



## Forecasting hierarchies with coherency-learning

Julien Leprince, Jan Kloppenborg Møller, Waqas Khan, Henrik Madsen, Wim Zeiler





## Building to grid energy flexibility



Energy balancing

Energy flexibility identification



Need for information coherency between aggregation layers



Results

1

## Forecasting building loads

#### Situation



Multiple **disconnected** system **scales** Buildings – Districts – Energy grid

#### **Problem**



Incoherent forecasts due to independent data and predictions

#### Idea



Exploit methods from hierarchical forecasting to improve prediction performances



## Approach





## Towards hierarchical learning

$$\mathcal{L}^{c}(\mathcal{Y}, \widehat{\mathcal{Y}}|\Theta) = \frac{1}{h} \sum_{t=1}^{h} (\hat{\mathbf{y}}_{t} - S(S^{T} \Sigma^{-1} S)^{-1} S^{T} \Sigma^{-1} \hat{\mathbf{y}}_{t})^{2}$$







$$\mathcal{L}^{b}(\mathcal{Y}, \widehat{\mathcal{Y}}|\Theta) = \frac{1}{h} \sum_{t=1}^{h} (y_{t} - \hat{y}_{t})^{2}$$

$$\mathcal{L}^{h}(\mathcal{Y}, \widehat{\mathcal{Y}}|\Theta) = \frac{1}{h} \sum_{t=1}^{n} (\mathbf{y}_{t} - \widehat{\mathbf{y}}_{t})$$

$$\mathcal{L}^{b}(\mathcal{Y}, \widehat{\mathcal{Y}}|\Theta) = \frac{1}{h} \sum_{t=1}^{h} (y_{t} - \hat{y}_{t})^{2} \qquad \mathcal{L}^{h}(\mathcal{Y}, \widehat{\mathcal{Y}}|\Theta) = \frac{1}{h} \sum_{t=1}^{h} (y_{t} - \hat{y}_{t})^{2} \qquad \mathcal{L}^{c}(\mathcal{Y}, \widehat{\mathcal{Y}}|\Theta) = \frac{1}{h} \sum_{t=1}^{h} (y_{t} - \widetilde{y}_{t})^{2} \qquad \mathcal{L}^{hc}(\mathcal{Y}, \widehat{\mathcal{Y}}|\Theta) = \alpha \mathcal{L}^{h}_{t} + (1 - \alpha)\mathcal{L}^{c}_{t}$$



5

#### Covariance matrices

#### $\sum$

Considered hierarchy  $\mathcal{H}$ 



Summation matrix and y vector

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{bmatrix}$$

Context

$$\Lambda_{hvar}^{1/2} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & \rho_{2,3} & 0 & 0 & 0 & 0 \\ 0 & \rho_{2,3} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \rho_{4,5} & \rho_{4,6} & \rho_{4,7} \\ 0 & 0 & 0 & \rho_{4,5} & 1 & \rho_{5,6} & \rho_{5,7} \\ 0 & 0 & 0 & \rho_{4,6} & \rho_{5,6} & 1 & \rho_{6,7} \\ 0 & 0 & 0 & \rho_{4,7} & \rho_{5,7} & \rho_{6,7} & 1 \\ \end{bmatrix} \\ \text{covariance} - kcov$$

$$\Lambda_{hvar}^{1/2} \begin{bmatrix} 1 & \rho_{1,2} & \rho_{1,3} & \rho_{1,4} & \rho_{1,5} & \rho_{1,6} & \rho_{1,7} \\ \rho_{1,2} & 1 & \rho_{2,3} & \rho_{2,4} & \rho_{2,5} & \rho_{2,6} & \rho_{2,7} \\ \rho_{1,3} & \rho_{2,3} & 1 & \rho_{3,4} & \rho_{3,5} & \rho_{3,6} & \rho_{3,7} \\ \rho_{1,4} & \rho_{2,4} & \rho_{3,4} & 1 & \rho_{4,5} & \rho_{4,6} & \rho_{4,7} \\ \rho_{1,5} & \rho_{2,5} & \rho_{3,5} & \rho_{4,5} & 1 & \rho_{5,6} & \rho_{5,7} \\ \rho_{1,6} & \rho_{2,6} & \rho_{3,6} & \rho_{4,6} & \rho_{5,6} & 1 & \rho_{6,7} \\ \rho_{1,7} & \rho_{2,7} & \rho_{3,7} & \rho_{4,7} & \rho_{5,7} & \rho_{6,7} & 1 \end{bmatrix}_{covariance - cov} \Lambda_{hvar}^{1/2}$$

