University of Bath Formula Book

Revised 2005

Contents

1	Algebraic and Trigonometrical Formulae	1
2	Hyperbolic Functions	2
3	Derivatives	3
4	Integrals	4
5	Differentiation under the Integral Sign	5
6	Coordinate Geometry	5
7	Series	6
8	Taylor's Series for Two Variables	7
9	Numerical Formulae	8
10	Fourier Series	10
11	Fourier Transforms	11
12	Laplace Transforms	13
13	Vector Formulae	18
14	Curvilinear Coordinates	19
15	Index Notation Formulae	20
16	The Normal Distribution Function	21
17	Percentage Points of the Normal (Gaussian) Distribution	21
18	Percentage Points of Student's $\ t$ -Distribution	22
19	Percentage Points of the χ^2 -distribution	23
20	Percentage Points of the $\ F$ -Distribution	24
21	Poisson Tables	28

22	Legendre Polynomials	32
23	Orthogonal Polynomials	33
24	Random Numbers	34
25	Wilcoxon Matched-Pairs Test	35
26	Mann-Whitney Test	36
27	Rank Correlation Coefficients (Spearman's)	38
28	Correlation Coefficients	38
29	Constants for Use in Constructing Quality Control Charts	39
30	Some Common Families of Distributions	40

1 Algebraic and Trigonometrical Formulae

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

$$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

$$a^2 - b^2 = (a+b)(a-b)$$

$$a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$$

 $a^2 + b^2$ has no real factors

$$(a+b)^n = \sum_{r=0}^n {}^nC_r \ a^{n-r}b^r$$

where
$${}^nC_r=rac{n!}{r!(n-r)!}=rac{n(n-1)\cdots(n-r+1)}{r!}$$
 . Also written as $inom{n}{r}$.

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

$$\sin\theta \ = \ \frac{2t}{1+t^2}; \quad \cos\theta \ = \ \frac{1-t^2}{1+t^2} \quad \mbox{where} \quad t \ = \ \tan\frac{\theta}{2} \ . \label{eq:theta}$$

$$2\sin A\cos B = \sin(A+B) + \sin(A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$

$$\sin A \pm \sin B = 2 \sin \left(\frac{A \pm B}{2}\right) \cos \left(\frac{A \mp B}{2}\right)$$

$$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

$$\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$$

Sine Rule:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine Rule:
$$a^2 = b^2 + c^2 - 2bc \cos A$$

2 Hyperbolic Functions

$$\sinh x = \frac{1}{2}(e^x - e^{-x})$$

$$\cosh x = \frac{1}{2}(e^x + e^{-x})$$

$$\tanh x = \frac{\sinh x}{\cosh x}$$

$$\coth x = \frac{\cosh x}{\sinh x}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}$$

$$\operatorname{cosech} x = \frac{1}{\sinh x}$$

$$\operatorname{cosech} x = \frac{1}{\sinh x}$$

$$\operatorname{cosech}^2 x - \sinh^2 x = 1$$

$$1 - \tanh^2 x = \operatorname{sech}^2 x$$

$$\coth^2 x - 1 = \operatorname{cosech}^2 x$$

$$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y$$

$$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$$

$$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}$$

$$\sinh 2x = 2 \sinh x \cosh x$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x = 2 \cosh^2 x - 1 = 1 + 2 \sinh^2 x$$

$$\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$$

$$\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$$

 $\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1}) \qquad (x > 1)$

 $\tanh^{-1} x = \frac{1}{2} \ln \left\{ \frac{1+x}{1-x} \right\} \qquad (-1 < x < 1)$

3 Derivatives

y	$\frac{dy}{dx}$	
$\tan x$	$\sec^2 x$	
$\cot x$	$-\csc^2 x$	
$\sec x$	$\sec x \tan x$	
$\operatorname{cosec} x$	$-\csc x \cot x$	
$\tanh x$	$\operatorname{sech}^2 x$	
$\coth x$	$-\operatorname{cosech}^2 x$	
$\operatorname{sech} x$	$-\operatorname{sech} x \tanh x$	
$\operatorname{cosech} x$	$-\operatorname{cosech} x \operatorname{coth} x$	
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}}$ $\frac{-1}{\sqrt{1-x^2}}$	
$\cos^{-1} x$		
$\tan^{-1} x$	$\frac{1}{1+x^2}$	
$\sec^{-1} x$	$\frac{1}{x\sqrt{x^2-1}}$	
$\csc^{-1} x$	$\frac{-1}{x\sqrt{x^2-1}}$	
$\cot^{-1} x$	$\frac{-1}{1+x^2}$	
$\sinh^{-1} x$	$\frac{1}{\sqrt{x^2+1}}$	
$\cosh^{-1} x$	$\frac{1}{\sqrt{x^2 - 1}}$	
$\tanh^{-1} x$	$\frac{1}{1-x^2}$	
$\operatorname{sech}^{-1} x$	$\frac{-1}{x\sqrt{1-x^2}}$	
$\operatorname{cosech}^{-1} x$	$\frac{-1}{x\sqrt{1+x^2}}$	
$\coth^{-1} x$	$\frac{-1}{x^2-1}$	

4 Integrals

$$\int_0^{\frac{\pi}{2}} \sin^n x \ dx = \int_0^{\frac{\pi}{2}} \cos^n x \ dx = \frac{(n-1)!!}{n!!} \times \left\{ \begin{array}{l} \frac{\pi}{2}, & n \text{ even} \\ 1, & n \text{ odd} \end{array} \right.$$

$$\int_0^{\frac{\pi}{2}} \sin^m x \cos^n x \; dx \;\; = \;\; \frac{(m-1)!!(n-1)!!}{(m+n)!!} \times \left\{ \begin{array}{l} \frac{\pi}{2}, \;\; m \;\; \text{and} \;\; n \;\; \text{both even} \\ 1, \;\; \text{otherwise} \end{array} \right.$$

where
$$p!! = p(p-2)(p-4) \cdot \cdot \cdot \cdot \cdot 2$$
 or 1 and $0!! = 1$.

$$\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx)$$
$$\int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (b \sin bx + a \cos bx)$$

5 Differentiation under the Integral Sign

$$\frac{d}{dx} \int_{u(x)}^{v(x)} f(x,t) dt = \int_{u(x)}^{v(x)} \frac{\partial}{\partial x} \left\{ f(x,t) \right\} dt + \frac{dv}{dx} f\left(x,v(x)\right) - \frac{du}{dx} f\left(x,u(x)\right).$$

6 Coordinate Geometry (Two Dimensions)

Straight line: y = mx + C, gradient m, intercept C on y axis.

Data

				Semi latus	
Conic	Cartesian	Eccentricity		rectum	
		Locontinoity			
Section	Equation	(e)	Foci	(ℓ)	
Circle	$(x-a)^2 + (y-b)^2$ $= R^2$	e = 0	(0,0)	R	Centre (a,b) radius R
Ellipse	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	0 < e < 1	(±ae, 0)	$\frac{b^2}{a}$	$b^2 = a^2(1 - e^2)$ $(a > b)$
Hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	e > 1	(±ae, 0)	$\frac{b^2}{a}$	$b^2 = a^2(e^2 - 1)$ asymptotes $y = \pm \frac{b}{a}x$
Rect. Hyperbola	$xy = c^2$ (constant)	$e = \sqrt{2}$	$(\pm c\sqrt{2}, \pm c\sqrt{2})$	$c\sqrt{2}$	asymptotes $x = 0, y = 0$
Parabola	$y^2 = 4ax$	e=1	(a, 0)	2a	Vertex $(0,0)$

Polar equation for all conic sections $\ell = r(1 + e\cos\theta)$

7 Series

$$a = (a+d) + (a+2d) + \dots + (a+|n-1|d) = \frac{n}{2}(2a+|n-1|d)$$

$$1 + r + r^2 + \dots + r^n = \frac{1-r^{n+1}}{1-r}$$

$$1 + 2 + 3 + \dots + n = \frac{1}{2}n(n+1)$$

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{1}{4}n^2(n+1)^2$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{1.2}x^2 + \frac{n(n-1)(n-2)}{1.2.3}x^3 + \cdots$$
 $|x| < 1$

$$(1+x)^{-1} = 1 - x + x^2 - x^3 + \cdots$$
 $|x| < 1$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
 All x

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \qquad |x| < 1$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
 All x

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$
 All x

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} - \frac{17}{315}x^7 + \cdots \qquad |x| < \frac{\pi}{2}$$

$$\sin^{-1} x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1.3}{24} \frac{x^5}{5} + \frac{1.3.5}{246} \frac{x^7}{7} + \cdots$$
 $|x| < 1$

$$\cos^{-1} x \qquad = \frac{\pi}{2} - \sin^{-1} x$$

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$
 $|x| < 1$

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$$
 All x

$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots$$

$$\tanh x = x - \frac{x^3}{3} + \frac{2x^5}{15} - \frac{17}{315}x^7 + \dots \qquad |x| < \frac{\pi}{2}$$

$$\sinh^{-1} x = x - \frac{1}{2} \frac{x^3}{3} + \frac{1.3}{24} \frac{x^5}{5} - \frac{1.3.5}{24.6} \frac{x^7}{7} + \cdots$$
 $|x| < 1$

$$\cosh^{-1} x = \ln 2x - \frac{1}{2} \frac{1}{2x^2} - \frac{1 \cdot 3}{2 \cdot 4} \frac{1}{4x^4} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{1}{6x^6} - \dots \qquad x > 1$$

$$\tanh^{-1} x = x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \cdots$$
 $|x| < 1$

Maclaurin's Series:

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^n f^{(n)}(0)}{n!} + R_{n+1}$$
where $R_{n+1} = x^{n+1}\frac{f^{(n+1)}(\theta x)}{(n+1)!}$ $(0 < \theta < 1)$

Taylor's Series

$$f(x) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^n f^{(n)}(a)}{n!} + R_{n+1}$$
 where $h = x - a$ and $R_{n+1} = \frac{1}{n!} \int_a^x (x-s)^n f^{(n+1)}(s) \, ds$
$$= h^{n+1} \frac{f^{(n+1)}(a+\theta h)}{(n+1)!} \qquad (0 < \theta < 1)$$

8 Taylor's Series for Two Variables

$$\begin{split} f(x,y) &= f(a,b) &+ \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right) f(a,b) \\ &+ \frac{1}{2!} \left(h^2 \frac{\partial^2}{\partial x^2} + 2hk \frac{\partial^2}{\partial x \partial y} + k^2 \frac{\partial^2}{\partial y^2}\right) f(a,b) + \cdots \\ &+ \frac{1}{n!} \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^n f(a,b) + \cdots \\ &\text{where } h = x-a, \; k = y-b. \end{split}$$

9 Numerical Formulae

Trapezium rule

$$\int_a^{a+h} f(x) \ dx = \frac{h}{2}(f_0+f_1) + E$$
 where $E=-\frac{1}{12}h^3f''(X), \qquad a < X < a+h$

$$b=a+nh, \qquad \int_a^b f(x)\ dx=h\left(\frac12f_0+f_1+f_2+\cdots+f_{n-1}+\frac12f_n\right)+E$$
 where
$$E=-\frac1{12}h^2(b-a)\times (\text{Average value of }f'')$$

Simpson's rule

$$\int_a^{a+2h} f(x) \ dx = \frac{h}{3} (f_0 + 4f_1 + f_2) + E$$
 where $E = -\frac{1}{90} h^5 f^{(4)}(X), \qquad a < X < a + 2h$
$$b = a + 2nh,$$

$$\int_a^b f(x) \ dx = \frac{h}{3} \left(f_0 + 4f_1 + 2f_2 + 4f_3 + 2f_4 + \dots + 2f_{2n-2} + 4f_{2n-1} + f_{2n} \right) + E$$

where
$$E=-\frac{1}{180}h^4(b-a)\times (\text{Average value of }f^{(4)})$$

Newton's formula for roots of equations f(x) = 0

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Step-by-step integration of differential equations (Modified Euler)

$$y_1^{(P)} = y_0 + hy_0'$$

$$y_{n+1}^{(P)} = y_{n-1} + 2hy_n'$$
 Error $\frac{1}{3}h^3y_n'''$ + higher order terms

$$y_{n+1}^{(C)}=y_n+rac{h}{2}(y_{n+1}'+y_n')$$
 Error $-rac{1}{12}h^3y_n'''$ + higher order terms

The Lagrange interpolation formula

If $f \in C^{(n+1)}[a,b]$ and $a \le x_0 < x_1 < \cdots < x_n \le b$ then for $x \in [a,b]$

$$f(x) = \sum_{j=0}^{n} \ell_{j,n}(x) f(x_j) + \frac{P_n(x)}{(n+1)!} f^{n+1}(\xi)$$

where

$$\ell_{j,n}(x) = \prod_{\substack{k=0\\k\neq j}}^{n} \left[\frac{x - x_k}{x_j - x_k} \right] = \frac{P_n(x)}{(x - x_j)P'_n(x_j)}$$

$$P_n(x) = \prod_{k=0}^n [x - x_k]$$

and $a \le \xi \le b$.

The (modified) Hermite interpolation formula

 $\text{If} \quad f \in C^{(n+r+2)}[a,b] \quad \text{and} \quad a \leq x_0 < x_1 < \dots < x_n \leq b \quad \text{then for} \quad x \in [a,b]$

$$f(x) = y(x) + E(x)$$

where

$$y(x) = \sum_{j=0}^{n} h_j(x) f(x_j) + \sum_{j=0}^{r} \overline{h}_j(x) f'(x_j), \qquad r \le n,$$

with

$$h_{j}(x) = \begin{cases} [1 - (x - x_{j})\{\ell'_{j,n}(x_{j}) + \ell'_{j,r}(x_{j})\}]\ell_{j,n}(x)\ell_{j,r}(x), & j = 0, 1, \dots, r; \\ \\ \ell_{j,n}(x)P_{r}(x)/P_{r}(x_{j}), & j = r + 1, r + 2, \dots, n. \end{cases}$$

$$\overline{h}_j(x) = (x - x_j)\ell_{j,n}(x)\ell_{j,r}(x), \qquad j = 0, 1, \dots, r$$

and

$$E(x) = \frac{P_n(x)P_r(x)}{(n+r+2)!}f^{(n+r+2)}(\xi)$$

and $a \le \xi \le b$.

