Statistika

5. predavanje

Barbara Boldin

Fakulteta za matematiko, naravoslovje in informacijske tehnologije Univerza na Primorskem

Osnovni pojmi

Zvezne slučajne spremenljivke lahko zavzamejo kontinuum vrednosti, npr.: v množici $[a,b],\mathbb{R},\mathbb{R}^n,\ldots$

(pri tem predmetu obravnavamo le skalarne slučajne spremenljivke, npr.: z vrednostmi v \mathbb{R})

Vlogo funkcije verjetnosti ima **funkcija gostote verjetnosti** *f*, ki zadošča:

- \diamond $f \ge 0$
- je odsekoma zvezna in

Ce ima slučajna spremenljivka X gostoto f, je

$$P(a \le X \le b) = \int_a^b f(x) dx$$

verjetnost, da X zavzame vrednosti v [a, b].

 $P(1 \le X \le 2)$ je ploščina območja med

grafom y = f(x) in absciso na [1,2]

Osnovni pojmi

Zvezne slučajne spremenljivke lahko zavzamejo kontinuum vrednosti, npr.: v množici $[a,b],\mathbb{R},\mathbb{R}^n,\ldots$

(pri tem predmetu obravnavamo le skalarne slučajne spremenljivke, npr.: z vrednostmi v ℝ)

Vlogo funkcije verjetnosti ima **funkcija gostote verjetnosti** *f*, ki zadošča:

- ⋄ f ≥ 0
- je odsekoma zvezna in

Če ima slučajna spremenljivka X gostoto f, je

$$P(a \le X \le b) = \int_a^b f(x) dx$$

verjetnost, da X zavzame vrednosti v [a, b].

Velja
$$P(a \le X \le b) = P(a \le X < b) = P(a < X \le b) = P(a < X < b)$$

 $P(1 \le X \le 2)$ je ploščina območja med

Porazdelitvena funkcija slučajne spremenljivke X z gostoto f je

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(s) ds$$

F(x) je verjetnost, da slučajna spremenljivka X zavzame vrednosti do največ x.

Za porazdelitveno funkcijo velja:

- ⋄ F je naraščajoča funkcija
- $\diamond \lim_{x\to\infty} F(x) = 1$
- $\diamond \lim_{x \to -\infty} F(x) = 0$
- $\diamond F'(x) = f(x)$

Verjetnost, da X zavzame vrednosti na intervalu [a, b] lahko določimo iz porazdelitvene funkcije.

$$P(a \le X \le b) = \int_a^b f(x) dx = F(b) - F(a)$$

Porazdelitvena funkcija slučajne spremenljivke X z gostoto f je

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(s) ds$$

F(x) je verjetnost, da slučajna spremenljivka X zavzame vrednosti do največ x.

Za porazdelitveno funkcijo velja:

- F je naraščajoča funkcija
- $\diamond \lim_{x\to\infty} F(x) = 1$
- $\diamond \lim_{x \to -\infty} F(x) = 0$
- $\diamond F'(x) = f(x)$

Verjetnost, da X zavzame vrednosti na intervalu [a, b] lahko določimo iz porazdelitvene funkcije,

$$P(a \le X \le b) = \int_a^b f(x) dx = F(b) - F(a)$$

Primer. Za enakomerno porazdelitev na [0, 1] je funkcija gostote

$$f(x) = \begin{cases} 1 & \text{za } 0 \le x \le 1 \\ 0 & \text{sicer} \end{cases}$$

Porazdelitvena funkcija je

$$F(x) = \begin{cases} 0 & \text{za } x \le 0 \\ x & \text{za } 0 \le x \le 1 \\ 1 & \text{za } x > 1 \end{cases}$$

torej je npr.:

$$P(\frac{1}{3} < X < \frac{1}{2}) = F(\frac{1}{2}) - F(\frac{1}{3}) = \frac{1}{6}$$

Primer. Za enakomerno porazdelitev na [0, 1] je funkcija gostote

$$f(x) = \begin{cases} 1 & \text{za } 0 \le x \le 1 \\ 0 & \text{sicer} \end{cases}$$

