Martingale Optimal Transport and Robust Finance

Marcel Nutz Columbia University

(with Mathias Beiglböck and Nizar Touzi)

April 2015

Outline

Monge-Kantorovich Optimal Transport

2 Martingale Optimal Transport

Monge Optimal Transport

Given:

- Probabilities μ, ν on \mathbb{R} .
- Reward (cost) function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.

Objective:

• Find a map $T:\mathbb{R}\to\mathbb{R}$ satisfying $\nu=T^{-1}\circ\mu$ such as to maximize the total reward,

$$\max_{T} \int f(x, T(x)) \, \mu(dx).$$

Monge-Kantorovich Optimal Transport

Relaxation:

• Find a probability P on $\mathbb{R} \times \mathbb{R}$ with marginals μ, ν such as to maximize the reward:

$$\max_{P\in\Pi(\mu,\nu)} E^P[f(X,Y)], \quad \text{where} \quad \Pi(\mu,\nu) := \{P: P_1=\mu, \ P_2=\nu\}$$
 and $(X,Y) = \operatorname{Id}_{\mathbb{R}\times\mathbb{R}}.$

• $P \in \Pi(\mu, \nu)$ is a Monge transport if of the form $P = \mu \otimes \delta_{T(x)}$.

Example: Hoeffding-Frechet Coupling

Theorem: Let f(x, y) = g(y - x) where g is strictly concave and sufficiently integrable. Then the optimal P is given by the Hoeffding–Frechet Coupling:

- P is the law of $((F_{\mu})^{-1}, (F_{\nu})^{-1})$ under the uniform measure on [0,1].
- If μ is diffuse, P is of Monge type with $T = (F_{\nu})^{-1} \circ F_{\mu}$.
- *P* is characterized by monotonicity:

if
$$(x, y), (x', y') \in \text{supp}(P)$$
 and if $x < x'$, then $y \le y'$.

Kantorovich Duality

• Buy $\varphi(X)$ at price $\mu(\varphi) := E^{\mu}[\varphi]$ and $\psi(Y)$ at $\nu(\psi)$ to superhedge,

$$f(X, Y) \leq \varphi(X) + \psi(Y).$$

• Then for all $P \in \Pi(\mu, \nu)$,

$$E^{P}[f(X,Y)] \leq E^{P}[\varphi(X) + \psi(Y)] = \mu(\varphi) + \nu(\psi).$$

• Theorem (Kantorovich, Kellerer): For any measurable $f \ge 0$,

$$\sup_{P \in \Pi(\mu,\nu)} E^P[f(X,Y)] = \inf_{\varphi,\psi} \mu(\varphi) + \nu(\psi)$$

and dual optimizers $\hat{\varphi}$, $\hat{\psi}$ exist

Kantorovich Duality

• Buy $\varphi(X)$ at price $\mu(\varphi) := E^{\mu}[\varphi]$ and $\psi(Y)$ at $\nu(\psi)$ to superhedge,

$$f(X, Y) \le \varphi(X) + \psi(Y).$$

• Then for all $P \in \Pi(\mu, \nu)$,

$$E^{P}[f(X,Y)] \leq E^{P}[\varphi(X) + \psi(Y)] = \mu(\varphi) + \nu(\psi).$$

• Theorem (Kantorovich, Kellerer): For any measurable $f \ge 0$,

$$\sup_{P \in \Pi(\mu,\nu)} E^P[f(X,Y)] = \inf_{\varphi,\psi} \mu(\varphi) + \nu(\psi)$$

and dual optimizers $\hat{\varphi}$, $\hat{\psi}$ exist.

Let
$$\Gamma = \{(x,y) : \hat{\varphi}(x) + \hat{\psi}(y) = f(x,y)\}$$
 and $P \in \Pi(\mu,\nu)$. TFAE:

- (1) P is optimal.
- (2) $P(\Gamma) = 1$.
- (3) supp(P) is f-cyclically monotone P-a.s.; i.e.,

$$\sum_{i=1}^n f(x_i, y_i) \ge \sum_{i=1}^n f(x_i, y_{\sigma(i)}) \quad \forall (x_i, y_i) \in \text{supp}(P), \quad \sigma \in \text{Perm}(n).$$

- 1)(2) If $P(\Gamma) < 1$, then P charges $\{(x,y) : \hat{\varphi}(x) + \hat{\psi}(y) > f(x,y)\}$ and thus $\mu(\hat{\varphi}) + \nu(\hat{\psi}) > E^P[f(X,Y)]$.
- 2)(1) If $P(\Gamma)=1$, then $\mu(\hat{\varphi})+\nu(\hat{\psi})=E^P[f(X,Y)]$, hence $P,\hat{\varphi},\hat{\psi}$ are optimal.
- P)(3) This argument even shows: if $\tilde{P}(\Gamma) = 1$, then \tilde{P} is an optimal transport between its own marginals. Apply this with discrete $\tilde{P} \Rightarrow \Gamma$ is cyclically monotone.

