REPASANDO

Estabilidad atmosférica

- Si $\gamma < \Gamma_d \Rightarrow a > 0$, Condición Estable
- Si $\gamma = \Gamma_d \Rightarrow a = 0$, Condición Neutra
- Si $\gamma > \Gamma_d \Rightarrow a < 0$, Condición Inestable

RECORDAR

https://sinia.minam.gob.pe/normas/limites-maximos-permisibles

W. Williams

Fuente: MINAM 2019

http://www.minam.gob.pe/wp-content/uploads/2017/04/Proyecto-de-DS-ECA-AIRE.pdf

. MEJORAR LA DISPERSIÓN

CHIMENEA ALTAS ESQUEMAS DE CONTROL INTERMITENTE REUBICACIÓN DE LA PLANTA

3. INSTRUMENTOS DE GESTIÓN DE CALIDAD DE AIRE

MEDIDAS DE CONTROL DE LA CONTAMINACIÓN DEL AIRE 2. REDUCIR LAS EMISIONES POR EL CAMBIO DE PROCESO MODIFICACIÓN DE SUS PROCESOS PRODUCTIVOS CAMBIO Y REDUCCIÓN DE USO COMBUSTIBLES

4. DISPOSITIVOS DE CONTROL EN LA CHIMENEA CONTROL DE PARTÍCULAS TRATAMIENTOS DE GASES Y VAPORES

1. MEJORAR LA DISPERSIÓN

CONDUCTO VERTICAL A TRAVÉS DEL CUAL LOS GASES Y PARTÍCULAS
RESIDUALES DE LA COMBUSTIÓN SON DESCARGADOS A LA
ATMOSFÉRICAS

EJM

ALTAS (HORNOS Y CALDERAS GRANDES)

- BAJAS (INDUSTRIAS

FACTORES:

- ALTURA, DIÁMETROS, CAUDAL, TS, VS, Q, METEOROLOGÍA,

TOPOGRAFIÍA,...

Vs: VELOCIDAD A LA SALIDA DE LA CHIMENEA

EQUIPOS DE MONITOREO DE EMISIONES

SONDA ISOCINÉTICA

Fuente: Paola Candelo

ESQUEMA DE PLATAFORMA Y PUERTOS DE MUESTREO PARA DUCTOS MENORES A 3M DE RADIO INTERIOR

Fuente: electropower

MEJORAR LA DIPSPERSIÓN

Caso: En ciertos momentos del año es más probable que las emisiones lleguen al suelo en concentraciones elevadas y en zonas pobladas, que en otros momentos Entonces la reducción de emisiones

- Paralización de los procesos
- Cambios de combustibles
- Reducción de la producción durante el periodo de control

Vera Figueroa, Juan; Patiño Aroca, Mario; Barriga Rivera, Alfredo
Facultad de Ingeniería en Mecánica y Ciencias de la Producción
Escuela Superior Politécnica del Litoral
Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Casilla 09-01-5863, Guayaquil, Ecuador.
Email: jpverafigueroa@yahoo.com, mpatino@espol.edu.ec, abarriga@espol.edu.ec

http://www.dspace.espol.edu.ec/bitstream/123456789/4763/1/7344.pdf

B ALLEY ME

2. REDUCIR

Producción má

Estrategia aplicada a servicios.

Para:

 \rightarrow ln

pr

 \rightarrow

 \rightarrow

R p

zación gética

PRÁCTICAS DE PML

Cambio de tecnología

Modificación del equipo

Modificación del producto

Recuperación / reutilización in situ

Utilización eficiente de la energía

Buen mantenimiento del local

a) Comando y control

b) Administrativos

- Licencias Ambientales
- Usar los RRNN pr<mark>evistos en la legislación</mark>

c) Económicos

- Las fuerzas del mercado propician el cumplimiento de las metas ambientales
- d) Planes de Acción para mejorar la calidad del aire
- e) Educación, invetigación, asistencia técnica y la información ambiental

a) Instrumentos de Comando y control (Regulación directa)

INSTRUMENTOS DE REGULACIÓN DIRECTA	DESCRIPCIÓN	VENTAJAS	DESVENTAJAS
Estándares de Calidad Ambiental	Establece la concentración máxima de un contaminante en el aire.	Permite evaluar la efectividad de la regulación.	Requiere conocer los efectos del contaminante. Ineficiente para promover la regulación de emisiones de parte de fuentes específicas.
Estándares de Desempeño y/o Normas de Emisión	Fija, por fuente, la cantidad o concentración máxima aceptable de un contaminante a emitir.	Permite flexibilidad para elegir tecnología de control.	Altos costos de fiscalización.
Estándares de Diseño Tecnológico	Especifica tecnologías a utilizar por sectores productivos o procesos.	Máxima seguridad respecto a resultados.	No permite flexibilidad para elegir la tecnología de control. Altos costos de fiscalización

