System obliczający wyniki wyborów dla uogólnienia systemu k-Borda

Tomasz Kasprzyk, Daniel Ogiela, Jakub Stępak

Akademia Górniczo-Hutnicza Wydział Informatyki, Elektroniki i Telekomunikacji Katedra Informatyki

Projekt realizowany pod opieką dr. hab. inż. Piotra Faliszewskiego

26 stycznia 2017

Definicja wyborów

Wybory to para E=(C,V), gdzie $C=\{c_1,c_2,\ldots,c_m\}$ to zbiór kandydatów, a $V=(v_1,v_2,\ldots,v_n)$ to ciąg wyborców. Każdy wyborca posiada swoje *preferencje*, które są ciągiem kandydatów w porządku od najbardziej preferowanego przez danego wyborcę do najmniej preferowanego. Ponadto dana jest liczba k, będąca wielkością wybieranego komitetu.

Przykładowe wybory

Wybory filmów

k=2

```
C = \{ \text{komedia, horror, film akcji, dramat, science fiction} \}
V = \{ \text{Anna, Jan, Piotr, Paweł} \}

Anna: dramat > komedia > film akcji > horror > science fiction

Jan: science fiction > komedia > dramat > film akcji > horror

Piotr: horror > dramat > film akcji > komedia > science fiction

Paweł: science fiction > film akcji > komedia > horror > dramat
```

Punktacja Bordy

Niech v będzie głosem nad zbiorem kandydatów C. Punkty przyporządkowane każdemu kandydatowi $c \in C$ w v wynoszą $||C|| - pos_v(c)$, gdzie $pos_v(c)$ to pozycja kandydata c w v.

Funkcja Bordy

$$\beta(i) = m - i$$
, gdzie $m = ||C||$

Preferencje wyborcy

$$v_1: {c_1 \atop c_1} > {c_2 \atop c_2} > {c_3 \atop c_3} > {c_4 \atop c_4} > \dots$$

Ciąg pozycji

Dla wybranego komitetu S i danego wyborcy v definiujemy ciąg $pos_v(S)$ jako posortowany ciąg pozycji, które zajmują kandydaci z S w preferencjach wyborcy v.

Niech $S = \{c_1, c_3, c_5, c_6\}$

Preferencje wyborcy

$$v_1: {c_5 > c_3 > c_1 > c_2 > c_6 > c_4 > \dots}$$

$$pos_{v_1}(S) = (1, 2, 3, 5)$$

Oznaczenie wartości funkcji satysfakcji

$$f(i_1,\ldots,i_k)$$

Norma ℓ_p

Niech $x_1, x_2, \ldots, x_n \in \mathbb{R}, p \in \mathbb{N}$

Norma ℓ_p

$$\ell_p(x_1, x_2, \dots, x_n) = \sqrt[p]{x_1^p + x_2^p + \dots + x_n^p}$$

$$\begin{array}{ccc} \ell_1 & \equiv & + \\ \ell_\infty & \equiv & \mathit{max} \end{array}$$

System ℓ_p – Borda

Funkcja satysfakcji ℓ_p – Borda

$$f_{\ell_p}(i_1,i_2,\ldots,i_k) = \ell_p(\beta(i_1),\beta(i_2),\ldots,\beta(i_k))$$

Funkcja satysfakcji k-Borda (gdy p = 1)

$$f_{k-Borda}(i_1,\ldots,i_k) = \beta(i_1) + \ldots + \beta(i_k)$$

Funkcja satysfakcji Chamberlina-Couranta (gdy $p o \infty$)

$$f_{CC}(i_1,\ldots,i_k)=\beta(i_1)$$

Algorytm zachłanny zależny od parametru p

Opis problemu

```
for i \leftarrow 1 to k do
   for c \in C \setminus REZULTAT do
       for v \in V do
           dodai zadowolenie_wyborcy(v, REZULTAT \cup c);
       end
       if badany_kandydat_najlepszy(c) then
          uaktualnij lidera iteracji(c);
       end
   end
    REZULTAT \leftarrow REZULTAT \cup zwyciezca\_iteracji;
end
return REZULTAT
```

Algorytm zachłanny wg zasady *Chamberlina* — *Couranta*

- niezależny od parametru p
- aproksymacja wg funkcji satysfakcji Chamberlina Couranta
- schemat działania identyczny jak wcześniejszego algorytmu
- zdecydowanie szybszy od głównego algorytmu zachłannego
- ullet dobra aproksymacja systemu ℓ_p Borda dla dużych wartości parametru p

Dziękujemy za uwagę