

Two Forest Jump

Комбинированный отбор признаков с использованием двухлесового метода

Афанасьев Сергей **КБ «Ренессанс Кредит»** 8 сентября 2020 г.

Москва

Для чего нужен отбор признаков?

Избежать проклятья размерности

Снизить переобучение модели

Упростить модель для интерпретации

Сократить время обучения модели

Фильтры

(Filter method)

- Матрица корреляций
- Таргет-корреляция
- PCA

• • •

Обертки

(Wrapper method)

- Stepwise Regression
- Random Forest
- RFE

...

Вложения

(Embedded method)

- LASSO (L1)
- Ridge regression (L2)
- ElasticNet

• • •

Матрица корреляций

$$R_{x} = \begin{pmatrix} 1 & r_{x_{1}x_{2}} & \dots & r_{x_{1}x_{n}} \\ r_{x_{2}x_{1}} & 1 & \dots & r_{x_{2}x_{n}} \\ \dots & \dots & \dots & \dots \\ r_{x_{n}x_{1}} & r_{x_{n}x_{2}} & \dots & 1 \end{pmatrix}$$

Principal Component Analysis (PCA)

Метод главных компонент (РСА)

Постановка задачи PCA (principal component analysis):

$$f_1(x),...,f_n(x) \ - \ \text{исходные числовые признаки}$$

$$g_1(x),...,g_m(x) \ - \ \text{новые числовые признаки,} \ m \leq n;$$

Требование: старые признаки должны линейно восстанавливаться по новым:

$$\hat{f}_{j}(x) = \sum_{s=1}^{m} g_{s}(x)u_{js}$$
, $j = 1,...,n$, $\forall x \in X$,

как можно точнее на обучающей выборке $x_1,...,x_l$:

$$\sum_{i=1}^{l} \sum_{j=1}^{n} (\hat{f}_{j}(x_{i}) - f_{j}(x_{i}))^{2} \to \min_{\{g_{x}(x_{i})\}, \{u_{j_{k}}\}}$$

Матричные обозначения

Матрицы "объекты-признаки", старая и новая

$$F = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_l) & \dots & f_n(x_l) \end{pmatrix}; \quad G = \begin{pmatrix} g_1(x_1) & \dots & g_m(x_1) \\ \dots & \dots & \dots \\ g_1(x_l) & \dots & g_m(x_l) \end{pmatrix}.$$

Матрица линейного преобразования новых признаков в старые:

$$U = \begin{pmatrix} u_{11} & \dots & u_{1m} \\ \dots & \dots & \dots \\ u_{n1} & \dots & u_{nm} \end{pmatrix}; \quad \hat{F} = GU^T \overset{\text{xomusu}}{\approx} F.$$

Найти: и новые признаки $\,G\,$, и преобразование $\,U\,$

$$\sum_{i=1}^{l} \sum_{i=1}^{n} (\hat{f}_{j}(x_{i}) - f_{j}(x_{i}))^{2} = \|GU^{T} - F\|^{2} \to \min_{G,U}$$

Основная теорема метода РСА

Если $m \leq rk$ F , то минимум $\left\|GU^T - F\right\|^2$ достигается, когда столбцы U — это собственные векторы матрицы F^TF , соответствующие m максимальным собственным значениям $\lambda_1,...,\lambda_m$, а матрица G-FU.

При этом:

- матрица U ортонормированна: $U^TU = I_{m}$;
- матрица G ортогональна: $G^TG = \Lambda = diag(\lambda_1,...,\lambda_m)$
- $U\Lambda = F^T F U$; $G\Lambda = F F^T G$;
- $\|GU^T F\|^2 = \|F\|^2 tr \Lambda = \sum_{j=m+1}^n \lambda_j.$

Связь с сингулярным разложением

Если взять m=n , то:

- $\|GU^T F\|^2 = 0;$
- ullet представление $\hat{F}=GU^T=F$ точное и совпадает с сингулярным разложением при $G=V\sqrt{\Lambda}$: $F=GU^T=V\sqrt{\Lambda}U^T\;;\;\;U^TU=I_{\dots}\;;\;\;V^TV=I_{\dots}\;.$
- lacktriangledown линейное преобразование U работает в обе стороны: $F = GU^T$; G = FU.

