### Knights and Knaves and Naive Set Theory

#### Oscar Levin

University of Northern Colorado

MathFest 2018, Denver

Joint work with Tyler Markkanen

#### 1996 Putnam Exam B1

Define a **selfish** set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of  $\{1, 2, ..., n\}$  which are <u>minimal</u> selfish sets, that is, selfish sets none of whose proper subsets is selfish.

#### 1996 Putnam Exam B1

Define a **selfish** set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of  $\{1, 2, ..., n\}$  which are <u>minimal</u> selfish sets, that is, selfish sets none of whose proper subsets is selfish.

#### 1996 Putnam Exam B1

Define a **selfish** set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of  $\{1, 2, ..., n\}$  which are <u>minimal</u> selfish sets, that is, selfish sets none of whose proper subsets is selfish.

Let  $X = \{5, 6, 7, 8, 9\}$ . Find a set  $A \subseteq X$  with  $|A| \in A$ .

### Paradox!

 $A = \{2, |A|\}$ 

### Paradox!

$$A = \{2, |A|\}$$

$$B = \{1, 3, |B|\}$$

## Paradox!

$$A = \{2, |A|\}$$
$$B = \{1, 3, |B|\}$$

 $C = \{1, 2, 3, 4, 5, 7, |C|\}$ 

Notation: |A| = a.

What is the cardinality of  $A = \{2, 3, a\}$  (if it exists)?

Notation: |A| = a.

What is the cardinality of  $A = \{2, 3, a\}$  (if it exists)?

What is the cardinality of  $A = \{4, a, 2a\}$ ?

Notation: |A| = a.

What is the cardinality of  $A = \{2, 3, a\}$  (if it exists)?

What is the cardinality of  $A = \{4, a, 2a\}$ ?

What is the cardinality of  $A = \{1, 2, a, a - 1\}$ ?

Notation: |A| = a.

What is the cardinality of  $A=\{2,3,a\}$  (if it exists)? Unique solution

What is the cardinality of  $A = \{4, a, 2a\}$ ?

Two solutions

What is the cardinality of  $A = \{1, 2, a, a - 1\}$ ?

Three solutions

#### Definition

A <u>cardinality puzzle</u> is a description of a set A that explicitly mentions the cardinality of A.

#### Definition

A <u>cardinality puzzle</u> is a description of a set A that explicitly mentions the cardinality of A.

When does a cardinality puzzle have a unique solution?

$$A = \{3, 4, a, a + 1, 2a - 1\}$$

#### Definition

A <u>cardinality puzzle</u> is a description of a set A that explicitly mentions the cardinality of A.

When does a cardinality puzzle have a unique solution?

$$A = \{3, 4, a, a + 1, 2a - 1\}$$

Consider the cases: a = 2, 3, 4, 5.

#### Definition

A <u>cardinality puzzle</u> is a description of a set A that explicitly mentions the cardinality of A.

When does a cardinality puzzle have a unique solution?

$$A = \{3, 4, a, a + 1, 2a - 1\}$$

Consider the cases: a = 2, 3, 4, 5. Only one works:  $A = \{3, 4, 5\}$ .

Which sets are the unique solution to a cardinality puzzle?

Which sets are the unique solution to a cardinality puzzle?

If we insist that a is listed as an element, then only <u>selfish</u> sets.

Which sets are the unique solution to a cardinality puzzle?

If we insist that a is listed as an element, then only <u>selfish</u> sets.

In fact...

#### Proposition

A is the unique solution to a cardinality puzzle iff A is selfish.

Which sets are the unique solution to a cardinality puzzle?

If we insist that a is listed as an element, then only <u>selfish</u> sets.

In fact...

#### Proposition

A is the unique solution to a cardinality puzzle iff A is selfish.

$$A = \{1, 5, 6, 10, 13, 42\}$$

Which sets are the unique solution to a cardinality puzzle?

If we insist that a is listed as an element, then only <u>selfish</u> sets.

In fact...

#### Proposition

A is the unique solution to a cardinality puzzle iff A is selfish.

$$A = \{1, 5, 6, 10, 13, 42\}$$
  

$$A = \{1, 5, a, 10, 13, 42, f(a)\}$$

Which sets are the unique solution to a cardinality puzzle?

If we insist that a is listed as an element, then only <u>selfish</u> sets.

In fact...

