Numerical Analysis Basics

by Shangbang Long

shangbang.long@pku.edu.cn

Topics

- Scientific Computing
- Linear System
- Eigenvalue Problem
- Optimization
- Interpolation

Topic 1: Scientific Computing

Topic 1.1: Scientific Computing Basic Idea

using advanced computing capabilities to solve complicated mathematical problems (usually with approximation)

General Strategy

- infinite -> finite
- differential -> algebraic
- nonlinear -> linear
- complicated -> approximated simple form

Topic 1.2: Approximation

Algorithm: computing surface area of Earth using formula $A=4\pi r^2$

Involved approximation:

- 1. Earth is modeled as sphere, idealizing its true shape
- 2. Value for radius is based on empirical measurements and previous computations
- 3. Value for π is a rounded one.
- 4. Values for input data and results of arithmetic operations are rounded in computer

Topic 1.2.1: Error Classification - 1

- absolute error = approximated value true value
- relative error = absolute error / true value

Topic 1.2.2: Error

Classification - 2

- truncation error: resulting from algorithm (infinite -> finite)
- rounding error: resulting from limited precision representation

Example

$$f'(x)pprox rac{f(x+h)-f(x)}{h}$$

- non-infinitesimal h results in truncation error.
- ullet h much smaller than x results in rounding error.

Topic 1.3: Computer Arithmetics Floating Point numbers

recall scientific notation:

$$12345 = 1.2345 \times 10^4$$

- mantissa: 1.2345
- exponent: 4

Floating Point numbers

Defined by 4 attributes:

- β : base / radix
- p: precision
- ullet [L,U]: exponent range

$$x=\pm(\sum_{i=0}^{p-1}rac{d_i}{eta^i})eta^E$$

where $d_i \in [0, eta-1], i=0,...,p-1,$ L < E < U.

Floating Point numbers

limited $p \rightarrow$ rounding error

Case: numerical anomoly in computing

$$lim_{n->\infty}(1+rac{1}{n})^n$$

Topic 2: Linear System

Topic 2: Linear System

$$Ax = b$$

Analytical solution: $x=A^{-1}b$

Computing A^{-1} explicitly comes with problems:

- 1. Computation complexity: computing lots of determinants
- 2. Numerical instability: what if $|A| -> rac{1}{\infty}$

Solving Triangular System

$$\begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix}$$

However, it's easy to solve when A is triangular...

First, solve x_3 from the last equation, then, substitute from the second equation and solve x_2 , ...

Given the following linear system:

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \mathbf{b}$$

I would like to transform A into triangular form, upper triangular, for example.

I need to eliminate any elements below the diagonal.

where $m_i = a_i / a_k$, i = k + 1, ..., n

How to eliminate a certain segments of vectors? Construct M_k from identity matrix as follows:

$$\mathbf{M}_{k}\mathbf{a} = \begin{bmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & \cdots & -m_{k+1} & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -m_{n} & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} a_{1} \\ \vdots \\ a_{k} \\ a_{k+1} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} a_{1} \\ \vdots \\ a_{k} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\mathbf{M}_{1}\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix}$$

$$m{M}_1 m{b} = egin{bmatrix} 1 & 0 & 0 \ -2 & 1 & 0 \ 1 & 0 & 1 \end{bmatrix} egin{bmatrix} 2 \ 8 \ 10 \end{bmatrix} = egin{bmatrix} 2 \ 4 \ 12 \end{bmatrix}$$

Similarly:

$$\mathbf{M}_{2}\mathbf{M}_{1}\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$

$$\mathbf{M}_2 \mathbf{M}_1 \mathbf{b} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 12 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix} = \mathbf{M} \mathbf{b}$$

By design:

$$U=M_{n-1}...M_1A=MA$$
 is upper triangular.

Let $L_i=M_i^{-1}$ which is lower triangular, $L=L_1L_2...L_{n-1}=M_1^{-1}...M_{n-1}^{-1}$ is lower triangular, triangular,

and
$$LU = M_1^{-1}...M_{n-1}^{-1}M_{n-1}...M_1A = A$$

a.k.a,
$$A=LU$$

Other technical details...

- Partial/Complete Pivoting
- Cholesky Factorization for symmetric and positive definite $A{:}\;A = LL^T$

Topic 3: Eigenvalue Problem

Eigenvalue/vectors

$$Ax = \lambda x$$

Eigenvalue deomposition:

$$A=Q\Lambda Q^{-1}$$

 Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues

Eigenvalue/vectors

$$A^k = Q\Lambda^k Q^{-1}$$

Assume λ_1 is the largest eigenvalues, then:

$$lim_{k->\infty}\Lambda^k=\lambda_1^kst e_{1,1}$$

other eigenvalues just fade away...

which gives rise to the idea of Power Iteration

Power Iteration

Assume
$$x_0 = \sum lpha_i v_i$$

where v_i s are eigen vectors, and lphas represent weights. x_0 is a linear combination of v_i s

$$x_k = Ax_{k-1} = A^2x_{k-2} = \cdots = A^kx_0$$

$$\sum_{i=1}^n \lambda_i^k lpha_i v_i = \lambda_1^k \left(lpha_1 v_1 + \sum_{i=2}^n \left(\lambda_i / \lambda_1
ight)^k lpha_i v_i
ight)^k$$

 x_k converges to multiple of eigenvector v_1 corresponding to dominant eigenvalue λ_1

Power Iteration

Algorithm:

- 1. randomly initialize x_0
- 2. compute: $x_{k+1} = Ax_k$
- 3. repeat step 2 until the ratio between x_{k+1} and x_k converges.

The convergent ratio is the eigenvalue

Power Iteration

The aforementioned algorithm may diverge as \boldsymbol{x} gets larger...

Normalized Power Iteration

- 1. randomly initialize x_0
- 2. compute: $y_{k+1} = Ax_k$
- 3. normalize: $x_{k+1} = \frac{y_k}{||y_k||_{\infty}}$
- 4. repeat step 2 until x_k converges.

Then:

$$\left\|y_k
ight\|_{\infty}
ightarrow \left|\lambda_1
ight|$$
 , and $x_k
ightarrow v_1/\left\|v_1
ight\|_{\infty}$

Topic 4: Optimization

One-Dimentional Optimization

- Golden Section Search
- Successive Parabolic Interpolation
- Newton's Method

Golden Section Search

Unimodality

Real-valued function f is unimodal on interval [a,b] if there is unique $x^* \in [a,b]$ such that $f(x^*)$ is minimum of f on [a,b], and f is strictly decreasing for $x \leq x^*$, strictly increasing for $x^* \leq x$

Golden Section Search

- 1. Suppose f is unimodal on [a,b], and let x_1 and x_2 be two points within [a,b], with $x_1 < x_2$.
- 2. Evaluating and comparing $f(x_1)$ and $f(x_2)$, we can discard either $(x_2,b]$ or $[a,x_1)$, with minimum known to lie in remaining subinterval.
- 3. Repeat 1-2, until $|x_1-x_2|<\epsilon$

Golden Section Search

When $f(x_1) < f(x_2)$, it's impossible for the minimum to fall in $(x_2,2]$

Why 'Golden'?

Reuse results from the last step, to reduce computational cost.

Why 'Golden'?

Let
$$x_2-a=b-x_1=\lambda$$
 , $b-a=1$ (unit length)

To reuse x_2 when $\left[a,x_1\right]$ is discarded, we have:

$$rac{2\lambda - 1}{\lambda} = rac{x_2 - x_1}{b - x_1} = rac{x_{1,new} - a_{new}}{b_{new} - a_{new}} = rac{x_1 - a}{1} = 1 - \lambda$$

$$\lambda pprox 0.618$$
 = golden ratio -1

Successive Parabolic Interpolation

Successive Parabolic Interpolation

- 1. Fit quadratic polynomial to three function values
- 2. Take minimum of quadratic to be new approximation to minimum of function
- 3. New point replaces oldest of three previous points and process is repeated until convergence

Newton's Methods

Based on truncated Taylor series:

$$f(x+h)pprox f(x)+f'(x)h+rac{f''(x)}{2}h^2$$

Minimizing right hand side w.r.t. h:

$$h^st = -f'(x)/f''(x)$$

Therefore: $x_{k+1} = x_k - f'\left(x_k\right)/f''\left(x_k\right)$

Multi-Dimentional Optimization

Multi-Dimentional Optimization

- Gradient Descent
- Newton's Method
- Other Non-Convex Optimization

Gradient Descent

Gradient Descent

- 1. Start with randomly initialized $X_{
 m 0}$
- 2. Iteratively update towards the most rapidly descending direction indicated by first-order partial derivative:

$$X_{k+1} = X_k - lpha_k
abla f\left(X_k
ight)$$

where α_k is called *step size* or *learning rate*, and is usually set as a constant.

It only converges to local minimum.

