Connecting

G54ACC – IP and Up Lecture 5

- Address shortages
- Middleboxes
- Naming
- Quality of Service

- Address shortages
 - NAT
 - Layer violation
 - ICE, STUN
- Middleboxes
- Naming
- Quality of Service

Address Shortages

- IPv4 supports 32 bit addresses
 - 95% allocated already (300,000 netblocks)
 - June 2011 (global), Feb 2012 (regional) zero-day
 - ...yet #connected devices is exploding
- IPv6 supports 128 bit addresses
 - So not a problem?
 - ...except for the routing protocols
 - ...and all the associated services needing to move

Network Address Translation

- Private Addressing, RFC1918
 - 172.16/12, 192.168/16, 10/8
 - Should never be externally routed
- Traditional NAT, RFC3022; see also RFC2663
 - Use private addresses internally
 - Map into a (small) set of routable addresses
 - Use source ports to distinguish connections
 - Requires IP, TCP/UDP header rewriting
 - Addresses, ports, checksums at least
- Not a security mechanism!

Layer Violation

- Information leaking from one layer to another
 - Generally considered poor form
 - Sometimes useful for features or performance
- NAT often causes this to explode
 - Commonly where addresses are (ab)used as host identifiers
 - They're not, they're addresses for routing to interfaces
 - E.g., FTP, SIP; often anything where subsequent connections need to be setup
 - Also IP fragmentation, some options, some ICMP
 - And both ends may be NATted

ICE, STUN

- Session Traversal Utilities for NAT, RFC5389
 - Client attempts to characterise NAT behaviour using a third-party server "on the outside"
- Interactive Connectivity Establishment, RFC5245
 - Commonly used with SIP, SDP (for voice-on-IP)
 - In general, "offer/answer" protocols
 - Uses STUN (or TURN or ...) to determine and select from set of "candidate transport addresses"
 - Selected addresses are then propagated and used

- Address shortages
- Middleboxes
 - The end-to-end argument
- Naming
- Quality of Service

Middleboxes

- A NAT is an example of a (transparent) middlebox
- There are others
 - Firewalls
 - Proxies
 - Caches
- They often provide very useful services
- But can be a complete pain
 - Buggy, unreliable
 - Incomplete protocol support (ICMP, &c.)

End-to-end Argument

- Salzer et al. "End-to-End Arguments in System Design". ACM Transactions on Computer Systems, 2(4), pages 277-288, 1984.
 - Earlier version in 1981
- Functions whose implementation requires application involvement should not be provided at lower layers
 - Unless partial implementation helps performance
- Will revisit this later in course

- Address shortages
- Middleboxes
- Naming
 - Name service
 - DNS protocol
- Quality of Service

Naming

- IP addresses are all very well but
 - Not especially human-readable
 - Not always appropriate granularity
- HOSTS.TXT
 - A file (/etc/hosts) mapping names-numbers
 - Originally transferred to all hosts using FTP
 - Simple, but not terribly automatic or scalable
 - Scale via distributed hierarchical set of servers

DNS

- <u>D</u>omain <u>Name Service</u>, RFC1034/1035/2181
 - Client-Server protocol returning variety of records
 - Commonly uses UDP for queries but can use TCP
 - TCP used for bulk transfers between servers
- Hierarchy is "baked in"
 - Namespace divides into zones
 - Top Level Domains usually professionally managed
 - Root servers know how to get everywhere
- Not a 1:1 mapping between names and numbers!
 - E.g., Round-robin load-balancing

Name Service

- TLDs operated by registrars
- Delegate sub-domains to other registrars
 - ...and on down the hierarchy
- Eventually customer rents a subdomain/name
 - I.e., registrar installs appropriate records
- Setup primary and secondary servers
 - For subdomains
 - Separate IP netblocks, physical networks, &c
 - DNS is a very common single-point-of-failure

Queries

- Queries either recursive or iterative
 - A-B-C-D-A; or A-B-A, A-C-A, A-D-A
- Server either authoritative or caching
 - To discover authoritative requires query to root
 - Thus load on root servers is very high
- Caching server locally
 - Caches records each with an expiry time: soft-state
- Acquire zone's complete set via zone transfer
 - Often access controlled

Responses

- Name lookup uses following record types:
 - CNAME: name |-> canonical name
 - www.cs.nott.ac.uk. 61272 IN CNAME pat.cs.nott.ac.uk.
 - A: name |-> number

```
  pat.cs.nott.ac.uk.
  pat.cs.nott.ac.uk.
  68622 IN A 128.243.20.9
  pat.cs.nott.ac.uk.
  68622 IN A 128.243.21.19
```

- PTR: name (or number) |-> name
 - 9.20.243.128.in-addr.arpa. 39617 IN PTR pat.cs.nott.ac.uk.
- NS: domain |-> authoritative name server

```
  cs.nott.ac.uk.

                    10585
                               ΙN
                                          NS
                                                     ns1.nottingham.ac.uk.

  cs.nott.ac.uk.

                    10585
                               IN
                                          NS
                                                     ns2.nottingham.ac.uk.
                    10585
                                                     marian.cs.nott.ac.uk.

  cs.nott.ac.uk.

                               ΙN
                                          NS
cs.nott.ac.uk.
                    10585
                                          NS
                                                     extdns1.warwick.ac.uk.
                               ΙN
cs.nott.ac.uk.
                    10585
                                                     extdns2.warwick.ac.uk.
                               IN
                                          NS
```

— MX: domain |-> mail exchange

```
  nott.ac.uk. 3600 IN MX 1 mx191.emailfiltering.com.
  nott.ac.uk. 3600 IN MX 2 mx192.emailfiltering.com.
  nott.ac.uk 3600 IN MX 3 mx193.emailfiltering.com.
```

Security

- DNS is quite insecure
 - Cache poisoning
 - Caching and soft-state mean bad data propagates and can persist for some time
 - Even if through a simple mistake
 - Man-in-the-middle attacks
 - Iterative/Recursive queries almost demand this
 - Name spoofing
 - How clear is your font?
 - How well can *your* users spell?

- Address shortages
- Middleboxes
- Naming
- Quality of Service
 - IntServ
 - DiffServ

Quality of Service

- What do you do when capacity < demand?
 - If capacity > demand, no need for QoS
 - Queuing (latency, jitter, loss) should be minimal
 - At least, in a stable network (cf. dynamic routing)
- Retrofitted to the Internet:
 - Integrated Services (IntServ)
 - Differentiated Services (DiffServ)
 - Cf. ATM where it was baked in from the start
- Neither are especially widely used
 - Inelastic vs. Elastic traffic: higher layer responses

IntServ vs. DiffServ

- IntServ
 - Operates on explicitly signalled flows
 - Flow setup specifies some QoS
 - Routers perform <u>Connection Admission Control</u>
- DiffServ
 - Operates on traffic aggregates
 - Label packets with desired service class
 - Low latency, low loss, high throughput defined
 - Routers apply queuing as operator sees fit

Summary

- Features are introduced to manage the changing environment
 - E.g., address shortages
- The law of unintended consequences
- The end-to-end argument is an argument!
- Dealing with NAT
- Naming and DNS
- Quality of service