# Álgebra Linear Avançada Bases Cíclicas

Adriano Moura

Unicamp

2020

### Blocos e Ciclos de Jordan

Suponha que  $m_v(t) = (t - \lambda)^k$  para algum  $k \in \mathbb{Z}_{\geq 0}$  e lembre que  $C_T(v)$  é T-invariante e dim $(C_T(v)) = k$ .

Considere  $w_j = (T - \lambda I)^j(v)$ ,  $\beta = w_0, \dots, w_{k-1}$  e note que  $w_k = 0$  e  $m_{w_j} = (t - \lambda)^{k-j}$  para j < k. Em particular,  $\beta$  é l.i. e, portanto, base de  $C_T(v)$ . Além disso,  $T(w_j) = \lambda w_j + w_{j+1}$  e, portanto,

$$[S]_{\beta}^{\beta} = J_k(\lambda) := \begin{bmatrix} \lambda & 0 & \cdots & \cdots & 0 \\ 1 & \lambda & 0 & & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 1 & \lambda \end{bmatrix} \begin{array}{c} \text{onde } S \in \operatorname{End}_{\mathbb{F}}(C_T(v)) \text{ \'e} \\ \text{dado por } S(w) = T(w) \\ \forall \ w \in C_T(v). \text{ A matriz } \\ J_k(\lambda) \text{ \'e dita um bloco de } \\ \text{Jordan de tamanho $k$ e autovalor $\lambda$.} \\ \end{bmatrix}$$

Já uma sequência como  $\beta$  é dita um T-ciclo de Jordan de comprimento k e autovalor  $\lambda$ . Uma base formada por união de T-ciclos de Jordan é dita uma base de Jordan (com respeito a T).

# Decomposição de Jordan

Se  $\beta$  é base de Jordan de V com respeito a T com l T-ciclos, temos

$$[T]_{\beta}^{\beta} = \begin{bmatrix} J_{k_1}(\lambda_1) & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{k_l}(\lambda_l) \end{bmatrix} \quad \text{Forma Canônica de Jordan de } T.$$

## Teorema da Decomposição de Jordan (TDJ)

Existe base de Jordan com respeito a T para V se, e só se, os fatores primos de  $m_T$  tem grau 1. Em quaisquer duas bases de Jordan de Vcom respeito a T, a quantidade de T-ciclos de Jordan de comprimento k e autovalor  $\lambda$  coincidem quaisquer que sejam  $\lambda$  e k.

Se os subespaços T-primários de V forem T-cíclicos e escolhermos um gerador para cada T-ciclo, o TDP junto com a página anterior nos diz como encontrar uma base de Jordan.

O que fazer se algum subespaço T-primário não for T-cíclico?

O que fazer se algum fator primo de  $m_T$  tiver grau maior que 1?

# Teorema da Decomposição Cíclica (TDC)

Existem  $m \in \mathbb{Z}_{\geq 1}$  e  $v_1, \ldots, v_m \in V \setminus \{0\}$  t.q.  $V = \bigoplus_{i=1}^m C_T(v_i)$  e  $m_{v_{j+1}}|m_{v_j} \ \forall \ 1 \leq j < m$ . Se  $u_1, \ldots, u_l \in V \setminus \{0\}$  satisfazem  $V = \bigoplus_{j=1}^l C_T(u_j)$  e  $m_{u_{j+1}}|m_{u_j} \ \forall \ 1 \leq j < l$ , então l=m e  $m_{u_j}=m_{v_j}$  $\forall 1 < j < m$ .

Os polinômios  $m_{v_i}$  são chamados de os fatores invariantes de T.

Lembre que se  $m_v(t) = t^k - \sum_{j=0}^{k-1} a_j t^j$ , então  $\mathscr{C}_T(v) = v_0, \dots, v_{k-1}$  com  $v_i = T^j(v)$  é base de  $C_T(v)$ . Se S é o operador induzido por T em

$$C_T(v), \text{ temos} \begin{bmatrix} 0 & \cdots & \cdots & 0 & a_0 \\ 1 & \ddots & & \vdots & a_1 \\ 0 & \cdots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & a_{k-1} \end{bmatrix} \text{ Esta matriz \'e chamada de a matriz de Frobenius do polinômio } m_v.$$

$$(\text{companion matrix})$$

Uma base formada por união de conjuntos da forma  $\mathscr{C}_T(v)$  é dita uma base racional (ou de Frobenius) de V com respeito a T.

