University of Toronto Mississauga CSC 343 Fall 2019 Group Assignment 3 – **SOLUTIONS**

Due: Wednesday December 4th, 2019 by 11:59pm

Michael Liut

December 8, 2019

I. Database Design (25 marks)

Question 1 (10 marks)

From the Schedule relation, you are required to represent the following additional information:

- a) No professor can be assigned to teach two (or more) courses on the same day and time. **ANSWER:** professor,day,time → course
- b) There is at most one teaching assistant per course.

ANSWER: course \rightarrow teaching assistant

- c) No two (or more) courses can be assigned to the same location on the same day and time. **ANSWER:** location,day,time → course
- d) No two (or more) professors can be assigned to the same location on the same day and time. **ANSWER:** location,day,time → professor
- e) The combination of course, day, and time will uniquely determine what professor is teaching.

ANSWER: course,day,time \rightarrow professor

Answer the following questions:

1. Given the additional information, a − e, list all of the functional dependencies that can be inferred. [5 marks]

ANSWERS ARE INLINE ABOVE

2. Dr. Strange will only be satisfied if your design is a good one (i.e. the schema satisfies either the 3NF or the BCNF). Is the design of your schema with the functional dependencies from part (1), above, a good one? Justify your answer. If the design is not a good

one, provide a better one, using one of the decomposition algorithms discussed in class. [5 marks]

ANSWER: This is a BCNF Decomposition. The relation Schedule is not currently in BCNF as course \rightarrow teaching assistant directly violates BCNF. The decomposition should look like: $R_1(teaching\ assistant, course)$ and $R_2(course, professor, location, day, time)$ along with the projected functional dependencies.

<u>Please Note:</u> Students are required to justify their answer (i.e. WHY is it in BCNF). 2 marks of 5 are allocated to justification.

Question 2 (5 marks)

1. List all of the functional dependencies that this Relation Table satisfies. [3 marks]

ANSWER: $C \to B$, $A \to B$, and $AC \to B$.

2. Now let's modify attribute \mathbb{C} 's last record from c_3 to c_2 . What functional dependencies, if any, from question (2) part (1), above, have been changed? List them. Explain your reasoning in no more than two sentences. [2 marks]

ANSWER: The FDs are identical to above. The set is unchanged.

Question 3 (10 marks)

C+=C

(a) Candidate Keys: {{C}, {H}, {A, D}, {D, E}, {D, F}}. We can prove this by looking at the closure of each key:

```
C+ = ACFH
                       (C \rightarrow AFH)
C+ = ACFGH
                       (C \rightarrow ACG)
C+ = ACEFGH
                    (H \rightarrow EA)
C+ = ABCEFGH
                     (A \rightarrow B)
C+ = ABC
                       (AEH \rightarrow BD)
∴ C is a candidate key.
H + = H
H+=AEH
                    (H \rightarrow EA)
H+ = AEH (H \rightarrow EA)

H+ = ABDEH (AEH \rightarrow BD)

H+ = ABDEFH (E \rightarrow F)
H+ = ABCDEFH (DF \rightarrow AC)
H+ = ABCDEFGH
                      (ABD → FGH)
∴ H is a candidate key.
AD + = AD
AD + = ABD
                       (A \rightarrow B)
AD + = ABDFGH
                       (ABD → FGH)
AD + = ABCDFGH
                       (DF \rightarrow AC)
AD + = ABCDEFGH \quad (BC \rightarrow EH)
: AD is a candidate key.
DE+=DE
DE+ = BDEH
                       (DE \rightarrow HB)
DE+ = ABDEH
                     (H \rightarrow EA)
DE + = ABDEFH (E \rightarrow F)
DE+ = ABCDEFH
                       (DF \rightarrow AC)
DE+ = ABCDEFGH (ABD → FGH)
∴ DE is a candidate key.
DF + = DF
DF+ = ACDF
                       (DF \rightarrow AC)
DF+ = ACDFH
                    (C \rightarrow AFH)
DF+ = ACDFGH (C \rightarrow ACG)
DF+ = ACDEFGH
                      (H \rightarrow EA)
DF+ = ABCDEFGH (AEH → BD)
.. DF is a candidate key.
```

<u>Marking</u>: **1 mark** per key = 5 marks, **2 marks** for correct use of axioms. If only the keys are found without use of axioms, you may award **0.5 marks** per key (max 2.5/7).

- (b) i. FALSE 3NF decomp is different from closure.
 - ii. FALSE there are two 3NF decomps for this example

Marking: 1 mark for correct FALSE response and 2 marks for a sufficient justification/proof.

