Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Οι

Analog Ou

. . .

, ...a..og ..

Stromversor

Sensorer

Bastelr

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

21. März 2017

Startpunkt digitaler Output

```
Blinkenlights
 Workshop
```

Messlinger.

Digital Out

```
Blink Beispiel: File \rightarrow Examples \rightarrow Basics \rightarrow Blink
void setup() {
  pinmode(13, output);
void loop() {
  digitalwrite(13, high);
  delay(1000);
  digitalwrite(13, low);
  delay(1000);
```

setup

Blinkenlights Workshop

Stephan Messlinger, Valentin Och

Digital Out

Analog Out

Digital In

Analog In

Bunte Dinge

Mehrere LED

LED Streife

gung

Sensoren

Basteln

pinmode(pin, modus) wählt für den Pin mit Nummer pin eine von drei Betriebsarten:

- OUTPUT: wird für Ausgabe verwendet, z.B. um LEDs zu schalten oder mit anderen Microcontrollern zu sprechen.
- INPUT: die Spannung am Pin kann gelesen werden.
- INPUT_PULLUP: wie INPUT, aber der Pin wird intern auf die Versorgunsspannung gezogen.

digitalWrite und Delay

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Analog I

Runte Dinge

Mohroro I EC

LED Streifer

Stromversorgung

gung

Bastelr

digitalWrite(pin, zustand) setzt bei einem auf OUTPUT gestellten Pin die Ausgangsspannung:

- 0 Volt für LOW
- 5 Volt für HIGH (oder was auch immer die aktuelle Versorgungsspannung ist)

delay(ms) tut ms Millisekunden lang nichts.

Andere Blink Muster

Blinkenlights Workshop

Stephan Messlinger, Valentin Ocl

Digital Out

Analog Ou

A -- |-- |

. ...-.-

LED Streifer

Stromversor

Bastelr

Zwei Sekunden lang an, eine halbe aus.

Andere Blink Muster

Blinkenlights Workshop

Stephan Messlinger, Valentin Och

Digital Out

Analog Out

Digital In

. . . .

Runto Dingo

_ _

I ED Stroifon

LED Streller

gung

.

Basteln

```
Zwei Sekunden lang an, eine halbe aus.
```

```
void setup() {
  pinmode(13, output);
void loop() {
  digitalwrite(13, high);
  delay(2000);
  digitalwrite(13, low);
  delay(500);
```

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Ou

Distract In

. . .

, ...a.og ...

C4........

gung

Sensoren

Rastelr

Was passiert, wenn man die Zeiten ganz niedrig setzt?

Blinkenlights Workshop

Stephan Messlinger, /alentin Ochs

Digital Out

Analog Out

Digital In

. . .

Analog I

.

Mehrere LEL

LED Streifer

Stromverso

Ractal

Was passiert, wenn man die Zeiten ganz niedrig setzt?

→ Man sieht kein Blinken mehr

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

Digital In

Analog I

_ ___

Danie Dinge

Melifere LLDs

LED Strelle

Stromversor-

Sensoren

Rasteli

Was passiert, wenn man die Zeiten ganz niedrig setzt?

→ Man sieht kein Blinken mehr

Was passiert, wenn die Zeitverhältnisse geändert werden?

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

A .. . I . . . I

Builte Dilige

LED Sausifa

LLD Strelle

gung

Sensorer

Basteli

Was passiert, wenn man die Zeiten ganz niedrig setzt?

→ Man sieht kein Blinken mehr

Was passiert, wenn die Zeitverhältnisse geändert werden?

 \rightarrow Dimmen

analogWrite

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

District Inc.

Analog II

Runte Dinge

... ...

LED Streifer

gung

Sensoren

Bastelr

analogWrite(pin, wert) schaltet den Pin
automatisch an und aus, mit variablen An-/Aus-Zeiten

- \rightarrow Pulsweitenmodulation
 - Frequenz: Etwa 490 Hz
 - Wertebereich: 0 bis 255
 - Nur auf Pins 3, 5, 6, 9, 10, und 11.
 - Die PWM Pins sind auf dem Arduino mit ~ markiert.

