Formulario di Probabilità e Statistica v15.0

Alessandro Finocchiaro August 23, 2025

Il "Mondo" dell'Esercizio	Caratteristiche Chiave / Pa- role Chiave	La Domanda Specifica Riguarda	Vai a:
SCENARIO 1:	L'esperimento vi	ene ripetuto 'n'	volte (lanci, estrazioni, etc.)
Prove Indipendenti	"con reinser- imento", 'p' costante	la probabilità di avere **'k' successi su 'n' prove**?	Binomiale
Prove Dipendenti	"senza reinser- imento", "in blocco"	la probabilità di avere **'k' successi da un gruppo**?	Ipergeometrica
Attesa 1° Successo	"primo suc- cesso", "finché non"	la probabilità che il **1° suc- cesso sia alla prova 'k'**?	Geometrica
Eventi in un Intervallo	"media di eventi", "tasso", "in un'ora"	la probabilità di avere **'k' eventi in un in- tervallo**?	Poisson
SCENARIO :	2: Si misura una	quantità continu	ia (tempo, lunghezza, etc.)
Valori Equiprobabili	"scelto a caso in [a,b]"	la probabilità che il valore cada in un **sotto-intervallo**?	Uniforme
Tempo di Attesa	"durata di vita", "tempo tra eventi"	la probabilità che il **tempo di attesa sia maggiore di 't'**?	Esponenziale
Misure "a Campana"	vengono date **Media (μ) e Varianza (σ^2) **	la probabilità che la misura sia **mag- giore/minore di 'x'**?	Normale
SCE	NARIO 3: Si lav	ora con più varia	abili o con somme
Somma/Media di 'n' v.a.	'n ¿ 30', "somma di 100 variabili"	la probabilità che la **SOMMA o la MEDIA** superi un valore?	TLC
Due v.a. Insieme	Tabella a doppia entrata, $p(x, y)$	le proprietà di due vari- abili insieme (indipendenza, cov.)?	V.A. Congiunte
Eventi Singoli	"casi favorevoli/possibili" "dato che"	il calcolo , di probabilità su eventi singoli o condizionati?	Prob. di Base / Condizionata / Bayes

Guida Definitiva alle Estrazioni da Urna

Teoria: Usa questa guida come primo passo per ogni problema con le urne. La scelta del metodo dipende da due fattori: il reinserimento e l'importanza dell'ordine.

Passo 1: L'estrazione è CON o SENZA reinserimento?

- CON reinserimento: Le estrazioni sono indipendenti. La probabilità di ogni estrazione non cambia. Si usa la Distribuzione Binomiale (se si contano i successi su n prove) o la regola del prodotto con probabilità costanti.
- SENZA reinserimento: Le estrazioni sono dipendenti. La probabilità cambia a ogni passo. Vai al Passo 2.

Passo 2 (Solo per 'Senza Reinserimento'): L'ORDINE conta?

NO, l'ordine NON conta	SÌ, l'ordine CONTA	
Parole Chiave: "in blocco", "un gruppo di", "un comitato", "2 Bianche e 1 Nera". Metodo: Calcolo Combinatorio (Ipergeometrica). Logica: Casi Favorevoli Casi Possibili.	Parole Chiave: "in sequenza", "la prima, la seconda", "la sequenza (B, N, B)". Metodo: Probabilità Condizionata (Regola del Prodotto). Logica: $P(A) \times P(B A) \times$	
Esempio a Confronto (Urna: 4B, 6N. Estrazione: 2 palline)		
Domanda: Prob. di estrarre 1 Bianca e 1 Nera?Soluzione:Nera?Casi Favorevoli: $\binom{4}{1}\binom{6}{1} = 4 \cdot 6 = 24$.Soluzione:Casi Possibili: $\binom{10}{2} = 45$. $P(1^{\circ} B) = \frac{4}{10}$.Probabilità = $\frac{24}{45}$. $P(2^{\circ} N - 1^{\circ} B) = \frac{6}{9}$.Probabilità = $\frac{4}{10} \times \frac{6}{9} = \frac{24}{90}$.		

Regole Fondamentali degli Eventi

Teoria: Le operazioni logiche tra eventi si traducono in operazioni matematiche sulle loro probabilità.

Operatore Logico	Traduzione Matematica
Evento A "OPPURE" Evento B (Unione ∪) Se gli eventi non si escludono a vicenda.	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
Evento A "OPPURE" Evento B (Unione \cup) Se gli eventi sono incompatibili (non possono accadere insieme, come $X=0$ e $X=1$).	$P(A \cup B) = P(A) + P(B)$ Esempio: $P(X \le 1) = P(X = 0) + P(X = 1)$
Evento A "E" Evento B (Intersezione ∩) Se gli eventi sono indipendenti.	$P(A \cap B) = P(A) \cdot P(B)$
Evento A "E" Evento B (Intersezione ∩) Se gli eventi sono dipendenti.	$P(A \cap B) = P(A) \cdot P(B A)$

Sezione 1: Fondamenti di Probabilità

Probabilità di Base

Teoria: Si usa per problemi con un numero finito di esiti equiprobabili (dadi, monete, estrazioni semplici) e per combinare eventi.

Passo della Ricetta	Esempio Svolto
1. Calcolo Diretto (Casi Favorevoli / Possibili): Identifica l'evento A (ciò che la domanda chiede) e lo spazio campionario Ω (tutti i risultati possibili). Formula: $P(A) = \frac{\text{Numero Casi Favorevoli}}{\text{Numero Casi Possibili}}$	Testo Esercizio: "Qual è la probabilità che la somma di due dadi sia 7?" 1. Applica la formula: Casi Possibili ($ \Omega $): $6 \times 6 = 36$. Casi Favorevoli (A): Le coppie $\{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$ sono 6 . $P(A) = \frac{6}{36} = \frac{1}{6}$.
2. Unione di Eventi ("A o B"): Se gli eventi A e B non si escludono a vicenda, usa la formula completa. Formula Generale: $P(A \cup B) = P(A) + P(B) - P(A) + P(B) - P(A) + P(B) = P(A) + P(B)$ Se A e B sono incompatibili (non possono accadere insieme), $P(A \cap B) = 0$. Formula Semplificata: $P(A \cup B) = P(A) + P(B)$	Testo Esercizio: "Estraendo una carta da un mazzo da 52, qual è la prob. che sia un Re o una carta di Cuori?" 2. Applica la formula: A = "è un Re" $\implies P(A) = 4/52$. B = "è di Cuori" $\implies P(B) = 13/52$. $A \cap B =$ "è il Re di Cuori" $\implies P(A \cap B) = 1/52$. $P(A \cup B) = \frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{16}{52}$.
3. Evento Complementare ("almeno uno"): Se calcolare $P(A)$ è difficile, calcola la probabilità del suo contrario, $P(A^c)$, e sottrai da 1. Formula: $P(A) = 1 - P(A^c)$	Testo Esercizio: "Qual è la prob. di ottenere almeno una Testa in 3 lanci di una moneta?" 3. Applica la formula: A = "almeno una Testa". A^c = "nessuna Testa" = "tutte Croci" (CCC). La prob. di una Croce è 1/2. Per 3 lanci indipendenti, $P(A^c) = (\frac{1}{2})^3 = \frac{1}{8}.$ $P(A) = 1 - P(A^c) = 1 - \frac{1}{8} = \frac{7}{8}.$

