

Module MC

Partha Pratim Das

Semantics of λ -Expression

Free and Bound Variables

Substitution

Substitutio

- p-Reducti
- S-Roductio
- Order of

Normal and

Principles of Programming Languages

Module M04: λ -Calculus: Semantics

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

January 24 & 31 February 02, 2022

Table of Contents

Module MC

Partha Pratii Das

Semantics of λ -Expression

Free and Bour Variables

Substitution

Reduction

lpha-Reduction eta-Reduction η -Reduction

 δ -Reduct

Evaluation

Normal and

Applicative Ore

- **1** Semantics of λ -Expressions
- Pree and Bound Variables
- Substitution
- 4 Reduction
 - α -Reduction
 - β-Reduction
 - η -Reduction
 - δ -Reduction
- Order of Evaluation
 - Normal and Applicative Order

Semantics of λ -Expressions

Module MO

Partha Pratir Das

Semantics of λ -Expressions

Free and Bour

Substitutio

Substitutio

α-Reducti

 \mathcal{B} -Reducti

 δ -Reduct

Normal and
Applicative Ord

Semantics of λ **-Expressions**

Source:

- λ- Calculus Overview
- Operational Semantics of Pure Functional Languages

Semantics of λ -Expressions

Module M0

Partha Pratir Das

Semantics of λ -Expressions

Free and Bour Variables

Substitutio

Reduction α -Reduction β -Reduction η -Reduction δ -Reduction

Order of Evaluation Normal and Applicative Orde A lambda expression has as its meaning the lambda expression that results after all its function applications (combinations) are carried out

- Evaluating a lambda expression is called reduction
- The basic reduction rule involves substituting expressions for free variables in a manner similar to the way that the parameters in a function definition are passed as arguments in a function call
- We start by defining the concepts of free occurrences of variables and the substitution of expressions for variables

Free and Bound Variables

Module M0

Partha Pratin

Semantics of λ -Expression

Free and Bound Variables

Cubatitutia

Substitutio

Or Portueti

CC-IVEUUCU

eta-Reducti

S Darton

 δ -Reduct

Normal and

Free and Bound Variables

Free and Bound Variable

Module MC

Partha Pratin Das

Semantics of λ -Expression

Free and Bound Variables

Substitution

Reduction α -Reduction β -Reduction η -Reduction

Order of Evaluation Normal and

- An occurrence of a variable x is said to be bound when it occurs in the body M of an abstraction λx. M
- We say that λx is a *binder* whose scope is M
- An occurrence of x is free if it appears in a position where it is not bound by an
 enclosing abstraction on x
- For example,
 - Occurrences of x in xy and $\lambda y.xy$ are free
 - \circ Occurrences of x in $\lambda x.x$ and $\lambda z.\lambda x.\lambda y.x(yz)$ are bound
 - o In $(\lambda x.x)x$ the first occurrence of x is bound and the second is free
- In a loose parallel to C functions, consider the *bound* variables as *local* (including *parameters*) and *free* variables as *global* or *non-local*

Free and Bound Variable

Module M

Partha Pratii Das

Semantics of λ -Expression

Free and Bound Variables

Substitutio

Reduction lpha-Reduction eta-Reduction η -Reduction δ -Reduction

Order of Evaluation Normal and Applicative Orde In an abstraction, the variable named is referred to as the bound variable and the associated λ-expression is the body of the abstraction

• In an expression of the form:

 $\lambda v. e$

occurrences of variable v in expression e are bound

- All occurrences of other variables are *free*
- Example:

$$((\lambda x. \lambda y. (xy))(yw))$$

- o x, and y are bound in first part
- o y, and w are free in second part

Free and Bound Variable: Other Contexts

Module M0

Partha Pratin Das

Semantics of λ -Expression

Free and Bound Variables

Substitutio

Substitutio

 α -Reduction β -Reduction

eta-Reductio η -Reductio δ -Reductio

Evaluation

Normal and
Applicative Ord

• $\int_0^1 x^2 dx$; $\int_0^1 A * x^2 dx$

• $\sum_{x=1}^{10} \frac{1}{x}$; $\sum_{x=1}^{10} K * \frac{1}{x}$

• $\lim_{x\to\infty} e^{-x}$; $\lim_{x\to\infty} (M+e^{-x})$

• int succ(int x) { return x + 1; }

• $\forall x \in \mathbb{R}, x > 1 \Rightarrow \frac{1}{x} < 1$

Free and Bound Variable

Module MO

Partha Pratir Das

Semantics of λ -Expression

Free and Bound Variables

Substitutio

lpha-Reductieta-Reducti

 η -Reduction δ -Reduction

Evaluation

Normal and
Applicative Orde

- **Definition**: An occurrence of a variable v in a λ -expression is called *bound* if it is within the scope of a λv ; otherwise it is called *free*
 - A variable may occur both bound and free in the same λ -expression for example, in $\lambda x. \ y \ \lambda y. \ y \ x$ the first occurrence of y is free and the other two are bound

