Coding Theory

CO 331

Prof. Alfred John Menezes

Preface

Disclaimer Much of the information on this set of notes is transcribed directly/indirectly from the lectures of CO 331 during Winter 2020 as well as other related resources. I do not make any warranties about the completeness, reliability and accuracy of this set of notes. Use at your own risk.

For any questions, send me an email via https://notes.sibeliusp.com/contact/.

You can find my notes for other courses on https://notes.sibeliusp.com/.

Sibelius Peng

Contents

Preface					
0	\mathbf{Pre}		3		
1	Intr	ction & Fundamentals 5			
	1.1	Decoding Strategy	8		
		1.1.1 Nearest Neighbour Decoding	8		
	1.2	Error Correcting & Detecting Capabilities of a Code	10		

0

Pre

Example: Replication code

```
codewords
source msgs
                       0
      0
                       1
      1
\# of errors/codeword that be detected: 0
# errors/codeword that can be corrected: 0
Rate: 1
                   codewords
source msgs
                       00
      0
      1
                       11
\# of errors/codeword that be detected: 1
# errors/codeword that can be corrected: 0
Rate: 1/2
                   codewords
source msgs
      0
                      000
                      111
# of errors/codeword that be detected: 2
# errors/codeword that can be corrected: 1 (nearest neighbour decoding)
Rate: 1/3
source msgs
                   codewords
      0
                     00000
                     11111
\# of errors/codeword that be detected: 4
# errors/codeword that can be corrected: 2 (nearest neighbour decoding)
Rate: 1/5
```

CHAPTER 0. PRE 4

Goal of Coding Theory Design codes so that:

- 1. High information rate
- 2. High error-correcting capability
- 3. Efficient encoding & decoding algorithms

The big picture In its broadest sense, coding deals with the reliable, efficient, secure transmission of data over channels that are subject to inadvertent noise and malicious intrusion.

mid: Feb 26th

Introduction & Fundamentals

alphabet, word, length...

An alphabet A is a finite set of $q \ge 2$ symbols. E.g. $A = \{0, 1\}$.

A word is a finite sequence of symbols from A. (tuples or vectors)

The *length* of a word is the number of symbols in it.

A code C over A is a finite set of words over A (of size ≥ 2).

A codeword is a word in C.

A block code is a code where all codewords have the same length.

A block code C of length n containing M codewords over A is a subset $C \subseteq A^n$, with |C| = M. This is denoted by [n, M].

Example:

 $A = \{0, 1\}$. $C = \{00000, 11100, 00111, 10101\}$ is a [5, 4]-code over $\{0, 1\}$.

Messages		Codeword
00	\rightarrow	00000
10	\rightarrow	11100
01	\rightarrow	00111
11	\rightarrow	10101

Encoding 1-1 map

The channel encoder transmits only codewords. But, what's received by the channel decoder might not be codeword.

Example:

Suppose the channel decoder receives r = 11001. What should it do?

Example: q = 2 (Binary symmetric channel, BSC)

Example: q = 3

Assumptions about the communications channel

- 1) The channel only transmits symbols from A.
- 2) No symbols are deleted, added, or transposed.
- 3) (Errors are "random") Suppose the symbol transmitted are X_1, X_2, X_3, \ldots Suppose the symbols received and Y_1, Y_2, Y_3, \ldots Then for all $i \geq 1$, and all $i \leq j, k \leq q$,

$$Pr(Y_i = a_j | X_i = a_k) = \begin{cases} 1 - p, & \text{if } j = k \\ \frac{p}{q-1}, & \text{if } j \neq k \end{cases}$$

where p = symbol error prob.

Notes about BSC

- (i) If p = 0, the channel is perfect.
- (ii) If $p = \frac{1}{2}$, the channel is useless.

- (iii) If $1 \ge p > \frac{1}{2}$, then simply flip all bits that are received.
- (iv) WLOG, we will assume that 0 .
- (v) Analogously, for a q-ary channel, we can assume that 0 . (Optionalexercise)

Hamming distance

If $x, y \in A^n$, the Hamming distance d(x, y) is the # of coordinate positions in which x&y differ.

