Foulkes characters

Alexander R. Miller

Darstellungstheorietage TU Kaiserslautern 29 Oktober 2022

	28033	73919
+	52682	17057

- + 75413 08629
- + 15890 24338

	28033	73919
+	52682	17057
+	75413	08629
1	15200	24338

	28033	73919
+	52682	17057
+	75413	08629
+	15890	24338

	28033 73919
+	52682 17057
+	75413 08629
+	15890 24338

	28033 73919
+	52682 17057
+	75413 08629
+	15890 24338
	943

	28033 73919
+	52682 17057
+	75413 08629
+	15890 24338
	3943

	28033 73919
+	52682 17057
+	75413 08629
+	15890 24338

1 21130

	28033 73919
+	52682 17057
+	75413 08629
+	15890 24338

01 21130

	28033 73919
+	52682 17057
+	75413 08629
+	15890 24338

201 21130

	28033	73919
+	52682	17057
+	75413	08629
+	15890	24338
-	010	23943
	019	23943

	28033 73919
+	52682 17057
+	75413 08629
+	15890 24338

22201 21130

```
28033 73919
+ 52682 17057
+ 75413 08629
+ 15890 24338
```

72019 23943

1 22201 21130

```
28033 73919
+ 52682 17057
+ 75413 08629
+ 15890 24338
```

1 72019 23943

1 22201 21130

$$M(i,j) = \text{chance}\{\text{next carry } j \mid \text{last carry is } i\}$$

```
28033 73919
+ 52682 17057
+ 75413 08629
```

15890 24338

1 72019 23943

1 22201 21130

 $M(i,j) = \text{chance}\{\text{next carry } j \mid \text{last carry is } i\}$

- 1 22201 21130
 - 28033 73919 52682 17057
- + 52682 17057 + 75413 08629
- + 15890 24338
- _____
 - 1 72019 23943

- Carries can be 0, 1, 2, 3.
 - Carries can be 0, 1, 2, 3

 $M(i,j) = \text{chance}\{\text{next carry } j \mid \text{last carry is } i\}$

- 1 22201 21130
 - 28033 73919
- + 52682 17057
- + 75413 08629
- + 15890 24338
 - 1 72019 23943

- \bullet Carries can be 0, 1, 2, 3.
- M is a 4 \times 4 matrix.

 $M(i,j) = \text{chance}\{\text{next carry } j \mid \text{last carry is } i\}$

- 1 22201 21130
 - 28033 73919 52682 17057
- 75413 08629 +

+

- 15890 24338
- 1 72019 23943

- M is a 4 × 4 matrix.
 - Holte found left eigenvectors:

• Carries can be 0, 1, 2, 3.

$$M(i,j) = \text{chance}\{\text{next carry } j \mid \text{last carry is } i\}$$

- 1 22201 21130
 - 28033 73919
- + 52682 17057 + 75413 08629
- + 15890 24338
- + 15890 24338
 - 1 72019 23943

- Carries can be 0, 1, 2, 3.
- M is a 4×4 matrix.
- Holte found left eigenvectors:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -3 \\ 11 & -3 & -1 & 3 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

$$M(i,j) = \text{chance}\{\text{next carry } j \mid \text{last carry is } i\}$$

- 1 22201 21130
 - 28033 73919 52682 17057
- + 75413 08629

+

- + 15890 24338
 - 1 72019 23943

- Carries can be 0, 1, 2, 3.
- M is a 4×4 matrix.
- Holte found left eigenvectors:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -3 \\ 11 & -3 & -1 & 3 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

Diaconis–Fulman recognized Foulkes characters.

Foulkes characters (Foulkes, Kerber–Thürlings, Diaconis–Fulman, Isaacs,...)

Constructed from **ribbon representations** of S_n :

Constructed from **ribbon representations** of S_n : Specht(\oiint).

Constructed from **ribbon representations** of S_n : Specht $(\not\!\!\!\perp)$.

Foulkes characters (Foulkes, Kerber–Thürlings, Diaconis–Fulman, Isaacs,...)

Constructed from **ribbon representations** of S_n : Specht($\not\equiv$).

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ_0	1	1	1	1	1
ϕ_1	11	3	-1	-1	-3
ϕ_2	11	-3	-1	-1	3
ϕ_3	1	-1	1	1	-1

Constructed from **ribbon representations** of S_n : Specht(\oiint).

Foulkes characters for S₄:

·		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ш	ϕ_0	1	1	1	1	1
	ϕ_1	11	3	-1	-1	-3
	ϕ_2	11	-3	-1	-1	3
	ϕ_3	1	-1	1	1	-1

Constructed from **ribbon representations** of S_n : Specht(\square).

Foulkes characters for S₄:

		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ш	ϕ_0	1	1	1	1	1
##	ϕ_1	11	3	-1	-1	-3
	ϕ_2	11	-3	-1	-1	3
	ϕ_3	1	-1	1	1	-1

Constructed from **ribbon representations** of S_n : Specht($\not\parallel$).

Foulkes characters for S₄:

		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
	ϕ_0	1	1	1	1	1
	ϕ_1	11	3	-1	-1	-3
	ϕ_2	11	-3	-1	-1	3
	ϕ_3	1	-1	1	1	-1

Constructed from **ribbon representations** of S_n : Specht(#).

Foulkes characters for S₄:

·		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
	ϕ_0	1	1	1	1	1
###	ϕ_1	11	3	-1	-1	-3
甲草目	ϕ_2	11	-3	-1	-1	3
Ħ	ϕ_3	1	-1	1	1	-1

Foulkes characters (Foulkes, Kerber-Thürlings, Diaconis-Fulman, Isaacs,...)

Constructed from **ribbon representations** of S_n : Specht($\not\parallel$).

Foulkes characters for S₄:

		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ш	ϕ_0	1	1	1	1	1
ⅎⅎⅇℙ	ϕ_1	11	3	-1	-1	-3
甲草品	ϕ_2	11	-3	-1	-1	3
Ħ	фз	1	-1	1	1	-1

• $\phi_0 + \phi_1 + \ldots + \phi_{n-1} = \text{reg}_{S_n}$.

Constructed from **ribbon representations** of S_n : Specht $(\rlap{\rlap{\ }}\rlap{\rlap{\ }}\rlap{\rlap{\ }}\rlap{\rlap{\ }})$.

		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
	ϕ_0	1	1	1	1	1
4	ϕ_1	11	3	-1	-1	-3
▋₫₽₽	ϕ_2	11	-3	-1	-1	3
	ϕ_3	1	-1	1	1	-1

- $\phi_0 + \phi_1 + \ldots + \phi_{n-1} = \operatorname{reg}_{S_n}$.
- $\phi_i(\sigma)$ depends only on $\#\text{cycles}(\sigma)$.

Constructed from **ribbon representations** of S_n : Specht(\not).

		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ш	ϕ_0	1	1	1	1	1
	ϕ_1	11	3	-1	-1	-3
甲草目	ϕ_2	11	-3	-1	-1	3
	ϕ_3	1	-1	1	1	-1

- $\phi_0 + \phi_1 + \ldots + \phi_{n-1} = \operatorname{reg}_{S_n}$.
- $\phi_i(\sigma)$ depends only on $\# \operatorname{cycles}(\sigma)$.

$$\Phi = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -3 \\ 11 & -3 & -1 & 3 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

Constructed from **ribbon representations** of S_n : Specht($\not\parallel$).

		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ш	ϕ_0	1	1	1	1	1
╼╝	ϕ_1	11	3	-1	-1	-3
甲草目	ϕ_2	11	-3	-1	-1	3
Ħ	ϕ_3	1	-1	1	1	-1

- $\phi_0 + \phi_1 + \ldots + \phi_{n-1} = \operatorname{reg}_{S_n}$.
- $\phi_i(\sigma)$ depends only on $\#\text{cycles}(\sigma)$.
- Interesting **Q** span.

$$\Phi = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -3 \\ 11 & -3 & -1 & 3 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

Constructed from **ribbon representations** of S_n : Specht $(\not\parallel)$.

		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ш	ϕ_0	1	1	1	1	1
4	ϕ_1	11	3	-1	-1	-3
400	ϕ_2	11	-3	-1	-1	3
	ϕ_3	1	-1	1	1	-1

- $\phi_0 + \phi_1 + \ldots + \phi_{n-1} = \operatorname{reg}_{S_n}$.
- $\phi_i(\sigma)$ depends only on $\# \operatorname{cycles}(\sigma)$.
- Interesting **Q** span.
- Nice explicit expression.

$$\Phi = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -3 \\ 11 & -3 & -1 & 3 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

Constructed from **ribbon representations** of S_n : Specht $(\not\parallel)$.

		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ш	ϕ_0	1	1	1	1	1
4	ϕ_1	11	3	-1	-1	-3
甲草目	ϕ_2	11	-3	-1	-1	3
B	ϕ_3	1	-1	1	1	-1

- $\phi_0 + \phi_1 + \ldots + \phi_{n-1} = \operatorname{reg}_{S_n}$.
- $\phi_i(\sigma)$ depends only on $\#\text{cycles}(\sigma)$.
- Interesting **Q** span.
- Nice explicit expression.
- Nice determinant.

$$\Phi = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -3 \\ 11 & -3 & -1 & 3 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

Constructed from **ribbon representations** of S_n : Specht($\not\parallel$).

Foulkes characters for S₄:

		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ш	ϕ_0	1	1	1	1	1
ⅎⅎ₽₽	ϕ_1	11	3	-1	-1	-3
甲草目	ϕ_2	11	-3	-1	-1	3
B	ϕ_3	1	-1	1	1	-1

- $\phi_0 + \phi_1 + \ldots + \phi_{n-1} = \operatorname{reg}_{S_n}$.
- $\phi_i(\sigma)$ depends only on $\# \operatorname{cycles}(\sigma)$.
- Interesting **Q** span.
- Nice explicit expression.
- Nice determinant.

$$\Phi = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -3 \\ 11 & -3 & -1 & 3 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

Constructed from **ribbon representations** of S_n : Specht(#).

Foulkes characters for S₄:

,		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ш	ϕ_0	1	1	1	1	1
##	ϕ_1	11	3	-1	-1	-3
甲草目	ϕ_2	11	-3	-1	-1	3
B	ϕ_3	1	-1	1	1	-1

- $\phi_0 + \phi_1 + \ldots + \phi_{n-1} = \operatorname{reg}_{S_n}$.
- $\phi_i(\sigma)$ depends only on $\# \operatorname{cycles}(\sigma)$.
- Interesting Q span.
- Nice explicit expression.
- Nice determinant.
- Degrees are Eulerian numbers.

$$\Phi = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -3 \\ 11 & -3 & -1 & 3 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

Constructed from **ribbon representations** of S_n : Specht ($\not\!\!\!\perp$).

