PREDICTION OF CHRONIC KIDNEY DISEASE

In [1]:

```
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
import plotly.express as px
import warnings
warnings.filterwarnings("ignore")

plt.style.use('fivethirtyeight')
%matplotlib inline
pd.set_option('display.max_columns', 26)
```

Then load data and using pandas Function Convert it into DataFrame

In [2]:

```
df=pd.read_csv('kidney_disease.csv')
df
```

Out[2]:

je	bp	sg	al	su	rbc	рс	рсс	ba	bgr	bu	sc	sod	pot
.0	80.0	1.020	1.0	0.0	NaN	normal	notpresent	notpresent	121.0	36.0	1.2	NaN	NaN
.0	50.0	1.020	4.0	0.0	NaN	normal	notpresent	notpresent	NaN	18.0	8.0	NaN	NaN
.0	80.0	1.010	2.0	3.0	normal	normal	notpresent	notpresent	423.0	53.0	1.8	NaN	NaN
.0	70.0	1.005	4.0	0.0	normal	abnormal	present	notpresent	117.0	56.0	3.8	111.0	2.5
.0	80.0	1.010	2.0	0.0	normal	normal	notpresent	notpresent	106.0	26.0	1.4	NaN	NaN
.0	80.0	1.020	0.0	0.0	normal	normal	notpresent	notpresent	140.0	49.0	0.5	150.0	4.9
.0	70.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	75.0	31.0	1.2	141.0	3.5
.0	80.0	1.020	0.0	0.0	normal	normal	notpresent	notpresent	100.0	26.0	0.6	137.0	4.4
.0	60.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	114.0	50.0	1.0	135.0	4.9
.0	80.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	131.0	18.0	1.1	141.0	3.5
ocolumns													

Data Set Information:

We use the following representation to collect the dataset age - age bp - blood pressure sg - specific gravity al - albumin su - sugar rbc - red blood cells pc - pus cell pcc - pus cell clumps ba - bacteria bgr - blood glucose random bu - blood urea sc - serum creatinine sod - sodium pot - potassium hemo - hemoglobin pcv - packed cell volume wc - white blood cell count rc - red blood cell count htn - hypertension dm - diabetes mellitus cad - coronary artery disease appet - appetite pe - pedal edema ane - anemia

Attribute Information:

We use 24 + class = 25 (11 numeric ,14 nominal) 1.Age(numerical) age in years 2.Blood Pressure(numerical) bp in mm/Hg 3.Specific Gravity(nominal) sg - (1.005,1.010,1.015,1.020,1.025) 4.Albumin(nominal) al - (0,1,2,3,4,5) 5.Sugar(nominal) su - (0,1,2,3,4,5) 6.Red Blood Cells(nominal) rbc - (normal,abnormal) 7.Pus Cell (nominal) pc - (normal,abnormal) 8.Pus Cell clumps(nominal) pcc - (present,notpresent) 9.Bacteria(nominal) ba - (present,notpresent) 10.Blood Glucose Random(numerical) bgr in mgs/dl 11.Blood Urea(numerical) bu in mgs/dl 12.Serum Creatinine(numerical) sc in mgs/dl 13.Sodium(numerical) sod in mEq/L 14.Potassium(numerical) pot in mEq/L 15.Hemoglobin(numerical) hemo in gms 16.Packed Cell Volume(numerical) 17.White Blood Cell Count(numerical) wc in cells/cumm 18.Red Blood Cell Count(numerical) rc in millions/cmm 19.Hypertension(nominal) htn - (yes,no) 20.Diabetes Mellitus(nominal) dm - (yes,no) 21.Coronary Artery Disease(nominal) cad - (yes,no) 22.Appetite(nominal) appet - (good,poor) 23.Pedal Edema(nominal) pe - (yes,no) 24.Anemia(nominal) ane - (yes,no) 25.Class (nominal) class - (ckd,notckd)

DATA CLEANNING AND EDA PROCESS

Using other pandas Functions like .isnull().sum(), .value_counts() Find out messy or Null values.

In [3]:

df.isnull().sum	1()
Out[3]:	
id	0
age	9
bp	12
sg	47
al	46
su	49
rbc	152
рс	65
рсс	4
ba	4
bgr	44
bu	19
SC	17
sod	87
pot	88
hemo	52
pcv	70
WC	105
rc	130
htn	2
dm	2
cad	2
appet	1
pe	1
ane	1
classification	0
dtype: int64	

```
In [4]:
```

```
df['id'].value_counts()
Out[4]:
       1
0
263
       1
273
       1
272
       1
271
       1
130
       1
129
       1
128
       1
127
       1
399
       1
Name: id, Length: 400, dtype: int64
id column have all unique values so drop that column
In [5]:
del df["id"]
In [6]:
df['age'].value_counts()
Out[6]:
60.0
        19
65.0
        17
48.0
        12
55.0
        12
50.0
        12
         . .
83.0
         1
27.0
         1
14.0
          1
81.0
          1
79.0
```

Age Column contains 2.25% null values so drop only null values at last after Cleanning the data

