7-9 Monday – 309-GD2

# Xử lý ảnh INT3404 1

Giảng viên: TS. Nguyễn Thị Ngọc Diệp

Email: ngocdiep@vnu.edu.vn

Slide & code: https://github.com/chupibk/INT3404\_20

# Tuần 1

Giới thiệu môn học

# Những câu hỏi lớn (1) Xử lý ảnh là gi? (2) Học xử lý ảnh để làm gi? (4) Vị trí của Xử lý ảnh trong khoa học máy tính

### Q1: Xử lý ảnh là gì?

- Xử lý ảnh bao gồm các kĩ thuật thu nhận, biểu diễn, lưu trữ và thao tác trên ảnh nhằm cho ra kết quả mong muốn.
- Ba mức trong quá trình xử lý và phân tích ảnh số:
  - Mức thấp:
    - Đầu vào:: ảnh hai chiều → Đầu ra:: ảnh hai chiều
    - Mục đích: Thay đổi các giá trị điểm ảnh
  - Mức trung:
    - ảnh hai chiều → các thông tin đặc trưng, phân vùng đối tượng (ROI)
    - Mục đích: trích rút và chuẩn hoá thông tin trong ảnh tuỳ ứng dụng cụ thể
  - Mức cao:
    - Ảnh hai chiều -> đánh giá mô tả tuỳ vào ứng dụng
    - Mục đích: nhận thức các đối tượng, các đặc trưng, mô tả lại tri thức trong ảnh

### Q2: Học xử lý ảnh để làm gì

### Mục tiêu của môn học:

- Hiểu vai trò và khả năng áp dụng của các kỹ thuật xử lý ảnh
  - Mức thấp và mức trung
- Phân tích yêu cầu của các bài toán thực tiễn có thể giải quyết bằng công cụ hoặc kỹ thuật xử lý ảnh
- Công cụ lập trình: OpenCV + Python

5

### Q3: Lịch sử và tương lai

- 1920: ứng dụng đầu tiên của DIP trong ngành báo chí
  - Truyền ảnh từ London đến New York
  - Mã hoá ảnh để truyền qua cable và được xây dựng lại ở đầu bên kia





Early digital image

Image credit: Internet

ô

## Lịch sử

- Những năm 1920s: cải tiến hệ thống Bartlane cho chất lượng cao hơn
  - Các kĩ thuật xây dựng lại ảnh
  - Tăng số tone dùng cho ảnh (5 -> 15)



Improved digital image



Early 15 tone digital image

Image credit: Internet

7

## Lịch sử

- 1960s:
  - Các cải tiến trong kỹ thuật máy tính và cuộc đua không gian (space race) làm DIP bùng nổ
  - 1964: Dùng máy tính để cải tiến chất lượng ảnh mặt trăng thu từ máy dò Ranger 7
- 1970s:
  - DIP được dùng cho ứng dụng y tế
  - 1979: Sir Godfrey N. Hounsfield & Prof. Allan M. Cormack nhận giải thưởng Nobel lĩnh vực y tế cho phát minh chụp cắt lớp vi tính (Tomography)



A picture of the moon taken by the Ranger 7 probe minutes before landing



ypical head slice CAT

# Lịch sử

- 1980s nay: Các kĩ thuật xử lý ảnh được phát triển và sử dụng trong hầu hết các lĩnh vực của cuộc sống
  - Chỉnh sửa, khôi phục ảnh
  - Hiệu ứng mỹ thuật
  - Y tế
  - · Công nghiệp
  - Luật
  - Tương tác người máy
  - V.V...

9

### Tương lai

- Sẽ còn thấy DIP được phát triển mạnh mẽ hơn
- Được hỗ trợ bởi các kĩ thuật mạng học sâu
  - Sẽ không còn thấy rõ ranh giới giữa xử lý ảnh và thị giác máy

### Q4: Vị trí của Xử lý ảnh trong KHMT Artificial Robotics, Computer Intelligence Inspection, Machine Vision Photogrammetry Vision Machine learning Statistics. **Image** Information Signal Image Processing coding **Processing** Visual **Imaging** Perception Computer Display Technology Graphics Optical Engineering Bernd Girod, EE368/CS232 11

# Giới thiệu ứng dụng

## Ví dụ ứng dụng của DIP: nhận dạng





13

## Ví dụ các ứng dụng của xử lý ảnh





Google Jump



facebook 360



light.co



# Ví dụ các ứng dụng của xử lý ảnh





16

15













Style examples

17

# Ví dụ các ứng dụng của xử lý ảnh

Xoay, cắt rồi đọc hoá đơn (OCR)







# Ví dụ xử lý ảnh: giảm nhiễu





20

# Ví dụ xử lý ảnh: giảm nhiễu

# Ví dụ xử lý ảnh: điều chỉnh độ tương phản







Low Contrast

Original Contrast

High Contrast

22

# Ví dụ xử lý ảnh: nén ảnh







JPEG Compression, 308KB (15%)

# Ví dụ xử lý ảnh: Phân vùng





24

# Ví dụ xử lý ảnh: Khôi phục ảnh

Damaged Image



Restored Image



Credit: M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester: Image Inpainting, SIGGRAPH 2000

# Ví dụ xử lý ảnh: tạo hiệu ứng



26

# Thông tin về môn học

## Thông tin chung về môn học

- Số tín chỉ: 3
- Giờ tín chỉ (LT/ThH/TH): 45/0/0
- Môn học tiên quyết: INT2203 Cấu trúc dữ liệu và giải thuật
- Các yêu cầu đối với môn học (nếu có): Xử lý tín hiệu số
- Môn học liên quan:
  - Thị giác máy (INT3412);
  - Các chuyên đề KHMT (INT3121 20 GV: NTNDiệp)
  - Chuyên đề công nghệ (INT3414 22 GV: NTNDiệp)