Porazdelitvena funkcija je

$$F(x) = \begin{cases} 0 & \text{za } x \le 0 \\ x & \text{za } 0 \le x \le 1 \\ 1 & \text{za } x > 1 \end{cases}$$

torej je npr.:

$$P(\frac{1}{3} < X < \frac{1}{2}) = F(\frac{1}{2}) - F(\frac{1}{3}) = \frac{1}{6}.$$

Kvantili za zvezne slučajne spremenljivke

Naj bo X zvezna slučajna spremenljivka s porazdelitveno funkcijo F.

p- **kvantil** ($0 \le p \le 1$) za spremenljivko X je vrednost x_p , za katero velja

$$P(X \leq x_p) = p$$
,

oziroma

$$F(x_p)=p.$$

V primeru (a) ocenimo iz grafa, da je

$$Q_1 \approx 0$$
. Me ≈ 1 . $Q_2 \approx 2$

V primeru (b) ocenimo

$$Q_1 \approx 1$$
, $Me \approx 2.5$, $Q_3 \approx 4.5$

⋄ Funkcija gostote za X je

$$f(x) = F'(x) = \frac{1}{(1+x)^2}$$

$$P(1 \le X < 2) = F(2) - F(1) = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$

- ⋄ Mediana je vrednost Me, za katero F(Me) = 0.5, torej Me = 1. Verjetnost, da X zavzame vrednost na [0, 1] je torej 0.5, kar je tudi verjetnost, da X zavzame vrednost na $[1, \infty)$
- ⋄ 1. kvartil je vrednost Q_1 , za katero $F(Q_1) = 0.25$, torej $Q_1 = \frac{1}{3}$ Verjetnost, da X zavzame vrednost na $[0, \frac{1}{5}]$ je torej 0.25.

Funkcija gostote za X je

$$f(x) = F'(x) = \frac{1}{(1+x)^2}$$

$$P(1 \le X < 2) = F(2) - F(1) = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$

- ⋄ Mediana je vrednost Me, za katero F(Me) = 0.5, torej Me = 1. Verjetnost, da X zavzame vrednost na [0, 1] je torej 0.5, kar je tudi verjetnost, da X zavzame vrednost na $[1, \infty)$
- ⋄ 1. kvartil je vrednost Q_1 , za katero $F(Q_1) = 0.25$, torej $Q_1 = \frac{1}{3}$. Verjetnost, da X zavzame vrednost na $[0, \frac{1}{2}]$ je torej 0.25.

Funkcija gostote za X je

$$f(x) = F'(x) = \frac{1}{(1+x)^2}$$

$$P(1 \le X < 2) = F(2) - F(1) = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$

- ⋄ Mediana je vrednost Me, za katero F(Me) = 0.5, torej Me = 1. Verjetnost, da X zavzame vrednost na [0, 1] je torej 0.5, kar je tudi verjetnost, da X zavzame vrednost na $[1, \infty)$
- ♦ 1. kvartil je vrednost Q_1 , za katero $F(Q_1) = 0.25$, torej $Q_1 = \frac{1}{3}$ Verietnost, da X zavzame vrednost na $[0, \frac{1}{5}]$ je torej 0.25.

⋄ Funkcija gostote za X je

$$f(x) = F'(x) = \frac{1}{(1+x)^2}$$

$$P(1 \le X < 2) = F(2) - F(1) = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$

- ⋄ Mediana je vrednost Me, za katero F(Me) = 0.5, torej Me = 1. Verjetnost, da X zavzame vrednost na [0,1] je torej 0.5, kar je tudi verjetnost, da X zavzame vrednost na $[1,\infty)$
- ⋄ 1. kvartil je vrednost Q_1 , za katero $F(Q_1) = 0.25$, torej $Q_1 = \frac{1}{3}$ Verjetnost, da X zavzame vrednost na $[0, \frac{1}{3}]$ je torej 0.25.

⋄ Funkcija gostote za X je

$$f(x) = F'(x) = \frac{1}{(1+x)^2}$$

$$P(1 \le X < 2) = F(2) - F(1) = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$

- ♦ Mediana je vrednost Me, za katero F(Me) = 0.5, torej Me = 1.
 Verjetnost, da X zavzame vrednost na [0,1] je torej 0.5, kar je tudi verjetnost, da X zavzame vrednost na [1,∞)
- ⋄ 1. kvartil je vrednost Q_1 , za katero $F(Q_1) = 0.25$, torej $Q_1 = \frac{1}{3}$ Verjetnost, da X zavzame vrednost na $[0, \frac{1}{3}]$ je torej 0.25.

