On the properties $\alpha - z$ Rényi divergences on general von Neumann algebras

Fumio Hiai and Anna Jenčová

March 5, 2024

1 Introduction

2 Preliminaries

2.1 Basic definitions

Let \mathcal{M} be a von Neumann algebra and let \mathcal{M}^+ be the cone of positive elements in \mathcal{M} . We denote the predual by \mathcal{M}_* , its positive part by \mathcal{M}_*^+ and the set of normal states by $\mathfrak{S}_*(\mathcal{M})$. For $\psi \in \mathcal{M}_*^+$, we will denote by $s(\psi)$ the support projection of ψ .

For $0 , let <math>L_p(\mathcal{M})$ be the Haagerup L_p -space over \mathcal{M} and let $L_p(\mathcal{M})$ its positive cone, [4]. We will use the identifications $\mathcal{M} \simeq L_\infty(\mathcal{M})$, $\mathcal{M}_* \ni \psi \leftrightarrow h_\psi \in L_1(\mathcal{M})$ and the notation $\operatorname{Tr} h_\psi = \psi(1)$ for the trace in $L_1(\mathcal{M})$. It this way, \mathcal{M}_*^+ is identified with the positive cone $L_1(\mathcal{M})^+$ and $\mathfrak{S}_*(\mathcal{M})$ with subset of elements in $L_1(\mathcal{M})^+$ with unit trace. Precise definitions and further details on the spaces $L_p(\mathcal{M})$ can be found in the notes [19].

2.2 The $\alpha - z$ -Rényi divergences

In [11, 12], the $\alpha - z$ -Rényi divergence for $\psi, \varphi \in \mathcal{M}_*^+$ was defined as follows:

Definition 2.1. Let $\psi, \varphi \in \mathcal{M}_*^+$, $\psi \neq 0$ and let $\alpha, z > 0$, $\alpha \neq 1$. The $\alpha - z$ -Rényi divergence is defined as

$$D_{\alpha,z}(\psi||\varphi) := \frac{1}{\alpha - 1} \log \frac{Q_{\alpha,z}(\psi||\varphi)}{\psi(1)},$$

where

$$Q_{\alpha,z} = \begin{cases} \operatorname{Tr} \left(h_{\varphi}^{\frac{1-\alpha}{2z}} h_{\psi}^{\frac{\alpha}{z}} h_{\varphi}^{\frac{1-\alpha}{2z}} \right)^{z}, & \text{if } 0 < \alpha < 1 \\ \|x\|_{z}^{z}, & \text{if } \alpha > 1 \text{ and} \\ h_{\psi}^{\frac{\alpha}{z}} = h_{\varphi}^{\frac{\alpha-1}{2z}} x h_{\varphi}^{\frac{\alpha-1}{2z}}, & \text{with } x \in s(\varphi) L_{z}(\mathcal{M}) s(\varphi) \\ \infty & \text{otherwise.} \end{cases}$$

In the case $\alpha > 1$, the following alternative form will be useful.

Lemma 2.2. [11, Lemma 7] Let $\alpha > 1$ and $\psi, \varphi \in \mathcal{M}_*^+$. Then $Q_{\alpha,z}(\psi \| \varphi) < \infty$ if and only if there is some $y \in L_{2z}(\mathcal{M})s(\varphi)$ such that

$$h_{\psi}^{\frac{\alpha}{2z}} = y h_{\varphi}^{\frac{\alpha-1}{2z}}.$$

Moreover, in this case, such y is unique and we have $Q_{\alpha,z}(\psi \| \varphi) = \|y\|_{2z}^{2z}$.

The standard Rényi divergence [5, 6, 16] is contained in this range as $D_{\alpha}(\psi \| \varphi) = D_{\alpha,1}(\psi \| \varphi)$. The sandwiched Rényi divergence is obtained as $\tilde{D}_{\alpha}(\psi \| \varphi) = D_{\alpha,\alpha}(\psi \| \varphi)$, see [1, 6, 8, 9] for some alternative definitions and properties of \tilde{D}_{α} . The definition in [8] and [9] is based on the Kosaki interpolation spaces $L_p(\mathcal{M}, \varphi)$ with respect to a state [13]. These spaces and complex interpolation method will be used frequently also in the present work.

Many of the properties of $D_{\alpha,z}(\psi||\varphi)$ were extended from the finite dimensional case in [11]. In particular, the following variational expressions will be an important tool for our work.

Theorem 2.3 (Variational expressions). Let $\psi, \varphi \in \mathcal{M}_*^+, \psi \neq 0$.

(i) Let $0 < \alpha < 1$ and $\max{\{\alpha, 1 - \alpha\}} \le z$. Then

$$Q_{\alpha,z}(\psi\|\varphi) = \inf_{a \in \mathcal{M}^{++}} \left\{ \alpha \operatorname{Tr} \left(\left(a^{\frac{1}{2}} h_{\psi}^{\frac{\alpha}{z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha}} \right) + (1 - \alpha) \operatorname{Tr} \left(\left(a^{\frac{1}{2}} h_{\varphi}^{\frac{1 - \alpha}{z}} a^{\frac{1}{2}} \right)^{\frac{z}{1 - \alpha}} \right) \right\}.$$

(ii) Let $1 < \alpha$, $\max\{\frac{\alpha}{2}, \alpha - 1\} \le z$. Then

$$Q_{\alpha,z}(\psi \| \varphi) = \sup_{a \in \mathcal{M}_+} \left\{ \alpha \operatorname{Tr} \left(\left(a^{\frac{1}{2}} h_{\psi}^{\frac{\alpha}{z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha}} \right) - (\alpha - 1) \operatorname{Tr} \left(\left(a^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{2z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha - 1}} \right) \right\}.$$

Proof. For part (i) see [11, Theorem 1 (vi)]. The inequality \geq in part (ii) holds for all α and z and was proved in [11, Theorem 2 (vi)]. We now prove the opposite inequality.

Assume first that $Q_{\alpha,z}(\psi||\varphi) < \infty$, so that there is some $x \in s(\varphi)L_z(\mathcal{M})^+s(\varphi)$ such that $h_{\psi}^{\frac{\alpha}{z}} = h_{\varphi}^{\frac{\alpha-1}{2z}}xh_{\varphi}^{\frac{\alpha-1}{2z}}$. Plugging this into the right hand side, we obtain

$$\begin{split} \sup_{a \in \mathcal{M}_{+}} \left\{ & \alpha \mathrm{Tr} \, \left((a^{\frac{1}{2}} h_{\psi}^{\frac{\alpha}{z}} a^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \mathrm{Tr} \, \left((a^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{2z}} a^{\frac{1}{2}})^{\frac{z}{\alpha - 1}} \right) \right\} \\ &= \sup_{a \in \mathcal{M}_{+}} \left\{ & \alpha \mathrm{Tr} \, \left((a^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{2z}} x h_{\varphi}^{\frac{\alpha - 1}{2z}} a^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \mathrm{Tr} \, \left((a^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{2z}} a^{\frac{1}{2}})^{\frac{z}{\alpha - 1}} \right) \right\} \\ &= \sup_{a \in \mathcal{M}_{+}} \left\{ & \alpha \mathrm{Tr} \, \left((x^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{2z}} a h_{\varphi}^{\frac{\alpha - 1}{2z}} x^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \mathrm{Tr} \, \left((h_{\varphi}^{\frac{\alpha - 1}{2z}} a h_{\varphi}^{\frac{\alpha - 1}{2z}})^{\frac{z}{\alpha - 1}} \right) \right\} \\ &= \sup_{w \in L_{\frac{z}{\alpha - 1}}} (\mathcal{M})^{+} \left\{ & \alpha \mathrm{Tr} \, \left((x^{\frac{1}{2}} w x^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \mathrm{Tr} \, \left(w^{\frac{z}{\alpha - 1}} \right) \right\}, \end{split}$$

where we used the fact that Tr $((h^*h)^p)$ = Tr $((hh^*)^p)$ for p > 0 and $h \in L_{\frac{p}{2}}(\mathcal{M})$ and Lemma A.1. Putting $w = x^{\alpha-1}$ we get

$$\sup_{w \in L_{\frac{z}{\alpha-1}}(\mathcal{M})^+} \left\{ \alpha \operatorname{Tr} \left((x^{\frac{1}{2}} w x^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \operatorname{Tr} \left(w^{\frac{z}{\alpha-1}} \right) \right\} \ge \operatorname{Tr} (x^z) = \|x\|_z^z = Q_{\alpha,z}(\psi \| \varphi).$$

This finishes the proof in the case that $Q_{\alpha,z}(\psi||\varphi) < \infty$. Note that this holds if $\psi \leq \lambda \varphi$ for some $\lambda > 0$. Indeed, since $\frac{\alpha}{2z} \in (0,1]$ by the assumption, we then have

$$h_{\psi}^{\frac{\alpha}{2z}} \le \lambda^{\frac{\alpha}{2z}} h_{\varphi}^{\frac{\alpha}{2z}},$$

hence by [6, Lemma A.58] there is some $b \in \mathcal{M}$ such that

$$h_{\psi}^{\frac{\alpha}{2z}}=bh_{\varphi}^{\frac{\alpha}{2z}}=yh_{\varphi}^{\frac{\alpha-1}{2z}},$$

where $y = bh_{\varphi}^{\frac{1}{2z}} \in L_{2z}(\mathcal{M})$. By Lemma 2.2 we get $Q_{\alpha,z}(\psi \| \varphi) = \|y\|_{2z}^{2z} < \infty$.

In the general case, the variational expression holds for $Q_{\alpha,z}(\psi \| \varphi + \epsilon \psi)$ for all $\epsilon > 0$, so that we have

$$Q_{\alpha,z}(\psi \| \varphi + \epsilon \psi) = \sup_{a \in \mathcal{M}_+} \left\{ \alpha \operatorname{Tr} \left((a^{\frac{1}{2}} h_{\psi}^{\frac{\alpha}{z}} a^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \operatorname{Tr} \left((a^{\frac{1}{2}} h_{\varphi + \epsilon \psi}^{\frac{\alpha - 1}{2z}} a^{\frac{1}{2}})^{\frac{z}{\alpha - 1}} \right) \right\}$$

$$\leq \sup_{a \in \mathcal{M}_+} \left\{ \alpha \operatorname{Tr} \left((a^{\frac{1}{2}} h_{\psi}^{\frac{\alpha}{z}} a^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \operatorname{Tr} \left((a^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{2z}} a^{\frac{1}{2}})^{\frac{z}{\alpha - 1}} \right) \right\},$$

where the inequality above follows by Lemma A.3. Therefore, since lower semicontinuity [11, Theorem 2 (iv)] gives

$$Q_{\alpha,z}(\psi \| \varphi) \leq \liminf_{\epsilon \searrow 0} Q_{\alpha,z}(\psi \| \varphi + \epsilon \psi)$$

the desired inequality follows.

We finish this section by investigation of the properties of the variational expression for $0 < \alpha < 1$, in the case when $\lambda^{-1}\varphi \leq \psi \leq \lambda \varphi$ for some $\lambda > 0$. This will be denoted as $\psi \sim \varphi$.

Lemma 2.4. Assume that $\psi \sim \varphi$. Then the infimum in the variational expression in Theorem 2.3 (i) is attained at a unique element $\bar{a} \in \mathcal{M}^{++}$. This element satisfies

$$h_{\psi}^{\frac{\alpha_z}{2z}} \bar{a} h_{\psi}^{\frac{\alpha_z}{2z}} = \left(h_{\psi}^{\frac{\alpha_z}{z}} h_{\varphi}^{\frac{1-\alpha}{z}} h_{\psi}^{\frac{\alpha_z}{z}} \right)^{\alpha} \tag{2.1}$$

$$h_{\varphi}^{\frac{1-\alpha}{2z}}\bar{a}^{-1}h_{\varphi}^{\frac{1-\alpha}{2z}} = \left(h_{\varphi}^{\frac{1-\alpha}{2z}}h_{\psi}^{\frac{\alpha}{z}}h_{\varphi}^{\frac{1-\alpha}{2z}}\right)^{1-\alpha}. \tag{2.2}$$

Proof. We may assume that φ and hence also ψ is faithful. Following the proof of [11, Theorem 1 (vi)], we may use the assumptions and [6, Lemma A.58] to show that there are $b, c \in \mathcal{M}$ such that

$$h_{\varphi}^{\frac{1-\alpha}{2z}} = b \left(h_{\varphi}^{\frac{1-\alpha}{2z}} h_{\psi}^{\frac{\alpha}{z}} h_{\varphi}^{\frac{1-\alpha}{2z}} \right)^{\frac{1-\alpha}{2}}, \qquad \left(h_{\varphi}^{\frac{1-\alpha}{2z}} h_{\psi}^{\frac{\alpha}{z}} h_{\varphi}^{\frac{1-\alpha}{2z}} \right)^{\frac{1-\alpha}{2}} = c h_{\varphi}^{\frac{1-\alpha}{2z}}. \tag{2.3}$$

With $\bar{a}:=bb^*\in\mathcal{M}^{++}$ we have $\bar{a}^{-1}=c^*c$ and \bar{a} is indeed a minimizer of

$$Q_{\alpha,z}(\psi \| \varphi) = \inf_{a \in \mathcal{M}^{++}} \left\{ \alpha \left\| h_{\psi}^{\frac{\alpha}{2z}} a h_{\psi}^{\frac{\alpha}{2z}} \right\|_{\frac{z}{\alpha}}^{\frac{z}{\alpha}} + (1 - \alpha) \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} a^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{\frac{z}{1-\alpha}}^{\frac{z}{1-\alpha}} \right\}. \tag{2.4}$$

We next observe that such minimizer is unique. Indeed, suppose that the infimum is attained at some $a_1, a_2 \in \mathcal{M}^{++}$. Let $a_0 := (a_1 + a_2)/2$. Since the map $L^p(\mathcal{M}) \ni k \mapsto ||k||_p^p$ is convex for any $p \ge 1$ and $a_0^{-1} \le (a_1^{-1} + a_2^{-1})/2$, we have using Lemma A.2 in the second inequality that

$$\begin{split} \left\| h_{\psi}^{\frac{\alpha}{2z}} a_0 h_{\psi}^{\frac{\alpha}{2z}} \right\|_{\frac{z}{\alpha}}^{\frac{z}{\alpha}} &\leq \frac{1}{2} \left\{ \left\| h_{\psi}^{\frac{\alpha}{2z}} a_1 h_{\psi}^{\frac{\alpha}{2z}} \right\|_{\frac{z}{\alpha}}^{\frac{z}{\alpha}} + \left\| h_{\psi}^{\frac{\alpha}{2z}} a_2 h_{\psi}^{\frac{\alpha}{2z}} \right\|_{\frac{z}{\alpha}}^{\frac{z}{\alpha}} \right\}, \\ \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} a_0^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{\frac{z}{1-\alpha}}^{\frac{z}{1-\alpha}} &\leq \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} \left(\frac{a_1^{-1} + a_2^{-1}}{2} \right) h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{\frac{z}{1-\alpha}}^{\frac{z}{1-\alpha}} \\ &\leq \frac{1}{2} \left\{ \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} a_1^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{\frac{z}{1-\alpha}}^{\frac{z}{1-\alpha}} + \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} a_2^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{\frac{z}{1-\alpha}}^{\frac{z}{1-\alpha}} \right\}. \end{split}$$

Hence we have

$$\left\| h_{\varphi}^{\frac{1-\alpha}{2z}} a_0^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{\frac{z}{1-\alpha}} = \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} \left(\frac{a_1^{-1} + a_2^{-1}}{2} \right) h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{\frac{z}{1-\alpha}},$$

which implies that $a_0^{-1} = \frac{a_1^{-1} + a_2^{-1}}{2}$, as easily verified by Lemma A.2. From this we easily have $a_1 = a_2$.

The equality (2.2) is obvious from the second equality in (2.3) and $\bar{a}^{-1} = c^*c$. Since $Q_{\alpha,z}(\psi||\varphi) = Q_{1-\alpha,z}(\varphi||\psi)$, we see by uniqueness that the minimizer of the infimum expression for $Q_{1-\alpha,z}(\varphi||\psi)$ (instead of (2.4)) is \bar{a}^{-1} (instead of \bar{a}). This says that (2.1) is the equality corresponding to (2.2) when ψ, φ, α are replaced with $\varphi, \psi, 1-\alpha$, respectively.

In the next lemma, we will use the following notations:

$$p := \frac{z}{\alpha}, \quad r := \frac{z}{1-\alpha}, \quad \xi_p(a) := h_{\psi}^{\frac{1}{2p}} a h_{\psi}^{\frac{1}{2p}}, \quad \eta_r(a) = h_{\varphi}^{\frac{1}{2r}} a^{-1} h_{\varphi}^{\frac{1}{2r}}.$$

We will also denote the function under the infimum in the variational expression in Theorem 2.3 (i) by f, that is,

$$f(a) = \alpha \|\xi_p(a)\|_p^p + (1-\alpha) \|\eta_r(a)\|_r^r, \qquad a \in \mathcal{M}^{++}.$$

Lemma 2.5. Assume that $\psi \sim \varphi$ and let $0 < \alpha < 1$, $\max\{\alpha, 1 - \alpha\} \leq z$. If p > 1, then for every $C \geq Q_{\alpha,z}(\psi \| \varphi)$ and $\varepsilon > 0$ there is some $\delta > 0$ such that whenever $\|\xi_p(b)\|_p^p \leq C$ and $\|\xi_p(b) - \xi_p(\bar{a})\|_p \geq \varepsilon$, we have

$$f(b) - Q_{\alpha,z}(\psi \| \varphi) \ge \delta.$$

A similar statement holds if r > 1.

Proof. By assumptions, $p, r \ge 1$. For $a, b \in \mathcal{M}^{++}$ and $s \in (1/2, 0)$, we have

$$\|\xi_p(sb+(1-s)a)\|_p^p = \|s\xi_p(b)+(1-s)\xi_p(a)\|_p^p = \|(1-2s)\xi_p(a)+2s\frac{1}{2}(\xi_p(a)+\xi_p(b))\|_p^p$$

$$\leq (1-2s)\|\xi_p(a)\|_p^p + 2s\|\frac{1}{2}(\xi_p(a)+\xi_p(b))\|_p^p.$$

Similarly,

$$\|\eta_r(sb + (1-s)a)\|_r^r \le (1-2s)\|\eta_r(a)\|_r^r + 2s\|\frac{1}{2}(\eta_r(a) + \eta_r(b))\|_r^r,$$

here we also used the fact that $(ta+(1-t)b)^{-1} \le ta^{-1}+(1-t)b^{-1}$ for $t \in (0,1)$ and Lemma A.2. It follows that

$$\begin{split} \langle \nabla f(a), b - a \rangle &= \lim_{s \to 0^+} s^{-1} [f(sb + (1 - s)a) - f(a)] \\ &\leq 2\alpha \bigg(\|\frac{1}{2} (\xi_p(a) + \xi_p(b))\|_p^p - \|\xi_p(a)\|_p^p \bigg) + 2(1 - \alpha) \bigg(\|\frac{1}{2} (\eta_r(a) + \eta_r(b))\|_r^r - \|\eta_r(a)\|_r^r \bigg) \\ &= f(b) - f(a) - 2 \bigg(\alpha \bigg(\frac{1}{2} \|\xi_p(a)\|_p^p + \frac{1}{2} \|\xi_p(b)\|_p^p - \|\frac{1}{2} (\xi_p(a) + \xi_p(b))\|_p^p \bigg) \\ &+ (1 - \alpha) \bigg(\frac{1}{2} \|\eta_r(a)\|_r^r + \frac{1}{2} \|\eta_r(b)\|_r^r - \|\frac{1}{2} (\eta_r(a) + \eta_r(b))\|_r^r \bigg) \bigg). \end{split}$$

Since $p, r \geq 1$, both terms in brackets in the last expression above are nonnegative. Assume now that p > 1. Let $\bar{a} \in \mathcal{M}^{++}$ be the minimizer as in Lemma 2.4, then $f(\bar{a}) = Q_{\alpha,z}(\psi \| \varphi)$ and $\nabla f(\bar{a}) = 0$, so that we get

$$f(b) - Q_{\alpha,z}(\psi \| \varphi) \ge 2\alpha \left(\frac{1}{2} \| \xi_p(a) \|_p^p + \frac{1}{2} \| \xi_p(b) \|_p^p - \| \frac{1}{2} (\xi_p(a) + \xi_p(b)) \|_p^p \right).$$

The space $L_p(\mathcal{M})$ is uniformly convex, so that the function $h \mapsto ||h||_p^p$ is uniformly convex on each set where it is bounded ([?, Thm. 3.7.7. and p. 288]). Hence for each C > 0 and $\epsilon > 0$ there is some $\delta > 0$ such that for every h, k with $||h||_p^p$, $||k||_p^p \leq C$ and $||h - k||_p \geq \epsilon$, we have

$$\frac{1}{2}||h||_p^p + \frac{1}{2}||k||_p^p - ||\frac{1}{2}(h+k)||_p^p \ge \delta,$$

([?, Exercise 3.3]). The proof in the case r > 1 is similar.

3 Data processing inequality and reversibility of channels

Let $\gamma: \mathcal{N} \to \mathcal{M}$ be a normal positive unital map. Then the predual of γ defines a positive linear map $\gamma_*: L_1(\mathcal{M}) \to L_1(\mathcal{N})$ that preserves the trace, acting as

$$L_1(\mathcal{M}) \ni h_{\rho} \mapsto h_{\rho \circ \gamma} \in L_1(\mathcal{N}).$$

The support of γ will be denoted by $s(\gamma)$, recall that this is defined as the smallest projection $e \in \mathcal{N}$ such that $\gamma(e) = 1$ and in this case, $\gamma(a) = \gamma(eae)$ for any $a \in \mathcal{N}$. For any $\rho \in \mathcal{M}_{+}^{+}$ we clearly have $s(\rho \circ \gamma) \leq s(\gamma)$, with equality if ρ is faithful. It follows that γ_* maps $L_1(\mathcal{M})$ to $s(\gamma)L_1(\mathcal{N})s(\gamma) \equiv L_1(s(\gamma)\mathcal{N}s(\gamma))$. For any $\rho \in \mathcal{M}_{+}^{*}$, $\rho \neq 0$, the map

$$\gamma_0: s(\gamma)\mathcal{N}s(\gamma) \to s(\rho)\mathcal{M}s(\rho), \qquad a \mapsto s(\rho)\gamma(a)s(\rho)$$

is a faithful normal positive unital map. Moreover, for any $\sigma \in \mathcal{M}_*^+$ such that $s(\sigma) \leq s(\rho)$, we have for any $a \in \mathcal{N}$,

$$\sigma(\gamma_0(s(\gamma)as(\gamma))) = \sigma(s(\rho)\gamma(a)s(\rho)) = \sigma(a).$$

Replacing γ by γ_0 and ρ by the restriction $\rho|_{s(\rho)\mathcal{M}s(\rho)}$, we may assume that both ρ and $\rho \circ \gamma$ are faithful.

The Petz dual of γ with respect to a faithful $\rho \in \mathcal{M}_*^+$ is a map $\gamma_\rho^* : \mathcal{M} \to \mathcal{N}$, introduced in [18]. It was proved that it is again normal, positive and unital, in addition, it is *n*-positive whenever γ is. As explained in [8] γ_ρ^* is determined by the equality

$$(\gamma_{\rho}^*)_* (h_{\rho \circ \gamma}^{\frac{1}{2}} b h_{\rho \circ \gamma}^{\frac{1}{2}}) = h_{\rho}^{\frac{1}{2}} \gamma(b) h_{\rho}^{\frac{1}{2}}, \tag{3.1}$$

for all $b \in \mathcal{N}^+$, here $(\gamma_{\rho}^*)_*$ is the predual map of γ_{ρ}^* . We also have

$$(\gamma_{\rho}^*)_*(h_{\rho\circ\gamma}) = (\gamma_{\rho}^*)_* \circ \gamma_*(h_{\rho}) = h_{\rho}$$

and $(\gamma_{\rho}^*)_{\rho\circ\gamma}^* = \gamma$. In the special case that γ is the inclusion map $\gamma: \mathcal{N} \hookrightarrow \mathcal{M}$ for a subalgebra $\mathcal{N} \subseteq \mathcal{M}$, the Petz dual is the generalized conditional expectation $\mathcal{E}_{\mathcal{N},\varphi}: \mathcal{M} \to \mathcal{N}$, as introduced in [?]; see e.g. [6, Proposition 6.5]. Hence $\mathcal{E}_{\mathcal{N},\varphi}$ is a normal completely positive unital with range in \mathcal{N} and such that

$$\varphi \circ \mathcal{E}_{\mathcal{N},\varphi} = \varphi.$$

3.1 Data processing inequality

In this paragraph we prove the data processing inequality (DPI) for $D_{\alpha,z}$ with respect to normal positive unital maps. In the case of the sandwiched divergences \tilde{D}_{α} with $1/2 \leq \alpha \neq 1$, DPI was proved in [8, 9], see also [1] for an alternative proof in the case when the maps are also completely positive.

Lemma 3.1. Let $\gamma: \mathcal{N} \to \mathcal{M}$ be a normal positive unital map and let $\rho \in \mathcal{M}_*^+$, $b \in \mathcal{N}^+$.

(i) If $p \in [1/2, 1)$, then

$$\|h_{\rho \circ \gamma}^{\frac{1}{2p}} b h_{\rho \circ \gamma}^{\frac{1}{2p}}\|_{p} \leq \|h_{\rho}^{\frac{1}{2p}} \gamma(b) h_{\rho}^{\frac{1}{2p}}\|_{p}.$$

(ii) If $p \in [1, \infty]$, the inequality reverses.

Proof. Let us denote $\beta := \gamma_{\rho}^*$ and let $\omega \in \mathcal{M}_*^+$ be such that $h_{\omega} := h_{\rho \circ \gamma}^{\frac{1}{2}} b h_{\rho \circ \gamma}^{\frac{1}{2}} \in L_1(\mathcal{N})^+$. Then β is a normal positive unital map and we have

$$\beta_*(h_\omega) = h_\rho^{\frac{1}{2}} \gamma(b) h_\rho^{\frac{1}{2}}, \qquad \beta_*(h_{\rho \circ \gamma}) = h_\rho.$$

Let $p \in [1/2, 1)$, then

$$\|h_{\rho}^{\frac{1}{2p}}\gamma(b)h_{\rho}^{\frac{1}{2p}}\|_{p}^{p} = \|h_{\rho}^{\frac{1-p}{2p}}\beta_{*}(h_{\omega})h_{\rho}^{\frac{1-p}{2p}}\|_{p}^{p} = Q_{p,p}(\beta_{*}(h_{\omega})\|h_{\rho}) = Q_{p,p}(\beta_{*}(h_{\omega})\|\beta_{*}(h_{\rho\circ\gamma}))$$

$$\geq Q_{p,p}(h_{\omega}\|h_{\rho\circ\gamma}) = \|h_{\rho\circ\gamma}^{\frac{1-p}{2p}}h_{\omega}h_{\rho\circ\gamma}^{\frac{1-p}{2p}}\|_{p}^{p} = \|h_{\rho\circ\gamma}^{\frac{1}{2p}}bh_{\rho\circ\gamma}^{\frac{1}{2p}}\|_{p}^{p}.$$

Here we have used the DPI for the sandwiched Rényi divergence $D_{\alpha,\alpha}$ for $\alpha \in [1/2, 1)$, [9, Theorem 4.1]. This proves (i). The case (ii) was proved in [11] (see Eq. (22) therein), using the relation of the sandwiched Rényi divergence to the Kosaki L_p norms. In our setting, the proof can be written as

$$\|h_{\rho}^{\frac{1}{2p}}\gamma(b)h_{\rho}^{\frac{1}{2p}}\|_{p}^{p} = Q_{p,p}(h_{\rho}^{\frac{1}{2}}\gamma(b)h_{\rho}^{\frac{1}{2}}\|h_{\rho}) = Q_{p,p}(\beta_{*}(h_{\omega})\|\beta_{*}(h_{\rho\circ\gamma}))$$

$$\leq Q_{p,p}(h_{\omega}\|h_{\rho\circ\gamma}) = \|h_{\rho\circ\gamma}^{\frac{1}{2p}}bh_{\rho\circ\gamma}^{\frac{1}{2p}}\|_{p}^{p},$$

here the inequality follows from the DPI for sandwiched Rényi divergence $D_{\alpha,\alpha}$ with $\alpha > 1$, [8].

