**Theorem 1.** The MWF problem and MST problem are equivalent.

**Theorem 2.** (Optimality conditions.) Let (G, i) be an instance of MST and T be a spanning tree in G. In this case the following statements are equivalent:

- T is optimal
- $\forall e = \{x,y\} \in E(G) \setminus E(T)$ : no edge of the x-y-path in T has greater weight than e
- $\forall e \in E(T)$ : If C is one of the connected components of  $T \setminus \{e\}$ , then e is an edge from  $\delta(V(c))$  with minimal weight.
- $E(T) = \{e_1, e_2, \dots, e_{n-1}\}$  can be ordered such that  $\forall i \in \{1, 2, \dots, n-1\}$  there is a set  $X \subseteq V(G)$  such that  $e_i \in \delta(X)$  with minimal weight ad  $e_j \neq \delta(X) \ \forall j \in \{1, 2, \dots, i-1\}.$

**Theorem 3.**  $a \Rightarrow b \Rightarrow c \Rightarrow d \Rightarrow a$ .

Theorem 4. Krukal's algorithm is correct.

**Theorem 5.** Let G be a digraph with n vertices. The following 7 statements are equivalent:

- 1. G is an arborescence with root r.
- 2. G is a branching with n-1 edges and  $\deg^-(r)=0$ .
- 3. G has n-1 edges and every vertices is reachable from r.
- 4. Every vertex is reachable from r and removal of one edge destroys this property.
- 5. G satisfies  $\delta^+(X) \neq 0 \ \forall X \subset V(G)$  with  $r \in X$ . The removal of one arbitrary edge destroys this property.
- 6.  $\delta^-(r) = 0$  and  $\forall v \in V(G) \setminus \{r\} \exists$  one distinct directed r v-path in G
- 7.  $\delta^-(r) = 0$  and  $|\delta^-(v)| = 1 \ \forall v \in V(G) \setminus \{r\}$  and G is cycle-free.

**Theorem 6.** Kruskal's algorithm can be implemented with time complexity  $\mathcal{O}(m \log n)$ .

**Theorem 7.** Prim's algorithm is correct and can be implemented with time complexity of  $\mathcal{O}(n^2)$ . Correctness follows from theorem 2.2.d  $(a \Rightarrow b \Rightarrow c \Rightarrow d \Rightarrow a)$ : Spanning tree is optimal  $\Leftrightarrow$  order of edges  $e_1, \ldots, e_{n-1}$  such that  $\forall i \in \{1, 2, \ldots, n-1\} \exists x_i \subset V(G)$  with  $e_i \in \delta(X_i)$  is the minimum edge in  $\delta(X_i)$  and  $e_j \notin \delta(X_i)$  is the cheapest edge of  $\delta(X_i)$  and  $e_j \notin \delta(X_i) \forall 1 \leq j \leq i-1$ . This is satisfied by construction.

**Theorem 8.** Is Prim's algorithm implemented with Fibonacci-Heaps we can solve the MST problem in  $\mathcal{O}(m + n \log n)$  time.

$$\mathcal{O}(n^2)$$
  $\mathcal{O}(m+n\log n)$   $m=\theta(n^2)$  G is dense

**Theorem 9.** (Arthur Cayley) The complete graph  $K_n$  has  $n^{n-2}$  spanning trees.

**Theorem 10.** Let  $B_0$  be a subgraph of G with maximum weight and  $\deg_{B_0}^-(v) \le 1 \ \forall v \in V(G)$ . Then  $\exists$  an optimal branching  $B \in G$  with properties  $\forall$  cycle  $C \in B_0 : |E(C) \setminus E(B)| = 1$ .

**Theorem 11.** Edmonds' Branching Algorithm is correct and computes the branching in  $\mathcal{O}(m \cdot n)$ .

**Theorem 12.** Let G be a digraph with conservative weights.  $c: E(G) \to \mathbb{R}$ . Let  $s, w \in V(G)$  and  $k \in \mathbb{N}$ . Let P be the shortest among all s-w-pathes with at most k edges. Let e = (v, w) be the last edge of P. Then  $P_{[s,w]}$  is the shortest s-v-path with at most (k-1) edges.

**Theorem 13.** Dijkstra's algorithm is correct and can be implemented in  $\mathcal{O}(n^2)$ .

**Theorem 14.** (Fredman and Tarjan, 1987) A Fibonacci-Heap implementation of Dijkstra's algorithm runs in  $\mathcal{O}(m + n \log n)$  time.