Поскольку новые признаки некоррелированы $\left(G^TG=\Lambda\right)$, преобразование U называется декоррелирующим (или преобразованием Карунена-Лоэва).

Эффективная размерность выборки

Упорядочим с.з. F^TF по убыванию: $\lambda_1 \geq ... \geq \lambda_n \geq 0$. Эффективная размерность выборки — это наименьшее целое m , при котором:

$$E_{\scriptscriptstyle m} = \frac{\left\|GU^{\scriptscriptstyle T} - F\right\|^2}{\left\|F\right\|^2} = \frac{\lambda_{\scriptscriptstyle m+1} + \ldots + \lambda_{\scriptscriptstyle n}}{\lambda_1 + \ldots + \lambda_{\scriptscriptstyle n}} \leq \varepsilon$$

Решение задачи НК для МЛР в новых признаках

Задача наименьших квадратов для МЛР: $\left\|F\alpha-y\right\|^2 o \min_{\alpha}$.

Заменим $F_{\stackrel{l\bullet n}{l}}$ на ее приближение $G \stackrel{\bullet}{\bullet} U^T$, предполагая $m \leq n$:

$$\|GU^T\alpha - y\|^2 = \|G\beta - y\|^2 \to \min_{\beta}$$

Связь нового и старого вектора коэффициентов:

$$\beta = U^T \alpha$$
; $\alpha = U\beta$.

Решение задачи наименьших квадратов относительно β (единственное отличие — m слагаемых вместо n):

$$\beta^* = D^{-1}V^T y; \quad \alpha^* = UD^{-1}V^T y = \sum_{j=1}^m \frac{1}{\sqrt{\lambda_j}} u_j (v_j^T y);$$
$$G\beta^* = VV^T y = \sum_{j=1}^m v_j (v_j^T y)$$

Резюме:

- Метод главных компонент позволяет приближать матрицу ее низкоранговым разложением;
- Для этого достаточно взять из SVD-разложения первые
 т сингулярных чисел и векторов матрицы;
- Этот прием широко используется в анализе данных в задачах регрессии, классификации, сжатия данных и др.

Stepwise Regression

Forward Selection

Backward Elimination

Bidirectional elimination

Random Forest

Подход 1. Важность на основе уменьшения неоднородности

- 1. Для каждого дерева случайного леса вычисляем сумму уменьшений неоднородности на всех ветвлениях, связанных с данным предиктором;
- 2. Итоговую сумму уменьшений неоднородности делим на общее количество деревьев;
- 3. Повторяем шаги 1-2 для всех переменных.

Важность = частота использования переменной в качестве предиктора ветвления.

Подход 2. Важность на основе уменьшения качества прогнозирования при случайной перестановке (пермутации)

- 1. Обучить модель;
- 2. На тестовом/ООВ множестве посчитать ошибку;
- 3. Зафиксировать переменную/группу переменных, случайно переставить значения на тестовом/ООВ множестве;
- 4. По новой выборке посчитать ошибку;
- 5. Вычислить разность ошибок на исходном множестве и множестве с перестановкой.

ŧ	Right	Predict	Target	Var 3	Var 2	Var 1
	X	0	0	101	2	1
		0	1	102	3	2
	X	1	1	103	5	3
	X	0	0	104	7	4
					1	
у	curacy	aco			\downarrow	
·	,	acc Predict	Target	Var 3	√ Var 2	Var 1
·	,	Predict		Var 3 101		Var 1
·	Right	Predict 1	0		5	
·	Right	Predict 1 0	0	101	5 7	1

Регуляризация L1 (LASSO) и L2 (Ridge)