The distance of a code C is

$$d(C) = \min\{d(x, y) \in C, x \neq y\}$$

Example:

$$d(10111, 01010) = 4$$

Theorem 1.1

d is a metric. For all $x, y, z \in A^n$

- (i) $d(x, y) \ge 0$, and d(x, y) = 0 iff x = y.
- (ii) d(x,y) = d(y,x)
- (iii) \triangle inequality $d(x,z) \leq d(x,y) + d(y,z)$

rate

The rate of an [n, M]-code C over A with |A| = q is

$$R = \frac{\log_q M}{n}.$$

If the source messages are all k-tuples over A,

$$R = \frac{\log_q(q^k)}{n} = \frac{k}{n}.$$

Example:

$$C = \{00000, 11100, 00111, 10101\} \qquad A = \{0, 1\}$$
 Here $R = \frac{2}{5}$ and $d(C) = 2$.

Decoding Strategy 1.1

Let C be an [n, M]-code over A of distance d. Suppose some codeword is transmitted, and $r \in A^n$ is received. The channel decoder has to decide the following:

- (i) no errors have occurred, accept r.
- (ii) errors have occurred, and (decode) correct r to some codeword.
- (iii) errors has occurred, correction is not possible.

1.1.1 Nearest Neighbour Decoding

Incomplete Maximum Likelihood Decoding (IMLD). Correct r to the unique codeword c for which d(r,c) is smallest. If c is not unique, reject r. Complete MLD (CMLD). Same as IMLD, accept ties are broken arbitrarily.

Question Is IMLD a reasonable strategy?

Theorem 1.2

IMLD selects the codeword c that maximizes P(r|c) prob. that r is received given that c was sent.

Proof:

Suppose $c_1, c_2 \in C$ with $d(c_1, r) = d_1$ and $d(c_2, r) = d_2$. Suppose $d_1 > d_2$.

$$P(r|c_1) = (1-p)^{n-d_1} \left(\frac{p}{q-1}\right)^{d_1}$$

$$P(r|c_2) = (1-p)^{n-d_2} \left(\frac{p}{q-1}\right)^{d_2}$$

So,
$$\frac{P(r|c_1)}{P(r|c_2)} = (1-p)^{d_2-d_1} \left(\frac{p}{q-1}\right)^{d_1-d_2} = \left(\frac{p}{(1-p)(q-1)}\right)^{d_1-d_2}$$
Recall
$$p < \frac{q-1}{q} \implies pq < q-1 \implies 0 < q-pq-1$$

$$\implies p < p+q-pq-1 \implies p < (1-p)(q-1) \implies \frac{p}{(1-p)(q-1)} < 1$$

$$p < \frac{q-1}{q} \implies pq < q-1 \implies 0 < q-pq-1$$

$$\implies p$$

Hence

$$\frac{P(r|c_1)}{P(r|c_2)} < 1$$

and so

$$P(r|c_1) < P(r|c_2)$$

The ideal strategy is to correct r to $c \in C$ that minimizes P(c|r). This is Minimum error decoding (MED).

Example: (IMD is not the same as MED)

Let
$$C = \{\underbrace{000}_{c_1}, \underbrace{111}_{c_2}\}$$
. (corresponding to 0, 1).

Suppose $P(c_1) = 0.1, P(c_2) = 0.9$. Suppose p = 1/4 and r = 100.

IMLD $r \rightarrow 000$

MED

$$P(c_1|r) = \frac{P(r|c_1) \cdot P(c_1)}{P(r)}$$

$$= p(1-p)^2 \times 0.1/P(r)$$

$$= \frac{9}{640 \cdot P(r)}$$

Similarly

$$P(c_2|r) = \frac{P(r|c_2) \cdot P(c_2)}{P(r)}$$

$$= p(1-p)^2 \times 0.9/P(r)$$

$$= \frac{27}{640 \cdot P(r)}$$

So MED: $r \to 111$

Note

- 1. IMLD: Select c. s.t. P(r|c) is maximum MED: Select c. s.t. P(c|r) is maximum
- 2. MED has the drawback that it requires knowledge of $P(c_i)$, $1 \le i \le M$
- 3. Suppose source messages are equally likely, so $P(c_i) = \frac{1}{M}$, for each $1 \le i \le M$. Then

$$P(r|c_i) = P(c_i|r) \cdot P(c_i)/P(r) = P(c_i|r) \cdot \underbrace{\left[\frac{1}{M \cdot P(r)}\right]}_{\text{does not depend on}}$$

So IMLD is the same as MED.

