Principal component analysis

Master Degree in Computer Science Course of Machine Learning University of Rome *Tor Vergata*

Giorgio Gambosi

a.a. 2018-2019

Curse of dimensionality

In general, many features: high-dimensional spaces.

- · sparseness of data
- \cdot increase in the number of coefficients, for example for dimension D and order 3 of the polynomial,

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k$$

number of coefficients is ${\cal O}({\cal D}^M)$

High dimensions lead to difficulties in machine learning algorithms (lower reliability or need of large number of coefficients) this is denoted as curse of dimensionality

2

Dimensionality reduction

- for any given classifier, the training set size required to obtain a certain accuracy grows exponentially wrt the number of features (curse of dimensionality)
- it is important to bound the number of features, identifying the less discriminant ones

Discriminant features

 Discriminant feature: makes it possible to distinguish between two classes

· Non discriminant feature: does not allow classes to be distinguished

Searching hyperplanes for the dataset

- verifying whether training set elements lie on a hyperplane (a space of lower dimen
 - sionality), apart from a limited variability (which could be seen as noise)

- principal component analysis looks for a d'-dimensional subspace (d' < d) such that the projection of elements onto such suspace is a "faithful" representation of the original dataset
- as "faithful" representation we mean that distances between elements and their projections are small, even minimal

PCA for d'=0

· Objective: represent all d-dimensional vectors $\mathbf{x}_1,\dots,\mathbf{x}_n$ by means of a unique vector \mathbf{x}_0 , in the most faithful way, that is so that

$$J(\mathbf{x}_0) = \sum_{i=1}^{n} ||\mathbf{x}_0 - \mathbf{x}_i||^2$$

is minimum

· it is easy to show that

$$\mathbf{x}_0 = \mathbf{m} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$$

6

· In fact,

$$J(\mathbf{x}_0) = \sum_{i=1}^n ||(\mathbf{x}_0 - \mathbf{m}) - (\mathbf{x}_i - \mathbf{m})||^2$$

$$= \sum_{i=1}^n ||\mathbf{x}_0 - \mathbf{m}||^2 - 2\sum_{i=1}^n (\mathbf{x}_0 - \mathbf{m})^T (\mathbf{x}_i - \mathbf{m}) + \sum_{i=1}^n ||\mathbf{x}_i - \mathbf{m}||^2$$

$$= \sum_{i=1}^n ||\mathbf{x}_0 - \mathbf{m}||^2 - 2(\mathbf{x}_0 - \mathbf{m})^T \sum_{i=1}^n (\mathbf{x}_i - \mathbf{m}) + \sum_{i=1}^n ||\mathbf{x}_i - \mathbf{m}||^2$$

since

$$\sum_{i=1}^{n} (\mathbf{x}_{i} - \mathbf{m}) = \sum_{i=1}^{n} \mathbf{x}_{i} - n \cdot \mathbf{m} = n \cdot \mathbf{m} - n \cdot \mathbf{m} = 0$$

 $= \sum_{i=1}^{n} ||\mathbf{x}_{0} - \mathbf{m}||^{2} + \sum_{i=1}^{n} ||\mathbf{x}_{i} - \mathbf{m}||^{2}$

- the second term is independent from \mathbf{x}_0 , while the first one is equal

PCA for d'=1

- a single vector is too concise a representation of the dataset: anything related to data variability gets lost
- \cdot a more interesting case is the one when vectors are projected onto a line passing through ${f m}$

PCA for d'=1

· let ${\bf u}_1$ be unit vector ($||{\bf u}_1||=1$) in the line direction: the line equation is then

$$\mathbf{x} = \alpha \mathbf{u}_1 + \mathbf{m}$$

where lpha is the distance of ${f x}$ from ${f m}$ along the line

· let $\tilde{\mathbf{x}}_i = \alpha_i \mathbf{u}_1 + \mathbf{m}$ be the projection of \mathbf{x}_i (i = 1, ..., n) onto the line: given $\mathbf{x}_1, ..., \mathbf{x}_n$, we wish to find the set of projections minimizing the quadratic error

