

## UNIVERSITÀ DEGLI STUDI DI CAGLIARI

## FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA

### Il teorema di invarianza della dimensione

Relatore Prof. Andrea Loi Tesi di laurea di Marianna Saba

ANNO ACCADEMICO 2006-2007

# Indice

| 1            | Ric                 | hiami di topologia                          | 3  |
|--------------|---------------------|---------------------------------------------|----|
| 2            | Omotopia e omologia |                                             | 9  |
|              | 2.1                 | Nozioni sull'omotopia                       | 9  |
|              | 2.2                 | Introduzione all'omologia singolare         | 12 |
|              | 2.3                 | Gruppi di omologia                          | 16 |
|              | 2.4                 | Applicazioni continue e omomorfismo indotto | 19 |
|              | 2.5                 | Relazione tra omotopia e omologia           | 22 |
|              | 2.6                 | Gruppi di omologia di $S^n$                 | 23 |
| 3            | Il to               | eorema di invarianza della dimensione       | 26 |
| Bibliografia |                     |                                             | 28 |

# Introduzione

Una varietà topologica M è uno spazio topologico (di Hausdorff) localmente euclideo, cio per ogni punto x di M esiste un intorno U di x, un numero naturale n e un omeomorfismo  $\varphi: U \to \mathbf{R}^n$ . Il teorema di invarianza della dimensione afferma che il numero naturale n è ben definito, ossia che se esiste un intorno V di x, un numero naturale m e un omeomorfismo  $\psi: V \to \mathbf{R}^m$  allora m = n. Questo risultato fu dimostrato da Brouwer intorno al 1920.

La dimostrazione di questo teorema si basa sul fatto che spazi topologici omotopicamente equivalenti hanno gruppi di omologia isomorfi e sul calcolo dei gruppi di omologia di  $S^n$ .

La tesi è strutturata nel seguente modo. Nel primo capitolo sono raccolte (senza dimostrazione) le nozioni di base di topologia generale e la definizione di varietà topologica. Nel secondo capitolo vengono richiamate le proprietà principali dell'omotopia e dell'omologia. In particolare viene enunciato il teorema di Mayer-Vietoris che è lo strumento principale per calcolare i gruppi di omologia della sfera. Infine il terzo capitolo è dedicato alla dimostrazione del teorema di invarianza della dimensione.

# Capitolo 1

# Richiami di topologia

Questo capitolo contiene i concetti di base della topologia generale (Si veda ad esempio [Kosniowski Czes. *Introduzione alla topologia algebrica*]).

#### Spazi topologici e omeomorfismi

**Definizione 1.1** Una topololgia su un insieme X è una famiglia  $\mathcal{U}$  di sottinsiemi di X che soddisfano le seguenti proprietà:

- i)  $\emptyset \in \mathcal{U}, X \in \mathcal{U};$
- ii) l'intersezione finita di elementi di  $\mathcal{U}$  appartiene a  $\mathcal{U}$ ;
- iii) l'unione di una qualsiasi famiglia di elementi di  $\mathcal{U}$  appartiene a  $\mathcal{U}$ .

L'insieme X con la suddetta famiglia  $\mathcal{U}$  viene detto spazio topologico. Gli elementi  $U \in \mathcal{U}$  sono detti aperti di X.

**Definizione 1.2** Una funzione  $f: X \to Y$  fra due spazi topologici si dice continua se per ogni aperto U di Y, la controimmagine  $f^{-1}(U)$  è aperta in X.

**Teorema 1.3** Siano X, Y, Z tre spazi topologici. Se  $f: X \to Y$  e  $g: Y \to Z$  sono due funzioni continue, allora la funzione composta  $h = gf: X \to Z$  è continua.

Dimostrazione. Se U è aperto in Z,  $g^{-1}(U)$  è aperto in Y e quindi  $f^{-1}(g^{-1}(U))$  è aperto in X. Ma  $f^{-1}(g^{-1}(U)) = h^{-1}(U)$ , e quindi h è continua.

**Definizione 1.4** Siano X e Y due spazi topologici; si dice che essi sono omeomorfi se esistono due funzioni continue  $f: X \to Y$  e  $g: Y \to X$  che

siano l'una l'inversa dell'altra. In questo caso scriveremo che  $X \simeq Y$  e diremo che f e g sono omeomorfismi tra X e Y.

Gli esempi che seguono verranno utilizzati nella trattazione successiva.

**Esempio 1** Sia  $D^n = \{(x_0, \dots x_{n-1}) \mid \sum_{i=0}^{n-1} x_i^2 < 1\}$ , allora  $D^n \in \mathbf{R}^n$  sono omeomorfi.

Dimostrazione. Faccio la proiezione ortogonale di  $D^n$  sulla calotta inferiore  $W = \{x = (x_0, \dots, x_n) \in S^n_{(0,\dots,1)}(1) \mid x_n < 1\} \subset S^n_{(0,\dots,1)}(1)$  e poi una proiezione dal punto  $(0,\dots,1) \in \mathbf{R}^{n+1}$ . Sia  $p:D^n \to W$  definita da

$$p(x_0, \dots, x_{n-1}) = (x_0, \dots, x_{n-1}, -\sqrt{1 - \sum_{i=0}^{n-1} x_i^2 + 1}) = (x'_0, \dots, x'_n)$$

e sia  $\pi_{(0,\dots,1)}:W\to\mathbf{R}^n$  definita da

$$\pi_{(0,\dots,1)}(x'_0,\dots,x'_n)=(\frac{x'_0}{1-x'_n},\dots,\frac{x'_{n-1}}{1-x'_n})$$

 $\pi_{(0,\dots,1)}p$  è composizione di funzioni continue e quindi è continua a sua volta. Ora dobbiamo verificare che anche l'inversa è continua. Si verifica facilmente che le inverse di p e di  $\pi_{(0,\dots,1)}$  sono  $\pi_{(0,\dots,1)}^{-1}: \mathbf{R}^n \to W$  definita da

$$\pi_{(0,\dots,1)}^{-1}(x_0,\dots,x_{n-1}) = \left(\frac{-x_0}{\sqrt{1+\sum_{i=0}^{n-1}x_i^2}},\dots,\frac{-x_{n-1}}{\sqrt{1+\sum_{i=0}^{n-1}x_i^2}},1+\frac{1}{\sqrt{1+\sum_{i=0}^{n-1}x_i^2}}\right)$$

e  $p^{-1}: W \to D^n$  definita da

$$p^{-1}(x_0,\ldots,x_n)=(x_0,\ldots,x_{n-1})$$

 $p^{-1}\pi_{(0,\dots,1)}^{-1}$  è l'inversa cercata ed è continua perchè composizione di funzioni continue.  $\Box$ 

Esempio 2 Sia  $U_1 = \{x \in S^n \mid x_n > -1/2\}$ , allora  $U_1 \simeq D^n$ . Dimostrazione. Facciamo la proiezione stereografica dal polo sud  $\pi_S : S^n \setminus \{S\} \to \mathbf{R}^n$  definita da

$$\pi_S(x_0,\ldots,x_n)=(\frac{x_0}{1+x_n},\ldots,\frac{x_{n-1}}{1+x_n})=(x_0',\ldots,x_{n-1}')$$

Sia

$$\sigma_1 = \begin{cases} x_0^2 + \dots x_{n-1}^2 = 3/4 \\ x_n = -1/2 \end{cases}$$

allora  $\pi_S(x_0, \dots, x_{n-1}, -1/2) = (2x_0, \dots, 2x_{n-1})$  e

$$\pi_S(\sigma_1) = \begin{cases} x_0'^2 + \dots x_{n-1}'^2 = 3\\ x_n' = 0 \end{cases}$$

Quindi  $\pi_S(U_1) = \{x' \in \mathbf{R}^n \mid x_0'^2 + \dots x_{n-1}'^2 < 3\} = D$ , dove  $x_i' = x_i/(1+x_n)$ . Poichè la proiezione stereografica è un omeomorfismo abbiamo dimostrato che  $U_1 \simeq D$ . A questo punto, per mostrare l'omeomorfismo tra  $D \in D^n$  consideriamo l'applicazione  $f: D \to D^n$  definita da f(x) = x/3 e l'inversa è  $f^{-1}: D^n \to D$  definita da  $f^{-1}(x) = 3x$ . Poichè sono entrambe continue, ho l'omeomorfismo tra  $U_1 \in D^n$  componendo  $f\pi_S$ .  $\square$ 

**Definizione 1.5** Sia S un sottoinsieme di uno spazio topologico X. La topologia su S indotta dalla topologia di X è definita come la famiglia di sottinsiemi di S della forma  $U \cap S$ , dove U è un aperto di X.