4. In the remainder of the course, we will use IMLD/CMLD.

1.2 Error Correcting & Detecting Capabilities of a Code

- If C is used for error correction, the strategy is IMLD/CMLD.
- If C is used for error detection (only), the strategy is:

If $r \notin C$, then reject r; otherwise accept r.

e-error correcting code

A code C is called an e-error correcting code if the decoding always makes the correct decision if at most e errors per codeword are introduced. (Similarly: e-error detecting code)

Example:

 $C = \{0000, 1111\}$ is 1-error correcting code, but not a 2-error correcting code.

 $C = \{\underbrace{0 \dots 0}_{m}, \underbrace{1 \dots 1}_{m}\}$ is a $\lfloor \frac{m-1}{2} \rfloor$ -error correcting code.

 $C = \{0000, 1111\}$ is a 3-error detecting code.

Theorem 1.3

Suppose d(C) = d. Then C is a (d-1)-error detecting code.

Proof:

Suppose $c \in C$ is transmitted and r is received.

- If no error occur, then $r = c \in C$ and the decoder accepts r.
- If ≥ 1 and $\leq (d-1)$ errors occur, then $1 \leq d(r,c) \leq d-1$. So, $r \notin C$, and hence the decoder rejects r.

Theorem 1.4

If d(C) = d, then C is not a d-error detecting code.

Proof:

Since d(C) = d, there exist $c_1, c_2 \in C$ with $d(c_1, c_2) = d$. If c_1 is sent, it is possible that d errors occur and c_2 is received. In this case, the decoder accepts c_2 .

Theorem 1.5

If d(C) = d, then C is a $\left| \frac{d-1}{2} \right|$ -error correcting code.

Proof:

Suppose $c \in C$ is transmitted, at most $\frac{d-1}{2}$ errors are introduced, and r is received. Let $c_1 \in C, c_1 \neq c$.

By
$$\triangle$$
 ineq, $d(c, c_1) \le d(c, r) + d(r, c_1)$. So
$$d(r, c_1) \ge d(c, c_1) - d(c, r) \ge d - \frac{d-1}{2} = \frac{d+1}{2} \ge \frac{d-1}{2}$$

So c is the unique codeword closest to r.

So IMLD/CMLD will decode r to c.

Theorem 1.6

If d(C) = d, then C is not a $\left(\left\lfloor \frac{d-1}{2} \right\rfloor + 1 \right)$ -error correcting code.

Question Given q, n, M, d, does there exist an [n, M]-code C over A (with |A| =q), with d(C) = d?

pic place holder

 $C = \{c_1, c_2, \dots, c_M\}$. Let $e = \lfloor \frac{d-1}{2} \rfloor$. For $c \in C$, let S_c =sphere of radius e centered at $c = \{r \in A^n : d(r,c) \le e\}$. We proved: If $c_1, c_2 \in C, c_1 \ne c_2$, then $S_{c_1} \cap S_{c_2} \ne \emptyset$. The question can be viewed as a sphere packing problem: Can we place M spheres of radius e in A^n (such that no 2 spheres overlap)? This is purely combinatorial problem.

Example:

Take $q=2, n=128, M=2^{64}, d \ge 22$. Does a code with these parameters exist?

Answer YES.

Question What are the codewords?

Question How do we encode and decode efficiently?

Preview We'll view $\{0,1\}^{128}$ as a vector space of dimension 128 over \mathbb{Z}_2 . We'll choose C to be a 64-dimensional subspace of this vector space.

Index

Α	Н
alphabet, word, length 5	Hamming distance
E	R
e-error correcting code 10	rate