PACT Example Lecture: Approximation Algorithms

Neha Nishikant

October 2017

These are notes for a lecture of Approximation Algorithms, in particular LP-Rounding, given by Prof. Sanjeev Khanna at the PACT Princeton summer program. These notes are only to be used for academic purposes.

 α -approximation algorithm: Given a maximization problem **P**, an α -approximation algorithm A, for **P** is a poly-time algorithm that on any input I, outputs a solution satisfying the following:

$$A[I] \ge \frac{OPT(I)}{\alpha}$$

where A[I] is the value of the approximation and OPT(I) is the optimal value *for minimization, $A[I] \leq \frac{OPT(I)}{\alpha}$

See a problem with this?:

How can you guarantee this without knowing what the optimal value is?

 \downarrow

example: Max SAT

Input: m clauses $c_1, c_2, c_3, ..., c_m$ with some number of boolean literals Goal: assignment of literals to maximize the number satisfyable clauses 2-approximation algorithm:

- randomly assign each literal a value of True of False
- take the complement
- determine which of these two assignments maximizes the number of satisfyable clauses. By the pigeonhole principle, this can guarantee that the winning assignment satisfies at leas $\frac{m}{2}$ literals

As shown by the example above, the solution to this problem is to **upperbound the optimal solution** and take this as OPT(I). In this case, we upperbounded OPT(I) with m

Linear Programming

Input:

- n variables $x_1, x_2, x_3, ..., x_n$
- expression of these variables
- m conditions

Goal: assignment of variables to maximize the expression

e.g. Maximize $3x_1 + 7x_2 - 2x_3$ given

$$x_1 + 8x_2 \le 100$$
$$2x_1 - x_2 + 7x_3 \le 200$$

Linear Programming is poly-time solveable

However, **Integer Linear Programming** is *NP-hard*. This problem is the same as linear programming, but the variable assignment must be all integers

Approximation procedure:

- formulate your NP-hard problem as an integer linear programming problem
- drop the integer constraint and solve the resulting linear program
- LP-round: correct the solution to integers that satisfy the constraint
- This conversion process shifts your solution by α

example: Minimum Vertex Cover $\rightarrow ILP$

Minimum Vertex Cover: Input: graph $G = \{V, E\}$ with n vertices $v_1, v_2, ... v_n$

Goal: find minimum vertex cover C Step 1: Convert to ILP:

Input: Let each vertex v_i correspond to a variable x_i Let

$$x_i = 1 \mid v_i \exists C$$
$$x_i = 0 \mid v_i \exists C$$

constraints:

$$\forall \{u, v\} \exists E, x_u + x_v \ge 1$$
$$\forall x_i, x_i = 0 \lor x_i = 1$$

Goal: Minimize $\sum_{i=1}^{n} x_{i}$ **Step 2**: drop integer constraint $\to 0 \le x_{i} \le 1$ **Step 3**: LP-rounding $\forall i \text{ if } x_{i} > \frac{1}{2} \text{ then set } x_{i} = 1 \to \text{else } x_{i} = 0$

(intuition: choose the higher x_i of $\{u, v\}$ and set it to 1, the other to 0)

Integrality Gap: worst case ratio between OPT integral solution and OPT fractional solution for a certain linear program

prove that for our algorithm of Minimum Vertex Cover $\rightarrow ILP$, the integrality gap is 2:

Take a complete graph $G: \{V, E\}$

$$|V| = \frac{n(n-1)}{2}$$

 $|V| = \frac{n(n-1)}{2}$ By pigeonhole principle, n-1 is the cardinality of the OPT vertex cover

Worst case: let
$$x_i$$
 be $\frac{1}{2} \forall i \to \sum_{i=1}^{n} x_i = \frac{n}{2}$
As $n \to \infty, n-1 = 2(\frac{n}{2})$

As
$$n \to \infty, n-1 = 2(\frac{n}{2})$$

Thus our algorithm has an integrality gap of 2

example: Minimum Set cover $\rightarrow ILPr$

Minimum Set Cover:

Input: collection of m sets $s_1, s_2, ..., s_m$ where each $s_i \subset 1, 2, ..., n =$ Universe u

Goal: find minimum subcollection= S of sets whose union is U

Step 1: Let each set s_i correspond to a variable x_i constraints:

$$x_i = 1 \mid s_i \ exists \ S, 0 \ else$$

 $\forall j \ \exists \{1, 2, ..., n\} x_{i_1} + x_{i_2} \ge 1$

where $x_{i_1} + x_{i_2}, ... = \text{variables of sets in which } j$ appears

Step 2: drop integrality constraint $\rightarrow 0 \le x_i \le 1$

Step 3: LP Rounding

Let K be the max number of times that one element appears in S

Thus if:

$$x_i > \frac{1}{k} \to x_i = 1$$
$$x_i < \frac{1}{k} \to x_i = 0$$

This works, but the integrality gap will be k, following the same logic of the previous example. In the worse case, k = m. In that case, why not just output all sets?

randomized LP-rounding:

Choose set s_i in your solution with probability x_i

Then set a new variable $z_i \forall i$:

$$z_i = 1 \mid s_i \text{ exists } S, 0 \text{ else}$$

Pr[element j is covered]=1-Pr[element j is not in by any included set]= $1-\pi_{j=1}^k(1-x_{ij})$

By identity
$$1 + x \le e^x$$
, so $1 - e^{-\sum x_i j}/leq 1 - \frac{1}{e^2}$

How can we make this probability exactly 1?

Instead of including s_i with probability x_i , take with probability $2x_i ln(n)$

Pr[element j is covered]=
$$1 - e^{-2ln(n)\sum x_i j} = 1 - \frac{1}{n^2}$$

 $\Pr[\text{at least one element is not covered}] = \frac{1}{n^2} n = \frac{1}{n} \stackrel{n}{\to} 0 \text{ as } n \to \infty$