70. Умение: решать уравнения Пелля.

Определение. Уравнение вида $x^2 - my^2 = 1$, где m – натуральное число, не являющееся точным квадратом, называется *уравнением Пелля*.

Решение (1,0) называется *тривиальным*.

Решение (x, y) называется *положительным*, если $x \ge 0$ и $y \ge 0$.

Замечание. Уравнение вида $x^2 - my^2 = 1$ не является уравнением Пелля по этому определению. Однако теория по решению данного уравнения есть во второй теореме и во втором примере.

Замечание 1. Ввиду симметрии для решения уравнения достаточно найти все положительные решения.

Замечание 2. Если т является полным квадратом, то, очевидно, у уравнения нет решений, кроме тривиальных.

Замечание. Пара (x,y) в $\mathbb{Z}[\sqrt{m}]$ имеет вид $x+y\sqrt{m}$. Норма числа $a=x+y\sqrt{m}$ в $\mathbb{Z}[\sqrt{m}]$ это $N(a)=a\cdot \overline{a}=(x+y\sqrt{m})(x-y\sqrt{m})=x^2-my^2$. Норма обладает свойством: $N(a)\cdot N(b)=N(a\cdot b)$

Утверждение. Пара (x,y) является решением уравнения Пелля $(x^2 - my^2 = 1)$ тогда и только тогда, когда норма числа $x + y\sqrt{m}$ в $\mathbb{Z}[\sqrt{m}]$ равна единице.

▲.

$$N(x + y\sqrt{m}) = (x + y\sqrt{m})(x - y\sqrt{m}) = x^2 - my^2$$

Утверждение. Пара (x,y) является решением уравнения $x^2 - my^2 = -1$ тогда и только тогда, когда норма числа $x + y\sqrt{m}$ в $\mathbb{Z}[\sqrt{m}]$ равна минус единице.

Определение (Напоминание). $\frac{P_k}{Q_k}=[a_0;a_1,a_2,...,a_k], (k=0,1,...,n)$ называется k-ой подходящей дробью к числу $[a_0;a_1,a_2,...,a_n].$

Теорема. Если n- длина периода цепной дроби, соответствующей \sqrt{m} , то решениями уравнения Пелля $x^2-my^2=1$ являются в точности подходящие дроби числа \sqrt{m} вида $\frac{P_{kn-1}}{Q_{kn-1}}$, где kn- чётно.

Замечание. Способы находения корней уравнения $x^2 - my^2 = -1$. (У автора конспекта нет уверенности, что данные способы находят все корни уравнения, однако других способов он не знает)

Способ 1) Если n- длина периода цепной дроби, соответствующей \sqrt{m} , то решениями уравнения $x^2-my^2=-1$ являются подходящие дроби числа \sqrt{m} вида $\frac{P_{kn-1}}{Q_{kn-1}}$, где kn-нечётно.

Способ 2) Находим а - минимальное положительное решение $x^2 - my^2 = 1$, находим b - тривиальное (самое простое) решение $x^2 - my^2 = -1$, тогда $a \cdot b^{2k+1}$ будут решениями $x^2 - my^2 = -1$ для $\forall k \in \mathbb{Z}$.

Пример 1.

Найдите наименьшее положительное решение уравнения Пелля $x^2 - 6y^2 = 1$.

1) Найдём цепную дробь для $\sqrt{6}$:

$$\sqrt{6}=[2;\overline{2,4}]$$

2) Длина периода цепной дроби n=2, значит минимальное k, такое, что kn будет чётным, равно 1. Значит, минимальное решение – подходящие дроби вида $\frac{P_{kn-1}}{Q_{kn-1}} = \frac{P_1}{Q_1}$.

3) $\frac{P_1}{Q_1}=[2;2]=2+\frac{1}{2}=\frac{5}{2}.$ Получается, пара (x,y)=(5,2) является минимальным положительным решением уравнения Пелля.

Пример 2.

Найдите наименьшее положительное решение уравнения $x^2 - 2y^2 = -1$.

1) Найдём цепную дробь для $\sqrt{2}$:

$$\sqrt{2} = [1; \overline{2}]$$

2) Длина периода цепной дроби n=1, значит минимальное k, такое, что kn будет нечётным, равно 1. Значит, минимальное решение – подходящие дроби вида $\frac{P_{kn-1}}{Q_{kn-1}} = \frac{P_0}{Q_0}$.

3)
$$\frac{P_0}{Q_0} = [1] = \frac{1}{1}$$
.

Получается, пара (x,y) = (1,1) является решением уравнения (в данном случае оно является тривиальным).

4) Следующее решение $\frac{P_3}{Q_3} = [1; 2, 2] = \frac{7}{5}$.

Получается, пара (x,y) = (7,5) является решением уравнения.

Теорема. Пусть $\alpha = a_1 + b_1 \sqrt{m}$ – наименьшее нетривиальное положительное решение уравнения $x^2 - my^2 = 1$, то все решения этого уравнения имеют вид $\pm(\alpha)^k, k \in \mathbb{Z}$.

Следствие. В условиях предыдущей теоремы решениями уравнения Пелля будут пары:

$$\pm \left(\frac{(a_1 + b_1 \sqrt{m})^k + (a_1 - b_1 \sqrt{m})^k}{2}, \frac{(a_1 + b_1 \sqrt{m})^k - (a_1 - b_1 \sqrt{m})^k}{2\sqrt{m}} \right), k \in \mathbb{Z}$$

Найдите все решения уравнения Пелля $x^2 - 6y^2 = 1$.

Из примера 1 мы знаем, что пара (x,y)=(5,2) является минимальным положительным решением уравнения Пелля.

Тогда общее решение имеет вид:

$$\pm \left(\frac{(5+2\sqrt{m})^k + (5-2\sqrt{m})^k}{2}, \frac{(5+2\sqrt{m})^k - (5-2\sqrt{m})^k}{2\sqrt{m}} \right), k \in \mathbb{Z}$$

Пример 4.

Решите уравнение $x^2 - 6xy + y^2 = 1$ в целых числах

$$x^2 - 6xy + y^2 = (x - 3y)^2 - 8y^2 = 1$$

Делаем замену z=x-3y, и уравнение сводится к уравнению Пелля $z^2-8y^2=1$