Simulation Studies on Optimal Experimental Design under Budget Constraints

William Qian 2024-12-01

Abstract

Introduction

Optimal experimental design is a cornerstone of rigorous scientific research, aiming to maximize the efficiency and validity of experiments through strategic decisions on sample size, treatment allocation, and measurement strategies. However, researchers often face significant budget constraints that limit available resources, necessitating the development of experimental designs that achieve research objectives while adhering to financial limitations. Clustered study designs—where observations are grouped into clusters (such as schools, hospitals, or communities) and treatments are assigned at the cluster level—are frequently employed across various fields, including medicine, social sciences, and agriculture. While these designs offer logistical advantages and cost-effectiveness, they introduce complexities due to intra-cluster correlations that must be accounted for in both the design and analysis phases.

This study explores optimal experimental designs under budget constraints through comprehensive simulation studies. By systematically varying key parameters and data collection costs, we aim to identify designs that minimize estimation errors within predefined budget limits. Specifically, we focus on: (1) evaluating the performance of different feasible designs under a fixed budget for normal and Poisson-distributed outcomes, examining how the number of clusters (G) and observations per cluster (R) influence bias, mean squared error (MSE), and coverage probability of estimated treatment effects; (2) investigating the relationships between data-generating parameters—such as treatment effect size, between-cluster variance, and within-cluster variance—and total costs to inform optimal resource allocation between clusters and observations within clusters; and (3) extending the simulation study to Poisson-distributed outcomes common in count data, modifying data generation and analysis methods accordingly, and assessing how optimal designs differ from those with normally distributed outcomes. To achieve these aims, we develop a suite of functions in R for data simulation,

balanced treatment assignment, treatment effect estimation using generalized linear models with cluster-robust standard errors, and design performance evaluation. The insights from our simulations contribute to a deeper understanding of resource allocation in experimental planning, guiding researchers in designing studies that are both cost-effective and statistically robust.

Simulation Design

We use ADEMP framework to conduct the simulation study.

Aim

Our aim is to estimate the treatment effect in clustered experimental designs under budget constraints. We seek to identify the optimal allocation between the number of clusters (G) and the number of observations per cluster (R) that provides accurate and efficient estimation of the treatment effect within a fixed budget.

Data Generation

Clustered Data Structure

We consider the structure of the clusters as follows:

- Clusters: i = 1, 2, ..., G
- Observations within clusters: i = 1, 2, ..., R

Then, the total number of observations is $N = G \times R$.

Data Generation Process

Each cluster j is randomly assigned to either the treatment group $(X_j = 1)$ or the control group $(X_j = 0)$. The treatment effect is defined as β , representing the difference in the outcome between the treatment and control groups. The data generation process is as follows:

Normal Distribution

We assume a hierarchical linear model for Y_{ij} :

$$\begin{split} \mu_{i0} &= \alpha + \beta X_j \\ \mu_i | \epsilon_j &= \mu_{i0} + \epsilon_j \text{ with } \epsilon_j \sim N(0, \gamma^2) \\ Y_{ij} | \mu_i &= \mu_i + e_{ij} \text{ with } e_{ij} \sim N(0, \sigma^2) \end{split}$$

Poisson Distribution

For Poisson-distributed outcomes, we assume a hierarchical Poisson model for Y_{ij} :

$$log(\mu_{i0}) = N(\alpha + \beta X_j, \gamma^2)$$

$$Y_{ij} | \mu_i = Poisson(\mu_i)$$

To be more detailed, γ^2 can be understood as the between-cluster variance, σ^2 as the within-cluster variance.

Cost Constraints

The total cost C, cost per cluster c_1 and cost per observation c_2 are fixed in each simulation $(c_2 \ll c_1)$. The total cost is calculated as:

$$C = G \times (c_1 + (R - 1) \times c_2)$$

Estimands

The estimand of interest is the treatment effect β , which represents the difference in the outcome between the treatment and control groups. We aim to estimate β with minimal bias and mean squared error (MSE) within the budget constraints, suggesting that the optimal design should balance the number of clusters and observations per cluster to achieve accurate and efficient estimation.

Methods

We employ generalized linear models (GLMs) to estimate the treatment effect:

- Normal distribution: A linear regression model using glm() with a Gaussian family.
- Poisson distribution: A log-linear model using glm() with a Poisson family.

Performance Metrics

We evaluate the performance of each design based on the following metrics:

- Bias: $bias = E[\hat{\beta}] \beta$
- Mean squared error (MSE): $MSE = E[(\hat{\beta} \beta)^2]$
- Coverage probability: Proportion of confidence intervals that contain the true treatment effect.

Additionally, our estimator of β is a unbiased estimator, so in a successful simulation, the bias should be close to zero. However, the MSE might be high due to the variance of the estimator. So in the following simulations, we will focus more on the MSE.

Function Design

To implement the simulation study efficiently and flexibly, we developed a set of modular functions in R, each dedicated to a specific aspect of the simulation process. This modular design enhances code readability, reusability, and maintainability, allowing us to systematically explore different experimental designs under budget constraints.

First, we designed the calculate_feasible_designs function, which computes all possible combinations of the number of clusters (G) and the number of observations per cluster (R) that satisfy the given budget constraints. This function takes the total budget and the costs associated with recruiting participants—both the fixed cost per cluster (c_1) and the variable cost per additional participant within a cluster (c_2) as inputs. By iterating through feasible values of G and calculating the corresponding maximum R for each, the function generates a list of design configurations that do not exceed the budget. This approach ensures that only viable designs are considered in the simulations, facilitating an efficient exploration of the design space.

Next, the assign_treatment function assigns clusters to either the treatment group or the control group, ensuring that both groups are represented in the study. This function is crucial because having at least one cluster in each group is necessary for estimating the treatment effect. The function begins by assigning one cluster to each group and then randomly assigns the remaining clusters, maintaining the randomness essential for unbiased treatment effect estimation. This careful assignment prevents scenarios where all clusters might inadvertently be assigned to the same group, which would invalidate the comparative analysis.

The generate_data function is responsible for simulating the clustered data based on the specified parameters and the chosen outcome distribution (normal or Poisson). It incorporates the treatment assignments from the assign_treatment function and generates cluster-level random effects to introduce between-cluster variability. For each observation within a cluster, the function computes the outcome using the appropriate statistical model: a linear model for normally distributed outcomes or a log-linear model for Poisson-distributed outcomes. This function ensures that the simulated data accurately reflect the hierarchical structure and variability

inherent in clustered experimental designs, providing a realistic basis for evaluating different design configurations.

To estimate the treatment effect from the simulated data, we developed the estimate_treatment_effect function. This function fits a generalized linear model (GLM) appropriate for the specified outcome distribution and adjusts for clustering by computing cluster-robust standard errors using sandwich estimators. The use of cluster-robust standard errors is essential to obtain valid statistical inference in the presence of intra-cluster correlation. The function extracts the estimated treatment effect, its standard error, and calculates the p-value to determine statistical significance. This standardized approach to estimation allows for consistent evaluation of treatment effects across different simulated datasets and design configurations.

