```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score

train = pd.read_csv('/content/train.csv')
test = pd.read_csv('/content/test.csv')

print('Number of passengers in train dataset: ' + str(len(train)))
    Number of passengers in train dataset: 891

sns.countplot(x = 'Survived', data = train)
```


sns.countplot(x = 'Survived', hue = 'Pclass', data = train)

<matplotlib.axes._subplots.AxesSubplot at 0x7fdb538ffed0>

train['Age'].plot.hist()

<matplotlib.axes._subplots.AxesSubplot at 0x7fdb5263c550>

train['Fare'].plot.hist()

<matplotlib.axes._subplots.AxesSubplot at 0x7fdb5254a3d0>

train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890

Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64

10 Cabin 204 non-null object 11 Embarked 889 non-null object dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

sns.countplot(x = 'SibSp', data = train)

<matplotlib.axes._subplots.AxesSubplot at 0x7fdb524e4990>

train.isnull().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2

dtype: int64

sns.heatmap(train.isnull())

<matplotlib.axes._subplots.AxesSubplot at 0x7fdb5244a4d0>

sns.boxplot(x = 'Pclass', y = 'Age', data = train)

<matplotlib.axes._subplots.AxesSubplot at 0x7fdb5239ea90>

sex = pd.get_dummies(train['Sex'], drop_first = True)
embark = pd.get_dummies(train['Embarked'],drop_first=True)
pcl = pd.get_dummies(train['Pclass'],drop_first=True)

train = pd.concat([train,sex,embark,pcl],axis=1)
train.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs	female	38.0	1	0	PC 17599	71.

train.drop(['Pclass','Sex','Embarked','Cabin','PassengerId','Name','Ticket'],axis=1, inpla
train.head()

train.isnull().sum()

Survive	d 0
Age	177
SibSp	0
Parch	0
Fare	0
male	0
Q	0
S	0
2	0
3	0
dtype:	int64

train_values = {'Age': round(np.mean(train['Age']))}
train = train.fillna(value = train_values)
train.head()

₽		Survived	Age	SibSp	Parch	Fare	male	Q	S	2	3
	0	0	22.0	1	0	7.2500	1	0	1	0	1
	1	1	38.0	1	0	71.2833	0	0	0	0	0
	2	1	26.0	0	0	7.9250	0	0	1	0	1
	3	1	35.0	1	0	53.1000	0	0	1	0	0
	4	0	35.0	0	0	8.0500	1	0	1	0	1

```
sex = pd.get_dummies(test['Sex'], drop_first = True)
embark = pd.get_dummies(test['Embarked'],drop_first=True)
pcl = pd.get_dummies(test['Pclass'],drop_first=True)
```

test = pd.concat([test,sex,embark,pcl],axis=1)
test.head()

	PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN

```
test_values = {'Age':round(np.mean(test['Age'])), 'Fare':round(np.mean(test['Fare']))}
test = test.fillna(value = test_values)
test.head()
```

	Age	SibSp	Parch	Fare	male	Q	S	2	3
0	34.5	0	0	7.8292	1	1	0	0	1
1	47.0	1	0	7.0000	0	0	1	0	1
2	62.0	0	0	9.6875	1	1	0	1	0
3	27 N	Λ	Λ	8 6625	1	Λ	1	Λ	1

X = train.drop('Survived',axis=1)

y = train['Survived']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)

logmodel = LogisticRegression(solver = 'liblinear')

logmodel.fit(X_train, y_train)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='auto', n_jobs=None, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm_start=False)

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='auto', n_jobs=None, penalty='l2', random_state=None, solver='liblinear', tol=0.0001, verbose=0, warm start=False)

predections = logmodel.predict(X_test)

print(classification_report(y_test, predections))

	precision	recall	f1-score	support
0 1	0.77 0.81	0.88 0.65	0.82 0.72	153 115
accuracy macro avg weighted avg	0.79 0.79	0.77 0.78	0.78 0.77 0.78	268 268 268

print(confusion_matrix(y_test, predections))

[[135 18]

```
[ 40 75]]

print(accuracy_score(y_test, predections))

     0.7835820895522388

test_predictions = logmodel.predict(test)

sub_file = pd.read_csv('/content/gender_submission.csv')
sub_file['Survived'] = test_predictions
sub_file.to_csv('submission.csv',index=False)
```

✓ 0s completed at 2:33 PM

×