Chapter 8

Finite State Machine Optimization

8.1 Objectives

- 1. Analyse and design both Mealy and Moore sequential circuits with multiple inputs and multiple outputs
- 2. Convert between Mealy and Moore designs
- 3. Perform a state assignment using the guideline method
- 4. Reduce the number of states in a state table using row reduction and implication tables

8.2 Mealy vs Moore Finite State Machines

Definition 8.1 (Finite State Machines (FSM)). [1, Sec 3.4] A FSM has M inputs, N outputs and k bits of unique states (2^k states) .

Definition 8.2 (Mealy FSM). [1, Sec 3.4.3] Named after George M. Mealy, in Mealy FSM the output depends both on inputs and the states.

Definition 8.3 (Moore FSM). [1, Sec 3.4.3] Named after Edward F. Moore, in Moore FSM the output depends only on the states.

Example 8.1. A sequential circuit has one input (X) and one output (Z). The circuit examines groups of four consecutive inputs and produces an output Z=1 if the input sequence 0010 or 0001 occurs. The sequences can overlap. Draw both Mealy and Moore timing diagrams. Find the Mealy and Moore state graph.

Example 8.2. A sequential circuit has one input (X) and one output (Z). The circuit examines groups of four consecutive inputs and produces an output Z=1 if the input sequence 0101 or 1001 occurs. The circuit resets after every four inputs. Draw both Mealy and Moore timing diagrams. Find the Mealy and Moore state graph.

8.3 Full procedure for designing sequential logic circuit

1. Convert the word problem to a state transition diagram. Let the states be $S_0, S_1, S_2, ...$

2. <u>Draw state transition table</u> with named states. For example,

X - 0 $X - 1$ $X - 0$ $X - 1$,
$\frac{\Delta - 0}{\Delta}$ $\frac{\Delta - 1}{\Delta}$ $\frac{\Delta - 0}{\Delta}$ $\frac{\Delta}{\Delta}$ $\frac{\Delta}{\Delta}$ $\frac{\Delta}{\Delta}$ $\frac{\Delta}{\Delta}$	Æ
$\frac{X=0}{S_0} \frac{X=1}{S_2} X=0 X=1$	
S_1 S_2 S_0 S_0 S_0	

4. State assignment step: Assign each state a binary representation. For example,

State name State assignments $(Q_2Q_1Q_0)$ 8- pussible $Q_2Q_1Q_0$ 9- possible Q_1Q_0 9- possible	State name	State assignments $(Q_2Q_1Q_0)$	8-possible	One-hot	encoderd hat k
S_1 0010 0 0 0 0 0	S_0	000	- stute coxu		
	S_1	00 .D		0010	0000
	•	:			

5. Draw State assigned transition table. For example,

Inp	outs	(X_1X_0)	Present State $(\underline{Q_1Q_0})$	Next State $(Q_1^+Q_0^+)$	Οι	itputs (Z_1Z_0)
0	0	\longrightarrow	00	01	0	0
0	0		01	10	0	0
:	:		<u>:</u>	:	:	:

(a) Use excitation tables to find truth tables for the combinational circuits. For example, the excitation table for J-K ff is

Q	Q^+	J	K
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

8.4 State assignment by guideline method [2, Section 8.2.5] 8.4.1 State Maps

Example 8.3. Draw a state map for a sequential assignment of the states

Guideline method states that the following states should be adjacent in the state map according the following priorities:

Figure 8.29 Adjacent assignment priorities.

Example 8.4. A state transition table is given. Find optimal state assignment by using the guide-line method.

			State	Output		
Input Sequence	Present State	X=0	X=1	X=0	X=1	
Reset	S_0	Sí	S_1'	0	0	
0 or 1	Sí	S_3'	S_4'	0	0	
00 or 10	S' ₃	S_0	S_0	0	0	
01 or 11	S4	S_0	S_0	1	0	

Figure 8.30 Reduced state diagram for 3-bit sequence detector.

