ECE 417 Midterm 2 2022 practice problem set

Instructor: Vikas Dhiman March 30th, 2021

(1) Student name:

Student email:

About the exam

- 1. There are total 5 problems. You must attempt all 5.
- 2. Maximum marks: 50 (70 with bonus marks).
- 3. Maximum time allotted: 50 min
- 4. Calculators are allowed.
- 5. One US Letter size or A4 size cheat sheet (both-sides) is allowed.

Problem 1 Given a set of $n \geq 6$ points $\underline{\mathbf{X}}_i \in \mathbb{P}^3$ for all $i \in \{1, \dots, n\}$ in 3D projective space, and a set of corresponding points $\underline{\mathbf{u}}_i \in \mathbb{P}^2$ in an image, find the 3D to 2D projective $P \in \mathbb{R}^{3 \times 4}$ matrix that converts \mathbf{X}_i to $\underline{\mathbf{u}}_i = \lambda_i P \underline{\mathbf{X}}_i$. In other words, convert $\underline{\mathbf{u}}_i \times P \underline{\mathbf{X}}_i = 0$ into a familiar form $A\mathbf{y} = \mathbf{b}$ or $A\mathbf{y} = \mathbf{0}$ so that we can

 $\underline{\mathbf{u}}_i = \lambda_i P \underline{\mathbf{X}}_i. \text{ In other words, convert } \underline{\mathbf{u}}_i \times P \underline{\mathbf{A}}_i = 0 \text{ into a jumes. } \text{jumes.}$ $solve \text{ for } P. \text{ For notation purposes, you can denote } \underline{\mathbf{u}}_i = [x_i, y_i, w_i]^\top \text{ and } P = \begin{bmatrix} \mathbf{p}_1^\top \\ \mathbf{p}_2^\top \\ \mathbf{p}_3^\top \end{bmatrix} \text{ where } \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3 \in \mathbb{R}^4$

are the rows of P represented as 4-D column vectors. (Practical motivation: We did camera calibration in lab using a single checker board. It is much easier to compute camera calibration using two mutually perpendicular checker boards so that all points do not lie on a single plane (hence linearly independent). One can make a coordinate system attached to the double checker and compute the 3D coordinates of each corner point in that system. Let $\underline{\mathbf{X}}_i \in \mathbb{P}^3$ be such points in 3D on the checker-board. Let $\underline{\mathbf{u}}_i \in \mathbb{P}^2$ be a point detected in the image so that we have one-to-one correspondence between $\underline{\mathbf{X}}_i$ and $\underline{\mathbf{u}}_i$. Finding the projection matrix $P \in \mathbb{R}^{3\times 4}$ then reduces to the above problem. We will cover the breakdown of P matrix into P = K[R,t] in class.)

Solution Watch lecture https://drive.google.com/file/d/1cY02DTagpckbYl5gS0PYBu569vlZUNN6/view?usp=sharing

1. Write cross product as a matrix operation

$$[\underline{\mathbf{u}}_i]_{\times} = \begin{bmatrix} 0 & -w_i & y_i \\ w_i & 0 & -x_i \\ -y_i & x_i & 0 \end{bmatrix}$$

2. Write $P\underline{\mathbf{X}}_i$ in terms of row vectors.

$$P\underline{\mathbf{X}}_{i} = \begin{bmatrix} \mathbf{p}_{1}^{\top} \\ \mathbf{p}_{2}^{\top} \\ \mathbf{p}_{3}^{\top} \end{bmatrix} \underline{\mathbf{X}}_{i} = \begin{bmatrix} \mathbf{p}_{1}^{\top}\underline{\mathbf{X}}_{i} \\ \mathbf{p}_{2}^{\top}\underline{\mathbf{X}}_{i} \\ \mathbf{p}_{3}^{\top}\underline{\mathbf{X}}_{i} \end{bmatrix}$$

3. Note that all the three terms like $\mathbf{p}_1^{\top} \underline{\mathbf{X}}_i$ are scalars hence they are symmetric. Hence $\mathbf{p}_1^{\top} \underline{\mathbf{X}}_i = \underline{\mathbf{X}}_i^{\top} \mathbf{p}_1$.

