NCS with Multiple Imperfections and ETC

NCS with Multiple Imperfections and ETC

1. NCS with Generalized Imperfections

- 1.1. Assumptions
- 1.2. Modeling

Deterministic

General NCS model

Extended State Model

1.3. Stability (Common Lyapunov Function)

2. Stability of General NCS model

- 2.1. From an infinite set to a finite set of LMIs
- 2.2. Polytopic Dynamical Model
- 2.3. Stability of Polytopic Model
- 2.4. Over-Approximate use Real-Jordan Form

Jordan-Form

Application of Jordan Form

Polytopic Overapproximation

- 2.5. Global Exponential Stability
- 2.6. An example

3. Other Reflection

4. Event-Triggered Control

4.1. Sampling Paradigms for Control

Time-triggered Control (TTC)

Event-Triggered Control (ETC)

Periodic Event-Triggered Control (PETC)

Self-Triggered Control (STC)

- 4.2. Framework and Assumptions for Event-triggered Control
- 4.3. Objective
- 4.4. Controller Design

Minimum Performance

Minimum Sampling Time

Comparing to TTC

1. NCS with Generalized Imperfections

1.1. Assumptions

• Time-Varying Sampling:

$$h_k = (s_{k+1} - s_k) \in [h_{\min}, h_{\max}]$$

• Time-Varying Dealys

$$au_k = (au_k^{sc} + au_k^c + au_k^{ca}) \in [au_{\min}, au_{\max}]$$

• Packet Losses

$$m_k = egin{cases} 0, & ext{if no packet loss at time } k \ 1, & ext{if packet is lost at time } k \end{cases}$$

• with maximum $\overline{\delta}$ consecutive dropouts:

Continuous Uncertainty Sets

1.2. Modeling

So, we have the state space model:

$$egin{aligned} \dot{\xi}(t) &= A\xi(t) + Bv(t) \ v(t) &= u_{k+j-ar{d}-ar{\delta}}, \quad ext{ for } t \in \left[s_k + t_j^k, s_k + t_{j+1}^k
ight] \end{aligned}$$

Deterministic

One can explicitly compute the actuation update times:

$$t_{j}^{k} = \phi\left(h_{k}, au_{k}, m_{k}, h_{k-1}, au_{k-1}, m_{k-1}, \ldots
ight).$$

and bounds $t_{j}^{k} \in [t_{j,min}, t_{j,\max}]$

$$t_{j,\min/\max} = \phi_{\min/\max}\left(au_{\min}, au_{\max},h_{\min},h_{\max},ar{\delta}
ight).$$

General NCS model

$$\begin{array}{ll} x_{k+1} = & \Lambda\left(\theta_k\right) x_k + & \text{Current state} \\ & + M_{\bar{d} + \bar{\delta} - 1}\left(\theta_k\right) u_{k-1} + \dots + M_0\left(\theta_k\right) u_{k-\bar{d} - \bar{\delta}^+} \\ & + M_{\bar{d} + \bar{\delta}}\left(\theta_k\right) u_k & \text{Current Control Inputs} \end{array}$$

where

$$egin{aligned} \Lambda\left(heta_{k}
ight) = e^{Ah_{k}}, M_{j}\left(heta_{k}
ight) = egin{cases} \int_{h_{k}-t_{j+1}^{k}}^{h_{k}-t_{j}^{k}} e^{As}dsB & ext{if} & 0 \leq j \leq ar{d} + ar{\delta} - \underline{d} \ 0 & ext{if} & ar{d} + ar{\delta} - \underline{d} < j \leq ar{d} + ar{\delta} \end{cases} \ heta_{k} := \left(h_{k}, t_{1}^{k}, \ldots, t_{rac{d}{d} + ar{\delta} - \underline{d}}^{k}
ight) \end{aligned}$$

