Aula 10 – Mineração de Dados Agrupamento: Algoritmos Hierárquicos

Profa. Elaine Faria
UFU

- É um procedimento para transformar uma matriz de proximidade em uma sequência de partições aninhadas
- Produz uma sequência (hierarquia) de agrupamentos
- Usado em áreas que utilizam estrutura de agrupamento hierárquica
 - Ex: biologia e arqueologia

- Seja B= {G₁, G₂, ..., G_m} uma partição dos dados
 X = {x₁, x₂, ..., x_n}
- Uma partição B está aninhada em C (B ⊂ C)
 - Se cada componente de B é um subconjunto de um componente de C
 - C é formado unindo componentes de B

Exemplo: B está aninhando em C

C={
$$(x_1,x_3,x_5,x_7),(x_2,x_4,x_6,x_8),(x_9,x_{10})$$
}
B={ $(x_1,x_3),(x_5,x_7),(x_2),(x_4,x_6,x_8),(x_9,x_{10})$ }

- É sempre exibido graficamente usando um diagrama chamado dendograma
 - Mostra os grupos-subgrupos e a ordem na qual os grupos foram unidos (visão aglomerativa) ou divididos (visão divisiva)
- Para dados com 2 dimensões, o agrupamento hierárquico pode ser visto usando o diagrama de grupos aninhados

Dendograma

Conjunto de diagrama aninhado

Representação de agrupamento hierárquico

Exemplo de Dendograma

Aglomerativo

- Inicia com os elementos como grupos individuais
- A cada passo, o par de elementos mais próximos é unido
- Exige a definição de uma noção de proximidade

Divisivo

- Inicia com um grupo, contendo todos os elementos
- A cada passo, dividir o grupo até que grupos com um único elemento sejam obtido
- É necessário decidir qual grupo dividir a cada passo e como fazer essa divisão

Algoritmo Básico para Agrupamento Hierárquico Aglomerativo

Compute a matriz de proximidade, se necessário.

repita

unir os dois grupos mais próximos atualize a matriz de proximidade para refletir a proximidade entre o novo grupo e os grupos originais

Até que somente um grupo seja obtido

- Como escolher uma partição?
 - Partição com n clusters
 - Selecionando partição com n clusters na sequência de agrupamentos da hierarquia
 - Partição que melhor se encaixa nos dados
 - Procurar no dendograma grandes mudanças em níveis adjacentes
 - Nesse caso, uma mudança de j para j-1 grupos pode indicar que j é o melhor número de grupos
 - Existem outros procedimentos, alguns mais objetivos

- Outra alternativa
 - Usar medida de auto-similaridade de um cluster C_t
 - Interromper processo quando a distância entre os objetos em algum dos clusters for maior que um valor θ

- Min
- Max
- Média do grupo
- Centróide
- Técnica alternativa
 - Método Ward's

- Min (Single Link)
 - Define a proximidade dos grupos como a proximidade entre os dois elementos mais próximos que estão em diferentes grupos
 - Usando grafos: a menor aresta entre dois nós em diferentes conjuntos de nós

Min - Single Link

- Max (Complete Link)
 - A proximidade dos grupos é calculada como a maior distância entre dois elementos em grupos diferentes
 - Usando grafos: a maior aresta entre dois nós em diferentes conjuntos de nós

Max - Complete Link

- Média do Grupo
 - Define a proximidade dos grupos como a média das proximidades entre os pares de elementos dentre todos os pares de diferentes grupos

AVG – Média do Grupo

- Proximidade definida como centróides
 - Cada cluster é representado por um centróide
 - A medida de proximidade é definida com a proximidade entre os centróides dos grupos

- Método Ward's
 - Assume que um grupo é representado pelo seu centróide
 - Mede a proximidade entre dois grupos em termos do aumento no SSE que resulta da união de dois grupos
 - Minimizar a soma dos quadrados das distâncias dos elementos ao centróide dos grupos

