Part 4

LAN SYSTEMS (2)

Ethernet (CSMA/CD)

- Carriers Sense Multiple Access with Collision Detection (CSMA/CD)
- Ethernet
- **♦ IEEE 802.3**

IEEE802.3 Medium Access Control

- Random Access
 - Stations access medium randomly
- Contention
 - Stations content for time on medium

ALOHA

- Packet Radio
- Sender:
 - When station has frame, it sends
 - Station listens (for max round trip time) plus small increment
 - ★ If ACK, fine. If not, retransmit
 - If no ACK after repeated transmissions, give up
- Receiver:
 - Frame check sequence (as in HDLC)
 - If frame OK and address matches receiver, send ACK
- Frame may be damaged by noise or by another station transmitting at the same time (collision)
- Any overlap of frames causes collision
- Max utilization 18%

ALOHA

Slotted ALOHA

- Time in uniform slots equal to frame transmission time
- Need central clock (or other sync mechanism)
- Transmission begins at slot boundary
- Frames either miss or overlap totally
- Max utilization 37%

Slotted ALOHA

Slotted ALOHA protocol (shaded slots indicate collision)

CSMA

- Propagation time is much less than transmission time
- All stations know that a transmission has started almost immediately
- First listen for clear medium (carrier sense (CS))
- If medium idle, transmit
- If two stations start at the same instant, collision
- Wait reasonable time (round trip plus ACK contention)
- No ACK then retransmit
- Max utilization depends on propagation time (medium length) and frame length
 - Longer frame and shorter propagation gives better utilization

If Busy?

- If medium is idle, transmit
- If busy, listen for idle then transmit immediately
- If two stations are waiting, collision

CSMA/CD

- With CSMA, collision occupies medium for duration of transmission
- Stations listen whilst transmitting
- If medium idle, transmit
- ♦ If busy, listen for idle, then transmit
- If collision detected, jam then cease transmission (for twisted-pair star topology)
- After jam, wait random time then start again (for twisted-pair star topology)
 - Binary exponential back off

CSMA/CD Operation

•	
TIME t_0	
A's transmission	包括
C's transmission	
Signal on bus	
TIME t_1	
A's transmission	
C's transmission	<u></u>
Signal on bus	
TIME t_2	
A's transmission	
C's transmission	
Signal on bus	
TIME t_3	
A's transmission	
C's transmission	
Signal on bus	

Collision Detection

- On baseband bus, collision produces much higher signal voltage than signal
- Collision detected if cable signal greater than single station signal
- Signal attenuated over distance
- Limit distance to 500m (10Base5) or 200m (10Base2)
- For twisted pair (star-topology) activity on more than one port is collision
- Special collision presence signal

IEEE 802.3 Frame Format

SFD = Start of frame delimiter

DA = Destination address

SA = Source address

FCS = Frame check sequence

10Mbps Specification (Ethernet)

<data rate> < Signaling method> < Max segment length>

	10Base5	10Base2	10Base-T	10Base-FP
Medium	Coaxial	Coaxial	UTP	850nm fiber
Signaling	Baseband	Baseband	Baseband	Manchester
	Manchester	Manchester	Manchester	On/Off
Topology	Bus	Bus	Star	Star
Nodes	100	30	-	33

100Mbps (Fast Ethernet)

100Base-TX
 2 pair, STP 2 pair, Cat 5UTP
 2 optical fiber 4 pair, cat 3,4,5

♦ MLT-3 MLT-3 4B5B,NRZI 8B6T,NRZ

Gigabit Ethernet Configuration

Gigabit Ethernet - Differences

- Carrier extension
- At least 4096 bit-times long (512 for 10/100Mbps)
- Frame bursting: allow for multiple short frames to be transmitted consecutively, up to a limit, without relinquishing control for CSMA/CD between frames. Frame Bursting avoids the overhead of carrier extension when a single station has a number of small frames ready to send.

Gigabit Ethernet - Physical

- - Short wavelength, multimode fiber
- **1000Base-LX**
 - Long wavelength, Multi or single mode fiber
- - Copper jumpers <25m, shielded twisted pair</p>
- - 4 pairs, cat 5 UTP
- Signaling 8B/10B

Token Ring (802.5)

MAC protocol

- Small frame (token) circulates when idle
- Station waits for token
- Changes one bit in token to make it SOF for data frame
- Append rest of data frame
- Frame makes round trip and is absorbed by transmitting station
- Station then inserts new token when transmission has finished and leading edge of returning frame arrives
- Under light loads, some inefficiency
- Under heavy loads, round robin

Token Ring Operation

Token Ring MAC Frame

SD = starting delimiter

access control

FC = frame control

AC.

DA = destination address

SA = source address

FCS = frame check sequence

ED = ending delimiter

FS = frame status

(a) General Frame Format

(b) Token Frame Format

PPP = priority bits

M = monitor bit

T = token bit RRR = reservation bits

(c) Access Control Field

FF = frame-type bits ZZZZZZ = control bits

J K 1 J K 1 I E

J. K = non-data bits

E = error-detected bit

I = intermediate frame bit

(e) Ending Delimiter Field

A = Address recognized bit

rr = reserved

C = Frame copied bit

(e) Frame Status Field

(d) Frame Control Field

Priority Scheme 1. A is sending to 4. D generates token B; D reserves at at higher priority. higher level level 2. A generates higher priority token and 5. A sees the high remembers lower priority token and priority. captures it. \mathbf{C} 6. A generates token at the pre-empted 3. D uses higher lower priority level. priority token to send data to C.

