Machine Learning

Week 2

Linear Regression

ECE 14/01/2019

Course overview

- 1.Introduction to Linear Regression
- 2. Simple Linear Regression
- 3. Multiple Linear Regression
- 4. Evaluation of a Linear Regression Model
- 5. Practical Work

What is Linear Regression?

- Goal: predict real (continuous) valued outputs, by modeling how our observations that are associated with some features change as we change the values of theses features.
- Example: training set of housing prices

 Regression is about learning the relationship between X and y, and using it to predict the house price of new data

Model Representation

- $x^{(i)}$ denotes the "input" variables (house characteristics)
- y⁽ⁱ⁾ denotes the "output" or target variable that we are trying to predict (price)
- A pair $(x^{(i)}, y^{(i)})$ is called a training example
- A list of m training examples $(x^{(i)}, y^{(i)})$; i=1,...,m—is called a training set

1.2 Simple/Univariate Linear Regression

Simple Linear Regression: Model

Each line has different parameters $\theta = (\theta_0, \theta_1)$ different errors

- Which line is the best fit ?
- what should a good function $h_{\theta}(x)$ minimize?
 - Sum error on all data points
 - Sum abs(error) on all data points
 - Sum error^2 on all data points

Sum error on all data points

Sum error = 0

Sum abs(error) on all data points

Sum abs(error) > 0

Sum error^2 on all data points

Sum error^2 > 0

 The Sum of Squared Errors (SSE) is also called Residual Sum of Squares (RSS)

$$SSE (\theta_{0}, \theta_{1}) =$$

$$(y^{(1)} - (\theta_{0} + \theta_{1} * x^{(1)}))^{2} +$$

$$(y^{(2)} - (\theta_{0} + \theta_{1} * x^{(2)}))^{2} +$$
.....+
$$(y^{(m)} - (\theta_{0} + \theta_{1} * x^{(m)}))^{2}$$

- The green line is a better fit
- Let's see how to find the best line automatically

Simple Linear Regression: Cost function

• The best hypothesis $h_{\theta}(x)$ is the one that minimizes the cost function

- 1/m means we determine the average
- 1/2m, the 2 makes the math a bit easier, and doesn't change the weights θ we determine at all (i.e. half the smallest value is still the smallest value!)
- The learning algorithm should find $\theta^* = (\theta_0^*, \theta_1^*)$ that minimizes this cost
- Several algorithms:
 - Gradient descent
 - Ordinary least square (OLS): Used in the linear regression in python (sklearn)

Gradient Descent Algorithm: Intuition

• Let's assume that we have one parameter θ , and that we want to minimize $J(\theta)$

$$h_{\theta}(x) = \theta x$$

• GD starts by a random initial θ and iteratively update it to get towards θ^* .

In this case, the derivative (gradient) $\partial J(\theta) / \partial \theta < 0$. $\theta^A - \alpha^* \partial J(\theta) / \partial \theta > \theta^A$ is moving to the right θ is increasing

In this case, the derivative (gradient) $\partial J(\theta) / \partial \theta > 0$. $\theta^B - \alpha^* \partial J(\theta) / \partial \theta < \theta^B$ θ^B is moving to the left θ is decreasing

- a is called the learning rate or the step size
 - o Too small
 - Take baby steps → Take too long to converge
 - Too large
 - Can overshoot the minimum → fail to converge

Simple Linear regression with GD

Repeat until convergence :

