Computer algebra for Combinatorics

Part II

Alin Bostan & Bruno Salvy

Algorithms Project, INRIA

ALEA 2012

Overview

Yesterday

- 1. Introduction
- 2. High Precision Approximations
 - Fast multiplication, binary splitting, Newton iteration
- 3. Tools for Conjectures
 - Hermite-Padé approximants, p-curvature

This Morning

- 4. Tools for Proofs
 - Symbolic method, resultants, D-finiteness, creative telescoping

Tonight

- Exercises with Maple

TOOLS FOR PROOFS

1. Symbolic Method

Language

Context-free grammars (Union, Prod, Sequence), plus Set, Cycle.

Origins: [Pólya37, Joyal81,...]

Labelled and unlabelled universes.

Examples:

Binary trees B=UNION(Z,PROD(B,B))

Mappings M=Set(Cycle(Tree)),

Tree = PROD(Z, SET(Tree))

Permutations P=Set(Cycle(Z))

Children rounds R=Set(Prod(Z,Cycle(Z)))

Integer partitions P=Set(Sequence(Z))

Set partitions P=Set(Set(Z,card>0))

Irreducible polynomials mod p P=Set(Irred), P=Sequence(Coeff).

Aim: a complete library for enumeration, random generation, generating functions of structures "defined" like this (combstruct).

Generating Function Dictionary

Definition: Exponential and Ordinary Generating Functions of a class A:

$$A(x) = \sum_{n>0} A_n \frac{x^n}{n!}, \quad \tilde{A}(x) = \sum_{n>0} \tilde{A}_n x^n,$$

where A_n (resp. \tilde{A}_n) is the number of labeled (resp. unlabeled) elements of size n in A.

structure	EGF	OGF
Union $(\mathcal{A},\mathcal{B})$	A(x) + B(x)	$\tilde{A}(x) + \tilde{B}(x)$
$\operatorname{PROD}(\mathcal{A},\mathcal{B})$	$A(x) \times B(x)$	$\tilde{A}(x) \times \tilde{B}(x)$
$\operatorname{SeQ}(\mathcal{C})$	$\frac{1}{1-C(x)}$	$\frac{1}{1-\tilde{C}(x)}$
$\mathrm{Cyc}(\mathcal{C})$	$\log \frac{1}{1 - C(x)}$	$\sum_{k \ge 1} \frac{\phi(k)}{k} \log \frac{1}{1 - \tilde{C}(x^k)}$
$\operatorname{Set}(\mathcal{C})$	$\exp(C(x))$	$\exp(\tilde{C}(x) + \frac{1}{2}\tilde{C}(x^2) + \frac{1}{3}\tilde{C}(x^3) + \cdots)$

Proof. [Labeled product]

$$\sum_{\gamma = (\alpha, \beta) \in \text{PROD}(\mathcal{A}, \mathcal{B})} \frac{x^{|\gamma|}}{|\gamma|!} = \sum_{\alpha \in \mathcal{A}} \sum_{\beta \in \mathcal{B}} \underbrace{\begin{pmatrix} |\gamma| \\ |\alpha| \end{pmatrix}}_{\text{relabeling}} \frac{x^{|\alpha|+|\beta|}}{|\gamma|!}$$
$$= \sum_{\alpha} \frac{x^{|\alpha|}}{|\alpha|!} \times \sum_{\beta} \frac{x^{|\beta|}}{|\beta|!}.$$

Proof. [Unlabeled set]

$$\sum_{c \in \text{Set}(\mathcal{C})} x^{|c|} = \prod_{c \in \mathcal{C}} (1 + x^{|c|} + x^{2|c|} + \cdots)$$

$$= \exp \log \prod \cdots$$

$$= \exp \left(\sum_{c \in \mathcal{C}} \log \frac{1}{1 - x^{|c|}} \right)$$

$$= \exp \left(\sum_{c \in \mathcal{C}} \sum_{k>0} \frac{x^{k|c|}}{k} \right)$$

$$= \exp \left(\sum_{k>0} \frac{1}{k} \sum_{c \in \mathcal{C}} x^{k|c|} \right)$$

$$= \exp(\tilde{C}(x) + \frac{1}{2}\tilde{C}(x^2) + \cdots).$$

Examples

Binary trees	$B{=}Union(Z,\!Prod(B,\!B))$	$B(x) = x + B^2(x)$
Mappings	M = Set(Cycle(Tree))	$M(x) = \exp\left(\log\frac{1}{1 - T(x)}\right)$
	$Tree = \frac{Prod(Z, Set(Tree))}{}$	$T(x) = x \exp(T(x))$
Permutations	P = Set(Cycle(Z))	$P(x) = \exp(\log \frac{1}{1-x})$
Children rounds	$R{=}Set(Prod(Z,\!Cycle(Z)))$	$R(x) = (1-x)^{-x}$
Integer partitions	P = Set(Sequence(Z))	$P(x) = \exp(\frac{x}{1-x} + \frac{x^2/2}{1-x^2} + \cdots)$
Set partitions	P = Set(Set(Z, card > 0))	$P(x) = \exp(e^x - 1)$
Irreducible pols	P = Set(Irred)	$P(x) = \exp(I(x) + \frac{1}{2}I(x^2) + \cdots$
$\mod p$	P = Sequence(Coeff)	$=\frac{1}{1-px}$

