

Sistemas distribuídos

PROFESSOR DIÓGENES

TUTOR: DANILO MONTEIRO

PROF. DANILO. MONTEIRO @ GMAIL. COM

Ola! Danilo Monteiro

Um pouco de quem eu sou ©

Você pode me encontrar:

Twitter @1danilo

https://steamcommunity.com/id/dan1lol/

Prof.danilo.monteiro@gmail.com

Perfil Profissional

- ✓ Implantador
- ✓ Desenvolvedor
- √ Engenheiro de Requisitos
- √ Gerente de Projetos
- **✓** Diretor de Projetos
- **√** Consultor
 - **√**Implantação
 - √ Marketing Digital
 - ✓ Desenvolvimento de equipes
- **√**Community Manager

_3

Perfil Acadêmico

- **√** Graduado
- ✓ Mestre
- ✓ Doutorando
- **√**O que estudo?
- √ Histórico como professor

Um pouco de historia

- Meados 1940
 - EUA -> Estratégias militares de comunicação durante a guerra, de maneira que seus soldados se comunicassem através de pontos distintos com segurança e confiabilidade;
 - "descentralizar"
 - inimigos eliminassem o "ponto inteligente" do país

Visão histórica e evolução

Segundo fontes da internet, a empresa divulga de forma "não-oficial" cerca de aproximadamente 1.000.0000 de servidores espalhados pelo mundo com uma arquitetura "all-in-box" formando Datacenters em containers;

Fonte: http://googlediscovery.com

Definição

A literatura classifica que [TANEMBAUM, 2007]:

Um Sistema Distribuído é um conjunto de computadores independentes que se apresenta a seus usuários como um sistema único e coerente [Tanembaum, 2007];

Definição

•Os componentes participantes são chamados de <u>autônomos</u>, em que cada "fatia" desse macro sistema possui uma colaboração significativa cada qual em sua devida funcionalidade;

Tipos de sistemas de computação

- •As <u>metas</u> são perspectivas definidas como pontos cruciais, principalmente a viabilidade, custo, esforço e demais aspectos relacionados com a regra de negócio para que o sistema seja desenvolvido;
 - Meu sistema será expandido?
 - Meu "produto" suporta situações adversas?
- •As <u>metas</u> devem atender vários requisitos básicos da infraestrutura. Dentre esses, a literatura classifica quatro essenciais [TANEMBAUN, 2007]:
 - Acesso de recursos;
 - Transparência na distribuição;
 - Abertura de sistema;
 - Escalabilidade;

- •Em relação ao <u>acesso de recursos</u>, muitos profissionais consideram como fator chave para a formulação de um sistema de médio ou grande porte distribuído;
- •Facilitar aos usuários e aplicações acesso a recursos remotos e o compartilhamento de maneira controlada e eficiente

Tipos de sistemas de computação

- •A <u>transparência na distribuição</u> é uma priori em virtude da estrutura que precisa ser definida para prover disponibilidade de recursos;
- •Um <u>sistema transparente</u> é aquele que é identificado como <u>único para o</u> <u>usuário final</u> sem que o mesmo perceba a localização, acesso, concorrência e o modo do funcionamento interno;
- •Ocultar o fato de que seus processos e recursos estão fisicamente distribuídos por vários computadores

Transparência	Descrição
Acesso	Oculta diferenças na representação de dados e no modo de acesso a um recurso
Localização	Oculta o lugar em que um recurso está localizado
Migração	Oculta que um recurso pode ser movido para outra localização
Relocação	Oculta que um recurso pode ser movido para uma outra localização enquanto em uso
Replicação	Oculta que um recurso é replicado
Concorrência	Oculta que um recurso pode ser compartilhado por diversos usuários concorrentes
Falha	Oculta a falha e a recuperação de um recurso

Tabela 1.1 Diferentes formas de transparência em um sistema distribuído (ISO, 1995).

