[8%] Suppose y>0. Show that $\int_0^\infty e^{-xy} \sin x \ dx = \frac{1}{1+y^2}$. (Hint: use the integration by parts.) [7%] Use (i) and $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$ to find the function $F(y) = \int_0^\infty e^{-xy} \frac{\sin x}{x} dx$.

Evaluate

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-x^2}}{1+x^2+2xy+y^2} dxdy.$$

Consider the 'pringle' surface S (see **Figure 1**) which is part of the graph z = xy inside the cylinder $x^2 + y^2 = 2$. Let C be the boundary of S, counterclockwisely oriented when viewed from above.

- (a) (4%) Set up, but do not evaluate, a definite integral that computes the line integral $\int_C z^2 ds$.
- (b) (6%) Find the surface area of S.
- (c) (7%) Use Stokes' Theorem to evaluate

$$\oint_C (x^3 + y) dx - 2xy dy + (1 + \sin(z^{10})) dz.$$

Figure 1. Pringle surface

Given the iterated triple integral

$$\int_0^1 \int_0^1 \int_0^1 f(x,y,z) \, dx \, dy \, dz,$$

please rewrite the integral as an equivalent iterated integral in cylindrical coordinates (6 points) and spherical coordinates (16 points), respectively.

Let f(x, y, z) be a scalar field and $\mathbf{G}(x, y, z)$ be a vector field, both smooth (that is, partial derivatives exist in any order). Let D be a solid region in \mathbb{R}^3 with boundary surface ∂D oriented outward.

(a) (4%) Prove that
$$\operatorname{div}(f\mathbf{G}) = \nabla f \cdot \mathbf{G} + f \operatorname{div}(\mathbf{G})$$
.

(b) (2%) Prove that
$$\iiint_{D} \nabla f \cdot \mathbf{G} \, dV = \iint_{\partial D} f \mathbf{G} \cdot d\mathbf{S} - \iiint_{D} f \operatorname{div}(\mathbf{G}) \, dV.$$
(c) (5%) Let $f(x, y, z) = 4 - x^{2} - y^{2} - z^{2}$ and $\mathbf{G}(x, y, z) = \sin(y + 1) \mathbf{i} + e^{x+1} \mathbf{j} + z^{3} \mathbf{k}$. Use (b) to evaluate

(c) (5%) Let
$$f(x, y, z) = 4 - x^2 - y^2 - z^2$$
 and $G(x, y, z) = \sin(y + 1)\mathbf{i} + e^{x+1}\mathbf{j} + z^3\mathbf{k}$. Use (b) to evaluate

$$\iiint_D \nabla f \cdot \mathbf{G} \, \mathrm{d}V \text{ where } D = \left\{ (x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 4 \right\}.$$

设函数f(x)具有 2 阶导数,且 $f'(0) = f'(1), |f''(x)| \le 1$,证明:

(1)
$$\exists x \in (0,1)$$
 $\exists t \in (0,1)$ $\exists t \in ($

(2)
$$\left| \int_0^1 f(x) dx - \frac{f(0) + f(1)}{2} \right| \le \frac{1}{12}$$

Let f be continuous ob \mathbb{R}^3 . Rewrite the following integral

$$\int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} f(x, y, z) \, dy \, dx \, dz$$

as an equivalent iterated integral in the five other orders. (10 points)

(10%) Let D be the solid bounded by the cylinder $x^2 + y^2 = 4$, the plane x + z = 6, and the xy-plane. Find

$$\int \int_S F \cdot \vec{n} \ dS$$

where S is the boundary of D with the unit normal vector \vec{n} directed outward from D and $F(x, y, z) = (x^2 + \sin z)i + (xy + \cos z)j + e^y k$.

(20%) For a second continuously differentiable function, f(x,y,z), defined on the space \mathbb{R}^3 , its Laplacian is defined to be

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \; .$$

Derive the formula of Δf in the spherical coordinate system.

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } x = y = 0. \end{cases}$$

- (a) (12 points) Show that all second order partial derivatives of f exist everywhere.
- (b) (3 points) Is it true that $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$? Justify your answer.

9.(10 pts) let B be the region in the first quadrant of \mathbb{R}^2 bounded by the curve xy=1, xy=3, $x^2-y^2=1$ and $x^2-y^2=4$. Find the value of the double integral

$$\iint_{B}(x^{2}+y^{2})dxdy.$$