$$P\underline{\mathbf{X}}_{i} = \begin{bmatrix} \underline{\mathbf{X}}_{i}^{\top} \mathbf{p}_{1} \\ \underline{\mathbf{X}}_{i}^{\top} \mathbf{p}_{2} \\ \underline{\mathbf{X}}_{i}^{\top} \mathbf{p}_{3} \end{bmatrix}$$

4. Substitute these values in the original equation $\underline{\mathbf{u}}_i \times P\underline{\mathbf{X}}_i = \mathbf{0}_{3\times 1}$.

$$\begin{bmatrix} 0 & -w_i & y_i \\ w_i & 0 & -x_i \\ -y_i & x_i & 0 \end{bmatrix} \begin{bmatrix} \underline{\mathbf{X}}_i^{\top} \mathbf{p}_1 \\ \underline{\mathbf{X}}_i^{\top} \mathbf{p}_2 \\ \underline{\mathbf{X}}_i^{\top} \mathbf{p}_3 \end{bmatrix} = \mathbf{0}_{3 \times 1}$$

5. Matrix multiply

$$\begin{bmatrix} 0 - w_i \underline{\mathbf{X}}_i^{\top} \mathbf{p}_2 + y_i \underline{\mathbf{X}}_i^{\top} \mathbf{p}_3 \\ w_i \underline{\mathbf{X}}_i^{\top} \mathbf{p}_1 + 0 - x_i \underline{\mathbf{X}}_i^{\top} \mathbf{p}_3 \\ -y_i \underline{\mathbf{X}}_i^{\top} \mathbf{p}_1 + x_i \underline{\mathbf{X}}_i^{\top} \mathbf{p}_2 + 0 \end{bmatrix} = \mathbf{0}_{3 \times 1}$$

6. Write the unknowns as a single vector, and the knowns as a matrix multiplication with the unknowns

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \underline{\mathbf{X}}_i^{\top} & y_i \underline{\mathbf{X}}_i^{\top} \\ w_i \underline{\mathbf{X}}_i^{\top} & \mathbf{0}^{\top} & -x_i \underline{\mathbf{X}}_i^{\top} \\ -y_i \underline{\mathbf{X}}_i^{\top} & x_i \underline{\mathbf{X}}_i^{\top} & \mathbf{0}^{\top} \end{bmatrix}_{3 \times 12} \begin{bmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}_{12 \times 1} = \mathbf{0}_{3 \times 1}$$

7. Pick only two of the equations as only two are linearly independent.

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_i \underline{\mathbf{X}}_i^{\top} & y_i \underline{\mathbf{X}}_i^{\top} \\ w_i \underline{\mathbf{X}}_i^{\top} & \mathbf{0}^{\top} & -x_i \underline{\mathbf{X}}_i^{\top} \end{bmatrix}_{2 \times 12} \begin{bmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}_{12 \times 1} = \mathbf{0}_{2 \times 1}$$

8. Collect all the equations from n pairs of corresponding points $\underline{\mathbf{u}}_1, \dots, \underline{\mathbf{u}}_n$ and $\underline{\mathbf{X}}_1, \dots, \underline{\mathbf{X}}_n$.

$$\begin{bmatrix} \mathbf{0}^{\top} & -w_1 \underline{\mathbf{X}}_1^{\top} & y_1 \underline{\mathbf{X}}_1^{\top} \\ w_1 \underline{\mathbf{X}}_1^{\top} & \mathbf{0}^{\top} & -x_1 \underline{\mathbf{X}}_1^{\top} \\ \vdots & \vdots & \vdots \\ \mathbf{0}^{\top} & -w_n \underline{\mathbf{X}}_n^{\top} & y_n \underline{\mathbf{X}}_n^{\top} \\ w_n \underline{\mathbf{X}}_n^{\top} & \mathbf{0}^{\top} & -x_n \underline{\mathbf{X}}_n^{\top} \end{bmatrix}_{2n \times 12} \begin{bmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}_{12 \times 1} = \mathbf{0}_{2n \times 1}$$

3

9. P matrix has rank rank(P) = 11 because it has 12 elements and equivalence upto a scale factor. So the solution of the above equation can be computed from SVD by choosing the right singular vector corresponding to the smallest singular value.

