

			Sakrekenaars/Calcu	latore: No	e/No		
Benodigdhede vir hierd	die vraestel/Requi	irements for this paper:	Ander hulpmiddels/				
Antwoordskrifte/ Answer scripts:		X Multikeusekaarte (A5)/ Multi-choice cards (A5):					
Presensiestrokies (In Attendance slips (Fill		Multikeusekaarte (A4)/ Multi-choice cards (A4):					
Rofwerkpapier/ Scrap paper:		Grafiekpapier/ Graph paper:					
Tipe Assessering/ Type of Assessment	Assesser : Assessmo Vraestel/F	ent test	Kwalifikasie/ Qualification:	Honns. B.S	ic.		
Modulekode/ Module code:	ITRI626		Tydsduur/ Duration:	1 uur 1 hour			
Module beskrywing/ Module description:	Kunsmati	ge Intelligensie / Artificial Intelligence	Maks/ Max:	60			
Eksaminator(e)/ Examiner(s):	Prof. J. V.	(Tiny) du Toit	Datum/ Date:	09/10/2018			
Interne/Internal Moderator(s):	Geen		Tyd/ Time:	08:00			
Inhandiging van antwo	ordskrifte/Submi	ssion of answer scripts: Gewoon/Ordina	ry				
Vraag 1 (Proposisio	elogika) / Que	stion 1 (Propositional Logic)					
1.1 Definieer die vo	lgende terme:	/ Define the following terms:					
a) Logiese ge	volgtrekking (in	n terme van versamelings) / Logical e	ntailment (in terms	of sets)	[3]		
$\alpha \vDash \beta$ (1) if	and only if M(o	$(1) (1) \subset M(\beta) (1)$					
b) Die deduks	b) Die deduksie stelling / The deduction theorem				[4]		
For any ser	For any sentences α and β (1), $\alpha \models \beta$ (1) if and only if the sentence ($\alpha \Rightarrow \beta$) (1) is valid (1).						
c) 'n Bewys de	c) 'n Bewys deur 'n teenstrydigheid / A proof by a contradiction [4]						
For any sentences α and β (1), $\alpha \models \beta$ (1) if and only if the sentence $(\alpha \land \neg \beta)$ (1) is unsatisfiable (1).							
d) Die volle re	Die volle resolusie reël / The full resolution rule [4						

ITRI626 1/3

 $\frac{l_1 \vee \cdots \vee l_k, \quad m_1 \vee \cdots \vee m_n}{l_1 \vee \cdots \vee l_{i-1} \vee l_{i+1} \vee \cdots \vee l_k \vee m_1 \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee m_n}$

1.2 Deur van 'n waarheidstabel en die deduksie stelling gebruik te maak, bewys die volgende. Toon al jou stappe duidelik aan./ By using a truth table and the deduction theorem prove the following. Show all your steps clearly.
[10]

$$P \wedge Q \wedge R \models \neg R \Rightarrow (P \vee Q)$$

According to the deduction theorem $P \land Q \land R \models \neg R \Rightarrow (P \lor Q)$ if and only if $(P \land Q \land R) \Rightarrow (\neg R \Rightarrow (P \lor Q))$ is valid.

Р	Q	R	¬R	PVQ	$P \wedge Q \wedge R$	$\neg R \Rightarrow (P \lor Q)$	$(P \land Q \land R) \Rightarrow (\neg R \Rightarrow (P \lor Q))$
Т	Т	Т	F	Т	Т	Т	Т
Т	Т	F	Т	Т	F	Т	Т
Т	F	Т	F	Т	F	Т	Т
Т	F	F	Т	Т	F	Т	Т
F	Т	Т	F	Т	F	Т	Т
F	Т	F	Т	Т	F	Т	Т
F	F	Т	F	F	F	Т	Т
F	F	F	Т	F	F	F	Т

8 marks = 1 mark for each column in the truth table.

From the last column in the truth table it can be seen that $(P \land Q \land R) \Rightarrow (\neg R \Rightarrow (P \lor Q))$ is valid, thus $P \land Q \land R \models \neg R \Rightarrow (P \lor Q)$. (2)

1.3 Gegee 'n kennisbasis en 'n doelwit, maak van resolusie gebruik om te bewys die doelwit is waar. Toon al jou stappe duidelik aan. / Given a knowledge base and a goal, use resolution to proof the goal is true. Show all your steps clearly.
[16]

Kennisbasis (KB): / Knowledgebase (KB):

- 1. Q V (P ∧ R)
- 2. $R \Rightarrow (P \lor Q)$
- 3. $R \wedge \neg (P \wedge Q)$
- 4. ¬(P ∨ Q ∨ R)

Doelwit: / Goal:

 $P V (Q \wedge \neg R)$

Convert the sentences to conjunctive normal form (CNF):

Sentence	CNF	
Q V (P ∧ R)	(P ∨ Q) ∧ (Q ∨ R)	(2 marks)
$R \Rightarrow (P \lor Q)$	(P V Q V ¬R)	(2 marks)
$R \wedge \neg (P \wedge Q)$	(R) ∧ (¬P V ¬Q)	(2 marks)
¬(P V Q V R)	$(\neg P) \land (\neg Q) \land (\neg R)$	(2 marks)

(8)

The goal is P V (Q $\land \neg$ R), so we add the CNF of \neg (P V (Q $\land \neg$ R)) to the list of facts, the new set is: (2)

- 1. (P V Q) ∧ (Q V R)
- 2. (P V Q V ¬R)
- 3. (R) ∧ (¬P V ¬Q)
- 4. (¬P) ∧ (¬Q) ∧ (¬R)
- 5. (¬P) ∧ (R V ¬Q)

Resolution between (3.) (R) and (4.) (\neg R) gives the empty clause (\square) and thus. KB \models goal. (6)

Vraag 2 (Eerste-orde Logika) / Question 2 (First-order Logic)

ITRI626 2/3

2.1 Gee die detail beskrywing van die werking van eksistensiële kwantifisering (∀). / Give the detail description of the functioning of existencial quantification (∀). [6]

 $\exists x \ P$ is true in a given model (1) if P is true (1) in at least one (1) extended interpretation (1) that assigns x (1) to a domain element (1).

2.2 Gee die formele betekenis van 'n term. / Give the formal semantics of a term. [4]

Consider a term $f(t_1,...,t_n)$ (1). The function symbol f refers to some function in the model (call it F) (1); the argument terms refer to objects in the domain (call them $d_1,...,d_n$) (1); and the term as a whole refers to the object that is the value of the function F applied to $d_1,...,d_n$ (1).

- 2.3 Vertaal elkeen van die volgende Engelse sinne na die taal van standaard Eerste-orde Logika deur die bedoelde interpretasie te gebruik vir elke predikaat, funksie of konstante wat jy gebruik: / Translate each of the following English sentences into the language of standard First-order Logic by using the intended interpretation for every predicate, function or constant that you use:
 - a) There are at least two peaks in South Africa.

[3]

b) There is exactly one letter in the mailbox.

[3]

c) There are exactly two letters in the mailbox.

[3]

- a) $\exists x, y \, \text{Peak}(x) \, \land \, \text{Peak}(y) \, \land \, \text{InSouthAfrica}(x) \, \land \, \text{InSouthAfrica}(y) \, \land \, x \neq y$
- b) $\exists x \text{ Letter}(x) \land \text{InMailbox}(x) \land \forall y \text{ (Letter}(y) \land \text{InMailbox}(y) \Rightarrow x = y)$
- c) $\exists x, y \text{ Letter}(x) \land \text{InMailbox}(x) \land \text{Letter}(y) \land \text{InMailbox}(y) \land x \neq y \land \forall z \text{ (Letter}(z) \land \text{InMailbox}(z) \Rightarrow (z = x \lor z = y)$

TOTAAL/TOTAL: 60

Verwysingsnommer: 8.1.7.2.2

ITRI626 3/3