The run_simulation function orchestrates the simulation process by repeatedly generating data and estimating the treatment effect for a specified design configuration. It runs a predetermined number of simulation iterations (replications) to assess the variability and reliability of the treatment effect estimates for that design. By aggregating results across simulations, this function enables us to compute performance metrics such as bias, mean squared error, coverage probability, and statistical power for each design. This iterative process is critical for understanding the statistical properties of the estimators under different design scenarios.

Finally, the evaluate_design function analyzes the simulation results to compute the performance metrics for each design configuration. It calculates the bias of the treatment effect estimator by comparing the average estimated treatment effect across simulations to the true effect size used in data generation. The function also computes the mean squared error, which reflects both the variance and the bias of the estimator, and the coverage probability of the confidence intervals, indicating how often the true treatment effect is captured within the estimated intervals. These metrics provide a comprehensive assessment of each design's effectiveness in estimating the treatment effect accurately and efficiently within the budget constraints.

Overall, this modular function design facilitates a systematic and thorough exploration of optimal experimental designs under budget constraints. By compartmentalizing each step of the simulation process into dedicated functions, we enhance the clarity and reproducibility of our simulation study, enabling us to draw meaningful conclusions about resource allocation in experimental planning. The functions work cohesively to simulate realistic clustered data, perform valid statistical analyses, and evaluate the performance of various experimental designs, thereby contributing valuable insights into the optimization of experimental design under practical constraints.

Results

Alpha and Beta

From the equation $\mu_{i0} = \alpha + \beta X_j$, we can boldly assume that neither of the α and β will have effect on our estimands. In order to verify this, we can run the simulation with different α and β values.

In Figure 1, each color represents a different α (β) value. We observed that in both Figure 1 (a) and Figure 1 (b), the trend of the MSE is collapsed with each other. This indicates that the α and β values do not have significant effect on the estimands.

Further more, we selected the optimal designs for different α and β values. Table 1 shows that with different α and β values, the optimal MSE is very close to each other. We did a ANOVA test on the results and find that both of the p-value for α and β results are >0.9, suggesting that there is no significant difference between the optimal MSE for different α and β values. All of these results indicate that the α and β values do not have significant effect on our ability to estimate the treatment effect.

Table 1: Optimal Designs for Different Alpha Values and Beta Values

(a) Alpha

(b) Beta

alpha	mean_mse	G	R	total_cost	beta	mean_mse	G	R	total_cost
0.0	0.0568911	155	2	9300	0.0	0.0581459	138	3	9660
0.5	0.0554511	139	3	9730	0.5	0.0560478	105	5	9450
1.0	0.0570973	125	4	10000	1.0	0.0569062	141	3	9870
1.5	0.0579654	143	2	8580	1.5	0.0582138	161	2	9660
2.0	0.0575748	157	2	9420	2.0	0.0568961	154	2	9240
2.5	0.0565993	142	3	9940	2.5	0.0564536	120	4	9600
3.0	0.0576882	124	4	9920	3.0	0.0582648	160	2	9600

Mean Squared Error vs Clusters for Different Gamma2 Values

	0.1 ,	U.3,	U. 3,	0.7	0.9,	т.т,	1.3,	1.5,	1.1,	1.9,	2.1 ,	2.3 ,	2. 3,	Z.1,	4.9 ,	
	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	
	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	p-
Cha	rk98te	erli98ic	: 198	198	198	198	198	198	198	198	198	198	198	198	198	value

	0.1 ,	0.3 ,	0.5 ,	0.7 ,	0.9 ,	1.1, N	1.3 ,	1.5, N	1.7, N	1.9 ,	2.1 ,	2.3 ,	2.5 ,	2.7 ,	2.9 ,	
~	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	p -
Cha	.rla0ste	rli98ic	198	198	198	198	198	198	198	198	198	198	198	198	198	value
mse	0.01	0.02	0.03	0.04	0.05	0.05	0.06	0.07	0.08	0.08	0.09	0.10	0.11	0.12	0.12	< 0.001
	(0.01)	(0.02,	(0.03)	(0.03)	,(0.04)	,(0.04)	, (0.05,	(0.06)	, (0.06)	, (0.07)	, (0.07)	(0.08)	(0.08)	, (0.09)	, (0.09)	,
	0.02)	0.03)	0.05)	0.06)	0.08)	0.09)	0.11)	0.13)	0.13)	0.15)	0.18)	0.19)	0.20)	0.20)	0.22)	
cove	r 0g9 40	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.940	0.950	0.950	0.8
	(0.92)	0,0.920	0,0.92	0,0.92	0,0.93	0,0.92	0(,0.930	0,0.92	0,0.92	0(,0.93	0,0.92	0,0.93	0,0.92	0,0.93	0(,0.93	0,
	0.960)0.960)0.950)0.960	0.960)0.960)0.950)0.960	0.960	0.960	0.960)0.960)0.960	0.960	0.960))

Table 3: Optimal Designs for Different Gamma2 Values

gamma2	mean_mse	G	R	total_cost
0.1	0.0190063	70	10	9800
0.3	0.0371850	111	5	9990
0.5	0.0579494	165	2	9900
0.7	0.0757360	121	4	9680
0.9	0.0956974	136	3	9520
1.1	0.1167840	165	2	9900
1.3	0.1257796	161	2	9660
1.5	0.1504238	159	2	9540
1.7	0.1721281	138	3	9660
1.9	0.1900457	143	2	8580
2.1	0.2091637	190	1	9500
2.3	0.2273801	197	1	9850
2.5	0.2404325	151	2	9060
2.7	0.2618897	191	1	9550
2.9	0.2789687	194	1	9700

Mean Squared Error vs Gamma2

Mean Squared Error vs Clusters for Different Sigma 21 Values

0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3, 2.5, **2.7**, **2.9**, 0.1, 0.3, **0.5**, **0.7**, Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν = ========= p-Charla@terli9&ic 198 198 198 198 198 198 198 198 198 198 198 198 value 198 bias 0.002 - $0.001\ 0.002$ $0.003 \ 0.001$ $0.001\ 0.000\ 0.001$ 0.0000.7_ 0.001 (-(-0.001 0.003 (-(-0.001 (-0.003 0.002 (-(-(-0.010, (-0.014,0.009, (-(-0.012,0.011, (-0.015,0.019,0.017, (-(-0.013)0.011,0.011)0.013)0.013,0.013,0.014)0.017)0.015,0.015)0.015)0.016)0.021,0.017,0.017)0.012) 0.013(0.013)0.013) 0.015)0.016) $\bmod 0.02 \ 0.02 \ 0.03 \ 0.03 \ 0.03 \ 0.04 \ 0.04 \ 0.04 \ 0.04 \ 0.05 \ 0.05 \ 0.05 \ 0.05 \ 0.05 \ < 0.001$ (0.01, (0.02, (0.02, (0.02, (0.03, (0.03, (0.03, (0.03, (0.03, (0.04,0.04) 0.04) 0.04) 0.04) 0.04) 0.05) 0.05) 0.05) 0.05) 0.06) 0.06) 0.06) 0.06) 0.07) 0.07) $\operatorname{cover} \mathbf{ag40} \ 0.940 \ 0.940 \ 0.950 \ 0.940 \ 0.950 \ 0.940 \ 0.945 \ 0.940 \ 0.940 \ 0.950 \ 0.940 \ 0$ (0.920(0.920(0.920(0.930(0.930(0.933(0.930(0.930(0.920(0.930(0.90.960)0.9600.960)0.960)0.960)0.960)0.960)0.960)0.960)0.960)0.960)0.960)0.9600.960)0.960)0.960)0.960)0.960)0.960)0.960)0.960)0.9600.960)0.960)0.960)0.960)0.960)0.960)0.9600.960)0.960)0.960)0.960)0.9600.960)0.960)0.960)0.960)0.9600.960)0.960)0.960)0.9600.960)0.960)0.960)0.9600.960)0.960)0.960)0.9600.960)0.960)0.960)0.9600.960)0.960)0.960)0.9600.960)0.960)0.960)0.9600.960)0.960

Table 5: Optimal Designs for Different Sigma2 Values

sigma2	mean_mse	G	R	total_cost
0.1	0.0457286	185	1	9250
0.3	0.0526188	191	1	9550
0.5	0.0517844	164	2	9840
0.7	0.0554224	135	3	9450
0.9	0.0563240	165	2	9900
1.1	0.0584226	159	2	9540
1.3	0.0613256	139	3	9730
1.5	0.0616671	102	5	9180
1.7	0.0647367	108	5	9720
1.9	0.0649154	142	3	9940
2.1	0.0687715	139	3	9730
2.3	0.0687062	111	5	9990
2.5	0.0726491	108	5	9720
2.7	0.0742857	107	5	9630
2.9	0.0761328	113	4	9040

7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 2, 3, 4, **5**, 6, 8, 9, Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν ===== =p-**Chat98ct38ris£48** 198 164 140 123 109 98 88 81 69 56 48 value 7464 60 5350 bias 0.0010.000-0.002 -0.0000.0040.0010.0020.0010.008-0.000.002-0.8 (- (- 0.0020.002(-0.0010.001(-(- (- (- (- 0.002).001(-(-0.0070.001(- 0.016(,-0.0160.0120.0160.0120.0180.014(-(- 0.0140.023(-(-0.0110.011) 0.0130.0140.0200.0170.024(0.025) $mse\ 0.02\ 0.02\ 0.03\ 0.03\ 0.04\ 0.04\ 0.05\ 0.05\ 0.05\ 0.06\ 0.06\ 0.07\ 0.08\ 0.07\ 0.08\ 0.09\ 0.09\ 0.10\ 0.10\ < 0.001$ (0.01 (0.02 (0.02 (0.03 (0.03 (0.03 (0.04 (0.04 (0.05 (0.05 (0.05 (0.06 (0.06 (0.06 (0.06 (0.06 (0.07 (0.07 (0.07 (0.07 (0.00.02(0.03)(0.04)(0.04)(0.05)(0.06)(0.07)(0.08)(0.08)(0.09)(0.09)(0.10)(0.11)(0.12)(0.12)(0.13)(0.13)(0.16)(0.16) $cove \textbf{\textit{ba}25} \ 0.95 \ 0.95 \ 0.94 \ 0.94 \ 0.94 \ 0.94 \ 0.94 \ 0.94 \ 0.93 \ 0.9$ 0.96, 0.96, 0.96, 0.96, 0.96, 0.96, 0.96, 0.96, 0.96, 0.96, 0.95

Table 7: Optimal Designs for Different c1 Values

c1 mean_mse G R total_cost 2 0.0297566 429 1 858 3 0.0399331 214 2 856 4 0.0492680 180 2 900 5 0.0562573 162 2 972 6 0.0655591 85 6 935 7 0.0697480 99 4 990 8 0.0794216 83 5 996 9 0.0864997 91 2 910 10 0.0953008 82 3 984 11 0.1012274 54 8 972 12 0.1081789 58 6 986 13 0.1143881 54 6 972 14 0.1212100 49 7 980 15 0.1244390 58 3 986 16 0.1407954 48 5 960 17 <th></th> <th></th> <th></th> <th></th> <th></th>					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	c1	mean_mse	G	R	total_cost
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0.0297566	429	1	858
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0.0399331	214	2	856
6 0.0655591 85 6 935 7 0.0697480 99 4 990 8 0.0794216 83 5 996 9 0.0864997 91 2 910 10 0.0953008 82 3 984 11 0.1012274 54 8 972 12 0.1081789 58 6 986 13 0.1143881 54 6 972 14 0.1212100 49 7 980 15 0.1244390 58 3 986 16 0.1407954 48 5 960 17 0.1392162 45 6 990 18 0.1400984 49 3 980 19 0.1451432 40 7 1000	4	0.0492680	180	2	900
7 0.0697480 99 4 990 8 0.0794216 83 5 996 9 0.0864997 91 2 910 10 0.0953008 82 3 984 11 0.1012274 54 8 972 12 0.1081789 58 6 986 13 0.1143881 54 6 972 14 0.1212100 49 7 980 15 0.1244390 58 3 986 16 0.1407954 48 5 960 17 0.1392162 45 6 990 18 0.1400984 49 3 980 19 0.1451432 40 7 1000	5	0.0562573	162	2	972
8 0.0794216 83 5 996 9 0.0864997 91 2 910 10 0.0953008 82 3 984 11 0.1012274 54 8 972 12 0.1081789 58 6 986 13 0.1143881 54 6 972 14 0.1212100 49 7 980 15 0.1244390 58 3 986 16 0.1407954 48 5 960 17 0.1392162 45 6 990 18 0.1400984 49 3 980 19 0.1451432 40 7 1000	6	0.0655591	85	6	935
9 0.0864997 91 2 910 10 0.0953008 82 3 984 11 0.1012274 54 8 972 12 0.1081789 58 6 986 13 0.1143881 54 6 972 14 0.1212100 49 7 980 15 0.1244390 58 3 986 16 0.1407954 48 5 960 17 0.1392162 45 6 990 18 0.1400984 49 3 980 19 0.1451432 40 7 1000	7	0.0697480	99	4	990
10 0.0953008 82 3 984 11 0.1012274 54 8 972 12 0.1081789 58 6 986 13 0.1143881 54 6 972 14 0.1212100 49 7 980 15 0.1244390 58 3 986 16 0.1407954 48 5 960 17 0.1392162 45 6 990 18 0.1400984 49 3 980 19 0.1451432 40 7 1000	8	0.0794216	83	5	996
11 0.1012274 54 8 972 12 0.1081789 58 6 986 13 0.1143881 54 6 972 14 0.1212100 49 7 980 15 0.1244390 58 3 986 16 0.1407954 48 5 960 17 0.1392162 45 6 990 18 0.1400984 49 3 980 19 0.1451432 40 7 1000	9	0.0864997	91	2	910
12 0.1081789 58 6 986 13 0.1143881 54 6 972 14 0.1212100 49 7 980 15 0.1244390 58 3 986 16 0.1407954 48 5 960 17 0.1392162 45 6 990 18 0.1400984 49 3 980 19 0.1451432 40 7 1000	10	0.0953008	82	3	984
13 0.1143881 54 6 972 14 0.1212100 49 7 980 15 0.1244390 58 3 986 16 0.1407954 48 5 960 17 0.1392162 45 6 990 18 0.1400984 49 3 980 19 0.1451432 40 7 1000	11	0.1012274	54	8	972
14 0.1212100 49 7 980 15 0.1244390 58 3 986 16 0.1407954 48 5 960 17 0.1392162 45 6 990 18 0.1400984 49 3 980 19 0.1451432 40 7 1000	12	0.1081789	58	6	986
15 0.1244390 58 3 986 16 0.1407954 48 5 960 17 0.1392162 45 6 990 18 0.1400984 49 3 980 19 0.1451432 40 7 1000	13	0.1143881	54	6	972
16 0.1407954 48 5 960 17 0.1392162 45 6 990 18 0.1400984 49 3 980 19 0.1451432 40 7 1000	14	0.1212100	49	7	980
17 0.1392162 45 6 990 18 0.1400984 49 3 980 19 0.1451432 40 7 1000	15	0.1244390	58	3	986
18 0.1400984 49 3 980 19 0.1451432 40 7 1000	16	0.1407954	48	5	960
19 0.1451432 40 7 1000	17	0.1392162	45	6	990
	18	0.1400984	49	3	980
20 0.1599335 37 8 999	19	0.1451432	40	7	1000
	20	0.1599335	37	8	999

	,	,	,	,	,	,	,	,	,	,	2.1 ,	,	,	,	,	
	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	
Cha	= ræste	= rieric	108	= 198	= 198	= 198	= 198	= 198	p- value							
	imae	1115010	190	190	190	190	190	190	190	190	190	190	190	190	190	
bias	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	-	0.8
	(0.00)	, (-	(-	(-	(-	(-	(-	(-	(-	(-	(-	0.01	(-	(-	0.01	
	0.00)	0.01,	0.01,	0.02,	0.02,	0.02,	0.02,	0.03,	0.03,	0.03,	0.03,	(-	0.03,	0.04,	(-	
		0.01)	0.01)	0.02)	0.01)	0.03)	0.02)	0.02)	0.02)	0.03)	0.04)	0.04,	0.03)	0.04)	0.05,	
												0.03)			0.04)	
mse	0.00	0.01	0.03	0.04	0.06	0.07	0.10	0.12	0.14	0.17	0.21	0.25	0.27	0.32	0.36	< 0.001
	(0.00)	,(0.01,	(0.02,	(0.03)	(0.04,	(0.05,	(0.07)	,(0.08,	(0.10)	,(0.13)	, (0.14,	(0.17,	(0.20)	(0.23)	, (0.27,	,
	0.01)	0.03)	0.05)	0.07)	0.11)	0.14)	0.19)	0.20)	0.26)	0.30)	0.37)	0.40)	0.49)	0.54)	0.59)	
covei	ra0g 9 4	0.94	0.94	0.93	0.92	0.92	0.91	0.91	0.91	0.90	0.89	0.89	0.88	0.87	0.87	< 0.001
	(0.92)	, (0.93,	(0.91,	(0.90)	,(0.90,	(0.90,	(0.89)	, (0.88,	(0.88)	,(0.88	, (0.85,	(0.85,	(0.85)	(0.84)	, (0.84,	,
	0.96)	0.95)	0.95)	0.95)	0.95)	0.94)	0.93)	0.94)	0.93)	0.92)	0.92)	0.91)	0.91)	0.90)	0.90)	

Table 9: Optimal Designs for Different Gamma2 Values (Poisson)

gamma2	mean_mse	G	R	total_cost
0.1	0.0097438	198	1	9900
0.3	0.0304002	169	1	8450
0.5	0.0560577	195	1	9750
0.7	0.0843814	194	1	9700
0.9	0.1174094	185	1	9250
1.1	0.1498408	198	1	9900
1.3	0.1938283	195	1	9750
1.5	0.2262600	184	1	9200
1.7	0.2705672	187	1	9350
1.9	0.3172452	180	1	9000
2.1	0.3645954	174	1	8700
2.3	0.4171857	178	1	8900
2.5	0.4652958	141	3	9870
2.7	0.5143786	150	2	9000
2.9	0.5901964	199	1	9950


```
0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3,
                                               0.1, 0.3, 0.5,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2.5, 2.7, 2.9,
                                                                                                                                                              N
                                                                                                                                                                                                                                                                      Ν
                                                    Ν
                                                                                                         Ν
                                                                                                                                                                                                                   Ν
                                                                                                                                                                                                                                                                                                                           Ν
                                                                                                                                                                                                                                                                                                                                                                               Ν
                                                                                                                                                                                                                                                                                                                                                                                                                                    Ν
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Ν
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Ν
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Ν
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Ν
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Ν
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Ν
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Ν
                                                                                                                                                                =
                                                                                                                                                                                                                   =
                                                                                                                                                                                                                                                                        =
                                                                                                                                                                                                                                                                                                                             =
                                                                                                                                                                                                                                                                                                                                                                                =
                                                                                                                                                                                                                                                                                                                                                                                                                                     =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 p-
 Charla@terlistic 198
                                                                                                                                                                                                            198
                                                                                                                                                                                                                                                            198
                                                                                                                                                                                                                                                                                                                    198
                                                                                                                                                                                                                                                                                                                                                                           198
                                                                                                                                                                                                                                                                                                                                                                                                                           198
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     198
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        198
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             198
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  198
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    198
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          198
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                198
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               value
bias 0.000 -
                                                                                                                                                                                                            0.005 \ 0.001
                                                                                                                                                                                                                                                                                                                                                                           0.000\ 0.001\ 0.001\ 0.001\ 0.002 -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.000\,0.000 -
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               0.5
                                                                                                                                                                                                                                                                                                                          _
                                                                                                  0.002 0.001 (-
                                                                                                                                                                                                                                                                                                                    0.002 (-
                                                      (-
                                                                                                                                                                                                                                                                         (-
                                                                                                                                                                                                                                                                                                                                                                                                                                     (-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  (-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.001 (-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.001
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.013,0.011, (-
                                                                                                                                                                (-
                                                                                                                                                                                                            0.009, 0.011, (-0.011, 0.012, 0.009, 0.010, 0.014, (-0.011, 0.012, 0.009, 0.010, 0.014, (-0.011, 0.012, 0.009, 0.010, 0.014, (-0.011, 0.012, 0.009, 0.010, 0.014, (-0.011, 0.012, 0.009, 0.010, 0.014, (-0.011, 0.012, 0.009, 0.010, 0.014, (-0.011, 0.012, 0.009, 0.010, 0.014, (-0.011, 0.012, 0.009, 0.010, 0.014, (-0.011, 0.012, 0.009, 0.010, 0.014, (-0.011, 0.012, 0.009, 0.010, 0.014, (-0.011, 0.012, 0.009, 0.010, 0.014, (-0.011, 0.012, 0.009, 0.010, 0.014, (-0.011, 0.012, 0.009, 0.014, 0.014, (-0.011, 0.012, 0.009, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 0.014, 
                                               0.009)0.012,0.012,0.019)0.013)0.012,0.012)0.015)0.012)0.010)0.013)0.013,0.011)0.011)0.011,
                                                                                                  0.013)0.012)
                                                                                                                                                                                                                                                                                                                    0.011)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.011)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          0.013)
  \text{mse} \ \ 0.03 \ \ 0.02 \ \ 0.03 \ \ 0.02 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ \ 0.03 \ 
                                             (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, (0.02, 
                                               0.05) 0.05) 0.05) 0.05) 0.05) 0.05) 0.05) 0.05) 0.05) 0.05) 0.05) 0.05) 0.05) 0.05) 0.05) 0.05) 0.05) 0.05)
 (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.92, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, (0.91, 
                                               0.95) 0.95) 0.96) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95) 0.95
```

