Sequential Circuits Basics

Sequential Logic Circuits Tutorial

Sequential Circuit

LATCHES and FLIP-FLOPS

Basic RS Latch using NOR gates:

S	R	Q	\overline{Q}
0	0	latch	latch
0	1	0	1
1	0	1	0
1	1	0	0

Basic RS Latch using NAND gates:

• Here the inputs R and S are active low

(a) Logic diagram (b) Truth table

Gated RS latch

Only when the E (enable signal) is 1 the changes in the inputs are transferred to the output.

Е	S	R	Q	Q
0	0	0	latch	latch
0	0	1	latch	latch
0	1	0	latch	latch
0	1	1	latch	latch
1	0	0	latch	latch
1	0	1	0	1
1	1	0	1	0
1	1	1	0	0

SR Latch vs SR Flip-flop:

Usually a latch does not involve a clock; so the gated RS latch above is actually a SR flip-flop.

Timing diagram for a SR flip-flop:

D FLIP-FLOP

To avoid the illegal state in RS flip flop, we connect a NOT gate between

R and S inputs. That becomes a D flip flop.

Truth table D flip flop

D	CLK	Q(t+1)	Comments
1	↑	1	Set
0	1	0	Reset

Circuit diagram of D flip flop:

(a) Logic diagram with NAND gates

(b) Graphical symbol

QD	Q(t+1)
0 0	0
0 1	1
10	0
1.1	1

(c) Transition table

Clocked D flip-flop

JK Flip-Flop:

- The JK flip-flop does not have any illegal state like SR FF.
- The JK flip-flop has two inputs J and K which make it more useful than a D FF.
- The JK flip-flop has a toggle mode similar to the T FF which is very useful to design counters and state machines.

Truth Table

J	K	CLK	Q
0	0	†	Q _n (no change)
1	0	†	1 °
0	1	t	0
1	1	†	\overline{Q}_0 (toggles)

Figure 3 Timing diagram for positive edge-triggered JK flip-flop

T Flip-Flop:

It has only one input T.

When T =0, no change in output.

When T=1, output reverses (Q $_{t+1} = ^{\sim}Q_t$)

T	Q	Q'
0	0	0
1	0	1
0	1	0
1	1	0

JK FF with Preset and Clear:

Figure 5 Waveforms for JK flip-flop with active high preset and clear inputs

JK Master-Slave FF:

Working:

- When the clock pulse is true, the slave flip flop will be in the isolated state, and the system's state may be affected by the J and K inputs. The "slave" remains isolated until the CP is 1. When the CP set to 0, the master flip-flop passes the information to the slave flip flop to obtain the output.
- The master flip flop responds first from the slave because the master flip flop is the positive level trigger, and the slave flip flop is the negative level trigger.
- The output Q'=1 of the master flip flop is passed to the slave flip flop as an input K when the input J set to 0 and K set to 1. The clock forces the slave flip flop to work as reset, and then the slave copies the master flip flop.
- When J=1, and K=0, the output Q=1 is passed to the J input of the slave. The clock's negative transition sets the slave and copies the master.

- The master flip flop toggles on the clock's positive transition when the inputs J and K set to 1. At that time, the slave flip flop toggles on the clock's negative transition.
- o The flip flop will be disabled, and Q remains unchanged when both the inputs of the JK flip flop set to 0.

Timing Diagram of a Master Flip Flop:

- o When the clock pulse set to 1, the output of the master flip flop will be one until the clock input remains 0.
- When the clock pulse becomes high again, then the master's output is 0, which will be set to 1 when the clock becomes one again.
- The master flip flop is operational when the clock pulse is 1. The slave's output remains 0 until the clock is not set to 0 because the slave flip flop is not operational.
- o The slave flip flop is operational when the clock pulse is 0. The output of the master remains one until the clock is not set to 0 again.
- $\circ\quad$ Toggling occurs during the entire process because the output changes once in the cycle.

Truth Table: A Truth table shows how a logic circuits output responds to various combination of inputs.

Characteristics Table: it defines the next state of flip-flop in terms of flip-flop input and current state.

Excitation Table:it defines the flip-flop input variable as function of the current state and next state.

(Bigger Image uploaded as a separate file).

	60	Outpu	uts		Outputs			
IIII	outs	Present State	Next State	Present		Next State	Inp	u
S	R	Q _n	Q _{n+1}	Q,		Q _{n+1}	S	
0	0	0	0	0		0	0	1
0	0	1	1	0		1	1	
0	1	0	0	1		0	0	
0	1	1	0	1		1	X	(
1	0	0	1		- 12			1
1	0	1	1 -					
1	1	inval	id					
1	1	inval						

Truth Table of SR Flip-Flop

Excitation Table of SR Flip-Flop

Truth Table of JK Flip-Flop

Excitation Table of JK Flip-Flop

Outp			Outp	uts	Time and
Input	Present State	Next State	Present State	Next State	Input
D	Q _n	Q _{n+1}	Qn	Q _{n+1}	D
0	0	0	0	0	0
0	1	0	0	1	1
1	0	1	1	0	0
1	1	1	1	1	1

Truth Table of D Flip-Flop

Excitation Table of D Flip-Flop

Outp			Out	outs	Immuni
Input	Present State	Next State	Present State	Next State	Input
T	Qn	Q _{n+1}	Qn	Q _{n+1}	Т
0	0	0	0	0	0
0	1	1	0	1	1
1	0	1	1	0	1
1	1	0	1	1	0

Truth Table of T Flip-Flop

Excitation Table of T Flip-Flop

Conversion Table

Truth Table of the Desired Flip-Flop

Excitation Table of the Given Flip-Flop

Truth Table of D Flip-flop

Innut	Outputs		
Input	Present State	Next State	
D	Q _n	Q _{n+1}	
0	0	0	
0	1	0	
1	0	1	
1	1	1	

D Input	Outpu	uts	001	
	Input Present State	Next State	SR Inputs	
D	□ Q _n	Q _{n+1}	S	R
0	0	0	- 0	X
0	1	0	. 0	1
1	0	1	1 1	0
1	1	1	X	0

Excitation Table of SR Flip-flop

Outputs			Innuto		
Present State	Next State	Inputs			
Q _n	Q _{n+1}	S	R		
0	0	0	X		
0	1	1	0		
1	0	0	1		
1	1	X	0		

SR to D Conversion Table

Conversion of D flip-flop to JK Flip flop

Step1: Write the characteristic table of the desired FF (JK)

Step2: Excitation table for given flip flop (D)

Step3: Combine the two and draw K map

J	K	Q	Q+1	D
0	0	0	0	0
0	0	0	0	0
0	1	0	0	0
0	1	0	0	0
1	0	0	1	1
1	0	1	1	1
1	1	1	0	0
1	1	0	1	0

$$D = K'Q + JQ'$$

0	1	0	0
1	1	0	1

$$D = K'Q + JQ'$$