

## HAC

# **TEST REPORT**

of

#### **CDMA Handset**

Model Name:

CDM2080US

Trade Name:

PCD

Report No.:

FCC ID:

SZ11030126H02

U46-CDM2080

prepared for

#### **TELEEPOCH Limited**

5A, B1 Building, Digital Tech Zone, High-Tech Park(South), Nanshan District, Shenzhen, Guangdong Province, China

prepared by

Shenzhen Electronic Product Quality Testing Center

Morlab Laboratory

3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055 P. R. China

Tel: +86 755 86130398

Fax: +86 755 86130218

PC63.19 HAC Rated Category: T3 (T-coil)

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant, it shall not be reproduced except in full, without the written approval of Shenzhen Electronic Product Quality Testing Center Morlab Laboratory. Any objections should be raised to us within thirty workdays since the date of issue.



### **Contents** Notes 3 1.1. 1.2. 1.3. TEST SITE DESCRIPTION ......4 Identification of the Responsible Testing Location ......4 2.2. 2.3. Accreditation Certificate ......4 2.4. List of Test Equipments \_\_\_\_\_\_4 3. TECHNICAL INFORMATION .......6 Identification of Applicant......6 Identification of Manufacturer ......6 3.3. Description of EUT ......6 3.3.1. 3.3.2. 4. TEST RESULTS......7 4.1. 4.2. Operational Conditions During Test ......9 4.3. 4.3.1. INTRODUCTION......9 4.3.2. Description of Test System......11 4.3.3. 4.3.4. 4.3.5. 4.3.6. 4.3.7. 4.3.8. ACCREDITATION CERTIFICATE......28 ANNEX A





### General Information

#### 1.1. Notes

The test results of this test report relate exclusively to the information specified in section. Shenzhen Electronic Product Quality Testing Center Morlab Laboratory does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the identification. The test report may only be reproduced or published in full. Reproduction or publications of extracts from the test report requires the prior written approval of Shenzhen Electronic Product Quality Testing Center Morlab Laboratory. The test report shall be invalid without all the signatures of testing the Project Manager, the Deputy Project Manager and the Test Lab Manager. Any objections must be raised to Morlab within 30 days since the date when the report is received. It will not be taken into consideration beyond this limit.

## 1.2. Organization item

Report No.:

SZ11030126H02

Date of Issue:

May. 30, 2010

Date of Tests:

May. 25, 2011

Responsible for Accreditation:

Shu Luan

Project Manager:

Li Lei

Deputy Project Manager:

Samuel Peng

#### 1.3. Conclusion

Shenzhen Electronic Product Quality Testing Center Morlab Laboratory has verified that all tests as listed in the section of this report haven been performed successfully with the tested equipment.

Samuel Peng

Tested by

Certification

Li Lei

Reviewed by
Verification of the Test Report)

(Responsible for the Test Report)

Shu Luan

Approved by

(Responsible Test Lab Manager)



## 2. Test Site Description

## 2.1. Identification of the Responsible Testing Laboratory

Company Name: Shenzhen Electronic Product Quality Testing Center

Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan

District, Shenzhen, 518055 P. R. China

Responsible Test Lab Manager: Mr. Shu Luan
Telephone: +86 755 86130268
Facsimile: +86 755 86130218

## 2.2. Identification of the Responsible Testing Location

Name: Shenzhen Electronic Product Quality Testing Center Morlab

Laboratory

Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan

District, Shenzhen, 518055 P. R. China

All measurement facilities used to collect the measurement data are located at Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen 518055 CHINA. The test site is constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22; the FCC registration number is 741109.

### 2.3. Accreditation Certificate

Accredited Testing Laboratory: No. CNAS L1659

## 2.4. List of Test Equipments

| No. | Instrument       | Туре                                   |
|-----|------------------|----------------------------------------|
| 1   | PC               | Dell (Pentium IV 2.4GHz, SN:X10-23533) |
| 2   | Network Emulator | Rohde&Schwarz (CMU200, SN:105894)      |
| 3   | Voltmeter        | Keithley (2000, SN:1000572)            |
| 4   | Synthetizer      | Rohde&Schwarz (SML_03, SN:101868)      |
| 5   | Amplifier        | Nucl udes (ALB216, SN:10800)           |
| 6   | Power Meter      | Rohde&Schwarz (NRVD, SN:101066)        |
| 7   | Audio DAQ        | NI (MonDAQ, SN:MonNumero)              |
| 8   | E-FIELD PROBE    | SN: SN 41/08 EPH17                     |
| 9   | H-FIELD PROBE    | SN: SN 41/08 HPH18                     |



