

Introdução à Computação Gráfica

Marcel P. Jackowski mjack@ime.usp.br

Aula #13

Objetivos

- Técnicas de implementação
 - Recortes de linhas (retas) e polígonos
 - Remoção de superfícies escondidas

Visão geral

- Ao final do pipeline de geometria, vértices foram agrupados em primitivas.
- Primitivas que estão localizadas fora (ou parcialmente fora) da caixa de visualização devem ser removidas (recortadas)
- Devemos determinar quais pixels são afetados por cada primitiva:
 - Geração de fragmentos
 - Rasterização

Pipeline de Geometria

- Transformações
- Recortes
- Rasterização
- Certas tarefas são adiadas até a etapa de processamento de fragmentos:
 - Remoção de superfícies escondidas
 - Antiserrilhamento (antialiasing)

Recorte ("Clipping")

- Em 2D, utiliza-se uma "janela de recorte", enquanto em 3D, usamos um "volume de recorte"
- Fácil recortar polígonos baseados em segmentos de reta
- Porém mais difícil recortar curvas e textos:
 - Converter antes para linhas e polígonos

Tipos de Recorte

- Recorte de pontos
- Recorte de retas
 - Algoritmo de Cohen-Sutherland
 - Algoritmo de Liang-Barsky
- Recorte de polígonos
 - Algoritmo de Sutherland-Hodgman

Recorte de pontos

```
if x \ge x 
   x \le x  AND
   y >= ymin AND
                                           (xmax,ymax)
   y <= ymax
                                  • P<sub>2</sub>
  // Ponto DENTRO,
    desenha
else
                       (xmin,ymin)
  // Ponto FORA,
    rejeita
```

Recorte de retas em 2D

- Para cada reta, calcular as interseções com cada um dos lados da janela de recorte;
 - Ineficiente, pois requer cálculo de várias divisões.

Algoritmo de Cohen-Sutherland

- Eliminar o máximo número de possibilidades possíveis sem calcular interseções.
- Começa com quatro retas suporte que determinam os lados da janela de recorte.

Possibilidades

1) Se os pontos extremos do segmento de reta estão contidos dentro das quatro retas suporte, então desenha (aceita) o segmento de reta.

2) Se os pontos finais estão fora de todas as retas suporte, mas estão no mesmo lado de uma delas, então descarta (rejeita) o segmento.

Possibilidades

- 3) Um ponto dentro e um ponto fora
 - Requer o cálculo de pelo menos uma interseção
- 4) Ambos pontos extremos fora
 - Parte da reta pode estar dentro da janela
 - Calcular pelo menos uma interseção

Códigos

Para cada ponto, associamos um código de resultado

$$b_0b_1b_2b_3$$

$$b_0 = 1$$
 se y > y_{max}, 0 contrário
 $b_1 = 1$ se y < y_{min}, 0 contrário
 $b_2 = 1$ se x > x_{max}, 0 contrário
 $b_3 = 1$ se x < x_{min}, 0 contrário

1001	1000	1010	v = v
	0000		$y = y_{\text{max}}$
0101	0100	0110	$y = y_{\min}$
$x = x_{\min} x = x_{\max}$			

- É visível se os códigos dos dois pontos extremos são 0000
- É invisível se o AND lógico dos códigos não é 0000
- É candidato ao recorte se o AND lógico dos códigos dos pontos terminais é 0000

- Segmento AB:
 - Código(A) = Código(B) = 0
 - Aceita segmento de reta

- Segmento CD:
 - Código (C) = 0, mas Código(D) != 0
 - Calcula intersecção
 - A posição do 1 em Código(D) determina a aresta de interseção

- Segmento EF:
 - Código(E) AND Código(F) != 0
 - Ambos códigos possuem 1 no mesmo bit
 - O segmento está fora da janela de recorte
 - Rejeita

- Segmentos GH e IJ:
 - A operação lógica AND resulta em 0
 - Calcular interseção com um dos lados da janela
 - Calcular novo código do ponto de intersecção
 - Re-executa algoritmo

Eficiência

- Em muitas aplicações, a janela de recorte é pequena em relação ao tamanho da base de dados
 - A maioria dos segmentos de reta estarão em um ou mais lados da janela de recorte e podem ser eliminados observando os códigos de resultado;
- Se torna ineficiente quando temos que reexecutar o algoritmo no caso de múltiplas interseções.

