

BEST AVAILABLE COPY

Process for applying antidrip edge to a glass sheet

Patent number:

DE4435843

Publication date:

1996-04-11

Inventor:

NOLTE HANS-HENNING (DE); GRUENZEL HELGA

(DE); SATTLER BERNHARD (DE)

Applicant:

FLACHGLAS AG (DE)

Classification:

- international:

C03C27/12; C08K3/26; C08K3/32; C09K3/10;

C09D5/34; C09K21/00; E06B5/16; C08L1/26; C08K3/40;

C08K3/36

- european:

B32B17/10E16; B32B17/10E18; B32B17/10L16B2

Application number: DE19944435843 19941007 Priority number(s): DE19944435843 19941007

Also published as:

EP0705686 (A1) US5837342 (A1)

JP8226287 (A)

EP0705686 (B1)

Report à data error here

Abstract not available for DE4435843 Abstract of corresponding document: **US5837342**

An antidrip edge composition of fine-powder glass formers, cellulosic polymer and water to which a mineral acid is added has a pot-life lengthener for the dispersion is subjected to vacuum and/or agitation and/or vibration to remove bubbles, upon application to a glass sheet, prevents escape of an alkali silicate solution forming a fire-resisting intervening layer between that glass sheet and another glass or plastic sheet applied thereto.

Data supplied from the esp@cenet database - Worldwide

19 BUNDESREPUBLIK

DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 44 35 843 A 1

C 09 K 3/10 C 09 D 5/34 C 09 K 21/00 E 08 B 5/18 // C08L 1/26,C08l

DEUTSCHES PATENTAMT

(21) Aktenzeichen: P 44 35 843.1 (22) Anmeldetag: 7. 10. 94

Offenlegungstag: 11. 4.96

E 08 B 5/18 // C08L 1/26,C08K 3/40,3/38,3/28,3/32

- (7) Anmelder:
 - Flachglas AG, 90766 Fürth, DE
- (4) Vertreter:

Andrejewski und Kollegen, 45127 Essen

@ Erfinder:

Nolte, Hens-Henning, 45884 Gelsenkirchen, DE; Grünzel, Helga, 45894 Gelsenkirchen, DE; Sattler, Bernhard, 44379 Dortmund, DE

- (S) Verfahren zum Aufbringen eines aus einem Kitt geformten Ablaufschutzrandes auf eine Glasplatte im Zuge der Herstellung von Brandschutz-Glaseinheiten
- Verfahren zum Aufbringen eines aus einem Kitt geformten Ablaufschutzrandes auf eine Glasscheibe im Zuge der Herstellung von Brandschutz-Glaseinheiten, welche die Glasplatte, eine Brandschutz-Zwischenschicht und eine abdeckende Platte aus Glas oder Kunststoff aufweisen. Der Kitt wird aus einem feinteiligen Glasbildner als Füllstoff und aus einem polymeren Callulosa-Darivat mit Wasser zu einer Dispersion angemacht. Der Dispersion wird eine minerallsche Säure oder eine Mischung aus mineralischen Säuren als Topfzeitregulator in solcher Menge beigemischt, daß die Topfzeitspanne der Dispersion nach dem Anmachen etwa 10 bis 20 Minuten beträgt. Die mit dem Topfzeitregulator versehene Dispersion wird innerhalb der Topfzeitspanne durch Vibrationseinwirkung und/oder Vakuumeinwirkung und/oder Rühren von Luftbiasen befreit, wobei danach die von Luftblasen befreite Dispersion zum Kitt ausreift und auf den Rand der Glasplatte als Ablaufschutzrand aufgeformt

Beschreibung

Die Erfindung betrifft ein Verfahren zum Aufbringen eines aus einem Kitt geformten Ablaufschutzrandes auf eine Glasplatte im Zuge der Herstellung von Brandschutz-Glaseinheiten, die die Glasplatte, eine Brandschutz-Zwischenschicht und eine abdeckende Platte aus Glas oder Kunststoff aufweisen.

