

Figure 1
Fatty Acid Biosynthetic Pathway

110054534 042202

Figure 2

Gene Sequence of Delta 6- Desaturase from *Synechococcus lividus* (ATCC 56851)

1 ATGGTCCAGG GGCAAAAGGC CGAGAAAGATC TCGTGGGCGA CCATCCGTGA
51 GCACAACCGC CAAGACAAACG CGTGGATCGT GATCCACCAC AAGGTGTACG
101 ACATCTCGGC CTITGGAGGAC CACCCGGGCG GCGTCGTCAT GTTCACGCC
151 GCGGGCGAAG ACACGACCGA TGCGTTCGCT GTCTTCCACC CGAGCTCGGC
201 GCTCAAGCTC CTGAGASCAGT ACTACTCGG CGACGTCGAC CAGTCGACCG
251 CGGCCGTCGA CACGTCGATC TCGGACGAGG TCAAGAAAGAG CCAGTCGGAC
301 TTCAATTGCGT CGTACCGCAA GCTGCGCCCTT GAAAGTCAABC GCCTCGGCTT
351 GTACGACTCG AGCAAACTCT ACTAACCTCTA CAAGTGCGCC TCGACGCTGA
401 GCATTGCGCT TGTGTGCGCG GCCATTGCGC TCCACTTTGA CTCGACGCC
451 ATGTAACATGG TCGCGGCTGT CATCTTGGC CTCTTTTACG AGCAGTGCG
501 CTGGCTCGCC CATGACTTTC TGCAACACCA ATGTGTTGAG AACCACTTGT
551 TTGGCGACCT CGTCGGCGTC ATGGTGGCA ACCTCTGGCA GGGCTTCTCG
601 GTGCAAGTGGT GGAAAGAACAAA GCACAAACACG CACCATGGCA TCCCCAACCT
651 CCACGGCGACG CCTTCGACCG CGACCCGGAC ATTGACACGA
701 TGGCGATTCT CGCGTGGTCG CTCAGSATGG CGCAGCACCG GGTGCACTCG
751 CCCGTCGGGC TCTTCTTCAT GCCTTACCAA CGTACCTGT ACTTTCCAT
801 CTTGCTCTTT GCCTGTATCT CGTGGGTGAT CGAGTCGGCC ATGTACGCTT
851 TCTACAAAGT TGGGCGGCG GGCACCCCTTG ACAAGGTCCA GTACCCGCTG
901 CTCGAGCGCG CGGGCCTCT CCTCTACTAC GGCTGGAAACC TC GGCGCTTGT
951 GTACGCAAGC AACATGTGCG TGGTCAAGC GGCTGCGTTC CTCTTTGGA
1001 GCCAGGGCGTC GTGCGGCCCTC TTGTCGGCA TGGTCTTTAG CGTCGGCCAC
1051 AACGGCATGG AGGTCTTTGA CAAGGACACG AAGCCCGATT TTTGGAAECT
1101 GCAAGTGCTC TCGACGCGCA ACCTGACGTC GTGCGCTCTGG ATCGACTGGT
1151 TCATGGGCGG CCTCAACTAC CAGATCGACC ACCACTTGGT CCCGATGCTG
1201 CCCGGGCACA ACCTCCCAGG GCTCAACGTG CTGCTCAAGT CGCTCTGCAA
1251 GCAAGTACGAC ATGCCATACC ACAGAGACGGG CTTCATCGCG GCGATGGCG
1301 AGGTGCGTCGT GCACCTCGAG CSCATCTCGA TCGAGTTCTT CAAGGAGTTT
1351 CCCGGCATGT AA

10054534 012202

Figure 3

Amino Acid Sequence of Delta-6- Desaturase from *Agrobacterium diaetosum* (ATCC 56851)

1 MVCGQKAEKI SMATIREMNR QDNAMIVDHH KVDISAFED HEGGYVVMETQ
51 AGEDATDAFA VFHPS SALXK LEQYYVGDVD QSTAAVDTSI SDFVKKSQSD
101 FIASYAKLRL EVKRLGLYDS SKLYYLYKCA STLSTIALVSA AICLHEDSTA
151 MMYVAAVILG LFYQDCGMIA KDE DMHQVFE NHLEGDLVGY MYGNLMQGES
201 VQMMWQHGINT KHAIPNIMAT PEIRERHGDPD IDTMPILAWS LKMAQHADVS
251 PVGLFEMRYQ AYL YI PILIE ARISMVVIOSA MYAFYINVGG GTEDKVQDPL
301 IERAGELLLYY GMNLIGIVYAA NMSLLQAAAF LFVSQASCGL F LAMYF SVGH
351 NGMEVFENDS KEDEWKIQVL STANVTSILW IDMFMSGG INY QIDHHIF PMV
401 ERHMVLPAALNV LVKSLCKQYD I PYME TGEIA GMAEVVVVHLR RISIEFFKEF
451 PAM*