Table 11: Optimal Designs for Different Sigma2 Values (Poisson)

sigma2	mean_mse	G	R	total_cost
0.1	0.0557430	197	1	9850
0.3	0.0572277	193	1	9650
0.5	0.0555942	189	1	9450
0.7	0.0577980	192	1	9600
0.9	0.0564851	195	1	9750
1.1	0.0580186	184	1	9200
1.3	0.0551089	200	1	10000
1.5	0.0565486	180	1	9000
1.7	0.0546928	194	1	9700
1.9	0.0564942	191	1	9550
2.1	0.0574814	200	1	10000
2.3	0.0595126	184	1	9200
2.5	0.0570420	196	1	9800
2.7	0.0573634	200	1	10000
2.9	0.0564354	197	1	9850

 $10,\ 11,\ 12,\ 13,\ 14,\ 15,\ 16,\ 17,\ 18,\ 19,\ 20,$ 2, 3, 4, **5**, 6, 7, 8, 9, Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν Ν ======p-Chat98ct36ris2it8 198 164 140 123 109 98 88 81 74 69 50 48 value 64 60 56 530.007bias 0.00@.000-0.0010.0020.001-0.003 -0.000.0040.002-0.0010.066(- (- 0.005(- 0.0020.001(-(- (- 0.0040.0010.005(-0.004(-(- (- 0.001(-0.01@.01@.012(- 0.011(-0.0160.0110.021(-(- (-0.008(- 0.028, (-0.008 (0.008), 011 (0.013), 013 (0.014), 016 (0.019), 012 (0.019), 019 (0.019), 017 (0.029), 019 (0.029), 022 (0.022)0.008) 0.007) 0.017().016) 0.014().025().015() 0.019) $mse\ 0.01\ 0.02\ 0.02\ 0.02\ 0.03\ 0.04\ 0.04\ 0.05\ 0.05\ 0.06\ 0.06\ 0.07\ 0.07\ 0.07\ 0.08\ 0.08\ 0.09\ 0.09\ 0.10 < 0.001$ (0.01 (0.01 (0.01 (0.02 (0.02 (0.02 (0.03 (0.03 (0.04 (0.04 (0.04 (0.05 (0.05 (0.05 (0.05 (0.06 (0.06 (0.06 (0.07 (0.05 (0.00.02)0.03)0.04)0.05)0.06)0.07)0.07)0.08)0.11)0.10)0.12)0.13)0.13)0.14)0.14)0.17)0.18)0.16)0.18) $\begin{array}{l} \text{cove} \\ \textbf{ba} \\ \textbf{24} \\ \textbf{0.94} \\ \textbf{0.94} \\ \textbf{0.94} \\ \textbf{0.94} \\ \textbf{0.93} \\ \textbf{0.93} \\ \textbf{0.93} \\ \textbf{0.92} \\ \textbf{0.91} \\ \textbf{$ (0.93(0.92(0.92(0.91(0.91(0.91(0.90(0.90(0.89(0.89(0.88(0.88(0.88(0.87(0.87(0.86(0.87(0.88(0.89,

Table 13: Optimal Designs for Different c1 Values (Poisson)

c1	mean_mse	G	R	total_cost
2	0.0278507	497	1	994
3	0.0380881	326	1	978
4	0.0474146	248	1	992
5	0.0542624	197	1	985
6	0.0646235	161	1	966
7	0.0747754	130	1	910
8	0.0833207	100	3	1000
9	0.0874934	102	1	918
10	0.0983416	95	1	950
11	0.1055769	88	1	968
12	0.1084739	81	1	972
13	0.1224630	74	1	962
14	0.1193571	68	1	952
15	0.1303207	63	1	945
16	0.1380758	60	1	960
17	0.1480772	56	1	952
18	0.1472453	53	1	954
19	0.1543376	52	1	988
20	0.1608175	47	2	987

Discussion

Code Appendix

```
knitr::opts_chunk$set(echo = FALSE)
knitr::opts_chunk$set(message = FALSE)
knitr::opts_chunk$set(warning = FALSE)
library(ggplot2)
library(dplyr)
library(tidyr)
library(knitr)
library(kableExtra)
library(gridExtra)
library(sandwich)
library(lmtest)
library(lme4)
library(lmerTest)
library(gtsummary)
# Function to calculate feasible designs
calculate_feasible_designs <- function(budget, c1, c2) {</pre>
```

```
feasible_designs <- list()</pre>
 max_clusters <- floor(budget / c1)</pre>
 for (G in 2:max_clusters) { # At least 2 clusters needed for comparison
    \max_{R} \leftarrow \text{floor}((\text{budget} - G * c1) / (G * c2)) + 1
    if (max_R >= 1) {
      feasible_designs[[length(feasible_designs) + 1]] <- list(G = G, R = max_R)</pre>
   }
 }
 return(feasible_designs)
# Function to assign treatments ensuring both groups are represented
assign_treatment <- function(G) {</pre>
 if (G < 2) {
    stop("The number of clusters (G) must be at least 2.")
 # Start with one cluster in each group
 Treatment <-c(0, 1)
 if (G > 2) {
    # Assign remaining clusters randomly
   remaining_treatments <- sample(0:1, G - 2, replace = TRUE)</pre>
   Treatment <- c(Treatment, remaining_treatments)</pre>
 }
 # Shuffle the treatments to randomize cluster assignments
 Treatment <- sample(Treatment)</pre>
 return(Treatment)
# Function to generate data in long format
generate_data <- function(G, R, alpha, beta, gamma2, sigma2, distribution = 'normal') {
 Treatment <- assign_treatment(G)</pre>
 # Generate cluster-level random effects
 if (distribution == 'normal') {
    epsilon <- rnorm(G, mean = 0, sd = sqrt(gamma2))</pre>
 } else if (distribution == 'poisson') {
```

```
epsilon <- rnorm(G, mean = 0, sd = sqrt(gamma2))
 }
  # Generate cluster means
  cluster_means <- alpha + beta * Treatment + epsilon</pre>
  # Create a data frame with all observations
  data long <- data.frame(</pre>
    Cluster = rep(1:G, each = R),
    Treatment = rep(Treatment, each = R),
   Y = NA
  )
  # Generate observations based on distribution
  if (distribution == 'normal') {
    data_long$Y <- rnorm(n = G * R, mean = rep(cluster_means, each = R), sd = sqrt(sigma2))</pre>
  } else if (distribution == 'poisson') {
    mu <- exp(rep(cluster_means, each = R))</pre>
    data_long\$Y \leftarrow rpois(n = G * R, lambda = mu)
  }
 return(data_long)
}
# Function to estimate treatment effect using mixed-effects model
estimate_treatment_effect <- function(data_long, distribution = 'normal') {</pre>
  data_long$Cluster <- as.factor(data_long$Cluster)</pre>
  if (distribution == 'normal') {
    model <- glm(Y ~ Treatment, data = data_long, family = gaussian())</pre>
  } else if (distribution == 'poisson') {
    model <- glm(Y ~ Treatment, data = data_long, family = poisson())</pre>
  cluster_vcov <- vcovCL(model, cluster = data_long$Cluster)</pre>
  beta_hat <- coef(model)["Treatment"]</pre>
  se <- sqrt(cluster_vcov["Treatment", "Treatment"])</pre>
  z_value <- beta_hat / se
  p_value \leftarrow 2 * (1 - pnorm(abs(z_value)))
```

```
power <- p_value < 0.05
  return(list(
    estimate = beta_hat,
    se = se,
   p_value = p_value,
    power = power
  ))
}
# Function to run simulation for a design
run_simulation <- function(G, R, alpha, beta, gamma2, sigma2, c1, c2, n_sims = 1000, distrib
  results <- data.frame(</pre>
    estimate = numeric(n_sims),
    se = numeric(n_sims),
    p_value = numeric(n_sims),
    power = logical(n_sims)
  )
  for (sim in 1:n sims) {
    data_long <- generate_data(G, R, alpha, beta, gamma2, sigma2, distribution)
    estimates <- estimate_treatment_effect(data_long, distribution)</pre>
    results$estimate[sim] <- estimates$estimate</pre>
    results$se[sim] <- estimates$se
    results$p_value[sim] <- estimates$p_value</pre>
    results$power[sim] <- estimates$power</pre>
  }
  total_cost <- G * (c1 + (R - 1) * c2)
  return(list(
    results = results,
    G = G
    R = R
    total_cost = total_cost
  ))
}
# Function to evaluate design performance
evaluate_design <- function(simulation_results, beta) {</pre>
```

```
results <- simulation_results$results
  G <- simulation_results$G</pre>
  R <- simulation_results$R</pre>
  total_cost <- simulation_results$total_cost</pre>
  bias <- mean(results$estimate, na.rm = TRUE) - beta</pre>
  mse <- mean((results$estimate - beta)^2, na.rm = TRUE)</pre>
  coverage <- mean(abs(results$estimate - beta) <= 1.96 * results$se, na.rm = TRUE)</pre>
  return(list(
   G = G
    R = R,
    total_cost = total_cost,
    bias = bias,
    mse = mse,
    coverage = coverage
  ))
budget <- 10000
c1 <- 50
c2 <- 10
beta <- 0.5
gamma2 <- 0.5
sigma2 <- 1
n_sims <- 100
alpha_values \leftarrow seq(0, 3, by = 0.5)
feasible_designs <- calculate_feasible_designs(budget, c1, c2)</pre>
design_performance_normal_alpha <- data.frame()</pre>
for (alpha in alpha_values) {
  for (design in feasible_designs) {
    G <- design$G
    R <- design$R
    if (G < 3) next
    sim_results <- run_simulation(G, R, alpha, beta, gamma2, sigma2, c1, c2, n_sims)</pre>
    performance <- evaluate_design(sim_results, beta)</pre>
    design_performance_normal_alpha <- rbind(design_performance_normal_alpha, data.frame(
```

```
G = performance$G,
      R = performance R,
      total_cost = performance$total_cost,
      alpha = alpha,
      bias = performance$bias,
      mse = performance$mse,
      coverage = performance$coverage
    ))
  }
}
write.csv(design_performance_normal_alpha, "../Results/design_performance_normal_alpha.csv")
budget <- 10000
c1 <- 50
c2 <- 10
alpha < -5
gamma2 <- 0.5
sigma2 <- 1
n_sims <- 100
beta_values <- seq(0, 3, by = 0.5)
feasible_designs <- calculate_feasible_designs(budget, c1, c2)</pre>
design_performance_normal_beta <- data.frame()</pre>
for (beta in beta_values) {
  for (design in feasible_designs) {
    G <- design$G
    R <- design$R
    if (G < 3) next
    sim_results <- run_simulation(G, R, alpha, beta, gamma2, sigma2, c1, c2, n_sims)
    performance <- evaluate_design(sim_results, beta)</pre>
    design_performance_normal_beta <- rbind(design_performance_normal_beta, data.frame(</pre>
      G = performance$G,
      R = performance R,
      total_cost = performance$total_cost,
      beta = beta,
      bias = performance$bias,
```

```
mse = performance$mse,
      coverage = performance$coverage
    ))
  }
}
write.csv(design_performance_normal_beta, "../Results/design_performance_normal_beta.csv")
# read results
design_performance_normal_alpha <- read.csv("../Results/design_performance_normal_alpha.csv"
normal_alpha_results_plot <- ggplot(design_performance_normal_alpha, aes(x = G, y = mse, col-
  geom_line() +
  geom_point() +
  labs(x = "Number of Clusters (G)",
       y = "Mean Squared Error (MSE)") +
  theme minimal() +
  theme(legend.position="none")
normal_alpha_results_table <- tbl_summary(design_performance_normal_alpha %>% select(c(bias,