| 10 | T-COIL PROBE         | SN: SN 39/08 TCP11             |
|----|----------------------|--------------------------------|
| 11 | 800-950 MHZ DIPOLE   | SN: SN 36/08 DHA16             |
| 12 | 1700-2000 MHZ DIPOLE | SN: SN 36/08 DHB16             |
| 13 | HAC holder           | SN02_EPH02 (SN:SN_3608_SUPH16) |



## 3. Technical Information

Note: the following data is based on the information by the applicant.

## 3.1. Identification of Applicant

Company Name: TELEEPOCH Limited

Address: 5A, B1 Building, Digital Tech Zone, High-Tech Park(South), Nanshan

District, Shenzhen, Guangdong Province, China

#### 3.2. Identification of Manufacturer

Company Name: TELEEPOCH Limited

Address: 5A, B1 Building, Digital Tech Zone, High-Tech Park(South), Nanshan

District, Shenzhen, Guangdong Province, China

## 3.3. Description of EUT

Brand Name: PCD
Type Name: PCD

Marking Name: CDM2080US Hardware Version: M600\_V1.1 Software Version: M600\_V1.11

Frequency Bands: CDMA 800MHz, CDMA 1900MHz, AWS1700MHz

Antenna type: Build inside
Accessories: Charger; Battery
Battery Model: BTR2080B
Battery specification: 800mAh 3.7V

Development Stage Identical prototype

Classification: Licensed Transmitter Held to Ear



### 3.3.1. Photographs of the EUT

Please see for photographs of the EUT.

#### 3.3.2. Identification of all used EUTs

The EUT Identity consists of numerical and letter characters (see the table below), the first five numerical characters indicates the Type of the EUT defined by Morlab, the next letter character indicates the test sample, and the following two numerical characters indicates the software version of the test sample.

| EUT<br>Identity | Hardware Version | Software Version |
|-----------------|------------------|------------------|
| 1#              | M600_V1.1        | M600_V1.11       |

## 4. Test Results

## 4.1. Applied Reference Documents

Leading reference documents for testing:

| No. | Identity      | Document Title                                        |
|-----|---------------|-------------------------------------------------------|
| 1   | ANSI C 63.19: | American National Standard Methods of Measurement of  |
|     | 2007          | Compatibility between Wireless Communications Devices |
|     |               | and Hearing Aids                                      |

**Note:** Test report, reference KDB 285076 documents.



### 4.2. Test Environment/Conditions

Normal Temperature (NT):  $20 \dots 25 \,^{\circ}\text{C}$ Relative Humidity:  $30 \dots 75 \,^{\circ}$ 

Test frequency: CDMA 800MHz, CDMA 1900MHz, AWS1700MHz

Operation mode: Call established

Power Level: CDMA Maximum output power

EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established. The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 1013, 384 and 777 respectively in the case of CDMA 800MHz or to 25, 450 and 875 respectively in the case of AWS1700MHz or is allocated to 25, 600 and 1175 respectively in the case of CDMA 1900MHz. The EUT is commanded to operate at maximum transmitting power.



## **4.3.Operational Conditions During Test**

#### 4.3.1. INTRODUCTION

On July 10.2003.the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658 to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide suffer from hearing loss.

#### Compatibility Tests involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions.
- RF Magnetic- field emissions.
- T-coil mode, magnetic-signal strength in the audio band.
- T-coil mode, magnetic-signal frequency response through the audio band.
- T-coil mode, magnetic-signal and noise articulation index.

