Khôlles: Suites et Séries de Fonctions

- 27 Novembre - 01 Décembre 2023 -

Sommaire

1	Que	estions de cours - Tout groupe	1
	1.1	Définition de la convergence simple et uniforme d'une suite de fonction]
	1.2	La convergence uniforme implique la convergence simple (« démo »). Contre-exemple pour la réciproque]
	1.3	Th de continuité pour les suites de fonctions (démo)	2
	1.4	Th de la double limite pour les suites de fonctions	2
	1.5	Th d'intégration sur un segment des suites de fonctions (démo)	3
	1.6	Th de « dérivation » des suites de fonctions	
	1.7	Définition de la convergence simple, uniforme et normale d'une série de fonctions	
	1.8	Th de continuité pour les séries de fonctions + application à zéta	
	1.9	Th de la double limite pour les séries de fonctions + application à zéta au voisinage de $+\infty$	5
	1.10	Th d'intégration sur un segment pour les séries de fonctions + application à zéta	6
	1.11	Th de « dérivation » pour les séries de fonctions + application à zéta	6
	1.12	Théorème d'approximation uniforme des fonctions continues par des fonctions en escalier sur un segment.	8
	1.13	Théorème de Weierstrass	8
2	Que	estions de Cours - Groupes B et C	9
	2.1	Th de « dérivation » des suites de fonctions. (démo)	ç
	2.2	Th de « primitivation » des suites de fonctions sur des segments. (démo)	9
	2.3	Pour une série de fonctions, CVN \Rightarrow CVU \Rightarrow CVS (démo de la première implication)	10
	2.4	Exemple de série de fonctions convergeant uniformément mais pas normalement	10
	2.5	Extension \mathscr{C}^k du théorème de "Dérivation" + application à la fonction zéta	11
	2.6 2.7	Equivalent de zéta au voisinage de 1 ⁺ à l'aide d'une comparaison Série-Intégrale	
		normale de cette série de fonctions.	13
3		estions de Cours - Groupe C	14
		Limite de zéta en 1+ en « epsilon ». (non fait en cours)	
	3.2	La fonction zêta est log-convexe. (démo)	
	3.3	(Prérequis) Complétude de \mathbb{R}^n pour tout $n \in \mathbb{N}^*$	
	3.4	Démonstration du Théorème de la Double Limite (démo HP)	16
	3.5	Théorème d'approximation uniforme des fonctions continues par des fonctions en escalier sur un segment.	
		(démo)	17
4		Exercices de Référence, Tout groupe	
		Exercice 1	
		Exercice 2	
	4.3	Exercice 3	
	1 1	Evereico A	2.1

1 Questions de cours - Tout groupe

1.1 Définition de la convergence simple et uniforme d'une suite de fonction.

Définition

Soit $(E, \|\cdot\|)_E$, \mathbb{K} -EVN de dimension Finie. Soit $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$ où $I \subset \mathbb{R}$ est un intervalle.

On dit que la suite de fonctions $(f_n)_n$ converge Simplement (CVS) vers $g \in \mathcal{F}(I, E)$ sur I si

$$\forall x \in I$$
, $\|f_n(x) - g(x)\|_E \to 0$

Définition

 $Soit\ (E,\|\cdot\|)_E, \mathbb{K}\text{-EVN de dimension Finie. Soit}\ (f_n)_n \in \mathcal{F}(I,E)^{\mathbb{N}}\ où\ I \subset \mathbb{R}\ est\ un\ intervalle.$

On dit que la suite de fonctions $(f_n)_n$ converge Uniformément (CVU) vers $g \in \mathcal{F}(I,E)$ sur I si

$$\|\mathbf{f_n} - \mathbf{g}\|_{\infty} \to 0$$

.

Ceci est équivalent à $\forall \epsilon > 0$, $(f_n - g)$ est bornée sur I par ϵ pour n assez grand

1.2 La convergence uniforme implique la convergence simple (« démo »). Contre-exemple pour la réciproque

Preuve:

Si $(f_n)_n$ Converge uniformément vers g, alors $||f_n - g||_{\infty} \to 0$.

Ainsi, pour tout $x \in I$, $\|f_n(x) - g(x)\|_E \le \|f_n - g\|_{\infty} \to 0$, par théorème d'encadrement : $\|f_n(x) - g(x)\|_E \to 0$.

Ainsi, $(f_n)_n$ Converge Simplement vers g

Exemple

Il suffit de prendre $f_n: x \mapsto x^n$ pour avoir une convergence simple vers $\mathbb{I}_{\{1\}}$ sur [0,1], mais non-uniforme.

 \mathbf{MPI}^{\star} 1

1.3 Th de continuité pour les suites de fonctions (démo)

Théorème de Continuité

Soit $(E, \|\cdot\|)_E$, \mathbb{K} -EVN de dimension Finie. Soit $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$ où $I \subset \mathbb{R}$ est un intervalle. Soit $g \in \mathcal{F}(I, E)$.

Hypothèses:

- 1. $\forall n \in \mathbb{N}, f_n \mathscr{C}^0 \text{ sur } I$
- 2. (f_n) CVU vers g sur I

1. $g \operatorname{est} \mathscr{C}^{0} \operatorname{sur} I$

Preuve :

Soit $a \in I$. Montrons que g est continue en a:

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ \|f_n - g\|_{\infty} \leqslant \epsilon.$$

Alors,
$$\forall x \in I$$
, $|g(x) - g(a)| = |g(x) - f_N(x) + f_N(x) - g(a)|$

$$\begin{aligned} |g(x) - f_{N}(x) + f_{N}(x) - g(\alpha)| &= |g(x) - f_{N}(x) + f_{N}(x) - f_{N}(\alpha) + f_{N}(\alpha) - g(\alpha)| \\ &\leq |g(x) - f_{N}(x)| + |f_{N}(x) - f_{N}(\alpha)| + |f_{N}(\alpha) - g(\alpha)| \\ &\leq ||g - f_{N}||_{\infty} + |f_{N}(x) - f_{N}(\alpha)| + ||f_{N} - g||_{\infty} \end{aligned}$$

 $\text{Or, par continuit\'e de }f_N: pour \ x \in I \cap]\alpha - \eta, \alpha + \eta[, \ |g(x) - g(\alpha)| \leqslant 3\epsilon.$

Ainsi, $q \operatorname{est} \mathscr{C}^0 \operatorname{en} a$, donc $q \operatorname{est} \mathscr{C}^0 \operatorname{sur} I$

1.4 Th de la double limite pour les suites de fonctions.

Théorème de la Double limite

Soit $(E, \|\cdot\|)_E$, \mathbb{K} -EVN de dimension Finie. Soit $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$ où $I \subset \mathbb{R}$ est un intervalle. Soit $g \in \mathcal{F}(I, E)$. Soit $a \in I$.

Hypothèses:

1. $\forall n \in \mathbb{N}$, $\lim_{x \to a} f_n(x) = l_n \in \mathbb{R}$

1. (l_n) converge vers $L \in \mathbb{R}$

2. (f_n) CVU vers g sur I

2. $\lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right)$

i.e:
$$\lim_{x \to a} g(x) = \lim_{n \to +\infty} l_n$$

1.5 Th d'intégration sur un segment des suites de fonctions (démo)

Théorème d'Intégration

Soit $(E, \|\cdot\|)_E$, \mathbb{K} -EVN de dimension Finie. Soit $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$ où $I \subset \mathbb{R}$ est un intervalle. Soit $g \in \mathcal{F}(I, E)$.

