

General information

Designation

Juglans regia

Typical uses

Cabinet and carved work; gun stocks; rifle butts; bent work; superior joinery; propeller blades; fittings;

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O	
Material family	Natural
Base material	Wood (hardwood)
Renewable content	100 %
Composition detail (polymers and natural r	naterials)
Wood	100 %
Price	
Price	* 6.7 - 10.8 USD/kg
Price per unit volume	* 4.15e3 - 8.18e3 USD/m^3
Physical properties	
Density	620 - 760 kg/m^3
Mechanical properties	
Young's modulus	* 11.8 - 14.4 GPa
Yield strength (elastic limit)	* 55.5 - 67.8 MPa
Tensile strength	99 - 121 MPa
Elongation	* 2.27 - 2.77 % strain
Compressive strength	61.2 - 74.8 MPa
Flexural modulus	10.7 - 13.1 GPa
Flexural strength (modulus of rupture)	128 - 156 MPa
Shear modulus	* 0.87 - 1.07 GPa
Shear strength	7.2 - 8.8 MPa
Bulk modulus	* 1 - 1.12 GPa
Poisson's ratio	* 0.35 - 0.4
Shape factor	5.1
Hardness - Vickers	* 6.44 - 7.88 HV
Hardness - Brinell	54 - 66 HB
Hardness - Janka	* 6.44 - 7.88 kN
Fatigue strength at 10^7 cycles	* 38.3 - 46.9 MPa

Organic solvents

Walnut (juglans regia) (I)

#EJUPITEK						
Mechanical loss coefficient (tan delta)	* 0.0069 - 0.0084					
Differential shrinkage (radial)	0.18 - 0.23 %					
Differential shrinkage (tangential)	0.25 - 0.3 %					
Radial shrinkage (green to oven-dry)	4.9 - 5.9 %					
Tangential shrinkage (green to oven-dry)	6.8 - 8.3 %					
Volumetric shrinkage (green to oven-dry)	12.3 - 15.1 %					
Work to maximum strength	31.5 - 38.5 kJ/m^3					
Impact & fracture properties						
Fracture toughness	* 5.6 - 6.9 MPa.m^0.5					
Thermal properties						
Glass temperature	77 - 102 °C					
Maximum service temperature	120 - 140 ℃					
Minimum service temperature	* -7323 °C					
Thermal conductivity	* 0.3 - 0.37 W/m.℃					
Specific heat capacity	1.66e3 - 1.71e3 J/kg.℃					
Thermal expansion coefficient	* 2 - 11 µstrain/℃					
Electrical properties						
Electrical resistivity	* 6e13 - 2e14 µohm.cm					
Dielectric constant (relative permittivity)	* 6.81 - 8.32					
Dissipation factor (dielectric loss tangent)	* 0.08 - 0.097					
Dielectric strength (dielectric breakdown)	* 0.4 - 0.6 MV/m					
Magnetic properties						
Magnetic type	Non-magnetic					
Optical properties						
Transparency	Opaque					
Critical materials risk						
Contains >5wt% critical elements?	No					
Durability						
Water (fresh)	Limited use					
Water (salt)	Limited use					
Weak acids	Limited use					
Strong acids	Unacceptable					
Weak alkalis	Acceptable					
Strong alkalis	Unacceptable					
U	Unacceptable					

Acceptable

Walnut (juglans regia) (I)

Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	11.6	- 1	12.8	MJ/kg		
-------------------------------------	------	-----	------	-------	--	--

Sources

 $0.5~\mathrm{MJ/kg}$ (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production 0.574 - 0.633 kg/kg

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, 2010)

Water usage * 665 - 735 I/kg

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 1.41	-	1.56	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.106	-	0.117	kg/kg
Fine machining energy (per unit wt removed)	* 9.84	-	10.9	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.738	-	0.816	kg/kg
Grinding energy (per unit wt removed)	* 19.2	-	21.2	MJ/kg
Grinding CO2 (per unit wt removed)	* 1.44	-	1.59	kg/kg

Recycling and end of life

recoyoning and end or me	
Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net)	* 19.8 - 21.3 MJ/kg
Combustion CO2	* 1.69 - 1.78 kg/kg
Landfill	✓
Biodegrade	✓

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

rocessUniverse	
eference	
hape	