Fundamentos Matemáticos del Machine Learning

Manuel Gijón Agudo

${\bf \acute{I}ndice}$

1.	Intr	oducción	2
2.	Probabilidad		3
	2.1.	Introducción	3
	2.2.	Conceptos básicos	3
	2.3.	Distribuciones discretas	3
		2.3.1. Bernulli, $B(1,p)$	3
		2.3.2. Binomial, $B(n,p)$	3
		2.3.3. Binomial Negativa, $BN(r,p)$	3
		2.3.4. Multinomial	3
		2.3.5. Chi Cuadrado de Pearson, $\frac{2}{n}$	4
		2.3.6. T de Student, t_n	4
		2.3.7. F de Fisher-Snedecor, F_{n_1,n_2}	4
	2.4.	Teoremas y resultados	4
3.	Gra	fos	5
	3.1.	Introducción	5
	3.2.	Conceptos básicos	5
4.	Wor	${ m cd2Vect}$	6
	4.1.	Introducción	6
	4.2.	The Skip-Gram model	6
	4.3.	The Continuous Bag-of-Words Models (CBOW)	6
Re	Referencias		

1. Introducción

2. Probabilidad

- 2.1. Introducción
- 2.2. Conceptos básicos
- 2.3. Distribuciones discretas
- **2.3.1.** Bernulli, B(1, p)
- **2.3.2. Binomial,** B(n, p)
- **2.3.3.** Binomial Negativa, BN(r, p)
- 2.3.4. Multinomial

La distribución multinomial una generalización de la distribución binomial.

La distribución binomial es la probabilidad de un número de éxitos en N sucesos de Bernoulli independientes, con la misma probabilidad de éxito en cada suceso. En una distribución multinomial, el análogo a la distribución de Bernoulli es la distribución categórica, donde cada suceso concluye en únicamente un resultado de un número finito K de los posibles, con probabilidades $p_1, p_2, ..., p_k$ (tales que $p_i \geq 0$ para $i \in [0, k]$ y $\sum_{i=1}^k p_i = 1$); y con n sucesos independientes.

Sea la variable aleatoria X_i , que indica el número de veces que se ha dado el resultado i entre los n sucesos. El vector $X=(X_1,...,X_k)$ sigue una distribución multinomial con parámetros n y p, donde $p=(p_1,...,p_k)$.

- Parámetros:
 - $n \in \mathbb{N}$: número de pruebas.
 - $p_1, ..., p_k$: probabilidad de un suceso concreto, tales que $\sum p_i = 0$.
- Dominio: $X_i \in \{0,...,n\}$ tales que $\sum X_i = n$.
- Función de densidad:

$$\frac{n!}{x_1!...x_k!}p_1^{x_1}...p_k^{x_k}$$

- Media: $\mathbb{E}(X_i) = np_i$
- Varianza: $Var(X_i) = np_i(1 p_i)$
- \bullet Covarianza: $Cov(X_i,X_j)=-np_ip_j$, $(i\neq j)$
- Función generadora de momentos:

$$\left(\sum_{i=1}^{k} p_i e^{t_i}\right)^n$$

- 2.3.5. Chi Cuadrado de Pearson, χ^2_n
- 2.3.6. T de Student, t_n
- **2.3.7.** F de Fisher-Snedecor, F_{n_1,n_2}
- 2.4. Teoremas y resultados

- 3. Grafos
- 3.1. Introducción
- 3.2. Conceptos básicos

4. Word2Vect

- 4.1. Introducción
- 4.2. The Skip-Gram model
- 4.3. The Continuous Bag-of-Words Models (CBOW)

Referencias

[w2v] Yoav Goldberg and Omer Levy "word2vec Explained: Deriving Mikolov et al.'s Negative-Sampling Word-Embedding Method" **31** (February 14, 2014)