Clase teórica 8

Temas avanzados de complejidad computacional

1. Profundizando en la complejidad espacial

- Se prueba (O. Reingold, 2005) que el problema de accesibilidad en grafos no dirigidos está en LOGSPACE:
 ACC = {G | G es un grafo no dirigido con un camino del primero al último vértice} está en LOGSPACE.
- No pareciera que el mismo problema pero en grafos dirigidos lo cumpla:
 D-ACC = {G | G es un grafo dirigido con un camino del primero al último vértice} no estaría en LOGSPACE:

En el segundo caso hay que contemplar la dirección de los arcos

D-ACC <u>sí está</u> en la clase NLOGSPACE, definida de la misma manera que hemos definido NP:

Un lenguaje L pertenece a NLOGSPACE sii:

cuenta con una MT M que para toda cadena w puede **verificar** en espacio $O(log_2|w|)$ si $w \in L$, con la ayuda de otra cadena (**certificado sucinto x**, es decir que $|x| \le poly(|w|)$), tal que x está en una cinta auxiliar de **sólo lectura** y cuyo cabezal **sólo va a la derecha**:

w está en la cinta de entrada, de sólo lectura.

x está en una cinta auxiliar, de sólo lectura, cuyo cabezal sólo va a la derecha (en caso contrario, M ocuparía espacio polinomial).

- D-ACC ∈ NLOGSPACE. Dado un grafo dirigido G de m vértices y una secuencia C = (i₁, i₂, ..., ik) de vértices, la siguiente MT M verifica en espacio O(log₂|G|) si C es un camino en G del primero al último vértice:
 - 1. Si G no es una entrada válida, rechaza.
 - 2. Hace a := 1 (con *a* recorre C).
 - 3. Si $i_a \ne 1$, rechaza (C no empieza con el vértice 1).
 - 4. Si (i_a, i_{a+1}) no es un arco de G, rechaza, y si $i_{a+1} = m$, acepta (C es un camino).
 - 5. Hace a := a + 1. Si a = m, rechaza (C no es un camino).
 - 6. Vuelve a (4).

Ejercicio: comprobar que M verifica D-ACC y lo hace en espacio O(log₂|G|).

Mayor detalle de la Jerarquía Espacial:

- D-ACC está entre los lenguajes más difíciles de NLOGSPACE.
- Formalmente, D-ACC es NLOGSPACE-completo respecto de las reducciones logarítmicas (o log-space).
- Definición: Una reducción log-space es una reducción polinomial (o poly-time) que ocupa espacio logarítmico.
- Notación: L₁ ≤_{log} L₂

• Si un lenguaje L es NLOGSPACE-completo y está en LOGSPACE, entonces LOGSPACE = NLOGSPACE.

Si M es una MT que decide L en espacio logarítmico, la siguiente MT M_i decide L_i en espacio logarítmico:

M_{fi} computa f_i en espacio logarítmico M decide L en espacio logarítmico ¡Pero f(w) puede medir poly(|w|)! (¿por qué?)

Veamos cómo construir M_i para que no viole la cota espacial logarítmica:

M_{fi} no le envía completa su salida a M, sino que le pasa cada vez **sólo el símbolo que M requiere**:

- Si M se mueve a la derecha en su cinta de entrada, M_{fi} le envía el símbolo siguiente de f(w).
- Si M se mueve a la izquierda en su cinta de entrada, M_{fi} se reinicia, obtiene el símbolo de f(w) que M requiere y se lo envía.
- Por otra parte, la clase NPSPACE también se define de manera similar a cómo se definen NP y NLOGSPACE.
 En este caso, PSPACE = NPSPACE. También se cumple NLOGSPACE = CO-NLOGSPACE y NPSPACE = CO-NPSPACE.
 (notar la diferencia con lo que ocurre en la jerarquía temporal)

05

2. Profundizando en la complejidad temporal de los problemas de búsqueda

- Los problemas más generales son los de búsqueda.
- Las MT asociadas no sólo aceptan sino que también devuelven una solución si existe.
- Por ejemplo, en el caso del problema de búsqueda asociado a SAT, conocido como FSAT, la MT M correspondiente, dada una fórmula booleana de entrada φ, hace:
 - (a) Devuelve una asignación \mathcal{A} que satisface φ , si existe.
 - (b) Responde no, si no existe.

