Kinematic Control

Topics

- Kinematic Control
 - Setpoint Control
 - Trajectory Following
 - Open-loop vs Closed-loop

Complementary Reading: J.J. Craig, Introduction to Robotics, Chapter 5,9.

Setpoint vs Trajectory Control

Control can be defined as problem of regulating a setpoint (setpoint control) or following a trajectory (trajectory control).

Setpoint control

$$x_{ref} = constant$$

The input to the controller is the end-goal (*setpoint*). A vector is drawn from current position to the setpoint, and the robot moves as quickly as possible to close that gap to the setpoint.

Trajectory control

$$x_{ref}(t) = f(x_{end}, x_0, t)$$

The input to the controller is a *trajectory* described either as a continuous function (rare) or sampled path (typical) that connects the start to the goal.

Local Control: Open-Loop Setpoint Control

High level premise:

Assume you have an accurate model of your robot x = f(q) such that by setting q you can expect x to match nearly-perfectly to real life.

Therefore, given x_{ref} to track,

- 1. Use inverse kinematics on x_{des} to find q_{des}
- 2. Move joint i to $q_i \forall i$ under some single-joint-angle control loop.

Proportional – Integral – Derivative (PID) Controller

Used in almost all actuator and local control applications.

Continuous:
$$u(t) = K_p e(t) + K_i \int_0^t e(t) dt + K_d \dot{e}(t)$$

Discrete:
$$u[k] = K_p e[k] + K_i \sum_{i=0}^k e[i] + K_d (e[k] - e[k-1])$$

where
$$e[k] = q_{ref}[k] - q[k]$$

- K_p , K_i , K_d are constants
- u typically input to actuator (i.e. current or voltage)
- Can apply PID to vectors, i.e. e(t) = [x(t), y(t), z(t)] per axis

Intuition on PID control:

- Controlled spring-like behavior pulling x closer to x_{ref} with K_p
- Controlled damping with K_d
- Controlled zeroing of error with K_i

Local Control: Open-Loop Trajectory Control

Similar to setpoint control, but now x is a function of time.

1. Given a trajectory x(t) in task space

2. Interpolate Trajectory into small segments, $x(t) \rightarrow x_i$ for i = 1 ... K

For open-loop trajectory control,

- 1. $x_{ref}(t)$ is sampled at time t_k , i.e. x[k]
- 2. Use inverse kinematics on x[k] to find q[k]
 - Can use Jacobian inverse or seed an IK solver with q[k-1] to find $q_{ref}[k]$
- 3. Move joint *i* to $q_i \forall i$ under some single-joint-angle control loop.

Remarks on *open-loop* control strategies:

- No feedback, so no idea if you are moving correctly towards the Cartesian setpoint
- You must have a very accurate model x = f(q)
- Works for high-rigidity robots

Local Control: Closed-Loop Setpoint Control

Presumes that you have a way to measure your output cartesian state x so it can correct for model inaccuracies or disturbances in your system.

Therefore, given $x_{ref} \in \mathbb{R}^6$ to track,

- 1. Find $e = x_{ref} x$ to determine error from target
- 2. Convert e to a desired step towards target e.g., assume just a P-controller. Then, $\delta x = K\Delta x$ where

$$K = diag(k_x, k_y, k_z, k_{\omega x}, k_{\omega y}, k_{\omega z})$$

3. Calculate $\delta x = J^{\dagger} \delta q$, and move actuators δq amount in this case PID control describes a sub-stepping strategy.

Local Control: Closed-Loop Trajectory Control

Also called **Resolved Motion Rate Control**

- 1. Measure your current position *x*
- 2. For the desired position x_{k+1} at time t = k, find the step (error) $\delta x = x_{k+1} x$.
- 3. Compute J(q) and its pseudoinverse, $J^{\dagger}(q)$ for the current q.
- 4. Take a step $\delta q = J^{\dagger}(q)\delta x$ in your actuators to move x towards x_{k+1} .
- 5. Let k = k + 1. Repeat step 2.

Thought Questions:

- 1. Assume your Jacobian is modelled incorrectly;
 - Will tracking converge?

2. If you were to learn a system model, would it be better to learn a Jacobian function, or to learn a parametric form of the kinematics and then derive the Jacobian?

Final Note: Interpolation for Orientation Trajectories

- Interpolation of a position vector is trivial
 - Use linear interpolation of each axis x, y, z
- Interpolation of an orientation vector is non-trivial
 - Linear interpolation of θ_x , θ_y , θ_z does not produce an expected interpolated path. Reasoning: interpolation of orientations involves walking on a curved surface (i.e. unit ball in SE(3)). Path is not a straight line, so linear interpolation produces incorrect results.
- Need to use quaternions (axis angle representation):
 - 1. Let $q_a = quaternion(\theta_{ax}, \theta_{ay}, \theta_{az})$ and $q_b = quaternion(\theta_{bx}, \theta_{by}, \theta_{bz})$ where $q_a, q_b \in \mathbb{R}^4$
 - 2. Apply interpolation function SLERP:

$$q(t) = SLERP(q_a, q_b, t) = \frac{q_a \sin((1-t)\theta/2) + q_b \sin(t\theta/2)}{\sin(\theta/2)}$$

3. $\theta(t) = euler(q(t))$