Регрессия LASSO

LASSO — Least Absolute Shrinkage and Selection Operator, два эквивалентных варианта постановки задаци:

$$Q(\alpha) = \left\| F\alpha - y \right\|^2 o \min_{\alpha} \quad \text{при } \sum_{j=1}^n \left| \alpha_j \right| \le \chi$$
 ;

$$Q(\alpha) = \|F\alpha - y\|^2 + \tau \sum_{j=1}^{n} |\alpha_j| \to \min_{\alpha};$$

После замены переменных

$$\begin{cases} \alpha_j = \alpha_j^+ - \alpha_j^-; \\ |\alpha_j| = \alpha_j^+ - \alpha_j^-; \end{cases} \quad \alpha_j^+ \ge 0; \quad \alpha_j^- \ge 0.$$

ограничения принимают канонический вид:

$$\sum_{j=1}^{n} \alpha_{j}^{+} + \alpha_{j}^{-} \leq \chi; \quad \alpha_{j}^{+} \geq 0; \quad \alpha_{j}^{-} \geq 0.$$

Чем меньше χ , тем больше j таких, что $lpha_{i}^{\scriptscriptstyle +}=lpha_{i}^{\scriptscriptstyle -}=0$.

Резюме:

LASSO обнуляет веса и приводи к отбору признаков в линейных моделях.

Источник: Coursera, К.В. Воронцов

Гребневая регрессия (Ridge Regression)

Штраф за увеличение нормы вектора весов $\|\alpha\|$:

$$Q_{\tau}(\alpha) = \left\| F\alpha - y \right\|^2 + \frac{\tau}{2} \left\| \alpha \right\|^2,$$

где au — неотрицательный параметр решуляризации.

Модифицированное МНК-решение ($au_{\scriptscriptstyle n}$ — "гребень")

$$\alpha_{\tau}^* = (F^T F + \tau I_n)^{-1} F^T y.$$

Преимущество сингулярного разложения: можно подбирать параметр au , вычислив SVD только один раз.

Регуляризованный МНК через сингулярное разложение

Вектор регуляризованного МНК-решения $lpha_{ au}^*$ и МНК-аппроксимация целевого вектора $Flpha_{ au}^*$:

$$\alpha_{\tau}^* = U(D^2 + \tau I_n)^{-1}DV^T y = \sum_{j=1}^n \frac{\sqrt{\lambda_j}}{\lambda_j + \tau} u_j(v_j^T y);$$

$$F\alpha_{\tau}^* = VDU^T\alpha_{\tau}^* = Vdiag\left(\frac{\sqrt{\lambda_j}}{\lambda_j + \tau}\right)V^Ty = \sum_{j=1}^n \frac{\lambda_j}{\lambda_j + \tau}v_j(v_j^Ty);$$

$$\|\alpha_{\tau}^*\|^2 = \|(D^2 + \pi I_n)^{-1} DV^T y\|^2 = \sum_{j=1}^n \frac{\lambda_j}{(\lambda_j + \tau)^2} (v_j^T y)^2$$

 $Flpha_{ au}^*
eq Flpha^*$, но зато решение становится гораздо устойчивее.

КЛАССИКИ

Matrix (Scoring)

PCA

НЕОФИТЫ

Boosting (Kaggle)

Forest

(Science)

В теории нет разницы между теорией и практикой.А на практике есть.

Йоги Берра

В научных статьях

В реальности

Схема отбора переменных

Шаг 1. Анализ качества данных

Критерии качества данных

- Точность (accuracy)
- Полнота (completeness)
- Согласованность (consistency)
- Достоверность (credibility)
- Правильность (correctness)
- Доступность (availability)

••

Этапы оценки качества данных

- 1. На стадии сбора данных
- 2. На стадии разработки модели
- 3. На стадии эксплуатации модели

Проблемы снижения качества данных

- Пропуски или неполнота;
- Орфографические ошибки;
- Аномалии;
- Фиктивные значения;
- Логические несоответствия;
- Закодированные значения;
- Несоответствие форматов;
- Дублирование;
- Избыточность информации;

