www.xremepalers.com

## **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

GCE Advanced Subsidiary Level and GCE Advanced Level

## MARK SCHEME for the October/November 2013 series

## 9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE A LEVEL – October/November 2013 | 9702     | 41    |

## Section A

| 1 | (a) |      | rk done in moving unit mass<br>m infinity (to the point)                                                                                                                                                                            | M1<br>A1                               | [2] |
|---|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----|
|   | (b) | (i)  | gravitational potential energy = $GMm / x$<br>energy = $(6.67 \times 10^{-11} \times 7.35 \times 10^{22} \times 4.5) / (1.74 \times 10^{6})$<br>energy = $1.27 \times 10^{7}$ J                                                     | M1<br>A0                               | [1] |
|   |     | (ii) | <u>change in</u> grav. potential energy = <u>change in</u> kinetic energy $\frac{1}{2} \times 4.5 \times v^2 = 1.27 \times 10^7$                                                                                                    | B1                                     |     |
|   |     |      | $v = 2.4 \times 10^3 \mathrm{m  s^{-1}}$                                                                                                                                                                                            | A1                                     | [2] |
|   | (c) | / at | th would attract the rock / potential at Earth('s surface) not zero / <0<br>Earth, potential due to Moon not zero<br>ape speed would be lower                                                                                       | M1<br>A1                               | [2] |
| 2 | (a) | (i)  | N: (total) number of molecules                                                                                                                                                                                                      | B1                                     | [1] |
|   |     | (ii) | $< c^2 >$ : mean square speed/velocity                                                                                                                                                                                              | B1                                     | [1] |
|   | (b) | (me  | = $\frac{1}{3}Nm < c^2 > = NkT$<br>ean) kinetic energy = $\frac{1}{2}m < c^2 >$<br>ebra clear leading to $\frac{1}{2}m < c^2 > = (3/2)kT$                                                                                           | C1<br>A1                               | [2] |
|   | (c) | (i)  | either energy required = $(3/2) \times 1.38 \times 10^{-23} \times 1.0 \times 6.02 \times 10^{23}$<br>= 12.5 J (12J if 2 s.f.)<br>or energy = $(3/2) \times 8.31 \times 1.0$<br>= 12.5 J                                            | C1<br>A1<br>(C1)<br>(A1)               | [2] |
|   |     | (ii) | energy is needed to push back atmosphere/do work against atmosphere so total energy required is greater                                                                                                                             | M1<br>A1                               | [2] |
| 3 | (a) | (i)  | any two from 0.3(0) s, 0.9(0) s, 1.50 s (allow 2.1 s etc.)                                                                                                                                                                          | B1                                     | [1] |
|   |     | (ii) | either $v = \omega x$ and $\omega = 2\pi/T$<br>$v = (2\pi/1.2) \times 1.5 \times 10^{-2}$<br>$= 0.079 \text{ m s}^{-1}$<br>or gradient drawn clearly at a correct position working clear to give $(0.08 \pm 0.01) \text{ m s}^{-1}$ | C1<br>M1<br>A0<br>(C1)<br>(M1)<br>(A0) | [2] |

| - | . u | gc o |                                                                                              |                                                                         | 071000       | 1 44           | •   |
|---|-----|------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|----------------|-----|
|   |     |      | GCE A LEVEL                                                                                  | - October/November 2013                                                 | 9702         | 41             |     |
|   | (b) | (i)  |                                                                                              | , 0) passing through (0, 25)<br>pe ( <i>curved with both intersecti</i> | ons between  | M1<br>A1       | [2] |
|   |     |      | y = 12.0→13.0)                                                                               |                                                                         |              | AI             | [4] |
|   |     | (ii) | at max. amplitude potent<br>otal energy = 4.0 mJ                                             | ial energy is total energy                                              |              | B1<br>B1       | [2] |
| 4 | (a) | (i)  | orce proportional to proportional to proportional to square of reference to point charge     | •                                                                       | nd inversely | M1<br>A1       | [2] |
|   |     | (ii) | $= 2 \times (1.6 \times 10^{-19})^2 / \{43$ $= 1.15 \times 10^{-18} \text{ N}$               | $\pi \times 8.85 \times 10^{-12} \times (20 \times 10^{-6})^2 \}$       |              | C1<br>A1       | [2] |
|   | (b) | (i)  | orce per unit charge                                                                         |                                                                         |              | M1             |     |
|   | (~) | (-)  | on <i>either</i> a stationary cha                                                            | arge                                                                    |              |                |     |
|   |     |      | or a positive charge                                                                         |                                                                         |              | A1             | [2] |
|   |     | (ii) | <ol> <li>electric field is a veci<br/>electric fields are in c<br/>charges repel</li> </ol>  | •                                                                       |              |                |     |
|   |     |      | Any two of the above                                                                         | e, 1 each                                                               |              | B2             | [2] |
|   |     |      | <ol> <li>graph: line always be<br/>crosses x-axis betwee<br/>reasonable shape for</li> </ol> | een 11.0 μm and 12.3 μm                                                 |              | M1<br>A1<br>A1 | [3] |
| 5 | (a) | (i)  | ield shown as right to lef                                                                   | ť                                                                       |              | B1             | [1] |
|   |     | (ii) | ines are more spaced οι                                                                      | ut at ends                                                              |              | B1             | [1] |
|   | (b) | eith | voltage depends on angl                                                                      | e of probe                                                              |              | M1             |     |
|   |     |      | aximum when field norm<br>ro when field parallel to                                          | ·                                                                       |              | A1             | [2] |
|   | (c) | (i)  | induced) e.m.f. proportion<br>of change of (magnetic) f<br>allow rate of cutting of flo      | lux (linkage)                                                           |              | M1<br>A1       | [2] |
|   |     | (ii) | e.g. move coil towards/av<br>rotate coil<br>vary current in solen                            | oid                                                                     |              |                |     |
|   |     |      | insert iron core into s<br>any three sensible sugg                                           |                                                                         |              | В3             | [3] |