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device



## 4.3.2. ANSI/IEEE PC 63.19 PERFORMANCE CATEGORIES

#### 4.3.2.1. T-coil

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

|                              | Telephone RF Parameter                |  |
|------------------------------|---------------------------------------|--|
| Category                     | Wireless Device Signal Quality        |  |
|                              | (Signal + Noise-to-noise ratio in dB) |  |
| T1                           | 0 to 10 dB                            |  |
| T2                           | 10 to 20 dB                           |  |
| Т3                           | 20 to 30 dB                           |  |
| T4                           | >30 dB                                |  |
| Magnetic Coupling Parameters |                                       |  |

### 4.3.2.2. Articulation Weighing Factor (AWF)

| Standard     | Technology      | AWF |
|--------------|-----------------|-----|
| T1/T1P1/3GPP | UMTS(WCDMA)     | 0   |
| IS-95        | CDMA            | 0   |
| iden         | GSM(22and 11Hz) | 0   |
| J-STD-007    | GSM(217Hz)      | -5  |

AWF has been developed from information presented to the committee regarding the interference potential of the various modulation types according to ANSI PC 63.19



## 4.3.3. Description of Test System

#### 4.3.3.1. COMOHAC E-FIELD PROBE



| Serial Number:                                      | SN 41/08 EPH17                  |
|-----------------------------------------------------|---------------------------------|
| Frequency:                                          | 100MHz – 3GHz                   |
| Probe length:                                       | 330mm                           |
| Length of one dipole:                               | 3.3mm                           |
| Maximum external diameter:                          | 8mm                             |
| Probe extremity diameter:                           | 6mm                             |
| Distance between dipoles/probe extremity:           | 3mm                             |
|                                                     | Dipole 1:R1=2.1807 MΩ           |
| Resistance of the three dipole (at the connector ): | Dipole 2:R1=2.0612 MΩ           |
|                                                     | Dipole 3:R3=2.1892 MΩ           |
| Connector (HIROSE series SR30)                      | 6 wire male (Hirose SR30series) |

### **CALIBRATION TEST EQUIPMENT**

| TYPE              | IDENTIFICATION         |  |
|-------------------|------------------------|--|
| Colibration bands | SATIMO AIR CALIBRATION |  |
| Calibration bench | SOFTWARE               |  |
| Multimeter        | Keithley 2000          |  |

#### MEASUREMENT PROCEDURE

Probe calibration is realized by using the waveguide method. The probe was inserted in a waveguide loading by a 50 load. By controlling the input power in the waveguide, we are able to create a know EField value in the waveguide.

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO



The following tables represent the calibration curves linearization by curve segment in CW signal.



#### 4.3.3.2. COMOHAC H-FIELD PROBE



| Serial Number:                                      | SN 41/08 HPH18                  |
|-----------------------------------------------------|---------------------------------|
| Frequency:                                          | 100 MHz - 3 GHz                 |
| Probe length:                                       | 330mm                           |
| Length of one dipole:                               | 3.3mm                           |
| Maximum external diameter:                          | 8mm                             |
| Probe extremity diameter:                           | бтт                             |
| Distance between dipoles/probe extremity:           | 3mm                             |
|                                                     | Dipole 1:R1=2.1650 MΩ           |
| Resistance of the three dipole (at the connector ): | Dipole 2:R1=2.2176 MΩ           |
|                                                     | Dipole 3:R3=2.4084 MΩ           |
| Connector (HIROSE series SR30)                      | 6 wire male (Hirose SR30series) |

### **CALIBRATION TEST EQUIPMENT**

| TYPE              | IDENTIFICATION         |
|-------------------|------------------------|
| Calibration banch | SATIMO AIR CALIBRATION |
| Calibration bench | SOFTWARE               |
| Multimeter        | Keithley 2000          |

### MEASUREMENT PROCEDURE

Probe calibration is realized by using the waveguide method. The probe was inserted in a waveguide loading by a 50 load. By controlling the input power in the waveguide, we are able to create a know HField value in the waveguide.

Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO



The following tables represent the calibration curves linearization by curve segment in CW signal.



### 4.3.3.3. COMOHAC T-COIL PROBE



| Serial Number: | SN 39/08 TCP11            |
|----------------|---------------------------|
| Dimensions:    | 6.55mm length*2.29mm      |
| Difficultions: | diameter                  |
| DC resistance: | 860.6Ω                    |
| Wire size:     | 51 AWG                    |
| Inductance:    | 132.1 mH at 1kHz          |
| Sensitivity:   | -60.22 dB (V/A/m) at 1kHz |