Dedicated Token Ring

- Central hub
- Acts as switch
- Full duplex point to point link
- Concentrator acts as frame level repeater
- No token passing

802.5 Physical Layer

Data Rate
 4
 16
 100

Medium UTP,STP,Fiber

Signaling Differential Manchester

Max Frame 4550 18200 18200

Access Control TP or DTR TP or DTR DTR

FDDI

- LAN and MAN applications
- Token Ring

FDDI MAC Frame Format

Bits

64	8	8	16 or 48	16 or 48	≥ 0	32	4	1
Preamble	SD	FC	DA	SA	Info	FCS	ED	FS

(a) General Frame Format

Preamble	SD	FC	ED
----------	----	----	----

(b) Token Frame Format

SD = starting delimiter

SA = source address

ED = ending delimiter

FC = frame control

FCS = frame check sequence

FS = frame status

DA = destination address

FDDI MAC Protocol

- As for 802.5 except:
- Station seizes token by aborting token transmission
- Once token captured, one or more data frames transmitted
- New token released as soon as transmission finished (early token release in 802.5)

FDDI Operation

FDDI Physical Layer

Medium Optical Fiber Twisted Pair

♦ Data rate 100 100

Signaling
4B/5B/NRZI MLT-3

Max repeaters 100 100

Between repeaters 2km 100m

LAN Generations

- First
 - CSMA/CD and token ring
 - Terminal to host and client server
 - Moderate data rates
- Second
 - **×** FDDI
 - Backbone
 - High performance workstations
- Third
 - × ATM
 - Aggregate throughput and real time support for multimedia applications

Third Generation LANs

- Support for multiple guaranteed classes of service
 - Live video may need 2Mbps
 - File transfer can use background class
- Scalable throughput
 - Both aggregate and per host
- Facilitate LAN/WAN internetworking

ATM LANs

- Asynchronous Transfer Mode
- Virtual paths and virtual channels
- Preconfigured or switched
- Gateway to ATM WAN
- Backbone ATM switch
 - Single ATM switch or local network of ATM switches
- Workgroup ATM
 - End systems connected directly to ATM switch
- Mixed system

Example ATM LAN

ATM LAN HUB

Compatibility

- Interaction between end system on ATM and end system on legacy LAN
- Interaction between stations on legacy LANs of same type
- Interaction between stations on legacy LANs of different types

Fiber Channel - Background

- - Direct point to point or multipoint comms link
 - Hardware based
 - High Speed
 - Very short distance
 - User data moved from source buffer to destiation buffer
- Network connection
 - Interconnected access points
 - Software based protocol
 - Flow control, error detection & recovery
 - End systems connections

Fiber Channel

- Best of both technologies
- Channel oriented
 - Data type qualifiers for routing frame payload
 - Link level constructs associated with I/O ops
 - Protocol interface specifications to support existing I/O architectures
 - ✓ e.g. SCSI
- Network oriented
 - Full multiplexing between multiple destinations
 - Peer to peer connectivity
 - Internetworking to other connection technologies

Fiber Channel Elements

- End systems Nodes
- Switched elements the network or fabric
- Communication across point to point links

Fiber Channel Network

Fiber Channel Protocol Architecture (1)

- FC-0 Physical Media
 - Optical fiber for long distance
 - coaxial cable for high speed short distance
 - STP for lower speed short distance
- FC-1 Transmission Protocol
 - 8B/10B signal encoding
- FC-2 Framing Protocol
 - Topologies
 - Framing formats
 - Flow and error control
 - Sequences and exchanges (logical grouping of frames)

Fiber Channel Protocol Architecture (2)

- FC-3 Common Services
 - Including multicasting
- FC-4 Mapping
 - Mapping of channel and network services onto fiber channel
 - ✓ e.g. IEEE 802, ATM, IP, SCSI

Wireless LANs

- **♦ IEEE 802.11**
- Basic service set (cell)
 - Set of stations using same MAC protocol
 - Competing to access shared medium
 - May be isolated
 - May connect to backbone via access point (bridge)
- Extended service set
 - Two or more BSS connected by distributed system
 - Appears as single logic LAN to LLC level

Types of station

- No transition
 - Stationary or moves within direct communication range of single BSS
- BSS transition
 - Moves between BSS within single ESS
- ESS transition
 - From a BSS in one ESS to a BSS in another ESS
 - Disruption of service likely

Wireless LAN - Physical

- Infrared
 - * 1Mbps and 2Mbps
 - Wavelength 850-950nm
- Direct sequence spread spectrum
 - 2.4GHz ISM band
 - Up to 7 channels
 - Each 1Mbps or 2Mbps
- Frequency hopping spread spectrum
 - 2.4GHz ISM band
 - 1Mbps or 2Mbps
- Others under development

Media Access Control

- Distributed wireless foundation MAC (DWFMAC)
- Distributed coordination function (DCF)
 - **×** CSMA
 - No collision detection
- Point coordination function (PCF)
 - Polling of central master

802.11 MAC Timing

(a) Basic Access Method

(b) PCF Superframe Construction

Examples of HTTP Operation

Intermediate HTTP Systems

