NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

DOE/NASA/0031-80/6 NASA CR-159770 GEROETO105

COGENERATION TECHNOLOGY ALTERNATIVES STUDY (CTAS)

GENERAL ELECTRIC COMPANY FINAL REPORT

VOLUME VI - COMPUTER DATA

PART 1 — Coal-Fired Nocogeneration Process Boiler

W.F. Knightly

Section A

May, 1980

PREPARED FOR
National Aeronautics Space Administration
Lewis Research Center
Under Contract DEN3-31

FOR

U.S. Department of Energy
Office of Energy Technology
Division of Fossil Fuel Utilization

(NASA-CR-159770-Pt-1-A) COGENERATION TECHNOLOGY ALTERNATIVES STUDY (CTAS). VOLUME 6: COMPUTER DATA. PART 1: COAL-FIRED NOCOGENERATION PROCESS BOILER, SECTION A Final Report (General Electric N80-30888

Unclas G3/44 28460 DOE/NASA/0031-80/6 NASA CR-159770 GE80ET0105

COGENERATION TECHNOLOGY ALTERNATIVES STUDY (CTAS)

GENERAL ELECTRIC COMPANY FINAL REPORT

VOLUME VI - COMPUTER DATA

PART 1 — Coal-Fired Nocogeneration Process Boiler

W.F. Knightly

Section A

May, 1980

PREPARED FOR
National Aeronautics Space Administration
Lewis Research Center
Under Contract DEN3-31

FOR

U.S. Department of Energy
Office of Energy Technology
Division of Fossil Fuel Utilization

FOREWORD

The Cogeneration Technology Alternatives Study (CTAS) was performed by the National Aeronautics and Space Administration, Lewis Research Center, for the Department of Energy, Division of Fossil Fuel Utilization. CTAS was aimed at providing information which will assist the Department of Energy in establishing research and development funding priorities and emphasis in the area of advanced energy conversion system technology for advanced industrial cogeneration applications. CTAS included two Department of Energy-sponsored/NASA-contracted studies conducted in parallel by industrial teams along with analyses and evaluations by the National Aeronautics and Space Administration's Lewis Research Center.

This document describes the work conducted by the Energy Technology Operation of the General Electric Company under National Aeronautics and Space Administration contract DEN3-31.

The General Electric Company contractor report for the CTAS study is contained in six volumes:

Cogeneration Technology Alternatives Study (CTAS), General Electric Company Final Report

	<u>Tîtle</u>	DOE Number	NASA Contract Report No.
GE V	ol. 1 - Summary Report	DOE/NASA/0031-80/1	CR-159765
· Vo	ol. 2 - Analytic Approach	DOE/NASA/0031-80/2	CR-159766
. 70	ol. 3 - Industrial Process Characteristics	DOE/NASA-0031-80/3	CR-159767
Vo	ol. 4 - Energy Conversion System Characteristics	DOE/NASA-0031-80/4	CR-159768
Vo	ol. 5 - Cogeneration System Results	DOE/NASA-0031-80/5	CR-159769
Vo	ol. 6 - Computer Data	DOE/NASA-0031-80/6	CR-159770

1

Members of the technical staffs of the following organizations have developed and provided information for the General Electric Company Cogeneration Technology Alternatives Study. The contributions of these reople in time, effort, and knowledge are gratefully appreciated.

General Electric Company

Corporate Research and Development
Energy Systems Programs Department
Energy Technology Operation
Gas Turbine Division
Industrial and Marine Steam Turbine Division
Industrial Turbine Sales and Engineering Operation
Installation and Service Engineering Business Division
Space Division
TEMPO
Lamp Components Division

DeLavai

Dow Chemical

General Energy Associates

Institute of Gas Technology

J.E. Sirrine

Kaiser Engineers

N.A. Philips

This General Electric Company contractor report is one of a set of reports describing CTAS results. The other reports are the following:

Cogeneration Technology Alternatives Study (CTAS), Vol. I, Summary Report, NASA TM-81400.

Cogeneration Technology Alternatives Study (CTAS), Vol. II, Comparison and Evaluation of Results, NASA TM-81401

Cogeneration Technology Alternatives Study (CTAS) - United Technologies Corporation Final Report

DOE Number	NASA Contract Report No.
DOE/NASA/0030-80/1	CR-159759
DOE/NASA-0030-80/2	CR-159760
DOE/NASA-0030-80/3	CR-159761
DOE/NASA-00:0-80/4	CR-159762
DOE/NASA-0030-80/5	CR-159763
DOE/NASA-0030-80/6	CR-159764
	00E/NASA/030-80/1 00E/NASA-0030-80/2 00E/NASA-0030-80/3 00E/NASA-0030-80/4

TABLE OF CONTENTS Volume I - Summary Report

S	P	c	t	i	n	n
J	c	u	·		v	"

1 SUMMARY

Objectives

Scope

Results

·2 INTRODUCTION

Background

Objective, Overall Scope, and Methodology

3 STUDY GROUNDRULES AND ASSUMPTIONS

Industrial Process Characteristics

Definition of Energy Conversion Systems (ECS)

Matching of Energy Conversion Systems (ECS) to

Industrial Processes

Economic Evaluation of Energy Conversion System-Industrial Process Matches

National Savings Analysis

INDUSTRIAL PROCESSES

Industrial Data Subcontractors

Industrial Process Selection

Data Summary

ENERGY CONVERSION SYSTEMS 5

Introduction

Energy Conversion System Data Sources

Fuel Considerations

ECS Characterization

Steam Turbine ECS

Gas Turbine - Open-Cycle ECS

Diesel ECS

Combined Gas Turbine-Steam Turbine ECS

Closed-Cycle Gas Turbine ECS

Stirling Cycle ECS

Thermionic ECS

TABLE OF CONTENTS (Cont'd) Volume I - Summary Report (Cont'd)

<u>Section</u>	
5	ENERGY CONVERSION SYSTEMS (Cont'd)
	Phosphoric Acid Fuel Cell
	Molten Carbonate Fuel Cell
	Overview
	Reference
6	CAPITAL COSTS
	Capital Cost Methodology
	Data Sources
	Cost Comparisons
	References
7	SIGNIFICANT GENERIC DEVELOPMENTS
	High Temperature Air Preheaters
	DC to AC Energy Conversion
	Coal Gasification, Fuel Gas Cleanup
	NO _x From Coal-Derived Liquid Fuels
	Fludized Bed Combustion
8	ECS-INDUSTRIAL PROCESS MATCHING
	General General
	Nocogeneration Case
	Cogeneration Case
	ECS-Process Matching
	Fuel Energy Uses
9	COGENERATION SYSTEMS PERFORMANCE
	Fuel Energy Savings Potential of Selected Energy Conversion Systems
	Energy and Emissions Savings Results for Representative Matches of ECS's and Industrial Processes
10	ECONOMIC EVALUATION OF COGENERATION SYSTEMS
	Introduction
	Return on Investment (ROI) Analysis

Sensitivity of ROI to Changes in Costs

Selection of Cogeneration Systems Based on Economic Criteria

TABLE OF CONTENTS (Cont'd) Volume I - Summary Report (Cont'd)

Section

11 NATIONAL CONSIDERATIONS

Methodology

National Fuel Energy Saved

National Emissions Saved

Levelized Annual Energy Cost Savings

12 RESULTS AND OBSERVATIONS

Background

Results and Observations

Significant Development Requirements

TABLE OF CONTENTS Volume II - Analytical Approach

Section	•	Page
1	SUMMARY	
	Objectives	
	Scope	
	Results	
2	INTRODUCTION	
	Background	
	Objective, Overall Scope, and Methodology	
3	ASSUMPTIONS AND APPROACH	
	Groundrules & Assumptions	
	Approach Used & Factors Considered	
•	References	
4	COMPUTER SYSTEM ANALYSIS	
	Introduction	
	Process Data Base	
	Economics Data Base	
	Volume III - Industrial Process Characteristics	
1	SUMMARY	
	Objectives	
•	Scope	
	Results	
2	INTRODUCTION	
	Background	
	Objective, Overall Scope, and Methodology	
5	INDUSTRIAL PROCESSES	
	Selection Process	
	Data Summary	
	Process Definition and Data	
	Estimated National Projections	
	Appendix A	
	Appendix B	

TABLE OF CONTENTS

Volume IV - Energy Conversion System Characteristics

Section 1 SUMMARY Objectives Scope Results 2 INTRODUCTION Background

6 ENERGY CONVERSION SYSTEMS (ECS)

Introduction

Energy Conversion System Data Sources

Objective, Overall Scope, and Methodology

Fuel Considerations

ECS Parameters and Characterization

ECS Performance and Descriptions

Performance and Data Summary

Cogeneration Fuel Saved Windows

Environmental, Natural Resource, and Operational Factors

Significant Developments Requirements

References for Section 6

7 CAPITAL COSTS

Capital Cost Methodology

Data Sources

Capital Cost Summaries

Cost Corroboration

References

Volume V - Cogeneration System Results

"I SUMMARY

Objectives

Scope

Resutis

2 INTRODUCTION

Background

Objective, Overall Scope, and Methodology

TABLE OF CONTENTS

Volume V - Cogeneration System Results (Cont'd)

Section		Page
8	PERFORMANCE OF MATCHES	
	Methodology	
	Assumptions/Groundrules	
	Fuel Energy Savings Potential of Cogeneration	
	Fuel Energy Savings for Selected Energy Conversion Systems	
	By-Product or Waste Fuel	•
•	Matches of ECS's and Industrial Processes	
9	ECONOMIC EVALUATION	
	Introduction	
	Methodology and Groundrules	
	Return on Investment (ROI) Analysis	
	Levelized Annual Energy Cost (LAEC) Analysis	
10	NATIONAL CONSIDERATIONS	
	Methodology	
	Sample Calculation	
	National Fuel Energy Saved	
	Levelized Annual Energy Cost Savings	
	Appendix - Scaling Methodology	
11 .	RESULTS AND OBSERVATIONS	
•	Volume VI - Computer Data	
1	SUMMARY	
	Objectives	1-1
	Scope	1-2
	Results	1-4
2	INTRODUCTION	
	Background	2-1
	Objective, Overall Scope, and Methodology	2-3

TABLE OF CONTENTS

Volume VI - Computer Data (Cont'd)

<u>Section</u>		Page
12	COMPUTER SYSTEMS ANALYSIS & OUTPUT REPORT DESCRIPTIONS	
	Introduction	12-1
	Industrial Process Data Base	12-1
	Economics Data Base	12-9
	COMPUTER REPORTS - Part 1 - Coal-Fired Nocogeneration Process Boiler	
	5.1 - Fuel Energy Saved by Process & ECS	
	5.2 - Summary of Fuel Saved by Type & Economics	
	5.3 - Capital Costs by Island for Selected Process-ECS Matches	
	5.4 - Economic Sensitivity Report for Selected Process-ECS Matches	
	LAEC Sensitivity Curves	
	RCI Sensitivity Curves	
	6.1 - Fuel & Emissions Savings	
	A. By Process-ECS Match	
	B. Nationally	
	COMPUTER REPORTS - Part 2 - Residual-Fired Nocogeneration Process Boiler	
	5.2 - Summary of Fuel Saved by Type & Economics	
	5.4 - Economic Sensitivity Report for Selected Process-ECS Matches	
	6.1 - Fuel & Emissions Savings	
	A. By Process-ECS Match	
	B. Nationally	

LIST OF ILLUSTRATIONS

<u>Figur</u>		Page
2-1	GE-CTAS Project Organization	2-6
12-1	Industrial Process Data Handling - Data Base Creating, Updating and Reporting	12-3
12-2	Typical Data Base Report	12-6
12-3	Typical Summary Data by SIC Code	12-7
12-4	Fuel Saved and Capital Cost Data Handling - Process and Performance Matching and Capital Costing	12-8
12-5	Energy Conversion System Characteristics	12-14
12-6	CTAS Matching of Process Model to Energy Conversion Systems Performance Maps	12-16
12-7	Fuel Energy Saved Report	12-17
12-8	CTAS Capital Cost of ECS Components	12-19
12-9	Sample Capital Cost Report	12-24
12-10	Data Handling - Economics and Potential National Savings	12-26
12-11	CTAS Operating and Maintenance Factors Table for 10 ⁶ \$/Yr	12-29
12-12	Sample Economic Sensitivity Report	12-31
12-13	Sample Economic Sensitivity	12-32
12-14	Sample Fuel Saved by Type + Economics Report	12-33
12-15	Sample of National Fuel and Emissions Savings Report	12-35
12-16	Sample of ECS-Process Fuel & Emissions Report	12-36

LIST OF TABLES

Table		<u>Page</u>
2-1	GE-CTAS Advanced Technology Cogeneration Energy Conversion Systems Matched to Fuels	2-4
2-2	GE-CTAS State of Art Cogeneration Energy Conversion Matched to Fuels	2-4
12-1	Contents of CTAS Industrial Process Data Base	12-4
12-2	CTAS Process Data Input Form	12-5
12-3	Contents of Extract of Process Data Base for ECS Matching	12-9
12-4	Selected Industry Processes & Summary of Energy Requirements	12-10
12-5	Contents of ECS Characteristics Table	12-13
12-6	Glossary of Abbreviations	12-15
12-7	Contents of Component Cost Table	12-21
12-8	NASA Approved Selected Cases	12-25
12-9	Economic Analysis Groundrules	12-27
12-10	Contents of Operating and Maintenance Table	12-28
12-11	Contents of Emissions by ECS and Fuel	12-37
12-12	Contents of National Energy Use	12-37

Section 1

SUMMARY

Cogeneration systems in industry simultaneously generate electric power and thermal energy. Conventional nocogeneration installations use separate boilers or furnaces to produce the required thermal energy and purchase electric power from a utility which rejects heat to the outside environment. Cogeneration systems offer significant savings in fuel but their wide spread implementation by industry has been generally limited by economics and institutional and regulatory factors. Because of potential savings to the nation, the Department of Energy, Office of Energy Technology sponsored the Cogeneration Technology Alternatives Study (CTAS). The National Aeronautics & Space Administration, Lewis Research Center, conducted CTAS for the Department of Energy with the support of Jet Propulsion Laboratory and study contracts with the General Electric Company and the United Technologies Corporation.

OBJECTIVES

The objective of the CTAS is to determine if advanced technology cogeneration systems have significant payoff over current cogeneration systems which could result in more widespread implementation in industry and to determine which advanced cogeneration technologies warrant major research and development efforts.

Specifically, the objectives of CTAS are:

- 1. Identify and evaluate the most attractive advanced energy conversion systems for implementation in industrial cogeneration systems for the 1985-2000 time period which permit use of coal and coal-derived fuels.
- 2. Quantify and assess the advantages of using advanced technology systems in industrial cogeneration.

SCOPE

The following nine energy conversion system (ECS) types were evaluated in CTAS:

- 1. Steam turbine
- 2. Diesel engines
- 3. Open-cycle gas turbines
- 4. Combined gas turbine/steam turbine cycles
- 5. Stirling engines
- 6. Closed-cycle gas turbines
- 7. Phosphoric acid fuel cells
- 8. Molten carbonate fuel cells
- 9. Thermionics

In the advanced technology systems variations in temperature, pressure ratio, heat exchanger effectiveness and other changes to a basic cycle were made to determine desirable parameters for many of the advanced systems. Since coal and coal-derived fuels were emphasized, atmospheric and pressurized fluid bed and integrated gasifiers were evaluated.

For comparison, currently available non-condensing steam turbines with coal-fired boilers and flue gas desulfurization, gas turbines with heat recovery steam generators burning residual and distillate petroleum fuel and medium speed diesels burning petroleum distillate fuel were used as a basis of comparison with the advanced technologies.

In selecting the cogeneration energy conversion system configurations to be evaluated, primary emphasis was placed on system concepts fired by coal and coal-derived fuels. Economic evaluations were based on industrial ownership of the cogeneration system. Solutions to institutional and regulatory problems which impact the use of cogeneration were not addressed in this study.

Over fifty industrial processes and a similar number of state-ofthe-art and advanced technology cogeneration systems were matched by General Electric to evaluate their comparative performance. The industrial processes were selected as potentially suited to cogeneration primarily from the six largest energy consuming sectors in the nation. Advanced and current technology cogeneration energy conversion systems, which could be made commercially available in the 1985 to 2000 year time frame, were defined on a consistent basis. These processes and systems were matched to determine their effectiveness in reducing fuel requirements, saving petroleum, cutting the annual costs of supplying energy, reducing emissions, and improving the industry's return on investment.

Detailed data were gathered on 80 process plants with major emphasis on the following industry sectors:

- 1. SIC20 Food and Kindred Products
- 2. SIC26 Pulp and Paper Products
- 3. SIC28 Chemicals
- 4. SIC29 Petroleum Refineries
- 5. SIC32 Stone, Clay and Glass
- 6. SIC33 Primary Metals

In addition, four processes were selected from SIC22 - Textile Mill Products and SIC24 - Lumber and Wood Products. The industry data includes current fuel types, peak and average process temperature and heat requirements, plant operation in hours per year, waste fuel availability, electric power requirements, projected growth rates to the year 2000, and other factors needed in evaluating cogeneration systems. From this data approximately fifty plants were selected on the basis of: energy consumption, suitability for cogeneration, availability of data, diversity of types such as temperatures, load factors, etc., and range of ratio of process power over process heat requirements.

Based on the industrial process requirements and the ECS characteristics, the performance and capital cost of each cogeneration system and its annual cost, including fuel and operating costs, were compared with nocogeneration systems as currently used. The ECS was either sized to

match the process heat requirements (heat match) and electricity either bought or sold or sized to match the electric power (power match) in which case an auxiliary boiler is usually required to supply the remaining heat needs. Cases where there was excess heat when matching the power were excluded from the study. With the fuel variations studied there are 51 ECS/fuel combinations and over 50 processes to be potentially matched in both heat and power resulting in a total of approximately 5000 matches calculated. Some matches were excluded for various reasons; e.g., the ECS out of temperature range or excess heat produced, resulting in approximately 3100 matches carried through the economic evaluation. Results from these matches were extrapolated to the national level to provide additional perspective on the comparison of advanced systems.

RESULTS

A comparison of the results for these specific matches lead to the following observations on the various conversion technologies:

- 1. The atmospheric and pressurized fluidized bed steam turbine systems give payoff compared to conventional boiler with flue gas desulfurization-steam turbine systems which already appear attractive in low and medium power over heat ratio industrial processes.
- Open-cycle gas turbine and combined gas turbine/steam turbine systems are well suited to medium and high power over heat ratio industrial processes based on the fuel prices used in CTAS. Regenerative and steam injected gas turbines do not appear to have as much potential as the above systems, based on GE results. Solving low grade coal-derived fuel and NO_X emission problems should be emphasized. There is payoff in these advanced systems for increasing firing temperature.
- 3. The closed-cycle gas turbine systems studied by GE have higher capital cost and poorer performance than the more promising technologies.
- 4. Combined-cycle molten carbonate fuel cell and gas turbine/steam turbine cycles using integrated gasifier, and heat matched to medium and high power over heat ratio industrial processes and exporting surplus power to the utility give high fuel savings. Because of their high capital cost, these systems may be more suited to utility or joint utility-industry ownership.

- 5. Distillate-fired fuel cells did not appear attractive because of their poor economics due to the low effectiveness of the cycle configurations studied by GE and the higher price of distillate fuel.
- 6. The very high power over heat ratio and moderate fuel effectiveness characteristics of diesel engines limit their industrial cogeneration applications. Development of an open cycle heat pump to increase use of jacket water for additional process heat would increase their range of potential applications.

To determine the effect of the national fuel consumption and growth rates of the various industrial processes together with their distribution of power to heat ratios, process steam temperatures and load factors, each energy conversion system was assumed implemented without competition and its national fuel, emissions, and cost of energy estimated. In this calculation it was assumed that the total savings possible were due to implementing the cogeneration systems in new plants added because of needed growth in capacity or to replace old, unserviceable process boilers in the period from 1985 to 1990. Also, only those cogeneration systems giving an energy cost savings compared with nocogeneration were included in estimating the national savings. Observations on these results are:

- There are significant fuel, emissions, and energy cost savings realized by pursuing development of some of the advanced technologies.
- 2. The greatest payoff when both fuel energy savings and economics are considered lies in the steam turbine systems using atmospheric and pressurized fluidized beds. In a comparison of the national fuel and energy cost savings for heat matched cases, the atmospheric fluidized bed showed an 11% increase in fuel saved and 60% additional savings in levelized annual energy cost savings over steam turbine systems using conventional boilers with flue gas desulfurization whose fuel savings would be, if implemented. 0.84 quads/year and cost savings \$1.9 billion/year. The same comparison for the pressurized fluidized bed showed a 73% increase in fuel savings and a 29% increase in energy cost savings.
- 3. Open-cycle gas turbines and combined-cycles have less wide application but offer significant savings. The advanced residual-fired open-cycle gas turbine with heat recovery steam generator and firing temperature of 2200 F were estimated to have a potential national saving of 39% fuel and 27% energy cost compared to currently available residual-fired gas turbines whose fuel savings would be, if implemented, 0.18 quads/year and cost savings \$0.33 billions/year.

4. Fuel and energy cost savings are several times higher when the cogeneration systems are heat matched and surplus power exported to the utility than when the systems are power matched.

Other important observations made during the course of performing CTAS were:

- 1. Comparison of the cogeneration systems which are heat matched and usually exporting power to the utility with the power matched systems shows the systems exporting power have a much higher energy savings, often reaching two to five times the power match cases. In the past, with few exceptions, cogeneration systems have been matched to the industrial process so as not to export power because of numerous load management, reliability, regulatory, economic and institutional reasons. A concerted effort is now underway by a number of government agencies, industries, and utilities to overcome these impediments and it should be encouraged if the nation is to receive the full potential of industrial cogeneration.
- 2. The economics of industrially owned cogeneration plants are very sensitive to fuel and electric power costs or revenues. Increased price differentials between liquid fuels and coal would make integrated gasifier fuel cell or combined-cycle systems attractive for high power over heat industrial processes.
- 3. Almost 75% of the fuel consumed by industrial processes studied in CTAS, which are representative of the national industrial distribution, have power over heat ratios less than 0.25. As a result energy conversion systems, such as the steam turbine using the atmospheric or pressurized fluidized bed, which exhibit good performance and economics when heat matched in the low power over heat ratio range, give the largest national savings.

Section 2

INTRODUCTION

BACKGROUND

Cogeneration is broadly defined as the simultaneous production of electricity or shaft power and useful thermal energy. Industrial cogeneration in the context of this study refers specifically to the simultaneous production of electricity and process steam or hot water at an individual industrial plant site. A number of studies addressing various aspects of cogeneration as applied to industry have been made in the last few years. Most of these focused on the potential benefits of the cogeneration concept. CTAS, however, was concerned exclusively with providing technical, cost, and economic comparisons of advanced technology systems with each other and with currently available technologies as applied to industrial processes rather than the merits of the concept of cogeneration.

While recognizing that institutional and regulatory factors strongly impact the feasibility of widespread implementation of cogeneration, the CTAS did not attempt to investigate, provide solutions, or limit the technologies evaluated because of these factors. For example, cogeneration systems which were matched to provide the required industrial process heat and export excess power to the utilities were evaluated (although this has usually not been the practice in the past) as well as systems matched to provide only the amount of power required by the process. Also, no attempt was made to modify the industrial processes to make them more suitable for cogeneration. The processes were defined to be representative of practices to be employed in the 1985 to 2000 time frame.

The cogeneration concept has been applied in a limited fashion topower plants since the turn of the century. Their principal advantage is that they offer a significant saving in fuel over the conventional method of supplying the energy requirements of an industrial plant by purchasing power from the utility and obtaining steam from an on-site process boiler.

The saving in fuel by a cogeneration system can be seen by taking a simple example of an industrial process requiring 20 units of power and 100 units of process steam energy. A steam turbine cogeneration system (assuming it is perfectly matched, which is rarely the case) can provide these energy needs with fuel effectiveness or power plus heat over input fuel ratio of 0.85 resulting in a fuel input of 141 units. In the conventional nocogeneration system the utility with an efficiency of 33% requires 60 units of fuel to produce the 20 units of power and the process boiler with an efficiency of 85% requires 118 units of fuel to produce the required steam making a total fuel required of 178 units. Thus the cogeneration system has a fuel saved ratio of 37 over 178 or 21%.

In spite of this advantage of saving significant amounts of fuel, the percentage of industrial power generated by cogeneration, rather than being purchased from a utility, has steadily dropped until it is now less than 5% of the total industrial power consumed. Why has this happened? The answer is primarily one of economics. The utilities with their mix in ages and capital cost of plants, relative low cost of fuel, steadily improving efficiency and increasing size of power plants all made it possible to offer industrial power at rates more attractive than industry could produce it themselves in new cogeneration plants.

Now with long term prospects of fuel prices increasing more rapidly than capital costs, the increased use of waste fuels by industry and the need to conserve scarce fuels, the fuel savings advantage of cogenerating will lead to its wider implementation. The CTAS was sponsored by the US Department of Energy to obtain the input needed to establish R&D funding priorities for advanced energy conversion systems which could be used in industrial cogeneration applications. Many issues, technical, institutional

and regulatory, need to be addressed if industrial cogeneration is to realize its full potential benefits to the nation. However, the CTAS concentrated on one portion of these issues, namely, to determine from a technical and economic standpoint the payoff of advanced technologies compared to currently available equipments in increasing the implementation of cogeneration by industry.

OBJECTIVE, OVERALL SCOPE, AND METHODOLOGY

The objectives of the CTAS effort were to:

- 1. Identify and evaluate the most attractive advanced conversion systems for implementation in industrial cogeneration systems for the 1985-2000 time period which permit increased use of coal or coal-derived fuels.
- 2. Quantify and assess the advantages of using advanced technology systems in industrial cogeneration.

To select the most attractive advanced cogeneration energy conversion systems incorporating the nine technologies to be studied in the CTAS, a large number of configurations and cycle variations were identified and screened for detail study. The systems selected showed desirable cogeneration characteristics and the capability of being developed for commercialization in the 1985 to 2000 year time frame. The advanced energy conversion system-fuel combinations selected for study are shown in Table 2-1 and the currently available systems used as a basis of comparison are shown in Table 2-2. These energy conversion systems were then heat matched and power matched to over 50 specific industrial processes selected primarily from the six major energy consuming industrial sectors of food; paper and pulp; chemicals; petroleum refineries; stone, clay and glass; and primary metals. Several processes were also included from wood products and textiles.

On each of these matches analyses were performed to evaluate and compare the advanced technology systems on such factors as:

- Fuel Energy Saved
- Flexibility in Fuel Use

	<u>Coal</u>	Coal Deri	ved Liquids Distillate
Steam Turbine	AFB*	Yes	
Pressurized Fluid Bed	Yes		
Gas Turbine Open Cycle-HRSG Regenerative Steam Injected Combined Gas Turbine/Steam Turbine Cycle	•••	Yes Yes	Yes Yes
Liquid Fired		Yes	===
Integrated Gasifier Combined Cycle	Yes		**
Closed Cycle-Helium Gas Turbine	AFB	#=•	
Thermionic HRSG Steam Turbine Bottomed Stirling	FGD* FGD FGD	Yes Yes Yes	 Yes
Diesels Medium Speed Heat Pump	# - +	Yes Yes	Yes Yes
Phosphoric Acid Fuel Cell Reformer			Yes
Molten Carbonate Fuel Cell Reformer Integrated Gasifier HRSG	 Yes		Yes
Steam Turbine Bottoming	Yes		

^{*} AFB - Atmospheric Fluidized Bed FGD - Flue Gas Desulfurization

Table 2-2

GE-CTAS STATE OF ART COGENERATION ENERGY CONVERSION MATCHED TO FUELS

·		Petroleum Derived	
	Coa1	Residual	Distillate
Steam Turbine	FGD	Yes	
Gas Turbine		Yes	Yes
Diesel	en en en	Yes	Yes

- Capital Costs
- Return on Investment and Annual Energy Cost Saved
- Emissions
- Applicability to a Number of Industries.

These matches were evaluated, both on a specific process site basis, and on a national level where it was assumed that each ECS is applied without competition nationwide to all new applicable industrial plants.

Because of the many different types of conversion systems studied and myriad of possible combinations of conversion system and process options, key features of the study were:

- The use of consistent and simplified but realistic characterizations of cogeneration systems
- Use of the compater to match the systems and evaluate the characteristics of the matches.

A major effort was made to strive for consistency in the performance. capital cost, emissions, and installation requirements of the many advanced cogeneration energy conversion systems. This was accomplished first by NASA-LeRC establishing a uniform set of study groundrules for selection and characterization of the ECS's and industrial processes, calculation of fuel and emissions saved and analysis of economic parameters such as levelized annual energy cost and return on investment. These groundrules and assumptions are described in Section 3. Second, in organizing the study, as shown in Figure 2-1, GE made a small group called Cogeneration Systems Technology responsible for establishing the configuration of all the ECS's and obtaining consistent performance, cost and emission characteristics for the advanced components from the GE organizations or subcontractors developing these components. This team, using a standard set of models for the remaining subsystems or components, then prepared the performance, capital costs, and other characteristics of the overall ECS's. As a result, any component or subsystem, such as fuel storage and handling, heat recovery steam generator or steam turbine, appearing in

Figure 2-1. GE-CTAS Project Organization

more than one type ECS is based on the same model. This method reduces the area of possible inconsistency to the advanced component which, in many ECS's, is a small fraction of the total system. The characterization of the ECS's is described in Sections 5 and 6. The functions of obtaining consistent data on industrial processes from the industrial A&E subcontractors was the responsibility of the Industrial Applications Technology group and is described in Section 4. Matching of the ECS's and processes and making the overall performance and economic evaluations and comparisons was the responsibility of Cogeneration Systems Criteria and Evaluation. The methodology of matching the cogeneration systems is detailed in Section 8, the results of the performance analysis in Section 9, economic analysis in Section 10, the national savings in Section 11, and overall results and observations in Section 12.

Section 12

This volume contains a description of the computer system analysis and the final version of all the principal computer analysis reports prepared on the GE-CTAS. The computer system analysis section discusses how the computer system was used in this study and describes the industrial process, energy conversion system performance and capital cost and economic data bases. The computer program logic and system flow charts are described where necessary and the system output reports are discussed. Part I of the computer reports uses a coal-fired process boiler with flue gas desulfurization as the nocogeneration system base of comparison except for processes with small steam requirements and Part 2 uses a residual-fired process boiler as the nocogeneration base. These reports contain an immense amount of data on fuel consumption, fuel saved and economics of the ECS's matched to the various industrial process and serve as a consistent data base not only for the evaluations performed during CTAS but for future studies.

COMPUTER SYSTEMS ANALYSIS & OUTPUT REPORT DESCRIPTIONS

INTRODUCTION

The computer system designed for CTAS was used extensively for the analysis of all cogeneration options addressed in the study. The objective of this section is to describe how the computer system was used in this study. In the discussion that follows the process and economic data bases are described, the computer program logic and system flow charts are described where necessary, and typical reports are shown.

INDUSTRIAL PROCESS DATA BASE

An extremely large volume of data was gathered during the industrial process characterization. The computer system flow chart for handling

the process data is shown in Figure 12-1. Specific items (Table 12-1) needed for the systems analysis were extracted from this data and entered into the process data base using the form shown in Table 12-2.

Creating and Updating

The computer program NEWPROC creates the data base by using questions and answers at a timesharing terminal. Updates to the data base utilize the same input form (Table 12-2) and are processed through program CHGPROC. This results in specific changes to specific processes. The output of this program contains only those process descriptions updated so that the updated processes may be verified before merging with the entire data base. Program PROCMAS updates each process with a general change.

Reports From Process Data

Two reports are generated from the process data base. Program GEN2.1 generates a detailed report of all data stored for this process. Figure 12-2 shows a typical page from this report. This program (GEN2.1) operates on the entire data base or on a portion of the data base containing only those processes recently updated.

Program GEN2.2 generates a summary report of the process data to be used in matching the ECS performance curves. Figure 12-3 shows one page of this summary report. The contents of this report are described in Table 12-3. This program reads a file created by a program (BART) that reads the process data base, accesses the steam tables and generates the reduced process data file for ECS matching. The computer process data file used in preparing the computer reports in this volume is shown in Table 12-4.

Figure 12-1. Industrial Process Data Handling - Data Base Creating, Updating and Reporting

Table 12-1

CONTENTS OF CTAS INDUSTRIAL PROCESS DATA BASE

SIC Code.

Process Description.

Product.

Plant Size.

Steam Requirements (maximum of 3): flow, psig, % return, temperature of

return.

Other Heat to Process: Description, Btu/hr, temperature.

Operational Time: Hr/yr.

Large Horsepower Loads: Number, horsepower, type drive.

Waste Heat Streams (maximum of 3): Type, flow, temperature, service.

Fuel: Type and quantity (maximum of 2).

By-Product Fuel: Type and quantity.

Number of New Plants.

Process Status.

Anticipated Changes.

Plant Size in 1978 and 2000.

Economic Criteria for Investment and Hurdle Rate.

Industrial Investment Level in 1985 to 2000.

National Capacity in 1978 and 2000.

National Energy Consumed in 1978, 1985 and 2000.

Cost of Energy as Percent of Operating Cost.

Table 12-2
CTAS PROCESS DATA INPUT FORM
SIC Code
Process #
CHANGE CODE .
1 Description
2)Plant size
3 Plant UM
KWAVG, KWPEAK,
5 Steam Loads 1
Flow, PSIG, %, Temp. 2.
3
6 Other: Type, BTU, Temp,
7 Operating Hours/Yr
8 Large HP:#, Total, Type
9 Waste Heat: Type, Flow, T, Serv 1,
2
3
10 Fuels: Type, Qty 1,
2
3·
11 Number New Plants
12 Economic Criteria
13 Capital Invest:\$, %10**,
01d or New
15 National Capacity:78,2K,UM,
16 Process Changes
20) Growth (%)
17) National Energy: 78,85,2K (Btu/hr*10**12)
(18) Plant Size:78,2K,UM
(19) Cost of Electricity
① Ends this process & writes

E 11/10/76 TIME 17.00 E ADV DESIGN ENGR				
= 1111 11 11 11 11 11 11 11 11 11 11 11	TAR THOUSTREAL PROCESS DATA BANK	THE OWNER TO THE	PROCESS	
PROCESS DESCRIPTION HEAT-PACKING	PRODUCTS HEAT-LARD \$	IZE 100 TPD	•	
SYSTEM LOADS	FUEL8-PROCESS-PLA	ECONOMIC-NATIONAL FAC		
OVATTS AVO 1940 KILOWATTS PEAK 2330		name, magazini sagar sagar — en estruccionagenciones estrati		
TEAN REQUIREMENTS-PROCESS-HEATING-				
PLON PERCENT TEMP	FUEL TYPE	MILLIONS BTU/HR		
10**3 1. 24, 18. 26. 180.	PRIMARY G	AS 27.0	ECONOMIC CRITERIA	
2. 0. 0. 0. 0.	SECONDARY 0	THER 18.0	EXPECTED ROL	
3. 0. 6. 0. 9.	BY-PRODUCT 0	0.	INVESTMENT LEVEL 1985-2000- 6 BILLIONS-	
THER HEAT TO PROCESS DIRECT			NATIONAL CAPACITY	
MILLIONS OF STU/HR 2. TEMPERATURE 800.	MARBER OF NEW PLAN	75 30 ·	HILLIGHS OF TPY	
	PROCESS STATUS-	0.0	1878 18	
PERATIONAL HOURS PER YEAR 8100 Ange Horsepower Loads	ANTICIPATED PROCES	3 CHANGES	2000 23.	
NUMBER I				
TOTAL HP 320	PLANT BIZE TPD			
TYPE DRIVE HOTOR	1976 100			
ASTE HEAT STREAMS	2000 150			
PLOW TEMP BERVICE Type LB/HR 10==3			MATIONAL ENERGY CONST	
T.AIR 120. 400. BOILER-8			1678	
2.VAFOR 34. 200, COOK			1985 132.00	
8.AIR 28. 478. COOK-STA			2000 161.00	
			COST OF EMERGY AS S	

Figure 12-2. Typical Data Base Report

DATE HIZIBIZO TIME 0 1858-ADV. DESIGN ENGR. GENERAL ELECTRIC CO. PAGE 3 COGENERATION TECHNOLOGY ALTERNATIVES STUDY(CTAS) SUMMARY OF DATA USED FOR ENERGY CONVERSION SYSTEM MATCHING IN THE LUMBER AND WOOD PRODUCTS INDUSTRY POWER LOAD PRIMARY PROCESS SIC. PHOC. PHOCESS PINICESS. CODE NO. DESCRIPTION HEAT TEMP /HEAT FACTOR FUEL POMER MBTU MATU RATIO HRS/YR **/HR** /HR · **DEVK** AVG 5.123 353. 353. 0.17 4000 0 2421 SOFTWOOD-LUM 1.500 30. 75. 37. 3.000 406. 6000 24 16 SOFT-PLYWOOD 10.245 406. 0,14 NAT-GAS 5.000 17.075 406. 0,46 8000 2492 PARTICLE-UOA 406.

Figure 12-3. Typical Summary Data by SIC Code

Figure 12-4. Fuel Saved and Capital Cost Data Handling - Process and Performance Matching and Capital Costing

Table 12-3

CONTENTS OF EXTRACT OF PROCESS DATA BASE FOR ECS MATCHING

SIC Code
Process Number
Process Description
Process Power Requirements
Process Heat Requirements
Operational Hours Per Year
Primary Fuel
By-Product Fuel Type and Quantity*
Hot Water Requirements*

* Added directly to programs later as needed.

ECONOMICS DATA BASE

The Economics Data Base is developed in three steps:

- 1. Fuel savings evaluation
- · 2. Capital Cost estimating
 - 3. Return on Investment (ROI) and Levelized Annual Energy Costs (LAEC) analysis

The computer system flow chart for steps 1 and 2 is shown in Figure 12-4.

Fuel Savings Analysis

The first step in establishing the economics data base is matching each process against each potential ECS-fuel combination (computer program MAPANL). (Each match of a process and ECS-fuel combination is called a case.)

Table 12-4
SELECTED INDUSTRY PROCESSES & SUMMARY OF ENERGY REQUIREMENTS

			Process Electric Power		Process Steam	<u>Temperature</u>		Power	Load	Pr	By- roduct o Waste Fuel Avail	
Process SIC Code No. Description	MW MBtu/ MBtu/ 2	% Hot Water	^O F Peak	O _F	/Heat Ratio	Factor hrs/yr	Primary Fuel	MBtu/ <u>hr</u>				
are cone	NO.	Description				-				<u> </u>		
20 F00D /	AND KINDR	ED PRODUCTS									_	
2011	1	Meat-Packing	1.940	6.625	24	40	250	250	0.28	2100	Gas	
202 6	1	Fluid Milk	1.310	4.474	11	50	250	250	0.41	2100	Gas	
2046	1	Wet Corn Milling	28.500	97.327	659		250	250	0.15	6600	Gas	90
2063	1	Beet Sugar Refining	4.700	16.050	301		250	250	0.05	2800	Gas	76.47
2082	1 .	Malt Beverage	6.040	20.627	86	60	250	250	0.24	6600	Gas	
	LE MILL P											
2260	1	Textile Finishing	6.200	21.173	158		341	331	0.13	6240	Coal	
24 LUMBEI	R AND WOO	D PRODUCTS										
2421	1	Soft Wood-Lumber Sawmill	1.500	5.123	30		353	353	0.17	4000	Bark-Sawdus	
2436	1	Soft Wood-Plywood/Veneer	3.000	10.245	75		406	406	0.14	6000	Bark	100.0
2492	1	Particle Board	5.000	17.075	37		406	406	0.46	8000	Matural Gas	41.2
26 PAPER	& ALLIED	PRODUCTS										
2621	2	Bleached Kraft	50.000	170.750	780		366	340	0.22	8400	Coal	353
2621	4	Unbleached Kraft	29.000	99.035	610		366	328	0.16	8400	Coal	259
2621	6	Neutral Sulfide Semichemical	20.000	68.300	307		366	345	0.22	8400	Coal	
2621	7	Thermo-Mechanical Pulping	31.300	106.889	183		366	355	0.58	8400	Coal	
2621	8	Waste Paper	15.000	51.225	224		366	355	0.21	8400	Coal	
28 CHEMIO	CAL & ALL	IED PRODUCTS										
2800	1	Small Integrated Power Plant	32.500	110.923	1100			366	0.101	8760		
2800	2	Medium Integrated Power Plant	77.200	263.484	1054			366	0.25	8760		
2800	3	Large Integrated Power Plant	97.200	331.744	947			366	0.35	8760	_	
2812	1	Chlorine - Caustic Sods	120.000	409.800	265		338	311	1.55	8500	Any	
2813	ĺ	Cryogenic Oxygen	34.000	116.110	0		0	0	999.99	8400	Electric	
2819	1	Alumina	30.290	103.440	980		495	434	0.11	8136	Coal-Oil	
2821	2	Vinyl Chloride	4.000	13.660	207		422	373	•0.07	8300	Gas	
2821	3	Low Density Polyethylene Resin	55.000	187.825	16		448	448	11.74	7900	Any	

Table 12-4 (Cont'd)

			SELECTED INDUSTRY F	PROCESSI	ES & SU	MMARY	OF E	NERGY	REQUI	REMENT	rs	Pı	By- oduct or Waste
				Process Pow	Electric er	Process Steam		Temper		Power	Load		Fuel Avail
SIC	Code _	rocess No.	Description	MMe	MBtu/ hr		% Hot Water	[©] F <u>Peak</u>	^O F <u>Avg.</u>	/Heat Ratio	Factor hrs/yr	Primary Fuel	M8tu/ hr
28	CHEMIC	AL & ALL	IED PRODUCTS (Cont'd)										
	2822	1	Styrene-Butadiene Rubber	7.500	25.612	35		338	338	0.73	7900	Any	
	2824	i	Polyester Fibre	32.000	109.280	30		406	406	3.64	7900	Gas-011	
	2824	2	Nylon Fibre	11.000	37.565	23		274	274	1.63	8760	Any	
	2865	2	Cumene-Benzene	0.600	2.049	0		0	0	999.99	8400	Gas-011	
	2865	٠3	Phenol/Acetone	6.000	20.490	300		489	398	0.07	8200	Any	
	2865	4	Ethylbenzene	0.700	2.390	220		489	489	0.01	7900	011-Gas	
	2869]	Methanol Synthesis	1.500	5.123	133		574	538	0.04	7880	Feedstock	
	2869	4	Ethanol	3.300	11.270	400		460	460	0.03	7900	Gas-011	70.6
	2873	į	Ammonia Synthesis	3.500	11.952	640		598	598	0.02	8400	Gas-011	
	2874		Phosphoric Acid	4.000 4.000	13.660 13.660	92 20		353 298	292 298	0.15	7900 7900	Gas-011 011-Gas	
	2895	1	Carbon Black	4.000	13.000	20		298	298	0.68	7900	011-092	
29	PETROL	EUM REF	INING										
	2911	1	Small Refinery	14.000	47.810	375		470	389	0.13	8760	011-Der	
	2911	Ž.	Medium Refinery	52.000	177.580	1333		470	395	0.13	8760	011-Der	
	2911	3	Large Refinery	126.000	430.290	3042		470	385	0.14	8760	011	
32	STONE.	CLAY A	ID GLASS										
	3211	1	Flat-Glass	5.600	19.124	0		0	0	999.99	7500	Nat-Gas	
	3221	i	Glass Containers	5.100	17.416	Ō		Õ	Õ	999.99	7500	Nat-Gas	
	3229	ĺ	Press-Blown Glass	1.100	3.756	Ō		Ó	ŷ	999.99	7500	Nat-Gas	
	3241	1 *	Cement	20.316	69.379	0		0	0	999.99	7920	Coal	
33	DD TMAS	METALS											
33	3312	1	Specialty Steel	60.000	204.900	93		448	446	2.20	6700	Nat-Gas	
	3325	i	Integrated Steel	280.000	956.200	912		448	445	1.05	8400	Cok-Coal	529.4
	3325	4	Mini-Steel	40.000	136.600	91		448	446	1.50	6700	Nat-Gas	
	3331	i	Copper-Fire Smelted	24.800	84.692	Ö		Ö	0	999.99	8400	011	
	3331	4	CopperAnode Smelted	10.100	34.491	40		364	364	0.86	7620	011	
	3334	1	Aluminum	.756.000	2581.740	0		0	0	999.99	8760	011	
			· · · · · · · · · · · · · · · · · · ·										

ECS Characteristics Table

The data for each ECS is described in Table 12-5 and reported in Figure 12-5. A glossary of the ECS abbreviations used on this figure and the computer output reports is shown in Table 12-6. Process temperatures that exceeded the highest allowable temperature for the ECS were deleted from the economic data base during capital costing. All cases where the power generated on-site was lower than the minimum size for the ECS were flagged but not deleted.

Report 5.1 - Fuel Savings Evaluation Program MAPANL. For every process a nocogeneration base case consisting of an on-site process boiler supplying all process heat and a utility supplying all process power is established. For each cogeneration case the ECS is matched to the process in two ways: a power match and a heat match. In the power match case, the ECS is required to generate all process power, completely replacing the utility. The heat generated by this match is then used to satisfy process heat requirements. If insufficient heat is generated by the ECS an auxiliary boiler is added to make up the deficiency. If excess heat is generated the match is flagged and deleted during capital costing.

In the heat match case, the ECS is required to supply all process heat. Power generated in this match replaces utility power. If excess power is generated, it is exported to the grid. (In this case a new equivalent nocogeneration case requires that the utility be evaluated as if it were generating as much power as the ECS in this heat match case (all process power plus all power exported).) If insufficient power is generated, the shortfall is purchased from the utility. The methodology for this matching is shown in Figure 12-6.

Almost 7200 cases were evaluated and for each case detailed fuel usage reports, entitled Report 5.1: Fuel Energy Saved by Process and ECS, were generated. A sample page from this report is shown in Fig. 12-7. The complete Report 5.1 is included in Volume VI, Part 1, and the results, since they are in Btu/hr, apply to both the coal-fired nocogeneration process boiler case as shown in Part 1, and the oil-fired nocogeneration base case as shown in

CONTENTS OF ECS CHARACTERISTICS TABLE

ECS number

Short ECS Description

Long ECS Description

Minimum Size - MW (for information only)

Maximum Size - MW (for information only)

Expected Date of Commercialization (for information only)

Fuel Options

PTR = Petroleum based

Coal = Coal based

D = Distillate

R = Residual

F = Coal with flue gas desulfurization (FGD)

A = Coal with atmospheric fluidized bed (AFB)

P = Coal with pressurized fluidized bed (PFB)

X = Plain Coal

If a "Y" appears under these options it means that fuel can be used in that ECS. An "N" means it cannot be used.

<u>Heat Equation</u>

The factors A_1 , B_1 , and C_1 in the table are used in the following equation to determine the fraction of fuel that is converted to heat:

$$A_1 + B_1 * (Temperature) + C_1 * (Temperature)^2$$

Power Equation

The factors A_2 , B_2 , and C_2 are used in the following equation to determine the fraction of fuel that is converted to electric power:

$$A_2 + B_2 * (Temperature) + C_2 * (Temperature)^2$$

Maximum and Minimum Temperatures for Application of this ECS

Date Revised.

ECS	ECS	312	٠	DATE		•		**	****	Peter Pi		1444 4	**************************************	POWER***	C2	PINE I	×	DATE REVISE	
		_	HAX		7 Z	S CUA			E						9-11911			1	!
•		2	2	-	2 2		Z	< .		ŧ			-				1	1	,
411.0	01/577)=0dilt=n13	8	3.001		 ~	<u> </u>	Z	z	H.5159	ູ	9.92	96		6.538	A. 850	2	200	15	9.7
PERMIS 6	S1M-11IRR-845/82	2.0	56		Z	1.1.1	-	2	16	5	9	9 9	= = = = = = = = = = = = = = = = = = = =		•		904		2 6
	FFB-STMTB-14	•	ØĐ.	1930	z	z	z	z	. 47	9		•	7777		Ď 4	4 254		2	- A
	TI-STMTB-11		÷		z > z	z >	z	> -	•	3	- COM - C			2		P i	W-7		
Ξ	THERMION		8	1995		Z :	z	-2					7.7	-	-6.2350	164	200		78
<u></u>	STIFF ING-1	י מו	'n,	1990	- :	z	Z	- 2	2/14.0		•	. 6		}	9	~	499	4	-79
_	HEL IUM-CT-85-REG.	•	•	1776	- f Z :	2	2 7	2 2			Ī		2596		9	627	556	-10-16	-73
8 HECTER	HEL TUM-CT-60-REC			944	 	< 7 Z 7	Z 2 - >	Z 2	7777	7			1760	9	•	258	688	-19-18	-73
_	HEL TUN-CT-00-REG	•		2 2 2	 2 2 2 2	< 2 Z 2	- 2	E >	470.0	5	7	. 15	8		•	25B	658	•	-73
_	FUEL -CL-MOLICAKE	-:	4.000	1770				-	0-7877				4918	-0:3120		-250	556	-91-11	-73
11 FCSTCL	3;	20.00	9.00	1900	 	: 2 : 2 : -	2 2 2	- >	2162				4000		-6.036	0 250	540	34-22-	-73
15091	171-1212-171 171-1712-1713 1713-1713	200	40.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1070	: * : *	: Z : >	: 2 : 2	· 2	9.4941	9	9		.2980		•	250	ene.	11-16-	-78
CISUME	C1-11(3C-15/1/36)(2.0.01	20 40 1	100	Z		. Z	_	EBSh B	1.0	9		.2700			250	699	2	-73
	01-100-10-10-10-10-10-10-10-10-10-10-10-		•	1985	· >	. Z	Z	2	9.5161	-B.24	. •	•	.3050	.		256	4.6	-91-11	R/-
610016	- CT-105C-14/2299R		143.8	1996	- - Z	. Z > >	z	Z	0.5021	-0.2	•	•	.3230	•	•	258	600	-91-11	2
CTUCIA	CT-1185G-14/2446HT	20.0	200.0	9661	1 A . N	N L	NN	7	1666:0	9.0	9		3120				919	01-11	2 5
7671JJ	CTCT-14/2444/144	20.0	197.0	1998		2	z	z	0.2260	. 0.23	•	•	4616	6.235		Ν,			2 7
CC1177	CTCT-16/2007/865	26.0	165.0	1998	_ _ _	Z >	Z	Z	8.2584	9.2	•	•	4619	-0.2476			0.00		7 5
100	CTCT-12/22/146	14.0	143.0	1995	Z	N.A.A	ZZ	12.	B.2499	0.2		545 ·	i	9.259		7	2		97
((000)	CTST-08/2288/146	14.0	136.0	1985	- - z	Z >-	Z	z	6.2953	6.308	B. 82	88	4613	-6.3692	878.4	י מי	0.0		2 5
511615	STIG-15-16/2200F	22.0	220.0	1938	- - z	Z >-	z	Z	6.0139	•	•		3816		, ,	200	200	-07-11	9 9
STICIE	STIG-18-16/2248F	25	_	1990	1.1.2	A A	2,2,2	Z	1325				.3591		•				0 0
211615	STIG-15-16/2280F	19.0	-	1990	- - 2	ح > >	z	z	0.2100	•	•	•	3322			200		9 7	200
DEADV3	DIESEL-ADVANCED-		-	1998		ح > 7	z	z	J. 3598	-6.4239		Sa. 1	.			900			000
JENIU 2	DIESEL-ADVANCED-	i	15.6	1998		- I	Z	2	0.2540		3 (•	36	•	•	1.00	200	2 =	22
INEADVI	DIESEL-ADVANCED-	~	15.0	1996	- : - :	-	z: z:	z	93918	9.5		•	7	-A 6107	-0.533	G		2	-73
DENTER	AND TO THE SEL - HEAT-	~	15.0	9661	-	-	Z	_	74.0C* H	000 T . D			3614		- C			11-16-	-73
DESCO	DESEL-SOA-3	.	9.5	B/41	- > - >	- i	2 2 2 2	Z 3	10000000	275.0	9 4		3619			155		-91-11	-78
DESCA2	FIESEL-SON-Z	5 4	9.0	1976	- >	. Z - >	: Z	2		. 42			38	2	•	PE	-	-91-11	-70
CTCOAP	CT LIDOCT LA / PRIMARIT	•	72.0	.8261.	N	Z	2	Z	8.5333	Ī		87 6	~			122	•	-91-11	-78
CTRAGG	このことのできません。 ひょうかい アンドラ アンドラ アンドラ アンドラ アンドラ アンドラ アンドラ アンドラ	9	99.00	1985	. Z	. Z	Z	z	0.4030	•	7	3	n	.	B	100	•	-91-11	~ !
CIKA12	GT-85RE-12/2200D	=		1985	z	Z	z	z	B. 48-73	•	7	9	m (9	400	_	-91-11	2 6
CTEALS	. CT-85RE-16/2288D	-	138.0	8661	Z	Z :	Z	2	0.4251	9	-B.3823	23	3476		2		VAN V	2 2	2.0
C1R203	CT-68RE-#3/22AAD	Ξ:	36.6	1985	2 2 > 2	Z	z 2 z 2	z 2	77/6-0		. 1		3346			258	_	11-16-	-78
CTR212	CF-68RE-12/2288U	= :	•	1767	2 2 - >	2 2 2 2 > >	2	2 2	SYTTE.				3376		5	258	69	11-16-	-73.
6111216	61-66KE-16/22MBD		- 0		2 2 - >	. 4 : 2	: 2	: 2	2307	3	1	7	3510		•	255	400	-91-11	-73
CHEMBS	CT-85/(E-#8/25##D	- 0		100	: Z	. z	: Z : Z	: z	3336	7	7	98	364	•	Z	259	688	-91-11	-73
CTDILL	CT-950E-14/2/4AD	;		1934	2	2	Z	2	9.3593	9:		82 8	. 3228		•	5	648		
	CT-AGE-40/2644		13	1930		2 2	z	z	443	-6.354	-24	24	.3100	÷	š	を (1) (2)	~		-73
6000110 24 6160110 67	C1-68/K5-12/2640	0		1936	Z	Z	Z	z	R		•	33	.3429	ż	÷	255		2	87-
44 616316	GT-64RE-1	19.6		19:90	Z	Z	z	Z	38	-0.148	· •	78	33	:			_	9;	62-
FCFAR	FUEL -CL-PHUSACI		•	1985	z	- z -	z z	z =	B. 1783		9	• '	2000 ·		3 .	•	i i		
LCHC	FUEL-CL-MOLICAR	4.4	25.0	Ō	z	Z	zzz	z	7	• •	•	•	_	•			10 20	.01-11	2

Figure 12-5. Energy Conversion System Characteristics

GLOSSARY OF ABBREVIATIONS

ENERGY CONVERSION SYSTEMS (ECS) AND FUELS

		ENERGY CONVERSION SYSTEMS (ECS) AND FU	ELS		
				ECS	STATUS (State of
ECS - Fuel				Performance Characteristics	Art or
Abbreviation	ECS TYPE	& DESCRIPTION	FUEL & UTILIZATION SYSTEM	Number	Advanced)
STM141-Coal F	Steam Turbine	Throttle P=1465 psia; T=1000°F	Coal-Flue Gas Desulfurization	1	SOA
STHI41-Coal A	10 10	d d d d	Coal-Atmospheric Fluidized Bed	i	ADV
STM141-Residual	# #		Residual-Petroleum or Coal Derived	i	SOA
STHU88-Coal F	и и	" P=865 psia; T=825°F	Coal-Flue Gas Desulfurization	ż	SOA
STM088-Coal A	#	н н н	Coal-Atmospheric Fluidized Bed	ž	ADV
STM088-Residuel	# H		Residual-Petroleum or Coal Derived	ž	SOA
PFBSTM	PFB Steam Turbine	Gas Turbine T=1600 ⁰ F Steam Turbine P=1465 psia, T=1000 ⁰ F	Coal-Pressurized Fluidized Bed	3	ADV
TISTMI-Coal F	Thermionic-Steam Turbine	4 4 8 8 8	Coal-Flue Gas Desulfurization	A	ADV
TISTMT-Residual	# # #		Residual-Petroleum or Coal Derived	7	ADV
TITIRSG-Coal F	Thermionic and HRSG(1)		Coal-Flue Gas Desulfurization		ADV
TIURSG-Residual	и и и		Residual-Petroleum or Coal Derived	į	ADY
STIRL-Coal	Stirling Engine	Helium @ T-1472 ⁰ F	Coal-Flue Gas Desulfurization	š	ADV
STIRL-Residual	# #	6 #	Residual-Petroleum or Coal Darived	į	ADV
STIRL-Distillate	-H #	w w	Distillate- " "	ž	ADV
HEGT85-Coal A	Closed Cycle Gas Turbine	Helium @ T=1500 ⁰ F; Regen. Eff.+85%	Coal-Atmospheric Fluidized Bed	j	ADV
HEGT60-Coal A	0 N N	* *60%	* * *	Ä	ADV
HEGTO-Coal A		" " " " OX		Ğ	ADV
FCMCCL-Coal	Fuel Cell, Molten Carbonate		Coal-Integrated Gasifier	10	ADV
FCSTCL-Coal	H 41 M M	, Steam Turbine P=1465 psia; T-1000°F	n	iĭ	ADV
FCMCDS-Distillate	3 H K W		Distillate-Petroleum & Coal Derived	46	ADV
FCPADS-Distillate	" " , Phosphoric Acid		pittiture-teriorem a cost periose	45	ADV
GTSOAR-Residual	Gas Turbine AC(2) with		Residual - " "	13	SOA
GTSOAD-Distillate	# H N D		Distillate- " " "	32	SOA
GTACOB-Residual(4)	H 16 W W	- · · · · · · · · · · · · · · · · · · ·	Residual - " "	14	ADV
GTAC12-Residual	# H H H	P/P=12, T=2200°F	a a a	iš	ADV
GTAC16-Residual		" , P/P=16, T=2200°F		16	ADV
GTWC16-Residual	» ⊭ <u>ყ</u> Ը(3)	* T×2600°F		i7	ADV
CC1622-Residual		5, T=2200; STM TURB P=865, T=825 ⁰ F		19	ADV
CC1222-Residual	" P/P=12			20	ADV
CC0822-Residual	" " P/P=8.			21	ADV
CC1626-Residual	" , MC, P/P=16			18	ADV
IG GT ST-Coal	" AC, P/P=12		Coal, Integrated Gasifier	iž	ADV
STIG15-Residual			Residual-Petroleum or Coal Derived	22	ADV
STIGIO-Residual	a seem tulcesco del talbine	", No. 11134, FFF-10, 1-2200, 132 Super. Steam	verianti-Lertaienm ni robi beliasa	23	ADV
STIGIS-Residual		" " 10% Sat.	и и и	24	ADV
GTRAO8-Distiliate	Gas Turbine, at willess of		Distillate. "	33	ADV
GIRATZ-Distillate	a a contract we making a to	" " , P/P=12, "	DISCIPLACE,	35 34	ADV
GIRA16-Distillate		" " P/P=16, "		35	ADV
arraus-Distillate		" =60%, P/P=8, "		36	ADV
GTR212-Distillate		" " P/P=12 "		37	
GTR216-Distillate	н н и и	" " P/P=16, "		37 38	VCA Vda
GTRWOB-Distillate	WC	" =85%, P/P-8 ,T=2600°F		39	ADV
GTRW12-Distillate	, mu _b	" " , P/P=12, "		39 40	VÜA
GTRW16-Distillate		" ", P/P=16, "		4)	ADV
GTR308-Distillate		" =60%, P/P=8 . "		42	ADV
GIR312-3-Distillate		* P/P=12. *		43	ADV
GTR316-3-Distillate		" " P/P=16, "	a u #	36	ADV
OFSOAl-3-Distillate		175°F Jacket Water		29-31	SOA
DESOA 3-3-Residual	M M M M		Residual. " "	29-31	SOA
DESAD#1-3-Residual		250 ⁰ F	RESIDUELS	25-27	AUA
DENTEM-Residual		- · ·		28	ADV
PEN 11 11- NG3 1468 1		" w/Vapor Compression Heat Pump		60	WAA

⁽¹⁾ HRSG - Heat Recovery Steam Generator (2) AC - Air Cooled

⁽³⁾ NO - Water Cooled
(4) Detailed analysis of the effect of cycle variations on simple, steam injected and regenerative gas turbines and combined cycles are shown in Volume VI - Computer Data.

• ECS-ENERGY CONVERSION SYSTEM

CTAS Matching of Process Model to Energy Conversion Systems Performance Maps Figure 12-6.

DATE 04/22/79			GENERAL ELECTRIC CONTANY	PENERAL	ELECIB	100 31	ANY					PAGE	77 38		
I SE PEG ADV DESION ENGR			BOENERA **FUEL	ENERGY	REPORT 9.	Y ALTERNAT 5.1 Y PROCESS	INATIVES	5100Y							
INDISTRY 20481 HW 28.80	PROC	ESS HILLIONS BTU/HR	HIS BTU/	1	O PROC	659.0 PROCESS TEMP(F)		250. PR	PRODUCT WET-CORN-MIL HOURS PER YEAR	-CORN-H	II. HOURS	PER YE	NR 6600	9	
UTILITY FUEL COAL				POWER	2	T RATIO	EAT RATIO 0.148 WASIE FUEL EQV DIU:10:16:	10016	0.0	199	BOT MATER BTU:10::0	10 = 0 =	ð		
	WASTE FUEL USED 1016 BTU/HR	FUEL SAVED. HG-NET 10::0	COGEN FUEL USED 10:0	PROCES HEAT 10**6	PROCES POWER 10**6	COGEN MV ELECT	PROCES BOILE 10**6 BTU/HR	UTILIT FUEL USED 101-8 BTU/HR	FUEL FU FUEL FU SITE VS 10:00	SITE FUEL USED	TOTAL:	LAIL	FESR	POWER HEAT	HEAT
0 010CON N G C G G O N I SINIA SINIA SINIA 1 S	000	189. 386.	1006.	323. 669.	199.	200.	278. 385.	304.	775. COAL - FOD 890. RESIDUAL 1008. RESIDUAL	DUAL DUAL	1079.	000	0.20	0.20	0.65
1 STM141 STM-TURB-1 POVR	66	386.	100	123	198.	68	395.	.316	880. CGAL -F00 1008. CGAL -F00	99	683.	00	0.20	0.20	0.65
1 STH141 STN-TURB-1 POUR 1 STH141 STN-TURB-1 HEAT	0.0	189.	496. 1008.	323. 659.	183	8.8	396.	.31 5 .	890.CGAL-AFB 1008.CGAL-AFB	L-AFB	9.00	00	0.10	0.11	0.74
STN-TURB-8 STN-TURB-8		168.	60 00 00 00 00 00 00 00 00 00 00 00 00 0	410.	97. 166.	24	293.	- 5	959, RESIDUAL 959, RESIDUAL	IDUAL	774.	00	0.30	0.0	0.74
2 STRIOUB STH-TURB-8 POWR 2 STRIORD STRI-TURB-8 HEAT	00	189.	596.	410.	186.	28.	293.	-1.00	890, COAL - FOD 858, COAL - FOD	L-F00	88 0. 774.	00	0.74	0.1	0.74
2 STHOBE STH-TURB-E POWR 2 STHOBE STH-TURB-E HEAT	00	189.	696. 958.	410.	156.	29.	293.	9	890. COAL - AFB	L-AFB	774.	00	0.24	00.0	0.59
3 PEDSTH PFB-STHTB- POWR 3 PERSTH PFB-STHTB- HEAT		166. 655.	378. 1118.	223. 659.	287.	8.	613.	0. 4.	891.COAL-PFB	1-75	924.	00	0.17	0.20	0.74
4 TISTHI TI-STHTB-1 POUR 4 TISTHI TI-STHTB-1 HEAT	90	710.	321. 1220.	173.	97 .	20.	871. 0.	• • • • • • • • • • • • • • • • • • •	092. RESIDUAL 1220. RESIDUAL	I DUAL	982. 369.	00	0.17	0.30	0.74
4 115111 71-51118-1 POUR	00	710.	321.	173.	97. 370.	106.	.071	-852.	1220.COAL	يا	388.	00	0.17	0.30	0.34
5 THRSG THERMIONIC POUR	00	231.	691.	488.	137.	40.	224. 0.	-123	916. RESIDUAL 971. RESIDUAL	POCAL	919	00	9. 10	- 1	0.72
5 THIRSO THERMIONIC POWR	0.0	164.	691. 971.	469. 659.	137.	88 50.	224. 0.	-123.	915.COAL 971.COAL	او پ	916.	00	0.0	2.0	0.72
6 STIRL STIRLING-1 POWR		139.	332.	159.	403.	2 =			940.DISTILLA 1467.DISTILLA	HILLA	940, 602.	00	0.13	0.10	0.70
6 STIRE STIRLING-1 POUR	A T O.	139.	362.	159.	403.	1.28	588.	-956.	940. RESIDUAL 1457. RESIDUAL	TOUAL	502.	00	0.20	0.20	0.70 0.43
6 SIRE STIREING-1 POWE	900	138.	352.	159.	403.	138.	688.	- 659	1457. COAL	باي	602.	00	0.13	0.10	0.70

Figure 12-7. Fuel Energy Saved Report

Part 2. This report is organized by industrial process; e.g., industry 20461, a wet corn milling process, and then data for each ECS-fuel combination and both power and heat matches. The first line listed in each process is for the nocogeneration matched to the process.

The Report 5.1 heading on each page gives data on the industrial process being matched including waste fuel which is available to the ECS from the process. The column headed "Waste Fuel Used" shows the actual amount of fuel used in the ECS. "AUX PROCESS BOILER" is the process or auxiliary boiler fuel. All of the fuel columns except "Waste Fuel Use" give the combined total of fossil and waste fuel. The fuel energy saved ratio, "FESR", which is equal to total nocogeneration fuel minus cogeneration fuel all divided by the total cogeneration fuel shown in the "NET = TOTAL + UTILITY" column. In a heat match case where excess power is exported to the utility (indicated by a negative value for "UTILITY FUEL USED") the absolute value of this displaced utility fuel must be added to both nocogeneration and cogeneration "NET = TOTAL + UTILITY" fuel values in calculating the FESR. The values given in the columns labelled "POWER FACTOR" and "HEAT FACTOR" did not prove useful in the study. A 1 in the fail column indicates that the ECS cannot supply heat at the required temperature and a 10 indicates that the ECS is outside the size range for which the cost data is considered accurate.

Report 5.3 - Capital Cost Estimating

The second step in establishing the economic data base is capital cost estimating for each case that was not previously flagged for having exceeded the temperature limits of the ECS or for having excess heat generated.

Component Cost Table. The Component Cost Table, Figure 12-8, contains all major components used in each ECS. A component may be part of many different ECS's, but it occurs only once on this table. This provides a consistent estimate for that component independent of ECS application. The component cost table is described in Table 12-7. A list of the components making up each on-site nocogeneration or cogeneration system

ction Nor Max.		విడ్డించిని చిడ్డి చిడి చి	60.31 60.23
Fraction Labor Min. Max.	AUSÉ Ature	0 \$ 0 ₹ 5 £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	6. 6. 6. 6. 5. 6. 5. 6.
on la l Max.	 DATA OMITTED BECAUSE OF PROPRIETARY NATURE		ම කුළ දේශ ම ග ඇ
Fraction Material Min. Ma	ATA OMIT F PROPRI	### ### ##############################	# # # # # # # # # # # # # # # # # # #
ent Hax.	ā o	2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	6 36.78 5 35.68
Component 103\$ Min. Max.		2.34.00 2.4.00 2.4.00 2.4.00 2.4.00 2.4.00 2.4.00 2.4.00 2.4.00 2.4.00 2.4.00 2.4.00 2.4.00 2.4.00 2.4.00 2.4.00 2.6.000 2.6.0000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.0000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.0000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.0000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.0000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.0000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.0000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.0000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.0000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.0000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.0000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.0000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.0000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.0000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.000 2.6.0	12.5 6 9.56 9.25
Мах.	373.00 1100.00 1100.00 300.00 450.00 602.90 800.00 800.00	3066.00 3066.00 3066.00 3066.00 1226.00 196.00	386.888 388.888 388.888 388.888
Sizolin.	→ • • • •		
Units of Meas.		105 07 07 07 07 07 07 07 07 07 07 07 07 07	1.000 1.000 2.000 2.000 2.000
9	11ER-FE 11ER-FE 01LER-F 11LR-PK 11LR-PK 01LER-F 01LER-F	C. CASIFIE -CASIFIE -CASIFIE -CASIFIE -CASIFIE -CASIFIE -SMALL	DENSERS NSERS ERS GT85 GT85 GT86
nent Name	158P51-01L-801LF 895P51-01L-601LF 1525P51-01L-601LF 1525P51-01L-801LF 1525P51-01L-801LF 1525P51-00L-801LF 895P51-00AL-801 1525P516-00AL-801LF	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ACE-CONDE DR-CONDE ING-TOM TURB-HE TURB-HE
Component	158P51-01 895P51-01 152P51-01 158P51-01 1525P51-01 1525P51-00 158P51-00 895P51-00 1525P516-	CUAL-HAD AFB-HEGT AFB-HEGT AFB-HEGT AFB-HEGT AFB-HEGT AFB-HEGT AFB-HEGT AFB-HEGT AFB-HEGT AFB-HEGT AFB-HEGT AFB-HEGT AFB-LAR	SURFA VAPOR COOLI GAS-T GAS-T GAS-T
Сотр		がしこう 日 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	53 53 54 62 62 62
Major Comp.		the state of the s	33332
Island	ORIGINAT, p	—— имирия имериист — — матататататата на в	מממתותות מ

Figure 12-8. CTAS Capital Cost of ECS Components

ORIGINAL PAGE IS OF POOR QUALITY

Fraction Labor Min. Max.	0.10 0.86	.13	æ e	i	n eg n in	.11	L	'n	-	. 67	ان ا	42		100	95.	.13	.12	cs. c	71.	02.	13.	.12	.16 8	<u>ان ا</u>		0.00	69.	. છેલ્લ	9.63 H.65.	53	S. 0	200	6.43 B.AA	.63	<u>.</u>	. GA 69.	. M.S.	M. 69	Œ,	98.193 19.195 19.195 19.195		6.71 H.74	
ton rtal Max.	60.00	6.13	න ය දෙන්	. II	9	9.i2		AKT NAIUKE	•	6.76		٠	•			•	•	•	•				•	•	•	•		•	-	٠,	7,	7.	9	1 mm	6.19	∹	*	_		Ξ.	- 0	6.74	
Fraction Material Min. Ma	9.0	6.13	21.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9	~	1777	PRUPRICIARI	3		~; ¹	ž a	i a	9 65	: =;		~;	٠,٠		ب	: -	7	L,	٠.	6.18	-	6.14					e 4 	9							9.7	***	1.71 19.94	
nent Max.		3.00	5,06	27.61	6.94	06.90	Ę	5	3.42	18.99	1.50	s c	S (4	25	. 62	æ	æ		20	0.00 10.00	រហ	1.12	114.30	4.63	~ ~	· -	15,10	FC	~	•	- 1	. AC. 020		-	250	10.	111	æ.	-	ಲೀ	S 1	59.38	,
Component 103s Min. Max	4.46	9.11	76.97	016	60.00	9.91	בייועיבים מב	IEU BECAL	54.	33.42	æ	9 6		. 6	6.36		6.83	6.61		2000	100	9.56	17.38	6.37	6.16	7.50	2.25	2.45	2.78	3.58	Υ		0 C	יייי י	-	-51	2.98	3.18	м (4)	900	0 to 10	39.38	:
Max.	94.59	o ⊶	n c	300	999	. m	7110	UAIA UMIII	228.80	2456.00	500.00	368.68 Fast 68	100.00 00.00	380.00	366.66	24,63	49.36	24.68	44.45	20.00	24.63	44.36	1000.00	25.00	20.00	99.99	130.00	136.68	136.00	T. r	C. 17	137 99	155.68	174.00	10	124.00	131.60	131.66	158.88	zi a	2 · 0 · 0		
S Size	1 (1		1,00		20 4 20 42 20 42	0.61	Č	2	00:00	1228.88 2	99	200	90		99	6.17	69	6.17		24.63	6.17	63	0.00	*	8	2 6	60	69	69	N (36	13.00	10	4	n,	₹.	-	ú	ωį	- 6	7.71	20 2	ı
Units of Meas.	2.66	2.00	200	99.7	• •	Ö			1.80	1.08	2.66	2.98	9.00	000	2.68	1.60	1.69	1.90	100	90.	98	1.69	2.80	2.00	66.	. 88. 6	2.68	2.69	2.00	2.00			• •		•	•	•	•	•	•	•	1.00	,
Component Name	GAS-TURB-CC-OXT	CHOLIUNBICCIONAL	DIESEL-ADV-SMALL	DIESEL-ADV-LARGE	- HX-STEAM-WATER	HEATPUMP-ADV-DIESEL	AFB-1465-1000F	AFB-865-825F		THERMIONIC-COAL-LRG			CAPITAL DUCTING HISTO	. SIRUCIURES-MISC	Choi ATOURRALHEI JIM-A	STIRLING-SMALL-RESID	STIRLING-LARGE-RESID	STIRLING-SMALL-DIST:	STIRLING-LARGE-DIST	STIRLING-COAL-SMALL	CHINE TWO CONTINUES.	STIRLING-CEN-LARGE	HOLTEN-CARRON-TCC	MOLTEN-CARBON-FCMCDS	PHOSPH-ACID-FC	CTSOAR	FISURE CTATAR	CIPCIZ	•	GTUC16	CTRABS	GTRA12	CTRUES	CTRAILS	GTRW16	G1R2#8	GTR212	GTR216	GTR3Ø3	GTR312		THERMIONIC-DIL-SMALL THERMIONIC-BIL-LARGE	3
Comp.	99	. 79	63	7.0	7.																					101	201	104	1.05	166	. 181	89	183	110	117		9	115	116	117	8	113	171
Major Comp.																					-		N C	-	36									-									55
Island	m	m e	ניט ח	က) (N	7	2		00	80	ထ	o (TO L	n 6	16	1 74	2	7	7	76	1 ~) (T	'n	က	ന	, w	יי) ניי	m	ņ	m ·	m c	, C	יי מי	'n	, m	m	က	n	က	m	ņ

Figure 12-8 (Cont'd). CTAS Capital Cost of ECS Components

CONTENTS OF COMPONENT COST TABLE

Island Number: Groups components into specific costing areas.

Component Number: Unique number assigned to this component.

Component Name: For information only.

Unit of Measure: Determines basis for cost function.

1 = millions Btu/hr

2 = Megawatts. (This code is an indicator and for

special components may be over-

ridden in COSTANL.)

Minimum & Maximum Size: In the same units as the unit of measure.

When the maximum size is exceeded, multiple units are used. When unit is below minimum,

no special actions are taken.

Component Cost: Cost of major component (a function of size).

Material Cost: Cost of installation material as a fraction of com-

ponent cost (a function of size).

Labor Cost: Cost of installed labor as a fraction of component

cost (a function of size).

ECS-fuel type is contained in Component Logic Table included in the computer program. When a component is to be costed and its size has been determined in terms of Units of Measure, its cost as an exponential function of size is calculated from the data in Figure 12-8 Component Cost Table. For example, if the component list called for a "COMP" 101, a residual-fired state-of-the-art gas turbine, "GTSOAR" and the matching routine called for a size of 50 MW, the component equipment cost is:

$$C = C_{MAX} \left(\frac{S}{S_{MAX}} \right)^{X}$$

where

$$X = \frac{\log \left(\frac{C_{MAX}}{C_{MIN}}\right)}{\log \left(\frac{S_{MAX}}{S_{MIN}}\right)} = \frac{\log \left(\frac{14.75}{2.28}\right)}{\log \left(\frac{100}{0}\right)} = 0.811$$

$$C_{MIN}$$
 = component cost for min size = \$2.28x10⁶

$$C_{MAX}$$
 = component cost for max size = \$14.75x10⁶

$$S_{MIN} = min size = 10 MW$$

$$S_{MAX} = max size = 100 MW$$

C = component equipment cost =
$$14.75 \times 10^6 \left(\frac{50}{100}\right)^{811} = \$8.41 \times 10^6$$

or $\$168/kW$

The fraction, fm, of the equipment cost that is installation material cost is also assumed to vary exponentially with size and in the above example is:

$$f_{\rm M} = .10 \left(\frac{50}{100}\right)^{-.146} = 0.111$$

where

$$X = \frac{\log(\frac{.14}{10})}{\log(\frac{10}{100})} = -0.146$$

and the installation material cost = $.111x8.41x10^6$ = $$0.931x10^6$. In a similar fashion, the fraction, f_L , of the equipment cost that is installation labor is:

$$f_L = .06 \left(\frac{50}{100} \right)^{-.125} = 0.065$$

where

$$X = \frac{\log(\frac{.08}{.06})}{\log(\frac{10}{100})} = -0.125$$

and the installation direct labor cost = $.065x8.41x10^6 = $0.550x10^6$. The indirect labor field cost is 0.9 times the installation direct labor or $0.9x.550x10^6 = $0.495x10^6$. Cost Analysis Program - COSTANL. The Component Cost Table and Component Logic Tables are used in program COSTANL to update the economic data base with the total installed capital cost. A sample page from a Report 5.3 cost report generated in this program is shown in Figure 12-9.

For each case the Component Logic Table is interrogated and each component specified is sized and costed as shown above. Requirements that exceed the component maximum size result in multiple units of that component. The special logic indicators direct the program to specific equations for sizing components, such as heat recovery steam generators and prime movers. Fuel handling systems and boilers are selected, as required, to be compatible with the fuel used on-site. Indirect costs are added to the total direct costs to give the total installed cost.

Report 5.3: Capital Costs by Island for Selected Process-ECS Matches is contained in Volume VI, Part 1. Table 12-8 shows the cogeneration ECS-process matches which were selected as representative by NASA and GE and included in the report. At the beginning of each process matched, a nocogeneration coal-fired process boiler capital cost by island breakdown is included. The capital costs of all matched systems was calculated but only the total costs are shown in Reports 5.2 and 5.4 with the coal-fired nocogeneration matches in Volume VI, Part 1, and for oil-fired nocogeneration in Part 2.

Report 5.4 - Return on Investment (ROI) and Levelized Annual Energy Costs (LAEC) Analysis

The third and last step in developing the economic data base is the calculation of the percentage Return On Investment (ROI) and Levelized Annual Energy Costs (LAEC). The computer system flow chart for step 3 is shown in Figure 12-10. These calculations use data already in the economics data base, such as the capital costs and the on-site fuel use, power generation, power requirements and auxiliary boiler requirements.

Economic groundrules used in this calculation are shown in Table 12-9.

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.3

ATE 03/31/79		COGENERATION T		ALTERNA		Ϋ́		
SE-PEO ADV. DES. ENGR	G. Cap	ITAL COSTS BY	REPORT 5		ED PROCES	S-ECS MATC	HES	
PROCESS 20111								
ECS DEADV3 PRODIESEL-ADVANCED-3	CCESS MEGAWATTS 1.9	4 PRO	COGEN FU		PRO:	CESS HEAT()	TU*10**6	5) 24. 5228.
ISLAND	COMPONENT	MAJOR		*COSTS -		19765**** TOTAL	TOTAL	SPER-KI
DESCRIPTION	DESCRIPTION	EQUIPMNT	MAT'L	LABOR		INSTALLD		FUEL
						·		
1. FUEL-HANDLING	1. FUEL-GIL-UNLGADIN	g-S 0.035	0.007	0.042	0.037	0.086	0.121	23.08
	ISLAND TOTAL	0.035	0.007	0.042	0.037	0.086	0.121	23.08
3. ENERGY-CONVERSION	32. DIESEL-ENGINE-GEN	ERA 1.453	0.163	0.163	0.146	0.471	1.925	368.09
J. Energy Convencion	ISLAND TOTAL	1.453	0.163	0.163	0.146		1.925	368.09
2. FUEL-UTILIZATION-CL	E 21. GIL-FIRED-BGILER	0.095	0.196	0.299	0.269	0.764	0.859	164.31
	ISLAND TOTAL	0.095	0.196	0.299	0.269	0.764	0.859	164.31
8. BALANCE-OF-PLANT	84. POWER-PLANT-STRUC	TUR O.	0.064	0.056	0.050	0.169	0.169	32.40
O. BALANCE-OF FLANT	60. MASTER-CONTROL	0.070	0.010	0.017	0.016		0.113	21.62
	81. ELECTRIC-SWITCHGE		0.013	0.013	0.011	0.037	0.037	7.01
·	82. INTERCONNECTING-P		0.025	0.025	0.022		0.071	13.66
<i>:</i>	63. STRUCTURES-MISCEL ISLAND TOTAL	LAN 0. 0.070	0.055 0.167	0.047 0.157	0.042 0.142		0.145 0.536	27.72 102.43
TOTAL THIS CASE		1.652	0.532	0.661	0.595	1.788	3.440	113.74
INDIDENT ARCTO	SPARES						0.033	
INDIRECT COSTS	· START UP			 			0.033	•••
	SPARES+STARTUP						0.061	*
	CONTINGENCY						0.525	
	ENGINEERING SERVIC	ES					0.210	
	A-E FEE						0.175	•
GRAND TOTAL							4.412	

Figure 12-9. Sample Capital Cost Report

= 4 8 Match Heat Power Both 38 GTR216 PTR G ATS SISATO TE 0 ATR 805ATE 85 bine Reg. AC O ATS STANTS SE -401 280 ATS STARTD AE ATT BOASTD EE DH SB DEHTPH PTR R ala VOR TEEDOUS PTR R 7 Diesel Adv. ATT STOITS PIR 9 A ATS OFBITZ ES ATS STIGIS SE H b R RTG SESTON BI 21 CC0822 PTR Cycle AC 20 CC1222 PTR R ه ه 19 CC1622 PTR R d SH antd A RTS BIDWID TI dd NASA APPROVED SELECTED CASES ATA SIDATO SI : -TUT 260 JA snid A RTG STOATO 21 A GTA GODATO AL P 12 16615T Coal X } 45 FCPADS PTR D Ties leug BH I FCSTCL COST X Table 12-8 0 P 46 FCMCDS PTR 5 10 FCMCCL CORT X ٥ A FECTOO COAT A 9 Helium Closed Turbine ۵ A FEGTED COAT A 00 7 HEGT85 COAT A 999 O STIRL PTR D -Tis2 Prif A STR LAITE & H F STIRL CORT F A TAM DESHIT & P 4 faod DERHIT 2 Therat-onto A THE THISIT A d 4 TISTHT CORT F IOI BH 3 PFBSTM COST P > PFB Steam Inroine 29 DESOR3 PTR SOA AOS STR EADZED ES p ola 工 ATS GAOSTD SE AOS anid ala II ATS BAOSTO EF RT9 880MT2 S ٥ S STMOSS CORP A 2 STMOSS CORT F a ± Steam Turbine A STO ISINITE I A faco faimte f 0 29112 29113 9 3121 33251 33354 33315 33315 00 エクエ I H 1 STMI41 COST F 28221 28242 28653 28951 26212 26214 26216 26217 26218 26218 28002 28003 20461 20821 22601 22601 24211 24361 12182 [ene] SDE Metals Cals east Petro-Lumber Paper 9

Figure 12-10. Data Handling - Economics and Potential National Savings

ECONOMIC ANALYSIS GROUNDRULES (All Costs are in 1978 Constant Dollars)

Factor	<u>Value</u>
Annual inflation rate	0
Cost of debt (before taxes) above inflation	3%
Fraction of debt in capital	30%
Cost of preferred equity above inflation	•
Fraction of preferred equity in capital	0
Cost of common equity above inflation	7%
Fraction of common equity in capital	70%
Federal & State income tax rate	50%
Tax depreciation method	Sum of Years Digit:
Tax depreciation life	15 Years
Salvage value	0
Investment tax credit	102
Local real estate taxes and insurance	32
Useful life of investment	30 Years
First full year of operation	1990
Capital cost escalation rate above inflation	0
Cost of Fuels, Power & Expendables for 1985 in 1978	! <u>\$'s</u>
Coal	\$1.80/10 ⁶ Btu
Distillate Oil (Petroleum or Coal Derived)	\$3.80/10 ⁶ Btu
Residual Oil (Petroleum or Coal Derived)	\$3.10/10 ⁶ Btu
Natural Gas	, \$2.40/10 ⁵ Btu
Purchased Power	\$0.033/kWh
Limestone	\$10.00/Ton
Dolomite	\$12.50/Ton
scalation of Fuels & Power Above Inflation	
Coal	12
Distillate Oil (Petroleum or Coal Derived)	1%
Residual Oil (Petroleum or Coal Derived)	1%
Natural Gas	4.6% (1985-2000)
	1.0% (2000-)
Purchased & Exported Power	1%
Limestone	0
Dolomite	0

 $0.6 \times 0.033 = $0.0198/kWh$.

Operating and Maintenance Costs. The operating and maintenance costs were established as a function of ECS and type of fuel used as described in Table 12-10 and shown in Figure 12-11.

