重庆大学课程设计报告

学 院: 计算机学院 专业班级: 计算机科学与技术卓越02班、01班 年 级: 2019 生: 学 李燕琴 杨思怡 学 号: 20195633 20195217 完成时间: 2021年 06月 23日 成 绩: 90 指导教师: 钟将

课程设计题目: MIPS 浮点运算的整数实现

重庆大学教务处制

		优秀	良好	中等	及格	不及格						
项目	分值	$100 > x \ge 90$	$90 > x \ge 70$	$80 > x \ge 70$	$70 > x \ge 60$	x < 60	评分					
		参考标准										
学 习	15	学习态度认真,	学习态度比较	学习态度尚	学习态度尚	学习马虎,						
态度		科学作风严谨,	认真, 科学作	好,遵守组织	可,能遵守	纪律涣散,						
		严格保证设计	风良好,能按	纪律,基本保	组织纪律,	工作作风不						
		时间并按任务	期圆满完成任	证设计时间,	能按期完成	严谨, 不能						
		书中规定的进	务书规定的任	按期完成各	任务	保证设计时						
		度开展各项工	务	项工作		间和进度						
		作										
技术	25	设计合理、理论	设计合理、理	设计合理,理	设计基本合	设计不合						
水 平		分析与计算正	论分析与计算	论分析与计	理,理论分	理,理论分						
与 实		确,实验数据准	正确,实验数	算基本正确,	析与计算无	析与计算有						
际能		确,有很强的实	据比较准确,	实验数据比	大错, 实验	原则错误,						
力		际动手能力、经	有较强的实际	较准确,有一	数据无大错	实验数据不						
		济分析能力和	动手能力、经	定的实际动		可靠,实际						
		计算机应用能	济分析能力和	手能力,主要		动手能力						
		力, 文献查阅	计算机应用能	文献引用、调		差, 文献引						
		能力强、引用合	力, 文献引用、	查调研比较		用、调查调						
		理、调查调研非	调查调研比较	可信		研有较大的						
		常合理、可信	合理、可信			问题						
创新	10	有重大改进或	有较大改进或	有一定改进	有一定见解	观念陈旧						
		独特见解,有一	新颖的见解,	或新的见解								
		定实用价值	实用性尚可									
论 文	50	结构严谨, 逻	结构合理,符	结构合理,层	结构基本合	内容空泛,						
(计算		辑性强, 层次	合逻辑, 文章	次较为分明,	理,逻辑基	结构混乱,						
书、图		清晰, 语言准	层次分明, 语	文理通顺,基	本清楚,文	文字表达不						
纸) 撰		确, 文字流	言准确, 文字	本达到规范	字尚通顺,	清,错别字						
写 质		畅,完全符合规	流畅,符合规	化要求, 书写	勉强达到规	较多, 达不						
量		范化要求,书写	范化要求, 书	比较工整;图	范化要求;	到规范化要						
		工整或用计算	写工整或用计	纸比较工整、	图纸比较工	求; 图纸不						
		机打印成文;图	算机打印成	清晰	整	工整或不清						
		纸非常工整、清	文; 图纸工整、			晰						
		断	清晰									

指导教师评定成绩:

指导教师签名:

MIPS 浮点加减运算的整数实现

李燕琴、杨思怡

1 小组分工说明

李燕琴:负责方案设计和使用 Mars 编写汇编。

杨思怡:负责文献的查找和结果的整理。

2 设计方案

2.1 总体设计思路

输入两个 32 位浮点数,按照 IEEE 754⁽¹⁾ 中单精度浮点数的表示格式设计符号位、指数位、尾数位的掩码,分别与浮点数进行"与"操作,得到对应的符号位、指数位、尾数位;按照浮点数加法原理,经过指数对齐、符号位判断加减操作、结果规格化并判断指数溢出情况得到加法计算结果,最后去掉结果前导 1 并通过"或"操作组合符号位、指数位、尾数位得到最终结果二进制表达数。具体流程如图1。

2.2 主要运算模块

(1) 浮点数分解模块

IEEE 754 中单精度浮点数的表示格式如图2。通过掩码取出需要的位数,具体有符号位:掩码需要将第31位设置为1,剩余位设置为0,即0x80000000,通过与对应浮点数执行 and 操作,即可取出符号位。指数位:掩码设置为0x7f800000。取出指数位后需要将其右移23位,便于后续计算和比较大小。尾数位:掩码设置为0x7fffff。取出尾数位后需要恢复前导1。代码如图3。

