Teil 1: AL

Teil 1: AL

Boolesche Funktioner

Vollständige Systeme von Junktoren \rightarrow Abschnitt 3.3

Für $n \ge 1$ ist jede Funktion in \mathcal{B}_n darstellbar durch AL_n -Formel. die nur die Junktoren \neg und \land (nur \neg und \lor) benutzt.

Begr.: Eliminiere
$$\vee$$
 oder \wedge mit
$$\begin{cases} \varphi_1 \vee \varphi_2 \equiv \neg(\neg \varphi_1 \wedge \neg \varphi_2) \\ \varphi_1 \wedge \varphi_2 \equiv \neg(\neg \varphi_1 \vee \neg \varphi_2) \end{cases}$$

Systeme von Junktoren (Booleschen Funktionen) mit dieser Eigenschaft heißen vollständig.

weitere Beispiele vollständiger Systeme:

- | mit der Definition $p \mid q := \neg(p \land q)$ (NAND) benutze z.B.: $\neg p \equiv p \mid p$; $p \land q \equiv \neg(p \mid q) \equiv (p \mid q) \mid (p \mid q)$.
- \bullet \rightarrow zusammen mit 0 benutze z.B.: $\neg p \equiv p \rightarrow 0$; $p \lor q \equiv \neg p \rightarrow q \equiv (p \rightarrow 0) \rightarrow q$. nicht vollständig sind z.B. $\left\{ \left\{ \wedge, \vee \right\} \right\}$ (Monotonie); $\left\{ \rightarrow \right\}$ ($0 \in \mathcal{B}_n$ nicht darstellbar).

Kompakatheit

Kompaktheitssatz: Beweis

→ Abschnitt 4

für
$$\Phi \subseteq AL(\mathcal{V})$$
, $\mathcal{V} = \{p_i : i \geqslant 1\}$

AL 4

Sei jedes endliche $\Phi_0 \subset \Phi$ erfüllbar.

Konstruiere induktiv $\mathfrak{I}_0, \mathfrak{I}_1, \mathfrak{I}_2, \ldots$ so, dass für jedes n:

- \mathfrak{I}_n eine \mathcal{V}_n -Interpretation ist.
- \mathfrak{I}_{n+1} verträglich ist mit \mathfrak{I}_n : $\mathfrak{I}_{n+1}(p_i) = \mathfrak{I}_n(p_i)$ für $1 \leqslant i \leqslant n$.
- Für jedes endliche $\Phi_0 \subset \Phi$ gibt es ein erfüllendes 3, das mit \Im_n verträglich ist.

Dann ist $\mathfrak{I}\models \Phi$ für die Interpretation $\left\{ \begin{array}{ccc} \mathfrak{I}\colon \mathcal{V} & \longrightarrow & \mathbb{B} \\ p_n & \longmapsto & \mathfrak{I}_n(p_n) \end{array} \right.$

Frage: Wie kommt man von \mathfrak{I}_n zu \mathfrak{I}_{n+1} ?

Kompaktheitssatz (Endlichkeitssatz)

(Satz 4.1)

Erfüllbarkeit von unendlichen Formelmengen hängt nur von je endlich vielen ab, i.d.S.d.

für alle $\Phi \subseteq AL$ gilt:

jedes endliche $\Phi_0 \subset \Phi$ erfüllbar (*) Φ erfüllbar gdw.

AL 4

für alle $\Phi \subseteq AL, \psi \in AL$ gilt:

gdw. $\Phi_0 \models \psi$ für ein endliches $\Phi_0 \subseteq \Phi$ (**) $\Phi \models \psi$

Konsequenz:

Unerfüllbarkeit einer unendlichen Formelmenge lässt sich durch ein endliches Zertifikat nachweisen. (Warum?)

Bemerkung: Aussagen (*) und (**) sind äquivalent.

Teil 1: AL

Kompakatheit

AL 4

Kompaktheitssatz: Konsequenzen

vgl. auch Skript u. Aufgaben

Lemma von König

(Lemma 4.4)

Ein endlich verzweigter Baum mit unendlich vielen Knoten muss einen unendlichen Pfad haben. beachte Voraussetzung!

k-Färbbarkeit

Ein Graph ist genau dann k-färbbar, wenn jeder endliche Teilgraph k-färbbar ist.

