Homework #2

Due date: October 5, 2016

Submission: Hard Copy (N1, 415)

1. Let us consider the up-conversion from the sampling lattice Λ_1 to Λ_2 . Their respective sampling matrices are

$$\begin{bmatrix} \mathbf{V}_1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

- Assume the spectrum of the original continuous signal has a circular support. Let v_1^* and v_2^* denote Voronoi cell of lattice Λ_1 and Λ_2 , respectively.
- (a) Find the corresponding sampling matrices for the reciprocal lattices.

[Solution]

$$\begin{bmatrix} \mathbf{U}_1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}^{-T} = \begin{bmatrix} 1/2 & 0 \\ -1/2 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} \mathbf{U}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^{-T} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

(b) How is low pass filter for the up-conversion?

[Solution]

$$H_{u}(\mathbf{f}) = \begin{cases} d(\Lambda_{2}) / d(\Lambda_{1}) = 2, & \mathbf{f} \in v_{1}^{*} \\ 0, & \mathbf{f} \in v_{2}^{*} \setminus v_{1}^{*} \end{cases}$$

(c) Illustrate the up-conversion process from lattice Λ_1 to lattice Λ_2 in the given conditions (sketch the sampling lattice and its reciprocal after up-conversion in detail).

[Solution] We can first fill all points in Λ_2 but not in Λ_1 by zeros (i.e., zero padding), and then estimate the values of these points, which can be accomplished by an interpolation filter over Λ_2 .

- 2. Explain the process of conversion from ITU-R 4:2:2 format to CIF format.
 - Assumptions: 1) frame rate is fixed, 2) use only odd field.

Fig.1. ITU-R 4:2:2 (PAL) to CIF conversion.

[Solution] The conversion process from ITU-R 4:2:2 format to CIF format can be divided into the processes for luminance part and chrominance part.

