Studies in Bucket Exchange Communication with ISx

Jacob Hemstad*

University of Minnesota

hemst013@umn.edu

Ben Harshbarger

Cray Inc.

bharshbarg@cray.com

Ulf Hanebutte

Intel Corporation

ulf.r.hanebutte@intel.com

Brad Chamberlain

Cray Inc.

bradc@cray.com

Bucket Sort

ISx - Bucket Sort Mini-Application

- Successor to the NAS Integer Sort application
 - Solves issues of ineffective load balancing, limited problem sizes, and inability to weak scale
- Uniform random key generation (work balance is guaranteed by default)
- Supports arbitrary problem sizes
- Strong and Weak Scaling
- Automatic solution verification
- Implementations
 - OpenSHMEM*
 - MPI 2-sided*
 - Chapel (available since version 1.13)

*https://github.com/ParRes/ISx

SHMEM Communication Strategy Comparison

Random

Every rank sends to other ranks in random order

Round Robin

 Rank i sends to i+1, i+2, etc. with wrap around

Results

- Edison Cray XC30
- Aries Interconnect w/ Dragonfly Topology
- Average of 40 runs across2 unique job placements
- Average with min/max bounds

2-Sided MPI vs. SHMEM

Chapel vs. SHMEM

- Weak Scaling
- 2²⁷ keys per node
- Cray XC30 internal to Cray

Time (seconds)

Manually disabling reference counting no longer needed

Wrapping Up & Looking Forward

- Studies to date:
 - Random vs. Round Robin
 - Better performance with random data exchange on Edison
 - SHMEM vs. 2-sided MPI
 - Better performance with SHMEM up to network saturation
 - SHMEM vs. Chapel
 - Optimizations to Chapel reduce sources of overhead and bring performance closer to SHMEM

Future:

- Threaded implementation
- One-sided MPI
- o Integrate performance counter metrics and communication model
- Specialized