LECTURE 7

September 20, 2023

Recall for $n \in \mathbb{N}$ and $a, b \in \mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$ we define

(1) $a +_n b$ as the unique member of \mathbb{Z}_n such that

$$a+b \equiv a+_n b \pmod{n}$$

(2) $a \cdot_n b$ as the unique member of \mathbb{Z}_n such that

$$a \cdot b \equiv a \cdot_n b \pmod{n}$$

Proposition 0.1. Let $n \in \mathbb{N}$,

- (1) The binary operation $+_n$ on \mathbb{Z}_n satisfies the following:
 - (a) $+_n$ is associative, i.e. for all $a, b, c \in \mathbb{Z}_n$,

$$a +_n (b +_n c) = (a +_n b) +_n c$$

- (b) 0 is the identity element of $(\mathbb{Z}_n, +_n)$, i.e. for all $a \in \mathbb{Z}_n$, $0 +_n a = a +_n 0 = a$
- (c) Every $a \in \mathbb{Z}_n$ has an additive inverse, i.e. there exists $a b \in \mathbb{Z}_n$ such that $a +_n b = 0$.
- (2) The binary operation \cdot_n on \mathbb{Z}_n satisfies the following:
 - (a) \cdot_n is associative, i.e. $a, b, c \in \mathbb{Z}_n$,

$$a \cdot_n (b \cdot_n c) = (a \cdot_n b) \cdot_n c$$

- (b) 1 is the identity element of (\mathbb{Z}_n, \cdot_n) , i.e. for all $a \in \mathbb{Z}_n$, $1 \cdot_n a = a \cdot_n 1 = a$.
- (c) For $a \in \mathbb{Z}_n$, the following are equivalent:
 - (i) a has a multiplicative inverse, i.e. there exists a $b \in \mathbb{Z}_n$ such that $a \cdot_n b = 1$.
 - (ii) gcd(a, n) = 1

For example, in \mathbb{Z}_4 , the multiplicative inverse of 3 is 3, since $3 \cdot 3 \equiv 1 \pmod{4}$, but 2 has no multiplicative inverse because $\gcd(2,4) \neq 1$.

1. Multiplication and Addition Tables

We have formed tables for $(\mathbb{Z}_4, +_4)$ and (\mathbb{Z}_4, \cdot_4) in the previous lecture:

•4	0	1	2	3		$+_4$	0	1	2	3
0	0	0	0	0		0	0	1	2	3
1	0	1	2	3		1	1	2	3	0
2	0	2	0	2		2	2	3	0	1
3	0	3	2	1	١	3	3	0	1	2

34

2. Groups

DEFINITION 2.1. Let G be a set with a binary operation *. The pair (G,*) is called a group if the following are satisfied:

(1) * is associative for $a, b, c \in G$, i.e.

$$(a*b)*c = c*(a*b)$$

(2) There exists an identity element $e \in G$ of (G, *), i.e. for any $a \in G$,

$$e * a = a * e = a$$

(3) Every member $a \in G$ has an inverse, usually denoted by $a^{-1} \in G$, such that

$$a * a^{-1} = a^{-1} * a = e$$

EXAMPLE 2.2. $(\mathbb{Z}_n, +_n)$ is a group since

- $(1) +_n$ is associative.
- (2) 0 is an identity element.
- (3) Every $a \in \mathbb{Z}_n$ has an inverse, usually denoted $-a \in \mathbb{Z}_n$, and we write -a instead of a^{-1} .

EXAMPLE 2.3. (\mathbb{Z}_n, \cdot_n) is not a group. The first two conditions are satisfied, but there may not be any inverses. In particular, not all members have inverses.

EXAMPLE 2.4. We want to show that $(\mathbb{Z}, +)$ is a group.

