<서울대학교 자연과학대학 생명과학부 학사졸업논문>

Petasearch: Fast, approximate comparison of huge sequence datasets
(페타탐색: 방대한 서열 데이터셋에 대해 빠른 유사성 검색)

이 논문을 이학사 학위논문으로 제출함 2022년 8월

구분: 실험

논문심사 대상자 소속: 자연과학대학 생명과학부

학번: 2018-17232

성명: Minghang Li (인)

논문지도교수: Martin Steinegger (인)

연구윤리 준수 서약서

본인 (Minghang Li)은 서울대학교 연구자로 연구를 진행함에 있어 다음 사항을 준수할 것을 서약합니다.

- 1. 서울대학교 연구윤리 관련 규정 및 지침과 국가 법령 및 정부 지침 그리고 일반적으로 학계에서 인정되는 연구윤리 기준을 준수하여 서울대학교 내에서 연구를 수행할 때 위조 변조표절 등 학문적 진실성을 훼손하는 연구부정행위 또는 연구부적절행위를 하지 않겠습니다.
- 2. 인간, 동물 등 연구대상에 대한 국내외 윤리 기준을 준수하도록 하겠습니다.
- 3. 연구 진행 중 이해상충이 발생할 경우 이를 공개하도록 하겠습니다.
- 4. 정부 및 본교 지침에 따라 연구노트를 작성하며, 연구 데이터에 대한 관리를 철저히 하도록 하겠습니다.

2022년 5월 28일

서약자소속(학과명): 자연과학대학 생명과학부

이름: Minghang Li (서명)

Abstract

The Sequence Read Archive currently holds over 60 petabases and representing a treasure trove for medicine and biotechnology. Bloom-filter and sketching based approaches were proposed to accelerate searches, however they offer only limited sensitivity. We developed Petasearch to enable fast and sensitive searching through huge protein databases. Its algorithm contains three stages: (1) We pre-process the database sequences to extract k-mers, sort and store them in a highly compressed k-mer index. (2) We extract query k-mers, add similar k-mers and find matches between query and database k-mers. To maximize throughput, we exploit the caching and prefetch infrastructure of modern CPUs, advanced Linux IO techniques, and the enormous read bandwidth of NVMe-SSDs. (3) We compute SIMD-accelerated banded Smith-Waterman alignments between sequences of high-scoring k-mer matches. With such design, Petasearch is proved to have great efficiency: it is up to 190 times faster than state-of-the-art algorithms on a 9.3TB benchmark. At much accelerated speeds, Petasearch matches state-of-the-art algorithms on sensitivity down to sequence identities of 60%. On a SCOP25 benchmark we showed that Petasearch's profile search detects sequence homology down to 40% sequence identity. We also showed that Petasearch can be applied in finding novel Cas family proteins and discovering new RNA-dependent RNA polymerase (RdRP) homologs. In conclusion, Petasearch is a tool with huge potential. It will enable fast querying of current and upcoming databases and bring bioinformatic researches to a larger scale.

.....

Keywords: Sequence analysis, Sequence search, Protein databases, Proteins, Protein profiles, Large-scale annotation

Student ID: 2018-17232

Contents

Α	bstra	ict	i
1	Introduction		
	1.1	Sequence Databases	1
	1.2	State-of-the-art Algorithms for Sequence Searches	1
		1.2.1 DIAMOND	
		1.2.2 MMseqs2	
		1.2.3 BIGSI	
	1.3	Prototype of Petasearch Algorithm	1
	1.4	Motivation and Contribution of the Thesis	
2	1,100 CT TO THE COLOR		
	2.1	Space Optimization	3
	2.2	Speed Optimization	
3	Res	ults	4
3 Results 4 Discussion		5	
5	5 References		6

1. Introduction

1.1 Sequence Databases

Next generation sequencing (NGS) technologies have revolutionized the way we collect and analyze biological data. Thanks to NGS, the cost of sequencing has dropped drastically and continued to decrease with more new technologies developed. Accompanying this change is the explosive growth of the amount of sequencing data and the size of sequence databases. The Sequence Read Archive (SRA) is one of the most popular and widely used sequence databases that store both private and public sequence reads and provide access in various foramts including the commonly used FASTQ file format. Its size has grown exponentially since 2008 and currently reached more than 60 petabytes large. The growth in size of SRA is visualized in 1.1.

- 1.2 State-of-the-art Algorithms for Sequence Searches
- 1.2.1 DIAMOND
- 1.2.2 MMseqs2
- 1.2.3 BIGSI
- 1.3 Prototype of Petasearch Algorithm
- 1.4 Motivation and Contribution of the Thesis

Figure 1.1: The exponential growth of the Sequence Read Archive from 2008 to 2022. The total amount of sequence data (unit in bases) and publicly available data are visualized in pink and dark red respectively.

- 2. Materials & Methods
- 2.1 Space Optimization
- 2.2 Speed Optimization

3. Results

4. Discussion

5. References