Domino-Parkettierungen

Ein endliches Domino-System erlaubt genau dann eine Parkettierung der Ebene, wenn sich beliebig große endliche Quadrate parkettieren lassen.

27/155 28/155

Domino-Parkettierung

ein interessantes, algorithmisch unentscheidbares Problem

Zu gegebener Menge von Kacheln mit gefärbten Rändern: Kann man damit beliebig große Quadrate kacheln?

Beispiel: 10, 20, 30, 40, 50

Mit AL-Kompaktheit lässt sich zeigen:

Ein endlicher Kachel-Satz erlaubt genau dann eine Parkettierung der unendlichen $\mathbb{N} \times \mathbb{N}$ -Ebene (oder auch der $\mathbb{Z} \times \mathbb{Z}$ -Ebene), wenn sich beliebig große endliche Quadrate parkettieren lassen. (wie?)

Teil 1: AL

Kompakatheit

AL 4

Lemma von König aus AL-Kompaktheit

Kodierung in $AL(\mathcal{V})$ mit $\mathcal{V} := \{p_u : u \in V\}$:

$$\varphi_u := p_u \to \bigvee \{p_v \colon v \in E[u]\}$$

"wenn u gewählt wird,

dann auch mindestens ein direkter Nachfolger von u"

Für $\Phi := \{p_{\lambda}\} \cup \{\varphi_{u} : u \in V\}$ gilt:

- jedes endliche $\Phi_0 \subseteq \Phi$ ist erfüllbar, also auch Φ insgesamt.
- wenn $\mathfrak{I} \models \Phi$, so existiert ein unendlicher Pfad $\lambda = u_0 \stackrel{E}{\rightarrow} u_1 \stackrel{E}{\rightarrow} u_2 \stackrel{E}{\rightarrow} \dots \quad \text{mit } \Im(u_i) = 1.$

Bem.: mit $\varphi'_u := p_u \rightarrow \text{ "...genau ein direkter Nachfolger von } u$ " beschreibt jedes $\mathfrak{I} \models \Phi'$ exakt einen unendlichen Pfad.

Lemma von König aus AL-Kompaktheit

Betrachte $\mathcal{T} = (V, E, \lambda)$ Baum mit

- Wurzel λ und abzählbar unendlicher Knotenmenge V,
- endlich verzweigter Kantenrelation E: $E[u] = \{v \in V : (u, v) \in E\}$ endlich f.a. $u \in V$.
- Pfaden $\lambda \stackrel{E}{\to} \dots \stackrel{E}{\to} u$ jeder endlichen Länge, da sonst V endlich.

Kodierung in AL(V) mit $V := \{p_u : u \in V\}$:

$$\varphi_u := p_u \to \bigvee \{p_v \colon v \in E[u]\}$$

"wenn u gewählt wird,

dann auch mindestens ein direkter Nachfolger von u"

Teil 1: AL

Kalküle

Logikkalküle: Deduktion und Refutation

Logikkalküle: rein syntaktische Formate für formale Beweise.

Formale Beweise: syntaktische Zeichenketten, nach einfach nachprüfbaren syntaktischen Regeln aufgebaut (Regelsystem: Kalkül).

Ableitung: Erzeugung von (regelkonformen) formalen Beweisen.

Korrektheit nur semantisch korrekte Sachverhalte sind formal beweisbar (ableitbar).

Vollständigkeit jeder semantisch korrekte Sachverhalt ist formal beweisbar (ableitbar).

Resolution: ein Widerlegungskalkül für die

Unerfüllbarkeit von KNF-Formeln.

Sequenzenkalkül: ein *Deduktionskalkül* für

Allgemeingültigkeit beliebiger AL-Formeln.

KNF in Klauselform → Abschnitt 5.1

KNF: Konjunktionen von Disjunktionen von Literalen. Notation: L für Literal; \overline{L} für komplementäres Literal; $\overline{L} \equiv \neg L$.

