

CALCULO I 3.1.024

Práctica de Evaluación 2do Parcial

Alumno \	2.	Cant	do	hoise	entregadas:	
Alumno \	\ a:	 Cant.	ue	nojas	emregadas:	

Aclaraciones: Duración 120 minutos. Una condición suficiente de aprobación es la resolución completa y justificada de dos ejercicios cualesquiera. Éxitos!

1	2	3	4	Calif.

1. Hallar los puntos del gráfico de

$$f: \mathbb{R} \to \mathbb{R}: f(x) = e^{-x^3 + 3x}$$

cuya recta tangente es horizontal y hallar la ecuación de la recta tangente al gráfico en cada uno de los puntos hallados

2. Hallar los intervalos de crecimiento y extremos locales de la función

$$f: \mathbb{R} \to \mathbb{R}: f(x) = \frac{x-2}{\sqrt{x^2+4}}$$

3. Hallar todas las primitivas de la función

$$f: D \subseteq \mathbb{R} \to \mathbb{R}: f(x) = \frac{7^x}{49^x - 4} + \ln(\sqrt{x})$$

4. Dada la función

$$f: D \subseteq \mathbb{R} \to \mathbb{R}: f(x) = \frac{e^{x-1} - 1}{x^2 - 1}$$

se pide:

- a) Hallar y clasificar los puntos de discontinuidad de f ¿Tiene f asíntotas verticales? Si existen, dar sus ecuaciones.
- b) Hallar, si existen, las ecuaciones de las asíntotas horizontales de f