Extended State Model

$$x_k^e = \left[x_k^T u_{k-1}^T \dots u_{k-ar{d}-ar{\delta}}^T
ight]^T$$

If we consider a linear controller $\,u_k=-ar{K}x_k$, then we will have $\,x_{k+1}^e=H(heta_k)x_k^e$

$$H\left(heta_{k}
ight) := egin{bmatrix} \Lambda\left(heta_{k}
ight) - M_{ar{d}+ar{\delta}}\left(heta_{k}
ight) ar{K} & M_{ar{d}+ar{\delta}-1}\left(heta_{k}
ight) & M_{ar{d}+ar{\delta}-2}\left(heta_{k}
ight) & \dots & M_{1}\left(heta_{k}
ight) & M_{0}\left(heta_{k}
ight) \\ -ar{K} & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ & \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

1.3. Stability (Common Lyapunov Function)

The closed-loop NCS is Globally Asymptotically Stable if there exists $P>0, \gamma\in(0,1)$ such that:

$$H^{T}(\theta_{k})PH(\theta_{k}) - P \leq -\gamma P, \quad \forall \theta_{k} \in \Theta$$

However, there is a large problem: because θ_k belongs to a continuous set, so the LMIs set is a **infinite set**

2. Stability of General NCS model

2.1. From an infinite set to a finite set of LMIs

Using Approximation:

Embedding in **convex polytopic sets** $\overline{\mathcal{E}}$ the uncertain terms:

$$\mathcal{E} := \left\{ \int_0^{h- au} e^{As} ds \mid au \in [au_{\min}, au_{\max}], h \in [h_{\min}, h_{\max}]
ight\} \subseteq \overline{\mathcal{E}} \ \mathcal{E} \subseteq \left\{ \sum_{i=1}^N \lambda_i E_i \mid \lambda_i \geq 0, \sum_{i=1}^N \lambda_i = 1
ight\}$$

2.2. Polytopic Dynamical Model

Consider now the case we have at hand, an LPV system:

$$x_{k+1}^e = H\left(heta_k
ight) x_k^e$$

with matrix uncertainty set $\mathcal{H}=\{H(\theta)\mid \theta\in\Theta\}, |\Theta|=\infty$ (continuous).

By use the above method, we can use a polytopic overapproximation $\bar{\mathcal{H}}$

$$x_{k+1}^e = \left(\sum_{i=1}^N \lambda_i H_i
ight)\! x_k^e, \quad \lambda_i \geq 0, \sum_{i=1}^N \lambda_i = 1$$

2.3. Stability of Polytopic Model

The polytopic model:

$$x_{k+1}^e = \left(\sum_{i=1}^N \lambda_i H_i
ight)\! x_k^e, \quad \lambda_i \geq 0, \sum_{i=1}^N \lambda_i = 1$$

is globally asymptotically stable **if there exists** $P=P^T>0, \gamma\in(0,1)$ such that the following finite set of LMls are satisfied:

$$H_i^T P H_i - P \leq -\gamma P, \forall i = 1, \dots, N$$

- This theorem allows us to reduce an infinite set of LMIs to a finite set of N LMIs
 By making the overapproximation area tighter and tighter, we will gradually have a more "iff" condition
 - there will be a precision-complexity trade-off

2.4. Over-Approximate use Real-Jordan Form

Jordan-Form

The Jordan normal form transformation of a matrix $A \in \mathbb{R}^{n \times n}$ is given by:

$$A = Q^{-1}JQ$$

with $Q \in \mathbb{R}^{n \times n}$ a matrix with the generalized eigenvectors of A as columns; and (assuming *p* distinct real eigenvalues):

$$J=\mathrm{diag}\,(J_1,\ldots,J_p), ext{ with }$$

$$J_i=\lambda_i,egin{bmatrix} \lambda_i & 1\ 0 & \lambda_i \end{bmatrix},egin{bmatrix} \lambda_i & 1 & 0\ 0 & \lambda_i & 1\ 0 & 0 & \lambda_i \end{bmatrix},egin{bmatrix} \lambda_i & 1 & 0 & \dots & 0\ 0 & \lambda_i & 1 & \dots & 0\ dots & \ddots & & dots\ 0 & 0 & \dots & \lambda_i & 1\ 0 & 0 & \dots & 0 & \lambda_i \end{bmatrix}$$