Klausel: endliche Menge von Literalen

 $C = \{L_1, \ldots, L_k\}$ steht für $\bigvee C \equiv L_1 \vee \ldots \vee L_k$

 \square steht für die leere Klausel. Erinnerung: $\square \equiv \bigvee \emptyset \equiv 0$.

Klauselmenge: Menge von Klauseln

 $K = \{C_1, \ldots, C_\ell\}$ steht für $\bigwedge K \equiv C_1 \wedge \ldots \wedge C_\ell$

Erinnerung: $\bigwedge \emptyset \equiv 1$.

endliche Klauselmengen \approx KNF-Formeln

Resolutionskalkül arbeitet mit KNF in Klauselform Ableitungsziel: Nachweis der Unerfüllbarkeit einer geg. Klausel-

menge durch Ableitung der leeren Klausel

FGdI II

Sommer 2011

M.Otto und M.Ziegler

33/155

Teil 1: AL

AL Resolution

Resolution

diagrammatisch:

$$C_1 = \{\ldots, L\}$$
 $C_2 = \{\ldots, \overline{L}\}$ $C = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\})$

$$\{p, \underline{\neg q}, r\} \qquad \{p, \underline{q}, s, t\}$$

$$\{p, r, s, t\}$$

Teil 1: AL

AL Resolution

Resolution

 $\rightarrow \ \, \text{Abschnitt} \,\, 5.2$

 $\begin{array}{ll} C = \{L_1, \ldots, L_k\} \text{ steht für } \bigvee C \equiv L_1 \vee \ldots \vee L_k, & \square \equiv \bigvee \emptyset \equiv 0. \\ K = \{C_1, \ldots, C_\ell\} \text{ steht für } \bigwedge K \equiv C_1 \wedge \ldots \wedge C_\ell \end{array}$

Beispiele: $L, \overline{L} \in C \Rightarrow C \equiv 1$ allgemeingültig. $C \equiv 1 \Rightarrow K \equiv K \setminus \{C\}$. $\Box \in K \Rightarrow K \equiv 0$ (unerfüllbar). $K \models C \Leftrightarrow K \equiv K \cup \{C\}$.

Resolventen und Resolutionslemma

 $L \in C_1, \overline{L} \in C_2 \Rightarrow \{C_1, C_2\} \models \underbrace{(C_1 \setminus \{L\}) \cup (C_2 \setminus \{\overline{L}\})}_{Resolvente} =: C$

Beispiele: $y \in C_1$, $y \in C_2 \rightsquigarrow y \in C$ $y \in C_1$, $\neg y \in C_2 \rightsquigarrow y, \neg y \in C$ Tautologie

-Gdl II

ommer 2011

Otto und M.Ziegler

24/155

Teil 1: AL

AL Resolution

Resolutionslemma

(Lemma 5.5)

Seien $C_1, C_2 \in K$, C Resolvente von C_1 und C_2 . Dann ist $K \equiv K \cup \{C\}$. [also $K \models C$]

Res(K) und $Res^*(K)$

 $\operatorname{Res}(K) := K \cup \{C \colon C \text{ Resolvente von Klauseln in } K \}.$

Klausel C heißt (im Resolutionskalkül) *ableitbar* aus K, gdw. $C \in \underbrace{\mathrm{Res} \cdots \mathrm{Res}}_{}(K)$ für ein $n \in \mathbb{N}$.

 $\mathrm{Res}^*(K)$: die Menge aller aus K ableitbaren Klauseln.

Korrektheit / Vollständigkeit

Korrektheit: $\square \in \operatorname{Res}^*(K) \Rightarrow K \equiv 0$ (unerfüllbar). [R-Lemma]

Vollständigkeit: K unerfüllbar $\Rightarrow \Box \in \operatorname{Res}^*(K)$.

GdI II

Sommer 2011

M.Otto und M.Ziegler

35/155

So

M.Otto und M.Ziegle

36/155

Resolutionskalkül: Vollständigkeit \rightarrow Abschnitt 5.3

z.z.: K über $\mathcal{V}_n = \{p_1, \dots, p_n\}$ unerfüllbar $\Rightarrow \square \in \operatorname{Res}^*(K)$.

