Class13

Mahsa Naeimi

Section 1. Differential Expression Analysis

first step is to read and analyze the data:

```
library(DESeq2)
```

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

```
Loading required package: Biobase
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
  metaFile <- "GSE37704_metadata.csv"</pre>
  countFile <- "GSE37704_featurecounts.csv"</pre>
  # Import metadata and take a peak
  colData = read.csv(metaFile, row.names=1)
  head(colData)
              condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369
               hoxa1_kd
               hoxa1 kd
SRR493370
               hoxa1_kd
SRR493371
  # Import countdata
  countData = read.csv(countFile, row.names=1)
  head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

we will need to remove that odd first column in countData namely contData\$length:

Q1. Complete the code below to remove the troublesome first column from countData

```
countData <- as.matrix(countData[, -1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

we are going to eliminate the zeros:

Q2. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
remove <- rowSums(countData) == 0
countData <- countData[!remove, ]

# Filter count data where you have 0 read count across all samples.
to_keep <- rowSums(countData)>0
countData <- countData[to_keep, ]</pre>
```

Running DESeq2

```
now lets setup the DESeqDataSet object required for the DESeq():
  dds = DESeqDataSetFromMatrix(countData=countData,
                                colData=colData,
                                design=~condition)
Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
design formula are characters, converting to factors
  dds = DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
  dds
class: DESeqDataSet
dim: 15975 6
metadata(1): version
assays(4): counts mu H cooks
rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345
  ENSG00000271254
rowData names(22): baseMean baseVar ... deviance maxCooks
colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371
colData names(2): condition sizeFactor
```

```
res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
```

Q3. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

```
summary(res)
```

```
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

plot( res$log2FoldChange, -log(res$padj) )</pre>
```


Q4. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs (res$log2FoldChange) > 2 ] <- "red"
#Or
#mycols[ (res$log2FoldChange) > 2 | (res$log2FoldChange) < -2 ) ] <- "red")]

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(mycols)"</pre>
```


Adding gene annotation

Q5. Use the **mapIDs()** function multiple times to add SYMBOL, ENTREZID and GENE-NAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
  library("org.Hs.eg.db")
  columns(org.Hs.eg.db)
                    "ALIAS"
 [1] "ACCNUM"
                                    "ENSEMBL"
                                                   "ENSEMBLPROT"
                                                                   "ENSEMBLTRANS"
[6] "ENTREZID"
                    "ENZYME"
                                    "EVIDENCE"
                                                   "EVIDENCEALL"
                                                                   "GENENAME"
[11] "GENETYPE"
                    "GO"
                                    "GOALL"
                                                   "IPI"
                                                                   "MAP"
[16] "OMIM"
                    "ONTOLOGY"
                                    "ONTOLOGYALL" "PATH"
                                                                   "PFAM"
[21] "PMID"
                    "PROSITE"
                                    "REFSEQ"
                                                   "SYMBOL"
                                                                   "UCSCKG"
[26] "UNIPROT"
  res$symbol <- mapIds(org.Hs.eg.db,</pre>
                        keys = row.names(res),
                        keytype = "ENSEMBL",
                        column = "SYMBOL",
                        multiVals = "first")
'select()' returned 1:many mapping between keys and columns
  res$entrez <- mapIds(org.Hs.eg.db,</pre>
                        keys = row.names(res),
                        keytype = "ENSEMBL",
                        column = "ENTREZID",
                        multiVals = "first")
'select()' returned 1:many mapping between keys and columns
  res$name <- mapIds(org.Hs.eg.db,</pre>
                      keys = row.names(res),
                      keytype = "ENSEMBL",
                      column = "GENENAME",
                      multiVals = "first")
```

```
head(res, 10)
```

log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSE	E stat pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<pre>> <numeric> <numeric></numeric></numeric></pre>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863 5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350 2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	5 -12.630158 1.43990e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326 3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237 8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215598	3 1.040744 2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	3 10.446970 1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522 1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304 7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614 8.47261e-01
	padj	symbol	entrez	name
	<numeric></numeric>	<character> <c< td=""><td>haracter></td><td><character></character></td></c<></character>	haracter>	<character></character>
ENSG00000279457	6.86555e-01	NA	NA	NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alpha motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nucleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin homology
ENSG00000187642	4.03379e-01	PERM1	84808	PPARGC1 and ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family bHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiquitin like
ENSG00000188157	4.21963e-16	AGRN	375790	agrin
ENSG00000237330	NA	RNF223	401934	ring finger protein

Q6. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res <- res[order(res$padj), ]
write.csv(res, file = "deseq_results.csv")</pre>
```

