SKRYPTY INSTYTUTU MATEMATYCZNEGO

TYTUŁ

Elementarny wykład z rachunku prawdopodobieństwa z zadaniami Wydanie trzecie poszerzone

AUTOR

 $Małgorzata\ Majsnerowska$

REDAKCJA TECHNICZNA

 $Małgorzata\ Majsnerowska$

PROJEKT OKŁADKI

 $Mirosława\ Bohuszewicz$

DRUK

AM Druk

COPYRIGHT ©

by Instytut Matematyczny Uniwersytet Wrocławski

Wrocław 2002

ISBN: 83-910055-5-0

Spis treści

Przedmowa	5
1. Algebra zbiorów i kombinatoryka	7
1.1. Zbiory i działania na zbiorach	7
1.2. Fundamentalna zasada mnożenia	9
1.3. Podstawowe modele kombinatoryczne	9
1.4. Zadania	14
2. Prawdopodobieństwo	17
2.1. Definicje i podstawowe własności	17
2.2. Prawdopodobieństwo warunkowe	24
2.3. Niezależność zdarzeń	29
2.4. Zadania	32
3. Zmienne losowe i ich rozkłady	36
3.1. Podstawowe definicje	36
3.2. Niezależność zmiennych losowych	39
3.3. Zmienne losowe dyskretne	39
3.4. Zmienne losowe z gęstością	43
3.5. Wektory losowe	51
3.6. Sumy niezależnych zmiennych losowych	55
3.7. Zadania	56
4. Momenty i transformaty	62
4.1. Wartość oczekiwana i wariancja	62
4.2. Funkcja tworząca i funkcja charakterystyc	zna 72
4.3. Zadania	78

5. Zbiezność zmiennych losowych i twierdzenia graniczne	81
5.1. Informacja o słabej zbieżności	81
5.2. Twierdzenie Poissona	82
5.3. Centralne Twierdzenie Graniczne	83
5.4. Zagadnienia estymacji	87
5.5. Prawo Wielkich Liczb	90
5.6. Zadania	93
Odpowiedzi do zadań	97
Zadania dodatkowe wraz z odpowiedziami	102
Ważniejsze rozkłady i ich charakterystki	110
Bibliografia	112

Przedmowa do wydania trzeciego

Skrypt powstał w oparciu o wykład z rachunku prawdopodobieństwa, który prowadziłam w ostatnich latach dla studentów matematyki specjalności nauczycielskiej na Uniwersytecie Wrocławskim. Przeznaczony jest więc przede wszystkim dla tej grupy Czytelników, chociaż może być również przydatny dla studentów kierunków technicznych oraz dla tych wszystkich, którzy chcieliby się zapoznać z podstawowymi pojęciami i metodami elementarnego rachunku prawdopodobieństwa.

Do zrozumienia treści skryptu wystarczy podstawowy kurs teorii mnogości i analizy matematycznej; zastosowany aparat nie obejmuje teorii miary ani funkcji zespolonych.

Na treść książki składają się następujące tematy: algebra zbiorów i kombinatoryka, prawdopodobieństwo, zmienne losowe i ich rozkłady, momenty i transformaty oraz twierdzenia graniczne. Każdy z nich starałam się zilustrować licznymi przykładami oraz zadaniami umieszczonymi na końcu rozdziałów. Do prawie wszystkich podane są odpowiedzi, czasem wskazówki rozwiązań. Drugie wydanie poszerzone zostało o pięćdziesiąt dodatkowych zadań zebranych wraz z odpowiedziami w końcowej części książki. Niniejsze trzecie zawiera ponadto oddzielny podrozdział poświęcony sumom niezależnych zmiennych losowych, kilkanaście nowych przykładów i zadań, jak również zestawienie ważniejszych rozkładów, ich momentów i transformat.

Według znanego powiedzenia, to czytelnicy sprawiają, że książka jest dobra. Na pewno, powiedzmy ostrożniej, mogą pomóc, by stała się lepsza. Tak też było w przypadku tego skryptu i jego pierwszych Czytelników – Profesorów Ilony i Bolesława Kopocińskich, którym za uwagi, rady i sugestie chcę raz jeszcze wyrazić swoją wdzięczność. Bardzo cenne były również dla mnie życzliwa krytyka i propozycje poprawek zawarte w recenzji Profesora Wiesława Dziubdzieli. Za końcowe uwagi dziękuję także Profesorowi Tomaszowi Rolskiemu oraz mojemu Mężowi, który pomógł mi ponadto w technicznym przygotowaniu do druku tekstu skryptu.

Małgorzata Majsnerowska

Wrocław, sierpień 2002 r.

Rozdział 1

Algebra zbiorów i kombinatoryka

1.1 Zbiory i działania na zbiorach

Zbiór jest pojęciem pierwotnym używanym zarówno w matematyce, jak i w języku potocznym dla określenia wszystkich tych objektów, rzeczy, osób, punktów, itd., zwanych ogólnie **elementami**, które posiadają określoną własność. Jako przykłady mogą służyć zbiory:

- pretendentów do tronu biorących udział w wolnej elekcji,
- średniowiecznych zamków na Dolnym Śląsku,
- bakterii szczepu podlegających określonym mutacjom,
- rozwiązań nierówności $\sin x \leq \frac{1}{5}$,
- wyników 500 zawodników w biegu maratońskim.

W matematyce zbiory oznaczamy zazwyczaj wielkimi literami alfabetu łacińskiego (rzadziej greckiego), a ich opis słowny zastępujemy następującym zapisem $A = \{x : W(x)\}$, co oznacza, że zbiór A tworzą elementy mające własność W. Zgodnie z tą konwencją zbiór z przykładu czwartego możemy przedstawić jako $D = \{x : \sin x \leq \frac{1}{5}\}$. Zbiór, do którego nie należy żaden element nazywamy **pustym** i oznaczamy przez \emptyset . Liczbę elementów zbioru A, inaczej **liczebność** zbioru A oznaczamy przez |A|. Liczbność zbioru może być zerem, liczbą naturalną lub nieskończonością. Zapis $x \in A$ oznacza, że x jest elementem zbioru A; $x \notin A$ jest tego zaprzeczeniem. Jeśli każdy element zbioru A jest elementem zbioru B, to mówimy, że zbiór A zawiera się w zbiorze B, co oznaczamy przez $A \subset B$. Zbiór A nazywamy wtedy

podzbiorem zbioru B. Jeśli $A \subset B$ oraz $B \subset A$, to mówimy, że zbiory A i B są równe, co oznaczamy przez A = B.

Zbiory możemy dodawać, mnożyć i odejmować, otrzymując nowe zbiory.

Zbiór elementów, które należą bądź do A bądź do B, nazywamy **sumą** zbiorów i oznaczamy przez $A \cup B$, czyli $A \cup B = \{x : x \in A \lor x \in B\}$.

Zbiór elementów, które należą jednocześnie do obu zbiorów A oraz B nazywamy **iloczynem** zbiorów i oznaczamy przez $A \cap B$, czyli $A \cap B = \{x : x \in A \land x \in B\}$. Jeśli $A \cap B = \emptyset$, to zbiory są **rozłączne**.

Zbiór elementów należących do A i nie należących do B, nazywamy **różnicą** zbiorów i oznaczamy przez $A \setminus B$, czyli $A \setminus B = \{x : x \in A \land x \notin B\}$.

Jeśli zbiór A jest podzbiorem pewnego ustalonego zbioru Ω , to zbiór $\Omega \setminus A = \{x : x \in \Omega \land x \notin A\}$ nazywamy **dopełnieniem** zbioru A i oznaczamy przez A'. Inaczej, $x \in A' \Leftrightarrow x \notin A$.

Działania na zbiorach podlegają następującym prawom:

• przemienności dodawania

$$A \cup B = B \cup A,\tag{1.1}$$

• przemienności mnożenia

$$A \cap B = B \cap A,\tag{1.2}$$

łaczności dodawania

$$(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C, \tag{1.3}$$

• łączności mnożenia

$$(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C, \tag{1.4}$$

• rozdzielności mnożenia względem dodawania

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C), \tag{1.5}$$

• rozdzielności dodawania względem mnożenia

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C), \tag{1.6}$$

• de Morgana

$$(A \cap B)' = A' \cup B',\tag{1.7}$$

$$(A \cup B)' = A' \cap B'. \tag{1.8}$$

1.2 Fundamentalna zasada mnożenia

Kombinatoryka, jako jedno z podstawowych narzędzi elementarnego rachunku prawdopodobieństwa, to, krótko mówiąc, sztuka wyznaczania i liczenia możliwości, przypadków, wariantów, itp. Przed wprowadzeniem podstawowych pojęć i modeli kombinatorycznych poznamy główną zasadę kombinatoryki czyli fundamentalną zasadę mnożenia.

Należy dokonać wielokrotnego wyboru, przy czym

w I kroku wybieramy spośród m_1 możliwości,

w II kroku wybieramy spośród m_2 możliwości,

. . .

w k-tym kroku wybieramy spośród m_k możliwości.

Jeśli kolejne wybory dokonywane są niezależnie, to liczba wszystkich wyników tego wielokrotnego wyboru jest postaci

$$m_1 \cdot m_2 \cdot \ldots \cdot m_k. \tag{1.9}$$

Przykład 1.2.1. Na szczyt góry M można dostać się jedynie wychodząc z obozu I u jej podnóża i przechodząc przez dwa obozy pośrednie II i III. Z I do II prowadzą 3 trasy, z II do III – 4 trasy, natomiast z III na szczyt góry można dostać się 2 trasami. Obliczmy, ile różnych wycieczek startujących z obozu I, a mających za cel wierzchołek góry M można zorganizować.

Trasę wycieczki określimy, dokonując dwukrotnie wyboru przejścia do następnego obozu, a następnie na szczyt. Zatem według reguły (1.9) mamy

$$3 \cdot 4 \cdot 2 = 24$$

takie trasy.

1.3 Podstawowe modele kombinatoryczne

Rozważmy n-elementowy zbiór $A = \{a_1, a_2, \ldots, a_n\}$. Jeśli elementy zbioru A ustawimy w określonej kolejności, np. $a_7, a_5, \ldots, a_n, a_1$, to otrzymamy **ciąg** n-elementowy oznaczany jako $(a_7, a_5, \ldots, a_n, a_1)$. Widzimy, że dla określenia zbioru wystarczy podać jego elementy. Jeśli istotna jest także kolejność ich występowania, to każde uporządkowanie wyznacza inny ciąg.

1. Zbiór A można uporządkować na

$$n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1 = n! \tag{1.10}$$

sposobów. Innymi słowy, ze zbioru A można utworzyć n! ciągów n-elementowych zwanych **permutacjami** zbioru A.

Rozważymy teraz dwa sposoby losowania elementów zbioru A: losowanie bez zwracania wylosowanego elementu oraz losowanie ze zwracaniem wylosowanego elementu. Przy obu regułach losowania w pierwszym przypadku uwzględniamy kolejność losowanych elementów, w drugim natomiast jest ona dla nas nieistotna.

2. Losując k razy ($k \le n$) elementy ze zbioru A bez zwracania, otrzymujemy

$$n \cdot (n-1) \cdot \ldots \cdot (n-(k-1)) \tag{1.11}$$

różnych ciągów zwanych k-elementowymi **wariacjami bez powtórzeń** oraz

$$\frac{n \cdot (n-1) \cdot \ldots \cdot (n-(k-1))}{k!} = \frac{n!}{k!(n-k)!} = \binom{n}{k}$$
 (1.12)

różnych zbiorów zwanych k-elementowymi kombinacjami (bez powtórzeń).

3. Losując k razy (k dowolne) elementy ze zbioru A ze zwracaniem, otrzymujemy

$$\underbrace{n \cdot n \cdot \dots \cdot n}_{k \text{ razy}} = n^k \tag{1.13}$$

różnych ciągów zwanych k-elementowymi **wariacjami z powtórzeniami** oraz

$$\binom{n+k-1}{k} \tag{1.14}$$

różnych zbiorów zwanych k-elementowymi **kombinacjami z powtórzeniami**. Zauważmy, że, jak wskazuje nazwa otrzymanych zgodnie z tą regułą losowania ciągów i zbiorów, mogą one zawierać powtarzające się wielokrotnie elementy zbioru A.

Rozważmy jeszcze uogólnienie modelu z punktu 1.

4. Zbiór A, który dzieli się na k podzbiorów takich, że pierwszy składa się z m_1 nierozróżnialnych elementów, drugi składa się z m_2 nierozróżnialnych elementów,

. . .

k-ty składa się z m_k nierozróżnialnych elementów, przy czym

$$m_1 + m_2 + \ldots + m_k = n$$
,

można uporządkować na

$$\binom{n}{m_1} \cdot \binom{n - m_1}{m_2} \cdot \binom{n - m_1 - m_2}{m_3} \cdot \dots \cdot \binom{n - m_1 - \dots - m_{k-1}}{m_k} = \frac{n!}{m_1! m_2! \dots m_k!}$$
(1.15)

sposobów. Wzór (1.15) przedstawia liczbę **permutacji z powtórzeniami** zbioru A.

Przykład 1.3.1. Niech $A = \{a_1, a_2, a_3, a_4\}$ i k = 2. Sprawdźmy dla tych danych prawdziwość wzorów (1.10) - (1.15).

1. Zbiór A można uporządkować na

$$4 \cdot 3 \cdot 2 \cdot 1 = 4!$$

sposobów, ponieważ jako pierwszy może wystąpić każdy z 4 elementów zbioru A, jako drugi każdy z 3 pozostałych, jako trzeci każdy z 2 pozostałych, a czwarte miejsce musi być zajęte przez jedyny nie występujący dotychczas element. Fundamentalna zasada mnożenia (1.9) daje więc powyższy wynik.

2. Losując ze zbioru A bez zwracania 2 elementy, otrzymamy

$$4 \cdot 3 = 12$$

różnych ciągów 2-elementowych (uzasadnienie jak wyżej) oraz

$$\frac{4\cdot 3}{2!} = 6$$

różnych zbiorów 2-elementowych. Widać to na poniższym diagramie:

Na przykład, dwa ciągi (a_1, a_2) oraz (a_2, a_1) "przechodzą" w jeden tylko zbiór $\{a_1, a_2\}$, gdy przestaje nas interesować kolejność tworzących je elementów a_1 oraz a_2 .

3. Losując ze zbioru A ze zwracaniem 2 elementy, otrzymamy

$$4 \cdot 4 = 16$$

różnych ciągów 2-elementowych, ponieważ na obu miejscach w ciągu może wystąpić każdy z 4 elementów zbioru A oraz 10 następujących zbiorów 2-elementowych:

$${a_1, a_1}, {a_2, a_2}, {a_3, a_3}, {a_4, a_4}, {a_1, a_2}, {a_1, a_3}, {a_1, a_4}, {a_2, a_3}, {a_2, a_4}, {a_3, a_4}.$$

Nie jest przypadkiem, że

$$\binom{4+2-1}{2} = \binom{5}{2} = 10.$$

4. Podzielmy elementy zbioru A na 3 podzbiory A_1, A_2, A_3 o liczebności 1, 1 oraz 2 odpowiednio, tak, by elementy w zbiorze A_3 były nierozróżnialne. Uczynimy to, wybierając 1 element spośród 4 tworząc podzbiór A_1 , następnie 1 element spośród 3 pozostałych tworząc A_2 i traktując potem jako jednakowe pozostałe dwa elementy – będą one tworzyć podzbiór A_3 . Na mocy (1.9) powyższą procedurę można przeprowadzić na

$$\begin{pmatrix} 4 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \frac{4!}{1!1!2!} = 12$$

sposobów. Powyższe wyrażenie można także interpretować jako liczbę wszystkich uporządkowań 4-elementowego zbioru A utworzonego z trzech podzbiorów zawierających odpowiednio 1, 1 oraz 2 jednakowe, ale różne od pozostałych elementy.

Przykład pozwala widzieć prawdziwość wzorów (1.10) - (1.15) poza wyjątkiem relacji (1.14). Uzupełnimy teraz tę lukę.

Dowód wzoru (1.14). Zauważmy, że otrzymanie zbioru o k elementach mogących występować wielokrotnie, a pochodzących ze zbioru n-elementowego jest równoznaczne z losowym rozmieszczeniem k nierozróżnialnych kul w n ponumerowanych komórkach (umawiamy się, że wylosowanie elementu a_1 ze zbioru A oznacza włożenie kuli do I komórki, elementu a_2 – do II komórki, . . . , elementu a_n – do n-tej komórki). Każde rozmieszczenie można z kolei przedstawić graficznie jako kombinację kresek i kropek np. $\cdots |\cdot|\cdots||\cdots$ oznaczających odpowiednio kule (kropki) i komórki (kreski na oznaczenie ściany komórki). W myśl tej konwencji, wynik losowania $\{a_1, a_1\}$ w przykładzie 1.3.1 będzie zapisany jako \cdots |||, wynik $\{a_2, a_3\}$ jako $|\cdot|\cdot|$, a wynik $\{a_4, a_4\}$ jako ||| \cdots . Wracając do ogólnego przypadku, razem mamy więc k (liczba kropek) i n-1 (liczba kresek) znaków. Jedno rozmieszczenie jest jednoznacznie ustalone przez wybranie k spośród wszystkich n-1+k znaków. Zgodnie ze wzorem (1.12) wszystkich wyborów mamy

$$\binom{n-1+k}{k} = \binom{n+k-1}{k}.$$

Wzór (1.14) jest zatem udowodniony.

Przeanalizujemy teraz pięć zadań kombinatorycznych, do rozwiązania których zastosujemy wzory (1.9) - (1.15).

Przykład 1.3.2.

(a) N osób, wśród których są A i B, można ustawić w kolejce na N! sposobów (wzór (1.10)). Ustawień, w których między A i B znajdują się dokładnie 2 osoby (zakładamy, że $N \geq 4$ oraz A występuje przed B) jest

$$(N-3) \cdot \binom{N-2}{2} \cdot 2! \cdot (N-2-2)! = (N-3) \cdot \frac{(N-2)!}{2!(N-4)!} \cdot 2! \cdot (N-4)! = (N-2)! \cdot (N-3).$$

Rzeczywiście, w każdym takim ustawieniu musi wystąpić "segment" składający się z osoby A, dwóch innych osób i osoby B. Zatem A może znajdować się w kolejce na każdym miejscu o numerze od 1 do N-3 włącznie. Gdy ustalimy już pozycję dla A, wybieramy na $\binom{N-2}{2}\cdot 2!$ sposobów 2 osoby mające stać między A i B. Ich kolejność jest istotna, więc stosujemy wzór (1.11). Pozostałe N-4 osoby ustawiamy na pozostałych N-4 miejscach na (N-4)! sposobów (wzór (1.10)).

- (b) Przyjmując, że alfabet ma 26 liter, możemy zgodnie z (1.13) ułożyć
- 26² różnych inicjałów 2-literowych;
- 26³ różnych iniciałów 3-literowych.

Aby przy użyciu 3-literowych inicjałów można było odróżnić 1 mln osób, alfabet musiałby mieć n=100 liter. Rzeczywiście, $n^3=1\,000\,000$ dla n=100.

(c) Należy umieścić n kul w n ponumerowanych komórkach tak, by dokładnie jedna pozostała pusta.

Jeśli kul nie rozróżniamy, możliwości rozmieszczeń jest n(n-1), ponieważ każdemu wyborowi komórki, która ma pozostać pusta, a może nią być każda z n komórek, odpowiada wybór jednej z pozostałych n-1 komórek, która będzie zawierać 2 kule. Jeśli natomiast kule rozróżniamy, takich rozmieszczeń będzie

$$n \cdot (n-1) \cdot \binom{n}{2} \cdot (n-2)! = n(n-1)\frac{n!}{2}.$$

Każdemu bowiem opisanemu wyżej wyborowi komórek odpowiada jeszcze wybór 2 spośród n kul, które będą umieszczone razem (wzór (1.12)) oraz każde z (n-2)! ustawień pozostałych n-2 kul w n-2 komórkach (wzór (1.10)).

(d) Dziesięciu pasażerów (zakładamy, że są nierozróżnialni) może opuścić windę jadącą

od I do VII piętra na

$$\binom{7+10-1}{10} = \binom{16}{10} = 8008$$

sposobów. Rzeczywiście, jeśli posłużymy się modelem o k = 10 kulach, które należy rozmieścić w n = 7 komórkach, to zastosowanie wzoru (1.14) daje powyższą odpowiedź.

Jeśli dodatkowo zażądamy, aby na każdym piętrze wysiadł przynajmniej jeden pasażer, to takich rozmieszczeń będzie

$$\binom{10-1}{7-1} = \binom{9}{6} = 84.$$

Stosując bowiem w dalszym ciągu model rozmieszczania k nierozróżnialnych kul w n komórkach, widzimy, że w omawianym przypadku każde rozmieszczenie jest równoważne z wyborem n-1 miejsc (dla kresek – ścianek komórek) spośród k-1 miejsc (tyle jest miejsc między k kropkami – kulami).

(e) Ze słowa METODYKA można utworzyć 8! różnych "słów" (tzn. ciągów literowych) 8-literowych (wzór (1.10)).

Ze słowa REPRYWATYZACJA natomiast utworzymy zgodnie ze wzorem (1.15)

$$\frac{14!}{3!2!2!\underbrace{1!\dots 1!}_{7 \text{ razy}}} = 3632428800$$

"słów" 14-literowych, ponieważ litera A występuje 3 razy, R-2 razy, Y-2 razy, a pozostałe litery tworzą już 1-elementowe "podzbiory" zbioru liter rozpatrywanego słowa.

1.4 Zadania

- 1. Pokaż, że (A')' = A.
- 2. Korzystając z praw rachunku zdań, pokaż prawdziwość równości (1.1) (1.8).
- 3. Trasa komiwojażera przebiega przez trzy miejscowości A, B oraz C, przy czym przez każdą z nich dwukrotnie. Oblicz, ile tras rozpoczyna się i kończy w miejscowości B.

1.4. ZADANIA 15

4. Pewną pracę należy podzielić między trzy dziewczęta, czterech chłopców i pięciu mężczyzn. Oblicz, na ile sposobów można to zrobić, dysponując trzema stanowiskami pracy dla dziewcząt, czterema dla chłopców i pięcioma dla mężczyzn.

- 5. W ostatnim etapie Konkursu Chopinowskiego jury decyduje o kolejności 6 finalistów. Przyjmijmy, że jeden z finalistów może ponadto dostać nagrodę za najlepsze wykonanie mazurków. Oblicz, ile jest możliwych rozstrzygnięć finału, jeśli nie są przyznawane miejsca ex aequo.
- 6. Oblicz, na ile sposobów można powkładać cztery listy do czterech zaadresowanych kopert tak, by do właściwego adresata trafiły wszystkie listy, trzy listy, dwa listy, jeden list oraz tak, by żaden list nie trafił do właściwego adresata.
- 7. Danych jest n różnych przedmiotów. Oblicz, na ile sposobów zbiór ten można podzielić
 - (a) między dwie osoby A i B,
 - (b) na dwie części.
 - W obu przypadkach dopuszczamy podziały skrajnie niesprawiedliwe.
- 8. Danych jest k przedmiotów typu I oraz l przedmiotów typu II. Oblicz, na ile sposobów można je wszystkie rozmieścić w n różnych szufladach.
- 9. Litery alfabetu Morse'a są utworzone z ciągów kropek i kresek z dozwolonym powtarzaniem. Oblicz, ile liter można utworzyć z co najwyżej dziesięciu symboli.
- 10. W kinie jest dwieście miejsc. Oblicz, na ile sposobów można tam rozmieścić pięćdziesięciu widzów, zakładając, że ich nie rozróżniamy.
- 11. Grupa dwudziestu studentek i dziesięciu studentów ma utworzyć sześcio-osobowy komitet organizujący Juwenalia. Oblicz, ile może powstać komitetów, do których wejda zarówno panie, jak i panowie.
- 12. Oblicz, ile jest możliwych siedmiocyfrowych numerów telefonicznych rozpoczynających się od 34.
- 13. Pewna choroba powoduje zmiany komórkowe podzielone na cztery różne kategorie. Oblicz
 - (a) ile jest możliwych wyników badań czterech pacjentów,

- (b) ile z nich oznacza, że u wszystkich choroba spowodowała te same zmiany,
- (c) ile z nich oznacza, że dokładnie dwóch pacjentów ma te same zmiany.
- 14. Oblicz, ile jest wszystkich liczb czterocyfrowych, w których nie występuje cyfra 2, a żadne dwie kolejne cyfry nie są jednakowe.
- 15. Trzech rowerzystów wiozących różne bagaże jedzie jeden za drugim na różnych rowerach. Co godzinę następuje zmiana kolejności w szyku lub zmiana bagażu lub zmiana rowerów. Jazda trwa tak długo, aż wyczerpane zostaną wszystkie możliwości. Oblicz, ile godzin jadą rowerzyści.
- 16. Oblicz, na ile sposobów można ustawić w biblioteczce dwa dzieła trzy-tomowe i trzy dzieła cztero-tomowe w taki sposób, by tomy poszczególnych prac nie były rozdzielone.
- 17. Na trzech końcowych przystankach autobus wiezie dwóch pasażerów. Oblicz, ile jest przypadków, że
 - (a) każdy wysiądzie na innym przystanku,
 - (b) dokładnie jeden pasażer dojedzie do ostatniego przystanku.
- 18. Oblicz, na ile sposobów można ułożyć w rzędzie pięć kul białych, cztery kule czarne i trzy kule żółte. A jeśli mamy do dyspozycji cztery kule białe, trzy czarne i pięć żółtych?
- 19. Oblicz, na ile sposobów można podzielić dwudziestu harcerzy na cztery jednakowo liczne grupy. Na ile sposobów mogą być oni rozdzieleni do czterech podobozów, jeśli do każdego ma trafić pięciu harcerzy?
- 20. Mając do dyspozycji siedem spółgłosek i pięć samogłosek, tworzymy "słowa" o czterech spółgłoskach i pięciu samogłoskach. Oblicz, ile takich "słów" ułożymy.
- 21. Rozważając wszystkie możliwości wyboru k studentów z grupy m pań oraz n panów, pokaż, że

$$\binom{n+m}{k} = \binom{n}{0} \binom{m}{k} + \binom{n}{1} \binom{m}{k-1} + \ldots + \binom{n}{k} \binom{m}{0}.$$

Podstawiając k = m = n, pokaż, że

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^{2}.$$

Rozdział 2

Prawdopodobieństwo

2.1 Definicje i podstawowe własności

Rozważmy doświadczenie losowe, czyli takie, którego poszczególne wyniki zależą od pewnego mechanizmu losowego. Za typowe doświadczenia losowe zwykło się uważać rzuty monetą lub kostką, rozdawanie kart z potasowanej talii, losowanie kul z urny, loterię, grę w ruletkę, trafianie do celu na tarczy strzelniczej.

Oznaczmy przez Ω zbiór możliwych wyników w doświadczeniu losowym. Będziemy je nazywać zdarzeniami elementarnymi, Ω – przestrzenią zdarzeń (elementarnych). Podzbiór A przestrzeni zdarzeń Ω nazywamy zdarzeniem, a jego elementy – zdarzeniami elementarnymi sprzyjającymi zdarzeniu A. Zbiór pusty \emptyset nosi nazwę zdarzenia niemożliwego, dopełnienie A' zbioru A zdarzeń elementarnych nazywamy zdarzeniem przeciwnym do A. Iloczyn zdarzeń $A \cap B$ odpowiada jednoczesnemu zajściu zdarzeń A i B, a suma zdarzeń A i B – zajściu co najmniej jednego z nich. Jeśli $A \cap B = \emptyset$, to mówimy, że zdarzenia A i B wykluczają się. Zauważmy, że działania dodawania, mnożenia i brania dopełnień na zdarzeniach podlegają prawom (1.1) – (1.8).

Pojęcie prawdopodobieństwa wprowadzimy naprzód dla skończonej przestrzeni zdarzeń elementarnych $\Omega = \{\omega_1, \dots, \omega_n\}.$

Definicja 2.1.1. Funkcję P przyporządkowującą każdemu zdarzeniu elementarnemu ω_i wartość $P(\omega_i),\ i=1,\ldots,n,$ taką, że

$$P(\omega_i) \ge 0, \ i = 1, \dots, n \quad \text{oraz} \quad \sum_{i=1}^{n} P(\omega_i) = 1$$
 (2.1)

nazywamy prawdopodobieństwem dyskretnym skończonym.

Dla dowolnego zdarzenia $A \subset \Omega$ prawdopodobieństwo określamy jako

$$P(A) = \sum_{\{i: \, \omega_i \in A\}} P(\omega_i). \tag{2.2}$$

W szczególności, jeśli przyjmiemy $P(\omega_i) = \frac{1}{n}, \ i = 1, \dots, n$, to powyższy wzór przyjmie postać

$$P(A) = \frac{|A|}{|\Omega|},\tag{2.3}$$

znana jako klasyczna definicja prawdopodobieństwa.

Zauważmy, że prawdopodobieństwo dane wzorem (2.2) ma następujące własności:

- 1. jest wielkością nieujemną,
- 2. prawdopodobieństwo sumy skończonej liczby zdarzeń parami wykluczających się jest równe sumie prawdopodobieństw tych zdarzeń,
- 3. prawdopodobieństwo przestrzeni zdarzeń wynosi 1.

Rozważymy teraz dwa przykłady prawdopodobieństwa dyskretnego skończonego.

Przykład 2.1.1.

(a) Przy rzucie trzema kostkami: białą, zieloną i brązową zdarzeniem elementarnym jest 3-elementowy ciąg, którego pierwszy wyraz oznacza wynik na kostce białej, drugi
na zielonej, a trzeci – na brązowej. Przestrzeń zdarzeń możemy więc zapisać w postaci

$$\Omega = \{ \omega = (x_1, x_2, x_3) : x_i = 1, \dots, 6, i = 1, 2, 3 \}$$

Znajdźmy prawdopodobieństwo zdarzenia A polegającego na tym, że suma "wyrzuconych" oczek wynosi co najmniej 17.

Zdarzenie A opiszemy jako

$$A = \{ \omega \in \Omega : x_1 + x_2 + x_3 \ge 17 \}.$$

Jeśli wszystkie kostki są symetryczne, przypisanie każdemu wynikowi (zdarzeniu elementarnemu) jednakowego prawdopodobieństwa jest uzasadnione. Możemy więc zastosować wzór (2.3). Na mocy (1.13) widzimy, że $|\Omega| = 6^3$. Dla obliczenia liczebności zdarzenia A, zauważmy, że tworzą go następujące zdarzenia elementarne: (6,6,6) oraz (5,6,6), (6,5,6), (6,6,5), a zatem |A| = 4. Zgodnie więc z podaną definicją

$$P(A) = \frac{4}{6^3} = \frac{1}{54}.$$

(b) W totolotku wybieramy 6 liczb spośród $\{1,2,\ldots,49\}$. Zyskujemy udział w I nagrodzie (oznaczmy to zdarzenie przez A), jeśli wytypujemy wszystkie liczby (jest ich także sześć) otrzymane w publicznym losowaniu. Obliczmy prawdopodobieństwo tego zdarzenia.

Zgodnie z (1.12) mamy $|\Omega|=\binom{49}{6}=13\,983\,816$ ora
z|A|=1. Stąd na mocy (2.3)

$$P(A) = \frac{1}{\binom{49}{6}} = 0.0000000715.$$

(c) Między troje dzieci dzielimy losowo dwanaście zabawek. Obliczmy prawdopodobieństwo zdarzenia A, że każde z nich otrzyma cztery zabawki.

Przestrzeń zdarzeń związaną z tym doświadczeniem możemy zapisać w postaci

$$\Omega = \{ \omega = (x_1, x_2, \dots, x_{12}) : x_i = 1, 2, 3, i = 1, 2, \dots, 12 \}.$$

Jej liczność na mocy wzoru (1.13) wynosi $|\Omega|=3^{12}=531\,441,$ natomiast z (1.15) widzimy, że $|A|=\frac{12!}{4!4!4!},$ skąd

$$P(A) = \frac{12!}{(4!)^3 3^{12}} = 0.065.$$

Przykład 2.1.2. Przy rzucie dwoma nierozróżnialnymi kostkami zdarzeniem elementarnym jest 2-elementowy zbiór. Przestrzeń zdarzeń tego doświadczenia losowego przedstawia się następująco:

$$\Omega = \{\omega = \{x_1, x_2\} : x_i = 1, \dots, 6, i = 1, 2\}
= \{\{1, 1\}, \{2, 2\}, \{3, 3\}, \{4, 4\}, \{5, 5\}, \{6, 6\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{1, 6\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{2, 6\}, \{3, 4\}, \{3, 5\}, \{3, 6\}, \{4, 5\}, \{4, 6\}, \{5, 6\}\}.$$

Tak więc $|\Omega| = 21$. Znajdźmy prawdopodobieństwo zdarzenia A polegającego na tym, że mniejszy z wyników wynosi co najmniej 5, czyli zdarzenia postaci

$$A=\{\omega\in\Omega:\,\min\{x_1,x_2\}\geq 5\}.$$

Wydaje się, że w tym doświadczeniu losowym wyniki nie są jednakowo prawdopodobne (możemy się spodziewać, że np. wynik $\{1,2\}$ pojawi się częściej niż $\{1,1\}$) i posługiwanie się wzorem (2.3) jest nieuzasadnione. W celu określenia prawdopodobieństwa na przestrzeni Ω zdefiniujemy je naprzód dla poszczególnych zdarzeń elementarnych w następujący sposób:

Tab. 1.

ω_i	{1,1}	 {6,6}	{1,2}	 {1,6}	{2,3}	 {2,6}	 {5,6}
$P(\omega_i)$	$\frac{1}{36}$	 $\frac{1}{36}$	$\frac{2}{36}$	 $\frac{2}{36}$	$\frac{2}{36}$	 $\frac{2}{36}$	 $\frac{2}{36}$

Tak zadane prawdopodobieństwo spełnia warunki (2.1), ponieważ

$$P(\omega_i) \ge 0, i = 1, 2, \dots, 21$$
 oraz $\sum_{i=1}^{21} P(\omega_i) = 6 \cdot \frac{1}{36} + 15 \cdot \frac{2}{36} = 1.$

Rozważane zdarzenie A tworzą następujące zdarzenia elementarne: $\{5,5\}, \{6,6\}$ oraz $\{5,6\}$, a zatem zgodnie ze wzorem (2.2) jego prawdopodobieństwo wynosi

$$P(A) = 2 \cdot \frac{1}{36} + \frac{2}{36} = \frac{1}{9}.$$

Nietrudno zauważyć, że odpowiednio zmodyfikowana definicja 2.1.1 może być również stosowana w przypadku przeliczalnej przestrzeni zdarzeń.

Przykład 2.1.3. Rozważmy doświadczenie losowe polegające na rzucaniu symetryczną monetą do momentu pierwszego pojawienia się orła. Zdarzeniem elementarnym jest tu więc numer rzutu, w którym po raz pierwszy wypadnie orzeł, a przestrzeń Ω możemy przedstawić jako:

$$\Omega = \{\omega_1, \omega_2, \ldots\} = \{1, 2, \ldots, \}.$$

Prawdopodobieństwo zdarzeń elementarnych określamy następująco:

$$P(\omega_i) = P(i) = \frac{1}{2^i}, \qquad i = 1, 2, \dots,$$

a dla dowolnego zdarzenia $A \subset \Omega$ zgodnie ze wzorem (2.2). Łatwo widać,
że

$$P(\omega_i) \ge 0, \ i = 1, 2, \dots, \quad \text{oraz} \quad \sum_{i=1}^{\infty} P(\omega_i) = \sum_{i=1}^{\infty} \frac{1}{2^i} = \frac{1}{2} \cdot \frac{1}{1 - \frac{1}{2}} = 1.$$

Jest to przykład prawdopodobieństwa dyskretnego nieskończonego.

W przeciwieństwie do powyższych przykładów wielu zagadnieniom praktycznym nie odpowiada model pozwalający zastosować definicję 2.1.1, przede wszystkim z powodu większej niż przeliczalna liczebności przestrzeni zdarzeń. Przykłady przedstawione są przy końcu tego paragrafu. Podamy więc teraz ogólną definicję prawdopodobieństwa nie podlegającą tym ograniczeniom, zachowującą jednak naturalne własności

21

1-3 prawdopodobieństwa określonego wzorem (2.2). Do jej wysłowienia potrzebne bedzie pojęcie σ -ciała odnoszace się do rodziny podzbiorów przestrzeni zdarzeń.

