a) Base case: $1 = 1^2$

Inductive step: For some $k \ge 1$, $1 + 3 + ... + (2k-1) = k^2$, then for k + 1: $1 + 3 + ... + (2k-1) + (2k+1) = k^2 + (2k+1) = (k+1)^2$, so the statement holds for k + 1, by induction it holds or all n belonging to the naturals

- b) Let N0 = number of leaves, n1 = number of nodes with 1 child, N2 = number wih 2 children. In any nonempty rooted tree the numbr of edges equals the number of nodes minus 1, each edge comes from exactly one parent-child relation, so the number of edges also equals the totla number of children across all nodes: edges = N1 + 2*N2 and edges = (N0 + N1 + N2) -1. Equating the two together we get N2 = N0 1
- c) Proof by contradiction: Supose G is diconnected. Let C be a component with k vertices, 1 <= k <= n-1. Every vertex in C has all its neighbors inside C, so $\deg(v) <= k-1$ for all v belonging to C. But by hypothesis $\deg(v) >= n/2$, hence k-1 >= n/2. Applying the same argument to any other compone C' it also must have size a least n/2 + 1. Two disjoint components each of size at least n/2 + 1 cannot fit into n vertices which is a contradiction. Therefore G is connected
- d) Adjency:

Node	Neighbors
1	2, 10
2	1, 11, 3, 5
3	2, 10, 9, 4
4	3, 7, 8
5	2, 9
6	7, 10
7	4, 6, 8
8	4, 7, 9
9	3, 5, 8
10	1, 3, 6
11	2

Layer	Nodes	Relation
0	{5}	Start node
1	$\{2, 9\}$	Neighbors of 5
2	{1, 3, 11, 8}	Neighbors of 2 and 9 not yet discovered
3	$\{4, 10, 7\}$	Neighbors of 1, 3, 8 not yet discovered
4	{6}	Neighbors of 4, 7, 10 not yet discovered
5		No new nodes

e) Layer 0: 5 -> Color A

Layer 1: 2,9 -> color B

Layer 2: 1,3,11,8 -> color A

Layer 3: 4, 10, 7 -> color B

Layer 4: 6 -> color A

Since there is an edge between nodes 4 and 7 and they both have color B he graph is not bipartite.