

I

Module 4

The Language and Tools of Financial Analysis

Discounting Cash Flows (Not every dollar is equal)

Presenter: Paul Kofman

Discounted cash flow (DCF) analysis

Which of the following would you prefer?

\$100 now or a promise of \$100 a year from now?

Why?

There are at least three reasons:

- 1. Expected inflation
- 2. Risk
- 3. Opportunity cost

We can't directly compare cash flows that occur at different points in time without thinking about expected inflation, risk and opportunity cost!

DCF to Present value

The way that we account for the *time value of money* is by systematically *discounting* future cash flows.

$$PV = \frac{Cash Flow_n}{\left(1+r\right)^n}$$

This results in future cash flows being re expressed in terms of their *present value* today!

As present values are recorded at the same point in time (now) they can be compared added together.

DCF to Present value

Example:

What is the present value of \$100 expected in one year's time, assuming a discount rate of 5% p.a.?

$$PV = \frac{Cash Flow_n}{(1+r)^n} = \frac{\$100}{(1.05)^1} = \$95.24$$

What is the intuition here?

What if the cash flow was expected in two years' time instead (rather than one)?

$$PV = \frac{Cash Flow_n}{(1+r)^n} = \frac{\$100}{(1.05)^2} = \$90.70$$

Intuition?

Compounding to Future value

Instead of **discounting** future cash flows to the present, we can also **compound** present cash flows to the future.

What is the future value of \$100 today in two years' time, assuming a discount rate of 5% p.a.?

$$FV_n = Cash Flow_0 \times (1+r)^n = $100 \times (1.05)^2 = $110.25$$

Why would we want to do that?

$$PV = \frac{FV_n}{(1+r)^n}$$
 or $FV_n = PV \times (1+r)^n$

Choosing the discount rate

The discount rate r accounts for:

- · risk-free interest rate
- rates of return on 'similar' risky investments
- or risk premia
- · opportunity cost
- expected inflation

The greater the influence of these factors, the greater the discount rate applied to the future cash flows and the smaller the present value.

DCF – Impact of the discount rate

Example continued:

Going back to our expectation of \$100 in one year's time – what would happen to the PV if the discount rate was 15% p.a. instead of 5% p.a.?

$$PV = \frac{Cash \, Flow_n}{\left(1 + r\right)^n} = \frac{\$100}{\left(1.15\right)^1} = \$82.82$$

Intuition?

Summary

- Cash flows expected to occur at different points in time aren't directly comparable.
- This is because of *risk*, *opportunity cost* and *expected inflation*.
- Discounting expected cash flows back to their present values solves this problem.
- Discounted Cash Flow (DCF) analysis is the basis of the most popular project evaluation methods.

Source List

- Slide 8: Value of Cash Flows. © The University of Melbourne.
- Additional overlay images / video sourced from: ©iStock.com/nmlfd; ©iStock.com/lPGGutenbergUKLtd; ©iStock.com/kirkotinha; ©iStock.com/VladimirArkhipov.