University of Toronto Department of Mathematics

START: 3:10pm

DURATION: 110 mins

Term Test 1 MAT224H1F Linear Algebra II

EXAMINERS: H. Horowitz, S. Uppal, I. Varma

ast Name (PRINT):	_
iiven Name(s) (PRINT):	_
tudent NUMBER:	_
MAIL: @mail.utoronto.ca	_
tudent SIGNATURE:	

Instructions.

- 1. There are **53** possible marks to be earned in this exam. The examination booklet contains a total of 9 pages. It is your responsibility to ensure that *no pages are missing from your examination*. DO NOT DETACH ANY PAGES FROM YOUR EXAMINATION.
- 2. DO NOT WRITE ON THE QR CODE AT THE TOP RIGHT-HAND CORNER OF EACH PAGE OF YOUR EXAMINATION.
- 3. For the full answer questions, WRITE YOUR SOLUTIONS ON THE FRONT OF THE QUESTION PAGES THEM-SELVES. THE BACK OF EVERY PAGE WILL **NOT** BE SCANNED NOR SEEN BY THE GRADERS.
- 4. Ensure that your solutions are LEGIBLE.
- 5. No aids of any kind are permitted. CALCULATORS AND OTHER ELECTRONIC DEVICES (INCLUDING PHONES) ARE NOT PERMITTED.
- 6. Have your student card ready for inspection.
- 7. You may use the two blank pages at the end for rough work. The last two pages of the examination WILL NOT BE MARKED unless you *clearly* indicate otherwise on the question pages.
- 8. Show all of your work and justify your answers but do not include extraneous information.

1. (a) Let $V = \{\mathbf{x}, \mathbf{y}\}$ be a set with exactly two vectors. Define vector addition and scalar multiplication in V by the following rules:

Vector addition: $\mathbf{x} + \mathbf{x} = \mathbf{x}$, $\mathbf{y} + \mathbf{y} = \mathbf{x}$, $\mathbf{x} + \mathbf{y} = \mathbf{y}$, and $\mathbf{y} + \mathbf{x} = \mathbf{y}$. Scalar multiplication: $c\mathbf{x} = \mathbf{x}$, and $c\mathbf{y} = \mathbf{y}$ for all $c \in \mathbb{R}$.

Show that V is **not** a vector space by citing one axiom in the definition of a vector space that fails to hold. You must both state the axiom clearly and show it does not hold. [4 marks]

Axiom: For all $c, d \in \mathbb{R}$ and all $\mathbf{x} \in V$

$$(c+d)\mathbf{x} = c\mathbf{x} + d\mathbf{x}$$

Notice that $(1+1)\mathbf{y} = 2\mathbf{y} = \mathbf{y}$ but $\mathbf{y} + \mathbf{y} = \mathbf{x}$.

Therefore, we have $(1+1)\mathbf{y} \neq \mathbf{y} + \mathbf{y}$, contradicting the above axiom.

1. (b) Define what it means for a subset W of a vector space V to be a subspace of V. [2 marks]

W is a vector subspace of V if W is a vector space itself under the same operations of vector sum and scalar multiplication from V.

Alternative Solution: W is a subspace of V if $0 \in W$ and for all $\mathbf{x}, \mathbf{y} \in W$ and for all $c \in \mathbb{R}$, we have $c\mathbf{x} + \mathbf{y} \in W$.

2. A vector $\mathbf{x} \in \mathbb{R}^n$ is symmetric if $x_k = x_{n-k+1}$ for $k = 1, 2, \dots, n$. It is anti-symmetric if $x_k = -x_{n-k+1}$ for $k = 1, 2, \dots, n$. Let

$$U = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \text{ is symmetric} \}$$

$$W = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \text{ is anti-symmetric} \}$$

(a) Both U and W are subspaces of \mathbb{R}^n but pick only one (your choice) and show it is a subspace. [5 marks]

Proving U is a subspace:

First note that $\mathbf{x} = \mathbf{0} \in U$ since $x_k = x_{n-k+1} = 0$ for all k = 1, 2, ..., n. Now pick any $c \in \mathbb{R}$, and vectors $\mathbf{x}, \mathbf{y} \in U$, where $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $\mathbf{y} = (y_1, y_2, ..., y_n)$. Note that since $\mathbf{x}, \mathbf{y} \in U$, we have that $x_k = x_{n-k+1}$ and $y_k = y_{n-k+1}$ for k = 1, 2, ..., n.

