FONCTION CARRE

EXERCICE 2A.1: Compléter le tableau :

x	1	-1	2	-3	$\sqrt{5}$	$\frac{4}{7}$	0,1	-0,01
x^2								
$-x^2$								
$\left(-x\right)^2$								
2x								

On considère la fonction $f: x \mapsto x^2$ définie sur $]-\infty$; $+\infty[$. EXERCICE 2A.2:

- **a.** Calculer les images par f de 7; -11; - $\sqrt{3}$; $\frac{\sqrt{2}}{5}$.
- **b.** Calculer les images par f de $\sqrt{5} 1$ et de $1 \sqrt{5}$. Que remarque-t-on?
- c. Quel est le nombre a qui a la même image par f que -3 + $\sqrt{7}$? Calculer l'image de ce nombre a.
- **d.** Montrer que l'image de $\sqrt{18} + \sqrt{98}$ est un nombre entier.

EXERCICE 2A.3: Associer à chaque affirmation sa justification :

- Un carré est toujours positif
 - $(-5,12)^2 > (-5,11)^2$
 - $(5,12)^2 > (-5,11)^2$ $(-9,54)^2 = 9,54^2$ •
- Tout nombre réel admet un carré
 - $801^2 < 802^2$
- $f: x \mapsto x^2$ est définie sur $]-\infty$; $+\infty$
- $f: x \mapsto x^2$ est décroissante sur $]-\infty$; 0]
- $f: x \mapsto x^2$ admet pour minimum 0
- $f: x \mapsto x^2$ est croissante sur $[0; +\infty]$
- $f: x \mapsto x^2$ est paire

EXERCICE 2A.4

a. Sans les calculer, ranger dans l'ordre croissant les nombres suivants :

- 11.1^{2}
- 11.01^{2}
- 1.01^{2}
- 10.01^{2}
- 10.1^2 10^2 0.11^2

b. Sans les calculer, ranger dans l'ordre croissant les nombres suivants :

- $(-99.09)^2$ $(-9)^2$ $(-99.9)^2$
- $(-0.9)^2$ $(-9.09)^2$
- $(-90,9)^2$ $(-90)^2$ $(-90,09)^2$

c. Sans les calculer, ranger dans l'ordre croissant les nombres suivants :

- 54^{2}
- $(-4.5)^2$
- 5.6^{2}
- $(-4.6)^2$

- -5.4^2 6.4^2 -3.6^2 $(-3.5)^2$

EXERCICE 2A.5

- **a.** Construire le tableau de variation de la fonction $f: x \mapsto x^2$ définie sur [-7; 2].
- **b.** Quel sont le maximum et le minimum de f sur cet intervalle ?

EXERCICE 2A.6

- **a.** Construire le tableau de variation de la fonction $g: x \mapsto x^2$ définie sur [-5; -3].
- **b.** Quel sont le maximum et le minimum de g sur cet intervalle ?

On considère la fonction $f: x \mapsto x^2$ définie sur]- ∞ ; + ∞ [. EXERCICE 2A.7

- **a.** Quel est l'intervalle décrit par f(x) quand $x \in [2; 6]$?
- **b.** Quel est l'intervalle décrit par f(x) quand $x \in [-8; -4]$?
- **c.** Quel est l'intervalle décrit par f(x) quand $x \in [-5, 2]$?
- **d.** Quel est l'intervalle décrit par f(x) quand $x \in]-10$; 9[?
- e. Quel est l'intervalle décrit par f(x) quand $x \in \left[-\sqrt{3}, \sqrt{3}\right]$?