电网工程部送电电气专业技术培训专题

专题之七 防雷及接地

批准:

审核:

校核:

编写:李奇峰

一 杆塔防雷

1.1 雷电参数

- 1) 雷暴日(小时): 一年中有雷电的日(小时)数。一天或一小时内只要听到雷声(不管听到几次),就记为一个雷暴日或雷暴小时。
- 2) 地面落雷密度:每一雷暴日、每平方公里地面落雷次数。一般情况下 γ =0.015(次/km²•雷暴日)。
- 3) 雷电流的幅值: 雷电流是指雷击于良好的目标时泄入大地的电流, 我国雷电流幅值的概率曲线如图 1 所示

图 1 我国雷电流幅值的概率(百分数)P

曲线方程为: logP=-I_m/108

式中 I_m---雷电流幅值, kA。

P--- 超过雷电流幅值 Im 的概率。

雷电流幅值与海拔高度及土壤电阻率的大小关系不大。

4) 雷电流的波形、陡度和波头长度及其与雷电流幅值的关系

雷电流波长 τ 大郅在 $40\,\mu$ s 左右,波头长度 τ_1 大郅在 $1~4\,\mu$ s 左右,平均在 $2.6\,\mu$ s 左右。因此我国防雷保护设计中,雷电流的波头长度一般取 $2.6\,\mu$ s。

计算塔高在 40m 以下的铁塔,雷电流的波头近似看成是斜角波, 其平均陡度为 a =1/2.6。

计算塔高在 40m 以上的铁塔, 雷电流的波头近似看成是半余弦波, 其最大陡度为 $a_{max}=\pi$ I/(2*2.6), 平均陡度为 $a_{co}=I/2.6$ 。

图 2-7-2 **雷电流波形图** 1 ~ 斜角波; 2 — 半余弦波

1.2 雷电过电压

雷电过电压是雷击导线、杆塔和避雷线产生的感应电压。雷击导 线产生的雷电电压是雷击避雷线和杆塔的 7~8 倍。

1.3 防雷保护设计

1.3.1 线路雷击次数

根据我国规程,每年每百公里线路的雷击次数为 $N=\gamma$ hT, γ : 地面落雷密度,T: 年雷暴日数,h: 避雷线平均悬挂高度。

若 γ =0.015,T=40,贵N=0.6*h。

1.3.2 击杆率

击杆率(g)是指雷击线路杆塔的次数与线路雷击总次数之比值, 规程规定的击杆率见下表。

避雷线根数	0	1	2
平原击杆率	1/2	1/4	1/6
山丘击杆率		1/3	1/4

1.3.3 绕击率计算

我国规程规定的绕击率计算公式

平原线路 IgP_θ= θ *h^{0.5}/86-3.9

山丘线路 IgP_θ = θ *h^{0.5}/86-3.35

- P₀: 线路绕击率
- θ: 杆塔保护角
- h: 杆塔高度

1.3.4 感应过电压计算

(1) 雷击线路附近大地时,线路的感应过电压计算公式

 $U_{gd} = (1-K)*25*I*h_d/S$

I: 雷电流幅值,在设计中计入雷击点的自然电阻的作用,最大电流采用的最大值为 100kA

h_d: 导线平均高度

S: 雷击点距线路的距离

K: 导线与避雷线间的耦合系数

 $K = k_1 * k_0$

Ko:导线和避雷线的间的几何耦合系数

K₁: 电晕校正系数

· 几种典型线路的几何 耦合系数(4a)的计算值

節定电压 (kV)	线路型式	几何耦合系数(ka)
35	无避雷线,消弧线圈 接地或不接地	k _{0 (1-2)} = 0.238
	单避雷线	k _{0 (1-2)} = 0.114
	单避雷线、单耦合线	k ₀ (1,2-3)-0.275
110	单避雷线、消弧线圈 接地	k _{0 (1,2-3)} 0.226
	双避雷线、双耦合线	k ₀ (1,2,3,4-5) = 0.438
	双避雷线、消弧线圈 接炮	k _{0 (1,2,3-4)} = 0.314
20::	单避雷线	k _{0 (1-2)} -0.103
220	双避雷线	A 0 (1,2 3) 0.237
500	双避雷线	$k_{0-(1,2-3)} = 0.20$
au.	双避雷线、双回路塔	$k_{(0)(1,2-3)} = 0.124$

