1. Экспериментальные исследования

Замеры проводились на ноутбуке с Ubuntu 21.04, Intel Core i5-7300HQ CPU, 2.50GHz, DDR4 8Gb RAM. В таблице 1 приведено сравнение элиминации квантора по времени и длине итоговой формулы для SMT-решателей Z3 и Princess (для последнего только сравнение длин результатов) и созданной реализации. Заметим, что замерялось только время элиминации без учёта парсинга входной формулы и вывода результата. В таблице 1 представлены средние значения и стандартные отклонения (σ) по 20 запускам (в миллисекундах), а также длина найденной формулы (в символах¹).

Таблица 1 — Сравнение времени элиминации (мс) и длины формулырезультата.

	Boolector (PA $+ 2^x$)			Z3			Princess
	Среднее		Длина	Среднее		Длина	Длина
	время	σ	формулы	время	σ	формулы	формулы
1	0.006	0.001	1	1.054	0.022	1	1
2	0.009	0.005	1	5.196	3.785	1	1
3	0.030	0.006	49	4.825	0.048	2210	1
4	0.011	0.001	62	26606.022	193.081	287203	171141
5	0.027	0.003	61	21.929	0.246	14431	1242
6	0.013	0.006	66	131.174	1.028	62412	18019
7	0.033	0.013	1	0.760	0.032	1	1
8	0.009	$< 10^{-3}$	41	4.309	0.037	2361	1
9	0.026	0.004	1	4.827	0.032	1	1
10	0.009	0.001	51	18.071	0.159	14837	21
11	0.011	0.001	95	16.259	0.274	15171	1950
12	0.036	0.011	76	129.297	1.074	88648	1
13	0.012	0.001	79	71.119	0.648	44904	5644
14	0.060	0.022	1	4.738	0.057	1	1
15	0.061	0.018	395	20.038	0.238	716	997
16	0.110	0.011	1	124.561	0.921	1	1

Таблица составлена по результатам запуска программ на следующих тестах (n- размер битовых векторов):

 $^{^{1}}$ Служебные слова и символы не учитываются (в Z3 «(goals (goal» и закрывающая скобка), а длину тождественно верных/ложных формул будем считать равной 1 для единообразия (на самом деле они могут выводится как «true», «false», «»).

- 1. $\exists x. \ x \geqslant 9505 \ (n=16) \texttt{тест} \ / conjunction_level_benchmarks/Delta$ $TR_RFRNC_OUT_QESMT_benchmark_conjunction_38.smt^2$ из набора тестов Benchmarks.
- 2. $\exists x. \ y < x \land 2 < x \land z < x \ (n=4)$
- 3. $\forall x. \ 3 \cdot y \le x \land x \le 12 \cdot y \ (n=4)$
- 4. $\exists x. \ x \leq 997 \cdot y \land z \leq x \land x \leq t \ (n = 10)$
- 5. $\exists x. \ x \le 2 \cdot y + z \land 10 \cdot y \le x \ (n = 6)$
- 6. $\exists x. \ x \le 5 \cdot y + 7 \land 8 \cdot (y+z) \le x \ (n=8)$
- 7. $\exists x. \ y + 15 < x \land x < 1 \ (n = 4)$
- 8. $\exists x. \ 3 \cdot (1 \ll y) \leq x \land x \leq 7 \cdot (1 \ll y) \ (n = 4)$
- 9. $\forall x. (1 \ll y) \leq x \land 2 \leq x \land z \leq x (n = 4)$
- 10. $\exists x. \ 3 \cdot (1 \ll y) \leq x \land x \leq 12 \cdot y \ (n = 6)$
- 11. $\exists x. \ x \leq 3 \cdot (1 \ll y) \land (1 \ll z) \leq x \land x \leq t \ (n = 6)$
- 12. $\forall x. \ x \leq 2 \cdot (1 \ll y) + (1 \ll z) \wedge 10 \cdot (1 \ll y) \leq x \ (n = 8)$
- 13. $\exists x. \ x < 5 \cdot (1 \ll y) + 7 \wedge 8 \cdot ((1 \ll y) + z) < x \ (n = 8)$
- 14. $\exists x. (1 \ll x) \leq (1 \ll y) + 11 \cdot y + 4 (n = 4)$
- 15. $\exists x. (1 \ll x) < y + 3 \cdot z + 8 (n = 6)$
- 16. $\exists x. (1 \ll x) < 7 \cdot y \land (1 \ll x) < z \land (1 \ll x) < (1 \ll t) (n = 8)$

²Формула была переведена из формата SMT-LIB в SMT-LIB v.2.