Let
$$\Gamma = \{(x,y) : \hat{\varphi}(x) + \hat{\psi}(y) = f(x,y)\}$$
 and $P \in \Pi(\mu,\nu)$. TFAE:

- (1) P is optimal.
- (2) $P(\Gamma) = 1$.
- (3) supp(P) is f-cyclically monotone P-a.s.; i.e.,

$$\sum_{i=1}^{n} f(x_i, y_i) \ge \sum_{i=1}^{n} f(x_i, y_{\sigma(i)}) \quad \forall (x_i, y_i) \in \text{supp}(P), \quad \sigma \in \text{Perm}(n).$$

- (1)(2) If $P(\Gamma) < 1$, then P charges $\{(x,y) : \hat{\varphi}(x) + \hat{\psi}(y) > f(x,y)\}$ and thus $\mu(\hat{\varphi}) + \nu(\hat{\psi}) > E^P[f(X,Y)]$.
- 2)(1) If $P(\Gamma) = 1$, then $\mu(\hat{\varphi}) + \nu(\hat{\psi}) = E^P[f(X, Y)]$, hence $P, \hat{\varphi}, \hat{\psi}$ are optimal.
- 2)(3) This argument even shows: if $\tilde{P}(\Gamma) = 1$, then \tilde{P} is an optimal transport between its own marginals. Apply this with discrete $\tilde{P} \Rightarrow \Gamma$ is cyclically monotone.

Let
$$\Gamma = \{(x,y) : \hat{\varphi}(x) + \hat{\psi}(y) = f(x,y)\}$$
 and $P \in \Pi(\mu,\nu)$. TFAE:

- (1) P is optimal.
- (2) $P(\Gamma) = 1$.
- (3) supp(P) is f-cyclically monotone P-a.s.; i.e.,

$$\sum_{i=1}^{n} f(x_i, y_i) \ge \sum_{i=1}^{n} f(x_i, y_{\sigma(i)}) \quad \forall (x_i, y_i) \in \text{supp}(P), \quad \sigma \in \text{Perm}(n).$$

- (1)(2) If $P(\Gamma) < 1$, then P charges $\{(x,y) : \hat{\varphi}(x) + \hat{\psi}(y) > f(x,y)\}$ and thus $\mu(\hat{\varphi}) + \nu(\hat{\psi}) > E^P[f(X,Y)]$.
- (2)(1) If $P(\Gamma) = 1$, then $\mu(\hat{\varphi}) + \nu(\hat{\psi}) = E^P[f(X, Y)]$, hence $P, \hat{\varphi}, \hat{\psi}$ are optimal.
 - 2)(3) This argument even shows: if $\tilde{P}(\Gamma) = 1$, then \tilde{P} is an optimal transport between its own marginals. Apply this with discrete $\tilde{P} \Rightarrow \Gamma$ is cyclically monotone.

Let
$$\Gamma = \{(x,y) : \hat{\varphi}(x) + \hat{\psi}(y) = f(x,y)\}$$
 and $P \in \Pi(\mu,\nu)$. TFAE:

- (1) P is optimal.
- (2) $P(\Gamma) = 1$.
- (3) supp(P) is f-cyclically monotone P-a.s.; i.e.,

$$\sum_{i=1}^{n} f(x_i, y_i) \ge \sum_{i=1}^{n} f(x_i, y_{\sigma(i)}) \quad \forall (x_i, y_i) \in \text{supp}(P), \quad \sigma \in \text{Perm}(n).$$

- (1)(2) If $P(\Gamma) < 1$, then P charges $\{(x,y) : \hat{\varphi}(x) + \hat{\psi}(y) > f(x,y)\}$ and thus $\mu(\hat{\varphi}) + \nu(\hat{\psi}) > E^P[f(X,Y)]$.
- (2)(1) If $P(\Gamma)=1$, then $\mu(\hat{\varphi})+\nu(\hat{\psi})=E^P[f(X,Y)]$, hence $P,\hat{\varphi},\hat{\psi}$ are optimal.
- (2)(3) This argument even shows: if $\tilde{P}(\Gamma) = 1$, then \tilde{P} is an optimal transport between its own marginals. Apply this with discrete $\tilde{P} \Rightarrow \Gamma$ is cyclically monotone.