Un sottoinsieme S di X dotato della topologia indotta viene detto sotto-spazio di X.

#### Proprietà topologiche

#### Compattezza

**Definizione 1.6** Un ricoprimento di un sottoinsieme S di un insieme X è una famiglia di sottinsiemi  $\{U_j \mid j \in J\}$  di X tale che  $S \subseteq \bigcup_{j \in J} U_j$ . Il riprimento è detto finito se l'insieme di indici J è finito.

**Definizione 1.7** Siano  $\{U_j \mid j \in J\}$  e  $\{V_k \mid k \in K\}$  due ricoprimenti di un sottoinsieme S di X. Diremo che  $\{U_j \mid j \in J\}$  è un sottoricoprimento di  $\{V_k \mid k \in K\}$  se per ogni  $j \in J$  esiste  $k \in K$  tale che  $U_j = V_k$ .

**Definizione 1.8** Siano X uno spazio topologico e S un sottoinsieme di X; diremo che un ricoprimento  $\{U_j \mid j \in J\}$  di S è aperto se  $U_j$  è un sottoinsieme aperto di X per ogni  $j \in J$ .

**Definizione 1.9** Un sottoinsieme S di uno spazio topologico X si dice compatto se ogni ricoprimento aperto di S ammette un sottoricoprimento finito.

**Teorema 1.10** Un sottoinsieme S di X è compatto se e solo se è compatto come spazio topologico con la topologia indotta.

- **Teorema 1.11** L'immagine di uno spazio compatto tramite un'applicazione continua è compatta.
- Corollario 1.12 Se X e Y sono due spazi topologici omeomorfi, X è compatto se e solo se Y è compatto.
- **Teorema 1.13** Un sottoinsieme chiuso di uno spazio compatto è compatto.
  - **Teorema 1.14** Un sottoinsieme chiuso e limitato di  $\mathbb{R}^n$  è compatto.

#### Connessione

- **Definizione 1.15** Uno spazio topologico X si dice connesso se i soli sottinsiemi di X contemporaneamente aperti e chiusi sono X e  $\emptyset$ . Un sottoinsieme si dice connesso se lo è come spazio topologico con la topologia indotta.
- **Teorema 1.16** Uno spazio X è connesso se e solo se X non è unione di due aperti disgiunti non vuoti.
- Teorema 1.17 L'immagine di uno spazio connesso tramite un'applicazione continua è connessa.
- Corollario 1.18 Se X e Y sono due spazi topologici omeomorfi, allora X è connesso se e solo se Y è connesso.
- **Teorema 1.19** Sia  $\{Y_j \mid j \in J\}$  una famiglia di sottinsiemi connessi di uno spazio X; se  $\bigcap_{i \in J} Y_i \neq 0$  allora  $Y = \bigcup_{i \in J} Y_i$  è connesso.

#### Connessione per archi

- **Definizione 1.20** Un arco in uno spazio X è un'applicazione continua  $f:[0,1] \to X$ ; f(0) è detto punto iniziale e f(1) punto finale dell'arco.
- **Definizione 1.21** Uno spazio X si dice connesso per archi se, dati comunque due punti  $x_0$  e  $x_1$  in X, esiste un arco da  $x_0$  a  $x_1$ .

- Teorema 1.22 L'immagine di uno spazio connesso per archi tramite un'applicazione continua è connessa per archi.
- Corollario 1.23 Siano X e Y due spazi topologici omeomorfi; allora X è connesso per archi se e solo lo è Y.
- **Teorema 1.24** Sia  $\{Y_j \mid j \in J\}$  una famiglia di sottinsiemi connessi per archi di uno spazio X; se  $\bigcap_{j \in J} Y_j \neq 0$ , allora  $Y = \bigcup_{j \in J} Y_j$  è connesso per archi.
- **Teorema 1.25** Ogni spazio connesso per archi è connesso,ma non ogni spazio connesso è connesso per archi.
- **Teorema 1.26** Ogni sottoinsieme A di  $\mathbb{R}^n$  aperto, connesso e non vuoto è connesso per archi.

#### Hausdorff

- **Definizione 1.27** Uno spazio X è detto di Hausdorff se per ogni coppia di punti distinti x, y di X esistono due aperti  $U_x$  e  $U_y$  contenenti rispettivamente x e y, tali che  $U_x \cap U_y = \emptyset$ .
  - Teorema 1.28 In uno spazio di Hausdorff ogni punto è chiuso.
- **Teorema 1.29** Un sottoinsieme compatto A di uno spazio di Hausdorff X è chiuso.
- **Teorema 1.30** Sia f un'applicazione continua da uno spazio compatto X in uno spazio di Hausdorff Y; essa è un omeomorfismo se e solo se è bigettiva.
- **Teorema 1.31** Un sottospazio S di uno spazio di Hausdorff è di Hausdorff.

#### Varietà topologiche

**Definizione 1.32** Sia  $n \in \mathbb{N}$ , M è una n-varietà topologica se M è uno spazio topologico di Hausdorff tale che per ogni  $p \in M$  esiste un aperto  $\mathcal{U}_p$  e un omeomorfismo  $\varphi_p : \mathcal{U}_p \to \mathbb{R}^n$ .

L'insieme delle  $\{\mathcal{U}_p, \varphi_p\}$  al variare di p è chiamato un atlante di M.

Osservazione 1.33 Il fatto che n sia univocamente determinato è il risultato principale di questa tesi (Vedi teorema 3.2)

Osservazione 1.34 Sia M una m-varietà, allora un aperto U di M è esso stesso una m-varietà.

# Capitolo 2

# Omotopia e omologia

## 2.1 Nozioni sull'omotopia

**Definizione 2.1.1** Siano  $f: X \to Y$  e  $g: X \to Y$  due funzioni continue. Allora f e g sono omotope, cioè  $f \sim g$ , se e solo se esiste  $F: X \times I \to Y$  continua, con I = [0, 1], tale che F(x, 0) = f(x) e F(x, 1) = g(x).

**Definizione 2.1.2** Due spazi X e Y sono detti omotopicamente equivalenti se esistono due funzioni continue  $f: X \to Y$  e  $g: Y \to X$  tali che  $fg: Y \to Y$  sia omotopa a  $Id_Y$  e  $gf: X \to X$  sia omotopa a  $Id_X$ . In questo caso f e g sono chiamate equivalenze omotopiche.

Nota 2.1.3 Sarà utilizzata la notazione  $X \sim Y$  per indicare che X è omotopicamente equivalente a Y.

**Teorema 2.1.4** L'omotopia definisce una relazione d'equivalenza tra spazi topologici, detta equivalenza omotopica.

Dimostrazione.

 $\bullet X \sim X.$ 

Esiste infatti  $Id_X: X \to X$  e  $Id_XId_X$  è omotopa a  $Id_X$  in quanto possiamo definire  $F: X \times I \to X$  in questo modo: F(x,t) = x

•  $X \sim Y \Rightarrow Y \sim X$ .

Poichè  $X \sim Y$  esistono  $f: X \to Y$  e  $f': Y \to X$  continue tali che  $ff' \sim Id_Y$  e  $f'f \sim Id_X$ , cioè esiste  $G: X \times I \to X$  tale che G(x,0) = f'f(x) e  $G(x,1) = Id_X(x)$  ed esiste  $G': Y \times I \to Y$  tale che G'(y,0) = ff'(y) e  $G'(y,1) = Id_Y(y)$ . Si può quindi concludere che  $Y \sim X$  perchè esistono  $f': Y \to X$  e  $f: X \to Y$  tali che  $f'f \sim Id_X$  e  $ff' \sim Id_Y$  per quanto detto

sopra.

#### • $X \sim Y \wedge Y \sim Z \Rightarrow X \sim Z$

Siano  $f: X \to Y, \ f': Y \to X, \ g: Y \to Z, \ g': Z \to Y$  funzioni continue. Poichè  $X \sim Y$  esistono  $F: X \times I \to X$  e  $F': Y \times I \to Y$  continue tali che  $F(x,0) = f'(f(x)), \ F(x,1) = x, \ F'(y,0) = f(f'(y))$  e F'(y,1) = y, e poichè  $Y \sim Z$  esistono  $G: Y \times I \to Y$  e  $G': Z \times I \to Z$  continue tali che  $G(y,0) = g'(g(y)), \ G(y,1) = y, \ G'(z,0) = g(g'(z))$  e G'(z,1) = z.

