FONCTIONS-DÉRIVÉES

Tableau Fonctions-Dérivées

Tableau Fonctions	<u>-Dérivées</u>		
$f\left(x ight)$	D_f	$f'\left(x ight)$	$D_{f'}$
$k\ (constante)$	\mathbb{R}	0	IR
x	\mathbb{R}	1	R
ax + b	\mathbb{R}	a	\mathbb{R}
x^2	\mathbb{R}	2x	\mathbb{R}
$\frac{1}{x}$	ℝ*	$-rac{1}{x^2}$	ℝ*
\sqrt{x}	\mathbb{R}_{+}	$\frac{1}{2\sqrt{x}}$	\mathbb{R}_+^*
$x^n \ avec \ n \in \mathbb{N} \ et \ n > 1$	R	nx^{x-1}	IR
$\sin{(x)}$	\mathbb{R}	$\cos{(x)}$	\mathbb{R}
$\cos(x)$	R	$-\sin{(x)}$	R
$-\sin{(x)}$	IR	$-\cos{(x)}$	IR
$-\cos{(x)}$	\mathbb{R}	$\sin{(x)}$	R
an(x)	$\mathbb{R} \diagdown \left(\frac{\pi}{2} \ mod \ 2\pi\right)$	$\frac{1}{\cos^2{(x)}} = 1 + \tan^2{(x)}$	$\mathbb{R} \diagdown \left(\frac{\pi}{2} \ mod \ 2\pi\right)$
e^x	R	e^x	R
$\ln(x)$	\mathbb{R}_+^*	$\frac{1}{x}$	R*
$u\left(x ight) +v\left(x ight)$	$D_u\cap D_v$	$u^{\prime}\left(x ight) +v^{\prime}\left(x ight)$	$D_{u'}\cap D_{v'}$
$u\left(x ight) -v\left(x ight)$	$D_u\cap D_v$	$u^{\prime}\left(x ight) -v^{\prime}\left(x ight)$	$D_{u'}\cap D_{v'}$
$k \cdot u(x) \ avec \ k \in \mathbb{R}$	D_u	$k \cdot u'(x)$	$D_{u'}$
$u(x)\cdot v(x)$	$D_u\cap D_v$	$u'(x) \cdot v(x) + u(x) \cdot v'(x)$	$D_{u'}\cap D_{v'}$
$\frac{1}{u\left(x ight) }$	$D_u \diagdown \{x u(x) = 0\}$	$-\frac{u'\left(x\right)}{u^{2}\left(x\right)}$	$D_{u'} \diagdown \{x u(x) = 0\}$
$\frac{u\left(x\right)}{v\left(x\right)}$	$D_v\cap D_uackslash\{x u(x)=0\}$	$\frac{u'(x)v(x) - u(x)v'(x)}{v^2(x)}$	$D_{v'}\cap D_{u'}\diagdown\{x u(x)=0\}$
$v(u\left(x ight))=\left(v\circ u\left(x ight) ight)$	$D_u\cap \left\{x v\left(x ight)\in D_v ight\}$	$v'\left(u\left(x ight) ight)\cdot u'\left(x ight)$	$D_{u'}\cap\left\{x v\left(x\right)\in D_{v'}\right\}$

Cas particuliers

Nom	f(x)	f'(x)
fonction puissance	$f\left(x ight) =\left[u\left(x ight) ight] ^{n}$	$f'\left(x ight)=n[u\left(x ight)]^{n-1}\cdot u'\left(x ight)$
fonction racine carrée	$f\left(x ight) =\sqrt{u\left(x ight) }$	$f^{\prime}\left(x ight) =rac{u^{\prime}\left(x ight) }{2\sqrt{u\left(x ight) }}$
fonction sinus	$f\left(x ight) =\sin\left[u\left(x ight) ight]$	$f'\left(x ight)=\cos\left[u\left(x ight) ight]\cdot u'(x)$
fonction cosinus	$f(x) = \cos \left[u\left(x ight) ight]$	$f^{\prime}\left(x ight) =-\sin\left[u\left(x ight) ight] \cdot u^{\prime}\left(x ight)$
$fonction\ tangente$	$f\left(x ight) = an\left[u\left(x ight) ight]$	$f'\left(x ight)=rac{u'\left(x ight)}{\cos^{2}\left[u\left(x ight) ight]}=\left\{ 1+ an^{2}\left[u\left(x ight) ight] ight\} \cdot u'\left(x ight)$
fonction exponentielle	$f\left(x ight) =e^{u\left(x ight) }$	$f'\left(x ight)=e^{u\left(x ight)}\cdot u'\left(x ight)$
fonction logarithme	$f\left(x ight) =\ln \left[u\left(x ight) ight]$	$f^{\prime}\left(x ight) =rac{u^{\prime}\left(x ight) }{u\left(x ight) }$