Titanic — Exploratory Data Analysis (EDA)

Task: Perform EDA on the Titanic dataset (train.csv).

Tools: pandas, numpy, matplotlib, seaborn.

Deliverables:

- Jupyter Notebook with code, plots, and observations.
- PDF report with the same content for submission.

Dataset source: train.csv (use the uploaded file).

```
In [7]: # Imports and settings
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import os
         sns.set(style="whitegrid", palette="muted")
         %matplotlib inline
         plt.rcParams['figure.figsize'] = (10,6)
In [8]: # Load data
         df = pd.read_csv("train.csv")
         df.shape
Out[8]: (891, 12)
In [11]: # Quick peek
         display(df.head())
         display(df.info())
         display(df.describe(include='all').T)
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fa
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.25(
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.28:
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.92!
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.10(
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.05(

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

Data	COTUMNIS (COC	ai iz coiumis).	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

None

	count	unique	top	freq	mean	std	min	25%	50%
Passengerld	891.0	NaN	NaN	NaN	446.0	257.353842	1.0	223.5	446.0
Survived	891.0	NaN	NaN	NaN	0.383838	0.486592	0.0	0.0	0.0
Pclass	891.0	NaN	NaN	NaN	2.308642	0.836071	1.0	2.0	3.0
Name	891	891	Braund, Mr. Owen Harris	1	NaN	NaN	NaN	NaN	NaN
Sex	891	2	male	577	NaN	NaN	NaN	NaN	NaN
Age	714.0	NaN	NaN	NaN	29.699118	14.526497	0.42	20.125	28.0
SibSp	891.0	NaN	NaN	NaN	0.523008	1.102743	0.0	0.0	0.0
Parch	891.0	NaN	NaN	NaN	0.381594	0.806057	0.0	0.0	0.0
Ticket	891	681	347082	7	NaN	NaN	NaN	NaN	NaN
Fare	891.0	NaN	NaN	NaN	32.204208	49.693429	0.0	7.9104	14.4542
Cabin	204	147	G6	4	NaN	NaN	NaN	NaN	NaN
Embarked	889	3	S	644	NaN	NaN	NaN	NaN	NaN

Initial Observations

- Columns: Passengerld, Survived, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked.
- Target column: **Survived** (0 = did not survive, 1 = survived).
- Missing values likely in **Age**, **Cabin**, and maybe **Embarked**.
- Will handle missing values, engineer a few features, then visualize.

```
In [12]: # Missing values summary
   missing = df.isnull().sum().sort_values(ascending=False)
   missing[missing > 0]
```

Out[12]: Cabin 687 Age 177 Embarked 2 dtype: int64

Plan

- 1. Handle missing values (Age, Embarked, Cabin).
- 2. Feature engineering: Title from Name, FamilySize, IsAlone, AgeGroup.
- 3. Univariate analysis (distributions).
- 4. Bivariate analysis (Survived vs features).
- 5. Correlation and multivariate checks.
- 6. Summary of insights and interview Q&A.

