Circuitos Electrónicos Digitales

Tema 1 (2ª parte) Álgebra de Conmutación

Usted es libre de copiar, distribuir y comunicar públicamente la obra y de hacer obras derivadas siempre que se cite la fuente y se respeten las condiciones de la licencia Attribution-Share alike de Creative Commons.

Texto completo de la licencia: http://creativecommons.org/licenses/by-nc-sa/3.0/es/

Índice Álgebra de Conmutación

- Operadores lógicos básicos y puertas lógicas
- Propiedades y teoremas del Álgebra de Conmutación
 - Operadores OR, AND y NOT
- Funciones de conmutación
 - Representación mediante Tabla de Verdad, Kmapa y circuito lógico
- Formas normalizadas
 - Suma de productos
 - Productos de suma
- Formas canónicas
 - Suma de mintérminos
 - Producto de maxtérminos
- Funciones de conmutación incompletas
- Otras funciones lógicas

Álgebra de Boole

George Boole (1815-1864)

Un Álgebra de Boole es un sistema matemático definido para un conjunto de elementos B y los operadores +, •, • , que cumple los siguiente postulados:

Postulado/Teorema	<b, +="" ,="" ¯="" •=""></b,>	
P1: Postulado del cierre	Si $x, y \in B$, entonces $x + y \in B$	Si x, y ∈ B, entonces x • y ∈ B
P2: Ley de Identidad	x + 0 = x	x • 1 = x
P3: Ley Conmutativa	x + y = y + x	x • y = y • x
P4: Ley Distributiva	$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$	$x + (y \bullet z) = (x+y) \bullet (x+z)$
P5: Ley del Complemento	$x + \overline{x} = 1$	$x \bullet \overline{x} = 0$

Principio de Dualidad: si una expresión se cumple, la expresión que resulta de intercambiar + con \cdot y 0 con 1 también se cumple

Álgebra de Conmutación

Es un caso particular del Álgebra de Boole

- B = {0, 1}
- OPERADOR + (OR)
 (SUMA LÓGICA)

X	Y	X + Y
0	0	0
0	1	1
1	0	1
1	1	1

OPERADOR • (AND)
 (PRODUCTO LÓGICO)

•	OPERADOR	(NOT)
	(COMPLEMEN	TO)

X	Y	$X \cdot Y$
0	0	0
0	1	0
1	0	0
1	1	1

	_
X	X
0	1
1	0

Puerta AND

Puerta NOT (inversor)

Índice Álgebra de Conmutación

- Operadores lógicos básicos y puertas lógicas
- Propiedades y teoremas del Álgebra de Conmutación
 - Operadores OR, AND y NOT
- Funciones de conmutación
 - Representación mediante Tabla de Verdad, Kmapa y circuito lógico
- Formas normalizadas
 - Suma de productos
 - Productos de suma
- Formas canónicas
 - Suma de mintérminos
 - Producto de maxtérminos
- Funciones de conmutación incompletas
- Otras funciones lógicas

Postulado/Teorema	$; B = {0, 1}; + es OR; • es AND; es NOT$	
P2: Ley de Identidad	x + 0 = x	x • 1 = x
P3: Ley Conmutativa	x + y = y + x	x • y = y • x
P4: Ley Distributiva	$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$	$x + (y \bullet z) = (x+y) \bullet (x+z)$
P5: Ley del Complemento	$x + \overline{x} = 1$	$x \bullet \overline{x} = 0$

Postulado/Teorema	$; B = {0, 1}; + es OR; • es AND; es NOT$	
P2: Ley de Identidad	x + 0 = x	x • 1 = x
P3: Ley Conmutativa	x + y = y + x	x • y = y • x
P4: Ley Distributiva	$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$	$x + (y \bullet z) = (x+y) \bullet (x+z)$
P5: Ley del Complemento	$x + \overline{x} = 1$	$x \bullet \overline{x} = 0$
T1: Ley de Idempotencia	x + x = x	x • x = x

