What is claimed is:

- In a computer-implemented animation system, a method for animating an object, the method
 comprising:
- 3 receiving a first input, the first input specifying a first behavior, the first behavior
- 4 indicating how to change a value of a first parameter of the object over time;
- 5 animating the object by changing the value of the first parameter of the object over time
- 6 according to the specified behavior; and
- 7 outputting the animated object.
- 1 2. The method of claim 1, wherein the object comprises a two-dimensional object.
- 1 3. The method of claim 1, further comprising receiving a second input, the second input
- 2 specifying a keyframe indicating the value for the first parameter of the object at a first point in
- 3 time, and wherein animating the object comprises changing the value of the first parameter of the
- 4 object according to the specified behavior and further according to the specified keyframe.
- 4. The method of claim 1, further comprising receiving a second input, the second input
- 2 specifying a second behavior, the second behavior indicating how to change a value of a second
- 3 parameter of the object over time, and wherein animating the object further comprises changing
- 4 the value of the second parameter of the object according to the second specified behavior.
- 1 5. The method of claim 1, further comprising receiving a second input, the second input
- 2 specifying a second behavior, the second behavior indicating how to change the value of the first
- 3 parameter of the object over time, and wherein animating the object comprises changing the
- 4 value of the first parameter of the object according to the first specified behavior and the second
- 5 specified behavior.

6. The method of claim 5, wherein changing the value of the first parameter of the object 1 2 according to the first specified behavior and the second specified behavior comprises determining a combined change to the value of the first parameter of the object according to a 3 4 combination of the first specified behavior and the second specified behavior. 7. The method of claim 1, wherein the first behavior comprises one from a group consisting of: 1 2 a Fade In/Fade Out behavior; 3 a Grow/Shrink behavior; 4 a Motion Path behavior; 5 a Snap Alignment to Motion behavior; 6 a Spin behavior; 7 a Throw behavior; 8 an Align to Motion behavior; 9 an Attracted To behavior; 10 an Attractor behavior; 11 a Drag behavior; 12 a Drift Attracted To behavior; 13 a Drift Attractor behavior; 14 an Edge Collision behavior; 15 a Gravity behavior; 16 an Orbit Around behavior;

243

17

18

19

a Random Motion behavior;

a Repel behavior;

a Repel From behavior;

20	a Rotational Drag behavior;
21	a Spring behavior;
22	a Vortex behavior; and
23	a Wind behavior.
1	8. The method of claim 1, wherein the object comprises a text object and the first behavior
2	comprises one from a group consisting of:
3	a Crawl Left behavior;
4	a Crawl Right behavior;
5	a Scroll Up behavior;
6	a Scroll Down behavior;
7	a Randomize behavior;
8	a Sequence behavior;
9	a Position behavior;
10	a Rotation behavior;
11	an Opacity behavior;
12	a Scale behavior;
13	a Tracking behavior; and
14	a Type On behavior.
1	9. The method of claim 1, wherein the first behavior indicates that the value of the first
2	parameter of the object should be averaged over time.
1	10. The method of claim 1, wherein the first behavior indicates that the value of the first
2	parameter of the object should be changed using a user-specified custom change

- 1 11. The method of claim 1, wherein the first behavior indicates that the value of the first
- 2 parameter of the object should be negated.
- 1 12. The method of claim 1, wherein the first behavior indicates that the value of the first
- 2 parameter of the object should oscillate over time.
- 1 13. The method of claim 1, wherein the first behavior indicates that the value of the first
- 2 parameter of the object should ramp over time.
- 1 14. The method of claim 1, wherein the first behavior indicates that the value of the first
- 2 parameter of the object should be randomized.
- 1 15. The method of claim 1, wherein the first behavior indicates that the value of the first
- 2 parameter of the object should change over time according to a specified rate.
- 1 16. The method of claim 1, wherein the first behavior indicates that changes to the value of the
- 2 first parameter of the object should be executed in reverse order.
- 1 17. The method of claim 1, wherein the first behavior indicates that the value of the first
- 2 parameter of the object should not change.
- 1 18. The method of claim 1, wherein the first behavior indicates that the value of the first
- 2 parameter of the object should wriggle over time.
- 1 19. The method of claim 1, wherein the object comprises one from a group consisting of:
- 2 an image object;
- 3 a text object;
- 4 a particle system;
- 5 a filter;
- 6 a generator; and
- 7 a behavior.

