Congestion Control

Abusayeed Saifullah

CS 5600 Computer Networks

Network Congestion

- Congestion: When one part of the subnet (e.g. one or more routers in an area) is overloaded.
- The network and transport layers share the responsibility for handling congestion.
- It is the network layer that directly experiences congestion → network layer must take action.

Network congestion has similarity with congested road traffic.

Congestion Effects

Packets sent

- Packet delay
- Packet loss
- Degraded performance

Congestion Control

- Most effective way to control congestion is to reduce the load that the transport layer is placing on the network.
- This requires the network and transport layers to work together.
- In this lecture, we will look at the network aspects of congestion.
- We will complete the topic by covering the transport aspects of congestion later.

Factors that Cause Congestion

- Packet arrival rate exceeds the outgoing link capacity.
- Insufficient memory to store arriving packets
- Bursty traffic
- Slow processor

Congestion Control vs Flow Control

- Congestion control is a global issue involves every router and host within the subnet
- Flow control scope is point-to-point; involves just sender and receiver.

General Principles of Congestion Control

- 1. Monitor the system.
 - detect when and where congestion occurs.
- 2. Pass information to where action can be taken.
- 3. Adjust system operation to correct the problem.

Congestion Control Techniques

- Congestion Control is concerned with efficiently using a network at high load.
- Several techniques can be employed. These include:
 - Warning bit
 - Choke packets
 - Load shedding
 - Random early discard
 - Traffic shaping
- The first 3 deal with congestion detection and recovery. The last 2 deal with congestion avoidance.

Warning Bit

- A special bit in the packet header is set by the router to warn the source when congestion is detected.
- The bit is copied and piggy-backed on the ACK and sent to the sender.

 The sender monitors the number of ACK packets it receives with the warning bit set and adjusts its transmission rate accordingly.

Choke Packets

- A more direct way of telling the source to slow down.
- A choke packet is a control packet generated at a congested node and transmitted to restrict traffic flow.
- The source, on receiving the choke packet must reduce its transmission rate by a certain percentage.
- An example of a choke packet is the ICMP Source Quench Packet.

Hop-by-Hop Choke Packets

- Over long distances or at high speeds choke packets are not very effective.
- A more efficient method: hop-by-hop backpressure.
- This requires each hop to reduce its transmission even before the choke packet arrives at the source.

Hop-by-Hop Choke Packets

(a) A choke packet that affects only the source.

(b) A choke packet that affects each hop it passes through.

Load Shedding

- When buffers become full, routers simply discard packets.
- Which packet is chosen to be the victim depends on the application and on the error strategy used in the data link layer.
- Wine (old is better than new): e.g. a file transfer cannot discard older packets since this will cause a gap in the received data.
- Milk (new is better than old): e.g. For real-time voice or video, it is probably better to throw away old data and keep new packets.
- Get the application to mark packets with discard priority.

Random Early Detection (RED)

- This is a proactive approach in which the router discards one or more packets before the buffer becomes completely full.
- Each time a packet arrives, the RED algorithm computes the average queue length, avg.
- If avg is lower than some lower threshold, congestion is assumed to be minimal or non-existent and the packet is queued.

Random Early Detection (RED)

- If avg is greater than some upper threshold, congestion is assumed to be serious and the packet is discarded.
- If *avg* is between the two thresholds, this might indicate the onset of congestion. The probability of congestion is then calculated.

Traffic Shaping

- Another method of congestion control is to "shape" the traffic before it enters the network.
- Traffic shaping controls the rate at which packets are sent (not just how many). Used in ATM and Integrated Services networks.
- At connection set-up time, the sender and carrier negotiate a traffic pattern (shape).
- The agreement is often called SLA (service level agreement):

"My traffic pattern will look like this; can you handle it?"

Traffic Shaping

- What to do if SLA is not followed by sender
 - Packets in access of the agreed pattern might be dropped or less prioritized
- Two traffic shaping algorithms are:
 - Leaky Bucket
 - Token Bucket

The Leaky Bucket Algorithm

- The Leaky Bucket Algorithm used to control rate in a network.
- It is implemented as a single-server queue with constant service time.
- If the bucket (buffer) overflows then packets are discarded.

The Leaky Bucket Algorithm

(a) A leaky bucket with water. (b) a leaky bucket with packets.

Leaky Bucket (LB) Algorithm, cont.

- The leaky bucket enforces a constant output rate (average rate) regardless of the burstiness of the input. Does nothing when input is idle.
- The host injects one packet per clock tick onto the network. This results in a uniform flow of packets, smoothing out bursts and reducing congestion.
- When packets have the same size (as in ATM cells), one packet per tick is okay. For variable length packets though, it is better to allow a fixed number of bytes per tick. E.g. 1024 bytes per tick will allow one 1024-byte packet or two 512-byte packets or four 256-byte packets on 1 tick.

The Leaky Bucket Example

(a) Input to a leaky bucket. (b) Output from a leaky bucket

Token Bucket (TB) Algorithm

- In contrast to the LB, the Token Bucket Algorithm, allows the output rate to vary, depending on the size of the burst.
- Token: a unit or fixed number of bytes or single packet of fixed size
 - We assume a token=a unit byte
- In the TB algorithm, the bucket holds tokens.
- To transmit a packet of n bytes, the host must capture and destroy n tokens.
- Number of tokens in the bucket → sending burst size

Token Bucket (TB) Algorithm

- Tokens are generated by a clock at the rate r tokens per second (i.e. one token every 1/r sec).
- The bucket can hold at the most b tokens. If a token arrives when the bucket is full, it is discarded.
- If the number of tokens in the bucket is less than the number of bytes in a packet, no tokens are removed from the bucket, and no packet is injected
- (Initially or) Idle hosts can capture and save up b tokens in order to send larger bursts later.

Token Bucket Regulator (Shaper)

Remarks

- When tokens are not available, TB has 2 policies
 - Store packet (shaper)
 - Discard packet (policer)
- A flow as 2-tuple (input rate, output rate)
- The sum of two regulated flows (b_1,r_1) & (b_2,r_2) behave like a regulated flow (b_1+b_2,r_1+r_2)
- Cascading TB after a LB can shape the burst rate