NANYANG TECHNOLOGICAL UNIVERSITY SCHOOL OF ELECTRICAL & ELECTRONIC ENGINEERING ACADEMIC YEAR 2022-2023 SEMESTER 1

EE3013 SEMINCONDUCTOR DEVICES AND PROCESSING

Recap of PN Junctions

- 1. An abrupt junction silicon p-n diode has a p-layer acceptor doping density of 10¹⁸ cm⁻³ and n-side donor doping density of 10¹⁵ cm⁻³. Assume that the dopants are fully ionized. For this junction in equilibrium at 300 K:
- (a) Compute the position of the Fermi level (with respect to the conduction band edge) on both sides of the junction.
- (b) Sketch the band diagram (with the energy axis drawn to scale) and estimate the built-in potential.
- (c) Computer V_{bi} directly from the doping densities and the intrinsic concentration, and compare the result with that from part b).
- (d) Calculate the widths of the depletion regions on either side of the junction.
- (e) Calculate the maximum electric field in the depletion region.

Solution:

(a) For n- and p-type Si:

$$n = N_C \exp\left(\frac{E_F - E_C}{kT}\right) = N_D$$

$$p = N_V \exp\left(\frac{E_V - E_F}{kT}\right) = N_A$$

we obtain

$$E_F - E_C \Big|_{n} = 0.0259 \ln \left(\frac{10^{15}}{2.8 \times 10^{19}} \right) = -0.265 eV$$

$$E_V - E_F \Big|_{p} = 0.0259 \ln \left(\frac{10^{18}}{2.66 \times 10^{19}} \right) = -0.085 eV$$

$$E_C - E_F \Big|_{p} = 1.12 - 0.085 = 1.035 eV$$

(b) Draw E_F horizontally through the device, then add E_{Vp} and E_{Cn} ; finally draw E_{Cp} and E_{Vn} using $E_q = 1.12$ eV.

(c)
$$V_{bi} = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2} = 0.0259 \ln \frac{10^{33}}{\left(9.65 \times 10^9\right)^2} = 0.776 eV$$

From the diagram above: $V_{bi} = 1.035 - 0.265 = 0.77 \text{ eV}$

$$W = \sqrt{\frac{2\varepsilon_{s}}{q}} \left(V_{bi} - V\right) \left(\frac{N_{A} + N_{D}}{N_{D} N_{A}}\right) x_{p} = 9.99 \times 1010 m = 9.99 \times 10^{-4} \mu m$$

$$x_{p} = 0.999 \mu m$$

V = 0, $\varepsilon_s = 11.9 \text{ x } 8.85 \text{ x } 10^{-14} \text{ F cm}^{-1}$, $W = 1 \mu \text{m}$

$$x_n = \frac{N_A W}{N_A + N_D}, x_p = \frac{N_D W}{N_A + N_D}$$

$$\rightarrow$$
 X_p = 9.99x10⁻⁴ µm

→
$$X_n = 0.999 \mu m$$

$$\xi_{\text{max}} = \xi_{x=0} = -\frac{qN_A x_p}{\varepsilon_s} = -1.52 \times 10^4 V cm^{-1}$$

2. Consider a uniformly doped abrupt pn junction at 300 K. At thermal equilibrium, it is designed such that 10 % of the total depletion width region lies in the p region. You are given that the built in potential is 0.8 V. Determine the doping concentration N_a and N_d of the p and n region, respectively, and the total depletion width.

(Hint: Consider charge neutrality and $x_{n0} + x_{p0} = W$ to relate N_a and N_d . You can relate N_a and N_d via the expression for V_{bi} . Then, solve the two equations.)

