

L4931 SERIES

VERY LOW DROP VOLTAGE REGULATORS WITH INHIBIT

- VERY LOW DROPOUT VOLTAGE (0.4V)
- VERY LOW QUIESCENT CURRENT (TYP. 50 µA IN OFF MODE, 600µA IN ON MODE)
- OUTPUT CURRENT UP TO 250 mA
- LOGIC-CONTROLLED ELECTRONIC SHUTDOWN
- OUTPUT VOLTAGES OF 1.25; 1.5; 2.5; 2.7; 3; 3.3; 3.5; 4; 4.5; 4.7; 5; 5.2; 5.5; 6; 8; 12V
- INTERNAL CURRENT AND THERMAL LIMIT
- ONLY 2.2µF FOR STABILITY
- AVAILABLE IN ± 1% (AB) OR 2% (C) SELECTION AT 25°C
- SUPPLY VOLTAGE REJECTION: 70db TYP. FOR 5V VERSION
- TEMPERATURE RANGE: -40 TO 125°C

DESCRIPTION

The L4931 series are very Low Drop regulators available in TO-220, SO-8, DPAK, PPAK and TO-92 packages and in a wide range of output voltages.

The very Low Drop voltage (0.4V) and the very low quiescent current make them particularly suitable for Low Noise, Low Power applications and specially in battery powered systems.

In PPAK and SO-8 packages a Shutdown Logic Control function is available TTL compatible. This means that when the device is used as a local regulator, it is possible to put a part of the board in standby, decreasing the total power consumption. It requires only a 2.2 μ F capacitor for stability allowing space and cost saving.

SCHEMATIC DIAGRAM

January 2004 1/29

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _I	DC Input Voltage	20	V
Io	Output Current	Internally Limited	
P _{tot}	Power Dissipation	Internally Limited	
T _{stg}	Storage Temperature Range	-40 to 150	°C
T _{op}	Operating Junction Temperature Range	-40 to 125	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied

THERMAL DATA

Symbol	Parameter	TO-220	SO-8	DPAK	PPAK	TO-92	Unit
R _{thj-case}	Thermal Resistance Junction-case	3	20	8	8		°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	50	55(*)	100	100	200	°C/W

^(*) Considering 6 cm² of copper board heat-sink

CONNECTION DIAGRAM (top view)

ORDERING CODES

TO-220	SO-8	PPAK	DPAK	TO-92	OUTPUT VOLTAGE
L4931CV12 (*)	L4931CD12 (*)	L4931CPT12 (*)	L4931CDT12 (*)	L4931CZ12 (*)	1.25 V
L4931ABV12 (*)	L4931ABD12 (*)	L4931ABPT12 (*)	L4931ABDT12 (*)	L4931ABZ12 (*)	1.25 V
L4931CV15 (*)	L4931CD15 (*)	L4931CPT15 (*)	L4931CDT15 (*)	L4931CZ15 (*)	1.5 V
L4931ABV15 (*)	L4931ABD15 (*)	L4931ABPT15 (*)	L4931ABDT15 (*)	L4931ABZ15 (*)	1.5 V
L4931CV25 (*)	L4931CD25	L4931CPT25 (*)	L4931CDT25	L4931CZ25 (*)	2.5 V
L4931ABV25 (*)	L4931ABD25	L4931ABPT25 (*)	L4931ABDT25	L4931ABZ25 (*)	2.5 V
L4931CV27	L4931CD27	L4931CPT27	L4931CDT27	L4931CZ27	2.7 V
L4931ABV27	L4931ABD27	L4931ABPT27	L4931ABDT27	L4931ABZ27	2.7 V
L4931CV30	L4931CD30	L4931CPT30	L4931CDT30	L4931CZ30	3 V
L4931ABV30	L4931ABD30	L4931ABPT30	L4931ABDT30	L4931ABZ30	3 V
L4931CV33	L4931CD33	L4931CPT33	L4931CDT33	L4931CZ33	3.3 V
L4931ABV33	L4931ABD33	L4931ABPT33	L4931ABDT33	L4931ABZ33	3.3 V
L4931CV35	L4931CD35	L4931CPT35	L4931CDT35	L4931CZ35	3.5 V
L4931ABV35	L4931ABD35	L4931ABPT35	L4931ABDT35	L4931ABZ35	3.5 V
L4931CV40	L4931CD40	L4931CPT40	L4931CDT40	L4931CZ40	4 V
L4931ABV40	L4931ABD40	L4931ABPT40	L4931ABDT40	L4931ABZ40	4 V
L4931CV45 (*)	L4931CD45 (*)	L4931CPT45 (*)	L4931CDT45 (*)	L4931CZ45 (*)	4.5 V
L4931ABV45 (*)	L4931ABD45 (*)	L4931ABPT45 (*)	L4931ABDT45 (*)	L4931ABZ45 (*)	4.5 V
L4931CV47	L4931CD47	L4931CPT47	L4931CDT47	L4931CZ47	4.75 V
L4931ABV47	L4931ABD47	L4931ABPT47	L4931ABDT47	L4931ABZ47	4.75 V
L4931CV50	L4931CD50	L4931CPT50	L4931CDT50	L4931CZ50	5 V
L4931ABV50	L4931ABD50	L4931ABPT50	L4931ABDT50	L4931ABZ50	5 V
L4931CV52 (*)	L4931CD52 (*)	L4931CPT52 (*)	L4931CDT52 (*)	L4931CZ52 (*)	5.2 V
L4931ABV52 (*)	L4931ABD52 (*)	L4931ABPT52 (*)	L4931ABDT52 (*)	L4931ABZ52 (*)	5.2 V
L4931CV55 (*)	L4931CD55 (*)	L4931CPT55 (*)	L4931CDT55 (*)	L4931CZ55 (*)	5.5 V
L4931ABV55 (*)	L4931ABD55 (*)	L4931ABPT55 (*)	L4931ABDT55 (*)	L4931ABZ55 (*)	5.5 V
L4931CV60	L4931CD60	L4931CPT60	L4931CDT60	L4931CZ60	6 V
L4931ABV60	L4931ABD60	L4931ABPT60	L4931ABDT60	L4931ABZ60	6 V
L4931CV80	L4931CD80	L4931CPT80	L4931CDT80	L4931CZ80	8 V
L4931ABV80	L4931ABD80	L4931ABPT80	L4931ABDT80	L4931ABZ80	8 V
L4931CV120	L4931CD120	L4931CPT120	L4931CDT120	L4931CZ120	12 V
L4931ABV120	L4931ABD120	L4931ABPT120	L4931ABDT120	L4931ABZ120	12 V