### **SENSITIVITY**

### Probe coil sensitivity relative to sensitivity at 1000 Hz



T-Coil probe sensitivity (dB V/(A/m)) -60.22

| Frequency (Hz) | H (dB (V/(A/m))) |
|----------------|------------------|
| 200            | -73,92940009     |
| 250            | -72,01119983     |
| 315            | -70,06378892     |
| 400            | -67,88880017     |
| 500            | -66,00059991     |
| 630            | -64,07318901     |
| 800            | -62,00820026     |
| 1000           | -60,22           |
| 1250           | -58,29179974     |
| 1600           | -56,20760035     |
| 2000           | -54,31940009     |
| 2500           | -52,36119983     |
| 3150           | -50,38378892     |
| 4000           | -48,50880017     |
| 5000           | -46,44059991     |

## **LINEARITY**

Linearity = 0.27 dB

| Power (dB)<br>relative to 1 A/m | 0 | -10   | -20    | -30 | -40   | -50    |
|---------------------------------|---|-------|--------|-----|-------|--------|
| H (dB (V/(A/m)))                | 0 | -9.95 | -19.95 | -30 | -39.9 | -49.73 |



### 4.3.3.4. System Hardware

The HAC positioning ruler is used to position the phone properly with the regard to the position of the probe during a measurement. The positioning system is made of a dedicated frame that can be fixed on the table. The tip of the probe is positioned on a reference point located on the top of the positioning ruler. The distance between this reference point and the cross located on the ruler being known, the speaker of the phone is positioned on this cross in order to make sure both probe and phone are positioned properly.

During the measurement, the HAC ruler has to be removed so that it does not interfere with the measurement.



Reference point



HAC positioning ruler





### 4.3.4. TEST PROCEDURE

#### **4.3.4.1. RF EMISSIONS**

Per ANSI C 63.19 2007:

Test Instructions





### **4.3.4.2.TEST Setup**



WD reference and plane for RF emission measurements

#### **4.3.4.3.RF Emission Test Procedure**

The following illustrate a typical RF emissions test scan over a wireless communications device:

- 1. Proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed.
- 2. WD is positioned in its intended test position, acoustic output point of the device perpendicular to the field probe.
- 3. The WD operation for maximum rated RF output power was configured and confirmed with the base station simulator, at the test channel and other normal operating parameters as intended for the test. The battery was ensured to be fully charged before each test.
- 4. The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The WD audio output was positioned tangent (as physically possible) to the measurement plane.
- 5. A surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the HAC Phantom.
- 6. The measurement system measured the field strength at the reference location.



#### 4.3.5. SYSTEM CHECK

#### 4.3.5.1. System Check Parameters

The input signal was an unmodulated continuous wave. The following points were taken into consideration in performing this check:

- Average Input Power P = 100mW RMS (20dBm RMS) after adjustment for return loss
- The test fixture must meet the 2 wavelength separation criterion
- The proper measurement of the 1 cm probe to dipole separation, which is measured from top surface of the dipole to the calibration reference point of the sensor, defined by the probe manufacturer is shown in the following diagram:



Separation Distance from Dipole to Field Probe

RF power was recorded using both an average reading meter and a peak reading meter. Readings of the probe are provided by the measurement system.

To assure proper operation of the near-field measurement probe the input power to the dipole shall be commensurate with the full rated output power of the wireless device (e.g. - for a cellular phone wireless device the average peak antenna input power will be on the order of 100mW (i.e. - 20dBm) RMS after adjustment for any mismatch.

#### **4.3.5.2 Validation Procedure**

A dipole antenna meeting the requirements given in PC63.19 was placed in the position normally occupied by the WD.

The length of the dipole was scanned with both E-field and H-field probes and the maximum values for each were recorde

Using the near-field measurement system, scan the antenna over the radiating dipole and record the greatest field reading observed. Due to the nature of E-fields about free-space dipoles, the two E-field peaks measured over the dipole are averaged to compensate for non-paralellity of the setup see manufacturer



method on dipole calibration certificates, Field strength measurements shall be made only when the probe is stationary.

RF power was recorded using both an average and a peak power reading meter.



