Listing of Claims:

1. (Currently Amended) Λ compound of formula I:

$$R^4$$
 R^3
 NH
 NH
 R

wherein A is

 R^3 . R^4 , R^5 and R^6 are each, independently, H, halogen, NO_2 , $C_{1\text{-}10}$ - alkyl, optionally substituted by halogen up to perhaloalkyl, $C_{1\text{-}10}$ -alkoxy, optionally substituted by halogen up to perhaloalkoxy, $C_{1\text{-}10}$ - alkanoyl, optionally substituted by halogen up to perhaloalkanoyl, $C_{6\text{-}12}$ aryl, optionally substituted by $C_{1\text{-}10}$ alkyl or $C_{1\text{-}10}$ alkoxy, or $C_{5\text{-}12}$ hetaryl, optionally substituted by $C_{1\text{-}10}$ alkyl or $C_{1\text{-}10}$ alkoxy, and either

optionally substituted by C_{1-10} -alkyl, , halo-substituted C_{1-10} -alkyl up to perhaloalkyl, C_{1-10} -alkoxy, halo-substituted C_{1-10} -alkoxy up to perhaloalkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, C_{6-12} -aryl, C_{5-12} -hetaryl; C_{6-12} -aralkyl, C_{6-12} -alkaryl, halogen; NR^1R^1 ; $-NO_2$; $-CF_3$; $-COOR^1$; $-NHCOR^1$; -CN; $-CONR^1R^1$; $-SO_2R^2$; $-SOR^2$; $-SR^2$;

in which

 R^{1} is H or C_{1-10} -alkyl, optionally substituted by halogen up to perhaloalkyl and R^{2} is C_{1-10} -alkyl, optionally substituted by halogen, up to perhaloalkyl,

R^{3'}, R^{4'}, R^{5'} and R^{6'} are independently H, halogen,

 C_1 - C_{10} alkyl, optionally substituted by halogen up to perhaloalkyl,

 C_1 C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$, together with the base phenyl, form a naphthyl group, optionally substituted by halogen up to perhalo, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl;

L¹ is phenyl, substituted by C_{1-10} -alkoxy, OH, ΘF -SCH₃, or by

$$-N$$

pyridyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrazine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂,

benzopyridine, optionally substituted by C_{1-10} -alkyl, one C_{1-10} -alkoxy, halogen, -OH, -SCH₃ or

or

 NO_2 ,

benzothiazole, optionally substituted by, C_{1-10} alkyl C_{1-10} alkoxy, halogen, OH, -SCH₃ or NO₂, and wherein the compound of formula I has a pKa greater than 10,

or a pharmaceutically acceptable salt thereof.

- 2. (Cancelled)
- 3. (Previously Presented) A compound according to claim 1, wherein

 R^3 is H, halogen or C_{1-10} - alkyl, optionally substituted by halogen, up to perhaloalkyl;

R⁴ is H, halogen or NO₂;

 R^5 is H, halogen or C_{1-10} - alkyl;

 R^6 is H, $C_{1\text{--}10}$ - alkoxy, thiophene, pyrole or methyl substituted pyrole,

 $R^{3'}$ is H, halogen, C_{4-10} -alkyl, or CF_3 and

R^{6'} is H, halogen, CH₃, CF₃ or –OCH₃

4. (Previously Presented) A compound according to claim 1, wherein

 R^{3} is $C_{4,10}$ -alkyl, Cl, F or CF_3 ;

 R^{6} is H or OCH₃.

- 5. (Previously Presented) A compound according to claim 4, wherein R³ or R⁵ is t-butyl.
- 6. (Previously Presented) A compound according to claim 1, wherein M is $-CH_2$ -, -N(CH₃)- or -NHC(O)-.
- 7. (Previously Presented) A compound according to claim 6, wherein L^1 is phenyl or pyridyl.
 - 8. (Previously Presented) A compound according to claim 1, wherein M is -O-.
- 9. (Previously Presented) A compound according to claim 8, wherein L¹ is phenyl, pyridyl, pyridone or benzothiazole.
 - 10. (Previously Presented) A compound according to claim 1, wherein M is S-.
- 11. (Previously Presented) A compound according to claim 10, wherein L^1 is phenyl or pyridyl.

$$\begin{array}{c|c} CI & O & H & H \\ \hline & N & N \\ \hline & O & O \\ \hline \end{array}$$

