МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого»

Институт компьютерных наук и кибербезопасности Направление: 02.03.01 Математика и компьютерные науки

Отчет по дисциплине: «Основы архитектуры ЦВМ»

«Синтез комбинационных суммирующих устройств. АЛУ.»

Студент, группы 5130201/40003	Адиатуллин Т. Р.
Руководитель, Преподаватель	Вербова Н. М.
	2025 R

1 Цель работы

Изучить принципы работы суммирующих устройств.

2 Ход выполнения работы

Одноразрядный сумматор — это электронная схема, выполняющая сложение двух двоичных чисел по одному разряду, с учётом возможного переноса из предыдущего разряда. Для реализации схемы полусумматора и одноразрядного сумматора, была использована переключательная функция (см. Таблица 1)

X	Y	Z	S	P
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Таблица 1. Переключательная функция для одноразрядного сумматора

Также была составлена совершенная дизъюнктивная нормальная форма.

$$S = \overline{x} \, \overline{y} \, z \vee \overline{x} \, y \, \overline{z} \vee x \, \overline{y} \, \overline{z} \vee x \, y \, z$$
$$P = \overline{x} \, y \, z \vee x \, \overline{y} \, z \vee x \, y \, \overline{z} \vee x \, y \, z$$

Далее была построена схема одноразрядный сумматора в Multisim (см. $\operatorname{Puc} 1$).

Рис. 1: Одноразрядный сумматор

Полусумматор — это простая логическая схема с двумя входами и двумя выходами, предназначенная для сложения двух однобитных чисел. В отличие от полного сумматора, он не учитывает перенос из предыдущего разряда и работает только с текущими входами, формируя сумму и сигнал переноса.

Полный сумматор, в свою очередь, имеет три входа: два для складываемых битов и один для переноса из младшего разряда.

Для реализации полусумматора используются логические функции (см. Таблицу 2), описывающие выходы схемы в зависимости от входных комбинаций.

X	Y	S	P
0	0	0	0
0	1,	1	0
1	0	1	0
1	1	0	1

Таблица 2. Переключательная функция для полусумматора

Была построена совершенная дизъюнктивная норманая форма для двух переменных.

$$S = x\overline{y} \vee \overline{x}y = x \oplus y$$
$$P = x \wedge y$$

Далее была построена схема полусумматора в Multisim (см. Рис 2).

Рис 2. Полусумматор

Был изучен принцип работы АЛУ К155ИПЗ (SN74181) (см. Рис. 3). Далее эта схема была введена в Multisim (см. Рис 4).

Рис 3. Схема для исследования ИС К155ИП3

Рис 4. Схема АЛУ К155ИПЗ (SN74181)

Пример использования:

Проверим работу схемы в режиме выполнения логических функций Поразрядной коньюнкции (AB) двух операндов A и $B, A=0110, B=1111 \to AB=0110$, режим работы F=1011 (см. Рис 5)

Рис 5. поразрядная конъюнкция(АВ)

3 Вывод

В процессе выполнения работы были подробно изучены принципы работы суммирующих устройств. Были реализованы и проанализированы схемы олусумматора и одноразрядного полного сумматора. Также проведена проверка работы устройства К155ИПЗ в различных режимах его функционирования.