10054534 01202

Figure 4

Gene Sequence of Delta 5- Desaturase from *Synechocystis* *division* (ATCC 56851)

1 ATGGCCCCGC AGACGGAGCT CGGCCAGCGC CACGCCGCGC TCGCCGAGAC
51 GCCGGTGGCC GGCAAGAAGG CCTTTACATG GCAGGAGGTC GCGCAGCACA
101 ACACGGCGGC CTCGGCCTGG ATCATTATCC GCGGAAGGT CTACGACGTG
151 ACCGAGTGGG CCAACAAAGCA CCCCGCCGGC CGCGAGATGG TGCTGCTGCA
201 CGCCGGTCGC GAGGCCACCG ACACGTTCGA CTCGTACCCAC CGGTTCAAGCG
251 ACAAGGCGGA GTCGATCTTG AACAAAGTATG AGATTGGCAC GTTCACGGGC
301 CGGTCCGAGT TTCCGACCTT CAASCCGGAC ACGGGCTTCT ACAASGGAGTG
351 CCSCAAAGCGC GTTGGCGAGT ACTTCAAGAA GAACAACCTC CATCCGCAGG
401 ACGGCTTCCC GGGCCTCTGG CGCATGATGG TCGTGTGTTGC GGTGCGGGC
451 CTCGCTTGTG ACGGCATGCA CTTTTCGACT ATCTTTCGCG TCACASCTCGC
501 GGCGCGGGCG CTCTTTGGCG TCTGCCAAGGC GCTGCCCGCTG CTCACGTCA
551 TGCACGACTC GTCGCACCGC TCGTACACCA ACATGCCGTT CTTCCATTAC
601 GTGCTCGGCC GCTTTGCGAT GGACTGTTTGC CGCGCGGGCT CGATGGTGTG
651 ATGGCTAACAC CAGCACGTCG TGGGGCACCA CATCTACACG AACGTCGCGG
701 GCTCGGACCC GGATCTTCCG GTCAACATGG ACGGGCACAT CGGCCGCGATC
751 GTGAAACCGCTC AGGTGTTCCA GCCCCATGTAC GCAATTCCAGC ACATCTACCT
801 TCCGCCGCTC TATGGCGTGC TTGGCCTCAA GTTCCGCATC CAGGACTTCA
851 CCGACACGTT CGGCTCGCAC ACGAACGGCC CGATCCGGT CAAACCGCAC
901 GCGCTCTCGA CGTGGATGCG CATGATCGACG TCCAAGTGT TCTGGGCTT
951 CTACCGCGTG TACCTTCCGC TTGCCGTGT CCAGSATGCC ATCAAGACGT
1001 ACCTTGCGAT CTTCTTCTTC GCGGAGTTG TCAAGGGCTG GTCACCTCGCG
1051 TTCAACTTCC AAGTAAGCCA TGTCTCGACC GAGTGCGGGCT ACCCATGCGG
1101 CGACGAGGCC AAGATGGCGC TCCAGGACGA GTGGGCAGTC TCGCAGGTCA
1151 AGACGTCGGT CGACTACGCC CATGGCTCGT GGATGACGAC GTTCCCTGCC
1201 GGC CGCTCA ACTACCAGGT CGTGACCCAC TTGTTCCCCA GCGTGTGCGA
1251 GTACCAACTAC CGGGCGATCC CGCCCATCAT CGTCGACGTC TGCAGGGAGT
1301 ACAACATCAA GTACGCCATC TTGCGGAACT TTACGGCGGC GTTCGTTGCC
1351 CACTTGAAAGC ACCTCCGCAA CATGGGCCAG CAGGGCATCG CGGCCACGAT
1401 CCACATGGGC TAA

10054534 - 01222020

Figure 5

Amino Acid Sequence of Delta 5- Desaturase from *Synechococcus* *divisum* (ATCC 56851)