^(*) Available on request.

TEST CIRCUITS

ELECTRICAL CHARACTERISTICS OF L4931ABxx12 (refer to the test circuits, T_J = 25°C, C_I = 0.1 μ F, C_O = 2.2 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 5 \text{ mA}$ $V_I = 3.3 \text{ V}$	1.238	1.25	1.263	V
		$I_O = 5 \text{ mA}$ $V_I = 3.3 \text{ V}$ $T_A = -25 \text{ to } 85^\circ$	1.225		1.275	
VI	Operating Input Voltage	I _O = 250 mA	2.5		20	V
l _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_{I} = 2.5 \text{ to } 20 \text{ V}$ $I_{O} = 0.5 \text{ mA}$		3	15	mV
ΔV _O (*)	Load Regulation	$V_1 = 2.7 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_1 = 2.7 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_{I} = 2.7 \text{ to } 20 \text{ V}$ $I_{O} = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		80		dB
		$V_1 = 3.7 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		77		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		1.25		V
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931Cxx12 (refer to the test circuits, $T_J = 25$ °C,

 C_{I} = 0.1 $\mu\text{F},\,C_{O}$ = 2.2 μF unless otherwise specified).

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 5 \text{ mA}$ $V_I = 3.3$	3 V	1.225	1.25	1.275	V
		$I_0 = 5 \text{ mA}$ $V_1 = 3.3$	3 V T _A =-25 to 85°C	1.2		1.3	l
VI	Operating Input Voltage	I _O = 250 mA		2.5		20	V
l _{out}	Output Current Limit				300		mA
ΔV_{O}	Line Regulation	$V_I = 2.5 \text{ to } 20 \text{ V}$	_O = 0.5 mA		3	18	mV
ΔV _O (*)	Load Regulation	V _I = 2.7 V	O = 0.5 to 250 mA		3	18	mV
I _d	Quiescent Current	$V_1 = 2.7 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$			0.6	1	mA
	ON MODE	$V_I = 2.7 \text{ to } 20 \text{ V}$	_O = 250 mA		4	6	ı
	OFF MODE	V _I = 6 V			50	100	μA
SVR	Supply Voltage Rejection	I _O = 5 mA	f = 120 Hz		80		dB
		$V_1 = 3.7 \pm 1 \text{ V}$	f = 1 KHz		77		i
			f = 10 KHz		55		1
eN	Output Noise Voltage	B =10 Hz to 100 KHz			50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA			1.25		V
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C				0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C		2			V
l _l	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$			10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω	$I_{O} = 0 \text{ to } 250 \text{ mA}$	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931ABxx15 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _O	Output Voltage	$I_{O} = 5 \text{ mA}$ $V_{I} = 3.5 \text{ V}$	1.485	1.5	1.515	V
		$I_O = 5 \text{ mA}$ $V_I = 3.5 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	1.47		1.53	
VI	Operating Input Voltage	I _O = 250 mA	2.5		20	V
l _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 2.5 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3	15	mV
ΔV _O (*)	Load Regulation	$V_I = 2.7 \text{ V}$ $I_O = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_{I} = 2.7 \text{ to } 20 \text{ V}$ $I_{O} = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_1 = 2.7 \text{ to } 20 \text{ V}$ $I_0 = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μΑ
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		79		dB
		$V_1 = 3.7 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		76		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		1		V
V_{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931Cxx15 (refer to the test circuits, $T_J = 25^{\circ}$ C, $C_J = 0.1 \text{ µF}$ $C_D = 2.2 \text{ µF unless otherwise specified})$

$C_1 = 0.1 \ \mu\text{F}, C_0 = 2.2 \ \mu\text{F} \text{ unless otherwise specified)}.$					
Symbol	Parameter	Test Co			

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 5 \text{ mA}$ $V_I = 3.5$	5 V	1.47	1.5	1.53	V
		$I_0 = 5 \text{ mA}$ $V_1 = 3.5$	5 V T _A =-25 to 85°C	1.44		1.56	
V _I	Operating Input Voltage	I _O = 250 mA		2.5		20	V
l _{out}	Output Current Limit				300		mA
ΔV_{O}	Line Regulation	$V_I = 2.5 \text{ to } 20 \text{ V}$	_O = 0.5 mA		3	18	mV
ΔV _O (*)	Load Regulation	V _I = 2.7 V	_O = 0.5 to 250 mA		3	18	mV
I _d	Quiescent Current	$V_I = 2.7 \text{ to } 20 \text{ V}$	O = 0 mA		0.6	1	mA
	ON MODE	$V_I = 2.7 \text{ to } 20 \text{ V}$	_O = 250 mA		4	6	
	OFF MODE	V _I = 6 V			50	100	μA
SVR	Supply Voltage Rejection	I _O = 5 mA	f = 120 Hz		79		dB
		$V_1 = 3.7 \pm 1 \text{ V}$	f = 1 KHz		76		
			f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz	-		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA			1		V
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C				0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C		2			V
l _l	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$			10		μA
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω	$I_{O} = 0 \text{ to } 250 \text{ mA}$	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931ABxx25 (refer to the test circuits, $T_J = 25$ °C, $C_I = 0.1 \ \mu F, C_O = 2.2 \ \mu F$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 5 \text{ mA}$ $V_I = 4.5 \text{ V}$	2.475	2.5	2.525	V
		$I_O = 5 \text{ mA}$ $V_I = 4.5 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	2.45		2.55	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 3.2 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3	15	mV
ΔV _O (*)	Load Regulation	$V_1 = 3.4 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_1 = 3.4 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	V _I = 3.4 to 20 V I _O = 250 mA		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		75		dB
		$V_1 = 4.4 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		72		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
C _O	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931Cxx25 (refer to the test circuits, $T_J = 25$ °C,

 C_{I} = 0.1 $\mu\text{F},\,C_{O}$ = 2.2 μF unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_{O} = 5 \text{ mA}$ $V_{I} = 4.5 \text{ V}$	2.45	2.5	2.55	V
		$I_O = 5 \text{ mA}$ $V_I = 4.5 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	2.4		2.6	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 3.3 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3	18	mV
ΔV _O (*)	Load Regulation	$V_1 = 3.5 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	18	mV
I _d	Quiescent Current	$V_1 = 3.5 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	V _I = 3.5 to 20 V I _O = 250 mA		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		75		dB
		$V_1 = 4.4 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		72		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931ABxx27 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_0 = 5 \text{ mA}$ $V_1 = 4.7 \text{ V}$	2.673	2.7	2.727	V
		$I_O = 5 \text{ mA}$ $V_I = 4.7 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	2.646		2.754	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 3.4 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3	15	mV
ΔV _O (*)	Load Regulation	$V_1 = 3.6 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_1 = 3.6 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_1 = 3.6 \text{ to } 20 \text{ V}$ $I_0 = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	I _O = 5 mA		74		dB
		$V_1 = 4.6 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		71		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	$I_{O} = 250 \text{ mA}$		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μA
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I_{O} = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931Cxx27 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1~\mu F$, $C_O = 2.2~\mu F$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_{O} = 5 \text{ mA}$ $V_{I} = 4.7 \text{ V}$	2.646	2.7	2.754	V
		$I_O = 5 \text{ mA}$ $V_I = 4.7 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	2.592		2.808	
V _I	Operating Input Voltage	I _O = 250 mA			20	V
l _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 3.4 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3	18	mV
$\Delta V_{O}(*)$	Load Regulation	$V_1 = 3.6 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	18	mV
I _d	Quiescent Current	$V_1 = 3.6 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_1 = 3.6 \text{ to } 20 \text{ V}$ $I_0 = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		74		dB
		$V_1 = 4.6 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		71		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931ABxx30 (refer to the test circuits, $T_J = 25$ °C, C_{I} = 0.1 $\mu\text{F},\,C_{O}$ = 2.2 μF unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 5 \text{ mA}$ $V_I = 5 \text{ V}$	2.97	3	3.03	V
		$I_O = 5 \text{ mA}$ $V_I = 5 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	2.94		3.06	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 3.7 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3	15	mV
ΔV _O (*)	Load Regulation	$V_1 = 3.9 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_1 = 3.9 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_1 = 3.9 \text{ to } 20 \text{ V}$ $I_0 = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		74		dB
		$V_1 = 4.9 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		71		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μA
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931Cxx30 (refer to the test circuits, $T_J = 25$ °C,