Prob. Condizionata, Totale e Teorema di Bayes

dente. Il denominatore è il risultato totale della

somma precedente.

Teoria: Gestisce scenari a più stadi, dove un risultato (effetto) dipende da una situazione iniziale incerta (causa).

Passo della Ricetta (Formule Generali) Esempio di Applicazione 1. Probabilità Condizionata Semplice: **Testo:** "Da un'urna con 5R e 3N, estraggo 2 palline Si usa quando si calcola la probabilità di un evento senza reinserimento. Prob. che siano entrambe A data l'informazione che un altro evento B si è già Rosse?" Soluzione: Formula Chiave: $P(A|B) = \frac{P(A \cap B)}{P(B)}$ $P(1^{\circ}R e 2^{\circ}R) = P(1^{\circ}R) \cdot P(2^{\circ}R - 1^{\circ}R)$ $=\frac{5}{8}\cdot\frac{4}{7}=\frac{20}{56}.$ Per Sequenze (Regola del Prodotto): $P(A \cap B) = P(B) \cdot P(A|B)$ 2. Formula delle Probabilità Totali: Contesto Esempi: Urna1 (C_1) : moneta equa $(p_T =$ Si usa per calcolare la probabilità di un evento finale E1/2). Urna $2(C_2)$: moneta con P(T) = 1/4. Scelta a (effetto), che può essere causato da diverse situazioni caso $(P(C_1) = P(C_2) = 0.5).$ Caso A (1 evento): $P(E = \text{Testa al } 1^{\circ} \text{ lancio}).$ iniziali C_1, C_2, \ldots, C_m . A) Come calcolare $P(E|C_i)$: $P(E|C_1) = 1/2$; $P(E|C_2) = 1/4$. $P(E) = (\frac{1}{2} \cdot 0.5) + (\frac{1}{4} \cdot 0.5) = \frac{3}{8}.$ Caso B (2 eventi uguali): P(E = due Teste).Fissa una causa C_i e risolvi il sotto-problema per l'effetto E in quello specifico scenario. $P(E|C_1) = (\frac{1}{2})^2 = \frac{1}{4}$; $P(E|C_2) = (\frac{1}{4})^2 = \frac{1}{16}$. $P(E) = (\frac{1}{4} \cdot 0.5) + (\frac{1}{16} \cdot 0.5) = \frac{5}{32}$. **Caso C (2T, 1C in 3 lanci):** Richiede la Binomiale. B) Formula Generale: $P(E) = \sum_{i=1}^{m} P(E|C_i)P(C_i)$ $P(E|C_1) = {3 \choose 2} (\frac{1}{2})^2 (\frac{1}{2})^1 = \frac{3}{8}.$ $P(E|C_2) = {3 \choose 2} (\frac{1}{4})^2 (\frac{3}{4})^1 = \frac{9}{64}.$ $P(E) = (\frac{3}{8} \cdot 0.5) + (\frac{9}{64} \cdot 0.5) = \frac{33}{128}.$ 3. Teorema di Bayes: Testo: "Dal Caso B, sapendo di aver ottenuto due Si usa per calcolare la probabilità di una causa C_k , Teste, qual è la prob. che la moneta fosse dell'Urna sapendo che si è verificato l'effetto E. 2?" Formula Generale: $P(C_k|E) = \frac{P(E|C_k)P(C_k)}{P(E)}$ **Obiettivo:** Calcolare $P(C_2|E)$. Numeratore: $P(E|C_2)P(C_2) = \frac{1}{16} \cdot 0.5 = \frac{1}{32}$. Denominatore: $P(E) = \frac{5}{32}$ (dal calcolo del Caso B). Soluzione: $P(C_2|E) = \frac{1/32}{5/32} = \frac{1}{5}$. Il numeratore è uno dei termini della somma prece-

Sezione 2: Variabili Aleatorie (V.A.)

V.A. Discrete: Densità, Media e Varianza

Teoria: Guida completa per V.A. discrete. Prima si trova la costante 'c' (se presente), poi si costruisce la tabella della densità (se non data), e infine si calcolano i parametri.

Passo della Ricetta	Esempio Svolto
0. (Se c'è una costante 'c') Calcola la Costante di Normalizzazione: La somma di tutte le probabilità deve fare 1. Poni la somma della densità su tutti i suoi valori possibili uguale a 1 e risolvi per 'c'. Formula: $\sum_k p_X(k) = 1$	Testo Esercizio: "Sia $p_X(k) = c \cdot (k+1)$ per $k \in \{0,1,2\}$. Trovare c." 0. Applica la formula: $p(0) + p(1) + p(2) = 1$ $[c \cdot (0+1)] + [c \cdot (1+1)] + [c \cdot (2+1)] = 1$ $c(1) + c(2) + c(3) = 1 \implies 6c = 1 \implies \mathbf{c} = \mathbf{1/6}$.
 (Se non data) Costruire la Tabella della Densità: A. Definisci X: Capisci cosa sta contando la V.A. X. B. Trova i Valori k: Elenca tutti i possibili risultati numerici di X. C. Calcola P(X = k): Per ogni valore k, calcola la sua probabilità. 	Testo Esercizio: "Da un'urna con 5 palline (2P, 3D) se ne estraggono 2. $X = n$. di palline pari." A. $X = n$. di pari. B. k : $\{0, 1, 2\}$. C. Calcolo Probabilità: $P(X = 0) = P(D, D) = \frac{3}{5} \frac{2}{4} = 6/20.$ $P(X = 1) = P(P, D) + P(D, P) = \frac{12}{20}.$ $P(X = 2) = P(P, P) = \frac{2}{5} \frac{1}{4} = 2/20.$
2. Calcola il Valore Atteso (Media) $E[X]$: Formula: $E[X] = \sum_{k} k \cdot P(X = k)$	Esempio con la tabella sopra: $E[X] = (0 \cdot \frac{6}{20}) + (1 \cdot \frac{12}{20}) + (2 \cdot \frac{2}{20}) = \frac{16}{20} = 0.8$
3. Calcola il Momento Secondo $E[X^2]$: Formula: $E[X^2] = \sum_k k^2 \cdot P(X = k)$	Esempio con la tabella sopra: $E[X^2] = (0^2 \cdot \frac{6}{20}) + (1^2 \cdot \frac{12}{20}) + (2^2 \cdot \frac{2}{20}) = \frac{20}{20} = 1$
4. Calcola la Varianza $Var(X)$: Formula: $Var(X) = E[X^2] - (E[X])^2$	Esempio con la tabella sopra: $Var(X) = 1 - (0.8)^2 = 1 - 0.64 = 0.36$

