Tema 1: Sistems de representació

Contingut

1. Sistemes numèrics

- Sistemes de numeració i canvi de base
- Aritmètica binària
- Sistemes de codificació i representació dels nombres

2. Codificació binària

- Representació binària de dades i instruccions
- Característiques dels espais de representació

Sistemes de numeració i canvi de base

- Un sistema de numeració en base b utilitza per a la representació de nombres un alfabet compost per b símbols o xifres
- Exemples:

 El nombre s'expressa mitjançant una seqüència de xifres:

$$N \equiv ... n_4 n_3 n_2 n_1 n_0 n_{-1} n_{-2} n_{-3} ...$$

• El valor de cada xifra depén de la xifra en sí i de la posició que ocupa en la seqüència

Sistemes de numeració i canvi de base

 El valor del nombre es calcula a partir del polinomi:

$$N \equiv ... + n_3 \cdot b^3 + n_2 \cdot b^2 + n_1 \cdot b^1 + n_0 \cdot b^0 + n_{-1} \cdot b^{-1}$$
...

$$N \equiv \sum_{i} n_{i} \cdot b^{i}$$

• Exemples:

$$3278,52_{10} = 3 \cdot 10^{3} + 2 \cdot 10^{2} + 7 \cdot 10^{1} + 8 \cdot 10^{0} + 5 \cdot 10^{-1} + 2 \cdot 10^{-2}$$

$$175,372_8 = 1 \cdot 8^2 + 7 \cdot 8^1 + 5 \cdot 8^0 + 3 \cdot 8^{-1} + 7 \cdot 8^{-2} + 2 \cdot 8^{-3} = 125,4882812_{10}$$

Sistemes de numeració i canvi de base

- Conversió decimal base b
 - Mètode de divisions succesives per la base b
 - Per a nombres fraccionaris es fan multiplicacions succesives per la base b.
 - Consideració de restes majores que 9 i Error de truncament
- Exemplos: $26_{10} = 11010_2$
 - ① 13 <u>2</u> ① 6 <u>2</u>

(0)

- $0.1875_{10} = 0.0011_2$
- 0,1875
 0,3750
 0,7500
 0,5000

 x 2
 x 2
 x 2
 x 2

 0,3750
 0,7500
 1,5000
 1,0000

$$26,1875_{10} = 11010,0011_2$$

Sistemes de numeració i canvi de base

- Rang de representació: Conjunt de valors representable. Amb n xifres en la base b podem formar bⁿ combinacions distintas. [0..bⁿ-1]
- Sistema de numeració en base dos o binario

b = 2 (<i>binari</i>)
{0,1}
Nombres binaris del 0 al 7

Decimal	Binari
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

• Exemples:

$$110100_{2} = (1 \cdot 2^{5}) + (1 \cdot 2^{4}) + (1 \cdot 2^{2}) =$$

$$= 2^{5} + 2^{4} + 2^{2} = 32 + 16 + 4 = 52_{10}$$

$$0,10100_{2} = 2^{-1} + 2^{-3} = (1/2) + (1/8) = 0,625_{10}$$

$$10100,001_{2} = 2^{4} + 2^{2} + 2^{-3} = 16 + 4 + (1/8)$$

$$= 20,125_{10}$$

Aritmètica binària

Operacions bàsiques

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	0 (1)

А	В	A*B
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	A – B
0	0	0
0	1	1 (1)
1	0	1
1	1	0

Α	В	A/B
0	0	
0	1	0
1	0	
1	1	1

Aritmètica binària

- Exemples
 - Sumes i restes

Multiplicacions

Divisió

Sistemes de codificació i representació de nombres

Octal

b = **8** (
$$octal$$
) {0,1,2,3,4,5,6,7}

Correspondència amb el binari

 $8 = 2^3 \Rightarrow$ Una xifra en octal correspon a 3 binàries

Exemples

$$10001101100.110102 = 2154.648$$

$$537.248 = 101011111.0101002$$

Conversió Decimal - Octal

Sistemes de representació i codificació de nombres

Hexadecimal

Correspondència amb el binari

16 = 2^4 \Rightarrow Una xifra en hexadecimal correspon a 4 binàries

Hexadecimal	Decimal	Binario
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Sistemes de representació i codificació de nombres

Exemples

$$100101110111111.10111101_2 = 25DF.BA_H$$

Conversió Decimal - Hexadecimal

$$4373.79_{10} \cong 1115.CA3D_{16}$$

0.84

x 16

Sistemes de representació i codificació de nombres

Codi Gray

- ► Codi no ponderat, continu i cíclic
- Basat en un sistema binari
- Dos nombres successius només varien en un bit

2 bits	3 bits	4 bits	Decimal
0 0	000	0 0 0 0	0
0 1	001	0001	1
1 1	0 1 1	0011	2
10	010	0010	3
	110	0110	4
	111	0 1 1 1	5
	101	0101	6
	100	0100	7
		1100	8
		1101	9
		1111	10
		1110	11
		1010	12
		1011	13
		1001	14
		1000	15