Outline

Monge-Kantorovich Optimal Transpor

Martingale Optimal Transport

Dynamic Hedging

- Dynamically tradable underlying $S = (S_0, S_1, S_2)$.
- Semi-static superhedge:

$$f((S_t)_t) \leq \varphi(S_1) + \psi(S_2) + H_0(S_1 - S_0) + H_1(S_2 - S_1).$$

• With $S_0=0$, $S_1=X\sim\mu$, $S_2=Y\sim\nu$ and normalization $H_0=0$:

$$f(X, Y) \le \varphi(X) + \psi(Y) + h(X)(Y - X).$$

• Formally, duality with $P \in \Pi(\mu, \nu)$ satisfying the constraint that

$$E^{P}[h(X)(Y - X)] = 0 \quad \forall h; \text{ i.e. } E^{P}[Y|X] = X.$$

Dynamic Hedging

- Dynamically tradable underlying $S = (S_0, S_1, S_2)$.
- Semi-static superhedge:

$$f((S_t)_t) \leq \varphi(S_1) + \psi(S_2) + H_0(S_1 - S_0) + H_1(S_2 - S_1).$$

• With $S_0=0$, $S_1=X\sim\mu$, $S_2=Y\sim\nu$ and normalization $H_0=0$:

$$f(X, Y) \le \varphi(X) + \psi(Y) + h(X)(Y - X).$$

• Formally, duality with $P \in \Pi(\mu, \nu)$ satisfying the constraint that

$$E^{P}[h(X)(Y-X)] = 0 \quad \forall h; \text{ i.e. } E^{P}[Y|X] = X.$$

Martingale Transport

• Set of martingale transports:

$$\mathcal{M}(\mu,\nu) = \{ P \in \Pi(\mu,\nu) : E^P[Y|X] = X \}.$$

• Theorem (Strassen): $\mathcal{M}(\mu, \nu)$ is nonempty iff $\mu \leq_{c} \nu$; i.e.,

$$\mu(\phi) \le \nu(\phi) \quad \forall \phi \text{ convex.}$$

• Martingale Optimal Transport problem: Given $\mu \leq_c \nu$,

$$\sup_{P\in\mathcal{M}(\mu,\nu)}E^P[f(X,Y)].$$

 Beiglböck, Henry-Labordère, Penkner; Galichon, Henry-Labordère, Touzi; Hobson; Beiglböck, Juillet; Acciaio, Bouchard, Brown, Cheridito, Cox, Davis, Dolinsky, Fahim, Huang, Källblad, Kupper, Lassalle, Martini, Neuberger, Obłój, Rogers, Schachermayer, Soner, Stebegg, Tan, Tangpi, Zaev, . . .

Martingale Transport

Set of martingale transports:

$$\mathcal{M}(\mu, \nu) = \{ P \in \Pi(\mu, \nu) : E^{P}[Y|X] = X \}.$$

• Theorem (Strassen): $\mathcal{M}(\mu, \nu)$ is nonempty iff $\mu \leq_{c} \nu$; i.e.,

$$\mu(\phi) \le \nu(\phi) \quad \forall \phi \text{ convex.}$$

• Martingale Optimal Transport problem: Given $\mu \leq_c \nu$,

$$\sup_{P\in\mathcal{M}(\mu,\nu)}E^P[f(X,Y)].$$

 Beiglböck, Henry-Labordère, Penkner; Galichon, Henry-Labordère, Touzi; Hobson; Beiglböck, Juillet; Acciaio, Bouchard, Brown, Cheridito, Cox, Davis, Dolinsky, Fahim, Huang, Källblad, Kupper, Lassalle, Martini, Neuberger, Obłój, Rogers, Schachermayer, Soner, Stebegg, Tan, Tangpi, Zaev, . . .

Example: Beiglböck-Juillet Coupling

• Theorem (Beiglböck, Juillet): Let f(x,y) = g(y-x) where g is differentiable, sufficiently integrable, and g' is strictly concave. Then the optimal P is given by the Left-Courtain Coupling:

Figure: Forbidden Configuration.

Duality for Martingale Optimal Transport

In analogy to Monge-Kantorovich duality we want:

(1) No duality gap:

$$\sup_{P\in\mathcal{M}(\mu,\nu)}E^P[f(X,Y)]=\inf_{\varphi,\psi,h}\mu(\varphi)+\nu(\psi).$$

(2) Dual existence: $\hat{\varphi}$, $\hat{\psi}$, \hat{h} .

