第六章 模拟信号运算电路

- 6.1 理想运算放大器
- 6.2 比例运算电路
- 6.3 求和电路
- 6.4 积分和微分电路

→>→ 第六章:模拟信号运算电路 •◆

6.1 理想运算放大器

6.1.1 理想运放的技术指标

开环差模电压增益 $A_{\text{od}} = \infty$; 差模输入电阻 $r_{\text{id}} = \infty$; 输出电阻 $r_{\text{o}} = 0$; 共模抑制比 $K_{\text{CMR}} = \infty$;

→>> 第六章:模拟信号运算电路 •≪

理想运放的传输特性

→> 第六章:模拟信号运算电路 •≪

6.1.2 理想运放工作在线性区时的特点

输出电压与其两个输入端的电压之间存在线性放大关

系,即

$$u_{_{\mathrm{O}}}=A_{_{\mathrm{od}}}(u_{_{+}}-u_{_{-}})$$

 u_{-} i_{-} u_{0} u_{+} i_{+} i_{+}

理想运放工作在线性区特点:

1. 理想运放的差模输入电压等于零

$$(u_+ - u_-) = \frac{u_0}{A_{od}} = 0$$
 即 $u_+ = u_-$ "虚短"

2. 理想运放的输入电流等于零

由于 $r_{id} = \infty$, 两个输入端均没有电流,即

→> 第六章:模拟信号运算电路 ◆

6.1.3 理想运放工作在非线性区时的特点

1. u_0 的值只有两种可能

当
$$u_{+} > u_{-}$$
时, $u_{O} = + U_{OPP}$
当 $u_{+} < u_{-}$ 时, $u_{O} = - U_{OPP}$

在非线性区内, $(u_+ - u_-)$ 可能很大,即 $u_+ \neq u_-$ 。"虚短"不存在

2. 理想运放的输入电流等于零

→> 第六章 模拟信号运算电路 ◆

6.2 比例运算电路

6.2.1 反相比例运算电路

由于"虚断",
$$i_{+}=0$$
, $u_{+}=0$;

由于"虚短",
$$u_-=u_+=0$$

——"虚地"

$$R_{F}$$
 I_{I}
 I_{I

由
$$i_{\rm I} = i_{\rm F}$$
 , 得 $\frac{u_{\rm I} - u_{-}}{R_{\rm I}} = \frac{u_{-} - u_{\rm o}}{R_{\rm F}}$

$$u_{\rm o} = -\frac{R_{\rm F}}{R_{\rm I}}u_{\rm I}$$

$$R_2 = R_1 // R_{\rm F}$$

比例系数与运放参数无关,取决于外接电阻,比例系数为 $-R_F/R_1$,电路实现反相比例运算;

$$R_{\rm if} = R_1$$

→> 第六章 模拟信号运算电路 ◆

6.2.2 同相比例运算电路

根据"虚短"和"虚断"的特点,可知

$$i_{+}=i_{-}=0$$
;

$$u_{-} = u_{+} = u_{T}$$

由
$$i_{\mathbf{I}} = i_{\mathbf{F}}$$
,可推得 $u_{\mathbf{O}} = (1 + \frac{R_{\mathbf{F}}}{R_{\mathbf{I}}})u_{\mathbf{I}}$

$$R_2 = R_1 // R_{\rm F}$$

比例系数与运放参数无关,取决于外接电阻,比例系数为 $1+R_F/R_1$,电路实现同相比例运算;

→>> 第六章:模拟信号运算电路 •◆

当 R_F =0或 R_1 = ∞ ,比例系数为1——电压跟随器

→ 第六章 模拟信号运算电路 《 差分比例运算电路

要求

$$R_1 = R_1'$$

$$R_{\rm F} = R_{\rm F}'$$

推导运算关系得

电路输出电压与两输入电压之差成正比,实现了差分比例运算 (或减法运算);