**Theorem 15.** The Moore-Bellman-Ford algorithm is correct and has runtime  $\mathcal{O}(nm)$ .

**Theorem 16.** Let G be a digraph with  $c: E(G) \to \mathbb{R}$ . A potential of (G, c) exists iff c is conservative.

**Theorem 17.** Let G = (V, E) be a digraph with  $c : E(G) \to \mathbb{R}$ . The Moore-Bellman-Ford algorithm can either determine a desired potential or find a negative cycle in  $\mathcal{O}(m \cdot n)$ .

**Theorem 18.** The Floyd-Warshall algorithm works correctly and has a runtime of  $\mathcal{O}(n^3)$ 

**Theorem 19.** (Karp 1978.) Let G be a digraph with  $c : E(G) \to \mathbb{R}$ . Let  $s \in V(G)$  such that  $\forall v \in V(G) \setminus \{s\} \exists$  directed s-v-path in G.

$$\forall x \in V(G) \ \forall K \in \mathbb{Z}_+ :$$

$$F_K(x) := \min \left\{ \sum_{i=1}^k c(v_{i-1}, v_i) : v_0 = s, v_k = x, (v_{i-1}, v_i) \in E(G), \ \forall \ 1 \le i \le k \right\}$$

If there is no sequence of edges of length k from s to x, then  $F_K(x) = \infty$ . Set  $\mu(G,c)$  be the minimal mean edge weight of a cycle in (G,i) and  $\mu(G,c) = \infty$  if G is acyclic. Then it holds that

$$\mu(G, c) = \min_{x \in V(G)} \max_{0 \le k \le n-1} \frac{F_n(x) - F_k(x)}{n - k}$$

**Theorem 20.** The minimal mean cycle works correctly and can be implemented with a runtime of  $\mathcal{O}(n \cdot \max\{m, n\})$ .

**Theorem 21.** MFP always has an optimal solution. Linear programming always provides an optimal solution and is limited by  $\sum_{e \in E(G)} u_e$ .

**Theorem 22.**  $\forall A \subsetneq V(G)$  with  $s \in A, t \notin A$  and for every s-t-flow it holds that:

1. value 
$$(f) = \sum_{e \in \delta^{+}(A)} f(e) - \sum_{e \in \delta^{-}(A)} f(e)$$

2. value 
$$(f) \leq \sum_{e \in \delta^+(A)} u_e$$

**Theorem 23.** Let (G, u, s, t) be a network and f be a flow. If there is no s-t-path in  $G_f$ , then f is optimal. Hence value(f) is at maximum.

**Theorem 24.** (Max flow, min cut problem, Ford & Fulkerson, 1956) Let (G, u, s, t) be a network than there exists a maximal s-t-flow f and a minimal cut (s-t-cut)  $\delta^+(A)$  with value  $(f) = u(\delta^+(A))$ . Especially the value of a maximal flow and the capacity of a minimal s-t-cut is equal.

**Theorem 25.** Flow decomposition theorem (Galler 1956, Ford and Fulkerson 1962) Let (G, u, s, t) be a network and f be a s-t-flow. Then  $\exists$  a family  $\mathcal{P}$  of s-t-paths and a family  $\mathcal{C}$  of cycles in G and the weights in  $\mathcal{P} \cup \mathcal{C} \to \mathbb{R}_+$   $(P \mapsto w(P), C \mapsto w(C))$  such that

$$f(e) = \sum_{P \in \mathcal{P} \cup \mathcal{C}: e \in E(P)} w(P) \; \forall \, e \in E(G)$$

$$\operatorname{value}(f) = \sum_{p \in \mathcal{P}} w(P) \quad and \quad |\mathcal{P}| + |\mathcal{C}| \leq |E(G)|$$

**Theorem 26.** Let  $f_0, f_1, \ldots, f_k, \ldots$  be a sequence of flows created by the  $E \otimes K$  algorithm, where  $f_{i+1} = f_i + P_i$  and  $P_i$  is a shortest s-t-path in  $G_{f_i} \forall i$ . Then it holds that

- $|E(P_k)| \le |E(P_{k+1})| \ \forall i$
- $|E(P_k) + z \le |E(P_r)||$  for all k < r such that  $P_k \cup P_r$  contains at least one pair of edges of opposing direction.

**Theorem 27.** (Edmonds and Karp, 1972) The algorithm of Edmonds and Karp requires at most  $\frac{nm}{2}$  augmented paths (equals to the number of iterations) and determines a maximum flow correctly. The algorithm has a runtime complexity of  $\mathcal{O}(m^2 \cdot n)$ .

**Theorem 28.** Dinitz' algorithm finds a maximum flow in  $\mathcal{O}(n^2m)$  runtime.

**Theorem 29.** The push-relabel algorithm has two invariants:

- f is always an s-t-preflow
- ullet  $\psi$  is always a corresponding distance marker

**Theorem 30.** Let f be a preflow and  $\psi$  be a distance marker in regards of f. Then the following statements hold:

- 1. s is reachable from every active vertex v in  $G_f$ .
- 2. If  $v, w \in V(G)$  with w being reachable from v in  $G_f$ , then  $\psi(v) \leq \psi(w) + n 1$
- 3. t is not reachable in  $G_f$

**Theorem 31.** When PR algorithm terminates, f is a maximal s-t-flow.

**Theorem 32.** (number of relabel operations)

- $\forall v \in V(G) : \psi(v)$  is increased in every relabel operation by at least one (strong monotonicity, no decrement)
- $\psi(v) \leq 2n 1$  is an invariant  $\forall v \in V(G)$
- No vertex exists which is relabelled more than 2n-1 times. Hence the maximum number of relabel operations is  $2n^2-n$

**Theorem 33.** The number of saturating push operations is 2nm.

**Theorem 34.** Number of non-saturating push operations. The number of non-saturating push operations is  $\mathcal{O}(n^2m)$ .

**Theorem 35.** Better analysis for number of non-saturating push operations. Cheriyan and Mehlhorn 1999. If the algorithm always select an active vertex with maximum  $\psi(v)$ , then the push-and-relabel algorithm only requires  $8n^2\sqrt{m}$  non-saturating push operations.

**Theorem 36.** The push-and-relabel algorithm solves the maximum-flow problem correctly and can be implemented with  $\mathcal{O}(n^2\sqrt{m})$  runtime. (with selection of active vertices as in Theorem 35)

**Theorem 37.** For every triple of vertices  $i, j, k \in V(G)$  (G is an undirected graph) it holds that

$$\lambda_{i,k} \ge \min \{\lambda_{i,j}, \lambda_{j,k}\}$$

**Theorem 38.** Let G be an undirected graph and  $u: E(G) \to \mathbb{R}_+$ . Let  $s, t \in V(G)$  and  $\delta(A)$  a minimal s-t-cut in (G', u'). (G', u') results from (G, u) by contraction of A by a single vertex K. Let  $s', t' \in V(G) \setminus A$ . Then it holds that

 $\forall \min s'$ -t'-cuts:  $\delta(K \cup \{A\})$  is  $\delta(K \cup A)$  a minimal s'-t'-cut in (G, u)

**Theorem 39.** After every iteration of step 4, the following conditions hold:

- $A \dot{\cup} B = V(G)$
- E(A,B) is a minimal s-t-cut in (G,u)

$$A,B\subseteq V(G) \qquad E(A,B):=\{e\in E(G):e=(x,y)\quad x\in A,y\in B\}$$

**Theorem 40.** Invariant of the algorithm:

$$w(e) = u(\delta_G(\bigcup_{z \in C_e} Z)) \ \forall \ e \in E(T)$$

where  $c_e$  and  $V(T) \setminus c_e$  are the two connected components of T-e. Furthermore it holds that

$$\forall e = \{P, Q\} \in E(T) \quad \exists p \in P \quad \exists q \in Q \text{ with } \lambda_{p,q} = w(e)$$

**Theorem 41.** The Gomory-Hu algorithm works correctly. Every undirected graph contains a Gomory-Hu tree which can be computed in runtime  $\mathcal{O}(n^3\sqrt{m})$ .

**Theorem 42.** In an undirected graph G with  $u: E(G) \to \mathbb{R}_+$  we can compute a MA-order in  $\mathcal{O}(m + n \log n)$  time.

**Theorem 43.** Let G be an undirected graph with  $u: E(G) \to \mathbb{R}_+$  and MA-order  $u_1, \ldots, u_n$ . Then it holds that

$$\lambda_{v_{n-1},v_n} = \sum_{e \in E(\{v_n\},\{v_1,\dots,v_{n-1}\})}$$

**Theorem 44.** A cut of minimal capacity in an undirected graph G with  $u : E(G) \to \mathbb{R}_+$  can be computed with  $\mathcal{O}(nm + n^2 \log m)$  runtime.

