

ΑΡΙΣΤΟΤΕΛΕΊΟ ΠΑΝΕΠΙΣΤΗΜΙΌ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΉ ΣΧΟΛΗ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΣΧΕΔΙΑΣΗ & ΠΡΟΣΟΜΟΙΩΣΗ ΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΖΟΜΕΝΟΥ ΑΜΕΣΟΥ ΨΗΦΙΑΚΟΥ ΣΥΝΘΕΤΗ 12-ΒΙΤ, 2.8 GHz ΣΕ ΤΕΧΝΟΛΟΓΙΑ 65 nm

DESIGN & IMPLEMENTATION OF A PROGRAMMABLE 12-BIT 2.8 GHZ DIRECT DIGITAL SYNTHESIZER IN 65 NM TECHNOLOGY

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΛΚΙΒΙΑΔΗΣ ΧΑΤΖΟΠΟΥΛΟΣ

ΘΕΟΦΙΛΟΣ ΣΠΥΡΟΥ 8583

ΘΕΣΣΑΛΟΝΙΚΗ 2019

Διάρθρωση Παρουσίασης

- Θεωρία Άμεσης Ψηφιακής Σύνθεσης
 - Χαρακτηριστικά
 - Αρχιτεκτονική συστήματος
 - Ανεπιθύμητα φαινόμενα και απαλοιφή τους
- Ψηφιακή σχεδίαση σε Verilog
 - Προδιαγραφές & Ιεραρχία σχεδίασης
 - Ανάλυση μονάδων (modules) συστήματος
- Cadence Genus Synthesis Solution
 - Σύνθεση κυκλώματος
- Cadence Innovus Implementation System
 - Σχεδίαση σε φυσικό επίπεδο

Άμεση Ψηφιακή Σύνθεση

- Μέθοδος (ανα)παραγωγής σημάτων
- Τετραγωνικά, τριγωνικά, ημιτονοειδή
- Αυθαίρετες κυματομορφές

Χαρακτηριστικά

- Αναλογική ή ψηφιακή έξοδος
- Ψηφιακά ελεγχόμενη συχνότητα
- Ταχεία εναλλαγή συχνοτήτων
- Δυνατότητα προγραμματισμού
- Απομακρυσμένος έλεγχος

Αρχιτεκτονική συστήματος

- Συσσωρευτής Φάσης (PA)
- Μετατροπέας Φάσης σε Πλάτος (PAC)
- Αριθμητικώς Ελεγχόμενος Ταλαντωτής (NCO)
- Μετατροπέας Ψηφιακού σε Αναλογικό (DAC)

Ανεπιθύμητα φαινόμενα

- Σφάλμα εκ περικοπής φάσης
 - Χρήση λιγότερων από τα διαθέσιμα σημεία (μεγάλο f_{out})
 - Επανάληψη διαδοχικών σημείων (μικρό f_{out})
- Σφάλμα εκ περικοπής πλάτους
 - Διακριτές τιμές πλάτους
 - Περιορισμένη ακρίβεια πλάτους P bit

Απαλοιφή σφαλμάτων

- Ορισμός $FCW = 2^N \rightarrow ισοδύναμο με <math>FCW = 1$ και M = N
- Αύξηση ακρίβειας P -> μεγαλύτερη μνήμη PAC, περιορισμένη ταχύτητα DAC
- Προσθήκη dither noise

Προδιαγραφές & Ιεραρχία σχεδίασης

Ταχύτητα	2,8 <i>GSPS</i>
Ανάλυση συχνότητας	10 μHz
Λέξη ελέγχου συχνότητας	48 bits
Ανάλυση φάσης	14 bits
Ακρίβεια πλάτους	12 bits
Τάση τροφοδοσίας	1 – 1,1 <i>V</i>
Παραγόμενο σήμα	ημιτονοειδές
Δυνατότητα προγραμματισμού	σειριακός

- Σειριακή Περιφερειακή Διασύνδεση (SPI)
- Ρυθμιστής Προφίλ Λειτουργίας (OPC)

Σειριακή Περιφερειακή Διασύνδεση

- Full Duplex επικοινωνία
- Συμβατό με πληθώρα μικροελεγκτών
- Ταχύτητα έως 25 MHz
- Λέξεις 1 byte
- Δυνατότητα παράλληλης ανάγνωσης / εγγραφής δεδομένων

Συσσωρευτής Φάσης

- Ασύγχρονο reset
- Μήκος συσσωρευτή: 48 bit

•
$$f_{res} = \frac{f_S}{2^M} = \frac{(2.8 \cdot 10^9)}{2^{48}} \cong 10 \ \mu Hz$$

- Av $acc + freq < 2^{M-N} = 2^{34}$, τότε το phase παραμένει ίδιο
- 4 υποστηριζόμενα modes:

		00	Κανονική λειτουργία
mo	ode	01	Λειτουργία αδράνειας
1	0	10	Λειτουργία ανάγνωσης
			Λειτουργία εγγραφής

Ρυθμιστής Προφίλ Λειτουργίας

- Προφίλ λειτουργίας (operation profile):
 Ρύθμιση frequency και phase registers
- Ορισμός συχνότητας εξόδου (FCW) και μετατόπισης φάσης (phase offset)
- Λειτουργία με το σειριακό ρολόι
- Έλεγχος της λειτουργίας του PA και συνεπώς του DDS
- Μεταφορά δεδομένων από / προς τον συσσωρευτή φάσης

Προγραμματισμός (instruction byte)

7	6	5	4	3	2	1	0
\overline{OP}	\bar{R} / W	\overline{PH} / F	Н	X	X	X	X

Bit #	Bit usage	Bit status
7	Operation hit	0: Normal / Halt mode
	Operation bit	1: Read / Write mode
6	Read / Write select bit	0: Read
	(used only when $\overline{\mathit{OP}}=1$)	1: Write
5	Frequency / Phase register select bit	0: Phase select
	(used only when $\overline{\mathit{OP}}=1$)	1: Frequency select
4	Halt bit	0: Normal mode
<u> </u>	(used only when $\overline{OP}=0$)	1: Halt
3 - 0	Not used	-

Προγραμματισμός

Σε όλη τη διάρκεια του προγραμματισμού πρέπει ss = LOW

- Εγγραφή operation profile:
 - Instruction byte $11FXXXXXX \rightarrow$ Data bytes LSB to MSB \rightarrow Synchronization

Inst	truction	Data	Data	Data	Data	Data	Data	Synchronization
	byte	byte 6	byte 5	byte 4	byte 3	byte 2	byte 1	byte

- Ανάγνωση operation profile:
 - Instruction byte 10FXXXXX → Synchronization → Data bytes LSB to MSB

Instruction	Synchronization	Data	Data	Data	Data	Data	Data
byte	byte	byte 6	byte 5	byte 4	byte 3	byte 2	byte 1

- Έναρξη / Παύση DDS:
 - Instruction byte 0XXHXXXX

Μετατροπέας Φάσης σε Πλάτος

- Αποθήκευση 2^{N-2} τιμών ημιτόνου
- Μνήμη τύπου ROM
- Δυνατότητα αποκοπής εξόδου
- Διεύθυνση \rightarrow N 2 LSB φάσης
- Ανακατασκευή ημιτόνου με βάση το 1° τεταρτημόριο:

		MATLAB	Verilog
pto	1 º	data	data
Jhóp	2 °	data(end:-1:1)	data(~address)
αρτκ	3 °	$2^{P}-1-data$	~data
Τετ	4 º	$2^{P} - 1 - data(end : -1 : 1)$	~data(~address)

PAC

Αριθμητικώς Ελεγχόμενος Ταλαντωτής

NCO

- Ενοποίηση όλων των μονάδων
- Συνολικό κύκλωμα DDS
- Είσοδοι / Έξοδοι εμφανείς σε εξωτερικά κυκλώματα

Cadence Genus: Προετοιμασία

Script σε γλώσσα TCL:

- 1. Προετοιμασία
 - Ορισμός βιβλιοθηκών τεχνολογίας
 - Ανάγνωση αρχείων Verilog
 - Elaboration

Cadence Genus: Σύνθεση

Script σε γλώσσα TCL:

- 2. Ungrouped σύνθεση
 - Γενική (generic)
 - Αντιστοιχισμένη (mapped)
 - Βέλτιστη (optimized)


```
□ Hier Cell - nco, 5629 LeafCells
□ Terms (19)
□ Nets (5026)
□ StdCells (5021)
□ Modules (1)
□ U3_opc_U2_pa_add_23_28 (add_unsigned_5), 608 LeafCells
```

```
⊟ Hier Cell - nco, 4202 LeafCells
∃ Terms (19)
∃ Nets (4165)
∃ StdCells (4202)
```