Si dimostra che  $X \sim Z$  se e solo se  $f'g'gf \sim Id_X$  e  $gff'g' \sim Id_Z$ , cioè se e solo se esistono  $H: X \times I \to X$  e  $H': Z \times I \to Z$  continue tali che H(x,0) = f'g'gf(x), H(x,1) = x, H'(z,0) = gff'g'(z) e H'(z,1) = z. Definiamo  $H: X \times I \to X$  e  $H': Z \times I \to Z$  in questo modo:

$$H(x,t) = \begin{cases} f'(G(f(x), 2t)) & \text{se } 0 \le t \le 1/2, \\ F(x, 2t - 1) & \text{se } 1/2 \le t \le 1. \end{cases}$$

$$H'(z,t) = \begin{cases} g(F'(g'(z), 2t)) & \text{se } 0 \le t \le 1/2, \\ G'(z, 2t - 1) & \text{se } 1/2 \le t \le 1. \end{cases}$$

Infatti  $H(x,0)=f'(G(f(x),0))=f'(g'g(f(x))),\ H(x,1)=F(x,1)=x,$  H'(z,0)=g(F'(g'(z),0))=gff'g'(z) e H'(z,1)=G'(z,1)=z. H e H' sono continue perchè composizione di funzioni continue.  $\square$ 

Osservazione 2.1.5 Se  $X \simeq Y$ , allora X è omotopicamente equivalente a Y.

Dimostrazione. Il fatto che  $X \simeq Y$  implica che esistono  $f: X \to Y$  e  $f^{-1}: Y \to X$  continue tali che  $ff^{-1} = Id_Y$  e  $f^{-1}f = Id_X$ . Vorremmo verificare che  $ff^{-1} \sim Id_Y$ , cioè che esiste una funzione continua  $F: Y \times I \to Y$  tale che  $F(y,0) = ff^{-1}(y) = Id_Y(y)$  e  $F(y,1) = Id_Y(y)$ . Allora posso definire una funzione continua  $F: Y \times I \to Y$  ponendo F(y,t) = y. Allo stesso modo, per dimostrare che  $f^{-1}f \sim Id_X$  consideriamo una funzione  $F': X \times I \to X$  ponendo F'(x,t) = x. F' è continua e soddisfa  $F'(x,0) = f^{-1}f(x) = Id_X(x)$  e  $F'(x,1) = Id_X(x)$ .  $\square$ 

Non vale il viceversa e il seguente esempio ne è una prova: ci mostra infatti che spazi omotopicamente equivalenti ( $\mathbf{R}^n$  e  $\{p\}$ ) non sono omeomorfi.

### Esempio 2.1.6 Sia $p \in \mathbb{R}^n$ , allora $\mathbb{R}^n$ è omotopo a $\{p\}$ .

Dimostrazione. Vorremmo trovare due funzioni  $f: \mathbf{R}^n \to \{p\} \in g: \{p\} \to \mathbf{R}^n$  tali che  $fg \sim Id_{\{p\}} \in gf \sim Id_{\mathbf{R}^n}$ . Definendo  $f(x) = p \in g(p) = p$ , cioè essendo g l'inclusione naturale, si ha  $fg = Id_{\{p\}}$  e quindi  $fg \sim Id_{\{p\}}$ ; manca quindi da dimostrare che  $h = gf \sim Id_{\mathbf{R}^n}$ . Per dimostrarlo consideriamo una

funzione  $F: \mathbf{R}^n \times I \to \mathbf{R}^n$  definita da F(x,t) = (1-t)p + tx che è continua e tale che F(x,0) = p = gf(x) e  $F(x,1) = x = Id_{\mathbf{R}^n}(x)$ .  $\square$ 

**Definizione 2.1.7** Uno spazio X è detto *contraibile* se è omotopicamente equivalente ad un punto.

Osservazione 2.1.8 Poichè  $D^n \simeq \mathbf{R}^n$  si ha  $D^n \sim \{p\}$  (Esempio 1, cap.1) (infatti  $D^n \simeq \mathbf{R}^n \sim \{p\}$  implica  $D^n \sim \mathbf{R}^n \sim \{p\}$ , che implica a sua volta  $D^n \sim \{p\}$ ).

Esempio 2.1.9 Siano  $U_1 = \{x = (x_0, \dots, x_n) \in S^n | x_n > -1/2 \}$  e  $U_2 = \{x = (x_0, \dots, x_n) \in S^n | x_n < 1/2 \}$ , allora  $U_1 \cap U_2 \sim S^{n-1}$ .

Dimostrazione. Sia  $\pi_N: S^n \setminus \{N\} \to \mathbf{R}^n = \{x_n = 0\}$  la proiezione stereografica dal polo nord è (Esempio 2, cap.1),allora

$$\pi_N(U_1 \cap U_2) = \begin{cases} x_0'^2 + \dots + x_{n-1}'^2 < 3 \\ x_0'^2 + \dots + x_{n-1}'^2 > 1/3 \\ x_n' = 0 \end{cases}$$

dove  $x_i' = x_i/(1-x_n)$ . Poichè  $\pi_N$  è un omeomorfismo si ha  $U_1 \cap U_2 \simeq \pi_N(U_1 \cap U_2)$  e  $\pi_N(S^{n-1}) \simeq S^{n-1}$ , per cui, se dimostro che  $\pi_N(U_1 \cap U_2) \sim \pi_N(S^{n-1})$  allora  $U_1 \cap U_2 \sim S^{n-1}$ . Sia  $p_1 : \pi_N(U_1 \cap U_2) \to \pi_N(S^{n-1})$  definita da  $p_1(p) = p/\parallel p \parallel (p_1$  è continua perhè  $0 \not\in \pi_N(U_1 \cap U_2)$  e sia  $i : \pi_N(S^{n-1}) \to \pi_N(U_1 \cap U_2)$  l'inclusione naturale; si deve verificare che  $ip_1 : \pi_N(U_1 \cap U_2) \to \pi_N(U_1 \cap U_2)$  è omotopa a  $Id_{\pi_N(U_1 \cap U_2)}$  e che  $p_1i : \pi_N(S^{n-1}) \to \pi_N(S^{n-1})$  è omotopa a  $Id_{\pi_N(S^{n-1})}$ . Poichè  $p_1i(x) = x = Id_{\pi_N(S^{n-1})}(x)$  si ha  $p_1i \sim Id_{\pi_N(S^{n-1})}$ . Invece per dimostrare che  $ip_1 \sim Id_{\pi_N(U_1 \cap U_2)}$  considero  $F : \pi_N(U_1 \cap U_2) \times I \to \pi_N(U_1 \cap U_2)$  definita da

$$F(x,t) = xt + (1-t)x/\parallel x \parallel$$

infatti  $F(x,0)=i(p_1(x))=x/\parallel x\parallel$  e  $F(x,1)=x=Id_{\pi_N(U_1\cap U_2)}(x)$ . Inoltre F è continua e  $F(\pi_N(U_1\cap U_2)\times I)$  è tutta contenuta in  $\pi_N(U_1\cap U_2)$  perchè è uno spazio convesso. Quindi  $U_1\cap U_2\sim S^{n-1}$ .  $\square$ 

Esempio 2.1.10  $S^{n-1}$  è omotopo a  $\mathbf{R}^n \setminus \{0\}$ .

Dimostrazione. Siano  $k: S^{n-1} \to \mathbf{R}^n \setminus \{0\}$  definita da k(x) = x e  $r: \mathbf{R}^n \setminus \{0\} \to S^{n-1}$  definita da  $r(x) = x/\|x\|$ . Allora  $S^{n-1} \sim \mathbf{R}^n \setminus \{0\}$  se e solo se  $kr \sim Id_{\mathbf{R}^n \setminus \{0\}}$  e  $rk \sim Id_{S^{n-1}}$ . Poichè  $rk = Id_{S^{n-1}}$  si ha  $rk \sim Id_{s^{n-1}}$ . Invece per dimostrare che  $kr \sim Id_{\mathbf{R}^n \setminus \{0\}}$  consideriamo la funzione  $F: \mathbf{R}^n \setminus \{0\} \times I \to \mathbf{R}^n \setminus \{0\}$  definita da  $F(x,t) = (1-t)x/\|x\| + tx$ . Questa F è

continua e soddisfa  $F(x,0)=kr(x)=x/\parallel x\parallel$  e  $F(x,1)=Id_{\mathbf{R}^n\setminus\{0\}}(x)=x$ .

## 2.2 Introduzione all'omologia singolare

**Definizioni 2.2.1** Il simplesso standard di dimensione n è definito come il seguente sottoinsieme di  $\mathbb{R}^{n+1}$ 

$$\Delta_n = \{(x_0, \dots, x_n) \in \mathbf{R}^{n+1} \mid \sum_{i=0}^n x_i = 1; x_i \ge 0, i = 0, \dots n\}$$

I punti  $v_0 = (1, 0, \dots, 0), v_1 = (0, 1, 0, \dots, 0), \dots, v_n = (0, \dots, 0, 1)$  sono detti *vertici* del simplesso.