Hypothèses:

- 1. $\forall n \in \mathbb{N}, f_n \mathscr{C}^0 \operatorname{sur} [a, b]$
- 2. (f_n) CVU vers g sur [a, b]

Conclusions:

- 1. $g \operatorname{est} \mathscr{C}^{0} \operatorname{sur} [a, b]$
- 2. $\lim_{n \to +\infty} \int_a^b f_n(t) dt = \int_a^b g(t) dt$

Preuve :

La première conclusion correspond au théorème de Continuité.

$$\forall n \in \mathbb{N}, \ \left\| \int_a^b g(t)dt - \int_a^b f_n(t)dt \right\|_E = \left\| \int_a^b g(t) - f_n(t)dt \right\|_E \leqslant \int_a^b \|g(t) - f_n(t)\|_E dt.$$

Or, nous avons la convergence uniforme de la suite $(f_n)_n$. Ainsi, $\forall t \in [a,b], \ \|g(t) - f_n(t)\|_E \le \|g - f_n\|_\infty$

$$\text{Ainsi,} \ \| \int_{a}^{b} g(t) dt - \int_{a}^{b} f_{n}(t) dt \|_{E} \leqslant (b-a) \|g - f_{n}\|_{\infty} \to 0.$$

Finalement,
$$\int_{\alpha}^{b} f_{n}(t)dt \rightarrow \int_{\alpha}^{b} g(t)dt$$

1.6 Th de « dérivation » des suites de fonctions.

Théorème de Dérivation

Soit $(E, \|\cdot\|)_E$, \mathbb{K} -EVN de dimension Finie. Soit $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$ où $I \subset \mathbb{R}$ est un intervalle. Soit $g \in \mathcal{F}(I, E)$.

Hypothèses:

- 1. $\forall n \in \mathbb{N}, f_n \mathscr{C}^1 \text{ sur } I$
- 2. (f_n) CVS vers f sur I
- 3. (f'_n) CVU vers g sur I

Conclusions:

- 1. $\forall [a,b] \subset I$, (f_n) CVU vers f sur [a,b]
- 2. $f \operatorname{est} \mathscr{C}^1 \operatorname{sur} I$
- 3. f' = g

 MPI^*

1.7 Définition de la convergence simple, uniforme et normale d'une série de fonctions.

Définition: Convergence Simple d'une Série de Fonctions

Soit $I \subset \mathbb{R}$, un Intervalle. Soit $(E, \|\cdot\|_E)$, \mathbb{K} -EVN de dimension Finie. Soit $(f_n)_n \in \mathcal{F}(I, \mathbb{R})^{\mathbb{N}}$.

On dit que la série de fonctions $\sum_n f_n$ Converge simplement sur I si $\forall x \in I$, $\sum_n f_n(x)$ Converge (Série numérique).

On note alors $S(x) = \sum_{n=0}^{+\infty} f_n(x)$, S_N les sommes partielles et R_N le reste d'ordre N.

Définition: Convergence Uniforme d'une Série de Fonctions

Soit $I \subset \mathbb{R}$, un Intervalle. Soit $(E, \|\cdot\|_E)$, \mathbb{K} -EVN de dimension Finie. Soit $(f_n)_n \in \mathcal{F}(I, \mathbb{R})^{\mathbb{N}}$ et $S = \sum_{n=0}^{\infty} f_n$.

On dit que la série de fonctions $\sum_n f_n$ Converge Uniformément sur I si la suite des sommes partielles (S_N)

Converge Uniformément sur I

(où
$$\forall x \in I, \ S_N(x) = \sum_{n=0}^{N} f_n(x)$$
).

Définition: Convergence Normale d'une Série de Fonctions

Soit $I \subset \mathbb{R}$, un Intervalle. Soit $(E, \|\cdot\|_E)$, \mathbb{K} -EVN de dimension Finie. Soit $(f_n)_n \in \mathcal{F}(I, \mathbb{R})^{\mathbb{N}}$ et $S = \sum_{n=0}^{+\infty} f_n$.

On dit que la série de fonctions $\sum_{n} f_n$ Converge Normalement sur I si :

- $\forall n \in \mathbb{N}$, f_n est bornée sur I
- $\sum_{n} \|f_n\|_{\infty}$ Converge (Série Numérique)

MPI* 4

1.8 Th de continuité pour les séries de fonctions + application à zéta

Théorème Continuité

Hypothèses:

Conclusions:

1.
$$\forall n \in \mathbb{N}$$
, $f_n \mathscr{C}^0 \operatorname{sur} I$

2.
$$\sum_{n} f_n$$
 CVU sur I

1.
$$\sum_{n} f_n \operatorname{est} \mathscr{C}^0 \operatorname{sur} I$$

Exemple

 $\text{Montrons que } \zeta\colon\! x\mapsto \sum_{n=1}^{+\infty}\frac{1}{n^x} \text{ est Continue sur } I=]1;+\infty[.$

Soit $[a,b] \subset I$, un segment non vide. On a vu que $\|f_n\|_{\infty}^I = \frac{1}{n^{\alpha}}$.

Or, $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ Converge, Il y a donc Convergence normale sur ce segment I (Attention, pas de Convergence Normale sur I).

Dès lors, en appliquant le théorème de Continuité sur ce segment (CVN \Rightarrow CVU) : ζ est Continue sur [a,b] pour tout segment $[a,b] \subset I$.

Dès lors,
$$\zeta$$
 est Continue sur $\bigcup_{[a,b]\subset I} [a,b] = I$

1.9 Th de la double limite pour les séries de fonctions + application à zéta au voisinage de $+\infty$.

Théorème de la Double limite

Hypothèses:

Conclusions:

1.
$$\forall n \in \mathbb{N}, \lim_{x \to a} f_n(x) = l_n \in \mathbb{R}$$

1.
$$\sum_{n} l_n$$
 converge.

2.
$$\sum_{n} f_n$$
 CVU sur I

2.
$$\lim_{x \to a} S(x) = \sum_{n} \lim_{x \to a} f_n(x) = \sum_{n} l_n$$

Exemple

Posons $\zeta: x \mapsto \sum_{n=1}^{\infty} f_n(x)$ avec $\forall n \in \mathbb{N}, \ f_n: x \mapsto \frac{1}{n^x}$.

Posons $J = [2; +\infty[$. Alors $\|f_n\|_{\infty}^J = \frac{1}{n^2}$.

Or, la série des $\frac{1}{n^2}$ est Convergente : ζ Converge Normalement, donc uniformément sur J.

 $\text{Posons } l_n = \delta_{n,1}. \text{ Alors } \forall n \in \mathbb{N}, \ \lim_{x \to +\infty} f_n(x) = l_n. \text{ Alors, } \lim_{x \to +\infty} \zeta(x) = \sum_{n=1}^{+\infty} l_n = 1$

1.10 Th d'intégration sur un segment pour les séries de fonctions + application à zéta.

Théorème d'Intégration

Hypothèses:

1.
$$\forall n \in \mathbb{N}, f_n \mathscr{C}^0 sur [a, b]$$

2.
$$\sum_{n} f_n$$
 CVU sur $[a,b]$

Conclusions:

1.
$$\sum_{n} f_n \operatorname{est} \mathscr{C}^0 \operatorname{sur} [a, b]$$
 (et existe...)

2.
$$\sum_{n} \int_{a}^{b} f_{n}(t)dt = \int_{a}^{b} \sum_{n} f_{n}(t)dt$$

Exemple

Les hypothèses du théorème sont respectées (C.F Exemples Précédents).