Sistemes de representació i codificació de nombres

- Codi BCD Binary Coded Decimal
- Dígits decimals codificatss en binari

Decimal	BCD natural	BCD exceso 3	BCD Aiken	BCD 5421
0	0000	0011	0000	0000
1	0001	0100	0001	0001
2	0010	0101	0010	0010
3	0011	0110	0011	0011
4	0100	0111	0100	0100
5	0101	1000	1011	1000
6	0110	1001	1100	1001
7	0111	1010	1101	1010
8	1000	1011	1110	1011
9	1001	1100	1111	1100

- BCD natural té pesos 8421
- BCD Aiken té pesos 2421
- Exemple

9 8 3 2
$$5_{10}$$
 = 1001 1000 0011 0010 0101_{BCD-natural}

$$98325_{10} = 111111110001100101011_{BCD-Aiken}$$

Sistemes de representació i codificació de nombres

- Representació de nombres enters
 - Es necessita la representació del signe
 - S'utilitza una quantitat determinada de bits (n)
- Signe i magnitud (SM)
 - ► El signe es representa en el bit més a l'esquerra de la dada. Bit (n-1)
 - ► En la resta dels bits es representa el valor del nombre en binari natural. Bits (n-2)....0
 - ► Inconvenient: Doble representació del 0.

$$n = 6$$

$$10_{10} = 001010_{SM}$$
 $-4_{10} = 100100_{SM}$

$$O_{10} = 000000_{SM}$$
 $O_{10} = 100000_{SM}$

$$n = 4$$

$$-7_{10} = 1111_{SM}$$
 $-14_{10} = no representable$

Sistemes de representació i codificació de nombres

- Complement a la base menys u
 - Els valors positius es representen en SM.
 - Els valors negatius s'obtenen restant el nombre a la base menys u.
 - Converteix les restes en sumes.
 - ▶ Inconvenient: Doble representació del 0.
 - Exemples en Base 10

$$n = 3$$
 $-63_{10} = 936_{C9} \Rightarrow 936 = 999 - 63$ $-16_{10} = 983_{C9} \Rightarrow 983 = 999 - 16$ $n = 4$ $-16_{10} = 9983_{C9} \Rightarrow 9983 = 9999 - 16$

Operación: 77 - 63

Sistemes de representació i codificació de nombres

Base 2

- ▶ S'intercanvien zeros per uns i uns per zeros
- ightharpoonup Rang: [-2ⁿ⁻¹ + 1, 2ⁿ⁻¹ 1]
- **Exemples:**

$$n = 6 C_1 de -10010_2 = 101101_{C1} -010010$$

$$1111111$$

$$-010010$$

$$101101$$

$$C_1$$
 de -100111₂ = no representable
 C_1 de 0 = {000000_{C1}, 111111_{C1}}

Operación: 1000111₂ - 10010₂

Restant en binari natural

Sumant en C1 (n=8)

Sistemes de representació i codificació de nombres

- Complement a la base
 - Els valors positius se representen en SM.
 - Els valors negatius s'obtenen restant el nombre a la base menys u i, després, sumant-hi u al resultat
 - ► Converteix les restes en sumes.
 - Exemples Base 10

$$n = 3 - 63_{10} = 937_{C10} \implies 937 = (999 - 63) + 1$$

 $-16_{10} = 984_{C10} \implies 984 = (999 - 16) + 1$
 $n = 4 - 16_{10} = 9984_{C10} \implies 9984 = (9999 - 16) + 1$

Operació: 77 - 63

El ròssec, en cas d'existir, no es considera

Sistemes de representació i codificació de nombres

Base 2

- S'intercanvien els zeros i els uns i es suma u
- ightharpoonup Rango : [-2ⁿ⁻¹, 2ⁿ⁻¹ 1]
- Exemples:

$$n = 6 C_2 de -10010_2 = 1011110_{C2}$$

 C_2 de -1110010₂ = no representable

Operació:
$$11001_2 - 10010_2 = 111_2$$

Operant en C2
$$+ 011001_{C2} + 101110_{C2}$$
 $- (1)000111_{C2}$

El ròssec no es considera

Sistemes de representació i codificació de nombres

Representació per excés

- La representació s'obté sumant un excés (quantitat) al valor del nombre
- L'excés sol ser: 2ⁿ⁻¹
- ightharpoonup Rang : [-2ⁿ⁻¹, 2ⁿ⁻¹ 1]
- Exemples Base 2

$$n = 8 \Rightarrow Excés = 2^{8-1} = 128_{10} = 1000 \ 0000_2$$

 $11010_2 = 10011010_S$
 $-11010_2 = 01100110_S$

$$0_2 = 1000 \ 0000_S$$

$$n = 4 \implies Excés = 2^{4-1} = 8_{10} = 1000_2$$

$$1_2 = 1001_S$$

$$-1_2 = 0111$$

Sistemes de representació i codificació de nombres

- Representació dels nombres reals
 - Representació en coma fixa
 - Representació en coma flotant

$$N = (-1)^s M \cdot B^E$$

$$\mathbf{N} \equiv \text{Valor numèric}$$
 $\mathbf{M} \equiv \text{Mantissa}$ $\mathbf{s} \equiv \text{signe}$ $\mathbf{B} \equiv \text{Base}$ $\mathbf{E} \equiv \text{Exponent}$

• Exemple en base 10:

$$1.234535 \cdot 10^3 = 1234.535 \cdot 10^0 = 0.1234535 \cdot 10^4 = 123453.5 \cdot 10^{-2} = 0.0001234535 \cdot 10^7$$

Valors límit

Sistemes de representació i codificació de nombres

- Exemple de format de 16 bits :
 - •Exponent: 7 bits. Representació en C1
 - •Mantissa: 9 bits. Representació en C2
 - •Signe: El nombre té el signe de la mantissa.