**Theorem 45.** Let G be a digraph with capacity  $u: E(G) \to \mathbb{R}_+$ . Let f and f' be b-flows in G. Then  $g: \overrightarrow{E}(G) \to \mathbb{R}$  with  $g(e) = \max\{0, f'(e) - f(e)\}$  and  $g(\overleftarrow{e}) = \max\{0, f(e) - f'(e)\} \ \forall e \in E(G) \ \text{is a circulation in } \overrightarrow{G} := (V(G), \overrightarrow{E}(G)).$  Furthermore it holds that  $g(e) = 0 \ \forall e \in \overrightarrow{E}(G) \setminus E(G_f)$  and c(g) = c(f') - c(f).

**Theorem 46.** For every circulation f in a digraph G there is a family C of at most E(G) cycles in G and positive numbers  $h(C) \forall c \in C$  with

$$f(e) = \sum_{c \in \mathcal{C}, e \in E(C)} h(e)$$

**Theorem 47.** (Klein, 1967) Let (G, u, b, c) be an instance of MKFP. A b-flow g has minimum costs exactly iff there are no f-augmented cycles with negative costs in  $G_f$ .

**Theorem 48.** (Corollary.) A b-flow has minimum costs iff  $(G_f, C_f)$  has a (valid) potential function.

**Theorem 49.** x optimal  $\Rightarrow \exists$  optimal solution  $(2_e)_{e \in E(G)}, (y_v)_v \in V(G)$  of DLP with non-satisfied complementary slack.

**Theorem 50.** Let  $f_1, f_2, \ldots, f_K$  be a sequence of b-flows such that for all  $i = 1, 2, \ldots, k-1$ :  $\mu(f_i) < 0$  and  $f_{i+1}$  originates from  $f_i$  by augmenting  $f_i$  along cycle  $K_i$  in  $G_{f_i}$   $(f_{i+1} = f_i \oplus K_i)$ .

For now let  $K_i$  be a cycle with minimal average weight in  $G_f$ . Then the following statements hold:

$$\mu(f_i) \le \mu(f_{i+1}) \ \forall i$$
$$\mu(f_i) \le \frac{n}{n-2} \mu(f_c) \ \forall i < l$$

with property that  $K_i \cup K_l$  contains at least one pair of edges of opposing direction.

**Theorem 51.** (Corollary) During the MMCC algorithm  $|\mu(f)|$  is decremented all  $m \cdot n$  iterations by at least factor  $\frac{1}{2}$ .

**Theorem 52.** Assume  $c: E(G) \to Q$  (without loss of generality:  $c: E(G) \to \mathbb{Z}$ ) it holds that: after  $\mathcal{O}(nm \log_2 n |c_{min}|)$  iterations the MMCC algorithm terminates with  $c_{min} = \min \{ \pm c_e | e \in E(G) \}$ .

**Theorem 53.** (Tarjan, Goldberg, 1989) The MMCC algorithm can be implemented with  $\mathcal{O}(m^3n^2\log n)$  runtime.

**Theorem 54.** Let (G, u, b, c) an instance of MKFP and f be a b-flow with minimum costs. Let P be a shortest s-t-path in regards of  $c_f$  in  $G_f$  for any  $s, t \in V(G_f)$ . f' results from f by augmentation along P by  $\gamma \leq \min\{u_f(e) : e \in E(P)\}$ , hence

$$f'(e) = \left\{ \begin{array}{ll} f(e) & e \notin E(P), \overleftarrow{e} \notin E(P) \\ f(e) + \gamma & e \in E(P) \\ f(e) - \gamma & \overleftarrow{e} \in E(P) \end{array} \right\}$$

Then f' is a b'-flow with minimum costs where

$$b'(v) = \left\{ \begin{array}{ll} b(v) & \forall v \notin \{s, t\} \\ b(v) + \gamma & v = s \\ b(v) - \gamma & v = t \end{array} \right\}$$

**Theorem 55.** Let G be a digraph with  $u: E(G) \to \mathbb{R}_+$  and  $b: V(G) \to \mathbb{R}$ 

$$\sum_{v \in V(G)} b(v) = 0$$

 $\exists b$ -flow in  $G \Leftrightarrow \forall X \subseteq V(G)$  it holds that:

$$\sum_{e \in \delta^+(X)} u(e) \ge \sum_{v \in V(X)} b(v)$$



Figure 1: Proof of theorem 54

**Theorem 56.** If the algorithm terminates with "there does not exist a b-flow in G", this statement is correct.

**Theorem 57.** If  $u: E(G) \to \mathbb{Z}_+, b: V(G) \to \mathbb{Z}$  and c is conservative, the successive shortest path algorithm can be implemented in  $\mathcal{O}(nm + B(m + n \log n))$ .