10 Fourier Series

- (a) f(t) periodic, period T, fundamental frequency $\omega: \omega T = 2\pi$
 - (i) real form:

$$f(t) = c_0 + \sum_{n=1}^{\infty} c_n \sin(n\omega t + \alpha_n) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\omega t + b_n \sin n\omega t)$$

$$a_n = \frac{2}{T} \int_{\theta}^{\theta+T} f(t) \cos n\omega t \ dt =$$
twice mean value of $f(t) \cos n\omega t$ over a period. (θ arbitrary)

$$b_n = \frac{2}{T} \int_{\theta}^{\theta+T} f(t) \sin n\omega t \ dt =$$
twice mean value of $f(t) \sin n\omega t$ over a period. (θ arbitrary)

(ii) complex form:

$$f(t) = \sum_{n=-\infty}^{\infty} C_n e^{in\omega t}$$

$$C_n = \frac{1}{T} \int_{\theta}^{\theta+T} f(t) e^{-in\omega t} dt = \text{mean value of } f(t) e^{-in\omega t} \text{ over a period}$$
 (θ arbitrary)

(b) g(x) defined for $0 < x < \ell$.

$$g(x) = \sum_{1}^{\infty} b_n \sin\left(\frac{n\pi x}{\ell}\right)$$
 where $b_n = \frac{2}{\ell} \int_0^{\ell} g(x) \sin\left(\frac{n\pi x}{\ell}\right) dx$

$$g(x) = \frac{a_0}{2} + \sum_{1}^{\infty} a_n \cos\left(\frac{n\pi x}{\ell}\right) \quad \text{where} \quad a_n = \frac{2}{\ell} \int_0^{\ell} g(x) \cos\left(\frac{n\pi x}{\ell}\right) dx$$

11 Fourier Transforms

If
$$\int_{-\infty}^{\infty} |g(t)| \ dt < \infty$$
 then $\mathcal{F}[g(t)] = \int_{-\infty}^{\infty} g(t) e^{-j\omega t} \ dt = G(\omega)$ and $\mathcal{F}^{-1}[G(\omega)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega) e^{j\omega t} \ d\omega = g(t)$

If g(t)=0 for t<0 and $\overline{g}(s)$ has no poles in $Re(s)\geqslant 0$ then

$$G(\omega) = \mathcal{F}[g(t)] = \mathcal{L}[g(t)]_{s = j\omega} = \overline{g}(j\omega)$$

	g(t)	$G(\omega) = \mathcal{F}[g(t)]$						
Even Function		$G(\omega) = G(-\omega) = 2 \int_0^\infty g(t) \cos \omega t dt$						
Odd Function	g(t) = -g(-t)	$G(\omega) = -G(-\omega) = -2j \int_0^\infty g(t) \sin \omega t dt$						
Symmetry	G(t)	$2\pi g(-\omega)$						
Reflection	g(-t)	$G(-\omega)$						
Conjugate	$g^*(t)$	$G^*(-\omega)$						
Scale change	$g\left(\frac{t}{T}\right), (T>0)$	$TG(\omega T)$						
Derivative	$\frac{dg(t)}{dt}$	$j \omega G(\omega)$						
	tg(t)	$j \frac{dG(\omega)}{d\omega}$						
Time Shift	$g(t + \tau)$	$e^{j\omega\tau}G(\omega)$						
Frequency Shift	$g(t)e^{j\omega_0 t}$	$G(\omega - \omega_0)$						
Convolution	(f*g)(t)	$F(\omega)G(\omega)$						
Frequency	f(t)g(t)	$\frac{1}{2\pi}(F*G)(\omega)$						
convolution $ \text{where } (f * g) (x) \stackrel{\triangle}{=} \int_{-\infty}^{\infty} f(y)g(x - y) \ dy = \int_{-\infty}^{\infty} f(x - y)g(y) \ dy $								

Parseval's theorem

$$\int_{-\infty}^{\infty} f(t)g(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)G(-\omega) d\omega$$

and

$$\int_{-\infty}^{\infty} |g(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(\omega)|^2 d\omega$$

Transform Pairs

g(t)	$G(\omega) = \mathcal{F} g(t)$
$\delta (t)$	1
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
$sgn(t) \stackrel{\triangle}{=} \begin{cases} 1, & t > 0 \\ -1, & t < 0 \end{cases}$	$2/j\omega$
H(t)	$\pi\delta(\omega) \; + \; rac{1}{j\omega}$
$\operatorname{rect}\left(\frac{t}{\tau}\right) = \begin{cases} H(t + \frac{\tau}{2}) - H(t - \frac{\tau}{2}) \\ 1, t < \tau/2 \\ 0, t > \tau/2 \end{cases}$	$\frac{\sin \omega \tau / 2}{\omega / 2}$
$\frac{\sin \omega_0 t}{\pi t}$	$H(\omega + \omega_0) - H(\omega - \omega_0)$
e^{-at^2} , $(a>0)$	$\sqrt{\frac{\pi}{a}}e^{-\omega^2/4a}$
$\frac{1}{a^2 + t^2}, (a > 0)$	$\frac{\pi}{a}e^{-a \omega }$
$e^{-a t }, (a>0)$	$\frac{2a}{a^2 + \omega^2}$

12 Laplace Transforms

$$\mathcal{L}f(t) = \overline{f}(s) = \int_0^\infty f(t)e^{-st} dt$$

Operational Form

$$f(t)H(t) = \overline{f}(s)\delta(t)$$

$$\frac{1}{s} \equiv \int_0^t (\) \ dt; \qquad s \equiv \frac{d}{dt}$$

Functional Relationships

	f(t)	$\overline{f}(s)$
	f'(t)	$s\overline{f}(s) - f(0)$
	f''(t)	$s^{2}\overline{f}(s) - [sf(0) + f'(0)]$
	$f^{(n)}(t)$	$s^{n}\overline{f}(s) - \left[s^{n-1}f(0) + s^{n-2}f'(0) + \dots + f^{(n-1)}(0)\right]$
	$\int_0^t f(t)dt$	$\frac{1}{s}\overline{f}(s)$
Damping	$e^{-kt}f(t)$	$\overline{f}(s + k)$
Delay	f(t-T)H(t-T)	$e^{-sT}\overline{f}(s)$
Scale change	f(kt)	$\frac{1}{k}\overline{f}\left(s/k\right)$
Periodic, period T	f(t)	$\overline{f}(s) = \frac{1}{1 - e^{-sT}} \int_0^T f(t)e^{-st}dt$
Convolution $f(t)*g(t) = \int_0^t dt$	$ \begin{cases} f^t \\ f(r)g(t-r)dr \\ f^t \\ f(t-r)g(r)dr \end{cases} $	$\overline{f}(s)\overline{g}(s)$
	$\int_0^t \cdots \int_0^t f(t) (dt)^n$	$\frac{1}{s^n}\overline{f}(s)$
	$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} \left(\overline{f}(s) \right)$
	$\frac{1}{t^n}f(t)$	$\int_{s}^{\infty} \cdots \int_{s}^{\infty} \overline{f}(s)(ds)^{n}$

A second independent variable

$$f(t,x) \qquad \overline{f}(s,x) = \int_0^\infty f(t,x)e^{-st} dt$$

$$\frac{\partial}{\partial t} f(t,x) \qquad s\overline{f}(s,x) - f(0,x)$$

$$\frac{\partial^2}{\partial t^2} f(t,x) \qquad s^2 \overline{f}(s,x) - \left[sf(0,x) + \frac{\partial f}{\partial t}(0,x) \right]$$

$$\frac{\partial}{\partial x} f(t,x) \qquad \frac{\partial}{\partial x} \overline{f}(s,x)$$

$$\int_{t=0}^t f(t,x) dt \qquad \frac{1}{s} \overline{f}(s,x) dx$$

$$\int_{x=a}^b f(t,x) dx \qquad \int_{x=a}^b \overline{f}(s,x) dx$$

Limiting Values

$$\lim_{t \to +0} f(t) = \lim_{s \to +\infty} s\overline{f}(s)$$

$$\lim_{t \to +\infty} f(t) = \lim_{s \to +0} s\overline{f}(s)$$

$$\int_0^\infty f(t) \ dt = \lim_{s \to +0} \overline{f}(s)$$
(If limits and integral exist)

Inversion Integral

Partial Fractions

Simple
$$P/Q = \frac{P}{(s+s_1)(s+s_2)\cdots} = \frac{A_1}{(s+s_1)} + \frac{A_2}{(s+s_2)} + \cdots + \frac{A_r}{(s+s_r)} + \cdots$$

$$A_r = [(s+s_r)P/Q]_{s=-s_r} = [P/Q']_{s=-s_r} \quad \text{("Cover up")}$$

$$P/Q = \frac{P}{(s+s_1)^2(s+s_2)\cdots} = \frac{A_1^1}{(s+s_1)} + \frac{A_1}{(s+s_1)^2} + \frac{A_2}{(s+s_2)} + \cdots$$

$$A_1 = [(s+s_1)^2P/Q]_{-s_1} \qquad A_1^1 = \left[\frac{d}{ds}(s+s_1)^2P/Q\right]_{-s_1}$$

Laplace Transforms Of Simple Functions

	f(t)	$\overline{f}(s)$
	$\delta(t) = u_0(t)$	1
	$H(t) = u_{-1}(t) = U(t)$	$\frac{1}{s}$
	$tU(t) = u_{-2}(t)$	$\frac{1}{s^2}$
	t^n	$ \begin{cases} \frac{\Gamma(n+1)}{s^{n+1}} & \text{for } n > -1 \\ \frac{n!}{s^{n+1}} & \text{for } n \text{ positive integer} \end{cases} $
	e^{-kt}	$\frac{1}{s+k}$
	te^{-kt}	$\frac{1}{(s+k)^2}$
	$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
	$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
	$e^{-kt}\sin\omega t$	$\frac{\omega}{(s+k)^2 + \omega^2}$
	$e^{-kt}\cos\omega t$	$\frac{s+k}{(s+k)^2+\omega^2}$
Square Wave Period $2T$	$f(t) = \begin{cases} 1 & 0 < t < T \\ -1 & T < t < 2T \end{cases}$	$\frac{1}{s} \frac{1 - e^{-sT}}{1 + e^{-sT}} = \frac{1}{s} \tanh sT/2$
Triangular Period 2T	$f(t) = \begin{cases} t/T & 0 < t < T \\ \frac{-(t-2T)}{T} & T < t < 2T \end{cases}$	$\frac{1}{Ts^2} \frac{1 - e^{-sT}}{1 + e^{-sT}} = \frac{1}{Ts^2} \tanh sT/2$
Saw Tooth Period T	$f(t) = t/T \qquad 0 < t < T$	$\frac{1}{Ts^2} - \frac{e^{-sT}}{s(1 - e^{-sT})}$
Rectified Waves	$f(t) = \sin \omega t $	$\frac{\omega}{s^2 + \omega^2} \frac{1 + e^{-s\pi/\omega}}{1 - e^{-s\pi/\omega}} = \frac{\omega}{s^2 + \omega^2} \coth \frac{s\pi}{2\omega}$
Angular Frequency ω	$f(t) = \begin{cases} \sin \omega t & 0 < t < \frac{\pi}{\omega} \\ 0 & \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}$	$\frac{\omega}{s^2 + \omega^2} \; \frac{1}{1 - e^{-s\pi/\omega}}$

Inverse Laplace Transforms

In the following formulae $w^2=c^2-k^2$. If $\omega^2<0$, refer to first expression at top of page.

$$\frac{s}{s^2+2ks+c^2} \qquad e^{-kt} \left(\cos \omega t - \frac{k}{\omega} \sin \omega t\right)$$

$$\frac{1}{s^2+2ks+c^2} \qquad \frac{1}{\omega} e^{-kt} \sin \omega t$$

$$\frac{1}{s(s^2+2ks+c^2)} \qquad \frac{1}{c^2} \left\{ 1 - e^{-kt} \left(\cos \omega t + \frac{k}{\omega} \sin \omega t\right) \right\}$$

$$\frac{1}{s^2(s^2+2ks+c^2)} \qquad \frac{1}{c^4} \left\{ c^2t - 2k + e^{-kt} \left(2k \cos \omega t + \frac{k^2-\omega^2}{\omega} \sin \omega t \right) \right\}$$

$$\frac{s}{(s+a)(s^2+2ks+c^2)} \qquad \frac{1}{A} \left\{ -ae^{-at} + e^{-kt} \left(a \cos \omega t + \frac{c^2-ak}{\omega} \sin \omega t \right) \right\}$$

$$\frac{1}{(s+a)(s^2+2ks+c^2)} \qquad \frac{1}{A} \left\{ e^{-at} - e^{-kt} \left(\cos \omega t + \frac{k-a}{\omega} \sin \omega t \right) \right\}$$

$$\frac{1}{s(s+a)(s^2+2ks+c^2)} \qquad \frac{1}{ac^2} + \frac{1}{A} \left\{ -\frac{e^{-at}}{a} - e^{-kt} \left(B \cos \omega t + \frac{kB+1}{\omega} \sin \omega t \right) \right\}$$

$$\text{where } A = (a-k)^2 + \omega^2 \text{ and } B = (a-2k)/c^2$$

Laplace Transforms Of Special Functions

13 Vector Formulae

Scalar Product
$$a.b = ab\cos\theta = a_1b_1 + a_2b_2 + a_3b_3$$

Vector Product
$$\mathbf{a} \wedge \mathbf{b}$$
 = $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

