MATH 3QC3 Assignment 3

Matthew Yu
$$-400322243$$
 $-$ Yum77

April 15, 2025

In classical computing, an *oracle* for a function f is a "black box" subroutine that, when given input x, returns f(x). In quantum computing, we need our operations to be *unitary* (and thus reversible). Therefore, a **quantum oracle** for f is built as a unitary operator U_f acting on two registers: one that holds the input x (in superposition) and one that holds the output. Concretely, if x is an n-bit string and f(x) is an m-bit string, the oracle acts as:

$$U_f: |x\rangle |y\rangle \mapsto |x\rangle |y \boxplus f(x)\rangle$$

where \boxplus denotes bitwise addition modulo 2. This transformation is reversible because from the pair $(x, y \oplus f(x))$, one can recover the original pair (x, y) when applying U_f again.

Whenever you see an expression like $|x\rangle|f(x)\rangle$, assume that this "encoding" was done by a quantum oracle of the form above.

1 The Deutsch-Jozsa Algorithm

Consider the following problem: you are given a function

$$f: \{0,1\}^n \to \{0,1\},$$

which is promised (i.e. you know) to be either:

- Constant: f(x) is the same for all x (either always 0 or always 1).
- Balanced: Exactly half of the inputs yield 0, and the other half yield 1.

Classically, in the worst case, one needs multiple queries to f (can you think of how many on average?) to distinguish the two cases. Quantumly, the Deutsch-Jozsa algorithm can solve this with *just one* query to the quantum oracle U_f .

1.1 Warm up

Let's consider the single-bit example, where $f:\{0,1\}\to\{0,1\}$. Here, there are only two options: f is constant iff f(0)=f(1) and otherwise it is balanced. The algorithm acts on two qubits, and

$$U_f|x,y\rangle = |x,y \boxplus f(y)\rangle = |x,y \oplus f(x)\rangle$$

QUESTION 1a

Matthew Yu - 400322243

- Initialize your state to $|01\rangle$.
- Apply Hadamard to both qubits i.e. $(H \otimes H)$.
- Apply U_f .
- Apply Hadamard to the first qubit.
- $\bullet\,$ Measure the first qubit.

Solution 1a:

QUESTION 1b

Matthew Yu - 400322243 Calculate the state after each evolution through the system.

Solution 1b:

• We start with the two-qubit state:

 $|01\rangle$

So the first qubit is $|0\rangle$ and the second qubit is $|1\rangle$

• We apple the Hadamard to both qubits $H \otimes H$:

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \quad H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

So we get:

$$\begin{split} H(|0\rangle) \otimes H(|1\rangle) &= \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \\ &= \frac{1}{2} (|0\rangle (|0\rangle - |1\rangle) + |1\rangle (|0\rangle - |1\rangle)) \\ &= \frac{1}{2} (|00\rangle - |01\rangle + |10\rangle - |11\rangle) \end{split}$$

• Apply oracle U_f where $U_f = |x, y \oplus f(x)\rangle$

$$U_f(H(|0\rangle) \otimes H(|1\rangle)) = \frac{1}{2} (|0, 0 \oplus f(0)\rangle - |0, 1 \oplus f(0)\rangle + |1, 0 \oplus f(1)\rangle - |1, 1 \oplus f(1)\rangle)$$
$$= \frac{1}{2} (|0, f(0)\rangle - |0, 1 \oplus f(0)\rangle + |1, f(1)\rangle - |1, 1 \oplus f(1)\rangle)$$

• Now we apply Hadamard to the first qubit (right most) of each term:

