

Masterarbeit

Effiziente Berechnung von K_5 -Minoren in Graphen

Julian Sauer 30. Juli 2019

Betreuer:

Prof. Dr. Petra Mutzel Prof. Dr. Jens Schmidt

Fakultät für Informatik
Algorithm Engineering (LS 11)
Technische Universität Dortmund
http://ls11-www.cs.tu-dortmund.de

Inhaltsverzeichnis

1	Einleitung	1	
	1.1 Motivation und Hintergrund	1	
	1.2 Aufbau der Arbeit	1	
2	Definitionen	3	
3	Algorithmus von Kezdy und McGuinness	5	
4	Wagner Struktur	11	
5	Implementierung	13	
6	Experimentelle Analyse	15	
7	Zusammenfassung und Ausblick	17	
\mathbf{A}	Weitere Informationen	19	
\mathbf{A}	bbildungsverzeichnis	21	
\mathbf{A}	Algorithmenverzeichnis		
Sy	ymbolverzeichnis	25	
Li	teraturverzeichnis	27	
Ei	desstattliche Versicherung	27	

Einleitung

- 1.1 Motivation und Hintergrund
- 1.2 Aufbau der Arbeit

Definitionen

Algorithmus von Kezdy und McGuinness

Da die Arbeit auf dem sequenziellen Algorithmus von Kezdy und McGuinness, den sie in [1] vorstellen, beruht, wird er im Folgenden erklärt. Als Eingabe wird ein ungerichteter Graph ohne Mehrfachkanten erwartet, ausgegeben wird, ob ein K_5 -Minor enthalten ist oder nicht. Für den Fall, dass einer gefunden wurde, kann zusätzlich ausgegeben werden, welche Knoten den Minor formen. Die Laufzeit liegt in $\mathcal{O}(n^2)$

Planaritästests können bereits in linearer Laufzeit entscheiden, ob ein Graph planar ist oder einen K_5 - bzw. $K_{3,3}$ -Minor enthält. Es muss lediglich der Fall behandelt werden, in dem der der Test stoppt, weil er einen $K_{3,3}$ -Minor gefunden hat, denn es kann nicht garantiert werden, ob zusätzlich ein K_5 -Minor enthalten ist. Als Lösung testet der Algoritmus von Kezdy und McGuiness, ob ein gefundener $K_{3,3}$ -Minor ein gültiger 3-Separator ist und zerlegt ggf. den Graph in augmentierte Komponenten. Anschließend kann der Planaritästest auf die einzelnen Komponenten rekursiv angewendet werden.

Um das zentrale Theorem aus [1], welches den $K_{3,3}$ -Minor untersucht, zu erklären, wird zunächst die Gültigkeit augmentierter Komponenten behandelt:

3.0.1 Theorem. Für $k \geq 3$: Sei G ein k-zusammenhängender Graph und C ein k-Separator in G. Alle durch C definierten augmentierten Komponenten sind Minoren von G, falls es entweder mindestens k Komponenten sind oder mindestens zwei der Komponenten jeweils aus mehr als einem Knoten bestehen.

Beweis. Seien $c_1, c_2, ..., c_k$ die Knoten von C und $Z = \{Z_1, Z_2, ..., Z_k\}$ bzw. $Z = \{Z_1, Z_2, ..., Z_{k-1}\}$ die Zusammenhangskomponenten, die durch $G \cap C$ entstehen. Die zugehörigen augmentierten Komponenten seien $A_1, A_2, ..., A_k$ bzw. $A_1, A_2, ..., A_{k-1}$. Betrachtet wird eine beliebige dieser augmentierten Komponenten A_i . Der Definition der augmentierten Komponenten nach finden sich bereits alle Knoten von A_i in G wieder. Weiterhin enthält G mindestens alle Kanten in $A_i \cap C$ sowie die verbindenden Kanten zwischen A_i und C. Jedoch