**Theorem 58.** In every i-th iteration of the algorithm a potential function  $\pi$  exists:

$$\pi: V(G) \to \mathbb{R}$$
 in  $G_{f_i}(c_{f_i}(u,v) + \pi(u) - \pi(v) \ge 0) \ \forall e \in E(G_{f_i})$ 

**Theorem 59.** (Edmonds and Karp, 1972) The capacity scaling algorithm solves the MKFP with integers b, infinite capacities and conservative weights correctly. The algorithm can be implemented in  $\mathcal{O}(n(m+n\log n)\log b_{max})$  runtime where  $b_{max} := \max\{b(v) : v \in V(G)\}$ .

**Theorem 60.** (Ford, Fulkerson, 1958) The MFoTP can be solved with the same time complexity like MKFP.

**Theorem 61.** (Berge, 1957) Let M be a matching in (G, E). M is maximal if and only if there is no M-augmenting path in G.

**Theorem 62.** Let  $G = (v_1 \cup v_2, E)$  be a bipartite graph. Then it holds  $v(G) = \zeta(G)$ .

**Theorem 63.** (Hall's marriage condition.) Let G be a bipartite graph  $(A \cup B, E)$  then G has a covering matching for A if and only if  $|\Gamma(X)| \ge |X| \ \forall X \subseteq A$  where  $\Gamma(X) = \{b \in B : \exists a \in X, (a,b) \in E(G)\}.$ 

**Theorem 64.** (Marriage corollary.) Let G be a bipartite graph with  $V(e) = A \cup B$  and |A| = |B|. G has a perfect matching if and only if  $\forall X \subseteq A$  with  $|\Gamma(X)| \ge |X|$  holds.

**Theorem 65.** Let G be a graph, then

$$q_G(X) - |X| \equiv |V(G)| \mod 2 \ \forall X \subseteq V(G)$$

**Theorem 66.** Let G be a graph. G contains a perfect matching if and only if the Tutte condition is satisfied, hence  $q_G(X) \leq |X| \ \forall X \subseteq V(G)$ .

**Theorem 67.** (Theorem by Tutte.) Let G be a graph with a perfect matching  $\Leftrightarrow q_G(x) \leq |X| \ \forall X \subseteq V(G)$  (tutte condition).

Less formally: A graph G = (V, E) has a perfect matching if and only if every subgraph G' of any  $U \subseteq V(G)$  has at most |U| connected components with an odd number of vertices.

**Theorem 68.** Let M be a matching in M in G and T be an alternating degenerated tree. Then G has no perfect matching.

**Theorem 69.** Let C be an odd cycle in G and let G' be a graph which results by contraction of C. Let M' be a matching in G'. Then there exists a matching M in G with

- $M \subset M' \cup E(C)$
- the number of non-matched vertices of M in G equals the number of non-matched vertices of M' in G'

**Theorem 70.** Let G' be a graph constructed by iterative contraction of odd cycles as in Edmonds Blossom Algorithm. Let M' be a matching in G' and T be a M'-alternating tree in G, such that  $\forall w \in A(T)$  is w a contracted vertex.

It follows if T becomes atrophied (no edges left), then G has no perfect matching.

**Theorem 71.** Edmonds Blossom Algorithm terminates after  $\mathcal{O}(n)$  matching augmentations,  $\mathcal{O}(n^2)$  contractions and  $\mathcal{O}(n^2)$  extensions of the tree. It decides correct whether a perfect matching exists.

**Theorem 72.** Edmonds Blossom Algorithm can be implemented with runtime  $\mathcal{O}(nm \log n)$ .

**Theorem 73.** The assignment problem can be solved with  $O(nm + n^2 \log n)$  runtime.

**Theorem 74.** (Hoffman & Kruskal, 1956) Let  $A \in \mathbb{Z}^{m \times n}$ . The following statements are equivalent:

- 1. A is total unimodular.
- 2. Polyeder  $P(b) := \{x \in \mathbb{R}^n : Ax \le b, x \ge 0\}$  is integral  $\forall b \in \mathbb{Z}^m$
- 3. Every quadratic regular submatrix of A has an integral inverse

**Theorem 75.** (Heller & Tompkins, 1959) Let  $A \in \{0, \pm 1\}^{m \times n}$  with at most two non-zero eintries per column. A is total unimodular if there exists a partition (R,T) of the rows in A  $(R \cup T = \{1, 2, ..., m\})$  such that

- if column j contains two  $\pm 1$  entries, then the corresponding rows belong to different parts of the partition.
- if column j contains one +1 and one -1 entry, then the corresponding rows belong to the same part of the partition.

