Machine Learning-Based Prediction of Cardiac Arrest Outcome Using a Large Multi-Center Database

Blue Team Members:

Han Kim Hieu "Hugh" Nguyen Qingchu Jin Sharmila Tamby Tatiana Gelaf Romer Eric Sung

Biomedical Pls:

Dr. Robert Stevens Dr. Jose Suarez Dr. Christian Storm

Engineering Pls:

Dr. Raimond Winslow Dr. Joseph Greenstein

Teaching Assistant:

Ran Liu

Blue Team Members:

Han Kim
Hieu "Hugh" Nguyen
Qingchu Jin
Sharmila Tamby
Tatiana Gelaf Romer
Eric Sung

Problem Introduction

Significance and Innovation

\$140,000 cost incurred

per QALY for continuing aggressive treatment in high-risk patients

Fewer than 10%

leave hospital without neurological damage

Large Unmet Need

for accurate and reliable methods to predict post-CA prognostication

We bring to the table...

Integration of physiological time series

Large database from 200+ hospitals

Clinical and engineering expertise

Approach

Machine Learning Algorithms: GLM: LASSO & Elastic Net **Random Forest Gradient Boosting XGboost** Neural Networks (LSTM, GRU) **Model Refinement: Transfer Learning**

Optimization Techniques

Combination of Models (stacking)

Selecting Population, Features, and Labels

Supervised Learning Pipeline

Outer Loop

Sample Space (2216 patients) 1773 patients 443 patients 80% Training 20% Testing **Inner Loop** 10-fold cross-validation Final Results x 3 times

Mortality Outcome

Neurological Outcome

Transfer Learning Approach

Pre-training Performance

	Net	Validation AUC (~10000 patients)	Test AUC (~10000 patients)
EHR	Fully-connected neural network	0.89	0.87
PTS	Convolutional neural network	0.84	0.85
EHR+PTS	Fully-connected + convolutional neural network	0.90	0.90

Deep Learning Results

Neurological Label Applied

Mortality Label Applied

Neurological Outcome

AUROC: Our Model vs. the Gold Standard

	Clinical Baseline	Our Model
Area Under the ROC Curve	0.74	0.87
Sensitivity	0.77	0.78
Specificity	0.63	0.88

Results

Feature Space Comparison Neurological Outcome

	Clinical Baseline	EHR	PTS	EHR + PTS
AUC	0.74	0.83	0.78	0.87
Sensitivity	0.77	0.77	0.66	0.78
Specificity	0.63	0.77	0.74	0.88

Feature Space Comparison Mortality

	Clinical Baseline	EHR + PTS
AUC	0.75	0.81
Sensitivity	0.86	0.78
Specificity	0.56	0.71

^{*}Additional optimization being performed

Feature Space Analysis Neurological Outcome

Feature Space Analysis Neurological Outcome

Feature ranking	Feature type	Correlation (+/-) with good outcome
1	GCS at ICU admission	+
2	Worst motor GCS	+
3	Worst eye GCS	+
4	Worst temperature	+
5	Sofa score	-
6	Worst verbal GCS	+
7	Mean lactate level	-
8	Heart rate fluctuation	+
9	Dexmedetomidine infusion drug	+
10	Maximum lactate level	-

Results

Feature Space Analysis Mortality Outcome

Conclusion and Future Work

Conclusion

With further validation, our model could:

- aid physicians in clinical decision making to allocate appropriate treatment regimens
- help identify previously overlooked predictive features which merit further investigation

Future Work

- 1 Publication
- Get access to the additional datasets for external validation

 MIMIC III

 Entire eICU database

Acknowledgements

Dr. Robert Stevens

Dr. Jose Suarez

Dr. Christian Storm

Dr. Raimond Winslow

Dr. Sridevi Sarma

Dr. Joseph Greenstein

Ran Liu

Thank you for listening!

Questions? Comments?