Model Evaluation

MSc. Bui Quoc Khanh

khanhbq@hanu.edu.vn

MODEL EVALUATION

- How do we assess the generalization capabilities of a learned hypothesis?
- Metrics for Performance Evaluation
 - How to evaluate the performance (prediction capability) of a model?
- Methods for Performance Evaluation
- How to obtain reliable estimates?

- We are given a learning algorithm A and a data set S of labeled instances <x, f(x)>
- The general idea to assess the generalization capabilities of A is that of splitting S into a subset used for training and a subset used for testing

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Change	Υ
Rainy	Cold	Normal	Light	Warm	Same	N
Sunny	Warm	High	Light	Warm	Same	Υ
Sunny	Cold	Normal	Strong	Warm	Same	Υ
Sunny	Cold	high	Strong	Cool	Change	Υ
Rainy	Warm	Normal	Light	Warm	Change	N
Rainy	Warm	Low	Light	Warm	Same	N
Sunny	Cold	Normal	Strong	Cool	Change	Υ
Rainy	Warm	Normal	Light	Warm	Change	N
Sunny	Cold	Normal	Strong	Warm	Change	Υ
Sunny	Warm	Normal	Strong	Cool	Change	N
Rainy	Cold	Normal	Light	Warm	Same	N
Sunny	Warm	Normal	Light	Warm	Same	Υ
Sunny	Cold	Normal	Strong	Warm	Same	Υ
Sunny	Warm	high	Strong	Cool	Change	N
Rainy	Warm	Normal	Light	Warm	Change	N
Rainy	Warm	Normal	Light	Warm	Same	N
Sunny	Cold	Normal	Strong	Warm	Change	Υ

Target function

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt	Target
Sunny	Warm	Normal	Strong	Warm	Change	Υ	function
Rainy	Cold	Normal	Light	Warm	Same	N	
Sunny	Warm	High	Light	Warm	Same	Υ	
Sunny	Cold	Normal	Strong	Warm	Same	Υ	
Sunny	Cold	high	Strong	Cool	Change	Υ	Training
Rainy	Warm	Normal	Light	Warm	Change	N	set
Rainy	Warm	Low	Light	Warm	Same	N	300
Sunny	Cold	Normal	Strong	Cool	Change	Υ	
Rainy	Warm	Normal	Light	Warm	Change	N	
Sunny	Cold	Normal	Strong	Warm	Change	Υ	
Sunny	Warm	Normal	Strong	Cool	Change	N	
Rainy	Cold	Normal	Light	Warm	Same	N	
Sunny	Warm	Normal	Light	Warm	Same	Υ	Test set
Sunny	Cold	Normal	Strong	Warm	Same	Υ	1651 561
Sunny	Warm	high	Strong	Cool -	cnange	N	
Rainy	Warm	Normal	Light	Warm	Change	N	
Rainy	Warm	Normal	Light	Warm	Same	N	
Sunny	Cold	Normal	Strong	Warm	Change	Υ	

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt	Target
Sunny	Warm	Normal	Strong	Warm	Change	Υ	function
Rainy	Cold	Normal	Light	Warm	Same	N	, and a
Sunny	Warm	High	Light	Warm	Same	Υ	
Sunny	Cold	Normal	Strong	Warm	Same	Υ	
Sunny	Cold	high	Strong	Cool	Change	Υ	Learn
Rainy	Warm	Normal	Light	Warm	Change	N	hypothesis h
Rainy	Warm	Low	Light	Warm	Same	N	
Sunny	Cold	Normal	Strong	Cool	Change	Υ	
Rainy	Warm	Normal	Light	Warm	Change	N	
Sunny	Cold	Normal	Strong	Warm	Change	Υ	
Sunny	Warm	Normal	Strong	Cool	Change	Z	
Rainy	Cold	Normal	Light	Warm	Same	N	
Sunny	Warm	Normal	Light	Warm	Same	Υ	Apply b
Sunny	Cold	Normal	Strong	Warm	Same	Υ	Apply h
Sunny	Warm	high	Strong	Cool -	cnange	N	
Rainy	Warm	Normal	Light	Warm	Change	N	
Rainy	Warm	Normal	Light	Warm	Same	N	
Sunny	Cold	Normal	Strong	Warm	Change	Υ	

Target function

			TEST SE	T		
Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Cool	Change	N
Rainy	Cold	Normal	Light	Warm	Same	N
Sunny	Warm	Normal	Light	Warm	Same	Υ
Sunny	Cold	Normal	Strong	Warm	Same	Υ
Sunny	Warm	high	Strong	Cool	Change	N
Rainy	Warm	Normal	Light	Warm	Change	N
Rainy	Warm	Normal	Light	Warm	Same	N
Sunny	Cold	Normal	Strong	Warm	Change	Υ

Is h a good predictive capability?