Foulkes characters for S₄:

		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ш	ϕ_0	1	1	1	1	1
ⅎⅎ₽₽	ϕ_1	11	3	-1	-1	-3
甲草目	ϕ_2	11	-3	-1	-1	3
B	ϕ_3	1	-1	1	1	-1

- $\bullet \ \phi_0 + \phi_1 + \ldots + \phi_{n-1} = \operatorname{reg}_{S_n}.$
- $\phi_i(\sigma)$ depends only on $\#\text{cycles}(\sigma)$.
- Interesting Q span.
- Nice explicit expression.
- Nice determinant.
- Degrees are Eulerian numbers.
- But ad hoc proofs. Seems special to S_n .

$$\Phi = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -3 \\ 11 & -3 & -1 & 3 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

Constructed from **ribbon representations** of S_n : Specht($\not\parallel$).

Foulkes characters for S₄:

,		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ш	ϕ_0	1	1	1	1	1
##	ϕ_1	11	3	-1	-1	-3
甲草目	ϕ_2	11	-3	-1	-1	3
B	ϕ_3	1	-1	1	1	-1

- $\bullet \ \phi_0 + \phi_1 + \ldots + \phi_{n-1} = \operatorname{reg}_{S_n}.$
- $\phi_i(\sigma)$ depends only on $\#\text{cycles}(\sigma)$.
- Interesting Q span.
- Nice explicit expression.
- Nice determinant.
- Degrees are Eulerian numbers.
- But ad hoc proofs. Seems special to S_n . How about other reflection groups?

$$\Phi = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -3 \\ 11 & -3 & -1 & 3 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

Constructed from **ribbon representations** of S_n : Specht ($\not\!\!\!\perp$).

Foulkes characters for S₄:

		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ш	ϕ_0	1	1	1	1	1
	ϕ_1	11	3	-1	-1	-3
甲盾目	ϕ_2	11	-3	-1	-1	3
B	ϕ_3	1	-1	1	1	-1

- $\bullet \ \phi_0 + \phi_1 + \ldots + \phi_{n-1} = \operatorname{reg}_{S_n}.$
- $\phi_i(\sigma)$ depends only on $\#\text{cycles}(\sigma)$.
- Interesting Q span.
- Nice explicit expression.
- Nice determinant.
- Degrees are Eulerian numbers.
- <u>But</u> ad hoc proofs. Seems special to S_n . How about other reflection groups?

$$\Phi = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -3 \\ 11 & -3 & -1 & 3 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

$$\det \Phi = 4!3!2! = 4 \cdot 3^2 \cdot 2^3$$

Reflection $r \in GL(\mathbf{C}^n)$: $\ker(r-1)$ hyp.

Constructed from **ribbon representations** of S_n : Specht $(\not\parallel)$.

Foulkes characters for S₄:

		(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ш	ϕ_0	1	1	1	1	1
4	ϕ_1	11	3	-1	-1	-3
甲草目	ϕ_2	11	-3	-1	-1	3
Ħ	ϕ_3	1	-1	1	1	-1

- $\bullet \ \phi_0 + \phi_1 + \ldots + \phi_{n-1} = \operatorname{reg}_{S_n}.$
- $\phi_i(\sigma)$ depends only on $\#\text{cycles}(\sigma)$.
- Interesting Q span.
- Nice explicit expression.
- Nice determinant.
- Degrees are Eulerian numbers.
- But ad hoc proofs. Seems special to S_n . How about other reflection groups?

$$\Phi = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -3 \\ 11 & -3 & -1 & 3 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

Reflection
$$r \in \operatorname{GL}(\mathbf{C}^n)$$
: $\ker(r-1)$ by

 $\det \Phi = 4!3!2! = 4 \cdot 3^2 \cdot 2^3$

Reflection $r \in GL(\mathbf{C}^n)$: ker(r-1) hyp. (Finite) reflection group $G \leq GL(\mathbf{C}^n)$

Ribbon representations for reflection groups

S

12

23

S	Ø		2					
$\widetilde{H}_{\mathrm{top}}(\Delta_S)$	ш	₽	₽	Ш	₽	₽	∄	

General setup: Fix G finite

$$\langle r_1, r_2, \ldots, r_N \mid r_i^{p_i} = 1, r_i r_j r_i \ldots = r_j r_i r_j \ldots i \neq j \rangle$$

 $m_{ij} = m_{ji}$, $p_i \ge 2$ and $p_i = p_j$ if m_{ij} odd.

S	Ø		2					
$\widetilde{H}_{\mathrm{top}}(\Delta_S)$	ш	₽	Ш	Ш	F	∄	4	<u> </u>

$$\langle r_1, r_2, \ldots, r_N \mid r_i^{p_i} = 1, r_i r_j r_i \ldots = r_j r_i r_j \ldots i \neq j \rangle$$

$$m_{ij} = m_{ji}, p_i \ge 2$$
 and $p_i = p_j$ if m_{ij} odd.
• $R = \{r_1, r_2, \dots, r_N\}, \quad V = \mathbb{C}^N$.

•
$$R = \{r_1, r_2, \dots, r_N\}, V = \mathbf{C}^N$$

S	Ø	1	_	3				
$\widetilde{H}_{\mathrm{top}}(\Delta_S)$	ш	₽	Ф	ш	置	∄	4	

$$\langle r_1, r_2, \dots, r_N \mid r_i^{p_i} = 1, r_i r_j r_i \dots = r_j r_i r_j \dots i \neq j \rangle$$

$$m_{ij} = m_{ji}, p_i \ge 2 \text{ and } p_i = p_j \text{ if } m_{ij} \text{ odd.}$$

• $R = \{r_1, r_2, \dots, r_N\}, V = \mathbb{C}^N.$

- $\Gamma(G)$: $\stackrel{p_i \quad m_{ij} \quad p_j}{\bullet}$ $(m_{ii} > 2)$.

$$\langle r_1, r_2, \ldots, r_N \mid r_i^{p_i} = 1, r_i r_j r_i \ldots = r_j r_i r_j \ldots i \neq j \rangle$$

$$m_{ij} = m_{ji}, p_i \ge 2 \text{ and } p_i = p_j \text{ if } m_{ij} \text{ odd.}$$

• $R = \{r_1, r_2, \dots, r_N\}, V = \mathbb{C}^N.$

- $\Gamma(G)$: $\stackrel{p_i \ m_{ij} \ p_j}{\longleftarrow} (m_{ii} > 2)$.
- $\bullet \ \Gamma(G) : \bullet \longrightarrow (m_{ij} > 2)$
- Canonical rep. $G \subset \operatorname{GL}(V)$ as reflection group.

$$\langle r_1, r_2, \ldots, r_N \mid r_i^{p_i} = 1, r_i r_j r_i \ldots = r_j r_i r_j \ldots i \neq j \rangle$$

$$m_{ij} = m_{ji}, p_i \ge 2$$
 and $p_i = p_j$ if m_{ij} odd.
• $R = \{r_1, r_2, \dots, r_N\}, \quad V = \mathbb{C}^N$.

- $\Gamma(G)$: $\stackrel{p_i \ m_{ij} \ p_j}{\longleftarrow} (m_{ii} > 2)$.
- $(G) : \longrightarrow (m_{ij} > 2)$
- ullet Canonical rep. $G\subset \operatorname{GL}(V)$ as reflection group.
- G irreducible $\Leftrightarrow \Gamma(G)$ connected.

General setup: Fix G finite

$$\langle r_1, r_2, \dots, r_N \mid r_i^{p_i} = 1, r_i r_j r_i \dots = r_j r_i r_j \dots i \neq j \rangle$$

 $m_{ij}=m_{ji}, p_i\geq 2$ and $p_i=p_j$ if m_{ij} odd.

- $R = \{r_1, r_2, \dots, r_N\}, V = \mathbf{C}^N.$
- $\Gamma(G)$: $\stackrel{p_i \ m_{ij} \ p_j}{\longleftarrow}$ $(m_{ij} > 2)$.
- Canonical rep. $G \subset \operatorname{GL}(V)$ as reflection group.
- *G* irreducible $\Leftrightarrow \Gamma(G)$ connected.
- Finite irreducible Coxeter and Shephard groups.

General setup: Fix G finite

$$\langle r_1, r_2, \dots, r_N \mid r_i^{p_i} = 1, r_i r_j r_i \dots = r_j r_i r_j \dots i \neq j \rangle$$

 $m_{ii} = m_{ii}, p_i \geq 2$ and $p_i = p_i$ if m_{ii} odd.

• $R = \{r_1, r_2, \dots, r_N\}, V = \mathbf{C}^N.$

- $\Gamma(G)$: $\stackrel{p_i \ m_{ij} \ p_j}{\bullet}$ $(m_{ii} > 2)$.
- Canonical rep. $G \subset GL(V)$ as reflection group.
- G irreducible $\Leftrightarrow \Gamma(G)$ connected.
- Finite irreducible Coxeter and Shephard groups.

Milnor fiber complex $\Delta(G,R)$ (Orlik):

General setup: Fix G finite

$$\langle r_1, r_2, \ldots, r_N \mid r_i^{\rho_i} = 1, r_i r_j r_i \ldots = r_j r_i r_j \ldots i \neq j \rangle$$

 $m_{ij} = m_{ji}, p_i \ge 2$ and $p_i = p_j$ if m_{ij} odd.

- $R = \{r_1, r_2, \dots, r_N\}, V = \mathbf{C}^N.$
- $\Gamma(G)$: $\stackrel{p_i \ m_{ij} \ p_j}{\bullet}$ $(m_{ij} > 2)$.
- ullet Canonical rep. $G\subset \operatorname{GL}(V)$ as reflection group.
- *G* irreducible $\Leftrightarrow \Gamma(G)$ connected.
- Finite irreducible Coxeter and Shephard groups.

Milnor fiber complex $\Delta(G, R)$ (Orlik):

$$gG_J$$
 face of $hG_K \Leftrightarrow gG_J \supset hG_K$ $(G_J = \langle J \rangle, \ J \subset R)$

General setup: Fix G finite

$$\langle r_1, r_2, \dots, r_N \mid r_i^{p_i} = 1, r_i r_j r_i \dots = r_j r_i r_j \dots i \neq j \rangle$$

 $m_{ij}=m_{ji}, p_i\geq 2$ and $p_i=p_j$ if m_{ij} odd.