bilden in A_i die Knoten von C eine Clique, es existieren also ggf. Kanten zwichen den Knoten von C in A_i , die es nicht in G gibt Es bleibt zu zeigen, dass die Kanten, die für diese Clique in A_i nötig sind, durch Kantenkontraktionen in G erzeugt werden können. Dadurch, dass G k-zusammenhängend ist, besitzt jede Zusammenhangskomponente von $G \cap C$ Kanten zu $c_1, c_2, ..., c_k$. Würde eine Kante zu einem Knoten c_j mit $1 \leq j \leq k$ fehlen, wäre ein k-1-Separator bestehend aus $C \setminus c_j$ möglich, was im Widerspruch zu dem k-Zusammenhang stehen würde. Das Theorem unterscheided nun zwei Fälle, um die fehlenden Kanten bereitstellen zu können:

- 1. Es existieren k Zusammenhangskomponenten. Wird A_i betrachtet, kommen die Knoten in $Z \setminus Z_i$ in Frage, um durch Kantenkontraktionen die fehlenden Kanten für die Clique von C in A_i zu erzeugen. Um die Kanten von C in A_i in G zu erzeugen, kann zunächst der Pfad, der c_1 mit Z_1 verbindet, kontrahiert werden. Anschließend ist c_1 mit allen Knoten in C verbunden. Dies kann analog für alle Knoten in C und den entsprechenden Zusammenhangskomponenten durchgeführt werden außer für c_i , da A_i der gesuchte Minor ist. Allerdings ist c_i aufgrund des k-Zusammenhangs mit allen anderen Zusammenhangskomponenten verbunden und nach den beschriebenen Kontraktionen bildet C eine Clique.
- 2. Es existieren k-1 Komponenten, aber mindestens zwei bestehen aus mehr als einem Knoten. Analog zum vorherigen Fall können die Pfade zwischen den Knoten von C und den Zusammenhangskomponenten A kontrahiert werden. Es fehlt jedoch ein Pfad, da eine Zusammenhangskomponente weniger vorliegt. Es gibt mindestens eine Zusammenhangskomponente aus $Z \setminus Z_i$, die aus zwei oder mehr Knoten besteht. Da der Graph k-zusammenhängend ist, sind mindestens zwei dieser Knoten mit allen in C verbunden, sodass sie durch Kontraktionen mit zwei unterschiedlichen Knoten aus C genutzt werden könnenm um die gesuchte Clique zu erzeugen.

Als nächstes stellen Kezdy und McGuinness fest, dass im Fall eines (3,3)-Separators der Graph in augmentierte Komponenten zerlegt werden kann:

3.0.2 Theorem. Sei G ein 3-zusammenhängender Graph mit einem (3,3)-Separator C. G hat einen K_5 -Minor, falls eine der durch C definierten augmentierten Komponenten einen K_5 -Minor enthält.

Beweis. Zunächst kann festgestellt werden, dass falls eine der augmentierten Komponenten einen K_5 -Minor enthält, dieser laut Theorem 3.0.1 auch ein Minor von G ist. Es bleibt zu zeigen, dass sich ein K_5 -Minor nicht auf zwei augmentierte Komponenten erstreckt, sondern sich ausschließlich in einer befindet. Angenommen es gilt $K_5 \prec_M G$ und zwei der Branch-Sets, die den K_5 -Minor bilden, befinden sich jeweils vollständig in unterschiedlichen Zusammenhangskomponenten. In diesem Fall wäre C ein 3-Separator in dem gefundenen Minor, was im Widerspruch zu dem 4-Zusammenhang des K_5 steht.

