Searching

Problem: Search

- We are given a list of records.
- Each record has an associated key.
- Give efficient algorithm for searching for a record containing a particular key.
- Efficiency is quantified in terms of average time analysis (number of comparisons) to retrieve an item.

Search

[0] [1] [2] [3] [4] [700]

Number 701466868

Number 281942902

Number 233667136

Number 506643548

Number 506643548

Number 506643548

Each record in list has an associated key. In this example, the keys are ID numbers.

Given a particular key, how can we efficiently retrieve the record from the list?

Serial Search

- Step through array of records, one at a time.
- Look for record with matching key.
- Search stops when
 - record with matching key is found
 - or when search has examined all records without success.

Pseudocode for Serial Search

Serial Search Analysis

- What are the worst and average case running times for serial search?
- We must determine the O-notation for the number of operations required in search.
- Number of operations depends on *n*, the number of entries in the list.

Worst Case Time for Serial Search

- For an array of *n* elements, the worst case time for serial search requires *n* array accesses: O(*n*).
- Consider cases where we must loop over all n records:
 - desired record appears in the last position of the array
 - desired record does not appear in the array at all

Average Case for Serial Search

Assumptions:

- 1. All keys are equally likely in a search
- 2. We always search for a key that is in the array

Example:

- We have an array of 10 records.
- If search for the first record, then it requires 1 array access; if the second, then 2 array accesses. etc.

The average of all these searches is: (1+2+3+4+5+6+7+8+9+10)/10 = 5.5

Average Case Time for Serial Search

Generalize for array size n.

Expression for average-case running time:

$$(1+2+...+n)/n = n(n+1)/2n = (n+1)/2$$

Therefore, average case time complexity for serial search is O(n).

- Perhaps we can do better than O(n) in the average case?
- Assume that we are give an array of records that is sorted. For instance:
 - an array of records with integer keys sorted from smallest to largest (e.g., ID numbers), or
 - an array of records with string keys sorted in alphabetical order (e.g., names).

Binary Search Pseudocode

```
if(size == 0)
  found = false;
else {
  middle = index of approximate midpoint of array segment;
  if(target == a[middle])
        target has been found!
  else if(target < a[middle])
        search for target in area before midpoint;
  else
        search for target in area after midpoint;
```

[0]	[1]	[2]	[3]	[4]	[5]	[6]
3	6	7	11	32	33	53

Example: sorted array of integer keys. Target=7.

Search for the target in the area before midpoint.

Example: sorted array of integer keys. Target=7.

Find approximate midpoint

Example: sorted array of integer keys. Target=7.

Target = key of midpoint? NO.

Example: sorted array of integer keys. Target=7.

Target < key of midpoint? NO.

Example: sorted array of integer keys. Target=7.

Target > key of midpoint? YES.

Example: sorted array of integer keys. Target=7.

Search for the target in the area after midpoint.

Example: sorted array of integer keys. Target=7.

Find approximate midpoint. Is target = midpoint key? YES.

Binary Search Implementation

```
void search(const int a[], size_t first, size_t size, int target, bool& found, size_t& location)
   size_t middle;
   if(size == 0) found = false;
   else {
            middle = first + size/2;
            if(target == a[middle]){
                  location = middle;
                  found = true;
            else if (target < a[middle])
                // target is less than middle, so search subarray before middle
                 search(a, first, size/2, target, found, location);
            else
                // target is greater than middle, so search subarray after middle
                 search(a, middle+1, (size-1)/2, target, found, location);
```

Relation to Binary Search Tree

Array of previous example:

3	6	7	11	32	33	53

Corresponding complete binary search tree

Find midpoint:

3	6	7	11	32	33	53
---	---	---	----	----	----	----

Start at root:

Search left subarray:

Search left subtree:

Find approximate midpoint of subarray:

Visit root of subtree:

Search right subarray:

Search right subtree:

Binary Search: Analysis

- Worst case complexity?
- What is the maximum depth of recursive calls in binary search as function of n?
- Each level in the recursion, we split the array in half (divide by two).
- Therefore maximum recursion depth is floor($log_2 n$) and worst case = $O(log_2 n)$.
- Average case is also = $O(\log_2 n)$.

Can we do better than O(log₂n)?

- Average and worst case of serial search = O(n)
- Average and worst case of binary search = O(log₂n)

Can we do better than this?

YES. Use a hash table!