- Las clases de problemas de búsqueda asociadas a las clases de lenguajes P, NP, etc., se identifican con FP,
 FNP, etc. Por ejemplo, FSAT ∈ FNP.
- Intuitivamente, decidir la existencia de una solución es más fácil que encontrar una. Pero en el caso, por ejemplo, de los lenguajes NP-completos, ¿realmente es así? Mostramos que no con un ejemplo.

• El problema FSAT es tan o más difícil que el problema SAT (intuitivo).

Sea M_{FSAT} una MT que obtiene en tiempo poly(n), si existe, una asignación $\mathcal A$ que satisface una fórmula ϕ .

La siguiente MT M_{SAT} decide en tiempo poly(n) si una fórmula φ es satisfactible:

Dada φ , M_{SAT} invoca a M_{FSAT} y acepta sii M_{FSAT} devuelve una asignación \mathcal{A} .

¿Por qué M_{SAT} tarda tiempo polinomial?

Si FSAT ∈ FP entonces SAT ∈ P.
O lo mismo: si SAT ∉ P entonces FSAT ∉ FP.

FSAT es tan o más difícil que SAT

Recíprocamente, el problema SAT es tan o más difícil que el problema FSAT (menos intuitivo).

Sea M_{SAT} una MT que decide en tiempo poly(n) si una fórmula φ es satisfactible.

La siguiente MT M_{FSAT} encuentra en tiempo poly(n), si existe, una asignación \mathcal{A} que satisface una fórmula ϕ :

Dada φ con m variables, M_{FSAT} invoca a M_{SAT} y devuelve, si existe, una asignación \mathcal{A} que satisface φ :

- 1. Invoca a M_{SAT} con φ. Si M_{SAT} responde no, entonces **responde no**.
- 2. Invoca a M_{SAT} con φ haciendo x_1 = verdadero. Si M_{SAT} responde sí, **fija para x₁ el valor verdadero**, y si responde no, **fija para x₁ el valor falso**.
- 3. Invoca a M_{SAT} con φ , utilizando el valor de x_1 obtenido y haciendo x_2 = verdadero. Si M_{SAT} responde sí, fija para x_2 el valor verdadero, y si responde no, fija para x_2 el valor falso.
- 4. Repite el proceso con las variables $x_3, x_4, ..., x_m$, y al final devuelve la asignación \mathcal{A} obtenida.

¿Por qué M_{ESAT} tarda tiempo polinomial?

Si SAT \in P, FSAT \in FP. Lo mismo: si FSAT ∉ FP, SAT ∉ P.

SAT es tan o más difícil que FSAT

Notar que asumimos que M_{SAT} puede recibir como entrada una fórmula con variables y constantes.

Otra posibilidad es que M_{ESAT} simplifique antes de invocar.

Se cumple además que P = NP implica FP = FNP (aún menos intuitivo).
 En otras palabras, si P = NP, todo problema de búsqueda de FNP se puede resolver en tiempo polinomial.

La prueba se basa en una propiedad de la reducción f utilizada para probar que SAT es NP-completo: no sólo se cumple que f, de tiempo polinomial, satisface $\mathbf{w} \in \mathbf{L}$ sii $\mathbf{f}(\mathbf{w}) = \mathbf{\phi} \in \mathbf{SAT}$, sino que además existe una función g, de tiempo polinomial, que asigna a un certificado de $\mathbf{\phi}$ uno de \mathbf{w} :

f y g se computan en tiempo polinomial \mathcal{A} es un certificado de ϕ x es un certificado de w f y g constituyen una Levin-reducción

Usando tal propiedad, esbozamos la prueba tomando como ejemplo el problema del **isomorfismo de grafos**:

M_{FISO} resuelve FISO en tiempo polinomial

- f asigna en tiempo polinomial al **par (G₁, G₂) de ISO** una fórmula booleana φ de SAT (f y g son una Levin-reducción).
- M_{FSAT} obtiene una asignación \mathcal{A} que satisface φ , invocando a una MT M_{SAT} que decide SAT, y como por hipótesis P = NP, entonces M_{SAT} tarda tiempo polinomial (y también M_{FSAT} por lo visto antes).
- g asigna en tiempo polinomial a \mathcal{A} un isomorfismo π entre G_1 y G_2 (f y g son una Levin-reducción).

