Lösungen Übung 1

Aufgabe 1 (4 Punkte). Seien A, B und C beliebige Mengen. Zeigen Sie:

$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$$

Lösung:

1) Sei $x \in A \setminus (B \setminus C)$, also $x \in A$ und $x \notin B \setminus C$.

1.Fall: $x \notin B$ Dann folgt $x \in A \setminus B$ und somit auch $x \in (A \setminus B) \cup (A \cap C)$.

2.Fall: $x \in B$ Wegen $x \notin B \setminus C$ folgt dann $x \in C$ und somit auch $x \in A \cap C$, also auch $x \in (A \setminus B) \cup (A \cap C)$.

2) Sei $x \in (A \setminus B) \cup (A \cap C)$.

1.Fall: $x \in A \setminus B$, also $x \in A$ und $x \notin B$. Dann gilt erst recht $x \notin B \setminus C$, also $x \in A \setminus (B \setminus C)$.

2.Fall: $x \in A \cap C$, also $x \in A$ und $x \in C$. Letzteres impliziert $x \notin B \setminus C$, also gilt auch hier $x \in A \setminus (B \setminus C)$.

Aufgabe 2 (4 Punkte). Beweisen Sie die folgende Summenformel mittels vollständiger Induktion:

$$\sum_{k=1}^{n} \frac{1}{(3k-2)(3k+1)} = \frac{n}{3n+1} \quad \text{ für alle } n \in \mathbb{N}$$

 $L\ddot{o}sung$: Induktions
anfang: Für n=1 sind beide Seiten gleich 1/4. Induktions
schritt: Sei $n\in\mathbb{N}$ mit

$$\sum_{k=1}^{n} \frac{1}{(3k-2)(3k+1)} = \frac{n}{3n+1}.$$

Dann folgt:

$$\sum_{k=1}^{n+1} \frac{1}{(3k-2)(3k+1)} = \sum_{k=1}^{n} \frac{1}{(3k-2)(3k+1)} + \frac{1}{(3n+1)(3n+4)}$$

$$= \frac{n}{3n+1} + \frac{1}{(3n+1)(3n+4)} = \frac{n(3n+4)+1}{(3n+1)(3n+4)} = \frac{3n^2+4n+1}{(3n+1)(3n+4)}$$

$$= \frac{(3n+1)(n+1)}{(3n+1)(3n+4)} = \frac{n+1}{3n+4}$$

Aufgabe 3 (4 Punkte). Zeigen Sie mittels vollständiger Induktion: Für alle $n \in \mathbb{N}$ ist $n^3 + 2n$ teilbar durch 3.

Lösung: Induktionsanfang: Für n=1 ist $n^3+2n=3$. Induktionsschritt: Sei $n\in\mathbb{N}$ mit $3\mid n^3+2n$. Es gilt

$$(n+1)^3 + 2(n+1) = (n+1)(n^2 + 2n + 1) + 2n + 2$$

= $n^3 + 3n^2 + 3n + 1 + 2n + 2 = n^3 + 2n + 3(n^2 + n + 1).$

Nach Induktionsvoraussetzung ist $n^3 + 2n$ teilbar durch 3 und $3(n^2 + n + 1)$ ist offensichtlich ebenfalls durch 3 teilbar. Also ist auch die Summe der beiden Zahlen durch 3 teilbar. Das zeigt die Behauptung für n + 1.