(2) 指数对齐模块

先比较指数大小,进而计算二者之差(设为x),将指数小的数的位数右移x位,并保存大的指数,作为最终结果的指数部分。代码如图4。

(3) 有效数计算模块

本模块重点在于同号相加,异号相减,故需要先判断符号位异同(代码中的 xor 指令)。加法规格化时需要判断指数上溢情况,减法规格化时需要判断指数下溢情况后者,且减法若差为0,按照 IEEE 754 浮点数编码格式需要特殊处理,即结果直接返回0x00000000。代码如5所示。

1

图 1: 计算流程图

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
s				指	数														尾	数										
1位				8位	Ì.														23	位										

图 2: 32 位浮点数格式表示

1.取指数尾数 (32bit浮点数)

andi \$s0,\$a0,0x80000000 # a0 符号位 掩膜 andi \$s1,\$a0,0x7f800000 # a0指数 掩膜

srl \$s1,\$s1,23 # 归右

andi \$s2,\$a0,0x7fffff # a0尾数 掩膜

addi \$s2,\$s2,0x00800000 # 恢复前导1

图 3: 浮点数分解模块

2.指数对齐

move \$t1,\$s1 # t1 初始化

beq \$s4,\$s1,sum_branch

blt \$s1,\$s4,align_a0 # \$s1<\$s4,处理a0 blt \$s4,\$s1,align_a1 # \$s4<\$s1,处理a1

a0指数对齐

align a0:

sub \$t7,\$s4,\$s1

srlv \$s2,\$s2,\$t7

move \$t1,\$s4

j sum_branch

a0尾数右移

a1 对齐的指数

图 4: 指数对齐模块

```
# 3.有效数相加
sum branch:
                      # 符号位判断,异或
xor $t7,$s0,$s3
beq $t7,$0,sum_same # 符号相同,直接加减
j sum_differ
# 异号相加,即作加法
sum_same:
add $t2,$s2,$s5
                 # 符号相同,绝对值直接相加 s2+s5
move $t0,$s0
   judge_overflow
# 异号相加,即作减法
sum differ:
beq $s2,$s5,result zero
blt $s2,$s5,little_add_big
sub $t2,$s2,$s5
                        # s2>=$s5
                        # a0的符号位
move $t0,$s0
   judge_underflow
little add big:
sub $t2,$s5,$s2
                        # s2 < $s5
                       # a1的符号
move $t0,$s3
j
   judge_underflow
.. 口水1 发1中中地 1 火
```

图 5: 有效数计算模块

(4) 尾数规格化模块

规格化时,需要保证尾数结果第 25 以上为 0,即尾数小于 0x01000000,否则尾数需要右移对应指数加 1;且需要保证尾数结果第 24 位为 1,即尾数大于等于 0x00800000,否则尾数需要左移,对应指数减 1 ⁽²⁾。由于加法结果必然比原始标准格式内的数大,故只需进行上溢判断;同理,减法结果必然比原始标准格式内的数小,故只需进行下溢判断⁽³⁾。具体实现代码如图6所示。

尾数计算结果判断上溢

judge overflow:

```
blt $t2,0x01000000,result # 保证第25位以上为0
srl $t2,$t2,1 # t2 计算的结果
addi $t1,$t1,1 # t1 对齐的指数
j judge_overflow
```

尾数计算结果判断下溢

judge underflow:

```
bge $t2,0x00800000,result # 保证第24位=1
sll $t2,$t2,1 # t2 计算的结果
subi $t1,$t1,1 # t1 对齐的指数
j judge_underflow
```

图 6: 尾数规格化并判断指数溢出模块

(5) 指数溢出错误模块

按照 IEEE 754 规定,指数需要在 1 至 254 之间,故如果不在该范围需要输出溢出结果。代码如图7所示。

2.3 输入模块设计

输入时,十进制输入中涉及到小数点的处理,故这里直接采用的系统⁴⁹ 读浮点数,再将结果转入常见的 32 位寄存器中。代码如图8所示。

2.4 输出模块设计

(1) 十讲制

涉及到小数点输出的处理,这里将结果寄存器中的值转入浮点寄存器,并调用系统浮点数输出指令输出结果。代码如图9所示。

```
# 指数上溢处理
error_overflow:
la $a0,print_overflow
li $v0,4
syscall
j result_zero
# 指数下溢处理
error_underflow:
la $a0,print_underflow
li $v0,4
syscall
j result zero
```

图 7: 指数溢出错误模块

```
# 输入num1
li $v0,6
syscall
mfc1 $t5,$f0 # 直接以IEEE754格式存储到$a0
```

图 8: 输入模块设计

十进制输出

function outDec:

```
move $t0,$s0
la $a0,print_dec
li $v0,4
syscall
```

```
mtc1 $t0,$f12 # 使用了浮点指令
li $v0,2
syscall
jr $ra
```

图 9: 输出十进制

(2) 二进制

二进制输出,即从高到低逐位输出寄存器中32位中的各个位数。这里设置了从第31位开始的掩码0x80000000,以取出该位值,并右移到最低位以int格式输出,此后右移掩码1位,继续循环输出,直至掩码为0,代码如10所示。