First Term:
$$|0, f(0)\rangle H|0\rangle |f(0)\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|f(0)\rangle.$$
Second Term: $-|0, 1 \oplus f(0)\rangle - H|0\rangle |1 \oplus f(0)\rangle = -\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|1 \oplus f(0)\rangle.$
Third Term: $|1, f(1)\rangle H|1\rangle |f(1)\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|f(1)\rangle.$
Fourth Term: $-|1, 1 \oplus f(1)\rangle - H|1\rangle |1 \oplus f(1)\rangle = -\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)|1 \oplus f(1)\rangle.$

$$\text{Final State} = \frac{1}{2} \cdot \frac{1}{\sqrt{2}} \Big[(|0\rangle + |1\rangle) |f(0)\rangle - (|0\rangle + |1\rangle) |1 \oplus f(0)\rangle + (|0\rangle - |1\rangle) |f(1)\rangle - (|0\rangle - |1\rangle) |1 \oplus f(1)\rangle \Big].$$

• Group the terms based on the first qubit ($|0\rangle$ and $|1\rangle$)

$$\frac{1}{2\sqrt{2}}\Big[|0\rangle\big(|f(0)\rangle-|1\oplus f(0)\rangle+|f(1)\rangle-|1\oplus f(1)\rangle\big)+|1\rangle\big(|f(0)\rangle-|1\oplus f(0)\rangle-|f(1)\rangle+|1\oplus f(1)\rangle\big)\Big].$$

• When you measure the first qubit, the outcome depends on whether f is **constant** or **balanced**: If f is constant, there are two possibilities: All outputs are 0 (f(0) = f(1) = 0):

$$\begin{split} &= \frac{1}{2\sqrt{2}} \Big[|0\rangle \big(|0\rangle - |1 \oplus 0\rangle + |0\rangle - |1 \oplus 0\rangle \big) + |1\rangle \big(|0\rangle - |1 \oplus 0\rangle - |0\rangle + |1 \oplus 0\rangle \big) \Big] \\ &= \frac{1}{2\sqrt{2}} \Big[|0\rangle \big(|0\rangle - |1\rangle + |0\rangle - |1\rangle \big) + |1\rangle \big(|0\rangle - |1\rangle - |0\rangle + |1\rangle \big) \Big] \\ &= \frac{1}{2\sqrt{2}} \Big[|0\rangle \big(2|0\rangle - 2|1\rangle \big) + |1\rangle \big(0) \Big] \\ &= \frac{1}{\sqrt{2}} |0\rangle \big(|0\rangle - 2|1\rangle \big) \end{split}$$

We can see that the first qubit is not in a superposition but just as $|0\rangle$. Therefore it will measure 0 with probability 1.

If all outputs are 0 (f(0) = f(1) = 1):

$$\begin{split} &=\frac{1}{2\sqrt{2}}\Big[|0\rangle\big(|1\rangle-|0\rangle+|1\rangle-|0\rangle\big)+|1\rangle\big(|1\rangle-|0\rangle-|1\rangle+|0\rangle\big)\Big].\\ &\frac{1}{2\sqrt{2}}\Big[|0\rangle\big(2|1\rangle-2|0\rangle\big)+|1\rangle\big(0\big)\Big].\\ &=\frac{1}{\sqrt{2}}|0\rangle\big(|1\rangle-|0\rangle\big). \end{split}$$

We can see that the first qubit is not in a superposition but just as $|0\rangle$. Therefore it will measure 0 with probability 1.

If f is balanced, we set f(0)=0, f(1)=1 then check f(0)=1, f(1)=0:

$$f(0) = 0, f(1) = 1 : \frac{1}{2\sqrt{2}} \Big[|0\rangle \big(|0\rangle - |1\rangle + |1\rangle - |0\rangle \big) + |1\rangle \big(|0\rangle - |1\rangle - |1\rangle + |0\rangle \big) \Big].$$

$$= \frac{1}{\sqrt{2}} |1\rangle \big(|0\rangle - |1\rangle \big).$$

$$f(0) = 1, f(1) = 0 : \frac{1}{2\sqrt{2}} \Big[|0\rangle \big(|1\rangle - |0\rangle + |0\rangle - |1\rangle \big) + |1\rangle \big(|1\rangle - |0\rangle - |0\rangle + |1\rangle \big) \Big].$$

$$= \frac{1}{\sqrt{2}} |1\rangle \big(|1\rangle - |0\rangle \big).$$

As we can see the first qubit is measured to be $|1\rangle$ with probabiltiy 1.