1 MAPQTELRQR HAAYAETPVA GICKAEWQEV ACHNTAAASAK IIIRGKYVDV
51 TEWANKHEDGG REMYLIHAGR EATDTEDSYH EI SDKAESIL NKYEIGTF TG
101 PSEF PTEFKED TGF YKECRKR YGE YEKNNNL KPDQDGFPGLW RMMVYEAVAG
151 LALYGMHE ST IFALQLAAAA LEGYVCQALPL LHVMHDSSKA SYTNMEEFHY
201 VVGRFAMDWE AGG SMVSMIN QHVVGHMIYT NVAGSDPDLP VVMDGDIRRI
251 VNRQVFQPMY AFQHITYLPL YGVIGIWERI QIE TDIFGSH TNG PIRVNPH
301 ALSTMMAMIS SKSEMAFYRY YLPIAVLQMP IKTYLAIFF L AEFV TGHYLA
351 ENFQVSHVST ECG YPCGDEA KMAIQDEWAV SQVKTSVDYA NG SWMTTELA
401 GALN YQVYHH LEPSV SQYHY DAIAPITIVDV CKE YN IKYAI LPDE TAAEVVA
451 HLKH DRNMHQ QGIAATIHM* *

10054534 012202

Figure 6

Gene Sequence of Delta 5- Desaturase from *Zymomonas mobilis* (ATCC 34304)

1 ATGGGACGCG GCGGCAGG TCAGGTGAAC ACCGCGCAGG TGGCACAGG
51 CGGTCGGGA ACGCGAAACA CGATCTGAT CGAGGGCGAG CTCTACGATG
101 TCACCAACTT TAGGCACCCC GGCGGGTCGA TCATCAAGTT TCTCAGGACC
151 GACGGCACCG AGGGTGTGGA CGCGACGAAC GGGTTTCGCG AGTTTCACTG
201 CGGGTGGGGC AAGGCGGAAA AGTAACCTCAA GAGCTCTGCCA AAGCTGGCG
251 CGCGAGCAA GATGAAGTT GACGCCAAGG ACAGGGCCCG GCGCGACGCG
301 ATCACGGAG ACTACGTCAA GCTCGCGAG GAGATGGTGG CGGAGGGCT
351 CTTCAAGCCC GCGCCCCCTCC ACATTTGCTA CAGGTTTGCG GAGATGCGAG
401 CCCCTTTTCGC GGCCTCGTTC TACCTTTTT CGATGCGCGG AAAACGTTTC
451 GCCACGCTCG CGGCCATCGC AGTCGGGGGC ATCGCGCAGG GCGCGTCGG
501 CTGGCTCATG CAAGGATGCG GACACTTCTC GATGACCGGG TACATCCCGC
551 TTGACGTGCG CCTGCAGGAG CTGGTGTACG GCGTTGGGTG CTGATGTCG
601 GCGAGCTGGT GGCAGCTTCA GCACAAACAG CACCAACGCGA CCCCCGAGAA
651 ACTCAAGCAC GACGTCGAC TCGACACCC CGCGCTCGTT GCGTTCAACG
701 AGAAAGATCGC CGCCAAGGTC CGCCCCGGCT CGTTCCAGGC CAAGTGGCTC
751 TCGGCAGG CGTACATTTC TGCGCGGTG TCTTGCTTCC TGTTGGTCT
801 CTTCCTGGACC CTGTTTCTGC ACCCGCGCCA CATGCCGCAC AGGASCCACT
851 TTGCTGAGAT GGCAGCGCTC GCGGTCGGCG TCGTTGGCTG GGGGGCGCTC
901 ATGCACTCGT TCGGGTACAG CGGGAGCGAC TCGTTCGGTC TCTACATGGC
951 CACCTTTGGC TTGGGCTGCA CCTACATCTT CACCAACTTT GCGGTCAASCC
1001 ACAAGCACCT CGACGTCACC GAGCCGGACG AGTTCTGCA CTGGGTGAG
1051 TACGGCCGCG TGACACAGAC CAACGTTGTC AACGACTCGT GGTTCATCAC
1101 CTGGTGGATG TCGTACCTCA ACTTTCAAGAT CGAGCACCAC CTCTTTCCGT
1151 CGCTGCCCCA GCTCAACGCC CGCGCGCTCG CGCGCGCGT CGCGGCCCTC
1201 TTGAGAACG ACGGCATGGC TTACGACGAG CGCCCGTACC TTACCGCGCT
1251 TGGGAGACAG TTAGGCAACC TGCACGCCGT GGGCCAAAAC GCGGGCCAGG
1301 CGGGGGCAA GGCAGCTTAA

100051524-D2202

Figure 7

Amino Acid Sequence of Delta 5- Desaturase from *Thiobacillus sphaeroides* (ATCC 34304)