3. Profundizando en las aproximaciones polinomiales

Mencionamos antes el problema de optimización del cubrimiento de vértices de un grafo:

Problema OCV: dado un grafo G, encontrar su cubrimiento de vértices mínimo.

Ejemplo

Cubrimiento mínimo (tamaño 2)

- El lenguaje que representa el problema es CV = {(G, K) | G tiene un cubrimiento de K vértices}.
- Como CV es NP-completo, se cumple que si P ≠ NP, entonces OCV no tiene resolución polinomial (ejercicio).
- En la práctica, a los problemas de optimización asociados a los lenguajes NP-completos se les busca algoritmos eficientes que generen soluciones "buenas", "cercanas al óptimo" (aproximaciones polinomiales).
- (Antes vimos un algoritmo que encuentra un cubrimiento de tamaño a lo sumo el doble del óptimo.)

- Formalizando, dada una MT M que computa una aproximación polinomial para un problema OL:
 - si opt(w) es la medida de la solución óptima para la cadena w,
 - y m(M(w)) es la medida de la solución obtenida por M para w,
 - el **error relativo** \mathcal{E}_{w} de M con respecto a w es:

$$\varepsilon_{w} = \frac{|\mathsf{m}(\mathsf{M}(\mathsf{w})) - \mathsf{opt}(\mathsf{w})|}{\mathsf{max}(\mathsf{m}(\mathsf{M}(\mathsf{w})), \, \mathsf{opt}(\mathsf{w}))}$$

- ε_w siempre varía entre 0 y 1.
- Si \mathcal{E} es el máximo de todos los \mathcal{E}_{w} , se dice que M es una \mathcal{E} -aproximación polinomial (o tiene umbral \mathcal{E}).
- P.ej., la aproximación polinomial que construimos para OCV es una 1/2-aproximación polinomial.
- El objetivo es encontrar aproximaciones polinomiales con un umbral lo más chico posible.
- Asumiendo P ≠ NP:
 - Existen problemas aproximables con cualquier \mathcal{E} , problemas aproximables con \mathcal{E} fijos (como OCV, donde $\mathcal{E} = 1/2$), y problemas no aproximables (no existen MT que los resuelvan con ningún \mathcal{E}).
 - La jerarquía de problemas correspondiente es:
 - 1. La clase **PAS** contiene los problemas aproximables con cualquier E.
 - 2. La clase APX contiene los problemas aproximables con E fijos.
 - 3. Se cumple **PAS** ⊂ **APX** ⊂ **ONP** (ONP es la clase de los problemas de optimización asociados a NP).

• Algunos problemas representativos de la jerarquía:

- El problema de la mochila (o problema KP, por Knapsack Problem) plantea optimizar el armado de una mochila:
 - Se define un peso máximo.
 - Se considera un conjunto de objetos, cada uno con peso y un volumen específicos.
 - Hay que maximizar el volumen ocupado sin exceder el peso máximo.
- También en este caso se plantean problemas completos, usando reducciones de determinadas características (APX-reducciones). No se conocen muchos problemas ONP-completos.

- Otro ejemplo. Problema de búsqueda del máximo corte de un grafo (OMC).
 - Dado un grafo G = (V, E), un corte de G es una partición {S, T} de V.
 - Un arco de corte conecta un vértice de S con un vértice de T.
 - El problema consiste en encontrar el corte con el máximo número de arcos.

- Ej. Corte de 5 arcos
- El lenguaje asociado es MC = {(G, K) | G tiene un corte de K arcos}. Se prueba que MC es NP-completo.
- La siguiente MT M es una **1/2-aproximación polinomial** para el problema. Dado G = (V, E), M hace:
 - 1. Hace S := Ø y T := V.
 - 2. Si moviendo un vértice i de S a T o de T a S crece el nro de arcos de corte, entonces lo mueve.
 - 3. Vuelve a (2).

- El tiempo de M es **polinomial** porque en cada paso (2) a lo sumo se agregan |E| arcos al corte, y hay |V| vértices.
- El corte obtenido mide al menos la mitad del máximo: Todo vértice i cumple que sus arcos de corte suman al menos como sus arcos no de corte (si no, el vértice i estaría en el otro conjunto). A partir de esto no es difícil llegar al umbral 1/2.