	Table 12-10
CONTENTS	OF OPERATING AND MAINTENANCE TABLE
O&M Costs = L*(fuel hrs/yr)	flow)M+N*(Capital Cost)+P*(fuel flow*operating
L*(fuel flow)M	is cost of operating labor in 10 ⁶ \$/yr with fuel flow in Btu/hr.
N*(Capital Cost)	is cost of parts for maintenance and major replacements in 10 ⁶ \$/yr with capital cost in 10 ⁶ \$.
P*(fuel flow*op- erating hrs/yr)	is cost of limestone, dolomite, ZnO, and water in 10 ⁶ \$/yr with fuel flow in 10 ⁶ Btu/hr.

L, M, N, and P are stored on this table along with the time for construction. These values depend on the ECS and fuel type.

ROI Analysis Program (CCROI). This program evaluates the year by year cash flow of each case. The cash flow of the nocogeneration case is compared to the cash flow of the cogeneration case, and the discount rate (ROI) is determined that makes the difference in cash flows of these two cases equal to their difference in capital cost. Due to the groundrules established in this study, some cases yield infinite ROI's because both the cogeneration capital cost and annual costs are less than the nocogeneration capital cost and annual costs. Other cases resulted in negative ROI's. These negative values were caused by capital costs favoring cogeneration, but with the cogeneration annual costs exceeding the nocogeneration annual costs. Levelized Annual Energy Costs (LAEC) are not based on incremental costs or cash flows and thus are more continuous than ROI. Levelized capital, taxes and insurance, operating and maintenance, fuel, purchased electricity, and revenue are the components of

	1				=	.	: d	ċ	0.11.0	<u>.</u>	0.110	: :	ċċ		÷.	 	÷	c :	ė s	: :	٠. د	o.	.	<u>.</u>	:		ċ	÷	c :	•	ċ	ċ.	÷.	: =	٠. د	÷.	÷	;	÷ .	<u>.</u>	: ;		011.0
			E ==	t3.025	0.025	.	: :	Ċ	0.025	0.025	0.025	ċ;				÷.	÷.	:	e e	-	ċ	. .	ċ	<u>.</u>	: c	: :	ç.	ċ	.	: =	c c	ë.	:	.	ė	÷.	÷.	c ' :	÷.	: ;	: <u>-</u> :	<u>.</u>	11.11.11
	AFB	apor	L M	0,300	0.300	.	e	: c	0.350	0.350	0.350	.	.		ċ	ċ	ċ	.	.	: :	ó	ċ	o:	; c		; c	o.	ċ	ċ,			ċ	;	.	ċ.	ď,	e i	. .	: c	<u>-</u>	00.0
		-		1463.	1463.	o c	ć	Ċ	355.	355	155.	ċ	je	c	c	ċ	ċ	c ·	e c	: c	c	0	ċ	: c	: c	ċ	c	ċ	.	ċc	c	ċ	c's	ė e	ċ	ċ	ċ	¢:	e ·	c's	: e	ċ	145.2
	+		Yrs.			c c		ċ	•	2.5				· c	ó	ċ	ċ	= 1		: =		ċ	ċ	÷ c	: c	ċ	c	ċ	c :			ċ	e s	. .	: : c	<u>.</u>	c.	÷ :	€ .	ر د	: :	=	2
Î	FIED	1	2	0.082		0.272			c	ċ	<u>.</u>	0.303	200	-	c	•	ċ	ċ	e c			ċ	ċ	.	: c		ċ	ċ.	ċ			ċ	ċ	: :	: :	÷	ċ	c :	e ·	.	: d	: =	0.075
	6 GASIFIED		E	0.025	0.025	0.025	0.055	0.05	0	°.	0.	0.025	220.0		0	ċ	ö	. ت	o o	.		٥.	.		<i>:</i> c	: c	· c	°.	ċ,		: c	ċ	ċ	: c		ď	ċ	ė	c.	.	: c	· -	0.025
COM	PULVERIZED	abor	rector tapon. /	0.300	0.300	0.300	0.350	0.360	0	•	· 0	0.340				· ·	ċ	ċ		.		c.	ď:	: :	: c	: 0		.	:			ċ	· .	: =	; c	: :	°.	ċ	ċ	. .	: : :	É	0.1.0
	PFB.	8		1751.	1751.	1463.	236.	9		ċ	ċ	200	1751		0	°	ċ	c	ċ	.	ċ	c	ċ	ċ		ċċ	ć	°.	e ·	.	ċ	=	c c	.	: -	c	ċ.	ċ	ċ	c c	ċċ	÷	COOL
1	F60.		Yrs.	3.0	3.0	200	ט ני	, ,		ċ	ö	ب ب	00		ó	ċ	•	_	.			ċ	0	: 0	.	ċ	ċ	ď,	c.	. .	: c	:	c (ė	: ::	ċ	ċ	e :	c' c			2
1			7 d	0		0.0		ċ	Ċ	•	•	· ·	.		ċ	ċ.	ċ	c	0.03	3	0.003	0.112	0.071	70.0		ċċ	c	ċ	• •	.	: c	÷	ċ		ė	c	ċ	ċ	ċ	c :	7.736	7.36	ć
RESIDE			N N	0.025	0.025	0.	0.025	0.025	0	•	ċ	o i	•	0.05	0.025	0.025	0.025	0.025	0.025	0.000	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.020	0.025	0.025	0.025	0.025	0.025	0.025	. 6	0	0.035
DISTILLATE & RESIDE		bor	EXPON.	0.300		g G	360	092.0		·	· 0	ċ		3,60	0.360	0.360	0.360	0.360	0.300		0.300	9.360	0.350	0.360	0.300	0.760	0,360	0.360	0.360	0.360	0.360	0.160	0.360	005.00	0.350	0.300	0.350	0.360	n. 360	3,00	360	0.350	טכר ט
1210		OPI Labor	ractor L	1174.	1174.	0.	270	324.	c	0	ċ	.	.	. טרכ	270.	270.	270.	270	174.		1174.	270.	270.	270.	32.4	124.	378.	324.	324.	324.	270.	270.	270.	, c. c.	270.	270.	270.	270.	270.	270,	- 2	13/	(22)
		,	Yrs.	2.5	2.5	0,0	, ,	ک س		c	c	.	.	_ u		<u>.</u>	<u>.</u> ت	<u>.</u> ا	2	, c	, v	<u>-</u>	<u>۔</u> ان	٠. ت			<u>.</u>	1.5		ı.		5.	<u>.</u> د	r, u			.5	<u>.</u> .	<u>.</u> ت	ر. -			٠.
			ECS	STM141	SFNOBB	PFBSTA	THIER	STIN	HEGT05	HEG1'60	HEGTOO	FCMCCI.	FC51CL	CTCOAD	GFAC98	GTAC12	GTAC16	C.FWC I 6	CC1 626	270177	CC0322	STIGI 5	STIGIO	SHOLS	DEADY 3	DEADVI	DEHTPA	DESOA3	DESOA2	DESOAL	GERAOB	GFRA12	GTIM 16	G116203	G[R216	GLIMUB	CTRM12	GFIRM16	GERE	GF1231.2	STEPANS	CACO	O TOCOM
٠٠/٥٣/١٥				_	~	ω,	t R		· ·	Œ	э.	2	=:	2 -		15				2 5			53					62	30	<u> </u>	i A			6 5	Ä			=	4	Ţ:	£ £	. 4	7
10		5	, rows	146	140	22	2 2	C P	140	140	40	3	2 2		140	140	140	40.	9	7	140	2	140	9	5 5	2 2	143	140	-40	25	2 0	3	140	= 5	2 2	140	140	140	40	<u> </u>	2 2	- 43	143
	بر		ZI WILL	1530 146	1540	1550	15.70	12.5	15.00	1600	1610	1620	1630	0101	2 2	1670	1640	1 690	25		0171	1740	1750	1760	02/1	2 2	1800	1810	1820	22	1850	Hón	0711	01.01	006	0161	1920	1930	Ctrol	0,6	2 2	0361	1000

Figure 12-11. CTAS Operating and Maintenance Factors Table for $10^6 \$/ \text{Yr}$

the total LAEC. The ratio of this cogeneration LAEC divided by the nocogeneration LAEC is shown under the NORML column. Besides LAEC and ROI, the present worth of the investment at a 15% discount rate, and the net payback are calculated. Figure 12-12 shows the format of the output of Report 5.4 with capital costs at the base (0% change from calculated) values. Report 5.4 in the format of Figure 12-12 for base (0% change) groundrule costs for the coal-fired nocogeneration process boiler base case and all of the ECS-process matches is included in Volume VI, Part 1. Volume VI, Part 2 contains Report 5.4 results for the oil-fired nocogeneration process boiler base case.

Other calculations show the sensitivity to changes in the various factors. Figure 12-13, for example, shows the sensitivities of economic factors to capital cost, fuel cost, and power cost in graphical form. These sensitivities for LAEC were calculated on the selected matches shown in Table 12-8 for the coal-fired nocogeneration process boiler base case. The graphical results are included behind Report 5.4, Part 1. An attempt was made to use this computer routine to calculate these sensitivities on ROI, but because of the many matches where a positive ROI does not exist and the rapid change in ROI to changes in costs, very limited results were obtained. The sensitivity of these cost changes on ROI are best understood and calculated by using the methodology described in Volume V, Sections 9.5 and 9.6.

Report 5.2 - Summary of Fuel Saved by Type and Economics

This summary Report 5.2 shows the fuel saved by type and the economics of the process and ECS matches. A sample page is shown in Figure 12-14. The report accounts for fuel differences in both type and quantity in 10^6 Btu/hr used between the nocogeneration case, and the cogeneration case including the displacement of utility fuel that occurs due to onsite power generation. In the cogeneration case any fuel burned on-site is added to any utility fuel by med due to a shortfall of on-site power. The fuel savings (nocogen-cogen heading on the report) shows what fuel was saved (positive quantity in the column under the appropriate fuel)

TE 04/22/78 SE-PEO-ADV-1	eye-Yorah	•		C		DEMERAL TION TEC R		ALTERN		STUDY					PAGE	1
				ECONS	HIC SEN	HIVITY	REPORT	FOR SE	LECTED I	PROCESS	-ECS MAT	TCHES				
	SEN	SITIVITY	OF CAPI	TAL COST	r		PERC	ENT OF	ORIGINA	L COST	100					
						LEVE	LIZED A	NNUAL E	NERGY C	OSTS(8	MILLION		**			
NERGY CONV	SITE- PO			POWER CAP		PITAL TA	XES GAI	NOM FU			VNUE TO	TAL NO	RML P	iebnt (Worth		ecos Pay
SYSTEM	FUEL RE	gó gen H Reg		#ATIO :			NSNC			ELEC				165		BACK
	······································	<u>u </u>	·	MILE I	V:: V		03015								x	EDYL
GIOT ONGCON	COAL-FO	10. 0.	0.	9, 26	12.3	0.93	G.40	0.03	0.74	3.05	٥,	5.97	1.000	٥.	0	
0101 STM141			9 0.436		8.3	0.63	0.27	0.57	2.42	0.03	0.	3.93	0.854	٠.	999	
0101 31H141			9 0.43		19.2	1.23	0.52	1.03		0.03	<u> </u>	4.27	0.715		28	
0101 STHI41			0.436		12.5	0.98	0.40	0.96	1.41	0.03	0.	3.74 4.28	8.628 0.713	7.	999	
0101 STM086			75 0.333 75 0.333		7.4 14.8	0.86 1.13	0,24 0,48	0.84 1.02	2.16 1.26	0.78	0. 0.	4.66	0.713	4. 3.	31	
101 STM088			5 0.33		11.0	0.69	0.46	0.92	1.26	0.76	٥.	4,20	C. 704	3 .	98.5	
101 PEBSTH			0 0.430		20.8	1.50	0.67	1.68	1.43	- V:1= -	- Ö.	8.27	0.882	-2,-	10	
101 PFBSTH			32 0.484		19.9	1.01	0.84	1.48	1.76	õ.	-0.16	4.44	0.744	ī.	17	
101 TISTHT	RESIDUA	10. 1.	00 0.107	0.25	29.6	2.26	0.96	1.27	3.65	٥.	0.	8.02	1.344	-16.	0	
101 TISIMI			14 0.23		20,6	1,55	0,66	1.01	1.91	1.43.	0	6,88	1,099		0	1
101 FISTMT			0.436		41.4	3,14	1,34	1.98	1.43	٥.	0.	7.88	1.316	-20.	0	1
101 TISTHT			9 0.510		87.1	4.33	1.84	2.15	2.12	G.	-1.63	0.61	1.441	-00,	0	1
101 TIHRSO			23 0.063 35 0.366		17.6	1,30 3,65	0,55 1,55	0.84	1.62	2.37 0.47	0. 0.	6,68 8,92	7.110 1.494	-8. -28.	0	,
101 STIRL			0.140		- 19:1-	0.62	- 1.00 -	1.78 0.77	4.56	0. <u></u> 0		6.81	1:000		-26	
			3 0.201		9.3	0.68	0,33	0.70	2.68	1.18	Õ.	8.68	0.983	Ž.	999	
			0 0.144		11.1	0.03	0.35	0.77	3.72	o,	õ.	8.67	0.949	2.	999	
101 STIRL	RESIDUA		3 0.201		9,3	0,69	0,29	0.70	2,33	1.16	o.	5.16	0.865		999	
		10. 1.	0.321	0.25	21.6	1,62	0,69	1.44	1.72	0.	0 ,	8.47	0.917	-3,	•	
			2 0.385		24.1	2.08	0.88	1.43	3.02	0.	-2.43	4.98	0.034	-4,	•	
101 HEGT86			0.176		36.4	2.66	1.14	1.69	2.09	0, .	0.	7.60	1.273	-10,	0	9
101 HEGT 60			0 0 235		91.7	2.58	2.06	3.34	8.67 2.08	<u> </u>	-9.43 0.	12.80 7.36	2.144 1.237	-80. -18.	8 -	{{1}}
101 HEG160			10 0.191 10 0.236		56.1	4,18	1.10	1.66	4.89	O.	-3.70	9.06	1.620	-30.	ă	í
101 HEGTOD			00 0.166		31.2	2.37	1.01	1.56	2.07	0. 0.	0.	7.01	1.173	-12.	ŏ	i
101 HEOTOO			iú 0.202		33.4	2.53	1.00	1.41	2.60	ō.	-0.74	6.88	1,152	-13.	ŏ	
101 FCMCCL	COAL	10. 1.	0-0.403	0.25	29.	2,32	0.99	1.72	3.66	0,	O.	8.56	1.437	-17.	0	
101 FCMCCL			37 0.092		40.3	3.13	1.33	2.09	4.68	Ο.	-2.00	8.63	1.424	-22.	0	1
101 FCSTCL			00-0.386		29.0	2.26	0.96	1.73	3.62	0.	0.	4.47	1,418	-18.	0	
101 FCSTCL			8 0.266		60.3	3.91	1.66	2.68	6.06	<u> </u>	-5.67	6.41	1.409	-27.		1
101 IGOTST			00-0.465 05 0.065		26.8 40.4	2.28 3.14	0.96 1.34	1.61	3.72 5.66	0. 0.	0. -3. 6 0	8.03	1.429	-10. -21.	ŏ	•
101 100TST			0.085		10.6	0.78	0.33	0.71	3.42	o.	-3, u u	8.25	0.878	3.	202	
101 GISOAR			0.238		8.8	0.71	0.30	0.67	2.43	0.80	ō.	6,00	0.838	4.	699	
101 GTACOS			0 0.15		9.8	0.71	0.30	0.68	3.66	Ö.	Ŏ.	6.37	0.899	3.	999	
101 GTACOS			7 0.215	0.25	8,3	0.62	0.26	0.63	2.10	1.32	0.	4.93	0.826	8.	898	
101 GIAC12	RESIDUA		0.256		9.6	0.72	0.31	0.66	3.28	٥.	٥.	4.97	0.632	4.	999	
101 GTAC12			1 0.265		9.6	0.85	0.28	0.68	2.30	0.90	<u> 0.</u>	-4.7	0.801	<u> </u>	<u></u>	
101 GFACE			0.296		10.1	0.75	0.32	0.69	3.07	0.	- ō.	4.83	0. \$10	₹.	399	
101 GTACIS			79 0.295		9.4	0.70	0.30	0,60 0.70	2.44 3.15	0. 63 0.	0. 9.	4.73	0.702	8, 4.	299	
1101 GTWC18	ドロストリング	10. 1.0	0 0.276	0.25	10.4	0,77 0.73	0.33 0.31	0.70	2.67	0. 0.48	ŏ.	4.87	0.615	8.	999	

Figure 12-12. Sample Economic Sensitivity Report

SENSITIVITY STUDY PROCESS 26217 ECS CC1626 -25. 00 ø. ØØ 25. 00 75. 00 50.00 100.00 % INCREASE BASE CASE **PROCESS** NO COGENERATION COGENERATION M-31 CAPITAL COST- 18. 1 PROCESS HEAT- 183 CAPITAL COST-14.8 LAEC - 15. 150 (BYU-18--6) LAEC - 18, 517 ROI - 27 WASTE FUEL- & FUEL - COAL-FGD MW(GEN) - 31 (BTU-18--0) **FUEL** - RESIDUAL POVER/HEAT- 8.584 CAPITAL COST ELECTRIC POWER NO-CGN FUEL ECS FUEL

COGENERATION TECHNOLOGY ALTERNATIVES STUDY

Figure 12-13. Sample Economic Sensitivity

	14/22/71 EG-ADV-		4GA				COG				COMPAN	Y TEVES STUDY		-		P	NOE 1
										PORT B.		11160 01001					
							BUP	MARY OF	PUEL	BAYED B	Y_TYPE_	ECOHONI CE					
					FUEL USE		110 100 00										
		940	OOF				COGEN -	COGEN	PAUFE	CAGEN	0 M	POWER FESR	CAPITAL	NORM	S/KW RGI	LEVL	NORH URT
C3	PROCS.	DISTIL			COAL		RESIDL	GOAL	REGD	POVER	• 1,	/HEAT	COST	COST	EQVL	CHRO	ENRO
									MM	MY		RATIO	#10##G		(1)		.e: ::::=
	H 18101).	28.		0.	٥.	0. 7	10.	0.	0.83	0.26 0,	12.3	1.00	260.1 0	8.0	1.00
	10101).	84.		0.	-58.	126.	10.	10.	0,67	0.25 0.44	8.3	0.68	141.8 998	3.9	0.66 17
	1 10101			<u> </u>	94	<u> </u>	24.	42. <u></u>	10.	10	1.00	0.25 0.44	18.2		275.2 20	4.3	0.71 19
	1 10101	_	}.	· 0.	64.	0,	24.	42. A	10,	10.	0.96	9.25 0.44	12.5	1.01	211.6 998	3.7	0.63 10
	0 10101 0 10101	_		. so.	20.	Q.	-85.	106.	10.		0.84	0.26 0.33	7.4	0.60	132.6 989	4.3	0.71 16
	8 10101). `	•.	94. 94.	o.	10.	32. F	10.	●,	1.00	0.25 0.33	14.0	1.22	266,6 31	4.8	0.78 18
	H 10101			8 .	86.	<u></u> Š∙	10.	3 <u>\$</u> r_V	!0-		0.92	0.50 0.33	الم	0.99_	200.0 110	4.2	0.70 1
	H 10101		,	ö.	100.	0. C.	26. 37.	41. 62.	10. 10.	10. 18.	1.59	0.28 0.44	20.8	1.69	351.2 10	8.3	0.86 16
	T 10101		5.	122.	0.	ŏ.	-07.	120.	10.	10.	1.27	0.25 0.19	28.6	2.41	304.3 17 480.8 0	4.4	0.74 16
	T 10101	ă).	_77.	38.	õ.	-62.	88.	10.	8.	1.01	0.25 0.23	20.8	1.47	361.1 0	1.0	1.10 13
ISTH	7 10101	0		Ö.	85.	6.	25,	41.	10.	10.	1.98	0.25 0.44	41.4	3.37	690.0 0	7. 1	1 32 1
ISTM	T 10101	0) <u>.</u>	o.	126.	Ö.	48.	82.	10.	20.	2,10	0.25 0.61	87.1	4.86	600.8 C	0.0	1.44 16
HAS	0 10101	0	١.	74.	83.	O.	-60.	62.	10.	ž.	0.44	0.28 0.08	17.6	1.43	345.6 0	9.7	1.12 11
HRS	9 10101	0	ا	4.	101	0.	21.	25,	10.		1.76	0.25 0.31	40.1	3.92	798.3 0	4.0	1.49 14
TIRL		120		0.	C.	-128.	28.	126,	16,	10.	0,77	0.26 0.18	11.1	0.61	173.1 -26	0.8	1.09 18
TIRL		80		9.	31.	-80.	16.	95.	10.	•.	9.79	0.25 0.20	8.5	0.78	160.7 989	8.7	0.85 14
TIRL		0	-	120:	o.	٥.	-103,	120.	10.	10.	0.77	0.25 9.16	11.1	C. 01	173.3 499	8.7	0,95 15
TIKL		<u> </u>		_88,	31	ō.	-65,	65.	10.	P	0.70	0,26 0,20		0,70	100.0 000	6.2	0.46
TIRL,		0	-	0.	102.	0.	25,	24.	10.	10.	1.44	0.28 0.32	21.6		340.6	8.6	0.92
TIRL			•	D.	178.	0.	B.7.	88.	10.	20.	1.43	0.25 0.30	20.1		323.2	8.0	0.63
	5 10101 5 10101	0	•	0.	123.	o.	1.0.	2. A	10.	10.	1.88	0.25 0.18			800.8 0 462.4 0	7.8	1.27 3
	0 10101		_	& .	122.	 8.	28.	14-8	10.	10.	3,34	0.25 0.24	91.7 34.0		462,4 0 484,4 0	12.0	
	0 10101	ŏ		8.	270.	o.	74.	18. A	10.	30.	2.12	0.25 0.15	56.1		470.1 0	9.1	1.52 12
	0 10101	ŏ		Õ.	122.	o.	25.	'5. Â	10.	10.	1.86	0.25 0.19			444.8 0	7.0	1.17 13
	0 10101	ŏ	•	a.	184.	0.	34.	5. A	10.	14.	1.41	0.25 0.20			419.9 0	8.0	1.18 12
	. 10101	- 8		ö.	211.	ŏ.	28,	-85.	−iŏ.	10.	1.72	0.26 -0.40	20.0		463.1 0	1.0	1.44 7
	L 10101			ő.	289.	õ.	83,	-34,	10.	28.	2.06	0.25 0.00			478,4 0	0.6	1.45 10
	L 10101	ŏ		o.	208.	õ,	25.	-03,	10.	10.	1.73	0.25 -0.38			474.6 0	4.6	1.42 7
	. 10101	ŏ	•	o.	359.	0.	102.	28.	10,	42.	2.65	0.25 0.27	80.3	4.09	470.2 0	8.4	1,41 11
	7 10101	ő		ō.	220.	· · · · · · · · · · · · · · · · · · ·	28.	-94,	10.	10.	1,61	0.26 -0.47	20.8	2.35	440.2 0	7.7	1.45 6
30TS	T 10101	0		0.	335.	0.	72,	~48.	10.	20.	1.44	0.25 0.06			412.2 0	0.2	1.37 6
150A	R 10101	0	•	110.	0.	٥.	-83.	126.	10.	10.	0.71	0.25 0.22			100.2 958	6.3	0.88 15
	R 10101	0		91,	24,	0.	-85.	102.	10,	?.	0,67	0,25 0,24			162.0 696	6.0	0.84 15
	8 10101	9	44	120.	0.	0.	-102.	128.	10.	70.	0.48	0,28 0.16			165.0 090	8.4	0.00 15
	6 10101	0		43.	35.	٥.	-50.	\$ 0.	10.	. ●,	0, 63	0.26 0.21			140.7 099	4.9	0.03 15
	2 10101	0	•	112.	0.	0,	-87.	124.	10.	10.	0.66	0.25 0.25			167.6 899	8.0 4.8	0.83 16
	2 10101	₽		-00.		<u>o,</u>	-82,	105.	18,-	,7.	0.65	0.25 0.27			183.2 099 182.8 808		0.81 16
	6 10101	<u>6</u>		108,	o,	0.	-81,	126.	10.	10.	0.66	0.25 0.30			152.0 000	4.7	0.78 15
	6 10101	0	•	46,	17.	o.	-64. -84.	128.	10.	10.	0.70	0.25 0.30	•••		142.0 000	1.4	0.83 16
	10101	0	•	106.	0.	0. 0.			10.	10.	0.68	0.25 0.28			701, 1 398	4.9	0.42 18
INCI	6 10101	0	1	98,	13,	<u> </u>	-71.	113.			<u> </u>	V: 49 V-49		y. TV	1711		_=:==:

Figure 12-14. Sample Fuel Saved By Type + Economics Report

and how much. The single letters F and A appearing after the cogen coal column in Figure 12-14 indicate FGD or AFB coal systems. On other pages of the report P indicates a PFB coal system.

Other data included in Report 5.2 are the process power requirements (POWER REQD), on-site cogeneration power produced (COGEN POWER), the process power over heat ratio (POWER/HEAT), the fuel energy saved ratio (FESR) and summary economic parameters. These parameters include the operating and maintenance cost in 10⁶ dollars (CAPITAL COST), the ratio of the on-site cogeneration ECS over the nocogeneration process boiler capital costs (NORM COST), return on investment (ROI), levelized annual energy cost (LEVL CHRG) and the ratio of cogeneration over nocogeneration LAEC (NORM ENGR). The parameters in the columns "\$/kW EQVL" and "WRTH" did not prove useful and shoud be ignored.

Report 6.1 - Fuel and Emissions Savings

Figure 12-15 shows an example of computer report 6.1, the Fuel and Emissions Savings by type, emissions saved ratio (EMSR), capital saving, total export megawatt hours, cost of electricity and LAEC savings for process-ECS matches and Figure 12-16 on a national basis.

Input requirements for this program include the Emissions by ECS and Fuel (Table 12-11) and a table on National Energy Use by SIC (Table 12-12).

The FESR is scaled by multipliers discussed in Section 10 (Volume V) so that

	4/24/7	•				05051				IC COMPAN							P/	ADE
ISE PEG AES						ERATION RT 6.1	FUEL	TECHNOLOGY ALTERNATIVES STUDY FUEL AND EMISSIONS SAVINGS										
		ION UNIT					1990	PUEL	QHA			1133			VAIMAS V	RE POST	TIAE)	
COST			***10			11176 1000				LEVEL ALL				T	YPE HATCH-HEAT			
			esF U	E L	8 A Y	I N 9 3		- E H 1	3 8	IONS	3 A V	/ I N 9 :	s	-	CAPITE-	-ELECTR	IĆ POW	ER
ROCS	EC3			Tesess-	TOT	ALFE	SR	DIRE				ALDEREN	***		BAVING	TOTAL		LAEC
		FUEL O	L+GAS	COAL O	IL+GAS	CEAL	NG	K 30	X i	PART HO	X 86	DX PAI	RT			EXPORT MWH		SAVE
		COAL-A					0.45	39,	-00		191.	71.		0.41			264,	-49
		COAL-A		-0.004			0.14	4.	-3		●.	4.		0.38	٥.	O.	2.	
		COAL-A	0. 0.	-0.018 -0.043		0.188	.0.82	-2.	-11		84.	136.		0.78		2.	249.	
		COAL-A		-0.211	0.020		0.13 0.51	26. 214.	-28		83,	37.		0.39	1.	1.	4.	30
		COAL-A	C.	-0.025		0.026	0.10	30.	<u>-115</u> -15		279.	150,				<u></u>	<u> 31.</u>	100
		COAL-A	o.	-0.006		0.026	0.01	30. 4.	-10		52. 8.	21. 8.		0.35	1.	1. 0.	2. 0.	
		COAL-A		-0.529			0.18	370.	-307		842.	498.		0.34	4.	36.	849.	
20	8TH141	COAL-F	0.121	-0.228	0.186	-0.009	0.43	-67.	-88	8.	35.	71.	16.	0.28	-3.	6.	263.	-92
		COAL-F	0.	-0.004	0.003	0.005	0.14	-2.	-3	0.	2.	4.	٥.	0.21	o.	ā.	2.	1
		COAL-F	Q,	-0.016	0,062	0.188	0,82	-7.	-11	-1-	79.	196.		0.77	-6,	2.	248.	-71
		COAL-F	0.	-0.043	0.026	0.045	0.13	-15.	-26		22.	37.	€.	0.23	1.	1.	4.	23
		COAL-F		-0.211	0.140	0.181	0.61	-75.	-115		8 1.	150.		0.16	2.	18.	31.	76
		COAL-F	٥.	-0.025	0.015	0.026	0.10	-9.	-15		13.	21,		0.17	٥.	1.	2.	131
		COAL-F		-0,006	0,004	0.006	0.01			<u> </u>	1	8,_		0.04	<u> </u>	<u>, o, .</u>	0.	2
1.1.	0177341	COAL-F	0.176	-0.629	0.512	0.497	0.18	-198.	-307	23.	274.	498.	71.	0.18	-6,	36.	647.	-53
		RESIDU			-0,259	0,437	0.43	-57.	1	<u> </u>	32,	147.		0.34	4.		285.	-343
		RESIDU			-0.022	0.030	0.14	-2.	2		2.	●.		0,30	٥.	G.	2.	
		RESIDU		0.003	0.041	0,209	0.82	-7.	-7,		79.	139.		0.74	Э.	Z.	250.	81:
		RESIDU			-0,164	0.235	0.13	-15.	12.		20.	69.		0.32	2.	1.	4.	10
		REGIDU			-1.208	1.607	0.61	<u>-75.</u>	184	-9, -	<u>71</u> .	<u> 379.</u>		0 28	?- -	10,		-40
		RESIDU			-0.166	0.207	0.10	-9. -4.	21.		11.	52.		0.27	1.	1.		-4: 1:
		RESIDU RESIDU			-0.032 -2.128	0.042 3.138	0.01 0.18	-198.	221		1. 254.	11. 947.		0.07	0. 20.	0. 38.	0. 683.	- 6
	•16141	KESTOO	-2.460	2.012	-2.120	J. 136	0.15	-190.	221	23.	204.	3 47.	-30,	0.27	20.			
		COAL-A		-0.220		-0.029	0.38	45.	-81.		126.	88.		0.30	-1,	€.	236.	-48
		COAL-A	0.	-0.004	0.002	0.004	0.11	4.	-2.		8.	3.		0.35	٥.	o.	2.	5
		COAL-A	<u>o.</u>	-0.005	0.043	0.141	0.01	خإيب	-3		60.	<u> 101. </u>		0.50	<u>-9, </u>	<u> </u>	205.	-42
		COAL-A	0.	-0.032	0.020	0.034	0.10	28.	-19		56.	28.		0.33	1.	0.	4.	28
		COAL-A	0.020	-0.108 -0.017	0.073	0.069	0.24	148.	-65. -10.		221.	70. 18.		0.28	2.	€. 0.	16.	56 14
		COAL-A	0, 0.	-0.0017	0.001	0.016	0.07 0.00	33. 5.	-1U.	1. -0.	48.	10. 3.	2. 0.	0.30	1. 0.	0. 0.	0.	3
		COAL-A		-0.422	0.364	0.262	0.12	286.	-109		673.	301.	46.		- 0.	13.	807.	; š
		TOPIL A	3.100	J. 722	0.004	U. EVE	U. 12	200.		. , , , ,	0,0.	951.	٦٥.	3,50	٠.	,		

Figure 12-15. Sample of National Fuel and Emissions Savings Report

	6/12/7	9	•						ELECTR	C COMPA	NY						P	AGE 2	
SE PE	O AES		_ 10 ⁶ 81	tu/hr			ERATION		NOLOGY			ALTERNAT	IVES S						
	FUEL	UNITS TON UNITS					9 87 6.1	FUEL	CMA	EHISSIO				73	K SENTVA	RE POST	LAEL.		
						TIME	1990			LEVE	L ALL								
	COST		***10	119										TYPE MATCH-POWR					
		****	FUE			- R - R - W -			* -						****				
PROCS	ECS	ECS ****			SAV							VING	_			-ELECTAI			
HUUS	EUJ	FUEL OIL					NO.			ART N			eses Art	FU2K	SAVING	TOTAL	CO3 1	LAEC	
		rocc oft	·UAS	COPE OF	LYUNG	COAL	140	, J	OA P	ARI H	OA.	30A P	AM I			EXPORT MWH		SAVED	
78513	re and a	RESIDU -	YAG	N 388	-7, 569	0.645	0.12	22.	17.	15.	105	. 159.		0.47	15.	гми О.	27.	-3	
		RESIDU -				2.547	0.25	-8768.	-490		-6073			-2.20		178.	43.	-32	
		DISTIL -		0.385		0.645	0.20	110.	147.		190			0.76		0.	43.	-32	
		DISTIL -			-0.711	1.034	0.31	31.	118		234			0.72		37.	17.	-4	
26214	OTRAOS	DISTIL).	-0.141	O.	0.119	0.16	ii:	83.		95			0.55	3 2.	0.	13.		
			Ď.	-0.589	0.	0.498	0.34	-218.	-43.		132			0.54		78.	25.	-9	
6214	OTRA12	DISTIL) .	-0.138	0.	0.122	0.19	12.	84.		96			0.55	31.	o.	13.	-3	
			3.	-0.861	ο.	0.498	0.34	-207.	-35.		134			0.54	83.	75.	25.	-	
).	-0.137	ō.	0.123	0.19	11:	84.		95			0.35	31.		13.		
).	-0.519	0.	0.467	0.34	-190.	-23.	4.	127	. 516.	62.	0.54	76.	60.	28.	- a	
).	-0.137	0.	0.123	91.0	8.	84.	10.	91	. 226,	26.	0.55	33.	o.	12.	-4	
).	-0.429	0.	0.385	9.32	~154.	2.		108		54.	0.53	71.	52.	23.	-7	
).	-0.137	0.	0.122	0. 19	9.	84.		92	. 226.	26.	0.55	32.	O.	12.		
			3.	-0.482	ο.	0.412	0.33	-187.	-7.		114		57.	0.54	73.	50.	23.	-7	
).	-0.135	0.	0.125	0.19	10.	85.		94		26.	0.55	31.	0.	12.	-4	
)	-0.465	0.	0.431	0.34	-166.	-8,	5.	120		56.		73.	60.	24.	-7	
			3.	-0.160	0.	0.100	0.16	8.	78.		90	. 220.	25.	0.53	52.	0.	18.		
).	-0.798	o.	0.500	0.30	-301.	-101.		116	. 607.	76.	0.50	103.	\$7.	28.	-14	
).	-C. 152		0.108	0.17		80.		93			0.54	32.	0.	15.	~6	
			3	-0.770	0.	0.544	0.32	-290.	-94.	-0.	133			0.52	104.	99.	27.	-12	
			}.	-0.160	o	0.109	0.17		80.	10.	93		26.	• • • •	31.	0,	18.		
).).	-0.704 -0.167	0. 0.	0.511	0.32	-264.	-76.		127			0.52	96.	90.	27.	-12	
		DISTIL (-0.636	0. 0.	0.093	0.14	-1.	76.		83			0.52	33.	0,	17,	-5	
			,	-0.036 -0.148	-0.	0.353	0.26	-237,	-86.	2.	82		60.		85.	68.	20.	-12	
			Ś.	-0.603	o.	0.111	0.17	-224.	-47.	10.	61		⊋त,		33,	. .	15.	-8	
).).	-0.149	0.	0.111	0.17	7.	61.		116			0.62	88.	78.	25.	-10	
	01R316		•	-0.596	· a .	0.444	0.17	-221.			91			0.54	32.	_0.	14.	-6	
			;	-0.175	0.	0.085	0.13	-241.	<u>-48.</u> 74.	10.	114		64.		80.	73.	28.	-10	
				-1.542	o.	0.747	0.28	-246.	170.	16.	468			0.55	28.	0.	35.	-5	
				-0.148	o.	0.119	0.18	13.	82.		455 96			0.62	91. 24.	190. 0.	62. 31.	-82 -8	
	FCHCD9			-1.021	o.	0.790	0.36	-013.	168.	-2.	-230			0.50	24. 69.	145.	47.	-40	
6218	STHIAL	RESIDU C		-0.061	Ö.	0.101	0.21	-21.	38.		28			0.29	22.	0.	-76: -	0	
		COAL-F		-0.061	o.	G. 101	0.21	-21.	-37.		31		7.		22. 8.	0.	21.	4	
6216	31H141	COAL-A C	١.	-0.081	0.	0.101	0.21	87.	-37.		109			0.36	16.	ő.	11.	5	
		RESIDU C	١.	-0.044	0.	0.073	C. 15	-15.	43.	-2.	20			0.23	10.	o.	is.	-1	
		COAL-F		-0.044	0.	0.073	0.18	-18.	-28.	-2.	22		5.		'}		27:		
		COAL-A	١.	-0.044	0.	0.073	0.15	69.	-28.	-2.	97			0.30	13.	õ.	18.	3	
		COAL-P C	-	-0.070	0.	G. 109	0.23	72.	-42.	6.	130			0.43	3.	õ.	32.	2	
		COAL-P (•	-0.104	Q.	0.162	0.29	76.	-62.	9.	101		25.		12.	ě.	23.	4	
		RESIDU (-0.069	O.	0.110	0.23	-24.	33.	-3.	31	. 120.	-8.		i i i :-	- 0.	68		
		RESIDU (-0.138	0.	0.218	0.33	-48.	6.	-7.	83			0.39	-27.	17.	84.	-7	
	TISTHT			-0.069	Ç.	0.110	0.23	· -24.	-42.	-3.	33	. 56.	7.	0.21	-36.	o.	83.	-2	
	TISTHT			-0.136	0.	0.218	0.33	-48.	-83.	-7.	66		14.	0.30	-48.	17.	85.	-3	
		RESIDU		-0.098	<u> </u>	0.000	0.17	-34.	22.	-8.	รบ		-10.	0.25	-55.	ō.	80.		
6215	Tihrso	UDAL (),	-0.098	0.	0.080	0.17	-34.	-55.	-5.	23	. 38.		0.14	-53.	0.	108.	-6	

Figure 12-16. Sample of ECS-Process Fuel & Emissions Report

CONTENTS OF EMISSIONS BY ECS AND FUEL

ECS Number:

For matching to appropriate ECS

ECS Description:

For information only

Same as Number:

Refers ECS back to other ECS with identi-

cal emissions

NO_x:

Pounds emitted per million Btu

SO₂:

Pounds emitted per million Btu

Particulate:

Pounds emitted per million Btu

 $(NO_x, SO_2$ and Particulate data for each possible fuel type for each ECS)

Table 12-12

CONTENTS OF NATIONAL ENERGY USE

SIC Cod

CTAS Process Number

Power Match

FESR multiplier to next highest level

Heat Match

FESR multiplier to next highest level

Energy Consumption 1985

Energy Consumption 2000

Levels: At CTAS process level next highest level is 2-digit

: At 2-digit SIC next highest level is national.

All other factors are scaled by market size

$$Scalar - 2-digit = \frac{FESR(2-digit)*Market(2-digit)}{FESR(CTAS)*Market(CTAS)}$$

$$Scalar - National = \frac{FESR(National)*Market(National)}{FESR(2-digit)*Market(2-digit)}$$

These scaling factors account for the fact that

- 1. All process in a 4-digit SIC code are not represented in CTAS.
- 2. All 4-digit SIC codes in a 2-digit SIC code are not represented in CTAS.
- 3. All 2-digit SIC codes in the nation are not represented in CTAS.

Report 6.1, Fuel and Emissions Savings, is presented in two parts - (1) for each process-ECS match, and (2) an estimate of the total national savings for each ECS assumed to be implemented without competition in all new plants added because of new capacity required or to replace unserviceable plants.

In Report 6.1 by process the units of fuel saved are 10^6 Btu/hr and the emissions saved units are 10^{-3} tons/hr. DIRECT savings are on-site and TOTAL include the utility. FESR is the fuel energy saved ratio and EMSR is the emission saved ratio defined as nocogeneration minus cogeneration all over nocogeneration. LAEC SAVED are in 10^6 \$/yr. Data under the headings of CAPITL SAVING & ELECTRIC POWER were not used in this study.

Report 6.1 data for individual process plants is presented for the coal nocogeneration base case in Volume VI. Part 1 and for the oil nocogeneration base case in Part 2. For the coal nocogeneration base case the national savings for the 2-digit SIC industrial sector and "ALL" industry were calculated for each cogeneration ECS. The national emissions saved are given in 10⁶ tons/yr and the fuel saved in quads/yr. These results are shown in Volume VI, Part 1 for the coal nocogeneration base case and in Volume VI, Part 2 for the residual nocogeneration base case.

COAL-FIRED NOCOGENERATION PROCESS BOILER

REPORT 5.1 - FUEL ENERGY SAVED BY PROCESS & ECS

DATE 06/06/79

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 10101 MW 16.00 PROCESS MILLIONS BTU/HR 137.0 PROCESS TEMP(F) 300. PRODUCT NASA-CLBR#1 HOURS PER YEAR 8000.

POWER TO HEAT RATIO 0.249 WASTE FUEL EQV BTU*10**6= 118. HOT WATER BTU*10**6= 0. UTILITY FUEL COAL FAIL FESR POWER HEAT COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FUEL WASTE TOTAL+ FACTR FACTR PROCES FUEL FUEL FUEL PROCES PROCES MW SAVED= FUEL FUEL USED BOILR USED UTILIT POWER ELECT SITE NO-NET USED HEAT USED 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 0 0. 0.13 0.51 268. 0. 161. 107. 161.CGAL-FGD 0. 0. 0. O ONOCON NO COOON 118. 0. 0 0.43 0.17 0.68 203. RESIDUAL 203. -2. ٥. 10, 1 STM141 STM-TURB-1 POWR 118. 65. 203. 138. 34. 202. 0 0.44 0.17 0.68 201. RESIDUAL 137. 34. 10. ٥. 118. 66. 201. 1 STM141 STM-TURB-1 HEAT 203. 0.43 0.17 0.68 203, COAL-FOD 34. 10. -2. ٥. 203. 138. 1 STM141 STM-TURB-1 POWR 118. 65. 0,44 0.17 0.68 202. 0. 201. COAL-FGD 137. 34. 10. 1. 1 STM141 STM-TURB-1 HEAT 118. 66. 201. 0 0.43 0.17 0.58 203. 203. COAL-AFB 10. -2. ٥. 203. 138. 34. 1 STM141 STM-TURB-1 POWR 118. 65. 0 0.44 0.17 0.68 201. COAL-AFB 202. 34. 10. 0. 1. 118. 66. 201. 137. . 1 STM141 STM-TURB-1 HEAT 254. 0 0.09 0.13 0.54 -53. 254. RESIDUAL 254 182. 34. 10. 2 STM088 STM-TURB-8 POWR 118 13. 0.33 0.12 0.63 218. 26. Ō. 26. 191.RESIDUAL 2 STMO88 STM-TURB-8 HEAT 118. 50. 191. 137. 254, COAL-FOD 0 0.09 0.13 0.54 254. -53. ٥. 254. 182. 34. 10. 2 STM088 STM-TURB-8 POWR 118. 13. 0.33 0.12 0.63 218. 8. 0. 26. 191.COAL-FGD 137. 26. 2 STM088 STM-TURB-8 HEAT 118. 50. 191. 0 0.09 0.13 0.54 254, COAL-AFB 254. -53. 0. 10. 2 STMO88 STM-TURB-9 POWR 118. 13. 254. 182. 34. 218. 0.33 0.12 0.63 8. О. 26. 191, COAL-AFB 137. 26. 110. 50. 191. 2 STM088 STM-TURB-8 HEAT 202. 10 0.44 0.17 0.68 202. COAL-PFB 0. 10. 55. 3 PEBSTM PEB-STMTB- POWR 118. 66. 147. 90. 34. 0 0.48 0.23 0.61 168. 15. Ο. -55. 224, COAL-PFB 224. 137. 52. 100. 3 PFBSTM PFB-STMTB- HEAT 118. 202. 10 0.19 0.17 0.68 ٥. 202. RESIDUAL 80. 80. 65. 122. 69. 34. 10. 4 TISTMT TI-STMTB-1 POWR 10 0.23 0.08 233. 49. 183. RESIDUAL 18. 118. 35. 66, 37. 4 TISTMT TI-STMTB-1 HEAT 118. 10 0.44 0.17 0.68 202. 80. o. 202. COAL 10. 4 TISTMT TI-STMTB-1 POWR 118. 65. 122. 69. 34. 0 0.51 0.28 0.56 0. -106. 243. COAL 137. 130. 243. 137. 68. 20. 4 TISTMT TI-STMTB-1 HEAT 118. 243. 0 -0.52 0.14 0.56 243. RESIDUAL 10. -29. 0. 5 TIHRSG THERMIONIC POWR ٥. 25. 243. 161. 34. 10 0.08 0.03 0.54 173. RESIDUAL 255. 118. 82. 56. 37. 8. 2. 5 TIHRSG THERMIONIC HEAT 118. 12. 0 0.17 0.14 0.56 243. 243, COAL 243. 161. 34. 10. -29. ٥. 118. 25. 5 TIHRSG THERMIONIC POWR 0 0.31 0.13 0.62 16. 206, COAL 222. 0. 5 TIHRSG THERMIONIC HEAT 118. 46. 206. 137. 29. 8. 0 0.15 0.16 0.62 220. 220. DISTILLA 10 92. ٥. 6 STIRL STIRLING-1 POWR 48. 128 59. 92. 0 0,20 0,00 0,58 198. DISTILLA 238. 118. 40. 21. 6. 6 STIRL STIRLING-1 HEAT 118. 30. 80. 37.

POOR

QUALL

E

DATE 06/06/79

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE

2

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 10101 MW 10.00 PROCESS MILLIONS BTU/HR 137.0 PROCESS TEMP(F) 300, PRODUCT NASA-CLBR#1 HOURS PER YEAR 8000.

POWER TO HEAT RATIO 0.249 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 118. HOT WATER BTU*10**6= 0. FESR POWER HEAT WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FUEL. SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED UTILIT SITE USED 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 92. 48. 128. 59. 34. 10. 92. 0. 220. RESIDUAL 220. 0.15 0.16 0.62 6 STIRL STIRLING-1 HEAT 118. 30. 80. 37. 21. 6. 118. 40. 198. RESIDUAL 238. 0.20 0.09 0.58 6 STIRL STIRLING-1 POWR 118. 48. 128. 59. 34. 10. 92. 0. 220. COAL 220. 0.32 0.16 n 0.62 298. COAL 6 STIRL STIRLING-1 HEAT 118. 112. 296. 137. 79. 23. 0. -140. 156. 0.38 0.27 0.46 7 HEGT85 HELIUM-GT- POWR 118 27 106 22 34 10. 135 O. 241. COAL-AFB 10 0.18 0.14 0.57 241. 7 HEGT85 HELIUM-GT- HEAT 163. 649. 137. 208. 118. 61. 0. -544. 649. COAL-AFB 105. 0 0.24 0.32 0.21 8 HEGT60 HELIUM-GT- POWR 118. 29. 132. 46. 34. 10. 107. 0. 239. COAL-AFB 239. 10 0.19 0.14 0.57 8 HEGT60 HELIUM-GT- HEAT 118 86. 395 137. 102 30. 0. -213 395. COAL-AFB 182. 0.24 0.26 0.35 9 HEGTOO HELIUM-GT- POWR 118. 28. 194. 98. 34. 10. 46. 0. 240, COAL-AFB 240. 10 0.19 0.14 0.57 9 HEGTOO HELIUM-GT- HEAT 118. 39. 271. 137. 48. 271.COAL-AFB 229. 14. 0. -43. 10 0.20 0.18 0.50 10 FCMCCL FUEL-CL-MO POWR 0. 57. 112. 53. 34. 10. 98. 0. 211. COAL 211. 10 -0.40 0.16 0.65 10 FCMCCL FUEL-CL-MG HEAT 147. 88. 0. 289. 137. 26. 0. -168. 289. COAL 121. 10 0.09 0.30 0.47 11 FCSTCL FUEL-CL-ST POWR ٥. 59. 86 33. 34 10. 123 208. COAL 208 10 -0 39 0.16 0.66 O 11 FCSTCL FUEL-CL-ST HEAT Ö. 248. 359. 137. 143. 42. 0. -339. 359. COAL 20. 10 6.27 0.40 0.38 12 IGGTST INT-GAS-GT POWR 0. 48. 114. 46. 34. 10. 106. 0. 220. COAL 220. 10 -0.47 0.16 0.62 12 IGGTST INT-GAS-GT HEAT 335 0. 137. 101 29. 0. -208 335, COAL 127. 141. 10 0.06 0.30 0.41 13 GTSØAR GT-HRSG-10 PØWR 100, 50. 10. 100. 0. 218. RESIDUAL 218. 118. 52. 34. 0 0.22 0.16 0.63 13 GTSGAR GT-HRSG-10 HEAT 7. 118. 36. 84. 37. 24. 118. 31. 201. RESIDUAL 232. 0.24 0.10 0.59 211. RESIDUAL 14 GTACOS GT-HRSG-OS POWR 85. 126. 10. 56. 65. 34. 85. O. 211. 10 0.16 0.16 0.65 14 GTACO8 GT-HRSG-08 HEAT 118. 32. 72. 37. 20. 6. 118. 46. 190. RESIDUAL 236. 10 0.21 0.08 0.58 15 GTAC12 GT-HRSG-12 POWR 100. 112. 52. 10. 100. Ο. 211. RESIDUAL 211. 10 0.25 0.16 0.65 56. 34. 15 GTAC12 GT-HRSG-12 HEAT 118. 40. 79. 37. 118. 31. 197. RESIDUAL 228. 0.27 0.11 0.60 16 GTAC16 GT-HRSG-16 POWR 106. 106. 47. 106. 9. 56. 212. RESIDUAL 212. 10 0.30 0.16 0.65 16 GTAC16 GT-HRSG-16 HEAT 118. 44. 84 37. 118. 22. 202, RESIDUAL 223. 10 0.30 0.12 0.61 17 GTWC16 GT-HRSG-16 POWR 110. 50. 108. 44. 110. 0. 218. RESIDUAL 218. 10 0.28 0.16 0.63 17 GTWC16 GT-HRSG-16 HEAT 118. 42. 92. 37. 118. 16. 209. RESIDUAL 226. 0.28 0.13 0.61

PAGE

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 10101 MW 10.00 PROCESS MILLIONS BTU/HR 137.0 PROCESS TEMP(F) 300. PRODUCT NASA-CLBR#1 HOURS PER YEAR 8000.

POWER TO HEAT RATIO 0.249 WASTE FUEL EQV BTU*10**6= 118. HOT WATER BTU*10**6= UTILITY FUEL COAL FESR POWER HEAT WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FACTR FACTR PROCES FUEL FUEL FUEL TOTAL+ FUEL SAVED= FUEL PROCES PROCES MW BOILR USED SITE USED UTILIT USED NO-NET USED HEAT POWER ELECT 10**5 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR 118. 50. 88. 26. 34. 10. 130. 0. 218. RESIDUAL 218. 10 0.33 0.16 0.63 242. RESIDUAL 10 0.36 0.20 0.57 18 CC1626 GTST-16/26 HEAT 118. 70. 124. 37. 48. 14. 118. -44. 198. 10 0.35 0.16 10. 127. 0. 216. RESIDUAL 216. 0.64 19 CC1622 GTST-16/22 POWR 118. 52. 89. 29. 34. 10 0.37 0.19 0.59 66. 113. 37. 43. 13. 118. -29. 231. RESIDUAL 202. 19 CC1622 GTST-16/22 HEAT 118. 127. 215. RESIDUAL 215. 10 0.35 0.16 0.64 20 CC1222 GTST-12/22 POWR 118 53. 88. 29 34. 10. 230. RESIDUAL 201. 10 0.37 0.19 0.60 118. -29. 20 CC1222 GTST-12/22 HEAT 118. 67. 112. 43. 13. 10. 118. 0. 212. RESIDUAL 212. 10 0.37 0.16 0.65 21 CC0822 GTST-08/22 POWR 118. 56. 93. 36. 34. 10 0.38 0.16 0.65 212. RESIDUAL 118. 211. 21 CC0822 GTST-08/22 HEAT 118. 57. 95. 37. 35. 10. -2. 10 0.12 0.14 0.55 0. 249. RESIDUAL 249. 22 STIG15 STIG-15-16 POWR 118. 18. 90. 1. 34. 10. 160. 0 0.17 0.37 0.05 1084. 318. 118. -3282. 2964. RESIDUAL -318. 22 STIG15 STIG-15-16 HEAT 118. 586. 2846. 37. 0. 241 . RESIDUAL 241. 10 0.18 0.14 0.57 23 STIG10 STIG-10-16 POWR 118. 26. 95. 13. 34. 10. 146. 190. 0 0.22 0.25 0.35 397. RESIDUAL 23 STIG10 STIG-10-16 HEAT 118. 78. 279. 37. 100. 29. 118. -207. 238. RESIDUAL 0. 238. 10 0.20 0.14 0.58 118 30. 102 21. 34. 10. 136. 24 STIG1S STIG-1S-16 POWR 293. RESIDUAL 216. 10 0,23 0,20 0,47 24 STIG1S STIG-1S-16 HEAT 52. 37. 59. 17. 118. -77. 118. 176. 228. 0 0.27 0.15 0.60 92. 34. 10. 136. ٥. 228. RESIDUAL 25 DEADV3 DIESEL-ADV POWR 118. 40. 21. 277. RESIDUAL 199. 0.30 0.21 0.50 59. 118. -78. 25 DEADV3 DIESEL-ADV HEAT 118. 69. 159. 37. 17. 0. 226. RESIDUAL 226. 0.28 0.15 0.61 134. 26 DEADV2 DIESEL-ADV POWR 118. 42. 92. 23. 34. 10. 0.31 0.21 0.52 263. RESIDUAL 201. 37. 54. 16. 118. -62. 26 DEADV2 DIESEL-ADV HEAT 118. 67. 146. 211. RESIDUAL 211. 0,38 0.16 0.65 O. 57. 92. 34. 10. 119. 27 DEADVI DIESEL-ADV POWR 118. 36. 0.38 0.17 0.65 212. RESIDUAL 209. 27 DEADVI DIESEL-ADV HEAT 118. 59. 95. 37. 35. 10. 118. -3. 209. RESIDUAL 209. 0 0.35 0.16 0.66 0. 10. 112. 28 DEHTPM ADV-DIESEL POWR 112. 59. 42. 203. RESIDUAL 216. 0.34 0.14 0.63 28 DEHTPM ADV-DIESEL HEAT 118. 52. 85. 37. 39. 9. 118. 13. 0.23 0.15 0.59 234. DISTILLA 234. 0 95. 19. 34. 10. 139. 0. 29 DESGAS DIESEL-SGA POWR 118. 34. 200. 0.27 0.22 0.45 -103. 304. DISTILLA 29 DESGAS DIESEL-SGA HEAT 118. 67. 186 37. 67. 20. 118. 234. RESIDUAL 234. 0.23 0.15 0.59 139. 0. 29 DESGAS DIESEL-SGA POWR 118. 34. 95. 19. 34. 10. 0.27 0.22 0.45 304. RESIDUAL 200. 29 DESGAS DIESEL-SGA HEAT 118. 67. 186. 37. 67. 20. 118. -103.

3

DATE 06/06/79

ISSE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 10101 MW 10.00 PROCESS MILLIONS BTU/HR 137.0 PROCESS TEMP(F) 300. PRODUCT NASA-CLBR#1 HOURS PER YEAR 6000.

POWER TO HEAT RATIO 0.249 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 118. HOT WATER BTU*10**6= 0. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-MET USED HEAT POWER ELECT BOILR USED USED SITE UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**8 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 118. 37. 95. 21. 34. 10. 137. 0. 231.DISTILLA 231. 0.24 0.15 0.59 30 DESGA2 DIESEL-SGA HEAT 118. 65. 168. 37. 61. 18. 118. -83. 286. DISTILLA 203. 0.28 0.21 0.48 30 DESGA2 DIESEL-SGA POWR 118. 37. 95. 21. 34. 10. 137. 0. 231 . RESIDUAL 231. 0.24 0.15 0.59 30 DESCA2 DIESEL-SCA HEAT 118. 65. 168. 37. 61. 118. 18. -83. 286. RESIDUAL 203. 1 0,28 0.21 0.48 31 DESGA1 DIESEL-SGA POWR 117. 57. 95. 38. 34 10. 117. 0. 211. DISTILLA 211. 0.37 0.16 0.65 31 DESGAL DIESEL-SGA HEAT 118. 55. 92. 37. 33. 10. 118. 3. 210. DISTILLA 212. 0.37 0.16 0.64 31 DESCA1 DIESEL-SCA POWR 117. 57. 95. 38. 34. 10. 117. ٥. 211. RESIDUAL 211. 0.37 0.16 0.65 31 DESGA1 DIESEL-SGA HEAT 118. 55. 92. 37. 33. 210. RESIDUAL 10. 118. 0.37 0.16 0.64 3. 212. 32 GTSGAD GT-HRSG-10 POWR 97. 54. 117. 55. 34. 10. 97. ٠٥. 214. DISTILLA 214. 10 0.22 0.18 0.64 32 GTSGAD GT-HRSG-10 HEAT 118. 37. 79. 37. 23. 7. 118. 35. 197. DISTILLA 231. 10 0.24 0.10 0.59 33 GTRAOS GT-85RE-08 POWR 118. 52. 96. 35. 34. 10. 121. 216. DISTILLA 0. 216. 0.34 0.16 0.63 10 33 GTRAO8 GT-85RE-08 HEAT 118. 55. 102. 37. 37. 11. 118. -8. 220. DISTILLA 212. 10 0.35 0.17 0.62 34 GTRA12 GT-85RE-12 POWR 34. 118. 53. 95. 35. 10. 120. 0. 215.DISTILLA 215. 10 0.35 0.16 0.64 34 GTRA12 GT-85RE-12 HEAT 118. 101. 37. 36. 11. 118. 218. DISTILLA -6. 212. 0.36 0.17 0.63 35 GTRA16 GT-85RE-16 POWR 117. 53. 98. 37. 10. 117. 34 n 215. DISTILLA 215. 10 0.35 0.16 0.64 35 GTRA16 GT-85RE-16 HEAT 118. 97. 52. 37. 10. 118. 215. DISTILLA 34. ١. 215. 10 0.35 0.16 0.64 36 GTR208 GT-60RE-08 POWR 109. 52. 107. 45. 34. 10. 109. ٥. 215. DISTILLA 215. 10 0.29 0.16 0.64 36 GTR208 GT-60RE-08 HEAT 118. 44. 89. 37. 28. 148. 8. 18. 206. DISTILLA 224. 10 0.29 0.13 0.61 37 GTR212 GT-60RE-12 POWR 112. 52. 103. 41. 34. 10. 112. 0. 216. DISTILLA 216. 10 0.31 0.16 0.63 37 GTR212 GT-60RE-12 HEAT 118. 46. 92. 37. 30. 9. 118. 210. DISTILLA 221. 12. 10 0.31 0.14 0.62 38 GTR216 GT-60RE-16 POWR 113. 215. 113. 53. 101. 41. 34. O. 215. DISTILLA 10. 10 0.33 0.16 0.64 38 GTR216 GT-60RE-16 HEAT 118. 48. 37. 31. 9. 118. 9. 210. DISTILLA 219. 0.32 0.14 0.62 39 GTRW08 GT-85RE-08 POWR 118. 43. 97. 29. 34. 10. 127. ٥. 225. DISTILLA 225. 10 0.29 0.15 0.61 39 GTRWOS GT-S5RE-OS HEAT 118. 56. 125. 37. 44. 13. 118. -30. 243. DISTILLA 212. 10 0.31 0.18 0.56 40 GTRW12 GT-85RE-12 POWR 118. 46. 94. 28. 34. 0. 10. 128. 222. DISTILLA 222. 10 0.31 0.15 0.62 40 GTRW12 GT-85RE-12 HEAT 118. 61. 124. 37. 45. 13. 118. -34. 241. DISTILLA 207. 0.33 0.19 0.57 10

PAGE

DATE 06/06/79

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

5

REPORT 5,1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 10101 MW 10.00 PROCESS MILLIONS BTU/HR 137.0 PROCESS TEMP(F) 300. PRODUCT NASA-CLBR#1 HOURS PER YEAR 8000.

POWER TO HEAT RATIO 0.249

UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 118. HOT WATER BTU*10**6= 0. COGEN COGEN COGEN AUX UTILIT TOTAL SITE FESR POWER HEAT WASTE FUEL NET= FAIL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 126. 0. 41 GTRW16 GT-85RE-16 POWR 118. 46. 96. 30. 34. 10. 221.DISTILLA 221. 10 0.31 0.15 0.62 41 GTRW16 GT-85RE-16 HEAT 118. 57. 118. 37. 42. 12. 118. -25. 236. DISTILLA 211. 10 0.33 0.18 0.58 227. DISTILLA 42 GTR308 GT-60RE-08 POWR 117. 41. 110. 38. 34. 10. 117. 0. 227. 10 0.27 0.15 0.60 42 GTR308 GT-60RE-08 HEAT 118. 40. 108. 37. 33. 10. 118. 225. DISTILLA 228. 10 0.27 0.15 0.60 2. 43 GTR312 GT-60RE-12 POWR 118. 47. 100 34. 10. 121. 221.DISTILLA 221. 10 0.31 0.15 0.62 34 Ω. 43 GTR312 GT-60RE-12 HEAT 118. 226.DISTILLA 0.32 0.16 0.61 118. 51. 109. 37. 37. 11. -10. 217. 10 44 GTR318 GT-60RE-16 POWR 118. 47. 101. 34. 34. 10. 121. 0. 221.DISTILLA 221. 10 0.31 0.15 0.62 226. DISTILLA 44 GTR316 GT-60RE-16 HEAT 118. 50. 108. 37. 37. 11. 118. -8. 218. 10 0.32 0.16 0.61 0 0.23 0.15 0.59 45 FCPADS FUEL-CL-PH POWR 118. 35. 90. 13. 34. 10. 143. 0. 233. DISTILLA 233. 45 FCPADS FUEL-CL-PH HEAT 218. 37. 83. 118. -152, 335. DISTILLA 183. 0 0.28 0.25 0.41 118. 84. 24. 46 FCMCDS FUEL-CL-MO POWR 83. 34. 138. 0. 221. DISTILLA 221. 0 0.31 0.15 0.62 118. 47. 19. 10. 0 0,36 0.24 0.50 179. 46 FCMCDS FUEL-CL-MO HEAT 118. 89. 159. 37. 65. 19. 118. -98. 276. DISTILLA

NING SYSTEM DIEST-02

協議等E 06/06/79

MASE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 10102 MW 30.00 PROCESS MILLIONS BTU/HR 410.0 PROCESS TEMP(F) 300. PRODUCT NASA-CLBR#2 HOURS PER YEAR 8000.

POWER TO HEAT RATIO 0.250 WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= UTILITY FUEL COAL 0. 0. FESR POWER HEAT COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL WASTE FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR FUEL NO-NET USED POWER ELECT BOILR USED SITE USED UTILIT USED HEAT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COGON 0. Ø. 0. 0. 0. 0. 482. 320. 482. COAL-FGD 802. 0 0. 0.13 0.51 194. 609. 415. ٥. 609. RESIDUAL 609. 0 0.24 0.17 0.67 1 STM141 STM-TURB-1 POWR O. 102-30. -6. 601. RESIDUAL 605. 1 STM141 STM-TURB-1 HEAT 197. 601. 410. 301. 30. 0. 4. 0 0.25 0.17 0.68 Ú. 609. COAL-FOD 0 0.24 0.17 0.67 609. 1 STM141 STM-TURB-1 POWR 0. 194. 609. 415. 102. 30. -6. 0. 601.COAL-FGD 605. 0 0.25 0.17 0.68 1 STM141 STM-TURB-1 HEAT 197. 601. 410. 30. ٥. 4. О. 101. 1 STM141 STM-TURB-1 POWR 0. 194. 609. 415. 102. 30. -6. O. 609. COAL-AFB 609. Ω 0.24 0.17 0.67 1 STM141 STM-TURB-1 HEAT 0. 197. 601. 410. 101. 30. 0. 601.COAL-AFB 605. 0 0.25 0.17 0.68 4. 0. 1 2 STM088 STM-TURB-8 POWR 0. 39 763. 546. 102. 30. -160. 763. RESIDUAL 763. 0 0.05 0.13 0.54 2 STMO86 STM-TURB-8 HEAT 150. 573. RESIDUAL 653. 0 0.19 0.12 0.63 ٥. 573. 410. 77. 23. ٥. 80. 2 STMO88 STM-TURB-8 POWR Ð. 39. 763. 546. 102. 3€. -160. ٥. 763. COAL-FOD 763. 0 0.05 0.13 0.54 653. 0.19 0.12 0.63 2 STM088 STM-TURB-8 HEAT 0. 150. 573. 410. 77. 23. 0. 80. 573.COAL-FGD 0 0.05 0.13 0.54 2 STM088 STM-TURB-8 POWR 0. 39. 763. 546. 102. 30. -160. 0. 763. COAL-AFB 763. 2 STM088 STM-TURB-8 HEAT 150. 573. 410. 77. 23. 0. 80. 573. COAL-AFB 653. 0 0.19 0.12 0.63 C. 3 PFBSTM PFB-STMTB- POWR 0. 197. 442. 271. 102. 30. 164. 0. 606. COAL-PFB 606. 0 0.25 0.17 0.68 504. 0 0.31 0.23 0.61 45. 669. COAL-PFB 3 PFBSTM PFB-STMTB- HEAT 0. 298. 669. 410. 155. 0. -165. 606, RESIDUAL SOE. 0 0.24 0.17 0.68 4 TISTMT TI-STMTB-1 POWR ٥. 196. 366. 206. 102. 30. 240. 0. 0.28 0.56 412. 0.35 4 TISTMT TI-STMTB-1 HEAT 391. 728. 410. 203. 0. -316. 728. RESIDUAL 0 60. 366. 206. 102. 240. 506, COAL 606. 0 0.24 0.17 0.68 4 TISTMY TI-STMTB-1 POWR 0. 196. 30. Û. 4 TISTMT TI-STMTB-1 HEAT 0. 391. 728. 410. 203. 60. O. -316. 728. CCAL 412. 0 0.35 0.28 0.56 5 TIHRSG THERMIONIC POWR Ο. 75. 728. 484. 102. 30. -88. ٥. 728. RESIDUAL 728. 0 0.09 0.14 0.56 663. 0.13 0.62 410. 25. C. 49. 616. RESIDUAL 0.17 5 TIHRSG THERMIONIC HEAT 0. 137. 616. 87. - 38. O. 728. COAL 728. 0 0.09 0.14 0.56 5 TIHRSG THERMIONIC POWR 0. 75. 728. 484. 102. 30. 49, 616.COAL 665. 0 0,17 0.13 0.62 410. 25. ٥. 5 TIHRSG THERMIONIC HEAT 0. 137. 616. 87. 0. 657. DISTILLA 657. 0 0.18 0.16 0.62 102. 30. 274. 6 STIRL STIRLING-1 POWR 145. 384. 177. ٥. 468. 0 0.27 0.27 0.46 6 STIRL STIRLING-1 HEAT 335. 887. 410. 237. 69. -419. 887. DISTILLA

PAGE 6 DATE 06/06/79

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

7

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 10102 MW 30.00 PROCESS MILLIONS BTU/HR 410.0 PROCESS TEMP(F) 300, PRODUCT NASA-CLBR#2 HOURS PER YEAR 8000.

POWER TO HEAT RATIO 0,250 UTILITY FUEL COAL WASTE FUEL EQV BTUx10*x6= HOT WATER BTU-10**6= COGEN COGEN COGEN AUX UTILIT TOTAL SITE FESR POWER HEAT WASTE FUEL COGEN NET= FAIL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10××6 10**6 10**5 10××6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR D. 145. 384. 177. 102. 30. 274. 0. 657. RESIDUAL 657. 0 0.18 0.16 0.62 6 STIRL STIRLING-1 HEAT 335. 887. 237. 0. -419. 887. RESIDUAL 0.27 0.27 0.46 Ο. 410. 69. 468. 274. 6 STIRL STIRLING-1 POWR 0. 145. 384. 177. 102. 30. 0. 657. COAL 657. 0.18 0.16 0.62 335. 69. Ο, 887. COAL 0.27 0.27 0.46 6 STIRL STIRLING-1 HEAT ٥. 887. 410. 237. -419. 468. . n 722. 7 HEGT85 HELIUM-GT- POWR 80. 319 67. 102 30. 403. 0. 722. COAL-AFB 10 0.10 0.14 0.57 0. 0. -1627. 0.20 0.32 0.21 7 HEGT85 HELIUM-GT- HEAT ٥. 488. 1941. 410. 623. 183. 1941.COAL-AFB 314. 0.11 0.14 0.57 395. 137. 102. 716.COAL-AFB 718. 8 HEGT60 HELIUM-GT- POWR 0. 86, 30. 321. 0. 10 8 REGT60 HELIUM-GT- HEAT 0. 257. 1183. 410. 306. 90. 0. -638 1183. COAL-AFB 545. 0.18 0.26 0.35 719. COAL-AFE 0.10 0.14 0.57 9 HEGTOO HELIUM-GT- POWR 0. 84. 582. 294. 102. 30. 137. 0. 719. 10 9 HEGTOO HELIUM-GT- HEAT 0. 117. 812. 410. 143. 42. 0. -127. 812. COAL-AFB 685. 10 0.13 0.18 0.50 0.65 171. 337. 102. 294. 631. COAL 631. 10 0.21 0.16 10 FCMCCL FUEL-CL-MO FOWR 0. 160. 30. 0. 10 FCMCCL FUEL-CL-MO HEAT 0. 439. 864. 410. 263, 77. 0. .-501. 864, COAL 363. 10 0.34 0.30 0.47 624 10 0.22 0.16 0.66 11 FCSTCL FUEL-CL-ST POWR 178 258 98 102 30. 367. 0. 624. COAL 0.41 0.40 0.38 11 FCSTCL FUEL-CL-ST HEAT 0. 742. 1074. 410. 427. 125. 0. -1013. 1074, COAL 60. 0. 659. COAL 659. 10 0.18 0.16 0.62 12 IGGTST INT-GAS-GT POWR 0. 143. 341. 139. 102. 30. 318. 12 IGGTST INT-GAS-GT HEAT 421. 1001. 410. 301. 88. 0. -621; 1001.COAL 381. 0.30 0.30 0.41 0. 652. RESIDUAL 652. 0.19 0.16 0.63 13 GTSGAR GT-HRSG-10 POWR 151. 353. 156. 102. 30. 299, Ω. 13 GTSWAR GT-HRSG-10 HEAT 396. 926. 410. 269. 79. ٥. -520. 926. RESIDUAL 407. 0.30 0.29 0.44 Ο. 633. RESIDUAL 633. 0.21 0.16 0.65 14 GTACOS GT-HRSG-08 POWR 169. 379. 194 102. 30. 254. 0. 0. 14 GTACO8 GT-HRSG-08 HEAT 0. 357. 901. 410. 216. 63. 0. -356. 801, RESIDUAL 445. 0.31 0.27 0.51 157. 0.21 0.16 0.65 169. 336. 102 30. 298. 0. 633, RESIDUAL 633. 15 GTAC12 GT-HRSG-12 POWR Ω. 15 GTAC12 GT-HRSG-12 HEAT 0. 441. 876. 410. 267. 78. 0. -515. 876. RESIDUAL 361. 0.33 0.31 0.47 635. RESIDUAL 635. 0.21 0.16 0.65 167. 317. 140. 102. 30. 318. 0. 16 GTAC16 GT-HRSG-16 POWR ٥. 16 GTAC16 GT-HRSG-16 HEAT 491. 929 410. 300. 88. -618. 929. RESIDUAL 311. 0.35 0.32 0.44 653. 0.19 0.16 0.63 149, 325. 131. 102, 30. 328. 0. 653. RESIDUAL 17 GTWC16 GT-HRSG-16 POWR Ο. 17 GTWC16 GT-HRSG-16 HEAT 466. 1015. 410. 320. .94 . 0. -679. 1015.RESIDUAL 336. 0.31 0.32 0.40

ILSE PEC ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

0

PAGE

3		XX ON THE OWNER OF THE OWNER OW	FUEL	ERGY	SAVED BY P	œ	ONA (ECS**	CHOULT NACAL TO DEC	S011271 C*0	0	VEAD	Ç	
S MIL ZOI	משטיים ח		- 1	POWE	E D	∢	0.250		5			1		į
UTILITY FUEL COAL		į		i	X	ວັ	2	BIUXIUXXB) 	WA : EX	50 x x 0 1 x 0 1 x 2			+ 400
	WASTE FUEL USED 10**6 BTU/HR	SAVED= SAVED= NG-NET 10**6	FUEL USED 10**6 BTU/HR	PROCES HEAT 10**6 BTU/HR	PROCES POWER 10xx6 BTU/HR	MW	AUX PROCES BOILR 10**6 BTU/HR	FUEL USED 10**6 BTU/HR	FUEL FUEL SITE USED 10**6	TOTAL+ UTILIT 10xx6 BTU/HR	L	T ESA	FACTR FACTR	A CTR
18 CC1626 GTST-16/26 PGWR 18 CC1626 GTST-16/26 HEAT	æ⊩ 0.0	149.	263. 1373.	79.	102.	30.	390. 0.	-1349.	653, RESTDUAL 1373, RESTDUAL	653. 24.	00	0.19 0.36	0.16	0.63
19 CC1622 GTST-16/22 PGWR 19 CC1622 GTST-16/22 HEAT	0.0	. 156. 735.	266. 1251.	87. 410.	102.	30.	380.	-1183.	646.RESIDUAL 1251.RESIDUAL	646. 68.	00	0.19	0,16 0,38	0.63
20 CC1222 GTST-12/22 PGWR 20 CC1222 GTST-12/22 HEAT	0 0	. 158. 739.	265. 1242.	410.	102.	30.	379. 0.	-1179.	644. RESIDUAL 1242. RESIDUAL	644.	00	0.20	0.16	0.64
21 CC0822 GTST-08/22 PGWR 21 CC0822 GTST-08/22 HEAT	æ⊢ .00	169.	279. 1049.	108.	102. 384.	30. 113.	354.	0. -881.	633. RESIDUAL 1049. RESIDUAL	633. 168.	00	0.21	0.16	0.65
22 STIG15 STIG-15-16 POWR 22 STIG15 STIG-15-16 HEAT	& ⊢	55.	269. 31538.	410.	102. 12016.	30.	478.	0. •37231.	747. RESI DUAL 31538. RESI DUAL	747,	00	0.07	0.14	0.55
23 STIG10 STIG-10-16 FOWR 23 STIG10 STIG-10-16 HEAT	α F	79.	285.	38. 410.	102.	30, 326,	438.	0. -3153.	723. RESIDUAL 3094. RESIDUAL	723.	00	0.10	0.14	0.57
24 STIGIS STIG-1S-16 POWR 24 STIGIS STIG-1S-16 HEAT	0.0	90.	305. 1945.	410.	102. 652.	30.	407.	-1717.	712. RESIDUAL 1945. RESIDUAL	712.	00	0.11	0,14	0.58
25 DEADV3 DIESEL-ADV PGWR 25 DEADV3 DIESEL-ADV HEAT	٦٣ 0.0	120. 763.	276. 1760.	64. 410.	102. 653.	30.	407. 0.	0.	683. RESIDUAL 1760. RESIDUAL	683.	00	0.15	0.15	0.60
26 DEADV2 DIESEL-ADV FOWR.	æ⊢ 0.0	. 126. . 740.	276. 1614.	70,	102, 599,	30. 176.	400.	0. -1552.	676.RESIDUAL 1614.RESIDUAL	676. 63.		0.16	0.15	0.61
27 DEADV1 DIESEL-ADV POWR	0.0	171.	276. 1049.	108.	102. 389.	30.	355. 0.	0. -896;	631. RESIDUAL 1049. RESIDUAS	631. 153.		0.21	0.16	0.65
28 DEHTPM ADV-DIESEL POWR	7 T	. 572.	292. 947.	127. 410.	102. 332.	30.	333. 0.	0. -716.	626. RESIDUAL 947. RESIDUAL	626. 230.	00	0.22	0.16 0.35	0.66
29 DESGA3 DIESEL-SGA POWR 29 DESGA3 DIESEL-SGA HEAT	# 0.0	. 103. 746.	284 . 2061 .	56. 410.	102.	30. 218.	416.	-2006.	700.DISTILLA 2061.DISTILLA	700. 56.	00	0,13	0.15	0.59
29 DESGA3 DIESEL-SGA POWR	α ⊢	. 103.	284.	56. 410.	102. 744.	30.	416. 0.	0. -2006.	700.RESIDUAL 2061.RESIDUAL	700. 56.	00	0.13	0.15 0.36	0.59
HONE														agric.

GENERAL ELECTRIC COMPANY SENERATION SECHNOLOGY ALTERNATIVES S

COGENERATION CECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE

9

18SE PEG ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 10102 MW 30.00 PROCESS MILLIONS BTU/HR 410.0 PROCESS TEMP(F) 300. PRODUCT NASA-CLBR#2 HOURS PER YEAR 8000.

POWER TO HEAT RATIO 0.250 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 0. HOT WATER BTUX10**6= 0. WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE UTILIT USED 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 0. 110. 284. 62. 102. 30. 409. 0. 693. DISTILLA 693. 0.14 0.15 0.59 30 DESGA2 DIESEL-SGA HEAT ٥. 721. 1864. 673. 197. 410. 1864, DISTILLA 0. -1783.81. 0.28 0.36 0.22 30 DESGA2 DIESEL-SGA POWR 0. 110. 284. 62. 102. 30. 409. ٥. 693, RESIDUAL 693. 0.14 0.15 0.59 30 DESGA2 DIESEL-SGA HEAT 721. 673. 197. 0. 1864. 410. 0. -1783. 1864. RESIDUAL 81, 0.28 0.36 0.22 31 DESGA1 DIESEL-SGA POWR 170 284 114. 102 30. 349 0 632. DISTILLA 632 0.21 0.16 0.65 31 DESGAT DIESEL-SGA HEAT 613. 1022. 410. 369. 108. ٥. -834. 1022. DISTILLA 189. 0.37 0.36 0.40 31 DESGA1 DIESEL-SGA POWR 170. 284. 114. 102. 30. ٥. 345. 0. 632. RESIDUAL 632. 0.21 0.16 0.65 31 DESCAI DIESEL-SCA HEAT 613. 1022. 410. 369. 108. 0. -834 1022. RESIDUAL 189 0.37 0.36 0.40 32 GTSGAD GT-HRSG-10 POWR 0. 163. 351. 164. 102. 30. 289. 0. 0.20 0.16 0.64 640. DISTILLA 640. 32 GTSGAD GT-HRSG-10 HEAT 0. 406. 875. 410. 256. 75. 0. 479. 875. DISTILLA 396. 0.32 0.29 0.47 33 GTRADS GT-85RE-08 POWR 0. 155. 102. 287. 104. 30. 360. 0. 647. DISTILLA 647, 0.19 0.16 0.63 33 GTRAO8 GT-85RE-08 HEAT 614. 410. 405. 1134.DISTILLA 0.35 0.36 0. 1134. 119. 0. -946. 189. 0 0.36 34 GTRA12 GT-85RE-12 POWR 158 286 105 102 30 359 645. DISTILLA 0.20 0.16 0. 645 0.64 34 GTRA12 GT-85RE-12 HEAT 410. 399. 117. 1115. DISTILLA 0.36 0.36 0.37 615. 1115. 0. -928. 187. 35 GTRA16 GT-85RE-16 POWR 0. 153. 293. 112. 102. 30. 351. 0. 644. DISTILLA 644. 0 0.20 0.16 0.64 35 GTRA16 GT-85RE-16 HEAT 580. 1075. 410. 375. 222 110. 0. -853. 1075. DISTILLA 0.35 0.35 0.38 36 GTR208 GT-60RE-08 POWR 157. 320. 134. 102. 30. 325. ٥. 645. DISTILLA 645. 0.20 0.16 0.64 36 GTR208 GT-60RE-08 HEAT 482. 982. 410. 314. 92. 0. -682. 982. DISTILLA 320. 0.33 0.32 0.42 37 GTR212 GT-60RE-12 POWR 156. 310. 124. 102. 30. 336. ٥. 646. DISTILLA 646. 0 0.19 0.16 0.63 37 GTR212 GT-60RE-12 HEAT 514. 1022. 410. 337. 99. 0. -734. 1022. DISTILLA 288. 0,33 0.33 0.40 38 GTR216 GT-60RE-16 POWR 159 304 122. 102 30. 339 ٥. 643. DISTILLA 643. 0.20 0.16 0.64 38 GTR216 GT-60RE-16 HEAT 537. 1024. 410. 345. 101. -759. 1024. DISTILLA 265. 0.34 0.34 0.40 39 GTRWO8 GT-85RE-08 POWR 130. 292. 86. 102. 30. 672. DISTILLA 672. 0 0.16 0.15 0.6% 0. 381. 0. 39 GTRW08 GT-85RE-08 HEAT **917.** 1385. 486. 1385. DISTILLA 0.31 0.35 0.30 410. 142. 0. -1199. 186. 40 GTRW12 GT-85RE-12 POWR 138. 281, 84. 102. 30. ٥. 665. DISTILLA 665. 0.17 0.15 0.62 Ω. 40 GTRW12 GT-85RE-12 HEAT 671. 1370. 410. 499. 146. 1370.DISTILLA 0.33 0.36 0.30 0. -1239. 131.

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

10

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 10102 MW 30.00 PROCESS MILLIONS BTU/HR 410.0 PROCESS TEMP(F) 300, PRODUCT NASA-CLBR#2 HOURS PER YEAR 8000.

POWER TO HEAT RATIO 0.250 UTILITY FUEL COAL. WASTE FUEL EGV BTU*10**6= O. HOT WATER BTU*10**6= ٥. FUEL COGEN COGEN AUX WASTE COGEN UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRWIE GT-85RE-16 POWR 139. 287. 90. ٥. 663. DISTILLA 663. 0. 102. 30. 376. 0 0.17 0.15 0.62 41 GTRW16 GT-85RE-16 HEAT 633. 1306. 410. 466. 137. 0. -1137. 1306.DISTILLA 169. 0 0.33 0.36 0.31 42 GTR308 GT-60RE-08 POWR 123. 330. 113. 102. O. 679 DISTILLA ۵. 30. 349. 679. 0 0.15 0.15 0.60 42 GTR308 GT-60RE-08 HEAT 0. 445. 1193. 410. 370. 108. 0. -836. 1193.DISTILLA 357. 0 0.27 0.31 0.34 43 GTR312 GT-60RE-12 POWR 140 299. 102. 0. 662. DISTILLA 662 102. 30. 363. 0 0.17 0.15 0.62 43 GTR312 GT-60RE-12 HEAT 565. 1205. 410. 412. 0. -968. 1205. DISTILLA 0 0.32 0.34 0.34 121. 237. 103. 663. DISTILLA 44 GTR316 GT-60RE-96 POWR 302. D. 663. 0 0.17 0.15 0.62 **a**. 140. 102. 30. 361. 44 GTR316 GT-60RE-16 HEAT 553. 1198. 410. -949. 1198.DISTILLA 249. 0 0.32 0.34 0.34 406. 119. 0. 45 FCPADS FUEL-CL-PH POWR 30. ٥. 698. 0. 104. 269. 46. 102. 428. 698, DISTILLA 0 0.13 0.15 0.59 45 FCPADS FUEL-CL-PH HEAT 0. -2544. 2412. DISTILLA -132. 0 0.28 0.38 0.17 935. 2412. 410. 916. 269. 46 FCMCDS FUEL-CL-MO POWR 30. 414. 0. 663. DISTILLA 663. 0.17 0.15 0.62 0. 140. 248. 58. 102. n 46 FCMCDS FUEL-CL-MO HEAT 1760. 0. -1946. 1760.DISTILLA -186. 0 0.36 0.41 0.23 0. 988. 410. 725. 212.

70-08114 -W#

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

11

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20111 MW 1.94 PROCESS MILLIONS BTU/HR 24.0 PROCESS TEMP(F) 250, PRODUCT MEAT-PACKING HOURS PER YEAR 2100.