- 13. (Original) A pharmaceutical composition comprising a compound of claim 1, and a physiologically acceptable carrier.
- 14. (Original) A pharmaceutical composition comprising a compound of claim 12. and a physiologically acceptable carrier.
- 15. (Previously Presented) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula II:

or a pharmaceutically acceptable salt thereof wherein

A is

B is a substituted or unsubstituted, up to bicyclic aryl or heteroaryl moiety of up to 12 carbon atoms with at least one 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is substituted it is substituted by one or more substituents selected from the group consisting of halogen, up to per-halo, and W_n , wherein n is 0-3 and each W is independently selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)NR^7R^7$, $-C(O)-R^7$, $-NO_2$, $-OR^7$, $-SR^7$, $-NR^7R^7$, $-NR^7C(O)OR^7$, $-NR^7C(O)R^7$, C_1-C_{10} alkeyl, C_2-C_{10} alkenyl, C_1-C_{10} alkenoyl, C_1-C_{10} alkoxy, C_3-C_{10} cycloalkyl, C_6-C_{14} aryl, optionally substituted with halogen, C_1-C_{10} alkyl, or C_1-C_{10} alkoxy; C_3-C_{13} heteroaryl, optionally substituted with halogen, C_1-C_{10} alkyl, or C_1-C_{10} alkoxy; C_3-C_{13} heteroaryl, optionally substituted with halogen, C_1-C_{10} alkyl, or C_1-C_{10} alkoxy; C_4-C_{23} alkheteroaryl, optionally substituted with halogen, C_1-C_{10} alkyl, or C_1-C_{10} alkoxy; substituted C_1-C_{10} alkyl, substituted C_2-C_{10} alkenyl, substituted C_2-C_{10} alkenyl, substituted C_3-C_{10} alkenyl, substituted C_4-C_{23} alkheteroaryl and $-M-L^1$;

wherein if W is a substituted group which does not contain aryl or hetaryl moieties, it is substituted by one or more substituents independently selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)R^7$, $-C(O)NR^7R^7$, $-OR^7$, $-SR^7$, $-NR^7R^7$, NO_2 , $-NR^7C(O)R^7$, $-NR^7C(O)R^7$ and halogen up to per-halo;

wherein each R^7 is independently selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} hetaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to perhalosubstituted C_1 - C_{10} alkyl, up to perhalosubstituted C_2 - C_{10} alkenyl, up to perhalosubstituted C_3 - C_{10} cycloalkyl, up to perhalosubstituted C_6 - C_{14} aryl and up to perhalosubstituted C_3 - C_{13} hetaryl,

wherein M is - O-, -S-, -N(R⁷)-, -(CH₂)-_m, -C(O)-, -CH(OH)-, -(CH₂)_mO-, -NR⁷C(O) NR⁷R⁷-, -NR⁷C(O)-, -C(O)NR⁷-, -(CH₂)_mS-, -(CH₂)_mN(R⁷)-, -O(CH₂)_m-,

the state of the s

 L^{+} is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, which is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1} , wherein $_{n1}$ is 0 to 3 and each Z is independently selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)NR^7R^7$, $-C(O)-NR^7$, $-NO_2$, $-OR^7$, $-SR^7$, $-NR^7C(O)OR^7$, $-NR^7C(O)R^7$, $-NR^7C(O)R^7$, $-C_{10}$ alkyl, C_3-C_{10} cycloalkyl, C_6-C_{14} aryl, C_3-C_{13} hetaryl, C_7-C_{24} alkaryl, C_4-C_{23} alkheteroaryl, substituted C_1-C_{10} alkyl, substituted C_3-C_{10} cycloalkyl, substituted C_7-C_{24} alkaryl and substituted C_4-C_{23} alkheteroaryl; wherein the one or more substituents of Z is selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)NR^7R^7$, $-OR^7$, $-SR^7$, $-NO_2$, $-NR^7R^7$, $-NR^7C(O)R^7$ and $-NR^7C(O)OR^7$,

wherein $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ are each independently H, halogen, $C_{1\text{-}10}$ -alkyl, optionally substituted by halogen up to perhaloalkyl, C_1 – C_{10} alkoxy, optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ together with the base phenyl, form a naphthyl group, optionally substituted by halogen up to perhalo, $C_{1\text{-}10}$ alkyl, $C_{1\text{-}10}$ alkoxy, $C_{3\text{-}10}$ eycloalkyl, $C_{2\text{-}10}$ alkenyl, $C_{1\text{-}10}$ alkanoyl, $C_{6\text{-}12}$ aryl, $C_{5\text{-}12}$ hetaryl or $C_{6\text{-}12}$ aralkyl.

