

LDO for a Digital High Frequency Clock Source Chip

Project Number: 24-1-1-3097

Names: Arsen Arutyunov, Or Fahima

Advisor: Tal Elazar

DPLL 2025/26

Motivation & Objective

To ensure low phase noise and precise timing, the DPLL needs a stable, low-noise supply. Our LDO is designed to provide a consistent output across supply and temperature variations, tailored specifically for DPLL requirements.

Operating Principle

Internal architecture of the LDO:

The regulated output voltage is given by:

$$V_{out} = V_{ref} \left(1 + \frac{R_1}{R_2} \right)$$

Miller OTA as an Error Amplifier:

In BGR, forces $V_A = V_B$ to generate a temperature-independent current.

In LDO, used as a current regulator that stabilizes V_{out} . High gain ($\sim 80dB$) improves accuracy and regulation.

The Bandgap Reference

The bandgap reference generates a precise, temperature-independent voltage. $V_{BE1} = V_{PTAT}$

$$V_{A} = \frac{kT}{q} \ln \left(\frac{I}{N \times I_{S}} \right) + IR_{1} = \frac{kT}{q} \ln \left(\frac{I}{I_{S}} \right) = Vzv_{B}$$

$$I = \frac{V_{BE1} - V_{BE2}}{R_{1}} = \frac{kT}{qR_{1}} \ln(N) \rightarrow PTAT \ current$$

Implementation

The LDO, designed in TSMC 28nm with a two-stage OTA and modified bandgap (0.72V), reliably regulates 0.9V across varying loads and supply levels with improved

Layout Phase

temperature stability.

Layout was optimized using dummy devices and common-centroid techniques to ensure accurate matching.

BLOCK

Results

The following table summarizes three critical performance metrics of the LDO:

Metric	Definition	Requirement	Achieved
Temperature Coefficient	$\frac{dV_{\rm out}}{dT}(\rm ppm/^{\circ}C)$	< 60	5.8 (†90.3%)
Line Regulation	$\frac{\Delta V_{ m out}}{\Delta V_{ m DD}}(\%)$	< 1%	0.12% (†88%)
Load Regulation	$\frac{\Delta V_{ m out}}{\Delta I_{ m load}}(\%)$	< 10%	0.41% (†95.9%)

Table 1: Summary of the three critical performance metrics of the LDO.

Our LDO maintains excellent output stability across a wide operating range:

