Analog and Digital Electronics

UNIT II Frequency Response

Rajeev Pandey

Assistant Professor

ECE Department

Neelkanth institute of Technology

Low-Pass Circuit

In frequency domain:

$$V_o = \frac{V_i}{R + \frac{1}{j\omega C}} \cdot \frac{1}{j\omega C}$$

$$V_o = \frac{V_i}{1 + j\omega RC} \Rightarrow A_v = \frac{V_o}{V_i} = \frac{1}{1 + j\omega RC}$$

$$A_{v} = \frac{1}{1 + j\omega RC} = \frac{1}{1 + jf / f_{o}}$$

Low-Pass Circuit

At high frequencies, slope of curve is -20 dB

if $X = 1 (\omega = 10\omega_o)$, decrease is $-20 dB \Rightarrow -20 dB / decade$

High-Pass Circuit

$$V_o = \frac{V_i R}{R + \frac{1}{j\omega C}} = \frac{V_i}{1 + \frac{1}{j\omega RC}}$$

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{1}{1 - j\frac{1}{2\pi fRC}} = \frac{1}{1 - jf_{o}/f}$$

Octave & Decade

If $f_2 = 2f_1$, then f_2 is one octave above f_1

If $f_2 = 10f_1$, then f_2 is one decade above f_1

of octaves =
$$\log_2 \frac{f_2}{f_1} = 3.32 \log_{10} \frac{f_2}{f_1}$$

of decades =
$$\log_{10} \frac{f_2}{f_1}$$

2 GHz is one octave above 1 GHz

10 GHz is one decade above 1 GHz

Frequency Response

3-dB points are points where the magnitude is divided by $2^{1/2}$ (power is halved) $|1+j|=2^{1/2}$

$$A_{dB}$$
= 20log1.414 = 3 dB

Amplifier has intrinsic gain A_o

Low-pass characteristics is:
$$\frac{1}{1+if/f_{hi}}$$

High-pass characteristics is:
$$\frac{\it jf/f_{lo}}{1+\it jf/f_{lo}}$$

Overall gain
$$A(f)$$
 is $A_o \cdot \frac{jf \, / \, f_{lo}}{1 + jf \, / \, f_{lo}} \cdot \frac{1}{1 + jf \, / \, f_{hi}}$

Octave & Decade

Overall gain A(f) is

$$A(f) = A_o \cdot \frac{jf / f_{lo}}{1 + jf / f_{lo}} \cdot \frac{1}{1 + jf / f_{hi}}$$

Model for general Amplifying Element

 C_{c1} and C_{c2} are coupling capacitors (large) $\rightarrow \mu F$

 C_{in} and C_{out} are parasitic capacitors (small) \rightarrow pF

Midband Frequencies

- Coupling capacitors are short circuits
- Parasitic capacitors are open circuits

$$A_{MB} = \frac{v_{out}}{v_{in}} = \frac{R_{in}}{R_g + R_{in}} A \frac{R_L}{R_{out} + R_L}$$

Low Frequency Model

- Coupling capacitors are present
- Parasitic capacitors are open circuits

Low Frequency Model

define
$$f_{l1} = \frac{1}{2\pi (R_g + R_{in})C_{c1}}$$
 and $f_{l2} = \frac{1}{2\pi (R_L + R_{out})C_{c2}}$

$$v_{ab} = v_{in} \frac{R_{in}}{R_g + R_{in}} \cdot \frac{jf / f_{l1}}{1 + jf / f_{l1}}$$

Similarly,
$$v_{out} = Av_{ab} \frac{R_L}{R_L + R_{out}} \cdot \frac{jf / f_{l2}}{1 + jf / f_{l2}}$$

Low Frequency Model

$$Overall \ gain = \frac{v_{out}}{v_{in}} = \frac{R_{in}}{R_{g} + R_{in}} \cdot A \cdot \frac{R_{L}}{R_{L} + R_{out}} \cdot \frac{jf / f_{l1}}{1 + jf / f_{l1}} \cdot \frac{jf / f_{l2}}{1 + jf / f_{l2}}$$

$$\frac{v_{out}}{v_{in}} = A_{MB} \cdot \frac{jf / f_{l1}}{1 + jf / f_{l1}} \cdot \frac{jf / f_{l2}}{1 + jf / f_{l2}}$$

Example

$$R_{out}$$
 = 3 k Ω , R_g =200 Ω , R_{in} =12 k Ω , R_L =10 k Ω C_{c1} =5 μ F and C_{c2} =1 μ F

$$f_{l1} = \frac{1}{2\pi(12,200 \times 5 \times 10^{-6})} = 2.61 \, Hz$$

$$f_{l2} = \frac{1}{2\pi(13,000 \times 10^{-6})} = 12.2 \text{ Hz}$$

High Frequency Model

- Assume coupling capacitors are short
- Account for parasitic capacitors

Potential Thevenin equivalent for input as seen by C_{in}

$$V_{th1} = \frac{v_{in}R_{in}}{R_g + R_{in}}$$

$$R_{th1} = R_g \parallel R_{in}$$

High Frequency Model

$$\begin{aligned} v_{ab} &= \frac{v_{in}R_{in}}{R_g + R_{in}} \cdot \frac{1}{1 + j\omega C_{in}R_{th1}} \\ v_{ab} &= \frac{v_{in}R_{in}}{R_\sigma + R_{in}} \cdot \frac{1}{1 + jf/f_{h1}} \ \ where \ \ f_{h1} = \frac{1}{2\pi R_{th1}C_{in}} \end{aligned}$$

$$Likewise v_{out} = \frac{Av_{ab}R_L}{R_{out} + R_L} \cdot \frac{1}{1 + j\omega C_{out}R_{th2}}$$

with
$$R_{th2} = R_{out} \parallel R_L$$

$$v_{out} = \frac{Av_{ab}R_L}{R_L + R_{out}} \cdot \frac{1}{1 + jf/f_{h2}}$$
 where $f_{h2} = \frac{1}{2\pi R_{th2}C_{out}}$

High Frequency

Overall gain is:

$$\frac{v_o}{v_i} = A \cdot \frac{R_{in}}{R_{in} + R_g} \cdot \frac{R_L}{R_L + R_{out}} \cdot \frac{1}{1 + jf / f_{h1}} \cdot \frac{1}{1 + jf / f_{h2}}$$

or

$$\frac{v_o}{v_i} = A_{MB} \cdot \frac{1}{1 + jf / f_{h1}} \cdot \frac{1}{1 + jf / f_{h2}}$$

Important Remarks

 An arbitrary network's transfer function can be described in terms of its s-domain representation

-s is a complex number $s = \sigma + j\omega$

 The impedance (or admittance) or networks can be described in the s domain

Transfer Function Representation

$$T(s) = \frac{a_m s^m + a_{m-1} s^{m-1} + \dots + a_1 s + a_0}{s^n + b_{n-1} s^{n-1} + \dots + b_1 s + b_0}$$

The coefficients a and b are real and the order m of the numerator is smaller than or equal to the order n of the denominator

A stable system is one that does not generate signal on its own.

For a stable network, the roots of the denominator should have negative real parts

Transfer Function Representation

In general, the transfer function of an amplifier can be expressed as

$$F_{H}(s) = a_{m} \frac{(s - Z_{1})(s - Z_{2})...(s - Z_{m})}{(s - P_{1})(s - P_{2})...(s - P_{m})}$$

 $Z_1, Z_2, ... Z_m$ are the **zeros** of the transfer function

 $P_1, P_2, ...P_m$ are the **poles** of the transfer function

s is a complex number $s = \sigma + j\omega$

3dB Frequency Determination

$$A(s) \equiv A_{M} F_{H}(s)$$

- Designer is interested in midband operation
- However needs to know upper 3-dB frequency
- In many cases some conditions are met:
 - > Zeros are infinity or at very high frequencies
 - \triangleright One of the poles (ω_{P1}) is at much lower frequency than other poles (\Rightarrow dominant pole)
- If the conditions are met then $F_H(s)$ can be approximated by:

$$F_H(s) \equiv \frac{1}{1 + s / \omega_{P_1}}$$
 and we have $\omega_H \cong \omega_{P_1}$

3dB Frequency Determination

If the lowest frequency pole is at least 4 times away from the nearest pole or zero, it is a **dominant pole**

If there is no dominant pole, the 3-dB frequency ω_H can be approximated by:

$$\omega_{H} \cong 1/\sqrt{\left(\frac{1}{\omega_{P1}^{2}} + \frac{1}{\omega_{P2}^{2}} + \dots\right)} - 2\left(\frac{1}{\omega_{Z1}^{2}} + \frac{1}{\omega_{Z2}^{2}} + \dots\right)$$

High-Frequency Behavior - Example

Open-Circuit Time Constants

$$F_H(s) = \frac{1 + a_1 s + a_2 s^2 + \dots + a_n s^n}{1 + b_1 s + b_2 s^2 + \dots + b_n s^n}$$

The coefficients a and b are related to the frequencies of the zeros and poles respectively.

$$b_{1} = \frac{1}{\omega_{p1}} + \frac{1}{\omega_{p2}} + \dots + \frac{1}{\omega_{pn}}$$

 b_1 can be obtained by summing the individual time constants of the circuit using the open-circuit time $constant\ method$

Open-Circuit Time Constant Method

- The time constant of each capacitor in the circuit is evaluated. It is the product of the capacitance and the resistance seen across its terminals with:
 - All other internal capacitors open circuited
 - > All independent voltage sources short circuited
 - > All independent current sources opened
- The value of b_1 is computed by summing the individual time constants

$$b_1 = \sum_{i=1}^n C_i R_{io}$$

Open-Circuit Time Constant Method

- An approximation can be made by using the value of b₁ to determine the 3dB upper frequency point ω_H
- If the zeros are not dominant and if one of the poles P1 is dominant, then

$$b_1 \simeq \frac{1}{\omega_{P1}}$$

Assuming that the 3-dB frequency will be approximately equal to ω_{PI}

$$\omega_{H} \approx \frac{1}{b_{1}} = \frac{1}{\sum C_{i} R_{io}}$$