矩阵

Didnelpsun

目录

1	矩阵的幂			
	1.1	对应成比例	1	
	1.2	试算归纳	1	
	1.3	拆分矩阵	1	
2	逆矩阵			
	2.1	定义法	2	
	2.2	分解乘积	3	
	2.3	分块矩阵	3	

1 矩阵的幂

1.1 对应成比例

因为矩阵运算不满足交换率但是满足结合率,且一行矩阵乘一列矩阵的乘积为一个数,所以可以推出矩阵的幂的运算方法。

这个方法要求 r(A) = 1,即对应成比例。

令 A 为 n 阶方阵,将 A 拆为 $A = (a_1, a_2, \dots, a_n)^T (b_1, b_2, \dots, b_n) = \alpha^T \beta$,所以 $A^n = \alpha^T \beta \alpha^T \beta \dots \alpha^T \beta$,利用结合率: $\alpha^T (\beta \alpha^T) (\beta \dots \alpha^T) \beta$,中间一共 n-1 个 $\beta \alpha^T$, $\beta \alpha^T$ 是一个数,即 $A^n = (\beta \alpha^T)^{n-1} \alpha^T \beta = (\beta \alpha^T)^{n-1} A$ 。

例题:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ -2 & -4 & -6 \\ 3 & 6 & 9 \end{pmatrix}$$
, 求 A^n 。

解: $A = (1, -2, 3)^T (1, 2, 3)$,所以 $A^n = ((1, 2, 3)(1, -2, 3)^T)^n (1, -2, 3)^T (1, 2, 3)$ = $6^{n-1}A$ 。

若矩阵 A 的行与列都成比例,则 $A^n = [tr(A)]^{n-1}A$, $[tr(A)] = \sum a_{ii}$,即矩阵迹为对角线元素值之和。

1.2 试算归纳

对 A 进行试算,如 A^2 ,若 A^k 是一个数量阵,那么计算 A^n 就只用找规律就可以了。

解: 通过计算得知 $A^2 = 4E$,这是一个数量阵。

$$\therefore A^n = \begin{cases} 4^k E, & n = 2k \\ 4^k A, & n = 2k+1 \end{cases} .$$

1.3 拆分矩阵

将 A^n 拆分为两个矩阵 $A^n = (B+C)^n$,其中 BC 应该是可逆的,即 BC = CB,所以一般有一个是 E。

例题:
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, 求 A^n .

$$\mathbf{\mathfrak{R}:} \ \ A = E + B = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right) + \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right).$$

$$\therefore A^n = (E+B)^n = C_n^0 E^n + C_n^1 E^{n-1} B + C_n^2 E^{n-2} B^2 + \cdots$$

$$\mathbb{X} B^{2} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} .$$

$$B^{3} = B^{2}B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O_{\circ}$$

$$\therefore B^4 = B^5 = \cdots = O_5$$

$$\therefore A^n = (E+B)^n = C_n^0 E^n + C_n^1 E^{n-1} B + C_n^2 E^{n-2} B^2.$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + n \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + \frac{n(n-1)}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

2 逆矩阵

2.1 定义法

找出一个矩阵 B, 使得 AB = E, 则 A 可逆, $A^{-1} = B$ 。

例题: A, B 均是 n 阶方阵,且 AB = A + B, 证明 A - E 可逆,并求 $(A - E)^{-1}$ 。

解:要证明 A-E,就要从 AB=A+B 中尽量凑出。

AB = A + B 变为 AB - B = A,从而提取 (A - E)B = A, $(A - E)BA^{-1} = E$ 。 但是 A^{-1} 是未知的,所以 A - E 的逆矩阵不能用 BA^{-1} 来表示。

AB-A=B,所以提出 A(B-E)=B,即 A(B-E)=B-E+E, (A-E)(B-E)=E,所以 A-E 的逆矩阵就是 B-E。

2.2 分解乘积

例题: 设 A, B 为同阶可逆方阵,且 $A^{-1} + B^{-1}$ 可逆,求 $(A + B)^{-1}$ 。

解: 已知 $A^{-1}+B^{-1}$ 可以用来表示其他式子,需要求 A+B 的逆,则需要将 A+B 转为其逆。

$$A + B = A(E + A^{-1}B) = A(B^{-1} + A^{-1})B$$
.

$$\therefore (A+B)^{-1} = B^{-1}(B^{-1} + A^{-1})^{-1}A^{-1} \,.$$

2.3 分块矩阵

对于一些分块矩阵的逆, 若
$$A$$
, B 都可逆, 则:
$$\begin{bmatrix} A & O \\ O & B \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} & O \\ O & B^{-1} \end{bmatrix}$$
,

$$\left[\begin{array}{cc}O&A\\B&O\end{array}\right]^{-1}=\left[\begin{array}{cc}O&B^{-1}\\A^{-1}&O\end{array}\right]\circ$$