CHEM 5914 Literature Review and Research Plan - COVER SHEET - Fall 2016

Student's Name	Kirk C Pearce	
Review Title	Analytical Derivatives in Quantum Chemistry	
Student's Email Address	kcpearce@vt.edu	
Date Submiteed	September 12, 2016	
Response Deadline	N/A	

X	Outline. Submit to the Research Director only. No specific response deadline.		
	Preliminary Draft. Submit to Research Director only. Response needed by 10/14/16.		
	First Draft. Submit to Advisory Committee. Responses needed by 11/16/16.		
	Final Draft. Submit to Advisory Committee. Responses needed 12/14/16.		

Function	Name	Department	Email
Chair	T. Daniel Crawford	CHEM	crawdad@vt.edu
Member	Edward Valeev	CHEM	valeev76@vt.edu
Member	Nicholas Mayhall	CHEM	nmayhall@vt.edu
Member	Diego Troya	CHEM	troya@vt.edu

Honor Pledge. Turning in any document for CHEM 5914 constitutes a pledge to conform to the policies and procedures of the Virginia Tech Graduate Honor System.

Faculty Instructions are available on the CHEM Grad Program site in the Literature Review folder.

I. Introduction

- A. Big picture of analytic derivatives
 - i. Usefulness in quantum chemical calculations
 - a. Properties of interest to all chemists
 - ii. Advantages of analytic versus. numerical differentiation
 - a. Numerical accuracy (obviously)
 - b. Increased computational efficiency
 - iii. Disadvantages
 - a. Computational cost with higher order derivatives
- II. Electronic Structure Theory
 - A. Schrödinger Equation
 - B. Hartree-Fock Theory
 - i. Single Determinant Representation minimized with constraint that spin orbitals remain orthonormal
 - ii. Shortcomings Mean field approximation (no electron correlation energy)
 - C. Møller-Plesset Perturbation Theory
 - i. Treat electron correlation as perturbation to the HF SCF solution
 - D. Coupled Cluster Theory
 - i. Exponential form of the wave function
 - ii. Size Consistency/Extensivity
- III. Optical Response
 - A. Response Theory
 - i. Exact Response
 - ii. Linear Response
 - iii. Quadratic and Higher Order Response

- B. Properties
- IV. Analytical Gradient Theory
 - A. Wigner's 2N + 1 Rule
 - B. First Derivatives
 - i. Derivations
 - ii. Associated Properties
 - C. Second Derivatives
 - i. Derivations
 - ii. Associated Properties
- V. Proposed Plan of Study
 - A. Implementation
 - B. Calculation of properties
 - i. CC Simulations of Vibrational Circular Dichroism (VCD) Spectra
 - ii. CC Simulations of Magnetic Circular Dichroism (MCD) Spectra
 - iii. Non-linear Optical Properties (hyperpolarizabilities)