

The Relational Model

Chapter 3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

1

Why Study the Relational Model?

- Most widely used model.
 - Vendors: IBM, Microsoft, Oracle, etc.
- "Legacy systems" in older models
 - e.g., IBM's IMS (Information Management System) – hierarchical model
- * Recent competitor: object-oriented model
 - ObjectStore, Versant, Ontos
 - A synthesis emerging: *object-relational model*
 - Oracle, IBM DB2, MS SQL Server

https://en.wikipedia.org/wiki/Object_database

https://en.wikipedia.org/wiki/NoSQL

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Why Study the Relational Model? (cont.

- * Relational model features
 - Very simple and elegant data representation
 - Even novice users can understand the contents of a database
 - Supports a popular high level query language SOL
 - Complex queries can be easily expressed

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

3

Relational Database: Definitions

- Relational database: a set of relations (tables)
- * Relation: made up of 2 parts:
 - *Schema*: specifies name of relation, plus name and type of each column.
 - e.g., Students (*sid*: string, *name*: string, *login*: string, *age*: integer, *gpa*: real).
 - Instance: a table, with rows and columns.
 #Rows = cardinality, #fields = degree.
- Can think of a relation as a set of rows or tuples (i.e., all rows are distinct).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@ee	18	3.2
53650	Smith	smith@math	19	3.8

- Cardinality = 3, degree = 5, all rows distinct
- Do all columns in a relation instance have to be distinct?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

.

Relational Query Languages

- * A major strength of the relational model: supports simple, powerful *querying* of data.
- ❖ Queries can be written intuitively, and the DBMS is responsible for efficient evaluation.
 - The key: precise semantics for relational queries.
 - Allows the optimizer to extensively re-order operations, and still ensure that the answer does not change (Chapter 12).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
R.bid=100 AND S.rating>5

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

7

The SQL Query Language

- Developed by IBM (for the pioneering system -System R) in the 1970s
- ❖ Need for a standard since it is used by many vendors
- * Standards:
 - SQL-86
 - SQL-89 (minor revision)
 - SQL-92 (major revision)
 - SQL-1999 (major extensions)
 - SQL-2003 (minor revision)
 - SQL-2008 (minor revision)
 - SQL-2011 (minor revision)
 - SQL-2016 (latest release)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Creating Relations in SQL

- Creates the Students relation. Observe that the type (domain) of each field is specified, and enforced by the DBMS whenever tuples are added or modified.
- * As another example, the Enrolled table holds information about courses that students take.

CREATE TABLE Students
(sid: CHAR(20),
name: CHAR(20),
login: CHAR(10),
age: INTEGER,
gpa: REAL)

CREATE TABLE Enrolled (sid: CHAR(20), cid: CHAR(20), grade: CHAR(2))

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

9

Adding and Deleting Tuples

Can insert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa) VALUES (53688, 'Smith', 'smith@cs', 18, 3.2)

Can delete all tuples satisfying some condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = 'Smith'

► Powerful variants of these commands are available; more later!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Update Tuples

 Modify the column values in an existing row using the UPDATE command

UPDATE Students S SET S.age = S.age + 1, S.gpa = S.gpa - 1 WHERE S.sid = 53688

UPDATE Students S SET S.gpa = S.gpa - 0.1 WHERE S.gpa >= 3.6

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

The SQL Query Language

* To find all 18 years old students, we can write:

SELECT *
FROM Students S
WHERE S.age=18

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@ee	18	3.2

•To find just names and logins, replace the first line: SELECT S.name, S.login

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Querying Multiple Relations

What does the following query compute?

SELECT S.name, E.cid FROM Students S, Enrolled E WHERE S.sid=E.sid AND E.grade="A"

Given the following instances of Enrolled and Students:

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

sid	cid	grade
	Carnatic101	C
	Reggae203	В
53650	Topology112	Α
53666	History105	В

we get:

S.name	E.cid
Smith	Topology112

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

13

Destroying and Altering Relations

DROP TABLE Students

Destroys the relation Students. The schema information and the tuples are deleted.

ALTER TABLE Students ADD COLUMN firstYear: integer

* The schema of Students is altered by adding a new field; every tuple in the current instance is extended with a *null* value in the new field.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke