MATH 162, SHEET 6: THE FIELD AXIOMS

Jeffrey Zhang IBL Script 6 Journal

We will formalize the notions of addition and multiplication in structures called fields. A field with a compatible order is called an ordered field. We will see that \mathbb{Q} and \mathbb{R} are both examples of ordered fields.

Definition 6.1. A binary operation on a set X is a function

$$f: X \times X \longrightarrow X$$
.

We say that f is associative if:

$$f(f(x,y),z) = f(x,f(y,z))$$
 for all $x,y,z \in X$.

We say that f is *commutative* if:

$$f(x,y) = f(y,x)$$
 for all $x, y \in X$.

An identity element of a binary operation f is an element $e \in X$ such that:

$$f(x,e) = f(e,x) = x$$
 for all $x \in X$.

Remark 6.2. Frequently, we denote a binary operation differently. If $*: X \times X \longrightarrow X$ is the binary operation, we often write a * b in place of *(a,b). We sometimes indicate this same operation by writing $(a,b) \mapsto a * b$.

Exercise 6.3. Rewrite Definition 6.1 using the notation of Remark 6.2.

Proof. A binary operation on a set X is a function $f: X \times X \to X$. We say that f is associative if (x*y)*z = x*(y*z) for all $x,y,z \in X$. We say that f is commutative if (x*y) = (y*x) for $x,y \in X$. An identity element of a binary operation f is an element $e \in X$ such that x*e = e*x = x for all $x \in X$.

Examples 6.4.

- 1. The function $+: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$ which sends a pair of integers (m, n) to +(m, n) = m + n is a binary operation on the integers, called addition. Addition is associative, commutative and has identity element 0.
- 2. The maximum of m and n, denoted $\max(m, n)$, is an associative and commutative binary operation on \mathbb{Z} . Is there an identity element for max?
- 3. Let P(Y) be the power set of a set Y. Recall that the power set consists of all subsets of Y. Then the intersection of sets, $(A, B) \mapsto A \cap B$, defines an associative and commutative binary operation on P(Y). Is there an identity element for \cap ?

- *Proof.* 2. There is no identity element for $\max(m, n)$ on \mathbb{Z} . Suppose there exists an identity element e such that $\max(x, e) = x$ for all $x, e \in \mathbb{Z}$. Then $e 1 \in \mathbb{Z}$, $\max(e, e 1) = e$, so e is not the identity element.
- 3. Let P(Y) be the power set of a set Y. The identity element then is Y itself, because for all sets X such that $X \in P(Y)$, $X \subset Y$ so $X \cap Y = Y$.

Exercise 6.5. Find a binary operation on a set that is not commutative. Find a binary operation on a set that is not associative.

Proof. Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be defined such that f(x,y) = x - y. We know that $1,2,3 \in \mathbb{R}$. f(2,1) = 2 - 1 = 1, while f(1,2) = 1 - 2 = -1. $1 \neq -1$ so f is not commutative. Similarly, we have that f(f(3,2),1) = (3-2) - 1 = 0, f(3,f(2,1)) = 3 - (2-1) = 2. $0 \neq 2$, so f is also not associative.

Exercise 6.6. Let X be a finite set, and let $Y = \{f : X \longrightarrow X \mid f \text{ is bijective}\}$. Consider the binary operation of composition of functions, denoted $\circ : Y \times Y \longrightarrow Y$ and defined by $(f \circ g)(x) = f(g(x))$. Decide whether or not composition is commutative and/or associative and whether or not it has an identity.

Proof. Let X be a finite set and $Y = \{f : X \to X \mid f \text{ is bijective}\}$. Let $f, g \in Y, X = \{a, b, c\}$ such that f(a) = b, f(b) = a, f(c) = c, g(a) = a, g(b) = c, g(c) = b and $a \neq b$, $b \neq c$, $a \neq c$. Through inspection it can be seen that f, g are injective and surjective and thus bijective by Definition 1.20. So we have that $(f \circ g)(a) = f(g(a)) = b$ and $(g \circ f)(a) = g(f(a)) = c$. $b \neq c$, so we know that composition is not commutative.

Let $p, q, r \in Y$ be arbitrary. Then we have that $((p \circ q) \circ r)(a) = p(q(r(a)))$. Similarly, $(p \circ (q \circ r))(a) = p(q(r(a)))$. p, q, r are arbitrary, so we have that composition is associative. The identity element for composition is the function f defined such that f(x) = x.

Theorem 6.7. Identity elements are unique. That is, suppose that f is a binary operation on a set X that has two identity elements e and e'. Then e = e'.

