Solutrons

1.8: Operations on Functions

Basic Operations: Given two functions f(x) and g(x) you can create new functions using the basic operations on real numbers. $(+, -, \cdot, \div)$

Examples: Suppose f(x) = 5x - 1, g(x) = 3x + 2 and $h(x) = x^2 + 8$. Find the following functions.

- f + g(x) = 5x 1 + 3x + 2 = 8x + 1
- $h f(x) = \chi^2 + 8 (5x 1) = \chi^2 5x + 9$
- $f \cdot g(x) = (5x-1)(3x+2) = |5x^2+10x-3x-2| = |5x^2+7x-2|$

Composition of Functions: Given two function f(x) and g(x) you can create a new function by putting the output of one function as the input of the second function. This is the idea behind composition of functions.

<u>Definition</u>: For two function f(x) and g(x), the <u>composite</u> function $f \circ g$, also called the <u>composition</u> of f with g is defined by

$$f \circ g(x) = f(g(x)).$$

Example 1: If $f(t) = t^2$ and g(t) = t + 2, find

(a)
$$f(t+1) = (t+1)^2 = t^2 + 2t + 1$$

(b)
$$f(t+h) = (t+h)^{2} = t^{2} + 2th + h^{2}$$

(c)
$$f(g(t)) = (t+2)^2 = t^2 + 4t + 4$$

(d)
$$g(f(t)) = \{2+2\}$$

Example 2: If $f(x) = e^x$ and g(x) = 5x + 1, find

(a)
$$f \circ g(x) = e^{(5x+1)}$$

(b)
$$g \circ f(x) = \{ \{e^{X} + \} \}$$

Example 3: Using the following table, find $f \circ g(0)$, $g \circ f(0)$, f(g(1)), f(f(0)), and g(f(1)).

\mathcal{I}	0	1	2	3
f(x)	3	1	-1	-3
g(x)	0	2	4	6

$$f \circ g(0) = f(g(0)) = f(0) = 3$$

 $g \circ f(0) = g(f(0)) = g(3) = 6$
 $f(g(1)) = f(2) = -1$

$$f(f(0)) = f(3) = -3$$

 $g(f(1)) = g(1) = 2$

Example 4: Use a new variable u for the inside functions to express each of the following as a composite function:

(a)
$$y = \ln(3t)$$

(b)
$$w = 5(2x+3)^2$$

(c)
$$P = e^{-0.03t}$$

(b)
$$U = 2x + 3$$
, $W = SU^2$