1 MGRGGEGQVN SAQVAGGGAG TRKTILIEGE VYDVTNE RHP GGSIIIF LTT
51 DG TEAYDATN AEREENCRSG KAEKYLKSLP KIGAPSQMC DAKEQARRDA
101 ITRDFTVKIRE EMVAFG LFKP APIHIVYREA EIAALEFAASE YLF SMRGNVE
151 ATLAATAVGG IAQGRCGWIM HECGHE SMTG YIPEDYRLQE LVYGVGC SMS
201 ASMURVQHDK KHATPQKLKH DYDLDTLPIV AFNEKIAAKV REGSEQAKNL
251 SAQAYIFAPV SCFLVG LEWT LEIHBRHMER TSHEAEMRAY AVRYVGHAAL
301 MHSEGYSGSD SEGLYMATFG FGCTYIFTNE AVSHTHIDVT EDEEF LHIVE
351 YAALHTTVYS NDSMEITMMW SYINEQIEHH LFPSLPLOLNA PRVAPVRAL
401 FEKGGMAYDE RPYLTAIGDT FANLHAYGQN AGQAAAKAA

10054624 012202

Figure 8

1 GAATTCA~~CCA~~ TGGGT~~CGGGG~~ AGCACAGGG~~A~~ GAGCC~~AAGGC~~ AGGCCACAGA
 51 GCTGAAGAGC AGCCC~~AA~~AGTG AGCAGG~~TAA~~ GGTGTTGCTC ATTGACGGGC
 101 AGCTGT~~ACGA~~ TGCA~~ACCA~~AC TTCA~~GGC~~ATC CTGG~~GG~~GCTC CATCATCAA
 151 TATT~~TG~~GC~~A~~ CCGAT~~GG~~CA GGAGGT~~AG~~T GATGCA~~AC~~C AGCGT~~AC~~A
 201 GGAGT~~T~~CAC TGCAGAT~~CC~~ CGAAGG~~GG~~GT CAAGTACCTC PACTCCCTGC
 251 CAAAGAT~~CGA~~ CGGCC~~AA~~ATC AAGTACA~~AA~~AT ACGAGC~~AAA~~ GGAGGAGGCT
 301 CGCCAT~~GACA~~ AACTAC~~GG~~G GGAGT~~AT~~GTA GCTCTCCGCG AACAGCTGCT
 351 CAAGGAGGG~~A~~ TACTT~~GACC~~ CCAGCCCCGT CCACATTATC TACAGATGCG
 401 CGGAGT~~GGC~~ AGCCAT~~GTTC~~ GCTCTCTC~~TG~~T TCTACCTTTT CTCCTTCAG
 451 GGTAACGTCA TGGC~~CA~~CTAT TGTC~~GC~~ATC GTGATTGGG GTGCGGTGCA
 501 GGGTC~~GT~~TGT GGGGG~~CTCA~~ TGCA~~TG~~AGC TGGC~~CA~~TAC AGCATGACG
 551 GAAACAT~~CCC~~ TGT~~TG~~ACT~~TG~~ CGCCTTC~~AA~~G AGTTT~~TT~~TGTA CGGAATTGGG
 601 TG~~GGG~~CAT~~GA~~ GCGGG~~GT~~TG GTGGAGA~~AG~~C CAGCACAA~~CA~~ AGCACCA~~GC~~
 651 CACCCCC~~AA~~ AAGCT~~CA~~AGC ATGACGT~~GA~~ TTTG~~GAC~~ACT CTTCCCTCTG
 701 TGCCT~~TG~~GA~~A~~ CGAGAAA~~TTT~~ GCCGAT~~AC~~TC TCAAGCC~~AG~~G TAGCTTCAG
 751 GCAAAGT~~GGC~~ TTCAT~~CT~~CCA GGGATA~~CA~~TC TTTGCC~~CC~~AG TTTCCCTGCT
 801 TCTC~~GT~~TGGT CTCTCT~~TG~~GA CTTTGT~~AC~~TT GCATCCT~~TG~~GC ACATGAT~~CC~~
 851 GCACCAAG~~CG~~ CAACT~~TG~~GAG ATATTTCTG TCGCT~~TG~~GC CTACGTAT~~GC~~
 901 TGGTT~~TCT~~GC TTCTTT~~TG~~G CATGG~~GCT~~AC ACTGTC~~GG~~G AGTCTCTGG
 951 TCTCTAT~~GT~~G CTTACTTT~~TG~~ GACTTGG~~GT~~G TACCTACATC TTTACG~~CA~~T
 1001 TTGCT~~GT~~GA~~A~~ CCACACCCAC TTGCCAGTGT CCGAGGAGGA CGAGTACCTG
 1051 CACTGGGT~~CG~~ AGTACG~~CT~~GC GCTGCAC~~AC~~CC ACGAAC~~GT~~T CGATCGACTC
 1101 GTACGTT~~GTC~~ ACCTGG~~GCT~~GA TGAGCT~~AC~~CT CAACTTT~~TC~~AG ATCGAGC~~AC~~C
 1151 ACTTGT~~CCCC~~ TTGCT~~GG~~CC CAGT~~CC~~GGCC ACCCTG~~CA~~AT CTCTTCT~~CG~~C
 1201 GTCAAGAA~~AC~~ TTT~~TG~~GAGGA CAATGGT~~CT~~G GTATACG~~AC~~G CCCG~~GT~~CATA
 1251 CGTCCAGGG~~CG~~ CTCAGGATA CCTTC~~GG~~GA~~A~~ CCTACACG~~AA~~ GTGGGG~~GT~~CA
 1301 ACGCT~~GG~~CC~~A~~ AGCTGCC~~A~~ AGC~~G~~GTA~~AG~~ ATCT~~CG~~AG

