Module-2 Flowcharts & Algorithms

- 1. Flowcharts
- 2. Algorithms
- 3. Pseudocode
- 4. Time & Space Complexity.

Flowcharts

What are Flowcharts?

Flowchart is a diagrammatic representation of sequence of logical steps of a program.

Symbols

Flowcharts use simple geometric shapes and arrows for processes and data flow.

Area of a Rectangle

input:
l,b
Output:
Area of Rectangle

My Approach for getting Idea

Input -> Process -> Output Strategy

Algorithms

Algorithms

Algorithm is a step-by-step procedure, which defines a set of instructions to be executed in a certain order to get the desired output.

Sum of 2 digits

```
step 1 - START
```

step 2 - declare three integers a, b,c

step 3 - define values of a & b

step 4 - sum calculation of a & b

step 5 – store output of step 4 to c

step 6 – print c

step 7 - STOP

input: a,b Output: Sum of a and b

Sum of 2 digits Explaination

input:

a,b

Output:

Sum of a and b

Pseudocode

Pseudocode

- A way of expressing an algorithm without conforming to specific syntax rules.
- An informal high-level representation of the actual code

```
Example set i to 0
for each i from 0 to 9
if i is odd
print i
end for loop
```

Time & Space Complexity

Time Complexity:

The time complexity of an algorithm quantifies the amount of time taken by an algorithm to run as a function of the length of the input.

Space Complexity:

Problem-solving using computer requires memory to hold temporary data or final result while the program is in execution. The amount of memory required by the algorithm to solve given problem

Time and Space Complexity in Data Structure

