STRUMENTI FORMALI PER LA BIOINFORMATICA

Automi finiti Esercizi

Esercizio

Sia $L = \{w \in \{a,b\}^* \mid |w| \neq 2 \pmod{3}\}$ il linguaggio delle parole in $\{a,b\}^*$ la cui lunghezza, modulo 3, è diversa da 2. Ad esempio, $b,bab,baabba \in L$ e $babaa \notin L$. Definire un automa deterministico A il cui linguaggio accettato sia L, cioè L(A) = L.

Esercizio

Sia $L=\{a^k\mid k\neq 2\pmod 3\}$ il linguaggio delle potenze di a il cui esponente, modulo 3, è diverso da 2. Ad esempio, $a,a^3,a^6\in L$ e $a^5\not\in L$. Definire un automa deterministico $\mathcal A$ il cui linguaggio accettato sia L, cioè $L(\mathcal A)=L$.

Si ricorda che, per ogni $x \in \{a, b\}$ e $w \in \{a, b\}^*$, $|w|_x$ denota il numero delle occorrenze della lettera x in w. Inoltre, date due stringhe y, z, la stringa y è fattore di z se esistono due stringhe z_1, z_2 tali che $z = z_1 y z_2$.

Sia $L = \{ w \in \{ a, b \}^* \mid \exists h, k \in \mathbb{N} : |w|_a = 2k, |w|_b = 2h + 1 \text{ e } ab \}$ non è fattore di w}. Definire un automa finito deterministico con cinque stati (escluso lo stato pozzo) che riconosce L.

Suggerimento: dare una descrizione più semplice di L.

Esercizio

Sia $B_n = \{a^k \mid k \text{ è un multiplo di } n\}$. Provare che per ogni $n \geq 1$, il linguaggio B_n è regolare.

Esercizio

Sia $\Sigma = \{0, 1, 2\}$ e sia L il linguaggio che contiene tutte e sole le stringhe w in Σ^* che iniziano con 0 e terminano con un carattere che non occorre in nessun'altra posizione in w. Definire un automa finito deterministico che riconosce L. Lo stato pozzo può essere eliminato.

Definire un automa deterministico ${\mathcal A}$ il cui linguaggio accettato sia

$$L = \{ w \in \{0,1\}^* \mid \forall x, y, z \in \{0,1\}^*,$$
 se $w = xyz$ con $|y| = 3$ allora $|y|_1 \ge 2 \}$

(cioè tale che L(A) = L), dove $|w|_1$ denota il numero di occorrenze della lettera 1 in w. Lo stato trappola può essere omesso.

Esercizio

Definire un automa deterministico \mathcal{A} il cui linguaggio accettato sia il linguaggio definito dall'espressione regolare $E=a^*b+(ab)^*a$ (cioè tale che $L(\mathcal{A})=L(E)$). Lo stato trappola può essere omesso.

Esercizio

Definire un'espressione regolare E che descriva il linguaggio L(A) riconosciuto dall'automa non deterministico A la cui tavola delle transizioni è riportata di seguito (cioè tale che L(E) = L(A))

	a	Ь	С
$ ightarrow q_0$	q_1	q_2	q_0
q_1	Ø	q_0	Ø
* q ₂	q_2	Ø	q_3
q ₃	Ø	q ₂	Ø

Esercizio

Definire un automa deterministico ${\mathcal A}$ il cui linguaggio accettato sia il linguaggio L:

$$L = \{ w \in \{a, b\}^* \mid \exists y \in \{a, b\}, \exists x \in \{a, b\}^* y \{a, b\}^* : w = xy \}$$

(cioè tale che L(A) = L). Lo stato trappola può essere omesso.

Determinare il diagramma delle transizioni e il linguaggio $L(\mathcal{A})$ riconosciuto dall'automa non deterministico \mathcal{A} la cui tavola delle transizioni è riportata di seguito.

	a	b
$\rightarrow * q_0$	Ø	q_1
q_1	q_2	q 0
q_2	q_1	q_2

Determinare il diagramma delle transizioni e il linguaggio $L(\mathcal{A})$ riconosciuto dall'automa non deterministico \mathcal{A} la cui tavola delle transizioni è riportata di seguito.

	a	b	С
$\rightarrow * q_0$	q_1	q_2	q_3
q_1	q_0	Ø	q_1
q ₂	q_2	q_0	Ø
q ₃	Ø	q 3	q_0