Triple Products
$$[\mathbf{a},\mathbf{b},\mathbf{c}] = (\mathbf{a} \wedge \mathbf{b}).\mathbf{c}$$

$$= \mathbf{a}.(\mathbf{b} \wedge \mathbf{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

$$\mathbf{a}\wedge(\mathbf{b}\wedge\mathbf{c}) \ = \ (\mathbf{a}.\mathbf{c})\mathbf{b}-(\mathbf{a}.\mathbf{b})\mathbf{c}$$

$$\mbox{Vector Calculus} \qquad \triangledown \ \equiv \ \left(\mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z} \right)$$

$$\operatorname{grad} \ \phi \ \equiv \ \triangledown \phi, \qquad \operatorname{div} \ \mathbf{A} \ \equiv \ \triangledown.\mathbf{A}, \qquad \operatorname{curl} \ \equiv \ \triangledown \wedge \mathbf{A}$$

$$\nabla(\phi\psi) = \phi\nabla\psi + \psi\nabla\phi$$

$$\nabla . (\phi \mathbf{A}) = \phi \nabla . \mathbf{A} + \mathbf{A} . \nabla \phi$$

$$\nabla \wedge (\phi \mathbf{A}) = \phi \nabla \wedge \mathbf{A} + \nabla \phi \wedge \mathbf{A}$$

$$\nabla . (\mathbf{A} \wedge \mathbf{B}) = \mathbf{B} . \nabla \wedge \mathbf{A} - \mathbf{A} . \nabla \wedge \mathbf{B}$$

$$abla \wedge (\mathbf{A} \wedge \mathbf{B}) = (\nabla . \mathbf{B}) \mathbf{A} - (\nabla . \mathbf{A}) \mathbf{B} + (\mathbf{B} . \nabla) \mathbf{A} - (\mathbf{A} . \nabla) \mathbf{B}$$

$$\nabla(\mathbf{A}.\mathbf{B}) \ = \ \mathbf{A} \wedge (\nabla \wedge \mathbf{B}) + \mathbf{B} \wedge (\nabla \wedge \mathbf{A}) + (\mathbf{A}.\nabla)\mathbf{B} + (\mathbf{B}.\nabla)\mathbf{A}$$

$$\nabla.\nabla\phi \equiv \nabla^2\phi$$

$$\nabla . (\nabla \wedge \mathbf{A}) = 0$$

$$\triangledown \wedge (\triangledown \phi) \ = \ \mathbf{0}$$

$$\nabla^2 \mathbf{A} \ = \ \nabla(\nabla.\mathbf{A}) - \nabla \wedge (\nabla \wedge \mathbf{A})$$

$$\mathbf{A} \wedge (\nabla \wedge \mathbf{A}) = \nabla(\frac{1}{2}\mathbf{A}^2) - \mathbf{A}\nabla\mathbf{A}$$

Integral Theorems

Divergence Theorem:
$$\int_{\mathbf{S}} \mathbf{A}.d\mathbf{S} = \int_{\mathbf{V}} \nabla.\mathbf{A} \ d\mathbf{V}$$

$$\int_{\mathbf{S}} \phi \ d\mathbf{S} \ = \ \int_{\mathbf{V}} \nabla \phi \ dV$$

Stokes Theorem:
$$\int_{\mathbf{S}} (\nabla \mathbf{A}) . d\mathbf{S} = \oint_{C} \mathbf{A} . d\mathbf{r}$$

$$\int_{\mathbf{S}} d\mathbf{S} \wedge \nabla \phi = \oint_{C} \phi \, d\mathbf{r}$$

Green's Theorems:
$$\int_{\mathbf{V}} (\nabla \phi).(\nabla \psi) dV + \int_{\mathbf{V}} \phi \nabla^2 \psi \ dV = \int_{\mathbf{S}} \phi \nabla \psi. d\mathbf{S} = \int_{\mathbf{S}} \phi \frac{\partial \psi}{\partial n} \ d\mathbf{S}$$

$$\int_{\mathbf{V}} (\psi \nabla^2 \phi - \phi \nabla^2 \psi) \ d\mathbf{V} = \int_{\mathbf{S}} (\psi \nabla \phi - \phi \nabla \psi) . d\mathbf{S}$$

14 Curvilinear Coordinates

General orthogonal co-ordinates (u_1, u_2, u_3)

$$\nabla \phi = \left(\frac{1}{h_1} \frac{\partial \phi}{\partial u_1}, \frac{1}{h_2} \frac{\partial \phi}{\partial u_2}, \frac{1}{h_3} \frac{\partial \phi}{\partial u_3}\right)$$

$$\operatorname{div} \mathbf{A} = \frac{1}{h_1 h_2 h_3} \left\{ \frac{\partial}{\partial u_1} (h_2 h_3 A_1) + \frac{\partial}{\partial u_2} (h_3 h_1 A_2) + \frac{\partial}{\partial u_3} (h_1 h_2 A_3) \right\}$$

$$\operatorname{curl} \mathbf{A} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \mathbf{e}_1 & h_2 \mathbf{e}_2 & h_3 \mathbf{e}_3 \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1 A_1 & h_2 A_2 & h_3 A_3 \end{vmatrix}$$

$$\nabla^2 \phi = \frac{1}{h_1 h_2 h_3} \left\{ \frac{\partial}{\partial u_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial \phi}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left(\frac{h_3 h_1}{h_2} \frac{\partial \phi}{\partial u_2} \right) + \frac{\partial}{\partial u_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial \phi}{\partial u_3} \right) \right\}$$

Line element: $\delta s_1 = h_1 \delta u_1$;

 $\delta s_2 = h_2 \delta u_2;$

 $\delta s_3 = h_3 \delta u_3;$

Surface element: $\delta S_1 = h_2 h_3 \delta u_2 \delta u_3$

 $\delta S_2 = h_3 h_1 \delta u_3 \delta u_1$

 $\delta S_3 = h_1 h_2 \delta u_1 \delta u_2$

Volume element: $\delta V = h_1 h_2 h_3 \delta u_1 \delta u_2 \delta u_3$

Co-ordinates	u_1	u_2	u_3	h_1	h_2	h_3	Cartesian/polar relation			
Rectangular	x	y	z	1	1	1	x	y	z	
Cylindrical	ρ	φ	z	1	ρ	1	$\rho\cos\phi$	$\rho \sin \phi$	z	
Spherical	r	θ	ϕ	1	r	$r\sin\theta$	$r\sin\theta\cos\phi$	$r\sin\theta\sin\phi$	$r\cos\theta$	

Form for $\nabla^2 V$ (scalars only);

Spherical Polars: $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2}$

15 Index Notation Formulae

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

$$\epsilon_{ijk} \; = \; \left\{ \begin{array}{l} +1 \quad (ijk) \; \text{cyclic in} \; (123) \\ \\ -1 \quad (ijk) \; \text{anticyclic in} \; (123) \\ \\ 0 \quad \quad \text{otherwise} \end{array} \right.$$

$$\epsilon_{kij}\epsilon_{kpq} \equiv \epsilon_{ijk}\epsilon_{pqk} = \delta_{ip}\delta_{jq} - \delta_{iq}\delta_{jp}$$

$$(\mathbf{a} \times \mathbf{b}) = \epsilon_{ijk} a_j b_k$$

Divergence Theorem

$$\int_{V} \frac{\partial \phi}{\partial x_{i}} \; dV \; = \; \int_{S} \phi dS_{i}, \qquad \phi \; \text{is scalar, vector or tensor}$$

16 The Normal Distribution Function $\Phi(z)$

Z	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993

17 Percentage Points of the Normal Distribution

The value is that at which the upper tail probability equals the product of the row and column labels, rounded up in the 3rd D.P.

	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-6}	10^{-7}	10^{-8}	10^{-9}	10^{-10}
5.0	0.000	1.645	2.576	3.291	3.891	4.417	4.892	5.327	5.731	6.109
2.5	0.674	1.960	2.807	3.481	4.056	4.565	5.026	5.451	5.847	6.219
1.0	1.282	2.326	3.090	3.719	4.265	4.753	5.199	5.612	5.998	6.361

18 Percentage Points of Student's t-Distribution

The value given is $t_{\nu,\alpha}$ where $P(t_{\nu}>t_{\nu,\alpha})=\alpha$ for Student's t-distribution on ν degrees of freedom. Note that $P(|t_{\nu}|>t_{\nu,\alpha/2})=\alpha$.

Two-tailed probabilities										
$\alpha/2$	0.5	0.1	0.05	0.02	0.01					
<u>α/2</u>	0.0		ed probabiliti		0.01					
α	0.25	0.05	0.025	0.01	0.005					
$\frac{\alpha}{\nu}$	0.20	0.00	0.020	0.01	0.000					
1	1.000	6.314	12.706	31.821	63.657					
2	0.816	2.920	4.303	6.965	9.925					
3	0.765	2.353	3.182	4.541	5.841					
4	0.741	2.132	2.776	3.747	4.604					
5	0.727	2.015	2.571	3.365	4.032					
6	0.718	1.943	2.447	3.143	3.707					
7	0.711	1.895	2.365	2.998	3.499					
8	0.706	1.860	2.306	2.896	3.355					
9	0.703	1.833	2.262	2.821	3.250					
10	0.700	1.812	2.228	2.764	3.169					
11	0.697	1.796	2.201	2.718	3.106					
12	0.695	1.782	2.179	2.681	3.055					
13	0.694	1.771	2.160	2.650	3.012					
14	0.692	1.761	2.145	2.624	2.977					
15	0.691	1.753	2.131	2.602	2.947					
16	0.690	1.746	2.120	2.583	2.921					
17	0.689	1.740	2.110	2.567	2.898					
18	0.688	1.734	2.101	2.552	2.878					
19	0.688	1.729	2.093	2.539	2.861					
20	0.687	1.725	2.086	2.528	2.845					
21	0.686	1.721	2.080	2.518	2.831					
22	0.686	1.717	2.074	2.508	2.819					
23	0.685	1.714	2.069	2.500	2.807					
24	0.685	1.711	2.064	2.492	2.797					
25	0.684	1.708	2.060	2.485	2.787					
26	0.684	1.706	2.056	2.479	2.779					
27	0.684	1.703	2.052	2.473	2.771					
28	0.683	1.701	2.048	2.467	2.763					
29	0.683	1.699	2.045	2.462	2.756					
30	0.683	1.697	2.042	2.457	2.750					
35	0.682	1.690	2.030	2.438	2.724					
40	0.681	1.684	2.021	2.423	2.704					
45	0.680	1.679	2.014	2.412	2.690					
50	0.679	1.676	2.009	2.403	2.678					
60	0.679	1.671	2.000	2.390	2.660					
$-\infty$	0.674	1.645	1.960	2.326	2.576					

19 Percentage Points of the χ^2 -distribution

The value given is $\ \chi^2_{\nu,\alpha}$ where $\ P(\chi^2_{\nu}>\chi^2_{\nu,\alpha})=\alpha$ for the χ^2 distribution on ν degrees of freedom.

α	0.99	0.975	0.95	0.5	0.1	0.05	0.025	0.01
ν								
1	0.000157	0.000982	0.00393	0.455	2.706	3.841	5.024	6.635
2	0.0201	0.0506	0.103	1.386	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	2.366	6.251	7.815	9.348	11.345
4	0.297	0.484	0.711	3.357	7.779	9.488	11.143	13.277
5	0.554	0.831	1.145	4.351	9.236	11.070	12.833	15.086
6	0.872	1.237	1.635	5.348	10.645	12.592	14.449	16.812
7	1.239	1.690	2.167	6.346	12.017	14.067	16.013	18.475
8	1.646	2.180	2.733	7.344	13.362	15.507	17.535	20.090
9	2.088	2.700	3.325	8.343	14.684	16.919	19.023	21.666
10	2.558	3.247	3.940	9.342	15.987	18.307	20.483	23.209
11	3.053	3.816	4.575	10.341	17.275	19.675	21.920	24.725
12	3.571	4.404	5.226	11.340	18.549	21.026	23.337	26.217
13	4.107	5.009	5.892	12.340	19.812	22.362	24.736	27.688
14	4.660	5.629	6.571	13.339	21.064	23.685	26.119	29.141
15	5.229	6.262	7.261	14.339	22.307	24.996	27.488	30.578
16	5.812	6.908	7.962	15.338	23.542	26.296	28.845	32.000
17	6.408	7.564	8.672	16.338	24.769	27.587	30.191	33.409
18	7.015	8.231	9.390	17.338	25.989	28.869	31.526	34.805
19	7.633	8.907	10.117	18.338	27.204	30.144	32.852	36.191
20	8.260	9.591	10.851	19.337	28.412	31.410	34.170	37.566
21	8.897	10.283	11.591	20.337	29.615	32.671	35.479	38.932
22	9.542	10.982	12.338	21.337	30.813	33.924	36.781	40.289
23	10.196	11.689	13.091	22.337	32.007	35.172	38.076	41.638
24	10.856	12.401	13.848	23.337	33.196	36.415	39.364	42.980
25	11.524	13.120	14.611	24.337	34.382	37.652	40.646	44.314
26	12.198	13.844	15.379	25.336	35.563	38.885	41.923	45.642
27	12.879	14.573	16.151	26.336	36.741	40.113	43.195	46.963
28	13.565	15.308	16.928	27.336	37.916	41.337	44.461	48.278
29	14.256	16.047	17.708	28.336	39.087	42.557	45.722	49.588
30	14.953	16.791	18.493	29.336	40.256	43.773	46.979	50.892
40	22.164	24.433	26.509	39.335	51.805	55.758	59.342	63.691
50	29.707	32.357	34.764	49.335	63.167	67.505	71.420	76.154
60	37.485	40.482	43.188	59.335	74.397	79.082	83.298	88.379
80	53.540	57.153	60.391	79.334	96.578	101.879	106.629	112.329
100	70.065	74.222	77.929	99.334	118.498	124.342	129.561	135.807
	3.000	-						

For $\ \nu>100$, $\ \sqrt{2\chi_{\nu}^2}-\sqrt{2\nu-1}$ is approximately distributed as a standard normal.