Mark Scheme

Syllabus

Paper

Page 3

|   | Pag | age 4 Mark Scheme                                                                                                                                                                                                                                                     |                                                                                                                                                                        | Syllabus | Paper                    |     |  |
|---|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------|-----|--|
|   |     |                                                                                                                                                                                                                                                                       | GCE A LEVEL – October/November 2013                                                                                                                                    | 9702     | 41                       |     |  |
| 6 |     | force due to magnetic field is constant force is (always) normal to direction of motion this force provides the centripetal force                                                                                                                                     |                                                                                                                                                                        |          |                          |     |  |
|   | (b) | mv² / r :<br>hence o                                                                                                                                                                                                                                                  |                                                                                                                                                                        | M1<br>A0 | [1]                      |     |  |
|   | (c) | (i) q/                                                                                                                                                                                                                                                                | $m = (2.0 \times 10^7) / (2.5 \times 10^{-3} \times 4.5 \times 10^{-2})$<br>= 1.8 × 10 <sup>11</sup> C kg <sup>-1</sup>                                                |          | C1<br>A1                 | [2] |  |
|   |     | (ii) sketch: curved path, constant radius, in direction towards bottom of page tangent to curved path on entering and on leaving the field                                                                                                                            |                                                                                                                                                                        |          |                          |     |  |
| 7 | (a) | or cond                                                                                                                                                                                                                                                               | light passes through suitable film / cork dust etc. iffraction occurs and similar pattern observed entric circles are evidence of diffraction ction is a wave property |          | M1<br>A1<br>(M1)<br>(A1) | [2] |  |
|   | (b) | (speed increases so) momentum increases $\lambda = h/p$ so $\lambda$ decreases hence radii decrease (special case: wavelength decreases so radii decreases – scores 1/3) or (speed increases so) energy increases $\lambda = h / \sqrt{(2Em)}$ so $\lambda$ decreases |                                                                                                                                                                        |          |                          |     |  |
|   | (c) | hence radii decrease  electron and proton have same (kinetic) energy either $E = p^2 / 2m$ or $p = \sqrt{(2Em)}$                                                                                                                                                      |                                                                                                                                                                        |          |                          |     |  |
|   |     | ratio = $p_e / p_p = \sqrt{(m_e / m_p)}$<br>= $\sqrt{\{(9.1 \times 10^{-31}) / (1.67 \times 10^{-27})\}}$<br>= $2.3 \times 10^{-2}$                                                                                                                                   |                                                                                                                                                                        |          |                          | [4] |  |
| 8 | (a) | energy to separate nucleons (in a nucleus) separate to infinity                                                                                                                                                                                                       |                                                                                                                                                                        | M1<br>A1 | [2]                      |     |  |
|   | (b) | (i) fiss                                                                                                                                                                                                                                                              | ion                                                                                                                                                                    |          | B1                       | [1] |  |
|   |     | (ii) 1.                                                                                                                                                                                                                                                               | U: near right-hand end of line                                                                                                                                         |          | B1                       | [1] |  |
|   |     | 2.                                                                                                                                                                                                                                                                    | Mo: to right of peak, less than 1/3 distance from peak                                                                                                                 | to U     | B1                       | [1] |  |
|   |     | 3.                                                                                                                                                                                                                                                                    | La: $0.4 \rightarrow 0.6$ of distance from peak to U                                                                                                                   |          | B1                       | [1] |  |