Conclusion

TU/e

## Case studies



41 residential households The Netherlands Horizon: 3 years, 2019-2022



Context

133 electric-meter measurementsUnited States of AmericaHorizon: 2 full years, 2016-2017







## Case studies



41 residential households The Netherlands Horizon: 3 years, 2019-2022



133 electric-meter measurementsUnited States of AmericaHorizon: 2 full years, 2016-2017





#### Case studies



41 residential households The Netherlands Horizon: 3 years, 2019-2022



133 electric-meter measurements United States of America Horizon: 2 full years, 2016-2017







## Training setup

#### Data partitioning & transformation

Context

10



#### Designing hierarchical regressors



Activation function sigmoid

Dropout ratio 0.2



Method Results

Eneco dataset 41 residential households

Spatial hierarchy Hour-ahead forecast



Forecasting method



Eneco dataset 41 residential households

Temporal hierarchy Day-ahead forecast

Context



Forecasting method



Eneco dataset 41 residential households

Spatiotemporal hierarchy Day-ahead forecast



Forecasting method



 $-2 \times 10^{6}$ 

 $10^{6}$ 

 $-6 \times 10^{5}$ 

 $-4 \times 10^{5}$ 

MS3E [kWh]

BDG2 dataset 133 electric-meters

Spatial hierarchy Hour-ahead forecast

Context



Forecasting method



BDG2 dataset 133 electric-meters

Temporal hierarchy Day-ahead forecast



Forecasting method



15

BDG2 dataset 133 electric-meters

Spatiotemporal hierarchy Day-ahead forecast





 $10^{9}$ 

Forecasting method

Context

## Findings & method adjustments

#### Arduous learning

17

Many weights to update with little data

Explore architectures with fewer weights

#### Induced coherency over accuracy

Temporal hierarchy - periodicity falling on prediction horizon & fewer data points

#### Faulty coherency learning

Normalization tempers the coherency learning

Explore methods robust to varying ranges of target values

Conclusion

✓ Batch normalization



## Method extension

Tailored designs of neural networks for efficient learning





Method

Method extension

Tailored designs of neural networks for efficient learning



tree partitioning



cut-tree partitioning



k-level partitioning





#### BDG2 dataset Spatial tree – hour ahead





3.1e+07 2.4e+07 1.4e+07 6.3e+06 4.9e+06 = 10<sup>7</sup> 2.6e+06 2.6e+06 10<sup>6</sup> 10<sup>7</sup> 10<sup>8</sup> 10<sup>8</sup> 10<sup>4</sup> 10<sup>8</sup> 10<sup>8</sup> 10<sup>9</sup> 1.7e+06 1.9e + 041.4e+04 8.2e+03 6e+03 2.5e+03 1e+02 58 ■ 10<sup>2</sup> 49 42 mean RMS3E

ox\_assembly

Fox\_education\_Elois Fox\_education\_Jaclyn Fox\_education\_Delm Fox education education

Fox\_education\_

Fox\_health\_Lorena Fox education

Fox\_office\_Margarita

Fox\_education\_Andr

ox\_assembly\_

## Is coherency learning worth it?



#### Value from connecting scales?

- Improved forecast performances with simpler models
- Requires centralized data
- Complexity/value tradeoff still too little



#### Open-source research

https://github.com/JulienLeprince



#### **Future work**

- 1. Other machine learning methods
- 2. Varying hierarchical structures
  - a. Cluster homogeneity
  - b. Tree depth, width etc.
- 3. Linking prediction performances to hierarchical time-series characteristics
- 4. Scalability
  - a. Distributed approaches?
  - b. Piecewise reconciliation



Credit: https://freepik.com/

21





## Forecasting hierarchies with coherency-learning

Thank you



## Extra slides

#### Hierarchical Learning Method





## Extra slides







Summation matrix and y vector



Topological covariance matrix

# Extra slides Results





## Extra slides

## Case studies



|              | Characteristics |     | Spatial | Temporal | Spatiotemporal |
|--------------|-----------------|-----|---------|----------|----------------|
| Case study 1 | n               | [#] | 81      | 37       | 2,997          |
|              | m               | [#] | 41      | 24       | 984            |
|              | horizon         | [h] | 1       | 24       | 24             |
| Case study 2 | n               | [#] | 140     | 37       | 1,998          |
|              | m               | [#] | 133     | 24       | 1,200          |
|              | horizon         | [h] | 1       | 24       | 24             |

