Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	К работе допущен
Студент	Работа выполнена
Преподаватель	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.05

Исследование колебаний физического маятника

1. Цель работы.

Изучение характеристик затухающих колебаний физического маятника.

- 2. Задачи, решаемые при выполнении работы.
 - 1. Измерение периода затухающих колебаний.
 - 2. Определение зависимости амплитуды затухающих колебаний физического маятника от времени.
 - 3. Определение зависимости периода колебаний от момента инерции физического маятника.
 - 4. Определение преобладающего типа трения.
 - 5. Определение экспериментальной и теоретической приведенных длин маятника при его разных конфигурациях.
- 3. Объект исследования.

Физический маятник.

- 4. Метод экспериментального исследования.
- 1. Груз на спице со стрелкой устанавливается на первой риске, противоположный на шестой. Грузы на боковых спицах устанавливаются на третьей риске. Начальное отклонение маятника от положения равновесия равно 30°.
- 2. Маятник запускается из положения начального отклонения. Измеряется время N=10 колебаний маятника.
- 3. Маятник запускается из положения начального отклонения. Измеряется время, когда амплитуда становится равна 25° , 20° , 15° , 10° , 5° .
 - 4. П.2 повторяется для положения грузов на боковых спицах: 1, 2, 4, 5, 6 риски.
- 5. Рабочие формулы и исходные данные.
 - 1. Коэффициент затухания:

$$\beta = \frac{rl^2}{2I}$$

2. Период колебаний:

$$T = \frac{\bar{t}}{N}$$

3. Зависимость логарифма отношения амплитуд от времени:

$$ln\frac{A}{A_0} = -\beta t$$

4. Ширина зоны застоя:

$$\Delta \phi_3 = \frac{A_0 - A}{4n}$$

5. Расстояние центра груза от оси вращения:

$$R = l_1 + (n-1)l_0 + \frac{b}{2}$$

где l_1 – расстояние от оси вращения до первой риски, \bar{l}_0 – расстояние между соседними рисками, b – размер груза вдоль спицы.

6. Момент инерции грузов:

$$I_{\rm rp} = m_{\rm rp} (R_{\rm Bepx}^2 + R_{\rm HWK}^2 + 2R_{\rm 60K}^2)$$

где $R_{\rm верх}$, $R_{\rm ниж}$, $R_{\rm верx}$ — расстояния от оси вращения до, соответственно, грузов на верхней, нижней и боковых спицах.

7. Полный момент инерции физического маятника:

$$I = I_{\rm rp} + I_0$$

где I_0 – момент инерции ступицы и крестовины.

8.

$$ml = \frac{4\pi^2 I}{gT^2}$$

9. Экспериментальная приведенная длина маятника:

$$l_{\rm пр \ эксп} = \frac{gT^2}{4\pi^2}$$

10. Теоретическая приведенная длина маятника:

$$l_{\text{пр теор}} = \frac{I_0}{ml} + l$$

где $l = l_{\text{теор}}$.

Параметры установки:

Название	Значение	Погрешность
Масса каретки, кг	0,047	0,0005
Масса шайбы, кг	0,22	0,0005
Масса грузов на	0,408	0,0005
крестовине, кг		
Расстояние первой риски	0,057	0,0005
от оси, м		
Расстояние между	0,025	0,0002
рисками, м		
Диаметр ступицы, м	0,046	0,0005
Диаметр груза на	0,04	0,0005
крестовине, м		
Высота груза на	0,04	0,0005
крестовине, м		

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	0 – 300 c	0,05 c
2	Градусная шкала	Аналоговый	0 – 30 ∘	0,5 ∘

7. Схема установки.

- 1. Шкала
- 2. Груз
- 3. Рукоятка сцепления 4. Передняя крестовина

8. Результаты прямых измерений и их обработки. Таблица 2.

Амплитуда отклонения Время	25°	20°	15°	10°	5°
t_1, c	41,31	89,47	147,55	211,82	295,27
t ₂ , c	38,61	87,89	144,33	211,66	296,74
t_3, c	40,3	87,83	144,25	211,51	296,61
$\begin{bmatrix} - \\ t \end{bmatrix}$, c	40,0733	88,3967	145,377	211,663	296,207

Таблица 3.

Положение боковых грузов	t_1	t_2	t_3	- t	Т
1 риска	16,43	16,15	16,19	16,2567	1,62567
2 риски	17,11	16,97	16,89	16,99	1,699
3 риски	18,25	18,23	18,24	18,24	1,824
4 риски	19,56	19,4	19,57	19,51	1,951
5 рисок	21,08	20,86	21,14	21,0267	2,10267
6 рисок	22,39	22,24	22,46	22,3633	2,23633

Таблица 4.