Start/stop underlined

Figure 9

1 MGRGAQGEPR QATELKSSPS EQRKVLLIDG QLYDATNFRH PGGSIIKYLC
51 TDGKEVVDAT EAYKEFHCRS SKAVKYLNSL PKIDGPIKYK YDAKEQARHD
101 KLTREYVALR EQLVKEGYFD PSPPHIYRC AELAAMFALS FYLESFKGNV
151 MATIAAIVIG GCVQGRCGWL MHEAGHYSMT GNIPVDLRLQ EFLYGIGGM
201 SGAWWRSQHN KHHATPQKLK HDVLDLTLPL VAWNEKIAARR VKPGSFQAKW
251 LHLOQGYIFAP VSCLLVGLFW TLYLHPRHMI RTKRNFEIIFS VALRYVCWFS
301 LLLSMGTYVG ESLGLYVLTF GLGCTYIFT FAVSHTHLPV SEEDEYLHWV
351 EYAALHTNV AIDSYYVTWL MSYLNFOIEH HLFPCCPQFR HPAISSRVKK
401 LFEDNGLVYD ARSYVQALKD TFGNLHEVGV NAGQAAKSE

2022T0-HGHS00T

Figure 10

1 CCATGGGGCG CGGGGGGAG AAAAGCGAGG TGGACCCAGGT GCAGGCCACAA
51 AAGACCGAGC AGCTCCAGAA GGCCAAGTGG GAGGAATTCAGGTTTG TTTCGCATCAA
101 TGGAGTCGAA TACGACGTCA CGGACTATCT CAGAAAACAC CCTGGTGGCA
151 GCGGTGATCAA GTACGGGCTT GCCAACACCG GCGCTGTATGC CAGCTCCCTIC
201 TTTGAAGCGT TCCACATGGC CTCAAAAGAAG GCTCAGATGG TGCTCAAGTC
251 TCTCCCAAGA CGTGTCCGG TCCTCGAGAT CCAGCCAAAC CAGCTTCCAG
301 AGGAGGAGAC CAAGGAGGG GAGATGCTGC GTGATTAA AAAATTGAG
351 GATGAGATTC CACTCCTCTG TCTATTGCTG TAGGTATGTT CACGCTGGC CTCTACCTCT
401 TTACAGATTA TCAGAGCTTG TCTCTTGTG CTTGGTGTCTT GTGCCACGGT
451 TCTCGTAAA CACTCCTCTG TCTATTGCTG TAGGTATGTT CACGCTGGC CTCTACCTCT
501 CTCTTGTG CATTCTGTGG ATGGTGCAG CATGAGGGCAG GCCACGGGTC
551 CTTTTTTAC AGCCCTTGTGG GGGGCAAGCG TGTACAGGCC ATGGTGTATCG
601 GGTTTGGTCT AGGAACATCC GGGGACATGT GGAACATGTG GCACAACAG
651 CATCATGCTG CCACCCAAA GGTTCATOAC GACCTTGACA TGACACAA
701 TCCCTTTGTA GCTTCTCTCA ACACTGCATT TGAGAAAAAC AGATGGAAGG
751 GCTTTTCCAA GGCTTGGTGC CGCTTTCAGG CTTTCACGTT ATTCTCTGTC
801 ACCAGGGCA TGATCGTCA TGTTCTGG CTGTTTTTC LCCACCCCTCG
851 CCGCGTCGTT CAAAGAAGA ACTTTGAGGA GGGTTTTGG ATGGTGTGTCGA
901 GCCACATGT GCGCACCTAT CTCTTCCACC TTGTCACGGG CTGGGAGAGC
951 CTCGCTGCT GCTAACCTGT TGGGTATGG GCGTGCATGT GGGTTGTCGG
1001 TATGTATTTG TTTCGGCCACT TTTCGCTCTC CCACACTCAT ATGGACATG
1051 TGGAGGGGA CGTGCATAAG AACTGGGTCA GGTACGCTGT TGACCCACAT
1101 GTTGACATCA GCCCATCCAA CCCGCTGGT TGCTGGTCA TGGTTACCT
1151 CAACATGCG ACCATCCACC ACTTGTGGCC TGCCATGCC CAGTACCC
1201 AGGTGAGGT CTCAAGCCGC TTGGCCATCT TCGCCTAAAA ACACGGGCTC
1251 AACTACCGG TCGTCTTAA CTTTGAGGCT TGGGCGCTGA TGCTCCAAA
1301 TCTTGCTGAC GTGGTCCC ACTACCATGA GAACGGTGTCA AAGGGCGCC
1351 CAAAGAAAGC CAAGGGCGAG TAGAAAGCTA T

