Year 10 Non Linear Relations

Non Calculator

Skills and Knowledge Assessed:

- Graph simple non-linear relations with and without the use of digital technologies and solve simple related equations (ACMNA296)
- Explore the connection between algebraic and graphical representations of relations such as simple quadratics, circles and exponentials using digital technology as appropriate (ACMNA239)
- 10A Describe, interpret and sketch parabolas, hyperbolas, circles and exponential functions and their transformations (ACMNA267)

. .		
Name		

Section 1 Short Answer Section

Write all working and answers in the spaces provided on this test paper.

1. The graph of $y = x^2 - a$ is shown.

What is the value of *a*?

.....

The equation of the graph shown is $y = 36 - x^2$. The graph passes through the point (k, 20).

What is the value of k?

The equation of the graph shown is $y = 5^x$. The graph crosses the y axis at (0, m).

What is the value of m?

.....

4. The graph shown is a circle with its centre at the origin.

What is the equation of the graph?

5. The graph of $y = x^2 + 4x$ is shown. The dotted line is its axis of symmetry.

What are the x - ordinates of the points A and B?

.....

The curve below has equation y = (x + 6)(x + 4). 6. The axis of symmetry is shown by the dotted line. What are the coordinates of the points C and D?

The graph of $y = 2^x$ is shown. What is the value of r? 7.

Sketch the circle which has an equation $x^2 + y^2 = 144$. 8.

-12 -20+ 9. The equation of the parabola shown is $\frac{2}{100}$

 $y = x^2 + bx - 8.$

What is the value of *b*?

.....

.....

10. The graph of $y = 4^x$ is shown. Draw a quick sketch, on the same set

of axes, of $y = 4^x - 1$.

.....

What is the centre and radius of the circle which has an equation of $(x-2)^2 + (y+5)^2 = 25$

.....

What is the centre and radius of the circle which has an equation of $x^2 - 10x + y^2 - 6y = 15$.

.....

.....

Complete the table of values for the equation $y = \frac{1}{x-2}$ 13.

$$y = \frac{1}{x - 2}$$

х	-2	0	1	2	3	4	6
у				Undefined			

14. Draw a sketch of $y = \frac{1}{x-2}$ using the table in question 14.

Year 10

Non Linear Relations

Calculator Allowed

Name

Section 2 Multiple Choice Section

Mark all your answers on the accompanying multiple choice answer sheet, not on this test paper. You may do any working out on this test paper. Calculators are allowed for this section.

1. Which equation could describe the graph shown?

A.
$$y = x^2 - 8$$

B.
$$y = x^2 + 8$$

C.
$$y = x^2 - 64$$

D.
$$y = 64 - x^2$$

2. Which graph below could have an equation of $y = 9 - x^2$?

A.

C

3. Which equation below would represent a parabola?

A. y = 5x

B. $y = \frac{5}{x}$

C. $y = 5x^2$ D. $y = 5^x$

A circle on the number plane with centre at the origin and a radius of 9 units would have as its 4. equation:

A. $x^2 + y^2 = 3$.

B. $x^2 + y^2 = 9$.

C. $x^2 + y^2 = 18$.

D. $x^2 + y^2 = 81$.

Which curve has a vertex at (0, 5)? 5.

A. $y = -5 - x^2$ B. $y = x^2 - 5$ C. $y = x^2 + 25$ D. $y = 5 - x^2$

Which diagram below could be the graph of $y = 12^x$? 6.

A.

B.

 \mathbf{C}

- 7. The graph of $x^2 + y^2 = 121$ would have y intercepts at:
 - A. y = 0 and y = 11.

- B. y = 0 and y = -11.
- C. y = -11 and y = 11.
- D. y = -121 and y = 121.
- 8. Which diagram shows the graph of $y = x^2 + 8x$?

A.

B.

C.

- 9. Which equation could describe the graph shown?
 - A. $y = 6^x + 4$
 - $B. y = \frac{6}{x} + 4$
 - C. $y = 6x^2 + 4$
 - D. $x^2 + y^2 = 4$

10. Which diagram shows the graph of $(x-4)^2 + (y+2)^2 = 16$?

A.

B.

C.

Which is the graph of $y = \frac{6}{x-3}$? 11.

A.

B.

C

D.

Which equation describes a circle with centre at (-2, 7) and radius 4 units? 12.

A.
$$x^2 + 4x + y^2 - 14y + 37 = 0$$

B
$$x^2 - 4x + y^2 + 14y + 69 = 0$$

A.
$$x^2 + 4x + y^2 - 14y + 37 = 0$$
 B. $x^2 - 4x + y^2 + 14y + 69 = 0$
C. $x^2 - 4x + y^2 + 14y + 69 = 0$ D. $x^2 + 4x + y^2 - 14y + 69 = 0$

D.
$$x^2 + 4x + y^2 - 14y + 69 = 0$$

T 7		1	Λ
Υ (ear	1	()

Non Linear Relations

Cal	CII	ator	Δ11	lowed
Ca.	CU	lawi		lo w cu

Name				

Section 3 **Longer Answer Section**

Answers should be supported by relevant mathematical reasoning and/or calculations. Write all working and answers in the spaces provided on this test paper.

Marks

On the axes provided draw neat sketches of $y = x^2 - 4$ and $y = 9 - x^2$. Clearly mark the x and y intercepts and the vertex of each graph.

Marks

2. On the axes provided draw neat sketches of y = x(x + 4) and $y = x^2 - 2x - 8$. Clearly mark the x and y intercepts and the vertex of each graph.

Marks

On the axes provided draw neat sketches of $y = 3^x$ and $x^2 + y^2 = 25$. Clearly mark the x and y intercepts of each graph.

Marks

On the axes provided draw neat sketches of $y = \frac{1}{x-3}$ and $x^2 - 2x + y^2 - 6y - 6 = 0$. Clearly mark the x and y intercepts and the vertex of each graph.

Non Linear Relations Multiple Choice Answer Sheet

Completely fill the response oval representing the most correct answer.

1.	$A \bigcirc$	$B \bigcirc$	$C \bigcirc$	$D\bigcirc$
2.	$A \bigcirc$	$B\bigcirc$	$C \bigcirc$	$D\bigcirc$
3.	$A \bigcirc$	$B\bigcirc$	$C \bigcirc$	$D \bigcirc$
4.	$A \bigcirc$	$B\bigcirc$	$C \bigcirc$	$D\bigcirc$
5.	$A \bigcirc$	$B\bigcirc$	$C \bigcirc$	$D\bigcirc$
6.	$A \bigcirc$	$B \bigcirc$	$C \bigcirc$	$D\bigcirc$
7.	$A \bigcirc$	$B\bigcirc$	$C \bigcirc$	$D\bigcirc$
8.	$A \bigcirc$	$B\bigcirc$	$C \bigcirc$	$D\bigcirc$
9.	$A \bigcirc$	$B\bigcirc$	$C \bigcirc$	$D\bigcirc$
10.	$A \bigcirc$	$B\bigcirc$	$C \bigcirc$	$D\bigcirc$
11.	$A \bigcirc$	$B\bigcirc$	$C \bigcirc$	$D\bigcirc$
12.	$A \bigcirc$	$B\bigcirc$	$C \bigcirc$	$D\bigcirc$

Non Linear Relations

ANSWERS

	Section 1 (1 mark each)
	Working and Answers
1.	Since it crosses the y axis at -25, $y = x^2 - 25$ so $a = 25$.
2.	$y = 36 - x^{2}$ $y = 20$ $20 = 36 - x^{2}$ $x^{2} = 16$ $x = \pm 4$ Since point is to the left of y axis, $k = -4$
3.	As it is an exponential graph, it crosses the y axis at $y = 1$. m=1
4.	Centre at the origin, radius 5. $x^2 + y^2 = 25$
5.	$y = x^2 + 4x = x(x + 4)$ X intercepts at $x = 0$ and $x = -4$. so $A = -4$ Bis midway between the intercepts $x = 0$ and $x = -4$. B is -2
6.	y = (x + 6)(x + 4) x intercepts at $x = -4$ and $x = -6Vertex is midway between these on axis x = -5y = (-5 + 6)(-5 + 4) = 1 \times -1 = -1C$ is $(-5, -1)Y$ intercept when $x = 0y = (0 + 6)(0 + 4) = 6 \times 4 = 24D$ is $(0, 24)$
7.	$y = 2^{x}$ $y = 16$ $16 = 2^{x}$ $2^{4} = 2^{r}$ $r = 4$

8.

Intercepts at x = -2 and x = 49.

$$y = (x + 2)(x - 4)$$
$$y = x^{2} - 2x - 8$$

$$y = x^2 - 2x - 8$$

 $\therefore b = -2$

10.

 $(x-2)^{2} + (y+5)^{2} = 25$ $(x-2)^{2} + (y+5)^{2} = 5^{2}$ 11.

$$(x-2)^2 + (y+5)^2 = 5^2$$

Centre (2, -5) and radius 5.

12.

$$x^{2} - 10x + y^{2} - 6y = 15$$

$$x^{2} - 10x + 25 + y^{2} - 6y + 9 = 15 + 25 + 9$$

$$(x - 5)^{2} + (y - 3)^{2} = 49 = 7^{2}$$

Centre (5, 3) radius 7.

13. y

 $y = \frac{1}{x - 2}$

x	-2	0	1	2	3	4	6
у	$\frac{1}{-4}$	$\frac{1}{-2}$	-1	Undefined	1	$\frac{1}{2}$	$\frac{1}{4}$

14.