Definicja 2.1.2. Niepustą rodzinę \mathcal{F} podzbiorów zbioru Ω spełniającą warunki

(i) jeśli $A \in \mathcal{F}$, to $A' \in \mathcal{F}$,

(ii) jeśli
$$A_n \in \mathcal{F}, n = 1, 2, ..., \text{ to } \bigcup_n^{\infty} A_n \in \mathcal{F}$$
 nazywamy σ -ciałem.

Jest to więc niepusta rodzina zbiorów (zdarzeń) zamknięta na branie dopełnień i nieskończonych sum. Warto tu jeszcze nadmienić, że w przypadku skończonego zbioru Ω zazwyczaj rozważanym σ -ciałem jest rodzina wszystkich jego podzbiorów.

Definicja 2.1.3. Funkcję rzeczywistą P określoną na podzbiorach przestrzeni zdarzeń Ω tworzących σ -ciało \mathcal{F} , mającą własności

(P1)
$$P(A) \ge 0$$
,

(P2) jeśli
$$A_i \cap A_j = \emptyset$$
, $i \neq j$, to

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n),$$

(P3)
$$P(\Omega) = 1$$

nazywamy prawdopodobieństwem.

Trójkę (Ω, \mathcal{F}, P) nazywamy **przestrzenią probabilistyczną**, a własności (P1) – (P3) **aksjomatami prawdopodobieństwa**. Rozpoznajemy, że pierwszy i ostatni pokrywają się z analogicznymi własnościami prawdopodobieństwa danego wzorem (2.2) i oznaczają odpowiednio, że prawdopodobieństwo jest funkcją nieujemną oraz że jej wartość na przestrzeni zdarzeń elementarnych wynosi 1. Drugi z aksjomatów, zwany warunkiem **przeliczalnej addytywności**, mówi o tym, że na zdarzeniach parami wykluczających się prawdopodobieństwo sumy nieskończonego ciągu zdarzeń jest równe sumie prawdopodobieństw tych zdarzeń. Jego szczególnym przypadkiem $(\mathbf{P2'})$ jest własność 2 poprzednio zdefiniowanego prawdopodobieństwa zwana **skończoną addytywnością**. Odnosi się bowiem do skończonego ciągu zdarzeń:

(P2') jeśli
$$A_i \cap A_j = \emptyset$$
, $i \neq j = 1, 2, \dots, N$, $N < \infty$, to

$$P(\bigcup_{n=1}^{N} A_n) = \sum_{n=1}^{N} P(A_n).$$

Zauważmy, że warunek (P2') otrzymujemy z (P2) przyjmując $A_n=\emptyset,\ n=N+1,\ldots,$ co w połączeniu z poprzednimi spostrzeżeniami dowodzi prawdziwości następującego

stwierdzenia dotyczącego relacji obu definicji prawdopodobieństwa.

Uwaga 2.1.4. Funkcja dana wzorem (2.2) spełnia aksjomaty (P1), (P2) i (P3). Innymi słowy, jest *przykładem* prawdopodobieństwa określonego w definicji 2.1.3.

Przedstawimy teraz najważniejsze **własności prawdopodobieństwa** wynikające z aksjomatów (P1) – (P3).

Jeśli
$$A \subset B$$
, to $P(A) \leq P(B)$, (monotoniczność) (2.4)

$$P(A') = 1 - P(A), (2.5)$$

$$P(A) \le 1,\tag{2.6}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B),$$
 (2.7)

$$P(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} P(A_i)$$
 (nierówność Boole'a). (2.8)

Dowody.

(i) Jeśli $A \subset B$, to $B = A \cup (B \setminus A)$, przy czym zdarzenia A oraz $B \setminus A$ wykluczają się. Stąd na mocy skończonej addytywności (aksjomat (P2')) $P(B) = P(A) + P(B \setminus A)$. Biorąc z kolei pod uwagę postulat (P1), widzimy, że $P(B \setminus A) \geq 0$, czyli

$$P(B) - P(A) = P(B \setminus A) \ge 0, \tag{2.9}$$

co jest równoważne nierówności (2.4).

- (ii) Równość (2.5) wynika bezpośrednio z równości we wzorze (2.9), jeśli przyjmiemy $B = \Omega$ oraz skorzystamy z aksjomatu (P3).
- (iii) Nierówność (2.6) jest szczególnym przypadkiem (2.4), jeśli przyjmiemy $B = \Omega$ oraz skorzystamy z tego, że $P(\Omega) = 1$.
- (iv) Zauważmy, że dla dowolnych zdarzeń A oraz B, ich sumę możemy przedstawić w następujący sposób

$$A \cup B = A \cup (B \setminus (A \cap B)),$$

przy czym zdarzenia Aora
z $B \backslash (A \cap B)$ wykluczają się. Na mocy (P2') i (2.9) zachodzi

$$P(A \cup B) = P(A) + P(B \setminus (A \cap B)) = P(A) + P(B) - P(A \cap B),$$

ponieważ $A \cap B \subset B$. Prawdziwa jest zatem równość (2.7).

(v) Nierówność (2.8) udowodnimy metodą indukcji zupełnej.

Dla n=2 wynika ona bezpośrednio z (2.7) oraz tego, że $P(A \cap B) \geq 0$.

Zakładając prawdziwość nierówności dla n, zauważmy, że na mocy prawa łączności dodawania zdarzeń (1.3) i ponownie wzoru (2.7) mamy

$$P(\bigcup_{i=1}^{n+1} A_i) = P(\bigcup_{i=1}^{n} A_i) + P(A_{n+1}) - P((\bigcup_{i=1}^{n} A_i) \cap A_{n+1}).$$

Prawdziwość tezy dla n+1 otrzymujemy z założenia indukcyjnego oraz tego, że wyrażenie $P((\bigcup_{i=1}^n A_i) \cap A_{n+1})$ jest nieujemne.

Podamy teraz zapowiedziane przykłady modeli losowych, w których nie można określić prawdopodobieństwa według definicji 2.1.1.

Przykład 2.1.4.

(a) Rozważmy przestrzeń zdarzeń elementarnych postaci

$$Ω = {\text{punkty koła } K(0,5) \text{ o środku w } (0,0) \text{ i promieniu 5}}$$

$$= {(x,y): x^2 + y^2 \le 25}.$$

Dla A dowolnego podzbioru K(0,5), dla którego określone jest pole S(A), prawdopodobieństwo definiujemy jako

$$P(A) = \frac{S(A)}{S(K(0,5))}.$$

Jest to tzw. prawdopodobieństwo geometryczne.

(b) Jako konkretny przykład modelu z prawdopodobieństwem geometrycznym rozważmy następujące **zadanie o spotkaniu**. Dwie osoby A i B przychodzą w określone miejsce, każda w dowolnej chwili między godziną 10 a 10^{30} . Obliczmy prawdopodobieństwo tego, że czas od momentu pojawienia się pierwszej z nich do przybycia drugiej nie będzie dłuższy niż 10 minut.

Sformalizujemy rozważaną sytuację następująco:

$$\Omega = \{ \omega = (x, y) : 0 \le x, y \le 30 \},$$

co oznacza, że zdarzeniem elementarnym jest punkt kwadratu, którego współrzędne x, y określają chwile przybycia osób A i B, odpowiednio. Rozpatrywane zdarzenie C zapisujemy jako

$$C = \{ \omega \in \Omega : |x - y| < 10 \}$$

i zgodnie z przyjętą definicją prawdopodobieństwa geometrycznego obliczamy

$$P(C) = \frac{S(C)}{S(\Omega)} = \frac{5}{9}.$$

- (c) Niech teraz $\Omega = \Re = \{x: -\infty < x < \infty\},$ a fbędzie funkcją rzeczywistą taką, że
 - $f(x) \ge 0$, $x \in \Re$,
 - $\int_{-\infty}^{\infty} f(x)dx = 1$.

Dla A dowolnego podzbioru \Re , dla którego całka jest określona, prawdopodobieństwo definiujemy jako

$$P(A) = \int_{A} f(x) dx.$$

Aksjomaty (P1) – (P3) dla P(A) sprawdzamy, wykorzystując odpowiednio własności pola i całki. Zauważmy także, że prawdopodobieństwo określone jako całka jest uogólnieniem pojęcia prawdopodobieństwa geometrycznego z punktu (a).

2.2 Prawdopodobieństwo warunkowe

Rozważmy doświadczenie losowe i związaną z nim przestrzeń probabilistyczną (Ω, \mathcal{F}, P) . Jeśli interesują nas wyniki doświadczenia należące do ustalonego podzbioru B przestrzeni Ω , dla którego P(B) > 0, to możemy zredukować wyjściową przestrzeń probabilistyczną do przestrzeni $(B, \mathcal{F}_B, P(\cdot|B))$, gdzie $\mathcal{F}_B = \{A \cap B, A \in \mathcal{F}\}$ oraz

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, \qquad A \in \mathcal{F}.$$
 (2.10)

Wyrażenie dane wzorem (2.10) nazywamy warunkowym prawdopodobieństwem zdarzenia A pod warunkiem, że zaszło zdarzenie B lub krócej prawdopodobieństwem A pod warunkiem B.

Przykład 2.2.1. Rozważmy rodziny mające trójkę dzieci. Jeśli oznaczymy przez c chłopca, a przez d dziewczynkę, to możliwe potomstwo takich rodzin daje zbiór

$$\Omega = \{(c, c, c), (c, c, d), (c, d, c), (d, c, c), (c, d, d), (d, c, d), (d, d, c), (d, d, d)\}.$$

Tak więc $|\Omega| = 8$ i przyjmujemy, że zdarzenia elementarne są jednakowo prawdopodobne. Przypuśćmy, że w losowo wybranej rodzinie najstarszy jest syn (zdarzenie S). Odpowiedzmy na pytanie, jakie jest prawdopodobieństwo, że najmłodszym dzieckiem

jest dziewczynka (zdarzenie D)?

Rozważmy nową przestrzeń zdarzeń elementarnych $S = \{(c, c, c), (c, c, d), (c, d, c), (c, d, d)\}$ i jej podzbiór – zdarzenie $D_S = \{(c, c, d), (c, d, d)\}$. Zgodnie ze wzorem (2.3)

$$P(D_S) = \frac{|D_S|}{|S|} = \frac{2}{4} = \frac{1}{2}.$$

Tę samą odpowiedź otrzymamy korzystając ze wzoru (2.10). Rzeczywiście, mamy wtedy

$$P(D|S) = \frac{P(D \cap S)}{P(S)} = \frac{\frac{2}{8}}{\frac{4}{8}} = \frac{1}{2}.$$

Wróćmy do równości (2.10) definiującej prawdopodobieństwo warunkowe. Zapisana w równoważnej postaci daje **wzór na prawdopodobieństwo iloczynu** zdarzeń A oraz B

$$P(A \cap B) = P(A|B) \cdot P(B), \quad \text{o ile} \quad P(B) > 0, \tag{2.11}$$

który uogólnimy dla dowolnych n zdarzeń.

Twierdzenie 2.2.1. Jeśli $P(A_1 \cap \ldots \cap A_{n-1}) > 0$, to

$$P(A_1 \cap ... \cap A_n) = P(A_n | A_1 \cap ... \cap A_{n-1}) \cdot P(A_{n-1} | A_1 \cap ... \cap A_{n-2}) \cdot ... \cdot P(A_2 | A_1) \cdot P(A_1).$$
(2.12)

Dowód przeprowadzimy metodą indukcji zupełnej. Dla n=2 jest to wzór (2.11). Załóżmy, że wzór (2.12) zachodzi dla n. Stosując prawo przemienności mnożenia zbiorów (1.2), wzór (2.11) dla $A=A_{n+1}$ i $B=A_1\cap\ldots\cap A_n$ oraz założenie indukcyjne, otrzymujemy

$$P(A_1 \cap \ldots \cap A_n \cap A_{n+1}) = P(A_{n+1}|A_1 \cap \ldots \cap A_n) \cdot P(A_1 \cap \ldots \cap A_n)$$

= $P(A_{n+1}|A_1 \cap \ldots \cap A_n) \cdot P(A_n|A_1 \cap \ldots \cap A_{n-1}) \cdot \ldots \cdot P(A_2|A_1) \cdot P(A_1),$

czyli wzór (2.12) dla n+1.

Załóżmy teraz, że przestrzeń Ω daje się przedstawić w postaci

$$\Omega = \bigcup_{i=1}^n B_i, \quad P(B_i) > 0, \quad B_i \cap B_j = \emptyset, \quad i \neq j.$$

O ciągu zdarzeń $\{B_i, i = 1, ..., n\}$ mówimy, że tworzy **rozbicie (układ zupełny)** przestrzeni Ω . Pojęcia tego użyjemy do wysłowienia dwóch następnych twierdzeń. Równość w pierwszym nosi nazwę **wzoru na prawdopodobieństwo całkowite**.

Twierdzenie 2.2.2. Jeśli ciąg zdarzeń $\{B_i, i = 1, ..., n\}$ tworzy rozbicie przestrzeni Ω , to dla dowolnego zdarzenia $A \in \mathcal{F}$ zachodzi równość

$$P(A) = \sum_{i=1}^{n} P(A|B_i) \cdot P(B_i). \tag{2.13}$$

Dowód. Dla dowolnego zdarzenia A sprawdzamy ciąg równości

$$P(A) = P(A \cap \Omega) = P(A \cap \bigcup_{i=1}^{n} B_i) = P(\bigcup_{i=1}^{n} (A \cap B_i))$$

= $\sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} P(A|B_i) \cdot P(B_i).$

Trzecią równość uzasadnia prawo rozdzielności mnożenia względem dodawania zdarzeń (1.5), czwartą – postulat (P2'), tzn. skończona addytywność prawdopodobieństwa, piątą – relacja (2.11).

Przykład 2.2.2. W hotelu znajdują się dwie windy I i II, przy czym I działa (zdarzenie A) z prawdopodobieństwem $\frac{1}{2}$, II działa (zdarzenia B) z prawdopodobieństwem $\frac{1}{3}$, a jeśli nie działa II, to I nie jest zepsuta z prawdopodobieństwem $\frac{1}{2}$.

Z powyższej treści wynika, że

$$P(A) = \frac{1}{2}, P(A') = \frac{1}{2}, P(B) = \frac{1}{3}, P(B') = \frac{2}{3}$$
 oraz $P(A|B') = \frac{1}{2}$.

Rozważmy następujące pytania:

Jakie jest prawdopodobieństwo, że działa II, gdy I jest zepsuta?

Jakie jest prawdopodobieństwo, że działa co najmniej jedna z wind?

Odpowiedź na pierwsze pytanie daje ciąg następujących równości: (porównaj rys. 1)

$$P(B|A') = \frac{P(B \cap A')}{P(A')} = \frac{P(B) - P(A \cap B)}{P(A')} = \frac{P(B) - P(A \cap B)}{P(A')} = \frac{P(B) - [P(A) - P(A \cap B')]}{P(A')} = \frac{\frac{1}{3} - [\frac{1}{2} - \frac{1}{2} \cdot \frac{2}{3}]}{\frac{1}{2}} = \frac{1}{3}.$$

$$Rys. 1.$$

W drugim pytaniu chodzi o $P(A \cup B)$. Korzystając z przedstawienia sumy $A \cup B$ przez zdarzenia wykluczające się, mamy

$$P(A \cup B) = P(B) + P(A \cap B') = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}.$$

Przykład 2.2.3. Student dojeżdża na zajęcia rowerem (zdarzenie R) raz na dwa dni, autobusem (zdarzenie A) raz na trzy dni oraz tramwajem (zdarzenie T) raz na sześć

dni. Jeśli jedzie rowerem, spóźnia się raz na 60 przypadków, jeśli autobusem – raz na 20 przypadków, jeśli tramwajem – raz na 10 przypadków. Jakie jest prawdopodobieństwo spóźnienia się studenta (zdarzenie S)?

Informacje zawarte w treści przykładu piszemy w postaci

$$P(R) = \frac{1}{2}, P(A) = \frac{1}{3}, P(T) = \frac{1}{6}, \qquad P(S|R) = \frac{1}{60}, P(S|A) = \frac{1}{20}, P(S|T) = \frac{1}{10}.$$

Korzystając ze wzoru na prawdopodobieństwo całkowite (2.13), otrzymujemy

$$P(S) = P(S|R) \cdot P(R) + P(S|A) \cdot P(A) + P(S|T) \cdot P(T)$$

= $\frac{1}{60} \cdot \frac{1}{2} + \frac{1}{20} \cdot \frac{1}{3} + \frac{1}{10} \cdot \frac{1}{6} = \frac{1}{24}$.

Wzór na prawdopodobieństwo całkowite ma swoją przejrzystą ilustrację graficzną, zwaną **drzewem modelu**. Dla rozważanego przykładu otrzymujemy je następująco (patrz rys. 2). Z wierzchołka drzewa prowadzimy trzy "gałęzie" oznaczające kolejno możliwości dojazdu studenta na uczelnię. Zaznaczamy je odpowiednio literami R, A oraz T, oznaczającymi rozważane w zadaniu zdarzenia. Każde z nich stanowi warunek, przy którym student może albo zdążyć na zajęcia (Z) albo się spóźnić (S). Odnotowujemy te dwie możliwe sytuacje zaznaczając na drzewie stochastycznym następne "piętro gałęzi" i podpisując każdą z nich odpowiednio Z lub S.

Rys. 2.

Przerywana kreska pokazuje wszystkie możliwości zrealizowania zdarzenia S. Uwzględniając zaznaczone na diagramie prawdopodobieństwa bezwarunkowe $\frac{1}{2}, \frac{1}{3}, \frac{1}{6}$ oraz prawdopodobieństwa warunkowe $\frac{1}{60}, \frac{1}{20}, \frac{1}{10}$, odczytujemy, że zdarzenie S zachodzi z prawdopodobieństwem

$$\frac{1}{60} \cdot \frac{1}{2} + \frac{1}{20} \cdot \frac{1}{3} + \frac{1}{10} \cdot \frac{1}{6} = \frac{1}{24}.$$

Z pojęciem warunkowego prawdopodobieństwa wiąże się także **wzór Bayesa**. Podamy go w zapowiedzianym już twierdzeniu.

Twierdzenie 2.2.3. Przy założeniach poprzedniego twierdzenia 2.2.2 dla dowolnego zdarzenia $A \in \mathcal{F}$ takiego, że P(A) > 0 zachodzi równość

$$P(B_i|A) = \frac{P(A|B_i) \cdot P(B_i)}{\sum_{i=1}^{n} P(A|B_i) \cdot P(B_i)}, \qquad i = 1, \dots, n.$$
 (2.14)

Dowód. Na mocy wzorów (2.10) i (2.11) oraz twierdzenia 2.2.2 otrzymujemy

$$P(B_i|A) = \frac{P(B_i \cap A)}{P(A)} = \frac{P(A \cap B_i)}{P(A)} = \frac{P(A|B_i) \cdot P(B_i)}{\sum_{i=1}^{n} P(A|B_i) \cdot P(B_i)},$$

czyli tezę twierdzenia.

Wzór (2.14) nosi również nazwę **wzoru na prawdopodobieństwo przyczyny**. Miano to uzasadniają następujące przykłady.

Przykład 2.2.4. Badając chorego, lekarz nie może postawić jednoznacznej diagnozy. Zaobserwowane objawy mogą być bowiem wynikiem pewnej groźnej choroby, mogą też być jednak spowodowane innymi przejściowymi czynnikami. Wiadomo, że podejrzewana choroba występuje w populacji, z której pochodzi pacjent, z prawdopodobieństwem $\frac{1}{1000}$ oraz powoduje zaobserwowane zmiany z prawdopodobieństwem $\frac{4}{5}$. Z innych powodów występują one przeciętnie jeden raz na sto przypadków. Obliczmy prawdopodobieństwo, że badany pacjent zapadł na podejrzewaną chorobę.

Zadanie nasze polega więc na znalezieniu prawdopodobieństwa przyczyny (choroba) pod warunkiem, że zaobserwowaliśmy jej skutek (określone symptomy). Zapisując odpowiednio przez C oraz S zdarzenia oznaczające chorobę pacjenta oraz pojawienie się u niego określonych objawów, możemy przyjąć:

$$P(C) = \frac{1}{1000}, \ P(C') = \frac{999}{1000}, \qquad P(S|C) = \frac{4}{5}, \ P(S|C') = \frac{1}{100}.$$

Zastosowanie wzoru (2.14) w postaci

$$P(C|S) = \frac{P(S|C) \cdot P(C)}{P(S|C) \cdot P(C) + P(S|C') \cdot P(C')} = \frac{\frac{4}{5} \cdot \frac{1}{1000}}{\frac{4}{5} \cdot \frac{1}{1000} + \frac{1}{100} \cdot \frac{999}{1000}} = \frac{80}{1079} = 0.074$$

pozwala nam stwierdzić, że jedynie z prawdopodobieństwem 0.074 zaobserwowane objawy wskazują na ową groźną chorobę .

Przykład 2.2.5. Wśród studentów III roku przystępujących do egzaminu 25% jest świetnie przygotowanych (grupa A), połowa przygotowała się częściowo (grupa B), pozostałe 25% zna wymagany materiał bardzo słabo (grupa C). Z grupy A zdaje

każdy student, z grupy B – co drugi, z grupy C – co piąty. Przypuśćmy, że losowo wskazany student nie zdał egzaminu (zdarzenie Z'). Obliczmy, z jakim prawdopodobieństwem należy on do grupy B.

Pytamy zatem o prawdopodobieństwo przyczyny (częściowe przygotowanie), jeśli zaobserwowaliśmy skutek ("oblanie" egzaminu), czyli pytamy o P(B|Z').

Z treści przykładu mamy $P(A)=P(C)=\frac{1}{4},$ $P(B)=\frac{1}{2},$ a korzystając z wynikającej bezpośrednio ze wzoru (2.10) równości

$$P(Z'|W) = 1 - P(Z|W),$$

otrzymujemy także P(Z'|A)=0, $P(Z'|B)=\frac{1}{2}$, $P(Z'|C)=\frac{4}{5}$. Zatem stosując wzór (2.14), znajdujemy

$$P(B|Z') = \frac{P(Z'|B) \cdot P(B)}{P(Z'|A) \cdot P(A) + P(Z'|B) \cdot P(B) + P(Z'|C) \cdot P(C)}$$
$$= \frac{\frac{1}{2} \cdot \frac{1}{2}}{0 + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{5} \cdot \frac{1}{4}} = \frac{5}{9}.$$

Odpowiedź ta oznacza, że wśród studentów, którym nie powiodło się na egzaminie, ci, którzy przygotowali się tylko częściowo, stanowią więcej niż połowę, mianowicie $\frac{5}{9}$. Porównajmy, że wśród wszystkich studentów jest ich dokładnie połowa.

2.3 Niezależność zdarzeń

Niech $A, B \in \mathcal{F}$ będą zdarzeniami takimi, że

$$P(A|B) = P(A),$$

tzn. prawdopodobieństwo zajścia zdarzenia A pod warunkiem, że zaszło zdarzenie B, jest takie samo, jak bezwarunkowe prawdopodobieństwo zdarzenia A. Inaczej mówiąc, zdarzenie B nie ma wpływu na prawdopodobieństwo zajścia zdarzenia A, czyli A jest niezależne od B. Zgodnie ze wzorem (2.11) możemy przedstawić powyższą równość jako

$$P(A \cap B) = P(A) \cdot P(B) \tag{2.15}$$

i przyjmujemy ją za definicję **niezależności** dwóch zdarzeń A, B. Uogólniając, definiujemy niezależność rodziny zdarzeń.

Definicja 2.3.1. Niech C będzie dowolną rodziną zdarzeń. Jeśli dla każdej skończonej podrodziny $\{A_1, \ldots, A_n\}$ zdarzeń z C spełniony jest warunek

$$P(\bigcap_{i=1}^{n} A_i) = \prod_{i=1}^{n} P(A_i), \tag{2.16}$$

to rodzinę tę nazywamy rodziną zdarzeń niezależnych.

Należy tutaj podkreślić, że niezależność zdarzeń określona równością (2.16) jest własnością silniejszą niż tzw. **niezależność parami zdarzeń** oznaczająca zachodzenie dla każdej pary z rozpatrywanej rodziny zdarzeń równości (2.15). Pokazuje to także pierwszy z poniższych przykładów.

Przykład 2.3.1. Niech $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$, \mathcal{F} oznacza rodzinę wszystkich podzbiorów Ω oraz $P(\{\omega_i\}) = \frac{1}{4}, \ i = 1, \dots, 4$. Rozważmy zdarzenia

$$A = \{\omega_1, \omega_2\}, \qquad B = \{\omega_2, \omega_3\}, \qquad C = \{\omega_3, \omega_1\}.$$

Rodzina $\mathcal{C} = \{A, B, C\}$ nie jest rodziną zdarzeń niezależnych, ponieważ

$$P(A \cap B \cap C) = P(\emptyset) = 0 \neq P(A) \cdot P(B) \cdot P(C) = \frac{1}{8}$$

jakkolwiek każda para zdarzeń jest parą zdarzeń niezależnych, na przykład

$$P(A \cap B) = P(\{\omega_2\}) = \frac{1}{4} = P(A) \cdot P(B) = \frac{1}{2} \cdot \frac{1}{2}.$$

Przykład 2.3.2. Jeśli $\{A_1, \ldots, A_k\}$ stanowi rodzinę zdarzeń niezależnych, to rodzina zdarzeń przeciwnych $\{A'_1, \ldots, A'_k\}$ także stanowi rodzinę zdarzeń niezależnych. Dowód pozostawiamy jako ćwiczenie.

Przykład 2.3.3. Dwa miejsca A i B połączone są trzema ścieżkami, na których jest pięć mostów zwodzonych usytuowanych według następującego planu (patrz rys. 3):

Rys. 3.

Mosty podnoszone są niezależnie z prawdopodobieństwami zaznaczonymi na planie. Obliczmy prawdopodobieństwo zdarzenia D, że choć jedna ścieżka jest przejezdna. Oznaczmy przez D_i zdarzenie, że i-ta ścieżka jest przejezdna. Wtedy na mocy prawa de Morgana (1.8)

$$P(D) = P(D_1 \cup D_2 \cup D_3) = 1 - P(D_1' \cap D_2' \cap D_3').$$

2.4. ZADANIA 31

Z danych na planie i założonej niezależności mamy

$$P(D'_1) = 1 - P(D_1) = 1 - (1 - 0.2)^2 = 0.36,$$

 $P(D'_2) = 0.4,$
 $P(D'_3) = 1 - P(D_3) = 1 - (1 - 0.1) \cdot (1 - 0.5) = 0.55$

i ostatecznie $P(D) = 1 - 0.36 \cdot 0.4 \cdot 0.55 = 0.921$.

Przykład 2.3.4. Dwaj gracze rzucają na zmianę dwoma kostkami. Jeśli gracz A, który rozpoczyna grę, otrzyma sumę oczek równą 6 przed uzyskaniem przez gracza B sumy oczek równej 7, to wygrywa. Obliczmy prawdopodobieństwo zdarzenia A oznaczającego wygraną gracza A.

Wprowadźmy zdarzenia B_i , polegające na tym, że gra zakończy się w i-tym rzucie, $i = 1, 3, 5, \ldots$ Na mocy wzoru na prawdopodobieństwo całkowite (2.13) mamy

$$P(A) = \sum_{i} P(A \cap B_i).$$

Ponieważ zdarzenie $A \cap B_i$ oznacza, że we wszystkich próbach o numerach mniejszych niż i zarówno gracz A, jak i B nie uzyskał wymaganej sumy oczek i dopiero w i-tym rzucie suma oczek otrzymana przez gracza A wynosi 6, oraz wyniki poszczególnych prób są niezależne, więc

$$P(A \cap B_i) = \frac{31}{36} \cdot \frac{30}{36} \cdot \frac{31}{36} \cdot \frac{30}{36} \cdot \dots \cdot \frac{31}{36} \cdot \frac{30}{36} \cdot \frac{5}{36} = \frac{5}{36} \cdot \left(\frac{31 \cdot 30}{36 \cdot 36}\right)^{\frac{i-1}{2}}.$$

Zatem

$$P(A) = \frac{5}{36} \sum_{k=0}^{\infty} \left(\frac{31 \cdot 30}{36 \cdot 36} \right)^k = \frac{30}{61}.$$

2.4 Zadania

- 1. Pracownik wytwarza n elementów pewnego urządzenia. Niech A_i , i = 1, 2, ..., n, oznacza zdarzenie, że i-ty element jest wadliwy. Za pomocą wprowadzonych zdarzeń przedstaw zdarzenia oznaczające, że:
 - (a) żaden z elementów nie jest wadliwy,
 - (b) co najmniej jeden z elementów jest wadliwy,
 - (c) tylko jeden element jest wadliwy,
 - (d) dokładnie dwa elementy są wadliwe,
 - (e) co najwyżej dwa elementy są wadliwe.

- 2. Z urny zawierającej pięć kul białych, trzy pomarańczowe oraz dwie niebieskie wyciągamy losowo dwie kule. Opisz przestrzeń zdarzeń elementarnych odpowiadającą temu doświadczeniu i oblicz prawdopodobieństwo otrzymania zestawu bez kuli białej.
- 3. Rzucamy trzema kostkami do gry. Oblicz prawdopodobieństwo jednakowej liczby oczek na dokładnie dwóch kostkach.
- 4. Oblicz prawdopodobieństwo, że wśród siedmiu losowo wybranych osób znajdą się co najmniej dwie osoby, które urodziły się w tym samym dniu tygodnia.
- 5. Niech zdarzenia A, B, C oznaczają odpowiednio:
 - A otrzymanie co najmniej jednej szóstki przy rzucie sześcioma kostkami,
 - B otrzymanie co najmniej dwóch szóstek przy rzucie dwunastoma kostkami,
 - C otrzymanie co najmniej trzech szóstek przy rzucie osiemnastoma kostkami. Sprawdź, czy zdarzenia A, B, C są jednakowo prawdopodobne.
- 6. Z urny zawierającej 16 kul czarnych i 2 białe losujemy m kul (bez zwracania). Podaj najmniejszą wartość liczby m, dla której prawdopodobieństwo otrzymania co najmniej raz kuli białej jest większe od $\frac{1}{2}$.
- 7. (Zadanie Banacha) Pewien matematyk nosi przy sobie dwa pudełka zapałek. Ilekroć chce on zapalić papierosa, wyciąga pudełko z losowo wybranej kieszeni. Znajdź prawdopodobieństwo, że w chwili, gdy po raz pierwszy wyciągnie on puste pudełko, drugie będzie zawierało r zapałek, $r=0,1,\ldots,n;$ n jest tu liczbą zapałek, znajdujących się na początku w każdym z pudełek.
- 8. Niech $\Omega = \{1, 2, 3, 4, 5\}.$ Sprawdź, czy następujące rodziny podzbiorów Ω :
 - (a) $\mathcal{F}_1 = \{\emptyset, \Omega, \{3\}\},\$
 - (b) $\mathcal{F}_2 = \{\emptyset, \Omega, \{1, 2, 3\}, \{3, 4, 5\}\}$

tworzą σ -ciała. Jeśli nie, uzupełnij je w sposób minimalny, aby otrzymać σ -ciała.

- 9. Niech $\Omega = [0, 2]$, $\mathcal{F}_1 = \{\emptyset, \Omega, [0, 1], (1, 2]\}$, $\mathcal{F}_2 = \{\emptyset, \Omega, [0, \frac{1}{2}), [\frac{1}{2}, 2]\}$. Sprawdź, czy rodziny $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_1 \cup \mathcal{F}_2$ tworzą σ -ciała.
- 10. Udowodnij **nierówność Bonferroniego**, że dla dowolnych zdarzeń $A, B \subset \Omega$ zachodzi $P(A \cap B) \geq P(A) + P(B) 1$.

2.4. ZADANIA 33

11. Mając dane $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$, $P(A \cap B) = \frac{1}{6}$, znajdź prawdopodobieństwa: P(A'), $P(A' \cup B)$, $P(A \cup B')$, $P(A \cap B')$, $P(A' \cup B')$.

- 12. Podaj i udowodnij wzór na prawdopodobieństwo sumy trzech dowolnych zdarzeń.
- 13. Wiedząc, że 50% studentów zaliczyło wykład A, 40% wykład B, 30% –wykład C, 35% wykłady A i B, 20% wykłady B i C, 25% wykłady A i C oraz 15% wszystkie trzy wykłady, podaj, ile procent studentów zaliczyło co najmniej jeden z wykładów.
- 14. Udowodnij własność ciągłości prawdopodobieństwa:

jeśli
$$A_n \subset A_{n+1}, n = 1, 2, \ldots, \text{ oraz } \bigcup_{n=1}^{\infty} A_n = A, \text{ to } \lim_{n \to \infty} P(A_n) = P(A);$$

jeśli $A_n \supset A_{n+1}, n = 1, 2, \ldots, \text{ oraz } \bigcap_{n=1}^{\infty} A_n = A, \text{ to } \lim_{n \to \infty} P(A_n) = P(A).$

- 15. Kawałek drutu długości 20 cm zgięto pod kątem prostym w losowo wziętym punkcie, a potem jeszcze w dwóch punktach tak, by utworzyła się ramka prostokątna o obwodzie 20 cm. Opisz przestrzeń zdarzeń elementarnych tego modelu i oblicz prawdopodobieństwo, że pole obszaru ograniczonego ramką nie przekroczy 21 cm².
- 16. Na płaszczyźnie poprowadzono proste równoległe odległe o 2a. Na płaszczyznę tę rzucamy monetę o promieniu $r \leq a$. Opisz przestrzeń zdarzeń elementarnych tego modelu i oblicz prawdopodobieństwo tego, że żadna prosta nie przetnie monety.
- 17. Kij o długości 1 m podzielono losowo na trzy części. Oblicz prawdopodobieństwo tego, że z tych części można zbudować trójkąt.
- 18. Reguły amerykańskiej gry CREPS są następujące. Gracz rzuca dwoma kostkami i wygrywa już w pierwszym rzucie, jeśli wypadnie suma oczek 7 lub 11; gracz przegrywa, gdy suma ta będzie równa 2,3 lub 12; każdy inny wynik jest zapamiętywany jako jego "oczko". Przy zapamiętanym wyniku pierwszego rzutu gracz powtarza rzuty parą kostek aż do momentu, kiedy ponownie osiągnie "oczko" (co oznacza wygraną) lub pojawi się suma oczek 7 (co oznacza przegraną). Oblicz prawdopodobieństwo wygranej.
- 19. Profesor N podróżuje z Moskwy do Las Vegas, zmieniając samoloty w Paryżu i Nowym Yorku. W każdym miejscu (nie licząc Las Vegas) jego bagaż może być

- omyłkowo nadany na inny samolot z prawdopodobieństwem p. Na lotnisku w Las Vegas okazuje się, że bagaż profesora nie dotarł. Oblicz prawdopodobieństwo, że pomyłke popełniono odpowiednio w Moskwie, Paryżu, Nowym Yorku.
- 20. W miasteczku uniwersyteckim znajdują się trzy biblioteki. W każdej z nich poszukiwana przez studenta S książka znajduje się z prawdopodobieństwem 0.6, ale może być wypożyczona przez kogoś innego z prawdopodobieństwem 0.25. Podaj szanse studenta S na zdobycie tej książki.
- 21. Z dwu urn jedna jest pusta, a druga zawiera 4 ponumerowane kule. Z trzeciej, dodatkowej urny, losujemy ze zwracaniem kartki z numerami kul. Kulę o wylosowanym numerze przekładamy z jednej urny do drugiej. Oblicz prawdopodobieństwo, że po 4 losowaniach w obu urnach będą po dwie kule.
- 22. Na egzaminie student losuje jedno spośród 10 pytań. Opanował tylko jeden temat. Na chwilę przed egzaminem jedno z pytań gdzieś się zawieruszyło. Oceń, czy szanse studenta zmalały. A gdyby umiał odpowiedzieć na 5 pytań, a zgubiło się aż 8 pytań?
- 23. List może znajdować się z jednakowym prawdopodobieństwem w jednym z trzech segregatorów. Prawdopodobieństwo, że przeszukując szybko i-ty segregator, znajdziemy list, jeśli jest tam naprawdę, wynosi p_i . Oblicz prawdopodobieństwo, że list znajduje się w drugim segregatorze, mimo, że przeglądając ten segregator nie znaleźliśmy listu.
- 24. Telegraficzne przekazywanie informacji polega na wysyłaniu sygnałów "0" albo "1". Załóżmy, że przy wysyłaniu sygnału "0" przekłamanie następuje w 2 przypadkach na 15, a przy wysyłaniu "1"- w 1 przypadku na 10. Wiedząc, że otrzymano "0" oraz, że stosunek liczby wysyłanych "0" do "1" jest równy 5 do 3, oblicz prawdopodobieństwo, że wysłano "0".
- 25. W jednej szkatułce są 3 monety złote i 1 srebrna, a w drugiej 2 złote i 2 srebrne. Masz prawo wybrać jedną z tych szkatułek, a przedtem możesz dokonać próbnego losowania 2 monet z jednej z nich. Wylosowałeś dwie różne monety. Którą szkatułkę wybierasz? Oceń prawdopodobieństwo, że Twój wybór jest trafny.
- 26. Trzech strzelców oddało po jednym strzale. Prawdopodobieństwa trafień są równe odpowiednio 0.6, 0.5, 0.4. Oblicz prawdopodobieństwo, że trzeci strze-

2.4. ZADANIA 35

lec trafił, jeśli cel został trafiony

- (a) jednym pociskiem,
- (b) dwoma pociskami,
- (c) trzema pociskami.
- 27. Wszystkie wyroby wchodzące w skład jednej z dwóch partii wyrobów są dobrej jakości, w drugiej z tych partii 25% to braki. Wyrób wylosowany z wybranej losowo partii okazał się dobrej jakości. Oblicz prawdopodobieństwo, że drugi wzięty z tej samej partii będzie wybrakowany, jeśli pierwszy wyrób został zwrócony po sprawdzeniu do swojej partii.
- 28. Spośród osób zasiadających w zespole orzekającym dwaj członkowie poprawnie oceniają sytuację z prawdopodobieństwem p, a ich oceny są niezależne (ocena jest dychotomiczna: winny, niewinny). Trzeci członek komisji nie wnika w meritum sprawy i ocenia losowo rzucając monetą (winny, jeśli wypadnie orzeł). Orzeczenie komisji przechodzi większością głosów jej członków. Tę komisję proponuje się zastąpić przez jednego tylko sędziego, który z prawdopodobieństwem p feruje orzeczenia zgodne z prawdą. Zadecyduj, czy taka zmiana poprawia, czy pogarsza rzetelność orzeczeń, czyli porównaj prawdopodobieństwa zgodnego z prawdą orzeczenia niewinności.
- 29. Zbadaj, który z fragmentów oświetlenia choinkowego przedstawionych na rysunku 4 ma większą niezawodność (prawdopodobieństwo działania) przy założeniu, że żarówki działają niezależnie i niezawodność każdej z nich wynosi p.

