安徽大学 2019 — 2020 学年第 — 学期

《模拟电子技术》期中考试试卷(A卷)参考答案及评分标准

一、 简答题(每题6分,共30分)

得 分

1. NPN 晶体管有几种工作状态?如何设置这几种工作状态。

有三种工作状态:饱和状态、截止状态和放大状态。饱和状态是指发射结和集电结均正偏,即U_{BE}>U_{on}和U_{CB}>U_{on};截止状态是指发射结和集电结均反偏,即U_{BE}<0和U_{CB}<0:

放大状态是指发射结正偏和集电结反偏,即 UBE>Uon和 UCB<0。

2. 分别判断下图所示各电路中晶体管是否有可能工作在放大状态。

(a) 可能(b) 可能(c) 不可能(d) 不可能(e) 可能(f) 可能

3. 对于 n 沟道结型场效应晶体管,请定性解释当 u_{GS} 为 $U_{GS(off)}$ ~0V 中某一确定值时, u_{DS} 对 i_{D} 的影响。

当 u_{GS(off)}<u_{GS}<0V 时:

若 $u_{DS}=0V$,则源极和漏极之间存在由 u_{GS} 控制的导电沟道。此时 i_D 为 0;

若 $0 < u_{DS} < u_{GS} - u_{GS(off)}$ 时,则漏极处的导电沟道变窄,源极的导电沟道仍由 u_{GS} 控制。此时导电沟道可以看成一个可变电阻。 i_D 随 u_{DS} 增大而增大,为可变电阻区;

若 $u_{DS}>=u_{GS}$ - $u_{GS(off)}$ 时,则漏极处的导电沟道被夹断,源极的导电沟道仍由 u_{GS} 控制。此时导电沟道内电流可以看成一个恒定的电流, i_{D} 不随 u_{DS} 变化,为恒流区:

若继续增加 ups 时,则漏极处的导电沟道有可能被击穿,ip 为反向击穿电流,此时为击穿区。

4. 已知两级共射放大电路由 NPN 管组成,其输出电压波形产生底部失真。试说明产生 失真所有可能的原因。

- (1) 第一级截止失真, 第二级没有失真;
- (2) 第一级没有失真, 第二级饱和失真;
- (3) 第一级截止失真, 第二级饱和失真。
 - 5. 判断下列各图能否组成复合管。如果能组成复合管,说明该复合管是什么类型的。

- (a) 可以 PNP(b) 不可以(c) 不可以(d) 可以 n 沟道增强型绝缘栅场效应晶体管
- 二、(8 分) 如图,已知 $u_i=5\sin \omega t(V)$,二极管导通电压 $U_D=0.7V$ 。画出 u_i 与 u_o 的波形,并标出幅值。

三、 $(12 \, f)$ 如图为基本共射放大电路及输出特性。已知静态时 $U_{BEQ}=0.7V$,利用图解法分别 求出 $R_{L}=\infty$ 和 $R_{L}=3k\Omega$ 时的静态工作点和最大不失真输出电压 U_{om} (有效值)。

(1) 当 $R_L = \infty$ 时,空载曲线为 $u_{CE} = V_{CC} - i_C R_C = 12 - 3i_C$,此时读图可知静态工作点: $I_{BQ} = 20 \mu A$, $I_{CQ} = 2mA$, $U_{BEQ} = 6V$ 。则此时饱和失真电压峰值为 (6-0.7)V = 5.3V ,截止失真电压峰值为 (12-6)V = 6V ,因此,最大不失真电压峰值为 5.3V,有效值为 $5.3/\sqrt{2} = 3.75V$ 。

(2) 当 R_L=3kΩ时, 利用戴维南定理等效集电极电源和集电极等效电阻分别为:

$$V_{CC}' = \frac{R_L}{R_C + R_L} = 6V$$

$$R_C' = R_C / / R_L = 1.5 \text{k}\Omega$$

此时负载曲线为 $u_{CE}=V_{CC}'-i_{C}R_{C}'=6-1.5i_{C}$,此时读图可知静态工作点: $I_{BQ}=20\mu A$,

 $I_{CQ}=2mA$, $U_{BEQ}=3V$ 。则此时饱和失真电压峰值为(3-0.7)V=2.3V ,截止失真电压峰值为(6-3)V=3V ,因此,最大不失真电压峰值为 2.3V ,有效值为 $2.3/\sqrt{2}=1.63V$ 。

四、(15 分) 如图所示电路参数理想对称,晶体管的 β 均为 50, r_{bb} =100 Ω , $U_{\rm BEQ} \approx 0.7$ 。试计

算 R_W 滑动端在中点时 T_1 管和 T_2 管的发射极静态电流 I_{EQ} ,以及动态参数 A_d 和 R_i 。其中: $V_{CC}=12V$, $R_c=10k\Omega$, $R_w=100\Omega$, $R_e=5.1k\Omega$, $V_{EE}=-6V$ 。

解: $R_{\rm W}$ 滑动端在中点时 T_1 管和 T_2 管的发射极静态电流分析如下:

$$\begin{split} U_{BEQ} + I_{EQ} \cdot \frac{R_{W}}{2} + 2I_{EQ}R_{e} &= V_{EE} \\ I_{EQ} = \frac{V_{EE} - U_{BEQ}}{\frac{R_{W}}{2} + 2R_{e}} &= 0.517 \text{mA} \end{split}$$

 A_d 和 R_i 分析如下:

$$\begin{split} r_{be} &= r_{bb'} + \left(1 + \beta\right) \frac{26mV}{I_{EQ}} \approx 2.66 \text{k}\Omega \\ A_d &= -\frac{\beta R_C}{r_{be} + \left(1 + \beta\right) \frac{R_W}{2}} \approx -96 \end{split}$$

$$R_i = 2r_{be} + (1+\beta)R_W \approx 10.4\text{k}\Omega$$

五、(15 分)如图所示的基本共射放大电路中,由于电路参数的改变使静态工作点产生如下变化。问: **得分**

- (1) 当静态工作点从 Q_1 移动 Q_2 , Q_2 移动 Q_3 , Q_3 移动 Q_4 , 分别是哪些 电路参数变化造成的? 这些参数是如何变化的?
- (2) 从输入电压角度看,哪一个静态工作点易产生饱和失真?哪一个静态工作点易产生截止失真?其值约为多少?
 - (3) 电路的静态工作点为 Q_4 时,集电极电源 V_{CC} 的值为多少伏? 集电极电阻 R_c 为多少?

- (1) 当静态工作点从 Q_1 移动 Q_2 时是由于 Rc 减小, Q_2 移动 Q_3 时是由于 R_b 减小或者 V_{BB} 增加, Q_3 移动 Q_4 时是由于 V_{CC} 增加。
- (2) Q_3 最靠近 U_{CES} ,因此 Q_3 容易产生饱和失真,该峰值为 2.3V; Q_2 离集电极电源(X 轴交点)最近,因此 Q_2 易产生截止失真,该峰值为 3V。
- (3) Q_4 的集电极电源为 12V,集电极电阻 $R_C=12/4=3k\Omega$ 。

六、 $(20 \, \text{分})$ 电路如图所示,晶体管的 β =60, r_{hh} =100 Ω 。

- (1) 求电路的 Q 点。
- (2) 画出微变等效电路,并计算 $\stackrel{\sqcup}{A_u}$ 、 R_i 、 R_o 。
- (3) 设 U_s =10mV(有效值),问 U_i =? U_o =?
- (4) 若电容 C_3 开路,则将引起电路的哪些动态参数发生变化?如何变化?

解: (1)
$$Q$$
 点:
$$I_{BQ} = \frac{V_{CC} - U_{BEQ}}{R_b + (1+\beta)R_e} \approx 17 \mu A$$

$$I_{CQ} = \beta I_{BQ} \approx 1.02 mA$$

$$U_{CEQ} = V_{CC} - I_{CQ}R_c - (1+\beta)I_{BQ}R_e = 7.9V$$

动态分析:

$$r_{be} = r_{bb'} + (1+\beta) \frac{U_T}{I_{EQ}} = 1.63 \text{k}\Omega$$

$$R_i = R_b / / r_{be} = 1.63 \text{k}\Omega$$

$$R_o = R_c = 3 \text{k}\Omega$$

$$\dot{A}_u = -\frac{\beta (R_c / / R_L)}{r_{be}} = -55$$

(3) 设
$$U_s$$
= 10 mV(有效值),则
$$U_i = \frac{R_i}{R_s + R_i} U_s = 6.2 mV$$

$$U_o = \dot{A}_u U_i = -341 mV$$

(4) 若 C_3 开路,则

