Supplemental Material: PROCEDURES AND RESULTS OF APPLYING SC-RI TO

MICROCHIP SC

Microchip SC general description

The manufacturing of microchips is complex, involving thousands of suppliers and

hundreds of different raw materials or middle products. For simplicity and feasibility of

this study, microchip manufacturing processes were categorized into three key areas: (1)

design, (2) front-end fabrication in a semiconductor fabrication plant (fab) and (3) back-

end ATP (Platzer et al, 2020). Key elements of the microchip SC based in the U.S.,

including entities and commodity flows involved in fab were included in this analysis. The

end product of the microchip SC is the semiconductor wafer (WAFE). The ATP plants

(ATPPs) are assumed to be the end customers. For the existing microchip SC, the capacity

of domestic fabs was set equal to the related domestic capacity at the end of 2020 (0.73

million 12-inch equivalent wafers per month (IC Insights, 2021)). Nationwide, demand

was set to the capacity of all fabs of companies headquartered in the U.S., or 1.65 million

12-inch equivalent wafers per month (IC Insights, 2021). Domestic capacity was expanded

to satisfy this demand for the reshoring SC scenario.

SC-RI Module 1: SC-Profiling

Existing and Potential Entities and Connections

In this microchip SC, the domestically produced wafer (WADP) begins with the chemicals

(CHEM) produced by domestic chemical suppliers and raw wafers (RAWW) imported

from overseas (Khan, 2021). In fabs, CHEM and RAWW are processed into WADP, which

flow to the distributors and, finally, for ATP, creating the final microchip end-products.

Any unsatisfied demand was assumed to be filled by imported wafer (WAIP) arriving

1

through one or more of the 48 modeled U.S.-based ports. The microchip SC in this study, thus, consists of the direct suppliers of CHEM, direct suppliers of RAWW, fabs, ports handling the WAIP, distributors, ATPPs, along with the major commodity flows, as depicted in Figure S1. The sources of data used in creating this SC materials flow representation are given in Table S1.

Figure. S1. General layout and Material flow in microchips Front-end fabrication SC network *Supply and Demand Attributes*

All suppliers of raw or middle-products, except fabs, were assumed to have unlimited capacity. The capacities at the identified fabs are listed in Table S2. The demand for WAFE of each inhouse ATP (IATP) is assumed equal to the current total capacity of the fabs owned by the IATP's parent company, and the demand for the only outsourced ATP (OSAT) in the U.S. is assumed to be the difference between the nationwide demand and the sum of all IATP demand.

Parameters for Cost Estimation

Parameters for microchip SC cost estimation are listed in Table S3.

Bill of Material (BOM)

According to TSMC (2012), to produce 14 million WADP, 15.4 million RAWW, 1.6

million cubic meters of process chemicals and 0.1 million tons of bulk chemicals are needed. Raw materials flow required for 12-inch equivalent wafer manufacturing is shown in Figure S2.

Figure S2. Major Material flow and BOM in microchips Front-end fabrication of 12-inch equivalent wafer

SC-RI 2: SC Structure and Commodity Flow Analysis

The SC as it exists currently and the SC as restructured or expanded for production growth, along with related commodity flows through the SC, if not known, are approximated through solution of a pair of mathematical models multi-commodity, multi-echelon, fixed-charge facility location problems in the SC-structure and commodity flow analysis submodule, an approach used in prior works that have replicated SCs for strategic applications (e.g., Smith et al., 2017, Ottemöller and Friedrich, 2019) and design (Hajibabai et al., 2014) efforts. This modeling approach determines an idealized SC network structure with flows of goods and materials given potential suppliers of raw materials and middle products, manufacturing plants, and distribution facilities. In expansion applications, added capacity levels are also determined. An objective of minimizing total costs guides these models. Detailed equations of the modeling are provided in the Appendix in the main

manuscript.

After solving the two facility location problems, the layout (selected entities and commodity flows) of the existing microchip and post-reshoring SCs are presented in Figure and S6, respectively. Note the emphasis on expanding operations in California, New Mexico, Arizona, Texas and portions of the Northeast. This aligns well with recent announcements for plant expansion (e.g., Wu and King (2020) and Sohn (2021)). The maps show the commodity flows in the microchip SC in 5 colors. The dominant result is shown in red and represents chemicals (CHEM) used in large quantities. The remaining lines associated with other commodity types are present in the figure, but with significantly lower flow volumes that are difficult to visualize. Thickness of these lines are tripled for visibility.

Figure S3. Comparison of Top 10 O-D pair flows in exiting and post-reshoring microchip SC

Figure S4. Comparison of top 10 inbound (a) and outbound (b) flows in existing and post-reshoring microchip SC

The aggregated value of the top 10 O-D pair commodity flows (Figure S3) and top 10 inbound ((a) of Figure S4) and outbound ((b) of Figure S4) flows during the 2-year case

study period are provided (with involved cities provided in Table S5).