Name: age, Length: 76, dtype: int64

```
In [7]:
df["bp"].value_counts()
Out[7]:
80.0
         116
70.0
         112
60.0
           71
90.0
           53
100.0
           25
50.0
            5
110.0
            3
140.0
           1
180.0
            1
120.0
            1
Name: bp, dtype: int64
it contains 3% null values so replace it with mean
In [8]:
df['bp']=df['bp'].fillna(df['bp'].mean())
In [9]:
df['sg'].value_counts()
Out[9]:
1.020
         106
          84
1.010
1.025
           81
1.015
          75
1.005
Name: sg, dtype: int64
it contain 22 % of null values so replace it with mean
In [10]:
df['sg']=df['sg'].fillna(df['sg'].mean())
In [11]:
df['al'].value_counts()
Out[11]:
       199
0.0
1.0
        44
        43
2.0
3.0
        43
4.0
        24
5.0
Name: al, dtype: int64
```

```
In [12]:
df['su'].value_counts()
Out[12]:
0.0
       290
2.0
        18
        14
3.0
4.0
        13
        13
1.0
         3
5.0
Name: su, dtype: int64
replace both the column( su , al ) by mean
In [13]:
df['su']=df['su'].fillna(df['su'].mean())
df['al']=df['al'].fillna(df['al'].mean())
In [14]:
df['rbc'].value_counts()
Out[14]:
normal
             201
abnormal
              47
Name: rbc, dtype: int64
it contaions 38% null values and datatype is categorical so replace it with mode
In [15]:
df.rbc.replace(np.nan, 'normal', inplace=True)
In [16]:
df['rbc'].value_counts()
Out[16]:
normal
             353
abnormal
              47
Name: rbc, dtype: int64
In [17]:
df['pc'].value_counts()
Out[17]:
             259
normal
abnormal
              76
Name: pc, dtype: int64
replace null values with mode
```

```
In [18]:
df.pc.replace(np.nan, 'normal', inplace=True)
In [19]:
df['pc'].value_counts()
Out[19]:
normal
             324
abnormal
             76
Name: pc, dtype: int64
In [20]:
df['pcc'].value_counts()
Out[20]:
notpresent
               354
present
                42
Name: pcc, dtype: int64
In [21]:
df['ba'].value_counts()
Out[21]:
notpresent
               374
present
Name: ba, dtype: int64
for column pcc and ba we have to drop rows after cleaning all the data
In [22]:
df['bgr'].value_counts()
Out[22]:
99.0
         10
93.0
           9
           9
100.0
107.0
           8
131.0
           6
288.0
           1
182.0
           1
84.0
           1
256.0
           1
226.0
Name: bgr, Length: 146, dtype: int64
replace null value by mean
```

```
In [23]:
df['bgr']=df['bgr'].fillna(df['bgr'].mean())
In [24]:
df['bu'].value_counts()
Out[24]:
46.0
         15
25.0
         13
19.0
         11
40.0
         10
50.0
          9
176.0
          1
145.0
          1
92.0
          1
322.0
          1
186.0
Name: bu, Length: 118, dtype: int64
In [25]:
df['sc'].value_counts()
Out[25]:
1.2
        40
1.1
        24
0.5
        23
1.0
        23
0.9
        22
3.8
         1
12.2
         1
9.2
         1
13.8
         1
0.4
         1
Name: sc, Length: 84, dtype: int64
REPLACE Both Columns('bu', 'sc') Null values by mean
In [26]:
df['bu']=df['bu'].fillna(df['bu'].mean())
```

df['sc']=df['sc'].fillna(df['sc'].mean())

In [27]:

```
df['sod'].value_counts()
Out[27]:
135.0
          40
140.0
          25
141.0
          22
139.0
          21
138.0
          20
142.0
          20
137.0
          19
150.0
         17
136.0
          17
147.0
         13
145.0
         11
132.0
          10
146.0
          10
           9
131.0
144.0
           9
133.0
           8
           7
130.0
           6
134.0
143.0
           4
124.0
           3
127.0
           3
           2
122.0
113.0
           2
           2
120.0
125.0
           2
           2
128.0
114.0
           2
126.0
           1
           1
163.0
115.0
           1
           1
129.0
4.5
           1
104.0
           1
111.0
Name: sod, dtype: int64
```

```
In [28]:
```

```
df['pot'].value_counts()
Out[28]:
3.5
        30
5.0
        30
4.9
        27
4.7
        17
4.8
        16
3.9
        14
        14
3.8
4.1
        14
4.2
        14
4.0
        14
4.4
        14
4.5
        13
4.3
        12
        12
3.7
3.6
         8
         7
4.6
         5
3.4
         5
5.2
5.3
         4
5.7
         4
3.2
         3
         3
5.5
6.3
         3
         3
5.4
2.9
         3
         3
3.3
         2
5.6
         2
3.0
         2
6.5
2.5
         2
         2
5.9
         2
5.8
7.6
         1
47.0
         1
         1
6.6
         1
5.1
6.4
         1
2.8
         1
2.7
         1
39.0
         1
Name: pot, dtype: int64
replace both column by mean
In [29]:
df['sod']=df['sod'].fillna(df['sod'].mean())
df['pot']=df['pot'].fillna(df['pot'].mean())
```

```
In [30]:
```

```
df['hemo'].value_counts()
Out[30]:
15.0
        16
10.9
         8
         7
13.6
         7
13.0
         7
9.8
6.8
         1
8.5
         1
7.3
         1
12.8
         1
17.6
         1
Name: hemo, Length: 115, dtype: int64
replace null values from 'hemo' with mean
In [31]:
df['hemo']=df['hemo'].fillna(df['hemo'].mean())
```

```
localhost:8888/notebooks/Untitled97.ipynb
```

```
In [32]:
```

```
df['pcv'].value_counts()
Out[32]:
41
         21
52
         21
44
         19
48
         19
40
         16
         14
43
42
         13
         13
45
32
         12
36
         12
33
         12
50
         12
         12
28
34
         11
37
         11
          9
30
          9
29
35
          9
          9
46
31
          8
          7
24
          7
39
26
          6
          5
38
53
          4
          4
51
49
          4
47
          4
          4
54
          3
25
          3
27
          3
22
          2
19
23
          2
15
          1
21
          1
17
          1
20
          1
\t43
          1
          1
18
9
          1
14
          1
\t?
          1
16
Name: pcv, dtype: int64
```

