COUNCILE OF SCIENTIFIC & INDUSTRIAL RESEARCH

Mathematical Science

Code: 04

Unit – 2:

Syllabus

Sub Unit – 2 : Abstract Algebra

SL NO.	TOPICS							
	2.1 Set 2.1.1. Set							
1	2.1.2. Power Set							
2.1.3. Ordered Pair 2.2. Cartesian Product								
	2.2.1. Cartesian Product							
	2.3 Relations 2. 3.1. Relations							
	2. 3.2. Composition Text with Technology							
3	2. 3.4. Equivalence Relation							
	2. 3.5. Anti Symmetric							
	2. 3.6. Partially Order Set or Poset							
	2. 3.7. Linearly Ordered Set or Chain							
	2.4 Functions							
	2. 4.1. Definition, Identity Mapping, Constant Mapping							
4	2. 4.4. Theorem							
	2. 4.7. Theorem							
	2. 4.8. Theorem							

	2.5 Integers
	2. 5.1. Division Algorithm, General Statement
	2. 5.2. Prime to each other
	2. 5.3. Linear Diophantine Equation
	2. 5.4. Perfect Number
	2. 5.5. Prime Number
	2. 5.6. Fundamental Theorem of Arithmetic
	2. 5.7. Congruence
5	2. 5.8. Primitive Roots
3	2. 5.9. Divisibility Test
	2. 5.10. Chinese Remainder Theorem
	2. 5.11. Polynomial Congruence
	2.5.12. Linear congruence
	2. 5.13. Phi function / Euler's Phi function
	2. 5.14. Fermat's Theorem
0	2. 5.15. Euler's Theorem
	2. 5.16. Wilson's Theorem
	5.17. Greatest integer function
	2.6 Permutations and Combinations echnology
6	2. 6.1. Definition of Permutation
	2. 6.2. Definition of Combination
	2.6.3. Pigeonhole Principle
	2.7 Binary Operation
	2. 7.1. Definition
	2. 7.2. Multiplication Table
7	2. 7.3. Theorem
	2. 7.4. Semi group
	2. 7.5. Monoid
	7.6. Quasi group

	2.8 Groups
8	2. 8.2. Abelian (Commutative)
	2. 8.3. Non commutative
	2. 8.4. Theorem
	2. 8.9. Order
	2. 8.21. Order and length
	2.9 Sub group
	2. 9.2. Theorem
	2. 9.3. Corollary
9	2.9.5. Theorem
	2. 9.6. Definition
	2.9.7. Theorem
	2. 9.10. Centre of G
	2.10 Cyclic Group
10	2. 10.4. Theorem
10	2. 10.6. Theorem
100	2.11 Co-set and Lagrange's Theorem
	2. 10.6. Theorem
11	2. 11.4. Index of subgroup xt with Technology
	2. 11.5. Lagrange's Theorem
	2. 11.11. Fermat Theorem
	2. 11.13. Corollary
	2.12 Normal Subgroup and Quotient Groups
	2. 12.1. Definition
12	2. 12.2. Limit Superior and Lint Inferior
	2. 12.3. Theorem
	2. 12.4. Theorem (Quotient group or factor group)
	2. 12.5. Results

	2.13 Homomorphism of Groups
	2. 13.1 Definition (Homomorphisms)
	2. 13.4. Kernel
	2.13.7. Isomorphism
13	2. 13.8. Theorem
	2. 13.10. Theorem (Cayley)
	2. 13.12. Theorem of First Isomorphism
	2. 13.15. Theorem (Second Isomorphism)
	2. 13.16. Theorem (Third Isomorphism)
	2.14 Direct Product of Group
	2. 14.1. Definition (Direct Product of groups)
	2. 14.2. Definition (Internal direct product)
	2. 14.8. Conjugacy class of a $a \in G$
14	2. 14.9. Definition (Centralizer of a)
14	2. 14.15. Theorem (Sylow's First Theorem)
0	2. 14.16. Definition (Sylow p-subgroup)
	2. 14.17. Theorem (Sylow's second Theorem)
	2. 14.18. Theorem (Sylow's Third Theorem)
	2. 14.9. Logarithmic Test xt with Technology
15	2.15 Simple Group
	2. 15.1. Definition
	2.16 Rings
	2. 16.1. Definition (Ring)
	2. 16.3. Idempotent
	2. 16.4. Boolean Ring
	2. 16.6. Unit
16	2. 16.7. Nilpotent
	2. 16.9. Zero divisor
	2. 16.10. Cancellation Law
	2. 16.12. Integral Domain
	2. 16.15. Division ring
	2. 16.16. Field 2. 16.20. Characteristic of Ping
	2. 16.20. Characteristic of Ring

	2.17 Sub-rings
17	2. 17.2. Theorem
	2. 17.3. Centre of R
	2. 17.5. Sub field
	2. 17.7. Theorem
	2.18 Ideal
	2. 18.1. Theorem
18	2. 18.2. Definition
	2. 18.5. Principal ideal
	2. 18.6. Principal ideal ring
19	2.19 Simple Ring
19	2. 19.1. Theorem
20	2.20 Quotient Ring
20	2. 20.1. Theorem
	2.21 Ring Homomorphism
10	2. 21.2. Maximal ideal
21	2. 21.5. Prime ideal
	2. 21.6. Theorem
	2. 21.9. Theorem Text with Technology
	2.22 Polynomial Rings
	2. 22.2. Division Algorithm
	2. 22.3. Remainder Theorem
	2. 22.4. Factor Theorem
	2. 22.4. Factor Theorem
22	2. 22.7. Irreducible, Reducible Polynomial
	2. 22.9. Content of polynomial, Primitive polynomial
	2. 22.10. Lemma
	2. 22.12. Mod P Irreducible Test
	2. 22.13. Eisenstein Criterion
	2. 22.18. Theorem

23	2.23 Divisibility Rings
	2. 23.2. Unique Factorization Domain
	2. 23.5. Euclidean Domain
	2.24 Extension Field
	2. 24.1. Fundamental Theorem of Field
24	2. 24.2. Splitting Field
	2. 24.3. Existence of Splitting Fields
	2. 24.4. Some results on Finite Fields
	2.25 Galois Theory
	2. 25.1. Automorphism, Galois Group, Fixed Field of H
25	2. 25.2. Fundamental Theorem of Galois Theory
	2. 25.3. Definition (Solvable by Radicals)
	2. 25.4. Definition (Solvable Group)
	2. 25.5. Splitting field of $x^n - a$
1	

Abstract Algebra

2.1. Set:

2.1.1. Set: A well-defined collection of distinct objects is called a set.

Well-defined: Either an object belongs to a set or it does not belong to a set i.e. there should be no ambiguity what so ever regarding the membership of such collection of a set.

Example (2.1): Collection of all positive integers is a set but a collection of some positive integers is not a set, as is not clear whether a particular positive integer, say 5, is a member of this collection or not.

2.1.2. Power Set: $P(X) = \{A : A \text{ is a subset of } X\}$

$$|P(X)| = 2^k \text{ where } |X| = k$$

Null Set (\emptyset) : $\emptyset = \{x \in 2 : x^2 + 1 = 0\}$

2.1.3. Ordered Pair: Let $x \in X$ and $y \in Y$. The ordered pair of elements x and y denoted by (x, y), is the set $\{\{x\}, \{x, y\}\}$.

Clearly,
$$(x, y) = \{\{x\}, \{x, y\}\} \neq \{\{y\}, \{x, y\}\} = (x, y), where x \neq y$$

$$(x,y) = (z,w) \Leftrightarrow x = z, y = w.$$

2.2. Cartesian Product:

2.2.1. Cartesian Product: $X \times Y = \{(x, y) : x \in X, y \in Y\}$

- (i) Assume $X \times \emptyset = \emptyset = \emptyset \times X$ for any set X.
- (ii) If |X| = m, |Y| = n, then $|X \times Y| = mn$.
- (iii) $X \times Y$ is called diagonal of X and it is denoted by Δ_x .

2.3. Relations:

2.3.1. Relations: A binary relation or simply a relation ρ from a set A into a set B is a subset of $A \times B$.

Domain of: $D(\rho) = \{a \in A : \exists b \in B \text{ such that } (a,b) \in \rho \}$

Range or Image of: $R(\rho) = \{b \in B : \exists a \in A \text{ such that } (a, b) \in \rho\}$

Inverse relation(ρ^{-1}): $(\rho^{-1}) = \{(b, a) : (a, b) \in \rho\}, (\rho^{-1})^{-1} = \rho$

2.3.2. Composition: Let ρ_1 be a relation from A into B and ρ_1 be a relation from B to C then the composition of ρ_1 and ρ_2 is denoted by $\rho_2 \circ \rho_1$ is a relation from A to C.

- **2.3.3. Definition:** Let A be a set and ρ be a relation of A. Then ρ
 - (i). reflexive if for all $a \in A$, $(a, a) \in \rho$
- (ii). symmetric, if for all $a, b \in A$, whenever $(a, b) \in \rho \Rightarrow (b, a) \in \rho$
- (iii). transitive, if for all $a, b, c \in A$, whenever $(a, b) \in \rho$ wher $(b, c) \in \rho \Rightarrow (a, c) \in \rho$
- **2.3.4. Definition (Equivalence relation):** A relation ρ on a set A is called an equivalence of ρ in reflexive, symmetric and transitive.
- **2.3.5. Definition (Anti symmetric):** ρ is said to be anti symmetric if $\forall a, b \in A$ where $(a, b) \in \rho$ and $(b, a) \in \rho \Rightarrow a = b$.

Examples (2.2):

 $\forall x, y \in \mathbb{R}$ therefore the following reasons

		Reflexive	Symmetric	Transitive	Antisymmetric
1	y = 2x	×	×	×	
2	<i>x</i> < <i>y</i>	×	V	×	V
3	$x \neq y$	×	V	×	
4	xy > 0	× (0,0)	V	√	
5	$y \neq x + 2$	1	× (3,5)	×	
6	$x \le y$	1	×	V	V
7	$xy \ge 0$	Text with	√ n Technolog	\times (5,0), (0, -2)	×
8	x = y	V	V	V	V

2.3.6. Definition (Partially order set or poset): A relation ρ on a set A is said to be a partial order on A if ρ is reflexive, anti symmetric and transitive. The set A with the partial order defined on it is called a partially order set or poset and it is denoted by (A, ρ) .

Example (2.3): (\mathbb{R}, \leq) , $(P(X), \subseteq)$.

2.3.7. Definition (Linearly ordered set or chain): A poset (A, ρ) is called a linearly ordered set or chain if $\forall a, b \in A$ either $a, b \in \rho$ or $(b, a) \in \rho$ must hold.

Example (2.4): (\mathbb{R}, \leq) but not $(P(X), \subseteq)$, since for some $a, b \in X$ $\{a\}, \{b\} \in P(X)$ such that $\{a\} \nsubseteq \{b\}$ and $\{b\} \nsubseteq \{a\}$.

Examples (2.5): Let S be a finite set and |S| = n. Then

- (i). The number of reflexive relation defined on S is 2^{n^2-n}
- (ii). The number of symmetric relation defined on S is $2^{\frac{n^2+n}{2}}$
- (iii). The number of relation that are both reflexive and symmetric is $2^{\frac{n^2-n}{2}}$

2.4. Functions:

- **2.4.1. Definition:** For two nonempty sets A and B, a relation f from A into B is called a function from A into B if
 - i. D(f) = A
 - ii. f is well defined (or, single valued) in the series that $\forall (a,b), (a',b') \in f, a = a' \Rightarrow b = b'$ i. e, $a = a' \Rightarrow f(a) = f(a')$.

Identity mapping: $f: A \to A, f(x) = x \ \forall \ x \in A.$

Constant mapping: $f: A \to B$, $f(x) = c \ \forall \ x \in A$, some $c \in B$.

Examples (2.6): Let A and B be two finite sets and |A| = n and |B| = m $(n \ge m)$. Then

- (i). The number of distinct functions defined from A to B is m^n .
- (ii). The number of onto functions defined from A to B is $\emptyset(n,m) \times m!$, where $\emptyset(n,m)$ is the number of partitions of a set A with n elements into m subsets $(1 \le m \le n)$, $\emptyset(n,m)$ is known as stirlling number of 2^{nd} kind and it can be calculated from the formula:

$$\emptyset(n,m) = \begin{cases} 1 & \text{if } m = 1 \text{ or } n \\ \emptyset(n-1,m-1) + m \emptyset(n-1,m) & \text{otherwise} \end{cases}$$

- (iii). The number of injective function defined from A(|A| = n) to $B(|B| = m, n \le m)$ is mP_n and bijective is n! (if m = n) otherwise 0.
- **2.4.2. Definition:** Let us consider a function $f: A \rightarrow B$. Then
 - a) f is called injective (one-one) where $\forall a_1, a_2 \in A \text{ if } a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_{d2})$.
 - **b**) f is called subjective if Im(f) = B.
 - c) f is called bijective if f is both injective and subjective
- **2.4.3.** (**Theorem**): Composition of functions is associative, provided the requisite composition make sense.

- **2.4.4.** (**Theorem**): Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$. Then
 - (i). If f and g are both injective then $g \circ f$ is also so,
 - (ii). If f and g are both surjective then $g \circ f$ is also so,
- (iii). If f and g are both bijective then $g \circ f$ also so,
- (iv). If $g \circ f$ is injective then f is injective.
- (v). If $g \circ f$ is surjective then g is surjective.
- (vi). If $g \circ f$ is bijective, then f is injective and g is surjective.
- **2.4.5.** (**Theorem**): Let *A* be any set and $f: A \to A$ be an identity injective function. Then $f^n: A \to A$ is an injective $\forall n \geq 1$.
- **2.4.6.** (Theorem): For any finite set A if $f: A \to A$ is injective, then f is bijective.

If A is infinite this is not true. Example $f: [1,2] \to [1,2]$ by $(x) = \frac{x}{2}$. Then f is one – one but there in number of $x \in [1,2]$ such that 2 = f(x), i.e. f is not onto and hence not bijective $(f: \mathbb{R} \to \mathbb{R}, f(x) = e^x)$.

- **2.4.7. Definition:** Consider a function $f: A \rightarrow B$ then f is called
 - (i). Left invertible, if $\exists g: B \to A$ such that $g \circ f = i_A$ and g is called left inverse of f.
- (ii). Right invertible if $\exists h: B \to A$ such that $f \circ h = i_B$ and then h is called right inverse of f.
- (iii). Invertible if f is both left and right invertible.

Example (2.7): $f: \mathbb{N} \to \mathbb{N}$, $f(n) = n + 1 \forall n \in \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$, g(1) = 1 and

$$g(n) = n - 1$$
, $n > 1$. Now $(g \circ f)(n) = g(f(n)) = g(n + 1) = n \Rightarrow g$ is left inverse of f .

But $f \circ g(1) = f(g(1)) = f(1) = 2 \Rightarrow g$ is not right inverse of f.

- **2.4.8.** (Theorem): Let $f: A \to B$ be a function. Then
 - (i). f is left invertible $\Leftrightarrow f$ is injective.
 - (ii). f is right invertible $\Leftrightarrow f$ is surjective.
- (iii). f is invertible $\Leftrightarrow f$ is bijective.

2.5. Integers

2.5.1. Division Algorithm: Given integers a and b with b > 0, there exist unique integers a and b such that a = bq + r where $0 \le r < b$.

Note: q is called quotient and r is called remainder.

General Statement: Given integers a and b, with $|b| \neq 0$, there exist unique integers q and r such that a = bq + r, $0 \leq r < |b|$.

- (i) $a|b \text{ and } b|a \iff a = \pm b$
- (ii) $a|b \text{ and } a|c \Rightarrow a|(bx+cy) \text{ for any } x,y \in \mathbb{Z}.$
- (iii) The square of an odd integers is of the form 8k + 1 where $k \in \mathbb{Z}$.
- (iv) Let $d = \gcd(a, b)$ Then
 - (I) d|a and d|b
 - (II) if c|a and c|b then d|c
 - (III) \exists integers u, v such that d = au + bv.

Example (2.8):

$$gcd(475, 120) = 5$$

Now.

$$475 = 120 \times 3 + 115$$

 $120 = 115 \times 1 + 1$ $\Rightarrow 5 = 120 + 115(-1) = 120 + (-1)[475 - 120 \times 3]$
 $= (-1) 475 + 4 \times 120$

Note: The gcd(a, b) is the least positive value of ax + by where $x, y \in \mathbb{Z}$.

- **2.5.2. Definition** (**Prime to each other**): Two integers a and b are said to be prime to each other if a, b not both zero and gcd(a,b) = 1.
 - (i) If a|bc and gcd(a, b) = 1. Then a|c, the Technology
 - (ii) If ap = bq and a is prime to b the a|q and b|p
 - (iii) If a|c and b|c with gcd(a, b) = 1, then ab|c
 - (iv) If a is prime to b and a is prime to c then a is prime to bc.
 - (v) If a is prime to b, then
- (I) a + b is prime to ab
- (II) a^2 is prime to b.
- (III) a^2 is prime to b^2 .
- (vi) If $d = \gcd(a, b)$, then $d^2 = \gcd(a^2, b^2)$
- (vii) Euclidean Algorithm: If a = bq + r then gcd(a, b) = gcd(b, r)
- (viii) If a, b are two integers different from zero, then $lcm(a, b) \times \gcd(a, b) = |ab|$.

2.5.3. Linear Diophantine Equation:

If a, b, c are integers and a, b are not both zero, the equation ax + by = c has an integral solution $\Leftrightarrow d = \gcd(a, b)$ divided c. If (x_0, y_0) be any particular solution of the equation, then all integral solutions are given by $(x_0 + \frac{b}{d}t, y_0 - \frac{a}{d}t)$ for different integers t.

