On the smallest constant for a Gagliardo-Nirenberg functional inequality

Nguyen Quan Ba Hong

January 10, 2019

Abstract

The main objective of this paper is to present a relationship between the best constant for a classical interpolation inequality due to Nirenberg and Gagliardo, and the ground state solution of the equation

$$\frac{\sigma N}{2}\Delta\psi - \left(1 + \frac{\sigma}{2}\left(2 - N\right)\right)\psi + \psi^{2\sigma + 1} = 0.$$

Contents

1	Solu	ıtion of a variational problem	1
	1.1	Strauss's estimate	2
	1.2	Proof of Theorem 1.1	5
2	2 Appendix		12
	2.1	Rellich's compactness theorem	12
	2.2	Interpolation estimate	12
	2.3	Sobolev embedding	12
	2.4	Schauder theorem	13
	2.5	Symmetric-decreasing rearrangement	13

1 Solution of a variational problem

We begin by studying

$$J^{\sigma,N}(f) := \frac{\|\nabla f\|_2^{\sigma N} \|f\|_2^{2+\sigma(2-N)}}{\|f\|_{2\sigma+2}^{2\sigma+2}},$$
(1.1)

the nonlinear functional naturally associated with the interpolation estimate

$$||f||_{2\sigma+2}^{2\sigma+2} \le C_{\sigma,N}^{2\sigma+2} ||\nabla f||_2^{\sigma N} ||f||_2^{2+\sigma(2-N)}, \text{ if } 0 < \sigma < \frac{2}{N-2}, N \ge 2.$$
 (1.2)

By estimate (1.2), $J^{\sigma,N}$ is defined on $H^1(\mathbb{R}^N)$ for $0 < \sigma < \frac{2}{N-2}$.

Theorem 1.1. For $0 < \sigma < \frac{2}{N-2}$,

$$\alpha := \inf_{u \in H^1(\mathbb{R}^N)} J^{\sigma,N}\left(u\right)$$

is attained at a function ψ with the following properties:

- 1. ψ is positive and a function of |x| alone.
- 2. $\psi \in H^1(\mathbb{R}^N) \cap C^{\infty}(\mathbb{R}^N)$.
- 3. ψ is a solution of the following equation

$$\frac{\sigma N}{2}\Delta\psi - \left(1 + \frac{\sigma}{2}\left(2 - N\right)\right)\psi + \psi^{2\sigma + 1} = 0, \tag{1.3}$$

of minimal L^2 norm (the ground state).

In addition,

$$\alpha = \frac{\|\psi\|_2^{2\sigma}}{\sigma + 1}.$$

In the proof of Theorem 1.1, we follow Strauss [5] in using a compactness property of functions in $H^1_{\text{radial}}(\mathbb{R}^N)$.

1.1 Strauss's estimate

Proposition 1.1 (Proposition 1.7.1, [2], p. 20). Let $(u_n)_{n\geq 0} \subset H^1(\mathbb{R}^N)$ be a bounded sequence of spherically symmetric functions. If $N\geq 2$ or if $u_n(x)$ is a nonincreasing function of |x| for every $n\geq 0$, then there exist a subsequence $(u_{n_k})_{k\geq 0}$ and $u\in H^1(\mathbb{R}^N)$ such that $u_{n_k}\to u$ as $k\to\infty$ in $L^p(\mathbb{R}^N)$ for every $2< p<\frac{2N}{N-2}$ $(2< p\leq \infty \text{ if } N=1)$.

Proposition 1.1 is an immediate consequence of the Lemma 1.1 and 1.2.

Proof. If $N \geq 2$, we apply the first estimate (1.4) in Lemma 1.2 to each spherically symmetric functions $u_n \in H^1(\mathbb{R}^N)$ to obtain

$$|u_n(x)| \le \frac{C \|u_n\|_{L^2}^{\frac{1}{2}} \|\nabla u_n\|_{L^2}^{\frac{1}{2}}}{|x|^{\frac{N-1}{2}}} \le \frac{C \|u_n\|_{H^1}}{|x|^{\frac{N-1}{2}}} \le \frac{C}{|x|^{\frac{N-1}{2}}}, \ \forall x \in \mathbb{R}^N, \ \forall n \ge 0.$$

Indeed, let $f \in H^1\left(\mathbb{R}^N\right)$ and suppose the interpolation estimate (1.2) holds. Since $\|f\|_2 < \infty$ and $\|\nabla f\|_2 < \infty$, (1.2) implies that $f \in L^{2\sigma+2}\left(\mathbb{R}^N\right)$ for all $0 < \sigma < \frac{2}{N-2}$. Thus, the nonlinear function $J^{\sigma,N}$ defined by (1.1) makes a sense for all $f \in H^1\left(\mathbb{R}^N\right)$ for all $0 < \sigma < \frac{2}{N-2}$.

where the last inequality is deduced from the boundedness of u_n 's.

If $u_n(x)$ is a nonincreasing function of |x| for every $n \ge 0$, we applying the second estimate (1.5) in Lemma 1.2 to u_n to obtain

$$|u_n(x)| \le \frac{C||u_n||_{L^2}}{|x|^{\frac{N}{2}}} \le \frac{C}{|x|^{\frac{N}{2}}}, \ \forall x \in \mathbb{R}^N, \ \forall n \ge 0.$$

In both cases, these estimates imply that $u_n(x) \to 0$ as $|x| \to \infty$, uniformly in $n \ge 0$. Now, we can apply Lemma 1.1 to obtain the desired result.

Lemma 1.1 (Lemma 1.7.2, [2], p. 20). Let $(u_n)_{n\geq 0}$ be a bounded sequence in $H^1(\mathbb{R}^N)$. Suppose $u_n(x) \to 0$ as $|x| \to \infty$, uniformly in $n \geq 0$. It follows that there exist a subsequence $u_{n_k} \to u$ as $k \to \infty$ in $L^p(\mathbb{R}^N)$ for every 2 <math>(2 .

Remark 1.1 (Remark 1.3.1(iii), [2], p.7). Assume $m \geq 1$ and $1 . If <math>(u_n)_{n \in \mathbb{N}}$ is a bounded sequence of $W^{m,p}(\Omega)$, then there exist $u \in W^{m,p}(\Omega)$ and a subsequence $(u_{n_k})_{k \in \mathbb{N}}$ such that $u_{n_k} \to u$ a.e. as $k \to \infty$, and

$$||u||_{W^{m,p}} \le \liminf_{n \to \infty} ||u_n||_{W^{m,p}}.$$

If $p < \infty$, then also $u_{n_k} \rightharpoonup u$ in $W^{m,p}$. If $p < \infty$ and $(u_n)_{n \in \mathbb{N}} \subset W_0^{m,p}(\Omega)$, then $u \in W_0^{m,p}(\Omega)$.

Applying this remark for a bounded sequence in $H^1\left(\mathbb{R}^N\right)$, there exist $u \in H^1\left(\mathbb{R}^N\right)$ and a subsequence $(u_{n_k})_{k \in \mathbb{N}}$ such that $u_{n_k} \to u$ a.e. as $k \to \infty$, $\|u\|_{H^1(\mathbb{R}^N)} \le \liminf \|u_n\|_{H^1(\mathbb{R}^N)}$ and $u_{n_k} \rightharpoonup u$ in $H^1\left(\mathbb{R}^N\right)$.

