Perturbation Methods (MAT 1572)

Winter Semester 2017/2018

List 4

1. Show that regular perturbation fails on the boundary value problem

$$\varepsilon y'' + 2y' + y = 0$$
, $0 < t < 1$, $0 < \varepsilon \ll 1$

with y(0) = 0, y(1) = 1. Find the exact solution and sketch it for $\varepsilon = 0.05$ and $\varepsilon = 0.005$. If $t = O(\varepsilon)$, show that $\varepsilon y''$ is large. If t = O(1), show that $\varepsilon y'' = O(1)$. Find an inner and an outer approximation of the exact solution. Find a uniform approximation of the exact solution.

2. Use singular perturbation methods to obtain a uniform approximate solutions to the problems

(a)
$$\varepsilon y'' + t^{\frac{1}{3}}y' + y = 0, \ y(0) = 0, \ y(1) = e^{-\frac{3}{2}}$$

(b)
$$\varepsilon y'' - (2t+1)y' + 2y = 0, y(0) = 1, y(1) = 0$$

In each case consider 0 < t < 1 and $0 < \varepsilon \ll 1$.

3. Use the singular perturbation method to obtain a uniform approximate solution to the following problems

(a)
$$\varepsilon y'' + (t - \frac{1}{2})y = 0$$
, $y(0) = 1$, $y(1) = 2$,

(b)
$$\varepsilon y'' - (2 - t^2)y = -1$$
, $y(-1) = 1$, $y(1) = 1$.

4. Find a uniformly valid approximation to

$$\varepsilon y''(t) - a(t)y(t) = f(t) \qquad 0 < t < 1$$

$$y(0) = 0, \ y(b) = -f(1)/a(1),$$

where $0 < \varepsilon \ll 1$ and a > 0, and a and f have infinitely many derivatives on \mathbb{R} .