Example (2.9):

Find general and the positive integral solution of 9x + 7y = 200.

$$gcd(9,7) = 1 divided 200$$

Now,

$$9 = 7 \times 1 + 2 7 = 2 \times 3 + 1$$
 \Rightarrow 1 = 7 - 2 × 3 = 7 - 3(9 - 7) = (-3)9 + 4 × 7

$$\Rightarrow$$
 (-600)9 + (800) × 7 = 200

$$\therefore x_0 = -600, y_0 = 800$$

$$x = -600 + 7t$$
, $y = 800 - 9t$, $t = 0, \pm 1, \pm 2...$

For positive integral solutions $x = -600 + 7t > 0 \Rightarrow t > \frac{600}{7}$

and

$$y = 800 - 97 > 0 \implies t < \frac{800}{9}$$

t = 86,87,88 so, it has three positive integral solutions.

We denote gcd(a, b) = (a, b) and lcm(a, b) = [a, b]. If a, b, c be positive integers then –

(i)
$$(a, [b, c]) = [(a, b), (a, c)]$$

(ii)
$$[a, (b, c)] = ([a, b], [a, c])$$

(iii) The sum of all positive divisors of a positive integer n. If $n = p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_k^{\alpha_k}$

then

$$S(n) = (1 + p_1 + p_1^2 + \dots + p_1^{\alpha_1}) \dots (1 + p_k + \dots + p_k^{\alpha_k})$$

$$= \frac{p_1^{\alpha_1 + 1} - 1}{p_1 - 1} \cdot \frac{p_2^{\alpha_2 + 1} - 1}{p_2 - 1} \dots \frac{p_k^{\alpha_k + 1} - 1}{p_k - 1}$$
Text with Technology

$$= \frac{p_1^{\alpha_1+1}-1}{p_1-1} \cdot \frac{p_2^{\alpha_2+1}-1}{p_2-1} \cdot \dots \cdot \frac{p_k^{\alpha_k+1}-1}{p_k-1}$$

= Sum of all positive divisors of n.

Example (2.10):

$$S(48) = \dot{S}(2^4 \cdot 3) = \frac{2^5 - 1}{2 - 1} \times \frac{3^2 - 1}{3 - 1} = 31 \times 4 = 124$$

Note: (I) $d(mn) = d(m)d(n), \gcd(m, n) = 1$

(II)
$$S(mn) = S(m)S(n)$$
; $gcd(m, n) = 1$

2.5.4. Definition (Perfect Number): n is perfect if S(n) = 2n.

Example (2.11): Since,
$$S(6) = S(2 \cdot 3) = \frac{2^2 - 1}{2 - 1} \times \frac{3^2 - 1}{3 - 1} = 3 \times 4 = 12 = 2 \times 6$$

6 is perfect.

• The product of all positive divisors of a positive integer n is $p(n) = n^{\frac{d(n)}{2}}$.

Example (2.12): $p(6) = 6^{\frac{4}{2}} = 6^2 = 36 = 1 \cdot 2 \cdot 3 \cdot 6$

• Find the least positive integer having m number of positive divisors. Let n be the such number. $m=d_1,\,d_2\,...\,...\,d_k$ with $2\leq d_1\leq d_2\,...\,...\leq d_k$

$$\therefore n = 2^{d_k-1}3^{(d_{k-1}-1)}5^{(d_{k-2}-1)}...... p_k^{d_1-1}$$
 where p_k is the $k-th$ prime.

Example (2.13):

Find the least positive integer having 24 number of positive divisors.

$$24 = 2 \times 3 \times 4$$

$$n = 2^3 \cdot 3^2 \cdot 5^1 = 360$$

2.5.5. Prime Number

Definition:

- (I) An integer p > 1 is said to be a prime number or simple a prime, if its only positive divisors are 1 and p.
- (II) p > 1 is prime $\Leftrightarrow p|ab \Rightarrow either p|a \text{ or } p|b$.
- (i) For n > 3 the integers n, n + 2, n + 4 cannot be all primes.

(Hints: Any integer n is of the forms 3k, 3k + 1, 3k + 2. If

n = 3k then n is not prime.

$$n = 3k + 1$$
 then $n + 2 = 3(k + 1)$ and $n + 2$ is not prime.

$$n = 3k + 2$$
 then $n + 4 = 3(k + 2)$ and $n + 4$ is not prime.)

(ii) p is a positive integer and p, 2p + 1 and 4p + 1 are primes. Find p.

(Hints:
$$p = 3k$$
, $3k + 1$, $3k + 2$. For $p = 3k + 1$, $2p + 1 = 2(3k + 1)$ not prime and

$$p = 3k + 2$$
, $4p + 1 = 3(4k + 1)$ is not prime. Then only possibility is $p = 3k \implies k = 1$

1 and hence p = 3.)

- (iii) If p and $p^2 + 8$ are both primes, then p = 3
- (iv) If $p \ge q \ge 5$ and p, q are both primes, then $24|(p^2 q^2)$

(Hints: Either
$$p, q = 3k + 1, 3k + 2 \text{ or } p, q = 4k + 1, 4k + 3 \text{ forms}$$
)

(v) If $2^n - 1$ is prime, then n is prime.

[Hints: if
$$n = pq$$
 then $2^n - n = 2^{pq} - 1 = (2^p - 1)(2^{p(q-1)} + 2^{p(q-2)} + \dots + 2^p + 1)$]

(vi) if $2^n + 1$ is prime, then $n = 2^k$, k positive integer.

2.5.6. Fundamental Theorem of Arithmetic: Any integer n(>1) is of the form

 $n = p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_k^{\alpha_k}$ where p_i are distinct primes with $p_1 < p_2 < \dots < p_k$ and exponents α_i 's are positive.

The number of positive divisors of a positive integer n.

 $n=p_1^{\alpha_1},p_2^{\alpha_2},\dots,p_k^{\alpha_k}$. Then number of positive divisors of n is $(\alpha_1+1),\dots,(\alpha_k+1)$

$$d(n) = (\alpha_1 + 1), (\alpha_2 + 1), \dots, (\alpha_k + 1)$$

Example (2.14):
$$d(48) = d(2^4 \cdot 3) = (4+1)(1+1) = 10$$

Note – **I:** d(n) is odd $\Leftrightarrow n$ is a perfect square.

Note – II: Square free divisors of $n = p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_k^{\alpha_k}$ is 2^k .

(Hints: Here
$$0 \le \alpha_i \le 1 \Rightarrow P(X), X = \{p_1, \dots, p_k\}$$
 and so $|P(X)| = 2^k$)

Example (2.15):

(i)
$$n = 23146123 = 23 \times (1000)^2 + 146(1000) + 123$$
 is divisible by 7, 11, 13.

Since, 123 - 146 + 23 = 0 is divisible by 7, 11, 13.

(ii) Find least positive remainder in 3³⁶ (mod 77).

Ans:
$$3^4 \equiv 4 \pmod{77} \Rightarrow 3^{12} \equiv 4^3 \pmod{77} \equiv -13 \pmod{77} - a$$

$$\Rightarrow$$
 3²⁴ \equiv 169 (mod 77) \equiv 15 (mod 77) - b

$$\therefore (a \times b) \Rightarrow 3^{36} \equiv 15 \times (-13) \pmod{77} \equiv 36 \pmod{77}.$$

(iii) Find the remainder when $1! + 2! + \dots + 100!$ is divisible by 15.

Ans: Since, $5! \equiv 0 \pmod{15} \Rightarrow (5+n)! \equiv 0 \pmod{15}$ for any $n \geq 0$ integer

$$\vdots \ 1! + 2! + \dots + 100! \equiv (1! + 2! + \ 3! + 4!) (mod \ 15) \equiv 33 \ (mod \ 15) \equiv 3 (mod \ 15)$$

(iv) Prove that $3 \cdot 4^{n+1} \equiv 3 \pmod{9}$ for all positive integers n.

Ans:

$$3 \cdot 4^{n+1} = 12 \cdot 4^n = (9+3)4^n = 9 \cdot 4^n + 3 \cdot 4^n$$

$$3 \cdot 4^n = 12 \cdot 4^{n-1} = (9+3)4^{n-1} = 9 \cdot 4^{n-1} + 3 \cdot 4^{n-1}$$

$$3 \cdot 4^2 = \qquad \qquad = 9 \cdot 4 + 3 \cdot 4$$

$$3 \cdot 4 = \dots = 9 + 3$$

$$\therefore \ 3 \cdot 4^{n+1} = 9 \ (1 + 4 + \dots + 4^n) + 3$$

$$\Rightarrow 3 \cdot 4^{n+1} \equiv 3 \pmod{9}$$

2.5.7. Congruence: Let m be a fixed positive integer. Two integers a and b are said to be congruent modulo m if a - b is divisible by m. This is expressed as $a \equiv b \pmod{m}$.

2.5.8. Definition (**Primitive Roots**): A number m is called a primitive root modulo n if and only if every integer a such that gcd(a, n) = 1, \exists an integer K such that $m \equiv a \pmod{n}$. K is called the index of a to the base $m \mod n$.

Example (2.16): 2 is a primitive root $mod\ 5$, as every integer a relatively prime to 5, \exists an integer K such that $2^k \equiv a \pmod{n}$. All the integers relatively prime to 5 are 1, 2, 3, 4 and each of these satisfies the equation $2^k \equiv a \pmod{5}$.

Properties of congruence:

- (i) $a \equiv a \pmod{m}$.
- (ii) $a \equiv b \pmod{m} \Rightarrow b \equiv a \pmod{m}$
- (iii) $a \equiv b \pmod{m}, b \equiv c \pmod{m}$ then $a \equiv c \pmod{m}$.
- (iv) $a \equiv b \pmod{m}$ then for any integer c, $a + c \equiv b + c \pmod{m}$

$$ac \equiv bc \pmod{m}$$

(v) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $a + c \equiv b + d \pmod{m}$

$$ac \equiv bd \pmod{m}$$

- (vi) If $a \equiv b \pmod{m}$ and $d \mid m, d > 0$, then $a \equiv b \pmod{d}$.
- (vii) If $a \equiv b \pmod{m}$ and $a^n \equiv b^n \pmod{m}$ for all positive integers n.

Converse is not true e.g., $9^2 \equiv 7^2 \pmod{8}$ but $9 \not\equiv 7 \pmod{8}$

(viii) If $ax \equiv ay \pmod{m}$ and a is prime to m then $x = y \pmod{m}$

Note: $3 \cdot 2 \equiv 3 \cdot 4 \pmod{6}$ but $2 \not\equiv 4 \pmod{6}$ as $\gcd(3,6) = 2 \neq 1$

(ix) If
$$d = \gcd(a, m)$$
 then $ax \equiv ay \pmod{m} \Leftrightarrow x = y \pmod{\frac{m}{d}}$

$$4 \cdot 7 \equiv 4 \cdot 10 \pmod{6} \Rightarrow 7 \equiv 10 \pmod{\frac{6}{2}}$$

(x) $x \equiv y \pmod{m_i}$ for $i = 1, 2, ..., k \Leftrightarrow x \equiv y \pmod{m}$ where

 $m = lcm(m_1, m_2, \ldots, m_k).$

(xi) Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ be a polynomial with integral coefficient a_i , if $a \equiv b \pmod{m}$ then $f(a) \equiv f(b) \pmod{m}$.

2.5.9. Divisibility Test:

Let $n = a_m 10^m + a_{m-1} 10^{m-1} + \dots + a_2 10^2 + a_1 10 + a_0$. Where $a_k \in \mathbb{Z}$ and $0 \le a_k \le 9k = 0, 1, 2, \dots m$ be the decimal representation of a positive integer n.

Let
$$S = a_0 + a_1 + \dots + a_m$$
 and $T = a_0 - a_1 + \dots + (-1)^m a_m$. Then

(i) n is divisible by $2 \Leftrightarrow a_0$ is divisible by 2

(Hints:
$$10 \equiv 1 \pmod{2} \Rightarrow f(10) \equiv f(0) \pmod{2}$$

(ii) n is divisible by $9 \Leftrightarrow S$ is divisible by 9

(Hints:
$$10 \equiv 1 \pmod{9} \Rightarrow f(10) \equiv f(1) \pmod{9}$$

(iii) n is divisible by $11 \Leftrightarrow T$ is divisible by 11

(Hints:
$$10 \equiv -1 \pmod{11} \Rightarrow f(10) \equiv f(-1) \pmod{11}$$
.

Example (2.17):

35078571 is divisible by 9 since 3 + 5 + 0 + 7 + 8 + 5 + 7 + 1 (= 36) is divisible by 9 and it is also divisible by 11 as 1 - 7 + 5 - 8 + 7 - 0 + 5 - 3 (= 0) is divisible by 11.

Let
$$n = a_m (1000)^m + a_{m-1} (1000)^{m-1} + \dots + a_1 (1000) + a_0$$
 where $a_k \in \mathbb{Z}$ and

 $0 \le a_k \le 999, k = 0, 1, \dots, m$ be the representation of a positive integer n.

Let
$$T = a_0 - a_1 + \dots + (-1)^m a_m$$
. Then –

- (i) n is divisible by $7 \Leftrightarrow T$ is divisible by 7
- (ii) n is divisible by 13 $\Leftrightarrow T$ is divisible by 13
- (iii) n is divisible by $11 \Leftrightarrow T$ is divisible by 11
- **2.5.10. Chinese Remainder Theorem:** Let m_1, m_2, \ldots, m_k be positive integers such that $gcd(m_i, m_j) = 1$ for $i \neq j$ and $m = m_1, m_2, \ldots, m_k$ and c_1, c_2, \ldots, c_k be any integers. Then the system of linear congruence, $x \equiv c_1 \pmod{m_1}$, $x \equiv c_2 \pmod{m_2}, \ldots, x \equiv c_k \pmod{k}$ has a simultaneous solution which is unique modulo m. [i.e., if x_0 be a solution then $x \equiv x_0 \pmod{m}$ is also a solution]

Method:

$$m=m_1,m_2,\ldots,m_k$$
 , $M_i=\frac{m}{m_i}$, $i=1,2,\ldots,k$

$$gcd(M_i, m_i) = 1 \ for \ i = 1, 2,, k$$

$$\Rightarrow M_i x \equiv 1 \pmod{m_i}$$
 has unique solution $x_i, i = 1, 2, \dots, k$

$$\therefore$$
 Solution of the system is $x_0 = c_1 M_1 x_1 + c_2 M_2 x_2 + \dots + c_k M_k x_k$

All solutions are $x \equiv x_0 \pmod{m}$

Examples (2.18):

Find four consecutive integers divisible by 3, 4, 5, 7 respectively.

Let x, x + 1, x + 2, x + 3 be the four consecutive integers.

Then $x \equiv 0 \pmod{3}$, $x + 1 \equiv 0 \pmod{4}$, $x + 2 \equiv 0 \pmod{5}$, $x + 3 \equiv 0 \pmod{7}$

i.e., $x \equiv 0 \pmod{3}$, $x \equiv 3 \pmod{4}$, $x \equiv 3 \pmod{5}$ $x \equiv 4 \pmod{7}$.

Here, $m = 3 \times 4 \times 5 \times 7 = 420$, $M_1 = \frac{m}{3} = 140$

$$M_2 = \frac{m}{4} = 105$$

$$M_3 = \frac{m}{5} = 84$$

$$M_4 = \frac{m}{7}$$

Since, $gcd(3, M_1) = gcd(3, 140) = 1$ then $M_1 x = 1 \pmod{3}$ has unique solution $x_1 = 2$

 $M_2 x = 1 \pmod{4}$ i. e., $105 x \equiv 1 \pmod{4}$ has unique solution $x_2 = 1$

 $M_3 x = 1 \pmod{5}$ i. e., $84 x \equiv 1 \pmod{5}$ has unique solution $x_3 = 4$

 $M_4 x = 1 \pmod{7}$ i. e., $60 x \equiv 1 \pmod{7}$ has unique solution $x_4 = 2$

 $\therefore x_0 = \sum_{i=1}^4 c_i M_i \ x_i = 0 \cdot 140 \cdot 2 + 3 \cdot 105 \cdot 1 + 3 \cdot 84 \cdot 1 + 4 \cdot 60 \cdot 2 = 1803$

 $x \equiv 1803 \pmod{420} i.e., x \equiv 123 \pmod{420}$

i.e., x = 123 + 420 t, $t = 0, \pm 1, \pm 2, \dots$

2.5.11. Definition (Polynomial Congruence):

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ $(x \ge 1)$ be a polynomial with integer co – efficient a_0, a_1, \dots, a_m with $a_0 \ne 0 \pmod{m}$.

Then $f(x) \equiv 0 \pmod{m}$ is said to be a polynomial congruence \pmod{m} of degree n.

If \exists an integer x_0 such that $f(x) \equiv 0 \pmod{m}$, then x_0 is said to be a solution of the congruence. If x_1 be such that $x_1 \equiv x_0 \pmod{m}$. Then

 $f(x_1) \equiv f(x_0) \pmod{m} \equiv 0 \pmod{m}, \Rightarrow x_1 \text{ is another solution.}$

Two solutions x_1 and x_2 of $f(x) \equiv 0 \pmod{m}$ are said to be distinct if $x_1 \not\equiv x_2 \pmod{m}$.