			TEST SE	Τ			
Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt	h(x)
Sunny	Warm	Normal	Strong	Cool	Change	No	No
Rainy	Cold	Normal	Light	Warm	Same	No	No
Sunny	Warm	Normal	Light	Warm	Same	Yes	Yes
Sunny	Cold	Normal	Strong	Warm	Same	Yes	No
Sunny	Warm	high	Strong	Cool	Change	No	No
Rainy	Warm	Normal	Light	Warm	Change	No	No
Rainy	Warm	Normal	Light	Warm	Same	No	Yes
Sunny	Cold	Normal	Strong	Warm	Change	Yes	No

Target function

Predicted class

			TEST SE	Ţ				
Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt	h(x)	
Sunny	Warm	Normal	Strong	Cool	Change	No	No	TN
Rainy	Cold	Normal	Light	Warm	Same	No	No	TN
Sunny	Warm	Normal	Light	Warm	Same	Yes	Yes	TP
Sunny	Cold	Normal	Strong	Warm	Same	Yes	No	FN
Sunny	Warm	high	Strong	Cool	Change	No	No	TN
Rainy	Warm	Normal	Light	Warm	Change	No	No	TN
Rainy	Warm	Normal	Light	Warm	Same	No	Yes	FP
Sunny	Cold	Normal	Strong	Warm	Change	Yes	No	FN

Has h a good predictive capability?

To answer this question we compare h(x) with the target function EnjoySpt

Metrics for Performance Evaluation

Metrics for Performance Evaluation Error and Accuracy

 Accuracy: number of instances correctly classified over the total number of predictions

$$\circ Accuracy = \frac{(TP+TN)}{N} \text{ where N = TP+TN+FN+FP}$$

 Error: number of instances misclassified over the total number of predictions

$$\circ Error = \frac{(FP+FN)}{N} = 1 - Accuracy$$

Metrics for Performance Evaluation An Example

	TEST SET							
Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt	h(x)	
Sunny	Warm	Normal	Strong	Cool	Change	No	No	TN
Rainy	Cold	Normal	Light	Warm	Same	No	No	TN
Sunny	Warm	Normal	Light	Warm	Same	Yes	Yes	TP
Sunny	Cold	Normal	Strong	Warm	Same	Yes	No	FN
Sunny	Warm	high	Strong	Cool	Change	No	No	TN
Rainy	Warm	Normal	Light	Warm	Change	No	No	TN
Rainy	Warm	Normal	Light	Warm	Same	No	Yes	FP
Sunny	Cold	Normal	Strong	Warm	Change	Yes	No	FN

$$TP = 1$$
 $FP = 1$ $FN = 2$ $TN = 4$

$$\circ$$
 Acc = 5/8 = 62,5%

$$\circ$$
 Err = 3/8 = 37,5%

Metrics for Performance Evaluation An Example (cont'ed)

- Assume that no instance is classified positively by h (rejector)
 - TP=0, FP=0, FN=3, TN=5 (Acc= 62,5% (!!))
- The accuracy may not be an adequate performance measure when the number of negative cases is much greater than the number of positive ones
- Suppose there are 1000 examples, 995 of which are negative cases and 5 are positive cases. If the system classifies them all as negative (rejector)
 - ∘ TP=0, TN=995, FP=0, FN=5
- the accuracy would be 99.5%, even though the classifier missed all positive cases

Metrics for Performance Evaluation Precision

$$\circ Precision = \frac{TP}{TP+FP}$$

fraction of instances correctly classified

Metrics for Performance Evaluation An Example

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt	h(x)	
Sunny	Warm	Normal	Strong	Cool	Change	No	No	TN
Rainy	Cold	Normal	Light	Warm	Same	No	No	TN
Sunny	Warm	Normal	Light	Warm	Same	Yes	Yes	TP
Sunny	Cold	Normal	Strong	Warm	Same	Yes	No	FN
Sunny	Warm	high	Strong	Cool	Change	No	No	TN
Rainy	Warm	Normal	Light	Warm	Change	No	No	TN
Rainy	Warm	Normal	Light	Warm	Same	No	Yes	FP
Sunny	Cold	Normal	Strong	Warm	Change	Yes	No	FN

$$\circ$$
 TP = 1 FP= 1 FN = 2 TN = 4

$$\circ$$
 Pr= TP/(TP+FP) = 1/2 = 0.5

Metrics for Performance Evaluation Precision

- ∘ FP=0 => Pr=1 i.e., no negative examples classified as positive
- A classifier may have high precision but low coverage
- Precision alone not sufficient

Metrics for Performance Evaluation Recall

$$\circ Recall = \frac{TP}{TP+FN}$$

- Fraction of positive examples in the test set that have been correctly classified
- Also called coverage, sensitivity or True Positive Rate

