Data Mining

Studiare e preparare i dati

Cosa sono i dati?

- Nelle applicazioni di data mining i dati sono composti da collezioni di oggetti descritti da un insieme di attributi
 - ✓ Sinonimi di oggetto sono record, punto, caso, esempio, entità, istanza, elemento

Oggetti

- Un attributo è una proprietà o una caratteristica di un oggetto
 - ✓ Sinonimi di attributo sono:
 variabile, campo, caratteristica

Attributi

)
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tipi di attributi

- E' necessario conoscere le caratteristiche degli attributi per effettuare analisi sensate
- Un impiegato è descritto da un ID e dall'età, ma non ha senso calcolare l'ID medio degli impiegati!
- Il tipo dell'attributo ci dice quali proprietà dell'attributo sono riflesse nel valore che usiamo come misura
- Un modo semplice per caratterizzare i vari tipi di attributi si basa sul tipo di operatore che ha senso applicare ai valori che esso assume:
 - ✓ Diversità =, ≠
 - ✓ Ordinamento <, ≤, >, ≥
 - ✓ Additività +, -
 - ✓ Moltiplicabilità *, /
- Si determinano così 4 tipi di dati: nominali, ordinali, di intervallo, e di rapporto

Tipi di attributi

١.						
Tipo		Tipo	Descrizione	Esempio	Operatori statistici	
	Categorici (qualitativi)	Nominale	Nomi diversi dei valori. Possiamo solo distinguerli	Sesso, colore degli occhi, codici postali, ID	Moda, correlazione	
	orici ativi)	Ordinale	I valori ci consentono di ordinare gli oggetti in base al valore dell'attributo	Voto, Durezza di un minerale	Mediana, percentile	
	Numerici (quantitativi)	Di Intervallo	La differenza tra i valori ha un significato, ossia esiste una unità di misura	Date, temperatura in Celsius e Fahrenheit	Media, varianza	
		Di Rapporto	Il rapporto tra i valori ha un significato	Età, massa, lunghezza, quantità di denaro, temperatura espressa in Kelvin	Media geometrica, media armonica	

Tipi di attributi: altre classificazioni

- Binari, discreti e continui
 - ✓ Un attributo discreto ha un numero finito o un insieme infinito numerabile di valori normalmente rappresentati mediante interi o etichette
 - ✓ Un attributo continuo assume valori reali
 - ✓ Gli attributi nominali e ordinali sono tipicamente discreti o binari, mentre quelli di intervallo e di rapporto sono continui
- Attributi asimmetrici: hanno rilevanza solo le istanze che assumono valori diversi da zero:
 - ✓ Es. Consideriamo i record relativi agli studenti: in cui ogni attributo rappresenta un corso dell'Ateneo che può essere seguito (1) o meno (0) dallo studente. Visto che gli studenti seguono una frazione molto ridotta dei corsi dell'Ateneo se si comparassero le scelte degli studenti sulla base di tutti i valori degli attributi il loro comportamento apparirebbe molto simile.

Documenti

- I documenti sono gli oggetti dell'analisi, sono descritti da un vettore di termini
 - ✓ Ogni termine è un attributo del documento
 - ✓ Il valore degli attributi indica il numero di volte in cui il corrispondente termine compare nel documento.

	team	coach	pla y	ball	score	game	p €i.	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transazioni

- Un tipo speciale di record in cui
 - ✓ Ogni record (transazione) coinvolge più item
 - ✓ Per esempio in un supermercato l'insieme dei prodotti comprati da un cliente durante una visita al negozio costituisce una transazione, mentre i singoli prodotti acquistati sono gli item.
 - ✓ Il numero degli item può variare da transazione a transazione

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Dati ordinati

Sequenze di transazioni Item/Eventi

Un elemento di una sequenza

Dati ordinati

Sequenze di dati genomici

Dati ordinati

Dati Spazio-Temporali

Jan

Temperatura media mensile di terre e oceani

Dati di traiettoria

Semantic Trajectory sequenza di punti (*Time, Place*)

Raw data sequenza di punti (*Time, Lat, Lon*)

Esplorazione dei dati

- Un'analisi preliminare dei dati finalizzata a individuarne le principali caratteristiche
 - ✓ Aiuta a scegliere il tool migliore per il preprocessing e l'analisi
 - ✓ Permette di utilizzare le capacità umane per individuare pattern
 - Un analista umano può individuare velocemente pattern non individuabili dai tool di analisi
- L'esplorazione dei dati sfrutta
 - ✓ Visualizzazione
 - ✓ Indici statistici
 - ✓ OLAP e Data Warehousing