POWER TO HEAT RATIO 0.276 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 0. HOT WATER BTU: 10**6= 10. COGEN COGEN COGEN AUX WASTE FUEL UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT **FUEL** SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT, POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10×*6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR DTU/HR BTU/HR BTU/HR 0 0. O ONOCGN N O C O G O N 0. 0. 0. 0. O. 0. 28. 21. 28. RESIDUAL 49. 0.14 0.49 1 STM141 STM-TURB-1 POWR 13. 34. 22. 36. RESIDUAL 10 0.26 0.18 0.67 0. 7. 2. 2. ٥. 36. 24. 1 STM141 STM-TURB-1 HEAT 0. 14. 37. 7. 2. 0. -2. 37. RESIDUAL 35, 10 0.28 0.29 0.65 1 STM141 STM-TURB-1 POWR 34. 22. 7. 0. 13. 2. 2. О, 36. COAL-FOD 36. 10 0.26 0.18 0.67 1 STM141 STM-TURB-1 HEAT ٥. 14. 37. 24. 7. 2. O. -2. 37. COAL~FGD 35. 10 0.23 0.20 0.65 1 STM141 STM-TURB-1 POWR 22. 36. COAL-AFB 13. 34. 2. 2. 0. 36. 10 0.26 0.18 0.67 1 STM141 STM-TURB-1 HEAT 7. 37. COAL-AFB 14. 37. 24. 2. 0. -2, 35. 10 0.28 0.20 0.65 2 STM088 STM-TURB-8 POUR 41. 28. 41. RESIDUAL 10 0.17 0.16 0.59 41. 2 STMOBB STM-TURB-8 HEAT 35. 24. 6. 35. RESIDUAL 10 0.23 0.15 0.63 11. 38. 2 STMO88 STM-TURB-8 POWR 8. 41. 28. 7. -5. 41.COAL-FGD 10 0.17 0.16 0.59 0. 2. 0. 41. 2 STM088 STM-TURB-8 HEAT 35. COAL-FGD 11. 35. 24. 6. 2. 0, 3. 38. 10 0.23 0.15 0.63 7. 2 STM088 STM-TURB-8 POWR 0. 8. 41. 28. 2. -5. 0. 41. COAL-AFB 41. 10 0.17 0.16 0.59 2 STMO88 STH-TURB-8 HEAT 35. 35. COAL-AFB 38. 10 0.23 0.15 0.63 11. 24. 6. 2. 0. 3. 10 0.26 0.18 0.66 3 PFBSTM PFB-STHTB- POUR 0. 26. 15. 7. 10. 36. COAL-PFB 36. 0. 13. 2. 3 PFBSTM PFE-STHTB- HEAT 41.COAL-PFB 29, 10 0.33 0.26 0.59 0. 20. 41. 24. 10. 3, 0. -12. 10 0.26 0.18 0.66 4 TISTMT TI-STMTB-1 POWR 13. 22. 12. 7. 0. 36. RESIDUAL 36, 4 TISTMT TI-STITE-1 HEAT 0. 26. 44. 24. 13. 4. ۵. -21. 44. RESIDUAL 23. 10 0.37 0.30 0.54 4 TISTMT TI-STHYB-1 POUR 36. COAL 36. 10 0.26 0.18 0.66 0. 13. 22. 12. 7. 2. 14. 0. 4 TISTMT TI-STHIB-1 HEAT 26. 44. 24. 13. 4. 0. -21. 44.CGAL 23. 10 0.37 0.30 0.54 47. RESIDUAL 47. 10 0.04 0.14 0.51 5 TIHRSG THERMIONIC POUR Ω. 2. 47. 32. 7. 2. -9. 0. 41, 5 TIHRSG THERMIONIC HEAT 35. 24. 5. 0. 5. 35. RESIDUAL 10 0.17 0.12 0.59 ο. 1. 32. 47. CUAL 47. 10 0.04 0.14 0.51 5 TIHRSG THERITIONIC POUR 47. 2. -9, O. 2. 5 TIHRSG THERMIONIC HEAT 24. 0. 5. 35.COAL 41. 10 0.17 0.12 0.59 Ω. В. 35. 5. 38. 0 0.21 0.17 0.62 6 STIRL STIRLING-1 POUR 10. 38. DISTILLA 10. Ω. 0 0.32 0.30 0.45 6 STIRL STIRLING-1 HEAT 0. 25. 53. 24. 16. Ω. -29. 53. DISTILLA 24.

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

PAGE

12

INDUSTRY 20111 MW 1.94 PROCESS MILLIONS BTU/HR 24.0 PROCESS TEMP(F) 250. PRODUCT MEAT-PACKING HOURS PER YEAR 2100.

POWER TO HEAT RATIO 0.276 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 0. HOT WATER BTU*10**6= 10. WASTE FUEL COGEN COSEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FESR POWER HEAT FAIL FUEL SAVED= FUEL PROCES PROCES MW PROCES 'FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 0. 10. 22. 10. 7. 2. 17. 0. 38. RESIDUAL 38. 0.21 0.17 0.62 6 STIRL STIRLING-1 HEAT 0. 25. 53. 24. 16. 5. 0. -29. 53. RESIDUAL 24. 0.32 0.30 6 STIRL STIRLING-1 POWR 10. 22. 10. 7. 0. 2. 17. O. 38. COAL 38. 0 0.21 0.17 0.62 6 STIRL STIRLING-1 HEAT 25. 53. 24. 5. ٥, 16. 0. -29. 53. COAL 24. 0.32 0.30 0.45 7 HEGT85 HELIUM-GT- POWR 9. 21. 0 40. COAL-AFB 8. 19. 40. 10 0.19 0.17 0.60 7 HEGT85 HELIUM-GT- HEAT 28. 24. 64. 0. -43. 64. COAL-AFB 0.31 0.32 8 HEGT60 HELIUM-GT- POWR 7. 26. 10. 7. 17. 0. 42. COAL-AFB 0.13 0.16 0.57 42. 10 8 HEGT60 HELIUM-GT- HEAT 16. 63. 24. 16. -30. 63. COAL-AFB 0,20 33. 10 0.26 0.38 9 HEGTOO HELIUM-GT- POWR 0. 38. 20. 7. 6. 2. 5. ٥. 43. COAL-AFB 43. 0.12 0.15 0.56 9 HEGTOO HELIUM-GT- HEAT 7. 46. 24. 46. COAL-AFB 0. -5. 42. 0.14 0.18 0.52 10 FCMCCL FUEL-CL-MO POWR 0. 11. 22. 10. 7. 2. 16. ٥. 38. COAL 38. 10 0.23 0.17 0.63 10 FCMCCL FUEL-CL-MO HEAT 0. 26. 50. 24. 15. 4. 0. -27. 50. COAL 23. 10 0.34 0.30 0.48 11 FCSTCL FUEL-CL-ST POWR 12. 16. 6. 21. 0 37. COAL 37. 10 0.24 0.18 0.64 11 FCSTCL FUEL-CL-ST HEAT 47. 66. 24. 27. n. -64. 66. COAL 0.42 0.41 0.37 12 IGGTST INT-GAS-GT POWR 9. 21. 8. 7. n 2. 19. 0. 39, COAL 39. 10 0.19 0.17 0.61 12 IGGTST INT-GAS-GT LEAT 0 28. 61. 24. 19 0. -40. 61.COAL 21. 10 0.31 0.32 0.39 6. 13 GTSOAR GT-HRSG-10 POWR ٥. 23. 10. 7. 0. 39. 10. 2. 16. 39. RESIDUAL 10 0.21 0.17 0.62 13 GTSCAR GT-HRSG-10 HEAT 0. 23. 53. 24. 15, 0. -27. 53. RESIDUAL 26. 10 0.31 0.29 0.45 14 GTACOS GT-HRSG-OS POWR 25. 38. 11. 12, 7. 2. 14. 0. 38. RESIDUAL 10 0.22 0.17 0.63 14 GTACO8 GT-HRSG-08 HEAT 47. 24. 47. RESIDUAL 28. ٥. 21. 13. 4. 0. -13. 10 0.31 0.27 0.51 15 GTAC12 GT-HRSG-12 POWR 22 38. RESIDUAL 10 0. 38 10 0.23 0.17 0.63 11. 16 15 GTAC12 GT-HRSG-12 HEAT 26. 51. 24. 15. 0. -28. 51. RESIDUAL 23. 10 0.34 0.31 0.47 16 GTAC16 GT-HRSG-16 POWR 20. 7. 0. 38. RESIDUAL 38. 0.23 0.17 0.63 0. 11. 9. 2. 17. 10 16 GTAC16 GT-HRSG-16 HEAT 29. 53. 24. 17. ٥. -33. 53. RESIDUAL 20. 10 0.35 0.32 0.45 17 GTWC16 GT-HRSG-16 POWR 7. 39. 0.17 21. 0. 39. RESIDUAL 10 0.20 0.61 10. 8. 18. 17 GTWC16 GT-HRSG-16 HEAT 0. 27. 60. 24. 19. 5. 0. -38. 60. RESIDUAL 22. 10 0.31 0.32 0.40

-

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

18SE PEO ADV DESIGN ENGR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20111 MW 1.94 PROCESS MILLIONS BTU/HR 24.0 PROCESS TEMP(F) 250. PRODUCT MEAT-PACKING HOURS PER YEAR 2100.

	UTILI	TY FUEL	-	COAL				POWE			0.276 EL EQV		*6=	O. HOT	WATER BY	TU*10**6	i= 1:	ο.	
					WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	
					FUEL	SAVED=	FUEL	PROCES	PROCES	MW	PROCES	FUEL	FUEL	FUEL	TOTAL+			FACTR	FACTI
					USED	NO-NET	USED	HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				
					10**6	10**6	10**6	10**6	10**6		10**6	10**6	10**6		10**6				
					BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/H	3	BTU/HR				
	11606	OTST-16	: /26	DAUD	ο.	10.	16.	5.	7.	2.	23.	0.	30	RESIDUAL	39.	10	ñ 20	0.17	0.6
		GTST-16					84.		34.		0.			RESIDUAL				0.40	
		GTST-16					17.		7.					RESIDUAL				0.17	
9 CC	1622	GTST-16	5/22	HEAT	0.	47.	76.	24.	30.	9.	0.	-74.	76	. RESIDUAL	2.	10	0.38	0.40	0.3
20 CC	1222	GTST-12	2/22	POWR	0.		17.	5.	7.	· 2.	22.	0.		RESIDUAL				0.17	
O CC	1222	GTST-12	2/22	HEAT	٠.	47.	76.	24.	30.	9.	0.	-74.	76	RESIDUAL	2.	10	0,38	0.40	0.3
21 CC	0822	GTST-08	3/22	POWR	٥.	11.	17.	6.	7.	2.	21.	٥.	38	RESIDUAL	38.	10	0.22	0.17	0.6
		GTST-08			0.	41.	64.	24.	25.	7.		-56.	64	RESIDUAL	8.	10	0,39	0.38	0.3
22 67	riois	STIG-15	-1C	DAME	ο.	4.	17.	0.	7.	2.	28.	0.	45	RESIDUAL	45.	10	0.07	0.15	0.5
		ST1G-15	-		0.				703.			-2177.		RESIDUAL				0.38	
		STIG-10							7.					RESIDUAL				0.15	
23 ST	LIGIO	STIG-10)-16	HEAT	0.	50.	181.	24.	65.	19.	Ο.	-183.	181	RESIDUAL	-1.	U	0.22	0.36	0.13
24 ST	TIG1S	STIG-18	s-16	POVR	0,	6.	20.	4,	7.	2.		0.		RESIDUAL				0.15	
24 ST	rigis	ST10-15	-16	HEAT	0,	34.	114.	24.	38.	11.	0.	-99.	114	RESIDUAL	15.	10	0.23	9.34	0.2
25 DF	FADV3	DIESEL-	-ADV	PAWR	0.	10.	18.	6.	7.	2.	21.	٥.	39	RESIDUAL	39.	10	0.20	0.17	0.6
		DIESEL-			o.		72.		27.				72	RESIDUAL	9.	0	0.36	0.37	0.3
	- 4 - 5 \ 4 - 6	O.L.COPI	454	501.15	_	10	18.	6.	7.	2.	21,	0.	20	RESIDUAL	39,	11	0 20	0.17	0.6
		DIESEL-					72.		27.					RESIDUAL		'i		0.37	
26 NE	EAUV2	DI ESEL-	-AUV	HEA I	0.	40.	72.	24.	٤,,	0.	٥.	05.	,	. NEGI DONE	3.	•	0.00		
27 DE	EADV1	DIESEL-	-ADV	POWR	0.	12.	18.	7.	7.	2.	20,	Ō.	37	RESIDUAL			0.24		
		DIESEL-					58.	24.	21.	6.	0.	-46.	58	RESIDUAL	11.	1	0.39	0.37	0.4
אר אכ	EHTPM	ADV-DIE	SEI	PRUP	٥.	12.	18.	8.	7.	2.	19.	٥.	37	RESIDUAL	37.	10	0.24	0.18	0.6
		ADV-DIE					55.				- (ö.			RESIDUAL		0	0.40	0.37	
	-0-4-	D. I = 0 = 1		0415	_			_	-	_	01	^	40	.DISTILLA	40.	0	0 19	0.17	0.6
		DIESEL-							7. 27.					DISTILLA DISTILLA				0.36	
29 DE	LSUAS	DIESEL-	SUA	HEAT	0.	38.	76.	24.	21.	8.	<u> </u>			. DISTILLA			<u> </u>		
29 DF	ESMAS	DIESEL-	-SGA	POWR	٥.	9.	18.	6.	7.	2.	21.	0.	40	RESIDUAL	40.	0	0.19	0.17	0.6
		DIESEL-					76.							RESIDUAL	11.	0	0,33	0.36	0.3

C-Section - National Strategy of National Strategy

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20111 MW 1.94 PROCESS MILLIONS BTU/HR 24.0 PROCESS TEMP(F) 250. PRODUCT MEAT-PACKING HOURS PER YEAR 2100.

POWER TO HEAT RATIO 0.276 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= 10. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUFI. SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR ٥. 9. 7. 18. 6. 2. 21. C. 40. DISTILLA 40. 1 0.19 0.17 0.60 30 DESGA2 DIESEL-SGA HEAT Ω. 38. 76. 24. 27. -65. 76. DISTILLA 8. ٥. 11. 1 0.33 0.36 0.32 30 DESGA2 DIESEL-SGA POWR O. 9 18. ß. 7. 21. 40 RESIDUAL 2. ٥. 40. 0.19 0.17 0.60 30 DESGA2 DIESEL-SGA HEAT 0. 38. 76. 24. 27. 8. 0. -65. 76. RESIDUAL 11. 1 0.33 0.36 0.32 31 DESGA1 DIESEL-SGA POWR 0. 12. 18. 8. 7. 19 G. 37. DISTILLA 37 0.24 0.18 0.64 31 DESGA1 DIESEL-SGA HEAT 20. 35. 57. 0. 24. 6. 0. -43. 57. DISTILLA 13. 0.39 0.36 0.42 31 DESCA! DIESEL-SCA POWR C. 12. 18. 8. 7. 2. 19. ٥. 37. RESIDUAL 37. 1 0.24 0.18 0.64 31 DESGA1 DIESEL-SGA HEAT 0. 35. 57. 24. 20. 6. Ο. -43. 57. RESIDUAL 13. 0.39 0.36 0.42 32 GTSGAD GT-HRSG-10 POWR 0. 23. 7. 2. 16. 0. 38. DISTILLA 38. 10 0.22 0.17 0.63 11. 11. 32 GTSOAD GT-HRSG-10 HEAT 50. 24. 24. 15. 4. ٥. -25. 50. DISTILLA 25. 10 0.32 0.29 0.48 33 GTRAOS GT-85RE-08 POWR 7. 7. 10 0.21 0.17 0.62 0. 10. 19. 2. 20. 0. 39. DISTILLA 39. 33 GTRAO8 GT-85RE-08 HEAT 0. 36. 64. 24. 23. 7. 0. -50. 64. DISTILLA 13. 10 0.36 0.36 0.38 34 GTRA12 GT-85RE-12 POWR ٥. 10. 18. 7. 20 0. 38. DISTILLA 38. 10 0.21 0.17 0.62 7. 34 GTRA12 GT-85RE-12 HEAT 0. 10 0.36 0.36 0.38 0. 36. 63. 24. 23. 7. -50. 63. DISTILLA 13. 35 GTRA16 GT-85RE-16 POWR 10 0.21 0.17 0.62 10. 19. 7. 0. 38. DISTILLA 38. 0. 7. 2. 19. 35 GTRA16 GT-85RE-16 HEAT 10 0.36 0.35 0.39 0. 34. 61. 24. 21. 6. 0. -46. 61.DISTILLA 15. 36 GTR208 GT-60RE-08 POWR 38. DISTILLA 38. 10 0.21 0.17 0.62 0. 10. 21. 9. 7. 2. 18. 0. 36 GTR208 GT-GORE-08 HEAT 28. 56. 24. 18. 5. ٥. -35. 56. DISTILLA 21. 10 0.34 0.32 0.43 37 GTR212 GT-60RE-12 POWR 10. 2C. 7. 2. 19. 0. 39. DISTILLA 39. 10 0.21 0.17 0.62 ٥. 8. 37 GTR212 GT-60RE-12 HEAT 0. 30. ' 58. 24. 19. 6. ٥. -40. 58. DISTILLA 19. 10 0.34 0.33 0.41 38 GTR216 GT-60RE-16 POWR 20. 19. n. 38. DISTILLA 38. 10 0.22 0.17 0.63 11 38 GTR216 GT-GORE-16 HEAT 58. 24. 20. 6. 0. -41. 58. DISTILLA 18. 10 0.35 0.34 0.41 0. 31. 40. 10 0.18 0.16 0.60 0. 40. DISTILLA 39 GTRW08 GT-85RE-08 POWR 0. 9. 19. 6. 7. 21. 39 GTRWO8 GT-85RE-08 HEAT -65. 78. DISTILLA 13. 10 0.31 0.35 0.31 0. 36. 78. 24. 0. 40. 10 0.19 0.17 0.60 7. 22. 40. DISTILLA 40 GTRW12 GT-85RE-12 POWR ٥. 9. 18. 6. 2. 0. 40 GTRW12 GT-85RE-12 HEAT 39. 78. 24. 28. 8. 0. -68. 78. DISTILLA 10. 10 0.33 0.36 0.31

PAGE 14

ISSE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 15

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20111 MW 1.94 PROCESS MILLIONS BTU/HR 24.0 PROCESS TEMP(F) 250. PRODUCT MEAT-PACKING HOURS PER YEAR 2100.

POWER TO HEAT RATIO 0.276

UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 0. HOT WATER BTU*10**6= 10.

						WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET*	FAIL	FESR	POWER	RHEAT
						FUEL USED	SAVED= NO-NET	USED	PROCES HEAT	POWER	MW ELECT	PROCES BOILR	USED	FUEL	FUEL USED	TOTAL+ UTILIT			FACTR	FACTR
						10**6 BTU/HR	-10**6 BTU/HR	10**6 BTU/HR	10**6 BTU/HR	10**6 BTU/HR		10**6 BTU/HR	10**6 BTU/HR	10**6 BTU/HR		10**6 BTU/HR				
41	GTRW16	G	T-85R6	E-16	POWR	0.	9.	19.	6.	7.	2.	21.	Q,	40.	DISTILLA	40.	10	0.19	0.17	0.60
	GTRW16					o.	37.	74.		27.	8.		-62.	. 74.	DISTILLA	12.	10	0.33	0.36	0.32
42	GTR308	G	T-SORE	-08	POWR	0.	8.	21.	8.	7.	2.	19.	0.	41.	DISTILLA	41.	10			
42	GTR308	G	T-60RE	30-E	HEAT	0.	26.	66.	24.	21.	6.	0.	-44.	66,	DISTILLA	23.	10	0,28	0.31	0.36
43	GTR312	G	T-60RE	<u>-12</u>	POWR	0.	9.	19.	7.	7.	2.		0.		DISTILLA				0.17	
43	GTR312	G	T-60RE	- 12	HEAT	0.	33.	69.	24.	24.	7.	0.	-53.	69.	DISTILLA	16.	10	9.32	0.34	0.35
44	GTR316	G	T-60RE	E-16	POWR	٥.		20.	7.	7.	2.				DISTILLA		10			
44	GTR316	G	T-60RE	<u> - 16</u>	HEAT	0.	32.	69.	24.	23.	7.	0.	-52.	<u>69.</u>	DISTILLA	17.	10	0.32	0.34	0.35
45	FCPADS	F	UEL-CL	PH	POWR	0.	9.	17.		7.	2.		0.		DISTILLA		0			
45	FCPADS	F	UEL-Ci	PH	HEAT	0.	43.	81.	24.	31.	9.	0.	-76.	81.	DISTILLA	5.	0	0.35	0.38	0.29
	FCMCDS							16.	4.	7.	2.		0.		DISTILLA		10			0.60
46	FCMCDS	F	UEL-C	MO	HEAT	ο.	58.	103.	24.	42.	12.	0.	-112.	103.	DISTILLA	-9,	C	0.36	0.41	0.23

PAGE PRINTING SYSTEM- PI185-02

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

•

INDUSTRY 20261 MW 1.31 PROCESS MILLIONS BTU/HR 11.0 PROCESS TEMP(F) 250. PRODUCT FLUID-MILK HOURS PER YEAR 2100.

PAGE

16

POWER TO HEAT RATIO 0.406 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU:10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR FUEL HEAT USED NO-NET USED POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 13. RESIDUAL 0 0. 0.17 0.41 O ONOCON NO COSON ٥. ٥. ٥. 13. 14. 23. RESIDUAL 1 STM141 STM-TURB-1 POWR 23. 15. 4. 1. -5. 0. 23. 10 0.15 0.20 0.48 1 STM141 STM-TURB-1 HEAT 0. 17. RESIDUAL 20. 10 0.24 0.16 0.54 17. 11. 4. 1 STM141 STM-TURB-1 POWR 4. 23. 15. 1. -5. ٥. 23. COAL-FGD 23. 10 0.15 0.20 0.48 0. 4. 1 STM141 STM-TURB-1 HEAT 17. 3. ٥. 17. COAL-FOD 20. 10 0.24 0.16 0.54 11. 1. 4. 1 STM141 STM-TURB-1 POWR 4. 23. 15. -5. ۵. 23. COAL-AFB 23. 10 0.15 0.20 0.48 1. 1 STM141 STM-TURB-1 HEAT 3. 17. COAL-AFB 10 0.24 0.16 0.54 6. 17. 0. 20. 0. 11. 1. 4. 2 STM088 STM-TURB-8 POWR 27. 27. RESIDUAL 27. 10 -0.02 0.16 0.40 19. 0. 2 STM088 STM-TURB-8 HEAT 10 0.19 0.12 0.50 5. 16. 11. 3. 1. / 0. 6. 16. RESIDUAL 22. 2 STM088 STM-TURB-8 POWR 27. -9. ٥. 27. COAL-FGD 27. 10 -0.02 0.16 0.40 ٥. -1. 19. 4. 1. 2 STM088 STM-TURB-8 HEAT 0. 16.COAL-FOD 22. 10 0.19 0.12 0.50 5. 16. 11. 6. 27. 10 -0.02 0.16 0.40 2 STM088 STM-TURB-8 POWR -1. 27. 19. 4. 1. -9. 0. 27. COAL-AFB 16. COAL-AFB 10 0.19 0.12 0.50 2 STM088 STM-TURB-8 HEAT 5. 16. 11. 0. 6. 22. 9. 17. 1. Ō. 18. COAL-PFB 18. 10 0.32 0.24 0.60 3 PFBSTM PFB-STMTB- POWR 10. 19. COAL-PFB 10 0.33 0.26 0.59 3 PFBSTM PFB-STMTB- HEAT 9. 19. 11. Ο. -1. 18. 10 0.32 0.24 0.60 4 TISTMT TI-STMTB-1 POWR 15. 8. ٥. 18. RESIDUAL 18. 0. 4 TISTMT TI-STMTB-1 HEAT 20. RESIDUAL 15. 10 0.37 0.30 0.54 12. 20. 11. -5. 1. 0. 18. COAL 10 0.32 0.24 0.60 4 TISTMT TI-STMTB-1 POWR 0. 9. 15. 8. 4. 4. 18. 10 0.37 0.30 0.54 4 TISTMT TI-STMTB-1 HEAT 12. 20. 11. 6. 2. 0. -5. 20. COAL 15. 10 -0.18 0.14 0.35 -12. 0. 32. RESIDUAL 32. 5 TIHRSG THERMIONIC POWR O. -5. 32. 22. 4. 1. 16. RESIDUAL 23. 10 0.14 0.10 0.48 5 TIHRSG THERMIONIC HEAT 16. 11. 2. 0. 7. 4. 10 -0.18 0.14 0.35 22. -12. 0. 32. COAL 32. 5 TIHRSG THERMIONIC POWR -5. 32. 1. 0. 4. 10 0.14 0.10 0.46 5 TIHRSG THERMIONIC HEAT 16. 11. 0. 7. 16. COAL 23. 20. 0 0.27 0.23 0.56 ٥. 6 STIRL STIRLING-1 POWR 14. 20. DISTILLA 15. 0 0.33 0.31 0.45 6 STIRL STIRLING-1 HEAT 12. 24. 11. 24.DISTILLA

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20261 MW 1.31 PROCESS MILLIONS BTU/HR 11.0 PROCESS TEMP(F) 250. PRODUCT FLUID-MILK HOURS PER YEAR 2100.

POWER TO HEAT RATIO 0.406 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. NOT WATER BTU*10**6* WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FESR POWER HEAT FAIL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**3 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR O. 7. 14. 7. 20. RESIDUAL 0 0.27 0.23 0.56 1. 5. 0. 20. 6 STIRL STIRLING-1 HEAT 0. 12. 24. 11. 7. 2. 0. 24. RESIDUAL -9. 15. 0.33 0.31 0.45 6 STIRL STIRLING-1 POWR Ö. 7. 14. 7. 4. 1. 5. 20. COAL 20. 0. 0 0.27 0.23 0.56 6 STIRL STIRLING-1 HEAT 7. 0. 12. 24. 11. 2. 0. -9. 24. COAL 15. 0 0.33 0.31 0.45 7 HEGT85 HELIUM-GT- POWR 20. COAL-AFB 20. 10 0.25 0.22 0.54 7 HEGT35 HELIUM-GT- HEAT 0. 13. 27. 11. 9. 3. ٥. -13. 27. COAL-AFB 10 0.32 0.32 0.40 14. 8 HEGT60 HELIUM-GT- POWR 0. 4. 17. 7. 5. 0. 22. COAL-AFB 22. 10 0.16 0.20 0.49 1. 8 HEGT60 HELIUM-GT- HEAT 29. 11 0. 29. COAL-AFB 19. 0.20 0.26 0.38 -9 10 9 HEGTOO HELIUM-GT- POWR 0. 2. 25. 13. 4. -3. 0. 25. COAL-AFB 1. 25. 10 0.06 0.18 0.43 9 HEGTOO HELIUM-GT- HEAT 0. 3. 21. 11. ٥. 21. COAL-AFB 2. 24. 10 0.13 0.16 0.47 10 FCMCCL FUEL-CL-MC POWR 7. ٥. 15. ٥. 19. COAL 19. 10 0.28 0.23 0.57 10 FCMCCL FUEL-CL-MO HEAT 23. 11. 7. 0. 12. 2. ٥. -8. 23, COAL 15. 0.34 0.30 0.48 11 FCSTCL FUEL-CL-ST POWR 19. COAL 0. 19. 10 0.29 0.23 0.58 11 FCSTCL FUEL-CL-ST HEAT 22. 30. 11. 12. -25. 30. COAL 0.42 0.41 0.37 12 IGGTST INT-GAS-GT POWR 6. 6. 14. 4. 6. ٥. 21. COAL 21. 10 0.24 0.22 0.54 1. 12 TGGTST INT-GAS-GT HEAT 28. 13. 11. 9. -14. 28. COAL 14. 10 0.31 0.32 0.39 13 GTSGAR GT-HRSG-10 POWR 7. 0. 7. 15. 4. 5. 0. 20. RESIDUAL 20. 10 0.25 0.22 0.55 1. 13 GTSGAR GT-HRSG-10 HEAT 11. 24. 11. 7. 2. 0. -8. 24. RESIDUAL 16. 10 0.31 0.29 0.45 14 GTACOS GT-HRSG-CS POWR O. Ō. 7. 17. 8. 4. 20. RESIDUAL 1. 3. 20. 10 0.27 0.23 0.56 14 GTACOS GT-HRSG-08 HEAT G. 10. 22. 11. ٥. -4. 22. RESIDUAL 17. 10 0.31 0.27 0.51 15 GTAC12 GT-HRSG-12 POWR 19. RESIDUAL 10 0.28 0.23 0.57 15. 0. 19. 15 GTAC12 GT-HRSG-12 HEAT 23. RESIDUAL 12. 23. 11. -8. 15. 10 0.34 0.31 0.47 16 GTAC16 GT-HRSG-16 POWR 6. 0. 7. 10 0.28 0.23 0.56 14 4. 1. £ 0. 19. RESIDUAL 19. 16 GTAC16 GT-HRSG-16 HEAT 13 25. 11. 8. -11. 25. RESIDUAL 14. 10 0.35 0.32 0.45 17 GTWC16 GT-HRSG-16 POWR 14. 0. 7. 6. 4. 6. 0. 20. RESIDUAL 20. 10 0.24 0.22 0.54 1. 17 GTWC16 GT-HRSG-16 HEAT 13. 27. 9. 27. RESIDUAL 10 0.31 0.32 0.40 11. 3. Ó. -13. 14.

PAGE

18SE PEG ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20261 MW 1.31 PROCESS MILLIONS BTU/HR 11.0 PROCESS TEMP(F) 250. PRODUCT FLUID-MILK HOURS PER YEAR 2100.

PAGE 18

UTILIT	TY FUEL	COAL				POWE			0 0.406 EL EQV		*6=	O. HOT	WATER BT	U*10**6	i= (5.	
			WASTE		COGEN			COGEN		UTILIT			NET=	FAIL	FESR	POWER	
			FUEL	SAVED=			PROCES		PROCES		FUEL	FUEL	TOTAL+			FACTR	FACTI
			USED	NO-NET		HEAT		ELECT	BOILR	USED	SITE	USED	UTILIT				
						10**6			10**6	10**6		_	10**6				
			BIU/RK	BTU/HR	BIU/HR	B I U/HR	BIU/HR		BIU/HK	BTU/HR	BIU/H	<u> </u>	BTU/HR				
8 001626 6	STST-16/26	DHUD	ο.	7.	11.	3.	4.	1.	9.	0.	20	RESIDUAL	20.	10	0.24	0.22	
	STST-16/26		o.	23.	38.	11.	15.	5.	9. 0.	-34.		RESIDUAL	20. 4.	10		0.40	0.3
00.020	7101 10720	11601		20.	5 0.		144	٥.	٥.	-34.	30,	WEST DOVE	٦.	.0	0.37	0.40	0, 2
9 CC1622 G	TST-16/22	POWR	0.	7.	11.	4.	4.	1.	9.	0.	20.	RESIDUAL	20.	10	0.26	0.22	0.5
	TST-16/22		Ö.	21.	35.	11.	14.	4.	o.	-30.		RESIDUAL	5.	10	0.38		0.3
							• • • •	• • •					•			0.44	•••
O CC1222 G	STST-12/22	POWR	0.	7.	11.	4.	4.	1,	9.	0.	20.	RESIDUAL	20	10	0.26	0.22	0.5
0 CC1222 G	STST-12/22	HEAT	0.	22.	35.	11.	14.	4.	٥.	-29.	35.	RESIDUAL	5.	10	0.38		
			_	_	_										-		
	TST-08/22		0.	7.	12.	4.	4.	1.	8.	0.		RESIDUAL	19.		0.28		-
1 CC0822 G	STST-08/22	HEAT	Q,	19.	29.	11.	11.	3.	0.	-21.	29.	RESIDUAL	8.	10	0.39	0.38	0.3
			_			_	_	_		_							
	TIG-15-16		0.	2.	12.	0.	4.	1.	13.	0.		RESIDUAL	24.	10	0.09	-,	0.4
2 311015 5	STIG-15-16	HEA!	0.	174.	846.	11.	322.	94.	0.	-993.	846.	RESIDUAL	-147.	0	0.17	0.38	0.0
3 STIGIO S	TIG-10-16	PAUR	0.	3.	12.	2.	4.	1.	11.	0.	23	RESIDUAL	23.	10	0.13	0.19	0.4
	TIG-10-16		o.	23.	83.	11.	30.	9.	ΰ.	-79.		RESIDUAL	23. 4.	10	0.13		0.1
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TIER.	٠.	LU.	50.		50.	٠.	٠.	, .		KEOLDONE	7.		0,22	0.00	0
4 STIGIS S	T10-15-16	POVR	٥.	4.	13.	3.	4.	1.	10.	٥.	23.	RESIDUAL	23.	10	ΰ.15	0.19	0.4
	T1G-15-16		0.	15.	52.	11.	17.	5.	O.	-41.		RESIDUAL	11.		0.23		0.2
5 DEADV3 D	IESEL-ADV	POWR	ο.	7.	12.	4.	4.	1.	8.	٥.	20.	RESIDUAL	20.	10	0,26	0.22	0.5
5 DEADV3 D	IESEL-ADV	HEAT	0.	18.	31.	<u> </u>	12.	3.	0.	-22.	31.	RESIDUAL	9.	0	0.37	0.37	_0.3
	IESEL-ADV		0.	7.	12.	4.	4.	1.	8,	0.		RESIDUAL	20.	11	0,26	0.22	0.5
5 DEADV2 D	IESEL-ADV	HEAT	0.	18.	31.	11.	12.	3.	0.	-22.	31.	RESIDUAL	9.	1	0.37	0.37	0.3
2 054044 5		57115										555151141					
	I ESEL-ADV		0.	8.	12.	5.	4.	1.	7.	0.	,	RESIDUAL	19.	11	0.29	0.23	
7 DEADV1 D	ILESEL-AUV	HEAT	О.	17.	26.	11.	10.	3.	Ō.	-16.	26.	RESIDUAL	10.	1	0.40	0.37	0.4
8 DEHTPM A	DV-D1ESEI	PAUD	٥.	8.	12.	5.	4.	1.	7.	٥.	10	RESIDUAL	19.	10	0.20	0.24	0.5
B DEHTPM A			0.	16.	25.	11.	3.	3.		-15.		RESIDUAL	10.	- 10	0.40	0.24	0.4
DEIIII A	DA DIEACE	11501	J .	. 10.	٤٥.		J ,	٥,	J.	1	٤٠.	"FOI DOVE		3	5.40	J.J/	٠. ٩
9 DESGAS D	IESEL-SOA	POWR	0.	7.	12.	4.	4.	1.	8.	0.	20.	DISTILLA	20.	G	0.24	0.22	0.5
9 DESGAS D			o.	17.	32.	11.	12.	3.	o.	-22.		DISTILLA	10.	ŏ		0.36	
9 DESGA3 D	IESEL-SOA	POWR	• 0.	7.	12.	4.	4.	1.	8.	٥.	20.	RESIDUAL	20.	0	0.24	0.22	0.5
	IESEL-SOA	LICAT'	o.	17.	32.	11.	12.	3.	0.	-22.		RESIDUAL	10.	Ó		0.36	0.3

PAGE PRINTING SYSTEM- P1185-02

-- HONEYWEL

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20261 MW 1.31 PROCESS MILLIONS BTU/HR 11.0 PROCESS TEMP(F) 250. PRODUCT FLUID-MILK HOURS PER YEAR 2100.

WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= 6. UTILITY FUEL COAL 0. WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR SAVED= FUEL FUEL USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**8 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 20. DISTILLA 1 0.24 0.22 0.54 30 DESCA2 DIESEL-SCA POWR ٥. 7. 12. 4. 8. 0. 20. 4. 1 . 32. DISTILLA 0.35 0.36 0.34 30 DESCA2 DIESEL-SCA HEAT ο. 17. 32. 11. 12. 3. Ο. -22. 10. 30 DESGA2 DIESEL-SGA POWR 0.. 7. 12. 4. 4. 1. 8. 0. 20. RESIDUAL 20. 0.24 0.22 0.54 32. 0. 32. RESIDUAL 10. 0.35 0.36 0.34 30 DESGA2 DIESEL-SGA HEAT ο. 17. 11. 12. 3. -22. 1 1 0.29 0.23 0.58 31 DESGA1 DIESEL-SGA POWR Ω. 12. 19. DISTILLA 19. 0.39 0.36 0.43 9. 3. 0. -15. 26. DISTILLA 31 DESGA1 DIESEL-SGA HEAT ٥. 16. 26. 11. 11. 1 0.29 0.23 0.58 7. ٥. 19. RESIDUAL 19. 31 DESGA1 DIESEL-SGA POWR 0. 8. 12. 5. 1. 31 DESCA1 DIESEL-SCA HEAT 26. 11. 0. -15. 26. RESIDUAL 11. 0.39 0.36 0.43 0. 16. 3. 32 GTSGAD GT-HRSG-10 POWR 0. 7. 15. 7. 0. 20. DISTILLA 20. 10 0.27 0.23 0.56 4. 1. 32 GTSGAD GT-HRSG-10 HEAT G. -7. 23. DISTILLA .16. 10 0,32 0.29 0.48 ٥. 11. 23. 11. 2. 10 0.26 0.22 0.55 7. 13. 1. 7. Ō. 20. DISTILLA 20. 33 GTRAOS GT-85RE-08 POWR 0. 5. 4. 10 0.36 0.36 0.38 33 GTRA08 GT-85RE-08 HEAT 3. ٥. -19. 29. DISTILLA 11, 0. 16. 29. 11. 10. 20. DISTILLA 20. 10 0.26 0.23 0.55 34 GTRA12 GT-85RE-12 POWR 12. 11. 10. 3. ۵. -18. 29. DISTILLA 11. 10 0.36 0.36 0.38 34 GTRA12 GT-85RE-12 HEAT 0. 16. 29. 20. DISTILLA 20. 10 0.26 0.23 0.55 7. 0. 35 GTRA16 GT-85RE-16 POWR 0. 13. 5. 1. 28. DISTILLA 10 0.36 0.35 0.39 35 GTRA16 GT-85RE-16 HEAT 0. 15. 28. 11. 10. 3. 0. -17. 11. 10 0.26 0.22 0.55 o. 7. 14. Ġ. 6. ٥. 20. DISTILLA 20. 36 GTR208 GT-60RE-08 POWR 4. 1. 0.32 0.43 0.34 36 GTR208 GT-60RE-08 HEAT ٥. 13. 26. 11. 2. 0. -12. 26. DISTILLA 14. 10 10 0,26 0.22 0.55 ۵. 20. DISTILLA 20. 37 GTR212 GT-60RE-12 POWR 0. 7. 14. 6. 4. 1. 6. 10 0.34 0.33 0.41 37 GTR212 GT-60RE-12 HEAT 0. 14. 27. 11. 9. 3 0. -14. 27. DISTILLA 13. 0. 20. DISTILLA 20. 10 0.26 0.23 0.56 38 GTR216 GT-60RE-16 POWR 0. 7. 13. 5. 0.34 0.41 38 GTR216 GT-60RE-16 HEAT 0. 14. 27. Ω. -14. 27. DISTILLA 13. 0.35 0. 10 0.22 0.21 0.52 21. DISTILLA 21. 8, 39 GTRW08 GT-85RE-08 POWR 0. 6. 13. 4. 0.31 0.35 0.31 39 GTRW08 GT-85RE-08 HEAT 16. 36. 11. 13. C. -25. 36. DISTILLA 11. 0. 21. 10 0.23 0.22 0.53 21. DISTILLA 40 GTRW12 GT-85RE-12 POWR Ο. 6. 12. 4. 8. **O**. 1. 36. DISTILLA 9. 10 0.33 0.36 0.31 40 GTRW12 GT-85RE-12 HEAT 18. 36. 11. 13. 0. -27.

19

PAGE

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20261 MW 1.31 PROCESS MILLIONS BTU/HR 11.0 PROCESS TEMP(F) 250. PRODUCT FLUID-MILK HOURS PER YEAR 2100.

POWER TO HEAT RATIO 0.406

PAGE

20

UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= ٥. HOT WATER BTU*10**6= COGEN COGEN AUX WASTE FUEL COGEN UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES PROCES MW SAVED= FUEL PROCES FUEL TOTAL+ FUEL FUEL FUEL FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR 6. 13. 4. 4. 8. 0. 21.DISTILLA 10 0.23 0.22 0.53 1. 21. 41 GTRW16 GT-85RE-16 HEAT 17. 34. 11. 12. 0. -24. 34. DISTILLA 10 0.33 0.36 0.32 4. 10. 42 GTR308 GT-60RE-08 POWR 0. 6. 14. 5. 4. 7. 0. 21.DISTILLA 21. 0.21 0.21 0.52 1. 10 42 GTR308 GT-60RE-08 HEAT 30. 9. -16. 30. DISTILLA 12. 11. 15. 10 0.28 0.37 0.36 43 GTR312 GT-60RE-12 POWR 21. DISTILLA 10 0.23 0.22 0.53 6. 13. 0. 43 GTR312 GT-60RE-12 HEAT 15. 32. 11. 3. -20. 32. DISTILLA 10 0.32 0.34 0.35 11. 12. 44 GTR316 GT-60RE-16 POWR 13. 21. DISTILLA 10 0.23 0.22 0.53 0. 6. 5. 4. 8. ٥. 21. 1. 44 GTR316 GT-60RE-16 HEAT 15. 32. 11. 11. 3. ٥. -19. 32. DISTILLA 12. 10 0.32 0.34 0.35 45 FCPADS FUEL-CL-PH POWR 7. 20. DISTILLA 0.25 0.22 0.55 0. 12. 4. 4. 1. 8. 0. 20. 45 FCPADS FUEL-CL-PH HEAT 19. 34. 11. 13. 4. ٥. -26. 34.DISTILLA 0.36 0.38 0.33 8. 46 FCMCDS FUEL-CL-MO POWR 6. 11. 3. 4. 10. 0. 21.DISTILLA 21. 10 0.23 0.21 0.53 0. 1. 46 FCMCDS FUEL-CL-MO HEAT 27. 47. 11. 19. 6. 0. -47. 47. DISTILLA ٥. 0 0.36 0.41 0.23

SYSTEM- P1185-02

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

21

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20461 MW 28.50 PROCESS MILLIONS BTUZHR 659.0 PROCESS TEMP(F) 250. PRODUCT WET-CORN-MIL HOURS PER YEAR 6600.

POWER TO HEAT RATIO 0.148 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= WASTE COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED USED HEAT POWER ELECT BCILR USED SITE USED UTILIT 10**6 10**8 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COGON ٥. O. ٥. ٥. О. 775. 304. 775. COAL-FGD 1079. ٥. 0 0. 0.09 0.61 1 STM141 STM-TURB-1 POWR ٥. 189. 495. 323. 97. 29. 395. ٥. 890. RESIDUAL 890. n 0.18 0.11 0.74 : STM141 STM-TURB-1 HEAT 386. 1008 659. 198. 58. -315. 1008.RESIDUAL 693. 0 0.28 0.20 0.65 1 STM141 STM-TURB-1 PCVR 189. 495. 97. 29. 395. 0. 323. 0. 890. COAL-FOD 890. 0 0.18 0.11 0.74 1 STM141 STM-TURB-1 HEAT ۵. 386. 1008. 659. 198. 58. ٥. -315. 1008.COAL-FGD 693. 0.28 0.20 0.65 1 STM141 STM-TURB-1 POWR O. 189. 495. 323. 97. 29. 395. 890. COAL-AFB 290. 0. 0 0.18 0.11 0.74 1 STM141 STM-TURB-1 HEAT ٥. 386. 1008. 659. 198. 58. n. -315. 1008. COAL-AFB 693. 0 0.28 0.20 0.65 890. RESIDUAL ٥. 0 0.18 0.11 0.74 2 STM088 STM-TURB-8 POWR 189. 596. 410. 97. 29. 293. Ω. 890. 2 STM088 STM-TURB-8 HEAT n. 305. 959 659. 156. 46. 0. -185. 959. RESIDUAL 774. 0.24 0.16 0.69 2 STM088 STM-TURB-8 POWR 0. 189. 596. 410. 97. 29. 293. ٥. 890. COAL-FOD 890. 0 0.18 0.11 0.74 2 STM088 STM-TURB-8 HEAT 305. 959. 659. 156. 46. ٥. -185. 959. COAL-FGD 774. 0 0.24 0.16 0.69 2 STM088 STM-TURB-8 POWR C. 189. 596. 410. 97. 29. 293. ٥. 890. COAL-AFB 890. 0 0.18 0.11 0.74 2 STMO88 STM-TURB-8 HEAT 0. 305. 959. 659. 156. 46. ٥. -185. 959. COAL-AFB 774. 0.24 0.16 0.69 0.17 0.11 0.74 3 PEBSTM PEB-STMTB- POWR α. 188. 378. 223. 97. 29. 513. 0. 91. COAL -PFB 891. 3 PFBSTM PFB-STMTB- HEAT ٥. 555. 1118. 659. 287. 84. ٥. -594. 1118.COAL-PFB 524. 0 0.33 0.26 0.59 4 TISTMT TI-STMTB-1 POWR ٥. 187. 321. 173. 97. 29. 571. Ω. 892. RESIDUAL 892. 0 0.17 0.11 0.74 108. 4 TISTMT TI-STMTB-1 HEAT O. 710. 1220. 659. 370. Q. -852. 1220. RESIDUAL 369. 0.37 0.30 0.54 4 TISTMT TI-STMTB-1 POWR ٥. 187. 321. 173. 97. 29. 571. Ω. 892. COAL 892. 0 0.17 0.11 0.74 4 TISTMT TI-STMTB-1 HEAT ٥. 710. 1220. 659. 370. 108. ٥. -852. 1220. COAL 369, 0 0.37 0.30 0.54 691. 5 TIHRSG THERMIONIC POWR O. 164. 469. 97. 29. 224. 0. 915. RESIDUAL 915. 0 0.15 0.11 0.72 5 TIHRSG THERMIONIC HEAT 971. 659. 40. 971. RESIDUAL 848. 0.19 0.14 0.68 0. 231, 137. Q. -123. 5 TIHRSG THERMIONIC POWR 164. 691. 469. 97. 29. 224. 915, COAL 9:5. 0.15 0.11 0.72 0. 0. 5 TIHRSG THERMIONIC HEAT ٥. 231. 971. 659. 137. 40. Ο. -123. 971.COAL 848. 0 0.19 0.14 0.68 0 0.13 0.10 0.70 6 STIRL STIRLING-1 POUR 0. 139. 352. 159 97. 29. 588. ο. 940.DISTILLA 940. 6 STIRL STIRLING-1 HEAT 577. 1457. 659. 403. 118. -955. 1457. DISTILLA 502. 0 0.28 0.28 0.45

GENTRAL ELECTRIC COMPANY

COGENE TO TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE

22

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20461 MW 28.50 PROCESS MILLIONS BTU/HR 659.0 PROCESS TEMP(F) 250. PRODUCT WET-CORN-MIL HOURS PER YEAR 6600.

POWER TO HEAT RATIO 0.148 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BIUX10**6= ٥. AUX WASTE FUE! COGEN COGEN COGEN UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL. TOTAL+ FACTR FACTR NO-NET USED POWER ELECT USED HEAT BOILR USED SITE USED UTILIT 10**6 10**6 10**8 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 352. Ω. 139. 159. 97. 29. 588. 0. 940. RESIDUAL 940. 0 0,13 0.10 0.70 6 STIRL STIRLING-1 HEAT 0. 577. 1457. 659, 403. 118. 0. -955. 1457.RESIDUAL 502. 0.28 0.28 0.45 6 STIRL STIRLING-1 POWR 0. 352. 139. 159. 97. 29. 588. 940, COAL 0. 940. 0.13 0.10 0.70 6 STIRL STIRLING-1 HEAT ٥, 577. 1457. 659. 403. 118. -955. 502. ٥. 1457. COAL G. 28 0.28 0.45 7 HEGT85 HELIUM-GT- POWR 98 303 97. 82. 29. 678. ٥. 981.COAL-AFB 981 10 0.09 0.10 0.67 7 HEGT85 HELIUM-GT- HEAT 783. 2424. O. 659. 778. 228. 0. -2128. 2424. COAL-AFB 296. 0.24 0.32 0.27 8 HEGT60 HELIUM-GT- FOWR 0. 96. 375. 143. 97. 29. 607. 0. 983. COAL-AFB 983. 0.09 0.10 0.67 8 HEGT60 HELIUM-GT- HEAT 0. 445. 1734 659. 449 132. 0. -1100. 1734. COAL-AFB 635. 0.20 0.26 0.38 9 HEGTOO HELIUM-GT- FOWR 0. 88. 553. 287. 97. 29. 438. ٥. 991.COAL-AFB 991. 10 0.08 0.10 0.67 * HEGTOO HELIUM-GT- HEAT 203. 1271. 659. 224. 1271.COAL-AFB 876. n. 66. 0. -395. 0.14 0.18 0.52 10 F MCC! FUEL-CL-MO POWR 0. 163. 320. 152. 97. 29. 596. 0. 916. COAL 916. 0.15 0.11 0.72 10 FCMCCL FUEL-CL-MO HEAT 706. 1386. 659. 123. 0. 421. 0. -1012. 1385. COAL 373. 0 0.34 0.30 0.48 11 FCSTCL FUEL-CL-ST POWR 0. 170. 235 86. 97. 29. 674. 0. 909. COAL 909. 10 0.16 0.11 0.72 11 FCSTCL FUEL-CL-ST HEAT ۵. 1299. 1800 659. 744 218. 0. -2020. 1800. COAL -220. 0 C.42 0.41 0.37 12 IGGTST INT-GAS-GT POWR ٥. 139. 306. 120. 97. 29. 634. 0. 940. COAL 940. 10 0.13 0.10 0.70 12 IGGTST INT-GAS-GT HEAT 762. 1679 659. 0. -1362. 317. 0 0.31 0.32 0.39 0. 533. 156. 1679. COAL 13 GTSCAR GT-HRSG-10 POWR 0. 148. 335. 153. 97. 29. 596. 0. 931. RESIDUAL 931. 0 0.14 0.10 0.71 13 GTSOAR GT-HRSG-10 HEAT 639. 1449. 659. 420. 1449. RESIDUAL 440. 0. 123. 0. -1009. 0.31 0.29 0.45 14 GTACOS GT-HRSG-08 POWR 920. 0 0.15 0.11 0.72 159. 360. 183. \$7. 560. 920. RESIDUAL Ο. 29. 0. -789. 14 GTACOS GT-HRSG-08 HEAT 0. 573. 1296. 659. * 350. 103. ۵. 1296. RESIDUAL 508. 0 0.31 0.27 0.51 15 GTAC12 GT-HRSG-12 POWR 319 97. 0. 162. 151. 29. 598. 0. 917. RESIDUAL 917. 0 0.15 0.11 0.72 15 GTAC12 GT-HRSG-12 HEAT 710. 1395. 659. 425. 125. 0. -1025. 1395. RESIDUAL 0.34 0.31 0.47 ٥. 369. 16 GTAC16 GT-HRSG-16 POWR α. 162. 301. 135. 97. 29. 616. ٥. 917. RESIDUAL 917. 0 0.15 0.11 0.72 16 GTAC16 GT-HRSG-16 HEAT 789. 1468 659. 474. 0, -1178. 1468. RESIDUAL 290. 0.35 0.32 0.45 0. 139. 17 GTWC16 GT-HRSG-16 POWR 0. 142. 309. 125. 97. 29. 629. 0. 938. RESIDUAL 938. 0.13 0.10 0.70 17 GTWC16 GT-HRSG-16 HEAT 750. 1634. 659. 0. -1304. 0 0.31 0.32 0.40 515. 151. 1634.RESIDUAL 329.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

IC COMPANY PAGE 23

I&SE PEO ADV DESIGN ENGR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 2046; MW 28.50 PROCESS MILLIONS BTU/HR 659.0 PROCESS TEMP(F) 250. PRODUCT WET-CORN-MIL HOURS PER YEAR 6600.

UTILITY	' FUEL	COAL				POWER			0.148 EL EQV E		×6=	э. нот	WATER BT	'U*10**6	= (o.'	
			WASTE	FUEL	COGEN	COGEN	COGEN	ಬರGEN	XUA	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	
-			FUEL	SAVED=		PROCES			PROCES		FUEL	FUEL	TOTAL+			FACTR	FACTR
			USED	NO-NET		HEAT		ELECT	BOILR		SITE	USED	UTILIT				
						10×*6				10 * *6			10××6				
			BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HF	<u> </u>	BTU/HR				
8 CC1626 GT	ST-16/26	POWE	c.	143.	242.	69.	97.	29.	694.	٥.	936.	RESIDUAL	936.	0	0.13	0.10	0.7
8 CC1626 GT			o.	1361.	2302.	659.	924.	271.	٥.	-2584.	2302.	RESIDUAL	-281.	0	0.37	0.40	0.2
9 CC1622 9T	ST-16/22	POUR	0.	150.	244.	77.	97.	29.	685.	0.	929.	RESIDUAL	929.	0	0.14	0.10	0.7
9 CC1622 GT			o.		2095.	659.	833.	244.	٥.	-2301.	2095.	RESIDUAL	-205.	0	0.38	0.40	0.3
0 CC1222 GT	ST-12/22	POUR	0.	151.	243.	77.	97.	29.	685.	٥.	928.	RESIDUAL	928.	0	0.14	0.10	0.7
0 CC1222 GT			0,	1295.	2082.	6 59.	833.	244.	0.	-2298.	2082.	RESIDUAL	-216.	0	0.38	0.40	0.3
21 CC0822 GT	ST-08/22	POWR	٥.	162.	254.	95.	97.	29.	663.	0.	918.	RESIDUAL	918.	o	0.15	0.11	0.72
21 CC0822 GT	ST-08/22	HEAT	0,	1119.	1759.	659.	673.	197.	0.	-1799.	1759.	RESIDUAL	-39.	0	0.39	0.38	0,3
22 STIG15 ST	1G-15-16	POWR	٥.	53.	255.	3.	97.	29,	771.	0,	1027.	RESIDUAL	1027.	0	0.05	0.09	0.6
2 STIG15 ST	1G-15-16	HEAT	٥,	10439.	50692.	659.	19314.	5661.	0.	-60052.	50692.	RESIDUAL	-93 59.	0	0.17	0.38	0.0
3 STIG10 ST	1G-10-16	POWR	0.	75.	271.	36.	97.	29.	733.	o.		RESIDUAL	1004.	_		0.10	
23 STIG10 ST	10-10-16	HEAT	Ο.	1383.	4974.	6 59.	1786.	523.	0.	-5277.	4974.	RESIDUAL	-304.	0	0.22	0.36	0.1
4 STIGIS ST			Ö.	86.	290.	61.	97.	29.	703.	0.		RESIDUAL	993.			0.10	
24 STIG1S ST	1G-1S-16	HEAT	٥.	924.	3126.	659.	1048.	307.	0.	-2971.	3126.	RESIDUAL	155.	0	0.23	0.34	0.2
25 DEADV3 DI	ESEL-ADV	POWR	٥,	120.	262.	67.	97.	29.	697.	٥.		RESIDUAL	959.	-	0.11		
25 DEADV3 DI	ESEL-ADV	HEAT	0.	1189.	2594.	6 59,	962.	282.	0.	-2704.	2594.	RESIDUAL	-110.	0	0.31	0.37	_0.2
26 DEADV2 DI	ESEL-ADV	POWR	٥.	120.	262.	67.	97.	29,	697.	٥.	959.	RESIDUAL	959,	1	6.11	0.10	0.6
6 DEADV2 DI	ESEL-ADV	HEAT	٥.	1189.	2594.	6 59.	963.	282.	0.	-2704.	2594.	RESIDUAL	-110.	1	0.31	0.37	0.2
7 DEADVI DI	ESEL-ADV	POWR	0.	162.	262.	102.	97.	29.	655.	0.	917.	RESIDUAL	917.	1	0.15		0.7
27 DEADV1 DI	ESEL-ADV	HEAT	٥.	1044.	1685.	6 59.	625.	183.	0.	-1650.	1685.	RESIDUAL	35.	1	0.38	0.37	0.3
28 DEHTPM AD	V-DIESEL	POUR	0.	175.	266,	117.	97.	29.	638.	0.		RESIDUAL	904.			0.11	0.7
26 DEHTPM AD	V-DIESEL	HEAT	٥.	986.	1499.	659.	547.	160.	0.	-1406.	1499.	RESIDUAL	93.	O	0.40	0.37	0.4
29 DESCA3 DI	ESEL-SOA	POWR	0.		269.	59.	97.	29,	706.	0,		DISTILLA	975.			0.10	
29 DESGA3 DI	ESEL-SOA	HEAT	0.	1159.	2995.	65 9.	1081.	317.	0.	-3075.	2995.	DISTILLA	-80,	0	0.28	0.36	0.2
9 DESTAS DI	ESEL-SOA	POWR	ο.	104.	269.	59.	97.	29.	706,	٥,		RESIDUAL	975.	_		0.10	
9 DESCAS DI			ο,	1159.	2995.	659.	1081.	317.	ο,	-3075.	2995.	RESIDUAL	-80.	0	0,28	0.36	0.2

18SE PEC ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

24

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20461 MW 28.50 PROCESS MILLIONS BTU/HR 659.0 PROCESS TEMP(F) 250. PRODUCT WET-CORN-MIL HOURS PER YEAR 6600.

POWER TO HEAT RATIO 0.148 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTUX! 0xx6= WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED USED SITE UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESCA2 DIESEL-SCA POWR 0. 104. 269. 59. 97. 29. 706 ٥. 975. DISTILLA 975. 1 0.10 0.10 0.68 30 DESGA2 DIESEL-SGA HEAT Ο. 1159. 2995. 659. 1081. 317. 0: -3075. 2995. DISTILLA -80. 0.28 0.36 0.22 30 DESGA2 DIESEL-SGA POWR 0. 104. 269. 59. 97. 29. 706. O. 975 RESIDUAL 975. 0.10 0.10 0.68 30 DESGAZ DIESEL-SGA HEAT 0. 1159. 2995. 659. 1081. 317. 0. -3075. 2995. RESIDUAL 0.28 0.36 0.22 -80. 31 DESGA1 DIESEL-SGA POWR 162 269 108 97 29. 648. 0. 918. DISTILLA 918. 0.15 0.11 0.72 31 DESCA1 DIESEL-SCA HEAT 0. 986. 1643. 659. 593. 174. 0. -1550. 1643 DISTILLA 93. 0.37 0.36 0.40 31 DESGA1 DIESEL-SGA POWR 0. 162. 269. 108. 97. 29. 648. ٥. 918. RESIDUAL 918. 0.15 0.11 0.72 31 DESCA1 DIESEL-SCA HEAT 0. 986 1643 659. 593 174. 0. -1550. 1643. RESIDUAL 93, 0.37 0.36 0.40 32 GTSGAD GT-HRSG-10 POWR ٥. 157. 333. 159. 97. 29. 589. ٥. 922. DISTILLA 922. 0 0.15 0.11 0.71 \$2 GTSOAD GT-HRSG-10 HEAT 0. 654. 1384. -959, 659. 404. 118. 0. 1384. DISTILLA 425. 0 0.32 0.29 0.48 33 GTRAOS GT-85RE-08 POWR 0. 152. 272. 103. 97. 927. DISTILLA 29. 655. Ω. 927. n 0.14 0.10 0.71 33 GTRAOS GT-85RE-08 HEAT 0. 978. 1750. 659. 625. 183. 0. -1648. 1750. DISTILLA 102. 0.36 0.36 0.38 34 GTRA12 GT-85RE-12 FOWR 154 272 103. 97 29. 654 0. 925. DISTILLA 925. 0 0.14 0.11 0.71 34 GTRA12 GT-85RE-12 HEAT 0. 981. 1730. 659. 619. 182. 0. -1631. 1730. DISTILLA 0 0.36 0.36 0.38 98. 35 GTRA16 GT-85RE-16 POWR 0. 154. 279. 110. 97. 29. 646. 0. 925. DISTILLA 925. 0 0.14 0.11 0.71 35 GTRA16 GT-85RE-16 HEAT 0. 927. 1675 659. 585. 171. 0. -1523. 1675. DISTILLA 152. 0.36 0.35 0.39 36 GTR208 GT-GORE-08 POWR 0. 153, 304. 130. 97. 29. 622. ۵. 926. 926. DISTILLA 0 0.14 0.11 0.71 36 GTR208 GT-60RE-08 HEAT G. 775. 1538. 659. 492. 144. 0. -1234. 1538. DISTILLA 304. 0 0.34 0.32 0.43 37 GTR212 GT-608E-12 POWR Ó. 152. 295. 121. 97. 633. 927. 29. 0. 927. DISTILLA 0.14 0.10 0.71 37 GTR212 GT-60RE-12 HEAT 0. 825. 1603. 659. 529. 155. 0. -1349. 1603. DISTILLA 254. 0.34 0.33 0.41 38 GTR216 GT-60RE-16 POWR 155 289 119 97. 29. 636. ٥. 924. DISTILLA 924. 0 0.14 0.11 0.71 38 GTR216 GT-60RE-16 HEAT 0. 861. 1605. 659. 541. 158. 0. -1386. 1605. DISTILLA 219. 0 0.35 0.34 0.41 39 GTRWO8 GT-85RE-08 POWR Ű. 127. 277. 85. 97. 29. 675. O. 952. DISTILLA 952. 0 0.12 0.10 0.69 39 GTRW08 GT-85RE-08 HEAT ٥. 983. 2143 659 752 220. 0. -2047. 2143. DISTILLA 96. 0.31 0.35 0.31 40 GTRW12 GT-85RE-12 POWR 0. 134. 267. 83. 97. 29. 678. 0. 945. DISTILLA 945. 0 0.12 0.10 0.70 40 GTRW12 GT-85RE-12 HEAT 0. 1068. 2132. 659. 776. 227. 0. -2122. 2132. DISTILLA 0 0.33 0.36 0.31 11.

- ISWAENO

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE 25

ISSE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20461 MW 28.50 PROCESS MILLIONS BTU/HR 659.0 PROCESS TEMP(F) 250. PRODUCT WET-CORN-MIL HOURS PER YEAR 6600.

UTILI	i tv	CHEL	COAL				POWE		AT RATIO			*6-	о. нат	WATER B	Tile 1 0 + + 6		0.	
Oalt	112	FUEL	COML					₩:	ASIE FU	CL EGV I	510*10*	*0-	O. HOT	WAIER D			J.	
		-		WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
				FUEL	SAVED=	FUEL	PROCES	PROCES	MW	PROCES	FUEL	FUEL	FUEL	TOTAL+			FACTR	FACTE
				USED	NO-NET	USED	HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				
				10**6	10**6		10**6	10**6		10**6	10**6	10**6		10**6				
		···		BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/H	₹	BTU/HR				********
41 GTRV16	ОТ-	9505-16	peup	ο.	135.	272.	00	07	20	672.	•	044	DISTILLA	944.	•	0.12	0.10	0.70
41 GTRW16								. 97. 729.			-1975.		DISTILLA			0.12		
41 GIRWIG	G,-	.02KE-10	nea i	U.	1011.	2042.	639.	123,	214.	0.	~19/5.	2042	DISTILLA	66.	U	0.33	0.30	0.3
42 GTR308	GT-	60RE-08	POWR	0.	123.	314.	113.	97.	29.	642.	0.	956	DISTILLA	956.	0	0.11	0.10	0.6
42 GTR308	GT-	60RE-08	HEAT	0.	718.	1826.	659.	566.	166.	٥.	-1465.	1826	DISTILLA	361.	0	0.28	0.31	0.30
40 OTD040	<u>.</u>	CODE 10	D#11D		100	004				CEO	_	044	01071114	044	•		0.10	^ -
43 GTR312						284.		97.					DISTILLA			0.13		
43 GTR312	GI-	60KE-12	HEAT	0.	906.	1899.	659.	65 0,	190.	U.	-1726.	1899.	DISTILLA	173.	U	0,32	0.34	U. 3:
44 GTR316	GT-	60RE-16	POWR	0.	135.	287.	100.	97.	29.	658.	٥.	944.	DISTILLA	944.	0	0.12	0.10	0.70
44 GTR316	GT-	60RE-16	HEAT	0.	887.	1888.	659.	640.			-1697.	1888	DISTILLA	192,	0	0.32	0.34	0.3
45 FCPADS								97.					DISTILLA			0.09		
45 FCPADS	FUE	L-CL-PH	HEAT	0.	1502.	3875.	659.	1473.	432.	ο.	-4299.	3876.	DISTILLA	-423.	0	0,28	0,38	0.1
16 FCMCDS	FUF	Z -CL -MO	POWR	0.	133.	236.	55.	97.	29.	711.	0.	947	DISTILLA	947.	0	0.12	0.10	0.70
		L-CL-MO		- •		2828.	659.	1165.	342.		-3338.		DISTILLA	-509.		0.36		

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

26

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20631 MW 4.70 PROCESS MILLIONS BTU/HR 301.0 PROCESS TEMP(F) 250. PRODUCT BEET-SUGAR HOURS PER YEAR 2800.

POWER TO HEAT RATIO 0.053 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 76. HOT WATER BTU:10**6= COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FESR POWER HEAT WASTE FUEL FAIL FUEL. SAVED= FUEL PROCES PROCES MW PROCES FUEL FUFL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED UTILIT SITE USED 10**6 10**6 10**6 10**6 10**6 10**6 10**B 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COBON 76. 354. 50. 354. COAL-FOD 404. 0 0. 0.04 0.74 ٥. 0. ٥. ٥. ٥. 1 STM141 STM-TURB-1 POWR 76. 31. 82. 53. 291. 0. 373. RESIDUAL 373. 10 0.10 0.04 0.81 16. 5. -233. 461. RESIDUAL 228. 1 STM141 STM-TURB-1 HEAT 76. 176. 461 301 90. 0. 0.31 0.20 0.65 1 STM141 STM-TURB-1 POWR 76. 31. 82. 53. 16. 5. 291. ٥. 373. COAL-FOD 373. 10 0.10 9.04 0.81 1 STM141 STM-TURB-1 HEAT 76. 176. 301. 90. -233. 461. COAL-FOD 228. 0.31 0.20 0.65 461. 27. ٥. 1 STM141 STM-TURB-1 POWR 76. 31. 53. 291. 373. COAL-AFB 373. î O 0.10 0.04 0.81 82. 16. 5. 0. 1 STM141 STM-TURB-1 HEAT 76. 178. 461. 301. 90. 27. ٥. -233. 461. COAL-AFB 228. 0.31 0.20 0.65 2 STM088 STM-TURB-8 POWR 76. 31. 28. 275. 0. 373. RESIDUAL 373. 10 0.10 0.04 0.81 68. 16. 5. 2 STM088 STM-TURB-8 HEAT 76. 139. 301. n. -173 438 . RESIDUAL 0.28 0.16 0.69 438. 71. 21. 265. 31. Q, 2 STMO88 STM-TURB-8 POWR 76. 98. 68. 16. 5. 275. 373.COAL-FGD 373. 10 0.10 0.04 0.81 0 0.28 0.16 0.69 2 STM088 STM-TURB-8 HEAT 76. -173. 438. COAL-FGD 265. 139. 438. 301. 71. 21. 0. 275. 373. 5. 0. 373. COAL-AFB 10 0.10 0.04 0.81 2 STMO88 STM-TURB-8 POWR 76. 31. 98. 68. 16. 438. COAL-AFB 265. 0 0.28 0.16 0.69 2 STM088 STM-TURB-8 HEAT 76. 139. 438. 301. 71. 21. 0. -173.311. 373, COAL-PFB **373.** 10 0.09 0.04 0.81 3 PFBSTM PFB-STMTB- POWR 76. 31. 62. 37. 16. 5. 0. 511.COAL-PFB 0 0.37 0.26 0.59 151. 3 PFBSTM PFB-STMTB- HEAT 76. 254. 511. 301. 131. 38. n. -360. 373. 10 0.09 0.04 0.81 4 TISTMT TI-STMTB-1 POWR 3:1). 373, RESIDUAL 76. 31. 53. 29. 16. 5. 0 0.37 0.26 0.59 4 TISTMT TI-STMTB-1 HEAT 76. 254. 437. 236. 132. 39. 76. -364. 514. RESIDUAL 150. 373. 4 TISTMT TI-STMTB-1 POWR 76. 31. 53. 29. 16. 5. 320. · O. 373. COAL 10 0.09 0.04 0.81 4 TISTMT TI-STMTB-1 HEAT 557, COAL 0.40 0.30 0.54 76. 325. 557. 301. 169. 50. ٥. -478. 80. 377. 0.08 0.04 0.80 5. 263. 0. 377. RESIDUAL 5 TIHRSG THERMIONIC POWR 76. 27. 114. 77. 16. 5 TIHRSG THERMIONIC HEAT 76. 83, 348. 236. 76. -103. 424, RESIDUAL 321. 0 0.19 0.12 0.71 49. 14. 263. 377. COAL 377. 0.08 0.04 0.80 5 TIHRSG THERMIONIC POWR 27. 114. 77. 16. 5. 0. 76. 0 0.22 0.14 0.68 -145. 444. COAL 299. 5 TIHRSG THERMIONIC HEAT 76. 106. 444. 301. 62. 18. Ο. 323. 381, DISTILLA 381. 0 0.07 0.04 0.79 26. 9. 6 STIRL STIRLING-1 POWR 23. 58. 16. 6 STIRL STIRLING-1 HEAT 207. 522. 236. 144. 42. 76. -401. 598. DISTILLA 198. 0 0.28 0.24 0.50

INDUSTRY 20631 MW 4.7

WELL PAGE PRINTING SVSTEM- PI

HONEYWE

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20631 MW 4.70 PROCESS MILLIONS BTU/HR 301.0 PROCESS TEMP(F) 250. PRODUCT BEET-SUGAR HOURS PER YEAR 2800.

POWER TO HEAT RATIO 0.053 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 76. HOT WATER BTU*10**6= n WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL. FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 76. 23. 58. 26. 381. 16. 5. 323. 381. RESIDUAL 0 0.07 0.04 0.79 6 STIRL STIRLING-1 HEAT 76. 207. 522. 236. 598. RESIDUAL 144. 42. 76. -401. 198. 0.28 0 24 0.50 6 STIRL STIRLING-1 POWR 76. 23. 26. 0.07 0.04 0.79 58. 16. 5. 323. O. 381. COAL 381. n 6 STIRL STIRLING-1 HEAT 76. 264. 666. 301. 184. 54. 0. -525. 666. COAL. 141. Ω 0.31 0.28 0.45 7 HEGT85 HELIUM-GT- POWR 388. COAL-AFS 76. 16. 50 14. 16 338 388. 0.78 n 10 0.05 0.04 7 HEGT85 HELIUM-GT- HEAT 1107. 76. 358. 301. 355. 104. 0. -1061. 1107. COAL-AFB 47. 0.26 0.32 0.27 0 8 HEGT60 HEL!UM-GT- POWR 76. 16. 62. 24. 326. 16 5. n 388. COAL-AFB 388. 10 0.05 0.04 0.78 8 HEGT60 HELIUM-GT- HEAT 76. 203. 792. 301 205 60. 0. -591. 792. COAL-AFB 201. 0 0.22 0.26 0.38 9 HEGTOO HELIUM-GT- POWR 76. 15. 47. 16. 390. COAL-AFB 91. 5. 299. n 390. 10 0.04 0.04 0.77 E80. COAL-AFB 9 HEGTOO HELIUM-GT- HEAT 76. 93. 580. 301. 102. 30. 0. -269. 311. 10 0.16 0.18 0.52 10 FCTCCL FUEL-CL-MO POWR ₹5. O. 27. 53. 16. 5. 325. 0. 377. COAL 377. 10 -0.15 0.04 0.80 10 FCMCCL FUEL-CL-MO HEAT -551. ٥. 322. 633. .:)1. 192. 56. 0. 633. COAL 10 0.28 82. 0.30 0.48 11 FCSTCL FUEL-CL-ST POWR 376. Ω. 28 39 14 16. 337 n 376. COAL 10 -0.15 0.04 0.80 301. 0. -1011. 11 FOSTCL FUEL-CL-ST HEAT O. 593. 822. 340. 100. 822. COAL 10 0,39 0.41 ზ. 37 -189. 12 IGGTST INT-GAS-GT POWR 23. 20. 5. ٥. 51. 16. 331. ۵. 381.COAL 381. 10 -0.16 0.04 0.79 12 IGGTST INT-GAS-GT HEAT 767. 301 -711 767. COAL n. 348. 71. 0. 243. 56. 10 0.26 0.32 0.39 13 GTSØAR GT-HRSG-10 POWR 76. 24. 55. 25. 16. 5. 325. 0. 330. RESIDUAL 380. 10 0.07 0.04 0.79 13 GTSCAR GT-HRSG-10 HEAT 76. 76. 229. 519. 236, 150. 44. -420. 595. RESIDUAL 175. O 0.31 0.25 0.51 14 GTACO8 GT-HRSG-08 POWR 76. 26. 59, 30. 5. 319. 0. 378. RESIDUAL 378. 10 0.08 0.04 16. 0.80 14 GTACO8 GT-HRSG-08 HEAT 76, 205, 464. 236, 125. 37. 76. -341. 540. RESIDUAL 199. 0 0.31 0.23 0.56 15 GTAC12 GT-HRSG-12 POWR 76. 25. 325 377. RESIDUAL 377. 0.08 0.04 0.80 16. 5. 10 15 GTAC12 GT-HRSG-12 HEAT 76. 254. 499. 236. 152. 45. 76. -426. 576. RESIDUAL 150. 0.34 0.26 0.52 16 GTAC16 GT-HRSG-16 POWR 76. 27. 50. 22, 16. 5. 328. 0. 378. RESIDUAL 378. 10 0.08 0.04 0.80 16 GTAC16 GT-HRSG-16 HEAT 76. 283 526. 236. 170. 50. 76. -481. 602. RESIDUAL 122. 0.35 0.28 0.50 10 0.07 0.04 17 GTWC16 GT-HRSG-16 POWR 76. 23. 51. 21. 16. 5. 330. ٥. 381. RESIDUAL 381. 0.79 17 GTWC16 GT-HRSG-16 HEAT 76. 269. 585. 236. 184. 54. 76. -526. 662. RESIDUAL 136. 0 0.31 0.28 0.45

18SE PEO ADV DESIGN ENGR

PAGE

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

28

REPORT 5.1

FUE! ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20631 MW 4.70 PROCESS MILLIONS BTU/HR 301.0 PROCESS TEMP(F) 250, PRODUCT BEET-SUGAR HOURS PER YEAR 2600.

POWER TO HEAT RATIO 0.053 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 76. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX FESR POWER HEAT UTILIT TOTAL SITE NET= FAIL SAVED= FUEL PROCES PROCES MW FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR 76. 24. 40. 11. 16. 341. 0. 381, RESIDUAL 5. 381. 10 0.07 0.04 0.79 18 CC1626 GTST-16/26 HEAT 76. 487. 824. 236. 97. 331. 76. -984. 901. RESIDUAL -83. 0.37 0.37 0.33 19 CC1622 GTST-16/22 POWR 76. 25. 40. 13. 16. 5. 339. ٥. 380. RESIDUAL 380. 0.08 0.04 0.79 19 CC1622 GTST-16/22 HEAT 76. 460. 750. 236. 298. 87. 76. -883. 827. RESIDUAL -56. 0.38 0.36 0.36 20 CC1222 GTST-12/22 POWR 76. 25. 40. 13. 16 5 339. 0. 379. RESIDUAL 379 10 0.08 0.04 0.79 20 CC1222 GTST-12/22 HEAT 87. 76. 464. 746. 236. 298. 76. -882. 822. RESIDUAL -60. 0.38 0.36 0.37 21 CC0822 GTST-08/22 POWR 78. 27. 42. 16. 16. 5. 336, 0. 378. RESIDUAL 378. 0.08 0.04 0.80 21 CC0822 GTST-08/22 HEAT 76. 401. €30. 236. 71. 241, 76. -703 707. RESIDUAL 0.39 0.34 0.43 22 3T1015 ST1G-15-16 POWR 76. 9. 42 353. 0. 1. 16. 5. 396. RESIDUAL 396. 0.03 0.04 0.76 22 STIG15 STIG-15-16 HEAT 76. 3738. 18154. 236. 6917. 2027. 76.-21564. 18230.RESIDUAL -3334. 0.17 0.38 0.02 23 STIG10 STIG-10-16 POWR 76. 12. 5. 45. 6. 16. 347. 0. 392. RESIDUAL 392. 0.04 0.04 0.77 23 STIG10 STIG-10-16 HEAT 76. 495. 1781. 236. 640. 187. 76. -1949.. 1858. RESIDUAL -91. O 0.22 0.34 0.16 24 STIG1S STIG-15-16 POWR 14. 48. 10. 390. RESIDUAL 390. 16. 342. 10 0.04 0.04 0.77 24 STIGIS STIG-15-16 HEAT 76. 331. 1120. 236. 375. 110. 76. -1123. 1196. RESIDUAL 73. 0.23 0.31 0.25 25 DEADV3 DIESEL-ADV POWR 76. 20. 43. 11. 16. 5. 341. 0. 384. RESIDUAL 384. 0 0.06 0.04 0.78 25 DEADV3 DIESEL-ADV HEAT 76. 426. 929. 236. 345. 101. 76. -1027. 1005. RESIDUAL -21. 0.31 0.34 0.30 26 DEADV2 DIESEL-ADV POWR 76. 20. 43. 11. 16. 5. 341. ٥. 384, RESIDUAL 384. 0.06 0.04 0.78 -21. 26 DEADV2 DIESEL-ADV HEAT 76. 426. 329. 236. 345. 101. 76. -1027. 1006. RESIDUAL 0.31 0.34 0.30 27 DEADVI DIESEL-ADV POUR 76. 27. 43. 17. 16. 5. 334. 377. RESIDUAL 377. 0. 0.08 0.04 0.80 27 DEADVI DIESEL-ADV HEAT 76. 374. 604. 235. 680. RESIDUAL 30. 224. 66. 76. -650. 0.38 0.33 0.44 28 DEHTPM ADV-DIESEL POWR 29. 375. 76. 19. 16. 375. RESIDUAL 44 5 331. n 0 0.09 0.04 0.80 76. 28 DEHTPM ADV-DIESEL HEAT 353. 537. 236. 196. 57. -562. 613. RESIDUAL 51. 0.40 0.32 0.49 76. 29 DESGAS DIESEL-SGA POWR 76. 5. 17. 44. 10. 16. 343. ٥. 387. DISTILLA 387. 0.05 0.04 0.78 29 DESGAS DIESEL-SGA HEAT 76. 415. 1072. 76. -1160. 236. 387. 113. 1149. DISTILLA -11. 0.28 0.34 0.26 29 DESGAS DIESEL-SGA POWR 76. 17. 5. 0. 387. RESIDUAL 44. 10. 16. 343. 387. 0.05 0.04 0.78 29 DESGAS DIESEL-SGA HEAT 76. 415. 1072. 236. 387. 113. 76. -1160. 1149. RESIDUAL -11. 0.28 0.34 0.26

. PAGE PRINTE

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20631 MY 4.70 PROCESS MILLIONS BTU/HR 301.0 PROCESS TEMP(F) 250, PRODUCT BEET-SUO线 HOURS PER YEAR 2800.

POWER TO HEAT RATIO 0.053 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 76. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR UTILIT USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 387. DISTILLA 387. 1 0.05 0.04 0.78 30 DESGA2 DIESEL-SGA POWR 76. 17. 44. 10. 16. 5. 343. n 1149.DISTILLA 30 DESGA2 DIESEL-SGA HEAT 1073. 236. 387. 113. 76. -1160. -11. 0.28 0.34 0.26 76. 415. 0.05 0.04 0.78 5, 343. 0. 387. RESIDUAL 387. 30 DESGA2 DIESEL-SGA POWR 76. 17. 44. 10. 16. 30 DESGA2 DIESEL-SGA HEAT 76. 415. 1073. 236. 387. 113. 76. -1160. 1149, RESIDUAL -11. 1 0.28 0.34 0.26 0.08 0.04 0.80 333. 378. DISTILLA 378. 31 DESGA1 DIESEL-SGA POWR 76. 44. 18 16. 0 665. DISTILLA 0.37 0.32 0.45 31 DESGA1 DIESEL-SGA HEAT 76. 353. 589. 236. 212. 62. 76. -614. 51. 378. 1 0.08 0.04 0.80 333. 378. RESIDUAL 31 DESGA1 DIESEL-SGA POWR 78. 27. 44. 18. 16. 5. C. 212 76. -614. 665. RESIDUAL 51. 0.37 0.32 0.45 31 DESCA1 DIESEL-SCA HEAT 76. 353 589 236. 62. 10 0.08 0.04 0.80 378. 32 GISCAD GT-HRSG-10 POWR 76. 26. 55. 26. 16. 5. 323. 0. 378. DISTILLA 572. DISTILLA 170. 0.32 0.25 0.53 32 GTSOAD GT-HRSG-10 HEAT 76. 234. 496. 236. 145. 42. 76. -402. 379. DISTILLA 379. 0.08 0.04 0.79 334. 33 GTRAOS GT-85RE-08 POWR 76. 25. 45. 17. 16. 5. 0. 703. DISTILLA 54. 0.36 0.32 0.43 33 GTRA08 GT-85RE-08 HEAT 76. 350. 627. 236. 224. 66. 76. -649. 379. 10 0.08 0.04 0.79 34 GTRA12 GT-85RE-12 POWR 76. 25. 45. 17. 16. 5. 334. 379. DISTILLA 0.36 0.32 0.43 620. 236. 222. 76. -643. 696.DISTILLA 53. 34 GTRA12 GT-85RE-12 HEAT 76. 351. 65. 10 0.08 0.04 0.79 35 GTRA16 GT-85RE-16 POWR 76. 25. 46. 18. 16. 5. 333. 0. 379. DISTILLA 379. 676. DISTILLA 72. 0.36 0.31 0.44 76. -604. 35 GTRA16 GT-85RE-16 HEAT 76. 600 236. 209. 61. 332. 5. 329. 0. 379. DISTILLA 379. 10 0.08 0.04 0.79 36 GTR208 GT-SORE-C8 POWR 76. 25. 50. 21. 16. 627, DISTILLA 127. 0.34 0.28 0.48 76. -501. 36 GTR208 GT-60RE-03 HEAT 76. 278. 551. 236. 176. 52. 379. 0.04 0.79 379. DISTILLA 10 0.08 37 GTR212 GT-60RE-12 POWR 76. 25. 49. 20. 15. 5. 331. 0, 0.29 0.46 -542. 650. DISTILLA 109. 0.34 76. 37 GTR212 GT-GORE-12 HEAT 76. 296. 574. 236. 189. 56. 379. DISTILLA 379. 10 0.08 0.04 0.79 38 GTR216 GT-60RE-16 POWR 20. 331. 0 76. 26. 48. 16. 0 0.35 0.30 0.46 651. DISTILLA 96. 38 GTR216 GT-60RE-16 HEAT 76. 308. 575. 236. 194. 57. 76. -555. 10 0.06 0.04 0.79 0. 383. DISTILLA 383. 16. 5. 338. 39 GTRWO8 GT-85RE-08 POWR 76. 21. 46. 14. 0.31 0.32 0.36 844. DISTILLA 52. 79. 76. -792. 39 GTRW08 GT-85RE-08 HEAT 76. 352. 767. 236. 269. 382. 10 0.07 0.04 0.79 5. 338. 0. 382. DISTILLA 40 GTRW12 GT-85RE-12 POWR 76. 22. 44. 14. 16. 0 0.33 3.33 0.36 840. DISTILLA 22. 76. -818. 40 GTRW12 GT-85RE-12 HEAT 383. 764. 236. 278. 81. 76.

PAGE

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5,1

BY ALTERNATIVES STUDY

18SE PEO AND DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY	20631 MW	4.70 PROCE	SS MILLI	IONS BTU/HF	301	.O PRO	CESS TI	EMP(F)	250.	PRODUCT	BEET-S	SUGAR	HOURS PER	YEAR	2800.
UTIL	ITY FUEL	COAL			POWER		AASTE F		-	0**6=	76. i	HOT WATE	R BTU*10*	×6=	0.
		WASTE	FUEL	COGEN CO	GEN C	COGEN	COGEN	AUX	UTIL	T TOTAL	. SITE	NE1	T= FAIL	FES	R POWER HEAT

					WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
					FUEL USED 10**6	SAVED= NO-NET 10**6		PROCES HEAT 10**6	PROCES POWER 10**6	MW ELECT	PROCES BOILR 10**6	FUEL USED 10**6	FUEL SITE 10**6	FUEL USED	TOTAL+ UTILIT 10**6			FACTR	FACTR
					BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HR	<u> </u>	BTU/HR				
			T-85RE-16			22.	45.	14.	16.		337.	ο.	382.	DISTILLA	382.	10	0,07	0.04	0.79
41	GTRW16	GT	T-85RE-16	HEAT	76.	362.	731.	236.	261.	77.	76.	-766.	808.	DISTILLA	42.	0	0.33	0.32	0.37
			T-60RE-08				52.	19,	16.	5.	332.	ø.		DISTILLA	384.	10	0.06	0.04	0.78
42	GTR308	GT	r-60RE-08	HEAT	76,	257.	654.	236.	203.	59.	76.	-583.	730.	DISTILLA	147.	0	0.28	0.28	0.41
			Γ-60RE-12				47.					٥.	382.	DISTILLA	382.	10	0.07	0.04	0.79
43	GTR312	GT	r-60RE-12	HEAT	76.	324.	680.	236.	233.	68.	76.	-677.	757.	DISTILLA	80.	0	0.32	0.31	0.40
			r-60RE-16				47.	17.	16.	5.	335.	٥.	382.	DISTILLA	382.	10	0.07	0.04	0.79
44	GTR316	_GT	SORE - 16	HEAT	76.	318.	676.	236.	229.	67.	<u>76.</u>	<u>-666.</u>	<u>753.</u>	DISTILLA	86.	0	0.32	0.30	0.40
			JEL-CL-PH		76.	16.	42.	7.	16.	5.	346.	٥.	388.	DISTILLA	388.	0	0.05	0.04	0.78
45	FCPADS	FU	JEL-CL-PH	HEAT	76.	538.	1388.	236.	528.	155.	76.	-1598,	1465	DISTILLA	-134.	0	0,28	0.36	0.21
			JEL-CL-MO		75.	22.	39.	9.	16.	5.	343.	0.	382.	DISTILLA	382.	0	0.07	0.04	0.79
46	FCMCDS	FU	JEL-CL-MO	HEAT	76.	569.	1013.	236.	417.	122.	76.	-1254.	1089.	DISTILLA	-165.	0	0.36	0.38	0.28

.

