Groups + Electron Configurations le in outer shall! Outer es: reactivity + banding.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Table 8.1

Electron Configurations of Group 1A and Group 2A Elements

Group 1A	Group 2A
Li [He]2s ¹	Be $[He]2s^2$
Na [Ne]3s1	Mg [Ne] $3s^2$
K $[Ar]4s^1$	$Ca [Ar]4s^2$
Rb $[Kr]5s^1$	$Sr [Kr]5s^2$
Cs [Xe] $6s^1$	Ba [Xe] $6s^2$
Fr $[Rn]7s^1$	Ra $[Rn]7s^2$

ex: Na: [Ne] 3s1 Nat: [Ne] stable Ca: [A1]452 noble Ca": [Ar] E A1: [Ne] 3523p1 A13th [Ne] ex: F: 152252p5 F: 15 25 2p6 = [Ne] O: 152252P4 02-: 1s22s2p6 = [Ne]

N3-: 15252P6 = [Ne7

N: 15252p3

O: 152252p4 06+: 152 = [He] Atoms/Ions w/ same e configuration ISOELECTRONIC er: A134, Nat, F, 02-, N3- Ne all isoelectronic w/ Ne Transition Metals careful... ex: 221 12+ Ti: [Ar] 452 5d2 Ti2+: [Ar] 3d2

1A	2A	3A	4A	5A	6A	7A	8
H							I
37							3
		В	С	N	О	F	1
Li	Ве						(
152	112	85	77	75	73	72	
Na	Mg	Al	Si	P	S	Cl	
							1
186	160	143	118	110	103	99	9
K	Ca	Ga	Ge	As	Se	Br	6
227							
227	197	135	123	120	117	114	1
Rb	Sr	In	Sn	Sb	Te	I	6
							•
248	215	166	140	141	143	133	1
Cs	Ba	Tl	Pb	Bi	Po	At	I
265	222	171	175	155	164	142	1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Ionization Energy engy + × (g) -> × (g) energy + ×2+(9) -> ×3+ e-C 3rd ionization energy, I, In general, it becomes horder horder to remove each successive e. $I_1 < I_2 < I_3 < \dots$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Tab	le 8.2	The Ionizat	tion Energie	es (kJ/mo	l) of the	First 20 E	lements
Z	Element	First	Second	Third	Fourth	Fifth	Sixth
1	Н	1,312					
2	Не	2,373	5,251				
3	Li	520	7,300	11,815			
4	Be	899	1,757	14,850	21,005		
5	В	801	2,430	3,660	25,000	32,820	
6	C	1,086	2,350	4,620	6,220	38,000	47,261
7	N	1,400	2,860	4,580	7,500	9,400	53,000
8	O	1,314	3,390	5,300	7,470	11,000	13,000
9	F	1,680	3,370	6,050	8,400	11,000	15,200
10	Ne	2,080	3,950	6,120	9,370	12,200	15,000
11	Na	495.9	4,560	6,900	9,540	13,400	16,600
12	Mg	738.1	1,450	7,730	10,500	13,600	18,000
13	Al	577.9	1,820	2,750	11,600	14,800	18,400
14	Si	786.3	1,580	3,230	4,360	16,000	20,000
15	P	1,012	1,904	2,910	4,960	6,240	21,000
16	S	999.5	2,250	3,360	4,660	6,990	8,500
17	Cl	1,251	2,297	3,820	5,160	6,540	9,300
18	Ar	1,521	2,666	3,900	5,770	7,240	8,800
19	K	418.7	3,052	4,410	5,900	8,000	9,600
20	Ca	589.5	1,145	4,900	6,500	8,100	11,000