- (1) + is associative, i.e. (a+b)+c=a+(b+c) for all $a,b,c\in\mathbb{Z}$.
- (2) 0 is the identity element, i.e. for all $a \in \mathbb{Z}$, 0 + a = a + 0 = a.
- (3) Every $a \in \mathbb{Z}$ has an additive inverse $-a \in \mathbb{Z}$ such that a+(-a)=0. Therefore, $(\mathbb{Z}, +)$ is a group.

EXAMPLE 2.5. (\mathbb{Z}, \cdot) is not a group since not all members have multiplicative inverses. Take a = 7, the only multiplicative inverse that will give us the identity 1, is $\frac{1}{7}$, which is not in \mathbb{Z} .

NOTATION 2.6. Let (G,*) be a group. We call |G| the order of G, i.e. the cardinality of G.

EXAMPLE 2.7. The order of $(\mathbb{Z}_n, +_n)$ is n, while $(\mathbb{Z}, +)$ is of infinite order.

In this context, $(\mathbb{Z}_n, +_n)$ is a finite group of order n and $(\mathbb{Z}, +)$ is an infinite group.

DEFINITION 2.8. A group (G,*) is called *abelian* if the operation * is commutative, i.e. for all $a,b \in G$,

$$a * b = b * a$$

EXAMPLE 2.9. The two groups $(\mathbb{Z}_n, +_n)$ and $(\mathbb{Z}, +)$ are both abelian since for all $a, b \in \mathbb{Z}_n$

$$a +_n b = b +_n a$$

and similar for $(\mathbb{Z}, +)$.

Note that not all groups are abelian. Recall that for $n \in \mathbb{N}$, $\mathcal{M}_n(\mathbb{R})$ denotes the set of all $n \times n$ matrices with real entries. With matrix multiplication and \cdot , this is not a group, because not all $A \in \mathcal{M}_n(\mathbb{R})$ has an inverse.

EXAMPLE 2.10. Take $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in \mathcal{M}_2(\mathbb{R})$, then $\det(A) = 0$, so A has no inverse.

NOTATION 2.11. For $n \in \mathbb{N}$, denote $GL_n(\mathbb{R})$ to be the set of all $n \times n$ invertible matrices with real entries.

EXAMPLE 2.12. $(GL_n(\mathbb{R},\cdot))$ is a group. Indeed,

(1) · is associative, i.e. for all $A, B, C \in GL_n(\mathbb{R})$,

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

(2)
$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

(3) Every $A \in GL_n(\mathbb{R})$ has a multiplicative inverse $A^{-1} \in GL_n(\mathbb{R})$, i.e. $A \cdot A^{-1} = A^{-1} \cdot A = I_n$.

Remark 2.13. $(GL_n(\mathbb{R}), \cdot)$ is not abelian. Indeed, take $n=2, A=\begin{bmatrix}1&1\\1&0\end{bmatrix}$ and $B=\begin{bmatrix}1&1\\0&1\end{bmatrix}$, then

$$AB = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \quad BA = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$$

and so $AB \neq BA$, so $(GL_n(\mathbb{R}), \cdot)$ is not abelian.

3. Permutations

Let $X = \{a_1, a_2, ..., a_n\}$ be a set with distinct members. A bijection $\pi: X \to X$ is called a permutation. we will sometimes denote it as follows:

$$\pi = \begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ \pi(a_1) & \pi(a_2) & \pi(a_3) & \cdots & \pi(a_n) \end{pmatrix}$$

Example 3.1. Let $X=\{1,2,3,4\}$ and let $\pi:X\to X.$ with the following:

Then

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$$

Remark 3.2. When we shuffle the order of entries of π , we need to shuffle both the top and the bottom.

NOTATION 3.3. For a set X, denote S_X to be the collection of all permutations $\pi: X \to X$.

REMARK 3.4. If |X| = n, then $|S_X| = n!$.

EXAMPLE 3.5. If
$$X = \{1, 2\}$$
, then $S_X = \left\{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}$.

EXAMPLE 3.6. If X is a nonempty set, the set (S_X, \circ) is a group.