Setup for Desired Output Power to Dipole

Setup to Dipole

Using this setup configuration, the signal generator was adjusted for the desired output power (100mW) at a specified frequency. The reference power from the coupled port of the directional coupler is recorded. Next, the output cable is connected to the reference dipole,

## 4.3.5.3. Test System Validation

Validation Results (1W forward input power)

|           | <u> </u>                |                            |                          |
|-----------|-------------------------|----------------------------|--------------------------|
| Frequency | Input<br>Power<br>(dBm) | E-field<br>Result<br>(V/m) | Target<br>Field<br>(V/m) |
| 900 MHz   | 20.0                    | 205                        | 207                      |
| 1880MHz   | 20.0                    | 145.3                      | 141.2                    |
|           | Input                   | H-field                    | Target                   |
| Frequency | Power                   | Result                     | Field                    |
|           | (dBm)                   | (A/m)                      | (A/m)                    |
| 900 MHz   | 20.0                    | 0.448                      | 0.442                    |
| 1880MHz   | 20.0                    | 0.433                      | 0.429                    |





# **4.3.6.** Uncertainty Estimation Table

|                                                    |         | 1    |       | T        | 1                                              |       |       |        | 1 |
|----------------------------------------------------|---------|------|-------|----------|------------------------------------------------|-------|-------|--------|---|
| a                                                  | b       | c    | d     | e=f(d,k) | f                                              | g     | h=    | i=     | k |
|                                                    |         |      |       |          |                                                |       | c*f/e | c*g/e  |   |
| Uncertainty Component                              | Sec.    | Tol  | Prob. | Div.     | Ci (1g)                                        | Ci    | 1g Ui | 10g Ui | V |
|                                                    |         | (+-  | Dist. |          |                                                | (10g) | (+-%) | (+-%)  | i |
|                                                    |         | %)   |       |          |                                                |       |       |        |   |
| Measurement System                                 | _       | T    | 1     | _        | <u>,                                      </u> | 1     |       | 1      |   |
| Probe calibration                                  | E.2.1   | 7.0  | N     | 1        | 1                                              | 1     | 7.00  | 7.00   |   |
| Axial Isotropy                                     | E.2.2   | 2.5  | R     |          |                                                |       | 1.02  | 1.02   |   |
| Hemispherical Isotropy                             | E.2.2   | 4.0  | R     |          |                                                |       | 1.63  | 1.63   |   |
| Boundary effect                                    | E.2.3   | 1.0  | R     |          | 1                                              | 1     | 0.58  | 0.58   |   |
| Linearity                                          | E.2.4   | 5.0  | R     |          | 1                                              | 1     | 2.89  | 2.89   |   |
| System detection limits                            | E.2.5   | 1.0  | R     |          | 1                                              | 1     | 0.58  | 0.58   |   |
| Readout Electronics                                | E.2.6   | 0.02 | N     | 1        | 1                                              | 1     | 0.02  | 0.02   |   |
| Reponse Time                                       | E.2.7   | 3.0  | R     |          | 1                                              | 1     | 1.73  | 1.73   |   |
| Integration Time                                   | E.2.8   | 2.0  | R     |          | 1                                              | 1     | 1.15  | 1.15   |   |
| RF ambient Conditions                              | E.6.1   | 3.0  | R     |          | 1                                              | 1     | 1.73  | 1.73   |   |
| Probe positioner Mechanical                        | E.6.2   | 2.0  | R     |          | 1                                              | 1     | 1.15  | 1.15   |   |
| Tolerance                                          |         |      |       |          |                                                |       |       |        |   |
| Probe positioning with respect to<br>Phantom Shell | E.6.3   | 0.05 | R     |          | 1                                              | 1     | 0.03  | 0.03   |   |
| Extrapolation, interpolation and                   | E.5.2   | 5.0  | R     |          | 1                                              | 1     | 2.89  | 2.89   |   |
| integration Algoritms for Max.                     |         |      |       |          |                                                |       |       |        |   |
| SAR Evaluation                                     |         |      |       |          |                                                |       |       |        |   |
| Test sample Related                                |         |      |       |          |                                                |       |       |        |   |
| Test sample positioning                            | E.4.2.1 | 0.03 | N     | 1        | 1                                              | 1     | 0.03  | 0.03   | N |
|                                                    |         |      |       |          |                                                |       |       |        | - |
|                                                    |         |      |       |          |                                                |       |       |        | 1 |
| Device Holder Uncertainty                          | E.4.1.1 | 5.00 | N     | 1        | 1                                              | 1     | 5.00  | 5.00   |   |
| Output power Variation - SAR                       | 6.6.2   | 5.78 | R     |          | 1                                              | 1     | 3.34  | 3.34   |   |
| drift measurement                                  |         |      |       |          |                                                |       |       |        |   |



