Równania kwadratowe

Przykłady z rozwiązaniami

Aleks Zieliński

4.06.2025

Będziemy korzystać z trzech sposobów opisanych poniżej.

Sposób 1: Skorzystamy ze wzoru na $\Delta = b^2 - 4ac$

Przypomnijmy, że równanie jest w postaci $ax^2 + bx + c$

Gdy $\Delta > 0$ to równanie ma dwa rozwiązania rzeczywiste x_1 i x_2 wyglądają następująco $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ oraz $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$, dokładniej $x = \frac{-b \pm \sqrt{\Delta}}{2a}$

Gdy $\Delta=0$ to równanie ma jedno rozwiązanie $x_1=x_2=\frac{-b}{2a}$, można stosować wzór na x_1 i x_2 , wyjdzie wtedy $x_1=x_2$ co jest prawdą bo $\sqrt{\Delta}=0$ a więc wzór na x_1 i x_2 jest taki sam

Gdy $\Delta < 0$ to równanie nie ma rozwiązań rzeczywistych

Sposób 2: Skorzystamy ze wzorów Viète'a

Wzory są następujące $x_1 + x_2 = \frac{-b}{a}$ oraz $x_1 * x_2 = \frac{c}{a}$

Potem trzeba zauważyć jakie x_1 i x_2 spełniają te równości

Istnieje tylko jedna para x_1 i x_2 , kolejność nie ma znaczenia

Sposób 3: Zastosujemy twierdzenie o pierwiastkach wymiernych wielomianu

Twierdzenie brzmi następująco, jeżeli wielomian o współczynnikach całkowitych ma pierwiastki wymiernie to można je zapisać w postaci ułamka nieskracalnego $\frac{p}{q}$, gdzie p to dzielnik całkowity wyrazu wolnego, a q to dzielnik całkowity wyrazu przy współczynniku o najwyższej potędze

Zatem wystarczy podstawiać po x po kolei każdą opcję i sprawdzać czy się zeruje równanie

Uwaga, tą metodą nie znajdziemy rozwiązaniań typu $\sqrt{2}$ czy $\sqrt{7}$ bo tą są liczby rzeczywiste a nie wymierne oraz równanie kwadratowe ma maksymalnie dwa rozwiązania rzeczywiste

Jest to "słaba" metoda ale użyteczna przy równaniach wyższego stopnia (>2)

$$x^2 - 5x + 6 = 0$$

Sposób 1:
$$\Delta = 25 - 4 * 6 = 25 - 24 = 1$$
, czyli $\sqrt{\Delta} = \sqrt{1} = 1$

Podstawiając dane pod x_1 , mamy $x_1 = \frac{-(-5)-1}{2*1}$, czyli $x_1 = \frac{5-1}{2} = \frac{4}{2} = 2$ Podstawiając dane pod x_2 , mamy $x_2 = \frac{-(-5)+1}{2*1}$, czyli $x_2 = \frac{5+1}{2} = \frac{6}{2} = 3$

Zatem $x_1 = 2$ oraz $x_2 = 3$

Sposób 2: Podstawiając odpowiednio mamy $x_1 + x_2 = \frac{-(-5)}{1} = \frac{5}{1} = 5$

Podstawiając do drugiego wzoru mamy $x_1 * x_2 = \frac{6}{1} = 6$

Zauważmy, że jedyna para x_1 i x_2 która spełnia powyższe dwa równania to $x_1 = 2$ i $x_2 = 3$

Sposób 3: Mamy
$$p \in \{\pm 1, \pm 2, \pm 3, \pm 6\}$$
 i $q \in \{\pm 1\}$

Zatem zbiór potencjalnych rozwiązań wymiernych to $\{\pm 1, \pm 2, \pm 3, \pm 6\}$

