

## Correlation Sketches for Approximate Join-Correlation Queries

## **DSIT**

**Database Systems** 

Maria Kostopoulou

## **Relational Data Augmentation**



Growing availability nowadays of structured datasets (Web tables and open-data portals to enterprise data)



## **Relational Data Augmentation**

- Enhance data analytics
- ✓ Improve performance of ML models

# **Dataset Discovery - Challenges**



Datasets spread over many repositories

To find relevant datasets must:

- 1) Look for reasonable variables
- 2) Check joinability with target dataset
- 3) Confirm new columns are correlated with targeted ones
- 4) Build new model to confirm performance improvement

Searching for relevant datasets it's not an easy task!

## Join-Correlation

|   | $\mathcal{T}_X$ |     |
|---|-----------------|-----|
|   | $K_X$           | X   |
| - | 2021-01         | 6.0 |
|   | 2021-02         | 4.0 |
|   | 2021-03         | 2.0 |
|   | 2021-04         | 3.0 |
|   | 2021-05         | 0.5 |
|   | 2021-06         | 4.0 |
|   | 2021-07         | 2.0 |
| _ |                 |     |

| $\mathcal{T}_Y$ |     |
|-----------------|-----|
| $K_Y$           | Y   |
| 2021-01         | 5.5 |
| 2021-01         | 4.5 |
| 2021-02         | 3.9 |
| 2021-02         | 2.0 |
| 2021-03         | 4.0 |
| 2021-03         | 1.0 |
| 2021-04         | 4.0 |

|                  | $\mathcal{T}_{X\bowtie Y}$ |                  |
|------------------|----------------------------|------------------|
| $K_{X\bowtie Y}$ | $X_{X\bowtie Y}$           | $Y_{X\bowtie Y}$ |
| 2021-04          | 3.0                        | 4.0              |
| 2021-03          | 2.0                        | 2.5              |
| 2021-02          | 4.0                        | 3.0              |
| 2021-01          | 6.0                        | 5.0              |
|                  | `                          |                  |

Correlation of columns X and Y

after applying join/aggregation on Tx and Ty tables

#### Challenges

- Join, aggregation and correlations :
   expensive + impossible to compute on query-time
- Cannot pre-compute them
- Cannot sample without applying join
   (Values need to aligned using join key)

What are the alternatives for efficient query evaluation over large dataset collections?

9/8/2022

## **Correlation Sketches**

| $L_{\langle}$ | $K_X,X\rangle$ |       | $L_{\langle I}$ | $\langle Y, Y \rangle$ | $L_{\langle X \bowtie Y \rangle}$ |          |                   |     |
|---------------|----------------|-------|-----------------|------------------------|-----------------------------------|----------|-------------------|-----|
| h(k)          | $h_{u}(k)$     | $x_k$ | h(k)            | $h_{u}(k)$             | $y_k$                             | h(k)     | $\frac{x_k}{x_k}$ | 111 |
| bac52e98      | 0.48           | 2.0   | 16dab449        | 0.34                   | 2.5                               | 16dab449 | 2.0               | 2.5 |
| 16dab449      | 0.34           | 2.0   | bd5a7c1f        | 0.89                   | 3.0                               | 26f79756 | 3.0               | 4.0 |
| 26f79756      | 0.47           | 3.0   | 26f79756        | 0.47                   | 4.0                               | 4da33cf5 | 6.0               | 5.0 |
| 4da33cf5      | 0.34           | 6.0   | 4da33cf5        | 0.34                   | 5.0                               | 4000000  | 0.0               | 5.0 |

Instead of using full datasets → use **Correlation Sketches** 

A fast join-correlation estimation at query time!

Build data synopses  $L(K_X, X)$  and  $L(K_Y, Y)$  of  $(K_X, X)$  and  $(K_Y, Y)$ 

#### 2 different hashing functions

#### h(x):

- ✓ collision-free hash function
- ✓ randomly and uniformly maps key values  $k \in K_X$  into distinct integers  $\rightarrow$  tuple identifiers in  $L(K_X, X)$
- √32-bits MurmurHash3 function

#### $h_u(x)$ :

- $\checkmark$  maps integers h(k) to real numbers in the range [0, 1], uniformly at random
- $\checkmark$  the tuples corresponding to the n smallest  $h_u$  values are the ones included in the sketch
- ✓ introduces dependence that increases the probability of  $L(K_X, X)$  and  $L(K_Y, Y)$  including the same keys
- ✓ Fibonacci hashing function

## **Ranking Correlated Columns**

#### **Top-k Join-Correlation Queries:**

Given a column Q and a join column Q from a query table Q, find the top-Q tables Q in a dataset collection such that Q is joinable with Q on Q and has the highest after-join correlations between a column  $Q \in Q$  and Q.