 C_{I} = 0.1 $\mu\text{F},\,C_{O}$ = 2.2 μF unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 5 \text{ mA}$ $V_I = 5 \text{ V}$	2.94	3	3.06	V
		$I_O = 5 \text{ mA}$ $V_I = 5 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	2.88		3.12	
VI	Operating Input Voltage	I _O = 250 mA			20	V
l _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 3.8 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3	18	mV
ΔV _O (*)	Load Regulation	$V_1 = 4 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	18	mV
I _d	Quiescent Current	$V_I = 4 \text{ to } 20 \text{ V}$ $I_O = 0 \text{ mA}$		0.6	1	mA
	ON MODE	V _I = 4 to 20 V I _O = 250 mA		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		74		dB
		$V_I = 5 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		71		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
l _l	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μA
Со	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931ABxx33 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1~\mu\text{F}$, $C_O = 2.2~\mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _O	Output Voltage	$I_{O} = 5 \text{ mA}$ $V_{I} = 5.3 \text{ V}$	3.267	3.3	3.333	V
		$I_O = 5 \text{ mA}$ $V_I = 5.3 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	3.234		3.366	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 4 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3	15	mV
ΔV _O (*)	Load Regulation	$V_1 = 4.2 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_1 = 4.2 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_1 = 4.2 \text{ to } 20 \text{ V}$ $I_0 = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	I _O = 5 mA		73		dB
		$V_1 = 5.2 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		70		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931Cxx33 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1~\mu F$, $C_O = 2.2~\mu F$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_0 = 5 \text{ mA}$ $V_1 = 5.3 \text{ V}$	3.234	3.3	3.366	V
		$I_O = 5 \text{ mA}$ $V_I = 5.3 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	3.168		3.432	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 4.1 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3	18	mV
ΔV _O (*)	Load Regulation	$V_1 = 4.3 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	18	mV
I _d	Quiescent Current	$V_1 = 4.3 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_1 = 4.3 \text{ to } 20 \text{ V}$ $I_0 = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μΑ
SVR	Supply Voltage Rejection	I _O = 5 mA		73		dB
		$V_1 = 5.3 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		70		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	$I_{O} = 250 \text{ mA}$		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I ₁	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10	_	μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931ABxx35 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_0 = 5 \text{ mA}$ $V_1 = 5.5 \text{ V}$	3.465	3.5	3.535	V
		$I_O = 5 \text{ mA}$ $V_I = 5.5 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	3.43		3.57	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 4.2 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3	15	mV
ΔV _O (*)	Load Regulation	$V_1 = 4.4 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_1 = 4.4 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_1 = 4.4 \text{ to } 20 \text{ V}$ $I_0 = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		73		dB
		$V_1 = 5.4 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		70		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	$I_{O} = 250 \text{ mA}$		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
C _O	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I_{O} = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931Cxx35 (refer to the test circuits, $T_J = 25$ °C,

 C_{I} = 0.1 $\mu\text{F},\,C_{O}$ = 2.2 μF unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_{O} = 5 \text{ mA}$ $V_{I} = 5.5 \text{ V}$	3.43	3.5	3.57	V
		$I_O = 5 \text{ mA}$ $V_I = 5.5 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	3.36		3.64	
V _I	Operating Input Voltage	I _O = 250 mA			20	V
l _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 4.3 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3	18	mV
ΔV _O (*)	Load Regulation	$V_1 = 4.5 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	18	mV
I _d	Quiescent Current	$V_1 = 4.5 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_1 = 4.5 \text{ to } 20 \text{ V}$ $I_0 = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		73		dB
		$V_1 = 5.5 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		70		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
II	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931ABxx40 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 5 \text{ mA}$ $V_I = 6 \text{ V}$	3.96	4	4.04	V
		$I_O = 5 \text{ mA}$ $V_I = 6 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	3.92		4.08	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 4.7 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3.5	17.5	mV
ΔV _O (*)	Load Regulation	$V_1 = 4.9 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_1 = 4.9 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_1 = 4.9 \text{ to } 20 \text{ V}$ $I_0 = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	I _O = 5 mA		72		dB
		$V_1 = 5.9 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		69		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931Cxx40 (refer to the test circuits, $T_J = 25$ °C,

 C_{I} = 0.1 $\mu\text{F},\,C_{O}$ = 2.2 μF unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 5 \text{ mA}$ $V_I = 6 \text{ V}$	3.92	4	4.08	V
		$I_O = 5 \text{ mA}$ $V_I = 6 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	3.84		4.16	
VI	Operating Input Voltage	I _O = 250 mA			20	V
l _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 4.8 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3.5	21	mV
ΔV _O (*)	Load Regulation	$V_1 = 5 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	18	mV
I _d	Quiescent Current	$V_I = 5 \text{ to } 20 \text{ V}$ $I_O = 0 \text{ mA}$		0.6	1	mA
	ON MODE	V _I = 5 to 20 V I _O = 250 mA		4	6	
	OFF MODE	V _I = 6 V		50	100	μΑ
SVR	Supply Voltage Rejection	I _O = 5 mA		72		dB
		$V_I = 6 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		69		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V_{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
l _l	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931ABxx45 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_{O} = 5 \text{ mA}$ $V_{I} = 6.5 \text{ V}$	4.455	4.5	4.545	V
		$I_O = 5 \text{ mA}$ $V_I = 6.5 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	4.41		4.59	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 5.2 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3.5	17.5	mV
ΔV _O (*)	Load Regulation	$V_1 = 5.4 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_1 = 5.4 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_1 = 5.4 \text{ to } 20 \text{ V}$ $I_0 = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	I _O = 5 mA		71		dB
		$V_1 = 6.4 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		68		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V_{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931Cxx45 (refer to the test circuits, $T_J = 25$ °C,