Gradient Descent

Newton's Method

Update rules:

$$egin{aligned} x_{k+1} &= x_k - H_f^{-1}\left(x_k
ight)
abla f\left(x_k
ight) \end{aligned}$$

where H is the Hessian matrix of second partial derivatives of f,

$$\left\{ H_f(x)
ight\}_{ij} = rac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

Other Non-Convex Optimization

- Momentum Gradient Descent
- Adagrad
- Adadelta
- Adam

Momentum Gradient Descent

In gradient descent: gradient resembles 'speed';

In momentum GD: gradient resembles 'acceleration'

Momentum Gradient Descent

- 1. Start with randomly initialized X_0 .
- 2.Initialize momentum M_0 to zero vector.
- 3.Update momentum as the moving average of gradient g_t : $M_t = \mu * M_{t-1} + g_t$
- 4.Update parameters: $X_{k+1} = X_k lpha_k M_t$

where μ controls how fast momentum is updated.

It's **believed** that momentum GD can escape local minimum.

Adagrad

-- Adaptive Gradient Algorithm

Adagrad

Recall Newton's method:

$$egin{aligned} x_{k+1} &= x_k - H_f^{-1}\left(x_k
ight)
abla f\left(x_k
ight) \end{aligned}$$

As the number of parameters grows, it will be more time-consuming to comput H_f .

We can approximate H_f instead:

$$B_t := diag\left(\sum_{j=1}^t
abla f_{i_j}\left(x_j
ight) \cdot
abla f_{i_j}\left(x_j
ight)^ op
ight)^{1/2}$$

Adagrad

The computation of B_t simply keep track of the squared first-order gradients. It can be computed as follows:

- 1. Initialization.
- 2. Update: $n_t = n_{t-1} + g_t^2$
- 3. $X_{k+1} = X_k rac{lpha_k}{\sqrt{n_t + \epsilon}} * g_t$

It can regularize the gradients, preventing it from being too large or too small.

Adadelta

In Adagrad, n_t is monotonically increasing, and will finally stop the updates, when $\frac{\alpha_k}{\sqrt{n_t+\epsilon}}=0.$

In Adadelta:

 n_t is replaced with a decaying moving average:

$$n_t =
u * n_{t-1} + (1 -
u) * g_t^2$$

where u is a hyper-parameter indicating the decay rate of n_t .

Adam: Adaptive Moment Estimation

-- Adadelta with Momentum

Adam

- 1. MA of gradient: $m_t = \mu * m_{t-1} + (1-\mu) * g_t$
- 2. MA of second moment:

$$n_t =
u * n_{t-1} + (1 -
u) * g_t^2$$

- 3. Adjustment: $\hat{m}_t = rac{m_t}{1-\mu^t}$, $\hat{n}_t = rac{n_t}{1u^t}$
- 4. Update: $X_{k+1} = X_k rac{\hat{m}_t}{\sqrt{\hat{n}_t + \epsilon}} * \eta$

Remember: these are simply what people believe to be able to solve non-convex optimization, especially in training neural networks.

Topic 5: Interpolation

Interpolation

Interpolation is well discussed in Prof. Wang's lecture.

Recall: when we infer the continuous function from discretely sampled points, denoted as $\{(x_i,y_i)\}_{i=1}^n$, we can use 1) linear, 2) near neighbour, 3) polynomial, 4) spline, ...

___polation

In this part, we will talk about extrapolation.

Image we want: $y^* = f(x^*), x^* < x_i$ or $x^* > x_i$ for any $x_i \in \{(x_i, y_i)\}_{i=1}^n$

In many problems, such as numerical integration or differentiation, approximate value for some quantity is computed based on some step size h:

$$f'(x)=\lim_{h->0}rac{f(x+h)-f(x)}{h}$$

Ideally, we would like to obtain limiting value as step size approaches zero, but we cannot take step size arbitrarily small because of excessive cost or rounding error.

Based on values for nonzero step sizes, however, we may be able to estimate value for step size of zero.

One way to do this is called Richardson extrapolation.

Let F(h) denote value obtained with step size h. F(0) is what we desire ideally.

If we compute value of F for some nonzero step sizes, and if we know theoretical behavior of F(h) as $h \to 0$, then we can extrapolate from known values to obtain approximate value for F(0).

Suppose F is a linear function:

$$F(h)=a_0+a_1h+\mathcal{O}\left(h^2
ight)$$

 $a_0 = F(0)$ is out target.

We compute:

1.
$$F(h)=a_0+a_1h+\mathcal{O}\left(h^2
ight)$$
 , and

2. $F(h/q) = a_0 + a_1 \frac{h}{q} + \mathcal{O}\left(h^2\right)$ for some positive integer q.

 a_0 is then approximated as:

$$a_0 = F(h) + rac{F(h) - F(rac{h}{q})}{q^{-1} - 1}$$

Thanks!