Start/stop underlined

Figure 11

1 MGRGGEKSEV DQVQPQKTEQ LQKAKWEDVV RINGVEYDVT DYLRKHPPGS
51 VIKYGLANTG ADATSLFEAF HMRSKKAQMV LKSLPKRAPV LEIQPNOLPE
101 EQTKEAEMLR DFKKFDEIR RDGMEPSFW HRAYRLSELV GMFTLGLYL
151 SLNTPLSIAA GVLVHGLFGA FCGWCQHEAG HGSSFFYSLWW GRRVQAMLLG
201 FGIGTSGDMW NMMHNKHAA TOKYIHLDI DTTTPFVAFFN TATEKNRWRG
251 FSKAWVRFCQA FTFIPVTSQM IVMLFWLFFL HPRRRVVQKKN FEEGFWMLSS
301 HIVRTYLFHL VTGWESLAAC YLYGYACMW VSGMYLFGHF SLSHTHMIDIV
351 EADVHKNWRV YAVDHTVDIS PSNPLVCWM GYLNMQTIHH LWPAMPQYHQ
401 VEVSRRFA.F AKKHGLNYRV VSYFEAWRIM IONLADVGSH YHENGVKRAP
451 KKAKAQ

Figure 12

pRAT-2a	1	M G R G A Q G E P R Q A T E L K S S P S E Q R K V L L D G Q L Y D A T N F R H P G G S	45
pRAT-2c	1	M G R G A Q G E P R Q A T E L K S S P S E Q R K V L L D G Q L Y D A T N F R H P G G S	45
pRAT-2a	46	K Y L C T D G K E V V D A T E A Y K E F H C R S S K A <u>D</u> K Y L N S L P K D G P K Y K	90
pRAT-2c	46	K Y L C T D G K E V V D A T E A Y K E F H C R S S K A <u>D</u> K Y L N S L P K D G P K Y K	90
pRAT-2a	91	Y D A K E Q A R H D K L T R E Y V A L R E Q L V K E G Y F D P S P L H I Y R C A E L A A	135
pRAT-2c	91	Y D A K E Q A R H D K L T R E Y V A L R E Q L V K E G Y F D P S P L H I Y R C A E L A A	135
pRAT-2a	136	M F A L S F Y L F S F K G N V V A T A A V G G C V Q G R C G W L M H E A G H Y S M T	180
pRAT-2c	136	M F A L S F Y L F S F K G N V M A T A A V G G C V Q G R C G W L M H E A G H Y S M T	180
pRAT-2a	181	G N P V D L R L Q E F L Y G G C G M S G A W W R R Q H N K H H A T P Q K L K H D V D L	225
pRAT-2c	181	G N P V D L R L Q E F L Y G G C G M S G A W W R <u>S</u> Q H N K H H A T P Q K L K H D V D L	225
pRAT-2a	226	D T L P L V A W N E K A R R V K P G S F Q A K W P H L Q G Y F A P V S C L L V G L F W	270
pRAT-2c	226	D T L P L V A W N E K A R R V K P G S F Q A K W <u>L</u> L Q G Y F A P V S C L L V G L F W	270
pRAT-2a	271	T L Y L H P R H M R T K R N F E F S V A L R Y V C W F S L L L S M G Y T V G E S L G L	315
pRAT-2c	271	T L Y L H P R H M R T K R N F E F S V A L R Y V C W F S L L L S M G Y T V G E S L G L	315
pRAT-2a	316	Y V L T F G L G C T Y F T H F A V S H T H L P V S E E D E Y L H W V E Y A A L H T T N V	360
pRAT-2c	316	Y V L T F G L G C T Y F T H F A V S H T H L P V S E E D E Y L H W V E Y A A L H T T N V	360
pRAT-2a	361	A D S Y V V T W L M S S Y L N F Q E H H L F P C C P Q F R H P A S S R V K K L F E D N	405
pRAT-2c	361	A D S Y V V T W L M S S Y L N F Q E H H L F P C C P Q F R H P A S S R V K K L F E D N	405
pRAT-2a	406	G L V Y D A R S Y V Q A L K D T F G N L H E V G V N A G Q A A K S E	439
pRAT-2c	406	G L V Y D A R S Y V Q A L K D T F G N L H E V G V N A G Q A A K S E	439

