MATH6222 Week 7

xarskii

2017-04-20

1 Modular Arithmetic

This is Chapter 7 in textbook.

Problem: Find the last digit of $971^{216} + 523^{121}$

Observation:

• The last digit of $a \times b$ only depends on last digit of a and the last digit of b

```
(So the last digit of 971^{216} is still 1) (3^{121} = 3^{120} \cdot 3 = (3^4)^{30} \cdot 3 = (81)^{30} \cdot 3. The last digit must be 1 \times 3 = 3.)
```

• The last digit of a + b only depends on the last digit of a and b.

Therefore the last digit of the sum is 4.

Definition: Fix a natural number n, called the modulus. We say $a, b \in \mathbb{Z}$ are **congruent modular** n if n | (a - b). Equivalently, we can write, a = b + kn for some $k \in \mathbb{Z}$. We write this as $a \equiv b \mod n$.

Example:

$$\mod 3:\ldots,-3,-2,-1,0,1,2,3,4,\ldots$$

 $\{a \in \mathbb{Z} : a \equiv 0 \mod 3\}$ is the set of all multiples of 3, i.e. 3k $\{a \in \mathbb{Z} : a \equiv 1 \mod 3\}$ is the set of all integers of the form 3k+1 $\{a \in \mathbb{Z} : a \equiv 2 \mod 3\}$ is the set of all integers of the form 3k+2

 $a \equiv b \mod 10 \iff a \text{ and } b \text{ have same last digit.}$

Having the same last digit is the same as saying that a and b differ by a multiple of 10?

But, $\{a \in \mathbb{Z} : a \equiv 3 \mod 10\} = \{\ldots, -17, -7, 3, 13, 23, \ldots\}$ So the previous statement is almost true.

Given $a \in \mathbb{Z}$, the congruence class of a modulo n is

$$\bar{a} = \{x \in \mathbb{Z} : a \equiv x \mod n\}$$

For mod 3, $\bar{0} = \{\dots, -6, -3, 0, 3, 6, \dots\}$ $\bar{1} = \{\dots, -5, -2, 1, 4, 7, \dots\}$ $\bar{2} = \{\dots, -4, -1, 2, 5, 8, \dots\}$ Actually, $Z = \bar{0} \cup \bar{1} \cup \bar{2}$.

Proposition: Working $\mod n$, there are exactly n distinct congruence classes. And every integer lies in exactly one of these classes.

For $\mod 2, \bar{0}$ is the set of even numbers, $\bar{1}$ is the set of odd numbers. Two congruence classes.

Also, $\bar{0} = \bar{2}$. Same set.

Proof: Observe that $\bar{0}, \bar{1}, \ldots, \bar{n-1}$ are clearly distinct congruence classes. Reason: If $0 \le i < j \le n-1$, then i-j can't be divisible by n. (too close to each other)

Every other integer lies in exactly one of these congruence classes ($\mod n$).

Why? Given any integer a, division algorithm tells you that $\exists !k, r \in \mathbb{Z}$ such that a = kn + r where $0 \le r \le n - 1$. And this is the same as $a \equiv r \mod n$. (Note: ! means "unique")

Key Lemma of Modular Arithmetic: If $a \equiv a' \mod n$ and $b \equiv b' \mod n$, then

- 1. $a + b \equiv a' + b' \mod n$
- 2. $ab \equiv a'b' \mod n$

mod 10: last digit of sum or product only depends on last digits of summands

mod 2: (oddness/eveness) the parity of sum/product only depends on the parity of inputs.

Proof: a = a' + kn for some $k \in \mathbb{Z}$. b = b' + ln for some $l \in \mathbb{Z}$.

Then a+b=a'+kn+b'+ln=a'+b'+(k+l)n. This by definition means $a+b\equiv a'+b'\mod n$.

If we multiple a, b,

$$ab = (a' + kn)(b' + ln) = a'b' + n(kb' + la' + kln) \equiv a'b' \mod n.$$

We are done.

2 Friday's Lecture

Last time:

 $a \equiv b \mod n \iff a = b + kn \text{ for some } k \in \mathbb{Z}.$

 $\overline{a} = \{ x \in \mathbb{Z} : x = a \mod n \}$

 $\overline{0} = \{kn : k \in \mathbb{Z}\}\$

 $\overline{1} = \{kn + 1 : k \in \mathbb{Z}\}\$

 $\overline{2} = \{kn + 2 : k \in \mathbb{Z}\}\$

$$\overline{n-1} = \{kn + (n-1) : k \in \mathbb{Z}\}\$$

Every integer is in exactly one of these congruence classes.

For any integer m, \exists unique k, r such that m = kn + r, $0 \le r \le n - 1$.

- 1. Shallow: we can be clever about "reducing an integer mod n".
- 2. Deep: addition/multiplication is well-defined on congruence classes, which means finding the remainder often division by n, or which of these congruence classes it's in.

Example: Find last digit of $971^{216} + 513^{121}$. I'm asking to reduce this number $\mod 10$.

$$971 \equiv 1 \mod 10$$

 $971^{216} \equiv 1^{216} \mod 10 \equiv 1 \mod 10$

$$523^{121} \equiv 3^{121} \mod 10$$

 $\equiv (3^4)^{30} \cdot 3 \mod 10$
 $\equiv 81^{30} \cdot 3 \mod 10$
 $\equiv 1^{30} \cdot 3 \mod 10$
 $\equiv 3 \mod 10$

$$971^{216} + 523^{121} \equiv 1 + 3 \mod 10 \equiv 4 \mod 10$$

Example: Suppose it's 3 o'clock. What time will show on a 12-hour clock after 47^{101} hours.

Reduce $3 + 47^{101} \mod 12$. $47^{101} \equiv 11^{101} \mod 12$

$$11 \equiv -1 \mod 12 \text{ or } 11^2 \equiv 121 \equiv 1 \mod 12$$

 $11^{101} \equiv (-1)^{101} \mod 12 \equiv -1 \mod 12$

Example: $9, 18, \ldots$ the sum of the digits of the multiple of 9 is itself a multiple of 9.

$$a_n, a_{n-1}, \dots, a_1, a_0 = a_n \times 10^n + a_{n-1} \times 10^{n-1} + \dots + a_1 \times 10 + a_0$$

$$\equiv a_n \times 1^n + a_{n-1} \times n^{n-1} + \dots + a_1 \times 1 + a_0 \mod 9$$

 $z_n := \text{set of congruence classes} \mod n = \{\bar{0}, \bar{1}, \bar{2}, \dots, \overline{n-1}\}$

$$\overline{a} + \overline{b} = \overline{a+b}$$

$$\overline{a} \cdot \overline{b} = \overline{a \cdot b}$$

$$z_3 = {\overline{0}, \overline{1}, \overline{2}} \overline{0} = {3, 6, 9, \dots} \overline{1} = {4, 7, 10, \dots} \overline{2} = {5, 8, 11, \dots} \overline{1 + \overline{2} = \overline{0}}$$

$$z_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$$

+	$\overline{0}$	1	$\overline{2}$	3
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	3
$\overline{1}$	$\overline{1}$	$\overline{2}$	3	$\overline{0}$
$\overline{2}$	$\overline{2}$	3	$\overline{0}$	1
3	3	0	$\overline{1}$	$\overline{2}$

×	$\overline{0}$	$\overline{1}$	$\overline{2}$	3
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\frac{\overline{0}}{\overline{3}}$
$\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{0}$	$\overline{2}$
3	0	3	$\overline{2}$	$\overline{1}$