What will happen when I put an n-type semiconductor next to a p-type semiconductor?

n

p

A potential difference will appear across the junction

The charge of the junction's p-side is negative and the charge of the junctions n-side is positive.

The Fermi energy varies across the junction

electrons from n-side diffuse to the p-side.

electrons from p-side diffuse to the n-side.

holes from p-side diffuse to the n-side.

holes from n-side diffuse to the p-side.

The charge of the junction's n-side is negative and the charge of the junctions p-side is positive.

The junction is neutrally charged

The Fermi energy is constant across the junction.

electrons and holes recombine at the junction.

What will happen when I put an n-type semiconductor next to a p-type semiconductor?

n

A potential difference will appear across the junction

The charge of the junction's p-side is negative and the charge of the junctions nside is positive.

The Fermi energy varies across the junction

p

The charge of the junction's nside is negative and the charge of the junctions p-side is

positive.

electrons from n-side diffuse to the p-side.

The junction is neutrally charged

electrons from p-side diffuse to the n-side.

The Fermi energy is constant across the junction.

holes from p-side diffuse to the n-side.

> electrons and holes recombine at the junction.

holes from n-side diffuse to the p-side.

Depletion region (no carriers)

The net charge density in the depletion region on the p side of a p-n junction is (A) positive.

- (B) zero.
- (C) negative.

The net charge density in the depletion region on the p side of a p-n junction is (A) positive.

- (B) zero.
- (C) negative.

Electric field?

- In the depletion region
- (C)there is no electric field—no net charge.
- (D) there is an electric field pointing right.
- (E) there is an electric field pointing left.

Electric field?

- In the depletion region
- (C)there is no electric field—no net charge.
- (D) there is an electric field pointing right.
- (E) there is an electric field pointing left.

Electric field

What is the effect of the field on the bands?

What happens to the bands when depletion region forms?

What happens to the bands when depletion region forms?

What happens to the bands when depletion region forms?

$$n = N_c e^{-\frac{E_c - E_F}{k_B T}}$$

$$n_i = \sqrt{N_c N_v} e^{-\frac{E_g}{2k_B T}}$$

Use the above equations to find the fermi energy on the n-side. (problem 11-1)

Your expression must have n_i in it.

Hint #1: for x >> 0, $n = N_D$

Hint #2: Start by dividing the equations

$$n = N_c e^{-\frac{E_c - E_F}{k_B T}}$$

$$n_i = \sqrt{N_c N_v} e^{-\frac{E_g}{2k_B T}}$$

Use the above equations to find the fermi energy on the n-side. (problem 11-1)

Your expression must have n_i in it.

Hint #1: for $x \gg 0$, $n = N_D$

Hint #2: Start by dividing the equations

$$E_F = \frac{1}{2}(E_c + E_v) + k_B T \ln\left(\sqrt{\frac{N_v}{N_c}} \frac{N_d}{n_i}\right)$$

If I increase the temperature, will the contact potential increase, decrease or stay the same?

B - Decrease

C - Increase

D - Stay the same

$$E_F = \frac{1}{2}(E_c + E_v) + k_B T \ln\left(\sqrt{\frac{N_v}{N_c}} \frac{N_d}{n_i}\right)$$

rename...

$$E_F = \frac{1}{2} \left(E_{cn} + E_{vn} \right) + k_B T \ln \left(\sqrt{\frac{N_c}{N_v}} \frac{N_d}{n_i} \right) \qquad \text{n-side}$$

$$E_F = \frac{1}{2} \left(E_{cp} + E_{vp} \right) - k_B T \ln \left(\sqrt{\frac{N_v}{N_c}} \frac{N_a}{n_i} \right) \quad \text{p-side}$$

Force the fermi Energies to be equal and solve for:

$$E_{vp} - E_{vn}$$

Problem 11-3

$$E_{vp}-E_{vn}=k_BT\ln\left(rac{N_aN_d}{n_i^2}
ight)$$
Question #14

Identify this energy difference on the diagram.

Where is the magnitude of the electric field the largest?

C - 1

D - 2

E - 3

Where is the magnitude of the electric field the largest?

C - 1

D - 2

E - 3

Question #16

At which point(s) does the electric field point to the left?

- a) all three
- b) 1
- c) 2
- d) 3

Where is the magnitude of the electric field the largest?

Question #16

At which point(s) does the electric field point to the left?

