

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»

КАФЕДРА «ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1 ПО ДИСЦИПЛИНЕ: ТИПЫ И СТРУКТУРЫ ДАННЫХ

«Длинная» арифметика. Тип данных – массив

"Aviiiiai" apriprietiiia tiii Auiiibin	Mucch
Студент Ширяев А.А.	
Группа ИУ7-33Б	
Название предприятия НУК ИУ МГТУ им. Н. Э. Баумана	
Студент	_ Ширяев А.А.
Преподаватель	_ <Фамилия ИО>

Лабораторная работа №1 по дисциплине "Типы и структуры данных"	1
Условие задачи	3
Описание техзадачи	3
а. Описание исходных данных	3
b. Описание задачи, реализуемой программой	3
с. Способ обращения к программе	4
d. Описание возможных аварийных ситуаций и ошибок пользователя	4
Описание внутренних СД	5
Действительное число (Итоговое число):	5
Целое число:	5
Регистр:	6
Описание алгоритма	6
Набор тестов	7
Выводы по проделанной работе	9
Контрольные вопросы	10

Условие задачи

ВАРИАНТ 2 Смоделировать операцию умножения действительного числа в форме \pm m.n E \pm K, где суммарная длина мантиссы (m+n) - до 40 значащих цифр, а величина порядка K - до 5 цифр, на целое число длиной до 30 десятичных цифр. Результат выдать в форме \pm 0.m1 E \pm K1, где m1 - до 30 значащих цифр, а K1 - до 5 цифр.

Описание техзадачи

а. Описание исходных данных

Данные на входе: Действительное число в экспоненциальной форме, Целое число **Данные на выходе**: Действительное число в экспоненциальной форме

Действительное число в экспоненциальной форме - число формата +- \mathbf{m} . \mathbf{n} E+- \mathbf{K} (Например: +1.1e1 = +1.1 * 10^1 = 11, -0.1e-1 = -0.1 * 10^(-1) = -0.01). Количество значащих цифр в числе (а именно значащие цифры чисел \mathbf{m} и \mathbf{n}) не может превышать 40. Число \mathbf{K} не может превышать 5-и значащих цифр.

Целое число - число формата +-**m** (Например: +16, -9, 81). Количество значащих цифр в числе (а именно значащие цифры чисел **m**) не может превышать 30.

b. Описание задачи, реализуемой программой

Программа выполняет умножение действительного числа в экспоненциальной форме и целого числа. Результатом работы является действительное число в экспоненциальной форме, где количество значащих цифр в числе (а именно значащие цифры чисел **m** и **n**) не может превышать **30**. Число К не может превышать 5-и значащих цифр.

с. Способ обращения к программе

Для обращения к программе запускается файл *app.exe*. Далее требуется ввести в консоли через клавишу *enter* по порядку 2 числа:

- 1. Действительное число в экспоненциальной форме
- 2. Целое число

После введенных в консоли чисел выводится результат (так же в консоли).

d. Описание возможных аварийных ситуаций и ошибок пользователя

Программа может не вывести результат, а вывести сообщение об ошибке. Данная ситуация может произойти при условии:

- 1. Числа введены не в правильном формате (Например (для действительных чисел): 1r10, .e10, 1.1eEeE10 и т.д.) (Например (для целых чисел): 1y, –8, +10+ и т.д).

- 4. Кол-во символов введенного числа превышает 256 символов
- 5. В введенном числе присутствуют пробельные символы
- 6. Введенная строка пустая

Описание внутренних СД

Действительное число (Итоговое число):

```
typedef struct
{
   bool sign;
   size_t mantissa_size;
   int mantissa[MAX_MAN_NUM_LEN + 1];
   int order;
} real_t;
```

Действительное число представляет собой структуру на языке Си, состоящая из:

```
sign - Знак (true - отрицательное число, false - положительное число)
mantissa_size - Размер мантиссы числа
mantissa - Мантисса числа
order - Порядок числа
```

Целое число:

```
typedef struct
{
    bool sign;

    size_t num_size;
    int num[MAX_INT_NUM_LEN + 1];
} inum_t;
```

Целое число представляет собой структуру на языке Си, состоящая из:

```
sign - Знак (true - отрицательное число, false - положительное число) num_size - Размер числа num - само число
```

Регистр:

typedef int reg_t[REG_LEN];

Регистр (Где умножаются мантисса и число целого числа) представляет собой массив чисел. Размер регистра - сумма максимальных размеров мантиссы и максимального количества цифр целого числа.

Описание алгоритма

Для начала считываются данные по числам и заносятся в соответствующую структуру.