Rys. 4.

30. Udowodnij uwagę z przykładu 2.3.2.

Rozdział 3

Zmienne losowe i ich rozkłady

3.1 Podstawowe definicje

Podamy teraz określenie jednego z podstawowych pojęć rachunku prawdopodobieństwa, mianowicie zmiennej losowej. Obrazowo mówiąc, jest to funkcja przyjmująca wartości rzeczywiste w zależności od pewnego mechanizmu losowego. Dla przykładu: zmienną losową jest wysokość wygranej w loterii, liczba wypadków drogowych w czasie danego weekendu, suma współrzędnych miejsca trafienia na tarczy strzelniczej, najwyższy w ciągu miesiąca poziom rzeki w ustalonym miejscu jej biegu.

Formalne określenie wykorzystuje pojęcie przestrzeni probabilistycznej (Ω, \mathcal{F}, P) .

Definicja 3.1.1. Funkcję $X:(\Omega,\mathcal{F},P)\to\Re$ spełniającą dla każdego $a\in\Re$ warunek

$$\{\omega : X(\omega) \le a\} \in \mathcal{F}$$
 (3.1)

nazywamy zmienną losową.

Zmienna losowa jest więc funkcją określoną na przestrzeni probabilistycznej taką, że przeciwobrazy półprostych $(-\infty, a]$ mają określone prawdopodobieństwo (są bowiem elementami σ -ciała \mathcal{F}). Oznacza to, że dla każdej wartości rzeczywistej a możemy obliczyć prawdopodobieństwo zdarzenia (a stąd wszystkich innych zdarzeń wyrażających się przez zdarzenia tej postaci), na którym zmienna losowa X przyjmuje wartości nie większe od a. Pamiętając, że prawdopodobieństwo dowolnego zdarzenia jest liczbą z przedziału [0,1], widzimy, że z każdą zmienną losową związana jest pewna funkcja rzeczywista o dziedzinie rzeczywistej.

Definicja 3.1.2. Niech X będzie zmienną losową określoną na (Ω, \mathcal{F}, P) . Funkcję $F: \Re \to [0, 1]$ daną wzorem

$$F(x) = P(\{\omega : X(\omega) < x\}) \tag{3.2}$$

nazywamy dystrybuantą zmiennej losowej X.

Zazwyczaj stosuje się skrócony zapis

$$F(x) = P(X \le x).$$

Dystrybuanta jest podstawowym narzędziem badania zmiennej losowej. Określa bowiem jej **rozkład**, czyli zakres wartości i prawdopodobieństwa, z jakimi są one przyjmowane.

Własności dystrybuanty poznamy nieco później, naprzód celem zilustrowania powyższych definicji rozważymy kilka przykładów zmiennych losowych.

Przykład 3.1.1. Przypomnijmy omawiane w przykładzie 2.1.1 doświadczenie losowe polegające na rzucie trzema różnymi kostkami. Przestrzeń probabilistyczna związana z tym doświadczeniem jest postaci:

$$\Omega = \{\omega = (x_1, x_2, x_3) : x_i = 1, 2, \dots, 6, i = 1, 2, 3\},$$

$$\mathcal{F} - \text{wszystkie podzbiory } \Omega,$$

$$P(\{\omega\}) = \frac{1}{6^3} \text{ oraz dla dowolnego } A \in \mathcal{F} : P(A) = \frac{1}{6^3} \cdot |A|.$$

Określmy teraz

$$X_1(\omega) = x_1, \qquad X_2(\omega) = x_2, \qquad X_3(\omega) = x_3.$$
 (3.3)

Każda z tak określonych funkcji jest zmienną losową, ponieważ σ -ciało \mathcal{F} zawiera wszystkie podzbiory przestrzeni Ω .

Przykład 3.1.2. Rozważmy doświadczenie polegające na losowym wyborze punktu z kwadratu $K = [0,1] \times [0,1]$. Przestrzeń probabilistyczna odpowiadająca temu doświadczeniu jest postaci

$$\Omega = K = \{\omega = (x, y) : x, y \in [0, 1]\},$$

 \mathcal{F} – podzbiory $A \subset K$, dla których określone jest pole $S(A)$,
 $P(A) = S(A), \quad A \in \mathcal{F}.$

Określmy teraz

$$X(\omega) = x, \qquad Y(\omega) = y.$$
 (3.4)

Obie te funkcje są zmiennymi losowymi, ponieważ na przykład dla X mamy

$$\{\omega: X(\omega) \le a\} = \left\{ \begin{array}{ll} \emptyset, & a \le 0 \\ [0, a] \times [0, 1], & 0 \le a \le 1 \\ \Omega, & a \ge 1 \end{array} \right.$$

a zatem otrzymane zbiory są elementami σ -ciała \mathcal{F} .

Znajdziemy teraz dystrybuanty rozważanych wyżej zmiennych losowych.

Przykład 3.1.3. (Kontynuacja przykładu 3.1.1). Zajmiemy się dystrybuantą $F_1(x)$ zmiennej losowej X_1 . Zgodnie ze wzorem (3.2) mamy

$$P(X_1 \le x) = \begin{cases} 0, & x < 1 \\ P(X_1 = 1) = \frac{1 \cdot 6 \cdot 6}{6^3} = \frac{1}{6}, & 1 \le x < 2 \\ P(X_1 = 1) + P(X_1 = 2) = \frac{2 \cdot 6 \cdot 6}{6^3} = \frac{2}{6}, & 2 \le x < 3 \\ P(X_1 = 1) + P(X_1 = 2) + P(X_1 = 3) = \frac{3 \cdot 6 \cdot 6}{6^3} = \frac{3}{6}, & 3 \le x < 4 \\ \dots \\ P(X_1 = 1) + P(X_1 = 2) + \dots + P(X_1 = 6) = 1, & x \ge 6. \end{cases}$$

Dokładnie takie same dystrybuanty mają pozostałe zmienne losowe określone za pomocą wzoru (3.3). Sprawdzenie tego pozostawiamy jako ćwiczenie.

Przykład 3.1.4. (Kontynuacja przykładu 3.1.2). Wyznaczymy dystrybuantę pierwszej z określonych zmiennych losowych. Otóż

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ S([0, x] \times [0, 1]) = x, & 0 \le x < 1 \\ S(K) = 1, & x \ge 1. \end{cases}$$

Zmienna losowa Y zadana wzorem (3.4) ma taka sama dystrybuantę.

Widzimy, że ta sama dystrybuanta może odpowiadać dwom zmiennym losowym. Innymi słowy, różne modele losowe mogą prowadzić poprzez różne zmienne losowe do tej samej dystrybuanty i tego samego rozkładu prawdopodobieństwa. Znając zatem dystrybuantę (rozkład) zmiennej losowej, możemy "zapomnieć" o przestrzeni probabilistycznej, na której została określona.

Poznamy teraz podstawowe własności dystrybuanty.

Twierdzenie 3.1.3.

- (a) Dystrybuanta F jest funkcją niemalejącą.
- (b) Dystrybuanta F jest funkcją prawostronnie ciągłą.
- (c) Istnieją granice $\lim_{x\to -\infty} F(x) = 0$, $\lim_{x\to \infty} F(x) = 1$.

Dowód.

- (a) Zauważmy, że jeśli $x_1 \leq x_2$, to $\{X \leq x_1\} \subset \{X \leq x_2\}$. Korzystając więc z własności monotoniczności prawdopodobieństwa (2.4) mamy $F(x_1) = P(X \leq x_1) \leq P(X \leq x_2) = F(x_2)$.
- (b) Niech $x \in \Re$ oraz $\{\epsilon_n, n = 1, 2, ..., \}$ będzie nierosnącym ciągiem liczb dodatnich takich, że $\lim_{n\to\infty} \epsilon_n = 0$. Określmy $C_n = \{X \leq x + \epsilon_n\}$ i zauważmy, że $\{C_n, n = 1, 2, ..., \}$ jest ciągiem zdarzeń takich, że $C_{n+1} \subset C_n$, n = 1, 2, ..., oraz $\bigcap_n C_n = 1, 2, ...$

 $\{X \leq x\}$. Na mocy ciągłości prawdopodobieństwa (zadanie 2.14) mamy więc

$$F(x) = P(X \le x) = P(\bigcap_{n} C_n) = \lim_{n \to \infty} P(X \le x + \epsilon_n) = \lim_{n \to \infty} F(x + \epsilon_n).$$

(c) Pokażemy pierwszą z równości, drugą dowodzi się analogicznie.

$$\lim_{x\to -\infty} F(x) = \lim_{x\to -\infty} P(X \le x) = \lim_{n\to \infty} P(X \le x-n) = P(\bigcap_n (X \le x-n)) = P(\emptyset) = 0.$$

Przy trzeciej z powyższych równości korzystamy ponownie z ciągłości prawdopodobieństwa.

3.2 Niezależność zmiennych losowych

Pojęcie niezależności zdarzeń rozciąga się w naturalny sposób na zmienne losowe.

Definicja 3.2.1. Niech \mathcal{H} będzie rodziną zmiennych losowych określonych na wspólnej przestrzeni probabilistycznej. Jeśli dla dowolnej skończonej podrodziny $\{X_1, \ldots, X_k\}$ $\subset \mathcal{H}$ i dowolnych $x_1, \ldots, x_k \in \Re$ spełniony jest warunek

$$P(X_1 \le x_1, X_2 \le x_2, \dots, X_k \le x_k) = \prod_{i=1}^k P(X_i \le x_i),$$
 (3.5)

to rodzinę \mathcal{H} nazywamy rodziną zmiennych losowych niezależnych.

Zauważmy, że warunek (3.5) oznacza niezależność rodziny zdarzeń $\{A_1, \ldots, A_k\}$ powiązanych z rozważanymi zmiennymi losowymi relacjami $A_i = \{X_i \leq x_i\}, i = 1, \ldots, k$.

Wróćmy raz jeszcze do zmiennych losowych danych wzorem (3.4).

Przykład 3.2.1. (Kontynuacja przykładu 3.1.2). Pokażemy, że zmienne losowe X,Y są niezależne. Rzeczywiście, dla dowolnych $0 \le u,v \le 1$ zachodzi

$$P(X \le u, Y \le v) = S(\{(x, y) : x \le u, y \le v\}) = u \cdot v = P(X \le u) \cdot P(Y \le v).$$

3.3 Zmienne losowe dyskretne

Wśród zmiennych losowych wyróżniamy dwie podstawowe klasy: zmienne losowe dyskretne oraz zmienne losowe z gęstością. Trzecim typem zmiennych losowych są tzw. zmienne losowe singularne, mające przede wszystkim znaczenie teoretyczne wykraczjące poza tematykę tego skryptu.

W tym paragrafie omówimy zmienne losowe dyskretne, rozpoczynając od podania określenia oraz przykładów "przedstawicieli" tej klasy.

Definicja 3.3.1. Zmienną losową $X:(\Omega,\mathcal{F},P)\to\{x_n,\ n=1,2,\ldots\}$ nazywamy zmienną losową dyskretną.

Jest to więc zmienna losowa przyjmującą skończoną lub przeliczalną liczbę wartości. Niech

$$p_n = P(\{\omega : X(\omega) = x_n\}) = P(X = x_n), \qquad n = 1, 2, \dots$$

Ciąg par $\{(x_n, p_n), n = 1, 2, \ldots\}$ nazywamy **rozkładem** zmiennej losowej X. Bezpośrednio z tego określenia wynika, że $p_n \geq 0, n = 1, 2, \ldots$, oraz

$$\sum_{n} p_n = \sum_{n} P(X = x_n) = P(\bigcup_{n} (X = x_n)) = P(\Omega) = 1,$$
(3.6)

przy czym w zależności od ciągu $\{x_n, n=1, 2, \ldots\}$ będącego zbiorem wartości zmiennej losowej powyższe sumy są skończone bądź nieskończone. Widzimy zatem, że rozkład każdej zmiennej losowej dyskretnej jest przykładem prawdopodobieństwa dyskretnego rozważanego w podrozdziale 2.1.

Ponadto

$$F(x) = P(X \le x) = \sum_{\{n: x \ge x_n\}} P(X = x_n) = \sum_{\{n: x_n \le x\}} p_n, \quad x \in \Re.$$

To określa jednoznaczną odpowiedniość między rozkładem a dystrybuantą zmiennej losowej dyskretnej. Dystrybuanta zmiennej losowej dyskretnej jest funkcją schodkową mającą skoki wielkości p_n w punktach x_n , n = 1, 2, ... (porównaj przykład 3.1.3).

Dla zmiennych losowych dyskretnych warunek niezależności z definicji 3.2.1 sprowadza sie do następującego:

$$P(X_1 = x_1, \dots, X_n = x_n) = \prod_{k=1}^n P(X_k = x_k), \quad x_k \in \Re, \ k = 1, 2, \dots, n.$$
 (3.5)

Wprowadzimy teraz kilka najważniejszych zmiennych losowych dyskretnych.

• Zmienna losowa X zero-jedynkowa (Bernoulliego) o rozkładzie $\mathcal{B}(1,p)$ postaci

$$P(X = 1) = 1 - P(X = 0) = p, \qquad 0 \le p \le 1. \tag{3.7}$$

Zmienną losową Bernoulliego możemy uważać za indykator pewnego zdarzenia A o prawdopodobieństwie P(A)=p, czyli

$$X(\omega) = \mathbf{1}_{A}(\omega) = \begin{cases} 1 & \text{dla} & \omega \in A, & \text{czyli z prawdopodobieństwem} & p \\ 0 & \text{dla} & \omega \notin A, & \text{czyli z prawdopodobieństwem} & 1 - p. \end{cases}$$

• Zmienna losowa X dwumianowa o rozkładzie $\mathcal{B}(n,p)$ postaci

$$p_k = P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \qquad k = 0, 1, \dots, n, \quad 0 \le p \le 1.$$
 (3.8)

Zmienna losowa dwumianowa może być interpretowana jako liczba sukcesów w n niezależnych próbach, z których każda kończy się albo "sukcesem" (z prawdopodobieństwem p) albo "porażką" (z prawdopodobieństwem 1-p), czyli w tzw. schemacie Bernoulliego.

• Zmienna losowa X **geometryczna** o rozkładzie $\mathcal{G}(p)$ postaci

$$p_k = P(X = k) = p(1 - p)^{k-1}, \qquad k = 1, 2, \dots, \quad 0 (3.9)$$

Ta z kolei zmienna losowa jest interpretowana jako czas oczekiwania na pierwszy sukces w schemacie Bernoulliego (później wyjaśnimy to dokładniej).

• Zmienna losowa X **Poissona** o rozkładzie $\mathcal{P}(\lambda)$ postaci

$$p_k = P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \qquad k = 0, 1, \dots, \quad \lambda > 0.$$
 (3.10)

Zmienna losowa o tym rozkładzie występuje w praktyce jako liczba realizacji tzw. zdarzeń rzadkich. Jest ona także (jak to później pokażemy) liczbą sukcesów w schemacie Bernoulliego, gdy liczba prób rośnie nieograniczenie, a prawdopodobieństwo sukcesu maleje tak, że ich iloczyn dąży do pewnej skończonej wartości.

• Zmienna losowa X hipergeometryczna o rozkładzie $\mathcal{H}(M,N,n)$ postaci

$$P(X=k) = \frac{\binom{M}{k} \binom{N}{n-k}}{\binom{M+N}{n}}, \qquad k=0,1,\ldots,\min(n,M).$$

Zmienna losowa hipergeometryczna związana jest z tzw. **schematem urnowym** i oznacza liczbę elementów jednego typu występujących w n-elementowej próbie wylosowanej z urny zawierającej M elementów jednego typu oraz N elementów drugiego typu.

Stwierdzenie, że **zmienna losowa** X **ma rozkład** \mathcal{L} wygodnie jest zapisać jako

Wyjaśnimy teraz podane wyżej interpretacje zmiennych losowych, dostrzegając pewne związki zachodzące między nimi. I tak:

Zmienna losowa X dwumianowa może być przedstawiona jako

$$S_n = X_1 + \ldots + X_n, \tag{3.11}$$

gdzie zmienne losowe X_1, \ldots, X_n są niezależne i mają rozkład $\mathcal{B}(1,p)$ postaci (3.7). Dokładniej, obie zmienne losowe X oraz S_n mają ten sam rozkład dany wzorem (3.8). Na mocy niezależności mamy bowiem

$$P(S_n = k) = \sum_{\{i_1, \dots, i_k\}} P(X_{i_1} = 1, \dots, X_{i_k} = 1, X_{i_{k+1}} = 0, \dots, X_{i_n} = 0)$$
$$= \sum_{\{i_1, \dots, i_k\}} p^k (1 - p)^{n-k} = \binom{n}{k} p^k (1 - p)^{n-k},$$

gdzie k = 0, 1, ..., n a sumowanie przebiega po wszystkich k-elementowych podzbiorach n-elementowego zbioru indeksów.

Podobnie, zmienna losowa X geometryczna ma taki sam rozkład, jak zmienna losowa $T = \inf\{n : X_n = 1\}$, gdzie $\{X_n, n = 1, 2, \ldots\}$ tworzą ciąg niezależnych zmiennych losowych o jednakowym rozkładzie $\mathcal{B}(1,p)$. Weryfikując prawdziwość tego stwierdzenia, otrzymujemy na mocy niezależności i wzoru (3.7)

$$P(T=k) = P(X_1 = 0, ..., X_{k-1} = 0, X_k = 1) = (1-p)^{k-1} \cdot p, \qquad k = 1, 2, ...$$

Poznamy jeszcze w następnym twierdzeniu ważną własność zmiennej losowej geometrycznej, tzw. własność braku pamięci. Można pokazać (pozostawiamy to jako zadanie), że jest to własność charakteryzująca tę zmienną w klasie zmiennych losowych dyskretnych. Inaczej mówiąc, zmienna losowa geometryczna jest jedyną w tej klasie mającą własność braku pamięci.

Twierdzenie 3.3.2. Dla zmiennej losowej T geometrycznej oraz każdego n_0 zachodzi

$$P(T \ge n_0 + k | T > n_0) = P(T \ge k), \qquad k = 1, 2, \dots$$
 (3.12)

Dowód. Dla $k = 1, 2, \ldots$ obliczymy naprzód

$$P(T \ge k) = 1 - P(T \le k - 1) = 1 - \sum_{i=1}^{k-1} p(1-p)^{i-1} = 1 - \frac{p}{1-p} \sum_{i=1}^{k-1} (1-p)^i = (1-p)^{k-1}.$$

Stad

$$P(T \ge n_0 + k | T > n_0) = \frac{P(T \ge n_0 + k, T \ge n_0 + 1)}{P(T \ge n_0 + 1)} = \frac{P(T \ge n_0 + k)}{P(T \ge n_0 + 1)}$$

$$= (1 - p)^{k-1} = P(T \ge k),$$

co kończy dowód twierdzenia.

Własność braku pamięci zmiennej losowej geometrycznej staje się zrozumiała w kontekście jej interpretacji związanej ze schematem Bernoulliego. Ilustrujemy to opisem konkretnej sytuacji.

Przykład 3.3.1. Jesteśmy w wysokich górach i czekamy na pogodny dzień, by wejść na najwyższy w okolicy szczyt. Pogoda zmienia się tu szybko, więc założenie o niezależności stanu pogody w poszczególnych dniach wydaje się uzasadnione. Jeśli nasze oczekiwania trwają już siedem dni, jakie jest prawdopodobieństwo, że przedłużą się jeszcze o co najmniej dwa dni? Przyjmijmy, że o tej porze roku pogodny dzień zdarza się przeciętnie raz na pięć dni.

Oznaczmy

$$X_i = \begin{cases} 1, & \text{gdy } i\text{-ty dzień jest słoneczny,} \\ 0, & \text{w przeciwnym razie,} \end{cases}$$
 $i = 1, 2, \dots$

Z podanych warunków mamy niezależność zmiennych losowych X_i oraz $P(X_i = 1) = \frac{1}{5} = 1 - P(X_i = 0), i = 1, 2, \dots$ Niech T - 1 będzie liczbą dni do pierwszego słonecznego dnia. Należy obliczyć $P(T \ge 10 | T > 7)$.

Posłużmy się wspomnianą interpretacją zmiennej losowej T. Skoro to, co będzie działo się jutro, nie zależy od przeszłości (co najmniej siedem dni deszczowych), to możemy zapomnieć o przeszłości i rozpocząć oczekiwania "od nowa". Zatem odpowiedź na nasze pytanie sprowadza się do znalezienia bezwarunkowego prawdopodobieństwa $P(T \geq 3)$.

Obliczenie warunkowego prawdopodobieństwa $P(T \ge 10|T > 7)$ wprost z definicji (analogicznie, jak w dowodzie twierdzenia 3.3.2) prowadzi, rzecz jasna, do tego samego wyniku.

3.4 Zmienne losowe z gęstością

Jak już wspomnieliśmy, drugim typem zmiennych losowych, którymi będziemy się zajmować, są zmienne losowe z gęstością.

Definicja 3.4.1. Niech X będzie zmienną losową o dystrybuancie F. Jeśli istnieje nieujemna funkcja f spełniająca dla każdego $x \in \Re$ warunek

$$F(x) = \int_{-\infty}^{x} f(t) dt, \qquad (3.13)$$

to o zmiennej losowej X mówimy, że jej **rozkładem** jest **gęstość** f i nazywamy ją **zmienną losową z gęstością**.

Bezpośrednio z powyższej zależności otrzymujemy dla wszystkich poza być może skończoną lub przeliczalną liczbą punktów $x \in \Re$ równość

$$f(x) = F'(x). \tag{3.14}$$

Podobnie więc jak dla zmiennej losowej dyskretnej, istnieje wzajemna odpowiedniość między dystrybuantą a rozkładem zmiennej losowej z gęstością. Zauważmy również, że z (3.13) wynika dla dowolnych $a \leq b$

$$P(a < X \le b) = F(b) - F(a) = \int_a^b f(x) dx,$$
 (3.13')

a więc powyższe prawdopodobieństwo jest polem obszaru między wykresem gęstości f a odcinkiem [a, b] na prostej \Re oraz (porównaj (3.6) i przykład 2.1.4 (c))

$$\int_{-\infty}^{\infty} f(t) dt = \lim_{x \to \infty} \int_{-\infty}^{x} f(t) dt = \lim_{x \to \infty} F(x) = 1.$$
 (3.15)

Do najważniejszych zmiennych losowych z gęstością należą:

• Zmienna losowa X jednostajna na odcinku [a,b] o rozkładzie $\mathcal{U}[a,b]$ z gęstością

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b\\ 0, & \text{poza tym.} \end{cases}$$
 (3.16)

Zmienna losowa o tym rozkładzie opisuje losowanie punktów z odcinka [a,b], przy czym prawdopodobieństwo, że wylosowane punkty wypełnią ustalony zbiór $A \subset [a,b]$ jest proporcjonalne do pola tego zbioru i nie zależy od jego położenia w odcinku [a,b].

• Zmienna losowa X wykładnicza o rozkładzie $\mathcal{E}(\lambda),\ \lambda>0$ z gęstością

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & \text{poza tym.} \end{cases}$$
 (3.17)

Zmienna losowa wykładnicza odpowiada czasowi oczekiwania na zjawiska rzadko występujące, a jej rozkład jest szczególnym przypadkiem rozkładu **gamma** $\Gamma(n, \lambda), n = 1, 2, ..., \lambda > 0$ z gęstością

$$f(x) = \begin{cases} \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x}, & x \ge 0\\ 0, & \text{poza tym.} \end{cases}$$
 (3.17')

• Zmienna losowa X normalna o rozkładzie $\mathcal{N}(m, \sigma^2), m \in \Re, \sigma > 0$ z gęstością

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\{-\frac{(x-m)^2}{2\sigma^2}\}, \quad x \in \Re.$$
 (3.18)

Jest to najczęściej spotykana w zastosowaniach zmienna losowa. Zgodnie z jej rozkładem kształtują się zazwyczaj wielkości fizyczne, błędy pomiarów, także cechy przyrodnicze zbiorowości. O jej najważniejszym znaczeniu teoretycznym będzie mowa w rozdziale 5.

Zmienną losową X o rozkładzie $\mathcal{N}(0,1)$ nazywamy zmienną losową **normalną** standardową.

Pokażemy dla przykładu, że funkcja dana wzorem (3.18) jest gęstością. Sprawdzenie tego dla funkcji danych wzorami (3.16) i (3.17) zostawiamy jako ćwiczenie. Nieujemność rozpatrywanej funkcji wynika bezpośrednio z definicji, pozostaje więc do sprawdzenia warunek (3.15). Oznaczmy

$$I^{2} = \left(\int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{(x-m)^{2}}{2\sigma^{2}}\right\} dx \right)^{2}.$$

Zatem

$$I^{2} = \int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} \exp\{-\frac{(x-m)^{2}}{2\sigma^{2}}\} dx \cdot \int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} \exp\{-\frac{(y-m)^{2}}{2\sigma^{2}}\} dy.$$

Stosując naprzód podstawienie

$$\frac{x-m}{\sqrt{2}\sigma} = t, \qquad \frac{y-m}{\sqrt{2}\sigma} = s$$

i przechodząc następnie do współrzędnych biegunowych

$$t = r\cos\varphi, \qquad s = r\sin\varphi,$$

dla którego to przekształcenia jakobian jest postaci $|J|=\begin{vmatrix}\cos\varphi&-r\sin\varphi\\\sin\varphi&r\cos\varphi\end{vmatrix}=r,$ mamy

$$I^{2} = \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(t^{2}+s^{2})} dtds = \frac{1}{\pi} \int_{0}^{2\pi} \int_{0}^{\infty} re^{-r^{2}} drd\varphi$$
$$= -\frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{\infty} (e^{-r^{2}})' drd\varphi = 1.$$

Stąd otrzymujemy już, że $I = \int_{-\infty}^{\infty} \frac{1}{\sigma\sqrt{2\pi}} \exp\{-\frac{(x-m)^2}{2\sigma^2}\} dx = 1$ (bowiem dla nieujemnej funkcji podcałkowej rozważana całka nie może być równa -1).

Zgodnie ze wzorem (3.13) dystrybuantę zmiennej losowej otrzymujemy z jej gęstości przez całkowanie. W przypadku zmiennej losowej jednostajnej lub wykładniczej nie nastręcza to trudności. Inaczej jest, gdy interesuje nas dystrybuanta zmiennej losowej normalnej o rozkładzie $\mathcal{N}(m, \sigma^2)$, czyli

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} \exp\{-\frac{(t-m)^2}{2\sigma^2}\} dt, \quad x \in \Re.$$

Tu nie możemy podać jawnego wzoru na funkcję F i dlatego rozkład $\mathcal{N}(m, \sigma^2)$ został stablicowany dla wybranej pary parametrów, mianowicie m=0 i $\sigma=1$. Okazuje się bowiem, że

jeśli
$$Y \sim \mathcal{N}(m, \sigma^2)$$
, to $X = \frac{Y - m}{\sigma} \sim \mathcal{N}(0, 1)$, (3.19)

czyli każdą zmienną losową normalną możemy wyrazić poprzez "reprezentanta" tej klasy, to jest zmienną losową normalną standardową. Dowód relacji pozostawiamy jako ćwiczenie.

Przyjrzyjmy się teraz tablicy rozkładu $\mathcal{N}(0,1)$ (patrz tab. 2).

Pierwsza od lewej pionowa kolumna zawiera wartości argumentu $x \geq 0$ podane z dokładnością do 0.1. Kolejne kolumny zajmują wartości funkcji

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x \exp\{-\frac{t^2}{2}\} dt, \qquad (3.20)$$

pomnożone przez 10^4 dla argumentu x zmieniającego się co 0.01. Zauważmy, że wartość funkcji Φ w ustalonym punkcie x_0 jest jako całka oznaczona równa polu obszaru ograniczonego wykresem gęstości, prostą $x=x_0$, osią x-ów i osią y-ów, jak to widać na rysunku 5.

Jeśli przez $\Psi(x)$ oznaczymy dystrybuantę zmiennej losowej normalnej standardowej, to ponieważ gęstość tej zmiennej losowej, czyli funkcja $\frac{1}{\sqrt{2\pi}}\exp\{-\frac{t^2}{2}\}$, jest symetryczna, więc

Tab. 2.

