This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

What is claimed is:

- 1. A lens sheet comprising a lens portion with a plurality of lens elements arranged in at least one side and a shielding layer provided in a non-transmitting portion of a light radiation plane, wherein the shielding layer is provided on a layer made of a cured photo-curing composition (A), wherein the photo-curing composition (A) is composed of 100 weight parts of photo-curing resin composition (a) having a surface free energy of 30mN/m or more and 0.01 to 10 weight parts of compound (b) having a surface free energy of 25mN/m or less.
- 2. A lens sheet comprising a lens portion with a plurality of lens elements arranged in at least one side and a shielding layer provided in a non-transmitting portion of a light radiation plane, wherein the shielding layer is provided on a layer made of a cured photo-curing composition (A), wherein a light-transmitting portion in the layer of the photo-curing composition (A) has a surface free energy of 25mN/m or less.
- 3. The lens sheet according to claim 1 or 2, wherein the lens portion is a group of convex cylindrical lenses one-dimensionally arrayed on a light incidence plane.
- 4. The lens sheet according to claim 1 or 2, wherein the lens portion is a group of convex lenses two-dimensionally arrayed on a light incidence plane.

- 5. The lens sheet according to claim 1 or 2, wherein the lens portion is a fresnel lens constituted of fresnel lens faces and rising faces, wherein the fresnel lens faces are obtained by dividing the light radiation plane into the shape of a number of concentric circles and the rising faces each define boundaries of the fresnel lens faces.
- 6. A method of producing a lens sheet which includes a lens portion with a plurality of lens elements arranged in at least one side and a shielding layer provided in a non-transmitting portion of a light radiation plane, the method comprising the following steps of:

coating photo-curing composition (A) on a light radiation plane of the lens sheet to form a layer made of the photo-curing composition (A), the photo-curing composition (A) being composed of 100 weight parts of photo-curing resin composition (a) having a surface free energy of 30mN/m or more and 0.01 to 10 weight parts of compound (b) having a surface free energy of 25mN/m or less;

radiating light from the side opposite to the layer of the photo-curing composition (A) to selectively cure a light transmitting portion of the layer of the photo-curing composition (A) with the layer of the photo-curing composition (A) being contacted with a medium having free energy lower than that of the compound (b); and

painting colored pigment on the layer of the photo-curing composition (A) to form a shielding layer in a non-transmitting portion of light.

7. The method of producing a lens sheet according to claim 6, wherein said step of forming a shielding layer comprising the steps of:

painting the colored pigment; and

drying the colored pigment after a time period lapses as much as the colored pigment painted on the light transmitting portion is repelled to completely expose the layer of the photo-curing composition (A) in the light transmitting portion.

8. The method of producing a lens sheet according to claim 6, wherein said step of forming a shielding layer comprising the steps of:

painting the colored pigment;

drying the colored pigment; and

removing the colored pigment on the light transmitting portion.

9. The method of producing a lens sheet according to claim 6, wherein the wherein said step of forming a shielding layer comprising the steps of:

painting photo-curing colored pigment on a peelable sheet; attaching a layer of the photo-curing colored pigment and the layer of the photo-curing composition (A) to each other; and

radiating light from the side opposite to the layer of the photo-curing colored pigment and the photo-curing composites (A) to selectively cure a light transmitting portion of the photo-curing colored pigment; and peeling the peelable sheet from the lens sheet.

10. The method of producing a lens sheet according to claim 6, further

comprising the step of: radiating light from the side opposite to the layer of the photo-curing composition (A) to cure an uncured portion of the layer of the photo-curing composition (A) with the layer of the photo-curing composition (A) being contacted with a medium having free energy higher than that of the photo-curing resin composition (a) between said step of radiating light from the side opposite to the layer of the photo-curing composition (A) to selectively cure a light-transmitting portion of that layer and said step of forming a shielding layer.

- 11. The method of producing a lens sheet according to one of the preceding claims 6 to 10, wherein the medium having a surface free energy lower than that of the compound (b) is the air.
- 12. The method of producing a lens sheet according to claim 10, wherein the medium having a surface free energy higher than that of the photo-curing resin composition (a) is water.
- 13. The method of producing a lens sheet according to one of the preceding claims 6 to 12, wherein the light radiated from the side opposite to the layer of the photo-curing composition (A) propagates substantially in a parallel direction.
- 14. The method of producing a lens sheet according to one of the preceding claims 6 to 12, wherein the lens sheet is used for a projection screen for an image display device which displays an image by projecting light from rearward, and the light radiated from

the side opposite to the layer of the photo-curing composition (A) propagates substantially in the same direction as that of the projection light of the image.