酵素と核酸

酵素	

- 生体内の化学反応で、触媒としてはたらくタンパク質を という.
- 特定の化学反応のみに効果がある. 酵素が作用する相手を という.
 - **基質特異性**:酵素ごとに反応の相手 (基質) が決まっている.
 - 反応特異性:生成する物質が決まっている.
- 最適温度:反応速度が最大になる温度. 多くは 40 ℃前後. →
- 最適 pH: 反応速度が最大になる pH. 酵素により異なる.

 $(M: \mathcal{C}^{2})$ () $\longrightarrow pH 2$, アミラーゼ (唾液) $\longrightarrow pH 7$, トリプシン $\longrightarrow pH 8$)

• 失活:酸や塩基・熱などの影響で酵素の立体構造が変化し、その機能を失うこと.

核酸

- 多数のヌクレオチドリン酸と糖の部分で脱水縮合したものを ______ という.
- ポリヌクレオチドのうち,生物の細胞内にあるものを ____という.

これには, ____と ____の2種類がある.

名称	糖	塩基	備考
DNA	デオキシリボース	アデニン (A)	遺伝子の本体.2 本のポリヌ
(デオキシリボ核酸)		チミン (T)	クレオチド鎖の塩基 (A と
		シトシン (C)	T, G と C) の間で水素結合
		グアニン (G)	をつくり, 二重らせん構造を
			形成.
RNA	リボース	アデニン (A)	DNA から遺伝情報を転写し
(リボ核酸)		ウラシル (U)	タンパク質を合成する. (発
		シトシン (C)	現)
		グアニン (G)	

表1 DNAとRNA

ATP (アデノシン三リン酸)

- ① 塩基(アデニン)と糖(リボース)が結合したアデノシンにリン酸 3 分子が結合した物質. ヌクレオチドの一種である.
- ② ATP が加水分解されるときに放出されるエネルギーが、生物のエネルギー源となる.

 ${
m ATP} + {
m H_2O} \longrightarrow {
m ADP} \; ({\it \reft} {\it \reft}$