Examples

Binary trees
$$B=Union(Z,Prod(B,B))$$
 $B(x) = x + B^2(x)$ $M=Set(Cycle(Tree))$ $M(x) = \exp\left(\log\frac{1}{1-T(x)}\right)$ $Tree=Prod(Z,Set(Tree))$ $T(x) = x \exp(T(x))$ $P=Set(Cycle(Z))$ $P(x) = \exp(\log\frac{1}{1-x})$ Children rounds $P=Set(Prod(Z,Cycle(Z)))$ $P(x) = \exp(\log\frac{1}{1-x})$ $P=Set(Sequence(Z))$ $P(x) = \exp(\frac{x}{1-x} + \frac{x^2/2}{1-x^2} + \cdots)$ $P=Set(Set(Z,card>0))$ $P(x) = \exp(e^x - 1)$ Irreducible pols $P=Set(Irred)$ $P(x) = \exp(I(x) + \frac{1}{2}I(x^2) + \cdots$ $P=Sequence(Coeff)$ $P=Sequence(Coeff)$ $P=Sequence(Coeff)$

- > mappings:={M=Set(Cycle(Tree)),Tree=Prod(Z,Set(Tree))}:
- > combstruct[gfeqns](mappings,labeled,x);

$$[M(x) = \frac{1}{1 - Tree(x)}, \quad Tree(x) = x \exp(Tree(x))]$$

Constructible Classes [Flajolet-Sedgewick]

Definition. Well-founded system: $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$ such that $Y_{n+1} = H(x, Y_n)$ with $Y_0 = 0$ converges to a (vector of) power series (with no 0 coordinate).

Constructible Classes [Flajolet-Sedgewick]

Definition. Well-founded system: $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$ such that $Y_{n+1} = H(x, Y_n)$ with $Y_0 = 0$ converges to a (vector of) power series (with no 0 coordinate). Definition. Constructible classes: Constructed from $\{1, \mathcal{Z}, \mathcal{Y}_1, \mathcal{Y}_2, \dots\}$ (with

- $|\mathcal{Z}| = 1$ and $|\mathcal{Y}_i| = 0$) by compositions with
 - Union, Prod, Sequence, Set, Cycle (with cardinality restricted to intervals);
 - the solution of well-founded systems $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$ where the coordinates of \mathcal{H} are constructible.

Constructible Classes [Flajolet-Sedgewick]

Definition. Well-founded system: $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$ such that $Y_{n+1} = H(x, Y_n)$ with $Y_0 = 0$ converges to a (vector of) power series (with no 0 coordinate).

Definition. Constructible classes: Constructed from $\{1, \mathcal{Z}, \mathcal{Y}_1, \mathcal{Y}_2, \dots\}$ (with $|\mathcal{Z}| = 1$ and $|\mathcal{Y}_i| = 0$) by compositions with

- Union, Prod, Sequence, Set, Cycle (with cardinality restricted to intervals);
- the solution of well-founded systems $\mathcal{Y} = \mathcal{H}(\mathcal{Z}, \mathcal{Y})$ where the coordinates of \mathcal{H} are constructible.

Theorem [Pivoteau-S.-Soria] Enumeration of all constructible classes with precision N in O(M(N)) coefficient operations.

Idea: Newton's iteration (\rightarrow yesterday's slides).

Soon to be in combstruct[count]

Example: Mappings

- > mappings:={M=Set(Cycle(Tree)),Tree=Prod(Z,Set(Tree))}:
- > combstruct[gfeqns](mappings,labeled,x);

$$[M(x) = \frac{1}{1 - Tree(x)}, \quad Tree(x) = x \exp(Tree(x))]$$

- > countmappings:=SeriesNewtonIteration(mappings,labelled,x):
- > countmappings(10);

$$\left[M = 1 + x + 2x^{2} + \frac{9}{2}x^{3} + \frac{32}{3}x^{4} + \frac{625}{24}x^{5} + \frac{324}{5}x^{6} + \frac{117649}{720}x^{7} + \frac{131072}{315}x^{8} + \frac{4782969}{4480}x^{9} + O(x^{10}),$$

$$Tree = x + x^{2} + \frac{3}{2}x^{3} + \frac{8}{3}x^{4} + \frac{125}{24}x^{5} + \frac{54}{5}x^{6} + \frac{16807}{720}x^{7} + \frac{16384}{315}x^{8} + \frac{531441}{4480}x^{9} + O(x^{10})\right]$$

Code Pivoteau-S-Soria, should end up in combstruct

Multivariate Generating Functions

Same translation rules:

- > maps2:={M=Set(Cycle(Prod(U,Tree))),Tree=Prod(Z,Set(Tree)),U=Epsilon}:
- > combstruct[gfsolve](maps2,labeled,z,[[u,U]]);

$$\left\{ M(z,u) = \frac{1}{1 + uW(-z)}, Tree(z,u) = -W(-z), U(z,u) = u, Z(z,u) = z \right\}$$

This computes

$$M(z,u) = \sum_{n,k} c_{n,k} u^k \frac{z^n}{n!},$$

 $c_{n,k}$ = number of mappings with n points, k of which are in cycles.

Multivariate Generating Functions

Same translation rules:

- > maps2:={M=Set(Cycle(Prod(U,Tree))),Tree=Prod(Z,Set(Tree)),U=Epsilon}:
- > combstruct[gfsolve](maps2,labeled,z,[[u,U]]);

$$\left\{ M(z,u) = \frac{1}{1 + uW(-z)}, Tree(z,u) = -W(-z), U(z,u) = u, Z(z,u) = z \right\}$$

> gf:=subs(%,M(z,u)):

Some automatic asymptotics (avg number of points in cycles):

> map(simplify,equivalent(eval(gf,u=1),z,n));

$$1/2 \frac{\sqrt{2}n^{-1/2}e^n}{\sqrt{\pi}} + O\left(e^n n^{-3/2}\right)$$

> map(simplify,equivalent(eval(diff(gf,u),u=1),z,n));

$$1/2e^n + O\left(e^n n^{-1/2}\right)$$

> asympt(%/%%,n);

$$1/2\sqrt{2}\sqrt{\pi}n^{1/2} + O(1)$$

Also in combstruct

- gfeqns: generating function equations;
- gfseries: generating function expansions;
- count: number of objects of a given size;
- draw: uniform random generation;
- agfeqns, agfseries, agfmomentsolve: extensions to attribute grammars (see [Delest-Fédou92, Delest-Duchon99, Mishna2003] and examples in help pages).