Set of Free Variables

Module M0

Partha Pratir Das

Semantics of λ -Expression

Free and Bound Variables

Variables

Substitution

Reduction α -Reduction β -Reduction η -Reduction δ -Reduction

Order of

Evaluation

Normal and

Applicative Order

 Definition: The set of free variables in an expression E, denoted by FV(E), is defined as follows:

[1] $FV(c) = \Phi$ for any constant c

[2] $FV(x) = \{x\}$ for any variable x

[3] $FV(E1 E2) = FV(E1) \cup FV(E2)$

[4] $FV(\lambda x. E) = FV(E) - \{x\}$

• A λ -expression E with no free variables ($FV(E) = \Phi$) is called **closed**

Substitution

Module M0

Partha Pratin

Semantics of λ -Expression

Free and Bour

Substitution

Substitution

or Destroy

cx-Reductio

β-Reductio

7 1100000

Evaluation

Normal and

Substitution

Principles of Programming Languages Partha Pratim Das

M04.11

Substitution

Module M0

Partha Pratii Das

Semantics of λ -Expression

Free and Boun Variables

Substitution

Jubacitutio

lpha-Reductieta-Reducti η -Reduction

Order of Evaluation Normal and Applicative Orde • The notation $E[v \to E1]$ refers to the λ -expression obtained by replacing each free occurrence of the variable v in E by the λ -expression E1

Naive Rules of Substitution

- [1] $v[v \rightarrow E_1] = E_1$ for any variable v
- [2] $x[v \rightarrow E_1] = x$ for any variable $x \neq v$
- [3] $(\lambda v. E)[v \rightarrow E_1] = \lambda v. (E[v \rightarrow E_1])$
- [4] $(E_{rator} E_{rand})[v \rightarrow E_1] = ((E_{rator}[v \rightarrow E_1])(E_{rand}[v \rightarrow E_1]))$
- Does it work?

$$(\lambda y.x)[x \to (\lambda z.zw)] = \lambda y.\lambda z.zw$$

YES!

Unsafe Substitution: Example

Module MO

Partha Prati Das

Semantics of λ -Expression

Free and Bour Variables

Substitution

Reduction α -Reduction β -Reduction η -Reduction δ -Reduction

Evaluation

Normal and

Applicative Ord

• Consider:

$$(\lambda x. x)[x \rightarrow y] = \lambda x. (x[x \rightarrow y]) = \lambda x. y$$

conflicts with a basic understanding that the names of bound variables (that is, parameters) do not matter.

- The identity function is the same whether we write it as $\lambda x.x$ or $\lambda z.z$ or $\lambda fred.fred$.
- If these do not behave the same way under substitution they would not behave the same way under evaluation and that seems wrong
- The mistake is that the substitution should only apply to **free** variables and **not bound** ones
- Here x is bound in the term so we should not substitute it
- That seems to give us what we want:

$$(\lambda x.x)[x \rightarrow y] = \lambda x.x$$

Unsafe Substitution: Example

Module MO

Partha Prati Das

Semantics o λ -Expressio

Free and Boun Variables

Substitution

Reduction α -Reduction β -Reduction η -Reduction

 δ -Reduction
Order of
Evaluation

Evaluation Normal and Applicative Orde • Again, the naive substitution

$$(\lambda x. (mul \ y \ x))[y \to x] \Rightarrow (\lambda x. (mul \ x \ x))$$

is unsafe since the result represents a squaring operation whereas the original lambda expression does not

- A substitution is **valid** or **safe** if no free variable in E1 becomes bound as a result of the substitution $E[v \to E1]$
- An invalid substitution involves a variable capture or name clash
- Correct way would be:

$$(\lambda x. \ (mul \ y \ x))[y \to x] \Rightarrow (\lambda z. \ (mul \ y \ z))[y \to x]$$

$$(\lambda z. \ (mul \ y \ z))[y \rightarrow x] \Rightarrow (\lambda z. \ (mul \ x \ z))$$

• Unsafe substitutions change in semantics!

