CMIP6 Model Documentation

Institute: NOAA-GFDL Model: GFDL-AM4 Topic: Atmosphere

Doc. Generated: 2018-12-17

Doc. Seeded From: N/A

Specialization Version: 1.1.0

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	7
3	Dynamical Core	9
4	Radiation	14
5	Turbulence Convection	27
6	Microphysics Precipitation	31
7	Cloud Scheme	33
8	Observation Simulation	37
9	Gravity Waves	40
10	Natural Forcing	44

1 Key Properties

Atmosphere key properties

1	.1.	1 T	'op	level	pro	perties

Atmosphere key properties

1.1.1.1 Name *

 $Name\ of\ atmos\ model\ code$

GFDL AM4.0

1.1.1.2 Keywords *

 $Keywords\ associated\ with\ atmos\ model\ code$

Enter COMMA SEPARATED list:

1.1.1.3 Overview *

Overview of atmos model.

GFDL Atmosphere Model, Version 4.0

1.1.1.4 Model Family *

Type of atmospheric model.

\boxtimes	AGCM - Atmospheric General Circulation Model
	ARCM - Atmospheric Regional Climate Model
	Other - please specify:

1.1.1.5 Basic Approximations *

 $Basic\ approximations\ made\ in\ the\ atmosphere.$

Ш	Primitive equations
	Non-hydrostatic
	Anelastic
	Boussinesq
	Hydrostatic
	Quasi-hydrostatic
	Other - please specify

1.2.1 Resolution

Characteristics of the model resolution

1.2.1.1 Horizontal Resolution Name *

This is a string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48.

C96

1.2.1.2 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon.

1 degree

1.2.1.3 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg

Quasi-uniform 1 degree

1.2.1.4 Number Of Vertical Levels *

Number of vertical levels resolved on the computational grid.

33

1.2.1.5 High Top *

 $Does \ the \ atmosphere \ have \ a \ high-top? \ High-Top \ atmospheres \ have \ a \ fully \ resolved \ stratosphere \ with \ a \ model \ top \ above \ the \ stratopause.$

True	False

1.3.1 Timestepping

Characteristics of the atmosphere model time stepping

1.3.1.1 Timestep Dynamics *

Timestep for the dynamics in seconds

30

1.3.1.2 Timestep Shortwave Radiative Transfer

 $Time step\ for\ the\ shortwave\ radiative\ transfer\ in\ seconds.$

3600

1.3.1.3 Timestep Longwave Radiative Transfer

 $Timestep\ for\ the\ longwave\ radiative\ transfer\ in\ seconds.$

=60*60*3

1.4.1 Orography

Characteristics of the model orography

1.4.1.1 Type *					
Type of ore	ographic representation.				
	Fixed: present day				
	Fixed: modified - Provide details of modification below				
	Other - please specify:				
	1.4.1.2 Modified If the orography type is modified describe the adaptation.				
Select	Select MULTIPLE options:				
	Related to ice sheets				
	Related to tectonics				
	Modified mean				
	Modified variance if taken into account in model (cf gravity waves)				
	Other - please specify:				
1.4.1.3 Time-varying Describe any time varying orographic change					
Entrei	Enter TEXT:				

1.5.1 Tuning Applied

 $Tuning\ methodology\ for\ atmospheric\ component$

1.5.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. and Document the relative weight given to climate performance metrics versus process oriented metrics, and and on the possible conflicts with parameterization level tuning. In particular describe any struggle and with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.5.1.2 Global Mean Metrics Used

 $List\ set\ of\ metrics\ of\ the\ global\ mean\ state\ used\ in\ tuning\ model/component$

Enter COMMA SEPARATED list:

1.5.1.3 Regional Metrics Used

List of regional metrics of mean state used in tuning model/component

Enter COMMA SEPARATED list:

1.5.1.4 Trend Metrics Used

 $List\ observed\ trend\ metrics\ used\ in\ tuning\ model/component$

Enter COMMA SEPARATED list:

2 Grid

 $Atmosphere\ grid$

2.	1	.1	Top	level	pro	perties

 $Atmosphere\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.1.2 Overview

 $Overview\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.2 Horizontal

Atmosphere discretisation in the horizontal

2.1.2.1 Scheme Type * Horizontal discretisation type

Spectral
Fixed grid
Other - please specify:

2.1.2.2 Scheme Method *

 $Horizontal\ discretisation\ method$

Finite elements
Finite volumes
Finite difference
Centered finite difference

2.1.2.3 Scheme Order \ast

 $Horizontal\ discretisation\ function\ order$

Ш	Second
	Third

	Fourth
	Other - please specify:
2.1.2.4	Horizontal Pole
Horizonta	d discretisation pole singularity treatment
	Filter
	Pole rotation
	Artificial island
	Other - please specify:
0.1.0.2	G LLT
	Grid Type *
Horizonia	l grid type
	Gaussian
Ш	Latitude-Longitude
\boxtimes	Cubed-Sphere
	Icosahedral
	Other - please specify:
2.1.3 V	Vertical
	nere discretisation in the vertical
Atmospi	tere discretisation in the vertical
2.1.3.1	Coordinate Type *
Type of v	ertical coordinate system
	Isobaric - Vertical coordinate on pressure levels
	Sigma - Allows vertical coordinate to follow model terrain
	Hybrid sigma-pressure - Sigma system near terrain and isobaric above
	Hybrid pressure
	Vertically lagrangian
	Other - place specify

3 Dynamical Core

Characteristics of the dynamical core

3	1.1	. Tor	level	pro	perties

 $Characteristics\ of\ the\ dynamical\ core$

3.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ dynamical\ core\ in\ atmos\ model.$

FV3

3.1.1.2 Overview

Overview of characteristics of the dynamical core in atmos model.

GFDL Finite-Volume Cubed-Sphere Dynamical Core

3.	.1	.1.	3	Timestepping	Type	*
----	----	-----	----------	--------------	------	---

$Time stepping\ framework\ type$		
	Adams-Bashforth	
	Explicit	
	Implicit	
	Semi-implicit	
	Leap frog	
	Multi-step	
	Runge Kutta fifth order	
	Runge Kutta second order	
	Runge Kutta third order	
	Other - please specify:	
3.1.1.4	Prognostic Variables *	
List of the	model prognostic variables	
	Surface pressure	
	Wind components	
	Divergence/curl	
	Temperature	

Potential temperature

	Total water
	Water vapour
	Water liquid
	Water ice
	Total water moments
	Clouds
	Radiation
	Other - please specify:
$3.2.1$ \Box	Гор Boundary
Type of	boundary layer at the top of the model
3.2.1.1	Top Boundary Condition *
	dary condition
	Sponge layer
	Radiation boundary condition
	Other - please specify:
3.2.1.2	Top Heat *
Top bound	dary heat treatment
\mathbf{Zero}	flux
3.2.1.3	Top Wind *
Top bound	dary wind treatment
\mathbf{Zero}	flux
3.3.1 I	Lateral Boundary
Type of	lateral boundary condition (if the model is a regional model)
3.3.1.1	Condition
Type of la	uteral boundary condition
Selec	t SINGLE option:
	Sponge layer
	Radiation boundary condition
	Other - please specify:

3.4.1 Diffusion Horizontal

 $Horizontal\ diffusion\ scheme$

3.4.1.1 Scheme Name

 $Horizontal\ diffusion\ scheme\ name$

Monotonic constraint and divergence damping
3.4.1.2 Scheme Method *
Horizontal diffusion scheme method
Iterated Laplacian
Bi-harmonic
Other - please specify:
3.4.2 Tracers
Tracer advection scheme
3.4.2.1 Scheme Name
Tracer advection scheme name
Heun
Roe and VanLeer
Roe and Superbee
Prather
☐ UTOPIA
Other - please specify:
3.4.2.2 Scheme Characteristics *
$Tracer\ advection\ scheme\ characteristics$
☐ Eulerian
Modified Euler
Lagrangian
Semi-Lagrangian
Cubic semi-Lagrangian
Quintic semi-Lagrangian
Mass-conserving

	Finite volume	
	Flux-corrected	
	Linear	
	Quadratic	
	Quartic	
	Other - please specify:	
3.4.2.3	Conserved Quantities *	
Tracer adv	vection scheme conserved quantities	
	Dry mass	
	Tracer mass	
	Other - please specify:	
3.4.2.4	Conservation Method *	
Tracer adv	vection scheme conservation method	
	Conservation fixer	
	Priestley algorithm	
	Other - please specify:	
3.4.3 N	Momentum	
Momentu	um advection scheme	
3.4.3.1	Scheme Name	
Momentum	n advection schemes name	
	VanLeer	
	Janjic	
	${\bf SUPG} \ ({\bf Streamline} \ {\bf Upwind} \ {\bf Petrov\text{-}Galerkin})$	
	Other - please specify:	
3.4.3.2 Scheme Characteristics *		
Momentum	n advection scheme characteristics	
	2nd order	
\boxtimes	4th order	

	Cell-centred	
	Staggered grid	
	Semi-staggered grid	
	Other - please specify:	
3.4.3.3	Scheme Staggering Type *	
Momentum	n advection scheme staggering type	
	Arakawa B-grid	
	Arakawa C-grid	
	Arakawa D-grid	
	Arakawa E-grid	
	Other - please specify:	
	Conserved Quantities *	
Momentun	n advection scheme conserved quantities	
Ш	Angular momentum	
	Horizontal momentum	
	Enstrophy	
	Mass	
	Total energy	
\boxtimes	Vorticity	
	Other - please specify:	
3.4.3.5 Conservation Method *		
	n advection scheme conservation method	
	Conservation fixer	
	Other - please specify:	

4 Radiation

Characteristics of the atmosphere radiation process

4.1.1 Top level properties

Characteristics of the atmosphere radiation process

4.1.1.1 Name

Commonly used name for the radiation in atmos model.

