

과제 개요

사업명	무인이동체 원천기술개발사업(내역사업 2 : 통합운용 기술실증기 개발)
과제명	무인수상선-수중자율이동체 복합체계 개발(해양복합연구단)
세부과제명	제12세부: <i>1000m 급 수중글라이더 센서 탑재 모듈 기술 개발</i>
연구목표	1. 해양관측용 센서 탑재 모듈 기술 개발 2. 센서 Plug&Play 기능 개발
사업기간	총 연구기간 : 2020. 06. 01 ~ 2024. 12. 31(1, 2단계 총 55개월) 당해(5차)년도 연구기간 : 2024. 01. 01 ~ 2024. 12. 31(12개월)
연구사업비	총 6.22억(국비 4.66억원, 기업 1.56억원)/당해 1.123억원
주관기관	오 션테크 ㈜
참여기관	해당사항 없음

과제 연구목표

🔾 최종 목표

1000m급 수중자율이동체(BCAUV)의 정해진 해양관측 임무를 수행하기 위해 임무에 따른 Plug&Play 기능을 가진 센서 탑재 모듈을 이용하여 다양한 해양 임무를 효율적으로 수행할 수 있도록 센서탑재 모듈 개발

Ο 세부 목표

- 1000m 급 수중글라이더 센서 탑재 모듈 기술 개발 목표
 - · 임무 시나리오별 해양관측용센서 모듈 탑재 기술 개발
- 임무 시나리오별 센서 탑재 모듈개발
 - · 기본 환경 시나리오:C.T.D + Turbidity / ADCP + Turbidity 센서 를 탑재 할 수 있는 센서 모듈
 - · 수중 환경 시나리오: C.T.D + Magnetometer 센서를 탑재 할 수 있는 센서 모듈
 - · 천해 환경 시나리오:
 - A. Methane + Tubidity 센서를 탑재 할 수 있는 센서 모듈
 - B. Co2 + Tubidity 센서를 탑재 할 수 있는 센서 모듈
 - C. pH + Tubidity 센서를 탑재 할 수 있는 센서 모듈
- 센서 Plug & Play 기능 개발
 - · BCAUV와의 임무별 탑재 모듈 Plug & Play 기능 구현

과제 연차별 연구개발 목표

○ 연차별 연구목표

단계	연차	연구목표	세부목표
	1차년	연구 개발 계획 수립 및 기본 설계	센서 모듈 개발 센서 모듈 요구도 분석 및 기본 설계 센서 Plug & Play 기능 개발 센서 모듈 전기 · 신호 특성 분석 및 기본 설계
1단계	2차년	상세설계 및 시스템 제작	 센서 모듈 개발 센서 모듈 상세 설계 및 제작 센서 모듈 단위 성능 시험 센서 Plug & Play 기능 개발 Plug & Play 기능 상세설계 및 제작
	3차년 단위시스템 제	단위시스템 제작 및 공정 시험	 센서 모듈 개발 동체 및 센서모듈 연동시험 센서 Plug & Play 기능 개발 Plug & Play 기능 연동
OCLAI	4차년	단위시스템 실해역 시험	 센서 모듈 개발 센서모듈별 운용성능시험 센서 Plug & Play 기능 개발 Plug & Play 운용성능시험
2단계 	5차년	체계연동시험	 센서 모듈 개발 센서모듈 통합성능시험 및 보완 센서 Plug & Play 기능 개발 Plug & Play 통합성능시험 및 보완

시제 개발 범위

GigaRF BRASHAWA GD System Statement Commenced Commenced

과제 연구개발로드맵

E1 30		et all				I = II	
단계		1단계			2눈	卢계	
년도	2020	2021	2022	2023	2024	2025	2026~27
해양복합	시스템						
연구단 (제12세부)	시트템 요구분석 SRR	* 단	위시스템: 센서도 I	모듈(Plug& Play 기	능 포함) 		
		시스템 설계 PDR, CDR					
		단위시 센서5	스템 제작 2듈 제작				
센서별 등 - 센서 프로토콜 - 소비전력 분 ^소	클 분석 - 탑재 센서	모듈 개발 1 공간 설계 8 SW 설계 ² 설계		센서탑재모듈 해상 시험	체계연동시험 • 센서모듈별 • Plug&Play • 체계연동시험		
- 최소화 / 경량 - 탑재 센서 공건	- 모듈 외로 선서 Plug & Play 기능 개발 - 시나리오 & 운용 센서 연동 개발	· 설계		 센서모듈별 운용성능시험 Plug&Play 운용성능시험 	후 보완		