We claim that $c\mathbf{x} + \mathbf{y} = (cx_1 + y_1, \dots, cx_n + y_n) \in U$. Note that $(c\mathbf{x} + \mathbf{y})_k = cx_k + y_k = cx_{n-k+1} + y_{n-k+1} = (c\mathbf{x} + \mathbf{y})_{n-k+1} \Rightarrow c\mathbf{x} + \mathbf{y} \in U$.

Proving W is a subspace:

First note that $\mathbf{x} = \mathbf{0} \in W$ since $x_k = -x_{n-k+1} = 0$ for all k = 1, 2, ..., n. Now pick any $c \in \mathbb{R}$, and vectors $\mathbf{x}, \mathbf{y} \in W$, where $\mathbf{x} = (x_1, x_2, ..., x_n)$ and $\mathbf{y} = (y_1, y_2, ..., y_n)$. Note that since $\mathbf{x}, \mathbf{y} \in W$, we have that $x_k = -x_{n-k+1}$ and $y_k = -y_{n-k+1}$ for k = 1, 2, ..., n.

We claim that $c\mathbf{x} + \mathbf{y} = (cx_1 + y_1, \dots, cx_n + y_n) \in W$. Note that $(c\mathbf{x} + \mathbf{y})_k = cx_k + y_k = -cx_{n-k+1} - y_{n-k+1} = -(c\mathbf{x} + \mathbf{y})_{n-k+1} \Rightarrow c\mathbf{x} + \mathbf{y} \in W$.

(b) Is $\mathbb{R}^n = U \oplus W$? Explain your answer. [5 marks]

This is true. First, note that $U \cap W = \{\mathbf{0}\}$. Let $\mathbf{x} \in U \cap W$. Then for k = 1, 2, ..., n, $x_k = x_{n-k+1} = -x_{n-k+1} \Rightarrow x_k = 0$ for all k = 1, 2, ..., n. Thus, $\mathbf{x} = \mathbf{0}$.

Now we claim that $\mathbb{R}^n = U + W$. Pick any $\mathbf{x} \in \mathbb{R}$. Let $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}$ be such that $y_k = x_{n-k+1}$ for $k = 1, 2, \dots n$. Notice that

$$\mathbf{x} = \frac{\mathbf{x} + \mathbf{y}}{2} + \frac{\mathbf{x} - \mathbf{y}}{2} = \mathbf{u} + \mathbf{w}$$

where $\mathbf{u} = \frac{\mathbf{x} + \mathbf{y}}{2}$ and $\mathbf{w} = \frac{\mathbf{x} - \mathbf{y}}{2}$. Notice that $u_k = u_{n-k+1}$ and $w_k = w_{n-k+1}$ for $k = 1, 2, \dots, n$. Thus, $\mathbf{u} \in U$ and $\mathbf{w} \in W$.

- 3. Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ be vectors in vector space V.
- (a) Define what it means for the list $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ to be linearly dependent. [2 marks]

The list $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ is linear dependent if there exists $a_1, a_2, \dots a_k \in \mathbb{R}$ where not all of the a_i are zero and

$$a_1\mathbf{x}_1 + \dots + a_n\mathbf{x}_k = \mathbf{0}$$

(b) Define span $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$. [2 marks]

 $\operatorname{span}\{\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k\}$ is the set of all all linear combinations of $\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k$.

Alternatively, may write span $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\} = \{a_1\mathbf{x}_1 + a_2\mathbf{x}_2 + \dots + a_k\mathbf{x}_k | a_1, \dots, a_k \in \mathbb{R}\}$

(c) Either prove the following statement is true or find a counterexample to show it is false: Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ be a linearly independent list of vectors in a vector space V. If the pair $\mathbf{u}, \mathbf{v} \in V$ is linearly independent and both $\mathbf{u}, \mathbf{v} \notin \text{span}\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$, then the list $\mathbf{u}, \mathbf{v}, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ is linearly independent. [4 marks]

This statement is false. Suppose our vector space is $V = \mathbb{R}^2$, and our list of vectors contains only 1 vector, $\mathbf{x}_1 = (1,0)$. Let $\mathbf{u} = (0,1)$ and $\mathbf{v} = (1,1)$. Note that \mathbf{u} and \mathbf{v} are both linear independent and not in span $\{\mathbf{x}_1\}$. However, the list $\{\mathbf{u}, \mathbf{v}, \mathbf{x}_1\}$ is linear independent since $\mathbf{u} + \mathbf{x}_1 - \mathbf{v} = \mathbf{0}$ 4. (a) Let V be a finite dimensional vector space. Define the dimension of V. [2 marks]

The dimension of V is the number of vectors in any basis of V.

