Comparison of Introductory Zero-Knowledge Proof Examples

By Navid Roux, 2020-05-25.

Latest version always at https://github.com/ComFreek/zero-knowledge-proofs-comparison-table. This work is licensed under a "CC BY-SA 4.0" license.

	Sudoku	Hamiltonian Cycle	Any "hard" Graph Property	Discrete Log (variant)	Discrete Log (Schnorr variant)
$\begin{array}{c} \textbf{Statement} \\ \textbf{public or sent from } P \textbf{ to} \\ V \end{array}$	Partial sudoku Ψ is solvable	Graph G is $\operatorname{Hamiltonian}^1$	Let $L \in NP$ be any graph-isomorphism-invariant graph property believed to be hard. ³	Let \mathbb{G} of order q and $y \in \mathbb{Z}_q$ be fixed.	Let \mathbb{G} of order q and $y \in \mathbb{G}$ be fixed.
				I know $x \in \mathbb{Z}_q$ such that	I know $x \in \mathbb{Z}_q$ such that
			Graph $G \in L$	[x] = y	[x] = y
	Solution $\overline{\Psi}$	Hamiltonian cycle v	Certificate w	x	x
Iteration					
1. Rerandomization by P of	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pick graph isomorphism $i: G \to G'$ (just relabel vertices)	Pick graph isomorphism $i: G \to G'$ (just relabel vertices)		
1. Problem Statement	1. $\Psi' := i[\Psi]$ is solvable	1. $G' := i[G]$ is Hamiltonian	$1. G' := i[G] \in L$	Pick $r \leftarrow \mathbb{Z}_q$ uniformly at random	Pick $r \leftarrow \mathbb{Z}_q$ uniformly at random
2. Solution	2. $\overline{\Psi'} := i[\overline{\Psi}]$ is solution to Ψ'	2. $v' := i[v]$ is Hamiltonian cycle for G'^2	2. $w' := i[w]$ is certificate for G'		
2. Commitment by P		Send all of	Send all of		
	Send all of	• G	• G	Send all of	
	• $\left(\operatorname{com}(\overline{\Psi'}_{j,k})\right)_{1 \leq j,k \leq 9}$	• G'	• G'	• $\hat{g} := [r]$	Send $[r]$
	• $com(\Psi')$	• $com(i)$	• $com(i)$	• $com(r)$	
		• $com(v')$	• com(w')		
	Ask for one of				
3. Pose Challenge by V	• the nine permuted rows				
	the nine permuted columns	Ask for one of	Ask for one of	Ask for one of	Pick $c \leftarrow \mathbb{Z}_q$ uniformly at random. Ask for $cx + r$ and denote response by resp.
	• the nine permuted squares	• isomorphism $i: G \to G'$	• isomorphism $i : G \to G'$	• r	
	permuted statement	• Hamiltonian cycle v' in G'	• certificate w' for $G' \in L$	• x+r	
	In total, this gives $9+9+9+1=28$			and denote response by resp.	
4. Respond to challenge	challenge types				
by P	canonical: respond exactly with what was asked				
5. Verify response by V	Check	Check	Check	Check	
	• that no numbers occur twice in row, column, or square,	• conditions on isomorphism,	• conditions on isomorphism,	• that indeed $\hat{g} = [\text{resp.}]$	
	• or that the permuted statement is in fact a permutation	• or check that cycle is indeed Hamiltonian	or check that certificate is valid	• that [resp.] = $y + \hat{g}$ namely if indeed [x] = y , then $y +$ $\hat{g} = [x] + [r] = [x + r] = [\text{resp.}]$	Check that [resp.] = $cy + [r]$
Completeness					
P can convince V in case P actually had a solution	Since step 4 above is canonical, provers can convince with prob. of 1				
Soundness P cannot convince V without having a solution. Shown are the prob. of convincing w/o having a sol.	$pprox \left(rac{1}{28} ight)^{\# ext{iter}}$	$\left(\frac{1}{2}\right)^{\text{\#iter}}$	$\left(\frac{1}{2}\right)^{\text{\#iter}}$	$\left(\frac{1}{2}\right)^{\text{\#iter}}$	todo
Zero Knowledge V doesn't learn anything about the witness	In each round, V learns $either$ a Sudoku "building block" (row, column, square) of the permuted solution or the permuted solution statement. The second case is obviously useless. In the first case, V only learns what the round's permutation i does on the numbers that the original puzzle Ψ had already prefilled in the corresponding row, column, or square. In particular, nothing is learned about the solution entries, i.e. $\overline{\Psi}' \setminus \Psi'$, due to the Sudoku property of every number (mapping) occurring exactly once in such a building block.	In each round, V learns $either$ a useless isomorphism or a Hamiltonian cycle in $G' \cong G$. Since the graph isomorphism problem is believed to be hard, learning about such a cycle in G' without learning the isomorphism is useless as well.	Same argument as in the cell to the left.	In each round, V learns $either$ a useless random r or $x+r$. In the latter case, however, since $r \sim \mathcal{U}(\mathbb{Z}_q)$, we also have $(x+r) \sim \mathcal{U}(\mathbb{Z}_q)^4$	In each round, V only learns $[r]$ and $cx + r$ for a c chosen by them. Due to DLOG assumed to be hard in \mathbb{G} , in the eyes of V we have $r \sim \mathcal{U}(\mathbb{Z}_q)$ and hence $(cx + r) \sim \mathcal{U}(\mathbb{Z}_q)^4$.