○ 센서모듈 개발

- ▶ 연구개발 계획 수립 및 기본설계(1차년도)
 - 센서 모듈 요구도 분석 및 기본설계
 - 시나리오별 분류에 따른 센서 선정 및 센서 배치

相立	센서모듈 배치(안)	시험/검증 방안
모듈 1	The state of the s	· 담재 센서 : CTD, Turbidity · 60일 운영 시 전력 소모량(W/h) : 756W(63A@12VDC)
모듈 2	Name of the last o	· 담재 센서 : CTD, Magnetometer · 60일 운영 시 전력 소모량(W/h] : 756W(63A@12VDC)
모듈 3	II WAS LIKELY	· 담재 센서 : ADCP, Turbidity · 60일 운영 시 전력 소모량(W/h] : 2,563W(214A@12VDC)
모듈 4	100 Land Land Land Land Land Land Land Land	- 담재 센서 : Methane, Turbidity - 60일 운영 시 전력 소모량(W/h] : 2,765W(230A@12VDC)
모듈 5	And the state of t	· 담재 센서 : Co2, Turbidity · 60일 운영 시 전력 소모량(w/h) : 5,875W(490A@12VDC)
모듈 6	To the same of the	· 담재 센서 : pH, Turbidity · 60일 운영 시 전력 소모랑(W/h) : 4,147W(346A@12VDC)

- 센서 Plug & Play 모듈 신호특성 분석 및 기본설계
 - 소형화 및 저전력 센서 분석 및 선정

	Sensor	Model	Maker	Size(mm)	Weight(kg)	Input Power (VDC)	예상전력소모량 (60일/12DC 기준)	
1	C.T.D	LEGATO	RBR	195(L) X 63.8(W) X 78.6(H)	air: 0.8 / wt: 0.2	4.5 ~ 30	⇒ 65 Wh(5.5Ah)	
2	ADCP	DVL1000- 4000m	NORTEK	164(H) X 114(D)	air: 2.7 / wt: 1.7	12.0 ~ 48.0	⇒ 1872 <u>Wh</u> (156Ah)	
3	CO ⁵	CONTROS HydroC	KONGSBERG	380(L) X 89(D)	380(L) X 89(D) air : 4.5 / wt : 2.2		⇔ 5,184 <u>Wh</u> (432Ah)	
4	pН	Ocean Seven 311 pH Probe	IDRONAUT	562(L) X 48(D)	air: 1.8 / wt: 1.1	6 ~ 18	⇒ 3456 <u>Wh</u> (288Ah)	
5	Methane	METS Methan Sonsor	FRANATECH	200(L) X 49(D)	air: 0.8 / wt: 0.5	9 ~ 36	≒ 2,074Wh(173Ah)	
6	Turbidity	Turbidity Sensor 4296	XYLEM	86(L) X 40.5(W) X 35(H)	0.185	5 ~ 14	≒ 691Wh(58Ah)	
7	Magneto meter	Model 1540	APPLIED PHYSICS SYSTEMS	120(L) X 25.4(D) Type S : 120.65(L) X 29.2(W) X 24.1(H)	-	5~12	⇒ 691Wh(58Ah)	

○ 센서모듈 개발

- ▶ 상세설계 및 시스템 제작(2차년도)
 - 센서 모듈 상세 설계 및 제작 / 단위 성능 시험
 - 제어 페이로드 설계 및 펌웨어 개발

- 센서 탑재부분 페이로드 H/W 개념 설계 및 내부공간 확인

○ 센서모듈 개발

- 상세설계 및 시스템 제작(3차년도)
 - 센서 모듈 상세 설계 및 제작 / 단위 성능 시험
 - 페이로드 & 센서 연동 및 단위 성능 시험(실측 전원 소모량 확인)

- 페이로드 & 센서 연동 및 단위성능 시험(각 센서 프로토콜 확인)