Proof. Let f have two identity elements e, e'. Then by 6.1, f(e, e') = f(e', e) = e. Similarly, f(e', e) = f(e, e') = e. So e = e'.

Definition 6.8. A *field* is a set F with two binary operations on F called addition, denoted +, and multiplication, denoted \cdot , satisfying the following *field axioms*:

- FA1 (Commutativity of Addition) For all $x, y \in F$, x + y = y + x.
- FA2 (Associativity of Addition) For all $x, y, z \in F$, (x + y) + z = x + (y + z).
- FA3 (Additive Identity) There exists an element $0 \in F$ such that x + 0 = 0 + x = x for all $x \in F$.
- FA4 (Additive Inverses) For any $x \in F$, there exists $y \in F$ such that x + y = y + x = 0.
- FA5 (Commutativity of Multiplication) For all $x, y \in F$, $x \cdot y = y \cdot x$.
- FA6 (Associativity of Multiplication) For all $x, y, z \in F$, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- FA7 (Multiplicative Identity) There exists an element $1 \in F$ such that $x \cdot 1 = 1 \cdot x = x$ for all $x \in F$.
- FA8 (Multiplicative Inverses) For any $x \in F$ such that $x \neq 0$, there exists $y \in F$ such that $x \cdot y = y \cdot x = 1$.
- FA9 (Distributivity of Multiplication over Addition) For all $x, y, z \in F$, $x \cdot (y+z) = x \cdot y + x \cdot z$.
- FA10 (Distinct Additive and Multiplicative Identities) $1 \neq 0$.

Exercise 6.9. Consider the set $\mathbb{F}_2 = \{0, 1\}$, and define binary operations + and \cdot on \mathbb{F}_2 by:

$$0+0=0 \qquad 0+1=1 \qquad 1+0=1 \qquad 1+1=0 \\ 0\cdot 0=0 \qquad 0\cdot 1=0 \qquad 1\cdot 0=0 \qquad 1\cdot 1=1$$

Show that \mathbb{F}_2 is a field.

Proof. Axiom 1: \mathbb{F}_2 only has two elements, so x = 1, y = 0. Then 0 + 1 = 1 + 0 = 1, so Axiom 1 holds.

Axiom 2: There are two cases, x = 1, y = 0, z = 1 and x = 1, y = 0, z = 0 (the other cases are covered by commutativity of addition. (1+0)+1=1+(0+1)=1+1=0. (1+0)+0=1+(0+0)=1+0=1. So Axiom 2 holds.

Axiom 3: $0 \in \mathbb{F}_2$, 0 is the additive identity. 1 + 0 = 1 and 0 + 0 = 0 so for all $x \in \mathbb{F}_2$, x + 0 = x. Axiom 3 holds.

Axiom 4: The additive inverse of $x \in \mathbb{F}_2$ is x. 1+1=0,0+0=0 so Axiom 4 holds.

Axiom 5: \mathbb{F}_2 has two elements. Let x=1,y=0 then $1\cdot 0=0\cdot 1=0$. So Axiom 5 holds.

Axiom 6: Similarly to Axiom 2 there are two cases. Let x = 1, y = 0, z = 1, then $(1 \cdot 0) \cdot 1 = 1 \cdot (0 \cdot 1) = 0$. $(1 \cdot 0) \cdot 0 = 1 \cdot (0 \cdot 0) = 0$. So Axiom 6 holds.

Axiom 7: The multiplicative identity is 1. $0 \cdot 1 = 0$, $1 \cdot 1 = 1$, so $x \cdot 1 = x$ for all $x \in \mathbb{F}_2$. So Axiom 7 holds.

Axiom 8: The multiplicative inverse of $x \in \mathbb{F}_2$ is x. $1 \cdot 1 = 1$, so Axiom 8 holds.

Axiom 9: For x, y, z, if x = 1, then Axiom 9 obviously holds because $1 \cdot (y + z) = y + z$ and $1 \cdot y + 1 \cdot z = y + z$. If x = 0, then $0 \cdot y = 0$ for any $y \in \mathbb{F}_2$. (Note: $1 \cdot 0 = 0$, $0 \cdot 0 = 0$). So $0 \cdot (y + z) = 0$ and $0 \cdot y = 0$ and $0 \cdot z = 0$, so 0 = 0 + 0, so Axiom 9 holds. Axiom 10: The definition of \mathbb{F}_2 implies that $1 \neq 0$, so Axiom 10 holds.