Postulado/Teorema	<b, +="" +,="" 1};="" ;="" and;="" b="{0," es="" not<="" or;="" th="" —="" •="" •,="" →=""></b,>	
P2: Ley de Identidad	x + 0 = x	x • 1 = x
P3: Ley Conmutativa	x + y = y + x	x • y = y • x
P4: Ley Distributiva	$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$	$x + (y \bullet z) = (x+y) \bullet (x+z)$
P5: Ley del Complemento	$x + \overline{x} = 1$	$x \bullet \overline{x} = 0$
T1: Ley de Idempotencia	x + x = x	x • x = x
T2: Ley de Elem. dominantes	x + 1 = 1	x • 0 = 0

Postulado/Teorema	<b, +="" +,="" 1};="" ;="" and;="" b="{0," es="" not<="" or;="" th="" —="" •="" •,="" →=""></b,>	
P2: Ley de Identidad	x + 0 = x	x • 1 = x
P3: Ley Conmutativa	x + y = y + x	$x \bullet y = y \bullet x$
P4: Ley Distributiva	$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$	$x + (y \bullet z) = (x+y) \bullet (x+z)$
P5: Ley del Complemento	$x + \overline{x} = 1$	$x \bullet \overline{x} = 0$
T1: Ley de Idempotencia	x + x = x	x • x = x
T2: Ley de Elem. dominantes	x + 1 = 1	x • 0 = 0
T3: Ley Involutiva	$\overline{(x)} = x$	

Postulado/Teorema	$; B = {0, 1}; + es OR; • es AND; -es NOT$	
P2: Ley de Identidad	x + 0 = x	x • 1 = x
P3: Ley Conmutativa	x + y = y + x	$x \bullet y = y \bullet x$
P4: Ley Distributiva	$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$	$x + (y \bullet z) = (x+y) \bullet (x+z)$
P5: Ley del Complemento	$x + \overline{x} = 1$	$x \bullet \overline{x} = 0$
T1: Ley de Idempotencia	x + x = x	x • x = x
T2: Ley de Elem. dominantes	x + 1 = 1	x • 0 = 0
T3: Ley Involutiva	$\overline{(\overline{x})} = x$	
T4: Ley de Absorción	x + (x•y) = x	x • (x+y) = x

Postulado/Teorema	<b, +="" +,="" 1};="" ;="" and;="" b="{0," es="" not<="" or;="" th="" —="" •="" •,="" →=""></b,>	
P2: Ley de Identidad	x + 0 = x	x • 1 = x
P3: Ley Conmutativa	x + y = y + x	$x \bullet y = y \bullet x$
P4: Ley Distributiva	$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$	$x + (y \bullet z) = (x+y) \bullet (x+z)$
P5: Ley del Complemento	$x + \overline{x} = 1$	$x \bullet \overline{x} = 0$
T1: Ley de Idempotencia	x + x = x	x • x = x
T2: Ley de Elem. dominantes	x + 1 = 1	x • 0 = 0
T3: Ley Involutiva	$\overline{(x)} = x$	
T4: Ley de Absorción	x + (x•y) = x	x • (x+y) = x
T5: Ley del Consenso	$x + (\overline{x} \bullet y) = x + y$	$x \bullet (\overline{x}+y) = x \bullet y$

Postulado/Teorema	$; B = {0, 1}; + es OR; • es AND; -es NOT$		
P2: Ley de Identidad	x + 0 = x	x • 1 = x	
P3: Ley Conmutativa	x + y = y + x	x • y = y • x	
P4: Ley Distributiva	$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$	$x + (y \bullet z) = (x+y) \bullet (x+z)$	
P5: Ley del Complemento	$x + \overline{x} = 1$	$x \bullet \overline{x} = 0$	
T1: Ley de Idempotencia	x + x = x	x • x = x	
T2: Ley de Elem. dominantes	x + 1 = 1	x • 0 = 0	
T3: Ley Involutiva	(<u>x</u>	$\overline{(\overline{x})} = x$	
T4: Ley de Absorción	x + (x•y) = x	x • (x+y) = x	
T5: Ley del Consenso	$x + (\overline{x} \bullet y) = x + y$	x • (x+ y) = x • y	
T6: Ley Asociativa	x + (y+z) = (x+y) + z	$x \bullet (y \bullet z) = (x \bullet y) \bullet z$	