Remark 3.2. Using the fact that $(\gamma_{\rho}^*)_*$ is a contraction for the Kosaki L_p spaces $L_p(\mathcal{N}, \rho \circ \gamma) \to L_p(\mathcal{M}, \rho)$ for all $p \geq 1$ (see [8, Thm.] and properties of the Petz dual), we can see that the map $\gamma_{\rho,p}: L_p(\mathcal{N}) \to L_p(\mathcal{M})$ determined by

$$\gamma_{\rho,p}: h_{\rho \circ \gamma}^{\frac{1}{2p}} a h_{\rho \circ \gamma}^{\frac{1}{2p}} \mapsto h_{\rho}^{\frac{1}{2p}} \gamma(a) h_{\rho}^{\frac{1}{2p}}, \qquad a \in \mathcal{N}$$

is a contraction. Notice that $\gamma_{\rho,1}=(\gamma_{\rho}^*)_*,\ \gamma_{\rho,\infty}=\gamma$ and for any $p\geq 1,$

$$(\gamma_{\rho}^*)_* (h_{\rho \circ \gamma}^{\frac{p-1}{2p}} w h_{\rho \circ \gamma}^{\frac{p-1}{2p}}) = h_{\rho}^{\frac{p-1}{2p}} \gamma_{\rho,p}^*(w) h_{\rho}^{\frac{p-1}{2p}}, \qquad w \in L_p(\mathcal{N}).$$

Theorem 3.3 (DPI). Let $\psi, \varphi \in \mathcal{M}_*^+$, $\psi \neq 0$ and let $\gamma : \mathcal{N} \to \mathcal{M}$ be a normal positive unital map. Assume either of the following conditions:

(i)
$$0 < \alpha < 1, \max\{\alpha, 1 - \alpha\} \le z$$

(ii)
$$\alpha > 1$$
, $\max{\{\alpha/2, \alpha - 1\}} \le z \le \alpha$.

Then we have

$$D_{\alpha,z}(\psi \circ \gamma \| \varphi \circ \gamma) \le D_{\alpha,z}(\psi \| \varphi).$$

Proof. Under the conditions (i), the DPI was proved in [11, Theorem 1 (viii)]. Since parts of this proof will be used below, we repeat it here.

Assume the conditions in (i) and put $p := \frac{z}{\alpha}$, $r := \frac{z}{1-\alpha}$, so that $p, r \ge 1$. For any $b \in \mathcal{N}^{++}$, we have by the Choi inequality [2] that $\gamma(b)^{-1} \le \gamma(b^{-1})$, so that by Lemma A.2 and 3.1 (ii), we have

$$\|h_{\varphi}^{\frac{1}{2r}}\gamma(b)^{-1}\varphi^{\frac{1}{2r}}\|_{r} \leq \|h_{\varphi}^{\frac{1}{2r}}\gamma(b^{-1})\varphi^{\frac{1}{2r}}\|_{r} \leq \|h_{\varphi\circ\gamma}^{\frac{1}{2r}}b^{-1}h_{\varphi\circ\gamma}^{\frac{1}{2r}}\|_{r}^{r}.$$
(3.2)

Using the variational expression in Theorem 2.3 (i), we have

$$Q_{\alpha,z}(\psi \| \varphi) \le \alpha \|h_{\psi}^{\frac{1}{2p}} \gamma(b) h_{\psi}^{\frac{1}{2p}} \|_{p}^{p} + (1 - \alpha) \|h_{\varphi}^{\frac{1}{2r}} \gamma(b)^{-1} h_{\varphi}^{\frac{1}{2r}} \|_{r}^{r}$$
(3.3)

$$\leq \alpha \|h_{\psi}^{\frac{1}{2p}} \gamma(b) h_{\psi}^{\frac{1}{2p}}\|_{p}^{p} + (1 - \alpha) \|h_{\varphi}^{\frac{1}{2r}} \gamma(b^{-1}) h_{\varphi}^{\frac{1}{2r}}\|_{r}^{r}$$

$$(3.4)$$

$$\leq \alpha \|h_{\psi \circ \gamma}^{\frac{1}{2p}} b h_{\psi \circ \gamma}^{\frac{1}{2p}}\|_{p}^{p} + (1 - \alpha) \|h_{\varphi \circ \gamma}^{\frac{1}{2r}} b^{-1} h_{\varphi \circ \gamma}^{\frac{1}{2r}}\|_{r}^{r}. \tag{3.5}$$

Since this holds for all $b \in \mathcal{N}^{++}$, it follows that $Q_{\alpha,z}(\psi \| \varphi) \leq Q_{\alpha}(\psi \circ \gamma \| \varphi \circ \gamma)$, which proves the DPI in this case.

Assume next the condition (ii), and put $p := \frac{z}{\alpha}$, $q := \frac{z}{\alpha-1}$, so that $p \in [1/2, 1)$ and $q \ge 1$. Using Theorem 2.3 (ii), we get for any $b \in \mathcal{N}^+$,

$$Q_{\alpha,z}(\psi \| \varphi) \ge \alpha \|h_{\psi}^{\frac{1}{2p}} \gamma(b) h_{\psi}^{\frac{1}{2p}} \|_{p}^{p} - (\alpha - 1) \|h_{\varphi}^{\frac{1}{2q}} \gamma(b) h_{\varphi}^{\frac{1}{2q}} \|_{q}^{q}$$

$$\ge \alpha \|h_{\psi \circ \gamma}^{\frac{1}{2p}} b h_{\psi \circ \gamma}^{\frac{1}{2p}} \|_{p}^{p} - (\alpha - 1) \|h_{\varphi \circ \gamma}^{\frac{1}{2r}} b h_{\varphi \circ \gamma}^{\frac{1}{2q}} \|_{q}^{q},$$

here we used both (i) and (ii) in Lemma 3.1. Again, since this holds for all $b \in \mathcal{N}^+$, we get the desired inequality.

3.2 Martingale convergence

An important consequence of DPI is the martingale convergence property that will be proved in this paragraph.

Let \mathcal{M} be a σ -finite von Neumann algebra. Let $\{\mathcal{M}_i\}$ be an increasing net of von Neumann subalgebras of \mathcal{M} containing the unit of \mathcal{M} such that $\mathcal{M} = \left(\bigcup_i \mathcal{M}_i\right)''$.

Theorem 3.4. Assume that α and z satisfy the DPI bounds (that is, conditions (i) or (ii) in Theorem 3.3). Then we have

$$D_{\alpha,z}(\psi||\varphi) = \lim_{i} D_{\alpha,z}(\psi|_{\mathcal{M}_i}||\varphi|_{\mathcal{M}_i}) \quad increasingly.$$
 (3.6)

Proof. Let $\varphi_i := \varphi|_{\mathcal{M}_i}$ and $\psi_i := \psi|_{\mathcal{M}_i}$. From Theorem 3.3, it follows that $D_{\alpha,z}(\psi \| \varphi) \ge D_{\alpha,z}(\psi_i \| \varphi_i)$ for all i and $i \mapsto D_{\alpha,z}(\psi_i \| \varphi_i)$ is increasing. Hence, to show (3.6), it suffices to prove that

$$D_{\alpha,z}(\psi||\varphi) \le \sup_{i} D_{\alpha,z}(\psi_i||\varphi_i). \tag{3.7}$$

To do this, we may assume that φ is faithful. Indeed, assume that (3.7) has been shown when φ is faithful. For general $\varphi \in \mathcal{M}_*^+$, from the assumption of \mathcal{M} being σ -finite, there exists a $\varphi_0 \in \mathcal{M}_*^+$ with $s(\varphi_0) = \mathbf{1} - s(\varphi)$. Let $\varphi^{(n)} := \varphi + n^{-1}\varphi_0$ and $\varphi_i^{(n)} := \varphi^{(n)}|_{\mathcal{M}_i}$ for each $n \in \mathbb{N}$. Thanks to the lower semi-continuity [11, Theorem 1(iv) and Theorem 2(iv)] and the order relation [11, Theorem 1(iii) and Theorem 2(iii)] we have

$$D_{\alpha,z}(\psi \| \varphi) \leq \liminf_{n \to \infty} D_{\alpha,z}(\psi \| \varphi^{(n)})$$

$$\leq \liminf_{n \to \infty} \sup_{i} D_{\alpha,z}(\psi_{i} \| \varphi_{i}^{(n)})$$

$$\leq \sup_{i} D_{\alpha,z}(\psi_{i} \| \varphi_{i}),$$

proving (3.7) for general φ . Below we assume the faithfulness of φ and write $\mathcal{E}_{\mathcal{M}_i,\varphi}$ for the generalized conditional expectation from \mathcal{M} to \mathcal{M}_i with respect to φ . Then we note that we have by [?, Theorem 3],

$$\psi_i \circ \mathcal{E}_{\mathcal{M}_i, \varphi} = \psi \circ \mathcal{E}_{\mathcal{M}_i, \varphi} \to \psi \quad \text{in the norm,}$$
 (3.8)

as well as

$$\varphi_i \circ \mathcal{E}_{\mathcal{M}_i, \varphi} = \varphi \circ \mathcal{E}_{\mathcal{M}_i, \varphi} = \varphi. \tag{3.9}$$

Using lower semicontinuity and DPI, we obtain

$$D_{\alpha,z}(\psi\|\varphi) \leq \liminf_{i} D_{\alpha,z}(\psi_{i} \circ \mathcal{E}_{\mathcal{M}_{i},\varphi}\|\varphi) \leq \liminf_{i} D_{\alpha,z}(\psi_{i}\|\varphi) \leq \sup_{i} D_{\alpha,z}(\psi_{i}\|\varphi).$$

3.3 Equality in DPI and reversibility of channels

In what follows, a channel is a normal 2-positive unital map $\gamma: \mathcal{N} \to \mathcal{M}$.

Definition 3.5. Let $\gamma: \mathcal{N} \to \mathcal{M}$ be a channel and let $\mathcal{S} \subset \mathcal{M}_*^+$. We say that γ is reversible (or sufficient) with respect to \mathcal{S} if there exists a channel $\beta: \mathcal{M} \to \mathcal{N}$ such that

$$\rho \circ \gamma \circ \beta = \rho, \qquad \forall \rho \in \mathcal{S}.$$

The notion of sufficient channels was introduced by Petz [17, 18], who also obtained a number of conditions characterizing this situation. It particular, it was proved in [18] that sufficient channels can be characterized by equality in DPI for the relative entropy $D(\psi \| \varphi)$: if $D(\psi \| \varphi) < \infty$, then a channel γ is sufficient with respect to $\{\psi, \varphi\}$ if and only if

$$D(\psi \circ \gamma \| \varphi \circ \gamma) = D(\psi \| \varphi).$$

This result has been proved for a number of other divergence measures, including the standard Rényi divergences $D_{\alpha,1}$ with $0 < \alpha < 2$ ([]) and the sandwiched Rényi divergences $D_{\alpha,\alpha}$ for $\alpha > 1/2$ ([8, 9]). Our aim in this section is to prove that a similar statement holds for $D_{\alpha,z}$ for values of the parameters strictly contained in the DPI bounds of Theorem 3.3.

Another important result of [18] shows that the Petz dual γ_{φ}^* is a universal recovery map, in the sense given in the proposition below.

Proposition 3.6. Let $\gamma: \mathcal{N} \to \mathcal{M}$ be a channel and let $\varphi \in \mathcal{M}_*^+$ be such that both φ and $\varphi \circ \gamma$ are faithful. Then for any $\psi \in \mathcal{M}_*^+$, γ is sufficient with respect to $\{\psi, \varphi\}$ if and only if $\psi \circ \gamma \circ \gamma_{\varphi}^* = \psi$. Consequently, there is a faithful normal conditional expectation \mathcal{E} on \mathcal{M} such that $\varphi \circ \mathcal{E} = \varphi$ and γ is sufficient with respect to $\{\psi, \varphi\}$ if and only if also $\psi \circ \mathcal{E} = \psi$.

Note that the range of the conditional expectation \mathcal{E} in the above proposition is the set of fixed points of the channel $\gamma \circ \gamma_{\varphi}^*$.

3.3.1 The case $\alpha \in (0,1)$

We first prove some equivalent conditions for equality in DPI, in the case $\psi \sim \varphi$. We will use the notations $\psi_0 := \psi \circ \gamma$, $\varphi_0 := \varphi \circ \gamma$. Note that these conditions do not require γ to be 2-positive.

Proposition 3.7. Let $0 < \alpha < 1$, $\max\{\alpha, 1 - \alpha\} \le z$ and assume that $\psi \sim \varphi$. Let $\gamma : \mathcal{N} \to \mathcal{M}$ be a normal positive unital map and put $\psi_0 = \psi \circ \gamma$, $\varphi_0 = \varphi \circ \gamma$. Let $\bar{a} \in \mathcal{M}^{++}$ be the unique minimizer as in Lemma 2.4 for $Q_{\alpha,z}(\psi \| \varphi)$ and let $\bar{a}_0 \in \mathcal{N}^{++}$ be the minimizer for $Q_{\alpha,z}(\psi_0 \| \varphi_0)$. The following conditions are equivalent:

(i)
$$D_{\alpha,z}(\psi_0 \| \varphi_0) = D_{\alpha,z}(\psi \| \varphi)$$
, i.e., $Q_{\alpha,z}(\psi_0 \| \varphi_0) = Q_{\alpha,z}(\psi \| \varphi)$.

(ii)
$$\gamma(\bar{a}_0) = \bar{a} \text{ and } \|h_{\psi}^{\frac{\alpha}{2z}} \gamma(\bar{a}_0) h_{\psi}^{\frac{\alpha}{2z}}\|_{z/\alpha} = \|h_{\psi_0}^{\frac{\alpha}{2z}} \bar{a}_0 h_{\psi_0}^{\frac{\alpha}{2z}}\|_{z/\alpha}.$$

(iii)
$$\|h_{\psi}^{\frac{\alpha}{2z}} \bar{a} h_{\psi}^{\frac{\alpha}{2z}}\|_{z/\alpha} = \|h_{\psi_0}^{\frac{\alpha}{2z}} \bar{a}_0 h_{\psi_0}^{\frac{\alpha}{2z}}\|_{z/\alpha}$$
.

$$(iv) \ \gamma(\bar{a}_0^{-1}) = \bar{a}^{-1} \ and \ \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} \gamma(\bar{a}_0^{-1}) h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{z/(1-\alpha)} = \left\| h_{\varphi_0}^{\frac{1-\alpha}{2z}} \bar{a}_0^{-1} h_{\varphi_0}^{\frac{1-\alpha}{2z}} \right\|_{z/(1-\alpha)}.$$

$$(v) \ \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} \bar{a}^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{z/(1-\alpha)} = \left\| h_{\varphi_0}^{\frac{1-\alpha}{2z}} \bar{a}_0^{-1} h_{\varphi_0}^{\frac{1-\alpha}{2z}} \right\|_{z/(1-\alpha)}.$$

Proof. By the assumptions, $s(\psi) = s(\varphi)$ and since also $\psi_0 \sim \varphi_0$, we have $s(\psi_0) = s(\varphi_0)$. Using restrictions, we may assume that all $\psi, \varphi, \psi_0, \varphi_0$ are faithful.

