Uninsured in New Jersey

Team Pushing P Breakers:

Sharif Rakhimov, Luis Rivera, Marjea Mckoy, Ahad Hussain, Parth Patel

Objective

• Predict the number of uninsured people in New Jersey

Overview

- Questions and Hypothesis
- ullet ETL
- Data Platform
- Spatial Area Interpolation
- Dash Dashboard

Questions

- 1. Which city has the highest uninsurance rate?
- 2. How many counties have a population of uninsured people of 8% or more?
- 3. How does income change the number of people being uninsured?
- 4. Is there a race that has a higher uninsured population?
- 5. Which sex has a higher population of uninsured people?

Questions (cont.)

- 6. What age cohort has the most uninsured people?
- 7. Does employment affect the amount of the uninsured population?
- 8. Hypothesis test: the larger the population, the higher the uninsured rate.
- 9. What area and demographic group can Prudential Financial target for insurance sales in NJ?

Datasets

- 1. Small Area Health Insurance Estimates 2019 (SAHIE)
- 2. NJ Uninsured
- 3. NJ Unemployed
- 4. NJ Income
- 5. Cartographic Boundary Files
- 6. Coverage for the Household Population by States
- 7. Unemployment by Counties
- 8. Census Tract in NJ

ETL

- Cleaned the datasets and select the columns needed
- Joined all the tables together based on State, County, and City
- Created three separate data frames
 - NJ Cities
 - o NJ County
 - Census Tracts
- Using Kafka, each data frame would write into an SQL database

Data Factory

Data Platform

Machine Learning: Spatial Area Interpolation

Predict Target Zone using its overlap with Zones with Known Values

Model Goal

Census Tracts in New Jersey

Model Parameters

- <u>Source DataFrame</u> geometries with known values
- <u>Target DataFrame</u> contains target geometries
- <u>Intensive Variables List</u> independent of the size of the system (Population Density,
 Concentration, Melting Point, etc.)
- <u>Extensive Variables List</u> dependent on the size of the system (Population Count, Mass, Volume, etc.)

Model Tuning

- Model has no hyperparameters, no score, and no accuracy metrics of any kind
- Of the 2010 Census Tracts, only about 1850 of them contained healthcare data
- In order to improve the accuracy of the model, the empty census tracts were removed from our analysis

Predicted % Uninsured vs. Actual in NJ Census Tracts

Predicted % Uninsured, White vs. Actual in NJ Census Tracts

Disadvantage: Model struggles with Local Outliers

Disadvantage: Modifiable Areal Unit Problem (MAUP)

- <u>MAUP</u>: data tabulated for different spatial scale levels or according to different zonal systems for the same region will not provide consistent analysis results.
- In other words, in the absence of known values, what geography level (state, county, city) do we choose to make our predictions at the census tract level?

MAUP Illustrated

Recommendations

- There are two approaches to solve the issues of Local Outliers and the MAUP:
- Approach 1: Dasymetric Mapping
 - Use Geographic Distribution data to remove areas where Uninsured people do not live and run the spatial interpolation model
- Approach 2: Model-based Interpolation
 - Use a spatial model (such as a regression) to model the distribution of
 Uninsured people within each City

Dash Dashboard

Theme: black background, bright colors

How it works:

Broken down by County:

Page 1:

- Total number of uninsured
- Rate of uninsured by age
- Rate of uninsured by race
- Top 10 uninsured cities
- Rate of insured/uninsured
- Rate of employed/unemployed

Broken down by Census Geographical Tract:

Page 2:

- % Uninsured dropdown (filter by race, age, sex)
- % Uninsured Map divided by county results
- % Uninsured Map showing county city results
- Predicted vs. Actual results of ML

Background, Team Name:

Page 3:

About Us