

MATHÉMATIQUES NIVEAU SUPÉRIEUR ÉPREUVE 1

Lundi 7 mai 2007 (après-midi)

2 heures

	Numéro	de	session	du	candidat
--	--------	----	---------	----	----------

0	0							
---	---	--	--	--	--	--	--	--

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- Écrivez votre numéro de session dans la case ci-dessus.
- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions dans les espaces prévus à cet effet.
- Sauf indication contraire dans l'intitulé de la question, toutes les réponses numériques devront être exactes ou correctes à trois chiffres significatifs près.

Le total des points ne sera pas nécessairement attribué pour une réponse correcte si le raisonnement n'a pas été indiqué. Les réponses doivent être appuyées par un raisonnement et/ou des explications. En particulier, les solutions obtenues à l'aide d'une calculatrice à écran graphique doivent être accompagnées d'un raisonnement adéquat. Par exemple, si des représentations graphiques sont utilisées pour trouver la solution, veuillez inclure une esquisse de ces représentations graphiques dans votre réponse. Lorsque la réponse est fausse, certains points peuvent être attribués si la méthode utilisée est correcte, pour autant que le raisonnement soit indiqué par écrit. On vous recommande donc de montrer tout votre raisonnement. Si cela est nécessaire, vous pouvez poursuivre votre raisonnement en dessous des lignes.

Houv	CZ AD.		

Tassara A D

2. Dans un échantillon de 50 boîtes d'ampoules électriques, le nombre d'ampoules défectueuses dans chaque boîte est donné ci-dessous.

Nombre d'ampoules défectueuses par boîte	0	1	2	3	4	5	6
Nombre de boîtes	7	3	15	11	6	5	3

(a) Calculez le nombre médian d'ampoules défectueuses par boîte.

(b	Calculez le nom	bre moyen d	'ampoules	défectueuses	par boîte

$-2x + y - z = 2$ et l'équation de π_2 est $x + 2y - z = 6$.	
Pásalvaz navru (2 (ln v)² – 2 ln v. 1 Dannaz vas ránansas sava forma avasta	
Résolvez pour x : $2(\ln x)^2 = 3\ln x - 1$. Donnez vos réponses sous forme exacte .	

5.	Résolvez l'équation différentielle $\frac{dy}{dx} = 2xy^2$ sachant que $y = 1$ quand $x = 0$.
	Donnez votre réponse sous la forme $y = f(x)$.

6.	Sachant que $a = 2i - j - k$, $b = 2i + j - 2k$ et $c = -i + j - k$ sont respectivement les vecteurs position des points A, B et C, calculez l'aire du triangle ABC.

7.	Un test en biologie consiste en sept questions à choix multiples. Chaque question a cinc réponses possibles parmi lesquelles une seule est correcte. Il faut donner au moins quatre réponses correctes pour réussir le test. Juan ne connaît aucune réponse ; pour chaque question, il choisit donc sa réponse au hasard.
	(a) Trouvez la probabilité que Juan réponde correctement à exactement quatre questions
	(b) Trouvez la probabilité que Juan réussisse le test de biologie.

8. Considérez le système d'équations $A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ avec $A = \begin{pmatrix} k+1 & -k \\ 2 & k-1 \end{pmatrix}$ et $k \in \mathbb{R}$.

(a) Trouvez $\det A$.

(b)	Trouvez	l'ensemble des	valeurs de <i>k</i> pour	lesquelles ce système a une solution uniqu	ıe

Uı d' v en	u1 =	1 3 <i>t</i>	po)11	nt	1	ì	ζ()	()	e	S	t	S	7	e	n	l :	n	1	è1	tı	•	S	,		e	t	5	38	ı	7	/i	t	e	S	S	e	,	ν	,	e	n	l	n	n	è	tr	e	S		p	a	r	S	se	c	()1	10	d	e,	,	e	S	t	(d	o	n	ın	ıé	έe	e	1	p
																																																																											, ,		
																	•				•	•				٠	•					•	•					•				•						•		•					•			•	•			٠		•							•	•		•			
			•			•	•							•		•			٠		•	•					•																																															•			
			•		•	•	•	•	•	•	•		•	•	•	•		•	٠		•		•		٠	•	•		•	٠																																												•		•	•
		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠		•	•	•	•	•	•	•	•	•	•			•	•	•					•	•	•	•	•			•	•	•	•	•	•				•	•	•	•	•	•	•		•	•	•	•	•			•	•	·			•	•

10. Une variable aléatoire continue X a la fonction de densité f définie par

$$f(x) = \begin{cases} \frac{8}{\pi(x^2 + 4)}, & 0 \le x \le 2\\ 0, & \text{dans les autres cas.} \end{cases}$$

(a) Indiquez le mode de X.