Ne segue che  $\Delta_0 = \{x \mid x = 1\}$  è il punto 1,  $\Delta_1 = \{(x_1, x_2) \mid x_1 + x_2 = 1\}$  è un segmento di retta e  $\Delta_2$  è un triangolo.

Un simplesso singolare di dimensione n (un n-simplesso singolare) in uno spazio topologico X è una funzione continua

$$\varphi:\Delta_n\to X$$

Ne segue che uno 0-simplesso singolare è un punto di X e un 1-simplesso singolare è un arco in X:infatti, partendo da un 1-simplesso singolare  $\varphi$  posso definire un arco da  $\varphi(v_0)$  a  $\varphi(v_1)$  ponendo  $f(t) = \varphi(t, 1-t)$ ; viceversa a partire da un arco  $f: I \to X$  posso definire un 1-simplesso singolare  $\varphi: \Delta_1 \to X$  ponendo  $\varphi(x_0, x_1) = f(x_1)$ .

Una n-catena singolare in X è un'espressione formale

$$\sum_{j \in J} n_j \varphi_j$$

dove  $\{\varphi_j \mid j \in J\}$  è la famiglia di tutti gli *n*-simplessi singolari in  $X, n_j \in \mathbf{Z}$  e il numero di elementi non nulli di  $\{n_j \mid j \in J\}$  è finito.

L'insieme  $S_n(X)$  delle *n*-catene singolari in X forma un gruppo abeliano con l'operazione (indicata con +) definita da

$$\sum_{j \in J} n_j \varphi_j + \sum_{j \in J} m_j \varphi_j = \sum_{j \in J} (n_j + m_j) \varphi_j$$

• elemento neutro:  $\sum_{j \in J} 0\varphi_j = 0$ 

- l'opposto di  $\sum_{j \in J} n_j \varphi_j$  è  $\sum_{j \in J} (-n_j) \varphi_j$
- associatività:

$$\begin{split} &(\sum_{j \in J} n_j \varphi_j + \sum_{j \in J} m_j \varphi_j) + \sum_{j \in J} p_j \varphi_j = \\ &= \sum_{j \in J} (n_j + m_j) \varphi_j + \sum_{j \in J} p_j \varphi_j = \\ &= \sum_{j \in J} [(n_j + m_j) + p_j] \varphi_j = \sum_{j \in J} [n_j + (m_j + p_j)] \varphi_j = \\ &= \sum_{j \in J} n_j \varphi_j + \sum_{j \in J} (m_j + p_j) \varphi_j = \\ &= \sum_{j \in J} n_j \varphi_j + (\sum_{j \in J} m_j \varphi_j + \sum_{j \in J} p_j \varphi_j) \end{split}$$

• commutatività: è dovuta al fatto che la somma in Z è commutativa, cioè:

$$\sum_{j \in J} n_j \varphi_j + \sum_{j \in J} m_j \varphi_j = \sum_{j \in J} (n_j + m_j) \varphi_j =$$

$$= \sum_{j \in J} (m_j + n_j)\varphi_j = \sum_{j \in J} m_j \varphi_j + \sum_{j \in J} n_j \varphi_j$$

Sia  $\varphi$  un *n*-simplesso singolare e  $i \in \{0, 1, ..., n\}$ . Definiamo un (n - 1)-simpleso singolare  $\partial_i \varphi$  ponendo

$$\partial_i \varphi(x_0, \dots, x_{n-1}) = \varphi(x_0, \dots, x_{i-1}, 0, x_i, \dots, x_{n-1})$$

Abbiamo così un omomorfismo di gruppi:  $\partial_i:S_n(X)\to S_{n-1}(X)$  definito da

$$\partial_i (\sum_{j \in J} n_j \varphi_j) = \sum_{j \in J} n_j \partial_i \varphi_j$$

L'operatore di bordo  $\partial: S_n(X) \to S_{n-1}(X)$  è definito come

$$\partial = \partial_0 - \partial_1 + \ldots + (-1)^n \partial_n = \sum_{i=0}^n (-1)^i \partial_i$$

grazie ad esso definiamo due sottogruppi di  $S_n(X)$ :

- Una *n*-catena singolare  $c \in S_n(X)$  è detta un *n*-ciclo se  $\partial c = 0$ ; l'insieme degli *n*-cicli di X è indicato con  $Z_n(X)$ .
- Una *n*-catena singolare  $d \in S_n(X)$  è detta un *n*-bordo se  $d = \partial e$  per qualche  $e \in S_{n+1}(X)$ ; l'insieme degli *n*-bordi è indicato con  $B_n(X)$ . In altri termini

$$Z_n(X) = Ker\{\partial : S_n(X) \to S_{n-1}(X)\}$$

$$B_n(X) = Im\{\partial : S_{n+1}(X) \to S_n(X)\}\$$

e quindi  $Z_n(X)$  e  $B_n(X)$  sono sottogruppi di  $S_n(X)$ .

Definiamo  $Z_0(X) = S_0(X)$ , cioè tutte le 0-catene singolari sono 0-cicli.

#### Teorema 2.2.2 $\partial \partial = 0$

Dimostrazione. Consideriamo un generico n-simplesso singolare  $\varphi$ , allora

$$\partial \partial \varphi = \partial \left(\sum_{i=0}^{n} (-1)^{i} \partial_{i} \varphi\right) = \sum_{j=0}^{n-1} (-1)^{j} \partial_{j} \left(\sum_{i=0}^{n} (-1)^{i} \partial_{i} \varphi\right) =$$

$$=\sum_{j=0}^{n-1}(-1)^{j}\sum_{i=0}^{n}(-1)^{i}\partial_{j}\partial_{i}\varphi=\sum_{j=0}^{n-1}\sum_{i=0}^{n}(-1)^{i+j}\partial_{j}\partial_{i}\varphi$$

Ora, se  $i \leq j$ , si ha  $\partial_i \partial_i = \partial_i \partial_{i+1}$ : infatti

$$(\partial_{j}\partial_{i}\varphi)(x_{0},\ldots,x_{n-2}) = (\partial_{j}(\partial_{i}\varphi))(x_{0},\ldots,x_{n-2}) = (\partial_{i}\varphi)(x_{0},\ldots,x_{j-1},0,x_{j},\ldots,x_{n-2}) =$$

$$= \varphi(x_{0},\ldots,x_{i-1},0,x_{i},\ldots,x_{j-1},0,x_{j},\ldots,x_{n-2}) = (\partial_{j+1}\varphi)(x_{0},\ldots,x_{i-1},0,x_{i},\ldots,x_{n-2}) =$$

$$= (\partial_{i}(\partial_{j+1}\varphi))(x_{0},\ldots,x_{n-2}) = (\partial_{i}\partial_{j+1}\varphi)(x_{0},\ldots,x_{n-2}).$$

Quindi

$$\partial \partial \varphi = \sum_{j=0}^{n-1} \sum_{i=0}^{j} (-1)^{i+j} \partial_j \partial_i \varphi + \sum_{j=0}^{n-1} \sum_{i=j+1}^{n} (-1)^{i+j} \partial_j \partial_i \varphi =$$

$$= \sum_{j=0}^{n-1} \sum_{i=0}^{j} (-1)^{i+j} \partial_i \partial_{j+1} \varphi + \sum_{j=0}^{n-1} \sum_{i=j+1}^{n} (-1)^{i+j} \partial_j \partial_i \varphi =$$

$$= \sum_{i=0}^{n-1} \sum_{j=i}^{n-1} (-1)^{i+j} \partial_i \partial_{j+1} \varphi + \sum_{j=0}^{n-1} \sum_{i=j+1}^{n} (-1)^{i+j} \partial_j \partial_i \varphi =$$

$$= \sum_{j=0}^{n-1} \sum_{i=j}^{n-1} (-1)^{i+j} \partial_j \partial_{i+1} \varphi + \sum_{j=0}^{n-1} \sum_{i=j+1}^{n} (-1)^{i+j} \partial_j \partial_i \varphi =$$

$$= \sum_{j=0}^{n-1} \sum_{i=j+1}^{n} (-1)^{i+j-1} \partial_j \partial_i \varphi + \sum_{j=0}^{n-1} \sum_{i=j+1}^{n} (-1)^{i+j} \partial_j \partial_i \varphi =$$

$$= \sum_{j=0}^{n-1} \sum_{i=j+1}^{n} ((-1)^{i+j-1} + (-1)^{i+j}) \partial_j \partial_i \varphi = 0$$

Da questo teorema segue che  $B_n(X) \subseteq Z_n(X)$ , ed in particolare che  $B_n(X)$  è un sottogruppo di  $Z_n(X)$ , cioè che per ogni  $a, b \in B_n(X)$ ,  $a - b \in B_n(X)$ . Infatti poichè  $a, b \in B_n(X)$ , si ha che  $a = \partial c$  e  $b = \partial d$  per qualche  $c, d \in S_{n+1}(X)$ , cioè

$$a = \partial c = \sum_{i=0}^{n+1} (-1)^i \partial_i c = \sum_{i=0}^{n+1} (-1)^i \partial_i (\sum_{j \in J} n_j \varphi_j) = \sum_{i=0}^{n+1} (-1)^i \sum_{j \in J} n_j \partial_i \varphi_j$$
$$b = \partial d = \sum_{i=0}^{n+1} (-1)^i \sum_{j \in J} m_j \partial_i \varphi_j$$

Allora  $a - b = \partial c - \partial d = \sum_{i=0}^{n+1} (-1)^i \sum_{j \in J} (n_j - m_j) \partial_i \varphi_j = \partial f$  dove  $f = \sum_{j \in J} (n_j - m_j) \varphi_j \in S_{n+1}$ . In particolare è un sottogruppo normale perchè  $Z_n(X)$  è abeliano. Possiamo quindi definire il gruppo quoziente  $Z_n(X)/B_n(X)$ .

## 2.3 Gruppi di omologia

**Definizione 2.3.1** L'n-esimo gruppo di omologia di X è definito come

$$H_n(X) = Z_n(X)/B_n(X)$$

Gli elementi di  $H_n(X)$  sono *classi di omologia*, ossia classi di equivalenza di cicli rispetto alla relazione d'equivalenza

$$c \sim c' \Leftrightarrow c - c' \in B_n(X)$$

dove  $c, c' \in Z_n(X)$ . Se  $c \sim c'$  diremo che c e c' sono cicli omologhi. Definiamo  $H_n(\emptyset) = \{0\}, \forall n \geq -1$ .

Osservazione 2.3.2 Sia (G, +) un gruppo e H uno suo sottogruppo normale (cioè tale che  $\forall a \in G$  e  $\forall h \in H$  si abbia  $(a + h + (-a)) \in H$ ). Allora (G/H, +'), con l'operazione definita da  $[a] +' [b] = [a + b] \ \forall \ a,b \in G$  è detto gruppo quoziente di G modulo H (dove  $G/H = \{[a]_{mod.H} \mid a \in G\}$  e  $[a]_{mod.H} = \{b \in G \mid a + (-b) \in H\}$ ).

Come esempi, calcoliamo i gruppi di omologia di un singolo punto e lo 0-esimo gruppo di omologia di uno spazio connesso per archi.

**Teorema 2.3.3** Se X è uno spazio che consiste di un singolo punto allora

$$H_n(X) \cong \begin{cases} \mathbf{Z} & \text{se } n = 0\\ \{0\} & \text{se } n > 0 \end{cases}$$

Dimostrazione. Per ogni $n\geq 0$ esiste un unico n-simplesso singolare  $\varphi_n:\Delta_n\to X$ e quindi

$$S_n(X) = \{k\varphi_n \mid k \in \mathbf{Z}\} \cong \mathbf{Z}$$

Per n>0 abbiamo  $\partial_i \varphi_n=\varphi_{n-1}$  e si ha:

$$\partial \varphi_n = \sum_{i=0}^n (-1)^i \partial_i \varphi_n = \sum_{i=0}^n (-1)^i \varphi_{n-1} =$$

$$= (\sum_{i=0}^{n} (-1)^i) \varphi_{n-1} = \begin{cases} 0 & \text{se } n \text{ \'e dispari} \\ \varphi_{n-1} & \text{se n \`e pari} \end{cases}$$

mentre per n=0 abbiamo  $\partial \varphi_0=0$ . Ne segue che

$$Z_n(X) = \begin{cases} \{0\} & \text{se } n \text{ \'e pari e } n > 0\\ S_n(X) & \text{se } n \text{ \`e dispari o } n = 0 \end{cases}$$

e poichè

$$\partial \varphi_{n+1} = \begin{cases} 0 & \text{se } n \text{ \'e pari o } n = 0 \\ \varphi_n & \text{se } n \text{ \`e dispari} \end{cases}$$

$$B_n(X) = \begin{cases} S_n(X) & \text{se } n \text{ \'e dispari} \\ \{0\} & \text{se } n \text{ \`e pari o } n = 0 \end{cases}$$

Infatti, se n è dispari, per ogni  $k\varphi_n \in S_n$  esiste  $k\varphi_{n+1}$  tale che  $\partial k\varphi_{n+1} = k\varphi_n$  e quindi  $B_n(X) = S_n(X)$ . Invece se n è pari, l'unico modo per avere  $k\varphi_n = \partial k\varphi_{n+1} = 0$  è k = 0.

Allora

$$H_n(X) \cong \begin{cases} \mathbf{Z} & \text{se } n = 0, \\ \{0\} & \text{se } n > 0. \end{cases}$$

Infatti, per n=0 si ha  $H_0(X)=S_n(X)/\{0\}\cong {\bf Z}/\{0\}={\bf Z}$ , per n dispari si ha  $H_n(X)=S_n(X)/S_n(X)\cong {\bf Z}/{\bf Z}=\{0\}$  e per n pari si ha  $H_n(X)=\{0\}/\{0\}=\{0\}$ .  $\square$ 

**Teorema 2.3.4** Se X è uno spazio non vuoto e connesso per archi, allora  $H_0(X) \cong \mathbf{Z}$ .

Dimostrazione. Gli 0-simplessi singolari di X sono in corrispondenza biunivoca con i punti di X, infatti posso definire tanti  $\varphi_i: \Delta_0 \to X$  quanti sono gli elementi di X in questo modo:  $\varphi_i(1) = x_i$ , avendo così la bigezione

$$f: \{\varphi_i\} \to X$$
$$\varphi_i \mapsto x_i$$

Allora una generica 0-catena singolare (e quindi un generico 0-ciclo perchè  $S_0(X)=Z_0(X)$ ) è della forma

$$\sum_{x \in X} n_x x$$

dove  $n_x \in \mathbf{Z}$  e il numero di elementi non nulli di  $\{n_x \mid x \in X\}$  è finito. Definiamo  $\psi: H_0(X) \to \mathbf{Z}$  ponendo

$$\psi(\sum_{x \in X} n_x x) = \sum_{x \in X} n_x$$

e verifichiamo che  $\psi$  è ben definita. Supponiamo dunque che lo 0-ciclo  $\sum_{x\in X} m_x x$  sia omologo a  $\sum_{x\in X} n_x x$ , cioè che

$$\sum_{x \in X} n_x x = \sum_{x \in X} m_x x + \partial c$$

dove  $c \in S_1(X)$ ; sia

$$c = \sum_{j \in J} k_j \varphi_j$$

con  $\varphi_j:\Delta_1\to X$  e  $k_j\in {\bf Z}$ . Allora

$$\partial c = \partial (\sum_{j \in J} k_j \varphi_j) = \sum_{j \in J} k_j \partial \varphi_j = \sum_{j \in J} k_j (\partial_0 \varphi_j(1) - \partial_1 \varphi_j(1)) =$$

$$= \sum_{j \in J} k_j(\varphi_j(0,1) - \varphi_j(1,0)) = \sum_{j \in J} k_j(\varphi_j(v_1) - \varphi_j(v_0))$$

pertanto avremo

$$\psi(\sum_{x\in X} n_x x) = \psi(\sum_{x\in X} m_x x + \sum_{j\in J} k_j(\varphi_j(v_1) - \varphi_j(v_0))) =$$

$$= \psi(\sum_{x \in X} m_x x + \sum_{j \in J} k_j \varphi_j(v_1) - \sum_{j \in J} k_j \varphi_j(v_0)) = \sum_{x \in X} m_x + \sum_{j \in J} k_j - \sum_{j \in J} k_j =$$

$$= \sum_{x \in X} m_x = \psi(\sum_{x \in X} m_x x)$$

Ho quindi dimostrato che  $\psi$  è ben definita, cioè prendendo rappresentanti diversi  $(\sum_{x \in X} n_x x \text{ e } \sum_{x \in X} m_x x)$ per la stessa classe di omologia trovo esattamente la stessa immagine, appunto

