Bank Loan Case Study Ritika Chaudhary

Project Overview

This project revolves around utilising exploratory data analysis (EDA) techniques to address a critical challenge faced by finance company which specialise in offering various types of loans to urban customers but the issue of loan defaults, especially among applicants with insufficient credit histories has been a recurring problem. The objective is to make more informed lending decisions ensuring that capital applicants are not rejected while minimising the financial losses due to defaults.

Business Objectives

The main aim of this project is to identify patterns that indicate if a customer will have difficulty paying their installments. This information can be used to make decisions such as denying the loan, reducing the amount of loan or lending at a higher rate to risk applicants. The company wants to understand the key factors behind the loan default so it can make better decisions about loan approval.

Approaches

- Data collection: Download the data set.
- **Data cleaning:** Handling duplicates by removing rows. Deleting the columns with more than 50% blank cells.
- Outlier detection: Identify outliers in the data set that might skew analysis.
- Data summary: Calculates statistical measures such as averages, medians, quartiles and range. Create visualisation like box and whisker, column charts, heatmaps and histograms for better understanding of data.
- Documented the findings and insights in a report format.

Tech-Stack used:

Microsoft Excel 2021

We selected Microsoft Excel for its robust data analysis capabilities, statistical functions, and versatile visualisation tools.

Microsoft PowerPoint 2021

Utilised for creating a visually engaging and informative project report presentation.

Data Analytics Task

Task A: Identify Missing data

Identify the missing data in the dataset and decide on an appropriate method to deal with it using Excel built-in functions and features.

The percentage of missing values varies across columns, with some columns having no missing data while others exhibit significant levels of missingness, up to 70%. This insight highlights the importance of addressing missing data effectively to ensure the accuracy of our analysis. In subsequent tasks, we will employ appropriate methods such as imputation to handle these missing values, ensuring that our analysis is based on complete and reliable task.

TOTAL
COLUMNS

· 122

ROWS

• 50000

BLANKS

1488212

Columns having more than 50 % blanks were deleted. Following is the list of deleted columns:

Deleted Columns			
OWN_CAR_AGE	BASEMENTAREA_AVG	NONLIVINGAPARTMENTS_ AVG	LANDAREA_MEDI
EXT_SOURCE_1	YEARS_BUILD_AVG	NONLIVINGAREA_AVG	LIVINGAPARTMENTS_MED
APARTMENTS_AVG	COMMONAREA_AVG	APARTMENTS_MODE	LIVINGAREA_MEDI
ELEVATORS_AVG	ENTRANCES_AVG	BASEMENTAREA_MODE	NONLIVINGAPARTMENTS_ME DI
FLOORSMIN_AVG	LANDAREA_AVG	FLOORSMIN_MODE	NONLIVINGAREA_MEDI
LIVINGAPARTMENTS_AVG	LIVINGAREA_AVG	LANDAREA_MODE	FONDKAPREMONT_MODE
NONLIVINGAPARTMENTS_AV G	NONLIVINGAREA_AVG	LIVINGAPARTMENTS_MODE	HOUSETYPE_MODE
APARTMENTS_MODE	BASEMENTAREA_MODE	LIVINGAREA_MODE	WALLSMATERIAL_MODE
NONLIVINGAPARTMENTS_MO DE	NONLIVINGAREA_MODE	APARTMENTS_MEDI	
BASEMENTAREA_MEDI	YEARS_BUILD_MEDI	COMMONAREA_MEDI	
ELEVATORS_MEDI	ENTRANCES_MEDI	FLOORSMIN_MEDI	

Task B: Identify Outliers In The Dataset

Detect and identify outliers in the dataset using Excel statistical functions and features, focusing on numerical variables.

Amt annuity has outliers ranging from 50,000 to 1,32,000

Amount goods price has outliers ranging from 3L to 23L.

Task B: Identify Outliers In The Dataset

Detect and identify outliers in the dataset using Excel statistical functions and features, focusing on numerical variables.

Amount income has outliers ranging from 0 to 36,00,000.

Amount credit has most outliers ranging from 1.3L to 27L.

Task B: Identify Outliers In The Dataset

Detect and identify outliers in the dataset using Excel statistical functions and features, focusing on numerical variables.

Count of children has most outliers ranging from 0 to 2.

Region population relative has most outliers ranging from 0 to 0.046.

14

Determine if there is data imbalance in the loan application dataset and calculate the ratio of data imbalance using Excel functions.

The target variable analysis reveals a class in balance issue with significantly high number of instances of "0" class compared to the "1" class

TARGET	Count
0	
	45973
1	4025
Grand Total	49998

The majority of loan applicants have completed Secondary/ secondary special education, followed by higher education, indicating a diverse educational background among applicants.

Education type	Count of Secondary / secondary special	
Academic degree		20
Higher education		12167
Incomplete higher		1620
Lower secondary		620
Secondary / secondary	1	
special		35571
Grand Total		49998

16

The majority of loans are Cash loans (45,275), while a smaller proportion are Revolving loans (4723).

CONTRACT TYPE Count	
Cash loans	45275
Revolving loans	4723
Grand Total	49998

17

The CODE_GENDER analysis reveals a gender distribution among loan applicants with a higher number of females(32,823) compared to males(17,174).

GENDER	Count	
F		32823
M		17174
XNA		2
Grand Total		49999

18

Perform univariate analysis to understand the distribution of individual variables, segmented univariate analysis to compare variable distributions for different scenarios and bivariate analysis to explore relationships between variables and the target value using Excel functions and features.

Univariate/ Segmented Univariate Analysis

Univariate / Segmented Univariate Analysis

Univariate / Segmented Univariate Analysis

Bivariate Analysis

Bivariate Analysis

Bivariate Analysis

Task E: Identify top correlations for different scenarios

Segment the dataset based on different scenarios (e.g., clients with payment difficulties and all other cases) and identify the top correlations for each segmented data using Excel functions.

