Topic: Discrete probability

Question: A red and blue die are rolled. Both are six-sided fair dice. Let X represent the sum of the dice. Which of the following is the correct probability distribution for X?

Answer choices:

Α

х	1	2	3	4	5	6
P(X)	1/6	1/6	1/6	1/6	1/6	1/6

В

X	2	3	4	5	6	7	8	9	10	11	12
P(X)	1/12	1/12	1/12	1/12	1/12	1/12	1/12	1/12	1/12	1/12	1/12

C

Х	2	3	4	5	6	7	8	9	10	11	12
P(X)	1/36	1/18	1/12	1/9	5/36	1/6	5/36	1/9	1/12	1/18	1/36

D

X	2	3	4	5	6	7	8	9	10	11	12
P(X)	1/36	1/36	1/36	1/36	1/36	1/36	1/36	1/36	1/36	1/36	1/36

Solution: C

Because the smallest value we can roll on each die is 1, the smallest sum we can get is X = 1 + 1 = 2. The largest value we can roll on each die is 6, so the largest sum we can get is X = 6 + 6 = 12.

Therefore, the sample space for X is $\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. This table shows all possible ways to roll two dice and the sum of each roll.

			Red die								
		1	2	3	4	5	6				
	1	2	3	4	5	6	7				
	2	3	4	5	6	7	8				
Blue	3	4	5	6	7	8	9				
die	4	5	6	7	8	9	10				
	5	6	7	8	9	10	11				
	6	7	8	9	10	11	12				

There are 11 possible sums (from 2 to 12) and 36 different pairs (from (1,1) all the way to (6,6)).

By looking at the table, we can start calculating probabilities for each sum.

$$P(\text{sum of } 2) = \frac{1}{36}$$

$$P(\text{sum of } 3) = \frac{2}{36} = \frac{1}{18}$$

• • •

Already, the only probability distribution that matches these calculations is the table from answer choice C.

X	2	3	4	5	6	7	8	9	10	11	12
P(X)	1/36	1/18	1/12	1/9	5/36	1/6	5/36	1/9	1/12	1/18	1/36

Topic: Discrete probability

Question: You purchase a raffle ticket for \$125. In exchange, you'll be allowed to participate in two drawings. In each drawing, you blindly pick one of three tokens. One token is worth \$0, one is worth \$50, and one is worth \$100. Let Y be the profit you make from a raffle ticket. Find the expected value for Y after the two drawings.

Answer choices:

-\$50

B -\$25

C \$50

D \$75

Solution: B

In the first drawing, you can pick \$0, \$50, or \$100. The same is true with the second drawing. So after two drawings, your possible earnings are given in the table.

		Se	cond draw	ing
		0	50	100
	0	0	50	100
First drawing	50	50	100	150
9	100	100	150	200

The sample space is therefore \$0, \$50, \$100, \$150, or \$200. Because there are 9 possible combinations, from (0,0) to (100,100), the probability of winning each amount of money is

Υ	0	50	100	150	200
P(Y)	1/9	2/9	3/9	2/9	1/9

But your ticket cost you \$125, which means we need to adjust the probability distribution by subtracting the cost from each potential profit.

Y	-125	-75	-25	25	75
P(Y)	1/9	2/9	3/9	2/9	1/9

Therefore, the expected value for Y is

$$E(Y) = -125\left(\frac{1}{9}\right) - 75\left(\frac{2}{9}\right) - 25\left(\frac{3}{9}\right) + 25\left(\frac{2}{9}\right) + 75\left(\frac{1}{9}\right)$$

$$E(Y) = -\frac{125}{9} - \frac{150}{9} - \frac{75}{9} + \frac{50}{9} + \frac{75}{9}$$

$$E(Y) = -\frac{225}{9}$$

$$E(Y) = -25$$

Topic: Discrete probability

Question: The following table shows the 2017 AP Statistics Exam score distribution for all students taking the test in the United States. Let Z represent the exam score. Find μ_Z and σ_Z .

Score	1	2	3	4	5
Probability	0.136	0.159	0.248	0.202	0.255

Answer choices:

A
$$\mu_Z = 3.281 \text{ and } \sigma_Z = 1.846$$

B
$$\mu_Z = 2.719 \text{ and } \sigma_Z = 1.846$$

C
$$\mu_Z = 3.281 \text{ and } \sigma_Z = 1.359$$

D
$$\mu_Z = 2.719 \text{ and } \sigma_Z = 1.359$$

Solution: C

Z is a discrete random variable with sample space $\{1, 2, 3, 4, 5\}$. The percentage of students taking the exam who received each of those scores is given in the table as

Score	1	2	3	4	5
Probability	0.136	0.159	0.248	0.202	0.255

We'll find the mean of this discrete random variable as

$$\mu_Z = 1(0.136) + 2(0.159) + 3(0.248) + 4(0.202) + 5(0.255)$$

$$\mu_Z = 0.136 + 0.318 + 0.744 + 0.808 + 1.275$$

$$\mu_Z = 3.281$$

We'll find the variance in order to get to standard deviation. The variance of ${\it Z}$ is

$$\sigma_Z^2 = \sum_{i=1}^5 (Z_i - \mu_Z)^2 P(Z_i)$$

$$\sigma_Z^2 = (1 - 3.281)^2 (0.136) + (2 - 3.281)^2 (0.159) + (3 - 3.281)^2 (0.248)$$
$$+ (4 - 3.281)^2 (0.202) + (5 - 3.281)^2 (0.255)$$

$$\sigma_Z^2 = 1.846$$

So the standard deviation of Z is

$$\sqrt{\sigma_Z^2} = \sqrt{1.846}$$