You must show all your work! Answers without supporting work will not be given credit.

DUE: NOV 17TH 2022

All problems are inspired by our Introduction to Logic Design 3rd Edition text.

Only neatly hand-written or typed work will be accepted.

Homework must be in PDF format and should be scanned using, at minimum, a phone camera scanning app.

This homework is worth 5 points.

Name: Damian Sclafani

1. Draw both the state diagram and complete the timing sequence as x changes until you have no distinct state information remaining.

	(
q	x = 0	x=1	Z
Α	Α	В	0
В	С	В	0
C	Α	D	0
D	С	В	1

2. Draw both the state diagram and complete the timing sequence as x changes until you have no distinct state information remaining.

	(
q	x = 0	x=1	Z
Α	Α	В	0
В	С	В	0
C	Α	D	0
D	С	В	1

x 11010101001011 q A

3. Given the following JK flip-flop,

Complete the timing diagram; show the states of q in a timing diagram. Remember to take the CLR' signal into consideration. Number the clock edges (starting from 1 and then 2, 3, \dots) and state the

JK's action (HOLD, RESET, SET, or TOGGLE) at each clock edge.

4. Given the following sequential circuit,

Treat IN as the D-input to D flip-flop. Show the necessary state table (for states 0 and 1) and complete the following timing trace as long as the clock allows. Assume Q begins storing 0.

D	q	q*
0	0	0
0	1	0
1	0	1
1	1	1

5. Given the following sequential circuit,

- (a) Provide equations for A^* and B^* ,
- (b) Create a state table (Moore or Mealy) with states [00-11], and
- (c) Assuming AB starts in 00, complete the timing trace until no state information remains.

$$JA = x'B$$

KA = x

JB = x'

KB = xA'

Z = x'A' + Bx

Α	В	X = 0	X = 1	Z
0	0	0 1	00	0
0	1	11	0 0	1
1	0	0 0	0 1	1
1	1	0 1	01	1

