Course Code: 20EC11T

I Semester Diploma Examinations MAY-2024

DIGITAL ELECTRONICS

lours [Max. Marks : 100
ns: (i) Answer any one full question from each section. (ii) One full question carries 20 marks
SECTION-I
ferentiate between Analog and Digital Signals 5
invert decimal number (37) ₁₀ to binary.
onvert the octal number (1234) ₈ into binary.
ntion the features of ASCII code.
d(98A) ₁₆ and (1CB) ₁₆ .
tract (1011) ₂ from (1101) ₂ .
otract (1101) ₂ from (1110) ₂ by using 2's complement method.
plain the procedure for Binary to Gray code conversion
with an example. 5
ntion any five laws of Boolean algebra.
ate and prove any one Demorgan's theorem 5
SECTION-II
n AND, OR, NOT, NAND and NOR gates along with symbol,
sion, and Truth table.
TO AND OD and NOT and a NAME A
Ze using logic gets

ь	i) Illustrate the following conversion:	5
HEE	a) SOP to POS, F (A, B, C) = Σ (1,3,5,6)	
	b) POS to SOP, F (A, B, C) = π (0,1,2,4)	
	ii) Simplify the following Boolean expression by using K-map and draw	
	the logic diagram.	5
	SECTION-III	
5.	a) i) Explain half adder with truth table.	5
	ii) List any five differences between serial and parallel adder.	5
	b) Explain the working of full subtractor with logic diagram and truth table.	10
6.	a) Explain the working of a 3-bit parallel adder with neat circuit diagram.	10
	b) Explain the 2-bit magnitude comparator with gate level circuit.	10
	SECTION-IV	
7.	a) i) Define multiplexer. Mention the applications of multiplexer.	5
	ii) Explain 2:1 MUX with truth table and logic diagram.	5
	b) Design 4:1 Multiplexer using 2:1 MUX and explain its working.	10
8.	a) Write truth table, equations, and logic diagram for 1:4 DEMUX and explain	
	its working	10
	b) Realize AND, OR, NOT, NAND and NOR gates using MUX.	10
	SECTION-V	
9.	a) Sketch and explain logic circuit of BCD to decimal decoder.	10
	b) i) Mention any five applications of encoder.	5
	ii) Explain the operation of 4:2 Priority Encoder with truth table.	5
10.	a) i) List the advantages and disadvantages of IC's	5
	ii) Classify ICs based on scale of integration.	5 .
	b) i) Mention the types of logic families.	5
	ii) Describe the interfacing between TTL and CMOS.	5