Random Error - Calculate incidence rate ratio (IRR), incidence rate difference (IRD), relative risk (RR) and their 95%

一. Paper 1

(-) high birth weight (E) \rightarrow testicular ca. (DZ)

流行病學資料分析 -SAS

Bias (random error) 學號: b07401048

系級:醫學五

	Number of cases	10 ⁵ person-years
High birth weight		
Yes	23	9.5
No	394	120.8

1. result:

(1) IRR:

(a) Crude IRR: 0.74229

(b) 95% CI: 0.48759 - 1.13025

(2) IRD:

(a) Crude IRD: -0.84054

(b) 95% CI: -1.88109 – 0.20001

2. Figures:

high birth weight

Obs	IR1	IR0	IRR	SE_logIRR	IRR_lower	IRR_upper	IRD	SE_IRD	IRD_lower	IRD_upper
1	2.42105	3.26159	0.74229	0.21451	0.48750	1.13025	-0.84054	0.53089	-1.88109	0.20001

3. Descriptions:

- (1) 本題令 exposure 為「男性出生時的體重為 high birth weight」。Disease 「男性為男性發生 testicular ca. (睪丸癌)」
- (2) 如上述數據,暴露於 high birth weight 組發生睪丸癌的 rate 為未暴露於 high birth weight 組的 0.74229(IRR);rate 的差值則為-0.84054(IRD)
- (3) 然而, IRR 的信賴區間包含 1 (95% CI: 0.48759 1.13025), IRD 的信賴 區間包含 0 (5% CI:-1.88109-0.20001) ,表示兩者皆未達統計上顯 著。
- (4) 結論:「男性出生時有 high birth weight | 對之後發生睪丸癌的 rate 沒 有顯著影響,無法稱其為發生睪丸癌的危險因子或保護因子。

```
/* Homework 8 */
dm "odsresult" clear;
dm "log" clear;
/* paper 1 */
   /* (a) -1 high birth weight --> testicular ca. */
   data Q1;
  /* rate */
```

```
IR1 = 23 / 9.5; /* exposed group */
IR0 = 394 / 120.8; /* non-exposed group */
/* rate ratio*/
IRR = IR1 / IR0;
    /* standard error */
    SE_logIRR = sqrt(1 / 23 + 1 / 394);
    /* 95% CI */
    IRR_lower = exp(log(IRR) - 1.96 * SE_logIRR);
    IRR\_upper = exp(log(IRR) + 1.96 * SE\_logIRR);
/* rate difference */
IRD = IR1 - IR0;
    /* standard error */
    SE_IRD = sqrt(23 / (9.5**2) + 394 / (120.8 ** 2));
    /* 95% CI */
    IRD_lower = IRD - 1.96 * SE_IRD;
    IRD\_upper = IRD + 1.96 * SE\_IRD;
run;
proc print data = q1;
run;
%macro q1 (n1, n0, pt1, pt0, title);
    data q1;
        /* rate */
        IR1 = &n1. / &pt1.; /* exposed group */
        IR0 = &n0. / &pt0.; /* non-exposed group */
        /* rate ratio*/
        IRR = IR1 / IR0;
            /* standard error */
            SE_logIRR = sqrt(1 / \&n1. + 1 / \&n0.);
            /* 95% CI */
            IRR_lower = exp(log(IRR) - 1.96 * SE_logIRR);
            IRR\_upper = exp(log(IRR) + 1.96 * SE\_logIRR);
        /* rate difference */
        IRD = IR1 - IR0;
            /* standard error */
            SE_IRD = sqrt(&n1. / (&pt1.**2) + &n0. / (&pt0. ** 2));
            /* 95% CI */
            IRD_lower = IRD - 1.96 * SE_IRD;
            IRD\_upper = IRD + 1.96 * SE\_IRD;
        run;
        title &title;
        proc print data = q1;
        run;
        title;
%mend q1;
q1 (n1 = 23, n0 = 394, pt1 = 9.5, pt0 = 120.8, title = "high birth weight");
```

(\bot) Maternal age (E) → testicular ca.(DZ)

	Number of cases	10 ⁵ person-years
Maternal age		
15-24	1348	145.2
25+	803	144.3

1. Result:

(1) IRR:

(a) Crude IRR: 1.66830

(b) 95% CI: 1.52872 - 1.82062

(2) IRD:

(a) Crude IRD: 3.71895

(b) 95% CI: 3.09144 – 4.34646

2. Figures:

maternal age

Obs	IR1	IR0	IRR	SE_logIRR	IRR_lower	IRR_upper	IRD	SE_IRD	IRD_lower	IRD_upper	
1	9.28375	5.56480	1.66830	0.044578	1.52872	1.82062	3.71895	0.32016	3.09144	4.34646	