Example (2.19):

(i) $x^2 \equiv 1 \pmod{8} \rightarrow (i)x_0 = 1$ is a solution so $x \equiv x_0 \pmod{8}$.

i.e., $x \equiv 1 \pmod{5}$ or, x = 8k + 1, k being integers are also solution. Also see that

 $x_1 = 3$, $x_2 = 5$, $x_3 = 7$ are also solution and x_0 , x_1 , x_2 , x_3 are distinct \Rightarrow The congruence may have more solutions than its degree.

(ii) $x^2 \equiv 3 \pmod{5}$ has no solution.

2.5.12. Definition (Linear congruence): A polynomial congruence of degree 1 is said to be a linear congruence. It is of the form $ax \equiv b \pmod{m}$ where $a \not\equiv 0 \pmod{m}$, m > 1.

Results:

- (I) If gcd(a, m) = 1, then $ax \equiv b \pmod{m}$ has unique solution.
- (II) If gcd(a, m) = d, then $ax \equiv b \pmod{m}$ has no solution if d does not devide b and if d divides b, then $ax \equiv b \pmod{m}$ has d distinct (incongruent) solutions \pmod{m} which are $x_0, x_0 + \frac{m}{d}, x_0 + \frac{2m}{d}, \dots, x_0 + \frac{(d-1)m}{d} \pmod{m}$

Examples (2.20):

(i) $5x \equiv 3 \pmod{11}$, $\gcd(5,11) = 1 \text{ divides } 3 \text{ it has unique solution.}$

$$11 = 5 \times 2 + 1 \Rightarrow 1 = 11 + 5(-2) \Rightarrow 3 = 11 \times 35(-6)$$

- $\therefore x_0 = -6$
- \therefore All solutions are $x \equiv -6 \pmod{11} \equiv 5 \pmod{11}$.
- (ii) $15x \equiv 9 \pmod{18} \dots (*) \gcd(15, 18) = 3$ divides 9. So, it has 3 incongruent solutions.

$$18 = 15 \times 1 + 3 \Rightarrow 9 = 15(-3) + 18 \times 3$$

$$x_0 = -3 \pmod{18}$$

- ∴ Therefore, distinct solutions are -3, $-3 + \frac{18}{3}$, $-3 + 2 \times \frac{18}{3}$ (mod 18)
- i.e., $-3, 3, 9 \pmod{18}$.

Another Method:

(*) is equivalent to $5x \equiv 3 \pmod{6}$ has unique solution as $\gcd(5,6) = 1$ and

$$1 = 6 + 5(-1) \Rightarrow 3 = 6 \times 3 + 5(-3) \Rightarrow x_0 = -3$$

(iii) Let m_1, m_2, \ldots, m_k be positive integers and a_1, a_2, \ldots, a_k be any integers. Then the system of linear congruences

$$x \equiv a_1 \pmod{m_1}, x \equiv a_2 \pmod{m_2}, \dots, x \equiv a_k \pmod{m_k}$$

will have a simultaneous solution $\Leftrightarrow \gcd(m_i, m_j), (i \neq j)$ divides $(a_i - a_j)$ and if this condition be satisfied the solution is unique modulo $lcm(m_1, m_2, \ldots, m_k)$

Example (2.21): Solve the system of linear congruence

$$x \equiv 11 \pmod{15}, x \equiv 6 \pmod{35}, \dots (i)$$

Since, gcd(15, 35) = 5 divides (11 - 6) = 5 so the system has a solution.

(i) is equivalent to $x \equiv 11 \pmod{3}, x \equiv 6 \pmod{5}, x \equiv 6 \pmod{7}$

Again, since $x \equiv 11 \pmod{5} \equiv 6 \pmod{5}$. So, the given system is equivalent to

$$x \equiv 11 \pmod{3}, x \equiv 6 \pmod{5}, x \equiv 6 \pmod{7}...(ii)$$

$$i.e., x \equiv 2 \pmod{3}, x \equiv 1 \pmod{5}, x \equiv 6 \pmod{7}$$

Solve (ii) by previous method

$$x = 2 \cdot 35 \cdot 2 + 1 \cdot 21 \cdot 1 + 6 \cdot 15 \cdot 1 = 251$$

$$x \equiv 251 \pmod{105} \equiv 41 \pmod{105}$$

2.5.13. Definition (Phi function / Euler's Phi function): The function ϕ , called phi function, is defined for all positive integers by $\phi(1) = 1$ and for x > 1, $\phi(x) =$ the number of positive integers less than n and prime to x.

Properties of Phi function:

(i)
$$\phi(m_1, m_2, \dots, m_k) = \phi(m)_1 \phi(m_2) \dots \phi(m_k)$$
 where $\gcd(m_i, m_j) = 1, (i \neq j)$,

(ii)
$$\phi(p^k) = p^k \left(1 - \frac{1}{p}\right)$$

(iii)
$$\phi(n) = \phi(p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_k^{\alpha_k}) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \dots \left(1 - \frac{1}{p_k}\right)$$

- (iv) If n > 1 the sum of all positive integers less than n and prime to n is $\frac{n}{2}\phi(n)$.
- (v) For any positive integer $n, n = \sum_{d/n} \phi(d)$, where the summation extends over all positive divisors d of n.
- (vi) If n > 2 the $\phi(n)$ is an even integer.

(vii) If n is odd integer, then
$$\phi(2n) = \phi(n)$$
 (Hints: $\phi(2n) = \phi(2)\phi(n) = \phi(n)$

(viii) If n is even integer, then
$$\phi(2n) = 2 \phi(n)$$
.

(ix)
$$\phi(n^2) = n\phi(n)$$
 for any positive integer n.

(x)
$$\phi(n) = \frac{n}{2} \Leftrightarrow n = 2^k$$

(xi)
$$\phi(m n) = \phi(m)\phi(n)\frac{\alpha}{\phi(d)}$$
, $d = \gcd(m, n)$

(xii)
$$\phi(m n) = \phi (\gcd(m, n)) \cdot \phi (lcm (m, n))$$

2.5.14. Fermat's Theorem:

If P be a prime and $P \times a$, then $a^{P-1} \equiv 1 \pmod{P} \Rightarrow a^{P^2-P} = 1 \pmod{P^2}$

2.5.15. Euler's Theorem: If n be a positive integer and $\frac{n}{a}$, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

(Note: If n = P it is Fermat's theorem.)

2.5.16. Wilson's Theorem: If P be a positive then $(P-1)! + 1 \equiv 0 \pmod{P}$. The converse is also true.

Examples (2.22):

(i) Find the least positive variance in $2^{41} \pmod{23}$

$$gcd(2,23) = 1$$
 $\therefore 2^{\phi(23)} \equiv 1 \pmod{23}$

$$\Rightarrow 2^{22} \equiv 1 \pmod{23}$$

$$\Rightarrow 2^{49} \equiv 1 \ (mod \ 23) \equiv 24 \ (mod \ 23)$$

$$\Rightarrow 2^{41} \cdot 8 \equiv 3 \cdot 8 \pmod{23}$$

$$\Rightarrow 2^{41} \equiv 3 \pmod{23} (:: \gcd(8,23) = 1)$$

(ii) If
$$\phi$$
 be prime > 2, then $1^p + 2^p + \cdots + (p-1)^p \equiv 0 \pmod{p}$

By Fermat's theorem,

$$1^p \equiv 1 \pmod{p}, \ 2^p \equiv 2 \pmod{p}, ..., (p-1)^p \equiv (p-1) \pmod{p}$$

$$1^{p} + 2^{p} + \dots + (p-1)^{p} \equiv (1 + 2 + \dots + p - 1) \pmod{p} \equiv \frac{p(p-1)}{2} \pmod{p}$$

$$\equiv 0 \pmod{p} \quad (\because p-1 \text{ is even})$$

(iii) Find unit digit, in
$$3^{100}$$
 by Euler's theorem, $3^{\phi(10)} \equiv 1 \pmod{10}$ as $\gcd(3,10) = 1$

$$\Rightarrow 3^4 \equiv (mod \ 10)$$

$$\Rightarrow 3^{100} \equiv 1^{25} \pmod{10} \equiv 1 \pmod{10}$$

(iv) Show that
$$4(29)! + 5!$$
 is divisible by 31.

Since, 31 is prime, by Wilson's theorem,

$$30! + 1 \equiv 0 \pmod{31}$$

$$30! + 1 \equiv 0 \pmod{31}$$
 Text with Technology

$$or$$
, $30 \cdot 20! + 1 \equiv 0 \pmod{31}$

or,
$$(31-1)29! + 1 \equiv 0 \pmod{31}$$

or,
$$-29! + 1 \equiv 0 \pmod{31}$$

$$or, 29! - 1 \equiv 0 \pmod{31}$$

or,
$$4 \cdot 29! - 4 \equiv 0 \pmod{31}$$

or,
$$4 \cdot 29! + 5! \equiv (5! + 4) \pmod{31}$$

or,
$$4 \cdot 29! + 5! \equiv 124 \pmod{31} \equiv 0 \pmod{31}$$

(v) If
$$2n + 1$$
 is prime prove that $(n!)^2 \equiv (-1)^{n+1} \pmod{(2n+1)}$

By Wilson's theorem
$$(2n)! \equiv -1 \pmod{(2n+1)}$$

Now,
$$(2n)! \equiv n! (n + 1 + (n + 2).....(2n)$$
 and

$$n+1 \equiv -n (mod (2n+1))$$

$$n+2 \equiv -(n-1) \big(mod (2n+1) \big)$$

.

.

.

.

$$2n \equiv -1 \pmod{(2n+1)}$$

$$\therefore (n+1)(n+2).....2n \equiv (-1)^n \, n! \, (mod \, (2n+1))$$

$$\therefore (2n)! \equiv (-1)^n (n!)^2 \big(mod (2n+2) \big)$$

$$or, (n!) \equiv (-1)^n (2n)! (mod (2n + 1))$$

$$\equiv (-1)^n (-1) \big(mod (2n+1) \big)$$

$$\equiv (-1)^{n+1} (mod (2n+1))$$

2.5.17. Definition (Greatest integer function):

[x] is the greatest integer not greater than x.

Example (2.23):
$$[0.3] = 0, [3] = 3, [n] = 3$$

Properties:

(I)
$$[a+b] \ge [a] + [b] \ \forall \ a,b \in \mathbb{R} \ \Rightarrow [a_1+a_2+\cdots+a_n] \ge [a_1] + [a_2] + \cdots + [a_n]$$

(II)
$$[a] + [-a] = \begin{cases} 0, & \text{if a is an integer.} \\ -1, & \text{Otherwise} \end{cases}$$

(III)
$$\left[a\right] + \left[a + \frac{1}{2}\right] = \left[2a\right] \ \forall \ a \in \mathbb{R}.$$

(IV) f a is positive real number then
$$\left[\frac{a}{2}\right] + \left[\frac{a+1}{2}\right] = [a]$$

2.6. Permutations and Combinations:

2.6.1. Definition (Permutation):

Given a certain number of things each of different arrangement that can be made out of them, taking some of them or all of them at a time, is called a permutation.

2.6.2. Definition (Combination): Given a certain number of things, each of the different groups or selections that can be formed out of them, by taking some of them or all of them at a time (ignoring the order of choice of the things in each group) is called a combination.

2.6.3. Pigeonhole Principle: Suppose that n + 1 (or more) objects are put into n boxes. Then some box contains at least two objects.

Inclusion and Exclusion Principle: The inclusion-exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of n number of finite sets. Mathematically,

$$S = |\bigcup_{i=1}^{n} A_i| = \sum_{i=1}^{n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| +$$

$$\sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \dots + (-1)^{n-1} |A_1 \cap A_2 \cap \dots \cap A_n|$$

4.6.4. The number of permutations of n different things, taken r at a time $(0 < r \le n)$ is

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

Cor: n = r, the number of permutations of n different things taken all together is

$${}^{n}P_{r} = \frac{n!}{(n-r)!} = \frac{n!}{0!} = n!$$

$${}^{n}P_{r} = {}^{n-1}P_{r} + r \cdot {}^{n-1}P_{r-1}$$

Note – **I:** The number of permutations of n different things taken r at a time in which one particular thing is never occurs is given by $^{n-1}P_r$.

Note – **II:** The number of permutations of n different tings taken r at a time, in which one particular thing is bound to occur is given by $r \cdot {}^{n-1}P_{r-1}$

2.6.5. The number of permutations of $n = p_1 + p_2 + \cdots + p_k$ things not all different is given by n!

$$p_1!p_2!...p_k!$$

Example (2.24): The number of different ways the words of KOLKATA can be arranged is

$$\frac{7!}{2!2!} = 1260 \ (A = 2, K = 2)$$

2.6.6. The number of permutations of n different things, taking r at a time, when each thing can be replaced once, twice, up to r times, in any arrangement is n^r (i.e., r position can be filled by n thing with replacement).

Example (2.25):

How many numbers of two digits can be formed with the digits 1, 2, 3, 4 when the digits may be replaced?

Ans:
$$4^2 = 16$$

- **2.6.7.** The number of permutations of n different things taken r at a time in which k particular things never occur is $^{n-k}P_r$ where $n-k \ge r$.
- **2.6.8.** The number of permutations of n different things taken r at a times in which k particular things always occur is $^{n-k}P_{r-k}$ where $k \le r \le n$.

- **2.6.9.** The number of permutations of n different things taken r at a time in which k particular things are placed in k given places
 - (i) in a definite order is $^{n-k}P_{r-k}$
 - (ii) in any order is $k!^{n-k}P_{-k}$

Example (2.26):

(i) How many numbers lying between 100 and 10,000 can be formed by 1, 2, 3, 4, 5? Numbers must be either 3 digits of 4 digits

 $P_3 + {}^5P_4 = 180$

(ii) How many odd number of six significant digits can be formed with the digits 0, 1, 4, 5,6, 7 when no digits are repeated?

Ans. $3(5! - 4!) = 3 \times 96 = 288$

- (iii) In how many ways 10 different examination papers be arranged so that
- (a) The best and the worst always come together? (Answer: 2! 9!)
- (b) The best and the worst never come together?

(Answer: 10! - 2! 9!)

(iv) In how many ways can the letters of the word 'BALLOON)' be arranged, so that the three vowels must not come together?

Total number of permutations = $\frac{7!}{2!2!}$ = 1260 (0 = 2, L = 2).

- Let A, 0, 0 treat as single digits, so three vowels come together is $\frac{3!}{2!} \times \frac{5!}{2!} = 180$ ($\because 0 = 2 \text{ in } \frac{A,o,o}{X^*}$ and $X^*BLLN = 5$ and L = 2)
- \therefore Result 1260 180 = 1080

(v) Find the number of ways in which the letters of the word INTERMIDIATE can be arranged taken all at a time so that vowels are not all together?

$$\frac{|2!}{3!2!2!}$$
 = Total permutations (I = 3,T = 2,E = 2)

Vowels together
$$\frac{7!}{2!} \times \frac{6!}{3!2!}$$
 (take AEEIII = singel $\frac{6!}{3!2!}$ and total number 7 and $T = 2 = \frac{7!}{2!}$

∴ Result
$$\left(\frac{|2!}{3!2!2!} - \frac{7!}{2!} \times \frac{6!}{3!2!}\right) = 19807200.$$

(vi) Find the number of ways of arranging the letters AAAAABBBCCCDEEE in a row, so that the C's are separated from one another.

Total letters =
$$15$$
 and 3 C's.

$$\therefore$$
 remaining letters = 12.

i.e.,
$$\frac{|2!|}{5!2!2!}(A=5,B=3,E=2)$$

In between and two extremes there 13 places for the 12 letters and in these places 3 c's can be inserts in $\frac{13p_3}{3!}$ ways.

Hence the result =
$$\frac{|2!}{5!2!2!} \times \frac{13p_3}{3!}$$

2.7. Binary Operation:

2.7.1. Definition: Let A be a nonempty set. A binary operation * on A is a function from $A \times A \to A$.

Example (2.27):
$$(\mathbb{Z}, +)$$
, $(\mathbb{N}, +)$, (\mathbb{R}, \cdot) , $(\mathbb{R}, +)$ not binary operation $(\mathbb{N}, -)$ since $1 - 2 = -1 \not\subset \mathbb{N}$.

2.7.2. (Multiplication Table): $A = \{1, \omega, \omega^2\}, *: A \times A \rightarrow A \text{ is complex multiplication.}$

$$M \equiv \frac{\begin{array}{c|c} * & 1 & \omega & \omega^2 \\ \hline 1 & 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & \omega^2 & 1 & \omega \end{array}}{\begin{array}{c} * & 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{array}}$$
 Note: * is commutative (-) M is symmetry.

2.7.3. (**Theorem**): An identity of a mathematical system (A,*), if it exists unique.

Example (2.28):

- (i). (No identity): $(\mathbb{Z},*)$, where $a \times b = |a+b| \quad \forall \ a,b \in \mathbb{Z} \ and \ a \times b = a$.
- (ii). Right identity but no left identity $(\mathbb{Z},*)$, $a*b=a-b \quad \forall a,b \in \mathbb{Z}$. Here 0 is such element.
- (iii). (No identity) (\mathbb{Z} ,*), a * b = a.
- (iv). (No identity): $(\mathbb{N}, +)$.
- (v). (Not cancellation) (\mathbb{Z} ,*), with a * b = a.

2.7.4. (Semi group): Let S be a non-empty set and $*: S \times S \to S$ be a binary operation on S and * is associative. Then (S,*) is called semi group.

Example (2.29): $(\mathbb{Z}, -)$.

2.7.5. (Monoid): Semi group with identity.

Example (2.30): $(\mathbb{N}, +)$ is a semi group but not monoid and $(\mathbb{N} \cup \{0\}, +)$ is monoid.