Das zentrale Theorem ist darauf zurückzuführen, dass jeder Graph ohne K_5 -Minor durch Cliquen-Summen von Teilgraphen, die planar oder isomorph zu W sind, gebildet werden kann. [2]

- **3.0.3 Theorem.** Sei G ein 3-zusammenhängender Graph mit einem $K_{3,3}$ -Homeomorph S, dessen Knoten gemäß einer 2-Färbung in $R = \{a, b, c\}$ und $B = \{x, y, z\}$ unterteilt sind. Eine der folgenden Bedingungen trifft auf G zu:
 - 1. G enthält einen K_5 -Minor.
 - 2. G ist isomorph zu W.
 - 3. $\{a,b,c\}$ bilden einen 3-Separator, sodass $\{x,y,z\}$ in separaten Komponenten liegen.
 - 4. $\{x, y, z\}$ bilden einen 3-Separator, sodass $\{a, b, c\}$ in separaten Komponenten liegen.

Durch die Theoreme 3.0.1 und 3.0.2 wurde gezeigt, dass der Graph in den Fällen 3 und 4 in augmentierte Komponenten zerlegt und darauf der Planaritästest ausgeführt werden kann. Anschließend stellen die Autoren einige Lemmata auf, mit denen untersucht wird, ob S einen K_5 -Minor enthält - also ob Bedingung 1 zutrifft.

3.0.4 Lemma. Sei G ein 3-zusammenhängender Graph und S ein $K_{3,3}$ -Homeomorph in G. Hat ein Knoten w in $G \cap S$ drei Pfade zu Knoten in S, die nicht alle im selben Branch-Fan liegen, enthält G einen K_5 -Minor.

Beweis. Seien t, u, v die drei Endpunkte der Pfade in S. Mindestens einer von ihnen ist ein innerer Knoten, da sonst alle im selben Branch-Fan liegen würden. Sei o. B. d. A. t ein solcher innerer Knoten auf dem Pfad P(a, x). Folglich können u und v nicht beide in F(a) oder F(x) liegen, sonst lägen alle drei im gleichen Branch-Fan.

- 1. u und v sind nicht im gleichen Branch-Fan wie t. Dann müssen u und v ebenfalls innere Knoten sein, im Beispiel auf den Pfaden P(y,b) bzw. P(z,c). Es kann ein M-Minor durch folgende Kontraktionen erzeugt werden: u mit einem der roten und v mit einem der blauen Knoten (analog u mit blau und v mit rot) sowie P(w,t).
- 2. u oder v liegen auf P(a, x). Sei o. B. d. A. $u \in P(a, x)$. Da t ebenfalls in diesem Pfad liegt, gilt $\{t, u\} \in F(a) \cup F(x)$, sodass v nicht in diesen beiden Branch-Fans liegen kann. Es können t und v getauscht werden, sodass eine Reduktion auf Fall 1 erreicht wird.
- 3. Entweder u oder v liegen im gleichen Branch-Fan wie t. Sei o.B.d.A. $u \in F(x) \cap P(a,x)$, im Beispiel auf dem Pfad P(b,x). Es gilt $\{t,u\} \in F(x)$, weshalb v in einem anderen Branch Fan sein muss. Da alle roten Knoten in F(x) liegen, gilt konkreter $v \in (F(y) \cup F(z)) \cap \{a,b,c\}$ Es können P(b,u) kontrahiert werden sowie je nach Fall

entweder P(v, y) oder P(v, z). Wird P(w, t) ebenfalls kontrahiert, entsteht erneut ein M-Minor.

3.0.5 Lemma. Sei G ein 3-zusammenhängender Graph und S ein K_{3,3}-Homeomorph in G. Betrachtet wird ein Pfad außerhalb von S, der zwei Knoten in einem roten Branch-Fan verbindet, welche jedoch nicht beide auf dem gleichen Pfad in S liegen. Analog dazu wird ein Pfad außerhalb von S gesucht, der zwei Knoten in einem blauen Branch-Fan verbindet, ohne dass diese beide auf dem gleichen Pfad in S liegen. Existieren diese beiden Pfade in G, dann enthält G einen K₅-Minor.