Exemplo 1

Point	x Coordinate	y Coordinate	
p1	0.40	0.53	
p2	0.22	0.38	
р3	0.35	0.32	
p4	0.26	0.19	
p5	0.08	0.41	
p6	0.45	0.30	

Coordenadas xy dos 6 elementos

Conjunto de seis elementos com 2-dimensões

	p1	p2	р3	p4	p 5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Matriz de distância euclidiana para os 6 elementos

Exemplo 1 – Single Link ou MIN

Single Link

Agrupamento Single Link

Dendograma Single Link

Single Link

- Propriedade da Função Mínimo (min):
 - $-\min\{\mathbf{D}\} = \min\{\min\{\mathbf{D}1\}, \min\{\mathbf{D}2\}\}\$
 - D, D1 e D2 são conjuntos de valores reais tais que
 D1 U D2 = D
 - Exemplo:
 - $min\{10, -3, 0, 100\} = min\{min\{10, -3\}, min\{0, 100\}\} = -3$

Exemplo 2 - Single Link

Exemplo 2 - Single Link

Dendograma para o exemplo 2

Exercício – Single Link

 Dada a matriz de distâncias entre 5 objetos {1,2,3,4,5}, executar o agrupamento hierárquico single link e mostrar a sequência de partições obtidas. Desenhe o dendograma

Exemplo 1 – Complete Link ou MAX ou CLIQUE

Complete Link

Agrupamento Complete Link

Dendograma Complete Link

Complete Link

- Propriedade da Função Máximo (max):
 - $-\max\{\mathbf{D}\} = \max\{\max\{\mathbf{D}1\}, \max\{\mathbf{D}2\}\}$
 - D, D1 e D2 são conjuntos de valores reais tais que
 D1 U D2 = D
 - Exemplo:
 - $max\{10, -3, 0, 100\} = max\{max\{10, -3\}, max\{0, 100\}\} = 100$

Exemplo 2- Complete Link

Exemplo 2- Complete Link

Dendograma para o exemplo 2

Exercício – Complete Link

 Dada a matriz de distâncias entre 5 objetos {1,2,3,4,5}, executar o agrupamento hierárquico complete link e mostrar a sequência de partições obtidas. Desenhe o dendograma

Complexidade de Tempo e Espaço

- Algoritmo básico algomerativo
 - Usa matriz de similaridade (n x n)
 - Armazenamento das proximidade: ½ n², sendo n o nro de elementos; a matriz é simétrica
 - Armazenamento do track dos grupos: n-1, excluindo os grupos com 1 elemento
 - Complexidade de tempo:
 - O(n²) para calcular a matriz de proximidade
 - O(n³) para calcular o agrupamento (sem usar estruturas eficientes)
 - O(m²log m) se usar uma lista ordenada ou heap -> custo de ordenar

Principais questões em agrupamento hierárquico

- Falta de uma função objetivo geral
 - Usam vários critérios para decidir localmente, a cada passo, quais grupos devem ser unidos (ou divididos)
 - Evitam a dificuldade de tentar resolver um problema de otimização combinatorial
- Habilidade para tratar grupos de diferentes tamanhos
 - Como tratar os diferentes tamanhos dos pares de grupos a serem unidos?
 - Propostas ponderadas e não ponderadas

Principais questões em agrupamento hierárquico

- Decisões de união entre grupos não podem ser desfeitas
 - Uma vez que dois grupos são unidos, com base em uma decisão local, isso não pode ser desfeito futuramente

Leitura Recomendada

- Leitura do
 - Capítulo 8 (seção 8.3) do livro Tan et al, 2006.
 - Está disponível em: http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf

 Leitura do Capítulo 3 (seções 3.2.1 e 3.2.2) do livro do Jain e Dubes, 1999.

Referências

- Tan P., SteinBack M. e Kumar V. Introduction to Data Mining, Pearson, 2006.
- Jain, A. K.; Dubes, R. C. Algorithms for Clustering Data, Prentice Hall, 1988.
- Ng, R.T., Han, J., Efficient and Effective Clustering Methods for Spatial Data Mining, VLDB, 1994.