Enter TEXT:

4.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ atmosphere\ radiation\ process\ in\ atmos\ model.$

The basic shortwave and longwave radiation algorithms are described in Freidenreich and Ramaswamy (1999) and Schwarzkopf and Ramaswamy (1999), respectively, modified as in GFDL Global Atmospheric Model Development Team (2004).

4.1.1.3 Aerosols *

Aerosols	$whose\ radiative\ effect\ is\ taken\ into\ account\ in\ the\ atmosphere\ model$
	Sulphate
	Nitrate
	Sea salt
	Dust
	Ice
	Organic
\boxtimes	BC - Black carbon / soot
	SOA - Secondary organic aerosols
	POM - Particulate organic matter
	Polar stratospheric ice
	NAT - Nitric acid trihydrate
	NAD - Nitric acid dihydrate
	STS - Supercooled ternary solution aerosol particle
	Other - please specify:

4.2.1 Shortwave Radiation

Properties of the shortwave radiation scheme

4.2.1.1	Name
Common	ly used name for the shortwave radiation scheme
Ente	er TEXT:
4.2.1.2	Spectral Integration *
Shortway	ve radiation scheme spectral integration
	Wide-band model
	Correlated-k
	Exponential sum fitting
	Other - please specify:
1913	Transport Calculation *
	re radiation transport calculation methods
	ct MULTIPLE options:
	Two-stream
	Layer interaction
	Bulk - Highly parameterised methods that use bulk expressions
	Adaptive - Exploits spatial and temporal correlations in optical characteristics
	Multi-stream
	Other - please specify:
1911	Spectral Intervals *
	pe radiation scheme number of spectral intervals
18	- · · · · · · · · · · · · · · · · · · ·
	General Interactions * radiative interactions e.g. with aerosols, cloud ice and cloud water
Sele	ct MULTIPLE options:
	Emission/absorption,
	Scattering
	Other - please specify:

4.3.1 Shortwave GHG

 $Representation\ of\ greenhouse\ gases\ in\ the\ shortwave\ radiation\ scheme$

4.3.1.1 Greenhouse Gas Complexity *

 $Complexity\ of\ greenhouse\ gases\ whose\ shortwave\ radiative\ effects\ are\ taken\ into\ account\ in\ the\ atmosphere\ model$

Selec	t MULTIPLE options:	
	CO2 - Carbon Dioxide	
	CH4 - Methane	
	N2O - Nitrous Oxide	
concentrat	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11	
equivalenc	CFC-12 eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a $CFC-12$ ee concentration	
concentra	${ m HFC}\text{-}134a$ eq - Summarize the radiative effect of other fluorinated gases with a ${ m HFC}\text{-}134a$ equivalence tion	
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons	
	$ Explicit \ other \ fluorinated \ gases \ - \ Explicit \ representation \ of \ other \ fluorinated \ gases \ e.g. \ HFCs \ and \ PFCs $	
	O3	
	H2O	
	Other - please specify:	
4.3.1.2 ODS Ozone depleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere model		
Ozone dep		
Ozone dep model		
Ozone dep model	oleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere	
Ozone dep model	oleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere t MULTIPLE options:	
Ozone dep model	t MULTIPLE options: CFC-12 - CFC	
Ozone dep model	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC	
Ozone dep model	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC	
Ozone dep model	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC	
Ozone dep model	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC	
Ozone dep model Selec	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC	
Ozone dep model Selec	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC HCFC-22 - HCFC	
Ozone dep model Selec	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC HCFC-22 - HCFC HCFC-141b - HCFC	

	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
	Other Flourinated Gases
	urinated gases whose shortwave radiative effects are explicitly taken into account in the atmosphere model
Selec	et MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC

	NF3
	SF6
	SO2F2
	Other - please specify:
4.4.1 S	hortwave Cloud Ice
Shortwar	ve radiative properties of ice crystals in clouds
4.4.1.1 l	Physical Representation *
Physical re	epresentation of cloud ice crystals in the shortwave radiation scheme
Select	MULTIPLE options:
typically h	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: aundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than spher	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area ees
	Ice water path - Integrated ice water path through the cloud kg m-2 $$
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
4 4 1 0 4	O-4:1 M-41 d- *
	Optical Methods * ethods applicable to cloud ice crystals in the shortwave radiation scheme
	MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:

4.5.1 Shortwave Cloud Liquid

 $Shortwave\ radiative\ properties\ of\ liquid\ droplets\ in\ clouds$

Physical representation of cloud liquid droplets in the shortwave radiation scheme Select MULTIPLE options: Cloud droplet number concentration - CDNC Effective cloud droplet radii Droplet size distribution Liquid water path - Integrated liquid water path through the cloud kg m-2 Other - please specify: 4.5.1.2 Optical Methods * Optical methods applicable to cloud liquid droplets in the shortwave radiation scheme Select MULTIPLE options: Geometric optics - For non-spherical particles Mie theory - For spherical particles Other - please specify: 4.6.1 Shortwave Cloud Inhomogeneity Cloud inhomogeneity in the shortwave radiation scheme 4.6.1.1 Cloud Inhomogeneity * Method for taking into account horizontal cloud inhomogeneity Select SINGLE option: Monte Carlo Independent Column Approximation - McICA Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010 Analytic Other - please specify: 4.7.1 Shortwave Aerosols Shortwave radiative properties of aerosols 4.7.1.1 Physical Representation * Physical representation of aerosols in the shortwave radiation scheme

4.5.1.1 Physical Representation *

Select MULTIPLE options:

	Number concentration
	Effective radii
	Size distribution
	Asymmetry
	Aspect ratio
	Mixing state - For shortwave radiative interaction
	Other - please specify:
4712	Optical Methods *
	ethods applicable to aerosols in the shortwave radiation scheme
Select	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
181T	ongwave Radiation
	es of the longwave radiation scheme
4.8.1.1	Name
Commonly	y used name for the longwave radiation scheme.
Enter	TEXT:
4.8.1.2	Spectral Integration *
Longwave	radiation scheme spectral integration
Select	SINGLE option:
	Wide-band model
	Correlated-k
	Exponential sum fitting
	Other - please specify:

4.8.1.3	Transport Calculation *
Longwave	radiation transport calculation methods
	Two-stream
	Layer interaction
	Bulk - Highly parameterised methods that use bulk expressions
	Adaptive - Exploits spatial and temporal correlations in optical characteristics
	Multi-stream
	Other - please specify:
4.8.1.4	Spectral Intervals *
Longwave	radiation scheme number of spectral intervals
10	
4.8.1.5	General Interactions *
General r	adiative interactions e.g. with aerosols, cloud ice and cloud water
Selec	t MULTIPLE options:
	Emission/absorption,
	Scattering
	Other - please specify:
4.9.1 l	Longwave GHG
Represe	ntation of greenhouse gases in the longwave radiation scheme
4.9.1.1	Greenhouse Gas Complexity *
Complexi	ty of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model
Selec	t MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide
concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11
equivalen	${ m CFC-12~eq}$ - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a ${ m CFC-12}$ ce concentration
concentra	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ tion

	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	Explicit other fluorinated gases - Explicit representation of other fluorinated gases e.g. HFCs and PFCs
	O3
	H2O
	Other - please specify:
4.9.1.2 Ozone der model	ODS pleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere
Selec	t MULTIPLE options:
	CFC-12 - CFC
	CFC-11 - CFC
	CFC-113 - CFC
	CFC-114 - CFC
	CFC-115 - CFC
	HCFC-22 - HCFC
	HCFC-141b - HCFC
	HCFC-142b - HCFC
	Halon-1211 - Halon
	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:

4.9.1.3 Other Flourinated Gases

 $Other \ flour in a ted \ gases \ whose \ longwave \ radiative \ effects \ are \ explicitly \ taken \ into \ account \ in \ the \ atmosphere \ model$

Select MULTIPLE options:

	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	${ m HFC} ext{-}143a$ - ${ m HFC}$
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	${ m HFC\text{-}43\text{-}10mee}$ - ${ m HFC}$
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:
4.10.1 Longwave Cloud Ice Longwave radiative properties of ice crystals in clouds	
Dongware radioacte properties of the organic in country	
4.10.1.1 Physical Reprenstation *	

 $Physical\ representation\ of\ cloud\ ice\ crystals\ in\ the\ longwave\ radiation\ scheme$

Select MULTIPLE options:

typically h	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: aundreds of microns	
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes	
than spher	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area res	
	Ice water path - Integrated ice water path through the cloud kg m-2 $$	
	Crystal asymmetry	
	Crystal aspect ratio	
	Effective crystal radius	
	Other - please specify:	
4.10.1.2	Optical Methods *	
$Optical\ m$	ethods applicable to cloud ice crystals in the longwave radiation scheme	
Select	t MULTIPLE options:	
	T-matrix - For non-spherical particles	
	Geometric optics - For non-spherical particles	
	Finite difference time domain (FDTD) - For non-spherical particles	
	Mie theory - For spherical particles	
	Anomalous diffraction approximation	
	Other - please specify:	
4.11.1	Longwave Cloud Liquid	
Longwav	e radiative properties of liquid droplets in clouds	
4.11.1.1	Physical Representation *	
Physical r	epresentation of cloud liquid droplets in the longwave radiation scheme	
Select	t MULTIPLE options:	
	Cloud droplet number concentration - CDNC	
	Effective cloud droplet radii	
	Droplet size distribution	
	Liquid water path - Integrated liquid water path through the cloud kg m-2	
	Other - please specify:	

