EB-Net for landmarking on pronotum images

Le Van Linh - Beurton-Aimar Marie, Zemmari Akka, Parisey Nicolas I&S - Univ. Bordeaux, LaBRI, France

Pronotum and landmarks

How to locate the landmarks automatically?

Predicted landmarks on images

- Yellow points are manual landmarks
- Red points are predicted landmarks

Evaluation progresses

On quality metrics for regression problems.

Metric ¹	r^2	EV	Pearson
Cintas et al.	0.884	0.951	0.976
Our model	0.9952	0.9951	0.9974

On average distances by landmarks

#Landmark	Distance (in pixels)
1	4.002
2	4.483
3	4.296
4	4.387
5	4.293
6	5.363
7	4.636
8	4.936

The proportion of acceptable predicted landmarks

Conclusion

- 1. A CNN has been proposed to predict the landmarks on pronotum images which are difficult to apply image processing techniques.
- 2. A new method has been applied to augment dataset.
- 3. The quality of predicted landmarks have been evaluated by average distances.
- 4. Predicted landmarks have been accepted with an accuracy greater than 80%.
- 5. The predicted landmarks can be used to replace manual landmarks.

Bibliography

- Reliability, QoE and scalability
 MS-Stream: Multiple-Source adaptive streaming over HTTP
- Incentive to contribute Rewarding: contributing users get a higher quality
- End-users privacy TEE (SGX): encryption, NAT and anonymity

Dataset augmentation

- 1. Changing the value of one color channel in the original image
- 2. Separating the channels of original image
- 3. In total: $293 \times 7 = 2051$ images

Elementary block

An elementary block (EB) is consists of:

- A Convolutional layer
- A Max-Pooling layer
- A Dropout layer

Network architecture

The proposed network includes:

- Three elementary blocks
- Three fully connected layers
- A Dropout layer

https://www.labri.fr/

Université de BORDEAUX

Twitter:

@labriOfficial

Thursday April 4, 2019