V.A. Congiunte: Calcolo di Probabilità su Eventi

Teoria: Si usa quando viene data una densità di probabilità congiunta p(x,y) per due (o più) v.a. discrete, e si deve calcolare la probabilità di un evento definito da una relazione tra di esse (es. P(X = Y), $P(X + Y \le k)$).

Passo della Ricetta	Esempio Svolto
1. Identifica i Casi Favorevoli: Traduci la condizione dell'evento (es. $X=Y$) in un elenco di coppie di valori (x,y) che la soddisfano. Questo elenco può essere finito o infinito.	Testo Esercizio: "Siano X_1, X_2 due v.a. con densità congiunta $p(k_1, k_2) = \frac{1}{4}(\frac{3}{4})^{k_1+k_2}$ per $k_1, k_2 \geq 0$. Calcolare $P(X_1 = X_2)$." 1. Elenca le coppie favorevoli: L'evento $X_1 = X_2$ è soddisfatto da tutte le coppie in cui i valori sono uguali: $(0,0), (1,1), (2,2), \ldots, (k,k), \ldots$ L'elenco è infinito.
2. Calcola la Probabilità per il Caso Generico: Prendi una coppia generica dall'elenco (es. (k,k)) e sostituisci i suoi valori nella formula della densità con- giunta $p(x,y)$ per trovare la probabilità di quel singolo caso.	2. Calcola $p(k,k)$: Sostituisco $k_1 = k$ e $k_2 = k$ nella formula data: $p(k,k) = \frac{1}{4}(\frac{3}{4})^{k+k} = \frac{1}{4}(\frac{3}{4})^{2k}$ Usando le proprietà delle potenze: $p(k,k) = \frac{1}{4}((\frac{3}{4})^2)^k = \frac{1}{4}(\frac{9}{16})^k$.
3. Somma (o Integra) le Probabilità: Somma le probabilità di tutti i casi favorevoli. Se l'elenco è infinito, questo richiederà di risolvere una serie geometrica. Formula Chiave: $\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$	3. Somma la serie: $P(X_1 = X_2) = \sum_{k=0}^{\infty} p(k, k) = \sum_{k=0}^{\infty} \frac{1}{4} (\frac{9}{16})^k$ Porto fuori la costante: $\frac{1}{4} \sum_{k=0}^{\infty} (\frac{9}{16})^k$. Riconosco una serie geometrica con ragione $q = 9/16$. La somma vale: $\frac{1}{4} \cdot \left(\frac{1}{1-9/16}\right) = \frac{1}{4} \cdot \left(\frac{1}{7/16}\right) = \frac{1}{4} \cdot \frac{16}{7} = \frac{4}{7}$.

V.A. Congiunte Discrete (Card Definitiva)

Teoria: Guida completa per analizzare il comportamento di due v.a. X e Y tramite la loro densità congiunta p(x, y), da tabella o formula.

Passo della Ricetta	Esempio Svolto
1. Costruisci la Tabella della Congiunta: Se data da una formula, calcola 'c' (somma totale =	Testo Esercizio: " $p(x,y) = 1/5 \ per \ (0,0), \ (0,1), \ (1,0), \ (1,1), \ (2,2).$ "
1) e compila la tabella.	$X \setminus Y = 0$ 1 2
	0 1/5 1/5 0
	1 1/5 1/5 0
	2 0 0 1/5
2. Calcola le Densità Marginali: $p_X(x) \implies \text{somma righe.} \ p_Y(y) \implies \text{somma colonne.}$	$p_X(0) = 2/5, p_X(1) = 2/5, p_X(2) = 1/5.$ $p_Y(0) = 2/5, p_Y(1) = 2/5, p_Y(2) = 1/5.$
3. Calcola i Valori Attesi: $E[X] = \sum x \cdot p_X(x)$ $E[XY] = \sum (x \cdot y) \cdot p(x,y)$	E[X] = 4/5, E[Y] = 4/5. $E[XY] = (1 \cdot 1 \cdot 1/5) + (2 \cdot 2 \cdot 1/5) = 1.$
4. Verifica l'Indipendenza: Controlla se $p(x,y) = p_X(x) \cdot p_Y(y)$ per ogni cella.	Test su $(0,0)$: $1/5 \neq (2/5)(2/5) = 4/25 \implies$ Dipendenti .
5. Calcola la Covarianza: $Cov(X,Y) = E[XY] - E[X]E[Y]$	Cov(X, Y) = 1 - (4/5)(4/5) = 9/25.
6. Calcola P(Evento su coppie): Per calcolare la probabilità di un evento definito da una relazione tra X e Y (es. $X \geq Y$), somma le probabilità $p(x,y)$ di tutte le celle (x,y) che soddisfano la condizione.	Domanda: Calcolare $P(X \ge Y)$ dall'esempio. Celle che soddisfano $X \ge Y$: $(0,0)$, $(1,0)$, $(1,1)$, $(2,2)$. $P(X \ge Y) = p(0,0) + p(1,0) + p(1,1) + p(2,2)$ $= 1/5 + 1/5 + 1/5 + 1/5 = \mathbf{4/5}$.

Valore Atteso e Varianza della Somma di V.A.

Teoria: Fornisce le regole per calcolare media e varianza di una somma (o differenza) di due variabili aleatorie, X e Y. I componenti necessari (medie, varianze, covarianza) si calcolano con le card precedenti.

Passo della Ricetta	Esempio Svolto
1. Calcola il Valore Atteso della Somma: Il valore atteso della somma è sempre la somma dei valori attesi. Prerequisiti: $E[X]$, $E[Y]$ (vedi card $V.A.$ Discrete o $V.A.$ Congiunte). Formula: $E[X \pm Y] = E[X] \pm E[Y]$	Testo Esercizio: "Date X e Y con $E[X] = 4/5$, $E[Y] = 4/5$, $Var(X) = 14/25$, $Var(Y) = 14/25$ e $Cov(X,Y) = 9/25$. Calcolare $E[X-Y]$ e $Var(X-Y)$." 1. Applica la formula della media: $E[X-Y] = E[X] - E[Y] = 4/5 - 4/5 = 0$
2. Calcola la Varianza della Somma: Prerequisiti: $Var(X)$, $Var(Y)$ (vedi card $V.A.$ Discrete) e $Cov(X,Y)$ (vedi card $V.A.$ Congiunte). Formula Generale: $Var(X \pm Y) = Var(X) + Var(Y) \pm 2Cov(X,Y)$ Caso Indipendenza: Se X e Y sono indipendenti, Cov(X,Y) = 0 e la formula si semplifica.	2. Applica la formula della varianza: L'esercizio fornisce la covarianza, quindi le v.a. non sono indipendenti. Usiamo la formula generale per $X-Y$: $\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)-2\operatorname{Cov}(X,Y)$ $=\frac{14}{25}+\frac{14}{25}-2\left(\frac{9}{25}\right)$ $=\frac{28}{25}-\frac{18}{25}=\frac{10}{25}=2/5$

Variabili Indicatrici (Metodo della Linearità)

Teoria: Tecnica molto potente per calcolare il valore atteso di una v.a. X che conta un numero di successi, senza bisogno di calcolare la sua densità. Funziona anche se le prove non sono indipendenti.

Passo della Ricetta	Esempio Svolto
1. Definisci X come Somma di Indicatori: Se X conta n eventi, scrivila come somma di n variabili indicatrici I_i , dove $I_i=1$ se l'i-esimo evento è un successo, e 0 altrimenti. Formula: $X=I_1+I_2+\cdots+I_n$	Testo Esercizio: "Da un mazzo di 52 carte, si estraggono 5 carte. Sia X il numero di Assi estratti. Calcolare $E[X]$." 1. Definisci gli indicatori: X è il numero di Assi. Estraggo 5 carte, quindi ho 5 "potenziali" successi. Sia $I_i = 1$ se l'i-esima carta estratta è un Asso (per $i = 1, \ldots, 5$). $X = I_1 + I_2 + I_3 + I_4 + I_5$.
2. Calcola il Valore Atteso del Singolo Indicatore: Il valore atteso di un indicatore è semplicemente la probabilità che quell'evento specifico sia un successo. Formula Chiave: $E[I_i] = P(A_i)$, dove A_i è l'evento "l'i-esima prova è un successo".	2. Calcola la probabilità del successo singolo: Qual è la probabilità che la i-esima carta sia un Asso? Non importa se è la prima, la seconda o la quinta, per simmetria la probabilità è sempre la stessa. $P(A_i = \text{"la i-esima carta è un Asso"}) = \frac{4}{52} = \frac{1}{13}$. Quindi, $E[I_i] = 1/13$ per ogni i .
3. Applica la Linearità del Valore Atteso: Il valore atteso della somma è sempre la somma dei valori attesi, anche se gli eventi non sono indipendenti! Formula: $E[X] = \sum_{i=1}^{n} E[I_i]$	3. Somma i valori attesi: $E[X] = E[I_1] + E[I_2] + E[I_3] + E[I_4] + E[I_5]$ $E[X] = \frac{1}{13} + \frac{1}{13} + \frac{1}{13} + \frac{1}{13} + \frac{1}{13} = 5 \cdot \frac{1}{13} = \frac{5}{13}$. (Nota: abbiamo trovato la media senza calcolare la complessa densità Ipergeometrica!)

Trasformazioni di V.A. (Y = g(X))

Teoria: Serve a trovare la funzione di distribuzione di una funzione di una v.a.

Passo della Ricetta	Esempio Svolto $(Y = X^2 \text{ con } X \sim U(0,2))$
1. Partire dalla CDF di Y: Scrivi la sua definizione e sostituisci Y con $g(X)$.	$F_Y(y) = P(X^2 \le y).$
$F_Y(y) = P(Y \le y)$	
2. Isolare X: Manipola la disequazione per ottenere $P(X \le h(y))$. Questo è uguale a $F_X(h(y))$.	Poiché $X \geq 0$, la disequazione diventa $P(X \leq \sqrt{y})$. Quindi $F_Y(y) = F_X(\sqrt{y})$.
3. Usare la CDF di X: Trova la formula per la CDF della variabile di partenza, $F_X(x)$, e sostituisci.	Per una U(0,2), la CDF è $F_X(t)=t/2$. Sostituendo $t=\sqrt{y}$ otteniamo:
	$F_Y(y) = \frac{\sqrt{y}}{2}$
4. Derivare (per trovare la PDF): Calcola $f_Y(y) = F_Y'(y)$.	$f_Y(y) = \frac{d}{dy} \left(\frac{\sqrt{y}}{2}\right) = \frac{1}{4\sqrt{y}}$
5. Trovare il nuovo dominio: Applica la funzione $g(X)$ agli estremi del dominio di X.	Se $X \in [0,2]$, allora $Y = X^2$ appartiene a $[0^2,2^2] = [0,4]$.

Sezione 3: Modelli di Variabili Aleatorie

Distribuzione Binomiale $X \sim \text{Bin}(n, p)$

Teoria: Conta il numero di successi k in una sequenza di n prove indipendenti, dove ogni prova ha la stessa probabilità di successo p.

Parole Chiave: "lancia n volte", "estrae con reinserimento", "n tentativi indipendenti".