4.11.1.2	Optical Methods *		
$Optical\ m$	Optical methods applicable to cloud liquid droplets in the longwave radiation scheme		
Select	t MULTIPLE options:		
	Geometric optics - For non-spherical particles		
	Mie theory - For spherical particles		
	Other - please specify:		
4.12.1	Longwave Cloud Inhomogeneity		
Cloud in	homogeneity in the longwave radiation scheme		
4.12.1.1	Cloud Inhomogeneity *		
Method fo	r taking into account horizontal cloud inhomogeneity		
Select	t SINGLE option:		
	Monte Carlo Independent Column Approximation - McICA		
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010		
	Analytic		
	Other - please specify:		
4.13.1	Longwave Aerosols		
Longwav	ne radiative properties of aerosols		
4.13.1.1	Physical Representation *		
Physical r	representation of aerosols in the longwave radiation scheme		
Select	t MULTIPLE options:		
	Number concentration		
	Effective radii		
	Size distribution		
	Asymmetry		
	Aspect ratio		
	Mixing state - For shortwave radiative interaction		
	Other - please specify:		

4.13.1.2	Optical	Methods	*
----------	---------	---------	---

 $Optical\ methods\ applicable\ to\ aerosols\ in\ the\ longwave\ radiation\ scheme$

Select MULTIPLE options:		
	T-matrix - For non-spherical particles	
	Geometric optics - For non-spherical particles	
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$	
	Mie theory - For spherical particles	
	Anomalous diffraction approximation	
	Other - please specify:	

5 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1.1 Top level properties

Atmosphere Convective Turbulence and Clouds

5.1.1.1 Name

Commonly used name for the turbulence convection in atmos model.

Enter TEXT:

5.1.1.2 Overview

 $Overview\ of\ atmosphere\ convective\ turbulence\ and\ clouds\ in\ atmos\ model.$

PBL convection described in Lock (2000) and GAMDT (2004) and double plume moise convection described in Zhao et al (2018) and Bretherton et al (2004)

5.2.1 Boundary Layer Turbulence

Coupled with convection

Properties of the boundary layer turbulence scheme

5.2.1.1 Scheme Name		
Boundary layer turbulence scheme name		
	Mellor-Yamada	
	Holtslag-Boville	
	EDMF - Combined Eddy Diffusivity Mass-Flux	
	Other - please specify:	
5.2.1.2 Scheme Type *		
Boundary	layer turbulence scheme type	
	TKE prognostic	
	TKE diagnostic	
	TKE coupled with water	
	Vertical profile of Kz	
	Non-local diffusion	
	Monin-Obukhov similarity	
	Coastal Buddy Scheme - Separate components for coastal near surface winds over ocean and land	

	Coupled with gravity waves
	Depth capped at cloud base - Boundary layer capped at cloud base when convection is diagnosed
	Other - please specify:
5.2.1.3	Closure Order *
Boundary	layer turbulence scheme closure order
1	
5.2.1.4	Counter Gradient *
Uses bour	ndary layer turbulence scheme counter gradient
	True
5.3.1	Deep Convection
Properti	ies of the deep convection scheme
5.3.1.1	Scheme Name
Deep con	vection scheme name
Doul al 2018)	ble Plume scheme with one bulk plume for deep and one for shallow convection (Zhao et
5.3.1.2	Scheme Type *
Deep con	vection scheme type
	Mass-flux
	Adjustment
	Plume ensemble - Zhang-McFarlane
	Other - please specify:
5.3.1.3	Scheme Method *
Deep con	vection scheme method
	CAPE - Mass flux determined by CAPE, convectively available potential energy.
	Bulk - A bulk mass flux scheme is used
	Ensemble - Summation over an ensemble of convective clouds with differing characteristics
sphere	CAPE/WFN based - CAPE-Cloud Work Function: Based on the quasi-equilibrium of the free tropo-
	TKE/CIN based - TKE-Convective Inhibition: Based on the quasi-equilibrium of the boundary layer
	Other - please specify