Proof of Lemma 1.1. Since $(u_n)_{n\geq 0}$ is a bounded sequence in $H^1\left(\mathbb{R}^N\right)$, applying Remark 1.1 yields that there exist $u\in H^1\left(\mathbb{R}^N\right)$ and a subsequence $(u_{n_k})_{k\geq 0}$ such that $u_{n_k}\rightharpoonup u$ as $k\to\infty$ in $H^1\left(\mathbb{R}^N\right)$. Fix $\varepsilon>0$ and let R>0 to be chosen later. Given $p\in\left(2,\frac{2N}{N-2}\right)$ $(2< p\leq\infty)$ if N=1, we have²

$$||u_{n_k} - u||_{L^p(\mathbb{R}^N)} = ||u_{n_k} - u||_{L^p(B_R)} + ||u_{n_k} - u||_{L^p(\{|x| \ge R\})}$$

$$\leq ||u_{n_k} - u||_{L^p(B_R)} + ||u_{n_k} - u||_{L^{\infty}(\{|x| \ge R\})}^{\frac{p-2}{p}} ||u_{n_k} - u||_{L^2(\mathbb{R}^N)}^{\frac{2}{p}}.$$

We first fix R large enough so that (by uniform convergence)

$$\|u_{n_k} - u\|_{L^{\infty}(\{|x| \ge R\})}^{\frac{p-2}{p}} \|u_{n_k} - u\|_{L^2(\mathbb{R}^N)}^{\frac{2}{p}} \le \frac{\varepsilon}{2}.$$

$$\begin{split} \|u_{n_k} - u\|_{L^p(\{|x| \ge R\})} &= \left(\int_{\{|x| \ge R\}} |u_{n_k} - u|^p\right)^{\frac{1}{p}} \le \left(\|u_{n_k} - u\|_{L^\infty(\{|x| \ge R\})}^{p-2} \int_{\{|x| \ge R\}} |u_{n_k} - u|^2\right)^{\frac{1}{p}} \\ &\le \|u_{n_k} - u\|_{L^\infty(\{|x| \ge R\})}^{\frac{p-2}{p}} \|u_{n_k} - u\|_{L^\infty(\{|x| \ge R\})}^{\frac{2}{p}} \le \|u_{n_k} - u\|_{L^\infty(\{|x| \ge R\})}^{\frac{p-2}{p}} \|u_{n_k} - u\|_{L^2(\mathbb{R}^N)}^{\frac{2}{p}}. \end{split}$$

²Here we use

Next, since $\left(u_{n_k}|_{B_R}\right)_{k\geq 0}$ is bounded in $H^1\left(B_R\right)$, it follows from Rellich's compactness theorem 2.1 (i) that $u_{n_k}|_{B_R} \to u|_{B_R}$ in $L^p\left(B_R\right)$. Therefore for k large enough we have

$$||u_{n_k} - u||_{L^p(B_R)} \le \frac{\varepsilon}{2},$$

and so $||u_{n_k} - u||_{L^p(\mathbb{R}^N)} \leq \varepsilon$. This proves the result.

Lemma 1.2 (Lemma 1.7.3, [2], p. 21). If $u \in H^1(\mathbb{R}^N)$ is a radially symmetric function, then

$$\sup_{x \in \mathbb{R}^{N}} |x|^{\frac{N-1}{2}} |u(x)| \le C \|u\|_{L^{2}}^{\frac{1}{2}} \|\nabla u\|_{L^{2}}^{\frac{1}{2}}. \tag{1.4}$$

If, in addition, u(x) is a nonincreasing function of |x|, then

$$\sup_{x \in \mathbb{R}^{N}} |x|^{\frac{N}{2}} |u(x)| \le C ||u||_{L^{2}}. \tag{1.5}$$

Proof. Suppose first $u \in C_c^{\infty}(\mathbb{R}^N)$. Since u is radially symmetric, there exists a function \widetilde{u} : $\mathbb{R}^+ \to \mathbb{R}$ such that $u(x) = \widetilde{u}(|x|)$ for all $x \in \mathbb{R}^N$. Simple computation gives us $|\nabla u(x)| = |\widetilde{u}'(r)|$ where r = |x|. We have

$$\begin{aligned} \|u\|_{L^{2}(\mathbb{R}^{N})}^{2} &= \left(\int_{\mathbb{R}^{N}} |u\left(x\right)|^{2} dx\right) = \int_{\partial B_{1}(0)} \left(\int_{0}^{\infty} |u\left(ry\right)|^{2} r^{N-1} dr\right) dS\left(y\right) \\ &= \int_{\partial B_{1}(0)} \left(\int_{0}^{\infty} \widetilde{u}(r)^{2} r^{N-1} dr\right) dS\left(y\right) = N\alpha_{N} \int_{0}^{\infty} \widetilde{u}(r)^{2} r^{N-1} dr, \\ \|\nabla u\|_{L^{2}(\mathbb{R}^{N})}^{2} &= \left(\int_{\mathbb{R}^{N}} |\nabla u\left(x\right)|^{2} dx\right) = \int_{\partial B_{1}(0)} \left(\int_{0}^{\infty} |\nabla u\left(ry\right)|^{2} r^{N-1} dr\right) dS\left(y\right) \\ &= \int_{\partial B_{1}(0)} \left(\int_{0}^{\infty} \widetilde{u}'(r)^{2} r^{N-1} dr\right) dS\left(y\right) = N\alpha_{N} \int_{0}^{\infty} \widetilde{u}'(r)^{2} r^{N-1} dr, \end{aligned}$$

and

$$r^{N-1}\widetilde{u}(r)^{2} = -\int_{r}^{\infty} \frac{d}{ds} \left(s^{N-1}\widetilde{u}(s)^{2}\right) ds = -\int_{r}^{\infty} \left(\underbrace{(N-1)s^{N-2}\widetilde{u}(s)^{2}}_{\geq 0} + 2s^{N-1}\widetilde{u}\left(s\right)\widetilde{u}'\left(s\right)\right) ds$$

$$\leq -2\int_{r}^{\infty} s^{N-1}\widetilde{u}\left(s\right)\widetilde{u}'\left(s\right) ds \leq 2\left(\int_{r}^{\infty} s^{N-1}\widetilde{u}(s)^{2}ds\right)^{\frac{1}{2}} \left(\int_{r}^{\infty} s^{N-1}u'(s)^{2}ds\right)^{\frac{1}{2}}$$

$$\leq 2\left(\int_{0}^{\infty} s^{N-1}\widetilde{u}(s)^{2}ds\right)^{\frac{1}{2}} \left(\int_{0}^{\infty} s^{N-1}u'(s)^{2}ds\right)^{\frac{1}{2}}$$

$$\leq 2\left(\int_{0}^{\infty} s^{N-1}\widetilde{u}(s)^{2}ds\right)^{\frac{1}{2}} \left(\int_{0}^{\infty} s^{N-1}u'(s)^{2}ds\right)^{\frac{1}{2}}$$

$$\leq 2\frac{\|u\|_{L^{2}(\mathbb{R}^{N})}}{\sqrt{N\alpha_{N}}} \frac{\|\nabla u\|_{L^{2}(\mathbb{R}^{N})}}{\sqrt{N\alpha_{N}}} = \frac{2}{N\alpha_{N}} \|u\|_{L^{2}(\mathbb{R}^{N})} \|\nabla u\|_{L^{2}(\mathbb{R}^{N})}.$$

where and α_N is the volume of the unit ball in \mathbb{R}^N , which is given by $\alpha_N := \frac{2\pi^{\frac{N}{2}}}{N\Gamma(\frac{N}{2})}$. That means (1.4) holds for all $u \in C_c^{\infty}(\mathbb{R}^N)$.