Passo della Ricetta	Esempio Svolto
 1. Identifica i Parametri del Modello: n: il numero totale di prove/tentativi. p: la probabilità di successo in una singola prova. k: il numero esatto di successi che la domanda richiede. 	Testo Esercizio: "Si lancia 10 volte una moneta equa. Sia X il numero di volte che esce Testa. Calcolare la probabilità di ottenere esattamente 7 Teste." 1. Identifica i parametri: n = 10 (lanci totali). p = 0.5 (prob. di Testa in un lancio). k = 7 (successi richiesti).
2. Calcola la Probabilità $P(X = k)$: Usa la formula della densità Binomiale, che combina: A) I modi di scegliere le k posizioni dei successi: $\binom{n}{k}$. B) La probabilità di k successi: p^k . C) La probabilità di $n-k$ insuccessi: $(1-p)^{n-k}$. Formula: $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$	2. Applica la formula: $P(X = 7) = \binom{10}{7}(0.5)^7(1 - 0.5)^{10-7} $ $\binom{10}{7} = \frac{10!}{7!3!} = 120.$ $P(X = 7) = 120 \cdot (0.5)^7 \cdot (0.5)^3 = 120 \cdot (0.5)^{10} \approx 0.117.$
3. Calcola Media e Varianza (se richieste): Usa le formule rapide specifiche per la Binomiale. Media: $E[X] = n \cdot p$ Varianza: $Var(X) = n \cdot p \cdot (1-p)$	3. Applica le formule rapide: Media: $E[X] = 10 \cdot 0.5 = 5$. Varianza: $Var(X) = 10 \cdot 0.5 \cdot 0.5 = 2.5$.

Distribuzione Ipergeometrica (Unificata)

Teoria: Si usa per calcolare la probabilità di estrarre in blocco (senza reinserimento) una specifica composizione di elementi da una popolazione divisa in più gruppi. La v.a. X conta il numero di elementi estratti da un gruppo specifico, definito "di successo".

Passo della Ricetta	Esempio 1 (Caso Misto)
1. Schema Popolazione e Estrazione: A. Popolazione (Urna): Elenca i gruppi e il totale (N). Identifica il gruppo "di successo" (K). B. Estrazione (Campione): Scrivi il totale da estrarre (n) e la composizione desiderata (k successi, $n-k$ altro).	Testo: "Da un'urna con 4B e 6N, si estraggono 3 palline. Sia X = n. di Bianche. Calcolare P(X=2)." A. Popolazione: K=4 (Bianche), N-K=6 (Nere), N=10. B. Estrazione: n=3. Composizione: k=2 (Bianche), n-k=1 (Nera).
2. Calcola i Casi Favorevoli (Numeratore): (Modi per i successi) × (Modi per gli altri). $\binom{K}{k} \times \binom{N-K}{n-k}$	2. Calcola i modi per gruppo: Modi Bianche: $\binom{4}{2} = 6$. Modi Nere: $\binom{6}{1} = 6$. Casi Favorevoli = $6 \times 6 = 36$.
3. Calcola i Casi Possibili (Denominatore): Modi totali di estrarre n elementi da N . $\binom{N}{n}$	3. Calcola le combinazioni totali: Casi Possibili = $\binom{10}{3} = 120$.
4. Assembla i Risultati: A) Probabilità $P(X = k)$: $\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$ B) Media $E[X]$: $n \cdot \frac{K}{N}$ C) Varianza $Var(X)$: $n \cdot \frac{K}{N} \cdot (1 - \frac{K}{N}) \cdot \frac{N-n}{N-1}$	4. Calcola le statistiche richieste: A) Probabilità: $P(X=2) = \frac{36}{120} = 0.3$. B) Media: $E[X] = 3 \cdot \frac{4}{10} = 1.2$. C) Varianza: $Var(X) = 0.56$.
	Esempio 2 (Caso "Puro")
Applicazione al Caso "Puro" La logica non cambia. Se vuoi k successi, significa che vuoi 0 elementi dagli altri gruppi. Il termine $\binom{N-K}{0}$ farà sempre 1 , semplificando il calcolo.	Testo: "Calcolare la probabilità di estrarre 3 Bianche $(P(X=3))$ ". Composizione: k=3 (Bianche), n-k=0 (Nere). Casi Favorevoli: Modi Bianche: $\binom{4}{3} = 4$. Modi Nere: $\binom{6}{0} = 1$. Totale Favorevoli = $4 \times 1 = 4$. Probabilità: $P(X=3) = \frac{4}{120} \approx 0.033$.

Distribuzione Geometrica $X \sim \text{Geo}(p)$

Teoria: Conta il numero di prove indipendenti necessarie per ottenere il primo successo. La probabilità di successo p deve essere costante in ogni prova. **Parole Chiave:** "il primo successo", "finché non si ottiene", "numero di tentativi necessari per...".

Passo della Ricetta	Esempio Svolto
 1. Identifica i Parametri del Modello: p: La probabilità di successo in una singola prova. k: Il numero esatto della prova in cui si vuole che avvenga il primo successo. 	Testo Esercizio: "Si lancia ripetutamente un dado. Qual è la probabilità che il primo 6 compaia esattamente al quarto lancio?" 1. Identifica i parametri: Successo: "esce un 6". p = 1/6. Tentativo del primo successo: k = 4.
2. Calcola la Probabilità $P(X = k)$: Logica: L'evento "il primo successo è al tentativo k" significa che ci sono stati prima (k-1) insuccessi E poi, finalmente, 1 successo. Formula: $P(X = k) = (1 - p)^{k-1} \cdot p$	2. Applica la formula: Vogliamo 3 insuccessi (prob. 5/6) e poi 1 successo (prob. 1/6). $P(X = 4) = (\frac{5}{6}) \cdot (\frac{5}{6}) \cdot (\frac{5}{6}) \cdot (\frac{1}{6})$ $P(X = 4) = (1 - 1/6)^{4-1} \cdot (1/6) = (5/6)^3 \cdot (1/6) \approx 0.096.$
3. Calcola Media e Varianza (se richieste): Media: $E[X] = \frac{1}{p}$ (Numero medio di tentativi per il primo successo). Varianza: $Var(X) = \frac{1-p}{p^2}$	3. Applica le formule rapide: Media: $E[X] = \frac{1}{1/6} = 6$. (In media, ci vogliono 6 lanci per ottenere il primo 6). Varianza: $Var(X) = \frac{1-1/6}{(1/6)^2} = \frac{5/6}{1/36} = 30$.

Distribuzione di Poisson $X \sim Po(\lambda)$

Teoria: Conta il numero di eventi "rari" k che si verificano in un intervallo fissato di tempo o spazio, dato un tasso medio λ con cui avvengono.

Parole Chiave: "in media", "tasso di", "al minuto/ora/km", "errori per pagina".

