The Welford's Online Algorithm for Running Variance Compute

To compute the absolute mean and variance for every layer weights' gradients updated per epoch, we use the Welford's online algorithm.

Computing the Running Absolute Mean of the Weights' Gradient Per Layer

The n-th running absolute mean for the i-th layer gradients mean weights' is

$$\bar{x}_{n,i} = \bar{x}_{n-1,i} + \frac{x_{n,i} - \bar{x}_{n-1,i}}{n}$$

where $\bar{x}_{n-1,i}$ is the previous running absolute mean for the layer i, n is the batch number (i.e. how many times we have updated the variance) and $x_{n,i}$ is the absolute mean of the weights' gradients of the layer i. Also, when n = 1, $\bar{x}_{n-1,i} = 0$.

Computing the Running Variance of the Weights Gradient Per Layer

The n-th running variance for the i-th layer weights' gradients absolute mean is

$$s_{n,i}^2 = \frac{M_{2,n,i}}{n-1}$$

where

$$M_{2,n,i} = M_{2,n-1,i} + (x_{n,i} - \bar{x}_{n-1,i}) \times (x_{n,i} - \bar{x}_{n,i})$$

Also, when n = 1, $M_{2,n,i} = 0$ and $s_{n,i}^2 = 0$.

Exemple of Compute

Having the following two layers gradients weights' update

$$layer_1 = [0.24, 0.00, -0.15]$$

 $layer_2 = [-0.16, 0.25, 0.00]$

Thus, if n = 1

$$\bar{x}_{1,1} = 0 + \frac{0.13 - 0}{1} = 0.13$$

$$\bar{x}_{1,2} = 0 + \frac{0.13\bar{6} - 0}{1} = 0.13\bar{6}$$

$$s_{1,1}^2 = 0$$

$$s_{1,2}^2 = 0$$

For n=2, assuming the update weights' gradients vectors are

$$\begin{aligned} \text{layer}_1 &= [0.24, 0.00, -0.15] \times 2 = [0.48, 0.00, -0.30] \\ \text{layer}_2 &= [-0.16, 0.25, 0.00] \times 2 = [-0.32, 0.50, 0.00] \end{aligned}$$

the running means and variances are

$$\bar{x}_{2,1} = 0.13 + \frac{0.26 - 0.13}{2} = 0.195$$

$$\bar{x}_{2,2} = 0.13\bar{6} + \frac{0.27\bar{3} - 0.13\bar{6}}{2} = 0.205$$

$$s_{2,1}^2 = \frac{0 + (0.26 - 0.13) \times (0.26 - 0.195)}{2 - 1} = 0.00845$$

$$s_{2,2}^2 = \frac{0 + (0.27\bar{3} - 0.13\bar{6}) \times (0.27\bar{3} - 0.205)}{2 - 1} = 0.00933889$$

For n = 3, assuming the update weights' gradients vectors are

$$\begin{aligned} \text{layer}_1 &= [0.24, 0.00, -0.15] \times 3 = [0.72, 0.00, -0.45] \\ \text{layer}_2 &= [-0.16, 0.25, 0.00] \times 3 = [-0.48, 0.75, 0.00] \end{aligned}$$

the running means and variances are

$$\begin{split} \bar{x}_{3,1} &= 0.195 + \frac{0.39 - 0.195}{3} = 0.26 \\ \bar{x}_{3,2} &= 0.205 + \frac{0.41 - 0.205}{3} = 0.27\bar{3} \\ s_{3,1}^2 &= \frac{0.00845 + (0.39 - 0.195) \times (0.39 - 0.26)}{3 - 1} = 0.0169 \\ s_{3,2}^2 &= \frac{0.00933889 + (0.41 - 0.205) \times (0.41 - 0.27\bar{3})}{3 - 1} = 0.018677778 \end{split}$$