- a) all three
- b) 1
- c) 2
- d) 3

A little review.

$$\oint \mathcal{E} \cdot d\mathbf{S} = rac{Q}{\epsilon}$$
 Gauss's Law

$$\int (\nabla \cdot \mathcal{E}) dV = \oint \mathcal{E} \cdot d\mathbf{S}$$
 Divergence theorem 2

$$\int (\nabla \cdot \mathcal{E}) dV = \frac{Q}{\epsilon} = \frac{1}{\epsilon} \int \rho dV \quad \boxed{3}$$

$$abla \cdot \mathcal{E} = rac{
ho}{\epsilon}$$
 4

$$\nabla \cdot \mathcal{E} = \frac{\rho}{\epsilon} \boxed{\mathbf{4}} \qquad \qquad \mathcal{E} = \frac{1}{\epsilon_0 \epsilon_r} \int_{-\infty}^x \rho dx$$

 $\frac{d\mathcal{E}}{dx} = \frac{\rho}{\epsilon_0 \epsilon_m}$ Alternate form of Gauss's law.

$$\mathcal{E} = \frac{1}{\epsilon_0 \epsilon_r} \int_{-\infty}^x \rho dx$$

Perform the integration to get equation 11-12

$$\mathcal{E}_{\max} = \frac{eN_d x_d}{2\epsilon_r \epsilon_0}$$

$$\mathcal{E} = \frac{1}{\epsilon_0 \epsilon_r} \int_{-\infty}^{x} \rho dx$$

$$\mathcal{E} = -\frac{eN_d}{\epsilon_r \epsilon_0} (\frac{1}{2}x_d + x)$$

$$\mathcal{E}_{\max} = \frac{eN_d x_d}{2\epsilon_r \epsilon_0} \qquad \qquad \mathcal{E} = -\frac{eN_d}{\epsilon_r \epsilon_0} (\frac{1}{2} x_d - x)$$

$$\Delta U = -\int_{-\infty}^{\infty} F dx$$

$$=e\int_{-\infty}^{\infty}\mathcal{E}dx$$

Perform the integration to get to equation 11-16

$$\mathcal{E}_{\max} = \frac{eN_d x_d}{2\epsilon_r \epsilon_0}$$

$$\Delta U = -\int_{-\infty}^{\infty} F dx$$

$$=e\int_{-\infty}^{\infty}\mathcal{E}dx$$

Perform the integration to get to equation 11-16

$$\Delta U = -\frac{e^2 N_d x_d^2}{4\epsilon_r \epsilon_0}$$

$$\mathcal{E}_{\text{max}} = \frac{eN_d x_d}{2\epsilon_r \epsilon_0}$$

$$\Delta U = -\int_{-\infty}^{\infty} F dx$$

$$=e\int_{-\infty}^{\infty}\mathcal{E}dx$$

Perform the integration to get to equation 11-16

$$\Delta U = -\frac{e^2 N_d x_d^2}{4\epsilon_r \epsilon_0}$$

$$\mathcal{E}_{\text{max}} = \frac{eN_d x_d}{2\epsilon_r \epsilon_0}$$

$$x_d = \sqrt{\frac{4\epsilon_r \epsilon_0 \phi}{eN_d}}$$

Which picture describes recombination current?

Which picture describes recombination current?

What is the direction of the current in (b)?

C left D right

If I apply a forward voltage to this junction, how will this affect the recombination current?

Positive terminal of battery connected to the p-side of the junction.

A current decreasesB current increasesC current stays the same.

If I apply a forward voltage to this junction, how will this affect the recombination current?

Positive terminal of battery connected to the p-side of the junction.

A current decreasesB current increasesC current stays the same.

If I apply a forward voltage to this junction, how will this affect the recombination current?

Positive terminal of battery connected to the p-side of the junction.

Question #20 generation current?

B current decreases

C current increases

D current stays the same.

If I apply a backward voltage to this junction, how will this affect the recombination current?

Positive terminal of battery connected to the n-side of the junction.

A current decreases

B current increase

C current stays the same

If I apply a backward voltage to this junction, how will this affect the recombination current?

Positive terminal of battery connected to the n-side of the junction.

 $e(\phi - V_a)$ A current decreases

B current increase

C current stays the same

If I apply a backward voltage to this junction, how will this affect the recombination current?

Positive terminal of battery connected to the n-side of the junction.

Question #22 generation current?

 $e(\phi - V_a)$ **C** current decreases

B current increase

A current stays the same

That's a diode (rectifier)!

$$I=I_0\left(e^{rac{eV_a}{k_BT}}+1
ight)$$

In a **forward-biased** junction, the width of the depletion layer

- a) decreases
- b) Increases
- c) stays the same

In a **forward-biased** junction, the width of the depletion layer

- a) decreases
- b) Increases
- c) stays the same

$$x_d = \sqrt{\frac{4\epsilon_r \epsilon_0 \phi}{eN_d}} \rightarrow x_d = \sqrt{\frac{4\epsilon_r \epsilon_0 (\phi - V_a)}{eN_d}}$$

Capacitance

$$C = \frac{\epsilon_r \epsilon_0 A}{d}$$
 Parallel plate capacitor. (from PH220)

$$x_d = \sqrt{\frac{4\epsilon_r \epsilon_0 (\phi - V_a)}{eN_d}}$$

Capacitance

$$C = \frac{\epsilon_r \epsilon_0 A}{d}$$
 Parallel plate capacitor. (from PH220)

$$x_d = \sqrt{\frac{4\epsilon_r \epsilon_0 (\phi - V_a)}{eN_d}}$$

$$C = A\sqrt{\frac{\epsilon_r \epsilon_0 e N_d}{4(\phi - V_a)}}$$