Example 8.5. Draw a Mealy FSM for detecting binary string 0110 or 1010. The machine returns to the reset state after each and every 4-bit sequence. Draw the state transition diagram on your own as practice problem. The state transition diagram is given here. Find optimal state assignment by using the guideline method.

8.5 State reduction by implication chart

Example 8.6. Design a Mealy FSM for detecting binary sequence 010 or 0110. The machine returns to reset state after each and every 3-bit sequence. For now the state transition table is given. Reduce the following state transition table

		Next State	Output	
Input Sequence	Present State	X=0 $X=1$	X=0 $X=1$	
Reset	S_0	S_1 S_2	0 0	
0	S_1	S_3 S_4	0 0	$S_1 = S_2$
1	S_2	S553 S6-354	0 0	
00	S_3	S_0 S_0	0 0	<i>c c</i>
01	S_4	S_0 S_0	1 0	$S_3 = S_5$
10	S_5	S_0 S_0	0 0	c (
11	S_6	S_0 S_0	1 0	$S_{4} = S_{6}$

Row reduction

Row reduction Implication table

If two states result in the same outputs and the same next states then those staets are equivalent and can be merged together.

8.5.1 Implication chart Summary

The algorithms for state reduction using the implication chart method consists of the following steps

- 1. Construct the implication chart, consisting of one square for each possible combination of states taken two at a time.
- 2. For each square labeled by states S_i and S_j , if the outputs of the states differ, mark the square with an X; the states are not equivalent. Otherwise, they may be equivalent. Within the square write implied pairs of equivalent next states for all input combinations.
- 3. Systematically advance through the squares of the implication chart. If the square labeled by states S_i, S_j contains an implied pair S_m, S_n and square S_m, S_n is marked with an X, then mark S_i, S_j with an X. Since S_m, S_n are not equivalent, neither are S_i, S_j .
- 4. Continue executing Step 3 until no new squares are marked with an X.
- 5. For each remaining unmarked square S_i, S_j , we can conclude that S_i, S_j are equivalent.

Review

8.6 Study guide

8.6.1 Midterm 1

- distribution Binary numbers, Hexadecimal, Sign-magnitude, One's-complement and Two's complement. Conversions between them.
- denerate minterms, maxterms, SOP canonical form and POS canonical forms and convert between them
- ✓ Understand and use the laws and theorems of Boolean Algebra
- Perform algebraic simplification using Boolean algebra
- ✓ Simplification using K-maps (upto 5-input variables)
- Derive sum of product and product of sums expressions for a combinational circuit
- ✓ Convert combinational logic to NAND-NAND and NOR-NOR forms

Midterm 2 8.6.2

Different between and the limitations of level-triggered latches and edge-triggered flip-flops.

Understand the difference between synchronous and asynchronous inputs curants

Derive a state graph or state table from a word description of the problem

Analyze a sequential circuit and derive a state-table and a state-graph

Convert between Mealy and Moore designs

Partition a system into multiple state machines

1-level 2-level

8.6.3 Final (includes previous topics)

- Reduce the number of states in a state table using row reduction and implication tables
- lacktriangledown Analyse and design both Mealy and Moore sequential circuits with multiple inputs and multiple outputs
- ✓ Know fan-out and noise margin
- ✓ Know the differences and similarities between PAL, PLA, and ROMs ([🏿] and can use each for logic design)
- ☑ Simplification using Quine-McCluskey method
- ☑ Design combinational circuits for positive and negative logic
- ✓ Compute noise margin of one device
- Describe how tri-state and open-collector outputs are different from totem-pole outputs.