## 4.3.7. OVERALL MEASUREMENT SUMMARY

## 4.3.7.1 T-coil

| Band         | Mode | Channel | Antenna | M Rating | Output power |
|--------------|------|---------|---------|----------|--------------|
|              |      |         |         |          | (dBm)        |
| T-coil       | •    |         |         |          |              |
| CDMA 800MHz  | CDMA | 384     | Fixed   | M3       | 27.69        |
| AWS 1700MHz  | CDMA | 450     | Fixed   | M3       | 27.18        |
| CDMA 1900MHz | CDMA | 600     | Fixed   | M3       | 28.01        |

Note: All tests are done in CDMA and Bluetooth active mode.



# **4.3.8. TEST DATA**

| FREQUENCY       | <u>PARAMETERS</u>                       |  |  |  |  |  |
|-----------------|-----------------------------------------|--|--|--|--|--|
| <u>CDMA800</u>  | Measurement 1: T-coil on Middle Channel |  |  |  |  |  |
| <u>AWS1700</u>  | Measurement 2: T-coil on Middle Channel |  |  |  |  |  |
| <u>CDMA1900</u> | Measurement 3: T-coil on Middle Channel |  |  |  |  |  |



# **MEASUREMENT 1**

# A. Experimental conditions.

| Grid size (mm x mm)  | 50.0, 50.0  |
|----------------------|-------------|
| Step (mm)            | 5           |
| Scanning Height (mm) | 10.0        |
| Band                 | CDMA 800MHz |
| Date of measurement  | 25/5/2011   |

# **B. HAC Measurement Results**

Frequency (MHz): 836.520000

| C63.19  | Mode | Band   | Test Description               | Minimum | Location | Measured | Categor | Verdict  |
|---------|------|--------|--------------------------------|---------|----------|----------|---------|----------|
|         |      |        |                                | Limit   |          |          | у       |          |
|         |      |        |                                | dBA/m   | -        | dBA/m    | -       | Pass/Fai |
|         |      |        |                                |         |          |          |         | 1        |
| 7.3.1.1 |      |        | Intensity, Axial               | -18     | Max      | 13.16    | -       | PASS     |
| 7.3.1.2 |      |        | Intensity, RadialH             | -18     | Max      | 7.25     | -       | PASS     |
|         |      |        |                                | -       | -        | -        | -       | -        |
| 7.3.1.2 | CDM  | CDMA80 | Intensity, RadialV             | -18     | Max      | 5.87     | -       | PASS     |
|         | A    | 0      |                                | -       | -        | -        | -       | -        |
| 7.3.3   |      |        | Signal to noise/noise, Axial   | 5       | Max      | 28.62    | Т3      | PASS     |
| 7.3.3   |      |        | Signal to noise/noise, RadialH | 5       | Max      | 24.66    | Т3      | PASS     |
|         |      |        |                                | -       | -        | -        | -       | -        |
| 7.3.3   |      |        | Signal to noise/noise, RadialV | 5       | Max      | 41.42    | T4      | PASS     |
|         |      |        |                                | -       | -        | -        | -       | -        |
| 7.3.2   |      |        | Frequency reponse, Axial       | -       | -        | -        | -       | -        |



# **T.Coil Scan Overlay Magnetic Field Distributions**





# **MEASUREMENT 2**

# A. Experimental conditions.

| Grid size (mm x mm)  | 50.0, 50.0 |
|----------------------|------------|
| Step (mm)            | 5          |
| Scanning Height (mm) | 10.0       |
| Band                 | AWS 1700   |
| Date of measurement  | 25/5/2011  |

