1

Assignment 15

M Pavan Manesh - EE20MTECH14017

Download the latex-tikz codes from

https://github.com/pavanmanesh/EE5609/tree/master/Assignment15

1 Problem

Let n be a positive integer, and let V be the space of polynomials over \mathbb{R} which have degree at most n (throw in the 0-polynomial). Let \mathbf{D} be the differentiation operator on V. What is the minimal polynomial for \mathbf{D} ?

2 **DEFINITIONS**

Characteristic Polynomial	
	$p\left(x\right) = \left x\mathbf{I} - \mathbf{A}\right $
Minimal Polynomial	Minimal polynomial $m(x)$ is the smallest factor of characteristic polynomial $p(x)$ such that,
	$m(\mathbf{A}) = 0$
	Every root of characteristic polynomial should be the root of minimal polynomial

TABLE 1: Definitions and theorem used

3 Solution

Given	V is the space of polynomials over $\mathbb R$ which have	e degree at most n.
Matrix Representation	The basis for the space V is	
	$\mathcal{B} = \left\{1, x, x^2, \dots, x^n\right\}$	(3.0.1)
	Given that D is the differentiation operator. So,	
	$\mathbf{D}(1) = 0$	(3.0.2)
	$\mathbf{D}(x) = 1$	(3.0.3)
	$\mathbf{D}(x^n) = nx^{n-1}$	(3.0.4)
	The vectors of differentiation operator with respec	ct to basis $\mathcal B$
	$[\mathbf{D}(1)]_{\mathcal{B}} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}_{(n+1)\times 1}, [\mathbf{D}(x)]_{\mathcal{B}} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}_{(n+1)\times 1} \dots [\mathbf{D}(x')]_{\mathcal{B}}$	$[n]_{\mathcal{B}} = \begin{pmatrix} 0 \\ \vdots \\ n \\ 0 \end{pmatrix}_{(n+1) \times 1}$ $(3.0.5)$
	The matrix representation can be written as:	
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 2 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & n \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$	(3.0.6)
Characteristic polynomial	$\begin{vmatrix} 0 & 0 & 0 & \dots & n \\ 0 & 0 & 0 & \dots & x \end{vmatrix}$	(3.0.7)
	It is equal to the product of diagonal entries.	
	$p\left(x\right) = x^{n+1}$	(3.0.8)
Minimal Polynomial	The minimal polynomial of A can be any of x , x^2	x^{2}, \ldots, x^{n+1} such that,
	$m\left(\mathbf{A}\right)=0$	(3.0.9)

HVn	lanation
LIAD	lanation

Let P(n): Minimum polynomial of $\mathbf{D}=x^{n+1}$ i.e $\mathbf{A}^{n+1}=0$ For n=1

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \tag{3.0.10}$$

$$\mathbf{A^2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \tag{3.0.11}$$

So,P(1) is true.

Assume P(k) holds for $1 \le k \le n$.

$$\mathbf{A}_{k} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 2 & \dots & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & \dots & k \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}_{(k+1 \times k+1)} \implies \mathbf{A}_{k}^{k+1} = \mathbf{0} \quad (3.0.12)$$

We need to show that P(k + 1) is true.

$$\mathbf{A}_{k+1} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & k & 0 \\ 0 & 0 & 0 & \dots & 0 & k+1 \\ 0 & 0 & 0 & \dots & 0 & 0 \end{pmatrix}_{(k+2\times k+2)}$$
(3.0.13)

Expressing in terms of block matrices

$$\mathbf{A}_{k+1} = \begin{pmatrix} \mathbf{A}_k & \mathbf{x} \\ \mathbf{0}_{1 \times k+1} & 0 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ k+1 \end{pmatrix}_{k+1 \times 1}$$
(3.0.14)

Finding
$$\mathbf{A}_{k+1}^{k+2}$$

$$\mathbf{A}_{k+1}^2 = \begin{pmatrix} \mathbf{A}_k & \mathbf{x} \\ \mathbf{0} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{A}_k & \mathbf{x} \\ \mathbf{0} & 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A}_k^2 & \mathbf{A}_k \mathbf{x} \\ 0 & 0 \end{pmatrix}$$
(3.0.15)

$$\mathbf{A}_{k+1}^{3} = \begin{pmatrix} \mathbf{A}_{k}^{2} & \mathbf{A}_{k}\mathbf{x} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{A}_{k} & \mathbf{x} \\ \mathbf{0} & 0 \end{pmatrix} = \begin{pmatrix} \mathbf{A}_{k}^{3} & \mathbf{A}_{k}^{2}\mathbf{x} \\ 0 & 0 \end{pmatrix}$$
(3.0.16)

$$\mathbf{A}_{k+1}^{k+2} = \begin{pmatrix} \mathbf{A}_k^{k+2} & \mathbf{A}_k^{k+1} \mathbf{x} \\ 0 & 0 \end{pmatrix}$$
 (3.0.17)

From (3.0.12), We know that $\mathbf{A}_{k}^{k+1} = \mathbf{0}$

$$\implies \mathbf{A}_{k+1}^{k+2} = \mathbf{0} \qquad (3.0.18)$$

So,P(k + 1) is true.

Conclusion	From above,by using the principle of induction we can say that the minimal polynomial is	
	$x^{n+1} (3.0.19)$	

TABLE 2: Finding minimal polynomial