9

The quadratic error is defined as

$$J(\alpha_1, \dots, \alpha_n, \mathbf{u}_1) = \sum_{i=1}^n ||\tilde{\mathbf{x}}_i - \mathbf{x}_i||^2$$

$$= \sum_{i=1}^n ||(\mathbf{m} + \alpha_i \mathbf{u}_1) - \mathbf{x}_i||^2$$

$$= \sum_{i=1}^n ||\alpha_i \mathbf{u}_1 - (\mathbf{x}_i - \mathbf{m})||^2$$

$$= \sum_{i=1}^n +\alpha_i^2 ||\mathbf{u}_1||^2 + \sum_{i=1}^n ||\mathbf{x}_i - \mathbf{m}||^2 - 2\sum_{i=1}^n \alpha_i \mathbf{u}_1^T (\mathbf{x}_i - \mathbf{m})$$

$$= \sum_{i=1}^n \alpha_i^2 + \sum_{i=1}^n ||\mathbf{x}_i - \mathbf{m}||^2 - 2\sum_{i=1}^n \alpha_i \mathbf{u}_1^T (\mathbf{x}_i - \mathbf{m})$$

Its derivative wrt $lpha_k$ is

$$\frac{\partial}{\partial \alpha_k} J(\alpha_1, \dots, \alpha_n, \mathbf{u}_1) = 2\alpha_k - 2\mathbf{u}_1^T(\mathbf{x}_k - \mathbf{m})$$

which is zero when $\alpha_k = \mathbf{u}_1^T(\mathbf{x}_k - \mathbf{m})$ (the orthogonal projection of \mathbf{x}_k onto the line).

The second derivative turns out to be positive

$$\frac{\partial}{\partial \alpha_k^2} J(\alpha_1, \dots, \alpha_n, \mathbf{u}_1) = 2$$

showing that what we have found is indeed a minimum.

To derive the best direction \mathbf{u}_1 of the line, we consider the covariance matrix of the dataset

$$\mathbf{S} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \mathbf{m}) (\mathbf{x}_i - \mathbf{m})^T$$

By plugging the values computed for α_i into the definition of $J(\alpha_1, \ldots, \alpha_n, \mathbf{u}_1)$, we get

$$J(\mathbf{u}_{1}) = \sum_{i=1}^{n} \alpha_{i}^{2} + \sum_{i=1}^{n} ||\mathbf{x}_{i} - \mathbf{m}||^{2} - 2 \sum_{i=1}^{n} \alpha_{i}^{2}$$

$$= -\sum_{i=1}^{n} [\mathbf{u}_{1}^{T}(\mathbf{x}_{i} - \mathbf{m})]^{2} + \sum_{i=1}^{n} ||\mathbf{x}_{i} - \mathbf{m}||^{2}$$

$$= -\sum_{i=1}^{n} \mathbf{u}_{1}^{T}(\mathbf{x}_{i} - \mathbf{m})(\mathbf{x}_{i} - \mathbf{m})^{T} \mathbf{u}_{1} + \sum_{i=1}^{n} ||\mathbf{x}_{i} - \mathbf{m}||^{2}$$

$$= -n\mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1} + \sum_{i=1}^{n} ||\mathbf{x}_{i} - \mathbf{m}||^{2}$$

PCA for d'=1

- $\cdot \ \mathbf{u}_1^T(\mathbf{x}_i \mathbf{m})$ is the projection of \mathbf{x}_i onto the line
- · the product

$$\mathbf{u}_1^T(\mathbf{x}_i - \mathbf{m})(\mathbf{x}_i - \mathbf{m})^T\mathbf{u}_1$$

is then the variance of the projection of \mathbf{x}_i wrt the mean \mathbf{m}

· the sum

$$\sum_{i=1}^{n} \mathbf{u}_{1}^{T} (\mathbf{x}_{i} - \mathbf{m}) (\mathbf{x}_{i} - \mathbf{m})^{T} \mathbf{u}_{1} = n \mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1}$$

is the overall variance of the projections of vectors \mathbf{x}_i wrt the mean \mathbf{m}

PCA for d' = 1

Minimizing $J(\mathbf{u}_1)$ is equivalent to maximizing $\mathbf{u}_1^T\mathbf{S}\mathbf{u}_1$. That is, $J(\mathbf{u}_1)$ is minimum if \mathbf{u}_1 is the direction which keeps the maximum amount of variance in the dataset

Hence, we wish to maximize $\mathbf{u}_1^T\mathbf{S}\mathbf{u}_1$ (wrt \mathbf{u}_1), with the constraint $||\mathbf{u}_1||=1$.

