Alexander Garcia

9 March 2017

1. Question 1

(a)
$$f(x) = -3x^2 + 7$$

 $f(-1) = 4$
 $f(1) = 4$

Obviously, $1 \in \mathbb{R} \land -1 \in \mathbb{R}$, so both are within the domain of f. This goes against the definition of a bijection, since two different elements in the domain of f have the same image. In order to rectify this, the domain of f should be $\{x \in \mathbb{R} : x \geq 0\}$. The range would also have to be modified to be $\{y \in \mathbb{R} : y \geq 7\}$, since this function will never be less than 7.

Inverse:
$$x = -3y^2 + 7$$

 $\frac{7-x}{3} = y^2$
 $y = \sqrt{\frac{7-x}{3}}$
 $f^{-1}(x) = \sqrt{\frac{7-x}{3}}$

This is, of course, given the modified domain and range.

(b)
$$f(x) = \frac{x+2}{x+2}$$
$$f(-2) = DNE$$

In order for f to be a bijection, every element in its domain must have an image in its range. Since f(-2) is undefined, the conditions are not satisfied. Here, the domain of f could be modified to be $\{x \in \mathbb{R} : x \neq -2\}$. The range could be modified to be $\{y \in \mathbb{R} : y \neq 1\}$, since this function, by definition, can never be equal to 1.

Inverse:
$$x = \frac{y+1}{y+2}$$

 $x * (y + 2) = y + 1$
 $xy + 2x = y + 1$
 $2x - 1 = y - xy$
 $2x - 1 = y(1 - x)$
 $f^{-1}(x) = \frac{2x-1}{1-x}$

(c)
$$f(x) = x^5 + 1$$

This function is a bijection, since every element in the domain has exactly one unique image.

Inverse:
$$x = y^5 + 1$$

 $x - 1 = y^5$
 $f^{-1}(x) = \sqrt[5]{x - 1} \{ y \in \mathbb{R} \} \{ x \in \mathbb{R} \}$

2. Question 2

$$f(x) = ax + b$$

$$g(x) = cx + d$$

$$\{a,b,c,d\in\mathbb{R}\}$$

$$f \circ g = a(cx+d) + b$$

$$g \circ f = c(ax + b) + d$$

$$a(cx+d) + b = c(ax+b) + d$$

$$acx + ad + b = cax + cb + d$$

$$ad + b = cb + d$$

$$(f \circ g = g \circ f) \leftrightarrow (ad + b = cb + d)$$