$Alg\`ebre$

Anneaux - Corps

Denis Vekemans *

Exercice 1 Soit $(A, +, 0_A)$ un groupe abélien.

On munit l'ensemble A d'une autre loi binaire \cdot , en posant $a \cdot b = 0_A$, pour tout $a, b \in A$.

Montrer que $(A, +, \cdot)$ est un anneau commutatif.

Exercice 2 Soit

$$2\mathbb{Z} = \{2z \text{ tels que } z \in \mathbb{Z}\}.$$

Montrer que $(2\mathbb{Z}, +, \cdot)$ est un anneau commutatif.

Exercice 3 (Mars 2004) Soit $(\mathbb{R}, +, \cdot)$ l'anneau des nombres réels.

On définit deux nouvelles lois \bigoplus et \bigotimes sur $\mathbb R$ de la manière suivante : $\forall (x,y) \in \mathbb R^2$, on pose $x \bigoplus y = x + y - 2$ et $x \bigotimes y = x \cdot y - 2x - 2y + 6$.

- 1. Montrer que (\mathbb{R}, \bigoplus) est un groupe abélien.
- 2. Montrer que $(\mathbb{R}, \bigoplus, \bigotimes)$ est un anneau commutatif unitaire.

Exercice 4 On considère le produit cartésien $\mathbb{Z} \times \mathbb{Z} = \{(a, b) \text{ tels que } a \in \mathbb{Z}, b \in \mathbb{Z}\}.$

On pose

$$(a,b) + (c,d) = (a+c,b+d)$$

et

$$(a,b) \circ (c,d) = (a \cdot c, a \cdot d + b \cdot c)$$

pour tout $(a, b), (c, d) \in \mathbb{Z} \times \mathbb{Z}$.

Montrer que $(\mathbb{Z} \times \mathbb{Z}, +, \circ)$ est un anneau commutatif.

L'anneau ($\mathbb{Z} \times \mathbb{Z}, +, \circ$) est-il unitaire?

Exercice 5 Soit $(A, +, \cdot)$ un anneau commutatif.

Notons 0 et 1 respectivement le neutre pour + et pour \cdot .

Soit P une partie de A telle que

 $^{^*}$ Laboratoire de mathématiques pures et appliquées Joseph Liouville ; 50, rue Ferdinand Buisson BP 699 ; 62 228 Calais cedex ; France

- 1. P est stable pour + dans A;
- 2. $P \cap (-P) = \{0\} \text{ et } P \cup (-P) = A.$

Montrer que la relation \leq sur A définie par $x \leq y$ si et seulement si $y - x \in P$ est un ordre total sur A.

Exercice 6 Soit $(A, +, \cdot)$ un anneau idempotent, c'est-à-dire tel que, pour tout $x \in A$, $x \cdot x = x$.

Notons 0 et 1 respectivement le neutre pour + et pour \cdot .

- 1. Montrer que, pour tout $x \in A$, x + x = 0.
- 2. En déduire que A est commutatif.
- 3. Montrer que la relation binaire définie sur A par

$$x \mathcal{R} y \iff x \cdot y = x,$$

est une relation d'ordre sur A.

4. Si A est $(A, +, \cdot)$ un anneau idempotent intègre, montrer que A est soit trivial, soit isomorphe à $(\mathbb{Z}/2\mathbb{Z}, +, \cdot)$.

Exercice 7 Soit $(A, +, \cdot)$ un anneau unitaire.

Notons 0 et 1 respectivement le neutre pour + et pour \cdot .

On munit l'ensemble A de deux opérations : $a \bigoplus b = a + b + 1$ et $a \bigotimes b = a \cdot b + a + b$.

- 1. Montrer que $(A, \bigoplus, \bigotimes)$ est un anneau.
- 2. Montrer que l'application $f:(A,+,\cdot)\to (A,\bigoplus,\bigotimes)$ définie par f(a)=a-1 est un isomorphisme d'anneaux.

Exercice 8 m et n sont deux entiers naturels premiers entre eux.

Montrer que l'anneau $\mathbb{Z}/mn\mathbb{Z}$ est isomorphe à $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$

Exercice 9 | Soit

$$\mathbb{Q}[i] = \{a + bi \text{ tels que } (a, b) \in \mathbb{Q}^2\} \subset \mathbb{C}.$$

Montrer que $\mathbb{Q}[i]$ est un sous-corps du corps $(\mathbb{C}, +, \cdot)$ des nombres complexes.

Soit

$$\mathbb{Z}[i] = \{a + bi \text{ tels que } (a, b) \in \mathbb{Z}^2\} \subset \mathbb{C}.$$

 $\mathbb{Z}[i]$ est-il un sous-corps du corps $(\mathbb{C}, +, \cdot)$ des nombres complexes?

Exercice 10 | Montrer que tout anneau commutatif unitaire intègre fini est un corps.

Exercice 11 Soit $(A, +, \cdot)$ un anneau unitaire commutatif. Notons 0 et 1 respectivement le neutre pour + et pour \cdot .

Un élément x de A est dit nilpotent s'il existe $n \in \mathbb{N}^*$ tel que $x^n = 0$.

On peut montrer que $\forall (x,y) \in A^2, \forall n \in \mathbb{N}^*,$

$$(x+y)^p = \sum_{k=0}^p \binom{p}{k} x^k y^{p-k},$$

οù

$$\left(\begin{array}{c} p \\ k \end{array}\right) = \frac{p!}{k! \, (p-k)!}.$$

- (a) Soient x et y deux éléments nilpotents de A. Montrer que x + y est nilpotent.
- (b) Soit x un élément nilpotent de A et soit $y \in A$. Montrer que xy est nilpotent.
- (c) Soit $x \in A$ nilpotent. Montrer que 1-x est inversible et déterminer son inverse.

Exercice 12 Soit $(A, +, \cdot)$ un anneau commutatif unitaire.

Soit S une partie de A stable pour \cdot ne contenant pas 0.

On définit

– une relation binaire \mathcal{R} par

$$\forall (a,s) \in A \times S, \ \forall (a',s') \in A \times S, \ (a,s) \ \mathcal{R} \ (a',s') \iff \exists \omega \in S \ \text{tel que } \omega \cdot (a \cdot s' - a' \cdot s) = 0.$$

− une loi de composition notée ♣

$$\forall (a,s) \in A \times S, \ \forall (a',s') \in A \times S, \ (a,s) \clubsuit (a',s') = (a \cdot s' + a' \cdot s, s \cdot s').$$

une loi de composition notée ♠

$$\forall (a,s) \in A \times S, \ \forall (a',s') \in A \times S, \ (a,s) \spadesuit (a',s') = (a \cdot a', s \cdot s').$$

Montrer que \mathcal{R} est une relation d'équivalence sur F et que F/\mathcal{R} peut être muni de la structure d'anneau quotient.

Exercice 13 Déterminer tous les endomorphismes du corps \mathbb{R} .

Références

- [1] M. Gran, fiches de TD (L1), Université du Littoral Côte d'Opale.
- [2] M. Serfati, Exercices de mathématiques. 1. Algèbre, Belin, Collection DIA, 1987.
- [3] D. Duverney, S. Heumez, G. Huvent, Toutes les mathématiques Cours, exercices corrigés MPSI, PCSI, PTSI, TSI, Ellipses, 2004.