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1) \stackrel{\widehat{s}_{ij}}{\overset{\widehat{s}_{ij}}}{\overset{\widehat{s}_{ij}}{\overset{\widehat{s}_{ij}}}{\overset{\widehat{s}_{ij}}{\overset{\widehat{s}_{ij}}}{\overset{\widehat{s}_{ij}}{\overset{\widehat{s}_{ij}}{\overset{\widehat{s}_{ij}}}{\overset{\widehat{s}_{ij}}{\overset{\widehat{s}_{ij}}}{\overset{\widehat{s}_{ij}}{\overset{\widehat{s}_{ij}}}{\overset{\widehat{s}_{ij}}}{\overset{\widehat{s}_{ij}}}{\overset{\widehat{s}_{ij}}}{\overset{\widehat{s}_{ij}}}{\overset{\widehat{s}_{ij}}}{\overset{\widehat{s}_{ij}}{\overset{\widehat{s}_{ij}}}{\overset{\widehat{s}_{ij}}}}{\overset{\widehat{s}_{ij}}}{\overset{\widehat{s}_{ij}}}}}}}}}}}}}}}}}}}}}$$

If we calculate the derivatives, the expression becomes:

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \qquad \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

- Convergence means either:
 - \circ The cost function is no longer changing by more than ε.
 - The number of iterations is reached
- Go further

Ordinary Least Square Algorithm

• The Ordinary least square (OLS) approach chooses θ_0 , θ_1 to minimize SSE

$$SSE = \sum_{i=1}^{m} (y^{(i)} - \theta_0 - \theta_1 * x^{(i)})^2$$

- In this method, we will minimize SSE by explicitly taking its derivatives with respect to the θ_0 , θ_1 , and setting them to zero.
- The minimizing values can be shown to be:

$$\widehat{\theta}_1 = \frac{\sum_{i=1}^m (x^{(i)} - \bar{x}) (y^{(i)} - \bar{y})}{\sum_{i=1}^m (x^{(i)} - \bar{x})^2}$$

$$\widehat{\theta}_0 = \overline{y} - \widehat{\theta}_1 * \overline{x}$$

• Where $\bar{y} = \frac{1}{m} \sum_{i=1}^m y^{(i)}$, $\bar{x} = \frac{1}{m} \sum_{i=1}^m x^{(i)}$ are the sample means

SSE is not perfect

Which fit has larger SSE?

Larger SSE doesn't necessarily mean worst fit → Need an other metric

R² Statistic

- R² Answers the questions: "how much of variability in the output (y) is explained by the change in the input (x)"
- To calculate R², we use the formula:

$$R^{2} = \frac{TSS - SSE}{TSS} = 1 - \frac{SSE}{TSS}$$

$$TSS = \sum_{i=1}^{m} (y^{(i)} - \overline{y})^{2}$$

- An R² statistic that is close to 1 indicates that a large proportion of the variability in the response has been explained by the regression.
- A number near 0 indicates that the regression did not explain much of the variability in the response

1.2 Multivariate Linear Regression

Multiple Linear Regression

- In simple linear regression, we use one feature x to predict (y)
- In multiple linear regression, we have multiple features $X=(x_1,x_2,...,x_n)$

- X⁽ⁱ⁾ is an n-dimensional feature vector
- $X^{(1)} = (200, 2010, 2,)^T$ the feature vector of the first training example.
- $x_j^{(i)}$ is the value of feature j in the i^{th} training example. $x_2^{(1)} = 2010$

Multiple Linear Regression

- In simple linear regression, $h_{\theta}(x) = \theta_0 + \theta_1 x$
- In multiple linear regression, $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$
- For convenience of notation, define $x_0 = 1$ $(x_0^{(i)} = 1)$

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Rewrite in matrix notation

Multiple Linear Regression

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

Simple Linear Regression, n=1

$$\begin{aligned} \text{Repeat } \big\{ \\ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \\ & \underbrace{\frac{\partial}{\partial \theta_0} J(\theta)} \\ \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)} \\ \text{(simultaneously update } \theta_0, \theta_1) \big\} \end{aligned}$$

Multiple Linear Regression, n>1

Repeat
$$\left\{ \begin{array}{ll} \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \\ \\ \end{array} \right.$$
 (simultaneously update θ_j for $j = 0, \ldots, n$)
$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)} \\ \theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)} \\ \theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)} \\ \cdots$$

20

OLS for multiple features

Cost function with matrix notations:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 = \frac{1}{2m} (X\theta - y)^T (X\theta - y)$$

Where

$$X = \begin{bmatrix} -(x^{(1)})^T - \\ -(x^{(2)})^T - \\ \vdots \\ -(x^{(m)})^T - \end{bmatrix} \qquad y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

• Derivatives with respect to θ $\nabla_{\theta}J(\theta) = X^{T}X\theta - X^{T}y$

• By setting them to zero $\theta = (X^T X)^{-1} X^T y$

When to use OLS or GD?

The following is a comparison of GD and the OLS (normal equation):

Gradient Descent	ient Descent OLS (Normal Equation)	
Need to choose alpha	No need to choose alpha	
Needs feature scaling	No need for feature scaling	
Needs many iterations	No need to iterate	
O(kn²)	$O(n^3)$, need to calculate inverse of X^TX	
Works well when n is large	Slow if n is very large	

- n=10⁴-10⁵ is usually the threshold of choosing GD over OLS
- Feature scaling helps converting the features to the same scale.
- For example, if x_i represents housing prices with a range of 100 to 2000 and a mean value of 1000, then,

$$x_{i} = \frac{price - 1000}{2000 - 100}$$

Polynomial Regression

 Polynomial regression is a particular case of multiple regression where the features are powers of one single feature x

General model:

$$y = \theta_0 + \theta_1 x + \theta_2 x^2 \theta_1 x + \dots + \theta_p x^p + \varepsilon$$

1.3 Assessing Performance

Assessing Performance

- This is about knowing how well the model will generalize to unseen data.
- One of the most used methods is splitting the data into train/test sets.

		Size	Price
	%	2104	400
	Training set – 70%	1600	330
	et –	2400	369
	S S	1416	232
	ini	3000	540
	Tra	1985	300
		1534	315
et	\o	1427	199
st s	30%	1380	212
Te		1494	243

- Learn θ from training data (minimizing training error $J_{train}(\theta)$)
- Compute test error $J_{test}(\theta) = \frac{1}{2mtest} \sum_{i}^{m_{test}} (h_{\theta}(x^{(i)}) y^{(i)})^2$

Training error vs. model complexity

Let's take polynomial regression as an example

Training error vs. model complexity

Training error decreases with increasing model complexity

Testing error vs. model complexity

Test error can be used as an approximation of the generalization error

Bias – Variance tradeoff

Model Complexity

High bias model

The model does not capture enough
The structure of the training set

Parameters tend to be small

High variance model

The model is too specific to the structure Of the training set

Parameters tend to be very large

Bias – Variance tradeoff

1.4 Regularization

Regularization

- It's about finding balance between:
 - How well the model fits the data
 - The magnitude of coefficients
- This is achieved by incorporating a penalty on weights θ in the cost function
- Ridge Regression (L₂ regularization)

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=0}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} (\theta_j)^2 \right]$$

Lasso Regression (L₁ regularization)

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=0}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} |\theta_j| \right]$$

- λ is the regularization parameter:
 - Ridge: Encourages small weights θ but not exactly 0
 - Lasso: "Shrink" some weights θ exactly to 0

GD with Regularization

Reminder of the L2 regularization cost function:

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Previously:
$$\theta_0:=\theta_0-\alpha\frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_0^{(i)}$$

$$\theta_j:=\theta_j-\alpha \qquad \frac{1}{m}\sum_{i=1}^m(h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}$$

- With regularization: $\theta_j:=\theta_j(1-\alpha\frac{\lambda}{m})-\alpha\frac{1}{m}\sum\limits_{i=1}^m(h_{\theta}(x^{(i)})-y^{(i)})x_j^{(i)}$
- α , λ are learning parameters to choose manually
- In practice: $(1 \alpha \lambda/m)$ is between 0.99 and 0.95

Other Linear Regression Models

- Number of visiting customers to a website
- Product demand, inventory, failure, ...
- Stock pricing
- Insurance claims severity

"Remember that all models are wrong; the practical question is how wrong do they have to be **to not be useful.**"

George Box, 1987