```
In [14]: # Create a copy to work on
         data = df.copy()
         # 1) Extract Title from Name
         data['Title'] = data['Name'].str.extract(r',\s*([^\.]+)\.', expand=False).str.st
         # Simplify titles
         title_map = {
             'Mlle': 'Miss', 'Ms': 'Miss', 'Mme': 'Mrs',
             'Lady': 'Royal', 'Countess': 'Royal', 'Dona': 'Royal', 'Sir': 'Royal', 'Don'
             'Jonkheer': 'Royal', 'Col': 'Officer', 'Major': 'Officer', 'Capt': 'Officer'
             'Rev': 'Officer'
         data['Title'] = data['Title'].replace(title_map)
         # Replace rare titles
         rare_titles = data['Title'].value_counts()[data['Title'].value_counts() < 10].in</pre>
         data['Title'] = data['Title'].replace(rare_titles, 'Other')
         # 2) Family Size
         data['FamilySize'] = data['SibSp'] + data['Parch'] + 1
         # 3) IsAlone
         data['IsAlone'] = (data['FamilySize'] == 1).astype(int)
         # 4) Fill Embarked with mode (no chained assignment to avoid warnings)
         data['Embarked'] = data['Embarked'].fillna(data['Embarked'].mode()[0])
         # 5) Fill Age: use median by Title (better than global)
         data['Age'] = data['Age'].fillna(
             data.groupby('Title')['Age'].transform('median')
         # 6) Cabin: create HasCabin flag (many missing values so drop original Cabin)
         data['HasCabin'] = (~data['Cabin'].isnull()).astype(int)
         data = data.drop('Cabin', axis=1)
         # 7) Fare: check and fill if needed
         data['Fare'] = data['Fare'].fillna(data['Fare'].median())
         # 8) Convert categorical columns to category dtype for nicer displays
         for col in ['Pclass', 'Sex', 'Embarked', 'Title', 'IsAlone', 'HasCabin']:
             data[col] = data[col].astype('category')
         # Show resulting columns and missing
         display(data.info())
         display(data.isnull().sum()[data.isnull().sum() > 0])
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
 # Column Non-Null Count Dtype
                         -----
 0 PassengerId 891 non-null int64
     Survived 891 non-null int64
 1
 2 Pclass
                       891 non-null category
2 Pclass 891 non-null category
3 Name 891 non-null object
4 Sex 891 non-null category
5 Age 891 non-null float64
6 SibSp 891 non-null int64
7 Parch 891 non-null int64
8 Ticket 891 non-null object
9 Fare 891 non-null float64
10 Embarked 891 non-null category
11 Title 891 non-null category
12 FamilySize 891 non-null int64
 12 FamilySize 891 non-null int64
 13 IsAlone 891 non-null category
14 HasCabin 891 non-null category
dtypes: category(6), float64(2), int64(5), object(2)
memory usage: 68.8+ KB
None
Series([], dtype: int64)
```

Feature engineering notes:

- Title captures social status (Mrs, Miss, Mr, Officer, Other).
- FamilySize and IsAlone can show the impact of family on survival.
- HasCabin as a proxy for deck/class (Cabin presence often correlates with higher class).
- Age filled per Title to better approximate missing ages.

```
In [15]: # 1. Survival counts
         plt.figure()
         sns.countplot(x='Survived', data=data)
         plt.title('Survival Count')
         plt.xticks([0,1], ['Died', 'Survived'])
         plt.show()
         # 2. Sex distribution
         plt.figure()
         sns.countplot(x='Sex', data=data)
         plt.title('Sex distribution')
         plt.show()
         # 3. Pclass distribution
         plt.figure()
         sns.countplot(x='Pclass', data=data)
         plt.title('Passenger Class distribution')
         plt.show()
         # 4. Age histogram
         plt.figure()
         sns.histplot(data['Age'], kde=True, bins=30)
         plt.title('Age distribution')
         plt.show()
```

```
# 5. Fare distribution (skewed)
plt.figure()
sns.histplot(data['Fare'], bins=40)
plt.title('Fare distribution (skewed)')
plt.xlim(0, 200)
plt.show()
```


Univariate Observations

- More passengers did not survive than survived.
- Fewer passengers are in 1st class; majority in 3rd class.
- Age distribution is roughly right-skewed; many young passengers.
- Fare is heavily right-skewed (some very high fares).

