Funktionen und Grenzwerte

Ohne Hilfsmittel, etwa 60 Min.

- 1. Sei $f(x) = \frac{x}{x^2+2}$ (20P).
 - © a) Gib f(0), f(-1), f(2a), f(x+h) an.
 - © b) Ist die Funktion gerade, ungerade oder weder noch?
 - c) Finde \mathbb{D} , \mathbb{W} und die Umkehrfunktion $f^{-1}(x)$.
 - \odot d) $\lim_{x \to +\infty} f(x) = \dots$
 - e) Skizziere die Funktion in einem Koordinatensystem mit Hilfe der in (a-d) gesammelten Informationen.
- 2. © Unter welchen Bedingungen gilt $f \circ g = g \circ f$

für die beiden Funktionen f(x) = ax + b und g(x) = cx + d? (6P)

3. Finde den Grenzwert: (20P)

© a)
$$\lim_{x \to 2} (x^2 - 4x) =$$

© c)
$$\lim_{x \to 1} \frac{(3x-1)^2}{(x+1)^3} =$$

$$\odot$$
 d) $\lim_{x \to e} \ln(x^x) =$

$$\odot$$
 e) $\lim_{x \to 1} \frac{x-1}{x^2-1}$

$$\odot$$
 f) $\lim_{x \to +\infty} \frac{2x^2 + 1}{6 + x - 3x^2} =$

g)
$$\lim_{x \to 0} \frac{\sin^2 x}{1 - \cos x} =$$

h)
$$\lim_{x \to 0^{\pm}} \frac{1}{1 - e^{\frac{1}{x}}} =$$

i)
$$\lim_{x \to 2} \frac{2x-3}{\sqrt{x} + \sqrt{4x+1}} =$$

j)
$$\lim_{x \to \alpha} \frac{\sin x - \sin \alpha}{\cos x - \cos \alpha} =$$

- 4. Beweise, dass $\lim_{x \to +\infty} (2^{\frac{1}{x}}) = 1$ und $\lim_{x \to \pm 2} (x^2 4) = 0$ (12P).
- 5. Gib den Definitionsbereich $\mathbb D$ an: (8P)

a)
$$y = \frac{1}{\log(x+1)}$$

$$\odot$$
 b) $y = \frac{x^2 - 9}{x + 3}$

c)
$$y = \ln(\log_{\frac{1}{10}} x)$$