2.7.6. (Quasi group): A mathematical system (G,*) i.e, G is used under * is called a quasi group, if $\forall a, b, \in G$ each of the equations a * x = b and y * a = b has a unique solution in G.

Example (2.31):

- (i). $(\mathbb{Z}, -)$, a x = b and y a = b have solution x = a b, y = a + b.
- (ii). (\mathbb{Z} ,*), a*b=|a+b|. Not a quasi group. Since $a*b=b \Rightarrow |a+x|=b>0$ has two solution x=-a+b and x=-a-b

Example (2.32): Let |S| = n. How many different binary operations can be defined on S?

Answer: Total number of binary operations = n^{n^2}

Number of commutative binary operations = $2^{\frac{n^2+n}{2}}$ = number of symmetric realtion.

2.8. Groups

Definition (**Group**): A group is an ordered pair (G,*), where G is a non-empty set and * is a binary operation on G such that following properties hold:

- (i). $\forall a, b, c \in G, a * (b * c) = (a * b) * c (associative law).$
- (ii). $\exists e \in G \text{ such that } \forall a \in G, a * e = a = e * a \text{ (existence of identity)}.$
- (iii). for each $a \in G \exists b \in G$ such that a * b = e = b * a (existence of an inverse).
- **2.8.1.** (**Theorem**): Let (G,*) be a group. Then identity and inverse are unique.
- **2.8.2.** Abelian (Commutative): $\forall a, b \in G, a * b = b * a i. e. (\mathbb{Z}, +).$
- **2.8.3.** (Non commutative): $(S_3, 0)$, $(GL(2, \mathbb{R}), \cdot)$.

Example (2.33):

- (i). $(\mathbb{Z}_n, +) = \{\overline{0}, \overline{1}, \dots, \overline{n-1}, +\}, \forall \overline{a}, b \in \mathbb{Z}_n, a+=a+b \text{ is a commutative group and } n \in \mathbb{Z}^+.$
- (ii). $(V_w, \cdot) = \{\bar{a} \in \mathbb{Z}_n \mid \{\bar{0}\} : \gcd(a, n) = 1\} \text{ and } \bar{a}.\bar{b} = \overline{ab} \text{ is also a commutative group.}$
- (iii). $\mathbb{Q}[\sqrt{2}] = \{a + \sqrt{2} \ b : a \ . \ b \in \mathbb{Q}\} \ Then(\mathbb{Q}[\sqrt{2}], +) \ and \ (\mathbb{Q}[\sqrt{2}]|\{\overline{0}\}, \cdot)$ are commutative groups.
- (iv). $(P(X), \Delta)$ where X be a set and P(X) is the power set of X and for all $A, B \in P(X)$, $A\Delta B = (A \setminus B) \cup (B \setminus A)$ is a commutative group and $\Delta(A) = 2 \ \forall A \in P(X)$.

Note: If X is infinite then $(P(X), \Delta)$ is an infinite group but order of every element is finite, namely 1 and $A^{-1} = A$.

- (v). $(S_n, 0)$ is non-commutative for n > 2 where δ_n is the collection of all bijection mapping (permutation) from X to X where |X| = x.
- (vi). $GL(2,\mathbb{R}) = (G,*)$ where $G = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a,b,c,d \in \mathbb{R}, ad-bc \neq 0 \}$ and * is the matrix multiplication. Then $GL(2,\mathbb{R})$ is a $SL(2,\mathbb{R}) = \left(\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : ad-bc = 1 \right\},* \right)$
- **2.8.4.** (**Theorem**): Let (G,*) be a group, then
 - (i). $\forall a \in G, (a^{-1})^{-1} = a$
 - (ii). $\forall a, b \in G, (a * b)^{-1} = b^{-1} * a^{-1}$
 - (iii). [cancellation law] $\forall a, b, c \in G$ if either a * c = b * c or c * a = c * b, then a = b.
 - (iv). $\forall a,b \in G$, the equation a*x=b and y*a=b have unique solution in G for x and y.
- **2.8.5.** (Corollary): Let (G,*) be a group and $a \in G$. If a*a = a, then a = e and a is idempotent element and in a group e is the only idempotent element.
- **2.8.6.** (**Theorem**): A semi group (S,*) is a group if and only if
 - (i). $\exists e \in S \text{ such that } e * a = a \forall a \in S \text{ (left identity)}$
 - (ii). $\forall a \in S, \exists b \in S \text{ such that } b * a = e(left identity)$
- **2.8.7.** (**Theorem**): A semi group (S,*) in a group $\Leftrightarrow \forall a,b \in S$, the equation a*x=b and y*a=b have solutions in S for x and y.
- **2.8.8.** (**Theorem**): A finite semi group (S,*) is a group \Leftrightarrow (S,*) satisfies the cancellation laws.
- * Finite is necessary.

Example (2.34): ($\mathbb{Z}\{0\}$, ·) is a semi group and satisfies cancellation laws but inverse of an element $1 \neq a \in \mathbb{Z}\{0\}$ does not exist.

2.8.9. Definition (Order): Let (G,*) be a group and $a \in G$. If \exists a positive integer n such that $a^n = e$, then the smallest such positive integer is called the order of a.

- **2.8.10.** (Theorem): Let (G,*) be a group and $a \in G$ such that O(a) = n
 - (i). If $a^m = e$ for some positive integer m, then n divides m.
 - (ii). For any positive integer t,

$$O(a^t) = \frac{O(a)}{\gcd(t,n)} = \frac{n}{\gcd(t,n)}$$

Example (2.35): Give a counter example to justify that in a semi group with, left identity, if every element has a right inverse with respect to the left identity, it need not be a group.

Solution: Consider $\mathbb{Z} \times \mathbb{Z}$ endowed with the operation (a, b) * (c, d) = (c, b * (c, d))

 $(a,b),(c,d) \in \mathbb{Z} \times \mathbb{Z}$. Then $(\mathbb{Z} \times \mathbb{Z},*)$ is a semi group.

Now, $(0,0)*(a,b) = (a,b) \forall (a,b) \in \mathbb{Z} \times \mathbb{Z}$ where (0,0) is a left identity and $(0,-b) \in \mathbb{Z} \times \mathbb{Z}$ and $(a,b)*(0,-b) = (0,0) \Leftrightarrow (0,-b)$ is a right (0,0) – inverse of $(a,b) \in \mathbb{Z} \times \mathbb{Z}$. But $(\mathbb{Z} \times \mathbb{Z},*)$ has no identity and hence $(\mathbb{Z} \times \mathbb{Z},*)$ is not a group.

- **2.8.11.** If (G,*) is an even order group, then there must exist at least one non-identity element $a \in G$ such that $a^2 = e$.
- **2.8.12.** A group G is commutative \Leftrightarrow $(a*b)^n = a^n*b^n$ for any three commutative integer n and for all $a, b \in G$.
- **2.8.13. Definition (Permutation):** Let A be a set (non-empty). A permutation of A is a bijective mapping of A onto itself.
- **2.8.14. Definition:** A group (G,*) is called a permutation group, on a non-empty set A if the elements of G are some permutations of A and the operation * is the composition of two mapping.

Example (2.17): $(S_3, 0)$, S_n symmetric group and $|S_n| = n!$

$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \qquad p = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \ \ Then \ \alpha \ \circ \beta = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 1 \end{pmatrix}$$

- **2.8.15.** (Theorem): If n is positive integer such that $n \ge 3$, then the symmetric group S_n is a non-commutative group.
- **2.8.16. Definition:** Cycle of length 2 is called transposition.
- **2.8.17. Definition:** A permutation is called even permutation if it can be expressed as a product of even number of transpositions.
- **2.8.18.** (**Theorem**): If α and β be two disjoint cycles in S_n i.e. $\alpha \cap \beta = \{i_1, i_2, \dots, i_k\} \cap \{j_1, j_2, \dots, j_p\} = \phi$, then $\alpha \circ \beta = \beta \circ \alpha$.
- **2.8.19.** (Theorem): Any non-identity permutation $\alpha \in S_n$ $(n \ge 2)$ can be expressed as a product of disjoint cycles where cycle is of $length \ge 2$.

2.8.20. (Theorem): Any cycle of $length \ge 2$ is either a transposition or can be expressed as a product of transpositions.

Example (2.36):

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 5 & 6 & 3 & 7 & 4 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 8 \end{pmatrix} \begin{pmatrix} * & \leftarrow \\ 2 & 5 & 7 \end{pmatrix} \begin{pmatrix} 3 & 6 & 4 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 8 \end{pmatrix} \begin{pmatrix} 2 & 7 \end{pmatrix} \begin{pmatrix} 2 & 5 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 6 \end{pmatrix}$$

2.8.21. (Theorem: Order and length): Let $n \ge 2$ and $\sigma \in S_n$ be a cycle. Then σ is a

k – cycle \Leftrightarrow order of σ is k.

2.8.22. (**Theorem**): Let $\sigma \in S_n$, $n \ge 2$ and $\sigma = \sigma_1 \circ \sigma_2 \circ \ldots \circ \sigma_k$ be a product of disjoint cycles and suppose $O(\sigma_i) = n_i$, $i = 1, 2, \ldots, k$. Then $O(\sigma) = lcm(n_1, n_1, \ldots, n_k)$

Example (2.37):

(i).
$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
, Then $\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$

(ii). The number of even permutations in $S_n (n \ge 2)$ is the same as that of the odd permutations.

2.9. Subgroups:

Definition: Let (G,*) be a group and H be a non-empty sub-set of G. Then H called a subgroup of (G,*), if H is closed under the binary operation * and (H,*) is a group.

Note: $\{e\}$ and G are two trivial subgroup of G.

Example (2.38): (E, +) of $(\mathbb{Z}, +)$ where $E = \{2x : x \in \mathbb{Z}\}.$

2.9.1. (**Theorem**): All subgroups of (G,*) have the same identity.

2.9.2. (**Theorem**): Let *G* be a group and *H* be a non-empty subset of *G*. Then *H* is a subgroup of $G \Leftrightarrow \forall a, b \in H, ab^{-1} \in H$.

2.9.3. (Corollary): Let G be a group and H be a non-empty finite subset of G. Then H is a subgroup $\Leftrightarrow \forall a, b \in H, ab \in H$.

2.9.4. (**Theorem**): The intersection of any collection of subgroups of a group G is a subgroup of G.

• Union of two subgroups of a group G may not be a subgroup of G.

Example (2.39): Consider $G = S_3$ and $H = \{e, (2,3)\}$ and $K = \{e, (1,2)\}$

Then H, K are two subgroup of S_3 . Now, $H \cup K = \{e, (1 2), (2 3)\}$ is not a group. Since

$$(1 \ 2) \circ (2 \ 3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = (1 \ 2 \ 3) \notin H \cup K$$

2.9.5. (**Theorem**): Let $n \ge 3$. Then A_n is generated by the set of all $\exists \ cycle$. Number of cycle length r in S_n is $\frac{n!}{r \times (n-r)!}$

2.9.6. Definition: Let H and K be two non-empty subsets of a group G. Then the product of H and K is defined to be the set

$$H_k = \{hk: h \in H, x \in K\}$$

Product of two subgroups may not be a subgroup. Let $H = \{e, (1 \ 2)\}$ $K = \{e, (1 \ 3)\}$.

Now,
$$H_k = \{e, (1 \ 2), (1 \ 3), (1 \ 3 \ 2)\}$$
 but $(1 \ 3)(1 \ 2) = (1 \ 2 \ 3) \in H_k$

- **2.9.7.** (**Theorem**) Let H and K be two subgroup of a group G. Then the following are equivalent:
 - (i). H_k is a subgroup of G.
 - (ii). HK = KH
 - (iii). KH is a subgroup of G.
- **2.9.8.** (Corollary): If H and K are two subgroup of a commutative group G, then HK is a subgroup of G.
- **2.9.9.** (Centre of G): $Z(G) = \{x \in G : gx = xg \ \forall \ g \in G\}$
 - (i). Z(G) is a subgroup of G.
 - (ii). If G is commutative, then Z(G) = G.
- Let H be a subgroup of G. Then for any $g \in G$, $K = gHg^{-1} = \{gHg^{-1} : h \in H\}$ in a subgroup of G and |H| = |K|. Text with Technology
- All subgroups of the group $(\mathbb{Z}, +)$ are $T_n = \{r_n : r \in \mathbb{Z}\}, n \in \mathbb{N}_0$

2.10. (Cyclic Groups):

Definition: A group G is called cyclic group if \exists an element $a \in G$ such that

 $G = \langle a \geq \{a^n : n \in \mathbb{Z}\}$. Such an element a is called a generator of G.

Example (2.40):

(i).
$$G = \{1, -1, i, -i\}, G = \langle i \rangle = \langle -i \rangle$$

(ii).
$$(\mathbb{Z}, +) = (<1>, +)$$

(iii).
$$({2n : n \in \mathbb{Z}}, +) = (<2>, +)$$

- (iv). $(\mathbb{Z}, +) = \{[1], +\}$
- **2.10.1.** (**Theorem**): Every cyclic group *G* is commutative.
- **2.10.2.** (Theorem): A finite group g is cyclic $\Leftrightarrow \exists \ a \in G \ such \ that \ O(a) = |G|$
- **2.10. 3.** (Corollary): Let $\langle a \rangle$ be a finite cyclic group. Then O(a) = |G|
- **2.10.4.** (Theorem): Let $G = \langle a \rangle$ be a cyclic group of order n. Then for any integer k where
- $1 \le k < n, a^k$ is a generator of $G \Leftrightarrow \gcd(n, k) = 1$

- **2.10.5.** (**Theorem**): Every subgroup of a cyclic group is cyclic.
- **2.10.6.** (Theorem): Let $G = \langle a \rangle$ be a cyclic group of order n
 - (i). If H is a subgroup of G, then |H| divides |G|. (For any group).
 - (ii). If m is a positive integer such that m divides n, the \exists a unique subgroup of G of order n. (True for also any commutative group).
 - (iii). If $G = \langle a \rangle$ is an infinite cyclic group, then any subgroup $H \neq \{e\}$ of G is also infinite order.
 - (iv). Let $G = \langle a \rangle$ be an infinite cyclic group. Then
 - (a) $a^r = a^t \Leftrightarrow r = t, r, t \in \mathbb{Z}$
 - (b) *G* has only two generators.

2.11. Co-sets and Lagrange's Theorem:

Definition: Let H be a subgroup of G. If $a \in G$, the subset $aH = \{ah : h \in H\}$ is called a left cosets of H in G. Similarly, $Ha = \{ha : h \in H\}$ is called a right co-set of H in G.

Note: $eH = H = He \implies H$ is a left and right co-set of itself in G.

• $aH \neq Ha$ always.

Example (2.41): $H = \{e, (1 \ 2)\}$ in S_3 . Then

$$(2 \ 3)H = \{(2 \ 3), (1 \ 3 \ 2) \text{ and } Ha = \{(2 \ 3), (1 \ 2 \ 3)\}$$

i.e.
$$(2 \ 3)H \neq H(2 \ 3)$$

- **2.11.1.** (**Theorem**): Let *H* be a subgroup of a group *G* and let $a, b \in G$
 - (i). $aH = H \Leftrightarrow a \in H (i *) Ha = H \Leftrightarrow a \in H$
 - (ii). $aH = bH \Leftrightarrow a^{-1}b \in H(ii *) Ha = Hb \Leftrightarrow ba^{-1} \in H$
 - (iii). Either $aH \cap bH = \phi$ or aH = bH (iii *)Either $Ha \cap Hb = \phi$ or Ha = Hb
- \Rightarrow Left co-set or right co-sets gives a partition of G is $\{aH : a \in G \text{ forms a partition of } G.$
- **2.11.2.** (**Theorem**): $|aH| = |H| = |Ha| \forall a \in G \text{ and any subgorup } H \text{ of } G$.
- **2.11.3.** (**Theorem**): Let H be a subgroup of G. Then |L| = |R|, where L(represent R) denotes the set of all left (represents right) co-sets of H in G.
- **2.11.4.** (Index of subgroup): Let H be a subgroup of G. Then the number of distinct left (or right) co-sets of H in G, written [G,H] is called the index of a H in G.
- **2.11.5.** (Lagrange's Theorem): Let H be a subgroup of a finite group G. Then |H| divides |G|. In particular, |G| = |H|[G, H].

2.11.10. (Corollary):

- (i) Every group of prime order is cyclic and hence commutative.
- (ii) Let |G| = n and $a \in G$. Then $\phi(a)$ divides n = |G| and $a^n = e$.
- **2.11.11.** (Fermat Theorem): Let p be a prime integer and abe an integer such that p does not divide a. Then $a^{p-1} \equiv 1 \pmod{p}$.
- **2.11.12.** (**Theorem**): Let *H* and *K* be two finite subgroup of *G*. Then

$$|HK| = \frac{|H|.|K|}{|H \cap K|}$$

2.11.13. (Corollary): If $|H| > \sqrt{|G|}$ and $|K| > \sqrt{|G|}$, then $H \cap K \neq \{e\}$.

Converse of Lagrange's Theorem not true:

Example (2.41) consider the symmetric group S_4 . In this group A_4 of all even permutation is a subgroup and $|A_4| = 6$, H can not contain all these \exists -cycles. Let $\alpha = (a \ b \ c) \notin H$. Now, $O(\alpha) = 3$. Hence $K = \{e, \alpha, \alpha^2\}$ is a subgroup of A_4 .

Note that $\alpha^2 = \alpha^{-1}$.

Hence $H \cap K = \{e\}$. Then $|HK| = \frac{|H| \cdot |K|}{|H \cap K|} = \frac{6.3}{1} = 18$. But $HK \subseteq A_4$ and $A_4 = 12$, a contradiction.

