算法设计与分析

0. 课程介绍

一、课程的作用

- 1. 学习计算机科学的核心: 算法思想和解决计算问题的能力
- 2. 指导编程实践:是重要的编程实践课程,对编程工作有重要的理论意义和指导作用,加深对具体的编程语言和数据结构的理解和掌握。
- 3. 求职、升学必需:对企业工作和学术研究有重要 作用。

预备知识要求

面试题1

12个球一个天平,现知道只有一个和其它的重量不同,问怎样称才能用三次就找到那个球。13个呢? (注意此题并未说明那个球的重量是轻是重,所以需要仔细考虑)

• n个球的情况怎样?

面试题2

一个老板要向一个员工支付一周的工钱,约定用金块支付日薪。老板仅有一块金块可以裁剪为7块小块,每块支付一天的薪水。但员工不想得到支离破碎的7块金块,要求老板尽可能地少切这块金块。老板应如何做?

二、工作中遇到的情景-1

假设某一负责人B交给A你一个很难的任务,几天 后询问你问题解决了没有。可能会发生如下图这样

的情况

- B问: "交给你的问题,解决方案设计出来了吗?"
- A答: "我找不到一个有效的算法来解决它,没能完成任务。"

二、工作中遇到的情景-2

· B问: "交给你的问题,解决方案设计出来了吗?"

• A答: "我找不到一个有效的算法来解决它,因为 这样的算法是不存在的。"

• A说:不过,要证明一个问题不存在有效算法,往 往跟寻找有效算法一样难。

二、工作中遇到的情景-3

· B问: "交给你的问题,解决方案设计出来了吗?"

• A答: "我找不到一个有效的算法来解决它,但不是我不行,因为所有这些大牛也都找不到解决它的有效算法。"

三、4个小问题

- 1. 自然数删除数码问题:
 - 如45563289323中删除5个数使剩余的数码构成的数最大,如何求解?
- 2. 3x+1问题:如x为偶数,x直接除以2;如x为奇数,则x 3倍加1后除以2;直至数据为1。(上大在线判题系统第57题)—是否一定变为1?
- 3. 国际象棋中的"皇后"在横向、直向、和斜向都能走步和吃子,问在n×n格的棋盘上如何摆上n个皇后而使她们都不能互相吃。
- 4. 设天平有一些25克的砝码,一些10克的砝码,一 些5克的砝码和一些1克的砝码。现要称63克的物 体,问至少需要用几个砝码。

思考-过河问题

- 有4个学生ABCD要过一条河,河边只有一条船。他们单个人划船过河的时间如下:
 - A需要1分钟; B需要2分钟;
 - C需要5分钟; D需要10分钟。

小船每次只能乘2个人,而且如果船上有2个人,那么船过河的速度以较慢的那个人的速度决定。

问:怎样让安排这4个学生的过河顺序,使得在最少时间 内过河?最少几分钟?

扩展:如有n个学生要过一条河,每个人过河的时间分别为t1,t2,...,tn,如何安排这n个学生的过河顺序,使得在最少时间内过河?

四、课程目标

- 1. 介绍各种问题算法设计与分析的理论,主要思想、分析方法与策略及其适用范围。
- 2. 针对一些具体问题以及经典实例,用算法理论与思想,采用合适的数据类型对问题进行抽象描述,并用最有效的方式设计出解决问题的高效算法。
- 3. 通过对问题算法正确性的证明和复杂性的分析,深 化对大问题的求解模型、求解方法、复杂性、效率 和抽象的层次、结论等在计算机学科中应用的理解。

四、课程目标(续)

- 4. 通过介绍一些NP问题,深入了解计算机的算法 复杂性。
 - > 怎样的问题是可解的?某个问题可解吗?算法有效吗?
 - 对于某些问题(如NP完全问题),无法用常规的方法和任何已知的方法设计出有效的算法。可否设计问题的近似解的有效算法。

五、课程主要内容

- 1. 算法分析综述
- 2. 典型问题算法设计
 - ✓ 递归与分治法策略
 - ✓ 动态规划法
 - ✓ 贪心法
 - ✓ 回溯法
 - ✓ 分支-限界法

图的算法-部分

3. 计算理论简介, NP-完全性-部分内容

六、参考资料(1)

Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest, Clifford Stein, Introduction to Algorithms, 3rd Edition, The MIT Press

中文版: 算法导论

殷建平,徐云,王刚等译

参考资料 (2)

Michael Sipser 著,张立昂等译,计算理论导引, (英文书名: Introduction to the Theory of Computation,麻省理工学院),机械工业出版社,

2000年第一版

参考资料 (3)

在线资源:

- Erik Demaine, Srini Devadas, and Nancy Lynch.
 6.046J Design and Analysis of Algorithms. Spring 2015.
 MIT: MIT OpenCourseWare, https://ocw.mit.edu. (中文字幕)
- Erik Demaine, and Srini Devadas. 6.006 Introduction to Algorithms. Fall 2011. MIT. https://stellar.mit.edu/S/course/6/fa20/6.006/
- 屈婉玲 《算法设计与分析》, https://www.icourse163.org/course/PKU-1002525003?tid=1450408483
- https://algorithm-visualizer.org/

七、考核要求

- 1. 考试成绩:笔试,占课程总成绩的70%。
- 2. 平时成绩: 占课程总成绩的30%;

平时考核内容:作业、实验及上机报告、考勤、自评等,要求:

- 1) 实验作业21%:实验报告14%;作业7%
- 2) 课堂表现9%:包括考勤、课堂讨论等
- 3) 奖励独创、惩罚抄袭行为

八、上课与上机时间

学期	周次	星期一 Mon	星期二 Tues	星期三 Wed	星期四 Thur	星期五 Fri	星期六 Sat	星期日 Sun
		8/30	31	9月	2	3	4	5
	1	6	7	8	9	10	11	12
	2	13	14	15	16	17	18	19
	3	20	21 中秋	22	23	24	25	26
秋	4	27	28	29	30	10 月 国庆	2	3
季	5	4	5	6	7	8	9 🥫	10
	6	11	12	13	14	15	16	17
学	7	18	19	20	21	22	23	24
期	8	25		27	28	29	30	31
	9	11月	2	3	4	5	6	7
	10	8	9	10	11	12	13	14

时间: 5-6节

地点: 上课 材J201 上机 计504,708合

答疑

• 时间: 周二 上午: 10:00-11:40,

• 地点: 计算机楼 423

• 邮件联系: lijiangtao@shu.edu.cn

九、算法设计学习建议(1)

- 1. 首先学好高级语言程序设计。
- 2. 了解数据的基本操作算法:排序、插入、删除, 并应用到排序、搜索等简单的算法中。如感觉 数据结构掌握得不扎实,补课是一个很好的机 会。
- 3. 模仿学习:通过现成实例模仿学习某类问题的解题方法。
- 4. 要掌握复杂性分析方法。

算法设计学习建议(2)

- 5. 重点学好几个策略: 递归策略, 分治策略, 贪心策略, 动态规划策略, 搜索策略 (DFS、BFS)等。
 - > 从掌握递归算法开始,会建立复杂性递推关系
 - 要学好两种常用的策略:分治法、贪心法,重点掌握原理贪心法的两个性质
 - 通过研究经典问题的解题方法,了解回溯法、宽度优先搜索法(BFS)以及栈、队列的操作,及剪枝技术,学会递归回溯、非递归回溯的程序写法
 - 》 分清楚各种策略的适用条件和相互间的联系区别,在 考虑问题时才能够正确地选择算法策略。 21

算法设计学习建议(3)

- 6. 上课听得懂,但不会解题怎么办?
 - ✓ 多看几遍书,仔细体会,弄懂原理
 - ✓ 模仿学习,同学之间相互交流,向老师请教
 - ✓ 主动学习,独立解题,尽可能多解题,增加成就感
 - ✓ 对自己有信心,书中有一些题一时考虑不出,不要有畏难情绪
 - ✓ 在没有固定的方法时,只能靠经验的积累和一时的灵感

