第四章 级 数

一、选择题:

- - (A) 等于0
- (C) 等于i
- (D) 不存在

- 2. 下列级数中,条件收敛的级数为(
 - (A) $\sum_{i=1}^{\infty} \left(\frac{1+3i}{2}\right)^n$
- (B) $\sum_{i=1}^{\infty} \frac{(3+4i)^n}{n!}$

(C) $\sum_{n=1}^{\infty} \frac{i^n}{n}$

- (D) $\sum_{n=1}^{\infty} \frac{(-1)^n + i}{\sqrt{n+1}}$
- 3. 下列级数中,绝对收敛的级数为(
 - (A) $\sum_{n=1}^{\infty} \frac{1}{n} (1 + \frac{i}{n})$

(C) $\sum_{n=1}^{\infty} \frac{i^n}{\ln n}$

- 4. 若幂级数 $\sum_{n=0}^{\infty} c_n z^n$ 在 z=1+2i 处收敛,那么该级数在 z=2 处的敛散性为(
 - (A) 绝对收敛 (C) 发散

(B) 条件收敛

- (D) 不能确定
- 5. 设幂级数 $\sum_{n=0}^{\infty} c_n z^n$, $\sum_{n=0}^{\infty} n c_n z^{n-1}$ 和 $\sum_{n=0}^{\infty} \frac{c_n}{n+1} z^{n+1}$ 的收敛半径分别为 R_1, R_2, R_3 , 则

 R_1, R_2, R_3 之间的关系是(

- (A) $R_1 < R_2 < R_3$
- (B) $R_1 > R_2 > R_3$
- (C) $R_1 = R_2 < R_3$
- (D) $R_1 = R_2 = R_3$
- 6. 设0 < |q| < 1,则幂级数 $\sum_{n=0}^{\infty} q^{n^2} z^n$ 的收敛半径 R = ()

(A)
$$|q|$$

(A)
$$|q|$$
 (B) $\frac{1}{|q|}$

(C)
$$0$$
 (D) $+\infty$

7. 幂级数 $\sum_{n=0}^{\infty} \frac{\sin \frac{n\pi}{2}}{n} (\frac{z}{2})^n$ 的收敛半径 R = ()

- (A) 1
- (B) 2 (C) $\sqrt{2}$

8. 幂级数 $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} z^{n+1} \pm |z| < 1$ 内的和函数为

(A) $\ln(1+z)$

(B) $\ln(1-z)$

(D) $\ln \frac{1}{1+\tau}$

9. 设函数 $\frac{e^z}{\cos z}$ 的泰勒展开式为 $\sum_{n=0}^{\infty} c_n z^n$,那么幂级数 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径 R=((A) $+\infty$ (B) 1 (C) $\frac{\pi}{2}$ (D) π 10. 级数 $\frac{1}{z^2} + \frac{1}{z} + 1 + z + z^2 + \cdots$ 的收敛域是(

- (A) |z| < 1 (B) 0 < |z| < 1 (C) $1 < |z| < +\infty$ (D) 不存在的

11. 函数 $\frac{1}{z^2}$ 在 z = -1 处的泰勒展开式为()

- (A) $\sum_{i=1}^{\infty} (-1)^n n(z+1)^{n-1} \quad (|z+1| < 1)$ (B) $\sum_{i=1}^{\infty} (-1)^{n-1} n(z+1)^{n-1} \quad (|z+1| < 1)$
- (C) $-\sum_{n=1}^{\infty} n(z+1)^{n-1} \quad (|z+1| < 1)$ (D) $\sum_{n=1}^{\infty} n(z+1)^{n-1} \quad (|z+1| < 1)$

12. 函数 $\sin z$,在 $z = \frac{\pi}{2}$ 处的泰勒展开式为(

(A)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} (z - \frac{\pi}{2})^{2n+1} \quad (|z - \frac{\pi}{2}| < +\infty)$$