Passo della Ricetta	Esempio Svolto
 Identifica e Adatta il Tasso λ: A. Tasso Iniziale: Trova il tasso medio dato dal testo (es. 3 chiamate/ora). B. Intervallo della Domanda: Trova l'intervallo di tempo/spazio richiesto dalla domanda (es. 20 minuti). C. Adatta λ: Se gli intervalli non corrispondono, riproporziona λ al nuovo intervallo. Questo è il passo più importante! Identifica k e Calcola la Probabilità P(X = k): k: Il numero esatto di eventi che la domanda richiede. Usa la formula della densità di Poisson. Formula: P(X = k) = e^{-λ} λ/k! (Ricorda: e è il numero di Nepero, ≈ 2.718; k! è il fattoriale; λ⁰ = 1 e 0! = 1). 	Testo Esercizio: "Un call center riceve in media 3 chiamate all'ora. Qual è la probabilità di ricevere esattamente 0 chiamate in un intervallo di 20 minuti?" A. Tasso Iniziale: 3 chiamate / 60 minuti. B. Intervallo Domanda: 20 minuti. C. Adatta λ : L'intervallo è 1/3 di quello iniziale (20 min / 60 min). Nuovo $\lambda = 3 \times \frac{1}{3} = 1$ chiamata / 20 minuti. 2. Applica la formula: $\mathbf{k} = 0$ (chiamate richieste). Usiamo il λ adattato: $\lambda = 1$. $P(X = 0) = e^{-1} \frac{1^0}{0!} = e^{-1} \cdot \frac{1}{1} \approx 0.368$.
3. Calcola Media e Varianza (se richieste): Per la Poisson, media e varianza sono uguali e corrispondono al tasso λ relativo all'intervallo di riferimento. Media: $E[X] = \lambda$ Varianza: $Var(X) = \lambda$	3. Applica le formule rapide: Il numero medio di chiamate in 20 minuti è $E[X]=\lambda=1$. La varianza è $Var(X)=\lambda=1$.

Distribuzione Uniforme $X \sim U(a,b)$

Teoria: Modella una v.a. che può assumere con uguale probabilità qualsiasi valore in un intervallo continuo [a,b]. La sua densità è un rettangolo. La probabilità è l'area. **Parole Chiave:** "scelto a caso in [a,b]", "un punto a caso", "attesa di un bus/treno" (con arrivo casuale).

Passo della Ricetta	Esempio Svolto
1. Disegna il Rettangolo della Densità: A. Intervallo $[a,b]$: Identifica gli estremi della distribuzione. Questa è la base del rettangolo. B. Calcola l'Altezza: L'area totale deve essere 1. Formula Altezza: $h = \frac{1}{b-a}$	Testo Esercizio: "Un treno passa ogni 20 minuti. Un passeggero arriva alla stazione in un istante casuale. Sia X il suo tempo di attesa. Calcolare la probabilità che attenda più di 8 minuti." A. Intervallo: Il tempo di attesa è un valore casuale in $[0, 20]$. Quindi $a = 0, b = 20$. B. Altezza: $h = \frac{1}{20-0} = \frac{1}{20}$.
 2. Identifica l'Area di Interesse: A. Traduci la Domanda: Trasforma la richiesta (es. P(X > 8)) in un nuovo intervallo di interesse. B. Calcola la Nuova Base: Calcola la lunghezza di questo nuovo intervallo. 	 2. Applica la domanda: A. Nuovo Intervallo: "Più di 8 minuti" significa che l'attesa X deve essere nell'intervallo [8, 20]. B. Nuova Base: Lunghezza = 20 - 8 = 12.
3. Calcola la Probabilità (Area = Base × Altezza): Moltiplica la base calcolata al passo 2 per l'altezza del rettangolo calcolata al passo 1.	3. Calcola l'area: Probabilità = (Nuova Base) × (Altezza) $P(X > 8) = 12 \times \frac{1}{20} = \frac{12}{20} = 0.6.$
4. Calcola Media e Varianza (se richieste): Media: $E[X] = \frac{a+b}{2}$ (Il punto medio dell'intervallo). Varianza: $Var(X) = \frac{(b-a)^2}{12}$	4. Applica le formule rapide: Media: $E[X] = \frac{0+20}{2} = 10$. Varianza: $Var(X) = \frac{(20-0)^2}{12} = \frac{400}{12} \approx 33.33$.

Distribuzione Esponenziale $X \sim Exp(\lambda)$

Teoria: Modella il tempo di attesa per il verificarsi di un evento (es. la durata di un componente, il tempo tra due chiamate). È caratterizzata dalla **mancanza di memoria**.

Parole Chiave: "durata di vita", "tempo di attesa", "tempo tra arrivi", "guasto di un componente".

Passo della Ricetta	Esempio Svolto
1. Trova il Tasso λ (Eventi per Unità di Tempo): A. Dato Diretto: Il testo fornisce λ (es. "tasso di guasto $\lambda = 0.001$ "). B. Dalla Media: Il testo fornisce il tempo medio di attesa $E[X]$ (es. "durata media 1000 ore"). Formula Inversa: $\lambda = \frac{1}{E[X]}$	Testo Esercizio: "La durata media di un LED è di 1000 ore. Sia X la sua durata. Calcolare la probabilità che un LED duri più di 1200 ore." B. Calcola λ dalla media: $E[X] = 1000 \text{ ore.}$ $\lambda = \frac{1}{1000} = 0.001 \text{ (guasti per ora).}$
2. Calcola la Probabilità con la Funzione di Sopravvivenza: Per calcolare $P(X > t)$, usa la scorciatoia. È molto più veloce che integrare la densità. Formula Chiave: $P(X > t) = e^{-\lambda t}$ Per calcolare $P(X < t)$, usa il complementare: $1 - P(X > t)$.	2. Applica la formula di sopravvivenza: La domanda è $P(X > 1200)$, con $t = 1200$. $P(X > 1200) = e^{-(0.001) \cdot 1200}$ $P(X > 1200) = e^{-1.2} \approx \textbf{0.301}$.
3. Calcola Media e Varianza (se richieste): Media: $E[X] = \frac{1}{\lambda}$ Varianza: $Var(X) = \frac{1}{\lambda^2}$	3. Applica le formule rapide: Media: $E[X] = \frac{1}{0.001} = 1000$. Varianza: $Var(X) = \frac{1}{(0.001)^2} = 1,000,000$.

Distribuzione Normale $X \sim N(\mu, \sigma^2)$

Teoria: Modella fenomeni le cui variazioni sono dovute a molte piccole cause indipendenti (es. altezza, peso, errori di misurazione). Il suo grafico è una campana simmetrica attorno alla media μ .