Figure S5. Layout of existing microchip SC

Figure S6. Layout of post-reshoring microchip SC

SC-RI 3: Impact Analysis

The Impact Analysis module quantifies the impacts of increasing domestic production on national roadways. These impacts include: (1) traffic congestion, (2) roadway maintenance costs, (3) domestic fuel consumption and related emissions, and (4) truck accidents and hazmat incidents (Chen et al., 2023).

TMs and TLs of different SC segments for microchip SC are provided in Table S3.

Table S1. Data sources for the location of entities in each echelon

Jala Source	Comments
HIFLD database	They are the 48 continental ports in the Major Ports file
U.S. DHS, 2020).	with GRAND_TOTAL value over 10 million.
Khan(2021)	Locations for Entegris (24 locations), Emdgroup (9
	locations), and Dupont (39 locations) are identified
	from the official website of each corresponding
	company.
Platzer et al.(2020)	Plants names and locations in
	Table S2
Khan(2021)	In-house ATPPs owned by the fabs' parent company
	are assumed at the same locations of the fabs.
\ \ \	U.S. DHS, 2020). Chan(2021)

Table S2. Capacity for the major U.S.-based fabs

Company	Number	Location	Current	Comments
	of fabs		Capacity	
			(12-inch	
			equivalent)	
TSMC	1	Phoenix, AZ	0	According to (Shilov,
				2020), TSMC currently
				has no production in
<u> </u>		TD 1 TDX/	0	Phoenix, AZ
Samsung	0	Talyor,TX	0	According to (Sohn,
Samsung	0	Queens_Creek,AZ	0	2021), these are 4 possible
Samsung	0	Genesee_County,NY	0	locations Samsung may setup new fabs.
Samsung	0	Goodyear,AZ	0	
GlobalFoundries	2	Malta, NY	60,000	(Encyclopedia, 2021b)
GlobalFoundries	1	East Fishkill, NY	20,000	(Moorhead, 2019)
Intel	2	Chandler, AZ	98,000	(Flaherty, 2021)
Corporation				-
Intel	4	Hillsboro, OR	197,000	
Corporation				-
Intel	2	Albuquerque, NM	98,000	
Corporation				
Micron	1	Lehi, UT	70,000	(Encyclopedia, 2021a)
Technology				
Micron	2	Manassas, VA	40,000	(Robertson, 2003)
Technology				
Samsung	2	Austin, TX	92,000	(Encyclopedia, 2021a)
Skorpios	1	Austin, TX	10,000	-
Texas	1	Richardson, TX	30,000	(Lammers, 2003)
Instruments				-
Texas	1	Dallas, TX	10,000	
Instruments				

Table S3. Cost estimation for microchip SC

Tuble 88. Cost estimation for intercemp 80				
Cost type	Cost parameter	Parameter value	Comments	
Investment	Fabs fixed opening	\$800 million	Assumed	
cost	cost			
	Other facility fixed	\$240,000 per year	For a \$12/year/sqft. rental price	
	opening cost		(LoopNet.com, 2021) with the	
			industry space for a typical plant	
			at roughly 20,000 sqft. (Schmidt,	
			2020)	
	Fixed expansion	\$2 per day	Ivanov (2017)	
	cost for all facilities			
	Fabs expansion cost	\$2.72 billion	Estimated based on TSMC fab18	
	(a unit of 20,000		(capacity at 120,000 WPM) with	
	wafer per month)		total investment cost at \$17.08	
			billion	
	Other facilities	\$2 per day	Ivanov (2017)	

	expansion cost		
Transportation	TL rate	\$3.2/mile	(Williams, 2020)
cost	Truck Capacity	22.7 m^3	(SafeRack's Industrial Index,
			2020)
	Chemical's density	1000 kg/m ³	Most of the chemicals are
			fluids in normal pressure.
	Wafer packaging	0.34m*0.42m*0.33m	(Entegris, 2020)
		(25 unit)	
Procurement	Raw wafer and	\$117 per wafer	Based on material cost at
cost	chemical		\$1.18 billion, with shipments
			at 10.1 million for year 2019
			(TSMC, 2020)
Production	Fabs labor cost	\$1776 per wafer	Based on manufacturing cost
cost		•	at \$17.94 billion, with
			shipments at 10.1 million for
			year 2019 (TSMC, 2020)

Table S4. Comparison of TMs and TLs for microchip SC

TMs (Thousand)				TLs		
Commodity	Existing	Post-	Increase	Existing	Post-	Increase
		reshoring			reshoring	
CHEM	47171	46589	-582	174773	402091	227318
RAWW	485	1389	904	1691	3885	2194
WADP	780	1160	380	1541	3535	1994
WAIP	644	0	-644	1995	0	-1995
WAFE	58	58	0	3529	3529	0
Raw/Mid.	47656	47978	322	176464	405976	229512
Final prod.	1482	1218	-264	7065	7064	-1
Total	49138	49196	58	183529	413040	229511

