Estimation Results of Bayesian hierarchical NHPP

$Miao\ Cai\ miao.cai@slu.edu$

2019-07-15

Contents

1		simulation on 2019-07-14	2
		beta	
		mu0	
	1.3	sigma0	3
	1.4	Fixed parameters	4
2		0 simulations	5
		beta	
		mu0	
		Sigma0	
	2.4	Fixed-effect parameters	7
3	Rea	al data estimation	8

1 100 simulation on 2019-07-14

1.1 beta

1.2 mu0

1.3 sigma0

1.4 Fixed parameters

2 3000 simulations

2.1 beta

2.2 mu0

2.3 Sigma0

2.4 Fixed-effect parameters

3 Real data estimation

parameters	drivers 1-50	drivers 101-150	drivers 151-200	drivers 251-300			
NHPP parameters							
eta	$0.9503 \ (0.0215)$	$0.8916 \ (0.0228)$	$0.9101 \ (0.0254)$	0.9599 (0.0225)			
μ_0	$6.1397 \ (0.3349)$	$6.6584 \ (0.3172)$	$5.6763 \ (0.3567)$	$6.3923 \ (0.3561)$			
σ_0	$0.2479 \ (0.0417)$	$0.312 \ (0.0467)$	$0.2405 \ (0.0424)$	$0.2371 \ (0.0416)$			
Covariate parameters							
driver age	$0.001 \ (0.0047)$	-0.002 (0.0041)	$0.004 \ (0.0043)$	0.0025 (0.0049)			
ping speed	-0.0075 (0.005)	-0.0058 (0.0051)	$0.0054 \ (0.0046)$	$-6e-04 \ (0.005)$			
precip intensity	$-3.7338 \ (3.3629)$	-3.8792 (3.0303)	-1.6292 (3.4311)	2.25 (3.849)			
precip probability	$0.5722 \ (0.3035)$	$0.4664 \ (0.3335)$	$0.3172 \ (0.3589)$	$-0.4808 \ (0.3005)$			
visibility	$0.0321 \ (0.0179)$	$-0.0066 \ (0.0214)$	$0.0205 \ (0.0254)$	$-0.0239 \ (0.0205)$			
wind speed	$0.0194 \ (0.0117)$	$-0.0139 \ (0.0128)$	$0.0031 \ (0.0157)$	$0.0222\ (0.0126)$			

Potential problems and further improvement

- A eight-hour threshold is not sufficient to separate shifts,
- Should I just delete the extremely long shifts due to the imperfect eight-hour threshold?
- Should I compute the time to event within shifts or trips?
- Imperfect repair between trips and within shifts?
- Bathtube shape intensity?
- Submodels by different types of critical events?