If u(x) is a nonincreasing function of |x|, then for all $r \geq 0$,

$$||u||_{L^{2}}^{2} = \left(\int_{\mathbb{R}^{N}} |u(x)|^{2} dx\right) \ge \left(\int_{\{|x| \le r\}} |u(x)|^{2} dx\right) \ge |\{|x| \le r\}| |\widetilde{u}(r)|^{2} = \alpha_{N} \mathbb{R}^{N} |\widetilde{u}(r)|^{2},$$

i.e., (1.5) holds for all $u \in C_c^{\infty}(\mathbb{R}^N)$.

The general case then follows by a density argument.

Proof of Theorem 1.1 1.2

Proof of Theorem 1.1. First note that if we set $u^{\lambda,\mu}(x) := \mu u(\lambda x)$, then $\nabla u^{\lambda,\mu}(x) = \mu \lambda \nabla u(\lambda x)$, and

$$\begin{split} \left\| u^{\lambda,\mu} \right\|_2^2 &= \int_{\mathbb{R}^N} \left| u^{\lambda,\mu} \left(x \right) \right|^2 dx = \int_{\mathbb{R}^N} \left| \mu u \left(\lambda x \right) \right|^2 dx = \frac{\mu^2}{\lambda^N} \int_{\mathbb{R}^N} \left| u \left(x \right) \right|^2 dx = \frac{\mu^2}{\lambda^N} \left\| u \right\|_2^2, \\ \left\| u^{\lambda,\mu} \right\|_{2\sigma+2}^{2\sigma+2} &= \int_{\mathbb{R}^N} \left| u^{\lambda,\mu} \left(x \right) \right|^{2\sigma+2} dx = \int_{\mathbb{R}^N} \left| \mu u \left(\lambda x \right) \right|^{2\sigma+2} dx = \frac{\left| \mu \right|^{2\sigma+2}}{\lambda^N} \left\| u \right\|_{2\sigma+2}^{2\sigma+2}, \\ \left\| \nabla u^{\lambda,\mu} \right\|_2^2 &= \int_{\mathbb{R}^N} \left| \nabla u^{\lambda,\mu} \left(x \right) \right|^2 dx = \int_{\mathbb{R}^N} \left| \mu \lambda \nabla u \left(\lambda x \right) \right|^2 dx = \frac{\mu^2}{\lambda^{N-2}} \left\| \nabla u \right\|_2^2, \\ J^{\sigma,N} \left(u^{\lambda,\mu} \right) &= \frac{\left\| \nabla u^{\lambda,\mu} \right\|_2^{\sigma N} \left\| u^{\lambda,\mu} \right\|_{2\sigma+2}^{2\sigma+2-\sigma N}}{\left\| u^{\lambda,\mu} \right\|_{2\sigma+2}^{2\sigma+2}} = \frac{\left(\frac{\mu^2}{\lambda^{N-2}} \right)^{\frac{\sigma N}{2}} \left\| \nabla u \right\|_2^{\sigma N} \left(\frac{\mu^2}{\lambda^N} \right)^{\frac{2\sigma+2-\sigma N}{2}} \left\| u \right\|_2^{2\sigma+2-\sigma N}}{\frac{\mu^{2\sigma+2}}{\lambda^N} \left\| u \right\|_{2\sigma+2}^{2\sigma+2}} \\ &= \frac{\left\| \nabla u \right\|_2^{\sigma N} \left\| u \right\|_2^{2\sigma+2-\sigma N}}{\left\| u \right\|_{2\sigma+2}^{2\sigma+2}} = J^{\sigma,N} \left(u \right). \end{split}$$

Since $J^{\sigma,N}\left(u\right) \geq 0$, there exists a minimizing sequence $u_v \in H^1\left(\mathbb{R}^N\right) \cap L^{2\sigma+2}\left(\mathbb{R}^N\right)$, i.e., $\alpha = \inf_{u \in H^1\left(\mathbb{R}^N\right)} J^{\sigma,N}\left(u\right) = \lim_{v \uparrow \infty} J^{\sigma,N}\left(u_v\right) < \infty$. We can assume $u_v > 0$ (since $J^{\sigma,N}\left(u\right) = J^{\sigma,N}\left(-u\right)$), and by symmetrization we can take $u_v = u_v(|x|)^3$.

Choosing $\lambda_v = \frac{\|u_v\|_2}{\|\nabla u_v\|_2}$, $\mu_v = \frac{\|u_v\|_2^{\frac{N}{2}-1}}{\|\nabla u_v\|_2^{\frac{N}{2}}}$, we obtain a sequence $\psi_v(x) := u^{\lambda_v, \mu_v}(x)$ with the following properties:

- (a) $\psi_v(x) > 0$, $\psi_v = \psi_v(|x|)$,
- (b) $\psi_v \in H^1(\mathbb{R}^N)$,
- (c) $\|\psi_v\|_2 = 1$, and $\|\nabla \psi_v\|_2 = 1$,
- (d) $J^{\sigma,N}(\psi_v) \downarrow \alpha \text{ as } v \to \infty$.

Indeed, since for any $u \in H^1\left(\mathbb{R}^N\right) \cap L^{2\sigma+2}\left(\mathbb{R}^N\right)$, its symmetric-decreasing rearrangement u^* satisfies $\|u^*\|_{2\sigma+2} = \|u\|_{2\sigma+2}, \ \|u^*\|_2 = \|u\|_2, \ \|\nabla u^*\|_2 \leq \|\nabla u\|_2$, and thus $J^{\sigma,N}\left(u^*\right) \leq J^{\sigma,N}\left(u\right)$. Hence, it suffices to consider only radially symmetric functions to minimize $J^{\sigma,N}$.

⁴Solve $\|u_v^{\lambda,\mu}\|_2 = \|\nabla_x u_v^{\lambda,\mu}\|_2 = 1$ to obtain λ_v and μ_v .