Replace messy or noisy values from 'pcv' column by np.nan

```
3/27/23, 4:16 PM
                                                   Untitled97 - Jupyter Notebook
  In [33]:
 df.pcv.replace('\t43',np.nan,inplace=True)
  df.pcv.replace('\t?',np.nan,inplace=True)
  In [34]:
  df.pcv.isnull().sum()
  Out[34]:
  72
  Replace null values from 'pcv' i.e. 18% null values by mean
  1st convert all string values to numeric using to_numeric() function
  In [35]:
  df['pcv']=pd.to_numeric(df['pcv'])
  In [36]:
  df['pcv']=df['pcv'].fillna(df['pcv'].mean())
  In [37]:
  df['wc'].value_counts()
  Out[37]:
  9800
            11
  6700
            10
             9
  9200
  9600
             9
             9
  7200
```

```
19100
           1
\t?
           1
12300
           1
14900
           1
12700
```

Name: wc, Length: 92, dtype: int64

```
In [38]:
```

```
df['rc'].value_counts()
Out[38]:
5.2
       18
4.5
       16
4.9
       14
4.7
       11
4.8
       10
3.9
       10
        9
4.6
3.4
        9
5.9
        8
5.5
        8
        8
6.1
5.0
        8
3.7
        8
        7
5.3
5.8
        7
        7
5.4
        7
3.8
        6
5.6
4.3
        6
4.2
        6
3.2
        5
        5
4.4
5.7
        5
        5
6.4
5.1
        5
        5
6.2
        5
6.5
        5
4.1
        4
3.6
6.3
        4
        4
6.0
4.0
        3
        3
3.3
4
        3
3.5
        3
        2
2.9
        2
3.1
        2
2.6
2.1
        2
2.5
        2
        2
2.8
        2
3.0
        2
2.7
        2
5
2.3
        1
        1
\t?
        1
2.4
        1
3
8.0
        1
Name: rc, dtype: int64
```

REPLACE Messy values from 'rc' and 'wc' table to np.nan

```
3/27/23, 4:16 PM
                                                 Untitled97 - Jupyter Notebook
  In [39]:
  df.rc.replace('\t?',np.nan,inplace=True)
 df.wc.replace('\t?',np.nan,inplace=True)
  In [40]:
 df['rc']=pd.to_numeric(df['rc'])
 df['wc']=pd.to_numeric(df['wc'])
  Replace null values from both the table with mean
  In [41]:
  df['rc']=df['rc'].fillna(df['rc'].mean())
 df['wc']=df['wc'].fillna(df['wc'].mean())
  In [42]:
 df['htn'].value_counts()
  Out[42]:
         251
  no
         147
  yes
  Name: htn, dtype: int64
  In [43]:
  df['dm'].value_counts()
  Out[43]:
           258
  no
  yes
           134
             3
  \tno
              2
  \tyes
             1
  yes
  Name: dm, dtype: int64
  Replace the messy values from 'dm' table
  In [44]:
  df.dm.replace('\tno', 'no', inplace=True)
  df.dm.replace('\tyes','yes',inplace=True)
  df.dm.replace(' yes','yes',inplace=True)
  In [45]:
 df['dm'].value_counts()
  Out[45]:
```

Name: dm, dtype: int64

261

137

no

yes

```
In [46]:
df['cad'].value_counts()
Out[46]:
        362
no
         34
yes
          2
\tno
Name: cad, dtype: int64
Replace messy values from 'cad' column
In [47]:
df.cad.replace('\tno','no',inplace=True)
In [48]:
df['cad'].value_counts()
Out[48]:
no
       364
        34
yes
Name: cad, dtype: int64
In [49]:
df['appet'].value_counts()
Out[49]:
        317
good
poor
         82
Name: appet, dtype: int64
In [50]:
df['pe'].value_counts()
Out[50]:
       323
no
yes
        76
Name: pe, dtype: int64
In [51]:
df['ane'].value_counts()
Out[51]:
no
       339
        60
yes
Name: ane, dtype: int64
```