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0000 0040 0080 0120 0160 0199 0239 0279 0319 0359 0.1 0398 0438 0478 0517 0557 0596 0636 0675 0714 0753 0.2 0793 0832 0871 0910 0948 0987 1026 1064 1103 1141 0.3 1179 1217 1255 1293 1331 1368 1406 1443 1480 1517 0.4 1554 1591 1628 1664 1700 1736 1772 1808 1844 1879 0.5 1915 1950 1985 2019 2054 2088 2123 2157 2190 2224 0.6 2257 2291 2324 2357 2389 2422 2454 2464 2517 <th></th>											
0.1 0398 0438 0478 0517 0557 0596 0636 0675 0714 0753 0.2 0793 0832 0871 0910 0948 0987 1026 1064 1103 1141 0.3 1179 1217 1255 1293 1331 1368 1406 1443 1480 1517 0.4 1554 1591 1628 1664 1700 1736 1772 1808 1844 1879 0.5 1915 1950 1985 2019 2054 2088 2123 2157 2190 2224 0.6 2257 2291 2324 2357 2389 2422 2454 2486 2517 2549 0.7 2580 2611 2642 2673 2704 2734 2764 2794 2823 2852 0.8 2881 2910 2939 2967 2995 3023 3051 3078 3106 </th <th>x</th> <th>0.00</th> <th>0.01</th> <th>0.02</th> <th>0.03</th> <th>0.04</th> <th>0.05</th> <th>0.06</th> <th>0.07</th> <th>0.08</th> <th>0.09</th>	x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.2 0793 0832 0871 0910 0948 0987 1026 1064 1103 1141 0.3 1179 1217 1255 1293 1331 1368 1406 1443 1480 1517 0.4 1554 1591 1628 1664 1700 1736 1772 1808 1844 1879 0.5 1915 1950 1985 2019 2054 2088 2123 2157 2190 2224 0.6 2257 2291 2324 2357 2389 2422 2454 2486 2517 2549 0.7 2580 2611 2642 2673 2704 2734 2764 2794 2823 2852 0.8 2881 2910 2939 2967 2995 3023 3051 3078 3106 3133 1.0 3413 3438 3461 3485 3508 3531 3554 3577 3599 </th <th>0.0</th> <th>0000</th> <th>0040</th> <th>0080</th> <th>0120</th> <th>0160</th> <th>0199</th> <th>0239</th> <th>0279</th> <th>0319</th> <th>0359</th>	0.0	0000	0040	0080	0120	0160	0199	0239	0279	0319	0359
0.3 1179 1217 1255 1293 1331 1368 1406 1443 1480 1517 0.4 1554 1591 1628 1664 1700 1736 1772 1808 1844 1879 0.5 1915 1950 1985 2019 2054 2088 2123 2157 2190 2224 0.6 2257 2291 2324 2357 2389 2422 2454 2486 2517 2549 0.7 2580 2611 2642 2673 2704 2734 2764 2794 2823 2852 0.8 2881 2910 2939 2967 2995 3023 3051 3078 3106 3133 0.9 3159 3186 3212 3238 3264 3289 3315 3340 3365 3389 1.0 3413 3438 3461 3485 3508 3531 3554 3577 3599 </th <th>0.1</th> <th>0398</th> <th>0438</th> <th>0478</th> <th>0517</th> <th>0557</th> <th>0596</th> <th>0636</th> <th>0675</th> <th>0714</th> <th>0753</th>	0.1	0398	0438	0478	0517	0557	0596	0636	0675	0714	0753
0.4 1554 1591 1628 1664 1700 1736 1772 1808 1844 1879 0.5 1915 1950 1985 2019 2054 2088 2123 2157 2190 2224 0.6 2257 2291 2324 2357 2389 2422 2454 2486 2517 2549 0.7 2580 2611 2642 2673 2704 2734 2764 2794 2823 2852 0.8 2881 2910 2939 2967 2995 3023 3051 3078 3106 3133 0.9 3159 3186 3212 3238 3264 3289 3315 3340 3365 3389 1.0 3413 3438 3461 3485 3508 3531 3554 3577 3599 3621 1.1 3643 3665 3686 3708 3729 3749 3770 3790 3810 </th <th>0.2</th> <th>0793</th> <th>0832</th> <th>0871</th> <th>0910</th> <th>0948</th> <th>0987</th> <th>1026</th> <th>1064</th> <th>1103</th> <th>1141</th>	0.2	0793	0832	0871	0910	0948	0987	1026	1064	1103	1141
0.5 1915 1950 1985 2019 2054 2088 2123 2157 2190 2224 0.6 2257 2291 2324 2357 2389 2422 2454 2486 2517 2549 0.7 2580 2611 2642 2673 2704 2734 2764 2794 2823 2852 0.8 2881 2910 2939 2967 2995 3023 3051 3078 3106 3133 0.9 3159 3186 3212 3238 3264 3289 3315 3340 3365 3389 1.0 3413 3438 3461 3485 3508 3531 3554 3577 3599 3621 1.1 3643 3665 3686 3708 3729 3749 3770 3790 3810 3830 1.2 3849 3869 3888 3907 3925 3944 3962 3980 3997 </th <th>0.3</th> <th>1179</th> <th>1217</th> <th>1255</th> <th>1293</th> <th>1331</th> <th>1368</th> <th>1406</th> <th>1443</th> <th>1480</th> <th>1517</th>	0.3	1179	1217	1255	1293	1331	1368	1406	1443	1480	1517
0.6 2257 2291 2324 2357 2389 2422 2454 2486 2517 2549 0.7 2580 2611 2642 2673 2704 2734 2764 2794 2823 2852 0.8 2881 2910 2939 2967 2995 3023 3051 3078 3106 3133 0.9 3159 3186 3212 3238 3264 3289 3315 3340 3365 3389 1.0 3413 3438 3461 3485 3508 3531 3554 3577 3599 3621 1.1 3643 3665 3686 3708 3729 3749 3770 3790 3810 3830 1.2 3849 3869 3888 3907 3925 3944 3962 3980 3997 4015 1.3 4032 4049 4066 4082 4099 4115 4131 4147 4162 </th <th>0.4</th> <th>1554</th> <th>1591</th> <th>1628</th> <th>1664</th> <th>1700</th> <th>1736</th> <th>1772</th> <th>1808</th> <th>1844</th> <th>1879</th>	0.4	1554	1591	1628	1664	1700	1736	1772	1808	1844	1879
0.7 2580 2611 2642 2673 2704 2734 2764 2794 2823 2852 0.8 2881 2910 2939 2967 2995 3023 3051 3078 3106 3133 0.9 3159 3186 3212 3238 3264 3289 3315 3340 3365 3389 1.0 3413 3438 3461 3485 3508 3531 3554 3577 3599 3621 1.1 3643 3665 3686 3708 3729 3749 3770 3790 3810 3830 1.2 3849 3869 3888 3907 3925 3944 3962 3980 3997 4015 1.3 4032 4049 4066 4082 4099 4115 4131 4147 4162 4177 1.4 4192 4207 4222 4236 4251 4265 4279 4292 4306 </th <th>0.5</th> <th>1915</th> <th>1950</th> <th>1985</th> <th>2019</th> <th>2054</th> <th>2088</th> <th>2123</th> <th>2157</th> <th>2190</th> <th>2224</th>	0.5	1915	1950	1985	2019	2054	2088	2123	2157	2190	2224
0.8 2881 2910 2939 2967 2995 3023 3051 3078 3106 3133 0.9 3159 3186 3212 3238 3264 3289 3315 3340 3365 3389 1.0 3413 3438 3461 3485 3508 3531 3554 3577 3599 3621 1.1 3643 3665 3686 3708 3729 3749 3770 3790 3810 3830 1.2 3849 3869 3888 3907 3925 3944 3962 3980 3997 4015 1.3 4032 4049 4066 4082 4099 4115 4131 4147 4162 4177 1.4 4192 4207 4222 4236 4251 4265 4279 4292 4306 4319 1.5 4332 4345 4357 4370 4382 4394 4406 4418 4429 </th <th>0.6</th> <th>2257</th> <th>2291</th> <th>2324</th> <th>2357</th> <th>2389</th> <th>2422</th> <th>2454</th> <th>2486</th> <th>2517</th> <th>2549</th>	0.6	2257	2291	2324	2357	2389	2422	2454	2486	2517	2549
0.9 3159 3186 3212 3238 3264 3289 3315 3340 3365 3389 1.0 3413 3438 3461 3485 3508 3531 3554 3577 3599 3621 1.1 3643 3665 3686 3708 3729 3749 3770 3790 3810 3830 1.2 3849 3869 3888 3907 3925 3944 3962 3980 3997 4015 1.3 4032 4049 4066 4082 4099 4115 4131 4147 4162 4177 1.4 4192 4207 4222 4236 4251 4265 4279 4292 4306 4319 1.5 4332 4345 4357 4370 4382 4394 4406 4418 4429 4441 1.6 4452 4463 4474 4484 4495 4505 4515 4525 4535 </th <th>0.7</th> <th>2580</th> <th>2611</th> <th>2642</th> <th>2673</th> <th>2704</th> <th>2734</th> <th>2764</th> <th>2794</th> <th>2823</th> <th>2852</th>	0.7	2580	2611	2642	2673	2704	2734	2764	2794	2823	2852
1.0 3413 3438 3461 3485 3508 3531 3554 3577 3599 3621 1.1 3643 3665 3686 3708 3729 3749 3770 3790 3810 3830 1.2 3849 3869 3888 3907 3925 3944 3962 3980 3997 4015 1.3 4032 4049 4066 4082 4099 4115 4131 4147 4162 4177 1.4 4192 4207 4222 4236 4251 4265 4279 4292 4306 4319 1.5 4332 4345 4357 4370 4382 4394 4406 4418 4429 4441 1.6 4452 4463 4474 4484 4495 4505 4515 4525 4535 4545 1.7 4554 4564 4573 4582 4591 4599 4608 4616 4625 </th <th>0.8</th> <th>2881</th> <th>2910</th> <th>2939</th> <th>2967</th> <th>2995</th> <th>3023</th> <th>3051</th> <th>3078</th> <th>3106</th> <th>3133</th>	0.8	2881	2910	2939	2967	2995	3023	3051	3078	3106	3133
1.1 3643 3665 3686 3708 3729 3749 3770 3790 3810 3830 1.2 3849 3869 3888 3907 3925 3944 3962 3980 3997 4015 1.3 4032 4049 4066 4082 4099 4115 4131 4147 4162 4177 1.4 4192 4207 4222 4236 4251 4265 4279 4292 4306 4319 1.5 4332 4345 4357 4370 4382 4394 4406 4418 4429 4441 1.6 4452 4463 4474 4484 4495 4505 4515 4525 4535 4545 1.7 4554 4564 4573 4582 4591 4599 4608 4616 4625 4633 1.8 4641 4649 4656 4664 4671 4678 4686 4693 4699 4706 1.9 4772 4778 4783 4788 4793	0.9	3159	3186	3212	3238	3264	3289	3315	3340	3365	3389
1.2 3849 3869 3888 3907 3925 3944 3962 3980 3997 4015 1.3 4032 4049 4066 4082 4099 4115 4131 4147 4162 4177 1.4 4192 4207 4222 4236 4251 4265 4279 4292 4306 4319 1.5 4332 4345 4357 4370 4382 4394 4406 4418 4429 4441 1.6 4452 4463 4474 4484 4495 4505 4515 4525 4535 4545 1.7 4554 4564 4573 4582 4591 4599 4608 4616 4625 4633 1.8 4641 4649 4656 4664 4671 4678 4686 4693 4699 4706 1.9 4772 4778 4783 4788 4793 4798 4803 4808 4812 4817 2.1 4821 4826 4830 4834 4838	1.0	3413	3438	3461	3485	3508	3531	3554	3577	3599	3621
1.3 4032 4049 4066 4082 4099 4115 4131 4147 4162 4177 1.4 4192 4207 4222 4236 4251 4265 4279 4292 4306 4319 1.5 4332 4345 4357 4370 4382 4394 4406 4418 4429 4441 1.6 4452 4463 4474 4484 4495 4505 4515 4525 4535 4545 1.7 4554 4564 4573 4582 4591 4599 4608 4616 4625 4633 1.8 4641 4649 4656 4664 4671 4678 4686 4693 4699 4706 1.9 4713 4719 4726 4732 4738 4744 4750 4756 4761 4767 2.0 4772 4778 4783 4788 4793 4798 4803 4808 4812 4817 2.1 4821 4826 4830 4834 4838	1.1	3643	3665	3686	3708	3729	3749	3770	3790	3810	3830
1.4 4192 4207 4222 4236 4251 4265 4279 4292 4306 4319 1.5 4332 4345 4357 4370 4382 4394 4406 4418 4429 4441 1.6 4452 4463 4474 4484 4495 4505 4515 4525 4535 4545 1.7 4554 4564 4573 4582 4591 4599 4608 4616 4625 4633 1.8 4641 4649 4656 4664 4671 4678 4686 4693 4699 4706 1.9 4713 4719 4726 4732 4738 4744 4750 4756 4761 4767 2.0 4772 4778 4783 4788 4793 4798 4803 4808 4812 4817 2.1 4821 4826 4830 4834 4838 4842 4846 4850 4854 4857 2.2 4861 4864 4868 4871 4875	1.2	3849	3869	3888	3907	3925	3944	3962	3980	3997	4015
1.5 4332 4345 4357 4370 4382 4394 4406 4418 4429 4441 1.6 4452 4463 4474 4484 4495 4505 4515 4525 4535 4545 1.7 4554 4564 4573 4582 4591 4599 4608 4616 4625 4633 1.8 4641 4649 4656 4664 4671 4678 4686 4693 4699 4706 1.9 4713 4719 4726 4732 4738 4744 4750 4756 4761 4767 2.0 4772 4778 4783 4788 4793 4798 4803 4808 4812 4817 2.1 4821 4826 4830 4834 4838 4842 4846 4850 4854 4857 2.2 4861 4864 4868 4871 4878 4881 4884 4887 4890 2.3 4893 4896 4898 4901 4904 4906	1.3	4032	4049	4066	4082	4099	4115	4131	4147	4162	4177
1.6 4452 4463 4474 4484 4495 4505 4515 4525 4535 4545 1.7 4554 4564 4573 4582 4591 4599 4608 4616 4625 4633 1.8 4641 4649 4656 4664 4671 4678 4686 4693 4699 4706 1.9 4713 4719 4726 4732 4738 4744 4750 4756 4761 4767 2.0 4772 4778 4783 4788 4793 4798 4803 4808 4812 4817 2.1 4821 4826 4830 4834 4838 4842 4846 4850 4854 4857 2.2 4861 4864 4868 4871 4875 4878 4881 4884 4887 4890 2.3 4893 4896 4898 4901 4904 4906 4909 4911 4913 4916 2.4 4918 4920 4922 4925 4927	1.4	4192	4207	4222	4236	4251	4265	4279	4292	4306	4319
1.7 4554 4564 4573 4582 4591 4599 4608 4616 4625 4633 1.8 4641 4649 4656 4664 4671 4678 4686 4693 4699 4706 1.9 4713 4719 4726 4732 4738 4744 4750 4756 4761 4767 2.0 4772 4778 4783 4788 4793 4798 4803 4808 4812 4817 2.1 4821 4826 4830 4834 4838 4842 4846 4850 4854 4857 2.2 4861 4864 4868 4871 4875 4878 4881 4884 4887 4890 2.3 4893 4896 4898 4901 4904 4906 4909 4911 4913 4916 2.4 4918 4920 4922 4925 4927 4929 4931 4932 4934 4936 2.5 4938 4940 4941 4943 4945	1.5	4332	4345	4357	4370	4382	4394	4406	4418	4429	4441
1.8 4641 4649 4656 4664 4671 4678 4686 4693 4699 4706 1.9 4713 4719 4726 4732 4738 4744 4750 4756 4761 4767 2.0 4772 4778 4783 4788 4793 4798 4803 4808 4812 4817 2.1 4821 4826 4830 4834 4838 4842 4846 4850 4854 4857 2.2 4861 4864 4868 4871 4875 4878 4881 4884 4887 4890 2.3 4893 4896 4898 4901 4904 4906 4909 4911 4913 4916 2.4 4918 4920 4922 4925 4927 4929 4931 4932 4934 4936 2.5 4938 4940 4941 4943 4945 4946 4948 4949 4951 4952 2.6 4953 4955 4956 4957 4959	1.6	4452	4463	4474	4484	4495	4505	4515	4525	4535	4545
1.9 4713 4719 4726 4732 4738 4744 4750 4756 4761 4767 2.0 4772 4778 4783 4788 4793 4798 4803 4808 4812 4817 2.1 4821 4826 4830 4834 4838 4842 4846 4850 4854 4857 2.2 4861 4864 4868 4871 4875 4878 4881 4884 4887 4890 2.3 4893 4896 4898 4901 4904 4906 4909 4911 4913 4916 2.4 4918 4920 4922 4925 4927 4929 4931 4932 4934 4936 2.5 4938 4940 4941 4943 4945 4946 4948 4949 4951 4952 2.6 4953 4955 4956 4957 4959 4960 4961 4962 4963 4964 2.7 4965 4966 4967 4968 4969	1.7	4554	4564	4573	4582	4591	4599	4608	4616	4625	4633
2.0 4772 4778 4783 4788 4793 4798 4803 4808 4812 4817 2.1 4821 4826 4830 4834 4838 4842 4846 4850 4854 4857 2.2 4861 4864 4868 4871 4875 4878 4881 4884 4887 4890 2.3 4893 4896 4898 4901 4904 4906 4909 4911 4913 4916 2.4 4918 4920 4922 4925 4927 4929 4931 4932 4934 4936 2.5 4938 4940 4941 4943 4945 4946 4948 4949 4951 4952 2.6 4953 4955 4956 4957 4959 4960 4961 4962 4963 4964 2.7 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 2.8 4974 4975 4976 4977 4978	1.8	4641	4649	4656	4664	4671	4678	4686	4693	4699	4706
2.1 4821 4826 4830 4834 4838 4842 4846 4850 4854 4857 2.2 4861 4864 4868 4871 4875 4878 4881 4884 4887 4890 2.3 4893 4896 4898 4901 4904 4906 4909 4911 4913 4916 2.4 4918 4920 4922 4925 4927 4929 4931 4932 4934 4936 2.5 4938 4940 4941 4943 4945 4946 4948 4949 4951 4952 2.6 4953 4955 4956 4957 4959 4960 4961 4962 4963 4964 2.7 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 2.8 4974 4975 4976 4977 4978 4979 4979 4980 4981 2.9 4981 4982 4982 4983 4984 4984	1.9	4713	4719	4726	4732	4738	4744	4750	4756	4761	4767
2.2 4861 4864 4868 4871 4875 4878 4881 4884 4887 4890 2.3 4893 4896 4898 4901 4904 4906 4909 4911 4913 4916 2.4 4918 4920 4922 4925 4927 4929 4931 4932 4934 4936 2.5 4938 4940 4941 4943 4945 4946 4948 4949 4951 4952 2.6 4953 4955 4956 4957 4959 4960 4961 4962 4963 4964 2.7 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 2.8 4974 4975 4976 4977 4978 4979 4979 4980 4981 2.9 4981 4982 4982 4983 4984 4984 4985 4985 4986 4986	2.0	4772	4778	4783	4788	4793	4798	4803	4808	4812	4817
2.3 4893 4896 4898 4901 4904 4906 4909 4911 4913 4916 2.4 4918 4920 4922 4925 4927 4929 4931 4932 4934 4936 2.5 4938 4940 4941 4943 4945 4946 4948 4949 4951 4952 2.6 4953 4955 4956 4957 4959 4960 4961 4962 4963 4964 2.7 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 2.8 4974 4975 4976 4977 4978 4979 4979 4980 4981 2.9 4981 4982 4983 4984 4984 4985 4985 4986 4986	2.1	4821	4826	4830	4834	4838	4842	4846	4850	4854	4857
2.4 4918 4920 4922 4925 4927 4929 4931 4932 4934 4936 2.5 4938 4940 4941 4943 4945 4946 4948 4949 4951 4952 2.6 4953 4955 4956 4957 4959 4960 4961 4962 4963 4964 2.7 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 2.8 4974 4975 4976 4977 4978 4979 4979 4980 4981 2.9 4981 4982 4983 4984 4984 4985 4985 4986 4986	2.2	4861	4864	4868	4871	4875	4878	4881	4884	4887	4890
2.5 4938 4940 4941 4943 4945 4946 4948 4949 4951 4952 2.6 4953 4955 4956 4957 4959 4960 4961 4962 4963 4964 2.7 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 2.8 4974 4975 4976 4977 4978 4979 4979 4980 4981 2.9 4981 4982 4983 4984 4984 4985 4985 4986 4986	2.3	4893	4896	4898	4901	4904	4906	4909	4911	4913	4916
2.6 4953 4955 4956 4957 4959 4960 4961 4962 4963 4964 2.7 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 2.8 4974 4975 4976 4977 4978 4979 4979 4980 4981 2.9 4981 4982 4983 4984 4984 4985 4985 4986 4986	2.4	4918	4920	4922	4925	4927	4929	4931	4932	4934	4936
2.7 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 2.8 4974 4975 4976 4977 4977 4978 4979 4979 4980 4981 2.9 4981 4982 4982 4983 4984 4984 4985 4985 4986 4986	2.5	4938	4940	4941	4943	4945	4946	4948	4949	4951	4952
2.8 4974 4975 4976 4977 4977 4978 4979 4979 4980 4981 2.9 4981 4982 4982 4983 4984 4984 4985 4985 4986 4986	2.6	4953	4955	4956	4957	4959	4960	4961	4962	4963	4964
2.9 4981 4982 4982 4983 4984 4984 4985 4985 4986 4986	2.7	4965	4966	4967	4968	4969	4970	4971	4972	4973	4974
	2.8	4974	4975	4976	4977	4977	4978	4979	4979	4980	4981
3.0 4987 4987 4987 4988 4988 4989 4989 4989	2.9	4981	4982	4982	4983	4984	4984	4985	4985	4986	4986
	3.0	4987	4987	4987	4988	4988	4989	4989	4989	4990	4990

$$\Psi(0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} \exp\{-\frac{t^2}{2}\} dt = 0.5,$$

a stąd związek między dystrybuantą $\Psi(x)$ i funkcją $\Phi(x)$ przedstawia się następująco:

$$\Psi(x) = \begin{cases} 0.5 + \Phi(x), & x \ge 0, \\ 0.5 - \Phi(-x), & x < 0. \end{cases}$$
 (3.21)

Zilustrujemy teraz na kilku przykładach, jak posługiwać się tablicą rozkładu $\mathcal{N}(0,1).$

Przykład 3.4.1 Niech $X \sim \mathcal{N}(0,1)$. Znajdźmy prawdopodobieństwa:

$$p_1 = P(X < 1.52),$$

$$p_2 = P(X > 0.76),$$

$$p_3 = P(X < -1.03),$$

$$p_4 = P(-1.07 < X < 2.07).$$

Wygodnie będzie posłużyć się rysunkami. Prawdopodobieństwa, które mamy obliczyć, odpowiadają polom obszarów zaznaczonych na rysunkach 6 – 9, odpowiednio. Stosując wzór (3.21), widzimy, że

$$p_1 = 0.5 + \Phi(1.52) = 0.5 + 0.4357 = 0.9357,$$

$$p_2 = 1 - \Psi(0.76) = 0.5 - \Phi(0.76) = 0.5 - 0.2764 = 0.2236,$$

$$p_3 = \Psi(-1.03) = 0.5 - \Phi(1.03) = 0.5 - 0.3485 = 0.1515,$$

$$p_4 = \Psi(2.07) - \Psi(-1.07) = 0.5 + \Phi(2.07) - 0.5 + \Phi(1.07) = 0.8385.$$

Przykład 3.4.2. Niech $Y \sim \mathcal{N}(5,4)$. Znajdźmy prawdopodobieństwo zdarzenia $\{1.5 < Y < 6\}$.

Zgodnie z (3.19) zmienna losowa $X = \frac{Y-5}{2}$ ma rozkład $\mathcal{N}(0,1)$, a więc

$$P(1.5 < Y < 6) = P\left(\frac{1.5 - 5}{2} < \frac{Y - 5}{2} < \frac{6 - 5}{2}\right) = P(-1.75 < X < 0.5)$$
$$= \Psi(0.5) - \Psi(-1.75) = \Phi(0.5) + \Phi(1.75) = 0.1915 + 0.46 = 0.6515.$$

Przykład 3.4.3. Niech $Y \sim \mathcal{N}(2,9)$. Znajdźmy x_0 takie, by $P(Y < x_0) = 0.63$. Przechodząc jak w poprzednim przykładzie do zmiennej losowej $X \sim \mathcal{N}(0,1)$, mamy na mocy (3.21)

$$0.63 = P\left(X < \frac{x_0 - 2}{3}\right) = 0.5 + \Phi\left(\frac{x_0 - 2}{3}\right).$$

W tablicy rozkładu $\mathcal{N}(0,1)$ szukamy wartości równej lub najbliższej $\Phi\left(\frac{x_0-2}{3}\right)=0.13$, inaczej mówiąc szukamy $\Phi^{-1}(0.13)$. Widzimy, że odpowiada ona argumentowi x=0.33. Zatem $\frac{x_0-2}{3}=0.33$, a stąd $x_0=2.99$.

Dwa następne przykłady ilustrują także praktyczne zastosowanie rozkładu $\mathcal{N}(m, \sigma^2)$.

Przykład 3.4.4. Przyjmuje się, że wzrost człowieka jest zmienną losową normalną z parametrami m=167 (cm) i $\sigma=3$ (cm). Obliczmy, jaki procent stanowią ludzie mający wzrost:

- (a) mniejszy niż 167 cm,
- (b) większy niż 170 cm.

Rozpatrujemy zmienną losową $Y \sim \mathcal{N}(167,9)$. Zgodnie z (3.19) zmienna losowa $X = \frac{Y-167}{3}$ ma rozkład $\mathcal{N}(0,1)$, a stąd

- (a) $P(Y < 167) = P(X < 0) = \Phi(0) = 0.5$,
- (b) $P(Y > 170) = P(X > 1) = 0.5 \Phi(1) = 0.5 0.3413 = 0.1587.$

Oznacza to, że do pierwszej grupy należy 50% populacji ludzkiej, do drugiej natomiast prawie 16%.

Przykład 3.4.5. Maszyna produkuje śruby, których długość jest zmienną losową normalną z parametrami m=5 (cm) i $\sigma=0.2$ (cm). Przyjmując, że śruba spełnia wymagane normy techniczne, jeśli jej długość mieści się w przedziale (4.8, 5.2), znajdźmy, jaki procent wszystkich produktów maszyny stanowią braki.

Dla rozważanych zmiennych losowych $Y \sim \mathcal{N}(5,0.04)$ oraz $X = \frac{Y-5}{0.2} \sim \mathcal{N}(0,1)$ obliczamy

$$P(Y \notin (4.8, 5.2)) = 1 - P(Y \in (4.8, 5.2)) = 1 - P(-1 < X < 1) = 1 - 2\Phi(1) = 0.3174.$$

Maszyna produkuje więc prawie 32% braków.

Na koniec tego podrozdziału wyprowadzimy jeszcze wzory na **dystrybuantę i** gęstość funkcji zmiennej losowej.

Niech X będzie zmienną losową o gęstości f i dystrybuancie F, a $h: \Re \to \Re$ niech oznacza funkcję mającą funkcję odwrotną h^{-1} na zbiorze wartości zmiennej losowej X. Dla ustalenia uwagi przyjmijmy, że h jest ściśle rosnąca. Wtedy

$$Y = h(X)$$
, dokładniej $Y(\omega) = h(X(\omega))$

jako złożenie odwzorowań $h \circ X$ jest zmienną losową o dystrybuancie

$$G(y) = P(h(X) \le y) = P(X \le h^{-1}(y)) = F(h^{-1}(y)), \quad y \in \Re.$$

Jeśli h^{-1} jest różniczkowalna, to zmienna losowa Y=h(X) ma gęstość postaci

$$g(y) = G'(y) = (F(h^{-1}(y)))' = F'(h^{-1}(y)) \cdot (h^{-1}(y))' = f(h^{-1}(y)) \cdot (h^{-1}(y))', \quad y \in \Re.$$

Przykład 3.4.6. Niech długość boku kwadratu będzie zmienną losową X jednostajną na odcinku [0,a] (tzn. $X \sim \mathcal{U}[0,a]$). Znajdźmy dystrybuantę i gęstość zmiennej losowej Y będącej polem kwadratu.

Oznaczmy przez F dystrybuantę oraz przez f gęstość zmiennej losowej X. Zatem zgodnie ze wzorem (3.16) dla zmiennej losowej jednostajnej na [0, a] mamy

$$F(x) = \frac{x}{a}, \quad f(x) = \frac{1}{a}, \quad 0 \le x \le a.$$

Ponieważ $Y=X^2$, więc $h(x)=x^2$ oraz w rozważanej dziedzinie [0,a] funkcja h jest ściśle rosnąca. Zatem h^{-1} istnieje i $h^{-1}(y)=\sqrt{y}$, $0\leq y\leq a^2$. Możemy wobec tego

zastosować ogólne wzory, otrzymując dystrybuantę zmiennej losowej Y

$$G(y) = P(Y \le y) = F(\sqrt{y}) = \begin{cases} 0, & y < 0 \\ \frac{\sqrt{y}}{a}, & 0 \le y \le a^2 \\ 1, & y > a^2. \end{cases}$$

Jej gestość jest postaci

$$g(y) = G'(y) = f(\sqrt{y}) \cdot (\sqrt{y})' = \begin{cases} \frac{1}{2a\sqrt{y}}, & 0 < y \le a^2 \\ 0, & \text{poza tym.} \end{cases}$$

Następny przykład pokazuje, jak mając dowolną ściśle rosnącą dystrybuantę F, wygenerować zmienną losową o rozkładzie F. Założenie o ścisłej monotoniczności funkcji F można opuścić, wprowadzając pojęcie tzw. uogólnionej funkcji odwrotnej.

Przykład 3.4.7. Niech F będzie ściśle rosnąca dystrybuantą, a U zmienną losową jednostajną na odcinku [0,1] (tzn. $U \sim \mathcal{U}[0,1]$). Zmienna losowa $X = F^{-1}(U)$ ma dystrybuantę F.

Rzeczywiście, dla każdego $x \in \Re$ mamy

$$P(X \le x) = P(F^{-1}(U) \le x) = P(U \le F(x)) = F(x).$$

3.5 Wektory losowe

Podobnie, jak w analizie matematycznej rozważamy wielowymiarowe funkcje, tak w rachunku prawdopodobieństwa badamy wielowymiarowe zmienne losowe zwane **wektorami losowymi**. Dla prostoty rozpatrywać tutaj będziemy wektory losowe o dwóch składowych.

Podamy teraz kolejno określenia kilku pojęć, których jednowymiarowe analogony są nam już znane.

Definicja 3.5.1. Niech X, Y będą zmiennymi losowymi określonymi na przestrzeni probabilistycznej (Ω, \mathcal{F}, P) . Funkcję $Z = (X, Y) : (\Omega, \mathcal{F}, P) \to \Re^2$ daną wzorem

$$Z(\omega) = (X(\omega), Y(\omega))$$

nazywamy 2-wymiarowym wektorem losowym.

Funkcję $F: \Re^2 \to [0,1]$ daną wzorem

$$F(x,y) = P(X < x, Y < y)$$
(3.22)

nazywamy dystrybuantą wektora losowego Z = (X, Y).

Bezpośrednio z jej określenia otrzymujemy następujące uogólnienie wzoru (3.13') na przypadek dwuwymiarowy. Mianowicie, dla $a_1 \leq b_1$, $a_2 \leq b_2$

$$P(a_1 < X \le b_1, a_2 < Y \le b_2) = F(b_1, b_2) - F(a_1, b_2) - F(b_1, a_2) + F(a_1, a_2).$$

Jeśli zmienna losowa X przyjmuje co najwyżej przeliczalnie wiele wartości x_1, x_2, \ldots , a zmienna losowa Y co najwyżej przeliczalnie wiele wartości y_1, y_2, \ldots , to **rozkład** (łączny) wektora losowego (X,Y) określony jest przez nieujemny ciąg podwójny

$$p_{i,j} = P(X = x_i, Y = y_j), \quad i, j = 1, 2, \dots, \text{ taki, } \dot{z}e \quad \sum_{i} \sum_{j} p_{i,j} = 1.$$
 (3.23)

Wektor losowy (X,Y) nazywamy wtedy **dyskretnym wektorem losowym**. Jeśli natomiast istnieje funkcja $f: \Re^2 \to \Re_+$ spełniająca dla każdej pary $(x,y) \in \Re^2$ warunki

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, du dv \qquad \text{oraz} \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u,v) \, du dv = 1, \qquad (3.24)$$

to mówimy, że wektor losowy (X,Y) ma gęstość (łączną) f.

Podobnie, jak w przypadku jednowymiarowym (porównaj (3.14)), otrzymujemy, że dla wszystkich poza być może skończoną lub przeliczalną liczbą punktów $(x, y) \in \Re^2$ zachodzi równość

$$f(x,y) = \frac{\partial F(x,y)}{\partial x \partial y}.$$

Rozważmy dla każdego i oraz j

$$p_i = \sum_{j} p_{i,j}$$
 oraz $q_j = \sum_{i} p_{i,j}$. (3.25)

Wówczas $p_i = P(X = x_i)$, $q_j = P(Y = y_j)$, więc $p_i \ge 0$, $q_j \ge 0$ oraz na mocy (3.23), $\sum_i p_i = \sum_j q_j = \sum_i \sum_j p_{i,j} = 1$. Zatem ciągi $\{p_i\}$ oraz $\{q_j\}$ tworzą rozkłady prawdopodobieństwa zwane odpowiednio **rozkładem brzegowym zmiennej losowej** X oraz **rozkładem brzegowym zmiennej losowej** Y.

Analogicznie określamy rozkłady (gęstości) brzegowe dla wektora losowego (X,Y) z gęstością. Zatem funkcje

$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) dy, \quad x \in \Re \quad \text{oraz} \quad f_2(y) = \int_{-\infty}^{\infty} f(x, y) dx, \quad y \in \Re,$$
(3.26)

nazywamy odpowiednio **gęstością brzegową zmiennej losowej** X oraz **gęstością brzegową zmiennej losowej** Y.

Pojęcie rozkładów brzegowych pozwala w przejrzysty sposób wyrazić niezależność składowych wektora losowego. Rzeczywiście, na mocy wzorów (3.5) i (3.5') można pokazać, że własność ta jest równoważna następującym warunkom:

(a) w przypadku wektora losowego dyskretnego

$$p_{i,j} = p_i \cdot q_j, \qquad i, j = 1, 2, \dots,$$
 (3.27)

(b) w przypadku wektora losowego z gęstością

$$f(x,y) = f_1(x) \cdot f_2(y), \qquad x, y \in \Re.$$
 (3.28)

Widzimy więc, że przy założeniu niezależności rozkład łączny jest iloczynem rozkładów brzegowych. Udowodnimy dla przykładu przypadek (b).

Załóżmy, że zmienne losowe X i Y są niezależne o gęstościach f_1 i f_2 , odpowiednio. Wtedy na mocy wzoru (3.5) mamy

$$F(x,y) = P(X \le x, Y \le y) = P(X \le x) \cdot P(Y \le y) =$$

$$\int_{-\infty}^{x} f_1(u) \, du \cdot \int_{-\infty}^{y} f_1(v) \, dv = \int_{-\infty}^{x} \int_{-\infty}^{y} f_1(u) \cdot f_2(v) \, du \, dv, \quad x, y \in \Re,$$

co oznacza, że wektor losowy (X, Y) ma gęstość $f(x, y) = f_1(x) \cdot f_2(y)$, czyli prawdziwy jest wzór (3.28).

Na odwrót, załóżmy, że dla łącznej gęstości wektora (X,Y) oraz pewnych funkcji f_1 i f_2 zachodzi wzór (3.28). Obliczmy

$$F_{1}(x) = P(X \le x) = P(X \le x, Y < +\infty) = \int_{-\infty}^{x} \int_{-\infty}^{\infty} f(u, v) \, du \, dv =$$

$$\int_{-\infty}^{x} \int_{-\infty}^{\infty} f_{1}(u) \cdot f_{2}(v) \, du \, dv = \int_{-\infty}^{x} f_{1}(u) \, du \cdot \int_{-\infty}^{\infty} f_{2}(v) \, dv = \int_{-\infty}^{x} f_{1}(u) \, du, \quad x \in \Re.$$

To oznacza, że zmienna losowa X ma gęstość f_1 . Podobnie pokazujemy, że zmienna losowa Y ma gęstość f_2 . Prawdziwe są zatem równości

$$P(X \le x, Y \le y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) du dv =$$

$$\int_{-\infty}^{x} \int_{-\infty}^{y} f_1(u) \cdot f_2(v) du dv = P(X \le x) \cdot P(Y \le y), \quad x, y \in \Re.$$

oznaczające, że zachodzi wzór (3.5).

Na zakończenie tego podrozdziału rozważymy dwa wektory losowe.

Przykład 3.5.1.

(a) Przyjmijmy, że wektor losowy (X, Y) ma rozkład postaci

Tab. 3.

$X \setminus Y$	1	2
1	a	0.25
5	0.1	0.15
7	0.4	0

Wyznaczmy nieznaną wartość a, rozkłady brzegowe tego wektora oraz sprawdźmy niezależność jego składowych.

Z warunku (3.23) wynika, że a = 1 - (0.1 + 0.25 + 0.1 + 0.15 + 0.4) = 0.1.

Przykładowo obliczmy rozkład brzegowy zmiennej losowej X. Otóż

$$p_1 = P(X = 1) = P(X = 1, Y = 1) + P(X = 1, Y = 2) = 0.1 + 0.25 = 0.35,$$

 $p_2 = P(X = 5) = 0.25, \quad p_3 = P(X = 7) = 0.4.$

Podobnie otrzymujemy

$$q_1 = P(Y = 1) = 0.6, \quad q_2 = P(Y = 2) = 0.4.$$

Otrzymane rozkłady brzegowe wygodnie jest dopisać do tablicy rozkładu łącznego w sposób przedstawiony w tablicy 4.

Wspólny zapis rozkładu łącznego i rozkładów brzegowych pozwala nam szybko sprawdzić niezależność składowych rozpatrywanego wektora losowego. Mianowicie, zgodnie ze wzorem (3.27) iloczyn każdej pary (p_i, q_j) musi równać się wartości $p_{i,j}$.

Tab. 4.

$X \backslash Y$	1	2	p_i
1	0.1	0.25	0.35
5	0.1	0.15	0.25
7	0.4	0	0.4
q_j	0.6	0.4	1

W naszym przykładzie warunek ten nie jest spełniony choćby dla i = 3, j = 2, zatem

zmienne losowe X oraz Y są zależne.

(b) Jako drugi rozważmy wektor losowy (X,Y) z gestością postaci

$$f(x) = \begin{cases} e^{-y}, & 0 < x < y < \infty \\ 0, & \text{poza tym.} \end{cases}$$

Korzystając z (3.26), znajdźmy naprzód gęstości brzegowe. Mamy kolejno

$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) \, dy = \int_{x}^{\infty} e^{-y} \, dy = e^{-x}, \quad x > 0,$$

$$f_2(y) = \int_{-\infty}^{\infty} f(x, y) \, dx = \int_{0}^{y} e^{-y} \, dx = y e^{-y}, \quad y > 0.$$

Z ich postaci łatwo już widać, że składowe rozważanego wektora losowego są zależne, ponieważ warunek niezależności (3.28) nie jest spełniony np. w punkcie (2,1):

$$0 = f(2,1) \neq f_1(2) \cdot f_2(1) = e^{-3}.$$

3.6 Sumy niezależnych zmiennych losowych

Zbadamy teraz rozkłady sum niezależnych zmiennych losowych. Niech X oraz Y będą niezależnymi zmiennymi losowymi dyskretnymi. Wtedy

$$P(X+Y=z) = \sum_{x} P(X=x, Y=z-x) = \sum_{x} P(X=x) \cdot P(Y=z-x). \quad (3.29)$$

Przykład 3.6.1. Niech rozważane niezależne zmienne losowe X i Y mają obie rozkład $\mathcal{G}(p)$. Zgodnie ze wzorami: powyższym oraz (3.9) rozkład ich sumy T = X + Y przedstawia się następująco:

$$P(T=k) = \sum_{l=1}^{k-1} P(X=l) \cdot P(Y=k-l) = \sum_{l=1}^{k-1} p(1-p)^{l-1} \cdot p(1-p)^{k-l-1} = (k-1)p^2(1-p)^{k-2},$$

 $przy czym k = 2, 3, \dots$

Niech z kolei X oraz Y będą niezależnymi zmiennymi losowymi o łącznej gęstości f(x,y) oraz gęstościach i dystrybuantach brzegowych f_1 , F_1 i f_2 , F_2 , odpowiednio. Wtedy rozkład sumy Z = X + Y znajdujemy następująco:

$$P(Z \le z) = P(X + Y \le z) = P((X, Y) \in T_z), \quad T_z = \{(x, y) : x \in \Re, y \le z - x\},$$

czyli

$$F(z) = P(Z \le z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x, y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_1(x) \cdot f_2(y) \, dy dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_1(x) \cdot f_2(y) \, dy$$

$$\int_{-\infty}^{\infty} f_1(x) \int_{-\infty}^{z-x} f_2(y) \, dy dx = \int_{-\infty}^{\infty} f_1(x) F_2(z-x) \, dx.$$

Stąd otrzymujemy już tzw. wzór splotowy:

$$f(z) = \frac{d}{dz} \left(\int_{-\infty}^{\infty} f_1(x) F_2(z - x) \, dx \right) = \int_{-\infty}^{\infty} f_1(x) f_2(z - x) \, dx. \tag{3.30}$$

Jako ilustrację jego zastosowania rozważymy następujący

Przykład 3.6.2. Niech X i Y będą niezależnymi zmiennymi losowymi o jednakowym rozkładzie $\mathcal{U}[0,1]$. Znajdźmy rozkład – gęstość f ich sumy Z=X+Y.

