PREDICTING CROP YIELD WITH MACHINE LEARNING

AN EXTENSIVE ANALYSIS OF INPUT MODALITIES AND MODELS ON A FIELD AND SUB-FIELD LEVEL

Deepak Pathak and Miro Miranda

German Research Center for Artificial Intelligence, SDS and University of Kaiserslautern-Landau (RPTU),

Kaiserslautern, Germany

Contact: {deepak_kumar.pathak, miro.miranda_lorenz} @dfki.de

Paper number: 4433

Introduction

Introduction

Best Performing Combination of Modality

Evaluation				R2	
Model	Modalities Cro		Country	Field	Sub-Field
LSTM	S2-DEM	Soybean	Argentina	0.82	0.65
LSTM	S2-Soil	Rapeseed	Germany	0.78	0.45
LGBM	S2-Weather-Soil-DEM	Soybean	Uruguay	0.77	0.42
LGBM	S2-Weather-Soil-DEM	Wheat	Germany	0.68	0.37

Ground Truth – Yield Map

- Yield values as point vector data.
- Point data resolution
 - along harvesting track: ~1-2 m
 - across harvesting track: ~10-15 m

Ground Truth – Yield Map

- Yield values as point vector data.
- Point data resolution
 - along harvesting track: ~1-2 m
 - across harvesting track: ~10-15 m
- Remove outliers
- Rasterize at 10 m pixel resolution

Input Modalities

- Sentinel-2 L2A Images
 - Spatial resolution: 10 m
 - 12 Spectral Bands: ["B01", "B02", "B03", "B04", "B05", "B06", "B07", "B08", "B8A", "B09", "B11", "B12"]
 - Create 24-time steps representing two full calendar years and select S2 image based on best cloud free S2 images.

YYYY+1.12

(harvesting date)

Input Modalities

- Sentinel-2 L2A Images
- Weather Data ECMWF Reanalysis (ERA5)
 - Temperature: minimum, maximum, mean of a day

YYYY.01

- Total precipitation in a day
- Prepared at field level
- Aggregated features as sum between each time-step, and concatenated along S2 features.

(seeding date)

YYYY+1.12

(harvesting date)

Input Modalities

- Sentinel-2 L2A Images
- Weather Data ECMWF Reanalysis (ERA5)
- Digital Elevation Model (DEM) data SRTM
 - Spatial resolution: 30 m → 10 m
 - DEM properties: dem, slope, aspect, curvature, and topographic wetness index

(seeding date)

vectorized and concatenated along S2 features for each time step.

YYYY.01

YYYY+1.12

(harvesting date)

Input Modalities

- Sentinel-2 L2A Images
- Weather Data ECMWF Reanalysis (ERA5)
- Digital Elevation Model (DEM) data SRTM
- Soil data SoilGrid 250m
 - Spatial resolution: 250 m → 10 m
 - Soil properties: soil organic carbon, nitrogen, cation exchange capacity, pH, coarse fragment content, sand, silt, clay

(seeding date)

- Depths: three depths from 0-30 cm
- vectorized and concatenated along S2 features for each time step.

YYYY.01

Input Modalities

- Sentinel-2 L2A Images
- Weather Data ECMWF Reanalysis (ERA5)
- Digital Elevation Model (DEM) data SRTM
- Soil data SoilGrid 250m

Method – Early Fusion

Dataset and Evaluation

Dataset

Country	Crop	# Fields
Germany	Rapeseed	111
Germany	Wheat	188
Uruguay	Soybean	486
Argentina	Soybean	192

Evaluation

- Train separately for each dataset
- 10-fold cross validation
- Metrics:
 - Mean Absolute Percentage Error
 - R2 (coefficient of determination)
- Qualitative evaluation of predictions

Results

Comparing results with different combination of modalities for Soybean in Argentina using LSTM

Modalities	Field		Sub-field		
	MAPE	R2	MAPE	R2	
S2-Weather-Soil-DEM	0.11	0.76	0.24	0.63	
S2-DEM	0.09	0.82	0.24	0.65	
S2-Soil	0.1	0.76	0.25	0.61	
S2-Weather	0.11	0.78	0.25	0.63	
S2	0.11	0.74	0.25	0.61	

Visual Evaluation for an example field

Results

Best Performing Combination of Modality

Evaluation				Field		Sub-field	
Model	Modalities	Crop	Country	MAPE	R2	MAPE	R2
LSTM	S2-DEM	Soybean	Argentina	0.09	0.82	0.24	0.65
LSTM	S2-Soil	Rapeseed	Germany	0.15	0.78	0.39	0.45
LGBM	S2-Weather-Soil-DEM	Soybean	Uruguay	0.2	0.77	1.02	0.42
LGBM	S2-Weather-Soil-DEM	Wheat	Germany	0.09	0.68	0.29	0.37

Conclusion

- We showed good results for pixel-based yield prediction with machine learning.
- Early fusion can well capture infield yield variability.
- In addition to Sentinel-2, additional modalities help to improve the performance.
- Different regions and crops need different combination of input modalities.

PREDICTING CROP YIELD WITH MACHINE LEARNING

AN EXTENSIVE ANALYSIS OF INPUT MODALITIES AND MODELS ON A FIELD AND SUB-FIELD LEVEL

Deepak Pathak and Miro Miranda

German Research Center for Artificial Intelligence, SDS and University of Kaiserslautern-Landau (RPTU),

Kaiserslautern, Germany

Contact: {deepak_kumar.pathak, miro.miranda_lorenz} @dfki.de

Paper number: 4433