 C_{I} = 0.1 $\mu\text{F},\,C_{O}$ = 2.2 μF unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_{O} = 5 \text{ mA}$ $V_{I} = 6.5 \text{ V}$	4.41	4.5	4.59	V
		$I_O = 5 \text{ mA}$ $V_I = 6.5 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	4.32		4.68	
V _I	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 5.3 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3.5	21	mV
ΔV _O (*)	Load Regulation	$V_1 = 5.5 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	18	mV
I _d	Quiescent Current	$V_1 = 5.5 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	V _I = 5.5 to 20 V I _O = 250 mA		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		71		dB
		$V_{I} = 6.5 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		68		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931ABxx47 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_{O} = 5 \text{ mA}$ $V_{I} = 6.7 \text{ V}$	4.653	4.7	4.747	V
		$I_O = 5 \text{ mA}$ $V_I = 6.7 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	4.606		4.794	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 5.4 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3.5	17.5	mV
ΔV _O (*)	Load Regulation	$V_1 = 5.6 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_1 = 5.6 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	V _I = 5.6 to 20 V I _O = 250 mA		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	I _O = 5 mA		71		dB
		$V_{I} = 6.6 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		68		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125 ^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931Cxx47 (refer to the test circuits, T_J = 25°C, C_I = 0.1 μ F, C_O = 2.2 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_{O} = 5 \text{ mA}$ $V_{I} = 6.7 \text{ V}$	4.606	4.7	4.794	V
		$I_O = 5 \text{ mA}$ $V_I = 6.7 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	4.512		4.888	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 5.5 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3.5	21	mV
ΔV _O (*)	Load Regulation	$V_1 = 5.7 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	18	mV
I _d	Quiescent Current	$V_1 = 5.7 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_1 = 5.7 \text{ to } 20 \text{ V}$ $I_0 = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		71		dB
		$V_1 = 6.7 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		68		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	$I_{O} = 250 \text{ mA}$		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931ABxx50 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 5 \text{ mA}$ $V_I = 7 \text{ V}$	4.95	5	5.05	V
		$I_O = 5 \text{ mA}$ $V_I = 7 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	4.9		5.1	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 5.8 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3.5	17.5	mV
ΔV _O (*)	Load Regulation	$V_1 = 6 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_1 = 6 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_1 = 6 \text{ to } 20 \text{ V}$ $I_0 = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	I _O = 5 mA		70		dB
		$V_I = 7 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		67		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I_{O} = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931Cxx50 (refer to the test circuits, $T_J = 25$ °C,

