Lecture Summary: Directional Derivatives in Terms of the Gradient

Source: Directional derivatives in terms of the gradient.pdf

Key Points

- Definition of Gradient:
 - The gradient of a scalar function $f(x_1, x_2, ..., x_n)$ is:

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right).$$

- It is a vector-valued function from \mathbb{R}^n to \mathbb{R}^n .
- At a point $\vec{a} \in \mathbb{R}^n$, the gradient vector is $\nabla f(\vec{a})$.
- Directional Derivatives in Terms of the Gradient:
 - The directional derivative of f at \vec{a} in the direction of a unit vector \vec{u} is:

$$D_{\vec{u}}f(\vec{a}) = \nabla f(\vec{a}) \cdot \vec{u}.$$

- This simplifies the computation of directional derivatives compared to using limits directly.
- Examples:
 - Example 1: For f(x,y) = x + y, the gradient is $\nabla f = (1,1)$.

$$D_{\vec{u}}f(x,y) = (1,1) \cdot \vec{u} = u_1 + u_2.$$

- Example 2: For f(x, y, z) = xy + yz + zx, the gradient is $\nabla f = (y + z, x + z, x + y)$.

$$D_{\vec{u}}f(x,y,z) = (y+z,x+z,x+y) \cdot \vec{u} = u_1(y+z) + u_2(x+z) + u_3(x+y).$$

– Example 3: For $f(x,y) = \sin(xy)$, the gradient is $\nabla f = (y\cos(xy), x\cos(xy))$.

$$D_{\vec{u}}f(x,y) = (y\cos(xy), x\cos(xy)) \cdot \vec{u} = u_1y\cos(xy) + u_2x\cos(xy).$$

- Properties of the Gradient:
 - Linearity:

$$\nabla(cf + g) = c\nabla f + \nabla g.$$

Product Rule:

$$\nabla(fg) = g\nabla f + f\nabla g.$$

- Quotient Rule:

$$\nabla \left(\frac{f}{g} \right) = \frac{g\nabla f - f\nabla g}{g^2}.$$

• Importance of the Gradient:

- The gradient vector ∇f at \vec{a} indicates the direction of steepest ascent of f at that point.
- The magnitude $\|\nabla f(\vec{a})\|$ gives the rate of steepest ascent.

• Continuity of the Gradient:

- If ∇f is continuous around \vec{a} , then $D_{\vec{u}}f(\vec{a})$ exists and equals $\nabla f(\vec{a}) \cdot \vec{u}$.
- If ∇f is not continuous, the formula $D_{\vec{u}}f(\vec{a}) = \nabla f(\vec{a}) \cdot \vec{u}$ may fail.

Simplified Explanation

Gradient Vector: A vector of partial derivatives that points in the direction of steepest ascent. **Directional Derivative:** Instead of using limits, compute the directional derivative using:

$$D_{\vec{u}}f(\vec{a}) = \nabla f(\vec{a}) \cdot \vec{u}.$$

Example: For f(x, y) = x + y and $\vec{u} = (1/\sqrt{2}, 1/\sqrt{2})$:

$$D_{\vec{u}}f(0,0) = (1,1) \cdot (1/\sqrt{2}, 1/\sqrt{2}) = \sqrt{2}.$$

Conclusion

In this lecture, we:

- Defined the gradient and its role in computing directional derivatives.
- Highlighted the connection between gradients and rates of change.
- Demonstrated examples to illustrate the use of gradients in multivariable calculus.

The gradient simplifies directional derivative calculations and provides geometric insights into the behavior of multivariable functions.