- 1. Eine Schnecke wird auf ein Brett gesetzt. Das Brett ist mit einer Zentimeterskala markiert. Die Schnecke startet bei $s_1=7\,\mathrm{cm}$.
 - (a) Bei $s_2=69\,\mathrm{cm}$ wartet ein Salatblatt. Welchen Weg Δs_1 hat die Schnecke zurückgelegt, wenn sie das Salatblatt erreicht hat?

Lösung:

geg.: : $s_1 = 7 \,\mathrm{cm}$; $s_2 = 69 \,\mathrm{cm}$

ges.: : Δs_1

$$\Delta s_1 = s_2 - s_1 = 69 \, \text{cm} - 7 \, \text{cm} = 62 \, \text{cm}$$

Antwort: Die Schnecke hat den Weg $s_1=62\,\mathrm{cm}$ zurückgelegt.

(b) Sie hat für diesen Weg 19 min gebraucht. Was war ihre Geschwindigkeit in $\frac{m}{s}$?

Lösung:

geg.: $\Delta s_1 = 62 \, \text{cm}$; $\Delta t_1 = 19 \, \text{min}$

ges.: v in $\frac{m}{s}$

$$\Delta s_1 = 62 \, \mathrm{cm} = 0,62 \, \mathrm{m}$$

$$\Delta t = t_1 = 19 \, \mathrm{min} = 1140 \, \mathrm{s}$$

$$v = \frac{\Delta s_1}{\Delta t_1} = \frac{0,62 \, \mathrm{m}}{1140 \, \mathrm{s}} = 0,000 \, 544 \, \frac{\mathrm{m}}{\mathrm{s}}$$

Antwort: Ihre Geschwindigkeit war $v=0{,}000\,544\,\frac{\mathrm{m}}{\mathrm{s}}.$

(c) Die Schnecke frisst sich satt und kriecht langsam zurück. Bei $s_3=59\,\mathrm{cm}$ hält sie an. Welchen Weg Δs_2 hat sie von s_2 aus zurückgelegt?

Lösung:

geg.: $s_3 = 59 \,\mathrm{cm}; \ s_2 = 69 \,\mathrm{cm}$

ges.: Δs_2

$$\Delta s_2 = s_3 - s_2 = 59\,\mathrm{cm} - 69\,\mathrm{cm} = -10\,\mathrm{cm}$$

Antwort: Die Schnecke hat den Weg $\Delta s_2 = -10\,\mathrm{cm}$ zurückgelegt.

(d) Sie hat für diesen Weg 10 Minuten gebraucht. Was war nun ihre Geschwindigkeit?

Lösung:

geg.:
$$\Delta s_2 = -10$$
 cm, $\Delta t_2 = 10$ min
ges.: v in $\frac{\text{m}}{\text{s}}$
$$\Delta s_2 = -10 \text{ cm} = -0.1 \text{ m}$$

$$\Delta t = 10 \text{ min} = 600 \text{ s}$$

$$v = \frac{\Delta s_2}{\Delta t} = \frac{-0.1 \text{ m}}{600 \text{ s}} = -0.000 \, 167 \, \frac{\text{m}}{\text{s}}$$

Antwort: Ihre Geschwindigkeit war $-0,000\,167\,\frac{\mathrm{m}}{\mathrm{s}}$.

(e) Welchen Weg Δs_3 hat die Schnecken insgesamt, also von s_1 aus zurückgelegt?

Lösung:

geg.:
$$s_1 = 7 \,\mathrm{cm}; \ s_3 = 59 \,\mathrm{cm}$$

ges.:
$$\Delta s_3$$

$$\Delta s_3 = s_3 - s_1 = 59\,{\rm cm} - 7\,{\rm cm} = 52\,{\rm cm}$$

Antwort: Sie hat den Weg $\Delta s_3 = 52\,\mathrm{cm}$ zurückgelegt.

(f) Was war ihre Durchschnittsgeschwindigkeit?

Lösung:

geg.:
$$\Delta s_{3} = 52 \, \mathrm{cm}$$

ges.:
$$\Delta t$$
, v

Insgesamt war die Schnecke $\Delta t=\Delta t_2+\Delta t_1=10\,\mathrm{min}+19\,\mathrm{min}=29\,\mathrm{min}=1,74\cdot10^3\,\mathrm{s}$ unterwegs. Daher ist ihre Durchschnittsgeschwindigkeit

$$v = \frac{\Delta s_3}{\Delta t} = \frac{52\,\mathrm{cm}}{1{,}74\cdot 10^3\,\mathrm{s}} = 0{,}000\,30\,\frac{\mathrm{m}}{\mathrm{s}} = 3{,}0\cdot 10^{-4}\,\frac{\mathrm{m}}{\mathrm{s}}$$

Wenig überraschend lohnt es sich nicht, hin- und herzurennen. Man kommt nicht vorwärts.

Antwort: Die Schnecke war durchschnittlich nur $0{,}000\,30\,\frac{\rm m}{\rm s}$ "schnell".