- Low-Power Consumption
- Wide Common-Mode and Differential Voltage Ranges
- Low Input Bias and Offset Currents
- Output Short-Circuit Protection
- Low Total Harmonic
 Distortion . . . 0.003% TYP

- High Input Impedance . . . JFET-Input Stage
- Internal Frequency Compensation (Except TL080, TL080A)
- Latch-Up-Free Operation
- High Slew Rate . . . 13 V/μs Typ

TL081M . . . FH OR FK CHIP CARRIER PACKAGE (TOP VIEW) Ξ NC OFFSET I 999 1 20 19 NC 18 [NC 5 [] IN -17 Vcc+ NC] 6 16 NC **D** 7 IN+ 15[OUT NC hв NC 14 10 11 12 13 OFFSET N2

(TOP VIEW) NC VCC-2 1 20 19 NC 18 NC #1 IN-17 [#2 OUT NC 16 NC Π6 #1 IN+ 15 € #2 IN -0 7 NC NC 14 T 10 11 12 13 ż

TL082M . . . FH OR FK

CHIP CARRIER PACKAGE

NC-No internal connection

DEVICE TYPES, SUFFIX VERSIONS, AND PACKAGES

	TL080	TL081	TL082	TL083	TL084	TL085
TL08_M	JG	FH, FK, JG	FH, FK, JG	FH, FK, J	FH, FK, J, W	*
TL08_I	JG, P	JG, P	JG, P	J, N	J, N	*
TL08_C	JG, P	JG, P	JG, P	J, N	J, N	N
TL08_AC	JG, P	JG, P	JG, P	J, N	J, N	*
TL08_BC	*	JG, P	JG, P	*	J, N	*

^{*}These combinations are not defined by this data sheet.

Copyright © 1983 by Texas Instruments Incorporated

TYPES TL080 THRU TL085, TL080A THRU TL084A TL081B, TL082B, TL084B JFET-INPUT OPERATIONAL AMPLIFIERS

NC-No internal connection

TYPES TLO80 THRU TLO85, TLO80A THRU TLO84A TLO81B, TLO82B, TLO84B JFET-INPUT OPERATIONAL AMPLIFIERS

description

The TL08 _ JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. Offset adjustment and external compensation options are available within the TL08 _ family.

Device types with an ''M'' suffix are characterized for operation over the full military temperature range of -55 °C to 125 °C, those with an ''l'' suffix are characterized for operation from -25 °C to 85 °C, and those with a ''C'' suffix are characterized for operation from 0 °C to 70 °C.

schematic (each amplifier)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

		TL08_M	TL08_I	TL08_C TL08_AC TL08_BC	UNIT
Supply voltage, V _{CC+} (see Note 1)		18	18	18	V
Supply voltage, V _{CC} (see Note 1)		- 18	-18	- 18	V
Differential input voltage (see Note 2)		± 30	± 30	± 30	٧
Input voltage (see Notes 1 and 3)		± 15	±15	± 15	V
Duration of output short circuit (see Note 4)		unlimited	unlimited	unlimited	
Continuous total dissipation at (or below) 25	°C free-air temperature (see Note 5)	680	680	680	mW
Operating free-air temperature range		-55 to 125	- 25 to 85	0 to 70	°C
Storage temperature range		-65 to 150	-65 to 150	-65 to 150	°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	FH, FK, J, JG, or W package	300	300	300	°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	N or P package		260	260	°C

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-} .
 - 2. Differential voltages are at the noninverting input terminal with respect to the inverting input terminal.
 - 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
 - 4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
 - For operation above 25 °C free-air temperature, refer to Dissipation Derating Curves in Section 2. In the J and JG packages, TL08_M chips are alloy-mounted; TL08_I, TL08_C, TL08_AC, and TL08_BC chips are glass-mounted.

TYPES TLO80M, TL081M, TL082M, TL083M, TL084M LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS

electrical characteristics, $V_{CC\pm} = \pm 15 \text{ V}$ (unless otherwise noted)