Postulado/Teorema	<b, +,="" +<="" 1};="" ;="" b="{0," th="" •,="" →=""><th>+ es OR; • es AND ; — es NOT</th></b,>	+ es OR; • es AND ; — es NOT				
P2: Ley de Identidad	x + 0 = x	x • 1 = x				
P3: Ley Conmutativa	x + y = y + x	x • y = y • x				
P4: Ley Distributiva	$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$	$x + (y \bullet z) = (x+y) \bullet (x+z)$				
P5: Ley del Complemento	$x + \overline{x} = 1$	$x \bullet \overline{x} = 0$				
T1: Ley de Idempotencia	x + x = x	x • x = x				
T2: Ley de Elem. dominantes	x + 1 = 1	x • 0 = 0				
T3: Ley Involutiva	(X	(i) = x				
T4: Ley de Absorción	x + (x•y) = x	x • (x+y) = x				
T5: Ley del Consenso	$x + (\overline{x} \bullet y) = x + y$	x • (x +y) = x • y				
T6: Ley Asociativa	x + (y+z) = (x+y) + z	$x \bullet (y \bullet z) = (x \bullet y) \bullet z$				
T7: Ley de De Morgan	$\overline{x \bullet y} = \overline{x} + \overline{y}$	$\overline{x + y} = \overline{x} \bullet \overline{y}$				

Postulado/Teorema	$; B = \{0, 1\}; + es OR; \bullet es AND; -es NOT$								
P2: Ley de Identidad	x + 0 = x	x • 1 = x							
P3: Ley Conmutativa	x + y = y + x	x • y = y • x							
P4: Ley Distributiva	$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$	$x + (y \bullet z) = (x+y) \bullet (x+z)$							
P5: Ley del Complemento	$x + \overline{x} = 1$	$x \bullet \overline{x} = 0$							
T1: Ley de Idempotencia	x + x = x	x • x = x							
T2: Ley de Elem. dominantes	x + 1 = 1	x • 0 = 0							
T3: Ley Involutiva	(7)	(x) = x							
T4: Ley de Absorción	x + (x•y) = x	x • (x+y) = x							
T5: Ley del Consenso	$x + (\overline{x} \bullet y) = x + y$	$x \bullet (\overline{x}+y) = x \bullet y$							
T6: Ley Asociativa	x + (y+z) = (x+y) + z	$x \bullet (y \bullet z) = (x \bullet y) \bullet z$							
T7: Ley de De Morgan	$\overline{x \bullet y} = \overline{x} + \overline{y}$	$\overline{x + y} = \overline{x} \bullet \overline{y}$							
T8: Ley de De Morgan gen.	x • y • z •= x + y + z +	x + y + z + = x • y • z •							

Postulado/Teorema	$\langle B, +, \bullet, - \rangle$; B = $\langle 0, 1 \rangle$; + es OR; • es AND; es NOT								
P2: Ley de Identidad	x + 0 = x	x • 1 = x							
P3: Ley Conmutativa	x + y = y + x	$x \bullet y = y \bullet x$							
P4: Ley Distributiva	$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$	$x + (y \bullet z) = (x+y) \bullet (x+z)$							
P5: Ley del Complemento	$x + \overline{x} = 1$	$x \bullet \overline{x} = 0$							
T1: Ley de Idempotencia	x + x = x	x • x = x							
T2: Ley de Elem. dominantes	x + 1 = 1	x • 0 = 0							
T3: Ley Involutiva	$\frac{1}{(\overline{x})} = x$								
T4: Ley de Absorción	x + (x•y) = x	x • (x+y) = x							
T5: Ley del Consenso	$x + (\overline{x} \bullet y) = x + y$	x • (x+ y) = x • y							
T6: Ley Asociativa	x + (y+z) = (x+y) + z	$x \bullet (y \bullet z) = (x \bullet y) \bullet z$							
T7: Ley de De Morgan	$\overline{x \bullet y} = \overline{x} + \overline{y}$ $\overline{x + y} = \overline{x} \bullet \overline{y}$								
T8: Ley de De Morgan generalizada	x • y • z •= x + y + z +	$\overline{x + y + z +} = \overline{x} \bullet \overline{y} \bullet \overline{z} \bullet$							
T9: Ley del consenso generalizado	$x \bullet y + \overline{x} \bullet z + y \bullet z = x \bullet y + \overline{x} \bullet z$	$(x+y)\bullet(\overline{x+z})\bullet(y+z)=(x+y)\bullet(\overline{x+z})$							