Alors,
$$\int_{2}^{3} \zeta(x) dx = \sum_{n=1}^{+\infty} \int_{2}^{3} \frac{dx}{n^{x}} = \sum_{n=1}^{+\infty} \int_{2}^{3} e^{-x \ln(n)} dx$$

Donc
$$\int_{2}^{3} \zeta(x) dx = \sum_{n=1}^{+\infty} \frac{1}{\ln(n)} \left(\frac{1}{n^{2}} - \frac{1}{n^{3}} \right) + 1$$

1.11 Th de « dérivation » pour les séries de fonctions + application à zéta.

Théorème de Dérivation

Ivpothèses :

1. $\forall n \in \mathbb{N}$, $f_n \mathscr{C}^1 \operatorname{sur} I$

2. $\sum_{n} f_n$ CVS sur I

3. $\sum_{n} f'_{n}$ CVU sur I

Conclusions:

1.
$$\sum_{n} f_n \operatorname{est} \mathscr{C}^1 \operatorname{sur} I$$

2.
$$S'(x) = \sum_{n} f'_{n}(x)$$

Note:-

On localise souvent le théorème : On montre que ceci est vrai sur tout segment inclus dans l'ensemble de définition.

Exemple

Les hypothèses 1 et 2 sont immédiates, et l'on note $\forall n \in \mathbb{N}, \ f'_n : x \mapsto -\ln(n)e^{-x\ln(n)} = -\frac{\ln(n)}{n^x}$.

Localisons donc : Soit $[a,b] \subset]1,+\infty[$. Alors $\|f_n'\|_{\infty}^{[a,b]} = \frac{1}{n^{\alpha}}\ln(n)$, avec $\alpha > 1$.

Nous obtenons alors une Série de Bertrand Convergente, donc la série $\sum_n f'_n(x)$ Converge Normalement donc uniformément sur [a,b].

D'après le théorème, ζ est \mathscr{C}^1 sur $[\mathfrak{a},\mathfrak{b}]$ et $\zeta'(x)=\sum_{n=1}^{+\infty}\frac{-\ln(n)}{n^x}.$

Ainsi, ζ est \mathscr{C}^1 sur l'union de ces segments : ζ est de classe \mathscr{C}^1 sur I.

MPI[⋆] 7

1.12 Théorème d'approximation uniforme des fonctions continues par des fonctions en escalier sur un segment.

Théorème

Toute fonction \mathscr{C}^0 sur un segment peut être approximée uniformément par des fonctions en escalier :

 $\forall f \in \mathscr{C}^{0}([a,b],E)$ avec E un K-EVN de dimension Finie.

$$\forall \epsilon > 0, \ \exists \phi_E \in \mathscr{E}sc([\mathfrak{a}, \mathfrak{b}], E), \ \forall x \in [\mathfrak{a}, \mathfrak{b}], \ \|f(x) - \phi_E(x)\|_E \leqslant \epsilon.$$

Ce qui peut s'écrire comme $\|f - \phi_E\|_{\infty} \leqslant \epsilon$

Théorème (Version Séquentielle)

Soit
$$n \in \mathbb{N}^*$$
. On pose $\varepsilon_n = \frac{1}{n+1}$.

Alors
$$\exists \phi_n \in \mathscr{E}sc([a,b],E), \|f-\phi_n\|_{\infty} \leqslant \epsilon_n$$
.

Ainsi, $\exists (\phi_n)_n \in \mathscr{E}sc([a,b],E)^{\mathbb{N}}$, $(\phi_n)_n$ Converge uniformément vers f sur [a,b].

1.13 Théorème de Weierstrass.

Théorème de Weierstraß

Soit $[\mathfrak{a},\mathfrak{b}]\subset\mathbb{R},$ un segment. Soit $f\in\mathscr{C}^0([\mathfrak{a},\mathfrak{b}],\mathbb{R})$:

- Version ε : $\forall \varepsilon > 0$, $\exists P \in \mathbb{R}[X]$, $\forall x \in [a, b]$, $|f(x) P(x)| \le \varepsilon$: i.e $||f P||_{\infty} \le \varepsilon$
- Version Séquentielle : $\forall n \in \mathbb{N}$, on pose $\varepsilon_n = \frac{1}{n+1}$. Alors $\exists (P_n)_n \in \mathbb{R}[X]^{\mathbb{N}}, \ (P_n)$ CVU vers f sur $[\mathfrak{a},\mathfrak{b}]$.

 MPI^* 8

2 Questions de Cours - Groupes B et C

2.1 Th de « dérivation » des suites de fonctions. (démo)

Théorème de Dérivation

Soit $(E, \|\cdot\|)_E$, \mathbb{K} -EVN de dimension Finie. Soit $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$ où $I \subset \mathbb{R}$ est un intervalle. Soit $g \in \mathcal{F}(I, E)$.

Hypothèses:

- 1. $\forall n \in \mathbb{N}, f_n \mathscr{C}^1 \text{ sur } I$
- 2. (f_n) CVS vers f sur I
- 3. (f'_n) CVU vers g sur I

Conclusions:

- 1. $\forall [a,b] \subset I$, (f_n) CVU vers f sur [a,b]
- 2. $f \operatorname{est} \mathscr{C}^1 \operatorname{sur} I$
- 3. f' = g

Preuve :

Soit $[a,b] \subset I$. Nous avons pour tout $x \in [a,b]$, $f_n(x) = \int_a^x f_n'(t)dt + f(a)$.

D'après (H_1) et (H_3) , g est continue d'après le théorème de continuité des suites de fonctions. Notons alors $G(x) = \int_{a}^{x} g(t)dt$.

Grâce à l'hypothèse (H_3) , nous pouvons de plus affirmer que f_n Converge Uniformément vers G+f(a) (primitivation de la convergence uniforme), et en particulier que f_n Converge Simplement vers G+f(a).

Or, si g est de classe \mathscr{C}^0 , alors G est de classe \mathscr{C}^1 sur [a,b]. Or, (f_n) Converge simplement vers f. Ainsi, $\forall x \in [a,b]$, f(x) = G(x) + f(a), ce qui donne en particulier que f est de classe \mathscr{C}^1 sur [a,b], et $\forall x \in [a,b]$, f'(x) = G'(x) = g(x). De plus, (f_n) converge uniformément vers f.

2.2 Th de « primitivation » des suites de fonctions sur des segments. (démo)

Corollaire

Soit $(E, \|\cdot\|)_E$, \mathbb{K} -EVN de dimension Finie. Soit $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$ où $I \subset \mathbb{R}$ est un intervalle. Soit $g \in \mathcal{F}(I, E)$. Soit $c \in [a, b]$

$Hypoth\`eses:$

- 1. $\forall n \in \mathbb{N}$, $f_n \mathscr{C}^0 sur [a, b]$
- 2. (f_n) CVU vers g sur [a, b]

Conclusions:

- 1. $g \operatorname{est} \mathscr{C}^{0} \operatorname{sur} [a, b]$
- 2. On note $\forall x \in [a,b]$, $G(x) = \int_{c}^{x} g(t)dt$. et pour $n \in \mathbb{N}$, $F_{n}(x) = \int_{c}^{x} f_{n}(t)dt$. Alors G et F_{n} existent et $(F_{n})_{n}$ CVU vers G sur

Preuve:

Idem, la première conclusion correspond au théorème de Continuité.

$$\forall x \in [a,b], \ \|G(x) - F_n(x)\|_E = \left\| \int_c^x g(t) - f_n(t) dt \right\|_E \leqslant \left| \int_c^x \|g - f_n\|_\infty dt \right| \to 0. \ Donc \ \|G - F_n\|_\infty \to 0: (F_n)$$
 CVU vers G sur [a,b]

