

Tarea 2 Hidrología

Profesor: Ricardo González

Alumno: Bernardo Caprile Pedro Valenzuela Felipe Vicencio Lukas Wolff

Índice

1.	Introducción	1
2.	Resultados	2
	2.1. Pregunta 1	2
	2.1.1. Marco Teórico	2

1. Introducción

HACER INTRO

2. Resultados

2.1. Pregunta 1

2.1.1. Marco Teórico

La presión de saturación del vapor de agua se determina mediante la ecuación de Clausius-Clapeyron:

$$e_s(T) = 611 \cdot e^{\left(\frac{17,27 \cdot T}{T + 237,3}\right)} \tag{1}$$

La humedad relativa se determina mediante la siguiente ecuación:

$$RH = \frac{e}{e_s} \cdot 100 \tag{2}$$

La radiación neta se determina mediante la siguiente ecuación:

$$R_n = R_i \cdot (1 - \alpha) - R_e \tag{3}$$

Donde:

- R_n es la radiación neta.
- R_i es la radiación incidente.
- lacksquare α es el albedo.
- R_e es la radiación emitida.

Para obtener la evaporación con el método aerodinámico:

$$E_r = \frac{R_n}{l_v \rho_w} \tag{4}$$