Moda e Frequenza

- La frequenza del valore di un attributo è la percentuale di volte in cui quel valore compare nel data set
 - ✓ Dato L'attributo 'Comune di residenza' per il data set dei cittadini italiani, il valore 'Bologna' compare circa nello 0.6% dei casi (~3.7×10⁵ / 6×10⁷).
- La moda di un attributo è il valore che compare più frequentemente nel data set
 - ✓ La moda per l'attributo 'Comune di residenza' per il data set dei cittadini è 'Roma' che compare circa nel 4.5% dei casi (~2.7×10⁶ / 6×10⁷).
- Le nozioni di frequenza e moda sono normalmente utilizzate per attributi categorici

Percentili

- Dato un attributo ordinale o continuo x e un numero p compreso tra 0 e 100, il p-esimo percentile è il valore di x_p di x tale che p% dei valori osservati per x sono inferiori x_p.
 - ✓ Per l'attributo "altezza in centimetri" per la popolazione dei neonati italiani femmine a un anno di vita è:
 - 50-esimo percentile= 78 cm -> la metà delle bambine è più alta di 78 cm
 - 97-esimo percentile= 81 cm -> solo il 3% delle bambine è più alta di 81 cm
- Le informazioni sui percentili sono spesso rappresentate mediante box plot

Tecniche di visualizzazione: Box Plot

- Permettono di rappresentare una distribuzione di dati
- Possono essere utilizzati per comparare più distribuzioni quando queste hanno grandezze omogenee

Misure di posizione: media e mediana

La media è la più comune misura che permette di localizzare un insieme di punti

$$mean(\mathbf{x}) = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Purtroppo la media è molto sensibile agli outlier
- In molti casi si preferisce utilizzare la mediana o una media "controllata".

$$mediana(\mathbf{x}) = \begin{cases} x_{m+1} & se \ n \ \text{\'e dispari} \ n = 2m+1 \\ (x_m + x_{m+1})/2 & se \ n \ \text{\'e pari} \ n = 2m \end{cases}$$

✓ In un insieme n di dati disposti in ordine crescente la mediana è il termine che occupa il posto centrale, se i termini sono dispari, se i termini sono pari la mediana è la media aritmetica dei 2 termini centrali.

Misure di dispersione: Range e Varianza

- Il range è la differenza tra i valori minimi e massimi assunti dall'attributo
- Varianza e deviazione standard (o scarto quadratico medio) sono le più comuni misure di dispersione di un data set.

$$Varianza(\mathbf{x}) = s_{\mathbf{x}}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \qquad DevStandard(\mathbf{x}) = s_{\mathbf{x}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

- Varianza e scarto quadratico medio sono sensibili agli outlier poichè sono legati quadraticamente al concetto di media
- Altre misure meno sensibili a questo problema sono:

AbsoluteAverageDeviation
$$AAD(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|$$

Median Absolute Deviation
$$MAD(\mathbf{x}) = mediana(\{x_1 - \overline{x}|, ..., |x_n - \overline{x}|\})$$

InterquartileRange
$$RI(\mathbf{x}) = x_{75\%} - x_{25\%}$$

Misure di dispersione: Range e Varianza

- Media 19,82617
- Mediana 19,65625
- 25% quartile 16,79252
- 75% quartile 22,75032
- Varianza 25,31324
- DevStandard 5,031227
- RI 5,957806
- AAD 3,857429
- MAD 2,979841

- Media 18,67617
- Mediana 19,27243
- 25% quartile 15,25606
- **75% quartile 22,55218**
- Varianza 37,58087
- DevStandard 6,130324
- RI 7,29612
- AAD 4,579804
- MAD 3,095489

Calcolare i precedenti indici statisitici per X={5, 7, 2, 9, 8, 7, 5, 1, 1, 5}

Qualità dei dati

- La qualità dei dataset utilizzati incide profondamente sulle possibilità di trovare pattern significativi.
- I problemi più frequenti che deteriorano la qualità dei dati sono
 - ✓ Rumore e outlier
 - ✓ Valori mancanti
 - ✓ Valori duplicati

Rumore

- Indica il rilevamento di valori diversi da quelli originali
 - ✓ Distorsione della voce di una persona quando registrata attraverso un microfono di scarsa qualità
 - ✓ Registrazione approssimata di valori degli attributi
 - ✓ Registrazione errata di valori degli attributi

Outlier

- Outlier sono oggetti con caratteristiche molto diverse da tutti gli altri oggetti nel data set che complicano la determinazione delle sue caratteristiche essenziali
 - ✓ Sono normalmente rari
 - ✓ Potrebbero essere l'oggetto della ricerca

Valori mancanti

- Motivazioni per la mancata registrazione
 - ✓ L'informazione non è stata raccolta (es. l'intervistato non indica la propria età e peso)
 - ✓ L'attributo non è applicabile a tutti gli oggetti (es. il reddito annuo non ha senso per i bambini)
- Come gestire i dati mancanti?
 - ✓ Eliminare gli oggetti che li contengono (se il dataset è sufficientemente numeroso)
 - ✓ Ignorare i valori mancanti durante l'analisi
 - ✓ Compilare manualmente i valori mancanti
 - In generale è noioso, e potrebbe essere non fattibile
 - ✓ Compilare automaticamente i valori mancanti

Valori mancanti

- Come gestire i dati mancanti?
 - ✓ Stimare i valori mancanti
 - usare la media dell'attributo al posto dei valori mancanti
 - per problemi di classificazione, usare la media dell'attributo per tutti i campioni della stessa classe
 - predire il valore dell'attributo mancante sulla base degli altri attributi noti. Si usano algoritmi di data mining per preparare i dati in input ad altri algoritmi di data mining.
 - ✓ Usare un valore costante come "Unknown" oppure 0 (a seconda del tipo di dati).
 - potrebbe alterare il funzionamento dell'algoritmo di analisi, meglio allora ricorrere ad algoritmi che gestiscono la possibilità di dati mancanti
 - È utile se la mancanza di dati ha un significato particolare di cui tener conto

Preprocessing del data set

- Raramente il dataset presenta le caratteristiche ottimali per essere trattato al meglio dagli algoritmi di data mining. E' quindi necessario mettere in atto una serie di azioni volte a consentire il funzionamento degli algoritmi di interesse
 - ✓ Aggregazione
 - ✓ Campionamento
 - ✓ Riduzione della dimensionalità
 - ✓ Selezione degli attributi
 - ✓ Creazione degli attributi
 - ✓ Discretizzazione e binarizzazione
 - ✓ Trasformazione degli attributi

Aggregazione

- Combina due o più attributi (oggetti) in un solo attributo (oggetto) al fine di:
 - ✓ Ridurre la cardinalità del data set
 - ✓ Effettuare un cambiamento di scala
 - Le città possono essere raggruppate in regioni e nazioni
 - ✓ Stabilizzare i dati
 - I dati aggregati hanno spesso una minore variabilità

Deviazione standard della media delle precipitazioni

Campionamento

- E' la tecnica principale utilizzata per selezionare i dati
 - ✓ E' spesso utilizzata sia nella fase preliminare sia nell'analisi finale dei risultati.
- Gli statistici campionano poiché ottenere l'intero insieme di dati di interesse è spesso troppo costoso o richiede troppo tempo.
- Il campionamento è utilizzato nel data mining perché processare l'intero dataset è spesso troppo costoso o richiede troppo tempo.
- Il principio del campionamento è il seguente:
 - ✓ Se il campione è rappresentativo il risultato sarà equivalente a quello che si otterrebbe utilizzando l'intero dataset
 - ✓ Un campione è rappresentativo se ha approssimativamente le stesse proprietà (di interesse) del dataset originale

Tipi di campionamento

- Campionamento casuale semplice
 - ✓ C'è la stessa probabilità di selezionare ogni elemento
 - ✓ Campionamento senza reimbussolamento
 - Gli elementi selezionati sono rimossi dalla popolazione
 - ✓ Campionamento con reimbussolamento
 - Gli elementi selezionati non sono rimossi dalla popolazione
 - In questo caso un elemento può essere selezionato più volte.
 - Dà risultati simili al precedente se la cardinalità del campione è << di quella della popolazione
 - E' più semplice da esaminare poiché la probabilità di scegliere un elemento non cambia durante il processo
- Campionamento stratificato:
 - ✓ Si suddividono i dati in più partizioni, quindi si usa un campionamento casuale semplice su ogni partizione.
 - ✓ Utile nel caso in cui la popolazione sia costituita da tipi diversi di oggetti con cardinalità differenti. Un campionamento casuale può non riuscire a fornire un'adeguata rappresentazione dei gruppi meno frequenti

La dimensione del campione

 Scelta la modalità di campionamento è necessario fissare la dimensione del campione al fine di limitare la perdita di informazione

- La probabilità di avere rappresentanti di tutta la popolazione aumenta in modo non lineare rispetto alla dimensione del campione
 - ✓ Nell'esempio si vuole ottenere un campione per ognuno dei 10 gruppi

Riduzione della dimensionalità

Obiettivi:

- ✓ Evitare la "curse of dimensionality": la maledizione della dimensionalità
- ✓ Ridurre la quantità di tempo e di memoria utilizzata dagli algoritmi di data mining (riduzione dello spazio di ricerca)
- ✓ Semplificare la visualizzazione dei dati
- ✓ Eliminare attributi non rilevanti ed eliminare il rumore sui dati

Tecniche

- ✓ Principle Component Analysis
- ✓ Singular Value Decomposition
- ✓ Selezione degli attributi con tecniche supervisionate

Curse of Dimensionality

- Al crescere della dimensionalità i dati diventano progressivamente più sparsi
- Molti algoritmi di clustering e di classificazione trattano con difficoltà dataset a elevata dimensionalità
- Le definizioni di densità e di distanza tra i punti che sono essenziali per esempio per il clustering e per l'individuazione degli outilier diventano meno significativi

- 500 punti generati in modo casuale
- Il grafico mostra una misura della differenza tra la distanza minima e la distanza massima di ogni coppia di punti

Selezione degli attributi

- E' una modalità per ridurre la dimensionalità dei dati. La selezione mira solitamente a eliminare:
 - ✓ Attributi ridondanti
 - Duplicano in gran parte le informazioni contenute in altri attributi a causa di una forte correlazione tra le informazioni
 - Esempio: l'importo dell'acquisto e l'importo dell'IVA
 - ✓ Caratteristiche irrilevanti
 - Alcune caratteristiche dell'oggetto possono essere completamente irrilevanti ai fini del mining
 - Esempio: la matricola di uno studente è spesso irrilevante per predire la sua media

Per quale tipo di pattern può essere utile la matricola assumendo che questa sia un numero positivo che non è azzerato negli anni?

Modalità di selezione degli attributi

- Approccio esaustivo:
 - ✓ Prova tutti i possibili sottoinsiemi di attributi e scegli quello che fornisce i risultati migliori sul test set utilizzando l'algoritmo di mining come funzione di bontà black box
 - ✓ Dati n attributi il numero di possibili sottoinsiemi è 2ⁿ-1
- Approcci non esaustivi:
 - ✓ Approcci embedded
 - La selezione degli attributi è parte integrante dell'algoritmo di data mining. L'algoritmo stesso decide quali attributi utilizzare (es. alberi di decisione)
 - ✓ Approcci di filtro:
 - La fase di selezione avviene prima del mining e con criteri indipendenti dall'algoritmo usato (es. si scelgono insiemi di attributi le cui coppie di elementi presentano il più basso livello di correlazione)
 - ✓ Approcci euristici:
 - Approssimano l'approccio esaustivo utilizzando tecniche di ricerca euristiche.

Creazione di attributi

- Può essere utile creare nuovi attributi che meglio catturino le informazioni rilevanti in modo più efficace rispetto agli attributi originali
 - ✓ Estrazione di caratteristiche
 - Utilizzano normalmente tecniche diverse da dominio a dominio
 - Impronte digitali → minuzie
 - ✓ Mapping dei dati su nuovi spazi
 - Trasformata di Fourier
 - PCA
 - ✓ Combinazione di attributi

Binarizzazione

 La rappresentazione di un attributo discreto mediante un insieme di attributi binari è invece detta binarizzazione

Categoria	Valore intero	X1	X2	Х3
Gravemente insuff.	4	0	0	0
Insuff.	5	0	0	1
Suff.	6	0	1	0
Discreto	7	0	1	1
Buono	8	1	0	0

 Questa soluzione può portare la tecnica di data mining a inferire una relazione tra "Suff" e "Discreto" poiché entrambi hanno il bit X2=1

One-hot encoding
 Questa soluzione
 utilizza attributi
 asimmetrici binari

Categoria	Valore intero	X1	X2	Х3	X4	X5
Gravemente insuff.	4	1	0	0	0	0
Insuff.	5	0	1	0	0	0
Suff.	6	0	0	1	0	0
Discreto	7	0	0	0	1	0
Buono	8	0	0	0	0	1

Similarità e dissimilarità

Similarità

- ✓ Una misura numerica che esprime il grado di somiglianza tra due oggetti
- ✓ E' tanto maggiore quanto più gli oggetti si assomigliano
- ✓ Normalmente assume valori nell'intervallo [0,1]

Dissimilarità o distanza

- ✓ Una misura numerica che esprime il grado di differenza tra due oggetti
- ✓ E' tanto minore quanto più gli oggetti si assomigliano
- ✓ Il range di variazione non è fisso, normalmente assume valori nell'intervallo [0,1] oppure [0,∞]
- La similarità/dissimilarità tra due oggetti con più attributi è tipicamente definita combinando opportunamente le similarità/dissimilarità tra le coppie di attributi corrispondenti

Similarità e dissimilarità

Il significato cambia in base al tipo di attributo considerato

	Tipo	Dissimilarità	Similarità			
Categorici (qualitativi)	Nominale	$d = \begin{cases} 0 & se \ x = y \\ 1 & se \ x \neq y \end{cases}$	$s = \begin{cases} 1 & se \ x = y \\ 0 & se \ x \neq y \end{cases}$			
orici ativi)	Ordinale (con valori mappati in [0,n-1])	$d = \frac{ x - y }{n - 1}$	s = 1- d			
Numerici (quantitativi)	Di Intervallo o Di Rapporto	d = x - y	$s = -d$ $s = \frac{1}{1+d} s = e^{-d}$ $s = 1 - \frac{d - MinD}{MaxD - MinD}$			

La similarità in giallo non è vincolata al range [0,..,1] e quindi si preferiscono usare i rapporti anche se forniscono misure non lineari

Similarità e dissimilarità

Dissimilarità

Distanze

- Sono dissimilarità con particolari proprietà
- Distanza euclidea

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

- ✓ nè il numero degli attributi (dimensioni) coinvolte
- Distanza di Minkowsi

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{1/r}$$

- \checkmark r=1 City block
- √ r=2 Distanza euclidea
- ✓ $r = \infty$ Lmax ossia la massima differenza tra tutte le coppie di attributi corrispondenti

Proprietà delle similarità

- Anche le misure di similarità hanno delle proprietà comuni
- Dati due oggetti p e q e una misura di similarità s()
 - 1. s(p, q) = 1 solo se p = q.
 - 2. s(p, q) = s(q, p) (Simmetria)
- Non esiste per le misure di similarità un concetto equivalente alla disuguaglianza triangolare
- Talvolta le misure di similarità possono essere convertite in metriche (es. similarità Coseno e Jaccard)

Similarità tra vettori binari

- E' frequente che gli attributi che descrivono un oggetto contengano solo valori binari. Dati quindi i due vettori p e q, si definiscono le seguenti grandezze
 - ✓ M_{01} = II numero di attributi in cui p = 0 e q = 1
 - ✓ M_{10} = II numero di attributi in cui p = 1 e q = 0
 - ✓ M_{00} = II numero di attributi in cui p = 0 e q = 0
 - ✓ M_{11} = II numero di attributi in cui p = 1 e q = 1
- Simple Matching coefficient
 - ✓ SMC = numero di match / numero di attributi = (M11 + M00) / (M01 + M10 + M11 + M00)
 - ✓ Utile per misurare quali studenti hanno risposto in modo similare alle domande di un test VERO/FALSO
 - ✓ Non utilizzabile in presenza di attributi asimmetrici
- Coefficiente di Jaccard
 - ✓ J = #corrispondenze 11/#attributi con valori diversi da 00 = (M11) / (M01 + M10 + M11)
 - ✓ Non considera i casi le corrispondenze 00

SMC versus Jaccard: un esempio

 Siano p e q i vettori che descrivono le transazioni di acquisto di due clienti. Ogni attributo corrisponde a uno dei prodotti in vendita

$$p = 10000000000$$

$$q = 0000001001$$

$$M_{01} = 2 \quad M_{10} = 1 \quad M_{00} = 7 \quad M_{11} = 0$$

$$SMC = (M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00})$$

$$= (0+7) / (2+1+0+7) = 0.7$$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2+1+0) = 0$$

 Con SMC gli attributi a 0 dominano l'informazione derivante dagli attributi a 1

Similarità Coseno

- Come l'indice di Jaccard non considera le corrispondenze 00, ma permette inoltre di operare con vettori non binari
 - ✓ Codifica di documenti in cui ogni attributo del vettore codifica il numero di volte in cui la parola corrispondente compare nel testo
- Siano d₁ e d₂ sono due vettori non binari
 cos(d₁, d₂) = (d₁ d₂) / ||d₁|| ||d₂|| ,
 dove indica il prodotto scalare dei vettori e || d || è la lunghezza del vettore d.

$$\|\mathbf{d}\| = \sqrt{\mathbf{d} \cdot \mathbf{d}} = \sqrt{\sum_{k=1}^{n} d_k^2}$$

✓ La similarità coseno è effettivamente una misura dell'angolo tra i due vettori ed è quindi 0 se l'angolo è 90°, ossia se non condividono alcun elemento comune

Similarità Coseno: un esempio

$$d_1 = 3205000200$$

 $d_2 = 100000102$

$$\begin{aligned} d_1 & \bullet \ d_2 = \ 3^*1 + 2^*0 + 0^*0 + 5^*0 + 0^*0 + 0^*0 + 0^*0 + 2^*1 + 0^*0 + 0^*2 = 5 \\ ||d_1|| & = (3^*3 + 2^*2 + 0^*0 + 5^*5 + 0^*0 + 0^*0 + 0^*0 + 2^*2 + 0^*0 + 0^*0)^{0.5} = (42)^{0.5} \\ & = 6.481 \\ ||d_2|| & = (1^*1 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 1^*1 + 0^*0 + 2^*2)^{0.5} = (6)^{0.5} \\ & = 2.245 \end{aligned}$$

$$\cos(d_1, d_2) = 0.343$$

La similarità coseno è spesso utilizzata per calcolare la similarità tra i documenti: a ogni elemento del vettore corrisponde un termine. Documenti con lunghezze diverse avranno vettori con lunghezze diverse. Che tipo di normalizzazione può essere necessaria per confrontare documenti di lunghezza diversa?

Correlazione

 La correlazione tra coppie di oggetti descritti da attributi (binari o continui) è una misura dell'esistenza di una relazione lineare tra i suoi attributi

$$Corr(\mathbf{x}, \mathbf{y}) = \frac{Cov(\mathbf{x}, \mathbf{y})}{StDev(\mathbf{x}) \cdot StDev(\mathbf{y})}$$

$$Cov(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})$$

$$StDev(\mathbf{x}) = \sqrt{\frac{1}{n} \sum_{k=1}^{n} (x_k - \overline{x})^2}$$

- La correlazione varia tra [-1,1].
 - ✓ Una correlazione di 1(-1) significa che gli attributi possono essere vicendevolmente espressi da una relazione lineare del tipo x_k=ay_k+b

Correlazione

$$x=(-3, 6, 0, 3, -6)$$
 $y=(1,-2, 0, -1, 2)$ $Corr(x,y)=-1$

$$x=(3, 6, 0, 3, 6)$$
 $y=(1,2, 0, 1, 2)$ $Corr(x,y)=1$

- Potrebbero comunque esistere tra i dati relazioni non lineari che non sarebbero quindi non catturate!
 - ✓ Tra i seguenti oggetti esiste una correlazione del tipo $x_k=y_k^2$ ma $Corr(\mathbf{x},\mathbf{y})=0$

$$\mathbf{x} = (-3, -2, -1, 0, 1, 2, 3)$$
 $\mathbf{y} = (9, 4, 1, 0, 1, 4, 9)$

- La correlazione può essere utile anche per scartare attributi che non portano informazioni aggiuntive
 - ✓ In questo caso x e y rappresentano due attributi distinti e i loro elementi le istanze dei due attributi nei diversi oggetti del data set

Visualizzazione della correlazione

- x e y sono due oggetti descritti da 30 attributi continui.
- In ogni grafico i valori degli attributi sono stati generati con livelli diversi di correlazione
- ✓ Ogni cerchio rappresenta uno dei trenta attributi di x e y. La sua ascissa corrisponde a x_k mentre l'ordinata a y_k

Visualizzazione della correlazione: grafici a dispersione

- ✓ Permette di determinare se alcuni degli attributi sono correlati
 - ✓ Utile per ridurre il numero di attributi considerati
- Quando le etichette sono disponibili, permette di determinare se è possibile classificare gli oggetti in base ai valori di due attributi
- ✓ Un grafico per ogni coppia di attributi utilizzati per descrivere i fiori

