Topologia de Espaços Métricos

Vocabulário

Def.: $M
eq \emptyset$ com uma distância d. Seja r um raio e $ar{x} \in M$ um centro,

- a bola aberta é $B_r(ar x) = \{x \in M | d(x, ar x) < r\};$
- a bola fechada é $B_r[ar{x}]=\{x\in M|d(x,ar{x})\leq r\}$;
- a esfera é $S_r(\bar{x})=\{x\in M|d(x,\bar{x})=r\}.$

Def.: (M,d) espaço métrico. $A\subset M$ é limitado se $\exists r>0$ e $\bar x\in M$ tq. $B_r(\bar x)\supset A$.

Def.: $M
eq \emptyset$ com uma distância d, $A \subset M$.

(i) $ar x\in M$ é um ponto interior de A se existe um arepsilon>0 tal que $B_{arepsilon}(ar x)\subset A$.

(ii) $\bar{x}\in M$ é ponto de <u>fronteira</u> de A se para todo $\varepsilon>0$, $B_{\varepsilon}(\bar{x})\cap A\neq\emptyset$ e $B_{\varepsilon}(\bar{x})\cap A^C\neq\emptyset$.

(iii) $\bar x\in M$ é ponto <u>exterior</u> de A se existe $\varepsilon>0$ tal que $B_\varepsilon(\bar x)\subset A^C$, i.e. $\bar x$ é ponto interior de A^C .

Notações:

 \mathring{A} = conjunto dos pontos interiores de A

Fr(A) = conjunto dos pontos de fronteira de A

 $Ext(A) = \mathring{A}^C$ = conjunto dos pontos exteriores de A

Fato: (M,d) é espaço métrico, se $A\subset M\Rightarrow M=\mathring{A}\,\cup\,Fr(A)\,\cup\,Ext(A).$

Exemplos: $M=\mathbb{R}^2$

(a) com d_2 , \check{A} é o conjunto do que está "dentro", Fr(A) é o conjunto da "borda" e Ext(A) é o conjunto do que está "fora" usualmente.

(b) com $d_*(x,\bar x)$, caracterizado por $d_*(\bar x,\bar x)=0$ e $d_*(x',\bar x)=1$ se $x'\neq \bar x$. Seja A é o conjunto de pontos a uma distância r QUALQUER da origem, $\mathring A=A$, $Fr(A)=\emptyset$ e $Ext(A)=A^C$.

Def.: (M,d) espaço métrico com $A\subset M$,

(i) $\bar{x}\in M$ é um ponto de acumulação de A se $\forall \varepsilon>0$, $B_{\varepsilon}(\bar{x})\cap (A-\{\bar{x}\})\neq\emptyset$, ou seja, a bola tem um ponto de A diferente de \bar{x} .

(ii) $\bar{x}\in M$ é um ponto de aderência de A se $\ \forall \varepsilon>0$, $B_{\varepsilon}(\bar{x})\cap A\neq\emptyset$. Não necessariamente \bar{x} pertence a A!

(iii) $ar x\in M$ é um ponto isolado de A se $\exists arepsilon>0$ tal que $B_arepsilon(ar x)\cap A=\{ar x\}.$

Notação:

 A^\prime = conjunto dos pontos de acumulação de A

 $ar{A}$ = conjunto dos pontos de aderência de A

Is(A) = conjunto dos pontos isolados de A.

Perguntas:

 $A\subset ar{A}$? Sim.

 $A\subset A'$? Não. Um contra-exemplo é o conjunto unitário.

 $Is(A)\subset A$? Sim.

Def.: (M,d) espaço métrico, $X\subset M$,

(i) Xé dito aberto (em M) se $\forall \bar{x} \in X$, $\exists \varepsilon = \varepsilon(\bar{x}) > 0$ tal que $B_{\varepsilon}(\bar{x}) \subset X$, ie. $X \subset \mathring{X}$.

(ii) X é dito fechado (em M) se X^{C} é aberto.

(iii) X é não aberto se $\exists ar{x} \in X$ tal que orall arepsilon > 0 temos $B_arepsilon(ar{x}) \cap X^C
eq \emptyset$.

Def.: (M,d) espaço métrico, $K\subset M$, $K\neq\emptyset$, é dito sequencialmente compacto se qualquer sequência $(x_n)_{n\in\mathbb{N}}$ em Ktem uma subsequência convergente.

Afirmação: \mathring{A} é o maior aberto contido em A. Note que $\mathring{A}\subset \cup_{\bar{x}\in\mathring{A}}B_{\varepsilon_{\bar{x}}}\subset A$, em que a união de abertos $\cup B$ também é aberta.

Afirmações:

$$A\subset ar{A}$$

 $ar{A}$ é fechado

$$\mathring{A}\subset A$$

 \mathring{A} é aberto

 \mathring{A} é o maior aberto contido em A

 $ar{A}$ é fechado

 $ar{A}$ é o menor fechado que contém A

$$A'\subset ar{A}$$

$$ar{A} = A' \cup \operatorname{Is}(A)$$
 disjunta

$$A$$
 é aberto \Leftrightarrow $A=\mathring{A}$

$$A$$
 é fechado $\Leftrightarrow A=ar{A}$

$$A$$
 é fechado \Leftrightarrow $A'\subset A$.

Teorema. $M=\mathbb{R}^2$ com distância d usual (ou outra normalizada). Seja $A\subset M$ limitado e infinito. Então $A'
eq\emptyset$.

Além disso, se A for fechado, então A tem ponto de acumulação e $A'\subset A$.