 $[2.59 \times 10^{16} \text{ cm}^{-3}; 2.33 \times 10^{17} \text{ cm}^{-3}; 0.212 \text{ }\mu\text{m}]$

Solution 2 The desired built-in voltage is 0.8 V. Thus,

$$V_{\rm bi} = \frac{k_{\rm B}T}{q} \ln \left(\frac{N_{\rm a}N_{\rm d}}{n_{\rm i}^2} \right) = 0.8 \,\rm V$$
 (1)

The second requirement is that 10 % of the total depletion widt is to be in the p region, i.e.

$$\frac{x_{p0}}{x_{p0} + x_{n0}} = 0.1 \Rightarrow x_{n0} = 9x_{p0}$$
 (2)

In addition,

$$x_{p0}N_{a} = x_{n0}N_{d} \Rightarrow N_{a} = 9N_{d}$$

$$V_{o} = \frac{kT}{q} \ln \left(\frac{N_{a}N_{d}}{n_{i}^{2}}\right)$$

$$= \sqrt{\frac{q}{2k_{B}T}}V_{bi}$$

$$= \frac{1.5 \times 10^{10}}{3} \exp \left(\frac{1.6 \times 10^{-19} \times 0.8}{2 \times 1.38 \times 10^{-23} \times 300}\right)$$

$$= 2.59 \times 10^{16} \text{ cm}^{-3}$$

$$(3)$$

$$V_{o} = \frac{kT}{q} \ln \left(\frac{N_{a}N_{d}}{n_{i}^{2}}\right)$$

$$\Rightarrow \sqrt{\frac{3N_{d}}{n_{i}}} = \exp \left(\frac{3N_{d}}{n_{i}}\right)$$

$$\Rightarrow \sqrt{\frac{3N_{d}}{n_{i}}} = \exp \left(\frac{3N_{d}}{n_{i}}\right)$$

$$\Rightarrow \sqrt{\frac{3N_{d}}{n_{i}}} = \exp \left(\frac{qV_{o}}{2kT}\right)$$

$$\Rightarrow N_{d} = \frac{n_{i}}{3} \exp \left(\frac{qV_{o}}{2kT}\right)$$

$$N_{o} = 9N_{d} = 2.33 \times 10^{17} \text{ cm}^{-3}$$

Solution 2 (continued)

Total depletion width,

$$W = \left[\frac{2\varepsilon_{\rm r}\varepsilon_{\rm 0}}{q}V_{\rm bi}\left(\frac{1}{N_{\rm a}} + \frac{1}{N_{\rm d}}\right)\right]^{1/2}$$

$$= \left[\frac{2\times11.8\times8.85\times10^{-14}\times0.8}{1.6\times10^{-19}}\times\right]^{1/2}$$

$$= \left[\frac{1}{2.33\times10^{17}} + \frac{1}{2.59\times10^{16}}\right]^{1/2}$$

$$= 2.12\times10^{-5} \text{ cm} \quad \text{or } 0.212 \text{ }\mu\text{m}$$

- 3. Assume that the p-n abrupt junction has $N_A = 10^{17}$ cm⁻³ and $N_D = 10^{15}$ cm⁻³,
- a) Calculate V_{bi} at 250 and 500 K and list V_{bi} versus T.
- b) Comment on your result in terms of energy band diagram.
- c) Find the depletion layer width and maximum field at zero bias for T = 500 K.

Assume that the intrinsic carrier concentrations at 250 and 500 K are 1.5 x 10⁸ cm⁻³ and 2.2 x 10¹⁴ cm⁻³ respectively.

(a) From the figure, the intrinsic carrier concentrations at different temperatures can be obtained, one can thus get built-in potential.

$$V_{bi} = \frac{kT}{q} \ln \left(\frac{N_A N_D}{n_i^2} \right) = \frac{1.38 \times 10^{-23} T}{1.6 \times 10^{-19}} \ln \left(\frac{1017 \times 1015}{n_i^2} \right)$$

$$= 8.63 \times 10^{-5} \times T \times \ln \left(\frac{10^{32}}{n_i^2} \right)$$

The V_{bi} results are listed in the following table.

T	n_{i}	$V_{bi}(V)$
250	1.500E+08	0.777
500	2.20E+14	0.329

Fig. 22 Intrinsic carrier densities in Si and GaAs as a function of the reciprocal of temperature.5-7

(b) $E_g(300k) = 1.12eV$; $E_g(500k) = 1.05eV => n_i$ and p_i increase

Thus, V_{bi} is decreased as the temperature is increased.

