Type Formers in Directed Type Theory

Benedikt Ahrens, Paige Randall North, Niels van der Weide

24 November, 2022

Higher dimensional type theory

- Martin-Löf's identity type gives types the structure of higher groupoids
- This led to the development of homotopy type theory (HoTT)
- Synthetic algebraic topology: done via HoTT
- Directed type theory: directed version of HoTT
- ▶ Directed topological spaces are used to study concurrency ¹, and directed type theory is conjectured to model such spaces.

¹Fajstrup, Lisbeth, et al. *Directed algebraic topology and concurrency.* Vol. 138. Berlin: Springer, 2016.

Directed type theory

Directed variants of type theory:

- ► An interpretation with directed definitional equality²
- ► A syntactical framework for directed type theory³
- An interpretation with directed identity types⁴

Interpreted in something like categories

²Licata, Daniel R., and Harper, Robert. "2-dimensional directed type theory." *Electronic Notes in Theoretical Computer Science* 276 (2011): 263-289.

³Nuyts, Andreas. Towards a directed homotopy type theory based on 4 kinds of variance. Master's thesis, KU Leuven, 2015.

⁴North, Paige Randall. "Towards a directed homotopy type theory." *Electronic Notes in Theoretical Computer Science* 347 (2019): 223-239.

Goal of this talk

- Provide a setting in which one can interpret directed dependent type theory: comprehension bicategory
- ▶ Type formers in fibrations of bicategories: hyperdoctrines

Comprehension Categories

Type theory can be interpreted in **comprehension categories**.

Definition

A comprehension category is a strictly commuting triangle

where F is a Grothendieck fibration and where χ preserves cartesian cells.

Fibrations of Bicategories

The notion of fibration of bicategories has a **global** and a **local** condition.

Fibrations of Bicategories

The notion of fibration of bicategories has a **global** and a **local** condition.

Global condition:

Given a substitution $s: \Gamma_1 \to \Gamma_2$ and type A in context Γ_2 , we get a type A[s] in context Γ_1 .

This is substitution on types.

Fibrations of Bicategories

The notion of fibration of bicategories has a **global** and a **local** condition.

Global condition:

Given a substitution $s: \Gamma_1 \to \Gamma_2$ and type A in context Γ_2 , we get a type A[s] in context Γ_1 .

This is substitution on types.

Local condition:

Given a 2-cell $\tau: s_1 \Rightarrow s_2$ where $s_1, s_2: \Gamma_1 \to \Gamma_2$, and a term $t: A[s_1]$, we get a term of type $A[s_2]$. (think of 2-cells $\tau: s_1 \Rightarrow s_2$ as reductions from s_1 to s_2)

Comprehension Bicategories

Definition

A comprehension bicategory is a strictly commuting triangle

where χ preserves cartesian cells and where \emph{F} is a global fibration and a local opfibration.

Example

We have the following comprehension bicategory

This can be generalized to arbitrary bicategories by using **internal Street (op)fibrations**.

Example

We have the following comprehension bicategory

Goal: type formers

- Comprehension bicategories allow us to interpret the judgmental structure of type theory
- However, type theory without types is rather boring
- Next goal: interpreting type formers

Fibers

Note: to formulate type formers, we look at **fibers**.

Suppose that we have a fibration $p: E \rightarrow B$.

Fiber bicategory E_b over b : B:

- ightharpoonup Objects: \overline{b} over b
- ▶ 1-cells: \overline{f} : \overline{b} \rightarrow $\overline{b'}$ over id
- ▶ 2-cells: $\overline{\tau}$: \overline{f} \Rightarrow \overline{g} over id

Since we have a fibration, every $f:b_1\to b_2$ gives rise to a functor $E_f:E_{b_2}\to E_{b_1}.$

Simplified Setting

We work in the following setting

- ▶ We have a fibration $p : E \rightarrow B$ of bicategories
- ▶ The fiber of every *b* : *B* is a category.
- This means: all 2-cells τ_1, τ_2 in E that live over a θ in b are equal and every τ over an invertible θ is again invertible.

Example

Here:

- ▶ Objects in Cat / Set are functors $F: C \rightarrow Set$
- 1-cells from F: C₁ → Set to G: C₂ → Set consist of a functor H: C₁ → C₂ and an invertible natural transformation from F to G ∘ H.
- ▶ 2-cells from $H: C_1 \to C_2$ to $H': C_1 \to C_2$ are natural transformations τ such that some diagram commutes (I won't give that diagram here)

Example

Here:

- ▶ Objects in FF are fully faithful functors $F: C \rightarrow D$
- ▶ 1-cells from $F: C_1 \to D_2$ to $G: C_2 \to D_2$ consist of functors $H: C_1 \to C_2$ and $K: D_1 \to D_2$ and an invertible natural transformation from $K \circ F$ to $G \circ H$.
- ▶ 2-cells from $H_1: C_1 \to C_2$ and $K_1: D_1 \to D_2$ to $H_1: C_1 \to C_2$ and $K_1: D_1 \to D_2$ consist of natural transformations $\tau: H_1 \Rightarrow H_2$ and $\theta: K_1 \Rightarrow K_2$ making some diagram (that I don't give here) commute

Example of Fibers

Fibration	Fiber category over ${\mathcal C}$	Fiber functor
FF	Fully faithful functors into ${\cal C}$	Precomposition
cod		
Cat		
Cat / Set	$\mathcal{C} \to Set$	Pullback
dom Cat		

Simple type formers

Definition

A fibration supports conjunction if

- lacktriangle The fiber category over every ${\cal C}$ has products
- ► The fiber functor preserves products

Same for disjunction, implication, and negation.

Quantifiers as adjoints

Definition

A fibration $p: E \to B$ has existential types if for every $f: b_1 \to b_2$ the functor E_f has a left adjoint.

For dom : Cat / Set \rightarrow Cat: we need a left adjoint for precomposition.

Quantifiers as adjoints

Definition

A fibration $p: E \to B$ has existential types if for every $f: b_1 \to b_2$ the functor E_f has a left adjoint.

For dom : Cat / Set \rightarrow Cat: we need a left adjoint for precomposition.

This is left Kan extension!

Quantifiers as adjoints

Definition

A fibration $p: E \to B$ has existential types if for every $f: b_1 \to b_2$ the functor E_f has a left adjoint.

For dom : Cat / Set \rightarrow Cat: we need a left adjoint for precomposition.

This is left Kan extension!

But what about Beck-Chevalley?

Beck-Chevalley for left Kan extensions

Suppose that we have the following square

Let lan_f denote the left Kan extension of f. What can we say about $lan_h \cdot k^* \Rightarrow g^* \cdot lan_f$?

Beck-Chevalley for left Kan extensions

Suppose that we have the following square

Let lan_f denote the left Kan extension of f. What can we say about $lan_h \cdot k^* \Rightarrow g^* \cdot lan_f$?

- ▶ If the above square is a comma square: it is invertible
- ▶ If the above square is a pullback: not much...

Conclusion

► This is very much work in progress.

Questions

- ► This is very much work in progress.
- As such, there is no conclusion. There only are questions.

Questions

- ► This is very much work in progress.
- As such, there is no conclusion. There only are questions.
- ▶ What is the proper formulation of the Beck-Chevalley condition? How does this affect the syntax?
- ► How about identity types?