中国科学技术大学数学科学学院 2019~2020 学年第 2 学期期末考试试卷

٨	*		D	光
Α	卷	11	В	乜

课程名称	近世代数	课程编号 _	001010
考试时间	2020年9月3日	考试形式 _	闭卷
姓名	学号		学院
授课教	[师:张磊、申伊塃		

- 一、 (40 分) 完成以下五道小题中的四道题 (请明确标出所选题).
 - (1) 列出加法循环群 Z/15Z 的所有的循环群生成元, 并确定其所有的自同构 (解答 要求包含分析过程).

(2) 简要描述如何构造一个 9 个元素的域.

(3) 列举 Z[x] 的所有素理想和所有的极大理想 (不需要分析过程).

(4) 设 R 为一个唯一因子分解整环, 设 b, c ∈ R 为非零元. (i) 问两个主理想的交
(b) ∩ (c) 是否仍是主理想? 若是, 请简要证明; 若否, 请举例. (ii) 问主理想的和
(b) + (c) 是否仍为主理想? 若是, 请简要证明; 若否, 请举例.

(5) 详细陈述佐恩引理 (Zorn's lemma).

二、 (10 分) 计算群 $(a, b \mid a^4 = b^7 = 1, ab = ba^3)$ 的阶数.

- 三、 (15 分) 设环 $R = \mathbb{Z}[x]$.
 - (1) 证明: 商环 $R/(x^3+x+1)$ 是整环但不是域.

(2) 证明商环 $R/(x^3+x+1)$ 作为加法群是有限生成的, 并求出它的秩.

- 四、 $(15\ \mathcal{H})$ 设 R 是一个非零的含幺交换环, 其中指定的元素 $a\in R$ 满足对任意的正整数 n 皆有 $a^n\neq 0$. 记 $\mathcal{S}=\{a^n\}_{n\geq 0}$, 这儿约定 $a^0=1$.
 - (1) 证明 $\{I \ \mathcal{E} \ R \$ 的理想 $|I \cap \mathcal{S} = \emptyset \ \}$ 中的理想在集合的包含关系下存在最大元.

(2) 证明上述的最大元一定是 R 的素理想.

(3)	求出	α在Q	(√2) 上	的所有	共轭元	i.				
										. *).
(4)	证明	$\mathbb{Q}(lpha)/$	Q 是伽:	罗瓦 (0	Galois)	扩张,	并描述	加罗瓦群	Gal(Q($\alpha)/\mathbb{Q}$).

五、 $(20 \, \text{分})$ 设 $\alpha = \sqrt{2 + \sqrt{2}} \in \mathbb{R}$.

(1) 求解 α 在 \mathbb{Q} 上的最小多项式.

(2) 求出 α 在 Q 上的所有共轭元.