1	20. The method of claim 1, wherein the first behavior comprises at least one user-settable
2	behavior parameter, the method further comprising receiving a second input specifying a value
3	for the behavior parameter, and wherein animating the object comprises changing the value of
4	the first parameter of the object according to the first specified behavior and the specified value
5	for the behavior parameter.
1	21. In a computer-implemented animation system, a method for animating an object, the method
2	comprising:
3	receiving an input, the input specifying the object;
4	creating one or more duplicates of the object according to a first plurality of parameters;
5	and
6	animating the one or more duplicates by changing a value of a parameter of a duplicate
7	over time according to a second plurality of parameters.
1	22. The method of claim 21, further comprising receiving an input, the input specifying a
2	parameter, and wherein animating the one or more duplicates comprises changing the value of
3	the parameter of the duplicate over time according to the second plurality of parameters and the
4	specified parameter.
1	23. A user interface for a computer program for animating an object according to a behavior, the
2	behavior having at least one user-settable parameter specifying how the behavior changes a value
3	of at least one parameter of the object, the user interface comprising:
4	a control area; and
5	a user-manipulable control element located within the control area, for specifying a value
6	for the at least one user-settable parameter of the behavior

- 1 24. The user interface of claim 23, wherein the user-manipulable control element comprises a
- 2 representation of a vector having a magnitude and an orientation.
- 1 25. The user interface of claim 24, wherein the control area comprises a circle, and wherein the
- 2 representation of the vector comprises an arrow, the body of the arrow being a straight line, the
- 3 tail of the arrow located in the center of the circle, the arrow pointing toward a point on the
- 4 circumference of the circle.
- 1 26. The user interface of claim 25, wherein the magnitude of the vector controls a first user-
- 2 settable parameter of the behavior, and wherein the orientation of the vector controls a second
- 3 user-settable parameter of the behavior.
- 1 27. The user interface of claim 26, wherein the first user-settable parameter comprises a speed
- 2 with which the object moves and wherein the second user-settable parameter comprises a
- 3 direction in which the object moves.
- 1 28. The user interface of claim 27, wherein the behavior comprises a Throw behavior.
- 1 29. The user interface of claim 27, wherein the behavior comprises a Wind behavior.
- 1 30. The user interface of claim 23, wherein the user-manipulable control element comprises an
- 2 arrow having a curved body.
- 1 31. The user interface of claim 30, wherein the control area comprises a circle, and wherein the
- 2 curved body of the arrow comprises an arc of the circumference of the circle, the tail and the
- 3 head of the arrow located on the circumference of the circle, the arrow pointing along the
- 4 circumference of the circle.
- 1 32. The user interface of claim 31, wherein the length of the arrow controls a first user-settable
- 2 parameter of the behavior, and wherein the direction of the arrow controls a second user-settable
- 3 parameter of the behavior.

- 1 33. The user interface of claim 32, wherein the first user-settable parameter comprises a speed
- 2 with which the object rotates and wherein the second user-settable parameter comprises a
- 3 direction in which the object rotates.
- 1 34. The user interface of claim 33, wherein the behavior comprises a Spin behavior.
- 1 35. The user interface of claim 23, wherein the user-manipulable control element comprises a
- 2 first rectangle.
- 1 36. The user interface of claim 35, wherein the control area comprises a second rectangle, the
- 2 second rectangle indicating an original size of the object.
- 1 37. The user interface of claim 36, wherein a difference between a width of the first rectangle
- 2 and a width of the second rectangle controls a first user-settable parameter of the behavior, and
- 3 wherein a difference between a height of the first rectangle and a height of the second rectangle
- 4 controls a second user-settable parameter of the behavior.
- 1 38. The user interface of claim 37, wherein the first user-settable parameter comprises a change
- 2 in the object's width and the second user-settable parameter comprises a change in the object's
- 3 height.
- 1 39. The user interface of claim 38, wherein the behavior comprises a Grow/Shrink behavior.
- 1 40. The user interface of claim 23, wherein the user-manipulable control element comprises a
- 2 first triangular region and a second triangular region.
- 1 41. The user interface of claim 40, wherein the control area comprises an area separating the first
- 2 triangular region and the second triangular region.
- 1 42. The user interface of claim 23, wherein a width of the first triangular region controls a first
- 2 user-settable parameter of the behavior, and wherein a width of the second triangular region
- 3 controls a second user-settable parameter of the behavior.