- $R = \{r_1, r_2, \ldots, r_N\}, V = \mathbf{C}^N.$
- $\Gamma(G)$: $\stackrel{p_i \quad m_{ij} \quad p_j}{\longleftarrow} (m_{ij} > 2).$
- ullet Canonical rep. $G\subset \operatorname{GL}(V)$ as reflection group.
- *G* irreducible $\Leftrightarrow \Gamma(G)$ connected.
- Finite irreducible Coxeter and Shephard groups.

Milnor fiber complex $\Delta(G,R)$ (Orlik):

$$gG_J \text{ face of } hG_K \Leftrightarrow gG_J \supset hG_K \quad \left(G_J = \langle J \rangle, \ J \subset R \right)$$

• $\operatorname{type}(gG_{R\setminus J})=J$

General setup: Fix G finite

$$\langle r_1, r_2, \ldots, r_N \mid r_i^{p_i} = 1, r_i r_j r_i \ldots = r_j r_i r_j \ldots i \neq j \rangle$$

 $m_{ij}=m_{ji}, p_i\geq 2$ and $p_i=p_j$ if m_{ij} odd.

- $R = \{r_1, r_2, \ldots, r_N\}, V = \mathbf{C}^N.$
- $\Gamma(G)$: $\stackrel{p_i \quad m_{ij} \quad p_j}{\longleftarrow}$ $(m_{ij} > 2)$.
- ullet Canonical rep. $G\subset \operatorname{GL}(V)$ as reflection group.
- *G* irreducible $\Leftrightarrow \Gamma(G)$ connected.
- Finite irreducible Coxeter and Shephard groups.

Milnor fiber complex $\Delta(G,R)$ (Orlik):

$$gG_J$$
 face of $hG_K \Leftrightarrow gG_J \supset hG_K$ $(G_J = \langle J \rangle, \ J \subset R)$

•
$$\operatorname{type}(gG_{R\setminus J}) = J$$
 • $\Delta_S = \{\sigma \mid \operatorname{type}(\sigma) \subset S\}$

General setup: Fix G finite

$$\langle r_1, r_2, \ldots, r_N \mid r_i^{p_i} = 1, r_i r_j r_i \ldots = r_j r_i r_j \ldots i \neq j \rangle$$

 $m_{ij}=m_{ji}, p_i\geq 2$ and $p_i=p_j$ if m_{ij} odd.

- $R = \{r_1, r_2, \ldots, r_N\}, V = \mathbf{C}^N.$
- $\Gamma(G)$: $\stackrel{p_i \quad m_{ij} \quad p_j}{\longleftarrow}$ $(m_{ij} > 2)$.
- ullet Canonical rep. $G\subset \operatorname{GL}(V)$ as reflection group.
- *G* irreducible $\Leftrightarrow \Gamma(G)$ connected.
- Finite irreducible Coxeter and Shephard groups.

Milnor fiber complex $\Delta(G, R)$ (Orlik):

$$gG_J$$
 face of $hG_K \Leftrightarrow gG_J \supset hG_K$ $(G_J = \langle J \rangle, \ J \subset R)$
• $type(gG_{R \setminus J}) = J$ • $\Delta_S = \{\sigma \mid type(\sigma) \subset S\}$

Ribbon representations (Solomon, M.):

General setup: Fix G finite

$$\langle r_1, r_2, \ldots, r_N \mid r_i^{p_i} = 1, r_i r_j r_i \ldots = r_j r_i r_j \ldots i \neq j \rangle$$

 $m_{ij} = m_{ji}, p_i \ge 2$ and $p_i = p_j$ if m_{ij} odd.

- $R = \{r_1, r_2, \ldots, r_N\}, V = \mathbf{C}^N.$
- $\Gamma(G)$: $\stackrel{p_i \quad m_{ij} \quad p_j}{\longleftarrow}$ $(m_{ij} > 2)$.
- ullet Canonical rep. $G\subset \operatorname{GL}(V)$ as reflection group.
- *G* irreducible $\Leftrightarrow \Gamma(G)$ connected.
- Finite irreducible Coxeter and Shephard groups.

Milnor fiber complex $\Delta(G,R)$ (Orlik):

$$gG_J$$
 face of $hG_K \Leftrightarrow gG_J \supset hG_K$ $(G_J = \langle J \rangle, \ J \subset R)$
• $\operatorname{type}(gG_{R \setminus J}) = J$ • $\Delta_S = \{\sigma \mid \operatorname{type}(\sigma) \subset S\}$

Ribbon representations (Solomon, M.): $\rho_S = \sum_{J \subset S} (-1)^{|S \setminus J|} \operatorname{Ind}_{G_{R \setminus J}}^G \mathbf{1}$ ($S \subset R$).

General setup: Fix *G* finite

$$\langle r_1, r_2, \ldots, r_N \mid r_i^{\rho_i} = 1, r_i r_j r_i \ldots = r_j r_i r_j \ldots i \neq j \rangle$$

 $m_{ij}=m_{ji}, p_i\geq 2$ and $p_i=p_j$ if m_{ij} odd.

- $R = \{r_1, r_2, \ldots, r_N\}, V = \mathbf{C}^N.$
- $\Gamma(G)$: $\stackrel{p_i \quad m_{ij} \quad p_j}{\longleftarrow} (m_{ij} > 2)$.
- ullet Canonical rep. $G\subset \operatorname{GL}(V)$ as reflection group.
- *G* irreducible $\Leftrightarrow \Gamma(G)$ connected.
- Finite irreducible Coxeter and Shephard groups.

Milnor fiber complex $\Delta(G, R)$ (Orlik):

$$gG_J$$
 face of $hG_K \Leftrightarrow gG_J \supset hG_K$ $(G_J = \langle J \rangle, \ J \subset R)$
• $\operatorname{type}(gG_{R\setminus J}) = J$ • $\Delta_S = \{\sigma \mid \operatorname{type}(\sigma) \subset S\}$

Ribbon representations (Solomon, M.): $\rho_S = \sum_{I \subset S} (-1)^{|S \setminus J|} \operatorname{Ind}_{G_{R \setminus J}}^G \mathbf{1}$ $(S \subset R)$.

Generalized Foulkes characters (M.):

General setup: Fix G finite

$$\langle r_1, r_2, \dots, r_N \mid r_i^{p_i} = 1, r_i r_j r_i \dots = r_j r_i r_j \dots i \neq j \rangle$$

 $m_{ij}=m_{ji}, p_i\geq 2$ and $p_i=p_j$ if m_{ij} odd.

•
$$R = \{r_1, r_2, \dots, r_N\}, V = \mathbf{C}^N.$$

- $\Gamma(G)$: $\stackrel{p_i \ m_{ij} \ p_j}{\longleftarrow}$ $(m_{ij} > 2)$.
- ullet Canonical rep. $G\subset \operatorname{GL}(V)$ as reflection group.
- G irreducible $\Leftrightarrow \Gamma(G)$ connected.
- Finite irreducible Coxeter and Shephard groups.

Milnor fiber complex $\Delta(G,R)$ (Orlik):

$$gG_J$$
 face of $hG_K \Leftrightarrow gG_J \supset hG_K$ $(G_J = \langle J \rangle, \ J \subset R)$
• $\operatorname{type}(gG_{R \setminus J}) = J$ • $\Delta_S = \{\sigma \mid \operatorname{type}(\sigma) \subset S\}$

Ribbon representations (Solomon, M.): $\rho_S = \sum_{J \subset S} (-1)^{|S \setminus J|} \operatorname{Ind}_{G_{R \setminus J}}^G \mathbf{1}$ $(S \subset R)$.

Generalized Foulkes characters (M.):
$$\phi_k = \sum_{\substack{S \subset R \\ |S| = k}} \rho_S$$
 $(k = 0, 1, ..., N)$.

A formula for Foulkes characters

Theorem (M.)

$$\phi_k(g) = \sum_{i=0}^k (-1)^{k-i} \binom{N-i}{k-i} f_{i-1}(\Delta \cap X),$$

- ullet $X=V^g$ so that $\Delta\cap X=\Delta^g=\{\sigma\in\Delta:g\sigma=\sigma\}$,
- $f_i(\Delta) = \#\{i\text{-dimensional simplices in }\Delta\}.$

A formula for Foulkes characters

Theorem (M.)

$$\phi_k(g) = \sum_{i=0}^k (-1)^{k-i} \binom{N-i}{k-i} f_{i-1}(\Delta \cap X),$$

- $X = V^g$ so that $\Delta \cap X = \Delta^g = \{ \sigma \in \Delta : g\sigma = \sigma \}$,
- $f_i(\Delta) = \#\{i\text{-dimensional simplices in }\Delta\}.$

Define $\Phi = [\phi_i(g_j)]_{0 \le i \le N, \ 0 \le j \le c}$ for class representatives g_0, g_1, \dots, g_c .

A formula for Foulkes characters

Theorem (M.)

$$\phi_k(g) = \sum_{i=0}^k (-1)^{k-i} \binom{N-i}{k-i} f_{i-1}(\Delta \cap X),$$

- $X = V^g$ so that $\Delta \cap X = \Delta^g = \{ \sigma \in \Delta : g\sigma = \sigma \}$,
- $f_i(\Delta) = \#\{i\text{-dimensional simplices in }\Delta\}.$

Define $\Phi = [\phi_i(g_j)]_{0 \le i \le N, \ 0 \le j \le c}$ for class representatives g_0, g_1, \dots, g_c .