## Bases Cíclicas e os Polinômios Mínimo e Característico

Note que  $m_T = m_{v_1}$ . De fato, já sabemos que  $m_{v_1} | m_T$  e, portanto, basta mostrar que  $m_{v_1} \in \mathcal{A}_T$ . Pelo TDC, dado  $w \in V$ , existem únicos  $w_j \in C_T(v_j), 1 \leq j \leq m$  t.q.  $w = w_1 + \cdots + w_m$ . Basta mostrar que  $m_{v_1}(T)(w_j) = 0 \ \forall j$ . Mas  $w_j \in C_T(v_j) \Rightarrow m_{v_j}(T)(w_j) = 0$  e a conclusão segue pois  $m_{v_j} | m_{v_1} \ \forall j$ .

**Exercício:** Se  $V = \bigoplus_{j=1}^{m} V_j$ ,  $V_j$  é T-invariante  $\forall j$  e  $T_j$  é induzido por T em  $V_j$ , mostre que  $c_T = \prod_{j=1}^{m} c_{T_j}$ .

Consequentemente  $c_T$  é o produto dos fatores invariantes. Além disso, se T possui FCJ, seus autovalores distintos são  $\lambda_j, 1 \leq j \leq l$ , e  $k_j$  é a soma dos tamanhos dos blocos com autovalor  $\lambda_j$ , temos  $c_T = \prod_{i=1}^l (t - \lambda_j)^{k_j}$ .

A quantidade de blocos de Jordan com autovalor  $\lambda$  é igual a  $\dim(V_{t-\lambda})$ . O exercício 8.2.4 diz como calcular a quantidade de blocos de cada tamanho sabendo-se  $\dim(V_{(t-\lambda)^k}) \ \forall \ k$ .



# Relação entre a Decomposição Cíclica e de Jordan

**Exercício:** Se S é operador induzido por T em  $V_{t-\lambda}^{\infty}$ , mostre que uma base de Frobenius com respeito a  $S-\lambda I$  é uma base de Jordan com respeito a S (compare com (8.2.16) e (8.2.17) do texto).

Como obter uma base racional a partir de uma base de Jordan? Sejam  $\lambda_j, 1 \leq j \leq l$ , os autovalores distintos,  $m_j$  a quantidade de blocos com autovalor  $\lambda_j$  e  $m = \max\{m_j : 1 \leq j \leq l\}$ . Sejam  $v_{j,1}, \cdots, v_{j,m_j}$  vetores que inciam T-ciclos de Jordan com autovalor  $\lambda_j$  de uma base de Jordan e suponha que estejam ordenados de modo que  $m_{v_{j,i+1}}|m_{v_{j,i}}$ . Se  $m_j < i \leq m$ , defina  $v_{j,i} = 0$ . Defina também

$$v_i = v_{1,i} + \dots + v_{l,i}.$$

Exercício:  $V = \bigoplus_{i=1}^{m} C_T(v_i)$  e  $m_{v_{i+1}} | m_{v_i} \, \forall \, 1 \leq i \leq m$ .

**Exercício:** Reverta o processo, isto é, descreva como encontrar a FCJ a partir da FCR, se exisitr FCJ.

Tentem fazer o Exercício 8.3.1.



## Como Escolher os Vetores Iniciais dos Ciclos?

Tanto bases de Jordan como de Frobenius são formadas por união de ciclos. Cada ciclo tem seu vetor inicial e a tarefa mais difícil é saber como encontrar vetores que servem como vetores iniciais. Comecemos com um exemplo mostrando que essa escolha não pode ser aleatória.