20 Percentage Points of the F -Distribution

The value given is $F_{\nu_1,\nu_2,\alpha}$ where $P(F_{\nu_1,\nu_2}>F_{\nu_1,\nu_2,\alpha})=\alpha$ for the F-Distribution with degrees of freedom $\ \nu_1$ (numerator) and $\ \nu_2$ (denominator).

	8	254.3	19.50	8.53	5.63	4.36	3.67	3.23	2.93	2.71	2.54	2.40	2.30	2.21	2.13	2.07	2.01	1.96	1.92	1.88	1.84	1.81	1.78	1.76	1.73	1.71	1.69	1.67	1.65	1.64	1.62	1.51	1.39	1.25	1.00
9	120	253.3	19.49	8.55	5.66	4.40	3.70	3.27	2.97	2.75	2.58	2.45	2.34	2.25	2.18	2.11	2.06	2.01	1.97	1.93	1.90	1.87	1.84	1.81	1.79	1.77	1.75	1.73	1.71	1.70	1.68	1.58	1.47	1.35	1.22
ć	09	252.2	19.48	8.57	5.69	4.43	3.74	3.30	3.01	2.79	2.62	2.49	2.38	2.30	2.22	2.16	2.11	2.06	2.02	1.98	1.95	1.92	1.89	1.86	1.84	1.82	1.80	1.79	1.77	1.75	1.74	1.64	1.53	1.43	1.32
,	40	251.1	19.47	8.59	5.75	4.46	3.77	3.34	3.04	2.83	2.66	2.53	2.43	2.34	2.27	2.20	2.15	2.10	2.06	2.03	1.99	1.96	1.94	1.91	1.89	1.87	1.85	1.84	1.82	1.81	1.79	1.69	1.59	1.50	1.39
Ċ	30	250.1	19.46	8.62	5.75	4.50	3.81	3.38	3.08	2.86	2.70	2.57	2.47	2.38	2.31	2.25	2.19	2.15	2.11	2.07	2.04	2.01	1.98	1.96	1.94	1.92	1.90	1.88	1.87	1.85	1.84	1.74	1.65	1.55	1.46
č	24	249.1	19.45	8.64	5.77	4.53	3.84	3.41	3.12	2.90	2.74	2.61	2.51	2.42	2.35	2.29	2.24	2.19	2.15	2.11	2.08	2.05	2.03	2.01	1.98	1.96	1.95	1.93	1.91	1.90	1.89	1.79	1.70	1.61	1.52
ć	20	248.0	19.45	8.66	5.80	4.56	3.87	3.44	3.15	2.94	2.77	2.65	2.54	2.46	2.39	2.33	2.28	2.23	2.19	2.16	2.12	2.10	2.07	2.05	2.03	2.01	1.99	1.97	1.96	1.94	1.93	1.84	1.75	1.66	1.57
Ļ	5	245.9	19.43	8.70	5.86	4.62	3.94	3.51	3.22	3.01	2.85	2.72	2.62	2.53	2.46	2.40	2.35	2.31	2.27	2.23	2.20	2.18	2.15	2.13	2.11	2.09	2.07	2.06	2.04	2.03	2.01	1.92	1.84	1.75	1.67
oints	27	243.9	19.41	8.74	5.91	4.68	4.00	3.57	3.28	3.07	2.91	2.79	2.69	2.60	2.53	2.48	2.42	2.38	2.34	2.31	2.28	2.25	2.23	2.20	2.18	2.16	2.15	2.13	2.12	2.10	2.09	2.00	1.92	1.83	1.75
Upper 5% points	2	241.9	19.40	8.79	5.96	4.74	4.06	3.64	3.35	3.14	2.98	2.85	2.75	2.67	2.60	2.54	2.49	2.45	2.41	2.38	2.35	2.32	2.30	2.27	2.25	2.24	2.22	2.20	2.19	2.18	2.16	2.08	1.99	1.91	1.83
dd (ກ	240.5	19.38	8.81	00.9	4.77	4.10	3.68	3.39	3.18	3.02	2.90	2.80	2.71	2.65	2.59	2.54	2.49	2.46	2.42	2.39	2.37	2.34	2.32	2.30	2.28	2.27	2.25	2.24	2.22	2.21	2.12	2.04	1.96	1.88
Ċ	α	238.9	19.37	8.85	6.04	4.82	4.15	3.73	3.44	3.23	3.07	2.95	2.85	2.77	2.70	2.64	2.59	2.55	2.51	2.48	2.45	2.45	2.40	2.37	2.36	2.34	2.32	2.31	2.29	2.28	2.27	2.18	2.10	2.05	1.94
1	\	236.8	19.35	8.89	6.09	4.88	4.21	3.79	3.50	3.29	3.14	3.01	2.91	2.83	2.76	2.71	2.66	2.61	2.58	2.54	2.51	2.49	2.46	2.44	2.42	2.40	2.39	2.37	2.36	2.35	2.33	2.25	2.17	2.09	2.01
(٥	234.0	19.33	8.94	6.16	4.95	4.28	3.87	3.58	3.37	3.22	3.09	3.00	2.92	2.85	2.79	2.74	2.70	2.66	2.63	2.60	2.57	2.55	2.53	2.51	2.49	2.47	2.46	2.45	2.43	2.42	2.34	2.25	2.18	2.10
L	Ω	230.2	19.30	9.01	6.26	5.05	4.39	3.97	3.69	3.48	3.33	3.20	3.11	3.03	2.96	2.90	2.85	2.81	2.77	2.74	2.71	2.68	2.66	2.64	2.62	2.60	2.59	2.57	2.56	2.55	2.53	2.45	2.37	2.29	2.21
•	4	224.6	19.25	9.12	6.39	5.19	4.53	4.12	3.84	3.63	3.48	3.36	3.26	3.18	3.11	3.06	3.01	2.96	2.93	2.90	2.87	2.84	2.82	2.80	2.78	2.76	2.74	2.73	2.71	2.70	2.69	2.61	2.53	2.45	2.37
Ċ	n	215.7	19.16	9.28	6.59	5.41	4.76	4.35	4.07	3.86	3.71	3.59	3.49	3.41	3.34	3.29	3.24	3.20	3.16	3.13	3.10	3.07	3.05	3.03	3.01	2.99	2.98	2.96	2.95	2.93	2.92	2.84	2.76	2.68	2.60
Ċ	N	199.5	19.00	9.55	6.94	5.79	5.14	4.74	4.46	4.26	4.10	3.98	3.89	3.81	3.74	3.68	3.63	3.59	3.55	3.52	3.49	3.47	3.44	3.42	3.40	3.39	3.37	3.35	3.34	3.33	3.32	3.23	3.15	3.07	3.00
•	-	161.4	18.51	10.13	7.71	6.61	5.99	5.59	5.32	5.12	4.96	4.84	4.75	4.67	4.60	4.54	4.49	4.45	4.41	4.38	4.35	4.32	4.30	4.28	4.26	4.24	4.23	4.21	4.20	4.18	4.17	4.08	4.00	3.92	3.84
	17	- 22	N	က	4	2	9	7	ω	တ	10	Ξ	12	13	4	15	16	17	18	19	20	21	22	23	24	52	56	27	58	53	30	40	09	120	8

	8		018.3	39.50	13.90	8.26	6.02	4.85	4.14	3.67	3.33	3.08	2.88	2.72	2.60	2.49	2.40	2.32	2.25	2.19	2.13	2.09	2.04	2.00	1.97	1.94	1.91	1.88	1.85	1.83	1.81	1.79	1.64	1.48	1.31	1.00
	0.		_																																	
	120		1014.0	39.49	13.95	8.31	6.07	4.90	4.20	3.73	3.39	3.14	2.94	2.79	2.66	2.55	2.46	2.38	2.32	2.26	2.20	2.16	2.11	2.08	2.04	2.01	1.98	1.95	1.93	1.91	1.89	1.87	1.72	1.58	1.43	1.27
	09		1009.8	39.48	13.99	8.36	6.12	4.96	4.25	3.78	3.45	3.20	3.00	2.85	2.72	2.61	2.52	2.45	2.38	2.32	2.27	2.22	2.18	2.14	2.11	2.08	2.05	2.03	2.00	1.98	1.96	1.94	1.80	1.67	1.53	1.39
	40		1005.6	39.47	14.04	8.41	6.18	5.01	4.31	3.84	3.51	3.26	3.06	2.91	2.78	2.67	2.59	2.51	2.44	2.38	2.33	2.29	2.25	2.21	2.18	2.15	2.12	2.09	2.07	2.05	2.03	2.01	1.88	1.74	1.61	1.48
	30		1001.4	39.46	14.08	8.46	6.23	5.07	4.36	3.89	3.56	3.31	3.12	2.96	2.84	2.73	2.64	2.57	2.50	2.44	2.39	2.35	2.31	2.27	2.24	2.21	2.18	2.16	2.13	2.11	2.09	2.07	1.94	1.82	1.69	1.57
	24		997.2	39.46	14.12	8.51	6.28	5.12	4.41	3.95	3.61	3.37	3.17	3.02	2.89	2.79	2.70	2.63	2.56	2.50	2.45	2.41	2.37	2.33	2.30	2.27	2.24	2.22	2.19	2.17	2.15	2.14	2.01	1.88	1.76	1.64
	50		993.1	39.45	14.17	8.56	6.33	5.17	4.47	4.00	3.67	3.42	3.23	3.07	2.95	2.84	2.76	2.68	2.62	2.56	2.51	2.46	2.42	2.39	2.36	2.33	2.30	2.28	2.25	2.23	2.21	2.20	2.07	1.94	1.82	1.71
	15		984.9	39.43	14.25	8.66	6.43	5.27	4.57	4.10	3.77	3.52	3.33	3.18	3.05	2.95	2.86	2.79	2.72	2.67	2.62	2.57	2.53	2.50	2.47	2.44	2.41	2.39	2.36	2.34	2.32	2.31	2.18	2.06	1.94	1.83
Upper 2.5% points	12		976.7	39.41	14.34	8.75	6.52	5.37	4.67	4.20	3.87	3.62	3.43	3.28	3.15	3.05	2.96	2.89	2.82	2.77	2.72	2.68	2.64	2.60	2.57	2.54	2.51	2.49	2.47	2.45	2.43	2.41	2.29	2.17	2.05	1.94
Ipper 2.5	9		9.896	39.40	14.42	8.84	6.62	5.46	4.76	4.30	3.96	3.72	3.53	3.37	3.25	3.15	3.06	2.99	2.92	2.87	2.82	2.77	2.73	2.70	2.67	2.64	2.61	2.59	2.57	2.55	2.53	2.51	2.39	2.27	2.16	2.05
ے	6		963.3	39.39	14.47	8.90	6.68	5.52	4.82	4.36	4.03	3.78	3.59	3.44	3.31	3.21	3.12	3.05	2.98	2.93	2.88	2.84	2.80	2.76	2.73	2.70	2.68	2.65	2.63	2.61	2.59	2.57	2.45	2.33	2.22	2.11
	8		956.7	39.37	14.54	8.98	92.9	5.60	4.90	4.43	4.10	3.85	3.66	3.51	3.39	3.29	3.20	3.12	3.06	3.01	2.96	2.91	2.87	2.84	2.81	2.78	2.75	2.73	2.71	2.69	2.67	2.65	2.53	2.41	2.30	2.19
	7		948.2	39.36	14.62	9.07	6.85	2.70	4.99	4.53	4.20	3.95	3.76	3.61	3.48	3.38	3.29	3.22	3.16	3.10	3.05	3.01	2.97	2.93	2.90	2.87	2.85	2.82	2.80	2.78	2.76	2.75	2.62	2.51	2.39	2.29
	9		937.1	39.33	14.73	9.20	6.98	5.85	5.12	4.65	4.32	4.07	3.88	3.73	3.60	3.50	3.41	3.34	3.28	3.22	3.17	3.13	3.09	3.05	3.02	2.99	2.97	2.94	2.92	2.90	2.88	2.87	2.74	2.63	2.52	2.41
	2		921.8	39.30	14.88	9.36	7.15	5.99	5.29	4.82	4.48	4.24	4.04	3.89	3.77	3.66	3.58	3.50	3.44	3.38	3.33	3.29	3.25	3.22	3.18	3.15	3.13	3.10	3.08	3.06	3.04	3.03	2.90	2.79	2.67	2.57
	4		9.668	39.25	15.10	9.60	7.39	6.23	5.52	5.05	4.72	4.47	4.28	4.12	4.00	3.89	3.80	3.73	3.66	3.61	3.56	3.51	3.48	3.44	3.41	3.38	3.35	3.33	3.31	3.29	3.27	3.25	3.13	3.01	2.89	2.79
	က		864.2	39.17	15.44	9.98	7.76	09.9	5.89	5.45	2.08	4.83	4.63	4.47	4.35	4.24	4.15	4.08	4.01	3.95	3.90	3.86	3.82	3.78	3.75	3.72	3.69	3.67	3.65	3.63	3.61	3.59	3.46	3.34	3.23	3.12
	7		799.5	39.00	16.04	10.65	8.43	7.26	6.54	90.9	5.71	5.46	5.26	5.10	4.97	4.86	4.77	4.69	4.62	4.56	4.51	4.46	4.45	4.38	4.35	4.32	4.29	4.27	4.24	4.22	4.20	4.18	4.05	3.93	3.80	3.69
	-		647.8	38.51	17.44	12.22	10.01	8.81	8.07	7.57	7.21	6.94	6.72	6.55	6.41	6.30	6.20	6.12	6.04	5.98	5.95	5.87	5.83	5.79	5.75	5.72	5.69	99.5	5.63	5.61	5.59	5.57	5.45	5.29	5.15	5.05
	ν_1	ν_2	-	N	ო	4	Ŋ	9	7	ω	တ	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	52	56	27	28	53	30	40	09	120	8

