Proof of Radon-Nikodym theorem

Theorem (Radon-Nikodym). Suppose Ω is a nonempty set and \mathscr{A} a σ -field on it. Suppose μ and ν are σ -finite measures on (Ω, \mathscr{A}) such that for all $A \in \mathscr{A}$, $\mu(A) = 0$ implies $\nu(A) = 0$. Then

- There exists $z:\Omega\to[0,\infty)$ measurable such that for all $A\in\mathscr{A}$, $\nu(A)=\int_A z\ d\mu$.
- Such a z is unique upto a.e. equality (w.r.t. μ).
- z is integrable w.r.t. μ if and only if ν is a finite measure.

Proof. Assuming we have obtained the z, it is easy to see that z is integrable if and only if ν is a finite measure, since $\nu(\Omega) = \int z \ d\mu$.

Uniqueness

We show uniqueness first. Suppose there are two $z_1, z_2 : \Omega \to [0, \infty)$ such that for all $A \in \mathcal{A}$, $\int_A z_1 \ d\mu = \nu(A) = \int_A z_2 \ d\mu$. We would like to say $\int_A z_1 \ d\mu - \int_A z_2 \ d\mu = 0$, but both the integrals might be ∞ . Both μ and ν are σ -finite. Let \mathcal{C} be a countable partition of Ω such that for all $C \in \mathcal{C}$, $\mu(C) < \infty$ and $\nu(C) < \infty$ (to obtain this we can take such a partition for μ , and such a partition for ν , and take pairwise intersections). Fix a $C \in \mathcal{C}$. Let

$$B = C \cap \{\omega : z_1(\omega) - z_2(\omega) > 0\}$$

Note that $1_B(z_1-z_2)=1_C(z_1-z_2)^+$ (evaluate both sides at ω : for $\omega \notin C$, both are 0; for $\omega \in C \setminus B$, LHS is 0 and since $(z_1-z_2)(\omega) \leq 0$, RHS is 0; for $\omega \in B$ both side are $z_1(\omega)-z_2(\omega)$). $\nu(B)=\int 1_B z_1 d\mu = \int 1_B z_2 d\mu$. Since $\nu(B) \leq \nu(C) < \infty$, it is meaningful to consider $\int 1_B z_1 d\mu - \int 1_B z_2 d\mu$.

$$0 = \int 1_B z_1 \ d\mu - \int 1_B z_2 \ d\mu$$
$$= \int 1_B (z_1 - z_2) \ d\mu$$
$$= \int 1_C (z_1 - z_2)^+ \ d\mu$$

If the integral of a nonnegative function is 0, it must be 0 almost everywhere. Applying to the above:

$$\mu(\{\omega : \omega \in C \text{ and } z_1(\omega) - z_2(\omega) > 0\}) = 0$$

We can interchange the roles of z_1 and z_2 in the above argument. Combining the two, we get

$$\mu(\{\omega : \omega \in C \text{ and } z_1(\omega) - z_2(\omega) \neq 0\}) = 0$$

This holds for all $C \in \mathcal{C}$. Since \mathcal{C} is countable, and a countable union of null sets is a null set,

$$\mu(\{\omega: z_1(\omega) \neq z_2(\omega)\}) = 0$$

This proves that the z promised in the theorem (if it exists) is unique upto a.e. (w.r.t. μ) equality.

Existence

We now show the existence of such a z. We reduce the general case to the case when both μ and ν are finite, and then show existence for the finite case.

Reduction to the finite measure case

Suppose we know the Radon-Nikodym theorem holds for the case when the measures involved are finite. In general, assume μ and ν are σ -finite, and let \mathcal{C} be a countable partition of Ω such that for all $C \in \mathcal{C}$, $\mu(C)$ and $\nu(C)$ are finite. Define finite measures μ_C and ν_C for all $C \in \mathcal{C}$,

$$\mu_C(A) = \mu(C \cap A), \ \nu_C(A) = \nu(C \cap A)$$

If $\mu_C(A) = 0$, then $\nu_C(A) = 0$. Using the finite-measure case of the theorem, let $z_C : \Omega \to [0, \infty)$ be such that for all $A \in \mathscr{A}$ and $C \in \mathcal{C}$,

$$\nu_C(A) = \int_A z_C \ d\mu_C$$

 z_C and $z_C 1_C$ differ at most on $\Omega \setminus C$, which has $0 \mu_C$ measure. So we can replace z_C by $z_C 1_C$, and so assume that for $\omega \notin C$, $z_C(\omega) = 0$. Define $z : \Omega \to [0, \infty)$, by requiring that $z|_C = (z_C)|_C$ (that is, for $\omega \in C$, $z(\omega) = z_C(\omega)$). z can also be described as $\sum_{C \in \mathcal{C}} z_C$ - this shows that z is measurable.