# **B. HAC Measurement Results**

Frequency (MHz): 1732.500000

| C63.19  | Mode | Band    | Test Description               | Minimum | Location | Measured | Categor | Verdict  |
|---------|------|---------|--------------------------------|---------|----------|----------|---------|----------|
|         |      |         |                                | Limit   |          |          | у       |          |
|         |      |         |                                | dBA/m   | -        | dBA/m    | -       | Pass/Fai |
|         |      |         |                                |         |          |          |         | 1        |
| 7.3.1.1 |      |         | Intensity, Axial               | -18     | Max      | 13.16    | -       | PASS     |
| 7.3.1.2 |      |         | Intensity, RadialH             | -18     | Max      | 7.25     | -       | PASS     |
|         |      |         |                                | -       | -        | -        | -       | -        |
| 7.3.1.2 | CDM  | AWS1700 | Intensity, RadialV             | -18     | Max      | 5.87     | -       | PASS     |
|         | A    |         |                                | -       | -        | -        | -       | -        |
| 7.3.3   |      |         | Signal to noise/noise, Axial   | 5       | Max      | 29.94    | Т3      | PASS     |
| 7.3.3   |      |         | Signal to noise/noise, RadialH | 5       | Max      | 25.59    | Т3      | PASS     |
|         |      |         |                                | -       | -        | -        | -       | -        |
| 7.3.3   |      |         | Signal to noise/noise, RadialV | 5       | Max      | 43.64    | T4      | PASS     |
|         |      |         |                                | -       | -        | -        | -       | -        |
| 7.3.2   |      |         | Frequency reponse, Axial       | -       | -        | -        | -       | -        |



# **T.Coil Scan Overlay Magnetic Field Distributions**





# **MEASUREMENT 3**

# A. Experimental conditions.

| Grid size (mm x mm)  | 50.0, 50.0 |
|----------------------|------------|
| Step (mm)            | 5          |
| Scanning Height (mm) | 10.0       |
| Band                 | US_PCS     |
| Date of measurement  | 25/5/2011  |

# **B. HAC Measurement Results**

Frequency (MHz): 1880.000000

| C63.19  | Mode | Band | Test Description               | Minimum | Location | Measured | Categor | Verdict  |
|---------|------|------|--------------------------------|---------|----------|----------|---------|----------|
|         |      |      |                                | Limit   |          |          | у       |          |
|         |      |      |                                | dBA/m   | -        | dBA/m    | -       | Pass/Fai |
|         |      |      |                                |         |          |          |         | 1        |
| 7.3.1.1 |      |      | Intensity, Axial               | -18     | Max      | 13.16    | -       | PASS     |
| 7.3.1.2 |      |      | Intensity, RadialH             | -18     | Max      | 7.25     | -       | PASS     |
|         |      |      |                                | -       | -        | -        | -       | -        |
| 7.3.1.2 | CDM  | CDMA | Intensity, RadialV             | -18     | Max      | 5.87     | -       | PASS     |
|         | A    | 1900 |                                | -       | -        | -        | -       | -        |
| 7.3.3   |      |      | Signal to noise/noise, Axial   | 5       | Max      | 29.86    | Т3      | PASS     |
| 7.3.3   |      |      | Signal to noise/noise, RadialH | 5       | Max      | 25.73    | Т3      | PASS     |
|         |      |      |                                | -       | -        | -        | -       | -        |
| 7.3.3   |      |      | Signal to noise/noise, RadialV | 5       | Max      | 43.55    | T4      | PASS     |
|         |      |      |                                | -       | -        | -        | -       | -        |
| 7.3.2   |      |      | Frequency reponse, Axial       | -       | -        | -        | -       | -        |



# **T.Coil Scan Overlay Magnetic Field Distributions**







### **Annex A Accreditation Certificate**



China National Accreditation Service for Conformity Assessment

### LABORATORY ACCREDITATION CERTIFICATE

(No. CNAS L1659)

China National Accreditation Service for Conformity Assessment has accredited

Shenzhen Electronic Product Quality Testing Center

Electronic Testing Building, Shahe Road, Xili, Nanshan District,

Shenzhen, Guangdong, China

to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories(CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing and calibration.

The scope of accreditation is detailed in the attached schedule bearing the same accreditation number as above. The schedule forms an integral part of this certificate.

Date of Issue: 2009-09-29

Date of Expiry: 2012-09-28

Date of Initial Accreditation: 1999-08-03



Signed on behalf of China National Accreditation Service for Conformity Assessment

China National Accreditation Service for Conformity Assessment(CNAS) is authorized by Certification and Accreditation Administration of the People's Republic of China (CNCA) to operate the national accreditation systems for conformity assessment. CNAS is the signatory to International Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (LAC MRA), and the signatory to Asia Pacific Laboratory Accreditation Cooperation Multilateral Recognition Arrangement (APLAC MRA), and