PAGE 30

.

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

31

REPORT 5,1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20821 MW 6.04 PROCESS MILLIONS BTU/HR 88.0 PROCESS TEMP(F) 250. PRODUCT MALT-BEVERAG HOURS PER YEAR 6600.

POWER TO HEAT RATIO 0.240 WASTE FUEL EQV BTU*10**6= HOT WATER BTUX10xx6= 52. UTILITY FUEL COAL Ω. FESR POWER HEAT WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR FUEL NO-NET USED USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 50**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 0 0, 0.12 0.52 101. 64. 101.COAL-AFB 166. O SNOCGN N O C O G O I 0. 0. 0. 0. 0. 0. 125. RESIDUAL 105. 21. 0. 125. 10 0.24 0.16 0.69 1 STM141 STM-TURB-1 POWR ٥. 40. 69. 21. 6. 132. RESIDUAL 115. 0 0.28 0.20 0.65 0. -16. 1 STM141 STM-TURB-1 HEAT ວ. 50. 132. 86. 26, 8. 21. ٥. 125. COAL-FGD 125. 10 0.24 0.16 0.69 1 STM141 STM-TURB-1 POWR 40. 105. 69. 21. 6. 1 STM141 STM-TURB-1 HEAT 50. 132. 86. 26. 8. 0. -16. 132. COAL-FOD 115. 0 0.28 0.20 0.63 21. ٥. 125. COAL-AFB 125. 10 0.24 0.18 0.69 1 STM141 STM-TURB-1 PCWR 0. 40. 105. 69. 21. 6. 1 STM141 STM-TURB-1 HEAT 0. 50. 132. 86. 26. 8. 0. -16. 132. COAL-AFB 115. 0 0.28 0.20 0.65 0 0.24 0.16 0.68 126. RESIDUAL 126. 2 STM088 STM-TURB-8 POWR 39 126. 87. 21. 0 0.24 0.16 0.68 20. 6. 0. 125. RESIDUAL 126. 2 STM088 STM-TURB-8 HEAT ٥. 40. 125. 86. 1. 2 STMO88 STM-TURB-8 POWR -1. 126. COAL-FGD 126. 0 0 24 0.16 0.68 39. 126. 87. 21. 6. Ω. 2 STM088 STM-TURB-8 HEAT 125. COAL-FOD 126. 0.24 0.16 0.68 0. 40 125. 86. 20. 6. ٥. -1. ۵. 126. COAL-AFB 126. 0.24 0.16 0.68 2 STM088 STM-TURB-8 POWR 0. 39. 126. 87. 21. 6. Ο. 125, COAL-AFB 126. 0.24 0.16 0.68 2 STM088 STM-TURB-8 HEAT 125. 86. 20. 6. 0. 1. 40. 126. COAL-PFB 126. 10 0.24 0.16 0.66 40. 80. 47. 21. 6. 46. 0. 3 PFBSTM PFB-STMTB- POWR 0. ٥. -53. 146. COAL-PFB 93. 10 0.33 0.26 0.59 3 PFBSTM PFB-STMTB- HEAT 72. 86. -38. 11. ٥. 146. 126. RESIDUAL 126. 10 0.24 0.16 0.68 37. 21. 6. 58. Ω. 40. 68. 4 TISTMT TI-STMTB-1 POWR 0 0.37 0.30 0.54 -86. 159. RESIDUAL 73. 14. 0. 4 TISTMT TI-STMTB-1 HEAT ٥. 93. 159. 86. 48. 126. COAL 126. 10 0.24 0.16 0.68 58. 0. 4 TISTMT TI-STMTB-1 POWR 0. 40. 68. 37. 21. 6. -86. 159, COAL 73. 0.37 0.30 0.54 4 TISTMT TI-STMTB-1 HEAT 93. 159 86. 48 14. 0. 146. 0.12 0.14 0.59 -16. 146. RESIDUAL 5 TIHRSG THERMIONIC POWR ٥. 19. 146. 99. 21. 6. 0. 0.18 0.13 0.64 127. RESIDUAL 135. 5 TIHRSG THERMIONIC HEAT n. 30. 127. 86. 18. 5. О. 9. 0.12 0.14 0.59 146. 146. 99. 21. 6. -16. 0. 146. COAL 5 TIHRSG THERMIONIC POWR 0. 19. 0.18 0.13 0.64 127. COAL 135, 5 TIHRSG THERMIONIC HEAT 0. 30. 127. 86. 18. 5. 0. S. 66. 132. DISTILLA 132. 0 0.20 0.16 0.65 21. 0. 6 STIRL STIRLING-1 POWR 34. 65. 30. -122. 190. DISTILLA 67. 0 0.34 0.32 0.45 6 STIRL STIRLING-1 HEAT 98. 190. 86. 60. 18. 0.

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20821 MW 6.04 PROCESS MILLIONS BTU/HR 86.0 PROCESS TEMP(F) 250. PRODUCT MALT-BEVERAG HOURS PER YEAR 6600.

POWER TO HEAT RATIO 0.240 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= 52. WASTE FUEL COBEN COGEN COGEN CUGEN AUX UTILIT TOTAL SITE NET= FESR POWER HEAT FAIL SAVED= FUEL PROCES PROCES MW FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**8 10××6 STU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 65. .30. Ω. 34. 21. 6. 66. 0. 132. RESIDUAL 132. 0 0.20 0.16 0.65 6 STIRL STIRLING-1 HEAT 0. 98. 190. 86. 60. 18. 190. RESIDUAL 0. -122. 67. 0.34 0.32 0.45 6 STIRL STIRLING-1 POWR 0. 34. 65. 30. 21. 6. 66. 132. COAL 0. 132. 0.20 0.16 0.65 6 STIRL STIRLING-1 HEAT ٥. 98. 190. 86. 60. 18. 0. -122. 190. COAL 67. 0.34 0.32 0.45 7 HEGT85 HELIUM-GT- POWR 33 64. 28 6. 133. COAL-AFB 133. 10 0.20 0.15 0.65 7 HEGT85 HELIUM-GT- HEAT ٥. 102. 201. 86. 64. 19. 0. -137. 201. COAL-AFB 64. 10 0.34 0.32 0.43 8 HEGT60 HELIUM-GT- POWR 80. 0. 20. 30. 21. 6. 66. ٥. 145. COAL-AFB 145. 10 0.12 0.14 0.59 8 HEGT60 HELIUM-GT- HEAT 58. 226. 86. 59. 17. 226. COAL-AFB 0. -119. 108. 10 0.20 0.26 0.38 9 HEGTOO HELIUM-GT- POWR 19. 117. 61. 21. 6. 30. ٥. 147. COAL-AFB 147. 10 0.11 0.14 0.59 9 HEGTOO HELIUM-GT- HEAT 0. 27. 166. 86. 29. 9. ٥. -27. 166. COAL-AFB 139. 0.14 0.18 0.52 10 10 FCMCCL FUEL-CL-MO POWR 0. 35. 68. 32. 21. 6. 63. 0. 131. COAL 131. 10 0.21 0.16 0.66 10 FCMCCL FUEL-CL-MO HEAT 92. 181. 86. 55. 16. 181. COAL -107. 73. 10 0.34 0.30 7.48 11 FCSTCL FUEL-CL-ST POWR 36 50. 18. 6. 80. 0. 130. COAL 130. 10 0,22 0.16 0.66 11 FCSTCL FUEL -CL-ST HEAT 169. 235. 97. 10 0.42 0.41 0.37 86. 28. 0. -239. 235. COAL -4. 12 IGGTST INT-GAS-OT POWR 0. 29. 65. 25. 21. 6. 71. 0. 136. COAL 136. 10 0.18 0.15 0.63 12 IGGTST INT-GAS-GT HEAT 70. 99. 219. 86. 20. 0. -153. 219, COAL 66. 10 0.31 0.32 0.39 13 GTSØAR GT-HRSG-10 POWR ٥. 31. 71. 32. 21. 6. 63. 0. 134. RESIDUAL 134. 10 0.19 0.15 0.64 13 GTSØAR GT-HRSG-10 HEAT 83. 189. 86. 55. 16. 0. -107. 189. RESIDUAL 82. 0 0.31 0.29 0.45 14 GTACOS GT-HRSG-OS POWR 0. 34. 76. 39. 21. 6. 55. 0. 132. RESIDUAL 132. 10 0.20 0.16 0.65 14 GTACO8 GT-HRSG-08 HEAT O. 75. 169. 86. 46. 13. 169. RESIDUAL 91. 10 0.31 0.27 0.51 n. -78. 15 GTAC12 GT-HRSG-12 POWR 68. 32. 6. 131 RESIDUAL 10 0.21 0.16 0.66 n 34 21. Ω 131. 64. 15 GTAC12 GT-HRSG-12 HEAT 93. 182. 56. 0. -109. 182. RESIDUAL 0 0.34 0.31 0.47 0. AG. 16. 73. 16 GTACIE GT-HRSG-16 POWR 64. 29. 21. 6. 0. 10 0.21 0.16 0.66 n 34 67. 131. RESIDUAL 131. 16 GTAC16 GT-HRSG-16 HEAT 103. 192. 86. 62. 18. 0 0.35 0.32 0.45 C. -129. 192. RESIDUAL 63. 17 GTWC16 GT-HRSG-16 POWR 65. 6. 10 0.18 C.15 0.63 30. 26. 21. 76. 0. 136, RESIDUAL 136. 0. 17 GTWC16 GT-HRSG-16 HEAT 0. 98. 213. 86. 67. 20. 0. -145. 213. RESIDUAL 缩8. 10 0.31 0.32 0.40

•

PAGE

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

I&SE PEC ADV DESIGN ENGR **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 20821 MW 6.04 PROCESS MILLIONS BIU/HR 86.0 PROCESS TEMP(F) 250. PRODUCT MALT-BEVERAG HOURS PER YEAR 6600.

POWER TO HEAT RATIO 0.240 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 0. HOT WATER BTU*10**6* 52. NET= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL + FACTR FACTR FUFI USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10×*6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 21. 18 CC1626 GTST-16/26 POWR 0. 30. 51. 15. 6. ٥. 135. RESIDUAL 135. 10 0.18 0.15 0.64 84 18 CC1626 GTST-16/26 HEAT 178. 300. 36. 121. 35. ٥. 30G. RESIDUAL 0 0.37 0.40 0.29 0. -312. -12. ٥. 19 CC1622 GTST-16/22 POWR 0. 32. 52. 16. 21. 6. 82. 134.RESIDUAL 134. 10 0.19 0.15 0.64 19 CC1622 GTST-16/22 HEAT 273. RESIDUAL O. 168. 273. 86. 109. 32. 0. -275. -2. 0 G.38 0.40 0.31 . 1 20 CC1222 GTST-12/22 POWR 32. 52. 21. 134. REST DUAL 10 0.19 0.15 0.64 16. 6. 82. 0. 154. 20 CC1222 GTST-12/22 HEAT 169. 272. 109. 32. 272 RESIDUAL 0 0.38 0.40 0.32 86. 0. -275. -3. 21 CC0822 GTST-08/22 POWR 54. 20. 21. 6. 77. 131. RESIDUAL 131. 10 0.21 0.16 0.65 Λ 34 n 21 CC0822 GTST-08/22 HEAT 230. RESIDUAL 146. 230. 86. -210. 20. 0 0.39 0 38 0.37 ٥. 88. 26. 0. 22 STIG15 STIG-15-16 POWR 54. 21. 6. 100. 0. 154. RESIDUAL 154. 10 0.07 0.13 0.56 0. 11. 1. 0. -7812. 22 STIG15 STIG-15-16 HEAT 2520. 6615.RESIDUAL -1197. 0 0.17 0.38 0.01 ٥. 1362. 6615. 86. 739. 23 STIG10 STIG-10-16 POWR 57. 21. 6. 92. 0. 150. RESIDUAL 150. 10 0.10 0.14 0.57 0. 16. 8. 23 STIG10 STIG-10-16 HEAT 649. RESIDUAL 0 0.22 0.36 0.13 180. -664. ٥. 649. 86. 233. 68, Ο. -15. Ω. 147. RESIDUAL 147. 10 0.11 0.14 0.58 24 STIG1S STIG-15-16 POWR 61. 21. 6. 86. 18. 13. E 0.23 0.34 0.21 24 STIGIS STIG-1S-16 HEAT 86. 137. 40. -363. 408. RESIDUAL 45, 0. 121. 408. Ω. 25 DEADV3 DIESEL-MEN POWR 56. 21. 6. 77. n 132. RESIDUAL 132. 0 0.20 0.16 0.65 33 21. 0. 0 0.37 0.37 0.37 25 DEADV3 DIESEL-AGV HEAT -203. 231, RESIDUAL 25. 0. 28, 0. 138. 231. 86. 86. 1 0.20 0.16 0.65 26 DEADV2 DIESEL-ADV POWR 56. 21. 21. 6. 77. 0. 132. RESIDUAL 132. 0. 33. 26 DEADV2 DIESEL-ADV HEAT -203. 1 0.37 0.37 0.37 86. 25. 0. 231, RESIDUAL 28. 0. 138. 231. 86. 27 DEADVI DIESEL-ADV POWR 37. 56. 24. 21. 73. 0. 129, RESIDUAL 129. 1 0.22 0.16 0.67 0. 6. 27 DEADV1 DIESEL-ADV HEAT 202. RESIDUAL 1 0.40 0.37 0.43 0. 133. 202. 86. 75. 22. ٥. -169. 32. 28 DEHTPM ADV-DIESEL POWR 25. 128. RESIDUAL 128. 0 0.22 0.16 0.67 37. 56. n 0 0.40 0.37 0.44 28 DEHTPM ADV-DIESEL HEAT 21. -159. 196. RESIDUAL 0. 129. 196. 86. 71. 0. 37. 0 0.19 0.15 0.64 29 DESGAS DIESEL-SGA POWR 32. 57. 21. 21. 6. 77. 0. 134. DISTILLA 134. 0 0.36 0.36 0.37 29 DESGAS DIESEL-SGA HEAT 131. 235. 86. 85. 25. ٥. -201. 235, DISTILLA 34. 134. 0 0.19 0.15 0.64 134. RESIDUAL 29 DESGAS DIESEL-SGA POWR 32. 57. 21. 21. 6. 77. 0. 0 0.36 0.36 0.37 29 DESGAS DIESEL-SGA HEAT 25. -201. 235. RESIDUAL 34. 0. 131. 235. 86. 85. α.

PAGE

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

I&SE PEO ADV DESIGN ENGR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20821 MW 6.04 PROCESS MILLIONS BTU/HR 86.0 PROCESS TEMP(F) 250. PRODUCT MALT-BEVERAG HOURS PER YEAR 6600.

POWER TO HEAT RATIO 0.240 UTILITY FUEL COAL

WASTE FUEL FOV BTUX10xx6=

PAGE

	UTIL	ITY FUEL	CC	AL					W	ASTE FU	EL EQV	BTU*10*:	*6=	o. Hat	WATER BI	U=10==6	i= 52	2.	
				W	IASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEA
				F	UEL	SAVED=	FUEL	PROCES	PROCES	MW	PROCES	FUEL	FUEL	FUEL	TOTAL+			FACTR	
				-	ISED	NO-NET		HEAT		ELECT			SITE	USED	UTILIT				
								10**6				10**6			10**6				
	· · · · · ·		···	В	TU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HR	}	BTU/HR				
		DIESEL-			ο.	32.	57.	21.	21.	6.		0.	134.	DISTILLA	134.	1	0.19	0.15	0.€
0	DESGA2	DIESEL-	SOA HE	AT	0.	131.	235.	86.	85.	25.	0.	-201.	235.	DISTILLA	34.	1	0.36	0.36	0.3
		DIESEL-			0.	32.	57.	21.	21.	6.		0.		RESIDUAL	134.	1		0.15	
)	DESGA2	DIESEL-	SØA HE	AT	0.	131.	235.	86.	85.	25.	0.	-201.	235.	RESIDUAL	34.	1	0.36	0.36	0.
		DI ESEL-			0.	37.	57.	25.	21.	6.		0.		DISTILLA		1	0.22	0.16	0.0
	DESCA1	DIESEL-	SOA HE	AT	0.	126.	197.	86.	71.	21.	0.	-158.	197.	DISTILLA	39.	1	0.39	0.36	0.
		DIESEL-			٥.	37.	57.	25.	21.	6.		0.		RES I DUAL	129.	1		0.16	
	DESCA1	DIESEL-	SOA HE	AT	0.	126.	197.	86.	71.	21.	0.	-158,	197.	RESIDUAL	39.	1	0.39	0.36	0.
		GT-HRSG			ο.	33.	71.	34.	21.	6.	62.	٥.		DISTILLA	132.	10	0.20	0.16	٥.
•	GTSOAD	GT-HRSG	-10 HE	AT	ο.	85.	181.	86.	53.	15.	0.	-100.	181.	DISTILLA	80.	0	0.32	0.29	٥.
		GT-85RE			0.	32.	58.	22.	21.	6.	76.	0.	133.	DISTILLA	133.	10	0.19	0.15	0.
3	GTRA08	GT-85RE	-08 HE	AT	0.	128.	228.	86.	82.	24.	٥.	-190.	228.	DISTILLA	38.	0	0.36	0.36	0.
		GT-85RE			0.	33.	58.	22.	21.	6.	75.	0.		DISTILLA	133.			0.16	ø.
	GTRA12	GT-85RE	-12 HE	AT	0.	128.	226.	86.	81.	24.	0.	-188.	226.	DISTILLA	38.	0	0.36	0.36	0.
		GT-85RE			ο.	33.	59.	23.	21.	6.	74.	0.		DISTILLA	133.	10		0.16	
_	GTRA16	GT-85RE	-16 HE	AT	<u> </u>	121.	219.	86.	75.	22.	0.	-174.	219.	DISTILLA	45.	<u> </u>	0.36	0.35	0.
;	GTR208	GT-60RE	-08 PC	WR	ο.	32.	64.	28,	21.	6.	69.	٥.	133.	DISTILLA	133.	10	0.20	0.15	٥.
i	GTR208	GT-60RE	-08 HE	AT	0.	101.	201.	86.	64.	19.	o.	-136.	201.	DISTILLA	64.	0	0.34	0.32	٥.
		GT-60RE			0.	32.	62.	26.	21.	6.	71.	0.		DISTILLA	133.	10	0,19	0.15	Ō.
,	GTR212	GT~60RE	-12 HE	AT	0.	108.	209.	86.	69.	20.	Ο.	-151.	209.	DISTILLA	58.	0	0.34	0.33	C.
		GT-60RE			0.	33.	61.	25.	21.	6.	72.	0.	133.	DISTILLA	133.	10	0.20	0.16	0.
·	GTR216	GT-60RE	-16 HE	AT	ο.	112.	209.	86,	71.	21.	0.	-156.	209.	DISTILLA	53.	0	9.35	0.34	0.
		GT-85RE			٥.	27.	59.	18.	21.	6.	80.	Ο.		DISTILLA	139.			9.15	
	GTRW08	GT-85RE	-08 HE	AT	0.	128.	280.	86.	98.	29.	0,	-242,	280.	DISTILLA	37.	0	0.31	0.35	0.
		GT-85RE			Ο.	28.	57.	17.	21.	6.	81.	0.		DISTILLA	137.			0.15	٥.
1	GTRW12	GT-85RE	-12 HE	AT	Ο.	139.	278.	86.	101.	3 0,	0.	-252 <i>.</i>	278	Distilla	26.			0.36	٥.

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

POWER TO HEAT RATIO 0.240

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 20821 MW 6.04 PROCESS MILLIONS BTU/HR 86.0 PROCESS TEMP(F) 250. PRODUCT MALT-BEVERAG FOURS PER YEAR 6600.

PAGE 35

UTILITY FUEL COAL

WASTE FUEL EQV BTU*10**6= 0. HOT WATER BTU*10**6= 52.

						WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT		SITE	NET=	FAIL	FESR	POWER	HEAT
						FUEL	SAVED=	FUEL	PROCES	PROCES	MW	PROCES	FUEL	FUEL	FUEL	TOTAL+			FACTR	FACTR
						USED	NO-NET	USED	HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				
						10**6	10**6	10**6	10××6	10**6		10**6	10×*6	10**6		10 * *6				
						BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HR	<u> </u>	BTU/HR				
41	GTRW16	GT	r-85RE-	16	POWR	ο.	29.	58.	19.	21.	6.	79.	0.	137.	DISTILLA	137.	10	0.17	0.15	0.63
41	GTRW16	G	Γ-85RE-	16	HEAT	٥.	132.	267.	86.	95.	28.	٥.	-233.	267,	DISTILLA	34.	0	0.33	0.36	0.32
42	GTR308	G	1-60RE-	80	POWR	0.	26.	66.	24.	21.	6,	73.	0.	139.	DISTILLA	139.	10	0.1%	0.15	0.62
42	GTR308	G	-60RE-	80	HEAT	٥.	94.	238.	86.	74.	22.	٥.	-166.	238.	DISTILLA	72.	0	0.28	0.31	0.36
43	GTR312	G1	r-60RE-	12	POWR	0.	29.	60.	21.	21.	6.	77,	0.	137.	DISTILLA	137.	10	0.17	0.15	0.63
43	GTR312	G1	-60RE-	12	HEAT	0.	118.	248.	86.	85.	25.	0.	-201.	248.	DISTILLA	47.	0	0.32	0.34	0.35
14	GTR316	G1	1-60RE-	16	POWR	٥.	29.	61.	21.	21.	6.	76.	٥.	137.	DISTILLA	137.	10	0.17	0.15	0.63
14	GTR316	G1	r-60RE-	16	HEAT		116.	246.	86.	84.	24.	0.	-197 <u>.</u>	246.	DISTILLA	50.	0	0.32	0.34	0.35
45	FCPADS	FU	JEL-CL-	РН	POWR	٥.	33.	54.	19.	21.	6.	78.	ο.	133.	DISTILLA	133.	0	0.20	0.16	0.65
45	FCPADS	FL	JEL-CL-	PH.	HEAT	٥.	146.	240.	86.	91.	27.	Ο.	-221.	240.	DISTILLA	19.	0	0.38	0.38	0.36
46	FCMCDS	Fl	JEL-CL-I	10	POWR	0.	28.	50.	12.	21.	6.	87.	0.	137.	DISTILLA	137.	0	0.17	0.15	0.63
46	FCMCDS	FL	EL-CL-	MQ	HEAT	0.	207.	369.	86.	152.	45.	٥.	-411.	369.	DISTILLA	-42.	0	0.36	0.41	0.23

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

36

REPORT 5.1

I&SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 22601 MW 6.20 PROCESS MILLIONS BTU/HR 158.0 PROCESS TEMP(F) 341. PRODUCT TEXTILE-FINI HOURS PER YEAR 6240.

POWER TO HEAT RATIO 0.134 UTILITY FUEL COAL. WASTE FUEL EQV BTU*10**6= C. HOT WATER BTU*10**6= COGEN COGEN COGEN AUX WASTE FUEL UTILIT TOTAL SITE NET= FESR POWER HEAT FAIL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL. TOTAL+ FACTR FACTR HEAT POWER ELECT BOILR USED USED NO-NET USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONCOUNT COGON ٥. ٥. 0. α. ۵. 186. 186. COAL-FOR 252. 0.08 0.63 1 STM141 STM-TURB-1 PCWR 98. 41. 141. 21. Ο, 6. 70. ٥. 211. RESIDUAL 211. 10 0.16 0.10 0.75 1 STM141 STM-TURB-1 HEAT 226. 10. 0. 66. 158. 34. 0. -40. 226. RESIDUAL 186. 0 0.23 0.15 0.70 1 STM141 STM-TURB-1 POWR 6. 0. 41. 141. 98. 21. 70. 0. 211.COAL-FOD 211. 10 0.16 0.10 0.75 1 STM141 STM-TURB-1 HEAT 66. 226. 158. 34. 10. 226. COAL-FOD ٥. -40. 186. 0 0,23 0.15 0.70 1 STM141 STM-TURB-1 POWR 0. 41. 141. 98. 21. 6. 70. 0. 211. COAL-AFB 211. 10 0.16 0.10 0.75 1 STM141 STM-TURB-1 HEAT α. 226. 158. 66. 34. 10. O. -40. 226. COAL-AFE 186. 0 0.23 0.15 0.70 2 STM088 STM-TURB-8 POWR 41. 182. 134 21. Ĝ. 29. 0. 211. RESIDUAL 211. 0 0.16 0.10 0.75 2 STM088 STM-TURB-8 HEAT 215. 49. 158. 25. 7. 0. -12. 215. RESIDUAL 203. 0 0.18 0.12 0.73 2 STM088 STM-TURB-8 POWR 0. 41. 182. 134. 21. 6. 29. ٥. 211.COAL-FGD 211. 0 0.16 0.10 0.75 2 STM088 STM-TURB-8 HEAT 0 0.18 0.12 0.73 49. 215. 158. 25. 0. -12. 215. COAL-FOD 203. 7. 2 STM088 STM-TURB-8 POWR 0. 41. 182. 134. 21. 6. 29. Ο. 211. COAL-AFB 211. 0 0.16 0.10 0.75 2 STM088 STM-TURB-8 HEAT ٥. 49. 215. 158. 25. 7. ٥. -12. 215. COAL-AFB 203. 0 0.18 0.12 0.73 3 PFBSTM PFB-STMTB- POWR 61. 0. 40. 98. 21. 6. 114. 0. 212. COAL-PFB 212. 10 0.16 0.10 0.75 3 PFBSTM PFB-STMTB- HEAT 0. 104. 252. 158. 54. 16. 0. -104. 252, COAL-PFB 148. 0 0.29 0.22 0.63 4 TISTMT TI-STMTB-1 POWR 41. 80 46. 132. 211, RESIDUAL 10 0.16 0.10 0.75 4 TISTMT TI-STMTB-1 HEAT 273. 158. 72. 0, -160. 0 0.34 0.26 0.58 0. 139. 273. RESIDUAL 113. 21. 41. 4 TISTMT TI-STMTB-1 POWR ٥. 80. 46. 21. 6. 132. 0. 211.COAL 211. 10 0.16 0.10 0.75 4 TISTMT TI-STMTB-1 HEAT 139. 273. 158. 72. 0 0.34 0.26 0.58 21. 0. -160. 273. COAL 113. 5 TIHRSG THERMIONIC POWR 31. 150. 98, 70. 0. 21. 6. 0. 221 RESIDUAL 221. 0 0.12 0.10 0.72 5 TIHRSG THERMIONIC HEAT ٥. 50. 242. 158. 34. 10. ٥. -40. 242. RESIDUAL 202. 0 0.17 0.14 0.65 5 TIHRSG THERMIONIC POWR 150. 98. 21. 70. 0 0.12 0.10 0.72 0. 31. 6. 0. 221. COAL 221. 5 TIHRSG THERMIONIC HEAT ٥. 50. 242. 158. 34. 10. ۵. -40. 202. 0 0.17 0.14 0.65 242. COAL 6 STIRL STIRLING-1 POWR 39. 30. 82. 21. 6. 140. 0. 222. DISTILLA 222. 0 0.12 0.10 0.71 6 STIRL STIRLING-1 HEAT 0 0.26 0.26 0.47 121. 335. 158. -204. 335. DISTILLA 131.

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

I&SE PEG ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 22601 MW 6.20 PROCESS MILLIONS BTU/HR 158.0 PROCESS TEMP(F) 341. PRODUCT TEXTILE-FINI HOURS PER YEAR 6240.

POWER TO HEAT RATIO 0.134 HOT WATER BTU:10**6= WASTE FUEL EQV BTU*10**6= UTILITY FUEL COAL UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT COGEN COGEN COGEN AUX WASTE COGEN FUEL FUEL TOTAL+ FACTR FACTR PROCES FUEL FUEL SAVED= FUEL PROCES PROCES MW NO-NET USED BOILR USED SITE USED UTILIT USED HEAT POWER ELECT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 222. RESIDUAL 222. 0 0.12 0.10 0.71 140. 0. 6 STIRL STIRLING-1 POWR ٥. 30. 82. 39. 21. 6. 335. RESIDUAL 0.26 0.26 0.47 -204. 131. 6 STIRL STIRLING-1 HEAT ٥. 121. 335. 158. 86. 25. ٥. 140. 222. COAL 222. 0.12 0.10 0.71 6 STIRL STIRLING-1 POWR 21. 0. 0. 30. 82. 39. 6, 335. COAL 131. 0.26 0.26 0.47 -204. 6 STIRL STIRLING-1 HEAT 0. 121. 335. 158. 86. 25. D. 240, COAL-AFB 240. 10 0.05 0.09 0.66 7 HEGT85 HELIUM-GT- POWR Ð. 12. 66. 10. 21. 174. Ο. 0.16 0.32 0.16 -955. 1018. COAL-AFB 63. 7 HEGT85 HELIUM-GT- HEAT 189. 1018. 158. 327. 96. 0. 237, COAL-AFB 237. 10 0.06 0.09 0.67 8 HEGT60 HELIUM-GT- POWR 0. 15. 82. 26. 21. 6, 156. Û. 0.15 0.26 0.31 -342 504. COAL-AFB 162. 8 HEGT60 HELIUM-GT- HEAT 90. 504. 158. 131. 38. 0. 236, COAL-AFB 236. 10 0.06 0.09 0.67 9 HEGTOO HELIUM-GT- POVR 120. 59. 21. 6. 116. 0. 0. 16. 0.12 0.18 320, COAL-AFB 210. 10 0.49 9 HEGTOO HELIUM-GT- HEAT 320. 158. 56. 16. 0. -110. n 42. 217. COAL 217. 10 0.14 0.10 0.73 10 FCMCCL FUEL-CL-MO POWR 35. 70. 33. 21. 6. 147. 0. O. -251. 333. COAL 83, 10 0.34 0.30 0.47 10 FCMCCL FUEL-CL-MO HEAT 333. 158. 101. 30. 0. 0. 169. 215. 10 0.15 0.10 0.73 161. 215. COAL 11 FCSTCL FUEL-CL-ST POWR 37. 55. 21. 21. 6. n 10 0.40 0.39 -423. 0.39 156. 46. 0. 404. COAL -19. 11 FCSTCL FUEL-CL-ST HEAT 271. 404. 158. 10 0.12 0.09 0.71 150. O. 223. COAL 223. 29. 73. 31. 21. 6. 12 IGGTST INT-GAS-GT POWR 0. 101. 10 0.29 0.29 0.42 · -275. 376. COAL 12 IGGTST INT-GAS-GT HEAT a. 151. 376. 158. 109. 32. ٥. 222. 10 0.12 0.10 0.71 149. ٥. 222. RESIDUAL 30. 73. 31. 21. 6. 13 GTSGAR GT-HRSG-10 POWR C. 0.43 0.29 0.29 -266. 366. RESIDUAL 100. 13 GTSOAR GT-HRSG-10 HEAT ٥. 152. 366. 158. 106. 31. 0. 10 0,14 0.10 0.73 217. 21. 139. 0. 217, RESIDUAL 35. 78. 40. 6. 14 GTACOS GT-HRSG-08 POWR Ō. 0 0.31 0.27 0.51 308, RESIDUAL 114. 14 GTACO8 GT-HRSG-08 HEAT 138. 308. 158. 83. 24. Ο. -193. ۵. 10 0.14 0.10 0.73 21. ٥. 217. RESIDUAL 217. 148. 15 GTAC12 GT-HRSG-12 POWR ٥. 35. 69. 32. 6. 0.33 0.31 0.47 -257. 340. RESIDUAL 82. 15 GTAC12 GT-HRSG-12 HEAT 170. 340. 158. 104. 30. O. O. 10 0.14 0.10 0.73 21. 0. 218. RESIDUAL 218. 152. 34. 65. 29 6. 16 GTAC16 GT-HRSG-16 POWR ٥. 0.32 0.44 -300. 363, RESIDUAL 63. 0 0.34 189. 363. 158. 117. 34. 0. 16 GTAC16 GT-HRSG-16 HEAT n. 10 0.12 0.10 0.71 154. ٥. 221. RES! DUAL 221. 27. 21. 6. ٥. 31. 67. 17 GTWC16 GT-HRSG-16 POWR 0.32 0.32 0.40 -318. 391, RESIDUAL 72. Ω 180. 391. 158. 123. 36. 0, 17 GTWC16 GT-HRSG-16 HEAT

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 22601 MW 6.20 PROCESS MILLIONS BTU/HR 158.0 PROCESS TEMP(F) 341. PRODUCT TEXTILE-FINI HOURS PER YEAR 6240.

POWER TO HEAT RATIO 0.134 WASTE FUEL EQV BTU:10:#6= HOT WATER BTU-10** ٥. COAL UTILITY FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT COGEN WASTE PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR PROCES PROCES MW SAVED= FUEL FUEL USED UTILIT BOILR USED SITE USED NO-NET USED HEAT POWER ELECT 10**6 10**6 10**6 10**6 10**6 10**6 10××6 *0**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR E U/HR BTU/HR BTU/HR BTU/HR BTU/HR 221. RESIDUAL 221. 10 0.12 0.10 0.71 21. 6. 166. 18 CC1626 GTST-16/26 POWR ۵. 31. 55. 17. -548, 516. RESIDUAL -33. 0 0.36 0.38 0.31 18 CC1626 GTST-16/26 HEAT ٥. 285. 516. 158. 197, 58. 21. 164. ٥. 220 . RESIDUAL 220. 10 0.13 0.10 0.72 56. 19. 6. 19 CC1622 GTST-16/22 POWR 0. 32. -487. 470. RESIDUAL -17. 0 0.36 0.38 0.34 177. 52. 19 CC1622 GTST-16/22 HEAT ٥. 269. 470. 158. 10 0.13 0.10 0.72 19. 21. 164 220. RESIDUAL 220. 20 CC1222 GTST-12/22 POWR 56. 176. 52. -484. 466 . RESIDUAL -18. 0 0.37 0.38 0.34 270. 466. 158. 20 CC1222 GTST-12/22 HEAT ٥. 10 0.14 0.10 0.73 ٥. 158. 0. 217. RESIDUAL 217. 21 CC0822 GTST-08/22 POWR 35. 59. 24. 21. 6. 0.37 0.36 0.40 158. 140. 41. G. -373. 394. RESIDUAL 22. 21 CC0822 GTST-08/22 HEAT 0. 230 394 1. 241. 10 0.05 0.09 0.66 6. 185. 0. 241. RESIDUAL 56. 21. 22 STIG15 STIG-15-16 POWR 0. 11. 0 0.17 0.38 0.01 -2251 1357. 0.-14405, 12154.RESIDUAL 22 STIG15 STIG-15-16 HEAT 0. 2503. 12154. 158. 4631. 10 0.07 0.09 0.67 236. 8. 21. 6. 177. 0. 236. RESIDUAL 23 STIG10 STIG-10-16 POWR o. 16. 59. 0 0.22 0.36 0.13 1192. RESIDUAL -80. 428. 126. 0. -1272. 23 STIG10 STIG-10-16 HEAT n. 332. 1192. 158. 233. 10 0.07 0.09 0.68 233. RESIDUAL 13. 21. 170. 24 STIGIS STIG-15-16 POWR 19 63 0 0.23 0.34 0.21 158. 251. 74. -719. 750. RESIDUAL 31. 24 STIGIS STIG-15-16 HEAT 0. 221. 750. 0 0.09 0.09 0.69 228. 25 DEADV3 DIESEL-ADV POWR 57. 12. 21. 6. 171. 0. 228. RESIDUAL 0. 24. 0 0.29 0.37 0.22 -57. 25 DEADV3 DIESEL-ADV HEAT 0. 303 733. 158. 272. 80. -784 733. RESIDUAL 1 0.10 0.09 0.70 228. 21. 169. 0. 226. RESIDUAL 26 DEADV2 DIESEL-ADV POWR 26. 57. 14. 6. 0. 0.31 0.37 0.25 -33, 26 DEADV2 DIESEL-ADV HEAT 285. 622. 158. 231. 68. ٥. -655. 622. RESIDUAL 0. 0.14 0.10 0.73 6. 160. 0. 217 RESIDUAL 217. 57. 22. 21. 27 DEADV1 DIESEL-ADV POWR 0. 35. 0.38 0.37 0.39 250. 404. 158. 150. 44. -402. 404. RESIDUAL 2. 27 DEADVI DIESEL-ADV HEAT ٥. 0 0.14 0.10 0.73 217. RESIDUAL 217. 27. 21. 154. 28 DEHTPM ADV-DIESEL POWR 35 63 0 0.36 0.34 0.43 158. 124. 36. -320. 368. RESIDUAL 47. 28 DEHTPM ADV-DIESEL HEAT 205, 368. ٥. 232. 0 0.08 0.09 0.68 11. 21. 6. 173. 0. 232. DISTILLA 29 DESGAS DIESEL-SGA POWR ٥. 20. 59. 0.25 0.36 0.18 0 158. 314. 92. -916. 870. DISTILLA -45. 297. 870. 0. 29 DESGAS DIESEL-SGA HEAT 0 0.08 0.09 0.68 232: RESIDUAL 232. 21. 6. 173. 0. 29 DESGAS DIESEL-SGA POWR 0. 20. 59. 11. 870. RESIDUAL -45. 0 0.25 0.36 0.18 158. 314. ¥2. -918. 297. 870. 29 DESGAS DIESEL-SGA HEAT ٥.

.

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

18SE PEG ADV DESIGN ENGR

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 22601 MW 6.20 PROCESS MILLIONS BTU/HR 158.0 PROCESS TEMP(F) 341. PRODUCT TEXTILE-FINI HOURS PER YEAR 6240.

	UTIL	ITY FUEL	COAL				POWE			0 0.134 EL EQV		*6=	o. HOT	WATER BT	TU*10**6	i= (0.	
				WASTE	FUFI.	CEGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEA.
				FUEL	SAVED=			PROCES		PROCES		FUEL	FUEL	TOTAL+			FACTR	FACT
				USED	NO-NET		HEAT		ELECT	BOILR	USED	SITE	USED	UTILIT		•		
				10**6	10**6	10**6	10**6	10**6		10**6	10**6	10××6		10**6				
		· · · · · · · · · · · · · · · · · · ·			BTU/HR						BTU/HR			BTU/HR				
30	DESGA2	DIESEL-SOA	POWR	٥.	23.	59.	13.	21.	6.	171.	٥.	229	.DISTILLA	229.	1	0.09	0.09	0.6
30	DESCA2	DIESEL-SOA	HEAT	ο.	278.	718.	158.	259.	76.	٥.	-744.	718	.DISTILLA	-26.	1	0.28	0.36	0.2
30	DESGA2	DIESEL-SOA	POWR	0.	23.	59.	13.	21.	6.				.RESIDUAL		1			
30	DESGA2	DIESEL-SOA	HEAT	0.	278.	716.	158.	259.	76.	0.	-744.	718	. RESIDUAL	-2€.	1	0.28	0.36	0.2
		DIESEL-SOA				59,	23.	21.	6.		0.		DISTILLA				0.10	
31	DESØA1	DIESEL-SOA	HEAT	0:	236.	394.	158.	142.	42.	0.	-378.	394	.DISTILLA	16.	1	0.37	0.36	
31	DESCA1	DIESEL-SOA	POWR	0.	35.	59.	23.	21.	6.	158.	0.		. RESIDUAL	217.	1	0.14		
		DIESEL-SOA			236.	394.	158.	142.	42.	0.	-378.	394	. RESIDUAL	16.	1	0.37	0.36	_0.4
32	GTSOAD	GT-HRSG-10	POWR	٥.	33.	72.	34.	21.	6.		0.		.DISTILLA	219.		0.13		
32	GTSGAD	GT-HRSG-10	HEAT	Ο.	156.	341.	158.	100.	29.	0	-245.	341	.DISTILLA	96.	0	0.31	0.29	0.4
33	GTRA08	GT-85RE-08	POWR	0.		59.	21.	21.	6.				.DISTILLA		10			
33	GTRA08	GT-85RE-08	HEAT	0.	239.	456.	158.	163.	48.	0.	-443.	456	.DISTILLA	13.	0	0.34	0.36	0.3
34	GTRA12	GT-85RE-12	POWR		32.	59.	21.	21.	6.		0.		.DISTILLA				0.10	
34	GTRA12	GT-85RE-12	HEAT	0.	239.	445.	158.	159.	47.	0.	-432.	445	.DISTILLA	13.	0	0.35	0.36	0.3
35	GTRA16	GT-85RE-16	POWR	٥.	32.	61.	22.	21.	6.	160.	ο.	220	.DISTILLA	220.	10	0.13	0.10	0.7
		GT-85RE-16				427.	158.	149.	44.	0.	-400.	427	.DISTILLA	27.	0	0.34	0.35	_0.3
36	GTR208	GT-60RE-06	POWR	٥.	32.	66.	27.	21.	6.	154.	0.	220	.DISTILLA	220.	10	0.13		
		GT-60RE-08				387.	158.	124.	36.	0.	-321.	387	.DISTILLA	66.	0	0.32	0.32	0.4
37	GTR212	GT-60RE-12	POWR	0.		64.		21.	6.		ø.		.DISTILLA	220,			0.10	
37	GTR212	GT-GORE-12	HEAT	٥.	198.	403.	. 158.	133.	39.	0,	-349.	403	.DISTILLA	· 54.	0	0.33	0.33	0.3
		GT-60RE-16			32.	63.	25.	21.	6.		0.		DISTILLA		10		0.10	
38	GTR216	GT-60RE-16	HEAT	Ö.	207.	404.	158.	136.	40.	0.	-359.	404	DISTILLA	45.	0	0.34	0.34	0.3
_		9T-85RE-08				60.	17.	21.	6.				DISTILLA	226. 12.			0.09 0.35	0.7
39	GTRW08	GT-85RE-06	HEAT	0.	240.	555.	158.	195.	57.	0.	-542.	555	.DISTILLA	12.	<u>U</u>			
		GT-85RE-1				58.		21.					.DISTILLA	224.	10		0.09 0.36	0.7
40	GTRW12	GT-85RE-12	TABH 5	Ο.	261.	545.	158.	198.	58.	0.	-554.	548	BISTILLA	-9.	Ü	0.32	0.36	U .

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 40

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 22601 MW 6.20 PROCESS MILLIONS BTU/HR 158.0 PROCESS TEMP(F) 341. PRODUCT TEXTILE-FINI HOURS PER YEAR 6240.

UTI	ILI.	TY F	UEL	COAL							6 0.134 EL EQV 1	BTU*10*	* 6=	O. HOT	WATER BT	U*10**6	= (ο.	
					WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET*	FAIL	FESR	POWER	HEAT
•	-				FUEL	SAVED=	FUEL	PROCES	PROCES	MW	PROCES	FUEL	FUEL	FUEL	TOTAL+			FACTR	FACTR
				•	USED	NO-NET	USED	HEAT	POWER .	ELECT	BOILR	USED	SITE	USED	UTILIT				
					10**6	10**6	10**6	10**6	10**6		10**6	10**6	10**6		10**6				
					BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HR	<u> </u>	BTU/HR				
II GTRW1	16 (8-T8	5RE-16	POWR	0.	28.	59.	18.	21.	6.	165.	0,	224.	DISTILLA	224.	10	0.11	0.09	0.71
1 GTRW1	16 (BT-8	5RE-16	HEAT	0.	246.	517.	158.	184.	54.	Ο,	-510.		DISTILLA	6.	0	0.32		0.31
2 GTR30	08 (GT-6	ORE-08	POWR	0.	24.	68.	22.	21.	6.	159.	0.	228.	DISTILLA	228.	10	0.10	0.09	0.59
2 GTR30	08 (GT-6	ORE-08	HEAT	0.	171.	480.	158.	149.	44.	0.	-399.		DISTILLA	81,	0	0.26		0.33
3 GTR31	12 (вт-е	ORE-12	POWR	0.	29.	62.	21.	21.	6.	162.	0.	223.	DISTILLA	223.	10	0.11	0.09	0.7
3 GTR31	12.0	GT-6	ORE-12	HEAT	0.	218.	472.	158.	161.	47.	О.	-438.	472.	DISTILLA	34.	0	0.32	0.34	0.3
4 GTR31	16 (9T-6	ORE-16	POWR	0.	28.	62.	21.	21.	6.	161.	0.	224.	DISTILLA	224.	10	0.11	0.09	0.7
GTR31	16 (<u> 3T-6</u>	ORE-16	HEAT	0.	214.	469.	158.	159,	47.	0.	-431,	469.	DISTILLA	38.	0	0.31	0.34	_0,3
FCPAD	DS F	FUEL	-CL-PH	POWR	٥.	22.	56.	9.	21.	6.	175,	ο.	230.	DISTILLA	230.	0	0.09	0.09	0.6
5 FCPAD	DS F	FUEL	-CL-PH	HEAT	0.	360.	929.	158.	353.	104.	Ο.	-1038.	929.	DISTILLA	-108.	0	0,28	0.38	0.17
FCMCD	DS F	FUEL	-CL-MO	POWR	9.	29.	51.	12.	21.	6.	172.	0.	223.	DISTILLA	223.	0	0.11	0.09	0.7
6 FCMCD	DS F	FUEL	-CL-MO	HEAT	o.	381.	678.	158.	279.	82.	0.	-807.	678.	DISTILLA	-129.	0	0.36	0.41	0.2

WELL PAGE PRINTING SYSTEM- P1188-

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

PAGE 41

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 24211 MW 1.50 PROCESS MILLIONS BTU/HR 30.0 PROCESS TEMP(F) 353. PRODUCT SOFTWOOD-LUM HOURS PER YEAR 4000.

POWER TO HEAT RATIO 0.171 UTILITY FUEL COAL. WASTE FUEL EQV BTU*10**6= 41. HOT WATER BTU*1Q**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL. SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COO N 35. RESIDUAL 35. O. ٥. n. ۵. 0. 35. 16. 51. 0 0. 0.10 0.58 1 STM141 STM-TURB-1 POWR 41. 10. 37. 26. 5. 2. 4. ٥. 41.RESIDUAL 41. 10 0.99 0.12 0.73 1 STM141 STM-TURB-1 HEAT Ο. 41. 11. 42. 30. -2. 42. RESIDUAL 6. 2. 40. 10 0.95 0.14 0.71 1 STM141 STM-TURB-1 POWR 41. 10. 37. 26. 5. 2. 4. ٥. 41.COAL-FGD 41. 10 0.99 0.12 0.73 1 STM141 STM-TURB-1 HEAT 41. 11. 42. 30. 2. 42. COAL-FOD 6. 0. -2. 40. 10 0.95 0.14 0.71 1 STM141 STM-TURB-1 POWR 41. 10. 37. 26. 5. 2. 41 COAL -AFR 4. α. 41. 10 0.99 0.12 0.73 1 STM141 STM-TURB-1 HEAT 41. 11. 42. 30. 2. ٥. -2. 42. COAL-AFB 6. 40. 10 0.95 0.14 0.71 2 STM088 STM-TURB-8 POWR 41 50. 50. RESIDUAL 50. 37. -8. 0. 10 0.47 0.10 0.60 2 STM088 STM-TURB-6 HEAT 40. 30. 1. 8. 40. 4. ٥. 40. RESIDUAL 3. 43. 10 0.81 0.10 0.69 2 STM088 STM-TURB-8 POWR 50. 37. 2. 41. 2. -8. 0. 50. COAL-FGD 50. 10 0.47 0.10 0.60 2 STM088 STM-TURB-8 HEAT 40. 40. 8. 30 0. 3. 40. COAL-FGD 43. 10 0.81 0.10 0.69 2 STM088 STM-TURB-8 POWR 2. 50. 37. 2. 41. -8. 0. 50. COAL-AFB 50. 0.47 0.10 0.66 10 2 STM088 STM-TURB-8 HEAT 40. 8. 40. 30. 0. 40. COAL-AFB 43. 4. 1. 3. 10 0.81 0.10 0.69 3 PFBSTM PFB-STMTB- POWR 41. 10. 25. 42. COAL-PFB 16. 5. 2. 17. 0. 42. 10 0.98 0.12 0.72 3 PFBSTM PFB-STMTB- HEAT 41. 18. 47. 30. 10. 3. 0. -14. 47. COAL-PFB 33. 10 0.80 0.20 0.64 4 TISTMT TI-STMTB-1 POWR 10. 20. 41. RESIDUAL 10 -0.26 0.12 0.72 21. 12. 2. 21. 0. 41. 4 TISTMT TI-STMTB-1 HEAT 0. ο. 110 0.00 0. 35. 0. 0. 0. 35. 16. 35, RESIDUAL 51. 0,58 4 TISTMT TI-STMTB-1 POWR 41. 10. 20. 2. 0. 41. COAL 10 0.98 0.12 0.72 12. 5. 21. 41. 4 TISTMT TI-STMTB-1 HEAT 25. 41. 51. 30. 13. 4. 0. -25. 51. COAL 26. 10 0.76 0.25 0.59 5 TIHRSG THERMIONIC POWR 2. 7. 7. 36. 24. 7. 0. 44. RESIDUAL 10 -1.27 0.12 0.68 5. 44. 5 TIHRSG THERMIONIC HEAT 35. 0. 0. 0. ٥. ٥. 35. 16. 35. RESIDUAL 51. 110 0.00 0. 0.58 5 TIHRSG THERMIONIC POWR 44. COAL 41. 36. 24. 5. 2. 7. Ö. 44. 10 0.83 0.12 0.68 5 TIHRSG THERMIONIC HEAT 41. 9. 46. 30. 6. 2. 0. -4. 46. COAL 42. 10 0.75 0.14 0.65 6 STIRL STIRLING-1 POWR 20. 44. DISTILLA 0 -0.25 0.12 0.68 24. 10. 0. 44 24. 51. 6 STIRL STIRLING-1 HEAT 35. 0. Ο, ٥. 0. 35. 35. DISTILLA 110 0.00 0. 0.58 ٥. 16.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 24211 MW

I&SE PEO ADV DESIGN ENGR

1.50 PROCESS MILLIONS BTU/HR 30.0 PROCESS TEMP(F) 353. PRODUCT SUFTWOOD-LUM HOURS PER YEAR 4000.

PAGE

42

POWER TO HEAT RATIO 0.171 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 41. HOT WATER BTU*10**6= ٥. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STURLING-1 POWR 24. 7. 20. 10. 5. ٥. 44. RESIDUAL 2. 24. 44. 0 -0.25 0.12 0.68 6 STIRL STIRLING-1 HEAT 35. 0. Ο. ٥. 0. 0. 35. 16. 35, RESIDUAL 51. 110 0.00 0. 0.58 6 STIRL STIRLING-1 POWR 41. 7. 20. 10. 5. 2. 24. 0. 44. COAL 44. 0 0.81 0.12 0.68 6 STIRL STIRLING-1 HEAT 41. 22. 63. 30. 16. 5. ٥. -34. 63. COAL 29. 0 0.56 0.26 0.47 7 HEGT85 HELIUM-GT- POWR 41. 16. 33. 0. 49. COAL-AFB 10 0.53 0.11 49. 0.62 7 HEGT85 HELIUM-GT- HEAT 41. 36. 218. 30. 70. 20. C. -203. 218. COAL-AFB 15. 10 0.19 0.32 0.14 8 HEGT60 HELIUM-GT- POWR 20. 41. 3 6. 5. 28, 0. 48. CCAL-AFB 48. 10 0.57 0.11 0.62 8 HEGTGO HELIUM-GT- HEAT 41. 16. 99. 30. 26. -64. 0. 99. COAL-AFB 35. 8. 10 0.28 0.26 0.30 9 HEGTOO HELIUM-GT- POWR 41. 29. 5. 4. 14. 18. 0. 48. COAL-AFB 48. 10 0.60 0.11 0.63 9 HEGTOO HELIUM-GT- HEAT 41. 3. 61. 30. 11. 3. ٥. -18, 61. COAL-AFB 43. 10 0.41 0.18 0.49 10 FCMCCL FUEL-CL-MO POWR 9. 17. 8. 5. 26. 0. 43. COAL 43. 10 -1.67 0.12 0.70 10 FCMCCL FUEL-CL-MC HEAT 32. 63. 30. 19. 6. ٥. -44. 63. COAL 19. 10 -0.05 0.30 0.47 11 FCSTCL FUEL-CL-ST POWR 42. COAL 42 10 -1.65 0.12 0.71 9. 13. 5. 5. 29. 0. 11 FCSTCL FUEL-CL-ST HEAT 50. 75. 30. -74. 75. COAL 2. 10 0.16 0.38 0.40 12 IGGTST INT-GAS-GT POWR 18. 8. 26. ٥. 44. COAL 44. 10 -1.77 0.12 0.68 n 7. 5. 2. 10 -0.13 0.28 0.43 12 IGGTST INT-GAS-GT HEAT 27. 70. 30. 20. Ũ. -46. 70. COAL 24. 6. 13 GTSOAR GT-HRSG-10 POWR 26. 7. 18. 8. 5. 2. 26. 0. 44. RESIDUAL 44. 10 -0.10 0.12 0.68 13 GTSOAR GT-HRSG-10 HEAT 35. ٥. 0. ٥. 0. 35. 16. 35. RESIDUAL 51. 110 0.00 0. 0.58 14 GTACOS GT-HRSG-08 POWR 24. 9. 19. 10. 5. 2. 24. ٥. 43. RESIDUAL 43. 10 -0.19 0.12 0.70 14 GTACO8 GT-HRSG-08 HEAT 35. 0. 0. 0. 0. 0.. 35. 16. 35. RESIDUAL 51. 110 0.00 0. 0.58 15 GTAC12 GT-HRSG-12 POWR 43. RESIDUAL 43. 10 -0.05 U.12 0.70 26. 8. 17. 8. 26. ٥. 15 GTAC12 GT-HRSG-12 HEAT 35. Ō. ۵. 0. 0. 0. 35. 16. 35. RESIDUAL 51. 110 0.00 0. 0.58 ٥. 16 GTAC16 GT-HRSG-16 POWR 27. 43. RESIDUAL 43. 10 0.01 0.12 0.70 16. 7. 5. 2. 27. 8. 16 GTAC16 GT-HRSG-16 HEAT 35. 16. 35. RESIDUAL 51. 110 0.00 0. 0.58 35. ٥. ٥. ٥. ٥. 0. 10 -0.02 0.12 0.68 17 GTWC16 GT-HRSG-16 POWR 28. 0. 44. RESIDUAL 16. 7. 2. 44. 28. 5. 17 GTWC16 GT-HRSG-16 HEAT 35. 0. 0. ٥. 0. 0. 35. 16. 35. RESIDUAL 51. 110 0.00 0. 0.58

18SE PEG ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

PAGE

43

INDUSTRY 24211 MW 1.50 PROCESS MILLIONS BTU/HR 30.0 PROCESS TEMP(F) 353. PRODUCT SOFTWOOD-LUM HOURS PER YEAR 4000.

POWER TO HEAT RATIO 0.171 WASTE FUEL EQV BTU*10**6= 41. HOT WATER BTU*10**6= 0. UTILITY FUEL COAL FESR POWER HEAT WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR 30. 7. 14. 4. 5. 2. 30. 0. 44. RESIDUAL 44. 10 0.15 0.12 0.68 18 CC1626 GTST-16/26 HEAT 35. 0. ٥. 0. 35. 35. RESIDUAL 0, ٥. 16. 51. 110 0.00 0. 0.58 19 CC1622 GTST-16/22 POWR 30. 8. 14. 5. 5. 2. 30. 0. 44. RESIDUAL 44. 10 0.14 0.12 0.69 19 CC1622 GTST-16/22 HEAT 35. ٥. ٥. ٥. 35. 16. 35. RESIDUAL 51. 110 0.00 0. 0. ٥. 0.58 20 CC1222 GTST-12/22 POWR 30. 14. 5. 5. 30. 0. 43. RESIDUAL 43. 10 0.14 0.12 0.69 20 CC1222 GTST-12/22 HEAT 0. 0. 0. 35. 16. 35. RESIDUAL 51. 110 0.00 0. 0.58 21 CC0822 GTST-08/22 POWR 28. 8. 15. 6. 5. 2. 28. 0. 43. RESIDUAL 43. 10 0.08 0.12 0.70 0. 21 CC0822 GTST-08/22 HEAT 35. 35. 0. 0. C. 16. 35. RESIDUAL 51. 110 0.00 0. ο. 0.58 22 STIG15 STIG-15-16 POWR 35. 3. 13. 0. 5. 2. 35. 0. 49. RESIDUAL 49. 10 0.16 0.11 0.62 22 STIG15 STIG-15-16 HEAT 35. 0. ٥. 0. 0. ٥. 35. 16. 35. RESIDUAL 51. 110 0.00 0. 0.58 23 STIG10 STIG-10-16 POWR 33. 14. 2. 5. 2. 33. 0. 47. RESIDUAL 47. 10 0.11 0.11 0.63 23 STIG10 STIG-10-16 HEAT 35. 35. 0. ٥. 0. Ο. . 0. 16. 35. RESIDUAL 51. 110 0.00 0. 0.58 24 STIG1S STIG-1S-16 POWR 15. 32. 0. 47. RESIDUAL 47. 10 0.05 0.11 0.64 24 STIGIS STIG-15-16 HEAT 35. 0. o. o. 35. 16. 35. RESIDUAL 51. 110 0.00 0. 0.58 0. 25 DEADV3 DIESEL-ADV POWR 32. 6. 14. 3. 5. 2. 32. ٥. 46. RESIDUAL 46. 10 0.14 0.11 0.€6 25 DEADV3 DIESEL-ADV HEAT 35. 0. 0. 35. 16. 35. RESIDUAL 51. 110 0.00 0. 0.58 0. อ. 0. 31. ٥, 26 DEADV2 DIESEL-ADV POWR 31. 6. 14. 4. 5. 2. 45. RESIDUAL 45. 11 0,14 0.11 0.67 26 DEADV2 DIESEL-ADV HEAT 111 0.00 0. 0.58 35. ٥. 0. 0. 0. 0. 35. 16. 35. RESIDUAL 51. 27 DEADV1 DIESEL-ADV POWR 14. 29. 0. 43. RESIDUAL 43. 11 0.14 0.12 0.70 29. 9. 5. 5. 2. 27 DEADVI DIESEL-ADV HEAT 35. RESIDUAL 111 0.00 0. 0.58 35. 0. Ο. ٥. 0. 04 35. 16. 51. 28 DEHTPM ADV-DIESEL POWR 15. 28. 0. 43. RESIDUAL 43. 10 0.04 9.12 0.70 0.58 28 DEHTPM ADV-DIESEL HEAT Ο. 35. 16. 35. RESIDUAL 110 0.00 0. 35. 0. ٥. 0. 0. 51. 29 DESGAS DIESEL-SGA POWR 32. 5. 14. 3. 5. 2. 32. 0. 47. DISTILLA 47. 0 0.11 0.11 0.64 29 DESGAS DIESEL-SCA HEAT 35. 35. DISTILLA 110 0.00 35. n 0. 0. 16. 51. n 0.58 0. Ω. 32. ٥. 29 DESGAS DIESEL-SGA POWR 32. 5. 14. 3. 5, 2. 47. RESIDUAL 47. 0 0.11 0.11 0.64 29 DESGAS DIESEL-SGA HEAT ٥. 0. 35. 35. RESIDUAL 110 0.00 0. 0.58 35. ٥. 0. 0. 16. 51.

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

PAGE

44

INDUSTRY 24211 MW 1.50 PROCESS MILLIONS BTU/HR 30.0 PROCESS TEMP(F) 353. PRODUCT SOFTWOOD-LUM HOURS PER YEAR 4000.

POWER TO HEAT RATIO 0.171 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 41. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES FUEL FUEL FUEL SAVED= FUEL PROCES PROCES MW FUEL TOTAL+ FACTR FACTR USED POWER' ELECT BOILR USED SITE USED NO-NET USED HEAT UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR ETU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 32. 5. F. ۵. 46. DISTILLA 46. 1 0.11 0.11 0.65 14. 3. 2. 30 DESGA2 DIESEL-SGA HEAT 35. . 0. ٥. ο. 0. 16. 35. DISTILLA 51. 111 0.00 C. 0.58 30 DESGA2 DIESEL-SGA POWR 2. 0. 46. RESIDUAL 1 0.11 0.11 0.65 32. 5. 14. 3. 5. 32. 46. 30 DESCA2 DIESEL-SCA HEAT 0. 35. 35. 35. RESIDUAL 51. ٥. 0. ٥. 0. 16. 111 0.00 0. 0.58 31 DESGA1 DIESEL-SGA POWR 29. 0. 43. DISTILLA 43. 29. 14. 1 0.11 0.12 0.70 31 DESCA1 DIESEL-SCA HEAT 0. 0. 0. 35.DISTILLA 51. 111 0.00 0. 35 n n 35. 16. 0.58 31 DESGA1 DIESEL-SGA POWR 29. 5. 29. ٥. 43. RESIDUAL 43. 3 0.11 0.12 0.70 14. 6. 31 DESGA1 DIESEL-SGA HEAT 111 0.00 0. 35. ٥. 0. ٥. 35. 16. 35. RESIDUAL 51. 0.58 32 GTSGAD GT-HRSG-10 POWR 10 -0.10 0.12 0.69 26. 18. 8. 26. Q. 43.DISTILLA 43. 32 GTSØAD GT-HRSG-10 HEAT 35. ٥. 35. 35. DISTILLA 51. 110 9.00 0. 0.58 ٥. 16. 10 9.15 0.12 0.68 33 GTRAOS GT-85RE-08 POWR 30. 7. 14. 30. Ω. 44. DISTILLA 44. 33 GTRAO8 GT-85RE-08 HEAT 35. 0. 0. 35. 16. 35. DISTILLA 51. 110 0.60 0. 0.58 0. 34 GTRA12 GT-85RE-12 POWR 10 0.11 0.12 0.69 29. 29. ٥. 44. DISTILLA 44. 14. 34 GTRA12 GT-85RE-12 HEAT 35. O. Ω. o. Ö. 35. 16. 35.DISTILLA 51. 110 0 00 0. ٥. ٥. 44.DISTILLA 35 GTRA16 GT-85RE-16 POWR 29. 8. 15. 5. 5. 2. 29. 44. 10 0.08 0.12 0.69 35 GTRA16 GT-85RE-16 HEAT 35. DISTILLA 51. 110 0.00 0. 35. n. C. Ω. 0. ٥. 35. 16. 0.58 10 0.00 0.12 0.69 36 GTR208 GT-60RE-08 POWR 16. 2. 28. 0. 44. DISTILLA 44. 28. 8. 6. 5. 36 GTR208 GT-60RE-08 HEAT 35 ٥. 0. 0. 0. 35. 16. 35. DISTILLA 51. 110 0.00 0. 0.58 37 GTR212 GT-60RE-12 POWR 28. 0. 44. DISTILLA 44. 10 0.03 0.12 0.69 28. 16. 37 GTR212 GT-60RE-12 HEAT 35. 0. 0. 0. ٥. 35. 16. 35. DISTILLA 51. 110 0.00 0. 0.58 38 GTR216 GT-60RE-16 POWR 28. 15. 6. 28. ٥. 44.DISTILLA 44. 10 0.05 0.12 0.69 38 GTR216 GT-60RE-16 HEAT 0. Ō. 35. 16. 35. DISTILLA 51. 110 0.00 0. 0.58 0.67 39 GTRWO8 GT-85RE-08 POWR 30. 5. 2. 30. ٥. 45. DISTILLA 45. 10 0.09 0.11 6. 15. 4. 39 GTRW08 GT-85RE-08 HEAT 35, O. 0. 35. 16. 35. DISTILLA 51. 110 0.00 0. ٥. 45. 10 0.12 0.11 0.67 40 GTRW12 GT-85RE-12 POWR 31. 5. 2. 31. 45.DISTILLA 7. 14. 4. 40 GTRW12 GT-85RE-12 HEAT 35. 0. ٥. 0. 35. 16. 35. DISTILLA 51. 110 0.00 0. 0.58

1.53E 45

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.1

DATE 06/06/79

ISSE PEG ADV DESIGN ENGR

			TR RT	58	66 58	50 ES	58 58	55	0.68 0.58					·		
			R HE	0.67	0.58	0.68	0.58	0.65]						:	A FEE PARK DRAW AND
	4000.	•	FACTR FACTR	0.1	0.11	0.12	0.12	0.11	0.12							
	9	ó	R	0.10	0.03	0.00	0.00	0,16 0,00	0.22							
	PER YEAR	xxe=		0.11	0-011	110	0110	001	100							
		B_U*10**6=	FAIL	-	-			_								
	SOFTWOOD-LUM HOURS	WATER B	NET* TOTAL+ UTILIT 10**6 BTU/HR	45.	51.	51.	51.	5 to	51.							
	900	HOT	ه د س	I LA	וורץ	4	1114	DISTILLA	I LLA							
		41.	SITE FUEL USED	45.DISTILLA 35.JISTILLA	45.DISTILLA 35.DISTILLA	44.DISTILLA 35.DISTILLA	44.DISTILLA 35.DISTILLA		44.DISTILLA 35.DISTILLA							
	PRODUCT		TOTAL FUEL SITE 10=x6 BTU/HR	4 S	35	35	35	35.	35							
ECS**	353. PI	TU*10*;	UTILIT FUEL USED 10**6 BTU/HR	16.	16.	16.	16.		16.	·						
SS AND)(F)	HEAT RATIO 0.171 WASTE FUEL EQV BTU*10**6=	AUX PROCES BOILR 10**6 BTU/HR	35.	29.	29. 35.	29, 35,	33. 35.	32. 35.							
PROCES	SS TEMP(F)	RATIO TE FUEI	GEN	40	9.0	90.	% O	6 io	9.0							
FUEL ENERGY SAVER BY PROCESS AND ECS	30.0 PROCESS	TO HEAT WAS	COGEN CO PROCES HW POWER EL 10**6 BTU/HR	က် ဝ		1 0	O œ	က် ဝဲ	က် ဝ							
FRGY S	30.0	POWER	E S S E	4.0	iù ó	6	છ . 0	4 O	e 0							
L E	BTU/HR		1 1	4.0	7.	O	0.5		0.0							
FUE			COGEN FUEL USED 106 BTU/HR	40	17	0	3. 0	20	100							
	MILLIONS		FUEL SAVED= NG-NET 10**6 BTU/HR	6.0	9 0	2.0	7.	က် ဝ	7.							
	PROCESS		WASTE F FUEL S USED P 10**6	35.	29.	29.	29. 35.	33. 35.	32. 35.							
	1.50	COAL		PØWR HEAT	POWR HEAT	POWR HEAT	PGWR HEAT	POWR HEAT	PCWR			•				
						12										
	¥ .	FUEL		GT-85RE-16 GT-85RE-16	GT-60RE-08 GT-60RE-08	GT-60RE-12 POWR GT-60RE-12 HEAT	GT-60RE-16 GT-60RE-16	FUEL-CL-PH FUEL-CL-PH	FUEL-CL-MO FUEL-CL-MO							
	24211	1	,	GT-4 GT-8	GT-1	GT-(FUEI		-						
	RY	UTILITY		OTRW16 GTRW16	GTR308 GTR308	GTR312 GTR312	OTR316 GTR316	FCPADS	FCMCDS							
	INDUSTRY)			i i											
 	Z			44	4 4 2 4 2	4 A	4 4 4 4	4 4 8 6	46		- 20-29(1)	YSTEM- F	INTING S	NAGE PR	EAMER	ион.

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 46

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 24361 MW 3.00 PROCESS MILLIONS BTU/HR 75.0 PROCESS TEMP(F) 406, PRODUCT SOFT-PLYWOOD HOURS PER YEAR 6000.

POWER TO HEAT RATIO 0.136 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 100. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN COGEN UTILIT TOTAL SITE AUX NFT= FAIL FESR POWER HEAT SAVED= FUEL FUFL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COGON 88. 0. ٥. O. ٥. 0. 88. 32. 88. COAL - AFB 120. 0 0. 0.09 0.62 1 STM141 STM-TURB-1 POWR 100. 20. 95. 71. 10. 3. 5. n. 100 RESIDUAL 100. 10 0.99 0.10 0.75 1 STM141 STM-TURB-1 HEAT 100. 21. 101. 75. 11. o. -2. 101.RESIDUAL 99. 10 0.97 0.11 0.74 1 STM141 STM-TURB-1 POWR 100. 20. 95. 71. 10. 3 5. n 100. COAL-FGD 100. 10 0.99 0.10 0.75 1 STM141 STM-TURB-1 HEAT 100 21. 101. 75. 11. 3. 0. -2. 101.COAL-FGD 99. 10 0.97 0.11 0.74 1 STM141 STM-TURB-1 POWR 100. 20. 95. 71. 10. ۵. 3. 5. 100 COAL -AFR 100. 10 0.99 0.10 0.75 1 STM141 STM-TURB-1 HEAT 100. 21. 101. 75. 11. 3. n. -2. 101.COAL-AFB 99. 10 0.97 0.11 0.74 2 STM088 STM-TURB-8 POWR 100 142. 111. 10. Ω 142. RESIDUAL 142. 10 -0.33 0.07 0.53 2 STM088 STM-TURB-8 HEAT 96. 13. 96. 75. 7. 2. O. 10. 96. RESIDUAL 107. 10 0,68 0,06 0.70 2 STM088 STM-TURB-8 POWR 100. -22. 142. 111. 10. 3. -42. Ω. 142.COAL-FGD 142. 10 -0.33 0.07 0.53 2 STM088 STM-TURB-8 HEAT 96. 13. 96. 75. ٥. 10. 96. COAL-FGD 107. 10 0.68 0.06 0.70 2 STM088 STM-TURB-8 POWR 100. -22. 142. 111. 10. 3. -42. a. 142. COAL-AFB 142. 10 -0.33 0.07 0.53 2 STMO88 STM-TURB-8 HEAT 96. 13. 96. 75. 7. ٥. 96. COAL-AFB 2. 10. 107. 10 0.68 0.06 0.70 3 PFBSTM PFB-STMTB- POWR 100. 19. 57. 38. 10. 3. 114 n. 101. COAL-PFB 101. 10 0.97 0.10 0.74 3 PFBSTM PFB-STMTB- HEAT 100. 38. 113. 75. 20. 6. 0. 113.COAL-PFB -31. 82. 10 0.79 0.18 0.66 4 TISTMT TI-STMTB-1 POWR 56. 20. 45. 27. 10. 3. 56. Ω. 101. RESIDUAL 101. 10 -0.40 0.10 0.75 4 TISTMT TI-STMTB-1 HEAT 88. Q. n. O. 110 -0.00 0. ۵. 0. 88. RESIDUAL AR. 32. 120. 4 TISTMT TI-STMTB-1 POWR 100. 20. 45. 27. 10. 3. 56. 0. 101.COAL 101. 10 0,98 0.10 0.75 4 TISTMT TI-STMTB-1 HEAT 100. 53. 122. 75. 28. 122. COAL 8. ٥. -55. 67. 10 0.75 0.23 0.61 5 TIHRSG THERMIONIC POWR 34. 13. 73. 46. 3. ٥. 107. RESIDUAL 10. 34. 107. 0 -1.27 0.10 0.70 5 TIHRSG THERMIONIC HEAT 88. ٥. 0. ٥. 88. 88. RESIDUAL 0.62 ٥. 32. 120. 110 -0.00 0. 5 TIHRSG THERMIONIC POWR 100. 13. 73. 46. 10 0 0.78 0.10 0.70 3. 34. 0. 107. COAL 107. 5 TIHRSG THERMIONIC HEAT 100. 22. 119. 75. 17. 0. 5. -20. 119. COAL 99. 0 0.64 0.14 C.63 6 STIRL STIRLING-1 POWR 42. 64 14 21. 10. ο. 3 64. 106. DISTILLA 106. 0 -0.32 0.10 0.71 6 STIRL STIRLING-1 HEAT 88. C. O. 88. 32. 88.DISTILLA 120. 110 -0.00 D.

PAGE 47

DATE 08/08/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

16SE PEO ADV DESIGN ENGR

INDUSTRY 24361 MR 3.00 PROCESS MILLIONS BTU/HR 75.0 PROCESS TEMP(F) 406. PRODUCT SOFT-PLYWOOD HOURS PER YEAR 6000.

	UTILI	ITY FUEL	COAL							Ø 0.136 EL EQV I		*6= 10	O. HOT	WATER BT	U*10**6	;= (C	0.	
				WASTE	FUEL		COGEN					TOTAL		NET=	FAIL	FESR	POWER	
				FUEL	SAVED=			PROCES		PROCES		FUEL	FUEL	TOTAL+			FACTR	FACT
				USED	NO-NET		HEAT		ELECT	BOILR		SITE	USED	UTILIT				
					10**6						10**6		-	10**6				
				BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HR	!	BTU/HR				
_	CT I DI	OTIDI INO-	. DALIE	64.	14.	42.	21.	10.	3.	64.	٥.	106	RESI DUAL	106.	O	-0.32	0.10	0.7
_		STIRLING-1				42. 0.	0.	70. 0.	3. 0.				RESIDUAL			-0.00		0.62
ь	SIIRL	STINEING-	nea :	66.	0.	٠.	٠.	٠.	٠.	00.	V	•••	1120.00			0.00	••	•••
6	STIRL	STIRLING-1	POWR	100.	14.	42.	21.	10.	3.	64.	0.		COAL	106.			0.10	0.7
		STIRLING-1			51.	154.	75.	37.	11.	0.	-85.	154.	COAL	70.	0	0,54	0.24	9.4
_					•		•		•	00	_	110	OGAL -AED	110		0.42	0.09	0.6
		HELIUM-GT-			<u>2.</u> 93,	32. 1373.	2. 75.	10. 441.	3. 129.		0. -1345.		COAL-AFB		<u>11</u> _	0.43		0.0
1	HEG 185	HELIUM-GT-	HEAL	100.	93,	13/3.	75.	. 441,	125.	٠.	-1040.	1070.	COAL A.D	20.	•	0.00	0,02	0.0
8	HEGT60	HELIUM-GT-	- POWF	100.	4.	40.	10.	10.	3.	77.	0.		COAL-AFB		10	0.50	0.09	0.6
		HELIUM-GT-			31.	300.	75.	78.	23.		-211.	300.	COAL-AFB	89.	10	0.18	0.26	0.2
														•••		A C a	0.00	
_		HELIUM-GT-			7.	58.	28.	10.	3.				COAL-AFB		10		0.09	0.6
9	HEGTOO	HELIUM-GT-	· HEAT	100.	18.	156.	75.	28,	8.	0.	-54.	156.	COAL-AFB	102.	10	0.34	0.18	0.4
_	ECMCCI	FUEL-CL-MC	* PAUE	0.	17.	34.	16.	10.	3.	70.	0.	103.	COAL	103.	10	-2.23	0.10	0.7
		FUEL-CL-MC				159.	75.	48.	14.				COAL	40.			0.30	0.4
•	1 011000	1000 00							• • •		•	-						
		FUEL-CL-ST				28.	12.	10.	3.				COAL	103.			0.10	
1	FCSTCL	FUEL-CL-ST	HEAT	0.	113.	181.	75.	6 6,	19.	0.	-173.	181.	COAL	7.	10	0.12	0.36	0.4
_		137 040 0	~ 06015		1.4	20	47	10	•	68.	0.	107	COAL	107.	10	-2 33	0.10	0.7
_		INT-GAS-GT				39. 168.	1 7. 75.	10. 44.	3. 13.				COAL	61.		-0.21		
7	166151	INT-GAS-01	HEAT	0.		100.	<u>/5.</u>	44.	13,			100.	COAL					
3	GTSGAR	GT-HRSG-10	o POVE	71,	14.	35.	15.	10,	3.	71.	0.	106.	RESIDUAL	106.	10	-0.10	0.10	0.7
_		GT-HRSG-10				0.		Ö.	Ö.			88.	RESIDUAL	120.	110	-0.00	٥.	0.6
_	0100.,	01 111.00	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						-									
4	GTAC08	GT-HRSG-08	3 POWR	65,	17.	38.	20.	10.					RESIDUAL			-0.19		0.7
4	GTAC08	GT-HRSG-08	3 HEAT	. 88.	0.	٥.	0.	Ο.	٥.	88.	32.	88.	RESIDUAL	120.	110	-0.00	0.	0.6
_				- 70		0.4		10	•	70.	٥.	104	RESIDUAL	104.	10	-0.05	0.10	0.7
		GT-HRSG-12			<u>17.</u> 0.	34. 0.	<u>16.</u> 0.	10. 0.	<u>3,</u> 0.				RESIDUAL			-0.00		0.6
5	GIACIZ	GT-HRSG-12	2 HEAT	5 5.	U,	Ű.	U,	U.	υ,	00 .	JE,	00,	MEG! DONE	T 11.00 ,	~	0.00	••	
6	GTAC16	GT-HRSG-16	s POVE	72.	16,	32.	14.	10.	3.	72.	٥.	104.	RESIDUAL	104.			0.10	
		GT-HRSG-16					0.	o.				88.	RESIDUAL	120.	110	-0.00	٥.	0.6
_		- Land State - Land												105	••		- 10	
		GT-HRSG-16						10.					RESIDUAL				0.10	0.7
7	GTWC16	GT-HRSG-16	& HEAT	88.	٥.	0.	0.	0.	0.	88.	32,	88.	RESIDUAL	120.	110	-0.00	υ.	0.6

IASE PEO ADV DESIGN EMGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

INDUSTRY 24361 MW 3.00 PROCESS MILLIONS BTU/HR 75.0 PROCESS TEMP(F) 406. PRODUCT SOFT-PLYWOOD HOURS PER YEAR GOOD.

POWER TO HEAT RATIO 0.136 HOT WATER BTU=10==6= UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 100. COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FESR POWER HEAT WASTE FUEL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 106.RESIDUAL 106. 10 0.12 0.10 0.71 18 CC1626 GTST-16/26 POWR 77. 15. 28. 9. 10. 3. 77. ٥. 18 CC1626 GTST-16/26 HEAT 88. ٥. α. 0. 0. n. 88. 32. 88. RESIDUAL 128. 110 -0.00 0. 0.62 10. 76. 0. 105. RESIDUAL 105 10 0.10 0.10 0.71 19 CC1622 GTST-16/22 POWR 29. 10. 3. 76. 15. 0. 88. 32. 88. RESIDUAL 120. 110 -0.00 0. 0.62 19 CC1622 GTST-16/22 HEAT 88. 0. ٥. ۵. ٥. 105.RESIDUAL 105. 10 0.10 0.10 0.72 76. 0. 20 CC1222 GTST-12/22 POWR 76. 15. 29. 10. 10. 3. 20 CC1222 GTST-12/22 HEAT 0 88. 32. 88. RESIDUAL 120. 110 -0.00 0. 0.62 88. Ω. ٥. ٥. 104. RESIDUAL 104. 10 0.03 0.10 0.72 21 CC0822 GTST-08/22 POWR 73. 17. 31. 13. 10. 3. 73. 88. RESIDUAL 120. 110 -0.00 0. 21 CC0822 GTST-08/22 HEAT O. ٥. 88. 32. 0.62 88. 88. O. 115. 10 0.16 0.09 0.65 22 STI@15 STIG-15-16 POWR 88. 6. 27. ٥. 10. S. 115.RESIDUAL 88. RESIDUAL 120. 110 -0.00 0. 22 STIG15 STIG-15-16 HEAT 88. a. 0. D. Ô. 88. 32. 0.62 10 0.11 0.09 0.67 3. 0. 112.RESIDUAL 112. 23 STIG10 STIG-10-16 POWR 84. 8. 29. 4. 10. 84. 88. 32. 88. RESIDUAL 120. 110 -0.00 0. 0.62 23 STIG10 STIG-10-16 HEAT 88. ٥. ٥. ٥. 10 0.05 0.09 0.67 24 STIG1S STIG-1S-16 POWR 81. 9. 31. 10. 3. 81. 111.RESIDUAL 111. 32. 88. RESIDUAL 120. 110 -0.00 0. 0.62 24 STIGIS STIG-15-16 HEAT ۵. Ω. ٥. . 88. AA. a. 110.RESIDUAL 110. 0 0.14 0.09 0.68 25 DEADV3 DIESEL-ADV POUR 82. 11. 28. 5. 10. 3. 82. 25 DEADV3 DIESEL-ADV HEAT 88 RESIDUAL 120. 110 -0.00 Ó. 0.62 ۵. 88. 32. 88. ۵. ο. ٥. ٥. 1 0.14 0.10 0.70 108. 26 DEADV2 DIESEL-ADV POWR 80. 13. 28. 7. 10. 3. 80. 0. 108. RESIDUAL 111 -0.00 0. 0.62 88. 32. 88.RESIDUAL 120. 26 DEADV2 DIESEL-ADV HEAT ٥. ٥. ٥. Q. 0. 88. 103. 1 0.14 0.10 0.73 27 DEADV1 DIESEL-ADV POWR 76. 17. 28. 11. 10. 3. 76. 0. 103 RESIDUAL 88.RES!DUAL 120. 111 -0.00 0. 0.62 32. 0. ٥. ٥. 0. 88. 27 DEADVI DIESEL-ADV HEAT 88. О. 72. 105, RESIDUAL 105. 0 -9.03 0.10 0.72 28 DEHTPM ADV-DIESEL POWR 16. 33. 10. 110 -0.00 0. 0.62 88.RESIDUAL 120. 28 DEHTPM ADV-DIESEL HEAT ٥. 0. 0. 0. Ω. 32. 88. 0 0.11 0.09 0.67 0. 111, DISTILLA 111. 29 DESGAS DIESEL-SGA POWR 83. 9. 28. 4. 10. 3, . . 88, DISTILLA 120. 110 -0.00 0. 0.62 ٥. 88. 32. 29 DESOAS DIESEL-SOA HEAT 88. 0. 28. 3. 83. ٥. 111.RESIDUAL 111. 0 0.11 0.09 0.67 29 DESGA3 DIESEL-SGA POWR 83. 9. 4. 10. 110 -0.00 0. 0.62 32. 88. RESIDUAL 120. 29 DESGAS DIESEL-SGA HEAT 88. 88.

PAGE 48

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 24361 MW 3.00 PROCESS MILLIONS BTU/HR 75.0 PROCESS TEMP(F) 406. PRODUCT SOFT-PLYWOOD HOURS PER YEAR 6000.