 C_{I} = 0.1 $\mu\text{F},\,C_{O}$ = 2.2 μF unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 5 \text{ mA}$ $V_I = 7 \text{ V}$	4.9	5	5.1	V
		$I_O = 5 \text{ mA}$ $V_I = 7 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	4.8		5.2	
V _I	Operating Input Voltage	I _O = 250 mA			20	V
l _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 5.8 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		3.5	17.5	mV
ΔV _O (*)	Load Regulation	$V_1 = 6 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_1 = 6 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_1 = 6 \text{ to } 20 \text{ V}$ $I_0 = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		70		dB
		$V_I = 7 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		67		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	$I_{O} = 250 \text{ mA}$		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931ABxx52 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_0 = 5 \text{ mA}$ $V_1 = 7.2 \text{ V}$	5.148	5.2	5.252	V
		$I_O = 5 \text{ mA}$ $V_I = 7.2 \text{ V}$ $T_A = -25 \text{ to}$	o 85°C 5.096		5.304	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_I = 6 \text{ to } 20 \text{ V}$ $I_O = 0.5 \text{ mA}$		3.5	17.5	mV
ΔV _O (*)	Load Regulation	$V_1 = 6.2 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ r}$	mA	3	15	mV
I _d	Quiescent Current	$V_I = 6.2 \text{ to } 20 \text{ V}$ $I_O = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_I = 6.2 \text{ to } 20 \text{ V}$ $I_O = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		70		dB
		$V_1 = 7.2 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		67		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	$I_O = 250 \text{ mA}$		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$	С		0.8	
V_{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μA
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I_{O} = 0 to 250	0 mA 2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931Cxx52 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Co	onditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_0 = 5 \text{ mA}$ $V_1 = 7.2$	2 V	5.096	5.2	5.304	V
		$I_0 = 5 \text{ mA}$ $V_1 = 7.2$	2 V T _A =-25 to 85°C	4.992		5.408	
V _I	Operating Input Voltage	I _O = 250 mA				20	V
l _{out}	Output Current Limit				300		mA
ΔV_{O}	Line Regulation	V _I = 6 to 20 V	$I_{\rm I} = 6 \text{ to } 20 \text{ V}$ $I_{\rm O} = 0.5 \text{ mA}$		3.5	21	mV
ΔV _O (*)	Load Regulation	V _I = 6.2 V	_O = 0.5 to 250 mA		3	18	mV
I _d	Quiescent Current	V _I = 6.2 to 20 V I _O = 0 mA			0.6	1	mA
	ON MODE	$V_I = 6.2 \text{ to } 20 \text{ V}$	_O = 250 mA		4	6	
	OFF MODE	V _I = 6 V			50	100	μA
SVR	Supply Voltage Rejection	I _O = 5 mA	f = 120 Hz		70		dB
		$V_1 = 7.2 \pm 1 \text{ V}$	f = 1 KHz		67		
			f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz	7		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA			0.4	0.6	V
		I _O = 250 mA	Γ _J = -40 to 125°C			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C				0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C		2			V
l _l	Control Input Current	$V_{I} = 6 V, V_{C} = 6$	V		10		μA
Co	Output Bypass Capacitance	ESR = 0.1 to 10Ω	$I_{O} = 0$ to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931ABxx55 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_{O} = 5 \text{ mA}$ $V_{I} = 7.5 \text{ V}$	5.445	5.5	5.555	V
		$I_O = 5 \text{ mA}$ $V_I = 7.5 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	5.39		5.61	
VI	Operating Input Voltage	I _O = 250 mA			20	V
l _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_I = 6.3 \text{ to } 20 \text{ V}$ $I_O = 0.5 \text{ mA}$		3.5	17.5	mV
$\Delta V_{O}(*)$	Load Regulation	$V_1 = 6.5 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_{I} = 6.5 \text{ to } 20 \text{ V}$ $I_{O} = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_I = 6.5 \text{ to } 20 \text{ V}$ $I_O = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	I _O = 5 mA f = 120 Hz		70		dB
		$V_1 = 7.5 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		67		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V_{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Со	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931Cxx55 (refer to the test circuits, $T_J = 25$ °C,

 C_{I} = 0.1 $\mu\text{F},\,C_{O}$ = 2.2 μF unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_{O} = 5 \text{ mA}$ $V_{I} = 7.5 \text{ V}$	5.39	5.5	5.61	V
		$I_O = 5 \text{ mA}$ $V_I = 7.5 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	5.28		5.72	
V _I	Operating Input Voltage	I _O = 250 mA			20	V
l _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_I = 6.3 \text{ to } 20 \text{ V}$ $I_O = 0.5 \text{ mA}$		3.5	21	mV
ΔV _O (*)	Load Regulation	$V_1 = 6.5 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	18	mV
I _d	Quiescent Current	$V_I = 6.5 \text{ to } 20 \text{ V}$ $I_O = 0 \text{ mA}$		0.6	1	mA
	ON MODE	$V_I = 6.5 \text{ to } 20 \text{ V}$ $I_O = 250 \text{ mA}$		4	6	
	OFF MODE	V _I = 6 V		50	100	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		70		dB
		$V_1 = 7.5 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		67		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	$I_{O} = 250 \text{ mA}$		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μA
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931ABxx60 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 5 \text{ mA}$ $V_I = 8 \text{ V}$	5.94	6	6.06	V
		$I_O = 5 \text{ mA}$ $V_I = 8 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	5.88		6.12	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 6.8 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		4	20	mV
ΔV _O (*)	Load Regulation	$V_1 = 7 \text{ V}$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_I = 7 \text{ to } 20 \text{ V}$ $I_O = 0 \text{ mA}$		0.8	1.6	mA
	ON MODE	$V_1 = 7 \text{ to } 20 \text{ V}$ $I_0 = 250 \text{ mA}$		4.5	7	
	OFF MODE	V _I = 6 V		70	140	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		69		dB
		$V_I = 8 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		66		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	$I_{O} = 250 \text{ mA}$		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μA
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931Cxx60 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1~\mu F$, $C_O = 2.2~\mu F$ unless otherwise specified).