4. (b) Let V be an n-dimensional vector space. Let W_1 and W_2 be unequal subspaces of V, each with dimension (n-1). Prove that $V = W_1 + W_2$, and that $\dim(W_1 \cap W_2) = n - 2$. [5 marks]

Let $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{n-1}\}$ be any basis for W_1 . Since W_2 is unequal to W_1 and has the same dimension as W_1 , there exists some $\mathbf{y} \in W_2$ where $\mathbf{y} \notin W_1$. Since $\mathbf{y} \notin W_1 = \mathrm{span}\{\mathbf{x}_1, \dots, \mathbf{x}_{n-1}\}$, it follows that $\{\mathbf{x}_1, \dots, \mathbf{x}_{n-1}, \mathbf{y}\}$ is a linear independent set of n vectors, and hence a basis for V. Thus, for any $\mathbf{v} \in V$, there exists scalars $c_1, c_2, \dots, c_n \in \mathbb{R}$ such that

$$\mathbf{v} = c_1 \mathbf{x}_1 + \ldots + c_{n-1} \mathbf{x}_{n-1} + c_n \mathbf{y}$$

Since $c_1\mathbf{x}_1 + \ldots + c_{n-1}\mathbf{x}_{n-1} \in W_1$ and $c_n\mathbf{y} \in W_2$, it follows that $\mathbf{v} \in W_1 + W_2$ and thus $V = W_1 + W_2$.

Now recall the following formula:

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2)$$

$$\dim(W_1 \cap W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 + W_2)$$

$$\dim(W_1 \cap W_2) = (n-1) + (n-1) - n$$

$$\dim(W_1 \cap W_2) = n - 2$$

5. (a) Define what it means for a function $T: V \to W$ to be a linear transformation. [2 marks]

A function $T:V\to W$ is a linear transformation if:

- (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in V$
- (ii) $T(a\mathbf{v}) = aT(\mathbf{v})$ for all $a \in \mathbb{R}$ and $\mathbf{v} \in V$.

5. (b) Suppose $\mathbf{a} \in \mathbb{R}^n$ be a fixed vector. Show $T : \mathbb{R}^n \to \mathbb{R}$ defined by $T\mathbf{x} = \mathbf{a}^T\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$ is a linear transformation. [4 marks]

Suppose $\mathbf{a} = (a_1, \dots, a_n)$. Pick any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $c, d \in \mathbb{R}$. We show that $T(c\mathbf{u} + d\mathbf{v}) = cT(\mathbf{u}) + dT(\mathbf{v})$.

$$T(c\mathbf{u} + d\mathbf{v}) = \begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix} \begin{pmatrix} cu_1 + dv_1 \\ \vdots \\ cu_n + dv_n \end{pmatrix}$$

$$= a_1(cu_1 + dv_1) + \cdots + a_n(cu_n + dv_n)$$

$$= c(a_1u_1 + \cdots + a_nu_n) + d(a_1v_1 + \cdots + a_nv_n)$$

$$= c(a_1 & \cdots & a_n) \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} + d(a_1 & \cdots & a_n) \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

$$= cT(\mathbf{u}) + dT(\mathbf{v})$$

5. (c) Suppose you are given that the function $T: P_2(\mathbb{R}) \to \mathbb{R}$ satisfies

$$T(1+x) = 1$$
, $T(-1+x+x^2) = -1$, and $T(1-x-x^2) = -1$

Choose one of the following (i) T must be linear, (ii) T might be linear, or (iii) T cannot be linear, and justify your choice. [4 marks]

The correct option is (iii), T cannot be linear. Note that $T(-1+x+x^2)=T(-1\cdot(-1+x+x^2))=T(1-x-x^2)=-1\Rightarrow -T(-1+x+x^2)\neq T(-(-1+x+x^2))$. Thus, T does not satisfy property (ii) from part (a).

