DEVOIR SURVEILLÉ 1

Calculatrice autorisée Lundi 22 septembre 2025

EXERCICE 1 (12 POINTS)

1. On a réalisé 1000 lancers d'un dé à 4 faces.

Les résultats sont inscrits dans le tableau ci-dessous :

Scores	1	2	3	4
Nombre d'apparitions	235	265	224	276

Déterminer la médiane de cette série. Détails attendus.

2. Le tableau suivant donne les tailles de 28 élèves d'une classe.

Taille (en cm)	160	165	170	172	176	180	186	188
Effectif	4	5	4	6	3	3	2	1

Calculer la moyenne et l'écart type de cette série. Détails attendus.

3. On effectue des mesures sur une chaîne de production d'une usine qui remplit des bouteilles avec du jus de pomme.

Volume (en cL)	95	96	97	98	99	100	101	102
Effectif	1	3	15	23	31	85	25	12

- a) Combien de bouteilles ont été testées?
- b) Comparer les proportions de bouteilles de capacité strictement supérieure à 100 cL et de capacité strictement inférieure à 100 cL.
- c) La chaîne de production est considérée comme fonctionnelle si :
 - l'étendue des valeurs est inférieure à 10 cL;
 - le volume médian vaut 100 cL;
 - le volume moyen \bar{x} vaut 100 cL à 1 cL près;
 - au moins 90% de la production est dans l'intervalle $[\bar{x}-2\sigma\,;\,\bar{x}+2\sigma]$ où σ est l'écart type de la production.

Que peut-on conclure quant à cette chaîne de production?

CORRECTION

1. On a N = 1000 lancers. Cumul des effectifs : 235; 500; 724; 1000. La médiane est la moyenne des valeurs aux rangs 500 et 501, soit :

Médiane =
$$\frac{2+3}{2}$$
 = 2,5.

2. Effectif total : N = 28.

Moyenne:

$$\bar{x} = \frac{\sum x_i n_i}{N} = \frac{160 \times 4 + 165 \times 5 + 170 \times 4 + 172 \times 6 + 176 \times 3 + 180 \times 3 + 186 \times 2 + 188 \times 1}{28}$$
$$\bar{x} = \frac{4805}{28} \approx 171,6 \text{ cm}.$$

Écart type:

$$\sigma = \sqrt{\frac{\sum n_i (x_i - \bar{x})^2}{N}}$$

$$\sigma = \sqrt{\frac{1}{28} \Big(4(160 - 171, 6)^2 + 5(165 - 171, 6)^2 + \dots + 1(188 - 171, 6)^2 \Big)}$$

$$\sigma \approx 7.8 \text{ cm}.$$

- 3. a) N = 195 bouteilles.
 - b) Strictement < 100 cL : 73 bouteilles sur 195 (\approx 37,4%). Strictement > 100 cL : 37 bouteilles sur 195 (\approx 19,0%).
 - c)

Étendue = 7 < 10 ; Médiane = 100

 $\bar{x} \approx 99,54$; $\sigma \approx 1,36$

191 bouteilles sur 195 appartiennent à $[\bar{x}-2\sigma,\ \bar{x}+2\sigma]$ ce qui représente environ 97,9% Tous les critères sont remplis donc la chaîne est fonctionnelle.

EXERCICE 2 (8 POINTS)

On a tracé ci-dessous les courbes de quatre fonctions affines f_1 , f_2 , f_3 et f_4 . Répondre aux questions suivantes en **entourant** la ou les bonnes réponses **sur le sujet**.

- 1. Quel est le coefficient directeur de la fonction f_4 ?
 - A) -2
 - B) $-\frac{1}{2}$

- C) -0.5
- D) 2
- **2.** Quel est le coefficient directeur de la fonction f_3 ?
 - A) 3
 - B) $\frac{3}{2}$

- C) -1,5
- D) $\frac{2}{3}$
- **3.** Quelle est l'ordonnée à l'origine de la fonction f_1 ?

A) -2

C) -0.5

B) 0,5

D) 2

4. Parmi les quatre fonctions, laquelle a un coefficient directeur positif et une ordonnée à l'origine négative?

A) f_1

C) f_3

B) f_2

D) f_4

CORRECTION

- 1. Coefficient directeur de f_4 : -0.5 (rép. B ou C).
- **2.** Coefficient directeur de $f_3: \frac{3}{2}$ (rép. B).
- **3.** Ordonnée à lorigine de f_1 : 2 (rép. D).
- 4. Coefficient directeur positif et ordonnée à lorigine négative : f_3 (rép. C).