Glasplatten mit Ablaufschutzrand sind bei der Herstellung von Brandschutz-Glaseinheiten von großer Be- 10 deutung. Brandschutz-Glaseinheiten werden regelmä-Big dadurch hergestellt, daß man auf eine waagerecht liegende Glasplatte, die mit einem Ablaufschutzrand versehen ist, eine wasserhaltige Alkalisilicatlösung, die Beimischungen aufweisen kann, aufbringt, die von dem 15 als Damm wirkenden Ablaufschutzrand auf der Glasplatte gleichsam festgehalten wird. Das Wasser dieser Lösung wird durch Einwirkung erhöhter Temperaturen entfernt und die flüssige Schicht verfestigt sich zur Brandschutz-Zwischenschicht. Im allgemeinen werden 20 bei der Verfestigung innerhalb der Schicht Temperaturen von bis zu 130°C nicht überschritten. Nach der Verfestigung wird die Schicht mit einer weiteren Glasplatte oder auch mit einer Kunststoffplatte verbunden, z.B. durch Verkleben. Auf die so hergestellte Brandschutz- 25 Glaseinheit können in analoger Weise weitere Silikatschichten, Glasplatten oder Kunststoffplatten aufgebracht werden (vgl. DE 19 00 054 B2). In der Vergangenheit wurde der Ablaufschutzrand durch einen Rahmen gebildet, der auf die Glasplatte aufgesetzt wurde. 30 Das ist im Rahmen einer industriellen Serienfertigung aufwendig. In neuerer Zeit wird daher der Ablaufschutzrand aus Kitt geformt. Wie auch immer im Rahmen der bekannten Maßnahmen im einzelnen verfahren wird, es fällt am Ende des Herstellungsprozesses ein 35 Randabschnitt der Glasplatte an, der aus dem Verfahren zur Herstellung der Brandschutz-Glaseinheiten herausgeführt werden muß.

Bei dem aus der Praxis bekannten Verfahren, von dem die Erfindung ausgeht, wird der Ablaufschutzrand 40 aus einem Kitt geformt, der hauptsächlich aus Kaolin und Natron-Wasserglas besteht und außerdem Wasser aufweist. Das hat sich in bezug auf die Herstellung der Brandschutz-Glaseinheiten bewährt, führt jedoch zu Randabschnitten, die verworfen werden müssen. Eine 45 Rückführung der Randabschnitte in eine Glasschmelze ist nicht möglich, weil mit dem Kaolin und dem Wasserglas in der Glasschmelze störende Verunreinigungen eingetragen werden. Die Mischung aus Kaolin, Wasserglas und Wasser läßt sich zwar einfach herstellen, je- 50 doch kann nicht verhindert werden, daß in dem Kitt und damit in dem Ablaufschutzrand, der auf eine Glasplatte aufgebracht wird, Blasen entstehen. Das führt häufig dazu, daß bei der beschriebenen Wärmebehandlung Löcher in dem Ablaufschutzrand entstehen, durch die die 55 Mischung, aus der die Brandschutz-Zwischenschicht sich bildet, abläuft. Dadurch entstehen erhebliche Verluste und Verunreinigungen der Anlage.

Die allgemeine Aufgabe der Erfindung lautet, Brandschutz-Glaseinheiten so herzustellen, daß die oben behandelten Randabschnitte in eine Glasschmelze wieder zurückgeführt werden können. Der Erfindung liegt konkret das technische Problem zugrunde, ein Verfahren zum Aufbringen eines aus einem Kitt geformten Ablaufschutzrandes auf eine Glasplatte anzugeben, welches zu im vorbeschriebenen Sinne rückführbaren Randabschnitten führt.

Zur Lösung dieses technischen Problems ist Gegen-

stand der Erfindung ein Verfahren zum Aufbringen eines aus einem Kitt geformten Ablaufschutzrandes auf eine Glasscheibe im Zuge der Herstellung von Brandschutz-Glaseinheiten, welche die Glasplatte, eine Brandschutz-Zwischenschicht und eine abdeckende Platte aus Glas oder Kunststoff aufweisen, - mit den folgenden Merkmalen: 1.1) Der Kitt wird aus einem feinteiligen Glasbildner als Füllstoff und aus einem polymeren Cellulose-Derivat mit Wasser zu einer Dispersion angemacht, 1.2) der Dispersion wird eine mineralische Säure oder eine Mischung aus mineralischen Säuren als Topfzeitregulator in solcher Menge beigemischt, daß die Topfzeitspanne der Dispersion nach dem Anmachen etwa 10 bis 20 Minuten beträgt, 1.3) die mit dem Topfzeitregulator versehene Dispersion wird innerhalb der Topfzeitspanne durch Vibrationseinwirkung und/ oder durch Vakuumeinwirkung und/oder durch Rühren von Luftblasen befreit, wobei danach die von Luftblasen befreite Dispersion zum Kitt ausreift und auf den Rand der Glasplatte als Ablaufschutzrand aufgeformt wird.

Die Erfindung geht von der Erkenntnis aus, daß es nicht erforderlich ist, für den Aufbau des Ablaufschutzrandes mit Kaolin zu arbeiten, wenn man als Binder ein polymeres Cellulose-Derivat einsetzt. Wird mit einem polymeren Cellulose-Derivat gearbeitet, so kann als Füllstoff im Sinne des Merkmals 1.1) ein Glasbildner eingesetzt werden. Glasbildner bezeichnet dabei feinteiliges Glas, aber auch die Komponenten der für die Glasherstellung bekannten Gemenge wie Calciumsilicat und Alkalisiiikate, die als Gemisch amorph erstarren. Eine Vormischung aus den vorstehend genannten Füllstoffen und einem polymeren Cellulose-Derivat an sich und für sich, ohne weitere Zusätze, zeigt mit dem Anmachen unter Verwendung von Wasser zu einer Dispersion ein störendes Phänomen: Die Viskosität der Mischung steigt störend schnell an. Die sogenannte Topfzeit, in der diese Mischung noch ausreichend flüssig ist, um als Flüssigkeit behandelt und gehandhabt zu werden, ist zu kurz. Überraschenderweise wirkt jedoch schon ein mengenmäßig geringer Zusatz einer mineralischen Säuretopf zeitregulierend im Sinne des Merkmals 1.2). Topfzeiten von 10 bis 20 Minuten sind einstellbar. Das erlaubt es, eine Behandlung im Sinne des Merkmals 1.3) durchzuführen und die Dispersion von Luft zu befreien. Dadurch wird erreicht, daß der aus dem gereiften Kitt geformte Ablaufschutzrand keinerlei Luftblasen mehr aufweist. Überraschenderweise können die Randabschnitte in eine Glasschmelze wieder eingebracht werden, ohne daß insoweit irgendwelche Nachteile entstehen. Das gilt auch dann, wenn es sich bei der Glasschmelze um eine Floatglasschmelze handelt, wobei allerdings einige Adaptationen der Verfahrensschritte zweckmäßig sind. Im Rahmen der Erfindung können insbesondere Glasbildner aus der Gruppe "Glasperlen, gemahlenes Glas, Calciumcarbonat, Magnesiumcarbonat, Calciumphosphat, Calciumsulfat, Feinsand" oder Mischungen davon eingesetzt werden. Im Rahmen der Erfindung können insbesondere die polymeren Cellulose-Derivate der Gruppe "Methylhydroxyethylcellulose, Carboxymethylcellulose, Guar oder Mischungen davon eingesetzt werden. Als mineralische Säuren empfiehlt die Erfindung Säuren der Gruppe "Orthophosphorsäure, phosphorige Säure, Schwefelsäure" und verträgliche Mischungen daraus. Neben den bereits betonten Vorteilen (blasenfreier Ablaufschutzrand, in eine Glasschmelze einführbare Glasabschnitte) resultiert ein besonderer Vorteil daraus, daß für den Ablaufschutzrand ein an sich mit Wasserglas nicht verträgliches saures System eingesetzt wird. Hierdurch bildet sich an der Grenzfläche Ablaufschutzrand/Brandschutz-Zwischenschicht eine dünne aber dichte Gelschicht, die ein Abschwemmen von Kitt-Teilchen sowie eine Porenbildung und damit das Entstehen von Randblasen verhindert. Man erzielt auf diese Weise nicht nur höhere Ausbeuten, es kann vielmehr auch mit wesentlich kürzeren Trocknungszei-

ten gearbeitet werden.

Im einzelnen bestehen im Rahmen der Erfindung mehrere Möglichkeiten der weiteren Ausbildung und 10 Gestaltung. Vorzugsweise werden als feinteilige Glasbildner floatglasfähige Substanzen verwendet. Insbesondere kann Glasmehl verwendet werden, aber auch mit feinteiligem Calciumcarbonat als Glasbildner kann gearbeitet werden. Stets können die feinteiligen Glas- 15 bildner einen Zusatz an feinteiligem Quarzsand aufwei-

Im Rahmen der Erfindung kann mit den verschiedensten Cellulose-Derivaten gearbeitet werden, wobei die Cellulose-Derivate der vorstehend angegebenen Grup- 20 pe sich bewährt haben. Vorzugsweise wird als Cellulose-Derivat hochpolymere Methylhydroxyethylcellulose eingesetzt. Als mineralische Säure wird vorzugsweise Phosphorsäure verwendet. Im allgemeinen reicht es, die mineralische Säure in einer Menge von unter 1 25 Masse-% zu verwenden. Bewährt hat sich im Rahmen der Erfindung eine Dispersion, die 2,5 bis 3 Masse-% eines hochpolymeren Cellulose-Derivates, 50 bis 57 Masse-% feinteilige Glasbildner, 0,4 bis 1,5 Masse-% Orthophosphorsäure und im übrigen Wasser aufweist.

Gegenstand der Erfindung ist auch die Verwendung der bei der Fertigstellung der Brandschutz-Glaseinheiten anfallenden Kittrand-Abschnitte als Zusatz zum Glasschmelzen, vorzugsweise bei der Floatglasherstel-

Im folgenden wird die Erfindung anhand eines Aus-

führungsbeispiels ausführlicher erläutert:

In einen geeigneten Behälter wurden zunächst 50 Liter entsalztes Wasser eingebracht, dem unter Rühren 1 kg einer 85%-igen Orthophosphorsäure beigefügt 40 wurde. Danach wurden unter weiterem Rühren 50 kg eines feinpulverigen Glasmehls hinzugegeben. Dabei wurde das Glasmehl schon weitgehend von der anhaftenden Luft befreit. Als letztes wurden 2,4 kg Methylhydroxyethylcellulose eingerührt und danach unter Vaku- 45 um weitergerührt. Nach ca. zehn Minuten war der Mischvorgang abgeschlossen, die Masse war homogenisiert und konnte abgefüllt werden, bevor ihre Viskosität auf den für ihre Funktion als Ablaufschutz-Barriere erforderlichen Endwert angestiegen war. Durch die zu- 50 nächst sehr viel niedrigere Viskosität wurde der Entgasungsvorgang bedeutend erleichtert und verbessert, wie ein Vergleich mit dem vorher verwendeten Kittsystem ergab. Außerdem wurde durch die Gelbildung an der Grenzfläche zum aufgebrachten Wasserglas das Auftre- 35 ten von Randblasen sowie Abschwemmungen von Kittpartikeln sicher vermieden.

Patentansprüche

1. Verfahren zum Aufbringen eines aus einem Kitt geformten Ablaufschutzrandes auf eine Glasscheibe im Zuge der Herstellung von Brandschutz-Glaseinheiten, welche die Glasplatte, eine Brandschutz-Zwischenschicht und eine abdeckende Platte aus 65 Glas oder Kunststoff aufweisen, - mit den folgenden Merkmalen:

1.1) Der Kitt wird aus einem feinteiligen Glas-

bildner als Füllstoff und aus einem polymeren Cellulose-Derivat mit Wasser zu einer Dispersion angemacht.

1.2) der Dispersion wird eine mineralische Saure oder eine Mischung aus mineralischen Säuren als Topfzeitregulator in solcher Menge beigemischt, daß die Topfzeitspanne der Dispersion nach dem Anmachen etwa 10 bis 20 Minuten beträgt,

1.3) die mit dem Topfzeitregulator versehene Dispersion wird innerhalb der Topfzeitspanne durch Vibrationseinwirkung und/oder Vakuumeinwirkung und/oder Rühren von Luftbla-

sen befreit.

wobei danach die von Luftblasen befreite Dispersion zum Kitt ausreift und auf den Rand der Glasplatte als Ablaufschutzrand aufgeformt wird.

2. Verfahren nach Anspruch 1, wobei als feinteilige Glasbildner floatglasfähige Substanzen verwendet werden.

3. Verfahren nach einem der Ansprüche 1 oder 2, wobei als feinteiliger Glasbildner Glasmehl verwendet wird.

4. Verfahren nach einem der Ansprüche 1 oder 2, wobei als feinteiliger Glasbildner Calciumcarbonat verwendet wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die feinteiligen Glasbildner einen Zusatz von

feinteiligem Quarzsand aufweisen.

6. Verfahren nach einem der Ansprüche 1 bis 5, wobei als polymeres Cellulose-Derivat hochpolymere Methylhydroxyethylcellulose eingesetzt wird. 7. Verfahren nach einem der Ansprüche 1 bis 6, wobei als mineralische Säure Phosphorsäure verwendet wird.

8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die mineralische Säure in einer Menge von

unter 1 Masse-% eingesetzt wird.

9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die von Luft befreite Dispersion 2,5 bis 3 Masse-% eines hochpolymeren Cellulose-Derivates, 50 bis 57 Masse-% feinteilige Glasbildner und 0,4 bis 1,5 Masse-% Orthophosphorsäure aufweist. 10. Verwendung der bei der Fertigstellung der Brandschutz-Glaseinheiten anfallenden Kittrandabschnitte als Zusatz zu Glasschmelzen, insbesondere bei der Floatglasherstellung.

