

# oisson & Drift-Diffusion Equations Solver for Semiconductor Device Modelling

**J. Miklas** (jan.miklas@vut.cz) P. Prochazka (prochazkap@vut.cz)
Brno University of Technology , Czech Republic

FEniCS 2023, June 14-16









#### Switching loss analysis of power devices

• High voltage, high current





#### Switching loss analysis of power devices

- High voltage, high current
- Excess charge storage in bipolar transistors (BJT, IGBT) during on-state





#### Switching loss analysis of power devices

- High voltage, high current
- Excess charge storage in bipolar transistors (BJT, IGBT) during on-state
  - 1-D lumped charge models (possibly transient?)



#### -emiconductor Equations - Full Drift-Diffusion Model

(1)

(3)

(4)

(5)

Electrostatics (Gauss's Law): Poisson's Equation:

$$\nabla \cdot (\varepsilon \nabla \psi) = -q(p - n + N_D - N_A)$$

Carrier transport: drift-diffusion equations:

$$\mathbf{J}_{p} = \overbrace{qp\mu_{p}\mathbf{E}}^{\text{drift}} - \overbrace{qD_{p}\nabla p}^{\text{diffusion}}$$

$$\mathbf{J}_n = qn\mu_n\mathbf{E} + qD_n\nabla n$$

Continuity equations

$$\frac{\partial p}{\partial t} = -\frac{1}{q} \nabla \cdot \mathbf{J}_p - R$$

$$\frac{\partial n}{\partial t} = \frac{1}{q} \nabla \cdot \mathbf{J}_n - R$$

Shockley-Read-Hall (SRH) recombination

$$R = \frac{n \cdot p - n_i^2}{\tau_p(n + n_0) + \tau_n(p + p_0)}$$

Unknown variables  $(\psi, p, n, \mathbf{J}_p, \mathbf{J}_n)$ 

## (2) Notation: $\frac{\varepsilon}{\varepsilon}$

Permittivity of material (silicon)
Electric potential

Electric field intensity  $\mathbf{E} = -\nabla \psi$ Elementary charge

p, n Holes and electrons concentration

Holes and electron current density

 $J_p$ ,  $J_n$  Hole and electron current density  $N_A, N_D$  Acceptors and donors concentration  $\mu_p, \mu_n$  hole and electron mobility

Diffusion constants (Fick's Law)
Recombination-generation rate

 $n_i$  Intrinsic carrier concentration  $p_0, n_0$  thermal equillibrium concentrations  $\tau_p, \tau_n$  hole and electron recombination lifetime

(6)

#### Semiconductor Equations - 3 equations system

• 3 independent variables  $(\psi, p, n)$ 

$$\lambda_0 \nabla \cdot (\nabla \psi) = -(p - n + N_D - N_A) \tag{7}$$

$$\frac{1}{\lambda_1} \frac{\partial p}{\partial t} = 0 = \nabla \cdot (\mu_p \ p \ \nabla \psi + D_p \ \nabla p) - R(p, n)$$
 (8)

$$\frac{1}{\lambda_1} \frac{\partial n}{\partial t} = O = \nabla \cdot (\underbrace{-\mu_n \, n \, \nabla \psi}_{\text{Diff}} + \underbrace{D_n \, \nabla n}_{\text{Diffusion}}) - \underbrace{R(p, n)}_{\text{Recombination}}$$
(9)

#### Semiconductor Equations - 3 equations system

• 3 independent variables  $(\psi, p, n)$ 

$$\lambda_0 \nabla \cdot (\nabla \psi) = -(p - n + N_D - N_A) \tag{7}$$

$$\frac{1}{\lambda_1} \frac{\partial p}{\partial t} = 0 = \nabla \cdot (\mu_p \ p \ \nabla \psi + D_p \ \nabla p) - R(p, n)$$
 (8)

$$\frac{1}{\lambda_1} \frac{\partial n}{\partial t} = 0 = \nabla \cdot \left( \underbrace{-\mu_n \ n \ \nabla \psi}_{\text{Drift}} + \underbrace{D_n \ \nabla n}_{\text{Diffusion}} \right) - \underbrace{R(p, n)}_{\text{Recombination}}$$
(9)

- Scaled
- Coupled
- Nonlinear

#### Steady State Problem Statement

$$\lambda_0 \nabla \cdot (\nabla \psi) = -(p - n + N_D - N_A) \quad \text{in } \Omega$$
 (10)

$$O = \nabla \cdot (\rho \mu_{\rho} \nabla \psi + D_{\rho} \nabla \rho) - R \qquad \text{in } \Omega$$

$$O = \nabla \cdot (-n\mu_n \nabla \psi + D_n \nabla n) - R \qquad \text{in } \Omega$$
(12)

with "ohmic" boundary conditions

$$\psi = \psi_{\mathrm{BC}}$$
 on  $\Gamma_{\mathrm{D0}}$  (13)

(11)

(14)

(15)

$$p = p_{\rm BC}$$
 on  $\Gamma_{\rm D1}$ 

$$n = n_{\rm BC}$$
 on  $\Gamma_{\rm D2}$ 

$$\mathbf{n} \cdot \nabla \psi = g \qquad \text{on } \Gamma_{\text{N0}} \tag{16}$$