Since the sequence ψ_v is bounded in $H^1\left(\mathbb{R}^N\right)$, some subsequence has a weak H^1 limit ψ^* . Since ψ_v are radial and uniformly bounded in $H^1\left(\mathbb{R}^N\right)$, it follows from the compactness lemma that we can take ψ_v strongly convergent to ψ^* in $L^{2\sigma+2}\left(\mathbb{R}^N\right)$ for $0 < \sigma < \frac{2}{N-2}$. By weak convergence, $\|\psi^*\|_2 \le 1$ and $\|\nabla\psi^*\|_2 \le 1$. Hence,

$$\alpha \le J^{\sigma,N}\left(\psi^*\right) \le \frac{1}{\int |\psi^*|^{2\sigma+2} dx} = \lim_{v \uparrow \infty} J\left(\psi_v\right) = \alpha.$$

It follows that $\|\nabla \psi^*\|_2^{\sigma N} \|\psi^*\|_2^{2+\sigma(2-N)} = 1$ and therefore $\|\psi^*\|_2 = \|\nabla \psi^*\|_2 = 1$, so $\psi_v \to \psi^*$ strongly in H^{1-5} . This proves part (1) and (2) of Theorem 1.1.

Part (3) follows from the fact that ψ^* , the minimizing function, is in $H^1(\mathbb{R}^N)$ and satisfies the Euler-Lagrange equation:

$$\frac{d}{d\varepsilon}\Big|_{\varepsilon=0} J^{\sigma,N} \left(\psi^* + \varepsilon \eta\right) = 0, \ \forall \eta \in C_0^{\infty} \left(\mathbb{R}^N\right).$$
(1.6)

Taking into account that $\|\psi^*\|_2 = 1$ and $\|\nabla \psi^*\|_2 = 1$, we have

$$\frac{\sigma N}{2} \Delta \psi^* - \left(1 + \frac{\sigma}{2} (2 - N)\right) \psi^* + \alpha (\sigma + 1) (\psi^*)^{2\sigma + 1} = 0.$$
 (1.7)

Indeed, given $\eta \in C_0^{\infty}(\mathbb{R}^N)$, we define

$$g_{\eta}\left(\varepsilon\right):=J^{\sigma,N}\left(\psi^{*}+\varepsilon\eta\right)=\frac{\left(\int_{\mathbb{R}^{N}}\left|\nabla\psi^{*}+\varepsilon\nabla\eta\right|^{2}dx\right)^{\frac{\sigma N}{2}}\left(\int_{\mathbb{R}^{N}}\left|\psi^{*}+\varepsilon\eta\right|^{2}dx\right)^{\frac{2+\sigma(2-N)}{2}}}{\int_{\mathbb{R}^{N}}\left|\psi^{*}+\varepsilon\eta\right|^{2\sigma+2}dx}.$$

then (1.6) is equivalent to

$$g_{\eta}'(0) = 0, \ \forall \eta \in C_0^{\infty}(\mathbb{R}^N).$$
 (1.8)

For simplicity, define

$$A(\varepsilon) := \int_{\mathbb{R}^N} |\nabla \psi^* + \varepsilon \nabla \eta|^2 dx,$$

$$B(\varepsilon) := \int_{\mathbb{R}^N} |\psi^* + \varepsilon \eta|^2 dx,$$

$$C(\varepsilon) := \int_{\mathbb{R}^N} |\psi^* + \varepsilon \eta|^{2\sigma + 2} dx.$$

In particular,

$$A(0) = \int_{\mathbb{R}^N} |\nabla \psi^*|^2 dx = ||\nabla \psi^*||_2^2 = 1,$$

$$B(0) = \int_{\mathbb{R}^N} |\psi^*|^2 dx = ||\psi^*||_2^2 = 1,$$

⁵If $x_n \to x$ in a Hilbert space H, and $||x_n||_H \to ||x||_H$, then x_n converges to x strongly.

$$C\left(0\right) = \int_{\mathbb{R}^N} |\psi^*|^{2\sigma + 2} dx = \frac{1}{\alpha}.$$

The derivatives of these functions are given by

$$\begin{split} A'\left(\varepsilon\right) &= \int_{\mathbb{R}^{N}} \frac{d}{d\varepsilon} |\nabla \psi^{*} + \varepsilon \nabla \eta|^{2} dx = 2 \int_{\mathbb{R}^{N}} \left(\nabla \psi^{*} + \varepsilon \nabla \eta\right) \cdot \nabla \eta dx, \\ B'\left(\varepsilon\right) &= \int_{\mathbb{R}^{N}} \frac{d}{d\varepsilon} \left(|\psi^{*} + \varepsilon \eta|^{2}\right) dx = 2 \int_{\mathbb{R}^{N}} \left(\psi^{*} + \varepsilon \eta\right) \eta dx, \\ C'\left(\varepsilon\right) &= \int_{\mathbb{R}^{N}} \frac{d}{d\varepsilon} \left(|\psi^{*} + \varepsilon \eta|^{2\sigma + 2}\right) dx = 2 \left(\sigma + 1\right) \int_{\mathbb{R}^{N}} \operatorname{sign}\left(\psi^{*} + \varepsilon \eta\right) |\psi^{*} + \varepsilon \eta|^{2\sigma + 1} \eta dx. \end{split}$$

In particular,

$$A'(0) = 2 \int_{\mathbb{R}^{N}} \nabla \psi^{*} \cdot \nabla \eta dx,$$

$$B'(0) = 2 \int_{\mathbb{R}^{N}} \psi^{*} \eta dx,$$

$$C'(0) = 2 (\sigma + 1) \int_{\mathbb{R}^{N}} \operatorname{sign}(\psi^{*}) |\psi^{*}|^{2\sigma + 1} \eta dx = 2 (\sigma + 1) \int_{\mathbb{R}^{N}} (\psi^{*})^{2\sigma + 1} \eta dx.$$

where the last equality is deduced from the fact that $\psi^* \geq 0$.

Now we compute $g'_{\eta}(\varepsilon)$. Note that

$$g_{\eta}(\varepsilon) = \frac{A(\varepsilon)^{\frac{\sigma N}{2}} B(\varepsilon)^{1 + \frac{\sigma(2-N)}{2}}}{C(\varepsilon)},$$

its derivative is given by

$$g_{\eta}'\left(\varepsilon\right) = \frac{\frac{\sigma N}{2}A(\varepsilon)^{\frac{\sigma N}{2}-1}A'\left(\varepsilon\right)B(\varepsilon)^{1+\frac{\sigma(2-N)}{2}} + \left(1+\frac{\sigma(2-N)}{2}\right)A(\varepsilon)^{\frac{\sigma N}{2}}B(\varepsilon)^{\frac{\sigma(2-N)}{2}}B'\left(\varepsilon\right)}{C\left(\varepsilon\right)} - \frac{A(\varepsilon)^{\frac{\sigma N}{2}}B(\varepsilon)^{1+\frac{\sigma(2-N)}{2}}C'\left(\varepsilon\right)}{C^{2}\left(\varepsilon\right)},$$

and then

$$\begin{split} g_{\eta}'\left(0\right) &= \frac{\frac{\sigma N}{2}A'\left(0\right) + \left(1 + \frac{\sigma\left(2 - N\right)}{2}\right)B'\left(0\right)}{C\left(0\right)} - \frac{C'\left(0\right)}{C^{2}\left(0\right)} \\ &= 2\alpha\left[\frac{\sigma N}{2}\int_{\mathbb{R}^{N}}\nabla\psi^{*}\cdot\nabla\eta dx + \left(1 + \frac{\sigma\left(2 - N\right)}{2}\right)\int_{\mathbb{R}^{N}}\psi^{*}\eta dx - \alpha\left(\sigma + 1\right)\int_{\mathbb{R}^{N}}\left(\psi^{*}\right)^{2\sigma + 1}\eta dx\right]. \end{split}$$