QUESTION 1c

Explain why the algorithm determines if f is balanced or not with probability 1.

Solution 1c: As shown in 1b where we measure the first qubit, when half the inputs are 0 and the other half are 1, the $|0\rangle$ part always cancels out leaving just $|1\rangle$. Therefore, we can conclude that when we measure the first qubit, we will always get $|1\rangle$ 100% of the time if f is balanced.

QUESTION 1d

Suppose now that $f: \{0,1\}^n \to \{0,1\}$. Assume that f is either balanced or constant. Explain why, classically, in the worst case we would need at least $2^{n-1} - 1$ queries to determine if f is either balanced or constant (hint: think of a particular example of an f).

Solution 1d: In classical computing, determining whether a function $f:\{0,1\}^n \to \{0,1\}$ is constant or balanced requires querying enough inputs to ensure we observe conflicting outputs if f is balanced. In the worst-case scenario, f could return the same value (e.g., 0) for as many inputs as possible before revealing its true nature. For a balanced function, exactly half (2^{n-1}) of the inputs yield 0 and the other half yield 1. If we query $2^{n-1}-1$ inputs and all return 0, there are still $2^{n-1}+1$ inputs left unchecked. If the next query (the 2^{n-1} -th) also returns 0, we have 2^{n-1} 0s, confirming f is balanced. If all $2^{n-1}+1$ queried inputs return 0, f must be constant. Therefore, in the worst case, we need to query at least $2^{n-1}+1$ inputs to definitively determine whether f is constant or balanced.

QUESTION 1e

Consider the following algorithm that acts on $\sqcap^{\otimes n} \otimes \sqcap^{\otimes n}$:

- Input the vector $|0\rangle^n \otimes |1\rangle = |0...0\rangle \otimes |1\rangle$,
- Apply Hadamard to all qubits,
- Apply U_f to all qubits,
- ullet Apply Hadamard to the first n qubits,
- \bullet Measure the first n qubits.

Solution 1e:

This circuit is similar to the one done in part a but uses the input vector $|0\rangle^n$ and $|1\rangle$ instead

QUESTION 1f

Show that the output determines with probability 1 whether f is balanced or not.

Solution 1f: This problem is set up similar to 1a but instead of just 2 qubits, we have $n |0\rangle$ and $|1\rangle$:

• Apply the Hadamard gate H to each of the first n qubits and the last qubit:

$$H^{\otimes n}|0\rangle^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle,$$

and

$$H|1\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}.$$

The combined state becomes:

$$\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}.$$

• Apply U_f

$$\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \otimes \frac{|0 \oplus f(x)\rangle - |1 \oplus f(x)\rangle}{\sqrt{2}}.$$

Simplifying:

$$\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}.$$

• Apply Hadamard to first n qubits:

$$H^{\otimes n}\left(\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}|x\rangle\right) = \frac{1}{2^n}\sum_{z\in\{0,1\}^n}\left(\sum_{x\in\{0,1\}^n}(-1)^{x\cdot z}\right)|z\rangle.$$

The state becomes:

$$\frac{1}{2^n} \sum_{z \in \{0,1\}^n} \left(\sum_{x \in \{0,1\}^n} (-1)^{x \cdot z} \right) |z\rangle \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}.$$

• Measure the first n qubits:

The probability of measuring $z = 0^n$ is:

$$\left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \cdot 0^n} \right|^2 = \left| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} 1 \right|^2 = 1.$$

If f is constant:

The state remains unchanged, and the measurement result is $z = 0^n$ with probability 1.

If f is balanced:

The interference caused by the Hadamard transform cancels out the amplitude for $z = 0^n$, and the measurement result is some other z with probability 1.

If the measurement result is $z = 0^n$, f is **constant**. If the measurement result is any other z, f is **balanced**.