- 6. Determine if each statement below is True or False and indicate your answer by circling one of the options. No explanation is necessary. Each correct answer is worth 2 marks and each incorrect answer is worth 0 marks.
- (i) Let V and W be vector spaces. For $\mathbf{x}, \mathbf{y} \in V$, the *line segment* joining \mathbf{x} and \mathbf{y} in V is $L = {\mathbf{x} + t(\mathbf{y} \mathbf{x}) \mid 0 \le t \le 1}$. If $T: V \to W$ is a linear transformation, then T(L) is a line segment in W.

(True) (False)

False. This is not necessarily true. For instance, if T is the zero transformation, then $T(L) = \{0\}$ which is just a point.

(ii) If $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ is a list of linearly independent vectors in a vector space V, then $\operatorname{span}\{\mathbf{x}_1, \mathbf{x}_2\} \cap \operatorname{span}\{\mathbf{x}_3, \mathbf{x}_4\} = \{\mathbf{0}\}$.

(True) (False)

True. Suppose otherwise and let $\mathbf{v} \neq \mathbf{0}$ be such that $\mathbf{v} \in \text{span}\{x_1, x_2\} \cap \text{span}\{x_3, x_4\}$. Then there exists $c_1, c_2, c_3, c_4 \in \mathbb{R}$ where not all the c_i are zero and $\mathbf{v} = c_1\mathbf{x}_1 + c_2\mathbf{x}_2 = c_3\mathbf{x}_3 + c_4\mathbf{x}_4$. But then $c_1\mathbf{x}_1 + c_2\mathbf{x}_2 - c_3\mathbf{x}_3 - c_4\mathbf{x}_4 = 0$, which is a contradiction since $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ is a linearly independent set.

(iii) If $\mathbf{x}_1, \mathbf{x}_2$ are vectors in a vector space V, then $\operatorname{span}\{\mathbf{x}_1\} + \operatorname{span}\{\mathbf{x}_2\} = \operatorname{span}\{\mathbf{x}_1 + \mathbf{x}_2\}$.

(True) (False)

False. Let $V = \mathbb{R}^2$ and $\mathbf{x}_1 = (1,0)$ and $\mathbf{x}_2 = (0,1)$. Then $\text{span}\{\mathbf{x}_1\} + \text{span}\{\mathbf{x}_2\} = \mathbb{R}^2$ but $\text{span}\{\mathbf{x}_1 + \mathbf{x}_2\} = \text{span}\{(1,1)\} \neq \mathbb{R}^2$.

(iv) If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is a basis for a vector space V and S_1, S_2, \dots, S_n are subsets of V such that $\mathbf{x}_i \in S_i$ for each $i = 1, 2, \dots, n$, then $V = \operatorname{span} S_1 + \operatorname{span} S_2 + \dots + \operatorname{span} S_n$.

(True) (False)

True. Note that $\operatorname{span}\{\mathbf{x}_i\} \subset \operatorname{span}S_i$ and $\operatorname{span}\{\mathbf{x}_1\} + \cdots + \operatorname{span}\{\mathbf{x}_n\} = V$

(v) If W_1, W_2, W_3 are subspaces of a vector space V such that $V = W_1 \oplus W_2$ and $V = W_1 \oplus W_3$ then $W_2 = W_3$.

(True) (False)

False. Let $V = \mathbb{R}^2$, $W_1 = \text{span}\{(1,0)\}$, $W_2 = \text{span}\{(0,1)\}$ and $W_3 = \text{span}\{(1,1)\}$. Notice that $V = W_1 \oplus W_2$ and $V = W_1 \oplus W_3$ but $W_2 \neq W_3$

(vi) Let k be a positive integer. If W_1, W_2 are subspaces of a finite dimensional vector space V such that $\dim W_1 + \dim W_2 \ge \dim V + k$, then $W_1 \cap W_2$ contains at least k linearly independent vectors.

(True) (False)

True. Recall $\dim(W_1 \cap W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 + W_2) \ge k$

THIS PAGE LEF	T INTENTIONAL	LY BLANK . If an	y work on this page	e is to be graded, indic	ate this CLEARLY

THIS PAGE LEFT INTE	NTIONALLY BLA	NK. If any work or	n this page is to be (graded, indicate this	CLEARLY