Modeling and Prediction Training and Testing

Melinda Higgins 03/25/2020

Modeling – fit equation to data

Ancombe Dataset 1

Ancombe Dataset 1

Ancombe Dataset 1

Model Y =
$$\beta_0 + \beta_1 * X + \epsilon$$

- Model "Errors" (aka. "residuals")
 - •Incorrect model → lack of fit
 - Measurement uncertainty
 - Assumed to only be in Y (outcome response)
 - But can also be in X (independent "fixed")

Model Predictions

- Predict the expected (mean) response at a given value of X
- 95% Confidence Intervals are for the MEAN (average) response of Y at X
- 95% Prediction Intervals are for an INDIVIDUAL response of Y at X – always WIDER
- BOTH intervals will be narrower where there is "more data" or "higher concentration of data points" – more information – more confidence
- NEVER EXTRAPOLATE (outside of X's)

Training and Testing

- To get a good idea of how the model will perform with new (unknown, future) data
- Typically split the data usually 70/30 or 80/20 training, testing
- Sample at random (without replacement) 80% of the data
- Use these to TRAIN (create) the model
- Use the remaining 20% to TEST the model (prediction)

Anscome Data – Training – random set 1

Anscome Data - Test - random set 1

Anscome Data – Training – random set 2

Anscome Data – Test – random set 2

