HW 10

Group 1 Grade:

Suppose your grade in a probability course depends on your exam scores X_1 and X_2 . The professor, a fan of probability, releases exam scores in a normalized fashion such that X_1 and X_2 are independent Gaussian ($\mu = 0, \sigma = \sqrt{2}$) random variables. Your semester average is $X = 0.5(X_1 + X_2)$.

- 1. You earn an A grade if X > 1. What is $\mathbb{P}(A)$?
- 2. To improve his SIRS (Student Instructional Rating Service) score, the professor decides he should award more A's. Now you get an A if $\max(X_1, X_2) > 1$. What is $\mathbb{P}(A)$ now?
- 3. The professor found out he is unpopular at ratemyprofessor.com and decides to award an A if either X > 1 or $\max(X_1, X_2) > 1$. Now what is $\mathbb{P}(A)$?
- 4. Under criticism of grade inflation from the department chair, the professor adopts a new policy. An A is awarded if $\max(X_1, X_2) > 1$ and $\min(X_1, X_2) > 0$. Now what is $\mathbb{P}(A)$?

Group 2 Grade:

Let X and Y be continues random variables with joint PDF

$$f(x,y) = \begin{cases} 2 & 0 \le y \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

- 1. What are $\mathbb{E}[X]$ and Var(X)?
- 2. What are $\mathbb{E}[Y]$ and Var(Y)?
- 3. What are Cov(X, Y) and Corr(X, Y)?
- 4. What are $\mathbb{E}[X+Y]$ and Var(X+Y)?

Group 3 Grade:

A company receives shipments from two factories. Depending on the size of the order, a shipment can be in

- 1. 1 box for a small order,
- 2. 2 boxes for a medium order,
- 3. 3 boxes for a large order.

The company has two different suppliers. Factory Q is 60 miles from the company. Factory R is 180 miles from the company. An experiment consists of monitoring a shipment and observing B, the number of boxes, and M, the number of miles the shipment travels. The following probability model describes the experiment:

	Factory Q	Factory R
small order	0.3	0.2
medium order	0.1	0.2
large order	0.1	0.1

- 1. Find $P_{B,M}(b,m)$, the joint PMF of the number of b oxes and the distance.
- 2. What is $\mathbb{E}[B]$, the expected number of boxes?
- 3. Are B and M independent?

Group 4 Grade:

Random Variable N and K have the joint PMF

$$P_{N,K}(n,k) = \begin{cases} \frac{(1-p)^{n-1}p}{n} & k = 1, 2, \dots, n; n = 1, 2, \dots \\ 0 & \text{otherwise.} \end{cases}$$

Find $P_N(n)$, $\mathbb{E}[N]$, $\operatorname{Var}(N)$, $\mathbb{E}[N^2]$, $\mathbb{E}[K]$, $\operatorname{Var}(K)$, $\mathbb{E}[N+K]$, $r_{N,K}$, $\operatorname{Cov}(N,K)$.

Group 5 Grade:

X and Y are random variables such that X has expected value $\mu_X = 0$ and standard deviation $\sigma_X = 3$ while Y has expected value $\mu_Y = 1$ and standard deviation $\sigma_Y = 4$. In addition, X and Y have covariance Cov[X,Y] = -3. Find the expected value and variance of W = 2X + 2Y.