	Page No Date
	ASSIGNMENT-3
	UNIT- 3
01- Ans-	The former had? The former had superacted the energy had at which the probability of finding eletron is 50% at absolute zero temporation.
	It is for understanding eletron behaviour in materials, particular in services and analysis
0 2-	ullut 4 motorial prom TI Chrone ??
	Aluminium - (AL) (iii) Incluin - (In) (xcellium - (Gra) (iv) Trasllium - (Te)
03- An-	State man outor law? In a semiconductan (intensi) pender shermal equidistion the product of eletrons and holes is always constant and is equal to the square of intensi con. The law is mainly mea for extrinsi semiconductor to
Q4-	Calculate carreir concentration Outribe P-type & ntype securconductor in terms of its moderials
	P=type - Semiconductives are doped wines acceptor imprivitio into posser farming halv and source establish higher resistainty, security conductivity and source electron mobility.
	phosphorous including encus ellarons They have source existinity, higher condictioning and higher election mobility.

			Page No
85-	ubit tw ulctum neutrality	equoti	on?
Ans			
	ullu n -> concentration of		utreom
	P → concentration q		
	ni → Intruisi Carrie	w con	centration.
	PART-B		1
			<i>P V</i>
0.1	10-3300-11/3	ut ba	
AIN-	DIRECT BAND	1	INDIRECT BAND
-	OTAP		GI A P
- •	refricting emit ar absores photons		Have lower equily deer
_	du is duint teansition b/w		to the involument of
-	energy bands.	-	momentum - changing proces
1.	Typically exhibit steenger option		ders efficent in their
	properties, making them suitable	* N.	duca
	far opte - eletterni duices	-	
-	illo LEP's and harely		
0	Meters examilión occur	•	Truste momentum changing
-	with minimal change in		Presum Like Phenon Scardwaing
	momentum.		den to different momentuses
			Statu of conclusion of value
		20/20/20/20	bands.
٥	Trypically have showler caveius	•	carrie lettin may be
	iguani du a per efficient		langue du za slavelle
	recombination of elution hall		sucombination pates.
	pais		
	Mod of energy is discripated		Most y envery is desir paties
			in four of heat.
	in form of light.		6

Page	No	
Date		

			Date
	Fallow exdon journation while electron - hole pain interaction successful du to sain spatier		Haw water excitence
9	Proximity Common during part gdp material Ficuols TI - V compounds Nice Ga, As, In P, and GAN	c	Induct some III-V
9	Evil application in opti - eldkomi Lui application in opti - eldkomi chuiu such as LED, laseus and protoelulam du to sui efficient photon emission & absorption.	٥	Like transitate & sola all when die band gos material are ser
<i>Q</i> 2-	An sideiusii silicon suith n:=13 acaptor inipserita Nn = 2×10? entriisii malierid. Also fuò per cm³.	Lini	Policiais in sign of
na-	$Pi = 1.5 \times 10^{10} / cm^{5}$ $NA = 2 \times 10^{22} / cm^{3}$ $NA > 0i \rightarrow The makeral$ $NA < 0i \rightarrow The makeral is of the polesies of the polesie$	Lyn	
	$P = 2 \times 10^{23} - 1.5 \times 10^{10} = 1.99 \times 10^{10} = 1.99$		

10, no. of holes (cre 3 = 1.99 × 10) 1/100 30

no. of manage /un3 = n = 1.5 x10 10

Page	No.		
Date			

1	Data
	Lundain mobility, drift would dis were
63-	Mobility - Mobility indicates how quick the on the hale will be making poon one that to anchor place.
AN-CL	making wan one flace to ancient of the hale title of
	II : disperveloity & mise m'/vse fixed intensity & vorton
	Vall m
	mobility of e' > mobility of holes
	- so e- contrabut mare current as compared to have
	- mobildy of charge carrier always delease with increase, leng.
	because allow in material will vibrate, due to due Theremand
	Velucation mobility of charge carrier decrease
	Velvadean mobility of charge carrier durant
(11)	chift current - It is the flow of current interests material of
	duci undue ou influer of applied vallage or
	due to Ge.
iii	d'équision audicet - Diffussion is defined as the migreetion of charge caudies
	from high work. is low conc. du to unequal ois trubulità of
	Charge carreir
	Diffusion surrend flour only in semiconductors.
	PART-C
01-	A pure SC (U10) is doped with donor improvides to the extent of
	1:107. Calulate a) Do not concentration
	b) blubbon and had concederation
	c) Conductivity and suisistivity of dotted sc
	d) How many times the conductivity is union in
	the sc de to doping.