PWM Funktionsweise: Zähler + Vergleich

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Out

_...

A .. . I . . . I

. . .

Stromyerson

gung

Sensoren

Ractali

PWM, Schwellwert 128

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

Digital In

. . .

_ ___

LLD Strelle

gung

Sensoren

Bastel

PWM, Schwellwert 16

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

Ŭ

Ŭ

_ ___

......

LED Strelle

Stromverso

_

Einfacher PWM Code

```
Blinkenlights
Workshop

Stephan
Messlinger,
Valentin Ochs

Digital Out
Analog Out

Digital In
Analog In
Bunte Dinge
```

```
int const led_pin = 11;
void setup() {
  pinMode(led_pin, OUTPUT);
void loop() {
  // Zeit seit Beginn des Programms
  unsigned long time = millis();
  // Berechne eine Sägezahn mit 0.25 Hz
  int value = 255 * time / 4000;
  // Verwende den Wert als Schwellwert
  analogWrite(led_pin, value);
```

Datentypen (1)

Blinkenlights Workshop

Stephan Messlinger, Valentin Och

Digital O

Analog Out

Digital In

Analog I

. . .

LED Streife

Stromversor

gung

Basteln

- unsigned long time und int value definieren Variablen.
- unsigned long und int sind die Typen, time und value die Namen, bzw. Identifier.
- Normal sind Typen vorzeichenbehaftet, durch unsigned haben sie einen nicht-negativen
 Wertebereich
- Kleinere Datentypen sind schneller

```
Typ Wertebereich unsigned Wertebereich char -2^7 bis 2^7 - 1 0 bis 2^8 - 1 int -2^{15} bis 2^{15} - 1 0 bis 2^{16} - 1 long -2^{31} bis 2^{31} - 1 0 bis 2^{32} - 1
```

Datentypen (2)

Blinkenlights Workshop

Messlinger

Analog Out

- float für Gleitkommazahlen (sehr langsam!)
 - double für genauere Gleitkommazahlen (unglaublich langsam)
 - const Suffix (z.B. int const) für Werte, die sich nach ihrer Definition nicht ändern. Vorteile:
 - Etwas lesharer
 - Kann zu schnelleren Programmen führen
- Zu große (oder kleine) Werte führen zu Überlauf:
 - Bei char: $127+1 \rightarrow -128$
 - Bei unsigned char: $0 1 \rightarrow 255$

PWM Frequenz

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

A -- - - - 1

. . .

Dunce Dinge

I FD Streifer

LED Strelle

gung

Sensorei

Bastelr

490 Hz sind bei schnellen Bewegungen sichtbar. Bestimmung der Frequenz: Taktfrequenz / Vorteiler / Zählergröße

- Taktfrequenz: 16 MHz
- Zählergröße:
 - 256 für Pins 5 und 6
 - 510 für 3, 9, 10, 11

PWM Vorteiler: Timer 0, Pins 5 und 6

Blinkenlights Workshop

Analog Out

Einstellung	Teiler	Frequenz
0×01	1	62500
0×02	8	7813
0×03	64	977
0×04	256	244
0×05	1024	61

Einstellen durch

TCCROB = (TCCROB & 0b11111000) | Einstellung

PWM Vorteiler: Timer 1, Pins 9 und 10

Blinkenlights Workshop

Analog Out

Einstellung	Teiler	Frequenz
0x01	1	31373
0×02	8	3921
0×03	64	490
0×04	256	123
0×05	1024	31

Einstellen durch

TCCR1B = (TCCR0B & 0b11111000) | Einstellung

PWM Vorteiler: Timer 2, Pins 11 und 3

Blinkenlights Workshop

Analog Out

Einstellung	Teiler	Frequenz
0×01	1	31373
0×02	8	3921
0×03	32	980
0×04	64	490
0×05	128	245
0×06	256	123
0×07	1024	31

Einstellen durch

TCCR2B = (TCCR2B & Ob11111000) | Einstellung

Vorsicht

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

District In

A .. . I . . . I

Dunte Dinge

LED Streife

Stromversor

gung

Bastel

Frequenzänderung beeinflusst nicht nur LEDs, sondern alles, was an dem Timer hängt! Servos, Tonerzeugung, etc.