(h)	Trouvez	la val	leur exacte	de	F(Y)
(D)	HOUVEZ	ia vai	ieui exacte	ue	E(A)

11.	Le polynôme $P(z) = z^3 + mz^2 + nz - 8$ est divisible par $(z+1+i)$, avec $z \in \mathbb{C}$ et $m, n \in \mathbb{R}$ Trouvez les valeurs de m et de n .

•											• • • • •	
											• • • • •	
	Considérez											
		la série	arithm	étique	-6+1-	+8+15	+					
	Considérez	la série	arithm	étique	-6+1-	+8+15	+					
	Considérez	la série	arithm	étique	-6+1-	+8+15	+					
	Considérez	la série plus pet	arithm it nomb	étique ore de t	-6+1-ermes	+8+15 tel que	+ la som	me de	la série	soit su		
	Considérez Trouvez le	la série plus pet	arithm it nomb	étique ore de t	-6+1-ermes	+8+15 tel que	+ la som	me de	la série	soit su		
	Considérez Trouvez le	la série plus pet	arithm it nomb	étique ore de t	-6+1-ermes	+8+15 tel que	+ la som	me de	la série	soit su		
	Considérez Trouvez le	la série plus pet	arithm it nomb	étique ore de t	-6+1-ermes	+8+15 tel que	+ la som	me de	la série	soit su		
	Considérez Trouvez le	la série plus pet	arithm it nomb	étique ore de t	-6+1-ermes	+8+15 tel que	+ la som	me de	la série	soit su		
	Considérez Trouvez le	la série plus pet	arithm it nomb	étique ore de t	-6+1-ermes	+8+15 tel que	+ la som	me de	la série	soit su		
	Considérez Trouvez le	la série plus pet	arithm it nomb	étique ore de t	-6+1-ermes	+8+15 tel que	+ la som	me de	la série	soit su		
	Considérez Trouvez le	la série plus pet	arithm it nomb	étique ore de t	-6+1-ermes	+8+15 tel que	+ la som	me de	la série	soit su		

14. La représentation graphique de $y = \cos x$ est transformée en la représentation graphique de $y = 8 - 2\cos\frac{\pi x}{6}$.

Trouvez une suite de transformations géométriques simples qui réalise cela.

• •																								
• •	 		 •		 		 •		 	•		 	•			 •	 							
	 				 	-		 -	 			 					 							
	 		 	 	 		 	_				_			 								 	

15.	La représentation graphique de $y = \sin(3x)$ avec $0 \le x \le \frac{\pi}{4}$ fait une rotation de 2π radians
	autour de l'axe des abscisses. Trouvez le volume exact du solide de révolution engendré.

- **16.** Les longueurs des lézards d'une certaine espèce sont normalement distribuées avec une longueur moyenne de 50 cm et un écart-type de 4 cm. Un lézard est choisi au hasard.
 - (a) Trouvez la probabilité que sa longueur soit supérieure à 45 cm.

(b)	Sachant que sa longueur est supérieure à 45 cm, trouvez la probabilité que sa soit supérieure à 55 cm.	longueu

- 17. Pour $x \ge \frac{1}{2}$, soit $f(x) = x^2 \ln(x+1)$ et $g(x) = \sqrt{2x-1}$.
 - (a) Esquissez les représentations graphiques de f et de g sur le repère ci-dessous.

(b) Soit A la région limitée par les représentations graphiques de f et g. Trouvez l'aire de A.

•																																					
				 								 														 					•		 	 			
			•	 	٠		٠	٠		•		 			•					•						 		•	٠		•		 	 		•	

- **18.** La fonction f est définie par $f(x) = \frac{2x}{x^2 + 6}$ pour $x \ge b$ avec $b \in \mathbb{R}$.
 - (a) Montrez que $f'(x) = \frac{12 2x^2}{(x^2 + 6)^2}$.

(b)	À partir de là,	trouvez la plus	petite valeur	exacte de	e b pour	laquelle 1	a fonction
	réciproque f^{-1}	existe. Justifiez	votre réponse) <u>.</u>			

19.	Trouvez $\int_0^{\ln 3} \frac{e^x}{e^{2x} + 9} dx$, en exprimant votre réponse sous forme exacte .	

20. La voiture A roule à 60 km h⁻¹ vers l'ouest sur une route droite orientée est-ouest. La voiture B roule à 70 km h⁻¹ vers le nord sur une route droite orientée nord-sud. Les routes se coupent en un point O. Quand la voiture A est à *x* km à l'est de O, et que la voiture B est à *y* km au sud de O, la distance entre les voitures est *z* km.

Trouvez le taux de variation instantané de z quand la voiture A est à 0,8 km à l'est de O et la voiture B est à 0,6 km au sud de O.

•	•	 ٠	٠	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	 		 •	•	•	•	•		 	•	•	•	•	•	•					 	 	•			•	 	
•	•																																																											,
																																		 				•	•	•		 											 	 					 	
•		 •	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 	•		•	•	•	•	•	 	•	•	•	•	•	•	•	•	•	•	 	 		•	•	•	 	