GEL-19964 – Examen partiel #1 (6 octobre 2006): réponses

Question 1 (40 pts)

a) (15 pts) $y[n] = \begin{cases} x[n/3], & \text{pour } n \text{ multiple de } 3 \\ 0 & \text{autrement} \end{cases}$; système variant – par exemple, si on décale x[n] de 1, y[n] est retardé de 3.

b) (10 pts) Le système n'est pas linéaire à cause de la constante A

c) (15 pts) Le système est stable (
$$\sum_{n=-\infty}^{\infty} |h[n]| = 1/(1-|a|) < \infty$$
) et causal ($h[n] = 0$ pour $n < 0$)

Question 2 (40 pts)

a) (15 pts) pour
$$x_1[n] = \{1, 1, 5, 5\}$$
, $2 \le n \le 5$., $y_1[n] = \{-1, 1, -4, 4, 5, -5\}$ $2 \le n \le 7$ pour $x_2[n] = \{5, 5, 12, 12\}$, $6 \le n \le 9$., $y_2[n] = \{-5, 5, -7, 7, 12, -12\}$ $6 \le n \le 11$ et $y[n] = y_1[n] + y_2[n] = \{-1, 1, -4, 4, 0, 0, -7, 7, 12, -12\}$, $2 \le n \le 11$

b) (13 pts)
$$G(e^{j\omega}) = 2(1-\cos\omega)^{-2\pi}$$

c) (12 pts) On a $H\left(e^{j\omega}\right) = e^{-j\omega}G\left(e^{j\omega}\right)$. Pour une entrée sinusoïdale réelle, la sortie est

$$b[n] = \left| H(e^{j2\pi/3}) \right| \cos((2\pi/3)n + 0.1 + \arg(H(e^{j2\pi/3}))) = 3\cos(2\pi(n-1)/3 + 0.1)$$

Question 3 (20 pts)

a) (10 pts)
$$x_k(t) = \cos(2\pi \times (10 + k f_T) \times t) = \cos(2\pi \times (10 + k 80) \times t)$$
 et

$$x_k[n] = \cos(2\pi \times (10 + k80) \times n/80) = \cos(2\pi \times (.125 + k) \times n) = \cos(0.25\pi n + 2\pi kn) = \cos(0.25\pi n)$$

b) (10 pts)
$$Y(e^{j\omega}) = \text{convolution de la transformée de } \cos(0.25\pi n) \text{ avec} \quad H(e^{j\omega}) = \frac{\sin(50.5\omega)}{\sin(0.5\omega)}$$