Considere  $T: \mathbb{R}^3 \to \mathbb{R}^3$  dado por T(x, y, z) = (0, x, y). Se  $\alpha = e_1, e_2, e_3$ , temos  $[T]^{\alpha}_{\alpha} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$  que já é um bloco de Jordan. Assim,  $e_1$  pode ser escolhido como vetor inicial do único ciclo. Note que  $v = e_1 + e_2$ também pode ser escolhido como vetor inicial e o ciclo correspondente será  $\beta = v, e_2 + e_3, e_3$ . Qualquer vetor cuja coordenada x seja não nula pode ser escolhido como vetor inicial. Porém, se a coordenada  $x \in 0$  o vetor não pode ser escolhido como vetor inicial. De fato, se w é um tal vetor,  $\mathscr{C}_T(w)$  tem no máximo 2 vetores e o vetor final é múltiplo de  $e_3$ . Para justificar estas afirmações, encontre bases para  $V_t$  e  $V_{t2}$ . Isso mostra que não existe subespaço T-invariante W satisfazendo  $\mathbb{R}^3 = C_T(w) \oplus W$ . Ou seja,  $C_T(w)$  não admite subespaço complementar T-invariante!

# Subespaços T-admissíveis

A primeira tarefa para encontrar uma base de Frobenius é escolher vetor  $v_1$  tal que  $C_T(v_1)$  admita subespaço complementar que pode ser escrito como soma direta de ciclos e, portanto, T-invariante. A seguir, precisamos encontrar  $v_2$  tal que  $C_T(v_1) \cap C_T(v_2) = \{0\}$  e  $C_T(v_1) \oplus C_T(v_2)$  admita subespaço complementar que pode ser escrito como soma direta de ciclos e, portanto, T-invariante. E assim por diante. Isso motiva a seguinte definição.

Um subespaço T-invariante W de V é dito T-admissível se existir subespaço T-invariante W' tal que  $V=W\oplus W'$ .

Note que V e  $\{0\}$  são T-admissíveis. Se V for T-cíclico e v satisfaz  $m_v = m_T$ , então  $V = C_T(v)$  e encontramos uma decomposição como no TDC. Em particular, o TDC é óbvio se  $\dim(V) = 1$ . Assim, para demonstrar a existência de uma decomposição em soma direta de ciclos, podemos supor que V não é T-cíclico e mostrar que existe subespaço T-cíclico W que é T-admissível. Por HI, o TDC vale para W e W', completando a demonstração.

## O Conceito de Condutor

Porém, queremos uma decomposição com a propriedade de ser a mais curta possível. Por isso, precisamos ser ainda mais cuidadosos, mas esta é a filosofia da demonstração. O passo crucial é a Proposição 8.2.5 e o conceito crucial no processo de escolha dos vetores iniciais é o conceito de condutor que passamos a explicar.

Dado um subespaço T-invariante W, o conjunto  $\mathscr{C}_{T,v}(W) = \{p \in \mathcal{P}(\mathbb{F}) : p(T)(v) \in W\}$  é chamado de o T-condutor de v em W.

Note que 
$$\mathscr{C}_{T,v}(\{0\}) = \mathcal{A}_{T,v} := \{ p \in \mathcal{P}(\mathbb{F}) : p(T)(v) = 0 \}$$
 e  $\mathcal{A}_{T,v} \subseteq \mathscr{C}_{T,v}(W)$ .

Exercício (8.1.7):  $m_v$  divide todo elemento de  $A_{T,v}$ .

**Exercício:**  $\exists$ ! polinômio mônico que divide todo elemento de  $\mathscr{C}_{T,v}(W)$ . Este polinômio será denotado por  $c_{v,W}$ .

Segue que  $c_{v,W}|c_{v,W'}$  se  $W'\subseteq W$  e, portanto,  $c_{v,W}|m_v$ . Além disso,  $c_{v,W}=1$  se  $v\in W$ .

## Escolhendo os Vetores Iniciais dos Ciclos

### Proposição 8.2.5

Seja W um subespaço próprio e T-admissível de V.

- Para todo  $v \in V \setminus W$ , existe  $v' \in V$  tal que  $W + C_T(v) = W \oplus C_T(v')$  e, além disso,  $m_{v'} = c_{v,W}$ .
- $W + C_T(v) \text{ \'e } T\text{-admissível se } v \in V \text{ satisfaz } C_T(v) \cap W = \{0\} \text{ e}$   $\operatorname{gr}(m_v) = \max\{\operatorname{gr}(m_u) : u \in V, C_T(u) \cap W = \{0\}\}.$

#### Lema 8.2.6

Seja v um vetor como na parte (b) da Proposição 8.2.5. Então, para todo vetor  $u \in V$  satisfazendo  $C_T(u) \cap (W \oplus C_T(v)) = \{0\}$ , vale  $m_u | m_v$ .

