Discussion 2 10/29/20

Thursday, October 29, 2020 5:07 PM

Inversion in the Plane (Discussion)

Worksheet 4: Property Proofs and Chains of Tangent Figures

Date: 10/29/2020

MATH 74: Transition to Upper-Division Mathematics

with Professor Zvezdelina Stankova, UC Berkeley

Write: clearly. Supply your reasoning in words and/or symbols. Show calculations and relevant pictures.

- 1. (Experiment) By experimenting, answer the questions. No proof is required yet, but carefully marked pictures and brief explanations are a must. What happens under inversion I(O,r) to a circle $k_1(O_1,r_1)$ not passing through the center O if k_1 is:
 - (a) entirely outside k(O,r)? (b) entirely inside k? (c) intersects k in two points A and B? (d) externally tangent to k at point T? (e) internally tangent to k at point T?
- (c) externatly tangent to k at point T?
 (e) the Proof) Consider inversion I(Q, r). For any line l not passing through O, let OH ⊥ l (H ∈ l), and I(H) = H. Let k_l be the circle with diameter OH₁.
 (a) For any point X ∈ l and let OX ∩ k₁ = Y. Prove that OX · OY = r². (Hint: Similar △s.)
 (b) Let I(X) = X₁. Why is X₁ = Y? How does this imply that I(l) ⊂ k₁?

 - (Hint: The distance formula $OX \cdot OX_1 = r^2 \Rightarrow OX_1 = ?$)
 - 3. (Chain of Tangent Figures) Draw two parallel lines l_1 and l_2 , and circles $k_1(O_1, r_1)$ and $k_2(O_2, r_2)$ between l_1 and l_2 so that l_1 is tangent to k_1 at point A, k_1 is tangent to k_2 at point B, and k_2 is tangent
 - to l_2 at point C. Prove that A, B, and C are colinear (i.e., lie on a line). (Hint: Similar triangles? Be careful not to assume what you are not given!)
 - 4. Geo Shake-&-Bake) A right $\triangle ABC$ has legs AC=3 and BC=4, and altitude CD to the hypotenuse AB. Find the distance between the incenters O_1 and O_2 of $\triangle ACD$ and $\triangle BCD$ as follows:
 - (a) How long are CD, AD, and BD? (Hint: Find the area of △ABC in 2 ways.)
 - (b) Find the inradii r_1 and r_2 of $\triangle ACD$ and $\triangle BCD$? (*Hint:* Area vs. inradius of a \triangle ?)
 - (c) If T₁ and T₂ are the points of tangency of the two incircles with hypotenuse AB, find the lengths of DT₁ and DT₂. (Hint: Review L139.)
 - (d) Find the distance between the incenters O_1 and O_2 . (Hint: What figure is $T_1T_2O_2O_1$?)
 - (e) Find the distance from O_1 to vertex C. (Hint: PT?)
 - (f) Starting with lengths AC = b and BC = a, find a formula for O_1O_2 .
 - (g) List the sequence of steps that led from the original problem to the final result. What extra objects did we have to plot and/or find along the way?

Extra Background and Practice: Famous Points in a \triangle : L141, W141; Constructing a \triangle : L142, W142

6. (Fundamentals) W141: #1, 2, 3, 4*; W142: #1, 2*, 3. (Hint: In W141 #4, "chase" all angles in the picture, using properties of incenters and right triangles

In W142 #2, how do we move/duplicate an angle, using a straightedge and compasses?)

¹These worksheets are copyrighted and provided for the personal use of Fall 2020 MATH 74 students only. They may not be reproduced or posted anywhere without explicit written permission from Prof. Zvezdelina Stankova.

T(c)=c $Oc'=oc=\frac{c^2}{8}=2$

$$T(B)=B'$$
 $OB'=\frac{16}{OB}=\frac{16}{16^2+2^2}=\frac{16}{100}\approx 2.5$

$$T(A)=A'$$
 $OA' = \frac{4^2}{6A} = \frac{4^2}{4} = 4$

$$\Gamma(P)=P'OP'\cdot oP=r^2$$

Step 1 Draw OP

Step 2 Find PE OP sothat

$$OP' = \frac{C^2}{OP}$$

工(月)=月

Area(ABC) =
$$\frac{A \cdot BC}{2} = \frac{3.4}{2} = 6$$

= $\frac{AB \cdot CD}{2} = \frac{5}{2} \cdot CD = 6$
 $AD = ? = \sqrt{3^2 - (15)^2} = \frac{9}{5}$
Or $\triangle ADC \sim \triangle ACB$

01,82 are incenter= integration of orgle bisator= center of incircle

MATH 74 Page 3