TOOLS FOR PROOFS

2. Resultants

Definition

The Sylvester matrix of $A = a_m x^m + \cdots + a_0 \in \mathbb{K}[x]$, $(a_m \neq 0)$, and of $B = b_n x^n + \cdots + b_0 \in \mathbb{K}[x]$, $(b_n \neq 0)$, is the square matrix of size m + n

$$\mathsf{Syl}(A,B) = \begin{bmatrix} a_m & a_{m-1} & \dots & a_0 \\ & a_m & a_{m-1} & \dots & a_0 \\ & & \ddots & \ddots & & \ddots \\ & & & a_m & a_{m-1} & \dots & a_0 \\ b_n & b_{n-1} & \dots & b_0 & & & \\ & & b_n & b_{n-1} & \dots & b_0 & & \\ & & & \ddots & \ddots & & \ddots \\ & & & b_n & b_{n-1} & \dots & b_0 \end{bmatrix}$$

The resultant Res(A, B) of A and B is the determinant of Syl(A, B).

▶ Definition extends to polynomials with coefficients in a commutative ring R.

Basic observation

If
$$A = a_m x^m + \dots + a_0$$
 and $B = b_n x^n + \dots + b_0$, then

$$\begin{bmatrix} a_m & a_{m-1} & \dots & a_0 \\ & \ddots & \ddots & & \ddots \\ & & a_m & a_{m-1} & \dots & a_0 \\ b_n & b_{n-1} & \dots & b_0 \\ & & \ddots & \ddots & & \ddots \\ & & b_n & b_{n-1} & \dots & b_0 \end{bmatrix} \times \begin{bmatrix} \alpha^{m+n-1} \\ \vdots \\ \alpha \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha^{n-1}A(\alpha) \\ \vdots \\ A(\alpha) \\ \alpha^{m-1}B(\alpha) \\ \vdots \\ B(\alpha) \end{bmatrix}$$

Corollary: If $A(\alpha) = B(\alpha) = 0$, then Res(A, B) = 0.

Example: the discriminant

The discriminant of A is the resultant of A and of its derivative A'.

E.g. for
$$A = ax^2 + bx + c$$
,

$$\mathsf{Disc}(A) = \mathsf{Res}\,(A,A') = \det \begin{bmatrix} a & b & c \\ 2a & b \\ & 2a & b \end{bmatrix} = -a(b^2 - 4ac).$$

E.g. for $A = ax^3 + bx + c$,

$$\mathsf{Disc}(A) = \mathsf{Res}\,(A,A') = \det \left[\begin{array}{cccc} a & 0 & b & c \\ & a & 0 & b & c \\ 3a & 0 & b & & \\ & 3a & 0 & b \\ & & 3a & 0 & b \end{array} \right] = a^2(4b^3 + 27ac^2).$$

The discriminant vanishes when A and A' have a common root, that is when A has a multiple root.

Main properties

• Link with gcd Res (A, B) = 0 if and only if gcd(A, B) is non-constant.

Elimination property

There exist $U, V \in \mathbb{K}[x]$ not both zero, with $\deg(U) < n$, $\deg(V) < m$ and such that the following Bézout identity holds:

$$Res(A, B) = UA + VB$$
 in $\mathbb{K} \cap (A, B)$.

Poisson formula

If
$$A = a(x - \alpha_1) \cdots (x - \alpha_m)$$
 and $B = b(x - \beta_1) \cdots (x - \beta_n)$, then
$$\operatorname{Res}(A, B) = a^n b^m \prod_{i,j} (\alpha_i - \beta_j) = a^n \prod_{1 \le i \le m} B(\alpha_i).$$

Bézout-Hadamard bound

If $A, B \in \mathbb{K}[x, y]$, then $\operatorname{Res}_{y}(A, B)$ is a polynomial in $\mathbb{K}[x]$ of degree

$$\leq \deg_x(A) \deg_y(B) + \deg_x(B) \deg_y(A).$$

Application: computation with algebraic numbers

Let
$$A=\prod_i(x-\alpha_i)$$
 and $B=\prod_j(x-\beta_j)$ be polynomials of $\mathbb{K}[x]$. Then
$$\operatorname{Res}_x(A(x),B(t-x))=\prod_{i,j}(t-(\alpha_i+\beta_j)),$$

$$\operatorname{Res}_x(A(x),B(t+x))=\prod_{i,j}(t-(\beta_j-\alpha_i)),$$

$$\operatorname{Res}_x(A(x),x^{\deg B}B(t/x))=\prod_{i,j}(t-\alpha_i\beta_j),$$

$$\operatorname{Res}_x(A(x),t-B(x))=\prod_i(t-B(\alpha_i)).$$

In particular, the set of algebraic numbers is a field.

Proof: Poisson's formula. E.g., first one:
$$\prod_{i} B(t - \alpha_i) = \prod_{i,j} (t - \alpha_i - \beta_j).$$

▶ The same formulas apply mutatis mutandis to algebraic power series.

Two beautiful identities of Ramanujan's

$$\frac{\sin\frac{2\pi}{7}}{\sin^2\frac{3\pi}{7}} - \frac{\sin\frac{\pi}{7}}{\sin^2\frac{2\pi}{7}} + \frac{\sin\frac{3\pi}{7}}{\sin^2\frac{\pi}{7}} = 2\sqrt{7}.$$

- ▶ Using $\sin(k\pi/7) = \frac{1}{2i}(x^k x^{-k})$, where $x = \exp(i\pi/7)$, left-hand sum is a rational function N(x)/D(x), so it is a root of $\text{Res}_X(X^7 + 1, t \cdot D(X) N(X))$
- $> f:=\sin(2*a)/\sin(3*a)^2-\sin(a)/\sin(2*a)^2+\sin(3*a)/\sin(a)^2:$
- > expand(convert(f,exp)):
- > F:=normal(subs(exp(I*a)=x,%)):
- > factor(resultant(x^7+1,numer(t-F),x)):

► A slightly more complicated one:

$$\sqrt[3]{\cos\frac{2\pi}{7}} + \sqrt[3]{\cos\frac{4\pi}{7}} + \sqrt[3]{\cos\frac{8\pi}{7}} = \sqrt[3]{\frac{5 - 3\sqrt[3]{7}}{2}}.$$

Rothstein-Trager resultant

Let $A, B \in \mathbb{K}[x]$ with $\deg(A) < \deg(B)$ and squarefree monic denominator B. The rational function F = A/B has simple poles only.

If
$$F = \sum_{i} \frac{\gamma_i}{x - \beta_i}$$
, then the residue γ_i of F at the pole β_i equals $\gamma_i = \frac{A(\beta_i)}{B'(\beta_i)}$.

Theorem. The residues γ_i of F are roots of the Rothstein-Trager resultant

$$R(t) = \operatorname{Res}_{x} (B(x), A(x) - t \cdot B'(x)).$$

Proof. Poisson formula again:
$$R(t) = \prod_i \Big(A(\beta_i) - t \cdot B'(\beta_i) \Big)$$
.

▶ This special resultant is useful for symbolic integration of rational functions.

Application: diagonal Rook paths

Question: A chess Rook can move any number of squares horizontally or vertically in one step. How many paths can a Rook take from the lower-left corner square to the upper-right corner square of an $N \times N$ chessboard? Assume that the Rook moves right or up at each step.

 $1, 2, 14, 106, 838, 6802, 56190, 470010, \dots$

Application: diagonal Rook paths

 $1, 2, 14, 106, 838, 6802, 56190, 470010, \dots$

$$\mathsf{Diag}(F) = [s^0] \, F(s, x/s) = \frac{1}{2i\pi} \oint F(s, x/s) \, \frac{ds}{s}, \quad \text{where} \quad F = \frac{1}{1 - \frac{s}{1-s} - \frac{t}{1-t}}.$$

By the residue theorem, Diag(F) is a sum of roots of the Rothstein-Trager resultant

- > F:=1/(1-s/(1-s)-t/(1-t)):
- > G:=normal(1/s*subs(t=x/s,F)):
- > factor(resultant(denom(G),numer(G)-t*diff(denom(G),s),s));

2 2 2
$$x (-1 + 2 t) (x - 1) (-x + 36 t x + 1 - 4 t)$$

Answer: Generating series of diagonal Rook paths is $\frac{1}{2}\left(1+\sqrt{\frac{1-x}{1-9x}}\right)$.

Application: certified algebraic guessing

Guess + Bound = Proof

Theorem. Suppose $A \in \mathbb{K}[[x]]$ is an algebraic series, and that it is a root of a (unknown) polynomial in $\mathbb{K}[x,y]$ of degree at most d in x and at most n in y.

If
$$\sum_{i=0}^{n} Q_i(x)A^i(x) = O(x^{2dn+1})$$
 and $\deg Q_i \le d$, then $\sum_{i=0}^{n} Q_i(x)A^i(x) = 0$.

Application: certified algebraic guessing

Guess + Bound = Proof

Theorem. Suppose $A \in \mathbb{K}[[x]]$ is an algebraic series, and that it is a root of a (unknown) polynomial in $\mathbb{K}[x,y]$ of degree at most d in x and at most n in y.

If
$$\sum_{i=0}^{n} Q_i(x)A^i(x) = O(x^{2dn+1})$$
 and $\deg Q_i \le d$, then $\sum_{i=0}^{n} Q_i(x)A^i(x) = 0$.

Proof: Let $P \in \mathbb{K}[x,y]$ be an irreducible polynomial such that

$$P(x, A(x)) = 0$$
, and $\deg_x(P) \le d$, $\deg_y(P) \le n$.

Application: certified algebraic guessing

Guess + Bound = Proof

Theorem. Suppose $A \in \mathbb{K}[[x]]$ is an algebraic series, and that it is a root of a (unknown) polynomial in $\mathbb{K}[x,y]$ of degree at most d in x and at most n in y.

If
$$\sum_{i=0}^{n} Q_i(x)A^i(x) = O(x^{2dn+1})$$
 and $\deg Q_i \le d$, then $\sum_{i=0}^{n} Q_i(x)A^i(x) = 0$.

Proof: Let $P \in \mathbb{K}[x,y]$ be an irreducible polynomial such that

$$P(x, A(x)) = 0$$
, and $\deg_x(P) \le d$, $\deg_y(P) \le n$.

- By Hadamard, $R(x) = \text{Res}_y(P, Q) \in \mathbb{K}[x]$ has degree at most 2dn.
- By elimination, R(x) = UP + VQ for $U, V \in \mathbb{K}[x, y]$ with $\deg_y(V) < n$.
- Evaluation at y = A(x) yields

$$R(x) = U(x, A(x)) \underbrace{P(x, A(x))}_{0} + V(x, A(x)) \underbrace{Q(x, A(x))}_{O(x^{2dn+1})} = O(x^{2dn+1}).$$

• Thus R = 0, that is $gcd(P, Q) \neq 1$, and thus $P \mid Q$, and A is a root of Q.

Systems of two equations and two unknowns

Geometrically, roots of a polynomial $f \in \mathbb{Q}[x]$ correspond to points on a line.

Roots of polynomials $A \in \mathbb{Q}[x,y]$ correspond to plane curves A=0.

Let now A and B be in $\mathbb{Q}[x,y]$. Then:

- either the curves A = 0 and B = 0 have a common component,
- or they intersect in a finite number of points.

Application: Resultants compute projections

Theorem. Let $A = a_m y^m + \cdots$ and $B = b_n y^n + \cdots$ be polynomials in $\mathbb{Q}[x][y]$. The roots of $\text{Res}_y(A, B) \in \mathbb{Q}[x]$ are either the abscissas of points in the intersection A = B = 0, or common roots of a_m and b_n .

Proof. Elimination property: Res (A, B) = UA + VB, for $U, V \in \mathbb{Q}[x, y]$. Thus $A(\alpha, \beta) = B(\alpha, \beta) = 0$ implies Res $_{y}(A, B)(\alpha) = 0$

Application: implicitization of parametric curves

Task: Given a rational parametrization of a curve

$$x = A(t), \quad y = B(t), \quad A, B \in \mathbb{K}(t),$$

compute a non-trivial polynomial in x and y vanishing on the curve.

Recipe: take the resultant in t of numerators of x - A(t) and y - B(t).

Example: for the four-leaved clover (a.k.a. quadrifolium) given by

$$x = \frac{4t(1-t^2)^2}{(1+t^2)^3}, \quad y = \frac{8t^2(1-t^2)}{(1+t^2)^3},$$

$$\operatorname{Res}_{t}((1+t^{2})^{3}x - 4t(1-t^{2})^{2}, (1+t^{2})^{3}y - 8t^{2}(1-t^{2})) = 2^{24}\left((x^{2} + y^{2})^{3} - 4x^{2}y^{2}\right).$$

TOOLS FOR PROOFS

3. D-Finiteness

D-finite Series & Sequences

Definition: A power series $f(x) \in \mathbb{K}[[x]]$ is D-finite over \mathbb{K} when its derivatives generate a finite-dimensional vector space over $\mathbb{K}(x)$.

A sequence u_n is D-finite (or P-recursive) over \mathbb{K} when its shifts (u_n, u_{n+1}, \dots) generate a finite-dimensional vector space over $\mathbb{K}(n)$.

equation + init conditions = data structure

About 25% of Sloane's encyclopedia, 60% of Abramowitz & Stegun

Examples: exp, log, sin, cos, sinh, cosh, arccos, arccosh, arcsin, arcsinh, arctan, arctanh, arccot, arccoth, arccsc, arccsch, arcsec, arcsech, $_pF_q$ (includes Bessel J, Y, I and K, Airy Ai and Bi and polylogarithms), Struve, Weber and Anger functions, the large class of algebraic functions,...

Important classes of power series

Algebraic: $S(x) \in \mathbb{K}[[x]]$ root of a polynomial $P \in \mathbb{K}[x,y]$.

D-finite: $S(x) \in \mathbb{K}[[x]]$ satisfying a linear differential equation with polynomial (or rational function) coefficients $c_r(x)S^{(r)}(x) + \cdots + c_0(x)S(x) = 0$.

Hypergeometric: $S(x) = \sum_{n} s_n x^n$ such that $\frac{s_{n+1}}{s_n} \in \mathbb{K}(n)$. E.g.

$$_{2}F_{1}\begin{pmatrix} a & b \\ c \end{pmatrix} = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{x^{n}}{n!}, \quad (a)_{n} = a(a+1)\cdots(a+n-1).$$

Link D-finite ↔ P-recursive

Theorem: A power series $f \in \mathbb{K}[[x]]$ is D-finite if and only if the sequence f_n of its coefficients is P-recursive

Proof (idea): $x\partial \leftrightarrow n$ and $x^{-1} \leftrightarrow S_n$ give a ring isomorphism between

$$\mathbb{K}[x, x^{-1}, \partial]$$
 and $\mathbb{K}[S_n, S_n^{-1}, n]$.

Snobbish way of saying that the equality $f = \sum_{n\geq 0} f_n x^n$ implies

$$[x^n] x f'(x) = n f_n$$
, and $[x^n] x^{-1} f(x) = f_{n+1}$.

- ▶ Both conversions implemented in gfun: diffeqtorec and rectodiffeq
- ▶ Differential operators of order r and degree d give rise to recurrences of order d + r and coefficients of degree r

Closure properties

Normal product

Th. D-finite series in $\mathbb{K}[[x]]$ form a \mathbb{K} -algebra closed under Hadamard product. P-recursive sequences over \mathbb{K} form an algebra closed under Cauchy product.