Section 2. Pathway Analysis

KEGG pathways

First we need to do our one time install of these required bioconductor packages:

```
# Run in your R console (i.e. not your Rmarkdown doc!)
# BiocManager::install( c("pathview", "gage", "gageData") )
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

```
library(gage)
```

```
library(gageData)

data(kegg.sets.hs)
data(sigmet.idx.hs)

# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]

# Examine the first 3 pathways
head(kegg.sets.hs, 3)

$`hsa00232 Caffeine metabolism`
[1] "10" "1544" "1548" "1549" "1553" "7498" "9"
```

```
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                         "10720"
                                  "10941"
                                            "151531" "1548"
                                                                "1549"
                                                                         "1551"
 [9] "1553"
               "1576"
                         "1577"
                                            "1807"
                                  "1806"
                                                      "1890"
                                                                "221223" "2990"
[17] "3251"
               "3614"
                         "3615"
                                  "3704"
                                            "51733"
                                                      "54490"
                                                                "54575"
                                                                         "54576"
[25] "54577"
               "54578"
                         "54579"
                                  "54600"
                                            "54657"
                                                      "54658"
                                                                "54659"
                                                                         "54963"
[33] "574537" "64816"
                         "7083"
                                  "7084"
                                            "7172"
                                                      "7363"
                                                                "7364"
                                                                         "7365"
[41] "7366"
               "7367"
                         "7371"
                                  "7372"
                                            "7378"
                                                      "7498"
                                                                "79799"
                                                                         "83549"
[49] "8824"
                         "9"
                                  "978"
               "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                          "10606"
                                   "10621"
                                             "10622"
                                                       "10623"
                                                                 "107"
                                                                           "10714"
  [9] "108"
                "10846"
                          "109"
                                   "111"
                                             "11128"
                                                       "11164"
                                                                 "112"
                                                                           "113"
 [17] "114"
                                                                           "159"
                "115"
                          "122481" "122622"
                                             "124583" "132"
                                                                 "158"
 [25] "1633"
                "171568" "1716"
                                   "196883" "203"
                                                       "204"
                                                                 "205"
                                                                           "221823"
 [33] "2272"
                "22978"
                          "23649"
                                   "246721"
                                             "25885"
                                                       "2618"
                                                                 "26289"
                                                                           "270"
                          "272"
 [41] "271"
                "27115"
                                   "2766"
                                             "2977"
                                                       "2982"
                                                                 "2983"
                                                                           "2984"
 [49] "2986"
                "2987"
                          "29922"
                                   "3000"
                                             "30833"
                                                       "30834"
                                                                 "318"
                                                                           "3251"
                                             "377841" "471"
 [57] "353"
                "3614"
                          "3615"
                                   "3704"
                                                                 "4830"
                                                                           "4831"
 [65] "4832"
                "4833"
                          "4860"
                                   "4881"
                                             "4882"
                                                       "4907"
                                                                 "50484"
                                                                          "50940"
                                                                 "5139"
 [73] "51082"
                "51251"
                          "51292"
                                   "5136"
                                             "5137"
                                                       "5138"
                                                                           "5140"
 [81] "5141"
                "5142"
                                                       "5146"
                                                                 "5147"
                          "5143"
                                   "5144"
                                             "5145"
                                                                          "5148"
 [89] "5149"
                "5150"
                          "5151"
                                   "5152"
                                             "5153"
                                                       "5158"
                                                                 "5167"
                                                                           "5169"
 [97] "51728"
                "5198"
                          "5236"
                                   "5313"
                                             "5315"
                                                       "53343"
                                                                 "54107"
                                                                          "5422"
[105] "5424"
                "5425"
                          "5426"
                                   "5427"
                                             "5430"
                                                       "5431"
                                                                 "5432"
                                                                           "5433"
[113] "5434"
                "5435"
                          "5436"
                                   "5437"
                                             "5438"
                                                       "5439"
                                                                 "5440"
                                                                           "5441"
[121] "5471"
                "548644" "55276"
                                   "5557"
                                             "5558"
                                                       "55703"
                                                                 "55811"
                                                                          "55821"
                "5634"
                          "56655"
                                             "56985"
                                                       "57804"
                                                                 "58497"
                                                                           "6240"
[129] "5631"
                                   "56953"
                "64425"
                          "646625" "654364"
                                             "661"
                                                       "7498"
                                                                 "8382"
                                                                           "84172"
[137] "6241"
[145] "84265"
                "84284"
                          "84618"
                                   "8622"
                                             "8654"
                                                       "87178"
                                                                 "8833"
                                                                           "9060"
[153] "9061"
                "93034"
                          "953"
                                   "9533"
                                             "954"
                                                       "955"
                                                                 "956"
                                                                           "957"
[161] "9583"
                "9615"
  foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
                                    51232
     1266
               54855
                           1465
                                                2034
                                                           2317
-2.422719
           3.201955 -2.313738 -2.059631 -1.888019 -1.649792
  # Get the results
  keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

attributes(keggres)