Corollary (M.) $\Phi = L \times F$ for

$$L = \big[(-1)^{i-j} \binom{N-j}{i-j} \big]_{0 \leq i,j \leq N} \qquad F = \big[f_{i-1} (\Delta \cap X_j) \big]_{0 \leq i \leq N, \ 0 \leq j \leq c}.$$

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

 f_{-1}

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

f_{-1}	
f_{-1} f_0 f_1 f_2	
f_1	
f_2	

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

A	
1	

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

f_{-1}	1 14	
f_0	14	
$f_{-1} \ f_0 \ f_1 \ f_2$		
f_2		

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

$egin{array}{c} f_{-1} \ f_0 \ f_1 \end{array}$	1
f_0	14
f_1	36

 f_2

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

f_{-1}	1
f_0	14
f_0 f_1 f_2	36 24
f_2	24

1	ン
	1
	14
	36

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

f_0	1
f_1	3
fo	2

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

f_{-1}	1	1
f_{-1} f_0 f_1	14 36	
f_1	36	

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

f_{-1}	1	1
f_{-1} f_0 f_1 f_2	14 36 24	1 6
f_1	36	
f_2	24	

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

f_{-1}	1	1
f_{-1} f_0 f_1 f_2	14	1 6 6
f_1	14 36 24	6
f_2	24	

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

f_{-1}	1	1	1
f_0	14	6	2
f_{-1} f_0 f_1 f_2	14 36 24	6	
f_2	24		

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -1 & -3 \\ 11 & -3 & -1 & -1 & 3 \\ 1 & -1 & 1 & 1 & -1 \end{bmatrix}$$

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -1 & -3 \\ 11 & -3 & -1 & -1 & 3 \\ 1 & -1 & 1 & 1 & -1 \end{bmatrix} =$$

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -1 & -3 \\ 11 & -3 & -1 & -1 & 3 \\ 1 & -1 & 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} \binom{3}{0} & & & & \\ \binom{3}{0} & \binom{2}{0} & & & \\ \binom{3}{2} & -\binom{2}{1} & \binom{1}{0} & & \\ -\binom{3}{3} & \binom{2}{2} & -\binom{1}{1} & \binom{0}{0} \end{bmatrix}$$

	(1)(2)(3)(4)	(12)(3)(4)	(12)(34)	(123)(4)	(1234)
ϕ^0	1	1	1	1	1
ϕ^1	11	3	-1	-1	-3
ϕ^2	11	-3	-1	-1	3
ϕ^3	1	-1	1	1	-1

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 11 & 3 & -1 & -1 & -3 \\ 11 & -3 & -1 & -1 & 3 \\ 1 & -1 & 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} \binom{3}{0} & & & & \\ -\binom{3}{1} & \binom{0}{0} & & & \\ \binom{3}{2} & -\binom{2}{1} & \binom{1}{0} & & \\ -\binom{3}{3} & \binom{2}{2} & -\binom{1}{1} & \binom{0}{0} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 14 & 6 & 2 & 2 & \\ 36 & 6 & & & \\ 24 & & & & \end{bmatrix}$$

ullet L the lattice of intersections of reflecting hyperplanes.

- *L* the lattice of intersections of reflecting hyperplanes.
- $B_X(t) = (-1)^{\dim X} \sum_{Y \geq X} \mu(X, Y) (-t)^{\dim Y}$.

- L the lattice of intersections of reflecting hyperplanes.
- $B_X(t) = (-1)^{\dim X} \sum_{X \in X} \mu(X, Y) (-t)^{\dim Y}$.

Theorem (Orlik–Solomon, Orlik)
$$f_{i-1}(\Delta \cap X) = \sum_{\substack{Y \geq X \ \text{dim } Y = i}} B_Y(d_1 - 1).$$

• *L* the lattice of intersections of reflecting hyperplanes.

•
$$B_X(t) = (-1)^{\dim X} \sum_{X \in X} \mu(X, Y) (-t)^{\dim Y}$$
.

Theorem (Orlik–Solomon, Orlik)
$$f_{i-1}(\Delta \cap X) = \sum_{\substack{Y \geq X \ \text{dim } Y = i}} B_Y(d_1 - 1).$$

Note $f_{i-1}(\Delta \cap X)$ determined by $L^X = \{Y \in L : Y \geq X\}.$

 $G = Z_r \wr S_n$

 L_p intersection lattice for $Z_r \wr S_p$. $L^X \simeq L_{n-k}$ for $X \in L$ of codimension k.

$$G = Z_r \wr S_n$$

Theorem (M.) $\phi_k(g)$ depends only on dim V^g .

$$G = Z_r \wr S_n$$

Theorem (M.) $\phi_k(g)$ depends only on dim V^g .

Theorem (M.) $\phi_0, \phi_1, \dots, \phi_N$ form a **Q** basis for the rational class functions χ that depend only on the dimension of the fixed space. Moreover

$$\chi = \sum_{i=0}^{N} \frac{\langle \chi, \chi_{\wedge^{i} V} \rangle}{\binom{N}{i}} \phi_{i}.$$

$$G = Z_r \wr S_n$$

Theorem (M.) $\phi_k(g)$ depends only on dim V^g .

Theorem (M.) $\phi_0, \phi_1, \dots, \phi_N$ form a **Q** basis for the rational class functions χ that depend only on the dimension of the fixed space. Moreover

$$\chi = \sum_{i=0}^{N} \frac{\langle \chi, \chi_{\wedge^{i} V} \rangle}{\binom{N}{i}} \phi_{i}.$$

Theorem (M.)
$$\phi_k(g) = \sum_{i=0}^k (-1)^{k-j} \binom{n+1}{k-j} (rj+1)^{n-\operatorname{codim} V^g}$$
.

$$G = Z_r \wr S_n$$

Theorem (M.) $\phi_k(g)$ depends only on dim V^g .

Theorem (M.) $\phi_0, \phi_1, \dots, \phi_N$ form a **Q** basis for the rational class functions χ that depend only on the dimension of the fixed space. Moreover

$$\chi = \sum_{i=0}^{N} \frac{\langle \chi, \chi_{\wedge^{i} V} \rangle}{\binom{N}{i}} \phi_{i}.$$

Theorem (M.)
$$\phi_k(g) = \sum_{j=0}^k (-1)^{k-j} \binom{n+1}{k-j} (rj+1)^{n-\operatorname{codim} V^g}$$
.

Theorem (M.) $\det \Phi = r^{n(n+1)/2} n!(n-1)! \dots 2!.$

$$G = Z_r \wr S_n$$

Theorem (M.) $\phi_k(g)$ depends only on dim V^g .

Theorem (M.) $\phi_0,\phi_1,\ldots,\phi_N$ form a **Q** basis for the rational class functions χ that depend only on the dimension of the fixed space. Moreover

$$\chi = \sum_{i=0}^{N} \frac{\langle \chi, \chi_{\wedge^{i} V} \rangle}{\binom{N}{i}} \phi_{i}.$$

Theorem (M.)
$$\phi_k(g) = \sum_{j=0}^k (-1)^{k-j} \binom{n+1}{k-j} (rj+1)^{n-\operatorname{codim} V^g}$$
.

Theorem (M.) det $\Phi = r^{n(n+1)/2} n! (n-1)! \dots 2!$.

Theorem (M.) $\operatorname{Res}_{Z_r \wr S_{n-1}} \phi_k = (rn + r - rk - 1)\phi_{k-1} + (rk + 1)\phi_k$.

$$G = Z_r \wr S_n$$

Theorem (M.) $\phi_k(g)$ depends only on dim V^g .

Theorem (M.) $\phi_0,\phi_1,\ldots,\phi_N$ form a **Q** basis for the rational class functions χ that depend only on the dimension of the fixed space. Moreover

$$\chi = \sum_{i=0}^{N} \frac{\langle \chi, \chi_{\wedge^{i} V} \rangle}{\binom{N}{i}} \phi_{i}.$$

Theorem (M.)
$$\phi_k(g) = \sum_{j=0}^k (-1)^{k-j} \binom{n+1}{k-j} (rj+1)^{n-\operatorname{codim} V^g}$$
.

Theorem (M.) det $\Phi = r^{n(n+1)/2} n! (n-1)! \dots 2!$.

Theorem (M.) $\operatorname{Res}_{Z_r \wr S_{n-1}} \phi_k = (rn + r - rk - 1)\phi_{k-1} + (rk + 1)\phi_k$.

Corollary (M.) $\phi_k(1)$ is Steingrímsson's Eulerian number E(n, r, k).

$$G = Z_r \wr S_n$$

Theorem (M.) $\phi_k(g)$ depends only on dim V^g .

Theorem (M.) $\phi_0,\phi_1,\ldots,\phi_N$ form a **Q** basis for the rational class functions χ that depend only on the dimension of the fixed space. Moreover

$$\chi = \sum_{i=0}^{N} \frac{\langle \chi, \chi_{\wedge^{i} V} \rangle}{\binom{N}{i}} \phi_{i}.$$

Theorem (M.)
$$\phi_k(g) = \sum_{j=0}^k (-1)^{k-j} \binom{n+1}{k-j} (rj+1)^{n-\operatorname{codim} V^g}$$
.

Theorem (M.) det $\Phi = r^{n(n+1)/2} n! (n-1)! \dots 2!$.

Theorem (M.) Res_{$Z_r \wr S_{n-1} = \phi_k = (rn + r - rk - 1)\phi_{k-1} + (rk + 1)\phi_k$.}

Corollary (M.) $\phi_k(1)$ is Steingrímsson's Eulerian number E(n, r, k).

Theorem (M.) $\Phi_{ij}^{-1} = \sum_{k,m} \frac{s(k,m)(-1)^{n-i-m}}{k!r^m} {m \choose n-i} {n-j \choose n-k}$.

$$G = Z_r \wr S_n$$

Theorem (M.) $\phi_k(g)$ depends only on dim V^g .

Theorem (M.) $\phi_0,\phi_1,\ldots,\phi_N$ form a **Q** basis for the rational class functions χ that depend only on the dimension of the fixed space. Moreover

$$\chi = \sum_{i=0}^{N} \frac{\langle \chi, \chi_{\wedge^{i} V} \rangle}{\binom{N}{i}} \phi_{i}.$$

Theorem (M.)
$$\phi_k(g) = \sum_{j=0}^k (-1)^{k-j} \binom{n+1}{k-j} (rj+1)^{n-\operatorname{codim} V^g}$$
.

Theorem (M.) det $\Phi = r^{n(n+1)/2} n! (n-1)! \dots 2!$.

Theorem (M.) Res_{$Z_r \wr S_{n-1} = \phi_k = (rn + r - rk - 1)\phi_{k-1} + (rk + 1)\phi_k$.}

Corollary (M.) $\phi_k(1)$ is Steingrímsson's Eulerian number E(n, r, k).

Theorem (M.) $\Phi_{ij}^{-1} = \sum_{k,m} \frac{s(k,m)(-1)^{n-i-m}}{k! r^m} {m \choose n-i} {n-j \choose n-k}.$

• • •

1. Generalize and elucidate classical type A_n results.

- 1. Generalize and elucidate classical type A_n results.
- 2. Connections to adding random numbers.

- 1. Generalize and elucidate classical type A_n results.
- 2. Connections to adding random numbers.