⋄ Funkcija gostote za X je

$$f(x) = F'(x) = \frac{1}{(1+x)^2}$$

$$P(1 \le X < 2) = F(2) - F(1) = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$

- ♦ Mediana je vrednost Me, za katero F(Me) = 0.5, torej Me = 1. Verjetnost, da X zavzame vrednost na [0, 1] je torej 0.5, kar je tudi verjetnost, da X zavzame vrednost na $[1, \infty)$
- ⋄ 1. kvartil je vrednost Q_1 , za katero $F(Q_1) = 0.25$, torej $Q_1 = \frac{1}{3}$ Verjetnost, da X zavzame vrednost na $[0, \frac{1}{3}]$ je torej 0.25.

⋄ Funkcija gostote za X je

$$f(x) = F'(x) = \frac{1}{(1+x)^2}$$

$$P(1 \le X < 2) = F(2) - F(1) = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$

- ⋄ Mediana je vrednost Me, za katero F(Me) = 0.5, torej Me = 1. Verjetnost, da X zavzame vrednost na [0,1] je torej 0.5, kar je tudi verjetnost, da X zavzame vrednost na $[1,\infty)$
- ♦ 1. kvartil je vrednost Q₁, za katero F(Q₁) = 0.25, torej Q₁ = ½.
 Verietnost, da X zavzame vrednost na [0, ½] je torej 0.25.

⋄ Funkcija gostote za X je

$$f(x) = F'(x) = \frac{1}{(1+x)^2}$$

$$P(1 \le X < 2) = F(2) - F(1) = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$

- ⋄ Mediana je vrednost Me, za katero F(Me) = 0.5, torej Me = 1. Verjetnost, da X zavzame vrednost na [0,1] je torej 0.5, kar je tudi verjetnost, da X zavzame vrednost na $[1,\infty)$
- ♦ 1. kvartil je vrednost Q_1 , za katero $F(Q_1) = 0.25$, torej $Q_1 = \frac{1}{3}$. Verjetnost, da X zavzame vrednost na $\left[0, \frac{1}{3}\right]$ je torej 0.25.

Pričakovana vrednost in varianca

Pričakovana vrednost slučajne spremenljivke X z gostoto f je

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

Varianca slučajne spremenljivke X s pričakovano vrednostjo $\mu = E(X)$ je

$$Var(X) = E((X - \mu)^2) = E(X^2) - E^2(X)$$

Primer. Slučajna spremenljivka X lahko zavzame vrednosti v [0,1] in ima funkcijo gostote f(x) = 6x(1-x). Izračunajmo E(X) in Var(X).

$$E(X) = \int_0^1 x f(x) dx = \int_0^1 6x^2 (1 - x) dx = \frac{1}{2}$$

Ker je $E(X^2) = \int_0^1 x^2 f(x) dx = \int_0^1 6x^3 (1-x) dx = \frac{3}{10}$ sledi

$$Var(X) = E(X^2) - E^2(X) = \frac{1}{20}$$

Pričakovana vrednost in varianca

Pričakovana vrednost slučajne spremenljivke X z gostoto f je

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

Varianca slučajne spremenljivke X s pričakovano vrednostjo $\mu = E(X)$ je

$$Var(X) = E((X - \mu)^2) = E(X^2) - E^2(X)$$

Primer. Slučajna spremenljivka X lahko zavzame vrednosti v [0,1] in ima funkcijo gostote f(x) = 6x(1-x). Izračunajmo E(X) in Var(X).