By applying Lagrange multipliers this results equivalent to maximizing

$$u = \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 - \lambda_1 (\mathbf{u}_1^T \mathbf{u}_1 - 1)$$

This can be done by setting the first derivative wrt \mathbf{u}_1 :

$$\frac{\partial u}{\partial \mathbf{u}_1} = 2\mathbf{S}\mathbf{u}_1 - 2\lambda_1\mathbf{u}_1$$

to 0, obtaining

$$\mathbf{S}\mathbf{u}_1 = \lambda_1\mathbf{u}_1$$

Note that:

- u is maximized if \mathbf{u}_1 is an eigenvector of \mathbf{S}
- the overall variance of the projections is then equal to the corresponding eigenvalue

$$\mathbf{u}_1^T \mathbf{S} \mathbf{u}_1 = \mathbf{u}_1^T \lambda_1 \mathbf{u}_1 = \lambda_1 \mathbf{u}_1^T \mathbf{u}_1 = \lambda_1$$

• the variance of the projections is then maximized (and the error minimized) if ${\bf u}_1$ is the eigenvector of ${\bf S}$ corresponding to the maximum eigenvalue λ_1

PCA for d'>1

- The quadratic error is minimized by projecting vectors onto a hyperplane defined by the directions associated to the d' eigenvectors corresponding to the d' largest eigenvalues of ${\bf S}$
- · If we assume data are modeled by a d-dimensional gaussian distribution with mean μ and covariance matrix Σ , PCA returns a d'-dimensional subspace corresponding to the hyperplane defined by the eigenvectors associated to the d' largest eigenvalues of Σ
- \cdot The projections of vectors onto that hyperplane are distributed as a d'-dimensional distribution which keeps the maximum possible amount of data variability

An example of PCA

· Digit recognition ($D=28\times28=784$)

Choosing d'

Eigenvalue size distribution is usually characterized by a fast initial decrease followed by a small decrease

This makes it possible to identify the number of eigenvalues to keep, and thus the dimensionality of the projections.

Choosing d^\prime

Eigenvalues measure the amount of distribution variance kept in the projection.

Let us consider, for each k < d, the value

$$r_k = \frac{\sum_{i=1}^k \lambda_i^2}{\sum_{i=1}^n \lambda_i^2}$$

which provides a measure of the variance fraction associated to the k largest eigenvalues.

When $r_1 < \ldots < r_d$ are known, a certain amount p of variance can be kept by setting

$$d' = \underset{i \in \{1, \dots, d\}}{\operatorname{argmin}} r_i > p$$

Singular value decomposition

Singular Value Decomposition

Let $\mathbf{W} \in \mathbbm{R}^{n \times m}$ be a matrix of rank $r \leq \min(n,m)$, and let n > m. Then, there exist

- $\mathbf{U} \in \mathrm{I\!R}^{n imes r}$ orthonormal (that is, $\mathbf{U}^T \mathbf{U} = \mathbf{I}_r$)
- $\mathbf{V} \in \mathrm{I\!R}^{m \times r}$ orthonormal (that is, $\mathbf{V}\mathbf{V}^T = \mathbf{I}_r$)
- \cdot $\mathbf{\Sigma} \in {
 m I\!R}^{r imes r}$ diagonal

such that $\mathbf{W} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$

Let us consider the matrix $\mathbf{A} = \mathbf{W}^T \mathbf{W} \in \mathbb{R}^{m \times m}$. Observe that

- \cdot by definition, ${f A}$ has the same rank of ${f W}$, that is r
- **A** is symmetric: in fact, $a_{ij} = \mathbf{w}_i^T \mathbf{w}_j$ by definition, where \mathbf{w}_k is the k-th column of \mathbf{W} ; by the commutativity of vector product, $a_{ij} = \mathbf{w}_i^T \mathbf{w}_j = \mathbf{w}_i^T \mathbf{w}_i = a_{ji}$
- \mathbf{A} is semidefinite positive, that is $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$ for all non null $\mathbf{x} \in \mathbb{R}^m$: this derives from

$$\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T (\mathbf{W}^T \mathbf{W}) \mathbf{x} = (\mathbf{W} \mathbf{x})^T (\mathbf{W} \mathbf{x}) = ||\mathbf{W} \mathbf{x}||_2 \ge 0$$