In this Column

ckd -Chronical KidneyDisease

notckd - Not Chronical kidney Disease

PLOT HEATMAP TO FIND OUT NULL VALUES OF DATAFRAME

In [55]:

sns.heatmap(df.isnull())

Out[55]:

<AxesSubplot:>

DROP ALL THE REMAINING NULL VALUES

```
In [56]:
```

df.dropna(inplace=True)
df.shape

Out[56]:

(384, 25)

PLOT HEATMAP TO VERIFY OUR DATA IS CLEAN OR NOT

In [57]:

sns.heatmap(df.isnull())

Out[57]:

<AxesSubplot:>

In [95]:

newdf

Out[95]:

ba	bgr	bu	sc	sod	pot	hemo	pcv	wc	rc
-0.237171	121.000000	-0.226698	-0.294972	-0.242488	4.627244	15.4	44.0	7800.0	5.200000
-0.237171	148.036517	-1.335735	-0.931268	-0.242488	4.627244	11.3	38.0	6000.0	4.707435
-0.237171	117.000000	0.488586	1.211516	-3.323825	2.500000	11.2	32.0	6700.0	3.900000
-0.237171	106.000000	-0.750113	-0.058653	-0.242488	4.627244	11.6	35.0	7300.0	4.600000
-0.237171	74.000000	-0.812914	-0.430601	0.588367	3.200000	12.2	39.0	7800.0	4.400000
-0.237171	140.000000	0.272018	-1.640046	2.376911	4.900000	15.7	47.0	6700.0	4.900000
-0.237171	75.000000	-0.467678	-0.294972	0.392741	3.500000	16.5	54.0	7800.0	6.200000
-0.237171	100.000000	-0.750113	-1.373266	-0.333500	4.400000	15.8	49.0	6600.0	5.400000
-0.237171	114.000000	0.304766	-0.580263	-0.664636	4.900000	14.2	51.0	7200.0	5.900000
-0.237171	131.000000	-1.335735	-0.430601	0.392741	3.500000	15.8	53.0	6800.0	6.100000
						_			

In [59]:

sns.countplot(x='classification',color="orange",data=df)

Out[59]:

<AxesSubplot:xlabel='classification', ylabel='count'>

In [60]:

df.hist(figsize=(12,12))
plt.show()

In [61]:

```
ss=df.loc[(df['age']>70)&(df['bp']<100)]
sns.barplot(x='age',y='bp',data=ss)</pre>
```

Out[61]:

<AxesSubplot:xlabel='age', ylabel='bp'>

In [103]:

```
#bivariate analysis
#1 vs 1
sns.barplot(x='classification',y='bp',data=df)
plt.title('target(classification) vs feature(bp)')
plt.show()
```


In [102]:

```
#bivariate analysis
#1 vs 1
sns.barplot(x='classification',y='sg',data=df)
plt.title('target(classification) vs feature(sg)')
plt.show()
```


In [101]:

```
#bivariate analysis
#1 vs 1
sns.barplot(x='classification',y='bu',data=df)
plt.title('target(classification) vs feature(bu)')
plt.show()
```


In [104]:

```
#bivariate analysis
#1 vs 1
sns.barplot(x='classification',y='hemo',data=df)
plt.title('target(classification) vs feature(hemo)')
plt.show()
```


In [105]:

```
#bivariate analysis
#1 vs 1
sns.barplot(x='classification',y='pot',data=df)
plt.title('target(classification) vs feature(pot)')
plt.show()
```


In [106]:

```
#bivariate analysis
#1 vs 1
sns.barplot(x='classification',y='wc',data=df)
plt.title('target(classification) vs feature(wc)')
plt.show()
```


In [128]:

```
#univariate analysis
#self
sns.countplot(x='classification',data=df)
plt.show()
```


In [108]:

```
#univariate analysis
#self
sns.countplot(x='rbc',data=df)
plt.show()
```


In [111]:

```
#univariate analysis
#self
sns.countplot(x='pcc',data=df)
plt.show()
```


In [112]:

```
#univariate analysis
#self
sns.countplot(x='appet',data=df)
plt.show()
```


In [114]:

```
#univariate analysis
#self
sns.countplot(x='htn',data=df)
plt.show()
```


In [115]:

```
#univariate analysis
#self
sns.countplot(x='pc',data=df)
plt.show()
```


In [117]:

```
#univariate analysis
#self
sns.countplot(x='dm',data=df)
plt.show()
```


In [118]:

```
#univariate analysis
#self
sns.countplot(x='pe',data=df)
plt.show()
```


In [119]:

```
#univariate analysis
#self
sns.countplot(x='ane',data=df)
plt.show()
```


In [120]:

```
#univariate analysis
#self
sns.countplot(x='ba',data=df)
plt.show()
```


In [121]:

```
df['rbc'].value_counts().plot(kind='pie',autopct='%1.2f%%')
```

Out[121]:

<AxesSubplot:ylabel='rbc'>

In [123]:

```
df['dm'].value_counts().plot(kind='pie',autopct='%1.2f%%')
```

Out[123]:

<AxesSubplot:ylabel='dm'>

In [124]:

```
df['appet'].value_counts().plot(kind='pie',autopct='%1.2f%%')
```

Out[124]:

<AxesSubplot:ylabel='appet'>

In [126]:

```
df['pcc'].value_counts().plot(kind='pie',autopct='%1.2f%%')
```

Out[126]:

<AxesSubplot:ylabel='pcc'>

In [131]:

```
sns.boxplot(x='classification',y='bu',data=df)
```

Out[131]:

<AxesSubplot:xlabel='classification', ylabel='bu'>

In [132]:

```
sns.boxplot(x='classification',y='bgr',data=df)
```

Out[132]:

<AxesSubplot:xlabel='classification', ylabel='bgr'>

In [113]:

```
#multivariate analysis
#1 vs all
sns.pairplot(df)
```

Out[113]:

<seaborn.axisgrid.PairGrid at 0x196c8eba6a0>

In [67]:

```
def scatter(col1, col2):
    fig = px.scatter(df, x=col1, y=col2, color="classification", template = 'plotly_dark'
    return fig.show()
```

```
In [68]:
```

scatter('hemo', 'pcv')

SPLIT DATA INTO Numerical column and Categorical Column

```
In [69]:
Numcol=[]
for i in df.dtypes.index:
    if df.dtypes[i]!='object':
        Numcol.append(i)
Numcol
Out[69]:
['age',
 'bp',
 'sg',
 'al',
 'su',
 'bgr',
 'bu',
 'sc',
 'sod',
 'pot',
 'hemo',
 'pcv',
 'wc',
 'rc']
In [70]:
len(Numcol)
Out[70]:
14
In [71]:
catcol=[]
for i in df.dtypes.index:
    if df.dtypes[i]=='object':
        catcol.append(i)
catcol
Out[71]:
['rbc',
 'pc',
 'pcc',
 'ba',
 'htn',
 'dm',
 'cad',
 'appet',
 'pe',
 'ane',
 'classification']
```

PLOT BOXPLOT FOR NUMERIC VALUES TO FIND OUT OUTLIERS FROM COLUMN

In [72]:

```
plt.figure()
plotn=1
for i in Numcol:
    if plotn<=14:
        ax=plt.subplot(7,2,plotn)
        sns.boxplot(df[i])
        plt.xlabel(i,fontsize=14)
        plotn=plotn+1
        plt.show()</pre>
```


WE have outliers in every column except al REMOVE IT USING Z SCORE METHOD

In [73]:

```
f=df[['age','bp','sg','su','bgr','bu','sc','sod','pot','hemo','pcv','wc','rc']]
```

In [74]:

```
from scipy.stats import zscore
z=abs(zscore(f))
```

In [75]:

z

Out[75]:

	age	bp	sg	su	bgr	bu	sc	sod	ро	
0	0.204771	0.246173	0.483713	0.441058	0.369070	0.432943	0.333115	0.003940	0.001500	
1	2.589318	1.971393	0.483713	0.441058	0.011121	0.795614	0.403275	0.003940	0.001500	
2	0.609465	0.246173	1.366250	2.434326	3.629253	0.090421	0.227875	0.003940	0.001500	
3	0.204771	0.493016	2.291231	0.441058	0.422028	0.029975	0.122926	2.837614	0.742460	
4	0.030292	0.246173	1.366250	0.441058	0.567662	0.634427	0.298035	0.003940	0.001500	
395	0.202347	0.246173	0.483713	0.441058	0.117520	0.171014	0.455895	1.339763	0.093506	
396	0.553729	0.493016	1.408694	0.441058	0.978086	0.533685	0.333115	0.375753	0.39414	
397	2.298519	0.246173	0.483713	0.441058	0.647099	0.634427	0.438355	0.052696	0.080654	
398	2.007721	1.232204	1.408694	0.441058	0.461747	0.150866	0.368195	0.266920	0.093506	
399	0.376826	0.246173	1.408694	0.441058	0.236675	0.795614	0.350655	0.375753	0.39414	
384 rows × 13 columns										

In [76]:

```
newdf=df[(z<3).all(axis=1)]
newdf</pre>
```

Out[76]:

	age	bp	sg	al	su	rbc	рс	рсс	ba	bgr	bu	sc
0	48.0	80.0	1.020	1.0	0.0	normal	normal	notpresent	notpresent	121.000000	36.0	1.2
1	7.0	50.0	1.020	4.0	0.0	normal	normal	notpresent	notpresent	148.036517	18.0	3.0
3	48.0	70.0	1.005	4.0	0.0	normal	abnormal	present	notpresent	117.000000	56.0	3.8
4	51.0	80.0	1.010	2.0	0.0	normal	normal	notpresent	notpresent	106.000000	26.0	1.4
5	60.0	90.0	1.015	3.0	0.0	normal	normal	notpresent	notpresent	74.000000	25.0	1.1
395	55.0	80.0	1.020	0.0	0.0	normal	normal	notpresent	notpresent	140.000000	49.0	0.5
396	42.0	70.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	75.000000	31.0	1.2
397	12.0	80.0	1.020	0.0	0.0	normal	normal	notpresent	notpresent	100.000000	26.0	0.€
398	17.0	60.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	114.000000	50.0	1.0
399	58.0	80.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	131.000000	18.0	1.1
338 rows × 25 columns												
4												•

