Operations Research

Regular Simplex Method

Prepared By: Doaa Ezzat

Steps of Regular Simplex Method

Transform the linear program to the standard form:

Optimize:
$$\mathbf{z} = \mathbf{c}^T \mathbf{x}$$
Sub. To. $\mathbf{A} \mathbf{X} = \mathbf{B}$
 $\mathbf{X} \ge 0$
Where $\mathbf{B} \ge 0$, BS X_0 is known

Steps of Regular Simplex Method

2. Get the Initial Basic Feasible Solution IBFS.

3. Draw the table u.

4. Test the optimality.

5. Improve the optimality.

How to transform to the standard form

- 1. All variables must be ≥ 0 :
 - a) If there is a variable X_1 in the problem must be ≤ 0 : put $X_1 = -X_3$ where $X_3 \geq 0$
- 2. All the right hand side values in the constraints must be ≥ 0:-

If one constraint has a negative right hand side value then multiply the both sides by -1 and don't forget to invert the inequality operator.

How to transform to the standard form

3. All constraints must be equations : -

a) If a constraint has a less than operator:

We need a slack variable, as follows:

(ex:
$$X_1 - X_2 \le 5$$
 $X_1 - X_2 + S_1 = 5$)

b) If a constraint has a greater than operator:

We need a surplus variable, as follows:

(ex:
$$X_1 - X_2 \ge 5$$
 \longrightarrow $X_1 - X_2 - S_1 = 5$)

c) Sometimes we also need artificial variables but we will discuss them later.

Note: Both slack and surplus variables must be added to the objective function with zero coefficients.

Ex (1) :-

Min:
$$z = 4x_1 - x_2$$

Sub. To:

$$2x_1 + x_2 \le 8$$

$$x_2 \le 5$$

$$x_1 - x_2 \le 4$$

$$x_1, x_2 \ge 0$$

Solution:-

1. Transformation:-

Min:
$$z = 4x_1 - x_2 + 0s_1 + 0s_2 + 0s_3$$

Sub. To:

$$2x_1 + x_2 + s_1 = 8$$

$$x_2 + s_2 = 5$$

$$x_1 - x_2 + s_3 = 4$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

Solution:-

1. Transformation:-

Min: $z = 4x_1 - x_2 + 0s_1 + 0s_2 + 0s_3$

Sub. To:

$$2x_1 + x_2 + s_1 = 8$$

 $x_2 + s_2 = 5$
 $x_1 - x_2 + s_3 = 4$
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

Non-Basic Variables

Let
$$x_1 = x_2 = 0$$

So
$$\rightarrow s_1 = 8$$

$$s_2 = 5$$

$$s_3 = 4$$

$$x_0 = \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} 8 \\ 5 \\ 4 \end{bmatrix}$$

Basic Variables

3. The Tableau:-

Min: $z = 4x_1 - x_2 + 0s_1 + 0s_2 + 0s_3$

Sub. To:

The

most

negative

$$2x_1 + x_2 + s_1 = 8$$

$$x_2 + s_2 = 5$$

$$x_1 - x_2 + s_3 = 4$$

 $x_1, x_2, s_1, s_2, s_3 \ge 0$

WC

4- Optimality test:-

This Solution is not optimal because there is a negative number in the last row

The smallest value

				<i>x</i> ₁ 4	<i>x</i> ₂ -1	$\begin{bmatrix} s_1 \\ 0 \end{bmatrix}$	S_2	<i>S</i> ₃	F	RHS	Ratio	C
\	<i>s</i> ₁	C)	2	1	1	0	0	8	3	8	<u> </u>
	S_2	C)	0	1*	0	1	0	[5 WR	<u>5</u> »	
	S_3)	1	-1	0	0	1		4		
		0		<u> </u>	(-1) 0	0	0				

5- Improving the optimality:-

5 Improving t		CITTIC	IICy.						
			x_1	χ_2	s_1	S_2	S_3	RHS	Ratio
			4	-1	0	0	0		
+	s_1	0	2	1	1	0	0	8	8
Multiply by -1	S_2	0	0	1*	0	1	0	5	5
	s_3	0	1	-1	0	0	1	4 📥	
			4	-1	0	0	0		
			x_1	x_2	s_1	s_2	S_3	RHS	
Thorais no			4	-1	0	0	0		
There is no		0	2	0	1	-1	0	3	-

1

		<i>x</i> ₁ 4	<i>x</i> ₂ -1	<i>s</i> ₁ 0	<i>s</i> ₂ 0	<i>s</i> ₃ 0	RHS
$\overline{S_1}$	0	2	0	1	-1	0	3
x_2	-1	0	1	0	1	0	5
S_3	0	1	0	0	1	1	9
\bigcirc	0	4	0	0	1	0	

The optimal solution is at :

$$x_1 = 0$$
, $x_2 = 5$, $s_1 = 3$, $s_2 = 0$, $s_3 = 9$

$$Z^* = 4 (0)-5+0+0+0 = -5$$

Another Example

Ex (2) :-

Max:
$$z = 5x_1 + 3x_2 + x_3$$

Sub. To:

$$x_1 + x_2 + 3x_3 \le 6$$
$$5x_1 + 3x_2 + 6x_3 \le 15$$

$$x_1, x_2 \ge 0$$

We put: $x_3 = x_4 - x_5$

Solution:-

1. Transformation:-

Max:
$$z = 5x_1 + 3x_2 + x_4 - x_5 +$$

$$0s_1 + 0s_2$$

Sub. To:

$$x_1 + x_2 + 3x_4 - 3x_5 + s_1 = 6$$

$$5x_1 + 3x_2 + 6x_4 - 6x_5 + s_2 = 15$$

$$x_1, x_2, x_4, x_5, s_1, s_2 \ge 0$$

Another Example

Solution:-

1. Transformation:-

Max:
$$z = 5x_1 + 3x_2 + x_4 - x_5 + 0s_1 + 0s_2$$

Sub. To:

$$x_1 + x_2 + 3x_4 - 3x_5 + s_1 = 6$$

$$5x_1 + 3x_2 + 6x_4 - 6x_5 + s_2 = 15$$

$$x_1, x_2, x_4, x_5, s_1, s_2 \ge 0$$

2. IBFS:-

Let
$$x_1 = x_2 = x_4 = x_5 = 0$$

So $\Rightarrow s_1 = 6$
 $s_2 = 15$

$$x_0 = \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 15 \end{bmatrix}$$

Another Example

3. The Tableau:-

Max: $z = 5x_1 + 3x_2 + x_4 - x_5 + 0s_1 + 0s_2$

Sub. To:

$$x_1 + x_2 + 3x_4 - 3x_5 + s_1 = 6$$

 $5x_1 + 3x_2 + 6x_4 - 6x_5 + s_2 = 15$
 $x_1, x_2, x_4, x_5, s_1, s_2 \ge 0$

WC

4- Optimality test:-

This Solution is not optimal because there are negative numbers in the last row

The smallest value

			$\begin{bmatrix} x_1 \\ 5 \end{bmatrix}$	<i>x</i> ₂ 3	<i>x</i> ₄ 1	<i>x</i> ₅ -1	<i>S</i> ₁ 0	S ₂	RHS	Ratio
The most	s_1	0	1	1	3	-3	1	0	6	6 0
negative	S_{2}	0	5*	3	6	-6	0	1	15	3
كر ب		0	- 5	-3	-1	1	0	0	WR	

5- Improving the optimality:-

