Vectors - Year 12

A Whereas a **coordinate** represents a **position** in space, a **vector** represents a **displacement** in space.

A vector has 2 properties:

- Direction
- Magnitude (i.e. length)

If P and Q are points then \overrightarrow{PQ} is the vector between them.

If two vectors \overrightarrow{PQ} and \overrightarrow{RS} have the same magnitude and direction, they're the same vector and are parallel.

This might seem obvious, but students sometimes think the vector is different because the movement occurred at a different point in space. Nope!

 $\overrightarrow{AB} = -\overrightarrow{BA}$ and the two vectors are parallel, equal in magnitude but in **opposite directions**.

Triangle Law for vector addition: $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

The vector of multiple vectors is known as the **resultant vector**. (you will encounter this term in Mechanics)

Vector **subtraction** is defined using vector addition and negation:

$$a - b = a + (-b)$$

The zero vector **0** (a bold 0), represents no movement.

$$\overrightarrow{PQ} + \overrightarrow{QP} = \mathbf{0}$$

In 2D: $\mathbf{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

A **scalar** is a normal number, which can be used to 'scale' a vector.

- The direction will be the same.
- But the magnitude will be different (unless the scalar is 1).

Any vector parallel to the vector \boldsymbol{a} can be written as $\lambda \boldsymbol{a}$, where λ is a scalar.

The implication is that if we can write one vector **as a multiple of** another, then we can show they are parallel.

"Show $2\mathbf{a} + 4\mathbf{b}$ and $3\mathbf{a} + 6\mathbf{b}$ are parallel". $3\mathbf{a} + 6\mathbf{b} = \frac{3}{2}(\mathbf{a} + 2\mathbf{b})$: parallel

In the diagram, $\overrightarrow{PQ} = \mathbf{a}$, $\overrightarrow{QS} = \mathbf{b}$, $\overrightarrow{SR} = \mathbf{c}$ and $\overrightarrow{PT} = \mathbf{d}$. Find in terms of \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{d} :

 \overrightarrow{OT}

b \overrightarrow{PR}

 $c = \overline{T}$

 $\overrightarrow{d} \overrightarrow{TR}$

ABCD is a trapezium with AB parallel to DC and DC = 3AB.

M divides DC such that DM: MC = 2:1. $\overrightarrow{AB} = \mathbf{a}$ and $\overrightarrow{BC} = \mathbf{b}$.

Find, in terms of a and b:

 $\overrightarrow{a} \overrightarrow{AM}$

 $\overrightarrow{b} \overrightarrow{BD}$

 $\overrightarrow{c} \overrightarrow{MB}$

 \overrightarrow{DA}

Edexcel GCSE June 2013 1H Q27

Tip: This ratio wasn't in the original diagram. I like to add the ratio as a visual aid.

PQRS is a parallelogram.

N is the point on SQ such that SN : NQ = 3 : 2

$$\overrightarrow{PQ} = \mathbf{a} \qquad \overrightarrow{PS} = \mathbf{b}$$

- (a) Write down, in terms of **a** and **b**, an expression for \overrightarrow{SQ} .
- (b) Express \overrightarrow{NR} in terms of **a** and **b**.

Your Turn

Edexcel GCSE June 2012 b b

Diagram NOT accurately drawn

OAB is a triangle.

$$\overrightarrow{OA} = \mathbf{a}$$

$$\overline{OB} = \mathbf{b}$$

(a) Find \overline{AB} in terms of a and b.

(1)

P is the point on AB such that AP : PB = 3 : 1

(b) Find OP in terms of a and b. Give your answer in its simplest form.

Ex 11A Q7-11

Representing Vectors

You should already be familiar that the value of a vector is the **displacement** in the x and y direction (if in 2D).

$$a = \begin{pmatrix} 3 \\ -2 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a + b =$$

$$2a =$$

 \mathscr{I} A **unit vector** is a vector of magnitude 1. i and j are unit vectors in the x-axis and y-axis respectively.

$$i = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad j = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

e.g.
$$\binom{4}{3} = 4\binom{1}{0} + 3\binom{0}{1} = 4i + 3j$$

If
$$a = 3i$$
, $b = i + j$, $c = i - 2j$ then:

- 1) Write a in vector form.
- 2) Find b + 2c in i, j form.