But the converse of Langrage's theorem true for any abelian group.

2.12. Normal Subgroups and Quotient Groups:

- **2.12.1. Definition:** Let H be a subgroup of G. H is said to be normal subgroup of G if $aH = Ha \ \forall \ a \in G$. Note that G and $\{e\}$ are normal subgroup of G which are trivial.
- **2.12.2.** Let H be a subgroup of G. The following conditions are equivalent:
 - (i). H is a normal subgroup.
 - (ii). $gHg^{-1} \subseteq H \ \forall \ g \in G$
 - (iii). $gHg^{-1} = H \quad \forall \ g \in G$
- **2.12.3. Theorem:** Let H and K be two subgroups of G. Then
 - (i). If H is a normal subgroup of G, then HK = KH is a subgroup of G.
 - (ii). If H and K are both normal subgroups, then HK = KH is a normal subgroup of G.
 - (iii). If H and K are both normal subgroups, then $H \cap K$ is a normal subgroup.

Note: If one of H and K be normal then $H \cap K$ is normal in another. It follows from second isomorphism theorem.

2.12.4. Theorem (Quotient group or factor group): Let H be a normal subgroup of G. Denote G|H by $\forall aH, bH \in G|H$, aH * bH = abH. Then(G|H,*) is group and it is known as quotient or factor group.

2.12.5. Results:

- (i). Let H be a subgroup of G such that [G:H] = 2. Then H is normal in G.
- (ii). The centre of G, Z(G) is normal in G.
- (iii). Let H be a subgroup of G. Then $W = \bigcap_{g \in G} gHg^{-1}$ is normal in G.
- (iv). If $x^2 \in H \ \forall x \in G$, then H is normal and G|H is commutative.
- (v). If every cyclic subgroup of G is normal, then every subgroup H of G is normal.

Proof: Let $a \in H$, then for any $g \in G$, $gag^{-1} \in \langle a \rangle \subseteq H$.

(vi). If H is the only subgroup of order x in G, then H is normal.

Proof: $|gHg^{-1}| = |H| \Rightarrow gHg^{-1} = H \Rightarrow H \text{ is normal.}$

(vii). Let $x, y \in G | H$ and $xy \in H$. Then H is normal in G.

Proof: Let $a \in H$, $g \in G \mid H \Rightarrow g^{-1} \in G \mid H \Rightarrow ga, g^{-1} \in G \mid H \Rightarrow gag^{-1} \in H$.

(viii). Let H be a subgroup of a group G. If the product of two left co-sets of H in G is again a left co-set of G, then it is normal.

proof: Let $g \in G$. Then $gH g^{-1}H = tH$ for some $t \in G$. Thus $e = gg^{-1}e \in tH$

- $\Rightarrow e = th \ for \ some \ h \in H \ \Rightarrow t = h^{-1} \Rightarrow tH = H. \ \text{Now, } gHg^{-1} \subseteq gHg^{-1}H = H.$
 - (a). Let H and K be two normal subgroups of G such that $H \cap K = \{e\}$. Then $hk = kh \ \forall \ h \in H, \forall \ k \in K$.
 - **(b)**. If G|Z(G) is cyclic, then G is abelian.

2.13. Homomorphisms of Groups:

2.13.1. Definition (**Homomorphisms**): Let (G,*) and $(G_1,*_1)$ be two groups and $f:G\to G_1$ be a function. Then f is called a homomorphism of G into G_1 if $\forall a,b\in G$, $f(a*b)=f(a)*_1 f(b)$.

Example (2.42):

- (i). $f: \mathbb{R} \to \mathbb{R}^+$, $f(x) = e^x \ \forall \ x \in \mathbb{R}$. f is a homomorphism form $(\mathbb{R}, +)$ to (\mathbb{R}^+, \cdot) .
- (ii). Definition (Trivial homomorphism): $f: G \to G_1by \ f(a) = e_1 \forall \ a \in G$.
- (iii). Define: $f: G[(2,\mathbb{R}) \to \mathbb{R}^*$ by $f(A) = det A \ \forall A \in G[(2,\mathbb{R}).$

Note: $|G[(n, F_p)] = (p^n - p^0)(p^n - p^1) \dots (p^n - p^{n-1})$ and $|S[(n, F_p)] = \frac{|G[(n, F_p)]|}{p-1}$

- **2.13.2.** (**Theorem**): If f is a homomorphism form a group G into a group G_1 and e, e_1 are the identity element of G and G_1 respectively, then
 - (i). $f(e) = e_1$
 - (ii). $f(a^{-1}) = f(a)^{-1} \ \forall \ a \in G$.
 - (iii). $f(a^n) = f(a)^n \ \forall \ a \in G \ and \ \forall \ x \in \mathbb{Z}$.
- **2.13.3.** (**Theorem**): If f be a homomorphism of a group G into a group G_1 . Then the following results hold:
 - (i). If H is a subgroup of G, then $f(H) = \{f(h): h \in H\}$ in subgroup of G_1 .
 - (ii). If H_1 is a subgroup of G_1 , then $f^{-1}(H_1) = \{g \in G : f(g) \in H_1\}$ is a subgroup of G and if H_1 in normal, then $f^{-1}(H_1)$ is also normal.
 - (iii). If $a \in G$ is such that O(a) = n, then O(f(a)) divides n.
 - (iv). (Epimorphism): if f is onto, then f(H) is normal in G_1 where H is normal in G.

Example (2.43): (In general if H is normal in G, then f(H) may not normal in G_1).

Definition: $f: \mathbb{Z}_3 \to S_3$ by $f(\delta) = e, f(\overline{1}) = (1 \ 2), f(\overline{2}) = (1 \ 2)$. Then f is homomorphism and $f(\mathbb{Z}_3) = \{e, (1 \ 2)\} = H_1$ which is not normal in S_3 but $H = \mathbb{Z}_3$ is normal in \mathbb{Z}_3 .

2.13.4. (Kernel): Let $f: G \to G_1$ be a homomorphism. The Kernel of f is defined by

 $Ker f = \{x \in G : f(x) = e_1\}.$

- **2.13.5.** (**Theorem**): Let $f: G \to G_1$ be a homomorphism. Then
 - (i). Im f is a subgroup of G_1 .
 - (ii). Ker f is a normal subgroup of G.
 - (iii). f is one one (monomorphism) $\Leftrightarrow kerf = \{e\}$.
- **2.13.6.** (**Theorem**): Let G and G_1 be two groups such that G_1 in a homomorphic image of G i.e. $f(G) = G_1$ i.e. f is onto (epimorphism).
 - (i). If G is commutative, then so is G_1 .
 - (ii). If G is cyclic, then so is G_1 and i_b $G > \langle a \rangle$, then $G_1 = \langle f(a) \rangle$.
- **2.13.7.** (**Isomorphism**): A homomorphism $f: G \to G_1$ is called an isomorphism if f is a bijective function.

A group G_1 is said to be isomorphic to a group G, if \exists an isomorphism $f: G \to G_1$. In this case we write $G \simeq G_1$.

Example (2.44):

- (i). Let $G = (\mathbb{R}, +)$, $G_1 = (\mathbb{R}^+, \cdot)$ and $f : G \to G_1$, by $f(a) = e^a \forall a \in G$.
- (ii). $I: G \rightarrow G$ by $I(x) = x \forall x \in G$.
- **2.13.8.** (**Theorem**): Let $f: G \to G_1$ be an isomorphism. Then
 - (i). $f^{-1}: G \to G_1$ is an isomorphism.
 - (ii). G is commutative $\Leftrightarrow G_1$ is commutative.
 - (iii). G is cyclic $\Leftrightarrow G_1$ is cyclic.
 - (iv). For all $a \in G$, O(a) = O(f(a))

Following are the consequences of the above theorem:

- I. A finite group can never isomorphic with an infinite group as \nexists a one one mapping and hence bijective.
- **II.** Two groups of same order may not be isomorphic.

Example (2.45): S_3 and \mathbb{Z}_6 where S_3 is non-commutative and \mathbb{Z}_6 is commutative.

III. Two groups of same order, commutative may not be isomorphic.

Example (2.46): \mathbb{Z}_4 cyclic and k_4 is non-cyclic.

IV. Two groups of infinite order and commutative may not be isomorphic.

Example (2.47): $(\mathbb{Z}, +)$ cyclic and $(\mathbb{Q}, +)$ non cyclic.

V. Two groups of infinite order, non-cyclic and commutative may not be isomorphic.

Example (2.48): (\mathbb{R}^* , ·) has number of element of order 4 but ($\not\subset$ *, ·) has i of order 4.

2.13.9. (Theorem): Any infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$.

Proof: $G = \langle a \rangle$ $f : \mathbb{Z} \to G$ by $f(n) = a^n$.

- **2.13.10.** (Theorem (Cayley)): Every group is isomorphic to some subgroup of the group A(S) of all permutations of some set.
- **2.13.11.** (Corollary): Let G be a group of order n. G is isomorphic to a sub group of the symmetric group S_n .

Example (2.49):

(i). Find all homomorphisms of the group $(\mathbb{Z}, +)$ to itself.

Ans. (Define): $f_n: \mathbb{Z} \to \mathbb{Z}$ by $f_n(t) = nt \ \forall \ t \in \mathbb{Z}$, $n \in \mathbb{Z}$. Any homomorphism $f: \mathbb{Z} \to \mathbb{Z}$ is of the form f_n . Since $m \in \mathbb{Z}$, $f(m) = f(m_1) = mf(1)$ and f is completely determined if we know f(1) = n. Then $f(m) = nm = f_n(m) \Rightarrow f \equiv f_n, n = 1, \pm 1, \pm 2, \dots$

(ii). Find all homomorphisms from $(\mathbb{Z}_8, +)$ into $(\mathbb{Z}_6, +)$.

Solutions: Let $[a] \in \mathbb{Z}_8 = \langle [1] \rangle$. f([a]) = af([1]). Then f is completely determined if we know f([1]). Now, O(f([1])) divides O([1]) and $|(\mathbb{Z}_6| \text{ i.e. } \delta \text{ and } 6$. So, $O(\delta[1]) = 1$ or 2. Thus f([a]) = [0], or [3]. If f([1]) = 0, then f is trivial homomorphism. If f([1]) = [3] then f([a]) = [3a].

(iii). (a) There does exist any isomorphism from $(\mathbb{R}, +)$ to (\mathbb{R}^*, \cdot)

Ans. $-1 \in \mathbb{R}^*$ with order 2 but $\nexists a \in \mathbb{R}$ whose order is 2.

(b) $(\mathbb{Q}, +)$ is not isomorphic to $\mathbb{Q}^+, \cdot)$

Ans: Let $f: \mathbb{Q} \to \mathbb{Q}^+$ is an isomorphism. Now, $2 \in \mathbb{Q}^+$. Hence, $\exists x \in \mathbb{Q}$ such that 2 =

$$f(x) = f\left(\frac{x}{2} + \frac{x}{2}\right) = f\left(\frac{x}{2}\right) f\left(\frac{x}{2}\right) = \left\{f\left(\frac{x}{2}\right)\right\}^2 = y^2, y = f\left(\frac{x}{2}\right) \in \mathbb{Q}$$
 which is not possible.

- **2.13.12.** (Theorem of First Isomorphism): Let $f: G \to G_1$ be a homomorphism of groups. Then the quotient group $G|Ker f \simeq Im f \ of \ G_1$.
- **2.13.13.** (Corollary): For any group G, $G|\{e\} \simeq G$. $(I:G \to G, Ix = x \ \forall \ x \in G)$.
- **2.13.14.** (Theorem): If G is a finite cyclic group of order n, then $G \simeq \mathbb{Z}|n\mathbb{Z} \simeq \mathbb{Z}_w$.

Example (2.50):

- (i). Upto isomorphism, there are only two group of order 4, \mathbb{K}_4 and \mathbb{Z}_4 .
- (ii). Upto isomorphism, there are only two groups of order 6, \mathbb{Z}_6 and S_3 .
- (iii). If gcd(m, n) = 1, then $m\mathbb{Z}|mn\mathbb{Z}| \simeq \mathbb{Z}w$.
- (iv). $U(m) = U(n_1) \oplus U(n_2) \oplus \dots \oplus U(n_k)$ where $m = n_1, n_2, \dots n_k$ and $gc d(n_i, n_j) = 1, i \neq j$.
- (v). Consider S_3 , its normal sub groups are $\{e\}$, S_3 , A_3 . Hence all homomorphic images of S_3 are $S_3|S_3$, $S_3|\{e\} = S_3$, $S_3|A_3 = \mathbb{Z}_2$.
- **2.13.15. Theorem (Second Isomorphism):** Let H and K be sub groups of G with K normal in G. Then, $H|(H \cap K) \simeq (HK)|K$.
- 2.13.16. Theorem (Third Isomorphism): Let

 H_1 and H_2 be two normal subgroups of G such that $H_1 \subseteq H_2$. Then- $(G|H_1)|(H_2|H_1) \simeq G|H_2$.

Example (2.51):

Find all homomorphic image of (Z, +).
 Solution: The subgroups of Z and nZ, n ∈ N₀. Since Z is commutative and the subgroups of Z are normal. Thus the homomorphic images of Z are the groups Z|nZ ≈ Zn, n = 0,1,2,.....

• \mathbb{Z}_9 is not homomorphic image of \mathbb{Z}_{16} . Since $\mathbb{Z}_{16}|\ker f \simeq \mathbb{Z}_9 \Rightarrow |\mathbb{Z}_{16}| |\ker f| = |\mathbb{Z}_9| \Rightarrow 16 = |\ker f| \cdot 9$ – absurd.

2.14. Direct Product of Groups:

Theorem: Let G and G be two groups. Then the set $G_1 \times G_2 = \{(g_1, g_2) : g_1 \in G_1 \text{ and } g_2 \in G_2\}$

is a group under the binary operation $*[(a_1, b_1) * (a_2, b_2) = (a_1 a_2, b_1 b_2) \forall (a_1, b_1)(a_2, b_2) \in G_1 \times G_2]$. Further more

- (i). $H_1 = \{(a_1, e_2) \in G_1 \times G_2\}$ is normal in $G_1 \times G_2$ and $G_1 \simeq H_1$.
- (ii). $H_2 = \{(e_1, b_2) \in G_1 \times G_2\}$ is normal in $G_1 \times G_2$ and $G_2 \simeq H_2$.
- (iii). $G_1 \times G_2 = H_1 H_2 = H_2 H_1$, $H_1 \cap H_2 = \{(e_1, e_2)\}$

2.14.1. Definition (Direct Product of groups):

The group $(G_1 \times G_2,*)$ of the above theorem is called the direct products of the groups G_1 and G_2 (or external direct product of the groups G_1 and G_2).

- **2.14.2. Definition (Internal direct product):** Let H and K be two subgroup of G. G is said to be an internal direct product of H and K if
 - a) G = HK

Text with Technology

- **b**) $H \cap K = \{e\}$
- c) $hk = kh \ \forall \ h \in H \ and \ k \in K$

Example (2.52): $k_4 = \{e, a, b, ab\}, H_1 = \{e, a\}, H_2 = \{e, b\}, -1$

- (a) $k_4 = H_1 H_2$ (b) $H_1 \cap H_2 = \{e\}$ (c) $hk = kh \ \forall \ h \in H_1, k \in H_2$
- **2.14.3.** (**Theorem**): Let H and k be any subgroups of a group G. G is an internal direct product of H and $k \Leftrightarrow$
 - (i). G = Hk
 - (ii). H and k are normal in G.
 - (iii). $H \cap k = \{e\}.$
- **2.14.4.** (**Theorem**): Let *G* be a group and *H*, *K* be two normal subgroups of *G*. If *G* is an internal direct product of *H* and *K* then
 - (i). $G \simeq H \times K$
 - (ii). $G|H \simeq K \text{ and } G|K \simeq H$
- **2.14.5.** (**Theorem**): Every finite abelian group is the direct product of cyclic groups.

2.14.6. (**Theorem**): The number of non-isomorphic abelian groups of order p^n , p a portion equals to the number of partition p(n) of n.

2.14.7. (**Theorem**): The number of non-isomorphic abelian of order $p_1^{\alpha_1}, p_2^{\alpha_2}, \ldots, p_r^{\alpha_r}$, where p(u) denoted the number of partitions of u.

Example (2.53): Let G be a abelian group of order 18. Then $18 = 2^1, 3^2 = 2^1 3^1 3^1$ So, G is one of $\mathbb{Z}_{18} = \mathbb{Z}_2 \times \mathbb{Z}_9$ or $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$ (: $\gcd(2,9) = 1$).

(i). Find the number of elements of order 5 in $\mathbb{Z}_{15} \times \mathbb{Z}_5$

Ans:
$$5 \subset O(a, b) = lcm \{O(a), O(b)\}$$

Case –I: Since \mathbb{Z}_{15} is cyclic, it contains only one subgroup of order 5. In any subgroup of order 5, except identity element, every element is of order 5. Hence there are 4 choices of a and 4 choices of b. This gives 16 elements of order 5 in $\mathbb{Z}_{15} \times \mathbb{Z}_5$.

Case – II: 4 choices of a and 1 choices of $b \Rightarrow 4$ elements of order 5 in $\mathbb{Z}_{15} \times \mathbb{Z}_5$.

Case – III: 1 *Choices of a and 4 choices of b* \Rightarrow 4 elements of order 5 in $\mathbb{Z}_{15} \times \mathbb{Z}_5$.

Thus 16 + 4 + 4 = 24 is the number of elements of order 5 in $\mathbb{Z}_{15} \times \mathbb{Z}_5$.

(ii). Let G be an abelian group of order b. Then $|G| = b = 2 \times 3$

$$\Rightarrow G \simeq \mathbb{Z}_2 \times \mathbb{Z}_3 \simeq \mathbb{Z}_6 \ (\because \gcd(2,3) = 1)$$

$$|not \mathbb{Z}_m \times \mathbb{Z}_n \ in \ cyclic \iff \gcd(m,n) = 1|$$

(iii). Find number of non-isomorphic non-abelian groups of order $n \ge b$.

Solution:

Case – I: If
$$n = r!$$

Case – II: If
$$n = 2m(m > 3)$$
. Then D_3 and if $n = r!$ then S_r

Case – III: If mr = n, then find a non-commutative group H of order m and H_m take direct product to \mathbb{Z}_r . This $G \simeq H \times \mathbb{Z}_r$ and |G| = n.

Case –IV: If
$$n = 4k$$
, then Q_{2k} , $k \ge 2$

2.14.8. (Conjugacy class of a $a \in G$):

$$cl(a) = \{b \in G : x \ a \ x^{-1} = b \ for \ some \ x \in G\} = \{xax^{-1} : x \in G\}$$

Conjugacy classes gives a partition of G. Let |G| = n. Then \exists aistients $a_1, a_2, \ldots, a_k \in G$ such that $G = \bigcup_{i=1}^k cl(a_i)$.

Now, let
$$a \in \mathbb{Z}(G) \cup cl(a_1) \cup cl(a_2) \cup \dots \cup cl(a_k)$$
. Hence $|G| = |Z(G)| + |C| = |C|$

$$\sum_{i=1}^{k} |cl(a_i)|$$

This equation is called the class equation of a finite group G.

Example (2.54):
$$S_3$$
, $cl(e) = \{e\}$, $cl(1 \ 2) = \{(1 \ 2), (1 \ 3), (2 \ 3)\}$

ATHEMATICS

$$cl(1 \ 2 \ 3) = \{(1 \ 2 \ 3), (1 \ 3 \ 2)\}$$
 Then $S_3 = cl(e) \cup cl(1 \ 2) \cup cl(1 \ 2 \ 3)$

And
$$6 = |S_3| = |cl(e)| + |cl(1 \ 2)| + |cl(1 \ 2 \ 3)| = 1 + 3 + 2$$

2.14.9. Definition (Centralizer of a): Let $a \in G$. Then centralizer of a is the subset

$$C(a) = \{ x \in G : ax = xa \}$$

Clearly, C(a) is a subgroup of G and $\mathbb{Z}(G) \subseteq C(a)$.

2.14.10. (Theorem): Let G be a finite group and $a \in G$. Then [G : C(a)] = |cl(a)|

2.14.11. (Theorem): If G is a group and $|G|p^n(n > 0)$, then $Z(G) \neq \{e\}$ i. e. $|\mathbb{Z}(G)| \geq p$ (p is prime).

Proof: Follows from class equation and above theorem.

2.14.12. (Theorem): Every group of order p^2 is commutative and it is either a cyclic or a direct product of cyclic groups.

2.14.13. Theorem (Cauchy): Let G be a finite group and p|G|. Then G has an element of order p and hence a subgroup of order p.

Proposition (i): Every group of order p^n (n > 0) contains a normal subgroup of order p.

Proposition (ii): If |G| = px, where p is prime such that p > n their G has a normal subgroup of order p.

 \Rightarrow If |G| = pq where p and q are both primes and p > q then G has a normal subgroup of order p.

 \Rightarrow If |G| = pq where p, q, r are primes and p > q > r then G has a normal subgroup of order p.

2.14.14. (Theorem): Let G be a finite abelian group of order n. If m is a positive integer such that m|n, then G has a subgroup of order m.

Note: The converse of Lagrange's theorem hold for finite abelian group.

2.14.15. Theorem (Sylow's First Theorem): Let G be a group of order $p^n m$, where p is a prime and gcd(p,m) = 1 for $0 \le i \le n$, G has a subgroup of order p^i .

2.14.16. Definition (Sylow p-subgroup): If $|G| = p^n m$ and gcd(p, m) = 1, then any subgroup of G of order p^n is called a Sylow p - subgroup.

2.14.17. Theorem (Sylow's second Theorem): If H and K are any two Sylow p-subgroup of a finite group G, then $H=gkg^{-1}$ for some $g\in G$.

2.14.18. Theorem (Sylow's Third Theorem): If $|G| = p^n m$ and gcd(p, m) = 1, then the number of k_p of Sylow p - subgroup of G is of the form $k_p + 1$ ($k \ge 0$) and $n_p |G|$.

Proposition (i): A finite group G contains only one Sylow $p-subgroup H \Leftrightarrow H$ is normal in G.

Proposition (ii): If |G| = pq where p, q are primessuch that p > q and q does not divide -1, then G is a cyclic group.

Example (2.55):

- (i) If |G| = 15, 35, 77, then G is cyclic.
- (ii) Show that every group of order 14 contains only 6 elements of order 7.

Ans: Let |G| = 14 = 2.7 By Sylow's first theorem G has a subgroup of order 7 and G has Sylow 7 – subgroup H. Now, $n_7 = 7k + 1$ $(k \ge 0)$ and $n_7 | 14 \Rightarrow n_7 = 1$. Hence, H is unique and hence normal and $O(H) = 7 \Rightarrow H$ is cyclic. So, it has 6 elements of order 7.

- (iii) A finite abelian group is cyclic \Leftrightarrow all of its Sylow subgroups of are cyclic.
- (iv) A finite abelian group of order n is cyclic if n is not divisible by p^2 for any prime p.
- (v) Let H and K be subgroups of commutative group G. Let |H| = m |K| = n, l = lcm(m, n). Then G has a subgroup of order l.
- (vi) Let G be a non-commutative group of order $p^3(p-prime)$. Then |Z(G)|=p.
- (vii) Let G be a group of order $p^n(p-prime)$ and $n \in \mathbb{Z}$, $n \ge 1$. Then any subgroup of G of order p^{n-1} is normal in G.
- (viii) Let H be a normal subgroup of a finite group G and p be a prime dividing |G|. If [G:H] and p are relatively prime, then H contains all Sylow p-subgroup of G.

2.15. Simple Groups:

- **2.15.1. Definition:** A group G is called a simple group if $G \neq \{e\}$ and G has no non trivial normal subgroups.
- **2.15.2. Theorem:** A commutative group G is simple $\Leftrightarrow G \simeq \mathbb{Z}_p$ for some prime p.

Proposition (i): If |G| = 2n and n is off, then G has a normal subgroup of order n and hence G is not simple, for n > 1.

Proposition (ii): Let H be a subgroup of G with [G:H]=m. If |G| does not divide m!, then G has a non-trivial normal subgroup. $\therefore G$ is not simple.

Note: (i) A group of order 60 is the smallest simple non-commutative group.

(ii) Let $n \in \mathbb{Z}$ such that $1 \le n < 60$ and n is not prime. Then number of group order n is simple.

2.16. Rings:

- **2.16.1. Definition (Ring):** A ring R is an algebraic structure $(R, +, \cdot)$ consists of a non-empty set R together with two binary operations + and * (called addition and multiplication) such that (R, +) is an abelian group and (R, \cdot) is a semi group and
- $a \cdot (b+c) = (a \cdot b) + (a \cdot c), (b+c) \cdot a = (b \cdot a) + (c \cdot a).$
 - (i) R is commutative if $ab = ba \forall a, b \in R$
 - (ii) R is said to have an identity if $\exists 1 \in R \text{ such that } a \cdot 1 = a \forall a \in R$

Example (2.56):

- (i) $(\mathbb{Z}, +, \cdot)$ is a commutative ring with identity.
- (ii) $(\mathbb{R}, +, \cdot), (\mathbb{Q}, +, \cdot). (\mathbb{C}, +, \cdot)$ are all commutative ring with 1.
- (iii) Finite ring: \mathbb{Z}_n , +, ·)
- (iv) Let $\mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}, i = \sqrt{-1}\}$ with complex *and is a ring known as ring of Gaussian integers.
- (v) Let (G, +) be an abelian group and R be the set of all endomorphisms (homomorphism on G) of G. Define (f + g)(x) = f(x) + g(x) and $(f \circ g)(x) = f(g(x)) \forall f, g \in R$ and $\forall x \in G$. Then (R, +, 0) is a ring (which is called the ring of endomorphisms of G).
- (vi) Let R_1 and R_2 be two rings.

Define $R = R_1 \times R_2$, (a, b) + (c, d) = (a + c, b + d) and (a, b); (c, d) = (ac, bd).

- Then $(R, +, \cdot)$ is a ring where (OR_1, OR_2) is the additive identity $(R \text{ is called the direct product of rings } R_1 \text{ and } R_2)$.
- (vii) $(\mathbb{R}[x], +, \cdot)$ is a ring where $\mathbb{R}[x]$ set of all polynomial with real coefficients.
- (viii) R = P(X) and $A, B \in P(X)$ $A + B = A \Delta B$ and $A \cdot B = A \cap B$. There $(R, +, \cdot)$ is a ring.
- (ix) $(M_x(\mathbb{R}), +, \cdot)$ is a ring where $M_x(\mathbb{R})$ is the set of all $n \times n$ real matrices.
- **2.16.2. Theorem:** Let R be a ring and $a, b \in R$. Then
 - (i) $a \cdot 0 = 0 = 0 \cdot a$
 - (ii) a(-b) = (-a)b = -ab
 - (iii) (-a)(-b) = ab
 - (iv) (a+b)(c+d) = ac+ad+bc+bd, $c,d \in R$
 - $(\mathbf{v})(a-b)(c-d) = ac bc ad + bd$
 - (vi) $(a+b)^2 = a^2 + ab + ba + b^2$

- **2.16.3.** (**Idempotent**): An element $x \in R$ is called idempotent if $x^2 = x$.
- **2.16.4.** (Boolean Ring): A ring R is called Boolean ring if every element of R is idempotent i.e. $x^2 = x \ \forall x \in R$.

Example (2.57): See example (viii) of (4.56).

- **2.16.5. Theorem:** Let *R* be a Boolean ring. Then –
- (i) $2x = 0 \ \forall \ x \in R$

(ii)
$$xy = yx \ \forall x, y \in R$$

Note: Boolean is a commutative ring.

2.16.6. (Unit): Let R be a ring with identity $1 \neq 0$. Then $u \in R$ is called a unit (or invertible) if $\exists v \in R$ such that uv = vu = 1. v is called the inverse of u and is denoted by u^{-1} .

Example (2.58):

- (i) Non-singular matrices are units in $M_n(\mathbb{R})$
- (ii) Any non-zero rational number in $\mathbb Q$ is a unit.
- **2.16.7.** (Nilpotent): An element $x \in R$ is called nilpotent if $x^n = 0$ for some positive integer n. The smallest n(for x) is called degree of nilpotent of x.
- **2.16.8. Theorem:** The sum of two nilpotent elements of a commutative ring is also nilpotent.
- **2.16.9.** (**Zero divisor**): Let $0 \neq a \in R$. Then a is called a zero divisor if $\exists 0 \neq b \in R$ such that ab = 0 or ba = 0.

Example (2.59):

- (i) $(M_n(\mathbb{R}), +, \cdot)$ has zero divisor (ii) $(\mathbb{Z}_6, +, \cdot) \cdot \overline{2} \cdot \overline{3} = 0$ in \mathbb{Z}_6
- **2.16.10.** (Cancellation Law): A ring R is said to satisfy left (right) cancellation property if $\forall a, b, c \in R, a \neq 0$ and ab = ac [represent ba = ca] $\Rightarrow b = c$
- **2.16.11. Theorem:** Let *R* be a ring. Then the followings are equivalent:
 - **i.** R has no zero divisors.
 - ii. R satisfies left cancellation property.
 - iii. R satisfies right cancellation property.
- **2.16.12.** (Integral Domain): A commutative ring with identity $1 \neq 0$ is called on integral domain (ID) if R has no zero divisors.

Examples (2.60):

- (i) $(\mathbb{Z}, +, \cdot), (\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot), (\mathbb{C}, +, \cdot)$
- (ii) $R = R_1 \times R_2$ is not an integral domain even if both R_1 and R_2 are Integral Domain. Since $(0, b) \cdot (a, 0) = (0, 0)$.

2.16.13. Theorem: For any positive integer n, the ring \mathbb{Z}_n of all integers modules n is an integral domain $\Leftrightarrow n$ is prime.

2.16.14. Theorem: A commutative ring R with identity $1 \neq 0$ is an integral domain \Leftrightarrow the cancellation law holds for multiplication.

2.16.15. (Division ring): A ring R with identity $1 \neq 0$ is called a division ring if every non-zero element of R is a unit.

Example (2.61): $R = \{\left(\frac{\alpha}{\beta}, \frac{\beta}{\alpha}\right) \in M_2(\mathbb{C}): \bar{\alpha}, \bar{\beta} \text{ are conjugate of } \alpha, \beta \}$

2.16.16. (**Field**): A commutative division ring is called field. For field $(F, +, \cdot)$ we have (F, +) and (F, \cdot) are both abelian groups.

Examples (2.62): $(\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot), (\mathbb{C}, +, \cdot)$

2.16.17. Theorem: Any field is an integral domain.

2.16.18. Theorem: Any finite integral domain is a field.

2.16.19. (Corollary): \mathbb{Z}_n is a field $\Leftrightarrow n$ is prime.

2.16.20. (Characteristic of Ring): Let R be a ring. If there exists a positive integer n such that $na = 0 \forall a \in R$, then the least such n is called the characteristic of the ring.

Note: If there is not exists positive integer n with $na = 0 \forall a \in R$, then the ring is said to be of characteristic 0 (Zero).

Example (2.63)

Text with Technology

- (i) The characteristic of \mathbb{Z}_n in n.
- (ii) The ring \mathbb{Z} and the fields \mathbb{Q} , \mathbb{R} , \mathbb{C} are of characteristic zero.
- **2.16.21. Theorem:** The characteristic of an integral domain is either prime or zero. In particular characteristic of a field is either prime or zero.
- **2.16.22.** (Corollary): The characteristic of a finite field is prime.

2.17. Subring:

A non-empty subset S of a ring $(R, +, \cdot)$ is called a subring of R if (S, +) is a subgroup of the abelain group (R, +) and S closed under multiplication i.e. $\forall a, b \in S \Rightarrow ab \in S$.

Example (2.64.):

- (i) The smallest subring of R is $\{0\}$ and the greatest one is R itself.
- (ii) In the following chain, the former is a subring of the later $\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}$

Note: \mathbb{Z}_n is not a subring of \mathbb{Z} , but $n\mathbb{Z} - \{nr : r \in \mathbb{Z}\}$ is a subring of \mathbb{Z} .

(iii) The set $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \in \mathbb{R} : a, b, \in \mathbb{Z}\}$ is a subring of \mathbb{R} .

- (iv) Let R_1 and R_2 be two rings and S_1 and S_2 be two subrings of R_1 and R_2 respectively. Then $S_1 \times S_2$ is a subring of $R_1 \times R_2$.
- (v) The set of even polynomial R is a subring of $\mathbb{R}[x]$.
- (vi) The Gaussian integers $\mathbb{Z}[i] = \{a + bi \in \mathbb{C} : a, b \in \mathbb{Z}, i^2 = -1\}$ is a subring of \mathbb{C} .
- **2.17.1. Theorem:** Let R be a ring and S be an non-empty subring of R. A necessary and sufficient condition that S is a subring of R is $a, b \in S \Rightarrow a b, ab \in S$.
- **2.17.2. Theorem:** Let $\{S_{\alpha} : \alpha \in \Lambda\}$ be a collection of subrings of a ring R. Then $S = \bigcap_{\alpha \in \Lambda} S_{\alpha}$ is a subring of R and S is the smallest subring.

Note: Union of two subrings may not be a subring. Consider the subrings $2\mathbb{Z}$ and $3\mathbb{Z}$ of \mathbb{Z} . Since $2+3 \notin 2\mathbb{Z} \cup 3\mathbb{Z}$ we have $2\mathbb{Z} \cup 3\mathbb{Z}$ is not a subring of \mathbb{Z} .

2.17.3. (Centre of \mathbf{R}): Let R be a ring. Define

 $C(R) = \{a \in R : x_a = a_x \ \forall \ x \in R\}, C(R) \text{ is called the centre of } R.$

Note that $C(R) = R \iff R$ is commutative.

- **2.17.4. Theorem:** The centre of a ring R is a subring of R.
- **2.17.5.** (Sub field): Let F be a field. A subring S of F is called a subfield of if $1 \in S$ and for each $0 \neq a \in S$, $a^{-1} \in S$.

Clearly a subfield S in itself a field.

Example (2.65):

(i) In the following chain the former is the subfield of the later

$$\mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$$

- (ii) $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \in \mathbb{R} : a, b \in \mathbb{Q}\}$ is a subfield of \mathbb{R} .
- (iii) Let A be the set of all complex number which satisfy a polynomial equation with rational co-efficient, i.e. $A = \{\alpha \in \mathbb{C}: a_0 + a_1\alpha + a_2\alpha^2, \dots, a_n\alpha^n = 0, a_i \in \mathbb{Q}, n \in \mathbb{N}_0\}$

Then A is a subfield of \mathbb{C} . Elements of A are called algebraic numbers.