• • •

Шаг 2. Проверка стабильности

Большие периоды

Маленькие периоды

Шаг 2. Проверка стабильности

	Стабильна	Слегка нестабильна	Нестабильна
KS	[0%; 10%)	[10%; 25%)	[25%; 100%]
S	[0%; 10%)	[10%; 25%)	[25%; 100%]
PSI	[0; 10)	[10; 25)	[25; ∞)
Присвоеный вес	0	0,5	1
Большие периоды: Big=max(KSi)+max(Si)+max(PSIi)	[0; 1]	[1; 2)	[2; 3)
Маленькие периоды: Small=Avg(KSj+Sj+PSIj)	[0; 1]	[1; 1,5)	[1,5; 3)
Присвоеный вес	0	0,5	1
Максимум (консервативный подход): Max(Big; Small)	{0}	{0,5}	{1}
Усреднение (лояльный подход): 0,5*Big+0,5*Small	[0; 0,2)	[0,2; 0,6)	[0,6; 1]
Присвоеный вес	0	0,5	1

Шаг 3. Корреляция с целевой переменной

Бинарная целевая переменная

- Для непрерывных признаков рассчитываются статистика Стьюдента (если признак распределен нормально) или тест Манна-Уитни;
- Для категориальных и бинарных признаков рассчитывается Хи-квадрат критерий Пирсона.

Категориальная целевая переменная

- Для непрерывных признаков проводится тест ANOVA;
- Для категориальных и бинарных признаков рассчитывается Хи-квадрат критерий Пирсона.

Непрерывная целевая переменная

- Для непрерывных признаков рассчитывается корреляция Пирсона;
- Для категориальных признаков проводится тест ANOVA;
- Для бинарных признаков рассчитываются статистика Стьюдента (если признак распределен нормально) или тест Манна-Уитни.

Шаг 4. Матрица корреляций

$$R_{x} = \begin{pmatrix} 1 & r_{x_{1}x_{2}} & \dots & r_{x_{1}x_{n}} \\ r_{x_{2}x_{1}} & 1 & \dots & r_{x_{2}x_{n}} \\ \dots & \dots & \dots & \dots \\ r_{x_{n}x_{1}} & r_{x_{n}x_{2}} & \dots & 1 \end{pmatrix}$$

- Для непрерывных признаков рассчитывается корреляция Пирсона;
- Для категориальных и бинарных признаков рассчитывается корреляция Спирмена

Шаг 5-7. Бинаризация и корреляции

Шаг 5 Бинаризация признаков

Шаг 6 Корреляция с таргетом

Шаг 7 Матрица корреляций

$$R_{x} = \begin{pmatrix} 1 & r_{x_{1}x_{2}} & \dots & r_{x_{1}x_{n}} \\ r_{x_{2}x_{1}} & 1 & \dots & r_{x_{2}x_{n}} \\ \dots & \dots & \dots & \dots \\ r_{x_{n}x_{1}} & r_{x_{n}x_{2}} & \dots & 1 \end{pmatrix}$$

War 8. Two-Forest

Важность – уменьшение качества прогнозирования при случайной перестановке

$$VI_{j} = P(Y \neq f(X_{1},...,X_{j}^{*},...,X_{p})) - P(Y \neq f(X_{1},...,X_{j},...,X_{p}))$$

- 1. Исходная выборка делится на две подвыборки;
- 2. На каждой из двух подвыборок строится случайный лес;
- 3. Для построенных моделей для каждой *j-ой* переменной вычисляется важность при перестановке *VIj* на множестве, которое не использовалось для построения модели;
- 4. Определяются множества:

 $M1 = \{$ все отрицательные важности $\},$

 $M2 = \{ все нулевые важности \},$

 $M3 = \{ все отрицательные важности * (-1) \};$

- 5. На M = M1 U M2 U M3 строится плотность распределения F;
- 6. Для каждой j-ой переменной рассчитывается p-value= 1-F(Vlj)

Шаг 9. Мультиколлинеарность (VIF)

Для каждого признака Xi обучается линейная регрессия, где Xi является функций от всех остальных признаков:

$$X_{i} = \beta_{0} + \sum_{j=1}^{k} \beta_{j} X_{j}, \quad i \neq j$$

Для каждого обученного признака рассчитывается коэффициент VIF:

$$VIF_i = \frac{1}{1 - R_i^2}$$

- Признаки со значением VIF>10 относятся к мультиколлинеарным. Из всех мультиколлинеарных признаков удаляется признак с максимальным значением VIF;
- Шаги 1-3 итерационно повторяются до тех пор, пока максимальное значение VIF по всем оставшимся признакам не станет меньше или равно 10.

