Components of a Closed Loop Control System

Closed loop control system:

Components:

- Plant / Process
- Sensor
- Controller
- Actuator

ADC & DACs?

Components of a Closed Loop Control System

- · DAQ typically convert analog into digital values and digital to analog.
- data acquisition system consists of:
 - Sense physical variables
 - Condition the electrical signal
 - Convert the signal into a digital format
 - Process, analyze, store, and display

Block Diagram

- Three major groups:
 - ✓ Direct Digital Control (DDC)
 - ✓ Supervisory Control
 - ✓ Distributed Control Systems

Direct Digital Control (DDC)

- directly interfaces to the process for data acquisition and control purpose.
- it has necessary hardware for directly interfacing (opto-isolator, signal conditioner, ADC, etc.)
- it should also have memory and arithmetic capability to execute required P, P+I, P+I+D control strategy.

Direct Digital Control:

Supervisory Control:

Supervisory control and data acquisition system

Distributed Control System:

- uses *custom designed processors* as controllers
- uses both proprietary interconnections and *standard* communications protocol for communication.
- *input and output modules* form component parts of the DCS.
- processor receives information from input modules and sends information to output modules.
- inputs and outputs can be either analog signal which are continuously changing or discrete signals
- buses connect the distributed controllers with the central controller and finally to the *Human–machine interface* (*HMI*) or control consoles

Sampling Rate

The higher the sampling rate, the better Not obviously true

Aliasing

 Acquired signal gets distorted if sampling rate is too small.

Sampling Theorem

• The highest frequency (The so-called Nyquist frequency) which can be accurately represented is one-half of the sampling rate.

Sampling Frequency = 1/2 X Wave Frequency

Sampling Frequency = 1/3 X Wave Frequency

Sampling Theorem

Sampling Frequency = 2/3 X Wave Frequency

Sampling Frequency = Wave Frequency

Sampling Frequency = 2 X Wave Frequency

Throughput

 Effective rate of each individual channel is inversely proportional to the number of channels sampled.

- Example:
 - 100 KHz maximum.
 - 16 channels.

100 KHz/16 = 6.25 KHz per channel

Logic Level

- Logic gate circuits are designed to input and output only two types of signals:
 - "high" (1) and "low" (0) as represented by a variable voltage: full power supply voltage for a "high" state and zero voltage for a "low" state.
- In a perfect world, all logic circuit signals would exist at these extreme voltage limits, and never deviate from them (i.e., less than full voltage for a "high," or more than zero voltage for a "low").
- However, in reality, logic signal voltage levels rarely attain these perfect limits due to stray voltage drops in the transistor circuitry.

Logic Level

- "Acceptable" input signal voltages 0 to 0.8 volts for a "low" logic state, and 2 volts to 5 volts for a "high" logic state.
- "Acceptable" output signal voltages range from 0 volts to 0.5 volts for a "low" logic state, and 2.7 volts to 5 volts for a "high" logic state.

Logic Level

Resolution

- Number of bits the ADC uses to represent a signal
- Resolution determines how many different voltage changes can be measured
- Example: 12-bit resolution
 No. of levels = 2^{resolution} = 2¹² = 4.096 levels
- Larger resolution = more precise representation of your signal

Resolution

- 3-bit resolution can represent 8 voltage levels
- 16-bit resolution can represent 65,536 voltage levels

Resolution

- Resolution = Amplitude / No. of Levels
- 3 Bit ADC with input amplitude of 10V can yield a resolution of

$$10V / 8 = 1.25V$$

 16 Bit ADC with input amplitude of 10V can yield a resolution of

$$10V / 65536 = 152 \mu V$$

 12 Bit ADC with input amplitude of 10V can yield a resolution of

$$10V / 4096 = 2.44 \text{ mV}$$

More than sufficient for process control applications

Range

- Minimum and maximum voltages the ADC can digitize DAQ devices often have different available ranges
 - -0 to +5 volts
 - -5 to +5 Volts
 - 0 to +10 volts
 - -10 to +10 volts
- Pick a range that your signal fits in
- Smaller range = more precise representation of your signal
- Allows you to use all of your available resolution

Proper Range

Using all 8levels torepresent yoursignal

Improper Range

Only using 4 levels to represent your signal

Mode - Differential, RSE or NRSE

- Differential Mode
 - Two channels used for each signal
 - ACH 0 is paired with ACH 8, ACH 1 is paired with ACH 9, etc.
 - Rejects common-mode voltage and common-mode noise

Mode - Differential, RSE or NRSE

- Referenced Single Ended (RSE) Mode
 - Measurement made with respect to system ground
 - One channel used for each signal
 - Doesn't reject common mode voltage

Mode - Differential, RSE or NRSE

- Non-Referenced Single Ended (NRSE) Mode
 - Variation on RSE
 - One channel used for each signal
 - Measurement made with respect to AISENSE not system ground
 - AISENSE is floating
 - Doesn't reject common mode voltage

Normalization

Min-max normalization: to [new_minA, new_maxA]

$$v' = \frac{v - \min_{A}}{\max_{A} - \min_{A}} (new _ \max_{A} - new _ \min_{A}) + new _ \min_{A}$$

• Ex. Let temperature range of 30 to 300 °C is normalized to [0, 100%]. Then 160 °C is mapped to

$$\frac{160-30}{300-30}(100-0)+0=48.148\%$$

• Z-score normalization (μ : mean, σ : standard deviation):

$$v' = \frac{v - \mu_A}{\sigma_A}$$

• Normalization by decimal scaling $v' = \frac{v}{10^{j}}$

Case Study

• Consider a level tank with a height of 0.5 m. A level transmitter is used and calibrated to give an output of 1 to 5V for 0 to 0.5m of level. A data acquisition card with a resolution of 12bit is used with a input range of 0 to 5V. If the level value is 0.3m, calculate the binary value that will be stored in the memory of the system.

Solution:

 $0 \text{ to } 0.5\text{m} \rightarrow 1 \text{ to } 5 \text{ V}$

•
$$0.3 \text{m} \rightarrow \frac{0.3 - 0}{0.5 - 0} (5 - 1) + 1 = 3.4V$$

Case Study

• ADC

$$-0V \rightarrow 0000 \quad 0000 \quad 0000 \rightarrow 0$$
 (Decimal Value)

$$-5V \rightarrow 1111111111111111 \rightarrow 4095$$

•
$$3.4V \rightarrow \frac{3.4-0}{5-0}(4095-0)+0=2784.6 \approx 2785$$

• $2785 \rightarrow 1010 1110 0001$