- 1. Probar que en el conjunto $\{a,b\}$ hay tres órdenes posibles. ¿Y en $\{a,b,c\}$ y $\{a,b,c,d\}$?
- 2. En $(\mathbb{N}, |)$, donde | denota la relación «divide a»:
 - a) Verificar que $(\mathbb{N}, ||)$ es un conjunto ordenado.
 - b) ¿Es también un conjunto totalmente ordenado?
 - c) Si S es el conjunto de los divisores de 60, graficar el conjunto ordenado inducido por | en S.
- 3. Yoneda Lemma: Probar que en un preorden (P, \preceq) vale: $x \preceq y \iff \forall z: z \preceq x \Rightarrow z \preceq y$.
- 4. Sea A un conjunto arbitrario. Verificar que $(\mathcal{P}(A), \subseteq)$ es un conjunto ordenado. ¿Es también un conjunto totalmente ordenado?
- 5. Sea $V = \{a, b, c, d, e\}$. El grafo dirigido de la siguiente figura define un orden en V de la siguiente manera: $x \leq y \iff x = y$ o existe un xy-camino dirigido.

- a) Insertar el símbolo correcto $(\preceq,\succeq,\parallel)$ entre cada par de elementos:
 - 1) a e

3) d a.

2) b c.

- 4) c d.
- b) ¿Es un conjunto totalmente ordenado? ¿Tiene elemento máximo y/o mínimo? ¿Tiene elementos maximales y/o minimales?
- 6. Seam (P, \preceq) un conjunto ordenado, X un conjunto, y $p: X \to P$ una función. Se define la relación H sobre elementos de X como $xHx' \iff p(x) \preceq p(x')$. ¿Que tipo de relación es H? Dar condiciones para que H sea un conjunto ordenado.

- 7. En (Prop, D), donde Prop son las fórmulas del cálculo proposicional y $\phi D\psi \iff \{\phi\} \vdash \psi$:
 - a) Verificar si (Prop, D) es un conjunto ordenado. En caso de no serlo, clasificarlo.
 - b) ¿La realación es total? ¿Tiene elemento máximo y/o mínimo? ¿Tiene elementos maximales y/o minimales?
- 8. En (Prop, I), donde $\phi I \psi \iff \emptyset \vdash \phi \Rightarrow \psi$.
 - a) Verificar si (Prop, I) es un conjunto ordenado. En caso de no serlo, clasificarlo.
 - b) ¿La realación es total? ¿Tiene elemento máximo y/o mínimo? ¿Tiene elementos maximales y/o minimales?
 - c) Explique el nexo entre esta relación y la del ejercicio anterior.
- 9. Sea (P, \preceq) un preorden. Construir un conjunto ordenado $(P/\sim, \sqsubseteq)$, donde $x \sim y$ si y solo si $x \preceq y$ y $y \preceq x$, tal que $\pi : P \to P/\sim$ sea monótona.

Aplicar esta construcción a la relación (Prop, D) del ejercicio anterior. Para este caso partricular, la construcción se llama «álgrebra de Lindenbaum-Tarski».

10. Probar que:

- a) Si R define un orden en el conjunto V, entonces R^{-1} tambien define un orden en V, llamado «orden inverso».
- b) Si R define un orden total en el conjunto V, entonces R^{-1} tambien define un orden total en V.
- c) Si (A, \preceq) es un orden no total, puede existir un $S \subseteq A$ tal que (S, \preceq) es un orden total.
- 11. Sea (P, \preceq) un preorden. Probar que si existe un elemento máximo, entonces todos los maximales son máximos.
- 12. Sean (A, \leq_1) y (A, \leq_2) dos conjuntos ordenados (con el mismo conjunto subyacente).
 - a) ¿Define $\leq_1 \cap \leq_2$ un orden en A?

- b) ¿Define $\preceq_1 \cup \preceq_2$ un orden en A?
- 13. Probar que el conjunto de todos los elementos maximales (minimales) de un conjunto ordenado, es una anticadena.
- 14. Considerar el conjunto de los enteros positivos \mathbb{Z}^+ y el de los enteros negativos \mathbb{Z}^- con sus órdenes usuales. Probar que $\mathbb{Z}^+ \not\simeq \mathbb{Z}^-$.
- 15. Sea (A, \preceq) un conjunto ordenado. Para todo elemento $a \in A$ definamos

$$S(a) = \{x \in A : x \le a\}$$

Si $\mathcal{A} = \{S(a) : a \in A\}$, ordenado por la inclusión, demostrar que $A \simeq \mathcal{A}$.

- 16. Sean (X, \preceq_X) y (Y, \preceq_Y) dos conjuntos ordenados
 - a) COMPLETAR.
 - b) Probar que son equivalentes:
 - 1) $X \in Y$ son isomorfos.
 - 2) COMPLETAR.
 - 3) COMPLETAR.
 - c) COMPLETAR.
 - d) COMPLETAR.
- 17. Sean (X, \preceq_X) y (Y, \preceq_Y) dos conjuntos ordenados. Una «conexión Galois» es un par de funciones
 - a) COMPLETAR.
 - b) COMPLETAR.
 - c) COMPLETAR.
 - d) COMPLETAR.
 - e) COMPLETAR.
- 18. Probar que la relación de isomorfismo entre conjuntos ordenados es una relación de equivalencia.