Obiettivo: Trasformare la nostra variabile X in una variabile standard $Z \sim N(0,1)$ per poter usare le tavole.

Passo della Ricetta	Esempio Svolto
 Identifica i Parametri (Attenzione a σ!): A. Media (μ): Il centro della campana. B. Varianza (σ²): Data dal testo. C. Deviazione Standard (σ): La radice quadrata della varianza. Nei calcoli si usa sempre questa! σ = √σ². 	Testo Esercizio: "L'altezza X degli studenti segue una $N(175,25)$. Calcolare la probabilità che uno studente sia più alto di 182 cm." A. Media: $\mu=175$. B. Varianza: $\sigma^2=25$. C. Dev. Standard: $\sigma=\sqrt{25}=5$.
2. Standardizza (Calcola lo Z-score): Applica la trasformazione per passare da un valore x al suo equivalente z sulla curva standard. Formula Chiave: $Z = \frac{x-\mu}{\sigma}$ Riscrivi la domanda $P(X > x)$ come $P(Z > z)$.	2. Applica la formula: Domanda: $P(X > 182)$. $Z = \frac{182-175}{5} = \frac{7}{5} = 1.4$. La domanda diventa: $P(Z > 1.4)$.
3. Usa le Tavole $\Phi(z)$ con le Regole di Simmetria: Le tavole forniscono $\Phi(z) = P(Z < z)$ (area a sinistra). Usa le seguenti regole per trovare l'area che ti serve. Coda Destra: $P(Z > a) = 1 - \Phi(a)$ Intervallo: $P(a < Z < b) = \Phi(b) - \Phi(a)$ Coda Sinistra (neg): $P(Z < -a) = 1 - \Phi(a)$	3. Calcola l'area: Stiamo cercando l'area a destra di 1.4. Usiamo la regola della Coda Destra. $P(Z>1.4)=1-\Phi(1.4).$ Dalle tavole, $\Phi(1.40)\approx 0.9192.$ Probabilità = $1-0.9192=0.0808.$

Sezione 4: Teoremi e Approssimazioni

Teorema del Limite Centrale (TLC)

Teoria: Afferma che la **SOMMA** (S_n) o la **MEDIA** (\bar{X}_n) di un grande numero $(n \ge 30)$ di v.a. indipendenti e identicamente distribuite (i.i.d.) si comporta approssimativamente come una **Distribuzione Normale**. **Parole Chiave:** "somma di 100 variabili", "media campionaria", "100 lanci di un dado", "peso totale di 50 persone".

Passo della Ricetta	Esempio Svolto
1. Analizza la Singola v.a. X_i : Isola il singolo evento (un lancio, una persona, ecc.) e calcola la sua media μ e la sua varianza σ^2 . Spesso X_i è una v.a. discreta con densità uniforme.	Testo Esercizio: "Si effettuano 100 lanci di un dado. Calcolare la probabilità che la somma S_{100} dei punteggi sia maggiore di 370." 1. Analisi di un lancio (X_i) : X_i può valere $\{1, 2, 3, 4, 5, 6\}$, ognuno con prob. $1/6$. $\mu = E[X_i] = \frac{1+6}{2} = 3.5$. $\sigma^2 = \operatorname{Var}(X_i) = \frac{(6-1+1)^2-1}{12} = \frac{35}{12} \approx 2.917$.
2. Calcola i Parametri della Somma S_n : Usa le formule di scaling per trovare la media e la varianza della somma di n variabili. Media Somma: $E[S_n] = n \cdot \mu$ Varianza Somma: $Var(S_n) = n \cdot \sigma^2$	2. Calcolo per $n=100$ lanci: $E[S_{100}]=100\cdot 3.5=$ 350 . $Var(S_{100})=100\cdot \frac{35}{12}\approx$ 291.7 .
3. Approssima con una Normale e Standardizza: Tratta S_n come una v.a. Normale con i parametri appena calcolati: $S_n \approx N(n\mu, n\sigma^2)$. Applica la formula di standardizzazione (Z-score) come visto nella card della Normale.	3. Standardizzazione: $S_{100} \approx N(350, 291.7)$. La dev. standard è $\sigma_{S_{100}} = \sqrt{291.7} \approx 17.08$. $Z = \frac{370 - 350}{17.08} = \frac{20}{17.08} \approx 1.17$.
4. Risolvi con le Tavole della Normale: La domanda originale $(P(S_n > x))$ è ora diventata $P(Z > z)$. Risolvila usando le regole di simmetria.	4. Calcolo della probabilità: La domanda $P(S_{100} > 370)$ diventa $P(Z > 1.17)$. $P(Z > 1.17) = 1 - \Phi(1.17)$. Dalle tavole, $\Phi(1.17) \approx 0.8790$. Prob. = $1 - 0.8790 = 0.121$.

Legge dei Grandi Numeri (LGN)

Teoria: Afferma che, all'aumentare del numero di prove $(n \to \infty)$, la media campionaria (\bar{X}_n) converge "quasi certamente" alla media vera della distribuzione (μ) . In parole povere: su un gran numero di tentativi, il risultato medio che osservi sarà praticamente uguale al risultato medio che ti aspetti in teoria.

Passo della Ricetta Concettuale	Esempio Svolto
1. Calcola la Media Vera (μ) del Singolo Evento: Trova il valore atteso $E[X_i]$ della singola azione (un lancio, una scommessa, una misurazione). Questo è il valore a cui tutto tenderà.	Testo Esercizio: "Il guadagno di un casinò per una singola puntata alla roulette (con 37 numeri) è una v.a. X con $P(X=+1\mbox{\ensuremath{\mathfrak{C}}})=19/37$ e $P(X=-1\mbox{\ensuremath{\mathfrak{C}}})=18/37$. Spiegare perché, su un milione di giocate, il casinò è quasi certo di guadagnare." 1. Calcola il guadagno atteso per singola giocata: $\mu=E[X]=(+1)\cdot \frac{19}{37}+(-1)\cdot \frac{18}{37}=\frac{1}{37}\approx +0.027\mbox{\ensuremath{\mathfrak{C}}}.$
2. Applica il Principio della LGN: Spiega che, per un numero di prove n molto grande, la media dei risultati osservati (\bar{X}_n) sarà estremamente vicina alla media teorica μ .	2. Applica la LGN: Per la Legge dei Grandi Numeri, dopo $n=1,000,000$ di giocate, la media del guadagno osservato dal casinò (\bar{X}_n) sarà quasi certamente uguale a $\mu=+0.027\mathfrak{C}$ per giocata. Il guadagno totale sarà quindi circa $n\cdot\mu=1,000,000\cdot0.027\approx27,000\mathfrak{C}$.