4. La jerarquía polinomial

• Vimos que un lenguaje L ∈ NP sii existe una MT M polinomial y un polinomio p tal que para toda cadena w:

```
w \in L sii (\exists x: |x| \le p(|w| tal que M acepta (w, x))
```

Sean por ejemplo los lenguajes:

MAX-IND = {(G, K) | el grafo G tiene un conjunto independiente de K vértices (K vértices no adyacentes), y no tiene conjuntos independientes de vértices más grandes}

 $MIN-FORM = \{(\phi, K) \mid la fórmula booleana <math>\phi$ tiene K símbolos, y no existe ninguna fórmula booleana equivalente más chica}

Dichos lenguajes también se pueden definir con MT polinomiales y certificados sucintos:

MAX-IND: Existe una MT M polinomial y un polinomio p tal que para toda cadena w:

 $w \in MAX-IND sii (\exists x_1: |x_1| \le p(|w|, \forall x_2: |x_2| \le p(|w|) tal que M acepta (w, x_1, x_2)), siendo:$

 $w = (G, K), x_1$ es un conjunto de K vértices de G, y x_2 es un conjunto de más de K vértices de G.

MIN-FORM: Existe una MT M polinomial y un polinomio p tal que para toda cadena w:

 $w \in MIN-FORM sii (\forall x_1: |x_1| \le p(|w|, \exists x_2: |x_2| \le p(|w|) tal que M acepta (w, x_1, x_2)), siendo:$

 $w = (\phi, K), x_1$ es una fórmula booleana de menos de K símbolos, y x_2 es una asignación de valores de verdad.

- Se definen:
 - La clase Σ₂P, con lenguajes expresados como se expresa MAX-IND
 - La clase Π₂P, con lenguajes expresados como se expresa MIN-FORM
 - Y en general, las clases $\Sigma_i P$ y $\Pi_i P$, de la siguiente manera:

• $L \in \Sigma_i P$, con $i \ge 0$, si existen una MT M polinomial y un polinomio p tal que, para toda cadena w:

$$w \in L \ sii \ (\exists x_1: |x_1| \le p(|w|, \ \forall x_2: |x_2| \le p(|w|), \ \exists x_3: |x_3| \le p(|w|, \ ..., \ M \ acepta \ (w, x_1, x_2, x_3, \ ...))$$

• $L \in \Pi_i P$, con $i \ge 0$, si existen una MT M polinomial y un polinomio p tal que, para toda cadena w:

$$w \in L \ sii \ (\forall x_1: |x_1| \le p(|w|, \exists x_2: |x_2| \le p(|w|), \ \forall x_3: |x_3| \le p(|w|, ..., M \ acepta \ (w, x_1, x_2, x_3, ...))$$

Para todo i, la clase Π_i P tiene los complementos de la clase Σ_i P (ejercicio)

- Así llegamos a la definición de la jerarquía polinomial o PH: es la unión infinita de las clases Σ_iP, con i ≥ 0.
 Se la puede definir también como la unión infinita de las clases Π_iP. PH se estructura por niveles:
 - Nivel 0: las clases $\Sigma_0 P = \Pi_0 P = P$
 - Nivel 1: las clases $\Sigma_1 P = NP y \Pi_1 P = CO-NP$
 - Nivel 2: las clases Σ₂P y Π₂P
 - Etc.
- Se cumple, para todo i ≥ 0, que Σ_{i+1}P y Π_{i+1}P incluyen a Σ_iP y Π_iP.
- La conjetura más aceptada es que las inclusiones son estrictas, o como se dice habitualmente, que PH no colapsa.
- Se dice que PH **colapsa en el nivel i** si existe algún i tal que $\Sigma_i P = PH$, es decir, si a partir de un determinado i se cumple $\Sigma_i P = \Sigma_{i+1} P = \dots$
- Se prueba que si P = NP, PH colapsa en el nivel 0, es decir, P = PH
- Aun valiendo P ≠ NP, podría suceder que PH colapse.
- Se prueba además que PH ⊆ PSPACE, y también en este caso la conjetura más aceptada es que la inclusión es estricta.

