Wprowadzenie do Algorytmiki. Kopce. Szybkie potęgowanie macierzy.

Artur Laskowski

17 stycznia 2022, Poznań

Drzewo

Drzewo

Drzewo

Drzewo binarne Ojciec ma maksymalnie 2ch synów

Drzewo jest zbalansowane, jeżeli różnica wysokości dowolnej pary liści nie przekracza 1.

Kopiec

Kopiec jest również nazywany *stogiem*, albo *kolejką priorytetową*. Wykorzystuje reprezentacę za pomocą drzewa binarnego.

Kopiec

Wartość w wierzchołku ojca jest zawsze większa od wartości w wierzchołkach synów.

Indeksowanie

Indeksowanie:

o - indeks ojca s1, s2 - indeksy synów

$$o = \lfloor s1/2 \rfloor$$
$$o = \lfloor s2/2 \rfloor$$
$$s1 = 2 \cdot o$$

$$s2 = 2 \cdot o + 1$$

Reprezentacja

Potrafimy wyliczyć indeksy ojca i syna

Numeracja jest ciągła

Możemy reprezentować kopiec za pomocą tablicy

int array[] = {0, 9, 5, 3, 1};

Dodawnia elementu

Dodajemy element na końcu kopca Przywracamy strukturę kopca

```
int array[] = {0, 9, 5, 3, 1};
int array_size = 5;

void insert(int e) {
    ++array_size;
    array[array_size] = e;
    push_up(array_size);
}

void push_up(int idx) {
    int son = idx;
    int father = idx / 2;
    while (father > 0 && array[father] < array[son]) {
        swap(array[father], array[son]);
        son = father;
        father = son / 2;
    }
}</pre>
```


Dodawanie elementu

Usuwanie elementu

Usuwamy korzeń

Zastępujemy korzeń elementem ostatnim

Przywracamy strukturę kopca

```
int array[] = {0, 9, 5, 3, 1};
int array size = 4:
int delmin() {
    int res = array[1];
    array[1] = array[array_size];
   --array size;
   push_down(1);
    return res;
void push_down(int idx) {
    int father = idx;
    int son = 2 * idx;
    while(son <= array_size) {
        if(son < array_size && array[son+1] > array[son]) -
            ++son:
       if(array[son] > array[father]) {
            swap(array[son], array[father]);
            father = son:
            son = father * 2:
        } else {
```


Usuwanie elementu

Wysokość kopca jest logarytmiczna.

Wstawianie elementu: ?

Wysokość kopca jest logarytmiczna.

Wstawianie elementu: O(log n)

Wysokość kopca jest logarytmiczna.

Usuwanie elementu: ?

Wysokość kopca jest logarytmiczna.

Usuwanie elementu: O(log n)

Wysokość kopca jest logarytmiczna.

Pobieranie największego: ?

Wysokość kopca jest logarytmiczna.

Pobieranie największego: O(log n)

Wysokość kopca jest logarytmiczna.

Tworzenie kopca o n elementach: ?

Wysokość kopca jest logarytmiczna.

Tworzenie kopca o n elementach: $O(n \log n)$

Wysokość kopca jest logarytmiczna.

Wstawianie elementu: O(log n)

Usuwanie elementu: O(log n)

Pobieranie największego: O(log n)

Tworzenie kopca o n elementach: $O(n \log n)$

Inne kopce

Kopiec Fibonacciego:

Usuwanie minimum: O(log n)

Reszta operacji: O(1)

Duża stała

Makabryczna implementacja

Kopce

Kopce można łatwo wykorzystać do sortowania liczb:

Utwórz kopiec

Wykonaj *n* razy operację usunięcia minimum

Czas działania O(nlogn)

Stabilnie, w miejscu

Zadanie

Należy wykonać naprawy fragmentów dróg:

- Każdy fragment remontowany jest dokładnie 1 dzień
- Siła zniszczenia fragmentu to p_i
- Remont danego odcinka można rozpocząć dopiero w dniu di
- Najgorsze odcinki mają być naprawione najszybciej
- Jaka będzie kolejność remontowania?

Szybkie potęgowanie

Naiwnie a^n jest obliczane jako:

$$a^n = a \cdot a \cdot \ldots \cdot a$$

Takie podejście jest niepraktyczne dla dużych a, lub n.

Szybkie potęgowanie

Jednak:

$$a^{(b+c)} = a^b \cdot a^c$$
$$a^{2b} = a^b \cdot a^b = (a^b)^2$$
$$a^{X_{10}} = a^{Y_2}$$

Szybkie potęgowanie - algorytm

$$a^{X_{10}} = a^{13_{10}} = a^{1101_2} = a^{2^3} \cdot a^{2^2} \cdot a^{2^0} = a^8 \cdot a^4 \cdot a^1$$

Liczby Fibonacciego szybkim potęgowaniem

$$\begin{vmatrix} F_{N+1} \\ F_N \end{vmatrix} = M \times \begin{vmatrix} F_N \\ F_{N-1} \end{vmatrix}$$
$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} \times \begin{vmatrix} F_N \\ F_{N-1} \end{vmatrix} = \begin{vmatrix} A \cdot F_N + B \cdot F_{N-1} \\ C \cdot F_N + D \cdot F_{N-1} \end{vmatrix}$$
$$\begin{vmatrix} F_{N+1} \\ F_N \end{vmatrix} = \begin{vmatrix} A \cdot F_N + B \cdot F_{N-1} \\ C \cdot F_N + D \cdot F_{N-1} \end{vmatrix} = \begin{vmatrix} 1 \cdot F_N + 1 \cdot F_{N-1} \\ 1 \cdot F_N + 0 \cdot F_{N-1} \end{vmatrix}$$
$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$$

Liczby Fibonacciego szybkim potęgowaniem

$$\begin{vmatrix} F_{N+1} \\ F_N \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \times \begin{vmatrix} F_N \\ F_{N-1} \end{vmatrix}$$
$$\begin{vmatrix} F_{N+1} \\ F_N \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}^N \times \begin{vmatrix} F_1 \\ F_0 \end{vmatrix}$$

Laboratoria

https://www.hackerrank.com/wda-09-2021