The output $z = 0^n$ guarantees f is constant; any other z guarantees f is balanced.

2 Simon's Problem

Let's consider $\{0,1\}^n$ as the *n*-dimensional $\mathbb{Z}/2\mathbb{Z}$ -vector-space $V=(\mathbb{Z}/2\mathbb{Z})^n$ (recall that $\mathbb{Z}/2\mathbb{Z}$ is a field, so we can just do linear algebra as usual). Assume that there is some secret (string) vector $\vec{s} \in V$ (it's a secret from you!). Imagine now that we have a function $f:V\to V$, where you are guaranteed that for any $\vec{x},\vec{y}\in V$,

$$f(\vec{x}) = f(\vec{y}) \Leftrightarrow \vec{x} = \vec{y} \text{ or } \vec{x} = \vec{y} +_V \vec{s}$$

(note that addition in V is just the same as bit-wise addition $\mod 2$, $+_V \equiv \boxplus$). Assume we have a quantum oracle that can perform f, i.e.,

$$U_f|x,y\rangle = |x,y \boxplus f(x)\rangle.$$

Question: Can we discover the secret string \vec{s} ?

The following is a non-trivial fact:

Theorem 0.1. Any classical algorithm that solves this problem with probability at least 2/3 for any such f must evaluate f on the order of $O(2^{n/3})$ times.

So solving this problem efficiently on a classical computer requires exponentially more computations as n grows.

In this exercise, we will see that an algorithm with a quantum sub-algorithm can do much better.

QUESTION 2a

2.1 Quantum Algorithm

(a) Show that for any $\vec{x} \in V$,

$$H^{\otimes n}|\vec{x}\rangle = \frac{1}{\sqrt{2^n}} \sum_{\vec{z} \in V} (-1)^{\vec{x} \cdot \vec{z}} |z\rangle,$$

where, $\vec{x} \cdot \vec{z}$ is just the usual dot product over $\mathbb{Z}/2\mathbb{Z}$, and $|\vec{v}\rangle$ is just the standard basis vector of $\mathbb{C}^{\otimes n}$ corresponding to the sequence of 0's and 1's in \vec{v} .

Solution 2a: We know the output for Hadamard on $|0\rangle$ and $|1\rangle$:

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \quad H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

To generalize for $|x_i\rangle$ we observe that the difference between $|0\rangle$ and $|1\rangle$ is a sign change on $|1\rangle$. We can implement a phase factor:

 $(-1)^{x_i z_i}$, where z is the index of the basis state $|z_i\rangle$, $(z_i \in \{0,1\})$

For $z_i = 0$: $(-1)^{x_i0} = 1$ This means the coefficient of $|0\rangle$ is always +1, regardless of x_i . For $z_i = 1$: $(-1)^{x_i1} = (-1)^{x_i}$ This means the coefficient of $|1\rangle$ is +1 if $x_i = 0$ and -1 if $x_i = 1$. We can now write Hadamard on $|x_i\rangle$ as:

$$H|x_i\rangle = \frac{1}{\sqrt{2}} \sum_{z_i=1}^{1} (-1)^{x_i z_i} |z_i\rangle$$

Applying $H^{\otimes n}$ to $|\vec{x}\rangle = |x_1 x_2 ... x_n\rangle$ gives:

$$H^{\otimes n}|\vec{x}\rangle = \bigotimes_{i=1}^{n} H|x_i\rangle = \frac{1}{\sqrt{2^n}} \sum_{z_1,\dots,z_n \in \{0,1\}} (-1)^{\sum_{i=1}^{n} x_i z_i} |z_1 z_2 \dots z_n\rangle.$$

 $\sum_{i=1}^{n} x_i z_i \mod 2 = \vec{x} \cdot \vec{z}.$ Thus:

$$H^{\otimes n}|\vec{x}\rangle = \frac{1}{\sqrt{2^n}} \sum_{\vec{z} \in V} (-1)^{\vec{x} \cdot \vec{z}} |\vec{z}\rangle.$$

QUESTION 2b

Matthew Yu - 400322243 (b) Let $S = \text{span}\{\vec{s}\}$ and S^{\perp} its orthogonal complement. Use the previous part to show that for $\vec{x} \in V$, if $\vec{y} = \vec{x} + \vec{s}$, then

$$H^{\otimes n}\left(\frac{1}{\sqrt{2}}|\vec{x}\rangle + \frac{1}{\sqrt{2}}|\vec{y}\rangle\right) = \frac{1}{\sqrt{2^{n-1}}} \sum_{\vec{z} \in S^{\perp}} (-1)^{\vec{x}\vec{z}}|\vec{z}\rangle.$$

Important! What is the dimension of S^{\perp} ? Relatedly, what is the cardinality (size) of S^{\perp} ?

Solution 2b: Dimension and Cardinality of S^{\perp} :

- $S = \text{span}\{\vec{s}\}\$ is 1-dimensional (assuming $\vec{s} \neq \vec{0}$).
- S^{\perp} has dimension n-1 (orthogonal complement in n-dimensional space).
- Cardinality: $|S^{\perp}| = 2^{n-1}$.

From part 2(a) we have:

$$H^{\otimes n}|\vec{x}\rangle = \frac{1}{\sqrt{2^n}} \sum_{\vec{z} \subset V} (-1)^{\vec{x} \cdot \vec{z}} |\vec{z}\rangle,$$

Add s:

$$H^{\otimes n} | \vec{x} + \vec{s} \rangle = \frac{1}{\sqrt{2^n}} \sum_{\vec{z} \in V} (-1)^{(\vec{x} + \vec{s}) \cdot \vec{z}} | \vec{z} \rangle.$$

Adding both:

$$\begin{split} H^{\otimes n} \left(\frac{1}{\sqrt{2}} | \vec{x} \rangle + \frac{1}{\sqrt{2}} | \vec{x} + \vec{s} \rangle \right) &= \frac{1}{\sqrt{2^{n+1}}} \sum_{\vec{z} \in V} \left[(-1)^{\vec{x} \cdot \vec{z}} + (-1)^{(\vec{x} + \vec{s}) \cdot \vec{z}} \right] | \vec{z} \rangle. \\ &= \frac{1}{\sqrt{2^{n+1}}} \sum_{\vec{z} \in V} \left[(-1)^{\vec{x} \cdot \vec{z}} \left[1 + (-1)^{\vec{s} \cdot \vec{z}} \right] \right] | \vec{z} \rangle. \end{split}$$

If $\vec{s} \cdot \vec{z} = 0$, the coefficient is $2(-1)^{\vec{x} \cdot \vec{z}}$; otherwise, it cancels to 0. Thus, the sum reduces to vectors $\vec{z} \in S^{\perp}$:

$$\boxed{\frac{1}{\sqrt{2^{n-1}}} \sum_{\vec{z} \in S^{\perp}} (-1)^{\vec{x} \cdot \vec{z}} |\vec{z}\rangle.}$$

QUESTION 2c

(c) IMPORTANT! Conclude that the result from the previous part is a uniform superposition of kets, each of which encode a vector in S^{\perp} . In other words, by measuring the state, we can determine an element of S^{\perp} with probability 2^{1-n} .

Solution 2c: From part (b), we have the state:

$$H^{\otimes n}\left(\frac{1}{\sqrt{2}}|\vec{x}\rangle + \frac{1}{\sqrt{2}}|\vec{y}\rangle\right) = \frac{1}{\sqrt{2^{n-1}}} \sum_{\vec{x} \in S^{\perp}} (-1)^{\vec{x} \cdot \vec{z}} |\vec{z}\rangle,$$

Where $\vec{y} = \vec{x} + \vec{s}$, and S^{\perp} is the orthogonal complement of $S = span\{\vec{s}\}$. The state is a superposition of all vectors $\vec{z} \in S^{\perp}$, with each term $|\vec{z}\rangle$ having an amplitude of $\frac{1}{\sqrt{2^{n-1}}}$. The phase factor $(-1)^{\vec{x}\cdot\vec{z}}$ does not affect the magnitude of the amplitude, so all terms in the superposition have equal magnitude. This means the state is a **uniform superposition** over S^{\perp} .