Substitution

Module MC

Partha Pratii Das

 λ -Expression

Free and Boun Variables

Substitution

Reduction lpha-Reduction eta-Reduction η -Reduction δ -Reduction

Order of Evaluation Normal and Applicative Orde • **Definition**: The **substitution** of an expression for a (*free*) variable in a λ -expression is denoted by $E[v \to E_1]$ and is defined as follows:

- [1] $v[v \rightarrow E_1] = E_1$ for any variable v
- [2] $x[v \to E_1] = x$ for any variable $x \neq v$
- [3] $c[v \rightarrow E_1] = c$ for any constant c
- [4] $(E_{rator} E_{rand})[v \to E_1] = ((E_{rator}[v \to E_1])(E_{rand}[v \to E_1]))$
- [5] $(\lambda v. E)[v \rightarrow E_1] = (\lambda v. E) // v$ is not free in E
- [6] $(\lambda x. E)[v \to E_1] = \lambda x. (E[v \to E_1])$ when $x \neq v$ and $x \notin FV(E_1)$
- [7] $(\lambda x. E)[v \to E_1] = \lambda z. (E[x \to z][v \to E_1])$ when $x \neq v$ and $x \in FV(E_1)$, where $z \neq v$ and $z \notin FV(E_1)$
- In part ([7]), the first substitution $E[x \to z]$ replaces the bound variable x that will capture the free x's in E_1 by an entirely new bound variable z. Then the intended substitution can be performed safely.

Substitution Example

Substitution

```
(\lambda y. (\lambda f. f x) y) [x \rightarrow f y]
\lambda z. ((\lambda f. f. x) z) [x \rightarrow f. v]
                                                       \Rightarrow
                                                                           by g) since v \in FV(f \ v)
\lambda z. ((\lambda f. f x) [x \rightarrow f y] z[x \rightarrow f y])
                                                                \Rightarrow
                                                                         by d)
\lambda z. ((\lambda f. f x) [x \rightarrow f v] z)
                                                                        by b)
\lambda z. (\lambda g. (g x) [x \rightarrow f y]) z
                                                                \Rightarrow by g) since f \in FV(f y)
\lambda z. (\lambda g. g (f v)) z
                                                                \Rightarrow by d), b), and a)
```

Rules

[1]
$$v[v \rightarrow E_1] = E_1$$
 for any variable v

[2]
$$x[v \rightarrow E_1] = x$$
 for any variable $x \neq v$

[3]
$$c[v \rightarrow E_1] = c$$
 for any constant c

[4]
$$(E_{rator} E_{rand})[v \rightarrow E_1] = ((E_{rator}[v \rightarrow E_1])(E_{rand}[v \rightarrow E_1]))$$

[5]
$$(\lambda v. E)[v \rightarrow E_1] = (\lambda v. E)$$

[6]
$$(\lambda x. E)[v \to E_1] = \lambda x. (E[v \to E_1])$$
 when $x \neq v$ and $x \notin FV(E_1)$

[7]
$$(\lambda x. E)[v \to E_1] = \lambda z. (E[x \to z][v \to E_1])$$
 when $x \neq v$ and $x \in FV(E_1)$, where $z \neq v$ and $z \notin FV(E_1)$

Reduction

Module MC

Partha Pratir Das

Semantics of λ -Expression

Free and Bour

Substitutio

Substitution

Reduction

@ Darkers

p-Neducti

δ-Reduction

Evaluation
Normal and

Reduction

Reduction

Module M0

Partha Pratir Das

 λ -Expression

Free and Bour Variables

Substitution

Reduction

 α -Reduct β -Reduct

 η -Reduction δ -Reduction

Order of

Evaluation Normal and Applicative Ord • A λ -expression has as its meaning the λ -expression that results after all its function applications (combinations) are carried out

• Evaluating a λ -expression is called **reduction**

• Four rules of reduction

 $\circ \alpha$ -**Reduction**: Renaming rule

β-Reduction: Substitution rule

 \circ η -Reduction: Function Equality rule

o δ -Reduction: Pre-defined Constants' rule

α -Reduction

Module MC

Partha Pratii Das

Semantics of λ -Expression

Free and Bour Variables

Substitutio

Reduction α -Reduction β -Reduction η -Reduction

Evaluation

Normal and

Applicative Orde

• **Definition**: If v and w are variables and E is a λ -expression,

$$\lambda v. E \Rightarrow_{\alpha} \lambda w. E[v \rightarrow w]$$

provided that w does not occur at all in E, which makes the substitution $E[v \to w]$ safe

- ullet The equivalence of expressions under lpha-reduction is what makes part g) of the definition of substitution correct
- The α -reduction rule simply allows the changing of bound variables as long as there is no capture of a free variable occurrence
- The two sides of the rule can be thought of as variants of each other, both members of an equivalence class of *congruent* λ -expressions

α -Reduction

Module MO

Partha Pratio

Semantics of λ-Expression

Free and Bour Variables

Variables

Reduction α -Reduction β -Reduction η -Reduction

 δ -Reduc

Evaluation

Normal and

Applicative Ord

• The last example contains two α -reductions:

$$\lambda y. \ (\lambda f. \ f \ x) \ y \Rightarrow_{\alpha} \lambda y. \ ((\lambda f. \ f \ x) \ y)[y \to z] \Rightarrow_{\alpha} \lambda z. \ (\lambda f. \ f \ x) \ z$$

 $\lambda z. \ (\lambda f. \ f \ x) \ z \Rightarrow_{\alpha} \lambda z. \ ((\lambda f. \ f \ x) \ z)[f \to g] \Rightarrow_{\alpha} \lambda z. \ (\lambda g. \ g \ x) \ z$

• Now that we have a justification of the substitution mechanism, the main simplification rule can be formally defined

β -Reduction

Module M0

Partha Pratii Das

Semantics of λ-Expression

Free and Boun Variables

Substitutio

Reduction α -Reduction β -Reduction η -Reduction δ -Reduction

Order of Evaluation Normal and Applicative Orde • **Definition**: If v is a variable and E and E_1 are λ -expressions,

$$(\lambda v. E) E_1 \Rightarrow_{\beta} E[v \rightarrow E_1]$$

provided that the substitution $E[v \to E_1]$ is carried out according to the rules for a safe substitution

- This β -reduction rule describes the function application rule in which the actual parameter or argument E_1 is passed to the function $(\lambda v. E)$ by substituting the argument for the formal parameter v in the function
- The left side $(\lambda v. E)$ E_1 of a β -reduction is called a β -redex derived from reduction expression and meaning an expression that can be β -reduced
- β -reduction is the main rule of evaluation in the λ -calculus
- α -reduction makes the substitutions for variables valid

β -Reduction

Module MC

Partha Pratir Das

Semantics of λ -Expression

Free and Boun Variables

Substitutio

Reduction α -Reduction β -Reduction

 η -Reduction δ -Reduction

Evaluation

Normal and
Applicative Orde

- The evaluation of a λ -expression consists of a series of β -reductions, possibly interspersed with α -reductions to change bound variables to avoid confusion
- Take $E \Rightarrow F$ to mean $E \Rightarrow_{\beta} F$ or $E \Rightarrow_{\alpha} F$ and let \Rightarrow^* be the *reflexive* and *transitive* closure of \Rightarrow
- Hence:
 - ∘ For any expression E, $E \Rightarrow^* E$ and
 - \circ For any three expressions, $(E_1 \Rightarrow^* E_2 \text{ and } E_2 \Rightarrow^* E_3)$ implies $E_1 \Rightarrow^* E_3$
- The goal of evaluation in the λ -calculus is to reduce a λ -expression via \Rightarrow until it contains no more β -redexes
- To define an *equality* relation on λ -expressions, we also allow a β -reduction rule to work backward

β -Abstraction

Module MC

Partha Pratii Das

Semantics of λ -Expression

Free and Bour Variables

Substitutio

Reduction α -Reduction β -Reduction η -Reduction δ -Reduction

Order of Evaluation Normal and Applicative Orde • **Definition**: Reversing β -reduction produces the β -abstraction rule,

$$E[v \rightarrow E_1] \Rightarrow_{\beta} (\lambda v. E) E_1$$

and the two rules taken together give β -conversion, denoted by \Leftrightarrow_{β}

- Therefore $E \Leftrightarrow_{\beta} F$ if $E \Rightarrow_{\beta} F$ or $F \Rightarrow_{\beta} E$
- Take $E \Leftrightarrow F$ to mean $E \Leftrightarrow_{\beta} F$, $E \Rightarrow_{\alpha} F$ or $F \Rightarrow_{\alpha} E$ and let \Leftrightarrow^* be the *reflexive* and *transitive* closure of \Leftrightarrow
- Two λ -expressions E and F are equivalent or equal if $E \Leftrightarrow^* F$
- Reductions (both α and β) are allowed to sub-expressions in a λ -expression by three rules:
 - [1] $E_1 \Rightarrow E_2$ implies $E_1 E \Rightarrow E_2 E$
 - [2] $E_1 \Rightarrow E_2$ implies E $E_1 \Rightarrow E$ E_2
 - [3] $E_1 \Rightarrow E_2$ implies λx . $E_1 \Rightarrow \lambda x$. E_2