	8		25464	199.5	41.83	19.32	12.14	8.88	7.08	5.95	5.19	4.64	4.23	3.90	3.65	3.44	3.26	3.11	2.98	2.87	2.78	2.69	2.61	2.55	2.48	2.43	2.38	2.33	2.29	2.25	2.21	2.18	1.93	1.69	1.43	1.00
	120		25359 2	199.5	41.99 4	19.47	12.27	9.00	7.19	90.9	5.30	4.75	4.34	4.01	3.76	3.55	3.37	3.22	3.10	2.99	2.89	2.81	2.73	2.66	2.60	2.55	2.50	2.45	2.41	2.37	2.33	2.30	2.06	1.83	1.61	1.36
	09		25253	199.5	42.15	19.61	12.40	9.12	7.31	6.18	5.41	4.86	4.45	4.12	3.87	3.66	3.48	3.33	3.21	3.10	3.00	2.92	2.84	2.77	2.71	2.66	2.61	2.56	2.52	2.48	2.45	2.42	2.18	1.96	1.75	1.53
	40		25148	199.5	42.31	19.75	12.53	9.24	7.42	6.29	5.52	4.97	4.55	4.23	3.97	3.76	3.58	3.44	3.31	3.20	3.11	3.02	2.95	2.88	2.82	2.77	2.72	2.67	2.63	2.59	2.56	2.52	2.30	2.08	1.87	1.67
	30		25044	199.5	42.47	19.89	12.66	9:36	7.53	6.40	5.62	5.07	4.65	4.33	4.07	3.86	3.69	3.54	3.41	3.30	3.21	3.12	3.05	2.98	2.92	2.87	2.82	2.77	2.73	2.69	2.66	2.63	2.40	2.19	1.98	1.79
	24		24940	199.5	42.62	20.03	12.78	9.47	7.64	6.50	5.73	5.17	4.76	4.43	4.17	3.96	3.79	3.64	3.51	3.40	3.31	3.22	3.15	3.08	3.02	2.97	2.92	2.87	2.83	2.79	2.76	2.73	2.50	2.29	2.09	1.90
	50		24836	199.4	42.78	20.17	12.90	9.59	7.75	6.61	5.83	5.27	4.86	4.53	4.27	4.06	3.88	3.73	3.61	3.50	3.40	3.32	3.24	3.18	3.12	3.06	3.01	2.97	2.93	2.89	2.86	2.82	2.60	2.39	2.19	2.00
	15		24630	199.4	43.08	20.44	13.15	9.81	7.97	6.81	6.03	5.47	5.05	4.72	4.46	4.25	4.07	3.92	3.79	3.68	3.59	3.50	3.43	3.36	3.30	3.25	3.20	3.15	3.11	3.07	3.04	3.01	2.78	2.57	2.37	2.19
ooints	12		24426	199.4	43.39	20.70	13.38	10.03	8.18	7.01	6.23	5.66	5.24	4.91	4.64	4.43	4.25	4.10	3.97	3.86	3.76	3.68	3.60	3.54	3.47	3.42	3.37	3.33	3.28	3.25	3.21	3.18	2.95	2.74	2.54	2.36
Upper 0.5% points	10		24224	199.4	43.69	20.97	13.62	10.25	8.38	7.21	6.45	5.85	5.45	5.09	4.82	4.60	4.45	4.27	4.14	4.03	3.93	3.85	3.77	3.70	3.64	3.59	3.54	3.49	3.45	3.41	3.38	3.34	3.12	2.90	2.71	2.52
nddn	6		24091	199.4	43.88	21.14	13.77	10.39	8.51	7.34	6.54	5.97	5.54	5.20	4.94	4.72	4.54	4.38	4.25	4.14	4.04	3.96	3.88	3.81	3.75	3.69	3.64	3.60	3.56	3.52	3.48	3.45	3.22	3.01	2.81	2.62
	ω		23925	199.4	44.13	21.35	13.96	10.57	8.68	7.50	69.9	6.12	5.68	5.35	5.08	4.86	4.67	4.52	4.39	4.28	4.18	4.09	4.01	3.94	3.88	3.83	3.78	3.73	3.69	3.65	3.61	3.58	3.35	3.13	2.93	2.74
	7		23715	199.4	44.43	21.62	14.20	10.79	8.89	7.69	6.88	6.30	5.86	5.52	5.25	5.03	4.85	4.69	4.56	4.44	4.34	4.26	4.18	4.11	4.05	3.99	3.94	3.89	3.85	3.81	3.77	3.74	3.51	3.29	3.09	2.90
	9		23437	199.3	44.84	21.97	14.51	11.07	9.16	7.95	7.13	6.54	6.10	5.76	5.48	5.26	2.07	4.91	4.78	4.66	4.56	4.47	4.39	4.32	4.26	4.20	4.15	4.10	4.06	4.02	3.98	3.95	3.71	3.49	3.28	3.09
	2		23056	199.3	45.39	22.46	14.94	11.46		8.30	7.47	6.87	6.42	6.07	5.79		5.37	5.21	2.07	4.96	4.85	4.76	4.68	4.61	4.54	4.49	4.43	4.38	4.34	4.30	4.26	4.23		3.76	3.55	3.35
	4		22500	199.2	46.19	23.15	15.56	12.03	10.05	8.81	7.96	7.34	6.88	6.52	6.23	00.9	5.80	5.64	5.50	5.37	5.27	5.17	5.09	5.02	4.95	4.89	4.84	4.79	4.74	4.70	4.66	4.62	4.37	4.14	3.92	3.72
	က		21615	199.2	47.47	24.26	16.53	12.92	10.88	9.60	8.72	8.08	7.60	7.23	6.93	6.68	6.48	6.30	6.16	6.03	5.95	5.82	5.73	5.65	5.58	5.55	5.46	5.41	5.36	5.32	5.28	5.24	4.98	4.73	4.50	4.28
	0		19999	199.0	49.80	26.28	18.31	14.54	12.40	11.04	10.11	9.43	8.91	8.51	8.19	7.92	7.70	7.51	7.35	7.21	7.09	66.9	6.89	6.81	6.73	99.9	09.9	6.54	6.49	6.44	6.40	6.35	6.07	5.79	5.54	5.30
	-		16211	198.5	55.55	31.33	22.78	18.63	16.24	14.69	13.61	12.83	12.23	11.75	11.37	11.06	10.80	10.58	10.38	10.22	10.07	9.94	9.83	9.73	9.63	9.55	9.48	9.41	9.34	9.28	9.23	9.18	8.83	8.49	8.18	7.88
_	ν_1	ν_2	-	Ŋ	ო	4	വ	9	_	∞	တ	10	Ξ	12	13	4	15	16	17	8	19	20	21	22	83	24	52	56	27	78	53	30	40	09	120	8

21 Poisson Tables

Values of
$$P(r) = \frac{\mu^r e^{-\mu}}{r!}$$

	21																													
	•																													
	•																													
	16																													
	15																													
	14																													
	13																													
	12																													
	11																													
	10																													
	6																													
	8																													
	7																											0.001	0.001	0.001
	9																							0.001	0.001	0.001	0.002	0.003	0.004	0.005
	2																0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.003	0.004	0.006	0.008	0.011	0.014	0.018
	4											0.001	0.001	0.002	0.002	0.003	0.004	0.005	0.006	0.008	0.009	0.011	0.013	0.015	0.020	0.026	0.032	0.039	0.047	0.055
	3							0.001	0.002	0.003	0.005	0.007	0.010	0.013	0.016	0.020	0.024	0.028	0.033	0.038	0.044	0.049	0.055	0.061	0.074	0.087	0.100	0.113	0.126	0.138
	2		0.001	0.002	0.003	0.005	0.010	0.016	0.024	0.033	0.043	0.054	0.065	0.076	0.087	0.099	0.110	0.122	0.133	0.144	0.154	0.165	0.175	0.184	0.201	0.217	0.230	0.242	0.251	0.258
	1	0.020	0.038	0.057	0.074	0.090	0.129	0.164	0.195	0.222	0.247	0.268	0.287	0.303	0.317	0.329	0.339	0.348	0.354	0.359	0.363	0.366	0.367	0.368	0.366	0.361	0.354	0.345	0.335	0.323
r	0	0.980	0.961	0.942	0.923	0.905	0.861	0.819	0.779	0.741	0.705	0.670	0.638	0.607	0.577	0.549	0.522	0.497	0.472	0.449	0.427	0.407	0.387	0.368	0.333	0.301	0.273	0.247	0.223	0.202
π		0.02	0.04	90.0	0.08	0.10	0.15	0.20	0.25	0:30	0.35	0.40	0.45	0.50	0.55	09.0	0.65	0.70	0.75	08.0	0.85	06.0	0.95	1.00	1.10	1.20	1.30	1.40	1.50	1.60