(i)
$$\Longrightarrow$$
 (ii) & (iv). By Lemma 3.1 (ii)

$$\left\| h_{\psi}^{\frac{\alpha}{2z}} \gamma(\bar{a}_0) h_{\psi}^{\frac{\alpha}{2z}} \right\|_{z/\alpha} \le \left\| h_{\psi_0}^{\frac{\alpha}{2z}} \bar{a}_0 h_{\psi_0}^{\frac{\alpha}{2z}} \right\|_{z/\alpha}, \tag{3.10}$$

and by (3.2) one has

$$\left\| h_{\varphi}^{\frac{1-\alpha}{2z}} \gamma(\bar{a}_0)^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{z/(1-\alpha)} \le \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} \gamma(\bar{a}_0^{-1}) h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{z/(1-\alpha)} \le \left\| h_{\varphi_0}^{\frac{1-\alpha}{2z}} \bar{a}_0^{-1} h_{\varphi_0}^{\frac{1-\alpha}{2z}} \right\|_{z/(1-\alpha)}. \tag{3.11}$$

From (3.10) and (3.11) it follows that

$$\begin{aligned} Q_{\alpha,z}(\psi \| \varphi) &\leq \alpha \left\| h_{\psi}^{\frac{\alpha}{2z}} \gamma(\bar{a}_0) h_{\psi}^{\frac{\alpha}{2z}} \right\|_{z/\alpha} + (1-\alpha) \left\| h_{\varphi}^{\frac{1-\alpha}{2z}} \gamma(\bar{a}_0)^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} \right\|_{z/(1-\alpha)} \\ &\leq \alpha \left\| h_{\psi_0}^{\frac{\alpha}{2z}} \bar{a}_0 h_{\psi_0}^{\frac{\alpha}{2z}} \right\|_{z/\alpha} + (1-\alpha) \left\| h_{\varphi_0}^{\frac{1-\alpha}{2z}} \bar{a}_0^{-1} h_{\varphi_0}^{\frac{1-\alpha}{2z}} \right\|_{z/(1-\alpha)} = Q_{\alpha,z}(\psi_0 \| \varphi_0) = Q_{\alpha,z}(\psi \| \varphi). \end{aligned}$$

By uniqueness in Lemma 2.4 we find that $\gamma(\bar{a}_0) = \bar{a}$ and all the inequalities in (3.10) and (3.11) must become equalities. Since $\gamma(\bar{a}_0^{-1}) \geq \gamma(\bar{a}_0)^{-1}$, we verify by Lemma A.2 that the equality in (3.11) yields $\gamma(\bar{a}_0^{-1}) = \gamma(\bar{a}_0)^{-1} = \bar{a}^{-1}$. Therefore, (ii) and (iv) hold.

The implications (ii) \Longrightarrow (iii) and (iv) \Longrightarrow (v) are obvious.

(iii) \Longrightarrow (i). By (iii) with the equality (2.1) in Lemma 2.4 we have

$$Q_{\alpha,z}(\psi \| \varphi) = \operatorname{Tr} \left(h_{\psi}^{\frac{\alpha}{2z}} h_{\varphi}^{\frac{1-\alpha}{z}} h_{\psi}^{\frac{\alpha}{2z}} \right)^{z} = \operatorname{Tr} \left(h_{\psi}^{\frac{\alpha}{2z}} \bar{a} h_{\psi_{0}}^{\frac{\alpha}{2z}} \right)^{z/\alpha}$$
$$= \operatorname{Tr} \left(h_{\psi_{0}}^{\frac{\alpha}{2z}} \bar{a}_{0} h_{\psi_{0}}^{\frac{\alpha}{2z}} \right)^{z/\alpha} = \operatorname{Tr} \left(h_{\psi_{0}}^{\frac{\alpha}{2z}} h_{\varphi_{0}}^{\frac{1-\alpha}{z}} h_{\psi_{0}}^{\frac{\alpha}{2z}} \right)^{z}$$
$$= Q_{\alpha,z}(\psi_{0} \| \varphi_{0}).$$

 $(v) \Longrightarrow (i)$. Similarly, by (v) with the equality (2.2) in Lemma 2.4 we have

$$Q_{\alpha,z}(\psi \| \varphi) = \operatorname{Tr} \left(h_{\varphi}^{\frac{1-\alpha}{2z}} h_{\psi}^{\frac{\alpha}{z}} h_{\varphi}^{\frac{1-\alpha}{2z}} \right)^{z} = \operatorname{Tr} \left(h_{\varphi}^{\frac{1-\alpha}{2z}} \bar{a}^{-1} h_{\varphi}^{\frac{1-\alpha}{2z}} \right)^{z/(1-\alpha)}$$

$$= \operatorname{Tr} \left(h_{\varphi_{0}}^{\frac{1-\alpha}{2z}} \bar{a}_{0}^{-1} h_{\varphi_{0}}^{\frac{1-\alpha}{2z}} \right)^{z/(1-\alpha)} = \operatorname{Tr} \left(h_{\varphi_{0}}^{\frac{1-\alpha}{2z}} h_{\psi_{0}}^{\frac{\alpha}{z}} h_{\varphi_{0}}^{\frac{1-\alpha}{2z}} \right)^{z}$$

$$= Q_{\alpha,z}(\psi_{0} \| \varphi_{0}).$$

Remark 3.8. Note that the above conditions extend the results obtained in [?] and [?] in the finite dimensional case. Indeed, the condition (ii) with $\alpha=z$ is equivalent to the condition in [?, Thm. 1], note here that in this case the second condition in (ii) is automatic. Moreover, (ii) extends the necessary condition in [?, Thm. 1.2 (2)] to a necessary and sufficient one. While in both these works γ was required to be completely positive, we have shown that only positivity is enough. See also the related condition in Corollary 3.10 below.

Theorem 3.9. Let $0 < \alpha < 1$ and $\alpha, 1 - \alpha \leq z$. Let $\psi, \varphi \in \mathcal{M}_*^+$ and assume that $\alpha < z$ and $s(\varphi) \leq s(\psi)$ or $1 - \alpha < z$ and $s(\psi) \leq s(\varphi)$. Then γ is reversible with respect to $\{\psi, \varphi\}$ if and only if

$$D_{\alpha,z}(\psi\|\varphi) = D_{\alpha,z}(\psi \circ \gamma\|\varphi \circ \gamma).$$

Proof. This proof is a modification of the proof of [9, Thm. 5.1]. Let us denote $\psi_0 := \psi \circ \gamma$, $\varphi_0 := \varphi \circ \gamma$ and put $p = \frac{z}{\alpha}$, $r = \frac{z}{1-\alpha}$. We will assume that p > 1 and $s(\varphi) \leq s(\psi)$, otherwise we may exchange the role of p, r and ψ, φ by the equality $Q_{\alpha,z}(\psi \| \varphi) = Q_{1-\alpha,z}(\varphi \| \psi)$. As before, we may assume that both ψ and ψ_0 are faithful.

The strategy of the proof is to use known results for the sandwiched Rényi divergence $D_{p,p}$ with p > 1, [8]. For this, notice that

$$Q_{z,\alpha}(\psi \| \varphi) = Q_{p,p}(\omega \| \psi),$$

where $\omega \in \mathcal{M}_{*}^{+}$ is such that

$$h_{\omega} = h_{\psi}^{\frac{p-1}{2p}} h_{\mu}^{\frac{1}{p}} h_{\psi}^{\frac{p-1}{2p}}, \qquad h_{\mu} = |h_{\varphi}^{\frac{1}{2r}} h_{\psi}^{\frac{1}{2p}}|^{2z}. \tag{3.12}$$

Let $\omega_0, \mu_0 \in \mathcal{N}_*^+$ be similar functionals obtained from ψ_0, φ_0 . Then we have the equality

$$Q_{p,p}(\omega_0 \| \psi_0) = Q_{\alpha,z}(\psi_0 \| \varphi_0) = Q_{\alpha,z}(\psi \| \varphi) = Q_{p,p}(\omega \| \psi).$$

Our first goal is to show that $\omega_0 = \omega \circ \gamma$, which implies by [8] that γ is sufficient with respect to $\{\omega, \psi\}$.

Let $\psi_n \to \psi$ and $\varphi_n \to \varphi$ in \mathcal{M}_*^+ be some sequences such that $\psi_n \sim \varphi_n$ for all n. Then $\psi_n \circ \gamma \sim \varphi_n \circ \gamma$, $\psi_n \circ \gamma \to \psi_0$, $\varphi_n \circ \gamma \to \varphi_0$ and by joint continuity of $Q_{\alpha,z}$ ([11, Thm. 1 (iv)]), we have

$$\lim_{n} Q_{\alpha,z}(\psi_n \circ \gamma \| \varphi_n \circ \gamma) = Q_{\alpha,z}(\psi_0 \| \varphi_0) = Q_{\alpha,z}(\psi \| \varphi) = \lim_{n} Q_{\alpha,z}(\psi_n \| \varphi_n).$$

Let $\bar{b}_n \in \mathcal{N}^{++}$ be the minimizer for the variational expression for $Q_{\alpha,z}(\psi_n \circ \gamma \| \varphi_n \circ \gamma)$. Let also \bar{a}_n be the minimizer for $Q_{\alpha,z}(\psi_n \| \varphi_n)$ and let $f_n : \mathcal{M}^{++} \to \mathbb{R}^+$ be the function minimized in the expression for $Q_{\alpha,z}(\psi_n \| \varphi_n)$. We then have

$$Q_{\alpha,z}(\psi_n \circ \gamma \| \varphi_n \circ \gamma) - f_n(\gamma(\bar{b}_n)) = \alpha \left(\|h_{\psi_n \circ \gamma}^{\frac{1}{2p}} \bar{b}_n h_{\psi_n \circ \gamma}^{\frac{1}{2p}} \|_p^p - \|h_{\psi_n}^{\frac{1}{2p}} \gamma(\bar{b}_n) h_{\psi_n}^{\frac{1}{2p}} \|_p^p \right) + (1 - \alpha) \left(\|h_{\varphi_n \circ \gamma}^{\frac{1}{2r}} \bar{b}_n^{-1} h_{\varphi_n \circ \gamma}^{\frac{1}{2r}} \|_r^r - \|h_{\varphi_n}^{\frac{1}{2r}} \gamma(\bar{b}_n)^{-1} h_{\varphi_n}^{\frac{1}{2r}} \|_r^r \right) \ge 0,$$

where the inequality follows from Lemma 3.1 (ii) and (3.2). We obtain

$$Q_{\alpha,z}(\psi_n \circ \gamma \| \varphi_n \circ \gamma) - Q_{\alpha,z}(\psi_n \| \varphi_n) \ge f_n(\gamma(\bar{b}_n)) - Q_{\alpha,z}(\psi_n \| \varphi_n) \ge 0. \tag{3.13}$$

Now let $\mu_{n,0} \in \mathcal{N}_*^+$ and $\mu_n \in \mathcal{M}_*^+$ be such that by (2.1) in Lemma 2.4

$$h_{\mu_{n,0}}^{\frac{1}{p}} = |h_{\varphi_{n} \circ \gamma}^{\frac{1}{2r}} h_{\psi_{n} \circ \gamma}^{\frac{1}{2p}}|^{2\alpha} = h_{\psi_{n} \circ \gamma}^{\frac{1}{2p}} \bar{b}_{n} h_{\psi_{n} \circ \gamma}^{\frac{1}{2p}}, \qquad h_{\mu_{n}}^{\frac{1}{p}} = |h_{\varphi_{n}}^{\frac{1}{2r}} h_{\psi_{n}}^{\frac{1}{2p}}|^{2\alpha} = h_{\psi_{n}}^{\frac{1}{2p}} \bar{a}_{n} h_{\psi_{n}}^{\frac{1}{2p}}.$$

Then $h_{\mu_{n,0}}^{\frac{1}{p}} \to h_{\mu_0}^{\frac{1}{p}}$ in $L_p(\mathcal{N})$, this follows by the Hölder inequality and the fact that the map $L_{2z}(\mathcal{N}) \to L_p(\mathcal{N})$, given as $h \mapsto |h|^{2\alpha}$ is norm to norm continuous, [?]. Similarly, $h_{\mu_n}^{\frac{1}{p}} \to h_{\mu}^{\frac{1}{p}}$ in $L_p(\mathcal{M})$. Next, note that since $Q_{\alpha,z}(\psi_n \circ \gamma \| \varphi_n \circ \gamma)$ and $Q_{\alpha,z}(\psi_n \| \varphi_n)$ have the same limit, we see from (3.13) and Lemma 2.5 that $h_{\psi_n}^{\frac{1}{2p}} \gamma(\bar{b}_n) h_{\psi_n}^{\frac{1}{2p}} - h_{\mu_n}^{\frac{1}{p}} \to 0$ in $L_p(\mathcal{M})$. On the other hand, let $\gamma_{\psi_n,p}^*, \gamma_{\psi,p}^* : L_p(\mathcal{N}) \to L_p(\mathcal{M})$ be the contractions as in Remark 3.2. We then have

$$h_{\psi_n}^{\frac{1}{2p}} \gamma(\bar{b}_n) h_{\psi_n}^{\frac{1}{2p}} = \gamma_{\psi_n,p}^* (h_{\mu_{n,0}}^{\frac{1}{p}})$$

and since $\gamma_{\psi_n,p}^*(k) \to \gamma_{\psi,p}^*(k)$ in $L_p(\mathcal{M})$ for any $k \in L_p(\mathcal{N})$ by [8, Lemma 4.3], we have

$$\|\gamma_{\psi,p}^*(h_{\mu_0}^{\frac{1}{p}}) - \gamma_{\psi_n,p}^*(h_{\mu_{n,0}}^{\frac{1}{p}})\|_p \le \|(\gamma_{\psi,p}^* - \gamma_{\psi_n,p}^*)(h_{\mu_0}^{\frac{1}{p}})\|_p + \|\gamma_{\psi_n,p}^*(h_{\mu_0}^{\frac{1}{p}} - h_{\mu_{n,0}}^{\frac{1}{p}})\|_p \to 0.$$

Putting all together, we obtain that

$$h_{\mu}^{\frac{1}{p}} = \lim_{n} h_{\mu_{n}}^{\frac{1}{p}} = \lim_{n} \gamma_{\psi_{n},p}^{*}(h_{\mu_{n},0}^{\frac{1}{p}}) = \gamma_{\psi,p}^{*}(h_{\mu_{0}}^{\frac{1}{p}}).$$

It follows that

$$(\gamma_{\psi}^*)_*(h_{\omega_0}) = h_{\psi}^{\frac{p-1}{2p}} \gamma_{\psi,p}^*(h_{\mu_0}^{\frac{1}{p}}) h_{\psi}^{\frac{p-1}{2p}} = h_{\psi}^{\frac{p-1}{2p}} h_{\mu}^{\frac{1}{p}} h_{\psi}^{\frac{p-1}{2p}} = h_{\omega},$$

so that we have

$$Q_{p,p}(\omega_0 \| \psi_0) = Q_{p,p}(\omega \| \psi) = Q_{p,p}(\omega_0 \circ \gamma_{\psi}^* \| \psi_0 \circ \gamma_{\psi}^*).$$

Let us remark here that in the situation of Proposition 3.7, we have $h_{\omega} = h_{\psi}^{\frac{1}{2}} \bar{a} h_{\psi}^{\frac{1}{2}}$ and $h_{\omega_0} = h_{\psi_0}^{\frac{1}{2}} \bar{a}_0 h_{\psi_0}^{\frac{1}{2}}$, so that the equality

$$(\gamma_{\psi}^*)_*(h_{\omega_0}) = h_{\psi}^{\frac{1}{2}} \gamma(\bar{a}_0) h_{\psi}^{\frac{1}{2}} = h_{\omega}$$

is immediate from the condition (iii) in Proposition 3.7.

By the properties of the sandwiched Rényi divergence $D_{p,p}$, it follows that γ_{ψ}^* is sufficient with respect to $\{\omega_0, \psi_0\}$. By Proposition 3.6 and the fact that the Petz dual $(\gamma_{\psi}^*)_{\psi_0}^*$ is γ itself, this implies

$$\omega \circ \gamma = \omega_0 \circ \gamma_{\psi}^* \circ \gamma = \omega_0.$$

Next, let \mathcal{E} be the faithful normal conditional expectation onto the set of fixed points of $\gamma \circ \gamma_{\psi}^*$, as in Proposition 3.6. Then \mathcal{E} preserves both ψ and ω , which by [10] ...!! implies that

$$h_{\psi}^{\frac{p-1}{2p}}h_{\mu}^{\frac{1}{p}}h_{\psi}^{\frac{p-1}{2p}}=h_{\omega}=\mathcal{E}_*(h_{\omega})=h_{\psi}^{\frac{p-1}{2p}}\mathcal{E}_p(h_{\mu}^{\frac{1}{p}})h_{\psi}^{\frac{p-1}{2p}},$$

so that $|h_{\varphi}^{\frac{1}{2r}}h_{\psi}^{\frac{1}{2p}}|^{2\alpha} = h_{\mu}^{\frac{1}{p}} \in L_p(\mathcal{E}(\mathcal{M}))$ and consequently $|h_{\varphi}^{\frac{1}{2r}}h_{\psi}^{\frac{1}{2p}}| = h_{\mu}^{\frac{1}{2z}} \in L_{2z}(\mathcal{E}(\mathcal{M}))$. Note that by the assumptions 2z > 1, so that we may use the multiplicativity properties of the extension of \mathcal{E} [10]. Let

$$h_{\varphi}^{\frac{1}{2r}}h_{\psi}^{\frac{1}{2p}}=u|h_{\varphi}^{\frac{1}{2r}}h_{\psi}^{\frac{1}{2p}}|$$

be the polar decomposition in $L_{2z}(\mathcal{M})$, then we have

$$u^* h_{\varphi}^{\frac{1}{2r}} h_{\psi}^{\frac{1}{2p}} = \mathcal{E}_{2z} (u^* h_{\varphi}^{\frac{1}{2r}} h_{\psi}^{\frac{1}{2p}}) = \mathcal{E}_{2r} (u^* h_{\varphi}^{\frac{1}{2r}}) h_{\psi}^{\frac{1}{2p}},$$

which implies that $u^*h_{\varphi}^{\frac{1}{2r}} \in L_{2r}(\mathcal{E}(\mathcal{M}))$. Since ψ is faithful, we have $uu^* = r(h_{\varphi}^{\frac{1}{2r}}h_{\psi}^{\frac{1}{2p}}) = s(\varphi)$, so that by uniqueness of the polar decomposition in $L_{2r}(\mathcal{M})$ and $L_{2r}(\mathcal{E}(\mathcal{M}))$, we must have $h_{\varphi}^{\frac{1}{2r}} \in L_{2r}(\mathcal{E}(\mathcal{M}))$ and $u \in \mathcal{E}(\mathcal{M})$. Hence $\varphi \circ \mathcal{E} = \varphi$ and γ is sufficient with respect to $\{\psi, \varphi\}$.

We give further equality conditions related to those by Zhang (?) [?] in finite dimensions.

Corollary 3.10. Let $0 < \alpha < 1$, $\max\{\alpha, 1 - \alpha\} \le z$ and let γ be a normal positive unital map.

(i) Let $s(\varphi) \leq s(\psi)$ and p > 1. Then equality in DPI for $D_{\alpha,z}$ is equivalent to

$$\gamma_* \left((h_{\psi}^{\frac{1}{2p}} h_{\varphi}^{\frac{1}{2r}} h_{\psi}^{\frac{1}{2p}})^z \right) = (h_{\psi_0}^{\frac{1}{2p}} h_{\varphi_0}^{\frac{1}{2r}} h_{\psi_0}^{\frac{1}{2p}})^z.$$

(ii) Let $s(\psi) \leq s(\varphi)$ and r > 1. Then equality in DPI for $D_{\alpha,z}$ is equivalent to

$$\gamma_* \left((h_{\varphi}^{\frac{1}{2r}} h_{\eta_0}^{\frac{1}{2p}} h_{\varphi}^{\frac{1}{2r}})^z \right) = (h_{\varphi_0}^{\frac{1}{2r}} h_{\eta_0}^{\frac{1}{2p}} h_{\varphi_0}^{\frac{1}{2r}})^z.$$

Note that in the case $\psi \sim \varphi$, the condition in (i) can be written as

$$\gamma_* \left(\left(h_{\psi}^{\frac{1}{2p}} \bar{a} h_{\psi}^{\frac{1}{2p}} \right)^p \right) = \left(h_{\psi_0}^{\frac{1}{2p}} \bar{a}_0 h_{\psi_0}^{\frac{1}{2p}} \right)^p$$

and the condition in (ii) as

$$\gamma_* \big((h_\varphi^{\frac{1}{2r}} \bar{a}^{-1} h_\varphi^{\frac{1}{2r}})^r \big) = (h_{\varphi_0}^{\frac{1}{2r}} \bar{a}_0^{-1} h_{\varphi_0}^{\frac{1}{2r}})^r.$$

This is similar to the condition by Zhang, but not the same, Zhang's condition is

$$\gamma_* \left((\bar{a}^{\frac{1}{2}} h_{\psi}^{\frac{1}{p}} \bar{a}^{\frac{1}{2}})^p \right) = (\bar{a}_0^{\frac{1}{2}} h_{\psi_0}^{\frac{1}{p}} \bar{a}_0^{\frac{1}{2}})^p \qquad \text{or} \qquad \gamma_* \left((\bar{a}^{-\frac{1}{2}} h_{\varphi}^{\frac{1}{p}} \bar{a}^{-\frac{1}{2}})^r \right) = (\bar{a}_0^{-\frac{1}{2}} h_{\psi_0}^{\frac{1}{p}} \bar{a}_0^{-\frac{1}{2}})^r.$$

Note that by the proof of [11, Thm. 1 (vi)], we have

$$b^* h_{\psi}^{\frac{1}{p}} b = (h_{\varphi}^{\frac{1}{2r}} h_{\psi}^{\frac{1}{p}} h_{\varphi}^{\frac{1}{2r}})^{\alpha},$$

where $bb^* = \bar{a}$, so that the first Zhang's equality above seems to be related to part (ii) rather than part (i), although the requirement for this in [?, Thm. 1.2 (iii)] is that $z \neq \alpha$, which is the condition in (i). I am a bit confused about this.

Proof. We prove (i), the statement (ii) is proved by exchanging the roles of ψ and φ as before. As one of the steps in the proof of Theorem 3.9, we have shown that if equality in DPI holds, γ is sufficient with respect to $\{\omega, \psi\}$, where $\omega \in \mathcal{M}^+_*$ is given by

$$h_{\omega} = h_{\psi}^{\frac{p-1}{2p}} h_{\mu}^{\frac{1}{p}} h_{\psi}^{\frac{p-1}{2p}}, \qquad h_{\mu} = (h_{\psi}^{\frac{1}{2p}} h_{\varphi}^{\frac{1}{p}} h_{\psi}^{\frac{1}{2p}})^{z}.$$

We also proved that $\omega \circ \gamma = \omega_0$ where $\omega_0 \in \mathcal{N}_*^+$ is similarly obtained from ψ_0, φ_0 . Notice that $h_\omega \in L_p(\mathcal{M}, \psi)$ and we have

$$f_{\omega,p}(s) = \mu(1)^{\frac{1}{p}-s} h_{\psi}^{\frac{1-s}{2}} h_{\mu}^{s} h_{\psi}^{\frac{1-s}{2}}, \qquad s \in S,$$

see Appendix ??. Similarly,

$$f_{\omega_0,p}(s) = \mu_0(1)^{\frac{1}{p}-s} h_{\psi_0}^{\frac{1-s}{2}} h_{\mu_0}^s h_{\psi_0}^{\frac{1-s}{2}}, \qquad s \in S.$$

Equality in DPI implies that $\mu(1) = \mu_0(1)$ and by the Hadamard three lines theorem and the fact that γ_* is a contraction on $L_q(\mathcal{M}, \psi)$ for each $q \geq 1$,

$$||h_{\omega_0}||_{p,\psi_0} = ||\gamma_*(f_{\omega,p}(\frac{1}{p}))||_{p,\psi_0} \le \left(\sup_t ||\gamma_*(f_{\omega,p}(it))||_{\infty,\psi}\right)^{1-\frac{1}{p}} \left(\sup_t ||\gamma_*(f_{\omega,p}(1+it))||_1\right)^{\frac{1}{p}}$$

$$\le \left(\sup_t ||f_{\omega,p}(it)||_{\infty,\psi}\right)^{1-\frac{1}{p}} \left(\sup_t ||f_{\omega,p}(1+it)||_1\right)^{\frac{1}{p}} = ||h_{\omega}||_{p,\psi} = ||h_{\omega_0}||_{p,\psi_0}.$$

We see that the function $S \ni s \mapsto \gamma_*(f_{\omega,p}(s))$ satisfies equality in Hadamard three lines at $\theta = 1/p \in (0,1)$, whence by [8, Thm. 2.10] we must have $\gamma_*(f_{\omega,p}(s)) = f_{\omega_0,p}(s)M^{s-\frac{1}{p}}$ for all $s \in S$, where $M = M_1/M_0$ with $M_0 = \sup_t \|f_{\omega,p}(it)\|_{\infty,\psi}$, $M_1 = \sup_t \|f_{\omega,p}(1+it)\|_1$. The equality above implies that we have $M_0 = M_1 = \|h_\omega\|_{p,\psi}$, so that M = 1. Putting s = 1 implies that $\gamma_*(h_\mu) = h_{\mu_0}$, which is the equality in (i). The converse implication is clear.

3.3.2 The case $\alpha > 1$

We now turn to the case $\alpha > 1$. We will put $p := \frac{z}{\alpha}$ and $q := \frac{z}{\alpha-1}$, then within the DPI bounds, we have $p \in [1/2, 1)$ and $q \ge 1$. Here we need to assume that $D_{\alpha,z}(\psi \| \varphi) < \infty$, so that by Lemma 2.2 there is some (unique) $y \in L_{2z}(\mathcal{M})$ such that

$$h_{\psi}^{\frac{1}{2p}} = y h_{\varphi}^{\frac{1}{2q}}.$$

By the proof of Theorem 2.3, we have the following variational expression

$$Q_{\alpha,z}(\psi||\varphi) = \sup_{w \in L_q(\mathcal{M})^+} \alpha \operatorname{Tr}\left((ywy^*)^p\right) - (\alpha - 1)\operatorname{Tr}\left(w^q\right). \tag{3.14}$$

The supremum is attained at a unique point $\bar{w} = (y^*y)^{\alpha-1} \in L_q(\mathcal{M})^+$, uniqueness follows from strict concavity of the function $w \mapsto \alpha \operatorname{Tr} \left((ywy^*)^p \right) - (\alpha - 1)\operatorname{Tr} \left(w^q \right)$.

By DPI, we have $D_{\alpha,z}(\psi_0\|\varphi_0) \leq D_{\alpha,z}(\psi\|\varphi) < \infty$, so that there is some (unique) $y_0 \in L_{2z}(\mathcal{N})$ such that

$$h_{\psi_0}^{\frac{1}{2p}} = y_0 h_{\varphi_0}^{\frac{1}{2q}}.$$

Lemma 3.11. Let us assume that both φ and φ_0 are faithful. Let $\gamma_{\varphi,q}^*$ be the contraction as in Remark 3.2. Keeping the above assumptions and notations, we have for any $w_0 \in L_q(\mathcal{N})^+$

$$\operatorname{Tr}\left((y\gamma_{\omega,a}^*(w_0)y^*)^p\right) \ge \operatorname{Tr}\left((y_0w_0y_0^*)^p\right).$$

Proof. Let us first assume that $w_0 = h_{\varphi_0}^{\frac{1}{2q}} b h_{\varphi_0}^{\frac{1}{2q}}$ for some $b \in \mathcal{N}_+$. Then $\gamma_{\varphi,q}^*(w_0) = h_{\varphi}^{\frac{1}{2q}} \gamma(b) h_{\varphi}^{\frac{1}{2q}}$. Therefore

$$\operatorname{Tr}\left((y\gamma_{\varphi,q}^{*}(w_{0})y^{*})^{p}\right) = \operatorname{Tr}\left((yh_{\varphi}^{\frac{1}{2q}}\gamma(b)h_{\varphi}^{\frac{1}{2q}}y^{*})^{p}\right) = \operatorname{Tr}\left((h_{\psi}^{\frac{1}{2p}}\gamma(b)h_{\psi}^{\frac{1}{2p}})^{p}\right) \geq \operatorname{Tr}\left((h_{\psi_{0}}^{\frac{1}{2p}}bh_{\psi_{0}}^{\frac{1}{2p}})^{p}\right)$$

$$= \operatorname{Tr}\left((y_{0}h_{\varphi_{0}}^{\frac{1}{2q}}bh_{\varphi_{0}}^{\frac{1}{2q}}y_{0}^{*})^{p}\right) = \operatorname{Tr}\left((y_{0}w_{0}y_{0}^{*})^{p}\right),$$

here the inequality is from Lemma 3.1 (i). The statement follows by Lemma A.1.

Theorem 3.12. Let $\gamma : \mathcal{N} \to \mathcal{M}$ be a channel and let $\psi, \varphi \in \mathcal{M}_*^+$ be such that $s(\psi) \leq s(\varphi)$ and $D_{\alpha,z}(\psi \| \varphi) < \infty$. Then $D_{\alpha,z}(\psi \circ \gamma \| \varphi \circ \gamma) = D_{\alpha,z}(\psi \| \varphi)$ if and only if γ is sufficient with respect to $\{\psi, \varphi\}$.

Proof. Supose that $D_{\alpha,z}(\psi_0\|\varphi_0) = D_{\alpha,z}(\psi\|\varphi)$. As before, we may assume that both φ and φ_0 are faithful. Let $\bar{w} \in L_q(\mathcal{M})^+$ and $\bar{w}_0 \in L_q(\mathcal{N})^+$ be the unique elements such that the suprema in the variational expression (3.14) for $D_{\alpha,z}(\psi\|\varphi)$ resp. $D_{\alpha,z}(\psi_0\|\varphi_0)$ are attained. We have by Lemma 3.11 and the fact that $\gamma_{\varphi,q}^*$ is a contraction,

$$D_{\alpha,z}(\psi\|\varphi) \ge \alpha \operatorname{Tr}\left((y\gamma_{\varphi,q}^*(\bar{w}_0)y^*)^p\right) - (\alpha - 1)\operatorname{Tr}\left(\gamma_{\varphi,q}^*(\bar{w}_0)^q\right)$$

$$\ge \alpha \operatorname{Tr}\left((y_0\bar{w}_0y_0^*)^p\right) - (\alpha - 1)\operatorname{Tr}\left(\bar{w}_0^q\right) = D_{\alpha,z}(\psi_0\|\varphi_0) = D_{\alpha,z}(\psi\|\varphi),$$

so that both inequalities must be equalities. This implies that in particular

$$\operatorname{Tr}\left(\bar{w}_{0}^{q}\right) = \operatorname{Tr}\left(\gamma_{\varphi,q}^{*}(\bar{w}_{0})^{q}\right).$$

By uniqueness, we must also have $\bar{w} = \gamma_{\varphi,q}^*(\bar{w}_0)$. Let now $\omega \in \mathcal{M}_*^+$, $\omega_0 \in \mathcal{N}_*^+$ be given by

$$h_{\omega} = h_{\varphi}^{\frac{q-1}{2q}} \bar{w} h_{\varphi}^{\frac{q-1}{2q}}, \qquad h_{\omega_0} = h_{\varphi_0}^{\frac{q-1}{2q}} \bar{w}_0 h_{\varphi_0}^{\frac{q-1}{2q}}, \tag{3.15}$$

then we get $(\gamma_{\varphi}^*)_*(\omega_0) = \omega$ and also by definition of the sandwiched Rényi divergence,

$$D_{q,q}(\omega_0 \| \varphi_0) = \operatorname{Tr}\left(\bar{w}_0^q\right) = \operatorname{Tr}\left(\gamma_{\varphi,q}^*(\bar{w}_0)^q\right) = D_{q,q}(\omega_0 \circ \gamma_{\varphi}^* \| \varphi_0 \circ \gamma_{\varphi}^*).$$

Similarly as in the proof of Theorem 3.12, this shows that γ is sufficient with respect to $\{\omega, \varphi\}$. Hence $\omega \circ \mathcal{E} = \omega$, where \mathcal{E} is the conditional expectation onto the fixed points of $\gamma \circ \gamma_{\varphi}^*$. Using the extensions of \mathcal{E} and their properties, we get

$$h_{\varphi}^{\frac{q-1}{2q}}\bar{w}h_{\varphi}^{\frac{q-1}{2q}} = h_{\omega} = \mathcal{E}(h_{\omega}) = h_{\varphi}^{\frac{q-1}{2q}}\mathcal{E}(\bar{w})h_{\varphi}^{\frac{q-1}{2q}},$$

which implies that $\bar{w} = \mathcal{E}(\bar{w}) \in L_q(\mathcal{E}(\mathcal{M}))^+$. But then also

$$|y| = \bar{w}^{\frac{1}{2(\alpha-1)}} = \bar{w}^{\frac{q}{2z}} \in L_{2z}(\mathcal{E}(\mathcal{M}))^+$$

Let y = u|y| be the polar decomposition of y, then we obtain from the definition of y that $uu^* = s(|y|) = s(\psi)$. Further,

$$u^* h_{\psi}^{\frac{1}{2p}} = |y| h_{\varphi}^{\frac{1}{2q}} \in L_{2p}(\mathcal{E}(\mathcal{M}))$$

and by uniqueness of the polar decomposition in $L_{2p}(\mathcal{M})$ and $L_{2p}(\mathcal{E}(\mathcal{M}))$, we obtain that $h_{\psi}^{\frac{1}{2p}} \in L_{2p}(\mathcal{E}(\mathcal{M}))^+$, $u \in \mathcal{E}(\mathcal{M})$. Hence we must have $h_{\psi} \in L_1(\mathcal{E}(\mathcal{M}))$ so that $\psi \circ \mathcal{E} = \psi$.

Corollary 3.13. Let $\alpha > 1$ and $\max\{\alpha/2, \alpha - 1\} \leq z \leq \alpha$. Let $\psi, \varphi \in \mathcal{M}_*^+$ be such that $s(\psi) \leq s(\varphi)$. Let $\gamma : \mathcal{N} \to \mathcal{M}$ be a normal positive unital map. Assume that $D_{\alpha,z}(\psi \| \varphi) < \infty$ and let $x \in L_z(\mathcal{M})^+$, $x_0 \in L_z(\mathcal{N})^+$ be such that

$$h_{\psi}^{\frac{\alpha}{z}} = h_{\varphi}^{\frac{\alpha-1}{2z}} x h_{\varphi}^{\frac{\alpha-1}{2z}}, \qquad h_{\psi_0}^{\frac{\alpha}{z}} = h_{\varphi_0}^{\frac{\alpha-1}{2z}} x_0 h_{\varphi_0}^{\frac{\alpha-1}{2z}}.$$

Then equality in DPI holds if and only if $\gamma_*(x^z) = x_0^z$.

Proof. This can be proved the same way as Corollary 3.10, using h_{ω} and h_{ω_0} given by (3.15). Note that here $\bar{w} = (y^*y)^{\alpha-1} = x^{\alpha-1}$ and $\bar{w}_0 = (y_0^*y_0)^{\alpha-1} = x_0^{\alpha-1}$ and the equality $\omega \circ \gamma = \omega_0$ only uses positivity of γ .

4 Monotonicity in the parameter z

It is well known [1, 5, 8] that the standard Rényi divergence $D_{\alpha,1}(\psi \| \varphi)$ is monotone increasing in $\alpha \in (0,1) \cup (1,\infty)$ and the sandwiched Rényi divergence $D_{\alpha,\alpha}(\psi \| \varphi)$ is monotone increasing in $\alpha \in [1/2,1) \cup (1,\infty)$. It is also known [1, 5, 8] that

$$\lim_{\alpha \nearrow 1} D_{\alpha,1}(\psi \| \varphi) = \lim_{\alpha \nearrow 1} D_{\alpha,\alpha}(\psi \| \varphi) = D_1(\psi \| \varphi),$$

and if $D_{\alpha,1}(\psi \| \varphi) < \infty$ (resp., $D_{\alpha,\alpha}(\psi \| \varphi) < \infty$) for some $\alpha > 1$, then

$$\lim_{\alpha \searrow 1} D_{\alpha,1}(\psi \| \varphi) = D_1(\psi \| \varphi) \quad \left(\text{resp.}, \ \lim_{\alpha \searrow 1} D_{\alpha,\alpha}(\psi \| \varphi) = D_1(\psi \| \varphi)\right).$$

In the rest of the paper we will discuss similar monotonicity properties and limits for $D_{\alpha,z}(\psi \| \varphi)$. We consider monotonicity in the parameter z in Sec. 4 and monotonicity in the parameter α in Sec. 5.

4.1 The finite von Neumann algebra case

Assume that (\mathcal{M}, τ) is a semi-finite von Neumann algebra \mathcal{M} with a faithful normal semi-finite trace τ . Then the Haagerup L_p -space $L_p(\mathcal{M})$ is identified with the L_p -space $L_p(\mathcal{M}, \tau)$ with respect to τ [7, Example 9.11]. Hence one can define $Q_{\alpha,z}(\psi||\varphi)$ for $\psi, \varphi \in \mathcal{M}_*^+$ by replacing, in Definition 2.1, $L_p(\mathcal{M})$ with $L_p(\mathcal{M}, \tau)$ and $h_{\psi} \in L_1(\mathcal{M})_+$ with the Radon–Nikodym derivative $d\psi/d\tau \in L_1(\mathcal{M}, \tau)^+$. Below we use the symbol h_{ψ} to denote $d\psi/d\tau$ as well. Note that τ on \mathcal{M}_+ is naturally extended to the positive part $\widetilde{\mathcal{M}}^+$ of the space $\widetilde{\mathcal{M}}$ of τ -measurable operators. We then have [7, Proposition 4.20]

$$\tau(a) = \int_0^\infty \mu_s(a) \, ds, \qquad a \in \widetilde{\mathcal{M}}^+, \tag{4.1}$$

where $\mu_s(a)$ is the generalized s-number of a [3].

Throughout this subsection we assume that \mathcal{M} is a finite von Neumann algebra with a faithful normal finite trace τ ; then $\widetilde{\mathcal{M}}^+$ consists of all positive self-adjoint operators affiliated with \mathcal{M} .

Lemma 4.1. For every $\psi, \varphi \in \mathcal{M}_*^+$ with $\psi \neq 0$ and for any $\alpha, z > 0$ with $\alpha \neq 1$,

$$D_{\alpha,z}(\psi||\varphi) = \lim_{\varepsilon \searrow 0} D_{\alpha,z}(\psi||\varphi + \varepsilon\tau) \quad increasingly, \tag{4.2}$$

and hence $D_{\alpha,z}(\psi \| \varphi) = \sup_{\varepsilon > 0} D_{\alpha,z}(\psi \| \varphi + \varepsilon \tau).$

Proof. Case $0 < \alpha < 1$. We need to prove that

$$Q_{\alpha,z}(\psi||\varphi) = \lim_{\varepsilon \searrow 0} Q_{\alpha,z}(\psi||\varphi + \varepsilon\tau) \quad \text{decreasingly.}$$
(4.3)

In the present setting we have by (4.1)

$$Q_{\alpha,z}(\psi||\varphi) = \tau \left(\left(h_{\psi}^{\alpha/2z} h_{\varphi}^{\frac{1-\alpha}{z}} h_{\psi}^{\alpha/2z} \right)^z \right) = \int_0^{\infty} \mu_s \left(h_{\psi}^{\alpha/2z} h_{\varphi}^{\frac{1-\alpha}{z}} h_{\psi}^{\alpha/2z} \right)^z ds, \tag{4.4}$$

and similarly

$$Q_{\alpha,z}(\psi \| \varphi + \varepsilon \tau) = \int_0^\infty \mu_s \left(h_{\psi}^{\alpha/2z} h_{\varphi + \varepsilon \tau}^{\frac{1-\alpha}{z}} h_{\psi}^{\alpha/2z} \right)^z ds.$$

Since $h_{\varphi+\varepsilon\tau}^{\frac{1-\alpha}{z}} = (h_{\varphi} + \varepsilon \mathbf{1})^{\frac{1-\alpha}{z}}$ decreases to $h_{\varphi}^{\frac{1-\alpha}{z}}$ in the measure topology as $\varepsilon \searrow 0$, it follows that $h_{\psi}^{\alpha/2z} h_{\varphi+\varepsilon\tau}^{\frac{1-\alpha}{z}} h_{\psi}^{\alpha/2z}$ decreases to $h_{\psi}^{\alpha/2z} h_{\varphi}^{\frac{1-\alpha}{z}} h_{\psi}^{\alpha/2z}$ in the measure topology. Hence by [3, Lemma 3.4] we have $\mu_s \left(h_{\psi}^{\alpha/2z} h_{\varphi+\varepsilon\tau}^{\frac{1-\alpha}{z}} h_{\psi}^{\alpha/2z} \right) \searrow \mu_s \left(h_{\psi}^{\alpha/2z} h_{\varphi}^{\frac{1-\alpha}{z}} h_{\psi}^{\alpha/2z} \right)$ as $\varepsilon \searrow 0$ for almost every s > 0. Since $s \mapsto \mu_s \left(h_{\psi}^{\alpha/2z} h_{\varphi+\tau}^{\frac{1-\alpha}{z}} h_{\psi}^{\alpha/2z} \right)$ is integrable on $(0, \infty)$, the Lebesgue convergence theorem gives (4.3).

Case $\alpha > 1$. We need to prove that

$$Q_{\alpha,z}(\psi||\varphi) = \lim_{\varepsilon \searrow 0} Q_{\alpha,z}(\psi||\varphi + \varepsilon\tau) \quad \text{increasingly.}$$
 (4.5)

For any $\varepsilon > 0$, since $h_{\varphi+\varepsilon\tau} = h_{\psi} + \varepsilon \mathbf{1}$ has the bounded inverse $h_{\varphi+\varepsilon\tau}^{-1} = (h_{\varphi} + \varepsilon \mathbf{1})^{-1} \in \mathcal{M}^+$, one can define $x_{\varepsilon} := (h_{\varphi} + \varepsilon \mathbf{1})^{-\frac{\alpha-1}{2z}} h_{\psi}^{\alpha/z} (h_{\varphi} + \varepsilon \mathbf{1})^{-\frac{\alpha-1}{2z}} \in \widetilde{\mathcal{M}}^+$ so that

$$h_{\psi}^{\alpha/z} = (h_{\varphi} + \varepsilon \mathbf{1})^{\frac{\alpha-1}{2z}} x_{\varepsilon} (h_{\varphi} + \varepsilon \mathbf{1})^{\frac{\alpha-1}{2z}}.$$

In the present setting one can write by (4.1)

$$Q_{\alpha,z}(\psi \| \varphi + \varepsilon \tau) = \tau(x_{\varepsilon}^{z}) = \int_{0}^{\infty} \mu_{s}(x_{\varepsilon})^{z} ds \ (\in [0, \infty]). \tag{4.6}$$

Let $0 < \varepsilon \le \varepsilon'$. Since $(h_{\varphi} + \varepsilon \mathbf{1})^{-\frac{\alpha-1}{z}} \ge (h_{\varphi} + \varepsilon' \mathbf{1})^{-\frac{\alpha-1}{z}}$, one has $\mu_s(x_{\varepsilon}) \ge \mu_s(x_{\varepsilon'})$ for all s > 0, so that

$$Q_{\alpha,z}(\psi \| \varphi + \varepsilon \tau) \ge Q_{\alpha,z}(\psi \| \varphi + \varepsilon' \tau).$$

Hence $\varepsilon > 0 \mapsto D_{\alpha,z}(\psi \| \varphi + \varepsilon \tau)$ is decreasing.

First, assume that $s(\psi) \not\leq s(\varphi)$. Then $\mu_{s_0}(h_{\psi}^{\alpha/2z}s(\varphi)^{\perp}h_{\psi}^{\alpha/2z}) > 0$ for some $s_0 > 0$; indeed, otherwise, $h_{\psi}^{\alpha/2z}s(\varphi)^{\perp}h_{\psi}^{\alpha/2z}=0$ so that $s(\psi)\leq s(\varphi)$. Hence we have

$$\mu_s(x_{\varepsilon}) = \mu_s \left(h_{\psi}^{\alpha/2z} (h_{\varphi} + \varepsilon \mathbf{1})^{-\frac{\alpha - 1}{z}} h_{\psi}^{\alpha/2z} \right) \ge \varepsilon^{-\frac{\alpha - 1}{z}} \mu_s (h_{\psi}^{\alpha/2z} s(\varphi)^{\perp} h_{\psi}^{\alpha/2z}) \nearrow \infty \quad \text{as } \varepsilon \searrow 0$$

for all $s \in (0, s_0]$. Therefore, it follows from (4.6) that $Q_{\alpha,z}(\psi \| \varphi + \varepsilon \tau) \nearrow \infty = Q_{\alpha,z}(\psi \| \varphi)$. Next, assume that $s(\psi) \leq s(\varphi)$. Take the spectral decomposition $h_{\varphi} = \int_0^{\infty} t \, de_t$ and define $y, x \in \mathcal{M}_+$ by

$$y := h_{\varphi}^{-\frac{\alpha-1}{z}} s(\varphi) = \int_{(0,\infty)} t^{-\frac{\alpha-1}{z}} de_t, \qquad x := y^{1/2} h_{\psi}^{\alpha/z} y^{1/2}.$$

Since

$$h_{\psi}^{\alpha/z} = s(\varphi) h_{\psi}^{\alpha/z} s(\varphi) = h_{\varphi}^{\frac{\alpha-1}{2z}} y^{1/2} h_{\psi}^{\alpha/z} y^{1/2} h_{\varphi}^{\frac{\alpha-1}{2z}} = h_{\varphi}^{\frac{\alpha-1}{2z}} x h_{\varphi}^{\frac{\alpha-1}{2z}},$$

one has, similarly to 4.6,

$$Q_{\alpha,z}(\psi||\varphi) = \tau(x^z) = \int_0^\infty \mu_s(x)^z \, ds. \tag{4.7}$$

We write $(h_{\varphi} + \varepsilon \mathbf{1})^{-\frac{\alpha-1}{z}} s(\varphi) = \int_{(0,\infty)} (t+\varepsilon)^{-\frac{\alpha-1}{z}} de_t$, and for any $\delta > 0$ choose a $t_0 > 0$ such that $\tau(e_{(0,t_0)}) < \delta$. Then, since $\int_{[t_0,\infty)} (t+\varepsilon)^{-\frac{\alpha-1}{z}} de_t \to \int_{[t_0,\infty)} t^{-\frac{\alpha-1}{z}} de_t$ in the operator norm as $\varepsilon \searrow 0$, we obtain $(h_{\varphi} + \varepsilon \mathbf{1})^{-\frac{\alpha-1}{z}} s(\varphi) \nearrow y$ in the measure topology (see [3, 1.5]), so that $h_{\psi}^{\alpha/2z}(h_{\varphi}+\varepsilon\mathbf{1})^{-\frac{\alpha-1}{z}}h_{\psi}^{\alpha/2z} \nearrow h_{\psi}^{\alpha/2z}yh_{\psi}^{\alpha/2z}$ in the measure topology as $\varepsilon \searrow 0$. Hence we have by [3, Lemma 3.4]

$$\mu_s(x_{\varepsilon}) = \mu_s \left(h_{\psi}^{\alpha/2z} (h_{\varphi} + \varepsilon \mathbf{1})^{-\frac{\alpha - 1}{z}} h_{\psi}^{\alpha/2z} \right) \nearrow \mu_s \left(h_{\psi}^{\alpha/2z} y h_{\psi}^{\alpha/2z} \right) = \mu_s(x)$$

$$(4.8)$$

for all s > 0. Therefore, by (4.6) and (4.7) the monotone convergence theorem gives (4.5). **Lemma 4.2.** Let (\mathcal{M}, τ) and ψ, φ be as above, and let $0 < z \le z'$. Then

$$\begin{cases}
D_{\alpha,z}(\psi||\varphi) \le D_{\alpha,z'}(\psi||\varphi), & 0 < \alpha < 1, \\
D_{\alpha,z}(\psi||\varphi) \ge D_{\alpha,z'}(\psi||\varphi), & \alpha > 1.
\end{cases}$$

Proof. The case $0 < \alpha < 1$ was shown in [11, Theorem 1(x)] for general von Neumann algebras. For the case $\alpha > 1$, by Lemma 4.1 it suffices to show that, for every $\varepsilon > 0$,

$$\tau \Big(\Big(y_\varepsilon^{\frac{\alpha-1}{2z}} h_\psi^{\alpha/z} y_\varepsilon^{\frac{\alpha-1}{2z}} \Big)^z \Big) \geq \tau \Big(\Big(y_\varepsilon^{\frac{\alpha-1}{2z'}} h_\psi^{\alpha/z'} y_\varepsilon^{\frac{\alpha-1}{2z'}} \Big)^z \Big),$$

where $y_{\varepsilon} := (h_{\varphi} + \varepsilon \mathbf{1})^{-1} \in \mathcal{M}_+$. The above is equivalently written as

$$\tau \Big(\big| (h_{\psi}^{\alpha/2z'})^r (y^{(\alpha-1)/2z'})^r \big|^{2z} \Big) \ge \tau \Big(\big| h_{\psi}^{\alpha/2z'} y^{(\alpha-1)/2z'} \big|^{2zr} \Big),$$

where $r:=z'/z\geq 1$. Hence the desired inequality follows from Kosaki's ALT inequality [14, Corollary 3].

When (\mathcal{M}, τ) and ψ, φ are as in Lemma 4.1, one can define, thanks to Lemma 4.2, for any $\alpha \in (0, \infty) \setminus \{1\}$,

$$Q_{\alpha,\infty}(\psi\|\varphi) := \lim_{z \to \infty} Q_{\alpha,\infty}(\psi\|\varphi) = \inf_{z > 0} Q_{\alpha,z}(\psi\|\varphi),$$

$$D_{\alpha,\infty}(\psi\|\varphi) := \frac{1}{\alpha - 1} \log \frac{Q_{\alpha,\infty}(\psi\|\varphi)}{\psi(\mathbf{1})}$$

$$= \lim_{z \to \infty} D_{\alpha,z}(\psi\|\varphi) = \begin{cases} \sup_{z > 0} D_{\alpha,z}(\psi\|\varphi), & 0 < \alpha < 1, \\ \inf_{z > 0} D_{\alpha,z}(\psi\|\varphi), & \alpha > 1. \end{cases}$$

$$(4.9)$$

If $h_{\psi}, h_{\varphi} \in \mathcal{M}^{++}$ (i.e., $\delta \tau \leq \psi, \varphi \leq \delta^{-1} \tau$ for some $\delta \in (0, 1)$), then the Lie–Trotter formula gives

$$Q_{\alpha,\infty}(\psi||\varphi) = \tau \left(\exp(\alpha \log h_{\psi} + (1-\alpha) \log h_{\varphi})\right). \tag{4.10}$$

Lemma 4.3. Let (\mathcal{M}, τ) and ψ, φ be as above. Then for any z > 0,

$$\begin{cases} D_{\alpha,z}(\psi \| \varphi) \le D_1(\psi \| \varphi), & 0 < \alpha < 1, \\ D_{\alpha,z}(\psi \| \varphi) \ge D_1(\psi \| \varphi), & \alpha > 1. \end{cases}$$

Proof. First, assume that $h_{\psi}, h_{\varphi} \in \mathcal{M}^{++}$. Set self-adjoint $H := \log h_{\psi}$ and $K := \log h_{\varphi}$ in \mathcal{M} and define $F(\alpha) := \log \tau \left(e^{\alpha H + (1-\alpha)K}\right)$ for $\alpha > 0$. Then by (4.10), $F(\alpha) = \log Q_{\alpha,\infty}(\psi \| \varphi)$ for all $\alpha \in (0,\infty) \setminus \{1\}$, and we compute

$$F'(\alpha) = \frac{\tau(e^{\alpha H + (1-\alpha)K}(H - K))}{\tau(e^{\alpha H + (1-\alpha)K})},$$

$$F''(\alpha) = \frac{\left\{\tau(e^{\alpha H + (1-\alpha)K}(H - K))\right\}^2 - \tau(e^{\alpha H + (1-\alpha)K}(H - K)^2)}{\left\{\tau(e^{\alpha H + (1-\alpha)K})\right\}^2}.$$

Since $F''(\alpha) \ge 0$ on $(0, \infty)$ thanks to the Schwarz inequality, we see that $F(\alpha)$ is convex on $(0, \infty)$ and hence

$$D_{\alpha,\infty}(\psi||\varphi) = \frac{F(\alpha) - F(1)}{\alpha - 1}$$

is increasing in $\alpha \in (0, \infty)$, where for $\alpha = 1$ the above RHS is understood as

$$F'(1) = \frac{\tau(e^{H}(H - K))}{\tau(e^{H})} = \frac{\tau(h_{\psi}(\log h_{\psi} - \log h_{\varphi}))}{\tau(h_{\psi})} = D_{1}(\psi \| \varphi).$$

Hence by (4.9) the assertion holds when $h_{\psi}, h_{\varphi} \in \mathcal{M}^{++}$. Below we extend it to general $\psi, \varphi \in \mathcal{M}_{*}^{+}$. $Case \ 0 < \alpha < 1$. Let $\psi, \varphi \in \mathcal{M}_{*}^{+}$ and z > 0. From [11, Theorem 1(iv)] and [6, Corollary 2.8(3)] we have

$$D_{\alpha,z}(\psi \| \varphi) = \lim_{\varepsilon \searrow 0} D_{\alpha,z}(\psi + \varepsilon \tau \| \varphi + \varepsilon \tau),$$

$$D_1(\psi \| \varphi) = \lim_{\varepsilon \searrow 0} D_1(\psi + \varepsilon \tau \| \varphi + \varepsilon \tau),$$

so that we may assume that $\psi, \varphi \geq \varepsilon \tau$ for some $\varepsilon > 0$. Take the spectral decompositions $h_{\psi} = \int_0^{\infty} t \, de_t^{\psi}$ and $h_{\varphi} = \int_0^{\infty} t \, de_t^{\varphi}$, and define $e_n := e_n^{\psi} \wedge e_n^{\varphi}$ for each $n \in \mathbb{N}$. Then $\tau(e_n^{\perp}) \leq \tau((e_n^{\psi})^{\perp}) + \tau((e_n^{\varphi})^{\perp}) \to 0$ as $n \to \infty$, so that $e_n \nearrow 1$. We set $\psi_n := \psi(e_n \cdot e_n)$ and $\varphi_n := \varphi(e_n \cdot e_n)$; then $h_{\psi_n} = e_n h_{\psi} e_n$ and $h_{\varphi_n} = e_n h_{\varphi} e_n$ are in $(e_n \mathcal{M} e_n)^{++}$. Note that

$$||h_{\psi} - e_{n}h_{\psi}e_{n}||_{1} \leq ||(\mathbf{1} - e_{n})h_{\psi}||_{1} + ||e_{n}h_{\psi}(\mathbf{1} - e_{n})||_{1}$$

$$\leq ||(\mathbf{1} - e_{n})h_{\psi}^{1/2}||_{2}||h_{\psi}^{1/2}||_{2} + ||e_{n}h_{\psi}^{1/2}||_{2}||h_{\psi}^{1/2}(\mathbf{1} - e_{n})||_{2}$$

$$= \psi(\mathbf{1} - e_{n})^{1/2}\psi(\mathbf{1})^{1/2} + \psi(e_{n})^{1/2}\psi(\mathbf{1} - e_{n})^{1/2} \to 0 \quad \text{as } n \to \infty,$$

and similarly $||h_{\varphi} - e_n h_{\varphi} e_n||_1 \to 0$. Hence by [11, Theorem 1(iv)] one has $D_{\alpha,z}(e_n \psi e_n || e_n \varphi e_n) \to D_{\alpha,z}(\psi || \varphi)$. On the other hand, one has $D_1(e_n \psi e_n || e_n \varphi e_n) \to D_1(\psi || \varphi)$ by [6, Proposition 2.10]. Since $D_{\alpha,z}(e_n \psi e_n || e_n \varphi e_n) \leq D_1(e_n \psi e_n || e_n \varphi e_n)$ holds by regarding $e_n \psi e_n$, $e_n \varphi e_n$ as functionals on the reduced von Neumann algebra $e_n \mathcal{M} e_n$, we obtain the desired inequality for general $\psi, \varphi \in \mathcal{M}_*^+$.

Case $\alpha > 1$. We show the extension to general $\psi, \varphi \in \mathcal{M}_*^+$ by dividing four steps as follows, where $h_{\psi} = \int_0^{\infty} t \, e_t^{\psi}$ and $h_{\varphi} = \int_0^{\infty} t \, de_t^{\varphi}$ are the spectral decompositions.

(1) Assume that $h_{\psi} \in \mathcal{M}^+$ and $h_{\varphi} \in \mathcal{M}^{++}$. Set $\psi_n \in \mathcal{M}_*^+$ by $h_{\psi_n} = (1/n)e_{[0,1/n]}^{\psi} + \int_{(1/n,\infty)} t \, de_t^{\psi}$ $(\in \mathcal{M}^{++})$. Since $h_{\psi_n}^{\alpha/z} \searrow h_{\psi}^{\alpha/z}$ in the operator norm, we have by (4.4) and [3, Lemma 3.4]

$$Q_{\alpha,z}(\psi \| \varphi) = \int_{0}^{\infty} \mu_{s} \left((h_{\varphi}^{-1})^{\frac{\alpha-1}{2z}} h_{\psi}^{\alpha/z} (h_{\varphi}^{-1})^{\frac{\alpha-1}{2z}} \right)^{z} ds$$

$$= \lim_{n \to \infty} \int_{0}^{\infty} \mu_{s} \left((h_{\varphi}^{-1})^{\frac{\alpha-1}{2z}} h_{\psi_{n}}^{\alpha/z} (h_{\varphi}^{-1})^{\frac{\alpha-1}{2z}} \right)^{z} ds = \lim_{n \to \infty} Q_{\alpha,z}(\psi_{n} \| \varphi).$$
(4.11)

From this and the lower semicontinuity of D_1 the extension holds in this case.

(2) Assume that $h_{\psi} \in \mathcal{M}^+$ and $h_{\varphi} \geq \delta \mathbf{1}$ for some $\delta > 0$. Set $\varphi_n \in \mathcal{M}^+_*$ by $h_{\varphi_n} = \int_{[\delta,n]} t \, de_t^{\varphi} + ne_{(n,\infty)}^{\varphi} \; (\in \mathcal{M}^{++})$. Since $h_{\varphi_n}^{-\frac{\alpha-1}{z}} \searrow h_{\varphi}^{-\frac{\alpha-1}{z}}$ in the operator norm, we have by (4.4) and [3, Lemma 3.4] again

$$Q_{\alpha,z}(\psi \| \varphi) = \int_0^\infty \mu_s \left(h_{\psi}^{\alpha/2z} h_{\varphi}^{-\frac{\alpha-1}{z}} h_{\psi}^{\alpha/2z} \right)^z ds$$
$$= \lim_{n \to \infty} \int_0^\infty \mu_s \left(h_{\psi}^{\alpha/2z} h_{\varphi_n}^{-\frac{\alpha-1}{z}} h_{\psi}^{\alpha/2z} \right)^z ds = \lim_{n \to \infty} Q_{\alpha,z}(\psi, \varphi_n).$$

From this and (1) above the extension holds in this case too.

- (3) Assume that ψ is general and $\varphi \geq \delta \tau$ for some $\delta > 0$. Set $\psi_n \in \mathcal{M}_*^+$ by $h_{\psi_n} = \int_{[0,n]} t \, de_t^{\psi} + ne_{(n,\infty)}^{\varphi} (\in \mathcal{M}_+)$. Since $h_{\psi_n}^{\alpha/z} \nearrow h_{\psi}^{\alpha/z}$ in the measure topology, one can argue as in (4.11) with use of the monotone convergence theorem to see from (2) that the extension holds in this case too.
- (4) Finally, from (3) with Lemma 4.1 and [6, Corollary 2.8(3)] it follows that the desired extension hods for general $\psi, \varphi \in \mathcal{M}_*^+$.

In the next proposition, we summarize inequalities for $D_{\alpha,z}$ obtained so far in Lemmas 4.2 and 4.3.

Proposition 4.4. Assume that \mathcal{M} is a finite von Neumann algebra with a faithful normal finite trace τ . Let $\psi, \varphi \in \mathcal{M}_*^+$, $\psi \neq 0$. If $0 < \alpha < 1 < \alpha'$ and $0 < z \leq z' \leq \infty$, then

$$D_{\alpha,z}(\psi\|\varphi) \le D_{\alpha,z'}(\psi\|\varphi) \le D_1(\psi\|\varphi) \le D_{\alpha',z'}(\psi\|\varphi) \le D_{\alpha',z}(\psi\|\varphi).$$

Corollary 4.5. Let (\mathcal{M}, τ) and ψ, φ be as in Proposition 4.4. Then for any $z \in [1, \infty]$,

$$\lim_{\alpha \nearrow 1} D_{\alpha,z}(\psi \| \varphi) = D_1(\psi \| \varphi). \tag{4.12}$$

Moreover, if $D_{\alpha,\alpha}(\psi \| \varphi) < \infty$ for some $\alpha > 1$ then for any $z \in (1,\infty]$,

$$\lim_{\alpha \searrow 1} D_{\alpha,z}(\psi \| \varphi) = D_1(\psi \| \varphi). \tag{4.13}$$

Proof. Let $z \geq 1$. For every $\alpha \in (0,1)$, Proposition 4.4 gives

$$D_{\alpha,1}(\psi \| \varphi) \le D_{\alpha,z}(\psi \| \varphi) \le D_1(\psi \| \varphi).$$

Hence (4.12) follows since it holds for $D_{\alpha,1}$ [5, Proposition 5.3(3)].

Next, assume that $D_{\alpha,\alpha}(\psi||\varphi) < \infty$ for some $\alpha > 1$. Let z > 1. For every $\alpha \in (1, z]$, Proposition 4.4 gives

$$D_1(\psi \| \varphi) \le D_{\alpha,z}(\psi \| \varphi) \le D_{\alpha,\alpha}(\psi \| \varphi).$$

Hence (4.13) follows since it holds for $D_{\alpha,\alpha}$ [8, Proposition 3.8(ii)].

In this subsection, in the specialized setting of finite von Neumann algebras, we have given monotonicity of $D_{\alpha,z}$ in the parameter z in an essentially similar way to the finite-dimensional case [15]. In the next subsection we will extend it to general von Neumann algebras under certain restrictions of α, z .

4.2 The general von Neumann algebra case

Theorem 4.6. For every $\psi, \varphi \in \mathcal{M}_*^+$, $\psi \neq 0$, and $0 < \alpha < 1$, we have:

(1) If $0 < \alpha < 1$ and $\max\{\alpha, 1 - \alpha\} \le z \le z'$, then

$$D_{\alpha,z}(\psi \| \varphi) \le D_{\alpha,z'}(\psi \| \varphi) \le D_1(\psi \| \varphi).$$

(2) If $\alpha > 1$ and $\max{\{\alpha/2, \alpha - 1\}} \le z \le z' \le \alpha$, then

$$D_1(\psi \| \varphi) \le D_{\alpha,z'}(\psi \| \varphi) \le D_{\alpha,z}(\psi \| \varphi).$$

Hiai (12/8/2023) In fact, (2) is improved in Theorem 6.

Theorem 4.7. For every $\psi, \varphi \in \mathcal{M}_*^+$, $\psi \neq 0$, and $\alpha > 1$, the function $z \mapsto D_{\alpha,z}(\psi \| \varphi)$ is monotone decreasing on $[\alpha/2, \infty)$.

Anna (Jan. 23, 2024)

5 Monotonicity in the parameter α

5.1 The case $\alpha < 1$ and all z > 0

Theorem 5.1. Let $\psi, \varphi \in \mathcal{M}_*^+$ and z > 0. Then we have

- (1) $\alpha \mapsto \log Q_{\alpha,z}(\psi \| \varphi)$ is convex on (0,1),
- (2) $\alpha \mapsto D_{\alpha,z}(\psi \| \varphi)$ is monotone increasing on (0,1).

Anna (Jan. 10, 2024), Hiai (1/16/2024)

5.2 The case $1 < \alpha \le 2z$

Theorem 5.2. Let $\psi, \varphi \in \mathcal{M}_*^+$ and z > 1/2. Then we have

- (1) $\alpha \mapsto \log Q_{\alpha,z}(\psi \| \varphi)$ is convex on (1,2z],
- (2) $\alpha \mapsto D_{\alpha,z}(\psi \| \varphi)$ is monotone increasing on (1,2z].

Anna (Jan. 23, 2024), Hiai (12/31/2023)

5.3 Limits as $\alpha \nearrow 1$ and $\alpha \searrow 1$

Theorem 5.3. Let $\psi, \varphi \in \mathcal{M}_*^+$, $\psi \neq 0$. For every $z \in (0,1]$ we have

$$\lim_{\alpha \to 1} D_{\alpha,z}(\psi \| \varphi) = D_1(\psi \| \varphi).$$

Anna (Dec. 7, 2023)

Theorem 5.4. Let $\psi, \varphi \in \mathcal{M}_*^+$, $\psi \neq 0$, and z > 1/2. Assume that $D_{\alpha,z}(\psi \| \varphi) < \infty$ for some $\alpha \in (1, 2z]$. Then we have

$$\lim_{\alpha \searrow 1} D_{\alpha,z}(\psi \| \varphi) = D_1(\psi \| \varphi).$$

Anna (Jan. 23, 2024)

A Haagerup L_p -spaces

The following lemmas are well known, proofs are given for completeness.

Lemma A.1. For any $0 and <math>\varphi \in \mathcal{M}_*^+$, $h_{\varphi}^{\frac{1}{2p}} \mathcal{M}^+ h_{\varphi}^{\frac{1}{2p}}$ is dense in $L_p(\mathcal{M})^+$ with respect to the (quasi)-norm $\|\cdot\|_p$.

Proof. We may assume that φ is faithful. By [10, Lemma 1.1], $\mathcal{M}h_{\varphi}^{\frac{1}{2p}}$ is dense in $L_{2p}(\mathcal{M})$ for any $0 . Let <math>y \in L_p(\mathcal{M})^+$, then $y^{\frac{1}{2}} \in L_{2p}(\mathcal{M})$, hence there is a sequence $a_n \in \mathcal{M}$ such that $\|a_n h_{\varphi}^{\frac{1}{2p}} - y^{\frac{1}{2}}\|_{2p} \to 0$. Then also

$$\|h_{\varphi}^{\frac{1}{2p}}a_n^* - y^{\frac{1}{2}}\|_p = \|(a_n h_{\varphi}^{\frac{1}{2p}} - y^{\frac{1}{2}})^*\|_p = \|a_n h_{\varphi}^{\frac{1}{2p}} - y^{\frac{1}{2}}\|_p \to 0$$

and

$$\|h_{\varphi}^{\frac{1}{2p}} a_n^* a_n h_{\varphi}^{\frac{1}{2p}} - y\|_p = \|(h_{\varphi}^{\frac{1}{2p}} a_n^* - y^{\frac{1}{2}}) a_n h_{\varphi}^{\frac{1}{2p}} + y^{\frac{1}{2}} (a_n h_{\varphi}^{\frac{1}{2p}} - y^{\frac{1}{2}})\|_p$$

Since $\|\cdot\|_p$ is a (quasi)-norm, the above expression goes to 0 by the Hölder inequality.

Lemma A.2. Let $0 and let <math>h, k \in L_p(\mathcal{M})^+$ be such that $h \le k$. Then $||h||_p \le ||k||_p$. Moreover, if $1 \le p < \infty$, then

$$||k-h||_p^p \le ||k||_p^p - ||h||_p^p.$$

Proof. The first statement follows from [3, Lemma 2.5 (iii) and Lemma 4.8]. The second statement is from [3, Lemma 5.1].

Lemma A.3. Let $\psi, \varphi \in \mathcal{M}_*^+$ with $\psi \leq \varphi$. Then for any $a \in \mathcal{M}$ and $p \in [1, \infty)$,

$$\operatorname{Tr}\left((a^*h_{\psi}^{\frac{1}{p}}a)^p\right) \le \operatorname{Tr}\left((a^*h_{\varphi}^{\frac{1}{p}}a)^p\right)$$

Proof. Since $1/p \in (p,1]$, it follows (see [6, Lemma B.7] and [?, Lemma 3.2]) that $h_{\psi}^{1/p} \leq h_{\varphi}^{1/p}$. Hence $a^*h_{\psi}^{1/p}a \leq a^*h_{\varphi}^{1/p}a$. Therefore, by Lemma A.2, we have the statement.

References

- [1] M. Berta, V. B. Scholz, and M. Tomamichel. Rényi divergences as weighted non-commutative vector valued *Lp*-spaces. Annales Henri Poincaré, 19:1843–1867, 2018. doi:https://doi.org/10.48550/arXiv.1608.05317.
- [2] M.-D. Choi. A Schwarz inequality for positive linear maps on C^* -algebras. Illinois Journal of Mathematics, 18(4):565-574, 1974. doi:10.1215/ijm/1256051007.
- [3] T. Fack and H. Kosaki. Generalized s-numbers of τ -measurable operators. Pacific Journal of Mathematics, 123(2):269–300, 1986.
- [4] U. Haagerup. L_p -spaces associated with an arbitrary von Neumann algebra. In Algebres d'opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977), volume 274, pages 175–184, 1979.
- [5] F. Hiai. Quantum f-divergences in von Neumann algebras. I. Standard f-divergences. Journal of Mathematical Physics, 59(10):102202, 2018.
- [6] F. Hiai. Quantum f-Divergences in von Neumann Algebras: Reversibility of Quantum Operations. Mathematical Physics Studies. Springer, Singapore, 2021. ISBN 9789813341999. doi:10.1007/978-981-33-4199-9.
- [7] F. Hiai. Lectures on Selected Topics in Von Neumann Algebras. EMS Series of Lectures in Mathematics. EMS Press, Berlin, 2021.
- [8] A. Jenčová. Rényi relative entropies and noncommutative Lp-spaces. Annales Henri Poincaré, 19:2513–2542, 2018. doi:10.1007/s00023-018-0683-5.

- [9] A. Jenčová. Rényi relative entropies and noncommutative Lp-spaces II. Annales Henri Poincaré, 22:3235–3254, 2021. doi:10.1007/s00023-021-01074-9.
- [10] M. Junge and Q. Xu. Noncommutative Burkholder/Rosenthal inequalities. The Annals of Probability, 31(2):948–995, 2003.
- [11] S. Kato. On α -z-Rényi divergence in the von Neumann algebra setting. arXiv preprint arXiv:2311.01748, 2023.
- [12] S. Kato and Y. Ueda. A remark on non-commutative Lp-spaces. arXiv preprint arXiv:2307.01790, 2023.
- [13] H. Kosaki. Applications of the complex interpolation method to a von Neumann algebra: Non-commutative L^p -spaces. J. Funct. Anal., 56:26-78, 1984. doi:https://doi.org/10.1016/0022-1236(84)90025-9.
- [14] H. Kosaki. An inequality of Araki–Lieb–Thirring (von Neumann algebra case). Proc. Amer. Math. Soc., 114:477–481, 1992.
- [15] M. Mosonyi and F. Hiai. Some continuity properties of quantum Rényi divergences. IEEE Transactions on Information Theory, to appear, DOI 10.1109/TIT.2023.3324758.
- [16] D. Petz. Quasi-entropies for states of a von Neumann algebra. Publications of the Research Institute for Mathematical Sciences, 21(4):787–800, 1985. doi:10.2977/prims/1195178929.
- [17] D. Petz. Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Communications in Mathematical Physics, 105(1):123–131, 1986. doi:10.1007/BF01212345.
- [18] D. Petz. Sufficiency of channels over von Neumann algebras. The Quarterly Journal of Mathematics, 39(1):97–108, 1988. doi:10.1093/qmath/39.1.97.8
- [19] M. Terp. L_p -spaces associated with von Neumann algebras. Notes, Copenhagen University, 1981.