η -Reduction

Module MO

Partha Pratir Das

Semantics of λ -Expression

Free and Bour Variables

Substitut

α-Reduct

 β -Reductio

 η -Reduction

 δ -Reducti

Evaluation Normal ar

• **Definition**: If v is a variable and E is a λ -expression (denoting a function), and v has no free occurrence in E,

$$\lambda v. (E \ v) \Rightarrow_{\eta} E$$

Example:

$$\lambda x. (sqr x) \Rightarrow_{\eta} sqr$$

$$\lambda x. (add 5 x) \Rightarrow_{\eta} (add 5)$$

Note: $(add \ 5 \ x)$ abbreviates as $(add \ 5)$

• Take $E \Leftrightarrow_{\eta} F$ to mean $E \Rightarrow_{\eta} F$ or $F \Rightarrow_{\eta} E$

η -Reduction

Module MC

Partha Pratii Das

Semantics of λ -Expression

Free and Bour Variables

Substituti

Reduction α -Reduction β -Reduction η -Reduction δ -Reduction

Order of Evaluation Normal and Applicative Orde The requirement that x should have no free occurrences in E is necessary to avoid an
invalid reduction such as

$$\lambda x. (add \ x \ x) \Rightarrow (add \ x)$$

- This rule fails when E represents some constants; for example, if 5 is a predefined constant numeral, λx . (5 x) and 5 are not equivalent or even related
- η -reduction, justifies an extensional view of functions; that is, two functions are equal if they produce the same values when given the same arguments

$$\forall x, f(x) = g(x) \Rightarrow f = g$$

η -Reduction

Module MC

Partha Pratir Das

Semantics of λ -Expression

Free and Bour Variables

Substitutio

Reduction α -Reduction β -Reduction η -Reduction

Order of Evaluation Normal and Applicative Orde • Extensionality Theorem: If $F_1 \times \Rightarrow^* E$ and $F_2 \times \Rightarrow^* E$ where $\times \notin FV(F_1 F_2)$, then $F_1 \Leftrightarrow^* F_2$ where \Leftrightarrow^* includes η -reductions.

$$F_1 \Leftrightarrow_{\eta} \lambda x. \ (F_1 \ x) \Leftrightarrow_{\eta} \lambda x. \ E \Leftrightarrow_{\eta} \lambda x. \ (F_2 \ x) \Leftrightarrow_{\eta} F_2$$

• The rule is not strictly necessary for reducing λ -expressions and may cause problems in the presence of constants, but included for completeness

δ -Reduction

Module M0

Partha Pratin Das

Semantics of λ -Expression

Free and Bour Variables

Substitutio

Reduction lpha-Reduction eta-Reduction n-Reduction

 δ -Reduction

Order of Evaluation Normal and Applicative Orde • **Definition**: If the λ -calculus has predefined constants (that is, if it is not pure), rules associated with those predefined values and functions are called *delta* rules:

Example:

$$(add \ 3 \ 5) \Rightarrow_{\delta} 8 \ and \ (not \ true) \Rightarrow_{\delta} false$$

• Example:

twice =
$$\lambda f$$
. λx . $f(f x)$

twice
$$(\lambda n. (add \ n \ 1)) \ 5 \Rightarrow_{\beta}$$

 $(\lambda f. \ \lambda x. \ (f \ (f \ x)))(\lambda n. \ (add \ n \ 1)) \ 5 \Rightarrow_{\beta}$
 $(\lambda x. \ ((\lambda n. \ (add \ n \ 1))((\lambda n. \ (add \ n \ 1)) \ 5)) \ 5 \Rightarrow_{\beta}$
 $(\lambda n. \ (add \ n \ 1)) \ ((\lambda n. \ (add \ n \ 1)) \ 5) \ \Rightarrow_{\beta}$
 $(add \ ((\lambda n. \ (add \ n \ 1)) \ 5) \ 1) \Rightarrow_{\beta}$
 $(add \ (add \ 5 \ 1) \ 1) \Rightarrow_{\delta} 7$

Order of

Evaluation

Order of Evaluation

Evaluation Strategies

Module Mo

Partha Prati Das

Semantics of λ -Expression

Free and Bour Variables

Substitutio

Reduction α -Reduction β -Reduction η -Reduction δ -Reduction

Order of Evaluation Normal and Applicative Orde

Call-by-Value (CBV)