Índice Álgebra de Conmutación

- Operadores lógicos básicos y puertas lógicas
- Propiedades y teoremas del Álgebra de Conmutación
 - Operadores OR, AND y NOT
- Funciones de conmutación
 - Representación mediante Tabla de Verdad, Kmapa y circuito lógico
- Formas normalizadas
 - Suma de productos
 - Productos de suma
- Formas canónicas
 - Suma de mintérminos
 - Producto de maxtérminos
- Funciones de conmutación incompletas
- Otras funciones lógicas

Variables y funciones de conmutación

- Variable binaria (x, y, z, x_1 , x_2 , etc): es una variable que sólo puede tomar valores binarios (0 ó 1)
- Función de Conmutación de n variables:

$$f(x_1, x_2....., x_n)$$

Asocia un valor binario (0 ó 1) a cada una de las 2ⁿ combinaciones que pueden tomar sus n variables. Estos valores pueden representarse mediante una **Tabla de Verdad**

- Las funciones de conmutación son la base del diseño de los circuitos digitales
 - las variables son las entradas del circuito
 - Las funciones son la salidas del circuito

Tabla de verdad de una función de n variables

Tabla 2.12: Tabla de verdad de una función genérica de n variables

$x_1x_2\dots x_n$	$f(x_1, x_2, \dots, x_n)$
000	$f(0,0,\ldots,0)$
001	$f(0,0,\ldots,1)$
111	$f(1,1,\ldots,1)$

- Representan los 2ⁿ valores que pueden tomar las n variables (x1, x2 xn) y los correspondientes valores de la función para cada uno de esos valores
- Una función es completa (o completamente especificada) si está definido el valor de la función para todas las combinaciones de los valores de las variables

Expresiones de conmutación

- Expresión algebraica que relaciona variables binarias utilizando operadores lógicos AND (•), OR (+), NOT (, '), el signo = y los elementos unitarios 0 y 1
- Precedencia de sobre +

$$-x + (y \bullet z') = x + y \bullet z'$$

• "." se puede ser omitir

$$- x + y \bullet z' = x + yz'$$

- Aplicando las propiedades y teoremas del Álgebra de Conmutación, puedo obtener infinitas expresiones equivalentes (todas representan a la misma función)
- Una función de conmutación tiene infinitas expresiones algebraicas que la representan. Estaremos interesados en encontrar la expresión "más reducida posible" para conseguir el circuito mínimo

Representación de funciones de conmutación (Ejemplo)

Diagrama de bloques

хуz	f
000	0
0 0 1	0
010	0
011	1
100	0
101	1
110	1
111	1

x y	00	01	11	10							
z 0	0	0	1	0							
1	0	1	1	1							
f											
	K-mapa										

Tabla de Verdad

Expresión algebraica

Código Verilog

Mapas de Karnaugh

El mapa de Karnaugh (Kmapa) da la misma información que la TV, pero ordena los mintérminos y maxtérminos con propiedades muy interesantes:

Ejemplo de ciclo de diseño del circuito con ayuda del programa Logisim

Índice Álgebra de Conmutación

- Operadores lógicos básicos y puertas lógicas
- Propiedades y teoremas del Álgebra de Conmutación
 - Operadores OR, AND y NOT
- Funciones de conmutación
 - Representación mediante Tabla de Verdad, Kmapa y circuito lógico
- Formas normalizadas
 - Suma de productos
 - Productos de suma
- Formas canónicas
 - Suma de mintérminos
 - Producto de maxtérminos
- Funciones de conmutación incompletas
- Otras funciones lógicas

Formas normales: SP y PS

Definiciones

- Literal: una variable binaria que aparece complementada o sin complementar en una expresión de conmutación
- Término producto: un literal o producto de literales. Ej. xyz'
- Término suma: un literal o suma de literales. Ej. x + y + z'
- Cualquier función algebraica puede representarse en forma normal de suma de productos (suma de términos producto)

```
Ejemplo: f(x, y, z) = xy + yz' + x'
```

 Cualquier función algebraica puede representarse en forma normal de producto de sumas (producto de términos suma)

Ejemplo:
$$f(x, y, z) = (x + y)y(z' + x')$$

Cómo obtener expresiones normales (SP y PS)

¿Cómo obtener expresiones normales?