(B)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} (z - \frac{\pi}{2})^{2n}$$
 $(|z - \frac{\pi}{2}| < +\infty)$

(C)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n+1)!} (z - \frac{\pi}{2})^{2n+1} \qquad \left(\left| z - \frac{\pi}{2} \right| < +\infty \right)$$

(D)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2n)!} (z - \frac{\pi}{2})^{2n}$$
 $\left| z - \frac{\pi}{2} \right| < +\infty$

13. 设f(z)在圆环域 $H: R_1 < |z-z_0| < R_2$ 内的洛朗展开式为 $\sum_{n=0}^{\infty} c_n (z-z_0)^n$,c为H内

绕 z_0 的任一条正向简单闭曲线,那么 $\int_c \frac{f(z)}{(z-z_0)^2} dz = 0$

- (A) $2\pi i c_1$

- (C) $2\pi i c_2$ (D) $2\pi i f'(z_0)$
- 14. 若 $c_n = \begin{cases} 3^n + (-1)^n, & n = 0,1,2,\cdots \\ 4^n, & n = -1,-2,\cdots \end{cases}$,则双边幂级数 $\sum_{n=-\infty}^{\infty} c_n z^n$ 的收敛域为(
 - (A) $\frac{1}{4} < |z| < \frac{1}{3}$ (C) $\frac{1}{4} < |z| < +\infty$
- (B) 3 < |z| < 4

- (D) $\frac{1}{3} < |z| < +\infty$
- 15. 设函数 $f(z) = \frac{1}{z(z+1)(z+4)}$ 在以原点为中心的圆环内的洛朗展开式有 m 个,那么

m = (

(A) 1

- (B) 2
- (C) 3
- (D) 4

二、填空题

1.	若幂级数 $\sum_{n=0}^{\infty} c_n(z+i)$	$(i)^n$ 在 $z=i$ 处 发 散	,那么该级数在	z=2 处的收敛性
为				

- 2. 设幂级数 $\sum_{n=0}^{\infty} c_n z^n$ 与 $\sum_{n=0}^{\infty} [\text{Re}(c_n)]z^n$ 的收敛半径分别为 R_1 和 R_2 ,那么 R_1 与 R_2 之间的关 系是
 - 3. 幂级数 $\sum_{i=1}^{\infty} (2i)^n z^{2n+1}$ 的收敛半径 R =______
 - 4. 设f(z)在区域D内解析, z_0 为内的一点,d为 z_0 到D的边界上各点的最短距离,那么

- 5. 函数 $\arctan z$ 在 z = 0 处的泰勒展开式为
- 6. 设幂级数 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径为 R ,那么幂级数 $\sum_{n=0}^{\infty} (2^n-1)c_n z^n$ 的收敛半径

为_______.
7. 双边幂级数
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{(z-2)^2} + \sum_{n=1}^{\infty} (-1)^n (1-\frac{z}{2})^n$$
 的收敛域为_______.

- 8. 函数 $e^z + e^{\frac{1}{z}}$ 在 $0 < z < +\infty$ 内洛朗展开式为______
- 9. 设函数 $\cot z$ 在原点的去心邻域0<|z|< R内的洛朗展开式为 $\sum_{n=0}^{\infty}c_{n}z^{n}$,那么该洛朗级数 收敛域的外半径 R =
 - 10. 函数 $\frac{1}{z(z-i)}$ 在 $1 < |z-i| < +\infty$ 内的洛朗展开式为______

三、若函数 $\frac{1}{1-z-z^2}$ 在 z=0 处的泰勒展开式为 $\sum_{n=0}^{\infty}a_nz^n$,则称 $\left\{a_n\right\}$ 为菲波那契(Fibonacci)数

列,试确定 a_n 满足的递推关系式,并明确给出 a_n 的表达式.