Po pierwsze zauważmy, że $Z \in [0, 2]$, co oznacza, że f(z) = 0 dla z poza [0, 2].

Dla $z \in [0, 2]$ mamy natomiast zgodnie z (3.30) oraz (3.16)

$$f(z) = \int_{-\infty}^{\infty} f_1(x) f_2(z - x) dx = \int_{T_z} 1 dx,$$

gdzie $T_z = \{x \in \Re: 0 \le x \le 1, 0 \le z - x \le 1\} = \{x \in \Re: 0 \le x \le 1, z - 1 \le x \le z\}.$ Stąd

$$f(x) = \begin{cases} \int_0^z 1 dx = z, & 0 \le z \le 1\\ \int_{z-1}^1 1 dx = 2 - z, & 1 < z \le 2. \end{cases}$$

Ze względu na wykres wyprowadzonej gęstości otrzymany rozkład nazywa się **trój- katny**.

3.7 Zadania

- 1. Podaj formalne określenie i dystrybuanty zmiennych losowych opisanych następującymi doświadczeniami losowymi:
 - (a) rzucamy trzema rozróżnialnymi kostkami, X oznacza najmniejszy z wyników,
 - (b) wybieramy losowo punkt z kwadratu jednostkowego, X i Y oznaczają odpowiednio współrzędne tego punktu, a Z ich sumę.
- 2. Niech $\Omega = \{\omega_1, \omega_2, \omega_3\}, P(\{\omega_1\}) = P(\{\omega_3\}) = \frac{1}{4}, P(\{\omega_2\}) = \frac{1}{2} \text{ oraz niech}$

$$X(\omega_1) = 1, \quad X(\omega_2) = 2, \quad X(\omega_3) = 0,$$

$$Y(\omega_1) = 2, \quad Y(\omega_2) = 0, \quad Y(\omega_3) = 1,$$

$$Z(\omega_1) = 0, \quad Z(\omega_2) = 1, \quad Z(\omega_3) = 2.$$

3.7. ZADANIA 57

Porównaj rozkłady zmiennych losowych X+Y i Y+Z oraz $X\cdot Y$ i $Y\cdot Z$. Podaj rozkład i dystrybuantę zmiennej losowej X+Y-Z oraz $\sqrt{(X^2+Y^2)Z}$.

- 3. Mamy 100 kartek ponumerowanych liczbami 0, 1, 2, ..., 99. Wybieramy losowo jedną z nich. Niech X oznacza sumę cyfr na wybranej kartce, a F dystrybuantę tej zmiennej losowej. Podaj rozkład zmiennej losowej X oraz znajdź wartość dystrybuanty F(15).
- 4. Niech dystrybuanta zmiennej losowej X będzie postaci

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

Znajdź rozkład zmiennej losowej X oraz podaj przykład modelu losowego i opisującej model zmiennej losowej o tym rozkładzie.

- 5. Pokaż, że ciągi zdefiniowane wzorami (3.8) (3.10) są rozkładami prawdopodobieństwa.
- 6. Niech zmienna losowa X ma rozkład postaci

$$P(X = n) = p_n = \frac{c}{n(n+1)}, \qquad n = 1, 2, \dots$$

Wyznacz wartość c tak, by ciąg $\{(n, p_n), n = 1, 2, ...\}$ był rozkładem prawdopodobieństwa, podaj dystrybuantę zmiennej losowej X oraz oblicz prawdopodobieństwo $P(X \ge m), \quad m = 1, 2, ...$

- 7. Prawdopodobieństwo trafienia do celu w jednym strzale wynosi $\frac{1}{5}$, oddano niezależnie 12 strzałów. Oblicz, jakie jest prawdopodobieństwo, że cel został trafiony przynajmniej dwukrotnie.
- 8. Wiadomo z obserwacji, że 5% pasażerów rezerwujących miejsce na pewien lot nie pojawia się. Linia lotnicza sprzedaje więc 52 bilety na samolot mogący zabrać 50 pasażerów. Oblicz prawdopodobieństwo, że w danym locie znajdzie się miejsce dla wszystkich pasażerów, którzy zgłoszą się przed odlotem samolotu.
- 9. Niech X będzie zmienną losową dwumianową o rozkładzie $\mathcal{B}(n,p)$. Pokaż, że najbardziej prawdopodobną wartością przyjmowaną przez X jest k:
 - (a) równe (n+1)p-1 lub (n+1)p, jeśli (n+1)p jest całkowite,
 - (b) spełniające warunek (n+1)p-1 < k < (n+1)p, w przeciwnym razie.

- 10. Oblicz, jak długi powinien być ciąg cyfr losowych, tzn. ilu losowań ze zwracaniem ze zbioru cyfr musimy dokonać, aby prawdopodobieństwo pojawienia się (wystąpienia co najmniej jeden raz) cyfry 5 wynosiło co najmniej 0.95?
 Jakie jest prawdopodobieństwo, że 5 pojawi się po raz pierwszy jako piąty element tego ciągu?
- 11. Niech T będzie zmienną losową dyskretną o wartościach naturalnych spełniającą dla każdego naturalnego n_0 warunek (3.12). Przyjmując dla $k=1,2,\ldots,\alpha(k)=P(T\geq k)$, pokaż, że $\alpha(1)=1$ oraz $\alpha(k)=(\alpha(2))^{k-1}$, $k=2,3,\ldots$ Wykluczając przypadek $\alpha(2)=1$ i kładąc $\alpha(2)=1-p$, $0< p\leq 1$, udowodnij, że rozkład zmiennej losowej T wyraża się wzorem (3.9), czyli jest to zmienna losowa geometryczna z parametrem p.
- 12. Niech liczba błędów drukarskich na pojedynczej stronie książki będzie zmienną losową Poissona z parametrem $\lambda = 2$. Oblicz prawdopodobieństwo, że na danej stronie znajduje się co najmniej jeden błąd.
- 13. Niech liczba wypadków zdarzających się na autostradzie w ciągu doby będzie zmienną losową Poissona z parametrem $\lambda = 5$. Oblicz prawdopodobieństwo, że dziś nie zdarzy się żaden wypadek.
- 14. Pokaż, że jeśli X jest zmienną losową z gęstością, to dla każdego $x_0 \in \Re$ zachodzi $P(X = x_0) = 0$.
- 15. Wyznacz wartość c, dla której funkcja

$$f(x) = \begin{cases} c/x^2, & x \ge 10\\ 0, & \text{poza tym.} \end{cases}$$

jest gęstością zmiennej losowej X, podaj jej dystrybuantę oraz znajdź prawdopodobieństwo P(X>20).

- 16. Pokaż, że funkcje zdefiniowane wzorami (3.16) i (3.17) są gęstościami i znajdź odpowiadające im dystrybuanty.
- 17. Udowodnij własność braku pamięci dla zmiennej losowej wykładniczej.
- 18. Udowodnij prawdziwość relacji (3.19).

3.7. ZADANIA 59

19. Niech X będzie zmienną losową normalną o rozkładzie $\mathcal{N}(m, \sigma^2)$. Oblicz prawdopodobieństwo $P(|X - m| \leq 3\sigma)$.

- 20. Niech X będzie zmienną losową normalną o rozkładzie $\mathcal{N}(7,9)$. Oblicz prawdopodobieństwo, że zmienna losowa X przyjmuje wartości
 - (a) mniejsze od 8.5,
 - (b) większe od 3.7,
 - (c) leżące między 2.5 a 11.2.
- 21. Niech X będzie zmienną losową normalną o rozkładzie $\mathcal{N}(95, \sigma^2)$. Znajdź wartość σ , jeśli wiadomo, że 20% obszaru pod wykresem gęstości leży na prawo od 103.4.
- 22. Niech X będzie zmienną losową normalną o rozkładzie $\mathcal{N}(m, (24.5)^2)$. Znajdź wartość m, jeśli prawdopodobieństwo tego, że zmienna losowa X przyjmuje wartości mniejsze od 60.0 jest równe 0.3745.
- 23. Zmienna losowa X ma dystrybuantę F. Znajdź dystrybuantę zmiennej losowej $Z=aX+b,\quad a,b\in\Re.$
- 24. Niech X będzie zmienną losową wykładniczą o rozkładzie $\mathcal{E}(2)$ oraz niech Y=2X. Znajdź gęstość zmiennej losowej Y i oblicz $P(1\leq Y\leq 5)$.
- 25. Niech X będzie zmienną losową jednostajną o rozkładzie $\mathcal{U}[-\frac{\pi}{2}, \frac{\pi}{2}]$. Znajdź rozkład zmiennej losowej $Y = \sin X$.
- 26. Pokaż, że jeśli X jest zmienną losową dodatnią o gęstości f, to X^{-1} ma gęstość postaci $f(\frac{1}{x})/x^2$.
- 27. Dystrybuanta wektora losowego (X,Y) jest postaci

$$F(x,y) = \begin{cases} 1 - 2^{-x} - 2^{-y} + 2^{-x-y}, & x \ge 0, y \ge 0 \\ 0, & \text{poza tym.} \end{cases}$$

- (a) Oblicz prawdopodobieństwo, że wektor losowy (X, Y) przyjmuje wartości z prostokata ograniczonego prostymi x = 1, x = 2, y = 3 oraz y = 5.
- (b) Znajdź gęstość tego wektora losowego oraz gęstości brzegowe. Czy zmienne losowe X i Y są niezależne?

28. Gęstością wektora losowego (X,Y) jest

$$f(x,y) = \frac{1}{2\pi} \exp\{-\frac{1}{2}(x^2 + y^2)\}, \quad x, y \in \Re.$$

- (a) Oblicz $P(X \ge 1)$.
- (b) Oblicz prawdopodobieństwo, że punkt (X,Y) znajduje się wewnątrz koła o środku (0,0) i promieniu 1.
- 29. Znajdź rozkłady brzegowe oraz sprawdź niezależność składowych wektora losowego o gęstości

$$f(x,y) = \frac{\sqrt{3}}{\pi} \exp\{-x^2 - 2xy - 4y^2\}, \quad x, y \in \Re.$$

30. Rozkład wektora losowego (X,Y) jest dany następująco:

$$P(X = 1, Y = 1) = P(X = 1, Y = 2) = P(X = 2, Y = 2) = \frac{1}{3}.$$

Znajdź dystrybuanty F(x,y), $F_1(x)$, $F_2(y)$ oraz sprawdź, czy zmienne losowe X i Y są niezależne.

- 31. Zmienne losowe X i Y są niezależnymi zmiennymi losowymi wykładniczymi z parametrami 1 i $\frac{1}{2}$, odpowiednio. Wyznacz ich łączny rozkład.
- 32. Gęstość wektora losowego (X,Y) jest postaci

$$f(x,y) = \begin{cases} \frac{3}{4}x + 2xy + \frac{1}{4}y, & 0 < x < 1, 0 < y < 1\\ 0, & \text{poza tym.} \end{cases}$$

Oblicz $P(X > \frac{1}{2}|Y > \frac{1}{2})$.

- 33. Liczby a i b wybierane są niezależnie zgodnie z rozkładem $\mathcal{U}[-1,1]$. Oblicz prawdopodobieństwo, że pierwiastki równania kwadratowego $x^2 + 2ax + b = 0$ są rzeczywiste.
- 34. Zmienne losowe X_i , $i=1,\ldots,n$, są niezależne o dystrybuantach F_i , $i=1,\ldots,n$. Znajdź dystrybuanty następujących zmiennych losowych:

$$Z = \min_{1 \le i \le n} X_i \quad \text{oraz} \quad T = \max_{1 \le i \le n} X_i.$$

Pokaż w szczególności, że jeśli rozważane zmienne losowe mają jednakowy rozkład $\mathcal{E}(\lambda)$, to zmienna losowa Z ma rozkład $\mathcal{E}(n\lambda)$.

3.7. ZADANIA 61

35. Niech X i Y będą niezależnymi zmiennymi losowymi o jednakowym rozkładzie przyjmującymi wartości 1, 2, 3, 4 z prawdopodobieństwami 0.1, 0.2, 0.3, 0.4, odpowiednio. Znajdź rozkład ich sumy.

- 36. Niech X i Y będą niezależnymi zmiennymi losowymi o jednakowym rozkładzie z gęstością f(x) = 2x dla 0 < x < 1. Znajdź rozkład ich sumy.
- 37. Niech X i Y będą niezależnymi zmiennymi losowymi o jednakowym rozkładzie $\mathcal{E}(\lambda)$. Pokaż, że gęstość f ich sumy Z = X + Y jest postaci

$$f(z) = \begin{cases} \lambda^2 z e^{-\lambda z}, & z \ge 0\\ 0, & \text{poza tym.} \end{cases}$$

Uogólniając ten wynik na sumę n składników, zauważ, porównując ze wzorem (3.17'), że otrzymany rozkład jest rozkładem $\Gamma(n, \lambda)$. Nosi on też nazwę rozkładu **Erlanga rzędu n**.

- 38. Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach $\Gamma(n,\lambda)$ oraz $\Gamma(m,\lambda)$, odpowiednio. Korzystając z poprzedniego zadania, uzasadnij, że ich suma ma rozkład $\Gamma(n+m,\lambda)$.
- 39. Niech X oraz Y będą niezależnymi zmiennymi losowymi, Y jednostajną na odcinku [0,1], a X o dystrybuancie F i gęstości f. Pokaż, że ich suma ma gęstość g(x) = F(x) F(x-1).
- 40. Niech X będzie zmienną losową jednostajną na [0,1], a Y niezależną od niej o rozkładzie $P(Y=-1)=P(Y=1)=\frac{1}{2}$. Stosując wzór na prawdopodobieństwo całkowite, pokaż, że rozkładem ich sumy Z=X+Y jest

$$F(z) = \begin{cases} \frac{1}{2}(z+1), & -1 \le z \le 0\\ \frac{1}{2}, & 0 \le z \le 1\\ \frac{1}{2}z, & 1 \le z \le 2. \end{cases}$$

Rozdział 4

Momenty i transformaty

4.1 Wartość oczekiwana i wariancja

W wielu zagadnieniach praktycznych istnieje potrzeba opisania zmiennej losowej przez jedną charakterystykę liczbową oddającą jej najbardziej typowe, przeciętne wartości. Interesować nas może na przykład, jak długo czekamy zazwyczaj na przyjazd tramwaju, jakie są średnie zbiory truskawek, na ile przeciętnie dni słonecznych może liczyć wczasowicz w sierpniu. Takie właśnie znaczenie ma pojęcie, które teraz definiujemy.

Definicja 4.1.1.

(i) Niech X będzie zmienną losową dyskretną o rozkładzie $\{(x_k, p_k), k = 1, 2, ...\}$. Jeśli $\sum_k |x_k| p_k < \infty$, to istnieje wartość oczekiwana E(X) zmiennej losowej X dana wzorem

$$E(X) = \sum_{k} x_k p_k. \tag{4.1}$$

(ii) Niech X będzie zmienną losową z gęstością f. Jeśli $\int_{-\infty}^{\infty} |x| f(x) dx < \infty$, to istnieje wartość oczekiwana E(X) zmiennej losowej X dana wzorem

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx.$$
 (4.2)

Wartość oczekiwaną nazywamy też **średnią** lub **pierwszym momentem** zmiennej losowej.

Wynikające bezpośrednio z powyższych definicji **własności wartości oczekiwanej** formułujemy w lemacie, którego dowód pozostawiamy jako ćwiczenie.

Lemat 4.1.2. Jeśli istnieje wartość oczekiwana E(X) zmiennej losowej X, to (a) E(aX + b) = aE(X) + b, $a, b \in \Re$,

- (b) $|E(X)| \le E(|X|)$,
- (c) Jeśli $P(X \ge 0) = 1$, to $E(X) \ge 0$.

Przykład 4.1.1.

(a) Niech zmienna losowa X ma rozkład $P(X = x_k) = \frac{1}{N}, k = 1, ..., N$. Wtedy

$$E(X) = \sum_{k=1}^{N} x_k \cdot \frac{1}{N} = \frac{1}{N} \sum_{k=1}^{N} x_k.$$
 (4.3)

W tym przypadku wartość oczekiwana jest średnią arytmetyczną wartości zmiennej losowej.

Zauważmy, że w świetle tego przykładu można patrzeć na wartość oczekiwaną jako na uogólnienie średniej arytmetycznej stosowane wtedy, gdy wartości x_k , $k=1,\ldots,N$, nie są jednakowo prawdopodobne.

(b) W grze w ruletkę stawiając 1 na czarne, wygrywamy tę kwotę z prawdopodobieństwem $\frac{18}{38}$, a tracimy ją z prawdopodobieństwem $\frac{20}{38}$. Stąd wygrana, jakiej możemy oczekiwać w jednej grze, wynosi

$$E(X) = 1 \cdot \frac{18}{38} + (-1) \cdot \frac{20}{38} = -0.0526.$$

(c) Niech T będzie zmienną losową geometryczną z parametrem $p=\frac{1}{2}$ (porównaj wzór (3.9)). T jest więc na przykład numerem rzutu symetryczną monetą, w którym po raz pierwszy wypadnie orzeł. Znajdźmy wartość oczekiwaną zmiennej losowej T. Wychodząc z definicji mamy obliczyć

$$E(T) = \sum_{k=1}^{\infty} k \cdot \frac{1}{2^k}.$$

W tym celu weźmy rozwinięcie w szereg funkcji $\frac{x}{1-x} = \sum_{k=0}^{\infty} x^k$, |x| < 1. W rozważanym zbiorze szereg ten jest jednostajnie zbieżny i różniczkując wyraz po wyrazie, otrzymujemy

$$\sum_{k=1}^{\infty} kx^{k-1} = \left(\frac{x}{1-x}\right)' = \frac{1}{(1-x)^2}.$$

Stad

$$\sum_{k=1}^{\infty} k x^k = \frac{x}{(1-x)^2}.$$

Podstawiając $x=\frac{1}{2}$, otrzymujemy $\mathrm{E}(T)=2$. Przy przyjętej interpretacji zmiennej losowej T oznacza to, że pierwsze pojawienie się orła ma zazwyczaj miejsce w drugim rzucie.

- (d) Obliczając wartości oczekiwane zmiennych losowych dwumianowej i Poissona, otrzymujemy E(X) = np dla $X \sim \mathcal{B}(n,p)$ oraz $E(X) = \lambda$ dla $X \sim \mathcal{P}(\lambda)$.
- (e) Niech T będzie z kolei zmienną losową wykładniczą z parametrem $\lambda > 0$. Pamiętając, że gęstość zmiennej losowej Tjest postaci $f(u) = \lambda e^{-\lambda u}$, u > 0, (porównaj wzór (3.17)), obliczamy wartość oczekiwaną E(T):

$$E(T) = \int_{-\infty}^{\infty} u f(u) du = \lambda \int_{0}^{\infty} u e^{-\lambda u} du = \frac{1}{\lambda} \int_{0}^{\infty} t e^{-t} dt = \frac{1}{\lambda}.$$

Zatem parametr λ jest odwrotnością wartości oczekiwanej.

Załóżmy teraz dla przykładu, że na mało ruchliwej szosie czekamy na przejazd pierwszego samochodu. Czas do tego zdarzenia jest rozważaną zmienną losową T. Parametr λ będący, jak właśnie pokazaliśmy, odwrotnością wartości oczekiwanej, może być interpretowany jako **intensywność** zachodzenia zdarzenia, na które czekamy.

(f) Uogólniając, obliczmy wartość oczekiwaną zmiennej losowej X o rozkładzie $\Gamma(n, \lambda)$, $\lambda > 0$ z gęstością (wzór (3.17')) $f(x) = \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x}$, $x \ge 0$. Mamy

$$E(X) = \int_0^\infty \frac{\lambda^n}{(n-1)!} x^n e^{-\lambda x} dx = \frac{n}{\lambda} \int_0^\infty \frac{\lambda^{n+1}}{n!} x^n e^{-\lambda x} dx = \frac{n}{\lambda} \cdot I_n = \frac{n}{\lambda},$$

ponieważ I_n jest całką z gęstości rozkładu $\Gamma(n+1,\lambda)$.

(g) Pewna rzeka wylewa każdego roku. Niech dolny poziom rzeki będzie ustawiony na wysokości 1, o górnym założymy, że jest zmienną losową o dystrybuancie

$$F(y) = P(Y \le y) = 1 - \frac{1}{y^2}, \qquad 1 \le y < \infty.$$

Zauważmy, że F spełnia wszystkie warunki stawiane dystrybuancie, w szczególności granica $\lim_{y\to\infty} F(y)$ jest równa 1. W celu wyznaczenia $\mathrm{E}(Y)$, czyli średniego górnego poziomu rzeki, znajdujemy najpierw $f(y)=F'(y)=\frac{2}{y^3},\ 1\leq y<\infty$. Zatem

$$E(Y) = \int_1^\infty y \frac{2}{y^3} \, dy = 2.$$

(h) Na koniec rozważmy jeszcze zmienną losową X o rozkładzie **Cauchy'ego** z gęstością

$$f(x) = \frac{1}{\pi(1+x^2)}, \quad x \in \Re.$$

Okazuje się, że wartość oczekiwana tej zmiennej losowej nie istnieje, ponieważ

$$E(|X|) = \int_{-\infty}^{\infty} |x| f(x) dx = \int_{-\infty}^{\infty} \frac{|x|}{\pi (1 + x^2)} dx = \infty.$$

Rzeczywiście,

$$E(|X|) \ge \int_1^\infty \frac{|x|}{\pi(1+x^2)} dx \ge \int_1^\infty \frac{|x|}{\pi(2x^2)} dx = \frac{1}{2\pi} \int_1^\infty \frac{1}{x} dx = \infty.$$

Wartość oczekiwaną określamy również dla wektora losowego.

Definicja 4.1.3. Dwuwymiarowy wektor postaci

$$E(X,Y) = (E(X), E(Y)), \tag{4.4}$$

gdzie E(X) i E(Y) są określone tak, jak w definicji 4.1.1, nazywamy wartością oczekiwaną wektora losowego (X,Y).

Przykład 4.1.2. (Kontynuacja przykładu 3.5.1.) Wykorzystując znalezione rozkłady brzegowe, obliczmy wartości oczekiwane rozważanych wektorów losowych.

(a)
$$E(X) = 1 \cdot 0.35 + 5 \cdot 0.25 + 7 \cdot 0.4 = 4.4$$
 oraz $E(Y) = 1 \cdot 0.6 + 2 \cdot 0.4 = 1.4$, a stąd

$$E(X,Y) = (4.4, 1.4).$$

(b) E(X) = 1 na mocy przykładu 4.1.1 (e), ponieważ $X \sim \mathcal{E}(1)$. Następnie $E(Y) = \int_0^\infty y^2 e^{-y} dy = 2$, a stad

$$E(X,Y) = (1,2).$$

Przekształcenie zmiennej losowej lub wektora losowego zmienia ich wartość oczekiwana w odpowiedni sposób. Mianowicie:

(i) Jeśli X jest zmienną losową dyskretną o rozkładzie $\{(x_k, p_k), k = 1, 2, ...\}$, to zmienna losowa Y = h(X) przyjmuje wartość $h(x_k)$ wtedy, gdy zmienna losowa X przyjmuje wartość x_k , czyli z prawdopodobieństwem p_k , k = 1, 2, ..., a zatem zgodnie ze wzorem (4.1)

$$E(Y) = E[h(X)] = \sum_{k} h(x_k) p_k, \quad \text{o ile} \quad \sum_{k} |h(x_k)| p_k < \infty, \quad (4.5)$$

(ii) Jeśli X jest natomiast zmienną losową z gęstością f, to

$$E(Y) = E[h(X)] = \int_{-\infty}^{\infty} h(x)f(x) dx, \quad \text{o ile} \qquad \int_{-\infty}^{\infty} |h(x)|f(x) dx < \infty. \tag{4.6}$$

Podobnie, w przypadku wektorów losowych mamy

(i) dla wektora losowego dyskretnego o rozkładzie $P(X = x_i, Y = y_i) = p_{i,j}$

$$E[h(X,Y)] = \sum_{i} \sum_{j} h(x_{i}, y_{j}) p_{i,j},$$
(4.7)

(ii) dla wektora losowego z gęstością f(x, y)

$$E[h(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y)f(x,y) dxdy, \tag{4.8}$$

o ile powyższe sumy i całki są bezwzględnie zbieżne.

Jako przykład zastosowania powyższych relacji udowodnimy wzory na wartość oczekiwaną sumy i iloczynu zmiennych losowych.

Twierdzenie 4.1.4. Jeśli X, Y są zmiennymi losowymi o wartościach oczekiwanych E(X) i E(Y), to

$$E(X+Y) = E(X) + E(Y). \tag{4.9}$$

Jeśli ponadto zmienne losowe X i Y są niezależne, to

$$E(X \cdot Y) = E(X) \cdot E(Y). \tag{4.10}$$

Dowód. Wzór (4.9) pokażemy dla zmiennych losowych dyskretnych o łącznym rozkładzie $\{p_{i,j}, i, j = 1, 2, \ldots\}$. Niech funkcja $h: \Re^2 \to \Re$ będzie dana wzorem h(x, y) = x + y. Zgodnie z (4.7) mamy więc

$$E(X + Y) = E[h(X, Y)] = \sum_{i} \sum_{j} h(x_{i}, y_{j}) p_{i,j} = \sum_{i} \sum_{j} (x_{i} + y_{j}) P(X_{i} = x_{i}, Y = y_{j}) =$$

$$\sum_{i} \sum_{j} x_{i} P(X = x_{i}, Y = y_{j}) + \sum_{i} \sum_{j} y_{j} P(X = x_{i}, Y = y_{j}) =$$

$$\sum_{i} x_{i} P(X = x_{i}) + \sum_{i} y_{j} P(Y = y_{j}) = E(X) + E(Y).$$

Zauważmy, że $E(|X + Y|) < \infty$, ponieważ

$$E(|X + Y|) = \sum_{i} \sum_{j} |x_i + y_j| p_{i,j} \le \sum_{i} \sum_{j} |x_i| p_{i,j} + \sum_{i} \sum_{j} |y_j| p_{i,j} = E(|X|) + E(|Y|).$$

Wzór (4.10) udowodnimy dla zmiennych losowych o łącznej gęstości f(x, y). Niech teraz funkcja h określona będzie jako $h(x, y) = x \cdot y$. Zgodnie z (4.8) otrzymujemy

$$E(X \cdot Y) = E[h(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) f(x,y) dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot y f_1(x) \cdot f_2(y) dx dy,$$

ponieważ na mocy niezależności możemy skorzystać z (3.28) i przedstawić łączną gęstość f(x,y) wektora losowego (X,Y) jako iloczyn gęstości brzegowych $f_1(x)$ oraz $f_2(y)$. Ostatecznie mamy zatem

$$E(X \cdot Y) = \int_{-\infty}^{\infty} x f_1(x) dx \cdot \int_{-\infty}^{\infty} y f_2(y) dy = E(X) \cdot E(Y).$$

Warunek $\mathrm{E}(|X\cdot Y|)<\infty$ jest spełniony, ponieważ $|x\cdot y|=|x|\cdot |y|$ i rozpatrywane zmienne losowe mają wartości oczekiwane.

Oprócz wartości oczekiwanej informującej, jak wiemy, jakiej przeciętnie wartości zmiennej losowej należy się spodziewać, do liczbowego opisu zmiennej losowej służy zazwyczaj jeszcze jedna charakterystyka. Określa ona stopień rozproszenia wartości rozpatrywanej zmiennej losowej w stosunku do jej wartości oczekiwanej. Jej formalną definicję poprzedzi wprowadzenie jeszcze jednego pojęcia.

Definicja 4.1.5.

Wartość oczekiwaną $E(X^r)$ zmiennej losowej X^r nazywamy r-tym momentem zmiennej losowej $X, r = 1, 2, \dots$

Jeśli istnieje drugi moment $E(X^2)$ zmiennej losowej X, to wyrażenie

$$\sigma^{2}(X) = E[X - E(X)]^{2}$$
(4.11)

nazywamy wariancją zmiennej losowej X.

Dodatni pierwiastek z wariancji

$$\sigma(X) = +\sqrt{\sigma^2(X)} \tag{4.12}$$

nazywamy odchyleniem standardowym zmiennej losowej X.

Zauważmy, że odchylenie standardowe jest dobrze zdefiniowane, ponieważ z określenia (4.11) i lematu 4.1.2 wariancja jako wartość oczekiwana kwadratu zmiennej losowej jest nieujemna. Widać także, że im odchylenie standardowe jest mniejsze, tym wartości przyjmowane przez zmienną losową są bardziej skoncentrowane wokół E(X). Stwierdzenie to precyzuje następująca nierówność:

$$P(|X - E(X)| < k \cdot \sigma(X)) \ge 1 - \frac{1}{k^2}, \quad k > 0,$$

znana jako **nierówność Czebyszewa**. Jej dowód przedstawimy w rozdziale 5, skupiając się teraz na interpretacji $\sigma(X)$. Otóż, przyjąwszy k=3, widzimy, że dla każdej zmiennej losowej w odległości mniejszej niż 3 odchylenia standardowe od jej wartości

oczekiwanej znajduje się co najmniej $\frac{8}{9}$, czyli 88% jej wartości. Gdy położymy k=5, odczytujemy, że w przedziale $(\mathrm{E}(X)-5\sigma(X),\,\mathrm{E}(X)+5\sigma(X))$ leży już 96% wartości zmiennej losowej X, itd.

Przykład 4.1.3. Przypuśćmy, że prawdopodobieństwo zdania egzaminu z teorii prawdopodobieństwa wynosi 0.8, oceny poszczególnych studentów nie zależą od rezultatów kolegów. Oszacujmy z prawdopodobieństwem równym przynajmniej $\frac{15}{16}$ liczbę osób, które zdały egzamin, jeśli do egzaminu przystąpiło 200 studentów.

Oznaczmy przez X liczbę osób, o których mowa. Z założeń wynika, że $X \sim \mathcal{B}(200, 0.8)$. Z części (d) przykładu 4.1.1 wiemy, że $\mathrm{E}(X) = np = 160$, w przykładzie 4.1.5 obliczymy natomiast, że $\sigma(X) = \sqrt{np(1-p)} = 5.65$. Podstawiając te dane do nierówności Czebyszewa, otrzymujemy

$$P(|X - 160| < k \cdot 5.65) \ge 1 - \frac{1}{k^2} = 1 - \frac{15}{16}.$$

Zatem k = 4, a powyższa nierówność przyjmuje postać

$$P(160 - 4 \cdot 5.65 < X < 160 + 4 \cdot 5.65) \ge \frac{15}{16},$$

czyli

$$P(137.4 < X < 182.6) \ge \frac{15}{16}.$$

Z prawdopodobieństwem równym co najmniej $\frac{15}{16}$ możemy więc twierdzić, że liczba osób, które zdały egzamin, jest zawarta między 138 a 182.

Przejdźmy teraz do omówienia własności wariancji oraz przykładów.

Lemat 4.1.6. Jeśli istnieje drugi moment $E(X^2)$ zmiennej losowej X, to (a) wariancja dana jest wzorem

$$\sigma^{2}(X) = E(X^{2}) - [E(X)]^{2}, \tag{4.13}$$

a stąd $[E(|X|)]^2 \le E(X^2)$.

(b)
$$\sigma^2(aX) = a^2\sigma^2(X)$$
 oraz $\sigma^2(X+a) = \sigma^2(X)$, $a \in \Re$.

Dowód. Z określenia (4.11) mamy

$$\sigma^{2}(X) = E[(X - E(X))]^{2} = E(X^{2} - 2E(X) \cdot X + [E(X)]^{2}) =$$

$$E(X^{2}) - 2[E(X)]^{2} + [E(X)]^{2} = E(X^{2}) - [E(X)]^{2},$$

czyli prawdziwy jest wzór (4.13).

Zatem
$$\sigma^2(|X|) = E(|X|^2) - [E(|X|)]^2 \ge 0$$
 lub $[E(|X|)]^2 \le E(|X|^2) = E(X^2)$.

Zauważmy, że z powyższego wynika także, że jeśli istnieje drugi moment, to istnieje też pierwszy, czyli wartość oczekiwana $\mathrm{E}(X)$. Rzeczywiście, jeśli $\mathrm{E}(X^2) < \infty$, to $\mathrm{E}(|X|) < \infty$, co oznacza, że istnieje $\mathrm{E}(X)$.

Formalny dowód części (b) lematu pozostawiamy jako ćwiczenie. Zauważmy jednak, że druga z równości jest intuicyjnie oczywista. Skoro wariancja "mierzy" rozproszenie wartości zmiennej losowej – nie ulegnie ono przecież zmianie, gdy wszystkie wartości zmiennej losowej zostaną przesunięte o stałą a.

Podobnie jak dla wartości oczekiwanej wyprowadzimy teraz wzory na wariancję sumy zmiennych losowych.

Twierdzenie 4.1.7. Jeśli X i Y są niezależnymi zmiennymi losowymi o wariancjach $\sigma^2(X)$ i $\sigma^2(Y)$, to

$$\sigma^{2}(X+Y) = \sigma^{2}(X) + \sigma^{2}(Y). \tag{4.14}$$

Dowód. Zauważmy naprzód, że jeśli zmienna losowa X ma wartość oczekiwaną $\mathrm{E}(X) \neq 0$, to zgodnie z lematem 4.1.2 zmienna losowa $X^* = X - \mathrm{E}(X)$ ma wartość oczekiwaną $\mathrm{E}(X^*) = 0$ oraz wariancje obu zmiennych losowych X i X^* są na mocy lematu 4.1.6 jednakowe.

Możemy zatem założyć, że dla rozważanych w twierdzeniu zmiennych losowych mamy E(X) = E(Y) = 0. Wtedy także $E(X \cdot Y) = E(X) \cdot E(Y) = 0$, więc

$$\sigma^{2}(X+Y) = E[(X+Y)^{2}] - [E(X+Y)]^{2} = E[(X+Y)^{2}] =$$

$$E(X^2 + 2XY + Y^2) = E(X^2) + E(Y^2) = \sigma^2(X) + \sigma^2(Y).$$

Pokazaliśmy zatem, że wariancja sumy zmiennych losowych jest równa sumie wariancji, ale przy dodatkowym założeniu niezależności rozpatrywanych zmiennych losowych.

Jeśli natomiast X i Y są dowolnymi zmiennymi losowymi o wariancjach $\sigma^2(X)$ i $\sigma^2(Y)$, to

$$\sigma^{2}(X+Y) = E(X^{2}) + E(Y^{2}) + 2E(X \cdot Y) - [E(X)]^{2} - [E(Y)]^{2} - 2E(X) \cdot E(Y) =$$

$$\sigma^{2}(X) + \sigma^{2}(Y) + 2[E(X \cdot Y) - E(X) \cdot E(Y)].$$

Definicja 4.1.8. Wyrażenie

$$Cov(X,Y) = E(X \cdot Y) - E(X) \cdot E(Y)$$
(4.15)

nazywamy kowariancją zmiennych losowych X i Y.

Wyrażenie

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma(X)\sigma(Y)} \tag{4.16}$$

jest określane mianem współczynnika korelacji zmiennych losowych X i Y. Jeśli zachodzi $\rho(X,Y)=0$, to mówimy, że zmienne losowe X i Y są nieskorelowane. Z określenia kowariancji oraz twierdzenia 4.1.4 widzimy, że niezależne zmienne losowe są nieskorelowane. Pokażemy na przykładzie, że nie jest prawdziwe stwierdzenie odwrotne.

Przykład 4.1.4. Niech wektor losowy (X,Y) ma gęstość postaci

$$f(x,y) = \begin{cases} \frac{1}{\pi}, & x^2 + y^2 \le 1\\ 0, & \text{poza tym.} \end{cases}$$

Mówimy wtedy, że punkt losowy (X,Y) ma rozkład jednostajny na kole o środku (0,0) i promieniu 1.

Zbadajmy naprzód niezależność zmiennych losowych (X,Y).