POWER TO HEAT RATIO 0.136 UTILITY FUEL COAL WASTE FUEL EQV BTUx10xx6= 100. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES PROCES MW SAVED= FUEL FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT USED BOILR USED SITE UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 81. 11. 28. 81. ο. 6. 10. 3. 109. DISTILLA 109. 1 0.11 Q.09 0.69 30 DESCAZ DIESEL-SCA HEAT 88. 0. 0. ٥. 9. ٥. 88. 32. 88. DISTILLA 120. 111 -0.00 0. 0.62 30 DESGA2 DIESEL-SGA POWR 81. 11. 28. 6. 10. 81. 0. 3.4 109 RESIDUAL 109. 1 0.11 0.09 0.69 30 DESGA2 DIESEL-SGA HEAT 88. ٥. 0. ٥. 0. O. 88. 32, 88. RESIDUAL 120. 111 -0.00 0. 0.62 31 DESGA1 DIESEL-SGA POWR 75. 17. 28. 11. 10. ٥. 103.DISTILLA 103. 1 0.11 0.10 0.73 31 DESGA1 DIESEL-SGA HEAT 88. 0. 0. 0. ۵. 32. 0.62 Ω. 88. 88. DISTILLA 120. 111 -0.00 0. 31 DESGA1 DIESEL-SGA POWR 75. 75. 17. 28. 3. ٥. 103. RESIDUAL 11. 10. 103. 1 0.11 0.10 0.73 31 DESCA1 DIESEL-SCA HEAT 88 0. 0. ٥. 88. 32. 88. RESIDUAL 120. 0. ٥. 111 -0.00 0. 0.62 32 GTSOAD GT-HRSG-10 POWR 69. 16. 35. 16. 10. 3. 69. О. 104.DESTILLA 104. 10 -0.10 0.10 0.72 32 GTSOAD GT-HRSG-10 HEAT 88. 0. 0. 88. Ο, 0. ٥. 32. 88. DISTILLA 120. 110 -0.00 0. 0.62 33 GTRAOS GT-85RE-08 POWR 78. 14. 29. 78. 9. 10. 3. D. 106. DISTILLA 196. 10 0.10 0.10 0.71 33 GTRAOS GT-85RE-08 HEAT 88. 0. O. ۵. ٥. ٥. 88. 32, 88.DISTILLA 120. 110 -0.00 0. 0.62 34 GTRA12 GT-85RE-12 POWR D. 77. 15. 29. 9 10. 3. 77. 106. DISTILLA 106. 10 0.11 0.10 0.7! 34 GTRA12 GT-65RE-12 HEAT 88. ٥. 0. 0, ٥. 88. 32. 88. DISTILLA 120. 110 -0.00 0. Ò. 0.62 35 GTRA16 GT-85RE-16 POWR 76. 15. 29. 10. 10. 3. 76. D. 106. DISTILLA 106. 10 0.08 0.10 0.71 35 GTRA16 GT-85RE-16 HEAT 88. 0. 0. ٥. ٥. 88. 32. 88. DISTILLA 120. 110 -0.00 0. ۵. 0.62 36 GTR208 GT-60RE-08 POWR 73. 15. 32. 13. 10. 3. 73. Ó. 105. DISTILLA 105. 10 -0.00 0.10 0.71 36 GTR208 GT-60RE-08 HEAT 88.DISTILLA 88. 0. 0. 0. 0. ٥. 88. 32. 120. 110 -0.00 0. 0.62 105.DISTILLA 37 GTR212 GT-60RE-12 POUR 74. 15. 31. 12. 10. 3. 74. ٥. 105. 10 0.03 0.10 0.71 37 GTR212 GT-60RE-12 HEAT 0. 88. 0. 0. 88. 32. 88.DISTILLA 120. 110 -0.00 0. 0. ٥. 0.62 105. DISTILLA 38 GTR216 GT-60RE-16 POWR 75. 15. 30. 75. n 105. 10 0.05 0.10 0.71 11. 10. 38 GTR216 GT-60RE-16 HEAT 88. 0. 88. 32. 88.DISTILLA 120. 110 -0.00 0. 0. 0. 0. 0. 0,62 39 GTRW08 GT-85RE-08 POWR 79. 12. 29. 79. 0. 108. DISTILLA 108. 10 0.09 0.09 8, 10. 3. 0.69 39 GTRV08 GT-85RE-08 HEAT 88. ο. 0. Ω. 0. 0. 88. 32. 88. DISTILLA 120. 110 -0.00 0. 0.62 40 GTRW12 GT-85RE-12 POWR 79. 13. 28. 8. 10. 3. 79. 0. 107. DISTILLA 107. 10 0.12 0.10 0.70 40 GTRW12 GT-E5RE-12 HEAT 88. 0. 0. 0. 0. 88. 32. 88.DISTILLA 120. 110 -0.00 0. 0.62 O.

.

PAGE

49

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 24361 MW 3.00 PROCESS MILLIONS BTU/HR 75.0 PROCESS TEMP(F) 406. PRODUCT SOFT-PLYWOOD HOURS PER YEAR 6000.

POWER TO HEAT RATIO 0.136

UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 100. HOT WATER BTU*10**6= 0.

						WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
	········					FUEL		FUEL	PROCES	PROCES	MW	PROCES	FUEL	FUEL	FUEL	TOTAL+			FACTR	FACTR
						USED	NO-NET	USED	HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				
						10**6	10**6	10××6	10**6	10**6		10**6	10**6	10**6		10×*6				
l							BTU/HR			BTU/HR		BTU/HR	BTU/HR	BTU/H	R	BTU/HR				
١.,	070111	٠,	ST OFF	.16	Dei ID	70	10	20		10	•	78.	0,	107	.DISTILLA	107.	10	0.10	0.10	0.70
0 .			9T-85RE-				13.	29.		10.	3.							-0.00		0.62
41	GTKWI	6 6	3T-85RE-	~16	HEAT	88.	0.	0.	0.	ο.	0.	88.	32.	90	.DISTILLA	120.	110	-0.00	υ.	0.62
42	GTR30	8 (T-GORE	-08	POWR	76.	11.	33.	10.	10.	3.	76.	0.	109	.DISTILLA	109.	10	-0.03	0.09	0.69
42	GTR30	8 6	ST-GORE-	-08	HEAT	88.	0.	0.	٥.	0.	0.	88.	32.	88	.DISTILLA	120.	710	-0.00	0.	0.62
43	GTR31	2 (T-60RE	-12	POWR	77.	14.	30.	10.	10.	3.	77.	0.	107	.DISTILLA	107.	10	0.06	0.10	0.70
<u> </u>			T-60RE				٥.	0.	0.	0.	0.	88.	32.	88	.DISTILLA	120.	110	-0.CO	0.	0.62
44	GTR31	6 (3T-60RE-	-16	POWR	77.	13.	30.	10.	ŶO.	3.	77.	0.	107	.DISTILLA	107.	10	0.06	0.10	0.70
44	GTR31	6 (ST-SORE-	<u>-16</u>	HEAT	88.	0,	0.	0.	0.	0.	88.	32.	88	.DISTILLA	120.	110	-0.00	0.	0.62
45	FCPAD	c 1	FUEL-CL-	- 64	PAUP	83.	10.	27.	5.	10.	3.	83.	٥.	110	.DISTILLA	110.	0	0.16	0.09	0.68
4			FUEL-CL-				0.	٠. ٥.	o.	, o.	o.		32.		DISTILLA			-0.00		0.62
45	FUPAD	3 г	OEL-CL	-rn	HEAT	. 00.	U.	٥.	5.	٥.	٠,	60.	JE.	00		120.	, , ,	0.00	٠.	0.02
46	FCMCD	S F	FUEL-CL-	-MO	POWR	81.	14.	25.	6.	10.	3.				.DISTILLA	106.	10			0.71
46	FCMCD	SF	FUEL-CL-	-MO	HEAT	88.	О.	Ο.	ο.	ο.	٥.	88.	32.	88	.DISTILLA	120.	110	-0.00	Ο.	0.62
1																				

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

51

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 24921 MW 5.00 PROCESS MILLIONS BTU/HR 37.0 PROCESS TEMP(F) 406. PRODUCT PARTICLE-BOA HOURS PER YEAR 8000.

POWER TO HEAT RATIO 0.461 UTILITY FUEL COAL WASTE FUEL EQV BTUx10**6= 41. HOT WATER BYUNIONNE Ω. WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COO N 0.18 0.38 41. 0. n n. Ο. 0. 44. 53. 44. COAL-AFB 97. 0 0. 1 STM141 STM-TURB-1 POWR 41. 159. 118. -95. 159, RESIDUAL -62. 17. 5. 159. 10 -1.11 0.11 0.23 a. 1 STM141 STM-TURB-1 HEAT 50. RESIDUAL 41. 50. 37. 0. 37. 10. 5. 2. 86. 10 0.19 0.06 0.43 1 STM141 STM-TURB-1 POWR 41. -62. 159. 118. 17. 5. -95. 159, COAL-FGD 159. 0. 10 -1.11 0.11 0.23 1 STM141 STM-TURB-1 HEAT 41. 10. 50. 37. 5. 2. 0. 37. 50. COAL-FGD 86. 10 0.19 0.06 0.43 1 STM141 STM-TURB-1 POWR 41. -62. 159. 118. 17. 5. -95. ٥. 159. COAL-AFB 159. 10 -1.11 0.11 0.23 1 STM141 STM-TURB-1 HEAT 41. 10. 50. 37. 5. 2. 0. 37. 50. COAL-AFB 86. 10 0.19 0.06 0.43 2 STM088 STM-TURB-8 POWR 41. 237. 185. 237. RESIDUAL 237. 0 -2.53 0.07 0.16 -141. 17. 5. -174. n 2 STM088 STM-TURB-8 HEAT 41. 7. 48. 37. 3. 43. 48. RESIDUAL 10 0.12 0.04 0.41 2 STM088 STM-TURB-8 POWR 41. -141. 237. 185. 17. 5. -174 ٥. 237. COAL-FGD 237. 6 -2.53 0.07 0.16 2 STM088 STM-TURB-8 HEAT 41. 7. 48. 37. 3. 43. 48. COAL-FGD 90. 10 0.12 0.04 0.41 2 STMO88 STM-TURB-8 POWR -141. 237. 185. 17. 5. -174. Ω. 237. COAL-AFB 237. 0 -2.53 0.07 0.16 41. 2 STM088 STM-TURB-8 HEAT 41. 7. 48. 37. 3. ١. Ω. 43. 46. COAL-AFB 90 10 0.12 0.04 0.41 3 PFBSTM PFB-STMTB- POWR 17. -31. 0. 96. CCAL-PFB 96. 10 0.02 0.18 0.39 41. 1. 96. 63. 5. 3 PFBSTM PFB-STMTB- HEAT 56. COAL-PFB 78. 10 0.34 G.13 0.47 - 41. 19. 56. 37. 10 3. Ω. 22. 4 TISTMT TI-STMTB-1 POWR 0. 75. RESIDUAL 75. 10 -0.34 0.23 0.50 ٥. 22. 75. 46. 5. -10. 17. 10 0.03 0.01 0.39 4 TISTMT TI-STMTB-1 HEAT 41. 1. 3. 2. 1. 0. 51. 44. RESIDUAL 95 ٥. 75. COAL 75. 10 0.40 0.23 0.50 4 TISTMT TI-STMTB-1 POWR 22. 75. 5. -10. 41. 46. 17. 4 TISTMT TI-STMTB-1 HEAT 41. 26. 60. 37. 14. 4. ٥. 10. 60.CGAL 70. 10 0.47 0.20 0.53 5 TIHRSG THERMIONIC POWR ٥. -24. 121. 77. 17. 5. -47. 0. 121.RESIDUAL 121. 0 -1.18 0.14 0.31 5 TIHRSG THERMIONIC HEAT 41. 52. 44. RESIDUAL 96. 10 0.01 0.00 0.38 1. 3. 2. ٥. 41. 5 TIHRSG THERMIONIC POWR 41. -24. 121. 77. 17. -47. ٥. 121. COAL 121. 0 -0.44 0.14 0.31 5. 5 TIHRSG THERMIONIC HEAT 41. 11. 59. 37. a. 2. 28. 59. COAL 86. 10 0.19 0.10 0.43 6 STIRL STIRLING-1 POWR 23. 70. 34. 3. 0. 74.DISTILLA 74. 0 -0.27 0.23 0.50 17. 6 STIRL STIRLING-1 HEAT 41. 2. 41. 50. 45. DISTILLA 10 0.02 0.01 0.39 4

1&SE_PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

5.00 PROCESS MILLIONS BTU/HR 37.0 PROCESS TEMP(F) 406. PRODUCT PARTICLE-BOA HOURS PER YEAR 8000. INDUSTRY 24921 MW

POWER TO HEAT RATIO 0.461 UTILITY FUEL COAL WASTE FUEL EQV BTU=10**6= 41. HOT WATER BTU=10**6= COGEN COGEN COGEN AUX WASTE FUEL UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 23. 70. 34. 17. 5. 3. ٥. 74. RESIDUAL 74. 0 -0.27 0.23 0.50 6 STIRL STIRLING-1 HEAT 41. 1. 4. 2. 1. 41. 45. RESIDUAL 0. 50. 95. 10 0.02 0.01 0.39 6 STIRL STIRLING-1 POWR 41. 23. 70. 34 17. 5. 3. Ω. 74. COAL 74. 0 0.42 0.23 0.50 6 STIRL STIRLING-1 HEAT 41. 25. 76. 37. 18. 5. 0. -4. 76. COAL 72. 0 0.42 0.24 0.49 7 HEGT85 HELIUM-GT- POWR 41. 53. 17. 40. 93.COAL-AFB 11 0.06 0.18 0.40 7 HEGT85 HELIUM-GT- HEAT 46. 677. 41. 37. 217. 64. -626. 0. 677, COAL-AFB 51. 1 0.07 0.32 0.05 8 HEGT60 HELIUM-GT- POWR 41. 7. 66. 16. 17. 5. 24. 0. 90.COAL-AFB 90. 10 0.12 0.19 0.41 8 HEGT60 HELIUM-GT- HEAT 41. 15. 148. 37. 38, 11. 0. -66. 148. COAL-AFB 82. 10 0.13 0.26 0.25 9 HEGTOO HELIUM-GT- POWR 41. -0. 97. 46. 17. 5. -11. 0. 97. COAL-AFB 97. 10 -0.00 0.18 0.38 9 HEGTOO HELIUM-GT- HEAT 41. 77. 37. 77. COAL-AFB 14. 4. ٥. 11. 10 0.16 0.15 0.42 88. 10 FCMCCL FUEL-CL-MG POWR ۵. 28. 56. 27. 17. 5. 12. 0. 68. COAL 68. 10 -0.23 0.25 0.54 10 FCMCCL FUEL-CL-MO HEAT 40. 78. 24. 37. 7. ٥. -21. 78. COAL 57. 10 -0.02 0.30 0.47 11 FCSTCL FUEL-CL-ST POWR 29. 47. 19. 17. n 68. COAL 68 10 -0.21 0.25 0.55 11 FCSTCL FUEL-CL-ST HEAT 56. 89. 37. 32. 10. 0. -48. 89. COAL 10 0.14 0.36 0.42 41. 12 IGGTST INT-GAS-GT POWR ñ. 23. 65. 29. 17. 5. 10. 0. 74. COAL 74. 10 -0.33 0.23 0.50 12 IGGTST INT-GAS-GT HEAT ٥. 29. 83. 37. 22. 6. 0. -15. 83. COAL 68. 10 -0.17 0.26 0.45 13 GTSOAR GT-HRSG-10 POWR 15. 23. 59. 24. 17. 5. 15. ٥. 74. RESIDUAL 74. 10 -0.06 0.23 0.50 13 GTSGAR GT-HRSG-10 HEAT 41. 2. 5. 2. 1. О. 41. 49. 46. RESIDUAL 95. 10 0.03 0.01 0.39 14 GTACOB GT-HRSG-08 POWR 5. 28. 63. 33. 17. 5. 0. 68. RESIDUAL 68. 10 -0.14 0.25 0.54 5. 14 GTACOS GT-HRSG-DS HEAT 41. 2. 2. 4. ì. 0. 41. 50. 45. RESIDUAL 95. 10 0.03 0.01 0.39 15 GTAC12 GT-HRSG-12 POWR 13. 28. 56. 17. 69. RESIDUAL 69. 10 -0.00 0.25 0.54 15 GTAC12 GT-HRSG-12 HEAT 41. 2. 4. 2. 1. ٥. 41. 49. 45. RESIDUAL 10 0.04 0.01 0.39 95. 16 GTAC16 GT-HRSG-16 POWR 17. 27. 53. 23. 17. 5. 17. 0. 70. RESIDUAL 70. 10 0.05 0.24 0.53 16 GTAC16 GT-HRSG-16 HEAT 41. 5. 2. 2. 41. 49. 46. RESIDUAL Ω. 94. 10 0.04 0.02 0.39 17 GTWC16 GT-HRSG-16 POWR 25. 18. 54. 22. 17. 5. 18. 0. 72. RESIDUAL 72. 10 0.03 0.24 0.51 17 GTWC16 GT-HRSG-16 HEAT 41. 2. 5. 2. 2. ٥. 41. 46. RESIDUAL 48. 95. 10 0.04 0.02 0.39

PAGE 52

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 24921 MW 5.00 PROCESS MILLIONS BTU/HR 37.0 PROCESS TEMP(F) 406. PRODUCT PARTICLE-BOA HOURS PER YEAR 8000.

POWER TO HEAT RATIO 0.461 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 41. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**B ·10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR **BTU/HR** 18 CC1626 GTST-16/26 POWR 26. 24. 47. 15. 17. 5. 26. 0. 73. RESIDUAL 73. 10 0.15 0.24 0.51 18 CC1626 GTST-16/26 HEAT 41. 6. 2. 2. 1. 41. 46. 47. RESIDUAL 94. 10 0.06 0.02 0.39 19 CC1622 GTST-16/22 POWR 23. 25. 23. 71. RESIDUAL 48. 17. 17. 5. 0. 71. 10 0.14, 0.24 0.52 19 CC1622 GTST-16/22 HEAT 41. 3. 41. 47. 47. RESIDUAL 10 0.05 0.02 0.39 6. 2. 2. 1. 94. 20 CC1222 GTST-12/22 POWR 23. 26 17. 17. 5. 23. 0. 71. RESIDUAL 71. 10 0.14 0.24 0.52 48 20 CC1222 GTST-12/22 HEAT 41. 41. 47. RESIDUAL 3. 2. 2. 1. 47. 94. 10 0.05 0.02 0.39 21 CC0822 GTST-08/22 POWR 28. 51. 22. 17. 5. 69. RESIDUAL 10 0.08 0.25 0.53 18. 18. 0. 69. 21 CC0822 GTST-08/22 HEAT 3. 46. RESIDUAL 41. 5. 2. 2. 0. 41. 48. 94. 10 0.05 0.02 0.39 22 STIG15 STIG-15-16 POWR 41. 9. 45. 17. 5. 43. 0. 88. RESIDUAL 83. 10 0.17 0.19 0.42 1. 22 STIG15 STIG-15-16 HEAT 41. 32. 154. 2. 59. 17. 41. -130. 195. RESIDUAL 65. 10 0.17 0.30 0.19 23 STIG10 STIG-10-16 POWR 36. 10 0.15 0.20 0.44 36. 13. 17. 5. 0. 84. RESIDUAL 48. 6. 84. 23 STIG10 STIG-10-16 HEAT 41. 4. 15. 2. 5. 2. 41. 36. 56. RESIDUAL 93. 10 0.08 - 0.06 0.40 82. RESIDUAL 0.09 0.21 0.45 24 STIG1S STIG-1S-16 POWR 0. 82. 10 51. 11. 17. 31 24 STIGIS STIG-15-16 HEAT 2. 51. RESIDUAL 0.05 0.03 0.39 41. 3. 9. 3. 41. 43. 94. 10 25 DEADV3 DIESEL-ADV POVR 33. 18. 9. 17. 5. 33. 0. 79. RESIDUAL 79. 0 0.17 0.22 0.47 46. 25 DEADV3 DIESEL-ADV HEAT 41. 4. 11. 2. 4. 1. 41. 41. 52, RESIDUAL 93. 10 0.07 0.04 0.40 26 DEADV2 DIESEL-ADV POWR 30. 17. 5. 30. 0. 76. RESIDUAL 76. 0.17 0.23 0.49 21. 46. 12. 1 26 DEADV2 DIESEL-ADV HEAT 41. 8. 2. 3. 1. 41. 44. 49. RESIDUAL 93. 0.06 0.03 0.40 22. 0. 68. RESIDUAL 0.17 0.25 0.54 27 DEADV1 DIESEL-ADV POUR 22. 28. 46. 18. 17. 5. 68. 1 27 DEADV1 DIESEL-ADV HEAT 41. 3. 5. 2. 2. 41. 47. 46. RESIDUAL 94. 11 0.06 0.02 0.39 1. 28 DEHTPM ADV-DIESEL POWR 71. RESIDUAL 71. 0 0.01 0.24 0.52 16. 26. 55. 23. 17. 5. 16. 0. 28 DEHTPM ADV-DIESEL HEAT 41. 2. 5. 2. 1. 0. 41. 49. 46. RESIDUAL 95. 10 0.04 0.02 0.39 7. 35. 0. 82. DISTILLA 82. 0 0.15 0.21 0.45 29 DESGAS DIESEL-SGA POWR 35. 15. 47. 17. 5. 29 DESGAS DIESEL-SGA HEAT 41. 41. 39. 54, DISTILLA 93. 0 0.07 0.05 0.40 4. 13. 5. 1. 35. 0. 82. RESIDUAL 0 0.15 0.21 0.45 29 DESGAS DIESEL-SGA POWR 35. 15. 47. 7. 17. 5. 82. 54. RESIDUAL 0 0.07 0.05 0.40 29 DESGAS DIESEL-SGA HEAT 41. 13. 2. 41. 39. 93. 4. 5, 1.

PAGE

53

1&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 24921 MW 5.00 PROCESS MILLIONS BTU/HR 37.0 PROCESS TEMP(F) 406. PRODUCT PARTICLE-BOA HOURS PER YEAR 8000.

PAGE

54

10 0.06 0.03 0.40

POWER TO HEAT RATIO 0.461 UTILITY FUEL COAL WASTE FUEL EQW BTUx10xx6= 41. HOT WATER BTUx10xx6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES PROCES MW FUEL TOTAL+ FUEL SAVED= FUEL PROCES FUEL FUEL FACTR FACTR NO-NET USED HEAT USED UTILIT USED POWER ELECT BOILR USED SITE 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESCA2 DIESEL-SCA POWR 31. 18. 47. 10. 17. 5. 31. 0. 79. DISTILLA 79. 1 0.15 0.22 0.47 30 DESGA2 DIESEL-SGA HEAT 41. 4. 9. 2. 3. 1. 41. 43. 50. DISTILLA 93. 0.06 0.04 0.40 30 DESGA2 DIESEL-SGA POWR 31. 18. 47. 10. 17. 5. 31. ۵. 79. RESIDUAL 79. 0.15 0.22 0.47 30 DESGA2 DIESEL-SGA HEAT 50. RESIDUAL 1 0.06 0.04 0.40 41. 4. 9. 2. 3. 1. 41. 43. 93. 31 DESGA1 DIESEL-SGA POWR 21. 28. 47. 19. 17. 21. 0. 68. DISTILLA 68. 1 0.15 0.25 0.54 31 DESCAT DIESEL-SCA HEAT 41. 3. 5. 2. 41. 48. 46. DISTILLA 94. 1 0.05 0.02 0.39 31 DESCA1 DIESEL-SCA POWR 21. 28. 47. 19. 17. 21. 0. 68. RESIDUAL 68. 1 0.15 0.25 0.54 31 DESCA1 DIESEL-SCA HEAT 41. 3. 5. 2. 2. 41. 48. 46. RESIDUAL 94. 0.05 0.02 0.39 32 GTSGAD GT-HRSG-10 POWR 12. 26. 58. 27. 17. 5. 12. อ. 71. DISTILLA 71. 10 -0.05 0.24 0.52 32 GTSGAD GT-HRSG-10 HEAT 2. 2. ٥. 41. 46. DISTILLA 95. 10 0.04 0.01 0.39 41. 4. 1. 49. 33 GTRA08 GT-85RE-08 POWR 23. 15. 17. 26. ٥. 73. DISTILLA 73. 10 0.14 0.23 9.50 26. 48. 5. 33 GTRA08 GT-85RE-08 HEAT 10 0.06 0.02 0.39 2. 41. 47. DISTILLA 94. 41. 3. 6. 2. 1. 46. 17. 0. 73. DISTILLA 73. 10 0.14 0.23 0.51 34 GTRA12 GT-85RE-12 POWR 24 48 16. 10 0.06 0.02 0.39 34 GTRA12 GT-85RE-12 HEAT 3. 2. 47. DISTILLA 94. 41. 6. 2. 41. 47. 72. 10 0.12 0.24 0.51 35 GTRA16 GT-85RE-16 POWR 23. 25. 49. 17. 17. 5. 23. ٥. 72. DISTILLA 35 GTRA16 GT-85RE-16 HEAT 47. DISTILLA 94. 10 0.05 0.02 0.39 41. 3. 6. 2. 2. 41. 47. 72. 10 0.04 0.24 0.51 36 GTR208 GT-60RE-08 POWR 53. 21. 17. 5. 19. ٥. 72.DISTILLA 19. 25. 36 GTR208 GT-GORE-08 HEAT 46, DISTILLA 94. 10 0.04 0.02 0.39 5. 2. 2. 0. 41. 48. 41. 2. 21. 72. DISTILLA 10 0.07 0.24 0.51 0. 37 GTR212 GT-60RE-12 POWR 21. 25. 52. 19. 17. 5. 12. 46. DISTILLA 10 0.05 0.02 0.39 94. 37 GTR212 GT-60RE-12 HEAT 41. 3. 5. 2. 2. 1. 41. 48. 10 0.09 0.24 0.52 0. 72. DISTILLA 72. 38 GTR216 GT-60RE-15 POWR 21. 25. 51. 19. 17. 21. 48. 47. DISTILLA 94. 10 0.05 0.02 0.39 38 GTR216 GT-60RE-16 HEAT 41. 3. 5. 2. 2. 1. 41. 77. DISTILLA 77. 10 0.13 0.22 0.48 20. 13. 17. 5. 28. 0. 39 GTRWO8 GT-85RE-08 POWR 28. 49. 45. 49. DISTILLA 94. 10 0.06 0.03 0.39 39 GTRW08 GT-85RE-08 HEAT 3. 8. 2. Э. 1. 41. 41. 0, 75. DISTILLA 75. 10 0.16 0.23 0.49 17. 5. 29. 40 GTRW12 GT-85RE-12 POWR 29. 21. 47. 13.

49. DISTILLA

93.

SYWELL PAGE P

40 GTRW12 GT-85RE-12 HEAT

41.

3.

7.

2.

3.

1.

41.

45.

GENERAL ELECTRIC COMPANY

COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 24921 MW 5.00 PROCESS MILLIONS BTU/HR 37.0 PROCESS TEMP(F) 406. PRODUCT PARTICLE-BOA HOURS PER YEAR 8000.

POWER TO HEAT RATIO 0.461 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 41. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE FESR POWER HEAT NET= FAIL PROCES PROCES MW FUEL SAYED= FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED USED UTILIT SITE 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR 22. 48. 14. 17. 27. 0. 75. DISTILLA 75. 10 0.14 0.23 0.49 41 GTRW16 GT-85RE-16 HEAT 41. 3. 7. 2. 2. 1. 41. 46. 48. DISTILLA 94. 10 0.06 0.03 0.39 42 9TR308 GT-60RE-08 POWR 55. 24. 18. 17. 17. 5. 24. 0. 79. DISTILLA 79. 10 0.01 0.22 0.47 42 GTR308 GT-60RE-08 HEAT 41. 2. 7. 2. 2. 1. 41. 47. 48. DISTILLA 95. 10 0.04 0.02 0.39 43 GTR312 GT-60RE-12 POWR 50. 16. 74.DISTILLA 24. 23. 17. 24. 0. 10 0.10 0.23 0.50 43 GTR312 GT-60RE-12 HEAT 6. 2. 2. 41. 47. 47, DISTILLA 94. 10 0.05 0.02 0.39 44 GTR316 GT-60RE-16 POWR 24. 22. 50. 17. 17. 5. 24. 0. 74. DISTILLA 74. 10 0.10 0.23 0.50 44 GTR316 GT-60RE-16 HEAT 41. 3. 6. 2. 2. 41. 47. 47. DISTILLA 94. 10 0.05 0.02 0.39 45 FCPADS FUEL-CL-PH POWR 79. DISTILLA 35. 17. 45. 8. 5. 35. 0. 79. 0 0.19 0.21 0.47 17. 45 FCPADS FUEL-CL-PH HEAT 41. 5. 12. 2. 4. 1. 41. 39. 53. DISTILLA 92. 0 0.08 C.05 0.40 41. 5. 32. 46 FCMCDS FUEL-CL-MO POWR 23. 10. 0. 74. DISTILLA 74. 0 0.26 0.23 0.50 32. 17. 46 FCMCDS FUEL-CL-MO HEAT 41. 5. 9. 2. 1. 41. 42. 50. DISTILLA 92. 10 0.09 0.04 0.40 4.

TING SYSTEM- P1185-02

5

PAGE

55

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26212 MW 50.00 PROCESS MILLIONS BTU/HR 780.0 PROCESS TEMP(F) 366. PRODUCT BLEACHED-KRA HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.219 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 353. HOT WATER BTU*10**6= 0., WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET* FAIL FESR POWER HEAT PROCES PROCES MW PROCES FUEL FUEL SAVED= FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COO N 353. ٥. ۵. ٥. ٥. ٥. 918. 533. 918. COAL-FOD 1451. 0 0. 0.12 0.54 1 STM141 STM-TURB-1 POWR 353. 277. 1173. 817. 171. 50. -55. 0. 1173. RESIDUAL 1173. 0 0.25 0.15 0.66 1 STM141 STM-TURB-1 HEAT 353. 314. 1107 780. 161. 1107. RESIDUAL 47. ٥. 1137. 30. 0.29 0.14 0.69 1 STM141 STM-TURB-1 POWR 353. 277. 1173. 827. 171. 50. -55. 1173. 0. 1173.COAL-F9D 0 0.25 0.15 0.66 1 STM141 STM-TURB-1 HEAT 314. 1107. 353. 780. 1107. COAL-FGD 1137. 161. 47. Q. 30. 0.29 0.14 0.69 1 STM141 STM-TURB-; POWR 353. 277. 1173. 827. 171. -55. 1173, COAL-AFB 1173. 50. 0 0.25 0.15 0.66 1 STM141 STM-TURB-1 HEAT 353. 314. 1107. 780. 0. 1107. COAL-AFB 1137. 0 0:29 0.14 0.69 161. 47. 30. 2 STM088 STM-TURB-8 POWR 353. -89. 1540. 0. 1540, RESIDUAL 1540. 1138. 171. 50. -421. 0 -0.08 0.11 0.51 2 STMO88 STM-TURB-8 HEAT 353. 228. 1055. 780. 117. 34. Ω. 188. 1055 RESIDUAL 1223. 0 0.21 0.10 0.64 2 STM088 STM-TURB-8 POWR 353. -89. 1540. 1138. -421. 0. 1540.CGAL-FGD 1540. 171: 50. 0 -0.28 0.11 0.51 2 STM088 STM-TURB-8 HEAT 353. 1055, 1055. CCAL-FGD 228. 780. 117. 34. 0, 168. 1223. 0 0.21 0.10 0.64 2 STM088 STM-TURB-8 POWR 353. 1540. -421. -89. 1138. 171. 50. 0. 1540.COAL-AFB 1540. 0 -0.08 0.11 0.51 2 STM088 STM-TURB-8 HEAT 353. 1055. 228. 780. 117. 34. ٥. 168. 1055.COAL-AFB 1223. 0 0.21 0.10 0.64 3 PEBSTM PEB-STMTB- POWR 353. 326. 806. 509. 319. 1125. 0.30 0.15 0.69 171. 50. ٥. 1125. COAL-PFB 3 PFBSTM PFB-STMTB- HEAT 353. 499. 1236. 780. 261. 77. 0. -284. 1236.COAL-PFB 952. 0 0.36 0.21 0.63 4 TISTMT TI-STMTB-1 POWR 353. 327. 654. 381. 171. 50. 469. O. 1124.RESIDUAL 1124. 0 0.30 0.15 0.69 4 TISTMT TI-STMTB-1 HEAT 353. 412. 824. 480. 215. 63. 353. -138. 1177.RESIDUAL 1039. 0 0.33 0.18 0.66 469. 4 TISTMT TI-STMTB-1 POWR 353. 327. 654. 381. 171. 50. 0 3.30 0.15 0.69 0. 1124.CGAL 1124. 4 TISTMT TI-STMTB-1 HEAT 353. 669. 1339. 780. 349. 102. 0. -558. 1339. COAL 781. 0 0.40 0.26 0.58 5 TIHRSG THERMIONIC POWR 0. 238. 1213. 783. 171. 0. 1213. RESIDUAL 1213. 0 -0.10 0.14 0.64 50. -4. 5 TIHRSG THERMIONIC HEAT 353. 148. 743. 480. 105. 31. 353. 206. 1096. RESIDUAL 1303. 0 0.14 0.08 0.60 5 TIHRSG THERMIONIC POWR 353. 238. 1213. 783. 171. 50. -4. 0. 1213, COAL 1213. 0 0.22 0.14 0.64 5 TIHRSG THERMIONIC HEAT 1208. 780. 0. 0 0.22 0.14 0.64 353. 241. 170. 50. 2. 1208.CGAL 1210. 0 0.22 0.14 0.64 6 STIRL STIRLING-1 POWR 353. 236. 677. 323. 171. 50. 538. O. 1215. DISTILLA 1215. 6 STIRL STIRLING-1 HEAT 353. 351. 1006. 480. 253. 74. 353. -259. 1359.DISTILLA 1100. 0 0.26 0.19 0.57

DATE 06/06/79

PAGE

56

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

57

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26212 MW 50.00 PROCESS MILLIONS BTU/HR 780.0 PROCESS TEMP(F) 366. PRODUCT BLEACHED-KRA HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.219 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6≈ 353. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN COGEN WTILIT TOTAL SITE AUX NET= FAIL FESR POWER HEAT **FUEL** SAVED= FUEL PROCES PROCES MW FROW'S FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BUILA USEU SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 353. 236. 677. 323. 171. 50. 538. 0. 1215.RESIDUAL 1215. 0 0.22 6.14 0.64 6 STIRL STIRLING-1 HEAT 353, 351. 1006. 253. 74. 353. 1359. RESIDUAL 480. -259. 1100. 0 0.26 0.19 0.57 6 STIRL STIRLING-1 POWR 353. 236. 677. 323. 171. 538. 1215. COAL 50. 0. 1215. 0.22 0.14 0.64 6 STIRL STIRLING-1 HEAT 353. 570. 1635. 780. 121. -754. 412. 0. 1635. COAL 881. 0.31 0.25 0.48 7 HEGT85 HELIUM-GT- POWR 353. 76. 531 63 171 50. 0. 1375. COAL-AFB 1375. 0.07 0.12 0.57 844. 7 HEGT85 HELIUM-GT- HEAT 780. 353. 938. 6597. 2118. 0. -6085. 621. 6597.COAL-AFB 513. 0.13 0.32 0.12 8 HEGT60 HELIUM-GT- POWR 353. 100. 659. 191. 171. 50. 692. 0. 1351.COAL-AFB 1351. 0 0.09 0.13 0.58 8 HEGT60 HELIUM-GT- HEAT 353. 406. 2684. 780. 695. 204. 0. -1639. 2684. COAL-AFB 1045. 0 0.15 0.26 0.29 9 HEGTOO HELIUM-GT- POWR 353. 121. 969. 473. 171. 50. 361. 0. 1330. COAL-AFB 1330. 0 0.11 0.13 0.59 9 HEGTOO HELIUM-GT- HEAT 353. 199. 1597. 780. 281. 82. 0. -345. 1597, COAL-AFB 1252. 0 0.14 0.18 0.49 10 FCMCCL FUEL-CL-MG POWR 284. 561. 266. 171. 605. 0. 50. 0. 1166, COAL 1166. 10 -0.06 0.15 0.67 10 FCMCCL FUEL-CL-MO HEAT 835. 1648. 780. 501. 147. 1648.COAL 0 0.23 0.30 0.47 0. 0. -1032. 616. 11 FCSTCL FUEL-CL-ST POWR 10 -0.05 0.15 0.68 0. 295. 443. 175. 171. 50. 712. О. 1 155. COAL 1155. 11 FCSTCL FUEL-CL-ST HEAT 1318. 1978. 780. 761. 223. 0. -1844. 1978, COAL 133. 0 0.33 0.38 0.39 10 -0.11 0.14 0.64 12 IGGTST INT-GAS-GT POWR ٥. 234. 595. 252. 171. 50. 622. 0. 1216.COAL 1216. 12 IGGTST INT-GAS-GT HEAT 0. 727. 1843. 780. 529. 155. 0. -1120. 1843. COAL 724. 0 0.17 0.29 0.42 13 GTSCAR GT-HRSG-10 POWR 353. 238. 588. 249. 171. 50. 624. O. 1212.RESIDUAL 1212. 0 0.22 0.14 0.64 13 GTSGAR GT-HRSG-10 HEAT 353. 328. 353. 1485. RESIDUAL 992. 0 0.29 0.22 0.53 459. 1132. 480. 96. -493. 171. 0 0.26 0.15 0.67 14 GTACOB GT-HRSG-08 POWR 353. 284. 632. 325. 535. 0. 1167. RESIDUAL 1167. 50. 14 GTACO8 GT-HRSG-08 HEAT 353. 933. 252, 74. 353. -254. 1286. RESIDUAL 1032. 0 0.31 0.20 0.61 419. 480. 0. 1172.RESIDUAL 1172. 0 0.25 0.15 0.67 15 GTAC12 GT-HRSG-12 POWR 353. 279 260. 171 559 50. 612. 0 0.33 0.23 0.56 15 GTAC12 GT-HRSG-12 HEAT 353. 516. 1034. 480. 315. 92. 353. -452. 1387. RESIDUAL 935. 0 0.25 0.14 0.66 O. 1177.RESIDUAL 1177. 16 GTAC16 GT-HRSG-16 POWR 353. 274. 528. 228. 171. 50. 649. 16 GTAC16 GT-HRSG-16 HEAT 353. 575. 1110. 480. 359. 105. 353. -587. 1463. RESIDUAL 876. 0 0.34 0.25 0.53 17 GTWC16 GT-HRSG-16 POWR 353. 249. 542. 219. 171. 50. 660. 0. 1201.RESIDUAL 1201. 0 0.23 0.14 0.65 17 GTWC16 GT-HRSG-16 HEAT 353. 546. 1186. 480. 374. 110. 353. -635. 1539.RESIDUAL 905. 0 0.32 0.24 0.51

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

ISSE PEC ADV DESIGN ENGR

DATE 06/06/79

366. PRODUCT BLEACHED-KRA HOURS PER YEAR 8400. 50.00 PROCESS MILLIONS BTU/HR 780.0 PROCESS TEMP(F) 26212 MW INDUSTRY

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE 59

I&SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26212 MW 50.00 PROCESS MILLIONS BTU/HR 780.0 PROCESS TEMP(F) 366. PRODUCT BLEACHED-KRA HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.219 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 353. HOT WATER BTU*10**6= 0. COGEN COGEN COGEN WASTE FUEL. COGEN AUX UTILIT TOTAL SITE NFT= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL FUEL TOTAL+ FACTR FACTR POWER ELECT USED NO-NET USED HEAT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 353. 473. 30 DESGA2 DIESEL-SGA POWR 183. 104. 171. 50. 795. 0. 1268.DISTILLA 1268. 0.17 0.13 0.62 30 DESGA2 DIESEL-SGA HEAT 353. 844. 2162. 480. 788. 231. 353. -1928. 2535. DISTILLA 607. 0.28 0.31 0.31 30 DESCA2 DIESEL-SCA POWR 353. 183. 473 104. 171. 50. 795. 0. 1268 RESIDUAL 1268. 0.17 0.13 0.62 30 DESGA2 DIESEL-SGA HEAT 353. 844. 2182. 480. 788. 231. 353. -1928. 2535. RESIDUAL 607. 0.28 0.31 0.31 31 DESGA1 DIESEL-SGA POWR 353 283 473 190 171 50 695 1167.DISTILLA 1167. 0.26 0.15 0.67 31 DESCA1 DIESEL-SCA HEAT 353. 718. 1197. 480. 432. 127. 353. -817. 1550. DISTILLA 733. 0.37 0.28 0.50 31 DESGA1 DIESEL-SGA POWR 353. 283. 473. 190. 171. 50. 695. 0. 1167. RESIDUAL 1167. 0.26 0.15 0.67 31 DESGA1 DIESEL-SGA HEAT 353 718 1197 480 432. 127 353. -817. 1550, RESIDUAL 733. 0.37 0.28 0.50 32 GTSOAD GT-HRSG-10 POWR 353. 265. **認34.** 269. 171. 50. 601. ٥. 1185.DISTILLA 1185. 0.24 0.14 0.66 0.22 32 GTSOAD GT-HRSG-10 HEAT 353. 474. 1042. 480. 304. 89. 353. -410. 1395. DISTILLA 977. Ω 0.31 0.56 478. 1206. 0.65 33 GTRA08 GT-85RE-08 POWR 353. 244. 161. 171. 50. 729 ٥. 1206. DISTILLA 0.22 9.14 33 GTRA08 GT-85RE-08 HEAT 353. 730. 1428. 480. 353. -1059. 1780. DISTILLA 721. 0.34 0.29 0.44 510. 149. n 1200. 34 GTRA12 GT-85RE-12 POWR 353 251 477 165. 171 50. 724 n. 1200.DISTILLA 0,23 0.14 0.65 34 GTRA12 GT-85RE-12 HEAT 353. 729. 1386. 480. 496. 145. 353, -1018. 1739. DISTILLA 721. O 0.34 0.29 0.45 35 GTRA16 GT-85RE-16 POWR 353. 253. 489. 177. 171. 50. 709. ٥. 1198.DISTILLA 1198. 0.23 0.14 0.65 35 GTRA16 GT-85RE-16 HEAT 353. 685. 1325. 480. 462 135. 353. -912. 1678. DISTILLA 766. G. 34 0.28 0.46 36 GTR208 GT-60RE-08 POWR 353. 252. 533. 214. 171. 50. 665. Ö. 1199.DISTILLA 1199. 0 0.23 0.14 0.65 36 GTR208 GT-60RE-08 HEAT 353. -661. 1547.DISTILLA 886. Ω 0.32 0.25 0.50 353. 565. 1194. 480. 382. 112. 37 GTR212 GT-60RE-12 POWR 353. 251. 517. 200. 171. 50. 683. 'n 1199. DISTILLA 1199. O 0.23 0.14 0.65 37 GTR212 GT-60RE-12 HEAT 353. 604. 480. 353. -747. 1594.DISTILLA 847. 0.33 0.26 0.49 1242. 410. 120. 50. 0. 1195. DISTILLA 1195. 0.23 0.14 0.65 38 GTR216 GT-60RE-16 POWR 353 256. 506. 195. 171. 688. -780. 0.34 0.26 0.49 38 GTR216 GT-GORE-16 HEAT 353. 631. 1247. 480. 420. 123. 353. 1600. DISTILLA 820. 39 GTRW08 GT-85RE-08 POWR 353. 206. 486. 135. 171. 50. 759. 0. 1245 DISTILLA 1245. 0.19 0.14 0.63 0.30 0.29 0.37 39 GTRW08 GT-85RE-08 HEAT 353 732. 1731 480. 607. 178 353. -13652084. DISTILLA 718 40 GTRW12 GT-85RE-12 POWR 353. 221. 469. 133. 171. 50. 761. ٥. 1230. DISTILLA 1230. 0.20 0.14 0.63 2046. DISTILLA 653. 0.32 0.30 0.38 35^. 353. -1393. 40 GTRW12 GT-85RE-12 HEAT 798. 1693. 480. 616. 181.

.

. #

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 60

REPORT 5.1

I&SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26212 MW 50.00 PROCESS MILLIONS BTU/HR 780.0 PROCESS TEMP(F) 366. PRODUCT BLEACHED-KRA HOURS PER YEAR 8400.

	UTILI	TY.	FUEL	COAL					R TO HE				*6= 3	53. HOT	WATER BT	U*10**6	= ().	
					WASTE	FUEL	COGEN	COGEN	COGEN		AUX	UTILIT			NET=	FAIL	FESR	POWER	
					FUEL	SAVED=	FUEL	PROCES	PROCES		PROCES		FUEL	FUEL	TOTAL+			FACTR	FACT
					USED	NO-NET	USED	HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				
					10**6	10**6		10**6			10××6	10**6	10**6		10**6				
					BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/H	₹	BTU/HR				
1 G	TRW16	GT-	85RE-16	POWR	353.	224.	478.	144.	171.	50.	749.	0.	1227	DISTILLA	1227.	0	0.20	0.14	0.6
			85RE-16			749.	1597.	480.	570.	167.	353.	-1248.	1950	DISTILLA	701.	Ω	0.32	0.29	0.4
2 G	TR308	GT-	60RE-08	POWR	353.	190.	550.	177.	171.	50.	710.	٥.	1260	D'STILLA	1260.	0	0.17	0.14	0.6
2 G	TR308	GT-	60RE-08	HEAT	353.	518.	1496.	480.	464.	136,	353.	-916.	1849	DISTILLA	933,	0	0.26	0.25	0.4
3 G	TR312	GT-	60RE-12	POWR	353.	229.	499.	165.	171.	50.	723.	٥.	1222	DISTILLA	1222.	0	0.21	0.14	0.6
3 G	TR312	GT-	60RE-12	HEAT	353.	664.	1448.	480.	495.	145.	353.	-1015.	1801	DISTILLA	787.	0	0.31	0.27	0.4
4 G	TR316	GT-	60RE-16	POWR	353.	227.	503.	168.	171.	50.	720.	0.	1223	DISTILLA	1223.	0	0.21	0.14	0.6
4 G	TR316	GT-	60RE-16	HEAT	353.	650.	1438.	480.	488.	143.	353.	<u>-991.</u>	1791.	DISTILLA	801.	0	0.31	0.27	_C.4
5 F	CPADS	FUE	L-CL-PH	POWR	353.	174.	449.	76.	171.	50.	828.	0.	1277	DISTILLA	1277.	0	0.16	0.13	0.6
			L-CL-PH			1094.	2824.	480.	1073.	314.	353.	-2820.	3176	DISTILLA	357.	0	0.28	0.34	0.2
6 F	CMCDS	FUE	L-CL-MO	POWR	353.	233.	414.	96.	171.	50.	804.	0.	1218.	DISTILLA	1218,			0.14	
			L-CL-MO			1157.	2060.	480.	849.	249.	353.	-2119.	2413.	DISTILLA	294.	0	0.36	0.35	C.3

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

18SE PEO ADV DESIGN ENGR REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26214 MW 29.00 PROCESS MILLIONS BTU/HR 610.0 PROCESS TEMP(F) 366. PRODUCT UNBLEACHED-K HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.162 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 259. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE FESR POWER HEAT NET= FAIL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL FUFI TOTAL + FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10xx6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COOON 259. ٥. ٥. ٥. ۵. 0. 718. 309. 718. COAL-FGD 1027. 0 0. 0.10 0.59 1 STM141 STM-TURB-1 POWR 834. RESIDUAL 259. 193. 650. 453. 99. 29. 184. О. 834. 0 0.25 0.12 0.73 1 STM141 STM-TURB-1 HEAT 259. 259. 874. 610. 133. 39. 0. -107. 874. RESIDUAL 767. 0 0.30 0.15 0.70 1 STM141 STM-TURB-1 POWR 259. 193. 650. 453. 99. 29. 184. 0. 834. COAL-FOD 834. 0 0.25 0.12 0.73 1 STM141 STM-TURB-1 HEAT 259. 259. 874. 610. 133. 39. -107. 874. COAL-FOD 767. 0 0.30 0.15 0.70 1 STM141 STM-TURB-1 POWR 259. 193. 650. √3.3. 99. 29. 184. O. 834 COAL-AFB 834. 0 0.25 0.12 0.73 1 STM141 STM-TURB-1 HEAT 259. 259. 874. 610. 133. 39. 0. -107. 874. COAL-AFB 767. 0 0:30 0.15 0.70 2 STM088 STM-TURB-8 POWR 259. 187. 840. 840. RESIDUAL 840. 0 0.24 0.12 0.73 615. 99. 29. -6. n 2 STM088 STM-TURB-8 HEAT 259. 191. 833. 610. 98. 29. 0. 2. 833. RESIDUAL 836. 0 0.25 0.12 0.73 2 STM088 STM-TURB-8 POWR 187. 615. 84C. COAL-FOD 0 0.24 C.12 0.73 259. 840. 99. 29. -6. 0. 840. 2 STM088 STM-TURB-8 HEAT 833. 610. 833. COAL-FGD 0 0.25 0.12 0.73 259. 191. 98. 29. ٥. 836 2 STM088 STM-TURB-8 POWR 259. 187. 840. 615. 99. 29. -6. 0. 840. COAL-AFB 840. 0 0.24 0.12 0.73 2 STM088 STM-TURB-8 HEAT 259. 191. 833. 610. 98. 29. O. 833. COAL-AFB 836. 0 0.25 0.12 0.73 3 PEBSTM PEB-STMTB- POWR 259.. 189. 455. 284 99 29. 383. Ö. 838. COAL-PFB 838. 0.25 0.12 0.73 3 PFBSTM PFB-STMTB- HEAT 975. COAL-PFB 621. 0 0.36 0.22 0.63 259. 406. 975. 610. 212. 62. 0. -354. 371. 466. 837, RESIDUAL 837. 0 0.25 0.12 0.73 4 TISTMT TI-STMTB-1 POWR 259. 190 214 99 29. Ω. 4 TISTMT TI-STMTB-1 HEAT 676. 390. 180. 53. 259. -254. 935. RESIDUAL 681. 0 0.34 0.19 0.65 259. 346. 837, COAL 837. 0 0.25 0.12 0.73 4 TISTMT TI-STMTB-1 POWR 259. 190. 371. 214. 99. 29. 466. 0. 1058. COAL 486. 0 0.40 0.27 0.58 1058. 83. -571. 4 TISTMT TI-STMTB-1 HEAT 259. 540. 610. 282. 0, 0 0.08 0.11 0.69 0. 887. RESIDUAL 887. 5 T:1 THERMIONIC POWR 183. 140. 703. 454. 99. 29. 183. 863. RESIDUAL 0 0.16 0.09 0.67 5 TI! THERMIONIC HEAT 259. 120. 604. 390. 85. 25. 259. 44. 906. 5 TIHESS THERMIONIC POWR 259. 140. 703. 454. 99. 29. 183. 0. 887, COAL 887. 0.18 0.11 0.69 5 TIHRSG THERMIONIC HEAT 259. 188. 945. 610. 133. 39. Ω. -106. 945. COAL 838. 0 0.22 0.14 0.65 6 STIRL STIRLING-1 POWR 259. . 137. 393. 187. 99. 29. 497. 0. 890.DISTILLA 890. 0 0.18 0.11 0.69 0 0.26 0.19 0.57 285. 817. 206. 60. 259. -334. 1076.DISTILLA 742. 6 STIRL STIRLING-1 HEAT 259. 390.

ELL PAGE PRINTIN

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

62

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26214 MW 29.00 PROCESS MILLIONS BTU/HR 610.0 PROCESS TEMP(F) 366. PRODUCT UNBLEACHED-K HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.162 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 259. HOT WATER BTU*10**6= WASTE FUEL UTILIT TOTAL SITE NET= FESR POWER HEAT COGEN COGEN COGEN AUX FAIL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR FUEL NO-NET USED POWER ELECT BOILR USED SITE USED UTILIT USED HEAT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 259. 137. 393. 187. 99. 29. 497. 0. 890. RESIDUAL 890. 0 0.18 0.11 0.69 1076. RESIDUAL 0 0.26 0.19 0.57 6 STIRL STIRLING-1 HEAT 285. 817. 390. 206. 60. 259. -334. 742. 259. 6 STIRL STIRLING-1 POWR 259. 137. 393. 187. 99. 29. 497. a. 890. COAL 890. 0 0.18 0.11 0.69 0 0.30 0.25 0.48 6 STIRL STIRLING-1 HEAT 259. 446. 1279. 610. 322. 94. ۵. -697. 1279.COAL 581. 7 HEGT85 HELIUM-GT- POWR 259 308 36. 99 29 n 983. COAL-AFB 983. 10 0.06 0.10 0.62 44 610. 1656. 485. 0. -4866. 5159. COAL-AFB 293. 0 0.13 0.32 0.12 7 HEGT85 HELIUM-GT- HEAT 259. 734. 5159. 8 HEGT60 HELIUM-GT- POWR 259. 58. 382. 111. 99. 29. 587. ۵. 969. COAL-AFB 969. 10 0.08 0.10 0.63 0.15 0.26 0.29 0. -1390. 2099. COAL-AFB 709. 0 318. 2099. 610. 544. 159. 8 HEGT60 HELIUM-GT- HEAT 259. 275. 29. 395. 957. COAL-AFB 957. 10 0.09 0.10 0.64 9 HEGTOO HELIUM-GT- POWR 259. 70. 562. 99, ٥. 1249, COAL-AFB 871. 0.14 0.18 0.49 9 HEGTOO HELIUM-GT- HEAT 259. 156. 1249. 610. 220. 64. 0. -378. 10 FCMCCL FUEL-CL-MO POWR 0. 165. 325. 154. 99. 29. 536. ٥. 862. COAL 862. 10 -0.12 0.11 0.71 0 0.23 0.30 0.47 374. 10 FCMCCL FUEL-CL-MO HEAT Ω. 653. 1289. 610. 392. 115. 0. -915. 1289. COAL 11 FCSTCL FUEL-CL-ST POWR 99. 0. 855. COAL 855. 10 -0.11 0.12 0.71 Ο. 172 255. 99. 29. 601. 607. 178. 0. -1587. 1562. COAL -25. 0.34 0.39 0.39 11 FCSTCL FUEL-CL-ST HEAT 1052. 1562. 610. 12 IGGTST INT-GAS-GT POWR ٥. 137. 340. 142. 99. 29. 550. ٥. 890. COAL 890. 10 -0.16 0.11 0.69 1456, COAL 441. 0 0.18 0.29 0.42 12 IGGTST INT-GAS-GT HEAT n. 586. 1456 610. 424. 124. 0. -1015. 0 0.18 0.11 0.69 13 GTSØAR GT-HRSG-10 POWR 259. 138. 341. 145. 99. 29. 547. ٥. 889. RESIDUAL 889. 78. 259. 1179. RESIDUAL 654. 0.29 0.23 0.52 390. 267. -524. 13 GTSOAR GT-HRSG-10 HEAT 259. 373. 920. 0.21 0.11 0.71 496. Ō. 862. RESIDUAL 862. 0 14 GTACOS GT-HRSG-OS POWR 259. 165. 366. 189 99. 29. 1017, RESIDUAL 686. 0.31 0.20 0.60 390. 205. 60. 259. -330. 14 GTACO8 GT-HRSG-08 HEAT 259. 340. 758. 0.21 0.11 0.71 540. n. 865, RESIDUAL 865. Ω 15 GTAC12 GT-HRSG-12 POWR 259. 162. 151. 99. 29. 324. 0.33 0.23 0.56 259. -492. 1099, RESIDUAL 607. 15 GTAC12 GT-HRSG-12 HEAT 259. 419. 840. 390. 256. 75. 868. RESIDUAL 868. 0 0.21 0.11 0.70 16 GTAC16 GT-HRSG-16 FOWR 259. 159. 306. 132. 99. 29. 562. 0. 390. 85. 259. -601. 1161.RESIDUAL 560. 0 0.34 0.25 0.53 16 GTAC16 GT-HRSG-16 HEAT 259. 467. 902. 291. 568. ٥. 882. RESIDUAL 882. 0 0.19 0.11 0.69 259. 145. 314. 127. 99. 29. 17 GTWC16 GT-HRSG-16 POWR 259. -640. 1223.RESIDUAL 583. 0 0.32 0.25 0.50 17 GTWC16 GT-HRSG-16 HEAT 259. 444. 964. 390. 304. 89.

ONEYWELL

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

PAGE

18SE PEO ADV DESIGN ENGR

INDUSTRY 26214 MW 29.00 PROCESS MILLIONS BTU/HR 610.0 PROCESS TEMP(F) 366. PRODUCT UNBLEACHED-K HOURS PER YEAR 8400.

	UTIL	ITY FUE	L	COAL				,,			O 0.162 EL EQV	BTU*10*	*6= 2	59. HOT	WATER BT	U*10**6	i= (ο.	
					WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	
					FUEL	SAVED=	FUEL	PROCES	PROCES	MW	PROCES	FUEL	FUEL	FUEL	TOTAL+			FACTR	FACT
					USED	NO-NET		HEAT		ELECT	BOILR	USED	SITE	USED	UTILIT				
					10**6	10××6	10××5	10**6	10**6		10**6	10**6	10××6		10**6				
					BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/H	R	BTU/HR				
8	CC1626	GTST-1	6/26	PAWR	259.	143.	259.	79.	99.	29.	625.	0.	884	. RESIDUAL	884.	n	n 19	0.11	0.8
-		GTST-1			259.	706.	1276.	390.	487.	143.		-1214.		. RESIDUAL	321.	-		0.32	0.4
_	CC1622	GTST-10	6/22	PAUD	259.	150.	262.	88.	99.	29.	614.	0.	877	. RESIDUAL	877.		0.20	0.11	0.7
-		GTST-1			259.	666,	1163.	390.	439.	129.		-1062.		. RESIDUAL	361.	_		0.31	0.4
		GTST-1			259. 259.	152. 670.	<u>261.</u> 1154.	88. 390.	99. 437.	<u>29.</u> 128.	614.	-1056.		. RESIDUAL . RESIDUAL	875. 357.			0.11	0.7
.0	001666	. G:31-12	-166	MEAT	209.	970.	1104.	380.	437,	120.	209.	-1036.	1413	. KES I DUAL	337,	Ü	0.37	U, U !	U, 4
		GTST-08			259.	162.	277.	111.	99.	29.		0.		. RESIDUAL	864.	0	0.21	0.11	0.3
21	CC0822	GTST-08	3/22	HEAT	259.	572.	<u>975.</u>	390.	348.	102.	259.	-779.	1234	. RESIDUAL	<u>455.</u>	0	0.37	0.28	0.4
22	STIG15	STIG-15	5-16	POWR	259.	53.	260.	3.	99.	29.	714.	0.	973	. RESIDUAL	973.	0	0.07	0.10	0.6
		STIG-15			259.		30000.		11430.	3350.				.RESIDUAL	-5151,			0.38	0.1
3	STIGIO	STIG-10	7-16	POWR	259.	77.	276.	37.	99.	29.	675.	0.	950	RESIDUAL	950.	Ω	0.10	0.10	0.1
		ST19-10			259.	818.	2943.	390.	1057.	310.		-2994.		RESIDUAL	208.			0.33	0.1
	STICIO	STIG-15	-16	Dello	259.	87.	295.	· 62.	99.	29.	644.	0.	040	. RESIDUAL	940.	•	0 11	0.11	^ -
		STIG-15			259. 259.	547.	1850.	390.	620.	182.		-1629.		RESIDUAL	480.			0.29	0.2
		DIESEL-			2 59.	107.	267.	55.	99.	29.	653 <i>.</i>	ο.		RESIDUAL	920,	_		0.11	
25	DEADV3	DIESEL-	-ADV	HEAT	259.	762.	1903.	390,	706.	207.	259.	-1897.	2161	.RES! DUAL	265.	0	0.29	0.33	_0.2
26	DEADV2	DIESEL-	-ADV	POWR	259.	122.	267.	68.	9 9.	29.	638.	0.	905	RESIDUAL	905,	1	0.16	0.11	0.6
		DIESEL-			259,	704.	1535.	390.	570,	167.		-1471.	1794	RESIDUAL	323.	1	0.31	0.32	0.0
7	DEADV1	DIESEL-	- ADV	PAMP	259.	165.	267:	104.	99.	29.	595.	0.	862	RESIDUAL	862.	1	0.22	0.11	
		DIESEL-			259.	618.	997.	390.	370.	108.				RESIDUAL	409.	i		0.29	0.4
		451/ 5		50:								_		DE015:44		_			
		ADV-DIE			259, 259.	159. 479.	303. 910.	130. 390.	99. 298.	29. 87.	<u>565.</u> 259.	0. -621.		RESIDUAL RESIDUAL	868 548.			0.11	0.5
	DEITH II	704 DIE	-91-6	IICA I	EUS.	7/3.	310.	030 .	230,	07 .	203.	UEI.	1109.		J-10.		5.54	0.20	0.
		DIESEL			259.	90.	274.	47.	99.	29.	663.	0.		DISTILLA	937.			0.11	
29	DESØA3	DIESEL	-SOA	HEAT	259,	751.	2281.	390.	823.	241.	259.	-2264.	2540.	DISTILLA	276.	0	0.25	0.32	0.3
9	DESØA3	DIESEL	-SØA	POWR	259.	90.	274.	47.	99.	29.	663.	٥.	937.	RESIDUAL	937.	0	0.12	0.11	0.6
		DIESEL-			259.	751.	2281.	390.	823.	241.		-2264.		RESIDUAL	276.			0.32	

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

REPORT 5.1

I&SE PEO ADV DESIGN ENGR

40 GTRW12 GT-65RE-12 HEAT

259.

648, 1376.

390.

501.

147.

259. -1256.

1635.DISTILLA

379.

0 0.32 0.31 0.37

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26214 MW 29.00 PROCESS MILLIONS BTU/HR 610.0 PROCESS TEMP(F) 366, PRODUCT UNBLEACHED-K HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.162 UTILITY FUEL COAL WASTE FUEL EQV BTU:10**6= 259. HOT WATER BTU:10**6= 0. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED BOILR USED UTILIT . USED HEAT POWER ELECT SITE USED 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 259. 106. 274. 60. 99. 29. 647. 0. 921.DISTILLA 921. 1 0,14 0,11 0.66 30 DESGA2 DIESEL-SGA HEAT 259. 685. 1773. 390, 259. -1691: 2032. DISTILLA 640. 188. 341. 1 0.28 0.32 0.30 30 DESGA2 DIESEL-SGA POWR 259. 106. 274. 60. 921. 1 0.14 0.11 99. 29. 647. ٥. 921.RESIDUAL 0.66 30 DESGA2 DIESEL-SGA HEAT 259. 686. 1773. 390. 640. 188. 259. -1691. 2032. RESIDUAL 341. 1 0.28 0.32 0.30 31 DESGA1 DIESEL-SGA POWR 259 274. 110. 99 588. 862. DISTILLA 862. 0.21 0.11 164 29 0.71 31 DESCA1 DIESEL-SCA HEAT 583. 973. -788. 1231.DISTILLA 259. 390. 351. 103. 259. 443. 0.37 0.29 0.50 31 DESGA1 DIESEL-SGA POWR 259. 164. 274. 110. 99. 29. 588. ο. 862. RESIDUAL 862. 1 0.21 0.11 0.71 31 DESCA1 DIESEL-SCA HEAT 259. 583. 973. 390. 351. 103. 259. -788. 1231. RESIDUAL 443. 1 0.37 0.29 0.50 32 GTSGAD GT-HRSG-10 PCWR 339. ٥. 873. DISTILLA 873. 259. 154. 156. 59. 29. 534. 0 0.20 0.11 0.70 32 GTSGAD GT-HRSG-10 HEAT 259. 385. 847. 390. 72. 259. -463. 642. 247. 1106.DISTILLA 0 0.31 0.22 0.55 33 GTRAOS GT-85RE-08 POWR 277. 885. DISTILLA G 0.18 0.11 0.69 259. 142. 93. 99. 29. 608. 0. 885. 33 9TRA08 GT-85RE-08 HEAT 259. 593. 1160. 390. 414. 121. 259. ~985. 1419. DISTILLA 434. 0 0.34 0.29 0.43 34 GTRA12 GT-85RE-12 POWR 259 145. 276. 96. 99 29. 605. 881. DISTILLA 881. 0 0.19 0.11 0.69 34 GTRA12 GT-85RE-12 HEAT 390. 259. 593. 1127. 403. 118. 259. -951. 1385, DISTILLA 434. 0 0.34 0.29 0.44 35 GTRA16 GT-85RE-16 POWR 259. 147. 284. 103. 99. 29. 597. 0. 880. DISTILLA 880. 0 0.19 0.11 0.69 35 GTRA16 GT-85RE-16 HEAT 556. 1076. 390. 376. 259. -865. 1335. DISTILLA 471. 0.34 0.28 0.46 259. 110. 36 GTR208 GT-60RE-08 POWR 259. 146. 309. 124. 99. 29. 571. ٥. 881.DISTILLA 881. 0.19 0.11 0.69 36 GTR208 GT-60RE-08 HEAT 259. 459. 970. 390. 310. 91. 259. -681. 1229. DISTILLA 568. 0.32 0.25 0.50 37 GTR212 GT-60RE-12 POWR 581. 259. 146. 300. 116. 99. 0. 881. DISTILLA 881. 0.19 0.11 0.69 29. 37 GTR212 GT-60RE-12 HEAT 259. 490. 1009. 390. 333. 98. 259. -731. 1268. DISTILLA 537. 0,33 0,26 0.48 878 38 GTR216 GT-60RE-16 POWR 0.19 G.11 0.69 259. 149. 294. 113. 99. 29 585. 878. DISTILLA 0.34 0.27 0.48 38 GTR216 GT-60RE-16 HEAT 259. 513. 1013. 390. 341. 100. 259. -757. 1272. DISTILLA 514. 39 GTRWO8 GT-85RE-08 POWR 259. 119. 282. 78. 99. 29. 626. 0. 908. DISTILLA 908. 0.16 0.11 0.67 39 GTRWO8 GT-85RE-08 HEAT 259. 595. 1406. 390. 494. 145. 259. -1233. 1665. DISTILLA 432. 0.30 0.30 0.37 40 GTRV12 GT-85RE-12 POWR 259. 128. 272. 77. 99. 29. 627. 0. 899. DISTILLA 899. 0 0.17 0.11 0.68

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 65

_ REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26214 MW 29.00 PROCESS MILLIONS BTU/HR 610.0 PROCESS TEMP(F) 366, PRODUCT UNBLEACHED-K HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.162

UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 259. HOT WATER BTU-10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES PROCES MW FUEL. SAVED= FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR 259. 130. 277. 83. 99. 29. 620. 0. 897. DISTILLA 897. 0 0.17 0.11 0.68 41 GTRW16 GT-85RE-16 HEAT 259. 609. 1297. 390. 463. 136. 259. -1138. 1556. DISTILLA 418. 0.32 0.30 0.39 42 9TR308 GT-60RE-08 POWR 259. 110. 319. 102. 99. 29. 597. 916.DISTILLA 0. 916. 0.14 0.11 0.67 42 GTR308 GT-60RE-08 HEAT 259. 421. 1216. 390. 377. 110. 259. -869, 1475. DISTILLA 606. 0.26 0.26 0.41 43 GTR312 GT-60RE-12 POWR 259 133. 289. 96 99 29 605, 894. DISTILLA 894. 0.17 0.11 0.68 43 GTR312 GT-60RE-12 HEAT 259. 540. 1177. 390. 402. 118. 259. -948. 1435. DISTILLA 487. ō 0.31 0.28 0.42 44 GTR316 GT-60RE-16 POWR 259. 132. 292. 97. 99. 29. 603. 0. 895. DISTILLA 895. 0 0.17 0.11 0.68 44 GTR316 GT-60RE-16 HEAT 259 528. 1169. 390. 396. 116. 259. -929. 1427. DISTILLA 499. 0.31 0.28 0.43 45 FCPADS FUEL-CL-PH POWR 259. 101. 260. 44. 99. 29. 666. 0. 926. DISTILLA 926. 0 0.13 0.11 0.66 45 FCPADS FUEL-CL-PH HEAT 259. 889. 2294. 390. 872. 255. 259. -2415. 2553. DISTILLA 138. 0.28 0.34 0.24 46 FCMCDS FUEL-CL-MO POWR 259. 135. 240. 56. 99. 29. 652. ٥. 892. DISTILLA 892 0 0.18 0.11 0.68 46 FCMCDS FUEL-CL-MO HEAT 259. 87. 0 0.36 0.36 0.32 940. 1674. 390. 690. 202. 259. -1846. 1933. DISTILLA

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

·

INDUSTRY 26216 MW 20.00 PROCESS MILLIONS BTU/HR 307.0 PROCESS TEMP(F) 366, PRODUCT NEUT-SU-SCHE HOURS PER YEAR 8400,

POWER TO HEAT RATIO 0, 222 UTILITY FUEL WASTE FUEL EQV BTU*10**6= COAL O. HOT WATER BTU*10**6= Ω WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR FUFL USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COOON 0. ٥. ٥. Ω. 0. 361. 213. 361. COAL-FOD 574. O O. 0.12 0.53 479. 339. 479. RESIDUAL 1 STM141 STM-TURB-1 POWR 0. 96. 68. 20. -37. 0. 479. 0 0.17 0.14 0.64 1 STM141 STM-TURB-1 HEAT 0. 121. 434. 307. 62. 18. 0. 20. 434. RESIDUAL 454. 0 0.21 0.14 0.68 1 STM141 STM-TURB-1, POWR 96. 479. 339. 68. 20. -37. 0. 479. COAL-FOD 479. 0 0.17 0.14 0.64 ! STM141 STM-TURB-1 HEAT 307. 434. COAL-FGD 454. 0 0.21 0.14 0.68 121. 434. 62. 18. 0. 20. 1 STM141 STM-TURB-1 POWR 0. 96. 479. 339. 68. 20. -37. 0. 479. COAL-AFB 479. 0 0.17 0.14 0.54 1 STM141 STM-TURB-1 HEAT 121. 434. 307. 20. 434. COAL-AFB 454. 0 0.21 0.14 0.68 0. 62. 18. ٥. 2 STMO88 STM-TURB-8 POWR 470 633. RESIDUAL 633. 0 -0.10 0.11 0.49 -58. 633. 68. 20. -191 0. 2 STM088 STM-TURB-8 HEAT 0 0.15 0.09 0.63 ٥. 87. 414. 307. 45. 13. 0. 74. 414. RESIDUAL 487. 470. 633. COAL-FGD 633. 0 -0.10 0.11 0.49 2 STM088 STM-TURB-8 POWR -58. 633. 68. 20. -191. 0. 0 0.15 0.09 0.63 2 STM088 STM-TURB-8 HEAT Ω. 87. 414. 307. 45. 13. ٥. 74. 414. COAL-FGD 487. 633. 0 -0.10 0.11 0.49 2 STM088 STM-TURB-8 POWR -58. 633. 470. 68. 20. -191. 0. 633, COAL-AFB n. 2 STM088 STM-TURB-8 HEAT ٥. 87. 414. 307. 45. 13. ٥. 74. 414. COAL-AFB 487. 0 0.15 0.09 0.63 0 0.23 0.15 0.69 3 PFBSTM PFB-STMTB- POWR 0. 130. 326. 207. 68. 20. 118. 0. 444. COAL-PFB 444. 3 PFBSTM PFB-STMTB- HEAT ٥. 193. 485. 307. 101. 30. ٥. -103. 485. COAL-PFB 381. 0 0.29 0.21 0.63 444. RESIDUAL 444. 0 0.23 0.15 0.69 4 TISTMT TI-STMTB-1 POWR 131. 264 154. 68. 20. 179. n. -211. 525. RESIDUAL 314. 0 0.33 0.26 0.58 4 TISTMT TI-STMTB-1 HEAT 260. 525. 307. 136. 40. Ο. 0 0.23 0.15 0.69 154. 20. 179. ٥. 444. COAL 444. 4 TISTMT TI-STMTB-1 POWR 131. 264. 68. 0 0.33 0.26 0.58 307. -211. 525, COAL 314. 4 TISTMT TI-STMTB-1 HEAT 260. 525. 136. 40. Ο. 485. 0 0.16 0.14 0.63 20. -7. 0. 485. RESIDUAL 5 TIHRSG THERMIONIC POWR 89. 485. 313. 68. 475. RESIDUAL 480. 0 0.17 0.14 0.64 5 TIHRSG THERMIONIC HEAT ٥. 95. 475. 307. 67. 20. 0. 4. 485. 0 0.16 0.14 0.63 0. 485. COAL 5 TIHRSG THERMIONIC POWR 0. 89. 485. 313. 68. 20. 475. 307. 67. 20. 0. 4. 475, COAL 480. 0 0.17 0.14 0.64 5 TIHRSG THERMIONIC HEAT 95. 6 STIRL STIRLING-1 POWR 0. 94. 271. 129. 68. 20. 209. 0. 480. DISTILLA 480. 0 0.16 0.14 0.64 48. -293. 643. DISTILLA 350. 0 0.26 0.25 0.48 6 STIRL STIRLING-1 HEAT 224. 643. 307. 162. Ο.

PAGE 66

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

67

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26216 MW 20.00 PROCESS MILLIONS BTU/HR 307.0 PROCESS TEMP(F) 366, PRODUCT NEUT-SU-SCHE HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.222 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= 0. WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE FESR POWER HEAT NET= FAIL FUEL. SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED POWER ELECT HEAT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 271. n 94. 129. 68. 20. 209. ٥. 480. RESIDUAL 480. 0 0.16 0.14 0.64 6 STIRL STIRLING-1 HEAT ٥. 224. 643. 307. 162. 48. ο. -293. 643. RESIDUAL 350. 0.25 0.26 0.48 6 STIRL STIRLING-1 POWR O. 94. 271. 129. 68. 20. 209. 480. COAL 0. 480. 0.16 0.14 0.64 6 STIRL STIRLING-1 HEAT ٥. 224. 643. 307. 162. 48. 0. -293. 643. COAL 350. 0 0.26 0.25 0.48 7 HEGT85 HELIUM-GT- POWR 30. 213. 25. 68. 20 332. Ω 544. COAL-AFB 544. 10 0.05 0.13 0.56 7 HEGT85 HELIUM-GT- HEAT 2597. 307. 369. -2391. 0.12 Ω. 834. 244. 0. 2597. COAL-AFB 205. 0.12 0.32 8 HEGT60 HELIUM-GT- POWR ٥. 40. 263. 77. 68. 20. 271. ٥. 535. COAL-AFB 535. 10 0.07 0.13 0.57 8 HEGT60 HELIUM-GT- HEAT 160. 1056 307. 274. 80. -642. 1056. COAL-AFB 415. 0.13 0.26 0.29 9 HEGTOO HELIUM-GT- POWR 0. 48. 388. 189. 68. 20. 138. 0. 526. COAL-AFB 526. 10 0.08 0.13 0.58 9 HEGTOO HELIUM-GT- HEAT ٥. 78. 629. 307. 111. 32. 0. -132. 629. COAL-AFB 496. 10 0.11 0.18 0.49 10 FCMCCL FUEL-CL-MO POWR 0. 114. 224. 106. 68. 20. 236. 0. 461. COAL 461. 10 0.20 0.15 0.67 10 FCMCCL FUEL-CL-MO HEAT 329. 649. 307. 197. Ο. 0.30 0.47 0. 58. -403. 649. COAL 246. 10 0.34 11 FCSTCL FUEL-CL-ST POWR 0. 118. 178. 71. 68. 20. 278. 0. 456. COAL 456. 10 0.21 0.15 0.67 11 FCSTCL FUEL-CL-ST HEAT 775. 307. 297. 87. -715. 775. COAL 10 0,40 0.38 0.40 0. 514. 0. 60. 12 IGGTST INT-GAS-GT POWR 239. 68. 10 0.16 0.14 0.64 0. 94. 102. 20. 242. 0. 481. COAL 481. 10 0.28 0.29 0.42 12 IGGTST INT-GAS-GT HEAT 283. 723. 307. 206. 60. -43%. 723. COAL 292. ٥. 13 GTSØAR GT-HRSG-10 POWR 0. 95, 235. 100. 68. 20. 244. 0. 479. RESIDUAL 479. 0.17 0.14 0.64 13 GTSGAR GT-HRSG-10 HEAT 0. 293. 724. 307. 210. 62. 0. -443. 724. RESIDUAL 281. 0.29 0.29 0.42 14 GTACOS GT-HRSG-08 POWR 0. 114. 253. 130. 68. 20. 208. 0. 461. RESIDUAL 461. 0.20 0.15 0.67 14 GTACO8 GT-HRSG-08 HEAT 268. 597. 307. -290. 597. RESIDUAL 306. 0 0.31 0.27 0.51 0. 161. 47. 0. 15 GTAC12 GT-HRSG-12 POWR 224. 239 0. 463. RESIDUAL 463. 0 0.19 0.15 0.66 0. 112 104. 68 20 15 GTAC12 GT-HRSG-12 HEAT 330. 661. 307. -417. 661. RESIDUAL 0 0.33 0.31 0.46 202. 244. Ο. 59. 0. 16 GTAC16 GT-HRSG-16 POWR 109. 211. 91. 68. 20. 254. 0. 465, RESIDUAL 465. 0 0.19 0.15 0.66 n. 207. 16 GTAC16 GT-HRSG-16 HEAT 368. 710. 307. 229 0. -503 710. RESIDUAL 0.34 0.32 0.43 0. 67. Ω 100. 217. 258. 0. 475. RESIDUAL 475. 0.17 0.14 0.65 17 GTWC16 GT-HRSG-16 POWR 0. 88. 68. 20. 17 GTWC16 GT-HRSG-16 HEAT 0. 349. 759. 307. 239. 70. 0. -534. 759. RESIDUAL 225. 0.32 0.32 0.40

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26216 MW 20.00 PROCESS MILLIONS BTU/HR 307.0 PROCESS TEMP(F) 366. PRODUCT NEUT-SU-SCHE HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.222 WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= 0. UTILITY FUEL COAL Q. COGEN COGEN AUX UTILIT TOTAL SITE NET= FESR POWER HEAT WASTE FUEL COGEN FAIL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR FUEL BOILR USED SITE USED UTILIT USED NO-NET USED HEAT POWER ELECT 10**6 10**6 10**6 10**6 10**6 10**5 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 295. 476. RESIDUAL 476. 56. 20. 0. 0.17 0.14 0.64 18 CC1626 GTST-16/26 POWR 0. 98. 181. 68. 991. RESIDUAL 18 CC1626 GTST-16/26 HEAT Ö. 540. 991. 307. 374. 110. 0. -956. 35. 0 0.35 0.38 0.31 19 CC1622 GTST-16/22 POWR 68. 20. 288. 0. 471. RESIDUAL 471. 0.18 0.14 0.65 0. 103. 183. 62. 19 CC1622 GTST-16/22 HEAT 0. 509. 904. 307. 337. 99. ٥. -839. 904. RESIDUAL 65. 0 0.36 0.37 0.34 20 CC1222 GTST-12/22 POWR 63. 68. 20. 288 0. 470. RESIDUAL 470 0 0.18 0.15 0.65 104. 183 O. 20 CC1222 GTST-12/22 HEAT 512. 896. 307. 335. 98. α. -833. 896. RESIDUAL 63. 0 0.36 0.37 0.34 n. 0 0.19 0.15 0.66 79. 20. 269. Ω. 463. RESIDUAL 463. 21 CC0822 GTST-08/22 POWR 112. 194. 68. 21 CC0822 GTST-08/22 HEAT 436. 757. 307. 266. 78 0. -619. 757. RESIDUAL 139 0 0.37 0.35 0.41 22 STIG15 STIG-15-16 POWR 179. 2. 68. 20. 358. ٥. 538. RESIDUAL 538. 10 0.06 0.13 0.57 0. 37. 307. 8997. 2637. 0.-27904. 23615.RESIDUAL -4288. 0.17 0.38 0.01 22 STIG15 STIG-15-16 HEAT 4863. 23615. 23 STIG10 STIG-10-16 POWR 0. 53. 190. 25. 68. 20. 332. 0. 522. RESIDUAL 522. 0.09 0.13 0.59 23 STIG10 STIG-10-16 HEAT 2317. 307. 832, 244. 0. -2387. 2317. RESIDUAL -70. 0 0.22 0.36 0.13 Ω. 644. 0 0.10 0.13 0.60 514. RESIDUAL 514. 24 STIG1S STIG-1S-16 POWR 60 204 43. 68 20 0 307. 0. -1312. 1456. RESIDUAL 144. 0 0.23 0.34 0.21 24 STIGIS STIG-1S-16 HEAT 430. 1456. 488. 143. 0 0.13 0.14 0.61 501. RESIDUAL 501. 25 DEADV3 DIESEL-ADV POWR ٥. 74. 184. 38. 68. 20. 317. 0. 0.29 0.37 0.20 0. -1523. 1498. RESIDUAL -25. 25 DEADV3 DIESEL-ADV HEAT 600. 1498 307. 556. 163 1 0.15 0.14 0.63 490. 26 DEADV2 DIESEL-ADV POWR ٥. 84. 184. 47. 68. 20. 306. 0. 490. RESIDUAL 1209. RESIDUAL 21. 1 0.31 0.37 0.25 26 DEADV2 DIESEL-ADV HEAT 554. 1209. 307. 448. 131. 0. -1188. 0. 68. 0.20 0.15 0.67 27 DEADV1 DIESEL-ADV POWR 0. 114. 184. 72. 20. 277. 0. 461. RESIDUAL 461. -697. 785. RESIDUAL 88. 1 0.38 0.37 0.39 291. 85. 785. 307. O. 27 DEADVI DIESEL-ADV HEAT ٥. 486. 0 0.19 0.15 0.66 28 DEHTPM ADV-DIESEL POWR 209 89. 68. 20. 256. 0 465. RESIDUAL 465. 110. 0 0.34 0.33 0,43 -519. 717. RESIDUAL 198. 307. 234. 69. 0. 28 DEHTPM ADV-DIESEL HEAT 0. 377. 717. 0 0.11 0.13 0.60 32. 68. 20. 323. 0. 512. DISTILLA 512. 29 DESGAS DIESEL-SGA POWR ۵. 62. 189. 0.25 0.36 0.17 29 DESCAS DIESEL-SCA HEAT 1796. DISTILLA -17. 1796. 307. 648. 190. 0. -1812. 591. 0.11 0.13 0.60 32. 68. 20. 323. 0. 512.RESIDUAL 512. 0 29 DESGAS DIESEL-SGA POWR 0. 62. 189. 0.25 0.36 0.17 190. 0. -1812. 1796. RESIDUAL -17. 0 307. 648. 29 DESGAS DIESEL-SGA HEAT 591. 1796. O.