- Leerseite -

BEST AVAILABLE COPY

Process for applying antidrip edge to a glass sheet

Patent number:

DE4435843

Publication date:

1996-04-11

Inventor:

NOLTE HANS-HENNING (DE); GRUENZEL HELGA

(DE); SATTLER BERNHARD (DE)

Applicant:

FLACHGLAS AG (DE)

Classification:

- international:

C03C27/12; C08K3/26; C08K3/32; C09K3/10;

C09D5/34; C09K21/00; E06B5/16; C08L1/26; C08K3/40;

C08K3/36

- european:

B32B17/10E16; B32B17/10E18; B32B17/10L16B2

Application number: DE19944435843 19941007 Priority number(s): DE19944435843 19941007

Also published as:

EP0705686 (A1)

US5837342 (A1)

JP8226287 (A)

EP0705686 (B1)

Report a data error here

Abstract not available for DE4435843 Abstract of corresponding document: US5837342

An antidrip edge composition of fine-powder glass formers, cellulosic polymer and water to which a mineral acid is added has a pot-life lengthener for the dispersion is subjected to vacuum and/or agitation and/or vibration to remove bubbles, upon application to a glass sheet, prevents escape of an alkali silicate solution forming a fire-resisting intervening layer between that glass sheet and another glass or plastic sheet applied thereto.

Data supplied from the esp@cenet database - Worldwide

BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift

PATENTAMT

P 44 35 843.1 Aktenzeichen: 7, 10, 94 Anmeldetag: Offenlegungstag: 11. 4.98

(5) Int. Cl.8: C 03 C 27/12 C 09 K 3/10 C 09 D 5/34 C 09 K 21/00 E 06 B 5/18 // C08L 1/26,C08K

3/40,3/38,3/28,3/32

(7) Anmelder:

Flachglas AG, 90766 Fürth, DE

(74) Vertreter:

Andrejewski und Kollegen, 45127 Essen

(7) Erfinder:

Nolte, Hans-Henning, 45884 Gelsenkirchen, DE; Grünzel, Helga, 45894 Gelsenkirchen, DE; Sattler, Bernhard, 44379 Dortmund, DE

- (6) Verfahren zum Aufbringen eines aus einem Kitt geformten Ablaufschutzrandes auf eine Glasplatte im Zuge der Herstellung von Brandschutz-Glaseinheiten
- Verfahren zum Aufbringen eines aus einem Kitt geformten Ablaufschutzrandes auf eine Glasscheibe im Zuge der Herstellung von Brandschutz-Glaseinheiten, welche die Glasplatte, eine Brandschutz-Zwischenschicht und eine ab-deckende Platte aus Glas oder Kunststoff aufweisen. Der Kitt wird aus einem feinteiligen Glasbildner als Füllstoff und aus einem polymeren Cellulose-Derivat mit Wasser zu einer Dispersion angemecht. Der Dispersion wird eine minerallsche Säure oder eine Mischung aus mineralischen Säuren als Topfzeitregulator in solcher Menge beigemischt, daß die Topfzeitspanne der Dispersion nach dem Anmachen etwa 10 bis 20 Minuten beträgt. Die mit dem Topfzeitregulator versehene Dispersion wird innerhalb der Topfzeitspanne durch Vibrationseinwirkung und/oder Vakuumeinwirkung und/oder Rühren von Luftblasen befreit, wobei danach die von Luftblasen befreite Dispersion zum Kitt ausreift und auf den Rand der Glaspiatte els Ablaufschutzrand aufgeformt wird.

Beschreibung

Die Erfindung betrifft ein Verfahren zum Aufbringen eines aus einem Kitt geformten Ablaufschutzrandes auf eine Glasplatte im Zuge der Herstellung von Brandschutz-Glaseinheiten, die die Glasplatte, eine Brandschutz-Zwischenschicht und eine abdeckende Platte aus Glas oder Kunststoff aufweisen.

