				Não é p	ossível			Não é p	ossível		
	P1	Ponto			P1	Ponto		P1 Po		Ponto	
Canal 1	GND1	Ponto		Canal 1	GND1	Ponto		Canal 1	GND1	Ponto	
	INV	ON	OFF		INV	ON	OFF		INV	ON	OFF
	P2	Ponto			P2	Ponto			P2	Ponto	
Canal 2	GND2	Ponto		Canal 2	GND2	Ponto		Canal 2	GND2	Ponto	
	INV	ON	OFF		INV	ON	OFF		INV	ON	OFF
	ADD	ON	OFF		ADD	ON	OFF		ADD	ON	OFF

Medidas obtidas com um multímetro ideal a funcionar como voltímetro no modo DC:

Ponta vermelha	Ponta preta	Leitura
A	В	
В	D	
F	В	

Indique os pontos onde ligar os terminais das pontas de prova de um osciloscópio (a funcionar no modo DC) para medir as tensões referidas, nos casos em que tal medição é possível. Indicar também o estado (ON ou OFF) dos botões INV e ADD (marcar com um X a opção correcta). (Nota: a massa do osciloscópio encontra-se ligada ao terminal B do circuito)

As ligações deste circuito ao exterior são apenas o terminal A e o terminal onde existem 20V.

20V

Medidas obtidas com um multímetro ideal a funcionar como voltímetro no modo DC:

Ponta vermelha	Ponta preta	Leitura
A	В	
E	F	
G	Н	

 (\mathbf{E})

As ligações deste circuito ao exterior são apenas o terminal A e o terminal onde existem 21V e -6V.

As ligações deste circuito ao exterior são apenas o terminal A e o terminal onde existem -21V e -6V.

A única ligação deste circuito ao exterior é o terminal onde existem 8V.

As ligações deste circuito ao exterior são apenas o terminal A e o terminal onde existem -7V.

12. A tensão U₂ é medida recorrendo a um voltímetro de resistência interna R_V.

 $U = 50V \quad (cons tan te)$ $R_1 = 100k\Omega$ $R_2 = 100k\Omega$

Calcule o valor de U2 quando

12.1
$$R_V = 1\Omega$$

$$12.2 R_V = 1k\Omega$$

12.3
$$R_V = 10k\Omega$$

$$12.4 R_V = 100k\Omega$$

$$12.5 R_V = 1M\Omega$$

13. A corrente I₂ é medida recorrendo a um amperímetro de resistência interna R_A.

$$I = 10A$$
 (constante)
 $R_1 = 10Ω$
 $R_2 = 10Ω$

Calcule o valor de I2 quando

13.1
$$R_A = 0.1\Omega$$

$$13.2 \ R_A = 1\Omega$$

$$13.3 R_A = 10\Omega$$

$$13.4 R_A = 100\Omega$$

$$13.5 R_A = 1k\Omega$$

14. Calcule os valores das resistências indicadas junto de cada figura.

 $R_{AB} =$

 $R_{AC} =$

 $R_{AB} =$

 $R_{BD} =$

 $R_{AC} =$

- 15. Relativamente ao circuito da figura:
 - 15.1 Determine quais são os componentes que fornecem energia ao circuito.
 - 15.2 Determine quais são os componentes que recebem energia do circuito.
 - 15.3 Calcule o valor da potência em jogo em cada componente do circuito.

16. Identifique todos os ramos, nós e malhas do circuito.

17. Recorrendo às Leis de Kirchhoff, determine as correntes nos ramos do circuito.

18. Recorrendo ao Teorema de Thévenin, determine o valor da tensão presente nos terminais da resistência de 2Ω .

19. Recorrendo ao Teorema de Thévenin, determine o valor da potência em jogo na fonte de 2A. Essa fonte recebe energia do circuito ou fornece-lhe energia?