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_{O} = 5 \text{ mA}$ $V_{I} = 8 \text{ V}$	1	5.88	6	6.12	V
		$I_O = 5 \text{ mA}$ $V_I = 8 \text{ V}$	T _A =-25 to 85°C	5.76		6.24	
V _I	Operating Input Voltage	I _O = 250 mA				20	V
l _{out}	Output Current Limit				300		mA
ΔV_{O}	Line Regulation	$V_1 = 6.8 \text{ to } 20 \text{ V}$ I_0	_O = 0.5 mA		4	24	mV
ΔV _O (*)	Load Regulation	$V_1 = 7 V$ I_0	_O = 0.5 to 250 mA		3	18	mV
I _d	Quiescent Current	$V_1 = 7 \text{ to } 20 \text{ V}$ I_0	_O = 0 mA		0.8	1.6	mA
	ON MODE	$V_1 = 7 \text{ to } 20 \text{ V}$ I_0	_O = 250 mA		4.5	7	
	OFF MODE	V _I = 6 V			70	140	μA
SVR	Supply Voltage Rejection	I _O = 5 mA	f = 120 Hz		69		dB
		$V_1 = 8 \pm 1 \text{ V}$	f = 1 KHz		66		
			f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz			50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA			0.4	0.6	V
		I _O = 250 mA T	_J = -40 to 125°C			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C				0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C		2			V
I _I	Control Input Current	$V_{I} = 6 \text{ V}, \qquad V_{C} = 6 \text{ V}$	V		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω	I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931ABxx80 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_O = 5 \text{ mA}$ $V_I = 10 \text{ V}$	7.92	8	8.08	V
		$I_O = 5 \text{ mA}$ $V_I = 10 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	7.84		8.16	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 8.8 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		4	20	mV
ΔV _O (*)	Load Regulation	$V_1 = 9 V$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_I = 9 \text{ to } 20 \text{ V}$ $I_O = 0 \text{ mA}$		0.8	1.6	mA
	ON MODE	V _I = 9 to 20 V I _O = 250 mA		4.5	7	
	OFF MODE	V _I = 6 V		70	140	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		67		dB
		$V_I = 10 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		64		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	$I_{O} = 250 \text{ mA}$		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
C _O	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931Cxx80 (refer to the test circuits, $T_J = 25$ °C,

 C_{I} = 0.1 $\mu\text{F},\,C_{O}$ = 2.2 μF unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	$I_{O} = 5 \text{ mA}$ $V_{I} = 10 \text{ V}$	7.84	8	8.16	V
		$I_O = 5 \text{ mA}$ $V_I = 10 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	7.68		8.32	
VI	Operating Input Voltage	I _O = 250 mA			20	V
l _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 8.9 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		4	24	mV
ΔV _O (*)	Load Regulation	$V_I = 9.1 \text{ V}$ $I_O = 0.5 \text{ to } 250 \text{ mA}$		3	18	mV
I _d	Quiescent Current	$V_1 = 9.1 \text{ to } 20 \text{ V}$ $I_0 = 0 \text{ mA}$		0.8	1.6	mA
	ON MODE	$V_1 = 9.1 \text{ to } 20 \text{ V}$ $I_0 = 250 \text{ mA}$		4.5	7	
	OFF MODE	V _I = 6 V		70	140	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		67		dB
		$V_1 = 10.1 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		64		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
l _l	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μA
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

ELECTRICAL CHARACTERISTICS OF L4931ABxx120 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1 \ \mu\text{F}$, $C_O = 2.2 \ \mu\text{F}$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	I _O = 5 mA V _I = 14 V	11.88	12	12.12	V
		$I_O = 5 \text{ mA}$ $V_I = 14 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	11.76		12.24	
VI	Operating Input Voltage	I _O = 250 mA			20	V
I _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_I = 12.8 \text{ to } 20 \text{ V}$ $I_O = 0.5 \text{ mA}$		4	20	mV
ΔV _O (*)	Load Regulation	$V_I = 13 \text{ V}$ $I_O = 0.5 \text{ to } 250 \text{ mA}$		3	15	mV
I _d	Quiescent Current	$V_{I} = 13 \text{ to } 20 \text{ V}$ $I_{O} = 0 \text{ mA}$		0.8	1.6	mA
	ON MODE	V _I = 13 to 20 V I _O = 250 mA		4.5	7	
	OFF MODE	V _I = 6 V		90	180	μA
SVR	Supply Voltage Rejection	I _O = 5 mA		64		dB
		$V_I = 14 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		61		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I _I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
C _O	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

L4931 SERIES

ELECTRICAL CHARACTERISTICS OF L4931Cxx120 (refer to the test circuits, $T_J = 25^{\circ}C$, $C_I = 0.1~\mu F$, $C_O = 2.2~\mu F$ unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	I _O = 5 mA V _I = 14 V	11.76	12	12.24	V
		$I_O = 5 \text{ mA}$ $V_I = 14 \text{ V}$ $T_A = -25 \text{ to } 85^{\circ}\text{C}$	11.52		12.48	
V _I	Operating Input Voltage	I _O = 250 mA			20	V
l _{out}	Output Current Limit			300		mA
ΔV_{O}	Line Regulation	$V_1 = 12.9 \text{ to } 20 \text{ V}$ $I_0 = 0.5 \text{ mA}$		4	24	mV
ΔV _O (*)	Load Regulation	$V_I = 13.1 \text{ V}$ $I_O = 0.5 \text{ to } 250 \text{ mA}$		3	18	mV
I _d	Quiescent Current	V _I = 13.1 to 20 V I _O = 0 mA		0.8	1.6	mA
	ON MODE	V _I = 13.1 to 20 V I _O = 250 mA		4.5	7	
	OFF MODE	V _I = 6 V		90	180	μA
SVR	Supply Voltage Rejection	$I_O = 5 \text{ mA}$ $f = 120 \text{ Hz}$		64		dB
		$V_1 = 14.1 \pm 1 \text{ V}$ $f = 1 \text{ KHz}$		61		
		f = 10 KHz		55		
eN	Output Noise Voltage	B =10 Hz to 100 KHz		50		μV
V _d (*)	Dropout Voltage	I _O = 250 mA		0.4	0.6	V
		$I_{O} = 250 \text{ mA}$ $T_{J} = -40 \text{ to } 125^{\circ}\text{C}$			0.8	
V _{IL}	Control Input Logic Low	T _A = -40 to 125°C			0.8	V
V _{IH}	Control Input Logic High	T _A = -40 to 125°C	2			V
I	Control Input Current	$V_I = 6 \text{ V}, \qquad V_C = 6 \text{ V}$		10		μΑ
Co	Output Bypass Capacitance	ESR = 0.1 to 10 Ω I _O = 0 to 250 mA	2	10		μF

