

CSE3103: Database

Nazmus Sakib
Assistant Professor
Department of Computer Science and Engineering
Ahsanullah University of Science and Technology

Binary Operation Compatibility

- To perform Union, Intersection, difference operation relations should be UNION compatible.
- Two relations are UNION compatible if they have same number of attributes and belong to the same domain.
 - Column number need to be same.
 - Domain Type need to be same.

Binary Operation: Union

R		
A	В	
α	1	
α	2	
β	1	

S		
A	В	
α	2	
β	3	

UNION Operation among R and S relation

$$R U S = \begin{bmatrix} R \\ A \\ \alpha \\ \alpha \\ \beta \\ 1 \end{bmatrix}$$

S		
A	В	
α	2	
β	3	

	RUS		
=	Α	В	
	α	1	
	α	2	
	β	1	
	β	3	

Binary Operation: Intersection

R		
A	В	
α	1	
α	2	
β	1	

S		
A	В	
α	2	
β	3	

Intersection Operation among R and S relation

$$= \begin{array}{c|c} R \cap S \\ \hline A & B \\ \hline \alpha & 2 \end{array}$$

Binary Operation: Difference

R			
A	В		
α	1		
α	2		
β	1		

S		
A	В	
α	2	
β	3	

Difference Operation among R and S relation

$$R - S = \begin{bmatrix} R \\ A \\ \alpha \\ 1 \\ \alpha \\ 2 \\ \beta \\ 1 \end{bmatrix}$$

$$\begin{array}{c|cccc}
S & & & & R-S \\
\hline
A & B & & & & \\
\alpha & 2 & & & \\
\beta & 3 & & & & \\
\end{array}$$

В

		S
C D	A	В
S - R =	α	2
	β	3

©NAZMUS SAKIB

R			R	- S
A	В		Α	В
α	1	=	β	3
α	2			
β	1		6	

Binary Operation: Division

R		
A	В	
α	1	
α	2	
β	1	
θ	2	

5	5
E	3
1	
2	2

Rules:

- 1. The uncommon columns in divisor and dividend column will be the resulting column. Suppose ABC/C so AB will be the result column.
- 2. Elements that are jointly common with the dividend will be an account as quotient. There is no chance to keep the remainder.
- 3. If there are no common with the dividend then the quotient will be zero.

Division Operation among R and S relation

$$R / S = \begin{bmatrix} R \\ A & B \\ \alpha & 1 \\ \alpha & 2 \\ \beta & 1 \\ \theta & 2 \end{bmatrix} / \begin{bmatrix} S \\ B \\ 1 \\ 2 \end{bmatrix}$$

$$= \begin{array}{c} R/S \\ A \\ \alpha \end{array}$$

Binary Operation: Division

R		
Α	В	
s1	p1	
s1	p2	
s1	р3	
s1	p4	
s2	p1	
s2	p2	
s3	p2	
s4	p2	
s4	p4	

S	T
В	В
p2	p4

	S		R/S
/	В	=	A
•	p2		s1
	•		s2
			s3
			s4

$$R/T = \begin{array}{c} A \\ s1 \\ s4 \end{array}$$

Cartesian Product Operation

R A α β S
B
1
2
3

RXS		
A	В	
α	1	
α	2	
α	3	
β	1	
β	2	
β	3	

Cartesian Product Operation

R		
A	В	
α	1	
α	2	

S		
В	С	
1	X	
2	Y	

$$RXS = \begin{bmatrix} R \\ A \\ \alpha \\ 1 \\ \alpha \\ 2 \end{bmatrix}$$

С
X
Y

•			
R X S			
A	В	В	С
α	1	1	X
α	1	2	Y
α	2	1	X
α	2	2	Y

$$ho_{B \to R.B}$$
 (R)
 $ho_{B \to S.B}$ (S)

$$\rho_{B \to S.B}(S)$$

So, Finally
$$R X S =$$

RXS			
A	R.B	S.B	С
α	1	1	X
α	1	2	Y
α	2	1	X
α	2	2	Y