3. Descriptions:

- (1) 本題令 exposure 為「母親懷孕年齡介於 15-24 歲」。Disease 為「男性子代發生 testicular ca. (睪丸癌)」
- (2) 如上述數據,暴露組發生睪丸癌的 rate 為非暴露組的 1.66830 (IRR); rate 的差值則為 3.71895 (IRD)
- (3) IRR 的信賴區間不包含 1 (95% CI: 1.52872 1.82062), IRD 的信賴區間 不包含 0 (5% CI: 3.09144 - 4.34646), 表示兩者達統計上顯著。
- (4) 結論:「母親為年輕孕婦(小於 24 歲)」對其男性子代發生睪丸癌的 rate 有顯著影響,為一危險因子。

```
/* (a) -2 maternal age --> testicular ca. */
%q1 ( n0 = 803, n1 = 1348, pt0 = 144.3, pt1 = 145.2, title = "maternal age")
```

(三) Preeclampsia (E) → testicular ca. (DZ)

	Number of cases	10 ⁵ person-years
Preeclampsia		
Present	3	2.9
No present	153	92.0

1. Result:

(1) IRR:

(a) Crude IRR: 0.62204

(b) 95% CI: 0.19841 - 1.95014

(2) IRD:

(a) Crude IRD: -0.62856

(b) 95% CI: -1.82848 - 0.57136

2. Figures:

preeclampsia

Obs	IR1	IR0	IRR	SE_logIRR	IRR_lower	IRR_upper	IRD	SE_IRD	IRD_lower	IRD_upper
1	1.03448	1.66304	0.62204	0.58298	0.19841	1.95014	-0.62856	0.61220	-1.82848	0.57136

3. Descriptions:

- (1) 本題令 exposure 為「母親懷孕時發生 preeclampsia」。Disease 為「男性子代發生 testicular ca. (睪丸癌)」
- (2) 如上述數據,暴露組發生睪丸癌的 rate 為非暴露組的 0.62204 (IRR); rate 的差值則為-0.62856 (IRD)
- (3) 然而, IRR 的信賴區間包含 1 (95% CI: 0.19841 1.95014), IRD 的信賴 區間包含 0 (5% CI: -1.82848 - 0.57136),表示兩者未達統計上顯著。
- (4) 結論:「母親懷孕時發生 preeclampsia」對其男性子代發生睪丸癌的 rate 沒有顯著影響,無法稱其為一危險因子或保護因子。

```
/* (a) -3 preecalmpsia --> testicular ca. */
%q1(n1 = 3, n0 = 153, pt1 = 2.9, pt0 = 92.0, title = "preeclampsia")
```

(四) Draw the triangle to show the association between disease (Dz), exposure (E), and confounders (CFs).

1. CF 的特性之一是要與 DZ 相關,本題唯一有相關的是 maternal age。

二. Paper 2

(-) gender (E) \rightarrow AD (DZ), crude

	case	Control	
gender			
Male	60	100	
Female	70	155	

1. result:

(1) Crude odds ratio : 1.32857(2) 95% CI : 0.86707 – 2.03571

2. Figures:

(E)male(DZ)ADcrude

	Obs	OR	SE_logOR	OR_lower	OR_upper
ľ	1	1.32857	0.21772	0.86707	2.03571

3. Descriptions:

- (1) 本題令 exposure 為「性別為男性」。Disease 為「發生阿茲海默症 (AD)」
- (2) 如上述數據,在抽樣與暴露與否的前提下,可由 odds ratio 推論 risk ratio,即暴露組發生 AD 的 risk 為非暴露組的 1.32857 倍。
- (3) 然而, OR 的信賴區間包含 1 (95% CI: 0.86707 2.03571) ,表示未達統計上顯著。
- (4) 結論:「性別為男性」對其發生阿茲海默症的 risk 沒有顯著影響,無法稱其為一危險因子或保護因子。

```
/* paper 2 */
                                                     %macro q2(epdp, endp, epdn, endn, title);
                                                                                                            data q2;
                                                                                                                                     /* OR */
                                                                                                                                     OR = (\&epdp. * \&endn.) / (\&endp. * \&epdn.);
                                                                                                                                       /* standard error */
                                                                                                                                     SE_log0R = sqrt(1 / \&epdp. + 1 / \&endp. + 1 / \&epdn. + 1 / &epdn. + 
&endn.);
                                                                                                                                     /* 95% CI */
                                                                                                                                     OR_{lower} = exp(log(OR) - 1.96 * SE_{logOR});
                                                                                                                                      OR\_upper = exp(log(OR) + 1.96 * SE\_logOR);
                                                                                                            run;
                                                                                                            title &title.;
                                                                                                            Proc print data = q2;
                                                                                                             run;
                                                                                                            title;
```

```
%mend q2;
/* a-1 : gender --> AD */
    %q2( epdp = 60, endp = 70, epdn = 100, endn = 155, title =
"(E)male(DZ)ADcrude");
```