PARAMETER		TEST CON	DITIONS†	TL080M, TL081M				UNIT			
				MIN	TYP	MAX	MIN	TL084M TYP	MAX		
	Input offset voltage	V _O = 0,	T _A = 25 °C		3	6		3	9	mV	
V _{IO}	input offset voltage	$R_S = 50 \Omega$	$T_A = -55$ °C to 125 °C			9			15	mv	
۵VIO	Temperature coefficient of input offset voltage	$V_0 = 0$, $T_A = -55$ °C to 125°C	$R_S = 50 \Omega$,		10			10		μV/°C	
l _{IO}	Input offset current [‡]	V _O = 0	T _A = 25 °C		5	100		5	100	pА	
10	input offset current.	•0 = 0	$T_A = -55$ °C to 125 °C		~*************************************	20			20	nA	
l _{IB}	Input bias current [‡]	V _O = 0	T _A = 25°C		30	200		30	200	pΑ	
			$T_A = -55$ °C to 125 °C			50			20	nA	
VICR	Common-mode input voltage range	T _A = 25°C		±11	±12		± 11	± 12		٧	
	Maximum peak output voltage swing	T _A = 25°C,	$R_L = 10 \text{ k}\Omega$	±12	± 13.5		±12	±13.5			
Vом		$T_A = -55$ °C to 125 °C	R _L ≥ 10 kΩ	±.12			±12			٧	
			-	±10	±12		±10	±12			
A _{VD}	Large-signal differential voltage amplification	$V_{O} = \pm 10 \text{ V},$ $T_{A} = 25 ^{\circ}\text{C}$	$R_{L} \geq 2 k\Omega$,	25	200		25	200		V/mV	
7.40		$V_O = \pm 10 \text{ V},$ $T_A = -55 \text{ °C to } 125 \text{ °C}$	$R_{L} \geq 2 k\Omega$,	, 15			15				
В ₁	Unity-gain bandwidth	T _A = 25°C			3			3		MHz	
rį	Input resistance	T _A = 25°C			1012			1012		Ω	
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR} \text{ min},$ $R_S = 50 \Omega,$	$V_O = 0$, $T_A = 25$ °C	80	86		80	86		dB	
^k SVR	Supply voltage rejection ratio (ΔV _{CC±} /ΔV _{IO})	$V_{CC} = \pm 15 \text{ V to } \pm 9 \text{ V},$ $R_S = 50 \Omega,$	-	80	86		80	86		dB	
lcc	Supply current (per amplifier)	No load, T _A = 25°C	V _O = 0,		1.4	2.8		1.4	2.8	mA	
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100,	T _A = 25°C		120			120		dB	

TL080M, TL081M

[†]All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified.

[‡]Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 18. Pulse techniques must be used that will maintain the junction temperatures as close to the ambient temperature as is possible.

electrical characteristics, $VCC \pm = \pm 15 \text{ V}$ (unless otherwise noted)

				I	TL080I			TL080C			TL080A	С				
				TL081I		TL081C		TL081AC			TL081BC					
				TL082I		TL082C		TL082AC			TL082BC					
	PARAMETER	TEST CONDITIONS		TL083I		TL083C		TL083AC						UNIT		
					TL0841		TL084C		TL084AC			TL084BC				
						TL085C										
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	1
	l	V _O = 0,	T _A = 25°C		3	6		3	15		3	6		2	3	
VIO	Input offset voltage	$R_S = 50 \Omega$	T _A = full range			9			20			7.5			5	mV
	Temperature	V _O = 0,	$R_S = 50 \Omega$,													
αVIO	coefficient of input	T _A = full range	5 00,		10			10			10			10		μV/°C
	offset voltage	A van vango														
10	Input offset current [‡]	V _O = 0	$T_A = 25$ °C		5	100		5	200		5	100	l	5	100	pА
10	input offset current	V0 - 0	T _A = full range			10			2			2			2	nA
Iв	Input bias current [‡]	V _O = 0	$T_A = 25$ °C		30	200		30	400		30	200		30	200	pΑ
'IB		V0 - 0	T _A = full range			20			. 10			7			7	nA
V _{ICR}	Common-mode	T _A = 25°C		±11	±12		±11	± 12		±11	±12		±11	±12		V
TICH	input voltage range												L			
	Maximum peak	T _A = 25°C,	$R_{L} = 10 \text{ k}\Omega$	±12	±13.5		±12	± 13.5		±12	± 13.5		±12	±13.5		
Vом	output voltage swing	T _A = full range	$R_L = \ge 10 \text{ k}\Omega$ $R_L \le 2 \text{ k}\Omega$	±12			±12			±12			±12			٧
				±10	±12		±10	±12		±10	±12		±10	±12		
		$V_0 = \pm 10 \text{ V},$	$R_L \ge 2 k\Omega$,	50	200		25	200		50	200		50	200		
AVD	Large-signal differential	$T_A = 25$ °C														V/mV
7.40	voltage amplification	$V_0 = \pm 10 \text{ V},$	$R_L \ge 2 k\Omega$,	25			15			25			25			',
		T _A = full range		L												
В1	Unity-gain bandwidth	T _A = 25°C			3			3			3			3		MHz
rj	Input resistance	$T_A = 25$ °C			1012			1012			1012		L	1012		Ω
CMRR	Common-mode	V _{IC} = V _{ICR} mir	-	80	86		70	86		80	86		80	86		dB
	rejection ratio	$R_S = 50 \Omega$,	Ω , $T_A = 25 ^{\circ}C$													
	Supply voltage	Vcc = ±15 V	to ±9 V, V _O = 0,													
ksvr	rejection ratio	$R_S = 50 \Omega$, $T_A = 25 ^{\circ}C$		80	86		70	86		80	86		80	86		dB
	$(\Delta V_{CC\pm}/\Delta V_{IO})$	_	- A													
lcc .	Supply current	No load,	V _O = 0,		1.4	2.8		1.4	2.8		1.4	2.8		1.4	2.8	mA
	(per amplifier)	IA = 25°C														
V ₀₁ /V ₀₂	Crosstalk attenuation	A _{VD} = 100,	T _A = 25°C		120			120			120			120		dB