$$\psi(\sum_{x \in X} n_x x) = \psi(\sum_{x \in X} m_x x)$$

Si verifica facilmente che la funzione  $\psi$  è un omomorfismo di gruppi  $((H_0(X), +)$  gruppo quoziente e  $(\mathbf{Z}, +)$  gruppo degli interi), infatti

$$\psi(\sum_{x \in X} n_x x + \sum_{x \in X} m_x x) = \psi(\sum_{x \in X} (n_x + m_x)x) = \sum_{x \in X} (n_x + m_x) =$$

$$= \sum_{x \in X} n_x + \sum_{x \in X} m_x = \psi(\sum_{x \in X} n_x x) + \psi(\sum_{x \in X} m_x x)$$

ed è suriettiva perchè  $\psi(nx)=n$ , dove x è un punto qualunque di X Dimostriamo infine che  $\psi$  è iniettiva. Sia  $x_0\in X$  e  $\sum_{x\in X}n_xx$  uno 0-ciclo, avremo allora

$$\sum_{x \in X} n_x x = (\sum_{x \in X} n_x) x_0 + \sum_{x \in X} (n_x x - n_x x_0) =$$

$$\left(\sum_{x \in X} n_x\right) x_0 + \partial \left(\sum_{x \in X} n_x \varphi_x\right)$$

dove  $\varphi_x$  è un 1-simplesso singolare,e quindi è un arco da x a  $x_0$ . Abbiamo quindi dimostrato che i due cicli  $\sum_{x \in X} n_x x \in \sum_{x \in X} n_x x_0 \text{ sono omologhi.}$ 

Di conseguenza, se  $\psi(\sum_{x \in X} n_x x) = 0$  si ha $\sum_{x \in X} n_x = 0$ 

e quindi

$$\sum_{x \in X} n_x x \sim (\sum_{x \in X} n_x) x_0 = 0$$

cioè  $\psi$  è iniettiva.

# 2.4 Applicazioni continue e omomorfismo indotto

Per ogni applicazione  $f: X \to Y$  continua definiamo

$$f_{\#}: S_n(X) \to S_n(Y)$$

mediante

$$f_{\#}(\sum_{j\in J} n_j \varphi_j) = \sum_{j\in J} n_j (f\varphi_j)$$

L'applicazione  $f_{\#}$  è un omomorfismo di gruppi, infatti

$$f_{\#}(\sum_{j\in J} n_j \varphi_j + \sum_{j\in J} m_j \varphi_j) = f_{\#}(\sum_{j\in J} (n_j + m_j)\varphi_j) =$$

$$= \sum_{j \in J} (n_j + m_j)(f\varphi_j) = \sum_{j \in J} n_j(f\varphi_j) + \sum_{j \in J} m_j(f\varphi_j) =$$

$$= f_\#(\sum_{j \in J} n_j\varphi_j) + f_\#(\sum_{j \in J} m_j\varphi_j)$$

#### Lemma 2.4.1 $\partial f_{\#} = f_{\#} \partial$

Dimostrazione. Dal momento che

$$\partial = \sum_{i=0}^{n} (-1)^{i} \partial_{i}$$

è sufficiente verificare che  $(\partial_i f_\#)(\varphi) = (f_\# \partial_i)(\varphi)$  per un generico (n-1)-simplesso singolare  $\varphi$ . Infatti si ha:

$$((\partial_{i} f_{\#})(\varphi))(x_{0}, \dots, x_{n-1}) = \partial_{i}(f\varphi)(x_{0}, \dots, x_{n-1}) =$$

$$= (f\varphi)(x_{0}, \dots, x_{i-1}, 0, x_{i}, \dots, x_{n-1}) = f_{\#}(\varphi(x_{0}, \dots, x_{i-1}, 0, x_{i}, \dots, x_{n-1})) =$$

$$= (f_{\#}(\partial_{i}\varphi))(x_{0}, \dots, x_{n-1}) = (f\partial_{i}\varphi)(x_{0}, \dots, x_{n-1}) = ((f_{\#}\partial_{i})(\varphi))(x_{0}, \dots, x_{n-1})$$

 $f_{\#}$  fa corrispondere cicli a cicli e bordi a bordi, infatti:

Corollario 2.4.2  $f_{\#}(Z_n(X)) \subseteq Z_n(Y)$  e  $f_{\#}(B_n(X)) \subseteq B_n(Y)$ Dimostrazione.

- Sia  $c \in Z_n(X)$ , allora  $\partial f_{\#}(c) = f_{\#}\partial(c) = 0$  cioè  $f_{\#}(c) \in Z_n(Y)$ .
- Sia  $d \in B_n(X)$ , allora  $f_\#(d) = f_\#(\partial e) = \partial f_\#(e)$ , cioè  $f_\#(d) \in B_n(Y)$ .  $\square$

Questo corollario implica che esiste un omomorfismo di gruppi

$$f_*: H_n(X) \to H_n(Y)$$

definito da

$$f_*[c] = [f_\#(c)]$$

L'omomorfismo  $f_*: H_n(X) \to H_n(Y)$  è chiamato omomorfismo indotto da f.

Dimostriamo che  $f_*$  è ben definita. Siano  $[d] \in H_n(X)$  e  $c \in [d]$  (cioè  $c = d + \partial a$ , dove  $a \in S_{n+1}(X)$ ), allora  $f_*$  è ben definita se  $f_*([c]) \sim f_*([d])$ .

$$f_*([c]) = f_*([d+\partial a]) = [f_\#(d+\partial a)] = [f_\#(d) + f_\#(\partial a)] = [f_\#(d)] + [f_\#(\partial a)] = [f_\#(\partial a)] + [f_\#(\partial a)] + [f_\#(\partial a)] = [f_\#(\partial a)] + [f_\#($$

 $= f_*([d]) + \partial b$  (Corollario 2.4.2). Abbiamo quindi dimostrato che  $f_*([c]) \sim f_*([d])$ .

#### Teorema 2.4.3

- i)Siano  $f: X \to Y$  e  $g: Y \to Z$  due funzioni continue, allora  $(gf)_* = g_*f_*: H_n(X) \to H_n(Z)$  per ogni  $n \ge 0$ .
- ii) Se  $1: X \to X$  è la funzione identica di X,  $1_*$  è l'omomorfismo identico di  $H_n(X)$  per ogni  $n \ge 0$ .

Dimostrazione.

i) Sia  $c = \sum_{j \in J} n_j \varphi_j$ 

$$g_*(f_*[c]) = g_*[f_\#(c)] = g_*[\sum_{j \in J} n_j(f\varphi_j)] =$$

$$= [g_{\#}(\sum_{j} n_j(f\varphi_j))] = [\sum_{j} n_j(gf\varphi_j)] =$$

$$[(gf)_{\#}(\sum_{j} n_{j}\varphi_{j})] = (gf)_{*}[\sum_{j} n_{j}\varphi_{j}] = (gf)_{*}[c]$$

ii) Segue immediatamente dalla definizione di  $f_*$ .

Osservazione 2.4.4 Da questo teorema segue che l'omologia è un funtore covariante dalla categoria degli spazi topologici, avente come morfismi le applicazioni continue, alla categoria dei gruppi abeliani, avente come morfismi gli omomorfismi (Vedi: Rudimenti di algebra astratta, Luigi Cerlienco).

Un importante corollario del teorema 2.4.3.è il seguente:

**Corollario 2.4.5** Se  $f: X \to Y$  è un omoeomorfismo, allora  $f_*: H_n(X) \to H_n(Y)$  è un isomorfismo per ogni  $n \ge 0$ .

Dimostrazione. Essendo f una funzione continua esiste  $f_*: H_n(X) \to H_n(Y)$  ed essendo invertibile con inversa continua esiste  $f_*^{-1}: H_n(Y) \to H_n(X)$ , quindi  $f_*$  èun isomorfismo.  $\square$ 

Sia X uno spazio topologico tale che  $X=U_1\cup U_2$ , con  $U_1$  e  $U_2$  aperti di X, e denotiamo con  $\varphi_i:U_1\cap U_2\to U_i$  e  $\psi:U_i\to X$  le rispettive inclusioni (i=1,2). Definiamo due omomorfismi

$$i: H_k(U_1 \cap U_2) \to H_k(U_1) \oplus H_k(U_2)$$
  
 $j: H_k(U_1) \oplus H_k(U_2) \to H_k(X)$ 

ponendo

$$i(c) = ((\varphi_1)_*(c), (\varphi_2)_*(c))$$
$$j(c_1, c_2) = (\psi_1)_*(c_1) - (\psi_2)_*(c_2)$$

**Nota 2.4.6**  $A \oplus B$  è la somma diretta: è l'insieme  $A \times B$  con l'operazione binaria definita da  $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$ .  $\square$ 

**Teorema 2.4.7** Sia  $X = U_1 \cup U_2$ , dove  $U_1$  e  $U_2$  sono aperti di X. Esistono allora degli omomorfismi

$$\Delta: H_k(X) \to H_{k-1}(U_1 \cap U_2)$$

tali che la successione di gruppi e di omomorfismi

$$\dots H_{k+1}(X) \xrightarrow{\Delta} H_k(U_1 \cap U_2) \xrightarrow{i} H_k(U_1) \oplus H_k(U_2) \xrightarrow{j} H_k(X)$$

$$\xrightarrow{\Delta} H_{k-1}(U_1 \cap U_2) \to \dots$$

è esatta, cioè il Ker di ogni omomorfismo coincide con l'Im dell'omomorfismo che lo precede. La suddetta successione è detta successione di Mayer-Vietoris.

