Global simulation of thermal torques

Sabina Sagynbayeva , Yan-Fei Jiang(姜燕飞) , Zhaohuan Zhu(朱照寰), And Philip J. Armitage , A

¹Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA
 ²Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
 ³Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4002, USA

ABSTRACT

1. INTRODUCTION

We follow up Hankla et al. (2020):)

2. METHODS

2.1. Disk model

Is entropic disk model from Fung et al. (2017). The simulations are performed in spherical coordinates, where r, ϕ , and θ denote the usual radial, azimuthal, and polar coordinates, respectively.

$$\Phi = -\frac{G(M_* + M_p)}{1 + q} \left[\frac{1}{r} + \frac{q}{\sqrt{r^2 + R_p^2 - 2rR_p \cos \phi' + \epsilon^2}} - \frac{qR \cos \phi'}{R_p^2} \right]$$
(1)

In eq. 1, $q = M_p/M_*$ is the mass ratio of a protoplanet to a star, ϵ is the smoothing length of the planet's potential, and $\phi' = \phi - \phi_p$ denotes the azimuthal separation from the planet. GM = 1, $R_p = 1$.

Keplerian velocity $v_k=\sqrt{\frac{GM}{r}}$ and keplerian frequency $\Omega_k=\sqrt{\frac{GM}{r^3}}$ equal to 1 at the planet's orbit.

 v_p - planet's orbital speed. $q = 1.5 \times 10^{-5} \approx 5 M_{\oplus}$

The planet is introduced to the disk gradually, where its mass increases to the desired value over the first orbit.

The simulation domain spans $0.65R_p$ to $1.35R_p$ in the radial, and the full 2π in azimuth.

The Hill radius of a planet is:

$$r_H = R_p \left(\frac{q}{3}\right)^{\frac{1}{3}} \tag{2}$$

 r_s is a small fraction of r_H , between 3% to 10% of r_H . The isentropic equation of state:

$$p = \frac{c_0^2 \rho_0}{\gamma} \left(\frac{\rho}{\rho_0}\right)^{\gamma} \tag{3}$$

In Eq. 3, c_0 is the isothermal sound speed when $\rho = \rho_0 = 1$. The disk's scale height H = 0.05 scales the sound speed as $c_0 = H\Omega = 0.05$.

2.1.1. Initial conditions

For hydrostatic equilibrium:

$$\rho = \rho_0 \left[\left(\frac{R}{R_p} \right)^{(-\beta + \frac{3}{2})^{\frac{2(\gamma - 1)}{\gamma + 1}}} - \frac{GM(\gamma - 1)}{c_0^2} \left(\frac{1}{R} - \frac{1}{r} \right) \right]^{\frac{1}{\gamma - 1}}$$
(4)

 $\beta = \frac{3}{2}$ defines the surface density profile $\Sigma \propto R^{-\beta}$. The orbital frequency of the disk:

$$\Omega = \sqrt{\Omega_k^2 + \frac{1}{r\rho} \frac{\partial P}{\partial r}} \tag{5}$$

$$v_r = v_\theta = 0$$

2.1.2. Resolution

We tried two different sets of resolutions with two different static mesh refinement (SMR) levels around the location of a planet: SMR2 (for SMR level l=2) and SMR3 (for SMR level l=3).

The resolution for non-refined disk is [192, 80, 384] cells for r-, θ -, and ϕ -directions, and the sizes of one cell in r-, θ -, and ϕ -directions are [3.65 \times 10⁻³ r_p , 3.75 \times 10⁻³, 1.6 \times 10⁻²].

I increased the resolution in the following regions: $0.9-1.1r_p$ in r-direction, 87^o-93^o in θ -direction, and 177^o-183^o in ϕ -direction. The resolution for refined disk with level l=3 is [360(222+69+69),160(106+67+67),410(24+193+193)] cells for r-, θ -, and ϕ -directions, and the sizes of one refined cell in r-, θ -, and ϕ -directions are $[9\times10^{-4}r_p,9.36\times10^{-4},4\times10^{-3}]$. Look at the Figure 1 to see the comparison of the total torques for different levels of refinement.

Figure 1. The comparison between the torques.

Figure 2. The density profile of the disk with a perturber with SMR level l=3 at the 7th global orbit.

2.2. Energy injection and transport

I injected the energy of value $L_c=24\times 10^{-11}$ (times the time) into the sphere of radius $0.003r_p$ (8 cells) around the planet location.

The thermal diffusivity is $\chi=0.00013H^2\Omega$ with $\lambda_c=0.5r_p$. The Eq. 6 is taken from the Eq. 17 in Hankla et al. (2020). Look at the Figure 2 to see how the disk looks like with these parameters (including the thermal diffusivity).

$$\chi = \frac{3\lambda_c^2 \gamma \Omega_0}{8\pi^2} \tag{6}$$

2.3. Athena++ simulations

3. RESULTS

4. DISCUSSION

REFERENCES

Fung, J., Masset, F., Lega, E., & Velasco, D. 2017, The Astronomical Journal, 153, 124,

doi: 10.3847/1538-3881/153/3/124

Hankla, A. M., Jiang, Y.-F., & Armitage, P. J. 2020, ApJ, 902, 50, doi: 10.3847/1538-4357/abb4df