Answer **all** the questions in the spaces provided.

1

(a)	Derive the SI base unit of force.
	SI base unit of force =[1]
(b)	A spherical ball of radius r experiences a resistive force F due to the air as it moves through the air at speed v . The resistive force F is given by the expression
	F = crv,
	where <i>c</i> is a constant.
	Derive the SI base unit of the constant <i>c</i> .
	SI base unit of $c = \dots [1]$

- (c) The ball is dropped from rest through a height of 4.5 m.
 - (i) Assuming air resistance to be negligible, calculate the final speed of the ball.

speed = $m s^{-1} [2]$

(ii) The ball has mass 15 g and radius 1.2 cm.

The numerical value of the constant c in the equation in **(b)** is equal to 3.2×10^{-4} when measured using the SI system of units.

Show quantitatively whether the assumption made in (i) is justified.

[3]

Answer all the questions in the spaces provided.

1	(a)	(i)	Define <i>pressure</i> .	Exa
			[1]	
		(ii)	State the units of pressure in base units.	
			[1]	
	(b)	The	pressure p at a depth h in an incompressible fluid of density ρ is given by	
			$p = \rho g h$,	
			ere g is the acceleration of free fall. base units to check the homogeneity of this equation.	

.....[3]

© UCLES 2005 9702/02/O/N/05

For Examiner's Use

Answer \boldsymbol{all} the questions in the spaces provided.

For Examiner's Use

	A student takes readings to measure the mean diameter of a wire using a micrometer screw gauge.				
(a)	Mal	ke suggestions, one in each case, that the student may adopt in order to			
	(i)	reduce a systematic error in the readings,			
	(ii)	allow for a wire of varying diameter along its length,			
	(iii)	allow for a non-circular cross-section of the wire.			
		[3]			
(b)		mean diameter of the wire is found to be 0.50 \pm 0.02 mm. Calculate the percentage ertainty in			
	(i)	the diameter,			
		uncertainty = %			
	(ii)	the area of cross-section of the wire.			
	(a)	gauge. (a) Mak (i) (iii) (b) The unc (i)			