La conjetura aceptada es PH ⊂ PSPACE

5. Prueba de que existen lenguajes recursivos fuera de la clase P

- El lenguaje L = {<M> | M acepta <M> en 2|<M>| pasos} pertenece a R P.
- Intuitivamente, decidir si una MT M acepta una cadena w en 2^{|w|} pasos no puede llevar menos de 2^{|w|} pasos. La prueba de que L ∈ R es muy sencilla (ejercicio).
- Para probar que L ∉ P supondremos que no y llegaremos a contradicciones:
 - Partimos entonces de L ∈ P.
 - Así, también L^C ∈ P (¿por qué?), con L^C = {<M> | M no acepta <M> en 2 |<M>| pasos}
 - Sea M^c una MT que decide L^c en tiempo polinomial
 - Veamos qué sucede en particular cuando M^c procesa la cadena <M^c>:
 - Si <M^c> ∈ L^c entonces, como M^c tarda tiempo polinomial, M^c acepta <M^c> en |<M^c>|^k pasos, k constante, y así M^c acepta <M^c> en 2|<M^c>| pasos.
 Pero entonces, por la definición de L^c, <M^c> ∉ L^c (contradicción).
 - Si <M^c> ∉ L^c entonces M^c no acepta <M^c>, y así, en particular, M^c no acepta <M^c> en 2^{|<MC>|} pasos. Pero entonces, por la definición de L^c, <M^c> ∈ L^c (contradicción).
 - En conclusión, M^c no puede existir, lo que significa que L^c ∉ P, y por lo tanto L ∉ P.

prueba por diagonalización (L separa P de R)

Clase práctica 8

• Ejemplo. El problema del viajante de comercio revisitado.

TSP = $\{(G, B) \mid G \text{ es un grafo completo ponderado (arcos con números) y tiene un circuito de Hamilton (CH) cuyos arcos suman <math>\leq B\}$.

OTSP: "Hallar un CH mínimo de un grafo completo ponderado G".

Se cumple que OTSP es tan o más difícil que TSP (intuitivo):

Es decir, si se puede encontrar en tiempo poly(n) un CH mínimo de un grafo completo ponderado G, entonces también se puede decidir en tiempo poly(n) si G tiene un CH cuyos arcos suman ≤ B (ejercicio).

<u>También se cumple que TSP es tan o más difícil que OTSP (menos intuitivo):</u>

Es decir, si se puede decidir en tiempo poly(n) si un grafo completo ponderado G tiene un CH cuyos arcos suman \leq B (MT M_{TSP}), también se puede encontrar en tiempo poly(n) un CH mínimo de G (MT M_{OTSP}).

La MT M_{OTSP} referida se comporta de la siguiente manera. Dado un grafo completo ponderado G, hace:

- Paso 1. Obtiene, invocando a la MT M_{TSP} , la suma **N** de los arcos de un CH mínimo de G.
- Paso 2. Utilizando N, encuentra un CH mínimo de G.

Paso 1. Obtención de la suma N de los arcos de un CH mínimo de G:

- M_{OTSP} invoca a M_{TSP} con cadenas (G, N) varias veces, **sin modificar G pero modificando N**:
- Como el valor de N, codificado en binario, es a lo sumo 2ⁿ siendo n = |G| (¿por qué?),
 entonces por búsqueda binaria, arrancando por ejemplo con la cadena (G, 2ⁿ/2),
 N se puede obtener luego de O(log₂ 2ⁿ) = O(n) invocaciones (¿qué hace M_{OTSP} en cada iteración?)

Paso 2. Obtención de un CH mínimo de G utilizando N:

- M_{OTSP} invoca a M_{TSP} con cadenas (G, N) varias veces, ahora sin modificar N pero modificando G:
- En cada invocación, modifica el número de un arco distinto de G, asignándole el valor N + 1: Si M_{TSP} acepta, significa que dicho arco no forma parte de un CH mínimo, y por lo tanto no hace nada. Si M_{TSP} rechaza, significa que dicho arco forma parte de un CH mínimo, así que en este caso marca el arco (compondrá el CH mínimo que va a devolver) y le restituye su número original.
- M_{OTSP} procesa de esta manera todos los arcos, y por lo tanto efectúa |E| = O(n) invocaciones.

En verdad, si G tiene más de un CH mínimo, M_{TSP} en el paso 2 puede aceptar aún cuando el arco modificado forme parte de un CH mínimo. ¿Por qué de todos modos el algoritmo es correcto?

Claramente, M_{OTSP} resuelve OTSP y lo hace en tiempo poly(n)