رفع وتحميل موقع توجيه نتز V-SOUISS وتحميل موقع توجيه نتزيد FACULTE DE MEDECINE DENTAIRE RABAT

جامـعة محـمد الخــامس الســـويسـي كــلية طـب الأسنــان الرباط

السبت 28 يوليوز 2012 المدة: 30 دقيقة

مباراة ولوج السنة الأولى لطب الأسنان موضوع مادة: الفيزياء

لا يسمح باستعمال أي آلة حاسبة

الفيزياء 1 (6 نقط): صحيح أم خطأ

انقل إلى ورقة تحريرك رقم الإثبات وأجب أمامه بكلمة (صحيح) أو (خطأ).

البروم ($^{77}_{35}$ Br) إشعاعي النشاط، عمره النصف $^{17}_{1/2}$ النبروم ($^{77}_{35}$ Br) إشعاعي النشاط، عمره النصف النسلينيوم $a=0,75.10^{15}~{
m Bq}$ هي $t=171~{
m h}$ عند اللحظة $t=171~{
m h}$ عند النويدات ($^{77}_{35}{
m Br}$) عند النشاط الإشعاعي لعينة من النويدات ($^{77}_{35}{
m Br}$) عند اللحظة وأرتجه المناط الإشعاعي لعينة من النويدات ($^{77}_{35}{
m Br}$) عند اللحظة الإشعاعي لعينة من النويدات ($^{77}_{34}{
m Se}$)

- $^+$ 1. البروم 77 إشعاعي النشاط $^+$ 3.
- (neutron) بناء التفتت β يتحول بروتون (proton) إلى نوترون β
 - $a_0 = 6.10^{15} \; \mathrm{Bq}$. النشاط الإشعاعي البدئي للعينة هو
- $Zm_{p} + (A-Z)m_{n}$ اكبر من مجموع كتل نوياتها النويدة ($^{77}_{35}{
 m Br}$) كتلة النويدة
- 5. طاقة الربط $E_{
 m L}$ للنواة $(^{77}_{35}{
 m Br})$ هي الطاقة التي يجب إعطاؤها لهذه النواة، في حالة حركة، لفصل نوياتها وتبقى هذه الأخيرة في سكون.

 $E_{libérée} = m_{produits} - m_{réactifs}$. c^2 هو: σ هو: 6. تعبير الطاقة المحررة خلال تفتت نويدة البروم 77 هو:

الغيزياء 2 (6 نقط): ثنائي القطب (R.L) مع كامل متمنياتنا مي

يتكون تركيب كهربائي من مولد للتوتر قوته الكهرمحركة E ومقاومته الداخلية مهملة مركب على التوالي مع وشيعة معامل تحريضها L ومقاومتها r=3,3 Ω نغلق القاطع K وموصل أومي مقاومته R=10 ، وقاطع التيار K عند t=0 نغلق القاطع t=0بواسطة وسيط معلوماتي على الجزء الصاعد للتوتر $u_{AM}(t)$ بين مربطي الموصل الأومي (أنظر الشكل).

 $(1-e^{-5}) = 0.993$! $(1-e^{-1}) = 0.632$

 $u_{AM}(t)$ الثبت المعادلة التفاضلية التي يحققها التوتر $u_{AM}(t)$

 $u_{AM} = \frac{E.R}{R+r} (1-e^{-t/\tau})$ 2.

 $u_{AM(t=\tau)} = 63,2\%.u_{AM(t=\infty)}$:بيّن أن

3. عين مبيانيا قيمة الثابتة 7. إستنتج قيمة L.

4. بيّن نظريا أنه انطلاقا من اللحظة $t = 5.\tau$ لدينا

. t=5. au عند اللحظة . $u_{\rm AM} \simeq u_{\rm AM(t=\infty)}$

الفيزياء 3 (8 نقط)؛ السقوط الحر لكرية

 $t=4~{
m s}$ و t=0 و يمثل الشكل جانبه مخطط إحداثية السرعة اللحظية لكرية فو لاذية في سقوط حر بين اللحظتين 25x2,5=62,5 ! 5x6,25=31,25 ! $2,5^2=6,25$! $z_0=0$ | Light t=0 are light t=0 and t=0

- 1. بَيِّن ما إذا كان منحى المحور (O, k) الذي تمت وفقه الحركة، نحو الأعلى أم نحو الأسفل. \vec{v}_0 حدد مميزات متجهة السرعة البدئية \vec{v}_0 .
 - 3. بتطبيق القانون الثاني لنيوتن، أوجد التعبير الحرفي للمعادلة الزمنية $z_{
 m G}(t)$ لحركة
 - مركز القصور G للكرية. 4. في أي لحظة يصبح علو الكرية أقصى؟ أحسب قيمة هذا العلو بالنسبة للموضع البدئي للكرية.
- 5. هل تمر الكرية من جديد من موضع انطلاقها بين اللحظتين t=4 و t=4 علل جو ابك.