Zgodnie ze wzorami (3.26) ich gęstości brzegowe są następujące:

$$f_1(x) = \int_{-\infty}^{\infty} f(x, y) \, dy = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} \, dy = \frac{2}{\pi} \sqrt{1-x^2}, \qquad -1 \le x \le 1,$$

$$f_2(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \frac{1}{\pi} dx = \frac{2}{\pi} \sqrt{1-y^2}, \quad -1 \le y \le 1.$$

Widzimy zatem, że $f_1(x) \cdot f_2(y) \neq f(x,y)$, a zatem na mocy (3.28) stwierdzamy, że zmienne losowe X i Y są zależne.

Jednocześnie ich współczynnik korelacji $\rho(X,Y)$ jest równy 0. Rzeczywiście,

$$E(X) = \int_{-\infty}^{\infty} x f_1(x) dx = \frac{2}{\pi} \int_{-1}^{1} x \sqrt{1 - x^2} dx = 0 = E(Y),$$

$$E(X \cdot Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x, y) \, dx dy = \frac{1}{\pi} \int_{-1}^{1} y \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} x \, dx \, dy = 0.$$

Stad

$$\operatorname{Cov}(X,Y) = 0$$
 i także $\rho(X,Y) = 0$.

Współczynnik korelacji jest najczęściej stosowaną, ale także nadużywaną w praktyce miarą zależności zmiennych losowych. Nie bierze się bowiem pod uwagę faktu, że mierzy on jedynie stopień zależności liniowej rozważanych zmiennych losowych (porównaj zadanie 4.9). Łatwo to zobaczyć, rozpatrując przykład zmiennych losowych:

X o momentach $E(X) = E(X^3) = 0$, $\sigma(X) \neq 0$ oraz $Y = X^2$, dla których, mimo oczywistej zależności, współczynnik korelacji wynosi zero.

Niedopuszczalne jest także interpretowanie dużych wartości współczynnika korelacji jako świadczących o istnieniu zależności przyczynowo-skutkowej między rozpatrywanymi zjawiskami losowymi. Klasycznym już przykładem przytaczanym tutaj dla ilustracji jest silne skorelowanie liczby bocianów żyjących w wioskach angielskich pewnego hrabstwa oraz liczby urodzin zarejestrowanych w tych samych miejscowościach. Fakt ten nie wyjaśnia oczywiście skąd się biorą dzieci – zwiększone wartości obu zmiennych losowych (liczby bocianów i dzieci) są skutkiem wspólnej przyczyny, czyli wzrostu zaludnienia w danym rejonie.

Na koniec tego podrozdziału pokażemy, jak wzory na wartość oczekiwaną i wariancję sumy zmiennych losowych pozwalają w inny niż bezpośrednio z definicji sposób znaleźć te charakterystyki dla zmiennej losowej dwumianowej. Zajmiemy się także zagadnieniem koincydencji.

Przykład 4.1.5. Niech zmienna losowa X będzie dwumianowa o rozkładzie $\mathcal{B}(n,p)$. Przypomnijmy, że zgodnie ze wzorem (3.11) X można przedstawić jako $S_n = \sum_{k=1}^n X_k$, gdzie X_1, \ldots, X_k są niezależnymi zmiennymi losowymi o rozkładzie $P(X_k = 1) = 1 - P(X_k = 0) = p, k = 1, \ldots, n$. Mamy więc $E(X_k) = p$ oraz $\sigma^2(X_k) = p(1-p), k = 1, \ldots, n$, a stąd na mocy oczywistego uogólnienia wzorów (4.9) i (4.14) na dowolną skończoną liczbę zmiennych losowych otrzymujemy dalej

$$E(X) = E(S_n) = \sum_{k=1}^{n} E(X_k) = np,$$

$$\sigma^2(X) = \sigma^2(S_n) = \sum_{k=1}^{n} \sigma^2(X_k) = np(1-p).$$

Przykład 4.1.6. (Zagadnienie koincydencji) Przypuśćmy, że obok ułożonej w rzędzie n-elementowej talii kart rozkładamy drugą talię potasowną. Oznaczmy przez A_i zdarzenie, że obok i-tej karty z pierwszej talii wystąpi taka sama z drugiej, czyli, że w i-tej parze wystąpi koincydencja, $i=1,\ldots,n$. Wtedy

$$P(A_i) = \frac{(n-1)!}{n!} = \frac{1}{n}, \qquad P(A_i \cap A_j) = \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}, \quad i \neq j.$$

Niech X będzie liczbą koincydencji. Zauważmy, że $X = \sum_{i=1}^{n} \mathbf{1}_{A_i}$, gdzie $\mathbf{1}_A$ oznacza indykator zbioru A. Mamy zatem

$$E(X) = \sum_{i=1}^{n} E(\mathbf{1}_{A_i}) = \sum_{i=1}^{n} P(A_i) = n \cdot \frac{1}{n} = 1$$

oraz

$$E(X^{2}) = E(\sum_{i=1}^{n} \mathbf{1}_{A_{i}})^{2} = E(\sum_{i=1}^{n} \mathbf{1}_{A_{i}}^{2} + 2\sum_{i \neq j} \mathbf{1}_{A_{i}} \cdot \mathbf{1}_{A_{j}}) =$$

$$\sum_{i=1}^{n} E(\mathbf{1}_{A_{i}}^{2}) + 2\sum_{i \neq j} E(\mathbf{1}_{A_{i}} \cdot \mathbf{1}_{A_{j}}) = \sum_{i=1}^{n} P(A_{i}) + 2\sum_{i \neq j} P(A_{i} \cap A_{j}) =$$

$$n \cdot \frac{1}{n} + 2\binom{n}{2} \cdot \frac{1}{n(n-1)} = 1 + 1 = 2.$$

Stąd i z powyższego otrzymujemy ostatecznie

$$E(X) = 1$$
 oraz $\sigma^{2}(X) = 2 - 1^{2} = 1$.

Pokazaliśmy więc, że niezależnie od wielkości talii zarówno wartość oczekiwana, jak i odchylenie standardowe liczby koincydencji wynosi 1.

4.2 Funkcja tworząca i funkcja charakterystyczna

Oprócz omawianej już dystrybuanty bardzo wygodnym i skutecznym narzędziem badania zmiennej losowej są tzw. **transformaty** jej rozkładu. Poznamy teraz dwie z nich – funkcję tworzącą oraz funkcję charakterystyczną. Pierwszą z nich określa się jedynie dla zmiennych losowych o wartościach całkowitych nieujemnych, druga jest bardziej uniwersalna – można ją zdefiniować dla dowolnej zmiennej losowej.

A. Funkcja tworząca

Niech X będzie zmienną losową o rozkładzie $\{(k, p_k), k = 0, 1, \ldots\}$.

Definicja 4.2.1. Funkcję $g:\Re\to\Re$ daną wzorem

$$g(s) = p_0 + p_1 s + p_2 s^2 + \ldots + p_k s^k + \ldots = \sum_k p_k s^k$$
 (4.17)

nazywamy funkcją tworzącą (rozkładu) zmiennej losowej X.

Ponieważ $\sum_k p_k = 1$, więc funkcja g(s) jest skończona (szereg potęgowy z powyższej definicji jest zbieżny) przynajmniej dla |s| < 1.

Przechodząc do własności funkcji tworzącej, omówimy jako pierwszą wzajemnie jednoznaczną odpowiedniość między rozkładem zmiennej losowej a jej funkcją tworzącą.

Twierdzenie 4.2.2. Rozkład zmiennej losowej X przyjmującej wartości całkowite

nieujemne jest jednoznacznie wyznaczony przez jej funkcję tworzącą g. Poszczególne prawdopodobieństwa obliczamy według wzoru

$$p_n = \frac{g^{(n)}(0)}{n!}, \qquad n = 0, 1, \dots$$
 (4.18)

Dowód. Na mocy uwagi następującej tuż po definicji funkcji tworzącej, widzimy, że $r \geq 1$ jest promieniem zbieżności szeregu z (4.17). Różniczkując szereg dla |s| < 1 wyraz po wyrazie, otrzymujemy

$$g'(s) = p_1 + 2p_2s + \ldots + kp_ks^{k-1} + \ldots = \sum_k kp_ks^{k-1},$$

$$g''(s) = 2p_2 + 3 \cdot 2p_3 s + \ldots + k(k-1)p_k s^{k-2} + \ldots = \sum_k k(k-1)p_k s^{k-2}$$

oraz ogólnie

$$g^{(n)}(s) = \sum_{k} k(k-1)\dots(k-n+1)p_k s^{k-n}, \quad n = 0, 1, \dots$$
 (4.19)

Kładąc s = 0, otrzymujemy

$$g^{(n)}(0) = n! p_n$$
 lub równoważnie $p_n = \frac{g^{(n)}(0)}{n!}, \quad n = 0, 1, \dots$

Twierdzenie jest zatem udowodnione.

Możność odczytania rozkładu nie jest jedyną korzyścią płynącą ze znajomości funkcji tworzącej. Okazuje się, że można dzięki niej znajdować kolejne momenty zmiennej losowej, a także badać sumy niezależnych zmiennych losowych o wartościach całkowitych nieujemnych, o czym mówią poniższe twierdzenia i przykłady.

Twierdzenie 4.2.3. Jeśli istnieje drugi moment $E(X^2)$ zmiennej losowej X mającej funkcję tworząca q, to

$$E(X) = g'(1)$$
 oraz $E(X^2) = g''(1) + g'(1)$. (4.20)

Dowód. Kładąc s=1 we wzorze (4.19) dla n=1 oraz n=2, otrzymujemy

$$g'(1) = \sum_{k} k p_k = E(X)$$

oraz

$$g''(1) = \sum_{k} k(k-1)p_k = \sum_{k} k^2 p_k - \sum_{k} k p_k = E(X^2) - E(X),$$

a więc

$$E(X^2) = g''(1) + E(X) = g''(1) + g'(1).$$

Wzory (4.20) są zatem udowodnione.

Przykład 4.2.1.

(a) Rozważmy zmienną losową X geometryczną o rozkładzie $\mathcal{G}(p)$ i znajdźmy najpierw jej funkcję tworzącą. Zgodnie z (3.9) oraz (4.17) mamy

$$g(s) = \sum_{k=1}^{\infty} s^k p(1-p)^{k-1} = \frac{p}{1-p} \sum_{k=1}^{\infty} (s(1-p))^k = \frac{sp}{1-s(1-p)},$$

a stad otrzymujemy kolejno

$$g'(s) = \frac{p}{(1 - s(1 - p))^2},$$
 oraz $g''(s) = \frac{2p(1 - p)}{(1 - s(1 - p))^3}.$

Zastosowanie wzorów (4.20) pozwala więc natychmiast wyznaczyć

$$E(X) = g'(1) = \frac{1}{p}$$
 oraz $\sigma^2(X) = g''(1) + g'(1) - (g'(1))^2 = \frac{1-p}{p^2}$.

(b) Podobnie, dla zmiennej losowej Poissona $X \sim \mathcal{P}(\lambda)$ łatwo pokazać, że funkcja tworząca jest postaci

$$q(s) = e^{-\lambda(1-s)}.$$

Stosując wzory (4.20), znajdujemy wartość oczekiwaną oraz wariancję:

$$E(X) = \lambda = \sigma^2(X).$$

Widzimy, że parametr rozkładu zmiennej losowej Poissona oznacza zarówno jej wartość oczekiwaną, jak i wariancję.

Twierdzenie 4.2.4. Jeśli zmienne losowe X i Y są niezależnymi zmiennymi losowymi o funkcjach tworzących $g_1(s)$ i $g_2(s)$, odpowiednio, to ich suma X + Y ma funkcję tworzącą postaci

$$g(s) = g_1(s) \cdot g_2(s).$$
 (4.21)

Dowód. Zauważmy, że na funkcję tworzącą zmiennej losowej X o rozkładzie $\{(k, p_k), k = 0, 1, \ldots\}$ można patrzeć jako na wartość oczekiwaną zmiennej losowej s^X ;

$$E(s^X) = \sum_k s^k p_k.$$

Korzystając z tego zapisu, obliczmy funkcję tworzącą sumy T = X + Y. Mamy

$$g(s) = E(s^T) = E(s^{X+Y}) = E(s^X) \cdot E(s^Y) = g_1(s) \cdot g_2(s).$$

Ponieważ niezależność zmiennych losowych X i Y pociąga niezależność zmiennych losowych s^X i s^Y , więc zastosowanie wzoru (4.10) jest uzasadnione.

Przykład 4.2.2. Dla niezależnych zmiennych losowych $X \sim \mathcal{P}(\lambda)$ oraz $Y \sim \mathcal{P}(\mu)$ znajdźmy funkcję tworzącą sumy Z = X + Y.

Z poprzedniego przykładu znamy funkcję tworzącą każdej z rozpatrywanych zmiennych losowych. Na mocy (4.21) zmiennej losowej Z odpowiada więc funkcja tworząca postaci

$$e^{-\lambda(1-s)} \cdot e^{-\mu(1-s)} = e^{-(\lambda+\mu)(1-s)}$$

Wykorzystamy teraz otrzymany powyżej wynik do pokazania ważnej własności klasy zmiennych losowych Poissona.

Twierdzenie 4.2.5. Suma niezależnych zmiennych losowych Poissona o rozkładach $\mathcal{P}(\lambda)$ oraz $\mathcal{P}(\mu)$, odpowiednio, jest zmienną losową Poissona o rozkładzie $\mathcal{P}(\lambda + \mu)$. **Dowód.** W funkcji tworzącej otrzymanej w przykładzie 4.2.2 rozpoznajemy funkcję tworzącą rozkładu $\mathcal{P}(\nu)$, gdzie parametr ν jest sumą $\lambda + \mu$ parametrów rozkładów zmiennych losowych X i Y. Ponieważ zgodnie z twierdzeniem 4.2.2 funkcja tworząca jednoznacznie wyznacza rozkład, stwierdzamy, że dodawanie niezależnych zmiennych losowych Poissona nie wyprowadza z tej klasy zmiennych losowych.

B. Funkcja charakterystyczna

Niech X będzie dowolną zmienną losową oraz niech \mathcal{C} onacza zbiór liczb zespolonych, a i jednostkę urojoną.

Definicja 4.2.6. Funkcję $\varphi: \Re \to \mathcal{C}$ daną wzorem

$$\varphi(t) = \mathcal{E}(e^{itX}) = \mathcal{E}(\cos tX) + i\mathcal{E}(\sin tX) \tag{4.22}$$

nazywamy funkcją charakterystyczną zmiennej losowej X.

Przypomnijmy, że $|e^{itx}| = 1$, $x \in \Re$, a zatem prawa strona wzoru (4.22) jest zawsze skończona, co oznacza, że funkcja charakterystyczna jest określona na całej prostej dla każdej zmiennej losowej.

Funkcja charakterystyczna, podobnie jak funkcja tworząca, jest wygodnym narzędziem znajdowania momentów oraz badania sum niezależnych zmiennych losowych.

Inne ważne zastosowanie funkcji charakterystycznej omówimy w rozdziale 5.

Oto analogony twierdzeń 4.2.2, 4.2.3 oraz 4.2.4 dla funkcji charakterystycznych.

Twierdzenie 4.2.7. Rozkład zmiennej losowej X jest jednoznacznie wyznaczony przez jej funkcję charakterystyczną φ . Jeśli x_1 i x_2 są punktami ciągłości dystrybuanty F zmiennej losowej X, to zachodzi następujący wzór na odwrócenie:

$$F(x_2) - F(x_1) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-itx_1} - e^{-itx_2}}{it} \varphi(t) dt.$$

Dowód pomijamy. Można go znaleźć w książce S. Zubrzyckiego Wykłady z rachunku prawdopodobieństwa i statystyki matematycznej, roz.VII, par. 36.

Twierdzenie 4.2.8. Jeśli istnieje drugi moment $E(X^2)$ zmiennej losowej X mającej funkcję charakterystyczną φ , to

$$E(X) = \frac{1}{i}\varphi'(0)$$
 oraz $E(X^2) = \frac{1}{i^2}\varphi''(0)$. (4.23)

Dowód. Niech X ma rozkład $\{(x_k, p_k), k = 1, 2, \ldots\}$. Wtedy

$$\varphi'(t) = (\sum_{k} e^{itx_k} p_k)' = \sum_{k} ix_k e^{itx_k} p_k,$$

a więc

$$\varphi'(0) = i \sum_{k} x_k p_k = i E(X).$$

Dla zmiennej losowej X z gęstością f mamy natomiast

$$\varphi'(t) = \left(\int_{-\infty}^{\infty} e^{itx} f(x) dx\right)' = \int_{-\infty}^{\infty} ix e^{itx} f(x) dx,$$

skąd

$$\varphi'(0) = i \int_{-\infty}^{\infty} x f(x) \, dx = i E(X).$$

W obu przypadkach wchodzenie z różniczkowaniem pod znak sumy lub całki jest uzasadnione założeniem $E(X) < \infty$.

Podobnie pokazujemy drugi ze wzorów (4.23).

Twierdzenie 4.2.9. Jeśli X i Y są niezależnymi zmiennymi losowymi o funkcjach charakterystycznych $\varphi_1(t)$ i $\varphi_2(t)$, odpowiednio, to ich suma X+Y ma funkcję charakterystyczną postaci

$$\varphi(t) = \varphi_1(t) \cdot \varphi_2(t). \tag{4.24}$$

Dowód pozostawiamy jako ćwiczenie.

Pokażemy natomiast, jak zastosować powyższy wzór do znalezienia funkcji charakterystycznej zmiennej losowej dwumianowej.

Przykład 4.2.3. Niech X będzie zmienną losową dwumianową o rozkładzie $\mathcal{B}(n,p)$ i funkcji charakterystycznej $\varphi_n(t)$. Pamiętając o przedstawieniu zmiennej losowej X jako sumy n niezależnych zmiennych losowych zero-jedynkowych (wzór (3.11)) i korzystając z twierdzenia 4.2.9, otrzymujemy

$$\varphi_n(t) = \mathcal{E}(e^{itX}) = \mathcal{E}(\exp(it\sum_{k=1}^n X_k)) = [\mathcal{E}(e^{itX_1})]^n$$

$$(pe^{it} + (1-p)e^0)^n = (1-p(1-e^{it}))^n.$$

Lemat, który teraz przedstawimy, pokazuje jak przekształcenie liniowe zmiennej losowej zmienia jej funkcję charakterystyczną. Otrzymany wzór ułatwi nam znalezienie funkcji charakterystycznej zmiennej losowej normalnej.

Lemat 4.2.10. Niech zmienna losowa X ma funkcję charakterystyczną $\varphi(t)$. Wtedy zmienna losowa Y = aX + b, gdzie $a, b \in \Re$, ma funkcję charakterystyczną

$$\psi(t) = e^{itb} \cdot \varphi(at).$$

Dowód. Zgodnie ze wzorem (4.22) mamy

$$\psi(t) = \mathcal{E}(e^{itY}) = \mathcal{E}(e^{it(aX+b)}) = \mathcal{E}(e^{i(at)X} \cdot e^{itb}) = e^{itb} \cdot \mathcal{E}(e^{i(at)X}) = e^{itb} \cdot \varphi(at),$$

co dowodzi tezy lematu.

Przykład 4.2.4. Rozważmy zmienną losową normalną standardową o rozkładzie $\mathcal{N}(0,1)$ i znajdźmy jej funkcję charakterystyczną φ . Otóż

$$\varphi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{itx} e^{-\frac{x^2}{2}} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\{-\left[\left(\frac{x}{\sqrt{2}}\right)^2 - 2\frac{x}{\sqrt{2}} \cdot \left(\frac{it}{\sqrt{2}}\right) + \frac{(it)^2}{2} + \frac{t^2}{2}\right]\} dx$$

$$= e^{-\frac{t^2}{2}} \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\{-\left(\frac{x}{\sqrt{2}} - i\frac{t}{\sqrt{2}}\right)^2\} dx.$$

Ponieważ całka funkcji $\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$, $z \in \mathcal{C}$, wzdłuż dowolnej prostej równoległej do osi rzeczywistej jest równa całce wzdłuż osi rzeczywistej, czyli

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(-\frac{(x-it)^2}{2}) \, dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(-\frac{x^2}{2}) \, dx,$$

więc

$$\varphi(t) = e^{-\frac{t^2}{2}}.\tag{4.25}$$

Rozważmy teraz dowolną zmienną losową normalną Y o rozkładzie $\mathcal{N}(m, \sigma^2)$. Pamiętając, że zgodnie z relacją (3.19) możemy ją przedstawić jako $Y = \sigma X + m$ i znając ze wzoru (4.25) funkcję charakterystyczną zmiennej losowej X, otrzymujemy na mocy lematu 4.2.10 funkcję charakterystyczną zmiennej losowej Y postaci

$$\psi(t) = e^{itm - \frac{t^2 \sigma^2}{2}}.\tag{4.26}$$

Na koniec zauważmy jeszcze, że podobnie jak klasa zmiennych losowych Poissona, tak i klasa zmiennych losowych normalnych jest zamknięta ze względu na dodawanie niezależnych składników.

Twierdzenie 4.2.11. Suma niezależnych zmiennych losowych normalnych o rozkładach $\mathcal{N}(m_1, \sigma_1^2)$ oraz $\mathcal{N}(m_2, \sigma_2^2)$, odpowiednio, jest zmienną losową normalną o rozkładzie $\mathcal{N}(m_1 + m_2, \sigma_1^2 + \sigma_2^2)$.

Dowód będący prostym wnioskiem z twierdzenia 4.2.9, wzoru (4.26) oraz twierdzenia 4.2.7 pozostawiamy jako ćwiczenie.

4.3 Zadania

- 1. Udowodnij lemat 4.1.2 oraz część (b) lematu 4.1.6.
- 2. Niech dla zmiennej losowej X i pewnej stałej c zachodzi P(X=c)=1. Oblicz wartość oczekiwaną oraz wariancję zmiennej losowej X i podaj interpretację otrzymanego wyniku.
- 3. Znajdź wartość oczekiwaną oraz wariancję zmiennej losowej jednostajnej, wykładniczej i normalnej. Jak wartość odchylenia standardowego wpływa na kształt krzywej gęstości zmiennej losowej normalnej?

4.3. ZADANIA 79

4. Loteria miasta M. ma 1 mln biletów, wśród których jest 1, na który przypada wygrana 50 000 zł., 9 wygrywających po 2 500 zł., 90 po 250 zł. oraz 900 po 25 zł. Oblicz oczekiwaną wygraną, jeśli kupujemy 1 bilet, 10 biletów. Gdyby sprzedano 80% biletów, każdy w cenie 50 gr., jaka byłaby spodziewana kwota do wypłacenia oraz spodziewany zysk loterii?

- 5. Na końcowym egzaminie z filozofii student może otrzymać maksymalnie 100 punktów. Średnia ocen uzyskanych przez 800 studentów wynosi 72.5, a odchylenie standardowe 8.2. Stosując nierówność Czebyszewa, podaj, co najmniej ilu studentów musiało otrzymać oceny od 55 do 90 punktów.
- Oszacuj prawdopodobieństwo wyrzucenia liczby orłów zawartej między 400 a 500 na 900 rzutów monetą.
- 7. Rzucamy raz pięcioma kostkami do gry. Oblicz wartość oczekiwaną i wariancję sumy oczek na wszystkich kostkach.
- 8. Dla zmiennych losowych X i Y oraz każdego $\alpha \in \Re$ określamy zmienną losową $U_{\alpha} = (X E(X)) + \alpha(Y E(Y))$. Obliczając $E(U_{\alpha}^2)$, udowodnij, że

$$\operatorname{Cov}^2(X, Y) \le \sigma^2(X) \cdot \sigma^2(Y)$$
, a stad $|\rho(X, Y)| \le 1$.

- 9. Znajdź współczynnik korelacji zmiennych losowych X oraz Y = aX + b, gdzie $a \neq 0$, b są dowolnymi stałymi.
- 10. Wektor losowy (X,Y) ma rozkład postaci

Tab. 5.

$X \setminus Y$	1	2	3
0	0.3	0.2	0.1
1	0.2	0.1	0.1

Niech Z=2X+Y. Oblicz wartość oczekiwaną oraz wariancję zmiennej losowej Z.

11. Charakterystyki liczbowe wektora losowego (X,Y) są następujące:

$$E(X) = 0$$
, $E(Y) = 1$, $\sigma^2(X) = 2$, $\sigma^2(Y) = 1$, $\rho(X, Y) = \frac{1}{\sqrt{2}}$.

Niech Z=2X-3Y. Oblicz wartość oczekiwaną oraz wariancję zmiennej losowej Z.

- 12. Przyjmijmy, że gęstość wektora losowego (X,Y) jest równa stałej a wewnątrz trójkąta o wierzchołkach A(0,0), B(1,0) i C(0,1) oraz 0 poza nim. Oblicz współczynnik korelacji współrzędnych losowo wybranego punktu tego trójkąta.
- 13. Wiedząc, że zmienna losowa X ma funkcję tworzącą g(s), znajdź funkcję tworzącą zmiennej losowej Y = X + 1 oraz zmiennej losowej Z = 3X + 2.
- 14. Znajdź funkcję tworzącą rozkładu zmiennej losowej dwumianowej i Poissona.
- 15. Stosując funkcje tworzące, udowodnij, że suma niezależnych zmiennych losowych dwumianowych z odpowiednimi parametrami jest zmienną losową dwumianową. Podaj interpretację związaną ze schematem Bernoulliego.
- 16. Znajdź funkcję charakterystyczną zmiennej losowej Poissona i jednostajnej.
- 17. Udowodnij drugi ze wzorów (4.23) oraz twierdzenia 4.2.9 i 4.2.11.
- 18. Niech X będzie zmienną losową taką, że $\mathrm{E}(e^{sX})<\infty$ dla $|s|< s_0, s_0>0$. Funkcja $\gamma:\Re\to\Re$

$$\gamma(s) = \mathcal{E}(e^{sX})$$

jest jeszcze jedną często stosowaną transformatą rozkładu zmiennej losowej znaną jako **funkcja tworząca momenty**. Wzorując się na dowodzie twierdzenia 4.2.8, udowodnij następującą uzasadniającą tę nazwę równość:

$$E(X^n) = \gamma^{(n)}(0), \qquad n = 0, 1, \dots$$

19. Pokaż, że funkcja tworząca momenty zmiennej losowej o rozkładzie $\Gamma(n,\lambda)$ jest postaci

$$\gamma(s) = \frac{\lambda^n}{(\lambda - s)^n}, \qquad 0 \le s < \lambda,$$

a stąd, opierając się na wzorze z poprzedniego zadania, pokaż, że n-ty moment zmiennej losowej wykładniczej X o rozkładzie $\mathcal{E}(\lambda)$ jest równy

$$E(X^n) = \frac{n!}{\lambda^n}.$$

20. Niech X będzie zmienną losową normalną standardową. Stosując funkcję charakterystyczną lub tworzącą momenty, udowodnij następujące wzory:

$$E(X^{2k-1}) = 0$$
, $E(X^{2k}) = (2k-1) \cdot (2k-3) \cdot \dots \cdot 3 \cdot 1$, $k = 1, 2, \dots$

Rozdział 5

Twierdzenia graniczne

5.1 Informacja o słabej zbieżności

W teorii prawdopodobieństwa rozważa się kilka pojęć zbieżności zmiennych losowych. W tym wykładzie będziemy rozpatrywać głównie słabą zbieżność.

Definicja 5.1.1. Niech $\{X, X_n, n = 1, 2, ...\}$ będzie ciągiem zmiennych losowych oraz $\{F, F_n, n = 1, 2, ...\}$ ciągiem odpowiadających im dystrybuant. Jeśli dla każdego x_0 będącego punktem ciągłości dystrybuanty F zmiennej losowej X spełniony jest warunek

$$\lim_{n \to \infty} F_n(x_0) = F(x_0), \tag{5.1}$$

to mówimy, że ciąg zmiennych losowych $\{X_n, n = 1, 2, \ldots\}$ jest słabo zbieżny (zbieżny według rozkładu) do zmiennej losowej X. Zbieżność tę oznaczamy przez $X_n \stackrel{d}{\to} X$, $n \to \infty$.

Można pokazać, że w przypadku zmiennych losowych dyskretnych warunek (5.1) jest równoważny następującemu:

$$\lim_{n \to \infty} P(X_n = x_k) = P(X = x_k), \qquad k = 1, 2, \dots$$
 (5.2)

Dla wszystkich typów zmiennych losowych prawdziwe jest natomiast następujące twierdzenie wskazujące na jeszcze jedno zastosowanie funkcji charakterystycznej. Okazuje się, że stanowi ona także wygodne narzędzie badania słabej zbieżności.

Twierdzenie 5.1.2. Niech $\{X_n, n = 1, 2, ...\}$ będzie ciągiem zmiennych losowych oraz $\{F_n, n = 1, 2, ...\}$ i $\{\varphi_n, n = 1, 2, ...\}$ ciągami odpowiadających im dystrybuant i funkcji charakterystycznych. Jeśli dla każdego $t \in \Re$ spełniony jest warunek

$$\lim_{n \to \infty} \varphi_n(t) = \varphi(t), \tag{5.3}$$

gdzie φ jest funkcją charakterystyczną pewnej zmiennej losowej X o dystrybuancie F, to dla każdego x_0 będącego punktem ciągłości dystrybuanty F zachodzi zbieżność

$$\lim_{n \to \infty} F_n(x_0) = F(x_0)$$

lub równoważnie

$$X_n \stackrel{d}{\to} X, \qquad n \to \infty.$$

Dowód pomijamy. Można go znaleźć w cytowanej już książce S. Zubrzyckiego Wykłady z rachunku prawdopodobieństwa i statystyki matematycznej, roz.VII.

Wykorzystamy natomiast powyższe twierdzenie do udowodnienia dwóch z czołowych twierdzeń rachunku prawdopodobieństwa – Twierdzenia Poissona oraz Centralnego Twierdzenia Granicznego.

5.2 Twierdzenie Poissona

Rozważmy ciąg zmiennych losowych $\{B_n, n = 1, 2, ...\}$ dwumianowych o rozkładach $\mathcal{B}(n, p_n)$. Jak już wspomnieliśmy (uwaga po wzorze (3.10)), jeśli parametry n i p_n spełniają pewien warunek, to prawdopodobieństwa $P(B_n = k), k = 0, 1, ...,$ są bliskie (w sensie zbieżności (5.2)) prawdopododobieństwom rozkładu Poissona. Precyzuje te uwagę następujące **Twierdzenie Poissona**.

Twierdzenie 5.2.1. Jeśli spełniony jest warunek

$$\lim_{n \to \infty} n p_n = \lambda > 0, \tag{5.4}$$

to

$$\lim_{n \to \infty} P(B_n = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \qquad k = 0, 1, \dots,$$
 (5.5)

lub równoważnie

$$B_n \stackrel{d}{\to} X, \quad n \to \infty, \qquad \text{gdzie} \quad X \sim \mathcal{P}(\lambda).$$
 (5.6)

Dowód. Na mocy twierdzenia 5.1.2 wystarczy pokazać, że funkcje charakterystyczne $\varphi_n(t)$ zmiennych losowych B_n , $n = 1, 2, \ldots$, są zbieżne do funkcji charakterystycznej $\varphi(t)$ zmiennej losowej X. Korzystając z przykładu 4.2.3 oraz zadania 4.16, mamy

$$\varphi_n(t) = (1 - p_n(1 - e^{it}))^n, \ n = 1, 2, \dots, \text{ oraz } \varphi(t) = e^{-\lambda(1 - e^{it})}.$$

Stąd na mocy warunku (5.4) otrzymujemy

$$\lim_{n \to \infty} \varphi_n(t) = \lim_{n \to \infty} \left(1 - \frac{np_n(1 - e^{it})}{n} \right)^n = e^{-\lambda(1 - e^{it})},$$

co kończy dowód twierdzenia.

Praktyczne zastosowanie Twierdzenia Poissona ilustrujemy przykładem.

Przykład 5.2.1. Wiedząc, że pewna choroba występuje u 1% osobników danej populacji, rozważmy pytania:

- (i) Jakie jest prawdopodobieństwo, że wśród losowo wybranych 100 osobników tej populacji
- (a) nie ma ani jednego chorego?
- (b) znajdują się co najmniej dwa osobniki chore?
- (ii) Ilu co najmniej osobników populacji należy zbadać, aby prawdopodobieństwo znalezienia osobnika chorego wynosiło co najmniej 0.95?

Oznaczmy przez B liczbę chorych wśród osobników wybranych z populacji. Zmienna losowa B jest zatem dwumianowa o rozkładzie $\mathcal{B}(100, 0.01)$, czyli

$$P(B=k) = {100 \choose k} (0.01)^k (0.99)^{100-k}, \quad k = 0, 1, \dots, 100.$$

W odpowiedzi na pytanie (i) zmienną losową $B \sim \mathcal{B}(100, 0.01)$ zastępujemy zmienną losową $X \sim \mathcal{P}(\lambda)$, $\lambda = np = 1$. Otrzymujemy wówczas prawdopodobieństwa:

(a)
$$P(B=0) \approx P(X=0) = e^{-1} = 0.368$$
,

(b)
$$P(B \ge 2) \approx P(X \ge 2) = 1 - P(X = 0) - P(X = 1) = 1 - 2e^{-1} = 0.264$$
.

W odpowiedzi na pytanie (ii) zastosujemy także przybliżenie zmienną losową Poissona. Zauważmy, że aby spełniona była nierówność $P(B \ge 1) \ge 0.95$ lub równoważnie

$$P(B=0) \approx P(X=0) = e^{-n \cdot 0.01} \le 0.05,$$

musi być spełniona nierówność

$$n \cdot 0.01 \ge -\ln 0.05$$
, czyli $n \ge 300$.

5.3 Centralne Twierdzenie Graniczne

Centralne Twierdzenie Graniczne (w skrócie C.T.G.), którego najprostszą wersję sformułujemy i udowodnimy, ma niezwykle ważne znaczenie zarówno w teorii

prawdopodobieństwa, jak i w jej zastosowaniach. Pozwala ono bowiem zastępować rozkładem $\mathcal{N}(0,1)$ rozkłady sum odpowiednio unormowanych dowolnych zmiennych losowych, jeśli tylko są niezależne i mają jednakowy rozkład o dodatniej wariancji. Możliwe jest osłabienie powyższych założeń dotyczące zarówno niezależności zastępowanej różnego typu "słabymi" zależnościami, jak i jednakowości rozkładów, musi być ono jednak rekompensowane dodatkowymi warunkami nakładanymi na rozpatrywane zmienne losowe.

W dowodzie przedstawianej tu wersji twierdzenia posłużymy się aparatem funkcji charakterystycznych.

Lemat 5.3.1. Jeśli zmienna losowa X ma wartość oczekiawną E(X) = 0 oraz wariancję $\sigma^2(X) = 1$, to jej funkcja charakterystyczna $\varphi(t)$ ma następujące rozwinięcie Taylora w punkcie t = 0:

$$\varphi(t) = 1 - \frac{t^2}{2}(1 + \varepsilon(t)), \tag{5.7}$$

gdzie $\lim_{t\to 0} \varepsilon(t) = 0.$

Dowód. Na mocy założeń oraz twierdzenia 4.2.8 funkcja charakterystyczna $\varphi(t)$ ma dla t=0 drugą pochodną. Daje się zatem przedstawić w postaci

$$\varphi(t) = \varphi(0) + \varphi'(0) \cdot t + \frac{\varphi''(0)}{2} \cdot t^2 (1 + \varepsilon(t)),$$

gdzie $\lim_{t\to 0} \varepsilon(t) = 0$. Ponieważ $\varphi(t) = \mathrm{E}(e^{itX})$, więc na mocy wzorów (4.23)

$$\varphi(0) = 1$$
, $\varphi'(0) = iE(X) = 0$, $\varphi''(0) = i^2E(X^2) = -1$,

skąd otrzymujemy tezę lematu, czyli wzór (5.7).

Sformułujemy teraz i udowodnimy **Centralne Twierdzenie Graniczne**. Przypomnijmy (uwaga po wzorze (3.20)), że dystrybuantę zmiennej losowej normalnej standardowej $X \sim \mathcal{N}(0,1)$ oznaczamy przez Ψ .

