Machine Learning I

Supervised Learning: Bias and variance decomposition

Souhaib Ben Taieb

University of Mons

Table of contents

A note on the data distribution

The bias and variance decomposition

The bias and variance tradeoff

Table of contents

A note on the data distribution

The bias and variance decomposition

The bias and variance tradeoff

Data distribution in regression

The data distribution $p_{x,y}$ is often **implicitly specified**, i.e. $p_{x,y}$ is not given explicitly. In regression, the following (additive error) data generating process is often considered:

$$y = f(x) + \varepsilon, \tag{1}$$

where

- ► $x \sim p_x$ (e.g. $p_x(x) = \frac{1}{2}$ for $x \in [-1, 1]$)
- ▶ f is a fixed unknown function (e.g. $f(x) = x^2$)
- ightharpoonup ε is random noise, where
 - $ightharpoonup \mathbb{E}[\varepsilon|x] = 0$
 - $ightharpoonup Var(\varepsilon|x) = \sigma^2$, with $\sigma \in [0, \infty)$.

Note that we have

 $ightharpoonup \mathbb{E}[y|x] = f(x)$ and $Var[y|x] = \sigma^2$

i.e. $p_{y|x}$ depends on x only through the conditional expectation.

Data distribution in regression

ightarrow Try to visualize $p_{x,y}$

Data distribution in regression

Data distribution in classification

Using Bayes' rule, we can write

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} \propto p(x|y)p(y) \stackrel{y \text{ uniform}}{\propto} p(x|y)$$

Table of contents

A note on the data distribution

The bias and variance decomposition

The bias and variance tradeoff

- Previously, we considered the **unrealistic scenario** where we know $p_{x,y}$. As a result, we were able to compute the optimal hypothesis/predictions for different loss functions.
- ▶ In practice, we only observe a **dataset** \mathcal{D} where each data point is assumed to be an i.i.d. realization from $p_{x,y}$.
- Overly simple models underfit and complex models overfit. There is an approximation-generalization tradeoff:

$$E_{\mathrm{out}}(g) - E_{\mathrm{out}}(f) = \underbrace{\left[E_{\mathrm{out}}(g^*) - E_{\mathrm{out}}(f)\right]}_{\text{Approximation error}} + \underbrace{\left[E_{\mathrm{out}}(g) - E_{\mathrm{out}}(g^*)\right]}_{\text{Estimation error}}$$

► The bias-variance tradeoff allows to <u>quantify</u> this tradeoff for the squared error loss function.

- Previously, we considered the unrealistic scenario where we know p_{x,y}. As a result, we were able to compute the optimal hypothesis/predictions for different loss functions.
- ▶ In practice, we only observe a **dataset** \mathcal{D} where each data point is assumed to be an i.i.d. realization from $p_{x,y}$.
- ► Overly simple models underfit and complex models overfit. There is an **approximation-generalization** tradeoff:

$$E_{\mathrm{out}}(g) - E_{\mathrm{out}}(f) = \underbrace{\left[E_{\mathrm{out}}(g^*) - E_{\mathrm{out}}(f)\right]}_{\text{Approximation error}} + \underbrace{\left[E_{\mathrm{out}}(g) - E_{\mathrm{out}}(g^*)\right]}_{\text{Estimation error}}$$

► The bias-variance tradeoff allows to quantify this tradeoff for the squared error loss function.

- Previously, we considered the unrealistic scenario where we know p_{x,y}. As a result, we were able to compute the optimal hypothesis/predictions for different loss functions.
- ▶ In practice, we only observe a **dataset** \mathcal{D} where each data point is assumed to be an i.i.d. realization from $p_{x,y}$.
- ► Overly simple models underfit and complex models overfit. There is an approximation-generalization tradeoff:

$$E_{\mathrm{out}}(g) - E_{\mathrm{out}}(f) = \underbrace{\left[E_{\mathrm{out}}(g^*) - E_{\mathrm{out}}(f)\right]}_{\text{Approximation error}} + \underbrace{\left[E_{\mathrm{out}}(g) - E_{\mathrm{out}}(g^*)\right]}_{\text{Estimation error}}$$

► The bias-variance tradeoff allows to quantify this tradeoff for the squared error loss function.

An experiment

- ightharpoonup Consider an experiment where we sample **lots of training sets** independently from $p_{X,Y}$.
- ightharpoonup Pick a fixed query point x_* .
- Let's run our learning algorithm on each training set, and compute its prediction $g(x_*)$ at the query point x_* .
- ▶ We can view $g(x_*)(=g_{\mathcal{D}}(x_*))$ as a **random variable**, where the randomness comes from the training set \mathcal{D} .