20. Recorrendo ao Teorema de Norton, determine o valor da potência em jogo na resistência de 2Ω .

21. Recorrendo ao Teorema de Norton, determine o valor da potência em jogo na fonte de 5V. Essa fonte recebe energia do circuito ou fornece-lhe energia?

22. Determine os equivalentes de Thévenin e de Norton do circuito que alimenta a resistência de 1Ω .

23. Determine os equivalentes de Thévenin e de Norton, relativamente aos terminais A e B, de cada um dos circuitos apresentados.

24. O gráfico apresenta a evolução da tensão presente nos terminais de uma fonte de energia, em função da corrente debitada por essa fonte.

- 24.1 Determine o valor da tensão que existe entre os terminais da fonte quando esta se encontra em vazio.
- 24.2 Determine o valor da corrente de curto-circuito da fonte.
- 24.3 Determine o valor da resistência interna da fonte.
- 24.4 Determine o Equivalente de Thévenin da fonte.
- 24.5 Determine o Equivalente de Norton da fonte.
- 24.6 Determine o valor da tensão que existe entre os terminais da fonte quando esta alimenta uma resistência de 15Ω .
- 24.7 Determine o valor da corrente debitada pela fonte quando esta alimenta uma resistência de 3Ω .
- 24.8 Determine o valor da resistência de carga quando a tensão que existe entre os terminais da fonte é de 37V.
- 24.9 Determine o valor da resistência de carga quando a corrente debitada pela fonte é de 18A.
- 24.10 Determine o valor máximo de potência que esta fonte pode entregar a uma carga resistiva.
- 24.11 Verifique se esta fonte se aproxima mais de uma fonte ideal de tensão ou de uma fonte ideal de corrente, quando alimenta uma carga que pode variar
 - entre 80Ω e 90Ω .
 - entre $0.1\Omega e 0.7\Omega$.

25. Uma resistência cujo valor pode variar entre 1Ω e 50Ω foi ligada aos terminais de uma fonte linear de energia. Após vários ensaios, verificou-se que a potência na resistência atinge um máximo de 5W quando o seu valor é de 20Ω .

- 25.1 Determine o Equivalente de Thévenin da fonte de energia.
- 26. Uma fonte de energia apresenta uma tensão de 15V entre os seus terminais quando se encontra em vazio. Se curto-circuitada com um condutor de resistência desprezável, a fonte debita uma corrente de 7,5A.
 - 26.1 Determine o valor da resistência interna da fonte.
 - 26.2 Determine o valor da tensão que existe entre os terminais da fonte quando esta alimenta uma resistência de 8Ω .
 - 26.3 Determine o valor máximo da potência entregue por esta fonte a uma carga resistiva.
 - 26.4 Verifique se esta fonte se aproxima mais de uma fonte ideal de tensão ou de uma fonte ideal de corrente, quando alimenta uma carga que pode variar entre 50Ω e 100Ω .
- 27. Uma fonte linear de energia possui uma resistência interna de 10Ω . O valor máximo da potência que esta fonte pode entregar a uma carga resistiva é 1000W.
 - 27.1 Determine o valor da tensão que existe entre os terminais da fonte quando esta se encontra em vazio.
 - 27.2 Determine o valor da corrente de curto-circuito desta fonte.
 - 27.3 Determine o valor da resistência de carga quando a tensão que existe entre os terminais da fonte é de 160V.
 - 27.4 Determine o valor da resistência de carga quando a corrente debitada pela fonte é de 5A.

28. Uma fonte de energia apresenta, em aberto, uma tensão de **10V** nos seus terminais. Se curtocircuitada com um condutor de resistência desprezável, a mesma fonte debita uma corrente de **1mA**.

28.1 Utilize o teorema de Thévenin para determinar se esta fonte recebe energia do circuito da figura ou lhe fornece energia quando ligada entre os terminais **A** e **B**.