Proof: Linear algebra:

If
$$a_r(x)f^{(r)}(x) + \dots + a_0(x)f(x) = 0$$
, $b_s(x)g^{(s)}(x) + \dots + b_0(x)g(x) = 0$, then $f^{(\ell)} \in \mathsf{Vect}_{\mathbb{K}(x)} \left(f, f', \dots, f^{(r-1)} \right)$, $g^{(\ell)} \in \mathsf{Vect}_{\mathbb{K}(x)} \left(g, g', \dots, g^{(s-1)} \right)$, so that $(f+g)^{(\ell)} \in \mathsf{Vect}_{\mathbb{K}(x)} \left(f, f', \dots, f^{(r-1)}, g, g', \dots, g^{(s-1)} \right)$, and $(fg)^{(\ell)} \in \mathsf{Vect}_{\mathbb{K}(x)} \left(f^{(i)}g^{(j)}, i < r, j < s \right)$.

Thus f + g satisfies LDE of order $\leq (r + s)$ and fg satisfies LDE of order $\leq (rs)$.

Corollary: D-finite series can be multiplied mod x^N in linear time O(N).

► Implemented in gfun: diffeq+diffeq, diffeq*diffeq, hadamardproduct, rec+rec, rec*rec, cauchyproduct

Proof of Identities

```
> series(sin(x)^2+cos(x)^2,x,4);
                                           4
                                 1 + 0(x)
                              Why is this a proof?
(1) \sin and \cos satisfy a 2nd order LDE: y'' + y = 0;
(2) their squares (and their sum) satisfy a 3rd order LDE;
(3) the constant 1 satisfies a 1st order LDE: y' = 0;
(4) \Longrightarrow \sin^2 + \cos^2 - 1 satisfies a LDE of order at most 4;
(5) Since it is not singular at 0, Cauchy's theorem concludes.
► Cassini's identity (same idea): F_n^2 - F_{n+1}F_{n-1} = (-1)^{n+1}
> for n to 5 do
      fibonacci(n)^2-fibonacci(n+1)*fibonacci(n-1)+(-1)^n
> od;
```

Algebraic series are D-finite

Theorem [Abel 1827, Cockle 1860, Harley 1862] Any algebraic series is D-finite.

Proof: Let $f(x) \in \mathbb{K}[[x]]$ such that P(x, f(x)) = 0, with $P \in \mathbb{K}[x, y]$ irreducible.

Differentiate w.r.t. x:

$$P_x(x, f(x)) + f'(x)P_y(x, f(x)) = 0 \implies f' = -\frac{P_x}{P_y}(x, f).$$

Bézout relation: $gcd(P, P_y) = 1 \implies UP + VP_y = 1$, for $U, V \in \mathbb{K}(x)[y]$

$$\Longrightarrow f' = -\left(P_x V \bmod P\right)(x, f) \in \mathsf{Vect}_{\mathbb{K}(x)}\left(1, f, f^2, \dots, f^{\deg_y(P) - 1}\right).$$

By induction, $f^{(\ell)} \in \mathsf{Vect}_{\mathbb{K}(x)} (1, f, f^2, \dots, f^{\deg_y(P)-1})$, for all ℓ .

- ► Implemented in gfun: algeqtodiffeq
- ▶ Generalization: g D-finite, f algebraic $\rightarrow g \circ f$ D-finite

An Olympiad Problem

Question: Let (a_n) be the sequence with $a_0 = a_1 = 1$ satisfying the recurrence

$$(n+3)a_{n+1} = (2n+3)a_n + 3na_{n-1}.$$

Show that all a_n is an integer for all n.

Computer-aided solution: Let's compute the first 10 terms of the sequence:

```
> rec:=(n+3)*a(n+1)-(2*n+3)*a(n)-3*n*a(n-1): ini:=a(0)=1,a(1)=1:
```

- > pro:=gfun:-rectoproc({rec,ini}, a(n), list);
- > pro(10);

gfun's seriestoalgeq command allows to guess that GF is algebraic:

> pol:=gfun:-listtoalgeq(%,y(x))[1];

Thus it is very likely that $y = \sum_{n \ge 0} a_n x^n$ verifies $1 + (x - 1)y + x^2 y^2 = 0$.

By coefficient extraction, (a_n) conjecturally verifies the non-linear recurrence

$$a_{n+2} = a_{n+1} + \sum_{k=0}^{n} a_k \cdot a_{n-k}.$$
 (1)

Clearly (1) implies $a_n \in \mathbb{N}$. To prove (1), we proceed the other way around: we start with $P(x,y) = 1 + (x-1)y + x^2y^2$, and show that it admits a power series solution whose coefficients satisfy the same linear recurrence as (a_n) :

- > deq:=gfun:-algeqtodiffeq(pol,y(x)):
- > recb:=gfun:-diffeqtorec(deq,y(x),b(n));

recb :=
$$\{(3 + 3 n) b(n) + (2 n + 5) b(n + 1) + (-4 - n) b(n + 2), b(0) = 1, b(1) = 1\}$$

 \blacktriangleright In fact, a_n is equal to

$$a_n = \sum_{k=0}^n \binom{n}{2k} \binom{2k}{k} - \sum_{k=0}^n \binom{n}{2k} \binom{2k}{k+1},$$

(which clearly implies $a_n \in \mathbb{Z}$), but how to find algorithmically such a formula?

Gessel's walks are algebraic

Let's prove that the series counting Gessel walks of prescribed length

$$G(1,1,x) = \frac{1}{2x} \cdot {}_{2}F_{1} \begin{pmatrix} -1/12 & 1/4 \\ 2/3 & -\frac{64x(4x+1)^{2}}{(4x-1)^{4}} \end{pmatrix} - \frac{1}{2x}.$$

is algebraic.

Proof principle: Guess a polynomial P(x,y) in $\mathbb{Q}[x,y]$, then prove that P admits the power series $G(1,1,x) = \sum_{n=0}^{\infty} g_n x^n$ as a root.

