Efficient and Convergent Sequential Pseudo-Likelihood Estimation of Dynamic Discrete Games

Adam Dearing¹ Jason R. Blevins¹

¹Department of Economics, The Ohio State University

Introduction

- Dynamic discrete games are of interest to economists
 - Canonical application: firm entry/exit
- We focus on games of incomplete information
- Estimating dynamic discrete games is a difficult problem:
 - Significant computational burden to compute all equilibria
 - Renders nested fixed-point algorithm infeasible unless game is small or has special structure

CCP Methods

- As a result, the literature has largely focused on adapting CCP methods, pioneered by Hotz and Miller (1993), to dynamic games:
 - Obtain estimates of CCP's in first stage
 - \circ Use these to approximate equilibrium conditions: $P=\Psi(heta,P)$
 - \circ Then estimate structural parameters heta
- Issues:
 - Inaccurate first-stage estimates induce finite-sample bias
 - E.g., frequency estimator with sparse data
 - May lose asymptotic efficiency due to two-step estimation

k-NPL

- Aguirregabiria and Mira (2002, 2007) proposed the nested pseudo-likelihood (k-NPL) estimator sequence to address issues finite-sample bias and asymptotic inefficiency of two-step estimation.
- \circ They show the DGP equilibrium satisfies: $P^* = \Psi(\theta^*, P^*)$
- Sketch of k-NPL: Iterate and update choice-probabilities at each new parameter estimate:
 - 1. $\hat{\theta}_k = \arg\max_{\theta} N^{-1} \sum_i \ln \Psi(\theta, \hat{P}_{k-1})(s_i)$
 - 2. $\hat{P}_{k} = \Psi(\hat{\theta}_{k}, \hat{P}_{k-1})$
 - 3. Iterate until convergence to a fixed point $(k \to \infty)$

k-NPL: Single-Agent

- k-NPL has many good properties in single-agent models:
- Each iteration is asymptotically efficient
- Iterations achieve very fast local convergence.
- Convergence produces the finite-sample MLE.
- \circ With linear flow payoffs, estimation of $\hat{ heta}_k$ reduces to:
 - 1. Solve linear systems to generate "pseudo-regressors"
 - 2. Use pseudo-regressors in static logit/probit estimation

k-NPL: Dynamic Games

- In dynamic games, only the computational simplicity still holds
- Slow convergence (relative to single-agent case).
- k-NPL fixed point may be unstable, leading to non-convergence or even inconsistency
 - Pesendorfer and Schmidt-Dengler (2010); Kasahara and Shimotsu (2012); Egesdal, Lai, and Su (2015).
 - \circ Key: Ψ mapping is first-order equivalent to a best-response mapping
 - Iterations in estimator sequence behave similarly to best-response iteration
- Not fully efficient, even if consistent.

Minimum Distance

- Pesendorfer and Schmidt-Dengler (2008) propose an efficient minimum distance estimator
- \odot Bugni and Bunting (2020) propose k-step iterated version
 - Call it k-MD
 - Each iteration is asymptotically efficient
 - They focus on finite k

k-MD: Issues

- Much greater computational burden than k-NPL
 - Bugni and Bunting's (2020) Monte Carlos use a very small game (2 players, 2 actions, 4 states)
 - They find 1-MD takes about 33% longer than 20-NPL
 - Time disparity likely to grow with the size of the game
- \odot May suffer from same issues as k-NPL with iteration
 - \circ CCP updating is the source of inconsistency/non-convergence for $\infty\textsc{-NPL}$
 - Also leads to increased finite-sample bias with iteration
 - k-MD updates CCPs in the same way as k-NPL

Research Question

- © Can we develop a sequential estimator for games with several good properties?
 - Computational simplicity
 - Consistency and asymptotic efficiency for every k (including $k \to \infty$)
 - \circ Fast, stable convergence as $k o \infty$
 - Good finite sample properties
- (Spoiler alert: yes.)

Contribution

- We propose a new k-step Efficient Pseudo-Likelihood (k-EPL) sequence of estimators.
 - Change of variable in equilibrium fixed point conditions for dynamic games.
 - 2. Implement Newton-like steps on the fixed point equation.
- Newton-like step orthogonalizes second step estimation from first step, yielding efficiency.
- Fixed points are stable, making k-EPL robust.
- k-EPL converges quickly to MLE (locally), with good stability in practice

Related Work

- Ericson and Pakes (1995), Bajari et al. (2007), Pakes et al. (2007)
- Aguirregabiria and Mira (2002, 2007)
- Pesendorfer and Schmidt-Dengler (2008, 2010)
- Kasahara and Shimotsu (2008, 2012)
- Egesdal, Lai, and Su (2015)
- Bugni and Bunting (WP 2020)
- Aguirregabiria and Marcoux (WP 2020)

Motivating *k*-EPL: Maximum Likelihood with Equality Constraints

$$\max_{(\theta, Y) \in \Theta \times \mathcal{Y}} Q_N(\theta, Y)$$
s.t. $G(\theta, Y) = 0$

MLE subject to an equality constraint.