Para demonstrar a Prop., precisaremos da seguinte caracterização técnica do conceito de *T*-admissibilidade em termos do de condutor.

Se W é T-invariante, então W é T-admissível se, e só se, para todo  $v \in V$  e  $f \in \mathscr{C}_{T,v}(W)$ , existir  $w \in W$  satisfazendo f(T)(w) = f(T)(v).

# Mais Observações Técnicas

#### Lema 8.2.1

Dado  $v \in V$ , temos  $C_T(v) \cap W = \{0\}$  se, e somente se,  $m_v = c_{v,W}$ .

**Dem.:** Suponha que  $C_T(v) \cap W = \{0\}$  e tome  $f \in \mathscr{C}_{T,v}(W)$ . Então  $f(T)(v) \in C_T(v) \cap W = \{0\}$ , mostrando que  $f \in \mathcal{A}_{T,v}$ . Em particular, tomando  $f = c_{v,W}$ , concluímos que  $m_v | c_{v,W}$ , de onde segue que  $m_v = c_{v,W}$ . Reciprocamente, se  $m_v = c_{v,W}$ , segue que  $f(T)(v) \in W$  se, e só se, f(T)(v) = 0, mostrando que  $C_T(v) \cap W = \{0\}$ .

#### Lema 8.2.4

Seja W um subespaço T-invariante de V e suponha que  $u,v\in V$  satisfazem  $v-u\in W$ . Então,  $\mathscr{C}_{T,v}(W)=\mathscr{C}_{T,u}(W)$ .

**Dem.:** Seja w = v - u e note que

$$f(T)(v) - f(T)(u) = f(T)(w) \in W$$
 para todo  $f \in \mathcal{P}(\mathbb{F})$ .

Logo,  $f \in \mathscr{C}_{T,u}(W)$  se, e somente se,  $f \in \mathscr{C}_{T,v}(W)$ .



## Dem. da Prop. 8.2.5

(a) Seja  $w \in W$  satisfazendo  $c_{v,W}(T)(v) = c_{v,W}(T)(w)$  e considere v' = v - w. Como  $W, C_T(v)$  e  $C_T(v')$  são T-invariantes, temos  $W + C_T(v) = W + C_T(v')$  e precisamos mostrar que  $W \cap C_T(v') = \{0\}$ . Do Lema 8.2.4,  $c_{v,W} = c_{v',W}$  e, além disso,

$$c_{v',W}(T)(v') = c_{v,W}(T)(v-w) = 0.$$

Logo,  $c_{v',W} \in \mathcal{A}_{T,v'} \Rightarrow c_{v',W} = m_{v'}$ . Pelo Lema 8.2.1,  $C_T(v') \cap W = \{0\}$ 

(b) Seja  $W' = W + C_T(v)$ . Se W' = V, não há nada a fazer. Caso contrário, tome  $u \in V \setminus W'$  e sejam  $w \in W$  e  $p \in \mathcal{P}(\mathbb{F})$  tais que (1)  $c_{u,W'}(T)(u) = w + p(T)(v).$ 

Mostraremos que

(2) 
$$c_{u,W'}|p$$
 e  $w = c_{u,W'}(T)(w')$  para algum  $w' \in W$ .

Supondo que isto é válido, tomando  $q \in \mathcal{P}(\mathbb{F})$  tal que  $p = qc_{u,W'}$  e  $w'' = w' + q(T)(v) \in W'$ , temos

$$c_{u,W'}(T)(u) = c_{u,W'}(T)(w') + c_{u,W'}(T)(q(T)(v)) = c_{u,W'}(T)(w''),$$

mostrando que W' é T-admissível.



Para mostrar (2), escreva a divisão de p por  $c_{u,W'}$ :  $p = qc_{u,W'} + r$ . Seja  $u' = u - q(T)(v) \in V \setminus W'$  e note que, pelo Lema 8.2.4, temos  $c_{u,W'} = c_{u',W'}$ . Além disso, pela parte (a) e escolha de v,

