

AOD472

N-Channel Enhancement Mode Field Effect Transistor

General Description

The AOD472 uses advanced trench technology and design to provide excellent $R_{\rm DS(ON)}$ with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications. Standard product AOD472 is Pb-free (meets ROHS & Sony 259 specifications). AOD472L is a Green Product ordering option. AOD472 and AOD472L are electrically identical.

Features

$$\begin{split} &V_{DS} \; (V) = 25V \\ &I_{D} = 50A \; (V_{GS} = 10V) \\ &R_{DS(ON)} < 6 \; m\Omega \; (V_{GS} = 10V) \\ &R_{DS(ON)} < 9.5 \; m\Omega \; (V_{GS} = 4.5V) \end{split}$$

Top View Drain Connected to Tab

Absolute Maximum Ratings T _A =25°C unless otherwise noted							
Parameter		Symbol Maximum		Units			
Drain-Source Voltage		V _{DS}	25	V			
Gate-Source Voltage		V_{GS}	±20	V			
Continuous Drain	T _C =25°C		50				
Current ^G	T _C =100°C	I _D	50	A			
Pulsed Drain Current ^d		I _{DM}	150				
Avalanche Current ^C		I _{AR}	30	A			
Repetitive avalanche energy L=0.3mH ^C		E _{AR}	135	mJ			
	T _C =25°C	P _D	50	W			
Power Dissipation ^B	T _C =100°C	- D	25	VV			
	T _A =25°C	В	3	W			
Power Dissipation ^A	T _A =70°C	-P _{DSM}	2.1	T vv			
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 175	°C			

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{ heta JA}$	15	20	°C/W			
Maximum Junction-to-Ambient A	Steady-State	N _θ JA	41	50	°C/W			
Maximum Junction-to-Case B	Steady-State	$R_{\theta JC}$	2.1	3	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units		
STATIC PARAMETERS									
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =250uA, V _{GS} =0V		25			V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =20V, V _{GS} =0V				1	μΑ		
			T _J =55°C			5	μι		
I_{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V				100	nA		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_D=250\mu A$		1	1.4	2.5	V		
$I_{D(ON)}$	On state drain current	V _{GS} =10V, V _{DS} =5V		150			Α		
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =30A			5	6			
			T _J =125°C		7.5		mΩ		
		V_{GS} =4.5V, I_D =20A		7.6	9.5]			
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =20A			49		S		
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V			0.74	1	V		
I _S	Maximum Body-Diode Continuous Curr	ody-Diode Continuous Current				50	Α		
DYNAMIC	PARAMETERS								
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =12.5V, f=1MHz			2050	2460	pF		
Coss	Output Capacitance				485		pF		
C_{rss}	Reverse Transfer Capacitance				280		pF		
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			0.86	1.5	Ω		
SWITCHI	NG PARAMETERS								
Q _g (10V)	Total Gate Charge	-V _{GS} =10V, V _{DS} =12.5V, I _D =20A			34	41	nC		
Q _g (4.5V)	Total Gate Charge				17	22	nC		
Q_{gs}	Gate Source Charge				5		nC		
Q_{gd}	Gate Drain Charge				3.5		nC		
t _{D(on)}	Turn-On DelayTime				7.5		ns		
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =12.5V, R_{L} =0.68 Ω , R_{GEN} =3 Ω			11		ns		
$t_{D(off)}$	Turn-Off DelayTime				27		ns		
t _f	Turn-Off Fall Time				8		ns		
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=100A/μs			30	36	ns		
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=100A/μs			19		nC		

A: The value of R $_{0JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The Power dissipation P $_{DSM}$ is based on R $_{0JA}$ and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.

- C: Repetitive rating, pulse width limited by junction temperature T $_{J(MAX)}$ =175°C.
- D. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to case R $_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 $\,\mu s$ pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T $_{J(MAX)}$ =175°C.
- G. The maximum current rating is limited by bond-wires.
- H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T _A=25°C. The SOA curve provides a single pulse rating. Rev1: March 2006

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

1.8 Normalized On-Resistance 1.6 V_{GS}=10V, 20A 1.4 1.2 V_{GS}=4.5V, 20A 1 0.8 0 25 50 75 100 125 150 175

Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)