Theorem (Beiglböck, Henry-Labordère, Penkner):

- For upper semicontinuous $f \leq 0$, there is no duality gap.
- Dual existence fails in general, even if f is bounded, continuous and μ, ν are compactly supported.

Duality for Martingale Optimal Transport

In analogy to Monge-Kantorovich duality we want:

(1) No duality gap:

$$\sup_{P\in\mathcal{M}(\mu,\nu)}E^P[f(X,Y)]=\inf_{\varphi,\psi,h}\mu(\varphi)+\nu(\psi).$$

(2) Dual existence: $\hat{\varphi}$, $\hat{\psi}$, \hat{h} .

Theorem (Beiglböck, Henry-Labordère, Penkner):

- For upper semicontinuous $f \leq 0$, there is no duality gap.
- Dual existence fails in general, even if f is bounded, continuous and μ, ν are compactly supported.

An Example with Duality Gap

• Let *f* be the bounded, lower semicontinuous function

$$f(x,y) = \mathbf{1}_{x \neq y} = \begin{cases} 0 & \text{on the diagonal,} \\ 1 & \text{off the diagonal.} \end{cases}$$

- Let $\mu = \nu =$ Lebesgue measure on [0,1].
- There exists a unique martingale transport P, concentrated on the diagonal (T(x) = x).
- Primal value: $\sup_{P \in \mathcal{M}(\mu, \nu)} E^P[f(X, Y)] = 0$.
- Dual optimizers exist, $\hat{\varphi}=1$, $\hat{\psi}=0$, $\hat{h}=0$ but
- there is a duality gap: dual value = 1 > 0.

An Example with Duality Gap

Let f be the bounded, lower semicontinuous function

$$f(x,y) = \mathbf{1}_{x \neq y} = \begin{cases} 0 & \text{on the diagonal,} \\ 1 & \text{off the diagonal.} \end{cases}$$

- Let $\mu = \nu =$ Lebesgue measure on [0, 1].
- There exists a unique martingale transport P, concentrated on the diagonal (T(x) = x).
- Primal value: $\sup_{P \in \mathcal{M}(u,v)} E^P[f(X,Y)] = 0$.
- Dual optimizers exist, $\hat{\varphi}=1$, $\hat{\psi}=0$, $\hat{h}=0$ but
- there is a duality gap: dual value = 1 > 0.

Financial Intuition

Earlier work considered model uncertainty over a set \mathcal{P} of real-world models (with finitely many traded options). \mathcal{P} -q.s. version of the FTAP:

Theorem (Bouchard, N.):

Let $\mathcal{M} = \{\text{calibrated martingale measures } Q \ll \mathcal{P}\}$. Then

No arbitrage NA(\mathcal{P}) \iff \mathcal{P} and \mathcal{M} have same polar sets

and under this condition, quasi-sure duality holds with existence.

Reverse-engineered

To avoid arbitrage, neglect events not seen by $\mathcal{M}.$

Financial Intuition

Earlier work considered model uncertainty over a set \mathcal{P} of real-world models (with finitely many traded options). \mathcal{P} -q.s. version of the FTAP:

Theorem (Bouchard, N.):

Let $\mathcal{M} = \{\text{calibrated martingale measures } Q \ll \mathcal{P}\}$. Then

No arbitrage $\mathsf{NA}(\mathcal{P}) \iff \mathcal{P} \mathsf{ and } \mathcal{M} \mathsf{ have } \mathsf{ same } \mathsf{ polar } \mathsf{ sets }$

and under this condition, quasi-sure duality holds with existence.

Reverse-engineered:

To avoid arbitrage, neglect events not seen by \mathcal{M} .

Ordinary and Martingale OT: What is the Difference?

- In ordinary OT, all roads $x \to y$ can be used.
- \bullet E.g., in the discrete case, $\mu \times \nu$ already has full support.

• Theorem (Kellerer): $A \subseteq \mathbb{R} \times \mathbb{R}$ is $\Pi(\mu, \nu)$ -polar if and only if

$$A \subseteq (N_1 \times \mathbb{R}) \cup (\mathbb{R} \times N_2), \text{ where } \mu(N_1) = \nu(N_2) = 0.$$

Ordinary and Martingale OT: What is the Difference?

- In ordinary OT, all roads $x \to y$ can be used.
- \bullet E.g., in the discrete case, $\mu \times \nu$ already has full support.

• Theorem (Kellerer): $A \subseteq \mathbb{R} \times \mathbb{R}$ is $\Pi(\mu, \nu)$ -polar if and only if

 $A \subseteq (N_1 \times \mathbb{R}) \cup (\mathbb{R} \times N_2)$, where $\mu(N_1) = \nu(N_2) = 0$.