2.3 Pour une série de fonctions, CVN \Rightarrow CVU \Rightarrow CVS (démo de la première implication)

Proposition

Soit $I \subset \mathbb{R}$, un Intervalle. Soit $(E, \|\cdot\|_E)$, \mathbb{K} -EVN de dimension Finie. Soit $(f_n)_n \in \mathcal{F}(I, \mathbb{R})^\mathbb{N}$ et $S = \sum_{n=0}^{+\infty} f_n$.

$$\sum_{\mathfrak{n}} f_{\mathfrak{n}} \text{ CVN sur } I \Rightarrow \sum_{\mathfrak{n}} f_{\mathfrak{n}} \text{ CVU sur } I \Rightarrow \sum_{\mathfrak{n}} f_{\mathfrak{n}} \text{ CVS sur } I$$

Preuve:

Supposons que $(f_n)_n$ CVN sur I. Montrons que R_N CVU vers 0.

$$\forall n,p \in \mathbb{N}, \ n \leqslant p, \ \forall x \in I, \ \|\sum_{k=n+1}^p f_k(x)\|_E \leqslant \sum_{k=n+1}^p \|f_k(x)\|_E \leqslant \sum_{k=n+1}^p \|f_k\|_\infty$$

Or,
$$\sum_{k=n+1}^p \|f_k\|_\infty \leqslant \sum_{k=n+1}^{+\infty} \|f_k\|_\infty$$
. On note $\tilde{R_n} = \sum_{k=n+1}^{+\infty} \|f_k\|_\infty$, qui existe par hypothèse.

 $\forall x \in I, \ \forall n \in \mathbb{N}, \ \sum_n \|f_n(x)\|_E$ Converge car chaque terme est inférieur à $\|f_n\|_\infty$ et cette série converge par hypothèse.

 $\text{Alors, } \sum_{n} f_{n}(x) \text{ CVA, donc } \sum_{n} f_{n}(x) \text{ Converge (E de dimension finie). Alors } \sum_{n} f_{n} \text{ Converge Simplement sur I.}$

En faisant tendre
$$p \to +\infty$$
, $\|\sum_{k=n+1}^{+\infty} f_k(x)\| \le \tilde{R_n}$.

Donc, $\forall x \in I$, $\forall n \in \mathbb{N}$, $\|R_n(x)\| \leqslant \tilde{R_n}$. Donc R_n est bornée et $\|R_n\|_{\infty} \leqslant \tilde{R_n}$.

Or, $\tilde{R_n}$ est le reste d'ordre n d'une série convergente, donc tend vers 0. Ainsi, $\|R_n\|_\infty \to 0$: R_n CVU vers 0 sur I:

$$\sum_{n} f_n$$
 CVU sur I.

2.4 Exemple de série de fonctions convergeant uniformément mais pas normalement.

Exemple

Montrons que la série de fonctions $S(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x^n}{n}$ Converge Uniformément sans converger Normalement :

Nous remarquons que S ne converge pas Normalement sur I = [0; 1].

 \mathbf{MPI}^{\star} 10

Nous avons
$$\forall n, p \in \mathbb{N}$$
, $\forall x \in I$, $\left| \sum_{k=n+1}^p f_k(x) \right| \leqslant |f_{k+1}|$ par le CSA.

Lorsque
$$p \to +\infty$$
, $|R_n(x)| \le |f_{n+1}(x)| \le \frac{1}{n+1}$.

$$\begin{split} & \text{Lorsque p} \to +\infty, \ |R_n(x)| \leqslant |f_{n+1}(x)| \leqslant \frac{1}{n+1}. \\ & \text{Ainsi, R}_n \text{ est Born\'ee sur I et } \|R_n\|_\infty \leqslant \frac{1}{n+1} \to 0 : R_n \text{ CVU sur I, donc S CVU sur I.} \end{split}$$

2.5 Extension \mathscr{C}^k du théorème de "Dérivation" + application à la fonction zéta.

Théorème extension \mathscr{C}^k

Hypothèses:

1.
$$\forall n \in \mathbb{N}, f_n \mathscr{C}^k \text{ sur } I$$

2.
$$\forall p \in [0, k-1]$$
, $\sum_{n} (f_n)^{(p)}$ CVS sur I

3.
$$\sum_{n} (f_n)^{(k)}$$
 CVU sur I

Conclusions:

1.
$$S$$
 est \mathscr{C}^k sur I

2.
$$\forall p \in [0, k-1], S^{(p)} = \sum_{n} (f_n)^{(p)}$$

Exemple

Montrons que ζ est \mathscr{C}^{∞} sur I: Montrons que $\forall k \in \mathbb{N}^*$, ζ est de classe \mathscr{C}^k sur I.

De même que pour la version \mathscr{C}^1 , on Localise : Soit $[a,b] \subset I$.

Nous trouvons par récurrence immédiate que $\forall k \in \mathbb{N}^*$, $f_n^{(k)}(x) = (-1)^k \times \ln(n)^k \times \frac{1}{n^x}$: La première Hypothèse

 $\forall p \in [0;k-1], \ \forall n \in \mathbb{N}^*, \ \forall x \in [a,b], \ \left|f_n^{(p)}(x)\right| = \frac{|\ln(n)|^p}{n^x}. \ \text{Or, } x \geqslant a > 1. \ \text{Ceci donne donc une série de Bertrand}$

Alors, $\forall p \in [0; k-1]$, $\sum_{n} f_n^{(p)}$ CVS sur [a, b].

 $\text{Idem, } \|f_n^{(k)}\|_{\infty} = \frac{|\ln(n)|^k}{n^{\alpha}}, \text{ et la série associée converge, D'où la convergence Normale donc Uniforme de } \sum_n f_n^{(k)}.$

Alors, $\forall k \in \mathbb{N}^*$, ζ est \mathscr{C}^k sur [a, b], donc sur $I : \zeta$ est \mathscr{C}^{∞} sur I

2.6 Equivalent de zéta au voisinage de 1^+ à l'aide d'une comparaison Série-Intégrale

Par comparaison Série-Intégrale : (Attention, on encadre une série a x donné : Le paramètre est alors le n!).

Soit $x \in]1; +\infty[, f: t \mapsto \frac{1}{t^x}$. Alors f est Continue et décroissante sur \mathbb{R}_+ .

$$\frac{1}{t^{x}} \geqslant \frac{1}{n^{x}} \geqslant \frac{1}{w^{x}} \Rightarrow \int_{n-1}^{n} \frac{dt}{t^{x}} \geqslant \frac{1}{n^{x}} \geqslant \int_{n}^{n+1} \frac{dw}{w^{x}}$$

$$\Rightarrow \int_{1}^{N} \frac{dt}{t^{x}} \geqslant \sum_{n=2}^{N} \frac{1}{n^{x}} \geqslant \int_{2}^{N+1} \frac{dw}{w^{x}}$$

$$\Rightarrow \left[\frac{t^{-x+1}}{-x+1}\right]_{1}^{N} + 1 \geqslant \sum_{n=2}^{N} \frac{1}{n^{x}} \geqslant \left[\frac{t^{-x+1}}{-x+1}\right]_{2}^{N+1} + 1$$

Donc
$$\frac{1}{x-1} \left(1 - \frac{1}{(N+1)^{x-1}} \right) \leqslant \sum_{n=1}^{N} \frac{1}{n^x} \leqslant 1 + \frac{1}{x-1} \left(1 - \frac{1}{N^{x-1}} \right)$$

Ainsi, lorsque
$$N \to +\infty$$
 : $\frac{1}{x-1} \leqslant \zeta(x) \leqslant 1 + \frac{1}{x-1}$

D'où
$$\zeta(x) \xrightarrow[x \to 1^+]{} +\infty$$
 et $\zeta \sim \frac{1}{x \to 1^+} = \frac{1}{x-1}$

 \mathbf{MPI}^{\star} 12

Démonstration du théorème de la double limite pour les séries de fonctions dans le cas de la convergence normale de cette série de fonctions.

