Máquinas de Turing

Máquinas de Turing Restritas

- Generalizações
 - Armazenamento do estado
 - Várias trilhas
 - Sub-rotinas
 - Não-determinísticas
- Não adicionam qualquer poder adicional de reconhecimento de linguagens
- Objetivo: Considerarmos restrições
 - Fornecendo exatamente o mesmo poder de reconhecimento de linguagens

TM com fitas semi-infinitas

- Não existe nenhuma célula a esquerda da cabeça da fita
- Como garantir que tem o mesmo poder de TM com fitas infinitas?
 - Usando duas trilhas semi-infinitas
 - Trilha superior representa as células a direita da cabeça
 - Trilha inferior representa as células a esquerda, em ordem reversa

TM com fitas semi-infinitas

- Outra restrição:
 - Nunca gravar um símbolo Branco
- Em todos os momentos → prefixo de símbolos não-brancos seguidos por infinitos símbolos brancos
- Como garantir que tem o mesmo poder de TM com fitas infinitas?
 - TM grava um símbolo B' diferente do símbolo B, que funcione como branco

Máq. de Turing X Computadores

- Apesar de parecerem bem diferentes, aceitam as mesma linguagens
 - Recursivamente enumeráveis

Um computador pode simular uma TM?

Uma TM pode simular um computador?

Simulação de TM por Computador

- Dada uma TM, devemos escrever um programa que atue como ela
 - Controle Finito
 - Número finito de estados e transições → programa pode descrever estados como cadeias de caracteres e usar uma tabela de transições
 - Símbolos de fita
 - Codificados como caracteres de comprimento fixo
 - Fita de comprimento infinito
 - Memória do computador é finita!

Simulação de TM por Computador

- Representação
 - Estão disponíveis discos removíveis
 - Pilha de discos a esquerda
 - Fita a esquerda da cabeça de leitura
 - Pilha de discos a direita
 - Fita a direita da cabeça de leitura
 - Chegando-se ao fim de cada disco, pode-se realizar uma troca a direita ou a esquerda

- Espaço de armazenamento
 - Sequência longa de palavras, cada qual com um endereço
 - Ex: palavras de 32 bits ou 64 bits
- Programa do computador
 - Armazenado em algumas palavras da memória
 - Cada palavra representa uma instrução simples
 - Ex: Assembly
 - Cada instrução envolve número finito de palavras, e altera o valor de no máximo 1 palavra

- Primeira fita → MEMÓRIA
 - Endereços e conteúdos escritos em binário
 - Símbolos especiais → marcadores
 - * final de endereço
 - # final de conteúdo
 - \$ início da sequência de endereços e conteúdos
- Segunda fita → Contador de Instruções
 - Inteiro em binário
 - Representa a próxima instrução de computador a ser executada

- Terceira fita → Endereço de memória
 - Contém o conteúdo de um endereço depois de localizado na fita 1
- Fita rascunho
 - Simulação de algumas instruções pode usar uma ou mais fitas de rascunho
 - Multiplicação por exemplo

Comparação de Tempos

- Se um computador:
 - Tem instruções que aumentam o comprimento máximo de palavra em 1
 - Tem instruções que uma TM pode executar em O(k²) etapas para palavras de tamanho k
 - Então, a TM descrita anteriormente pode simular n etapas do computador em O(n³) de suas etapas

TM não-determinísticas

 Possui uma função de transição δ tal que, para cada estado q e símbolo X, δ(q,X) é um conjunto de triplas:

```
{(q1,Y1,D1), (q1,Y1,D1),..., (qk,Yk,Dk)}
```

A NTM pode escolher qualquer das triplas

TM não-determinísticas

- Linguagens aceitas
 - Se houver uma sequência de escolhas de movimentos que leve a um estado de aceitação
 - A existência de outras escolhas que não levem é irrelevante

TM não-determinísticas

• Se M_N é uma máquina de Turing nãodeterminística, então existe uma máquina de Turing determinística M_D tal que

$$L(M_N) = L(M_D)$$

– Possível construir uma M_D que explora as ID's que M_N pode alcançar, por qualquer seqüência de suas escolhas.