(3) 
$$\operatorname{gr}(m_v) \ge \operatorname{gr}(c_{u',W})$$
 e  $c_{u,W'}(T)(u') = c_{u,W'}(T)(u - q(T)(v)) = c_{u,W'}(T)(u) - (p(T) - r(T))(v)$ 

$$\stackrel{(1)}{=} w + p(T)(v) - (p(T) - r(T))(v) = w + r(T)(v).$$

Por outro lado,  $\exists h \in \mathcal{P}(\mathbb{F})$  t.q.  $c_{u',W} = hc_{u',W'} = hc_{u,W'}$ . Assim,

$$c_{u',W}(T)(u') = h(T)(c_{u,W'}(T(u')) = h(T)(w + r(T)(v)),$$

mostrando que  $hr \in \mathscr{C}_{T,v}(W)$ . Se fosse  $r \neq 0$ , seguiria que

$$\operatorname{gr}(h) + \operatorname{gr}(r) \ge \operatorname{gr}(c_{v,W}) = \operatorname{gr}(m_v) \stackrel{(3)}{\ge} \operatorname{gr}(c_{u',W}) = \operatorname{gr}(h) + \operatorname{gr}(c_{u,W'})$$

e, portanto,  $\operatorname{gr}(r) \geq \operatorname{gr}(c_{u,W'})$ , gerando uma contradição. Assim, mostramos a primeira afirmação em (2). A segunda agora segue pois

$$c_{u,W'}(T)(u') = w + r(T)(v) = w \in W,$$

mostrando que  $c_{u,W'} \in \mathscr{C}_{T,u'}(W)$ . Sendo W T-adm.,  $\exists w' \in W$  t.q.  $c_{u,W'}(T)(w') = c_{u,W'}(T)(u') = w$ .  $\square$ 

## Dem. do TDC - Existência

### TDC - Versão "mais forte" - Existência

Se W é subespaço próprio e T-admissível de V, existem  $m \in \mathbb{Z}_{\geq 1}$  e  $v_1, \ldots, v_m \in V \setminus \{0\}$  satisfazendo

- A soma  $W' := \sum_{j=1}^{m} C_T(v_j)$  é direta e  $V = W \oplus W'$ ;

**Dem.:** Por indução em  $k := \dim(V) - \dim(W) \ge 1$ . Se k = 1, é imediato da Proposição 8.2.5(a). Neste caso, m = 1 e  $v_1 = v'$  dado pela Proposição 8.2.5(a) é um autovetor. Suponha que k > 1 e, por hipótese de indução, que o teorema seja válido para qualquer subespaço T-admissível U de V satisfazendo  $\dim(V) - \dim(U) < k$ . Escolha  $v_1$  como na Proposição 8.2.5(b) (que existe pela Proposição 8.2.5(a)) e seja  $U = W \oplus C_T(v_1)$  que satisfaz a hipótese de indução. Logo, existem vetores  $v_2, \ldots, v_m$  t.q.  $V = U \oplus C_T(v_2) \oplus \cdots \oplus C_T(v_m)$  e  $m_{v_{j+1}}|m_{v_j} \ \forall \ 2 \le j < m$ . O Lema 8.2.6 garante que  $m_{v_2}|m_{v_1}$ .

# Polinômio Mínimo da Imagem de um Vetor

#### Lema 8.2.7

Sejam  $S, T \in \text{End}_{\mathbb{F}}(V)$  e suponha que S seja invertível e  $S \circ T = T \circ S$ . Então,  $m_{T,S(v)} = m_{T,v}$  para todo  $v \in V$ .

**Dem.:** Simplificando, escrevamos  $m_v$  e  $m_{S(v)}$ . Por um lado,  $m_v(T)(S(v)) = S(m_v(T)(v)) = 0$ , mostrando que  $m_{S(v)}|m_v$  (Exercício 8.1.7). Resta mostrar que  $m_{S(v)}(T)(v) = 0$ . Seja u = S(v). Como  $S^{-1} \circ T = T \circ S^{-1}$ , temos  $m_{S(v)}(T)(v) = m_u(T)(S^{-1}(u)) = S^{-1}(m_u(T)(u)) = 0.$ 

$$m_{S(v)}(T)(v) = m_u(T)(S^{-1}(u)) = S^{-1}(m_u(T)(u)) = 0.$$

#### Lema 8.2.8

Se 
$$f \in \mathcal{P}(\mathbb{F}), v \in V, u = f(T)(v)$$
 e  $p = \text{mdc}(f, m_v)$ , vale  $m_v = p$   $m_u$ .