•
$$Q_N(\theta, Y) = N^{-1} \sum_{i=1}^N \ln Pr(s_i|\theta, Y)$$

- \circ θ is a finite-dimensional vector of structural parameters.
- Y is a vector of important auxiliary parameters.
 - May include value functions and/or conditional choice probabilities.
- Equality constraint is often derived from a fixed point condition such as $G(\theta, Y) = Y \Gamma(\theta, Y) = 0$.

Assumptions

Assumption 1

- a Observations $\{x_i : i = 1, ..., N\}$ are i.i.d. and generated from one equilibrium with true parameters (θ^*, Y^*) .
- b Θ and $\mathcal Y$ are compact and convex and $(\theta^*, Y^*) \in int(\Theta \times \mathcal Y)$.
- c $Q_N(\theta, Y) \stackrel{a.s.}{\to} Q^*(\theta, Y)$, both are twice continuously differentiable, and Q^* has a unique maximum in $\Theta \times \mathcal{Y}$ subject to $G(\theta, Y) = 0$, and the maximum occurs at (θ^*, Y^*) .
- d $G(\theta, Y)$ is thrice continuously differentiable and $\nabla_Y G(\theta^*, Y^*)$ is non-singular.

Motivating *k*-EPL

 \circ Define $Y(\theta)$ such that $G(\theta, Y(\theta)) = 0$. MLE problem is then

$$\hat{\theta}_{MLE} = \underset{\theta \in \Theta}{\operatorname{arg\ max}} \quad Q_N(\theta, Y(\theta))$$

- \circ And $\hat{Y}_{MLE} = Y(\hat{\theta}_{MLE})$
- k-NPL maximizes a "pseudo-likelihood" in each iteration:
 - Define $Y \equiv P$, so that $Y(\theta) = P(\theta)$
 - Replace $P(\theta)$ with $\Psi(\theta, \hat{P}_{k-1})$

Motivating *k*-EPL

$$\hat{\theta}_{MLE} = \underset{\theta \in \Theta}{\operatorname{arg\ max}} \quad Q_N(\theta, Y(\theta))$$

- \circ k-EPL also maximizes a pseudo-likelihood in each iteration:
 - But replace $Y(\theta)$ with a Newton-like step
 - Uses a different definition of Y (more on this later)
- \circ Useful composite parameter: $\gamma = (\theta, Y)$

Algorithm

k-Step Efficient Pseudo-Likelihood:

- **Step 1:** Obtain strongly \sqrt{N} -consistent $\hat{\gamma}_0 = (\hat{\theta}_0, \hat{Y}_0)$.
- **Step 2:** For $k \ge 1$, define

$$\Upsilon(\theta, \hat{\gamma}_{k-1}) \equiv \hat{Y}_{k-1} - \nabla_Y G(\hat{\theta}_{k-1}, \hat{Y}_{k-1})^{-1} G(\theta, \hat{Y}_{k-1})$$

and obtain estimates iteratively:

$$\hat{\theta}_k = \arg\max_{\theta \in \Theta} Q_N\left(\theta, \Upsilon(\theta, \hat{\gamma}_{k-1})\right)$$

and

$$\hat{Y}_k = \Upsilon(\hat{\theta}_k, \hat{\gamma}_{k-1}).$$

Step 3: Increment k and repeat Step 2.

Properties of k-EPL: Efficiency

- Efficiency of k-NPL for single-agent models stems from the zero Jacobian property:
 - Optimal choice probabilities maximize expected utility.
 - $\nabla_P \Psi(\theta^*, P^*) = 0$ and $\nabla_P \Psi(\hat{\theta}_{MLE}, \hat{P}_{MLE}) = 0$.
- k-EPL restores the zero Jacobian property in dynamic games:
 - \circ Υ is essentially a Newton step and has the zero Jacobian property
 - $\circ \
 abla_{\gamma} \Upsilon(heta^*, \gamma^*) = 0 \ ext{and} \
 abla_{\gamma} \Upsilon(\hat{ heta}_{\textit{MLE}}, \hat{\gamma}_{\textit{MLE}}) = 0$
 - Lemma 2 in the paper
- Zero-Jacobian property will imply that EPL is:
 - Efficient for any $k \ge 1$
 - Converges locally to MLE in finite samples
 - Convergence rate is fast

