Seq1 = TTACT Seq2 = TATAT

g = -3

Seq2 = TATAT mismatch = -1

match = 2

Matrix S

Criar tabela com len(Seq1)+1 dimensão Inserir primeira linha e coluna com g*i (i o indice da entrada):

		Т	Α	Т	Α	Т
	0	-3	-6	-9	-12	-15
Т	-3					
Т	-6					
Α	-9					
С	-12					
Т	-15					

calcular valores possiveis para S[1][1]:

$$v1 = S[0][0] + Score(Seq1[0],Seq2[0])=0+2=2$$

$$Score(a,b) == 2 if a==b$$

Score(a,b)
$$== -1$$
 if a!=b

$$v2 = S[0][1] + g = -3-3 = -6$$

$$v3 = S[1][0] + g = -3-3 = -6$$

Max de v1,v2,v3 vai ser o valor de S[1][1]

		Т	Α	Т	Α	Т
	0	-3	-6	-9	-12	-15
Т	-3	2				
Т	-6					
Α	-9					
С	-12					
Т	-15					

Assim fazendo para todas as entradas

		Т	Α	Т	Α	Т
	0	-3	-6	-9	-12	-15
Т	-3	2	-1	-4	-7	-10
Т	-6	-1	1	1	-2	-5
Α	-9	-4	1	0	3	0
С	-12	-7	-2	0	0	2
Т	-15	-10	-5	0	-1	2

Optimal alignment:

T-TACT

Score: 2

TATA-T

Matrix T

Criar tabela com len(Seq)+1 dimensão Inserir primeira linha e coluna com 0 na entrada 0,0 e 3 na horizontal e 2 na vertical

		T	Α	T	Α	T
	0	3	3	3	3	3
Т	2					
Т	2					
Α	2					
С	2					
Т	2					

calcular valores v1,v2,v3 como para S

if
$$v1 > v2, v3 -> S[1][1]=1$$

if
$$v2 > v1, v3 -> S[1][1]=2$$

if
$$v3 > v1, v2 -> S[1][1]=3$$

		T	Α	Т	Α	T
	0	3	3	3	3	3
Т	2	1				
Т	2					
Α	2					
С	2					
Т	2					

Fazendo o mesmo para todas as entradas

_		Т	Α	Т	Α	Т
	0	3	3	3	3	3
Т	2	1	3	3_1	3	3_1
Т	2	2_1	1	1	3	3_1
Α	2	2	1	1	1	3
С	2	2	2	1	2	1
Т	2	2_1	2	1	1	1

Não há outros soluções otimas porque na matrix T não há nenhum lugar no caminho em que se podia ir para duas direções diferentes.