Computational complexity

•••

Evaluating algorithms

Search algorithm in a sorted array:

Target value *T*

Sorted array $A = \{A_1, A_2, A_3 ... A_n\}$

Goal: find an algorithm to search if T is present in A

Two algorithms:

```
Linear search algorithm
trouvé = False
i = 0
while not trouvé and i < len(A):
    if(A[i] == T):
        trouvé = True
    i += 1

if trouvé:
    print("trouvé")
else:
    print("pas trouvé")</pre>
```

Binary search algorithm

```
start = 0
end = len(A) - 1
resultat = "pas trouvé"
while(start <= end):
    mid = (start + end) // 2
    if(A[mid] > T):
        end = mid - 1
    elif(A[mid] < T):
        start = mid + 1
    else:
        resultat = "trouvé"</pre>
```

How efficient are they?

Let's compare them with the module *time*:

In blue, the Linear search algorithm

In orange, the Binary search algorithm

What happened?

Linear search algorithm trouvé = False i = 0 while not trouvé and i < len(A): if(A[i] == T): trouvé = True i += 1 if trouvé: print("trouvé") else:</pre>

print("pas trouvé")

Loop of size n at worse, with fixed operations inside \rightarrow complexity is called *linear* in n

Binary search algorithm start = 0end = len(A) - 1resultat = "pas trouvé" while(start <= end):</pre> mid = (start + end) // 2if(A[mid] > T): end = mid - 1elif(A[mid] < T):</pre> start = mid + 1else: resultat = "trouvé" print(resultat)

Let's take a closer look at what happens with this algorithm...

At each step the search interval is divided in half. \rightarrow complexity is called *logarithmic* in $log_2(n)$.

A more formal definition

What we have evaluated previously is the *time* complexity, i.e the amount of time that it takes to run an algorithm, in function of its parameters

 When comparing memory consumption, we talk about space complexity

A more formal definition

When evaluating complexity, we use the *big O notation*:

$$f(x) = O(g(x))$$

if and only if there is x_0 and M such that:
 $|f(x)| \le M g(x)$ for all $x > x_0$

For example:

- $n^2 3n + 5 = O(n^2)$
- $\bullet \quad 42 \qquad = O(1)$
- \bullet $-7 \text{ n } \log_2 n = O(n \log n)$

This notation allows to evaluate how the program behaves depending on the size of the parameters.

Examples of time complexity

Let *n* be the size of an array.

Here are the time complexities of a few operations:

•	O(log n)	find an	element in	a sorted	array	with binar	y search
---	----------	---------	------------	----------	-------	------------	----------

- O(n) explore all elements of the array
- O(n log n) sort the array with a merge sort
- $O(n^2)$ find all the couples of elements of the array
- O(n!) find all the permutations of the array

etc

Average VS worst case complexity

Sometimes the time needed to run an algorithms varies for inputs of the same size.

For example, the complexity of the quick sort is:

- O(n log n) on average
- $O(n^2)$ in the worst case

When talking about complexity, we usually refer to the worst case complexity.

Common complexities

• 1

constant

• log n

logarithmic

• n

linear

• n log n

linearithmic

 \bullet n^2

quadratic

 \bullet n^3

cubic

 \bullet n^k

polynomial

kⁿ

exponential

• n!

factorial

Equivalence time - complexity

total time = number of operations / operations per second

In python3 ...

total time = number of operations $/ 10^7 - 10^8$

Why is it useful?

Problem's constraints : $0 \le N \le 10^2$, $0 \le C \le 10^3$, Time limit = 1s

N*C =>
$$10^5$$
 operations => 0.001s
N2*C => 10^7 operations => 0.1s
N*C² => 10^8 operations => 1s
N!*C => ∞ ? operations => NO

Some traps easily avoidable

```
array = ACollectionImplementation()
targets = [1,2,5,6]
for element in targets :
   if(array.found(element)): ← we don't know how this function is implemented
     print(element, "was found")
   else :
     print(element, "was not found")
```

The Complexity of this algorithm is unknown

Common complexities

• 1

constant

• log n

logarithmic

• n

linear

n log n

linearithmic

 \bullet n^2

quadratic

 \bullet n^3

cubic

 \bullet n^k

polynomial

 \bullet k^n

exponential

• n!

factorial

Now, some exercises :)