Combining this with (1.8) yields

$$\frac{\sigma N}{2} \int_{\mathbb{R}^{N}} \nabla \psi^{*} \cdot \nabla \eta dx + \left(1 + \frac{\sigma\left(2 - N\right)}{2}\right) \int_{\mathbb{R}^{N}} \psi^{*} \eta dx - \alpha\left(\sigma + 1\right) \int_{\mathbb{R}^{N}} \left(\psi^{*}\right)^{2\sigma + 1} \eta dx = 0, \ \forall \eta \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right), \text{ i.e.,}$$

$$\frac{\sigma N}{2} \Delta \psi^* - \left(1 + \frac{\sigma}{2} (2 - N)\right) \psi^* + \alpha (\sigma + 1) (\psi^*)^{2\sigma + 1} = 0 \text{ in } \mathcal{D}'.$$

Let $\psi = \left[\alpha \left(\sigma + 1\right)\right]^{\frac{1}{2\sigma}} \psi^*$, then

- i) ψ is positive and radially symmetric.
- ii) $\psi \in H^1(\mathbb{R}^N) \cap C^\infty(\mathbb{R}^N)$.
- iii) ψ satisfies

$$\frac{\sigma N}{2} \Delta \psi - \left(1 + \frac{\sigma}{2} (2 - N)\right) \psi + \psi^{2\sigma + 1} = 0 \text{ in } \mathcal{D}'.$$

$$(1.9)$$

Now we regularize ψ by a bootstrap argument:

 $\star \, Step \, 1 \colon \text{Since} \, \psi \in H^1_{\text{radial}} \left(\mathbb{R}^N \right) \text{, the Compactness Lemma implies that} \, \psi \in L^{2\sigma+2} \left(\mathbb{R}^N \right) \text{, and} \\ \text{thus} \, \, \psi^{2\sigma+1} \in L^{\frac{2\sigma+2}{2\sigma+1}} \left(\mathbb{R}^N \right) . \, \, \text{Since} \, 1 < \frac{2\sigma+2}{2\sigma+1} < 2 \text{, we have implies that} \, \, L^2 \left(\mathbb{R}^N \right) \hookrightarrow L^{\frac{2\sigma+1}{2\sigma+2}}_{\text{loc}} \left(\mathbb{R}^N \right) \text{,} \\ \text{and consequently} \, \, \psi \in L^{\frac{2\sigma+2}{2\sigma+2}}_{\text{loc}} \left(\mathbb{R}^N \right) . \, \, \text{Then} \, \, (1.9) \, \, \text{implies that} \, \, \Delta \psi \in L^{\frac{2\sigma+2}{2\sigma+1}}_{\text{loc}} \left(\mathbb{R}^N \right) . \, \, \text{Using elliptic} \\ \text{regularity, it follows that} \, \, \psi \in W^{2,\frac{2\sigma+2}{2\sigma+1}}_{loc} \left(\mathbb{R}^N \right) .$

Similarly, we can prove that⁶

Statement 1: If $\psi \in L^q_{loc}(\mathbb{R}^N)$, then $\psi \in W^{2,\frac{q}{2\sigma+1}}_{loc}(\mathbb{R}^N)$.

Put $q_0 := 2\sigma + 2$, we currently have $\psi \in W^{2,\frac{q_0}{2\sigma+1}}_{loc}(\mathbb{R}^N)$. We consider the following cases depending on σ and N:

- Case $\frac{2\sigma+1}{q_0} < \frac{2}{N}$: Applying the general Sobolev embedding theorem 2.2 ii) to $(k, N, p) = (2, N, \frac{q_0}{2\sigma+1})$ implies $\psi \in C^{0,\alpha}_{loc}(\mathbb{R}^N)$ for some $\alpha \in (0, 1)$.
- Case $\frac{2\sigma+1}{q_0} = \frac{2}{N}$: Applying the general Sobolev embedding theorem 2.3 to $(k, N, p) = \left(2, N, \frac{q_0}{2\sigma+1}\right)$ implies $\psi \in L^r_{\text{loc}}\left(\mathbb{R}^N\right)$ for all $r \in \left[\frac{N}{2}, +\infty\right)$. In particular, choosing $r = (\sigma+1)N > \frac{N}{2}$, we have $\psi \in L^{(\sigma+1)N}_{\text{loc}}\left(\mathbb{R}^N\right)$. Statement 1 then implies $\psi \in W^{2,\frac{(\sigma+1)N}{2\sigma+1}}_{\text{loc}}\left(\mathbb{R}^N\right)$. Since $\frac{2\sigma+1}{(\sigma+1)N} < \frac{2}{N}$, applying the general Sobolev embedding theorem 2.2 ii) yields $\psi \in C^{0,\alpha}_{\text{loc}}\left(\mathbb{R}^N\right)$ for some $\alpha \in (0,1)$.
- Case $\frac{2\sigma+1}{q_0} > \frac{2}{N}$: We define $q_1 > 0$ by

$$\frac{1}{q_1} = \frac{2\sigma + 1}{q_0} - \frac{2}{N},$$

and then applying the general Sobolev embedding theorem 2.2 i) yields $\psi \in L^{q_1}_{loc}(\mathbb{R}^N)$. Statement 1 then implies $\psi \in W^{2,\frac{q_1}{2\sigma+1}}_{loc}(\mathbb{R}^N)$.

We continue this treatment for q_1 . There are two possibilities: either $\psi \in C^{0,\alpha}_{loc}(\mathbb{R}^N)$ for some $\alpha \in (0,1)$ or $\psi \in W^{2,\frac{q_2}{2\sigma+1}}_{loc}(\mathbb{R}^N)$ with $\frac{1}{q_2} = \frac{2\sigma+1}{q_1} - \frac{2}{N}$.

We claim that there exists $n^* \in \mathbb{N}$ such that $\frac{2\sigma+1}{q_{n^*}} \leq \frac{2}{N}$. Indeed, suppose for the contrary that the sequence $(q_n)_n$ defined by

$$\begin{cases} q_0 = 2\sigma + 2, \\ \frac{1}{q_n} = \frac{2\sigma + 1}{q_{n-1}} - \frac{2}{N}, \ \forall n \in \mathbb{N}, \end{cases}$$

consists of all positive real terms.

