Xiaohu Wan, Ph.D.

DEPARTMENT OF BIOLOGY

UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

xwan@email.unc.edu (919)-9310917, 223 Butler Court, Chapel Hill, NC 27514

Education and Training

Postdoctoral Research Associate, Biology Department

University of North Carolina at Chapel Hill present

Postdoctoral Fellow, Biology Department

University of North Carolina at Chapel Hill 2009 - 2013

Ph.D., Biomedical Engineering

University of North Carolina at Chapel Hill 2003 - 2008

M.S., Biomedical Engineering

University of North Carolina at Chapel Hill 1999 - 2002

B.S., Electrical Engineering and Information Science

University of Science and Technology of China 1991 - 1996

Professional experience

Postdoctoral Research Assistant, Department of Biology, UNC

present

- Develop novel quantitative fluorescence imaging methods to dissect protein structure.
- Develop novel image analysis methods to determine protein complex size (protein number).
- Use polarized fluorescence microscopy to study cytoskeletal organization in vivo during cytokinesis.
- Use mathematical modeling to study cytokinesis.

Postdoc, Department of Biology, UNC

2009 - 2013

- Studied kinetochore dynamics with biophysical, quantitative and modeling methods.
- Characterized the function of spindly with super-resolution techniques.
- Dissected the structure of RZZ complex.

Graduate Research Assistant, Department of Biomedical Engineering, UNC 2003 - 2008

- Developed super-resolution microscopy method to study the molecular structure of the kinetochore at nm accuracy.
- Designed user-friendly software program to efficiently analyze biological data.

Engineer, Department of Otolaryngology, UNC

2002 - 2003

 Designed a real-time and fully automatic data acquisition/analysis system used in the study of behavioral neuroscience, including hardware implementation and software development.

Research Assistant, Department of Radiation Oncology, UNC

1999 - 2002

Designed a medical image analysis and management system for analyzing and registering patient's
 X-ray and CT images to improve the accuracy of radiation treatment.

Engineer, Rady Company, Beijing, China

1997 - 1999

- Designed and set up city scale computer networks.
- Developed online software system.
- Conducted technical training.

Invited talks

 2013, Clemson University, Department Seminar, "Nanometer-scale protein architecture of kinetochore and its directional instability during metaphase oscillation"

- 2013, University of California, Merced , Department Seminar, "Super-resolution kinetochore architecture and kinetochore directional instability"
- 2012, University of Massachusetts, Amherst, department seminar, "K-SHREC principle and software"
- 2010, NIH, Bethesda, MD, Imaging Group Seminar, "Development of a two-color super-resolution microscopy method"
- 2007, NIST, Gaithersburg, MD, Biophysics Branch Seminar, "Discover biology through image analysis"

Publications

- Descovich, C.P., Zhang, L., Wan, X., Maddox, P.S., Maddox, A.S., Cytoskeletal crosslinkers attenuate cytokinetic furrowing. (In review)
- Suzuki, A., Badger, B., Wan, X., Salmon, E.D., (2014). The Architecture of CCAN Proteins Within Human Kinetochores Creates a Structural Integrity to Resist Spindle Forces and Achieve Proper Intrakinetochore Stretch. Dev. Cell. 30(6):717-30
- Wan, X.*, Varma, D.*, Cheerambathur, D., Gassmann, R., Suzuki, A., Lawrimore, J., Desai, A., Salmon, E. D., (2013). Spindle Assembly Checkpoint Proteins are Positioned Close to Core Microtubule Attachment Sites at Kinetochores. J Cell Biol. 202(5):735-46 (*contributed equally)
- Civelekoglu-Scholey, G., He, B., Shen, M., Wan, X., Roscioli, E., Bowden, B., Cimini, D., (2013).
 Quantitative model of metaphase chromosome dynamics via viscoelastic bonds. J Cell Biol. 201(4):577-93
- Varma,D., Chandrasekaran, S., Sundin, L., Reidy, K., Wan, X., Chasse, D.A., Nevis, K.R., DeLuca, J.G., Salmon, E.D., Cook, J.G. (2012). Recruitment of the human Cdt1 replication licensing protein by the loop domain of Hec1 is required for stable kinetochore microtubule attachment. Nat Cell Biol. 14(6):593-603
- Wan, X., Cimini, D., Cameron, L.A., and Salmon, E.D. (2012). The coupling between sister kinetochore directional instability and oscillations in centromere stretch in metaphase PtK1 cells.
 Moll Biol Cell. 23(6): 1035-46.
- Gassmann, R., Holland, A.J., Varma D., Wan X., Civril F., Cleveland D.W., Oegema K., Salmon E.D., Desai A. (2010). Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells. Genes Dev. 24(9):957-71.
- Wan, X., O'Quinn, R.P., Pierce, H.L., Joglekar, A.P., Gall, W.E., DeLuca, J.G., Carroll, C.W., Liu, S.T., Yen, T.J., McEwen, B.F., Stukenberg, T., Desai, A., Salmon, E.D. (2009). Protein architecture of the human kinetochore microtubule attachment site. **Cell** 137(4):672-84
- Cimini, D., Wan, X., Hirel, C.B., and Salmon, E.D. (2006). Aurora kinase promotes turnover of kinetochore-microtubules to reduce chromosome segregation errors by merotelic kinetochore orientation. Curr Biol. 16(17):1711-8

