UT Austin CSE 386D

Homework 10

Jonathan Zhang EID: jdz357

Exercise (9.3). Let X = C([0,1]) be the space of bounded continuous functions on [0,1] and, for $u \in X$, define $F(u)(x) = \int\limits_0^1 K(x,y) f(u(y)) dy$ where $K:[0,1] \times [0,1] \to \mathbb{R}$ is continuous and f is a C^1 mapping of \mathbb{R} into \mathbb{R} . Find the Fréchet derivative DF(u) of F at $u \in X$. Is the map $u \mapsto DF(u)$ continuous?

Exercise (9.5). Set up and apply contraction mapping principle to show that the problem

$$-u_{xx} + u - \varepsilon u^2 = f(x), \quad x \in \mathbb{R}$$

has a smooth bounded solution if $\varepsilon > 0$ is small enough, where $f(x) \in \mathcal{S}(\mathbb{R})$.

Exercise (9.7). Suppose that F is defined on a Banach space X, that $x_0 = F(x_0)$ is a fixed point of F, $DF(x_0)$ exists, and that 1 is not in the spectrum of $DF(x_0)$. Prove that x_0 is an isolated fixed point.

Exercise (9.8). Consider the ODE

$$u'(t) + u(t) = \cos(u(t))$$

posed as an IVP for t > 0 with $u(0) = u_0$.

- 1. Use contraction mapping theorem to show that there is exactly one solution u corresponding to any given $u_0 \in \mathbb{R}$.
- 2. Prove that there is a number ξ such that $\lim_{t\to\infty} u(t) = \xi$ for any solution u, independent of the value of u_0 .

Exercise (9.10). Consider the PDE

$$u_t - u_{xxt} - \varepsilon u^3 = f, \quad x \in \mathbb{R}, t > 0$$

with u(x,0)=g(x). Use the Fourier transform and a contraction mapping argument to show that there exists a solution for small enough ε , at least up to some time $T<\infty$. In what spaces should f and g lie?

Oden Institute