**Theorem 76.** (Corollary by Hoffman and Kruskal) Let A be total unimodular with  $A \in \{0, \pm 1\}^{m \times n}$ .

1. Then it holds that

$$\forall c \in \mathbb{Z}^n, \ \forall b \in \mathbb{Z}^m: \begin{array}{ll} P_p &= \{x \in \mathbb{R}^n: Ax \leq b, x \geq 0\} \\ P_d &= \{y \in \mathbb{R}^m: A^t y \geq c, y \geq 0\} \end{array}$$

 $P_p$  and  $P_d$  are integral.

2. Polyeder  $S = \left\{ x \in \mathbb{R}^n : \underline{b} \leq Ax \leq \overline{b}, 0 \leq x \leq d \right\}$  is integral if  $\underline{b}, \overline{b} \in \mathbb{Z}^m$  and  $d \in \mathbb{Z}^n_+$ .

**Theorem 77.** (Theorem by Birckhoff) The permutation matrices correspond to the corners of an assignment polytop and every double-stochastic matrix can be represented as convex combination of permutation matrices.

**Theorem 78.** The following IDS are matroids

1. E is set of column vectors of a matrix A over an arbitrary field K.

 $\mathcal{F} := \{ F \subseteq E : vectors \ of \ F \ are \ linearly \ independent \ in \ K \}$  "vector matroid"

$$Y = \{col_1, col_2, \dots col_k\} \ \forall \in \mathcal{F}$$

$$X = \left\{ \underbrace{\overline{col_1}, \overline{col_2}, \dots, \overline{col_l}}_{linear\ indep.} \right\} \in \mathcal{F} \qquad l > k$$

Consider  $X \cup Y$ : rank $(X \cup Y) \ge l$  and rank $(Y) = k < \text{rank}(X \cup Y)$ . Then it follows that

 $\exists vector \ v \in X \cup Y \ with \ Y \cup \{u\} \ linearly \ independent \ v \in X \setminus Y$ 

2. IDS of exercise 6. "Graphical matroids". X, Y forests in G: |X| > |Y| with (M3) condition. Show that  $\exists x \in \mathcal{X}: Y \cup \{x\}$  is forest.

Assumption:  $\forall x \in X : Y \cup \{x\}$  is not a forest  $\Leftrightarrow x$  is in a connected component of  $Y \forall x \in X$ .

 $\Rightarrow$  every connected component of forest X is a subset of a connected component of forest Y.

For any G = (V, E) if G is cycle-free it holds that

$$|connected\ components| = |V(G)| - |E(G)|$$

 $p := |connected\ components\ of\ X|$ 

 $q := |connected\ components\ of\ Y|$ 

$$p \ge q$$

$$p = |V(G)| - |X| \ge |V(G)| - |Y|$$

As far as  $|X| \leq |Y|$ , this is a contradiction.

**Tree** number of connected components = n - (n - 1).

**Forest** number of connected components = |V(G)| - |E(G)| if G is cycle-free.

3. "Uniform matroid".

$$E = \{e_1, \dots, e_n\} \quad \mathcal{F} := \{F \subseteq E : |F| \le k\}$$

with  $k \in \mathbb{N}$ . (M3) is trivial to show.

4. G = (V, E) is graph.  $S \subseteq V(G)$  stable.  $\forall s \in S : k_s \in \mathbb{N}$ .

$$E = E(G) \quad \mathcal{F} := \{ F \subseteq E(G) : \delta_F(s) \le k_s \ \forall \ s \in S \}$$
$$F = \{ (1, 2), (1, 3), (4, 5), (4, 2) \}$$

$$F = \{(1,2), (1,3), (4,5), \overline{(4,2)}\}$$

$$F = \{(1,2), (1,3), (4,5), (4,3)\}$$

See figure 2.

$$(M3) \ X, Y \in \mathcal{F} : |X| > |Y|.$$

$$S' = \{ s \in S : \delta_Y(s) = k_s \}$$

$$|X| > |Y|$$
 and  $\delta_X(s) \le k_s \ \forall s \in S$ 

$$\xrightarrow{to\ show} \exists e \in S \setminus Ye \notin \delta(s) \ \forall \, s \in S'$$

If such an edge exists, we can append it.

$$\Rightarrow Y \cup \{e\} \in \mathcal{F}$$



Figure 2: Example for Theorem 78 bullet point 4.  $k_2=1, k_3=2, k_5=1$ 



 $\textit{Assumption:} \xrightarrow{\textit{to show}} \textit{does not hold:} \ \forall \, e \in X \setminus Y : \exists s \in S' : e \in \delta(s)$ 

$$\Rightarrow |X| = \sum_{s \in S'} \delta_X(s) \le \sum_{s \in S'} ks = \sum_{s \in S'} \delta_Y(s) = |Y|$$

$$|X| \le |Y|$$

Contradiction to the assumption.