- 1 43. The user interface of claim 42, wherein the first user-settable parameter comprises a fade-in
- 2 time of the object and the second user-settable parameter comprises a fade-out time of the object.
- 1 44. The user interface of claim 43, wherein the behavior comprises a Fade In/Fade Out behavior.
- 1 45. The user interface of claim 23, wherein the control area is semi-transparent.
- 1 46. A user interface for a computer program for animating an object, wherein animating an
- 2 object comprises creating one or more duplicates of the object and animating the one or more
- duplicates by changing a value of a parameter of the one or more duplicates over time, the user
- 4 interface comprising:
- 5 a control area; and
- one or more controls for setting one or more parameters of the animation.
- 1 47. The user interface of claim 46, wherein the user-manipulable control element comprises a
- 2 representation of a vector having a magnitude and an orientation.
- 1 48. The user interface of claim 47, wherein the control area comprises a circle, and wherein the
- 2 representation of the vector comprises an arrow, the body of the arrow being a straight line, the
- 3 tail of the arrow located in the center of the circle, the arrow pointing toward a point on the
- 4 circumference of the circle.
- 1 49. The user interface of claim 48, wherein the magnitude of the vector controls a first user-
- 2 settable parameter of the animation, and wherein the orientation of the vector controls a second
- 3 user-settable parameter of the animation.
- 1 50. The user interface of claim 49, wherein the first user-settable parameter comprises a speed
- 2 with which the one or more duplicates moves and wherein the second user-settable parameter
- 3 comprises a direction in which the one or more duplicates moves.

- 1 51. The user interface of claim 46, wherein the user-manipulable control element comprises two
- 2 points.
- 1 52. The user interface of claim 47, wherein the control area comprises a circle, and wherein the
- 2 two points are located on the circumference of the circle, and wherein the two points specify a
- 3 segment of the circle.
- 1 53. The user interface of claim 48, wherein the size of the segment of the circle controls a first
 - 2 user-settable parameter of the animation, and wherein the position of the segment of the circle
 - 3 controls a second user-settable parameter of the animation.
 - 1 54. The user interface of claim 49, wherein the first user-settable parameter comprises a size of a
 - 2 range in which the one or more duplicates moves and wherein the second user-settable parameter
 - 3 comprises a location of the range in which the one or more duplicates moves.
 - 1 55. The user interface of claim 46, wherein the control area is semi-transparent.
 - 1 56. A method for generating a frame of an object using behaviors, comprising:
 - 2 determining a current state of the object;
 - 3 traversing a data structure to identify behaviors affecting the object;
 - 4 accumulating forces for the behaviors affecting the object; and
 - 5 generating a frame of the object according to the accumulated forces.
- 1 57. The method of claim 56, further comprising determining an initial velocity for the object.
- 1 58. The method of claim 56, wherein at least one of the behaviors is a motion behavior.
- 1 59. The method of claim 56, wherein at least one of the behaviors is a simulation behavior.
- 1 60. The method of claim 56, wherein at least one of the behaviors is a parameter behavior.
- 1 61. The method of claim 56, wherein the data structure comprises a tree structure.

1	62. The method of claim 56, wherein generating the frame comprises applying a mid-point
2	method differential solver to determine a new parameter value for the object.
1	63. The method of claim 56, wherein the parameter value comprises a position of the object.
1	64. The method of claim 56, further comprising:
2	traversing the data structure to identify collisions; and
3	responsive to the existence of a collision, adjusting a system state to maintain a collision
4	constraint.
1	65. The method of claim 56, further comprising iteratively repeating the animating step until a
2	desired frame is reached.
1	66. The method of claim 56, wherein at least one object state is specified in terms of a keyframe,
2	the method further comprising converting at least one keyframe into a set of forces that, when
3	applied to the object, approximate the motion represented by the keyframe.
1 .	67. The method of claim 66, wherein converting at least one keyframe into a set of forces
2	comprises deriving a set of forces based on the velocity and acceleration at the keyframe.
1	68. A method for generating an animation for an object using behaviors, the animation
2	comprising a plurality of frames, the method comprising:
3	for each frame:
4	determining a current state of the object;
5	traversing a data structure to identify behaviors affecting the object;
6	accumulating forces for the behaviors affecting the object;
7	generating a frame of the object according to the accumulated forces; and
8	outputting the generated frame.

69. The method of claim 68, wherein at least one of the determining, traversing, accumulating, 1 2 generating and outputting steps for a first frame is performed concurrently with at least one of 3 the determining, traversing, accumulating, generating and outputting steps for a second frame. 1 70. A method for animating an object using parameter behaviors, comprising: 2 traversing a stack of operations on a range of values: 3 responsive to a single behavior value being sufficient to evaluate all operations in the 4 stack, passing the single behavior value to each operation in the stack; and 5 responsive to a single behavior value not being sufficient to evaluate all operations in the 6 stack: 7 determining a range of input values to compute a requested output range; and 8 passing the determined range of input values to each operation in the stack. 1 71. A method for animating an object using a behavior, comprising: 2 outputting an original animation for the object according to a first behavior; 3 concurrently with outputting the object animation, accepting user input; and 4 outputting an updated animation for the object according to the user input. 1 72. The method of claim 71, wherein the user input comprises a command for changing a value 2 of a parameter of the behavior, and wherein outputting the updated animation comprises 3 outputting the updated animation according to the changed value of the parameter. 1 73. The method of claim 71, wherein the user input comprises a command for applying a second 2 behavior to the object and wherein outputting the updated animation comprises outputting the 3 updated animation according to the first and second behaviors. 1 74. The method of claim 71, wherein outputting the updated animation is performed without 2 interrupting the animation for the object.

- 1 75. The method of claim 71, wherein the updated animation reflects the changed value of the
- 2 parameter in real-time.
- 1 76. The method of claim 71, wherein outputting the original animation and outputting the
- 2 updated animation each comprise rendering a plurality of frames and caching the rendered
- 3 frames.
- 1 77. The method of claim 71, wherein outputting the original animation and outputting the
- 2 updated animation each comprise rendering each of a plurality of frames sequentially.
- 1 78. The method of claim 71, wherein outputting the original animation and outputting the
- 2 updated animation each comprise rendering each of a plurality of frames sequentially by
- 3 calculating a current frame based on a previous frame.
- 1 79. The method of claim 71, wherein outputting the original animation and outputting the
- 2 updated animation each comprise rendering a plurality of frames and periodically caching a
- 3 subset of the rendered frames in an interval cache.
- 1 80. The method of claim 71, wherein outputting the original animation and outputting the
- 2 updated animation each comprise evaluating, by a first thread, a first subset of frames, and
- 3 evaluating, by a second thread, a second subset of frames.
- 1 81. The method of claim 80, wherein the first subset and the second subset of frames each
- 2 comprise alternate frames of the animation.
- 1 82. In a computer-implemented animation system, a method for animating an object, the method
- 2 comprising:
- 3 receiving a first input, the first input specifying a first behavior, the first behavior
- 4 indicating how to change a value of a parameter of the object over time;

5	using at least one of a pixel shader and a vertex shader to generate a plurality of frames of
5	the object, according to the specified behavior; and
7 .	outputting the plurality of frames.