5.3.1.4	Processes *		
Physical	processes taken into account in the parameterisation of deep convection		
	Vertical momentum transport		
	Convective momentum transport		
	Entrainment		
	Detrainment		
	Penetrative convection		
	Updrafts		
	Downdrafts		
	Radiative effect of anvils		
	Re-evaporation of convective precipitation		
	Other - please specify:		
5.3.1.5	Microphysics		
	sics scheme for deep convection. Microphysical processes directly control the amount of detrainment of drometeor and water vapor from updrafts		
	Tuning parameter based		
	Single moment		
	Two moment		
	Other - please specify:		
5.4.1	Shallow Convection		
Propert	ies of the shallow convection scheme		
5.4.1.1	Scheme Name		
Shallow	convection scheme name		
Zhao	o et al 2018		
5.4.1.2	Scheme Type *		
Shallow o	convection scheme type		
	Mass-flux		
	Cumulus-capped boundary layer		
	Other - please specify:		

5.4.1.3 Scheme Method *			
Shallow c	onvection scheme method		
	Same as deep (unified)		
	Included in boundary layer turbulence		
	Separate diagnosis - Deep and Shallow convection schemes use different thermodynamic closure criteria		
	Other - please specify:		
	Processes *		
Physical processes taken into account in the parameterisation of shallow convection			
	Convective momentum transport		
	Entrainment		
	Detrainment		
	Penetrative convection		
	Re-evaporation of convective precipitation		
	Other - please specify:		
5.4.1.5 Microphysics			
Microphysics scheme for shallow convection			
	Tuning parameter based		
	Single moment		
	Two moment		
	Other - please specify:		

6 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1.1 Top level properties

Large Scale Cloud Microphysics and Precipitation

6.1.1.1 Name

Commonly used name for the microphysics precipitation in atmos model.

Enter TEXT:

6.1.1.2 Overview

Overview of large scale cloud microphysics and precipitation in atmos model.

Large-scale cloud scheme described in Tiedtke (1993) with microphysics described in Rotstayn (1997) and Rotstayn et al. (2000)

6.2.1 Large Scale Precipitation

Properties of the large scale precipitation scheme

6.2.1.1 Scheme Name

Commonly used name of the large scale precipitation parameterisation scheme

Tiedtke (1993)

6.2.1.2 Hydrometeors *

Precipitating hydrometeors taken into account in the large scale precipitation scheme		
	Liquid rain	
	Snow	
	Hail	

Graupel

Other - please specify:

6.3.1 Large Scale Cloud Microphysics

Properties of the large scale cloud microphysics scheme

6.3.1.1 Scheme Name

Commonly used name of the microphysics parameterisation scheme used for large scale clouds.

Rotstayn (1997) and Ming et al. (2006)

6.3.1.2	Processes *
Large scal	le cloud microphysics processes
	Mixed phase
	Cloud droplets
	Cloud ice
	Ice nucleation
	Water vapour deposition
	Effect of raindrops
	Effect of snow
	Effect of graupel
	Other - please specify:

7 Cloud Scheme

 $Characteristics\ of\ the\ cloud\ scheme$

7	.1.1	Top	level	pro	perties

Characteristics of the cloud scheme

7.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ cloud\ scheme\ in\ atmos\ model.$

Tiedtke (1993)

7.1.1.2 Overview

Overview of characteristics of the cloud scheme in atmos model.

Prognostic cloud liquid, ice, amount, and drop number with parameterized sources and sinks

7.1.1.3 Scheme Type *

Describes the type(s) of cloud scheme: prognostic, diagnostic, other.

List the prognostic variables used by the cloud scheme, if applicable.

Cloud amount

Selec	et MULTIPLE options:
	Prognostic
	Diagnostic
	Other - please specify:
7.1.1.4	Uses Separate Treatment *
	on for when different cloud schemes are used for different types of clouds e.g. convective, stratiform dary layer)
Yes	
7.1.1.5	Processes *
Processes	included in the cloud scheme
	Entrainment
	Detrainment
	Bulk cloud
	Other - please specify:
7.1.1.6	Prognostic Variables

	Liquid
	Ice
	Rain
	Snow
	Cloud droplet number concentration - To document the use of two-moment cloud microphysics schemes
	Ice crystal number concentration - To document the use of two-moment cloud microphysics schemes
	Other - please specify:
7.1.1.7	Atmos Coupling
Atmosphe	re components that are linked to the cloud scheme
	Atmosphere_radiation
	Atmosphere_microphysics_precipitation
	Atmosphere_turbulence_convection
	Atmosphere_gravity_waves
	Atmosphere_natural_forcing
	Atmosphere_observation_simulation
7.2.1	Optical Cloud Properties
	cloud properties
7.2.1.1	Cloud Overlap Method
Method fo	er taking into account overlapping of cloud layers
	Random
	Maximum
	Maximum-random - Combination of maximum and random overlap between clouds
	Exponential
	Other - please specify:
7.2.1.2	Cloud Inhomogeneity
	r taking into account cloud inhomogeneity
Stock	nastic