5 6 7 8 9 10 11 12 13 14 15 15 14 15 15 14 15 14 15 14	r																				
0.006 0.001 A A A A 0.008 0.002 0.001 A A A 0.010 0.003 0.001 A A A 0.015 0.004 0.001 A A A 0.017 0.005 0.002 A A A 0.024 0.006 0.002 A A A 0.028 0.010 0.002 A A A 0.028 0.012 0.002 0.001 A A 0.036 0.014 0.005 0.001 A A 0.037 0.016 0.002 0.001 A A 0.044 0.005 0.001 A A A 0.056 0.025 0.010 A A A 0.056 0.025 0.010 A A A 0.056 0.025 0.010 A A A <t< th=""><th>0 1 2 3 4 5</th><th>2 3 4</th><th>3 4</th><th>4</th><th>ا ري</th><th>5</th><th>9</th><th></th><th></th><th>б</th><th>10</th><th>1</th><th>12</th><th>13</th><th>14</th><th>15</th><th>16</th><th>17</th><th>18</th><th>20</th><th>21</th></t<>	0 1 2 3 4 5	2 3 4	3 4	4	ا ري	5	9			б	10	1	12	13	14	15	16	17	18	20	21
0.0008 0.0003 0.0001 A 0.0112 0.0003 0.0001 A 0.015 0.0004 0.0001 A 0.015 0.0004 0.0002 A 0.021 0.0005 0.0001 A 0.024 0.0002 0.0001 A 0.028 0.010 0.0002 A 0.032 0.014 0.0005 0.0001 0.044 0.006 0.0002 0.001 0.045 0.019 0.0007 0.0002 0.045 0.010 0.0002 0.001 0.056 0.025 0.010 0.003 0.061 0.026 0.011 0.004 0.066 0.027 0.001 0.001 0.076 0.028 0.011 0.005 0.077 0.039 0.017 0.005 0.078 0.019 0.006 0.001 0.088 0.047 0.009 0.001 0.094 0.051 0.001 0.001 0.099 0.052 0.001 0.	0.183 0.311 0.264 0.150 0.064 0.	0.264 0.150 0.064	0.150 0.064	0.064	0	022	90000	0.001													
0.010 0.003 0.001 — 0.015 0.003 0.001 — 0.015 0.004 0.001 — 0.017 0.005 0.002 — 0.021 0.007 0.002 — 0.024 0.003 0.001 — 0.036 0.010 0.002 0.001 0.036 0.014 0.005 0.001 0.036 0.014 0.005 0.001 0.041 0.005 0.002 0.001 0.045 0.019 0.002 0.001 0.046 0.005 0.002 0.001 0.056 0.025 0.010 0.002 0.056 0.025 0.011 0.002 0.056 0.025 0.011 0.004 0.056 0.025 0.011 0.004 0.056 0.031 0.012 0.001 0.077 0.035 0.015 0.002 0.083 0.042 0.003 0.001 0.084 0.051 0.002 0.001 0.094 0.052 0.010 0.004 0.001 0.099 0.052 0.010 0.002 0.001 0.099	0.165 0.298 0.268 0.161 0.072 0.0	0.268 0.161 0.072	0.161 0.072	0.072	0.0	970	0.008	0.002													
0.015 0.004 0.001 A 0.015 0.004 0.001 A 0.017 0.005 0.002 A 0.021 0.007 0.002 A 0.024 0.008 0.002 A 0.028 0.010 0.003 0.001 0.036 0.014 0.005 0.001 0.041 0.005 0.002 0.001 0.045 0.019 0.002 0.001 0.056 0.025 0.010 0.003 0.061 0.025 0.011 0.004 0.001 0.065 0.025 0.011 0.004 0.001 0.066 0.025 0.011 0.005 0.001 0.067 0.028 0.011 0.005 0.001 0.072 0.031 0.015 0.005 0.001 0.072 0.035 0.015 0.002 0.001 0.083 0.042 0.003 0.003 0.001 0.088 0.047 0.028 0.009 0.001 0.094	0.150 0.284 0.270 0.171 0.081 0.0	0.270 0.171 0.081	0.171 0.081	0.081	0.0	31	0.010	0.003	0.001												
0.015 0.004 0.001 — 0.017 0.005 0.002 — 0.021 0.002 0.001 — 0.028 0.010 0.003 0.001 0.032 0.012 0.004 0.001 0.036 0.014 0.005 0.001 0.045 0.019 0.002 0.001 0.050 0.010 0.002 0.001 0.050 0.010 0.002 0.001 0.050 0.010 0.002 0.001 0.050 0.010 0.002 0.001 0.050 0.010 0.002 0.001 0.050 0.010 0.002 0.001 0.050 0.011 0.002 0.001 0.050 0.012 0.012 0.001 0.050 0.011 0.002 0.001 0.050 0.012 0.002 0.001 0.050 0.012 0.002 0.001 0.050 0.012 0.002 0.001 0.072 0.012 0.002 0.001 </td <td>0.135 0.271 0.271 0.180 0.090 0.0</td> <td>0.271 0.180 0.090</td> <td>0.180 0.090</td> <td>060.0</td> <td>0.0</td> <td>36</td> <td>0.012</td> <td>0.003</td> <td>0.001</td> <td></td>	0.135 0.271 0.271 0.180 0.090 0.0	0.271 0.180 0.090	0.180 0.090	060.0	0.0	36	0.012	0.003	0.001												
0.017 0.005 0.002 0.021 0.007 0.002 0.024 0.008 0.001 0.028 0.010 0.001 0.032 0.012 0.004 0.001 0.036 0.014 0.005 0.002 0.041 0.005 0.002 0.001 0.045 0.007 0.002 0.001 0.050 0.022 0.003 0.001 0.051 0.002 0.003 0.001 0.052 0.003 0.001 0.001 0.054 0.011 0.004 0.001 0.056 0.022 0.001 0.002 0.057 0.013 0.005 0.001 0.077 0.035 0.017 0.002 0.001 0.083 0.042 0.019 0.003 0.001 0.088 0.047 0.022 0.009 0.001 0.094 0.051 0.002 0.001 0.099 0.052 0.010 0.002 0.099 0.052 0.010 0.002 <	0.122 0.257 0.270 0.189 0.099 0.C	0.270 0.189 0.099	0.189 0.099	0.099	0.0	242	0.015	0.004	0.001												
0.021 0.002 0.002 0.001 0.028 0.010 0.003 0.001 0.032 0.012 0.004 0.001 0.036 0.014 0.005 0.001 0.045 0.019 0.002 0.001 0.045 0.019 0.002 0.001 0.050 0.022 0.003 0.001 0.056 0.025 0.010 0.002 0.061 0.022 0.011 0.003 0.001 0.066 0.025 0.011 0.004 0.001 0.067 0.028 0.011 0.005 0.001 0.072 0.035 0.015 0.005 0.001 0.077 0.035 0.015 0.006 0.003 0.001 0.083 0.042 0.019 0.003 0.001 0.084 0.051 0.002 0.001 0.004 0.094 0.055 0.012 0.005 0.005	0.111 0.244 0.268 0.197 0.108 0.C	0.268 0.197 0.108	0.197 0.108	0.108	0.0	948	0.017	0.005	0.002												
0.024 0.008 0.001 0.001 0.028 0.010 0.003 0.001 0.032 0.014 0.005 0.001 0.041 0.006 0.002 0.001 0.045 0.019 0.007 0.002 0.050 0.022 0.008 0.001 0.051 0.011 0.004 0.001 0.052 0.010 0.003 0.001 0.061 0.022 0.011 0.004 0.001 0.062 0.031 0.011 0.004 0.001 0.072 0.035 0.015 0.005 0.001 0.072 0.035 0.015 0.006 0.002 0.073 0.017 0.006 0.001 0.001 0.083 0.042 0.019 0.003 0.001 0.084 0.051 0.002 0.001 0.001 0.094 0.055 0.012 0.005 0.002 0.099 0.052 0.010	0.100 0.231 0.265 0.203 0.117 0.0	0.265 0.203 0.117	0.203 0.117	0.117	0.0	24	0.021	0.007	0.002												
0.028 0.010 0.003 0.001 0.032 0.012 0.004 0.001 0.036 0.014 0.005 0.001 0.045 0.016 0.002 0.001 0.050 0.022 0.003 0.001 0.056 0.025 0.010 0.001 0.061 0.025 0.010 0.001 0.061 0.028 0.011 0.004 0.001 0.072 0.031 0.013 0.005 0.001 0.072 0.035 0.015 0.002 0.001 0.072 0.035 0.015 0.006 0.002 0.072 0.035 0.017 0.006 0.001 0.083 0.042 0.019 0.003 0.001 0.084 0.051 0.002 0.001 0.094 0.055 0.012 0.005 0.002	0.091 0.218 0.261 0.209 0.125 0.0	0.261 0.209 0.125	0.209 0.125	0.125	0.0	09	0.024	0.008		0.001											
0.032 0.012 0.004 0.001 8 0.036 0.014 0.005 0.001 8 0.041 0.016 0.006 0.002 0.001 0.050 0.022 0.003 0.001 9 0.056 0.025 0.010 0.003 0.001 0.061 0.028 0.011 0.004 0.001 0.066 0.031 0.015 0.005 0.001 0.072 0.035 0.015 0.006 0.002 0.001 0.083 0.042 0.019 0.008 0.003 0.001 0.088 0.047 0.022 0.009 0.003 0.001 0.094 0.051 0.024 0.010 0.004 0.001 0.098 0.055 0.027 0.012 0.005 0.002	0.082 0.205 0.257 0.214 0.134 0.06	0.257 0.214 0.134	0.214 0.134	0.134	0.0	22	0.028	0.010		0.001											
0.036 0.014 0.005 0.001 0.041 0.016 0.006 0.002 0.045 0.019 0.007 0.002 0.001 0.056 0.025 0.010 0.003 0.001 0.061 0.028 0.011 0.003 0.001 0.066 0.031 0.013 0.005 0.001 0.072 0.035 0.015 0.005 0.001 0.072 0.035 0.015 0.006 0.002 0.001 0.083 0.042 0.019 0.003 0.001 0.001 0.084 0.051 0.002 0.001 0.001 0.001 0.094 0.051 0.002 0.001 0.001 0.001 0.099 0.055 0.001 0.005 0.002 0.001	0.074 0.193 0.251 0.218 0.141 0.07	0.251 0.218 0.141	0.218 0.141	0.141	0.02	4	0.032	0.012		0.001											
0.041 0.016 0.006 0.002 0.045 0.019 0.007 0.002 0.001 0.050 0.022 0.003 0.001 0.001 0.056 0.025 0.010 0.003 0.001 0.061 0.028 0.011 0.004 0.001 0.066 0.031 0.015 0.005 0.001 0.072 0.038 0.017 0.002 0.001 0.083 0.042 0.019 0.003 0.001 0.088 0.047 0.022 0.003 0.001 0.088 0.047 0.024 0.010 0.004 0.094 0.051 0.024 0.010 0.004 0.099 0.055 0.027 0.012 0.005	0.067 0.181 0.245 0.220 0.149 0.08	0.245 0.220 0.149	0.220 0.149	0.149	0.08	0	0.036	0.014		0.001											
0.045 0.019 0.007 0.002 0.003 0.001 0.056 0.025 0.010 0.003 0.001 0.066 0.028 0.011 0.005 0.001 0.066 0.031 0.013 0.005 0.002 0.072 0.035 0.015 0.006 0.002 0.001 0.077 0.039 0.017 0.008 0.003 0.001 0.088 0.047 0.022 0.003 0.001 0.094 0.051 0.002 0.001 0.099 0.055 0.027 0.005 0.001	0.061 0.170 0.238 0.222 0.156 0.08	0.238 0.222 0.156	0.222 0.156	0.156	0.0	37	0.041	0.016		0.002											
0.050 0.022 0.008 0.003 0.001 0.056 0.025 0.010 0.003 0.001 0.061 0.028 0.011 0.004 0.001 0.066 0.031 0.015 0.005 0.002 0.072 0.035 0.017 0.006 0.001 0.083 0.042 0.019 0.003 0.001 0.088 0.047 0.022 0.003 0.001 0.094 0.051 0.024 0.010 0.004 0.001 0.098 0.057 0.022 0.003 0.001 0.001 0.099 0.051 0.024 0.010 0.004 0.001 0.099 0.055 0.027 0.012 0.005 0.002	0.055 0.160 0.231 0.224 0.162 0.09	0.231 0.224 0.162	0.224 0.162	0.162	0.0	4	0.045	0.019			0.001										
0.056 0.025 0.010 0.003 0.001 0.061 0.028 0.011 0.004 0.001 0.066 0.031 0.015 0.005 0.002 0.072 0.035 0.015 0.006 0.002 0.001 0.077 0.039 0.017 0.008 0.003 0.001 0.088 0.047 0.022 0.009 0.003 0.001 0.094 0.051 0.024 0.010 0.004 0.001 0.099 0.055 0.027 0.012 0.005 0.002	0.050 0.149 0.224 0.224 0.168 0.10	0.224 0.224 0.168	0.224 0.168	0.168	0.10	-	0.050	0.022			0.001										
0.061 0.028 0.011 0.004 0.001 0.066 0.031 0.013 0.005 0.002 0.072 0.035 0.015 0.006 0.002 0.001 0.083 0.042 0.019 0.008 0.001 0.001 0.088 0.047 0.022 0.003 0.001 0.094 0.051 0.024 0.010 0.004 0.099 0.051 0.024 0.010 0.004 0.099 0.055 0.027 0.012 0.005	0.045 0.140 0.216 0.224 0.173 0.1	0.216 0.224 0.173	0.224 0.173	0.173	0.1	20	0.056	0.025			0.001										
0.066 0.031 0.013 0.005 0.002 0.072 0.035 0.015 0.006 0.002 0.001 0.077 0.039 0.017 0.008 0.002 0.001 0.083 0.047 0.022 0.009 0.003 0.001 0.094 0.051 0.024 0.010 0.004 0.001 0.099 0.055 0.027 0.012 0.005 0.002	0.041 0.130 0.209 0.223 0.178 0.1	0.209 0.223 0.178	0.223 0.178	0.178	0.1	4	0.061	0.028			0.001										
0.072 0.035 0.015 0.006 0.002 0.001 0.077 0.039 0.017 0.007 0.002 0.001 0.083 0.042 0.019 0.008 0.003 0.001 0.088 0.047 0.022 0.009 0.003 0.001 0.094 0.051 0.024 0.010 0.004 0.001 0.099 0.055 0.027 0.012 0.005 0.002	0.037 0.122 0.201 0.221 0.182 0.1	0.201 0.221 0.182	0.221 0.182	0.182	0.1	20	990.0	0.031			0.002										
0.077 0.039 0.017 0.007 0.009 0.000 0.083 0.042 0.019 0.008 0.003 0.001 0.088 0.047 0.022 0.009 0.003 0.001 0.094 0.051 0.024 0.010 0.004 0.001 0.099 0.055 0.027 0.012 0.005 0.002	0.033 0.113 0.193 0.219 0.186 0.1	0.193 0.219 0.186	0.219 0.186	0.186	0.1	56	0.072	0.035			0.002	0.001									
0.083 0.042 0.019 0.008 0.003 0.001 0.088 0.047 0.022 0.009 0.003 0.001 0.094 0.051 0.024 0.010 0.004 0.001 0.099 0.055 0.027 0.012 0.005 0.002	0.030 0.106 0.185 0.216 0.189 0.	0.185 0.216 0.189	0.216 0.189	0.189	0	132	0.077	0.039				0.001									
0.088 0.047 0.022 0.009 0.003 0.001 0.094 0.051 0.024 0.010 0.004 0.001 0.099 0.055 0.027 0.012 0.005 0.002	0.027 0.098 0.177 0.212 0.191 0.	0.177 0.212 0.191	0.212 0.191	0.191	0	138	0.083	0.042			0.003	0.001									
0.094 0.051 0.024 0.010 0.004 0.001 0.099 0.055 0.027 0.012 0.005 0.002	0.025 0.091 0.169 0.209 0.193 0	0.169 0.209 0.193	0.209 0.193	0.193	0	0.143	0.088	0.047				0.001									
0.099 0.055 0.027 0.012 0.005 0.002	0.022 0.085 0.162 0.205 0.194 (0.162 0.205 0.194	0.205 0.194	0.194	_	0.148	0.094	0.051			0.004	0.001									
	0.020 0.079 0.154 0.200 0.195 0	0.154 0.200 0.195	0.200 0.195	0.195	0	0.152	0.099	0.055	.027		0.005	0.002	0.001								