❖ False Positives results:

Poorly-correlated data may seem more correlated than they actually are

Ranking with uncertain estimates

$$\max \sum_{i=1}^{k} (|\hat{r}_{Q \triangleleft Ci}| \times (1 - risk(Q, C_i)))$$

- $|\hat{r}_{Q \multimap Ci}|$  : estimated correlation computed on  $L_{Q \multimap Ci}$
- $risk(Q, C_i)$ : function that returns a number in the range [0, 1] and measures the dispersion of the correlation estimates using  $L_{Q \lhd \rhd Ci}$ , such as standard error or confidence interval length.

## Correlation Sketches – Creation Methods

Based on paper 2 methods are implied for the creation of Correlation Sketches:

#### Method #1:

Select n samples of pairs  $\langle h(k), xk \rangle$  with minimum values of hu(k)

 $L(KX,X) = \{(h(k), xk) : k \in min(k, hu(k))\}$ 

where min a function that returns a set containing the keys k with the n smallest values of hu (k).

## *Method #2:*

Tree-based Algorithm – Extension of KMV family

#### Algorithm 1 (KMV Computation)

```
1: h: hash function from domain of dataset to \{0, 1, ..., M\}
2: L: list of k smallest hashed values seen so far
3: maxVal(L): returns the largest value in L
4:
5: for each item x in the dataset do
      v = h(x)
      if v \notin L then
8:
         if |L| < k then
           insert v into L
         else if v < \max Val(L) then
11:
            insert v into L
            remove largest element of L
13:
         end if
       end if
15: end for
```

## Correlation Sketches - Chose Method

## Execution Time

| Approach                             | Sec    |
|--------------------------------------|--------|
| K minimum values of $h_{u}(x)$       | 0.0899 |
| Tree-based algorithm – kmv extension | 0.5907 |

Method #1 runs 15% faster.

## 

Both methods perform satisfiably well against actual correlations.

Actual Pearson's correlation

## Join Sizes Produced



Both methods produce same join sizes.

Choose Method #1 – K minimum values of  $h_u(x)$ 

9/9/2022

Actual Pearson's correlation

# Estimation accuracy - Correlation Sketches











- Correlation Sketches of size 256
- Pearson's correlation estimation
- Data drawn from bivariate distribution

Pair tables  $Tx = \langle KX, X \rangle$ ,  $Ty = \langle KY, Y \rangle$ - rows uniformly at random (0, 50.000) -Ty uniform random sample of Tx

# Estimation accuracy - Random Sampling





- Random Sampling fails at joincorrelation estimation
- Values are not aligned based on join values



# **End-biased Sampling**

This technique builds on end-biased histograms and uses single dimension histogram to build a compact summary for every given attribute of a table.

## End-biased samples creation steps:

Given an attribute of a table,

- 1) Calculate the full list of the repeat counts/ frequencies for each value of the attribute
- 2) Apply rule:
  - If frequency f<sub>v</sub> > threshold T
     Add tuple in sample
  - If frequency  $f_v$  < threshold T Compute probability  $p_v = f_v$  / T Apply 2-universal hash function h(v) If h(v) <  $p_v$ Add tuple in sample



# Estimation accuracy – End-biased Sampling





The threshold T is a parameter we can use to trade off accuracy and sample size.

## Correlation Sketches VS. End-biased Sampling









Correlation Sketches outperform End-biased Sampling.

# Estimation accuracy – Correlation Sketches







- Correlation Sketches of size 256
- Pearson's correlation estimation
- Data drawn from mixture of 2 bivariate distributions

Pair tables  $Tx = \langle KX, X \rangle$ ,  $Ty = \langle KY, Y \rangle$ - rows uniformly at random (0, 50.000) -Ty uniform random sample of Tx

## Correlation accuracy - RMSE



Data drawn from bivariate distribution



*In all cases we confirm the trend:* 

RMSE converges to minimum value as size of correlation sketches increases

Data drawn from mixture of 2 bivariate distribution

## **Inverted Indexing**

The inverted index is a database index storing a mapping from content (such as words) to its locations in a database (set of documents).

Allows fast full-text search.





Applied invert indexing before top-k join-correlation query to corpus set for join values overlapping > 5000

Instead of searching among 499 tables → 286 tables 43% reduction of tables in corpus set

# Top-k join-correlation query

|             |                |                   |          | <u> </u>  |                |          |                    | <u> </u>    |                |
|-------------|----------------|-------------------|----------|-----------|----------------|----------|--------------------|-------------|----------------|
| Column_name | Pearson_actual | Pearson_estimated | Fisher_z | Bootstrap | Random_scoring | Jaccard  | Jaccard_estimation | Join_actual | Join_estimated |
| 0           | 0.871135       | 0.841683          | 0.779968 | 0.808595  | 0.133051       | 0.753120 | 0.585139           | 37656       | 189            |
| 284         | 0.036431       | 0.290216          | 0.225322 | 0.188484  | 0.002459       | 0.057015 | 0.047035           | 5394        | 23             |
| 415         | 0.036232       | 0.173109          | 0.134401 | 0.113115  | 0.046299       | 0.058705 | 0.047035           | 5545        | 23             |
| 450         | 0.031627       | 0.229370          | 0.182550 | 0.145580  | 0.128940       | 0.056625 | 0.055670           | 5359        | 27             |
| 341         | 0.030356       | 0.058685          | 0.043001 | 0.031760  | 0.010322       | 0.059109 | 0.034343           | 5581        | 17             |
|             |                |                   |          |           |                |          |                    |             |                |
| 297         | 0.000534       | 0.054514          | 0.043823 | 0.030865  | 0.051138       | 0.057932 | 0.060041           | 5476        | 29             |
| 257         | 0.000502       | 0.077301          | 0.060820 | 0.051927  | 0.037014       | 0.057876 | 0.051335           | 5471        | 25             |
| 198         | 0.000408       | 0.515655          | 0.382513 | 0.356782  | 0.175722       | 0.057437 | 0.036437           | 5345        | 18             |
| 117         | 0.000273       | 0.113098          | 0.087808 | 0.071063  | 0.048924       | 0.056053 | 0.047035           | 5135        | 23             |
| 340         | 0.000097       | 0.006140          | 0.005054 | 0.004071  | 0.004163       | 0.056468 | 0.073375           | 5345        | 35             |

RMSE (estimated Pearson's, actual Pearson's) = 0.1869

RMSE (Fisher Z, actual Pearson's) = 0.1456

RMSE (Bootstrap, actual Pearson's) = 0.1206

- ✓ RMSE decreases with risk-averse scoring framework
- Correlation Sketches of size 256
- Data drawn from bivariate distribution (rows fixed maximum size of 50.000)

## Top-k join-correlation query

| 6.3             |                |                   | e: 1     |           |                |          |                    |             |                |
|-----------------|----------------|-------------------|----------|-----------|----------------|----------|--------------------|-------------|----------------|
| Column_name     | Pearson_actual | Pearson_estimated | Fisher_z | Bootstrap | Random_scoring | Jaccard  | Jaccard_estimation | Join_actual | Join_estimated |
| RRP_positive    | 0.999821       | 0.997166          | 0.934475 | 0.992986  | 0.161896       | 1.000000 | 1.0                | 2106        | 256            |
| demand_pos_RRP  | 0.220856       | 0.289603          | 0.271396 | 0.257156  | 0.193116       | 1.000000 | 1.0                | 2106        | 256            |
| demand          | 0.217538       | 0.245725          | 0.230277 | 0.216596  | 0.171818       | 1.000000 | 1.0                | 2106        | 256            |
| max_temperature | 0.165484       | 0.081391          | 0.076274 | 0.070610  | 0.051588       | 1.000000 | 1.0                | 2106        | 256            |
| demand_neg_RRP  | 0.078815       | 0.230132          | 0.215664 | 0.211690  | 0.219165       | 1.000000 | 1.0                | 2106        | 256            |
| frac_at_neg_RRP | 0.077955       | 0.233192          | 0.218532 | 0.214989  | 0.204205       | 1.000000 | 1.0                | 2106        | 256            |
| min_temperature | 0.070619       | 0.009721          | 0.009110 | 0.008345  | 0.002823       | 1.000000 | 1.0                | 2106        | 256            |
| solar_exposure  | 0.061808       | 0.005615          | 0.005262 | 0.004873  | 0.004144       | 0.999525 | 1.0                | 2105        | 256            |
| RRP_negative    | 0.038931       | 0.068977          | 0.064640 | 0.055298  | 0.057890       | 1.000000 | 1.0                | 2106        | 256            |
| rainfall        | 0.028642       | 0.009379          | 0.008789 | 0.008478  | 0.000587       | 0.998575 | 1.0                | 2103        | 256            |

RMSE (estimated Pearson's, actual Pearson's) = 0.08230

RMSE (Fisher Z, actual Pearson's) = 0.07840

RMSE (Bootstrap, actual Pearson's) = 0.07389

**✓** RMSE decreases with risk-averse scoring framework

- Real data
- Query set: RRP, recommended retail price in AUD\$ / MWh

# **Running Time**

|       | C      | omplete Tabl | es       | Соі    | Correlation Sketches |          |  |  |
|-------|--------|--------------|----------|--------|----------------------|----------|--|--|
| (sec) | Join   | Pearson's    | Spearman | Join   | Pearson's            | Spearman |  |  |
| Mean  | 0.0455 | 0.0007       | 0.0057   | 0.0027 | 0.0004               | 0.0011   |  |  |
| Std   | 0.0276 | 0.0007       | 0.0041   | 0.0007 | 0.0003               | 0.0002   |  |  |
| 75%   | 0.0631 | 0.0008       | 0.0079   | 0.0027 | 0.0004               | 0.0011   |  |  |
| 95%   | 0.0889 | 0.0011       | 0.0138   | 0.0039 | 0.0006               | 0.0016   |  |  |
| 99%   | 0.1099 | 0.0026       | 0.0171   | 0.0046 | 0.0007               | 0.0020   |  |  |

- ✓ Overall Correlation Sketches run faster, specially for the cases :
  - Larger tables (percentile 99%)
  - For more complex estimators (Spearman)

# THANK YOU