7.3.1 Sub Grid Scale Water Distribution

 $Sub\mbox{-}grid\ scale\ water\ distribution$

7.3.1.1	Type *
Sub-grid	scale water distribution type
Selec	et SINGLE option:
	Prognostic
	Diagnostic
7.3.1.2	Function Name *
Sub-grid	scale water distribution function name
	tke (1993) prognostic for stratiform; Donner et al. (2001) , Bretherton et al. (2004) , and Donner (2007) for convective
7.3.1.3	Function Order *
Sub-grid	scale water distribution function type
Ente	r INTEGER value:
7.3.1.4	Convection Coupling *
Sub-grid	scale water distribution coupling with convection
	Coupled with deep
	Coupled with shallow
	Not coupled with convection
7.4.1	Sub Grid Scale Ice Distribution
Sub-grid	l scale ice distribution
7.4.1.1	Type *
Sub-grid	scale ice distribution type
Selec	et SINGLE option:
	Prognostic
	Diagnostic
7.4.1.2	Function Name *
Sub-grid	scale ice distribution function name
Ente	r TEXT:

7.4.1.3 Function Order	*
------------------------	---

 $Sub\mbox{-}grid\ scale\ ice\ distribution\ function\ type$

Enter INTEGER value:

1.4.1.4 Convection Coupling	7.4.1.4	Convection	Coupling	*
-----------------------------	---------	------------	----------	---

 $Sub\mbox{-}grid\ scale\ ice\ distribution\ coupling\ with\ convection$

Select MULTIPLE options:				
	Coupled with deep			
	Coupled with shallow			
	Not coupled with convection			

8 Observation Simulation

Characteristics of observation simulation

8.1.1 Top level properties

 $Characteristics\ of\ observation\ simulation$

8.1.1.1 Name

Commonly used name for the observation simulation in atmos model.

Enter TEXT:

8.1.1.2 Overview

Overview of characteristics of observation simulation in atmos model.

Enter TEXT:

8.2.1 Isscp Attributes

ISSCP Characteristics

8.2.1.1 Top Height Estimation Method

Cloud simulator ISSCP top height estimation methodUo

No adjustment

IR brightness

Visible optical depth

Other - please specify:

8.2.1.2 Top Height Direction

Cloud simulator ISSCP top height direction

Lowest altitude level
Highest altitude level
Other - please specify:

8.3.1 Cosp Attributes

 $CFMIP\ Observational\ Simulator\ Package\ attributes$

8.3.1.1	Run Configuration
Cloud sin	nulator COSP run configuration
\boxtimes	Inline
	Offline
	Other - please specify:
8.3.1.2	Number Of Grid Points
Cloud sin	nulator COSP number of grid points
Ente	r INTEGER value:
8.3.1.3	Number Of Sub Columns
Cloud sin	nulator COSP number of sub-cloumns used to simulate sub-grid variability
Ente	r INTEGER value:
8.3.1.4	Number Of Levels
Cloud sin	nulator COSP number of levels
40	
8.4.1 l	Radar Inputs
	eristics of the cloud radar simulator
8.4.1.1	Frequency
Cloud sin	nulator radar frequency (Hz)
9400	0
8.4.1.2	Type
Cloud sin	nulator radar type
	Surface
	Space borne
	Other - please specify:
8.4.1.3	Gas Absorption
Cloud sin	nulator radar uses gas absorption
	True

8.4.1.4 Effective Radius				
$Cloud\ sim$	ulator radar uses effective radius			
	True False			
8.5.1 L	idar Inputs			
Characte	ristics of the cloud lidar simulator			
8.5.1.1	ce Types			
$Cloud\ sim$	ulator lidar ice type			
	Ice spheres			
	Ice non-spherical			
	Other - please specify:			
8.5.1.2	Overlap			
Cloud sim	ulator lidar overlap			
	Max			
	Random			
	Other - please specify:			

9 Gravity Waves

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1.1 Top level properties

 $Characteristics\ of\ the\ parameterised\ gravity\ waves\ in\ the\ atmosphere,\ whether\ from\ orography\ or\ other\ sources$

9.1.1.1 Name

Commonly used name for the gravity waves in atmos model.

Enter TEXT:

9.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ parameterised\ gravity\ waves\ in\ the\ atmosphere,\ whether\ from\ orography\ or\ other\ sources\ in\ atmos\ model.$

Enter TEXT:

9.1.1.3 Sponge Layer *	
Sponge layer in the upper levels in order to avoid gravity wave reflection at the top.	
Select SINGLE option:	
Rayleigh friction	
Diffusive sponge layer	
Other - please specify:	

9.1.1.4 Background *

Background wave distribution

Selec	t SINGLE option:
	Continuous spectrum
	Discrete spectrum
	Other - please specify

9.1.1.5 Subgrid Scale Orography *

Subgrid	scale	orography	effects	taken	into	account.