- De forma algebraica: aplicando las leyes de De Morgan y la propiedad distributiva, y simplificando si se puede
- De forma gráfica: mediante el K-mapa (próximo tema)

Ejemplos:

$$f(x,y,z) = x(y + yz') + x' = xy + xyz' + x' = xy + x' = x' + y$$

$$f(a,b,c) = \overline{(a+bc)} + b = \overline{a} \bullet \overline{bc} + b = \overline{a} \bullet (\overline{b} + \overline{c}) + b = \overline{a}\overline{b} + \overline{a}\overline{c} + b$$
$$= \overline{a}b + \overline{a}\overline{c} = \overline{a}(b + \overline{c})$$

Índice Álgebra de Conmutación

- Operadores lógicos básicos y puertas lógicas
- Propiedades y teoremas del Álgebra de Conmutación
 - Operadores OR, AND y NOT
- Funciones de conmutación
 - Representación mediante Tabla de Verdad, Kmapa y circuito lógico
- Formas normalizadas
 - Suma de productos
 - Productos de suma
- Formas canónicas
 - Suma de mintérminos
 - Producto de maxtérminos
- Funciones de conmutación incompletas
- Otras funciones lógicas

Formas canónicas: suma de mintérminos $\Sigma(mi)$

• Mintérmino de n variales: cada uno de los 2ⁿ términos producto que pueden formarse conteniendo las n variables (complementadas o sin complementar).

Por ejemplo, para 3 variables:

$$si \ x = 0 \xrightarrow{\text{"da lugar a..."}} \cdot \bar{x}$$
$$si \ x = 1 \xrightarrow{\text{"da lugar a..."}} \cdot x$$

a b c	mi (mintérminos)
0 0 0	$\overline{a} \overline{b} \overline{c} = m0$
0 0 1	$\overline{a} \ \overline{b} \ c = m1$
0 1 0	\overline{a} b \overline{c} = m2
0 1 1	\overline{a} b $c = m3$
100	$a \ \overline{b} \ \overline{c} = m4$
101	$a \overline{b} c = m5$
110	$a \ b \overline{c} = m6$
111	a b c = m7

 Cualquier función de comutación puede ponerse en forma canónica de suma de los mitérminos correspondientes a los "unos" de la función

$$si \ x = 0 \xrightarrow{\text{"da lugar a..."}} \cdot \bar{x}$$
$$si \ x = 1 \xrightarrow{\text{"da lugar a..."}} \cdot x$$

Ejemplo: suma de mintérminos $\Sigma(mi)$

Siempre es posible obtener una expresión para una función combinando NOT, AND y OR.

Método:

- 1. Se obtiene la tabla de verdad de la función
- 2. Se suman (OR) todos los mintérminos correspondientes a los "unos" de la función.

El resultado es una expresión de la función en **forma** canónica de suma mintérminos.

abc	f
000	0
0 0 1	0
010	0
0 1 1	1
100	0
101	1
110	1
111	1

$$f(a,b,c) = m3 + m5 + m6 + m7 = \sum(3,5,6,7) =$$
$$= \overline{a} b c + a \overline{b} c + a b \overline{c} + a b c$$

(Es una expresión canónica, no mínima)

Formas canónicas: producto de Maxtérminos ∏(Mi)

- Maxtérmino de n variales: cada uno de los 2ⁿ términos suma que pueden formarse conteniendo las n variables (complementadas o sin complementar).
- Por ejemplo, para 3 variables:

$$si \ x = 0 \xrightarrow{\text{"da lugar a..."}} + x$$
$$si \ x = 1 \xrightarrow{\text{"da lugar a..."}} + \bar{x}$$

a b c	Mi (Maxtérminos)
0 0 0	(a + b + c) = M0
0 0 1	$(a + b + \overline{c}) = M1$
0 1 0	$(a + \overline{b} + c) = M2$
0 1 1	$(a + \overline{b} + \overline{c}) = M3$
100	$(\overline{a} + b + c) = M4$
101	$(\overline{a} + b + \overline{c}) = M5$
110	$(\overline{a} + \overline{b} + c) = M6$
111	$(\overline{a} + \overline{b} + \overline{c}) = M7$