18

b) Instrumentos Administrativos

ADMINISTRATIVO	DESCRIPCIÓN	VENTAJAS	DESVENTAJAS
Permisos y licencias	Entrega de autorización para operar	Requiere que se cumplan con los estándares antes de permitir la operación de la planta. Facilita la sanción por incumplimiento. Permite al gobierno retirarlas en caso de necesidad.	Requiere altos costos de fiscalización.
Control del uso de espacio	Regula la localización de fuentes	Impide la localización de procesos contaminantes en lugares inadecuados.	Vulnerable a presiones políticas, económicas y locales.

c) Instrumentos Económicos

RETRIBUCIÓN ECONÓMICA	DESCRIPCIÓN	VENTAJAS	DESVENTAJAS
Impuesto a las emisiones	Cobro por cantidad y calidad de un contaminante emitido.	Genera ingresos al estado. Incentiva a reducir sus emisiones.	Altamente complejo de aplicar. Altos cstos de fiscalización.
Impuesto a los usuarios	Cobro por utilizar un proceso contaminante.	Genera ingresos al estado.	Complejo de aplicar.
Impuesto a productos e insumos	Impuesto al precio de productos o insumos que generan contaminación.	Genera ingresos al estado Promueve el uso de productos limpios.	Requiere sustitutos cercanos para dichos productos e insumos.

d) Planes de Acción para mejorar la calidad del aire

Objetivo:

Formular la estrategia, políticas y medidas que permitirán alcanzar y/o no sobrepasar los Estándares de Calidad Ambiental para Aire Nacionales en un plazo determinado.

Elementos:

- Información general
- Identificación del problema
- Objetivos y metas
- Programa de vigilancia
- Medidas para mejorar la calidad del aire
- Medidas durante estados de alerta
- Calendario, financiamiento, roles y responsabilidades

FM2-5-pm2p5?cams@m2p5,2020062607,3.426,-45.000,3,i:pressure

El relieve de

la Región Metropolitana

Esta región consta de tres zonas de relieve distintivas: Cordillera de los Andes, Cordillera de la Costa y Depresión Intermedia.

Esta última está enmarcada por las dos cordilleras, dando origen a lo que se conoce como Cuenca de Santiago, que se extiende desde el cordón de Chacabuco, por el norte, hasta la angostura de Paine, por el sur.

AIRE MUY FRIO AIRE FRIO Continue Cont

Inversión Térmica

https://mma.gob.cl/wp-content/uploads/2018/08/Guia-bara-Docentes-Sobre-Calidad-del-Aire-003.pdf

Tabla 3 Principales Contaminantes generados por distintas fuentes de actividad

	Contaminantes						
Fuentes de Actividad	Material Particulado	Monóxido de Carbono	Óxidos de Nitrógeno	Óxidos de Azufre	Compuestos Orgánicos Volátiles	Plomo	Ozono Tropos- férico
Centrales térmicas	✓	✓	✓	✓	✓		
Tráfico	✓	✓	✓	✓	✓	/	✓
Calefacción doméstica a leña	✓	✓	✓	✓	✓		
Refinado de petróleo			✓	✓	✓		
Minería	✓					✓	
Manufacturas metálicas	✓					✓	
Incineración de residuos	✓	✓	✓	✓	✓	✓	
Agricultura	✓						

Basado en Kiely, Gerard (1999): "Ingeniería Ambiental. Fundamentos, entornos, tecnologías y sistemas de gestión"

Figura 3 Efectos en la salud según contaminantes atmosféricos

Retraso en conductas del aprendizaje

- Bronquitis
- · Irritación de vías respiratorias · Asma

Aumenta la posibilidad de enfermedades cardíacas

- Daño a la médula espinal
 Leucemia
- · Problemas en el feto

- · Irritación de ojos
- Mareos
- · Dolor de cabeza

Fuente: Guía Pedagógica. Descontaminemos el Aire de Nuestra Ciudad.

Fuente: René D

CONDICIÓN DE EPISODIO Aire cálido y seco desciende

Meteochile Blog

PROMEDIOS ANUALES DEL MATERIAL PARTICULADO FRACCIÓN FINA MP2,5

Evolución del Material Particulado Respirable Fracción Fina MP2,5 Red MACAM (1989-2017)

Fuente: División de Calidad del Aire, Ministerio del Medio Ambiente

Patrones de producción y consumo

	10 AÑOS ATRAS	AHORA		
Buses	14.000 buses 15 años promedio	7.500 buses 5 años promedio		
Diesel	5000 ppm azufre	200 ppm azufre		
Gasolinas	Todas con plomo	Todas sin plomo		
Vehículos particulares	100% convencionales	25% convencionales 75% catalíticos		
Industria	Leña, carbón y petróleos pesados	Gas Natural y Diesel ciudad (300 ppm)		
Generación Eléctrica	Carbón	Gas Natural		

GRA