

PRACTITIONER COMMUNITY

June 17th, 2021

Welcome

Agenda

We have prepared a very interesting agenda for today's session

News and Updates

Facebook's new AI tool can replicate, replace and edit handwritten text using a single word in an image.

Read more...

By developers, for developers: Metabob's AI tool will forever change how developers approach debugging.

Read more...

Google is using AI to design chipsets in just six hours.

Read more...

News and Updates

Artificial Intelligence predicts how patients with viral infection will fare.

Read more...

Azure Maps Creator is now generally available in Microsoft Azure Service.

Read more...

News and Updates

An update by

Jair Ribeiro Senior Business Analyst – Artificial Intelligence

Business Problem Statement IRec - Image Recognition Emission Class

Requirement is to automate the mundane manual audit of the trucks entering the factory.

Why Audit?

- To capture the license plate numbers
- Check the Emission class of the truck
- Making sure trucks meet minimum emission class requirement

Pilot Site: Tuve

On a high-level following is the problem statement

Truck Emission Class detection

- Auto detect the Emission class of all incoming trucks into plant
- Create a report with logistics company details
- Share report on Power BI board for further actions

PL Sustainable transport system Identified areas and actions to acheive by 2025

"To lead by example, we should have a world class sustainable transport system by 2025"

REDUCE

TRANSPORT DEMAND

OPTIMIZE

TRANSPORATION

IMPROVE FLEET EFFICIENCY

- Localization and nearshoring supply base
- Reduce unnecessary shipments
- Reduce air shipment acceptance
- 3-D printing for low running parts
- Proactive transport network optimization
- Focus on load consolidation and filling degree in the supply chain
- Loadsharing with other shippers
- **Emission class requirements**
- Utilize right mode of transports increase usage of rail and sea
- Slow steaming ships and alternative fuel, High capacity vehicles
- LNG/CNG and early adaptation of electric trucks

Reduce CO2 emissions from freight transports per produced unit by 30% by 2025*

Emission Class – AS IS Process

Trucks parked at Tuve Factory-LX gate

Volvo Group IT

Manual Capture by requesting the truck Driver

Frequency:

Goods receipt capture: Every day; 2 shifts Sustainability report: 1 full day once per year

Stakeholder have limited access to the data

VOLVO GROUP

Manual entry into Excel at LX gate

AI – Computer Vision Solution

Artificial Intelligence On Microsoft Azure Cloud

Al Solution reading the License Plate Number

Windows Azure

Morricons, place

IP Camera

Camera sending the Images to cloud

Send make, model and emission class of truck Receive make, model and emission class of

the truck

API Service Layer

BUSINESS VALUE

Scale up the As-Is process

High confidence in data quality

Reduced human effort to capture the data

Reduced turn around time to aggregate the results

User friendly Power BI dashboard-updated once a day

Inline with digitization and sustainability ambitions

High Level Technical Flow

Volvo Facility Network

- Outdoor All weather Casing IP66/IP67
- Resolution 1920x1080
- Frame rate Up to 25/30 FPS (50/60 HZ) in all resolutions
- Power over Ethernet POE
- IR illumination Optimized IR (Day & Night)
- Operating conditions -40 °C to 60 °C (-40 °F to 140 °F)
- Event Triggers Features Cross Line Detection, Video Motion Detection
- Lux Color: 0.07 lux, at 50 IRE F1.2; B/W: 0.01 lux, at 50 IRE F1.2
- Video compression H.264
- Connectors Shielded RJ45

IP POE Camera: AXIS P1448-LE LPR-Front at Tuve: LX Gate

RJ45 Cable Images are transmitted

Captures the images only when the truck arrives at the

Camera, Switch & Standalone machine exist in the same facility network area

Volv o Group IT

Solution pipeline - Azure

VOLVO VOLVO GROUP

Solution output

Legal_Name	First Legal_Group	Count of Document.id
A. R. J. Transport Aktiebolag	Aktiebolag	1
Aktiebolaget Lundby Åkeriet	Aktiebolag	449
Aktiebolaget Melvin Levin	Aktiebolag	1
Aktiebolaget Tingstad Papper	Aktiebolag	1
ALD Automotive AB	Aktiebolag	1
Alexander LS Transport AB	Aktiebolag	4
Andalens Åkeri Aktiebolag	Aktiebolag	6
Angered Byggvaror Aktiebolag	Aktiebolag	4
Aros Fjärrgods AB	Aktiebolag	2
Åsundens Åkeri AB	Aktiebolag	1
Augustsson Fordonsvård AB	Aktiebolag	2
B.X.S Trans AB	Aktiebolag	2
Balto AB	Aktiebolag	2
BBS Transport AB	Aktiebolag	3
Bengt Norrmans Åkeri Aktiebolag	Aktiebolag	3
Total	Aktiebolag	2887

