Задача 1. Кузнечик 2D

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

В левом-нижнем углу прямоугольной клетчатой доски размером $n \times m$ стоит k-кузнечик. За один ход k-кузнечик перемещается по доске вправо, вверх или вправо-вверх по диагонали не более чем на k клеток.

Возможные ходы k-кузнечика для k=3.

Необходимо передвинуть k-кузнечика в правый верхний угол доски в клетку (n,m). За какое минимальное число ходов можно передвинуть k-кузнечика из клетки (1,1) в клетку (n,m)?

Формат входных данных

В первой строке заданы три целых числа n, m и k — размеры сторон доски и максимальное число клеток, на которое может ходить k-кузнечик, соответственно $(1 \le n, m, k \le 10^9)$.

Формат выходных данных

Выведите одно число — минимальное число ходов, необходимое, чтобы передвинуть k-кузнечика из клетки (1,1) в клетку (n,m).

Система оценки

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	15	$n, m \leqslant 10, k = 1$		первая ошибка
2	16	$n, m, k \leqslant 10$	1	первая ошибка
3	17	$n, m \leq 10^9, k = 1$	1	первая ошибка
4	18	Гарантируется, что ответ равен 1 или 2		первая ошибка
5	34	нет	1–4	первая ошибка

Примеры

стандартный ввод	стандартный вывод
9 8 5	3
2 2 1	1

Задача 2. Простоватые числа

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Назовём число *простоватым*, если произведение цифр этого числа в десятичной системе счисления является простым числом. Например, простоватым является число 12, а число 29 не является.

Требуется посчитать количество простоватых чисел от l до r, включительно.

Напомним, что целое число p > 1 называется простым, если оно имеет ровно два делителя: 1 и p.

Формат входных данных

Первая строка содержит одно целое число l ($1 \le l \le 10^{100\,000}$).

Вторая строка содержит одно целое число $r\ (l\leqslant r\leqslant 10^{100\,000}).$

Обратите внимание, что числа во вводе не помещаются в стандартные типы данных для целых чисел в большинстве языков программирования, в частности, в C++. Необходимо каким-либо специальным образом считывать входные данные, например, в виде строки.

Формат выходных данных

Выведите количество простоватых чисел от l до r.

Система оценки

Баллы за каждую подзадачу начисляются только в случае, если все тесты для этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	19	$1\leqslant l\leqslant r\leqslant 10^6$		первая ошибка
2	26	$1\leqslant l\leqslant r\leqslant 10^{18}$	1	первая ошибка
3	12	$l=1,r=10^k,$ где k $(1\leqslant k\leqslant 10^5)$		первая ошибка
4	18	$1 \leqslant l \leqslant r \leqslant 10^{1000}$	1, 2	первая ошибка
5	25	_	1–4	первая ошибка

Пример

стандартный ввод	стандартный вывод
42	10
179	

Задача 3. Кислотные дожди

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Для сборки лаборатории-поселения на Венеру доставлены n блоков. Блоки расположены в ряд, i-й блок имеет высоту h_i .

Сборку будет осуществлять специальный робот. В процессе сборки последовательные сегменты блоков будут постепенно объединяться. При этом порядок блоков в ряду не будет меняться.

Исходно каждый блок представляет собой отдельный сегмент, сегменты пронумерованы от 1 до n в том же порядке, что и блоки. Если есть два соседних сегмента, составленных из блоков: сегмент из блоков $A = [i, i+1, \ldots, i+p-1]$ и сегмент из блоков $B = [i+p, i+p+1, \ldots, i+p+q-1]$, то после их объединения в один получается сегмент $AB = [i, i+1, \ldots, i+p-1, i+p, i+p+1, \ldots, i+p+q-1]$.

Инструкция по сборке состоит из n-1 инструкций. Каждая инструкция характеризуется одним числом, j-я инструкция характеризуется числом k_j . После выполнения этой инструкции сегменты с номерами k_j и k_j+1 объединяются в один, получившийся сегмент занимает место в последовательности сегментов на месте двух объединенных сегментов, и вводится новая нумерация на сегментах в том порядке, в котором они расположены — номера сегментов, начиная с k_j+2 , уменьшаются на один. После выполнения всех инструкций все сегменты окажутся объединены в один общий сегмент.

На Венере постоянно идут кислотные дожди, поэтому в процессе сборки важно для каждого сегмента блоков понимать, сколько жидкости может скопиться в этом сегменте. Пусть сегмент состоит из блоков высотой $h_l, h_{l+1}, \ldots, h_r$. Для p, где $l \leqslant p \leqslant r$ определим глубину блока с высотой h_p в этом сегменте следующим образом. Посчитаем величины $l_p = \max\{h_l, \ldots, h_p\}, r_p = \max\{h_p, \ldots, h_r\}$. Это самые высокие блоки в сегменте слева и справа от p-го. Тогда глубина блока p в его сегменте равна $d_p = \min(l_p, r_p) - h_p$, заметим, что $d_p \geqslant 0$. Емкостью сегмента будем называть сумму глубин блоков этого сегмента, то есть $w = d_l + d_{l+1} + \ldots + d_r$.