\$names

[1] "greater" "less" "stats"

Look at the first few down (less) pathways
head(keggres\$less)

```
p.geomean stat.mean
hsa04110 Cell cycle
                                     8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                     9.424076e-05 -3.951803 9.424076e-05
                                      1.375901e-03 -3.028500 1.375901e-03
hsa03013 RNA transport
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
                                                                   exp1
hsa04110 Cell cycle
                                      0.001448312
                                                     121 8.995727e-06
hsa03030 DNA replication
                                      0.007586381
                                                       36 9.424076e-05
hsa03013 RNA transport
                                                     144 1.375901e-03
                                      0.073840037
hsa03440 Homologous recombination
                                                      28 3.066756e-03
                                     0.121861535
hsa04114 Oocyte meiosis
                                      0.121861535
                                                      102 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                       53 8.961413e-03
```

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/mahsa/Desktop/BIMM 143/Class12/Class13

Info: Writing image file hsa04110.pathview.png

A different PDF based output of the same data pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)

'select()' returned 1:1 mapping between keys and columns

Warning: reconcile groups sharing member nodes!

[,1] [,2] [1,] "9" "300" [2,] "9" "306"

Info: Working in directory /Users/mahsa/Desktop/BIMM 143/Class12/Class13

Info: Writing image file hsa04110.pathview.pdf

```
## Focus on top 5 upregulated pathways here for demo purposes only
  keggrespathways <- rownames(keggres$greater)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
  pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/mahsa/Desktop/BIMM 143/Class12/Class13
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/mahsa/Desktop/BIMM 143/Class12/Class13
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/mahsa/Desktop/BIMM 143/Class12/Class13
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/mahsa/Desktop/BIMM 143/Class12/Class13
Info: Writing image file hsa04142.pathview.png
Info: some node width is different from others, and hence adjusted!
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/mahsa/Desktop/BIMM 143/Class12/Class13

Info: Writing image file hsa04330.pathview.png

Q7. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

Section 3. Gene Ontology (GO)

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

```
p.geomean stat.mean
GO:0007156 homophilic cell adhesion
                                         8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                          1.432451e-04 3.643242 1.432451e-04
GO:0007610 behavior
                                          2.195494e-04 3.530241 2.195494e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                             q.val set.size
GO:0007156 homophilic cell adhesion
                                          0.1951953
                                                        113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                        339 1.396681e-04
GO:0048729 tissue morphogenesis
                                                        424 1.432451e-04
                                          0.1951953
GO:0007610 behavior
                                          0.2243795
                                                        427 2.195494e-04
GO:0060562 epithelial tube morphogenesis 0.3711390
                                                        257 5.932837e-04
                                                        391 5.953254e-04
GO:0035295 tube development
                                          0.3711390
```

\$less

```
p.geomean stat.meanp.valG0:0048285 organelle fission1.536227e-15-8.0639101.536227e-15G0:0000280 nuclear division4.286961e-15-7.9392174.286961e-15G0:0007067 mitosis4.286961e-15-7.9392174.286961e-15G0:0000087 M phase of mitotic cell cycle1.169934e-14-7.7974961.169934e-14G0:0007059 chromosome segregation2.028624e-11-6.8783402.028624e-11G0:0000236 mitotic prometaphase1.729553e-10-6.6959661.729553e-10q.val set.sizeexp1
```

GO:0048285	organelle fission	5.841698e-12	376	1.536227e-15
GD:0000280	nuclear division	5.841698e-12	352	4.286961e-15
GD:0007067	mitosis	5.841698e-12	352	4.286961e-15
GD:0000087	M phase of mitotic cell cycle	1.195672e-11	362	1.169934e-14
GO:0007059	chromosome segregation	1.658603e-08	142	2.028624e-11
GD:0000236	mitotic prometaphase	1.178402e-07	84	1.729553e-10

\$stats

		stat.mean	exp1
GO:0007156	homophilic cell adhesion	3.824205	3.824205
GD:0002009	${\tt morphogenesis} \ {\tt of} \ {\tt an} \ {\tt epithelium}$	3.653886	3.653886
GO:0048729	tissue morphogenesis	3.643242	3.643242
GO:0007610	behavior	3.530241	3.530241
GD:0060562	epithelial tube morphogenesis	3.261376	3.261376
GD:0035295	tube development	3.253665	3.253665

Section 4. Reactome Analysis

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

Q8: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?