Faculty of Physics, Niels Bohr Institute Advanced Methods In Applied Statistics 2017

sFit: a method for background subtraction in maximum likelihood fit Summary presentation

Mads Juul Damgaard and Tue Holm-Jensen

March 9, 2017

Content

Introduction

Motivating example Likelihood

We have met 2 concepts during this course:

- 1. Likelihood fits
- 2. sPlots

Combined by

$$L(x;\theta) = \prod_{i}^{N} P_{s}(x_{i};\theta)^{W_{s}(y_{i})},$$

where $W_s(y_i)$ is the sWeight encountered earlier

Mass:

1. Signal: Gaussian

2. Background: Exponential

Shape:

1. Signal: Gaussian

2. Background: ???

Mass:

1. Signal: Gaussian

2. Background: Exponential

Shape:

1. Signal: Gaussian

2. Background: ???

Mass:

- 1. Signal: Gaussian
- 2. Background: Exponential

Shape:

- 1. Signal: Gaussian
- 2. Background: ???

Mass:

- 1. Signal: Gaussian
- 2. Background: Exponential

Shape:

- 1. Signal: Gaussian
- 2. Background: ???

Mass:

1. Signal: Gaussian

2. Background: Exponential

Shape:

1. Signal: Gaussian

2. Background: ???

Likelihood function

$$L(x; \theta; f_s) = \prod_{i}^{N} \left[f_s P_s(x_i; \theta) + (1 - f_s) P_b(x_i; \theta) \right],$$

 P_s signal PDF P_b background PDF f_s relative strength of signal

Likelihood function

$$L(x;\theta;f_s) = \prod_{i}^{N} \left[f_s P_s(x_i;\theta) + (1-f_s) P_b(x_i;\theta) \right],$$

 P_s signal PDF P_b background PDF, unknown f_s relative strength of signal

$$L(x;\theta;f_s) = \prod_{i}^{N} \left[f_s P_s(x_i;\theta) + (1-f_s) P_b(x_i;\theta) \right],$$

 P_s signal PDF P_b background PDF, unknown f_s relative strength of signal

Weighted likelihood

$$L(x;\theta) = \prod_{i}^{N} P_{s}(x_{i};\theta)^{W_{s}(y_{i})}$$

 $w_s(y_i)$ sWeight encountered earlier

Monte Carlo parent distributions

Figure 1: Distributions from a data set with $S_m/\sigma_m=6$, $N_s=5000$ and $N_b/N_s=1.5$. Left: the B mass distribution; right: the total time distribution (solid), as well as the signal time distribution (dashed) and background time distribution (dot-dashed) reconstructed

Parameter bootstrapping

Figure 3: Distributions of the estimated values of A (left) and Γ (right) obtained with the sFit method, with superimposed gaussian fits, for the scenario $S_m/\sigma_m=6$, $N_s=5000$ and $N_b/N_s=1.5$. The input values are A=0.5 and $\Gamma=0.65\,\mathrm{ps}^{-1}$.

Figure 4: Distributions of the estimated values of A (left) and Γ (right) obtained with the reference method, with superimposed gaussian fits, for the scenario $S_m/\sigma_m = 6$, $N_s = 5000$ and $N_b/N_s = 1.5$. The input values are A = 0.5 and $\Gamma = 0.65$ ps⁻¹.

Parameter bootstrapping

$S_m/\sigma_m, N_s, N_b/N_s$	$\sigma(A)$	mean of A	$\sigma(\Gamma) \text{ (ps}^{-1})$	mean of Γ (ps ⁻¹)
4, 5000, 1	0.0304	0.502	0.0134	0.6504
6, 5000, 1.5	0.0254	0.498	0.0126	0.6504
4, 5000, 0.5	0.0243	0.501	0.0115	0.6511
6, 5000, 0.75	0.0223	0.501	0.0107	0.6496

Table 1: Statistical errors and mean values of A and Γ from 500 fits using the sFit method for different scenarios. Errors of the numbers are on the last digits. The input values are A=0.5 and $\Gamma=0.65\,\mathrm{ps^{-1}}$.

$S_m/\sigma_m, N_s, N_b/N_s$	$\sigma(A)$	mean of A	$\sigma(\Gamma) \text{ (ps}^{-1})$	mean of Γ (ps ⁻¹)
4, 5000, 1	0.0251	0.502	0.0129	0.6506
6, 5000, 1.5	0.0223	0.500	0.0124	0.6502
4, 5000, 0.5	0.0215	0.500	0.0113	0.6511
6, 5000, 0.75	0.0211	0.501	0.0105	0.6496

Table 2: Statistical errors and mean values of A and Γ from 500 fits using the conventional maximum likelihood method for different scenarios. Errors of the numbers are on the last digits. The input values are A = 0.5 and $\Gamma = 0.65 \,\mathrm{ps}^{-1}$.

