CatDB: Data-catalog-guided, LLM-based Generation of Data-centric ML Pipelines

Saeed Fathollahzadeh 1 , Essam Mansour 1 , and Matthias Boehm 2,3

September 1-5

Model and Feature Selection Hyperparameter Tuning + CV

Data Preparation

Data Integration & Data Cleaning

Data Programming & Augmentation

Model and Feature Selection

Hyperparameter Tuning + CV

Data Preparation Data Integration & Data Cleaning Data Programming & Augmentation Model and Feature Selection Hyperparameter Tuning + CV

[e.g., Alex Krizhevsky ImageNet 2012 Challenge Winner]

Motivation

Table #1 Table #2 c1 c2 ... c1 c2 ... 1 a ... A 0 ... 2 - ... B 1

Table #N

c₁ c₂ ... target (y)

1 A ... Yes
2 0 ... No
...

How to **Automatically** and **Efficiently** Build a **Data-centric ML Pipeline**?

CatDB

ML Pipeline

Data-centric ML pipeline generation in CatDB

Data-centric ML pipeline generation in CatDB

Data-centric ML pipeline generation in CatDB

CatDB-generated prompt & resulting pipeline

Example: Pipeline DAG in SOTA vs. CatDB

Example: Pipeline DAG in SOTA vs. CatDB

Example of Data Catalog Update and Data Cleaning

Raw Dataset

Salary dataset: comma-separated CSV file								
Target feature: "Salary"								
Experience	Skills	Gender	Address	Salary				
12 Months	SQL,Java	F	7050 CA	100				
two years	JavaScript	Female	TX 7871	150				
36 months	C/C++,.Net	М	Texas	300				
3 Years	JS,CPP,SQL	Female	7871	310				
one Year	Python	Male	CA	200				
2 Years	C#,Java	0	TX	175				

Example of Data Catalog Update and Data Cleaning

Raw Dataset

Example of Data Catalog Update and Data Cleaning

Raw Dataset

Update
Data Catalog

	Column Name	% Distinct	Feature Type	Samples	
<u> </u>	- Experience	100	Sentence	[12 Months, two years,]	1
	Skills	100	Sentence	["Python,Java",]	o.
- #	Gender	60	Categorical	[F, Female, M]	tal
	Address	100	Sentence	[7050 CA, TX 7871, CA,]	S
4	Experience	60	Categorical	[1 year, 2 years, 3 years]	ī.
	Skills		List	[SQL, Java, C++,]	Data
	Gender	40	Categorical	[Male, Female]	
	State	40	Categorical	[CA, TX]	
	Zip	40	Categorical	[7050, 7871]]

Experiment Setup

- Real-world Datasets (20 datasets):
 - single/multiple tables,
 - few/many samples,
 - small/large number of features, and
 - clean/dirty data.

■ Comparing Systems:

- LLM-based Systems: CAAFE, AIDE, AutoGen
- AutoML Tools: H2O, Flaml, Auto-Sklearn, AutoGluon
- AutoML-based Workflows: Data cleaning w/ SAGA and Learn2Clean, and data augmentation w/ ADASYN

Performance Comparison (LLM = Gemini-1.5)

- **Deduplication** → Removes duplicates, balances labels.
- Categorical Features → Fixes formatting, transforms complexity.
- Feature Refinement → Drops constant/misread features, preserves distribution.

Cost and Runtime Comparison (10 iterations)

■ Cost Efficiency:

- AIDE & AutoGen use Hank-crafted prompts.
- CatDB consumes fewer tokens by projecting the Data Catalog.

■ Runtime Speedup:

- CatDB achieve 8x-14x faster.
- AIDE & AutoGen consider only execution time.

Outlier and Missing Value Injection (Gemini-1.5)

■ Robustness → CatDB maintains high performance even with increasing missing values and 5% outliers.

Conclusions

- Data Catalog Integration → Use metadata & rules for tailoring pipelines.
- Catalog Refinements → Enhance catalogs to guide ML pipeline creation.
- **Prompt Chaining** → Sequence prompts to optimize generation.
- **Error Handling** → Validate, fix with knowledge base for reliable pipelines.

CatDB: Data-catalog-guided, LLM-based Generation of Data-centric ML Pipelines

Saeed Fathollahzadeh Concordia University saeed.fathollahzadeh@concordia.ca Essam Mansour Concordia University essam.mansour@concordia.ca Matthias Boehm Technische Universität Berlin matthias.boehm@tu-berlin.de