Linear Algebra - MATH-4100

Final Examination - December 18, 2015.

An Orthonormal Basis for $V = \mathcal{P}_6(\mathbb{R})$

Define an inner product on $V = \mathcal{P}(\mathbb{R})$ by

$$\langle p(x), q(x) \rangle = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} p(x) q(x) dx.$$

Starting with the basis $(1, x, x^2, x^3, x^4, x^5, x^6)$ for V, the Gramm-Schmidt algorithm computes an orthonormal basis, $(e_0(x), e_1(x), e_2(x), e_3(x), e_4(x), e_5(x), e_6(x))$, where

$$e_0(x) = 1$$

$$e_1(x) = x$$

$$e_2(x) = \frac{1}{\sqrt{2}}(x^2 - 1)$$

$$e_3(x) = \frac{1}{\sqrt{6}}(x^3 - 3x)$$

$$e_4(x) = \frac{1}{2\sqrt{6}}(x^4 - 6x^2 + 3)$$

$$e_5(x) = \frac{1}{2\sqrt{30}}(x^5 - 10x^3 + 15x)$$

$$e_6(x) = \frac{1}{12\sqrt{5}}(x^6 - 15x^4 + 45x^2 - 15)$$

1. $V = \mathcal{P}(\mathbb{R})$, with inner product given above. Define a linear functional, φ on V by

$$\varphi(p(x)) = \frac{p(1) + p(-1)}{2}.$$

Find a ploynomial q(x) such that

$$\varphi(p(x)) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \mathbf{E}^{-\frac{x^2}{2}} p(x) q(x) dx$$

for all polynomials p(x) of degree 6 or less.

2 Linear Algebra Professor M. Zuker

- 2. Let $V = \mathbb{R}^3$ and let U be the orthogonal complement of span (2, 1, -2).
 - (a) Compute an orthonormal basis of U.
 - (b) Find a vector $v \in U$ that is closest to w = (1, 1, -1).
 - (c) Compute ||v w||.
- 3. Let $T \in \mathcal{L}(\mathbb{R}^2)$ be defined by T(x,y) = (9x 3y, 17y 3x). Is T a positive operator? Prove your assertion. Is $\langle T(w,x), (y,z) \rangle$ an inner product on \mathbb{R}^2 ?
- 4. Suppose $T \in \mathcal{L}(V)$ is invertible.
 - (a) If $\lambda \in \mathbb{F}$ and $\lambda \neq = 0$, prove that λ is an eigenvalue of T if and only if $\frac{1}{\lambda}$ is an eigenvalue of T^{-1} .
 - (b) Prove that T and T^{-1} have the same eigenvectors.
- 5. Suppose that $T \in \mathbb{R}^3$ has an upper-triangular matrix with respect to the basis $v_1 = (1,0,0)$, $v_2 = (1,1,1)$ and $v_3 = (1,1,2)$. Find an orthonormal basis of \mathbb{R}^3 for which T has an upper-triangular basis.

motrix

6. We know that if dim V = n and (v_1, \ldots, v_n) is a basis of V, then every vector $v \in V$ is a linear combination of the basis vectors.

$$v = \sum_{i=1}^{n} a_i v_i,$$

where the scalars a_i are uniquely determined. If (v_1, \ldots, v_n) is an orthonormal basis, then it is easy to determine the values of the scalars. In the equation above, take the inner product of both sides with v_i , The result is $\langle v, v_i \rangle = a_i \langle v_i, v_i \rangle = a_i$ for each i, resulting in

$$v = \sum_{i=1}^{n} \langle v, v_i \rangle v_i,$$

and consequently

$$||v||^2 = \sum_{i=1}^n |\langle v, v_i \rangle|^2.$$

- (a) What happens if the v_i are merely orthogonal (that is, $\langle v_i, v_j \rangle = 0$ if $i \neq j$) but of arbitrary (non-zero) norm? Derive a formula for the a_i 's (above) and for $||v||^2$.
- (b) Note that $v_1 = (1, 1, 1)$, $v_2 = (1, -2, 1)$ and $v_3 = (1, 0, -1)$ is an orthogonal basis of \mathbb{R}^3 . Express v = (5, -2, 7) as a linear combination of v_1 , v_2 and v_3 .
- 7. Define $T \in \mathcal{L}(\mathbb{R}^5, \mathbb{R}^2)$ by $T(x_1, x_2, x_3, x_4, x_5) = (x_2 + 2x_3 + 3x_4 + 4x_5, 4x_1 + 3x_2 + 2x_3 + x_4)$.
 - (a) With respect to the standard bases in \mathbb{R}^2 and \mathbb{R}^5 , compute $A = \operatorname{Mat}(TT^*)$ and $B = \operatorname{Mat}(T^*T)$.
 - (b) Compute the rank of A and the rank of B.
 - (c) Is TT^* invertible? Is T^*T invertible? Why?
 - (d) Compute an orthonomal basis of eigenvectors of TT^* .
 - (e) Compute the eigenvalues of TT^* .
 - (f) Compute the distinct eigenvalues of T^*T .
 - (g) For each non-zero eigenvalue of T^*T , compute an eigenvector of T^*T .

- 8. Define $T \in \mathcal{L}(\mathbb{R}^3)$ by T(x, y, z) = (y, x z, y). For all computations, you may use matrices.
 - (a) Show that T is nilpotent. What is the smallest positive integer n such that $T^n = 0$?
 - (b) Does \mathbb{R}^3 have a basis of eigenvectors of T? Why?
 - (c) Compute the singular values of T.
 - (d) Compute a positive square root, R of T^*T .
- 9. Define $T \in \mathbb{R}^2$ by T(x,y) = (5x + 3y, 4y). You may use matrices for computations.
 - (a) Compute the singular values of T.
 - (b) Compute $R = \sqrt{T^*T}$. (It suffices to compute the matrix of R with respect to the standard basis.)
 - (c) Compute the polar form of T.