Obstructions for Martingale Transport

• In martingale OT, some roads $x \rightarrow y$ can be blocked.

Potential Functions

Potential
$$u_{\mu}(x) := \int |t-x| \, \mu(dt) = E[|X-x|]$$
 under any $P \in \mathcal{M}(\mu, \nu)$.

- $\mu \leq_{\mathsf{c}} \nu \iff \mathsf{u}_{\mu} \leq \mathsf{u}_{\nu}$.
- If

$$u_{\mu}(x) = u_{\nu}(x);$$
 i.e. $E[|X - x|] = E[|Y - x|]$ (*),

then x is a barrier for any martingale transport:

- 1. Jensen: $|X x| = |E[Y|X] x| = |E[Y x|X]| \le E[|Y x||X]$
- 2. Under (*), it follows that |X x| = E[|Y x| |X] a.s. Hence,

$$E[|Y - x| \mathbf{1}_{X \ge x}] = E[|X - x| \mathbf{1}_{X \ge x}] = E[(X - x) \mathbf{1}_{X \ge x}] = E[(Y - x) \mathbf{1}_{X \ge x}]$$

so that $Y \ge x$ a.s. on $\{X \ge x\}$.

 \rightarrow Partition \mathbb{R} into intervals $\{u_u < u_v\}$.

Potential Functions

Potential $u_{\mu}(x) := \int |t - x| \, \mu(dt) = E[|X - x|]$ under any $P \in \mathcal{M}(\mu, \nu)$.

- $\mu \leq_{\mathsf{c}} \nu \iff \mathsf{u}_{\mu} \leq \mathsf{u}_{\nu}$.
- If

$$u_{\mu}(x) = u_{\nu}(x);$$
 i.e. $E[|X - x|] = E[|Y - x|]$ (*),

then x is a barrier for any martingale transport:

- 1. Jensen: $|X x| = |E[Y|X] x| = |E[Y x|X]| \le E[|Y x||X]$
- 2. Under (*), it follows that |X x| = E[|Y x| |X] a.s. Hence,

$$E[|Y-x|\mathbf{1}_{X\geq x}] = E[|X-x|\mathbf{1}_{X\geq x}] = E[(X-x)\mathbf{1}_{X\geq x}] = E[(Y-x)\mathbf{1}_{X\geq x}]$$

so that $Y \geq x$ a.s. on $\{X \geq x\}$.

so that $T \geq X$ a.s. on $\{X \geq X\}$

 \rightarrow Partition $\mathbb R$ into intervals $\{u_{\mu} < u_{\nu}\}$.

Structure of $\mathcal{M}(\mu, \nu)$ -polar Sets

Theorem: "These are precisely the $\mathcal{M}(\mu, \nu)$ -polar sets."

Duality Result

Theorem

Let $f \ge 0$ be measurable and consider the quasi-sure relaxation of the dual problem:

$$f(X,Y) \le \varphi(X) + \psi(Y) + h(X)(Y-X)$$
 $\mathcal{M}(\mu,\nu)$ -q.s.

Then,

- (1) there is no duality gap,
- (2) dual optimizers $\hat{\varphi}$, $\hat{\psi}$, \hat{h} exist.

- The superhedge is pointwise on each component (e.g., $\mu = \delta_{x_0}$).
- Dual existence in the pointwise formulation typically fails as soon as there is more than one component.
- Application as in the FTOT.

Key Idea for the Proof

Core step: make almost-optimal φ_n , ψ_n converge.

- Control φ_n , ψ_n by a single, convex function χ_n .
- Suppose there is only one component; thus $\nu \mu >_c 0$.
- After a normalization, $\chi_n(0) = \chi'_n(0) = 0$ and

$$0 \le \int \chi_n d(\nu - \mu) \le \text{const.}$$

- This bounds the convexity of χ_n .
- \Rightarrow Relative compactness of (χ_n) .
- \Rightarrow Relative compactness of (φ_n, ψ_n) ; Komlos.

Conclusion

- The quasi-sure formulation ("model uncertainty") seems to be a natural setup for the Martingale Optimal Transport problem.
- One may expect this to be true for a larger class of problems; in particular, if discontinuous reward functions are involved or attainment is desired.

Thank you.

Conclusion

- The quasi-sure formulation ("model uncertainty") seems to be a natural setup for the Martingale Optimal Transport problem.
- One may expect this to be true for a larger class of problems; in particular, if discontinuous reward functions are involved or attainment is desired.

Thank you.