#### Variational Formulation

$$\lambda_0 \nabla \cdot (\nabla \psi) = -(p - n + N_D - N_A) \quad \text{in } \Omega$$
 (10)

$$O = \nabla \cdot (\rho \mu_{\rho} \nabla \psi + D_{\rho} \nabla \rho) - R \qquad \text{in } \Omega$$

$$O = \nabla \cdot (-n\mu_n \nabla \psi + D_n \nabla n) - R \qquad \text{in } \Omega$$
(12)

Find  $(\psi, p, n) \in V_0 \times V_1 \times V_2$  such that

$$F((\psi, p, n); (v_0, v_1, v_2)) = 0$$
(17)

(11)

for all  $(v_0, v_1, v_2) \in \hat{V}_0 \times \hat{V}_1 \times \hat{V}_2$ ; with F given by:

$$F = -\int_{\Omega} \lambda_{0} \nabla \psi \cdot \nabla v_{0} \, dx + \int_{\Omega} (p - n + N_{D} - N_{A}) v_{0} \, dx + \int_{\Gamma_{NO}} g v_{0} \, ds$$

$$-\int_{\Omega} D_{p} \nabla p \cdot \nabla v_{1} \, dx - \int_{\Omega} \mu_{p} p \nabla \psi \cdot \nabla v_{1} \, dx - R v_{1} \, dx$$

$$-\int_{\Omega} D_{n} \nabla n \cdot \nabla v_{2} \, dx + \int_{\Omega} \mu_{n} n \nabla \psi \cdot \nabla v_{2} \, dx - R v_{2} \, dx$$
(18)

























#### Typical Electrical Output Characteristics



#### Simulation Results - Step junction



#### Reverse / Zero Bias:

- Depletion region formed
- Zero total current
- Drift compensated by diffusion

#### Simulation Results - Step junction



#### Reverse / Zero Bias:

- Depletion region formed
- Zero total current
- Drift compensated by diffusion

#### Forward Bias:

- Depletion region reduced
- Constant current across device
- · minority carriers injected
- majority carriers exceeding doping concentration







$$\lambda_{0}\nabla \cdot (\nabla \psi) = -(p - n + N_{D} - N_{A})$$

$$0 = \nabla \cdot (p\mu_{p}\nabla \psi + D_{p}\nabla p) - R$$

$$0 = \nabla \cdot (-n\mu_{0}\nabla \psi + D_{0}\nabla n) - R$$





$$\lambda_0 \nabla \cdot (\nabla \psi) = -(p - n + N_D - N_A)$$

$$O = \nabla \cdot (p \mu_p \nabla \psi + D_p \nabla p) - R$$

$$O = \nabla \cdot (-n \mu_0 \nabla \psi + D_0 \nabla n) - R$$





$$\lambda_{0}\nabla\cdot(\nabla\psi) = -(p - n + N_{D} - N_{A})$$

$$0 = \nabla\cdot(p\mu_{p}\nabla\psi + D_{p}\nabla p) - R$$

$$0 = \nabla\cdot(-n\mu_{n}\nabla\psi + D_{n}\nabla n) - R$$





$$\lambda_{0}\nabla\cdot(\nabla\psi) = -(p - n + N_{D} - N_{A})$$

$$O = \nabla\cdot(p\mu_{p}\nabla\psi + D_{p}\nabla p) - R$$

$$O = \nabla\cdot(-n\mu_{n}\nabla\psi + D_{n}\nabla n) - R$$





$$\lambda_{0}\nabla\cdot(\nabla\psi) = -(p - n + N_{D} - N_{A})$$

$$O = \nabla\cdot(p\mu_{p}\nabla\psi + D_{p}\nabla p) - R$$

$$O = \nabla\cdot(-n\mu_{n}\nabla\psi + D_{n}\nabla n) - R$$





$$\lambda_{0}\nabla\cdot(\nabla\psi) = -(p - n + N_{D} - N_{A})$$

$$0 = \nabla\cdot(p\mu_{p}\nabla\psi + D_{p}\nabla p) - R$$

$$0 = \nabla\cdot(-n\mu_{n}\nabla\psi + D_{n}\nabla n) - R$$





$$\lambda_{O} \nabla \cdot (\nabla \psi) = -(p - n + N_{D} - N_{A})$$

$$O = \nabla \cdot (p \mu_{p} \nabla \psi + D_{p} \nabla p) - R$$

$$O = \nabla \cdot (-n \mu_{D} \nabla \psi + D_{D} \nabla n) - R$$

#### Typical Electrical Output Characteristics



#### 1-D Lumped Charge Model

- Charge control + conductivity modulation
- "Rules":
  - Zero mobile carriers at reverse biased junction
  - Some mobile charge at forward biased junction
    - defined by applied voltage and doping concentrations
  - Diffusion current: defined by concentration gradient
  - Conductivity: defined by amount of mobile carriers

#### Equations (2),(3)

$$\mathbf{J}_{p} = \overrightarrow{qp\mu_{p}}\mathbf{E} - \overrightarrow{qD_{p}}\nabla p$$

$$\mathbf{J}_{n} = qn\mu_{n}\mathbf{E} + qD_{n}\nabla n$$



#### Simulation Domain, BC, Doping















































































# Summary

- Numerical approach validated and demonstrated on basic structures
  - The equations and FEniCS seem to love each other
- Currently in "demo version" qualitative explanation of device physics
- Good validation tool for analytical assumptions in simplified power BJT model

# Outlook

#### Space for improvements:

- Time dependent problem
- Initial guess accuracy, BC for any bias
- Nonlinear Solver, Convergence, Stability

https://github.com/janmiklas/fenicsx-semiconductor-eq

Thank you for your kind attention!