4. Circle has equation $x^2 +$	and concave down. (3-x)(3+x) = 0 the correct form $y = 5x^2$. $y^2 = r^2$	Answers C B C D
equation is $y = (x + 8)(x y = x^2 - 64)$ 2. $y = 9 - x^2$ Has a maximum of $(0, 9)$ Crosses the x axis when Crosses at $x = \pm 3$. Graph B 3. $y = ax^2 + bx + 4$ Parabola Equation C is to C . 4. Circle has equation C	and concave down. (3-x)(3+x) = 0 the correct form $y = 5x^2$. $y^2 = r^2$	B C D
2. $y = 9 - x^2$ Has a maximum of $(0, 9)$ Crosses the x axis when Crosses at $x = \pm 3$. Graph B 3. $y = ax^2 + bx + 2$ Parabola Equation C is to C	$\frac{c}{c}$ the correct form $y = 5x^2$. $y^2 = r^2$	C D
Has a maximum of $(0, 9)$ Crosses the x axis when Crosses at $x = \pm 3$. Graph B 3. $y = ax^2 + bx + $ Parabola Equation C is to C .	$\frac{c}{c}$ the correct form $y = 5x^2$. $y^2 = r^2$	C D
Parabola Equation C is to 4. Circle has equation $x^2 + x^2 + x^2$	the correct form $y = 5x^2$. $y^2 = r^2$	D
4. Circle has equation $x^2 +$	$y^2 = r^2$	
4. Circle has equation $x^2 +$	$y^2 = r^2$	
$\begin{cases} x^2 + y^2 = 9^2 \\ x^2 + y^2 = 81 \end{cases}$	m at (0,5).	D
$x^2 + y^2 = 81$ 5. $y = 5 - x^2$ has a maximum	(-9-)-	
6. $y = 12^x$ Exponential graph, so a	rows to the right of y axis.	A
7. $x^2 + y^2 = 121$ Circle centre at the origin y intercepts 11 units above	e and below origin.	С
8. $y = -11$ and $y = 11$. Parabola crosses x axis a Parabola is concave up. Graph D .		D
9. Hyperbola with disconting Equation B is in the form	nuity at x=0, raised by 4 units.	В
10. Centre (4, -2) radius 4. G		A
11. $y = \frac{6}{x-3}$ Discontinuity at $x = 3$.	•	В
When $x = 0$, $y = \frac{6}{-3} = -2$	Graph B	
12.	49 = 16	A

Section 3

1. On the axes provided draw neat sketches of $y = x^2 - 4$ and $y = 9 - x^2$. Clearly mark the x and y intercepts and the vertex of each graph.

2 marks for each graph

Allow 1 for correct shape and 1 for correct details 2. On the axes provided draw neat sketches of y = x(x + 4) and $y = x^2 - 2x - 8$. Clearly mark the x and y intercepts and the vertex of each graph.

2 marks for each graph

Allow 1 for correct shape and 1 for correct details

3. On the axes provided draw neat sketches of $y = 3^x$ and $x^2 + y^2 = 25$. Clearly mark the x and y intercepts of each graph.

2 marks for each graph

Allow 1 for correct shape and 1 for correct details 4. On the axes provided draw neat sketches of $y = \frac{1}{x-3}$ and $x^2 - 2x + y^2 - 6y - 10 = 0$. Clearly mark the x and y intercepts and the vertex of each graph.

$$x^{2}-2x+y^{2}-6y-6=0$$

$$x^{2}-2x+y^{2}-6y=6$$

$$x^{2}-2x+1+y^{2}-6y+9=6+10$$

$$(x-1)^{2}+(y-3)^{2}=16$$
Centre is (1, 3) with radius = 4.

2 marks for each graph

Allow 1 for correct shape and 1 for correct details

Non Linear Relations

Multiple Choice Answer Sheet

Name <u>Marking Sheet</u>

Completely fill the response oval representing the most correct answer.

1.	A 🔾	$B \bigcirc$	C	$D\bigcirc$
2.	$A \bigcirc$	В	$C \bigcirc$	$D\bigcirc$
3.	$A \bigcirc$	$B\bigcirc$	C	$D\bigcirc$
4.	$A \bigcirc$	$B\bigcirc$	$C \bigcirc$	D
5.	$A \bigcirc$	$B\bigcirc$	$C \bigcirc$	D
6.	A •	$B\bigcirc$	$C \bigcirc$	$D\bigcirc$
7.	$A \bigcirc$	$B\bigcirc$	C	$D\bigcirc$
8.	$A \bigcirc$	$B\bigcirc$	$C \bigcirc$	D
9.	$A \bigcirc$	В	$C \bigcirc$	$D\bigcirc$
10.	A •	$B\bigcirc$	$C \bigcirc$	$D\bigcirc$
11.	A 🔿	В	$C \bigcirc$	$D\bigcirc$
10		\mathbf{n}	$\alpha \bigcirc$	\sim