Cohen-Sutherland em 3D

Usa códigos de 6 bits

Algoritmo de Liang-Barsky

- Refinamento que consiste em representar a reta de forma paramétrica
- Porção da reta em 2D não recortada deve satisfazer:

$$x_{\min} \le x_1 + t \Delta x \le x_{\max}$$
 $\Delta x = x_2 - x_1$
 $y_{\min} \le y_1 + t \Delta y \le y_{\max}$ $\Delta y = y_2 - y_1$

Liang-Barsky

$$x = x_1 + (x_2 - x_1)*t = x_1 + dx*t$$

 $y = y_1 + (y_2 - y_1)*t = y_1 + dy*t$

Exemplo 1

The next step we consider if tvalue is entering or exiting by using inner product.

$$(Q-P) = (15+5,9-3) = (20,6)$$

At left edge (Q-P)nL = (20,6)(-10,0) = -200 < 0 entering so we set tmin = 1/4

At right edge (Q-P)nR = (20,6)(10,0) = 200 > 0 exiting so we set tmax = 3/4

Because $t_{\min} < t_{\max}$ then we draw a line from (-5+(20)*(1/4), 3+(6)*(1/4)) to (-5+(20)*(3/4), 3+(6)*(3/4))

Exemplo 2

$$t_{B} = 0.2 = -1/6 t < 0 \text{ then ignore}$$

$$t_T = \frac{10-2}{14-2} = 8/12$$

$$t_{\perp} = 0-[-8] = 8/10$$

$$t_{R} = \frac{10 - (-8)}{2 - (-8)} = 18/10 \text{ t} > 1 \text{ then ignore}$$

The next step we consider if tvalue is entering or exiting by using inner product.

$$(Q-P) = (2+8,14-2) = (10,12)$$

At top edge (Q-P)nT = (10,12)(0,10) = 120 > 0 exiting so we set tmax = 8/12

At left edge (Q-P)nL = (10,12)(-10,0) = -100 < 0 entering so we set tmin = 8/10

Because tmin > tmax then we don't draw a line.

Algoritmo de Liang-Barsky

Pseudo-código

- Computar valores de t para os pontos de interseção
- Classificar pontos em entra ou sai
- Vértices do segmento recortado devem corresponder a dois valores de t:
 - t_{min} = max (0, t's do tipo **entra**)
 - t_{max} = min (1, t's do tipo sai)
- Se t_{min} < t_{max} , segmento recortado é não nulo
 - Computar vértices substituindo os valores de t
- Na verdade, o algoritmo calcula e classifica valores de t um a um.

Recorte e Normalização

- O recorte genérico em 3D requer o cálculo da intersecção de segmentos de reta em relação a um plano arbitrário.
- Exemplo: visão oblíqua

Intersecção entre Reta e Plano

$$\mathbf{p}(\alpha) = (1 - \alpha)\mathbf{p}_1 + \alpha\mathbf{p}_2$$
$$\mathbf{n} \cdot (\mathbf{p}(\alpha) - \mathbf{p}_0) = 0$$

$$\alpha = \frac{n \cdot (p_0 - p_1)}{n \cdot (p_2 - p_1)}$$

Normalização do Volume

- Após a normalização, recortamos em relação aos lados de um paralelepípedo;
- Uma intersecção típica somente requer uma subtração: x > x_{max}?

Visão superior

Antes da normalização

Após normalização

Recorte de Polígonos

- Não tão simples quanto o recorte de linhas
 - O recorte de uma reta resulta em no máximo um outro segmento de reta
 - O recorte de um polígono pode resultar em múltiplos polígonos

 O recorte de um polígono convexo pode resultar em no máximo mais um outro polígono.

