Fall 2013

DISKS

Life Cycle of a Query

Internal Architecture of a Data Processing System

Architecture of a Storage Manager

Memory Hierarchy

Disks

- Secondary storage device of choice.
- Data is stored and retrieved in units called disk blocks or pages.
- Unlike RAM, time to retrieve a disk page varies depending upon location on disk.
 - Therefore, relative placement of pages on disk has major impact on DBMS performance!

Disks

Access time = seek time + rotational delay + transfer time

(1 20 11

(1-20 ms) (0-10ms) $(\sim 1 \text{ ms per 8k page})$

❖ Platters spin @ ~ 7200rpm

* Arm assembly moves to position a head on a desired track. Tracks under heads make a *cylinder* (imaginary!)

Only 1 head reads/writes at any time

* Block size: multiple of sector size (which is fixed).

Disk Controller: OS Intf.

Arranging Pages on Disk

Access time = seek time + rotational delay + transfer time

- GOAL: Minimize seek and rotational delay
- 'Next' block concept:
 - blocks on same track, followed by
 - blocks on same cylinder, followed by
 - blocks on adjacent cylinder
- For a sequential scan, <u>pre-fetching</u> several pages at a time is a big win!

Nice overview of disk architecture and history at http://www.storagereview.com/guide/index.html

