- **7.7.** Let B_t be Brownian motion on \mathbb{R}^n starting at $x \in \mathbb{R}^n$ and let $D \subset \mathbb{R}^n$ be an open ball centered at x.
 - a) Use Exercise 2.15 to prove that the harmonic measure μ_D^x of B_t is rotation invariant (about x) on the sphere ∂D . Conclude that μ_D^x coincides with normalized surface measure σ on ∂D .
 - b) Let ϕ be a bounded measurable function on a bounded open set $W\subset {\bf R}^n$ and define

$$u(x) = E^x[\phi(B_{\tau_W})]$$
 for $x \in W$.

Prove that u satisfies the classical mean value property:

$$u(x) = \int_{\partial D} u(y) d\sigma(y)$$

for all balls D centered at x with $\overline{D} \subset W$.

as First we want to show that

Definition 6.2.6 (Harmonic Measure). The harmonic measure of X on ∂G , denoted by μ_G^X , is defined as $\mu_G^X(F) = Q^X[X_{\tau_n} \in F], \quad \text{for } F \subset \partial G, \, x \in G$

where U is a rotation (i.e., orthogonal motivix on Rnxn).

By the exercise 2.15.,

2.15. Let B_t be n-dimensional Brownian motion starting at 0 and let $U \in \mathbf{R}^{n \times n}$ be a (constant) orthogonal matrix, i.e. $UU^T = I$. Prove that

$$\widetilde{B}_t := UB_t$$

is also a Brownian motion.

it follows that

$$Q^{*}[B_{\tau_{0}} \in F] = Q^{*}[UB_{\tau_{0}} \in UF]$$

$$= Q^{*}[B_{\tau_{0}} \in UF]$$

$$= Q^{*}[B_{\tau_{0}} \in UF]$$

Hence, $\mu_{\mathcal{D}}^{\times}(\mathcal{F}) = \mu_{\mathcal{D}}^{\times}(\mathcal{F}).$

To show that $\mu_{0}^{\times} = \sigma$ on ∂D , notice that $\int_{\partial D} f(x) d\sigma(x) = \int_{\partial D} f(q_{x}) d\sigma(x) d\sigma(x) d\sigma(x) \qquad \text{where } v \text{ is left-inv.} \\
= \int_{\partial D} f(q_{x}) d\sigma(x) d\sigma(x) \qquad \text{by Fibini's thm.} \\
= \int_{\partial D} f(y) d\mu_{0}^{\times}(y) d\sigma(x) \qquad \text{since } \mu_{0}^{\times} \text{ is } \\
= \int_{\partial D} f(y) d\mu_{0}^{\times}(y) d\sigma(x) \qquad \text{since } \mu_{0}^{\times} \text{ is } \\
= \int_{\partial D} f(y) d\mu_{0}^{\times}(y) d\sigma(x) \qquad \text{since } \sigma(x) = 0 \text{ is } \alpha \text{ normalized suf. mass.}$

Since & is orbitary, T= My on 2D as desired.

b) We know that

$$\mathbb{E}^x[f(X_{\tau_H})] = \mathbb{E}^x[\mathbb{E}^{X_{\tau_G}}[f(X_{\tau_H})]] = \int_{\partial G} \mathbb{E}^y[f(X_{\tau_H})]Q^x[X_{\tau_G} \in dy]$$

Plus the pact that $\sigma = \mu_b^{\times}$ on ∂D , it plans that $U(x) = \mathbb{E}^{\times} \left[\varphi(B_{\tau w}) \right] = \int_{\partial D} \mathbb{E}^{\times} \left[\varphi(B_{\tau w}) \right] \mu_b^{\times}(dy)$

=
$$\int_{90}^{90} o(\lambda) qh_{x}(\lambda) = \int_{90}^{90} o(\lambda) qQ(\lambda)$$