Classification example

Regression example

An experiment (continued)

- Fix a query point x_* .
- ► Repeat:
 - ▶ Sample a dataset \mathcal{D} i.i.d. from $p_{x,y}$
 - ightharpoonup Run the learning algorithm on $\mathcal D$ to obtain g
 - ▶ Compute the prediction for x_* , i.e. $g(x_*)$
 - ► Sample the (true) output y_* from $p_{y|x}(\cdot|x=x_*)$
 - ► Compute the loss $L(y_*, g(x_*))$

 $L(y_*, g(x_*))$ contains two **sources of randomness**: \mathcal{D} and y_* . This gives a distribution over the loss at x_* .

Let us expand

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{y|x}\left[L(y,g(x))|x\right]\right]$$

for the squared error loss $L(y, \hat{y}) = (y - \hat{y})^2$.

An experiment (continued)

- Fix a query point x_* .
- ► Repeat:
 - ▶ Sample a dataset \mathcal{D} i.i.d. from $p_{x,y}$
 - ightharpoonup Run the learning algorithm on $\mathcal D$ to obtain g
 - ▶ Compute the prediction for x_* , i.e. $g(x_*)$
 - ▶ Sample the (true) output y_* from $p_{y|x}(\cdot|x=x_*)$
 - ► Compute the loss $L(y_*, g(x_*))$

 $L(y_*, g(x_*))$ contains two **sources of randomness**: \mathcal{D} and y_* . This gives a distribution over the loss at x_* .

Let us expand

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{y|x}\left[L(y,g(x))|x\right]\right]$$

for the squared error loss $L(y, \hat{y}) = (y - \hat{y})^2$.

Recall that

$$\mathbb{E}_{y|x}[(y-g(x))^2|x] = \text{Var}(y|x) + (f(x)-g(x))^2 \text{ where } f(x) = \mathbb{E}[y|x].$$

$$\begin{split} &\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{y|x}\left[(y-g(x))^{2}|x\right]\right] \\ &= \mathsf{Var}(y|x) + \mathbb{E}_{\mathcal{D}}[(f(x)-g(x))^{2}] \\ &= \mathsf{Var}(y|x) + f(x)^{2} - 2f(x)\mathbb{E}_{\mathcal{D}}[g(x)] + \mathbb{E}_{\mathcal{D}}[g(x)^{2}] \\ &= \mathsf{Var}(y|x) + f(x)^{2} - 2f(x)\mathbb{E}_{\mathcal{D}}[g(x)] + \mathsf{Var}(g(x)) + \mathbb{E}_{\mathcal{D}}[g(x)]^{2} \\ &= \underbrace{\mathsf{Var}(y|x)}_{\mathsf{Bayes\ error\ at\ x}} + \underbrace{(f(x) - \mathbb{E}_{\mathcal{D}}[g(x)])^{2}}_{\mathsf{Bias\ at\ x}} + \underbrace{\mathsf{Var}(g(x))}_{\mathsf{Variance\ at\ x}} \end{split}$$

Recall that

$$\mathbb{E}_{y|x}[(y-g(x))^2|x] = \mathsf{Var}(y|x) + (f(x)-g(x))^2 \text{ where } f(x) = \mathbb{E}[y|x].$$

$$\mathbb{E}_{\mathcal{D}} \left[\mathbb{E}_{y|x} \left[(y - g(x))^2 | x \right] \right]$$

$$= \operatorname{Var}(y|x) + \mathbb{E}_{\mathcal{D}} \left[(f(x) - g(x))^2 \right]$$

$$= \operatorname{Var}(y|x) + f(x)^2 - 2f(x)\mathbb{E}_{\mathcal{D}}[g(x)] + \mathbb{E}_{\mathcal{D}}[g(x)^2]$$

$$= \operatorname{Var}(y|x) + f(x)^2 - 2f(x)\mathbb{E}_{\mathcal{D}}[g(x)] + \operatorname{Var}(g(x)) + \mathbb{E}_{\mathcal{D}}[g(x)]^2$$

$$= \operatorname{Var}(y|x) + \underbrace{(f(x) - \mathbb{E}_{\mathcal{D}}[g(x)])^2}_{\text{Bayes error at } x} + \underbrace{\operatorname{Var}(g(x))}_{\text{Variance at } x}$$

Recall that

$$\mathbb{E}_{y|x}[(y-g(x))^2|x] = \mathsf{Var}(y|x) + (f(x)-g(x))^2 \text{ where } f(x) = \mathbb{E}[y|x].$$

$$\begin{split} &\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{y|x}\left[(y-g(x))^{2}|x\right]\right] \\ &= \mathsf{Var}(y|x) + \mathbb{E}_{\mathcal{D}}[(f(x)-g(x))^{2}] \\ &= \mathsf{Var}(y|x) + f(x)^{2} - 2f(x)\mathbb{E}_{\mathcal{D}}[g(x)] + \mathbb{E}_{\mathcal{D}}[g(x)^{2}] \\ &= \mathsf{Var}(y|x) + f(x)^{2} - 2f(x)\mathbb{E}_{\mathcal{D}}[g(x)] + \mathsf{Var}(g(x)) + \mathbb{E}_{\mathcal{D}}[g(x)]^{2} \\ &= \underbrace{\mathsf{Var}(y|x)}_{\mathsf{Bayes\ error\ at\ x}} + \underbrace{(f(x) - \mathbb{E}_{\mathcal{D}}[g(x)])^{2}}_{\mathsf{Bias\ at\ x}} + \underbrace{\mathsf{Var}(g(x))}_{\mathsf{Variance\ at\ x}} \end{split}$$

