2024 秋 离散数学 期末考试

1. (15分)

对任意整数 n, 求 gcd(24n+4, 18n+6) 的值并证明. (对 n 从 1 到 6 分别求解可得 5 分)

2. (20分)

考虑同余方程组

 $x \equiv b_1 \mod m_1$

 $x \equiv b_2 \mod m_2$

 $x \equiv b_3 \mod m_3$

其中, 对任意 $i \in \{1, 2, 3\}$, b_i , $m_i \in N^*$. 给出该同余方程组有解的充分必要条件并证明. (注意 m_1 , m_2 , m_3 两两互素只是有解的充分条件)

3. (20 分)

- (a) 若群 G 的阶 |G| 为素数, 证明 G 是循环群;
- (b) 若群 G的阶 |G| 为 pq, 其中 p 和 q 均为素数且 p < q, 证明 G 至多包含一个 q 阶子群.

4. (20 分)

设 S 为 $[m] = \{1, 2, ..., m\}$ 上的一个置换群, $F = \{f : [m] \rightarrow \{0, 1\}\}$ 为所有 [m] 到 $\{0, 1\}$ 的函数. 对于函数 $f, g \in F$, 如果存在 $\sigma \in S$, 使得 $g = f \circ \sigma$, 则称 $f \ni g$ 在S 下等价, 记为 $f \simeq_S g$. 对于 $f \in F$, 令 $Z_f = \{\sigma \in S | f = f \circ \sigma\}$.

- (a) (6 分) 假设 S 为 [m] 上的对称群 (即 S 包含 [m] 上的所有置换), f 将 [m] 中 m_1 个元素映为 0, 求此时的 $|Z_f|$; (对特殊情况 $m=10, m_1=4$ 求解最多可得 3 分)
- (b) (6 分) 令 $F_o = \{f \in F | f \ \text{将}[m] \ \text{中偶数个元素映为 } 0\}, O_f = \{g \in F_o | g \simeq_S f\}.$ 对于 $f \in F_o$, 证明 $|O_f| \cdot |Z_f| = |S|$;
- (c) (8 分) 令 F_1 为 F 任一非空子集, $O'_f = \{g \in F_1 | g \simeq_S f\}$. 对于 $f \in F_1$, $|O'_f| \cdot |Z_f| = |S|$ 是否成立? 请证明或给出反例.

5. (15 分)

从 $3, 5, \dots, 299, 301$ 共 150 个奇数中任选 n 个数, 使得其中一定存在两个数互素, 问 n 最小可以是多少并证明. (找出最小的 n 并证明可获得满分, 若你能证明某个更大 n < 150 使得题目要求成立, 可视情况获得部分分数)

6. (15分)

已知: 对完全图 K_{14} 的所有边进行红蓝染色,则一定存在一个红色 K_5 或者蓝色 K_3 . 证明: 对完全图 K_{19} 的所有边进行红蓝染色,则一定存在一个红色 K_6 或者蓝色 K_3 .

7. (20分)

考虑方程 $x_1 + x_2 + ... + x_n = m$, 其中 m, n 均为偶数且 m > n.

- (a) (6 分) 求该方程非负整数解的个数;
- (b) (6 分) 求该方程满足 $x_1 = x_2, x_3 = x_4, \dots, x_{n-1} = x_n$ 的非负整数解的个数;
- (c) (8 分) 求该方程满足 $x_1, x_3, \ldots, x_{n-1}$ 为非负奇数, x_2, x_4, \ldots, x_n 为非负偶数的解的个数. (b, c 小问对特殊情况 n = 6, m = 16 求解每问最多可得一半分)

8. (20分)

f 和 q 为定义在非负整数上的函数, 已知对任意 n > 0 有

$$f(n) = \sum_{i=0}^{n} \binom{n}{i} g(i)$$

证明对任意 $n \ge 0$, g(n) 可唯一表示为

$$g(n) = \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} f(i)$$

9. (20分)

考虑连通有向图 D = (V, E).

- (a) 证明若对于任意 $x \in V$, 都有 $|\deg_D^+(x) \deg_D^-(x)| \le 1$, 且任何边 $a \in E$ 均包含在奇数 个有向 cycle 中, 则 D 是 Euler 图;
 - (b) 说明上述命题的逆命题不成立.

10. (15分)

设图 G = (V, E) 是简单平面图且 |V| > 2, 证明 $|E| \le 3|V| - 6$.