R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, eycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^2 (X = O, NR^8 or S);

R¹ and R², R² and R³, R² and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

the dotted line indicates the presence of either a single or double bond;

B is S:

5

10

20

25

30

G is NR7R8.

15 In another sub-embodiment, a structure of the formula (XIV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁵, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbotydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁶ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

the dotted line indicates the presence of either a single or double bond;

B is S:

G is SR7.

10

15

20

25

5 In another sub-embodiment, a structure of the formula (XIV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^{1} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{7} (X = O, NR^{8} or S):

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁶O and CR⁷R⁸NR⁷;

the dotted line indicates the presence of either a single or double bond;

B is NR7;

G is OR7.

In another sub-embodiment, a structure of the formula (XIV) is given wherein the compound or its pharmaceutically acceptable salts or product is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide,

a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁵, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR²R⁸ groups, connected by a tether, selected independently from groups that include CR²R⁸, CR²R⁸CR²R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR²R⁸NR⁷:

the dotted line indicates the presence of either a single or double bond;

R is NR7:

5

10

15

20

25

30

G is NR7R8.

In another sub-embodiment, a structure of the formula (XIV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or SI:

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfamyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^2 (X = O, NR^8 or S);

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^4 and R^5 and R^5 and R^6 can also each be comprised of one or two CR^7R^8 groups, connected by a tether, selected

independently from groups that include CR^7R^8 , $CR^7R^8CR^7R^8$, $CR^7=CR^8$, CR^7R^8O and $CR^7R^8NR^7$;

the dotted line indicates the presence of either a single or double bond;

B is NR?;

G is SR7.

5

In a particular embodiment of the present invention, the compounds of the formula (XIV) are the following species:

$ \begin{array}{ccc} R^1 & & & & \\ R^2 & & & & \\ R^3 & & & & \\ \end{array} $ (XIV)										
G	В	R	R²	R3	R	Ks	R ⁶			
OH	0	Me	H	Н	H	Me	Me			
OH	Ö	i-Pr	Н	Н	H	Me	Me			
OH	0	Ph	Н	H	Н	Me	Me			
OH	0	Me	Me	H	Н	Me	Me			
ОН	0	i-Pr	Me	Ħ	H	Me	Me			
OH	0	Ph	Me	H	H	Me	Me			
OH	0	Me	H	Me	Н	Me	Me			
OH	0	i-Pr	H	Me	H	Me	Me			
OH	0	Ph	H	Me	Н	Me	Me			
OH	0	Me	H	Н	Me	Me	Me			
OH	0	í-Pr	Н	Н	Me	Me	Me			

OH OH	R ² O	R' Ph	R²	R ³)					
ОН	0	Ph		\mathbb{R}^3			(XIV)				
ОН	0				R	R,	\mathbb{R}^{6}				
	1		Н	Н	Me	Me	Me				
OH	$\overline{}$	Me	н	CH₂Ph	H	Me	Me				
1 1	0	i-Pr	Н	CH₂Ph	н	Me	Me				
OH	0	Ph	H	CH ₂ Ph	н	Me	Me				
OH (CH ₂	Me	H	Н	Н	Me	Me				
OH 6	CH ₂	i-Pr	H	H	Н	Me	Me				
OH 4	CH ₂	Ph	Н	H	Н	Me	Me				
OH (CH ₂	Me	Me	н	H	Me	Me				
OH	CH ₂	i-Pr	Me	Н	H	Me	Me				
OH (CH ₂	Ph	Me	Н	H	Me	Me				
OH (CH ₂	Me	Н	Me	Н	Me	Me				
ОН	CH ₂	í-Pr	Н	Me	H	Me	Me				
OH	CH ₂	Ph	H	Me	H	Me	Me				
ОН	CH ₂	Me	H	Н	Me	Mc	Me				
ОН	CH ₂	i-Pr	H	H	Me	Me	Me				
OH	CH ₂	Ph	Н	H	Me	Me	Me				
OH	CH ₂	Me	Н	CH ₂ Ph	B	Me	Me				
OH	CH ₂	i-Pr	H	CH ₂ Ph	H	Me	Me				
ОН	CH ₂	Ph	Ħ	CH ₂ Ph	н	Me	Me				

In a sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

5

10

15

20

25

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkoarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbonydrate or XR⁷ (X = O, NR⁸ or S).

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₈CR₇R₈, CR₇=CR₈, CR₇R₈O and CR₇R₈NR₇.

the dotted line indicates the presence of either a single or double bond;

B and D are selected from the groups that include CR7R8, O, S or NR7;

G is selected from the groups that include OR7, NR7R8 or SR7.

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^{I} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{7} (X = O, NR^{8} or S).

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₆CR₇R₆, CR₇=CR₈, CR₇R₈O and CR₄R₈NR₇; and

the dotted line indicates the presence of either a single or double bond;

D = O, B = O and $G = OR^8$.

5

10

20

25

30

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^{1} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{7} (X = O, NR^{8} or S).

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkonyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S).

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₂R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₆CR₇R₆, CR₇=CR₆, CR₇R₈O and CR₇R₈NR₇.

the dotted line indicates the presence of either a single or double bond;

286

D = O, $B = NR^8$ and $G = OR^8$.

5

10

15

25

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcurbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfanyl, sulfanyl, sulfanonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷; and

the dotted line indicates the presence of either a single or double bond;

20 $D = O, B = CR^7R^8, \text{ and } G = OR^8.$

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or produig are defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S).

 \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , \mathbb{R}^7 and \mathbb{R}^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl,

heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfanonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = 0, NR^8 or S).

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^4 and R^5 and R^5 and R^6 can also each be comprised of one or two CR^7R^8 groups, connected by a tether, selected independently from groups that include CR^7R^8 , $CR^7R^8CR^7R^8$, $CR^7=CR^8$, CR^7R^8O and $CR^7R^8NR^7$.

the dotted line indicates the presence of either a single or double bond;

$$D = O$$
. $B = S$ and $G = OR8$.

10

15

20

25

5

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaccutically acceptable saits or prodrug are defined as follows:

 R^{ξ} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{7} (X = O, NR^{g} or S);

 R^2 , R^3 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfannyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphiny, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR₇R³, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷; and

the dotted line indicates the presence of either a single or double bond;

$$D = O$$
, $B = O$ and $G = NR^7R^8$.

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable saits or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁶O and CR⁷R⁸NR⁷;

the dotted line indicates the presence of either a single or double bond;

$$D = O$$
, $B = NR^8$ and $G = NR^7R^8$.

5

10

15

20

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkenyl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, cster,

alkcarbonyl, carbonyl, halide, a residue of a matural or synthetic amino acid, or carbohydrate or XR^2 (X = 0, NR^8 or S);

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also sech be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₆CR₅R₈, CR₇=CR₈, CR₇R₆CO and CR-R₆NR₇:

the dotted line indicates the presence of either a single or double bond;

D = O, $B = CR^7R^8$ and $G = NR^7R^8$.

ŝ

15

20

25

10 In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalicyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S):

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfamyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₅R₆CR₇R₈, CR₇=CR₈, CR₇R₈O and CR₇R₈NR₇;

the dotted line indicates the presence of either a single or double bond;

D = O, B = S and $G = NR^7R^8$.

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or produig are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S):

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfamyl, sulfamyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphiny, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

the dotted line indicates the presence of either a single or double bond;

 $D = CR^7R^8$, B = O and $G = OR^8$.

5

10

15

20

25

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester,

alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbonydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

the dotted line indicates the presence of either a single or double bond;

$$D = CR^7R^8$$
, $B = NR^8$ and $G = OR^8$.

5

15

20

25

10 In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaccutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S):

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic smino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^4 and R^5 and R^5 and R^6 can also each be comprised of one or two CR^7R^8 groups, connected by a tether, selected independently from groups that include CR^7R^8 , $CR^7R^8CR^7R^8$, $CR^7=CR^8$, CR^7R^8O and $CR^7R^8NR^7$:

the dotted line indicates the presence of either a single or double bond;

$$D = CR^7R^8$$
, $B = CR^7R^8$ and $G = OR^8$.

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR² (X = O. NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR²R⁵ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

the dotted line indicates the presence of either a single or double bond;

$$D = CR^7R^8$$
, $B = S$, and $G = OR^8$.

5

10

15

20

25

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable saits or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclie, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester,

alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = 0, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR²R⁶ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

the dotted line indicates the presence of either a single or double bond;

$$D = CR^7R^8$$
, $B = O$ and $G = NR^7R^8$.

5

15

20

25

10 In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfanyl, sulfamyl, sulfamynl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or earbohydrate or XR^7 (X=0, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

the dotted line indicates the presence of either a single or double bond;

$$D = CR^{7}R^{8}$$
, $B = NR^{8}$ and $G = NR^{7}R^{8}$.

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or SR).

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkearbonyl, carboxyl, halide, a residue of a natural or synthetic amino acid, or carbolydrate or XR⁷ (X = O, NR² or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR²R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁶CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

the dotted line indicates the presence of either a single or double bond;

$$D = CR^7R^8$$
, $B = CR^7R^8$ and $G = NR^7R^8$.

5

10

15

25

20 In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfanyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphine, carbamate, ester,

alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R² and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR²R⁸ groups, connected by a tether, selected independently from groups that include CR²R⁸, CR²R⁸CR²R⁸, CR⁷=CR⁸, CR²R⁸O and CR²R⁸NR⁷:

the dotted line indicates the presence of either a single or double bond;

$$D = CR^7R^8$$
, $B = S$ and $G = NR^7R^8$.

4

10

15

20

25

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁵, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR²R⁸ groups, connected by a tether, selected independently from groups that include CR²R⁸, CR²R⁸CR³R⁸, CR²=CR⁸, CR²R⁸O and CR²R⁸NR²;

the dotted line indicates flie presence of either a single or double bond;

$$D = S$$
, $B = O$ and $G = OR^8$.

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carboxyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O. NR² or S);

R³ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R³ groups, connected by a tether, selected independently from groups that include CR⁷R³, CR⁷R³CR⁷R³, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

the dotted line indicates the presence of either a single or double bond;

D = S, $B = NR^8$ and $G = OR^8$.

5

10

15

20

25

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^{T} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{T} (X = O, NR^{S} or S):

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^4 and R^5 and R^5 and R^6 can also each be comprised of one or two CR^7R^8 groups, connected by a tether, selected independently from groups that include CR^7R^8 , $CR^7R^8CR^7R^8$, $CR^7E^8CR^7R^8$, $CR^7R^8CR^7R^8$.

5 the dotted line indicates the presence of either a single or double bond;

$$D = S$$
, $B = CR^7R^8$ and $G = OR^8$.

10

15

20

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

- R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);
 - R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphinc, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = 0, NR⁸ or S);
 - R¹ and R², R² and R³, R² and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR¹R³ groups, connected by a tether, selected independently from groups that include CR¹R³, CR²R³CR²R³, CR²=CR³, CR²R³O and CR²R⁵NR²;

the dotted line indicates the presence of either a single or double bond;

25
$$D = S, B = S, and G = OR^8$$
.

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁶, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁶R⁸NR⁶:

the dotted line indicates the presence of either a single or double bond;

D = S, B = O and $G = NR^7R^8$.

S

10

15

20

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

- R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S):
- R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfanonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷(X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

the dotted line indicates the presence of either a single or double bond;

D = S, $B = NR^8$ and $G = NR^7R^8$.

5

10

15

20

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁶ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfanyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a teiher, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁵, CR⁷R⁸O and CR⁷R⁸NR⁷:

the dotted line indicates the presence of either a single or double bond;

25 $D = S, B = CR^7R^8 \text{ and } G = NR^7R^8.$

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR²R⁸ groups, connected by a tether, selected independently from groups that include CR²R⁸, CR²R⁸CR³R⁸, CR²=CR⁸, CR²R⁸O and CR²R⁸NR⁷;

the dotted line indicates the presence of either a single or double bond;

D = S, B = S and $G = NR^7R^8$.

5

10

15

20

25

30

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S):

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamenyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^4 and R^5 and R^5 and R^6 can also each be comprised of one or two CR^7R^8 groups, connected by a tether, selected

independently from groups that include CR^7R^8 , $CR^2R^8CR^7R^8$, CR^7mCR^3 , CR^7R^8O and $CR^7R^8NR^7$;

the dotted line indicates the presence of either a single or double bond;

 $D = NR^7$, B = O and $G = OR^8$.

5

15

20

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmacentically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or SI_X)

 R^2 , R^3 , R^4 , R^5 , R^5 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfamyl, sulfamyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁶ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R³, CR⁷R⁸CR⁷R³, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

the dotted line indicates the presence of either a single or double bond;

 $D = NR^7$, $B = NR^8$ and $G = OR^8$.

25

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, balide,

a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = 0, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanonyl, carboxylic acid, amide, nitro, cyano, azide, phosphenyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, earhonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR² (X = O, NR⁸ or S);

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^4 and R^5 and R^5 and R^6 can also each be comprised of one or two CR^7R^8 groups, connected by a tether, selected independently from groups that include CR^7R^8 , $CR^7R^8CR^7R^8$, $CR^7=CR^8$, $CR^7R^8CR^7R^8$; and $CR^7R^8NR^7$;

the dotted line indicates the presence of either a single or double bond;

$$D = NR^7$$
, $B = CR^7R^8$ and $G = OR^8$.

15

20

25

5

10

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaccutically acceptable saits or product are defined as follows:

 R^{1} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{7} (X = O, NR^{8} or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^4 and R^5 and R^5 and R^6 can also each be comprised of one or two CR^2R^8 groups, connected by a tether, selected

independently from groups that include CR^7R^8 , $GR^7R^8CR^7R^8$, $CR^7 = CR^8$, CR^7R^8O and $CR^7R^8NR^7$;

the dotted line indicates the presence of either a single or double bond;

$$D = NR^7$$
, $B = S$, and $G = OR^8$.

S

10

15

20

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S):

 R^3 , R^3 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, aikenyl, aikynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfannonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphine, carbamate, ester, alkoarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^4 and R^5 and R^5 and R^6 can also each be comprised of one or two CR^7R^8 groups, connected by a tether, selected independently from groups that include CR^7R^8 , $CR^7R^8CR^7R^8$, $CR^7=CR^8$, CR^7R^8O and $CR^7R^8NR^7$;

the dotted line indicates the presence of either a single or double bond;

$$D = NR^7$$
, $B = O$ and $G = NR^7R^8$.

25

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylaikyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide,

a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or Si:

R², R³, R⁴, R⁵, R⁵, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O.NR⁸ or S);

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^4 and R^5 and R^5 and R^6 can also each be comprised of one or two CR^7R^8 groups, connected by a tether, selected independently from groups that include CR^7R^8 , $CR^7R^8CR^7R^8$, $CR^7=CR^8$, CR^7R^8O and $CR^7R^5NR^7$:

the dotted line indicates the presence of either a single or double bond;

$$D = NR^7$$
, $B = NR^8$ and $G = NR^7R^8$.

15

20

25

5

10

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^{I} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{7} (X = O, NR^{8} or S):

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^6 and R^5 and R^5 and R^6 can also each be comprised of one or two CR^7R^8 groups, connected by a tether, selected

WO 07/78862 PCY/ES01/30951

independently from groups that include CR^7R^8 , $CR^3R^8CR^7R^8$, $CR^7=CR^8$, CR^7R^8O and $CR^7R^8NR^7$;

the dotted line indicates the presence of either a single or double bond;

$$D = NR^7$$
, $B = CR^7R^8$ and $G = NR^7R^8$.

5

10

15

20

In another sub-embodiment, a structure of the formula (XV) is given wherein the compound or its pharmaceutically acceptable salts or prodrug are defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR²=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

the dotted line indicates the presence of either a single or double bond;

$$D = NR^7$$
, $B = S$ and $G = NR^7R^8$.

In a particular embodiment of the present invention, the compounds of the formula (XV) are the following species:

	***************************************		R ¹	1	R ⁶							
Ŕ³												
G	В	Ð	R'	R²	R3	R'	R ⁵	R				
OH	0	Ō	Me	Н	H	H	Me	Me				
ОH	0	0	i-Pr	Н	H	Н	Me	Me				
OH	0	0	Ph	H	H	Н	Me	Me				
OH	0	0	Me	Me	H	Н	Me	Me				
OH	ō	0	<i>i</i> -Pr	Me	н	H	Me	Me				
OH	0	0	Ph	Me	н	H	Me	Me				
ОН	0	0	Me	H	Me	H	Me	Me				
OH	0	0	i-Pr	Ħ	Me	Н	Me	Me				
OH	0	O	Ph	H	Me	H	Me	Me				
OH	0	0	Me	H	H	Me	Me	Me				
OH	0	0	i-Pr	H	H	Me	Me	Me				
OH	0	0	Ph	H	Н	Me	Me	Me				
OH	0	0	Me	H	CH ₂ Ph	H	Me	Me				
OH	0	0	i-Pr	H	CH ₂ Ph	H	Me	Me				
OH	0	0	Ph	H	CH₂Ph	Н	Me	Me				
OH	. CH ₂	0	Me	H	H	H	Me	Me				
OH	CH ₂	0	í-Pr	Н	Н	H	Me	Me				

R^1 R^5 R^5 R^5											
G	В	D	R ¹	R ²	R ³	R*	R ⁵	R°			
OH	CH ₂	0	Ph	Н	Н	Н	Me	Me			
OH	CH ₂	0	Me	Me	Н	Я	Me	Me			
OH	CH ₂	O	i-Pr	Me	Ħ	H	Me	Me			
ОН	CH ₂	0	Ph	Me	Н	H	Me	Me			
OH	CH ₂	0	Me	H	Me	H	Me	Me			
OH	CH ₂	0	i-Pr	H	Me	Н	Me	Me			
OH	CH ₂	0	Ph	H	Me	H	Me	Me			
OH	CH ₂	0	Me	Н	Н	Me	Me	Me			
OH	CH ₂	0	i-Pr	Н	H	Me	Me	Me			
OH	CH ₂	0	Ph	Ħ	H	Me	Me	Me			
OH	CH ₂	0	Me	Н	CH ₂ Ph	H	Me	Me			
OH	CH ₂	0	i-Pr	Н	CH₂Ph	Н	Me	Me			
OH	CH ₂	0	Ph	H	CH ₂ Ph	H	Me	Me			
OH	0	CH ₂	Me	Н	Н	H	Me	Me			
OH	0	CH ₂	i-Pr	H	Н	H	Me	Me			
OH	0	CH ₂	Ph	Н	H	H	Me	Me			
OH	0	CH ₂	Me	Me	II	H	Me	Me			
ОН	O	CH ₂	<i>i-</i> Pr	Me	H	H	Me	Me			
OH	0	CH ₂	Ph	Me	Н	H	Me	Me			

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
G	В	D	R	R²	R ³	R*	RS	R ⁶			
OH	0	CH ₂	Ме	H	Me	H	Me	Mc			
OH	0	CH ₂	i-Pr	Н	Me	H	Me	Me			
ОН	0	CH ₂	Ph	H	Me	H	Me	Me			
OH	0	CH ₂	Me	Н	H	Me	Me	Me			
OH	0	CH ₂	<i>i-</i> Pr	H	H	Me	Me	Me			
OH	0	CH ₂	Ph	H	н	Me	Me	Me			
OH	0	CH ₂	Me	H	CH ₂ Ph	H	Me	Me			
OH	0	CH ₂	i-Pr	H	CH ₂ Ph	Н	Me	Me			
OH	0	CH ₂	Ph	H	CH ₂ Ph	H	Me	Me			

In a sub-embodiment, a structure of the formula (XVI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

5

10

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^2 (X = O, NR^8 or S).

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphoryl, phosphine, carbamate, ester,

alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₈CR₇R₆, CR₇=CR₈, CR₇R₈O and CR₇R₈NR₇.

The dotted line indicates the presence of either a single or double bond;

D is selected from the groups that include CR7R8, O, S or NR7;

G is selected from the groups that include OR7, NR7R8 or SR7.

10

Š

In another sub-embodiment, a structure of the formula (XVI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

15

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR³ or S);

20

25

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₈CR₇R₆, CR₇=CR₈, CR₇R₈O and CR₈R₈NR₇; and

The dotted line indicates the presence of either a single or double bond;

D is O:

G is OR7.

In another sub-embodiment, a structure of the formula (XVI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbothydrate or XR⁷ (X = O, NR⁸ or S).

 R_1 and R_3 , R_2 and R_3 , R_3 and R_4 , R_4 and R_5 and R_3 and R_6 can also each be comprised of one or two CR_7R_8 groups, connected by a tether, selected independently from groups that include CR_7R_8 , $CR_7R_8CR_7R_8$, $CR_7=CR_5$, CR_7R_8O and $CR_7R_8N_7$.

The dotted line indicates the presence of either a single or double bond;

D is O:

10

15

20

25

Gis NR7R8.

In another sub-embodiment, a structure of the formula (XVI) is given wherein the compound or its pharmaceutically acceptable salts or produce is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl,

heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphine, carbamate, ester, alkoarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbonydrate of XR^7 (X = O, NR^3 or S);

R¹ and R², R² and R³, R² and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R³, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷; and

The dotted line indicates the presence of either a single or double bond;

D is O;

ς

10

15

20

25

G is SR7.

In another sub-embodiment, a structure of the formula (XVI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^2 (X = O, NR^8 or S).

R², R³, R⁴, R⁵, R⁵, R⁷ and R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S).

R¹ and R², R² and R³, R² and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷.

The dotted line indicates the presence of either a single or double bond;

D is CR7R8;

GOR?

S

10

15

25

In another sub-embodiment, a structure of the formula (XVI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyche, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfanyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R² and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR₂R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷; and

The dotted line indicates the presence of either a single or double bond;

20 D is CR⁷R⁸;

G is NR7R8.

In another sub-embodiment, a structure of the formula (XVI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synihetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R² and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

The dotted line indicates the presence of either a single or double bond;

D is CR7R8;

G is SR7.

5

10

15

20

25

30

In another sub-embodiment, a structure of the formula (XVI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S):

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearboxyl, carboxyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₆ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₆CR₇R₈, CR₇=CR₆, CR₇R₈O and CR₇R₈NR₇;

The dotted line indicates the presence of either a single or double bond;

D is S:

10

15

20

25

Gis OR7.

5 In another sub-embodiment, a structure of the formula (XVI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 \mathbb{R}^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocychic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or $X\mathbb{R}^7$ (X = O, $N\mathbb{R}^8$ or S):

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyi, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfannyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁵ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

The dotted line indicates the presence of either a single or double bond;

D is S:

G is NR7R8.

In another sub-embodiment, a structure of the formula (XVI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, beterocyclic, ester, alkcarbonyl, carbonyl, balide,

WO 97/28862 PCY/US91/39951

a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S):

R², R³, R⁶, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁵ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

The dotted line indicates the presence of either a single or double bond;

D is S:

5

10

15

20

25

30

G is SR7.

In another sub-embodiment, a structure of the formula (XVI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = 0, NR^8 or S):

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^4 and R^5 and R^4 and R^6 can also each be comprised of one or two CR^7R^8 groups, connected by a tether, selected

independently from groups that include CR^7R^8 , $CR^7R^8CR^7R^8$, $CR^7=CR^8$, CR^7R^8O and $CR^7R^8NR^7$;

The dotted line indicates the presence of either a single or double bond;

D is NR7;

5 G is OR⁷.

10

15

20

25

In another sub-embodiment, a structure of the formula (XVI) is given wherein the compound or its pharmaceutically acceptable sults or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, talide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁶O and CR⁸R⁸NR⁷:

The dotted line indicates the presence of either a single or double bond;

D is NR7:

Gis NR7R8

In another sub-embodiment, a structure of the formula (XVI) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^4 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S):

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkoarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

The dotted line indicates the presence of either a single or double bond;

D is NR?;

5

10

15

25

30

G is SR7.

20 In a sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^2 (X = O, NR^8 or S).

R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹⁰, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸ and R¹⁹ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl,

carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or $XR^{T}(X=0, NR^{8} \text{ or S})$.

R₄ and R₃, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₆CR₇R₆, CR₇^mCR₈, CR₇R₈O and CR₂R₈NR₇.

D and E are selected from the groups that include CR7R8, O, S or NR7;

G is selected from the groups that include OR^7 , NR^7R^8 or SR^7 .

5

10

15

20

25

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^2 (X = O, NR^8 or S).

R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁸, R⁹, R¹⁰, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸ and R¹⁹ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phoephonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = 0, NR⁸ or S);

R₃ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₈CR₇R₆, CR₇=CR₅, CR₇R₈O and CR₇R₈NR₇; and

E = O, D = O and $G = OR^8$.

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^{1} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{7} (X = O, NR^{8} or S).

 R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^5 , R^9 , R^{10} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} and R^{19} are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, anule, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphinyl, phosphoryl, carbonyl, talide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X=0, NR^8 or S).

 R_1 and R_2 , R_2 and R_3 , R_3 and R_4 , R_4 and R_5 and R_5 and R_6 can also each be comprised of one or two CR_7R_8 groups, connected by a tether, selected independently from groups that include CR_7R_8 , $CR_7R_8CR_7R_8$, $CR_7=CR_8$, $CR_7R_8CR_7$ and $CR_7R_8NR_7$.

B = O, $D = NR^8$ and $G = OR^8$.

5

10

15

25

20 In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, eycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester,

alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or $XR^2(X=0,NR^8 \text{ or S})$;

 R^1 and R^2 , R^2 and R^2 , R^3 and R^4 , R^4 and R^5 and R^5 and R^6 can also each be comprised of one or two CR^7R^8 groups, connected by a tether, selected independently from groups that include CR^7R^8 , $CR^7R^8CR^7R^8$, $CR^7=CR^8$, CR^7R^8O and $CR^7R^8NR^7$; and

E = O, $D = CR^7R^8$, and $G = OR^8$.

5

10

15

20

25

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S).

 R^2 , R^3 , R^6 , R^7 and R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfamyl, sulfamyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X=O, NR^8 or S).

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^4 and R^5 and R^6 and R^6 can also each be comprised of one or two CR^7R^8 groups, connected by a tether, selected independently from groups that include CR^7R^8 , $CR^7R^8CR^7R^8$, $CR^7=CR^8$, CR^7R^8O and $CR^7R^8NR^7$.

E = O, D = S and $G = OR^8$.

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^{1} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide,

a residue of a natural or synthetic amino acid, or carbohydrate or XR^2 (X = O, NR^8 or SR:

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R², R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR²R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁶CR₂R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷; and

E = O. D = O and $G = NR^7R^8$.

5

10

20

25

30

15 In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaccutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR²R⁸ groups, connected by a tether, selected independently from groups that include CR²R⁸, CR²R⁸CR²R⁸, CR⁷ECR³, CR⁷R⁸CO and CR⁷R⁸NR⁷;

R = O $D = NR^8$ and $G = NR^7R^8$.

5

10

15

20

25

30

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaccutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R₁ and R₂, R₂ and R₃, R₃ and R₄, R₄ and R₅ and R₅ and R₆ can also each be comprised of one or two CR₇R₈ groups, connected by a tether, selected independently from groups that include CR₇R₈, CR₇R₈CR₇R₈, CR₇=CR₈, CR₇R₈O and CR₇R₈NR₇;

E = O, $D = CR^7R^8$ and $G = NR^7R^8$.

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include bydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁶, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyi, alkenyi, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphine, carbamate, ester,

alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X=0, NR^8 or S);

 R_4 and R_2 , R_2 and R_3 , R_3 and R_4 , R_4 and R_5 and R_5 and R_6 can also each be comprised of one or two CR_7R_8 groups, connected by a tether, selected independently from groups that include CR_7R_8 , $CR_7R_8CR_7R_8$, $CR_7=CR_8$, CR_7R_8O and $CR_7R_8N_8$:

E = O. D = S and $G = NR^7R^8$.

5

10

15

20

25

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S):

R², R³, R⁴, R⁵, R⁸, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfamyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁵ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁶O and CR⁷R⁸NR⁷;

 $E = CR^7R^8$, D = O and $G = OR^8$.

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S):

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylaikyl, heterocyclic, sulfonyl, sulfanyl, sulfanonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR²R⁸ groups, connected by a tether, selected independently from groups that include CR²R⁸, CR²R⁸CR²R⁸, CR²=CR⁸, CR²R⁸O and CR²R⁸NR²:

 $E = CR^7R^8$, $D = NR^8$ and $G = OR^8$.

5

10

15

20

25

30

in another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfinyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^4 and R^5 and R^5 and R^6 can also each be comprised of one or two CR^7R^8 groups, connected by a tether, selected

independently from groups that include CR^7R^8 , $CR^7R^8CR^7R^8$, $CR^7=CR^8$, CR^7R^8O and $CR^7R^8NR^7$:

 $R = CR^7R^8$, $D = CR^7R^8$ and $G = OR^8$.

10

15

20

25

5 In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S):

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR′R⁵ groups, connected by a tether, selected independently from groups that include CR⁻R⁵, CR⁻R˚CR¹R³, CR⁻R˚CR¸, CR⁻R˚CO and CR⁻R˚NR⁻;

 $E = CR^7R^8$, D = S, and $G = OR^8$.

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synfhetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^4 and R^5 and R^5 and R^6 can also each be comprised of one or two CR^7R^8 groups, connected by a tether, selected independently from groups that include CR^7R^8 , $CR^7R^8CR^7R^3$, $CR^7=CR^8$, CR^7R^8O and $CR^7R^5NR^7$:

 $R = CR^7R^8$, D = O and $G = NR^7R^8$.

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

R¹ is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylaikyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁶ or S);

R¹ and R², R² and R³, R² and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

 $E = CR^7R^8$, $D = NR^8$ and $G = NR^7R^8$.

5

15

20

25

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S):

R², R³, R⁵, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR³ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R³ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

 $E = CR^{7}R^{8}$, $D = CR^{7}R^{8}$ and $G = NR^{7}R^{8}$.

5

10

15

20

25

30

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 \mathbb{R}^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or \mathbb{XR}^7 (X = O, \mathbb{NR}^8 or S);

R², R³, R⁴, R⁵, R⁵, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

328

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R³, CR⁷R⁸CR⁷R³, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

 $E = CR^{7}R^{8}$, D = S and $G = NR^{7}R^{8}$.

Š

10

15

20

25

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a nahral or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁶O and CR⁷R⁸NR⁷:

E = S, D = O and $G = OR^8$.

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaccutically acceptable salts or prodrug is defined as follows:

329

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

WO 97/28862 PCY/US91/39951

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbumate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O.NR³ or S):

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

E = S, $D = NR^8$ and $G = OR^8$.

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁶CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

E = S, $D = CR^7R^8$ and $G = OR^8$.

5

10

15

20

25

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or produce is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkoarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S):

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR²R⁸ groups, connected by a tether, selected independently from groups that include CR²R⁸, CR²R⁸CR³R⁸, CR²=CR⁸, CR²R⁸O and CR²R⁸NR².

E = S, D = S, and $G = OR^3$.

5

10

15

20

25

30

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable saits or prodrug is defined as follows:

 \mathbb{R}^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkvarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or $X\mathbb{R}^7$ (X = O, $N\mathbb{R}^8$ or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic smino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁶CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

E = S, D = O and $G = NR^7R^8$.

5

10

15

20

25

30

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 \mathbb{R}^1 is selected independently from the groups that include hydrogen, aikyl, cycloalkyl, aryl, aikaryl, arylatkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or $X\mathbb{R}^7$ (X = O, $N\mathbb{R}^8$ or S):

 \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , \mathbb{R}^7 , \mathbb{R}^5 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfinyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or $\mathbb{X}\mathbb{R}^7$ (X=0, $\mathbb{N}\mathbb{R}^8$ or S);

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^4 and R^5 and R^5 and R^6 can also each be comprised of one or two CR^7R^8 groups, connected by a tether, selected independently from groups that include CR^7R^8 , $CR^7R^8CR^7R^3$, $CR^7=CR^8$, CR^7R^8O and $CR^7R^8NR^7$:

E = S, $D = NR^8$ and $G = NR^7R^8$.

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows;

 R^{\dagger} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^{7} (X = O, NR^{8} or S);

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

 R^1 and R^2 , R^2 and R^3 , R^3 and R^4 , R^4 and R^5 and R^5 and R^6 can also each be comprised of one or two CR^7R^5 groups, connected by a tether, selected independently from groups that include CR^2R^5 , $CR^7R^8CR^7R^5$, $CR^7=CR^8$, CR^7R^8O and $CR^7R^5NR^7$;

R = S, $D = CR^7R^8$ and $G = NR^7R^8$.

5

10

15

20

25

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 \mathbb{R}^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or $X\mathbb{R}^2$ (X = O, $N\mathbb{R}^8$ or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphine, carbamate, ester, alkoarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR²R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷;

E = S, D = S and $G = NR^7R^8$.

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkuryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R², R³, R⁴, R⁵, R⁵, R⁷, R⁸ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfanonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphinyl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR³, CR⁷R⁸O and CR⁷R⁸NR⁷:

 $E = NR^7$, D = O and $G = OR^8$.

5

10

15

20

25

30

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or produig is defined as follows:

 \mathbb{R}^{1} is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or $X\mathbb{R}^{7}$ (X = O, $N\mathbb{R}^{8}$ or S);

R², R³, R⁴, R⁵, R⁶, R⁷, R³ are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfanyl, sulfinyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or earbohydrate or XR⁷ (X = O, NR⁸ or S);

R¹ and R², R² and R³, R³ and R⁴, R⁴ and R⁵ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁶NR⁷:

 $E = NR^7$, $D = NR^8$ and $G = OR^8$.

5

10

15

20

30

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or prodrug is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, esier, alkcarbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S):

 R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected independently from the groups that include hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, alkaryl, arylalkyl, heterocyclic, sulfonyl, sulfamyl, sulfamyl, sulfamonyl, carboxylic acid, amide, nitro, cyano, azide, phosphonyl, phosphinyl, phosphoryl, phosphine, carbamate, ester, alkearbonyl, carbonyl, halide, a residue of a natural or synthetic amino acid, or carbohydrate or XR^7 (X = O, NR^8 or S);

R¹ and R², R² and R³, R³ and R⁴, R⁶ and R³ and R⁵ and R⁶ can also each be comprised of one or two CR⁷R⁸ groups, connected by a tether, selected independently from groups that include CR⁷R⁸, CR⁷R⁸CR⁷R⁸, CR⁷=CR⁸, CR⁷R⁸O and CR⁷R⁸NR⁷:

 $E = NR^7$, $D = CR^7R^8$ and $G = OR^8$.

In another sub-embodiment, a structure of the formula (XVII) is given wherein the compound or its pharmaceutically acceptable salts or produce is defined as follows:

 R^1 is selected independently from the groups that include hydrogen, alkyl, cycloalkyl, aryl, alkaryl, arylalkyl, heterocyclic, ester, alkearbonyl, carbonyl, balide, a residue of a natural or synthetic amino acid, or carbonydrate or XR^7 (X = O, NR^8 or S);