0 1 2 3 4 5 6 7 8 9 10 0.018 0.073 0.147 0.195 0.156 0.104 0.060 0.030 0.013 0.0195 0.156 0.104 0.064 0.030 0.013 0.096 0.015 0.028 0.132 0.196 0.193 0.160 0.104 0.064 0.033 0.015 0.006 0.014 0.058 0.125 0.186 0.193 0.166 0.114 0.069 0.036 0.017 0.007 0.014 0.058 0.112 0.193 0.166 0.114 0.069 0.029 0.019 0.019 0.019 0.007 0.009 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.002		N	က	_	Ц														
0.053 0.147 0.195 0.195 0.156 0.104 0.060 0.030 0.013 0.068 0.139 0.190 0.195 0.160 0.109 0.064 0.033 0.015 0.063 0.132 0.185 0.194 0.163 0.114 0.069 0.036 0.017 0.054 0.125 0.180 0.192 0.169 0.124 0.039 0.019 0.054 0.112 0.174 0.192 0.169 0.124 0.078 0.043 0.019 0.054 0.112 0.192 0.169 0.174 0.128 0.049 0.028 0.044 0.106 0.163 0.188 0.174 0.136 0.054 0.058 0.044 0.106 0.163 0.185 0.174 0.136 0.054 0.054 0.034 0.069 0.146 0.175 0.145 0.145 0.145 0.145 0.146 0.054 0.054 0.034 0.079	_			t	כ	9	7		11	12 1	13 1	. 41	15	. 91	17 1	18 19	9 20	21	_
0.068 0.139 0.190 0.195 0.160 0.109 0.064 0.033 0.015 0.063 0.132 0.185 0.194 0.163 0.114 0.069 0.036 0.017 0.058 0.125 0.180 0.193 0.169 0.119 0.073 0.039 0.019 0.054 0.119 0.174 0.192 0.169 0.124 0.078 0.043 0.019 0.056 0.112 0.169 0.190 0.171 0.128 0.089 0.043 0.001 0.046 0.106 0.163 0.173 0.132 0.089 0.026 0.029 0.040 0.056 0.163 0.188 0.174 0.136 0.026 0.059 0.028 0.034 0.009 0.146 0.175 0.146 0.146 0.175 0.146 0.109 0.069 0.039 0.034 0.084 0.140 0.175 0.175 0.149 0.169 0.069 0.039 <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.104</th> <th>090.0</th> <th></th> <th>0.002</th> <th>0.001</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						0.104	090.0		0.002	0.001									
0.063 0.132 0.185 0.194 0.163 0.114 0.069 0.036 0.017 0.058 0.125 0.180 0.193 0.169 0.119 0.073 0.039 0.019 0.054 0.119 0.174 0.192 0.169 0.124 0.078 0.043 0.019 0.050 0.112 0.163 0.190 0.171 0.124 0.082 0.046 0.023 0.044 0.106 0.163 0.188 0.174 0.136 0.091 0.054 0.028 0.040 0.095 0.152 0.185 0.174 0.136 0.096 0.058 0.028 0.034 0.089 0.146 0.175 0.143 0.109 0.061 0.038 0.034 0.089 0.146 0.175 0.146 0.109 0.069 0.038 0.034 0.089 0.146 0.175 0.149 0.109 0.069 0.039 0.035 0.079 0.129						0.109	0.064		0.002	0.001									
0.058 0.125 0.180 0.193 0.166 0.119 0.073 0.039 0.019 0.054 0.119 0.174 0.192 0.169 0.124 0.078 0.043 0.011 0.050 0.112 0.169 0.190 0.171 0.128 0.082 0.046 0.023 0.046 0.106 0.163 0.188 0.173 0.132 0.087 0.020 0.028 0.040 0.106 0.167 0.185 0.174 0.136 0.091 0.054 0.028 0.040 0.095 0.152 0.185 0.175 0.143 0.109 0.054 0.028 0.034 0.089 0.146 0.175 0.143 0.104 0.061 0.033 0.034 0.089 0.146 0.175 0.149 0.109 0.069 0.039 0.034 0.089 0.146 0.175 0.149 0.109 0.069 0.039 0.029 0.075 0.129						0.114	690.0		0.003	0.001									
0.054 0.119 0.174 0.192 0.169 0.124 0.078 0.043 0.021 0.050 0.112 0.169 0.190 0.171 0.128 0.082 0.046 0.023 0.046 0.106 0.163 0.188 0.173 0.087 0.050 0.026 0.040 0.106 0.157 0.182 0.174 0.136 0.091 0.058 0.028 0.034 0.089 0.146 0.175 0.143 0.109 0.061 0.031 0.034 0.089 0.146 0.175 0.143 0.100 0.061 0.031 0.034 0.089 0.146 0.175 0.146 0.104 0.065 0.033 0.034 0.079 0.135 0.175 0.149 0.109 0.069 0.039 0.029 0.075 0.129 0.164 0.174 0.154 0.116 0.071 0.045 0.024 0.066 0.113 0.164 0.174						0.119	0.073		0.003	0.001									
0.056 0.112 0.169 0.190 0.171 0.128 0.082 0.046 0.023 0.046 0.106 0.163 0.188 0.173 0.132 0.087 0.050 0.026 0.043 0.100 0.157 0.185 0.174 0.136 0.091 0.054 0.028 0.040 0.095 0.152 0.175 0.175 0.143 0.100 0.061 0.038 0.034 0.089 0.146 0.175 0.143 0.104 0.061 0.061 0.034 0.089 0.146 0.175 0.149 0.109 0.061 0.033 0.034 0.089 0.146 0.175 0.149 0.109 0.069 0.039 0.029 0.075 0.129 0.168 0.175 0.151 0.116 0.075 0.045 0.024 0.066 0.119 0.164 0.174 0.154 0.116 0.081 0.045 0.022 0.062 0.113						0.124	0.078		0.004	0.001									
0.046 0.106 0.163 0.188 0.173 0.132 0.087 0.050 0.026 0.043 0.100 0.157 0.185 0.174 0.136 0.091 0.054 0.028 0.036 0.058 0.152 0.182 0.175 0.140 0.096 0.058 0.031 0.034 0.089 0.146 0.175 0.145 0.104 0.065 0.031 0.034 0.089 0.146 0.175 0.146 0.109 0.065 0.036 0.031 0.079 0.135 0.175 0.149 0.109 0.069 0.039 0.029 0.075 0.129 0.168 0.175 0.151 0.119 0.042 0.026 0.070 0.124 0.164 0.174 0.154 0.154 0.154 0.045 0.022 0.062 0.113 0.166 0.171 0.157 0.123 0.085 0.052 0.022 0.062 0.113 0.156						0.128	0.082	 	 0.004	0.002	0.001								
0.043 0.167 0.185 0.174 0.136 0.091 0.054 0.028 0.040 0.095 0.152 0.182 0.175 0.140 0.096 0.058 0.031 0.036 0.089 0.146 0.175 0.143 0.100 0.061 0.033 0.034 0.084 0.146 0.175 0.175 0.146 0.109 0.065 0.036 0.031 0.079 0.135 0.175 0.149 0.109 0.069 0.039 0.029 0.075 0.128 0.175 0.149 0.109 0.069 0.039 0.026 0.070 0.124 0.164 0.174 0.154 0.116 0.077 0.045 0.024 0.066 0.119 0.160 0.173 0.156 0.120 0.081 0.045 0.022 0.062 0.113 0.156 0.171 0.157 0.123 0.085 0.052						0.132	0.087		0.005	0.002	0.001								
0.036 0.055 0.145 0.175 0.140 0.096 0.058 0.031 0.036 0.089 0.146 0.179 0.175 0.143 0.100 0.061 0.033 0.034 0.084 0.140 0.175 0.146 0.104 0.065 0.036 0.031 0.079 0.135 0.175 0.175 0.199 0.069 0.039 0.029 0.075 0.129 0.168 0.175 0.151 0.113 0.042 0.026 0.070 0.124 0.164 0.174 0.154 0.154 0.045 0.024 0.066 0.119 0.160 0.173 0.156 0.120 0.081 0.045 0.022 0.062 0.113 0.156 0.171 0.157 0.157 0.089 0.055						0.136	0.091		900.0	0.002	0.001								
0.036 0.089 0.146 0.179 0.175 0.143 0.100 0.061 0.063 0.034 0.084 0.140 0.175 0.175 0.149 0.104 0.065 0.036 0.031 0.079 0.135 0.175 0.149 0.109 0.069 0.039 0.029 0.075 0.129 0.168 0.175 0.151 0.113 0.073 0.042 0.024 0.066 0.119 0.164 0.174 0.154 0.156 0.081 0.045 0.022 0.062 0.113 0.156 0.171 0.157 0.123 0.085 0.021 0.068 0.113 0.156 0.171 0.157 0.089 0.055						0.140	960.0	 	 900.0	0.003	0.001								
0.034 0.084 0.140 0.175 0.175 0.146 0.104 0.065 0.036 0.031 0.079 0.135 0.172 0.175 0.149 0.109 0.069 0.039 0.029 0.075 0.129 0.168 0.175 0.151 0.113 0.073 0.042 0.024 0.066 0.119 0.160 0.173 0.156 0.173 0.081 0.049 0.022 0.062 0.113 0.156 0.171 0.157 0.123 0.085 0.052 0.021 0.058 0.108 0.156 0.171 0.157 0.158 0.055						0.143	0.100		0.007	0.003	0.001								
0.024 0.079 0.135 0.172 0.175 0.149 0.109 0.069 0.039 0.029 0.075 0.129 0.168 0.175 0.151 0.113 0.073 0.042 0.026 0.070 0.124 0.164 0.174 0.154 0.116 0.077 0.045 0.024 0.066 0.113 0.160 0.173 0.156 0.123 0.081 0.049 0.022 0.062 0.113 0.156 0.171 0.157 0.153 0.085 0.055 0.021 0.058 0.108 0.152 0.170 0.158 0.127 0.089 0.055						0.146	0.104		0.008	0.003	0.001								
0.029 0.075 0.129 0.168 0.175 0.151 0.113 0.073 0.042 0.026 0.070 0.124 0.164 0.174 0.154 0.116 0.077 0.045 0.024 0.066 0.119 0.160 0.173 0.156 0.120 0.081 0.049 0.022 0.062 0.113 0.156 0.171 0.157 0.123 0.085 0.052 0.021 0.058 0.108 0.152 0.170 0.158 0.127 0.089 0.055						0.149	0.109		600.0	0.004	0.002	0.001							
0.026 0.070 0.124 0.164 0.174 0.154 0.116 0.077 0.045 0.024 0.066 0.119 0.160 0.173 0.156 0.120 0.081 0.049 0.022 0.062 0.113 0.156 0.171 0.157 0.123 0.085 0.052 0.021 0.058 0.108 0.152 0.170 0.158 0.127 0.089 0.055						0.151	0.113	 	 0.010	0.005	0.002	0.001							
0.024 0.066 0.119 0.160 0.173 0.156 0.120 0.081 0.049 0.022 0.062 0.113 0.156 0.171 0.157 0.123 0.085 0.052 0.021 0.058 0.108 0.152 0.170 0.158 0.127 0.089 0.055						0.154	0.116		0.012	0.005	0.002	0.001							
0.022 0.062 0.113 0.156 0.171 0.157 0.123 0.085 0.052 0.021 0.058 0.108 0.152 0.170 0.158 0.127 0.089 0.055						0.156	0.120		0.013	0.006	0.002	0.001							
0.021 0.058 0.108 0.152 0.170 0.158 0.127 0.089 0.055						0.157	0.123	 	 0.014	0.007	0.003	0.001							
						0.158	0.127		0.016	0.007	0.003	0.001							
0.003 0.019 0.054 0.103 0.147 0.168 0.159 0.130 0.092 0.059 0.033						0.159	0.130		0.017	0.008	0.004	0.001							
0.003 0.018 0.051 0.098 0.143 0.166 0.160 0.133 0.096 0.062 0.036						0.160	0.133		0.019	0.009	0.004	0.002	0.001						
0.003 0.016 0.048 0.094 0.138 0.163 0.160 0.135 0.100 0.065 0.039						0.160			0.021	0.010	0.005	0.002	0.001						

	21													0.001
	20												0.001	0.002
	19												0.001	0.004
	18									0.001	0.001	0.001	0.003	0.007
	17						0.001	0.001	0.001	0.001	0.002	0.002	900.0	0.013
	16			0.001	0.001	0.001	0.001	0.002	0.002	0.003	0.004	0.005	0.011	0.022
	15	0.001	0.001	0.002	0.002	0.003	0.003	0.004	900.0	900.0	900.0	600.0	0.019	0.035
	14	0.002	0.003	0.004	0.005	900.0	0.007	600.0	0.010	0.012	0.015	0.017	0.032	0.052
	13	0.005	0.007	0.008	0.010	0.012	0.014	0.017	0.020	0.023	0.026	0.030	0.050	0.073
	12	0.011	0.014	0.016	0.019	0.023	0.026	0.030	0.034	0.039	0.043	0.048	0.073	0.095
	11	0.023	0.026	0.031	0.035	0.040	0.045	0.050	0.056	0.061	0.067	0.072	0.097	0.114
	10	0.041	0.047	0.053	0.059	0.065	0.071	0.077	0.083	0.089	0.094	660.0	0.119	0.125
	6	690.0	9/0.0	0.082	0.089	0.095	0.101	0.107	0.112	0.117	0.121	0.124	0.132	0.125
	8	0.103	0.110	0.116	0.121	0.126	0.130	0.134	0.136	0.138	0.139	0.140	0.132	0.113
	7	0.138	0.142	0.145	0.147	0.149	0.149	0.149	0.147	0.145	0.143	0.140	0.117	0.090
	9	0.161	0.160	0.159	0.156	0.153	0.149	0.144	0.139	0.134	0.128	0.122	0.091	0.063
	2	0.161	0.155	0.149	0.142	0.135	0.128	0.120	0.113	0.106	660.0	0.092	0.061	0.038
	4	0.134	0.125	0.116	0.108	660.0	0.091	0.084	9/0.0	0.070	0.063	0.057	0.034	0.019
	3	0.089	0.081	0.073	0.065	0.058	0.052	0.046	0.041	0.037	0.032	0.029	0.015	0.008
	2	0.045	0.039	0.034	0.030	0.026	0.022	0.019	0.017	0.014	0.012	0.011	0.005	0.002
	-	0.015	0.013	0.011	600.0	0.008	900.0	0.005	0.005	0.004	0.003	0.003	0.001	0.000
r	0	0.002	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000	0.000	0.000
μ		00.9	6.20	6.40	09.9	6.80	7.00	7.20	7.40	7.60	7.80	8.00	9.00	10.00

22 Legendre Polynomials

Legendre polynomials under standard normalisation $P_n(1)=1$:

The Legendre polynomials are defined for $x \in \mathbb{R}$ by the two term recurrence relation,

$$P_0(x) = 1,$$

$$P_1(x) = x,$$

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x), \qquad n \in \mathbb{N}.$$

The next two terms are

$$P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}, \qquad P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x.$$

Orthogonality properties on the interval [-1, 1]:

Consider the inner product $\ \langle \cdot, \, \cdot \rangle \$ defined by

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx,$$

for continuous functions $\ f,\ g:[-1,\ 1] \to \mathbb{R}$. The corresponding norm is given by

$$||f|| = \sqrt{\langle f, f \rangle}.$$

The Legendre polynomials are orthogonal with respect to the inner product:

$$\langle P_n, P_m \rangle = 0, \qquad m \neq n.$$

Legendre polynomials with orthogonal normalisation:

Orthogonally normalised Legendre polynomials are defined by

$$\phi_n = \frac{P_n(x)}{\|P_n\|}.$$

The first few terms are

$$\phi_0(x) = \frac{1}{\sqrt{2}}, \qquad \phi_1(x) = \sqrt{\frac{3}{2}}x, \qquad \phi_2(x) = \sqrt{\frac{5}{2}}\left(\frac{3}{2}x^2 - \frac{1}{2}\right).$$

23 Orthogonal Polynomials (for equidistant abscissae)

\overline{n}		3		4			ļ	<u> </u>				6		
f_i	f_1	f_2	f_1	f_2	f_3	f_1	f_2	f_3	f_4	f_1	f_2	f_3	f_4	f_5
										-5	+5	-5	+1	-1
						-2	+2	-1	+1					
			-3	+1	-1					-3	-1	+7	-3	+5
	-1	+1				-1	-1	+2	-4					
			-1	-1	+3					-1	-4	+4	+2	-10
	0	-2				0	-2	0	+6					
			+1	-1	-3					+1	-4	-4	+2	+10
	+1	+1				+1	-1	-2	-4					
			+3	+1	+1					+3	-1	-7	-3	-5
						+2	+2	+1	+1					
										+5	+5	+5	+1	+1
$\sum f_i^2$	2	6	20	4	20	10	14	10	70	70	84	180	28	252
λ_i	1	3	2	1	$\frac{10}{3}$	1	1	$\frac{5}{6}$	$\frac{35}{12}$	2	$\frac{3}{2}$	$\frac{5}{3}$	$\frac{7}{12}$	$\frac{21}{10}$