Ш	Effect on dra	ıg
	Effect on lift	ing

	Enhanced topography - To enhance the generation of long waves in the atmosphere $$
	Other - please specify:
9.2.1	Orographic Gravity Waves
Gravity	waves generated due to the presence of orography
9.2.1.1	Name
Commonl	y used name for the orographic gravity wave scheme
Ente	r TEXT:
9.2.1.2	Source Mechanisms *
Orographi	ic gravity wave source mechanisms
	Linear mountain waves
	Hydraulic jump
	Envelope orography
	Low level flow blocking
	Statistical sub-grid scale variance
	Other - please specify:
9.2.1.3	Calculation Method *
Orographi	ic gravity wave calculation method
	Non-linear calculation
	More than two cardinal directions
	Other - please specify:
9.2.1.4	Propagation Scheme *
Orographi	ic gravity wave propogation scheme
	Linear theory
	Non-linear theory
	Includes boundary layer ducting
	Other - please specify:

9.2.1.5 Dissipation Scheme *	
Orographi	c gravity wave dissipation scheme
	Total wave
	Single wave
	Spectral
	Linear
	Wave saturation vs Richardson number
	Other - please specify:
9.3.1 N	Non Orographic Gravity Waves
Gravity	waves generated by non-orographic processes.
9.3.1.1	Nama
	y used name for the non-orographic gravity wave scheme
·	· TEXT:
211001	
9.3.1.2	Source Mechanisms *
Non-orogr	aphic gravity wave source mechanisms
	Convection
	Precipitation
	Background spectrum
	Other - please specify:
9.3.1.3	Calculation Method *
Non-orogr	aphic gravity wave calculation method
	Spatially dependent
	Temporally dependent
9.3.1.4 Propagation Scheme *	
Non-orogr	aphic gravity wave propogation scheme
	Linear theory
	Non-linear theory
	Other - please specify:

9.3.1.5 Dissipation Scheme *		
$Non-orographic\ gravity\ wave\ dissipation\ scheme$		
	Total wave	
	Single wave	
	Spectral	
	Linear	
	Wave saturation vs Richardson number	
	Other - please specify:	

10 Natural Forcin	ıg
-------------------	----

10.1.1 Top level properties

Natural forcing: solar and volcanic.

10.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ natural\ forcing\ in\ atmos\ model.$

Enter TEXT:

10.1.1.2 Overview

Overview of natural forcing: solar and volcanic. in atmos model.

Enter TEXT:

10.2.1 Solar Pathways

Pathways for solar forcing of the atmosphere

10.2.1.1 Pathways *

Pathways for the solar forcing of the atmosphere model domain

	SW radiation - Shortwave solar spectral irradiance.
,	Precipitating energetic particles - Precipitating energetic particles from the sun (predominantly prothe magnetosphere (predominantly electrons) affect the ionization levels in the polar middle and upper re, leading to significant changes of the chemical composition
	Cosmic rays - Cosmic rays are the main source of ionization in the troposphere and lower stratosphere.
	Other - please specify:

10.3.1 Solar Constant

Solar constant and top of atmosphere insolation characteristics

10.3.1.1 Type *

Time adaptation of the solar constant.

Fixed
Transient

10.3.1.2 Fixed Value
If the solar constant is fixed, enter the value of the solar constant (W m -2).
Enter FLOAT value:
10.3.1.3 Transient Characteristics
Solar constant transient characteristics (W m -2)
From Kopp et al. (2005, Solar Physics)
10.4.1 Orbital Parameters
Orbital parameters and top of atmosphere insolation characteristics
10.4.1.1 Type *
Type of orbital parameter
Fixed
Transient
10.4.1.2 Fixed Reference Date
Reference date for fixed orbital parameters (yyyy)
23
10.4.1.3 Transient Method
Description of transient orbital parameters
Enter TEXT:
10 4 1 4 60
10.4.1.4 Computation Method Method used for computing orbital parameters
Method used for computing orbital parameters.
-
Method used for computing orbital parameters.
Method used for computing orbital parameters. Select SINGLE option:

10.5.1 Insolation Ozone

 $Impact\ of\ solar\ insolation\ on\ stratospheric\ ozone$

10.5.1.1	Solar Ozone Impact
Does top	$of\ atmosphere\ in solation\ impact\ on\ stratospheric\ ozone?$
	True
10.6.1	Volcanoes Treatment
Charact	eristics and treatment of volcanic forcing in the atmosphere
10.6.1.1	Volcanoes Characteristics *
Description = Constant = Consta	on of how the volcanic forcing is taken into account in the atmosphere.
Ente	r TEXT:
10.6.1.2	2 Volcanoes Implementation *
How volce	unic effects are modeled in the atmosphere.
	High frequency solar constant anomaly
	Stratospheric aerosols optical thickness
	Other - please specify: