Cálculo I: Unidad 0. Parte 1 El Plano Cartesiano y La Línea Recta

R. M.

UASD

2025

- 1 Sistema de Coordenadas Cartesianas en \mathbb{R}^2
- 2 La Línea Recta

< □ > < □ > < 亘 > < 亘 > 亘 りへで

El Plano Cartesiano I

Definición

El plano cartesiano es un sistema de referencia conformado por dos rectas numéricas perpendiculares, denominadas ejes coordenados, que se intersecan en un punto llamado origen.

- El eje horizontal se denomina eje de las abscisas o eje x.
- El eje vertical se denomina eje de las ordenadas o eje y.

A cada punto P en el plano le corresponde un par ordenado de números reales (x, y), denominado **coordenadas** del punto.

El Plano Cartesiano II

Ejemplos: Ubicación de Coordenadas

Ubicar los siguientes puntos en el plano cartesiano: A(3,2), B(-4,1), C(-2,-3).

Distancia entre Dos Puntos

Definición

Sean $P_1(x_1, y_1)$ y $P_2(x_2, y_2)$ dos puntos en el plano cartesiano. La **distancia** entre P_1 y P_2 , denotada por $d(P_1, P_2)$, se define como la longitud del segmento de recta que los une. Se calcula mediante la fórmula:

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Distancia entre Dos Puntos

Definición

Sean $P_1(x_1, y_1)$ y $P_2(x_2, y_2)$ dos puntos en el plano cartesiano. La **distancia** entre P_1 y P_2 , denotada por $d(P_1, P_2)$, se define como la longitud del segmento de recta que los une. Se calcula mediante la fórmula:

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Propiedades

Sea d una función de distancia en \mathbb{R}^2 . Para cualesquiera puntos $P_1, P_2, P_3 \in \mathbb{R}^2$, se cumplen:

- **1** No negatividad: $d(P_1, P_2) \ge 0$.
- 2 Identidad de los indiscernibles: $d(P_1, P_2) = 0 \iff P_1 = P_2$

Ejemplos: Cálculo de Distancia

Ejemplo

Hallar la distancia entre A(2,3) y B(5,7).

$$d(A,B) = \sqrt{(5-2)^2 + (7-3)^2}$$
$$= \sqrt{3^2 + 4^2} = \sqrt{9+16} = \sqrt{25} = 5$$

Ejemplos: Cálculo de Distancia

Ejemplo

Hallar la distancia entre A(2,3) y B(5,7).

$$d(A, B) = \sqrt{(5-2)^2 + (7-3)^2}$$
$$= \sqrt{3^2 + 4^2} = \sqrt{9+16} = \sqrt{25} = 5$$

Ejemplo

Hallar la distancia entre C(-1,4) y D(3,-2).

$$d(C,D) = \sqrt{(3-(-1))^2 + (-2-4)^2}$$

$$= \sqrt{4^2 + (-6)^2} = \sqrt{16+36} = \sqrt{52} = 2\sqrt{13}$$

Punto Medio

Definición

Sean $P_1(x_1, y_1)$ y $P_2(x_2, y_2)$ los puntos extremos de un segmento de recta. Las coordenadas del **punto medio** M del segmento son:

$$M=\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$$

Punto Medio

Definición

Sean $P_1(x_1, y_1)$ y $P_2(x_2, y_2)$ los puntos extremos de un segmento de recta. Las coordenadas del **punto medio** M del segmento son:

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Ejemplo

Hallar el punto medio del segmento con extremos A(2,5) y B(8,1).

$$M_{AB} = \left(\frac{2+8}{2}, \frac{5+1}{2}\right) = \left(\frac{10}{2}, \frac{6}{2}\right) = (5,3)$$

- lacktriangle Sistema de Coordenadas Cartesianas en \mathbb{R}^2
- 2 La Línea Recta

La Línea Recta I

Una recta en el plano cartesiano es el conjunto de todos los puntos (x, y) que satisfacen una ecuación lineal de la forma Ax + By + C = 0. Una forma común de representar una recta es la ecuación **pendiente-intersección**: y = mx + b.

