Teoría de Lenguajes Teoría de la Programación

Clase 1: Introducción

Leandro Ferrigno

- Ing en Informática
- Programador:
 - Javascript
 - o PHP

 - o Go
 - Python
 - Java
 - o C#
 - (y muy poco de muchos lenguajes más...)
- Algoritmos y Prog I, II, Lenguajes Formales

Nicolas "Wally" Araya

- Ingeniero en Informática
- Programador:
 - Javascript
 - React
 - Node
 - Typescript
 - Y un poco mas de Javascript...
 - > PHP

Rosita Wachenchauzer

- Profesora FIUBA y UNTREF
- En FIUBA coordinadora de:
 - Algoritmos y programación I
 - Algoritmos y programación II
 - o Teoría de lenguajes / de la programación
 - Teoría de algoritmos I
 - Teoría de algoritmos II

Mulán

¿Qué saben hasta ahora?

https://www.menti.com/alfptthusaz2

OBJETIVOS

Conceptos de programación

OBJETIVOS

Analizar lenguajes de programación

Sintaxis:

Estructura o forma de los programas. ¿Cómo se escribe?

Semántica:

Significado. ¿Cómo se ejecuta?

Pragmática:

¿Para qué propósitos es útil un lenguaje y para qué propósitos no lo es?

Contenido

- Conceptos: Declarativo
 Objetos
 - Variables
 - Funciones
 - Concurrencia
 - TDAs
 - Manejo de memoria
 - Entre otros
- Oz

Bibliografía principal:

Concepts, Techniques, and Models of Computer Programming By Peter Van Roy and Seif Haridi

Modalidad

- Clases
- Desarrollo de TP grupal
- Seguimiento
- Video

TP grupal + Video

- Grupo
- Lenguaje
- Contenido
- Video TP
- Aprobación individual

Información / Comunicación

Slack

https://join.slack.com/t/tdl-fiuba/shared_ invite/zt-1r87p2d8g-hpyFSiOhdOvZPtXSpl5Y 3w

Conceptos básicos

Modelo computacional

Sistema formal que define cómo se ejecutan los cálculos. Se define en términos de los conceptos que incluye.

Un modelo computacional es una definición más precisa de un paradigma de programación.

Declarativo - Imperativo

More is not better (or worse), just different

Modelo computacional Declarativo vs Imperativo

Tiramisú funcional

Lenguaje de programación

- Sintaxis
- Semántica
- Pragmática

Turing completo

Alan Turing (1912 -1954) 1936: Maquina de Turing

Alonzo Church (1903-1995) 1941: λ - Calculus

Lenguaje de programación

- 1952: Primer compilador (A-0)
- COBOL
- Debugging

Grace Hopper (1906 -1992)

Lenguaje de programación - Historia

- FORTRAN (1955), John Backus
- LISP (1958), McCarthy
- COBOL (1959), Grace Hopper.
- C (1972-1978), Kernighan & Ritchie
- Prolog (1972), Colmerauer & Roussel & Kowalski,
- Smalltalk (1972), Alan Kay & Dan Ingalls & Adele Goldberg
- Eiffel (1985), Meyer
- Erlang (1986), Armstrong
- Haskell (1990), Universidades Yale, Glasglow y Chalmers
- Python, Ruby, Java, Javascript, PHP, C#, Scala, CLojure, Go, Swift, ...

Oz - Browse

{Browse 'Hola a todos y todas!'}

Oz - Variables

```
A = 4
B = 5
C = A*B + 3
{Browse C}
```

- Nomenclatura
- Simple asignación
- Tipado

Oz - Variables II (scopes)

```
local A B C in
A = 4
B = 5
C = A*B + 3
{Browse C}
end
```

```
declare A B C
A = 4
B = 5
C = A*B + 3
{Browse C}
```

Oz - Variables III (Variables are just shortcuts for values)

```
local A B C in
   A = 4
   {Browse A}
end
```

```
declare A B C
4 = A
{Browse A}
```

Oz - Funciones

```
local Mayor A B M in
   fun {Mayor X Y}
      if (X > Y) then X else Y end
   end
   A = 30
  B = 20
   M = \{Mayor A B\}
   {Browse M}
end
```

Definición

Aplicación

Oz - Records

Estructura de datos para agrupar referencias

```
tree(key:I value:Y left:LT right:RT)

Etiqueta (label)

Características (features)
```

Oz - Records II

```
local Alumno E in
   E = 80
   Alumno = persona(nombre: 'Roberto'
app:'Sanchez' edad: E)
   {Browse Alumno.nombre}
   {Browse Alumno.edad}
end
```

Oz - Tuplas

Una tupla es un Record en el cual sus características son enteros empezando por el 1

```
R= tree(key:2 value:15 left:A right:B)
L = tree(3 X A B)
{Browse {Arity R}}
{Browse {Arity L}}
```

Oz - Binding / Partial values

Binding

Asignarle valor a una variable.

Partial Value:

Estructura de datos que puede tener unbound variables

Variable - Variable binding

Cuando una variable se liga a otra variable

Oz - Listas

Una lista es una tupla con simplemente 2 elementos, uno el primer elemento y el segundo el resto de la lista.

Construcción de una lista: [], |, o '|'()

Oz - Pattern Matching

Es una manera de acceder a los campos de una estructura de datos y obtener los valores

Un patrón "matchea" sobre un record cuando coincide: Width, Label & Features

Ejemplo: Length de una lista

Ejercicios!

- Devolver el máximo de una lista de enteros
- 2) A partir de una lista de números devolver una lista de los valores absolutos

Bibliografía

- Concepts, Techniques, and Models of Computer Programming Capítulo 1, Peter Van Roy and Seif Haridi
- Programming Paradigms for Dummies: What Every Programmer Should Know, Peter Van Roy
- Extras:
 - History of programming languages Wikipedia (sisi, empiecen por wikipedia)