All eigenvalues of ${f A}$ are real. In fact,

- let $\lambda \in \mathbb{C}$ be an eigenvalue of \mathbf{A} , and let $\mathbf{v} \in \mathbb{C}^n$ be a corresponding eigenvector: then, $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$ and $\overline{\mathbf{v}}^T \mathbf{A} \mathbf{v} = \overline{\mathbf{v}}^T \lambda \mathbf{v} = \lambda \overline{\mathbf{v}}^T \mathbf{v}$
- observe that, in general, it must also be that the complex conjugates $\overline{\lambda}$ and $\overline{\mathbf{v}}$ are themselves an eigenvalue-eigenvector pair for \mathbf{A} : then, $\mathbf{A}\overline{\mathbf{v}}=\overline{\lambda}\overline{\mathbf{v}}$. Since $\overline{\lambda}\overline{\mathbf{v}}^T=(\overline{\lambda}\overline{\mathbf{v}})^T=(\mathbf{A}\overline{\mathbf{v}})^T=\overline{\mathbf{v}}^T\mathbf{A}^T=\overline{\mathbf{v}}^T\mathbf{A}$ by the simmetry of \mathbf{A} , it derives $\overline{\mathbf{v}}^T\mathbf{A}\mathbf{v}=\overline{\lambda}\overline{\mathbf{v}}^T\mathbf{v}$
- · as a consequence, $\overline{\lambda}\overline{\mathbf{v}}^T\mathbf{v}=\lambda\overline{\mathbf{v}}^T\mathbf{v}$, that is $\overline{\lambda}||\mathbf{v}||^2=\lambda||\mathbf{v}||^2$
- since $\mathbf{v} \neq \mathbf{0}$ (being an eigenvector), it must be $\overline{\lambda} = \lambda$, hence $\lambda \in {\rm I\!R}$

The eigenvectors of ${f A}$ corresponding to different eigenvalues are orthogonal

- Let $\mathbf{v}_1,\mathbf{v}_2\in\mathbb{C}^n$ be two eigenvectors, with corresponding distinct eigenvalues λ_1,λ_2
- then, by the simmetry of \mathbf{A} , $\lambda_1(\mathbf{v}_1^T\mathbf{v}_2) = (\lambda_1\mathbf{v}_1)^T\mathbf{v}_2 = (\mathbf{A}\mathbf{v}_1)^T\mathbf{v}_2 = \mathbf{v}_1^T\mathbf{A}^T\mathbf{v}_2 = \mathbf{v}_1^T\mathbf{A}\mathbf{v}_2 = \mathbf{v}_1^T\lambda_2\mathbf{v}_2 = \lambda_2(\mathbf{v}_1^T\mathbf{v}_2)$
- \cdot as a consequence, $(\lambda_1 \lambda_2) \mathbf{v}_1^T \mathbf{v}_2 = 0$
- since $\lambda_1 \neq \lambda_2$, it must be $\mathbf{v}_1^T \mathbf{v}_2 = 0$, that is $\mathbf{v}_1, \mathbf{v}_2$ must be orthogonal

If an eigenvalue λ' has multiplicity m>1, it is always possible to find a set of m orthonormal eigenvectors of λ' .

As a result, there exists a set of eigenvectors of ${f A}$ which provides an orthornormal base.

All eigenvalues of a ${f A}$ are greater than zero.

- \mathbf{A} is real and symmetric, then for each eigenvalue λ it must be $\lambda \in \mathbb{R}$ and there must exist an eigenvector $\mathbf{v} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$
- \cdot as a consequence, $\mathbf{v}^T(\mathbf{A}\mathbf{v}) = \lambda \mathbf{v}^T \mathbf{v}$ and

$$\lambda = \frac{\mathbf{v}^T \mathbf{A} \mathbf{v}}{\mathbf{v}^T \mathbf{v}} = \frac{\mathbf{v}^T \mathbf{A} \mathbf{v}}{||\mathbf{v}||^2}$$

- $||\mathbf{v}||^2 > 0$ since \mathbf{v} is an eigenvector and, since \mathbf{A} is semidefinite positive, $\mathbf{v}^T \mathbf{A} \mathbf{v} \geq 0$
- as a consequence, $\lambda \geq 0$

Overall,

- $\cdot \ \mathbf{A} = \mathbf{W}^T \mathbf{W}$ has r real and positive eigenvalues $\lambda_1, \dots, \lambda_r$
- \cdot the corresponding eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_r$ are orthonormal

·
$$\mathbf{A}\mathbf{v}_i = (\mathbf{W}^T\mathbf{W})\mathbf{v}_i = \lambda_i\mathbf{v}_i, i = 1,\dots,r$$

Let us define r singular values

$$\sigma_i = \sqrt{\lambda_i} \qquad i = 1, \dots, r$$

and let us also consider the set of vectors

$$\mathbf{u}_i = \frac{1}{\sigma_i} \mathbf{W} \mathbf{v}_i \qquad i = 1, \dots, r$$

• Observe that $\mathbf{u}_1, \dots, \mathbf{u}_r$ are orthogonal, in fact:

$$\mathbf{u}_{i}^{T}\mathbf{u}_{j} = \left(\frac{1}{\sigma_{i}}\mathbf{W}\mathbf{v}_{i}\right)^{T}\left(\frac{1}{\sigma_{j}}\mathbf{W}\mathbf{v}_{j}\right) = \frac{1}{\sigma_{i}\sigma_{j}}\mathbf{v}_{i}^{T}\mathbf{W}^{T}\mathbf{W}\mathbf{v}_{j} = \frac{1}{\sigma_{i}\sigma_{j}}\mathbf{v}_{i}^{T}(\lambda_{j}\mathbf{v}_{j})$$

Hence, $\mathbf{u}_i^T \mathbf{u}_j \neq 0$ iff $\mathbf{v}_i^T \mathbf{v}_j \neq 0$, that is iff $i \neq j$.

- Moreover, $\mathbf{u}_1,\dots,\mathbf{u}_r$ have unitary norm, in fact:

$$||\mathbf{u}_i||^2 = \left| \left| \frac{1}{\sigma_i} \mathbf{W} \mathbf{v}_i \right| \right|^2 = \frac{1}{\lambda_i} (\mathbf{W} \mathbf{v}_i)^T (\mathbf{W} \mathbf{v}_i) = \frac{1}{\lambda_i} \mathbf{v}_i^T (\mathbf{W}^T \mathbf{W} \mathbf{v}_i)$$
$$= \frac{1}{\lambda_i} \mathbf{v}_i^T (\lambda_i \mathbf{v}_i) = \frac{1}{\lambda_i} \lambda_i (\mathbf{v}_i^T \mathbf{v}_i) = 1$$

Let us also consider the following matrices

 $\cdot \; \mathbf{V} \in {
m I\!R}^{m imes r}$ having vectors $\mathbf{v}_1, \dots, \mathbf{v}_r$ as columns

$$\mathbf{V} = \left[egin{array}{cccc} ert & ert & ert \ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_r \ ert & ert & ert \end{array}
ight]$$

 $\cdot \ \mathbf{U} \in \mathbb{R}^{n imes r}$ having vectors $\mathbf{u}_1, \dots, \mathbf{u}_r$ as columns

$$\mathbf{U} = \left[egin{array}{cccc} | & | & | & | \ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_r \ | & | & | \end{array}
ight]$$

 $\Sigma \in \mathbb{R}^{r \times r}$ having singular values on the diagonal

$$\mathbf{\Sigma} = \left| \begin{array}{cccc} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \end{array} \right|$$

It is easy to verify that

$$\mathbf{W}\mathbf{V} = \mathbf{U}\mathbf{\Sigma}$$

Moreover, since \mathbf{V} is orthogonal, its is $\mathbf{V}^{-1} = \mathbf{V}^T$ and, as a consequence,

$$\mathbf{W} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

$$\mathbf{W} = \begin{bmatrix} & | & & & & | \\ & | & & & & | \\ & \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_r \\ & | & & & & | \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_r \end{bmatrix} \begin{bmatrix} - & \mathbf{v}_1 & - \\ - & \mathbf{v}_2 & - \\ \vdots & \vdots \\ - & \mathbf{v}_r & - \end{bmatrix}$$

PCA and SVD

PCA and SVD

Given

$$\mathbf{X} = \left[\begin{array}{cccc} | & | & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \\ | & | & | \end{array} \right]$$

• the mean of vectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ is

$$\mathbf{m} = \frac{1}{n} \begin{bmatrix} | & | & & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \\ | & | & & | \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \frac{1}{n} \mathbf{X} \mathbf{1}$$

- let $\tilde{\mathbf{X}}$ be the set of such vectors translated to have zero mean:

$$\tilde{\mathbf{X}} = \begin{bmatrix} & | & & | & & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n & | & - & | & \mathbf{m} & \mathbf{m} & \cdots & \mathbf{m} \\ & | & | & & | & | & | & | & | & | \end{bmatrix} = \mathbf{X} - \mathbf{m} \mathbf{1}^T$$

PCA and SVD

The correlation matrix of $\mathbf{x}_1, \dots, \mathbf{x}_n$ is defined as:

$$\mathbf{S} = \sum_{i=1}^{n} (\mathbf{x}_i - \mathbf{m})(\mathbf{x}_i - \mathbf{m})^T = \sum_{i=1}^{n} \tilde{\mathbf{x}}_i \tilde{\mathbf{x}}_i^T$$

where $ilde{\mathbf{x}}_i$ is the i-th column of $ilde{\mathbf{X}}$.