5. Let G = (V, E) be a digraph.  $S \subseteq V(E)$ .  $k_s \in \mathbb{N} \ \forall s \in S$ . E = E(G).

$$\mathcal{F} := \left\{ F \subseteq E : \delta_k^-(s) \le k_s \right\}$$

(M3) analogous as in the previous item #4, but replace  $\delta$  with  $\delta^-$ . Stability is relevant for the rational in item #4, but because a direction is given here, it is not required.

**Theorem 79.** Let  $(E, \mathcal{F})$  be a IDS. Then the following statements are equivalent:

*M3:* Let  $X, Y \in \mathcal{F}, |X| > |Y| \Rightarrow \exists x \in X \setminus Y \quad Y \cup \{x\} \in \mathcal{F}$ 

*M3':* Let  $X, Y \in \mathcal{F}, |X| = |Y| + 1 \Rightarrow \exists x \in X \setminus Y \quad Y \cup \{x\} \in \mathcal{F}$ 

M3": For every  $X \subseteq E$  the bases of X have the same cardinality.

**Theorem 80.** Let  $(E, \mathcal{F})$  be an IDS. Then it holds that  $q(E, \mathcal{F}) \leq 1$ . Furthermore iff  $q(E, \mathcal{F}) = 1$  then  $(E, \mathcal{F})$  is a matroid.

**Theorem 81.** (Hausmann, Jenkyns, Korte, 1980) Let  $(E, \mathcal{F})$  be an IDS. If  $\forall A \in \mathcal{F} \ \forall e \in E, A \cup \{e\}$  contains at most  $\rho$  cycles, then it holds that

$$q(E, \mathcal{F}) \ge \frac{1}{\rho}$$

**Theorem 82.** (bases) Let E be a finite set and  $\mathcal{B} \subseteq 2^E$ . Family  $\mathcal{B}$  is the set of bases of a matroid if and only if the following base axioms are satisfied

- (B1)  $B \neq \emptyset$
- (B2)  $\forall B_1, B_2 \in \mathcal{B} \text{ and } x \in B_1 \setminus B_2 : \exists y \in B_2 \setminus B_1 \text{ with } (B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}.$
- If  $(B_1)$  satisfies  $(B_2)$ , then  $(E, \mathcal{F})$  is the matroid with base set  $\mathcal{B}$  where

$$\mathcal{F} = \{ F \subseteq E : \exists B \in \mathcal{B} \text{ with } F \subseteq B \}$$

**Theorem 83.** Let E be a finite set and  $r: 2^E \to \mathbb{Z}_+$ . Then the following 3 statements are equivalent:

- r is the rank function of a matroid  $(E, \mathcal{F})$  (with  $\mathcal{F} = \{F \subseteq E : r(F) = |F|\}$ ).
- $\forall X, Y \subseteq E \text{ it holds that}$ 
  - (R1)  $r(X) \leq |X|$

$$(R2) \ X \subseteq Y \Rightarrow r(X) \le r(Y)$$

$$(R3)$$
  $r(X \cup Y) + r(X \cap Y) \le r(X) + r(Y)$  (submodular)

•  $\forall X \subseteq E \text{ and } x, y \in E \text{ it holds that}$ 

$$(R1') \ r(\emptyset) = 0$$

$$(R2') \ r(X) \le r(X \cup \{y\}) \le r(X) + 1$$

$$(R3') \ r(X \cup \{x\}) = r(X \cup \{y\}) = r(X) \Rightarrow r(X \cup \{x,y\}) = r(X)$$

**Theorem 84.** (Closure) Let E be a finite set with  $r: 2^E \to 2^E$ .  $\sigma$  is the closure function of a matroid if  $\forall X, Y \subseteq E$  and  $\forall x, y \in E$  it holds that

- (S1)  $X \subseteq \sigma(X)$
- (S2)  $X \subseteq Y \Rightarrow \sigma(X) \subseteq \sigma(Y)$
- (S3)  $\sigma(\sigma(x)) = \sigma(x)$

(S4) 
$$[y \notin \sigma(X) \land y \in \sigma(X \cup \{x\})] \Rightarrow x \in \sigma(X \cup \{y\})$$

