)	OLTP	OLAP
	→ operational processing	→ informational processing
itation	transaction	->analysis
Teet Teet	>derk, DBA, database professional	>knowledge worker (e.g., manager, executive, analyst)
Function	>day-to-day operations —	Jong-term informational requirements decision support
Data Vc	>ER-based, application-oriented	>star/snowflake, subject-oriented >historic, accuracy maintained over time
Summarization > p	> primitive, highly detailed	> summarized, consolidated
fworld	short, simple transaction	complex query
	> read/write-	>mostly read
	>data in	> information out
suoi	Sindex/hash on primary key	> lots of scans
Number of records	≯tens -	> millions
nsers	thousands ————————————————————————————————————	→ ≥ TB
DB size	high performance, high availability —	high flexibility, end-user autonomy

<u>Data Warehouse</u>: Three – tier Architecture

BOTTOM TIER

- The bottom tier is a warehouse database server that is almost always a relational database system.
- Back-end tools and utilities are used to add data into the bottom tier from operational databases or other external sources.
- These tools and utilities perform data extraction, cleaning, transformation, loading and refresh.
- The data are extracted using application program interfaces known as gateways.
- E.g.) ODBC (Open Database Connection), OLEDB (Object Linking and Embedding Database) by Microsoft & JDBC (Java Database Connectivity)
- This tier also contains a metadata repository, which stores information about the data warehouse and its contents

MIDDLE TIER

- The middle tier is an OLAP server that is typically implemented using either
 - 1) A relational OLAP(ROLAP) model (i.e., an extended relational DBMS that maps operations on multidimensional data to standard relational operations);
 - 2) A multidimensional OLAP (MOLAP) model (i.e., a special-purpose server that directly implements multidimensional data and operations).

TOP TIER

• The top tier is a front-end client layer, which contains query and reporting tools, analysis tools, and/or data mining tools (e.g., trend analysis, prediction, and so on).

Data Cube & Dimension Analysis

- Data warehouses and OLAP tools are based on a multidimensional data model.
- This model views data in the form of a data cube.
 - A data cube allows data to be modeled and viewed in multiple dimensions. It is defined by dimensions and facts.
 - o In general terms, dimensions are the perspectives or entities <u>with respect to which an organization wants to keep records.</u>
 - o E.g.) Store's sales with respect to the dimensions time, item, branch, and location.
 - o Each dimension may have a table associated with it, called a dimension table.
 - o A multidimensional data model is typically organized around a central theme
 - o The fact table contains the names of the facts, or measures, as well as keys to each of the related dimension tables.
 - o In data warehousing the data cube may contains n-dimensional.
- Let's have a 2-D data view for sales with respect to
 - o TIME(4 Quarters) & ITEM (4-types) at Location = "Vancouver"

	location = "Vancouver"							
	item (type)							
time (quarter)	home entertainment	computer	phone	security				
Q1	605	825	14	400				
Q1 Q2	680	952	31	512				
Q3 Q4	812	1023	30	501				
Q4	927	1038	38	580				

Now 3 – D data View for the sales where locations and items are increased

	location = "Chicago"		location = "New York"			location = "Toronto"				location = "Vancouver"						
0	Item		Item													
time	home ent.		phone	sec.	home ent.		phone	sec.	home ent.		. phon	ie sec.	home ent.		phone	e sec.
Q1	854	882	89	623	1087	968	38	872	818	746	43	591	605	825	14	400
Q2	943	890	64	698	1130	1024	41	925	894	769	52	682	680	952	31	512
Q3	1032	924	59	789	1034	1048	45	1002	940	795	58	728	812	1023	30	501
Q4	1129	992	63	870	1142	1091	54	984	978	864	59	784	927	1038	38	580

Now 3 - D Data Cube View

If another dimension is added as suppliers then 4 – D view is required as below.

- Given a set of dimensions, we can generate a cuboid for each of the possible subsets of the given dimensions.
- The result would form a lattice of cuboids, each showing the data at a different level of summarization.
- Figure shows a lattice of cuboids forming a data cube for the dimensions time, item, location, and supplier.

Stars, Snowflakes, and Fact Constellations (Schemas for Multidimensional Data Models)

- Entity Relationship data model is usually used for Operational database System.
- For Data Warehouse, it requires aconcise, subject oriented schema that facilitates data analysis.

STAR SCHEMA

- In this data warehouse contains
 - 1) a large central table (fact table) containing the bulk of the data, with no redundancy, and
 - 2) a set of smaller attendant tables (dimension tables), one for each dimension.
- It is a relational model where there is a One –to-Many Relationship between each dimension table and fact table.
- E.g.) A star schema for AllElectronics sales is

- Fact table contains dimension identifiers (item_key, item_key, etc), these are system generated identifiers.
- Fact table also contains some attributes (like dollars_sold, units_sold).
- Each dimension Table is connected to the fact table using dimension identifiers.
- Each dimension table contains set of attributes.
- In this schema, constraint may introduce the redundancy.
 - E.g.) in "location table", one attribute is "country",
 - o Each country has no. of states,
 - o If data contains "Gujarat " & "Goa" as state attribute's value in this case country is "india". So it generates Redundancy in "Star Schema".

ADVANTAGES

1) Query Performance

Queries run faster against a star schema database than an OLTP system because the star schema has <u>fewer tables and clear join paths</u>. This design feature enforces accurate and consistent query results.

2) Load Performance and Administration

The star schema structure <u>reduces the time required to load large batches</u> of data into a database. By defining facts and dimensions and separating them into different tables, the impact of a load operation is reduced.

3) Built-in Referential Integrity

In star schema Referential integrity is enforced by the use of primary and foreign keys. <u>Primary keys in dimension tables become foreign keys in fact tables</u> to link each record across dimension and fact tables.