- This means it contains a so-called Hamiltonian cycle that is a path visiting every node exactly once. The problem of finding such a cycle is NP-complete.
- 2 Here, v is effectively a sequence of edges, on which the isomorphism is applied elementwise.
- 3 Take for example HAMILTONIAN, 3-COL, or CLIQUE. From $L \in \mathbb{NP}$ it follows that for every $G \in L$ there is a certificate w for membership of length poly(|G|) that can be verified in poly(|G|) time.

 By graph-isomorphism invariance we demand that for $G \cong G'$ witnessed by an isomorphism $i: G \to G'$ certificates w for $G \in L$ can be transformed to certificates w' for $G' \in L$. We denote the latter by i[w]
- By graph-isomorphism invariance we demand that for $G \cong G'$ witnessed by an isomorphim $i: G \to G'$, certificates w for $G \in L$ can be transformed to certificates w' for $G' \in L$. We denote the latter by i[w].
- 4 This is a simple lemma holding for arbitrary groups. The security of the OTP is based on this, usually phrased in the language of the group $(\{0,1\}^n, \oplus)$.

Useful Links

- Sudoku (slightly different challenges are given, though)
 - https://manishearth.github.io/blog/2016/08/10/interactive-sudoku-zero-knowledge-proof/
 - https://manishearth.github.io/sudoku-zkp/zkp.html
- Discrete Log (variant): [Wik20a]
- Discrete Log (Schnott variant)
 - Lecture Notes by Prof. Schröder on "Privacy-Preserving Cryptocurrencies" (currently non-public; only accessible to students enrolled in their course)
 - [Sch90]

References

 $[Sch90] \qquad \text{C. P. Schnorr. "Efficient Identification and Signatures for Smart Cards". In: $Advances\ in\ Cryptology-CRYPTO'89\ Proceedings.\ Ed.\ by\ Gilles\ Brassard.\ New\ York,\ NY:\ Springer\ New\ York,\ 1990,\ pp.\ 239-252.\ ISBN:\ 978-0-387-34805-6.$

[Wik20a] Wikipedia contributors. Zero-knowledge proofs (Discrete log of a given value) — Wikipedia, The Free Encyclopedia. [Online; accessed 2020-05-21]. 2020. URL: https://en.wikipedia.org/w/index.php?title=Zero-knowledge_proof&oldid=957331895#Discrete_log_of_a_given_value.

[Wik20b] Wikipedia contributors. Zero-knowledge proofs (Hamiltonian cycle for a large graph)— Wikipedia, The Free Encyclopedia. [Online; accessed 2020-05-21]. 2020. URL: https://en.wikipedia.org/w/index.php?title=Zero-knowledge_proof&oldid=957331895#Hamiltonian_cycle_for_a_large_graph.