Theorem 6.10. Suppose that F is a field. Then additive and multiplicative inverses are unique. This means:

1. Let $x \in F$. If $y, y' \in F$ satisfy x + y = 0 and x + y' = 0, then y = y'.

Proof.
$$x + y = x + y'$$

 $(x + y) + (-x) = (x + y') + (-x)$ Axiom 4
 $0 + y = 0 + y'$ Axiom 1, 2, 4
 $y = y'$ Axiom 3

2. Let $x \in F$. If $y, y' \in F$ satisfy $x \cdot y = 1$ and $x \cdot y' = 1$, then y = y'.

Proof.
$$x \cdot y = x \cdot y'$$

 $x^{-1} \cdot (x \cdot y) = x^{-1} \cdot (x \cdot y')$ Axiom 8
 $1 \cdot y = 1 \cdot y'$ Axiom 6, 8
 $y = y'$ Axiom 7

We usually write -x for the additive inverse of x and x^{-1} or $\frac{1}{x}$ for the multiplicative inverse of x.

Corollary 6.11. If $x \in F$, then -(-x) = x.

Proof. Let $x \in F$, then $(-x) \in F$ and $(-(-x)) \in F$. (-x) + (-(-x)) = 0, so (-x) is the additive inverse of both x and (-(-x)). By Theorem 6.10 then, x = (-(-x)).

Corollary 6.12. *If* $x \in F$ *and* $x \neq 0$, *then* $(x^{-1})^{-1} = x$.

Proof. Let $x \in F$ such that $x \neq 0$. Then x^{-1} exists and $(x^{-1})^{-1}$ exists. So x^{-1} is the multiplicative inverse of both x and $(x^{-1})^{-1}$, so $x = (x^{-1})^{-1}$.

Theorem 6.13. Let F be a field, and let $a, b, c \in F$. If a + b = a + c, then b = c.

Proof. Let F be a field, $a, b, c \in F$ such that a + b = a + c. Then we have a + b = a + c (a + b) + (-a) = (a + c) + (-a) Axiom 4 0 + b = 0 + c Axiom 1,2,4

b = c Axiom 3

Theorem 6.14. Let F be a field, and let $a, b, c \in F$. If $a \cdot b = a \cdot c$ and $a \neq 0$, then b = c.

```
Proof. a \cdot b = a \cdot c

a^{-1} \cdot (a \cdot b) = a^{-1} \cdot (a \cdot c) Axiom 8

1 \cdot b = 1 \cdot c Axiom 6,8

b = c Axiom 7
```

Theorem 6.15. Let F be a field. If $a \in F$, then $a \cdot 0 = 0$.

Proof.
$$a \cdot 0 = a \cdot (0 + 0)$$
 Axiom 3
 $a \cdot 0 = (a \cdot 0) + (a \cdot 0)$ Axiom 9
 $(a \cdot 0) + (-(a \cdot 0)) = ((a \cdot 0) + (a \cdot 0)) + (-(a \cdot 0))$ Axiom 2,4
 $0 = (a \cdot 0) + 0$ Axiom 4
 $a \cdot 0 = 0$ Axiom 3 □

Theorem 6.16. Let F be a field, and let $a, b \in F$. If $a \cdot b = 0$, then a = 0 or b = 0.

Proof. Let $a \cdot b = 0$. If a = 0, then we are done. So let $a \neq 0$, then a^{-1} exists (Multiplicative identity)

a. b = 0 $a \cdot b = a \cdot 0$ Theorem 6.15 $a^{-1} \cdot (a \cdot b) = a^{-1} \cdot (a \cdot 0)$ Axiom 8 $1 \cdot b = 1 \cdot 0$ Axiom 6,8 b = 0 Axiom 7

So we have that if $a \neq 0$, then b = 0. So a = 0 or b = 0.

Lemma 6.17. *If* $a, b \in F$, then $a \cdot (-b) = -(a \cdot b) = (-a) \cdot b$.

Proof. $a \cdot 0 = 0$ Theorem 6.15 $a \cdot (1 + (-1)) = 0$ Axiom 4, 7 $(a \cdot 1) + (a \cdot (-1)) = 0$ Axiom 9 $a + (a \cdot (-1)) = 0$ Axiom 7 $(-a) + (a + (a \cdot (-1))) = (-a) + 0$ Axiom 4 $0 + (a \cdot (-1)) = (-a) + 0$ Axiom 2,4 $a \cdot (-1) = (-a)$ Axiom 3. We now have Lemma 1 that $a \cdot (-1) = (-a)$. $a \cdot (-b) = a \cdot (b \cdot (-1))$ Lemma 1 $a \cdot (-b) = (a \cdot b) \cdot (-1)$ Axiom 6 $a \cdot (-b) = (a \cdot b) \cdot (-1)$ Axiom 6 $a \cdot (-b) = (a \cdot b) \cdot (-1)$ Similarly from: $a \cdot (-b) = (a \cdot b) \cdot (-1)$ $a \cdot (-b) = (a \cdot (-1)) \cdot b$ Axiom 5,6 $a \cdot (-b) = (-a) \cdot b$ Lemma 1

So we have that $a \cdot (-b) = -(a \cdot b) = (-a) \cdot b$.