Recorte de Polígono contra Retângulo

Casos Simples

Casos Complicados

Recorte de Polígono contra Retângulo

- Inclui o problema de recorte de segmentos de reta
 - Polígono resultante tem vértices que são
 - Vértices da janela,
 - Vértices do polígono original, ou
 - Pontos de interseção aresta do polígono/aresta da janela
- Dois algoritmos clássicos
 - Sutherland-Hodgman (1974)
 - Figura de recorte pode ser qualquer polígono convexo
 - Weiler-Atherton (1977)
 - Figura de recorte pode ser qualquer polígono

Algoritmo de Sutherland-Hodgman

- Idéia é semelhante à do algoritmo de Sutherland-Cohen
 - Recortar o polígono sucessivamente contra todos os semi-espaços planos da figura de recorte

Algoritmo de Sutherland-Hodgman

Sutherland-Hodgman – Exemplo

Tecelagem e convexidade

- Uma estratégia é substituir polígonos côncavos por um conjunto de polígonos triangulares (uma tecelagem)
- Facilita o preenchimento
- Código de tecelagem presente na GLU:
 - gluTess*

Recorte como uma caixa preta

 Podemos considerar o recorte de linhas como uma função que recebe dois vértices e produz: 0 vértices ou os vértices de uma linha recortada

Recorte de linhas em pipeline

- O recorte em relação a cada lado da janela é independente dos outros lados
 - Podemos utilizar 4 recortes independentes em forma de pipeline

Recorte de polígonos em pipeline

- 3D: adicionar recortes frontal e traseiro
- Estratégia utilizada na SGI Geometry Engine

Bounding boxes

- Podemos usar uma caixa de extensão ou "bounding box" para agilizar o processo de recorte de polígonos complexos
 - O menor retângulo alinhado com os eixos ortogonais que engloba um polígono
 - Simples de calcular: max e min de x e y

Bounding boxes

Podemos utilizar essa bounding box para "aceitar" ou rejeitar o polígono

Recorte e Visibilidade

- O processo de recorte têm muito em comum com a remoção de superfícies escondidas;
- Em ambos os casos, estamos tentando remover objetos que não são visíveis ao observador;
- Na maioria das vezes, podemos usar testes de visibilidade para eliminar tantos quantos polígonos possíveis antes de processá-los no pipeline.

Algoritmos de visibilidade

- Visibilidade é um problema complexo que não tem uma solução "ótima"
 - O que é ótima?
 - Pintar apenas as superfícies visíveis?
 - Pintar a cena em tempo mínimo?
 - Coerência no tempo?
 - Cena muda?
 - Objetos se movem?
 - Qualidade é importante?
 - Antialiasing
 - Aceleração por hardware?

Remoção de Faces Traseiras

- Hipótese: cena é composta de objetos poliédricos fechados
- Podemos reduzir o número de faces aproximadamente à metade
 - Faces de trás não precisam ser pintadas
- Como determinar se a face é de trás?
 - $N \cdot E > 0 \rightarrow$ Face da frente
 - $N \cdot E < 0 \rightarrow$ Face de trás
- Em OpenGL
 - glEnable(GL CULLING);
 - glCullFace(GL BACK);

Espaço de imagem

- Traçar cada raio projetor (nm para um buffer de tamanho n x m) e ache o mais perto dos k polígonos
 - Complexidade O(nmk)
 - Ray tracing
- Z-Buffer

Z-Buffer

- Manter para cada pixel um valor de profundidade (zbuffer ou depth buffer)
- Início da renderização
 - Buffer de cor = cor de fundo
 - z-buffer = profundidade máxima
- Durante a rasterização de cada polígono, cada pixel passa por um teste de profundidade
 - Se a profundidade do pixel for menor que a registrada no z-buffer
 - Pintar o pixel (atualizar o buffer de cor)
 - Atualizar o buffer de profundidade
 - Caso contrário, ignorar