После занесения данных начинает работать алгоритм:

- Создается регистр, в котором каждый элемент равен нулю. Сначала при помощи операции "исключающее ИЛИ" определяется знак итогового числа (В программе представлено представление этой операции при помощи конъюнкций и дизъюнкции).
- При помощи циклов каждая цифра мантиссы действительного числа умножается на цифры целого числа, результат ПРИБАВЛЯЕТСЯ в соответствующую ячейку регистра. Далее задается размер регистра после умножения.
- Переносятся десятки числа в регистре (исправляется переполнение ячеек). Данная процедура выполняется до момента, пока в каждой ячейке не останется ЦИФРА. Параллельно с этим увеличивается и размер регистра.
- Удаляются незначащие нули в регистре (изменяется размер регистра и увеличивается порядок итогового числа).
- Регистр округляется до 30 значащих цифр в мантиссе. Данная процедура выполняется итерационно, так как при округлении регистр может стать больше на 1 разряд.
- Удаляются незначащие нули в регистре (изменяется размер регистра и увеличивается порядок итогового числа).
- Порядок итогового числа изменяется на разницу размеров регистра и изначальной мантиссы числа. Так же порядок увеличивается на кол-во 'опущенных' чисел в процессе округления.
- Параметры регистра переносятся в мантиссу итогового числа.

Набор тестов

```
## Позитивные тесты
- 01 - Обычный тест
- 02 - Число в экспоненциальной форме равно нулю
- 03 - Умножение на 1
- 04 - Умножение на 1 + округление до 30 чисел
- 05 - Отрицательное 1-е число
- 06 - Отрицательное 2-е число
- 07 - Отрицательны оба числа
- 08 - Целое число равно нулю
- 09 - Целое число в нулём среди цифр
- 10 - После умножения значимых цифр 31
- 11 - После умножения значимых цифр 31 + появляются незначащие нули
- 12 - Значимые числа без изменения порядка + нет переполнения
## Негативные тесты
- 01 - Длина строки больше 512 символов
- 02 - Пробелы в действительном числе
- 03 - Пробелы в целом числе
- 04 - Неправильная форма записи действительного числа
- 05 - Неправильная форма записи целого числа
- 06 - Размер мантиссы превышает 40
- 07 - Размер целого числа превышает 30
- 08 - Порядок действительного числа больше 5-и знаков
- 09 - Порядок итогового числа больше 5-и знаков
- 10 - Действительное число отсутствует
- 11 - Целое число отсутствует
```

В ходе выполнения лабораторной работы была написана тестовая система, при помощи которой проверялись данные ситуации

Позитивные тесты

Номер теста	Входные данные	Ожидаемые выходные данные
1	1.2	0.24e+1
2	0e60 600	0.0
3	1 3	0.3e+1

4	0.999999999999999999999999999999999999	0.999999999999999999999999999999999999
5	-123.123e60 600	-0.738738e+65
6	123.1e1 -372	-0.457932e+6
7	-1.01 -2	0.202e+1
8	124124124 0	0.0
9	1e50 1001	0.1001e+54
10	0.999999999999999999999999999999999999	0.1e+1
11	0.50000000000000000000 0000000001 2	0.1e+1
12	0.1e99999 9	0.9e+99999

Негативные тесты

Номер теста	Входные данные
1	00000000000000000000000000000000000000

2	1.1 2
3	1.1 2
4	1eE12 2
5	1.2 +-2
6	1.000000000000000000000000000000000000
7	1.2 100000000000000000000000000000000000
8	1e999999 1
9	2e99998 5
10	5
11	1

Выводы по проделанной работе

В ходе работы удалось реализовать при помощи различных типов данных число, выходящее за разрядную сетку компьютера, и арифметическую операцию умножения между числами. Проблем в ходе выполнения лабораторной работы не возникло.

Контрольные вопросы

1. Каков возможный диапазон чисел, представляемых в ПК?

Зависит от разрядности процессора. Максимально возможный диапазон чисел, представимый в ПК, вычисляется по формуле 2^N - 1, где N - разрядность процессора

2. Какова возможная точность представления чисел, чем она определяется? Точность представления числа зависит от типа представления числа

Вещественное число

В данном случае число может иметь точности single, double и long double (по IEEE 754). Примерная точность single - 6-8 знаков в мантиссе, примерная точность double - 12-15 знаков в мантиссе, примерная точность long double больше или равна точности double (В зависимости от реализации в ПК).

Целое числа

В данном случает число имеет 100%-ю точность

3. Какие стандартные операции возможны над числами?

Вещественное число

Над вещественными числами возможны все арифметические операции, но логические операции могут выдавать неточный результат из-за не 100%-й точности

Целое числа

Над целыми числами возможны все операции

4. Какой тип данных может выбрать программист, если обрабатываемые числа превышают возможный диапазон представления чисел в ПК?

Если числа выходят за возможный диапазон представления чисел в ПК, можно представлять их как вещественные. Если же числа выходят и за диапазон вещественных чисел необходимо написать собственную реализацию чисел (целых или вещественных в зависимости от целей).

5. Как можно осуществить операции над числами, выходящими за рамки машинного представления?

Можно создать отдельный массив и осуществлять нужные вычисления при помощи его ячеек (каждая ячейка - разряд числа)