L'anneau des quaternions

 \mathbb{R} désigne le corps des nombres réels et \mathbb{C} le corps des nombres complexes. $M_2(\mathbb{C})$ désigne l'ensemble des matrices carrées d'ordre 2 à coefficients complexes.

On pose
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $J = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $K = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ et $L = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$.

Partie I : Etude d'une symétrie

Dans cette partie $M_2(\mathbb{C})$ est vu comme un espace vectoriel sur le corps \mathbb{C} .

Pour
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{C})$$
, on pose $\sigma(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

- 1.a Montrer que σ est une symétrie du \mathbb{C} -espace vectoriel $M_2(\mathbb{C})$.
- 1.b Etablir que (I,J,K,L) est une base du $\mathbb C$ -espace vectoriel $M_2(\mathbb C)$, puis donner la matrice de l'endomorphisme σ dans cette base.
- 2. On considère A et B dans $M_2(\mathbb{C})$.
- 2.a Montrer que $\sigma(AB) = \sigma(B)\sigma(A)$.
- 2.b Calculer $A\sigma(A)$.
- 2.c Justifier que si A est inversible alors $\sigma(A)$ l'est aussi et exprimer alors A^{-1} en fonction de la matrice $\sigma(A)$ et du complexe det A.
- 3. Exprimer $\sigma(A)$ en fonction des matrices A et I et du complexe tr(A).

Partie II: Anneau des quaternions

Dans cette partie $\,M_2(\mathbb{C})\,$ est vu comme un espace vectoriel sur le corps $\,\mathbb{R}\,$.

Pour
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{C})$$
, on note $\overline{A} = \begin{pmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{pmatrix}$.

On désigne par H l'ensemble des matrices $A \in M_2(\mathbb{C})$ telle que $\sigma(A) = {}^t \overline{A}$.

Les éléments de H sont appelés quaternions.

- 1.a Montrer que les matrices de H sont les matrices pouvant s'écrire : $\alpha I + \beta J + \gamma K + \delta L$ avec $\alpha, \beta, \gamma, \delta$ des réels.
- 1.b En déduire que H est un sous-espace vectoriel du $\mathbb R$ -espace vectoriel $M_2(\mathbb C)$. Préciser une base et la dimension du $\mathbb R$ -espace vectoriel H.
- 2.a Montrer que H est stable pour le produit matriciel.
- 2.b Calculer $J^2, K^2, L^2, JK, KJ, KL, LK, LJ$ et JL.
- 2.c Conclure que H est un sous-anneau de l'anneau $(M_2(\mathbb{C}),+,\times)$. Le produit matriciel est-il commutatif sur H ?
- 3.a Vérifier que $\forall A \in H, \sigma(A) \in H$, $\operatorname{tr} A \in \mathbb{R}$ et $\det A \in \mathbb{R}^+$
- 3.b Montrer qu'une matrice non nulle de H est inversible et que son inverse est dans H. Ce qui précède permet de dire que H est un corps non commutatif.

Partie III: Etude euclidienne

Pour A et B dans H, on pose : $(A \mid B) = \frac{1}{4} \operatorname{tr}(A\sigma(B) + B\sigma(A))$.

1. On considère A et B dans H.

- 1.a Prouver, sans calculs, que $(A | B) \in \mathbb{R}$.
- 1.b Montrer que $(A | A) = \det A$.
- 1.c Etablir que (.|.) est un produit scalaire sur le \mathbb{R} -espace vectoriel H.
- 2. Vérifier que (I, J, K, L) est une base orthonormée de H.
- 3. On pose $D = \operatorname{Vect}(I)$ et $F = \{A \in H / \operatorname{tr} A = 0\}$. D est appelée droite des réels et F espace des quaternions purs.
- 3.a Montrer que F est un hyperplan du $\mathbb R$ -espace vectoriel H dont D est la droite normale. Donner une base orthonormée de F .
- 3.b On désigne par r la projection orthogonale sur D = Vect(I) et v celle sur F. Pour $A \in H$, exprimer r(A) et v(A) en fonction de A, de I et du réel tr(A).
- 3.c Observer que $\,\sigma\,$ est une symétrie orthogonale d'axe $\,D\,$. Pour tout $\,A\in H\,$, $\,\sigma(A)\,$ est appelé conjugué du quaternion $\,A\,$.
- 4. On oriente l'espace F de sorte que la famille (J, K, L) soit directe.

Montrer que pour tout $A,B\in H$, on a : $r(AB)=r(A)r(B)-(v(A)\,|\,v(B))I \ \ \text{et} \ \ v(AB)=r(A)v(B)+r(B)v(A)+v(A)\wedge v(B) \ .$