Besonders wichtig: Timer 0 für millis() und delay(). Standardvorteiler: 64. Bei Änderungen Zeiten entsprechend anpassen (Vervierfachen bei 256...)

Startpunkt digitaler Input

Blinkenlights Workshop

Stephan Messlinger, /alentin Ochs

Digital Out

Analog Out

Digital In

Analog III

Bunte Dinge

Mehrere LED

LED Streife

gung

C _ _ _

Basteli

Button Beispiel: File \rightarrow Examples \rightarrow Digital \rightarrow Button Geht nicht nur mit einfachen Schaltern und Tastern, sondern auch z.B. einer Lichtschranke oder Reed-Schaltern.

digitalRead

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Ou

Digital In

Analog I

Runte Dinge

Mehrere I ED

LED Streife

gung

Rastel

digitalRead(pin):

- HIGH falls Spannung an pin etwa 2.6 V oder höher
- LOW falls Spannung an pin 2.1 V oder tiefer
- Nur bei 5 V Versorgungsspannung, sonst andere Werte

Schaltplanvarianten

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Ou

Digital In

Analog I

Melliele LLD

LED Streife

Stromversor

_

Basteli

Unterbrechbare Abläufe starten (1)

```
Blinkenlights
Workshop
```

Stephan Messlinger, Valentin Och

Digital Out

Analog Out

Digital In

Bunte Dinge

Mehrere I ED

LED Streifer

Stromversorgung

Sensoren

Basteln

```
int const button_pin = 12, led_pin = 13;
unsigned long button_time = 0;
bool running = false;
void setup() { pinMode(led_pin, OUTPUT); }
void loop() {
  if(digitalRead(button_pin) == HIGH) {
    running = true;
    button_time = millis();
  if(running) {
    running = do_stuff(millis() - button_time);
```

Unterbrechbare Abläufe starten (2)

```
Blinkenlights
Workshop
```

Stephan Messlinger, Valentin Och

Digital Out

Analog Ou

Digital In

Allalog III

Bunte Dinge

Menrere LEDS

LED Streifer

gung

Sensoren

3astelr

```
bool do_stuff(unsigned long time_point) {
  if(time_point < 100) {
    digitalWrite(led_pin, HIGH);
 } else if(time_point < 200) {</pre>
    digitalWrite(led_pin, LOW);
 } else if(time_point < 1000) {</pre>
    digitalWrite(led_pin, HIGH);
  } else {
    digitalWrite(led_pin, LOW);
    return false;
  return true;
```

Prellen

Blinkenlights Workshop

Digital In

Entprellen

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Ou

Digital In

Analog I

Bunte Dinge

I ED Straifa

Stromyerso

gung

Bastelr

Auch: Debouncing

- Hardware Lösung: Tiefpassfilter mit Kondensator
 - Software Lösung: Mehrmals Wert auslesen und warten, bis er sich nicht mehr ändert
- Hier ohne weitere Vertiefung, aber ihr wisst jetzt, wonach man suchen muss :)

Startpunkt analoger Input

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital O

Analog Ou

Analog In

.....

I ED Stroifor

Stromyersor

0 0

Sensorei

Bastelr

AnalogInput Beispiel: File \rightarrow Examples \rightarrow Analog \rightarrow AnalogInput

analogRead

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital O

Analog Ou

Analog In

Allalog II

LED Streifer

Stromverso

Sensoren

Bastel

 ${\tt analogRead(pin): 0-1023\;f\"{u}r\;0-5\;Volt\;an\;Pin\;pin}.$

Kombination mit analogWrite

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

Analog In

Bunte Dinge

LED Streifer

Stromversor-

gung

Basteln

```
void setup() {
    pinMode(3, OUTPUT);
}
void loop() {
    // Teile durch 4, um den
    // Wertebereich anzupassen
    int value = analogRead(AO) / 4;
    analogWrite(3, value);
}
```

An den PC senden

```
Blinkenlights
 Workshop
```

Messlinger.