PAGE 68

		:	FR	.63	1 19	N 12	9 6	66	77 7	r ki	io io:	9 10 0	0.0	· ·	0 01		JANANA ARRIS. 🗸
	A to the state of	-	POWER HEAT FACTR FACTR	00		0 0	0.40	00	- 1	9 0	0.35	0.65	0.65	0.65	0.39		1 20 20 20 20 20 20 20 20 20 20 20 20 20
69	8400.		POWER FACTR	0.14	0.14	0.15	0.35		0.14		0.36	0.14	0.14	0.14	0.34	• • •	
PAGE	YEAR		FESR	0.13		0.20	0.20	• • •	0.17		0.34	* * *	1.33	. 18	0.34		
à	PER YE	BTU*10**6=	FAIL			ı		00	0 0		0 00	1	00	- 1			
	HOURS P	BTU*1															
		WATER	NET= TOTAL+ UTILIT	501 34	501	461	461.	468.	477.	474.	108. 136.	474.	474.	472.	492.	48 6. 64.	
	NEUT-SU-SCHE	HOH	SI TE FUEL USED	TILLA TILLA	DUAL	¥ 1 1 1 1 1 1 1 1 1	RESIDUAL RESIDUAL	71. 1. 1. 1. 1.	¥1111	TLLA	בר א בר בי	44	1111 1111	וררע	4 <u>4</u>	11 11 12 14	
		o	, ,	U/HR 501.DISTILLA 395.DISTILLA	501. RESIDUAL 395. RESIDUAL	461.DISTILLA	RESIDUAL	468.DISTILLA 667.DISTILLA	477.DISTILLA 913.DISTILLA	1.DISTILLA	997.DISTILLA 473.DISTILLA 847.DISTILLA	474.DISTILLA 764.DISTILLA	474.DISTILLA 794.DISTILLA	472.DISTILLA	DISTILLA	3. DISTILLA	
	PRØDUCT	r6=	TOTAL FUEL SITE 10**6	501. 1395.	1395	461	461	468 667	477 913	474	473 847	474	794	472	492.	486. 1083.	
s stuby	ECS** 366.	BTU*10**6	3	BTU/HR 0. -1361.	-1361.	0.	0.	0. -395.	-805.	-770	0.	-550.	-606.	0,	.026. -1001.	1019.	
	GCESS AND TEMP(F)	0.222 EQV	AUX PROCES BOILR 10**6	312. 0.	312.	272.	272. 0.	235.	286.	284.	278. 0.	260.	267. 0.	269.		299.	
C.3 .1	SS S	HEAT RATIO WASTE FUEL	COGEN MW ELECT	20.	20. 148.	20. 81.	20. 81.	20.	20. 96.	20.	20. 87.	20.	20. 77.	20.	20. 114.	20. 116.	
L ELECTRIC ECHNOLOGY / REPORT 5.	0.	D	COGEN PROCES POWER 10**6	68. 504.	68. 504.	68.	68. 276.	68. 195.	68. 325.	68.	68. 296.	68. 244.	68. 262.	68.	68. 389.	394.	
GENERAL ELECTRIC COGENERATION TECHNOLOGY **FILE FNEDOY SAVED DY	HR HR	POWER	COGEN PROCES HEAT 10**6	42. 307.	42.	76. 307.	76.	108. 307.	64.	66. 337.	71. 307.	86.	80. 307.	78.	54. 307.	53.	
COGENER	CNS BTU/HR		COGEN FUEL USED 10**6	189.	189. 1395.	189. 766.	189. 766.	234. 667.	191. 913.	191.	196. 647.	213.	207. 794.	202.	194.	187.	
	S MILLIONS		SAVED= NO-NET 10**6	1	73.	113. 459.	113.	106. 303.	98.	100.	101. 438.	101. 361.	101. 386.	102.	82. 468.	510.	
	PROCESS		WASTE FUEL USED 10**6	00	0 0	0.0	0 0	o o	00	00	0 0	o o	00	00	0 0	00	
ENGR	20.00	CGAL		POWR	POWR HEAT	POWR HEAT	POWR	POWR	POWR HEAT	POWR HEAT	POWR HEAT	POWR HEAT	POWR HEAT	POWR	POWR	POWR	
DESIGN	ME.	긤		SGA	SØA SØA	-SOA	1	6-10 6-10	E-08 E-08	E-12	4	88	ผล	•	- 4		
1	26216	ry fuel		DIESEL	DIESEL-SOA DIESEL-SOA	DIESEL-SOA Diesel-soa	DIESEL-SOA DIESEL-SOA	GT-HRSG-10 GT-HRSG-10	GT-85RE-08 GT-85RE-08	GT-85RE-12 GT-85RE-12	GT-85RE-16 GT-85RE-16	GT-60RE-08 GT-60RE-08	GT-60RE- GT-60RE-	GT-60RE-16 GT-60RE-16	6T-85RE-08 6T-85RE-08	-85RE-12 -85RE-12	
)6/06/		UTILITY			DESGA2 D DESGA2 D	DESGA1 D		GTSCAD G GTSCAD G	A08 G A08 G	A12 G					,	<u> </u> စ်	
DATE 06/06/79	INDUSTRY	_			30 DES 30 DES	31 DES 31 DES	31 DESGA1		3 GTRAO8 3 GTRAO8	4 GTRA12	5 GTRA16 5 GTRA16	1		3 GTR216	GTRWO8	GTRW12	
	<u> </u>	4		44	(2 (C)			м м	8 8 8 8	8 8	20 20 30 30 30 30	90 0 0 0 0		Α <u>Ε</u> ΕΝ	ити 8 8 8 9	35 A9 11:	HONEAME

16SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26216 MW 20.00 PROCESS MILLIONS BTU/HR 307.0 PROCESS TEMP(F)

366. PRODUCT NEUT-SU-SCHE HOURS PER YEAR 8400.

PAGE

70

POWER TO HEAT RATIO 0.222 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL FESR POWER HEAT SITE NET= FAIL . FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR 0. 90. 191. 57. 294. 68. 20. 0. 485. DISTILLA 485. 0 0.16 0.14 0.63 41 GTRW16 GT-85RE-16 HEAT 479. 1021. 307. 0. 365. 107. ٥. -926. 1021.DISTILLA 95. 0.32 0.36 0.30 42 GTR308 GT-GORE-08 POWR 220. 76. 71. 0. 278. 68. 20. 0. 498. DISTILLA 498. ō 0,13 0.14 0.62 42 GTR308 GT-60RE-08 HEAT ٥. 331. 957. 307. 297. 87. 0. -714. 957. DISTILLA 243. 0 0,26 0.31 0.32 43 GTR312 GT-60RE-12 POWR 92. 200. 66. 68. 283. 0. 483. DISTILLA 483. C 0.16 0.14 0.64 20. 43 GTR312 GT-60RE-12 HEAT 425. 926. 307. 317. -777. 926. DISTILLA 150. 0 0.31 0.34 0.33 44 GTR316 GT-60RE-16 POWR 483. ٥. 91. 201. 67. 68. 20. 282. 0. 483. DISTILLA 0 0.16 0.14 0.64 44 GTR316 GT-60RE-16 HEAT 416. 920. 307. 312. 91. -761. 920. DISTILLA 0. 159. 0 0.31 0.34 0.33 ٥. 45 FCPADS FUEL-CL-PH POWR 70. 180. 31. 68. 325. 505. 20. 0. 505. DISTILLA 0 0,12 0.14 0.61 45 FCPADS FUEL-CL-PH HEAT Ω 700. 1806. 307. 686. 201. 0. -1931. 1806. DISTILLA -125. 0 0.28 0.38 0.17 46 FCMCDS FUEL-CL-MO POWR 93. 166. 481.DISTILLA 0. 39. 68. 20. 316. 0. 481. 0 0.16 0.14 0.64 46 FCMCDS FUEL-CL-MO HEAT o. 740. 1318. 307. 159. 0 0.36 0.41 0.23 543. 0. -1483. 1318.DISTILLA -165,

EM- P1185-02

LL PAGE PRINTING

()

PAGE 71

DATE 06/06/79

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26217 MW 31.30 PROCESS MILLIONS BTU/HR 183.0 PROCESS TEMP(F) 366. PRODUCT THERMO-MECH- HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.584 O. HOT WATER BTUx10**6= UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR FUEL SAVED= FUEL PROCES PROCES MW USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR Ó. 0. 0. 0. 215. 334. 215. COAL-FOD 549. 0 0. 0.19 0.33 O ONOCGN NO COGON Ω. 0. 1 STM141 STM-TURB-1 POWR -262. 811. 583. 107. -470. 0. 811. RESIDUAL 811. 0 -0.48 0.13 0.23 ٥. 31. 1 STM141 STM-TURB-1 HEAT 255. RESIDUAL 229. 484. 0 0.12 0.07 0.38 65. 255. 183. 34 10. 0. 1 STM141 STM-TURB-1 POWR -262. 811. 583. 107. -470. ٥. 811.COAL-FGD 0 -0.48 0.13 0.23 31. 811. O. 65. 229. 255. COAL-FGD 484. 0 0.12 0.07 0.38 1 STM141 STM-TURB-1 HEAT 255. 183. 34. 10. О. 811. 1 STM141 STM-TURB-1 POWR -262. 583. 107. -470. n. 811.COAL-AFB 811. 0 -0.48 0.13 0.23 31. n 255. 255. COAL-AFB 484. 0 0.12 0.07 0.38 1 STM141 STM-TURB-1 HEAT O. 65. 183. 34. 10. 0, 229. 2 STM088 STM-TURB-8 POWR -555. -763 0. 1104. RESIDUAL 1104. 0 -1.01 0.10 0.17 1104 832. 107. 31. 2 STMO88 STM-TURB-8 HEAT 243. RESIDUAL 503. 0 0.08 0.05 0.36 0. 46. 243. 183. 23. 7. 0. 260. ٥. 1104.COAL-FGD 1104. 0 -1.01 0.10 0.17 2 STMO88 STM-TURB-8 POWR -555. 1104. 832. 107. **-763**. n 31. 243. COAL-FGD 503. 0 0.08 0.05 0.36 2 STM088 STM-TURB-8 HEAT 46. 243. 183. 23. 7. 0. 260. 2 STM088 STM-TURB-8 POWR -555. 31. -763. 0. 1104.COAL-AFB 1104. 0 -1.01 0.10 0.17 1104. 832. 107. 0. 243. COAL-AFB 503. 0 0.08 0.05 0.36 2 STM088 STM-TURB-8 HEAT 0. 46. 243. 183. 23. 7. 0. 260. 0. 535. COAL-PFB 535. 0 0.02 0.20 0.34 3 PFBSTM PFB-STMTB- POWR 535. 344. 107. -189. 0. 14. 31. 285. COAL-PFB 441. 0 0.20 0.13 0.41 3 PFBSTM PFB-STMTB- HEAT 0. 108. 285. 183. 57. 17. 0. 156. ٥. 429. RESIDUAL 429. 0 0.22 0.25 0.43 429 254. 107 4 TISTMT TI-STMTB-1 POWR 121 31. -84. 0 0.27 0.19 0.46 4 TISTMT TI-STMTB-1 HEAT 308. RESIDUAL 402. 0. 147. 308. 183. 77. 23. ٥. 94. 429. COAL 429. 0 0.22 0.25 0.43 0. 4 TISTMT TI-STMTB-1 POWR 121. 429. 254. 107. 31. -84. 308, COAL 402. 0 0.27 0.19 0.46 4 TISTMT TI-STMTB-1 HEAT 147. 308 183. 77. 23. 0. 94. 0. 759. RESIDUAL 759. 0 -0.38 0.14 0.24 -361. 5 TIHRSG THERMIONIC POWR -210. 759. 490. .107. 31. 283. RESIDUAL 0 0.10 0.08 0.37 5 TIHRSG THERMIONIC HEAT 57. 283. 183. 40. 12. 0. 209. 493, 759. 0 -0.38 0.14 0.24 759. COAL 5 TIHRSG THERMIONIC POWR -210. 759. 490. 107. 31. -361. 0. 493. 0 0.10 0.08 0.37 5 TIHRSG THERMIONIC HEAT 283. 183. 12. 0. 209. 283. COAL 57. 40. 424. 0 0.23 0.25 0.43 ٥. 424. DISTILLA 6 STIRL STIRLING-1 POWR 125. 424 202. 107. -23. 384. DISTILLA 415. 0 0.24 0.23 0.44 6 STIRL STIRLING-1 HEAT 134. 384. 183. 97. 28. ٥. 32.

WELL PAGE

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26217 MW 31.30 PROCESS MILLIONS BTU/HR 183.0 PROCESS TEMP(F) 366. PRODUCT THERMO-MECH- HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.584 WASTE FUEL EQV BTU*10**6* UTILITY FUEL COAL HOT WATER BTU*10**6= 0. UTILIT TOTAL SITE WASTE FUEL COGEN COGEN COGEN AUX NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR FUEL USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT . 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 125. 424. 202. 107. -23. ٥. 424. RESIDUAL 424. 0 0.23 0.25 0.43 ٥. 31. 384. RESIDUAL 6 STIRL STIRLING-1 HEAT 0. 134. 384. 183. 97. 28. ٥. 32. 415. 0 0.24 0.23 0.44 -23. ٥. 6 STIRL STIRLING-1 POWR 125. 424. 202. 107. 424. COAL 424. 0.23 0.25 0.43 0. 31. 6 STIRL STIRLING-1 HEAT 0. 134. 384. 183. 97. 28. . 0. 32. 384. COAL 415. 0 0.24 0.23 0.44 502. 3 AL-AFB 10 0.09 0.21 7 HEGT85 HELIUM-GT- POWR 47. 333 39 107. 31. 169 0. 502 0.36 7 HEGT85 HELIUM-GT- HEAT 0. 220. 1548. 183. 497. 146. 0. -1219. 1548. COAL-AFB 329. 0.12 0.32 0.12 437. 8 HEGT60 HELIUM-GT- POWR-62. 412. 120. 107. 31. 74. 0. 487, COAL-AFB 10 0.11 0.22 0.38 8 HEGT60 HELIUM-GT- HEAT 95. 630. 183. 163. 0. -176. 630. COAL-AFB 454. 10 0.13 0.26 0.29 48. 9 HEGTOO HELIUM-GT- POWR -58. 607. 296. 107. -133. ٥. 607. COAL-AFB 607. 10 -0.11 0.18 0.30 0. 31. 9 HEGTOO HELIUM-GT- HEAT 0. 47. 375. 183. 66. 19. 0. 128. 375. COAL-AFB 502. 10 0.09 0.13 0.36 10 0.32 0.29 0.49 10 FCMCCL FUEL-CL-MO POVR 178. 351. 166. 107. 20. Ö. 371.COAL 371. 0. 31. 10 FCMCCL FUEL-CL-MO HEAT ٥. 196. 387. 183. 118. 34. 0. -34. 387, COAL 353. 10 0.34 0.30 0.47 11 FCSTCL FUEL-CL-ST POWR 283 107. 0. 365. COAL 365. 0.34 0.29 0.50 n 184. 114. 31. 81. 11 FCSTCL FUEL-CL-ST HEAT 0. 297. 455. 183. 172. 50. Ō. -203. 455. COAL 252. 10 0.39 0.38 0.40 12 IGGTST INT-GAS-GT POWR ٥. 145. 383. 165. 107. 31. 21. O. 404. COAL 404. 10 0.26 0.26 0.45 12 IGGTST INT-GAS-GT HEAT 160. 424. 183. 118. 0. -36. 424. COAL 389. 10 0.27 0.28 0.43 35. 13 GTSCAR GT-HRSG-10 POWR 149. 368. 156. 107. 32. ٥. 400. RESIDUAL 400. 0 0.27 0.27 0.46 ٥. 31. 13 GTSGAR GT-HRSG-10 HEAT 432. 183. 125. 0. -57. 432. RESIDUAL 374. 0 0.29 0.29 0 42 0. 175. 37. 0 0.28 0.27 0.46 Ö. 396. RESIDUAL 396. 14 GTACOS GT-HRSG-08 POWR 0. 153. 396. 204. 107. 31. -24. 34. 356. RESIDUAL 389. 0 0.29 0.25 0.47 14 GTACOB GT-HRSG-08 HEAT 160. 356. 183. 96. 0. ٥. 28. 374. 374. RESIDUAL 0 0.32 0.29 0.49 15 GTAC12 GT-HRSG-12 POWR 175. 350 163 107 31 24 0. 183. 394. RESIDUAL 352. 0 0.33 0.31 0.46 15 GTAC12 GT-HRSG-12 HEAT 394. 120. 35. 0. -42. 0. 197. 0 0.31 0.28 0.48 378. 16 GTAC16 GT-HRSG-16 POWR 171. 331. 143. 107. 31. 47. ٥. 378. RESIDUAL 0 0.34 0.32 0.43 -93. 423. RESIDUAL 330. 16 GTAC16 GT-HRSG-16 HEAT 219. 423. 183. 137. 40. ٥, 0 0.28 0.27 0.47 17 GTWC16 GT-HRSG-16 POWR 156. 339. 137. 107. 31. 54. ٥. 393. RESIDUAL 393. 0 0,32 0.32 0.40 452. RESIDUAL 341. 17 GTWC16 GT-HRSG-16 HEAT 208. 452. 183. 142. 42. 0. -111.

JI B RAN

PAGE 72

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26217 MW 31.30 PROCESS MILLIONS BTU/HR 183.0 PROCESS TEMP(F) 366. PRODUCT THERMO-MECH- HOURS PER YEAR 8400.

PAGE

73

POWER TO HEAT RATIO 0.584 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= n. HOT WATER BTU*10**6= 0. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR ٥. 153. 286. 90. 107. 0. 31. 109. 396. RESIDUAL 396. 0 0.28 0.27 0.46 18 CC1626 GTST-16/26 HEAT 0. 312. 582. 183. 217. 582. RESIDUAL 64. 0. -344. 237. 0 0.35 0.37 0.31 19 CC1622 GTST-16/22 POWR Ō. 161. 291. 100. 107. 388. RESIDUAL 31. 97. O. 388. 0 0.29 0.28 0.47 19 CC1622 GTST-16/22 HEAT ٥. 294. 531. 183. 195. 57. -275. 0. 531. RESIDUAL 255. 0 0.36 0.37 0.34 20 CC1222 GTST-12/22 POWR 163 290. 101. 107. 386. RESIDUAL n 31. 97. 0. 386. 0 0.30 0.28 0.47 20 CC1222 GTST-12/22 HEAT ٥. 295. 526. 183. 194. 57. 0. -272. 526. RESIDUAL 254. 0 0.36 0.37 0.35 21 CC0822 GTST-08/22 POWR ٥. 174. 309. 127. 107. 0. 375. RESIDUAL 375. 31. 65. 0 0.32 0.28 0.49 21 CC0822 GTST-08/22 HEAT 250 444. 183. 153. 45. Ő. -146. 444. RESIDUAL 299 0 0.36 0.35 0.41 22 STIG15 STIG-15-16 POWR ٥. 58. 280. 4. 107. 31. 211. ο. 491.RESIDUAL 491. 0 0.11 0.22 0.37 22 STIG15 STIG-15-16 HEAT 0. 2899. 14077. 183. 5363. 1572. 0.-16427. 14077.RESIDUAL -2350. 0 0.17 0.38 0.01 23 STIG10 STIG-10-16 POWR 0. 83. 297. 39. 107. 31. 169. Ō. 466. RESIDUAL 466. 0.15 0.23 0.39 n 23 STIG10 STIG-10-16 HEAT 0. 384. 1381. 183. 496. 145. 0. -1216. 1381. RESIDUAL 165. 0 0.22 0.36 0.13 24 STIGIS STIG-15-16 POWR 94 319 67 107. 31. 136. 0. 455. RESIDUAL 455. 0 0.17 0.23 0.40 24 STIG1S STIG-15-16 HEAT 257. 868. 183. 291. 85. 0. -576. 868. RESIDUAL 293. 0 0.23 C.34 0.21 25 DEADV3 STESEL-ADV POWR 288. 59. 0. 115. 107. 31. 146. ٥. 434 . RESIDUAL 434. 0 0.21 0.25 0.42 25 DEADV3 DIESEL-ADV HEAT 358. 893. RESIDUAL 893. 183. 331. 97. O. -701. 191. 0 0.29 0.37 0.20 26 DEADV2 DIESEL-ADV POWR 132. 288. 73. 107. 417. RESIDUAL 417. 0. 31. 129. ٥. 1 0.24 0 26 0.44 26 DEADV2 DIESEL-ADV HEAT 330. 720. 183. 720. RESIDUAL 0. 267. 78. O. -502. 219. 1 0.31 0.37 0.25 371. 0.32 0.29 27 DEADVI DIESEL-ADV POUR O. 178. 288. 113. 107. 31. 83. O. 371 RESIDUAL 0.49 27 DEADVI DIESEL-ADV HEAT 290. 468. 468. RESIDUAL 183. 174. 51. -209 259. 0.38 0.37 0.39 28 DEHTPM ADV-DIESEL POWR 172 327. 140. 107. 31. 51. n. 377. RESIDUAL 377. 0 0.31 0.28 0.49 28 DEHTPM ADV-DIESEL HEAT 225. 427. 183. 140. 41. O. -103. 427, RESIDUAL 324 0.34 0.33 0.43 29 DESGAS DIESEL-SGA POWR 97. 296. 51. 107. 31. 156. 0. 452. DISTILLA 452. 0 0.18 0.24 0.41 29 DESGAS DIESEL-SGA HEAT 352. 1079. 183. 386. 113. -874. 1070. DISTILLA 197. 0. 0.25 0.36 0.17 29 DESGAS DIESEL-SGA POWR 97. 296. 51. 107. 31. 156. 0. 452. RESIDUAL 452. 0 0.18 0.24 0.41 29 DESGAS DIESEL-SGA HEAT 352. 1070. 183, 386. ٥. -874. 1070. RESIDUAL 197. 113. 0 0.25 0.36 0.17

O TWELSAS SNITNING IN

- um > u N O

I&SE PEG ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26217 MW 31.30 PRECESS MILLIONS BTU/HR 183.0 PROCESS TEMP(F) 366. PRODUCT THERMO-MECH- HOURS PER YEAR 6400.

UTILITY FUEL COAL POWER TO HEAT RATIO 0.584

WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU:10**6=

PAGE

74

WASTE FUEL COGEN COGEN COGEN AUX FAIL FESR POWER HEAT UTILIT TOTAL SITE NET= FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED POWER ELECT USED HEAT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 114. 296. 65. 107. 31. 139. 435. DISTILLA 435. 1 0.21 0.25 0.42 30 DESGA2 DIESEL-SGA HEAT 322. 832. 183. 300. 88. 0. -605. 832, DISTILLA 227. 1 0.28 0.36 0.22 Ω. 30 DESGA2 DIESEL-SGA FOWR 0. 114. 296. 65. 107. 31. 139. 435, RESIDUAL 435. 0.21 0.25 0.42 0. 30 DESCAZ DIESEL-SCA HEAT 322. 832. Q. 183. 300. 88. 0. -605. 832. RESIDUAL 227. 1 0.28 0.36 0.22 107. 31 DESGA1 DIESEL-SGA POWR ٥. 177. 296. 119 31. 76. O. 372. DISTILLA 372. 1 0.32 0.29 0.49 31 DESCA1 DIESEL-SCA HEAT 274. 456. 183. 165. -181. 456. DISTILLA 275. 1 0.37 0.36 0.40 n 48. 0. 31 DESGA1 DIESEL-SGA POWR 296. 372. 0. 177. 119. 107. 31. 76. ٥. 372. RESIDUAL 1 0.32 0.29 0.49 31 DESGA1 DIESEL-SGA HEAT ٥. 274. 456. 183. 165. 48. 0. -181. 456. RESIDUAL 275. 1 0.37 0.36 0.40 32 GTSGAD GT-HRSG-10 POWR 0. 166. 366. 168. 107. 31. 17. 0. 383. DISTILLA 383. 0 0.30 0.28 0.48 32 GTSGAD GT-HRSG-10 HEAT 397. 397. DISTILLA 369. Ω. 181. 183. 116. 34. 0. -29. 0 0.31 0.29 0.46 33 GTRAOS GT-85RE-08 POWR 0. 153. 299. 101. 107. 31. 97. 0. 396. DISTILLA 396. 0.28 0.27 0.46 33 GTRA08 GT-85RE-08 HEAT ٥. 278. 544. 183. 194. 57. ٥. -273. 544. DISTILLA 271. 0 0.34 0.36 0.34 34 GTRA12 GT-85RE-12 POWR 157. 298. 103. 107. 31. 94. 392. DISTILLA 392. 0 0.29 0.27 0.47 34 GTRA12 GT-85RE-12 HEAT 278. 529. 183. 189. 55. C. -258. 529. DISTILLA 271. 0 0,34 0.36 0,35 Ω. 35 GTRA16 GT-85RE-16 POWR 158. 306. 111. 107. 31. 85. 0. 391.DISTILLA 391. 0.29 0.27 0.47 O. 35 GTRA16 GT-85RE-16 HEAT ð. 261. 505. 183. 176. 52. Ω. -217. 505. DISTILLA 288. 0.34 0.35 0.36 56 GTR208 GT-60RE-08 POWR ٥. 158. 334. 134. 107. 31. 57. 0. 391. DISTILLA 391. 0 0.29 0.27 0.47 36 GTR208 GT-60RE-08 HEAT 455. 455. DISTILLA 334. 0.32 0.32 0.40 ٥. 215. 183. -121. n 146. 43. 0, 37 GTR212 GT-60RE-12 POWR 157. 324. 125. 107. 31. 68. 0. 392. DISTILLA 392. 0 0.29 0.27 0.47 37 GTR212 GT-SORE-12 HEAT 230. 473. 46. -154. 473. DISTILLA 319. 0 0.33 0.33 0.39 0. 183. 156. 0. 38 GTR216 GT-60RE-16 POWR 160. 107 72. 385.DISTILLA 389. 0 0.29 0.27 0.47 317. 122. -167. 475. DISTILLA 308. 0.34 0.34 0.39 38 GTR216 GT-60RE-16 HEAT 0. 241. 475. 183. 160. 47. 0. 0 0.23 0.25 0.44 39 GTRWO8 GT-85RE-08 POWR 129. 304. 107. 116. 0. 420. DISTILLA 420. 0. 84. 31. 39 GTRWO8 GT-85RE-08 HEAT 279. 660. 183. 232. 68. -390. 660. DISTILLA 270. 0.30 0.35 0.28 0. 4C GTRW12 GT-85RE-12 POWR 0. 138. 293. 83. 107. 31. 117. ۵. 411.DISTILLA 411. 0 0.25 0.26 0.45 -401. 646. DISTILLA 245. 0 0.32 0.36 0.28 40 GTRW12 GT-85RE-12 HEAT 0. 304. 646. 183. 235. 69. 0.

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

75

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26217 MW 31.30 PROCESS MILLIONS BTU/HR 183.0 PROCESS TEMP(F) 366. PRODUCT THERMO-MECH- HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.584 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR ·USED NO-NET USED HEAT POWER ELECT BOILR USED SITE UTILIT 10**8 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW18 GT-85RE-16 POWR ٥. 140. 299. 90. ₹37. 31. 110. 0. 409. DISTILLA 409. 0 0.26 0.26 0.45 41 GTRW16 GT-85RE-16 HEAT 286. 609. 183. 217. 64. 0. -345. 609. DISTILLA 263. 0.32 0.36 0.30 42 GTR308 GT-60RE-08 POWR 119. 0. 345. 111. 107. 31. 85. ō. 430. DISTILLA 430. 0.22 0.25 0.43 42 GTR308 GT-60RE-08 HEAT ٥. 197. 570. 183. 177. 52. 0. -219. 570. DISTILLA 352. 0.26 0.31 0.32 43 GTR312 GT-60RE-12 POWR 143. 312 103. 107 31. ٥. 406. DISTILLA 406. 0.26 0.26 0.45 43 GTR312 GT-60RE-12 HEAT 0. 253. 552. 183, 189. 55. 0. -256. 552. DISTILLA 0.31 0.34 0.33 296. 44 GTR316 GT-60RE-16 POWR 0. 142. 315. 105. 107. 31. 92. ٥. 407. DISTILLA 407. 0.26 0.26 0.45 44 GTR316 GT-60RE-16 HEAT 248. ٥. 548. 183. 186. 54 0. -247. 548. DISTILLA 301. 0.34 0.31 0.33 45 FCPADS FUEL-CL-PH POWR 0. 109. 281. 48. 107. 31. 159. 0. 440. DISTILLA 440. 0.20 0.24 0.42 45 FCPADS FUEL-CL-PH HEAT D. 417. 1076. 183. 1076. DISTILLA 132. 409. 120. 0. -945. 0.28 0.38 0.17 46 FCMCDS FUEL-CL-MO POWR 0. 146. 259. 60. 107. 31. 144. 0. 403. DISTILLA 403. 0 0.27 0.26 0.45 46 FCMCDS FUEL-CL-MO HEAT 785. 0. 441. 183. 324. 95. 0. -677. 785. DISTILLA 108. 0 0.36 0.41 0.23

STEM- P1185-02

WELL PAGE PRINTING SYST

ISSE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

76

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 26218 MW 15.00 PROCESS MILLIONS BTU/HR 244.0 PROCESS TEMP(F) 366. PRODUCT WASTE-PAPER HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.210 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU-10x+6= COGEN COGEN COGEN AUX WASTE FUEL UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES FUEL FUEL FUEL SAVED= FUEL PROCES PROCES MW FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10xx5 10xx6 10xx6 10xx6 10xx6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COOON ٥. ٥. Ο. C. ٥. ٥. 287. 160. 287. COAL-FOD 447. 0 0. 0.11 0.55 1 STM141 STM-TURB-1 POWR ۵. 73. 374. 267. 51. 15. -27. ٥. 374. RESIDUAL 374. 0 0.16 0.14 0.65 1 STM141 STM-TURB-1 HEAT 91. 342. 244. 47. 14. Q. 342. RESIDUAL 14. 356. 0 0.20 0.13 0.69 1 STM141 STM-TURB-1 POWR 374. 73. 374. 267. 51. 15. -27. Ď. 374. COAL-FOD 0 0.16 0.14 0.65 1 STM141 STM-TURB-1 HEAT 0. 91. 342. 244. 47. 14. ٥. 342. COAL-FGD 356. 14. 0 0.20 0.13 0.69 1 STM141 STM-TURB-1 POWR 73. 374. 0. 267. 51. 15. -27. 0. 374. COAL-AFB 374. 0 0.16 0.14 0.65 1 STM141 STM-TURB-1 HEAT 91. 342. Ω. 244. 47. 14. 0. 14. 342, COAL-AFB 356. 0 0.20 0.13 0.69 2 STM088 STM-TURB-8 POWR -55, 502 375. 51. 15. -155. 0. 502. RESIDUAL 502 D -0.12 0.10 0.49 2 STM088 STM-TURB-8 HEAT ۵. 65. 326. 244. 33. 10. 0. 56. 326. RESIDUAL 382. 0 0.15 0.09 0.64 2 STMO88 STM-TURB-8 POWR 0. -55. 502. 375. 51. 15. -155. ٥. 502. COAL-FGD 502. 0 -0.12 0.10 0.49 2 STMOBB STM-TURB-8 HEAT 65. Ω. 326. 244. 33. 10. ٥. 56. 326. COAL-FGD 382. 0 0.15 0.09 0.64 2 STM088 STM-TURB-8 POWR -55. 502. ٥. 375. 51. 15. -155. 0. 502. COAL-AFB 502. 0 -0.12 0.10 0.49 2 STMO88 STM-TURB-6 HEAT Ο. 65. 326. 244. 33. 10. ٥. 56. 326. COAL-AFB 382. 0 0.15 0.09 0.64 3 PFBSTM PFB-STMTB- POWR 0. 97. 251. 160. 51. 15. 99. 0. 350, COAL-PFB 350. 0 0.22 0.15 0.70 3 PFBSTM PFB-STMTB- HEAT 148. 382. ٥. 244. 78. 382. COAL-PFB 23. O. -64. 299. 0 0,28 0.20 0.64 4 TISTMT TI-STMTB-1 POWR 119 ٥. 98. 202. 51. 15. 147. ø. 349. RESIDUAL 349 0.22 0.15 0.70 4 TISTMT TI-STMTB-1 HEAT ۵. 201. 414. 244. 105. 31. α. -168. 414. RESIDUAL . 246. 0.33 0.25 0.59 4 TISTMT TI-STMTB-1 POWR ٥. 98. 202. 119. 51. 15. 147. 0. 0 0.22 0.15 0.70 349. COAL 349. 4 TISTMT TI-STMTB-1 HEAT 0. 201. 414. 244. 105. 414.COAL 0 0.33 0.25 0.59 31. Ο. -168. 246. 5 TIHRSG THERMIONIC POWR α. 73. 364. 235. 51. 15. 11. 0. 374. RESIDUAL 374. 0.16 0.14 0.65 5 TIHRSG THERMIONIC HEAT ٥. 75. 378. 244. 53. 16. 0. 378. RESIDUAL 372. -6. 0.17 0.14 0.65 5 TIHRSG THERMIONIC POWR ٥. 73. 364. 235. 51. 15. 11. 374. COAL 0. 0 0.16 0.14 0.65 374. 5 TIHRSG THERMIONIC HEAT 75. 378. ο. 244. 378. COAL 53. 16. Ο. -6. 372. 0 0.17 0.14 0.65 6 STIRL STIRLING-1 POWR 71. 97. 203. 51. 173. 15. 0. 376.DISTILLA 376. 0 0.16 0.14 0.65 6 STIRL STIRLING-1 HEAT 129, ٥. 178. 511. 244. 38. -243. 511. DISTILLA 269. 0 0.26 0.25 0.48 ٥.

18SE PEG ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26218 MW 15.00 PROCESS MILLIONS BTU/HR 244.0 PROCESS TEMP(F) 366, PRODUCT WASTE-PAPER HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.210 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= ٥, HOT WATER BTU×10××6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE COGEN NET= FAIL FESR POWER HEAT FUEL SAYED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR HEAT POWER ELECT BOILR USED USED HO-NET USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10==6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 0. 71. 203. 37. 51. 15. 173. 0. 376. RESIDUAL 376. 0 0.16 0.14 0.65 6 STIRL STIRLING-1 HEAT O. 178. 511. 244. 129. 38. 0. -243. 511.RESIDUAL 269. 0 0.26 0.25 0.48 203. 51. 173. 6 STIRL STIRLING-1 POWR ٥. 71. 97. 15. 0. 376, COAL 376. 0.16 0.14 0.65 6 STIRL STIRLING-1 HEAT 0. 178. 511. 244. 129. 38. 0. -243. 511. COAL 269. 0.26 0.25 0.48 7 HEGT85 HELIUM-GT- POUR 23. 159. 19 51. 424. COAL-AFE 10 0.05 0.12 0.58 15. 265. O. 424. 7 HEGT85 HELIUM-GT- HEAT 0. 294. 2064. 244. 662. 194. 0. -1910. 2064. COAL-AFB 0 0.12 0.32 0.12 153 30. 198. 57. 51. 417. COAL-AFB 10 0.07 0.12 0.58 8 HEGT60 HELIUM-GT- POWR ٥. 15. 219. ٥. 417. 8 HEGT60 HELIUM-GT- HEAT 127. -520. 840. COAL-AFB 840. 244. 217. 320. 0.13 0.26 0.29 a. 64. 0, Ω 9 HEGTOO HELIUM-GT- POWR 0. 36. 291. 142. 51. 15. 120. 0. 411. COAL-AFB 411. 10 0.08 0.12 0.59 9 HEGTOO HELIUM-GT- HEAT 0. 62. 500. 244. 88. 26. 0. -115. 500. COAL-AFB 385. 10 0.11 0.18 0.49 0.19 0.14 0.67 10 FCMCCL FUEL-CL-MO POUR 0. 85. 168. 80. 51. 15. 193. ٥. 362. COAL 362. 10 10 FCMCCL FUEL-CL-MO HEAT ٥. 261. 515. 244. 157. 46. 0. -330. 515, COAL 186. 10 0.34 ,0.30 0.47 11 FCSTCL FUEL-CL-ST POWR 88. 135. 54. 51. 15. 224. 359. COAL 359. 0.20 0.14 0.68 11 FCSTCL FUEL-CL-ST HEAT 402. 611. 244. 232. 68. 0. -566. 611.COAL 45. 10 0.40 0.38 0.40 12 IGGTST INT-GAS-GT POWR 0. 70. 182. 78. 51. 15. 196. C. 377, COAL 377. 10 0.16 0.14 0.65 12 IGGTST INT-GAS-GT HEAT 0. 219. 570. 244. 161. 47. 0. -342. 570. COAL 228. 10 0.28 0.28 13 GTSOAR GT-HRSG-10 POWR 71. 176. 75. 51. 15. 199. ٥. 375. RESIDUAL 375. 0 0.16 0.14 0.65 0. 575. RESIDUAL 214. 0 0.29 0.29 0.42 13 GTSOAR GT-HRSG-10 HEAT 0. 233. 575. 244. 167. 49. 0. -362. 14 GTACO8 GT-HRSG-08 POWR 85. 190. 98. 51. 15. 172. G. 362. RESIDUAL 362. 0 0.19 0.14 0.67 ٥. 234. 0 0.31 0.27 0.51 14 GTACO8 GT-HRSG-08 HEAT 128. 474.RESIDUAL ٥. 213. 474. 244. 38, O. ~240. 363. 0 0.19 0.14 0.67 15 GTAC12 GT-HRSG-12 POWR 84. 168. 78. 51. 15. 195. 0. 363.RESIDUAL 15 GTAC12 GT-HRSG-12 HEAT 262. 526. 244. 160. 47. 0. -341. 526. RESIDUAL 185. 9 0.33 0.31 0.46 16 GTAC16 GT-HRSG-16 POWR 82. 158. 69. 51, 15. 206. 0. 365. RESIDUAL 365. 0 0.18 0.14 0.67 292. 53, -410. 564. RESIDUAL 0 0.34 0.32 0.43 16 GTAC16 GT-HRSG-16 HEAT 564. 244. 182. Ω. 372. RESIDUAL 372. 10 0.17 0.14 0.66 17 GTWC16 GT-HRSG-16 POWR Ω. 75. 162. 66. 51. 15. 210. ٥. 0 0.32 0.32 0.40 17 GTWC16 GT-HRSG-16 HEAT 278. 603. 244. 190. 0. -434. 603. RESIDUAL 169. 56.

1

PAGE

77

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE 78

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26218 MW 15.00 PROCESS MILLIONS BTU/HR 244.0 PROCESS TEMP(F) 366. PRODUCT WASTE-PAPER HOURS PER YEAR 8400.

	UTIL	ITY	FUEL		COAL							0 0.210 EL EQV	BTU*10*	*6=	O. HOT	WATER BT	U*10**6	= (ο.	
						WASTE		COGEN				AUX	UTILIT			NET=	FAIL	FESR	POWER	
						FUEL	SAVED=		PROCES			PROCES		FUEL	FUEL	TOTAL+			FACTR	FACTE
						USED	NO-NET		HEAT		ELECT	BOILR		SITE	USED	UTILIT				
									10**6				10**6			10**6				
						BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/H	R	BTU/HR		 		 -
8	CC1626	GT:	ST-16/	/26	POWR	0.	74.	136.	43.	51.	15.	237.	٥.	373	. RESIDUAL	373.	10	0.16	9.14	0.65
-	CC1626					Ō.	422.	781.	244.	293.	86,				. RESIDUAL	25.	Ö	0.35		0.31
ō	CC1622	GT	ST-16	122	DALID	0.	77.	138.	47.	51.	15.	231.	0.	270	. RESIDUAL	370.	10	0.17	0.14	0.66
	CC1622					o. o.	398.	712.	244.	263.	77.				. RESIDUAL	49.	0	0.17		0.34
9	001022	G I .	31-10/	, 22	nea i	υ.	350.	/12.	244.	203.	//,	υ.	-663.	/12	. KESI DUAL	49.	U	0.36	0.37	0.34
	CC1222					0.	78.	138.	48.	51.	15.	231.	0.		. RESIDUAL	369,			0.14	
:0	CC1222	GTS	ST-12/	/22	HEAT	0.	400.	706.	244.	262.	77.	0.	-659.	706	. RESIDUAL	47.	0	0.36	0.37	0.35
21	CC0822	GT:	ST-08/	/22	POWR	0.	84.	147.	60.	51.	15.	216.	٥.	363	. RESIDUAL	363.	Ω	0.19	0.14	0.67
	CC0822					õ.	340.	597.	244.	208.	61.		-490.		. RESIDUAL	107.		0.36		
						<u></u>														
	ST1615					0.	28.	134.	2.	51.	15.				. RESIDUAL	419.			0.12	0.56
2	STIG15	ST	IG-15-	-16	HEAT	0.	3865.	18769.	244.	7151.	2096.	0.	-22187.	18769	. RESIDUAL	-3418.	٥	0.17	0.38	0.01
3	STIGIO	ST	IG-10-	-16	POWR	0.	40.	143.	19.	51.	15.	265.	0.	407	. RESIDUAL	407.	10	0.09	0,13	0.60
:3	STIGIO	ST	16-10-	-16	HEAT	0.	512.	1842.	244.	661.	194.	0.	-1907.	1842	. RESIDUAL	-65. ·	0	0.22	0.36	0.13
24	STIGIS	ST	IG-15-	-16	POWR	ο.	45.	153.	32,	51.	15.	249.	0.	402	. RESIDUAL	402.	10	0.10	0.13	0.61
	STIGIS					0.	342.	1157.	244.	388.	114.	0.			RESIDUAL	105.	0	0.23		
) F.	DEADV3	DIE	FCEL -A	אמא	PAUD	٥.	55.	138.	28.	51.	15.	254.	٥.	302	. RESIDUAL	392.	0	0 19	0.13	0.62
	DEADV3					o.	477.	1190.	244.	442.	129.		-1220.		RESIDUAL	-30.			0.37	
	DEADVO	Dit		NO V	IILA I	<u></u>	4//.	1190.		<u> </u>	IES.	<u> </u>		1130	. KEOT DONE			V. 23	0.0.	0.20
26	DEADV2	DIE	ESEL-A	ADV	POWR	Ο.	63.	138.	35.	51.	15.	246.	0.	384	RESIDUAL	384.	1	0.14	0.13	0.64
26	DEADV2	DIE	ESEL-A	V DV	HEAT	0.	440.	961.	244.	356.	104.	0.	-954.	961	RESIDUAL	7.	1	0.31	0.37	0.25
7	DEADV1	DIF	SEL -A	VO	PAUR	0.	85.	138.	54.	51.	15.	224.	0.	362	RESIDUAL	362.	1	0.19	0.14	0.67
	DEADV1					Ö.	387.	624.	244.	232.	68.		564.		RESIDUAL	60.	1	0.38		0.39
						_							_				_			
	DEHTPM					<u>o.</u>	82.	157.	67.	<u>51.</u>	<u> 15.</u>	208.	0.		RESIDUAL	365.			0.14	
8	DEHTPM	AD\	1-DIES	SEL	HEAT	0.	300.	569.	244.	186.	55.	0.	-422.	569	RESIDUAL	147.	0	0.34	0.33	0.43
9	DESGA3	DIE	ESEL-S	SOA	POWR	ο.	47.	142.	24,	51.	15.	259.	o.	400	DISTILLA	400.	0		0.13	
9	DESCA3	DIE	ESEL-S	SOA	HEAT	_0.	470.	1427.	244.	515.	151.	0.	-1450.	1427	DISTILLA	-23.	0	0.25	0.36	0.17
_												07.5		400	2001211	400				
	DESCA3					0.	47.	142.	24.	51.	15.	259.	0.		RESIDUAL	400.	0	0.10		
9	DESGA3	DIE	SEL-S	SOA	HEAT	0.	470.	1427.	244.	515.	151.	0.	-1450.	1427	RESIDUAL	-23.	0	0.25	0.36	0.17

% h

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

79

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 26218 MW 15.00 PROCESS MILLIONS BTU/HR 244.0 PROCESS TEMP(F) 366. PRODUCT WASTE-PAPER HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.210 HOT WATER BTU*10**6= UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 0. 0. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES PROCES MW PROCES FUEL FUEL TOTAL+ FACTR FACTR FUEL SAVED= FUEL FUEL USED NO-NET USED HEAT POWER FLECT BOLLR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10*x6 10*x6 10*x6 10*x6 10*x6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 392. 30 DESGA2 DIESEL-SGA POWR 55. 142. 31. 51. 15. 250. ٥. 392. DISTILLA 1 0.12 0.13 0.62 G. 117. 30 DESGA2 DIESEL-SGA HEAT 429. 1109. 244. 400. 0. -1091. 1109. DISTILLA 18. 1 0.28 0.36 0.22 Ω. 392, RESIDUAL 392. 0.12 0.13 0.62 30 DESGA2 DIESEL-SGA POWR 31. 51. 15. 250. ٥. ٥. 55. 142. 30 DESGA2 DIESEL-SGA HEAT 429. 1109. 244 .-400. 117. 0. -1091. 1109. RESIDUAL 18. 1 0.28 0.36 0.22 0. 0.19 0.14 0.67 31 DESCA1 DIESEL-SCA POWR 142. 57. 51. 15. 220. 362. DISTILLA 362. 31 DESCAL DIESEL-SCA HEAT 365. 244. 220. 64. 0. -527. 608. DISTILLA 82. 0.37 0.36 0.40 608. 57. 15. 220. 362. RESIDUAL 362. 1 0.19 0.14 0.67 31 DESGA1 DIESEL-SGA POWR ٥. 85. 142. 51. 31 DESCA1 DIESEL-SCA HEAT -527. 608. RESIDUAL 0.37 0.36 0.40 365 608. 244 220. 64. 0. 82. n. 51. n. 367. DISTILLA 367. 0 0.18 0.14 0.66 32 GTSOAD GT-HRSG-10 POWR n. 80. 175. 81. 15. 192. 530. DISTILLA 206. -0 0.31 0.29 0.46 32 GTSGAD GT-HRSG-10 HEAT 0. 241. 530. 244. 155. 45. 0. -323. 374. DISTILLA 374. 0.16 0.14 0.65 33 GTRA08 GT-85RE-08 POWR a. 73. 143. 48. 51. 15. 230. n 33 GTRAO8 GT-85RE-08 HEAT 371. 726. 244. 259. 76. ٥. -650. 726. DISTILLA 76. 0 0.34 0.36 0.34 0. 0 0.17 0.14 0.66 34 GTRA12 GT-85RE-12 POWR 143. 49 51. 15. n 372. DISTILLA 372. 74. n. -629. 705. DISTILLA 76. 0.34 0.36 0.35 34 GTRA12 GT-85RE-12 HEAT 371. 705. 244. 252. ٥. 53. 225. 371. DISTILLA 371. 0 9.17 0.14 9.66 35 GTRA16 GT-85RE-16 POWR 76. 147. 51. 15. Ω. 0. -574. 673. DISTILLA 99. 0 0.34 0.35 0.36 35 GTRA16 GT-85RE-16 HEAT 348 673. 244 235. 69. 0. 371. 0 0.17 0.14 0.66 36 GTR208 GT-60RE-08 POWR ٥. 76. 160. 64. 51. 15. 211. 0. 371. DISTILLA 0 0.32 10.32 0.40 607. DISTILLA 160. 36 GTR208 GT-60RE-08 HEAT ٥. 287. 607. 244. 194. 57. 0. -447 0 0.17 0.14 0.66 372. 37 GTR212 GT-60RE-12 POWR 75. 155. 60. 51. 15. 217. O. 372. DISTILLA 0 0.33 0.33 0.39 631.DISTILLA 140. 37 GTR212 GT-60RE-12 HEAT 307. 631. 244. 208. 61. 0. -491. 370. DISTILLA 370. 0 0.17 0.14 0.66 38 GTR216 GT-60RE-16 POWR ο. 77 152. 58. 51. 15. 218. 38 GTR216 GT-60RE-16 HEAT 321. 634. 244. 214. 63. Ò. -507. 634. DISTILLA 126. 0 0.34 0.34 0.39 39 GTRW08 GT-85RE-08 POWR ٥. 62. 146. 40. 51. 15. 239. ٥. 385. DISTILLA 385. 10 0.14 0.13 0.63 -805. 880 DISTILLA 75. 0.30 0.35 0.28 39 GTRW08 GT-85RE-08 HEAT 372 880. 244. 309 90. 0. 40 GTRW12 GT-85RE-12 POWR Ω. 66. 141. 40. 51. 15. 240. 0. 381.DISTILLA 381. 10 0.15 0.13 0.64 0.32 0.36 0.28 861, DISTILLA 42. 40 GTRW12 GT-85RE-12 HEAT ٥. 405. 861. 244. 313. 92. 0. -819.

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 26218 MW 15.00 PROCESS MILLIONS BTU/HR 244.0 PROCESS TEMP(F) 366. PRODUCT WASTE-PAPER HOURS PER YEAR 8400.

								POWE	D TO UE	AT RATI	6 0 210									_
	UTIL	TY FUEL	. (COAL				PUWE				BTU*10*	*6=	O. HOT	WATER BT	U*10**6	= (٥.		
<u> </u>					WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	RHEAT	
1					FUEL	SAVED=		PROCES			PROCES	FUEL	FUEL	FUEL	TOTAL+			FACTR	FACTR	
					USED	NO-NET	USED	HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT					
ii .					10**6	10**6	10**6	10**6	10**6		10**6	10**6	10**6	_	10**6					
 					BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HF	₹	BTU/HR					
41	GTRW16	GT-85RE	-16 5	AUD	٥.	67.	143.	43.	81	12	226	^	200	DICTILLA	000	••		:		
		GT-85RE				381.	812.	244.	51. 290.	15. 85.	236. 0.			DISTILLA			0.15			
7'	01111110	OT OUNL	, , ,	יבחי	0.	301.	OIE.	244.	290.	65.	U.	-746.	012.	DISTILLA	66.	0	0.32	0.36	0.30	
42	GTR308	GT-GORE	-08 F	OWR	0.	57.	165.	53.	51.	15.	225.	0.	390.	DISTILLA	390.	10	0.13	0.13	0.63	
42	GTR308	GT-60RE	-08 ł	IEAT	ο.	263.	761.	244.	236.	69.	Ο.	-577.	761.	DISTILLA	184.	O	0.26		9.32	
		GT-60RE			0.	69.	150.	50.	51.	15.	229.	٥.	378.	DISTILLA	378.	10	0.15	0.14	0.64	
43	GTR312	GT-GORE	-12 F	EAT	Ο.	338.	736.	244.	252.	74.	0.	-627.	736.	DISTILLA	109.	0	0.31	0.34	0.33	
44	GTR316	GT-60RE	-16 F	OWR	0.	68.	151.	50.	51.	15.	228.	٥.	379.	DISTILLA	379.	10	0.15	0 14	0.64	
44	GTR316	GT-GORE	-16 H	EAT	0.	330.	731.	244.	248.	73.	0.	-615.		DISTILLA				0.34		
																				
		FUEL-CL			ο.	52.	135.	23.	51.	15.	260.	ο.	395,	DISTILLA	395.	8	0.12	0.13	0.62	
45	FCPADS	FUEL-CL	-PH H	IEAT	0.	556.	1435.	244.	545.	160.	0.	-1544.	1435.	DISTILLA	-109.	0	0.28	0.38	0.17	
46	FCMCDS	FUEL-CL	-MØ F	OWR	0.	70.	124.	29,	51,	15.	253.	0.	377.	DISTILLA	377.	0	0.16	0.14	0.65	
46	FCMCDS	FUEL-CL	-MO F	IEAT	0.	588.	1047.	244.	431.	126.		-1188.		DISTILLA	-141.	-	0.36		0.23	
ll .																				

ORIGINAL PAGE L

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

POWER TO HEAT RATIO 0.101

INDUSTRY 28001 MW 32.50 PROCESS MILLIONS BTU/HR 1100.0 PROCESS TEMP(F) 366. PRODUCT CHEM

HOURS PER YEAR 8760.

PAGE

81

UTILITY FUEL COAL WASTE FUEL EQV BTU*10**5= ٥. HOT WATER BTUX10**6= ο. WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COGON 0. 0. ٥. ٥. 0. 1294. 347. 1294. COAL-FGD 1641. 0.07 0.67 1 STM141 STM-TURB-1 POWR ٥. 216. 850. 611. 111. . 33. 575. O. 1425.RESIDUAL 1425. 0 0.13 0.08 0.77 1 STM141 STM-TURB-1 HEAT 1529 1100 200. 1529. RESIDUAL 1252. 389. 58. ٥. -277. 0 0.20 0.13 0.72 1 STM141 STM-TURB-1 POWR ٥. 216. 850. 611. 111. 33. 575. Ω. 1425.COAL-FGD 1425. 0 0.13 0.08 0.77 0 0.20 0.13 .0.72 1 STM141 STM-TURB-1 HEAT 389. 1529. 1100. 200. 58. α. -277. 1529. COAL-FGD 1252. 1 STM141 STM-TURB-1 POWR 850. 611. 111. 33. 575. 1425. COAL-AFB 1425. 0 0.13 0.08 0.77 0. 216. 0. 1 STM141 STM-TURB-1 HEAT 1529. 1100. 200. 0. 389. 58. 0. ~277. 1529, COAL-AFB 1252. 0 0.20 0.13 0.72 2 STM088 STM-TURB-8 POWR 216. 1161 876 111. 33. 264. 1425. RESIDUAL 1425. n. 0 0.13 0.08 0.77 2 STMO88 STM-TURB-8 HEAT 271. 1458. 1100. 139. 1458. RESIDUAL 1369. 41. Ω. -89. 0.16 0.10 0.75 2 STM088 STM-TURB-8 POWR 216. 1161. 876. 111. 33. 264. 0. 1425. COAL-FGD 1425. 0 0.13 0.08 0.77 2 STM088 STM-TURB-8 HEAT 271. 1458. 1100 139. 41. 0. -89. 1458. COAL-FGD 1369. 0.16 0.10 0.75 2 STM088 STM-TURB-8 POWR 216, 1161. 876. 111. 33. 264. 0. 1425. COAL-AFB 1425. 0.13 0.08 0.77 Ω. 2 STMO88 STM-TURB-8 HEAT 1458. 1100. 1458.COAL-AFB 1369. 0.16 0.10 0.75 0. 271. 139. 41. 0. -89. 3 PEBSTM PEB-STMTB- POWR 0. 211. 559. 359. 111. 33. 871. 0. 1430, COAL-PFB 1430. 0 0.13 0.08 0.77 3 PFBSTM PFB-STMTB- HEAT ٥. 645. 1710. 1100. 339. 99. 0. -714. 1710. COAL-PFB 996. 0 0.27 0.20 0.64 0. 4 TISTMT TI-STMTB-1 POWR 447 266. 1428. RESIDUAL 1428. 0 0.13 0.08 0.77 0. 212. 111. 33. 982. 1850. 1100. 1850. RESIDUAL 0.32 0.25 4 TISTMT TI-STMTB-1 HEAT 879. 459. 135. 0. -1088. 761. 0.59 4 TISTMT TI-STMTB-1 POWR 447. 266. 1428. COAL 1428. 0 0.13 0.08 0.77 212. 33. 982. 0. n. 111. 0 0.32 0.25 0.59 4 TISTMT TI-STMTB-1 HEAT 879. 1850. 1100 459. 135. 0. -1088. 1850. COAL 761. 5 TIHRSG THERMIONIC POWR ٥. 157. 788. 509. 111. 33. 695. 0. 1483.RESIDUAL 1483. 0 0.10 0.07 0.74 5 TIHRSG THERMIONIC HEAT 340. 1703. 1100. 240. 70. 0. -402. 1703. RESIDUAL 1301. 0.17 0.14 0.65 5 TIHRSG THERMIONIC POWR ٥. 157. 788. 509. 111. 33. 695. Ö. 1483. COAL 1483. 0 0.10 0.07 0.74 5 TIHRSG THERMIONIC HEAT 0. 340. 1703. 1100. 240. 70. 0. -402. 1703. COAL 1301. 0.17 0.14 0.65 6 STIRL STIRLING-1 POWR 153. 440. 210. 111. 33. 1047. ۵. 1487.DISTILLA 1487. 0 0.09 0.07 0.74 6 STIRL STIRLING-1 HEAT 804. 2306. 1100. 581. 170. 0. -1469. 2306.DISTILLA 837. 0 0.26 0.25 0.48

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28001 MW 32.50 PROCESS MILLIONS BTU/HR 1100.0 PROCESS TEMP(F) 366. PRODUCT CHEM

HOURS PER YEAR 8760.

POWER TO HEAT RATIO 0.101 HOT WATER BTU*10**6= UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT WASTE FUEL PROCES FUEL PROCES PROCES MW FUEL FUEL TOTAL+ FACTR FACTR FUEL SAVED= FUEL UTILIT USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 0 0.09 0.07 0.74 153. 440. 210. 111. 33. 1047. O. 1487.RESIDUAL 1487. 0. 6 STIRL STIRLING-1 HEAT ٥. 804. 2306. 1100. 581. 170. 0. -1469. 2306. RESIDUAL 837. 0 0.26 0.25 0.48 6 STIRL STIRLING-1 POWR 0 0.09 0.07 0.74 n. 153. 440. 210. 111. 33. 1047. 0. 1487. COAL 1487. 0. -1469. 837. 0 0.26 0.25 0.48 6 STIRL STIRLING-1 HEAT ٥. 804. 2306. 1100. 581. 170. 2306.COAL 10 0.03 0.07 0.69 7 HEGT85 HELIUM-GT- POWR 49 345 111. 33. 1246. 0. 1592, COAL-AFB 1592. ٥. 41. 7 HEGT85 HELIUM-GT- HEAT 9304. 1100. 0. -8986. 9304.COAL-AFB 317. 0 0.12 0.32 0.12 ٥. 1323. 2987. 875. 0. 1576.COAL-AFB 1576. 10 0.04 0.07 0.79 8 HEGT60 HELIUM-GT- POWR 65. 428. 124. 33. 1148. 111. 0. -2717. 1068. 0 0.13 0.26 0.29 8 HEGT60 HELIUM-GT- HEAT ٥. 573. 3785. 1100 980. 287. 3785. COAL-AFB 10 0.05 0.07 0.70 9 HEGTOO HELIUM-GT- POWR 630. 308. 111. 33. 932. 0. 1562, COAL-AFB 1562. 0. 79. 9 HEGTOO HELIUM-GT- HEAT 281. 2252. 1100. 396. 116. ٥. -892. 2252, COAL-AFB 1360. 0 0.11 0.18 0.49 10 0.11 0.08 0.76 10 FCMCCL FUEL-CL-MO POWR 365. 173. 111. 1091. 0. 1456, COAL 1456. n. 185 33. 2324. COAL 463. 0 0.34 0.30 0.47 10 FCMCCL FUEL-CL-MO HEAT ٥. 1178. 2324. 1100. 706. 207. 0. -1861. 10 0.12 0.08 0.76 119. 1155. Ω. 1449, COAL 1449. 11 FCSTCL FUEL-CL-ST POWR 192. 295. 111. 33. 0.38 0.40 11 FCSTCL FUEL-CL-ST HEAT 0. 1777. 2732. 1100. 1029. 302. 0. -2868. 2732, COAL -136. 0 0.39 1490. 10 0.09 0.07 0.74 399. 172. 1091. Ο. 1490. COAL 12 IGGTST INT-GAS-GT POWR ٥. 150. 111. 33. 12 IGGTST INT-GAS-GT HEAT 960. 2546. 1100 708. 207. 0. -1865. 2546, COAL 681. 0 0.27 0.28 0.43 0 0.09 0.07 0.74 13 GTSCAR GT-HRSG-10 POWR 155. 382. 162. 111. 33. 1103. .0. 1486. RESIDUAL 1486. 0. 1100. 752. 220, 0. -2004. 2594. RESIDUAL 590. 0 0.29 0.29 0.42 13 GTSØAR GT-HRSG-10 HEAT 0. 1051. 2594. 0.08 0.76 1045. 1456. RESIDUAL 1456. 0 0.11 .14 GTACO8 GT-HRSG-08 POWR œ. 184. 411. 211. 111. 33. 0. 169. 0. -1457. 2138. RESIDUAL 681. 0 0.31 0.27 0.51 14 GTACO8 GT-HRSG-08 HEAT 960. 2138. 1100. 577. 0. 1096. 0. 1459.RESIDUAL 1459. 0 0.11 0.08 0.75 15 GTAC12 GT-HRSG-12 POWR 182 364 169. 111. 33. 2370. 1100. 723. 212. 0. -1912. 2370.RESIDUAL 458. 0 0.33 0.31 0.46 1183. 15 GTAC12 GT-HRSG-12 HEAT 0. 0 0.11 0.08 0.75 178. 343. 148. 111. 33. 1119. 0. 1463.RESIDUAL 1463. 16 GTAC16 GT-HRSG-16 POWR 0. 0 0.34 0.32 0.43 1100. 822. 0. -2221. 2544. RESIDUAL 323. 16 GTAC16 GT-HRSG-16 HEAT 1318. 2544. 0 0.10 0.07 0.74 O. 1479.RESIDUAL 1479 17 GTWC16 GT-HRSG-16 POWR ٥. 162. 352. 142. 111. 33. 1127. 0. -2329. 2718.RESIDUAL 0 0.32 0.32 0.40 389. 17 GTWC16 GT-HRSG-16 HEAT 0. 1252. 2718. 1100. 856. 251.

ISSE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28001 MW 32.50 PROCESS MILLIONS BTU/HR 1100.0 PROCESS TEMP(F) 366. PRODUCT CHEM

HOURS PER YEAR 8760.

PAGE

POWER TO HEAT RATIO 0.101 HOT WATER BTU*10**6= WASTE FUEL EQV BTU*10**6= UTILITY FUEL COAL FESR POWER HEAT COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL WASTE FUEL TOTAL+ FACTR FACTR SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUF FUEL BOILR USED SITE USED UTILIT USED NO-NET USED HEAT POWER ELECT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 33. 1184. O. 1481.RESIDUAL 1481. 0 0.10 0.07 0.74 18 CC1626 GTST-16/26 POWR 159. 298. 94. 111. 0. 18 CC1626 GTST-16/26 HEAT 1866. 3490. 1100. 1300. 381. 0. -3716. 3490. RESIDUAL -226. 0.35 0.37 0.32 Ο. 1474. 0.10 0.08 0.75 19 CC1622 GTST-16/22 POWR 1171. o. 1474. RESIDUAL 302. 104. 111. 33. 0. 167. 3184. RESIDUAL 0 0.36 0.37 0.35 1100. 1168. 342. 0. -3304. -120. 19 CC1622 GTST-16/22 HEAT 0. 1760. 3184. 1472. 0 0.10 0.08 0.75 1171. 1472.RESIDUAL 20 CC1222 GTST-12/22 POWR 169. 301. 105. 111. 33. Ω. 0. -3283. 3157. RESIDUAL -126. 0.36 0.37 0.35 1161. 20 CC1222 GTST-12/22 HEAT 1767. 3157. 1100. 340. 0.11 0.08 0.75 O. 1460.RESIDUAL 1460. 1138. 21 CC0822 GTST-08/22 POWR 181. 322. 133. 111. 33. 0.36 0.34 0.41 0. -2526. 2668. RESIDUAL 141. 21 CC0822 GTST-08/22 HEAT 1500. 2668. 1100. 919. 269. 0 0.04 0.07 0.70 1581. 1290. O. 1581.RESIDUAL 22 STIG15 STIG-15-16 POWR 0. 60. 291. 4. 111. 33. 0 0.17 0.38 0.01 1100. 32238. 0.***** 84615.RESIDUAL -15783. 22 STIG15 STIG-15-16 HEAT 0. 17424. 84615. 9449. 0 0.05 0.07 0.71 1555 RESIDUAL 1555. ٥. 23 STIG10 STIG-10-16 POWR 0. 86. 309. 41. 111, 33. 1246. 0 0.22 0.36 0.13 8302. 1100. 2981. 874. 0. -8970. 8302. RESIDUAL -668. 23 STIG10 STIG-10-16 HEAT 2309. Ω. 0 0.06 0.07 0.71 1543. 24 STIG1S STIG-15-16 POWR 98 331 70. 111. 33. 1212. ٥. 1543, RESIDUAL 0 0.23 0.34 0.21 1749. 513. 0. -5120. 5218. RESIDUAL 99. 24 STIG1S STIG-15-16 HEAT 1542. 5218. 1100. 1521. 0 0.07 0.07 0.72 0. 1521.RESIDUAL 25 DEADV3 DIESEL-ADV POWR 120. 299. 61. 111. 33. 1222. -5875. 5366. RESIDUAL -509. 0 0.29 0.37 0.20 1100. 1991. 584. 0. 25 DEADV3 DIESEL-ADV HEAT 2149. 5366. 0.08 0.07 0.73 1205. ٥. 1504. RESIDUAL 1504. 137. 299. 76. 111. 33. 26 DEADV2 DIESEL-ADV POWR n 0. -4674. 4331, RESIDUAL -344. 0.31 0.37 0.25 26 DEADV2 DIESEL-ADV HEAT 1984. 4331. 1100. 1607. 471. 0.11 0.08 0.76 33. 1157. 0. 1456, RESIDUAL 1456. 299. 117. 111. 27 DEADV1 DIESEL-ADV POWR 0. 185. 0. -2915. 2813. RESIDUAL -102. 0.38 0.37 0.39 306. 27 DEADV1 DIESEL-ADV HEAT 1742. 2813. 1100. 1044. 1462. RESIDUAL 1462. 0 0.11 0.08 0.75 145. 33. 1123. 0. 28 DEHTPM ADV-DIESEL POWR 178 339. 111. 0. -2277. 2567. RESIDUAL 290. 0 0.34 0.33 0.43 840. 246. 1350. 2567. 1100. 28 DEHTPM ADV-DIESEL HEAT 0. 0 0.06 0.07 0.71 1540. 101. 307. 53. 111. 33. 1232. O. 1540.DISTILLA 29 DESGAS DIESEL-SGA POWR -478. 0.25 0.36 0.17 0. -6911. 6433. DISTILLA 29 DESGAS DIESEL-SGA HEAT 2118. 6433. 1100. 2322. 681. 0 0.06 0.07 0.71 1540. 101. 307. 53. 111. 33. 1232. 0. 1540.RESIDUAL 29 DESGAS DIESEL-SGA POWR n. 6433. RESIDUAL -478. 0 0.25 0.36 0.17 29 DESGAS DIESEL-SGA HEAT 0. 2118. 6433. 1100. 2322. 681. 0. -6911.

DATE 06/06/79	GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1	PAGE 84	84
163E PEO ADV DESTON ENGR	**FUEL ENERGY SAVED BY PROCESS AND ECS**		
H/HZ SECTION SECTION OF SECURITIONS BIU/H	3 1100.0 PROCESS TEMP(F) 366. PRODUCT CHEM	HOURS PER YEAR 6760.	6760.

84

PAGE

0.73 0.75 0.74 0.39 0.75 0.72 0.72 0.75 0.74 0.74 FACTR FACTR 36 0.08 0.08 0.08 0.36 0.08 0.08 0.07 0.08 0.08 0.07 0.09 0.07 0.07 00 ö 0.10 0.10 0.08 0.10 0.10 0.10 99 32 0.10 0.07 0.07 0.11 0.11 0.11 00 WATER BTU*10**6= 00 00 00 00 00 00 00 00 00 NETE TOTAL+ UTILIT 10**6 -31. 1522. -294. 1456. 1456. -5. 1468. 556. 1482. 1476. 1476. 71. 1477. 347. 1477. 258. 195 1507 1497 1522. -294. **BTU/HR** 1507.DISTILLA 3966.DISTILLA 1497. DISTILLA 3880. DISTILLA 5 1522.DISTILLA 5000.DISTILLA 1456. DISTILLA 2743. DISTILLA 1468.DISTILLA 2388.DISTILLA 1462.DISTILLA 3271.DISTILLA 1476. DISTILLA 3177. DISTILLA 1476.DISTILLA 3036.DISTILLA 1477.DISTILLA 2736.DISTILLA 1477.DISTILLA 2845.DISTILLA 1474.DISTILLA 2857.DISTILLA 1522. RESIDUAL 5000. RESIDUAL 1456. RESIDUAL 2743. RESIDUAL SITE FUEL USED ö HEAT RATIO 0.101 WASTE FUEL EQV BTU*10**6= -4004. 0. -4067. 0. -5294. 0. -2389. -2662. 0. -5294. 0. -1833. 0. -3303. 0. -2964. 0. -2587. -2748. 0. -2748. -3268. 1191. AUX PROCES BOILR 10**6 1215. 0. 1215. 0. 1149. 1088. 0. 1171. 1168. 1141. 1130. 0. 1145. 1193. 0. 1159. 1149. 0. 33. 408. 33. 33. 33. 33. 33. COGEN MW ELECT 33. 529. 33. 33. 33. 342. 333. 33, 33 PROCES POWER 10**6 111. WASTE FUEL COGEN COGEN COGEN FUEL SAVED= FUEL PROCES PROCES USED NO-NET USED HEAT POWER 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 111. 939. 111. 111. 1805. 111. 111. 697. 111. 1168. 111. 111,875 111. 983 066 111 1137 POWER TO 68. 1100. 1100. 115. 139. 1100. 130. 1100. 88. 1100. 1100. 123. 175. 104. 1100 1100 123 311. 3271. 3036. 347. 336. 2845. 307. 5000. 316. 3966. 305. 3880. 307. 5000. 307. 307. 2743. 380. 2388. 3177. 329. 164. 1569. 143. 1828. 119. 1935. 1935. 173. 159. 1672. 164. 1294. 163. 1383. 167. 134 184. 1646. 1646 163 671 00 o o 00 00 00 0.0 00 00 00 00 00 00 00 POWR HEAT PGWR HEAT PCWR HEAT POWR HEAT POWR HEAT DIESEL-SOA POWR DIESEL-SOA HEAT POWR PEAT POWR HEAT GTR216 GT-50RE-16 POWR GTR216 GT-60RE-16 HEAT GTRAOS GT-85RE-08 PCWR GTRAOS GT-85RE-08 HEAT 34 GTRA12 GT-85RE-12 POWR 34 GTRA12 GT-85RE-12 HEAT POWR DIESEL-SOA POWR DIESEL-SOA HEAT HEAT COAL GTRA16 GT-85RE-15 GTRA16 GT-85RE-16 9TR208 GT-60RE-08 GTR208 GT-60RE-08 DIESEL-SOA DIESEL-SOA GT-HRSG-10 GT-HRSG-10 STR212 GT-60RE-12 GTR212 GT-60RE-12 GT-85RE-08 GT-85RE-08 GT-85RE-12 GT-85RE-12 DIESEL-SOA DIESEL-SOA UTILITY FUEL GTRW12 DESGA2 DESGA2 GTSCAD GTRW08 GTRW08 DESGA2 DESGA2 DESGA1 DESGA1 DESGA1 33 **35** 38 6 6 39 39 36 36 00 တ္တ ဝင္ပ 9 9 31 328 33 HONELMELL

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28001 MW 32.50 PROCESS MILLIONS BTU/HR 1100.0 PROCESS TEMP(F) 366. PRODUCT CHEM

HOURS PER YEAR 8760.

								POWE	R TO HE	AT RATI	0.101								
	UTILI	TY FUE	EL	COAL				•	W	ASTE FU	EL EQV	BTU*10*	* 6=	O. HOT	WATER BT	U*10**6	= (0.	
					WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HFAT
			~		FUEL	SAVED=		PROCES			PROCES		FUEL	FUEL	TOTAL+	1015	1 2011	FACTR	
jj					USED	NO-NET		HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				, ,,,,,,,,
					10**6	10**6		10**6	10**6	LLLUI	10**6	10**6	10**6	OGLD	10**6				
								BTU/HR				BTU/HR		•	BTU/HR				
					B I U/ FIK	BIOZIK	BIOTIK	BIOTH	BIOTER		BTO/ file	BIOTIK	B10/11	<u> </u>	B 1 07 1 III				garagericanics a co.
41 G	TRW16	GT-856	RF-16	POWR	0.	146.	311.	93.	111.	33.	1184.	0.	1495.	DISTILLA	1495.	0	0.09	0.07	0.74
11	TRW16									383.	o.			DISTILLA	-77.		0.32		
1		· · · · · · ·		******							٠.				* * *	_			
42 G	TR308	GT-60F	RE-08	POVR	0.	124.	358.	115.	111.	33.	1159.	0.	1517.	DISTILLA	1517.	0	0.08	0.07	0.73
	TR308							1100.	1063.	312.	٥.			DISTILLA	454.	O		0.31	
		• • • • • • • • • • • • • • • • • • • •			•						-								
43 G	TR312	GT-60F	RE-12	POWR	0.	149.	324.	107.	111.	33.	1168.	0.	1492	DISTILLA	1492.	0	0.09	0.07	0.74
43 G	TR312	GT-60	RE-12	HEAT	0.	1522.	3319.	1100.	1135.	333.	0.	-3200.	3319.	DISTILLA	118.	0	0.31	0.34	0.33
1																	•		
44 G	TR316	GT-60F	RE-16	POWR	Ο.	148.	327.	109.	111.	33.	1166.	0.	1493	DISTILLA	1493.	0	0.09	0.07	0.74
31	TR316						3296.					-3145.	3296	DISTILLA	151.	0	0.31	0.34	0.33
									•										
45 F	CPADS	FUEL-0	CL-PH	POWR	Ο,	113.	292.	50.	111.	33.	1236.	0.	1528	DISTILLA	1528.	0	0.07	0.07	0.72
16	CPADS						6471.			721.	0.	-7337.	6471.	DISTILLA	-867,	0	0.28	0.38	0.17
46 F	CMCDS	FUEL-	CL-MO	POWR	0.	151.	269.	63.	111.	33.	1220.	0.	1489	DISTILLA	1489.	0	0.09	0.07	0.74
13	CMCDS					2651.	4721.	1100.	1945.	570.	0.	-5732.	4721	DISTILLA	-1011.	0	0.36	0.41	0.23

1&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28002 MW 77.20 PROCESS MILLIONS BTU/HR 1054.0 PROCESS TEMP(F) 366. PRODUCT CHEM HOURS PER YEAR 8760.

POWER TO HEAT RATIO 0.250 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES PROCES MW FUEL SAVED= FUEL PROCES FUEL FUEL FUEL. TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCGN NO COGON ٥. 0. 1240. 823. 1240.COAL-FGD 2063. 0 0. 0.13 0.51 1 STM141 STM-TURB-1 POWR ٥. 45. 2019. 1452. 263. 77. -469. n. 2019. RESIDUAL 2019. 0 0.02 0.13 0.52 1 STM141 STM-TURB-1 HEAT ٥. 372. 1465. 1054. 191. 56. 0. 226. 1465. RESIDUAL 1691. 0 0.18 0.11 0.62 1 STM141 STM-TURB-1 POWR 0. 45. 2019. 1452. 263. 77. -469. 0. 2019. COAL-FGD 2019. 0 0.02 0.13 0.52 1 STM141 STM-TURB-1 HEAT 372. 1465. 1054. 191. 56. Ο. 226. 1465. COAL-FOD 1691. 0 0.18 0.11 0.62 1 STM141 STM-TURB-1 POWR 45. 2019. 1452. 263. -469. 2019. COAL-AFB 0. 2019. 0 0.02 0.13 0.52 1 STM141 STM-TURB-1 HEAT 0. 372. 1465. 1054. 191. 56. 226. 1465. COAL-AFB 0. 1691. 0 0.18 0.11 0.62 2 STM088 STM-TURB-8 POWR ~694. 2758. 2081. 263. 77. -1208. 0. 2758. RESIDUAL 2758. 0 -0.34 0.10 0.38 2 STMO88 STM-TURB-8 HEAT 260. 1397. 1054. 133. 39. Ω. 406. 1397. RESIDUAL 1803. 0 0.13 0.07 0.58 2 STMO88 STM-TURB-8 POWR -694. 2758. 2081. 263. 77. -1208. 0. 2758.CGAL-FGD 2758. 0 -0.34 0.10 0.38 ٥. 2 STM088 STM-TURB-8 HEAT 260. 1397. 1054. 133. 39. ٥. 406. 1397, COAL-FOD 1803. 0 0.13 0.07 0.58 2 STM088 STM-TURB-8 POWR -694, 2758. 2081. 77. -1208. 263. 0. 2758.COAL-AFB 2758. 0 -0.34 0.10 0.38 2 STM088 STM-TURB-8 HEAT 260. 1397. 1054. 39. 0. 133. 406. 1397. COAL-AFB 1803. 0 0.13 0.07 0.58 0. 3 PFBSTM PFB-STMTB- POWR 500. 1327. 854. 263. 235. 1563. COAL-PFB 0. 77. 0. 1563. 0.24 0.17 0.67 0. 1638. 3 PFBSTM PFB-STMTB- HEAT 618. 1054. 325. -193. 1638.COAL-PFB 1446. 0 0.27 0.20 0.64 4 TISTMT TI-STMTB-1 POWR 505. 1061. 263. 0 0.24 0.17 0.68 631. 77. 498. G. 1559. RESIDUAL 1559. 4 TISTMT TI-STMTB-1 HEAT 1772. 1054 -552. 843. 440. 129. 0. 1772. RESIDUAL 1220. 0 0.32 0.25 0.59 4 TISTMT TI-STMTB-1 POWR ٥. 505. 1061. 631. 263. 77. 498. 0. 1559.COAL 1559. 0 0,24 0.17 0.68 4 TISTMT TI-STMTB-1 HEAT 1054. 843. 1772. 440. 1772, COAL 1220. 0 0.32 0.25 0.59 129. ٥. -552. 5 TIHRSG THERMIONIC POWR 191. 1872. 1209. 263. -182. 1872. 0 0.09 0.14 0.56 77. 1872. RESIDUAL 5 TIHRSG THERMIONIC HEAT 1632. 1054. Ο. 325. 230. 67. 0. 106. 1632. RESIDUAL 1738. 0 0.16 0.13 0.61 5 TIHRSG THERMIONIC POWR 1872. 1209. 191. 263. 1872. COAL 0 0.09 0.14 0.56 0. -182. 0. 1872. 5 TIHRSG THERMIONIC HEAT 325. 1632. 1054. 230. 67. ٥. 106. 1632.COAL 1738. 0 0.16 0.13 0.61 6 STIRL STIRLING-1 POWR 365. 1045. 499. O. 1699.DISTILLA 0 0.18 0.16 0.62 263. 653. 1699. 6 STIRL STIRLING-1 HEAT 770. 2209. 1054. 557. 163. -916. 2209.DISTILLA 1293. 0 0.26 0.25 0.48

HONEYWELL PAGE PRIN

PAGE

86

ISSE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28002 MW 77.20 PROCESS MILLIONS BTU/HR 1054.0 PROCESS TEMP(F) 366. PRODUCT CHEM

HOURS PER YEAR 8760.

PAGE

87

POWER TO HEAT RATIO 0.250 WASTE FUEL EQV BTU*10**6= HOT WATER BTUx10xx6= UTILITY FUEL COAL 0. ٥. WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL FUEL TOTAL+ FACTR FACTR FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL USED UTILIT USED NO-NET USED HEAT POWER ELECT BOILR USED SITE 10**6 10**6 10**6 10**6 10**6 10**6 10**8 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 365. 1045. 263. 653. 0. 1699.RESIDUAL 1699. 0 0.18 0.16 0.62 6 STIRL STIRLING-1 POWR 499. 77. ñ. 2209. 1054. 163. 0. -916. 2209. RESIDUAL 1293. 0.26 0.25 0.48 6 STIRL STIRLING-1 HEAT 0. 770. 557. 6 STIRL STIRLING-1 POWR 365. 1045. 263. 77. O. 1699. COAL 1699. 0.18 0.16 0.62 0. 499 653. 2209. COAL 1293. 0.26 0.25 0.48 6 STIRL STIRLING-1 HEAT 0. 770. 2209. 1054 557. 163. 0. -916. 1946. 0.06 0.14 0.54 7 HEGT85 HELIUM-GT- POWR 263 77. 1126. 0. 1946.COAL-AFB 117. 821 97. 8915. COAL-AFB 0.12 0.32 0.12 7 HEGT85 HELIUM-GT- HEAT 1268. 8915. 1054. 2862. 839. 0. -8119. 795. Q. 0. 1909.COAL-AFB 1909. 0.07 0.14 0.55 8 HEGT60 HELIUM-GT- POWR 1017 296. 263. 77. 892. n 0. 154. 8 HEGT60 HELIUM-GT- HEAT 549 3627 1054 939 275 0. -2112. 3627. COAL-AFB 1514. 0.13 0.26 0.29 0. 380. 0. 1877.COAL-AFB 1877. 0.09 0.14 0.56 Ο. 1497. 731. 263. 77. 9 HEGTOO HELIUM-GT- POWR 186. 2158. COAL-AFB 1794. 0.11 0.18 0.49 9 HEGTOO HELIUM-GT- HEAT 0. 269. 2158. 1054. 380. 111. 0. -364. 77. 757. 0. 1624. COAL 1624. 0.21 0.16 0.65 866 410. 263. 10 FCMCCL FUEL-CL-MO POWR O. 439. 934. 0.34 0.30 0.47 10 FCMCCL FUEL-CL-MO HEAT 0. 1129. 2227. 1054. 677. 198. 0. -1292. 2227, COAL 1608. 10 0.22 0.16 0.66 909 0. 1608. COAL 11 FCSTCL FUEL-CL-ST POWR 455. 700 282 263. 77. 0. -2257. 0 0.39 0.38 0.40 1702. 289. 2618. COAL 361. 11 FCSTCL FUEL-CL-ST HEAT 0. 2618. 1054. 986. ο. 1706, COAL 1706. 10 0.17 0.15 0.62 77. 758. 12 IGGTST INT-GAS-GT POWR 357. 948. 409. 263. 0 0.27 0.28 0.43 678. 199. 0. -1296. 2440. COAL 1144. 12 IGGTST INT-GAS-GT HEAT 0. 919. 2440 1054 0. 1695. 0.18 0.16 0.62 77. 1695, RESIDUAL 13 GTSGAR GT-HRSG-10 POWR 368. 908 385. 263. 787. 0.29 0.29 0.42 2486, RESIDUAL 1056. 13 GTSGAR GT-HRSG-10 HEAT 1007. 2486. 1054. 721. 211. 0. -1429. 1625. 0.21 0.16 0.65 77. 1625. RESIDUAL 14 GTACOS GT-HRSG-08 POWR 438. 976 502. 263. 649. n 0. -905. 2048. RESIDUAL 1143. 0 0.31 0.27 0.51 14 GTACOB GT-HRSG-08 HEAT 920. 2048. 1054. 553. 162. 0. 1632. 0 0.21 0.16 0.65 864 401 263. 77. 768 0. 1632.RESIDUAL 15 GTAC12 GT-HRSG-12 POWR 431. 0.33 0.31 0.46 2271. RESIDUAL 930. 15 GTAC12 GT-HRSG-12 HEAT 1134. 2271. 1054. 693. 203. 0. -1341. 0.20 0.16 0.64 1641, RESIDUAL 1641. 423. 815. 353. 263. 77. 825. Ω 16 GTAC16 GT-HRSG-16 POWR -1637. 2437. RESIDUAL 800. 0.34 0.32 0.43 16 GTAC16 GT-HRSG-16 HEAT 1263. 2437. 1054 787. 231. 0. 0. 1678. RESIDUAL 1678. 0.19 0.16 0.63 836. 338. 77. 842. 17 GTWC16 GT-HRSG-16 POWR 385. 283. 2605. RESIDUAL 0 0.32 0.32 0.40 17 GTWC16 GT-HRSG-16 HEAT 1199. 2605. 1054. 820. 240. 0. -1741. 864.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

ISSE PEO ADV DESIGN ENGR **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 28002 MW 77.20 PROCESS MILLIONS BTU/HR 1054.0 PROCESS TEMP(F)

366. PRODUCT CHEM

HOURS PER YEAR 8760. POWER TO HEAT RATIO 0.250

UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= ٥. HOT WATER BTU*10**6= COGEN COGEN COGEN AUX WASTE FUEL UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**5 10**6 10**6 10**6 10**6 1C**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR 378. 707. Ω. 223. 263. 77. 978. O. 1685.RESIDUAL 1685. 0.18 0.16 0.63 18 CC1626 GTST-16/53 HEAT ο. 1786. 3344. 1054. 1246. 365. 0. -3070. 3344.RESIDUAL 275. 0.35 0.37 0.32 19 CC1622 GTST-16/22 POWR 0. 397. 718. 248. 263. 77. 948. 0. 1666. RESIDUAL 1666. 0.19 0.16 0.63 19 CC1622 GTST-16/22 HEAT 1687. O. 3051. 1054. 1119. 328. 0. -2675. 3051. RESIDUAL 376. 0 0.36 0.37 0.35 20 CC1222 GTST-12/22 POLS Ο. 401. 716. 249 263 77. 946. 0. 1662. RESIDUAL 1662. 0.19 0.16 0.63 n 20 CC1222 GTST-12/22 HEAT n. 1693. 3025. 1054. 1113. 326. 0. -2654. 3025.RESIDUAL 370. 0.36 0.37 0.35 21 CC0822 GTST-08/22 POWR Ω 430. 764. 315. 263. 77. 869. O. 1634.RESIDUAL 1634. 0.21 0.16 0.65 21 CC0822 GTST-08/22 HEAT ٥. 1437. 2556 1054 881. 258. 0. -1930. 2556. RESIDUAL 626. 0.36 0.34 0.41 22 ST1015 ST1G-15-16 POWR 0. 142. 691. 9. 263. 77. 1229. O. 1921.RESIDUAL 1921. 0.07 0.14 0.55 22 STIG15 STIG-15-16 HEAT 0. 16695. 81077. 1054, 30890. 9053. 0.-95709. 81077.RESIDUAL -14632. 9.17 0.38 0.01 23 STIG10 STIG-10-16 POWR 204 734 97. 263. 77. 1126. 0. 1859. RESIDUAL 1859. 0.10 0.14 0.57 23 STIG10 STIG-10-16 HEAT 0. 2212. 7955. 1054. 2857. 837. 0. -8104. 7955.RESIDUAL -149. 0 0.22 0.36 0.13 24 STIGIS STIG-15-16 POWR n. 232 786 166 263 1045. 0. 1831. RESIDUAL 1831. 0.11 0.14 0.58 24 STIGIS STIG-15-16 HEAT 1478. 5000. ٥. 1054. 1676. 491. 0. -4414. 5000 RESIDUAL 586. 0.23 0.34 0.21 25 DEADV3 DIESEL-ADV POWR 284. 0 710. 146. 263. 77. O. 1779.RESIDUAL 1069. 1779. 0.14 0.15 0.59 25 DEADV3 DIESEL-ADV HEAT 0. 2059. 5142. 1054 1908 559. 0. -5138. 5142.RESIDUAL 4 0.29 0.37 0.20 26 DEADV2 DIESEL-ADV POWR 325. 0. 710. 1028. 180. 263. 77. O. 1738.RESIDUAL 1738. 0.16 0.15 0.61 26 DEADV2 DIESEL-ADV HEAT ٥. 1901. 4150. 1054. 1540. 451. 0. -3988. 4150. RESIDUAL 162. 0.31 0.37 0.25 27 DEADVI DIESEL-ADV POWR O. 440. 710 278. 263. 77. 913. 0. 1623. RESIDUAL 1623. 0.21 0.16 0.65 27 DEADVI DIESEL-ADV HEAT 0. 1670. 2696. 1054. 1000. 293. 0. -2302. 2696. RESIDUAL 394. 1 0.38 0.37 0.39 28 DEHTPM ADV-DIESEL POWR 424. 805 345 O 263. 77. 834. O. 1639. RESIDUAL 1639. 0 0.21 0.16 0.64 28 DEHTPM ADV-DIESEL HEAT 1294. 0. 2460. 1054. 804. 236. 0. -1691. 2460. RESIDUAL 769. 0.34 0.33 0.43 29 DESGAS DIESEL-SGA POWR 240. 730. 0. 125. 263. 77. 1093. O. 1823.DISTILLA 1823. 0.12 0.14 0.58 29 DESGAS DIESEL-SGA HEAT n. 2030. 6164. 1054. 2225. 652. 0. -6131. 6164. DISTILLA 33. 0.25 0.36 0.17 29 DESGAS DIESEL-SGA POWR ٥. 240. 730. 125. 263. 77. 1093. 0. 1823.RESIDUAL 1623. 0.12 0.14 0.58 29 DESGAS DIESEL-SGA HEAT 2030. 6164. 1054. 2225. 652. 0. -6131. 6164.RESIDUAL 33. 0 0.25 0.36 0.17

88

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

89

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

.....

INDUSTRY 28002 MW 77.20 PROCESS MILLIONS BTU/HR 1054.0 PROCESS TEMP(F) 366. PRODUCT CHEM HOURS PER YEAR 8760.

