Statistique II 1er octobre 2018

Série 2

Exercice 1

Quand on est face à un problème il y a au moins deux attitudes possibles. Une première attitude consiste à chercher la meilleure solution possible au problème, en prenant tout son temps. C'est l'attitude réfléchie. La seconde attitude consiste à répondre le plus rapidement possible, au risque de donner une mauvaise réponse. C'est l'attitude impulsive. On évalue la réflexion-impulsivité (R-I) au moyen d'une épreuve d'exploration visuelle : le test d'appariement de figures de Kagan.

Dans ce test, le sujet doit choisir parmi huit dessins représentant un objet familier celui qui est rigoureusement identique à un modèle présenté simultanément. L'attitude réfléchie se caractérise par des temps de réponse longs et un nombre d'erreurs faible, alors que l'attitude impulsive correspond à des temps de réponse courts et un nombre élevé d'erreurs.

Voici les résultats de 12 sujets au test d'appariement de figures de Kagan :

Sujets	1	2	3	4	5	6	7	8	9	10	11	12
Temps												
de réponse [min]	23	8	15	9	9	11	11	19	12	8	15	2
Nombre d'erreurs	0	8	1	8	6	7	4	5	5	9	0	9

- a) Représentez graphiquement ces données en plaçant en abscisse le *Temps de réponse* et en ordonnée le *Nombre d'erreurs*.
- b) Calculez la valeur du coefficient de corrélation de Bravais-Pearson entre *Temps de réponse* et *Nombre d'erreurs*. Commentez votre résultat.
- c) Effectuez un test afin de savoir si le coefficient de corrélation est statistiquement significatif au seuil de 5%.
- d) Construisez l'équation de la droite qui permette de prédire le nombre d'erreurs à partir du temps de réponse en appliquant les formules, d'une part, et en utilisant Jamovi, d'autre part.

Statistique II 1er octobre 2018

- e) Placez la droite de régression dans le diagramme de dispersion.
- f) Calculez l'erreur standard de régression $\hat{\sigma}$.
- g) Calculez les limites de confiance imposées à l'ordonnée à l'origine de la droite de régression.
- h) L'ordonnée à l'origine est-elle significativement différente de 0?
- i) Calculez les limites de confiance imposées à la pente de la droite de régression.
- j) La pente de la droite est-elle significativement différente de 0?
- k) Prédisez le nombre d'erreurs commises par un individu qui a mis 16 minutes pour passer le test de Kagan.

Exercice 2

Telle mère, telle fille? On dispose des 12 paires d'observations qui apparaissent dans le tableau ci-dessous. La variable X représente le Q.I. des mères et la variable Y représente le Q.I. des filles.

	1	2	3	4	5	6	7	8	9	10	11	12
\overline{X}	123	144	105	110	98	138	131	90	119	109	125	100
Y	102	138	136	133	95	146	115	100	142	105	130	120

- a) Calculez le coefficient de corrélation linéaire r entre X et Y.
- b) Calculez la droite de régression qui permette de prédire le Q.I. d'une fille connaissant celui de sa mère.
- c) À partir du Q.I. des mères, prédisez le Q.I. de chacune des filles.
- d) Calculez la variance des Q.I. prédits des filles, c'est-à-dire la variance expliquée $Var(\hat{Y})$.
- e) Calculez la variance des Q.I. observés des filles, c'est-à-dire la variance totale Var(Y).
- f) Quelle est la proportion de la variance des Q.I. des filles expliquée par les Q.I. des mères? Indication : déterminez la valeur du rapport $Var(\hat{Y})/Var(Y)$.
- g) Comparez cette proportion au carré du coefficient de corrélation.