(C) Depletion width W and maximum field at zero bias at T=500 K

$$W = \sqrt{\frac{2\varepsilon_s V_{bi}}{qN_D}} = 0.658 \,\mu\text{m}$$

$$\xi_{\text{max}} = \frac{qN_DW}{\varepsilon_s} = 1 \times 10^4 V / cm$$

4. A one-sided p-n junction at 300 K is doped with $N_A = 10^{19}$ cm⁻³. Design the junction so that $C_i = 0.85 \times 10^{-8}$ F/cm² at a reverse voltage of 4 V.

We know

$$\frac{1}{C_{j}^{2}} = \frac{2(V_{bi} - V)}{q\varepsilon_{s}N_{B}} \Rightarrow N_{D} = \frac{2(V_{bi} - V_{R})}{q\varepsilon_{s}}C_{j}^{2}$$

$$\because V_{R} >> V_{bi} \Rightarrow N_{D} \cong \frac{2(V_{R})}{q\varepsilon_{s}}C_{j}^{2}$$

$$= \frac{2 \times 4}{1.6 \times 10^{-19} \times 11.9 \times 8.85 \times 10^{-14}} \times (0.85 \times 10^{-8})^{2}$$

$$\Rightarrow N_{d} = 3.43 \times 10^{15} \,\text{cm}^{-3}$$

We can select the n-type doping concentration of 3.43×10^{15} cm⁻³.

If you do not neglect V_{bi} , and use the equation $V_{bi} = \frac{kT}{q} \ln \frac{N_A N_D}{n_i^2}$

Then the above equation for $1/C_i^2$ becomes

$$N_D = \frac{2C_j^2}{q\varepsilon_s} \left[\frac{kT}{q} \left\{ \ln \frac{N_A}{n_i^2} + \ln N_D \right\} - V_R \right]$$

$$N_D = 3.38 \times 10^{15} + 2.22 \times 10^{13} \ln(N_D)$$

Solve using iteration. The solution converges. Two iterations are sufficient. Take an initial value of

$$N_D = 1 \times 10^{15} \text{ cm}^{-3} (<< N_A)$$

Final result: $N_D = 4.18 \times 10^{15} \text{ cm}^{-3}$

5. Design the Si p-n diode such that $J_n = 25 \text{ A.cm}^{-2}$ and $J_p = 7 \text{ A.cm}^{-2}$ at $V_a = 0.7 \text{ V}$. Other parameters include $n_i = 9.65 \times 10^9 \text{ cm}^{-3}$, $D_n = 21 \text{ cm}^2/\text{s}$, $D_p = 10 \text{ cm}^2/\text{s}$ and $\tau_n = \tau_p = 5 \times 10^{-7} \text{ s}$. Assume that J_p and J_n are given by expressions of the form $(qD_pp_{no}/L_p).(e^{qV/kT}-1)$ and $(qD_nn_{po}/L_n).(e^{qV/kT}-1)$ respectively.

$$J_{p}(x_{n}) = \frac{qD_{p}p_{no}}{L_{p}} \left(e^{qV/kT} - 1\right) = q\sqrt{\frac{D_{p}}{\tau_{po}}} \times \frac{n_{i}^{2}}{N_{D}} \times \left[e^{\left(\frac{qV_{a}}{kT}\right)} - 1\right]$$

$$7 = 1.6 \times 10^{-19} \times \sqrt{\frac{10}{5 \times 10^{-7}}} \times \frac{\left(9.65 \times 10^{9}\right)^{2}}{N_{D}} \times \left[e^{\left(\frac{0.7}{0.0259}\right)} - 1\right]$$

$$N_D = 5.2 \times 10^{15} \,\mathrm{cm}^{-3}$$

$$J_{n}\left(-x_{p}\right) = \frac{qD_{n}n_{po}}{L_{n}}\left(e^{qV/kT}-1\right) = q\sqrt{\frac{D_{n}}{\tau_{no}}} \times \frac{n_{i}^{2}}{N_{A}} \times \left[e^{\left(\frac{qV_{a}}{kT}\right)}-1\right]$$

$$25 = 1.6 \times 10^{-19} \times \sqrt{\frac{21}{5 \times 10^{-7}}} \times \frac{\left(9.65 \times 10^{9}\right)^{2}}{N_{A}} \times \left[e^{\left(\frac{0.7}{0.0259}\right)} - 1\right]$$

$$N_A = 2.1 \times 10^{15} \text{ cm}^{-3}$$