\overline{n}			7					8					9		
f_{i}	f_1	f_2	f_3	f_4	f_5	f_1	f_2	f_3	f_4	f_5	f_1	f_2	f_3	f_4	f_5
	0	-4	0	+6	0						0	-20	0	+18	0
						+1	-5	-3	+9	+15					
	+1	-3	-1	+1	+5						+1	-17	-9	+9	+9
						+3	-3	-7	-3	+17					
	+2	0	-1	-7	-4						+2	-8	-13	-11	+4
						+5	+1	-5	-13	-23					
	+3	+5	+1	+3	+1						+3	+7	-7	-21	-11
						+7	+7	+7	+7	+7					
											+4	+28	+14	+14	+4
$\sum f_i^2$	28	84	6	154	84	168	168	264	616	2184	60	2772	990	2002	464
λ_i	1	1	$\frac{1}{6}$	$\frac{7}{12}$	$\frac{7}{20}$	2	1	$\frac{2}{3}$	$\frac{7}{12}$	$\frac{7}{10}$	1	3	$\frac{5}{6}$	$\frac{7}{12}$	$\frac{3}{20}$

$$f_1(x) = \lambda_1(x)$$

$$f_2(x) = \lambda_2 \left\{ x^2 - \frac{1}{12}(n^2 - 1) \right\}$$

$$f_3(x) = \lambda_3 \left\{ x^3 - \frac{1}{20}(3n^2 - 7)x \right\}$$

$$f_4(x) = \lambda_4 \left\{ x^4 - \frac{1}{14}(3n^2 - 13)x^2 + \frac{3}{560}(n^2 - 1)(n^2 - 9) \right\}$$

$$f_5(x) = \lambda_5 \left\{ x^5 - \frac{5}{18}(n^2 - 7)x^3 + \frac{1}{1008}(15n^4 - 230n^2 + 407)x \right\}$$

24 Random Numbers

The below table presents a typical series of random numbers for the convenience of class exercises. For practical work, reference should be made to a more extensive series such as that in the Fisher and Yates statistical tables.

99	050	30876	80821	14955	11495
08	090	84688	36332	86858	73763
67	619	00352	32735	59654	97851
63	779	66008	02516	93874	67930
03	259	72119	04769	95593	02754
92	914	02066	97320	00328	51685
80	001	70542	01530	63033	64384
37	815	09824	86504	14817	74434
15	897	74758	12779	69608	76893
06	193	94893	24598	02714	69670
40	134	12803	33942	46600	05681
88	480	27598	48458	65639	08810
49	989	94369	80429	97152	67613
62	089	52111	92190	85413	95362
01	675	12741	94334	86069	71353
04	259	19768	47711	63262	06316
63	859	63087	91886	43467	55595
17	709	21642	56384	85699	24310
11	727	83872	22553	17012	02949
02	838	03160	92864	23985	63585

25 Wilcoxon Matched-Pairs Test

Critical values of $\ T$ at Various Levels of Probability

	Level of significance for two-tailed test									
N	0.10	0.05	0.02	0.01						
5	0	_	_	_						
6	2	0	_	_						
7	3	2	0	_						
8	5	3	1	0						
9	8	5	3	1						
10	10	8	5	3						
11	13	10	7	5						
12	17	13	9	7						
13	21	17	12	9						
14	25	21	15	12						
15	30	25	19	15						
16	35	29	23	19						
17	41	34	27	23						
18	47	40	32	27						
19	53	46	37	32						
20	60	52	43	37						
21	67	58	49	42						
22	75	65	55	48						
23	83	73	62	54						
24	91	81	69	61						
25	100	89	76	68						
26	110	98	84	75						
27	119	107	92	83						
28	130	116	101	91						
29	140	126	110	100						
30	151	137	120	109						
31	163	147	130	118						
32	175	159	140	128						
33	187	170	151	138						
34	200	182	162	148						
35	213	195	173	159						

26 Mann-Whitney Test

1. Critical values of ~U~ for a **One-tailed** Test at $~\alpha=0.05~$ or a **Two-tailed** Test at $~\alpha=0.10~$

	n_1																			
n_2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1																				
2																				
3			0																	
4			0	1																
5		0	1	2	4															
6		0	2	3	5	7														
7		0	2	4	6	8	11													
8		1	3	5	8	10	13	15												
9		1	3	6	9	12	15	18	21											
10		1	4	7	11	14	17	20	24	27										
11		1	5	8	12	16	19	23	27	31	34									
12		2	5	9	13	17	21	26	30	34	38	42								
13		2	6	10	15	19	24	28	33	37	42	47	51							
14		2	7	11	16	21	26	31	36	41	46	51	56	61						
15		3	7	12	18	23	28	33	39	44	50	55	61	66	72					
16		3	8	14	19	25	30	36	42	48	54	60	65	71	77	83				
17		3	9	15	20	26	33	39	45	51	57	64	70	77	83	89	96			
18		4	9	16	22	28	35	41	48	55	61	68	75	82	88	95	102	109		
19	0	4	10	17	23	30	37	44	51	58	65	72	80	87	94	101	109	116	123	
20	0	4	11	18	25	32	39	47	54	62	69	77	84	92	100	107	115	123	130	138

2. Critical values of ~U~ for a **One-tailed** Test at $~\alpha=0.025~$ or a **Two-tailed** Test at $~\alpha=0.05~$

	n_1																			
n_2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1																				
2																				
3																				
4				0																
5			0	1	2															
6			1	2	3	5														
7			1	3	5	6	8													
8		0	2	4	6	8	10	13												
9		0	2	4	7	10	12	15	17											
10		0	3	5	8	11	14	17	20	23										
11		0	3	6	9	13	16	19	23	26	30									
12		1	4	7	11	14	18	22	26	29	33	37								
13		1	4	8	12	16	20	24	28	33	37	41	45							
14		1	5	9	13	17	22	26	31	36	40	45	50	55						
15		1	5	10	14	19	24	29	34	39	44	49	54	59	64					
16		1	6	11	15	21	26	31	37	42	47	53	59	64	70	75				
17		2	6	11	17	22	28	34	39	45	51	57	63	67	75	81	87			
18		2	7	12	18	24	30	36	42	48	55	61	67	74	80	86	93	99		
19		2	7	13	19	25	32	38	45	52	58	65	72	78	85	92	99	106	113	
20		2	8	13	20	27	34	41	48	55	62	69	76	83	90	98	105	112	119	127

Mann-Whitney Test (continued)

3. Critical values of ~U~ for a **One-tailed** Test at $~\alpha=0.01~$ or a **Two-tailed** Test at $~\alpha=0.02~$

	n_1																			
n_2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1																				
2																				
3																				
4																				
5				0	1															
6				1	2	3														
7			0	1	3	4	6													
8			0	2	4	6	8	10												
9			1	3	5	7	9	11	14											
10			1	3	6	8	11	13	16	19										
11			1	4	7	9	12	15	18	22	25									
12			2	5	8	11	14	17	21	24	28	31								
13		0	2	5	9	12	16	20	23	27	31	35	39							
14		0	2	6	10	13	17	22	26	30	34	38	43	47						
15		0	3	7	11	15	19	24	28	33	37	42	47	51	56					
16		0	3	7	12	16	21	26	31	36	41	46	51	56	61	66				
17		0	4	8	13	18	23	28	33	38	44	49	55	60	66	71	77			
18		0	4	9	14	19	24	30	36	41	47	53	59	65	70	76	82	88		
19		1	4	9	15	20	26	32	38	44	50	56	63	69	75	82	88	94	101	
20		1	5	10	16	22	28	34	40	47	53	60	67	73	80	87	93	100	107	114

27 Rank Correlation Coefficients (Spearman's)

Critical Values of r

	Level of significa	nce for two-tailed t	est	
n	0.10	0.05	0.02	0.01
5	0.900	1.000	1.000	_
6	0.829	0.886	0.943	1.000
7	0.714	0.786	0.893	0.929
8	0.643	0.738	0.833	0.881
9	0.600	0.683	0.783	0.833
10	0.564	0.648	0.746	0.794
12	0.506	0.591	0.712	0.777
14	0.456	0.544	0.645	0.715
16	0.425	0.506	0.601	0.665
18	0.399	0.475	0.564	0.625
20	0.377	0.450	0.534	0.591
22	0.359	0.428	0.508	0.562
24	0.343	0.409	0.485	0.537
26	0.329	0.392	0.465	0.515
28	0.317	0.377	0.448	0.496
30	0.306	0.364	0.432	0.478

28 Correlation Coefficients

Critical Values of r

	Level of significa	nce for two-tailed t	est	
n	0.10	0.05	0.02	0.01
4	0.900	0.950	0.980	0.990
5	0.805	0.878	0.934	0.959
6	0.729	0.811	0.882	0.917
7	0.669	0.754	0.833	0.874
8	0.621	0.707	0.789	0.834
9	0.582	0.666	0.750	0.798
10	0.549	0.632	0.716	0.765
12	0.497	0.576	0.658	0.708
14	0.457	0.532	0.612	0.661
16	0.426	0.497	0.574	0.623
18	0.400	0.468	0.543	0.590
20	0.378	0.444	0.516	0.561
25	0.337	0.397	0.463	0.507
30	0.308	0.361	0.423	0.464
35	0.283	0.335	0.392	0.430
40	0.264	0.312	0.367	0.403
50	0.235	0.279	0.328	0.361

29 Constants for Use in Constructing Quality Control Charts

$$A_{0.025} = 1.96a_n/\sqrt{n}$$
. $A_{0.001} = 3.1a_n/\sqrt{n}$.

Control limits at $\overline{x}\pm A_{\alpha}\overline{w}$ where \overline{w} is the average sample range when system is under control.

$$\mathsf{Prob}\big(\mathsf{range}\ < D_{\alpha}\overline{w}\big)\ =\ \alpha$$

No. in	Cha	art for means		Chart for ranges				
Sample	Factors	s for control limits	$\sigma = a_n \overline{\omega}$	Factors for control limits				
n	$A_{0.025}$	$A_{0.001}$	a_n	$D_{0.95}$	$D_{0.995}$	$D_{0.999}$	$F_{0.95}$	
2	1.23	1.94	0.8862	2.45	3.52	4.12	0.08	
3	0.67	1.05	0.5908	1.96	2.58	2.98	0.25	
4	0.48	0.75	0.4857	1.76	2.26	2.57	0.37	
5	0.37	0.59	0.4299	1.66	2.08	2.34	0.44	
6	0.32	0.50	0.3946	1.59	1.97	2.21	0.49	
7	0.27	0.43	0.3698	1.54	1.90	2.11	0.53	
8	0.24	0.38	0.3512	1.51	1.84	2.04	0.56	
9	0.22	0.35	0.3367	1.48	1.79	1.99	0.59	
10	0.20	0.32	0.3249	1.45	1.75	1.93	0.60	

30 Some Common Families of Distributions

Discrete Distributions

Distribution	Point probability	Mean	Variance	Probability generating function
Binomial (n, p)	$\binom{n}{r} p^r (1-p)^{n-r}$ $r = 0, 1, 2, \dots n$	np	np(1-p)	$(1-p+pz)^n$
Poisson (λ)	$\begin{vmatrix} e^{-\lambda} \lambda^r / r! \\ r = 0, 1, 2, \cdots \end{vmatrix}$	λ	λ	$e^{\lambda(z-1)}$
Negative-Binomial (k,p)	$\binom{k+r-1}{r}p^k(1-p)^r$ $r = 0, 1, 2, \dots$	$\frac{k(1-p)}{p}$	$\frac{k(1-p)}{p^2}$	$\left(\frac{p}{1-z+pz}\right)^k$
Hyper- geometric (N_1, N_2, n)	$ \begin{pmatrix} N_1 \\ r \end{pmatrix} \begin{pmatrix} N_2 \\ n-r \end{pmatrix} / \begin{pmatrix} N_1+N_2 \\ n \end{pmatrix} $ $ r = 0, 1, 2, \cdots, \min(n, N_1);$ $ N_1 < N_2. $	$\frac{nN_1}{N_1 + N_2}$	$\frac{nN_1N_2(N_1+N_2-n)}{(N_1+N_2)^2(N_1+N_2-1)}$	

Continuous Distributions

Distribution	Density Function	Mean	Variance	Moment generating function
Uniform(a,b)	$\frac{1}{b-a}, (a < x < b)$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(a-b)^2$	$\frac{e^{bt} - e^{at}}{(b-a)t}$
Beta(r,s)	$\frac{\Gamma(r+s)x^{r-1}(1-x)^{s-1}}{\Gamma(r)\Gamma(s)}$	$\frac{r}{r+2}$	$\frac{rs}{(r+s)^2(r+s+1)}$	_
Gamma (s, α)	$\frac{\alpha^s x^{s-1} e^{-\alpha x}}{\Gamma(s)}, (x > 0)$	$\frac{s}{\alpha}$	$\frac{s}{\alpha^2}$	$\left(\frac{\alpha}{\alpha - t}\right)^s$
Exponential(α)	is the same as Gamn	na ($1, \alpha$)		
Normal (μ, σ^2)	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2	$e^{\mu t + \frac{1}{2}\sigma^2 t^2}$

p -variate normal distribution (μ, Σ)

Density function

$$(2\pi)^{-\frac{1}{2}p}|\Sigma|^{-\frac{1}{2}}e^{-\frac{1}{2}\{(x-\mu)^T\Sigma^{-1}(x-\mu)\}} \qquad \text{ if } \Sigma^{-1} \text{ exists}$$

Mean $\ \mu$, Variance $\ \Sigma$, Moment Generating Function $\ e^{(t^T\mu+\frac{1}{2}t^T\Sigma t)}$.