Projet Arduino: PolyGripper / Machine à Pince

Description et Objectifs du Projet :

Nous devions réaliser une machine à pince avec certaines fonctionnalités. C'est une machine, généralement présente aux fêtes foraines, dont le but est d'attraper un objet en déplaçant une pince.

Ainsi pour réaliser notre projet nous avions constitué un cahier des charges :

- Réaliser une pince qui s'ouvre et se ferme
- Réaliser un système de montée et descente pour la pince
- Réaliser un système de déplacement en 2D
- Monter une boîte cubique pour abriter le tout (de dimension 60 à 80cm de côté)
- Des commandes (boutons, joysticks ou leviers) pour diriger la pince

De plus s'il restait du temps nous voulions ajouter certaines fonctionnalités supplémentaires telles que :

- Démarrage de la machine avec un bouton on/off
- Payement pour démarrer la machine
- Détecteur de poids pour savoir si le joueur a attrapé un objet. Avec de la musique et des leds pour animer la réussite ou l'échec
- Une communication Bluetooth entre le boîtier de commandes et le système de la pince (pour séparer les deux partie et ainsi avoir une machine à pince différente des autres)

Finalement sur les fonctionnalités supplémentaires prévues, seule la fonctionnalité de communication Bluetooth a été réalisée. Mais une écran LCD a été rajouté pour donner les consignes de jeu au joueur sur le boîtier de commandes.

Schéma Electrique du Projet :

Voici le schéma électrique final du projet :

- La gauche correspond à la partie boîtier de communication et est alimentée par 4 piles de 1,5V.
- La droite correspond à l'ensemble pince et déplacement et est alimentée soit par câble USB, soit par pile 9V. Le 9V est préférable mais le câble USB fonctionne aussi.

Fonctionnement Global du Projet :

Le projet est partitionné en deux : la partie joueur et commandes ainsi que la partie machine et exécution.

Composition des parties :

- Dans la première partie il y a : une alimentation 4*1,5V, une carte Arduino Uno, un module Bluetooth HC-05, un écran LCD et un joystick avec bouton.
- Dans la seconde partie il y a : une alimentation USB ou 9V, une carte Arduino Uno, 3 moteurs à pas, un servomoteur et un module Bluetooth HC-06.

Fonctionnement des parties :

La première partie va servir à informer le joueur des actions à effectuer, puis de transmettre les actions du joystick par Bluetooth à la seconde partie. La seconde partie va recevoir ses informations et actionner en conséquence les moteurs correspondants.

Concrètement voici ce qui se passe :

Au lancement du jeu, un message va s'afficher " Jeu en Attente. Appuyer sur le bouton pour commencer. ". Une fois que le joueur appuie sur le bouton (du joystick), un nouveau message apparaît "Mouvement Pince En Cours " et si le joueur déplacement le joystick à gauche ou à droite,

cela sera envoyé par Bluetooth et le module de déplacement de la pince se déplacera dans la direction voulue. Ensuite dès que le joueur réappuie sur le bouton, il change le type de direction. Maintenant en déplaçant le joystick vers l'avant ou l'arrière, le module de déplacement de la pince se déplace vers l'avant ou l'arrière. Enfin dès que le joueur appuie une nouvelle fois sur le bouton, cela signifie que le choix du positionnement de la pince est définitif et alors le moteur qui déroule le fil par lequel est accroché la pince est activé. Ainsi la pince descend, se ferme et attrape ou non une peluche. L'objet en question à attraper dans notre machine est une peluche. Puis la pince remonte et se déplace vers la zone de récupération d'où elle se réouvrira, faisant tomber la peluche. Le joueur peut ainsi récupérer son prix et l'écran affiche "Fin De Partie".

La pince va alors se repositionner à son emplacement initial. La partie est finit, la pince est à son emplacement d'origine et le message de début de jeu s'affiche, permettant ainsi de faire une nouvelle partie.

Coût du Projet :

Le coût du projet se décompose en deux sections : le coût matériel et le coût du travail.

Au niveau du matériel : entre les modules Arduino, le bois, les fils et les impressions 3D, le coût matériel revient aux alentours de 100€.

Pour le décompte des heures :

Adam Bottero : 32hThéo Cholewa : 60h

Avec un coût de 38000€ pour 1600h on obtient : 2185€ de coût du travail.

Ainsi ce projet, si réalisé par des ingénieurs aurait couté aux alentours de 2300€. On remarque ainsi que le coût matériel est dérisoire en comparaison du coût humain.