$$E(X) = \int_0^1 x f(x) dx = \int_0^1 6x^2 (1 - x) dx = \frac{1}{2}.$$

Ker je $E(X^2) = \int_0^1 x^2 f(x) dx = \int_0^1 6x^3 (1-x) dx = \frac{3}{10}$ sledi

$$Var(X) = E(X^2) - E^2(X) = \frac{1}{20}$$

Pričakovana vrednost in varianca

Pričakovana vrednost slučajne spremenljivke X z gostoto f je

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

Varianca slučajne spremenljivke X s pričakovano vrednostjo $\mu = E(X)$ je

$$Var(X) = E((X - \mu)^2) = E(X^2) - E^2(X)$$

Primer. Slučajna spremenljivka X lahko zavzame vrednosti v [0,1] in ima funkcijo gostote f(x) = 6x(1-x). Izračunajmo E(X) in Var(X).

$$E(X) = \int_0^1 x f(x) dx = \int_0^1 6x^2 (1-x) dx = \frac{1}{2}.$$

Ker je $E(X^2) = \int_0^1 x^2 f(x) dx = \int_0^1 6x^3 (1-x) dx = \frac{3}{10}$ sledi

$$Var(X) = E(X^2) - E^2(X) = \frac{1}{20}.$$

Eksponentna porazdelitev $Exp(\lambda)$

Gostota slučajne spremenljivke X z eksponentno porazdelitvijo s parametrom λ ($X \sim Exp(\lambda)$) je

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{za } x \ge 0 \\ 0 & \text{za } x < 0 \end{cases}$$

Porazdelitvena funkcija za $X \sim Exp(\lambda)$ je

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{za } x \ge 0 \\ 0 & \text{za } x < 0 \end{cases}$$

Velja

$$E(X) = \frac{1}{\lambda}$$
$$Var(X) = \frac{1}{\lambda^2}$$

Kot zanimivost: exponentna slučajna spremenljivka opisuje čas med dvema dogodkoma Poissonovega procesa.

Funkcije gostote in porazdelitvene funkcije $X \sim Exp(\lambda)$ za

$$\lambda = 0.5$$
 (modra), $\lambda = 1$ (rdeča) in $\lambda = 2$ (zelena)

Normalna (oz. Gaussova) porazdelitev $N(\mu, \sigma^2)$

Normalna slučajna spremenljivka $X \sim N(\mu, \sigma^2)$ ima funkcijo gostote

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Je simetrična porazdelitev s pričakovano vrednostjo μ ($\mu = E(X)$) in varianco σ^2 ($\sigma^2 = Var(X)$). Parameter σ je standardni odklon X.

Če $X \sim N(\mu, \sigma^2)$, potem

- \diamond med $\mu \sigma$ in $\mu + \sigma$ leži približno 68.3% enot
- \diamond med $\mu 2\sigma$ in $\mu + 2\sigma$ leži približno 95.5% enot
- \diamond med $\mu 3\sigma$ in $\mu + 3\sigma$ leži približno 99.7% enot

Standardna normalna slučajna spremenljivka $Z \sim N(0, 1)$ ima funkcijo gostote

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}.$$

Standardizacija:

če
$$X \sim N(\mu, \sigma^2)$$
 je $Z = \frac{X-\mu}{\sigma} \sim N(0, 1)$.

Kakšna je verjetnost, da $X \sim N(\mu, \sigma^2)$ zavzame vrednosti na [a, b]? To je

$$\int_a^b \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

Te vrednosti določamo numerično, oz. s pomočje tabele za N(0,1) s predhodno standardizacijo (glej e-učilnico).

Standardna normalna slučajna spremenljivka $Z \sim N(0,1)$ ima funkcijo gostote

$$f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}.$$

Standardizacija:

če
$$X \sim N(\mu, \sigma^2)$$
 je $Z = \frac{X-\mu}{\sigma} \sim N(0, 1)$.

Kakšna je verjetnost, da $X \sim N(\mu, \sigma^2)$ zavzame vrednosti na [a, b]? To je

$$\int_a^b \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

Te vrednosti določamo numerično, oz. s pomočje tabele za N(0,1) s predhodno standardizacijo (glej e-učilnico).

