

CI 2 – Cinématique : Modélisation, prévision et vérification du comportement cinématiques des systèmes

Chapitre 1 – Modélisation des systèmes mécaniques

ROBOT MANIPULATEUR

Le plan d'ensemble proposé représente l'avant projet d'une pince de manutention d'un robot manipulateur, à une échelle réduite, en vue de face et en vue de gauche. Le carter 1 est solidaire d'une colonne de guidage dans laquelle se situe un vérin, qui par l'intermédiaire d'une bielle 2 fait pivoter la fourche 3 autour de l'axe 4. La tige 5 est alors entraînée en translation par l'intermédiaire de deux galets 6 et 6', encastrés dans la fourche 3. Ceci permet le pincement de la tôle 11 entre le mors 7 et le carter 1. (Attention, la nomenclature donnée ci-dessous utilise l'ancienne désignation des matériaux).

16	1	axe	C22	percé pour recevoir une goupille
15	1	boitier	E290	
14	3	vis H M5 -8		
13	3	vis CHC M5-10		
12	1	colonne	E290	
11_	1	tôle à manipuler		
10	1	tige du vérin	:	
9	2	coussinet à collerette	CuSn8P	antifriction
8	2	coussinet	CuSn8P	antifriction
7	1	mors	E299	
6	2	galets	C22	
5	1	tige	C22	
4	1	axe	C22	
3	1	fourche	AS13	moulée
2	1	bielle	E299	
1	1	carter	FGL200	
rep	nbre	désignation	matière	observations

On étudie le mécanisme en phase de serrage de la tôle en tenant compte des remarques suivantes. On considérera que les liaisons sont parfaites (sans jeu) sauf pour les cas suivants:

- au vu des jeux et des dimensions des pièces 2 et 3, on admettra que la liaison L2/3 est une linéaire annulaire d'axe (D, \overrightarrow{z}) ;
- il existe également un jeu axial important entre les pièces 5 et 7, qui autorise une légère translation suivant \overrightarrow{z} ;
- on considérera qu'il y a un jeu entre les pièces {6;6'}
 et l'arbre 5, de telle sorte qu'on ne tiendra pas compte des éventuels contacts plans entre ces pièces.

Question 1

Dans quel sens faut-il déplacer la tige du vérin 10 pour commander le serrage de la tôle?

Question 2

Déterminer les classes d'équivalence de ce mécanisme (colorier le plan d'ensemble dans les deux vues, il n'est pas nécessaire d'écrire les listes de pièces par groupe).

Question 3

Identifier les liaisons et effectuer le graphe des liaisons (respecter les couleurs précédentes).

Question 4

Tracer le schéma cinématique plan du mécanisme : en vue de face, dans la position représentée sur le plan d'ensemble, et à l'échelle de ce plan.

1

Question 5

Tracer le schéma cinématique spatial en perspective cavalière.

TD – CI 2 : Cinématique – P