Columns	Corrrelation Coefficient
AMT_ANNUITY	-0.012399094
AMT_CREDIT	-0.032428347
AMT_GOODS_PRICE	-0.041306523
AMT_INCOME_TOTAL	0.010893745
CNT_CHILDREN	0.010893745
DAYS_BIRTH	0.076787685
DAYS_EMPLOYED	-0.040294905
EXT_SOURCE_1	-0.156806293
EXT_SOURCE_2	-0.158424274
EXT_SOURCE_3	-0.181275965
REGION_POPULATION_RELATIVE	-0.040799172
REGION_RATING_CLIENT	0.066130148
REGION_RATING_CLIENT_W_CITY	0.067079294

AMT_ANNUITY	AMT_GOODS_PRICE	AMT_INCOME_TOTAL	AMT_CREDIT	TARGET	REGION_POPULATION_RELATIVE	CNT_CHILDREN	DAYS_EMPLOYED	DAYS_BIRTH	REGION_RATING_CLIENT	REGION_RATING_CLIENT_W_CITY	EXT_SOURCE_1	EXT_SOURCE_2	EXT_SOURCE_3
24700.5	351000	202500	406597.5	1	0.018801		0 -637	-9461		2	2 0.08303696	7 0.262948593	0.13937578
35698.5	1129500	270000	1293502.5	(0.003541		0 -1188	-16765		1	1 0.31126731	0.622245775	i
6750	135000	67500	135000	0	0.010032	1	0 -225	-19046		2	2	0.555912083	0.729566691
29686.5	297000	135000	312682.5	0	0.008019		0 -3039	-19005		2	2	0.65044169	
21865.5	513000	121500	513000	(0.028663	1	0 -3038	-19932		2	2	0.322738287	
27517.5	454500	99000	490495.5	0	0.035792	1	0 -1588	-16941		2	2	0.354224732	0.621226338
41301	1395000	171000	1560726	0	0.035792	:	1 -3130	-13778		2	2 0.77476141	3 0.723999852	0.492060094
42075	1530000	360000	1530000	(0.003122		0449	-18850		3	3	0.714279286	0.54065445
33826.5	913500	112500	1019610	0	0.018634	- 1	0 365243	-20099		2	2 0.58733404	7 0.205747288	0.751723715
20250	405000	135000	405000	0	0.019689	1	0 -2019	-14469		2	2	0.746643629	
21177	652500	112500	652500	0	0.0228	:	1679	-10197		2	2 0.31976017	0.651862333	0.363945239
10678.5	135000	38419.155	148365	0	0.015221		0 365243	-20417		2	2 0.7220444	5 0.555183162	0.652896552
5881.5	67500	67500	80865	0	0.031329	1	0 -2717	-13439		2	2 0.46483111	7 0.715041819	0.176652579
28966.5	697500	225000	918468	0	0.016612	:	1 -3028	-14086		2	2	0.566906613	0.77008707
32778	679500	189000	773680.5	0	0.010006		0 -203	-14583		2	1 0.72193976	9 0.642656205	i
20160	247500	157500	299772	0	0.020713	1	0 -1157	-8728		3	0.11563433	7 0.346633981	0.678567689
26149.5	387000	108000	509602.5	0	0.018634		0 -1317	-12931		2	2	0.23637784	0.062103038
13500	270000	81000	270000	0	0.010966		1 -191	-9776		2	2	0.683513346	i
7875	157500	112500	157500	0	0.04622	ı	0 -7804	-17718		1	1	0.706428403	0.556727426
17563.5					0.015221		1 -2038	-11348		2	2	0.58661714	
21375	427500	135000			0.015221		0 -4286	-18252		2	2 0.56565488		
37561.5					0.025164		1 -1652			2	2 0.4377090		
32521.5					0.020713		1 -4306			3	2	0.457142972	
23850					0.006296		0 365243			3	3	0.624304737	
12703.5					0.026392		2 -746			2	2	0.786179309	
11074.5					0.028663		0 -3494			2	2 0.56194840		
27076.5					0.018029		0 -2628			3	2	0.54847716	
23827.5					0.019101		1 -1234			2	2	0.541123702	
57676.5					0.04622		0 -1796			1	1 0.60039590		
9000					0.030755		0 -1010	_		2	2 0.29791350		
24592.5					0.025164		0 -2668			2	2	0.479987342	
25033.5					0.008575		0 -1104			2	2 0.27442237		
20893.5					0.010032		0 -4404			2	2	0.559466792	
39069			733315.5		0.015221		1 -2060			2	2	0.321744896	
32895					0.019689		0 -4585			2	2	0.172497508	
44509.5					0.008575		0 -1275			2	2	0.663158076	
23157			641173.5		0.01885		2 -768			2	2 0.84276346		
15151.5	454500	121500	454500	(0.030755		01288	-21077		2	2 0.80458612	1 0.719798537	0.72239289

DRIVE LINK

https://docs.google.com/spreadsheets/d/1yJ5ychdWfzMnnQNwJNuXsjyK0iHrqnDe/edit?usp=sharing&ouid=102610263604488941402&rtpof=true&sd=true

Result

This project on exploratory data analysis (EDA) of a loan application data set has significantly advanced my skills and knowledge it enabled me to master critical data handling and cleaning techniques, statistical analysis and data visualisation using Excel. Moreover, I developed valuable problem-solving skills, particularly in addressing data quality issues such as missing data, outliers, data imbalances. This project has enhanced my ability to think analytically and communicate complex data insights effectively. It has strengthened my portfolio as a budding data scientist and analyst.

Thank you

Ritika Chaudhary ameliarc2105@gmail.com