That is,

$$\mathbf{S} = \tilde{\mathbf{X}}\tilde{\mathbf{X}}^T$$

 $\dot{\mathbf{X}}$ has dimension $n \times d$: assuming n > d, we may consider its SVD

$$\tilde{\mathbf{X}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

where $\mathbf{U}\mathbf{U}^T=\mathbf{V}^T\mathbf{V}=\mathbf{I}$ and $\mathbf{\Sigma}$ is a diagonal matrix.

By the properties of SVD, items on the diagonal of Σ are the eigenvalues of S and columns of V are the corresponding eigenvectors.

In summary:

 \cdot To perform a PCA on ${f X}$, it is sufficient to compute the SVD of matrix

$$\tilde{\mathbf{X}} = \mathbf{X} \left(\mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^T \right) = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

 \cdot The principal components of X are the columns of V, with corresponding eigenvalues given by the diagonal elements of Σ^2 .

Latent semantic analysis

Introduction

Definitions

Many models in text processing refer to co-occurrence data

Given two sets \mathbf{V}, \mathbf{D} (for example, a set of terms and a collection of documents) a sequence of observations $\mathbf{W} = \{(w_1, d_1), \dots, (w_N, d_N)\}$ is considered, with $w_i \in \mathbf{V}, d_i \in \mathbf{D}$ (for example, these are occurrences of terms in documents.

Latent semantic analysis

Fundamental hypotheses

The Latent Semantic Analysis (LSA) approach is based on the following three hypotheses:

- it is possible to derive semantic information from the matrix of occurrences of terms in documents
- · the reduction of dimensionality is a key aspect of this derivation
- terms and documents can be modeled as points (vectors) in a euclidean space

Context

- 1. Dictionary ${f V}$ of V terms t_1, t_2, \ldots, t_V
- 2. Collection \mathbf{D} of D documents d_1, d_2, \ldots, d_D
- 3. Each document d_i is a sequence of N_i occurrences of terms in ${f V}$

Latent semantic analysis

Fundamental hypotheses

The Latent Semantic Analysis (LSA) approach is based on the following three hypotheses:

- it is possible to derive semantic information from the matrix of occurrences of terms in documents
- · the reduction of dimensionality is a key aspect of this derivation
- terms and documents can be modeled as points (vectors) in a euclidean space

Context

- 1. Dictionary ${f V}$ of V terms t_1, t_2, \ldots, t_V
- 2. Collection ${f D}$ of D documents d_1, d_2, \ldots, d_D
- 3. Each document d_i is a sequence of N_i occurrences of terms in ${f V}$

Idea

- 1. A document d_i can be seen as a multiset of N_i terms in ${f V}$ (bag of words hypotheses)
- 2. There exists a correspondance between ${\bf V}$ and ${\bf D}$, and a vector space ${\cal S}$. Each term t_i has an associated vector ${\bf u}_i$, also, to each document d_j a vector ${\bf v}_j$ in ${\cal S}$ is associated

Occurrence matrix

Let us define the matrix $\mathbf{W} \in \mathbb{R}^{V \times D}$, where $w_{i,j}$ is associated to the occurrences of term t_i into document d_j . The value $w_{i,j}$ derives from some measure of the number of occurrences of t_i into d_j (binary, count, tf, tf-idf, entropy, etc.).

- \cdot Terms corresponds to row vectors (size D)
- · Documents correspond to column vector (size V)

Idea

- 1. A document d_i can be seen as a multiset of N_i terms in ${f V}$ (bag of words hypotheses)
- 2. There exists a correspondance between ${\bf V}$ and ${\bf D}$, and a vector space ${\cal S}$. Each term t_i has an associated vector ${\bf u}_i$, also, to each document d_j a vector ${\bf v}_j$ in ${\cal S}$ is associated

Occurrence matrix

Let us define the matrix $\mathbf{W} \in \mathbb{R}^{V \times D}$, where $w_{i,j}$ is associated to the occurrences of term t_i into document d_j . The value $w_{i,j}$ derives from some measure of the number of occurrences of t_i into d_j (binary, count, tf, tf-idf, entropy, etc.).

- \cdot Terms corresponds to row vectors (size D)
- Documents correspond to column vector (size V)

Problem

- 1. The values V, D are usually quite large
- 2. Vectors corresponding to t_i and d_j are very sparse
- 3. Terms and documents are modeled as vectors defined on different spaces (${\rm I\!R}^D$ and ${\rm I\!R}^V$, respectively)

Exploit singular value decomposition.