- **2.17.6. Theorem:** Let S be a subset of a field F. Then is a subfield of $F \Leftrightarrow S$ satisfies the following conditions:
 - i. $|S| \ge 2$
 - **ii.** $a b \in S \ \forall \ a, b \in S$
 - **iii.** $ab^{-1} \in S \ \forall \ a \in S, b \in S \ |\{0\}.$
- **2.17.7. Theorem:** Let $\{S_{\alpha} : \alpha \in \Lambda\}$ be a collection of subfield of a field F. Then $S = \bigcap_{\alpha \in \Lambda} S_{\alpha}$ is also a subfield of F.

- Note that
 - (i) \mathbb{Q} is the smallest subfield over \mathbb{R} .
 - (ii) The characteristic of a subfield is same as the characteristic of the field. $\Rightarrow \mathbb{R}$ has no finite subfield.
 - (iii) The union of two subfields may not be a subfield consider $\mathbb{Q}[\sqrt{2}]$ and $\mathbb{Q}[\sqrt{3}]$ two subfield of \mathbb{R} . Then $\sqrt{2} + \sqrt{3} \notin \mathbb{Q}[\sqrt{2}] \cup \mathbb{Q}[\sqrt{3}]$. So, $\mathbb{Q}[\sqrt{2}] \cup \mathbb{Q}[\sqrt{3}]$ is not a subfield of \mathbb{R} .

2.18. (Ideal):

A subring I of ring R is called a left [right] ideal of R, if $\forall r \in R$ and $\forall x \in I, rx \in I$ [respectively $xr \in I$]. If I is both left and right ideal, then I is called an ideal of R.

Examples (2.66):

- i). $\{0\}$ and R are two trivial ideal of R.
- ii). $2 \mathbb{R}$ is an ideal of \mathbb{R} .
- iii). Let R be a ring and consider $S = R \times R$. Then $R \times \{0\}$ and $\{0\} \times R$ are ideals of $R \times R = S$.
- iv). Every field has only two trivial ideals $\{0\}$ and F.
- **2.18.1. Theorem:** Let $\{I_{\alpha} : \alpha \in \Lambda\}$ be a collection of left [right ideal] of a ring R.

Then $I = \bigcap_{\alpha \in \Lambda} I_{\alpha}$ is a left [respectively right ideal] ideal of R.

Note that union of two ideals may not be an ideal consider $2\mathbb{Z}$ and $3\mathbb{Z}$ of \mathbb{Z} (As $2\mathbb{Z} \cup 3\mathbb{Z}$ is a subring of \mathbb{Z} .).

2.18.2. Definition: Let *I* and *J* be two ideas of *R*. Define

$$\begin{split} I + J &= \{a + b : a \in I, b \in J\} \ and \\ IJ &= \{\sum_{i=1}^m a_i b_i : a_i \in I, b_i \in J, n \in \mathbb{N}\}. \end{split}$$

2.18.3. Theorem: Let R be a ring and I, J be two ideals of R. Then I + J and IJ are ideals of R.

Moreover $IJ \subseteq I \cap J$ and $I \cup J \subseteq I + J$. Ideal I + J is the smallest ideal containing $I \cup J$.

2.18.4. Theorem: Let R be a ring and $x \in R$. Denote the smallest ideal containing x by (x). Then

$$(x) = \{ rx + rs + \sum_{i=1}^{m} s_i \ x \ t_i + nx : r, s, s_i, t_i \in R; m \in \mathbb{N}, n \in \mathbb{N} \}$$

If R has m identity, then -

- $(x) = \{\sum_{i=1}^m s_i \ x \ t_i : s_i, t_i \in R; m \in \mathbb{N}\}$ and if R is a commutative ring with identity, then –
- $(x) = Rx = \{rx : r \in R\}$

2.18.5. (Principal ideal): The ideal (x) of a ring R is called the principal ideal generated by the element $x \in R$.

- **2.18.6.** (**Principal ideal ring**): A ring R with identity is called a principal ideal ring if every ideal of R is a principal ideal.
- An integral domain (ID) in which every ideal is a principal ideal is called a principal ideal domain (PID).

Example (2.67):

i). \mathbb{Z} is a principal ideal domain (PID). Since its every ideal is of the form $n\mathbb{Z} = (n), n \in \mathbb{N}_0$.

Note that in a ring R with identity, R = (1) and hence for any ideal I of R, $1 \in I \Leftrightarrow I = R$. Thus in this case R has trivial ideals (0) and (1).

- ii). $\mathbb{Z}(n > 1)$ is a PIR
- iii). $\mathbb{Q}[x]$ is a PID.
- **2.19.** (Simple ring): A ring R is called simple if $R^2 \neq \{0\}$ and R has no non-trivial ideal.

Example (4.68): (i) \mathbb{Z}_n

- (ii) $M_2(\mathbb{R})$
- (iii) Any field.
- **2.19.1. Theorem:** A commutative ring R with identity is simple \Leftrightarrow R is a field.
- 2.20. (Quotient ring/ Factor ring):

Let R be a ring and I be an ideal of R. Then the ring

 $R/I = \{a + I : a \in R\}$ is called the quotient ring of R by I. Where –

$$(a+I) + (b+I) = (a+b) + I \text{ and } (a+I)(b+I) = ab + I \forall a, b \in R$$

Example (2.69): Consider the ring \mathbb{Z} and in this ring $5\mathbb{Z} = \{5k : k \in \mathbb{Z}\}$ is an ideal of \mathbb{Z} . Then $\mathbb{Z}/5\mathbb{Z} = \{n + 5\mathbb{Z} : n \in \mathbb{Z}\}$ is a quotient ring.

- **2.20.1. Theorem:** If R is a commutative ring with identity $1 \neq 0$ and I be a proper ideal of R, then the quotient ring R/I is also a commutative ring with identity.
- **2.21.** (**Homomorphism**): Let R and S be two rings. A mapping $f: R \to S$ is called a homomorphism of R into S, if it satisfies the following
 - i). f(a + b) = f(a) + f(b)
- ii). $f(ab) = f(a)f(b) \quad \forall a, b \in R$

Any homomorphism of a ring R into itself is called an endomorphism and a bijective endomorphism is called an automorphism.

Example (2.70):

- i). $f: \mathbb{Z} \to \mathbb{Z}$ by f(r) = [r]
- ii). (not homomorphism) $f : \mathbb{Z} \to \mathbb{Z}$ by f(x) = -x. Then f(m+n) = -(m+n) = -m - n = f(m) + f(n). Now $f(2 \cdot 3) = -(2 \cdot 3) \neq (-2)(-3) = f(2)f(3)$.
- **2.21.1.** (**Kernel**): (i) $\ker f = \{x \in R : f(x) = O_s\}$. $\ker f$ is an ideal of R. (ii) f is one one if only if $\ker f = \{O_R\}$.

1st, 2nd, 3rd isomorphism theorem also holds for ring homomorphism.

Example (2.71): Find all homomorphism from the ring \mathbb{Z} *onto* \mathbb{Z} .

Answer: Only one which is identity homomorphism.

2.21.2. (Maximal ideal): A proper ideal I of a ring $R \neq \{0\}$ is called a maximal ideal of R if I is not contained in any other proper ideal of R i.e. for any ideal J of R, $I \subseteq R \Rightarrow either I = J$ or J = R.

Example (2.72):

- i). $3\mathbb{Z}$ is maximal ideal $m\mathbb{Z}$. But $6\mathbb{Z}$ is not maximal is \mathbb{Z} . Since $6\mathbb{Z} \subset 3\mathbb{Z} \subset \mathbb{Z}$. In general $p\mathbb{Z}$ for any prime P, is a maximum ideal in \mathbb{Z} .
- ii). Consider \mathbb{Z}_6 . In this ring $\{0\}$, $\{0, 2, 4\}$, $\{0, 3\}$ and \mathbb{Z}_6 . $\{0, 2, 4\}$ and $\{0, 3\}$ are maximal ideal in \mathbb{Z}_6 .
- iii). Let F be a field. Since $\{0\}$ and F are only two ideals of F, $\{0\}$ in the only maximal ideal of F.
- **2.21.3. Theorem:** Let R be a commutative ring with identity $I \neq 0$. Then R is a field $\Leftrightarrow \{0\}$ is a maximal ideal of R.
- **2.21.4. Theorem:** Let R be a commutative ring with identity, $I \neq 0$. Then an ideal M of R is maximal $\Leftrightarrow R/M$ is a field.
- **2.21.5.** (**Prime ideal**): Let R be a ring such that $R \neq \{0\}$. A proper ideal P of R is called a prime ideal, if for any ideal A, B in R, $AB \subseteq P \Rightarrow A \subseteq P$ or $B \subseteq P$.
- **2.21.6. Theorem:** Let R be a ring with $R \neq \{0\}$ and P be a proper ideal of R such that for any $a, b \in R$, $ab \in P \Rightarrow a \in P$ or $b \in P$. Then P is a prime ideal of R.

Example (2.73): $P\mathbb{Z}$ of \mathbb{Z} . Let $a, b \in R$ such that $ab \in P\mathbb{Z} \Rightarrow P(ab) \Rightarrow$ either P|a or P|b as P is prime.

2.21.7. (**Theorem**). Let R be a commutative ring with identity. Then every maximal ideal if R is prime.

2.21.8. Theorem: Let R be a commutative ring with identity, $I \neq 0$. A proper ideal P of R is prime ideal $\Leftrightarrow R \mid P$ is an integral domain(ID).

Note: $P\mathbb{Z}$, P is prime, are both prime and maximal ideal in \mathbb{Z} .

2.21.9. Theorem:

- i). In a Boolean ring B with identity, every prime ideal is a maximal ideal. \Rightarrow prime ideal \Leftrightarrow maximal ideal.
- ii). Let R be ring with identity. Then every proper ideal of R is contained in a maximal ideal of R
- iii). Let R be a ring with identity, $I \neq 0$. Then R has a maximal ideal.

Example (2.74):

Find all prime and maximal ideal of \mathbb{Z}_8 .

Answer:

- (i) Ideals of \mathbb{Z}_8 are $\{0\}, \{0, a\}, \{0, 2, 4, 6\}, \mathbb{Z}_8 \Rightarrow \{0, 2, 4, 6\}$ is the only maximal ideal. By the theorem (2.19.9) it is also prime ideal.
- Now, $\{0\}$ is not prime, since $4 \times 2 = 0$ but $2,4, \notin \{0\}$. $\{0,4\}$ is not prime as $2 \times 2 = 4$ but $2 \notin \{0,4\}$.
- (ii) In the ring $\mathbb{Z}[i]$, the subset $I = \{a + ib \in \mathbb{Z}[1] : a, b \text{ are } the \text{ both muliples of } 3\}$ is a maximal ideal of $\mathbb{Z}[i]$.
- (iii) $\mathbb{Z}[i]/I$ is a field of 9 elements.

2.22. Polynomial Rings:

Definition: Let R be a commutative ring. The set of polynomials $R[x] = \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = a_i \in R, n > 0\}$ is called the ring of polynomials over R in the indeterminate x.

- **2.22.1. Theorem:** If D is an integral domain (ID), then D[x] is an integral domain (ID).
- **2.22.2. Theorem (Division Algorithm):** Let F be a field and let $f(x), g(x), \in F(x)$ with $g(x) \neq 0$. Then \exists unique polynomials q(x) and r(x) in F[x] such that
- $f(x) = g(x)q(x) + r(x), r(x) = 0 \text{ or } \deg r(x) < \deg g(x).$
- **2.22.3. Corollary –I (Remainder Theorem):** Let F be a field, $a \in F$ and $f(x) \in F[x]$. Then f(a) is the remainder in the division of f(x) by x a.
- **2.22.4.** Corollary– II (Factor Theorem): Let F be a field, $a \in F$ and $f(x) \in F[x]$. Then a is a zero of $f(x) \Leftrightarrow x a$ is a factor of f(x).
- **2.22.5.** Corollary III: A polynomial of degree n has at most n zeros counting multiplicity.

2.22.6. Theorem (PID): Let F be a field. Then F[x] is a PID. So any ideal I in F[x], $I = \langle f(x) \rangle$ where f(x) is a non-zero minimum degree polynomial in I.

Example (2.75): Let $\phi : \mathbb{R}[x] \to \mathbb{C}$ be defined by $\phi[f(x)] = f(i) \ \forall \ f(x) \in \mathbb{R}[x]$. Then ϕ is a homomorphism and $x^2 + 1 \in \ker \phi$ and $x^2 + 1$ is the minimum degree polynomial in $\ker \phi$. Thus $\ker \phi = \langle x^2 + 1 \rangle$ By 1st isomorphism theorem $\mathbb{R}[x] | \langle x^2 + 1 \rangle \simeq \mathbb{C}$.

2.22.7. (Irreducible, Reducible Polynomial): Let D be an integral domain. A polynomial f(x) form D[x] that is neither zero nor unit in D[x] is said to be irreducible order D, if, whenever f(x) is expressed as a product f(x) = g(x)h(x) with $g(x), h(x) \in D[x]$ then either g(x) or h(x) is a unit in D[x].

A non-zero, non-unit element of D[x] that is not irreducible over D is called reducible over D.

Example (2.76):

- i). $x^2 2$ is irreducible over \mathbb{Q} but reducible over \mathbb{R} .
- ii). $2x^2 + 4$ is irreducible over \mathbb{Q} and \mathbb{R} but reducible over \mathbb{C} .
- iii). The polynomial $x^2 + 1$ i.e. irreducible over \mathbb{Z}_3 but reducible over \mathbb{Z}_5 (Hint. in $\mathbb{Z}_3, x^2 + 1$ has no zero but in $\mathbb{Z}_5, x^2 + 1 = x^2 + 1 + (-5) = x^2 4 = (x 2)(x + 2) = (x 2 + 5)(x + 2) = (x + 3)(x + 2)$.
- **2.22.8. Theorem:** Let F be a field and $f(x) \in F[x]$ with degf(x) = 2 or 3. Then f(x) is reducible over $F \Leftrightarrow f(x)$ has a zero in F.
- **2.22.9.** (Content of polynomial, Primitive polynomial): The content of a non-zero polynomial $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ where $a_i \in \mathbb{Z}$, is the gcd of $a_0, a_1, \dots + a_n$. A primitive polynomial is an element of $\mathbb{Z}[x]$ with content 1.
- **2.22.10. Lemma (Gauss):** The product of two primitive polynomials is primitive.
- **2.22.11. Theorem:** Let $f(x) \in \mathbb{Z}[x]$. If f(x) is reducible over \mathbb{Q} , then it is reducible over \mathbb{Z} .

Example (2.77):

$$f(x) = 6x^{2} + x - 2 = \left(3x - \frac{3}{2}\right)(2x + \frac{4}{3})$$

$$\Rightarrow 2 \cdot 3 f(x) = 2\left(3x - \frac{3}{2}\right)3\left(2x + \frac{4}{3}\right) = 2 \cdot 3(2x - 1)(3x + 2)$$

$$\Rightarrow f(x) = (2x - 1)(3x + 2).$$

2.22.12. Theorem (Mod P Irreducible Test): Let P be a prime and suppose that $f(x) \in \mathbb{Z}[x]$ with $\deg f(x) \geq 1$. Let $f^2(x)$ be the polynomial in $\mathbb{Z}_p[x]$ obtained from f(x) by reducing all the coefficient of f(x) modulo P. If $f^2(x)$ is irreducible over \mathbb{Z}_p and $\deg f^2(x) = \deg f(x)$, then f(x) is irreducible over \mathbb{Q} .

Example (2.78): Let $f(x)21x^3 - 3x^2 + 2x + 9$. Then over Z_2 . Thus f(x) is irreducible over \mathbb{Q} and hence over \mathbb{Z} .

2.22.13. Theorem (Eisenstein Criterion): Let $f(x) = \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathbb{Z}[x]$. If there is a prime P such that $P \nmid a_n, P \mid a_{n-1}, \dots, P \mid a_0 \text{ and } P^2 \nmid a_0$, then f(x) is irreducible over \mathbb{Q} .

Example (4.79): $3x^5 + 15x^4 - 20x^3 + 10x + 20 \in \mathbb{Z}(x), p = 5$. f(x) is irreducible over \mathbb{Q} .

2.22.14. Corollary: For any prime P, the P^{th} cyclotomic polynomial

$$\phi_p(x) = \frac{x^{p-1}}{x-1} = x^{p-1} + x^{p-2} + \dots + x + 1$$
 is irreducible over \mathbb{Q} .

- **2.22.15. Theorem:** Let F be a field and let $p(x) \in F[x]$. Then $\langle p(x) \rangle$ is a maximal ideal in $F[x] \Leftrightarrow p(x)$ is irreducible polynomial over F.
- **2.22.16.** Corollary I: Let F be a field and p(x) an irreducible polynomial over F. Then $F[x]|\langle p(x)\rangle$ is a field.
- **2.22.17.** Corollary II: Let F be a field and let p(x), a(x), $b(x) \in F[x]$. If p(x) is irreducible over F and p(x)|a(x)b(x), then p(x)|a(x) or p(x)|b(x).
- **2.22.18. Theorem:** Z[x] is a unique factorization domain (UFD) i.e. $f(x) \in \mathbb{Z}[x]$.

 $f(x) = b_1 b_2 \dots b_s p_1(x) \dots p_m(x) = c_1 c_2 \dots c_t q_1(x) \dots q_n(x)$ where $b'sadn\ c's$ are irreducible polynomial of degree 0 and the p(x)'s, q(x)'s are irreducible polynomial of positive degree. Then s = t, m = n and $b_i = \pm c_i$, $p_i(x) = \pm q_i(x)$.