16. (Previously Presented) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula IIa:

$$R^4$$
 R^3
 NH
 NH
 R^5
 R^6
 R^6
 R^8

wherein A is

177 () 1 () 1 () 1 () 1 ()

R³, R⁴, R⁵ and R⁶ are each independently H, halogen, NO₂,

C₁₋₁₀- alkyl, optionally substituted by halogen up to perhaloalkyl,

C₁₋₁₀-alkoxy, optionally substituted by halogen up to perhaloalkoxy,

 C_{1-10} - alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,

 C_{6-12} aryl, optionally substituted by C_{1-10} alkyl or C_{1-10} alkoxy, or

 C_{5-12} hetaryl, optionally substituted by C_{1-10} alkyl or C_{1-10} alkoxy, and either

one of R^3 , R^4 , R^5 and R^6 is $-M-L^1$; or

two adjacent of R^3 , R^4 , R^5 and R^6 together are an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C_{1-10} -alkyl, halo-substituted C_{1-10} -alkyl up to perhaloalkyl, C_{1-10} -alkoxy, halo-substituted C_{1-10} -alkoxy up to perhaloalkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl; C_{6-12} -aryl, C_{5-12} -hetaryl, C_{6-12} -alkaryl, halogen; -NR¹R¹; -NO₂; -CF₃;-COOR¹; -NHCOR¹; -CN; -CONR¹R¹; -SO₂R²; -SOR²; -SOR²; -SR²;

in which

 R^{\perp} is H or $C_{1\text{--}10}$ -alkyl, optionally substituted by halogen, up to perhalo and

 R^2 is C_{1-10} -alkyl, optionally substituted by halogen,

 $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ are independently H, halogen, C_1 - C_{10} alkyl, optionally substituted by halogen up to perhaloalkyl, C_1 - C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$, together with the base phenyl,

121 K 1 K 1 X X X 1

M is -CH₂-, -S-, -N(CH₃)-, -NHC(O)- -CH₂-S-, -S-CH₂-, -C(O)-, or -O-; and

L¹ is phenyl, pyridyl, naphthyl, pyridone, pyrazine, pyrimidine, benzodiaxane, benzopyridine or benzothiazole, each optionally substituted by C₁₋₁₀-alkyl, C₁₋₁₀-alkoxy, halogen,
 OH, -SCH₃, NO₂ or, where Y is phenyl, by

or a pharmaceutically acceptable salt thereof.

17. (Previously Presented) A method according to claim 16, wherein

 R^3 is halogen or C_{1-10} - alkyl, optionally substituted by halogen, up to perhaloalkyl;

R⁴ is H, halogen or NO₂;

 R^5 is H, halogen or C_{1-10} - alkyl;

 R^6 is H , $C_{1\text{--}10}\text{-}$ alkoxy, thiophene, pyrole or methylsubstituted pyrole

 $R^{3'}$ is H, halogen, C_{4-10} -alkyl, or CF_3 and

R⁶ is H, halogen, CH₃, CF₃ or OCH₃.

18. (Previously Presented) A method according to claim 16, wherein M is -CH₂-, -S-, -N(CH₃)- or -NHC(O)- and L^{+} is phenyl or pyridyl.

Property and a second of

20. (Currently Amended) A compound of formula I:

$$R^4$$
 R^5
 R^6
 NH
 NH
 NH

wherein A is

 R^3 . R^4 , R^5 and R^6 are each, independently, H, halogen, NO_2 , $C_{1\text{-}10}$ - alkyl, optionally substituted by halogen up to perhaloalkyl, $C_{1\text{-}10}$ -alkoxy, optionally substituted by halogen up to perhaloalkoxy, pyridinyl, optionally substituted by $C_{1\text{-}10}$ alkyl or $C_{1\text{-}10}$ alkoxy, and one of R^3 , R^4 , R^5 and R^6 is $-M\text{-}L^1$;

 $R^{3'}$. $R^{4'}$, $R^{5'}$ and $R^{6'}$ are independently H, halogen, C_1 - C_{10} alkyl, optionally substituted by halogen up to perhaloalkyl, C_1 - C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$, together with the base phenyl, form a naphthyl group, optionally substituted by $C_{1\text{-}10}$ alkyl, $C_{1\text{-}10}$ alkoxy, $C_{3\text{-}10}$ cycloalkyl. $C_{2\text{-}10}$ alkenyl, $C_{1\text{-}10}$ alkanoyl, $C_{6\text{-}12}$ aryl, $C_{5\text{-}12}$ hetaryl or $C_{6\text{-}12}$ aralkyl;

$$-N$$

pyridyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃, or NO₂, naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrazine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrimidine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzopyridine, optionally substituted by C_{1-10} -alkyl, OH, one C_{1-10} -alkoxy, halogen, -SCH₃ or NO₂,

or

benzothiazole, optionally substituted by, $C_{1^{-}10}$ alkyl $C_{1^{-}10}$ alkoxy, halogen, OH, -SCH₃ or NO₂, and wherein the compound of formula I has a pKa greater than 10, or a pharmaceutically acceptable salt thereof.

$$R^4$$
 R^5
 R^6
 R^6
 R^7
 R^8
 R^8

wherein Λ is

wherein

 R^3 is H, halogen or C_{1-10} - alkyl, optionally substituted by halogen, up to perhaloalkyl;

R⁴ is H, halogen or NO₂;

 R^5 is H, halogen or C_{1-10} - alkyl;