2000-01-01 00:35:03.500, -0.0014, 26.8107, 10.0438, -0.0887, -0.0879, 0.0000, 1.0000, 26.7313 2000-01-01 00:35:04.000, -0.0015, 26.8109, 10.0454, -0.0870, -0.0863, 0.0000, 1.0000, 26.7349 2000-01-01 00:35:04.500, -0.0009, 26.8121, 10.0466, -0.0859, -0.0852, 0.0000, 1.0000, 26.7349 2000-01-01 00:35:05.000, -0.0011, 26.8130, 10.0396, -0.0929, -0.0921, 0.0000, 1.0000, 26.7349 2000-01-01 00:35:05.500, -0.0012, 26.8137, 10.0477, -0.0847, -0.0840, 0.0000, 1.0000, 26.7367 2000-01-01 00:35:06.000, -0.0014, 26.8131, 10.0416, -0.0909, -0.0902, 0.0000, 1.0000, 26.7386 2000-01-01 00:35:06.500, -0.0018, 26.8118, 10.0365, -0.0959, -0.0951, 0.0000, 1.0000, 26.7349 2000-01-01 00:35:07.000, -0.0015, 26.8067, 10.0461, -0.0864, -0.0857, 0.0000, 1.0000, 26.7386 2000-01-01 00:35:07.500, -0.0017, 26.8023, 10.0460, -0.0864, -0.0857, 0.0000, 1.0000, 26.7349 2000-01-01 00:35:08.000, -0.0017, 26.8004, 10.0444, -0.0881, -0.0874, 0.0000, 1.0000, 26.7367 2000-01-01 00:35:08.500, -0.0017, 26.8008, 10.0397, -0.0927, -0.0920, 0.0000, 1.0000, 26.7367

○ 센서모듈 개발

- ▶ 센서모듈별 운용성능시험(4차년도)
 - 센서모듈 연동 및 Plug & Play 기능 연동
 - 센서모듈의 페이로드와 각 시나리오별 센서의 전기·물리적 연동 확인(페이로드 제어 및 센서 자료 취득·전송)

센서 모듈 제어(센서모듈 <-> 각 시나리별 센서)

관측자료 수신(센서 -> 센서 모듈)

○ 센서모듈 개발

- ▶ 센서모듈별 통합성능시험 및 보완(5차년도)
 - 센서모듈 연동 및 Plug & Play 기능 연동
 - 수중글라이더 제어기와 페이로드의 전기·물리적 연동 확인(페이로드 제어 및 센서 자료 취득·전송)

<시나리오별 제어기 & 센서모듈 연동 시험>

당해(5차년) 연구개발 목표 및 내용

- ❖ 5차년도 연구목표
 - ① 센서 탑재 모듈 기술 및 센서모듈 Plug & Play 기능 개발
- ❖ 5차년도 연구내용
 - ① 센서 탑재 모듈 기술 개발(완료)
 - 센서 모듈 통합성능시험 및 보완
 - 6가지 시나리오의 센서모듈을 BCAUV와 연동 후 통합성능시험 수행
 - BCAUV와 센서 페이로드의 전기적·물리적 연결 후 통합시험 수행
 - ② 센서모듈 Plug & Play 기능 개발
 - 센서모듈 2개 이상의 통합시험 및 보완(실해역 시험)
 - BCAUV와 각 센서 모듈을 연동, Plug & Plat 기능 작동 상태 확인(실해역 시험)

당해(5차년) 추진체계

주요연구내용

- ▶ 체계 연동 시험
- 센서모듈 통합성능시험 및 보완
- Plug & Play 통합성능시험 및 보완

당해(5차년) 추진일정

년도/분기	1분기(2024)		2분기(2024)		3분기(2024)			4분기(2024)				
구 분	1	2	3	4	5	6	7	8	9	10	11	12
주요 일정 (예정)						해복단 착수회의			항우연 통합워크	샵		
Plug & Play 운용성능 시험												
센서모듈 통합성능 시험 및 보완				센	서 모듈 통합	성능 시험						
Plug & Play 통합성능시험 및 보완								Plug &	Play 통합성	능 시험		
시제 보완										보	완	•