Glasplatten mit Ablaufschutzrand sind bei der Herstellung von Brandschutz-Glaseinheiten von großer Bedeutung. Brandschutz-Glaseinheiten werden regelmä-Big dadurch hergestellt, daß man auf eine waagerecht liegende Glasplatte, die mit einem Ablaufschutzrand versehen ist, eine wasserhaltige Alkalisilicatlösung, die Beimischungen aufweisen kann, aufbringt, die von dem 15 als Damm wirkenden Ablaufschutzrand auf der Glasplatte gleichsam festgehalten wird. Das Wasser dieser Lösung wird durch Einwirkung erhöhter Temperaturen entfernt und die flüssige Schicht verfestigt sich zur Brandschutz-Zwischenschicht. Im allgemeinen werden 20 bei der Verfestigung innerhalb der Schicht Temperaturen von bis zu 130°C nicht überschritten. Nach der Verfestigung wird die Schicht mit einer weiteren Glasplatte oder auch mit einer Kunststoffplatte verbunden, z.B. durch Verkleben. Auf die so hergestellte Brandschutz- 25 Glaseinheit können in analoger Weise weitere Silikatschichten, Glasplatten oder Kunststoffplatten aufgebracht werden (vgl. DE 19 00 054 B2). In der Vergangenheit wurde der Ablaufschutzrand durch einen Rahmen gebildet, der auf die Glasplatte aufgesetzt wurde. 30 Das ist im Rahmen einer industriellen Serienfertigung aufwendig. In neuerer Zeit wird daher der Ablaufschutzrand aus Kitt geformt. Wie auch immer im Rahmen der bekannten Maßnahmen im einzelnen verfahren wird, es fällt am Ende des Herstellungsprozesses ein 35 Randabschnitt der Glasplatte an, der aus dem Verfahren zur Herstellung der Brandschutz-Glaseinheiten herausgeführt werden muß.

Bei dem aus der Praxis bekannten Verfahren, von aus einem Kitt geformt, der hauptsächlich aus Kaolin und Natron-Wasserglas besteht und außerdem Wasser aufweist. Das hat sich in bezug auf die Herstellung der Brandschutz-Glaseinheiten bewährt, führt jedoch zu Randabschnitten, die verworfen werden müssen. Eine 45 Rückführung der Randabschnitte in eine Glasschmelze ist nicht möglich, weil mit dem Kaolin und dem Wasserglas in der Glasschmelze störende Verunreinigungen eingetragen werden. Die Mischung aus Kaolin, Wasserglas und Wasser läßt sich zwar einfach herstellen, je- 50 doch kann nicht verhindert werden, daß in dem Kitt und damit in dem Ablaufschutzrand, der auf eine Glasplatte aufgebracht wird, Blasen entstehen. Das führt häufig dazu, daß bei der beschriebenen Wärmebehandlung Löcher in dem Ablaufschutzrand entstehen, durch die die 55 Mischung, aus der die Brandschutz-Zwischenschicht sich bildet, abläuft. Dadurch entstehen erhebliche Verluste und Verunreinigungen der Anlage.

Die allgemeine Aufgabe der Erfindung lautet, Brandschutz-Glaseinheiten so herzustellen, daß die oben be- 60 handelten Randabschnitte in eine Glasschmeize wieder zurückgeführt werden können. Der Erfindung liegt konkret das technische Problem zugrunde, ein Verfahren zum Aufbringen eines aus einem Kitt geformten Ablaufim vorbeschriebenen Sinne rückführbaren Randab-

Zur Lösung dieses technischen Problems ist Gegen-

stand der Erfindung ein Verfahren zum Aufbringen eines aus einem Kitt geformten Ablaufschutzrandes auf eine Glasscheibe im Zuge der Herstellung von Brandschutz-Glaseinheiten, welche die Glasplatte, eine Brandschutz-Zwischenschicht und eine abdeckende Platte aus Glas oder Kunststoff aufweisen, - mit den folgenden Merkmalen: 1.1) Der Kitt wird aus einem feinteiligen Glasbildner als Füllstoff und aus einem polymeren Cellulose-Derivat mit Wasser zu einer Dispersion angemacht, 1.2) der Dispersion wird eine mineralische Säure oder eine Mischung aus mineralischen Säuren als Topfzeitregulator in solcher Menge beigemischt, daß die Topfzeitspanne der Dispersion nach dem Anmachen etwa 10 bis 20 Minuten beträgt, 1.3) die mit dem Topfzeitregulator versehene Dispersion wird innerhalb der Topfzeitspanne durch Vibrationseinwirkung und/ oder durch Vakuumeinwirkung und/oder durch Rühren von Luftblasen befreit, wobei danach die von Luftblasen befreite Dispersion zum Kitt ausreift und auf den Rand der Glasplatte als Ablaufschutzrand aufgeformt wird.