雷击塔顶时的电晕校正系数(ki)

糖定电压 (kV)	20~35	60~110	154 ~330	500
双避雷线	1,1	1.2	1.25	1.28~1.3
单避 雷线	1.15	1.25	1.3	3
双避雷线有耦合线	1.1	1.15	1.2	1.25
单避雷线有耦合线	1.1	1.2	1.25	

(2) 雷击杆塔时,线路的感应过电压计算公式

 U_{gb} =(1-K) a h_d

h_d: 导线平均高度

a: 感应过电压系数,其值等于 $kA/\mu s$ 计的雷电流陡度值,规程建议取 a = I/2.6.

K: 导线与避雷线间的耦合系数

1.3.5 雷击杆塔时的过电压及耐雷水平计算

(1) 塔顶电位和绝缘承受电压的计算

 $U_i=I^*(\beta *R_{ch}+\beta *L_{gt}/2.6+h_d/2.6)^*$ (1-k)

Ui: 线路绝缘上承受的最大电压

I: 雷电流幅值

β: 杆塔分流系数

一般长度的挡距的线路杆塔分流系数形

线路额定电压 (kV)	避由线根数	β { A
	单避讯线	U. 99
110	双避雷线	0.86
220 -	单避雷线	d.,62
	双避雷线	D•×8
330	双避雷线	0.88

Rch: 杆塔波阻抗

Lgt: 杆塔电感

杆塔波阻和电感的平均值

杆 塔	九 坚	ļ	杆塔波阻抗 (Ω)	杆塔电感 (μH /m)
无拉线钠筋	混凝土单	L#H	250	0.84
有拉线钢筋	混凝土单	1 4 T	125	0,42
无拉线钢筋	混凝土な	(#1	125	0.12
铁		塔 '	150	0.50
(1) 型	铁	塔,	125	0,42

h_d: 导线平均悬挂高度

(2) 雷击塔顶时耐雷水平的计算

若另 U_j等于塔头绝缘的 50%放电电压, 责可一求出雷击杆 塔塔顶时的耐雷水平

 $I_1 = U_{50\%} / ((1-k) *(\beta *R_{ch} + \beta *L_{gt}/2.6 + h_d/2.6))$

1.3.6 雷击档距中央避雷线或雷击导线时的过电压及耐雷水平计算

 $I_2 = 4*U_{50\%}/z$

z:导线波阻抗,一般认为其约等于 400 Ω。

1.3.7 线路雷击跳闸率的计算

 $n=0.6h_b*\eta (g*P_1+P_\theta *P_2+(1-g)*P_3)$

n: 雷击跳闸率

h_h: 避雷线平均悬挂高度

η: 建弧率

 $\eta = (4.5 * E^{0.75} - 14) * 10^{-2}$

E: 绝缘子串的平均运行电压梯度有效值

 $E=U_e/(2*1_j)$

Ue:额定电压, kV

1_j: 绝缘子串的闪络距离, m

g: 线路击杆率

P₁: 超过雷击杆塔时耐雷水平 I₁的雷电流概率

P2: 超过雷击导线时耐雷水平 I2的雷电流概率

P₃: 雷击档距中央的避雷线时,雷电流超过耐雷水平的概率,这种情况很少取 0。

P_θ: 绕击率

以上计算的是40个雷电日计算的。

二 接地设计

杆塔的接地装置主要是为了导泄雷电流入地,以保持线路 有一定的耐雷水平。

2.1 有关规定

规程规定的杆塔接地电阻

土壤电阻率	400 7 11 7	100 以上	500 以上	1000 以上	2000 以上
(Ω • m)	100 及以下	至 500	至 1000	至 2000	

