Introduction Session 03

OSI Model - TCP Model

■ OSI Model:

- o OSI Stand for Open System Interconnection
- o Data transfer from Laptop 1 to Laptop 2 Through protocol
 - Using protocol to transfer data, to secure data and ensure that data send currently.
 - OSI Model use at Intranet or (LAN).

■ 7 layer of OSI model:

- o Explain 7 layers:
 - Layer 7 Application:
 - Determine which protocol will used.
 - o Example:
 - o Browser app.: use http protocol.
 - o Transfer file app.: use ftp protocol.
 - Layer 6 presentation:
 - Looking for suitable extension.
 - Present data by calling suitable software (app).
 - Compression Decompression.
 - Encryption Decryption.
 - Layer 5 Session:
 - Setup path
 - Manage path

- End path
- Independent connection

Note: Path mean that port.

Data Stream: 0111010111001111000010100011

Data Stream: group of data.

- Layer 4 Transport:
 - Segmentation.
 - TCP (connection) or UDP (connectionless)

- Layer 3 Network:
 - IP Packet
 - Router work at layer 3

IP Segment 1 TCP

- Layer 2 Data link
 - Data link divided into 2 sub layers
 - o 1- logical link control.
 - LLC: convert packet to frame (frame network layer).
 - LLC: determine used type of network (local network or Wide network, ether-net technical).
 - o 2- media access control.
 - MAC: address the frame, where determine mac addresses of source and destination by using ARP (Address Resolution Protocol).
 - MAC: make head & trailer

Frame

Header	IP	Segment 1	ТСР	Trailer
		<u> </u>	I	

Note: Header contain MAC addresses, Trailer contain error detected. **Note:** Switch work at layer 2, which mean that switch depend on MAC addresses and work with ARP Protocol.

- Layer 1 Physical
 - Network card.
 - Receive & send bit (TX RX).
 - Convert bit to byte to can be stored.

Note: HUB work at layer 1.

o In View Of Receiver (Device that receive Data).

Layers	Encapsulation	Device	Protocol
7- Application	Data (Packet)	PC	http - hhtps - ftp
6- Presentation	Data (Packet)		Jpg - swf - mp4
5- Session	Data (Packet)		SQL
4- Transport	Segmentation		TCP - UDP
3- Network	IP Packet	Router	IP – ICMP – IPX
2- Data Link	Bytes - Frames	Switch (Bridge)	ARP 802.3,802.11
1- Physical	Bits	Hub - repeater	Cable-rj

Note: any device work in specific layer understand pervious layers example:

- Router work at layer 3(Network), which mean router can understand layer 2 and 1.
- PC work at layer 7 which mean understand all pervious layers, so we can convert behavior of PC to work as switch or router.

Note: ARP 802.3 mean network work by cables, while

ARP 802.11 mean network work by wireless.

Note: OSI Model Help in troubleshooting.

■ TCP Model:

- o TCP/IP stand for Transmission Control Protocol/Internet Protocol.
- o Work at WAN.
- o Work as OSI Model but some layers in TCP are merged.

OSI Model	TCP Model
7- application	4- Application
6- Presentation	
5- Session	
4- Transport	3- Transport
3- Network	2- Internet
2- Data Link	1- Network
1- Physical	

Note: Merge of layers cause speed of transmission of data.

TCP model is details:

http://www.inetdaemon.com/tutorials/internet/tcp/index.shtml