2013—2014 学年 第一学期《高等数学I、II》考试试卷(A 卷)

大题	_	<u> </u>	三	总分
得分				

一、 填空题(每小题 3 分,共 48 分)

1.
$$f(x) = \ln(1-x^2)$$
, $\Box \Xi \lim_{h \to 0} \frac{f(x_0) - f(x_0 - 2h)}{h} = \frac{3}{2}$, $x_0 = \underline{\qquad} -\frac{1}{3} \underline{\qquad}$.

2.
$$f(x) = \begin{cases} \frac{\sin x + e^{2ax} - 1}{x} & x \neq 0 \\ a & x = 0 \end{cases}$$
 e^{-1} .

3. 函数
$$f(x) = x^3 - 3x^2 - 9x + 1$$
 的既递减又上凸的区间是____(-1,1)_____.

4.
$$\begin{cases} x = t^2 + 1, & \text{if } \frac{d^2 y}{dx^2} = \underline{\qquad} \frac{e'(t-1)}{4t^3}. \end{cases}$$

5. 设
$$f(x)$$
 在 $x = 0$ 点处连续,且 $\lim_{x \to 0} \frac{f(x)}{2x} = 1$,那么 $f'(0) = 2$

6.
$$\int_{-2}^{2} \frac{x+|x|}{2+x^2} dx = \underline{\ln 3} \underline{\qquad}$$

9. 方程
$$e^y + 6xy + x^2 - 1 = 0$$
 确定隐函数 $y = y(x)$,则 $y'(0) = \underline{\qquad \qquad 0}$

10. 若函数
$$f(x)$$
具有二阶连续导数, $f'(x_1) = f'(x_2) = 0$, $f''(x_1) < 0 < f''(x_2)$,则
$$f(x_1), f(x_2).$$
的大小关系为______f(x_1) > f(x_2).______

11. 变上限函数
$$\int_1^{x^2} \sin t dt$$
 的导数等于 __2 $x \sin x^2$ _____

12. 设
$$x$$
, e^x , e^{-x} 是二阶非齐次线性微分方程 $y'' + a(x)y' + b(x)y = f(x)$ 的三个特解,则该方程的通解为 $y = C_1(e^x - x) + C_2(e^{-x} - x) + x$ 。

13. 广义积分
$$\int_{e}^{+\infty} \frac{1}{x(\ln x)^2} dx = \underline{1}$$
。

14. 微分方程
$$y'' - 2y' + 5y = 0$$
的通解为 $y = e^x(c_1 \cos 2x + c_2 \sin 2x)$

15.
$$\int f(x)dx = \sin^2 x + c$$
, $\int xf'(x)dx = \underline{x \sin 2x - \sin^2 x + C}$.

16. 函数
$$f(x) = e^{-x}$$
 的四阶麦克劳林公式是 $1 - \frac{x}{1} + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} + o(x^4)$

二、计算题 (满分 24 分, 每小题 6 分)

得 分

原式 =
$$\lim_{x\to 0} \frac{a^x - b^x}{2\ln(1+2x)}$$

$$= \lim_{x\to 0} \frac{a^x \ln a - b^x \ln b}{\frac{4}{1+2x}}$$

$$= \frac{1}{4} \ln \frac{a}{b}$$
3 分

18、求曲线 $y = (x+2)e^{-\frac{1}{x}}$ 的渐近线。

$$\mathbf{m}: : \lim_{\mathbf{x} \to \mathbf{m}} y = +\infty$$
, :: 无水平渐近线 2 分

$$\lim_{x \to 0^{-}} y = +\infty, 有铅垂渐近线 x = 0$$
 2分

:
$$k = \lim_{x \to \infty} \frac{y}{x} = 1$$
, $b = \lim_{x \to \infty} (f(x) - x) = \lim_{x \to \infty} [2 + x(1 - e^{\frac{1}{x}})] = 1$

$$\therefore$$
 斜渐近线: $y = x + 1$ 2分

19. 计算
$$\int_{1}^{2} \frac{e^{-\frac{1}{x}} + 1}{x^{2}} dx$$

解: 原式=
$$e^{-\frac{1}{x}} - \frac{1}{x} + c$$
 = $e^{-\frac{1}{2}} - e^{-1} + \frac{1}{2}$ 6分

$$20. \cancel{x} \int \frac{1+\sin x}{1+\cos x} dx$$

解:
$$\int \frac{1+\sin x}{1+\cos x} dx = \int \frac{1}{1+\cos x} dx + \int \frac{\sin x}{1+\cos x} dx$$

$$= \frac{1}{2} \int \sec^2 \frac{x}{2} dx - \int \frac{d\cos x}{1+\cos x}$$

$$= \tan \frac{x}{2} - \ln|1+\cos x| + C$$
4 分

三、解答题 (满分28分,每小题7分)

