Predicting Churn Rate for Banks

December 7, 2021

Agenda: Four Key Components

Objectives

CHURN = ADDITION - ATTRITION

Annual Churn
Rate of US
Credit Provider

- ■Churn Rate
- Retention Rate

Earning Back with Reduced Churn Rate

9.9%

For Wireless Carriers [1]

Who should be Targeted?

What should the company do?

Churn Rate Prediction:

- 1. Consumers' Characteristics
- 2. Churn Rate
- 3. Classification of customers and their reaction to incentives
- 4. Target higher-value customers who are most likely to defect and and respond to incentives

Descriptive Statistics of the Dataset

Source: Kaggle (https://www.kaggle.com/sakshigoyal7/credit-card-customers) [2]

Exploratory Data Analysis—Demographic Features

Mostly 2-3

Exploratory Data Analysis—Demographic Features

Age Distribution

Fairly normal distribution

Income Category

>50% are below \$60K

Education Level

>50% with higher education

Exploratory Data Analysis—Possible Key Features

No. of Contacts in the Last 12 Months

Mostly 2-3 Contacts

Exploratory Data Analysis—Possible Key Features

Credit Limit on the Credit Card

More on Both Ends

No. of Months Inactive in the Last 12M

Exploratory Data Analysis—Other Features

Period of Relationship with Bank

Mostly with 3-year Relationship

Total no. of Products Held by Customers

Products

Using Logistic Regression Model to predict Churn Rate

Logistic Regression Output

Logistic Regression Confusion Matrix

Accuracy: 0.851

Predicted To churn (1), ended up retain (0) 40 cases

Predicted to churn (1), ended up churn (1) 96 cases

Predicted to retain (0), ended up churn (1) 1017 cases

Predicted to retain (0), ended up retain (0) 5928 cases

Logistic Regression Confusion Matrix

Accuracy: 0.851

Among the False Predictions:

Predicted To churn (1), ended up retain (0) 40 cases

Predicted to retain (0), ended up churn (1) 1017 cases

More False-Negatives

Output for **Random Forest** Model

```
Call:
 randomForest(formula = factor(Attrition_Flag) ~ ., data = bank2)
              Type of random forest: classification
                    Number of trees: 500
No. of variables tried at each split: 3
       00B estimate of error rate: 13.78%
Confusion matrix:
                                                                           198
                                                                                          61
       1 class.error
0 5907 61 0.01022118
                                                                                      0
1 915 198 0.82210243
                                                                                      0
> mean(bank2$Attrition_Flag==rf$predicted)
[1] 0.8621664
                                                                                          5907
                                                                          915
> table(bank2$Attrition_Flag, rf$predicted)
  0 5907
     915 198
```

Output for **Random Forest** Model

Among the False Predictions:

Predicted To churn (1), ended up retain (0) 915 cases

Predicted to retain (0), ended up churn (1) 61 cases

More False-Positives

Implications of the Project—Comparison between Logistic Regression and Random Forest

	Accuracy Level	Able to Describe Significance of Variables	False Prediction Handling
Logistic Regression	85.1%	Yes (The Coefficients)	Generate more False- Negatives
Random Forest	86.22%	No	Generate more False- Positives

Implementations of the Results—Suggestions

Team Members

Siyuan Xu

Fengsui Xie

Jie Xu

Yufei Qin

Xinyuan Hu

Reference

1. Forbes: https://www.forbes.com/sites/hbsworkingknowledge/2013/11/11/a-smarter-way-to-reduce-customer-churn/?sh=22e02bab2c0a

2. Kaggle: https://www.kaggle.com/sakshigoyal7/credit-card-customers