The dimension of S^{\perp} is n-1, so the size of S^{\perp} is $|S^{\perp}|=2^{n-1}$. Each term $|\vec{z}\rangle$ in the superposition has probability:

$$\left| \frac{1}{\sqrt{2^{n-1}}} \right|^2 = \frac{1}{2^{n-1}} = 2^{1-n}.$$

Since all $\vec{z} \in S^{\perp}$ are equally likely, measuring the state yields a uniformly random element of S^{\perp} , with each outcome occurring with probability 2^{1-n} .

QUESTION 2d

(d) Consider the following algorithm:

• Initialize with the state $|0\rangle^n \otimes |0\rangle^n \in \mathbb{C}^{\otimes n} \otimes \mathbb{C}^{\otimes n}$.

• Apply $H^{\otimes n} \otimes \mathbf{1}$.

• Apply U_f .

• Apply $H^{\otimes n} \otimes \mathbf{1}$ again.

• Measure the first n qubits.

Show that the output encodes a vector $\vec{z} \in S^{\perp}$.

Solution 2d:

• Initialize: Start with the state $|0\rangle^{\otimes n} \otimes |0\rangle^{\otimes n}$.

• Apply Hadamard Transform $(H^{\otimes n})$: Apply $H^{\otimes n}$ to the first n qubits, creating a superposition:

$$\frac{1}{\sqrt{2^n}} \sum_{x \in V} |x\rangle.$$

• Apply Oracle U_f : Apply U_f to compute f(x), resulting in:

$$\frac{1}{\sqrt{2^n}} \sum_{x \in V} |x\rangle \otimes |f(x)\rangle.$$

• Apply Hadamard Transform $(H^{\otimes n})$ Again: Apply $H^{\otimes n}$ to the first n qubits again, transforming the state to:

$$\frac{1}{2^n} \sum_{x \in V} \sum_{z \in V} (-1)^{x \cdot z} |z\rangle \otimes |f(x)\rangle.$$

• Measure the Input Register: Measure the first n qubits, collapsing the state to $|z\rangle$ for some $z \in V$.

QUESTION 2e

Matthew Yu - 400322243 (e) Conclude that each run of the algorithm yields an element of S^{\perp} uniformly at random. Suppose now that you have generated $\{\vec{v}_1,\ldots,\vec{v}_k\}\subseteq S^{\perp}$ linearly independent vectors. Show that the probability that the next generated vector is not in span $\{\vec{v}_1,\ldots,\vec{v}_k\}$ is $1-\frac{2^k}{2^{n-1}}$, and so the expected number of runs to find the k+1-st independent vector \vec{v}_{k+1} is $\frac{2^{n-1}}{2^{n-1}-2^k}$ (hint: it's a Bernoulli trial).

Solution 2e: After generating k linearly independent vectors $\{\vec{v}_1, \dots, \vec{v}_k\} \subseteq S^{\perp}$, the span span $\{\vec{v}_1, \dots, \vec{v}_k\}$ contains 2^k vectors. Since S^{\perp} has 2^{n-1} vectors in total, the number of vectors not in the span is:

$$2^{n-1}-2^k$$

The probability that a new vector is not in the span is:

$$\frac{2^{n-1}-2^k}{2^{n-1}}=1-\frac{2^k}{2^{n-1}}.$$

Each trial is a Bernoulli experiment with success probability $p = 1 - \frac{2^k}{2^{n-1}}$. The expected number of trials to achieve the first success in a geometric distribution is $\frac{1}{p}$. Substituting p, the expected number of trials is:

Expected trials =
$$\frac{1}{1 - \frac{2^k}{2^{n-1}}} = \frac{2^{n-1}}{2^{n-1} - 2^k}$$
.