**Dem.:** Spg, podemos supor que  $V = C_T(v)$  (caso contrário, aplique o argumento a seguir ao operador T' induzido por T em  $C_T(v)$ ). Suponha primeiro que f e  $m_v$  sejam relativamente primos e mostremos que  $m_u = m_v$ . Se S = f(T), então  $S \circ T = T \circ S$  e segue do Lema 8.1.6 que S é bijetora (pois dim $(V) < \infty$ ). A conclusão segue do Lema 8.2.7.

Suponha agora que f seja primo. Se f não dividir  $m_v$ ,  $\operatorname{mdc}(f, m_v) = 1$  e voltamos ao caso anterior. Caso contrário,  $f = \operatorname{mdc}(f, m_v)$  e precisamos mostrar que  $m_u = g$  com  $g = \frac{m_v}{f}$ . Por um lado,

$$g(T)(u) = g(T)(f(T)(v)) = (gf)(T)(v) = m_v(T)(v) = 0,$$

mostrando que  $m_u|g$ . Se fosse  $m_u \neq g$ , teríamos

$$\operatorname{gr}(m_u) < \operatorname{gr}(g) = \operatorname{gr}(m_v) - \operatorname{gr}(f).$$

Mas veja que

$$(m_u f)(T)(v) = m_u(T)(f(T)(v)) = m_u(T)(u) = 0,$$

mostrando que  $m_v|m_uf$  e, portanto,

$$\operatorname{gr}(m_v) \leq \operatorname{gr}(m_u) + \operatorname{gr}(f),$$

gerando uma contradição.

Procedamos por indução em  $gr(f) \ge 1$ , que começa pelo caso anterior. Suponha gr(f) > 1 e sejam h um fator irredutível de  $f, g \in \mathcal{P}(\mathbb{F})$  tal que  $hg = f, u' = g(T)(v), q = \text{mdc}(g, m_v)$  e  $r = \text{mdc}(h, m_{u'})$ . Note que u = h(T)(u'). Por hipótese de indução, temos

$$m_v = q m_{u'}$$
 e  $m_{u'} = r m_u$ .

As propriedades de m<br/>dc implicam que  $q\ r=p$ .

### Dem. do TDC - Unicidade

#### TDC - Versão "mais forte" - Unicidade

Seja W subespaço próprio e T-admissível de V e suponha que  $v_1,\ldots,v_m\in V\setminus\{0\}$  e  $u_1,\ldots,u_l\in V\setminus\{0\}$  satisfaçam

- As somas  $W' := \sum_{j=1}^{m} C_T(v_j)$  e  $W'' := \sum_{j=1}^{l} C_T(u_j)$  são diretas;
- $2 V = W \oplus W' = W \oplus W'';$

Então l=m e  $m_{v_j}=m_{u_j}$  para todo  $1\leq j\leq m$ .

**Dem.:** Suponha  $m \leq l$  e note que l = m segue se mostrarmos

(4) 
$$m_{u_j} = m_{v_j}$$
 para todo  $1 \le j \le m$ .

De fato, essas igualdades implicam que

$$\dim(V) = \dim(W) + \sum_{j=1}^{m} \dim(C_T(v_j)) = \dim(W) + \sum_{j=1}^{m} \dim(C_T(u_j)),$$

e, portanto, não pode haver mais parcelas na segunda decomposição.

Para mostrar (4), considere  $S_j = m_{v_j}(T), 1 \leq j \leq m$ . Aplique  $S_1$  a ambas as decomposições para obter

$$S_1(W) = S_1(W) \oplus S_1(C_T(u_1)) \oplus \cdots \oplus S_1(C_T(u_l)).$$

Assim,  $m_{v_1}(T)(u_1) = 0$ , mostrando que  $m_{u_1}|m_{v_1}$ . Analogamente, concluímos que  $m_{v_1}|m_{u_1}$  e, portanto,  $m_{u_1} = m_{v_1}$ . Se m = 1, (4) fica demonstrada. Caso contrário, aplique  $S_2 = m_{v_2}(T)$  para obter

$$S_2(W) \oplus S_2(C_T(v_1)) = S_2(W) \oplus S_2(C_T(u_1)) \oplus \cdots \oplus S_2(C_T(u_l)).$$

