球対称ブラックホールの像

Jean-Pierre Luminet

0.1 image of bare black hole

シュバルツシルト時空

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

この時空を動く光子の軌道を考える。

0.1.1 光の測地線方程式

時空上での光の軌道を表現する式である「光の測地線方程式」を、粒子の場を表す方程式である「クラインゴルドン方程式」から導出する。

クラインゴルドン方程式

$$0 = \left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2 + \left(\frac{mc}{\hbar}\right)^2\right)\phi(\boldsymbol{x},t)$$

質量のない粒子である光では、項がひとつ減って

$$0 = \left(\frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \nabla^2\right) \phi(\mathbf{x}, t)$$
$$= \Box \phi(\mathbf{x}, t)$$

これを一般の時空に拡張すると

$$g^{ij}\nabla_i\nabla_j\phi=0$$

ここで、

$$\phi = Ce^{i\frac{s}{\epsilon}}$$

と書くと

$$\begin{split} \nabla_{j}\phi &= \nabla\left(Ce^{\frac{is}{\epsilon}}\right) \\ &= (\nabla_{j}C)\,e^{\frac{is}{\epsilon}} + \frac{iC}{\epsilon}e^{\frac{is}{\epsilon}}\,(\nabla_{j}S) \\ \nabla_{i}\nabla_{j}\phi &= \nabla_{i}\left((\nabla_{j}C)\,e^{\frac{is}{\epsilon}} + \frac{iC}{\epsilon}e^{\frac{is}{\epsilon}}\,(\nabla_{j}S)\right) \\ &= (\nabla_{i}\nabla_{j}C)\,e^{\frac{is}{\epsilon}} + (\nabla_{i}S)\,(\nabla_{j}C)\,\frac{2i}{\epsilon}e^{\frac{is}{\epsilon}} + (\nabla_{i}\nabla_{j}S)\,\frac{iC}{\epsilon}e^{\frac{is}{\epsilon}} - (\nabla_{i}S)\,(\nabla_{j}S)\,\frac{1}{\epsilon^{2}}e^{\frac{2is}{\epsilon}} \\ g^{ij}\nabla_{i}\nabla_{j}\phi &= g^{ij}\,(\nabla_{i}\nabla_{j}C)\,e^{\frac{is}{\epsilon}} + g^{ij}\,(\nabla_{i}S)\,(\nabla_{j}C)\,\frac{2i}{\epsilon}e^{\frac{is}{\epsilon}} + g^{ij}\,(\nabla_{i}\nabla_{j}S)\,\frac{iC}{\epsilon}e^{\frac{is}{\epsilon}} - g^{ij}\,(\nabla_{i}S)\,(\nabla_{j}S)\,\frac{1}{\epsilon^{2}}e^{\frac{2is}{\epsilon}} \\ &= (\Box C)\,e^{\frac{is}{\epsilon}} + (\nabla_{i}S)\,\left(\nabla^{i}C\right)\,\frac{2i}{\epsilon}e^{\frac{is}{\epsilon}} + (\Box S)\,\frac{iC}{\epsilon}e^{\frac{is}{\epsilon}} - (\nabla_{i}S)\,(\nabla^{i}S)\,\frac{1}{\epsilon^{2}}e^{\frac{2is}{\epsilon}} \\ &\left\{ \begin{array}{c} O(\epsilon^{-2}) : (\nabla_{i}S)\,(\nabla^{i}S) = 0 \\ O(\epsilon^{-1}) : 2\,(\nabla_{i}S)\,(\nabla^{i}C) + C\,(\Box S) = 0 \end{array} \right. \end{split}$$

ここで、

$$(\nabla_i S) (\nabla^i S) = 0$$

は光の測地線方程式を表している。

$$\nabla_i S = k_i$$

とおけば

$$\begin{split} 0 &= (\nabla_i S) \left(\nabla^i S \right) \\ &= k_i k^i \\ &= \nabla_j (k_i k^i) \\ &= \nabla_j (k_i g^{ij} k_l) \\ &= g^{il} (\nabla_j k_l) k_i + g^{il} (\nabla_j k_i) k_l \\ &= 2 (\nabla_j k_i) k^i \\ &= 2 g^{lj} (\nabla_j \nabla_i S) k^i \\ &= 2 (\nabla_i g^{lj} k_j) k^i \\ &= 2 \left(\nabla_i k^l \right) k^i \\ &= 2 \left(\frac{\partial}{\partial x^i} \left(\frac{dx^l}{d\lambda} \right) + \Gamma^l_{im} \left(\frac{dx^m}{d\lambda} \right) \right) \frac{dx^i}{d\lambda} \end{split}$$

光の測地線方程式

$$0 = \left(\frac{d^2x^l}{d\lambda^2}\right) + \Gamma^l_{\ im} \left(\frac{dx^i}{d\lambda} \frac{dx^m}{d\lambda}\right)$$

$$\bar{w}_j = () \int$$

メモ用

1 = 1

$$\begin{cases} 1 = 0 \\ 1 = 0 \end{cases} \tag{2}$$

(1)