Шаг 10. Статистическая значимость

Проверку статистической значимости признаков можно делать с помощью различных тестов, среди которых тест отношения правдоподобия, тест Вальда и тест множителей Лагранжа (все три теста асимптотически эквивалентны).

Тест отношения правдоподобия: для проверки нулевой гипотезы сравниваются функции правдоподобия полной модели и укороченной модели без тестируемого признака. Для этого рассчитывается статистика отношения правдоподобия:

$$LR = 2 \cdot (L_l - L_s) = 2 \cdot \ln \frac{L_l}{L_s}$$

Где L_l — значение логарифмической функции правдоподобия полной модели, L_s — значение логарифмической функции правдоподобия укороченной модели.

Шаг 11. Экспертный анализ

Сильная зависимость

Умеренная зависимость

Слабая зависимость

Matrix

Forward

Two-Forest

- 1 Качество
- 2 Стабильность
- Таргет-корреляция
- Д Матрица корреляций
- **Биннинг**
- Таргет-корреляция
- Матрица корреляций
- Gini
- 9 VIF
- 1 P-value

- 1 Качество
- 2 Стабильность
- Таргет-корреляция
- Д Матрица корреляций
- **Биннинг**
- Таргет-корреляция
- Матрица корреляций
- Forward
- 9 VIF
- 10 P-value

- П Качество
- 2 Стабильность
- 🖁 Таргет-корреляция
- Д Матрица корреляций
- **Биннинг**
- 🔓 Таргет-корреляция
- 🛮 Матрица корреляций
- Two-Forest
- 9 VIF
- 1 P-value

Бизнес-задачи

	Кол-во наблюдений	Кол-во признаков
PTB (CRM)	303 220	1222
Application PD (Scoring)	497 063	423
Behavioral PD (Scoring)	588 385	1087
Allocation (Collection)	172 250	162

Результаты (разница точности, Gini)

 Δ (TwoForest-Matrix)

 Δ (TwoForest-Forward)

Результаты (скорость работы методов)

Воронка отбора признаков (Behavioral PD)

Выводы

Комбинированный отбор хорошо работает с большим количеством признаков: фильтры отсеивают мусорные признаки, обертки – учитывают многомерные зависимости

Проверка качества и стабильности переменных позволяет использовать один большой универсальный набор признаков для разных типов задач.

Two-Forest в сравнении с Forward лучше по качеству для нелинейных моделей и сопоставим по качеству для линейных моделей. По скорости Two-Forest в десятки раз быстрее регрессионных методов.

Включение в комбинированную схему отбора **нескольких оберток** позволяет контролировать корректность работы методов на предыдущих шагах

– С точки зрения академической науки, когда я начинал заниматься машинным обучением 25 лет назад, тот научный коллектив, в который я пришел еще студентом, в общем-то жил с полной уверенностью (и она была основана на примерно 30-летнем опыте предыдущих исследований), что задачу можно решать любым методом.

Константин Воронцов, 2018

Теорема о бесплатных завтраках

В среднем по всем возможным порождающим определениям у любого алгоритма классификации частота ошибок классификации ранее не наблюдавшихся примеров одинакова. Самый изощренный алгоритм, который мы только можем придумать, в среднем (по всем возможным задачам) дает такое же качество, как простейшее предсказание: все точки принадлежат одному классу.

David H. Wolpert, 1996

Спасибо за внимание!

Афанасьев Сергей

Исполнительный директор Начальник управления статистического анализа

КБ «Ренессанс Кредит»