Rappel de cours

Méthode de Newton

•

Exercice 1

Exercice 1.1.a

La définition de "f est dérivable en x_0 " (note $f'(x_0)$) si la limite existe et est finie.

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Pour $x_0 = 0$, on a

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}$$

Exercice 1.1.b

$$l = \lim_{x \to 0} \frac{f(2x) - f(x)}{x} = \lim_{x \to 0} 2 \frac{f(2x) - f(0)}{2x} - \frac{f(x) - f(0)}{x} = 2 \lim_{\frac{X}{2} \to 0} \frac{f(X) - f(0)}{X} - \lim_{x \to 0} \frac{f(x) - f(0)}{x}$$
$$= 2 \lim_{X \to 0} \frac{f(X) - f(0)}{X} - \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 2f'(0) - f'(0) = f'(0)$$

Exercice 1.2.a

1 - Montrons que f dérivable en $0 \implies g$ dérivable en 0. g dérivable en 0 si il existe $a = \lim_{x \to 0} \frac{g(x) - g(0)}{x}$.

$$\lim_{x \to 0} \frac{g(x) - g(0)}{x} = \lim_{x \to 0} \frac{f(x) - lx - f(0)}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x} - l$$

f est dérivable en 0 donc $\lim_{x\to 0} \frac{f(x)-f(0)}{x}$ existe, l'existe également donc a existe.

2 - Montrons que g dérivable en $0 \Longrightarrow f$ dérivable en 0 . g dérivable en 0 donc il existe $a=\lim_{x\to 0}\frac{g(x)-g(0)}{x}$

$$a = \lim_{x \to 0} \frac{g(x) - g(0)}{x} = \lim_{x \to 0} \frac{f(x) - lx - f(0)}{x} = \lim_{x \to 0} \frac{f(x) - f(0)}{x} - l$$

Par hypothèse a et l existe, par conséquent $\lim_{x\to 0} \frac{f(x)-f(0)}{x}$ existe (=a+l). Donc f est dérivable en 0.

Exercice 1.2.b

$$\forall x \in \mathbb{R}, \lim_{nto + \infty} g\left(\frac{x}{2^n}\right) = \lim_{X \to 0} g(X)$$

Car 2^n est toujours très grand devant x quand n tend vers $+\infty$.

$$\lim_{X \to 0} g(X) = \lim_{X \to 0} f(X) - lX = \lim_{X \to 0} f(X) - l \lim_{X \to 0} X = \lim_{X \to 0} f(X) = f(0)$$

Car comme la fonction f est dérivable en 0, elle est continue en 0. On a g(0) = f(0) - l0 = f(o) donc $\forall x \in \mathbb{R}, \lim_{n \to \infty} g\left(\frac{x}{2^n}\right) = g(0)$.

Exercice 1.3.a

La fonction h est continue en 0, si $\lim_{x\to 0} h(x) = 0$.

$$\lim_{x \to 0} h(x) = \lim_{x \to 0} \frac{f(2x) - 2lx - f(x) + lx}{x} = \lim_{x \to 0} \frac{f(2x) - f(x)}{x} - l = l - l = 0$$

Donc h est continue en 0.

 $\lim_{x\to 0} h(x) = 0$ est équivalent à $\forall \epsilon > 0, \exists \sigma > 0, |x| < \sigma \implies |h(x)| < \epsilon$ et $\forall x \in [a, b], |h(x)| < Sup|h(x)|$.

Exercice 1.3.b

On a $\forall k, \forall x \in [-\alpha_{\epsilon}, \alpha_{\epsilon}], X = \frac{x}{2^k} \in [-\frac{\alpha_{\epsilon}}{2^k}, \frac{\alpha_{\epsilon}}{2^k}] \in [-\alpha_{\epsilon}, \alpha_{\epsilon}].$ Donc

$$|h(X)| < \epsilon$$

$$\sum_{k=1}^{n} |h(\frac{x}{2^k})| < \sum_{k=1}^{n} \epsilon$$

$$\sum_{k=1}^{n} \frac{1}{2^k} |h(\frac{x}{2^k})| < \sum_{k=1}^{n} \frac{1}{2^k} \epsilon$$

$$\sum_{k=1}^{n} \frac{1}{2^k} |h(\frac{x}{2^k})| < \epsilon \sum_{k=1}^{n} \frac{1}{2^k}$$