  add_p()
normal_alpha_results_optimal_table <- kable(design_performance_normal_alpha %>%
  group_by(alpha) %>%
  summarize(mean mse = mean(mse), G = G[which.min(mse)], R = R[which.min(mse)], total_cost =
normal_alpha_results_optimal_plot <- design_performance_normal_alpha %>%
  group_by(alpha) %>%
  summarize(mean mse = mean(mse), G = G[which.min(mse)], R = R[which.min(mse)], total_cost =
  ggplot(aes(x = alpha, y = mean_mse)) +
  geom_line() +
  geom_point() +
  labs(x = "Alpha",
       y = "Mean Squared Error (MSE)") +
  theme_minimal()
# read results
design_performance_normal_beta <- read.csv("../Results/design_performance_normal_beta.csv")</pre>
normal_beta_results_plot <- ggplot(design_performance_normal_beta, aes(x = G, y = mse, color
  geom_line() +
  geom_point() +
  labs(x = "Number of Clusters (G)",
```

```
y = "Mean Squared Error (MSE)") +
  theme_minimal() +
  theme(legend.position="none")
normal_beta_results_table <- tbl_summary(design_performance_normal_beta %>% select(c(bias, material))
  add_p()
normal_beta_results_optimal_table <- kable(design_performance_normal_beta %>%
  group_by(beta) %>%
  summarize(mean_mse = mean(mse), G = G[which.min(mse)], R = R[which.min(mse)], total_cost =
normal_beta_results_optimal_plot <- design_performance_normal_beta %>%
  group_by(beta) %>%
  summarize(mean mse = mean(mse), G = G[which.min(mse)], R = R[which.min(mse)], total_cost =
  ggplot(aes(x = beta, y = mean_mse)) +
  geom_line() +
  geom_point() +
  labs(x = "Beta",
       y = "Mean Squared Error (MSE)") +
  theme_minimal()
normal_alpha_results_plot
normal_beta_results_plot
normal_alpha_results_optimal_table
normal_beta_results_optimal_table
normal_alpha_results_table
normal_beta_results_table
budget <- 10000
c1 <- 50
c2 <- 10
alpha <- 5
beta <- 0.5
sigma2 <- 1
n_sims <- 100
gamma2\_values \leftarrow seq(0.1, 3, by = 0.2)
feasible_designs <- calculate_feasible_designs(budget, c1, c2)</pre>
design_performance_normal_gamma2 <- data.frame()</pre>
for (gamma2 in gamma2_values) {
  for (design in feasible_designs) {
```

```
G <- design$G
    R <- design$R
    if (G < 3) next
    sim_results <- run_simulation(G, R, alpha, beta, gamma2, sigma2, c1, c2, n_sims)
    performance <- evaluate_design(sim_results, beta)</pre>
    design_performance_normal_gamma2 <- rbind(design_performance_normal_gamma2, data.frame(
      G = performance$G,
      R = performance R,
      total_cost = performance$total_cost,
      gamma2 = gamma2,
      bias = performance$bias,
      mse = performance$mse,
      coverage = performance$coverage
    ))
  }
}
write.csv(design_performance_normal_gamma2, "../Results/design_performance_normal_gamma2.csv
# read results
design_performance_normal_gamma2 <- read.csv("../Results/design_performance_normal_gamma2.cs
ggplot(design\_performance\_normal\_gamma2, aes(x = G, y = mse, color = factor(gamma2))) +
  geom_line() +
  geom_point() +
  labs(title = "Mean Squared Error vs Clusters for Different Gamma2 Values",
       x = "Number of Clusters (G)",
       y = "Mean Squared Error (MSE)") +
  theme_minimal()
tbl_summary(design_performance_normal_gamma2 %>% select(c(bias, mse, coverage, gamma2)), by
  add_p()
kable(design_performance_normal_gamma2 %>%
  group_by(gamma2) %>%
  summarize(mean_mse = mean(mse), G = G[which.min(mse)], R = R[which.min(mse)], total_cost =
  caption = "Optimal Designs for Different Gamma2 Values")
design_performance_normal_gamma2 %>%
```

```
group_by(gamma2) %>%
  summarize(mean_mse = mean(mse), G = G[which.min(mse)], R = R[which.min(mse)], total_cost =
  ggplot(aes(x = gamma2, y = mean_mse)) +
  geom_line() +
  geom_point() +
  labs(title = "Mean Squared Error vs Gamma2",
       x = "Gamma2",
       y = "Mean Squared Error (MSE)") +
  theme_minimal()
budget <- 10000
c1 <- 50
c2 <- 10
alpha < -5
beta <- 0.5
gamma2 <- 0.5
n_sims <- 100
sigma2_values \leftarrow seq(0.1, 3, by = 0.2)
feasible_designs <- calculate_feasible_designs(budget, c1, c2)</pre>
design_performance_normal_sigma2 <- data.frame()</pre>
for (sigma2 in sigma2_values) {
  for (design in feasible_designs) {
    G <- design$G
    R <- design$R
    if (G < 3) next
    sim_results <- run_simulation(G, R, alpha, beta, gamma2, sigma2, c1, c2, n_sims)
    performance <- evaluate_design(sim_results, beta)</pre>
    design_performance_normal_sigma2 <- rbind(design_performance_normal_sigma2, data.frame(</pre>
      G = performance$G,
      R = performance R,
      total_cost = performance$total_cost,
      sigma2 = sigma2,
      bias = performance$bias,
      mse = performance$mse,
      coverage = performance$coverage
    ))
  }
```

```
}
write.csv(design_performance_normal_sigma2, "../Results/design_performance_normal_sigma2.csv
# read results
design_performance_normal_sigma2 <- read.csv("../Results/design_performance_normal_sigma2.cs
ggplot(design\_performance\_normal\_sigma2, aes(x = G, y = mse, color = factor(sigma2))) +
  geom_line() +
  geom_point() +
  labs(title = "Mean Squared Error vs Clusters for Different Sigma2 Values",
       x = "Number of Clusters (G)",
       y = "Mean Squared Error (MSE)") +
  theme_minimal()
tbl summary(design performance normal_sigma2 %>% select(c(bias, mse, coverage, sigma2)), by
  add_p()
kable(design_performance_normal_sigma2 %>%
  group_by(sigma2) %>%
  summarize(mean_mse = mean(mse), G = G[which.min(mse)], R = R[which.min(mse)], total_cost =
  caption = "Optimal Designs for Different Sigma2 Values")
design_performance_normal_sigma2 %>%
  group_by(sigma2) %>%
  summarize(mean_mse = mean(mse), G = G[which.min(mse)], R = R[which.min(mse)], total_cost =
  ggplot(aes(x = sigma2, y = mean_mse)) +
  geom_line() +
  geom_point() +
  labs(title = "Mean Squared Error vs Sigma2",
       x = "Sigma2",
       y = "Mean Squared Error (MSE)") +
  theme_minimal()
budget <- 1000
alpha < -5
beta <- 0.5
gamma2 <- 0.5
sigma2 <- 1
n_sims <- 100
c2 <- 1
c1_{values} \leftarrow seq(2, 20, by = 1)
```

```
design_performance_normal_c1_c2 <- data.frame()</pre>
for (c1 in c1 values) {
  feasible_designs <- calculate_feasible_designs(budget, c1, c2)</pre>
  for (design in feasible_designs) {
    G <- design$G
    R <- design$R
    if (G < 3) next
    sim_results <- run_simulation(G, R, alpha, beta, gamma2, sigma2, c1, c2, n_sims)</pre>
    performance <- evaluate_design(sim_results, beta)</pre>
    design_performance_normal_c1_c2 <- rbind(design_performance_normal_c1_c2, data.frame(</pre>
      G = performance$G,
      R = performance R,
      total_cost = performance$total_cost,
      c1 = c1,
      c2 = c2
      bias = performance$bias,
      mse = performance$mse,
      coverage = performance$coverage
    ))
  }
}
write.csv(design_performance_normal_c1_c2, "../Results/design_performance_normal_c1_c2.csv")
# read results
design_performance_normal_c1_c2 <- read.csv("../Results/design_performance_normal_c1_c2.csv"