```
In [16]: # Survival rate by Sex
         display(pd.crosstab(data['Sex'], data['Survived'], normalize='index') * 100)
         # Plot
         plt.figure()
         sns.countplot(x='Sex', hue='Survived', data=data)
         plt.title('Survival by Sex')
         plt.show()
         # Survival by Pclass
         display(pd.crosstab(data['Pclass'], data['Survived'], normalize='index') * 100)
         plt.figure()
         sns.countplot(x='Pclass', hue='Survived', data=data)
         plt.title('Survival by Pclass')
         plt.show()
         # Survival by Title
         plt.figure(figsize=(10,5))
         sns.countplot(x='Title', hue='Survived', data=data)
         plt.title('Survival by Title')
         plt.show()
```


Survived	0	1		
Pclass				
1	37.037037	62.962963		
2	52.717391	47.282609		
3	75.763747	24.236253		

Bivariate Observations (categorical)

- **Sex:** Females have a much higher survival rate than males.
- Pclass: 1st class passengers survived at a higher rate than 3rd class.
- **Title:** Higher-status titles (Mrs, Miss) show different survival patterns useful for modeling.

```
In [17]: # Boxplot Age vs Survived
plt.figure()
sns.boxplot(x='Survived', y='Age', data=data)
plt.title('Age vs Survival')
plt.show()

# Age distribution by Survived
plt.figure()
sns.histplot(data=data, x='Age', hue='Survived', bins=30, kde=True, element="ste")
```


Age Observations

- Children (lower ages) appear to have higher survival densities in some ranges.
- Median age for survivors might be slightly lower than for non-survivors check numeric stats.

```
In [20]: # Group by FamilySize
fs_summary = data.groupby('FamilySize')['Survived'].agg(['count', 'mean']).sort_
fs_summary['mean_pct'] = fs_summary['mean'] * 100
```

```
# Reset index so FamilySize becomes a column for plotting
fs_summary = fs_summary.reset_index()
# Show table
display(fs_summary)
# Plot FamilySize buckets (future-proof palette usage)
plt.figure()
sns.barplot(
   x='FamilySize',
   y='mean_pct',
   hue='FamilySize',
    data=fs_summary,
    palette='viridis',
   legend=False
plt.title('Survival % by FamilySize')
plt.ylabel('Survival %')
plt.xlabel('Family Size')
plt.show()
```

	FamilySize	count	mean	mean_pct
0	1	537	0.303538	30.353818
1	2	161	0.552795	55.279503
2	3	102	0.578431	57.843137
3	4	29	0.724138	72.413793
4	5	15	0.200000	20.000000
5	6	22	0.136364	13.636364
6	7	12	0.333333	33.333333
7	8	6	0.000000	0.000000
8	11	7	0.000000	0.000000

Family Observations

- Very small families/alone passengers often have different survival probabilities than moderate family sizes.
- Extremely large families tend to have lower survival rates.

Correlation Observations

- Sex (encoded) and Pclass show moderate correlation with Survived .
- Fare correlates with Pclass (higher class → higher fare).
- HasCabin has positive correlation with survival (proxy for class).
- Age correlation with Survived is weaker but present.

```
In [23]: # Pairplot on a sampled subset to avoid long render times
    sample = corr_df[cols].sample(300, random_state=42)
    sns.pairplot(sample, vars=['Age','Fare','FamilySize','Pclass','Sex','Survived'],
    plt.suptitle('Pairplot (sample)', y=1.02)
    plt.show()
```

Pairplot (sample)

Multivariate check: Survival by Sex and Pclass

```
In [24]: sns.catplot(x="Pclass", hue="Survived", col="Sex", kind="count", data=data)
  plt.subplots_adjust(top=0.85)
  plt.suptitle('Survival by Pclass and Sex')
  plt.show()
```


Final Summary of Insights

- 1. **Sex** is one of the strongest predictors: females had a much higher survival rate than males.
- 2. **Pclass** (socioeconomic status) strongly influenced survival 1st class had higher survival than 3rd.
- 3. Fare and HasCabin (proxy for class) positively correlate with survival.
- 4. **Children** (lower ages) show a relatively higher chance of survival in some age ranges.
- 5. **Family size**: very small families or being alone had mixed effects; moderate family sizes sometimes had better survival percentages than very large families.
- 6. Feature engineering (Title, FamilySize, IsAlone, HasCabin) yields useful signals for modeling or deeper analysis.

In []: