Biodiversity data analysis workshop - Day 2

Dominic Henry & Lizanne Roxburgh
Conservation Science Unit

dominich@ewt.org.za lizanner@ewt.org.za

Programme – Day 2

08h30 - 10h00	Session 1 - Introduction to R, RStudio, basics of programming
10h00 - 10h30	Tea break
10h30 – 12h15	Session 2 - Data wrangling with the tidyverse
12h15 – 13h30	Lunch
13h30 – 15h00	Session 3 - Data visualisation using ggplot2
15h00 – 15h30	Tea break
15h30 – 17h00	Session 4 - Handling spatial data in R

Effective data workflow

What is the tidyverse?

Tidyverse

- Design philosophy
- Grammar
- Data structures & representations

Hadley Wickham

Install and load

Workflow

Import

Behaviour:

Discards row names

Retains non-conventional column names

Ability to detect dates and times

Factors be damned! (characters remain characters)

Pros:

Fast (progress bar)
Sneak peek into column types

Creates a tibble object

Tibble

Data frame with modern features

- Improvements over data.frame objects:
 - Aesthetics and ease of reading
 - Column type information
 - Fit to console
 - Store lists as columns!

tbl_df

Tibble

... with 466 more rows

>


```
# A tibble: 476 x 10
                        Year Month Air_temp Wind_speed abundance richness Latitude Longitude
   Site Protection
   <chr> <chr>
                        <int> <int>
                                          \langle db 1 \rangle
                                                       \langle db 1 \rangle
                                                                   <int>
                                                                              <int>
                                                                                         \langle db 1 \rangle
                                                                                                     \langle db 1 \rangle
 1 KZN1~ FP
                         2012
                                           19.0
                                                        0.
                                                                       25
                                                                                         -28.3
                                                                                                      32.4
 2 KZN1~ FP
                         2012
                                           20.0
                                                         3.00
                                                                                         -28.2
                                                                                                      32.5
 3 KZN1~ FP
                         2012
                                           27.0
                                                        5.00
                                                                      101
                                                                                         -28.2
                                                                                                      32.5
 4 KZN1~ FP
                         2012
                                           29.0
                                                        9.00
                                                                                         -28.2
                                                                                                      32.5
 5 KZN1~ FP
                         2012
                                           28.2
                                                                        6
                                                                                         -28.1
                                                                                                      32.5
                                                        7.40
 6 KZN1~ FP
                         2012
                                           26.7
                                                        3.70
                                                                       55
                                                                                         -28.4
                                                                                                      32.4
   KZN1~ FP
                         2012
                                           23.1
                                                                                         -28.0
                                                                                                      32.4
                                                        8.50
                                                                       10
 8 KZN1~ FP
                         2012
                                           24.3
                                                       13.2
                                                                       51
                                                                                                      32.4
                                                                                         -28.0
 9 KZN1~ FP
                         2012
                                    4
                                           25.4
                                                        3.70
                                                                                         -28.0
                                                                                                      32.4
10 KZN1~ FP
                                           27.4
                                                                       28
                                                                                         -27.9
                         2012
                                    4
                                                        7.40
                                                                                                      32.4
```

TIBBLE .

Data structure (tidy data)

Species	Jan	Feb	Mar	
Pied Kingfisher	5	2	7	
African Jacana	20	0	23	
Cape Teal	0	9	55	

Species	Month	Count	
Pied Kingfisher	Jan	5	
Pied Kingfisher	Feb	2	
Pied Kingfisher	March	7	
African Jacana	Jan	20	
African Jacana	Feb	0	
African Jacana	Mar	23	
Cape Teal	Jan	0	
Cape Teal	Feb	9	
Cape Teal	Mar	55	

Wrangle

Typical tasks

- Explore structure
- Validate observations
- Create variables
- Select observations
- Summarise data
- Prepare input for models & visualisations

Wrangle

The pipe operator

data %>% f1() %>% f2() %>% f3()

VS.

f3(f2(f1(data)))

sel ect(): choose variables (cols) by name

filter(): filter observations (rows) based on their value

mutate(): create new variables from existing ones

arrange(): change the order of observations

group_by(): select a factor by which to group observations

summarise(): reduce observations into a single value

dplyr + pipe

Option 1

```
data1 <- select(data, ...)
data2 <- filter(data1, ...)
data3 <- mutate(data2, ...)</pre>
```


Option 2

```
data %>% select(...) %>% filter(...) %>% mutate(...)
```

dplyr + pipe

Advantages

- Improved understanding reads like a sentence
- Remove unnecessary intermediate steps
- Reduce creative effort (naming things sensibly is hard!)
- Focus on the final desired output

Dates and times

- Very often need to deal with dates and times
- Base R is confusing and frustrating
- lubridate makes things easy!

Base R


```
select(data, length)
```

```
data$I ength
data[["length"]]
data[, 1]
```

Base R

mutate(data, length = length + 10)

data\$length <- data\$length + 10

Base R


```
filter(data, length > 10)
```

data[which(data\$length > 10),]

Data wrangling

Link to Rmd file