## 2.5 Relazione tra omotopia e omologia

Il seguente teorema 2.5.2 è l'ingrediente principale per la dimostrazione del teorema di invarianza della dimensione. La sua dimostrazione si basa sul seguente teorema che enunciamo senza dimostrazione (si rinvia il lettore a [Kosniowski Czes. *Introduzione alla topologia algebrica*] pag. 281)

**Teorema 2.5.1** (Invarianza omotopica dell'omologia) Siano  $f,g:X\to Y$  due applicazioni continue e omotope. Allora  $f_*=g_*:H_k(X)\to H_k(Y)\ \forall\ n\geq 0.$  **Teorema 2.5.2** Se  $f: X \to Y$  è un'equivalenza omotopica, allora  $f_*: H_n(X) \to H_n(Y)$  è un isomorfismo  $\forall n \geq 0$ .

Dimostrazione. Vogliamo dimostrare che se X è omotopo a Y allora  $H_n(X) \cong H_n(Y)$ . Se  $X \sim Y$  allora esiste  $g: Y \to X$  continua tale che  $gf \sim Id_X$  e  $fg \sim Id_Y$ . Dal teorema precedente sappiamo che se  $gf \sim Id_X$  allora  $(gf)_* = (Id_X)_*$  e  $g_*f_* = (gf)_* = (Id_X)_* = Id_{H_k(X)}$ . Inoltre  $fg \sim Id_Y$  implica che  $f_*g_* = Id_{H_k(Y)}$ . Questo dimostra che  $f_*$  e  $g_*$  sono l'una l'inversa dell'altra.  $\square$ 

Calcoliamo ora i gruppi di omologia di  $S^n$ .

## 2.6 Gruppi di omologia di $S^n$

**Teorema 2.6.1** Se n è un intero positivo si ha

$$H_k(S^n) \cong \begin{cases} \mathbf{Z} & \text{se } k = 0, n, \\ \{0\} & \text{negli altri casi.} \end{cases}$$

Dimostrazione. Procediamo per induzione. Siano  $U_1 = \{x \in S^n | x_n > -1/2\}$  e  $U_2 = \{x \in S^n | x_n < -1/2\}$ ; poichè  $U_1 \simeq D^n \sim \{p\}$  (Esempio 2,cap.1; Osservazione 2.1.8) si ha  $U_1 \sim D^n \sim \{p\}$  e quindi  $U_1 \sim \{p\}$ , cioè  $U_1$  è uno spazio contraibile, e questo implica che

$$H_k(U_1) \cong H_k(\{p\}) \cong \begin{cases} \mathbf{Z} & \text{se } k = 0, \\ \{0\} & \text{se } k \neq 0. \end{cases}$$

Lo stesso vale per  $U_2$ . Invece  $U_1 \cap U_2 \sim S^{n-1}$  (Esempio 2.1.9) e quindi  $H_k(U_1 \cap U_2) \cong H_k(S^{n-1})$ . Poichè  $S^n = U_1 \cup U_2$  ( $U_1$  e  $U_2$  aperti di  $S^n$ ), esiste  $\Delta: H_k(S^n) \to H_{k-1}(S^{n-1})$  tale che la successione di Mayer-Vietoris è esatta.

Supponiamo n=1. La parte della successione di Mayer-Vietoris relativa a k=1 è

$$\to H_1(U_1) \oplus H_1(U_2) \xrightarrow{j} H_1(S^1) \xrightarrow{\Delta} H_0(U_1 \cap U_2) \xrightarrow{i} \mathbf{Z} \oplus \mathbf{Z} \xrightarrow{j}$$
cioè

$$\dots \to \{0\} \xrightarrow{j} H_1(S^1) \xrightarrow{\Delta} \mathbf{Z} \oplus \mathbf{Z} \xrightarrow{i} \mathbf{Z} \oplus \mathbf{Z} \xrightarrow{j} \dots$$

Infatti  $H_1(U_1) \cong H_1(U_2) \cong \{0\}$  e per verificare che  $\mathbb{Z} \oplus \mathbb{Z} \cong H_0(U_1 \cap U_2)$  usiamo la successione di Mayer-Vietoris per  $X = S^0 = \{-1\} \cup \{1\} = V_1 \cup V_2, k = 0 \text{ ottenendo}$ 

$$\dots \to H_0(\emptyset) \xrightarrow{i} H_0(V_1) \oplus H_0(V_2) \xrightarrow{j} H_0(S^0) \xrightarrow{\Delta} H_{-1}(\emptyset) \to \dots$$

cioè

$$\dots \to \{0\} \xrightarrow{i} \mathbf{Z} \oplus \mathbf{Z} \xrightarrow{j} H_0(S^0) \xrightarrow{\Delta} \{0\} \to \dots$$

essendo  $Kerj = Imi = \{0\}$  j è iniettiva ed essendo  $H_0(S^0) = Ker\Delta = Imj$  j è suriettiva, cioè j è un isomorfismo, quindi  $\mathbf{Z} \oplus \mathbf{Z} \cong H_0(S^0) \cong H_0(U_1 \cap U_2)$  perchè  $U_1 \cap U_2 \sim S^0$ .  $\square$ 

Inoltre i(x,y)=(x+y,x+y). Verifichiamolo:  $i:H_0(U_1\cap U_2)\cong \mathbf{Z}\oplus \mathbf{Z}\to \mathbf{Z}\oplus \mathbf{Z$ 

Si avrà quindi  $Ker\Delta = Imj = \{0\}$ , che implica  $\Delta$  iniettiva, e  $Im\Delta = Keri = \{(x, -x) \in \mathbf{Z} \oplus \mathbf{Z} \mid x \in \mathbf{Z}\} \cong \mathbf{Z}$  (avendo f(x, -x) = x e  $f^{-1}(x) = (x, -x)$ ). Percui  $\Delta : H_1(S^1) \to Im\Delta$  è un isomorfismo e poichè  $Im\Delta \cong \mathbf{Z}$  si ha  $H_1(S^1) \cong Im\Delta \cong \mathbf{Z}$ .

La parte della successione relativa a k > 1 è

$$\dots \{0\} \xrightarrow{j} H_k(S^1) \xrightarrow{\Delta} H_{k-1}(S^0) \xrightarrow{i} H_{k-1}(U_1) \oplus H_{k-1}(U_2) \to \dots$$
cioè

$$\dots \to \{0\} \xrightarrow{j} H_k(S^1) \xrightarrow{\Delta} H_{k-1}(S^0) \xrightarrow{i} \{0\} \to \dots$$

 $Ker\Delta = Imj = \{0\}$  implica che  $\Delta$  è iniettiva e  $Im\Delta = Keri = H_{k-1}(S^0)$  implica che  $\Delta$  è suriettiva, quindi  $H_k(S^1) \cong H_{k-1}(S^0)$ .

Per k > 1  $H_{k-1}(S^0) = \{0\}$ , infatti, usando Mayer-Vietoris su  $X = S^0$ ,  $V_1 = \{-1\}$ ,  $V_2 = \{1\}$  si ha

$$\dots \to H_{k-1}(V_1) \oplus H_{k-1}(V_2) \xrightarrow{j} H_{k-1}(S^0) \xrightarrow{\Delta} H_{k-2}(V_1 \cap V_2) \xrightarrow{i}$$
$$\xrightarrow{i} H_{k-2}(V_1) \oplus H_{k-2}(V_2) \to \dots$$

cioè

$$\dots \to \{0\} \xrightarrow{j} H_{k-1}(S^0) \xrightarrow{\Delta} \{0\} \xrightarrow{i} H_{k-2}(V_1) \oplus H_{k-2}(V_2) \to \dots$$

e 
$$Imj = \{0\} = Ker\Delta = H_{k-1}(S^0) \square$$

Pertanto, usando Maver-Vietoris per  $X = S^1$  si ha

$$\dots \to \{0\} \xrightarrow{j} H_k(S^1) \xrightarrow{\Delta} \{0\} \xrightarrow{i} \{0\} \to \dots$$

e  $\{0\} = Imj = Ker\Delta = H_k(S^1)$ . Abbiamo così dimostrato il teorema per n = 1.