POWER TO HEAT RATIO 0.250 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= Ο. HOT WATER BYU*10**6= WASTE COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FESR POWER HEAT FUEL COGEN FAIL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED POWER ELECT BOILR USED SITE USED UTILIT HEAT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10xx6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 282. 730. 161. 263. 77. 1051. 1781.DISTILLA 1781. 1 0.14 0.15 0.59 0. 0. 30 DESGAZ DIESEL-SGA HEAT 4791.DISTILLA n. 1854. 4791. 1054. 1730. 507. 0. -4582. 209. 0.28 0.36 0.22 282. 730. 263. 77. 1781, RESIDUAL 1781. 0.14 0.15 0.59 30 DESCA2 DIESEL-SCA POWR 0. 161. 1051. 0. 1730. 0.28 0.36 0.22 30 DESGA2 DIESEL-SGA HEAT ٥. 1854. 4791. 1054. 507. 0. -4582. 4791. RESIDUAL 209. 31 DESGA1 DIESEL-SGA POWR 438 730. 293 263 77. 1625. DISTILLA 1625. 0.16 0.65 896 ٥. 0.21 31 DESCA1 DIESEL-SCA HEAT 0. 1577. 2628. 1054. 949. 278. 0. -2142. 2628. DISTILLA 486. 0.37 0.36 0.40 730. 1625. 0.21 0.16 0.65 31 DESGA1 DIESEL-SGA POWR 438. 293. 263. 77. 896. ٥. 1625. RESIDUAL 31 DESGA1 DIESEL-SGA HEAT 1577. 2628. 1054 949 278 0. -2142. 2628. RESIDUAL 486. 0.37 0.36 0.40 1653. DISTILLA 1653. 0 0.20 0.16 0.64 32 GTSGAD GT-HRSG-10 POWR 410. 902. 415. 263. 77. 751. 0. ٥. 32 GTSOAD GT-HRSG-; O HEAT 1040. 2288. 1054. 668. 196. 0. -1265. 2288. DISTILLA 1023. 0.31 0.29 0.46 33 GTRAO8 GT-85RE-08 POWR O. 377. 738. 248. 263. 77. 948. Ō. 1686. DISTILLA 1686. 0.18 0.16 0.63 33 GTRAO8 GT-85RE-08 HEAT 1602. 3135. 1054. 328. 0. -2674. 3135. DISTILLA 461. 0.34 0.36 0.34 n. 1119. 77. 387 1676.DISTILLA 1676. 0.19 0.16 0.63 34 GTRA12 GT-85RE-12 POWR 736 255 263 940 n 34 GTRA12 GT-85RE-12 HEAT 1602. 3044. 1054. 319. 0. -2583. 3044. DISTILLA 462. 0.34 0.36 0.35 0. 1090. 755. 273. 1673.DISTILLA 1673. 0.19 0.16 0.63 35 GTRA16 GT-85RE-16 POWR Ο. 390. 263. 77. 918. 0. n 35 GTRA16 GT-85RE-16 HEAT 1504. 2909. 1054. 1015. -2349. 2909. DISTILLA 560. 0.34 0.35 0.36 298 ٥. 331. 1674.DISTILLA 1674. 0 0.19 0.16 0.63 36 GTR203 GT-60RE-08 POWR 0. 389. 823. 263. 77. 851. 0. 823. 0.32 0.32 0.40 36 GTR203 GT-60RE-08 HEAT 1240. 2621. 1054. 0. -1798. 2621. DISTILLA ٥. 839 246, 1675. DISTILLA 1675. 0.19 0.16 0.63 37 GTR212 GT-60RE-12 POWR 0. 388. 798. 309. 263. 77. 0. 2726. DISTILLA 738. 0.33 0.33 0.39 37 GTR212 GT-60RE-12 HEAT 2726. 1054. ٥. 1325. 900. 264. 0. -1988. 38 GTR216 GT-60RE-16 POWR 396 782 301 263 77 885. Ω. 1668. DISTILLA 1658. 0 0.19 0.16 0.63 2737. DISTILLA 67ē . 0 0.34 0.34 0.39 2737. 1054 270. 0. -2060. 38 GTR216 GT-60RE-16 HEAT 1385. 922. ٥. 0.15 0.15 0.60 39 GTRWO8 GT-85RE-08 POWR 318. 750. 208. 263. 77. 995. 0. 1746.DISTILLA 1746. 39 GTRW08 GT-85RE-08 HEAT 1608. 3800. 1054. 1334 ٥. -3345. 3800. DISTILLA 455. 0.30 0.35 0.28 391 77. 1722. 0 0.17 0.15 0.61 40 GTRW12 GT-85RE-12 POWR 0. 341. 724. 205. 263. 999 0. 1722. DISTILLA 40 GTRW12 GT-85RE-12 HEAT 1751. 3718. 1054. 1353. 397. 0. -3406. 3718.DISTILLA 312. 0 0.32 0.36 0.28 ٥.

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
***FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 28002 MW 77.20 PROCESS MILLIONS BTU/HR 1054.0 PROCESS TEMP(F) 366, PRODUCT CHEM

HOURS PER YEAR 8760.

. 1	UTILI	TY F	UEL	COAL				FUWE		AT RATIO			×6=	о. нот	WATER BT	U*10**6	;= (0.	
					WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
					FUEL	SAVED=			PROCES		PROCES	FUEL	FUEL	FUEL	TOTAL+			FACTR	FACTE
					USED	NO-NET		HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				
					10**6	10**6	10**6	10**6	10**6		10**6	10×*6	10**6		10**6				
					BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HR	<u> </u>	BTU/HR			 	
41 GT	RW16	GT-F	5RE-16	POUR	٥,	346.	738.	222.	263.	77.	979.	٥,	1717	DISTILLA	1717		A 17		
			5RE-16		o.	1645.	3506.	1054.	1252.	367.	9,9.			DISTILLA	1717,	0	0.17		
¬. •		O , (ONE IO	11501	٠.	1040.	5500.	1004.	1202.	307,	Ο,	-3069.	3506.	DISTILLA	418.	O	0.32	0.36	0.30
42 GT	R308	GT-6	ORE-08	POWR	٥.	294.	850.	273.	263.	77.	919.	0.	1769.	DISTILLA	1769.	0	0.14	0.15	0.60
42 GT	R308	GT-6	ORE-08	HEAT	٥.	1137.	3286.	1054.	1019.	299.	0.	-2360.	3286,	DISTILLA	926.	Ö	0,26		
40 07	B010				_							_							
			ORE-12		<u> </u>		770.	255.	263.	<u>77.</u>	940.	0.		DISTILLA	1710.			0.15	-
43 611	K3 (2	GI-E	ORE-12	HEAT	٥.	1459.	3180.	1054.	1088.	319.	0.	-2576.	3180.	DISTILLA	605.	0	0.31	0.34	0.33
44 GTI	R316	GT-6	ORE-16	POWR	٥.	351.	777.	259.	263.	77.	935.	٥.	1712	DISTILLA	1712.	0	0.17	0.15	0.62
			ORE-16		ō.		3158.	1054.	1071.	314.	0,			DISTILLA	636.		0.31		0.33
																			
45 FCI	PADS	FUEL	-CL-PH	POWR	0.	269.	693.	118.	263.	77.	1101.	Ο.	1795.	DISTILLA	1795.	0	0.13	0.15	0.59
45 FCF	PADS	FUEL	-CL-PH	HEAT	0.	2403.	6200.	1054.	2356.	691.	٥.	- 65 39.	6200.	DISTILLA	-339.	0	0.28	0.38	0.17
46 FC	MCD6	ELIEL	-CL-MO	PAUD	0.	359.	639.	149.	263.	77.	1065.	o.	1704	DISTILLA	1704				
			-CL-MO		o.	2541.	4524.	1054.	1864,	546.					1704.				0.62
-J . U	.500		OL-HU	HEAT	J.	2041.	4764.	1034.	1004,	346 ,	U.	-5001.	4524.	DISTILLA	-477.	0	0.36	0.41	0.23

ISSE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 28003 MW 97.20 PROCESS MILLIONS BTU/HR 947.0 PROCESS TEMP(F) 366. FRODUCT CHEM

HOURS PER YEAR 8760.

					POWE			0.350								y (
UTILITY FUEL	COAL					W	ASTE FU	EL EQV	BTU×10×	≭ 6=	o. HOT	WATER BT	U×10**6	S= ().	
		WASTE	FUEL	COGEN	COGEN	COREN	COGEN	AHX	HTH IT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
		FUEL	SAVED=			PROCES		PROCES		FUEL	FUEL	TOTAL+	.,,,,,		FACTR	
1		USED	NO-NET	USED	HEAT	POWER	ELECT	BOILE	USED	SITE	USED	UTILIT				
, ,		10××6	10××6	10**6	10**6	10**6		10××6	10××6	10××6		10××6				
		BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/H	₹	BTU/HR				
0.01/2001 1/2 0.2		^	•	_	_	_	•	1114.	1000	1114	0541 500	2151.	_	•	0.15	0.44
O ONOCGN N O C O 1 STM141 STM-TURB		0, 0,		0. 2541.	0. 1829.	0. 332.		-1037.			.COAL-FGD .RESIDUAL			0.	0.13	
1 STM141 STM-TURB				1316.	947.	172.	50.				RESIDUAL				0.13	
1 Jimar Jim Joke	1 TILA		<u> </u>	1310.	347.			<u> </u>	- 300.	1010	, ALOIDONE	1010.		0.10	0,03	
1 STM141 STM-TURB	-1 POWR	0.	-391.	2541.	1829.	332.	97.	-1037.	٥,	2541	. COAL-FOD	2541.	0	-0.18	0.13	0.37
1 STM141 STM-TURB	-1 HEAT	0.	335,	1316.	947.	172.	50.	٥.	500.	1316	. COAL-FOD	1816.	0	0.16	0.09	0.52
	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·				<u></u>					
1 STM141 STM-TURB				2541.	1829.	332,		-1037,			COAL-AFB				0.13	
1 STM141 STM-TURB	-1 HEAT	0.	335.	1316.	947.	172,	50,	٥.	500.	1316	COAL-AFB	1816.	0	0.15	0.09	0.52
2 STMO88 STM-TURB	-e PAUS	•	-1322.	3472.	2620.	332.	97	-1968.	٥.	3472	.RESIDUAL	3472,	n	-0.£	0.10	0.27
2 STMO88 STM-TURB					947.	120.	35.	0.			RESIDUAL			_c :-		0.49
		٠.	20-7	, 200,	2471	, 20.	•	•	002.			. ~	•	•		
2 STMOBB STM-TURB	-8 POWR	٥.	-1322.	3472.	2620.	332.	97.	-1968.	o.	3472	. COAL-FGD	3472.	0	-0.61	0.10	0.27
2 STMO88 STM-TURB	-8 HEAT	0.	234.	1255.	947.	120.	35,	0,	662.	1255	. COAL-FGD	1917.	0	0.11	0.06	0.49
						_										
2 STMO88 STM-TURB			-1322.			· 332.		-1968.			. COAL-AFB				0.10	
2 STM088 STM-TURB	-8 HEAT	0.	234.	1255.	947.	120.	35,	٥.	662.	1255	COAL-AFB	1917.	O	0.11	0.06	0.49
3 PFBSTM PFB-STMT	B- PAUR	0.	479.	1671.	1075.	332.	97.	-151.	0.	1671	COAL-PFB	1671.	0	0.22	0.20	0.57
3 PFBSTM PFB-STMT				,	947.	292.	86.	o.		-	COAL-PFB		ŏ		0.18	
	_ ,,_,,		• • • • • • • • • • • • • • • • • • • •	. ,, = .	• // :		•••						-			
4 TISTMT TI-STHTB	-1 POWR	0.	635.	1336.	795.	332,	97.	179.	٥.	1515	RESIDUAL	1515.			0.22	
4 TISTHT TI-STHTB	-1 HEAT	0.	757.	1592.	947.	395.	116.	0.	-199.	1592	RESIDUAL	1393.	0	0.32	0.25	0.59
, , , , , , , , , , , , , , , , , , ,								470			0001		_			0.00
4 TISTMT TI-STMTB				1336. 1592.	795.	332,	97.	179. 0.			. COAL . COAL	1515. 1393.	0		0.22 0.25	
4 TISTHT TI-STMTB	-I HEAT	0.	/5/,	1992.	947.	395.	116,	<u> </u>	- 199.	1092	CUAL	1393.		0.32	0.20	_0.59
5 TIHRSG THERMION	IIC POWR	0.	-207,	2357.	1522.	332,	97.	-677.	٥,	2357	RESIDUAL	2357.	0	-0.10	0.14	0.40
5 TIHRSG THERMION				1466.	947.	206.	60.	0.			RESIDUAL		o	0.14	0.11	0.51
		-														
5 TIHRSO THERMION						332.	97.				. COAL	2357,			0.14	
5 TIHRSG THERMION	IIC HEAT	0.	292.	1466.	947.	206,	60.	٥.	392.	1466	. COAL	1858.	0	0.14	C.11	0.51
6 STIRL STIRLING	-1 DAUB	• •	4KG	1016	626	332.	97,	375.	0	1602	DISTILLA	1692.	0	0.21	0.20	0.56
6 STIRL STIRLING				1316. 1985.	628. 947.	500.	147.	3/5.			DISTILLA				0.25	
C STIRE STIRETHO	- t BEAT	0.	032.	1900.	347,	500.	147.	٥.	JEO,	1500	, , , , , , , , , , , ,	1400.	9	0.20	٠, ٤٥	3.40

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 92

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

0. 1078.

2340.

947.

737.

216.

INDUSTRY 28003 MW 97.20 PROCESS MILLIONS BTU/HR 947.0 PROCESS TEMP(F) 366. PRODUCT CHEM HOURS PER YEAR 8760,

POWER TO HEAT RATIO 0.350 UTILITY FUEL COAL WASTE FUEL EQV BTU=10**6= O. HOT WATER BTU-10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW FUEL. PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 STU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR ٥. 459. 1316. 628. 332. 97. 375. O. 1692.RESIDUAL 1692. 0 0.21 0.20 0.55 6 STIRL STIRLING-1 HEAT 1458. 0. 692. 1985. 947. 500. 147. 0. -526. 1985.RESIDUAL 0 0.26 0.25 0.48 6 STIRL STIRLING-1 POWR 0. 459. 1316. 628. 332. 375. 0. 1692.COAL 1692. **拿**7. 0 0.21 0.20 0.56 6 STIRL STIRLING-1 HEAT 692. 1985. Ο. 947. 500. 147. 0. -526. 1985.COAL 1458. 0 0.26 0.25 0.48 7 HEGT85 HELIUM-GT- POWR 0. 147. 1033. 122, 332. 97. 970. O. 2004.COAL-AFB 2004. 0 0.07 0.17 0.47 7 HEGT85 HELIUM-GT- HEAT 1139. 8010. 947. 2571. 754. 0, -6998, 8010, COAL-AFB 1011. 0 0.12 0.32 0.12 8 HEGT60 HELIUM-GT- POWR 0. 194. 1280. 372. 332. 97. 676. 0. 1957.COAL-AFB 1957. 0 0.09 0.17 0.48 8 HEGT60 HELIUM-GT- HEAT 0. 493. 3258. 947. 844. 247. O. -1601. 3258.CGAL-AFB 1658. 0 0.13 0.26 0.29 97, 9 HEGTOO HELIUM-GT- POWR 235. 1884. 920. 332. 0. 31. 0. 1916.COAL-AFB 1916. 0 0.11 0.17 0.49 9 HEGTOO HELIUM-GT- HEAT -30. 1939.CGAL-AFB 242. 1939. 947. 341. 1909. n. 100. 0. 0 0.11 0.18 0.49 10 FCMCCL FUEL-CL-MO POWR 553. 1091. 1598. 516. 332. 97. 507. 0. 1598.CCAL 10 0.26 0.21 0.59 n. 10 FCMCCL FUEL-CL-MO HEAT 0. 1014. 2001. 947. 608. 0. -864, 2001.COAL 0 0.34 0.30 0.47 778. 1136. 11 FCSTCL FUEL-CL-ST POWR 573. 97. 0. 1578.COAL 1578. 881. 355. 332. 697. 10 0.27 0.21 0.60 11 FCSTCL FUEL-CL-ST HEAT 1530. 2352. 947. 886. 260. 0. -1731. 2352,COAL 621. 0 0.39 0.38 0.40 0. 12 IGGTST INT-GAS-GT POWR 332. 97. 508. 0. 1701.COAL 1701. . 0 0.21 0.19 0.56 n 450, 1193, 516. 12 IGGTST INT-GAS-GT HEAT 1324. Ω. 826. 2192. 947. 609. 179. ۵. -867. 2192.COAL 0 0.27 0.28 0.43 13 GTSWAR GT-HRSG-10 POWR 463, 1144. 485. 332. 97. 544. O. 1687.RESIDUAL 1687. 0 0.22 0.20 0.56 n. 13 GTSUAR GT-HRSG-10 HEAT 905. 2233. RESIDUAL 1246. 0 0.29 0.29 0.42 ο. 2233. 947. 648. 190. Ο. -987. 14 GTACO8 GT-HRSG-08 POWR 552. 1228. 332. 97. 371. O. 1599.RESIDUAL 1599. 0 0.26 0.21 0.59 0. 632. 14 GTACO8 GT-HRSG-08 HEAT ۵. 827. 1840. 947. 497. 146. ο. -516. 1840.RESIDUAL 1324. 0 0.31 0.27 0.51 15 GTAC12 GT-HRSG-12 POWR 543. 1087. 505. 332. 97. 520. O. 1608.RESIDUAL 1608. 0 0.25 0.21 0.59 15 GTAC12 GT-HRSG-12 HEAT 0. 1018. 2040. 947. 622. 182. 0. -908. 2040 . RESIDUAL 1132. 0 0.33 0.31 0.46 97. 16 GTAC16 GT-HRSG-16 POWR 532. 1027. 444 332. 592. O. 1619.RESIDUAL 1619. 0 0.25 0.20 0.59 Ο. 16 GTAC16 GT-HRSG-16 HEAT 0. 1135. 2190. 947. 707. 207. 0. -1174. 2190.RESIDUAL 1016. 0 0.34 0.32 0.43 0 0.23 0.20 0.57 97. 1666. 17 GTWC16 GT-HRSG-16 POWR 0. 485. 1053. 426. 332. 613. O. 1666, RESIDUAL

0, -1267. 2340.RESIDUAL

1073.

0 0.32 0.32 0.40

3

17 GTWC16 GT-HRSG-16 HEAT

1&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28003 MW 97.20 PROCESS MILLIONS BTU/HR 947.0 PROCESS TEMP(F) 365. PRODUCT CHEM

CHEM HOURS PER YEAR 8760.

PAGE

93

POWER TO HEAT RATIO 0.350 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL. SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL TOTAL+ FUEL FACTR FACTR NO-NET USED HEAT POWER ELECT BOILR USED USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR 476. 890. 281. 332, 97. 784. 1674. ٥. O. 1674.RESIDUAL 0 0.22 0.20 0.57 18 CC1626 GTST-16/26 HEAT 0. 1607. 3005. 947. 1119. 328. 0. -2461. 3005.RESIDUAL 544. 0 0.35 0.37 0.32 19 CC1622 GTST-16/22 POWR 500. 904. 312. 332. 747. 0. 97. ٥. 1651.RESIDUAL 1651. 0.23 0.20 0.57 19 CC1622 GTST-16/22 HEAT 0. 1516. 2741. 947. 1006. 295. 0. -2106. 2741.RESIDUAL 635. 0,36 0.37 0,35 20 CC1222 GTST-12/22 POWR 505. 901. 314. 332. 97. 745. O. 1646.RESIDUAL 1646. 0 0.23 0.20 0.58 20 CC1222 GTST-12/22 HEAT 1521. 2718. 947. 1000. 293. 0. -2088, 2718. RESIDUAL 629. 0.36 0.37 0.35 21 CC0822 GTST-08/22 POWR 541. 962. 397. 332. 97. 647. 0. 1610.RESIDUAL 1610. 0: 0.25 0.21 0.59 21 CC0822 GTST-08/22 HEAT 1291. 2297 947. 791. 232. 0. -1437. 2297.RESIDUAL 0.36 0.34 0.41 860. 22 STIG15 STIG-15-16 POWR ٥. 179. 870. 11. 332. 97. 1101. O. 1971.RESIDUAL 1971. 0.08 0.17 0.48 947, 27754. 22 STIG15 STIG-15-16 HEAT 0. 15000. 72846. 8134. 0.-85696. 72846.RESIDUAL -12850. 0,17 0.38 0.01 Ω 23 STIG10 STIG-10-16 POWR Ω. 257. 924. 122. 332. 97. 970. 1894. RESIDUAL 1894. 0.12 0.18 0.50 0. 0. -6984. 0.22 0.36 0.13 23 STIG10 STIG-10-16 HEAT 1987. 7147. 947. 2567. 7147. RESIDUAL n 752. 163. n 24 STIG1S STIG-15-16 POWR 292 989 209 332. 1858. 0 0.14 0.18 0.51 97. 869. 0. 1858.RESIDUAL 4492. 24 STIG1S STIG-15-16 HEAT 0. 1328. 947. 1506. 441. 0. -3669. 4492.RESIDUAL 823. 0 0,23 0.34 0.21 0, 25 DEADV3 DIESEL-ADV POWR 358. 894. 183. 332. 97. 1792. 0 0.17 0.19 0.53 899. O. 1792.RESIDUAL 25 DEADV3 DIESEL-ADV HEAT 1850. 4620. 947. 1714. 502. 0. -4320. 4620.RESIDUAL 300. 0,29 0.37 0.20 227. 332. 0.19 0.19 0.54 26 DEADV2 DIESEL-ADV POWR 0. 410. 894. 97. 847. O. 1741.RESIDUAL 1741. 26 DEADV2 DIESEL-ADV HEAT 1708. 947. 1383. 0. -3286. 3728. RESIDUAL 0.31 0.37 0.25 ٥. 3728. 405. 442. 27 DEADVI DIESEL-ADV POWR 1597. 0.26 0.21 554. 894. 350. 332. 97. 703. ٥. 1597. RESIDUAL 0.59 0. -1772. 27 DEADV1 DIESEL-ADV HEAT 0, 1500. 2422. 947. 899. 263. 2422. RESIDUAL 650. 0.38 0.37 0.39 435 97. ٥. 0.25 0.21 0.59 28 DEHTPM ADV-DIESEL POWR 533 1014 332 603. 1617.RESIDUAL 1617. 0. -1222. 0.34 0.33 0.43 28 DEHTPM ADV-DIESEL HEAT 1163. 2210. 947. 723. 212. 2210.RESIDUAL 988. O 919. 157. 332. 97. 0 0.14 0.18 0.51 29 DESGAS DIESEL-SGA POWR 303. 929. 0. 1848.DISTILLA 1848. 29 DESGAS DIESEL-SGA HEAT 1824. 5539. 947. 1999. 586. 0. -5212. 5539. DISTILLA 327. 0.25 0.36 0.17 97. 29 DESGAS DIESEL-SGA POWR 303. 919. 157. 332. 929. O. 1848.RESIDUAL 1848. 0.14 0.18 0.51 Ω. 29 DESGAS DIESEL-SGA HEAT 1824. 5539. 947. 1999. 586. 0. -5212. 5539. RESIDUAL 327. 0.25 0.36 0.17

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
***FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 28003 MW 97.20 PROCESS MILLIONS DTU/HR 947.0 PROCESS TEMP(F)

366. PRODUCT CHEM

HOURS PER YEAR 8760.

PAGE

94

POWER TO HEAT RATIO 0.350 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL. TOTAL+ FACTR FACTR NO-NET USED USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**8 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 0. 355. 919. 202. 332. 97. 876. ٥. 1795.DISTILLA 1795. 1 0.17 0.18 0.53 30 DESGA2 DIESEL-SGA HEAT 0. 1666. 4305. 947. 1554. 455. 4305. DISTILLA 0. -3820. 485. 0.28 0.36 0.22 30 DESCA2 DIESEL-SCA POWR 355. 919. 202. 332. 97. 876. 0. 1795, RESIDUAL 1795. 0.17 0.18 0.53 30 DESGA2 DIESEL-SGA HEAT 1666. 0. 4305. 947. 1554. 455. 0. -3820. 4305. RESIDUAL 485. 0.28 0.36 0.22 31 DESGA1 DIESEL-SGA POWR 551 919 368 332 97 0. 1599. DISTILLA 1599. 681. 0.26 0.21 0.59 31 DESGA1 DIESEL-SGA HEAT ٥. 1417. 2362. 947. 853. 250. 0. -1628. 2362, DISTILLA 734. 0.37 0.36 0.40 31 DESGA1 DIESEL-SGA POWR ٥. 551. 919. 368. 332. 97. 681. 0. 1599. RESIDUAL 1599. 0.26 0.21 0.59 31 DESCA1 DIESEL-SCA HEAT 1417. 2362 947. 853. 250. 0. -1628. 2362. RESIDUAL 734 0.37 0.36 0.40 32 GTSOAD GT-HRSG-10 POWR 0. 516. 1136. 523. 332. 97. 499. Q. 1634.DISTILLA 1634. 0.24 0.20 0.58 32 GTSOAD GT-HRSG-10 HEAT 934. 2056. 600. 176. 947. ٥. -840. 2056.DISTILLA 1216. 0.31 0.29 0.46 33 GTRAOS GT-85RE-OS POWR 475. ٥. 929. 312. 332. 97. 747. ۵. 1676. DISTILLA 1676. 0.22 0.20 0.57 33 GTRAO8 GT-85RE-08 HEAT 0. 1440. 2816. 947. 1005. 295. 0. -2106. 2816. DISTILLA 711. 0.34 0.36 0.34 34 GTRA12 GT-85RE-12 POWR 487. 926 321 332 97. 737. 1663. DISTILLA 1663. 0.23 0.20 0.57 34 GTRA12 GT-85RE-12 HEAT 1439. 2735. 947. 979. 287. 0. -2024. 2735. DISTILLA 712. 0.34 0.36 0.35 35 GTRA16 GT-85RE-16 POWR 709. 491. 950. 344. 332. 97. 1659. • 0 0.23 0.20 0.57 Ω 1659. DISTILLA 35 GTRA16 GT-85RE-16 HEAT 1351. 2613. 947. 912. 267. 0. -1814. 2613. DISTILLA 800. 0.34 0.35 0.36 36 GTR208 GT-60RE-08 POWR 0. 490. 1036. 0.23 0.20 0.57 417. 332. 97. 624. 1660. DISTILLA 1660. ٥. 36 GTR208 GT-SORE-08 HEAT 1114. 2355. 947. 754. 221. 0. -1319. 2355. DISTILLA 1036. 0.32 0.32 0.40 37 GTR212 GT-60RE-12 FOWR 489. 1005. 389. 332. 97. 657. ٥. 1662. DISTILLA 1662. 0,23 0.20 0.57 37 GTR212 GT-GORE-12 HEAT 1191. 2449. 947. 808. 237. 0. -1490.2449. DISTILLA 960. 0.33 0.33 0.39 38 GTR216 GT-60RE-16 POWR 498 984 379. 332. 97. 668. ٥. 1652. DISTILLA 1652. 0 0.23 0.20 0.57 38 GTR215 GT-6GRE-16 HEAT 1245. 2459. 947. 829. 243. 0. -1554. 2459. DISTILLA 906. 0.34 0.34 0.39 39 GTRW08 GT-85RE-08 POWR 0. 400. 945. 262. 332. 97. 806. 1751.DISTILLA 1751. 0.19 0.19 0.54 0. n 39 GTRW03 GT-85RE-08 HEAT 1445. 0.30 0.35 0.28 3414. 947. 1198. 351. 0. -2709. 3414.DISTILLA 706. 40 GTRW12 GT-85RE-12 POWR 429. 911. 258. 332. 97. 810. O. 1721.DISTILLA 1721. 0.20 0.19 0.55 40 GTRW12 GT-85RE-12 HEAT 1573 3340. 947. 1216. 356. 0. -2763. 3340. DISTILLA 577. 0.32 0.36 0.28

EYWELL DA

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28003 MW 97.20 PROCESS MILLIONS BTU/HR 947.0 PROCESS TEMP(F) 366. PRODUCT CHEM

HOURS PER YEAR 8760.

PAGE

POWER TO HEAT RATIO 0.350 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR FUEL USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR 436. 929. 279 332. 97. 786. O. 1715. DISTILLA 1715. 0 0.20 0.19 0.55 41 GTRW16 GT-85RE-16 HEAT 1478. 3150. 947. 1125. 330. 0. -2478. 3150.DISTILLA 672. 0 0.32 0.36 0.30 42 GTR308 GT-60RE-08 POWR 1070. 332. 97. O. 1780.DISTILLA 1780. 0 0.17 0.19 0.53 0. 370. 343. 710. 42 GTR308 GT-60RE-08 HEAT 1022. 2952. 947. 915. 268. 0. -1823. 2952. DISTILLA 1129. 0 0.26 0.31 0.32 0. 43 GTR312 GT-60RE-12 POWR 445. 970 321 332 97. ٥. 1706.DISTILLA 1706. 0 0.21 0.19 0.56 736. 0. -2017. 2857. DISTILLA 0 0.31 0.34 0.33 43 GTR312 GT-60RE-12 HEAT 1311. 2857. 947. 977. 286. 840. 1708. 44 GTR316 GT-60RE-16 POWR 442. 978. 326. 332. 97. 730. 0. 1708.DISTILLA 0 0.21 0.19 0.55 44 GTR316 GT-60RE-16 HEAT 1283. 2838 947. 962. 282 0. -1970. 2838. DISTILLA 868. 0.31 0.34 0.33 0. 1812. DISTILLA 0 0.16 0.18 0.52 45 FCPADS FUEL-CL-PH POWR 338. 873. 148. 332. 97. 940. 1812. 45 FCPADS FUEL-CL-PH HEAT 947. 2117. 5571.DISTILLA 0.28 0.38 0.17 2159. 5571. 620. 0. -5579. 1698. 0.21 0.20 0.56 46 FCMCDS FUEL-CL-MO POWR ۵. 452. 805. 188. 332. 97. 893. ٥. 1698. DISTILLA 46 FCMCDS FUEL-CL-MO HEAT 4064.DISTILLA -132. 0 0.36 0.41 0.23 2283. 4064. 947. 1675. 491. 0. -4196.

THE PASS ON THE NIGHT TO A TITLE

7

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

96

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28121 MW 120.00 PROCESS MILLIONS BTU/HR 265.0 PROCESS TEMP(F) 338. PRODUCT CHLORINE-CAU HOURS PER YEAR 8500.

POWER TO HEAT RATIO 1.545 WASTE FUEL EQV BTU*10**6= UTILITY FUEL COAL O. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES FUEL TOTAL+ SAVED= FUEL PROCES PROCES MW FUEL FUEL FACTR FACTR FUEL USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 1591. CONTCON NO COGON 0. 0. 0. 312. 1280. 312. CCAL-FOD 0 0. 0.26 0.17 2528. RESIDUAL 2528. 0 -0.59 0.16 0.10 1 STM141 STM-TURB-1 POWR 2528. 1740. 409. 120. -1735. 0. -937. Ο. 1 STM141 STM-TURB-1 HEAT 122. 385 265. 0. 1085. 385. RESIDUAL 1470. 0 0.08 0.04 0.18 62 18. 120. -1735. 2528. 1 STM141 STM-TURB-1 POWR -937. 2528. 1740. 409. ٥. 2528. COAL-FGD 0 -0.59 0.16 0.10 1 STM141 STM-TURB-1 HEAT 122. 385. 265. 62. Ο. 1085. 385. COAL-FGD 1470. 0 0.08 0.04 0.18 2528. 1 STM141 STM-TURB-1 POWR -937. 2528. 1740. 409. 120. -1735. 2528. COAL-AFB 0 -0.59 0.16 0.10 0. 385. COAL-AFB 1470. 0 0.08 0.04 1 STM141 STM-TURB-1 HEAT 0. 122. 385. 265. 62. 18. 0. 1085. 0.18 2 STMO88 STM-TURB-8 POWR 0. -1614. 3205. 2315. 409. 0. 3205. RESIDUAL 3205. 0 -1.01 0.13 0.08 120. -2412. 2 STM088 STM-TURB-8 HEAT 91. 367. 265. 47. 14. 0. 1133. 367. RESIDUAL 1500. 0 0.06 0.03 0.18 0. -1614. 3205. 2315. 409. 120. -2412. 0. 3205.COAL-FOD 3205. 0 -1.01 0.13 0.08 2 STM088 STM-TURB-8 POWR 265. 2 STM088 STM-TURB-8 HEAT 91. 367. 47. 14. Ο. 1133. 367. COAL-FGD 1500. 0 0.06 0.03 0.18 0. 0. -1614. 3205. 2315. 409. 120. -2412. 3205. COAL-AFB 3205. 0 -1.01 0.13 0.08 2 STM088 STM-TURB-8 POWR 1500. 0 0.06 0.03 0.18 2 STM088 STM-TURB-8 HEAT 91. 367. 265. 47. 14. 0. 1133. 367. COAL-AFB 120. -1004. 0 -0.14 0.23 0.15 3 PERSTM PER-STMTB- POWR 0. -219. 1810. 1118. 409. 1810. COAL-PFB 1810. 3 PFBSTM PFB-STMTB- HEAT 186. 429. 265. 97. 28. 0. 976. 429. COAL-PFB 1405. 0 0.12 0.07 0.19 1492. 0 0.06 0.27 0.18 1492. 848. 409. 120. -686. ٥. 1492. RESIDUAL 4 TISTMT TI-STMTB-1 POWR O. 99. 4 TISTMT TI-STMTB-1 HEAT 245. 466. 265. 128. 37. ٥. 880. 466. RESIDUAL 1346. 0 0.15 0.10 0.20 1492. 0 0.06 0.27 0.18 4 TISTMT TI-STMTB-1 POWR 99. 1492. 848. 409. 120. -686. 0. 1492.COAL 0. 466. COAL 1346. 0 0.15 0.10 0.20 265. 128. 37. 880. 4 TISTMT TI-STMTB-1 HEAT 245. 466. 120. -1930. 2910. 0 -0.83 0.14 0.09 5 TIHRSG THERMIONIC POWR 0. -1319. 2910. 1905. 409. 0. 2910, RESIDUAL 1506. 0 0.05 0.04 0.18 1102. 405. RESIDUAL 5 TIHRSG THERMIONIC HEAT 85. 405. 265. 57. 17. Ο. 0 -0.83 0.14 0.09 0. -1319. 2910. 1905. 409. 120. -1930. 0. 2910. COAL 2910. 5 TIHRSG THERMIONIC POWR 1506. 0 0.05 0.04 0.18 5 TIHRSG THERMIONIC HEAT ٥. 85. 405. 265. 57. 17. 0. 1102. 405. COAL 6 STIRL STIRLING-1 POWR 1584. 746. 409. 120. -565. Ο. 1584. DISTILLA 1584. 0 0.00 0.26 0.17 0. 7. 0. 825. 563. DISTILLA 1388. 0 0.13 0.10 0.19 203. 563. 265. 146. 43. 6 STIRL STIRLING-1 HEAT

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE

97

REPORT 5,1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28121 MW 120.00 PROCESS MILLIONS BTU/HR 265.0 PROCESS TEMP(F) 338. PRODUCT CHLORINE-CAU HOURS PER YEAR 8500.

POWER TO HEAT RATIO 1.545 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU:10**6= 0. 0. UTILIT TOTAL SITE WASTE FUEL COGEN COGEN COGEN AUX NET= FESR POWER HEAT FAIL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 7. 1584. 746. 409. 120. -565. ٥. 1584. RESIDUAL 1584. 0.00 0.26 0.17 6 STIRL STIRLING-1 HEAT ٥. 203. 563. 265. 146. 43. 563. RESIDUAL 0. 825. 1338. 0.13 0.10 0.19 6 STIRL STIRLING-1 POWR 7. 746. 409. 120. -565. 0.00 0.26 0.17 0. 1584. ٥. 1584. COAL 1584. 6 STIRL STIRLING-1 HEAT ٥. 203. 563. 265. 825. 563. COAL 146. 43. 0. 1388. 0.13 0.10 0.19 7 HEGT85 HELIUM-GT- POWR 203 409 243 1276 120 72 1348. COAL-AFB 1348 0.15 0.30 0.20 7 HEGT85 HELIUM-GT- HEAT ٥. 317. 1661. 265. 533. 156. 0. -387. 1661. CUAL-AFB 1274. 0 0.16 0.32 0.16 8 HEGT60 HELIUM-GT- POWR 10. 1581. 500. 409. 120. -276. 1581.COAL-AFB 0. 0. 1581. 0.01 0.26 0.17 8 HEGT60 HELIUM-GT- HEAT 0. 152. 839 265 217 64. 0. 601 839. COAL-AFB 1439. 0.10 0.15 0.18 9 HEGTOO HELIUM-GT- POWR -735. 0. 2326. 1152. 409. 120. -1043. 0. 2326. COAL-AFB 2326. 0 -0.46 0.18 0.11 9 HEGTOO HELIUM-GT- HEAT 0. 71. 535. 265. 94. 28. 0. 985. 535. COAL-AFB 1520. 10 0.04 0.06 0.17 10 FCMCCL FUEL-CL-MO POWR 244. 1347. 638. 409. 120. -439. 1347, CCAL 1347. 0.15 0.30 0.20 0. 0 10 FCMCCL FUEL-CL-MO HEAT ٥. 284. 559. 265. 170. 50. ٥. 748. 559. COAL 1307. 10 0.18 0.13 0.20 11 FCSTCL FUEL-CL-ST POWR 552. 1040. 401 409 120 -159. Ο. 1040, COAL 1040. 10 0.35 0.39 0.25 0. 11 FCSTCL FUEL-CL-ST HEAT 0. 470. 688, 265. 271. 79. 0. 433. 688. COAL 1121. 10 0.30 0.24 0.24 409. -359. 12 IGGTST INT-GAS-GT POWR 0. 212. 1380. 570. 120. ٥. 1380.COAL 1380. 0 0.13 0.30 0.19 12 IGGTST INT-GAS-GT HEAT 265. 190. 641. COAL 1326. 0.17 0.14 0.20 0. 265. 641. 56. O. 685. 10 -406. 0 0.11 0.29 0.19 13 GTSGAR GT-HRSG-10 POWR 179, 1412. 610. 409. 120. 0. 1412. RESIDUAL 1412. 0. 13 GTSOAR GT-HRSG-10 HEAT ٥. 254. 613. 265. 178. 52. 0. 724. 613. RESIDUAL 1337. 0.16 0.13 0.20 14 GTACOS GT-HRSG-OS POWR 75. 1516. 779. 409. 120. -604. O. 1516. RESIDUAL 1516. 0.05 0.27 0.17 0. 14 GTACOS GT-HRSG-OS HEAT 231. 516. 265. 139. 41. ٥. 844. 516. RESIDUAL 1360. 0.15 0.10 0.19 ٥. 15 GTAC12 GT-HRSG-12 POWR 249 1342 625 409 120. -423 0. 1342. RESIDUAL 1342. 0 0.16 0.31 0.20 15 GTAC12 GT-HRSG-12 HEAT 174. 737. 569. RESIDUAL 1306. 0.18 0.13 0.20 0. 285. 569. 265. 51. 0. 1268. 553. 409. -338. 1268. RESIDUAL 1268. 0.20 0.32 0.21 16 GTAC16 GT-HRSG-16 POWR 0. 324. 120. 0. 16 GTAC16 GT-HRSG-16 HEAT 317. 608 265. 196. 686. 608. RESIDUAL 1274 58. 0. 0.20 0.15 0.21 -307. 291. 1300. 409. ٥. 1300. RESIDUAL 1300. 0.18 0.32 0.20 17 GTWC16 GT-HRSG-16 POWR 0. 526. 120. 17 GTWC16 GT-HRSG-16 HEAT 302. 655. 0. 265. 206. 61. 0. 634. 655. RESIDUAL 1290. 0.19 0.16 0.21

DATE OR/OR

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE 98

18SE PEG ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28121 MW 120.00 PROCESS MILLIONS BTU/HR 265.0 PROCESS TEMP(F) 338. PRODUCT CHLORINE-CAU HOURS PER YEAR 8500.

UTIL	ITY FUEL	COAL				POWE			O 1.545 EL EQV	BTU*10*	*6=	O. HOT	WATER BI	TU=10==6)= (0.	
· ·			WASTE	FUEL	COGEN	COGEN		COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	R HEAT
			FUEL	SAVED=	·		PROCES		PROCES		FUEL	FUEL	TOTAL+			FACTR	
			USED	NO-NET		HEAT		ELECT			SITE	USED	UTILIT				
						10**6				10**6		_	10**6				
			BIU/HR	BIU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/H	₹	BTU/HR				Management to be
8 001626	GTST-16/2	e paup	0.	531.	1060.	319.	409.	120.	-64.	_	1000	050101141	1000	_			
	9TST-16/2				879.	265.	340.	100.	0.	0. 218.		RESIDUAL RESIDUAL	1060. 1098.			0.39	
00.020	0101 1072	JILAI	0.	734.	073.	205.	340.	100,	υ.	210,	0/9.	RESIDUAL	1098.	0	0.31	0.31	0.2
9 CC1622	GTST-16/2	2 POWR	0.	518.	1073.	355.	409.	120.	-106.	C.	1073	RESIDUAL	1073.	0	0.33	0.38	0.2
9 001622	GTST-16/2	2 HEAT	0.	466.	801.	265.	306,	90.	Ö.	324.		RESIDUAL	1125.	ŏ	0.29		
													.,	•			-,-
	GTST-12/2			523.	1069.	356.	409.	120.	-107.	0.	1069.	RESIDUAL	1069.	Ó	0.33	0.38	0.2
D CC1222	GTST-12/2	2 HEAT	٥.	469.	795.	265.	305.	89.	0.	327.	795.	RESIDUAL	1123.	0			
	GTST-08/2				1129.	445.	409.	120.		0.		RESIDUAL	1129.		0.29		
1 000822	GTST-08/2	2 HEAT	0.	401.	672.	265.	244.	<u>71.</u>	<u> </u>	518.	<u>672.</u>	RESIDUAL	1190.		0.25	0.20	0.2
2 STIG15	ST19-15-16	DAUD	0.	221	1075.	1.4	400	100	405	_		555151141	4070	_			
	STIG-15-16		G.		20385.	14. 265.	409. 7767.	120. 2276.	295.			RESIDUAL RESIDUAL	1370.	0	-,,-		
_ 01.010	0110 10 10) IIEC1	0,	4130.	20305,	205.	7707.	22/0.	J.	-22391.	20365.	KESI DUAL	-2606.	0	0.17	0.38	0.0
3 ST1910	STIG-10-16	POWR	O.	317.	1140.	151.	409.	120.	134.	0.	1274	RESIDUAL	1274.	0	0.20	0.32	0.21
	STIG-10-16		9 .	556.	2000.	265.	718.	210.	o.	-985.		RESIDUAL	1035.	ă		0.36	0.13
														•	•••	0,00	0.,,
	ST18-15-16				1221.	257.	409.	120.	9.	0.	1230.	RESIDUAL	1230.	0	0.23	0.33	0.22
4 STIGIS	ST1G-15-16	HEAT	Ο.	371.	1257.	265.	421.	124.	0.	-37.	1257.	RESIDUAL	1220.	0	0.23	0.34	0.21
			_														
	DIESEL-AD		0.	457.	1104.	239.	409.	120.	30,	0.		RESIDUAL	1134.	0	0,29	0.38	
5 DEADVS	DIESEL-AD	/ HEAT	0.	507.	1222.	265.	<u>453.</u>	133.	0,	<u>-137.</u>	<u> 1222.</u>	RESIDUAL	1085.		0.29	0.37	0.22
E DEADYS	DIESEL-AD	/ DAUS	٥.	488.	1104.	280.	409.	120.	-18.	0.	1104	DED FOLIA!	1104.	1		A 07	
	DIESEL-AD		0.	400. 478.	1043.	265.	409. 387.	113.	-18, 0,	70.		RESIDUAL RESIDUAL	1104.	1	•••		
O DEADVE	DILOLL AD	, IIEAI	U.	470.	1045.	205.	307.	113.	٥.	70.	1043.	RESIDUAL	1113.	•	0.30	0.33	U. 24
7 DEADVI	DIESEL-AD	/ POWR	0.	488.	1104.	432.	409.	120.	-196.	0.	1104	RESIDUAL	1104.	····	0.31	0.37	0.24
	DIESEL-AD		o.	420.	678.	265.	251.	74.	0.	494.		RESIDUAL	1171.	i		0.21	- , -
						-53,				· · •				•	-,		
	ADV-DIESEL		0.	378.	1213.	522.	409.	120.	-302.	0.	1213.	RESIDUAL	1213.	0	0.24	0.34	0.22
8 DEHTPM	ADV-DIESEL	HEAT	0.	345.	616.	265.	208.	61.	0.	630.	616.	RESIDUAL	1246.	0	0.22	0.17	
	DIESEL-SOA		0.	389,	1134.	207.	409.	120.	68.	0.		DISTILLA	1202,	0	0.24		
9 DESOA3	DIESEL-SOA	HEAT	0.	497.	1449.	265.	523.	153,	<u> </u>	-356.	1449.	DISTILLA	1094.	<u> </u>	0.26	0.36	0.16
0 050440	015051			000		007	400				1.000			_			
	DIESEL-SOA		0.	389.	1134.	207.	409.	120.	68.	0.		RESIDUAL	1202.	Ō	0.24	0.34	0.22
S DESUAS	DIESEL-SOA	HEAT	Ο.	497.	1449.	265.	523,	153.	. 0.	-356,	1449.	RES! DUAL	1094.	9	0.26	0.36	0.16

9

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

FUEL ENERGY SAVED BY PROCESS AND ECS

REPORT 5.1

INDUSTRY 28121 MW 120.00 PROCESS MILLIONS BTU/HR 265.0 PROCESS TEMP(F)

338. PRODUCT CHLORINE-CAU HOURS PER YEAR 8500.

PAGE

99

POWER TO HEAT RATIO 1.545 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= n 0 WASTE COGEN COGEN COGEN AUX SITE NET= FESR POWER HEAT FUEL COGEN UTILIT TOTAL FAII FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR ٥. 439. 1134. 250. 409. 120. O. 1152.DISTILLA 1152. 0.28 0.36 0.23 18. 30 DESGA2 DIESEL-SGA HEAT 466. 1205. 265. 435. 127. 1205.DISTILLA 1125. 0.28 0.36 0. 0. -79. 0.22 30 DESJA2 DIESEL-SØA PØWR 1152. RESIDUAL 1152. 0.36 0.23 0. 439. 1134. 250. 409. 120. 18. 0. 0.28 30 DESGA2 DIESEL-SGA HEAT α. 466. 1205. 265. 435. 127. ٥. -79. 1205. RESIDUAL 1125. 1 0.28 0.36 0.22 409 31 DESCA1 DIESEL-SCA POWR 455. 120. -223. ٥. 1134. DISTILLA 0.29 0.36 0.23 0. 457. 1134 1134. 1 31 DESGA1 DIESEL-SGA HEAT O. 396. 661. 265. 239. 70. ο. 534. 661 DISTILLA 1195. 0.25 0.20 0.22 31 DESGA1 DIESEL-SGA POWR 0. 457. 1134. 455. 409. 120. -223. O. 1134.RESIDUAL 1154. 0.29 0.36 0.23 661.RESIDUAL 1195. 0.25 0.20 0.22 31 DESGA1 DIESEL-SGA HEAT ٥. 396. 661 265 239. 70. 0. 534. -453. 0.12 0.29 0.19 650. 120. 0. 1402. DISTILLA 1402. 32 GTSGAD GT-HRSG-10 POWR ٥. 189. 1402. 409. O 1330. 0.13 0.20 32 GTSOAD GT-HRSG-10 HEAT 0. 262. 572. 265. 167. 49. 0. 758. 572. DISTILLA 0.16 120. -157. 0.28 0.36 0.23 33 GTRAO8 GT-85RE-08 POWR 0. 444. 1147. 399. 409. 0. 1147, DISTILLA 1147. 33 GTRA08 GT-85RE-08 HEAT ٥. 400. 762. 265. 272. 80. ٥. 429. 762. DISTILLA 1191. 0 0.25 0.23 0.22 34 GTRA12 GT-85RE-12 POWR 448 1144 407 409 120. -167. ٥. 1144.DISTILLA 1144. 0.28 0.36 0.23 0. 745. 0.25 0.22 0.22 34 GTRA12 GT-85RE-12 HEAT 0. 400. 265. 267. 78. ٥. 446. 745. DISTILLA 1191. 0 0.26 0.35 0.23 409. 120. -200. 1173.DISTILLA 1173. 35 GTRA16 GT-85RE-16 POWR Ο. 418. 1173. 435. 0. 35 GTRA16 GT-85RE-16 HEAT 249 73. 0. 500. 715. DISTILLA 1215. O 0.24 0.21 0.22 0. 377. 715. 265 0.20 0.32 0.21 120. -304. 0. 1280. DISTILLA 1280. 1280. 523. 409. 36 GTR208 GT-60RE-08 POWR 0. 312. 36 GTR208 GT-60RE-08 HEAT 312. 648. 265. 207. 61. 0. 631. 648. DISTILLA 1280. n 0.20 0.16 0.21 0. 0.22 0.33 0.21 37 GTR212 GT-60RE-12 POWR 351. 1241. 488. 409. 120. -262. 0. 1241.DISTILLA 1241. 0. 674. DISTILLA 1258. n 0.21 0.18 0.21 37 GTR212 GT-60RE-12 HEAT ٥. 333. 674. 265. 223. 65. 0. 584. 1215.DESTILLA 1215. 0.24 0.34 0.22 38 GTR216 GT-60RE-16 POWR n 376. 1215 476 409 120. -248 Ω. 265. 0. 567. 676. DISTILLA 1244. 0.22 0.18 0.21 228. 67. 38 GTR216 GT-60RE-16 HEAT ٥. 348. 676. -80. O. 1166.DISTILLA 1166. 0 0.27 0.35 0.23 39 GTRW08 GT-85RE-08 POWR ٥. 425. 1166. 333. 409. 120. 0. 262. 927. DISTILLA 1190. 0.25 0.27 0.22 265 325 95. 39 GTRWO8 GT-85RE-08 HEAT О. 402. 927 -73. Œ. 1125.DISTILLA 1125. 0 0.29 0.36 0.24 40 GTRW12 GT-85RE-12 POWR ٥. 466. 1125. 327. 409. 120. 912.DISTILLA 1154. 0 0.27 0.29 0.23 40 GTRW12 GT-85RE-12 HEAT 437. 912. 265. 332. 97. 0. 242. 0.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE 100

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28121 MW 120.00 PROCESS MILLIONS BTU/HR 265.0 PROCESS TEMP(F) 338. PRODUCT CHLORINE-CAU HOURS PER YEAR 8500.

	UTIL	I YT	FUEL	COAL				POWE		AT RATIO		BTU*10*	* 6=	о. нот	WATER BT	U*10**6:	: (0.	
					WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT		SITE	NET=	FAIL	FESR	POWER	R HEAT
					FUEL USED 10**6	SAVED= NO-NET 10**6	USED 10**6	PROCES HEAT 10**6	POWER 10**6	ELECT	PROCES BOILR 10**6	USED 10**6	FUEL SITE 10**6	FUEL USED	TOTAL+ UTILIT 10**6			FACTR	FACTR
					BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HR	t	BTU/HR				
			35RE-16		0. 0.	444. 412.	1147. 865.	351. 265.	409. 309.	120. 90.	-102. 0.	0.		DISTILLA	1147.	0	0.28		
41 0	SIKWIO	G1-0	SKE-10	HEAT	U.	412.	605.	200.	309.	9 0.	٥.	315,	665.	DISTILLA	1180.	U	0,26	0.26	0.22
			ORE-08				1321.	436.	409.	120.		0.		DISTILLA	1321.			0.31	0,20
42 0	STR308	GT-	50RE-08	HEAT	0.	287.	802.	265.	249.	73.	0.	503.	802.	DISTILLA	1305,	0	0.18	0.19	0.20
43 6	3TR312	GT-	ORE-12	POWR	0.	394.	1197.	401.	409.	120.	-160.	0.	1197.	DISTILLA	1197.	. 0	0.25	0.34	0.22
43 6	3TR312	GT-8	ORE-12	HEAT	0.	366.	791.	265.	270.	79.	0.	434.	791.	DISTILLA	1225.	0	0.23	0,22	0.22
44 6	3TR316	GT-0	ORE-16	POWR	0.	383.	1208.	407.	409.	120.	-168.	0.	1208.	DISTILLA	1208.	0	0.24	0.34	0.22
44 0	3TR316	GT-	SORE-16	HEAT	0,	358.	786.	265.	266.	78.	0.	447.	786.	DISTILLA	1233.	0	0.23	0.22	0.21
45 F	FCPADS	FUE	-CL-PH	POWR	0.	418.	1077.	183.	409.	120.	96.	0.	1174.	DISTILLA	1174.	0	0.26	0.35	0.23
45 F	FCPADS	FUE	CL-PH	HEAT	0.	604.	1559.	265.	592.	174.	0.	-572.	1559.	DISTILLA	987.	0	0.28	0.38	0.17
46 F	FCMCDS	FUEL	-CL-MO	POWR	0.,	558.	994.	232.	409.	120.	39.	0.		DISTILLA	1033.	0		0.40	
46 F	FCMCDS	FUE	CL-MO	HEAT	0.	639.	1137.	265.	469.	137.	0.	-185.	1137.	DISTILLA	953.	Ò	0.36	0.41	0.23

ALITYAND MODELLE IS

IONEYWELL PAGE

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 101

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

G. PRODUCT CRYOGENIC-O- HOURS PER YEAR -1. INDUSTRY 28131 MW 34.00 PROCESS MILLIONS BTU/HR O. PROCESS TEMP(F)

POWER TO HEAT RATIO **** WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10*#6= UTILITY FUEL COAL UTILIT TOTAL SITE FAIL FESS POWER HEAT WASTE FUEL COGEN COGEN COGEN AUX NET= FUEL FACTR FACTR PROCES FUEL FUEL +JATCT FUEL SAVED= FUEL PROCES PROCES MW BOILR USED SITE USED UTILIT USED NO-NET USED HEAT POWER ELECT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 363. O. DISTILLA 363. 0.32 0. O ONOCON NO COOON α. 0. ٥. 0 0. ٥. ٥. 0. 347. RESIDUAL 347. 1 0.04 0.33 0. 1 STM141 STM-TURB-1 POWR 0. 15. 347. 179. 116. 34. -211. 0. 1 STM141 STM-TURB-1 HEAT ٥. 363. O. RESIDUAL 363. ٥. 0. 0. 0. 1 0.04 0.33 0. 0. 347. COAL-FGD 347. 1 STM141 STM-TURB-1 POWR 0. 15. 347. 179. 116. 34. -211. 1 STM141 STM-TURB-1 HEAT 363. O. COAL-FOD 363. 111 0. 0.71 0. ٥. 0. ٥. O. 347.COAL-AFB 1 0.04 0.33 0. 347. 1 STM141 STM-TURB-1 POWR Ω. 15. 347. 179. 116. -211. 0. 363. O. COAL-AFB 363. 111 0. 0. ٥. 1 STM141 STM-TURB-1 HEAT 0. ٥. 0. 0. Œ. n 0. 2 STM088 STM-TURB-8 POWR -20. 383. 209. 116. 34. -246. 0. 383. RESIDUAL 1 -0.06 0.30 0. O. RESIDUAL 363. 111 0. 0. 2 STM088 STM-TURB-8 HEAT ٥. ٥. ٥. 0. 363. O. n 0. 383. COAL-FGD 383. 1 -0.06 0.30 0. 2 STMO88 STM-TURB-8 POWR 0 -20. 383. 209. 116. 34. -246. 363. O. COAL-FOD 363. 111 0. 0. 2 STM088 STM-TURB-8 HEAT 0. 0. 0. 0. 0. n 0. 0. 383, COAL-AFB 383. 1 -0.06 0.30 0. 2 STMO88 STM-TURB-8 POWR 0. -20. 383. 209. 116. 34. -246. O. COAL-AFB 363. 111 0. 0. 0. 2 STMO88 STM-TURB-8 HEAT ٥. 0. Δ. 0. ٥. 363. ٥. 0. 0. 303, COAL-PFB 303. 1 0.17 0.38 0. 3 PFBSTM PFB-STMTB- POVR 60. 303. 143. 116. 34. -169. ٥. O. COAL-PFB 363. 111 0. 0. 3 PFBSTM PFB-STMTB- HEAT 0. ٥. 363. 0. 0. ٥. n. 0. 280, RESIDUAL 280. 1 0.23 0.41 4 TISTMT TI-STMTB-1 POWR 83. 280. 120. 116. 34. -141 0. O. RESIDUAL 363. 111 0, 0. 0. C. 363. 0. 0. 4 TISTMT TI-STMTB-1 HEAT ٥. O. n. G. 280.COAL 280. 1 0.23 0.41 0. 83. 280. 120. 116. 34. -141. 0. 4 TISTMT TI-STMTB-1 POWR 363. 363. O. COAL 111 0. 0. 4 TISTMT TI-STMTB-1 HEAT 0. 0. 0. ø. ٥. 825, RESIDUAL 825. 1 -1.27 0.14 0. -462. 825. 583. 116. 34. -686. 0. 5 TIHRSG THERMIONIC POWR ٥. 363. O.RESIDUAL 363. 111 0. 0. 5 TIHRSG THERMIONIC HEAT 0. О. ٥. ٥. Ω. 825. 1 -1.27 0.14 0. 825. 583. 34. -686. 0. 825. COAL 5 TIHRSG THERMIONIC POWR -462. 116. O. COAL 363. 111 0. ٥. 363. 0. 5 TIHRSG THERMIONIC HEAT 0. 0. ٥. 1 -0.04 0.31 -14. 34. -185. ٥. 377, DISTILLA 377. 377. 157. 116. 6 STIRL STIRLING-1 POWR O. DISTILLA 363. 111 0. 0. 0. 363. 6 STIRL STIRLING-1 HEAT Ω. Ō. 0. Ō. 0.

I&SE PEO ADV DESIGN ENGR

ISSE PET ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 28731 MW 34.00 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F)

O. PRODUCT CRYOGENIC-O- HOURS PER YEAR

-1.

PAGE 102

HITH ITY FUEL

POWER TO HEAT RATIO *****
WASTE FUEL FOV BTU*10**6= HAT WATER BILLY 10++6=

UTIL	ITY FUEL	COAL			•		W	ASTE FU	EL EQV	BTU*10*	*6= 0. Ho	T WATER BI	[U*10**6	5= (o <i>.</i>	
			WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL SITE	NET=	FAIL	FESR	POWER	HEAT
			FUEL	SAVED=			PROCES		PROCES		FUEL FUEL	TOTAL+			FACTR	
			USED	NO-NET	USED	HEAT	POWER	ELECT	BOILR	USED	SITE USED	UTILIT				
				10**6	10**6	10**6	10**6		10**6	10**6	10**6	10**6				
······································			BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HR	BTU/HR				*
6 STIRL	STIRLING-1	POWR	٥.	-14.	377.	157.	116.	34.	-185.	0.	377.RESIDUA	L 377.	1	-0.04	0.31	٥.
6 STIRL	STIRLING-	HEAT		0.	0.	0.	0.	٥.		363.			111		0.	ō.
6 STIRL	STIRLING-1	POWR	0.	-14.	377.	157.	116.	34.	-185.	0.	377. COAL	377.	1	-0.04	0.31	0.
6 STIRL	STIRLING-1	HEAT	0.	0.	0.	0.	0.	0.	0.	363.	O. COAL	363.	111	0.	0.	0.
7 HEGT85	HELIUM-GT-	POWR	.0.	1.	361.	161.	116.	34.	-190.	0.	361.COAL-AF	B 361.	11	0.00	0.32	٥.
	HELIUM-GT			0.	0.	0.	٥.	0.	0.	363.	O.COAL-AF	В 363.	111		0.	0.
8 HEGT60	HELIUM-GT-	POWR	٥.	-85.	448.	192.	116.	34.	-226.	0.	448.COAL-3F	B 446.	11	-0.24	0.26	0.
8 HEGT60	HELIUM-GT-	HEAT		0.	0.	0.	0.	0.	٥.	363.			111		0.	0.
9 HEGTOO	HELIUM-GT-	POWR	0.	-297.	659.	398.	116.	34.	-469.	0.	659.COAL-AF	B 659.	11	-0.82	0.18	٥.
9 HEGTOO	HELIUM-GT-	HEAT	0.	e.	٥.	Ο,	0.	0.		363.			111		0.	o.
O FCMCCL	FUEL-CL-MC	POWR	0.	-19.	382.	1F3.	116.	34.	-215.	0.	382, COAL	382.	11	-0.05	0.30	0.
O FCMCCL	FUEL-CL-MC	HEAT	0.	0.	0.	0.	0.	0.		363.		363,	111		0.	0.
1 FCSTCL	FUEL-CL-S1	POWR	0.	127.	236.	68.	116.	34.	-80.	0.	236. COAL	236,	11	0.35	0.49	0.
1 FCSTCL	FUEL-CL-ST	HEAT	0,	0.	0.	0.	0.	0.	0.	363,	O.COAL	363.	111	0.	0.	Ö.
2 IGGTST	INT-GAS-GT	POVR	٥.	73.	290.	90.	116.	34.	-106.	0.	290. COAL	290.	11	0.20	0.40	٥.
2 IGGTST	INT-GAS-G1	HEAT	<u> </u>	0.	0.	0.	0,	0.	0.	363.	O.COAL_	363.	111	0.	0.	٥.
3 GTSCAR	GT-HRSG-10	POWR	0.	-38.	400.	198.	116.	34.	-233.	0.	400.RESIDUA	L 400.	1	-0,10	0.29	ο.
3 GTSOAR	GT-HRSG-10	HEAT	0.	0.	0.	o.	Ο.	0.	0.	363.	O.RESTDUA	L 363,	111	0.	0.	0.
	GT-HRSG-08			-67.	430.	206.	116.	34.	-243.	0,				-0.19	0.27	0.
4 GTACO8	GT-HRSG-08	HEAT	0.	0.	0.	0.	0.	0.	٥.	363.	O.RESIDUA	L 363.	111	ο.	0.	0.
	GT-HRSG-12			-18.	380.	196.	116.	34.	-231.	0.	380.RESIDUA			-0.05	0.31	
5 GTAC12	GT-HRSG-12	HEAT	0.	0.	0.	0.	٥.	0.	0.	363.	C.RESIDUA	L 363.	111	0.	0,	0.
	GT-HRSG-16			3.	359.	180.	116.	34.	-212.	0.					0.32	
6 GTAC16	GT-HRSG-16	HEAT	0,	0.	0.	0.	0.	<u> </u>	٥.	363,	O.RESIDUA	L 363,	111	0.	0.	_0,
7 GTWC16	GT-HRSG-16	POWR	٥.	-6.	368.	147.	116.	34.	-173.	٥.	368. RESIDUA				0.32	0.
7 GTWC16	GT-HRSG-16	HEAT	0.	0.	0.	0.	0.	٥.	٥.	363.	O.RESIDUA	. 363.	111	٥.	Ο.	0.

ISSE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28131 MW 34.00 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F)

O. PRODUCT CRYOGENIC-O- HOURS PER YEAR

-1.

PAGE 103

POWER TO HEAT RATIO **** UTILITY FUEL COAL WASTE FUEL EGV BTU*10**6= 0. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/28 POWR 111. 251. 116. 57. 34. -67. 0. 251. RESIDUAL 251. 1 0.31 0.46 0. 18 CC1626 GTST-16/26 HEAT 0. Ð. 0. ٥. ٥. ٥. . 0. 363. O. RESIDUAL 363. 111 0. 0. 19 CC1622 GTST-16/22 POWR ۵. 111. 251. 63. 116. 34. -74. 0. 251. RESIDUAL 251. 0.31 0.46 0. 19 CC1622 GTST-16/22 HEAT α. ٥. ο. 0. 0. ٥. 0. 363. O. RESIDUAL 363. 111 0. 0. ٥. 20 CC1222 GTST-12/22 POWR 114. 249. 62. 116 34 -73 249. RES! DUAL 0.3 Ω 0.47 20 CC1222 GTST-12/22 HEAT Ω. 0. 0. 0. 0. 0. 0. 363. O. RESIDUAL 363. 111 0. 0. ٥. 21 CC0822 GTST-08/22 POWR ٥. 111. 251. 74. 116. 34. -87. ٥. 251. RESIDUAL 251. 1 0.31 0.46 0. 21 CC0822 GTST-08/22 HEAT ٥. ٥. O. RESIDUAL 0. 0. 0. 363. 363. 111 Ω. ٥. 0. 22 STIG15 STIG-15-16 POWR 304. RESIDUAL 0. 58. 304. 0. 4. 116. 34. -5. 304. 1 0.16 0.38 0. 22 STIG15 STIG-15-16 HEAT 0. 0. 0. 0. ٥. 0. 0. 363. O. RESIDUAL 283. 111 0. 0. G. 23 STIG10 STIG-10-16 POWR 1 0.11 0. 39. 323. 43. 116. 34. -50. ۵. 323. RESIDUAL 323. 0.36 0. 23 STIG10 STIG-10-16 HEAT 0. 0. ۵. 0. 0. 0. 0. 383. O. RESIDUAL 363. ٥. 111 0. 0. 24 STIG1S STIG-15-16 POWR 0. 16. 346. 73 116 ٥. 34. -86 346. RESIDUAL 346. 1 0.05 0.34 O 24 STIG1S STIG-1S-16 HEAT ٥. 0. О. 0. 0. 0. ٥. 363. O. RESIDUAL 363. 111 0. 0. 0. 25 DEADV3 DIESEL-ADV POWR n. 50. 313. 113. 116. 34. -132. 0. 313. RESIDUAL 313. 1 0.14 0.37 0. 25 DEADV3 DIESEL-ADV HEAT 0, Ο. 0. 0. 0. 0. 0. 363. O. REST DUAL 363. 111 ٥. O. 26 DEADV2 DIESEL-ADV POWR 50. 313. 79. 116. 34. -93. 0. 313. RESIDUAL 313. 1 0.14 0.37 0. 26 DEADV2 DIESEL-ADV HEAT 0. 0. 0. 0. ٥. 0. 0. 383. O. RESIDUAL 363. 111 0. n. n. 27 DEADVI DIESEL-ADV POWR 50. 0. 313. 122. 116. 34. -144. O. 313. RESIDUAL 313. 1 0.14 0.37 0. 27 DEADVI DIESEL-ADV HEAT 0. ٥. 0. 363. O. RESIDUAL . 363. ٥. 0. 0. 0. 111 0. 0. ٥. 28 DEHTPM ADV-DIESEL POWR 73. Ω 289 147. 116. -173. 289. RESIDUAL 289. 1 0.20 0.40 28 DEHTPM ADV-DIESEL HEAT 0. 0. 0. O. 363. O. RESIDUAL 363. 111 0. 0. ٥. 0. ο. 0. 29 DESGAS DIESEL-SGA POWR 0. 41. 321. 105. 116. 34. -123. C. 321. DISTILLA 321. 1 0.11 0.36 0. 29 DESGAS DIESEL-SGA HEAT ٥. ٥. ο. ٥. ٥. 0. 0. 363. O. DISTILLA 363. 111 0. 0. 29 DESGAS DIESEL-SGA POWR 0. 41. 321. 105. 115. 34. -123. ٥. 321. RESIDUAL 32ì. 1 0.11 0.36 0. 29 DESCAS DIESEL-SCA HEAT 0. 0. 0. 363. O. RESIDUAL 363. 111 0. ٥. ₺. ٥. 0. 0.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 104

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28131 MW 34.00 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F) 0. PRODUCT CRYCGENIC-O- HOURS PER YEAR -1.

POWER TO HEAT RATIO **** UTILITY FUEL HOT WATER BTU-10**6= COAL WASTE FUEL EQV BTU*10**6= Ο. 0. WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FESR POWER HEAT FAIL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED SITE USED UTILIT USED HEAT POWER ELECT BOILR USED 10**6 10**6 10**6 10**6 10**6 10××6 10**6 10**6 1@##6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR -83. 0. 321. DISTILLA 1 0.11 0.36 0. 30 DESGA2 DIESEL-SGA POWR Ο. 41. 321. 71. 116. 34. 321. 30 DESGA2 DIESEL-SGA HEAT ٥. 0. ٥. 0. Ο. ٥. 0. 363. O. DISTILLA 363. 111 0. ٥. 1 0.11 30 DESGA2 DIESEL-SGA POWR ٥. 41. 321. 71. 116. 34. -83. 0. 321. RESIDUAL 321. 0.36 ٥. 30 DESGA2 DIESEL-SGA HEAT O. RESIDUAL 363. 111 0. ۵. 0. ο. n. ۵. 0. n. 363. ٥. 0. 321. 31 DESCA1 DIESEL-SCA POWR 41 321 129. 116. 34 -152 0. 321.DISTILLA 1 0.11 0.36 31 DESGA1 DIESEL-SGA HEAT ٥. Ü, ٥. 0. 363. ٥. 0, ο. O. DISTILLA 363. 111 0. ο. ٥. 31 DESGA1 DIESEL-SGA POWR 0. 41. 321. 129. 116. 34. -152. О. 321. RESIDUAL 321. 1 0.11 0.36 31 DESGA1 DIESEL-SOA HEAT 0. 0. 363. O. RESIDUAL 363. n. 0. G. 0. 111 0. Ω. 32 GTSGAD GT-HRSG-10 POWR ٥. -35. 397. 214. 116. 34. ~252. ٥. 397. DISTILLA 397. 1 -0,10 0.29 32 GTSOAD GT-HRSG-10 HEAT 0. 363. O. DISTILLA 363. 111 0. 0. ٥. Ο. ٥. 0. 33 GTRACE GT-85RE-08 POWR 0. 38. 325. 131. 116. 34. -154. 0. 325, DISTILLA 325. 1 0.10 0.36 0. 33 GTRAOS GT-85RE-08 HEAT O. DISTILLA 363. ٥. 0. 0. 0. ٥. 363. 111 0. C. 324. DISTILLA 34 GTRA12 GT-85RE-12 POWR n 38 324. 733. 116. 34. -156. C. 324. 0.11 0.36 34 GTRA12 GT-85RE-12 HEAT 0.-0. 0. 0. 0. 0. ٥. 363. O. DISTILLA 353. 111 0. 0. 35 GTRA16 GT-85RE-16 POWR 0. 30. 332. 141. 116. 34. -166. G. 332. DISTILLA 332. 1 0.08 0.35 0. 35 GTRA16 GT-85RE-16 HEAT 363. O. DISTILLA 363. 111 ٥. 0. 0. 0. 0. 0. Ο. 0. 0. 363. DISTILLA 36 GTR208 GT-60RE-08 POWR Û. Ó. 363. 171. 116. 34. -201. 0. 363. 1 0. 0.32 0. 36 GTR208 GT-60RE-08 HEAT 363. O. DISTILLA 363. 111 0. 0. ٥. 0. 0. 0. 0. ٥. 0. 0. 352. 37 GTR212 GT-60RE-12 POWR ٥. 11. 352. 157. 116. 34. -185. 0. 352. DISTILLA 1 0.03 0.33 0. O. DISTILLA 363. 111 0. 0. 37 GTR212 GT-60RE-12 HEAT 0. ٥. ٥. Q. 0. ٥. ٥. 363. ٥, 38 GTR216 GT-60RE-16 POWR ٥. 18. 344. 154. 116. 34. -181. 0. 344. DISTILLA 344. 0.05 0.34 38 GTR216 GT-60RE-16 HEAT 363. O. DISTILLA 363. 111 0. ۵. o. Ω. Ο. 39 GTRV08 GT-85RE-08 POVR 0. 32. 331. 109. 116. 34, -128. ٥. 331.DISTILLA 331. 1 0.09 0.35 0. 39 GTRY08 GT-85RE-08 HEAT 0. 0. 0. 0. 0. 0. 363. O. DISTILLA 363. 111 0. O. 0. 40 GTRW12 GT-85RE-12 POWR 0. 319. 106. 116. 34. -125. 0. 319. DISTILLA 319. 1 0.12 0.36 0. 44. Ο. 363. C SISTILLA 363. 0. 0. 111 0. Ω. 0. 40 GTRW12 GT-85RE-12 HEAT 0. 0. ٥.

EYWELL PAGE

GENERAL ELECTRIC COMPANY

COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 105

18SE PEG ADV DESIGN ENGR

REPORT 5,1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28131 MW 34.00 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F) 0. PRODUCT CRYOGENIC-O- HOURS PER YEAR -1.

POWER TO HEAT RATIO **** UTILITY FUEL COAL WASTE FUEL EQV BTU=10≈×6= O. HOT WATER BTU-10*=6= WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES PROCES MW PROCES FUEL FUEL FUEL SAVED= FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR 0. 38. 325. 114. 116. 34. -134. 0. 325. DISTILLA 325. 1 0.10 0.36 0. 41 GTRW16 GT-85RE-16 HEAT 363. O.DISTILLA 0. 0. ٥. ٥. 0. ٥. 0. 363. 111 0. 0. 42 GTR308 GT-60RE-08 POWR -12. 374. 168. 34. -198. 0. 374. DISTILLA 374. 1 -0.03 0.31 0. 116. 0. 42 GTR308 GT-60RE-08 HEAT 0. ٥. ۵. ۵. ٥. 363. O. DISTILLA 363. 111 0. 43 GTR312 GT-60RE-12 POWR 339. DISTILLA 23. 339. 129. 116. 34. -152 0. 339. 1 0.06 0.34 0. 43 GTR312 GT-60RE-12 HEAT ۵. 0. ۵. ۵. ۵. 0. 363. O. DISTILLA 363. 111 0. ٥. 44 GTR316 GT-60RE-16 POWR O. 20. 342. 132. 116. 34. -155. ٥. 342.DISTILLA 342. 1 0.06 0.34 0. 44 GTR316 GT-60RE-16 HEAT 0. ٥. 0. 0. 0. 363. O. DISTILLA 363. 111 0. 0. 45 FCPADS FUEL-CL-PH POWR 305. 52. -61. 0. 305, DISTILLA 305. 1 0.16 0.38 0. 0. 57. 116. 34. ٥. 45 FCPADS FUEL-CL-PH HEAT 0. 0. 0. 0. ٥. ٥. 383. O. DISTILLA 363. 111 0. 0. -77. 46 FCMCDS FUEL-CL-MO POUR 81. 0. 282. DISTILLA 282. 1 0.22 0.41 ٥. 0. 282. 66. 116. 34. 46 FCMCDS FUEL-CL-MO HEAT 0. 0. 0. ٥. 0, 0. 0. 363. O. DISTILLA 363. 111 0. G. 0.

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1 *=FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 28191 MW 30.29 PROCESS MILLIONS BTU/HR 980.0 PROCESS TEMP(F) 495. PRODUCT ALUMINA

HOURS PER YEAR 8136.

PAGE 106

POWER TO HEAT RATIO 0.105 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU:10**6= O. n. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE FESR POWER HEAT NET= FAIL PROCES PROCES MW FUEL. SAVED= FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT USED 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COOON 0. 'n O. ٥. 1153. 323. 1153. COAL-FGD 1476. 0 0. 0.07 0.66 1 STM141 STM-TURB-1 POWR 201. 1133. Ω. 860. 103. 30. 141. O. 1275 RESIDUAL 1275. 0 0.14 0.08 0.77 1 STM141 STM-TURB-1 HEAT G. 229. 1291 980. 118. 35. O. -45. 1291. RESIDUAL 1246. 0,15 0.09 0.76 1 STM141 STM-TURB-1 POWR ο. 201. 1133. 860. 103 30. 141. 0. 1275.CCAL-FGD 1275. 0 0.14 0.08 0.77 1 STM141 STM-TURB-1 HEAT ٥. 229. 1291. 980. 118. 35. 0. -45. 1291.COAL-FGD 1246 0.15 0.09 0.76 141. 1 STM141 STM-TURB-1 POWR 201. 1133. 860. 103. 1275.COAL-AFB 1275. 0.14 0.08 '0.77 ٥. 30. 1 STM141 STM-TURB-1 HEAT ۵. 229. 1291. 980. 118. 35. 0. -45. 1291.COAL-AFB 1246. 0.15 0.09 0.76 Ω 2 STM088 STM-TURB-8 POWR -397. 1873. 1489 103. 1873. 30. -598 1873. RESIDUAL 0 -0.27 0.06 0.52 2 STM088 STM-TURB-8 HEAT 0. 133. 1233. 980. 68. 20. 0. 110. 1233. RESIDUAL 1343. 0.09 0.05 0.73 1873. 2 STMO88 STM-TURB-8 POWR -397. 1873. 1489. 103. 30. -598. 0. 1873, COAL-FGD 0 -0.27 0.06 0.52 0. 2 STM088 STM-TURB-8 FEAT 133. 1233. 980. 68. 20. 0. 110. 1233.COAL-FGD 1343. 0 0.09 0.05 0.73 2 STM088 STM-TURB-8 POWR ٥. -397. 1873. 1489. 103. 30. -598. ٥. 1873. COAL-AFB 1873. 0 -0.27 0.06 0.52 2 STM088 STM-TURB-8 HEAT ٥. 133. 1233. 980. 68. 20. 0. 110. 1233. COAL-AFB 1343. 0 0.09 0.05 0.73 3 PFBSTM PFB-STMTB- POWR 103. 653. 1283, COAL-PFB 1283. 0 0,13 0.08 0.76 0. 193. 630. 425. 30. 0. 3 PFBSTM PFB-STMTB- HEAT 0. 445. 1452. 980. 238. 70. α. -422. 1452. COAL-PFB 1030. 0.23 0.16 0.67 4 TISTMT TI-STMTB-1 POWR 0. 197. 480. 301. 103 30. 799. ٥. 1278. RESIDUAL 1278. 0 0.12 0.08 0.77 4 TISTMT TI-STMTB-1 HEAT 0. 642. 1561. 980. 336. 99. ۵. -728. 1561 RESIDUAL 834. 0.29 0.22 0.63 4 TISTMT TI-STMTB-1 POWR 0. 197. 480. 301. 103. 30. 799. a. 1278. COAL 1278. 0 0.13 0.08 0.77 4 TISTMT TI-STMTB-1 HEAT 642. 1561. 980. 336. 99. α. -728. 1561.COAL 834. 0 0.29 0.22 0.53 0. 5 TIHRSG THERMIGNIC POUR 639. ۵. 1373. 0 0.07 0.08 0.71 0. 103. 735. 437. 103. 30. 1373.RESIDUAL 5 TIHRSG THERMIONIC HEAT 0 0.12 0.14 0.60 230. 980. 232. 68. -401. 1647 RESIDUAL 1246. 0. 1647. 0. 1373. 0 0.07 0.08 0.71 5 TIHRSG THERMIONIC POUR 0. 103. 735. 437. 103. 30. 639. 0. 1373. COAL 0 0.12 0.14 0.60 5 TIHRSG THERMIONIC HEAT 230. 1647. 980. 232. 68. -401 1647. COAL 1246. Ο. 0. 6 STIRL STIRLING-1 POWR ο. 133. 476. 243. 103. 30. 867. O. 1343.DISTILLA 1343. 0 0.09 0.08 0.73 0 0,22 0.22 0.51 6 STIRL STIRLING-1 HEAT 537. 1917. 416. -979. 1917.DISTILLA 938. 980. 122.

I&SE PEO ADV DESIGN ENGR

17 GTWC16 GT-HRSG-16 HEAT

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

FUEL ENERGY SAVED BY PROCESS AND ECS

PAGE 107

REPURT 5.1

0. 1115.

2416.

980.

761.

223.

0. -2055.

2416, RESIDUAL

361.

0 0.32 0.32 0.41

INDUSTRY 28191 MW 30.29 PROCESS MILLIONS BTU/HR 980.0 PROCESS TEMP(F) 495. PRODUCT ALUMINA HOURS PER YEAR 8136.

POWER TO HEAT RATIO 0.105 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU×10**6= 0. COGEN COGEN COGEN COGEN UTILIT TOTAL SITE NET= FESR' POWER HEAT WASTE FUEL AUX FAIL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL TOTAL+ FIIFI FUEL FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30. 6 STIRL STIRLING-1 POWR ٥. 133. 476. 243. 103. 867. 0. 1343.RESIDUAL 1343. 0 0.09 0.08 0.73 6 STIRL STIRLING-1 HEAT 0. 537. 1917. 980. 416. 122. ٥. ~979. 1917, RESIDUAL 938. 0.22 5.22 0.51 6 STIRL STIRLING-1 POWR 476. 103. 1343. Ω. 133. 243. 30. 867. 0. 1343. COAL 0.09 0.08 0.73 6 STIRL STIRLING-1 HEAT ٥. 537. 1917. 980. 416. 122. ٥. -979. 1917, COAL 938. 0 0.22 0.22 0.51 7 HEGT85 HELIUM-GT- POWR -39 322 -34 103 30 1193 1515. COAL-AFB 1515. 11 -0.03 0.07 0.65 0 7 HEGT85 HELIUM-GT- HEAT -9206. 1124. -9206. 980. -2955. -866. 0. 9558. -9206.COAL-AFB 352. 11 -5.48 -8.40 2.79 8 HEGT60 HELIUM-GT- POWR 103. 1086. 1485. 10 -0.01 0.07 0.66 0. -9. 399. 57. 30 0. 1465.COAL-AFB 8 HEGT60 HELIUM-GT- HEAT -163. 6901. 980. 1787. 524 0. -5263. 6901.COAL-AFB 1638. 0 -0.02 0.26 0.14 0. 9 HEGTOO HELIUM-GT- POWR ٥, 1421.COAL-AFB 1421. 10 0.04 0.07 0.69 0. 55. 587. 271. 103. 30. 834. 980. 9 HEGTOO HELIUM-GT- HEAT 373. 109. 2121, COAL-AFB 1277. 0.09 0.18 0.46 Ω. 198. 2121. ٥. -844. 1305. COAL 10 FCMCCL FUEL-CL-MG POWR 171. 160. 103. 965. 1305. 0.12 0.08 0.75 0. 340. 30. C. 10 FCMCCL FUEL-CL-MO HEAT 2085. 980. 634. 0. -1658. 2085. COAL 427. 0.33 0.30 0.47 Ω. 1049. 186. Ω 1299 0.12 0.08 0.75 11 FCSTCL FUEL-CL-ST POWR 177 291 123 103. 30 1008 n 1299.COAL 0. -2242. 70. 0.38 0.36 0.42 11 FCSTCL FUEL-CL-ST HEAT 0. 1406. 2311. 980. 821. 241. 2311, COAL 12 IGGTST INT-GAS-GT POWR 406. 185 103. 935, 1341.COAL 1341. 10 0.09 0.08 0.73 ٥. 134. 30. ٥. 764. 0.25 0.25 0.46 12 IGGTST INT-GAS-GT HEAT 712. 2151. 980 547. 160 0. -1387. 2151.COAL 13 GTSOAR GT-HRSG-%C POWR 30. 1350. RESIDUAL 1350. 0.09 0.08 0.73 0. 126. 356. 136. 103. 994. ٥. 565. 13 GTSOAR GT-HRSG-10 HEAT О. 911. 2577. 980. 747. 219. 0. -2013. 2577. RESIDUAL 0.26 0.29 0.38 1303. 0.12 0.08 0.75 197. 1303. RESIDUAL 14 GTACO8 GT-HRSG-08 POWR 0. 172. 383. 103. 30. . 0. 620. 14 GTACO8 GT-HRSG-08 HEAT Ú. 856. 1900. 980. 513. 150. 0. -1280. 1900.RESIDUAL 0.31 0.27 0.52 1307. 0.08 0.75 15 GTAC12 GT-HRSG-12 FOUR 103. 30. 0. 1307. RESIDUAL 0.11 169. 339. 157. 968. 15 GTAC12 GT-HRSG-12 HEAT 1054. 2114. 980. 645. 189. 0. -1692. 2114. RESIDUAL 422. 0.33 0.31 0.46 1315. 0.11 0.08 0.75 16 GTAC16 GT-HRSG-16 POWR 320. 134. 103. 30. 995. 0. 1315.RESIDUAL 0. 161. 301. 0.42 16 GTAC16 GT-HRSG-16 HEAT 1175. 2332 980 753. 221 -2031. 2332. RESIDUAL 0.33 0.32 1324. D 0.10 0.08 0.74 17 GTWC18 GT-HRSG-16 POWR 133. 103. 30. 996. 0. 1324.RESIDUAL 0. - 151. 328.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

RIC COMPANY PAGE 108
BY ALTERNATIVES STUDY

I&SE PEO ADV DESIGN ENOR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28191 MW 30.29 PROCESS MILLIONS BTU/HR 980.0 PROCESS TEMP(F) 495. PRODUCT ALUMINA HOURS PER YEAR 8136.