四、试证明

1.
$$|e^z - 1| \le e^{|z|} - 1 \le |z|e^{|z|}$$
 $(|z| < +\infty)$;

2.
$$(3-e)|z| \le |e^z - 1| \le (e-1)|z| \quad (|z| < 1)$$

五、设函数 f(z)在圆域 |z| < R 内解析, $S_n = \sum_{k=0}^n \frac{f^{(k)}(\mathbf{0})}{k!} z^k$ 试证

1.
$$S_n(z) = \frac{1}{2\pi i} \oint_{\xi = r} f(\xi) \frac{\xi^{n+1} - z^{n+1}}{\xi - z} \frac{d\xi}{\xi^{n+1}} \quad (|z| < r < R).$$

2.
$$f(z) - S_n(z) = \frac{z^{n+1}}{2\pi i} \oint_{|\xi|=r} \frac{f(\xi)}{\xi^{n+1}(\xi-z)} d\xi \quad (|z| < r < R)$$
.

六、设幂级数 $\sum_{n=1}^{\infty} n^2 z^n$ 的和函数,并计算 $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ 之值.

七、设 $f(z) = \sum_{n=0}^{\infty} a_n z^n (|z| < R_1), g(z) = \sum_{n=0}^{\infty} b_n z^n (|z| < R_2)$,则对任意的 $r(0 < r < R_1)$,在

$$\left|z\right| < rR_2 \, \operatorname{Pl} \sum_{n=0}^{\infty} a_n b_n z^n = \frac{1}{2\pi i} \oint_{|\xi|=r} f(\xi) g(\frac{z}{\xi}) \frac{d\xi}{\xi} \, .$$

八、设在|z| < R 内解析的函数 f(z) 有泰勒展开式 $f(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n + \cdots$

试证当
$$0 \le r < R$$
 时 $\frac{1}{2\pi} \int_0^{2\pi} \left| f(re^{i\theta}) \right|^2 d\theta = \sum_{n=0}^{\infty} \left| a_n \right|^2 r^{2n}$.

九、将函数 $\frac{\ln(2-z)}{z(z-1)}$ 在 0 < z-1 < 1 内展开成洛朗级数.

十、试证在 $0 < |z| < +\infty$ 内下列展开式成立:

$$e^{z+\frac{1}{z}} = c_0 + \sum_{n=1}^{\infty} c_n (z^n + \frac{1}{z^n}) \not \pm \psi c_n = \frac{1}{\pi} \int_0^{\pi} e^{2\cos\theta} \cos \theta d\theta \quad (n = 0,1,2,\cdots).$$

—、1. (C)

2. (C)

3. (D)

4. (A)

5. (D)

6. (D)

7. (B)

8. (A)

9. (C)

10. (B)

11. (D)

12. (B)

13. (B)

14. (A)

15. (C)

二、1. 发散

2. $R_2 \ge R_1$ 3. $\frac{\sqrt{2}}{2}$

4. $\frac{1}{n!} f^{(n)}(z_0) (n = 0,1,2,\cdots)$ \otimes $(\frac{1}{2\pi i} \oint_{|z-z_0|=r} \frac{f(z)}{(z-z_0)^{n+1}} dz (n = 0,1,2,\cdots) \otimes r < d)$

5. $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} z^{2n+1} (|z| < 1)$ 6. $\frac{R}{2}$

8. $\sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{z^n} + \sum_{n=0}^{\infty} \frac{1}{n!} z^n$ 9. π

 \equiv , $a_0 = a_1 = 1, a_n = a_{n-1} + a_{n-2} (n \ge 2)$,

 $a_n = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right\} (n = 0,1,2,\cdots).$

 $\dot{r}, f(z) = \frac{z(1+z)}{(1-z)^3}, 6.$

 $\hbar, \frac{\ln(2-z)}{z(z-1)} = \frac{1}{z-1} \cdot \frac{1}{n} \cdot \ln(2-z) = \sum_{n=0}^{\infty} (\sum_{k=0}^{n} \frac{(-1)^{k+1}}{n-k+1})(z-1)^{n}.$