Par inégalité triangulaire

$$|\sum_{k=1}^n\frac{1}{2^k}h(\frac{x}{2^k})|<\epsilon\sum_{k=1}^n\frac{1}{2^k}$$

Exercice 1.3.c

Soit la suite $v_n = \frac{1}{2^n}$. Suite géométique de raison $\frac{1}{2}$.

$$\sum_{k=1}^{n} v_n = \frac{\frac{1}{2}(1 - \frac{1}{2^n})}{1 - \frac{1}{2}} = 1 - \frac{1}{2^n}$$

$$\lim_{n \to \infty} \sum_{k=1}^{n} v_n = \lim_{n \to \infty} 1 - \frac{1}{2^n} = 1$$

La suite u_n est strictement croissante, $u_1 = 1/2$ et sa limite est 1, donc la suite u_n est majorée par 1.

Exercice 1.4.a

Soit la relation $g(x) - g(\frac{x}{2^n}) = x \sum_{k=1}^n \frac{1}{2^k} h\left(\frac{x}{2^k}\right)$, montrons $g(x) - g(\frac{x}{2^{n+1}}) = x \sum_{k=1}^{n+1} \frac{1}{2^k} h\left(\frac{x}{2^k}\right)$. Pour x = 0, on a $g(0) - g(\frac{0}{2^n}) = 0 \sum_{k=1}^n \frac{1}{2^k} h\left(\frac{x}{2^k}\right)$. Vrai

Pour $x \neq 0$,

$$\begin{split} g(x) - g(\frac{x}{2^{n+1}}) &= x \sum_{k=1}^{n+1} \frac{1}{2^k} h\left(\frac{x}{2^k}\right) = x \left(\sum_{k=1}^n \frac{1}{2^k} h\left(\frac{x}{2^k}\right) + \frac{1}{2^{n+1}} h\left(\frac{x}{2^{n+1}}\right)\right) \\ g(x) - g(\frac{x}{2^{n+1}}) &= g(x) - g(\frac{x}{2^n}) + \frac{x}{2^{n+1}} h\left(\frac{x}{2^{n+1}}\right) \\ g(\frac{x}{2^n}) - g(\frac{x}{2^{n+1}}) &= \frac{x}{2^{n+1}} h\left(\frac{x}{2^{n+1}}\right) \end{split}$$

$$\frac{g(\frac{2x}{2^{n+1}}) - g(\frac{x}{2^{n+1}})}{x} = \frac{1}{2^{n+1}} h\left(\frac{x}{2^{n+1}}\right)$$
$$h\left(\frac{x}{2^{n+1}}\right) = \frac{1}{2^{n+1}} h\left(\frac{x}{2^{n+1}}\right)$$

???

Exercice 1.4.b

$$g(x) - g\left(\frac{x}{2^n}\right) = x \sum_{k=1}^n \frac{1}{2^k} h\left(\frac{x}{2^k}\right)$$

Pour $x \neq 0$,

$$\frac{g(x) - g\left(\frac{x}{2^n}\right)}{x} = \sum_{k=1}^n \frac{1}{2^k} h\left(\frac{x}{2^k}\right)$$

$$\left| \frac{g(x) - g(\frac{x}{2^n})}{x} \right| = \left| \sum_{k=1}^n \frac{1}{2^k} h\left(\frac{x}{2^k}\right) \right|$$

De 1.3.b

$$\left|\frac{g(x)-g(\frac{x}{2^n})}{x}\right| = \left|\sum_{k=1}^n \frac{1}{2^k} h\left(\frac{x}{2^k}\right)\right| < \epsilon \sum_{k=1}^n \frac{1}{2^k}$$

Quand $n \to \infty$, par 1.3.c

$$\left| \frac{g(x) - g(\frac{x}{2^n})}{x} \right| < \epsilon$$

$$\left| \frac{g(x) - g(0)}{x} \right| < \epsilon$$

Exercice 1.4.c

La fonction h est dérivable en 0.

Exercice 2

Exercice 2.1.a

Si la fonction f est dérivable sur \mathbb{R} alors $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ existe pour tout $x\in \mathbb{R}$.

 $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = l_1$

 Et

$$\lim_{h \to 0} \frac{f(x) - f(x-h)}{h} = l_2$$

Donc

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{f(x) - f(x-h)}{h} = 2l$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{h} = l_1 + l_2$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h} = \frac{l_1 + l_2}{2}$$

$$f'(x) = \tilde{f}(x)$$

???

