HAX501X – Groupes et anneaux 1

Contrôle continu 1 – Correction

Clément Dupont

Questions diverses.

1) L'élément $\overline{8}$ est-il inversible dans $\mathbb{Z}/39\mathbb{Z}$? Si oui, calculer son inverse.

Clairement, 8 et 39 sont premiers entre eux (car $8=2^3$ et $39=3\cdot 13$), et donc par le cours, $\overline{8}$ est inversible dans $\mathbb{Z}/39\mathbb{Z}$. On peut calculer son inverse en utilisant l'algorithme d'Euclide étendu, ou en connaissant ses tables de multiplications : comme $8\times 5=40$, on a $\overline{8}\times \overline{5}=\overline{1}$ et donc $\overline{8}^{-1}=\overline{5}$.

- 2) Soient G et H deux groupes, et f : G → H un morphisme de groupes. Soit H' un sous-groupe de H. Montrer que l'image réciproque f⁻¹(H') est un sous-groupe de G. Voir le cours.
- 3) Donner un exemple d'un groupe d'ordre 6 qui n'est pas cyclique. On justifiera brièvement.

Le groupe symétrique \mathfrak{S}_3 a 6 éléments mais n'est pas cyclique (parce que pas abélien, par exemple).

Remarque : le groupe $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ est cyclique, engendré par $(\overline{1}, \widetilde{1})$. (Ou, par le théorème chinois des restes, il est isomorphe à $\mathbb{Z}/6\mathbb{Z}$ et donc cyclique.)

4) On se place dans le groupe $G = \mathfrak{S}_4$. Trouver deux sous-groupes d'ordre 4 de G, l'un cyclique et l'autre non cyclique. On justifiera brièvement.

L'élément $(1234) \in \mathfrak{S}_4$ est d'ordre 4, et donc engendré un sous-groupe

$$H = \langle (1234) \rangle = \{ id, (1234), (13)(24), (1432) \}$$

qui est un groupe cyclique d'ordre 4.

Pour un groupe d'ordre 4 non cyclique, on sait qu'un tel groupe est engendré par deux éléments d'ordre 2 qui commutent. On choisit les éléments (12) et (34), et on voit facilement que le groupes qu'ils engendrent est

$$H' = \langle (12), (34) \rangle = \{ id, (12), (34), (12)(34) \}$$

qui est d'ordre 4 et non cyclique (car aucun de ses éléments n'est d'ordre 4).

Exercice : morphismes de groupes. Le but de cet exercice est de classifier les morphismes de groupes de $\mathbb{Z}/m\mathbb{Z}$ dans $\mathbb{Z}/n\mathbb{Z}$, pour deux entiers $m, n \in \mathbb{N}^*$. Pour un entier relatif k, on note \widetilde{k} sa classe dans $\mathbb{Z}/m\mathbb{Z}$, et \overline{k} sa classe dans $\mathbb{Z}/n\mathbb{Z}$. On note $d = m \wedge n$ et on écrit n = de.

1) Soit $u \in \mathbb{Z}$.

a) Montrer que l'application

$$q_u: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$$
, $k \mapsto \overline{uek}$

passe au quotient par la relation de congruence modulo m.

Soient $k, k' \in \mathbb{Z}$ tels que $k \equiv k' \pmod{m}$. Alors il existe $l \in \mathbb{Z}$ tel que k = k' + lm. On a alors l'égalité dans $\mathbb{Z}/n\mathbb{Z}$:

$$g_u(k) = \overline{uek} = \overline{ue(k'+lm)} = \overline{uek'+uelm} = \overline{uek'} + \overline{uelm} = g_u(k') + \overline{uelm}.$$

Montrer que $g_u(k) = g_u(k')$ revient donc à montrer que $\overline{uelm} = \overline{0}$, c'est-à-dire que n divise le produit uelm. On calcule :

$$\frac{uelm}{n} = \frac{uelm}{de} = \frac{ulm}{d} = ul\frac{m}{d} \cdot$$

Comme $d = m \wedge n$, on a que d divise m et donc $\frac{m}{d}$ est un entier. On en déduit que $\frac{uelm}{n}$ est un entier et donc que n divise uelm. On a donc bien montré que $g_u(k) = g_u(k')$. Donc g_u passe au quotient par la relation de congruence modulo m.

b) On note

$$h_u: \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} , \ \widetilde{k} \mapsto \overline{uek}$$

l'application induite. Montrer que h_u est un morphisme de groupes.