It is deduced from the recursion that

$$\frac{1}{q_n} - \frac{1}{\sigma N} = (2\sigma + 1) \left(\frac{1}{q_{n-1}} - \frac{1}{\sigma N} \right), \ \forall n \in \mathbb{N}.$$

Thus,

$$\frac{1}{q_n} - \frac{1}{\sigma N} = (2\sigma + 1)^n \left(\frac{1}{q_0} - \frac{1}{\sigma N}\right),\,$$

or equivalently,

$$\frac{1}{q_n} = \frac{1}{\sigma N} + (2\sigma + 1)^n \left(\frac{1}{q_0} - \frac{1}{\sigma N}\right).$$

Since $\frac{1}{q_0} - \frac{1}{\sigma N} = \frac{1}{2\sigma + 2} - \frac{1}{\sigma N} = \frac{\sigma(N-2) - 2}{\sigma N(2\sigma + 2)} < 0$, the RHS of the last equality tends to $-\infty$ as $n \to +\infty$, which contradicts to the assumption $q_n > 0$ for all $n \in \mathbb{N}$.

Therefore, there exists $n^* \in \mathbb{N}$ such that $\frac{2\sigma+1}{q_{n^*}} \leq \frac{2}{N}$ and thus we have $\psi \in C^{0,\alpha}_{loc}(\mathbb{R}^N)$ for some $\alpha \in (0,1)$.

Step 2: We can prove that $\psi^{2\sigma+1} \in C^{0,\alpha}_{loc}(\mathbb{R}^N)$. Then Schauder theorem 2.4 implies $\psi \in C^{2,\alpha}_{loc}(\mathbb{R}^N)$. Using bootstrap argument, we can prove that $\psi \in C^{4,\alpha}_{loc}(\mathbb{R}^N)$, etc. So $\psi \in C^{2m,\alpha}_{loc}(\mathbb{R}^N)$ for all $m \in \mathbb{N}$, and thus $\psi \in C^{\infty}(\mathbb{R}^N)$.

Prove that ψ is a solution of (1.7) of minimal L^2 norm. Let φ be an arbitrary solution of (1.7)

$$\frac{\sigma N}{2}\Delta\varphi - \left(1 + \frac{\sigma}{2}(2 - N)\right)\varphi + \varphi^{2\sigma + 1} = 0. \tag{1.10}$$

Multiply (1.10) by φ and integrate over \mathbb{R}^N , we obtain

$$\frac{\sigma N}{2} \|\nabla \varphi\|_{2}^{2} + \left(1 + \frac{\sigma}{2} (2 - N)\right) \|\varphi\|_{2}^{2} = \|\varphi\|_{2\sigma + 2}^{2\sigma + 2}. \tag{1.11}$$

Multiply (1.10) by $x \cdot \nabla \varphi$ and integrate over \mathbb{R}^N , we obtain

$$\frac{\sigma N}{2} \int_{\mathbb{R}^{N}} \Delta \varphi x \cdot \nabla \varphi dx - \left(1 + \frac{\sigma}{2} \left(2 - N\right)\right) \int_{\mathbb{R}^{N}} \varphi x \cdot \nabla \varphi dx + \int_{\mathbb{R}^{N}} \varphi^{2\sigma + 1} x \cdot \nabla \varphi dx = 0. \tag{1.12}$$

We have

$$\int_{\mathbb{R}^N} \Delta \varphi x \cdot \nabla \varphi dx = \int_{\mathbb{R}^N} \left(\sum_{i=1}^N \partial_{x_i}^2 \varphi \right) \left(\sum_{j=1}^N x_j \partial_{x_j} \varphi \right) dx = \sum_{i=1}^N \sum_{j=1}^N \int_{\mathbb{R}^N} \partial_{x_i}^2 \varphi x_j \partial_{x_j} \varphi dx$$

$$\begin{split} &= \sum_{i=1}^{N} \int_{\mathbb{R}^{N}} \partial_{x_{i}}^{2} \varphi x_{i} \partial_{x_{i}} \varphi dx + \sum_{i \neq j} \int_{\mathbb{R}^{N}} \partial_{x_{i}}^{2} \varphi x_{j} \partial_{x_{j}} \varphi dx \\ &= -\sum_{i=1}^{N} \int_{\mathbb{R}^{N}} \partial_{x_{i}} \varphi \partial_{x_{i}} \left(x_{i} \partial_{x_{i}} \varphi \right) dx - \sum_{i \neq j} \int_{\mathbb{R}^{N}} \partial_{x_{i}} \varphi x_{j} \partial_{x_{i}x_{j}} \varphi dx \\ &= -\sum_{i=1}^{N} \int_{\mathbb{R}^{N}} \left(\partial_{x_{i}} \varphi \right)^{2} dx - \sum_{i=1}^{N} \int_{\mathbb{R}^{N}} \partial_{x_{i}} \varphi x_{i} \partial_{x_{i}x_{i}} \varphi dx - \sum_{i \neq j} \int_{\mathbb{R}^{N}} \partial_{x_{i}} \varphi x_{j} \partial_{x_{i}x_{j}} \varphi dx \\ &= -\sum_{i=1}^{N} \int_{\mathbb{R}^{N}} \left(\partial_{x_{i}} \varphi \right)^{2} dx - \sum_{i=1}^{N} \sum_{j=1}^{N} \int_{\mathbb{R}^{N}} \partial_{x_{i}} \varphi x_{j} \partial_{x_{i}x_{j}} \varphi dx \\ &= -\sum_{i=1}^{N} \int_{\mathbb{R}^{N}} \left(\partial_{x_{i}} \varphi \right)^{2} dx - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \int_{\mathbb{R}^{N}} x_{j} \partial_{x_{j}} \left((\partial_{x_{i}} \varphi)^{2} \right) dx \\ &= -\sum_{i=1}^{N} \int_{\mathbb{R}^{N}} \left(\partial_{x_{i}} \varphi \right)^{2} dx + \frac{N}{2} \sum_{i=1}^{N} \int_{\mathbb{R}^{N}} \left(\partial_{x_{i}} \varphi \right)^{2} dx \\ &= \left(\frac{N}{2} - 1 \right) \|\nabla \varphi\|_{2}^{2}, \end{split}$$

$$\int_{\mathbb{R}^{N}} \varphi x \cdot \nabla \varphi dx = \sum_{i=1}^{N} \int_{\mathbb{R}^{N}} \varphi x_{i} \partial_{x_{i}} \varphi dx = \frac{1}{2} \sum_{i=1}^{N} \int_{\mathbb{R}^{N}} x_{i} \partial_{x_{i}} \left(\varphi^{2} \right) dx = -\frac{1}{2} \sum_{i=1}^{N} \int_{\mathbb{R}^{N}} \varphi^{2} dx = -\frac{N}{2} \left\| \varphi \right\|_{2}^{2}.$$

and

$$\begin{split} \int_{\mathbb{R}^N} \varphi^{2\sigma+1} x \cdot \nabla \varphi dx &= \sum_{i=1}^N \int_{\mathbb{R}^N} \varphi^{2\sigma+1} x_i \partial_{x_i} \varphi dx = \frac{1}{2\sigma+2} \sum_{i=1}^N \int_{\mathbb{R}^N} \partial_{x_i} \left(\varphi^{2\sigma+2} \right) x_i dx \\ &= -\frac{1}{2\sigma+2} \sum_{i=1}^N \int_{\mathbb{R}^N} \varphi^{2\sigma+2} dx = -\frac{N}{2\sigma+2} \left\| \varphi \right\|_{2\sigma+2}^{2\sigma+2}. \end{split}$$