Lemma 6.18. *If* $a, b \in F$, then $a \cdot b = (-a) \cdot (-b)$.

Proof. $a, b \in F$, so $a \cdot b \in F$ and $-(a \cdot b) \in F$. $(a \cdot b) + (-(a \cdot b)) = 0$ Axiom 4 $(a \cdot b) = -(-(a \cdot b))$ Corollary 6.11 $(a \cdot b) = -((-a) \cdot b)$ Lemma 6.17 $(a \cdot b) = (-a) \cdot (-b)$ Lemma 6.17

Next, we discuss the notion of an ordered field.

Definition 6.19. An ordered field is a field F equipped with an ordering < such that:

- Addition respects the ordering: if x < y, then x + z < y + z for all $z \in F$.
- Multiplication respects the ordering: if 0 < x and 0 < y, then $0 < x \cdot y$.

Definition 6.20. Suppose F is an ordered field and $x \in F$. If 0 < x, we say that x is positive. If x < 0, we say that x is negative.

For the remaining theorems, assume F is an ordered field.

Lemma 6.21. If 0 < x, then -x < 0. Similarly, if x < 0, then 0 < -x.

Proof. Let 0 < x. (-x) + 0 < (-x) + x Axiom 4 (-x) < 0 Axiom 3,4. Let x < 0. x + (-x) < 0 + (-x) Axiom 4 0 < (-x) Axiom 3,4

Lemma 6.22. Let $x, y, z \in F$.

1. If x > 0 and y < z, then xy < xz.

Proof. Let x > 0, y < z. Let z + (-y) = a for $a \in F$ such that 0 < a. It follows then that z = y + a and y = y + 0. Then we have x > 0, a > 0, so xa > 0. 0 < xa

xy + 0 < xy + xa xy < x(y + a) Axiom 3,9 xy < xz (Substituting z = y + a)

2. If x < 0 and y < z then xz < xy.

Proof. Let x < 0, y < z. Let z + (-y) = a for $a \in F$ such that 0 < a. So we have that z = y + a. x < 0, so by Lemma 6.21 we have that 0 < -x. 0 < a and 0 < (-x) so we have 0 < (-x)a.

0 < (-x)a

0 < -(xa) Lemma 6.17. We have 0 < -(xa), so by Lemma 6.21 again, we have xa < 0.

$$xa < 0$$

 $xa + xy < 0 + xy$
 $x(y+a) < xy$ Axiom 1,3,9
 $xz < xy$ (Substituting $z = y + a$)

Lemma 6.23. If $x \in F$, then $0 \le x^2$. Moreover, if $x \ne 0$, then $0 < x^2$.

Proof. Let $x \in F$. We have three cases, x < 0, x = 0, x > 0.

If x < 0, then by Lemma 6.21, 0 < (-x). Then $0 < (-x) \cdot (-x)$ by Definition 6.19, so $0 \le x^2$. If x = 0, then by Theorem 6.16, $x \cdot x = 0$, so $0 \le x^2$.

If x > 0, then by Definition 6.19, $x \cdot x > 0$ so $x^2 \le 0$.

So we have that $x^2 \leq 0$ for $x \in F$.

Corollary 6.24. 0 < 1.

Proof. We know that $1 \in F$ and that $1 \neq 0$ by Axiom 10, so we have that $0 < 1^2$ by Lemma 6.23. $1^2 = 1 \cdot 1 = 1$, so 0 < 1.

Theorem 6.25. If F is an ordered field, then F has no first or last point.

Proof. Assume that F has a first point $a \in F$. Then $\forall x \in F$, a < x. We have that 0 < 1 from Corollary 6.24, so -1 < 0 by Lemma 6.21. It follows then that (-1) + a < 0 + a. By Axiom 3, we have then that (-1) + a < a, and we know $((-1) + a) \in F$, so this is a contradiction to a being the first point of F. So F has no first point.

Assume that F has a last point $b \in F$. By Corollary 6.24, 0 < 1, so 0 + b < 1 + b. It follows then by Axiom 3 that b < 1 + b, and we know $(1 + b) \in F$ so this is a contradiction to b being the last point of F. So F has no last point.