Задача 1. Пусть f – отображение пространства R^n в пространство R^m . Доказать, что для непрерывности отображения f необходимо и достаточно, чтобы выполнялось одно из условий:

- прообраз каждого замкнутого множества есть замкнутое множество;
- прообраз каждого открытого в R^m множества есть множество, открытое в R^n ;

Задача 2. Построить взаимно однозначное непрерывное отображение f, для которого обратное отображение не является непрерывным.

Задача 3. Построить отображение отрезка $0 \le x \le 1$ на квадрат $0 \le x \le 1$, $0 \le y \le 1$.

Задача 4. Кривая Пеано. Построить непрерывное отображение отрезка $0 \le x \le 1$ на квадрат $0 \le x \le 1$, $0 \le y \le 1$.

Задача 5. Доказать, что не существует взаимно однозначного непрерывного отображения отрезка $0 \le x \le 1$ на квадрат $0 \le x \le 1$, $0 \le y \le 1$, т.е. что отрезок и квадрат не гомеоморфны.

Задача 6. Дана функция $f(x; y) = x + y^2 + \ln(x + y^2)$. Найти:

- Найти частные производные;
- Доказать, что функция дифференцируема в точке (0; 1);
- Найти *df* (0; 1).

Задача 7. Найти частные производные первого порядка:

- $f = \sin \frac{x}{y} \cos \frac{y}{x}$;
- $\bullet \ f = e^x \left(\cos y + x \sin y\right);$
- $\bullet \ f = \left(1 + \sin^2 x\right)^{\ln y}$

Задача 8. Найти частные производные первого порядка функции в данной точке:

•
$$f = \ln\left(1 + \frac{x}{y}\right)$$
, $(1; 2)$;

•
$$f = xye^{\sin \pi xy}$$
, $(1; 1)$;

•
$$f = (2x + y)^{2x+y}$$
, $(1; -1)$

Задача 9. Вычислить:

•
$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}$$
: $f = \ln(x^2 + xy + y^2)$

•
$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$$
: $f = (x - y)(y - z)(z - x)$

$$\bullet \sum_{i=1}^{4} \frac{\partial f}{\partial x_i}, \quad f = \frac{x_1 - x_2}{x_3 - x_4} + \frac{x_4 - x_1}{x_2 - x_3}$$

Задача 10. Решить систему уравнений $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0, \quad f = xy\sqrt{9 - x^2 - y^2}.$