

GUÍA MÓDULO 10: Integridad de una señal, Compatibilidad electromagnética

Este módulo es una continuación al módulo 9. Habiendo visto los fenómenos teóricos de propagación se amplía el análisis a nuevos problemas (como el efecto pelicular), y cómo la distorsión de fase y amplitud produce una degradación en la señal digital, no sólo de amplitud, sino también de interacción temporal sobre señales anteriores v posteriores.

Esta degradación puede ser parcialmente compensada antes de transmitirla o luego de recibirla, y los efectos observados mediante técnicas como los "diagrama de ojo". Pero el efecto puede ser previsto mediante simulación electromagnética, y de allí la importancia de modelos (IBIS).

También se analizan los efectos de interacción del sistema sobre el mundo externo (emisión) y del mundo externo sobre el sistema (susceptibilidad electromagnética), que hacen a la compatibilidad electromagnética. Para el caso de emisión se describen ciertas técnicas de mejora (dithering).

Actividad 10.1 (Entrega obligatoria)

- 1. Analice las alternativas de compensación por pre-énfasis ofrecidas en las FPGAs de ALTERA y descríbalas brevemente.
- 2. Analice información cuantitativa sobre la mejora en la tasa de errores de bit (BER) sin/con el uso de preénfasis y sin/con el uso de DFE y descríbala brevemente.

Utilice el recurso <u>Actividad 10.1</u> para enviar

Actividad 10.2 (Entrega obligatoria)

- 1. Describir las técnicas para disminuir la susceptibilidad a señales conducidas de baja frecuencia
- 2. Describir las técnicas para disminuir la susceptibilidad a señales conducidas de alta frecuencia
- 3. Describir las técnicas para disminuir la emisión de señales de alta frecuencia

Utilice el recurso Actividad 10.2 para enviar

Consideraciones finales

Los problemas de integridad de señal son otras de las fuentes potenciales de errores en sistemas digitales. La simple consideración de esos efectos -prevención- permite reducir los requerimientos o incluso eliminar la necesidad de emplear otras técnicas, como las de corrección de errores, con consiguientes ventajas de confiabilidad y de complejidad (y por ende de costo). A su vez, la reducción de EMI/EMC facilita el cumplimiento de las exigencias de mercados como la Unión Europea o USA, al permitir la más fácil coexistencia de diferentes sistemas.

Bibliografía sugerida:

- http://www.ti.com/lit/an/snla046/snla046.pdf
- http://www.altera.com/literature/an/an602.pdf
- http://dspace.mit.edu/bitstream/handle/1721.1/4282/RLE-TR-461-04744914.pdf?sequence=1
- http://www.iec.ch/emc/basic emc/basic emc immunity.htm