Differenza Chiave con il TLC

LGN: Ti dice solo che la media dei risultati **convergerà** a 3.5. Non ti permette di calcolare la probabilità di un evento specifico. (Domanda tipo: "Perché la media di 1000 lanci di un dado sarà vicina a 3.5?")

TLC: Ti dice che la somma/media di quei 1000 lanci si **distribuisce come una Normale**, e ti permette di calcolare la probabilità che la somma superi un certo valore. (Domanda tipo: "Qual è la probabilità che la somma di 1000 lanci superi 3600?")

Approssimazione della Binomiale alla Normale

Teoria: Se il numero di prove n in una Binomiale è grande, la sua forma a campana può essere approssimata da una Distribuzione Normale. Questo ci evita calcoli con fattoriali enormi.

Passo della Ricetta	Esempio Svolto
1. Verifica le Condizioni di Applicabilità: L'approssimazione è valida se n è grande e p non è troppo vicino a 0 o 1 . Regola Pratica: Controlla che $np > 5$ e $n(1-p) > 5$.	Testo Esercizio: "Si lancia una moneta 100 volte. Calcolare la probabilità che esca Testa un numero di volte compreso tra 45 e 55 (inclusi)." $n = 100, p = 0.5.$ $np = 100 \cdot 0.5 = 50 > 5. \checkmark$ $n(1-p) = 100 \cdot 0.5 = 50 > 5. \checkmark$
2. Calcola i Parametri della Normale Approssimante: Usa le formule di media e varianza della Binomiale. Media: $\mu=np$ Varianza: $\sigma^2=np(1-p)$	2. Calcola media e varianza: $\mu = 100 \cdot 0.5 = \textbf{50}.$ $\sigma^2 = 100 \cdot 0.5 \cdot 0.5 = \textbf{25}.$ La nostra Binomiale è circa $N(50, 25).$
3. Applica la Correzione di Continuità (Passo Cruciale): Aggiusta gli estremi della domanda per passare dal discreto al continuo. $P(X=k) \rightarrow P(k-0.5 < Y < k+0.5)$ $P(X \le k) \rightarrow P(Y < k+0.5)$ $P(X \le k) \rightarrow P(Y < k-0.5)$ $P(X < k) \rightarrow P(Y < k-0.5)$ $P(X \ge k) \rightarrow P(Y > k-0.5)$ $P(X > k) \rightarrow P(Y > k+0.5)$	3. Correggi l'intervallo: La domanda è $P(45 \le X \le 55)$. L'estremo inferiore $(X \ge 45)$ diventa $Y > 45 - 0.5 = 44.5$. L'estremo superiore $(X \le 55)$ diventa $Y < 55 + 0.5 = 55.5$. La domanda diventa: $P(44.5 < Y < 55.5)$.
4. Standardizza e Risolvi con le Tavole: Procedi come un normale esercizio sulla Gaussiana, usando i valori corretti.	4. Standardizza e calcola: $\sigma = \sqrt{25} = 5.$ $Z_1 = \frac{44.5 - 50}{5} = -1.1.$ $Z_2 = \frac{55.5 - 50}{5} = 1.1.$ $P(-1.1 < Z < 1.1) = \Phi(1.1) - \Phi(-1.1)$ $= \Phi(1.1) - (1 - \Phi(1.1)) = 2\Phi(1.1) - 1.$ $2 \cdot (0.8643) - 1 = 0.7286.$

Sezione 5: Tavole Statistiche

Tavola della Normale Standardizzata $Z \sim N(0,1)$

Valori di $\Phi(z) = P(Z \leq z)$ per $z \leq 0$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Valori di $\Phi(z) = P(Z \leq z)$ per $z \geq 0$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Quantili z_{α} tali che $P(Z>z_{\alpha})=\alpha$

α	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
z_{α}	1.2816	1.6449	1.9600	2.3263	2.5758	3.0902	3.2905

Appendice: Richiami Utili

Calcolo Combinatorio e Insiemi

Teoria: Formule per contare il numero di gruppi o sequenze di oggetti.

Concetto	Formula e Note
Permutazioni Semplici	Modi di ordinare n oggetti distinti.
	$P_n=n!$
Disposizioni Semplici	Modi di scegliere E ordinare k oggetti da un insieme di n . $D_{n,k} = \frac{n!}{(n-k)!}$
Combinazioni Semplici	Modi di scegliere k oggetti da n , senza contare l'ordine.
	$C_{n,k} = inom{n!}{k} = rac{n!}{k!(n-k)!}$
Inclusione-Esclusione	Probabilità dell'unione di due eventi.
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Richiami di Analisi Matematica

 $\bf Teoria:$ Formule e proprietà utili per la manipolazione algebrica.

Concetto	Formula e Note
Serie Geometrica	Per $ q <1$. Fondamentale per le v.a. discrete su domini infiniti. $\sum_{k=0}^{\infty}q^k=\frac{1}{1-q}$
Serie Esponenziale	Usata nella normalizzazione della Poisson. $\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$
Integrazione per Parti	Utile per calcolare il valore atteso. Esempio: $\int xe^x dx$. $f = x \implies f' = 1; g' = e^x \implies g = e^x$. Risultato: $xe^x - \int 1 \cdot e^x dx = xe^x - e^x$.
Integrali Notevoli (Sostituzione)	Se l'integrale è nella forma $\int g'(x) \cdot f(g(x)) dx$, la primitiva è $F(g(x))$, dove F è la primitiva di f . Caso comune: $\int g'(x)e^{g(x)}dx = e^{g(x)}$. Esempio esame: $\int xe^{-x^2/2}dx$. Sia $g(x) = -x^2/2 \implies g'(x) = -x$. Riscrivo: $-\int (-x)e^{-x^2/2}dx = -e^{-x^2/2}$.
Proprietà delle Potenze	Utile nelle sommatorie. $a^k \cdot b^k = (ab)^k$
Costante in Sommatoria	Permette di semplificare i calcoli. $\sum_k c \cdot f(k) = c \cdot \sum_k f(k)$
Inverso dell'Esponenziale	Per isolare una variabile all'esponente. $\ln(e^z)=z$