

Rus0013 - Sistemas Operacionais

Aula 02: Chamadas ao Sistema & Estruturas de Sistemas Operacionais

Professor Pablo Soares
2022.2

Sumario

- Proteção do Núcleo
- Chamadas ao Sistema
- Estrutura de Sistemas Operacionais
 - Sistemas Monolíticos
 - Sistemas de Camadas
 - Máquinas Virtuais
 - Exonúcleos
 - O Modelo cliente-Servidor

Estrutura de Um SO

- Um SO deve gerenciar os recursos de Hardware
 - Integridade dessa gerência
 - Aplicações não consigam acessar o hardware diretamente
 - Pedir ao SO
 - Como Impedir?
 - Níveis de privilegio
 - Núcleo e drivers → acesso direto
 - Utilitários e aplicativos → acesso restrito
 - Desestabilizando o sistema

- SO tem dois ou mais níveis de privilegio
 - Controlados por *flags* especiais no processador
 - Controle estritamente pelo processador
- Nível Núcleo
 - Supervisor
 - Kernel
- Nível usuário
 - Userspace

- Nível Núcleo
 - Nesse nível, todo o processador está acessível
 - Registradores e portas de entrada/saída
 - Áreas da memória podem ser acessadas
 - Todas as instruções do processador podem ser executadas

Funções do Núcleo

- Tratamentos de interrupções;
- Criação e eliminação de processos e threads;
- Sincronização de processos e threads
- Escalonamento e controle dos processos e threads
- Gerência de memória
- Gerência de arquivos
- Gerência de E/S
- Suporte a redes locais
- Segurança do Sistema

- Nível Usuário
 - Nesse nível, subconjunto de instruções estão disponíveis
 - Registradores
 - Portas de E/S
 - Instruções perigosas são proibidas
 - HALT (parar o processador)
 - RESET(reiniciar o processador)
 - Restringi o uso de memória
 - Áreas previamente definidas
 - Se um código tentar executar um instrução proibida
 - Núcleo faz um tratamento
 - "este programa executou uma instrução ilegal e será finalizado",

nível usuário	aplicação aplicação aplicação	<u> </u>
nível núcleo	núcleo	
	hardware	

Separação entre o núcleo e as aplicações

- Confinamento de uma aplicação em sua área de memória pelo (MMU *Memory Managment Unit*)
 - Robustez
 - Confiabilidade do sistema (Proteção)
- Como uma aplicação pode acessar a placa de rede para enviar/receber dados, se não tem privilégio para acessar as portas de entrada/saída correspondentes nem pode invocar o código do núcleo que implementa esse acesso (pois esse código reside em outra área de memória)?
 - Chamada ao Sistema

- SO definem chamadas ao sistema
 - Acesso a recursos de baixo nível
 - Periféricos
 - Arquivos
 - Alocação de Memória
 - Criação/finalização de tarefas
 - Chamadas ao sistema são oferecidas para aplicações de modo usuário
 - Biblioteca do sistema
 - Parâmetros
 - Interrupções
 - Retorna a aplicação

- Gerenciamento de Processos
- Gerenciamento de Arquivos

Gerenciamento de processos

defendamente de processor		
Chamada	Descrição	
pid = fork()	Crie um processo filho idêntico ao processo pai	
pid = waitpid(pid, &statloc, options)	Aguarde um processo filho terminar	
s = execve(name, argv, environp)	Substitua o espaço de endereçamento do processo	
exit(status)	Termine a execução do processo e retorne o estado	

Gerenciamento de arquivos

Chamada	Descrição
fd = open(file, how,)	Abra um arquivo para leitura, escrita ou ambas
s = close(fd)	Feche um arquivo aberto
n = read(fd, buffer, nbytes)	Leia dados de um arquivo para um buffer
n = write(fd, buffer, nbytes)	Escreva dados de um buffer para um arquivo
position = Iseek(fd, offset, whence)	Mova o ponteiro de posição do arquivo
s = stat(name, &buf)	Obtenha a informação de estado do arquivo

