1. Suppose $n \in \mathbb{Z}$. Use contrapositive to prove: If $3 \nmid n^2$, then $3 \nmid n$.

Proposition If $3 + n^2$, then 3 + n.

Proof (Contrapositive) Suppose 3 + n is not true.

Then $3 \mid n$, which means n = 3c for some $c \in \mathbb{Z}$.

Consequently $n^2 = (3c)^2 = 9c^2 = 3.3c^2$.

Thus $n^2 = 3d$ for $d = 3c^2 \in \mathbb{Z}$, so $3 \mid n^2$.

Hence $3 + n^2$ is not true.

Name: Richard QUIZ 20 \$ MATH 211 April 25, 2023

1. Suppose $a \in \mathbb{Z}$. Use contrapositive to prove: If a^2 is not divisible by 4, then a is odd.

Proposition If a^2 is not divisible by 4, then a isold Proof (contrapositive). Suppose it is not true that a isold. Then a is even, so a = 2c for some $c \in \mathbb{Z}$. Hence $a^2 = (2c)^2 = 4c^2$. So $a^2 = 4d$ for $d = c^2 \in \mathbb{Z}$. Consequently $4|a^2$, so it is not true that a^2 is not divisible by 4.