- 1. Such a P can be guessed from the first 100 terms of G(1,1,x).
- > $G:=(hypergeom([-1/12,1/4],[2/3],-64*x*(4*x+1)^2/(4*x-1)^4)-1)/x/2:$
- > seriestoalgeq(series(G,x,100),y(x)):
- > P:=subs(y(x)=y, %[1]):
- 2. Implicit function theorem: $\exists ! \text{ root } r(x) \in \mathbb{Q}[[x]] \text{ of } P$.

- 3. D-finiteness: $r(x) = \sum_{n=0}^{\infty} r_n x^n$ being algebraic, it is D-finite, and so is (r_n) :

$$(100+68n+12n) r(n+2) + (44+23n+3n) r(n+3), r(0)=1, r(1)=2, r(2)=7$$

- 4. D-finiteness: G(1,1,x) being the composition of a D-finite by an algebraic, it is D-finite, and so is (g_n) :
- 5. Conclusion: (r_n) and (g_n) are equal, since they satisfy the same recurrence and the same initial values. Thus G(1,1,x) coincides with the algebraic series r(x), so it is algebraic.

TOOLS FOR PROOFS

4. Creative Telescoping

Examples I: hypergeometric summation

$$\bullet \sum_{k \in \mathbb{Z}} (-1)^k \binom{a+b}{a+k} \binom{a+c}{c+k} \binom{b+c}{b+k} = \frac{(a+b+c)!}{a!b!c!}$$

•
$$A_n = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2$$
 satisfies the recurrence [Apéry78]:

$$(n+1)^3 A_{n+1} = (34n^3 + 51n^2 + 27n + 5)A_n - n^3 A_{n-1}.$$

(Neither Cohen nor I had been able to prove this in the intervening two months [Van der Poorten]).

•
$$\sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 = \sum_{k=0}^{n} {n \choose k} {n+k \choose k} \sum_{j=0}^{k} {n \choose k}^3$$
 [Strehl92]

Examples II: Integrals

•
$$\int_0^1 \frac{\cos(zu)}{\sqrt{1-u^2}} du = \int_1^{+\infty} \frac{\sin(zu)}{\sqrt{u^2-1}} du = \frac{\pi}{2} J_0(z);$$

•
$$\int_0^{+\infty} x J_1(ax) I_1(ax) Y_0(x) K_0(x) dx = -\frac{\ln(1-a^4)}{2\pi a^2}$$
 [Glasser-Montaldi94];

•
$$\frac{1}{2\pi i} \oint \frac{(1+2xy+4y^2) \exp\left(\frac{4x^2y^2}{1+4y^2}\right)}{y^{n+1}(1+4y^2)^{\frac{3}{2}}} dy = \frac{H_n(x)}{|n/2|!}$$
 [Doetsch30].

Examples III: Diagonals

Definition If
$$f(x_1, \ldots, x_k) = \sum_{i_1, i_2, \ldots, i_k \geq 0} c_{i_1, \ldots, i_k} x_1^{i_1} \cdots x_k^{i_k} \in \mathbb{K}[[x_1, \ldots, x_k]]$$
, then its diagonal is $\mathrm{Diag}(f) = \sum_{n \geq 0} c_{n, \ldots, n} x^n \in \mathbb{K}[[x]]$.

Examples III: Diagonals

Definition If
$$f(x_1, \ldots, x_k) = \sum_{i_1, i_2, \ldots, i_k \geq 0} c_{i_1, \ldots, i_k} x_1^{i_1} \cdots x_k^{i_k} \in \mathbb{K}[[x_1, \ldots, x_k]]$$
, then its diagonal is $\operatorname{Diag}(f) = \sum_{n \geq 0} c_{n, \ldots, n} x^n \in \mathbb{K}[[x]]$.

- Diagonal k-D rook paths: Diag $\frac{1}{1 \frac{x_1}{1 x_1} \dots \frac{x_k}{1 x_k}}$;
- Hadamard product: $F(x) \odot G(x) = \sum_n f_n g_n x^n = \text{Diag}(F(x)G(y));$
- Algebraic series [Furstenberg67]: if P(x, S(x)) = 0 and $P_y(0, 0) \neq 0$ then

$$S(x) = \text{Diag}\left(y^2 \frac{P_y(xy,y)}{P(xy,y)}\right).$$

• Apéry's sequence [Dwork80]:

$$\sum_{n\geq 0} A_n z^n = \text{Diag} \frac{1}{(1-x_1)((1-x_2)(1-x_3)(1-x_4)(1-x_5) - x_1 x_2 x_3)}.$$

Examples III: Diagonals

Definition If
$$f(x_1, \ldots, x_k) = \sum_{i_1, i_2, \ldots, i_k \geq 0} c_{i_1, \ldots, i_k} x_1^{i_1} \cdots x_k^{i_k} \in \mathbb{K}[[x_1, \ldots, x_k]]$$
, then its diagonal is $\operatorname{Diag}(f) = \sum_{n \geq 0} c_{n, \ldots, n} x^n \in \mathbb{K}[[x]]$.