Preuve:

• $\forall n \in \mathbb{N}$, $\lim_{x \to a} f(x)$ existe et est finie.

•
$$\sum_{n} f_n$$
 CVN sur I

 $\text{Alors } \|f_n\|_{\infty} = \sup_{x \in I} \|f_n(x)\|_E \Rightarrow \ \forall x \in I, \ \ \|f_n(x)\|_E \leqslant \|f_n\|_{\infty} \Rightarrow \ \|l_n\|_E \leqslant \|f_n\|_{\infty} \text{ Par passage à la limite.}$

Or,
$$\sum_n \|f_n\|_\infty$$
 Converge par Hypothèse. Ainsi, $\sum_n l_n$ CVA Donc CV.

On pose $L = \sum_{n=0}^{\infty} l_n$. Montrons que $S(x) \xrightarrow[x \to a]{} L$.

$$\forall x \in I, \|S(x) - L\|_{E} = \|\sum_{n=0}^{+\infty} f_{n}(x) - l_{n}\|_{E}.$$

Soit $n \in \mathbb{N}^*$. Soit $\epsilon > 0$. La convergence Normale donne la convergence Uniforme, donc $R_n \to 0 \Rightarrow \exists n_1 \in \mathbb{N}, \ \forall p \geqslant n_1, \ \sum_{n=p}^{+\infty} \|f_n\|_{\infty} \leqslant \frac{\epsilon}{3}$

$$\exists n_1 \in \mathbb{N}, \ \forall p \geqslant n_1, \ \sum_{n=p}^{+\infty} \|f_n\|_{\infty} \leqslant \frac{\varepsilon}{3}$$

$$\text{Or, } \sum_{n} l_n \text{ Converge, donc } \exists n_2 \in \mathbb{N}, \ \forall p \geqslant n_2, \ \sum_{n=p}^{+\infty} \|l_n\|_E \leqslant \frac{\varepsilon}{3}.$$

Posons alors $n_3 = \max(n_1, n_2)$. Soit $N \ge n_3$.

$$\begin{split} \| \sum_{n=0}^{N} f_n(x) - l_n \|_{E} &= \| \sum_{n=0}^{n_3 - 1} f_n(x) - l_n + \sum_{n=n_3}^{N} f_n(x) - l_n \|_{E} \\ & \leqslant \| \sum_{n=0}^{n_3 - 1} f_n(x) - l_n \|_{E} + \sum_{n=n_3}^{N} \| f_n \|_{\infty} - \| l_n \|_{E} \\ & \leqslant \| \sum_{n=0}^{n_3 - 1} f_n(x) - l_n \|_{E} + \frac{2\epsilon}{3} \end{split}$$

 $\forall n \in [\![0,n_3-1]\!], \ \lim_{x \to +\infty} (f_n(x)-l_n) \to 0 \Rightarrow \ \text{Pour } x \text{ assez proche de } \alpha, \text{ nous avons } \|\sum_{n=0}^{N} f_n(x)-l_n\|_{L^\infty(x)} \leqslant \epsilon \|f_n(x)-f_n\|_{L^\infty(x)} = \epsilon \|f_n(x)-f_n\|_{L^\infty(x)} + \epsilon \|f$

MPI* 13

3 Questions de Cours - Groupe C

3.1 Limite de zéta en 1+ en « epsilon ». (non fait en cours)

Montrons que $\lim_{x\to 1} \zeta(x) = +\infty$. i.e, $\forall A \geqslant 0$, $\exists \eta > 0$, $\forall x \in]1, +\infty[$, $|x-1| \leqslant \eta \Rightarrow \zeta(x) \geqslant A$.

Soit A>0. Posons pour tout $x \in]1, +\infty[, S_N(x) = \sum_{n=1}^N \frac{1}{n^x}.$

$$Soit \ x=1+\epsilon. \ Alors \ \forall N \in \mathbb{N}^*, \ \ S_N(1+\epsilon) = \sum_{n=1}^N \frac{1}{n^{1+\epsilon}} = \sum_{n=1}^N \frac{1}{n} \times \frac{1}{n^\epsilon} \geqslant \left(\frac{1}{N}\right)^\epsilon \sum_{n=1}^N \frac{1}{n}.$$

Premièrement, par la divergence de la série Harmonique, il existe $N_0 \in \mathbb{N}^*$ tel que $\sum_{n=1}^{N_0} \frac{1}{n} \geqslant 2A$.

Dès lors, d'une part, $\left(\frac{1}{N_0}\right)^0 = 1$, et par continuité et décroissance de l'application $x \mapsto \left(\frac{1}{N_0}\right)^x$, il existe un $\epsilon_0 > 0$ tel que $\forall \epsilon < \epsilon_0$, $\left(\frac{1}{N_0}\right)^\epsilon \geqslant \frac{1}{2}$.

$$\text{D\`es lors, nous avons } \forall \epsilon < \epsilon_0, \ \zeta(1+\epsilon) \geqslant S_{N_0}(1+\epsilon) \geqslant \left(\frac{1}{N_0}\right)^{\epsilon} \sum_{n=1}^{N_0} \frac{1}{n} \geqslant \frac{1}{2} \sum_{n=1}^{N_0} \frac{1}{n} \geqslant A$$

D'où l'existence d'un $\varepsilon > 0$ tel que $\forall x \in]1, +\infty[, |x-1| \leqslant \varepsilon \Rightarrow \zeta(x) \geqslant A$

3.2 La fonction zêta est log-convexe. (démo)

Preuve:

Rappelons que la fonction ζ est de classe \mathscr{C}^{∞} sur $I =]1, +\infty[$.

De plus, pour tout
$$x \in I$$
, $\zeta'(x) = \sum_{n=1}^{+\infty} \frac{-\ln(n)}{n^x}$ et $\zeta''(x) = \sum_{n=1}^{+\infty} \frac{\ln^2(n)}{n^x}$

$$\text{Montrons que } (\ln\circ\zeta)^{(2)} \text{ est positive : } \ln(\zeta)' = \frac{\zeta'}{\zeta}, \text{ et } \ln(\zeta)'' = \frac{\zeta''\zeta - \zeta'^2}{\zeta^2}.$$

Donnons alors le signe de $\zeta''\zeta-\zeta'^2$: Remarquons ici une inégalité de Cauchy-schwarz.

Rappelons (mais vous vous en souveniez) qu'avec un produit scalaire $\langle \cdot | \cdot \rangle$ sur E, pour tout vecteurs $x, y \in E$:

$$\begin{aligned} |\langle x \mid y \rangle| &\leq \|a\| \|b\| \\ &\iff |\langle x \mid y \rangle| \leq \sqrt{\langle x \mid x \rangle} \sqrt{\langle y \mid y \rangle} \\ &\iff \langle x \mid y \rangle^2 \leq \langle x \mid x \rangle \langle y \mid y \rangle \end{aligned}$$

Rappelons de plus que, pour tout $N \in \mathbb{N}$, nous définissons un produit scalaire sur \mathbb{R}^N (qui est le produit scalaire canonique de cet espace) par :

$$\forall x = (x_1, ..., x_n)^\top, y = (y_1, ..., y_n)^\top \in \mathbb{R}^N, \ \langle x | y \rangle = \sum_{k=1}^N x_k y_k$$

Ainsi, pour tout $N \in \mathbb{N}$, en posant $x_n = \frac{1}{\sqrt{n^x}}$ et $y_n = \frac{\ln(n)}{\sqrt{n^x}}$, d'après l'inégalité de Cauchy-Schwarz :

$$\left(\sum_{n=1}^N \frac{\ln(n)}{n^x}\right)^2 \leqslant \left(\sum_{k=1}^N \frac{1}{n^x}\right) \left(\sum_{k=1}^N \frac{\ln^2(n)}{n^x}\right)$$

MPI^{*}

Par passage à la limite sur $N \to +\infty$, nous obtenons l'inégalité montrant que ζ est bien Log-Convexe.

