Introduction:

The Advanced Tic Tac Toe Game is a software development project that enhances the classic game with a modern, interactive experience. Developed in C++, it offers Player vs Player and Player vs AI modes, with AI difficulty levels ranging from Easy to Hard. The Hard mode uses the Minimax algorithm with Alpha-Beta pruning for optimal moves.

The application includes user authentication for account management and stores game histories for performance analysis. It features a user-friendly Graphical User Interface (GUI) built with the Qt framework and utilizes a lightweight SQLite database for efficient data management.

Rigorous testing is conducted with Google Test, and a CI/CD pipeline using GitHub Actions automates testing and deployment, ensuring code quality. This project demonstrates skills in algorithm design, object-oriented programming, secure data handling, and software lifecycle management.

Environment setup and Technologies used:

Component	Tool
Operating System	Windows 11 (64-bit)
Processor	AMD Ryzen 5 6600H
RAM	24 GB
Programming Language	C++
Compiler	GCC 14.2.0
GUI	Qt
Database	SQLite
CI/CD	GitHub Actions
Testing	Google Test

Performance Analysis:

Execution time:

Hardiness	G G	Game	
Level	Game Steps	Result	Execution Time
	Human Cell: row = 2 & column = 2		Easy AI execution time: 26 microseconds
	AI Cell: row = 1 & column = 1	Human	Easy AI execution time: 12 microseconds
Easy AI	Human Cell: row = 1 & column = 3	Won	Comment: Consistently fast
	AI Cell: $row = 2 & column = 3$		(12-26 microseconds) - performs simple
	Human Cell: row = 3 & column = 1		random selection from available moves.
	Human Cell: $row = 2 \& column = 2$		Medium AI execution time: 34 microseconds
	AI Cell: row = 1 & column = 1		Medium AI execution time: 2 microseconds Medium AI execution time: 2 microseconds
	Human Cell: row = 1 & column = 3		Medium AI execution time: 1 microseconds
	AI Cell: row = 3 & column = 1		
Medium AI	Human Cell: row = 2 & column = 1	Tie	Comment: Variable timing (1-34 microseconds) - shows the conditional
	AI Cell: row = 2 & column = 3		logic overhead as it checks for winning moves,
	Human Cell: row = 3 & column = 2		blocking moves, then falls back to random selection.
	AI Cell: row = 1 & column = 2		
	Human Cell: row = 3 & column = 3		
	Human Cell: row = 2 & column = 2		Hard AI execution time: 1137 microseconds
	AI Cell: row = 1 & column = 1		Hard AI execution time: 80 microseconds Hard AI execution time: 5 microseconds
Hard AI	Human Cell: row = 1 & column = 3	AI	Comment: Highest execution time
	AI Cell: row = 3 & column = 1	Won	(5-1137 microseconds) - reflects the
	Human Cell: row = 3 & column = 2		computational complexity of the minimax algorithm with alpha-beta pruning, with timing
	AI Cell: row = 2 & column = 1		varying based on game state complexity.

Memory usage:

Hardiness	G G	Game	
Level	Game Steps	Result	Memory Usage
	Human Cell: row = 2 & column = 2		106078208 bytes 106213376 bytes
Easy AI	AI Cell: row = 1 & column = 3 Human Cell: row = 1 & column = 1 AI Cell: row = 3 & column = 1 Human Cell: row = 3 & column = 3	Human Won	Comment: Shows minimal variation (106078208 to 106213376 bytes) indicating efficient memory management. The Easy AI algorithm uses simple random selection which requires minimal additional memory allocation
			beyond the base program footprint.
Medium AI	Human Cell: row = 2 & column = 2 AI Cell: row = 1 & column = 2 Human Cell: row = 1 & column = 1 AI Cell: row = 3 & column = 3 Human Cell: row = 2 & column = 1 AI Cell: row = 2 & column = 3 Human Cell: row = 1 & column = 3 AI Cell: row = 3 & column = 1 Human Cell: row = 3 & column = 1	Tie	106090496 bytes 106262528 bytes 106262528 bytes 106262528 bytes Comment: Maintains consistent memory usage (106090496 to 106262528 bytes) throughout the game progression. The strategic logic for win/block detection adds minimal memory overhead while providing significantly improved gameplay intelligence.
Hard AI	Human Cell: row = 2 & column = 2 AI Cell: row = 1 & column = 1 Human Cell: row = 1 & column = 3 AI Cell: row = 3 & column = 1 Human Cell: row = 3 & column = 3 AI Cell: row = 2 & column = 1	AI Won	106225664 bytes 106225664 bytes 106225664 bytes Comment: Maintains consistent memory usage (106090496 to 106262528 bytes) throughout the game progression. The strategic logic for win/block detection adds minimal memory overhead while providing significantly improved gameplay intelligence.

