Chapitre 5 : Dérivation

Définition: Taux d'accroissement

Soit f une fonction définie sur un intervalle I, a un nombre dans I, et $h \neq 0$, tel que $a+h \in I$. Alors, le rapport

$$\tau_a(h) = \frac{f(a+h) - f(a)}{h}$$

est le **taux d'accroissement** de f entre a et a + h.

Exemple

Sur le graphique ci-dessus :

•
$$\tau_0(1) = \frac{f(0+1) - f(0)}{1} = \frac{2-5}{1} = -3$$

•
$$\tau_1(4) = \frac{f(1+4) - f(1)}{4} = \frac{1-2}{4} = -0.25$$

Exemple

Si f est la fonction telle que $f(x) = x^2$, on peut calculer l'expression de $\tau_a(h)$:

$$\begin{split} \tau_a(h) &= \frac{f(a+h) - f(a)}{h} \\ &= \frac{(a+h)^2 - a^2}{h} \\ &= \frac{a^2 + 2ah + h^2 - a^2}{h} \\ &= \frac{2ah + h^2}{h} \\ &= 2a + h \end{split}$$

Remarque

Le taux d'accroissement de f entre a et b correspond à la **pente** de la droite passant par (a; f(a))et (b; f(b)).

Définition: Nombre dérivé

Si le taux d'accroissement $\tau_a(h)$ admet une limite lorsque h tend vers 0, on dit que f est **dérivable** en a.

La limite est alors appelée le nombre dérivée de f en a : on note

$$\lim_{h\to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$$

Remarque

Le nombre dérivé de f en a correspond à la **pente** de la droite tangente à la courbe de f au

Exemple

Soit f la fonction telle que $f(x) = 0.1x^3 - 0.3x^2 - 0.4x + 2$.

· Graphiquement :

On peut déterminer graphiquement la pente de la tangente, et obtenir ainsi le nombre dérivé :

$$f'(-2) = 2$$
 $f'(1) = 0.7$ $f'(4) = 2$

$$\circ f'(1) = 0.7$$

$$f'(4) = 2$$

• Par le calcul :

On admet que pour tout $h \neq 0$, on a

$$\tau_2(h) = -0.4 + 0.3h + 0.1h^2$$

Alors f est dérivable en 2, car $\tau_2(h)$ admet une limite lorsque h tend vers 0, Et $f'(2) = \lim_{h \to 0} (-0.4 + 0.3h + 0.1h^2) = -0.4$.

Propriété : Équation de la tangente

La tangente à la courbe de f au point (a;f(a)) a pour équation

$$y = f'(a)x + f(a) - af'(a)$$

Exemple

La courbe ci-dessous est la courbe de la fonction $f(x) = \frac{x^2}{3}$.

On a alors:

- f'(3) = 2
- $f(3) 3 \times f'(3) = -3$

Ainsi l'équation de la tangente à la courbe en 3 est

$$y = 2x - 3$$