3.3 (Prérequis) Complétude de \mathbb{R}^n pour tout $n \in \mathbb{N}^*$

Définition: Suites de Cauchy

Soit E, un \mathbb{K} -E.V.N. Soit $(\mathfrak{u}_n)_n \in E^{\mathbb{N}}$.

On dit que la suite $(\mathfrak{u}_n)_n$ est une suite de Cauchy / Vérifie le Critère de Cauchy si :

$$\forall \varepsilon > 0$$
, $\exists n_0 \in \mathbb{N}$, $\forall p, q \geqslant n_0$, $\|u_p - u_q\| \leqslant \varepsilon$

Notons qu'une suite de Cauchy n'est pas nécéssairement convergente (Voir une suite de Rationnels tendant vers e: Une telle suite serait de Cauchy sans converger dans \mathbb{Q})

Théorème

Soit $n \in \mathbb{N}^*$. Alors l'espace vectoriel \mathbb{R}^n est un espace complet. i.e toute suite de Cauchy y est convergente.

Preuve :

Soit $(u_n)_n \in (\mathbb{R}^n)^{\mathbb{N}}$, suite de Cauchy.

 $\text{Alors, } \forall \epsilon {>} 0, \exists N \in \mathbb{N}, \forall p,q \geqslant N, \ \|u_p - u_q\| \leqslant \epsilon.$

Soit $\varepsilon > 0$. Posons $C = \mathfrak{u}_N$ avec N induit par la propriété précédente. Alors, $\forall p \geqslant N$, $\mathfrak{u}_p \in B_f(C, \varepsilon)$:

Tout élément de la suite u_n d'indice supérieur à N se trouve dans une boule fermée. La suite u_n se trouve alors dans un fermé borné en dimension finie : La suite est définie dans un Compact K.

Note:-

La notion de Compacité sera vue lors du Chapitre Topologie, Notez simplement que la définition Prépa d'un Compact est un ensemble vérifiant la propriété de Bolzano-Weierstraß. De plus, en dimension finie, les seuls compacts sont les fermés bornés.

Dès lors, d'après la propriété de Bolzano-Weierstraß, $\exists \varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante, $\exists l \in K$, $\mathfrak{u}_{\varphi(n)} \to l$.

 $\text{Montrons que } u_n \to l : \text{Par d\'efinition, } \forall \epsilon > 0, \ \exists N^{\, \prime} \in \mathbb{N}, \ \forall n \geqslant N^{\, \prime}, \ \|u_{\phi \, (n)} - l\| \leqslant \epsilon.$

Soit $\epsilon>0$ (nous allons travailler avec $\frac{\epsilon}{2}$), posons alors $\mathfrak{n}_0=\max(N,N')$ avec N l'indice induit par le critère de Cauchy et N' induit par la convergence de $(\mathfrak{u}_{\phi(\mathfrak{n})})_\mathfrak{n}$.

 $\text{Alors, } \forall n \geqslant n_0, \ \|u_n - l\| \leqslant \|u_n - u_{\phi(n)} + u_{\phi(n)} - l\| \leqslant \|u_n - u_{\phi(n)}\| + \|u_{\phi(n)} - l\| \leqslant \frac{\epsilon}{2} + \frac{\epsilon}{2} \Rightarrow \|u_n - l\| \leqslant \epsilon.$

 $(\text{la majoration de } \| u_n - u_{\phi(n)} \| \text{ par } \frac{\epsilon}{2} \text{ vient du fait que } \phi \text{ est strictement croissante, donc } \phi(n) \geqslant n)$

 MPI^* 15

3.4 Démonstration du Théorème de la Double Limite (démo HP)

Théorème de la Double limite

Soit $(E, \|\cdot\|)_E$, \mathbb{K} -EVN de dimension Finie. Soit $(f_n)_n \in \mathcal{F}(I, E)^{\mathbb{N}}$ où $I \subset \mathbb{R}$ est un intervalle. Soit $g \in \mathcal{F}(I, E)$. Soit $a \in I$.

Hypothèses:

1.
$$\forall n \in \mathbb{N}$$
, $\lim_{x \to a} f_n(x) = l_n \in \mathbb{R}$

2. (f_n) CVU vers g sur I

Conclusions:

1. (l_n) converge vers $L \in \mathbb{R}$

2.
$$\lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right)$$

i.e:
$$\lim_{x \to a} g(x) = \lim_{n \to +\infty} l_n$$

Preuve:

Montrons que la suite $(l_n)_n$ est une suite de Cauchy :

Soit ε >0, Par convergence uniforme de (f_n) vers f:

$$\exists N \in \mathbb{N}, \ \forall n \geqslant N, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{2}.$$

$$\text{Alors, } \forall p,q\geqslant N, \ \|f_p-f_q\|_{\infty}\leqslant \|f_p-f\|_{\infty}+\|f-f_q\|_{\infty}\leqslant 2\frac{\epsilon}{2}=\epsilon$$

$$Soit \ x \in I, \ |f_p(x) - f_q(x)| \leqslant \|f_p - f_q\|_{\infty} \leqslant \epsilon. \ Avec \ x \to \alpha, \ l'inégalit\'e \ large \ passe \ \grave{a} \ la \ limite : \ |l_p - l_q| \leqslant \epsilon.$$

Ainsi, la suite $(l_n)_n$ est de Cauchy dans un Espace Complet. Dès lors, cette suite converge : $\exists l \in \mathbb{R}, \ l_n \xrightarrow[n \to +\infty]{} l$.

$$\text{Soit } x \in I. \text{ La suite de fonctions } (f_n) \text{ CVU vers } f \text{ sur } I: \text{Dès lors } \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geqslant N, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \forall \epsilon > 0, \ \|f_n - f\|_{\infty} \leqslant \frac{\epsilon}{3} \text{ lors } \Leftrightarrow \frac{\epsilon}{3} \text{ lors$$

$$\text{En particulier: } |f(x) - l| = |f(x) - f_n(x) + f_n(x) - l_n + l_n - l| \leq |f(x) - f_n(x)| + |f_n(x) - l_n| + |l_n - l|.$$

Or, nous avons successivement pour $n \ge \max\{N_0, N_1, N_2\}$ avec :

- N_0 tel que $||f_n f||_{\infty} \leqslant \frac{\varepsilon}{3}$
- N_1 tel que $|f_n(x) l_n| \le \frac{\varepsilon}{3}$
- N_2 tel que $|l_n l| \leqslant \frac{\varepsilon}{3}$

$$\forall \epsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \ |x - \alpha| \leqslant \eta \Rightarrow |f(x) - l| \leqslant 3\frac{\epsilon}{3} = \epsilon$$

3.5 Théorème d'approximation uniforme des fonctions continues par des fonctions en escalier sur un segment. (démo)

Théorème

Soit E, un \mathbb{K} -EVN de dimension finie. Soit $f \in \mathscr{C}^{0}([a,b],E)$.

Alors, $\forall \epsilon > 0$, $\exists \phi_{\epsilon} \in \mathscr{E}sc([a,b],E)$ telle que $\|f - \phi_{\epsilon}\|_{\infty} \leqslant \epsilon$

Théorème Version Séquentielle

Pour tout $n \in \mathbb{N}^*$, posons $\varepsilon_n = \frac{1}{n}$.