Zapiszmy nasze równanie w postaci $W(x) = x^2 - 5x + 6$ i podstawiajmy po kolei każdy element z naszego zbioru kandydatów na rozwiązanie wymierne równania

$$W(1) = 1^2 - 5 * 1 + 6 = 1 - 5 + 6 = 2 \neq 0$$

$$W(-1) = (-1)^2 - 5 * (-1) + 6 = 1 + 5 + 6 = 12 \neq 0$$

 $W(2)=2^2-5*2+6=4-10+6=0,$ zatem $x_1=2$ i sprawdzamy dalej po potencjalne drugie rozwiązanie wymierne

$$W(-2) = (-2)^2 - 5 * (-2) + 6 = 4 + 10 + 6 = 20 \neq 0$$

 $W(3) = 3^2 - 5 * 3 + 6 = 9 - 15 + 6 = 0$, zatem $x_2 = 3$ i nie musimy już dalej sprawdzać

bo mamy wszystkie rozwiązania wymierne naszego równania kwadratowego

Ostatecznie $x_1 = 2$ i $x_2 = 3$

$$x^2 - 1 = 0$$

Sposób 1: $\Delta = 0^2 - 4 * 1 * (-1) = 4$, czyli $\sqrt{\Delta} = 2$

$$x_1 = \frac{-0-2}{2*1} = \frac{-2}{2} = -1, \ x_2 = \frac{-0+2}{2*1} = \frac{2}{2} = 1$$

Zatem $x_1 = -1 i x_2 = 1$

Sposób 2: Podstawiając odpowiednio mamy $x_1 + x_2 = \frac{-0}{1} = \frac{0}{1} = 0$

Podstawiając do drugiego wzoru mamy $x_1*x_2=\frac{-1}{1}=-1$

Zauważmy, że jedyna para x_1 i x_2 która spełnia powyższe dwa równania to $x_1=-1$ i $x_2=1$

Sposób 3: Mamy $p \in \{\pm 1\}$ i $q \in \{\pm 1\}$

Zatem zbiór potencjalnych rozwiązań wymiernych to $\{\pm 1\}$

Zapiszmy nasze równanie w postaci $W(x)=x^2-1$ i podstawiajmy po kolei każdy element z naszego zbioru kandydatów na rozwiązanie wymierne równania

$$W(-1) = (-1)^2 - 1 = 0$$
, zatem $x_1 = -1$

$$W(1) = 1^2 - 1 = 0$$
, zatem $x_2 - 1$

Ostatecznie $x_1 = -1$ i $x_2 = 1$

Ciekawostka 1: Można zastosować wzór skróconego mnożenia $a^2-b^2=(a+b)(a-b)$

Zatem $x^2 - 1 = (x+1)(x-1)$, jest to postać iloczyna, stąd $x_1 = -1$ i $x_2 = 1$

Ciekawostka 2: Można zinterpretować to równanie słownie jako "jaka liczba podniesiona do kwadratu daje liczbę 1", jak wiadomo jedyne takie liczby to 1 i -1

Ciekawostka 3: Dodajmy obustronnie 1, mamy wtedy $x^2 = 1$

Można dać to równanie pod pierwiastek ale należy wtedy użyć wzoru $\sqrt{x^2} = |x|$

Mamy wtedy $\sqrt{x^2} = \sqrt{1}$ czyli |x| = 1

Zatem $x_1 = 1 \text{ i } x_2 = -1$

$$x^2 + 4x + 4 = 0$$

Sposób 1: $\Delta=4^2-4*1*4=16-16=0$, czyli istnieje tylko jedno rozwiązanie Zatem $x_1=x_2=\frac{-4}{2*1}=\frac{-4}{2}=-2$

Sposób 2: Podstawiając odpowiednio mamy $x_1 + x_2 = \frac{-4}{1} = -4$

Podstawiając do drugiego wzoru mamy $x_1 * x_2 = \frac{4}{1} = 4$

Zauważmy, że jedyna para x_1 i x_2 która spełnia powyższe dwa równania to $x_1=x_2=-2$

Sposób 3: Mamy $p \in \{\pm 1, \pm 2, \pm 4\}$ i $q \in \{\pm 1\}$

Zatem zbiór potencjalnych rozwiązań wymiernych to $\{\pm 1, \pm 2, \pm 4\}$

Zapiszmy nasze równanie w postaci $W(x) = x^2 + 4x + 4$ i podstawiajmy po kolei każdy element z naszego zbioru kandydatów na rozwiązanie wymierne równania

$$W(1) = 1^2 + 4 * 1 + 4 = 1 + 4 + 4 = 9 \neq 0$$

$$W(-1) = (-1)^2 + 4 * (-1) + 4 = 1 - 4 + 4 = 1 \neq 0$$

$$W(2) = 2^2 + 4 * 2 + 4 = 4 + 8 + 4 = 16 \neq 0$$

$$W(-2) = (-2)^2 + 4 * (-2) = 4 - 8 + 4 = 0$$
, zatem $x_1 = -2$

$$W(4) = 4^2 + 4 * 4 + 4 = 16 + 16 + 4 = 36 \neq 0$$

$$W(-4) = (-4)^2 + 4 * (-4) + 4 = 16 - 16 + 4 = 4 \neq 0$$

Zatem jedyne rozwiązanie wymierne to $x_1 = -2$, należałoby podzielić ten wielomian przez (x + 2) aby sprawdzić czy jest to jedyne rozwiązanie rzeczywiste, ale z innych metod wiemy że tak jest **Ciekawostka:** Można zastosować wzór skróconego mnożenia $a^2 + 2ab + b^2 = (a + b)^2$

$$x^2 + 4x + 4 = (x+2)^2$$
 stad jedyne rozwiązanie to $x = -2$

$$x^2 - 9x = 0$$

Sposób 1: $\Delta = (-9)^2 - 4 * 1 * 0 = 81$ stąd $\sqrt{\Delta} = 9$

Zatem $x_1 = \frac{-9-9}{2*1} = \frac{-18}{2} = 9, x_2 = \frac{-9+9}{2*1} = \frac{0}{2} = 0$

Sposób 2: Podstawiając odpowiednio mamy $x_1 + x_2 = \frac{-(-9)}{1} = \frac{9}{1} = 9$

Podstawiając do drugiego wzoru mamy $x_1*x_2=\frac{0}{1}=0$

Zauważmy, że jedyna para x_1 i x_2 która spełnia powyższe dwa równania to $x_1=9$ i $x_2=0$

Sposób 3: Mamy $p \in \mathbb{Z} \setminus \{0\}$ bo wyraz wolny to 0 a więc wszystkie liczby całkowite go dzielą oprócz zera i $q \in \{\pm 1\}$

Zatem zbiór potencjalnych rozwiązań wymiernych to $\mathbb{Z}\setminus\{0\}$

Zapiszmy nasze równanie w postaci $W(x) = x^2 - 9x$

Teraz powinniśmy podstawiać każdą liczbę całkowitą oprócz zera pod W(x) ale jest to zbiór nieskończony więc nigdy byśmy nie skończyli liczyć

Zauważmy że 0 nie należy do zbioru kandydatów na x więc nigdy byśmy nie otrzymali x_2 który jest równy 0

Ciekawostka 1: Można wyciągnąć x przed nawias, mamy wtedy $x^2 - 9x = x(x - 9)$ Stąd widać że jedyne rozwiązania to $x_1 = 9$ i $x_2 = 0$

Ciekawostka 2: Dodajmy obustronnie 9x, mamy wtedy $x^2 = 9x$

Można podzielić to równanie przez x przy założeniu że $x \neq 0$

Czyli trzeba podstawić pod x liczbę 0 i sprawdzić czy 0 spełnia to równanie czy nie $0^2 = 9 * 0$ czyli 0 = 0, zatem x spełnia równanie, mamy więc $x_1 = 0$

Dzielimy przez x "zapominając" o tym czy 0 spełnia równanie czy nie, ale zakładamy że $x \neq 0$

Mamy wtedy $x = 9 \neq 0$, stąd $x_2 = 9$

Ostatecznie mamy dwa rozwiązania oryginalnego równania $x_1 = 0$ i $x_2 = 9$

Gdyby po podzieleniu przez x, przy założeniu że $x \neq 0$, x był równy 0 to nie podzieliliśmy przez x w wystarczająco dużej potędze, może można bylo podzielić przez x^2 ?

Inaczej mówiąc to x=0jest pierwiastkiem stopnia większego niż $1\,$

(np. $x^4 = x^2$, lepiej podzielić przez x^2 oraz $x^2 \neq 0$ niż przez x oraz $x \neq 0$)

Rzadko należy dzielić z założeniami, gdyż zazwyczaj da sie równanie rozłożyć jak w ciekawostce powyżej

$$x^2 = 4$$

Sposób 1: Zacznijmy od odjęcia obustronnie liczby 4 inaczej od przerzucenia 4 na "druga stronę"

 $Mamy wtedy x^2 - 4 = 0$

$$\Delta = 0^2 - 4 * 1 * (-4) = 16 \text{ stad } \sqrt{\Delta} = 4$$

Zatem
$$x_1 = \frac{-0-4}{2*1} = \frac{-4}{2} = -2, x_2 = \frac{-0+4}{2*1} = \frac{4}{2} = 2$$

Sposób 2: Analogicznie jak w sposobie 1 odejmujemy ubustronnie 4

Zatem nasze równanie jest w postacie $x^2 - 4 = 0$

Podstawiając odpowiednio mamy $x_1 + x_2 = \frac{-0}{1} = \frac{0}{1} = 0$

Podstawiając do drugiego wzoru mamy $x_1 * x_2 = \frac{-4}{1} = -4$

Zauważmy, że jedyna para x_1 i x_2 która spełnia powyższe dwa równania to $x_1=-2$ i $x_2=2$

Sposób 3: Mamy $p \in \{\pm 1, \pm 2, \pm 4\}$ i $q \in \{\pm 1\}$

Zatem zbiór potencjalnych rozwiązań wymiernych to $\{\pm 1, \pm 2, \pm 4\}$

Zapiszmy nasze równanie w postaci $W(x) = x^2 - 4$ i podstawiajmy po kolei każdy element z naszego zbioru kandydatów na rozwiązanie wymierne równania

$$W(1) = 1^2 - 4 = 1 - 4 = -3 \neq 0$$

$$W(-1) = (-1)^2 - 4 = 1 - 4 = -3 \neq 0$$

$$W(2) = 2^2 - 4 = 4 - 4 = 0$$
, zatem $x_1 = 2$

$$W(-2) = (-2)^2 - 4 = 4 - 4 = 0$$
, zatem $x_2 = -2$

Mamy dwa rozwiązania więc nie musimy dalej sprawdzać, wyszło nam że $x_1=2$ i $x_2=-2$

Ciekawostka 1: Można zastosować wzór skróconego mnożenia $a^2 - b^2 = (a+b)(a-b)$ Zatem $x^2 - 4 = (x+2)(x-2)$, jest to postać iloczyna, stąd $x_1 = -2$ i $x_2 = 2$

Ciekawostka 2: Można zinterpretować to równanie słownie jako "jaka liczba podniesiona do kwadratu daje liczbę 4", jak wiadomo jedyne takie liczby to 2 i -2

Ciekawostka 3: Można dać to równanie pod pierwiastek ale należy wtedy użyć wzoru $\sqrt{x^2} = |x|$

Mamy wtedy
$$\sqrt{x^2} = \sqrt{4}$$
 czyli $|x| = 2$

Zatem
$$x_1 = 2 \text{ i } x_2 = -2$$

$$x^2 = -1$$

Sposób 1: Zacznijmy od dodania obustronnie 1, mamy wtedy $x^2 + 1 = 0$

 $\Delta = 0^2 - 4 * 1 * 1 = -4$, czyli brak rozwiązaniań rzeczywistych

Sposób 2: Zacznijmy od dodania obustronnie 1, mamy wtedy $x^2 + 1 = 0$

Podstawiając odpowiednio mamy $x_1 + x_2 = \frac{-0}{1} = \frac{0}{1} = 0$

Podstawiając do drugiego wzoru mamy $x_1 * x_2 = \frac{1}{1} = 1$

Zauważmy, że nie istnieje taka para liczb rzeczywistych x_1 i x_2 która spełnia powyższe dwa równania

Zatem nie istnieją rozwiązania rzeczywiste naszego równania

Sposób 3: Zacznijmy od dodania obustronnie 1, mamy wtedy $x^2 + 1 = 0$

Mamy $p \in \{\pm 1\}$ i $q \in \{\pm 1\}$

Zatem zbiór potencjalnych rozwiązań wymiernych to $\{\pm 1\}$

Zapiszmy nasze równanie w postaci $W(x) = x^2 + 1$ i podstawiajmy po kolei każdy element z naszego zbioru kandydatów na rozwiązanie wymierne równania

$$W(-1) = (-1)^2 + 1 = 1 + 1 = 2 \neq 0$$

$$W(1) = 1^2 + 1 = 1 + 1 = 2 \neq 0$$

Zatem brak rozwiązaniań wymiernych równania

Ciekawostka 1: Zacznijmy od dodania obustronnie 1, mamy wtedy $x^2 + 1 = 0$

$$\Delta = 0^2 - 4*1*1 = -4$$
, czyli $\sqrt{\Delta} = \sqrt{-4} = \sqrt{-1}*\sqrt{4} = i*2 = 2i$, ponieważ $i^2 = -1$ Zatem $x_1 = \frac{-0-2i}{2} = \pm -i$ oraz $x_2 = \frac{-0+2i}{2} = i$

Ciekawostka 2: Można zinterpretować to równanie słownie jako "jaka liczba podniesiona do kwadratu daje liczbę -1", jak wiadomo żadna liczba rzeczywista podniesiona do kwadratu nie daje liczby ujemnej, natomiast w liczbach zespolonych $i^2 = -1$ stąd $x_1 = i$ oraz $x_2 = -i$

Ciekawostka 3: Można dać to równanie pod pierwiastek ale należy wtedy użyć wzoru $\sqrt{x^2} = |x|$

Mamy wtedy
$$\sqrt{x^2} = \sqrt{-1}$$
 czyli $|x| = i$

Zatem $x_1 = i \text{ oraz } x_2 = -i$

Ciekawostka 4: Zacznijmy od dodania obustronnie 1, mamy wtedy $x^2 + 1 = 0$

Można zastosować po odpowiednim przekształceniu wzór skróconego mnożenia $a^2 - b^2 = (a - b)(a + b)$

Zatem
$$x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i)$$

Stąd $x_1 = i \text{ oraz } x_2 = -i$

$-4x^2 + 16x = 12$

Sposób 1: Zacznijmy od dodania obustronnie liczby -12

Mamy wtedy $-4x^2 + 16x - 12 = 0$

$$\Delta = 16^2 - 4 * (-4) * (-12) = 256 - 192 = 64 \text{ stad } \sqrt{\Delta} = 8$$

Zatem
$$x_1 = \frac{-16-8}{2*(-4)} = \frac{-24}{-8} = 3, x_2 = \frac{-16+8}{2*(-4)} = \frac{-8}{-8} = 1$$

Sposób 2: Analogicznie jak w sposobie 1 odejmujemy dodajemy obustronnie -12

Zatem nasze równanie jest w postacie $-4x^2 + 16x - 12 = 0$

Podstawiając odpowiednio mamy $x_1 + x_2 = \frac{-16}{-4} = 4$

Podstawiając do drugiego wzoru mamy $x_1*x_2=\frac{-12}{-4}=3$

Zauważmy, że jedyna para x_1 i x_2 która spełnia powyższe dwa równania to $x_1=3$ i $x_2=1$

Sposób 3: Mamy $p \in \{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\}$ i $q \in \{\pm 1, \pm 2, \pm 4\}$

Zatem zbiór potencjalnych rozwiązań wymiernych po usunięciu powtarzających się wyrazów to $\{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{1}{4}, \pm \frac{3}{4}\}$

Zapiszmy nasze równanie w postaci $W(x)=-4x^2+16x-12$ i podstawiajmy po kolei każdy element z naszego zbioru kandydatów na rozwiązanie wymierne równania

$$W(1) = (-4) * 1^2 + 16 * 1 - 12 = (-4) + 16 - 12 = 0$$
, zatem $x_1 = 1$

$$W(-1) = (-4) * (-1)^2 + 16 * (-1) - 12 = (-4) - 16 - 12 = -32 \neq 0$$

$$W(2) = (-4) * 2^2 + 16 * 2 - 12 = (-4) * 4 + 32 - 12 = -16 + 20 = -4 \neq 0$$

$$W(-2) = (-4) * (-2)^2 + 16 * (-2) - 12 = (-4) * (-2) - 32 - 12 = 8 - 44 = -36 \neq 0$$

$$W(3) = (-4) * 3^2 + 16 * 3 - 12 = (-4) * 9 + 48 - 12 = (-36) + 36 = 0$$
, zatem $x_2 = 3$

Mamy dwa rozwiązania więc nie musimy dalej sprawdzać, wyszło nam że $x_1=1$ i $x_2=3$

Ciekawostka 1: Można na początku podzielić przez -4 lub wyciągnąć -4 przed nawias, nie zmieni to wyników ale sprawi że liczby będą mniejsze

Mamy wtedy
$$-4(x - 4x + 3) = 0$$

Rozwiązaujemy x-4x+3 jednym ze sposóbów i otrzymujemy $x_1=1$ i $x_2=3\,$