Риски	1	2	3	4	5	6	
$R_{\rm Bepx}$		0,077					
$R_{\text{ниж}}$		0,202					
$R_{бok}$	0,077	0,102	0,127	0,152	0,177	0,202	
$I_{ m rp}$	0,024	0,028	0,032	0,038	0,045	0,052	
I	0,032	0,036	0,04	0,046	0,053	0,06	
$l_{ m пр эксп}$	0,656	0,717	0,826	0,945	1,098	1,241	
$l_{ m np\ Teop}$	0,658	0,733	0,83	0,947	1,085	1,245	

9. Расчет результатов косвенных измерений.

Период колебаний:

$$T = \frac{18,25 + 18,23 + 18,24}{3 * 10} = 1,824 c$$

Ширина зоны застоя:

ширина зоны застоя:
$$\Delta\phi_3 = \frac{30-30+0,0777*1,824}{4*10} = 0,0035 \circ$$
 Расстояние центра верхнего груза от оси вращения:

$$R_{\mathrm{Bepx}} = 0.057 + (1 - 1) * 0.025 + \frac{0.04}{2} = 0.077$$
 м

Расстояние центра нижнего груза от оси вращения

$$R_{\text{HMW}} = 0.057 + (6 - 1) * 0.025 + \frac{0.04}{2} = 0.202 \text{ M}$$

Расстояние центра бокового груза на третьей риске от оси вращения:

$$R_{\text{ниж}} = 0.057 + (3 - 1) * 0.025 + \frac{0.04}{2} = 0.127 \text{ м}$$

Момент инерции грузов (боковые грузы на третьей риске):
$$I_{\rm rp} = 0.408*(0.077^2 + 0.202^2 + 2*0.127^2) = 0.0322~{\rm kr}*{\rm m}^2$$

Полный момент инерции физического маятника (боковые грузы на третьей риске):

$$I = 0.0322 + 0.008 = 0.0402 \text{ K}\text{T} * \text{M}^2$$

Расчёт приведённой длины (боковые грузы на третьей риске):

$$ml = rac{4*3,14^2*0,0402}{9,8*1,824^2} = 0,0486 \ \mathrm{KF*M}$$
 $l_{\mathrm{пр \ ЭКСП}} = rac{9,8*1,824^2}{4*3,14^2} = 0,8259 \ \mathrm{M}$ $l_{\mathrm{пр \ Teop}} = rac{0,0402}{0.0486} = 0,8272 \ \mathrm{M}$

10. Расчет погрешностей измерений.

Погрешность прямых измерений (промежутки времени в табл. 2, 3) составляет 0,005 с – инструментальная погрешность.

Погрешности косвенных измерений:

Период колебаний:

$$T = 1.824 \pm 0.005 c$$

Ширина зоны застоя:

$$\Delta \phi_3 = 0.0035 \pm 0.00001 \circ$$

Расстояние центра верхнего груза от оси вращения:

 $R_{
m Bepx} = 0.077~{
m M}$ (погрешность отсутствует, т. к. измерения не производились)

Расстояние центра нижнего груза от оси вращения:

 $R_{\text{ниж}} = 0,202 \text{ м}$ (погрешность отсутствует, т. к. измерения не производились)

Расстояние центра бокового груза на третьей риске от оси вращения:

 $R_{\rm ниж} = 0.127$ м (погрешность отсутствует, т. к. измерения не производились) Момент инерции грузов (боковые грузы на третьей риске):

 $I_{\rm rp} = 0.0322~{\rm kr} * {\rm m}^2$ (погрешность отсутствует, т. к. измерения не производились)

Полный момент инерции физического маятника (боковые грузы на третьей риске):

 $I = 0.0402 \ \mathrm{kr} * \mathrm{m}^2$ (погрешность отсутствует, т. к. измерения не производились) Расчёт приведённой длины (боковые грузы на третьей риске):

$$ml = 0.0486 \pm 0.0004$$
 кг * м $l_{\rm пр \ эксп} = 0.8259 \pm 0.0004$ м $l_{\rm пр \ Teop} = 0.8272 \pm 0.0025$ м

11. Графики.

График зависимости амплитуды от времени A(t):

12. Окончательные результаты. Экспериментальная и теоретическая приведенная длина маятника при разных его конфигурациях:

Риски	1	2	3	4	5	6
$l_{ m np}$ эксп, м	0,656	0,717	0,826	0,945	1,098	1,241
F	±0,0004	±0,0004	±0,0004	±0,0004	±0,0004	±0,0004
$l_{ m np\ Teop}$, м	0,658	0,733	0,83	0,947	1,085	1,245
,,	±0,0025	±0,0025	±0,0025	±0,0025	±0,0025	±0,0025

13. Выводы и анализ результатов работы.

Таким образом, полученные результаты позволяют сделать вывод о том, что преобладающий тип трения при затухающих колебаниях физического маятника — сухое трение. При перемещении грузов на боковых спицах в сторону от оси вращения момент инерции системы увеличивается, следовательно угловое ускорение уменьшается, и угловой коэффициент на графике зависимости амплитуды колебаний от времени уменьшается по модулю.