Metas

- •A terceira meta classificada pela literatura é a <u>Abertura de Distribuição</u>, responsável pela padronização de um conjunto de componentes especificados através de uma <u>interface</u>;
- •Especificam detalhes sobre os serviços, processos e rotinas de operações, além da interoperabilidade e portabilidade para arcar com possíveis mudanças inesperadas Adaptabilidade fácil para adição e remoção de componentes;

Abertura

- •Característica que determina se um sistema pode ser estendido de diferentes maneiras
- Hardware Inclusão de dispositivos de fabricantes distintos
- ◆ Software Módulos de SO Protocolos de Comunicação Recursos compartilhados

Metas

- Escalabilidade
- Três Dimensões [Neuman, 1994]
- •- Tamanho
- Termos Geográficos
- Termos Administrativos

Como funciona um sistema distribuído

API for standardized, high-level services

Definição middleware

• Um <u>middleware</u> é um conjunto de APIS programáveis que interceptam diferenças operacionais mascarando uma integração de várias linguagens e padrões de comunicação através de processos bem definidos.

Definição de Processos distribuídos

Processos são ações predefinidas que obedecem uma ordem, também predefinida, de operações gerenciáveis que formulam um propósito comum através de uma sequencia de passos e características de fluxo contínuo para todos os componentes;

Processos distribuídos

- •Para o campo software, um processo costuma ser definido como um programa que está em execução por um processador virtual multitarefas;
- •Uma solução para desafogar essa dificuldade de concentração foi dividir os processos em partes menores <u>sinalizadas</u> independentes uns dos outros;
- •Os <u>subprocessos</u> formam unidades de processamento e controle de entrada e saída de dados divididas, conhecidas também como <u>thread</u>;

Definição de thread

As threads são fluxos de um programa em execução. Um programa em execução é chamado de processo. Um processo, contém no mínimo uma thread. Como exemplo, um programa que recebe dois números, multiplica um pelo outro e retorna, contém apenas um fluxo de execução. Já um programa que transforma uma imagem em cinza, pode dividir a imagem em 4 quadrantes e processar cada quadrante em um thread (fluxo de execução) para depois retornar a imagem final.

Exemplos de multithread

Um browser é um exemplo de uma aplicação multithread de várias coisas podem ocorrer ao mesmo tempo:

- scroll
- download de um applet
- download de uma imagem
- tocar uma animação
- tocar um som
- · imprimir uma página em background
- download de uma nova página
- olhar 3 applets de ordenação trabalhando

 Thread despachante é aquela que fica sempre atenta esperando requisições (servidor)

•Thread Operaria é a que é chamada para responder a um problema específico (requisição do usuário)

Thread estados

Definição de um socket

Formalmente falando os *sockets* foram a forma de permitir que dois processos se comuniquem (*Interprocess communication*). Esses processos podem ou não estar na mesma máquina.

Definição de socket

Entretanto, é um conceito bem mais abrangente, a depender do ponto de vista, pois tudo que pluga-se a qualquer coisa, pode ser considerado um socket.

Podemos falar que "tomadas" são soquetes, conectores de processador em placa mãe também são (soquete de CPU) etc., mas aqui falaremos rapidamente sobre o socket no contexto das redes de computadores.

Então temos a combinação:

PROTOCOLO://IP:PORTA. Algo

como http://192.168.0.66:8080, onde o protocolo é o HTTP, o IP é o 192.168.0.66 e a porta é a 8080.

Basicamente, isso é um Socket de rede!

Servidor

Definição de cluster

•Na <u>Computação em Cluster</u> os componentes são idênticos quanto ao hardware utilizando os mesmos sistemas operacionais em uma rede local de alta velocidade - Supercomputador com características homogêneas;

Definição de Computação em Grid / Grade

•Já para a <u>Computação em Grade</u> a heterogeneidade é mais aparente já que nenhuma premissa é adotada em relação ao hardware, sistemas operacionais, redes, domínios, administrativos, políticas de segurança, etc.;

Cluster x grid

Cluster - > A alocação de recursos exclusiva por longos períodos de tempo, utilizando forma intensiva os recursos computacionais para uma dada tarefa.

 Recursos disponibilizados nesta modalidade são também denominados clusters computacionais.

Grid -> Computação oportunista, onde tentamos aproveitar intervalos de ociosidade de equipamentos para realizar processamento externo. Não se exige 100% de disponibilidade dos equipamentos. O fator primordial não é o tempo de processamento, mas sim um melhor aproveitamento de recursos.

 Recursos disponibilizados nesta modalidade são também denominados grids computacionais.