 $\text{Alors } \forall n \in \mathbb{N}^*, \ \exists \ \phi_n \in \mathscr{E}sc([\mathfrak{a},b],E) \ \text{telle que} \ \|f-\phi_n\|_{\infty} \leqslant \epsilon_n.$

Ainsi, $\exists \, (\phi_n)_n \in \mathscr{E}sc([\mathfrak{a},b],E)^\mathbb{N}$ telle que $(\phi_n)_n$ Converge Uniformément vers f

Preuve:

Utilisons le théorème de Heine : Par continuité de f sur le segment [a, b], f y est Uniformément Continue :

$$\forall \epsilon > 0, \ \exists \eta > 0, \ \forall x,y \in [a,b], \ |x-y| \leqslant \eta \Rightarrow \|f(x) - f(y)\| \leqslant \epsilon$$

Soit donc ε >0. Posons η le module d'uniforme continuité associé.

Posons dès lors $x_k = a + k\eta$. Ainsi, nous formons la subdivision $(a, x_1, ..., x_n, b)$ de [a, b]. (On pose n tel que x_n soit le plus grand des x_i avant b)

Définissons φ par $\forall x \in [x_i, x_{i+1}[, \varphi(x) = f(x_i), \text{ et } \varphi(b) = f(b).$

Donc,
$$\forall x \in [x_i, x_{i+1}[, x-x_i \leqslant \frac{b-a}{n} \Rightarrow \|f(x)-\phi(x)\| \leqslant \varepsilon.$$

D'où $\|f-\phi\|_{\infty}\leqslant \epsilon$, avec $\phi\in \mathscr{E}sc([\mathfrak{a},b],\mathsf{E})$

4 Exercices de Référence, Tout groupe

4.1 Exercice 1

Question 1. Nous remarquons que la série Numérique f(x) converge dès que $x \in \mathbb{R}_+$, car $\forall x \in \mathbb{R}_+$, $e^{-nx} \leqslant e^0 = 1$. Ainsi, $\left|\frac{e^{-nx}}{1+n^2}\right| \leqslant \frac{1}{1+n^2}$. De plus, la série $\sum_n \frac{1}{1+n^2}$ converge, car le terme sommé est de signe constant et est équivalent à $\frac{1}{n^2}$, dont la série est une série de Riemann Convergente.

En revanche, si $x \in \mathbb{R}_{-}^{*}$, alors $\frac{e^{-nx}}{1+n^2} \xrightarrow[n \to +\infty]{} +\infty$ par croissances comparées. Ainsi, la série numérique f(x) diverge grossièrement.

Dès lors, $\mathcal{D}_f = \mathbb{R}_+$

Question 2. Utilisons le théorème de Continuité des Séries de Fonctions : Posons $\forall n \in \mathbb{N}, \ f_n : x \mapsto \frac{e^{-nx}}{1+n^2}$

- H.1) Nous avons bien $\forall n \in \mathbb{N}$, f_n de classe \mathscr{C}^0
- H.2) Afin de montrer la convergence uniforme, montrons qu'il y a convergence normale : Par décroissance de $\exp(-nx)$, il vient que $\|f_n\|_{\infty}^{\mathcal{D}_f} = f_n(0) = \frac{1}{1+n^2}$.

Or, du fait que cette majoration soit atteinte au même point pour toute fonction f_n , nous avons déjà montré que cette série est convergente, car correspond à f(0). Dès lors, nous avons Convergence Normale de la série de Fonctions, et donc Convergence Uniforme.

Le théorème de continuité des Séries de Fonctions nous donne alors la continuité de f sur \mathcal{D}_f .

Question 3. Afin de montrer que f est de classe \mathscr{C}^{∞} , montrons que f est de classe \mathscr{C}^k sur tout intervalle ouvert $I \subset \mathcal{D}_f$ pour tout $k \in \mathbb{N}$.

Soit
$$I = [a, b] \subset \mathcal{D}_f$$
, $a \neq 0$, $k \in \mathbb{N}$. Alors $\forall x \in \mathbb{R}$, $f_n^{(k)}(x) = \frac{(-1)^k \cdot n^k \cdot e^{-nx}}{1 + n^2}$. Ainsi:

- H.1) Nous avons bien $\forall n \in \mathbb{N}$, f_n de classe \mathscr{C}^k
- H.2) Notons que $\forall p \leqslant k$, la série $\sum_{n=0}^{+\infty} (f_n)^{(p)}(x)$ converge normalement donc a fortiori Simplement (et uniformément pour p=k). En effet, toujours par décroissance de $\exp(-nx)$, $\|(f_n)^{(p)}\|_{\infty}^I=|(f_n)^{(p)}(\mathfrak{a})|$. Or, la série $\sum_{n=0}^{+\infty} \frac{n^k e^{-nx}}{1+n^2}$ converge, car par croissances comparées, le terme général se trouve être du o $\left(\frac{1}{n^2}\right)$

Dès lors, nous pouvons appliquer le théorème portant sur le caractère \mathscr{C}^k des séries de fonctions afin d'affirmer que f est bien de classe \mathscr{C}^∞ sur $\bigcup_{[a,b]\subset\mathcal{D}_f}[a,b]=\mathbb{R}_+^*$.

Nous savons de plus que $\forall x \in \mathbb{R}_+^*$, $f^{(k)}(x) = (-1)^k \sum_{n=0}^{+\infty} \frac{n^k e^{-nx}}{1+n^2}$

Question 4. Nous noterons que la dérivée k-ième de f est du signe de $(-1)^k$, et ne s'annule jamais. Ainsi, f est décroissante sur \mathcal{D}_f

Question 5. Il nous est possible de deviner que cette limite sera 1 : En effet, nous pourrions utiliser le théorème de la double limite, mais nous pouvons faire sans :

$$\text{Soit } x \in \mathbb{R}_+^* \text{, alors } f(x) = 1 + \sum_{n=1}^{+\infty} \frac{e^{-nx}}{1+n^2} \leqslant 1 + \sum_{n=1}^{+\infty} \frac{e^{-x}}{1+n^2} = 1 + e^{-x} \sum_{n=1}^{+\infty} \frac{1}{1+n^2} \xrightarrow[x \to +\infty]{} 1 \text{ car la série est constante par rapport à } x.$$

Ainsi,
$$|f(x)-1| = \left|\sum_{n=1}^{+\infty} \frac{e^{-nx}}{1+n^2}\right| \xrightarrow[x \to +\infty]{} 0$$
, d'où $f(x) \to 1$.

4.2 Exercice 2

Question 1. Posons pour tout $n \in \mathbb{N}$, $f_n : x \mapsto \frac{(-1)^n}{n+x}$.

Soit $x \in \mathbb{R}_+^*$. Alors la série Numérique $\sum_{n \geqslant 0} f_n(x)$ est une série respectant le critère des séries alternées. Ainsi, S est bien définie sur \mathbb{R}_+^* .