(\bot) gender (E) → AD (DZ), stratified by APOE e4 status

Stratum1 : APOE e4 carrier	case	Control
gender		
Male	37	17
Female	50	40

1. result:

(1) Stratum specific odds ratio (APOE e4 carrier) : 1.74118

(2) 95% CI: 0.85690 - 3.53798

2. Figures:

(E)male(DZ)AD(STRATA)carrier

Obs	OR	SE_logOR	OR_lower	OR_upper
1	1.74118	0.36173	0.85690	3.53798

3. Descriptions:

- (1) 本題同樣令 exposure 為「性別為男性」。Disease 為「發生阿茲海默症 (AD)」,但以是否為 APOE e4 carrier 分層。本題為 APOE e4 carrier 的 stratum specific odd ratio。
- (2) 如上述數據,在抽樣與暴露與否的前提下,可由 odds ratio 推論 risk ratio,即暴露組發生 AD 的 risk 為非暴露組的 1.74118 倍。
- (3) 然而, OR 的信賴區間包含 1 (95% CI: 0.85690 3.53798) ,表示未達統計上顯著。
- (4) 結論:在 APOE e4 carrier 的人中,「性別為男性」對其發生阿茲海默症的 risk 沒有顯著影響,無法稱其為一危險因子或保護因子。

```
/* a-2 : gender--> AD stratified by APOE e4*/
    %q2(epdp = 37, endp = 50, epdn = 17 , endn = 40, title =
"(E)male(DZ)AD(STRATA)carrier");
    %q2(epdp = 23, endp = 20, epdn = 83 , endn = 115, title =
"(E)male(DZ)AD(STRATA)non_carrier");
```

(≡) gender (E) → AD (DZ), stratified by APOE e4 status

Stratum 2: APOE e4 non-carrier	case	Control
gender		
Male	23	83
Female	20	115

1. result:

(1) Stratum specific odds ratio (APOE e4 non-carrier) : 1.59337

(2) 95% CI: 0.82155 - 3.09031

2. Figures:

(E)male(DZ)AD(STRATA)non_carrier

Obs	OR	SE_logOR	OR_lower	OR_upper
1	1.59337	0.33797	0.82155	3.09031

3. Descriptions:

- (1) 本題同樣令 exposure 為「性別為男性」。Disease 為「發生阿茲海默症 (AD)」,但以是否為 APOE e4 carrier 分層。本題為 APOE e4 non-carrier 的 stratum specific odd ratio。
- (2) 如上述數據,在抽樣與暴露與否的前提下,可由 odds ratio 推論 risk ratio,即暴露組發生 AD 的 risk 為非暴露組的 1.59337 倍。
- (3) OR 的信賴區間未包含 1 (95% CI: 0.82155 3.09031) ,表示未達統計上 顯著。
- (4) 結論:在 APOE e4 non-carrier 的人中,「性別為男性」對其發生阿茲海 默症的 risk 沒有顯著影響,無法稱其為一危險因子或保護因子。

- (四) Does *APOE* e4 status appear to be a confounder of the above association (a-1)? Please draw a triangle to show this association and put the ORs accordingly.
 - 1. 首先以 Breslow-Day test 檢測兩層的 OR 是否相同。檢測結果兩者無顯著差 異。

Breslow-Day Test for Homogeneity of Odds Ratios			
Chi-Square 0.0321			
DF	1		
Pr > ChiSq	0.8578		

2. 接者以 Mantel-Haenszel 以算 pooled OR, 結果為 1.6616。

Common Odds Ratio and Relative Risks				
Statistic Method Value 95% Confidence Limits				
Odds Ratio	Mantel-Haenszel	1.6616	1.0243	2.6953
	Logit	1.6606	1.0234	2.6945

3. 根據 10% rule: $|\frac{1.32857-1.6616}{1.32857}| > 10\%$,因此 APOE e4 status 為一 confounder。

- (\mathfrak{L}) What effect (bias away or toward the null) does the presence of confounding by *APOE* e4 on the association above (a-1)? Please draw a figure to demonstrate this effect.
 - 1. Odd ratio: 1.32857(crude) < 1.59337(non-carrier) < 1.74118 (carrier)
 - 2.