Les Plannings:

Semaine	Planning Théo initial	Planning Adam	Planning Théo final	Planning Théo final
		initial		
1	Réalisation d'une	Réalisation du	Réalisation d'une	Test des moteurs
	pince avec	déplacement	pince avec	pour le déplacement
	Ouverture/fermeture	dans l'axe	Ouverture/fermeture	
		Gauche/Droite		
2	Réalisation système	Réalisation du	Ajout d'un support	Récupération des
	de traction pour la	déplacement	pour soulever la	matériaux pour le
	montée et descente	dans l'axe	pince avec un fil.	déplacement
	de la pince	Avant/Arrière	Ajout d'un moteur	(courroies/glissières)
			pour la	
			montée/descente	

3	Suite et fin du travail	Assemblage	Fin de réalisation du	Découpe des rails de
3	de la semaine 2	des deux	système de	déplacement.
	de la semante 2	systèmes de	montée/descente.	Découpe de bois
		déplacement	Prise de	pour le module de
		иеріасеттеті	connaissance du	déplacement
			joystick	асріасстісті
4	Assemblage des	Assemblage	Réalisation de code	Réalisation du
_	travaux des 3	des travaux	reliant le joystick	module de
	premières semaines	des 3	avec la	déplacement avec
	Théo et Adam	premières	descente/remontée	un axe de
	Theo et Addin	semaines Théo	de la pince et	déplacement
		et Adam	ouverture/fermeture.	deplacement
		et / taaiii	Prise de	
			connaissance de	
			l'écran LCD.	
5	Réalisation de la	Ajout de la	Ajout du deuxième	Ajout du deuxième
	boîte	fonctionnalité	axe sur le module et	axe sur le module et
		de payement	prise des mesures	prise des mesures
		. ,	pour la découpe du	pour la découpe du
			bois de la boîte	bois de la boîte
6	Réalisation du	Semaine en	Découpe des	Découpe des
	système de	prévoyance de	planches pour la	planches pour la
	commande	retard sur le	boîte.	boîte.
		planning	Prise de	Prise de
			connaissance et	connaissance et
			connexion entre eux	connexion entre eux
			des modules HC-	des modules HC-
			05/HC-06 (Bluetooth)	05/HC-06
				(Bluetooth)
7	Ajout de la	Réalisation de	Montage de la boîte.	Découpe de barres
	fonctionnalité de	l'animation de	Réalisation du boîtier	de déplacement
	détection de poids	fin de jeu	de commande.	plus longues.
			Récupération et	Réalisation du
			soudure de	boîtier de
			l'alimentation par	commande.
			pile.	
			Revue totale du	
			module de	
			déplacement.	
8	Vérifications	Vérifications	Module de	Aide à la réalisation
	techniques /	techniques /	déplacement finis	du code de
	Optimisation du	Optimisation	pour une taille	transmission
	code / Tests finaux	du code / Tests	minimale.	Bluetooth.
		finaux	Réalisation du code	
			reliant par Bluetooth	
			le joystick, l'écran et	
			les différents	
			moteurs.	
			Tests du code.	
			Ajustement des	
			courroies.	

	Réalisation finale du	
	boîtier de	
	commandes.	
	Réalisation du code	
	final.	
	Tests finaux avec des	
	peluches	

Il y a eu beaucoup de différences entre la planning initial et final.

Tout d'abord le module de déplacement initial a été plus long à réaliser par Adam Bottero. Ainsi Théo Cholewa a travaillé sur d'autres domaines comme le joystick, l'écran LCD et le programme Arduino. Mais le temps perdu a empêché la réalisation des fonctionnalités supplémentaires autres que le Bluetooth.

Ensuite le module de déplacement était trop gros pour la boîte et ne permettait un déplacement que de quelques centimètres dans les deux directions. Ainsi Théo Cholewa l'a retravaillé pour minimiser sa taille.

Les problèmes techniques lors du projet ont ainsi été :

- Le manque d'accroche de la pince ne permettant pas de la soulever. Cela a été surmonté par la réalisation d'un support autour de la pince qui permet de faire passer un fil et donc de soulever la pince.
- Les nouvelles barres découpées semaine 7 n'étaient pas lisses. Ainsi le coulissement n'était pas possible. Le problème n'a pas pu être résolu même en essayant de lisser la barre avec du papier à poncer. Ainsi Théo Cholewa a acheté une nouvelle barre lisse et la découpée chez lui pour obtenir les bonnes dimensions.
- Le modules de déplacement trop grand qui a été retravaillé pour la forme actuelle minimaliste. Cela a permit de passer de 4 barres et 4 glissières pour le déplacement à 3 barres (dont une qui sert exclusivement à soutenir le module) et 2 glissières. Ainsi le déplacement a été plus fluide.
 - Par la même occasion le positionnement des courroies a été revu pour les tendres au maximum (avec des obstacles pour les tendres plus comme vu au-dessus de la boîte).

Conclusion:

Le projet a été une réussite puisque le système de la machine à pince est fonctionnel. La communication avec le joueur, la transmission des informations, l'activation des moteurs et la remise en place à la fin de la partie sont fonctionnels. Cependant certaines choses peuvent être encore améliorées comme :

- La vitesse de déplacement qui est très faible. Designer et faire imprimer des engrenages plus importants pour les moteurs peut être une solution.
- L'ajout des autres fonctionnalités supplémentaires.
- L'esthétique de la boîte qui n'a malheureusement pas été la priorité lors de la réalisation du projet.

Bibliographie:

- https://www.thingiverse.com/thing:1322867 : plan 3D de la pince
- https://www.thingiverse.com/thing:4007625 : plan 3D du support de la pince