QUESTION 2f

Matthew Yu - 400322243 (f) **Optional:** Prove that the expected number of trials to generate n-1 linearly independent vectors is then

$$\sum_{k=0}^{n-2} \frac{2^{n-1}}{2^{n-1} - 2^k} = (n-1) + \sum_{i=1}^{n-1} \frac{1}{2^i - 1} \sim O(n)$$

and so we can generate n-1 linearly independent vectors from S^{\perp} with on the order of n trials.

Solution 2f:

1. Simplify the Summation Substitute i = n - 1 - k. When k ranges from 0 to n - 2, i ranges from 1 to n - 1. The summation becomes:

$$\sum_{i=1}^{n-1} \frac{2^i}{2^i - 1}.$$

2. Split the Term Notice that:

$$\frac{2^i}{2^i - 1} = 1 + \frac{1}{2^i - 1}.$$

Thus, the summation splits into:

$$\sum_{i=1}^{n-1} 1 + \sum_{i=1}^{n-1} \frac{1}{2^i - 1} = (n-1) + \sum_{i=1}^{n-1} \frac{1}{2^i - 1}.$$

3. Analyze the Second Sum The series $\sum_{i=1}^{\infty} \frac{1}{2^i-1}$ converges to a constant (approximately 1.606). Therefore:

$$\sum_{i=1}^{n-1} \frac{1}{2^i - 1} \le \sum_{i=1}^{\infty} \frac{1}{2^i - 1} = O(1).$$

QUESTION 2g -

(g) Suppose we have performed the algorithm n times, and so (with high probability!) we have a set of linearly independent $\{\vec{z}_1,\ldots,\vec{z}_{n-1}\}\subseteq S^{\perp}$. Show that $\vec{s}\in V$ is the unique solution to the system of equations

$$\vec{z}_1 \cdot \vec{s} = 0$$

$$\vdots$$

$$\vec{z}_{n-1} \cdot \vec{s} = 0.$$

(Hint: span $(\vec{s}) = {\vec{0}, \vec{s}}$).

Solution 2g:

We are given n-1 linearly independent vectors $\{\vec{z}_1,\ldots,\vec{z}_{n-1}\}\subseteq S^{\perp}$, where $S=\operatorname{span}\{\vec{s}\}$. We need to show that \vec{s} is the unique solution to the system of equations:

$$\begin{cases} \vec{z}_1 \cdot \vec{s} = 0, \\ \vdots \\ \vec{z}_{n-1} \cdot \vec{s} = 0. \end{cases}$$

The vectors $\{\vec{z}_1,\ldots,\vec{z}_{n-1}\}$ span S^{\perp} , which is an (n-1)-dimensional subspace of $V=(\mathbb{Z}/2\mathbb{Z})^n$. The system $\vec{z}_i \cdot \vec{s} = 0$ for $i=1,\ldots,n-1$ defines a homogeneous linear system over $\mathbb{Z}/2\mathbb{Z}$. Since the \vec{z}_i are linearly independent, the system has rank n-1, and the solution space has dimension n-(n-1)=1.

The solution space consists of all vectors orthogonal to S^{\perp} . By definition, $\vec{s} \in S$, and S is orthogonal to S^{\perp} , so \vec{s} satisfies $\vec{z}_i \cdot \vec{s} = 0$ for all i. Over $\mathbb{Z}/2\mathbb{Z}$, the solution space is $S = \text{span}\{\vec{s}\}$, which contains exactly two vectors: $\vec{0}$ and \vec{s} . Since $\vec{0}$ is trivial, the only non-trivial solution is \vec{s} .

Therefore, the system $\vec{z}_i \cdot \vec{s} = 0$ for i = 1, ..., n-1 has a unique non-trivial solution \vec{s} . \vec{s} is uniquely determined by these equations.

 \vec{s} is the unique solution to the system $\vec{z}_i \cdot \vec{s} = 0$ for $i = 1, \dots, n-1$.