<u>15</u>	9 8	0
Exponent C1	Mantissa	a C2

- Representar –17'6251₁₀
 - 1.- Convertir el nombre a binari:

$$-17'6251_{10} \approx -10001'10100000000011_2$$

2.- Prevore 8 xifres enteres per a la mantissa

(se'n deixa una per al signe del C2)

$$-10001, 1010000000000110_2 \approx -10001101_2 \cdot 2^{\text{-}3}$$

3.- Es separen mantissa i exponent:

Mantissa =
$$-10001101_2$$
 = 110001101_{SM} = 101110010_{C1} = 101110011_{C2} Exponent = -3_{10} = 1000011_{SM} = 1111100_{C1}

SOLUCIÓ

$-17'6251_{10} = 1111100 101110011$

(representació compacta hexadecimal: F973)

Sistemes de representació i codificació de nombres

• Ejemple de format de 16 bits (cont.):

Rang de representació del format

$$a_1 = Mantissa_{max_positiva} \cdot 2^{Emax_positiu}$$

 $b_2 = Mantissa_{min_negativa} \cdot 2^{Emax_negatiu}$

$$b_1 = Mantissa_{min_positiva} \cdot 2^{Emáx_negatiu}$$
 $a_2 = Mantissa_{m`sx_negativa} \cdot 2^{Emáx_positiu}$

$$Mantissa_{C2} \in \text{[-2}^{\text{n-1}},\,2^{\text{n-1}}\text{-1]; n = 9} \rightarrow Mantissa_{C2} \in \text{[-256,\,255]}$$

$$Exponent_{C1} \in [-(2^{n-1}-1), 2^{n-1}-1]; n = 7 \rightarrow Exponent_{C1} \in [-63, 63]$$

$$Mantissa_{max_positiva} = 255$$

 $Mantissa_{min_negativa} = -1$

$$E_{\text{max positiu}} = 63$$

$$E_{\text{max_negatiu}} = -63$$

Dons:

•
$$a_1 = 255 \cdot 2^{63}$$

•
$$b_1 = 2^{-63}$$

•
$$b_2 = -2^{-63}$$

•
$$a_2^2 = -256 \cdot 2^{63}$$

rang
$$\subseteq$$
 [-256 · 2⁶³, -2⁻⁶³] U [2⁻⁶³, 255 · 2⁶³]

Sistemes de representació i codificació de nombres

- Valors límit
 - Si $|N| > |b| \Rightarrow$ desbordament a infinit OVERFLOW
 - Si $|N| < |a'| \Rightarrow$ desbordament a zero UNDERFLOW
- Consideracions sobre la aritmètica computacional
 - Quasi sempre hi ha arredoniment /truncament
 - Nombres excessivament menuts
 - Nombres excessivament grans
 - No sempre es compleix la propietat associativa:
 (a x b) x c ≠ a x (b x c)

Exemple en computador de precisió 10-10:

$$a=10^7 b=10^{-3} c=10^{-8}$$
 $(10^7 x 10^{-3}) x 10^{-8} \neq 10^7 x (10^{-3} x 10^{-8})$ $10^4 x 10^{-8} \neq 10^7 x 0$ $10^{-4} \neq 0$

¡desbordament a 0!

2. Codificación binaria

Representació binària de dades i instruccions

- Magnituds
 - ► Analògiques: prenen valors continus
 - **Digitals**: prenen un conjunt de valors discrets
 - La majoria de les magnituds físiques són de tipus analògic
- Sistema digital binari
 - ▶ Representació de les magnituds en base 2
 - Estats d'un interruptor [ENCÉS, APAGAT]
 - ► Els dígits {0, 1} corresponen a nivells de tensió elèctrica.

2. Codificación binaria

Característiques dels espais de representació

- Condicionants
 - Quantitat d'estats representables (digital, binari)
 - Quantitat d'elements representables (espai material finit)
 - Grandàries predefinides en les unitats del computador
 - Grandàries predefinides en la comunicació entre unitats del computador
- Unitats de codificació

BIT Byte = 8 bits Paraula

1 KiloByte
$$(KB) = 2^{10}$$
 Bytes = 1024 Bytes

1 MegaByte $(MB) = 2^{20}$ Bytes = 1024 KB

1 GigaByte $(GB) = 2^{30}$ Bytes = 1024 MB

1 TeraByte $(TB) = 2^{40}$ Bytes = 1024 GB

1 PetaByte $(PB) = 2^{50}$ Bytes = 1024 TB