

Neural Network Compiler: Enabling Rapid Deployment of DNNs on Low-Cost, Low-Power Processors

cādence°

Megha Daga 05/23/2018

Agenda

- Industry Trend
- Software Challenges
- Software Solution:
 - Static Tools
 - Dynamic Tools
- Tensilica® Xtensa® Neural Network Compiler (XNNC): Static Tool Support
- End-to-End deployment example
- Android Neural Network API (ANN): Dynamic Tool Support
- Conclusion

Neural Networks Everywhere

"Alexa, Add a 2pm meeting to my calendar"

Where is Processing Happening?

- Al in cloud
 - Adds latency
 - Undependable connectivity
 - Breaches privacy
 - High cost
- Trend: Al On-Device
 - Face detection
 - Seeing Al
 - Speech to Text

Al On-Device

- Requirements
 - Low Power
 - Low Area
 - Programmable
 - High Performance
 - Efficient Memory Management
 - Low Latency
 - Scalable

Al Specialized
Embedded Device
Example:
Tensilica® Vision P6,
Tensilica® Vision Q6,
Tensilica® Vision C5

Embedded Platform: NN Implementation Challenges

Specialized Engines

- Optimum performance needs utilization of intrinsics
- Optimum
 performance needs
 most appropriate
 selection of ISA

Market Needs

- Accelerate algorithm implementation time to keep up with the speed of product announcements
- Need for dynamic platform to adapt to rapidly changing neural network algorithms

Optimization

- Need for optimization due to huge compute and bandwidth needs from neural networks
- Need for optimum memory management for bandwidth and power reduction

Solution: Automated Code Generation Tools for NN

Offline

- Varied framework support
- Pre-defined NN models
- Need most optimum solution
- Example: Always-on face recognition
- Need for custom offline NN compilers
- Example: Tensilica® Xtensa Neural Network Compiler

Online

- Varied framework support
- Dynamic application development
- Need most convenient porting solution
- Example: Custom NN app on mobile phone
- Need for dynamic NN compilers
- Example: Android Neural Network API

Offline Software Solution: Tensilica® Xtensa Neural Network Compiler (XNNC)

Compute & Bandwidth Optimized Code Generator

- Custom Quantization to 8b data & weights
- Use of target specific optimized NN Library with convolution and non-convolution layers
- Inclusion of performance enhancement features like selection of most optimum library function, kernel fusion, kernel rejection, DMA & tile management
- User Code
- Tensilica® Compiler / Tool
 - Tensilica® SW Library / Runtime
 - Tensilica® Vision DSPs

XNNC Highlights: Quantization

Vision DSP's use of 8b fixed point for Al processing has negligible accuracy impact

*Code Generated through XNNC and tested over 50K Images

XNNC Highlight: Optimum Code Generation

Automated generated code is close to optimum implementation resulting in speedy time to market

*Code Generated through XNNC for Vision P6 DSP

XNNC Highlights: Continuous Feature Update

Continuous Investment in Optimization

Continuous Addition of New Layers, Framework and Features

- Wide support for framework descriptors: Caffe, TensorFlow, TensorFlow Lite
- Wide support of network types: classification, object detection, segmentation, recurrent, regression
- Custom layer
- Sparsity utilization for bandwidth and compute optimizations

XNNC with Dynamic Deployment: Time to Market Process

XNNC with Dynamic Deployment: Time to Market Example

TensorFlow

Trained Floating Point Model of MobileNet V1

Auto Generated Quantized, Optimized Source Code

Integrated into Vision P6 DSP based on Dreamchip SDK

Verified and validated end-to-end deployment

Several manmonths reduced to less than a couple of days

Online Software Solution: Android Neural Network API

Easy Deployment of NN on Android Devices

- Called by ML Libraries or frameworks
- Efficiently distributes workload across available on-device processors

Courtesy: https://developer.android.com/ndk/guides/neuralnetworks/

Android NN Highlights: Dynamic APP Development

Enabling App Development on Android Devices

- Apps directly use higher level frameworks to deploy trained model on device
- Specialized inferencing engines enables highest performance at lowest power penalty

Real-Time Optimized Execution on Tensilica® Vision P6 DSP

- Executes graph/sub-graph/layer
- Gets best runtime optimization using tile, DMA management, data rearrangement
- Use of hand-optimized ML library

Conclusion

- <u>Trend</u>: See, hear and speak more clearly with On-Device Al
- <u>Software</u>: Need for static and dynamic ecosystem for development and deployment of trained networks

• Example:

- Tensilica® Xtensa Neural Network Compiler
- Android Neural Network API

Demo

See our Al demos at booth 200. Visit our webpage ip.cadence.com/vision.

Resources

- Cadence Web Page
 - https://ip.cadence.com
- Android NN
 - https://developer.android.com/ndk/guides/neuralnetworks/index.htm
 l

© 2018 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo and the other Cadence marks found at www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. All other trademarks are the property of their respective holders.