AI2613 Stochastic Processes Homework 1

Xiangyuan Xue (521030910387)

1 Probability Space of Tossing Coins

- 1. Consider an arbitrary $\boldsymbol{\omega} = (\omega_1, \omega_2, \dots) \in \Omega$, it falls into a unique set C_s where $s = (\omega_1, \omega_2, \dots, \omega_n) \in \{0, 1\}^n$, indicating that
 - For any $s_1 \neq s_2$, it holds that $C_{s_1} \cap C_{s_2} = \emptyset$
 - $\bullet \ \bigcup_{\boldsymbol{s} \in \{0,1\}^n} C_{\boldsymbol{s}} = \Omega$

Since C_s are disjoint and cover Ω , we claim that $\{C_s\}_{s\in\{0,1\}^n}$ forms a partition of Ω .

- 2. Construct a map $f: \mathcal{F}_n \to 2^{\{0,1\}^n}$ as follow
 - For any $F \in \mathcal{F}_n$, let $f(F) = \{(\omega_1, \omega_2, \dots, \omega_n) \mid \boldsymbol{\omega} \in F\}$, which promises that f is injective
 - For any $S \in 2^{\{0,1\}^n}$ containing finite elements, let $F = \bigcup_{s \in S} C_s$, we have f(F) = S, which promises that f is surjective

Therefore, f is a bijection between \mathcal{F}_n and $2^{\{0,1\}^n}$.

3. Let $f: \mathcal{F}_n \to 2^{\{0,1\}^n}$ be the bijection in 2. Consider an arbitrary $F \in \mathcal{F}_n$, we have

$$F = \bigcup_{\mathbf{s} \in f(F)} C_{\mathbf{s}}$$

For any $\mathbf{s} = (s_1, s_2, \dots, s_n) \in \{0, 1\}^n$, let $\mathbf{s}_0 = (s_1, s_2, \dots, s_n, 0), \mathbf{s}_1 = (s_1, s_2, \dots, s_n, 1) \in \{0, 1\}^{n+1}$, we have $C_{\mathbf{s}} = C_{\mathbf{s}_0} \cup C_{\mathbf{s}_1}$, thus

$$F = \bigcup_{\mathbf{s} \in f(F)} (C_{\mathbf{s}_0} \cup C_{\mathbf{s}_1}) \in \mathcal{F}_{n+1}$$

which indicates that $\mathcal{F}_n \subset \mathcal{F}_{n+1}$.

Let $\hat{s} \in \{0,1\}^{n+1}$, we have $C_{\hat{s}} \in \mathcal{F}_{n+1}$ but $C_{\hat{s}} \notin \mathcal{F}_n$, so it holds that $\mathcal{F}_n \subsetneq \mathcal{F}_{n+1}$.

Since such $n \in \mathbb{N}$ is arbitrary, we can conclude that $\mathcal{F}_1 \subsetneq \mathcal{F}_2 \subsetneq \ldots$ is increasing.

- 4. It has been proved that $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_{\infty}$ in 3, indicating that
 - For any $F \in \mathcal{F}_{\infty}$, there exists smallest $i \in \mathbb{N}$ such that $F \in \mathcal{F}_i$, so $F^c \in \mathcal{F}_i \subset \mathcal{F}_{\infty}$
 - For any $F, G \in \mathcal{F}_{\infty}$, there exists smallest $i, j \in \mathbb{N}$ such that $F \in \mathcal{F}_i, G \in \mathcal{F}_j$, so $F \cup G \in \mathcal{F}_{\max\{i,j\}} \subset \mathcal{F}_{\infty}$

Therefore, \mathcal{F}_{∞} is an algebra.

Note that $\mathcal{F}_{\infty} = \bigcup_{n=1}^{\infty} \mathcal{F}_n$ where \mathcal{F}_n is finite, thus $|\mathcal{F}_{\infty}| = \aleph_0$ is countable. However, $|\Omega| = \aleph_0$, so 2^{Ω} is not countable, which promises that $\mathcal{F}_{\infty} \neq 2^{\Omega}$.

5. Consider an arbitrary $\boldsymbol{\omega} = (\omega_1, \omega_2, \dots) \in \Omega$, let $\boldsymbol{s}_k = (\omega_1, \omega_2, \dots, \omega_k)$. For any $n \in \mathbb{N}$, we have $\boldsymbol{\omega} \in C_{\boldsymbol{s}_n}$, indicating that

$$\{\omega\} = \bigcap_{n=1}^{\infty} C_{\boldsymbol{s}_n} = \left(\bigcup_{n=1}^{\infty} C_{\boldsymbol{s}_n}^c\right)^c \in \mathcal{B}(\Omega)$$

For any $n \in \mathbb{N}$, we have $\{\omega\} \notin \mathcal{F}_n$ since ω contains infinite components, thus $\{\omega\} \notin \mathcal{F}_{\infty}$. Therefore, we can conclude that $\{\omega\} \in \mathcal{B}(\Omega) \setminus \mathcal{F}_{\infty}$.

6. Consider an arbitrary $A \in \mathcal{F}_{\infty}$. Since $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_{\infty}$, there exists smallest $n \in \mathbb{N}$ such that $A \in \mathcal{F}_n$. Let $f : \mathcal{F}_n \to 2^{\{0,1\}^n}$ be the bijection in 2. Suppose $f(A) = S = \{s_1, s_2, \ldots, s_k\}$, we have $A = \bigcup_{i=1}^k C_{s_i}$.

