析的工作,收集需求的方法包括但不限于头脑风暴、原型法等;我们以提纲式列表作为WBS的编排方法,通过RACI矩阵明确成员职责。范围确认采用阶段性确认、阶段性交付的里程碑式评审方式。这些内容为项目的范围管理提供了指南和方向。

二、收集需求

对于陌生的水利业务,如何做出让专业人员满意的系统,这是个不小的挑战。对于水务局的管理人员和技术人员,我组织了一系列内部研讨会,在会议上采用一对一访谈的方式,并利用思维导图来记录他们的业务需求和技术期望,确保系统能够紧密贴合他们的日常工作和决策流程。对于 XX 河流域的当地居民,我们设计了一份详尽的问卷调查,通过社区中心和线上平台发放,了解他们对水资源管理、水质改善等方面的具体需求和期望。在整个过程中,我始终保持与干系人的密切沟通,及时解答他们的疑问,确保收集到的需求是准确、完整且符合项目目标的。通过这种方法,我成功地将不同干系人的需求整合在一起,为项目的后续实施奠定了坚实的基础。基于此我们制定出了需求文件和需求跟踪矩阵。

_	ノー・		王人们全州。至100011时人山11100人门作川小队队队门下。												
			X												
	序号	需求描述	业务目标	优先	负责	处理状态									
				级	ン人										
	1	实时监测水质数据	保证水质安全,防止污染	高	李工	已确认									
Ī	2	建立数字孪生 XX 流域	优化水资源管理,提高决	高	付工	已确认									
		模型	策效率												
	3	整合水利资源数据	提高资源利用率,减少数	中	张工	进行中									
Ī	4	用户设计页面	提供友好易用的交付页面	中	杜工	待开始									
	5														

需求跟踪矩阵											
项目名称: 数字孪生 XX 河流域智慧水利											
成本中心:											
项目描述											
编号	需求描述	业务需要、机 会、目的和目标	项目目标	WBS 可交 付成果	产品 设计 状态	产品开发状态	测试案例				
REQ-00	实时监测 水质数据	及时发现水质 污染	保证水质 安全,预防 污染事件	实时数 据监测 和分析 模块	通过评审	已实 现	TS-001				
REQ-00 2	建立数字 孪生 XX 河流域模 型	优化水资源管 理,提高决策效 率	提高水利 水务的管 理水平和 决策效率	数字孪 生 XX 河 流域模 型	通过评审	已实现	TS-002				
REQ-00	整合水利 数据资源	提高资源利用 率,减少信息孤 岛	整合现有 水利系统 数据	数据整 合平台	通过评审	己实现	TS-003				
• • •			• • •				• • •				