UNIVERSITY OF LJUBLJANA FACULTY OF MATHEMATICS AND PHYSICS

 $Financial\ mathematics-1 st\ cycle$

Anej Rozman, Tanja Luštrek Rich-Neighbor Edge Colorings

Term Paper in Finance Lab Short Presentation

Advisers: Assistant Professor Janoš Vidali, Professor Riste Škrekovski

1. Introduction

In this paper we set out to analyse an open conjecture in a modern graph theory problem known as rich-neighbor edge coloring.

Definition 1.1. In an edge coloring, an edge e is called rich if all edges adjacent to e have different colors. An edge coloring is called a rich-neighbor edge coloring if every edge is adjacent to some rich edge.

Definition 1.2. $X'_{rn}(G)$ denotes the smallest number of colors for which there exists a rich-neighbor edge coloring.

Conjecture 1.3. For every graph G of maximum degree Δ , $X'_{rn}(G) \leq 2\Delta - 1$ holds.

Example 1.4. Let's take a look at the Petersen graph and an example of a richneighbor edge coloring.

We can see that for the Petersen graph (which is 3-regular) $X'_{rn} \leq 5$.

2. Plan

 \Diamond

Our assingnment is to create an algorithm that 'proves' the conjecture for regular graphs of degree $4 \ge ($ So it finds a rich-neighbor edge coloring for every graph, for example for all 5-regular graphs with 5 veriticies), and to make a random search algorithm at the point where our algorithm is too slow.