Manuscripts in preparation

- Wan, X, Salmon, E.D., Multidimensional Super-Resolution Speckle Analysis Method.
- Wan, X.*, O'Quinn, R.P*., Maresca, T., Varma D., Antoni A., Musacchio A., Salmon, E.D., Spindly Depletion Delays Intrakinetochore Stretch and Release of Mad1/Mad2 from Sites Proximal to the Calponin Homology Domain of Ndc80 and Near to the Ska Complex. (*contributed equally)

Recent conference abstracts

Curriculum Vitae - Xiaohu Wan

- Wan, X., Descovich, CP, Applewhite, D., Rogers, S., Maddox, P., Maddox, A., Counting molecules in non-muscle myosin II filaments, The 54th Annual Meeting of the American Society for Cell Biology (ASCB), December 2014
- Cane, S., Wan, X., Sanghvi, J., Maresca, T.J.; Tension-Based Elongation of Drosophila Kinetochore
 Protein CENP-C Promotes Stabilization of Kinetochore-Microtubule Attachments, The 54th Annual
 Meeting of ASCB, December 2014
- Suzuki, A., Badger, B., Wan, X., Salmon, E.D.; Protein Architecture and Compliance of the Human CCAN Protein Network that Links CENP-A Chromatin to the Kinetochore Microtubule Attachment Site, The 53th Annual Meeting of ASCB, December 2013
- Suzuki, A., Wan, X., Salmon, E.D.; The KMN network makes major conformational changes with kinetochore microtubule formation not exhibited by other outer domain proteins like RZZ and CENP-F, The 52th Annual Meeting of ASCB, December 2012
- Wan, X.*, Varma, D.*, Gassmann, R., Lawrimore, J., Desai, A., Salmon, E. D.; Location of the Mad1/Mad2 Complex, Zwint1, the Rod/Zw10/Zwilch (RZZ) Complex, and the Dynein Motor Recruitment Factor Spindly Within the Substructure of the Kinetochore, The 52th Annual Meeting of ASCB, December 2012 (*contributed equally)
- Varma, D., Chandrasekaran, S., Sundin, L., Reidy, K., Wan, X., et al; An essential mitotic role for the DNA replication protein, Cdt1, The 52th Annual Meeting of ASCB, December 2012
- Wan, X., Cimini, D., Cameron, L.A., and Salmon, E.D.; Kinetochore microtubule polymerization/ depolymerization switches are different from kinetochore P/AP switches and are associated with centromere tension during metaphase oscillation, FASEB meeting, August 2012
- Suzuki, A., Wan, X., Salmon, E.D.; Major changes in protein architecture of the KMN network between unattached and attached kinetochore, FASEB meeting, August 2012
- Wan, X., Cimini, D., Cameron, L.A., and Salmon, E.D.; The coupling between sister kinetochore directional instability and oscillations in centromere stretch in metaphase PtK1 cells, Biophysical Society 56th Annual Meeting, March 2011
- Dong, Y., Meng, X., O'Quinn, R., Wan, X. et al, Structure Conformations of the Mammalian Kinetochore as Seen by Immuno-EM and High Resolution Immuno-LM, The 50th Annual Meeting of ASCB, December 2010
- Varma, D., Wan, X., Gassmann, R., Desai, A., Salmon, E. D.; Location of the RZZ Complex within the Core Kinetochore Microtubule Attachment Site, The 50th Annual Meeting of ASCB, December 2010