21.
$$\lim_{n\to\infty} (\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n})$$
 得分

解:由于 $\frac{1}{1+x}$ 在[0,1]可积,由定积分的定义知(1分)

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right)$$

$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{1+\frac{1}{n}} + \frac{1}{1+\frac{2}{n}} + \dots + \frac{1}{n} \right) = \int_0^1 \frac{1}{1+x} dx = \ln 2$$
(6 \(\frac{\frac{1}{2}}{2}\))

- 22. 设曲线 $y = \sqrt{x-1}$ 的过原点的切线与 x 轴和曲线所围成的平面图形记为
- S,试求将平面图形S绕y轴旋转一周所得旋转体的体积。

解: 设切点为的坐标为 $\left(a,\sqrt{a-1}\right)$,则过原点的切线的斜率为 $k = \frac{\sqrt{a-1}}{a}$,

又因,
$$y' = \frac{1}{2\sqrt{x-1}}$$
,则: $\frac{1}{2\sqrt{a-1}} = \frac{\sqrt{a-1}}{a}$, $a = 2$,

:: 切点坐标为:
$$(2,1)$$
, 切线方程为: $y = \frac{1}{2}x$; 3分

平面图形S绕v轴旋转一周所得旋转体的体积为:

$$V_{y} = \pi \int_{0}^{1} \left[\left(y^{2} + 1 \right)^{2} - \left(2y \right)^{2} \right] dy = \pi \int_{0}^{1} \left(y^{4} - 2y^{2} + 1 \right) dy = \frac{8}{15} \pi$$
 4 \(\frac{1}{2}\)

23.设 f(x) 为连续函数,且适合关系式 $f(x) = e^x - \int_0^x (x-t)f(t)dt$, 试求函数 f(x)。

$$\text{$\widehat{\text{pt}}$: } : f(x) = e^x - \int_0^x (x - t) f(t) dt \qquad \qquad \diamondsuit y = f(x)$$

$$||f|| y' = c^x - \int_0^x f(t)dt - xf(x) + xf(x) = e^x - \int_0^x f(t)dt$$

$$y'' = e^x - f(x) \qquad \exists \exists y'' + y = e^x$$

4分

$$\lambda^2 + 1 = 0 \Rightarrow \lambda = \pm i : y_1 = c_1 \text{ c o } x + c_2 \text{ s i nx}$$

1分

$$\therefore f(x) = c_1 c o x + c_2 s i m + \frac{1}{2} e^x$$

1分

$$X f(0) = 1$$
 $f'(0) = 1 \Rightarrow c_1 = c_2 = \frac{1}{2}$

24、设函数 f(x) 在 [a,b] 上可导, a < f(x) < b 且 $f'(x) \neq 1 (a < x < b)$ 试证: 在 (a,b) 内存唯一的 ξ 使 $f(\xi) = \xi$ 。

证明: 先证存在性. $\diamondsuit F(x) = f(x) - x$,

显然 F(x) 在 [a,b] 上连续,

又
$$F(a) = f(a) - a > 0$$
, $F(b) = f(b) - b < 0$ (又因 $a < f(x) < b$) 由零值定理可知存在一个 $\xi \in (a,b)$ 使得 $F(\xi) = 0$,即 $f(\xi) = \xi$ 。 4 分

再证唯一性. 用反证法.设有 $\xi_1, \xi_2 \in (a,b)$, 使得 $f(\xi_1) = \xi_1$, $f(\xi_2) = \xi_2$

又由题设可知 f(x) 在 ξ_1, ξ_2 之间满足拉格朗日中值定理,

于是存在
$$\xi$$
在 ξ_1,ξ_2 之间,使得 $f'(\xi) = \frac{f(\xi_2) - f(\xi_1)}{\xi_2 - \xi_1} = \frac{\xi_2 - \xi_1}{\xi_2 - \xi_1} = 1$