$$A = \begin{bmatrix} \mathbf{0}^{\top} & -w_1 \underline{\mathbf{X}}_1^{\top} & y_1 \underline{\mathbf{X}}_1^{\top} \\ w_1 \underline{\mathbf{X}}_1^{\top} & \mathbf{0}^{\top} & -x_1 \underline{\mathbf{X}}_1^{\top} \\ \vdots & \vdots & \vdots \\ \mathbf{0}^{\top} & -w_n \underline{\mathbf{X}}_n^{\top} & y_n \underline{\mathbf{X}}_n^{\top} \\ w_n \underline{\mathbf{X}}_n^{\top} & \mathbf{0}^{\top} & -x_n \underline{\mathbf{X}}_n^{\top} \end{bmatrix} = U \Sigma V^T$$

Let $V = [\mathbf{v}_1, \dots, \mathbf{v}_n]$, then

$$\begin{bmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix} = \mathbf{v}_n$$

Now we can write the P matrix as

$$P = \begin{bmatrix} \mathbf{p}_1^\top \\ \mathbf{p}_2^\top \\ \mathbf{p}_3^\top \end{bmatrix}$$

Figure 1: Line-plane triangulation

100

Problem 2 In figure 1 find the 3D representation of the lane the World coordinate frame, in terms of h (the height of the camera), image-representation of the line 1 (provided in figure), camera matrix K (provided in figure). Assume the lane to be a straight line. The Camera is mounted directly on top of the world frame, both of which are aligned to the gravity vector. The road is a perfect plane with a slope such that the equation of road plane in world-coordinate frame is given by $100Y_w - Z_w = 0$ and the lane lies on the road plane. Provide the formula or pseudo-code for computing the 3D representation of the lane, and also substitute in the values. (20 min, 20 marks)

Solution Watch lecture https://drive.google.com/file/d/1JaEwLxQ2BvT30sVxshmglBz_v5FjC1hW/view?usp=sharing See homework 4 solution.

.

Problem 3 Find the minimum point of the function, $f(\mathbf{u}) = 2\mathbf{u}^{\top}A^{\top}A\mathbf{u} - 3\mathbf{u}^{\top}\mathbf{b} + 4\mathbf{c}^{\top}\mathbf{u} + d$. Let $\mathbf{u} \in \mathbb{R}^{n \times 1}$ be a n-dimensional vector and sizes of A, b, c, d be such that matrix multiplication and addition is valid. Also assume that $A^{\top}A$ is full rank, hence invertible.

Solution Watch this lecture https://drive.google.com/file/d/1wgY2LAw7LQnh_IyHY0XDAr2yorXta93Z/ view?usp=sharing

Problem 4 Let matrix $A \in \mathbb{R}^{m \times n}$ be a $m \times n$ matrix. We are given that $B = A^{\top}A$ has n orthonormal eigen vectors $\mathbf{e}_1, \dots \mathbf{e}_n$ with corresponding eigen values as $\lambda_1 \dots \lambda_n$ such that $B\mathbf{e}_i = \lambda_i \mathbf{e}_i$ for all $i \in \{1, \dots n\}$. Let the rank of matrix A be r. Write the thin singular value decomposition of $A = U_{m \times r} \Sigma_{r \times r} V_{n \times r}^{\top}$ in terms of eigen values and eigen vectors of matrix $B = A^{T}A$.

Solution Go through these slides. Watch this lecture https://drive.google.com/file/d/13a0_XI7kykQNOs5RJOfhqtL5f view?usp=sharing

The matrix of right singular vectors of A is same as the eigen vector matrix of $B = A^{\top}A$.

$$V = [\mathbf{e}_1 \dots \mathbf{e}_r] \in \mathbb{R}^{n \times r} \tag{1}$$

The matrix of singular values are the square root of eigen values of B.

