Math 259A Lecture 1 Notes

Daniel Raban

September 27, 2019

1 Introduction to Operator Algebras

1.1 *-algebras

Let H be a Hilbert space. We denote B(H) to be the space of operators on H: B(H) is the set of $T: H \to H$ such that $\sup_{\xi \in (H)_1} ||T(\xi)|| =: ||T|| < \infty$, where $(H)_1$ is the closed unit ball. B(H) is an algebra.

Definition 1.1. An **operator algebra** is a vector subspace $B \subseteq B(H)$ closed under multiplication.

Given an operator T, we have an **adjoint operator** T^* which satisfies $\langle T^*\xi, \eta \rangle = \langle \xi, T\eta \rangle$ for all $\xi, \eta \in H$. The adjoint has $||T^*|| = ||T||$. This defines an operation $*: B(H) \to B(H)$ sending $T \mapsto T^*$. The * operation satisfies

- $(T+S)^* = T^* + S^*$
- $(\lambda T)^* = \lambda T^*$
- $(TS)^* = S^*T^*$
- $(T^*)^* = T$.

Definition 1.2. $B \subseteq B(H)$ is a *-algebra of operators on B(H) if it is closed under the * operation.

Example 1.1. Look at $B(\ell_{\infty}^2) = M_{\infty}(\mathbb{C})$. ℓ_{∞}^2 has an orthonormal basis e_i with $(e_i)_j = \delta_{i,j}$. Elements of $B(\ell_{\infty}^2)$ can be multiplied like infinite matrices, and the entries can be determined by this orthonormal basis.

We always consider algebras with a unit. So $B \subseteq B(X)$ will always contain the element $1_B = \mathrm{id}_X \in B$.

1.2 von-Neumann algebras and group von-Neumann algebras

Definition 1.3. A von-Neumann algebra is a *-algebra $B \subseteq B(X)$ closed in the weak operator topology given by the seminorms $p_{\xi,\eta}(T) = |\langle T\xi, \eta \rangle| (T_i \to T \text{ in the weak operator topology if } \langle T_i(\xi), \eta \rangle \to \langle T(\xi), \eta \rangle$ for all $\xi, \eta \in X$).

Example 1.2. B(X) is a von-Neumann algebra.

Definition 1.4. An operator $U \in B(X)$ is unitary if $U^* = U^{-1}$.

Example 1.3. A representation $\pi: \Gamma \to B(X)$ of a group Γ is called **unitary** if $\pi(g)$ is unitary for all $g \in \Gamma$. If π is unitary, then span $\pi(\Gamma)$ is a *-algebra on X. Then the closure of this space under the weak operator topology is a von-Neumann algebra.

Denote $\ell^2(I)$ as ℓ^2 with an orthonormal basis indexed by I.

Example 1.4. Define the following representations of Γ

- 1. The regular representation is $\lambda : \Gamma \to U(\ell^2(\Gamma))$ is $\lambda(g)\xi_h = \xi_{gh}$
- 2. Alternatively, right group multiplication induces the unitary representation $\rho: \Gamma \to U(\ell^2(\Gamma))$ given by $\varphi(g)\xi_h = \xi_{hg^{-1}}$.

Observe that $[\lambda(g_1), \rho(g_2)] = 0$. Let $L(\Gamma)$ be the weak operator topology closure of $\operatorname{span}(\lambda(\Gamma))$, and let $R(\Gamma)$ be the weak operator topology closure of $\operatorname{span}(\rho(\Gamma))$. These are **left and right group von-Neumann algebras**. One avenue of study to study the map $\Gamma \mapsto L(\Gamma)$.

This has many applications. These operators arising from groups are related to dynamics and ergodic theory.

1.3 Factors and C^* -algebras

Definition 1.5. A von-Neumann algebra M is a **factor** if $Z(M) = \mathbb{C}_1$, where Z denotes the center of the algebra.

Example 1.5. B(X) and $L(\Gamma)$ are factors.

Here is a question that appeared early in the theory of von-Neumann algebras: Are there any other von-Neumann factors than B(X)?¹ This is fundamental to understanding how much commutation there is in operator algebras. The answer is yes. In fact, $L(\mathbb{F}_2)$ and $L(S_{\infty})$ are not isomorphic to B(X).

¹von-Neumann asked this question in 1935. He gave this question to a postdoc. Prior to this, he knew that any von-Neumann algebra decomposes via a measurable field of matrices as $M \cong \int_X M_t dt$. They solved the problem in 1936.

These two are infinite dimensional factors, and they have a trace functional on them, $\tau: M \to \mathbb{C}$ which is linear and continuous such that $\tau(x,y) = \tau(yx)$ for all $x,y \in M$. In general, if X is infinite dimensional, B(X) has no trace defined everywhere.

Another question: Can we axiomatize the theory of von-Neumann algebras? We have a Banach-algebra with the *-operation, and we have the norm with $||T^*|| = ||T||$. Can we construct a Hilbert space only from this information?²

Definition 1.6. A *-algebra $B \subseteq B(X)$ of operators on X is called a (concrete) C^* -algebra.

In fact, these satisfy $||T^*T|| = ||T||^2$ for all T. (This does imply that $||T^*|| = ||T||$.)

Definition 1.7. A Banach algebra with * satisfying $||x^*x|| = ||x||^2$ is called an **abstract** C^* -algebra

Theorem 1.1 (G-N + Segal, 1943). If B is an abstract C^* algebra, then it is a concrete C^* -algebra.

 $^{^{2}}$ Gelfand and Naimark worked on this in 1940-1943. They did not succeed, and Grothendieck tried in the 50s.