

WYDZIAŁ FIZYKI i INFORMATYKI STOSOWANEJ

Uniwersytet Łódzki

Systemy wbudowane

Witold Kozłowski

https://std2.phys.uni.lodz.pl/mikroprocesory/

Systemy wbudowane

Kierunek: Informatyka PRACOWNIA DYDAKTYCZNA

Uwaga !!!

Proszę o wyłączenie telefonów komórkowych

na wykładzie i laboratorium

Systemy wbudowane

Kierunek: Informatyka PRACOWNIA DYDAKTYCZNA

Wykład 8.

Magistrala 1-Wire

Pomiar temperatury

Temperatura

Temperatura to funkcja stanu w termodynamice, która podobnie jak ciepło jest związana ze średnią <u>energia kinetyczna</u> ruchu i drgań wszystkich cząsteczek tworzących dany układ.

Temperatura jest miarą "chęci" do dzielenia się ciepłem. Jeśli dwa ciała mają tę samą temperaturę, to w bezpośrednim kontakcie nie przekazują sobie ciepła, gdy zaś mają różną temperaturę, to następuje przekazywanie ciepła z ciała o wyższej temperaturze do ciała o niższej - aż do wyrównania się temperatur obu ciał. II zasada termodynamiki

Skale historyczne

Pierwsi konstruktorzy termometrów i skal temperatur opierali swe skale na znanych im zjawiskach, najczęściej przyjmowano, że zmiana temperatury jest proporcjonalna do zmiany objętości cieczy (alkoholu, rtęci).

W skalach tych przyjmowano za odniesienie temperaturę dwóch zjawisk, które zachodzą zawsze w tej samej temperaturze.

W skali Celsjusza przyjmuje się, że

0°C odpowiada temperaturze krzepnięcia wody,

100°C to temperatura wody wrzącej pod normalnym ciśnieniem

(choć Celsjusz pierwotnie przyjmował odwrotnie!!!).

W takich skalach istnieją temperatury ujemne.

Termodynamiczna skala temperatury

Fizycy badając własności gazów zauważyli, że we wszystkich wzorach do temperatury w skali Celsjusza trzeba zawsze dodawać stałą wartość 273,15 dlatego wprowadzono skalę temperatur, zwaną bezwzględną lub absolutną. Skalę tą określono na podstawie równania stanu gazu idealnego

(równanie Clapeyrona): $p \cdot v = n \cdot R \cdot T$

Temperaturę określa się na podstawie pomiaru ciśnienia i objętości gazu idealnego.

Skala bezwzględna temperatury określa temperaturę 0 jako taką temperaturę gazu idealnego, w której gaz przy zadanym ciśnieniu będzie miał zerową objętość, co odpowiada temu, że w tej temperaturze wszelki ruch cząsteczek gazu ustaje.

W rzeczywistości jednak objętości cząsteczek gazu są niezerowe, oznacza to, że rzeczywistym termometrem gazowym nie można mierzyć dowolnie niskich temperatur.

Termodynamiczna skala temperatury

Temperatura zera bezwzględnego jest najniższą temperaturą jaką mogą uzyskać ciała, w temperaturze tej wszystkie cząstki substancji mają najmniejszą możliwą energię, według mechaniki klasycznej ruch cząsteczek całkowicie ustaje, a według statystycznej mechaniki kwantowej wszystkie cząsteczki znajdują się w swoim stanie podstawowym wykonując tzw. drgania zerowe.

W temperaturze zera bezwzględnego wszystkie ciała są w stanie stałym, wyjątkiem jest hel który w pewnym zakresie ciśnienia pozostaje cieczą w dowolnie niskich temperaturach.

Kelwin - jest standardową jednostką temperatury przyjętą w Układzie SI i uznawaną przez cały świat naukowo-techniczny

Jednostki temperatur

Najczęściej używaną w Polsce i wielu innych krajach jednostką temperatury są stopnie Celsjusza.