- ◆ P(X ≤ 1.05) =
- $\diamond P(X \ge 2) =$
- ⋄ $P(X \ge 2)$ lahko izračunamo tudi z upoštevanjem simetrije:

$$P(X \ge 2) = P(X \le -2) = 0.0228$$

- $P(-1 \le X < 2.65) =$
- Prvi kvartil je vrednost, pod katero leži 25% vrednosti, torej
 Q₁ ≈ -0.675
- ⋄ Mediana je vrednost, pod katero leži 50% vrednosti, torej Me = 0
- Sedmi decil je vrednost, pod katero leži 70% vrednosti, torej
 D₇ ≈ 0.525

- $P(X \le 1.05) = 0.8531$
- $\diamond P(X \ge 2) =$
- $P(X \ge 2)$ lahko izračunamo tudi z upoštevanjem simetrije:

$$P(X \ge 2) = P(X \le -2) = 0.0228$$

- $P(-1 \le X < 2.65) =$
- Prvi kvartil je vrednost, pod katero leži 25% vrednosti, torej
 Q₁ ≈ −0.675
- ⋄ Mediana je vrednost, pod katero leži 50% vrednosti, torej Me = 0
- ⋄ Sedmi decil je vrednost, pod katero leži 70% vrednosti, torej $D_7 \approx 0.525$

- $P(X \le 1.05) = 0.8531$
- $P(X \ge 2) = 1 (X < 2) = 1 0.9772 = 0.0228$
- ⋄ $P(X \ge 2)$ lahko izračunamo tudi z upoštevanjem simetrije:

$$P(X \ge 2) = P(X \le -2) = 0.0228$$

- $P(-1 \le X < 2.65) =$
- ♦ Prvi kvartil je vrednost, pod katero leži 25% vrednosti, torej $Q_1 \approx -0.675$
- Mediana je vrednost, pod katero leži 50% vrednosti, torej Me = 0
- ⋄ Sedmi decil je vrednost, pod katero leži 70% vrednosti, torej $D_7 \approx 0.525$

- $P(X \le 1.05) = 0.8531$
- $P(X \ge 2) = 1 (X < 2) = 1 0.9772 = 0.0228$
- ⋄ $P(X \ge 2)$ lahko izračunamo tudi z upoštevanjem simetrije:

$$P(X \ge 2) = P(X \le -2) = 0.0228$$

- $P(-1 \le X < 2.65) =$
- ♦ Prvi kvartil je vrednost, pod katero leži 25% vrednosti, torej $Q_1 \approx -0.675$
- Mediana je vrednost, pod katero leži 50% vrednosti, torej Me = 0
- \diamond Sedmi decil je vrednost, pod katero leži 70% vrednosti, torej $D_7 \approx 0.525$

- $P(X \le 1.05) = 0.8531$
- $P(X \ge 2) = 1 (X < 2) = 1 0.9772 = 0.0228$
- ⋄ $P(X \ge 2)$ lahko izračunamo tudi z upoštevanjem simetrije:

$$P(X \ge 2) = P(X \le -2) = 0.0228$$

- $P(-1 \le X < 2.65) = P(X < 2.65) P(X < -1) = 0.8373$
- Prvi kvartil je vrednost, pod katero leži 25% vrednosti, torej
 Q₁ ≈ −0.675
- Mediana je vrednost, pod katero leži 50% vrednosti, torej Me = 0
- Sedmi decil je vrednost, pod katero leži 70% vrednosti, torej $D_7 \approx 0.525$

- $P(X \le 1.05) = 0.8531$
- $P(X \ge 2) = 1 (X < 2) = 1 0.9772 = 0.0228$
- ⋄ $P(X \ge 2)$ lahko izračunamo tudi z upoštevanjem simetrije:

$$P(X \ge 2) = P(X \le -2) = 0.0228$$

$$P(-1 \le X < 2.65) = P(X < 2.65) - P(X < -1) = 0.8373$$

- Prvi kvartil je vrednost, pod katero leži 25% vrednosti, torej
 Q₁ ≈ -0.675
- Mediana je vrednost, pod katero leži 50% vrednosti, torej Me = 0
- > Sedmi decil je vrednost, pod katero leži 70% vrednosti, torej $D_7 \approx 0.525$

