NOTAÇÕES

conjunto dos números naturais

 \mathbb{C} : conjunto dos números complexos

conjunto dos números inteiros

i: unidade imaginária: $i^2 = -1$

conjunto dos números racionais

 \overline{z} : conjugado do número $z \in \mathbb{C}$

conjunto dos números reais

|z|: módulo do número $z \in \mathbb{C}$

$$A \setminus B = \{x : x \in A \in x \notin B\}$$

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

$$[a, b[= \{x \in \mathbb{R} : a \le x < b\}]$$

$$|a,b| = \{x \in \mathbb{R} : a < x < b\}$$

 $\mathbb{M}_{m\times n}(\mathbb{R})$: conjunto das matrizes reais $m\times n$

 $\det M$: determinante da matriz M

P(A): conjunto de todos os subconjuntos do conjunto A

n(A): número de elementos do conjunto finito A

 \overline{AB} : segmento de reta unindo os pontos A e B

 $\stackrel{\wedge}{ABC}$: ângulo formado pelos segmentos \overline{AB} e \overline{BC} , com vértice no ponto B

$$\sum_{n=0}^{k} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k, \ k \in \mathbb{N}$$

Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

Questão 01. Dado $z = \frac{1}{2}(-1+\sqrt{3}i)$, então $\sum_{n=1}^{89} z^n$ é igual a

A ()
$$-\frac{89}{2}\sqrt{3}i$$
.

E ()
$$\frac{89}{6}\sqrt{3}i$$
.

Questão 02. Das afirmações abaixo sobre números complexos z_1 e z_2 :

$$I - |z_1 - z_2| \le ||z_1| - |z_2||.$$

$$II - |\overline{z}_1.z_2| = ||\overline{z}_2|.|\overline{z}_2||.$$

$$III - \text{ Se } z_1 = |z_1| \; (\cos \theta + i \sin \theta) \neq 0, \text{ então } z_1^{-1} = |z_1|^{-1} \; (\cos \theta - i \sin \theta).$$

é(são) sempre verdadeira(s)

A () apenas I.

B() apenas II.

C () apenas III.

D() apenas $II \in III.$ E() todas.

Questão 03. A soma de todas as soluções da equação em \mathbb{C} : $z^2 + |z|^2 + iz - 1 = 0$ é igual a

A () 2.

B () $\frac{i}{2}$. C () 0. D () $-\frac{1}{2}$. E () -2i.

Questão 04. Numa caixa com 40 moedas, 5 apresentam duas caras, 10 são normais (cara e coroa) e as demais apresentam duas coroas. Uma moeda é retirada ao acaso e a face observada mostra uma coroa. A probabilidade de a outra face desta moeda também apresentar uma coroa é

A ()
$$\frac{7}{8}$$
.

B ()
$$\frac{5}{7}$$

C ()
$$\frac{5}{8}$$

B ()
$$\frac{5}{7}$$
. C () $\frac{5}{8}$. D () $\frac{3}{5}$. E () $\frac{3}{7}$.

E ()
$$\frac{3}{7}$$

Questão 05. Sejam $A \in B$ conjuntos finitos e não vazios tais que $A \subset B$ e $n(\{C : C \subset B \setminus A\}) = 128$. Então, das afirmações abaixo:

$$I - n(B) - n(A)$$
 é único;

$$II - n(B) + n(A) \le 128;$$

III – a dupla ordenada (n(A), n(B)) é única;

é(são) verdadeira(s)

A
$$()$$
 apenas I

C () apenas III.

A () apenas
$$I$$
. B () apenas II . B () nenhuma.

Questão 06. O sistema
$$\begin{cases} x + 2y + 3z = a \\ y + 2z = b \\ 3x - y - 5cz = 0 \end{cases}$$

A () é possível,
$$\forall a, b, c \in \mathbb{R}$$
.

B () é possível quando
$$a = \frac{7b}{3}$$
 ou $c \neq 1$.

C () é impossível quando
$$c=1, \forall a,b \in \mathbb{R}$$
.

D () é impossível quando
$$a \neq \frac{7b}{3}$$
, $\forall c \in \mathbb{R}$.

E () é possível quando
$$c = 1$$
 e $a \neq \frac{7b}{3}$.

Questão 07. Considere as afirmações abaixo:

 $I-Se\ M$ é uma matriz quadrada de ordem n>1, não-nula e não-inversível, então existe matriz não-nula N, de mesma ordem, tal que MN é matriz nula.

II – Se M é uma matriz quadrada inversível de ordem n tal que $\det(M^2 - M) = 0$, então existe matriz não-nula X, de ordem $n \times 1$, tal que MX = X.

$$III- \text{ A matriz } \begin{bmatrix} \cos\theta & -\sin\theta \\ \frac{tg\theta}{\sec\theta} & 1-2\sin^2\frac{\theta}{2} \end{bmatrix} \text{ \'e inversível, } \forall \theta \neq \frac{\pi}{2}+k\pi, \ k \in \mathbb{Z}.$$

Destas, é(são) verdadeira(s)

B () apenas
$$I \in II$$
.
E () todas.

$$C()$$
 apenas $I \in III$.

D () apenas
$$II$$
 e III .

Questão 08. Se 1 é uma raiz de multiplicidade 2 da equação $x^4 + x^2 + ax + b = 0$, com $a, b \in \mathbb{R}$, então $a^2 - b^3$ é igual a

A ()
$$-64$$
.

A ()
$$-64$$
. B () -36 . C () -28 . D () 18 . E () 27 .

$$C() -28.$$

Questão 09 . O produto das raízes reais da equação $ x^2 - 3x + 2 = 2x - 3 $ é igual a
A () -5 . B () -1 . C () 1. D () 2. E () 5.
Questão 10 . Considere a equação algébrica $\sum_{k=1}^{3} (x - a_k)^{4-k} = 0$. Sabendo que $x = 0$ é uma raízes e que (a_1, a_2, a_3) é uma progressão geométrica com $a_1 = 2$ e soma 6, pode-se afirmar que
A () a soma de todas as raízes é 5.
B () o produto de todas as raízes é 21.
C () a única raiz real é maior que zero. D () a soma das raízes não reais é 10.
E () todas as raízes são reais.
Questão 11. A expressão $4e^{2x} + 9e^{2y} - 16e^x - 54e^y + 61 = 0$, com x e y reais, representa
A () o conjunto vazio.
B () um conjunto unitário.
C () um conjunto não-unitário com um número finito de pontos.
D () um conjunto com um número infinito de pontos.

das

Questão 12. Com respeito à equação polinomial $2x^4 - 3x^3 - 3x^2 + 6x - 2 = 0$ é correto afirmar que A () todas as raízes estão em \mathbb{Q} .

B () uma única raiz está em \mathbb{Z} e as demais estão em $\mathbb{Q} \setminus \mathbb{Z}$.

E () o conjunto $\{(x,y) \in \mathbb{R}^2 \mid 2(e^x - 2)^2 + 3(e^y - 3)^2 = 1\}$.

C () duas raízes estão em $\mathbb Q\,$ e as demais têm parte imaginária não-nula.

D () não é divisível por 2x - 1.

E () uma única raiz está em $\mathbb{Q} \setminus \mathbb{Z}$ e pelo menos uma das demais está em $\mathbb{R} \setminus \mathbb{Q}$.

Questão 13. Sejam m e n inteiros tais que $\frac{m}{n} = -\frac{2}{3}$ e a equação $36x^2 + 36y^2 + mx + ny - 23 = 0$ representa uma circunferência de raio r = 1 cm e centro C localizado no segundo quadrante. Se A e B são os pontos onde a circunferência cruza o eixo Oy, a área do triângulo ABC, em cm^2 , é igual a

A () $\frac{8\sqrt{2}}{3}$. B () $\frac{4\sqrt{2}}{3}$. C () $\frac{2\sqrt{2}}{3}$. D () $\frac{2\sqrt{2}}{9}$. E () $\frac{\sqrt{2}}{9}$.

Questão 14. Entre duas superposições consecutivas dos ponteiros das horas e dos minutos de um relógio, o ponteiro dos minutos varre um ângulo cuja medida, em radianos, é igual a

A () $\frac{23}{11}\pi$. B () $\frac{13}{6}\pi$. C () $\frac{24}{11}\pi$. D () $\frac{25}{11}\pi$. E () $\frac{7}{3}\pi$.

Questão 15. Seja ABC um triângulo retângulo cujos catetos \overline{AB} e \overline{BC} medem $8\,cm$ e $6\,cm$, respectivamente. Se D é um ponto sobre \overline{AB} e o triângulo ADC é isósceles, a medida do segmento \overline{AD} , em cm, é igual a

A () $\frac{3}{4}$. B () $\frac{15}{6}$. C () $\frac{15}{4}$. D () $\frac{25}{4}$. E () $\frac{25}{2}$.

Questão 16. Sejam ABCD um quadrado e E um ponto sobre \overline{AB} . Considere as áreas do quadrado ABCD, do trapézio BEDC e do triângulo ADE. Sabendo que estas áreas definem, na ordem em que estão apresentadas, uma progressão aritmética cuja soma é 200 cm^2 , a medida do segmento \overline{AE} , em cm, é igual a

A ()
$$\frac{10}{3}$$
.

B () 5. C ()
$$\frac{20}{3}$$
. D () $\frac{25}{3}$. E () 10.

D ()
$$\frac{25}{3}$$

Questão 17. Num triângulo ABC o lado \overline{AB} mede 2 cm, a altura relativa ao lado \overline{AB} mede 1 cm, o ângulo $\stackrel{\wedge}{ABC}$ mede 1350 e M é o ponto médio de \overline{AB} . Então a medida de $\stackrel{\wedge}{BAC} + \stackrel{\wedge}{BMC}$, em radianos,

A ()
$$\frac{1}{5}\pi$$
.

B ()
$$\frac{1}{4}\pi$$
.

A ()
$$\frac{1}{5}\pi$$
. B () $\frac{1}{4}\pi$. C () $\frac{1}{3}\pi$. D () $\frac{3}{8}\pi$. E () $\frac{2}{5}\pi$.

D ()
$$\frac{3}{8}\pi$$
.

E ()
$$\frac{2}{5}\pi$$
.

Questão 18. Um triângulo ABC está inscrito numa circunferência de raio 5 cm. Sabe-se ainda que \overline{AB} é o diâmetro, \overline{BC} mede 6 cm e a bissetriz do ângulo $\stackrel{\frown}{ABC}$ intercepta a circunferência no ponto D. Se α é a soma das áreas dos triângulos ABC e ABD e β é a área comum aos dois, o valor de $\alpha-2\beta$, em cm^2 , é igual a

Questão 19. Uma esfera está inscrita em uma pirâmide regular hexagonal cuja altura mede 12 cm e a aresta da base mede $\frac{10}{3}\sqrt{3}\,cm$. Então o raio da esfera, em cm, é igual a

A ()
$$\frac{10}{3}\sqrt{3}$$
. B () $\frac{13}{3}$. C () $\frac{15}{4}$. D () $2\sqrt{3}$. E () $\frac{10}{3}$.

B ()
$$\frac{13}{3}$$
.

C ()
$$\frac{15}{4}$$
.

D ()
$$2\sqrt{3}$$
.

E ()
$$\frac{10}{3}$$
.

Questão 20. Considere as afirmações:

I – Existe um triedro cujas 3 faces têm a mesma medida $a = 120^{\circ}$.

II – Existe um ângulo poliédrico convexo cujas faces medem, respectivamente, 30°, 45°, 50°, 50° $e 170^{\circ}$.

III – Um poliedro convexo que tem 3 faces triangulares, 1 face quadrangular, 1 face pentagonal e 2 faces hexagonais tem 9 vértices.

IV – A soma das medidas de todas as faces de um poliedro convexo com 10 vértices é 2880° .

Destas, é(são) correta(s) apenas

$$D(i)$$
 I, II e IV.

AS QUESTÕES DISSERTATIVAS, NUMERADAS DE 21 A 30, DEVEM SER RESOLVIDAS E REPONDIDAS NO CADERNO DE SOLUÇÕES.

Questão 21. Analise a existência de conjuntos $A \in B$, ambos não-vazios, tais que $(A \setminus B) \cup (B \setminus A) = A$.

Questão 22. Sejam $n \geq 3$ ímpar, $z \in \mathbb{C} \setminus \{0\}$ e $z_1, z_2, ..., z_n$ as raízes de $z^n = 1$. Calcule o número de valores $|z_i - z_j|$, i, j = 1, 2, ..., n, com $i \neq j$, distintos entre si.

Questão 23. Sobre uma mesa estão dispostos 5 livros de história, 4 de biologia e 2 de espanhol. Determine a probabilidade de os livros serem empilhados sobre a mesa de tal forma que aqueles que tratam do mesmo assunto estejam juntos.

Questão 24. Resolva a inequação em \mathbb{R} : $16 < \left(\frac{1}{4}\right)^{\log_{\frac{1}{5}}(x^2 - x + 19)}$.

Questão 25. Determine todas as matrizes $M \in \mathbb{M}_{2 \times 2}(\mathbb{R})$ tais que $MN = NM, \forall N \in \mathbb{M}_{2 \times 2}(\mathbb{R})$.

Questão 26. Determine todos os valores de $m \in \mathbb{R}$ tais que a equação $(2-m) x^2 + 2m x + m + 2 = 0$ tenha duas raízes reais distintas e maiores que zero.

Questão 27. Considere uma esfera Ω com centro em C e raio $r=6\,cm$ e um plano Σ que dista $2\,cm$ de C. Determine a área da intersecção do plano Σ com uma cunha esférica de 30° em Ω que tenha aresta ortogonal a Σ .

Questão 28.

- a) Calcule $(\cos^2 \frac{\pi}{5} \sin^2 \frac{\pi}{5}) \cos \frac{\pi}{10} 2 \sin \frac{\pi}{5} \cos \frac{\pi}{5} \sin \frac{\pi}{10}$.
- **b)** Usando o resultado do item anterior, calcule $sen\frac{\pi}{10}\cos\frac{\pi}{5}$.

Questão 29. Num triângulo AOB o ângulo $\stackrel{\wedge}{AOB}$ mede 135^0 e os lados \overline{AB} e \overline{OB} medem $\sqrt{2}$ cm e $\sqrt{2-\sqrt{3}}$ cm, respectivamente. A circunferência de centro em O e raio igual à medida de \overline{OB} intercepta \overline{AB} no ponto C ($\neq B$).

- a) Mostre que OAB mede 15° .
- **b)** Calcule o comprimento de \overline{AC} .

Questão 30. Considere um triângulo equilátero cujo lado mede $2\sqrt{3}$ cm. No interior deste triângulo existem 4 círculos de mesmo raio r. O centro de um dos círculos coincide com o baricentro do triângulo. Este círculo tangencia externamente os demais e estes, por sua vez, tangenciam 2 lados do triângulo.

- a) Determine o valor de r.
- b) Calcule a área do triângulo não preenchida pelos círculos.
- c) Para cada círculo que tangencia o triângulo, determine a distância do centro ao vértice mais próximo.