S est de plus de classe \mathscr{C}^1 : Appliquons le théorème correspondant :

- $\forall n \in \mathbb{N}$, f_n est bien de classe \mathscr{C}^1 sur \mathbb{R}_+^*
- La convergence simple de S sur \mathbb{R}_+^* a déjà été établie
- Nous avons $\forall n \in \mathbb{N}$, $\forall x \in \mathbb{R}_+^*$, $f_n'(x) = \frac{(-1)^{n+1}}{(n+x)^2}$. Ainsi, soit $I = [a,b] \subset \mathbb{R}_+^*$. Alors $\|f_n'\|_\infty^I = \frac{1}{(n+a)^2}$. Or, $\sum_{n\geqslant 0} \frac{1}{(n+a)^2}$ est une série convergente (comparer avec $\sum \frac{1}{n^2}$). Alors la série $\sum_n f_n'$ converge normalement sur I, donc converge uniformément sur I

 $\text{Ainsi, S est bien de classe } \mathscr{C}^1 \text{ sur tout segment } I \subset \mathbb{R}_+^*, \text{ donc par union, S est bien de classe } \mathscr{C}^1 \text{ sur } \mathbb{R}_+^*.$

Nous avons de plus
$$\forall x \in \mathbb{R}_+^*$$
, $S'(x) = \sum_{n \ge 0} \frac{(-1)^{n+1}}{(n+x)^2}$

Question 2. Nous remarquons que S' conserve le caractère alterné pour tout $x \in \mathbb{R}_+^*$. Ainsi, le corollaire du CCSA nous dit que S' est du signe de son premier terme (négatif ici). Ainsi S est décroissante sur \mathbb{R}_+^*

Question 3. Un changement d'indice se profile :
$$S(x+1) = \sum_{n \geqslant 0} \frac{(-1)^n}{n+1+x} = \sum_{n \geqslant 1} \frac{(-1)^{n-1}}{n+x} = -S(x) + \frac{1}{x}$$
.

Ainsi, $S(x+1) + S(x) = \frac{1}{x}$. Ceci nous permet de donner $S(x) \sim \frac{1}{x}$ lorsque $x \to 0$, car S(1) est une valeur finie connue $(\ln(2))$.

MPI[⋆] 19

4.3 Exercice 3

Question 1. Soit $x \in \mathbb{R}$. Alors la série numérique S(x) est bien convergente, car le terme général est équivalent à $\frac{1}{n^2}$ lorsque $n \to +\infty$. Dès lors, S converge simplement sur \mathbb{R} .

Question 2. S' est également continue, il suffit d'appliquer le théorème :

- Les f_n sont bien continues
- Nous noterons qu'il semble compliqué de s'intéresser à une convergence normale sur \mathbb{R} ici, car pour $n \in \mathbb{N}$, $f_n(n) = \frac{1}{n}$, donc la norme infinie de f_n sera plus grande que $\frac{1}{n}$, ce qui est problématique.

Localisons donc : Soit $I = [-a, a] \subset \mathbb{R}$. Une étude de fonctions rapide sur f_n montre que ses maxima se situent en x = n, et a fortiori en x = a si $n \ge a$ (d'où l'intérêt de localiser).

Or, du fait qu'une série ne dépend pas de ses premiers termes, nous pouvons dire que $\sum_{n\geqslant 0}\|f_n\|_\infty^I$ converge, car est absolument convergente pour $n\geqslant a$. Nous avons donc convergence normale sur I, donc convergence Uniforme.

Ainsi S est bien continue sur tout $I \subset \mathbb{R}$, donc sur \mathbb{R} entier par union.

Question 3. Soit $x \in \mathbb{R}$. Posons $h_x : t \mapsto \frac{2x}{t^2 + x^2}$ (Attention, afin de comparer à l'intégrale, la fonction doit dépendre de l'indice de sommation, et non de x!)

Cette application h_x est décroissante sur \mathbb{R}_+ (la dérivée est négative sur \mathbb{R}_+). Ainsi, pour tout $n \in \mathbb{N}^*$, nous avons :

$$\begin{split} \int_{n-1}^{n} h_{x}(t)dt \geqslant & h_{x}(n) \geqslant \int_{n}^{n+1} h_{x}(t)dt \\ \int_{0}^{N} h_{x}(t)dt \geqslant & \sum_{n=1}^{N} h_{x}(n) \geqslant \int_{1}^{N+1} h_{x}(t)dt \\ \frac{2x}{x^{2}} \int_{0}^{N} \frac{1}{1 + \frac{t^{2}}{x^{2}}} dt \geqslant & \sum_{n=1}^{N} h_{x}(n) \geqslant \frac{2x}{x^{2}} \int_{1}^{N+1} \frac{1}{1 + \frac{t^{2}}{x^{2}}} dt \end{split}$$

Le changement de variables $u = \frac{t}{x}$, t = ux, dt = xdu nous permet d'avoir l'encadrement suivant

$$2\arctan\frac{N}{x}\geqslant\sum_{n=1}^{N}h_{x}(n)\geqslant2\left[\arctan\frac{N+1}{x}-\arctan\frac{1}{x}\right]$$

Avec $N \to +\infty$:

$$\pi \geqslant S(x) \geqslant \pi - 2 \arctan \frac{1}{x}$$

Or, avec $x \to +\infty$, le théorème d'encadrement donne bien $S(x) \xrightarrow[x \to +\infty]{} \pi$.

4.4 Exercice 4

Montrons tout d'abord que ψ est bien de classe \mathscr{C}^2 :

La convergence de ψ sur \mathbb{R} est garantie sur \mathbb{R}_- grâce au CCSA. (Le langage des séries entières permettra de directement affirmer la convergence de ψ sur \mathbb{R}).

Il nous est également possible d'appliquer le CCSA sur \mathbb{R}_+ , avec une analyse plus fine : Soit $t \in \mathbb{R}_+$ fixé. Montrons que la suite $(u_n)_n = \left(\frac{e^{nt}}{(n!)^2}\right)_n$ décroit vers 0 pour n assez grand (la nature d'une série ne dépend pas de ses premiers termes) :

 $\text{La formule de Stirling donne } u_n \sim \frac{1}{2\pi} n^{-2n-1} e^{n(t+2)} \xrightarrow[n \to +\infty]{} 0\text{, d'où la limite nulle.}$

$$\text{Soit } n \in \mathbb{N}. \text{ Alors } u_{n+1} - u_n = \frac{e^{nt}e^t}{(n+1)^2 \times (n!)^2} - \frac{e^{nt}}{(n!)^2} = \frac{e^{nt}}{(n!)^2} \left(\frac{e^t}{(n+1)^2} - 1\right).$$

Or, pour n assez grand, ce terme devient négatif : D'où la décroissance de $(\mathfrak{u}_n)_n$ pour n assez grand : Le CCSA s'applique ici aussi : ψ est bien définie sur \mathbb{R} .

En notant $f_n: t \mapsto \frac{(-1)^n}{(n!)^2} e^{nt}$, il vient que f_n est de classe \mathscr{C}^{∞} pour tout $n \in \mathbb{N}$, et que $f'_n(t) = n \frac{(-1)^n}{(n!)^2} e^{nt}$, de plus $f''_n(t) = \frac{(-1)^n}{((n-1)!)^2} e^{nt}$. (excepté pour n=0, où la dérivée s'annule)

Remarquons que les séries associées restent simplement convergentes. De plus, en localisant, nous obtenons la convergence uniforme de $\sum_n f_n''(t)$ (le CCSA permet de majorer le reste par le premier terme compris dans ce reste, et cette quantité tend biens vers 0). Nous pouvons donc affirmer que ψ est bien de classe \mathscr{C}^2 .

$$\text{De plus, nous avons } \psi''(t) = \sum_n f''_n(t) = \sum_{n\geqslant 1} \frac{(-1)^n}{((n-1)!)^2} e^{n\,t} = \sum_{n\geqslant 0} \frac{(-1)^{n+1}}{((n)!)^2} e^{n\,t} e^t = -e^t \psi(t).$$

Dès lors, ψ vérifie bien $y'' + e^t y = 0$

 \mathbf{MPI}^{\star} 21

10 Pranks That Went Way Too Far 3,677,806 views

 MPI^* 22