Figure 13

pRAT-1a	1	M G R G G E K S E V D Q V Q P Q K T E Q L Q K A K W E D V V R I N G V E Y D V T D Y L R	44
pRAT-1b	1	M G R G G E K S E V D Q V Q P Q K T E Q L Q K A K W E D V V R I N G V E Y D V T D Y L R	44
pRAT-1a	45	K H P G G S V I K Y G L A N T G A D A T S L F E A F H M R S K K A Q M V L K S L P K R A	88
pRAT-1b	45	K H P G G S V I K Y G L A N T G A D A T S L F E A F H M R S K K A Q M V L K S L P K R A	88
pRAT-1a	89	P V L E I Q P N Q L P E E Q T K E A E M L R D F K K F E D E I R R D G L M E P S F W H R	132
pRAT-1b	89	P V L E I Q P N Q L P E E Q T K E A E M L R D F K K F E D E I R R D G L M E P S F W H R	132
pRAT-1a	133	A Y R L S E L V G M F T L G L Y L F S S L N T P L S I A A G V L V H G L F G A F C G W C Q	176
pRAT-1b	133	A Y R L S E L V G M F T L G L Y L F S S L N T P L S I A A G V L V H G L F G A F C G W C Q	176
pRAT-1a	177	H E A G H G S F F Y S L W W G K R V Q A M L I G F G L G T S G D M W N M H N K H H A A	220
pRAT-1b	177	H E A G H G S F F Y S L W W G K R V Q A M L I G F G L G T S G D M W N V M H N K H H A A	220
pRAT-1a	221	T Q K V H H D L D I D T T P F V A F F N T A F E K N R W K G F S K A W V R F Q A F T F I	264
pRAT-1b	221	T Q K V H H D L D I D T T P F V A F F N T A F E K N R W K G F S K A W V R F Q A F T F I	264
pRAT-1a	265	P V T S S G M I V M L F W L F F L H P R R V V Q K K N F E E G F W M L S S H I V R T Y L F	308
pRAT-1b	265	P V T S S G M I V M L F W L F F L H P R R V V Q K K N F E E G F W M L S S H I V R T Y L F	308
pRAT-1a	309	H L V T G W E S S L A A C Y L V G Y W A C M W V S G M Y L F G H F S L S H T H M D I V E A	352
pRAT-1b	309	H L V T G W E S S L A A C Y L V G Y W A C M W V S G M Y L F G H F S L S H T H M D I V E A	352
pRAT-1a	353	D V H K N W V R Y A V D H T V D I S P S N P L V C W V V M G Y L N M Q T I H H L W P A M P	396
pRAT-1b	353	D V H K N W V R Y A V D H T V D I S P S N P L V C W V V M G Y L N M Q T I H H L W P A M P	396
pRAT-1a	397	Q Y H Q V E V S R R F A I F A K K H G L N Y R V V S Y F E A W R L M L Q N L A D V G S H	440
pRAT-1b	397	Q Y H Q V E V S R R F A I F A K K H G L N Y R V V S Y F E A W R L M L Q N L A D V G S H	440
pRAT-1a	441	Y H E N G V K R A P K K A K A Q	456
pRAT-1b	441	Y H E N G V K R A P K K A K A Q	456

