```
In [1]:
import pandas as pd
In [2]:
import numpy as np
In [3]:
import scipy.stats as stats
In [4]:
import matplotlib.pyplot as plt
In [5]:
import sklearn
In [6]:
import seaborn as sns
In [7]:
from matplotlib import rcParams
In [8]:
sns.set_style("whitegrid")
In [9]:
sns.set_context("poster")
In [10]:
from sklearn.datasets import load_boston
In [11]:
boston = load_boston()
In [12]:
boston.keys()
Out[12]:
dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])
```

In [15]:

```
print (boston.DESCR)
.. _boston_dataset:
Boston house prices dataset
**Data Set Characteristics:**
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical predictive. Median Value
(attribute 14) is usually the target.
    :Attribute Information (in order):
                   per capita crime rate by town
                   proportion of residential land zoned for lots over 25,000
        - ZN
sq.ft.
                   proportion of non-retail business acres per town
        - INDUS
                   Charles River dummy variable (= 1 if tract bounds river;
        - CHAS
0 otherwise)
        - NOX
                   nitric oxides concentration (parts per 10 million)
                   average number of rooms per dwelling
        - RM
        - AGE
                   proportion of owner-occupied units built prior to 1940
        - DIS
                   weighted distances to five Boston employment centres
        - RAD
                   index of accessibility to radial highways
        - TAX
                   full-value property-tax rate per $10,000
        - PTRATIO pupil-teacher ratio by town
                   1000(Bk - 0.63)^2 where Bk is the proportion of blacks by
        - B
town
        - LSTAT
                   % lower status of the population
                   Median value of owner-occupied homes in $1000's
        MEDV
    :Missing Attribute Values: None
    :Creator: Harrison, D. and Rubinfeld, D.L.
This is a copy of UCI ML housing dataset.
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ (https://
archive.ics.uci.edu/ml/machine-learning-databases/housing/)
This dataset was taken from the StatLib library which is maintained at Carne
gie Mellon University.
The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic
prices and the demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostic
                     N.B. Various transformations are used in the table on
...', Wiley, 1980.
pages 244-261 of the latter.
```

.. topic:: References

at address regression

problems.

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential

The Boston house-price data has been used in many machine learning papers th

Data and Sources of Collinearity', Wiley, 1980. 244-261.

- Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.

In [16]:

```
bos = pd.DataFrame(boston.data)
```

In [17]:

bos.head()

Out[17]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

In [18]:

bos.columns = boston.feature_names

In [19]:

bos.head()

Out[19]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	2
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	!
4													•

In [20]:

print (boston.target.shape)

(506,)

In [21]:

```
bos['PRICE'] = boston.target
```

In [22]:

bos.head()

Out[22]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LS
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	2
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	(
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	1
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	į
4													•

In [24]:

bos.describe()

Out[24]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	50
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	:
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	1:
4								•

In []:

In [29]:

```
plt.scatter(bos.RM, bos.PRICE)
plt.xlabel("Average number of rooms per dwelling(RM)")
plt.ylabel("Housing Price")
plt.title("Relationship between RM and Price")
```

Out[29]:

Text(0.5, 1.0, 'Relationship between RM and Price')

In [30]:

```
plt.scatter(bos.PTRATIO, bos.PRICE)
plt.xlabel("Pupil-teacher ratio by town(PTRATIO)")
plt.ylabel("Housing Price")
plt.title("Relationship between PTRATIO and Price")
```

Out[30]:

Text(0.5, 1.0, 'Relationship between PTRATIO and Price')

In [31]:

```
plt.scatter(bos.ZN, bos.PRICE)
plt.xlabel("proportion of residential land zoned for lots over 25,000 sq.ft.(ZN)")
plt.ylabel("Housing Price")
plt.title("Relationship between ZN and Price")
```

Out[31]:

Text(0.5, 1.0, 'Relationship between ZN and Price')

proportion of residential land zoned for lots over 25,000 sq.ft.(ZN)

In [32]:

```
plt.scatter(bos.INDUS, bos.PRICE)
plt.xlabel("proportion of non-retail business acres per town(INDUS)")
plt.ylabel("Housing Price")
plt.title("Relationship between INDUS and Price")
```

Out[32]:

Text(0.5, 1.0, 'Relationship between INDUS and Price')

proportion of non-retail business acres per town(INDUS)

In [33]:

```
plt.scatter(bos.NOX, bos.PRICE)
plt.xlabel("nitric oxides concentration (parts per 10 million(NOX)")
plt.ylabel("Housing Price")
plt.title("Relationship between NOX and Price")
```

Out[33]:

Text(0.5, 1.0, 'Relationship between NOX and Price')

In [34]:

```
sns.set(style="white")

df_corr= bos[:]
# Compute the correlation matrix
corr = df_corr.dropna().corr()

# Generate a mask for the upper triangle
mask = np.zeros_like(corr, dtype=np.bool)
#mask[np.triu_indices_from(mask)] = True

# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(30, 10))

# Generate a custom diverging colormap
cmap = sns.diverging_palette(220, 10, as_cmap=True)

# Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(corr, mask=mask, cmap=cmap, square=True, linewidths=.5, ax=ax)
```

Out[34]:

<matplotlib.axes._subplots.AxesSubplot at 0x1926da994c0>

In [35]:

```
sns.regplot(y="PRICE", x="RM", data=bos, fit_reg = True)
```

Out[35]:

<matplotlib.axes._subplots.AxesSubplot at 0x1926e1bb3d0>

In [36]:

```
plt.hist(bos.CRIM)
plt.title("CRIM")
plt.xlabel("Crime rate per capita")
plt.ylabel("Frequency")
plt.show()
```


In [37]:

```
plt.hist(bos.RM)
plt.title("RM")
plt.xlabel("Average number of rooms per dwelling")
plt.ylabel("Frequency")
plt.show()

bos.RM.describe()
```


Out[37]:

count		506.000	000
mean		6.284	634
std		0.702	617
min		3.561	000
25%		5.885	500
50%		6.208	500
75%		6.623	500
max		8.780	000
Name:	RM,	dtype:	float64

In [38]:

```
plt.hist(bos.PTRATIO)
plt.title("PTRATIO")
plt.xlabel("pupil-teacher ratio by town")
plt.ylabel("Frequency")
plt.show()
```


In [39]:

import statsmodels.api as sm
from statsmodels.formula.api import ols

In [40]:

```
m = ols('PRICE ~ RM',bos).fit()
print (m.summary())
```

	OLS Regression Results										
== Dep. Variable	:	Р	RICE	R-sq	uared:		0.4				
84 Model:			OLS	Adj.	R-squared:		0.4				
83 Method:		Least Squ	iares	F-st	atistic:		47				
1.8 Date:		Tue, 09 Nov	2021	Prob	(F-statistic):		2.49e-				
74 Time:		16:3	6:52	Log-	Likelihood:		-167				
3.1 No. Observati	ons:		506	AIC:			335				
0.			300	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			333				
<pre>Df Residuals: 9.</pre>			504	BIC:			335				
Df Model:	ıno:	nonro	1								
Covariance Ty	pe. :======		:=====			.======					
==	coef	std err		t	P> t	[0.025	0.97				
5]											
Intercept 65	-34.6706	2.650	-13	.084	0.000	-39.877	-29.4				
RM 25	9.1021	0.419	21	.722	0.000	8.279	9.9				
========		:=======	=====	====	=========		=======				
== Omnibus:		102	585	Duch	in-Watson:		0.6				
84		102		טיוטט	III-watson.		0.0				
Prob(Omnibus) 49	:	6	.000	Jarq	ue-Bera (JB):		612.4				
Skew:		e	.726	Prob	(JB):		1.02e-1				
33 Kurtosis: 8.4		8	190	Cond	. No.		5				
=======================================	======	:=======	=====	====	========	======	=======				

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

←

In [41]:

```
fdval= m.fittedvalues
sns.regplot(x=fdval, y="PRICE", data=bos, fit_reg = True)
```

Out[41]:

<matplotlib.axes._subplots.AxesSubplot at 0x1926ebeba60>

In [45]:

```
from sklearn.linear_model import LinearRegression
X = bos.drop('PRICE', axis = 1)

# This creates a LinearRegression object
lm = LinearRegression()
lm.fit(X, bos.PRICE)
```

Out[45]:

LinearRegression()

In [46]:

```
print ('Estimated intercept coefficient:', lm.intercept_)
```

Estimated intercept coefficient: 36.45948838509015

In [47]:

```
print ('Number of coefficients:', len(lm.coef_))
```

Number of coefficients: 13

In [48]:

```
lm.predict(X)[0:5]
```

Out[48]:

array([30.00384338, 25.02556238, 30.56759672, 28.60703649, 27.94352423])

In [49]:

```
plt.hist(lm.predict(X))
plt.title("PREDICTION PRICE")
plt.xlabel("Predicted Price")
plt.ylabel("Frequency")
plt.show()
```


In [51]:

```
print (np.sum((bos.PRICE - lm.predict(X)) ** 2))
```

11078.784577954977

In [52]:

Mean squared error: 21.89

In [53]:

```
lm = LinearRegression()
lm.fit(X[['PTRATIO']], bos.PRICE)
```

Out[53]:

LinearRegression()

In [54]:

```
msePTRATIO = np.mean((bos.PRICE - lm.predict(X[['PTRATIO']])) ** 2)
print (msePTRATIO)
```

62.65220001376927

In [55]:

```
plt.scatter(bos.PTRATIO, bos.PRICE)
plt.xlabel("Pupil-to-Teacher Ratio (PTRATIO)")
plt.ylabel("Housing Price")
plt.title("Relationship between PTRATIO and Price")

plt.plot(bos.PTRATIO, lm.predict(X[['PTRATIO']]), color='blue', linewidth=3)
plt.show()
```


In [56]:

```
lm.fit(X[['PTRATIO','CRIM','RM']], bos.PRICE)
```

Out[56]:

LinearRegression()

In [57]:

```
msePTRATIO = np.mean((bos.PRICE - lm.predict(X[['PTRATIO','CRIM','RM']])) ** 2)
print (msePTRATIO)
```

34.24552790529693