On calcule, pour $\widetilde{k}, \widetilde{k'} \in \mathbb{Z}/m\mathbb{Z}$:

$$h_u(\widetilde{k} + \widetilde{k'}) = h_u(\widetilde{k} + \widetilde{k'}) = \overline{ue(k + k')} = \overline{uek + uek'} = \overline{uek} + \overline{uek'} = h_u(\widetilde{k}) + h_u(\widetilde{k'}).$$

Donc h_u est un morphisme de groupes.

2) Soit $f: \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ un morphisme de groupes.

a) On note $\overline{a} = f(\widetilde{1})$. Montrer que $\overline{ma} = \overline{0}$.

On a

$$\overline{ma} = \underbrace{\overline{a+a+\cdots+a}}_{m} = \underbrace{\overline{a}+\overline{a}+\cdots+\overline{a}}_{m} = \underbrace{f(\widetilde{1})+f(\widetilde{1})+\cdots+f(\widetilde{1})}_{m}$$

et donc, en utilisant le fait que f est un morphisme de groupes :

$$\overline{ma} = f(\underbrace{\widetilde{1} + \widetilde{1} + \cdots + \widetilde{1}}_{m}) = f(\widetilde{m}) = f(\widetilde{0}) = \overline{0}.$$

b) En déduire que $\overline{a} \in \langle \overline{e} \rangle$.

D'après la question précédente, $\overline{ma} = \overline{0}$ dans $\mathbb{Z}/n\mathbb{Z}$, et donc n divise ma. Comme $d = m \wedge n$, on peut écrire m = df avec $e \wedge f = 1$. On a alors que de divise dfa, et donc comme $d \neq 0$ (car sinon on aurait m = n = 0) on a que e divise fa. Or $e \wedge f = 1$ et donc par le lemme de Gauss, e divise a. Donc par définition $\overline{a} \in \langle \overline{e} \rangle$.

c) En déduire qu'il existe $u \in \mathbb{Z}$ tel que $f = h_u$.

D'après la question précédente, il existe $u \in \mathbb{Z}$ tel que $f(\widetilde{1}) = \overline{ue}$. On en déduit, comme f est un morphisme de groupes, que

$$f(\widetilde{2}) = f(\widetilde{1} + \widetilde{1}) = f(\widetilde{1}) + f(\widetilde{1}) = \overline{ue} + \overline{ue} = \overline{2ue}.$$

De même, $f(\widetilde{3}) = \overline{3ue}$, etc. Par une récurrence facile, on montre que pour tout $\widetilde{k} \in \mathbb{Z}/m\mathbb{Z}$ on a $f(\widetilde{k}) = \overline{kue}$, et donc que $f = h_u$.

3) Faire la liste des morphismes de groupes de $\mathbb{Z}/110\mathbb{Z}$ vers $\mathbb{Z}/504\mathbb{Z}$.

On pose m=110 et n=504. On calcule facilement, grâce à l'algorithme d'Euclide par exemple,

$$d = 110 \land 504 = 2$$
 et donc $e = \frac{504}{2} = 252$.

Le bilan des questions 1) et 2) est que les morphismes de groupes de $\mathbb{Z}/110\mathbb{Z}$ vers $\mathbb{Z}/504\mathbb{Z}$ sont les h_u avec $u \in \mathbb{Z}$. On note que h_0 est le morphisme trivial : $h_0(\widetilde{k}) = \overline{0}$. Le morphisme de groupes h_1 est donné par $h_1(\widetilde{k}) = \overline{252k}$. Il n'est pas trivial car $h_1(\widetilde{1}) = \overline{252} \neq \overline{0}$.

Comme $\overline{252 \times 2} = \overline{0}$, on voit que h_0 et h_1 sont les seuls morphismes de groupes de $\mathbb{Z}/110\mathbb{Z}$ vers $\mathbb{Z}/504\mathbb{Z}$. En effet, $h_u = h_0$ si u est pair et $h_u = h_1$ si u est impair.