Content

• Complexity Theory

Complexity Theory

Introduction

Complexity theory defines a methodology to analyse the computational complexity of crypto algorithms.

Definitions

Information Theory, (Except One-Time Pad) say that all cryptosystems are breakable.

Complexity Theory, explains the cryptosystems which are breakable or unbreakable without any dependency to exist computational powers.

Algorithmic Complexity:

The power of crypto; define by the required computational power to break it.

```
Argument #1: Time - T

( required time to break it),

Argument #2: Space - S

(required memory to break it)
```

Algorithmic Complexity:

Power of Cryptosystem is defined by big O.

Big O notation: Computational Complexity degree (as an upper bound).

If the time complexity of an algorithm is defined by

$$3n^3 + 5n + 23$$

Then; its computational complexity is

$$O(n^3)$$

This notation is independent from any computer architecture.

This notation defines the impact of input size on Time and Space parameters of algorithm.

		Operation	
Class	Complexity	Count	Time
Constant	O(1)	1	1 micro sec.
Linear	O(n)	10^6	1 sec.
Quadratic	$O(n^2)$	10^{12}	11.6 day
Cubic	$O(n^3)$	10^{18}	32.000 year
Exp	$O(2^n)$	$10^{301.030}$	$10^{301.006}$
		>> age	of universe

Big Numbers:

Age of Earth	10 ⁹ year
Age of Universe	10 ¹⁰ year
Total life time of Universe	10 ¹¹ year
Total count of atoms in planet	10^{51}
Total count of atoms in Sun	10^{57}
Total count of atoms in Galaxy	10^{67}
Total count of atoms in Universe	10 77

Complexity of a problem:

Problem Classes

Solvable: these problems are solvable by a polynomial time algorithm.

Unsolvable: they are not solvable by polynomial time algorithm. HARD!

Categorical classifications of known problems according to their difficulty degree...

Class P (Polynomial):

If a problem can be solved in polynomial time by a deterministic computer, this problem is belong to

P

Class.

Class NP (Non deterministic but Polynomial):

If a problem can be solved in polynomial time by a non-deterministic computer (such as unlimited parallel computing capability), this problem is belong to

NP

class.

Class NP – Complete: finding a solution for an instance of the NP-complete problem, which can solve other all similar problems of this NP class.

Complexity Classes: Examples

Travelling Salesman: A salesman have to visit n different cities.

What is the shortest path which is every city visited only one time?

Complexity Classes: Examples

Travelling Salesman: n=2, 3, 4 and 5 is easy problem but if n=25 or more !!??...

Complexity Classes: Examples

Factorization: Finding of multiplicative prime factors of a number.

Example: $60 = 2 \times 2 \times 3 \times 5$

Prime	Prime	Multiplication	Time
=======			=======
p	q	n=pxq	
223	293	65339	30 sec.

Class: P

Multiplication	Prime	Prime	Time
n=pxq	p	q	
65339	223	293	1 hour

Class: NP

Example: n=pxq

input	operation	time
n1=p1xq1	3x 5 = 15	1 sec.
n2=p2xq2	11x 17 = 187	5 sec.
n3=p3xq3	223x293 = 65339	30 sec.

Example: n=pxq

Example: n is the multiplication of two prime numbers. Try to find these prime numbers.

input	operation	time	
n1	$\frac{15 = 3x5}{15}$	1 sec.	
n2	187 = 11x17	5 minute	
n3	$65339 = 223 \times 293$	60 minute	

Complexity Classes: Examples-Factorization example: n; p,q