Figure 14

1 ATGGTGGCAG GCAAATCAGG CGCTGCGGCG CACGTGACTC ACAGCTCGAC
51 ATTGCCCGT GAGTACCATG GCGCGACCAA CGACTCGCGC TCTGAGGCAG
101 CCGACGTCAC CGTCTCTAGC ATCGATGCTG AAAAGGAGAT GATCATCAAC
151 GGCCGCGTGT ATGACGTGTC GTCATTTGTG AAGCGGCACC CAGGTGGCTC
201 GGTGATCAAG TTCCAGCTGG GCGCCGACGC GAGCGACGCG TACAACAAC
251 TTCACGTCCG CTCCAAGAAG GCGGACAAGA TGCTGTATTG GCTCCCCTGC
301 CGGCCGGCCG AGGCCGGCTA CGCCCAGGAC GACATCTCCC GCGACTTTGA
351 GAAGCTGCGC CTCGAGCTGA AGGAGGAGGG CTACTTCGAG CCCAACCTGG
401 TGCACGTGAG CTACAGGTGT GTGGAGGTTT TTGCCATGTA CTGGGCTGGC
451 GTCCAGCTCA TCTGGTCCGG GTACTGGGTTT CTCGGCGCGA TCGTGGCCGG
501 CATTGCGCAG GGCGCCTGCG GCTGGCTCCA GCATGAGGGT GGGCACTACT
551 CGCTCACCGG CAACATCAAG ATCGACCGGC ATCTGCAAGAT GGCCATCTAT
601 GGGCTTGGCT GCGGCATGTC GGGCTGCTAC TGGCGCAACC AGCACAAACAA
651 GCACCCACGCC ACGCCGCAGA AGCTCGGGAC CGACCCCGAC CTGCAGACGA
701 TGCCGCTGGT GGCCCTTCCAC AAGATCGTCG GCGCCAAGGC GCGAGGCAAG
751 GGCAAGGCGT GGCTGGCGTG GCAGGGCGCG CTCTTCTTTG GCGGGATCAT
801 CTGCTCGCTC GTCTCTTTCG GCTGGCAGTT CGTGCTCCAC CCCAACCAAC
851 CGCTGCGCGT GCACAATCAC CTGGAGCTCG CGTACATGGG CCTGCGGTAC
901 GTGCTGTGGC ACCTGGCCTT TGGCCACCTC GGGCTGCTGA GCTCGCTCCG
951 CCTGTACGCC TTTTACGTGG CCGTGGGCGG CACCTACATC TTCACCAACT
1001 TCGCCGTCTC GCACACCCAC AAGGACGTG TCCCGCCAC CAAGCACATC
1051 TCGTGGGCAC TCTACTCGGC CAACCACAG ACCAACTGCT CCGACTCGCC
1101 CTTTGTCAC TGGTGGATGG CCTACCTCAA CTTCCAGATC GAGCACCAC
1151 TCTTCCCGTC GATGCCGCAG TACAACCACC CCAAGATCGC CCCGCGGGTG
1201 CGCGCGCTCT TCGAGAAAGCA CGGGGTGCGAG TATGACGTCC GGCCATACCT
1251 GGAGTGTGTTT CGGGTCACGT ACGTCAACCT GCTCGCCGTA GGCAACCCGG
1301 AGCACTCCTA CCACGAGCAC ACGCACTAG

Figure 15

1 MVAGKSGAAA HVTHSSTLPR EYHGATNDSR SEAADVTVSS IDAEKEMIIN
51 GRVYDVSSFV KRHPGGSVIK FQLGADASDA YNNFHVRSKK ADKMLYSLPS
101 RPAEAGYAQD DISRDFEKLR LELKEEGYFE PNLVHVSYRC VEVLAMYWAG
151 VQLIWSGYWF LGAIIVAGIAQ GRCGWLQHEG GHYSLTGNIK IDRHLQMAIY
201 GLGCGMSGCY WRNQHNKHHA TPQKLGTDPD LQTMPLVAFH KIVGAKARGK
251 GKAWLAWQAP LFFGGIICSL VSFGWQFVLH PNHALRVHNH LELAYMGLRY
301 VLWHLAFGHL GLLSSLRLYA FYVAVGGTYI FTNFAVSHTH KDVVPPPTKHI
351 SWALYSANHT TNCSDSPFVN WWMAYLNFQI EHHLFPSMPQ YNHPKIAPRV
401 RALFEKHGVE YDVRPYLECF RVTYVNLLAV GNPEHSYHEH TH