Como 
$$f(T)(C_T(v)) = C_T(f(T)(v)) \ \forall \ f \in \mathcal{P}(\mathbb{F}), v \in V \text{ (Exer. 8.1.10)},$$

$$S_2(W) \oplus C_T(S_2(v_1)) = S_2(W) \oplus C_T(S_2(u_1)) \oplus \cdots \oplus C_T(S_2(u_l)).$$

Pelo Lema 8.2.8, 
$$m_{S_2(v_1)} = \frac{m_{v_1}}{m_{v_2}} = \frac{m_{u_1}}{m_{v_2}} = m_{S_2(u_1)}$$
. Logo,

$$\dim(C_T(S_2(v_1))) = \dim(C_T(S_2(u_1)))$$

e 
$$C_T(S_2(u_j)) = \{0\} \ \forall \ j \geq 2$$
. Assim,  $m_{v_2}(T)(u_2) = S_2(u_2) = 0$ , mostrando que  $m_{u_2}|m_{v_2}$ . Analogamente, concluímos que  $m_{v_2}|m_{u_2}$  e, portanto,  $m_{u_2} = m_{v_2}$ .

Procedendo recursivamente usando os demais  $S_j$ , (4) é verificada.

## $TDP + TDC \Rightarrow TDJ$

Considere a decomposição T-primária de V,  $V = V_1 \oplus \cdots \oplus V_m$ , e obtenha uma decomposição de cada  $V_i$  como no TDC:

$$V_i = C_T(v_{i,1}) \oplus \cdots \oplus C_T(v_{i,l_i}).$$

Então,  $m_{v_{i,j}} = p_i^{k_{i,j}}$  com  $k_{i,1} \ge \cdots \ge k_{i,l_i}$ , sendo  $p_i$  o correspondente fator primo de  $m_T$ . Segue que

$$V = \bigoplus_{i=1}^{m} \bigoplus_{j=1}^{l_i} C_T(v_{i,j})$$

Se  $p_i = t - \lambda_i \, \forall i$ , para cada  $v_{i,j}$ , construa o correspondente T-ciclo de Jordan como na primeira página  $\leadsto \mathcal{J}_{i,j}$ . Assim,  $\mathcal{J} = \cup_{i,j} \mathcal{J}_{i,j}$  é base de Jordan de V com respeito a T.

Reciprocamente, supondo que existe base de Jordan com respeito a T para V e utilizando uma tal base para calcular  $c_T$ , conclui-se que  $\operatorname{gr}(p_i)=1 \ \forall \ i.$ 

Estude a demonstração da Proposição 8.2.11.



## Semelhança

Dados operadores  $S, T \in \operatorname{End}_{\mathbb{F}}(V)$ , diz-se que S e T são semelhantes se existirem bases  $\alpha$  e  $\beta$  de V tais que  $[S]^{\alpha}_{\alpha} = [T]^{\beta}_{\beta}$ . (É relação de equiv..)

#### Teorema

Se Tsão semelhantes se, e somente se, possuírem a mesma FCR. Se T possuir FCJ, então  $S\sim T$  se, e só se, possuir a mesma FCJ de T.

Dadas matrizes  $A, B \in M_n(\mathbb{F})$ ,  $A \in B$  são ditas semelhantes sobre  $\mathbb{F}$  se existirem  $T \in \operatorname{End}_{\mathbb{F}}(\mathbb{F}^n)$  e bases  $\alpha \in \beta$  de  $\mathbb{F}^n$  tais que

$$A = [T]^{\alpha}_{\alpha} \in B = [T]^{\beta}_{\beta}.$$

Assim, podemos definir FCR e FCJ de uma matriz como sendo a correspondente FC de T. Equivalentemente,  $A \sim B$  sobre  $\mathbb{F}$  se  $\exists P \in M_n(\mathbb{F})$  t.g.  $B = PAP^{-1}$ .

Se  $\mathbb K$  é subcorpo de  $\mathbb F,$  pode ser que A e B sejam semelhantes sobre  $\mathbb F,$  mas não sobre  $\mathbb K.$ 

**Exercício:** Sejam  $A, B \in M_n(\mathbb{K}) \subseteq M_n(\mathbb{F})$ . Determine se é V ou F: A e B são semelhantes sobre  $\mathbb{K}$  se, e só se, o forem sobre  $\mathbb{F}$ .