Задана последовательность объединений сегментов. После каждого объединения выведите емкость получившегося сегмента.

Рисунок на следующей странице показывает процесс выполнения инструкции из примера, над каждым блоком указана его глубина, а для нового сегмента показана его емкость.

Формат входных данных

Первая строка содержит одно целое число n — количество блоков ($2 \le n \le 10^5$).

Во второй строке записано n чисел h_1, \ldots, h_n $(1 \le h_i \le 10^9)$.

В третьей строке записаны n-1 чисел — инструкции по объединению сегментов. Каждая инструкция характеризуется одним числом k_j $(1 \le k_j \le n-j)$.

Формат выходных данных

Выведите n-1 чисел — после каждого объединения сегментов выведите емкость получившегося объединенного сегмента.

Система оценки

Баллы за подзадачи 1-7 начисляются только в случае, если все тесты соответствующей подзадачи и необходимых подзадач, а также тесты из условия успешно пройдены.

Подзадача	Баллы	Дополнительные ограничения	Необходимые подзадачи	Информация о проверке
1	13	$n \leqslant 100$		первая ошибка
2	13	$n \leqslant 1000$	1	первая ошибка
3	13	$h_i \leqslant 10$		первая ошибка
4	13	Для некоторого i выполнено $h_1\geqslant\ldots\geqslant h_i\leqslant\ldots\leqslant h_n$		первая ошибка
5	7	Bo всех запросах $k_j = 1$		первая ошибка
6	13	$n \leqslant 4 \cdot 10^4$	1, 2	первая ошибка
7	28	нет	1-6	первая ошибка

Пример

стандартный ввод	стандартный вывод
8	0
9 1 8 1 5 2 3 6	4
3 3 1 3 3 2 1	0
	0
	0
	13
	20
	20

Задача 4. Поиск сокровищ

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Для поиска полезных ископаемых ученые разработали специальный сканер.

Представим область для поисков как таблицу из k строк и n столбцов. Нумерация строк идет от 1 до k сверху вниз, нумерация столбцов от 1 до n слева направо. В каждой клетке таблицы могут находиться полезные ископаемые.

Сканер работает следующим образом: он может быть запущен в столбце p и возвращает количество клеток в зоне сканирования, которые содержат полезные ископаемые. Зона сканирования включает все клетки столбца p, верхние k-1 клетку столбца p-1, верхние k-2 клетки столбца p-2, и так далее. На рисунке показана зона сканирования для поля с k=3, n=5 и всех значений p.

Вам даны значения, которые вернул сканер для всех p, обозначим за b_p значение в столбце p. Будем называть таблицу, где для каждой клетки определено, находятся ли в ней полезные ископаемые, корректной, если для нее сканер возвращает верные значения. Например, если в примере выше сканер вернул значения [2,1,2,3,2], то одна из корректных таблиц может выглядеть следующим образом (клетки, содержащие ископаемые, обозначены черным треугольником):

По заданным значениям, которые вернул сканер, определите количество корректных таблиц и выведите остаток от деления этого количества на число $10^9 + 7$. Обратите внимание, что, возможно, сканер неисправен, и корректных таблиц вообще нет, тогда необходимо вывести 0.

Формат входных данных

В первой строке даны два числа n, k — количество столбцов и строк, соответственно $(1 \leqslant n \leqslant 200, 1 \leqslant k \leqslant 7)$.

Во второй строке даны n чисел b_1, b_2, \ldots, b_n — значения, которые вернул сканер $(0 \le b_i \le k^2)$.

Всероссийская олимпиада школьников по информатике 2024–2025 Региональный этап, день 1, 18 января 2025 года

Формат выходных данных

Выведите единственное число — остаток от деления количества различных корректных таблиц на $10^9 + 7$.

Система оценки

Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи и необходимых подзадач успешно пройдены.

Подзадача	Баллы	Ограничения	Необходимые подзадачи	Информация о проверке
1	7	$k \leqslant 2$		первая ошибка
2	9	$k \leqslant 3$	1	первая ошибка
3	9	$k \leqslant 4$	1, 2	первая ошибка
4	20	$k \leqslant 5$	1–3	первая ошибка
5	15	$k \leqslant 6$	1–4	первая ошибка
6	10	$1 \leqslant n \cdot k \leqslant 25$		первая ошибка
7	30	Без дополнительных ограничений	1-6	первая ошибка

Пример

стандартный ввод	стандартный вывод
5 3	24
2 1 2 3 2	