PROBLEM SET 01

Part 1

 $\epsilon - \delta$ proofs are at the foundation of all real analysis (and hence of calculus). The hardest step in writing an $\epsilon - \delta$ proof is the first step, once you get the first step correct the rest follows almost mechanically. The goal of this week is to make friends with these ϵ 's and δ 's and hopefully also get good at them.

- **Q.1.** Explain in your own words how the provisional definition is equivalent to the more rigorous $\epsilon \delta$ definition of limit.
 - **Provisional definition:** The function f approaches a limit L near a i.e. $\lim_{x\to a} f(x) = L$, if we can make f(x) as close to L as we like by requiring that x be sufficiently close to, but unequal to, a.
 - $\epsilon-\delta$ definition: The function f approaches a limit L near a i.e. $\lim_{x\to a}f(x)=L,$ if for every $\epsilon>0$ there is some $\delta>0$ such that, for all x,

if
$$0 < |x - a| < \delta$$
, then $|f(x) - L| < \epsilon$.

- **Q.2.** For each of the following functions f and real numbers a,
 - Guess the limit $L = \lim_{x \to a} f(x)$.
 - Find a δ corresponding to $\epsilon = 0.01$ in the $\epsilon \delta$ definition of limit.
 - Find a δ corresponding to an arbitrary real number ϵ and use this to **prove** that L is indeed the limit.
 - (1) f(x) = 7x + 2, a = 0
 - (2) $f(x) = x^2 2$, a = 0
 - (3) $f(x) = |x|, \quad a = 0$
 - (4) $f(x) = |x|, \quad a = 1$
- Q.3. (1) Give a rigorous definition of the following statement,

The function f does not approach the limit L at a using the $\epsilon-\delta$ notation.

- (2) Using the $\epsilon \delta$ notation prove that the limit $\lim_{x \to 0} x^2 \neq 1$.
- (3) For the function

$$f(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 & \text{otherwise} \end{cases}$$

prove that $\lim_{x\to 0} f(x) \neq L$ for any real number L.

Part 2

Need to add a problem here. It is tedious to use $\epsilon - \delta$ proofs in practice, instead we use Theorem 2 and it's analogues.

Q.4. (1) Show that for every $\epsilon_1, \epsilon_2 \in \mathbb{R}$ the following holds

$$|\epsilon_1 - \epsilon_2| \le |\epsilon_1| + |\epsilon_2|$$

- (2) For which values of ϵ_1, ϵ_2 does equality hold?
- (3) Using the $\epsilon-\delta$ definition of limit to prove that if $\lim_{x\to a}f(x)=l$ and $\lim_{x\to a}g(x)=m$ then

$$\lim_{x \to a} (f(x) - g(x)) = l - m$$

Q.5. For the function

$$f(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 & \text{otherwise} \end{cases}$$

determine, with proof, the limits $\lim_{x\to 0^+}$, $\lim_{x\to 0^-}$. How will you answers change if we replace x<0 by $x\le 0$ in the definition of f(x)?

- **Q.6.** (1) Determine, with proof, $\lim_{x\to\infty} 1/x$.
 - (2) Prove that for no real number l do we have $\lim_{x\to 0^+} 1/x = l$.
- **Q.7.** Give examples to show that the following definitions of $\lim_{x\to a} f(x) = L$ are not correct i.e. find functions f which are continuous but do not satisfy the following conditions. (Hint: Think graphically)
 - For all $\delta>0$ there exists an $\epsilon>0$ such that if $0<|x-a|<\delta$ then $|f(x)-L|<\epsilon.$
 - For every $\epsilon > 0$ there is some $\delta > 0$ such that, for all x, if $|f(x) L| < \epsilon$ then $0 < |x a| < \delta$.

Part 3

To understand continuity it is equally important to understand discontinuity.

- **Q.8.** (1) Let n be a positive integer. Use the $\epsilon \delta$ definition to prove that the function $f(x) = x^n$ is continuous at 0.
 - (2) Use Theorem 2 to prove that every polynomial p(x) is continuous at 0.
 - (3) Prove that a function f(x) is continuous at a real number a if and only if the function g(x) = f(x+a) is continuous at 0.
 - (4) Prove that x^n is continuous at every real number a.
 - (5) Use Theorem 2 to prove that every polynomial p(x) is continuous at every real number a.
 - (6) What are the real numbers at which the ratio of two polynomials $\frac{p(x)}{q(x)}$ is continuous?
- **Q.9.** Prove that the function

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{otherwise} \end{cases}$$

is discontinuous everywhere. What can you say about the continuity of the function $g(x) = x \cdot f(x)$?

Trigonometric functions, exponential functions and logarithms are continuous wherever they are defined. We will assume this fact without proof for now and come back to it later.