실증 방안

O BCA 시제 시험/검증 방안

2단계 개발 항목	시험 내용	시험/검증 목표	시험예상일자			
		수중글라이더 단일 시험 평가	24년 9월 경			
	(정성) 복합체계 임무를 위한 수중글라이더 개발	복합체계 운용 성능 시험	6차년도			
		복합체계 종합 연동 시험	7-8차년도(최종)			
(8세부)		≥ 2개월, 단위시간 기준 수조 실험에 근거	24년 9월 경			
전력 및 제어시스템	(정량) 수중글라이더 운용 기간	≥ 2개월, 단위시간 기준 수조 실험에 근거	6차년도			
개발		≥ 2개월, 해상 실험에 근거, Sea state 301내	7-8차년도(최종)			
		≥ 2km, 연안-육지 2km 범위내, Ses state 2이내	24년 10월 경			
	(정량) 수중글라이더 RF 통신 거리	≥ 2km, 연안-육지 2km 범위내, Ses state 3이내	6차년도			
		≥ 2km, 해상 실험에 근거, Ses state 3이내	7-8차년도(최종)			
	(정성) 유압식 부력 제어기 및 선체 개발	수조 시험 시의 문제점을 보완하여 최종 시제품 제작, 단일 시험 평가 요구 성능 목표의 100% 만족	24년 9월 경			
(9세부)	(정량) 부력 제어기 소비전력	≤150W (부하 100bar, 부력 제어량 1L에 대해 유압 최대 사양으로 10회 시험하여 시제품 평균 소비전력 측정)	23년 11월 검증 완료			
유압식 부력 제어기 및 선체 개발	(정량) 자세 제어 정밀도	< ±2% [배터리 최대 무게에서 지정된 자세 제어 정밀도를 수조에서 실험, 센서장착 비교값 산출]	24년 9월 경			
	(정량) 선체 외압	선체 외압 120bar 수조에서 안전율을 고려한 외압시험 실시하여 내부로 수분 침투 여부 확인	24년 6월 검증 완료			
	(정량) 조향 제어 정밀도	< ±2%[지정된 조향 제어 정밀도를 수조에서 실험, 센서장착 비교값 산출]	24년 9월 경			
(10세부) 자율 제어 기술 개발	(정성) 수중글라이더의 실해역 운항실험 및 데이터 취득	수중글라이더 수조 센서 테스트 수중글라이더 실해역 실험 및 운용 테스트 시뮬레이션 결과와 실험 데이터 분석	24년 10월 경			
(11세부) 항법 기술 개발	(정성) 1000급 수중글라이더의 위치추정 항법 기술 개발	수중글라이더 시험 평가 적용	24년 10월 경			
(12세부) 센서 탑재 모듈 기술	(정성) 해양관측용 센서 탑재 모듈 기술 개발	센서모듈 등합성능시험 및 보완	24년 10월 경			
개발	(정량) 센서모듈 Plug & play 기능 개발	Plug & Play 통합성능시험 및 보완 - 모듈 2개 이상 시험(통합 시험)	24년 10월 경			
과학기술정보통신부 NRF) 한국연구제단 수 무인이동체병령을 사업단 (KRISO) 선박해양플랜트연구소 KIOST) 한국명관제기술 (KIOST) 한국로보육합연구원 (STORD Marine Equipment Research Institute **********************************						

시제 시험 계획

O BCA 센서탑재모듈 시제 시험/검증 방안

2단계 개발 항목	시험 기준/내용	시험/검증 방안	시험예상일자
센서 모듈별	임무에 따른 센서 탑재 시 제어	임무에 따른 각 센서 별 전원 제어 및 데이터 제어 확인	완료
운용성능 시험	임무에 따른 센서 탑재 시 관측자료 취득	임무에 따른 각 센서 별 관측자료 저장 확인	완료
센서모듈 통합성능 시험 및 보완	BCAUV의 주제어기와 연동	BCAUV의 주제어기와 페이로드 탑재모듈간의 제어, 데이터 전달 등 통신 확인	완료
Plug & Play 운용성능 시험	임무별 센서 탑재 및 BCAUV 동체와 체결 확인	BCAUV와 Payload의 전기적 및 물리적 체결 확인	완료
Plug & Play 통합성능	BCAUV 동체와 체결 후 탑재 센서 및 모듈	BUAUV와의 H/W 부분의 커넥션 및 동체 체결 여부 확인	5차년도
시험 및 보완	과의 정상적인 기능 구현 확인	H/W 부분 체결 후 센서 및 센서모듈의 정상 기능 구현 확인	5차년도

2024년도 무인이동체원천기술개발사업 통합기술워크샵

감사합니다.

