Rajalakshmi Engineering College

Name: GOUTHAM R

Email: 240801088@rajalakshmi.edu.in

Roll no: 240801088 Phone: 8531871809

Branch: REC

Department: I ECE FA

Batch: 2028

Degree: B.E - ECE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 4

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John, a computer science student, is learning about binary search trees (BST) and their properties. He decides to write a program to create a BST, display it in post-order traversal, and find the minimum value present in the tree.

Help him by implementing the program.

Input Format

The first line of input consists of an integer N, representing the number of elements to insert into the BST.

The second line consists of N space-separated integers data, which is the data to be inserted into the BST.

The first line of output prints the space-separated elements of the BST in post-order traversal.

The second line prints the minimum value found in the BST.

Refer to the sample output for formatting specifications.

```
Sample Test Case
 Input: 3
 5 10 15
Output: 15 10 5
The minimum value in the BST is: 5
 Answer
 #include <stdio.h>
 #include <stdlib.h>
 struct Node {
   int data:
   struct Node* left;
   struct Node* right;
};
struct Node* createNode(int data) {
   struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
   newNode->data = data;
   newNode->left = newNode->right = NULL;
   return newNode;
}
struct Node* insert(struct Node* root, int key) {
   if (root == NULL) {
     root = (struct Node*)malloc(sizeof(struct Node));
     root->data = key;
     root->left = NULL;
     root->right = NULL;
     return root;
```

```
240801088
       if (key < root->data)
         root->left = insert(root->left, key);
       else if (key > root->data)
         root->right = insert(root->right, key);
       return root;
     }
     // Postorder traversal (Left, Right, Root)
     void displayTreePostOrder(struct Node* root) {
       if (root == NULL) return;
     displayTreePostOrder(root->left);
       displayTreePostOrder(root->right);
       printf("%d ", root->data);
     // Find node with minimum value in BST
     int findMinValue(struct Node* root) {
       if (root == NULL) return NULL;
       while (root->left != NULL)
         root = root->left;
       return root->data;
 int main() {
       struct Node* root = NULL;
       int n, data;
       scanf("%d", &n);
       for (int i = 0; i < n; i++) {
         scanf("%d", &data);
         root = insert(root, data);
       }
بنواayTreε
printf("\n");
                                                                                   240801088
                                                       240801088
       displayTreePostOrder(root);
       int minValue = findMinValue(root);
```

	num value in the BST i	s: %d", minValue);	240801088
Status: Correct			Marks : 10/10
240801088	240801088	240801088	240801088
240801088	240801088	240801088	240801088

2,4080,1088