Листок 4

Геометрические приложения интегралов

- 1. Нарисуйте эскиз графика и вычислите площадь фигуры, ограниченной кривой(кривыми):
 - (a) $(x^2 + y^2)^2 = (x^2 y^2)$ Лемниската Бернулли
 - (b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ эллипс
 - (c) $\sqrt{x} + \sqrt{y} = 1$, $\sqrt{x} + \sqrt{y} = 2$, x = y, x = 9y
 - (d) $x^4 = x^2 y^2$ Лемниската Жероно́
- 2. Найти объем тела, заданного неравенствами:

 - (a) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$ (b) $x^2 + y^2 \le 4$, $x^2 + y^2 z^2 \ge 1$
 - (c) $x^2 + y^2 + z^2 < 3$, $x^2 + y^2 < 2z$
- 3. Найти объем тела, ограниченного поверхностью:

$$(x^2 + y^2 + z^2)^2 = xyz$$

- 4. Найти объем тела, ограниченного поверхностью $\sqrt{x}+\sqrt{y}+\sqrt{z}=1$ и координатными плоскостями, используя замену $x=u^2,\ y=v^2,\ z=w^2.$
- 5. Найти объем пирамиды:

$$\{0 \le x_n \le x_{n-1} \le \dots \le x_1 \le a\}$$
 $(a > 0)$

6. Найти объем параллелипипеда, ограниченного плоскостями

$$\sum_{j=1}^{n} a_{ij} x_j = \pm h_i, \ h_i > 0, \qquad \det(a_{ij}) \neq 0$$

Домашнее задание

- 1. Нарисуйте эскиз и вычислите площадь фигуры, ограниченной кривой(кривыми):
 - (a) $(x^2 + y^2)^3 = x^3y$
 - (b) $(x^2 + y^2 + y)^2 = x^2 + y^2$ Улитка Паскаля / кардиоида
 - (c) $(2x+3y+1)^2 + (x-4y-3)^2 = 1$
- 2. Найти объем тела, заданного неравенствами:
 - (a) $x^2 + y^2 \le z \le \sqrt{x^2 + y^2}$
 - (b) $\sqrt{x^2 + y^2} > z$, $x^2 + y^2 + z^2 < z$
- 3. Найти объем тела, ограниченного поверхностью:

$$(x^2 + y^2 + z^2)^2 = z(x^2 + y^2)$$

4. Найти объем пирамиды:

$$\{\sum_{i=1}^{n} \frac{x_i}{a_i} \le 1, \ x_i \ge 0\} \qquad (a_i > 0)$$

Дополнительные задачи

- 1. Доказать, что любое конечное объединение, пересечение, разность допустимых множеств допустимое множество.
- 2. Доказать, что граница допустимого множества компакт
- 3. Пусть E ограниченное множество. Когда существует интеграл $\int\limits_E 1 \ dx?$
- 4. Пусть E ограниченное множество и граница ∂E не меры нуль. Интегрируема ли функция f=const?
- 5. Доказать, что измеримое по Жордану множество без внутренних точек имеет нулевой объем.
- 6. Пусть E множество меры нуль по Лебегу, $f:E\to\mathbb{R}$ непрерывная и ограниченная функция. Всегда ли функция f Интегрируема на E? Если да, то чему равен интеграл? Тот же вопрос при условии, что E множество меры нуль по Жордану.
- 7. Пусть E измеримое по Жордану множество ненулевой меры, $f:E\to \mathbb{R}$ непрерывная, неотрицательная интегрируемая функция на E и $M=\sup f$. Доказать:

$$\lim_{n \to \infty} \left(\int_E f^n(x) \ dx \right)^{1/n} = M$$

8. Доказать, что любое конечное объединение, пересечение допустимых множеств – допустимое множество.