Then (1.12) becomes

$$\frac{\sigma N}{2} \left(\frac{N}{2} - 1 \right) \|\nabla \varphi\|_{2}^{2} + \frac{N}{2} \left(1 + \frac{\sigma}{2} \left(2 - N \right) \right) \|\varphi\|_{2}^{2} = \frac{N}{2\sigma + 2} \|\varphi\|_{2\sigma + 2}^{2\sigma + 2}. \tag{1.13}$$

Combining (1.11) and (1.13) yields the following system

$$\begin{split} \frac{\sigma N}{2} \left\| \nabla \varphi \right\|_2^2 - \left\| \varphi \right\|_{2\sigma + 2}^{2\sigma + 2} &= - \left(1 + \frac{\sigma}{2} \left(2 - N \right) \right) \left\| \varphi \right\|_2^2, \\ \frac{\sigma N}{2} \left(\frac{N}{2} - 1 \right) \left\| \nabla \varphi \right\|_2^2 - \frac{N}{2\sigma + 2} \left\| \varphi \right\|_{2\sigma + 2}^{2\sigma + 2} &= - \frac{N}{2} \left(1 + \frac{\sigma}{2} \left(2 - N \right) \right) \left\| \varphi \right\|_2^2. \end{split}$$

Solving $\|\nabla \varphi\|_2^2$ and $\|\varphi\|_{2\sigma+2}^{2\sigma+2}$ in terms of $\|\varphi\|_2^2$ gives us

$$\left\|\nabla\varphi\right\|_{2}^{2}=\left\|\varphi\right\|_{2}^{2},\ \left\|\varphi\right\|_{2\sigma+2}^{2\sigma+2}=\left(\sigma+1\right)\left\|\varphi\right\|_{2}^{2},$$

and then

$$J^{\sigma,N}\left(\varphi\right) = \frac{\|\nabla\varphi\|_{2}^{\sigma N} \|\varphi\|_{2}^{2+\sigma(2-N)}}{\|\varphi\|_{2\sigma+2}^{2\sigma+2}} = \frac{\|\varphi\|_{2}^{\sigma N} \|\varphi\|_{2}^{2+\sigma(2-N)}}{(\sigma+1) \|\varphi\|_{2}^{2}} = \frac{\|\varphi\|_{2}^{2\sigma}}{\sigma+1}.$$

In particular, $J^{\sigma,N}\left(\psi\right) = \frac{\|\psi\|_2^{2\sigma}}{\sigma+1}$. Since $J^{\sigma,N}\left(\varphi\right) \geq J^{\sigma,N}\left(\psi\right)$, it follows that $\|\varphi\|_2 \geq \|\psi\|_2$.

Corollary 1.1. The best (smallest) constant for which the interpolation estimate (1.2) holds is given by the expression

$$C_{\sigma,N} := \left(\frac{\sigma+1}{\|\psi\|_2^{2\sigma}}\right)^{\frac{1}{2\sigma+2}},$$

where ψ is the ground state of equation (1.3).

Proof. The best constant $C_{\sigma,N}$ is given by

$$C_{\sigma,N} = \left(\inf_{u \in H^{1}(\mathbb{R}^{N})} J^{\sigma,N}(u)\right)^{-\frac{1}{2\sigma+2}} = \alpha^{-\frac{1}{2\sigma+2}} = \left(\frac{\sigma+1}{\|\psi\|_{2}^{2\sigma}}\right)^{\frac{1}{2\sigma+2}}.$$

Corollary 1.2. Let $0 < \sigma < \frac{2}{N-2}$. Then, the following equation

$$\Delta u - u + u^{2\sigma + 1} = 0 \tag{1.14}$$

has a positive, radial solution of class $H^1(\mathbb{R}^N)$.

Proof. Let ψ be the solution of (1.3). Set $u(x) := \frac{1}{\mu} \psi\left(\frac{x}{\lambda}\right)$, or $\psi(x) = \mu u(\lambda x)$. By Theorem (1.1), u is positive, radial, of class $H^1(\mathbb{R}^N)$ and then satisfies the equation

$$\frac{\sigma N}{2} \lambda \mu \Delta u - \left(1 + \frac{\sigma}{2} (2 - N)\right) \mu u + \mu^{2\sigma + 1} u^{2\sigma + 1} = 0.$$
 (1.15)

Choosing

$$\lambda = \frac{2}{\sigma N} \left(1 + \frac{\sigma}{2} (2 - N) \right),$$

$$\mu = \left(1 + \frac{\sigma}{2} (2 - N) \right)^{\frac{1}{2\sigma}},$$

then (1.15) gives us

$$\Delta u - u + u^{2\sigma + 1} = 0.$$

This completes the proof.

2 Appendix

2.1 Rellich's compactness theorem

Theorem 2.1 (Rellich's compactness theorem, [2], pp. 8-9). If Ω is bounded and has a Lipschitz continuous boundary, then the following properties hold:

- (i) If $1 \leq p \leq N$, then the embedding $W^{1,p}\left(\Omega\right) \hookrightarrow L^{q}\left(\Omega\right)$ is compact for every $q \in \left[p, \frac{Np}{N-p}\right)$.
- (ii) If p > N, then the embedding $W^{1,p}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ is compact.

If we assume further that Ω has a uniformly Lipschitz continuous boundary, then:

(iii) If p > N, then the embedding $W^{1,p}\left(\Omega\right) \hookrightarrow \left(\overline{\Omega}\right)$ is compact for every $\lambda \in \left(0, \frac{p-N}{p}\right)$.

2.2 Interpolation estimate

Lemma 2.1 (Interpolation estimate). If $1 \le p \le q \le r$, then $L^p(\Omega) \cap L^r(\Omega) \hookrightarrow L^q(\Omega)$ and

$$||f||_q \le ||f||_p^{\theta} ||f||_r^{1-\theta},$$

where $0 \le \theta \le 1$ is given by

$$\frac{1}{q} = \frac{\theta}{p} + \frac{1-\theta}{r}.$$

2.3 Sobolev embedding

Theorem 2.2 (General Sobolev inequalities, [3], pp. 284-285). Let U be a bounded open subset of \mathbb{R}^N , with a C^1 boundary. Assume $u \in W^{k,p}(U)$.

(i) If $k < \frac{N}{p}$, then $u \in L^{q}(U)$, where

$$\frac{1}{q} = \frac{1}{p} - \frac{k}{n}.$$

We have in addition the estimate

$$||u||_{L^q(U)} \le C||u||_{W^{k,p}(U)},$$

the constant C depending only on k, p, N and U.