NumberplateVal	lue	^
AAG673		
AAZ720		
ABK42G		
ABS21C		
ADO293		
AEN23J		
AGX605		
ANG254		
AON127		
APP390		
ARH691		
AUF451		
AUH359		
AUN236		
AUO812		~
<	>	

Volv o Group IT

Building the Truck/No Truck Model Using Transfer Learning

Machine learning workflow

2

3

4

5

Examine and understand the data

Problem

Data

Al Technique

Build an input pipeline

Data set : Train & Val

Keras Image Data Generator

Vision based Model building

Load in the pretrained base model

Stack the classification layers on top

Train the model

Training

Hyper parameter Tuning

Evaluate model

Evaluation matrices

1.Examine and understand the data

- Understand the problem your solving
- Understand the Data
- Identify the right AI technique to solve

notruck

notruck

notruck

notruck

notruck

truck

notruck

notruck

2. Build an input pipeline, in this case using Keras Image Data Generator

- The training Data set has **5622** files belonging to 2 classes.
- The Validation data set has 1228 files belonging to 2 classes.
- When you don't have a large image dataset, it's a good practice to artificially introduce sample diversity by applying random, yet realistic, transformations to the training images.

3. Building Vision Model

Create the base model from the pretrained convnets

 We have built the base model from the Xception model developed at Google.

This is pre-trained on the ImageNet dataset, a large dataset consisting of 1.4M images and 1000 classes.

- ImageNet is a research training dataset with a wide variety of categories like Person, car, jackfruit etc.
- Transfer learning : <u>click</u>

4.Train & Hyper Parameter Tuning

- In the feature extraction experiment, you were only training a few layers on top of an Xception base model.
- The weights of the pre-trained network were not updated during training.
- One way to increase performance even further is to train (or "fine-tune") the weights of the top layers of the pre-trained model alongside the training of the classifier you added.
- The training process will force the weights to be tuned from generic feature maps to features associated specifically with the dataset.

After fine tuning the model nearly reaches 96% accuracy on the validation set.

5. Evaluation and prediction

• Finally, you can verify the performance of the model on new data using test set.

```
loss, accuracy = model.evaluate(test_dataset)
print('Test accuracy :', accuracy)
Test accuracy: 0.9583333134651184
```

Volv o Group IT

notruck

License Plate Detection Model using YOLO

Computer Vision - Object Detection

When it comes to deep learning-based object detection, there are three primary object detectors you'll encounter:

- R-CNN and their variants, including the original R-CNN, Fast R-CNN, and Faster R-CNN
- Single Shot Detector (SSDs)
- YOLO

YOLO

 The biggest advantage of using YOLO is its superb speed – it's incredibly fast and can process 45 frames per second.

Data preparation and Image labelling

- Resizing, preprocessing the images, if necessary.
- Image labelling
- After using a tool like <u>CVAT</u>, <u>makesense.ai</u> or <u>Label</u> <u>box</u> to label your images
- export your labels to **YOLO format**, with one *.txt file per image (if no objects in image, no *.txt file is required). The *.txt file specifications are:

Model Training and Evaluation Metrices:

- The model was able to Achieve 99.67% accuracy with the threshold of 0.50 IOU, that is with at least 50% or above overlapping with ground truth of labelled images.
- Similarly, 80.28% of accuracy with the threshold of 0.95 IOU, that is with at least 95% or above overlapping with ground truth of labelled images.

Train YOLOv5s on COCO128 for 5 epochs\$

python train.py --img 640 --batch 16 --epochs 25 --data data.yaml -weights yolov5s.pt

Mean average precision (mAP), recall, precision where the evaluation matrix considered for the case.

Output

- Bounding box with confidence value is displayed on sample test image
- Other Different input Sources

0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVIDFqZg' # YouTube video
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP
stream

- A custom Function build to crop bounding box.
- This cropped image will be further used by Read API to extract text from the image.

LESSONS LEARNT

Procurement of the hardware equipment Vendor Management Camera Installation & Setup Network Issues Saving pictures on machine Stakeholder Management

Computer Vision Solution Setup

Recommendations

Ground zero planning

Camera Evaluation and Procurement

Reuse same setup elsewhere (plug & play?)

Data collection for Al solution

Optimal cost planning

Needed Cloud Support

Runtime support

Solution Scalability

QUESTION & ANSWER TIME

Useful Links

Here you have the links for the content we have shared during the presentation. Click on the icon to access the site.

Thank You

