Teoretyczne podstawy informatyki zadanie 42

Jarosław Socha

1 czerwca 2024

1 Treść zadania

Zadanie 42

Zdefiniujmy schemat rekursji prostej tworzącej funkcję $f:N^{m+1}\to N$ za pomocą funkcji $g:N^m\to N$ i $h:N^{m+2}\to N$ w następujący sposób:

$$f(0,\bar{x})=g(\bar{x}) \qquad \mathbf{i} \qquad f(n+1,\bar{x})=h(n,f(n,\bar{x}),\bar{x}), \text{ lub}$$

$$f(0)=c \qquad \mathbf{i} \qquad f(n+1)=h(n,f(n)).$$

Pokaż, że najmniejszy zbiór funkcji zawierających $I_{n,k}$ i zamknięty na operacje złożenia, minimum i rekursji prostej jest równoważny podanemu na wykładzie modelowi funkcji rekurencyjnych.

Wskazówka: W jedną stronę zdefiniuj za pomocą rekursji prostej funkcję zwracającą poprzednik (poprzednik 0 to 0), następnie odejmowanie (zamiast liczb ujemnych zwracające 0), a wtedy dodawanie, mnożenie i funkcję charakterystyczną relacji mniejszości. W drugą stronę pokaż, że schemat rekursji prostej można zdefiniować przy pomocy funkcji dostępnych w modelu funkcji rekurencyjnych.

2 Rozwiązanie

Najmniejszy zbiór funkcji zawierających $I_{n,k}$ i zamknięty na operacje złożenia, minimum i rekursji prostej nazwijmy R, a model funkcji rekurencyjnych F. Aby udowodnić że są równoważne pokażemy, że zawierają się w sobie.

3 $F \subseteq R$

Na początku zdefiniujemy funkcję poprzednika. Poprzednikiem zera jest zero, więc użyjemy funkcji stale równej zero. Otrzymujemy:

$$P(0) = 0$$

 $P(n+1) = I_{2,2}(P(n), n)$

TPI zadanie 42 Jarosław Socha

Następnie możemy zdefiniować odejmowaine na liczbach naturalnych używając funkcji poprzednika. Będziemy używać notacji prefiksowej dla podkreślenia struktury funkcyjnej:

$$-(m,0) = I_{1,1}(m)$$
$$-(m, n+1) = P(-(m, n))$$

Możemy następnie zdefiniować dodawanie i mnożenie z pomocą funkcji następnika:

$$+(m,0) = I_{1,1}(m)$$

 $+(m,n+1) = S(+(m,n))$
 $\cdot (m,0) = 0$
 $\cdot (m,n+1) = +(\cdot (m,n),m)$

Pozostało tylko zdefiniować funkcję charakterystyczną relacji mniejszości

$$\chi_{<}(n,m) = 1 - (m-n)$$

4 $R \subseteq F$

Musimy zrealizować schemat rekursji prostej za pomocą funkcji z modelu, więc stworzymy ciąg używając modelu rekursji. Tworzymy ciąg długości m+1 którego elementy spełniają rekurencyjną zależność i wyciągamy jego m-ty element.

$$f(m,\bar{x}) = (\min_{a} \left(lh(a) = m+1 \ \land \ (a)_0 = g(\bar{x}) \ \land \ (\forall_{i < m} ((a)_{i+1} = h(i,(a)_i,\bar{x})))_m \right)$$

Obydwa modele zawierają się w sobie, więc są rónoważne.