Table S5 Selected entities in the microchip SC with host cities

Entity	City Name	Company name	Facility description
ID			
125	Chandler, AZ	Intel Corporation	Fab plant
126	Hillsboro, OR	Intel Corporation	Fab plant
127	Albuquerque, NM	Intel Corporation	Fab plant
130	Austin, TX	Samsung	Fab plant
128	Lehi, UT	Micron Technology	Fab plant
123	Malta, NY	GlobalFoundries	Fab plant
129	Manassas, VA	Micron Technology	Fab plant
132	Richardson, TX	Texas Instruments	Fab plant
124	East Fishkill, NY	GlobalFoundries	Fab plant
133	Dallas, TX	Texas Instruments	Fab plant

26	Tempe, AZ	Versum Materials US, LLC	Chemical supplier
24	San Jose, CA	Intermolecular, Inc.	Chemical supplier
22	Round Rock, TX	Entegris	Chemical supplier
6	Colorado Springs,	Entegris	Chemical supplier
65	Logan, Utah	DuPont Holographics	Chemical supplier
10	Bedford,MA	Entegris	Chemical supplier
38	Washington, D.C.	Micron Technology	Chemical supplier
49	Parlin, New Jersey	DuPont Holographics	Chemical supplier
184	Tempe, AZ	Amkor	Processed wafer distributor
72	Los Angeles, CA	Port	Raw wafer supplier
136	Los Angeles, CA	Port	Import port
118	Phoenix,AZ	TSMC	Fab plant

References

- Chen, Q., Miller-Hooks, E., and Huang, E. (2023) 'Assessing transportation infrastructure impacts from supply chain restructuring for increased domestic production of critical resources', *Computers and Industrial Engineering*, Vol. 178, p.109116.
- Encyclopedia (2021a) *List of semiconductor fabrication plants*. Available at: https://en.wikipedia.org/w/index.php?title=List_of_semiconductor_fabrication_pl antsandoldid=1051278618 (accessed 30 May 2024).
- Encyclopedia (2021b) *GlobalFoundries*. Available at: https://en.wikipedia.org/w/index.php?title=GlobalFoundriesandoldid=105255079 7 (accessed 30 May 2024).
- Entegris (2020) SB300 FOSB for 300 mm Wafers.
- Flaherty, N. (2021) *Top five chip makers dominate global wafer capacity*. Available at: https://www.eenewseurope.com/news/top-five-chip-makers-dominate-global-wafer-capacity (accessed 30 May 2024).
- IC Insights (2020) *Global Wafer Capacity 2021-2025*. Available at: https://www.icinsights.com/services/global-wafer-capacity/report-contents/ (accessed 30 May 2024).
- Khan, S. (2021) *The Semiconductor Supply Chain: Assessing National Competitiveness*. [online] Technology report, Center for Security and Emerging Technology.
- Lammers, D. (2003) *EETimes—Texas Instruments to keep next 300mm-wafer fab close to home*. Available at: https://www.eetimes.com/texas-instruments-to-keep-next-300mm-wafer-fab-close-to-home/ (accessed 30 May 2024).
- Moorhead, P. (2019). On Semiconductor and Globalfoundries Both Win With Its \$430M Fab 10 Deal. Available at: https://www.forbes.com/sites/patrickmoorhead/2019/05/15/on-semiconductor-and-globalfoundries-both-win-with-its-430m-fab-10-deal/ (accessed 30 May 2024).
- Platzer, M. D., Jr, J. F. S., and Sutter, K. M. (2019) Semiconductors: U.S. Industry,

- *Global Competition, and Federal Policy*. Technology report, No. R46581, Congressional Research Service.
- Robertson, J. (2003) *EETimes—Micron fab could ramp quickly for 300-mm wafers*. Available at: https://www.eetimes.com/micron-fab-could-ramp-quickly-for-300-mm-wafers/ (accessed 30 May 2024).
- SafeRack's Industrial Index (2020) Fuel Transport Safety—Truck Tanker Types / SafeRack's Industrial Index. [online] SafeRack. https://www.saferack.com/glossary/cargo-tanks-transport-safety/ (accessed 30 May 2024).
- Sohn, J. (2021). WSJ News Exclusive | Samsung to Choose Taylor, Texas, for \$17 Billion Chip-Making Factory. Available at: https://www.wsj.com/articles/samsung-to-choose-taylor-texas-for-17-billion-chipmaking-factory-11637627613 (accessed 30 May 2024).
- TSMC. (2020) TSMC 2019 Annual Report. TSMC.
- Williams, N. (2020). *An Analysis of the Operational Costs of Trucking: 2020 Update*. American Transportation Research Institute.
- Wu, D., and King, I. (2020). *TSMC Wins Approval From Phoenix for \$12 Billion Chip Plant*. Available at: https://www.bloomberg.com/news/articles/2020-11-19/tsmc-wins-approval-from-phoenix-for-12-billion-chip-plant (accessed 30 May 2024).