Theorem 1

The k-EPL sequence computed with the algorithm above satisfies the following for all $k \ge 1$:

- 1. (Consistency) $\hat{\gamma}_k = (\hat{\theta}_k, \hat{Y}_k)$ is a strongly consistent estimator of (θ^*, Y^*) .
- 2. (Efficiency) $\sqrt{N}(\hat{\theta}_k \theta^*) \stackrel{d}{\to} \mathcal{N}(0, \Omega_{\theta\theta}^{*-1})$, where $\Omega_{\theta\theta}^*$ is the information matrix of the full MLE problem.
- 3. (Large Sample Convergence) There exists a neighborhood \mathcal{B}^* of $\gamma^* = (\theta^*, Y^*)$ such that $\lim_{k \to \infty} \hat{\gamma}_k = \hat{\gamma}_{MLE}$ almost surely for any $\hat{\gamma}_0 \in \mathcal{B}^*$.

Theorem 2

(Iterating to finite-sample MLE)

- 1. $\hat{\gamma}_{MLE}$ is a fixed point of the k-EPL iterations.
- 2. $\hat{\gamma}_k \hat{\gamma}_{MLE} = O_p(N^{-1/2}||\hat{\gamma}_{k-1} \hat{\gamma}_{MLE}|| + ||\hat{\gamma}_{k-1} \hat{\gamma}_{MLE}||^2)$

Discussion of Theorem 2

- Theorem 2 has a couple important implications:
- Fast local convergence of k-EPL iterations to MLE
- Iteration yields higher-order equivalence to finite-sample MLE

$$\circ$$
 Suppose $\hat{\gamma}_0 - \hat{\gamma}_{MLE} = O_P(N^{-1/2})$

• Then,
$$\hat{\gamma}_k - \hat{\gamma}_{MLE} = O_P(N^{-(k+1)/2})$$

A Dynamic Discrete Choice Game

- \odot Firm: $j \in \mathcal{J} = \{1, \dots, |\mathcal{J}|\}$
- \circ Action: $a \in \mathcal{A} = \{0, \dots, |\mathcal{A}| 1\}$
- \circ Observed state: $x \in \mathcal{X} = \{1, \dots, |\mathcal{X}|\}$
- \circ Private information: $\varepsilon^{j}(a^{j})$
- \odot Period payoff: $\bar{u}^{j}(x, a^{j}, a^{-j}; \theta)$
- Conditional choice probabilities (CCPs): $P^{j}(x, a^{j})$ and $P^{-j}(x, a^{-j})$
- Expected period payoff and transition probabilities:

$$u^{j}(a^{j}, x; P^{-j}, \theta) = \sum_{a^{-j}} P^{-j}(x, a^{-j}) \bar{u}^{j}(x, a^{j}, a^{-j}; \theta)$$

 \odot Discount factor: eta

Equilibrium Fixed-Point Equation

© Choice-specific value functions determine CCPs:

$$P^{j}=\Lambda^{j}\left(v^{j}\right)$$

where

$$P^{j}(x, a^{j}) = Pr\left(a^{j} = \underset{a}{\operatorname{arg max}}\left\{v^{j}(x, a) + \varepsilon^{j}(a)\right\}\right)$$

 \odot In equilibrium, for all (j, x, a^j) we have

$$v^{j}(x, a^{j}) = u^{j} \left(a^{j}, x; \Lambda^{-j}(v^{-j}), \theta \right)$$

+
$$\beta \sum_{x'} f^{j} \left(x' \mid x, a^{j}; \Lambda^{-j}(v^{-j}) \right) S \left(v^{j}(x') \right)$$

 \circ $S(\cdot)$ is McFadden's social surplus function

Equilibrium Fixed-Point Equation

More compactly:

$$v = \Phi(\theta, v)$$
 $G(\theta, v) \equiv v - \Phi(\theta, v) = 0$

Lemma 1 in the paper establishes validity of this equilibrium representation

Properties of k-EPL: Linearity

 \odot If \bar{u}^j (and hence u^j) are linear in θ , then so are G and Υ

$$G(\theta, \hat{v}_{k-1}) = H(\hat{v}_{k-1})\theta + z(\hat{v}_{k-1})$$

$$\Upsilon(\theta, \hat{\gamma}_{k-1}) \equiv \hat{v}_k - \nabla_v G(\hat{\theta}_{k-1}, \hat{v}_{k-1})^{-1} G(\theta, \hat{v}_{k-1})
= -\nabla_v G(\hat{\theta}_{k-1}, \hat{v}_{k-1})^{-1} H(\hat{v}_{k-1}) \theta
+ \hat{v}_{k-1} - \nabla_v G(\hat{\theta}_{k-1}, \hat{v}_{k-1})^{-1} z(\hat{v}_{k-1})
= A(\hat{\gamma}_{k-1}) \theta + b(\hat{\gamma}_{k-1})$$

Properties of k-EPL: Linearity

- \circ v determines CCPs: $Q_N(\theta, v) \equiv Q_N(v)$
- \odot With Gumbel or normal errors, $Q_N(v)$ is concave in v
- Our problem:

$$\max_{\theta \in \Theta} Q_N(\Upsilon(\theta, \hat{\gamma}_{k-1}))$$

• We just showed $\Upsilon(\cdot)$ is linear in θ , so the problem is strictly concave in θ

Properties of k-EPL: Linearity

- Each iteration reduces to solving linear systems + static logit/probit maximization (linear index)
- - Worst-case bounds
 - Sparsity reduces the difference in bounds
 - In our Monte Carlo experiments, actual time difference is much smaller than these bounds suggest
 - Solving via iterative methods can reduce cubes to squares
- Tradeoff: fewer k-EPL iterations should be required due to faster convergence

Summary of k-EPL

- We work in "v space" instead of "P space", and we use Υ instead of Ψ to characterize the equilibrium.
- Newton steps on P would be problematic
 - Can lead outside the simplex
 - Much larger computational burden (detailed explanation in paper)
- Switching to v space and using Υ to characterize the equilibrium restores *efficiency* while preserving *linearity* in θ .

Note on Single-Agent Models

- Can show that k-NPL in single-agent models is a modified form of k-EPL
 - Return to P space: $G(\theta, P) = P \Psi(\theta, P)$
 - $\nabla_P G(\hat{\theta}_{MLE}, \hat{P}_{MLE}) = I$. So just use I all the time.
 - Then, $\Upsilon(\cdot) = \Psi(\theta, \hat{P}_{k-1})$
 - Expected, since Aguirregabiria and Mira (2002) show that NPL updates are like Newton steps
- Can still use our formulation of fixed-point equation in single-agent models

Monte Carlo Simulations: 2 × 2 Dynamic Entry Model

- Model of Pesendorfer and Schmidt-Dengler (2008)
- \circ 2 firms: $i \in \{1, 2\}$
- \circ 2 actions: $a^j \in \{0,1\}$ (exit/enter)
- $\circ x_t = (a_{t-1}^1, a_{t-1}^2)$

$$egin{aligned} ar{u}^j(x_t, a_t^j = 1; heta) &= heta_\mathsf{M} + heta_\mathsf{C} a_t^{-j} + heta_\mathsf{EC} (1 - a_t^j) \ ar{u}^j(x_t, a_t^j = 0; heta) &= heta_\mathsf{SV} a_{t-1}^j. \end{aligned}$$

- Fix discount factor $\beta = 0.9$ and $\theta_{SV} = 0.1$.
- \odot Generate data from $N \in \{250, 1000\}$ i.i.d. markets
- Carry out 1000 replications each.
- Estimate $(\theta_{M}, \theta_{C}, \theta_{EC})$.

Monte Carlo Results

- Game has 3 equilibria
 - (i) is stable for k-NPL
 - (ii) and (iii) are unstable for k-NPL
- Will show (i) and (ii) only; (iii) is qualitatively similar to (ii).
- Local convergence results underscore importance of good starting values:
 - Show small sample size N = 250 vs large N = 1000.
 - Also try multiple random starting values, instead of consistent first-stage estimates.

Game from Aguirregabiria and Mira (2007)

- Larger-scale, empirically-relevant game
- Basis of many other simulation studies in dynamic games literautre
- \odot Utilities: $\bar{u}^j(x_{it}, a_{it}^j = 0, a_{it}^{-j}; \theta) = 0$

$$egin{aligned} ar{u}^j(x_{it}, a_{it}^j = 1, a_{it}^{-j}; heta) &= heta_{\mathsf{FC}}^j + heta_{\mathsf{RS}} s_{it} - heta_{\mathsf{EC}} (1 - a_{i,t-1}^j) \ &- heta_{\mathsf{RN}} \ln \left(1 + \sum_{l
eq i} a_{it}^l
ight) \end{aligned}$$

Game from Aguirregabiria and Mira (2007)

- \circ Sample sizes: $N \in \{1600, 6400\}$
- 1000 replications
- Estimate all parameters
- $_{\odot}$ Vary the true value of $heta_{\mathsf{RN}} \in \{1, 2.5, 4\}$

Conclusion

- Develop a k-EPL estimator that balances several nice properties:
 - Computational simplicity
 - \circ Consistency and asymptotic efficiency for every k (including $k o \infty$)
 - Fast, stable convergence as $k \to \infty$
 - Good overall finite sample properties
- Method works well in difficult example models, both small-scale and large-scale