(3) 十六进制

十六进制输出时,与二进制类似,不同的是每次掩码需要取出 4 位,若这四位在 0 至 9 之间,则之间按以 int 格式输出,否则需要按照 char 格式输出,其中字母 A 的 ascci 码为 65,对于数字 10 来说,需要加上偏移量 55,才能得到其字母表示,其余数字同 理。此后右移掩码 4 位,继续循环输出,直至掩码为 0,代码如11所示。

3 设计结果

(1) 加法执行

如加法执行结果图12示,程序根据输入正确的计算了1.25 与0.5 相加,并输出了结果的十进制,二进制,以及十六进制形式。

(2) 减法执行

如减法执行结果13图示,程序根据输入正确的计算了1.25 与1.75 相减,并输出了结

二进制输出 function outBinary: addi \$sp,\$sp,-4 sw \$ra,0(\$sp) move \$t0,\$s0 la \$a0, print bin li \$v0,4 syscall addi \$t7,\$0,0 # \$t7 掩膜结果数 addi \$t1,\$0,32 # **\$t1** 移位 addi \$t2,\$0,0x80000000 # 1000 0000 ... \$t2做掩膜 # 逐1位输出 binaryLoop: and \$t7,\$t0,\$t2 # 掩膜结果 srl \$t2,\$t2,1 # 掩膜右移 # 移位数 addi \$t1,\$t1,-1 # 结果位右移 # 传参 srlv \$t7,\$t7,\$t1 add \$a0,\$t7,\$zero # 输出int li \$v0,1 syscall beq \$t1,\$0,return_outBinary j binaryLoop return outBinary: lw \$ra,0(\$sp) addi \$sp,\$sp,4

图 10: 输出二进制

jr \$ra

十六进制

```
function outHex:
   addi $sp,$sp,-4
   sw $ra,0($sp)
   move $t0,$s0
   la $a0,print_hex
   li $v0,4
   syscall
   li $t7,0 # $t7 掩膜结果数
   addi $t1,$0,32 # $t1 移位
   addi $t2,$0,0xf0000000 # 1111_0000_... $t2做掩膜
   # 逐4位输出
   hexLoop:
   beq $t1,$0,return outHex
   and $t7,$t0,$t2 # 掩膜结果
   srl $t2,$t2,4 # 掩膜右移
   addi $t1,$t1,-4 # 移位数
   srlv $t7,$t7,$t1 # 结果位右移
   bgt $t7,9,outChar # 超过9需要输出char
   add $a0,$t7,$zero # 传参
             # 输出int
   li $v0,1
   syscall
   j hexLoop
   # 输出字符串
   outChar:
   add $a0,$t7,55
                  # ASCZII码表示字母 = 数字
   li $v0,11
   syscall
   j hexLoop
                             # 输出结束
   return outHex:
   lw $ra,0(\$sp)
   addi $sp,$sp,4
   jr $ra
```

图 12: 加法执行结果

果的十进制,浮点二进制,以及十六进制形式。

图 13: 减法执行结果

(3) 测试程序运行结果

如测试结果图14和15示,控制台输出与要求一致,加法和减法都通过了验证,设计正确,程序运行无误。

图 14: 加法验证结果图

(4) 退出程序操作

如图16示,程序根据设计预期成功退出。

(5) 非法输入处理

如图17示,程序能正确判断输入的合理性并做出提示。

4 总结

(1) 组员:李燕琴

过了一段时间再看感觉有很多冗余的代码,就像是幼儿园的过家家一样幼稚。

(2) 组员:杨思怡

文献好少好难找,浮点数好棒好奇妙。

```
over_fore_performan
```

图 15: 减法验证结果图

```
Please choose a function. (0:exit, 1:add, 2:sub)
                                                       退出
```

图 16: 退出程序操作

参考文献

- [1] 戴维 A. 帕特森,约翰 L. 亨尼斯著,王党辉等译. 计算机组成与设计:硬件/软件接口 [M]. 北京: 机械工业出版社, 2015. [2] 谢文彬. 基于 Verilog HDL 语言的 FPGA 浮点数加减法运算的实现 [J]. 机电信息,2018(24):92-93+95. [3] 胡同瑞,王孝贤. 计算机规格化浮点加减法运算的研究 [J]. 齐齐哈尔医学院学报,2007(10):1232-1233. [4] 杨羽频. 指导书 [EB/OL]. 2019[2021-06-23]. yyp@cqu.edu.cn.

```
Please choose a function.(0:exit,1:add,2:sub)

4

Please input float number1 = 1

Please input float number2 = 2

Error op choose!
```

图 17: 非法输入处理