Modelling light and light interception

What is a 3D Virtual Scene?

It's (very often) a mesh!

Vertices = { 3D points } Faces = {triangles}
=
$$[(x, y, z), ...]$$
 = $[(vtx, vtx, vtx), ...]$

What is a virtual light?

It's a set of vectors!

Vector = Propagating Direction + Energetic flux (W.m-2.s-1)

Light source = [PAR_light_direction_1, PAR_light_vector_direction_2, FR_light_direction_1,...]

The problem

First order: projection

- Actual Surface : S
- Projected surface on a plane perpendicular to radiation direction: S'
- Irradiance =Light flux * S' / S
- Distant sources (sun...):
 orthogonal projection

First order: occlusions

Equivalent to the computation of synthetic image

Z-buffer

Tip:Toric scenes

The problem

Modeling sun

Integration over a day

Modelling sky

Direct and Diffuse Irradiation on the ground

Modelling sky irradiance

Multi rediffusion: radiosity

Multi rediffusion: ray tracing

Available on modern GPU but technical adaptation needed (target is not the image !)

Can you guess what you need / what you absolutely need for modelling...

 Interception efficiency (percent of incoming light intercepted by plants) at solar noon

- ✓ First order model
- ✓ Sun / Sky model

Photosynthesis

- ✓ Absorptance
- ✓ Reflectance

Signals (eg red/Far red)

- ✓ Transmitance
- ✓ Emitance
- ✓ Rediffusion model

Microclimate (T°C)