- m: Es la **pendiente** de la recta, que mide su inclinación.
- b: Es la **ordenada en el origen** o **intersección con el eje y**, el punto donde la recta corta al eje vertical, i.e., el punto (0, b).

La Línea Recta II

La Pendiente de una Recta I

Definición

La **pendiente** m de una recta no vertical que pasa por los puntos $P_1(x_1, y_1)$ y $P_2(x_2, y_2)$ es la razón del cambio en la ordenada (Δy) al cambio en la abscisa (Δx) :

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}, \quad con \ x_1 \neq x_2$$

Tipos de Pendientes:

- m > 0: Recta creciente (ascendente).
- m < 0: Recta decreciente (descendente).

- m = 0: Recta horizontal.
- m no definida: Recta vertical.

La Pendiente de una Recta II

Ejemplo

1
$$P_1(1,2), P_2(3,6) \implies m = \frac{6-2}{3-1} = \frac{4}{2} = 2 > 0$$

2
$$P_1(-1,4), P_2(2,-2) \implies m = \frac{-2-4}{2-(-1)} = \frac{-6}{3} = -2 < 0$$

3
$$P_1(2,3), P_2(5,3) \implies m = \frac{3-3}{5-2} = \frac{0}{3} = 0$$

Ecuaciones de la Recta

Ecuación Punto-Pendiente

La ecuación de la recta que pasa por el punto $P_1(x_1, y_1)$ y tiene pendiente m es:

$$y-y_1=m(x-x_1)$$

Ecuaciones de la Recta

Ecuación Punto-Pendiente

La ecuación de la recta que pasa por el punto $P_1(x_1, y_1)$ y tiene pendiente m es:

$$y-y_1=m(x-x_1)$$

Ecuación Pendiente-Intersección

La ecuación de la recta con pendiente m y ordenada en el origen b es:

$$y = mx + b$$

Ecuaciones de la Recta

Ecuación Punto-Pendiente

La ecuación de la recta que pasa por el punto $P_1(x_1, y_1)$ y tiene pendiente m es:

$$y-y_1=m(x-x_1)$$

Ecuación Pendiente-Intersección

La ecuación de la recta con pendiente m y ordenada en el origen b es:

$$y = mx + b$$

Ecuación General

Toda ecuación de una recta se puede expresar en la forma general:

Ejemplos: Hallar la Ecuación de la Recta I

Ejemplo

Hallar la ecuación de la recta con pendiente m = -3 que pasa por el punto P(1, -2). Graficarla.

Usando la forma punto-pendiente:

$$y - (-2) = -3(x - 1)$$

 $y + 2 = -3x + 3$
 $y = -3x + 1$

Ejemplos: Hallar la Ecuación de la Recta II

Ejemplos: Hallar la Ecuación de la Recta (cont.) I

Ejemplo

Hallar la ecuación de la recta que pasa por los puntos A(-2,5) y B(4,-1).

1. Calculamos la pendiente:

$$m = \frac{-1-5}{4-(-2)} = \frac{-6}{6} = -1$$

2. Usamos la forma punto-pendiente con el punto A:

$$y-5 = -1(x-(-2))$$

 $y-5 = -x-2$
 $y = -x+3$

Ejemplos: Hallar la Ecuación de la Recta (cont.) II

Ejemplo

Hallar la ecuación de la recta que pasa por $C\left(\frac{1}{2},1\right)$ y $D\left(2,-\frac{3}{4}\right)$.

1. Calculamos la pendiente:

$$m = \frac{-\frac{3}{4} - 1}{2 - \frac{1}{2}} = \frac{-\frac{7}{4}}{\frac{3}{2}} = -\frac{7}{4} \cdot \frac{2}{3} = -\frac{14}{12} = -\frac{7}{6}$$

2. Usamos la forma punto-pendiente con el punto C:

$$y - 1 = -\frac{7}{6} \left(x - \frac{1}{2} \right)$$
$$y - 1 = -\frac{7}{6} x + \frac{7}{12}$$
$$y = -\frac{7}{6} x + \frac{19}{12}$$

Pendiente Positiva

recta es creciente.

A medida que *x* aumenta, *y* también aumenta.