Metrics for Performance Evaluation An Example

			TEST SE	Т				
Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt	h(x)	
Sunny	Warm	Normal	Strong	Cool	Change	No	No	TN
Rainy	Cold	Normal	Light	Warm	Same	No	No	TN
Sunny	Warm	Normal	Light	Warm	Same	Yes	Yes	TP
Sunny	Cold	Normal	Strong	Warm	Same	Yes	No	FN
Sunny	Warm	high	Strong	Cool	Change	No	No	TN
Rainy	Warm	Normal	Light	Warm	Change	No	No	TN
Rainy	Warm	Normal	Light	Warm	Same	No	Yes	FP
Sunny	Cold	Normal	Strong	Warm	Change	Yes	No	FN

$$TP = 1 FP = 1 FN = 2 TN = 4$$

$$\circ$$
 Re= TP/(TP+FN) = 1/3 = 0.33

Metrics for Performance Evaluation Recall

- ∘ FN=0 => Re=1 i.e., all positive examples have been correctly classified
- A classifier may have high coverage but low precision
- Recall alone not sufficient

Metrics for Performance Evaluation F-measure

$$\circ F - Measure F = \frac{2PrRe}{Pr+Re}$$

- $\circ F \approx \min(Pr, Re)$
- oF is high when both Pr and Re are high (good classifier)

Metrics for Performance Evaluation An Example

	TEST SET							
Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt	h(x)	
Sunny	Warm	Normal	Strong	Cool	Change	No	No	TN
Rainy	Cold	Normal	Light	Warm	Same	No	No	TN
Sunny	Warm	Normal	Light	Warm	Same	Yes	Yes	TP
Sunny	Cold	Normal	Strong	Warm	Same	Yes	No	FN
Sunny	Warm	high	Strong	Cool	Change	No	No	TN
Rainy	Warm	Normal	Light	Warm	Change	No	No	TN
Rainy	Warm	Normal	Light	Warm	Same	No	Yes	FP
Sunny	Cold	Normal	Strong	Warm	Change	Yes	No	FN

$$TP = 1 FP = 1 FN = 2 TN = 4$$

$$\circ$$
 Pr = 0.5

$$\circ$$
 F = 2PrRe/(Pr+Re) = 0,37

Metrics for Performance Evaluation F- Measure

- ∘ Pr=1, Re=0.2
- \circ F = 0.33
- ∘ $F \approx min(Pr, Re)$

Metrics for Performance Evaluation F- Measure

- ∘ Pr=0.9, Re=0.8
- \circ F = 0.85
- ∘ $F \approx min(Pr, Re)$
- High F-measure is indicative of both high precision and high recall

Metrics for Performance Evaluation Summary

- ∘ Let N = TP+TN+FN+FP
 - Precision P = TP/(TP+FP)
 - ∘ Recall R = TP/(TP+FN)
 - \circ F-measure F1 = 2PxR/(P+R)
 - ∘ Accuracy A = (TP+TN)/N
 - \circ Error E = (FP+FN)/N= 1- A

Metrics for Performance Evaluation Confusion Matrix

 A classification system has been trained to distinguish between dogs, mouses and chickens

The classification results can be summarized by the following

Confusion Matrix

	pr	predicted class h(x)				
actual class f(x)	dog	mouse	chicken			
dog	10	4	0	14		
mouse	3	8	1	12		
chicken	0	2	10	12		

Metrics for Performance Evaluation Confusion Matrix

 A binary confusion matrix for a class, is a table with 2 rows and 2 columns that reports the number of false positives, false negatives, true positives, and true negatives.

CM for class cane	Predicted classes			
		Other		
Actual classes	dog	animals		
dog	TP=10	FN=4		
Other animals	FP=3	TN=21		

Testing the classifier Holdout

 We split the data set into a training set and a test set – as in the previous examples

We use the former to learn a hypothesis, and the latter to test its

generalization capability

Compute performance measures over the test set

K-fold-cross-validation:

- the data set is segmented into k equal-sized partitions.
- During each run, one of the partitions is chosen for testing, and the remaining k-1 for training.
- The procedure is repeated k times
- The average (over the k folds) performance measures are finally given

- 3-fold Cross Validation:
 - 2 folds for learning
 - 1 fold for testing

Compute performance measures over the test set, e.g., Pr1, Re1, F1

Training set

Test set

- 3-fold Cross Validation:
 - 2 folds for learning
 - 1 fold for testing

Compute performance measures over the test set, e.g., Pr2, Re2, F2

- 3-fold Cross Validation:
 - 2 folds for learning
 - 1 fold for testing

Compute performance measures over the test set, e.g., Pr3, Re3, F3

Finally compute average performance measures

Training set

Test set

Holdout vs Cross Validation

Performance
assessment based on
holdout may be
affected by the choice
of the training and test
data

Cross validation exploits all the available data, so more reliable performance measures are obtained

Quality of a Classifier

- Predictive capability: accuracy, precision, recall, ...
- Descriptive capability:
 - Interpretability of the model
 - Decreases with the size of the classifier (e.g., number of rules)

The Simplicity Bias of Occam's Razor

- Entities should not be multiplied without necessity
- Given two models with the same generalization capability, the simpler one should be preferred as simplicity is desirable by itself
- Its easier to work with simple hypotheses than with complex ones
- Simple hypotheses deals better with the overfitting problem