NPN EPITAXIAL PLANAR TYPE

DESCRIPTION

2SC2539 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in VHF band mobile radio applications.

FEATURES

- High power gain: $G_{pe} \ge 14.5 dB$ $@V_{CC} = 13.5 V$, $P_0 = 14 W$, f = 175 MHz
- Emitter ballasted construction and gold metallization for high reliability and good performances.
- Low thermal resistance ceramic package with flange.
- Ability of withstanding more than 20:1 load VSWR when operated at V_{CC} = 15.2V, P_{O} = 18W, f = 175MHz, T_{C} = 25°C.

APPLICATION

10 to 14 watts output power amplifiers in VHF band mobile radio applications.

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		35	V
V _{EBO}	Emitter to base voltage		4	V
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	17	V
1c	Collector current		3.5	Α
Pc	Collector dissipation	Ta = 25°C	2.5	w
		T _C = 25°C	35	w
Tj	Junction temperature		175	°C
Tstg	Storage temperature		-55 to 175	°C
Rth-a	Thermal resistance	Junction to ambient	60	°C/W
Rth-c	THEIRIGHTESISTANCE	Junction to case	4.3	°C/W

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter Test conditions	Limits				
		lest conditions	Min	Тур	Max	Unit
V _{(BR)EBO}	Emitter to base breakdown voltage	I _E =10mA, I _C =0	4			V
V(BR)CB0	Collector to base breakdown voltage	I _C =10mA, I _E =0	35			V
V _{(BR)CEO}	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	17			V
СВО	Collector cutoff current	V _{CB} =25V, I _E =0			1000	μА
EBO	Emitter cutoff current	V _{EB} =3V, I _C =0			1000	μА
hfE	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	
Po	Output power	V _{CC} =13.5V, P _{IN} =0.5W, f=175MHz	14	17		w
η_{C}	Collector efficiency		60	65		%

Note. *Pulse test, $P_W = 150 \mu s$, duty=5%.

Above parameters, ratings, limits and conditions are subject to change

TEST CIRCUIT

- L: Length 10mm
- RFC: 0.4mm¢ enameled wire 12T with Ferrite Bead
- C1: 220pF, 2200pF in parallel
- C2: 220pF, 2200pF, 10µF in parallel
- NOTES: All coils are made from 1.5mm ϕ silver plated copper wire
 - D: Inner diameter of coil
 - T: Turn number of coil
 - P : Pitch of coil
 - Dimension in milli-meter

TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS. BASE TO EMITTER RESISTANCE

BASE TO EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT

COLLECTOR CURRENT Ic (A)

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE V_{CB} (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE VCC (V)