

WELL CONSTRUCTION – BASICS

Phase 1. Drilling

- Wide hole drilling
- Casing & cement
- Small hole drilling towards target
- Drilling fluid
 - Transport cuttings
 - Cool down equipment
 - Control flow of formation fluid

Phase 2. Completion

- Make well ready for production
- Equipment installation
 - Sensors
 - Pumps
 - Flow control devices

WHY A NEW MODELICA LIBRARY?

Multitude of mature domain specific tools

- To develop and validate well designs
- Not suitable for new technology development
- Vendor proprietary format
- Few or no extension interface
- Clear separation between top-side automation & downhole processes

THE DRILLING LIBRARY

A versatile & extensible Modelica library to represent all parts of a drilling system

- Well hydraulics
 - From the main pump at the surface to the drill bit
 - Pressure, flow and composition along the well
- Drill string mechanics
 - Detailed mechanics of the string (torsion and elongation)
 - Rotational & translational friction
 - Interaction of the drill bit with the surroundings to describe the bore hole growth

COMPLETE ASSEMBLY

EXAMPLES OF APPLICATION

- Improved Managed Pressure Drilling
 - Fast and robust hydraulic models
 - Continental and off-shore drilling
- Torque and drag monitoring
 - Automation of standard friction test
- Borehole growth
- Mud-mixing and change of drilling fluid
- Kick detection and handling
- Drillstring vibration, detection and handling

LIBRARY OVERVIEW

MEDIA PACKAGE

- ▶ Information
- ▶ Interface
- Experiments
- Media Media
- ▶ Image: ThermoFluid
- ▶ Mechanics
- D 1 Units

- Drilling mud described as a mixture of
 - Two liquids:
 - Brine and base oil
 - Bilinear equation of state $\rho(p, T, X)$
 - Enthalpy h(T,X)
 - Non-Newtonian (Herschel-Bulkley + power-law)
 - Two solids:
 - Low and high gravity particles
 - Gas
 - Ideal gas
- Arbitrary time-varying composition

THERMOFLUID PACKAGE

DRILLSTRING & ANNULUS

- Dual approach for robustness & performance
- Finite Volume
 - Dynamic energy & mass balances
 - Friction loss & static head
- Spatial distribution (delay)
 - Transportation of mass fractions
 - No numerical diffusion
 - Accurate residence time & tracking of fronts
- Support reversal flow

SpatialDistribution – delay

MECHANICS PACKAGE

- Auxiliary components
 - Wall with friction
 - Force computation
 - Well geometry
 - Rate Of Penetration
 - Visualization
- StringElements
 - Single pipe elements
 - Rotation & Translation
- DrillStrings
 - Complete drill string (discretized, coupled rotation & translation)
 - No thermodynamics

STRING ELEMENTS - SINGLE

1d translational element flange a property of the property of

Parameterized to comply with static deformation

STRING ELEMENTS - AGGREGATE

WALL FRICTION

- Computes friction forces
 - Coulomb friction
 - Viscous damping
- 2D friction model
 - Rotation
 - Translation
- Efficient computation
 - High discretization level
 - Short computation times
- Assumptions
 - String is assumed to lay on bottom
 - No rolling
 - No buckling

BOTTOM REMOVAL

flange@bottom

DRILLING LIBRARY – USE CASES

- Thermofluidic experiments
 - Mud pump start/stop
 - Addition of high gravity solids
 - Surge and swab
 - Heave and wave propagation
- Mechanical experiments
 - Borehole growth
 - Friction tests

USE CASE – FRICTION TEST

In long, near-horizontal wells

- Need for monitoring of friction between drillstring & borehole
- Deviation from expected behavior
 - Poor-cleaning performance
 - Well path tortuosity

Goal of the simulation

- Design of automated friction tests
- Derive torque and drag profiles
- Improve understanding of transients
- Winding and unwinding times

DESCRIPTION: FRICTION TEST

Initially string is placed along annulus

No contact between drill-bit and bottom

No rotational windup.

- Rotating drillstring (10rad/s)
- 0-80, Drill 2m
- 80-100 Drill off bottom
- 100-120 Pull up 3m
- 120-130 Stop rotation
- 180-210 Pull up 5m
- 220-250 Push down 5m

SIMULATION RESULTS

CONCLUSION

- Modelica library for well drilling simulation
- Fast and robust computations of the entire rig
 - Thermodynamics
 - Mechanics
- Suitable for
 - New technology dev, monitoring, control
- Library development driven by customer needs
- General & versatile framework
- Easily extensible for other analyses and applications

Industrial partners for library development are welcome!