- \circ C / C++: the argument expression is evaluated, and the resulting value is bound to the corresponding variable in the function (frequently by copying the value into a new memory region)
- Call-by-Reference (CBR)
 - C++: a function receives an implicit reference to a variable used as argument, rather than a copy of its value
 - CBR may be simulated in languages that use CBV by making use of references, such as pointers (Call-by-Address or CBA)
- Call-by-Copy-Restore (CBCR) / Value-Result
 - Fortran (old): a special case of call by reference where the provided reference is unique to the caller (Copy-in-Copy-out)
- Call-by-Name (CBN)
 - C / C++ Macro: the arguments to a function are not evaluated before the function is called rather, they are substituted directly into the function body
 - Lazy Evaluation
 - Call-by-Need: a memorized variant of CBN where, if the function argument is evaluated, that value is stored for subsequent uses

Evaluation Strategies

```
Partha Pratin
```

Semantics of λ -Expression

Free and Bound Variables

Substitution

Reduction α -Reduction β -Reduction η -Reduction δ -Reduction

Order of Evaluation Normal and

```
#include <iostream>
using namespace std:
void f(int a, int b) { a++; b--; return; }
                                                      // CBV
void g(int& a, int& b) { a++; b--; return; }
                                                      // CBR
void h(int* pa, int* pb) { (*pa)++; (*pb)--; return; } // CBA
#define m f(a, b) ( a * b )
                                                      // CBN
int main() {
   int x = 3, y = 4, z = 5:
   f(x, y):
   cout << x << " " << y << endl:
                                       // CBV = 3.4
   g(x, y);
   cout << x << " " << v << endl:
                                        // CBR = 4.3
   h(&x, &y);
   cout << x << " " << y << endl;
                                      // CBA = 5.2
   g(z, z);
                                   // CBR = 5, CBCR = 6 or 4
   cout << z << endl:
   cout << m_f(x + 1, y + 1) << end1; // CBN = x + y + 1 = 8
```


Module M0

Partha Pratir Das

Semantics of λ -Expression

Free and Bour Variables

Substituti

α-Reduc

 η -Reduct

Order of Evaluation

Normal and Applicative Ord **Definition**: A λ -expression is in **normal form** if it contains no β -redexes (and no δ -rules in an applied λ calculus), so that it cannot be further reduced using the β -rule or the δ -rule.

An expression in normal form has no more function applications to evaluate

Module M0

Partha Pratio

 λ -Expression

Free and Boun Variables

Substitution

Reduction α -Reduction β -Reduction η -Reduction

Order of Evaluation

Questions:

- [1] Can every λ -expression be reduced to a normal form?
- [2] Is there more than one way to reduce a particular λ -expression?
- [3] If there is more than one reduction strategy, does each one lead to the same normal form expression?
- [4] Is there a reduction strategy that will guarantee that a normal form expression will be produced?

Order of Evaluation

1. Can every λ -expression be reduced to a normal form?

No. Consider:

$$(\lambda x. \ x \ x)(\lambda x. \ x \ x) \Rightarrow$$

$$(\lambda x. \ x \ x)(\lambda x. \ x \ x) \Rightarrow$$

$$(\lambda x. \ x \ x)(\lambda x. \ x \ x) \Rightarrow$$

. . .

Module MU

Partha Prati Das

Semantics of λ -Expression

Free and Bour Variables

Substitutio

Reduction α -Reduction β -Reduction η -Reduction δ -Reduction

Order of Evaluation Normal and Applicative Orde **2.** Is there more than one way to reduce a particular λ -expression?

Yes. Consider:

 $(\lambda x. \ \lambda y. \ (add \ y \ ((\lambda z. \ (mul \ x \ z)) \ 3))) \ 7 \ 5$

Path 1: OUTERMOST

 $(\lambda x. \lambda y. (add \ y ((\lambda z. (mul \ x \ z)) \ 3))) \ 7 \ 5 \Rightarrow_{\beta} (\lambda y. (add \ y ((\lambda z. (mul \ 7 \ z)) \ 3))) \ 5 \Rightarrow_{\beta}$

 $(add\ 5\ ((\lambda z.\ (mul\ 7\ z))\ 3)) \Rightarrow_{\beta} (add\ 5\ (mul\ 7\ 3)) \Rightarrow_{\delta} (add\ 5\ 21) \Rightarrow_{\delta} 26$

Path 2: INNERMOST

 $(\lambda x. \lambda y. (add \ y((\lambda z. (mul \times z)) \ 3))) \ 7 \ 5 \Rightarrow_{\beta} (\lambda x. \lambda y. (add \ y (mul \times 3))) \ 7 \ 5 \Rightarrow_{\beta} (\lambda x. (add \ 5 (mul \times 3))) \ 7 \Rightarrow_{\beta} (add \ 5 (mul \ 7 \ 3)) \Rightarrow_{\delta} (add \ 5 \ 21) \Rightarrow_{\delta} 26$