 Cualquier función de comutación puede ponerse en forma canónica de producto de maxtérminos correspondientes a los "ceros" de la función

$$si \ x = 0 \xrightarrow{\text{"da lugar a..."}} + x$$
$$si \ x = 1 \xrightarrow{\text{"da lugar a..."}} + \bar{x}$$

Ejemplo: producto de maxtérminos ∏(Mi)

Siempre es posible obtener una expresión para una función combinando NOT, AND y OR.

Método:

- 1. Se obtiene la tabla de verdad de la función
- 2. Se multiplican (AND) todos los maxtérminos correspondientes a los "ceros" de la función.

El resultado es una expresión de la función en **forma** canónica de producto de maxtérminos.

abc	f
000	0
0 0 1	0
010	0
0 1 1	1
100	0
101	1
110	1
111	1

$$f(a,b,c) = M0 \cdot M1 \cdot M2 \cdot M4 = \prod (0,1,2,4) =$$
$$= (a+b+c)(a+b+\overline{c})(a+\overline{b}+c)(\overline{a}+b+c)$$

(Es una expresión canónica, no mínima)

Índice Álgebra de Conmutación

- Operadores lógicos básicos y puertas lógicas
- Propiedades y teoremas del Álgebra de Conmutación
 - Operadores OR, AND y NOT
- Funciones de conmutación
 - Representación mediante Tabla de Verdad, Kmapa y circuito lógico
- Formas normalizadas
 - Suma de productos
 - Productos de suma
- Formas canónicas
 - Suma de mintérminos
 - Producto de maxtérminos
- Funciones de conmutación incompletas
- Otras funciones lógicas

Funciones incompletamente especificadas

 Son funciones que no tienen definido un valor concreto para algunas combinaciones de los valores de sus entradas.

Ejemplo:

Obtenga la tabla de verdad de un circuito que genere salida f =1 cuando los cuatro bits de un dígito BCD correspondan a un número múltiplo de 3.

x3 x2 x1 x0	f
0 0 0 0	1
0 0 0 1	0
0 0 1 0	0
0 0 1 1	1
0 1 0 0	0
0 1 0 1	0
0 1 1 0	1
0 1 1 1	0
1 0 0 0	0
1 0 0 1	1
1 0 1 0	x
1 0 1 1	x
1 1 0 0	x
1 1 0 1	x
1 1 1 0	x
1111	x

Índice Álgebra de Conmutación

- Operadores lógicos básicos y puertas lógicas
- Propiedades y teoremas del Álgebra de Conmutación
 - Operadores OR, AND y NOT
- Funciones de conmutación
 - Representación mediante Tabla de Verdad, Kmapa y circuito lógico
- Formas normalizadas
 - Suma de productos
 - Productos de suma
- Formas canónicas
 - Suma de mintérminos
 - Producto de maxtérminos
- Funciones de conmutación incompletas
- Otras funciones lógicas

XY	Fo	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
00	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
01	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
10	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
11	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

XY	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
00	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
01	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
10	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
11	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

XY	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
00	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
01	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
10	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
11	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

XY	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
00	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
01	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
10	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
11	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

AND

NAND

XY	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
00	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
01	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
10	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
11	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
		AND			X	1 ,	Y	OR	NOR		1-	<u>_</u>	1 5	_	NAND	

ΧY	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
00	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
01	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
10	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
11	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
		AND		X		Y	1	OR	NOR	1	Y		X		NAND	
					Е	XOF	۲			E	EXNO	OR				

XY	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
00	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
01	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
10	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
11	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	CERO	AND)	Х		Y	EXOR	OR	NOR	EXNOP	Y		X		NAND	UNO

Símbolos de puertas lógicas

Nombre	Símbolo gráfico	Símbolo IEEE
AND		&
OR	→	
NOT	->>-	<u> </u>
BUFFER o Seguidor	\rightarrow	_1_
NAND	\implies	&_>-
NOR	⊅>-	≥1 ⊃-
EXOR		=1
NEXOR o XNOR		=1 0-