4) Efficient Navigation Through Data

Navigating through data is efficient because <u>dimensions are joined through fact tables</u>. You can browse a single dimension table in order to select attribute values to construct an efficient query.

SNOWFLAKE SCHEMA

- The snowflake schema is a variant of the star schema model,
 - o where some dimension tables are normalized, thereby further splitting the data into additional tables
- E.g.) A Snowflake schema for AllElectronics sales is

- From figure, "location" & "item" dimension tables are normalized to additional tables.
- "location" is normalized to "city" and "item" is normalized to "supplier".
- It means that the Redundancy is reduced in the "Snowflake schema".

FACT CONSTELLATION OR GALAXY SCHEMA

- It has more than one Fact Tables.
- In this Dimension tables are shared between different fact tables.
- E.g.) This schema specifies two fact tables, sales and shipping.

OLAP Models

(ROLAP & MOLAP)

ROLAP

- Relational OLAP servers are placed between relational back-end server and client front-end tools.
- To store and manage the warehouse data, the relational OLAP uses relational or extended relational DBMS.
- ROLAP servers are highly scalable.
- ROLAP tools analyze large volumes of data across multiple dimensions.
- ROLAP tools store and analyze highly volatile and changeable data.

- ROLAP Architecture includes the following components:
 - o Database server
 - ROLAP server
 - Front-end tool.
- Advantages
 - o ROLAP servers can be easily used with existing RDBMS.
 - o Data can be stored efficiently, since no zero facts can be stored.
 - o ROLAP tools do not use pre-calculated data cubes.
- Disadvantages
 - o Poor query performance.
 - o Some limitations of scalability depending on the technology architecture that is utilized.

MOLAP

ROLAP vs MOLAP

	<u> </u>	-						
	ROLAP	<u>MOLAP</u>						
DATA Storage	Detailed data with less summarization.	Summarized data kept in Databases.						
	Very Large Data Volumes.	Moderate data volumes						
	All data access from Warehouse	Summary Data access from MDDB						
	storage.	(Multi Dimensional DBs) and						
		Detailed data access from						
		warehouse						
Underlying	Use of Complex SQL to fetch data from	Here, Data cubes are created by						
Technologies	warehouse.	MOLAP and multidimensional views						
		are stored in arrays. High Matrix						
	ROLAP Engine creates Data Cubes on	data retrieval.						
	the fly and Multidimensional views by	MOLAP Engine creates data cubes						
	presentation Layer.	and stored in arrays.						
Functions and	• Limitations on complex analysis	Large library functions for complex						
Features	functions.	calculations.						
	Access not faster than MOLAP.	Faster Access.						
	Drill – through to the lowest level	Extensive Drill-Down and slice-Dice						
	easier and drill – across is not easy for	Capabilities.						
	ROLAP.							

Concept Hierarchy

 A <u>concept hierarchy</u> defines a sequence of mappings from a set of low-level concepts to higher-level, more general concepts.

- From Above Figure; The mappings form a concept hierarchy for the dimension <u>location</u>, mapping a set of low-level concepts (i.e., cities) to higher-level, more general concepts (i.e., countries).
- Hierarchical and lattice structures of attributes in warehouse dimensions for :
 - a) a hierarchy for location and
 - b) a lattice for time.

OLAP Operations

- In the multidimensional model, data are organized into multiple dimensions, and each dimension contains multiple levels of abstraction defined by concept hierarchies.
- This organization provides users with the flexibility to view data from different perspectives.
- OLAP Operations are
 - 1) Roll-up
 - 2) Drill-down
 - 3) Slice and dice
 - 4) Pivot (rotate)
- For OLAP Operations given cube is:

ROLL - UP:

Roll-up performs aggregation on a data cube in any of the following ways:

- By climbing up a concept hierarchy for a dimension
- o By dimension reduction
- Initially the concept hierarchy was
 "street < city < province < country".
- On rolling up, the data is aggregated by ascending the location hierarchy from the level of city to the level of country.
- The data is grouped into cities rather than countries.
- When roll-up is performed, one or more dimensions from the data cube are removed.

DRILL - DOWN:

- Drill-down is the reverse operation of roll-up. It is performed by either of the following ways:
 - By stepping down a concept hierarchy for a dimension
 - o By introducing a new dimension.
- Initially the concept hierarchy was
 "day < month < quarter < year."
- On drilling down, the time dimension is descended from the level of quarter to the level of month.
- When drill-down is performed, <u>one or more</u> dimensions from the data cube are added.
- It navigates the data from less detailed data to highly detailed data.

Chicago **New York** 1560 Toronto Vancouver Q1 400 825 Q2 Q3 Q4 Drill down on time(from guarters to month) Chicago New York Toronto Vancouver

SLICE:

- The slice operation <u>selects one particular</u> <u>dimension</u> from a given cube and provides a new sub-cube.
- Here Slice is performed for the dimension "time" using the criterion time = "Q1".
- It will form a new sub-cube by selecting one or more dimensions.

DICE:

- Dice selects <u>two or more dimensions</u> from a given cube and provides a new sub-cube.
- The dice operation on the cube based on the following selection criteria involves three dimensions.
 - o (location = "Toronto" or "Vancouver")
 - o (time = "Q1" or "Q2")
 - o (item =" Mobile" or "Modem")

PIVOT (ROTATE):

- The pivot operation is also known as rotation.
- It rotates the data axes in view in order to provide an alternative presentation of data.

"<u>Drill-across</u>" executes queries involving (i.e., across) more than one fact table.

"<u>Drill-through</u>" operation uses relational SQL facilities to drill through the bottom level of a data cube down to its back-end relational tables.