OUR Target is in the form of Categorical

SO 1st convert all categorical data into numeric

Because it is eassy to find out correlation Between Other Features and Target

In [77]:

```
from sklearn.preprocessing import OrdinalEncoder
oe=OrdinalEncoder()
newdf[catcol]=oe.fit_transform(newdf[catcol])
```

In [78]:

newdf.head()

Out[78]:

	age	bp	sg	al	su	rbc	рс	рсс	ba	bgr	bu	sc	sod	pot
0	48.0	80.0	1.020	1.0	0.0	1.0	1.0	0.0	0.0	121.000000	36.0	1.2	137.528754	4.627244
1	7.0	50.0	1.020	4.0	0.0	1.0	1.0	0.0	0.0	148.036517	18.0	8.0	137.528754	4.627244
3	48.0	70.0	1.005	4.0	0.0	1.0	0.0	1.0	0.0	117.000000	56.0	3.8	111.000000	2.500000
4	51.0	80.0	1.010	2.0	0.0	1.0	1.0	0.0	0.0	106.000000	26.0	1.4	137.528754	4.627244
5	60.0	90.0	1.015	3.0	0.0	1.0	1.0	0.0	0.0	74.000000	25.0	1.1	142.000000	3.200000
4														>

In [129]:

```
plt.figure(figsize=(20,20),facecolor='yellow')
plotn=1
for i in Numcol:
    if plotn<=14:
        ax=plt.subplot(7,2,plotn)
        sns.distplot(df[i])
        plt.xlabel(i,fontsize=14)
        plotn=plotn+1</pre>
```


Find out Skewness

In [80]:

newdf.skew()

Out[80]:

-0.610550 age 0.278195 bp -0.300419 sg 1.217996 al 3.040360 su -2.667605 rbc рс -1.927370 рсс 2.971076 3.996959 ba 1.748987 bgr bu 1.772027 sc 2.980150 -1.051448 sod pot -0.009814 -0.306164 hemo -0.398080 pcv 0.452920 WC -0.209005 rc htn 0.748432 dm 0.882954 cad 3.113080 1.617831 appet 1.749822 pe ane 2.330257 classification 0.325129

dtype: float64

FIND OUT CORRELATION OF Features and Target using Heatmap

```
In [81]:
```

```
plt.figure(figsize=(20,15))
sns.heatmap(newdf.corr(),annot=True)
```

Out[81]:

<AxesSubplot:>

from dataset we conclude that we have skewness in Column Age, al,su,rbc,pc,pcc, ba,bu,sc,sod,htn,dm,cad,appet,pe,ane But htn,dm,al are stringly correlated with our target so dont remove skewness from them

In [82]:

```
s=['age','su','rbc','pc','pcc','ba','bu','sc','sod','cad','appet','pe','ane']
from sklearn.preprocessing import PowerTransformer
scaler=PowerTransformer(method='yeo-johnson')
newdf[s]=scaler.fit_transform(newdf[s].values)
```

In [83]:

```
newdf.skew()
```

Out[83]:

age -0.222100 bp 0.278195 -0.300419 sg 1.217996 al 1.364572 su -2.667605 rbc -1.927370 рс 2.971076 рсс 3.996959 1.748987 bgr bu -0.001674 sc 0.203925 sod 0.116439 pot -0.009814 hemo -0.306164 -0.398080 pcv WC 0.452920 -0.209005 rc 0.748432 htn dm 0.882954 3.113080 cad appet 1.617831 1.749822 pe 2.330257 classification 0.325129

