

Transcriptomics lesson

Wet-lab and in silico approaches

Why remove rRNA from you RNA samples?

New England Biolabs

Why waste money sequencing rRNA, which makes up >90% of all RNA

NEBNext rRNA depletion using RNase H

NEBNext mRNA enrichment using magnetic beads (for eukaryotic RNA only)

A Simple, Cost-Effective, and Robust Method for rRNA Depletion in RNA-Sequencing Studies

Peter H. Culviner, a Chantal K. Guegler, a Michael T. Lauba, b

Depletion of Abundant Sequences by Hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications

W. Gu¹⁺, E. D. Crawford^{2,3+}, B. D. O'Donovan⁴, M. R. Wilson⁵, E. D. Chow⁶, H. Retallack⁷ and J. L. DeRisi^{2,3*}

How does DASH work?

Shallow sequencing to identify abundant rRNA reads, and mRNA reads to avoid

"DASHit" software to identify "off-target" mRNA and "on-target" rRNA sites

Synthesize "on-target" guide RNAs to remove rRNA (or other highly abundant seqs)

Works on cDNA!!!

of on-target sites

So you've completed RNA-seq, now what?

- 1. Your rRNA-depletion worked, but you still likely have some degree of rRNA in your reads. To avoid potential biases in mapping estimates, you should still remove the remaining rRNA reads.
- 2. Your rRNA-depletion did not work well for some reason, so you would like to try to salvage your experiment by removing all the rRNA reads from the data.

Sequence analysis

Advance Access publication October 15, 2012

SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data

Evguenia Kopylova^{1,2,*}, Laurent Noé^{1,2} and Hélène Touzet^{1,2}

¹LIFL (UMR CNRS 8022 Université Lille 1) and ²Inria Lille Nord-Europe, 59655 Villeneuve d'Ascq, France

Associate Editor: Ivo Hofacker

Software	Illumina					Roche 454				
	rRNA	Run time	Latency	Memory (%)	Sensitivity (%)	rRNA	Run time	Latency	Memory (%)	Sensitivity (%)
SortMeRNA	998615	1 min 39 s	1×	8.5	99.861	299979	1 min 43 s	1×	6.3	99.993
riboPicker	558607	18 min 45 s	11×	6.8	55.860	123024	18 min 36 s	11×	5.6	41.008
riboPicker*	999941	6 h 33 min	238×	35.3	99.994	299999	9 h	314×	34	99.999
BLASTN	995322	23 h 52 min	868×	3.0	99.532	299978	18 h 35 min	649×	1.4	99.992
Meta-RNA	983332	2 h	$72\times$	33.3	98.333	299980	1 h 57 min	$68 \times$	12.9	99.993
rRNASelector	974118	1 h 47 min	$64 \times$	17.4	97.411	299976	2 h	$70 \times$	7	99.992
SSU-ALIGN	971221	6 h 49 min	248×	0.1	97.122	299902	5 h 50 min	204×	0.1	99.967

One million of MetaSim-simulated Illumina (100 nt) and 300 000 Roche 454 (>200 nt) rRNA reads against a representative 16 S rRNA database of 7659 sequences.

- Provide single-end or paired reads
 - Recommended pipeline:
 - 1. Quality-trimming (e.g. Trimmomatic)
- 2. Combine forward and reverse (e.g. Flash)
 - 3. rRNA-depletion SortMeRNA
- SortMeRNA uses a set of rRNA reference files
 - 1. Archaeal 16S
 - 2. Archaea 23S
 - 3. Bacterial 16S
 - 4. Bacterial 23S
 - 5. Eukaryotic 18S
 - 6. Eukaryotic 28S
 - 7. 5S

Onto the Jupyter Binder tutorial!

