University of Toronto Faculty of Arts and Science

MAT224H1S Linear Algebra II

Final Examination April 2011

Y. Burda, S. Uppal

Duration: 3 hours

Last Name:	
Given Name:	
Student Number:	

No calculators or other aids are allowed.

FOR MARKER USE ONLY		
Question	Mark	
1	/10	
2	/10	
3	/10	
4	/10	
5	/10	
6	/10	
TOTAL	/60	

[10] 1. Find an orthonormal basis of $P_1(\mathbb{C})$, the vector space of linear polynomials with complex coefficients, with respect to the inner product

$$\langle p(x), q(x) \rangle = \overline{p(0)}q(0) + \overline{p(i)}q(i).$$

[10] 2. Consider $P_1(\mathbb{R})$, the vector space of real linear polynomials, with inner product

$$< p(x), q(x) > = \int_0^1 p(x)q(x) dx.$$

Let $T: P_1(\mathbb{R}) \to P_1(\mathbb{R})$ be defined by T(p(x)) = p'(x) + p(x). Find $T^*(p(x))$ for an arbitrary $p(x) = a + bx \in P_1(\mathbb{R})$.

EXTRA PAGE FOR QUESTION 2 - please do not remove.

[10] 3. Let $A = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$. Prove that A is normal and find the spectral decomposition of A.

[10] 4. Let $P_2(\mathbb{R})$ be the vector space of real polynomials of degree at most 2 with inner product

$$< a_0 + a_1 x + a_2 x^2, b_0 + b_1 x + b_2 x^2 > = a_0 b_0 + a_1 b_1 + a_2 b_2.$$

Find the matrix of the orthogonal projection onto

$$W = \{ p(x) \in P_2(\mathbb{R}) \mid p(1) = 0 \}$$

relative to the basis $\{1, x, x^2\}$ of $P_2(\mathbb{R})$.

EXTRA PAGE FOR QUESTION 4 - please do not remove.

[10] 5. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator that has the matrix

$$A = \begin{pmatrix} 0 & 0 & 2 \\ -2 & 2 & 1 \\ -1 & 0 & 3 \end{pmatrix}$$

realtive to the standard basis of \mathbb{R}^3 . Find a basis of \mathbb{R}^3 such that the matrix of T relative to this basis is Jordan canonical form of A, and find the matrix of T relative to this basis.

EXTRA PAGE FOR QUESTION 5 - please do not remove.

[10] **6.** Let T be a Hermitian operator on a finite dimensional complex inner product space V. Suppose T has only two distinct eigenvalues λ_1 and λ_2 . Prove $E_{\lambda_1} = E_{\lambda_2}^{\perp}$.