# Reducing the number of predictors – selecting subsets of variables

(using the Toyota example in chap 6)



## The kitchen sink temptation...



## Simpler is often better



## Selection Algorithms

#### **Backward**

- 1. Start with all predictors
- 2. Drop least significant predictor
- 3. Repeat until all remaining predictors are statistically significant

#### **Foreward**

- 1. Start with 0 predictors
- 2. Add predictor with the biggest boost in R<sup>2</sup>
- 3. Repeat until contribution to R<sup>2</sup> is not statistically significant

#### **Subset Selection**

Like forward except at each stage, variables are eligible for being dropped, as well as added

#### **Exhaustive Search (Best Subset)**

Evaluate all possible subsets (very computationally intensive)



## Possible Criteria for Evaluating Predictors Included in Subsets

- Statistical significance of predictors
- Contribution to R<sup>2</sup>
- Goodness-of-fit metrics with a penalty based on # of predictors
  - Akaike Information Criterion (AIC)
  - Bayesian information Criterion (BIC)
- Mallows Cp

Note that all these metrics are based on the <u>training</u> data, whereas we are interested in predictive performance with <u>new</u> data. You can think of these criteria as useful, somewhat arbitrary ways to produce simpler models, and needn't spend too much time on the distinctions among them.