• Gerenciamento de sistemas de dirétorio

Diversas

Gerenciamento do sistema de diretório e arquivo

Chamada	Descrição
s = mkdir(name, mode)	Crie um novo diretório
s = rmdir(name)	Remova um diretório vazio
s = link(name1, name2)	Crie uma nova entrada, name2, apontando para name1
s = unlink(name)	Remova uma entrada de diretório
s = mount(special, name, flag)	Monte um sistema de arquivo
s = umount(special)	Desmonte um sistema de arquivo

Diversas

Chamada	Descrição
s = chdir(dirname)	Altere o diretório de trabalho
s = chmod(name, mode)	Altere os bits de proteção do arquivo
s = kill(pid, signal)	Envie um sinal a um processo
seconds = time(&seconds)	Obtenha o tempo decorrido desde 1º de janeiro de 1970

Estruturas de Sistemas Operacionais

- Estrutura interna de um SO
- Projetos
 - Sistemas Monolíticos
 - Sistemas de Camadas
 - Máquinas Virtuais
 - ExoNúcleo
 - MicroKernel

Sistema Monolíticos

- Organização
 - É a mais comum
 - Não há estruturação(A grande Bagunça)
 - Coleção de Procedimentos
 - Todos podem chamar os demais
 - Vantagem
 - Desempenho
 - Desvantagem
 - Caso algum componente perca o controle devido a algum erro → Travamento do sistema

Sistema Monolíticos

Sistema de Camadas

- Organização
 - Hierarquia de camadas
 - Construídas sobre a camada inferior

Camada	Função
5	Operador
4	Programa usuário
3	Gerenciamento de entrada/saída
2	Comunicação operador-processo
1	Gerenciamento de memória e tambor
0	Alocação do processador e multiprogramação

Sistema de Camadas

- Essa estruturação fez muito sucesso
 - Isolar as funções do sistema operacional
 - Manutenção e depuração
 - Redes de computadores
 - Modelo de Referência OSI (*Open Systems Interconnction*)
- Inconvenientes
 - Empilhamento de varias camadas de software
 - Pedido de uma camada superior leva muito tempo
 - Camadas são inter-dependentes

Máquinas Virtuais

Máquinas Virtuais

Uma máquina virtual

- Sistema Real ou hospedeiro
 - Recursos reais
- O sistema virtual (convidado)
 - Executa sobre virtualizado
- Camada de virtualização
 - Monitor

Exonúcleos

• Tarefa

- Alocar recursos às maquinas virtuais
- Verificar as tentativas de usar esse recursos
- Assegurar que nenhuma esteja tentando usar recursos das outras
- Máquina virtual
 - Pensa que tem todos os recursos só para ela

MicroKernel

- É fruto do resultado da tendência de um núcleo de S.O. se tornar o menor possível;
- Os serviços são disponibilizados em processos;
- Cada processo é responsável em gerenciar um conjunto específico de funções como gerência de memória, gerência de arquivos, gerência de processos etc.;
- Dois tipos: processo cliente e processo servidor;
- A principal função do núcleo é gerenciar a comunicação entre esses processos.

MicroKernel

MicroKernel

Prós

- Maior proteção do núcleo: todos os processos são executados em modo usuário;
- Alta disponibilidade: se um servidor falhar, o sistema não ficará altamente comprometido;
- Maior eficiência: a comunicação entre serviços poderá ser realizada entre vários processadores ou até mesmo várias máquinas distribuídas;
- Melhor confiabilidade e escalabilidade;

Contras

- Grande complexidade para sua implementação
- Menor desempenho devido à necessidade de mudança de modo de acesso

Referências

Andrew S. Tanenbaum. "Sistemas Operacionais Modernos". 3ª Edição, Prentice Hall, 2010.

Francis B. Machado e Luiz P. Maia.
"Arquitetura de Sistemas Operacionais".
3ª. Edição. LTC, 2004.

Rus0013 - Sistemas Operacionais

Aula 02: Chamadas ao Sistema & Estruturas de Sistemas Operacionais

Professor Pablo Soares
2022.2