28.2 De acordo com a figura seguinte, entre a fonte e o circuito já estudado coloca-se uma resistência ajustável **Rv**, cujo valor pode variar entre **0Ω** e **5Ω**. Do ponto de vista da nova carga assim constituída, verifique se a fonte de energia se aproxima mais de uma fonte ideal de tensão ou de uma fonte ideal de corrente.

- 29. Relativamente ao circuito da figura:
 - 29.1 Calcule **R** de modo a que a potência em jogo nesta resistência seja de **2W**.
 - 29.2 Calcule o valor de **R** de modo a que a potência que o circuito lhe fornece tenha o maior valor possível. Determine o valor dessa potência.

30. Recorrendo ao Princípio da Sobreposição, determine o valor da potência em jogo na fonte de 18V. Verifique se essa fonte recebe energia do circuito ou lhe fornece energia.

31. Recorrendo ao Princípio da Sobreposição, determine o valor da potência em jogo na fonte de 5A. Verifique se essa fonte recebe energia do circuito ou lhe fornece energia.

32. Recorrendo ao Princípio da Sobreposição, verifique se a fonte de 5V recebe energia do circuito ou lhe fornece energia. Calcule o valor da potência em jogo nessa fonte. Justifique todas as afirmações, cálculos e eventuais simplificações que efectuar.

33. No circuito da figura, o interruptor K encontra-se inicialmente fechado. No instante $t=t_0$, verifica-se que $u_c=0$ V. O interruptor é aberto nesse instante e novamente fechado 5ms depois. Determine:

- 33.1 o primeiro instante depois de t_0 em que $u_C = 100V$.
- 33.2 o valor máximo de u_C.
- 33.3 o valor de u_C no instante $t = t_0 + 7ms$.
- 33.4 o valor de i no instante $t = t_0 + 7ms$.

- 34. No circuito da figura, o interruptor K encontra-se inicialmente aberto. No instante $t = t_0$, verifica-se que $i_L = 0$ A. O interruptor é fechado nesse instante e novamente aberto 0,3ms depois. Determine:
 - 34.1 o equivalente de Thévenin do circuito que alimenta a bobina quando K está fechado.
 - 34.2 *o primeiro instante depois de t*⁰ *em que i*^L = 1A.
 - 34.3 o valor de i_L no instante $t = t_0 + 0.3$ ms.
 - 34.4 o valor de u_L no instante $t = t_0 + 0.45ms$.

35. No circuito da figura, o interruptor K encontra-se inicialmente aberto. No instante $t = t_0$, verifica-se que $i_L = 0$ A. O interruptor é fechado nesse instante e novamente aberto 10ms depois. Determine:

- 35.1 o primeiro instante depois de t_0 em que $i_L = 10A$.
- 35.2 o valor máximo de i_L.
- 35.3 o valor de i_L no instante $t = t_0+11,5ms$.
- 35.4 o valor da tensão na resistência no instante $t = t_0+11,5ms$ (marque na figura o sentido desta tensão).

- 36. No circuito da figura, o interruptor K encontra-se inicialmente fechado. No instante $t=t_0$, verifica-se que $u_C=0$ V. O interruptor é aberto nesse instante e novamente fechado 6,6ms depois. Determine:
 - 36.1 o equivalente de Thévenin do circuito que alimenta o condensador quando K está aberto.
 - 36.2 o primeiro instante depois de t_0 em que $u_C = 1V$.
 - 36.3 o valor de u_C no instante $t = t_0 + 6,6ms$.
 - 36.4 o valor de i no instante $t = t_0 + 8.8ms$.