|    | Page 5 |           |                         |                                                                                                                                                                                                                            | Syllabus     | Paper          |     |
|----|--------|-----------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|-----|
|    |        |           |                         | GCE A LEVEL – October/November 2013                                                                                                                                                                                        | 9702         | 41             |     |
|    |        | (iii)     |                         | right-hand side, mass = 235.922 u<br>mass change = 0.210 u                                                                                                                                                                 |              | C1<br>A1       | [2] |
|    |        |           | 2.                      | energy = $mc^2$<br>= 0.210 × 1.66 × 10 <sup>-27</sup> × $(3.0 \times 10^8)^2$                                                                                                                                              |              | C1             |     |
|    |        |           |                         | = $3.1374 \times 10^{-11}$ J<br>= $196$ MeV ( <u>need 3 s.f.</u> )<br>(use of 1 u = $934$ MeV, allow 3/3; use of 1 u = $930$ MeV, allow 2/3)<br>(use of $1.67 \times 10^{-27}$ not $1.66 \times 10^{-27}$ scores max. 2/3) | MeV or 932   | C1<br>A1       | [3] |
|    |        |           |                         | Section B                                                                                                                                                                                                                  |              |                |     |
| 9  | (a)    | -         |                         | on / takes signal from sensing device it gives an voltage output                                                                                                                                                           |              | B1<br>B1       | [2] |
|    | (b)    | $V_{OUT}$ | - sho                   | or and resistor in series between +4 V line and earth own clearly across <i>either</i> thermistor <i>or</i> resistor own clearly across thermistor                                                                         |              | M1<br>A1<br>A1 | [3] |
|    | (c)    | _         | swite<br>isola<br>swite | ote switching ching large current by means of a small current ating circuit from high voltage ching high voltage by means of a small voltage/current sensible suggestions, 1 each to max. 2)                               |              | B2             | [2] |
| 10 | (a)    |           |                         | fultrasound)                                                                                                                                                                                                               | (1)          | B1             |     |
|    |        | refle     | cted                    | d by quartz / piezo-electric crystal<br>from boundaries (between media)<br>pulse detected                                                                                                                                  | (1)          | B1<br>B1       |     |
|    |        | sign      | al pr                   | trasound transmitter ocessed and displayed                                                                                                                                                                                 | (1)          | B1             |     |
|    |        | time      | dela                    | of reflected pulse gives information about the boundary ay gives information about depth narks plus any two from the four, max. 6)                                                                                         | y (1)<br>(1) | B2             | [6] |
|    | (b)    |           |                         | vavelength<br>structures resolved / detected (not more sharpness)                                                                                                                                                          |              | B1<br>B1       | [2] |
|    | (c)    |           |                         | $I_0 e^{-\mu x}$<br>$0 = \exp(-23 \times 6.4 \times 10^{-2})$<br>0 = 0.23                                                                                                                                                  |              | C1<br>C1<br>A1 | [3] |
|    |        |           |                         | signal has passed through greater thickness of mediunas greater attenuation / greater absorption / smaller into                                                                                                            |              | M1<br>A1       | [2] |

| Page 6 |                                                                                      |                                     | Mark Scheme | Syllabus                                                                                                           | Pape   | r        |     |
|--------|--------------------------------------------------------------------------------------|-------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------|--------|----------|-----|
|        |                                                                                      | GCE A LEVEL – October/November 2013 |             |                                                                                                                    |        | 41       |     |
| 11     | (a)                                                                                  | left-                               | hand        | bit underlined                                                                                                     |        | B1       | [1] |
|        | (b)                                                                                  |                                     |             | 10, 1111, 1010, 1001<br>tt scores 2, 4 correct scores 1)                                                           |        | A2       | [2] |
|        | (c) significant changes in detail of <i>V</i> between samplings so frequency too low |                                     | M1<br>A1    | [2]                                                                                                                |        |          |     |
| 12     | (a)                                                                                  |                                     | gain        | rithm provides a smaller number<br>of amplifiers is series found by addition, (not multiplica<br>sible suggestion) | ition) | B1       | [1] |
|        | (b)                                                                                  | (i)                                 | optio       | fibre                                                                                                              |        | B1       | [1] |
|        |                                                                                      | (ii)                                | atter       | nuation/dB = $10 \lg(P_2/P_1)$<br>= $10 \lg(\{6.5 \times 10^{-3}\}/\{1.5 \times 10^{-15}\})$<br>= $126$            |        | C1<br>C1 |     |
|        |                                                                                      |                                     | leng        | th = 126 / 1.8<br>= 70 km                                                                                          |        | A1       | [3] |