^(*) For SO-8 package the maximum limit of load regulation and dropout is increased by 20 mV.

Figure 1 : Supply Current vs Output Current

Figure 2 : Dropout Voltage vs Temperature

Figure 3: Supply Current vs Input Voltage

Figure 4: Supply Current vs Temperature

Figure 5 : Short Circuit Current vs Dropout Voltage

Figure 6 : S.V.R. vs Input Voltage Signal Frequency

TO-220 MECHANICAL DATA

DIM.		mm.			inch			
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
Α	4.40		4.60	0.173		0.181		
С	1.23		1.32	0.048		0.051		
D	2.40		2.72	0.094		0.107		
D1		1.27			0.050			
Е	0.49		0.70	0.019		0.027		
F	0.61		0.88	0.024		0.034		
F1	1.14		1.70	0.044		0.067		
F2	1.14		1.70	0.044		0.067		
G	4.95		5.15	0.194		0.203		
G1	2.4		2.7	0.094		0.106		
H2	10.0		10.40	0.393		0.409		
L2		16.4			0.645			
L4	13.0		14.0	0.511		0.551		
L5	2.65		2.95	0.104		0.116		
L6	15.25		15.75	0.600		0.620		
L7	6.2		6.6	0.244		0.260		
L9	3.5		3.93	0.137		0.154		
DIA.	3.75		3.85	0.147		0.151		

TO-92 MECHANICA DATA

DIM.		mm.		mils		
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.32		4.95	170.1		194.9
b	0.36		0.51	14.2		20.1
D	4.45		4.95	175.2		194.9
E	3.30		3.94	129.9		155.1
е	2.41		2.67	94.9		105.1
e1	1.14		1.40	44.9		55.1
L	12.7		15.49	500.0		609.8
R	2.16		2.41	85.0		94.9
S1	0.92		1.52	36.2		59.8
W	0.41		0.56	16.1		22.0

SO-8 MECHANICAL DATA

DIM.		mm.			inch		
טוועו.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А	1.35		1.75	0.053		0.069	
A1	0.10		0.25	0.04		0.010	
A2	1.10		1.65	0.043		0.065	
В	0.33		0.51	0.013		0.020	
С	0.19		0.25	0.007		0.010	
D	4.80		5.00	0.189		0.197	
E	3.80		4.00	0.150		0.157	
е		1.27			0.050		
Н	5.80		6.20	0.228		0.244	
h	0.25		0.50	0.010		0.020	
L	0.40		1.27	0.016		0.050	
k			8° (n	nax.)			
ddd			0.1			0.04	

DPAK MECHANICAL DATA

DIM.		mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
В	0.64		0.9	0.025		0.035	
B2	5.2		5.4	0.204		0.212	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
D1		5.1			0.200		
E	6.4		6.6	0.252		0.260	
E1		4.7			0.185		
е		2.28			0.090		
e1	4.4		4.6	0.173		0.181	
Н	9.35		10.1	0.368		0.397	
L		1			0.039		
(L1)		2.8			0.110		
L2		0.8			0.031		
L4	0.6		1	0.023		0.039	

PPAK MECHANICAL DATA

DIM	mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A2	0.03		0.23	0.001		0.009
В	0.4		0.6	0.015		0.023
B2	5.2		5.4	0.204		0.212
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
E	6.4		6.6	0.252		0.260
G	4.9		5.25	0.193		0.206
G1	2.38		2.7	0.093		0.106
Н	9.35		10.1	0.368		0.397
L2		0.8			0.031	
L4	0.6		1	0.023		0.039

Tape & Reel DPAK-PPAK MECHANICAL DATA

DIM.		mm.			inch	
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.80	6.90	7.00	0.268	0.272	0.2.76
Во	10.40	10.50	10.60	0.409	0.413	0.417
Ko	2.55	2.65	2.75	0.100	0.104	0.105
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	7.9	8.0	8.1	0.311	0.315	0.319

Tape & R	Reel SO-8	MECHANI	CAL DATA
----------	-----------	----------------	----------

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	8.1		8.5	0.319		0.335
Во	5.5		5.9	0.216		0.232
Ko	2.1		2.3	0.082		0.090
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

