Feuille de TD 4

Exercice 1.

Etudier la dérivabilté des fonctions suivantes:

1)
$$f(x) = \sqrt{x^2 - 3}$$

2)
$$g(x) = \frac{1-x^5}{1-x}$$

2)
$$g(x) = \frac{1-x^5}{1-x}$$

3) $h(x) = |x^2 - 9|$.

Exercice 2.

1) Montrer que l'équation

$$e^x = 1 - x$$

admet l'unique solution x = 0.

2) Montrer que l'équation

$$x - e^{-x} = 0$$

admet une solution unique $x_0 \in \mathbb{R}$ et que $\frac{1}{e} < x_0 < 1$.

Exercice 3.

Soit f une fonction a valeurs relles dfinies et continûment dérivable sur [0,1]. On suppose que f' est strictement positive sur le férmé [0, 1].

1) Démontrer qu'il existe $\alpha > 0$ tel que $\forall x \in [0, 1]$ on a

$$f'(x) \ge \alpha$$
.

2) Déduire que si f(0) = 0 alors $f(x) \ge \alpha x \ \forall x \in [0, 1.]$

Exercice 4.

Soient $a \in]0, \infty[$ et $f : [0, a] \to \mathbb{R}$ une fonction de classe C^1 telle que f(0) = 0. Montrer qu'il existe $c \in]0, a[$ vérifiant

$$f'(c) = \frac{2f(a) + af'(a)}{3a}.$$

Exercice 5.

En utilisant le Dévloppement limité, déterminer les limites suivantes:

a)
$$\lim_{x\to 0} \frac{1-\cos x}{\tan^2(x)}$$

b)
$$\lim_{x\to 0^+} \left(\cos x\right)^{x^m}, m \in \mathbb{R}$$

c) $\lim_{x\to 0} \frac{x^2 - \sin^2(x)}{x^2 \sin^2(x)}$.

c)
$$\lim_{x\to 0} \frac{x^2 - \sin^2(x)}{x^2 \sin^2(x)}$$

Exercice 6.

Etudier $f(x) = \arccos \frac{1}{x}$.

- 1) Déterminer le domaine D_f de f.
- 2) Calculer f(-x).
- 3) Etudier la dérivabilté sur $]1, \infty[$.
- 4) Representer grafiquement sur D_f .

Exercice 7.

On pose $f(x) = \tan(x)$.

- 1) Calculer la dérivée seconde f'' et la dérivée troisième $f^{(3)}$ de f.
- 2) Appliquer la formule de Taylor pour obtenir le développement limité de \tan en 0 à l'ordre 3.
- 3) Déterminer également le développement limité de \tan en $\frac{\pi}{4}$ à l'ordre 3.

Exercice 8.

On considère la fonction définie sur \mathbb{R} par $f(x) = x - \cos x$.

1) Montrer que l'équation

$$x - \cos x = 0$$

admet une solution x_0 dans $[\pi/6, \pi/4]$.

2) Montrer qu'il existe $c \in]x_0, \pi/4[$ tel que

$$f'(c) = \frac{\pi - 2\sqrt{2}}{\pi - 4x_0}.$$

Exercice 9.

Calculer les integralles géneralisées suivantes:

a)
$$\int_{1}^{\infty} e^{-\lambda x}, \lambda > 0$$

b) $\int_{0}^{1} \ln x \, dx$
c) $\int_{0}^{\infty} \frac{\arctan x}{1+x^{2}} \, dx$
d) $\int_{0}^{\infty} x^{n} e^{-x} \, dx$.

b)
$$\int_{0}^{1} \ln x \, dx$$

c)
$$\int_0^\infty \frac{\arctan x}{1+x^2} dx$$

d)
$$\int_0^\infty x^n e^{-x} dx$$

Exercice 10.

Etudier la convergence des intégrales suivantes :

a)
$$\int_0^\infty \frac{e^{\sin x}}{\sqrt{x}} dx$$

Etudier la conve
a)
$$\int_0^\infty \frac{e^{\sin x}}{\sqrt{x}} dx$$
b)
$$\int_0^\infty \frac{x \sin x}{x^2 + x + 1} dx$$
c)
$$\int_0^{\frac{\pi}{4}} \frac{1}{\sqrt{\sin x}}$$
d)
$$\int_1^\infty e^{-\lambda x}$$
e)
$$\int_1^\infty \frac{\cos x}{\sqrt{x}} dx$$
f)
$$\int_0^\infty \frac{\ln x}{x^2 - 1} dx$$
.

c)
$$\int_0^{\frac{\pi}{4}} \frac{1}{\sqrt{\sin x}}$$

d)
$$\int_{1}^{\infty} e^{-\lambda x}$$

e)
$$\int_{1}^{\infty} \frac{\cos x}{\sqrt{x}} dx$$

f)
$$\int_0^\infty \frac{\ln x}{x^2 - 1} dx$$
.

Exercice 11.

Pour $n \in \mathbb{N}^*$ On considère l'intégrale Eurelienne $\Gamma(n)$ définie par

$$\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} \, dx$$

1) Par une intégration par partie montrer que

$$\Gamma(n) = (n-1)\Gamma(n-1).$$

2) En déduire que $\Gamma(n) = (n-1)!$.