Michael Liut

Given Functional Dependencies: $\begin{array}{ccc} \text{DF} \rightarrow \text{AC} & \text{AEH} \rightarrow \text{BD} & \text{C} \rightarrow \text{AFH} \\ \text{BC} \rightarrow \text{EH} & \text{A} \rightarrow \text{B} & \text{DE} \rightarrow \text{HB} \\ \end{array}$ $C \rightarrow ACG$ $E \rightarrow F$ ABD $\rightarrow FGH$ $H \rightarrow EA$

Redundant	Minimal Cover	Minimal Redundant
DF → C	$DF \rightarrow C$	AEH → D (E is redundant)
AEH → B	E → F	ABD → G (B is redundant) ABD → H (B is redundant)
$C \rightarrow A$	$A \rightarrow B$	
$C \rightarrow F$		
$C \rightarrow H$	$H \rightarrow A$	
	H → E	
$C \rightarrow A$		
$C \rightarrow C$		
$C \rightarrow G$		
BC → E BC → H		
DE → B		
DE → H		
ABD → F		

Eliminate Redundant FDs	Eliminate Unnecessary Attributes
DF → A (Redundant)	AEH → BD
DF → DF (Reflexivity)	$AEH+ = \{ABEFH\}$
$DF \rightarrow C (DF \rightarrow C)$	
$DF \rightarrow A (C \rightarrow A)$	AH → BD (Min Cover)
	AH → AH (Reflexivity)
AH → B (Redundant)	$AH \rightarrow ABH \ (A \rightarrow B)$
AH → AH (Reflexivity)	$AH \rightarrow ABEH (H \rightarrow E)$
$AH \rightarrow AEH (H \rightarrow E)$	$AH \rightarrow ABEFH (E \rightarrow F)$
$AH \rightarrow DE (AH \rightarrow D)$	$AH+ = \{ABEFH\}$
$AH \rightarrow HB (DE \rightarrow HB)$	∴ E can be eliminated
AH → B (Decomposition)	
	ABD → GH (B is redundant so remove it)
C → A (Redundant)	AD → GH (Min Cover)
$C \rightarrow C$ (Reflexivity)	$AD \rightarrow AD$ (Reflexivity)
$C \rightarrow H (C \rightarrow H)$	$AD \rightarrow ABD (A \rightarrow B)$
$C \rightarrow A$ (Transitivity: $H \rightarrow A$)	$AD \rightarrow FGH (ABD \rightarrow FGH)$
$C \rightarrow F$ (Redundant) $C \rightarrow C$ (Reflexivity)	∴ B can be eliminated as we reached GH without the aid of B

Michael Liut

```
C \rightarrow E (C \rightarrow E)
        C \rightarrow F (Transitivity: E \rightarrow F)
              C \rightarrow G (Redundant)
               C \rightarrow C (Reflexivity)
                  C \rightarrow H (C \rightarrow H)
C \rightarrow AEH (Transitivity: H \rightarrow A, H \rightarrow E)
     C \rightarrow ABD (AEH \rightarrow B, AEH \rightarrow D)
                C \rightarrow G (ABD \rightarrow G)
             BC \rightarrow E (Redundant)
             BC \rightarrow BC (Reflexivity)
                BC \rightarrow H (BC \rightarrow H)
       BC \rightarrow E (Transitivity: H \rightarrow E)
            BC → H (Redundant)
             BC \rightarrow BC (Reflexivity)
      BC \rightarrow BH (Transitivity: C \rightarrow H)
          BC \rightarrow H (Augmentation)
            DE → B (Redundant)
            DE \rightarrow DE (Reflexivity)
               DE \rightarrow H (DE \rightarrow H)
                 DE \rightarrow A (H \rightarrow A)
                 DE \rightarrow B (A \rightarrow B)
            DE \rightarrow H (Redundant)
            DE \rightarrow DE (Reflexivity)
                DE \rightarrow DF (E \rightarrow F)
                DE \rightarrow C (DF \rightarrow C)
                 DE \rightarrow H (C \rightarrow H)
            AD \rightarrow F (Redundant)
            AD \rightarrow AD (Reflexivity)
               AD \rightarrow E (AD \rightarrow E)
       AD \rightarrow F (Transitivity: E \rightarrow F)
```

∴ the minimal cover are:

$$A \rightarrow B$$
 $AD \rightarrow GH$ $AH \rightarrow D$ $C \rightarrow H$ $DF \rightarrow C$ $E \rightarrow F$ $H \rightarrow AE$

3NF Decomposition:

Step 1: Find the minimal cover.

Found above

Step 2: Give all the FDs in minimal cover their own schema.

- {A, B}, {A, D, G, H}, {A, D, H}, {A, E, H}, {C, H}, {C, D, F}, {E, F}
 ({A, B}, {A → B})
 ({A, D, G, H}, {AD → GH})
 ({A, D, H}, {AH → D})
 ({A, E, H}, {H → AE})
 ({C, H}, {C → H})
 ({C, D, F}, {DF → C})
 ({E, F}, {E → F})
- Step 3: Check that all candidate keys are included in at least one schema.
 - They are, so we can proceed to the next step.

Step 4: Remove all subsets.