Pendiente Positiva

recta es **creciente**. A medida que *x* aumenta, *y* también aumenta.

Pendiente

Negativa m < 0

recta es

decreciente. A

medida que x

aumenta, y

disminuye.

lа

Pendiente Positiva

recta es **creciente**. A medida que *x* aumenta, *y* también aumenta.

Pendiente Negativa m < 0

recta es

decreciente. A

medida que x

aumenta, y

disminuye.

Pendiente Cero

$$m = 0$$

recta es horizontal.

El valor de *y* es constante para todo *x*.

Pendiente Positiva

m > 0

recta es **creciente**.
A medida que *x*aumenta, *y* también
aumenta.

Pendiente Negativa

recta es

decreciente. A

medida que x

aumenta, y

disminuye.

Pendiente Cero

m = 0

recta es **horizontal**. El valor de *y* es constante para todo

Pendiente Indefinida

recta es **vertical**. Corresponde a un $\Delta x = 0$, lo que resulta en una división por cero. Su ecuación es de la

forma x = k donde

Pendiente Positiva

m > 0

recta es **creciente**.
A medida que *x*aumenta, *y* también
aumenta.

Pendiente Negativa

recta es

decreciente. A

medida que x

aumenta, y

disminuye.

Pendiente Cero

m = 0

recta es **horizontal**. El valor de *y* es constante para todo

Pendiente Indefinida

recta es **vertical**. Corresponde a un $\Delta x = 0$, lo que resulta en una división por cero. Su ecuación es de la

forma x = k donde

Rectas Paralelas I

Definición

Dos rectas no verticales L_1 y L_2 con pendientes m_1 y m_2 respectivamente, son paralelas si y solo si sus pendientes son iguales.

$$L_1 \parallel L_2 \iff m_1 = m_2$$

Rectas Paralelas II

Ejemplos de Rectas Paralelas

Ejemplo

Las rectas y = 2x + 5 y y = 2x - 3 son paralelas, pues $m_1 = m_2 = 2$.

Ejemplo

Hallar la ecuación de la recta que pasa por (3,2) y es paralela a y=-4x+1. La pendiente debe ser m=-4.

$$y-2=-4(x-3)$$

$$y - 2 = -4x + 12$$

$$y = -4x + 14$$

Rectas Perpendiculares I

Definición

Dos rectas no verticales L_1 y L_2 con pendientes m_1 y m_2 respectivamente, son **perpendiculares** si y solo si el producto de sus pendientes es -1.

$$L_1 \perp L_2 \iff m_1 \cdot m_2 = -1 \quad (o \ m_2 = -\frac{1}{m_1})$$

Rectas Perpendiculares II

Ejemplo

Las rectas
$$y = \frac{1}{3}x + 2 \ y \ y = -3x - 1$$

Ejemplo

Las rectas
$$y = \frac{1}{3}x + 2$$
 y $y = -3x - 1$ son perpendiculares, ya que $m_1 \cdot m_2 = \frac{1}{3} \cdot (-3) = -1$.

Ejemplo

Las rectas
$$y = \frac{1}{3}x + 2$$
 $y = -3x - 1$ son perpendiculares, ya que $m_1 \cdot m_2 = \frac{1}{3} \cdot (-3) = -1$.

Ejemplo

Hallar la ecuación de la recta que pasa por (-4,1) y es perpendicular a y=2x-3. La pendiente de la recta dada es $m_1=2$. La pendiente de la recta perpendicular será $m_2=-\frac{1}{2}$.

Ejemplo

Las rectas $y = \frac{1}{3}x + 2$ y = -3x - 1 son perpendiculares, ya que $m_1 \cdot m_2 = \frac{1}{3} \cdot (-3) = -1$.

Ejemplo

Hallar la ecuación de la recta que pasa por (-4,1) y es perpendicular a y=2x-3. La pendiente de la recta dada es $m_1=2$. La pendiente de la recta perpendicular será $m_2=-\frac{1}{2}$.

$$y-1 = -\frac{1}{2}(x - (-4))$$
$$y-1 = -\frac{1}{2}x - 2; \rightarrow y = -\frac{1}{2}x - 1$$

Ejercicios

Asignados en el aula.

R. M.