TP n°1: Fibonacci et binôme de Newton.

1 Algorithmes de Fibonacci

Mesurez en temps les différents algorithmes de Fibonacci : itératif, récursif terminal, vectoriel et logarithmique pour des échantillons d'entiers de 1 à 300, avec un pas de 10 fixé. Vous pourrez utiliser les fonctions du fichier *Fibonacci.c* et le programme suivant pour mesurer les temps de calcul, ici avec les versions itérative, vectorielle et logarithmique.

```
int main (int argc, char ** argv) {
1
         int n, res_rec, res_ite, res_log, res_vect;
2
         clock t td, ta, dt;
3
         for (n=1; n < echantillon max; n+=10)
4
              printf("nb : %d \t",n);
5
              td = clock();
6
              for (int i = 0; i < n; i++) {
7
                  res ite = fibo ite(i);
8
         }
9
              ta = clock();
10
              printf ("ite : %d \t",(int) ta-td);
11
              td=clock();
12
              for (int i=0; i < n; i++) {
1.3
                  res vect = fibo vect(i);
14
15
              ta=clock();
16
              printf ("vect : %d \t",(int) ta-td);
17
              td = clock();
18
              for (int i=0; i < n; i++) {
19
                  res_log = fibo_log(i);
20
21
              ta = clock();
^{22}
              printf ("\log : %d \setminus t",(int) ta-td);
23
              printf("\n");
24
^{25}
```

2 Binôme de Newton

On va maintenant s'intéresser à plusieurs fonctions permettant de calculer les coefficients binomiaux $\binom{n}{k}$ apparaissant dans la formule du binôme de Newton:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k},$$

ainsi que dans le triangle de Pascal:

n^{k}	0	1	2	3	4	5	
0	1			(n -	1)	$(n \cdot$	- 1\
1	1	1		$\binom{k}{k}$	1)+	- 1	k
2	1	2	1			= ($\binom{n}{k}$
3	1	3	3	1			107
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

- 1. Écrire en langage C cinq algorithmes différents permettant de calculer les coefficients binomiaux, et d'afficher les n premières lignes du triangle de Pascal, où n sera en paramètre.
 - a) Fonction récursive, en se servant du fait qu'une valeur est la somme des deux de la ligne au-dessus (cf formule orange).
 - b) Itérative, dans un tableau 2D, faire le calcul de chaque ligne, une à une.
 - c) Itérative, dans un vecteur, faire le calcul d'une ligne, puis utiliser cette ligne pour calculer la suivante et ainsi de suite.
 - d) Par les factorielles, en utilisant la formule

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- e) Itérative incrémentale, où on conserve dans un fichier les valeurs déjà obtenues et où on complète le fichier chaque fois que nécessaire.
- 2. En adaptant le programme utilisé pour Fibonacci, mesurer ces différents algorithmes en temps d'exécution pour des entiers allant de 1 à 200 par pas de 10.

2