Σχηματικό ungrouped NCO

Cadence Genus: Αποτελέσματα

Area Report

Cell Area	18.570,60
Net Area	9.721,37
Total Area	28.291,97

Power Report (nW)

Leakage Power	581.937,89
Dynamic Power	30.205.026,14
Total Power	30.786.964,03

Cadence Innovus: Implementation flow

Συνεχείς χρονικές αναλύσεις με το time_design

Cadence Innovus: PrePlace, PreCTS

- Floorplanning
- Σχεδίαση ενέργειας (Power planning)
 - Δαχτυλίδι τροφοδοσίας (Power ring)
 - Ραβδώσεις τροφοδοσίας (Power stripes)

$$w_e = \frac{w_c - N_s \cdot (2 \cdot w_n + s_n)}{N_s + 1}$$

• Τοποθέτηση στοιχείων (Placement)

Cadence Innovus: PostCTS

- Δημιουργία Δέντρου Ρολογιού (Clock Tree Synthesis, CTS)
 - Βελτιστοποίηση με βάση τα δέντρα ρολογιών (Clock Concurrent Optimization)
 - Επιπλέον βελτιστοποιήσεις (opt_design -post_cts -setup -hold)

Cadence Innovus: PostRoute, SignOff

- Διασύνδεση (Routing)
- Συμπλήρωση μετάλλου (Metal fill)
- Επαλήθευση (Verification)
 - Γεωμετρία
 - Πυκνότητα μετάλλων
 - Συνδεσιμότητα

Βιβλιογραφία

- N. H. E. Weste, D. M. Harris, «Σχεδίαση Ολοκληρωμένων Κυκλωμάτων CMOS VLSI» 4^η έκδοση, Εκδόσεις Παπασωτηρίου, 2011
- 2. Σ. Ι. Σουραβλάς, Μάνος Ρουμελιώτης, «Ψηφιακά Συστήματα, Μοντελοποίηση & Προσομοίωση με τη γλώσσα VHDL», Εκδόσεις Τζιόλα, 2012
- 3. Ν. Ι. Μάργαρης, «Μη γραμμική θεωρία του αναλογικού PLL», Εκδόσεις Τζιόλα, Αύγουστος 2000
- 4. E. Murphy, C. Slattery, "All About Direct Digital Synthesis", Analog Dialogue 38-08, August 2004
- 5. Analog Devices, "AD9914 Data Sheet: 3.5 GSPS Direct Digital Synthesizer with 12-Bit DAC", 2012
- 6. Λ. Κατσέλας, «Σχεδίαση Ψηφιακού Κυκλώματος Συστήματος Συγκομιδής Ενέργειας», διπλωματική εργασία τμήματος ηλεκτρολόγων μηχανικών και μηχανικών υπολογιστών, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, 2014
- 7. Cadence, "Genus User Guide", 2019
- 8. Cadence, "Innovus User Guide", 2019
- 9. T. Finateu, F. Badets, Y. Deval, JB Begueret, D. Belot, "A 65nm CMOS 2.4 GHz Phase Shifter based Direct Digital Synthesizer", IEEE 11th International Conference on Solid-State and Integrated Circuit Technology, October 2012
- 10. H. Omran, K. Sharaf, M. Ibrahim, "An All-Digital Direct Digital Synthesizer Fully Implemented on FPGA", 4th International Design and Test Workshop (IDT), November 2009
- 11. R. O. R. Cardoso, J. A. J. Ribeiro, M. Silveira, "Direct Digital Synthesizer Using FPGA", Global Congress on Engineering and Technology Education, March 2005

Διαδικτυακές πηγές

- 1. <u>en.wikipedia.org/wiki/Moore%27s_law</u>
- 2. <u>el.wikipedia.org/wiki/VHDL</u>
- 3. <u>en.wikipedia.org/wiki/Verilog</u>
- 4. <u>en.wikipedia.org/wiki/NCSim</u>
- 5. www.edaboard.com/showthread.php?341462-moved-RTL-Compiler-elaboration-command
- 6. <u>en.wikipedia.org/wiki/AND-OR-Invert</u>
- 7. <u>en.wikipedia.org/wiki/Numerically_controlled_oscillator</u>
- 8. en.wikipedia.org/wiki/Serial Peripheral Interface
- 9. only-vlsi.blogspot.com/2008/04/setup-and-hold-time.html?m=1