ggplot(design_performance_normal_c1_c2, aes(x = G, y = mse, color = factor(c1))) +
  geom_line() +
  geom_point() +
  labs(title = "Mean Squared Error vs Clusters for Different c1/c2 ratio",
       x = "Number of Clusters (G)",
       y = "Mean Squared Error (MSE)") +
  theme_minimal() +
  theme(legend.position="none")
tbl_summary(design_performance_normal_c1_c2 %>% select(c(bias, mse, coverage, c1)), by = c1)
```

```
add_p()
kable(design_performance_normal_c1_c2 %>%
  group_by(c1) %>%
  summarize(mean_mse = mean(mse), G = G[which.min(mse)], R = R[which.min(mse)], total_cost =
  caption = "Optimal Designs for Different c1 Values")
design_performance_normal_c1_c2 %>%
  group_by(c1) %>%
  summarize(mean_mse = mean(mse), G = G[which.min(mse)], R = R[which.min(mse)], total_cost =
  ggplot(aes(x = c1, y = mean_mse)) +
  geom_line() +
  geom_point() +
  labs(title = "Mean Squared Error vs c1",
       x = "c1",
       y = "Mean Squared Error (MSE)") +
  theme_minimal()
budget <- 10000
c1 <- 50
c2 <- 10
alpha < -5
beta <- 0.5
sigma2 <- 1
n_sims <- 100
gamma2\_values \leftarrow seq(0.1, 3, by = 0.2)
feasible_designs <- calculate_feasible_designs(budget, c1, c2)</pre>
design_performance_poisson_gamma2 <- data.frame()</pre>
for (gamma2 in gamma2_values) {
  for (design in feasible_designs) {
    G <- design$G
    R <- design$R
    if (G < 3) next
    sim_results <- run_simulation(G, R, alpha, beta, gamma2, sigma2, c1, c2, n_sims, distrib
    performance <- evaluate_design(sim_results, beta)</pre>
    design_performance_poisson_gamma2 <- rbind(design_performance_poisson_gamma2, data.fram
```

```
G = performance$G,
      R = performance R,
      total_cost = performance$total_cost,
      gamma2 = gamma2,
      bias = performance$bias,
      mse = performance$mse,
      coverage = performance$coverage
    ))
  }
write.csv(design_performance_poisson_gamma2, "../Results/design_performance_poisson_gamma2.ca
# read results
design_performance_poisson_gamma2 <- read.csv("../Results/design_performance_poisson_gamma2..
ggplot(design\_performance\_poisson\_gamma2, aes(x = G, y = mse, color = factor(gamma2))) +
  geom_line() +
  geom_point() +
  labs(title = "Mean Squared Error vs Clusters for Different Gamma2 Values (Poisson)",
       x = "Number of Clusters (G)",
       y = "Mean Squared Error (MSE)") +
  theme minimal()
tbl_summary(design_performance_poisson_gamma2 %>% select(c(bias, mse, coverage, gamma2)), by
  add_p()
kable(design_performance_poisson_gamma2 %>%
  group_by(gamma2) %>%
  summarize(mean_mse = mean(mse), G = G[which.min(mse)], R = R[which.min(mse)], total_cost =
  caption = "Optimal Designs for Different Gamma2 Values (Poisson)")
design_performance_poisson_gamma2 %>%
  group_by(gamma2) %>%
  summarize(mean_mse = mean(mse), G = G[which.min(mse)], R = R[which.min(mse)], total_cost =
  ggplot(aes(x = gamma2, y = mean_mse)) +
  geom_line() +
  geom_point() +
  labs(title = "Mean Squared Error vs Gamma2 (Poisson)",
       x = "Gamma2",
       y = "Mean Squared Error (MSE)") +
  theme_minimal()
```

```
budget <- 10000
c1 <- 50
c2 <- 10
alpha < -5
beta <- 0.5
gamma2 <- 0.5
n_sims <- 100
sigma2_values \leftarrow seq(0.1, 3, by = 0.2)
feasible_designs <- calculate_feasible_designs(budget, c1, c2)</pre>
design_performance_poisson_sigma2 <- data.frame()</pre>
for (sigma2 in sigma2_values) {
  for (design in feasible_designs) {
    G <- design$G
    R <- design$R
    if (G < 3) next
    sim_results <- run_simulation(G, R, alpha, beta, gamma2, sigma2, c1, c2, n_sims, distrib
    performance <- evaluate_design(sim_results, beta)</pre>
    design_performance_poisson_sigma2 <- rbind(design_performance_poisson_sigma2, data.frame
      G = performance$G,
      R = performance R,
      total_cost = performance$total_cost,
      sigma2 = sigma2,
      bias = performance$bias,
      mse = performance$mse,
      coverage = performance$coverage
    ))
  }
}
write.csv(design_performance_poisson_sigma2, "../Results/design_performance_poisson_sigma2.ca
# read results
design_performance_poisson_sigma2 <- read.csv("../Results/design_performance_poisson_sigma2..
ggplot(design\_performance\_poisson\_sigma2, aes(x = G, y = mse, color = factor(sigma2))) +
  geom_line() +
```

```
geom_point() +
  labs(title = "Mean Squared Error vs Clusters for Different Sigma2 Values (Poisson)",
       x = "Number of Clusters (G)",
       y = "Mean Squared Error (MSE)") +
  theme minimal()
tbl_summary(design_performance_poisson_sigma2 %>% select(c(bias, mse, coverage, sigma2)), by
kable(design_performance_poisson_sigma2 %>%
  group_by(sigma2) %>%
  summarize(mean mse = mean(mse), G = G[which.min(mse)], R = R[which.min(mse)], total_cost =
  caption = "Optimal Designs for Different Sigma2 Values (Poisson)")
design_performance_poisson_sigma2 %>%
  group_by(sigma2) %>%
  summarize(mean_mse = mean(mse), G = G[which.min(mse)], R = R[which.min(mse)], total_cost =
  ggplot(aes(x = sigma2, y = mean_mse)) +
  geom_line() +
  geom_point() +
  labs(title = "Mean Squared Error vs Sigma2 (Poisson)",
       x = "Sigma2",
       y = "Mean Squared Error (MSE)") +
  theme_minimal()
budget <- 1000
alpha <- 5
beta <- 0.5
gamma2 <- 0.5
sigma2 <- 1
n_sims <- 100
c2 <- 1
c1_{values} \leftarrow seq(2, 20, by = 1)
design_performance_poisson_c1_c2 <- data.frame()</pre>
for (c1 in c1_values) {
  feasible_designs <- calculate_feasible_designs(budget, c1, c2)</pre>
  for (design in feasible_designs) {
    G <- design$G
    R <- design$R
```

```
if (G < 3) next
    sim_results <- run_simulation(G, R, alpha, beta, gamma2, sigma2, c1, c2, n_sims, distrib
    performance <- evaluate_design(sim_results, beta)</pre>
    design_performance_poisson_c1_c2 <- rbind(design_performance_poisson_c1_c2, data.frame(</pre>
      G = performance G,
      R = performance R,
      total_cost = performance$total_cost,
      c1 = c1,
      c2 = c2,
      bias = performance$bias,
      mse = performance$mse,
      coverage = performance$coverage
    ))
  }
}
write.csv(design_performance_poisson_c1_c2, "../Results/design_performance_poisson_c1_c2.csv
# read results
design_performance_poisson_c1_c2 <- read.csv("../Results/design_performance_poisson_c1_c2.cs
ggplot(design\_performance\_poisson\_c1\_c2, aes(x = G, y = mse, color = factor(c1))) +
  geom_line() +
  geom_point() +
  labs(title = "Mean Squared Error vs Clusters for Different c1/c2 ratio (Poisson)",
       x = "Number of Clusters (G)",
       y = "Mean Squared Error (MSE)") +
  theme_minimal() +
  theme(legend.position="none")
tbl_summary(design_performance_poisson_c1_c2 %>% select(c(bias, mse, coverage, c1)), by = c1
kable(design_performance_poisson_c1_c2 %>%
  group_by(c1) %>%
  summarize(mean_mse = mean(mse), G = G[which.min(mse)], R = R[which.min(mse)], total_cost =
  caption = "Optimal Designs for Different c1 Values (Poisson)")
design_performance_poisson_c1_c2 %>%
group_by(c1) %>%
```