Chapter 9

Sample Midterm 2

Student Name: Student Email:

9.1 Instructions

3

- There are we problems. All problems are required.
- Maximum number of marks is 50. This exam amounts 10% toward the final grade.
- Time allowed is <u>50 minutes</u>.
- In order to minimize distraction to your fellow students, you may not leave during the last 10 minutes of the examination.
- \bullet The examination is closed-book. One 8×11 in two-sided cheatsheet is allowed.
- Non-programmable calculators are permitted.
- Please use a pen or heavy pencil to ensure legibility. Co<u>lored pens/pencils</u> are recommended for K-map grouping.
- Please show your work; where appropriate, marks will be awarded for proper and well-reasoned explanations.

Problem 9.1. Table 9.1 shows the truth table for a BCD to 7-segment display. The inputs corresponding to the missing rows in the truth table should be considered as don't care. Implement segment "a" using a 4:1 MUX (multiplexer) and one other gate. (10 marks)

Row	$ w_3 $	w_2	w_1	w_0	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1

Table 9.1: Truth table for BCD to seven-segment display. The missing combinations of inputs should be considered as don't care.

Problem 9.2. Draw <u>Mealy</u> state transition diagram which investigates an input sequence X and will produce an output of Z = 1 for any input sequence ending in <u>0011</u> or <u>110</u>.

Example: $X = \frac{1}{2} + \frac{1}{0} + \frac$

Notice that the circuit does not reset to the start state when an output of Z=1 occurs. A minimum $s_{12}=0000$, solution requires six states. As $S_{22}=0000$, where $S_{23}=S_{2}=0000$ $S_{33}=S_{23}=0000$

Z = 110 00110 010 110 Z = 001 0001 1000001 $Resch 0/0 (S_3) 0/0 (S_3) 0/0 (S_4) 0/0 (S_5) 0$

 $S_{0} = 001 V$ $S_{1} = 110 = S_{1}$ $S_{0} = 111 = S_{0}$ $S_{0} = 111 = S_{0}$ $S_{0} = 111 = S_{0}$ $S_{0} = 111 = S_{0}$

 $S_3 = *00$ $S_4 = *01 = S_2 \times$ $S_5 = *10 = S_1 \times$ $S_6 = *0010 = S_1$

So we do not need to remember the two bits we have observed so far. But the patterns we are interested in $S_{ii} = O$ do start with 1 or 0. So we do want to remeber the 1 bit we have seen so far.

None of the interesting patterns start with either 01 or 10.

Problem 9.3. Find the expression for $\underline{J_0}$ and $\underline{K_0}$ assuming that $\underline{J_0}$ and $\underline{K_0}$ are inputs to the J-K flip flop that capture the state of the second most eignificant bit $\overline{Q_0}$ of the following state encoded table. The state encoding table given with state encoding denoted as $Q_2Q_1Q_0$. (20 marks).

	$Present\ State$	Next	State	Ou	tput			
		(X = 0)	X = 1	X = 0	X = 1		•/	
	$Q_2Q_1Q_0$	$Q_2^+ Q_1^+ Q_0^+$	$Q_2^+ Q_1^+ Q_0^+$	Z	Z	_	CIK	
	000	100	101	1	0	- r		- ,7
	001	10 0	101	0	1	X uput ,	J2 Q Out	' '\
	010	00 <mark>0]</mark> 000	000	1	0	next	κ_2 $\frac{1}{2}$	×\
	011	000	000	0	1	stul!		
	100	111	110	1	0	QzQIQO losic		
	101	110	110	0	1	7.7	-	
	110	011	010	1	0		K ₁	
	111	011	011	0	1			
		4				_		
Χ	Q, Q, Q.	100	Jo K				J. Q.	
		10		0			k.	
8 0 0	0 0 0	701	0 d					
0		701	d\ 1			\		
0	0 10		૦ ત			,		
					Excil	ation table	Designin Dff usns. J-Kff	
					Qo	Q0 To Ko		
		1 /				$\overline{}$	13-K TT	
		1 1			0	>0 0 d	•	
		1 1			1~			
		1 1			· .	,		
		•			•	. •		