dtype: float64

Split Data into Feature and Target

Store Features in- x Store Target in - y

```
In [84]:
x=newdf.drop("classification",axis=1)
Х
Out[84]:
                                                                    рсс
           age
                 bp
                        sg
                             al
                                       su
                                                rbc
                                                           рс
                                                                                ba
   0 -0.254405
                80.0
                      1.020
                            1.0
                                 -0.532545
                                           0.334428
                                                     0.426401
                                                               -0.306351 -0.237171
                                                                                   121.000
     -2.144444
                50.0
                     1.020 4.0
                                -0.532545
                                           0.334428
                                                     0.426401
                                                               -0.306351 -0.237171 148.036
      -0.254405
               70.0
                     1.005 4.0
                                -0.532545
                                           0.334428
                                                    -2.345208
                                                                3.264226
                                                                        -0.237171
                                                                                    117.000
      -0.074075
                80.0 1.010 2.0 -0.532545
                                           0.334428
                                                     0.426401
                                                               -0.306351
                                                                         -0.237171
                                                                                    106.000
      0.493020
                90.0
                     1.015 3.0
                                -0.532545
                                           0.334428
                                                     0.426401
                                                               -0.306351
                                                                         -0.237171
                                                                                     74.000
      0.173252 80.0
                     1.020 0.0
                                -0.532545 0.334428
                                                     0.426401
                                                               -0.306351
                                                                         -0.237171
                                                                                   140.000
      -0.601096
               70.0
                     1.025 0.0
                                -0.532545 0.334428
                                                     0.426401
                                                               -0.306351
                                                                        -0.237171
                                                                                     75.000
      -1.989836
                80.0
                     1.020 0.0
                                -0.532545
                                          0.334428
                                                     0.426401
                                                               -0.306351
                                                                         -0.237171
                                                                                    100.000
 398
     -1.807395
                60.0 1.025 0.0
                                -0.532545 0.334428
                                                     0.426401
                                                               -0.306351
                                                                        -0.237171
                                                                                    114.000
      0.363732 80.0 1.025 0.0 -0.532545 0.334428
 399
                                                     0.426401
                                                               -0.306351 -0.237171 131.000
338 rows × 24 columns
In [85]:
y=newdf["classification"]
У
Out[85]:
0
        0.0
1
        0.0
3
        0.0
```

Split Data For Training AND Testing

Name: classification, Length: 338, dtype: float64

```
In [86]:
```

4

5

395

396 397

398 399 0.0

0.0

1.0 1.0

1.0 1.0

```
from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3,random_state=0)
```

```
In [87]:
```

from sklearn.metrics import classification_report, accuracy_score,confusion_matrix

Apply NeighborsClassifier and find out accuracy

```
In [88]:
```

```
#step 1: import the model
from sklearn.neighbors import KNeighborsClassifier
#step 2:create the object of algorithm
knn=KNeighborsClassifier(n_neighbors=5)
#step 3: train the model
knn.fit(xtrain,ytrain)
#step 4: predict
ypred=knn.predict(xtest)
cm=confusion_matrix(ytest,ypred)
cr=classification_report(ytest,ypred)
ac=accuracy_score(ytest,ypred)
print(f"Accuracy score:{ac}\n{cm}\n{cr}")
train=knn.score(xtrain,ytrain)
test=knn.score(xtest,ytest)
print(f"Training Score:{train}\n Testing Score:{test}")
Accuracy score: 0.7254901960784313
```

```
[[45 17]
 [11 29]]
              precision
                            recall f1-score
                                                support
         0.0
                   0.80
                              0.73
                                        0.76
                                                     62
         1.0
                   0.63
                              0.72
                                                     40
                                        0.67
                                        0.73
                                                    102
    accuracy
                              0.73
                                        0.72
                                                    102
   macro avg
                   0.72
weighted avg
                   0.74
                              0.73
                                        0.73
                                                    102
```

Training Score:0.8135593220338984 Testing Score:0.7254901960784313

Apply DecisionTreeClassifier and find out accuracy

localhost:8888/notebooks/Untitled97.ipynb

In [89]:

```
#step 1: import the model
from sklearn.tree import DecisionTreeClassifier
#step 2:create the object of algorithm
dtc1=DecisionTreeClassifier(max_depth=18)
#step 3: train the model
dtc1.fit(xtrain,ytrain)
#step 4: predict
ypred=dtc1.predict(xtest)
cm=confusion_matrix(ytest,ypred)
cr=classification_report(ytest,ypred)
train=dtc1.score(xtrain,ytrain)
test=dtc1.score(xtest,ytest)
print(f"{cm}\n{cr}\nTraining Score:{train}\n Testing Score:{test}")
```

[[57 5] [0 40]]				
	precision	recall	f1-score	support
0.0	1.00	0.92	0.96	62
1.0	0.89	1.00	0.94	40
accuracy			0.95	102
macro avg	0.94	0.96	0.95	102
weighted avg	0.96	0.95	0.95	102

Training Score:1.0

Testing Score: 0.9509803921568627

Apply Naive Bayes all Algorithm to find Accuracy

Bernoulli naive Bayes

```
In [90]:
```

```
#step 1: import the model
from sklearn.naive_bayes import BernoulliNB
#step 2:create the object of algorithm
bnb=BernoulliNB()
#step 3: train the model
bnb.fit(xtrain,ytrain)
#step 4: predict
ypred=bnb.predict(xtest)
from sklearn.metrics import confusion_matrix,classification_report,accuracy_score
cm=confusion matrix(ytest,ypred)
cr=classification_report(ytest,ypred)
ac=accuracy_score(ytest,ypred)
print(f"Accuracy score:{ac}\n{cm}\n{cr}")
train=bnb.score(xtrain,ytrain)
test=bnb.score(xtest,ytest)
print(f"Training Score:{train}\n Testing Score:{test}")
```

```
Accuracy score: 0.9117647058823529
[[54 8]
 [ 1 39]]
              precision
                            recall f1-score
                                                support
         0.0
                   0.98
                              0.87
                                        0.92
                                                     62
         1.0
                   0.83
                              0.97
                                        0.90
                                                     40
                                        0.91
                                                    102
    accuracy
   macro avg
                   0.91
                              0.92
                                        0.91
                                                    102
                              0.91
                                        0.91
                                                    102
weighted avg
                   0.92
```