	Page No	
	Date	
Any- (a)	DONOR CONCENTRATION - Craim that the pure suriconductors (cre) is	(4)
4	doped muis donox impurites to the extret 1:10°; -this means may for energy ore along, pure is one do not along. Thursail, the donor condutration is equal to the doping consentuation - 1 × 10° /cm².	
	the coping content names	
(6)	ELECTRON & HOLE CONCENTRATION - In a n-type somiconductor into	02-
	hole suin (re is doped with donor impurition in can	AM
	anum That all donar along contrabations	-
	extra elution to the conduction band; for each clopeix	-
3	$\frac{n_c^2 = np}{n_c}$	-
-	what conc = ponex conc = 1 x 10 3/cm2	
	Holy conc. = $n_c^{(2)} \times n_p$	
	$P = n_{c}^{2} - (2.4 \times 10^{3})^{2}$ $(\times 10^{7})$	1
743		
	p × 5.76 × 10 3/cm 3	
(c)	CONDUCTIVITY AND RESISTIVITY - Conductivity can be collidated:	
	5 = q. kn. n	1
	9 = eliminally change	1
	Hn = eleuton mobility	+
	n = election Concentralien	_
	Russeuty can be calculated the as recipleace of conductively	
	0 = 9. Un n = (1.6 ×10-13) 0 x mobility +1 ×10 =	
	Mubility = 0,39 cm = 15	
	σ = 1.6 ×10 -13 x 0.39 x 1 x 10 3 s/cm	
	and the state of t	135

	Paga Ma	
	Page No	
(1)	INCREASING CONDUCTIVITY DUE TO DOPING - THE LAGUER IN	condudict
	tentilling of manufacture services during to	cuclintifila
	Authority Mulitarion, to fine the incurace in	Contratinity
	congress se conditioning of the choped se la the inte	unsi
	conductivity of pive tre	
A2-	Explain the properties of the conductivity sewi-conduction	
	will the help of ewegy band diggrams.	
AM-	CONDUCTOR - " high conductivity due es large number of pe	
	WHOLE CAME HE MAN DO WILL IN	- 12 <u>-</u>
	file.	in udru
	· The value of conductar bands, overlop, allowing ele	
	to many and	ithons
	to more freely.	
	· Now right aun du to flow of stelver current	
	e deg: Cu, Ag, Au.	
	- condulion Bonel	
	- Valle Band	#
	INCULATOR - orbity low Conductivity du to lack of frue	
	саниний страний	chaug,
	6	band.
	e ulide europy gop b/w the value	
	A V	ven Ewer
	difficult for elution to mour,	
	Migh resistance	value
J	leg: Glass, rubber, Plasti etc.	Bano'.

Page	No	_
Date		

SENICONDUCTOR - Intermediate conductivity between conductive se
insulatory conductivity can be modulated by
doping and temperature.
· hukal an between the value and conduction bands of
· lungy gap between the value and conduction bands At
su on semperatur some elucione alle presmata le
the condition band, allowing for some surent to
flow.
· Mudwatt justit au compand to condutur Ef insulation
o leg: Si, We and various compound semicondular
Bart
Litture
- 6 puils duvegy,
Value
Pour expussion for current density iloride a conductor
execute the expression for some conductors.
In a conductor the amount density (I) is desirtly proportional
to the slutrui file (E), and Conductivity (a) and incurred
Propueliona ge persining
J = of alum L
rulou, o is concludinty of malvier and is selver for
To them of resiliently
J = 14
J. S.
Far semicencumo, current durity (I) is quin sej
sum of druft www duity (Jd) one 11.
diffussion (well durile (In) while is expressed as:

Page No.		
Date	1	

-				-	Jae	
J = Jd	1+ Jn					
The days	auran	char.	ii ou			carrier metaly
(11)	Calina	ansing	Theope	Honor It	4000	carrier mobile
	carray	connect	leader 6	r) and	ude	
		Jd = q	n. u.	,	July 1	fue (E)
	- www	- Q 11	21.00	q carre		
			charge	g carve	Uu	
The d	ypussion	avour	density	ii d lo	Bredent -	1 10 gorodin
01	caurui	concent	Katu:		ne plane	10 gorodin
0				Un) sq	defferen	a efficiel co
		- In: (2 . 0 =			10

Combining bath enguisher fall Id and In we get we total writer durity in sui conductory.