- \cdot The occurrence matrix ${f W}$ is decomposed in the product of three matrices.
- \cdot A term matrix ${f U}$, with rows corresponding to terms: each term spans over r dimensions
- A document matrix \mathbf{V}^T , with columns corresponding to documents: each document spans over r dimensions
- \cdot The matrix of singular values Σ , whose diagonal elements provide a measure of the relevance of the corresponding dimensions

Rows of ${f W}$ (terms) are projected onto an r-dimensional subspace of ${f R}^D$. The columns of ${f V}^T$ provide a basis of such subspace, hence each term is associated to a linear combination of these columns.

In particular, each term is a vector wrt to that base, with set of coordinates given by $\mathbf{U}\mathbf{\Sigma}\in\mathbb{R}^r$: value $u_{ik}\sigma_k$ provides a measure of the relevance of term t: in the k-th topic

Rows of \mathbf{W} (terms) are projected onto an r-dimensional subspace of \mathbb{R}^D . The columns of \mathbf{V}^T provide a basis of such subspace, hence each term is associated to a linear combination of these columns.

In particular, each term is a vector wrt to that base, with set of coordinates given by $\mathbf{U}\Sigma \in \mathbb{R}^r$: value $u_{ik}\sigma_k$ provides a measure of the relevance of term t_i in the k-th tonic

Rows of \mathbf{W}^T (documents) are projected onto an r-dimensional subspace of \mathbf{R}^V . The columns of \mathbf{U}^T provide a basis of such subspace, hence each term is associated to a linear combination of these columns.

In particular, each document is a vector wrt to that base, with set of coordinates given by $\mathbf{V}\mathbf{\Sigma} \in \mathbb{R}^r$: value $v_{jk}\sigma_k$ provides a measure of the presence of the k-th topic in document d:

Rows of \mathbf{W}^T (documents) are projected onto an r-dimensional subspace of \mathbb{R}^V . The columns of \mathbf{U}^T provide a basis of such subspace, hence each term is associated to a linear combination of these columns.

In particular, each document is a vector wrt to that base, with set of coordinates given by $\mathbf{V}\Sigma \in \mathbb{R}^r$: value $v_{jk}\sigma_k$ provides a measure of the presence of the k-th tonic in document d:

Dimensionality reduction

The dimension d of the projection subspace can be predefined to be less than the rank of ${f W}$. In this case,

$$\mathbf{W} \approx \overline{\mathbf{W}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

Approximation

The following property holds:

$$\min_{\mathbf{A}: \mathrm{rank}(\mathbf{A}) = d} ||\mathbf{W} - \mathbf{A}||_2 = ||\mathbf{W} - \overline{\mathbf{W}}||_2$$

That is $\overline{\mathbf{W}}$ is the best approximation of \mathbf{W} among all matrices of rank d wrt the Frobenius norm

$$||\mathbf{A}||_2 = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

SVD provides a tranformation of two discrete vector spaces $\mathcal{V} \in \mathbb{Z}^D$ and $\mathcal{D} \in \mathbb{Z}^V$ into a unique continuous vector space with lower dimension $\mathcal{T} \in \mathbb{R}^d$.

The dimension of $\mathcal T$ is at most equal to the (unknown) rank of $\mathbf W$, and is determined by the acceptable amount of distortion induced by the projection

Interpretation

 $\overline{\mathbf{W}}$ keeps most of the associations between terms and documents in \mathbf{W} : it only does not take into account the least significant relations

- Each term is now seen as a linear combination of unknown "topics": terms with similar projections tend to appear in the same documents (or in documents semantically similar, in which similar terms appear)
- Each document is also seen as a linear combination of the same

LSA and clustering

Co-occurrences

- $\mathbf{W}\mathbf{W}^T \in \mathbf{Z}^{V \times V}$ provides co-occurrences of terms in \mathbf{V} (number of documents in which both terms appear)
- $\mathbf{W}^T\mathbf{W} \in \mathbf{Z}^{D \times D}$ provides co-occurrences of documents in \mathbf{D} (number of terms appearing in both documents)

SVD and co-occurrence matrix By applying SVD,

$$\mathbf{W}\mathbf{W}^T = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\mathbf{V}\mathbf{\Sigma}\mathbf{U}^T = \mathbf{U}\mathbf{\Sigma}^2\mathbf{U}^T$$

and

$$\mathbf{W}^T\mathbf{W} = \mathbf{V}\mathbf{\Sigma}\mathbf{U}^T\mathbf{U}\mathbf{\Sigma}\mathbf{V}^T = \mathbf{V}\mathbf{\Sigma}^2\mathbf{V}^T$$