37. Preencha os quadros anexos à figura.

K₁ fechado	K ₂ aberto	K ₃ fechado	
Tensão de Thév ao condensador	do		
Resitência de Thévenin do circuito ligado ao condensador			
Constante de tempo do circuito			
Valor de u c em i	regime permanente		

K₁ aberto	K₂ aberto	K₃ '	fechado
Resitência de Th	névenin do circuito nsador		

-	-	K	3 aberto
Resitência de Th	évenin do circuito		

K₁ aberto	K ₂ fechado	K	3 fechado
Tensão de Thév ao condensador	enin do circuito ligad	ob	
Resitência de Thévenin do circuito ligado ao condensador			
Constante de te	mpo do circuito		
Valor de u c em	regime permanente		

K ₁ fechado	K ₂ fechado	K ₃ fechado			
_					
Tensão de Thévenin do circuito ligado ao condensador					
Resitência de Thévenin do circuito ligado ao condensador					
Constante de ter	mpo do circuito				
Valor de u c em ı	regime permanente				

- Condições iniciais:

 K₁ aberto, K₂ aberto, K₃ fechado e u_c = 0.
- K_1 é fechado no instante t_0 e aberto 250ms depois.
- K₂ é fechado no instante t₀ + 500ms.
- K_3 é aberto no instante t_0 + 600ms e fechado quando u_C atinge 20V.

Valor máximo efectivamente atingido por \mathbf{u}_{c}	
Valor de u _C no instante t ₀ + 51ms	
Instante em que u _C atinge pela segunda vez o valor 15V	
Valor de I tal que K ₃ permaneça aberto 50ms	

38. Esboce o gráfico da tensão $u_R(t)$.

39. No instante t=0 o condensador encontra-se carregado com uma tensão de 5mV. Esboce o gráfico da tensão $u_{C}(t)$.

40. O condensador C carrega-se quando se fecha o interruptor INT e descarrega-se quando se abre esse interruptor. O gráfico mostra a corrente na resistência R_2 em função do tempo.

40.1 No mesmo sistema de eixos desenhe o gráfico da corrente i_c no condensador.

40.2 Suponha que:

$$E = 12V$$

$$R_1 = 10k\Omega$$

$$R_2 = 5k\Omega$$

$$C = 1000 \mu F$$

- 40.2.1 Calcule o valor inicial de i_{R2} (imediatamente antes de se abrir o interruptor).
- 40.2.2 Calcule o valor da tensão presente nos terminais do condensador 8 segundos depois de o interruptor ter sido aberto.

41. Desenhe os gráficos da variação no tempo das tensões \mathbf{u}_{xy} e \mathbf{u}_{yz} , indicando os valores máximos e mínimos.

A - Interruptor aberto.

F - Interruptor fechado.

- 42. No gáfico está representado um período completo da tensão periódica u_R.
 - 42.1 Desenhe, no mesmo gráfico, a evolução temporal da tensão u_L.

- 43. No gáfico está representado um período completo da corrente periódica i_L.
 - 43.1 Desenhe, no mesmo gráfico, a evolução temporal da corrente i_R.

- 44. No gáfico está representado um período completo da tensão periódica u_C.
 - 44.1 Desenhe, no mesmo gráfico, a evolução temporal da tensão u_R.

- 45. No gáfico está representado um período completo da corrente periódica i_R.
 - 45.1 Desenhe, no mesmo gráfico, a evolução temporal da corrente i_C.

- 46. Relativamente ao circuito da figura:
 - 46.1 Calcule o valor da potência em jogo em $R = 7\Omega$.
 - 46.2 Calcule o valor de R por forma a que I = 0.25A.
 - 46.3 Justifique a escolha do método de resolução adoptado, bem como eventuais simplificações que efectuar.

- 47. Verifique se a fonte ideal de corrente recebe energia do circuito ou lhe fornece energia. Calcule o valor da potência em jogo nessa fonte.
 - 47.1 Justifique a escolha do método de resolução adoptado, bem como eventuais simplificações que efectuar.

48. Verifique se a fonte de 5V recebe energia do circuito ou lhe fornece energia. Calcule o valor da potência em jogo nessa fonte.

48.1 Justifique a escolha do método de resolução adoptado, bem como eventuais simplificações que efectuar.

49. Sabendo que $U_A = 12V$ determine o valor de $U_{B_{\bullet}}$ Justifique todos os cálculos que efectuar.