Recall that

$$\mathbb{E}_{y|x}[(y-g(x))^2|x] = \mathsf{Var}(y|x) + (f(x)-g(x))^2 \text{ where } f(x) = \mathbb{E}[y|x].$$

$$\begin{split} &\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{y|x}\left[(y-g(x))^{2}|x\right]\right] \\ &= \mathsf{Var}(y|x) + \mathbb{E}_{\mathcal{D}}[(f(x)-g(x))^{2}] \\ &= \mathsf{Var}(y|x) + f(x)^{2} - 2f(x)\mathbb{E}_{\mathcal{D}}[g(x)] + \mathbb{E}_{\mathcal{D}}[g(x)^{2}] \\ &= \mathsf{Var}(y|x) + f(x)^{2} - 2f(x)\mathbb{E}_{\mathcal{D}}[g(x)] + \mathsf{Var}(g(x)) + \mathbb{E}_{\mathcal{D}}[g(x)]^{2} \\ &= \underbrace{\mathsf{Var}(y|x)}_{\mathsf{Bayes\ error\ at\ x}} + \underbrace{(f(x) - \mathbb{E}_{\mathcal{D}}[g(x)])^{2}}_{\mathsf{Bias\ at\ x}} + \underbrace{\mathsf{Var}(g(x))}_{\mathsf{Variance\ at\ x}} \end{split}$$

Recall that

$$\mathbb{E}_{y|x}[(y-g(x))^2|x] = \operatorname{Var}(y|x) + (f(x)-g(x))^2 \text{ where } f(x) = \mathbb{E}[y|x].$$

$$\begin{split} &\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{y|x}\left[(y-g(x))^2|x\right]\right] \\ &= \mathsf{Var}(y|x) + \mathbb{E}_{\mathcal{D}}[(f(x)-g(x))^2] \\ &= \mathsf{Var}(y|x) + f(x)^2 - 2f(x)\mathbb{E}_{\mathcal{D}}[g(x)] + \mathbb{E}_{\mathcal{D}}[g(x)^2] \\ &= \mathsf{Var}(y|x) + f(x)^2 - 2f(x)\mathbb{E}_{\mathcal{D}}[g(x)] + \mathsf{Var}(g(x)) + \mathbb{E}_{\mathcal{D}}[g(x)]^2 \\ &= \underbrace{\mathsf{Var}(y|x)}_{\mathsf{Bayes\ error\ at\ x}} + \underbrace{(f(x) - \mathbb{E}_{\mathcal{D}}[g(x)])^2}_{\mathsf{Bias\ at\ x}} + \underbrace{\mathsf{Var}(g(x))}_{\mathsf{Variance\ at\ x}} \end{split}$$

$$\mathbb{E}_{\mathcal{D},y|x}[(y-g(x))^2|x] = \underbrace{\operatorname{Var}(y|x)}_{\text{Bayes error at }x} + \underbrace{(f(x)-\mathbb{E}_{\mathcal{D}}[g(x)])^2}_{\text{Bias at }x} + \underbrace{\operatorname{Var}(g(x))}_{\text{Variance at }x}$$

We split the expected error at x into three terms:

- ▶ Bayes error: the inherent unpredictability of the output
- ▶ bias: how wrong the expected prediction is (underfitting)
- ▶ variance: the variability of the predictions (overfitting)

If we take the expectation with respect to x, we obtain

$$\begin{split} & \mathbb{E}_{\mathcal{D},y,x}[(y-g(x))^2] \\ &= \underbrace{\mathbb{E}_x[\mathsf{Var}(y|x)]}_{\mathsf{Bayes\ error}} + \underbrace{\mathbb{E}_x[(f(x)-\mathbb{E}_{\mathcal{D}}[g(x)])^2]}_{\mathsf{Bias}} + \underbrace{\mathbb{E}_x[\mathsf{Var}(g(x))]}_{\mathsf{Variance}} \end{split}$$

While the analysis only applies to squared error, we often use "bias" / 'variance" as synonyms for "underfitting" / "overfitting".

Table of contents

A note on the data distribution

The bias and variance decomposition

The bias and variance tradeoff

Example

Training and test errors (recap)

Throwing darts = predictions for each draw of a dataset.