Diaconis–Fulman balanced ternary \longleftrightarrow hyperoctahedral Foulkes characters (type B_n).

- 1. Generalize and elucidate classical type A_n results.
- 2. Connections to adding random numbers.

Diaconis-Fulman

balanced ternary \longleftrightarrow hyperoctahedral Foulkes characters (type B_n).

Nakano-Sadahiro:

generalized carries process and riffle shuffles \longleftrightarrow Foulkes characters for $Z_r \wr S_n$.

- 1. Generalize and elucidate classical type A_n results.
- 2. Connections to adding random numbers.

Diaconis-Fulman

balanced ternary \longleftrightarrow hyperoctahedral Foulkes characters (type B_n).

Nakano-Sadahiro:

generalized carries process and riffle shuffles \longleftrightarrow Foulkes characters for $Z_r \wr S_n$.

3. New properties not present in type A_n case. A remarkable character theory.

- 1. Generalize and elucidate classical type A_n results.
- 2. Connections to adding random numbers.

Diaconis-Fulman

balanced ternary \longleftrightarrow hyperoctahedral Foulkes characters (type B_n).

Nakano-Sadahiro:

generalized carries process and riffle shuffles \longleftrightarrow Foulkes characters for $Z_r \wr S_n$.

- **3.** New properties not present in type A_n case. A remarkable character theory.
- **4.** New connections and applications.

- 1. Generalize and elucidate classical type A_n results.
- 2. Connections to adding random numbers.

Diaconis-Fulman

balanced ternary \longleftrightarrow hyperoctahedral Foulkes characters (type B_n).

Nakano-Sadahiro:

generalized carries process and riffle shuffles \longleftrightarrow Foulkes characters for $Z_r \wr S_n$.

- **3.** New properties not present in type A_n case. A remarkable character theory.
- 4. New connections and applications.
- 5. New classification results.

Conjecture (Goldstein-Guralnick-Rains)

Conjecture (Goldstein-Guralnick-Rains)

$$\chi = a_0\phi_0 + a_1\phi_1 + \ldots + a_n\phi_n \qquad (a_i \in \mathbf{N}).$$

Conjecture (Goldstein-Guralnick-Rains)

The hyperoctahedral Foulkes characters play the role of irreducibles among characters $\chi(g)$ that depend only on dim V^g :

$$\chi = a_0\phi_0 + a_1\phi_1 + \ldots + a_n\phi_n \qquad (a_i \in \mathbf{N}).$$

• $G = Z_r \wr S_n$.

Conjecture (Goldstein-Guralnick-Rains)

$$\chi = a_0\phi_0 + a_1\phi_1 + \ldots + a_n\phi_n \qquad (a_i \in \mathbf{N}).$$

- $G = Z_r \wr S_n$.
- length(g) = min{ $k \mid g = \tau_1 \tau_2 \dots \tau_k, \ \tau_i \text{ a reflection}$ } ($g \in G$).

Conjecture (Goldstein-Guralnick-Rains)

$$\chi = a_0\phi_0 + a_1\phi_1 + \ldots + a_n\phi_n \qquad (a_i \in \mathbf{N}).$$

- $G = Z_r \wr S_n$.
- length(g) = min{ $k \mid g = \tau_1 \tau_2 \dots \tau_k, \ \tau_i \text{ a reflection}$ } ($g \in G$).
- $\operatorname{length}(g) = \operatorname{codim} V^g$.

Conjecture (Goldstein-Guralnick-Rains)

$$\chi = a_0\phi_0 + a_1\phi_1 + \ldots + a_n\phi_n \qquad (a_i \in \mathbf{N}).$$

- $G = Z_r \wr S_n$.
- length(g) = min{ $k \mid g = \tau_1 \tau_2 \dots \tau_k, \ \tau_i \text{ a reflection}$ } ($g \in G$).
- $\operatorname{length}(g) = \operatorname{codim} V^g$.
- $\phi_k(g) = \sum_{j=0}^k (-1)^{k-j} \binom{n+1}{k-j} (rj+1)^{n-\text{length}(g)}$.

Conjecture (Goldstein-Guralnick-Rains)

$$\chi = a_0\phi_0 + a_1\phi_1 + \ldots + a_n\phi_n \qquad (a_i \in \mathbf{N}).$$

- $G = Z_r \wr S_n$.
- length(g) = min{ $k \mid g = \tau_1 \tau_2 \dots \tau_k, \ \tau_i \text{ a reflection}$ } $(g \in G)$.
- $\operatorname{length}(g) = \operatorname{codim} V^g$.
- $\phi_k(g) = \sum_{j=0}^k (-1)^{k-j} \binom{n+1}{k-j} (rj+1)^{n-\text{length}(g)}$.
- Note: When $G = S_n$, $\ell(g) := \# \operatorname{cycles}(g) = n \operatorname{length}(g)$.

Conjecture (Goldstein-Guralnick-Rains)

The hyperoctahedral Foulkes characters play the role of irreducibles among characters $\chi(g)$ that depend only on dim V^g :

$$\chi = a_0\phi_0 + a_1\phi_1 + \ldots + a_n\phi_n \qquad (a_i \in \mathbf{N}).$$

- $G = Z_r \wr S_n$.
- length(g) = min{ $k \mid g = \tau_1 \tau_2 \dots \tau_k, \ \tau_i \text{ a reflection}$ } $(g \in G)$.
- $\operatorname{length}(g) = \operatorname{codim} V^g$.
- $\phi_k(g) = \sum_{j=0}^k (-1)^{k-j} \binom{n+1}{k-j} (rj+1)^{n-\text{length}(g)}$.
- Note: When $G = S_n$, $\ell(g) := \# \operatorname{cycles}(g) = n \operatorname{length}(g)$.

Theorem (M.) If r > 1, then the characters of $Z_r \wr S_n$ that depend only on length are the **N**-linear combinations of Foulkes characters.

Kerber: Already for n=3, not all characters of S_n that depend only on length are **N**-linear combinations of the Foulkes characters $\phi_0, \phi_1, \dots, \phi_{n-1}$.

Kerber: Already for n = 3, not all characters of S_n that depend only on length are **N**-linear combinations of the Foulkes characters $\phi_0, \phi_1, \dots, \phi_{n-1}$.

Theorem (M.) This is true for n > 3, and no other n characters can work.

Kerber: Already for n = 3, not all characters of S_n that depend only on length are **N**-linear combinations of the Foulkes characters $\phi_0, \phi_1, \dots, \phi_{n-1}$.

Theorem (M.) This is true for n > 3, and no other n characters can work.

Theorem (M.)

The characters of S_n that depend only on length are the linear combinations

$$\theta_{\mathfrak{a}} = \tilde{\mathfrak{a}}_{0}\phi_{0} + \tilde{\mathfrak{a}}_{1}\phi_{1} + \ldots + \tilde{\mathfrak{a}}_{n-1}\phi_{n-1}, \quad \mathfrak{a} \in \textbf{N}^{n},$$

and moreover,

$$\theta_{\mathfrak{a}} = \theta_{\mathfrak{b}} \quad \text{if and only if} \quad \mathfrak{a} = \mathfrak{b}.$$

Kerber: Already for n = 3, not all characters of S_n that depend only on length are **N**-linear combinations of the Foulkes characters $\phi_0, \phi_1, \ldots, \phi_{n-1}$.

Theorem (M.) This is true for n > 3, and no other n characters can work.

Theorem (M.)

The characters of S_n that depend only on length are the linear combinations

$$\theta_{\mathfrak{a}} = \tilde{\mathfrak{a}}_{0}\phi_{0} + \tilde{\mathfrak{a}}_{1}\phi_{1} + \ldots + \tilde{\mathfrak{a}}_{n-1}\phi_{n-1}, \quad \mathfrak{a} \in \mathbf{N}^{n},$$

and moreover,

$$\theta_{\mathfrak{a}} = \theta_{\mathfrak{b}}$$
 if and only if $\mathfrak{a} = \mathfrak{b}$.

Theorem (M.) The number of characters of S_n that depend only on length and lie in the fundamental parallelepiped $\{\sum t_i \phi_i \mid t_i \in [0,1)\}$ equals

$$\frac{n!}{\gcd(1,n)\gcd(2,n)\ldots\gcd(n,n)}.$$

Kerber: Already for n=3, not all characters of S_n that depend only on length are **N**-linear combinations of the Foulkes characters $\phi_0, \phi_1, \ldots, \phi_{n-1}$.

Theorem (M.) This is true for n > 3, and no other n characters can work.

Theorem (M.)

The characters of S_n that depend only on length are the linear combinations

$$\theta_{\mathfrak{a}} = \tilde{\mathfrak{a}}_{0}\phi_{0} + \tilde{\mathfrak{a}}_{1}\phi_{1} + \ldots + \tilde{\mathfrak{a}}_{n-1}\phi_{n-1}, \quad \mathfrak{a} \in \mathbf{N}^{n},$$

and moreover,

$$\theta_{\mathfrak{a}} = \theta_{\mathfrak{b}}$$
 if and only if $\mathfrak{a} = \mathfrak{b}$.

Theorem (M.) The number of characters of S_n that depend only on length and lie in the fundamental parallelepiped $\{\sum t_i \phi_i \mid t_i \in [0,1)\}$ equals

$$\frac{n!}{\gcd(1,n)\gcd(2,n)\ldots\gcd(n,n)}.$$

Theorem (M.) The smallest positive integer that clears all denominators is

$$\frac{\mathrm{lcm}(1,2,\ldots,n)}{n}=\frac{e^{f(n)}}{n},$$

where f is the second Chebyschev function.

 $\ell(\pi) = \text{number of cycles of } \pi.$

$$\ell(\pi) = \text{number of cycles of } \pi.$$

$$C_i = \{\pi \in S_n \mid \ell(\pi) = i\}.$$

 $\ell(\pi)$ = number of cycles of π .

$$C_i = \{ \pi \in S_n \mid \ell(\pi) = i \}.$$

 $\mathrm{CF}_\ell(S_n) = \mathrm{space} \ \mathrm{of} \ \mathrm{class} \ \mathrm{functions} \ \vartheta \ \mathrm{such} \ \mathrm{that} \ \vartheta(\sigma) = \vartheta(\tau) \ \mathrm{whenever} \ \ell(\sigma) = \ell(\tau).$

 $\ell(\pi)$ = number of cycles of π .

$$C_i = \{ \pi \in S_n \mid \ell(\pi) = i \}.$$

$$\mathrm{CF}_\ell(S_n) = \mathsf{space} \ \mathsf{of} \ \mathsf{class} \ \mathsf{functions} \ \vartheta \ \mathsf{such} \ \mathsf{that} \ \vartheta(\sigma) = \vartheta(\tau) \ \mathsf{whenever} \ \ell(\sigma) = \ell(\tau).$$

 $\ell(\pi) = \text{number of cycles of } \pi.$

$$C_i = \{ \pi \in S_n \mid \ell(\pi) = i \}.$$

$$\mathrm{CF}_\ell(S_n) = \mathsf{space} \ \mathsf{of} \ \mathsf{class} \ \mathsf{functions} \ \vartheta \ \mathsf{such} \ \mathsf{that} \ \vartheta(\sigma) = \vartheta(\tau) \ \mathsf{whenever} \ \ell(\sigma) = \ell(\tau).$$

Properties

• ϕ_i 's form a basis for $CF_\ell(S_n)$.

 $\ell(\pi)$ = number of cycles of π .

$$C_i = \{ \pi \in S_n \mid \ell(\pi) = i \}.$$

$$\mathrm{CF}_\ell(S_n) = \mathsf{space} \ \mathsf{of} \ \mathsf{class} \ \mathsf{functions} \ \vartheta \ \mathsf{such} \ \mathsf{that} \ \vartheta(\sigma) = \vartheta(\tau) \ \mathsf{whenever} \ \ell(\sigma) = \ell(\tau).$$

- ϕ_i 's form a basis for $CF_\ell(S_n)$.
- ϕ_i 's play the role of irreducibles in $\mathrm{CF}_\ell(S_n)$.

 $\ell(\pi)$ = number of cycles of π .

$$C_i = \{ \pi \in S_n \mid \ell(\pi) = i \}.$$

$$\mathrm{CF}_\ell(S_n) = \mathsf{space} \ \mathsf{of} \ \mathsf{class} \ \mathsf{functions} \ \vartheta \ \mathsf{such} \ \mathsf{that} \ \vartheta(\sigma) = \vartheta(\tau) \ \mathsf{whenever} \ \ell(\sigma) = \ell(\tau).$$

- ϕ_i 's form a basis for $CF_\ell(S_n)$.
- ϕ_i 's play the role of irreducibles in $\mathrm{CF}_\ell(S_n)$.
- $\phi_0 + \phi_1 + \ldots + \phi_{n-1} = \text{reg.}$

 $\ell(\pi)$ = number of cycles of π .

$$C_i = \{ \pi \in S_n \mid \ell(\pi) = i \}.$$

$$\mathrm{CF}_\ell(S_n) = \mathsf{space} \ \mathsf{of} \ \mathsf{class} \ \mathsf{functions} \ \vartheta \ \mathsf{such} \ \mathsf{that} \ \vartheta(\sigma) = \vartheta(\tau) \ \mathsf{whenever} \ \ell(\sigma) = \ell(\tau).$$

- ϕ_i 's form a basis for $CF_\ell(S_n)$.
- ϕ_i 's play the role of irreducibles in $\operatorname{CF}_\ell(S_n)$.
- $\phi_0 + \phi_1 + \ldots + \phi_{n-1} = \text{reg.}$
- $\phi_i(1) = \#\{\pi \in S_n \mid \operatorname{des}(\pi) = i\}.$

 $\ell(\pi)$ = number of cycles of π .

$$C_i = \{ \pi \in S_n \mid \ell(\pi) = i \}.$$

$$\mathrm{CF}_\ell(S_n) = \mathsf{space} \ \mathsf{of} \ \mathsf{class} \ \mathsf{functions} \ \vartheta \ \mathsf{such} \ \mathsf{that} \ \vartheta(\sigma) = \vartheta(\tau) \ \mathsf{whenever} \ \ell(\sigma) = \ell(\tau).$$

- ϕ_i 's form a basis for $CF_\ell(S_n)$.
- ϕ_i 's play the role of irreducibles in $\mathrm{CF}_\ell(S_n)$.
- $\phi_0 + \phi_1 + \ldots + \phi_{n-1} = \text{reg.}$
- $\phi_i(1) = \#\{\pi \in S_n \mid \operatorname{des}(\pi) = i\}.$
- $\phi_i|_{S_{n-1}} = (n-i)\phi_{i-1} + (i+1)\phi_i$.

 $\ell(\pi)$ = number of cycles of π .

$$C_i = \{ \pi \in S_n \mid \ell(\pi) = i \}.$$

$$\mathrm{CF}_\ell(S_n) = \mathsf{space} \ \mathsf{of} \ \mathsf{class} \ \mathsf{functions} \ \vartheta \ \mathsf{such} \ \mathsf{that} \ \vartheta(\sigma) = \vartheta(\tau) \ \mathsf{whenever} \ \ell(\sigma) = \ell(\tau).$$

- ϕ_i 's form a basis for $CF_\ell(S_n)$.
- ϕ_i 's play the role of irreducibles in $\operatorname{CF}_\ell(S_n)$.
- $\phi_0 + \phi_1 + \ldots + \phi_{n-1} = \text{reg.}$
- $\phi_i(1) = \#\{\pi \in S_n \mid \operatorname{des}(\pi) = i\}.$
- $\phi_i|_{S_{n-1}} = (n-i)\phi_{i-1} + (i+1)\phi_i$.
- $\phi_i(\pi) = \sum_{j=0}^{n-1} (-1)^{i-j} \binom{n+1}{i-j} (j+1)^{\ell(\pi)}$.

Completing the character theory picture

 $\ell(\pi)$ = number of cycles of π .

$$C_i = \{ \pi \in S_n \mid \ell(\pi) = i \}.$$

 $\mathrm{CF}_\ell(S_n) = \mathsf{space} \ \mathsf{of} \ \mathsf{class} \ \mathsf{functions} \ \vartheta \ \mathsf{such} \ \mathsf{that} \ \vartheta(\sigma) = \vartheta(\tau) \ \mathsf{whenever} \ \ell(\sigma) = \ell(\tau).$

Properties

- ϕ_i 's form a basis for $CF_\ell(S_n)$.
- ϕ_i 's play the role of irreducibles in $\mathrm{CF}_\ell(S_n)$.
- $\phi_0 + \phi_1 + \ldots + \phi_{n-1} = \text{reg.}$
- $\phi_i(1) = \#\{\pi \in S_n \mid \operatorname{des}(\pi) = i\}.$
- $\phi_i|_{S_{n-1}} = (n-i)\phi_{i-1} + (i+1)\phi_i$.
- $\phi_i(\pi) = \sum_{j=0}^{n-1} (-1)^{i-j} \binom{n+1}{i-j} (j+1)^{\ell(\pi)}$.

Question 1. How does $\phi_i \phi_j$ decompose as a sum of ϕ_k 's?

Completing the character theory picture

 $\ell(\pi)$ = number of cycles of π .

$$C_i = \{ \pi \in S_n \mid \ell(\pi) = i \}.$$

 $\mathrm{CF}_\ell(S_n) = \mathrm{space} \ \mathrm{of} \ \mathrm{class} \ \mathrm{functions} \ \vartheta \ \mathrm{such} \ \mathrm{that} \ \vartheta(\sigma) = \vartheta(\tau) \ \mathrm{whenever} \ \ell(\sigma) = \ell(\tau).$

Properties

- ϕ_i 's form a basis for $CF_\ell(S_n)$.
- ϕ_i 's play the role of irreducibles in $\mathrm{CF}_\ell(S_n)$.
- $\phi_0 + \phi_1 + \ldots + \phi_{n-1} = \text{reg.}$
- $\phi_i(1) = \#\{\pi \in S_n \mid \operatorname{des}(\pi) = i\}.$
- $\phi_i|_{S_{n-1}} = (n-i)\phi_{i-1} + (i+1)\phi_i$.
- $\phi_i(\pi) = \sum_{j=0}^{n-1} (-1)^{i-j} \binom{n+1}{i-j} (j+1)^{\ell(\pi)}$.

Question 1. How does $\phi_i \phi_j$ decompose as a sum of ϕ_k 's?

Question 2. What is the inner product [,] with respect to which the ϕ_i 's form an orthonormal basis?

Theorem (M.)

Theorem (M.)

• $c_{ijk} = \#\{(x,y) \in S_n \times S_n \mid \operatorname{des}(x) = i, \operatorname{des}(y) = j, xy = z\}, \operatorname{des}(z) = k.$

Theorem (M.)

- $c_{ijk} = \#\{(x,y) \in S_n \times S_n \mid \operatorname{des}(x) = i, \operatorname{des}(y) = j, xy = z\}, \operatorname{des}(z) = k.$
- $c_{ijk} = \sum_{u,v} (-1)^{i-u} (-1)^{j-v} \binom{n+1}{i-u} \binom{n+1}{j-v} \binom{uv+u+v+n-k}{n}$.

Theorem (M.)

- $c_{ijk} = \#\{(x,y) \in S_n \times S_n \mid \operatorname{des}(x) = i, \operatorname{des}(y) = j, xy = z\}, \operatorname{des}(z) = k.$
- $c_{ijk} = \sum_{u,v} (-1)^{i-u} (-1)^{j-v} {n+1 \choose i-u} {n+1 \choose j-v} {uv+u+v+n-k \choose n}$.
- $c_{ijk} = c_{i,j,k-1} c_{i-1,j-1,k-1}^{(n-1)} + c_{i,j-1,k-1}^{(n-1)} + c_{i-1,j,k-1}^{(n-1)} c_{i,j,k-1}^{(n-1)}$

Theorem (M.)

- $c_{ijk} = \#\{(x,y) \in S_n \times S_n \mid \operatorname{des}(x) = i, \operatorname{des}(y) = j, xy = z\}, \operatorname{des}(z) = k.$
- $c_{ijk} = \sum_{u,v} (-1)^{i-u} (-1)^{j-v} \binom{n+1}{i-u} \binom{n+1}{j-v} \binom{uv+u+v+n-k}{n}$.
- $c_{ijk} = c_{i,j,k-1} c_{i-1,j-1,k-1}^{(n-1)} + c_{i,j-1,k-1}^{(n-1)} + c_{i-1,j,k-1}^{(n-1)} c_{i,j,k-1}^{(n-1)}$

Theorem (M.) Let $\mathscr{D}_i = \sum_{\deg(\pi)=i} \pi$. Then

$$\mathscr{D}_i = \sum_{j=0}^{n-1} \phi_i(C_{n-j}) \mathscr{E}_{n-i-j},$$

where the \mathscr{E} 's are Loday's Eulerian idempotents.

Theorem (M.)

- $c_{ijk} = \#\{(x,y) \in S_n \times S_n \mid \operatorname{des}(x) = i, \operatorname{des}(y) = j, xy = z\}, \operatorname{des}(z) = k.$
- $c_{ijk} = \sum_{u,v} (-1)^{i-u} (-1)^{j-v} \binom{n+1}{i-u} \binom{n+1}{j-v} \binom{uv+u+v+n-k}{n}$.
- $c_{ijk} = c_{i,j,k-1} c_{i-1,j-1,k-1}^{(n-1)} + c_{i,j-1,k-1}^{(n-1)} + c_{i-1,j,k-1}^{(n-1)} c_{i,j,k-1}^{(n-1)}$

Theorem (M.) Let $\mathcal{D}_i = \sum_{\deg(\pi)=i} \pi$. Then

$$\mathscr{D}_i = \sum_{j=0}^{n-1} \phi_i(C_{n-j}) \mathscr{E}_{n-i-j},$$

where the \mathscr{E} 's are Loday's Eulerian idempotents.

Third solution follows from work of Delsarte in 1976 in a context void of characters and groups, and given 4 years before the ϕ_i 's were introduced by Foulkes in 1980.

Question 2. Inner product

Definition (M.) For $\vartheta, \psi \in \mathrm{CF}_{\ell}(S_n)$ and for *n*-cycles σ, τ chosen uniformly at random, we define

$$[\vartheta,\psi] = \frac{1}{|S_n|} \sum_{i,j=1}^n \vartheta(C_i) \overline{\psi(C_j)} \mathbf{E} |\sigma C_i \cap \tau C_j|.$$

Question 2. Inner product

Definition (M.) For $\vartheta, \psi \in \mathrm{CF}_{\ell}(S_n)$ and for *n*-cycles σ, τ chosen uniformly at random, we define

$$[\vartheta,\psi] = \frac{1}{|S_n|} \sum_{i,j=1}^n \vartheta(C_i) \overline{\psi(C_j)} \mathbf{E} |\sigma C_i \cap \tau C_j|.$$

Remark The quantity $\mathbf{E}|\sigma C_i \cap \tau C_j|$ is the expected number of ways that $\sigma \tau$ can be written as a product $\alpha \beta$ with $\alpha \in C_i$ and $\beta \in C_j$.

Question 2. Inner product

Definition (M.) For $\vartheta, \psi \in \mathrm{CF}_{\ell}(S_n)$ and for *n*-cycles σ, τ chosen uniformly at random, we define

$$[\vartheta,\psi] = \frac{1}{|S_n|} \sum_{i,j=1}^n \vartheta(C_i) \overline{\psi(C_j)} \mathbf{E} |\sigma C_i \cap \tau C_j|.$$

Remark The quantity $\mathbf{E}[\sigma C_i \cap \tau C_j]$ is the expected number of ways that $\sigma \tau$ can be written as a product $\alpha \beta$ with $\alpha \in C_i$ and $\beta \in C_j$.

Theorem (M.) The Foulkes characters $\phi_0, \phi_1, \ldots, \phi_{n-1}$ of S_n form an orthonormal basis for the Hilbert space $\mathrm{CF}_\ell(S_n)$ with inner product $[\ ,\]$.

Theorem (M.) chance{next carry $j \mid \text{last carry is } i \} = [\phi_i, b^{\ell} \phi_j] \times b^{-n}$.

Theorem (M.) chance{next carry $j \mid \text{last carry is } i\} = [\phi_i, b^{\ell} \phi_j] \times b^{-n}$.

Theorem (M.) The Foulkes characters $\phi_0, \phi_1, \dots, \phi_{n-1}$ result from the inner product $[\ ,\]$ by applying the Gram–Schmidt process to the characters $1^\ell, 2^\ell, \dots, n^\ell$.

Theorem (M.) chance{next carry $j \mid \text{last carry is } i \} = [\phi_i, b^{\ell} \phi_j] \times b^{-n}$.

Theorem (M.) The Foulkes characters $\phi_0, \phi_1, \dots, \phi_{n-1}$ result from the inner product $[\ ,\]$ by applying the Gram–Schmidt process to the characters $1^\ell, 2^\ell, \dots, n^\ell$.

Theorem (Diaconis-Fulman)

$$\sum_{i=0}^{n-1} \phi_i(C_i) X^i = (1-X)^{n+1} \left(1+X\frac{d}{dX}\right)^j \frac{1}{1-X}.$$

Theorem (M.) chance{next carry $j \mid \text{last carry is } i \} = [\phi_i, b^{\ell} \phi_j] \times b^{-n}$.

Theorem (M.) The Foulkes characters $\phi_0, \phi_1, \dots, \phi_{n-1}$ result from the inner product $[\ ,\]$ by applying the Gram–Schmidt process to the characters $1^\ell, 2^\ell, \dots, n^\ell$.

Theorem (Diaconis-Fulman)

$$\sum_{i=0}^{n-1} \phi_i(C_i) X^i = (1-X)^{n+1} \left(1+X\frac{d}{dX}\right)^j \frac{1}{1-X}.$$

Let the LHS be denoted by $\phi_X(C_j)$.

Theorem (M.) chance{next carry $j \mid \text{last carry is } i \} = [\phi_i, b^{\ell} \phi_i] \times b^{-n}$.

Theorem (M.) The Foulkes characters $\phi_0, \phi_1, \dots, \phi_{n-1}$ result from the inner product $[\ ,\]$ by applying the Gram–Schmidt process to the characters $1^\ell, 2^\ell, \dots, n^\ell$.

Theorem (Diaconis-Fulman)

$$\sum_{i=0}^{n-1} \phi_i(C_i) X^i = (1-X)^{n+1} \left(1+X\frac{d}{dX}\right)^j \frac{1}{1-X}.$$

Let the LHS be denoted by $\phi_X(C_j)$.

Proposition (M.)

$$\sum_{i=1}^n a_i X^i = \sum_{k=1}^n b_k \binom{X+n-k}{n} \Leftrightarrow \sum_{i=1}^n a_i \phi_X(C_i) = \sum_{k=1}^n b_k X^{k-1}.$$

Theorem (M.) chance{next carry $j \mid \text{last carry is } i \} = [\phi_i, b^{\ell} \phi_i] \times b^{-n}$.

Theorem (M.) The Foulkes characters $\phi_0, \phi_1, \ldots, \phi_{n-1}$ result from the inner product $[\ ,\]$ by applying the Gram–Schmidt process to the characters $1^\ell, 2^\ell, \ldots, n^\ell$.

Theorem (Diaconis-Fulman)

$$\sum_{i=0}^{n-1} \phi_i(C_i) X^i = (1-X)^{n+1} \left(1+X\frac{d}{dX}\right)^j \frac{1}{1-X}.$$

Let the LHS be denoted by $\phi_X(C_j)$.

Proposition (M.)

$$\sum_{i=1}^n a_i X^i = \sum_{k=1}^n b_k \binom{X+n-k}{n} \Leftrightarrow \sum_{i=1}^n a_i \phi_X(C_i) = \sum_{k=1}^n b_k X^{k-1}.$$

Result (M.)

Theorem (M.) chance{next carry $j \mid \text{last carry is } i \} = [\phi_i, b^{\ell} \phi_j] \times b^{-n}$.

Theorem (M.) The Foulkes characters $\phi_0, \phi_1, \ldots, \phi_{n-1}$ result from the inner product $[\ ,\]$ by applying the Gram–Schmidt process to the characters $1^\ell, 2^\ell, \ldots, n^\ell$.

Theorem (Diaconis-Fulman)

$$\sum_{i=0}^{n-1} \phi_i(C_i) X^i = (1-X)^{n+1} \left(1+X\frac{d}{dX}\right)^j \frac{1}{1-X}.$$

Let the LHS be denoted by $\phi_X(C_i)$.

Proposition (M.)

$$\sum_{i=1}^n a_i X^i = \sum_{k=1}^n b_k \binom{X+n-k}{n} \Leftrightarrow \sum_{i=1}^n a_i \phi_X(C_i) = \sum_{k=1}^n b_k X^{k-1}.$$

Result (M.)

 Find Foulkes characters naturally arising in yet another interesting area: the enumeration of certain genus g surfaces.

Theorem (M.) chance{next carry $j \mid \text{last carry is } i \} = [\phi_i, b^{\ell} \phi_i] \times b^{-n}$.

Theorem (M.) The Foulkes characters $\phi_0, \phi_1, \ldots, \phi_{n-1}$ result from the inner product $[\ ,\]$ by applying the Gram–Schmidt process to the characters $1^\ell, 2^\ell, \ldots, n^\ell$.

Theorem (Diaconis-Fulman)

$$\sum_{i=0}^{n-1} \phi_i(C_i) X^i = (1-X)^{n+1} \left(1+X\frac{d}{dX}\right)^j \frac{1}{1-X}.$$

Let the LHS be denoted by $\phi_X(C_i)$.

Proposition (M.)

$$\sum_{i=1}^n a_i X^i = \sum_{k=1}^n b_k \binom{X+n-k}{n} \Leftrightarrow \sum_{i=1}^n a_i \phi_X(C_i) = \sum_{k=1}^n b_k X^{k-1}.$$

Result (M.)

- Find Foulkes characters naturally arising in yet another interesting area: the enumeration of certain genus g surfaces.
- New short proof of a result of Zagier which generalizes one of Harer and Zagier on the enumeration of certain genus g surfaces.

For other full monomial groups (M.)

• Answered Questions 1 and 2.

- Answered Questions 1 and 2.
- Decomposed products $\phi_i \phi_j = \sum c_{ijk} \phi_k$.

- Answered Questions 1 and 2.
- Decomposed products $\phi_i \phi_j = \sum c_{ijk} \phi_k$.
- Found inner product [,].

- Answered Questions 1 and 2.
- Decomposed products $\phi_i \phi_j = \sum c_{ijk} \phi_k$.
- Found inner product [,].
- Obtained new construction of the generalized Foulkes characters.

For other full monomial groups (M.)

- Answered Questions 1 and 2.
- Decomposed products $\phi_i \phi_j = \sum c_{ijk} \phi_k$.
- Found inner product [,].
- Obtained new construction of the generalized Foulkes characters.

Rewriting the Diaconis-Fulman Markov chain for balanced carries

For other full monomial groups (M.)

- Answered Questions 1 and 2.
- Decomposed products $\phi_i \phi_j = \sum c_{ijk} \phi_k$.
- Found inner product [,].
- Obtained new construction of the generalized Foulkes characters.

Rewriting the Diaconis-Fulman Markov chain for balanced carries

Adding k random numbers in balanced ternary and other number systems.

For other full monomial groups (M.)

- Answered Questions 1 and 2.
- Decomposed products $\phi_i \phi_j = \sum c_{ijk} \phi_k$.
- Found inner product [,].
- Obtained new construction of the generalized Foulkes characters.

Rewriting the Diaconis-Fulman Markov chain for balanced carries

- Adding k random numbers in balanced ternary and other number systems.
- M_B will denote their transition matrix.

For other full monomial groups (M.)

- Answered Questions 1 and 2.
- Decomposed products $\phi_i \phi_j = \sum c_{ijk} \phi_k$.
- Found inner product [,].
- Obtained new construction of the generalized Foulkes characters.

Rewriting the Diaconis-Fulman Markov chain for balanced carries

- Adding k random numbers in balanced ternary and other number systems.
- M_B will denote their transition matrix.

Theorem (M.) Let $\phi_0, \phi_1, \dots, \phi_k$ be the Foulkes characters of the hyperoctahedral group of rank k. Then

$$M_B(i,j) = [\phi_i, b^{\ell}\phi_j] \times b^{-k}.$$

A curious classification

Theorem (M.) Let G be an finite irreducible Coxeter or Shephard group. Then the following are equivalent.

- 1. The characters $\phi_i(g)$ depend only on the dimension of the fixed space of g.
- 2. The characters $\phi_0, \phi_1, \dots, \phi_N$ form a **Q** basis for the space of rational class functions χ that depend only on the dimension of the fixed space.
- 3. The reduced Foulkes character table Φ is square and $\det \Phi = d_1^N d_2^{N-1} \cdots d_N^1$.
- 4. The Smith entries s_0, s_1, \ldots, s_N of the table Φ are given by $s_i = d_1 d_2 \cdots d_i$.
- 5. The isomorphism class of L^X depends only on the dimension of X.
- 6. The cell counts $f_i(\Delta \cap X)$ depend only on the dimension of X.
- 7. The numbers $B_X(m_1)$ depend only on the dimension of X.
- 8. The Orlik–Solomon coexponents b_i^X depend only on the dimension of X.
- 9. The coexponent sequence n_1, n_2, \ldots, n_N is arithmetic.
- 10. The degree sequence d_1, d_2, \ldots, d_N is arithmetic.
- 11. The group G is not F_4 , H_4 , E_6 , E_7 , E_8 , or D_N for $N \ge 4$.

A curious classification

Theorem (M.) Let G be an finite irreducible Coxeter or Shephard group. Then the following are equivalent.

- 1. The characters $\phi_i(g)$ depend only on the dimension of the fixed space of g.
- 2. The characters $\phi_0, \phi_1, \dots, \phi_N$ form a **Q** basis for the space of rational class functions χ that depend only on the dimension of the fixed space.
- 3. The reduced Foulkes character table Φ is square and $\det \Phi = d_1^N d_2^{N-1} \cdots d_N^1$.
- 4. The Smith entries s_0, s_1, \ldots, s_N of the table Φ are given by $s_i = d_1 d_2 \cdots d_i$.
- 5. The isomorphism class of L^X depends only on the dimension of X.
- 6. The cell counts $f_i(\Delta \cap X)$ depend only on the dimension of X.
- 7. The numbers $B_X(m_1)$ depend only on the dimension of X.
- 8. The Orlik-Solomon coexponents b_i^X depend only on the dimension of X.
- 9. The coexponent sequence n_1, n_2, \ldots, n_N is arithmetic.
- 10. The degree sequence d_1, d_2, \ldots, d_N is arithmetic.
- 11. The group G is not F_4 , H_4 , E_6 , E_7 , E_8 , or D_N for $N \ge 4$. Equivalently no subdiagram type D_4 , F_4 , or H_4 .

Walls in Milnor fiber complexes: Δ^r

Walls in Milnor fiber complexes: Δ^r

When is every wall in a Coxeter complex again a Coxeter complex?

When is every wall in a Coxeter complex again a Coxeter complex?

Theorem (Abramenko) If G is a finite Coxeter group, then every wall in Δ is a Coxeter complex \Leftrightarrow no subdiagram of type D_4 , F_4 , or H_4 .

When is every wall in a Coxeter complex again a Coxeter complex?

Theorem (Abramenko) If G is a finite Coxeter group, then every wall in Δ is a Coxeter complex \Leftrightarrow no subdiagram of type D_4 , F_4 , or H_4 .

How about walls of a Milnor fiber complex (MFC)?

When is every wall in a Coxeter complex again a Coxeter complex?

Theorem (Abramenko) If G is a finite Coxeter group, then every wall in Δ is a Coxeter complex \Leftrightarrow no subdiagram of type D_4 , F_4 , or H_4 .

How about walls of a Milnor fiber complex (MFC)?

Theorem (M.)

Every wall in a MFC is a MFC \Leftrightarrow no subdiagram of type $D_4, F_4, H_4, G_{25}, G_{26}$.

When is every wall in a Coxeter complex again a Coxeter complex?

Theorem (Abramenko) If G is a finite Coxeter group, then every wall in Δ is a Coxeter complex \Leftrightarrow no subdiagram of type D_4 , F_4 , or H_4 .

How about walls of a Milnor fiber complex (MFC)?

Theorem (M.)

Every wall in a MFC is a MFC \Leftrightarrow no subdiagram of type $D_4, F_4, H_4, G_{25}, G_{26}$.

Definition (M.) Δ^r is a **Milnor wall** if some type of (n-2)-dimensional faces in Δ^r generate a MFC of dimension n-2.

When is every wall in a Coxeter complex again a Coxeter complex?

Theorem (Abramenko) If G is a finite Coxeter group, then every wall in Δ is a Coxeter complex \Leftrightarrow no subdiagram of type D_4 , F_4 , or H_4 .

How about walls of a Milnor fiber complex (MFC)?

Theorem (M.)

Every wall in a MFC is a MFC \Leftrightarrow no subdiagram of type $D_4, F_4, H_4, G_{25}, G_{26}$.

Definition (M.) Δ^r is a **Milnor wall** if some type of (n-2)-dimensional faces in Δ^r generate a MFC of dimension n-2.

Theorem (M.) Each wall of a MFC is a Milnor wall if and only if the diagram contains no subdiagram of type D_4 , F_4 , H_4 .

When is every wall in a Coxeter complex again a Coxeter complex?

Theorem (Abramenko) If G is a finite Coxeter group, then every wall in Δ is a Coxeter complex \Leftrightarrow no subdiagram of type D_4 , F_4 , or H_4 .

How about walls of a Milnor fiber complex (MFC)?

Theorem (M.)

Every wall in a MFC is a MFC \Leftrightarrow no subdiagram of type $D_4, F_4, H_4, G_{25}, G_{26}$.

Definition (M.) Δ^r is a **Milnor wall** if some type of (n-2)-dimensional faces in Δ^r generate a MFC of dimension n-2.

Theorem (M.) Each wall of a MFC is a Milnor wall if and only if the diagram contains no subdiagram of type D_4 , F_4 , H_4 .

• New equivalent condition in the curious classification.

When is every wall in a Coxeter complex again a Coxeter complex?

Theorem (Abramenko) If G is a finite Coxeter group, then every wall in Δ is a Coxeter complex \Leftrightarrow no subdiagram of type D_4 , F_4 , or H_4 .

How about walls of a Milnor fiber complex (MFC)?

Theorem (M.)

Every wall in a MFC is a MFC \Leftrightarrow no subdiagram of type $D_4, F_4, H_4, G_{25}, G_{26}$.

Definition (M.) Δ^r is a **Milnor wall** if some type of (n-2)-dimensional faces in Δ^r generate a MFC of dimension n-2.

Theorem (M.) Each wall of a MFC is a Milnor wall if and only if the diagram contains no subdiagram of type D_4 , F_4 , H_4 .

- New equivalent condition in the curious classification.
- Both theorems imply Abramenko's result.

Easy case: $g = id_G$.

Easy case: $g = id_G$.

Top cells of Δ indexed by the cosets $gG_\emptyset=\{g\}$, $g\in G$.

Easy case: $g = id_G$.

Top cells of Δ indexed by the cosets $gG_\emptyset = \{g\}$, $g \in G$.

 $|G| = d_1 d_2 \dots d_N$.

Easy case: $g = id_G$.

Top cells of Δ indexed by the cosets $gG_\emptyset = \{g\}$, $g \in G$.

 $|G| = d_1 d_2 \dots d_N$.

So $f_{N-1}(\Delta^{\mathrm{id}_G})=d_1d_2\dots d_N.$

Easy case: $g = id_G$.

Top cells of Δ indexed by the cosets $gG_\emptyset = \{g\}, g \in G$.

 $|G|=d_1d_2\ldots d_N.$

So $f_{N-1}(\Delta^{\mathrm{id}_G}) = d_1 d_2 \dots d_N$.

Theorem (M.) If G is irreducible then the following are equivalent:

Easy case: $g = id_G$.

Top cells of Δ indexed by the cosets $gG_\emptyset = \{g\}, g \in G$.

$$|G| = d_1 d_2 \dots d_N$$
.

So
$$f_{N-1}(\Delta^{\mathrm{id}_G}) = d_1 d_2 \dots d_N$$
.

Theorem (M.) If G is irreducible then the following are equivalent:

$$\mathrm{(i)} \ \ \mathit{f}_{p-1}(\Delta^{\mathit{g}}) = \mathit{d}_{1}\mathit{d}_{2}\ldots \mathit{d}_{\dim V^{\mathit{g}}} \ \text{for each} \ \mathit{g} \in \mathit{G}.$$

Easy case: $g = id_G$.

Top cells of Δ indexed by the cosets $gG_\emptyset = \{g\}, g \in G$.

$$|G| = d_1 d_2 \dots d_N$$
.

So
$$f_{N-1}(\Delta^{\mathrm{id}_G}) = d_1 d_2 \dots d_N$$
.

Theorem (M.) If G is irreducible then the following are equivalent:

- (i) $f_{p-1}(\Delta^g) = d_1 d_2 \dots d_{\dim V^g}$ for each $g \in G$.
- (ii) The sequence d_1, d_2, \ldots, d_N is arithmetic.