(ii) If $k > \frac{N}{p}$, then $u \in C^{k - \left\lfloor \frac{N}{p} \right\rfloor - 1, \gamma}(\overline{U})$, where

$$\gamma = \begin{cases} \left\lfloor \frac{N}{p} \right\rfloor + 1 - \frac{N}{p}, & \text{if } \frac{N}{p} \text{ is not an integer} \\ any \text{ positive number} < 1, & \text{if } \frac{N}{p} \text{ is an integer}. \end{cases}$$

We have in addition the estimate

$$||u||_{C^{k-\lfloor \frac{N}{p} \rfloor - 1, \gamma}(\overline{U})} \le C||u||_{W^{k,p}(U)},$$

the constant C depending only on k, P, N, γ and U.

Theorem 2.3 ([1], pp. 283-284). Let $m \ge 1$ be an integer and let $p \in [1, +\infty)$. We have

$$\begin{split} W^{k,p}\left(\mathbb{R}^{N}\right) &\hookrightarrow L^{q}\left(\mathbb{R}^{N}\right), \ \ where \ \frac{1}{q} = \frac{1}{p} - \frac{k}{N} \ \ if \ \frac{1}{p} - \frac{k}{N} > 0, \\ W^{k,p}\left(\mathbb{R}^{N}\right) &\hookrightarrow L^{q}\left(\mathbb{R}^{N}\right), \ \ \forall q \in [p,+\infty), \ \ if \ \frac{1}{p} - \frac{k}{N} = 0, \\ W^{k,p}\left(\mathbb{R}^{N}\right) &\hookrightarrow L^{\infty}\left(\mathbb{R}^{N}\right), \ \ if \ \frac{1}{p} - \frac{k}{N} < 0, \end{split}$$

and all these injections are continuous. Moreover, if $k-\frac{N}{p}>0$ is not an integer, set

$$\kappa = \left \lfloor k - \frac{N}{p} \right \rfloor \ \ and \ \theta = k - \frac{N}{p} - \kappa, \ \ (0 < \theta < 1) \, .$$

We have, for all $u \in W^{k,p}(\mathbb{R}^N)$

$$||D^{\alpha}u||_{L^{\infty}(\mathbb{R}^N)} \le C||u||_{W^{k,p}(\mathbb{R}^N)}, \ \forall \alpha \ with \ |\alpha| \le \kappa$$

and

$$|D^{\alpha}u\left(x\right)-D^{\alpha}u\left(y\right)|\leq C\|u\|_{W^{k,p}(\mathbb{R}^{N})}|x-y|^{\theta}\ a.e.\ x,y\in\mathbb{R}^{N},\ \forall\left|\alpha\right|\ with\ \left|\alpha\right|=\kappa.$$
 In particular, $W^{k,p}\left(\mathbb{R}^{N}\right)\hookrightarrow C^{k}\left(\mathbb{R}^{N}\right).$

2.4 Schauder theorem

Theorem 2.4 (Schauder, [1], p. 317). Suppose that Ω is bounded and of class $C^{2,\alpha}$ with $0 < \alpha < 1$. Then for every $f \in C^{0,\alpha}(\overline{\Omega})$ there exists a unique solution $u \in C^{2,\alpha}(\overline{\Omega})$ of the problem

$$\begin{cases} -\Delta u + u = f \text{ in } \Omega, \\ u = 0 \text{ on } \Gamma. \end{cases}$$

Furthermore, if Ω is of class $C^{m+2,\alpha}$ $(m \ge 1 \text{ an integer})$ and if $f \in C^{m,\alpha}(\overline{\Omega})$, then

$$u \in C^{m+2,\alpha}\left(\overline{\Omega}\right) \text{ with } \|u\|_{C^{m+2,\alpha}} \le C\|f\|_{C^{m,\alpha}}.$$

2.5 Symmetric-decreasing rearrangement

See Sec. 3.3, [4], pp. 80-81.

If $A \subset \mathbb{R}^N$ is a Borel set of finite Lebesgue measure, we define A^* , the *symmetric rearrangement of the set* A, to be the open ball centered at the origin whose volume is that of A. Thus,

$$A^* = B_{\mathbb{R}^N}(0;r)$$
 with $\alpha_N r^N = |A|$,

where |A| denotes the Lebesgue measure of A, and α_N is the volume of the unit ball in \mathbb{R}^N , which is given by $\alpha_N := \frac{2\pi^{N/2}}{N\Gamma(N/2)}$.

This definition, together with the layer cake representation (Theorem 1.13, [4]) allows us to define the symmetric-decreasing rearrangement, f^* , of a function f as follows.

The symmetric-decreasing rearrangement of a characteristic function of a set is defined by: $\chi_A^* := \chi_{A^*}$.

If $f: \mathbb{R}^N \to \mathbb{C}$ is a Borel measurable function vanishing at infinity, we define

$$f^*(x) = \int_0^\infty \chi^*_{\{|f| > t\}}(x) dt,$$

which is to be compared with a special case of the layer cake representation theorem

$$|f(x)| = \int_0^\infty \chi_{\{|f| > t\}}(x) dt.$$

Some properties of the rearrangement f^* which are used for our purpose:

- 1. $f^*(x)$ is nonnegative.
- 2. $f^*(x)$ is radially symmetric and nonincreasing, i.e.,

$$f^*(x) = f^*(y)$$
 if $|x| = |y|$,

and

$$f^*(x) \ge f^*(y)$$
 if $|x| \le |y|$,

3. For $f \in L^p(\mathbb{R}^N)$,

$$||f||_p = ||f^*||_p, \ \forall 1 \le p \le \infty.$$

The following lemma (Lemma 7.17, [4], pp. 188-189) is the most important applications of the concept of symmetric-decreasing rearrangement.

Lemma 2.2 (Symmetric decreasing rearrangement decreases kinetic energy). Let $f: \mathbb{R}^N \to \mathbb{R}$ be a nonnegative measurable function that vanishes at infinity and let f^* denotes its symmetric-decreasing rearrangement. Assume that ∇f , in the sense of distributions, is a function that satisfies $\|\nabla f\|_2 < \infty$. Then ∇f^* has the same property and

$$\|\nabla f\|_2 \ge \|\nabla f^*\|_2.$$

References

- [1] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011, pp. xiv+599. ISBN: 978-0-387-70913-0.
- [2] Thierry Cazenave. Semilinear Schrödinger equations. Vol. 10. Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003, pp. xiv+323. ISBN: 0-8218-3399-5. DOI: 10.1090/cln/010. URL: https://doi.org/10.1090/cln/010.
- [3] Lawrence C. Evans. Partial differential equations. Second. Vol. 19. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2010, pp. xxii+749. ISBN: 978-0-8218-4974-3. DOI: 10.1090/gsm/019. URL: https://doi.org/10.1090/gsm/019.
- [4] Elliott H. Lieb and Michael Loss. *Analysis*. Second. Vol. 14. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001, pp. xxii+346. ISBN: 0-8218-2783-9. DOI: 10.1090/gsm/014. URL: https://doi.org/10.1090/gsm/014.
- [5] Walter A. Strauss. "Existence of solitary waves in higher dimensions". In: Comm. Math. Phys. 55.2 (1977), pp. 149–162. ISSN: 0010-3616. URL: http://projecteuclid.org/euclid.cmp/1103900983.