LSA and clustering

Co-occurrences

- $\mathbf{W}\mathbf{W}^T \in \mathbf{Z}^{V \times V}$ provides co-occurrences of terms in \mathbf{V} (number of documents in which both terms appear)
- $\mathbf{W}^T\mathbf{W} \in \mathbf{Z}^{D \times D}$ provides co-occurrences of documents in \mathbf{D} (number of terms appearing in both documents)

SVD and co-occurrence matrix

By applying SVD,

$$\mathbf{W}\mathbf{W}^T = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\mathbf{V}\mathbf{\Sigma}\mathbf{U}^T = \mathbf{U}\mathbf{\Sigma}^2\mathbf{U}^T$$

and

$$\mathbf{W}^T \mathbf{W} = \mathbf{V} \mathbf{\Sigma} \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T$$

Term clustering

Proximity of terms

A reasonable measure of the proximity between two terms t_i, t_j is the number of documents in which they co-occur, that is the value of element (i,j) in $\mathbf{W}\mathbf{W}^T$. This corresponds to the dot product of vectors $\mathbf{u}_i\sigma_i$ (i-th row of $\mathbf{U}\boldsymbol{\Sigma}$) and $\mathbf{u}_j\sigma_j$ (j-th row of $\mathbf{U}\boldsymbol{\Sigma}$).

In particular, we may define

$$\mathcal{D}(t, t_i) = \frac{1}{|\mathbf{u}_i|} = \frac{||\mathbf{u}_i|| \cdot ||\mathbf{u}_j||}{|\mathbf{u}_i||}$$

Term clustering

Proximity of terms

A reasonable measure of the proximity between two terms t_i, t_j is the number of documents in which they co-occur, that is the value of element (i,j) in $\mathbf{W}\mathbf{W}^T$. This corresponds to the dot product of vectors $\mathbf{u}_i\sigma_i$ (i-th row of $\mathbf{U}\mathbf{\Sigma}$) and $\mathbf{u}_j\sigma_j$ (j-th row of $\mathbf{U}\mathbf{\Sigma}$).

In particular, we may define

$$\mathcal{D}(t, t_i) = \frac{1}{\mathbf{u}_i} = \frac{||\mathbf{u}_i|| \cdot ||\mathbf{u}_j||}{||\mathbf{u}_i||}$$

45

Document clustering

A reasonable measure of the proximity between two terms d_i, d_j is the number of terms co-occurring in then, that is the value of element (i,j) in $\mathbf{W}^T\mathbf{W}$. This corresponds to the dot product of vectors $\mathbf{v}_i\sigma_i$ (*i*-th row of $\mathbf{V}\Sigma$) and $\mathbf{v}_j\sigma_j$ (*j*-th row of $\mathbf{V}\Sigma$).

In particular, we may define

$$\mathcal{D}(d_i, d_j) = \frac{1}{\cos(\mathbf{v}_i, \mathbf{v}_j)} = \frac{||\mathbf{v}_i|| \cdot ||\mathbf{v}_j||}{\mathbf{v}_i \mathbf{v}_i^T}$$

Objective

Determine, given a document, the topic (in a predefined collection) which is more related to its content.

Approach

Construction of a vector of weights associated to the topic: can be seen as a further document \overline{d} (topic template)

 ${\bf W}$ can be extended by attaching d as D+1-th column of ${\bf W}$, thus obtaining $\overline{{\bf W}}\in {\mathbb Z}^{V\times (D+1)}$

Objective

Determine, given a document, the topic (in a predefined collection) which is more related to its content.

Approach

Construction of a vector of weights associated to the topic: can be seen as a further document \overline{d} (topic template)

 ${f W}$ can be extended by attaching \overline{d} as D+1-th column of ${f W}$, thus obtaining $\overline{{f W}}\in {f Z}^{V imes(D+1)}$

Effect

SVD provides a vector $\overline{\mathbf{v}} \in {\rm I\!R}^d$ as D+1-th row of ${f V}$, where $\overline{d} = {f U} {f \Sigma} \overline{{f v}}^T$

A reasonable measure of the proximity between a document d_i and a topic \overline{d} corresponds to the dot product of vectors $\mathbf{v}_i \sigma_i$ (i-th row of $\mathbf{V} \mathbf{\Sigma}$) and $\overline{\mathbf{v}}$ (D+1-th row of $\mathbf{V} \mathbf{\Sigma}$).

In particular, we may define

$$\mathcal{D}(d_i, \overline{d}) = \frac{1}{\cos(\mathbf{v}_i, \overline{\mathbf{v}})} = \frac{||\mathbf{v}_i|| \cdot ||\overline{\mathbf{v}}||}{\mathbf{v}_i \overline{\mathbf{v}}^T}$$