[†]All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for TA is 25 °C to 85 °C for TL08_I and 0 °C to 70 °C for TL08_C, TL08_AC, and TL08_BC.

TYPES TL080 THRU TL085, TL080A THRU TL084A
TL081B, TL082B, TL084B
JFET-INPUT OPERATIONAL AMPLIFIERS

[‡]Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 18. Pulse techniques must be used that will maintain the junction temperatures as close to the ambient temperature as is possible.

TYPES TLO80 THRU TLO85, TLO80A THRU TLO84A TLO81B, TLO82B, TLO84B JFET-INPUT OPERATIONAL AMPLIFIERS

operating characteristics, $V_{CC\pm} = \pm 15 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$

	PARAMETER	TEST COND	MIN	TYP	MAX	UNIT	
SR	Slew rate at unity gain	$V_{I} = 10 \text{ V},$ $C_{I} = 100 \text{ pF},$	$R_L = 2 k\Omega$, See Figure 1	8	13		V/μs
t _r	Rise time	V _I = 20 mV,	$R_L = 2 k\Omega$,		0.1		μS
	Overshoot factor	$C_L = 100 pF$,	See Figure 1		10%		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Equivalent input noise voltage	R _S = 100 Ω	f = 1 kHz		18		nV/√Hz
V _n		ng = 100 u	f = 10 Hz to 10 kHz		4		μV
In	Equivalent input noise current	$R_S = 100 \Omega$,	f = 1 kHz		0.01		pA/√Hz
THD	Total harmonic distortion	$V_{O(rms)} = 10 \text{ V},$ $R_L \ge 2 \text{ k}\Omega,$	$R_S \le 1 k\Omega$, f = 1 kHz	0.0	003%	- Marie e e e	

PARAMETER MEASUREMENT INFORMATION

FIGURE 1-UNITY-GAIN AMPLIFIER

FIGURE 2-GAIN-OF-10 INVERTING AMPLIFIER

FIGURE 3—FEED-FORWARD COMPENSATION

INPUT OFFSET VOLTAGE NULL CIRCUITS

TYPES TL080 THRU TL085, TL080A THRU TL084A TL081B, TL082B, TL084B JEET-INPUT OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS[†]

FIGURE 13 †Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080 and TL080A.

AVD-Differential Voltage Amplification-

3

FIGURE 12

FIGURE 14

0.01

TYPES TLO80 THRU TLO85, TLO80A THRU TLO84A TLO81B, TLO82B, TLO84B JFET-INPUT OPERATIONAL AMPLIFIERS

TYPICAL CHARACTERISTICS†

INPUT BIAS CURRENT
Vs
FREE-AIR TEMPERATURE

VCCt = ±15 V

FIGURE 15

1.5 2 2.5

t-Time-μS

FIGURE 19

3 3.5

0 0.5

FIGURE 16

FIGURE 20

COMMON-MODE REJECTION RATIO

VS

FREE-AIR TEMPERATURE

2 89

VCct = ±15 V

50 75 100

TA-Free-Air Temperature-°C

- 0.01 무 0.004

0.001

FIGURE 22

400 1 k 4 k 10 k 40 k 100 k f—Frequency—Hz

FIGURE 21

FIGURE 23

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. A 12-pF compensation capacitor is used with TL080 and TL080A.

TYPES TLO80 THRU TLO85, TLO80A THRU TLO84A TLO81B, TLO82B, TLO84B JFET-INPUT OPERATIONAL AMPLIFIERS

TYPICAL APPLICATION DATA

FIGURE 24-0.5-Hz SQUARE-WAVE OSCILLATOR

FIGURE 25-HIGH-Q NOTCH FILTER

FIGURE 26-AUDIO DISTRIBUTION AMPLIFIER

NOTE A: These resistor values may be adjusted for a symmetrical output.

FIGURE 27-100-kHz QUADRATURE OSCILLATOR

TYPES TLO80 THRU TLO85, TLO80A THRU TLO84A TLO81B, TLO82B, TLO84B JFET INPUT OPERATIONAL AMPLIFIERS

FIGURE 29-IC PREAMPLIFIER