Analog In

```
void setup() {
  Serial.begin(115200);
}
void loop() {
  Serial.print("Aktueller Wert: ");
  Serial.println(analogRead(A0));
}
```

Auch zur Fehlersuche nützlich! Die Arduino IDE hat einen Plotter, mit dem man den zeitlichen Verlauf von Zahlen beobachten kann.

Spannungsbereich

Blinkenlights Workshop

Stepnan Messlinger, Valentin Ochs

Digital Οι

Analog Ou

_...

Analog In

Bunte Dine

Mehrere LED

LED Streifer

Stromversor

Ractali

Maximale Spannung: Versorgungsspannung

Spannungsbereich

Blinkenlights Workshop

Messlinger, Valentin Ochs

Digital O

Analog Ou

Analog In

Runte Dinge

LED Streifer

Stromversor

c

Basteli

Maximale Spannung: Versorgungsspannung

Darüber: Spannungsteiler

Macht Stephan

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Οι

Analog Ou

- .6.---

Analog In

Bunte Dinge

Mehrere LED

LED Streifen

Stromversor-

Sensoren

Pactal

Diskret

Blinkenlights Workshop

Mehrere LEDs

Vorteile:

- Einfach
- PWM (bei bis zu 6) möglich

Nachteile:

- 1 Pin pro LED
- Ab 7 LEDs kein PWM mehr (oder nur in Gruppen)
- 1 RGB LED braucht 3 Pins

Matrix

Blinkenlights Workshop

Messlinger

Mehrere LEDs

Vorteile:

■ Kann je nach Methode mit *n* Pins bis zu $n^2 - n$ LEDs ansteuern

Nachteile:

- Kompliziert
- Niedrige Wiederholrate
- Reduzierte Helligkeit
- Bei größeren Spitzenströmen werden externe Treiber benötigt
- Kein (hardware-beschleunigtes) Dimmen

Schieberegister

Blinkenlights Workshop

Stephan Messlinger, Valentin Och

Digital O

Analog Out

Digital In

Analog I

Mehrere LEDs

. ED C: 'C

LED Streife

gung

D. . . . l

Basteln

- Englisch: Shift register
- Mehrere Ausgänge, z.B. 8
- Digitale Steuerung, z.B. SPI oder I2C
- $lue{}$ Zu viele Werte ightarrow alte Werte werden weitergeschoben

Vorteile:

- Einfach
- Benötigt wenige (i.d.R. < 4) Pins
- Leicht erweiterbar

Nachteile:

- Kein (hardware-beschleunigtes) Dimmen
- Wiederholrate sinkt mit 1/n

WS2812, APA102...

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Ou

Analog I

Runta Dinga

LED Streifen

Stromyersor

gung

Sensore

Basteli

- Mehrere LEDs auf Streifen
- Ähnlich zu Schieberegistern
- Eingebaute Logik zum Dimmen
- Ansteuerung durch fertige Libraries

Libraries

Blinkenlights Workshop

Messlinger, Valentin Ochs

Digital Or

Analog Ou

District In

Analog I

D...... D'.....

LED Streifen

Bung

Rasteli

 $lue{}$ Sketch ightarrow Include Library ightarrow Manage Libraries

 Modularer Code, bei Arduino häufig zum Ansteuern von externer Hardware

■ Für WS2812: Adafruit NeoPixel

■ Für APA102: APA102

Beispielcode

```
Blinkenlights
Workshop
```

Stephan Messlinger, Valentin Och

```
Digital Ou
```

Analog Out

Analog Ir

Bunte Dinge

Mehrere I FD

LED Streifen

Stromversorgung

Basteln

```
#include <Adafruit_NeoPixel.h>
Adafruit_NeoPixel strip(144, 13,
                         NEO GRB + NEO KHZ800):
int i = 0:
void setup() { strip.begin(); }
void loop() {
  strip.setPixelColor(i, 255, 0, 0);
  strip.show();
  delay(10);
  strip.setPixelColor(i, 0, 0, 0);
  i++:
  if(i == 144) i = 0;
```