Beweis durch Induktion über n.

Induktionsschritt von n nach n+1

Aus $K = \{C_1, \dots, C_k\}$ über V_{n+1} gewinne K_0 und K_1 über V_n mit

$$K_0 \equiv K \cup \big\{ \{ \neg p_{n+1} \} \big\} \quad \text{ und } \quad K_1 \equiv K \cup \big\{ \{ p_{n+1} \} \big\} \quad \quad \text{(wie?)}$$

K unerfüllbar $\Rightarrow K_0$ und K_1 unerfüllbar

$$\Rightarrow \ \square \in \mathrm{Res}^*(\mathcal{K}_0) \ \mathsf{und} \ \square \in \mathrm{Res}^*(\mathcal{K}_1).$$

 $\mathsf{Dann}\;\mathsf{ist}\;\Box\in\mathrm{Res}^*(\mathcal{K})\;\mathsf{oder}\;\left\{\begin{array}{l}\{p_{n+1}\}\in\mathrm{Res}^*(\mathcal{K})\\\;\mathsf{und}\\\;\{\neg p_{n+1}\}\in\mathrm{Res}^*(\mathcal{K})\end{array}\right.$

und demnach jedenfalls $\square \in \operatorname{Res}^*(K)$.

M.Otto und M.Ziegler

AL Resolution

Hornklauseln

Teil 1: AL

→ Abschnitt 5.4

- interessanter Spezialfall für KI Anwendungen,
- AL-HORN-SAT-Problem effizient entscheidbar
- logische Programmierung (Prolog: FO Horn-Formeln)

Hornklausel:

Klausel mit höchstens einem positiven Literal

z.B.
$$C = \{ \neg q_1, \dots, \neg q_r, q \} \equiv (q_1 \land \dots \land q_r) \rightarrow q;$$
auch \Box ist Hornklausel.

Spezialfälle: C besteht nur aus positivem Literal: positiv. C ohne positive Literale: negativ.

Beobachtungen:

Mengen von negativen Hornklauseln trivial erfüllbar ($p_i \mapsto 0$). Mengen von nicht-negativen Hornklauseln besitzen eindeutige minimale erfüllende Interpretationen.

Teil 1: AL

AL Resolution

Resolutionsalgorithmus

breadth-first-search, Breitensuche

Eingabe: K

[Klauselmenge, endlich]

R := K

WHILE $(\operatorname{Res}(R) \neq R \text{ and } \square \notin R) \text{ DO } R := \operatorname{Res}(R) \text{ OD}$

IF $\square \in R$ THEN output "unerfüllbar"

ELSE output "erfüllbar"

Beweis im Resolutionskalkül

Ableitungsbaum für □:

- Knoten mit Klauseln beschriftet
- − □ an der Wurzel
- Resolventen an binären Verzweigungen
- Klauseln aus K an den Blättern

Teil 1: AL

AL Resolution

Hornklauseln

Form: $(q_1 \wedge \ldots \wedge q_r) \rightarrow q$; negativ: $\neg q_1 \wedge \ldots \wedge \neg q_r$

Effizienter Horn-Erfüllbarkeitstest: Grundidee

H Hornklauselmenge; $H^- \subseteq H$ negative Klauseln in H

 $H_0 := H \setminus H^-$ nicht negative Klauseln

- 1. Schritt: Berechne minimale Interpretation $\mathfrak{I}_0 \models H_0$.
- 2. Schritt: Prüfe, ob $\mathfrak{I}_0 \models H^-$.

Korrektheit

$$\mathfrak{I}_0 \models H^- \Rightarrow \mathfrak{I}_0 \models H$$
.

$$\mathfrak{I} \models H \qquad \Rightarrow \quad \mathfrak{I} \models H_0, \text{ also } \mathfrak{I}_0 \leqslant \mathfrak{I}.$$

$$\mathfrak{I} \models H^- \Rightarrow \mathfrak{I}_0 \models H^- \text{ (und } \mathfrak{I}_0 \models H).$$