Міністерство освіти і науки України Національний університет «Львівська політехніка» Інститут комп'ютерних наук та інформаційних технологій Кафедра програмного забезпечення

3BIT

Про виконання лабораторної роботи № 10 «ЧИСЕЛЬНІ МЕТОДИ ІНТЕГРУВАННЯ» з дисципліни «Чисельні методи»

Лектор:

доцент кафедри ПЗ Мельник Н.Б.

Виконав:

студ. групи ПЗ-15 Бабіля О.О.

Прийняв:

асистент кафедри ПЗ

Гарматій Г.Ю.

«___» ____ 2022 p.

Σ = ____

Мета: ознайомлення на практиці з методами чисельного інтегрування.

Теоретичні відомості:

Багато наукових, технічних і практичних задач зводяться до інтегрування функцій. Зокрема, обчислення площ поверхонь, об'ємів тіл, моментів інерції і т.п. Нагадаємо, що геометричний зміст найпростішого означеного інтеграла

$$I = \int_{a}^{b} f(x) dx,$$

від додатньо визначеної неперервної функції $f(x) \ge 0$ полягає у тому, що числове значення величини I — це площа, обмежена кривою y = f(x), віссю абсцис та прямими x = a, x = b.

У випадках, коли підінтегральну функцію задано аналітично, причому вона ϵ інтегровною, означений інтеграл обчислюють безпосередньо за допомогою формули Ньютона-Лейбніца. Ця формула полягає в тому, що означений інтеграл дорівнює приросту первісної F(x) на відрізку інтегрування

$$\int_{a}^{b} f(x)dx = F(x)|_{a}^{b} = F(b) - F(a).$$

Однак на практиці цією формулою не завжди можна скористатися через дві основні причини:

- 1) функція f (x) не є інтегровною, тобто її первісну F(x) не можна зобразити елементарними функціями;
- 2) значення функції $f(x) \in \text{відомим тільки на множині скінченної кількості точок <math>x_i$ ($i = \overline{0, n}$), тобто функцію задано у вигляді таблиці.

У цьому випадку застосовують методи чисельного інтегрування, які грунтуються на інтерполюванні підінтегральної функції за допомогою інтерполяційних поліномів. Така інтерполяція дає змогу наближено замінити означений інтеграл скінченною сумою

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} \alpha_{i} y_{i},$$

Це співвідношення називають квадратурною формулою, а його праву частину – квадратурною сумою. У залежності від способу її обчислення існують різні методи чисельного інтегрування (квадратурні формули) – метод прямокутників, трапецій, парабол (Сімпсона) та ін.

Метод прямокутників

Найпростішим методом наближеного обчислення інтеграла є метод прямокутників, суть якого зводиться до знаходження означеного інтеграла як суми площ п прямокутників висотою $f(x_i)$ та основою $h = \Delta x_i = x_{i+1} - x_i$, отриманих шляхом розбиття відрізка інтегрування [a,b] на п рівних частин.

Розбиття на прямокутники виконують зліва направо або справа наліво. При цьому висотою кожного елементарного прямокутника буде значення функції у = f (x) у крайній лівій (рис. 1, a) або крайній правій точці (рис. 1, б) відповідно.

Рис. 1. Геометрична інтерпретація методу лівих (а) та правих (б) прямокутників

Для першого випадку отримуємо формулу лівих прямокутників

$$I_{x} = \int_{a}^{b} f(x)dx \approx h\left(f(x_{0}) + f(x_{1}) + \dots + f(x_{n-1})\right) = h\sum_{i=0}^{n-1} f(x_{i}),$$

а для другого - формулу правих прямокутників

$$I_{np} = \int_{a}^{b} f(x)dx \approx h\left(f(x_{1}) + f(x_{2}) + \ldots + f(x_{n})\right) = h\sum_{i=1}^{n} f(x_{i}).$$

Тут крок інтегрування $h = \frac{b-a}{n}$. Якщо функція f (x) монотонно зростає на відрізку [a,b], то із використанням формул лівих і правих прямокутників отримують наближене значення інтеграла з недостачею та з надлишком відповідно.

На практиці застосовують точнішу розрахункову формулу середніх (центральних) прямокутників, у результаті чого отримують точніше значення інтеграла

$$\begin{split} I_{cep} &= \int_{a}^{b} f(x) dx \approx h \left(f\left(x_{0} + \frac{h}{2}\right) + f\left(x_{1} + \frac{h}{2}\right) + \dots + f\left(x_{n-1} + \frac{h}{2}\right) \right) = \\ &= h \sum_{i=0}^{n-1} f\left(x_{i} + \frac{h}{2}\right). \end{split}$$

У цій формулі враховано значення функції в середніх точках $x_i + \frac{h}{2}$, $(i = \overline{1,n})$ елементарних відрізків.

Рис. 2. Геометрична інтерпретація методу середніх прямокутників

Метод трапецій

Метод трапецій полягає в тому, що відрізок інтегрування [a,b] розбивають на прівних відрізків, а криву, описану підінтегральну функцією f(x), замінюють на кожному із цих відрізків кусково-лінійною функцією $\phi(x)$, отриманою стягуванням хорд, які проходять через точки $\left(x_{i-1},f(x_{i-1})\right)$ та $\left(x_i,f(x_i)\right)$ $(i=\overline{1,n})$. Значення інтеграла знаходять як суму площ S_i $(i=\overline{0,n})$ прямокутних трапецій (Puc. 2) з висотою $h=\frac{b-a}{n}$.

Рис. 3. Геометрична інтерпретація методу трапецій

Площу кожної і -ої елементарної трапеції визначають за формулою

$$S_i = h \frac{f(x_i) + f(x_{i+1})}{2}$$
.

Відповідно на всьому відрізку інтегрування [a,b] площу складеної фігури визначають сумою площ усіх елементарних трапецій. У результаті отримують таку формулу

$$I_{mp} = \int_{a}^{b} f(x)dx \approx h\left(\frac{f(x_0) + f(x_1)}{2} + \frac{f(x_1) + f(x_2)}{2} + \dots + \frac{f(x_{n-1}) + f(x_n)}{2}\right) =$$

$$= h\sum_{i=0}^{n-1} \frac{f(x_i) + f(x_{i+1})}{2}.$$

Оскільки в наведеній формулі під знаком суми величини $f(x_i)$, (i = 1, n-1)

$$I_{mp} = \int_{a}^{b} f(x)dx \approx h\left(\frac{f(x_{0})}{2} + f(x_{1}) + f(x_{2}) + \dots + f(x_{n-1}) + \frac{f(x_{n})}{2}\right) =$$

$$= h\left(\frac{f(x_{0}) + f(x_{n})}{2} + \sum_{i=0}^{n-1} f(x_{i})\right).$$

Метод Сімпсона

Даний метод полягає в тому, що криву, описану підінтегральною функцією f(x), на елементарних відрізках заміняють параболою. Поділимо відрізок інтегрування [a,b] на парну кількість п рівних частин з кроком $h=\frac{b-a}{n}$. На кожному елементарному відрізку $[x_0,x_2],[x_2,x_4],[x_4,x_6],...,[x_{i-1},x_{i+1}],...,[x_{n-2},x_n]$ підінтегральну функцію f(x) замінимо інтерполяційним поліномом другого степеня (квадратичною параболою). Тоді обчислення означеного інтеграла зводиться до обчислення суми площ S_i , $(i=\overline{1,n})$ криволінійних трапецій (рис. 4).

Рис. 4 Геометрична інтерпретація методу Сімпсона

Площу S_i кожної елементарної криволінійної трапеції визначають за формулою Сімпсона

$$S_i = \frac{h}{3} \left(f(x_i) + 4 f(x_{i+1}) + f(x_{i+2}) \right).$$

Тоді розрахункова формула методу Сімпсона набуде такого вигляду

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \left(f(x_0) + f(x_{2n}) + 4 \sum_{i=1}^{n} f(x_{2i-1}) + 2 \sum_{i=1}^{n-1} f(x_{2i}) \right)$$

Індивідуальне завдання

Скласти програму чисельного інтегрування у відповідності до варіанту:

- 1) методом лівих, правих та середніх прямокутників;
- 2) методом трапецій;
- 3)методом Сімпсона.

1.
$$\int_{0}^{3} \sqrt{x} \sin^{2} \frac{\pi x}{3} dx;$$

Хід роботи:

Для обчислення інтеграла розіб'ємо відрізок інтегрування [0; 3] на 10 рівних частин з кроком

$$h = 3-0 = 0.3$$

Складемо таблицю значень підінтегральної функції $f(x) = \sqrt{x \sin^2 \frac{\pi x}{3}}$ в точках поділу відрізку.

i	χ_i	$f(x_i)$	$f(x_{i+}\frac{h}{2})$
0	0	0	0.00934908
1	0.3	0.051610	0.136507
2	0.6	0.264440	0.428338
3	0.9	0.615065	0.807199
4	1.2	0.985212	1.12987
5	1.5	1.224602	1.25763
6	1.8	0.223559	1.1243
7	2.1	0.969199	0.774287
8	2.4	0.560822	0.353149
9	2.7	0.176175	0.0526868
10	3.0	0.000807	-

Тоді отримаємо наступні результати, використовуючи запропоновані методи:

Метод лівих прямокутників:
$$\int_0^3 f(x) dx = h \sum_{i=0}^9 f(xi) = 1.821205$$

Метод правих прямокутників:
$$\int_0^3 f(x) dx = h \sum_{i=1}^{10} f(xi) = 1.821447$$

Метод середніх прямокутників:
$$\int_0^3 f(x) dx = h \sum_{i=0}^9 f(xi + \frac{h}{2}) = 1.821995$$

Метод трапецій:
$$\int_0^3 f(x)dx = h*\left(\frac{f(x0)+f(x10)}{2}*\sum_{i=1}^9 f(xi)=1.821326\right)$$

Метод Сімпмона:
$$\int_0^3 f(x) dx = \frac{h}{3} (f(x_0) + f(x_{10}) + 4 (f(x_1) + f(x_3) + f(x_5) + f(x_7) + f(x_9)) + 2(f(x_2) + f(x_4) + f(x_6) + f(x_8)) = 1.821548$$

Код програми:

```
#include <math.h>
#include <iostream>
void subtractionRow(double** array, int n, int m, int l, int k, double coefficient)
{
       for (int i = 0; i < m; i++) {
              if (k != 1)
                     array[l][i] = array[l][i] - array[k][i] * coefficient;
       }
float sumOfRowS(double** array, int m, int k)
{
       int p = 0;
       float res = 0;
       for (int i = 0; i < m; i++)</pre>
       {
              if (i > 1 + k && i < m)
                     p++;
              if ((i != k) && (i != m - 1))
                     res += array[k][i];
       return res;
}
void swapRow(double** array, int m, int k, int 1)
{
       float* temp = new float[m];
       if (k != 1) {
              for (int i = 0; i < m; i++)</pre>
              {
                     temp[i] = array[k][i];
              for (int i = 0; i < m; i++)</pre>
                     array[k][i] = array[l][i];
              for (int i = 0; i < m; i++)</pre>
                      array[1][i] = temp[i];
              } #include <cmath>
#include <stdio.h>
double y(double x)
{
       return sqrt(x) * sin(x * 1.04) * sin(x * 1.04);
}
void quadro(double a, double b)
       double h = (b - a) / 10;
       double x = a;
       double sum[11];
       double sumMed[11];
       double sumL = 0, sumR = 0, sumM = 0;
       printf("Array of points:\n");
       for (int i = 0; i < 11; i++)
       {
              sum[i] = y(x);
              sumMed[i] = y(x + h / 2);
              x += h;
              printf("%lf ", sum[i]);
       }
```

```
printf("\n");
       for (int i = 0; i < 10; i++)
       {
              sumL += sum[i];
              //printf("%lf+", sum[i]);
       printf("Result of left side:");
       printf("\n%lf", sumL * h);
       for (int i = 1; i <= 10; i++)
              sumR += sum[i];
              //printf("%lf+", sum[i]);
       //printf("=%lf", sumL);
       printf("\nResult of right side:");
       printf("\n%lf", sumR * h);
       for (int i = 0; i < 10; i++)
       {
              sumM += sumMed[i];
              //printf("%lf+", sumMed[i]);
       }
       printf("\nResult of middle:");
       printf("\n%lf", sumM * h);
void trapec(double a, double b)
       double h = (b - a) / 10, x = a;
       double sumA[11];
       double sum = 0;
       for (int i = 0; i < 11; i++)
       {
              sumA[i] = y(x);
              x += h;
       }
       for (int i = 1; i < 10; i++)
              sum += sumA[i];
       sum += (sumA[0] + sumA[10]) / 2;
       printf("\nResult of trapec:");
       printf("\n%lf", sum * h);
void simpson(double a, double b)
       double h = (b - a) / 10, x = a;
       double sumA[11];
       double sum = 0;
       for (int i = 0; i < 11; i++)
              sumA[i] = y(x);
              x += h;
       for (int i = 0; i < 10; i++)
       {
              sum += (sumA[i] + 4 * sumA[i + 1] + sumA[i + 2]);
              i++;
       printf("\nResult of Simpson:");
       printf("\n%lf", sum * h / 3);
int main()
{
       quadro(0, 3);
```

```
trapec(0, 3);
simpson(0, 3);
return 0;
```

}

Вигляд виконаної програми

```
Array of points:
0.000000 0.051610 0.264440 0.615065 0.985212 1.224602 1.223559 0.969199 0.560822 0.176175 0.000807
Result of left side:
1.821205
Result of right side:
1.821447
Result of middle:
1.821995
Result of trapec:
1.821326
Result of Simpson:
1.821548
```

Висновки:

На даній лабораторній роботі ознайомився на практиці з методами чисельного інтегрування. Розв'язав завдання згідно до індивідуального варіанту методом лівих, правих та середніх прямокутників, методом трапецій, методом Сімпсона.

1.
$$\int_{0}^{3} \sqrt{x} \sin^2 \frac{\pi x}{3} dx;$$

Всі методи видали доволі близький результат, отже завдання виконано правильно.

Знайдем похибки кожного з методів:

Похибка метода прямокутників визначається за формулою:

$$R(f) = \frac{f''(\xi)}{24}(b-a)h^2,$$

де f''(x) - похідна другого порядку функції f(x), $\xi \in [a,b]$.

I дорівню ϵ 0.047

Похибка метода трапеції визначається за формулою:

$$R(f) = -\frac{f''(\xi)}{12}(b-a)h^2$$
.

Тут $\xi \in [a,b]$, f''(x) - похідна другого порядку функції f(x).

I дорівнює -0.023

Похибка метода Сімпсона визначається за формулою:

$$R(f) = -\frac{(b-a)^5 M_4}{180n^4},$$
(11.15)

де $M_4 = \max_{a \le x \le b} \left| f^{IV}(x) \right| - \frac{(b-a)^5}{180n^4}$, $f^{IV}(x)$ - похідна четвертого порядку функції y = f(x).

I дорівнює -0.007