Beweis. Sei P_1 der Pfad, der zwei Knoten in einem roten Branch-Fan verbindet und P_2 der, der zwei in einem blauen Branch-Fan verbindet. O. B. d. A. hat P_1 Endpunkte in F(a) und P_2 in F(x). Da laut Bedingung die Endpunkte nicht in einem einzelnen Pfad von S liegen, kann a kein Endpunkt von P_1 und x kein Endpunkt von P_2 sein. Es ergeben sich zwei Fälle:

- 1. Die beiden Pfade haben keine gemeinsamen Knoten Da P_1 beide Endpunkte in F(a) hat, liegen diese beiden Endpunkte in zwei unterschiedlichen blauen Branch-Fans. Entsprechend sind die Endpunkte von P_2 in unterschiedlichen roten Branch-Fans. Werden die Endpunkte von P_1 je mit den beiden blauen und die von P_2 mit den beiden roten Knoten von S kontrahiert, entsteht ein K_5 -Minor.
- 2. Die beiden Pfade haben einen gemeinsamen Knoten w. Liegt dieser gemeinsame Knoten außerhalb von S, kann Lemma 3.0.4 angewendet werden, da die Endpunkte der Pfade nicht alle im gleichen Branch-Fan liegen. Liegt w innerhalb von S, ist er ein Endpunkt von P_1 und P_2 und muss auf dem Pfad P(a,x) liegen, da dieser der einzige gemeinsame Pfad ist. Sei $P_1 = P(w,u)$ und $P_2 = P(w,v)$. Da u nicht in F(x) liegt und v nicht in F(a), gibt es einen Pfad von u zu einem blauen Knoten und von v zu einem roten Knoten, die sich nicht kreuzen und daher kontrahiert werden können. Durch die Kontraktion dieser beiden Pfade entsteht ein M-Minor.
- **3.0.6 Lemma.** Sei G ein 3-zusammenhängender Graph und S ein K_{3,3}-Homeomorph in G. Betrachtet wird ein Pfad außerhalb von S, der zwei innere Knoten paralleler Pfade in S verbindet sowie ein Pfad außerhalb von S, dessen Endpunkte nicht beide im gleichen Pfad von S liegen. Bestehen die Endpunkte der beiden Pfade aus mindestens drei unterschiedlichen Knoten in S, enthält G einen K₅-Minor.
- **3.0.7 Lemma.** Sei G ein 3-zusammenhängender Graph und S ein $K_{3,3}$ -Homeomorph in G mit den roten Knoten $R = \{a, b, c\}$ und den blauen Knoten $B = \{x, y, z\}$. Bilden weder R, noch B einen (3,3)-Separator, enthält G einen K_5 -Minor.

Beweis. Falls R und B keinen (3,3)-Separator bilden, ist sowohl der Graph $G \cap R$ als auch $G \cap B$ zusammenhängend. Sei P_1 ein Pfad, der zwei blaue Branch-Fans in $G \cap R$ und P_2 einer, der zwei rote Branch-Fans in $G \cap B$ verbindet. Beide liegen außerhalb von S. Die Endpunkte von P_1 seien u_1 und v_1 , die von P_2 seien u_2 und v_2 . u_1 und v_1 besitzen jeweils einen Pfad in S zu einem der roten Knoten. Foglich gibt es einen dritten roten Knoten, der keinen solchen Pfad besitzt - u_2 wird so gewählt, dass er in dem Branch-Fan dieses Knotens liegt. Demnach sind u_1 , v_1 und u_2 unterschiedliche Knoten. Anschließend kann je nach vorliegendem Fall die Aussage auf eines der vorherigen Lemmata reduziert werden:

- 1. P_1 oder P_2 verbindet zwei parallele Pfade in S. In dem Fall kann Lemma 3.0.6 angewendet werden und G enthält einen K_5 -Minor.
- 2. Die Endpunkte von P_1 liegen in einem einzelnen roten Branch-Fan analog liegen die von P_2 in einem blauen. Nach Lemma 3.0.5 enthält G einen K_5 -Minor.

3.0.8 Lemma. Sei G ein 3-zusammenhängender Graph mit einem W-Homeomorph. Ist G nicht isomorph zu W, enthält G einen K_5 -Minor.