→ 第六章 模拟信号运算电路 ← 三种比例运算电路之比较

	反相输入	同相输入	差分输入
电路组成	要求 $R_2 = R_1 // R_F$	要求 $R_2 = R_1 // R_F$	要求 $R_1 = R_1' R_F = R_F'$
电压 放大 倍数	$A_{uf} = \frac{u_{O}}{u_{I}} = -\frac{R_{F}}{R_{I}}$ u_{O} 与 u_{I} 反相, $ A_{uf} $ 可大于、小于或等于 1	$A_{uf} = \frac{u_0}{u_I} = 1 + \frac{R_F}{R_I}$ u_0 与 u_I 同相,放大倍数可大于或等于 1	$A_{uf} = \frac{u_{O}}{u_{I} - u'_{I}} = -\frac{R_{F}}{R_{1}}$ (当 $R_{I} = R'_{I}$, $R_{F} = R'_{F}$ 时)
性能特点	实现反相比例运算; "虚地"	实现同相比例运算; "虚短"但不"虚地"	实现差分比例运算(减法) "虚短"但不"虚地"

→>> 第六章 模拟信号运算电路 ◆◆

6.3 求和电路

求和电路的输出量反映多个模拟输入量相加的结果。

6.3.1 反相输入求和电路

当改变某一输入回路电阻时,仅改 变输出电压与该路输入电压之间的 比例关系,对其他各路没有影响, 因此调节比较方便;

由于"虚地",运放输入端无共模电压;

实际电路设计中,反相输入方式应用较广泛。

$$u_{O} = -\left(\frac{R_{F}}{R_{1}}u_{I1} + \frac{R_{F}}{R_{2}}u_{I2} + \frac{R_{F}}{R_{3}}u_{I3}\right) \qquad R' = R_{1} // R_{2} // R_{3} // R_{F}$$

$$\stackrel{\text{def}}{=} R_{1} = R_{2} = R_{3} = R \text{ iff}, \qquad u_{O} = -\frac{R_{F}}{R_{1}}(u_{I1} + u_{I2} + u_{I3})$$

第六章 模拟信号运算电路 ≪

同相输入求和电路 6.3.2

 $R_{\perp} = R_1' // R_2' // R_3' // R'$

由于因R+与各输入回路电阻均有关,故 $u_{+} = \frac{R_{+}}{R'_{1}} u_{11} + \frac{I}{R'_{1}}$ 调节某一回路电阻以达到给定关系时,其他各路输入电压与输出电压之间的比值也将随之变化,需反复调节才能确定合适参数,故估算和调试过程较麻烦;

不存在"虚地",运放输入端共模 输入电压较高;

实际电路设计中,同相求和电路不 如反相输入方式应用广泛。

解得:

其中:

$$u_{O} == (1 + \frac{R_{F}}{R_{1}})u_{+} = (1 + \frac{R_{F}}{R_{1}})(\frac{R_{+}}{R'_{1}}u_{I1} + \frac{R_{+}}{R'_{2}}u_{I2} + \frac{R_{+}}{R'_{3}}u_{I3})$$

→>> 第六章 模拟信号运算电路 ◆◆

当求和电路采用双端输入方式时,可以实现多个输入信号的同时加减运算,但该种电路参数的调整比较繁琐,因此实际应用中很少采用。如需实现多个输入信号同时加减运算,可以考虑采用两级反相求和电路。

例: 推导运算关系

$$u_{\text{O1}} = -\left(\frac{R_{\text{F1}}}{R_{\text{1}}}u_{\text{I1}} + \frac{R_{\text{F1}}}{R_{\text{3}}}u_{\text{I3}}\right)$$

$$u_{\rm O} = -\left(\frac{R_{\rm F2}}{R_2}u_{\rm O1} + \frac{R_{\rm F2}}{R_4}u_{\rm I2}\right) = \frac{R_{\rm F2}}{R_2} \cdot \frac{R_{\rm F1}}{R_1}u_{\rm I1} + \frac{R_{\rm F2}}{R_2} \cdot \frac{R_{\rm F1}}{R_3}u_{\rm I3} - \frac{R_{\rm F2}}{R_4}u_{\rm I2}$$

模拟信号运算电路 🦟

积分和微分电路

RF改为CF

积分电路 6.4.1

由于"虚地",
$$u_{-}=0$$
,故 $u_{0}=-u_{C}$

又由于"虚断",
$$i_I = i_C$$
,故

$$u_{\rm I} = i_{\rm I}R = i_{\rm C}R$$

$$R'=R$$

$$u_{\mathcal{O}} = -u_{\mathcal{C}} = -\frac{1}{C} \int i_{\mathcal{C}} dt = -\frac{1}{RC} \int u_{\mathcal{I}} dt$$

$$\tau = RC$$

积分时间常数

→ 第六章 模拟信号运算电路 ◆ 积分电路的输入、输出波形

(1)输入电压为矩形波

当
$$t \le t_0$$
 时, $u_I = 0$, $u_O = 0$;

当
$$t_0 < t \le t_1$$
 时, $u_I = U_I = 常数,$

$$u_{O} = -\frac{1}{RC} \int u_{I} dt = -\frac{U_{I}}{RC} (t - t_{0})$$

即输出电压随时间而向负方向直线增长。

当 $t > t_1$ 时, $u_1 = 0$, u_0 保持 $t = t_1$ 时的输出电压值不变。

→ 第六章 模拟信号运算电路 🔶

(二)输入电压为正弦波

$$u_{\rm I} = U_{\rm m} \sin \omega t$$

$$u_{O} = -\frac{1}{RC} \int U_{m} \sin \omega t dt$$
$$= \frac{U_{m}}{\omega RC} \cos \omega t$$

可见,输出电压的相位比输入电压的相位领先 90°。 因此,此时积分电路的作用是移相。

→>> 第六章:模拟信号运算电路 •≪

例:下图所示电路中,已知输入电压 u_I 的波形如图(b)所示,当t=0时 $u_O=0$ 。试画出输出电压 u_O 的波形。

→> 第六章:模拟信号运算电路 •≪

解:输出电压的表达式为
$$u_{\mathrm{O}} = -\frac{1}{RC} \int_{t_{1}}^{t_{2}} u_{\mathrm{I}} \mathrm{d}t + u_{\mathrm{O}}(t_{1})$$
 当 u_{I} 为常量时
$$u_{\mathrm{O}} = -\frac{1}{RC} u_{\mathrm{I}}(t_{2} - t_{1}) + u_{\mathrm{O}}(t_{1}) = -\frac{1}{10^{5} \times 10^{-7}} u_{\mathrm{I}}(t_{2} - t_{1}) + u_{\mathrm{O}}(t_{1})$$

$$= -100 u_{\mathrm{I}}(t_{2} - t_{1}) + u_{\mathrm{O}}(t_{1})$$

若
$$t=0$$
时 $u_0=0$,则 $t=5$ ms时

$$u_0 = -100 \times 5 \times 5 \times 10^{-3} \text{V} = -2.5 \text{V}$$

当t=15mS时

$$u_0 = [-100 \times (-5) \times 10 \times 10^{-3} + (-2.5)]V = 2.5V$$

→> 第六章 模拟信号运算电路 ◆

6.4.2 微分电路

由于"虚断", $i_{-}=0$,故 $i_{C}=i_{R}$

又由于"虚地", $u_{+} = u_{-}$ = 0,故

$$u_{\mathcal{O}} = -i_{R}R = -i_{C}R = -RC\frac{\mathrm{d}u_{\mathcal{C}}}{\mathrm{d}t}$$

可见,输出电压正比于输入电压对时间的微分。

微分电路的作用:实现波形变换。

→>> 第六章:模拟信号运算电路 •≪→

作业: 7-9; 7-17第一问。