Physics-Informed Neural Networks

Massimo Poncino¹, Sara Vinco¹, Daniele Jahier Pagliari¹, Alessio Burrello^{1,2}, Giovanni Pollo¹

¹Politecnico di Torino

²Alma Mater Studiorum - Università di Bologna

November 7, 2023

Introduction

2 Background

Introduction

2 Background

Introduction

- The real world is governed by physical laws
- Most of them are described by complex Differential Equations (DEs)
 - Navier-Stokes
 - Diffusion
 - Poisson-Boltzmann
- Solving DEs is a challenging task and it is often impossible to find an analytical solution

Introduction

- Runge-Kutta methods
 - High computational cost
 - Mainly used for behavioural simulations
- Popularity growth of Deep Neural Networks (DNNs) to solve DEs [1]
 - Computational cost is moved to the training phase
 - Possibility to approximate nearly any kind of function
 - Downside of being only data-driven
- Neural Network with domain knowledge
 - Physics informed neural networks (PINNs)

Introduction

2 Background

Background

- PINNs are a subset of the networks that exploits knowledge domain by modifying the loss function
- Loss of a normal neural network (i.e. Mean Squared Error):

$$loss = MSE = \frac{1}{n} \sum_{i}^{n} (prediction - ground_truth)$$

• Loss a PINNs (i.e Mean Squared Error + Physics Loss):

 $\textit{loss} = \textit{data_driven_weight} \cdot \textbf{MSE} + \textit{physics_weight} \cdot \textbf{physics_loss}$

Background

- INSERT THE GIF
- Harmonic Oscillator with a spring

$$m\frac{d^2x}{dt^2} + \mu\frac{dx}{dy} + kx = 0$$

- m: mass of the oscillator
- x: position of the oscillator
- μ : coefficient of friction
- k: spring constant

Background

- Show the image of the feed-forward NN
- Show the differentiation process
- Insert a bit of code to show the process of the actual physics loss
- insert the two gifs of normal NN and PINN
- Slide saying "Are you cheating? You have more points!"
- In this case yes, but think of a scenario where you are not able to generate the training point because there is not an exact solution to the problem
- Then talk to how we are applying this to batteries

Introduction

2 Background

Bibliography

[1] Tamirat Temesgen Dufera. "Deep neural network for system of ordinary differential equations: Vectorized algorithm and simulation". In: Machine Learning with Applications 5 (2021), p. 100058. ISSN:

2666-8270. DOI:

https://doi.org/10.1016/j.mlwa.2021.100058. URL: https://www.sciencedirect.com/science/article/pii/S2666827021000293

