

Jomo Kenyatta University of Agriculture and Technology College of Engineering and Technology School of Mechanical, Materials, and Manufacturing Engineering Department of Mechatronic Engineering

Design of a Pan-Tilt Teleoperated Camera Mount

Project Proposal Abstract

Bernie Kiplelgo Cheruiyot (ENM221-0054/2017) Mogire Earl Spencer (ENM221-0077/2017)

June 10, 2022

Declaration

We hereby declare that the work contained in this report is original; researched and documented by the undersigned students. It has not been used or presented elsewhere in any form for award of any academic qualification or otherwise. Any material obtained from other parties have been duly acknowledged. We have ensured that no violation of copyright or intellectual property rights have been committed.

1.	1. Theodore Kamau	
	SignatureDate	
2.	2. Lisa Kimondo	
	Signature	
App	approved by supervisors:	
1.	1. DrIng. Jackson G. Njiri	
	Signature	
2.	2. Prof. George N. Nyakoe	
	SignatureDate	
3.	3. Ms. Lucy W. Kariuki	
	SignatureDate	

Contents

De	clar	tion	Ι
Tal	ble d	Contents	II
Lis	t of	${f Figures}$	III
Lis	t of	Tables	IV
Lis	t of	f Abbreviations	V
$\mathbf{A}\mathbf{b}$	stra	t	V
1	\mathbf{Intr}	$\mathbf{duction}$	1
	1.1	Background	1
	1.2	Problem statement	1
	1.3	Objectives	1
	1.4	Justification of the study	1
2	Lite	ature Review	2
	2.1	Name of a subsection	3
	2.2	Another subsection	3
3	Met	nodology	4
Re	fere	res	5

LIST OF FIGURES

List of Figures

T • 1	C		1 1	1
List	α t		h	ΔC
LISU	$\mathbf{O}\mathbf{I}$	$\mathbf{L}\mathbf{a}$. WI	

Table 2.1	To appear in the	e list of tables	S	

Abstract

This project

1 Introduction

1.1 Background

(Insert your content)

gghjbbnmmm

1.2 Problem statement

(Insert your content)

1.3 Objectives

(Insert your content)

1.4 Justification of the study

(Insert your content)

2 Literature Review

Itemization

- Item 1.
- Item 2.
- . . .

$$\dot{x} = Ax + Bu + B_d w \tag{2.1}$$

Referring a chapter in the main text. For instance Chapter 2

$$E = 210000 \frac{\text{N}}{\text{mm}^2}$$

$$\rho = 7.85 \frac{\text{g}}{\text{cm}^3} = 7850 \frac{\text{kg}}{\text{m}^3}.$$

$$\Delta \boldsymbol{r}_k = \boldsymbol{r}_{GBE_k} - \boldsymbol{r}_{C_k} = (x_{GBE_k} - x_{C_k}, y_{GBE_k} - y_{C_k})^T = (\Delta x_k, \Delta y_k)^T$$
(2.2)

 $k = 2 \dots n$

$$||\boldsymbol{r}_{\mathrm{GBE}_k} - \boldsymbol{r}_{\mathrm{C}_k}|| \le r_{kj}, \tag{2.3}$$

k j

Table 2.1: Caption for the table should be at the top of the table It can also overflow to next line

First column	Second column	Third column
1	2	4
4	6	23
34	2	0

$$\operatorname{rank} oldsymbol{Q}_{\mathrm{B}} = \operatorname{rank} \left[egin{array}{c} oldsymbol{C} oldsymbol{A} \\ oldsymbol{C} oldsymbol{A}^2 \\ \vdots \\ oldsymbol{C} oldsymbol{A}^{n-1} \end{array} \right] = n. \eqno(2.4)$$

$$K_{\varphi} = 3.64 \frac{\text{V}}{\text{rad}} \text{ and}$$
 (2.5)
 $K_{x} = 28.32 \frac{\text{V}}{\text{m}}.$

$$K_x = 28.32 \frac{\text{V}}{\text{m}}.$$
 (2.6)

Name of a subsection 2.1

 q_1, q_2 and q_3 (see Fig. ??).

Another subsection 2.2

3 Methodology...

This is

References

[1] J. Njiri and D. Söffker, "State-of-the-art in wind turbine control: Trends and challenges," *Renewable and Sustainable Energy Reviews*, vol. 60, pp. 377–393, 2016.

[2] T. Kane and D. Levinson, *Dynamics: Theory and Applications*. McGraw-Hill Book Company, New York, 1985.