(1111 5 (1111 7 5)) / 8 (1111 5 11) / 8 1

Path 3: MIXED

 $(\lambda x. \lambda y. (add \ y((\lambda z. (mul \times z)) \ 3))) \ 7 \ 5 \Rightarrow_{\beta} (\lambda x. \lambda y. (add \ y. (mul \times 3))) \ 7 \ 5 \Rightarrow_{\beta} (\lambda y. (add \ y. (mul \times 3))) \ 5 \Rightarrow_{\delta} (\lambda y. (add \ y. \ 21)) \ 5 \Rightarrow_{\beta} (add \ 5 \ 21) \Rightarrow_{\delta} 26$

Module M

Partha Pratii Das

Semantics of λ -Expression

Free and Bour Variables

Substitutio

Substitutio

 α -Reductio eta-Reductio η -Reductio δ -Reductio

Order of Evaluation 3. If there is more than one reduction strategy, does each one lead to the same normal form expression?

No. Consider:

$$(\lambda y. 5)((\lambda x. x x)(\lambda x. x x))$$

Path 1:

$$(\lambda y. 5)((\lambda x. x x)(\lambda x. x x)) \Rightarrow 5$$

Path 2:

$$(\lambda y. 5)((\lambda x. x x)(\lambda x. x x)) \Rightarrow (\lambda y. 5)((\lambda x. x x)(\lambda x. x x)) \Rightarrow (\lambda y. 5)((\lambda x. x x)(\lambda x. x x)) \Rightarrow$$

Order of Evaluation

4. Is there a reduction strategy that will guarantee that a normal form expression will be produced?

Mathematician Curry proved that if an expression has a normal form, then it can be found by leftmost reduction.

A *normal order reduction* can have either of the following outcomes:

- [1] It reaches a unique (up to α -conversion) normal form λ -expression
- [2] It never terminates

Unfortunately, there is no algorithmic way to determine for an arbitrary λ -expression which of these two outcomes will occur

Reduction Strategies: Normal and Applicative Order

Module MC

Partha Pratii Das

Semantics of λ -Expression

Free and Bound Variables

Substitutio

Reduction

 α -Reduction β -Reduction η -Reduction δ

Order of Evaluatio

Normal and Applicative Order Two important orders of rewriting:

- Normal Order rewrite the *outermost (leftmost)* occurrence of a function application.
 - This is equivalent to call by name
- Applicative Order rewrite the innermost (leftmost) occurrence of a function application first
 - This is equivalent to call by value

Normal order evaluation always gives the same results as lazy evaluation, but may end up evaluating an expression more times

Module M0

Partha Pratir Das

Semantics of λ -Expression

Free and Boun Variables

Substitutio

Reduction lpha-Reduction eta-Reduction η -Reduction

Order of

Normal and
Applicative Order

• Example:

double
$$x = x + x$$

average $x y = (x + y)/2$

• Using prefix notation:

$$double x = plus x x$$

 $average x y = divide (plus x y) 2$

Evaluate:

Module M0

Partha Pratio

Semantics of λ -Expression

Free and Bour Variables

Substitutio

Reduction α -Reduction β -Reduction η -Reduction δ -Reduction

Order of
Evaluation
Normal and
Applicative Order

• Evaluate:

double (average 2 4)

• Using normal order of evaluation:

```
double (average 2 4) \Rightarrow plus (average 2 4) (average 2 4) \Rightarrow plus (divide (plus 2 4) 2) (average 2 4) \Rightarrow plus (divide 6 2) (average 2 4) \Rightarrow plus 3 (average 2 4) \Rightarrow plus 3 (divide 6 2) \Rightarrow plus 3 (divide 6 2) \Rightarrow plus 3 3 \Rightarrow 6
```

- Notice that (average 2 4) was evaluated twice ... lazy evaluation would cache the results of the first evaluation
- Using applicative order of evaluation:

double (average 2 4) \Rightarrow double (divide (plus 2 4) 2) \Rightarrow double (divide 6 2) \Rightarrow double 3 \Rightarrow plus 3 3 \Rightarrow 6

Module MC

Partha Pratii Das

 λ -Expression

Free and Boun Variables

Substitutio

Reduction α -Reduction β -Reduction η -Reduction δ -Reduction

Order of
Evaluation

Normal and

Applicative Order

Consider:

$$my_{if}$$
 True $x y = x$
 my_{if} False $x y = y$

- Evaluate: my_if (less 3 4) (plus 5 5) (divide 1 0)
- Using normal order of evaluation:

```
my\_if (less 3 4) (plus 5 5) (divide 1 0) \Rightarrow my\_if True (plus 5 5) (divide 1 0) \Rightarrow (plus 5 5) \Rightarrow 10
```