**Theorem 85.** (Cycles) Let E be a finite set and  $C \subseteq 2^E$ . C is the set of cycles of an IDS  $(E, \mathcal{F})$  with  $\mathcal{F} := \{F \subseteq E : \nexists C \in C \text{ with } C \subseteq F\}$  if and only if the following conditions are satisfied:

- $(C1) \varnothing \notin C$
- $(C2) \ \forall C_1, C_2 \in \mathcal{C} : C_1 \subseteq C_2 \Rightarrow C_1 = C_2$

Furthermore for the set C of cycles of an IDS it holds that:

- a)  $(E, \mathcal{F})$  is a matroid
- b)  $\forall X \in \mathcal{F} \ \forall e \in E : X \cup \{e\}$  contains at most one cycle. Denote this number of cycles as C(X,e). If no cycle exists, let  $C(X,e) = \emptyset$ .

where  $a \Leftrightarrow b$ .

Furthermore this statement is equivalent b)

- (C3)  $\forall C_1, C_2 \in \mathcal{C} \text{ with } C_1 \neq C_2 \ \forall e \in C_1 \cap C_2, \exists C_3 \in \mathcal{C} \text{ with } C_3 \subseteq (C_1 \cup C_2) \setminus \{e\}$
- (C4)  $\forall C_1, C_2 \in \mathcal{C}, \forall e \in C_1 \cap C_2, \forall f \in C_1 \setminus C_2 \text{ exists } C_3 \in \mathcal{C} \text{ with } f \in C_3 \subseteq (C_1 \cup C_2) \setminus \{e\}.$

**Theorem 86.** It holds that  $(E, \mathcal{F}^{**}) = (E, \mathcal{F})$ 

**Theorem 87.**  $B^*$  base of  $(E, \mathcal{F}^*) \Leftrightarrow \exists$  base B of  $(E, \mathcal{F})$  with  $B^* = B^C$  and  $(E, \mathcal{F}^*)$  its dual. Let r and  $r^*$  be the corresponding rank functions. Then it holds that

a)  $(E, \mathcal{F})$  is a matroid  $\Leftrightarrow (E, \mathcal{F}^*)$  is matroid

b) If  $(E, \mathcal{F})$  is a matroid, then it holds that  $r^*(F) = |F| + r(E \setminus F) - r(E) \ \forall F \subseteq E$ 

**Theorem 88.** Let G be a connected planar graph with an arbitrary planar embedding. Let  $G^*$  be the planar duality of G. Let M(G) be the graphical matroid of G. It holds that

$$M^*(G) = (M(G))^* = M(G^*)$$

Furthermore G is planar if and only if  $(M(G))^*$  is graphical; hence if a graph G' with  $M(G') = (M(G))^*$  exists.

If G is planar, then G' is isomorphic to a planar embedding of  $G^*$ .

**Theorem 89.** (Jenkyns, Korte, Hausmann, 1978) Let  $(E, \mathcal{F})$  be an IDS and  $c: E \to \mathbb{R}_+$ . Denote  $G(E, \mathcal{F}, c)$  as the costs of a solution determined by the BEST-IN-GREEDY algorithm. Denote  $OPT(E, \mathcal{F}, c)$  as the costs of an optimal solution (both for the maximization problem the GREEDY-IN algorithm is tackling).

Then it holds that

$$q(E, \mathcal{F}) \le \frac{G(E, \mathcal{F}, c)}{\text{OPT}(E, \mathcal{F}, c)} \underbrace{\leq}_{trivial} 1 \, \forall c : E \to \mathbb{R}_+$$

**Theorem 90.** (Edmonds, Rado, 1971) An IDS  $(E, \mathcal{F})$  is a matroix if and only if the BEST-IN-GREEDY algorithm provides an optimal solution for the maximization problem  $\forall c: E \to R_+$ .

**Theorem 91.** (Edmonds 1971, polyedric representation) Let  $(E, \mathcal{F})$  be a matroid and  $r: E \to \mathbb{Z}_+$  be a rank function. Then the matroid polytop  $P(E, \mathcal{F})$  (convex hull of incidence vectors of all independent sets) is given by:

$$P(E, \mathcal{F}) = \left\{ x \in \mathbb{R}^{|E|} : x \ge 0, \sum_{e \in A} x_e \le r(A) \ \forall A \subseteq E \right\}$$

$$F \in \mathcal{F} \qquad \underbrace{x^F(e)}_{incidence\ vectors} = \begin{cases} 1 & e \in F \\ 0 & else \end{cases} \qquad \sum_{e \in A} x_e^F = |A \cap F| \le r(A)$$

We conclude:  $x^F \in P(E, \mathcal{F}) \ \forall F \in \mathcal{F}$ .