R⁶ is H, C₁₋₁₀- alkoxy, thiophene, pyrole or methyl substituted pyrole,

 R^{3^\prime} is H, Cl. F , $C_{4\text{-}10}\text{-}alkyl.$ or CF_3 and

 R^4 is H, Clor F;

 R^{5} is H. Cl. F or C_{4-10} -alkyl; and

R⁶ is H , halogen, CH₃, CF₃ or -OCH₃.

and one of R^3 . R^4 . R^5 and R^6 is -M- L^1 ; wherein

L¹ is phenyl, substituted by C_{1-10} -alkoxy, OH, ΘF -SCH₃, or by

$$-N$$

pyridyl, optionally substituted by $C_{1\text{-}10}$ -alkyl, $C_{1\text{-}10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, naphthyl, optionally substituted by $C_{1\text{-}10}$ -alkyl, $C_{1\text{-}10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by $C_{1\text{-}10}$ -alkyl, $C_{1\text{-}10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrazine, optionally substituted by $C_{1\text{-}10}$ -alkyl, $C_{1\text{-}10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrimidine, optionally substituted by $C_{1\text{-}10}$ -alkyl, $C_{1\text{-}10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by $C_{1\text{-}10}$ -alkyl, $C_{1\text{-}10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, benzopyridine, optionally substituted by $C_{1\text{-}10}$ -alkyl, one $C_{1\text{-}10}$ -alkoxy, halogen, -SCH₃ or NO₂, or

benzothiazole, optionally substituted by, $C_{1^{-}10}$ alkyl $C_{1^{-}10}$ alkoxy, halogen, -SCH₃ or NO₂, and wherein the compound of formula I has a pKa greater than 10, or a pharmaceutically acceptable salt thereof.

22. (Previously Presented) A compound according to claim 21, wherein $R^{3'}$ or $R^{5'}$ is t-butyl.

17.3.1.0.15.371.3

 $C\Pi_{2}$ -, -N(CH₃)- or -NHC(O)-.

- 24. (Previously Presented) Λ compound according to claim 21, wherein L^{T} is phenyl or pyridyl.
- 25. (Previously Presented) A compound according to claim 21, wherein M is S-.
- 26. (Previously Presented) A compound according to claim 26, wherein L¹ is phenyl or pyridyl.
 - 27. (Currently Amended) A compound of formula I:

$$R^4$$
 R^5
 R^6
 R^6

wherein A is

R³, R⁴, R⁵ and R⁶ are each, independently, H, halogen, NO₂,

C₁₋₁₀- alkyl, optionally substituted by halogen up to perhaloalkyl,

C₁₋₁₀-alkoxy, optionally substituted by halogen up to perhaloalkoxy,

 C_{1-10} - alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,

 C_{6-12} aryl, optionally substituted by C_{1-10} alkyl or C_{1-10} alkoxy, or

 C_{5-12} hetaryl, optionally substituted by C_{1-10} alkyl or C_{1-10} alkoxy,

and either

one of
$$R^3$$
, R^4 , and R^5 is $-M-L^1$; or

two adjacent of R^3 , R^4 , R^5 and R^6 together are an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C_{1-10} -alkyl, , halo-substituted C_{1-10} -alkyl up to perhaloalkyl, C_{1-10} -alkoxy, halo-substituted C_{1-10} -alkoxy up to perhaloalkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, C_{6-12} -aryl, C_{5-12} -hetaryl; C_{6-12} -aralkyl, C_{6-12} -alkaryl, halogen; NR^1R^1 ; $-NO_2$; $-CF_3$; $-COOR^1$; $-NHCOR^1$; $-CONR^1R^1$; $-SO_2R^2$; $-SOR^2$; $-SR^2$;

in which

 R^{+} is H or C_{1-10} -alkyl, optionally substituted by halogen up to perhaloalkyl and R^{2} is C_{1-10} -alkyl, optionally substituted by halogen, up to perhaloalkyl,

 $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ are independently H, halogen,

 C_1 - C_{10} alkyl, optionally substituted by halogen up to perhaloalkyl,

 C_1 - C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$, together with the base phenyl, form a naphthyl group, optionally

......

M is $-CH_2$ -, -S-, $-N(CH_3)$ -, -NHC(O)- $-CH_2$ -S-, -S- $-CH_2$ -, -C(O)-, or -O-; and L¹ is phenyl, substituted by C_{1-10} -alkoxy, OH_2 or $-SCH_3$, or \underline{by}

pyridyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃, or NO₂, naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrazine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrimidine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzopyridine, optionally substituted by C_{1-10} -alkyl, one C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂,

or

benzothiazole, optionally substituted by, C_{1^-10} alkyl C_{1^-10} alkoxy, halogen, OH, -SCH₃ or NO₂, or a pharmaceutically acceptable salt thereof.