2.23. Divisibility in Integral Domain (ID):

Elements a, b of an integral domain D are called associates if a = ub where $b, c \in D$ with a = bc, then b or c is unit. A non-zero element $a \in D$ is called prime if a is not unit and $a|bc \Rightarrow a|b$ or a|c.

2.23.1. Theorem (Prime \Rightarrow Irreducible in ID):

In an integral domain (ID), every prime is an irreducible. Converse is not true.

Example (2.80):

$$1 + \sqrt{-5}$$
, $1 - \sqrt{-5}$, 3 , 2 , $3 \pm \sqrt{-5}$, $2 \pm 3\sqrt{-5}$, $3 \pm 2\sqrt{-5}$, $1 \pm 2\sqrt{-5}$, $1 \pm 3\sqrt{-5}$ are irreducible in $\mathbb{Z}[\sqrt{-5}]$ but they are not prime in $\mathbb{Z}[\sqrt{-5}]$.

Let
$$1 + \sqrt{-5} = (a + b\sqrt{-5})(c + d\sqrt{-5})$$

$$\Rightarrow (1 + \sqrt{-5)(1 - \sqrt{-5})} = (a + b\sqrt{-5})(a - b\sqrt{-5})(c + d\sqrt{-5})(c - d\sqrt{-5})$$

$$\Rightarrow 1 + 5 = (a^2 + 5b^2)(c^2 + 5d^2)$$

$$\Rightarrow 2 \times 3 = (a^2 + 5b^2)(c^2 + 5d^2) = 6 \times 1 \Rightarrow 6 = a^2 + 5b^2, \quad 1 = c^2 + 5d^2$$

$$\Rightarrow 2 = a^2 + 5b^2$$
, $3 = c^2 + 5d^2$ (There is no a, b, c, $d \in \mathbb{Z}$)

$$\Rightarrow a = \pm 1, b = \pm 1 \Rightarrow c = \pm 1, d = 0$$

$$\Rightarrow c + d\sqrt{-5}$$
 is unit..

2.23.2. (Unique Factorization Domain (UFD)).

An integral domain D is a unique factorization domain if –

- (i) Every non-zero and non- unit element of D can be written as a product of irreducible of D.
- (ii) The factorization into irreducible is unique up to associates and the order in which the factors appear.
- **2.23.3. Theorem:** Every principal ideal domain (PID) is a unique factorization domain (UFD).

Converse is not true. Since $\mathbb{Z}[x]$ is unique factorization domain (UFD) but is not PID.

- **2.23.4.** Corollary: Let F be a field. Then F[x] is a unique factorization domain (UFD).
- 2.23.5. Definition (Euclidean Domain): An integral domain D is called a Euclidean domain

(ED) if \exists function N form the non-zero elements of D to the non-negative integers such that-

- (i) $N(a) \leq N(ab) \forall non-zero a, b \in D$
- (ii) If $a, b \in D$, $b \neq 0$, then $\exists q, r \in D$ such that a = bq + r where r = 0 or N(r) < N(b).

Example (2.81.):

- i). The ring \mathbb{Z} is a Euclidean Domain(ED) with N(a) = |a|.
- ii). Let F be a field. Then F[x] is a Euclidean Domain with $N(f(x)) = degf(x) \Rightarrow F[x]$ is Euclidean Domain, Principal Ideal Domain, Unique Factorization Domain, Integral Domain.
- iii). The ring of Gaussian integers $\mathbb{Z}[i] = \{a+ib=a, b \in \mathbb{Z}\}$ is Euclidean Domain with $N(a+ib) = a^2 + b^2$.
- iv). $\mathbb{Z}[\sqrt{n}]$ is Euclidean Domain only for n = -1, -2, 2, 3

- **v).** In Principal Ideal Domain (PID), if $\langle a \rangle$ and $\langle b \rangle$ two ideal $\langle a, b \rangle = \langle a \rangle + \langle b \rangle = \langle d \rangle$ $\langle a \rangle \cap \langle b \rangle = \langle l \rangle$ where $d = \gcd(a, b)$, l = lcm(a, b)
- vi). If N(a) is prime is D then a is irreducible.

$F \subset ED$	\leftarrow DID \leftarrow	· IIED c	- FDC —	$ID \subset D$
$r \subseteq rn$	$\subseteq FIII$	_ () ') \	_ 1'17($III \subseteq \Lambda$

	ID	FD	UFD	PID	ED	F
	Q	V	$\sqrt{}$	V	V	V
	\mathbb{R}	$\sqrt{}$	$\sqrt{}$	V	V	V
	\mathbb{Z}	$\sqrt{}$	$\sqrt{}$	V	V	×
F[x], Field	$\mathbb{Q}[x]$	V	$\sqrt{}$	V	V	×
	$\mathbb{R}[x]$	V	V	V	V	×
	$\mathbb{Z}\left[\frac{1+i\sqrt{7}}{2}\right]$	V	V	V	×	×
	$\mathbb{Z}[x]$	V	V	×	×	×
	$\mathbb{Z}[i\sqrt{5}]$	V	×	×	×	×
Ring	R	×	×	×	×	×

2.24. (Extension Field): A field E is and extension field of a field F if $F \subseteq E$ and the operation of F are those of E restricted to F.

Example: \mathbb{R} is a extension field of \mathbb{Q} .

2.24.1. Theorem (Fundamental Theorem of Field): Let F be a field and f(x) a non-constant polynomial in F[x]. Then there exist an extension field E of F in which f(x) has a zero.

Example (2.82): Let $f(x) = x^2 + 1 \in \mathbb{Q}[x]$. Then in $E = \mathbb{Q}[x] | \langle x^2 + 1 \rangle$, we have

$$f(x + \langle x^2 + 1 \rangle) = (x + \langle x^2 + 1 \rangle)^2 + 1 = x^2 + \langle x^2 + 1 \rangle + 1$$

$$= x^2 + 1 + \langle x^2 + 1 \rangle = 0 + \langle x^2 + 1 \rangle = \langle x^2 + 1 \rangle$$

 $\Rightarrow f \text{ has zero in } E = \mathbb{Q}[x]/\langle x^2 + 1 \rangle$

Since, in G|H, (a + H)(b + H) = ab + H and (a + H) + (b + H) = (a + b) + H

Note: H is the '0' element and 1 + H is the '1' element in G|H.

Example (2.83): Let $(x) = x^5 + 2x^2 + 2x + 2 \in \mathbb{Z}_3[x]$. Then its irreducible factorization over $\mathbb{Z}_3[x]$ is $(x^1 + 1)(x^3 + 2x + 2)$. So, we may take its extension field as $E = \mathbb{Z}_3[x]/\langle x^2 + 1 \rangle = \{a + bx + \langle x^2 + 1 \rangle : a, b \in \mathbb{Z}_3\}$ with 9 elements or $\mathbb{Z}_3[x]/\langle x^3 + 2x + 1 \rangle$ with 27 elements.

Note: (i) Construct field with 8, 9, 27 etc.

- (ii) Let $\deg f(x) = n$ and f(x) is irreducible in $\mathbb{Z}_p[x]$, the order of the field $\mathbb{Z}_p[x]/\langle f(x)\rangle$ is p^n .
- **2.24.2.** (Splitting Field): Let E be an extension field of F and let $f(x) \in F[x]$. We say that f(x) splits in E if f(x) can be factored as a product of linear factors in E[x]. We call E a splitting field for f(x) over F if f(x) splits in E but no proper subfield of E.

Example (2.84): Consider the polynomial $f(x) = x^2 + 1 \in \mathbb{Q}[x]$.

Since, $x^2 + 1 = (x + i)(x_i)$, $i = \sqrt{-1}$. We see that f(x) splits in \mathbb{C} , but a splitting field over \mathbb{Q} is $\mathbb{Q}[i] = \{a + bi : a, b \in \mathbb{Q}\}$

A splitting field for $x^2 + 1 \in \mathbb{R}[x]$ is \mathbb{C} . Similarly $x^2 - 2 \in \mathbb{Q}[x]$ splitting in \mathbb{R} but its splitting field is $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$

2.24.3. Theorem (Existence of Splitting Fields): Let F be a field and let f(x) be a non-constant elements of F[x]. Then \exists a splitting field E for f(x) over F.

Example (2.85):

- **i.** Let G be a simple group of order 60. Then $G \simeq A_5$ and it has a subgroup of order 12.
- ii. Let |G| = 2p (2 < p prime). Then G is either cyclic or dihedral (D_p)

Note:

(a)
$$Z(D_n) = \begin{cases} \{e\}, n \text{ odd}_{e \times t \text{ with Technology}} \\ \{e, a^{\frac{n}{2}}\}, n \text{ even} \end{cases}$$

- (b) conjugate classes in D_{2n+1} are $\{e\}, \{b, ba, \dots, ba^{2n}\}, \{a^r, a^{-r}\}, 1 \le r \le n$.
- iii. Conjugate classes in

$$D_{2n}$$
 are $\{e\}$, $\{b, ba^2, ba^4, \dots ba^{2n}\}$, $\{ba, ba^3, ba^5, \dots ba^{2n-1}\}$, $\{a^r, a^{-r}\}$, $\{1 \le r \le n\}$ and $\{a^n\}$

Example (2.86):

A. Dihedral group of degree 4 (D_4) :

$$D_4 = \langle a, b \rangle$$
, a, b are generators with $O(a) = 4$, $O(b) = 2$.
 $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b \ (= ba)\} \Rightarrow |D_4| = 2 \times 4 = 8$

1). Subgroups (Total number of subgroups is 1 and order 2 subgroup = 5 & order 4 = 3).

$$H_0 = \{e\}, H_1 = \{e, a^2\}, H_2 = \{e, b\}, H_3 = \{e, ab\}, H_4 = \{e, a^2b\}, H_5 = \{e, a^3b\}$$

 $T = D_4, T_1 = \{e, a, a^2, a^3\}, T_2 = \{e, a^2, b, a^2b\}, T_3 = \{e, ab, a^2, a^3b\}$

- 2). H_5 is normal in T_3 and T_3 is normal in D_4 , but H_5 is not normal in D_4 .
- 3). $Z(D_4) = \{e, a^2\} = H_1(w)I_{nn}(D_4) \simeq D_4/Z(D_4)$
- B. Quaternion group Q_4 : (generator are a,b)

$$Q_4 = \{e, b, a^2, a^3, b, ab, a^2b, a^3b (= ba)\}$$
 with $O(a) = 4 = O(b), a^2 = b^2$

1). Subgroup (Number of subgroup = 4 + 2):

$$H_0 = \{e\}, H_1 = \{e, a^2\}, H_2 = \{e, a, a^2, a^3\}, H_3 = \{e, ab, a^2, a^3b\},$$

$$H_4 = \{e, b, a^2, a^2b\}, H_5 = Q_8$$

Note:
$$Q_8 = \langle A, B \rangle$$
 where $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, $O(A) = 4 = O(B)$ and

$$A^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = B^{2}, A^{3}B = \begin{pmatrix} -i & 0 \\ 0 & -i \end{pmatrix} = BA$$

- **2).** $D_4 \not\simeq Q_4$
- 3). Upto isomorphism there exists only two non-commutative groups of order 8 (eg. Q_4, D_4)
- $|Aut(Z_n)| = \phi(n) \& Aut(\mathbb{Z}_n) \simeq U_n$

$$K_4 = \{e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$$

- (i) Normal subgroup in S_3 are $\{e\}$, A_3 , S_3
- $-\{e,u,v,uv\}$
- (ii) Normal subgroup in S_4 are $\{e\}$, K_4 , A_4 , S_4 (Note K_4 is normal in A_4)

and
$$\frac{S_4}{K_4} \simeq S_3$$

(iii) Normal subgroup S_5 are $\{e\}$, A_5 , S_5 (Note A_5 is simple.

Example (2.87):

2.24.4. Some results on Finite Fields:

- 1. For each prime p and each positive integer n there is, upto isomorphism, a unique finite field of order P^n . This is denboted by $GF(P^n)$, in honor of Galois, and call it the Galois field of order P^n .
- 2. Structure of finite fields: As a group under addition $GF(P^n)$ is isomorphic to $Z_P \oplus Z_P \oplus \ldots \oplus Z_P$ (n times). As a group under multiplication, the set of non-zero elements of $GF(P^n)$ is isomorphic to Z_{P^n-1} (and is, therefore, cyclic).
- **3.** $[GF(P^n): GF(P)] = n.$
- **4.** Subfields of a Finite field: For each divisor m of n, $GF(P^n)$ has unique subfield of order P^m . Moreover, these are the only subfields of $GF(P^n)$.
- 5. If m divides n, then $[F(P^n): GF(P^m)] = \frac{n}{m}$.

Note: Let K be a finite extension field of the field E and E be a finite extension field of the field F. Then K is a finite extension field of F and $[K:F] = [K:E] \times [E:F]$

Example (2.88):
$$[Q(\sqrt{2}, \sqrt{3}): Q] = [Q(\sqrt{2}, \sqrt{3}): Q(\sqrt{3})] \times [Q(\sqrt{3}): Q] = 2 \times 2 = 4$$

2.25. Galois Theory

2.25.1. Definition (Automorphism, Galois Group, Fixed Field of H)

Let E be an extension field of the field F. An automorphism of E is a ring isomorphism from E ontu E. The Galois group of E over F, Gal(E/F), is the set of all automorphisms od E that take every element of F to itself. If E is subgroup of E over E, the set

$$E_H = \{x \in E : \phi(x) = x \ \forall \ \phi \in H\}$$
 is called the fixed field of H .

Example (2.89):

Let us consider the extension field $Q(\sqrt{2})$ of Q. Since $Q(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$

Any automorphism of a field containing Q mum act as the identity an Q. An automorphism ϕ of $Q(\sqrt{2})$ is completely determined by $\phi(\sqrt{2})$.

Therefore,
$$2 = \phi(2) = \phi(\sqrt{2}\sqrt{2}) = (\phi(\sqrt{2}))^2$$

$$\Rightarrow \phi(\sqrt{2}) = \pm \sqrt{2}$$

This shows that the group $Gal(\phi(\sqrt{2})/\mathbb{Q})$ has two elements, the identity mapping and the mapping that sends $a + b\sqrt{2}$ to $a - b\sqrt{2}$ with Technology

2.25.2. Fundamental Theorem of Galois Theory

Let F be a field of characteristic 0 or a finite field. If E be the splitting field over F for some polynomial in F[x], then the mapping from the set of subfields of Gal(E/F) given by $G \to Gal(E/G)$ is a one-one correspondence. Also, for any subfield G of E containing F,

- i. [E:G] = |Gal(E/G)| and [G:F] = |Gal(E/F)|/|Gal(E/G)| that is the index of Gal(E/G) in Gal(E/F) equal to the degree of G over F.
- ii. If G is the splitting field of some polynomial in F[x], then Gal(E/G) is a normal subgroup of Gal(E/F) and Gal(E/F) is isomorphic to Gal(E/F)/Gal(E/G).
- iii. $G = E \ Gal(E/G)$ that is the fixed field of Gal(E/G) is G.
- iv. If H is a subgroup of Gal(E/F), then $H = Gal(E/E_H)$ is the automorphism group of e fixing E_H is H.

2.25.3. Definition (Solvable by Radicals)

Let f be a filed and f(x) = F[x]. We say that f(x) is solvable by radicals over F if f(x) splits in some extension $F(a_1, a_2, ..., a_n)$ of F and \exists positive integers $m_1, m_2, ..., m_n$ such that $a_1^{m_1} \in F$ and $a_i^{m_i} \in F$ $(a_1, a_2, ..., a_{i-1})$ for i = 2, 3, 4, ..., n.

Example (2.90):

Let
$$\alpha = \cos\left(\frac{2\pi}{8}\right) + i\sin\left(\frac{2\pi}{8}\right) = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$

Thus x^8-3 splits in $Q(\alpha, \sqrt[\delta]{3})$, $\alpha^8 \in \mathbb{Q}$ and $(\sqrt[\delta]{3})^8 \in \mathbb{Q}$ $CQ(\alpha)$. Hence, x^8-3 is solvable by radicals over \mathbb{Q} . The zero of x^8-3 can be written as $\sqrt[\delta]{3}$, $\sqrt[\delta]{3}\alpha$, $\sqrt[\delta]{3}\alpha^2$,...., $\sqrt[\delta]{3}\alpha^7$, the notion of solvable by radicals is best illustrated by writing them in the following form $\pm \sqrt[\delta]{3}$, $\pm \sqrt[\delta]{3} \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{-1}\sqrt{2}}{2}\right)$, $\pm \sqrt[\delta]{3} \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{-1}\sqrt{2}}{2}\right)$

2.25.4. Definition (Solvable Group)

We say that a group G is solvable if G has a series of subgroups

$$\{e\} = H_0CH_1CH_2C....CH_K = G$$

Where for each $0 \le i < k$, H_i is normal in H_{i+1} and $\frac{H_{i+1}}{H_i}$ is abelian.

2.25.5. Splitting field of $x^n - a$

Let F be a field of characteristic 0 and let $a \in F$. If E is the splitting field of $x^n - a$ over F, then the Galois group Gal(E/F) is solvable. E with Technology

- i. Theorem: A factor group of a solvable group is solvable.
- ii. Theorem: Let N be a normal subgroup of a group G. If both N and G/N are solvable, then G is solvable.

Theorem: Let F be a field of characteristic O and let $f(x) \in F[x]$. Also, let f(x) splits in $F(a_1, a_2, ..., a_n)$, where $a_1^{n_1} \in F$ and $a_1^{n_i} \in F(a_1, a_2, ..., a_{i-1})$ for f(x) over F in $F(a_1, a_2, ..., a_K)$ the