Arrays

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Out

Digital In

A .. . I . . . I

Analog Ir

Dunce Dinge

Mehrere LED

LED Streifen

Stromyorcor

gung

Sensoren

Basteln

... speichern viele Werte gleichen Typs unter einem Namen. Das erste Element hat Index 0. Beispiel:

```
int many_values[20];
for(int i = 0; i < 20; i++)
  many_values[i] = i;
Serial.print(many_values[0]+many_values[19]);</pre>
```

Laufender Regenbogen

```
Blinkenlights
 Workshop
```

LED Streifen

```
#include <Adafruit_NeoPixel.h>
Adafruit_NeoPixel strip(144, 13, NEO_GRB + NEO_KHZ800);
uint32 t colors[144]:
int i = 0;
void setup() {
  strip.begin();
 for(i = 0; i < 48; i++) {
    unsigned char v = i*255/48:
    colors[i] = strip.Color(255-v, v, 0);
    colors[i+48] = strip.Color(0, 255-v, v);
    colors[i+96] = strip.Color(v, 0, 255-v);
void loop() {
 for(int j = i; j < 144-i; j++)
    strip.setPixelColor(i+j, colors[j]);
  for(int j = 144-i; j < 144; j++)
    strip.setPixelColor(i+j-144, colors[j]);
  strip.show();
  i++;
  if(i == 144) i = 0:
```

Macht Stephan

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Out

Analog Ou

. . . .

Allalog II

I ED Streifen

Stromversorgung

Sensoren

Bastelr

Anschluss von Sensoren

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Analog Out

Analog In

Bunte Dinge

. __ - ...

LED Streller

gung

Sensoren

Basteln

- Analog: Sensor giebt eine Spannung aus, die gemessen wird
 - Unkompliziert, aber durch den Arduino eingeschränkte Genauigkeit, Präzision, Geschwindigkeit, Anzahl von Sensoren
- Digital: Sensor wird durch ein serielles Interface (häufig SPI oder I2C) an den Arduino angeschlossen.
 - Erlaubt manchmal auch Einstellungen (Messfrequenz, -bereich)
 - Etwas komplizierter zu programmieren
 - Viele Sensoren an wenigen Pins möglich

Sensorbeispiele

Blinkenlights Workshop

Stephan Messlinger, Valentin Ochs

Digital Ou

Analog Oi

. .

Analog I

Bunte Dinge

...

LED Streifen

Stromversor

Sensoren

Bastelr

Beschleunigung

Drehrate

Magnetfeld

Spannung

■ Luftfeuchtigkeit, Temperatur, Druck

Licht

Position (GPS)

Sensoren im Arduino

```
Blinkenlights
Workshop
```

Stephan Messlinger, Valentin Och

```
Analog Out
```

Analog Out

Analog Ir

Bunte Dinge

Mehrere LEDs

Canada Streller

C....

Sensoren

Basteln

```
Spannung (analoger Input) und Temperatur (interne Temperatur, wird über den Analog-Digital-Wandler gemessen).
```

```
void setup() {
  Serial.begin(115200);
  // Temperaturmessung einrichten:
  ADMUX = (_BV(REFS1) | _BV(REFS0) | _BV(MUX3));
  ADCSRA \mid = BV(ADEN):
void loop() {
  ADCSRA |= _BV(ADSC); // Messung starten
  while(ADCSRA & _BV(ADSC)) { } // Warte
  Serial.println(ADCW); // Wert ausgeben
                            4□ > 4同 > 4 = > 4 = > ■ 900
```

Basteln

Blinkenlights Workshop

Stephan Messlinger, Valentin Och

Digital Ou

Analog Ou

. . .

Runte Dinge

Mehrere I ED

LED Streifer

Stromversor-

Sensoren

Basteln

Vorschläge?

Mehr als ausreichend vorhanden:

- NTC Widerstände
- Analoge Hall-Sensoren

Nicht ganz so viel auf Vorrat:

- IR Empfänger
- Gyroskop, Beschleunigungssensor, Luftdruck
- Ultraschall Sensor
- PIR Sensor
- Kurze LED-Streifen
- Anderes