Олимпиада НИУ ВШЭ для студентов и выпускников -2017 г. Демонстрационный вариант и методические рекомендации по направлению 01.04.02 «Прикладная математика и информатика»

Профиль 020 «Прикладная математика и информатика»

Время выполнения задания — 240 мин. Решения заданий должны быть записаны по-русски или по-английски. Каждая задача оценивается из 10 баллов, максимальная сумма - 100 баллов.

Time to complete the task is 240 min. Solutions should be written in English or Russian language. Each problem costs 10 points, maximal sum is equal to 100 points.

Общая часть / General Section

следующий интеграл:

1. Определите, при каких значениях α, β сходится 1. Determine for which α, β does the following integral

$$\int_{1}^{\infty} x^{\alpha} (\ln x)^{\beta} dx.$$

2. Вычислите производную $f_n(x)$ решения $F_n(x)$ **2.** Compute the derivative $f_n(x)$ of the function $F_n(x)$ функционального рекуррентного соотношения

given by the recurrence relations

$$F_n(x) = F_{n-1}(x) + 2F_{n-2}(x) + 2^n(3nx - x - 3/2), \quad F_0(x) = 1, F_1(x) = x + 3.$$

3. Для дифференциального уравнения

3. For the differential equation

$$4y^2y' + 7x = 5xy^3$$

найдите все решения y(x), являющиеся ограни- find all solutions y(x) bounded as $x \to +\infty$.

ченными при $x \to +\infty$.

4. Даны x_1, \ldots, x_n . Найдите состоятельную точечную оценку параметра θ для гипотезы о равномерном распределении данных в интервале $[0; \theta]$. Является ли она несмещенной?

5. Докажите формулу свертки Вандермонда:

4. For a given data x_1, \ldots, x_n find a consistent point

estimation of the parameter θ for the hypothesis of a uniform data distribution in the range $[0, \theta]$. Is it unbiased?

5. Prove the Vandermonde convolution formula:

$$\sum_{k=-\infty}^{+\infty} \binom{r}{m+k} \binom{s}{n-k} = \binom{r+s}{m+n}$$

при условии, что $\binom{n}{k} \equiv 0$ для k < 0 или k > n.

6. Обозначим количества вершин, ребер и граней (частей, на которые ребра разбивают плоскость, включая внешнюю часть) связного планарного графа через V, E и F соответственно.

Докажите, что для связного планарного графа $2E \ge 3F$ при E > 1.

Докажите, что связный граф без петель и кратных ребер на 10 вершинах, степень каждой из которых равна 5, не может быть изображен на плоскости без самопересечений.

with $\binom{n}{k} \equiv 0$ for k < 0 or k > n.

6. For a connected planar graph denote the quantities of vertices, edges and faces (parts into which the plane is divided by the edges, including the outer part) by V, E and F correspondingly.

Prove the inequality $2E \geq 3F$ for a connected planar graph with E > 1.

Prove that the connected graph without loops and multiple edges that consists of 10 vertices of degree 5 cannot be drawn on the plane without self-intersections.

Олимпиада НИУ ВШЭ для студентов и выпускников — 2017 г.

Демонстрационный вариант и методические рекомендации по направлению 01.04.02 «Прикладная математика и информатика»

Профиль 020 «Прикладная математика и информатика»

Специальная часть / Special Section

Среди следующих задач решите не менее Solve at least four of the following problems. четырех. В зачет пойдут четыре лучших ре- Up to four best solutions will be graded.

7. Докажите, что не существует самодвойствен- 7 Prove that there is no self-dual functions: ных функций:

$$f^{(n)}(x_1,\ldots,x_n) = \overline{f^{(n)}(\overline{x_1},\ldots,\overline{x_n})},$$

существенно зависящих ровно от 2-х переменных. that is essentially dependent exactly on two variables.

- 8. Выясните математическое ожидание случайной величины, имеющей функцию плотности: $\frac{1}{\pi}(\arctan x)'$.
- **9.** Для набора $C = \{(X(i), Y(i)) : 1 \le i \le N\}$ точек на плоскости приведите псевдокод алгоритма, вычисляющего пару точек из C, расстояние между которыми минимально.
- 10. Сколькими способами можно замостить прямоугольник высоты 1 и длины n, используя плитки высоты 1 следующих видов:
- 8. Find the mean value of random variable with the following density function: $\frac{1}{\pi}(\arctan x)'$.
- **9.** For a collection $C = \{(X(i), Y(i)) : 1 \le i \le N\}$ of points in the plane give a pseudocode of an algorithm that calculates a pair of points in C that have the smallest distance from each other.
- 10. How many coverings of the rectangle with height 1 and length n exist, if we use only tiles with height 1 of the following types:

- 11. Найдите все вещественные решения уравнения 11. Find all real solutions of the equation

$$y''' - 12y'' + 36y' = e^{6x} + 1.$$

- 12. Сколькими способами можно составить бинар- 12. How many binary sequences of a length n without ную последовательность длины n, не содержащую neighboring zeros? двух соседних нулей.
- 13. Найдите все вещественные решения уравнения 13. Find all real solutions of the equation

$$y^{IV} - 8y'' + 16y = e^{2x} + 6x\sin x.$$

- **14.** Докажите при $n \ge 1$ тождество
- **14.** Prove the identity for $n \geq 1$

$$(-1)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n} e^{-\frac{x^2}{2}} = \begin{vmatrix} x & n-1 & 0 & 0 & \dots & 0 \\ 1 & x & n-2 & 0 & \dots & 0 \\ 0 & 1 & x & n-3 & \dots & 0 \\ 0 & 0 & 1 & x & \ddots & 0 \\ \dots & \dots & \dots & \ddots & \ddots & 1 \\ 0 & 0 & 0 & 0 & 1 & x \end{vmatrix}$$

- чек на плоскости приведите псевдокод алгоритма, вычисляющего выпуклую оболочку C.
- 16. Выясните дисперсию равномерно распределенной на [a;b] случайной величины.
- 17. Имеется пирамида с п кольцами возрастающих размеров, насаженными на стержень, и два пустых стержня той же высоты. Можно перекладывать верхнее кольцо, но запрещается класть большее кольцо на меньшее. Докажите, что можно переложить все кольца с первого стержня на третий за $2^n - 1$ перекладываний.
- **15.** Для набора $C = \{(X(i), Y(i)) : 1 \le i \le N\}$ то- **15.** For a collection $C = \{(X(i), Y(i)) : 1 \le i \le N\}$ N} of points in the plane give a pseudocode of an algorithm that calculates the convex hull of C.
 - 16. Find the variance of random variable having uniform distribution in the segment [a;b].
 - 17. There is a pyramid of n rings of increasing sizes stacked on a bar such that the largest ring is at bottom, and two empty bars of the same height. The allowed moves consist in moving the top ring from any bar to another, provided that a bigger ring is never put on top of a smaller one. Prove that the full stack of rings can be moved to a different bar in $2^n - 1$ moves.