And the exponential of $A = Q^{-1}JQ$ is given by:

$$e^{As}=Q^{-1}e^{Js}Q=Q^{-1}\operatorname{diag}\left(e^{J_1},\ldots,e^{J_p}
ight)Q, ext{ with }$$

$$e^{As} = Q^{-1}e^{Js}Q = Q^{-1}\operatorname{diag}\left(e^{J_1},\dots,e^{J_p}
ight)Q, ext{ with } \ e^{J_is} = e^{\lambda_is}, e^{\lambda_is}egin{bmatrix} 1 & s & rac{s^2}{(k-1)!} \ 0 & 1 & s & rac{s^{k-1}}{(k-1)!} \ 0 & 1 & s & rac{s^{k-2}}{(k-2)!} \ dots & \ddots & \ddots & dots \ 0 & 0 & 1 \end{bmatrix}, e^{\lambda_is}egin{bmatrix} 1 & s & rac{s^{k-2}}{(k-2)!} \ dots & \ddots & \ddots & dots \ 0 & 0 & rac{s^{k-2}}{(k-2)!} \ dots & \ddots & \ddots & dots \ 0 & 0 & rac{s^{k-2}}{(k-2)!} \ dots & \ddots & \ddots & dots \ 0 & 0 & rac{s^{k-2}}{(k-2)!} \ dots & \ddots & \ddots & \ddots & dots \ 0 & 0 & rac{s^{k-2}}{(k-2)!} \ dots & 0 & 0 & rac{s^{k-2}}{(k-2)!} \ dots & 0 & 0 & 0 & 1 \ \end{pmatrix}$$

resulting (in the case of real eigenvalues) in:

$$e^{As} = Q^{-1} \left(\sum_{i=1}^p \sum_{j=0}^{q_i-1} rac{s^j}{j!} e^{\lambda_i s} S_{i,j}
ight) Q$$

with q_i the number of time-varying parameters associated to λ_i .

Application of Jordan Form

For a given system (for example with only uncertain delays):

$$x_{k+1}^{e} = egin{bmatrix} e^{Ah} & \int_{0}^{h- au_{k}}e^{As}dsB \ 0 & 0 \end{bmatrix} x_{k}^{e} + egin{bmatrix} \int_{h- au_{k}}^{h}e^{As}dsB \ l \end{bmatrix} u_{k} =: F\left(au_{k}\right)x_{k}^{e} + G\left(au_{k}\right)u_{k}$$

Use Jordan Form we will get:

$$x_{k+1}^e = \left(F_0 + \sum_{i=1}^r lpha_i \left(au_k
ight)\!F_i
ight)\!x_k^e + \left(G_0 + \sum_{i=1}^r lpha_i \left(au_k
ight)\!G_i
ight)\!u_k$$

where $\alpha_i\left(\tau_k\right)=\frac{\left(h-\tau_k\right)^j}{j!}e^{\lambda_i(h-\tau_k)}$: by using Integration by parts, there are a lot of offset, then we will get this one

Polytopic Overapproximation

For above example, we now have:

$$egin{aligned} \mathcal{F} &= \left\{ F_0 + \sum_{i=1}^r lpha_i(au) F_i \mid au \in [au_{\min}, au_{\max}]
ight\} \ \mathcal{G} &= \left\{ G_0 + \sum_{i=1}^r lpha_i(au) G_i \mid au \in [au_{\min}, au_{\max}]
ight\} \end{aligned}$$