Xử lý ảnh - NTNDiệp - 2019 UET.VNU

28

# Lịch trình

| n Nội dung                                                                                                                                                         | Yêu cầu đối với sinh viên                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 1 Giới thiệu môn học<br>Làm quen với OpenCV + Python                                                                                                               | Cài đặt môi trường: Python 3, OpenCV 3, Numpy, Jupyter Notebook |
| <ul> <li>Anh số (Digital image) – Phép toán điểm (Point operations)</li> <li>– Điều chỉnh độ tương phản (Contrast adjust) – Ghép ảnh (Combining images)</li> </ul> | Làm bài tập 1: điều chỉnh gamma tìm contrast hợp lý             |
| Histogram - Histogram equalization - Phân loại ảnh dùng so sánh histogram                                                                                          | Thực hành ở nhà                                                 |
| 4 Phép lọc trong không gian điểm ảnh (linear processing filtering)<br>Tim ảnh mẫu (Template matching)                                                              | Thực hành ở nhà                                                 |
| 5 Trích rút đặc trưng của ảnh<br>Cạnh (Edge) và đường (Line) và texture                                                                                            | Thực hành ở nhà                                                 |
| 6 Các phép biến đổi hình thái (Morphological operations)                                                                                                           | Làm bài tập 2: tìm barcode> nộp thành bài tập mid-term          |
| 7 Chuyển đổi không gian – Miền tần số – Phép lọc trên miền tần số<br>Thông báo liên quan đồ án môn học                                                             | Đăng ký thực hiện đồ án môn học                                 |
| 8 Xử lý ảnh màu (Color digital image)                                                                                                                              | Làm bài tập 3: Chuyển đổi mô hình màu và thực hiện phân vùng    |
| <sup>9</sup> Các phép biến đối hình học (Geometric transformations)                                                                                                | Thực hành ở nhà                                                 |
| Nhiễu – Mô hình nhiễu – Khôi phục ảnh (Noise and restoration)                                                                                                      | Thực hành ở nhà                                                 |
| 11 Nén ảnh (Compression)                                                                                                                                           | Thực hành ở nhà                                                 |
| 12 Hướng dẫn thực hiện đồ án môn học                                                                                                                               | Trình bày đồ án môn học                                         |
| 13 Hướng dẫn thực hiện đồ án môn học<br>Tổng kết cuối kỳ                                                                                                           | Trình bày đồ án môn học                                         |

### Chính sách đối với môn học

- Sinh viên nghỉ quá 20% số buổi học lý thuyết (3 buổi học) sẽ không được thi cuối kỳ
  - Mỗi buổi học sẽ có điểm danh
- Sinh viên tích cực làm bài tập, tham gia thảo luận, trả lời câu hỏi sẽ được xem xét cộng điểm
- Với các nội dung liên quan tới bài tập giữa kì, đồ án môn học và thi viết nếu sinh viên gian lận thì sẽ bị điểm môn học là 0

Xử lý ảnh - NTNDiệp - 2019 UET.VNU

30

# Trọng số điểm

| Hình thức            | Phương pháp                  | Mục đích                                                                           | Trọng số |
|----------------------|------------------------------|------------------------------------------------------------------------------------|----------|
| Đồ án môn học        | Dự án nhỏ làm việc theo nhóm | Đánh giá kỹ năng lập trình, xây<br>dựng hệ thống dịch vận dụng<br>kiến thức đã học | 30%      |
| Chuyên cần           | Điểm danh                    | Đánh giá tính chuyên cần của<br>sinh viên                                          | +        |
| Bài tập giữa kỳ      | Chấm điểm bài tập về nhà     | Kiểm tra khả năng tự học của<br>sinh viên                                          | 10%      |
| Thi kết thúc môn học | Thi viết                     | Đánh giá kiến thức, kỹ năng<br>sinh viên đạt được khi kết<br>thúc môn học          | 60%      |
|                      | Tổng                         |                                                                                    | 100%     |

Xử lý ảnh - NTNDiệp - 2019 UET.VNU

15

# Lịch thi và kiểm tra

| Hình thức thi và kiểm tra | Thời gian            |
|---------------------------|----------------------|
| Chuyên cần                | Tất cả các tuần      |
| Bài tập giữa kì           | Tuần 6               |
| Báo cáo đồ án môn học     | Tuần 12, 13          |
| Thi cuối kỳ               | Theo lịch của Trường |

Xử lý ảnh - NTNDiệp - 2019 UET.VNU

32

### Tài liệu tham khảo

- Textbook & Lectures:
  - R. C. Gonzalez, R. E. Woods, "Digital Image Processing," 4th edition, Pearson, 2018.
  - https://web.stanford.edu/class/ee368/index.html
  - Lê Thanh Hà, "Giáo trình xử lý ảnh," nhà xuất bản ĐHQGHN, 2016.
  - (https://repository.vnu.edu.vn/handle/VNU\_123/58180)
- Software-centric books
  - I R. C. Gonzalez, R. E. Woods, S. L. Eddins, "Digital Image Processing using Matlab," 2nd edition, Gatesmark Publishing, 2009. → Matlab
  - I A. Kaehler, G. Bradski, "Learning OpenCV 3," O'Reilly Media, 2017. → C++
- Blog:
  - <a href="https://www.pyimagesearch.com/">https://www.pyimagesearch.com/</a>
- Journals/Conference proceedings
  - IEEE Transactions on Image Processing
  - IEEE International Conference on Image Processing (ICIP)
  - IEEE Computer Vision and Pattern Recognition (CVPR)
    IEEE International Conference on Computer Vision