Given that $\mathbf{c} = 3\mathbf{i} + 4\mathbf{j}$ and $\mathbf{d} = \mathbf{i} - 2\mathbf{j}$, find:

Your Turn

 $\mathbf{a} \lambda \text{ if } \mathbf{c} + \lambda \mathbf{d} \text{ is parallel to } \mathbf{i} + \mathbf{j}$

 \mathbf{c} s if $\mathbf{c} - s\mathbf{d}$ is parallel to $2\mathbf{i} + \mathbf{j}$

b μ if μ **c** + **d** is parallel to **i** + 3**j**

d t if $\mathbf{d} - t\mathbf{c}$ is parallel to $-2\mathbf{i} + 3\mathbf{j}$

The resultant of the vectors $\mathbf{a} = 3\mathbf{i} - 2\mathbf{j}$ and $\mathbf{b} = p\mathbf{i} - 2p\mathbf{j}$ is parallel to the vector $\mathbf{c} = 2\mathbf{i} - 3\mathbf{j}$. Find:

a the value of p (4 marks)

b the resultant of vectors a and b. (1 mark)

Skip Ex 11B

Magnitude of a Vector

 \mathscr{I} The magnitude |a| of a vector a is its length.

$$\mathscr{F} \text{ If } \boldsymbol{a} = \begin{pmatrix} x \\ y \end{pmatrix} \quad |\boldsymbol{a}| = \sqrt{x^2 + y^2}$$

$$\left| \begin{pmatrix} -5 \\ -12 \end{pmatrix} \right| =$$

$$a = \begin{pmatrix} 4 \\ -1 \end{pmatrix} |a| =$$

$$\boldsymbol{b} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \quad |\boldsymbol{b}| =$$

Unit Vectors

A unit vector is a vector whose magnitude is 1

There's certain operations on vectors that require the vectors to be 'unit' vectors. We just scale the vector so that its magnitude is now 1.

$$a = \binom{3}{4}$$

If a is a vector, then the unit vector \hat{a} in the same direction is

$$\widehat{a} = \frac{a}{|a|}$$

Test Your Understanding: Convert the following vectors to unit vectors.

$$a = \begin{pmatrix} 12 \\ -5 \end{pmatrix}$$

$$\boldsymbol{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Direction of Vectors

Find the angle between \boldsymbol{a} and the positive x – axis

$$a = \binom{4}{5}$$

Vector \boldsymbol{a} has magnitude 10 and makes an angle of 30° with \boldsymbol{j} Find \boldsymbol{a} in \boldsymbol{i} , \boldsymbol{j} and column vector format.

Position Vectors

Suppose we started at a point (3,2) and translated by the vector $\binom{4}{0}$:

You might think we can do something like:

$$(3,2) + {4 \choose 0} = (7,2)$$

But only vectors can be added to other vectors. If we treated the point (3, 2) as a vector, then this solves the problem:

$$\binom{3}{2} + \binom{4}{0} = \binom{7}{2}$$

A vector used to represent a position is unsurprisingly known as a **position vector**. A position can be thought of as a translation from the origin, as per above. It enables us to use positions in all sorts of vector (and matrix!) calculations.

 \mathscr{N} The position vector of a point A is the vector \overrightarrow{OA} , where O is the origin. \overrightarrow{OA} is usually written as \mathbf{a} .

The points A and B have coordinates (3,4) and (11,2) respectively. Find, in terms of i and j:

- a) The position vector of A
- b) The position vector of B
- c) The vector \overrightarrow{AB}

For position vectors a and b:

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$\overrightarrow{AB} = \boldsymbol{b} - \boldsymbol{a}$$

The points A, B and C have coordinates (3, -1), (4, 5) and (-2, 6) respectively, and O is the origin.

Find, in terms of i and i:

- ii \overrightarrow{AB} a i the position vectors of A, B and C
- **b** Find, in surd form: $\mathbf{i} \quad |\overrightarrow{OC}|$ ii $|\overrightarrow{AB}|$ iii |AC|

$$\overrightarrow{OA} = 5i - 2j$$
 and $\overrightarrow{AB} = 3i + 4j$. Find:

- a) The position vector of B.
- b) The exact value of $|\overrightarrow{OB}|$ in simplified surd form.

$$\overrightarrow{OP} = 4\mathbf{i} - 3\mathbf{j}, \overrightarrow{OQ} = 3\mathbf{i} + 2\mathbf{j}$$

- a Find \overrightarrow{PQ}
- **b** Find, in surd form: $\mathbf{i} |\overrightarrow{OP}|$ ii $|\overrightarrow{OQ}|$ iii $|\overrightarrow{PQ}|$

3
$$\overrightarrow{OQ} = 4\mathbf{i} - 3\mathbf{j}, \overrightarrow{PQ} = 5\mathbf{i} + 6\mathbf{j}$$

- a Find \overrightarrow{OP}
- ii $|\overrightarrow{OQ}|$ iii $|\overrightarrow{PQ}|$ **b** Find, in surd form: $\mathbf{i} |\overrightarrow{OP}|$

5 The position vectors of 3 vertices of a parallelogram are $\binom{4}{2}$, $\binom{3}{5}$ and $\binom{8}{6}$.

Find the possible position vectors of the fourth vertex.

- 6 Given that the point A has position vector $4\mathbf{i} 5\mathbf{j}$ and the point B has position vector $6\mathbf{i} + 3\mathbf{j}$,
 - a find the vector \overrightarrow{AB} .

(2 marks)

b find $|\overrightarrow{AB}|$ giving your answer as a simplified surd.

(2 marks)

Solving Geometric Problems

X is a point on AB such that AX:XB=3:1. M is the midpoint of BC. Show that \overrightarrow{XM} is parallel to \overrightarrow{OC} .

Introducing Scalars and Comparing Coefficients

Remember when we had identities like:

$$ax^2 + 3x \equiv 2x^2 + bx$$

we could **compare coefficients**, so that a=2 and 3=b.

We can do the same with (non-parallel) vectors!

OACB is a parallelogram, where $\overrightarrow{OA}=a$ and $\overrightarrow{OB}=b$. The diagonals OC and AB intersect at a point X. Prove that the diagonals bisect each other.

(Hint: Perhaps find \overrightarrow{OX} in two different ways?)

'lambda' 'mu'

Your Turn

In the above diagram, $\overrightarrow{OA} = \boldsymbol{a}$, $\overrightarrow{OB} = \boldsymbol{b}$ and $\overrightarrow{OQ} = \frac{1}{3}\boldsymbol{a}$. We wish to find the ratio OX: XC.

- a) If $\overrightarrow{OX} = \lambda \ \overrightarrow{OC}$, find an expression for \overrightarrow{OX} in terms of $\boldsymbol{a}, \boldsymbol{b}$ and λ .
- b) If $\overrightarrow{BX} = \mu \overrightarrow{BQ}$, find an expression for \overrightarrow{OX} in terms of \boldsymbol{a} , \boldsymbol{b} and μ .
- c) By comparing coefficients or otherwise, determine the value of λ , and hence the ratio OX:XC.

Area of a Triangle

$$\overrightarrow{AB} = 3\mathbf{i} - 2\mathbf{j}$$
 and $\overrightarrow{AC} = \mathbf{i} - 5\mathbf{j}$. Determine $\angle BAC$.

Strategy: Find 3 lengths of triangle then use cosine rule to find angle.

Cosine Rule: $a^2 = b^2 + c^2 - 2bc \cos A$

Modelling

In Mechanics, you will see certain things can be represented as a simple number (without direction), or as a vector (with direction):

Remember a 'scalar' just means a normal number (in the context of vectors). It can be obtained using the magnitude of the vector.

Vector Quantity	Equivalent Scalar Quantity
Velocity e.g. $\binom{3}{4}$ km/h	Speed = 5 km/h
Displacement e.g. $\binom{-5}{12}$ km	Distance = 13 km

Find the distance moved by a particle which travels for:

- a 5 hours at velocity $(8i + 6j) \text{ km h}^{-1}$
- **b** 10 seconds at velocity $(5\mathbf{i} \mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$
- c 45 minutes at velocity (6i + 2j) km h⁻¹
- d 2 minutes at velocity (-4i 7j) cm s⁻¹.