Then we can obtain $\overline{\mathcal{F}}\supseteq\mathcal{F}$ and $\overline{\mathcal{G}}\supseteq\mathcal{G}$, by using: $\bar{\alpha}_i=\max_{\tau\in[\tau_{\min},\tau_{\max}]}\alpha_i(\tau)$ and $\underline{\alpha}_i=\min_{\tau\in[\tau_{\min},\tau_{\max}]}\alpha_i(\tau)$

$$egin{aligned} \overline{\mathcal{F}} &= \left\{F_0 + \sum_{i=1}^r \delta_i F_i \mid \delta_i \in \left[\underline{lpha}_i, ar{lpha}_i
ight], i = 1, 2, \ldots, r
ight\} \ \overline{\mathcal{G}} &= \left\{G_0 + \sum_{i=1}^r \delta_i G_i \mid \delta_i \in \left[\underline{lpha}_i, ar{lpha}_i
ight], i = 1, 2, \ldots, r
ight\} \end{aligned}$$

It is a convex hull of a finite set of vertices (in the space of matrices)

Then for LMIs, we can always test the vertices instead of whole space

2.5. Global Exponential Stability

Global exponential stability can be established if there exists

$$P=P^T>0 \ \left(H_{F,j}-H_{G,j}K
ight)^T\!P\left(H_{F,j}-H_{G,j}K
ight)-P\leq -\gamma P, \quad \left(2^r+1
ight)^T\!P\left(H_{F,j}-H_{G,j}K
ight) \in \mathcal{H}_{\mathcal{F}} imes \mathcal{H}_G$$

2.6. An example

3. Other Reflection

One should always notes one point:

For a given NCS.

- If we proved the stability or design a stable controller, it means, under all
 circumstances considered by the model, the system always will accomplish the
 stability
- If we cannot proved the stability, that does not mean the system will definitely become unstable in one execution

4. Event-Triggered Control

4.1. Sampling Paradigms for Control

Time-triggered Control (TTC)

Sampling sequences independent of plant's state

Event-Triggered Control (ETC)

Sampling sequences dependent of plant's state:

• Sensor Measure Periodically, but may not send each time

$$egin{aligned} s_k &= \Phi_{ ext{ETC}}\left(\xi, x_k, x_{k-1}, \dots, x_0, s_{k-1}, \dots, s_0
ight) \ & ext{e.g. } s_k &= \inf\left\{t > s_{k-1} \left\| \xi(t) - x_{k-1} \right\| > \sigma \|\xi(t)\|
ight\} \end{aligned}$$

Periodic Event-Triggered Control (PETC)

Sampling sequences dependent of plant's state.

Sampling times subset of a periodic sampling sequence

$$egin{aligned} s_k &= \Phi_{ ext{PETC}} \; (\xi, x_k, x_{k-1}, \dots, x_0, s_{k-1}, \dots, s_0) h, h \; ext{constant}, \; ext{lm}(f) \in \mathbb{N} \ & ext{e.g.} \; s_k &= \inf \left\{ rh > s_{k-1} \; | \; \| \xi(rh) - x_{k-1} \| > \sigma \| \xi(rh) \|
ight\}, r \in \mathbb{N} \end{aligned}$$

Self-Triggered Control (STC)

- Sampling sequences dependent of previous sampled plant's state.
- Sampling times often a conservative prediction of those from ETC.
- Sampling based on information at the controller.

$$s_k = \Phi_{ ext{STC}}\left(x_k, x_{k-1}, \dots, x_0, s_{k-1}, \dots, s_0
ight)$$
 e.g. $s_k = h\left(x_k
ight)$

4.2. Framework and Assumptions for Event-triggered Control

We will focus on LTI plants:

$$\dot{\xi}(t) = A\xi(t) + Bv(t)$$

Controller is given: $v(t) = -K\xi(t)$, such that the continuous-time closed loop is GES.

- No delays and no quantization effects.
- Sensors measure continuously the state.

For the closed loop GES:

 \exists a Lyapunov function $V(x)=x^TPx$ with $P=P^T>0$ such that

$$(A - BK)^T P(A - BK) = -Q$$

for some Q > 0.

