

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Indium

Equilibrium reactions	$\lg K$ at infinite dilution and $T = 298$ K		
	Baes and Mesmer, 1976	NIST46	Brown and Ekberg, 2016
$In^{3+} + H_2O \rightleftharpoons InOH^{2+} + H^+$	-4.00	-3.927	-3.96
$In^{3+} + 2 H_2O \rightleftharpoons In(OH)_2^+ + 2 H^+$	-7.82	-7.794	-9.16
$In^{3+} + 3 H_2O \rightleftharpoons In(OH)_3 + 3 H^+$	-12.4	-12.391	
$In^{3+} + 4 H_2O \rightleftharpoons In(OH)_4^- + 4 H^+$	-22.07	-22.088	-22.05
$In(OH)_3(s) \rightleftharpoons In^{3+} + 3 OH^-$	-36.92	-36.9	-36.92
$1/2 \text{ In}_2\text{O}_3(s) + 3/2 \text{ H}_2\text{O} \rightleftharpoons \text{In}^{3+} + 3 \text{ OH}^-$			-35.24

C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 327.

P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 812–817.

NIST46, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0. Available at: www.nist.gov/srd/nist46

Distribution diagrams

These diagrams have been computed at two In concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