Wzór do przeliczania stopni Celsjusza na Kelwiny jest następujący:

$$T[K] = t[^{\circ}C] + 273.15$$

W USA, w dalszym ciągu używa się stopni Fahrenheita. W tej skali temperatura zamarzania wody jest równa 32 °F a wrzenia 212 °F. Wzór przeliczający stopnie Fahrenheita na stopnie Celsjusza:

$$t[^{\circ}C] = (5/9) \cdot (t_{F}[^{\circ}F] - 32)$$

Jednostki temperatur

	Por	ówn <mark>an</mark> ie t	tempe <mark>ratu</mark> r w	różnych	skalach			
Zjawisko	Kelwin	Celsjusz	Fahrenheit	Rankine	Delisle	Newton	Réaumur	Rømer
Zero absolutne	0	-273.15	-459.67	0	559.725	-90.142	-218.52	-135.90
Zero Fahrenheita	255.37	-17.78	0	459.67	176.67	-5.87	-14.22	-1.83
Zamarzanie wody	273.15	0	32	491.67	150	0	0	7.5
Średnia temperatura ciała człowieka	310.0	36.8	98.2	557.9	94.5	12.21	29.6	26.925
Wrzenie wody	373.15	100	212	671.67	0	33	80	60
Topnienie tytanu	1941	1668	3034	3494	-2352	550	1334	883
Temperatura efektywna powierzchni Słońca	5800	5526	9980	10440	-8140	1823	4421	2909

Pomiar temperatury

Jest realizowany na wiele sposobów. W zależności od interakcji pomiędzy badanym obiektem pomiarowym a czujnikiem pomiarowym wyróżnić można:

- pomiar dotykowy
- pomiar bezdotykowy

W zależności od wykorzystanych do pomiaru własności fizycznych czujnika pomiarowego wyróżnić można pomiar z wykorzystaniem zjawiska:

- •odkształcenia bimetalu,
- •wytwarzania napięcia elektrycznego na styku dwóch metali (termopara),
- •zmiany rezystancji elementu (termistor),
- •zmiany parametrów złącza półprzewodnikowego (termometr diodowy)
- •zmiany objętości cieczy, gazu, lub długości ciała stałego (termometr,termometr cieczowy),
- •zmiana barwy barwa żaru, barwa nalotowa stali, farba zmieniająca kolor pod wpływem temperatury,
- •stożki Segera.

Układ DS1820

DS1820

DALLAS

DS1820 1–Wire[™] Digital Thermometer

FEATURES

- Unique 1-WireTM interface requires only one port pin for communication
- Multidrop capability simplifies distributed temperature sensing applications
- Requires no external components
- · Can be powered from data line
- · Zero standby power required
- Measures temperatures from -55°C to +125°C in 0.5°C increments. Fahrenheit equivalent is -67°F to +257°F in 0.9°F increments
- · Temperature is read as a 9-bit digital value.
- Converts temperature to digital word in 200 ms (typ.)
- User-definable, nonvolatile temperature alarm settings
- Alarm search command identifies and addresses devices whose temperature is outside of programmed limits (temperature alarm condition)
- Applications include thermostatic controls, industrial systems, consumer products, thermometers, or any thermally sensitive system

PIN ASSIGNMENT

PIN DESCRIPTION

 GND
 — Ground

 DQ
 — Data In/Out

 VDD
 — Optional VDD

 NC
 — No Connect

Magistrala 1-Wire

Magistrala 1-wire została zaprojektowana przez firmę DALLAS Semiconductor (teraz Maxim) jest ona przeznaczona do przesyłania informacji pomiędzy układem *Master* (mikrokontroler) i układami *Slave* za pomocą magistrali jednoprzewodowej (jeden przewód, nie należy pomijać linii masy).

Magistrala 1-Wire korzysta z transmisji szeregowej, magistrala może być zaimplementowana na dwa sposoby:

- 1. Stosując dwa przewody wtedy używane są tylko linia DQ oraz masa. Zasilanie elementu jest dostarczane przez linię DQ. Gdy magistrala jest wolna na linii panuje +5V, co powoduje ładowanie wewnętrznego kondensatora. Zgromadzone napięcie jest wtedy wykorzystywane przez element podczas komunikacji. Takie rozwiązanie nazywane jest właśnie 1-Wire.
- 2. Stosując 3 przewody Vdd jest podłączone do zasilanie +5V. Reszta linii jest połączona jak przy komunikacji 1 przewodowej. To rozwiązanie zwane jest 2-Wire.

Magistrala 1-Wire

Każde z urządzeń dołączonych do magistrali musi mieć wyjście typu otwarty dren, a linia sygnałowa jest połączona z plusem zasilania przez rezystor 2...5 kom.

1-Wire

2-Wire

Dołączenie do płytki ZL2AVR czujnika D51820

2-Wire

DQ

+5V

GND

Czynności jakie należy wykonać podczas komunikacji z układem D51820 do odczytania temperatury:

- 1. Zerowanie (sygnał reset) magistrali 1- Wire
- 2. Wpisanie numeru ID czujnika
- 3. Wysłanie komendy pomiaru temperatury
- 4. Opóźnienie około 750ms maksymalny czas konwersji wyniku pomiaru temperatury do postaci cyfrowej
- 5. Ponowne zerowanie (sygnał reset) magistrali 1- Wire
- 6. Wpisanie numeru ID czujnika
- 7. Wywołanie komendy odczytania temperatury
- 8. Odczytanie temperatury
- 9. Zerowanie magistrali 1 Wire

Układ D51820 Konwersja wartości mierzonej temperatury na wartości binarne

MSB	LSB
00000000	11111010
0	250
Temperatura(2)	Temperatura(1)

Układ DS1820 Konwersja wartości mierzonej temperatury w °C na wartości zapisane w bitach i dziesiętnie

TEMPERATURA	WARTOŚĆ (bina:		WARTOŚĆ CYFROWA (LSB dziesiętnie)
	MSB	LSB	(Lob dziesiętnie)
+125,0°C	00000000	11111010	250
+25,0°C	00000000	00110010	50
+ ½ °C	0000000	00000001	1
+0,0°C	00000000	00000000	0
- ½ °C	1111111	11111111	255
-25,0°C	11111111	11001110	206
-55,0°C	11111111	10010010	146

Przykład przeliczania zawartości rejestrów MSB, LSB przechowujących wartości bitowe na wartość temperatury

Przykład przeliczania zawartości rejestrów MSB, LSB przechowujących wartości bitowe na wartość temperatury

Przykład przeliczania zawartości rejestrów MSB, LSB przechowujących wartości bitowe na wartość temperatury

MSB				LSB					
bit0	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	dec
1	1	1	0	0	1	1	1	0	= 206

Znak
Liczby ujemne, zapisywane są w postaci uzupełnienia do dwóch, kod U2

Bity b7-0 przeliczamy na wartość dziesiętną

(256-206)/2= 25

Przykład pomiaru temperatury używając układu DS1820 sterowanego magistralą 1-Wire

Schemat dołączenia do mikrokontrolera jednego czujnika DS1820

MSB	LSB
00000000	11111010
0	250
Temperatura(2)	Temperatura(1)

```
Sub
                                       Label
   $reqfile = "m8def.dat"
   $crvstal = 8000000
   Config Lcd = 16 * 2
   Config 1wire = Portb 0
   Declare Sub Odcz temp
   Dim Temperatura(2) As Byte
   Defledchar 0 7 5
                                    32 , 32 , 32 , 32
   Do
    Call Odcz temp
    Cls
    If Temperatura(2) = 0 Then
                  Temperatura(1);
                                     Chr(0)
     Lcd "Temp: "
    Else
     Lcd "Temp: -" :
                     Temperatura(1) ; Chr(0)
    End If
   Loop
   End
```

D:\Mikroprocesory\Bascom Colege\basAVR_listingi\Dziala_zajecia\... 🗖 🗖 🗶

konfiguracja linii magistrali 1-Wire procedura odczytu temperatury z układu DS1820

tablica dwóch zmiennych typu Byte do pamiętania wartości temperatury

definicja znaku stopnia

wywołanie procedury pomiaru temperatury

jeśli wartość Temperatura(2)=0, to temperatura dodatnia

w przeciwnym razie wyświetla temperatury ujemne

procedura pomiaru temperatury

opuszczenie zapisu numeru ID, &hcc=204

start pomiaru temperatury

opóźnienie na czas pomiaru

reset magistrali 1-Wire

opuszczenie zapisu numeru ID

komenda odczytu zmierzonej temperatury

odczyt zmierzonej temperatury do tablicy

Temperatura

reset magistrali 1-Wire

jeśli układ dołączony do magistrali nie

odpowiada, to

jeśli zmienna Temperatura(2) > 0, to temperatura jest ujemna, jeśli Temperatura(2)=0, to temperatura jest dodatnia

przeliczenie temperatury

Sterowanie dwoma układami DS1820 dołączonymi do magistrali 1-Wire

Schemat dołączenia do mikrokontrolera dwóch czujników DS1820 za pomocą wspólnej magistrali 1-Wire

Sterowanie dwoma układami DS1820 dołączonymi do magistrali 1-Wire

Aby była możliwa obsługa kilku układów dołączonych do tej samej linii magistrali 1-Wire, należy wcześniej odczytać ich numer ID.

Jest to 8-bajtowy (64 bitowy) unikatowy numer układu. Po odczytaniu tego numer i zapisaniu go w wewnętrznej pamięci EEPROM jest możliwa identyfikacja układu dołączonego do magistrali 1-Wire i wybranie go za pomocą tego numeru i odczytanie temperatury.

Unikalny 64-bitowy kod

Każdy układ DS1820 jest indywidualny. Policzmy ile ich może być:

$$2^{64} = 18\ 446\ 744\ 073\ 709\ 551\ 616$$

Istnieje aż 2^64 (2 do potęgi 64) unikalnych adresów elementów.

Liczba ludności 7 095 217 980

Trylion - liczba o wartości: 1 000 000 000 000 000 000 = 10^{18} .

W krajach stosujących krótką skalę (głównie kraje anglojęzyczne) trylion oznacza liczbę 10¹², czyli bilion

Zapis 64-bitowego numeru do pamięci EEPROM (512 bajtów dla ATmega 8)

171	173	162	0	229	194	39	26
AE	AD	A2	0	E 5	C2	27	1A

Ponieważ do pojedynczej komórki pamięci EEPROM można zapisać jeden bajt należy:

słowo 64-bitowe rozdzielić na 8 bajtów

A następnie 8 bajtów zapisać w ośmiu komórkach pamięci

Sterowanie dwoma układami D51820 dołączonymi do magistrali 1-Wire

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
AB	AD	A2	0	E5	C2	27	1A	AB	AD	A2	0	E5	C2	27	1A
ld(1)	ld(2)	ld(3)	ld(4)	ld(5)	Id(6)	ld(7)	ld(8)								

kursor na początek pierwszej linii

pętla wykonywana od K = 1 do liczby układów dołączonych do 1-Wire

wywołanie procedury pomiaru temperatury z parametrem K

jeśli wartość Temperatura(2)= 0 to temperatura dodatnia wyświetlenie temperatury dodatniej

kursor w drugiej linii LCD zwiększenie o 1 wartości K

D:\Mikroprocesory\Bascom Colege\basAVR_listingi\Dzial... 🖃 🔲 🗙 Sub Label Sub Odcz_temp(czujnik As Byte) If Czujnik = 1 Then For I = 1 To 8 Readeeprom Id(i), I Next I End If If Czujnik = 2 Then J = 0For I = 9 To 16 Incr J Readeeprom Id(j) , I Next I End If 1wreset Call Zapisz id 1wwrite &H44 Vaites 750 1wreset Call Zapisz id 1wwrite &HBE Temperatura(1) = 1wread(2)lwreset If Err = 1 Then Cls Lcd "Brak ukladu" Do Loop End If If Temperatura(2) > 0 Then Temperatura(1) = 256 - Temperatura(1) End If Temperatura(1) = Temperatura(1) / 2 End Sub

Program 19

procedura pomiaru temperatury - parametr Czujnik określa numer czujnika

jeśli Czujnik = 1 to odczytywany jest z pamięci EEPROM numer ID czujnika 1

reset magistrali 1-Wire

wybranie czujnika poprzez zapis do niego numeru ID aktualnie obsługiwanego układu DS1820

start pomiaru przez układ DS1820

opóźnienie na czas pomiaru

komenda odczytu z układu DS1820 zmierzonej temperatury,poprzedzona komenda reset i zapisem numeru ID (wybranie układu)

odczyt zmierzonej temperatury do tablicy Temperatura

jeśli brak układu DS1820 dołączonego do 1-Wire, to wyświetlenie komunikatu o braku układu

przeliczanie temperatury ujemnej i dodatniej

definicja procedury zapisu numeru ID do układów DS1820

wysłanie komendy zapisu numeru ID do układów

wysłanie do czujników numeru ID z tablicy Id

Zadanie specjalne !!!

Każdy czujnik temperatury DS1820 posiada swój 64 bitowy unikatowy numer.

Napisać program odczytujący ten numer.

Zadanie specjalne!!!

Na podstawie znajomości obsługi klawiatury oraz sterowania wyświetlaczem LCD oraz odmierzaniu czasu, napisać program zegara + pomiar temperatury