工频接地电阻	10	45	20	25	20(1)
(Ω)	10	15	20	25	30(1)

注: (1) 如土壤电阻率超过 2000 Ω • m ,接地电阻很难降到 $30\,\Omega$ 时,可采用 $6\sim8$ 根总长不超过 500m 的放射形接地体或连续伸长接地体,其接地电阻不受限制。

2.2 土壤电阻率

土壤电阻率计算公式

 $\psi *_0 q = q$

ρ: 干燥季节的土壤电阻率, Ω*m

 ρ_0 : 雷雨季节无水时所测得的土壤电阻率, $\Omega*m$

ψ: 考虑土壤干燥所取的季节系数

防雷接地装置的季节系数炒

	ġ'	(A
埋深(加)	水中核地体	2~3m的垂 直接地体
0.5	1.1~1.8	1.2 - 1.4
0.8 - 1.0	1.25 ~ 1.45	1.15~1.3
 2.5~3.0 (深埋接地体)	1.0~1.1	1.0~1.1

2.3 简单人工接地装置的工频接地电阻计算

(1) 接地引下线的工频接地电阻计算

 $R_1 = \rho / (2 \pi 1) * \ln 41/ d$

ρ: 计算的土壤电阻率, 欧姆

1: 引下线埋深, cm

d: 埋地体直径, cm

(2) 浅埋的水平接地体

 $R_3 = \rho / (2 \pi 1) * ln1^2 / td$

t:接地体埋深, cm

(3) 深埋的接地环

 $R_4 = \rho / (2 \pi^2 D) * (1n8*D/d+ \pi D/(4t)$

D: 环的直径, cm

2.4 复合式人工接地装置工频接地电阻计算

(1) n 根水平射线的复合接地装置

 $R_5 = R_3/n*1/\eta$

n: 接地体数量

η: 工频利用系数

(2) 引下线和接地环复合利用

$$R_6 = (R_4 * R_1/n / (R_4 + R_1/n)) *1/n$$

(4) 引下线,深埋环和水平射线复合

一个环带射线

$$R_7 = R_5 * R_6 / (R_5 + R_6) * 1 / \eta$$

四个环复合

(5) η工频利用系数

接地体的冲击利用系数机。

接地体型式	接地导体的根数	冲击利用系数	备 注	
71根水平射线	2	0.83 ~ 1.0	•	
(信根长10~80 m.)	3	0.75~0.90	较小值用于较短的射线	
(I	1 ~ 6	0.65~0.80		
	2	0.80~0.85		
以水平接地体连接的垂直接地体	3	0.70~0.80	$\frac{D}{I} = 2 - 3$; 较小值用于 $\frac{D}{T} =$	
	4	0.70~0.75	时,式中 D 为垂直接地体间距离	
1	6 0.85~0.70		1 为垂直接 地体长度	
P装置式基础周围 數设的深 埋式 接地体	· 个基础的各接地导体之间	0.7		
	铁塔的各基础间	0.4		
	门型、拉线门型塔的各基础间	0.8		
接座体形式	按地导体的根数	冲击利用系数	新 社	
白 然 後 地 体	拉线棒与拉线盘问	0.6		
	铁塔的各基础间	0.4 ~ 0.5		
	门型、各种拉线扩塔的各基础间	9. 7		
深埋式接地体 与装配式基础间	各型杆塔	9, 75 ~ 0, 80		
深埋式接地体与射线间 各型杆塔		0.80~0.85	1	

注 工顺利用系数η, - 般取为η ~ η, μ / η, 9 < 1 · 但拉线棒马拉线盘间。以及铁塔的各基础间。包括深埋式接地或自然接地 η ~ η c μ / 0.7 、