Exercice 2.1.b

$$f(x) = \begin{cases} 0 & x \neq 0 \\ 1 & x = 0 \end{cases}$$

On a

$$\tilde{f}(0) = \lim_{h \to 0} \frac{f(0+h) - f(0-h)}{2h} = \lim_{h \to 0} \frac{0-0}{2h} = 0$$

Exercice 2.1.c

$$f(x) = |x|$$

f(x) est continu en 0, non dérivable en 0 et pseudo-dérivable en 0.

$$\tilde{f}(0) = \lim_{h \to 0} \frac{f(0+h) - f(0-h)}{2h} = \lim_{h \to 0} \frac{|h| - |-h|}{2h} = \lim_{h \to 0} 0 = 0$$

Exercice 2.2.a

On suppose que la fonction f n'est pas croissante (donc strictement décroissante). a < b, f(a) > f(b) alors $m = \frac{f(a) + f(b)}{2} < f(a)$, donc E contient au moins le point a. Comme la fonction f est strictement décroissante, la borne supérieure est le point c tel que f(c) = m car

$$f(x) = \begin{cases} a < x < c & f(x) > f(c) = m & x \in E \\ x = c & f(x) = f(c) = m & x \notin E \\ c < x < b & f(c) = m > f(x) & x \notin E \end{cases}$$

c est le plus petit majorant de E, c'est la borne supérieure

Exercice 2.2.b

f est continue et strictement décroissante et $x \in E$, donc f(x) > m. Posons $h = c - (x + \epsilon)$. On a $f(x+h) = f(c-\epsilon) > f(c) = m$.

 $c = f(m) \notin E$ voir précédent (2.2.a).

Exercice 2.2.c

Posons la suite $h_n = \frac{1}{n}$, on a $h_n > 0$, f est strictement décroissante donc $f(c - h_n) > f(c) = m$ donc $f(x - h_n) \in E$ et $\lim_{n \to +\infty} h_n = 0$.

Exercice 2.2.d

Voir précédent (2.2.a).

Exercice 2.2.e

f est strictement décroissante donc $f(c+h_n) < f(c) = m$ donc $f(c+h_n) \notin E$ Voir précédent (2.2.a).

Exercice 2.2.f

f est strictement décroissante donc lorsaue $h_n > 0$, on a $f(c+h_n) < f(c-h_n)$. Donc $f(c+h_n) - f(c-h_n) < 0$ et

$$\lim_{n \to +\infty} \frac{f(c+h_n) - f(c-h_n)}{2h_n} < 0$$

Donc

$$\lim_{n \to +\infty} \frac{f(c+h_n) - f(c-h_n)}{2h_n} = \lim_{h \to 0} \frac{g_{\alpha}(x+h) - g_{\alpha}(x-h)}{2h} = \tilde{f} < 0$$

Ceci est faux car on a montré seulement que $\lim_{h\to 0+} \frac{f(c+h)-f(c-h)}{2h} < 0$, on a rien démontré pour la limite $\lim_{h\to 0-}$. Mais passons.

Exercice 2.3.a

$$\tilde{g_{\alpha}}(x) = \lim_{h \to 0} \frac{g_{\alpha}(x+h) - g_{\alpha}(x-h)}{2h} = \lim_{h \to 0} \frac{f(x+h) + \alpha(x+h) - f(x-h) - \alpha(x-h)}{2h}$$
$$= \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h} + \lim_{h \to 0} \frac{2\alpha h}{2h} = \tilde{f}(x) + \alpha$$

Exercice 2.3.b

On a $\alpha > 0$, $\tilde{f}(x) \ge 0$, donc $\tilde{g_{\alpha}}(x) = \tilde{f}(x) + \alpha > 0$. En 2.1 on a montré que si $\tilde{f}(x) \ge \alpha' > 0$ alors la fonction f est croissante. Comme $\tilde{g_{\alpha}}(x) > \alpha > 0$ alors $g_{\alpha}(x)$ est croissante.

$$\forall x, y \in \mathbb{R}, x \le y, g(x) \le g(y)$$

Donc

$$\forall x, y \in \mathbb{R}, x \leq y, f(x) + \alpha x \leq f(y) + \alpha y$$

Exercice 2.3.c

La fonction f est croissante sûrement mais pour quoi?.

QED.