Шевченко Валерий

Практическая работа 2.. «Эмпирическая функция распределения. Поведение в точке»

Цель работы:

- ознакомиться с определением ЭФР и ее поведением при фиксированном значении аргумента;
- аналитически и графически оценить надежность асимптотического интервала;
- 3. убедиться в том, что асимптотические методы работают при конечном объеме выборки.

Задание и ход работы.

- 1. Выбрать параметры двух из трех распределений генеральной совокупности $X: X \sim U(a, b), X \sim Exp^u$ или $X \sim N(a, \sigma^2)$.
- 2. Выбрать такую точку t_0 , что $0.05 < F_X(t_0) < 0.95$. Вычислить $F_X(t_0)$.
- 3. Смоделировать $m=10^2$ выборок объема $n=10^4$ для каждого из двух выбранных распределений. Для каждой выборки построить $F_n(t_0)$ значение эмпирической функции распределения в точке t_0 оценку значения функции распределения в точке t_0 , то есть величины $F_X(t_0)$. Для каждого из распределений получите 100 оценок величины $F_X(t_0)$.
- 4. Значение функции распределения $F_X(t_0) = P(X \in (-\infty, t_0) = \Delta)$ является вероятностью события $A = \{X \in (-\infty, t_0)\}$. Значение эмпирической функции распределения $F_n(t_0)$ —оценка вероятности события $A = \{X \in (-\infty, t_0)\}$, то есть $k(\Delta)/n$ частота попадания значения случайной величины X в интервал Δ . Частота, полученная по серии независимых однотипных испытаний с двумя исходами A и A, является состоятельной, несмещенной, асимптотически нормальной оценкой вероятности события. Свойство асимптотической нормальности позволяет строить асимптотический доверительный интервал надежности γ . Фиксировать $\gamma > 0.9$ и построить по 100 асимптотических доверительных интервалов надежности γ для значения $F_X(t_0)$ каждого из выбранных распределений.
- 5. Построить 2 графика по оси x номер выборки, по оси y соответствующие левый и правый концы асимптотических доверительных интервалов и значение $F_x(t_0)$.
- 6. Найти количество δ_n асимптотических доверительных интервалов, в которые значение $F_X(t_0)$ не попало. Сравнить среднее количество δ_n для к =100 серий

(mean(δ_n)) с величиной 1- γ (δ_n можно рассматривать как оценку величины 1- γ) для различных $\gamma = 0.9, 0.91, ..., 0.99$. Составить таблицу результатов.

Введённые параметры

$$m = 10^2$$
 $n = 10^4$
 $\gamma = 0.95$
 $t_0 = 0.75$
 $u = 1.5$
 $\sigma = 1$
 $\mu = 0$

Сравнение γ и среднего количества интервалов, в которое не попало $F_x(t_0)$:

```
gamma=0.9, average = 9.96
gamma=0.91, average = 8.78
gamma=0.92, average = 8.17
gamma=0.93, average = 6.77
gamma=0.94, average = 6.51
gamma=0.95, average = 5.01
gamma=0.96, average = 3.95
gamma=0.97, average = 2.67
gamma=0.98, average = 1.88
gamma=0.99, average = 1.07
```

Показательное распределение

Сравнение γ и среднего количества интервалов, в которое не попало $F_x(t_0)$:

```
gamma=0.9, average = 10.1

gamma=0.91, average = 9.26

gamma=0.92, average = 8.03

gamma=0.93, average = 7.06

gamma=0.94, average = 5.75

gamma=0.95, average = 4.73

gamma=0.96, average = 3.94

gamma=0.97, average = 2.88

gamma=0.98, average = 1.84

gamma=0.99, average = 1
```

Выводы

Число доверительных интервалов, в которые не попало $F_x(t_0)$ примерно равно $10^2 \cdot (1-\gamma)$. Число таких интервалов уменьшается с увеличеснием γ .