Sia ora  $m \ge 1$  e supponiamo che il teorema valga per n = m - 1, allora vogliamo dimostrare che vale anche per n = m.

Se k = 1 avremo

$$\dots \to H_1(U_1) \oplus H_1(U_2) \xrightarrow{j} H_1(S^m) \xrightarrow{\Delta} H_0(S^{m-1}) \xrightarrow{i}$$

$$\xrightarrow{i} H_0(U_1) \oplus H_0(U_2) \to \dots$$

e poichè  $S^{m-1}$  è connesso per archi  $H_0(S^{m-1}) \cong \mathbf{Z}$  e la successione diventa

$$\dots \to \{0\} \xrightarrow{j} H_1(S^m) \xrightarrow{\Delta} \mathbf{Z} \xrightarrow{i} \mathbf{Z} \oplus \mathbf{Z} \to \dots$$

dove i(a)=(a,a). Infatti  $i:H_0(S^{m-1})\cong \mathbf{Z}\to \mathbf{Z}\oplus \mathbf{Z}$  ed il generico omomorfismo  $i:\mathbf{Z}\to \mathbf{Z}\oplus \mathbf{Z}$  è defiinito da i(x)=(mx,nx), con  $m,n\in \mathbf{Z}$ . Ma  $\varphi_i:U_1\cap U_2\to U_i$  è l'inclusione, quindi $(\varphi_i)_*$  non può moltiplicare per scalari diversi da 1. Questo implica che m=n=1, cioè i(x)=(x,x).  $\square$ 

 $\Delta$  è iniettiva perchè  $Ker\Delta = Imj = \{0\}$  e poichè  $Im\Delta = Keri = \{0\}$  si ha che  $\Delta$  è suriettiva se ristretta a  $\Delta : H_1(S^m) \to \{0\}$ , quindi  $H_1(S^m) \cong \{0\}$ . Se k > 1 si ha

$$\dots \to \{0\} \xrightarrow{j} H_k(S^m) \xrightarrow{\Delta} H_{k-1}(S^{m-1}) \xrightarrow{i} \{0\} \to \dots$$

quindi  $Ker\Delta = Imj = \{0\}$  implica che  $\Delta$  è iniettiva, e  $Im\Delta = Keri = H_{k-1}(S^{m-1})$  implica che  $\Delta$  è suriettiva. Per cui  $H_k(S^m) \cong H_{k-1}(S^{m-1})$ .  $\square$ 

# Capitolo 3

# Il teorema di invarianza della dimensione

In questo capitolo dimostriamo il teorema di invarianza della dimensione. Per fare ciò abbiamo bisogno del seguente lemma:

**Lemma 3.1** Sia  $\mathcal{U}$  un aperto di  $\mathbf{R}^n$ ,  $n \geq 2$  e  $x \in \mathcal{U}$ . Allora  $H_{n-1}(\mathcal{U} \setminus \{x\}) \neq 0$ .

Dimostrazione. Scegliamo  $\varepsilon > 0$  abbastanza piccolo tale che la sfera  $S_{\varepsilon}(x)$  di raggio  $\varepsilon$  e centro x sia contenuta in  $\mathcal{U}$ . Consideriamo il seguente diagramma

$$S_{\varepsilon}(x)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

dove i, j, k sono le inclusioni naturali. Queste inducono

$$H_{n-1}(S_{\varepsilon}(x))$$

$$\downarrow_{i_{*}}$$

$$H_{n-1}(U \setminus \{x\}) \xrightarrow{j_{*}} H_{n-1}(\mathbf{R}^{n} \setminus \{x\})$$

Si ha la conclusione se si dimostra che  $i_*$  è iniettiva, perchè in questo caso  $H_{n-1}(\mathcal{U}\setminus\{x\})\neq 0$ . Essendo  $j_*i_*=k_*$ , è sufficiente dimostrare che  $k_*:H_{n-1}(S_{\varepsilon}(x))\to\mathbf{R}^n\setminus\{x\}$  è invertibile. Ma questo segue dall'esempio 2.1.10 e dal teorema 2.5.2.  $\square$ 

Teorema 3.2 (Teorema di invarianza della dimensione) Se  $m \neq n$ , una varietà topologica non può essere contemporaneamente una n-varietà e una m-varietà.

 $\begin{array}{ll} Dimostrazione. \ \ {\rm Senza\ ledere\ la\ generalit\`a,\ possiamo\ supporre\ n>m.} \\ {\rm Se\ }m=0\ {\rm allora\ }M\ {\rm \`e\ costituita\ da\ un\ numero\ discreto\ di\ punti\ (tali\ punti\ sono\ aperti)}. \ {\rm D'altra\ parte\ un\ punto\ non\ \'e\ aperto\ per\ una\ n-variet\`a,\ n>0.} \\ {\rm Quindi\ }M\ {\rm non\ pu\`o\ essere\ contemporaneamente\ una\ 0-variet\`a\ e\ una\ n-variet\`a}\\ (n>0). \ {\rm Supponiamo\ quindi\ }n>m\geq 1. \end{array}$ 

Sia M una m-varietà e una n-varietà, con n > m. Essendo M una n-varietà, per ogni  $x \in M$  esistono  $\mathcal{U}_x$  e  $\varphi_x$  tali che  $\varphi_x : \mathcal{U}_x \to \mathbf{R}^n$  è un omeomorfismo. Ma M è anche una m-varietà e  $\mathcal{U}_x$ , essendo un aperto di M, è a sua volta una m-varietà; quindi per ogni  $x \in \mathcal{U}_x$  esiste  $\mathcal{V}_x$  aperto di  $\mathcal{U}_x$  contenente x, e  $\psi_x : \mathcal{V}_x \to \mathbf{R}^m$  è l'omeomorfismo che mi dimostra che  $\mathcal{U}_x$  è una m-varietà. Inoltre poichè  $\varphi_x$  è un omeomorfismo e  $\mathcal{V}_x$  è un aperto di  $\mathcal{U}_x$ ,  $\mathcal{V}_x \simeq \varphi_x(\mathcal{V}_x) = W$ , dove W è un sottoinsieme aperto di  $\mathbf{R}^n$ . Allora, per il lemma precedente,  $H_{n-1}(\mathcal{V}_x \setminus \{x\}) \neq 0$ . Ma  $\mathcal{V}_x \setminus \{x\} \simeq \mathbf{R}^m \setminus \{0\} \sim S^{m-1}$  e quindi  $H_{n-1}(\mathcal{V}_x \setminus \{x\}) \cong H_{n-1}(S^{m-1}) \cong \{0\}$  perchè  $n \neq m$  (Teorema 2.6.1), ma questo è assurdo perchè sapevamo dal lemma precedente che  $H_{n-1}(V \setminus \{x\}) \neq 0$ .  $\square$ 

Da questo teorema risulta univocamente definita la dimensione di una varietà topologica. (cfr. Definizione 1.32 e Osservazione 1.33)

#### Corollario 3.3

Se M ed N sono due varietà topologiche omeomorfe di dimensione m ed n rispettivamente, allora m=n.

Dimostrazione. Sia  $m \neq n$  e  $f: M \to N$  un omeomorfismo. Siano  $(\mathcal{U}_p, \varphi_p)$  un atlante di M, con  $\varphi_p: \mathcal{U}_p \to \mathbf{R}^m$  e  $(\mathcal{V}_q, \psi_q)$  un atlante di N, con  $\psi_q: \mathcal{V}_q \to \mathbf{R}^n$ . Allora  $(f^{-1}(\mathcal{V}_q), \psi_q f)$  è un atlante di M, dove  $\psi_q f: f^{-1}(\mathcal{V}_q) \to \mathbf{R}^n$ . Risulta così che M è contemporaneamente una m-varietà e una n-varietà, contraddicendo il teorema precedente.  $\square$ 

# Bibliografia

- $[1]\ {\it Kosniowski}\ {\it Czes.}\ {\it Introduzione}\ alla\ topologia\ algebrica.\ {\it Zanichelli}.$
- [2] McLane-Birkhoff. Algebra. Mursia.
- [3] Sernesi Edoardo. Geometria 2. Bollati Boringhieri.