(5)

(6)

GATE:EE/63

EE23BTECH11208 - Manohar K*

 $E(s) + H \times G \times E(s) = R(s)$

 $\therefore \frac{E(s)}{R(s)} = \frac{1}{1 + GH}$

Question: For the closed loop system shown , the transfer function $\frac{E(s)}{R(s)}$ is

- (a) $\frac{G}{1+GH}$ (b) $\frac{GH}{GH}$
- (c) $\frac{1}{1+GH}$
- (d) $\frac{1}{1+GH}$

(GATE EE 2021)

Solution:

Given,

symbol	description
G	Forward path gain
Н	Feedback path gain
R(s)	Input signal
C(s)	Output signal
E(s)	Error signal

TABLE I PARAMETERS

$$C(s) = G \times E(s) \tag{1}$$

Feedback signal =
$$H \times C(s)$$
 (2)

Error signal = Input signal - Feedback signal

$$E(s) = R(s) - H \times C(s) \tag{3}$$

from eq (1),

$$E(s) = R(s) - H \times G \times E(s) \tag{4}$$