- $P(X \le 1.05) = 0.8531$
- $P(X \ge 2) = 1 (X < 2) = 1 0.9772 = 0.0228$
- ⋄ $P(X \ge 2)$ lahko izračunamo tudi z upoštevanjem simetrije:

$$P(X \ge 2) = P(X \le -2) = 0.0228$$

- $P(-1 \le X < 2.65) = P(X < 2.65) P(X < -1) = 0.8373$
- Prvi kvartil je vrednost, pod katero leži 25% vrednosti, torej
 Q₁ ≈ -0.675
- Mediana je vrednost, pod katero leži 50% vrednosti, torej Me = 0
- ⋄ Sedmi decil je vrednost, pod katero leži 70% vrednosti, torej $D_7 \approx 0.525$

Torej
$$X \sim N(\mu, \sigma^2)$$
 in $Z = \frac{X-\mu}{\sigma} \sim N(0, 1)$

$$P(X \le 122) = P(\frac{X - 112}{10} \le \frac{122 - 112}{10}) = P(Z \le 1) = 0.8413$$

$$P(102 \le X \le 122) = P\left(\frac{102 - 112}{10} \le \frac{X - 112}{10} \le \frac{122 - 112}{10}\right)$$
$$= P(-1 \le Z \le 1) = 0.683$$

Približno 68.3% populacije ima sistolični krvni tlak med 102 in 122 (oziroma med $\mu - \sigma$ in $\mu + \sigma$)

Kakšen delež populacije ima sistolični krvni tlak nad 140?

$$P(X > 140) = P\left(\frac{X - 112}{10} > \frac{140 - 112}{10}\right)$$
$$= P(Z > 2.8) = P(Z < -2.8) = 0.0026$$

Torej
$$X \sim N(\mu, \sigma^2)$$
 in $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$

$$P(X \le 122) = P(\frac{X-112}{10} \le \frac{122-112}{10}) = P(Z \le 1) = 0.8413$$

$$P(102 \le X \le 122) = P\left(\frac{102 - 112}{10} \le \frac{X - 112}{10} \le \frac{122 - 112}{10}\right)$$
$$= P(-1 \le Z \le 1) = 0.683$$

Približno 68.3% populacije ima sistolični krvni tlak med 102 in 122 (oziroma med $\mu-\sigma$ in $\mu+\sigma$) Kakšen delež populacije ima sistolični krvni tlak nad 140?

$$P(X > 140) = P\left(\frac{X - 112}{10} > \frac{140 - 112}{10}\right)$$
$$= P(Z > 2.8) = P(Z < -2.8) = 0.0026$$

Torej
$$X \sim N(\mu, \sigma^2)$$
 in $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$
 $\Rightarrow P(X \le 122) = P(\frac{X - 112}{10} \le \frac{122 - 112}{10}) = P(Z \le 1) = 0.8413$

$$P(102 \le X \le 122) = P\left(\frac{102 - 112}{10} \le \frac{X - 112}{10} \le \frac{122 - 112}{10}\right)$$
$$= P(-1 \le Z \le 1) = 0.683$$

Približno 68.3% populacije ima sistolični krvni tlak med 102 in 122 (oziroma med $\mu-\sigma$ in $\mu+\sigma$) Kakšen delaž populacije ima sistolični krvni tlak pad 140.2

$$P(X > 140) = P\left(\frac{X - 112}{10} > \frac{140 - 112}{10}\right)$$
$$= P(Z > 2.8) = P(Z < -2.8) = 0.0026$$

Torej
$$X \sim N(\mu, \sigma^2)$$
 in $Z = \frac{X-\mu}{\sigma} \sim N(0, 1)$

 $P(X \le 122) = P(\frac{X-112}{10} \le \frac{122-112}{10}) = P(Z \le 1) = 0.8413$

 $P(102 \le X \le 122) = P\left(\frac{102 - 112}{10} \le \frac{X - 112}{10} \le \frac{122 - 112}{10}\right)$ $= P(-1 \le Z \le 1) = 0.683$

Približno 68.3% populacije ima sistolični krvni tlak med 102 in 122 (oziroma med μ – σ in μ + σ)

Kakšen delež populacije ima sistolični krvni tlak nad 140?

$$P(X > 140) = P\left(\frac{X - 112}{10} > \frac{140 - 112}{10}\right)$$
$$= P(Z > 2.8) = P(Z < -2.8) = 0.0026$$