Die Erfindung geht von der Erkenntnis aus, daß es nicht erforderlich ist, für den Aufbau des Ablaufschutzrandes mit Kaolin zu arbeiten, wenn man als Binder ein polymeres Cellulose-Derivat einsetzt. Wird mit einem polymeren Cellulose-Derivat gearbeitet, so kann als Füllstoff im Sinne des Merkmals 1.1) ein Glasbildner eingesetzt werden. Glasbildner bezeichnet dabei feinteiliges Glas, aber auch die Komponenten der für die Glasherstellung bekannten Gemenge wie Calciumsilicat und Alkalisilikate, die als Gemisch amorph erstarren. Eine Vormischung aus den vorstehend genannten Füllstoffen und einem polymeren Cellulose-Derivat an sich und für sich, ohne weitere Zusätze, zeigt mit dem Anmachen unter Verwendung von Wasser zu einer Dispersion ein störendes Phanomen: Die Viskosität der Mischung steigt störend schnell an. Die sogenannte Topfzeit, in der diese Mischung noch ausreichend flüssig ist, um als Flüssigkeit behandelt und gehandhabt zu werden, ist zu kurz. Überraschenderweise wirkt jedoch schon ein dem die Erfindung ausgeht, wird der Ablaufschutzrand 40 mengenmäßig geringer Zusatz einer mineralischen Säuretopf zeitregulierend im Sinne des Merkmals 1.2). Topfzeiten von 10 bis 20 Minuten sind einstellbar. Das erlaubt es, eine Behandlung im Sinne des Merkmals 1.3) durchzuführen und die Dispersion von Luft zu befreien. Dadurch wird erreicht, daß der aus dem gereiften Kitt geformte Ablaufschutzrand keinerlei Luftblasen mehr aufweist. Überraschenderweise können die Randabschnitte in eine Glasschmelze wieder eingebracht werden, ohne daß insoweit irgendwelche Nachteile entstehen. Das gilt anch dann, wenn es sich bei der Glasschmelze um eine Floatglasschmelze handelt, wobei allerdings einige Adaptationen der Verfahrensschritte zweckmäßig sind. Im Rahmen der Erfindung können insbesondere Glasbildner aus der Gruppe "Glasperlen, gemahlenes Glas, Calciumcarbonat, Magnesiumcarbonat, Calciumphosphat, Calciumsulfat, Feinsand" oder Mischungen davon eingesetzt werden. Im Rahmen der Erfindung können insbesondere die polymeren Cellulose-Derivate der Gruppe "Methylhydroxyethylcellulose, Carboxymethylcellulose, Guar oder Mischungen davon eingesetzt werden. Als mineralische Säuren empfiehlt die Erfindung Säuren der Gruppe "Orthophosphorsäure, phosphorige Säure, Schwefelsäure" und verträgliche Mischungen daraus. Neben den bereits betonten Vorteischutzrandes auf eine Glaspiatte anzugeben, welches zu 👸 len (blasenfreier Ablaufschutzrand, in eine Glasschmelze einführbare Giasabschnitte) resultiert ein besonderer Vorteil daraus, daß für den Ablaufschutzrand ein an sich mit Wasserglas nicht verträgliches saures System eingesetzt wird. Hierdurch bildet sich an der Grenzfläche Ablaufschutzrand/Brandschutz-Zwischenschicht eine dünne aber dichte Gelschlicht, die ein Abschwemmen von Kitt-Teilchen sowie eine Porenbildung und damit das Entstehen von Randblasen verhindert. Man erzielt auf diese Weise nicht nur höhere Ausbeuten, es kann vielmehr auch mit wesentlich kürzeren Trocknungszei-

ten gearbeitet werden.

Im einzelnen bestehen im Rahmen der Erfindung mehrere Möglichkeiten der weiteren Ausbildung und Gestaltung. Vorzugsweise werden als feinteilige Glasbildner floatglasfähige Substanzen verwendet. Insbesondere kann Glasmehl verwendet werden, aber auch mit feinteiligem Calciumcarbonat als Glasbildner kann gearbeitet werden. Stets können die felnteiligen Glasbildner einen Zusatz an feinteiligem Quarzsand aufweisen.

Im Rahmen der Erfindung kann mit den verschiedensten Cellulose-Derivaten gearbeitet werden, wobei die Cellulose-Derivate der vorstehend angegebenen Gruppe sich bewährt haben. Vorzugsweise wird als Cellulose-Derivat hochpolymere Methylhydroxyethylcellulose eingesetzt. Als mineralische Säure wird vorzugsweise Phosphorsäure verwendet. Im allgemeinen reicht es, die mineralische Säure in einer Menge von unter 1 25 Masse-% zu verwenden. Bewährt hat sich im Rahmen der Erfindung eine Dispersion, die 2,5 bis 3 Masse-% eines hochpolymeren Cellulose-Derivates, 50 bis 57 Masse-% feinteilige Glasbildner, 0,4 bis 1,5 Masse-% Orthophosphorsäure und im übrigen Wasser aufweist.