 $rac{d}{dt}V(\xi(t)) = -x^TQx$ can be regarded as a performance specification: a convergence rate

4.3. Objective

Determine a **triggering function** $s_k = \Phi_{\text{ETC}}\left(\xi, x_k, x_{k-1}, \dots, x_0, s_{k-1}, \dots, s_0\right)$

such that:

- The resulting sampled-data closed-loop **remains GES**;
- A minimum performance can be specified;
- The time between events is always **lower bounded by a positive quantity**, i.e.:

$$s_{k+1} - s_k \geq au_{\min} > 0, orall k$$

- If possible, implementation is simple.
- If possible, a **reduction on transmission**s can be guaranteed w.r.t. alternative implementations (e.g. TTC);

4.4. Controller Design

Minimum Performance

By finding above **triggered-condition**, we can guarantee that the performance criterion

- Based on the continuous model, the system can guarantee a performance criterion
- Based on triggered mode, although because of information latent, the origin
 performance may not be met, however, for a given expected performance, we can
 meet it by adjust the triggered-condition (somewhat can be regarded as
 worst-case frequency or worst up-to-date extent of control signal)

it is reasonable to **assume** that some **performance may need to be sacrificed**, then we can let the desired performance be:

$$rac{d}{dt}V(\xi(t)) \leq -\sigma \xi(t)^T Q \xi(t)$$

with $\sigma \in (0,1)$

By using state-space function, we can transform it into:

$$-\xi(t)^T \left(A^T P + PA
ight) \xi(t) - \xi(t)^T PBK \xi\left(s_k
ight) - \xi(s_k)^T (BK)^T P \xi(t) \le -\sigma \xi(t)^T Q \xi(t)$$

Which means, the performance can be imposed by satisifies:

$$\phi\left(\xi(t),\xi\left(s_{k}
ight)
ight):=egin{bmatrix} \xi(t)^{T} & \xi(s_{k})^{T} \end{bmatrix} egin{bmatrix} A^{T}P+PA+\sigma Q & -PBK \ -(BK)^{T}P & 0 \end{bmatrix} egin{bmatrix} \xi(t) \ \xi\left(s_{k}
ight) \end{bmatrix} \leq 0 \Rightarrow s_{k+1} = \inf\left\{t>s_{k} \mid \phi\left(\xi(t),\xi\left(s_{k}
ight)
ight\} \right\} = inf\left\{t>s_{k} \mid \phi\left(\xi(t),\xi\left(s_{k}
ight)
ight\} = inf\left\{t>s_{k} \mid \phi\left(\xi(t),\xi\left(s_{k}
ight)
ight\} \right\} = inf\left\{t>s_{k} \mid \phi\left(\xi(t),\xi\left(s_{k}
ight)
ight\} = inf\left\{t>s_{k} \mid \phi\left(\xi(t),\xi\left(s_{k}
ight)
ight\} \right\} = inf\left\{t>s_{k} \mid \phi\left(\xi(t),\xi\left(s_{k}
ight)
ight\} = inf\left\{t>s_{k} \mid \phi\left(s_{k}
ight)
ight$$

Here, we use an extra variable $\epsilon(t)$ to represent difference between last timestep and current time

Then we can rewritten that:

$$-\xi(t)^T Q \xi(t) - \xi(t)^T P B K \varepsilon(t) - \varepsilon(t)^T (BK)^T P \xi(t) \le -\sigma \xi(t)^T Q \xi(t)$$

So, the triggered threshold can be rewritten to:

$$egin{aligned} s_{k+1} &= \inf \left\{ t > s_k \mid \phi^e(\xi(t), arepsilon(t)) \leq 0
ight\} =: \Phi^e_{ ext{ETC}}(\xi, arepsilon, s) \ \phi^e(\xi(t), arepsilon(t)) &:= \left[\xi(t)^T \quad arepsilon(t)^T
ight] egin{bmatrix} (1 - \sigma)Q & PBK \ (BK)^TP & 0 \end{bmatrix} egin{bmatrix} \xi(t) \ arepsilon(t) \end{pmatrix} \end{aligned}$$

Minimum Sampling Time

With previous triggered-condition, we can also find a minimum interval time

First, we transform previous performance condition

$$\begin{aligned} &-\xi(t)^T Q \xi(t) - \xi(t)^T P B K \varepsilon(t) - \varepsilon(t)^T (BK)^T P \xi(t) \le -\sigma \xi(t)^T Q \xi(t) \\ \Leftrightarrow &(1 - \sigma) \xi(t)^T Q \xi(t) + 2 \xi(t)^T P B K \varepsilon(t) \ge 0 \\ \Leftrightarrow &(1 - \sigma) \xi(t)^T Q \xi(t) \ge -2 \xi(t)^T P B K \varepsilon(t) \end{aligned}$$

And, it can be observed that:

$$\begin{split} &(1-\sigma)\lambda_{\min}(Q)\|\xi(t)\|^2 \geq 2\|PBK\|\|\xi(t)\|\|\varepsilon(t)\| \\ \Leftrightarrow &(1-\sigma)\lambda_{\min}(Q)\|\xi(t)\| \geq 2\|PBK\|\|\varepsilon(t)\| \\ \Leftrightarrow &\tilde{\sigma} := \frac{(1-\sigma)\lambda_{\min}(Q)}{2\|PBK\|} \geq \frac{\|\varepsilon(t)\|}{\|\xi(t)\|} \\ \Rightarrow &(1-\sigma)\xi(t)^TQ\xi(t) \geq -2\xi(t)^TPBK\varepsilon(t) \end{split}$$

Which means, the following triggering condition is more conservative

• Conservative: means in frequency, smaller time interval upper-bound

$$egin{aligned} \inf\left\{t>s_k\mid ilde{\phi}^e(\xi(t),arepsilon(t)) \leq 0
ight\} \leq \inf\left\{t>s_k\mid \phi^e(\xi(t),arepsilon(t)) \leq 0
ight\} \ & ilde{\phi}^e(\xi,arepsilon) := ilde{\sigma}\|\xi(t)\| - \|arepsilon(t)\| \leq 0 \Leftrightarrow rac{\|arepsilon(t)\|}{\|\xi(t)\|} \geq ilde{\sigma} \end{aligned}$$

Here, we will show that there is a minimum inter-event time au_{min} , by showing there's a minimum time for $\varphi(t)=\frac{\|arepsilon(t)\|}{\|\xi(t)\|}$ to evolve from 0 to $\tilde{\sigma}$:

$$arphi(t) = rac{\|arepsilon(t)\|}{\|\xi(t)\|}, arphi(0) = 0$$

Note that $\frac{d}{dt} \varepsilon(t) = -\frac{d}{dt} \xi(t)$

$$\begin{split} \frac{d}{dt}\varphi(t) &= \frac{\sqrt{\varepsilon^T \varepsilon}}{\sqrt{\xi^T \xi}} = -\frac{\varepsilon^T \dot{\xi}}{\|\varepsilon\| \|\xi\|} - \frac{\xi^T \dot{\xi}}{\|\xi\|^2} \frac{\|\varepsilon\|}{\|\xi\|} \leq \frac{\|\dot{\xi}\|}{\|\xi\|} + \frac{\|\dot{\xi}\|}{\|\xi\|} \varphi \leq \\ &\leq \|A - BK\| + (\|A - BK\| + \|BK\|)\varphi + \|BK\|\varphi^2 \end{split}$$

where we used $\|\dot{\xi}\| \leq \|A - BK\|\xi + \|BK\|arepsilon$

because ϕ is bounded, so, the derivative is bounded, so there will always be a minimum interval

Comparing to TTC

- Accepts a trivial answer when comparing with Periodic TTC with constant h
- But in general may not hold for more sophisticated TTC strategies
- ETC is a greedy approach, that means it only see 1-step forward
 - Sometimes sampling a bit earlier gives long term reductions