Twierdzenie 5.3.2. Niech $\{X_n, n = 1, 2, ...\}$ będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie z wartością oczekiwaną $E(X_1) = m$ oraz wariancją $\sigma^2(X_1) = \sigma^2 > 0$. Dla każdej pary a < b oraz $S_n = \sum_{k=1}^n X_k$ zachodzi zbieżność

$$\lim_{n \to \infty} P\left(a < \frac{S_n - E(S_n)}{\sqrt{\sigma^2(S_n)}} \le b\right) = \Psi(b) - \Psi(a) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-\frac{t^2}{2}} dt$$
 (5.8)

lub równoważnie

$$\frac{S_n - \mathrm{E}(S_n)}{\sqrt{\sigma^2(S_n)}} \xrightarrow{d} X, \quad n \to \infty, \qquad \text{gdzie} \quad X \sim \mathcal{N}(0, 1).$$

Uwaga 5.3.3. Ponieważ $E(S_n) = nm$ oraz $\sigma^2(S_n) = n\sigma^2$, więc wzór (5.8) jest równoważny następującemu:

$$\lim_{n \to \infty} P\left(a < \frac{S_n - nm}{\sigma\sqrt{n}} \le b\right) = \Psi(b) - \Psi(a). \tag{5.9}$$

Dowód. Wprowadźmy następujące oznaczenia:

$$X_k^* = \frac{X_k - m}{\sigma}, \quad S_n^* = \frac{S_n - E(S_n)}{\sqrt{\sigma^2(S_n)}} = \frac{S_n - nm}{\sigma\sqrt{n}} = \frac{1}{\sqrt{n}} \sum_{k=1}^n X_k^*, \quad F_n(x) = P(S_n^* \le x).$$
(5.10)

Zgodnie z tymi oznaczeniami relacja (5.9) przyjmuje postać

$$\lim_{n \to \infty} \left(F_n(b) - F_n(a) \right) = \Psi(b) - \Psi(a).$$

Aby pokazać jej prawdziwość, wystarczy na mocy twierdzenia 5.1.2 oraz wzoru (4.25) udowodnić, że dla każdego $t \in \Re$ oraz $\varphi_n(t) = \mathbb{E}(e^{itS_n^*})$ spełniony jest warunek

$$\lim_{n \to \infty} \varphi_n(t) = e^{-\frac{t^2}{2}}.$$

Korzystając z oznaczeń (5.10), mamy na mocy założeń twierdzenia

$$\varphi_n(t) = \mathbb{E}(\exp(it\frac{1}{\sqrt{n}}\sum_{k=1}^n X_k^*) = (\mathbb{E}(\exp(i\frac{t}{\sqrt{n}}X_1^*))^n.$$

Należy więc obliczyć funkcję charakterystyczną zmiennej losowej X_1^* i wziąć jej wartość w punkcie $\frac{t}{\sqrt{n}}$. Z określenia zmiennej losowej X_1^* mamy $\mathrm{E}(X_1^*)=0,\ \sigma^2(X_1^*)=1$. Spełnione są zatem założenia lematu 5.3.1, skąd otrzymujemy

$$\varphi_n(t) = \left(1 - \frac{t^2}{2n} \left(1 + \varepsilon\left(\frac{t}{\sqrt{n}}\right)\right)\right)^n = \left(1 - \frac{\frac{t^2}{2} \left(1 + \varepsilon\left(\frac{t}{\sqrt{n}}\right)\right)}{n}\right)^n.$$

Ponieważ na mocy (5.7) $\lim_{n\to\infty} (1 + \varepsilon(\frac{t}{\sqrt{n}})) = 1$, więc widzimy, że

$$\lim_{n \to \infty} \varphi_n(t) = e^{-\frac{t^2}{2}},$$

co kończy dowód twierdzenia.

Szczególnym przypadkiem C.T.G. jest twierdzenie Moivre'a-Laplace'a.

Twierdzenie 5.3.4. Niech $\{X_n, n=1,2,\ldots\}$ będzie ciągiem niezależnych zmiennych

losowych o jednakowym rozkładzie postaci $P(X_n = 1) = 1 - P(X_n = 0) = p, n = 1, 2, \dots$. Dla każdej pary a < b zachodzi zbieżność

$$\lim_{n \to \infty} P\left(a < \frac{S_n - np}{\sqrt{np(1-p)}} \le b\right) = \Psi(b) - \Psi(a)$$
(5.11)

lub równoważnie

$$\frac{S_n - np}{\sqrt{np(1-p)}} \stackrel{d}{\to} X, \quad n \to \infty, \qquad \text{gdzie} \quad X \sim \mathcal{N}(0,1).$$

Dowód. Wzór (5.11) jest bezpośrednią konsekwencją relacji (5.8) oraz tego, że zgodnie z przykładem 4.1.5 $E(S_n) = np$ i $\sigma^2(S_n) = np(1-p)$.

Podobnie jak w przypadku Twierdzenia Poissona praktyczne zastosowania twierdzenia 5.3.4 polegają na zastąpieniu rozkładu odpowiednio unormowanej zmiennej losowej dwumianowej rozkładem zmiennej losowej normalnej. Przyjmuje się, że aproksymacja taka jest możliwa do przyjęcia, gdy np > 5 oraz n(1-p) > 5.

Przykład 5.3.1. Znajdźmy prawdopodobieństwo, że wśród 10 000 cyfr losowych "7" pojawi się nie więcej niż 968 razy.

Przyjmijmy oznaczenia

$$X_k = \begin{cases} 1, & \text{jeśli wybierzemy "7",} \\ 0, & \text{w pozostałych przypadkach.} \end{cases}$$

Dla cyfr losowych rozpatrywane zmienne losowe są niezależne oraz

$$P(X_k = 1) = 1 - P(X_k = 0) = 0.1, \quad k = 1, 2, \dots, 10\,000.$$

Zmienna losowa $S = S_{10\,000} = \sum_{k=1}^{10\,000} X_k$ oznaczająca liczbę cyfr "7" jest zatem zmienną losową dwumianową o rozkładzie $\mathcal{B}(10\,000, 0.1)$. Prawdopodobieństwo, które chcemy znaleźć wynosi więc

$$P(S \le 968) = \sum_{k=0}^{968} P(S = k) = \sum_{k=0}^{968} {10\,000 \choose k} (0.1)^k (0.9)^{10\,000-k}.$$

Uzyskanie stąd liczbowej wartości prawdopodobieństwa byłoby jednak bardzo kłopotliwe. Aby ją otrzymać, posłużymy się wzorem (5.11). Otóż

$$P(S \le 968) = P\left(\frac{S - np}{\sqrt{np(1-p)}} \le \frac{968 - 10000 \cdot 0.1}{\sqrt{10000 \cdot 0.1 \cdot 0.9}}\right)$$

$$= P\left(\frac{S - np}{\sqrt{np(1-p)}} \le \frac{968 - 1000}{\sqrt{900}}\right) = P\left(\frac{S - np}{\sqrt{np(1-p)}} \le -\frac{16}{15}\right).$$

Otrzymane wyrażenie jest dla dostatecznie dużych n bliskie wartości $\Psi\left(-\frac{16}{15}\right)$, co zapisujemy jako równość przybliżoną

$$P\left(\frac{S-np}{\sqrt{np(1-p)}} \le -\frac{16}{15}\right) \approx \Psi\left(-\frac{16}{15}\right).$$

Przypomnijmy, że w rozdziale 3 (wzór (3.21)) wyraziliśmy dystrybuantę Ψ poprzez stablicowaną funkcję Φ . Ostatecznie, po odczytaniu z tablicy wartości $\Phi\left(\frac{16}{15}\right) = 0.3577$, otrzymujemy szukane prawdopodobieństwo

$$P(S \le 968) \approx 0.5 - \Phi\left(\frac{16}{15}\right) = 0.1423.$$

Jedno z ważniejszych zastosowań C.T.G. w ogólnym sformułowaniu (5.8) – (5.9) omówimy w następnym podrozdziale.

5.4 Zagadnienia estymacji

Przypuśćmy, że w celu ustalenia wartości pewnej obserwowanej wielkości m wykonujemy n niezależnych doświadczeń, w których dokonujemy pomiaru m. Najczęściej pomiary są obciążone błędami losowymi, a więc dokładna wartość m pozostaje nieznana. Wyniki pomiarów $\{x_k, k=1,\ldots,n\}$ traktujmy jako realizację próby losowej czyli wartości niezależnych zmiennych losowych $\{X_k, k=1,\ldots,n\}$ mających jednakowy rozkład o wartości oczekiwanej m i wariancji σ^2 . Dokładniej, przyjmujemy, że $X_k = m + \varepsilon_k, k = 1,\ldots,n$, gdzie zmienne losowe ε_k mają znaczenie błędów pomiaru i są niezależnymi zmiennymi losowymi o wartości oczekiwanej $\mathrm{E}(\varepsilon_k) = 0$ i wariancji $\sigma^2(\varepsilon_k) = \sigma^2, k = 1,\ldots,n$.

Najbardziej naturalny sposób estymacji czyli oszacowania (oceny) nieznanej wielkości m wykorzystuje zmienną losową

$$\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k = \frac{1}{n} S_n$$
 (5.12)

zwaną średnią próbkową z próby losowej $\{X_k, k = 1, ..., n\}$.

Jest oczywiste, że jeśli za m przyjmujemy $\overline{x}_n = \frac{1}{n} \sum_{k=1}^n x_k$, czyli wartość średniej próbkowej obliczoną dla realizacji $\{x_k, k=1,\ldots,n\}$, to postępowanie takie obarczone jest błędem wynoszącym $|\overline{x}_n - m|$. Stosując C.T.G., znajdziemy teraz prawdopodobieństwo tego, że popełniony błąd jest większy od ustalonej wartości a, czyli obliczymy $P(|\overline{X}_n - m| > a)$.

Ponieważ $P(|X| > a) = 1 - P(-a \le X \le a)$, więc na mocy wzoru (5.9) otrzymujemy

$$P(|\overline{X}_n - m| > a) = P\left(\left|\frac{S_n - nm}{\sigma\sqrt{n}}\right| > \frac{a\sqrt{n}}{\sigma}\right)$$
$$= 1 - P\left(-\frac{a\sqrt{n}}{\sigma} \le \frac{S_n - nm}{\sigma\sqrt{n}} \le \frac{a\sqrt{n}}{\sigma}\right)$$
$$\approx 1 - \left(\Psi\left(\frac{a\sqrt{n}}{\sigma}\right) - \Psi\left(-\frac{a\sqrt{n}}{\sigma}\right)\right).$$

Wyrażając powyższe jak w przykładzie 5.3.1 poprzez funkcję Φ , otrzymujemy ostatecznie dla dostatecznie dużych n

$$P(|\overline{X}_n - m| > a) \approx 1 - 2\Phi\left(\frac{a\sqrt{n}}{\sigma}\right).$$
 (5.13)

W praktyce za "duże" n uważa się n>30. Należy jednak zdawać sobie sprawę z tego, że przybliżenie otrzymane we wzorze (5.13) nie jest zbyt dokładne. Jego dokładność rośnie wraz z liczebnością n próby losowej, w oparciu o którą dokonujemy oceny wielkości m.

Przykład 5.4.1. Obliczmy wartość oszacowania z prawej strony wzoru (5.13) dla n = 50, a = 0.02 oraz $\sigma = 1$.

Dla $\frac{a\sqrt{n}}{\sigma}=0.14\,$ odczytujemy w tablicy wartość $\Phi(0.14)=0.056.\,$ Stąd

$$P(|\overline{X}_{50} - m| > 0.02) \approx 1 - 2 \cdot 0.056 = 0.888.$$

Przykład 5.4.2. Znajdźmy liczbę doświadczeń, które należy wykonać, aby błąd oszacowania nieznanej wielkości m przez wartość średniej próbkowej \overline{X}_n był nie większy niż 10% odchylenia standardowego σ z prawdopodobieństwem wynoszącym co najmniej 0.99.

Pytamy zatem o n takie, by

$$P(|\overline{X}_n - m| \le 0.1\sigma) \ge 0.99$$

lub równoważnie, by

$$P(|\overline{X}_n - m| > 0.1\sigma) \le 0.01.$$

Na mocy wzoru (5.13), przyjmując $a = 0.1\sigma$, otrzymujemy

$$P(|\overline{X}_n - m| > 0.1\sigma) \approx 1 - 2\Phi\left(\frac{\sqrt{n}}{10}\right) \le 0.01.$$

Stąd $\Phi\left(\frac{\sqrt{n}}{10}\right) \ge 0.495$ i znajdując w tablicy wartość $\Phi^{-1}(0.495) = 2.58$, widzimy, że $n \ge (25.8)^2$. Liczba doświadczeń musi zatem wynosić co najmniej n=666.

Innym typem estymacji jest zagadnienie szacowania parametrów (rozkładu) zmiennej losowej, najczęściej wartości oczekiwanej lub wariancji.

Przypuśćmy, że X jest zmienną losową z nieznanq wartości oczekiwaną m i znaną wariancją σ^2 . Aby wyznaczyć wartość m wykonujemy n niezależnych doświadczeń – pomiarów losowej wielkości X. Ich wyniki $\{x_k, k=1,\ldots,n\}$ traktujemy jako realizacje n niezależnych zmiennych losowych $\{X_k, k=1,\ldots,n\}$ o jednakowym rozkładzie, takim jak zmienna losowa X. Za oszacowanie wartości oczekiwanej m przyjmujemy jak poprzednio wartość średniej próbkowej $\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$ obliczoną dla realizacji $\{x_k, k=1,\ldots,n\}$. Ustalamy następnie $\alpha \in (0,1)$ i posługując się tablicą funkcji Φ , wyznaczamy wielkość $a=a(\alpha)$ taką, by

$$1-2\Phi(a)=\alpha$$
 lub równoważnie $a=\Phi^{-1}\left(\frac{1}{2}-\frac{\alpha}{2}\right).$

W praktyce za α przyjmuje się najczęściej $\alpha=0.01,\,0.02,\,0.05,\,0.1,\,$ a odpowiadające im wielkości a oznaczane odtąd przez $z_{\frac{\alpha}{2}}$ wynoszą odpowiednio

$$z_{0.005} = 2.58, \quad z_{0.01} = 2.33, \quad z_{0.025} = 1.96, \quad z_{0.05} = 1.64.$$
 (5.14)

Korzystając z relacji (5.13), mamy dla n > 30

$$P\left(|\overline{X}_n - m| > \frac{a\sigma}{\sqrt{n}}\right) \approx 1 - 2\Phi(a) = \alpha.$$

Stąd

$$P\left(\overline{X}_n - \frac{a\sigma}{\sqrt{n}} \le m \le \overline{X}_n + \frac{a\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

lub równoważnie, stosując przyjęte oznaczenie $z_{\frac{\alpha}{2}},$ otrzymujemy

$$P\left(\overline{X}_n - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \le m \le \overline{X}_n + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$
 (5.15)

Odczytując powyższą równość, widzimy, że z prawdopodobieństwem $1-\alpha$ nieznaną wartość oczekiwaną m pokrywa (obejmuje) losowy przedział

$$\left[\overline{X}_n - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \quad \overline{X}_n + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right] \tag{5.16}$$

zwany przedziałem ufności dla wartości oczekiwanej na poziomie ufności $1 - \alpha$ utworzony w oparciu o próbe losowa o n > 30 elementach.

W praktyce bierzemy przedział, którego końce są obliczonymi z wyników $\{x_k, k = 1, \ldots, n\}$ realizacjami losowych końców przedziału ufności (5.16).

Wielkość

$$E = z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \tag{5.17}$$

jest **górną granicą błędu**, jaki popełniamy z prawdopodobieństwem $1 - \alpha$, zastępując rzeczywistą wartość oczekiwaną m realizacją średniej próbkowej \overline{X}_n .

Przykład 5.4.3. Rozważmy zmienną losową X o rozkładzie P(X = 1) = 1 - P(X = 0) = p, gdzie p jest nieznane. Ponieważ E(X) = m = p, do oszacowania parametru p możemy użyć przedziału ufności (5.16).

Zauważmy naprzód, że ponieważ $\sigma^2(X)=p(1-p)$, więc wariancja σ^2 jest także nieznana. Skoro jednak dla $0\leq p\leq 1$ zachodzi $p(1-p)\leq 0.25$, przyjmujemy ograniczenie $\sigma^2\leq 0.25$.

Ustalając poziom ufności 0.99, z (5.14) dla $\alpha=0.01$ mamy $z_{\frac{\alpha}{3}}=z_{0.005}=2.58$.

Zgodnie zatem z (5.16) przedział ufności dla p na poziomie ufności 0.99 ma postać

$$\left[\overline{X}_n - 2.58 \frac{0.5}{\sqrt{n}}, \quad \overline{X}_n + 2.58 \frac{0.5}{\sqrt{n}} \right].$$

Jeśli więc na $n=10\,000$ rzutów monetą otrzymujemy 4950 orłów, możemy stwierdzić z prawdopodobieństwem 0.99, że rzeczywista częstość p wyrzucania orła dla tej monety mieści się w granicach

$$[0.495 - 0.013, 0.495 + 0.013] = [0.482, 0.508],$$

co jest porównywalne z częstością teoretyczną wynoszącą 0.5.

5.5 Prawo Wielkich Liczb

Granicznego zachowania sum niezależnych zmiennych losowych dotyczy także tzw. Prawo Wielkich Liczb (w skrócie P.W.L.). Ze względu na rozpatrywany w nim

 $1,2,\ldots$. Jeśli wariancje są wspólnie ograniczone, czyli istnieje stała $M<\infty$ taka, że $\sigma_n^2\leq M,\ n=1,2,\ldots,$ to dla każdego $c\in\Re_+$ zachodzi

$$\lim_{n \to \infty} P\left(\left| \frac{1}{n} \sum_{k=1}^{n} X_k - \frac{1}{n} \sum_{k=1}^{n} m_k \right| < c\right) = 1.$$
 (5.20)

Dowód. Przyjmijmy oznaczenia $X_k^* = X_k - m_k$, k = 1, ..., n, oraz $S_n^* = \sum_{k=1}^n X_k^*$. Ponieważ $E(X_k^*) = 0$ i $\sigma^2(X_k^*) = \sigma^2(X_k) = \sigma_k^2$, k = 1, 2, ..., więc

$$E(S_n^*) = 0$$
 oraz $E(S_n^*)^2 = \sigma^2(S_n^*) = \sum_{k=1}^n \sigma_k^2$.

Zauważmy, że w przyjętych oznaczeniach relacja (5.20) czyli teza P.W.L. jest postaci

$$\lim_{n \to \infty} P\left(\left|\frac{S_n^*}{n}\right| < c\right) = 1 \quad \text{lub równoważnie} \quad \lim_{n \to \infty} P\left(\left|\frac{S_n^*}{n}\right| \ge c\right) = 0.$$

Aby ją udowodnić zastosujemy nierówność Czebyszewa (5.18) do zmiennej losowej $\frac{1}{n}S_n^*$. Otrzymujemy

$$P\left(\left|\frac{S_n^*}{n}\right| \ge c\right) \le \frac{1}{c^2} \mathbb{E}\left(\frac{S_n^*}{n}\right)^2 = \frac{1}{n^2 c^2} \mathbb{E}(S_n^*)^2 = \frac{1}{n^2 c^2} \sum_{k=1}^n \sigma_k^2.$$

Zgodnie z założeniem wspólnej ograniczoności wariancji $\sum_{k=1}^n \sigma_k^2 \leq nM$, skąd

$$P\left(\left|\frac{S_n^*}{n}\right| \ge c\right) \le \frac{nM}{n^2c^2} = \frac{M}{nc^2}.$$
 (5.21)

Ponieważ prawa strona nierówności (5.21) dąży do zera przy $n \to \infty$, teza P.W.L. jest udowodniona.

Przykład 5.5.1. Niech zmienne losowe X_k będą niezależne o jednakowym rozkładzie $P(X_k=1)=1-P(X_k=0)=p,\ k=1,2,\ldots$. Założenie ograniczoności wariancji jest trywialnie spełnione, więc zgodnie z P.W.L. dla każdego $c\in\Re_+$ zachodzi

$$\lim_{n \to \infty} P\left(\left|\frac{S_n}{n} - p\right| \ge c\right) = 0.$$

Otrzymane w dowodzie oszacowanie (5.21) pozwala precyzyjniej określić prawdopodobieństwo zdarzenia $\left(\left|\frac{S_n}{n}-p\right|\geq c\right)$. Mianowicie, w rozpatrywanym przypadku $M=\sigma^2=p(1-p)$, a więc na mocy (5.21) mamy

$$P\left(\left|\frac{S_n}{n} - p\right| \ge c\right) = P\left(\left|\frac{S_n^*}{n}\right| \ge c\right) \le \frac{p(1-p)}{nc^2} \le \frac{1}{4nc^2},$$

5.6. ZADANIA 93

bo, jak wiemy, $p(1-p) \le \frac{1}{4}$, dla $0 \le p \le 1$.

Wyrażenie $\frac{1}{n}S_n = \overline{X}_n$ interpretujemy jako częstość występowania sukcesu w n niezależnych doświadczeniach, a p – jako "teoretyczne" prawdopodobieństwo sukcesu (porównaj przykład 5.4.3). Wówczas powyższa nierówność może służyć do wyznaczenia liczby n doświadczeń, która gwarantuje z zadanym prawdopodobieństwem $1-\alpha$, że różnica między prawdopodobieństwami sukcesu: doświadczalnym wynoszącym $\frac{1}{n}S_n$ i teoretycznym p nie przekroczy ustalonej przez nas wielkości c. Wielkości c, α , n są związane równością $\alpha = \frac{1}{4nc^2}$. Jeśli na przykład c = 0.02 oraz $\alpha = 0.05$, to $n = 12\,500$. Na mocy C.T.G. możemy jednak stwierdzić, że wystarczy, by $n > 2\,400$.

Rzeczywiście, przyjmując w równości po wzorze (5.14) $m=p,\,a=1.96$ (bo $\alpha=0.05$) oraz $\sigma=0.5$, otrzymujemy $\frac{1.96}{2\sqrt{n}}=0.02$, skąd $n=2\,401$.

Uwaga 5.5.3. W świetle powyższego przykładu zastosowanie prezentowanych tu twierdzeń granicznych można skomentować następująco:

P.W.L. pozwala stwierdzić zbieżność średniej próbkowej \overline{X}_n do wartości oczekiwanej m rozkładu w populacji, dzięki natomiast C.T.G. możemy dokładniej ocenić szybkość tej zbieżności.

5.6 Zadania

- 1. Po mieście jeździ 200 autobusów. Prawdopodobieństwo uszkodzenia jednego autobusu w ciągu doby wynosi 0.005. Zakładając, że autobusy psują się niezależnie jeden od drugiego, oszacuj prawdopodobieństwo awarii w ciągu doby co najwyżej trzech autobusów.
- 2. Rzucamy n=200 razy sześcioma kostkami. Oszacuj prawdopodobieństwo otrzymania sześciu różnych wyników k razy, gdy k=0,1,2,3,4,5.
- 3. Oblicz prawdopodobieństwo otrzymania czterech orłów w dwunastu rzutach monetą,
 - (a) posługując się dokładnym rozkładem rozpatrywanej zmiennej losowej,
 - (b) stosując przybliżenie zgodnie z twierdzeniem Moivre'a-Laplace'a.
- 4. Oszacuj prawdopodobieństwo otrzymania nie mniej niż 50 oraz nie więcej niż 70 razy pięciu oczek w 300 rzutach symetryczną kostką.

- 5. Rzucamy kostką 100 razy. Oszacuj prawdopodobieństwo, że suma otrzymanych oczek we wszystkich rzutach jest zawarta między 330 a 380.
- 6. Niech $\{X_1, X_2, \dots, X_{30}\}$ będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie postaci

$$f(x) = e^{-x} \cdot \mathbf{1}_{[0,\infty)}(x).$$

Oszacuj prawdopodobieństwo

$$P(\sum_{k=1}^{30} X_k > 35).$$

7. Niech $\{X_1, X_2, \dots, X_{50}\}$ będzie ciągiem niezależnych zmiennych losowych standardowych normalnych. Oszacuj prawdopodobieństwo

$$P(\sum_{k=1}^{50} X_k^2 < 70).$$

8. Stosując C.T.G. do niezależnych zmiennych losowych Poissona z parametrem 1, udowodnij równość

$$\lim_{n \to \infty} \sum_{k=0}^{n} e^{-n} \frac{n^k}{k!} = \frac{1}{2}.$$

- 9. Prawdopodobieństwo uszkodzenia elementu w ciągu czasu T wynosi p=0.2. Oszacuj, jak duża powinna być liczba n elementów, aby co najmniej 50 spośród nich z prawdopodobieństwem 0.9 nie uległo uszkodzeniu w ciągu czasu T.
- 10. W teatrze mającym 600 miejsc znajdują się dwie szatnie na prawo i na lewo od głównego wejścia. Przypuśćmy, że każdy wchodzący niezależnie od innych widzów i z jednakowym prawdopodobieństwem kieruje się do jednej z nich. Oszacuj, ile co najmniej "numerków" powinno być w każdej szatni, aby prawdopodobieństwo odesłania widza do drugiej szatni z powodu braku miejsca było nie większe niż 0.01.
- 11. Prawdopodobieństwo wygrania w ruletce wynosi $\frac{18}{37}$. Przypuśćmy, że w pojedynczej grze gracz wygrywa lub przegrywa kwotę 1. Oszacuj, ile co najmniej gier powinno dziennie mieć miejsce w kasynie, aby z prawdopodobieństwem 0.5 dzienny zysk kasyna był nie mniejszy niż 1000.

5.6. ZADANIA 95

12. Wynik pomiaru obarczony jest błędem systematycznym m=50 oraz błędem przypadkowym będącym zmienną losową $X \sim \mathcal{N}(0, 100^2)$. Błąd całkowity Y jest sumą tych błędów. Oblicz prawdopodobieństwo tego, że

- (a) |Y| < 75,
- (b) wynik pomiaru nie przekracza rzeczywistej wartości mierzonej wielkości.
- 13. Przyjmując, że błąd zapisu drugiej cyfry po przecinku w systemie dziesiętnym jest zmienną losową jednostajną o rozkładzie $\mathcal{U}[-0.05, 0.05]$, oszacuj prawdopodobieństwo, że błąd w zapisie sumy 1000 liczb jest mniejszy od 2.
- 14. W celu ustalenia frakcji (procentu) p dorosłych obywateli akceptujących politykę pewnej $Bardzo\ Ważnej\ Osobistości$ przeprowadza się sondaż opinii publicznej. Podaj, ile osób powinno być ankietowanych, aby z prawdopodobieństwem co najmniej 0.95 frakcja otrzymana z próby losowej różniła się od rzeczywistej frakcji p
 - (a) o mniej niż 0.01,
 - (b) o mniej niż 0.05, jeśli wiadomo, że
 - (i) p < 0.3,
 - (ii) nie ma żadnych dodatkowych informacji o p.
- 15. Przy 10 000 rzutów monetą reszka pojawiła się 5 400 razy. Oceń, czy uzasadnione jest przypuszczenie, że moneta była niesymetryczna.
- 16. Próba złożona z 50 zapalników została wybrana z bardzo licznej partii i poddana badaniom w określonych warunkach. średni czas działania tych zapalników wyniósł 11.75 sekundy z odchyleniem standardowym 0.14 sekundy.
 - (a) Podaj, jaki co najwyżej błąd popełniamy z prawdopodobieństwem 0.95, przyjmując wartość średniej próbkowej (czyli 11.75 sek.) za średni czas działania wszystkich zapalników w wielkiej partii.
 - (b) Opierając się na tych samych danych, zbuduj przedział ufności na poziomie ufności 0.98 dla średniego czasu działania tych zapalników.
 - Określ, jak poziom ufności wpływa na długość przedziału ufności.
- 17. Przy badaniu czytelnictwa wśród wybieralnych urzędników państwowych chcemy oszacować m średnią liczbę gazet czytanych przez nich w ciągu tygodnia. Oszacuj, ilu urzędników powinno być ankietowanych, aby z prawdopodobieństwem

- 0.99 można było twierdzić, że średnia z próby będzie się odchylała od prawdziwej średniej m nie więcej niż o 1.2. Wiadomo, że odchylenie standardowe σ wynosi 5.3.
- 18. Udowodnij nierówność Czebyszewa (5.18) dla zmiennej losowej z gęstością.
- 19. Przy oznaczeniach (5.10) porównaj oszacowanie prawdopodobieństwa

$$P(-k < S_n^* \le k), \quad k = 1, 2, 3,$$

otrzymane z nierówności Czebyszewa i z C.T.G.

20. Niech $\{A_1,\ldots,A_n\}$ będzie ciągiem niezależnych zdarzeń takich, że $P(A_k)=\frac{1}{3}$, $k=1,2,\ldots,n$, oraz nich $X_n=\sum_{k=1}^n \mathbf{1}_{A_k}$. Dla $n=9\,000$ oszacuj prawdopodobieństwo zdarzenia

$$\left\{ \left| \frac{1}{n} X_n - \frac{1}{3} \right| \le 0.01 \right\}.$$

- 21. Stosując C.T.G., pokaż, że ciąg niezależnych zmiennych losowych o jednakowym rozkładzie i skończonym drugim momencie spełnia tezę P.W.L.
- 22. Udowodnij, że każdy z poniższych warunków jest wystarczający, aby ciąg $\{X_n, n = 1, 2, \ldots\}$ spełniał tezę P.W.L.
 - (a) zmienna losowa X_k zależy jedynie od X_{k-1} oraz X_{k+1} , $k=2,3,\ldots$, oraz wariancje są wspólnie ograniczone;
 - (b) wariancje są wspólnie ograniczone a kowariancje ujemne;
 - (c) wariancje są wspólnie ograniczone oraz $\text{Cov}(X_i, X_j) \to 0$, gdy $|i j| \to \infty$.
- 23. Niech f będzie funkcją ciągłą na odcinku [0,1], a $\{X_n, n=1,2,\ldots\}$ ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie $\mathcal{U}[0,1]$. Korzystając z tego, że $\mathrm{E}(f(X_k)) = \int_0^1 f(x) dx, \, k=1,2,\ldots$, udowodnij dla każdego $\epsilon \in \Re_+$ równość

$$\lim_{n \to \infty} P\left(\left| \frac{f(X_1) + \ldots + f(X_n)}{n} - \int_0^1 f(x) dx \right| \ge \epsilon \right) = 0.$$

Odpowiedzi do zadań

Rozdział 1

- 3. 2.
- 4. 3!4!5!.
- 5. $7 \cdot 6!$.
- 6. 1, 1, 6, 8, 9. Zauważ, że 1+6+8+9=24=4!.
- 7. (a) 2^n , (b) $2^n/2$.
- 8. $\binom{n+k-1}{k} \binom{n+l-1}{l}$.
- 9. $2 + 2^2 + \ldots + 2^{10}$.
- 10. $\binom{200}{50}$.
- $11. \sum_{i=1}^{5} \binom{20}{i} \binom{10}{6-i}.$
- 12. 10^5 .
- 13. (a) 4^4 , (b) 4, (c) $\binom{4}{1}\binom{4}{2}\binom{3}{2} \cdot 2$.
- $14.8^4.$
- 15. $(3!)^3$.
- 16. $5!(3!)^2(4!)^3$.
- 17. (a) 6, (b) 4, (pasażerów rozróżniamy).
- 18. $\frac{12!}{5!4!3!}$.
- 19. $\frac{20!}{(5!)^4}$; $\frac{20!}{(5!)^4}4!$.
- 20. $\binom{7}{4}$ 9!.

Rozdział 2

- 1. (a) $\bigcap_{i=1}^{n} A'_{i}$, (b) $\bigcup_{i=1}^{n} A_{i}$, (c) $\bigcup_{i=1}^{n} (A_{i} \cap \bigcap_{k \neq i} A'_{k})$, (d) $\bigcup_{i \neq j} (A_{i} \cap A_{j} \cap \bigcap_{k \neq i \neq j} A'_{k})$.
- $2. \binom{5}{2} / \binom{10}{2}.$
- $3. \frac{\binom{6}{2} \cdot 3 \cdot 2}{6^3}.$
- 4. $1 \frac{7!}{7^7}$.

5.
$$1 - (\frac{5}{6})^6 = 0.665$$
, $1 - (\frac{5}{6})^{12} - 12(\frac{1}{6})(\frac{5}{6})^{11} = 0.619$, $1 - (\frac{5}{6})^{18} - 18(\frac{1}{6})(\frac{5}{6})^{17} - (\frac{18}{2})(\frac{1}{6})^2(\frac{5}{6})^{16} = 0.597$.

6.
$$\binom{16}{m} / \binom{18}{m} \le \frac{1}{2}$$
, skąd $m \ge 6$.

7.
$$2(\frac{1}{2})^{2n-r+1}\binom{2n-r}{n-r}$$
.

8. (a) Należy dodać
$$\{1,2,4,5\}$$
, (b) należy dodać $\{3\},\{1,2\},\{4,5\},\{1,2,4,5\}$.

10. Wsk.
$$P(A \cup B) \le 1$$
.

11.
$$\frac{2}{3}$$
, $\frac{5}{6}$, $\frac{11}{12}$, $\frac{1}{6}$, $\frac{5}{6}$.

12.
$$P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$
.

15.
$$\frac{4\cdot 3}{20}$$
.

16.
$$\frac{a-r}{r}$$
.

17. $\frac{1}{4}$. Wsk. Zauważ, że żadna część nie może być dłuższa niż $\frac{1}{2}$.

18.
$$\frac{8}{36} + 2(\frac{3}{36} \cdot \frac{1}{3} + \frac{4}{36} \cdot \frac{2}{5} + \frac{5}{36} \cdot \frac{5}{11}).$$

19.
$$\frac{p}{1-(1-p)^3}$$
, $\frac{(1-p)p}{1-(1-p)^3}$, $\frac{(1-p)^2p}{1-(1-p)^3}$.

20.
$$1 - (0.4 + 0.25 \cdot 0.6)^3$$
.

$$21. \frac{3}{4}.$$

22.
$$\frac{1}{10}$$
 oraz $0 \cdot \frac{1}{10} + \frac{1}{9} \cdot \frac{9}{10} = \frac{1}{10}$; $\frac{5}{10}$ oraz $\frac{\binom{5}{2} \cdot 1}{\binom{10}{2}} + \frac{\binom{5}{1}\binom{5}{1}\frac{1}{2}}{\binom{10}{2}} + \frac{\binom{5}{0} \cdot 0}{\binom{10}{2}} = \frac{5}{10}$.

23.
$$\frac{1-p_2}{3-p_2}$$
.

$$24. \frac{130}{139}$$
.

25. Wylosowanie dwóch różnych monet jest bardziej prawdopodobne ze szkatułki II; wybieramy zatem tę, z której nie losowaliśmy. $P(II|\text{ monety różne}) = \frac{4}{7}$.

26. (a)
$$\frac{4}{19}$$
, (b) $\frac{10}{19}$, (c) 1.

$$27. \frac{3}{28}$$
.

28.
$$p^2 + \frac{1}{2}p(1-p) + \frac{1}{2}p(1-p) = p \text{ oraz } p.$$

29.
$$p(2p^2 - p^4)$$
, $p^3 + p^2 - p^5$.

Rozdział 3

1. (a)
$$X(\omega) = X(x_1, x_2, x_3) = \min(x_1, x_2, x_3)$$
, (b) $Z(\omega) = Z(x, y) = x + y$.

2.
$$P(X + Y = 1) = P(\{\omega_3\}) = \frac{1}{4}$$
, $P(X + Y = 2) = P(\{\omega_2\}) = \frac{1}{2}$, $P(X + Y = 3)$
 $= P(\{\omega_1\}) = \frac{1}{4}$ oraz $P(Y + Z = 1) = \frac{1}{2}$, $P(Y + Z = 2) = \frac{1}{4}$, $P(Y + Z = 3) = \frac{1}{4}$.
 $P(X \cdot Y = 0) = \frac{3}{4}$, $P(X \cdot Y = 2) = \frac{1}{4}$ oraz $P(Y \cdot Z = 0) = \frac{3}{4}$, $P(X \cdot Z = 2) = \frac{1}{4}$.

3.
$$F(15) = 1 - P(X > 15) = 1 - P(X = 16) - P(X = 17) - P(X = 18) = 0.94$$
.

4.
$$P(X=0) = P(X=1) = \frac{1}{2}$$
, rzut symetryczną monetą.

5. Wsk. Sprawdź, że
$$\sum_{k} p_{k} = 1, p_{k} \geq 0$$
.

6.
$$c = 1, P(X \ge m) = \frac{1}{m}$$
.

7.
$$1 - \frac{4^{13}}{5^{12}}$$
.