Using applicative order of evaluation:

```
my\_if (less 3 4) (plus 5 5) (divide 1 0) \Rightarrow my\_if True (plus 5 5) (divide 1 0) \Rightarrow my\_if True 10 (divide 1 0) \Rightarrow DIVIDE BY ZERO FRROR
```


Properties of Order of Evaluation: Strictness

Module MC

Partha Prati Das

Semantics of λ -Expression

Free and Boun Variables

Substituti

Reduction α -Reduction β -Reduction η -Reduction δ -Reduction

Order of
Evaluation
Normal and
Applicative Order

Two important properties of evaluation order:

- If there is any evaluation order that will terminate and that will not generate an error, normal order evaluation will terminate and will not generate an error
- ANY evaluation order that terminates without error will give the same result as any other evaluation order that terminates without error

Definition: A function f is *strict* in an argument if that argument is *always evaluated* whenever an application of f is evaluated.

If a function is strict in an argument, we can safely evaluate the argument first if we need the value of applying the function.

Lazy Evaluation and Strictness Analysis

Module M0

Partha Pratii Das

 λ -Expressions

Free and Bour Variables

Substitutio

Reduction α -Reduction β -Reduction η -Reduction

Order of Evaluation Normal and Applicative Order

- We can use lazy evaluation on an ad-hoc basis (for example, for if), for all arguments
- For all arguments, for some implementations of functional languages we can improve efficiency using strictness analysis
 - o plus a b is strict in both arguments
 - \circ if x y z is strict in x, but not in y and z
- We can do some analysis and sometimes decide if a user-defined function is strict in some of its arguments:
- Examples:
 - o double x is strict inx
 - \circ squid $n \times = if \ n = 0$ then x + 1 else x n is strict in n and x
 - \circ crab $n \times = if \ n = 0$ then x + 1 else n is strict in n but not x
- If a function is strict in an argument x, it is correct to pass x by value, even with normal order evaluation semantics
- It is not always decidable whether a function is strict in an argument if we do not know, pass using lazy evaluation

Reduction Strategies: Normal and Applicative Order

Module MO

Partha Pratir Das

Semantics of λ -Expression

Free and Boun Variables

Substitution

Reduction α -Reduction β -Reduction η -Reduction δ -Reduction

Order of

Normal and Applicative Order

- Definition: A normal order reduction always reduces the *leftmost outermost* β -redex (or δ -redex) first
- Definition: An applicative order reduction always reduces the *leftmost innermost* β-redex (or δ-redex) first
- **Definition**: For any λ -expression of the form $E = ((\lambda x. B) A)$, we say that β -redex E is outside any β -redex that occurs in B or A and that these are inside E
- A β -redex in a λ -expression is
 - \circ *outermost* if there is no β -redex outside of it
 - o *innermost* if there is no β -redex inside of it
- Use AST for detection

AST of λ -expression

Module M(

Partha Pratir Das

Semantics of λ -Expression

Free and Boun Variables

Substitutio

Substitutio

lpha-Reductioeta-Reductio

 η -Reduction δ -Reduction

Order of

Normal and Applicative Order

 β -redexes in ((($\lambda x. \lambda y. (add x y)$) (($\lambda z. (succ z)$) 5)) (($\lambda w. (sqr w)$) 7))

Module M0

Partha Pratii Das

Semantics of λ -Expression

Free and Boun Variables

Substitutio

Reduction lpha-Reduction eta-Reduction η -Reduction

Order of Evaluatior

Normal and Applicative Order Applicative Order (leftmost innermost)

$$((\lambda n. (add 5 n)) 8) \Rightarrow$$

 $((\lambda n. (add5 n)) 8) \Rightarrow -add5 : N \rightarrow N \text{ is curried } (add5 8) \Rightarrow 13$

- o Eager Evaluation
- Call-by-Value (CBV)
- \circ Curried functions $(f \times y z)$ use eager reduction
- Normal Order (leftmost outermost)

$$((\lambda n. (add 5 n)) 8) \Rightarrow (add 5 8) \Rightarrow 13$$

- o Call-by-Name (CBN)
- \circ Function f(x, y, z) use lazy reduction

Module MO

Partha Pratim

Semantics of λ -Expression

Free and Boun Variables

Substituti

cα-Reduct

eta-Reducti

η-Reduct

Order of

Normal and Applicative Order

```
((lambda (x) (+ x x)) (* 2 3))
      lazy/
                   \eager
(+ (* 2 3) (* 2 3)) ((lambda (x) (+ x x)) 6)
            (+66)
```