Z-Buffer

- OpenGL:
 - Habilitar o z-buffer: glEnable (GL_DEPTH_TEST);
 - Não esquecer de alocar o z-buffer
 - glutInitDisplayMode (GLUT_RGB | GLUT_DEPTH);
 - Número de bits por pixel depende de implementação / disponibilidade de memória
 - Ao gerar um novo quadro, limpar também o z-buffer: glClear(GL_COLOR_BUFFER_BIT| GL_DEPTH_BUFFER_BIT)
 - Ordem imposta pelo teste de profundidade pode ser alterada
 - Ex: glDepthFunc (GL_GREATER);

Z-Buffer

- Vantagens:
 - Simples e comumente implementado em Hardware
 - Objetos podem ser desenhados em qualquer ordem
- Desvantagens:
 - Rasterização independe de visibilidade
 - Lento se o número de polígonos é grande
 - Erros na quantização de valores de profundidade podem resultar em imagens inaceitáveis
 - Dificulta o uso de transparência ou técnicas de antiserrilhado
 - É preciso ter informações sobre os vários polígonos que cobrem cada pixel

Algoritmo de Recorte Sucessivo

- Pode ser pensado como um algoritmo do pintor ao contrário
- Polígonos são pintados de frente para trás
- É mantida uma máscara que delimita quais porções do plano já foram pintadas
 - Máscara é um polígono genérico (pode ter diversas componentes conexas e vários "buracos")
- Ao considerar cada um novo polígono P
 - Recortar contra a máscara M e pintar apenas P M
 - Máscara agora é M + P

Algoritmo de Recorte Sucessivo

Vantagens

- Trabalha no espaço do objeto
 - Independe da resolução da imagem
 - Não tem problemas de quantização em z
- Pinta cada pixel uma vez apenas
- Desvantagem
 - Máscara pode se tornar arbitrariamente complexa
 - Excessivamente lento

Algoritmo do Pintor

- Também conhecido como algoritmo de prioridade em Z (depth priority)
- Idéia é pintar objetos mais distantes (background) antes de pintar objetos próximos (foreground)
- Requer que objetos sejam ordenados em Z
 - Complexidade O (N log N)
 - Pode ser complicado em alguns casos
 - Na verdade, a ordem não precisa ser total se projeções dos objetos não se interceptam

Não há ordem possível

Algoritmo do Pintor

- Ordenação requer que se determine, para cada par de polígonos A e B:
 - A precisa ser pintado antes de B
 - B precisa ser pintado antes de A
 - A ordem de pintura é irrelevante
- Pode-se usar um algoritmo simples baseado em troca.
 - Ex.: Bubble Sort

Algoritmo do Pintor

 Ordem de pintura entre A e B determinada por testes com níveis crescentes de complexidade

- Caixas limitantes de A e B não se interceptam
- A atrás ou na frente do plano de B
- B atrás ou na frente do plano de A
- Projeções de A e B não se interceptam
- Se nenhum teste for conclusivo, A é substituído pelas partes obtidas recortando A pelo plano de B (ou vice-versa)

Árvores BSP

- São estruturas de dados que representam uma partição recursiva do espaço
- Muitas aplicações em computação gráfica
- Estrutura multi-dimensional
- Cada célula (começando com o espaço inteiro) é dividida em duas por um plano
 - Binary Space Partition Tree
- Partição resultante é composta de células convexas

Exemplo

considere 6 polígonos paralelos

O plano de A separa B e C de D, E e F

Árvore BSP

- Podemos continuar recursivamente
 - Plano de C separa B de A
 - Plano de D separa E e F
- Esta informação pode ser inserida em uma árvore BSP
 - Teste de visibilidade

Árvores BSP

Vantagens

- Pode ser usado para caminhadas
- Filtragem e anti-aliasing suportados com facilidade (desenho de trás para a frente)

Desvantagens

- Objetos em movimento
- Desenha mesmo pixel várias vezes
- Número de polígonos pode crescer muito

Tarefa de casa

- Como árvores BSP podem ser usadas para mapear ambientes dinâmicos (com objetos em movimento)?
 - Vantagens?
- Começe o EP #2!
 - Inicie a modelagem do mundo IME virtual