If $g: \Omega \to [0, \infty)$ is 0 outside C, then $\int g \ d\mu = \int g \ d\mu_C$. This can be proven as usual by proving it for simple functions and then for all nonnegative measurable functions. This fact is applied to z_C in what follows. For any $A \in \mathscr{A}$,

$$\nu(A) = \sum_{C \in \mathcal{C}} \nu(A \cap C)$$

$$= \sum_{C \in \mathcal{C}} \nu_C(A)$$

$$= \sum_{C \in \mathcal{C}} \int_A z_C d\mu_C$$

$$= \sum_{C \in \mathcal{C}} \int_A z_C d\mu$$

$$= \int_A \sum_{C \in \mathcal{C}} z_C d\mu$$
 (by taking partial sums; MCT)
$$= \int_A z d\mu$$

It remains to prove the theorem for the finite measure case:

Finite measures - getting hold of the z:

Now assume μ and ν are finite measures. Let

$$\underline{\underline{C}} = \big\{ f: (f:\Omega \to [0,\infty]_{\bar{\mathbb{R}}}), \forall A \in \mathscr{A}(\int_A f \ d\mu \leq \nu(A)) \big\}$$

We want to identify f such that equality holds, that is, for all $A \in \mathcal{A}$, $\int_A f \ d\mu = \nu(A)$.

 $\underline{\underline{C}}$ is nonempty, because the zero function belongs to $\underline{\underline{C}}$. Intuitively, we want to choose the "largest" function in $\underline{\underline{C}}$ as a candidate for our z. Does such a "largest" function exist? We observe some properties of $\underline{\underline{C}}$ first:

• If $f, g \in \underline{C}$, then $f \vee g$ (which is the pointwise maximum of f and g) belongs to \underline{C} . Take any $A \in \mathscr{A}$. We apply the condition defining \underline{C} to the sets $A_1 := A \cap \{\omega : f(\omega) \geq g(\omega)\}$ and $A_2 := A \cap \{\omega : f(\omega) < g(\omega)\}$:

$$\int_{A_1} f \le \nu(A_1), \ \int_{A_2} g \le \nu(A_2)$$

Note that $f1_{A_1} = (f \vee g)1_{A_1}$ and $g1_{A_2} = (f \vee g)1_{A_2}$. Substituting in the above equations and adding them, we get

$$\int_{A} (f \vee g) \le \nu(A)$$

• Suppose $\{f_n\}_{n=1}^{\infty}$ is an increasing sequence in \underline{C} . Let f be their supremum (equivalently limit). Then $f \in \underline{C}$: take any $A \in \mathscr{A}$. $\{f_n 1_A\}_{n=1}^{\infty}$ increases to $f 1_A$, and so by the monotone convergence theorem the corresponding limit with integrals holds. Since each $\int f_n 1_A \leq \nu(A)$, we have $\int f 1_A \leq \nu(A)$.

We identify the "largest" function in $\underline{\underline{C}}$ by considering the function with the largest integral. For all $f \in \underline{\underline{C}}$, $\int f \ d\mu \leq \nu(\Omega) < \infty$. Let

$$\alpha = \sup \left\{ \int f \ d\mu : f \in \underline{\underline{C}} \right\}$$

 $0 \le \alpha \le \nu(\Omega)$. In particular, $\alpha \ne \infty$. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence from \underline{C} such that $\{\int f_n \ d\mu\}_{n=1}^{\infty}$ converges to α (this can be done because of the supremum definition of α). Consider the partial maxima of $\{f_n\}_{n=1}^{\infty}$, that is, define $\{g_n\}_{n=1}^{\infty}$ by

$$g_n = \max\{f_1, f_2, \dots, f_n\}$$

We know that $g_n \in \underline{\underline{C}}$, so $\int g_n \ d\mu \leq \alpha$. Also, $f_n \leq g_n$, so $\int f_n \ d\mu \leq \int g_n \ d\mu \leq \alpha$. Thus $\lim_{n\to\infty} \int g_n \ d\mu = \alpha$. $\{g_n\}_{n=1}^{\infty}$ is an increasing sequence; let $z = \lim_{n\to\infty} g_n$. By the monotone convergence theorem, $\int z \ d\mu = \alpha$. Since z is integrable, z is finite almost everywhere. We modify z on a set of measure 0 suitably so that z never takes the value ∞ . This z is our "largest" function in \underline{C} , as we show now:

Let $g \in \underline{C}$. We will show that $g \leq z$ a.e. (w.r.t μ). Let $A = \{\omega : g(\omega) > z(\omega)\}$. Let $z \vee g = h$. $h \in \underline{C}$. $A = \{\omega : h(\omega) > z(\omega)\} = \{\omega : h(\omega) - z(\omega) > 0\}$. $h \geq z$; $\int h \ d\mu \geq \int z \ d\mu = \alpha$, so $\int h = \alpha$. h - z is a nonnegative function whose μ integral is 0, so h - z is 0 almost everywhere. $\mu(A) = 0$. $g \leq z$ almost everywhere (w.r.t μ).

Finite measures - showing that the z works

Define $\lambda: \mathscr{A} \to [0, \infty)$,

$$\lambda(A) = \nu(A) - \int_A z \ d\mu$$

Note that this is well-defined, that is, the expression on the RHS indeed belongs to $[0, \infty)$. λ is a measure: clearly $\lambda(\emptyset) = 0$. Let $\mathcal{C} \subseteq \mathscr{A}$ be a countable collection of disjoint sets.

$$\sum_{C \in \mathcal{C}} \nu(C) + \sum_{C \in \mathcal{C}} \int_C z \ d\mu = \nu \left(\bigcup \mathcal{C} \right) + \int_{\bigcup \mathcal{C}} z \ d\mu < \infty$$

Since the relevant series is absolutely convergent, we can rearrange terms, and

$$\lambda\left(\bigcup\mathcal{C}\right) = \nu\left(\bigcup\mathcal{C}\right) - \int_{\bigcup\mathcal{C}} z \ d\mu = \sum_{C \in \mathcal{C}} \nu(C) - \sum_{C \in \mathcal{C}} \int_{C} z \ d\mu = \sum_{C \in \mathcal{C}} \left(\nu(C) - \int_{C} z \ d\mu\right) = \sum_{C \in \mathcal{C}} \lambda(C)$$

 λ is a measure. We want to show that λ is the zero measure, and then we will be done.

If for all $A \in \mathscr{A}$ and all $k \in \mathbb{N}$, $\lambda(A) \leq \frac{1}{k}\mu(A)$ then since $\mu(A)$ is finite, $\lambda(A) = 0$, and we are done. So there exists $A \in \mathscr{A}$ and $k \in \mathbb{N}$ such that $\lambda(A) - \frac{1}{k}\mu(A) > 0$. Fix such an A and k. We will derive a contradiction.

Call a set $Z \in \mathcal{A}$ to be *good* if the following two conditions hold:

- $\lambda(Z) \frac{1}{h}\mu(Z) > 0$.
- For all $B \subseteq Z$ with $B \in \mathcal{A}$, $\lambda(B) \frac{1}{k}\mu(B) \ge 0$.

The first condition implies that a good set Z must have $\mu(Z) > 0$: otherwise if $\mu(Z) = 0$, then by the hypothesis, $\nu(Z) = 0$, and so $\lambda(Z) = 0$. A satisfies the first condition, but need not satisfy the second condition.

We will identify a good set - A itself may not be a good set, but we can "scrape off" some parts of it to get a good set. Once we identify a good set Z, we will use the function $z + \frac{1}{k} \mathbb{1}_Z$ to get a contradiction.

Let $A_0 = A$. Let $\beta_0 = \inf\{\lambda(B) - \frac{1}{k}\mu(B) : B \subseteq A, B \in \mathscr{A}\}$. If $\beta_0 \ge 0$, then A itself is a good set. So assume $\beta_0 < 0$. β_0 cannot be $-\infty$, since it is at least $-(\nu(\Omega) + \int z \ d\mu + \frac{1}{k}\mu(\Omega))$. Pick $B_0 \subseteq A_0$ such that

$$\lambda(B_0) - \frac{1}{k}\mu(B_0) < \frac{1}{2}\beta_0$$

Put $A_1 = A \setminus B_0$.

$$\lambda(A_1) - \frac{1}{k}\mu(A_1) = (\lambda(A) - \lambda(B_0)) - (\frac{1}{k}\mu(A) - \frac{1}{k}\mu(B_0)) \ge \lambda(A) - \frac{1}{k}\mu(A) > 0$$

(because $\lambda(B_0) - \frac{1}{k}\mu(B_0) < \frac{1}{2}\beta_0 < 0$.)

An important observation is this: if $B \subseteq A_1$, then $\lambda(B) - \frac{1}{k}\mu(B) \ge \frac{1}{2}\beta_0$. Otherwise, we could take a B which violates this, and $B \cup B_0$ would violate the infimum definition of β_0 .

If A_1 is a good set, we have found a good set. Otherwise, repeat with A_1 what we did with A_0 . The above observation says that the β_1 so obtained will satisfy $\beta_1 \geq \frac{1}{2}\beta_0$. Inductively, we construct a sequences of sets $\{A_n\}_{n=1}^{\infty}$ and $\{B_n\}_{n=1}^{\infty}$, and a sequence of real numbers $\{\beta_n\}_{n=1}^{\infty}$, such that the following holds: some A_n is good, or for all $n \in \mathbb{N}$,

- \bullet $B_n \subseteq A_n$.
- $\bullet \ A_{n+1} = A_n \setminus B_n.$
- $\beta_n = \inf \{ \lambda(B) \frac{1}{k} \mu(B) : B \subseteq A_n, B \in \mathcal{A} \}, \beta_n < 0.$
- $\lambda(A_{n+1}) \frac{1}{k}\mu(A_{n+1}) \ge \lambda(A_n) \frac{1}{k}\mu(A_n).$
- $\bullet \ \beta_{n+1} \ge \frac{1}{2}\beta_n.$

This immediately implies that for all n, $\beta_n \geq \frac{1}{2^n}\beta_0$ and $\lambda(A_n) - \frac{1}{k}\mu(A_n) \geq \lambda(A) - \frac{1}{k}\mu(A) > 0$. If no A_n was good, define $A_{\infty} = \bigcap_{n \in \mathbb{N}} A_n$. Since λ and μ are finite measures,

$$\lambda(A_{\infty}) = \lim_{n \to \infty} \lambda(A_n) \text{ and } \mu(A_{\infty}) = \lim_{n \to \infty} \mu(A_n)$$

So $\lambda(A_{\infty}) - \frac{1}{k}\mu(A_{\infty}) \geq \lambda(A) - \frac{1}{k}\mu(A) > 0$. If $B \subseteq A_{\infty}$ and $B \in \mathscr{A}$, then since $B \subseteq A_n$, $\lambda(B) - \frac{1}{k}\mu(B) \geq \frac{1}{2^n}\beta_0$. Since this holds for all n, $\lambda(B) - \frac{1}{k}\mu(B) \geq 0$. A_{∞} is a good set! If some A_n was good, let A_{∞} be that good set.

We will show that $z + \frac{1}{k} 1_{A_{\infty}} \in \underline{\underline{C}}$. For any $S \in \mathcal{A}$, if $S \subseteq \Omega \setminus A_{\infty}$, then

$$\int_{S} \left(z + \frac{1}{k} 1_{A_{\infty}} \right) d\mu = \int_{S} z d\mu \le \nu(S)$$

If $S \subseteq A_{\infty}$, then

$$\int_{S} \left(z + \frac{1}{k} 1_{A_{\infty}}\right) d\mu = \int_{S} z d\mu + \frac{1}{k} \mu(S)
\leq \int_{S} z d\mu + \lambda(S)$$
 (since A_{∞} is a good set)

$$= \nu(S)$$
 (by definition of λ)

For general S, we just combine the part of S in A and the part in $\Omega \setminus A$:

$$\int_{S} \left(z + \frac{1}{k} \mathbf{1}_{A_{\infty}} \right) d\mu = \int_{S \cap A} \left(z + \frac{1}{k} \mathbf{1}_{A_{\infty}} \right) d\mu + \int_{S \setminus A} \left(z + \frac{1}{k} \mathbf{1}_{A_{\infty}} \right) d\mu \leq \nu(S \cap A) + \nu(S \setminus A) = \nu(S)$$

We have shown that $z + \frac{1}{k} 1_{A_{\infty}} \in \underline{\underline{C}}$. Since A_{∞} is a good set, $\mu(A_{\infty}) > 0$. It is not the case that $z + \frac{1}{k} 1_{A_{\infty}} \leq z$ a.e. (w.r.t. μ), which contradicts what we have shown earlier.

 λ must be the zero measure, and so for all $D \in \mathcal{A}$,

$$\nu(D) = \int_D z \ d\mu$$