Vektorové prostory

DEF Nechť T je těleso s 0 jako nulovým prvkem pro sčítání a 1 jako neutrálním pro násobení. Vektorový prostor nad tělesem T rozumíme množinu V s operacemi sčítání vektorů $+:V^2\to V$ a skalárem $\cdot:T\times V\to V$ splňující:

- (V, +) je abelova grupa
- $\alpha(\beta v) = (\alpha \beta)v$
- 1v = v
- $(\alpha + \beta)v = \alpha v + \beta v$
- $\alpha(u+v) = \alpha u + \alpha v$

 \mathbf{DEF} Nechť v je vektorový prostor na T. Pak U je podprostor V když $U\subset V$ a Utvoří vektorvy prostro na T se stejně definovanými operacemi

 \mathbf{DEF} Nechť V je vektorový prostorem nad T a $W\subset V$ podprostor. Pak linerání obal W (span(W)) je průnik všech podprostorů V obsahující W

$$\cap_{U:W\subset U,U\in V}U$$

 \mathbf{DEF} Lineární obal vektoru v je množina všech jeho lineární kombinací.

 \mathbf{DEF} Generátor Uvektorového prostoru je takový vektorový prostorW,že U=span(W)