DAY 14

Directed Graph

A directed graph (or a digraph for short) G consists of a set of vertices $V = \{v_1, v_2, \ldots\}$, a set of edges $E = \{e_1, e_2, \ldots\}$, and a mapping Ψ that maps every edge onto some ordered pair of vertices (v_i, v_j) .

Initial Vertex

Contd..

$$d+(v1) = 3$$
 $d-(v1) = 1$
 $d+(v2) = 1$ $d-(v2) = 2$
 $d+(v3) = 1$ $d-(v3) = 4$
 $d+(v4) = 1$ $d-(v4) = 3$
 $d+(v5) = 4$ $d-(v5) = 0$

The no. of edges incident out from a vertex is called the out-degree of that vertex and is denoted as: $d^+(v_i)$.

The no. of edges incident into a vertex is called the in-degree of that vertex and is denoted as: $d^-(v_t)$.

$$\sum_{i=1}^{n} d^{+}(v_{i}) = \sum_{i=1}^{n} d^{-}(v_{i}).$$

Handshaking Di-lemma

Contd...

An isolated vertex is a vertex in which the in-degree and the out-degree are both equal to zero. A vertex v in a digraph is called *pendant* if it is of degree one, that is, if

$$d^+(v) + d^-(v) = 1.$$

Isomorphic Digraphs

Fig. 9-2 Two nonisomorphic digraphs.

Types of Digraphs

Simple Digraphs: A digraph that has no self-loop or parallel edges is called a simple digraph

Asymmetric Digraphs: Digraphs that have at most one directed edge between a pair of vertices, but are allowed to have self-loops, are called asymmetric or antisymmetric.

Symmetric Digraphs: Digraphs in which for every edge (a, b) (i.e., from vertex a to b) there is also an edge (b, a).

A digraph is said to be *balanced* if for every vertex v_i the in-degree equals the out-degree; that is, $d^+(v_i) = d^-(v_i)$.

Contd...

Complete Digraphs: A complete undirected graph was defined as a simple graph in which every vertex is joined to every other vertex exactly by one edge. For digraphs we have two types of complete graphs. A complete symmetric digraph is a simple digraph in which there is exactly one edge directed from every vertex to every other vertex (Fig. 9-3), and a complete asymmetric digraph is an asymmetric digraph in which there is exactly one edge between every pair of vertices (Fig. 9-2).

Fig. 9-2

Fig. 9-3

Relation Matrix

Relation Matrices: A binary relation R on a set can also be represented by a matrix, called a relation matrix. It is a (0, 1), n by n matrix, where n is the number of elements in the set. The i, jth entry in the matrix is 1 if $x_i R x_j$ is true, and is 0, otherwise. For example, the relation matrix of the relation "is greater than" on the set of integers $\{3, 4, 7, 5, 8\}$ is

	3	4	7	5	8	
3	Γ0	0	0	0	0	
4	1	0	0	0	0	
7	1	1	0	1	0	
5	1	1	0	0	0	
8	_1	1	1	1	0	

Question

Define with example:

Directed Walk vs. Semi walk

Directed Path vs Semi Path

Connected Digraph

In a digraph there are two different types of paths. Consequently, we have two different types of connectedness in digraphs. A digraph G is said to be *strongly connected* if there is at least one directed path from every vertex to every other vertex. A digraph G is said to be *weakly connected* if its corresponding undirected graph is connected but G is not strongly connected.

Strongly Connected

Weakly Connected

Directed Tree: Arborescence

Arborescence: A digraph G is said to be an arborescence if

- 1. G contains no circuit—neither directed nor semicircuit.
- 2. In G there is precisely one vertex v of zero in-degree.

This vertex v is called the *root of the arborescence*. An arborescence is shown in Fig. 9-11.

Fig. 9-11 Arborescence.

Directed Tree: Arborescence

Arborescence: A digraph G is said to be an arborescence if

- 1. G contains no circuit—neither directed nor semicircuit.
- 2. In G there is precisely one vertex v of zero in-degree.

This vertex v is called the *root of the arborescence*. An arborescence is shown in Fig. 9-11.

Fig. 9-11 Arborescence.

Fundamental circuit in Digraph

Rank r = 5

Nullity $\mu = 4$

Spanning tree $T = \{a, d, f, h, k\}$

Chord-set with respect to $T = \{b, c, e, g\}$

Fundamental circuits $\begin{cases} df e & \text{(semicircuit)} \\ dkhc & \text{(semicircuit)} \\ khg & \text{(semicircuit)} \\ adkhb & \text{(directed circuit)} \end{cases}$

Fundamental cut-sets

with respect to T