

Curso 03: Administração de Dados Complexos em Larga Escala

-- Comparação Hadoop x Spark --

Prof. Jose Fernando Rodrigues Junior

Objetivo: comparar as soluções de processamento Big Data Hadoop e Spark

### Níveis da Análise de Dados

- Análise de dados básica: contagens, somas, médias, máximo, mínimo, e ordenação;
- Análise de dados estatística: distribuição de dados, ajuste de modelo, teste de hipóteses, métricas, etc;
- Análise de dados avançada: aprendizado de máquina, classificação, regressão, recomendação, clusterização, etc;
- Aprendizado de máquina avançado: arquiteturas de redes neurais visando inteligência artificial.

### Níveis da Análise de Dados

- Análise de dados básica: Curso 03/11 DW/OLAP médias, máximo, mínimo, e ord
- Análise de dados estatística: distribuição de dados, ajuste de modelo, tempo de composições, métricas, etc;
- Análise de dados avançada: aprendizado de máquina, classificação, regres Curso 02/03 Sporte o, clusterização, etc;
- Aprendizado de máquina avançado: arquiteturas de redes neurais visando inteligé Curso 05/07/08/10

# Comparativo





VS





# Hadoop

- O Apache Hadoop é um arcabouço de código aberto para armazenar e processar com eficiência conjuntos de dados que variam de gigabytes a petabytes;
- um projeto que ganhou força já a partir de 2005;
- Sua escala é conhecida por abranger Petabytes de dados
  - Facebook, Yahoo, Expedia, British Airways,....;
- Dezenas de outros softwares trabalham em conjunto ou sobre a combinação HDFS+MapReduce: Hive, HBase, Kylin, Mahout, Pig, etc
- ⇒ The Hadoop Ecosystem Table
- ⇒ Hadoop at Amazon AWS

É tudo sobre Big Data.



### Hadoop

MBA IA BRG DAYA

- ⇒ Limitações:
- não é a melhor solução para poucos dados alguns Terabytes por exemplo;
- não funciona de modo interativo, mas em processamento batch - inadequado para real-time processing;
- difícil integração com dados produzidos de maneira contínua (*streaming*);
- processamento iterativo dificultado, ou inviável;
- uso mais **complexo** do que Spark Java apenas, e projeto complexo.

# **Spark**

- Arcabouço de processamento distribuído;
- Faz uso de processamento em memória, ao invés de fluxo sequencial de dados - 10 a 100 vezes mais rápido do que Hadoop;
- Consegue sanar as limitações do Hadoop:
  - . linguagens de programação: Python, Scala, Java, e R;
  - . lida bem com dados em streaming;
  - . faz processamento iterativo ou batch.
- Integrável com diversos subsistemas: HDFS, HBase, Yarn, Mesos, Cassandra, ou standalone.

### **Spark Framework**



# Comparativo

| Hadoop                                    | Spark                                                                                            |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| Processamento +Armazenamento distribuídos | Processamento distribuído                                                                        |  |
| MapReduce                                 | Resilient Distributed Dataset (RDD)                                                              |  |
| Disk-intensive                            | Memory-intensive                                                                                 |  |
| Batch                                     | Iterativo (grafos, proces. numérico) e<br>Interativo (real-time, spark shell); e<br>também batch |  |
| Java (embora existam outras iniciativas)  | Scala, Python, Java, e R (simplicidade de uso)                                                   |  |

# Comparativo

| Task                   | Hadoop           | Spark                               |
|------------------------|------------------|-------------------------------------|
| Data Warehouse         | Hive             | Spark SQL                           |
| ETL                    | Sqoop, Flume     | Spark SQL                           |
| Aprendizado de máquina | Mahout           | Machine Learning<br>Library (MLlib) |
| Streaming              | Storm e/ou Kafka | Spark Streaming                     |
| Real-time analytics    | None             | Suporta                             |
| Grafos                 | Inviável         | GraphX                              |

# **Spark sobre o Hadoop**

- Embora versátil, o Spark surgiu no contexto do ecossistema Hadoop uma evolução;
- Aceita outras integrações, mas, comumente, faz uso do HDFS e do YARN;
- Hadoop = HDFS+MapReduce, o que torna o conceito "usa Hadoop" nebuloso;
- O Spark não é um substituto para o Hadoop por duas razões:
  - usa parte de seu legado;
  - · ainda que uma evolução, sua escala é menor.

# **Spark**



- ⇒ Limitações
  - requer que memória disponível nos nós de processamento - se tiver que fazer paginação (virtual memory), o desempenho cai drasticamente;

 a necessidade de memória eleva o custo; por exemplo, se deseja-se um cluster com máquinas de baixo custo, o Hadoop é uma solução mais adequada.



### Conclusões

- Hadoop, muito bom em:
  - processamento simples;
  - . altíssima escala;
  - . sobre clusters de baixo custo;
- Spark, muito bom em:
  - processamento simples ou complexo;
  - . alta escala;
  - sobre clusters de custo mais elevado.

#### **⇒** Critérios:

- . qual a escala dos meus dados?
- quais computadores eu já tenho?
- quais problemas eu preciso resolver?



### Conclusões





















田









**KBytes** 

**MBytes** 

GBytes Terabytes Centenas de

**TBytes** 

Petabytes

Centenas de Petabytes



### Conclusões



#### Data & IA Landscape 2020