- $({A, B}, {A \rightarrow B})$
- $({A, D, G, H}, {AD \rightarrow GH})$
- $({A, D, H}, {AH \rightarrow D})$
- $({A, E, H}, {H \rightarrow AE})$
- $(\{C, H\}, \{C \rightarrow H\})$
- $(\{C, D, F\}, \{DF \rightarrow C\})$
- $({E, F}, {E \rightarrow F})$

The keys from the above 3NF decomposition are: A, AD, AH, H, C, DF, and E.

Another minimal cover and 3NF decomposition solution is:

Question 4 (10 marks)

I forgot to add the column for "strict" in the Assignment itself, this column is not required. It will NOT count towards the grades for this section.

Property Question	Serializable	Conflict-Serializabile	View-Serializabile	Recoverable	ACA	Strict
1.	√	√	√	?	?	X
2.	√	✓	✓	√	√	X
3.	√	√	✓	✓	√	√
4.	√	√	✓	√	√	√
5.	X	X	X	✓	√	√

Marking: **2 marks** per question. "?" must have associated justifications. For example, in Q1, we cannot decide whether it's recoverable or not, since the abort/commit sequence of these two transactions are not specified.

Question 5 (15 marks)

Answers:

Question 2:

Auto-commit is off in Session A and thus the command "commit;" must be run to appear in Session B.

mysql> SELECT * FROM Accounts;

+		+-		+
username	name		balance	l
capt hulk iron	Captain America The Hulk Iron Man Black Widow	 		+
nat	Thor	 +-	4250.00	 +

5 rows in set (0.00 sec)

Ouestion 6:

Withdraw \$750 from Thor's Account:

UPDATE Accounts SET balance=balance-750 WHERE username="thor";

Deposit \$750 into Hulk's Account:

UPDATE Accounts SET balance=balance+750 WHERE username="hulk";

Session B: select * from Accounts;

+		. + -		+
username	name	İ	balance	İ
hulk iron	Captain America The Hulk Iron Man Black Widow Thor	 		+
+		+-		+

5 rows in set (0.01 sec)

Withdraw \$300 from Black Widow's Account:
UPDATE Accounts SET balance=balance-300 WHERE username="nat";

Deposit \$300 into the Hulk's Account:

UPDATE Accounts SET balance=balance+300 WHERE username="hulk";

What happens and why?

- Session B hangs as it is pending on the completed transaction (commit) from Session A.
- After you commit Session A, Session B completed it's attempt to transfer giving the following message:
 Query OK, 1 row affected (47.33 sec)
 Rows matched: 1 Changed: 1 Warnings: 0

Question 8:

The Hulk's balance is \$5800.00.

Question 10:

Transfer 80% of the Hulk's account balance to Captain America's Account. Commit the transaction.

UPDATE Accounts SET balance=balance*0.2 WHERE username="hulk"; - The Hulk has \$5,800. 80% is \$4,640.

UPDATE Accounts SET balance=balance+4640 WHERE username="capt";

Question 11:

Transfer 50% of Iron Man's funds to Captain America's Account

UPDATE Accounts SET balance=balance*0.5 WHERE username="iron"; - Iron Man has \$6,000. 50% is \$3,000.

UPDATE Accounts SET balance=balance+3000 WHERE username="capt";

WITHOUT COMMITTING!! Session B's Balances are:
mysql> select * from Accounts;

+-		-+-		+-		+
İ	username	İ		ĺ	balance	1
Т-				T-		т
	capt		Captain America		5890.00	
1	hulk	1	The Hulk		1160.00	1
1	iron	1	Iron Man	1	6000.00	1
Τ	nat	1	Black Widow		250.00	1
Τ	thor	1	Thor		3500.00	1
+-		-+-		+-		+

5 rows in set (0.00 sec)

NOTICE that it DOES NOT reflect the latest transfer from Iron Man.

For reference only, Session A looks like this prior to commiting: mysql> select * from Accounts;

+-----+
| username | name | balance |

5 rows in set (0.00 sec)

Question 12:

If I implement the rollback, then I will have:

SESSION A:

mysql> rollback;

Query OK, 0 rows affected (0.00 sec)

mysql> select * from Accounts;

+-		+-		-+-		-+
	username	-	name		balance	1
+-		+-		+-		+
	capt	-	Captain America		5890.00	-
	hulk		The Hulk		1160.00	-
	iron		Iron Man		6000.00	
	nat		Black Widow		250.00	$ \cdot $
	thor		Thor		3500.00	$ \cdot $
+-		+-		-+-		+

5 rows in set (0.00 sec)

SESSION B:

mysql> select * from Accounts;

+-		+-		+-		+-
	username		name	1	balance	-
+-		+-		+-		-+
	capt		Captain America	1	5890.00	-
	hulk		The Hulk		1160.00	-
	iron		Iron Man		6000.00	-
	nat		Black Widow		250.00	-
	thor		Thor		3500.00	$ \cdot $
+-		+-		+-		+

5 rows in set (0.00 sec)