Als nächstes folgt der Beweis zu 3.0.3.

Beweis. Gezeigt wird, dass falls S keinen (3,3)-Separator bildet, G entweder einen K_5 -Minor enthält oder isomorph zu W ist. Falls kein K_5 -Minor enthalten ist, gilt nach Lemma 3.0.7, dass $G \cap R$ oder $G \cap B$ nicht zusammenhängend ist. Demnach ist B ein 3-Separator, der den Graph teilt, aber die Knoten aus R liegen nicht alle in unterschiedlichen Zusammenhangskomponenten. Deshalb muss es außerhalb von S mindestens einen Pfad P_1 geben, der zwei der roten Knoten in G-B verbindet. Analog gibt es einen Pfad P_2 , der zwei blaue Knoten in G-R verbindet. Da P_1 zwei rote Branch-Fans verbindet, liegen seine Endpunkte in zwei verschiedenen Pfaden von S. Gleiches gilt für die Endpunkte von P_2 . Liegen die Endpunkte von P_1 beide in einem einzelnen blauen Branch-Fan und die von P_2 in einem einzelnen roten, dann enthält G laut Lemma 3.0.5 einen K_5 -Minor. Liegen die Endpunkte von P_1 in parallelen Pfaden von S, enthält G laut Lemma 3.0.6 einen K_5 -Minor, da die Endpunkte von P_2 nicht auf einem Pfad von S liegen (analog falls P_2 auf parallelen Pfaden liegt). Übrig bleibt die Möglichkeit, dass die Endpunkte der beiden Pfade paarweise identisch sind. Dann ist G ein Homeomorph zu W und enthält laut Lemma ?? keinen K_5 -Minor bei Isomorphie zu W.

Wagner Struktur

Implementierung

Experimentelle Analyse

Zusammenfassung und Ausblick

Anhang A

Weitere Informationen

Abbildungsverzeichnis

Algorithmenverzeichnis

${\bf Symbol verzeichn is}$

Literaturverzeichnis

- [1] A. KÉZDY, P. MCGUINESS: Sequential and Parallel Algorithms to Find a K₅ Minor. In: Proceedings of the Third Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, 27-29 January 1992, Orlando, Florida, USA., Seiten 345-356, Philadelphia, PA, USA, 1992. Society for Industrial and Applied Mathematics.
- [2] WAGNER, K.: Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen, 114:570–590, 1937.

Eidesstattliche Versicherung

Sauer, Julian	197859
Name, Vorname	Matrnr.
	ich die vorliegende Masterarbeit mit dem Titel ${f con} \ K_5 ext{-Minoren in Graphen}$
selbstständig und ohne unzulässige fremde die angegebenen Quellen und Hilfsmittel b	Hilfe erbracht habe. Ich habe keine anderen als benutzt sowie wörtliche und sinngemäße Zitate her oder ähnlicher Form noch keiner Prüfungs-
Dortmund, den 30. Juli 2019	
Ort, Datum	Unterschrift
Belehrung:	
einer Hochschulprüfungsordnung verstößt, keit kann mit einer Geldbuße von bis zu 50. tungsbehörde für die Verfolgung und Ahn ler/ die Kanzlerin der Technischen Univers	über Prüfungsleistungen betreffende Regelung handelt ordnungswidrig. Die Ordnungswidrig000,00 € geahndet werden. Zuständige Verwaldung von Ordnungswidrigkeiten ist der Kanzität Dortmund. Im Falle eines mehrfachen oder suches kann der Prüfling zudem exmatrikuliert G -)
Die Abgabe einer falschen Versicherung an Jahren oder mit Geldstrafe bestraft.	n Eides statt wird mit Freiheitsstrafe bis zu 3
	rd gfls. elektronische Vergleichswerkzeuge (wie ung von Ordnungswidrigkeiten in Prüfungsver-
Die oben stehende Belehrung habe ich zur	Kenntnis genommen:
Dortmund, den 30. Juli 2019	
Ort, Datum	Unterschrift