Gegenstand der Erfindung ist auch die Verwendung der bei der Fertigstellung der Brandschutz-Glaseinheiten anfallenden Kittrand-Abschnitte als Zusatz zum Glasschmelzen, vorzugsweise bei der Floatglasherstellung.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispiels ausführlicher erläutert:

In einen geeigneten Behälter wurden zunächst 50 Liter entsalztes Wasser eingebracht, dem unter Rühren 1 kg einer 85%-igen Orthophosphorsäure beigefügt 40 wurde. Danach wurden unter weiterem Rühren 50 kg eines feinpulverigen Glasmehls hinzugegeben. Dabei wurde das Glasmehl schon weitgehend von der anhaftenden Luft befreit. Als letztes wurden 2,4 kg Methylhydroxyethylcellulose eingerührt und danach unter Vaku- 45 um weitergerührt. Nach ca. zehn Minuten war der Mischvorgang abgeschlossen, die Masse war homogenisiert und konnte abgefüllt werden, bevor ihre Viskosität auf den für ihre Funktion als Ablaufschutz-Barriere erforderlichen Endwert angestiegen war. Durch die zu- 50 nächst sehr viel niedrigere Viskosität wurde der Entgasungsvorgang bedeutend erleichtert und verbessert, wie ein Vergleich mit dem vorher verwendeten Kittsystem ergab. Außerdem wurde durch die Gelbildung an der Grenzfläche zum aufgebrachten Wasserglas das Auftre- 55 ten von Randblasen sowie Abschwemmungen von Kittpartikeln sicher vermieden.

Patentansprüche

1. Verfahren zum Aufbringen eines aus einem Kitt geformten Ablaufschutzrandes auf eine Glasscheibe im Zuge der Herstellung von Brandschutz-Glaseinheiten, welche die Glasplatte, eine Brandschutz-Zwischenschicht und eine abdeckende Platte aus Glas oder Kunststoff aufweisen, — mit den folgenden Merkmalen:

1.1) Der Kitt wird aus einem feinteiligen Glas-

bildner als Füllstoff und aus einem polymeren Cellulose-Derivat mit Wasser zu einer Dispersion angemacht,

1.2) der Dispersion wird eine mineralische Säure oder eine Mischung aus mineralischen Säuren als Topfzeitregulator in solcher Menge beigemischt, daß die Topfzeitspanne der Dispersion nach dem Anmachen etwa 10 bis 20 Minuten beträgt,

1.3) die mit dem Topfzeitregulator versehene Dispersion wird innerhalb der Topfzeitspanne durch Vibrationseinwirkung und/oder Vakuumeinwirkung und/oder Rühren von Luftblasen befreit.

wobei danach die von Luftblasen befreite Dispersion zum Kitt ausreift und auf den Rand der Glasplatte als Ablaufschutzrand aufgeformt wird.

2. Verfahren nach Anspruch 1, wobei als feinteilige Glasbildner floatglasfähige Substanzen verwendet werden.

 Verfahren nach einem der Ansprüche 1 oder 2, wobei als feinteiliger Glasbildner Glasmehl verwendet wird.

4. Verfahren nach einem der Ansprüche 1 oder 2, wobei als feinteiliger Glasbildner Calciumcarbonat verwendet wird.

 Verfahren nach einem der Ansprüche 1 bis 4, wobei die feinteiligen Glasbildner einen Zusatz von feinteiligem Ouarzsand aufweisen.

Verfahren nach einem der Ansprüche 1 bis 5, wobei als polymeres Cellulose-Derivat hochpolymere Methylhydroxyethylcellulose eingesetzt wird.
 Verfahren nach einem der Ansprüche 1 bis 6, wobei als mineralische Säure Phosphorsäure verwendet wird.

8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die mineralische Säure in einer Menge von unter 1 Masse-% eingesetzt wird.

9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die von Luft befreite Dispersion 2,5 bis 3 Masse-% eines hochpolymeren Cellulose-Derivates, 50 bis 57 Masse-% feinteilige Glasbildner und 0,4 bis 1,5 Masse-% Orthophosphorsäure aufweist. 10. Verwendung der bei der Fertigstellung der Brandschutz-Glaseinheiten anfallenden Kittrandabschnitte als Zusatz zu Glasschmelzen, insbesondere bei der Fioatglasherstellung.

- Leerseite -