#### Proposition

A is the unique solution to a cardinality puzzle iff A is selfish.

$$A = \{1, 5, 6, 10, 13, 42\}$$
  

$$A = \{1, 5, a, 10, 13, 42, f(a)\}$$

Where f(a) is the line through (6,42) and (7,13)

$$A=\{2,a\}$$

$$\cong$$

I'm a knave

$$A = \{2, a\}$$

$$\cong$$

$$A = \{1, a\}$$

$$\cong$$

$$A=\{2,a\}$$
  $\cong$  I'm a knave  $A=\{1,a\}$   $\cong$  I'm a knight  $A=\{3,a\}$   $\cong$  X

$$A = \{2, a\}$$
  $\cong$  I'm a knave  $A = \{1, a\}$   $\cong$  I'm a knight  $A = \{3, a\}$   $\cong$  X

???  $\cong$  He is a knave We are both knights

Let |A| = a and |B| = b. Find the cardinalities:

$$A = \{3, b\}$$
$$B = \{1, a, b\}$$

Let |A| = a and |B| = b. Find the cardinalities:

$$A = \{3, b\}$$
$$B = \{1, a, b\}$$

▶ Suppose a = 1. Then b = 3. But then  $B = \{1, 1, 3\}$ 

Let |A| = a and |B| = b. Find the cardinalities:

$$A = \{3, b\}$$
$$B = \{1, a, b\}$$

▶ Suppose a = 1. Then b = 3. But then  $B = \{1, 1, 3\}$ 

► Thus a = 2, so  $B = \{1, 2, b\}$  and  $b \neq 3$ . So b = 2.

Let |A| = a and |B| = b. Find the cardinalities:

$$A = \{3, b\}$$
 Al: Bob is a knave.  $B = \{1, a, b\}$  Bob: We are both knights.

▶ Suppose a = 1. Then b = 3. But then  $B = \{1, 1, 3\}$ 

► Thus a = 2, so  $B = \{1, 2, b\}$  and  $b \neq 3$ . So b = 2.

Let |A| = a and |B| = b. Find the cardinalities:

$$A = \{3, b\}$$
 Al: Bob is a knave. Bob: We are both knights.

- ▶ Suppose a = 1. Then b = 3. But then  $B = \{1, 1, 3\}$
- Suppose Al is a knave. This means Bob is a knight. But Bob's statement is false.
- ▶ Thus a = 2, so  $B = \{1, 2, b\}$  and  $b \neq 3$ . So b = 2.

Let |A| = a and |B| = b. Find the cardinalities:

$$A = \{3, b\}$$
 Al: Bob is a knave.  $B = \{1, a, b\}$  Bob: We are both knights.

- ▶ Suppose a = 1. Then b = 3. But then  $B = \{1, 1, 3\}$
- Suppose Al is a knave. This means Bob is a knight. But Bob's statement is false.
- ▶ Thus a = 2, so  $B = \{1, 2, b\}$  and  $b \neq 3$ . So b = 2.
- ➤ Thus AI is a knight, so Bob is a knave (and indeed his statement is false).

Al: Only one of us is a knave.

Bob: No, only one of us is a knight.

Carl: We are all knaves.

Al: Only one of us is a knave.

Bob: No, only one of us is a knight.

Carl: We are all knaves.

$$A = \{1, 3, 5, 6, 7, b, c - 7\}$$

$$B = \{7, 11, a, c\}$$

$$C = \{4, 7, 11, 12, 13, 14, 15, 16, a, b, c\}$$

Al: Only one of us is a knave.

Bob: No, only one of us is a knight.

Carl: We are all knaves.

$$A = \{1, 3, 5, 6, 7, b, c - 7\}$$

$$B = \{7, 11, a, c\}$$

$$C = \{4, 7, 11, 12, 13, 14, 15, 16, a, b, c\}$$

$$5 \le a \le 7$$

$$2 \le b \le 4$$

$$8 \le c \le 11$$

Al: Only one of us is a knave.

Bob: No, only one of us is a knight.

Carl: We are all knaves.

$$A = \{1, 3, 5, 6, 7, b, c - 7\}$$

$$B = \{7, 11, a, c\}$$

$$C = \{4, 7, 11, 12, 13, 14, 15, 16, a, b, c\}$$

$$5 \le a \le 7$$

$$2 \le b \le 4$$

$$8 \le c \le 11$$

A set "asserts" all its elements are distinct (its size is maximal).

### **Open Questions**

- Does <u>every</u> knight and knave puzzle have a matching cardinality puzzle?
- Is the correspondence better suited for multi-valued logics? There are lots of ways for a set to "lie."

# Thanks!

Slides:



math.oscarlevin.com/research.php