- Diagonal k-D rook paths: Diag $\frac{1}{1 \frac{x_1}{1 x_1} \cdots \frac{x_k}{1 x_k}}$;
- Hadamard product: $F(x) \odot G(x) = \sum_n f_n g_n x^n = \text{Diag}(F(x)G(y));$
- Algebraic series [Furstenberg67]: if P(x, S(x)) = 0 and $P_y(0, 0) \neq 0$ then

$$S(x) = \operatorname{Diag}\left(y^2 \frac{P_y(xy,y)}{P(xy,y)}\right).$$

• Apéry's sequence [Dwork80]:

$$\sum A_n z^n = \text{Diag} \frac{1}{(1-x_1)((1-x_2)(1-x_3)(1-x_4)(1-x_5) - x_1 x_2 x_3)}.$$

Theorem [Lipshitz88] The diagonal of a rational (or algebraic, or even D-finite) series is D-finite.

Summation by Creative Telescoping

$$I_n := \sum_{k=0}^n \binom{n}{k} = 2^n.$$

IF one knows Pascal's triangle:

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} = 2\binom{n}{k} + \binom{n}{k-1} - \binom{n}{k},$$

then summing over k gives

$$I_{n+1} = 2I_n.$$

The initial condition $I_0 = 1$ concludes the proof.

Creative Telescoping for Sums

$$F_n = \sum_k u_{n,k} = ?$$

IF one knows $A(n, S_n)$ and $B(n, k, S_n, S_k)$ s.t.

$$(A(n, S_n) + \Delta_k B(n, k, S_n, S_k)) \cdot u_{n,k} = 0$$

(where Δ_k is the difference operator, $\Delta_k \cdot v_{n,k} = v_{n,k+1} - v_{n,k}$), then the sum "telescopes", leading to

$$A(n, S_n) \cdot F_n = 0.$$

Zeilberger's Algorithm [1990]

Input: a hypergeometric term $u_{n,k}$, i.e., $u_{n+1,k}/u_{n,k}$ and $u_{n,k+1}/u_{n,k}$ rational functions in n and k;

Output:

- a linear recurrence (A) satisfied by $F_n = \sum_k u_{n,k}$
- a certificate (B), s.t. checking the result is easy from $A(n, S_n) \cdot u_{n,k} = \Delta_k B \cdot u_{n,k}$.

Example: SIAM flea

$$U_{n,k} := {2n \choose 2k} {2k \choose k} {2n-2k \choose n-k} \left(\frac{1}{4}+c\right)^k \left(\frac{1}{4}-c\right)^k \frac{1}{4^{2n-2k}}.$$

> SumTools[Hypergeometric][Zeilberger](U,n,k,Sn);

$$\left[\left(4\,n^{2}+16\,n+16\right)Sn^{2}+\left(-4\,n^{2}+32\,c^{2}n^{2}+96\,c^{2}n-12\,n+72\,c^{2}-9\right)Sn\right.\\ \left.+128\,c^{4}n+64\,c^{4}n^{2}+48\,c^{4},...\left(\text{BIG certificate}\right)...\right]$$

Creative Telescoping for Integrals

$$I(x) = \int_{\Omega} u(x, y) \, dy = ?$$

IF one knows $A(x, \partial_x)$ and $B(x, y, \partial_x, \partial_y)$ s.t.

$$(A(x, \partial_x) + \partial_y B(x, y, \partial_x, \partial_y)) \cdot u(x, y) = 0,$$

then the integral "telescopes", leading to

$$A(x, \partial_x) \cdot I(x) = 0.$$

Special Case: Diagonals

Analytically,

$$\operatorname{Diag}(F(x,y)) = \frac{1}{2\pi i} \oint F\left(\frac{x}{y}, y\right) \frac{dy}{y}.$$

On power series,

$$(\underline{A(x,\partial_x)} + \underline{\partial_y B}) \cdot \underbrace{\frac{1}{y} F\left(\frac{x}{y},y\right)}_{U} = 0 \Longrightarrow \underline{A(x,\partial_x)} \cdot \operatorname{Diag} F = 0.$$

Proof:

1.
$$[y^{-1}]U = \text{Diag}(f);$$

2.
$$[y^{-1}]A \cdot U + [y^{-1}]\partial_y B \cdot U = A \cdot [y^{-1}]U$$
.

Extends to more variables: Diag F(x, y, z) obtained from $[y^{-1}z^{-1}]U$, $U = \frac{1}{yz}F\left(\frac{x}{y}, \frac{y}{z}, z\right)$, if one finds

$$(A(x,\partial_x) + \partial_y B(x,y,z,\partial_x,\partial_y,\partial_z) + \partial_z C(x,y,z,\partial_x,\partial_y,\partial_z)) \cdot U = 0.$$

Provided by Chyzak's algorithm

Example: 3D rook paths [B-Chyzak-Hoeij-Pech 2011]

Proof of a recurrence conjectured by [Erickson et alii 2010]

```
> F:=subs(y=y/z,x=x/y,1/(1-x/(1-x)-y/(1-y)-z/(1-z)))/y/z:
> A,B,C:=op(op(Mgfun:-creative_telescoping(F,x::diff,[y::diff,z::diff]))):
> A;
```

$$(2304 x^{3} - 3204 x^{2} - 432 x + 296) \frac{d}{dx} F(x)$$

$$+ (4608 x^{4} - 6372 x^{3} + 813 x^{2} + 514 x - 4) \frac{d^{2}}{dx^{2}} F(x)$$

$$+ (1152 x^{5} - 1746 x^{4} + 475 x^{3} + 121 x^{2} - 2 x) \frac{d^{3}}{dx^{3}} F(x)$$

More and more general creative telescoping

- Multivariate D-finite series wrt mixed differential, shift, q-shift,...[Chyzak-S 1998, Chyzak 2000]
- Symmetric functions [Chyzak-Mishna-S 2005]
- Beyond D-finiteness [Chyzak-Kauers-S 2009]

(Some) implementations available in Mgfun

THE END

(Except for the exercises!)