$$\Sigma = \begin{bmatrix} \sqrt{\lambda_1} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sqrt{\lambda_r} \end{bmatrix} \in bbR^{r \times r}$$
 (2)

$$U = \left[\mathbf{u}_1 \dots \mathbf{u}_r \right] \in \mathbb{R}^{m \times r} \tag{3}$$

$$U = \left[\mathbf{u}_{1} \dots \mathbf{u}_{r}\right] \in \mathbb{R}^{m \times r}$$
where $\mathbf{u}_{i} = \frac{A\mathbf{e}_{i}}{\sqrt{\lambda_{i}}}$ (4)

Problem 5 Let matrix $A \in \mathbb{R}^{m \times n}$ has the singular value decomposition (SVD) as $A = U\Sigma V^{\top}$ and rank of the matrix be r = rank(A). Write the basis vectors of the four fundamental subspaces of matrix A in terms of SVD,

- 1. Null space of A ($\mathcal{N}(A) = ?$).
- 2. Column space or range space $(\mathcal{R}(A) =?)$.
- 3. Row space $(\mathcal{R}(A^{\top}) = ?)$.
- 4. Left null space $(\mathcal{N}(A^{\top}) = ?)$.

You can denote the first r column vectors of U has $U_{1:r} \in \mathbb{R}^{m \times r}$ and the renaming m-r vectors as $U_{r+1:m} \in \mathbb{R}^{m \times (m-r)}$. Similarly for V, first r column vectors of $V_{1:r} \in \mathbb{R}^{n \times r}$ and $V_{r+1:n} \in \mathbb{R}^{n \times (n-r)}$.

Solution Watch lecture https://drive.google.com/file/d/17Cr0rMr567gfRNrrj9ri9vtsFaNLqW7t/view?usp=sharing

- 1. Null space of A ($\mathcal{N}(A) = V_{r+1:n}$).
- 2. Column space or range space $(\mathcal{R}(A) = U_{1:r})$.
- 3. Row space $(\mathcal{R}(A^{\top}) = V_{1:r})$.
- 4. Left null space $(\mathcal{N}(A^{\top}) = U_{r+1:m})$.

Extra practice problems

Problem 6 Find a line passing through the following points

$$\mathbf{u}_1 = [101, 203]^{\mathsf{T}}, \mathbf{u}_2 = [49, 102]^{\mathsf{T}}, \mathbf{u}_3 = [27, 51]^{\mathsf{T}}, \mathbf{u}_4 = [201, 403]^{\mathsf{T}}, \mathbf{u}_5 = [74, 151]^{\mathsf{T}}.$$

You can leave the output in terms of SVD.

Problem 7 Find a plane passing through the following points

$$\mathbf{x}_1 = [9.99, 101, 203]^{\top}, \mathbf{x}_2 = [5.1, 49, 102]^{\top}, \mathbf{x}_3 = [2.5, 27, 51]^{\top}, \mathbf{x}_4 = [21, 201, 403]^{\top}, \mathbf{x}_5 = [7.6, 74, 151]^{\top}.$$

You can leave the output in terms of SVD.

Problem 8 Find the 3D line in parameteric representation that is formed by the intersection of two planes $\mathbf{p}^{\top}\underline{\mathbf{x}} = 0$ (with $\mathbf{p} = [1, 2, 3, 4]^{\top}$) and $\mathbf{q}^{\top}\underline{\mathbf{x}} = 0$ where $\mathbf{q} = [-3, 2, 1, 4]^{\top}$.

Problem 9 Find the point on the intersection of following 3D lines $\mathbf{x} = \lambda_1 \mathbf{d}_1 + \mathbf{y}$ and $\mathbf{x} = \lambda_2 \mathbf{d}_2 + \mathbf{z}$. Here $\lambda_1 \in \mathbb{R}$ and $\lambda_2 \in \mathbb{R}$ are the free parameters. The rest of the parameters have the following values

$$\mathbf{d}_1 = [1, 2, 0]^\top, \mathbf{d}_2 = [-2, 1, 0]^\top, \mathbf{y} = [1, 2, 0]^\top, \mathbf{z} = [4, 5, 0]^\top$$

Problem 10 Find the point of intersection of the 3D line $\mathbf{x} = \lambda \mathbf{d} + \mathbf{x}_0$ with the 3D plane $\mathbf{p}^{\top} \underline{\mathbf{x}} = 0$. The parameters have the following

$$\mathbf{d} = [1, 2, 0]^{\top}, \mathbf{x}_0 = [3, 4, 5]^{\top}, \mathbf{p} = [1, 2, 0, 7]^{\top}$$

