ZHEJIANG UNIVERSITY - UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

ECE 310 DIGITAL SIGNAL PROCESSING - SPRING 2021

Homework 1

Prof. Zhi-Pei Liang

Due: January 22, 2021

1. Evaluate and represent your final answer in both Cartesian and polar forms.

(a)
$$3e^{-j\pi/4} + 4e^{j\pi/4}$$

(b)
$$\frac{(1+j)^2}{1-j}$$

- 2. Determine all the roots of $2z^3 + 3 = 0$ on the complex plane.
- 3. Sketch the following signals:
 - (a) $\sin\left(\frac{\pi}{3}n\right)\delta[n-2]$
 - (b) n(u[n] u[n 8])
 - (c) u[-n+3]u[n+5]

where u[n] is the unit step signal in the discrete-time variable n.

- 4. Express the sequence $\{x[n]\} = \{\cdots, 0, -1, 0, \stackrel{3}{\downarrow}, 0, 7, 0, \cdots\}$ in terms of the unit pulse (impulse) signal $\delta[n]$. Here \cdots denotes zeros.
- 5. Sketch (by hand) the magnitude and phase of $G(\omega) = \sin(\omega/2)$ over the interval $\omega \in [-\pi, \pi]$. Label your plots.
- 6. Derive closed-form expressions for the magnitude and phase of the function $G(\omega) = 1 e^{-j\omega}$ of the real variable ω . Sketch (by hand) the magnitude and phase over the interval $\omega \in [-\pi, \pi]$. Label your plots.
- 7. Consider the following discrete-time system

$$y[n] = x[n] + 2x[n-2].$$

Determine if the system is: 1) linear; 2) time-invariant.

8. Consider the following discrete-time system

$$y[n] = 10x[n]\cos(0.25\pi n).$$

Determine if the system is: 1) linear; 2) time-invariant.