Training Score:0.9279661016949152 Testing Score:0.9117647058823529

Gaussian Naive Bayes

```
In [91]:
```

```
#step 1: import the model
from sklearn.naive_bayes import GaussianNB
#step 2:create the object of algorithm
gnb=GaussianNB()
#step 3: train the model
gnb.fit(xtrain,ytrain)
#step 4: predict
ypred=gnb.predict(xtest)
from sklearn.metrics import confusion_matrix,classification_report,accuracy_score
cm=confusion_matrix(ytest,ypred)
cr=classification_report(ytest,ypred)
ac=accuracy_score(ytest,ypred)
print(f"Accuracy score:{ac}\n{cm}\n{cr}")
train=gnb.score(xtrain,ytrain)
test=gnb.score(xtest,ytest)
print(f"Training Score:{train}\n Testing Score:{test}")
Accuracy score: 0.9509803921568627
```

```
[[58 4]
 [ 1 39]]
              precision
                           recall f1-score
                                               support
         0.0
                   0.98
                             0.94
                                        0.96
                                                    62
         1.0
                   0.91
                             0.97
                                        0.94
                                                    40
                                        0.95
                                                   102
    accuracy
                   0.95
                             0.96
                                        0.95
                                                   102
   macro avg
weighted avg
                   0.95
                             0.95
                                        0.95
                                                   102
```

Training Score:0.9491525423728814 Testing Score:0.9509803921568627

Apply Boosting like Gradient boosting classifer, XGboosting classifier and Adaboost classifier

In [92]:

```
#step 1: import the model
from sklearn.ensemble import GradientBoostingClassifier
#step 2:create the object of algorithm
gbc=(GradientBoostingClassifier(n_estimators=2))
#step 3: train the model
gbc.fit(xtrain,ytrain)
#step 4: predict
ypred=gbc.predict(xtest)
from sklearn.metrics import confusion_matrix,classification_report,accuracy_score
cm=confusion_matrix(ytest,ypred)
cr=classification_report(ytest,ypred)
ac=accuracy_score(ytest,ypred)
print(f"Accuracy score:{ac}\n{cm}\n{cr}")
train=gbc.score(xtrain,ytrain)
test=gbc.score(xtest,ytest)
print(f"Training Score:{train}\n Testing Score:{test}")
```

```
Accuracy score:0.9901960784313726
[[62 0]
[ 1 39]]
```

	precision	recall	f1-score	support
0.0 1.0	0.98 1.00	1.00 0.97	0.99 0.99	62 40
	2.00	0.27	0.99	102
accuracy macro avg	0.99	0.99	0.99	102
weighted avg	0.99	0.99	0.99	102

Training Score: 0.9830508474576272 Testing Score: 0.9901960784313726

In [93]:

```
#step 1: import the model
from xgboost import XGBClassifier
#step 2:create the object of algorithm
xgb=(XGBClassifier(random_state=1,reg_alpha=1))
#step 3: train the model
xgb.fit(xtrain,ytrain)
#step 4: predict
ypred=xgb.predict(xtest)
from sklearn.metrics import confusion_matrix,classification_report,accuracy_score
cm=confusion_matrix(ytest,ypred)
cr=classification_report(ytest,ypred)
ac=accuracy_score(ytest,ypred)
print(f"Accuracy score:{ac}\n{cm}\n{cr}")
train=xgb.score(xtrain,ytrain)
test=xgb.score(xtest,ytest)
print(f"Training Score:{train}\n Testing Score:{test}")
```

```
Accuracy score:1.0
[[62 0]
[ 0 40]]
```

	precision	recall	f1-score	support	
0.0	1.00	1.00	1.00	62	
1.0	1.00	1.00	1.00	40	
accuracy			1.00	102	
macro avg	1.00	1.00	1.00	102	
weighted avg	1.00	1.00	1.00	102	

Training Score:1.0 Testing Score:1.0

In [94]:

```
#step 1: import the model
from sklearn.ensemble import AdaBoostClassifier
#step 2:create the object of algorithm
adb=(AdaBoostClassifier(random_state=1))
#step 3: train the model
adb.fit(xtrain,ytrain)
#step 4: predict
ypred=adb.predict(xtest)
from sklearn.metrics import confusion_matrix,classification_report,accuracy_score
cm=confusion_matrix(ytest,ypred)
cr=classification_report(ytest,ypred)
ac=accuracy_score(ytest,ypred)
print(f"Accuracy score:{ac}\n{cm}\n{cr}")
train=adb.score(xtrain,ytrain)
test=adb.score(xtest,ytest)
print(f"Training Score:{train}\n Testing Score:{test}")
```

```
Accuracy score:1.0
[[62 0]
[ 0 40]]
```

	precision	recall	f1-score	support
0.0	1.00	1.00	1.00	62
1.0	1.00	1.00	1.00	40
accuracy			1.00	102
macro avg	1.00	1.00	1.00	102
weighted avg	1.00	1.00	1.00	102

Training Score:1.0 Testing Score:1.0