João Pedro Mota Paes Rodrigues de Almeida, 10395291 Lucas Kenzo Kawamoto, 10396359 Lucas Pinheiro do Vale, 10391001 Murilo Kenichiro Senaga, 10395789 Kenny Jun Takahashi, 10396373

MOOD

Introdução

O presente projeto, intitulado Projeto Mood, visa utilizar tecnologias modernas para análise musical a partir da API do Spotify. Ele combina extração de dados, aprendizado de máquina e visualização interativa para classificar o humor das músicas de um artista. Essa classificação baseia-se em dois atributos fundamentais: valência (indicador de positividade) e energia. O sistema categoriza as músicas em quatro grupos de humor: Alegre, Calmo, Energético e Triste. Além disso, o projeto oferece uma interface web interativa desenvolvida com Streamlit, facilitando a exploração dos resultados por usuários.

Referencial Teórico

A valência e a energia são atributos frequentemente utilizados em estudos de análise musical para descrever estados emocionais associados às músicas. Segundo a literatura, músicas com alta valência tendem a evocar sentimentos positivos, enquanto níveis de energia são associados à intensidade ou dinamicidade da música. Modelos de aprendizado de máquina, como K-Nearest Neighbors (KNN), Árvores de Decisão, Naive Bayes e Support Vector Machines (SVM), são amplamente empregados para tarefas de classificação devido à sua capacidade de identificar padrões em grandes conjuntos de dados. Interfaces interativas, como as criadas com Streamlit, tornam os resultados acessíveis, promovendo uma melhor compreensão do impacto emocional da música.

Metodologia

Estrutura do Código:

- Autenticação na API do Spotify: Realizada por meio de variáveis armazenadas em um arquivo. env, garantindo segurança no acesso às credenciais.
- 2. Coleta de Dados:

- Busca por artistas.
- Extração de álbuns e faixas.
- Obtenção de características de áudio das músicas.

3. Classificação de Humor:

- o Categorização com base nos valores de valência e energia.
- 4. Treinamento e Avaliação de Modelos:
 - Divisão dos dados em conjuntos de treino e teste.
 - Aplicação de normalização para padronização.
 - Treinamento de KNN, Árvore de Decisão, Naive Bayes e SVM.
- 5. Interface e Visualização:
 - Uso do Streamlit para exibir gráficos e métricas de avaliação.

Ferramentas e Tecnologias

- Linguagem de Programação: Python.
- Bibliotecas: scikit-learn, pandas, matplotlib, streamlit, entre outras.
- Ambiente Virtualizado: Configurado com Docker.

Resultados

Os resultados demonstraram que todos os modelos foram capazes de classificar músicas em categorias de humor com diferentes níveis de desempenho. O KNN apresentou acurácia de XX%, enquanto a Árvore de Decisão, o Naive Bayes e o SVM obtiveram acurácias de YY%, ZZ% e AA%, respectivamente. A distribuição do humor das músicas mostrou-se bem balanceada para alguns artistas e polarizada para outros, destacando a influência do estilo do artista na variação das características musicais.

Gráfico: Distribuição do Humor

O gráfico abaixo representa a quantidade de músicas em cada categoria de humor, facilitando a visualização do perfil emocional do artista analisado.

Conclusão

O Projeto Mood demonstrou a viabilidade de usar atributos como valência e energia para classificar músicas em categorias emocionais. Além de fornecer uma ferramenta interativa e informativa, o sistema evidenciou o potencial do aprendizado de máquina na análise musical. Como trabalho futuro, sugere-se a inclusão de mais atributos e a expansão do sistema para permitir a análise de playlists personalizadas, ampliando sua aplicabilidade.