Let n' = n + 1, we construct $S' = \{s_1, s_2, \dots, s_{k'}\}$ as follow

$$S = \{ \mathbf{s}_0 = (s_1, s_2, \dots, s_n, 0), \mathbf{s}_1 = (s_1, s_2, \dots, s_n, 1) \mid \mathbf{s} = (s_1, s_2, \dots, s_n) \in f(A) \}$$

where k' = |S'| = 2|S| = 2k, thus $\frac{k'}{2^{n'}} = \frac{2k}{2^{n+1}} = \frac{k}{2^n}$. By induction, this equation holds for any n' > n. Therefore, the value $\frac{k}{2^n}$ only depends on A.

- 7. Define a measure $\mathcal{P}(C_s) = \frac{1}{2^n}$ where $s \in \{0,1\}^n$ on \mathcal{F}_{∞} . Then \mathcal{P} satisfies
 - Since \mathcal{F}_{∞} is an algebra, it holds that $\mathcal{P}(A^c) = 1 \sum_{s \in f(A)} \mathcal{P}(C_s) = 1 \mathcal{P}(A)$
 - For countable disjoint sets $A_1, A_2, \dots \in \mathcal{F}_{\infty}$, it holds that $\mathcal{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mathcal{P}\left(A_n\right)$

Hence, $\mathcal{P}(A) = \sum_{s \in f(A)} \mathcal{P}(C_s) = \frac{k}{2^n}$ for any $A \in \mathcal{F}_{\infty}$, where k and n are defined in 6.

By Carathéodory's extension theorem, we can extend the measure \mathcal{P} on \mathcal{F}_{∞} to a unique measure $P: \mathcal{B}(\Omega) \to [0,1]$ on $\sigma(\mathcal{F}_{\infty})$ where $P(A) = \frac{k}{2^n}$ for any $A \in \mathcal{F}_{\infty}$. Since $P(\varnothing) = 0$ and $P(\Omega) = \sum_{s \in 2^{\{0,1\}^n}} P(C_s) = 1$, we can conclude that P is a probability measure.

8. Random variable $X: \omega \to \mathbb{N}$ is defined as follow

$$X(\boldsymbol{\omega}) = \min_{n \in \mathbb{N}} \{ n \, | \, \omega_n = 1 \}$$

where $\boldsymbol{\omega} = (\omega_1, \omega_2, \dots)$.

2 Conditional Expectation

1. For any $B \in \mathcal{B}$, we have $f^{-1}(B) \in \mathcal{B}$, hence

$$(f \circ X)^{-1}(B) = X^{-1}[f^{-1}(B)] \in \sigma(X)$$

Therefore, f(X) is $\sigma(X)$ -measurable.

2. Since $\sigma(Y) = \sigma(Y')$, for any $\omega \in \Omega$, it holds that $Y^{-1}[Y(\omega)] = Y'^{-1}[Y'(\omega)]$. Otherwise, we have $Y^{-1}[Y(\omega)] \cap Y'^{-1}[Y'(\omega)] \subset \sigma(Y)$, indicating that $\sigma(Y)$ is not minimal. Hence,

$$\mathbb{E}\left[X|Y^{-1}\left[Y(\omega)\right]\right] = \mathbb{E}\left[X|Y'^{-1}\left[Y'(\omega)\right]\right]$$

holds for any $\omega \in \Omega$, namely $\mathbb{E}[X|Y] = \mathbb{E}[X|Y']$.

3. **Lemma.** If X is \mathcal{F} -measurable, then $\mathbb{E}[X|\mathcal{F}] = X$.

Let $Y = \mathbb{E}[X|\mathcal{F}_1]$, which is \mathcal{F}_1 -measurable. Since $\mathcal{F}_1 \subset \mathcal{F}_2$, Y is also \mathcal{F}_2 -measurable. By lemma, we have $\mathbb{E}[Y|\mathcal{F}_2] = Y$, namely $\mathbb{E}[\mathbb{E}[X|\mathcal{F}_1]|\mathcal{F}_2] = \mathbb{E}[X|\mathcal{F}_1]$.[1]

For any $A \in \mathcal{F}_1$, we have $A \in \mathcal{F}_2$. By definition of conditional expectation for general random variables, it holds that

$$\int_{A} \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{F}_{2}\right]|\mathcal{F}_{1}\right] d\mathbb{P} = \int_{A} \mathbb{E}\left[X|\mathcal{F}_{2}\right] d\mathbb{P} = \int_{A} X d\mathbb{P} = \int_{A} \mathbb{E}\left[X|\mathcal{F}_{1}\right] d\mathbb{P}$$

which yields $\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{F}_2\right]|\mathcal{F}_1\right] = \mathbb{E}\left[X|\mathcal{F}_1\right].[2]$

Therefore, we can conclude that $\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{F}_1\right]|\mathcal{F}_2\right] = \mathbb{E}\left[\mathbb{E}\left[X|\mathcal{F}_2\right]|\mathcal{F}_1\right] = \mathbb{E}\left[X|\mathcal{F}_1\right]$.

References

- [1] Conditional expectation. Samy Tindel. Purdue University.
- [2] Martingales through measure theory. Alison Etheridge. University of Oxford.