8.
$$1 - (52 \cdot (0.95)^{51} \cdot 0.05 + (0.95)^{52}).$$

10.
$$n \ge \frac{\log 0.05}{\log 0.9}$$
; $0.1(0.9)^4$.

12.
$$1 - e^{-1}$$
.

13.
$$e^{-5}$$
.

15.
$$c = 10$$
; $F(x) = \begin{cases} 1 - 10/x, & x \ge 10 \\ 0, & \text{poza tym}; \end{cases}$ $1 - F(20) = \frac{1}{2}$.

17. Wsk. Patrz dowód tej własności dla zmiennej losowej geometrycznej.

19.
$$2\Phi(3) = 0.9973$$
.

20. (a)
$$0.5 + \Phi(0.5) = 0.6915$$
, (b) $0.5 + \Phi(1.1) = 0.8643$, (c) $\Phi(1.5) + \Phi(1.4) = 0.8524$.

21.
$$\sigma = 10$$
.

22.
$$m = 67.84$$
.

23.
$$G(z) = \begin{cases} F(\frac{z-b}{a}), & a > 0\\ 1 - F(\frac{z-b}{a}) + P(X = \frac{z-b}{a}), & a < 0. \end{cases}$$

24.
$$f(z) = e^{-z}, z \ge 0; e^{-1} - e^{-5}.$$

25.
$$g(y) = \begin{cases} \frac{1}{\pi \sqrt{1-y^2}}, & -1 < y < 1 \\ 0, & \text{poza tym.} \end{cases}$$

27. (a)
$$\frac{3}{128}$$
, (b) $f(x,y) = (\ln 2)^2 \cdot 2^{-x-y} = f_1(x) \cdot f_2(y)$.

28. (a)
$$0.5 - \Phi(1)$$
, (b) $1 - e^{-\frac{1}{2}}$.

29.
$$f_1(x) = \frac{\sqrt{3}}{2\sqrt{\pi}}e^{-\frac{3}{4}x^2}, f_2(y) = \frac{\sqrt{3}}{\sqrt{\pi}}e^{-3y^2}.$$

$$30. F(x,y) = \begin{cases} 0, & x < 1 \text{ lub } y < 1\\ \frac{1}{3}, & x \ge 1, 1 \le y < 2\\ \frac{2}{3}, & 1 \le x < 2, y \ge 2\\ 1, & x \ge 2, y \ge 2, \end{cases}$$

$$F_1(x) = \lim_{y \to \infty} F(x, y) = \begin{cases} 0, & x < 1 \\ \frac{2}{3}, & 1 \le x < 2 \\ 1, & x \ge 2, \end{cases} \qquad F_2(y) = \lim_{x \to \infty} F(x, y) = \begin{cases} 0, & y < 1 \\ \frac{1}{3}, & 1 \le y < 2 \\ 1, & y \ge 2. \end{cases}$$

 $F(x,y) \neq F_1(x) \cdot F_2(y)$, zatem X i Y sa zależne.

31.
$$f(x,y) = \begin{cases} \frac{1}{2}e^{-x-\frac{1}{2}y}, & x,y > 0\\ 0, & \text{poza tym.} \end{cases}$$

- $32. \frac{5}{7}$.
- 33. Wsk. Wektor losowy (a, b) ma rozkład jednostajny na $[-1, 1] \times [-1, 1]$. Sporządź rysunek. $P(a^2 b \ge 0) = \frac{1}{4}(2 + 2\int_0^1 x^2 dx) = \frac{2}{3}$.

34. Wsk.
$$P(Z \le z) = 1 - P(Z > z) = 1 - P(X_1 > z, ..., X_n > z)$$
.
 $G(z) = 1 - \prod_{i=1}^{n} (1 - F_i(z)), H(t) = \prod_{i=1}^{n} F_i(t)$.

35.
$$\{(2, 0.01), (3, 0.04), (4, 0.1), (5, 0.2), (6, 0.25), (7, 0.24), (8, 0.16)\}.$$

36.
$$g(z) = \begin{cases} \frac{2}{3}z^3, & 0 < z \le 1\\ -\frac{2}{3}z^3 + 4z - \frac{8}{3}, & 1 < z < 2. \end{cases}$$

Rozdział 4

2.
$$E(X) = c$$
, $\sigma^2(X) = 0$.

3.
$$X \sim \mathcal{U}[a, b] : E(X) = \frac{a+b}{2}, \sigma^2(X) = \frac{(b-a)^2}{12}, \quad X \sim \mathcal{E}(\lambda) : E(X) = \frac{1}{\lambda}, \sigma^2(X) = \frac{1}{\lambda^2},$$

 $X \sim \mathcal{N}(m, \sigma^2) : E(X) = m, \sigma^2(X) = \sigma^2.$

- 4. 0.1175 zł., 1.175 zł.; 94 000 zł., 306 000 zł.
- 5.624.
- 6. p > 0.91.

7.
$$E(X) = 17.5, \ \sigma^2(X) = 14\frac{7}{12}.$$

$$9. \ \rho = \left\{ \begin{array}{ll} 1, & a > 0 \\ -1, & a < 0. \end{array} \right.$$

10.
$$E(Z) = 2.5, \ \sigma^2(Z) = 1.65.$$

11.
$$E(Z) = -3$$
, $\sigma^2(Z) = 5$.

12.
$$a = 2$$
, $\rho = -\frac{1}{2}$.

- 13. $h_1(s) = sg(s)$, $h_2(s) = s^2g(s^3)$. Wsk. Pokaż najpierw, że dla T=3X funkcja tworząca jest postaci $g(s^3)$.
- 14. $X \sim \mathcal{B}(n,p)$: $g(s) = (1 p(1-s))^n$, $X \sim \mathcal{P}(\lambda)$: $g(s) = e^{-\lambda(1-s)}$.
- 15. Jeśli $X_1 \sim \mathcal{B}(n_1, p), X_2 \sim \mathcal{B}(n_2, p), \text{ to } X_1 + X_2 \sim \mathcal{B}(n_1 + n_2, p).$
- 16. $X \sim \mathcal{P}(\lambda)$: $\varphi(t) = e^{-\lambda(1 e^{it})}, \quad X \sim \mathcal{U}[a, b]$: $\varphi(t) = \frac{e^{itb} e^{ita}}{it(b a)}$.

Rozdział 5

- 1. $e^{-1}(2 + \frac{1}{2!} + \frac{1}{3!})$.
- 2. $e^{-\lambda} \frac{\lambda^k}{k!}$, $k = 0, 1, \dots, 5$, $\lambda = 200 \cdot \frac{6!}{6^6} = 3.08$.
- 3. (a) $\binom{12}{4}(\frac{1}{2})^4(\frac{1}{2})^8 = 0.12$, (b) $X \sim \mathcal{N}(6,3)$, $P(3.5 \le X \le 4.5) = 0.117$.
- 4. 0.499.
- 5. 0.8389.
- 6. $X_i \sim \mathcal{E}(1), \quad 0.5 \Phi(\frac{5}{\sqrt{30}}) = 0.184.$
- 9. $n \ge 68$.
- 10. $P(\frac{S_{600}-300}{\sqrt{150}} > \frac{n-300}{\sqrt{150}}) \le 0.01, \quad n \ge 329.$
- 11. $n \ge 37000$.
- 12. $Y \sim \mathcal{N}(50, 100^2)$, (a) 0.4931, (b) 0.3083.
- 13. 0.97.
- 14. (a) (i) n > 8067, (ii) n > 9604, (b) (i) n > 323, (ii) n > 384.
- 15. Wartość 5 400 znajduje się w odległości 8 odchyleń standardowych od średniej. Przy symetrycznej monecie prawdopodobieństwo tego zdarzenia jest skrajnie małe.
- 16. (a) E = 0.039, (b) $11.7 \le m \le 11.8$.
- 17. n > 130.
- 19. Na mocy nierówności Czebyszewa $p = P(-k < S_n^* < k) \ge 1 \frac{1}{k^2}$, czyli p wynosi co najmniej 0, 0.75, 0.888, odpowiednio; na mocy C.T.G. $p \approx 2\Phi(k)$, czyli p wynosi w przybliżeniu 0.6826, 0.9544, 0.9974, odpowiednio.
- 20.0.95.

Zadania dodatkowe

- Grupa studencka liczy 25 osób. Oblicz, na ile sposobów można w tej grupie postawić
 piątki, 4 czwórki, 5 trójek i 13 dwójek.
- 2. Oblicz, ile "słów" (tzn. ciągów liter) dziesięcioliterowych może ułożyć analfabeta ze słowa ANALFABETA.
- 3. Przy okrągłym stole zasiada 7 osób. Oblicz, na ile sposobów mogą usiąść, jeśli panie A oraz B muszą siedzieć obok siebie.
- 4. Na półce stoi 8 różnych par butów. Wybieramy losowo 5 butów. Oblicz prawdopodobieństwo wybrania
 - (a) dokładnie 2 par,
 - (b) dokładnie 1 pary,
 - (c) wszystkich butów z różnych par.
- 5. Wybieramy 5 kart z talii 52 kart. Oblicz prawdopodobieństwo otrzymania przynajmniej po jednej karcie każdego koloru.
- 6. Z talii kart wylosowano 7 kart. Oblicz prawdopodobieństwo tego, że są wśród nich trzy kolejne karty koloru trefl.
- 7. W urnie znajduje się N_1 kul białych oraz N_2 kul czarnych. Znajdź minimalną wartość N_1 , przy której losując z urny 2 kule, otrzymamy obie białe z prawdopodobieństwem 0.5.
- 8. Z urny zawierającej kule ponumerowane liczbami 1, 2, ..., n losujemy jedną. Oblicz prawdopodobieństwo p_n , że jej numer dzieli się przez 3 lub 4 oraz znajdź $\lim_{n\to\infty} p_n$.
- 9. Z odcinka [-2, 2] wybieramy losowo dwie liczby p i q. Oblicz prawdopodobieństwo tego, że wektor (p, q) należy do dziedziny funkcji $f(x, y) = \sqrt{x y + 1}$.
- 10. Student zdaje egzamin testowy, na którym do każdego pytania podane są 4 odpowiedzi, z czego 1 prawidłowa. Ma on dobrze opanowany materiał dotyczący 50% pytań, w 30% pytań umie wyeliminować 2 odpowiedzi, nie wie nic na temat pozostałych zadań. Oblicz prawdopodobieństwo podania prawidłowej odpowiedzi na losowo wybrane pytanie tego testu.

- 11. Załóżmy, że na pewną poważną dolegliwość cierpi 10% populacji. Test stosowany do jej wykrycia daje poprawną diagnozę (tzn. stwierdza chorobę u osoby chorej i jej brak u zdrowej) w 90 przypadkach na 100. Oblicz prawdopodobieństwo tego, że osoba poddana dwukrotnie takiemu testowi jest rzeczywiście chora, jeśli wyniki obu testów są niezależne oraz
 - (a) oba są pozytywne,
 - (b) tylko jeden jest pozytywny.
- 12. Pokaż, że P(A|B) > P(A) wtedy i tylko wtedy, gdy P(B|A') < P(B|A).
- 13. Rzucamy 12 razy monetą. Oblicz prawdopodobieństwo uzyskania większej ilości orłów niż reszek.
- 14. Oblicz, ile co najmniej dzieci powinna mieć rodzina, aby z prawdopodobieństwem nie mniejszym niż 0.95 znalazły się w niej dzieci obu płci.
- 15. Rzucamy dwa razy 2 kostkami. Oblicz prawdopodobieństwo uzyskania tej samej sumy w obu rzutach.
- 16. Rzucamy monetą tak długo, aż upadnie dwa razy na tę samą stronę. Opisz przestrzeń zdarzeń elementarnych i oblicz prawdopodobieństwo tego, że gra skończy się przed piątym rzutem oraz tego, że potrzebna będzie nieparzysta liczba rzutów.
- 17. Dwie osoby mające jednakowe szanse zwycięstwa grają w szachy. Ostatecznie wygrywa ten, kto pierwszy wygra łącznie 5 rozgrywek. Oblicz prawdopodobieństwo wygrania gracza, który zwyciężył już w 3 rozgrywkach, a jego przeciwnik w 2.
- 18. Asia i Jadzia rzucają na zmianę piłką do kosza. Jadzia rozpoczyna mecz. Jeśli trafia z prawdopodobieństwem 0.25, natomiast Asia z prawdopodobieństwem 0.33, to oblicz prawdopodobieństwo, że Jadzia trafi do kosza przed Asią.
- 19. Dobierz stałe a oraz b tak, by funkcja $F(x) = a + b \arctan 2x$ była dystrybuantą pewnej zmiennej losowej X. Znajdź P(X > 4).
- 20. Ilość pieczywa (w setkach kilogramów) sprzedawanego w pewnej piekarni przez jeden dzień ma gestość postaci

$$f(x) = \begin{cases} ax, & 0 \le x \le 3\\ a(6-x), & 3 < x \le 6\\ 0, & \text{poza tym.} \end{cases}$$

Wyznacz stałą a. Oblicz prawdopodobieństwo sprzedania w ciągu dnia pieczywa o wadze (zdarzenie B_1) większej niż 300 kg, (zdarzenie B_2) nie mniejszej niż 150 i nie większej niż 450 kg. Czy określone zdarzenia są niezależne?

- 21. Trzy osoby zaproszone na przyjęcie pojawią się na nim niezależnie jedna od drugiej z prawdopodobieństwem 0.9, 0.8, 0.75, odpowiednio. Niech N oznacza liczbę osób, które skorzystają z zaproszenia. Znajdź rozkład zmiennej losowej N.
- 22. Niech X będzie zmienną losową wykładniczą z parametrem $\lambda=1$. Znajdź rozkład zmiennej losowej Y, jeśli
 - (a) Y = [X] jest częścią całkowitą X,
 - (b) $Y = \ln X$.
- 23. Niech X będzie zmienną losową normalną standardową. Znajdź rozkład zmiennej losowej $Y=e^X$.
- 24. Rozkład zmiennej losowej X jest postaci: $P(X=2^k)=4\cdot 5^{-k},\ k=1,2,\ldots$ Oblicz trzy pierwsze momenty zmiennej losowej X.
- 25. Student zdaje test składający się z dwóch zadań. Ponieważ jest nieprzygotowany, wybiera odpowiedzi losowo po jednej, w pierwszym zadaniu spośród trzech, a w drugim spośród pięciu. Znajdź wartość oczekiwaną oraz wariancję liczby poprawnych odpowiedzi studenta.
- 26. Niech X_r oznacza liczbę porażek poprzedzających r-ty sukces w ciągu niezależnych prób o prawdopodobieństwie sukcesu p. Pokaż, że rozkład (tzw. **ujemny dwumianowy**) zmiennej losowej X jest postaci

$$P(X = k) = {r+k-1 \choose r-1} p^r (1-p)^k, \quad k = 0, 1...,$$

oraz znajdź jej wartość oczekiwana.

Niech z kolei T_k oznacza liczbę prób potrzebnych do osiągnięcia k sukcesów w tym samym schemacie Bernoulliego. Korzystając z tego, że zmienna losowa T_k jest więc sumą k niezależnych zmiennych losowych geometrycznych o rozkładzie $\mathcal{G}(p)$, znajdź jej wartość oczekiwaną.

27. Rzucamy kostką do momentu uzyskania po raz trzeci parzystej liczby oczek. Znajdź oczekiwaną liczbę porażek w jednym takim doświadczeniu oraz jego dziesięciokrotnym powtórzeniu.

- 28. Niech P będzie ustalonym punktem okręgu o środku O i promieniu R. Wybieramy losowo punkt M z okręgu. Znajdź wartość oczekiwaną i wariancję odległości X punktów M i P.
- 29. Niech X będzie zmienną losową o dystrybuancie

$$F(x) = \begin{cases} 1 - 0.8e^{-x}, & x \ge 0\\ 0, & \text{poza tym}, \end{cases}$$

Znajdź E(X) oraz podaj przykład zmiennej losowej o takim rozkładzie.

- 30. Pokaż, że funkcja $v(c) = E(X c)^2$, $c \in \Re$, osiąga swoje minimum dla c = E(X).
- 31. Niech X oraz Y będą niezależnymi zmiennymi losowymi o dodatnich wariancjach. Pokaż, że $\sigma^2(X \cdot Y) = \sigma^2(X) \cdot \sigma^2(Y)$ wtedy i tylko wtedy, gdy E(X) = E(Y) = 0.
- 32. Niech X oraz Y będą zmiennymi losowymi normalnymi standardowymi. Zakładając ich niezależność, znajdź dystrybuantę zmiennej losowej $Z=\sqrt{X^2+Y^2}$.
- 33. Niech X oraz Y będą niezależnymi zmiennymi losowymi jednostajnymi na odcinkach [0,1] oraz [0,2], odpowiednio. Znajdź gęstość ich sumy.
- 34. Niech X oraz Y będą niezależnymi zmiennymi losowymi wykładniczymi z parametrem 1. Znajdź gestość ich różnicy.
- 35. Dla zmiennych losowych z poprzedniego zadania oblicz P(X > Y > 2).
- 36. Niech X będzie zmienną losową Poissona z parametrem λ niezależną od zmiennych losowych $Y_n, n=1,2,\ldots$, niezależnych, z których każda ma rozkład postaci $P(Y_n=1)=1-P(Y_n=0)=p$. Pokaż, że zmienne losowe $S=\sum_{k=1}^X Y_k$ oraz T=X-S są niezależnymi zmiennymi losowymi Poissona z parametrami λp oraz $\lambda(1-p)$, odpowiednio.
- 37. Niech X oraz Y będą zmiennymi losowymi jednostajnymi na odcinku [0,1]. Zakładając ich niezależność,
 - (a) znajdź rozkład zmiennej losowej $Z = X \cdot Y$,
 - (b) oblicz dwoma sposobami wartość oczekiwaną zmiennej losowej Z.
- 38. Pokaż, że jeśli F(x,y) jest dystrybuantą wektora losowego (X,Y), to dystrybuanty zmiennych losowych $Z = \min(X,Y)$ oraz $T = \max(X,Y)$ są postaci $G(z) = F_1(z) + F_2(z) F(z,z)$ oraz H(t) = F(t,t), odpowiednio.

- 39. Niech X oraz Y będą zmiennymi losowymi normalnymi standardowymi. Zakładając ich niezależność, znajdź wartość oczekiwaną $T = \max(X, Y)$.
- 40. Pokaż, że dwie zmienne losowe, z których każda przyjmuje tylko dwie wartości, są niezależne wtedy i tylko wtedy, gdy są nieskorelowane.
- 41. Wektor losowy (X, Y) ma rozkład (tzw. **dwuwymiarowy normalny**) postaci f(x, y) =

$$\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}}\exp\left(-\frac{1}{2(1-\rho^2)}\left\{\frac{(x-m_1)^2}{\sigma_1^2}-\frac{2\rho(x-m_1)(y-m_2)}{\sigma_1\sigma_2}+\frac{(y-m_2)^2}{\sigma_2^2}\right\}\right).$$

- (a) Znajdź rozkłady brzegowe oraz współczynnik korelacji $\rho(X,Y)$.
- (b) Pokaż, że dwie zmienne losowe normalne są niezależne wtedy i tylko wtedy, gdy są nieskorelowane.
- 42. Wektor losowy (X,Y) ma gęstość postaci

$$f(x,y) = c \exp(-x^2 + xy - y^2), \quad x, y \in \Re.$$

Wyznacz stałą c, wartości oczekiwane, wariancje oraz współczynnik korelacji zmiennych losowych X oraz Y.

- 43. Pokaż, że Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z).
- 44. Niech U będzie zmienną losową jednostajną na odcinku [0,1]. Oblicz $Cov(U^2,U^3)$. Czy $\rho(U^2,U^3)=1$?
- 45. Dwie osoby strzelają do celu po n razy. Zakładając, że prawdopodobieństwo trafienia wynosi dla każdej z nich 0.5, oblicz z jakim prawdopodobieństwem liczby trafień będą dla nich jednakowe.
- 46. Niech X będzie zmienną losową niezależną od zmiennych losowych Y_n , $n=1,2,\ldots$, niezależnych o jednakowym rozkładzie. Zakładając, że są to zmienne losowe dyskretne mające funkcje tworzące g oraz h, odpowiednio, pokaż, że funkcja tworząca zmiennej losowej $S=\sum_{k=1}^X Y_k$ jest postaci g(h(s)). Zakładając ponadto, że istnieją wartości oczekiwane tych zmiennych losowych, udowodnij wzór $E(S)=E(X)\cdot E(Y_1)$.
- 47. Niech X_n będzie zmienną losową geometryczną z parametrem $p_n = \frac{\lambda}{n}$ oraz niech $Y_n = \frac{1}{n}X_n$, $n = 1, 2, \ldots$ Pokaż, że $Y_n \stackrel{d}{\to} Y$, $n \to \infty$, gdzie Y jest zmienną losową wykładniczą z parametrem λ .

- 48. Niech $\{X_n, n=0,1,2,\ldots\}$ będzie ciągiem niezależnych zmiennych losowych normalnych standardowych oraz niech $Y_0=X_0, Y_{n+1}=aY_n+X_{n+1}, n=0,1,2,\ldots$ Zakładając, że stała a<1, znajdź rozkład zmiennej losowej $Y_n, n=0,1,2,\ldots$, oraz pokaż, że $Y_n \xrightarrow{d} Y$, $n \to \infty$, gdzie Y jest pewną zmienną losową normalną. Wyznacz jej parametry.
- 49. Wykonujemy 80 rzutów kostką. Stosując nierówność Czebyszewa, oszacuj z prawdopodobieństwem 0.91 liczbę otrzymanych piątek.
- 50. Z partii towaru o wadliwości 3% pobrano próbę 500-elementową. Oszacuj prawdopodobieństwo tego, że liczba wadliwych elementów w próbie nie przekroczy 4%.
- 51. Sprawdź, czy ciągi niezależnych zmiennych losowych $\{X_n, n=1,2,\ldots\}$ o następujących rozkładach spełniają tezę P.W.L.:
 - (a) $P(X_n = 3^n) = P(X_n = -3^n) = 3^{-(2n+1)}, P(X_n = 0) = 1 2(3^{-(2n+1)}),$
 - (b) $X_n \sim \mathcal{P}(2^{-n})$.

Odpowiedzi do zadań dodatkowych

- 1. $\frac{25!}{3!4!5!13!}$.
- $2. \frac{10!}{4!}$.
- $3.7 \cdot 2 \cdot 5!$
- 4. $|\Omega| = {16 \choose 5}, |A| = {8 \choose 3} \cdot 3 \cdot 2, |B| = {8 \choose 4} \cdot 4 \cdot 2^3, |C| = {8 \choose 5} \cdot 2^5.$
- $5. \frac{4\binom{13}{2}\cdot 13^3}{\binom{52}{5}}.$
- 6. $\frac{2\binom{48}{4}+9\binom{47}{4}}{\binom{52}{7}}$.
- 7. $(1+\sqrt{2})N_2 < N_1 < (1+\sqrt{2})N_2+1$ oraz dla $N_2=1, N_1=3$ P(obie kule biale)=0.5.
- 8. $p_n = \frac{\left[\frac{n}{3}\right]}{n} + \frac{\left[\frac{n}{4}\right]}{n} \frac{\left[\frac{n}{12}\right]}{n} \to \frac{1}{2}, \quad n \to \infty.$
- $9.\frac{23}{32}.$
- 10. $\frac{1}{2} + \frac{3}{10} \cdot \frac{1}{2} + \frac{2}{10} \cdot \frac{1}{4} = \frac{7}{10}$.
- 11. P(++|chory) = 0.81, P(++|zdrowy) = 0.01, P(+-|chory) = P(+-|zdrowy) = 0.18, a stąd P(chory|++) = 0.9, P(chory|+-) = 0.1.

- 12. Wsk. Zastosuj wzór Bayesa (2.14).
- 13. $\frac{1}{2}(1-\binom{12}{6}(\frac{1}{2})^{12}).$
- 14. Jeśli X oznacza liczbę dziewcząt, to $P(1 \le X \le n-1) \ge 0.95, n \ge 6$.
- 15. $\frac{2(1^2+2^2+3^2+4^2+5^2)+6^2}{36^2} = \frac{73}{648}$.
- 16. $\Omega = \{OO, RR, ORR, ROO, OROO, RORR, \ldots\}, P(A) = 2(\frac{1}{4} + \frac{1}{8} + \frac{1}{16}) = \frac{7}{8},$ $P(B) = 2\sum_{k=1}^{\infty} (\frac{1}{2})^{2k+1} = \frac{1}{3}.$
- 17. $\frac{1}{4} + 2 \cdot \frac{1}{8} + 3 \cdot \frac{1}{16} = \frac{11}{16}$.
- 18. $\frac{1}{4}(1+\frac{3}{4}\cdot\frac{2}{3}+(\frac{3}{4}\cdot\frac{2}{3})^2+\ldots)=\frac{1}{2}$.
- 19. $a = \frac{1}{2}$, $b = \frac{1}{\pi}$; $\frac{1}{2} \frac{1}{\pi} \arctan 8$.
- 20. $c = \frac{1}{9}$, $P(B_1) = \frac{1}{2}$, $P(B_2) = \frac{3}{4}$, $P(B_1 \cap B_2) = \frac{3}{8}$.
- 21. $\{(0, 0.005), (1, 0.08), (2, 0.375), (3, 0.54)\}.$
- 22. (a) $\{(k, e^{-k} e^{-(k+1)}), k = 0, 1, \ldots\}, (b) F(y) = 1 e^{-e^y}, y \in \Re.$
- 23. $f(y) = \frac{1}{\sqrt{2\pi}} \frac{1}{y} e^{-\frac{(\ln y)^2}{2}}, \ y > 0.$
- 24. $E(X) = \frac{8}{3}$, $E(X^2) = 16$, $E(X^3) = \infty$.
- 25. $E(X) = \frac{8}{15}$, $\sigma^2(X) = \frac{86}{225}$.
- 26. $E(X_r) = \frac{1-p}{p} \cdot r$, $E(T_k) = \frac{k}{p}$.
- 27. $p = \frac{1}{2}$, r = 3; 30.
- 28. $X = 2R \sin \frac{\alpha}{2}, \ \alpha \sim \mathcal{U}[0, 2\pi], \ \mathcal{E}(X) = \frac{4R}{\pi}, \ \mathcal{E}(X^2) = 2R^2$
- 29. $f(x) = 0.8e^{-x}$, $x \ge 0$, $P(X = 0) = F(0) \lim_{x \to 0^-} F(x) = 0.2$, E(X) = 0.8. X jest np. czasem świecenia żarówki wybranej losowo z magazynu, w którym znajduje się 80% żarówek o czasie świecenia zgodnym z rozkładem $\mathcal{E}(\lambda)$ oraz 20% żarówek wadliwych.
- 32. $F(z) = P(X^2 + Y^2 \le z^2) = P((X, Y) \in K((0, 0), z)) = 1 e^{-\frac{z^2}{2}}, z \ge 0$ (porównaj str. 45).
- 33. $g(z) = \begin{cases} \frac{z}{2}, & 0 \le z < 1\\ \frac{1}{2}, & 1 \le z < 2\\ \frac{3-z}{2}, & 2 \le z < 3\\ 0, & \text{poza tym.} \end{cases}$
- 34. $Z = X Y = X + (-Y), \quad g(z) = \begin{cases} \frac{1}{2}e^z, & z < 0\\ \frac{1}{2}e^{-z}, & z \ge 0. \end{cases}$

- 35. $\int_2^\infty P(2 < Y < x)e^{-x}dx = \int_2^\infty (\int_2^x e^{-y}dy)e^{-x}dx = \frac{1}{2}e^{-4}$.
- 36. $P(S = k, T = l) = P(S = k, X = l + k) = P(X = l + k, Y_1 + \dots + Y_{l+k} = k) = P(X = l + k)P(Y_1 + \dots + Y_{l+k} = k) = e^{-\lambda} \frac{\lambda^{l+k}}{(l+k)!} \cdot {l+k \choose k} p^k (1-p)^l = e^{-\lambda p} \frac{(\lambda p)^k}{k!} \cdot e^{-\lambda(1-p)} \frac{(\lambda(1-p))^l}{l!} = P(S = k) \cdot P(T = l).$
- 37. (a) $P(X \cdot Y \le z) = z(1 \ln z)$, skąd $f(z) = \ln \frac{1}{z}$, $0 \le z \le 1$, (b) $E(Z) = \int_0^\infty z f(z) dz = \frac{1}{4} = E(X) \cdot E(Y)$.
- 39. Na mocy zad. 38. $f(t) = 2\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}\int_{-\infty}^t \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}dx$, $E(T) = \int_{-\infty}^\infty tf(t)dt = \frac{1}{\sqrt{\pi}}$.
- 40. Wsk. W zapisie warunku Cov(X,Y) = 0 użyj równości $p_{1,2} = p_1 p_{1,1}$, $p_{2,1} = q_1 p_{1,1}$, $p_{2,2} = p_{1,1} p_1 + q_2$, skąd otrzymasz $p_{1,1} = p_1 q_1$. Na mocy tej relacji powyższe równości stają się warunkami (3.27).
- 41. $X \sim \mathcal{N}(m_1, \sigma_1^2), Y \sim \mathcal{N}(m_2, \sigma_2^2), \rho(X, Y) = \rho$.
- 42. $c = \frac{\sqrt{3}}{2\pi}$, E(X) = E(Y) = 0, $\sigma^2(X) = \sigma^2(Y) = \frac{2}{3}$, $\rho(X, Y) = \frac{1}{2}$.
- 44. $Cov(U^2, U^3) = \frac{1}{12}, \ \rho(U^2, U^3) = \frac{\sqrt{35}}{6}.$
- 45. Jeśli X i Y oznaczają liczby trafień, to szukamy p = P(X Y = 0). Funkcja tworząca dla X Y jest postaci $g(s) = \frac{1}{2^n} (1 + s)^n \cdot \frac{1}{2^n} (1 + \frac{1}{s})^n = \frac{1}{4^n} \cdot \frac{1}{s^n} \sum_{k=0}^{2n} {2n \choose k} s^k$. Ponieważ p jest współczynnikiem przy s^0 , więc $p = \frac{1}{4^n} {2n \choose n}$.
- 46. Wsk. $g(s) = E(s^X)$, $E(S) = (g(h(s))'_{s=1} = g'(h(1)) \cdot h'(1) = E(X) \cdot E(Y_1)$, bo h(1) = 1.
- 47. $P(Y_n > y) = (1 \frac{\lambda}{n})^{[ny]} \to e^{-\lambda y} = P(Y > y), \ n \to \infty, \ y > 0, \quad Y \sim \mathcal{E}(\lambda),$ bo $ny 1 \le [ny] \le ny.$

Można też posłużyć się funkcjami charakterystycznymi φ_n zmiennych losowych Y_n , zauważając, że $\varphi_n(t) = \frac{\frac{\lambda}{n}}{e^{-i\frac{t}{n}}-1+\frac{\lambda}{n}} \to \frac{\lambda}{\lambda-it} = \varphi(t), \ n \to \infty$, gdzie $\varphi(t) \sim \mathcal{E}(\lambda)$ i stosując twierdzenie 5.1.2.

- 48. $Y_n \sim \mathcal{N}(0, \frac{1-a^{2(n+1)}}{1-a^2}) \sim \varphi_n(t) = \exp(-\frac{1}{2}t^2(\frac{1-a^{2(n+1)}}{1-a^2})) \to \exp(-\frac{1}{2}t^2\frac{1}{1-a^2}) = \varphi(t),$ $n \to \infty, \text{ gdzie } \varphi(t) \sim Y \sim \mathcal{N}(0, \frac{1}{1-a^2}).$
- 49. $X \sim \mathcal{B}(80, \frac{1}{6}), \quad P(2.2 < X < 24.4) = P(3 \le X \le 24) \ge 0.91.$
- 50. $X \sim \mathcal{N}(15, 14.55), \quad P(X \le 20) = 0.9049.$
- 51. Tak. Wariancje (a) $\sigma^2(X_n) = \frac{2}{3}$, (b) $\sigma^2(X_n) = 2^{-n}$ są wspólnie ograniczone.

Ważniejsze rozkłady i ich charakterystyki

funkcja charakterystyczna

- Zero-jedynkowy $\mathcal{B}(1,p)$: $P(X=1)=1-P(X=0)=p, \qquad 0 \leq p \leq 1,$ wartość oczekiwana $\mathrm{E}(X)=p,$ wariancja $\sigma^2(X)=p(1-p),$ funkcja tworząca rozkładu g(s)=1-p(1-s), funkcja tworząca momenty $\gamma(s)=1-p(1-e^s),$
- **Dwumianowy** $\mathcal{B}(n,p)$: $P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \ k=0,\ldots,n, \ 0 \leq p \leq 1,$ wartość oczekiwana E(X) = np, wariancja $\sigma^2(X) = np(1-p),$ funkcja tworząca rozkładu $g(s) = (1-p(1-s))^n,$ funkcja tworząca momenty $\gamma(s) = (1-p(1-e^s))^n,$ funkcja charakterystyczna $\varphi(s) = (1-p(1-e^{is}))^n;$

 $\varphi(s) = 1 - p(1 - e^{is});$

- $\begin{array}{ll} \bullet \ \, \mathbf{Geometryczny} \,\, \mathcal{G}(p) \colon & P(X=k) = p(1-p)^{k-1}, \quad k=1,2,\ldots,\, 0$
- Poissona $\mathcal{P}(\lambda)$: $P(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k=0,1,\ldots, \lambda>0,$ wartość oczekiwana $E(X) = \lambda,$ wariancja $\sigma^2(X) = \lambda,$ funkcja tworząca rozkładu $g(s) = \exp\{-\lambda(1-s)\},$ funkcja tworząca momenty $\gamma(s) = \exp\{-\lambda(1-e^s)\},$ funkcja charakterystyczna $\varphi(s) = \exp\{-\lambda(1-e^{is})\};$

• **Jednostajny**
$$\mathcal{U}[a,b]$$
: $f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & \text{poza tym}, \end{cases}$

wartość oczekiwana

$$E(X) = \frac{a+b}{2},$$

wariancja

$$\sigma^2(X) = \frac{(a-b)^2}{12},$$

funkcja tworząca momenty $\gamma(s) = \frac{e^{sb} - e^{sa}}{s(b-a)}$,

$$\gamma(s) = \frac{e^{sb} - e^{sa}}{s(b-a)},$$

funkcja charakterystyczna

$$\varphi(s) = \frac{e^{isb} - e^{isa}}{is(b-a)};$$

• Wykładniczy $\mathcal{E}(\lambda)$: $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{poza tym}, \end{cases} \lambda > 0$,

wartość oczekiwana

$$E(X) = \frac{1}{\lambda},$$

wariancja

$$\sigma^2(X) = \frac{1}{\lambda^2},$$

funkcja tworząca momenty $\gamma(s) = \frac{\lambda}{\lambda - s}$,

$$\gamma(s) = \frac{\lambda}{\lambda - s},$$

funkcja charakterystyczna

$$\varphi(s) = \frac{\lambda}{\lambda - is};$$

• Gamma $\Gamma(n,\lambda)$: $f(x) = \begin{cases} \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x}, & x \ge 0 \\ 0, & \text{poza tym}, \end{cases} \lambda > 0,$

wartość oczekiwana

$$E(X) = \frac{n}{\lambda},$$

wariancja

$$\sigma^2(X) = \frac{n}{\lambda^2},$$

funkcja tworząca momenty $\gamma(s) = \left(\frac{\lambda}{\lambda - s}\right)^n$,

$$\gamma(s) = \left(\frac{\lambda}{\lambda - s}\right)^n$$

funkcja charakterystyczna

$$\varphi(s) = \left(\frac{\lambda}{\lambda - is}\right)^n;$$

• Normalny $\mathcal{N}(m, \sigma^2)$: $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\{-\frac{(x-m)^2}{2\sigma^2}\}, \quad x \in \Re,$

wartość oczekiwana

$$E(X) = m,$$

wariancja

$$\sigma^2(X) = \sigma^2,$$

funkcja tworząca momenty $\gamma(s) = \exp\{sm + \frac{s^2\sigma^2}{2}\},$

$$\gamma(s) = \exp\{sm + \frac{s^2\sigma^2}{2}\}\$$

funkcja charakterystyczna
$$\varphi(s) = \exp\{ism - \frac{s^2\sigma^2}{2}\}.$$