(∴) APOE e4 status (E) → AD (DZ), crude

	case	Control
APOE e4 status		
carrier	87	57
Non-carrier	43	198

1. result:

(1) Crude odds ratio: 7.02815

(2) 95% CI: 4.39544 – 11.2378

2. Figures:

(E)APOE(DZ)ADcrude

Obs	OR	SE_logOR	OR_lower	OR_upper
1	7.02815	0.23947	4.39544	11.2378

3. Descriptions:

- (1) 本題令 exposure 為「APOE e4 carrier」。Disease 為「發生阿茲海默症 (AD)」
- (2) 如上述數據,在抽樣與暴露與否的前提下,可由 odds ratio 推論 risk ratio,即暴露組發生 AD 的 risk 為非暴露組的 7.02815 倍。
- (3) OR 的信賴區間未包含 1 (95% CI: 4.39544 11.2378) ,表示達統計上顯著。
- (4) 結論:「為 APOE e4 carrier」對其發生阿茲海默症的 risk 有顯著影響, 為一危險因子。

```
/* b-1 APOE e4 --> AD*/
%q2(epdp = 87, endp = 43, epdn = 57, endn = 198, title =
"(E)APOE(DZ)ADcrude");
```

(\pm) APOE e4 status (E) → AD (DZ), stratified by gender

Stratum 1 : male	case	Control
APOE e4 status		
carrier	37	17
Non-carrier	23	83

1. result:

(1) Stratum specific odds ratio (male) : 7.85422

(2) 95% CI: 3.75876 - 16.4120

2. Figures:

(E)APOE(DZ)AD(STRATA)male

Obs	OR	SE_logOR	OR_lower	OR_upper
1	7.85422	0.37600	3.75876	16.4120

3. Descriptions:

- (1) 本題同樣令 exposure 為「APOE e4 carrier」。Disease 為「發生阿茲海默症 (AD)」,但以性別分層。本題為男性的 stratum specific odd ratio。
- (2) 如上述數據,在抽樣與暴露與否的前提下,可由 odds ratio 推論 risk ratio,即暴露組發生 AD 的 risk 為非暴露組的 7.85422 倍。
- (3) OR 的信賴區間未包含 1 (95% CI: 3.75876 16.4120) ,表示達統計上顯著。
- (4) 結論:在男性中,「APOE e4 carrier」對其發生阿茲海默症的 risk 有顯著影響,為一危險因子。

(\land) APOE e4 status (E) \rightarrow AD (DZ), stratified by gender

Stratum 2 : female	case	Control
APOE e4 status		
carrier	50	40
Non-carrier	20	115

1. result:

(1) Stratum specific odds ratio (female) : 7.1875

(2) 95% CI: 3.82358 – 13.5109

2. Figures:

(E)APOE(DZ)AD(STRATA)female

Obs	OR	SE_logOR	OR_lower	OR_upper
1	7.1875	0.32202	3.82358	13.5109

3. Descriptions:

- (1) 本題同樣令 exposure 為「APOE e4 carrier」。Disease 為「發生阿茲海默症(AD)」,但以性別分層。本題為女性的 stratum specific odd ratio。
- (2) 如上述數據,在抽樣與暴露與否的前提下,可由 odds ratio 推論 risk ratio,即暴露組發生 AD 的 risk 為非暴露組的 7.1875 倍。
- (3) OR 的信賴區間未包含 1 (95% CI: 3.82358 13.5109) ,表示達統計上顯著。
- (4) 結論:在女性中,「APOE e4 carrier」對其發生阿茲海默症的 risk 有顯著影響,為一危險因子。

- (\mathcal{H}) Does gender appear to be a confounder of the above association (b-1)? Please draw a triangle to show this association and put the ORs accordingly.
 - 1. 首先以 Breslow-Day test 檢測兩層的 OR 是否相同。檢測結果兩者無顯著差異。

Breslow-Day Test for Homogeneity of Odds Ratios			
Chi-Square 0.0321			
DF	1		
Pr > ChiSq	0.8578		

2. 接者以 Mantel-Haenszel 以算 pooled OR, 結果為 7.4591。

Common Odds Ratio and Relative Risks				
Statistic Method Value 95% Confidence Limi				
Odds Ratio	Mantel-Haenszel	7.4591	4.6183	12.0474
	Logit	7.4624	4.6205	12.0522

3. 根據 10% rule: $|\frac{7.02815-7.4591}{7.02815}| < 10\%$,因此 gender 不是一個 confounder。

- (十) What effect (bias away or toward the null) does the presence of confounding by gender on the association above (b-1)? Please draw a figure to demonstrate this effect.
 - 1. 7.02815(crude) < 7.1875(female) < 7.85422(male)

2.