Practice problem solutions

Solution 6 Watch lecture https://drive.google.com/file/d/13a0_XI7kykQNOs5RJOfhqtL5fgEzVfkN/view?usp=sharing Let $l \in \mathbb{P}^2$ be the parameters of the line, so that $\mathbf{u}^{\top} \mathbf{l} = 0$.

$$A = \begin{bmatrix} \mathbf{u}_1^\top & 1 \\ \mathbf{u}_2^\top & 1 \\ \mathbf{u}_3^\top & 1 \\ \mathbf{u}_4^\top & 1 \\ \mathbf{u}_5^\top & 1 \end{bmatrix}_{5\times 3}$$

We are looking for the solution of $A\mathbf{l} = 0$. Let the SVD of $A = U\Sigma V^{\top}$. Let $V = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$, then the representation of the line $\mathbf{l} = \mathbf{v}_3$.

Solution 7 Watch the lecture https://drive.google.com/file/d/1PEdgHCf6Ud0WYMVtCRlsjfctDcnBm8E9/view?usp=sharing

Let $\mathbf{p} \in \mathbb{P}^3$ be the parameters of the plane, so that $\underline{\mathbf{x}}^{\mathsf{T}}\mathbf{p} = 0$.

$$A = \begin{bmatrix} \mathbf{x}_1^\top & 1\\ \mathbf{x}_2^\top & 1\\ \mathbf{x}_3^\top & 1\\ \mathbf{x}_4^\top & 1\\ \mathbf{x}_5^\top & 1 \end{bmatrix}_{5 \times 4}$$

We are looking for the solution of $A\mathbf{p} = 0$. Let the SVD of $A = U\Sigma V^{\top}$. Let $V = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4]$, then the representation of the line $\mathbf{p} = \mathbf{v}_4$.

 $\begin{aligned} & \textbf{Solution 8} & \textbf{Watch the lecture https://drive.google.com/file/d/1JaEwLxQ2BvT30sVxshmg1Bz_v5FjC1hW/view?usp=sharing } \mathbf{x} = \lambda(\mathbf{p}_{1:3} \times \mathbf{q}_{1:3}) + \begin{bmatrix} \mathbf{p}_{1:3}^{\top} \\ \mathbf{q}_{1:3} \end{bmatrix}^{\dagger} \begin{bmatrix} -p_4 \\ q_4 \end{bmatrix} \end{aligned}$

 $\textbf{Solution 9} \quad \text{Watch the lecture https://drive.google.com/file/d/1foVVQBC0krljjJ3f-UP4zsHn4l-c611e/view?usp=sharing }$

$$egin{bmatrix} \left[\mathbf{d}_1 & -\mathbf{d}_2
ight] egin{bmatrix} \lambda_1 \ \lambda_2 \end{bmatrix} = \mathbf{z} - \mathbf{y}$$

or

$$egin{bmatrix} \lambda_1 \ \lambda_2 \end{bmatrix} = egin{bmatrix} \mathbf{d}_1 & -\mathbf{d}_2 \end{bmatrix}^\dagger \mathbf{z} - \mathbf{y}$$

The point of intersection is given by

$$\mathbf{x} = \lambda_1 \mathbf{d}_1 + \mathbf{y}$$

 $\textbf{Solution 10} \quad \text{Watch the lecture https://drive.google.com/file/d/1wgY2LAw7LQnh_IyHY0XDAr2yorXta93Z/view?usp=sharing}$

$$\lambda \mathbf{p}_{1:3}^{\mathsf{T}} \mathbf{d} + \mathbf{p}_{1:3}^{\mathsf{T}} \mathbf{x}_0 + p_4 = 0$$

Solve for λ .

$$\lambda = -\frac{\mathbf{p}_{1:3}^{\top} \mathbf{x}_0 + p_4}{\mathbf{p}_{1:3}^{\top} \mathbf{d}}$$

Point of intersection is

$$\mathbf{x} = \lambda \mathbf{d} + \mathbf{x}_0$$