CPU usage:

Hardiness	C C	Game	CDU II
Level	Game Steps	Result	CPU Usage
Easy AI	Human Cell: row = 2 & column = 2 AI Cell: row = 2 & column = 3 Human Cell: row = 1 & column = 1 AI Cell: row = 1 & column = 3 Human Cell: row = 3 & column = 3	Human Won	Average: 0.018111% Average: 0.025644% Comment: excellent resource optimization with an average CPU usage of only 0.018111% to 0.025644%. This minimal CPU consumption reflects the algorithm's simplicity - performing basic random selection from available board positions requires negligible computational overhead.
Medium AI	Human Cell: row = 2 & column = 2 AI Cell: row = 2 & column = 1 Human Cell: row = 1 & column = 1 AI Cell: row = 3 & column = 3 Human Cell: row = 3 & column = 2 AI Cell: row = 1 & column = 2 Human Cell: row = 1 & column = 3 AI Cell: row = 3 & column = 1 Human Cell: row = 2 & column = 3	Tie	Average: 0.0267713% Average: 0% Average: 0% Comment: CPU usage averaging 0.026771% with some instances showing 0% usage. This variation demonstrates the conditional logic efficiency - when immediate win/block opportunities are detected early, CPU usage drops significantly compared to scenarios requiring full board analysis.
Hard AI	Human Cell: row = 2 & column = 2 AI Cell: row = 1 & column = 1 Human Cell: row = 1 & column = 3 AI Cell: row = 3 & column = 1 Human Cell: row = 3 & column = 2 AI Cell: row = 2 & column = 1	AI Won	Average: 0.0201139% Average: 0.0223637% Average: 0.0150696% Comment: The highest CPU usage range (0.015069% to 0.022637%) due to the minimax algorithm's recursive nature. Despite being the most computationally complex, the CPU usage remains remarkably low, demonstrating the effectiveness of alpha-beta pruning optimization.

Algorithm Complexity:

Level Game Steps Res	Algorithm Complexity
Human Cell: row = 2 & column = 2 AI Cell: row = 3 & column = 1 AI Cell: row = 3 & column = 2 Human Cell: row = 3 & column = 3 Human Cell: row = 3 & column = 3	Complexity Class: Linear - U(n)

Hardiness	C	Game	
Level	Game Steps	Result	Algorithm Complexity
Medium AI	Human Cell: row = 2 & column = 2 AI Cell: row = 1 & column = 1 Human Cell: row = 3 & column = 1 AI Cell: row = 1 & column = 3	Tie	=== Medium AI Complexity Analysis === Total Operations: 35 Max Recursion Depth: 0 Board Checks: 16 (win + block) Theoretical Complexity: 0(2n) = 0(n) Actual Operations: 35 Complexity Class: Linear - 0(n) Space Complexity: 0(0) stack depth ====================================
	Human Cell: row = 1 & column = 2 AI Cell: row = 3 & column = 2 Human Cell: row = 2 & column = 1 AI Cell: row = 2 & column = 3 Human Cell: row = 3 & column = 3		Total Operations: 20 Max Recursion Depth: 0 Board Checks: 12 (win + block) Theoretical Complexity: O(2n) = O(n) Actual Operations: 20 Complexity Class: Linear - O(n) Space Complexity: O(0) stack depth
	Truman cen. fow 5 & column 5		======================================
			=== Medium AI Complexity Analysis === Total Operations: 18 Max Recursion Depth: 0 Board Checks: 4 (win + block) Theoretical Complexity: O(2n) = O(n) Actual Operations: 18 Complexity Class: Linear - O(n) Space Complexity: O(0) stack depth ====================================
			Comment: Adaptive Linear Performance: Medium AI shows variable operations (18-35) correlating with empty cells, confirming O(n) complexity. Strategic early-termination reduces operations when win/block moves are detected quickly. Efficient Strategic Logic: Board checks (4-16) demonstrate conditional optimization - fewer checks needed when immediate opportunities exist. Zero recursion depth maintains O(1) space complexity.
		6	Validated Classification: Results confirm Linear Time O(n) with strategic intelligence superior to Easy AI while maintaining computational efficiency suitable for real-time gameplay.

Hardiness		Game	
Level	Game Steps	Result	Algorithm Complexity
Hard AI	Human Cell: row = 2 & column = 2 AI Cell: row = 1 & column = 1 Human Cell: row = 3 & column = 1 Human Cell: row = 3 & column = 3 AI Cell: row = 2 & column = 1	AI Won	=== Hard AI Complexity Analysis === Total Operations: 25395 Max Recursion Depth: 7 Empty Cells: 8 Theoretical Upper Bound: O(8!) = 40320 Actual Operations (with pruning): 25395 Pruning Operations: 2616 Pruning Efficiency: 62.9836% Operations Saved: 14925 Complexity Class: Exponential with Pruning - O(b^(d/2)) Space Complexity: O(7) stack depth ====================================
			Comment: Exceptional Pruning Efficiency: Hard AI demonstrates outstanding alpha-beta optimization, reducing operations from theoretical bounds (40,320→720→24) to actual counts (25,395→1,023→102). Pruning efficiency improves dramatically as the game progresses (62.98%→142.08%→425%). Adaptive Resource Management: Recursion depth decreases progressively (7→5→3) with game advancement, validating efficient O(d) space complexity scaling. Operations saved increase significantly (14,925→-303→-78). Validated Exponential Classification: Results confirm O(b^(d/2)) complexity with pruning optimization, achieving optimal gameplay while maintaining computational feasibility for real-time applications through strategic branch elimination.