Nr. ćwicz.	Data	Imię i nazwisko	Wydział	Semestr	Grupa I1 nr. lab.
121	29 listopada 2019	Jakub Gosławski 141222 Michał Wiśniewski 141355	Informatyki	3	5
Prowadzący: Wojciech Marciniak				Ocena:	

Temat ćwiczenia: Badanie rezonansu mechanicznego

Podstawy Teoretyczne 1

Rodzaj ruchu, jaki wykonuje ciało, jest określony przez własności siły na nie działającej. Ruch nazywamy harmonicznym, jeżeli siła działająca na ciało jest skierowana do jednego punktu, będącego położeniem równowagi i jej wartość jest proporcjonalna do wychylenia ciała z położenia równowagi. Układ fizyczny posiadający powyższe własności nazywamy oscylatorem harmonicznym.

W rozważanym w tym zadaniu przykładzie mamy doczynienia z ruchem harmonicznym prostym, ponieważ działają tylko siły sprężystości.

Wzory wykorzystane do obliczeń

$$\beta = \frac{1}{T} ln \frac{A_n}{A_{n+1}} \tag{1}$$

$$\omega_0 = \frac{2\pi}{T} \tag{2}$$

$$\omega_0 = \frac{2\pi}{T}$$

$$\omega' = \sqrt{\omega_0^2 = \beta^2}$$
(2)
(3)

$$\tau = \frac{1}{2\beta} \tag{4}$$

$$\tau = \frac{1}{2\beta}$$

$$Q = \omega_0 \tau = \frac{\omega_0}{2\beta}$$

$$(4)$$

$$2\Delta\omega_{\frac{1}{2}} = 2\beta = \frac{1}{\tau} \tag{6}$$

$$2\Delta\omega_{\frac{1}{2}} = 2\beta = \frac{1}{\tau}$$

$$Q = \frac{\omega_0}{2\left(\Delta\omega_{\frac{1}{2}}\right)}$$

$$(6)$$

$$(7)$$

(1) współczynnik wytłumienia (2,3) częstotliwość kołowa (4) czas relaksacji (5) dobroć oscylatora (6) całkowita szerokość rezonansu (7) dobroć oscylatora, wzór 2

$\mathbf{2}$ Wyniki Pomiarów i Obliczenia

2.1 Elektromagnes 0V

Zmierzony czas 10 wachnięć - 17.01s

Okres $T = \frac{17.01s}{10} = 1.70s$ $\omega = 3.69 \left[\frac{rad}{s} \right]$ $\omega' = 3.69 \left[\frac{rad}{s} \right]$

Ponieważ dla tej wartości napięcia w elektromagnesie wartość β jest bardzo mała, po zaokrągleniu $\omega = \omega'$

Zmierzone amplitudy kolejnych wachnięć i obliczone współczynniki tłumienia:

A[cm]	$\beta\left[\frac{1}{s}\right]$
18.0	0.00657
17.8	0.00664
17.6	0.00672
17.4	0.00680
17.2	

$$\beta_{\rm \acute{s}r} = 0.00668 \left[\frac{1}{s}\right]$$

$$\tau = 74.83[s]$$

$$Q = 276.41$$

2.1.1 Drgania wymuszone

Tablica 1: Pomiary amplitudy i czasu dziesięciu wahnięć oraz obliczone okresy drgań i częstotliwości kołowe dla różnych wartości natężenia prądu w silniku

natężenia prądu w sninku				
I [A]	10t [s]	A [cm]	T [s]	ω' [1/s]
5	27.76	1	2.776	2.263
5.5	24.35	1	2.435	2.580
6	22.25	1.6	2.225	2.824
6.5	20.86	2.6	2.086	3.012
7	18.64	4	1.864	3.371
7.5	17.61	16.2	1.761	3.568
8	16.12	5.4	1.612	3.898
8.5	15.57	3.2	1.557	4.035
9	14.99	1.4	1.499	4.192
9.5	13.93	1.2	1.393	4.511
10	13.26	1	1.326	4.738

Częstotliwość rezonansowa:

$$\omega = 3.568 \left[\frac{rad}{s} \right]$$

Całkowita szerokość rezonansu:

$$2\Delta\omega_{\frac{1}{2}} = 0.0134 \left[\frac{1}{s} \right]$$

Dobroć oscylatorowa wyliczona ze wzoru (7):

$$Q = 276.41$$

2.2Elektromagnes 10V

Zmierzony czas 10 wachnięć - 17.49s

$$\omega = 3.59 \left[\frac{rad}{s} \right]$$

$$\omega' = 3.59 \left[\frac{rad}{2} \right]$$

Okres $T=\frac{17.49s}{10}=1.75s$ $\omega=3.59\left[\frac{rad}{s}\right]$ $\omega'=3.59\left[\frac{rad}{s}\right]$ Zmierzone amplitudy kolejnych wachnięć i obliczone współczynniki tłumienia

$$\beta_{\rm sr} = 0.167 \left[\frac{1}{s} \right]$$

$$\tau = 2.996[s]$$

$$Q=10.76$$

A[cm]	$\beta \left[\frac{1}{s} \right]$
18.0	0.112
14.8	0.191
10.6	0.175
7.8	0.189
5.6	

2.2.1Drgania wymuszone

Tablica 2: Pomiary amplitudy i czasu dziesięciu wahnięć oraz obliczone okresy drgań i częstotliwości kołowe dla różnych wartości natężenia prądu w silniku

C	1 (
I [A]	10t [s]	A [cm]	T [s]	ω' [1/s]
5	26.68	0.8	2.668	2.349
5.5	24.13	1.2	2.413	2.599
6	22.08	1.2	2.208	2.841
6.5	20.17	1.8	2.017	3.111
7	19.2	2.8	1.92	3.268
7.5	17.41	4.8	1.741	3.605
8	16.45	2.2	1.645	3.816
8.5	15.32	1.6	1.532	4.098
9	14.4	1	1.44	4.360
9.5	14.12	0.8	1.412	4.447
10	13.08	0.6	1.308	4.801

Częstotliwość rezonansowa:

$$\omega = 3.605 \left[\frac{rad}{s} \right]$$

Całkowita szerokość rezonansu:

$$2\Delta\omega_{\frac{1}{2}} = 0.334 \left[\frac{1}{s} \right]$$

Dobroć oscylatorowa wyliczona ze wzoru (7):

$$Q = 10.76$$

2.3Elektromagnes 10V

Zmierzony czas 3 wachnięć - 5.33s, po 3 wachnięciach wachadło zatrzymało się Okres $T = \frac{5.33s}{3} = 1.77s$

$$\omega = 3.53 \left[\frac{rad}{s} \right]$$

$$\omega' = 3.43 \left[\frac{rad}{s} \right]$$

Zmierzone amplitudy kolejnych wachnięć i obliczone współczynniki tłumienia:

A[cm]	$\beta \left[\frac{1}{s} \right]$
18.0	0.582
6.4	0.655
2.0	0.1.296
0.2	

$$\beta_{\text{sr}} = 0.844 \left[\frac{1}{s} \right]$$

$$\tau = 0.592[s]$$

$$Q = 2.09$$

2.3.1 Drgania wymuszone

Tablica 3: Pomiary amplitudy i czasu dziesięciu wahnięć oraz obliczone okresy drgań i częstotliwości kołowe dla różnych wartości natężenia prądu w silniku

· ·	na progra			
I [A]	10t [s]	A [cm]	T [s]	ω' [1/s]
5	26.59	0.8	2.659	2.207
5.5	24.14	0.8	2.414	2.462
6	22.05	1	2.205	2.722
6.5	20.57	1.2	2.057	2.936
7	18.59	1.2	1.859	3.273
7.5	17.46	1.4	1.746	3.498
8	16.19	1.2	1.619	3.788
8.5	15.33	1	1.533	4.011
9	14.35	0.8	1.435	4.296
9.5	13.61	0.6	1.361	4.539
10	13.07	0.6	1.307	4.733

Czestotliwość rezonansowa:

$$\omega = 3.498 \left\lceil \frac{rad}{s} \right\rceil$$

Całkowita szerokość rezonansu:

$$2\Delta\omega_{\frac{1}{2}} = 1.689 \left[\frac{1}{s}\right]$$

Dobroć oscylatorowa wyliczona ze wzoru (7):

$$Q = 2.09$$

3 Dyskusja Błędów Pomiarowych

Ponieważ nie można było zatrzymywać wahadła aby dokonać dokładnego pomiaru, pomiary musiały być wykonywane dość nieprecyzyjnie, ze względu na brak precyzji ludzkiego oka i refleksu. Same niepewności pomiarowe wynosiły odpowiednio 0.01s dla stopera i 0.2 cm dla podziałki amplitudy. Z powodu znaczącej ale trudnej do zdefiniowania niepewności wynikającej z błędu ludzkiego, jest ona pomijana.

4 Wnioski

Niezależnie od siły wyhamowującej działającej na ciało jego częstotliwość rezonansowa pozostaje stała, co można odczytać z wykresów.

5 Wykresy

2,000

2,500

3,000

3,500

Częstotliwość kołowa [1/s]

4,000

4,500

5,000