	UTIL	TY FL	JEL	COAL				POWE			C 0.105 EL EQV		×6=	о. нот	WATER BT	U×10××6	i= () .	
					WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	R HEAT
					FUEL	SAVED=			PROCES		PROCES		FUEL	FUEL	TOTAL+			FACTR	
					USED	NO-NET	USED	HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				
						10**6						10**6			10**6				
					BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/H	R	BTU/HR				
8	CC1626	GTST-	16/26	POWR	0.	145.	291.	97.	103.	30.	1039.	0.	1330	. RESIDUAL	1330.	O	0 10	0.08	0.3
	CC1626						2949.	980.	1047.	307.		-2950.		. RESIDUAL	-2.	Ö			0.3
9	CC1622	GTST-	16/22	POWR	0.	153.	297.	108.	103.	30.	1026.	0.	1323	RESIDUAL	1323.	. 0	0.10	0.08	0.7
	CC1622						2693.	980.	938.	275.		-2609,		.RESIDUAL	84.	ŏ		0.35	
0	CC1222	GTST-	12/22	POWR	٥.	155.	296.	109.	103.	30.	1025.	0.	1321	. RESI DUAL	1321.	0	0.10	0.08	0.7
0	CC1222	GTST-	12/22	HEAT	0.	1394.	2667.	980.	930.	273.		-2584.		. RESIDUAL	82.			0.35	0.3
1	CC0822	GTST-	08/22	POWR	٥.	166.	321.	140.	103.	30.	989.	o.	1310	. RESIDUAL	1310.	O	0.11	0.08	0.7
1	CC0822	GTST-	08/22	HEAT	<u>ə.</u>	1168.	2253.	980.	726.	213.	0.	-1945.	2253	. RESIDUAL	308.	0	0.34	0.32	0.4
2	STIG15	STIG-	15-16	POWR	٥.	56.	271.	4.	. 103.	30.	1149.	0.	1420	. RESI DUAL	1420.	1	0.04	0.07	0.0
2	STIG15	STIG-	15-16	HEAT	٥.	15523.	7538 5 .	980.	28722.	8418.	0.	-89432.	75385	. RESIDUAL	-14047.	1	0.17	0.38	0.0
	STIGIO				0.		288.	38.	103.	30.	1108.	0.	1396	. RESIDUAL	1396.	1	0.05	0.07	0.
:3	STIGIO	STIG-	10-16	HEAT	٥.	2057.	7396.	980.	2656.	778.	0.	-7977.	7396	. RESIDUAL	-581.	1	0.22	0.36	0.
	STIGIS				0.		308.	65.	103.	30.		0.		. RESIDUAL	1385.			0.07	
4	STIGIS	STIG-	15-16	HEAT	٥.	1374.	4649.	980.	1558.	457.	0.	-4547.	4649	. RESIDUAL	102.	1	0.23	0.34	6.2
	DEADV3				0.		279.	42.	103.	30.				. RESIDUAL	1382.	1		0.07	
<u>5</u> _	DEADV3	DIESE	L-ADV	HEAT	0.	2191.	6515.	980.	2417.	708.	0.	-7231.	6515	.RESIDUAL	-715.	1	0.25	0.37	_0.1
6	DEADV2	DIESE	L-ADV	POWR	o.	128.	279.	71.	103.	30.	1070.	0.	1348	. RESIDUAL	1348.	1	0.09	0.08	0.7
6	DEADV2	DIESE	L-ADV	HEAT	٥.	1768.	3858.	980.	1431.	420.	О.	-4150.	3858	. RESIDUAL	-292.	1	0.31	0.37	0.2
	DEADV1				0.	173.	279.	109.	103.	30.	1025.	0.	1303	. RESIDUAL	1303.	1	0.12	0.08	0.7
:7	DEADV1	DIESE	L-ADV	HEAT	0.	1552.	2506.	980.	930.	273.	٥.	-2583.	2506	. RESIDUAL	-76 .	1	0,38	0.37	0.3
	DEHTPM				° 0.	134.	384.	166.	103.	30.	958.	٥.	1342	. RESIDUAL	1342.	0	0.09	0.08	0.7
8	DEHTPM	ADV-D	IESEL	HEAT	٥.	791.	2269.	980.	610.	179.	0.	-1584.	2269	.RESIDUAL	685.	0	0.26	0.27	0.4
	DESØA3				٥.	76.	286.	33.	103.	30.	1114.	٥.	1400	DISTILLA	1400.	1	0.05	0.07	0.7
9	DESCA3	DIESE	L-SOA	HEAT	٥.	2232.	8418.	980.	3039.	891.	0.	-9174.	8418	DISTILLA	-756.	1_	0.21	0.36	0.1
9	DESGA3	DIESE	L-SOA	POWR	٥.	76.	286.	33.	103.	30.	1114.	٥.	1400	. RESIDUAL	1400.	1	0.05	0.07	0.7
9	DESOA3	DIESE	L-SOA	HEAT		2232.	8418.	980.	3039.	891.	0.	-9174.	8418	RESIDUAL	-756.	1	0.21	0.36	0.1
_															······································	w			

NEYWELL PA

AT AD

PAGE 109

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

18SE PEO ADV DESIGN ENGR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28191 MW 30.29 PROCESS MILLIONS BTU/HR 980.0 PROCESS TEMP(F) 495. PRODUCT ALUMINA HOURS PER YEAR 8136.

POWER TO HEAT RATIO 0.105 WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= ٥. UTILITY FUEL COAL COGEN COGEN COGEN AUX FESR POWER HEAT WASTE FUEL UTILIT TOTAL SITE NET= FAIL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR SAVED= FUEL PROCES PROCES MW FLIFE HEAT POWER ELECT BOILR USED SITE USED UTILIT USED NO-NET USED 16996 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 STOURS BYU/HR BYU/HR BYU/HR BYU/HR BTU/HR BTU/HR BTU/HR BTU/HR 1 0.08 0.08 0.72 ۵. 286. 63. 103. 30, 1079. O. 1365.DISTILLA 1365. 30 DESGA2 DIESEL-SGA POWR 111. 4455.DISTILLA -248. 1 0.28 0.36 0.22 1724. 4455. 980. 1608. 471. 0. -4702. 30 DESGA2 DIESEL-SGA HEAT n. 0.08 0.72 30 DESGAZ DIESEL-SGA POWR a. 111. 286. 63. 103. 30. 1079. 0. 1365. RES! DUAL 1365. 1 0.08 0. -4702. 4455. 980. 1608. 471. 4455. RESIDUAL : -248. 0.28 0.36 0.22 30 DESGA2 DIESEL-SGA HEAT 1724. 0. 0.12 0.08 0.75 31 DESGA1 DIESEL-SGA POWR 172. 286. 115. 103. 30. 1018. ٥. 1304.DISTILLA 1304. 980. 882. 0. -2434. 2444. DISTILLA 10. 0.37 0.36 0.40 2444. 259. 31 DESGA1 DIESEL-SGA HEAT 1466. O. 1 0.12 0.08 0.75 286. 103. 30. 1018. O. 1304.RESIDUAL 1304. 31 DESCA1 DIESEL-SCA POWR α. 172. 115. 2444, RESIDUAL 10. 0.37 0.36 0.40 980. 882. 259 0. -2434. 31 DESOA1 DIESEL-SOA HEAT 1466. 2444. 0. 354. 103. 30. 964. O. 1318.DISTILLA 1318. 0 0.11 0.08 0.74 32 GTSCAD GT-HRSG-10 POWR a 158. 160. 2162.DISTILLA 512. 0 0.31 0.29 0.45 2162. 980. 631. 185. 0. -1650. 32 GTSOAD GT-HRSG-10 HEAT 964. Ω. 0 0.09 0.08 0.73 289. 78. 103. 30. 1061. ٥. 1350. DISTILLA 1350. 33 GTRAOS GT-85RE-08 POWR 126. 0. 0 0.30 0.36 0, -3718. 3622. DISTILLA -98. 0.27 980. 1293. 379. 33 GTRAO8 GT-85RE-08 HEAT 0. 1572. 3622. 0.09 0.08 0.73 289 84 103. 30. 1054. 0. 1343.DISTILLA 1343. 34 GTRA12 GT-85RE-12 POWR 133 0 0.32 0.36 0.29 D. -3436. 3360. DISTILLA -76. 980. 1203. 353. 34 GTRA12 GT-85RE-12 HEAT 1552. 3360. 0. 296. 94. 103. 30. 1043. ٥. 1339. DISTILLA 1339. 0 0.09 0.08 0.73 137. 35 GTRA16 GT-85RE-16 POWR 0. 3103. DISTILLA 42. 0.32 0.35 0.32 980. 1083. 317. 0. -3061. 3103. 35 GTRA16 GT-85RE-16 HEAT 0. 1434. 0 0.09 0.08 0.73 323. 103. 30. 1013. 0. 1336. DISTILLA 1336. 140. 119. 36 GTR208 GT-60RE-08 POWR 0. 323. 0.30 0.32 0.37 980. 851. 250. 0. -2337. 2660. DISTILLA 2660. 36 GTR205 GT-60RE-08 HEAT 1153. 0 0.09 0.08 0.73 111. Ö. 1336. DISTILLA 1336. 140. 313. 103. 30. 1023. 37 GTR212 GT-60RE-12 POWR Ω. 980. 915. 0. -2535. 2772. DISTILLA 236. 0 0.31 0.33 0.35 1240. 268. 37 GTR212 GT-60RE-12 HEAT 0. 2772. 0 0.10 0.08 0.73 0. 1333. DISTILLA 1333. 38 GTR216 GT-60RE-16 POWR 143. 307. 107. 103. 30. 1027. 0. -2627. 0 0.32 0.34 0.35 2801. 980. 944. 277. 2801. DISTILLA 174. 1302. 38 GTR216 GT-60RE-16 HEAT 0. 0. 1368.DISTILLA 1368. 0 0.07 0.08 0.72 294. 68. 103. 30. 1074. 39 GTRWO8 GT-85RE-08 POWR ٥. 108. 4275. DISTILLA -91. 0 0.27 0.35 0.23 1567. 4275. 980. 1500. 440. 0. -4366. 39 GTRW08 GT-85RE-08 HEAT О. 1355. DISTILLA 1355. 0 0.08 0.08 0.72 284. 69. 103. 30. 1071. 40 GTRW12 GT-85RE-12 POWR ٥. 121. 0 0.30 0.36 0.24 0. -4240. 4012. DISTILLA -229. 1705. 4012. 980. 1460. 428. 40 GTRW12 GT-85RE-12 HEAT

HONEYWELL

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

POWER TO HEAT RATIO 0.105

PAGE 110

I&SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28191 MW 30.29 PROCESS MILLIONS BTU/HR 980.0 PROCESS TEMP(F) 495. PRODUCT ALUMINA

HOURS PER YEAR 8136.

		WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
		FUEL	SAVED=	FUEL	PROCES	PROCES	MW	PROCES	FUEL	FUEL	FUEL	TOTAL+			FACTR	FACTR
1		USED	NO-NET	USED	HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				
1		10**6	10**6	10**6	10**6	10××6		10**6	10**6	10**6		10**6				
		BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HF	₹	BTU/HR				
41 GTRW16 GT-6	85RF-16 PO	O	125.	289.	78.	103.	30.	1061.	۵.	1351.	DISTILLA	1351.	c	0.08	0.08	0.73
41 GTRW16 GT-8					980.				-3739.		DISTILLA	-98.			0.36	
42 0TR308 GT-8	60RE-08-PC	WR O.	98.	333.	92.	103.	30.	1044.	0.	1378.	DISTILLA	1378.	0	0.07	0.08	0.71
42 GTR308 GT-6	GORE-08 HE	AT O.	1042.	3544.	980.	1099.	322.	Ο.	-3110.	3544.	DISTILLA	434.	0	0,23	0.31	0.28
43 GTR312 GT-6	60RE-12 PC	ıl O.	133.	302.	95.	103.	30.	1041.	٥.	1343.	DISTILLA	1343.	0	0.09	0.08	0.73
43 GTR312 GT-6					980.	1065.	312.		-3006.		DISTILLA		0	0.31	0.34	0.31
44 GTR316 GT-6	COPE-16 PC	O	132.	305.	97.	103.	30	1039.	0	1344	DISTILLA	1344.	n	ກຸກຊ	0.08	0.73
44 GTR316 GT-6									-2945.		DISTILLA	140.		0.30		0.32
33 OTTO 31 C	OOKE TO HE	31									<u> </u>					
45 FCPADS FUEL	L-CL-PH PC	WR O.	105.	272.	46.	103.	30.	1099.	0.	1371.	DISTILLA	1371.	0	0.07	0.08	0.72
45 FCPADS FUEL	L-CL-PH HE	AT O.	2234.	576 5 .	980.	2191.	642.	0.	-6523.	5765 .	DISTILLA	-758.	0	0.28	0.38	0.17
46 FCMCDS FUEL	I-CL-MO PO	√R 0.	141.	251.	58.	103.	30.	1084.	0.	1335.	DISTILLA	1335.	0	0.10	0.08	0.73
46 FCMCDS FUEL				4206.	980.	1733.	508.		-5092.		DISTILLA	-886.		0.36		0.23

TING SYSTEM- P116

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

IMDUSTRY 28192 MW 60.58 PROCESS MILLIONS BTU/HR 1961.0 PROCESS TEMP(F) 495. PRODUCT ALUMINA HOURS PER YEAR 8136.

POWER TO HEAT RATIO 0.105

PAGE 111

UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= ٥. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FESR POWER HEAT FAIL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED MO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCGN NO COGON 0. ٥. 0. 2307. **646**. 2307, COAL-FOD 2953. 0 0. 0.07 0.66 1 STM141 STM-TURB-1 POWR Ω. 403. 2267. 1720. 207. 61. 284. Ο. 2550. RESIDUAL 2550. 0 0.14 0.08 0.77 1 STM141 STM-TURB-1 HEAT 2584. 1961 0. 2584. RESIDUAL 2494. 0.15 0.09 459. 236, 69. -91. 0.76 1 STM141 STM-TURB-! POWR 2267. 207. 284. 2550. COAL-FGD. 2550. 0 0.14 0.08 0.77 0. 403. 1720. 61. ٥. 1 STM141 STM-TURB-1 HEAT 0. 459. 2584. 1961. 236. 69. α. -91. 2584. COAL-FGD 2494. 0 0.15 0.09 0.76 1 STM141 STM-TURB-1 POWR 403. 2267. 1720. 207. 284. Ω. 2550, COAL-AFB 2550. 0.14 0.08 0.77 0. 61. 0 2564. 1961. 236. 0. 2584. COAL-AFB 2494. 0 0.55 0.09 0.76 1 STM141 STM-TURB-1 HEAT 459. 69. -91. 3746. -793. 207. 0. 3746. 0 -0.27 0.06 0.52 2 STM088 STM-TURB-8 POWR 0. 2977. 61. -1196. 3746. RESIDUAL 2 STM088 STM-TURB-8 HEAT 265. 2467. 1961. 136. 220. 2467. RESIDUAL 2688. 0 0.09 0.05 0.73 40. 0. 61. -1196. 2 STMO88 STM-TURB-8 POWR -793. 3746. 2977. 207. ٥. 3746.COAL-FGD 3746. 0 -0.27 0.06 0.52 2 STM088 STM-TURB-8 HEAT 255. 2467. 1961. 136. 220. 2467. COAL-FGD 2688. 0 0.09 0.05 0.73 Ω. 0 -0.27 0.06 0.52 61. -1196. 3746. 2 STM088 STM-TURB-8 POWR -793. 3746. 2977. 207. 0. 3746.COAL-AFB 2 STM088 STM-TURB-8 HEAT 265. 2467. 1961. 136. 40. 220. 2467 COAL-AFB 2688. 0 0.09 0.05 0.73 3 PFBSTM PFB-STMTB- POWR 0. 386. 1260. 850. 207. 61. 1307. 0. 2567, COAL-PFB 2567. 0 0.13 0.08 0.76 891. 2062. 0 0.23 0.16 0.67 3 PFBSTM PFB-STMTB- HEAT 0. 2906. 1961. 477. 140. 0. -844. 2906.COAL-PFB 4 TISTMT TI-STMTB-1 POWR 395. 960 602 207. 61. 1598. 0. 2558. RESIDUAL 2558. 0 0.13 0.08 0.77 673. 0. -1457. 3124.RESIDUAL 1668. 0 0.29 0.22 0.63 4 TISTHT TI-STMTB-1 HEAT 1285. 3124. 1961. 197. 2558. 0 0.13 0.08 0.77 4 TISTMT TI-STMTB-1 POWR 0. 395. 960. 602. 207. 61. 1598, Ο. 2558. COAL 1668. 0.29 0.22 0.63 3124.COAL 4 TISTMT TI-STMTB-1 HEAT 1285. 3124. 1961. 673. 197. 0. -1457. 2748. 0 0.07 0.08 0.71 5 TIHRSG THERMIONIC POWR 205. 1469. 874. 207. 61. 1279. Q. 2748. RESIDUAL 5 TIHRSG THERMIONIC HEAT 460. 3296. 1961. 464. 136. 0. -803, 3296. RESIDUAL 2493. 0 0.12 0.14 0.60 0 0.07 0.08 0.71 5 TIHRSG THERMIONIC POWR 0. 205. 1469. 874. 207. 61. 1279. 0. 2748. COAL 2748. 3296. COAL 2493. 0 0.12 0.14 0.60 5 TIHRSG THERMIONIC HEAT ۵. 460. 3296. 1961. 454. 136. -803. 1735. 6 STIRL STIRLING-1 POWR n. 267. 951. 486. 207. '61. 0. 2686. DISTILLA 2686. 0 0.09 0.08 0.73 0.22 0.22 0.51 1075. 3836. 1961. 833. 0. -1958. 3836. DISTILLA 1878. 6 STIRL STIRLING-1 HEAT 244.

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28192 MW 60.58 PROCESS MILLIONS BTU/HR 1961.0 PROCESS TEMP(F) 495. PRODUCT ALUMINA HOURS PER YEAR 8136.

POWER TO HEAT RATIO 0.105 UTILITY FUEL O. HOT WATER BTU:10xx6= COAL WASTE FUEL EQV BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL TOTAL+ FACTR FACTR FUEL FUEL FUEL NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT USED 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 0. 267. 951. 486. 207. 61. 1735. O. 2686.RESIDUAL 2686. 0 0.09 0.08 0.73 0. -1958, 3836.RESIDUAL 1878. 6 STIRL STIRLING-1 HEAT 0. 1075. 3836. 1961. 833. 244. 0 0.22 0.22 0.51 0 0.09 0.08 0.73 951. 486. 207. 1735. 0. 2686. COAL 2686. 6 STIRL STIRLING-1 POWR 0. 267. 61. 6 STIRL STIRLING-1 HEAT 0. 1075. 3836. 1961. 833. 244. O. -1958. 3836.COAL 1878. 0 0.22 0.22 0.51 3032. 7 HEGT85 HEL!UM-GT- POWR -79 644. -69. 207. 61. 2388. ٥. 3032.COAL-AFB 1 -0.03 0.07 0.65 7 HEGT85 HELIUM-GT- HEAT-18422. 2249. - 18422. 1961, -5913, -1733. 0. 19125. -18422. COAL-AFB 704. 11 -5.48 -8.41 2.79 2972. 0 -0.01 0.07 0.66 8 HEGT60 HELIUM-GT- POWR -19. 798. 113. 207. 61. 2174. 0. 2972.COAL-AFB Ω 8 HEGT60 HELLUM-GT- HEAT -325, 13809. 1961. 3577. 1048. 0 -10531. 13809, COAL-AFB 3278. 0 -0.02 0.26 0.14 9 HEGTOC HELIUM-GT- POWR 1174. 543. 207. 61. 1669. 0. 2843.CGAL-AFB 2843. 0 0.04 0.07 0.69 0. 110, 9 HEGTOO HELIUM-GT- HEAT 4244 1961. ·747. 219. 0. -1688. 4244. COAL-AFB 2556. 0 0.09 0.18 0.46 ٥. 397. 10 0.12 0.08 0.75 10 FCMCCL FUEL-CL-MO POWR 680. 320. 207. 1931. 0. 2611.COAL 2611. 0. 342. 61. 10 FCMCCL FUEL-CL-MO HEAT 4172. 1268. 0. -3317. 4172.COAL 0 0.33 0.30 0.47 0. 2098. 1961. 372. 855. 2599. 10 0.12 0.08 0.75 11 FCSTCL FUEL-CL-ST POWR 354 582. 247. 207. 2017. ٥. 2599. COAL 11 FCSTCL FUEL-CL-ST HEAT 2814. 4625. 1961. 1642. 481. 0. -4486. 139. 0 0.38 0.36 0.42 4625.COAL 2684. 10 0.09 0.08 0.73 12 IGGTST INT-GAS-GT POWR Ω. 269. 813. 370. 207. 61. 1872. ٥. 2684. COAL 12 IGGTST INT-GAS-GT HEAT 1425. 4304. 1961. 1095. 321. 0. -2776. 4304 COAL 1528. 0 0.25 0.25 0.46 0. 13 GTSCAR GT-HRSG-10 POWR ٥. 252. 713. 207. 1988. 0. 2701.RESIDUAL 2701. 0 0.09 0.08 0.73 271. 61. 0. -4028. 5157. RESIDUAL 1129. 0 0.26 0.29 0.38 13 GTSOAR GT-HRSG-10 HEAT 1824. 5157. 1961. 1496. 438. ٥. 14 GTACOS GT-HRSG-OS POWR 0. 345. 766. 395. 207. 61. 1843. 0. 2608. RESIDUAL 2608. 0 0.12 0.08 0.75 0. -2563. 1240. 0 0.31 0.27 0.52 14 GTACOS GT-HRSG-08 HEAT 0. 1713. 3803. 1961. 1027. 301. 3803. RESIDUAL 0 0.11 0.08 0.75 15 GTAC12 GT-HRSG-12 POWR 338. 678. 314. 207. 61. 1937. 0. 2615. RESIDUAL 2615. 1961. 0. -3385, 4229.RESIDUAL 2109. 4229. 1290. 378. 844. 0 0.33 0.31 0.46 15 GTAC12 GT-HRSG-12 HEAT 16 GTAC16 GT-HRSG-16 POWR 322. 640. 269. 207. 61. 1991. O. 2631.RESIDUAL 2631. 0 0.11 0.08 0.75 0. 1961. 442. 4667. 1507. 0. -4064. 4667, RESIDUAL 602. 0.33 0.32 0.42 16 GTAC16 GT-HRSG-16 HEAT 2351. 303. 656. 266. 207. 61. 1994. O. 2650.RESIDUAL 2650. 0 0.10 0.08 0.74 17 GTWC16 GT-HRSG-16 POWR 0 0.32 0.32 0.41 0. -4113. 4835.RESIDUAL 721. 17 GTWC16 GT-HRSG-16 HEAT 0. 2232. 4835. 1961, 1523. 446.

_.__

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28192 WW 60.58 PROCESS MILLIONS BTU/HR 1961.0 PROCESS TEMP(F) 495. PRODUCT ALUMINA

HOURS PER YEAR 8136.

PAGE 113

POWER TO HEAT RATIO 0.105 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**8 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR 0. 292. 582. 207. 61. 193. 2080. 2661.RESIDUAL 2661. 0 0.10 9.08 0.74 2957. 18 CC1626 GTST-16/26 HEAT ٥. 5900. 1961. 2096. 614. 0. -5904. 5900. RESIDUAL -4. 0 9.33 0.36 0.33 19 CC1622 GTST-16/22 POWR ٥. 307. 593. 216. 207. 2053. 2646 RESIDUAL 0.74 2646. 0.10 0.08 19 CC1622 GTST-16/22 HEAT 2785. 5389. 1961. 1877. 550. 0. -5221. 5389.RESIDUAL 168. 0.34 0.35 0.36 20 CC1222 GTST-12/22 POWR 310. 592. 218. 207. 61. 2051. 0. 2643. RESIDUAL 2643. 0 0.10 0.08 0.74 20 CC1222 GTST-12/22 HEAT 2789. 5336. 1961. 1862. 0. -5172. 546. 5336. RESIDUAL 164. 0.34 0.35 0.37 21 CC0822 GTST-08/22 POWR 333. 642. 279. 207. 1979. 61. ٥. 2620. RESIDUAL 2620. 0 0.11 0.08 0.75 21 CC0822 GTST-08/22 HEAT 2337 4509. 1961. 1452. 0. -3893. 426. 4509. RESIDUAL 616. 0 0.34 0.32 0.43 22 STIG15 STIG-15-16 POWR 112. 543. 7. 207. 61. 2299. O. 2841.RESIDUAL 2841. 1 0.04 0.07 0.69 22 STIG15 STIG-15-16 HEAT 0. 31062.150846, 1961, 57472, 16844, 0.******150846.RESIDUAL -28109. 0.17 0.38 0.01 23 STIG10 STIG-10-16 POWR 0. 160. 576 76. 207. 61. 2217. O. 2793. RESIDUAL 2793. 0.05 0.07 0.70 23 STIG10 STIG-10-16 HEAT 4115. 14800. Ω. 1961. 5315. 1558. 0.-15982. 14800.RESIDUAL -1162. 1 0,22, 0.36 0.13 24 STIG1S STIG-15-16 POWR 182. 617. 130. 207. 61. 2154. 0. 2771.RESIDUAL 2771. 1 0.06 0.07 0.71 24 STIGIS STIG-15-16 HEAT 0. 2749. 9303. 1961. 3118. 914. 0. -9099. 9303. RESIDUAL 1 0.23 0.34 0.21 204. 25 DEADV3 DIESEL-ADV POWR Ω. 187. 557. 84. 207. 61. 2208. 0. 2766. RESIDUAL 2766. 1 0.06 0.07 0.71 25 DEADV3 DIESEL-ADV HEAT 4385. 13037 1961. 4837. 1418. 0.-14469. 13037.RESIDUAL -1432. 1 0.25 0.37 0.15 26 DEADV2 DIESEL-ADV POWR 255. 557. 0. 142. 207. 61. 2141. 0. 2698. RESIDUAL 2698. 1 0.09 0.08 0.73 26 DEADV2 DIESEL-ADV HEAT 0. 3538. 7720. 1961. 7720. RES! DUAL 2864. 839. 0. -8305. -585. 1 0.31 0.37 0.25 27 DEADVI DIESEL-ADV POWR 345. 557. 0. 218. 2051. 207. 61. 0.. 2608. RESIDUAL 2608. 0.12 0.08 0.75 27 DEADVI DIESEL-ADV HEAT 0. 3106. 5015. 1961. 1861. 545. 0. -5169. 5015.RESIDUAL -153. 1 0.38 0.37 0.39 28 DEHTPM ADV-DIESEL POWR 268. 769 332 207 1917. 2685. RESIDUAL 2685. 61. Ο. 0 0.09 0.08 0.73 28 DEHTPM ADV-DIESEL HEAT 0. 1583. 4540. 1961. 1221. 0. -3170. 4540. RESIDUAL 358. 1370. 0 0.26 0.27 0.43 29 DESGAS DIESEL-SGA POWR 152. 573. 67. 207. 61. 2229. 0. 2801.DISTILLA 2801. 1 0.05 0.07 0.70 4465. 16845. 29 DESGAS DIESEL-SGA HEAT 1961. 6081. 1782. 0.-18357. 16845.DISTILLA -1512. 0.21 0.36 0.12 29 DESGAS DIESEL-SGA POWR 152. 2801. ٥. 573. 67, 207. 2229. C. 2801.RESIDUAL 1 0.05 0.07 0.70 61. 29 DESCAS DIESEL-SCA HEAT 4465. 16845. 1961. 6081. 1782. 0.-18357. 16845.RESIDUAL -1512. 1 0.21 0.36 0.12

VELL PAGE PRINTING SYSTEM- P1185-

18SE PEG ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 28192 MW 60.58 PROCESS MILLIONS BTU/HR 1961.0 PROCESS TEMP(F) 495. PRODUCT ALUMINA HOURS PER YEAR 8106.

UTIL	ITY FUEL	COAL				. 0112			EL EQV		* 6=	o. HOT	WATER BY	TU=10==6	;= .	0.	
			WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
			FUEL	SAVED=		PROCES			PROCES		FUEL	FUEL	TOTAL+			FACTR	FACTE
			USED	NO-NET		HEAT		ELECT			SITE	USED	UTILIT				
						10**6				10**6			10**6				
			BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/H	R	BTU/HR				-
O DESGA2	DIESEL-SOA	POWR	· o.	222.	573.	126.	207.	61.	2159.	0.	2731	.DISTILLA	2731.	1	0.08	0.08	0.72
	DIESEL-SO							943.				.DISTILLA		i		9.36	
O DESMA2	DIESEL-SOA	PUNB	0.	222.	573.	126.	207.	61.	2159.	0.	2731	. RESIDUAL	2731.	1	0 08	0.08	0.72
	DIESEL-SOA				8914.		3218.	943.		-9410.		. RESIDUAL	-496,	i		0.36	
			_							_				_			
	DIESEL-SO				573. 4890.	<u>230.</u> 1961.	<u>207,</u> 1765.	<u>61.</u> 517.		-4871.		DISTILLA DISTILLA	<u>2610.</u> 19.	1		0.08	
PLOUM	DIEGEE GOS	1 IIII	0,	£954.	4030.	1301.	1705.	0.7.	٥.	4071,	4030	.DIGITEEA	13.	•	0.37	0.30	0.40
	DIESEL-SOA				573.	230.	207.		2037.	0.		. RESIDUAL	2610.			0.08	
1 DESCA1	DIESEL-SOA	HEAT	0.	2934,	4890,	1961,	1765.	517.	0.	<u>-4871.</u>	4890	, RESIDUAL	19.	1	0.37	0.36	0.40
2 GTSCAD	GT-HRSG-10	POWR	٥.	316.	708.	321.	207.	61.	1930.	٥.	2637	.DISTILLA	2637.	0	0.11	0.08	0.74
2 GTSOAD	GT-HRSG-10	HEAT	0.	1928.	4327.	1961.	1263.	370.	0.	-3302,	4327	.DISTILLA	1025.	0	0.31	0.29	0.45
3 GTRAO8	GT-85RE-06	POVR	0.	251.	579.	157.	207.	61.	2123.	0.	2702	.DISTILLA	2702.	0	0.09	0.08	0.73
	GT-85RE-06					1961.	2587.	758.		-7440,		.DISTILLA	-192.	Ō	0.30	0.36	0.27
A GTRA12	GT-85RE-12	PAUR	٥.	267.	577.	168.	207.	61.	2109.	0.	2686	.DISTILLA	2686.	0	0.09	0.08	0.73
	GT-85RE-12				6723.	1961.	2407.	705.		-6875.		.DISTILLA	-152.	Ö	0.32		
E 070410	OT 0505 14		•	074	500	4.07	007		2007	•	0070	DISTILLA	2679.	_		0.08	^ 74
	GT-85RE-16		- •		592. 6209.	187. 1961.	207. 2167.	61. 635.		-612 5 .		.DISTILLA .DISTILLA	2679, 83.	_		0.35	
S GIRAIS	GI-CORE-IE	HEAL	<u>U.</u>	2070.	6209.	1961.	2167.		<u> </u>	<u>-6125.</u>	6209	.DISTILLA	<u> </u>		0.32	0.33	0.32
6 GTR208	GT-GORE-OR	POWR	0.	280.	646.	238.	207.	61.	2027.	0.	2673	.DISTILLA	2673.	0	0.09	0.08	0.73
6 GTR208	GT-GORE-O	HEAT	0.	2307.	5323.	1961.	1703.	499.	0.	-4677.	5323	.DISTILLA	646,	0	0.30	0.32	0.37
7 GTR212	GT-60RE-12	POWR	0.	280.	626.	221.	207.	61.	2047.	0.	2673	.DISTILLA	2673.	0	0.09	0.08	0.73
	GT-GORE-12				5346.	1961.	1830.	536.		-5074.		.DISTILLA	473.	Ö		0.33	
A GTR216	GT-60RE-16	PAUP	0.	285.	613.	215.	207.	61.	2055.	0.	2668	.DISTILLA	2668.	n	0 10	0.08	0.74
	GT-60RE-16				5605.	1961.	1889.	554.		-5257.		.DISTILLA	348.			0.34	
A ATDUC.			_	010	F06	4.0.			21.45	_	0767	016711.4	0707	_		0.00	
	GT-65RE-08				589.	135.	207.	61.		0.		.DISTILLA	2737.			0.08	
a GIRNOB	GT-35RE-06	HEAT	0.	3136.	8554.	1961.	3002,	880.	0.	<u>-8736.</u>	8554	.DISTILLA	-183.	<u> </u>	0.27	0.35	0.23
0 GTRW12	GT-85RE-12	POVR	ο.	241.	568.	139.	207.	61.	2144.	0.	2712	.DISTILLA	2712.	0	0.08	0.08	0.72
	GT-85RE-12			3411.		1961.	2922.	856.		-8485.		DISTILLA	-458.	o	0.30	0.36	0.24

13SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

8.1

INDUSTRY 28192 MW 60.58 PROCESS MILLIONS BTU/HR 1961.9 PROCESS TEMP(F) 495. PRODUCT ALUMINA

HOURS PER YEAR 8136.

PAGE 115

POWER TO HEAT RATIO 0, 105 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES PROCES MW PROCES FUEL SAVED= FUEL FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED HEAT POWER ELECT USED BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR 0. 250. 579. 156. 207. 61. 2124. O. 2703.DISTILLA 2703. 0 0.08 0.08 0.73 41 GTRW16 GT-85RE-16 HEAT 3150. 7286. 0. -7483, 1961. 2601. 762. 7286. DISTILLA -197. 0 0.30 0.36 0.27 42 GTR308 GT-60RE-08 POWR 0. 196. 667. 184. 207. 61. 2090. 2757. DISTILLA 2757. 0.07 0.07 0.71 42 GTR308 GT-60RE-08 HEAT 2085. 7092. 1961. 2199. 644. 0. -6224. 7092. DISTILLA 868. 0 0.23 0.31 0.28 43 GTR312 GT-60RE-12 POWR 265. 604 190. 207. 2083. 0. 2688. DISTILLA 2688. 0 0.09 0.08 0.73 43 GTR312 GT-60RE-12 HEAT 2736. 6233. 1961. 2132. 625. 0. -6016. 6233. DISTILLA 217. 0 0.31 0.34 0.31 44 GTR316 GT-60RE-16 POWR 264. 610. 194. 207. 61. 2079. O. 2689.DISTILLA 2689. 0.09 0.08 0.73 44 GTR316 GT-60RE-16 HEAT 2674. 6173. 1961 2093. 613. 0. -5894. 6173. DISTILLA 279. 0.30 0.34 0.32 45 FCPADS FUEL-CL-PH POWR 211. 544. 92. 207. 61. 2198. O. 2742.DISTILLA 2742. 0 0.07 0.08 0.72 45 FCPADS FUEL-CL-PH HEAT 4470. 11535. 1961. 4383. 1285. 0.-13052, 11535, DISTILLA -1517. 0 0.28 0.38 0.17 46 FCMCDS FUEL-CL-MO POWR 0. 282. 502. 117. 207. 61. 217C. 2671. DISTILLA 2671. 0.10 0.08 0.73 46 FCMCDS FUEL-CL-MO HEAT 4727. 8416. 1961. 3468. 1016. 0.-10190. 8416.DISTILLA -1774. 0 0.36 0.41 0.23

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28212 MW 4.00 PROCESS MILLIONS BTU/HR 207.0 PROCESS TEMP(F) 422. PRODUCT VINYL-CHLORI HOURS PER YEAR 8300.

POWER TO HEAT RATIO 0.066 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10xx6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COGON ٥. 0. O. Ω. 0. ٥. 244. 43. 244. COAL-FOD 286. 0 0. 0.05 0.72 1 STM141 STM-TURB-1 POWR 0. 27. 108. 78. 14. 4. 152. Q. 260. RESIDUAL 260. 10 0.09 0.05 0.80 1 STM141 STM-TURB-1 HEAT O. 71. 286 207 36. 11. 0. 286. RESIDUAL -70. 216. 0.20 0.13 0.72 1 STM141 STM-TURB-1 POWR 0. 27. 108. 78. 14. 4. 152. 0. 260. COAL-FGD 260. 10 0.09 0.05 0.80 1 STM141 STM-TURB-1 HEAT 0. 71. 286. 207. 0. . -70. 286. COAL-FOD 36. 11. 216. 0 0.20 0.13 0.72 1 STM141 STM-TURB-1 POWR 27. 0. 108. 78. 14. 4. 152. 0. 260. COAL-AFB 260. 10 0.09 0.05 0.80 1 STM141 STM-TURB-1 HEAT 286. 0. 71. 207. 36. 11. ٥. -70. 286. COAL-AFB 216. 0 0:20 0.13 0.72 2 STM088 STM-TURB-8 POWR 149 113. 110. 260. RESIDUAL 14. 260. 10 0.09 0.05 0.80 2 STM088 STM-TURB-8 HEAT 0. 49. 273. 207. 25. 7. G. -35. 273. RESIDUAL 238. 0 0.15 0.09 0.76 2 STM088 STM-TURB-8 POWR ٥. 27. 149. 113. 260. COAL-FOD 14. 4. 110. 0. 260. 10 0.09 0.05 0.80 2 STM088 STM-TURB-8 HEAT 0. 49. 273. 207 25. ٥. -35. 273. COAL-FGD 238. 0 0.15 0.09 0.76 2 STM088 STM-TURB-8 POWR 0. 27. 149. 113. 14. 4. 110. Ω. 260. COAL-AFB 260. 10 0.09 0.05 0.80 2 STM088 STM-TURB-8 HEAT 0. 49. 273. 207. 25. 7. 0. -35. 273, COAL-AFB 238. 0 0.15 0.09 0.76 3 PFBSTM PFB-STMTB- POWR 26. 70. 190. 0. 45. 14. 4. 0. 260. COAL-PFB 260. 10 0.09 0.05 0.80 3 PFBSTM PFB-STMTB- HEAT -152. O. 118. 320. 207. 62. 18. ٥. 320. COAL-PFB 168. 0 0.27 0.19 0.65 4 TISTMT TI-STMTB-1 POWR 26. 56 33. 204 260. RESIDUAL 260. 10 0.09 0.05 0.80 4 TISTMT TI-STMTB-1 HEAT 0. 162. 346. 207. 85. 25. 0. -222. 346. RESIDUAL 124. 0 0.32 0.24 0.60 4 TISTMT TI-STMTB-1 POWR ٥. 26. 56. 33. 204. ٥. 260. COAL 269. 10 0.09 0.05 0.80 14. 4. 4 TISTMT TI-STMTB-1 HEAT 0. 152. 346 207 85. 25. ٥. -222 346. COAL 124. 0 0.32 0.24 0.60 5 TIHRSG THERMIONIC POWR 0, 97. 172. 17. 61. 14. 4. ٥. 269, RESIDUAL 269. 0 0.06 0.05 0.77 5 TIHRSG THERMIONIC HEAT 0. 58. 331. 207. 47. 0. -103. 331. RESIDUAL 228. 0 0.15 0.14 0.63 14. 5 TIHRSG THERMIONIC POWR 0. 17. 97. 61. 14. 4. 172. a. 269. COAL 269. 0 0.06 0.05 0.77 5 TIHRSG THERMIONIC HEAT 0. 58. 331. 207. 47. 331. COAL 228. 14. 0. -103. 0 0.15 0.14 0.63 6 STIRL STIRLING-1 POWR 210. 18. 57. 28. 14. 0. 268. DISTILLA 268. 0 0.06 0.05 0.77 6 STIRL STIRLING-1 HEAT 0. 135. 422. 207. 100. 29. a. -271. 422. DISTILLA 151. 0 0.24 0.24 0.49

POOR QUALITY

1 -

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28212 MW 4.00 PROCESS MILLIONS BTU/HR 207.0 PROCESS TEMP(F) 422. PRODUCT VINYL-CHLORI HOURS PER YEAR 8300.

POWER TO HEAT RATIO 0.066 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTUX10**6= WASTE FUEL COGEN COGEN COGEN AUX COGEN UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED HEAT POWER ELECT USED BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR ٥. 18. 57. 28. 4. 210. ٥. 268. RESIDUAL 268. 0 0.06 0.05 0.77 14. 6 STIRL STIRLING-1 HEAT 135. 422. 207. 100. 422. RESIDUAL 151. 0. 29. ٥. -271. 0.24 0.24 0.49 6 STIRL STIRLING-1 POWR 0. 18. 57. 28. 14. 4. 210. Q. 268. COAL 268. 0.06 0.05 0.77 207. 6 STIRL STIRLING-1 HEAT 0. 135. 422. 100. 29. ٥. -271. 422. COAL 151. 0 0.24 0.24 0.49 7 HEGT85 HELIUM-GT- POWR 2. 43. 0. 285. 11 0.01 0.05 0.73 1. 14 242. 285. COAL-AFB 7 HEGT85 HELIUM-GT- HEAT 267. 7482. 207. 2402. 0. -7463. 704. 7482. COAL-AFB 19. 1 0.03 0.32 0.03 8 HEGT60 HELIUM-GT- POWR 229. 0. 282. COAL-AFB 282. 10 0.02 0.05 0.73 0. 4. 53. 12. 14. 74. 8 HEGT60 HELIUM-GT- HEAT 890. 207. 231. 68. 0. -678. 890. COAL-AFB 212. 0 0.08 0.26 0.23 14. 9 HEGTOO HELIUM-GT- POWR 0. 9. 78. 37. 4. 200. 0. 278. COAL-AFB 278. 0.03 0.05 0.75 9 HEGTOC HELIUM-GT- HEAT 207. 77. 435. COAL-AFB 48. 435. 22. 0. -197. 238. 10 0.10 0.18 0.48 10 FCMCCL FUEL-CL-MO POWR Ō. 23. 45. 21. 219. 263. CCAL 263. 0.08 0.05 0.79 14. 4. 0. 10 10 FCMCCL FUEL-CL-MO HEAT 0. 222. 439. 207. 133. 39. ٥. -274. 439. COAL 65. 10 0.34 0.30 0.47 11 FCSTCL FUEL-CL-ST POWR 0. 24. 36. 15. 14. 226 Ω. 263. COAL 263. 10 0.08 0.05 0.79 11 FCSTCL FUEL-CL-ST HEAT 330. 511. 207. 191. -556. 511. COAL 10 0.39 0.37 0.40 n 55. n -44. 12 193TST INT-GAS-GT POWR 22. 268. COAL 268. 10 0.06 0.05 0.77 0. 18. 50 218. 0. 14. 4. 12 IGGTST INT-GAS-GT HEAT 177. 476. 207. 476, COAL 109. 10 0.27 0.28 0.43 ٥. 131. 38. 0. -368. 13 GTSGAR GT-HRSG-10 POWR 0. 18. 47. 19. 14. 221. 0. 268. RESIDUAL 268, 10 0.06 0.05 0.77 4. 13 GTSGAR GT-HRSG-10 HEAT 510. RESIDUAL 90. 0 0.28 0.29 0.41 ٥. 196. 510. 207. 148. 43. ٥. ~419. 14 GTACOB GT-HRSG-08 POWR 51. 26. 263. RESIDUAL 263. 10 0.08 0.05 0.79 0. 23. 14. 4. 213. 0. 14 GTACOB GT-HRSG-08 HEAT 181. 401. 207. 108. -296. 401, RESIDUAL 105. 0 0.31 0.27 0.52 0. 32. 0. 15 GTAC12 GT-HRSG-12 POWR 22. 45. 0. 264, RESIDUAL 264. 10 0.08 0.05 0.78 21 14. 219. 15 GTAC12 GT-HRSG-12 HEAT 447. RESIDUAL 0 0.33 0.31 0.46 223. 447. 207. 136. 40: Ω. -384. 64. 265. RESIDUAL 10 0.08 0.05 0.78 16 GTAC16 GT-HRSG-16 POWR 0. 22. 42. 18. 14. 4. 222. ٥. 265. 16 GTAC16 GT-HRSG-16 HEAT 0. 248. 486. 207. 157. ٥. -447. 486. RESIDUAL 38. 0 0.34 0.32 0.43 46. 17 9TWC16 GT-HRSG-16 POWR 0. 20. 43. 18. 4. 223. 0. 266. RESIDUAL 266. 10 0.07 0.05 0.78 14. 161. 17 GTWC16 GT-HRSG-16 HEAT ٥. 236. 511. 207. ٥. -460. 511. RESIDUAL 51. 0 0.32 0.32 0.41 47.

-

. 1

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 28212 MW 4.00 PROCESS MILLIONS BTU/HR 207.0 PROCESS TEMP(F) 422. PRODUCT VINYL-CHLORI HOURS PER YEAR 8300.

POWER TO HEAT RATIO 0.066 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= COGEN COGEN COGEN COGEN AUX WASTE FUEL UTILIT TOTAL SITE NET* FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR ٥. 20. 37. 12. 14. 4. 230. 0. 267. RESIDUAL 267. 10 0.07 0.05 0.78 18 CC1626 GTST-16/26 HEAT 347. -714. 0 0.35 0.37 0.32 0. 653. 207. 242. 71. 653. RESIDUAL -61. n. 19 CC1622 GTST-16/22 POWR 0. 21. 37. 13. 14. 4. 228. O. 266. RESIDUAL 266. 10 0.07 0.05 0.78 19 CC1622 GTST-16/22 HEAT 327. 596. 207. 218. -637. 596. RESIDUAL 0. 64. Ω. -41. 0 0.35 0.36 0.35 20 CC1222 GTST-12/22 POWR 21. 37. 13. 228. 0. 265. RESIDUAL 265. 10 0.07 0.05 0.78 20 CC1222 GTST-12/22 HEAT 591. 207. 0. 328. 216. 63. О. -633. 591. RESIDUAL -42. 0 0.36 0.37 0.35 21 CC0822 GTST-08/22 POWR 22. 40. 17. 14. 4. 224. 0. 264. RESIDUAL 264. 10 0.08 0.05 0.78 21 CC0822 GTST-08/22 HEAT 278. 499 207. 171. 50. ٥. -491. 499. RESIDUAL 8. 0.36 0.34 0.41 22 STIG15 STIG-15-16 POWR 0. 7. 36. ٥. 14. 4. 243. 0. 279. RESIDUAL 279. 10 0.03 0.05 0.74 22 STIG15 STIG-15-16 HEAT 3279. 15923. 207. 0.-18916. 1\23.RESIDUAL 0, 6067. 1778. -2993. 0 0.17 0.38 0.01 23 ST1910 ST19-10-16 POWR 0. 11. 38. 5. 14. 4. 238. 0. 276. RESIDUAL 276. 10 0.04 0.05 0.75 0. -1711. 23 STI910 STIG-10-16 HEAT 0. 434. 1562. 207. 561. 164. 1562 RESIDUAL -148. 0 0.22 0.36 0.13 24 STIG!S STIG-15-16 POWR 12. 41. 9. 233. 0. 274. RESIDUAL 274. 10 0.04 0.05 0.76 14. 0 0.23 0.34 0.21 24 STIGIS STIG-15-16 HEAT ٥. · 290. 982. 207. 329. 96. -986. 982. RESIDUAL -4. Ω. 0 0.05 0.05 0.76 25 DEADV3 DIESEL-ADV POWR n 14. 37. 7. 14. 4. 236. 0. 272. RESIDUAL 272. 25 DEADV3 DIESEL-ADV HEAT n. 426. 1142. 207. 424. 124. 0. -1281. 1142. RESIDUAL -139, 0 0.27 0.37 0.18 1 0.06 0.05 0.77 26 DEADV2 DIESEL-ADV POWR 0. 17. 37. 9, 14. 4. 233. 0. 269. RESIDUAL 269. 26 DEADV2 DIESEL-ADV HEAT 815. RESIDUAL 1 0.31 0.37 0.25 815. 207. 302. -902. -87. 0. 373. 89. Ο. 27 DEADV1 DIESEL-ADV POWR 0. 23. 37. 14. 14. 4. 227. 0. 263. RESIDUAL 263. 0.08 0.05 0.79 27 DEADV1 DIESEL-ADV HEAT 196. 529. RESIDUAL 1 0.38 0.37 0.39 ٥. 328. 529. 207. 58. Ο. -571. -42. 28 DEHTPM ADV-DIESEL POWR 20. 221. 266. RESIDUAL 266. 0 0.07 0.05 0.78 45. 19 14. 28 DEHTPM ADV-DIESEL HEAT 219. 484. 207. 147. 43. -417. 484 . RESIDUAL 67. 0 0.31 0.30 0.43 Ω. Ο. 29 DESGAS DIESEL-SGA POWR 38. 6. 4. 237. ٥. 275. DISTILLA 275. 0 6.04 0.05 0.75 11. 14. 29 DESUAS DIESEL-SOA HEAT 424. 1405. 207. 507. 149. 0. -1543. 1405. DISTILLA -137. 0 0.23 0.36 0.15 29 DESGAS DIESEL-SGA POWR 38. ß. ٥. 275. RESIDUAL 275. 0 0.04 0.05 0.75 0. 11. 14. 4. 237. 29 DESGAS DIESEL-SGA HEAT 0 0.23 0.36 0.15 424. 1405. 207. 507. 0. -1543. 1405. RESIDUAL -137. 0. 149.

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

I&SE PEC ADV DESIGN ENGR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28212 MW 4.00 PROCESS MILLIONS BTU/HR 207.0 PROCESS TEMP(F) 422. PRODUCT VINYL-CHLORI HOURS PER YEAR 8300.

	UTIL	ITY FUE	<u> </u>	COAL				POWE			0,066 EL EQV :		×6=	o. HOT	WATER BT	U*10**6	:= (o.	
	0.12		- - .		WASTE	FUEL	COGEN	CÖGEN					TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
					FUEL	SAVED=			PROCES		PROCES	FUEL	FUEL	FUEL	TOTAL+		·	FACTR	FACTE
					USED	NO-NET		HEAT		ELECT			SITE	USED	UTILIT				
					10**8	:0* ≭ 6	10**6	10**6	10×=6			10**6			10**6				
					BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HF	<u> </u>	BTU/HR				
_	DESGA2	DISCE	-254	DAUD	o,	15.	38.	8.	14.	4.	234.	٥.	272	DISTILLA	272.	1	0.05	0.05	0.7
_	DESCA2				o.		941.	207.	340.	100.		-1019.		DISTILLA	-78.			0.36	
-	DECOME	D1.000	_ 00,,	,,,,,,,															
30	DESCA2	DIESEL	-SOA	POWR	٥.	15.	38.							RESIDUAL		1		0.05	
0	DESGA2	DIESEL	SØA	HEAT	0.	364.	941.	207,	340.	100.	0.	-1019.	941.	RESIDUAL	-78.	1	0.28	0.36	0.2
,	SSOA1	DIESE	-564	PAUR	٥.	23.	38,	15.	14.	4.	226.	٥.	263.	DISTILLA	263.	1	0.08	0.05	0.79
	SOA1				<u> </u>		516.	207.	186.	55.				DISTILLA		1		0.36	
												_		05010111	000	•		0.05	0.70
	DESCA1				٥.		38.	15.	14.			0.		RESIDUAL	263. -23.	1		0.36	
11	DESUA1	DIESEL	<u>SOA</u>	HEAT	0.	310.	516.	207.	186.	55,	0.	-540.	316.	RESIDUAL	-23.		0.37	0.36	0.4
2	GTSOAD	GT_UPS	20-10	PAUP	ο.	21.	47.	21.	14.	4.	218.	٥.	265.	DISTILLA	265.	10	0.07	0.05	0.7
_	GTSGAD				o.		454.	207.	133.	-				DISTILLA	82.	Ō		0.29	
, _	O 1 JOAD	01 11110	,,,	HEN	٠,	204,	747,	20,.		•									
33	GTRA08	GT-85F	RE-08	POWR	0.	18.	38.	12.	14.	4.		٥,		DISTILLA				0.05	
33	GTRA08	GT-85F	RE-08	HEAT	0.	32∤.	667.	207.	238.	70.	٥.	-701.	667.	DISTILLA	-34.	O	0.32	0.36	0.3
14	GTRA12	GT-856	F-12	PAUR	0.	19.	38.	12.	14.	4.	229.	٥.	267.	DISTILLA	267.	10	0,07	0.05	0.7
	GTRA12				ö.		53B.	207.	,228.	67.		-671.	638.	DISTILLA	-33.	0	0.33	0.36	0.3
			_					•••		_			007	01071114	267	10	0.07	0.05	0.7
-	GTRA16				ο.									DISTILLA DISTILLA				0.35	
35	GTRA16	GT-85F	RE-16	HEAT	0.	298.	602.	207.	210.	62.	0.	-614.	602.	DISTILLA	-12.		0,33	0.55	0.3
26	GTR208	GT-EN	-08	PEUP	0.	19,	43.	17.	14.	4.	224.	٥.	267.	DISTILLA	267.	10	0.07	0.05	0.7
	GTR208				0.				171.					DISTILLA				0.32	
	GINEOU	01 001	(L 00	11201	٠.	6 -1				•									
37	QTR212	GT-50	RE-12	POWR	0.	19.	41.	15.	14.	4.	225.	0.		DISTILLA	267.	10		0.05	
37	GTR212	GT-601	RE-12	HEAT	0.	261.	555 ,	207.	183,	54.	0.	-530.	555,	DISTILLA	· 25.	0	0.32	0.33	0.3
										_		_	000		000	10	0 07	0.05	0.7
	GTR216				<u>o.</u>		40.		14.			0. -546.		DISTILLA DISTILLA		 10	0.33		
88	GTR216	GT-60F	KE-16	HEAT	٥.	273.	558.	207.	188.	55.	υ.	-546,	226.	, U (O I I LLA	13.	3	J. J3	0,04	J. J.
39	GTRW08	GT-85	RE-GA	POWR	0.	16.	39.	10.	14.	4.	232.	٥.	271.	DISTILLA			0.05		
	GTRW08			-			-					-836.	801.	DISTILLA	-35.	0	0,29	0.35	_0.2
												_		D107***	000	• •		0.05	
10	GTRW12	9T-85	RE-12	POWR										DISTILLA				0.05	
10	GTRW12	GT-85	RE-12	HEAT	0.	350.	773.	207.	231.	82.	О.	-836,	773	DISTILLA	-64.	U	0,31	0.36	0.2

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28212 MW 4.00 PROCESS MILLIONS BTU/HR 207.0 PROCESS TEMP(F) 422. PRODUCT VINYL-CHLORI HOURS PER YEAR 8300.

POWER TO HEAT RATIO 0.066 O. HOT WATER BTU-10**6= UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 0. FESR POWER HEAT WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR FUEL SAVED= FUEL PROCES PROCES MW BOILR USED SITE USED UTILIT NO-NET USED POWER ELECT USED HEAT 10××6 10××6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 269. 10 0.06 0.05 0.77 41 GTRW16 GT-85RE-16 POWR ۵. 17. 38. 11. 14. 4. 231. Ò. 269. DISTILLA 327. 207. 257. O. -760. 719. DISTILLA -41. 0 0.31 0.36 0.29 41 GTRW16 GT-85RE-16 HEAT ٥. 719. 75. 10 0.05 0.05 0. 13. 14. 228. 0. 272. DISTILLA 272. 0.76 42 GTR308 GT-60RE-08 POWR 14. 44. 4. 42 GTR308 GT-60RE-08 HEAT 687. 207. 213. 62. O. -622. 687. DISTILLA 64. 0 0.24 0.31 0.30 0. 222. 10 0.06 0.05 0.77 268. DISTILLA 268. 43 GTR312 GT-60RE-12 POWR 40. 13. 14. 228 0. 18. 639.DISTILLA 0 0.31 0.34 0.32 43 GTR312 GT-60RE-12 HEAT 639. 207. 218. 64. 0. -640. -1. 0. 287. 10 0.06 0.05 0.77 44 GTR318 GT-60RE-16 POWR 18. 40. 13. 14. 228. 0. 268. DISTILLA 268. 44 GTR316 GT-60RE-16 HEAT 281. 634. 207. 215. 63. 0. -629 634. DISTILLA 5. 0 0.31 0.34 0.33 0 0.05 0.05 0.76 45 FCPADS FUEL-CL-PH POWR ٥. 14. 36. 6. 14. 4. 236. 0. 272.DISTILLA 272. 1218. DISTILLA -186. 0.28 0.38 0.17 45 FCPADS FUEL-CL-PH HEAT 0. 472. 1218. 207. 463. 136. 0. -1403. 46 FCMCDS FUEL-CL-MO POWR 0. 19. 33. 8. 14. 4. 234. α. 268. DISTILLA 268. 10 0.07 0.05 0.77 888. DISTILLA -213. 0 0.36 0.41 0.23 46 FCMCDS FUEL-CL-MO HEAT 207. 366. 107. 0. -1101. 0. 499. 888.

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

18SE PEO ADV DESIGN ENGR

A 4

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28213 MW 55.00 PROCESS MILLIONS BTU/HR 16.0 PROCESS TEMP(F) 448. PRODUCT LOW-DENSITY- HOURS PER YEAR 7290.

UTILITY FUEL	COAL				POWE			C ***** EL EQV		≭ 6≃	о, нот	WATER BT	U×10××6	5= (o.	
		WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
		FUEL	SAVED=		PROCES			PROCES		FUEL	FUEL	TOTAL+			FACTR	FACTE
		USED	NO-NET		HEAT		ELECT	BOILR		SITE	USED	UTILIT				
			10**6						10×*6			10**6				
		BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HR	<u> </u>	BTU/HR				
ONOCON NO CO	3 M N	0.	٥.	٥.	٥.	· o.	0.	19.	586.	10.	RESIDUAL	605.	O	٥.	0.31	0.03
STM141 STM-TURB-			-1655.			188.		-2020.	c.		RESIDUAL				0.08	
STM141 STM-TURB-				21.	16.	2.	1.		581.		RESIDUAL	602.			0.00	
									_							
STM141 STM-TURB-		_	-1655.			188.		-2020.			COAL-FGD		-		0.08	
STM141 STM-TURB-	1 HEAT	0.	3.	21.	16.	2.	1.	٥.	581.	21.	COAL-FGD	602.	10	0.01	0.00	0.03
STM141 STM-TURB-	1 POWR	0.	-1655.	2260.	1733.	188.	55.	-2020.	0.	2260.	COAL-AFB	2260.	0	-2.73	0.08	0.01
STM141 STM-TURB-			3.	21.	16.	2,	1.	٥,	581.	21.	COAL-AFB	602.	10	0.01	0.00	0.03
STMOSS STM-TURB-	a Paur	n	-3404.	4009.	3220.	188.	55 -	-3770.	n.	4009.	RESIDUAL	4009.	o	-5.62	0.05	0.00
STMO88 STM-TURB-			2.	20.		1.		0.	584.		RESIDUAL				0.00	
STMO88 STM-TURB-	R PAUR	c	-3404.	4 009	3220.	188.	55.	-3770.	n.	4009.	COAL-FGD	4009.	O	-5.62	0.05	0.0
STMOSS STM-TURB-				20.	16.	1.		0.	584.		COAL-FOD	603.			0.00	
2 STMO88 STM-TURB-			-3404.	4009.	3220.	188.		-3770.			COAL-AFB	4009.	_		0.05	
STMOBE STM-TURB-	HEAT	٠ ٥.	2.	20,	16.	1.	ο,	Q.	584.	20.	COAL-AFB	603.	10	0.00	0.00	0.00
PERSTM PER-STMTB	- POUR	0.	-590.	1135.	814.	188.	55.	-939.	٥.	1195.	COAL-PFB	1195.	0	-0.97	0.16	0.0
PFBSTM PFB-STMTB			7.	23.		4.		0.	575.	23.	COAL-PFB	598.	10	0.01	0.01	0.0
TISTMT TI-STMTB-	1 POWR	٥.	-295.	900.	571.	188.	55.	-653.	0.	900.	RESIDUAL	900.	0	-0.49	0.21	0.0
TISTMT TI-STMTB-				25.		5.	2.	0.	570.	25.	RESIDUAL	595.	10	0.02	0.01	0.0
TISTMT TI-STMTB-	1 Paus	n.	-295.	900.	571.	188.	55.	-653.	ο.	900.	COAL.	900.	0	-0.49	0.21	o. o
TISTMT TI-STMTB-			10.	25.	16.	5.	2.		570.		COAL	595.			0.01	
								· · · · · · · · · · · · · · · · · · ·								
TIHRSG THERMIONI	C POWR			1334.	821.	188.	55.	-947.	0.		RESIDUAL	1334.			0.14	
TIHRSG THERMIONI	C HEAT	0.	4.	26.	16.	4.	1.	٥.	575 ,	26.	RESIDUAL	601.	10	0.01	0.01	0.0
TIHRSG THERMIONI	C POWR	0.	-728,	1334.	821.	188.	55.	-947.	0.	1334.	COAL	1334.	0	-1.20	0.14	0.0
TIHRSG THERMIONI				26.	16.	4.	1.	ο.	575.	26.	COAL	601.	10	0.01	0.01	G. 0
STIRL STIRLING-	1 POWR	Ω.	-208.	813.	405.	188.	55.	-458,	٥.	813.	DISTILLA	813.	٥	-0.34	0.23	0.0
STIRL STIRLING-			10.	32.		7.	2.				DISTILLA		0	0.02	0.01	0 0

100 BU 40 - 103 > k2 C3

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 122

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28213 MW 55.00 PROCESS MILLIONS BTU/HR 16.0 PROCESS TEMP(F) 448. PRODUCT LOW-DENSITY- HOURS PER YEAR 7900.

POWER TO HEAT RATIO **** UTILITY FUEL COAL WASTE FUEL EQV BTUx10xx6= HOT WATER BTU*10**6= 0. O. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 0. -208. 813. 405. 188. 55. -458. ٥.٠ 813. RESIDUAL **813.** 0 -0.34 0.23 0.02 6 STIRL STIRLING-1 HEAT Ο. 10, 32. 16. 7. 2. 0. 563. 32. RESIDUAL 595. 0 0.02 0.01 0.03 6 STIRL STIRLING-1 POWR -208. 405. 0. 813. 188. 55. -458. 813. COAL 0 -0.34 0.23 0.02 n. 813 6 STIRL STIRLING-1 HEAT ٥. 10. 32. 16. 7. 0 0.02 0.01 0.03 2. 0. 563. 32. COAL 595. 7 HEGT85 HELLUM-GT- POWR -11 585. 188 31. 616. COAL-AFB 616. n 1 -0.02 0.30 0.03 7 HEGT85 HELIUM-GT- HEAT 0. -838. 16. -888. 16. -285. -84. 1477. -888. COAL-AFB 11 -1.44 -0.48 0.03 589. 8 HEGT60 HELIUM-GT- POWR -119. 725. 146. 188. Ο. 55. -154. ٥. 725. COAL-AFB 725. 0 -0.20 0.26 0.02 8 HEGT60 HELLUM-GT- HEAT Ω. 4. 79. 16. 20, 0. 522. 79. COAL-AFB 602. 6. 10 0.01 0.03 0.03 9 HEGTOO HELIUM-GT- POWR n. -461. 1066. 502. 188. 55. -572. ٥. 1066. COAL-AFB 1066. 0 -0.76 0.18 0.02 9 HEGTOC: HELIUM-GT- HEAT 0. 4. 34. 16. 6. 2. ٥. 568. 34. COAL-AFB 602. 10 0.01 0.01 0.03 10 FCMCCL FUEL-CL-MO POWR -12. 617. 291. 188. 617, COAL 0. 55. -323. 0. 617. 10 -0.02 0.30 0.03 **20 FCMCCL FUEL-CL-MO HEAT** ٥. 17. 34. 16. 10. 3. 0. 554. 34. COAL 588. 10 0.03 0.02 0.03 11 FCSTCL FUEL-CL-ST POWR 70. 535. 229 188. 0. 535. COAL 535. 10 0.12 0.35 0.03 11 FCSTCL FUEL-CL-ST HEAT 22. 0. 37. 16. 13. 4. 0. 546. 37. COAL 583. 10 0.04 0.02 0.03 12 IGGTST INT-GAS-GT POWR -147. 752. ٥. 346. 188. 55. -389. 752. COAL 752. 10 -0.24 0.25 0.02 n 12 IGGTST INT-GAS-GT HEAT 0. 11. 35. 16. 9. ٥. 559. 35 COAL 594. 10 0.02 0.01 0.03 13 GTSOAR GT-HRSG-10 POWR 257. 0. -42. 647. 188. 55. -284. 0. 647. RESIDUAL 647. 0 -0.07 0.29 0.02 13 GTSOAR ST-HRSG-10 HEAT ٥. 15. 40. 16. 12. 3. 0. 550. 40. RESIDUAL 590. 10 0.02 0.02 0.03 14 GTACOS GT-HRSG-08 POWR 0. -90. 695. 359. 188. 55. -403. 0. 695, RESIDUAL 695. 0 -0.15 0.27 0.02 14 GTACO8 GT-HRSG-08 HEAT 0. 14. 31. 16. 8. 2. n. 560. 31. RESIDUAL 591. 10 0.02 0.01 0.03 15 GTAC12 GT-HRSG-12 POWR 0. -10. 515. 285. 188. 55. -316, O 615. RESIDUAL 615. 0 -0.02 0.31 0.03 15 GTAC12 GT-HRSG-12 HEAT 17. 35. 16. 10 0.03 0.02 0.03 Ω. 11. 3. 0. 553. 35 . RESIDUAL 588. 16 GTACIG GT-HRSG-16 POWR 24. 581. 246. 188. -271. ٥. 55, 0. 581. RESIDUAL 581. 0 0.04 0.32 0.03 16 GTACIE GT-HRSG-16 HEAT 0. 19. 38. 16. 12. 0. 548. 38. RESIDUAL 586. 10 0.03 0.02 0.03

WELL PAGE FRINTING SYSTEM

17 GTWC16 GT-HRSG-16 POWE

17 GTWC16 GT-HRSG-16 HEAT

10.

18.

0.

596.

39.

241.

16.

188.

12.

55.

4.

-265.

Q.

٥.

548.

596. RESIDUAL

39. RESIDUAL

596.

587.

0 0.02 0.32 0.03

10 0.03 0.02 0.03

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

1

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28213 MW 55.00 PROCESS MILLIONS BTU/HR 16.0 PROCESS TEMP(F) 448. PRODUCT LOW-DENSITY- HOURS PER YEAR 7900.

POWER TO HEAT RATIO **** UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= ð. HOT WATER BTUX10**6= WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT **FUEL** SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR BOILR USED USED UTILIT USED NO-NET USED HEAT POWER ELECT SITE 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**5 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR 72. 534. 179. 188. 55. -192. ٥. 534. RESIDUAL 534. 0 0.12 0.35 0.03 0. 18 CC1626 GTST-16/26 HEAT 24. 48. 16. 17. 5. 534. 48. RESIDUAL 582. 0.04 0.03 0.03 0. 0. 19 CC1622 GTST-16/22 POWR 545. 200. 188. -217. a. 545. RESIDUAL 545. 0.10 0.34 0.03 0. 61. 55. O 19 CC1622 GTST-16/22 HEAT 540. 44. RESIDUAL 583. 0.04 0.03 0.03 0. 22. 44. 16. 15. 4. Û. 10 544. RESIDUAL 20 CC1222 GTST-12/22 POWR 0. 61. 544. 202. 188. 55. -219 0. 544. 0 0.10 0.34 0.03 20 CC1222 GTST-12/22 HEAT n. 22. 43. 16. 15. 4. 0. 540. 43. RESIDUAL 583. 10 0.04 0.03 0.03 21 CC0822 GTST-08/22 POWR 0. 14. 591. 260. 188. 55. -287. ٥. 591. RESIDUAL 591. 0 0.02 0.32 0.03 21 CC0822 GTST-08/22 HEAT 19. 36. 16. 12. 3. 0. 550. 36. RESIDUAL 587. 10 0.03 0.02 0.03 0. ٥. 504. RESIDUAL 504. 0.17 0.37 0.03 22 STIG15 STIG-15-16 POWR ٥. 101. 493. 6. 188. 55. 11. 22 STIG15 STIG-15-16 HEAT ٥. 253. 1231. 16. 469. 137. Ω. -879. 1231, RESIDUAL 352. 1 0.17 0.38 0.01 523. RESIDUAL 523. 0.36 0.03 23 STIG10 STIG-10-16 POWR 0. 83. 523. 69. 188. 55. - - 3. ٥. 0.14 23 STIG10 STIG-10-16 HEAT 121. 16. 43. 13. 0. 451. 121. RESIDUAL 572. 11 0.06 G. 08 0.03 ٥. 34. 560. RESIDUAL 560. 0.08 0.34 24 STIG1S STIG-1S-16 POWR 0. 45. 560. 118. 188. 55. -120. Q. 24 STIGIS STIG-15-16 HEAT 76. 7. Ω. 507. 76. RESIDUAL 583. 0.04 0.04 0.03 Õ. 22. 16. 25. ٥. 506. RESIDUAL 506. 0 0.16 0.37 0.03 25 DEADV3 DIESEL-ADV POWR ٥. 99. 506. 86. 188. 55. -83. 25 DEADV3 DIESEL-ADV HEAT Ω. 478. 94. RESIDUAL 571. 0.06 0.06 0.03 34. 94. 16. 35. 10. 0. 506. 0.16 0.37 0.03 26 DEADV2 DIESEL-ADV POWR 0. 99. 506. 128. 188. 55. -132. 0. 506. RESIDUAL 513. 63. RESIDUAL 576. 0.05 0.04 0.03 29. 16. 7. ٥. 26 DEADV2 DIESEL-ADV HEAT 63. 23. Ω. 27 DEADVI DIESEL-ADV POWR 0. 99. 506. 198. 188. 55. -214. ٥. 506. RESIDUAL 506. 0.16 0.37 3.03 539. 41. RESIDUAL 580. 0.04 0.03 0.03 25. 0. 27 DEADVI DIESEL-ADV HEAT ٥. 41. 16. 15. 4. 28 DEHTPM ADV-DIESEL POWR -37. 643. 276 188. 55. -305. 0. 643. RESIDUAL 643. 0 -0.06 0.29 0.02 552. 37. RESIDUAL 590. 0.03 0.02 0.03 37. 3. 28 DEHTPM ADV-DIESEL HEAT n. 16. 16. 11. 0 520. DISTILLA 85. 520. 71. 188. 55. -65. 0. 520. 0 0.14 0.36 0.03 29 DESGAS DIESEL-SGA POWR 0. 454. 117. DISTILLA 571. 0.06 0.07 0.03 29 DESGAS DIESEL-SGA HEAT 0. 34. 117. 16. 42. 12. 0. 520. 0 0.14 0.36 0.03 ٥. 85. 520. 71. 188. 35. -65. ٥. 520. RESIDUAL 29 DESCAS DIESEL-SCA POWR 454. 117. RESIDUAL 571. 0.06 0.07 0.03 0. 29 DESGAS DIESEL-SGA HEAT ٥. 34. 117. 16. 42. 12.

PAGE 123

2

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1 **FUEL EMERGY SAVED BY PROCESS AND ECS**

INDUSTRY 28213 MW 55.00 PROCESS MILLIONS BTU/HR 16.0 PROCESS TEMP(F)

448, PRODUCT LOW-DENSITY- HOURS PER YEAR 7900.

PAGE 124

POWER TO HEAT RATIO ***** UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU-10**6= ٥. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES PROCES MW SAVED= FUEL FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 0. 85. 520. 114. 188. 55. -116. ٥. 520. DISTILLA 520. 1 0.14 0.36 0.03 30 DESGA2 DIESEL-SGA HEAT 28. 73. 0. 16. 26. ٥. 504. 73. DISTILLA 577. 1 0.05 0.05 0.03 30 DESGA2 DIESEL-SOA POWR 85. 520. 114. 188. 55. -116. 0. 520. RESIDUAL 520. 0.14 0.36 0.03 30 DESGA2 DIESEL-SGA HEAT 28. 73. 1 0.05 0.05 0.03 16. 26. 8. · O. 504. 73. RESIDUAL 577. 31 DESGA1 DIESEL-SGA POWR 85. 520. 208. -226. 188. 0. 520. DISTILLA 520. 0.14 0.36 0.03 31 DESCA1 DIESEL-SCA HEAT 24. 40. 16. 14. 4. n. 541. 40. DISTILLA 581. 0.04 0.02 0.03 31 DESCA1 DIESEL-SCA POWR Q. 85. 520. ൗദ. 188. 55. -226. 0. 520. RESIDUAL 520. 1 0.14 0.36 0.03 31 DESCA1 DIESEL-SCA HEAT ٥. 24. 40. 16. 14. 4. 0. 541. 40. RESIDUAL 581. 0.04 0.02 0.03 32 GTSCAD GT-HRSG-10 POWR ٥. -37. 643. 292 188. 55. -325. 0. 643. DISTILLA 643. 0 -0.06 0.29 0.02 32 GTSØAD GT-HRSG-10 HEAT n. 16. 35. 16. 10. 0. 3. 554. 35. DISTILLA 590. 10 0.03 0.02 0.03 33 GTRA08 GT-85RE-08 POWR 80. 526. 156. 188. 55. -165. 526. DISTILLA Ω. Ó. 526. 0,13 0,36 0.03 33 GTRAOS GT-85RE-08 HEAT 25. ٥. 54. 16. 19. ٥. 526. 54. DISTILLA 580. 6. 10 0.04 0.03 0.03 34 GTRA12 GT-85RE-12 POWR n R1 524 164. 188. -175 0. 524. DISTILLA 524 0.13 0.36 0.03 34 GTRA12 GT-85RE-12 HEAT n. 25. 51. 16. 529. 51.DISTILLA 18. 5. 0. 580. 10 0.04 0.03 0.03 35 GTRA16 GT-85RE-16 POWR 0. 68. 538. 180. 188. 55. -193. ٥. 538. DISTILLA 0 0.11 0.35 0.03 538. 35 GTRA16 GT-85RE-16 HEAT Ω. 23. 48. 16. 17. 5. 0. 534. 48. DISTILLA 582. 10 0.04 0.03 0.03 36 GTR208 GT-60RE-08 POWR 224. 0. 0. 19. 586. 188. 55. -244. 586. DISTILLA 586. 0.03 0.32 0.03 36 GTR208 GT-60RE-08 HEAT 0. 19. 42. 16. 13. 4. ٥. 544. 42. DISTILLA 586. 0.03 0.02 0.03 37 GTR212 GT-60RE-12 POWR O. 37. 569. 208. 188. 55. -226. a. 569. DISTILLA 569. 0 0.06 0.33 0.03 37 GTR212 GT-60RE-12 HEAT 0. 20. 44. 16. 14. 4. 0. 541. 44.DISTILLA 585. 10 0.03 0.02 0.03 3E GTR216 GT-60RE-16 POWR 48. 557. 202. 188. 0. 557. DISTILLA 0 0.08 0.34 0.03 55. -219. 557. 38 GTR216 GT-60RE-16 HEAT 44. DISTILLA n 21. 44. 16. 15. 4. 0. 540. 584. 10 0.03 0.03 0.03 39 GTRWO8 GT-65RE-08 POWR 0. 71. 535. 133. 188. -138. ٥. 535. DISTILLA 535. 0 0.12 0.35 0.03 55. 39 GTRW08 GT-85RE-08 HEAT 0. 25. 64. 16. 23. 0. 516. 64.DISTILLA 580. 10 0.04 0.04 0.03 7. 40 GTRW12 GT-85RE-12 POWR 0. 0. 90. 516. 134. 188. 55. -139. 516.DISTILLA 516. 0 0.15 0.36 0.03 40 GTRW12 GT-85RE-12 HEAT ο. 27. 62. 16. 22. 7. 0. 516. 62. DISTILLA 578. 10 0.05 0.04 0.03

ISSE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 128

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28213 MW 55.00 PROCESS MILLIONS BTU/HR 16.0 PROCESS TEMP(F) 448, PRODUCT LOW-DENSITY- HOURS PER YEAR 7900.

POWER TO HEAT RATIO ****

WASTE FUEL EQV BTU*10**6= O. HOT WATER BTUX10xx6= UTILITY FUEL COAL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT COGEN WASTE FUEL FACTR FACTR PROCES PROCES MW PROCES FUEL FUEL FUFL TOTAL + SAVED= FUEL FUEL USED NO-NET USED HEAT POVER ELECT BOILR USED SITE **USED** UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR ٥. 526. 148. 188. 55. ~155. O. 526.DISTILLA 526. 0 0.13 0.36 0.03 41 GTRW16 GT-85RE-16 POWR 80. 523. 57. DISTILLA 580 10 0.04 0.04 0.03 20. 6. Ω. 41 GTRW16 GT-85RE-16 HEAT ٥. 25. 57. 16. -190. 605. DISTILLA 605. 0 -0.00 0.31 0.03 42 UTR308 GT-60RE-08 POWR 0. -0. 605. 177. 188. 55. 0. 55. DISTILLA 588. 10 0.03 0.03 0.03 42 GTR308 GT-60RE-08 HEAT ٥. 17. 55. 16. 17. 0. 533. Ω. 549. 0 0.09 0.34 0.03 43 GTR312 GT-60RE-12 POWR O. 57. 549. 176. 188. -188. 549. DISTILLA O. 533. 50.DISTILLA 583. 0.04 0.03 0.03 43 GTR312 GT-60RE-12 HEAT Ω. 22. 50. 16. 17. ٥. 554.DISTILLA 554 0 0.09 0.34 0.03 554. 179. 188. 55. -192. 44 GTR316 GT-60RE-16 POWR 0. 52. 49. DISTILLA 583 0.04 0.03 0.03 44 GTR316 GT-60RE-16 HEAT 0. 22. 49. 16. 17. 0. 534. 188. 55. -80. o. 494.DISTILLA 494. 0 0.18 0.38 0.03 45 FCPADS FUEL-CL-PH POWR 0. 494. 84. 111. 0.06 0.06 0.03 10. 475. 94. DISTILLA 569. 45 FCPADS FUEL-CL-PH HEAT Û. 36. 94. 16. 36. G. 188 -106 0. 455. DISTILLA 455. 0.25 0.41 0.04 46 FCMCDS FUEL-CL-MO POWR 455. 106. 55. 0. 150. 0.06 0.05 0.03 498. 69. DISTILLA 567. 46 FCMCDS FUEL-CL-MO HEAT ۵. 39. 69. 16. 28. 8. 0.

SYSTEM - DIES

.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

TRIC COMPANY PAGE 126

18SE PEO ADV DESTON ENGR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28221 MW 7.50 PROCESS MILLIONS BTU/HR 35.0 PROCESS TEMP(F) 338. PRODUCT STYRENE-BUTA HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.731 WASTE FUEL EQV BTU*10**6= HOT WATER BTU-10**6= UTILITY FUEL COAL ٥. 0. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR FUEL NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT USED 10*#6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41.COAL-AFB O ONOCON NO COGON 0. ٥. 0. Ω. ٥. 41. 80. 121. 0 0. 0.21 0.29 ٥. 1 STM141 STM-TURB-1 POVR Ο. -53. 175. 123. 26. 8. -103. ٥. 175. RESIDUAL 175. 0 -0.44 0.15 0.20 1 STM141 STM-TURB-1 HEAT 57. 50. RESIDUAL 107. 10 0.12 0.07 0.33 14. 50. 35. 7. o. 0. -53. 175. 123. 26. -103. ٥. 175. COAL-FGD 175. 0 -0.44 0.15 0.20 1 STM141 STM-TURB-1 POWR ٥. 8. 1 STM141 STM-TURB-1 HEAT 14. 35. 7. 57. 50. COAL-FGD 107. 10 0.12 0.07 0.33 0. 50. 2. 0. 1 STM141 STM-TURB-1 POWR -53. 175. 123. -103. 175. COAL-AFB 175. 0 -0.44 0.15 0.20 26. 8. 0. 1 STM141 STM-TURB-1 HEAT ٥. 14. 50. 35. 2. O. 57. 50. COAL-AFB 107. 10 0.12 0.07 0.33 2 STM088 STM-TURB-8 POWR -107. 229. 169. 26. -157. ٥. 229. RESIDUAL 229. 0 -0.89 0.11 0.15 2 STMO88 STM-TURB-8 HEAT 35. 47, RESIDUAL 111. 10 0.09 0.05 0.32 10. 47. 63. 229. G -0.89 0.11 0.15 2 STMO88 STM-TURB-8 POWR 0. -107. 229. 169. -157. ٥. 229, COAL-FGD 26. А 2 STM088 STM-TURB-8 HEAT 47. COAL-FGD 111. 10 0.09 0.05 0.32 10. 47. 35. 5. 2. 0. 63. ٥. -107. 229. 26. -157. 0. 229. COAL-AFB 229. 0 -0.89 0.11 0.15 2 STM088 STM-TURB-8 POWR 0. 169. 8. 10 0.09 0.05 0.32 2 STMG88 STM-TURB-8 HEAT 10. 35. 5. 2. ٥. 63. 47. COAL-AFB 111. 0. 47. 10 0.01 0.21 0.29 3 PEBSTM PEB-STMTB- POWR 120. 76. 26. -48. 120. COAL-PFB 120. 0. 1. 8. 0. 56. COAL-PFB 99. 10 0.19 0.12 0.35 3 PFBSTM PFB-STMTB- HEAT 23. 56. 35. 12. 3. 0. 43. 10 0.19 0.26 0.36 4 TISTMT TI-STMTB-1 POWR 23. 98. 57. 26. 8. -26. ٥. 98. RESIDUAL 98. 4 TISTMT TI-STMTB-1 HEAT 31. 60. RESIDUAL 91. 10 0.25 0.17 0.38 0. 30. 60. 35. 16. 5. 0. -26. 98. COAL 98. 10 0.19 0.26 0.36 4 TISTMT TI-STMTB-1 POWR 23. 98. 57. 26. 8. O. Ω. 60. COAL 91. 10 0.25 0.17 0.38 4 TISTMT TI-STMTB-1 HEAT Ω. 30. 60. 35. 16. 5. 0. 31. 0. 5 TIHRSG THERMIONIC POWR -61. 182. 119. 26. 8. -99. 182. RESIDUAL 182. 0 -0.50 0.14 0.19 0. 10 0.09 0.07 0.32 53. RESIDUAL 5 TIHRSG THERMIONIC HEAT ٥. 11. 53. 35. 8. 2. ٥. 56. 110. 182.COF_ 182. 0 -0.50 0.14 0.19 5 TIHRSG THERMIONIC POUR 182. 119. -99. ٥. -61. 26. 8. . 53.COAL 110. 10 0.09 0.07 0.32 5 TIHRSG THERMIONIC HEAT 11. 53. 35. 8. 2. 0. 56. Ω. 126. 99. DISTILLA 0 0.18 0.26 0.35 6 STIRL STIRLING-1 FOWR 99. 22. 99. 47. -14. n: 8. 6 STIRL STIRLING-1 HEAT 27. 74. 35. 19. 6. 0. 20. 74.DISTILLA 94. 0.22 0.20 0.37

C TUNNENC

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28221 MW 7.50 PROCESS MILLIONS BTU/HR 35.0 PROCESS TEMP(F) 338. PRODUCT STYRENE-BUTA HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.731 UTILITY FUEL COAL. WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU#10**6= 0. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FUEL FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 0. 22. 99, 47. 26. 8. -14. ٥. 99. RESIDUAL 99. 0 0.18 0.26 0.35 74. RESIDUAL 6 STIRL STIRLING-1 HEAT 27. 74. 35. 20. 0. 19. 6, О. 94. 0.22 0.20 0.37 6 STIRL STIRLING-1 POWR 22. 99. 47. 26. -14. 0. 99. COAL 99. 0.18 0.26 0.35 0. 8. S STIRL STIRLING-1 HEAT ٥. 27. 74. 35. 19. 6. 0. 20. 74. COAL 94. 0 0.22 0.20 0.37 7 HEGT85 HELIUM-GT- POWR 80. 13. 26. 26. 0. 106. COAL-AFB 106. 10 0.13 0.24 0.33 7 HEGT85 HELIUM-GT- HEAT 0. 42. 219. 35. 70. 21. 0. -140. 219. COAL-AFB 79. 10 0.16 0.32 0.16 8 HEGT60 HEL!UM-GT- POWR 18. 99. Æ. ٥. 103. COAL-AFB 103. 10 0.15 0.25 0.34 n 31. 26. 8. 8 HEGT60 HELIUM-GT- HEAT 0. 20. 111. 35. 29. 8. ű. -10. 111.COAL-AFB 101. 10 0.15 0.26 9 HEGTOO HELIUM-GT- POWR 145. 0. 145. COAL-AFB 145. 10 -0.20 0.18 0.24 0. -24. 72. 26. 8. -44. 71.COAL-AFB 9 HEGTOO HELIUM-GT- HEAT 9. 71. 35. 12. ٥. 41. 112. 10 0.08 0.11 0.31 n. 4 . . 10 FCMCCL FUEL-CL-MO POWR ٥. 37. 84. 40. 26. . -6. ٥. 84. COAL 84. 10 0.31 0.30 0.42 8. 10 FCMCCL FUEL-CL-MO HEAT 0. 37. 74. 35. 22. 7. 0. 10. 74. COAL 84. 10 0.31 0.27 0.42 11 FOSTOL FHEL-CL-ST POWR 66. 77. COAL 77. 10 0.37 0.33 0.46 44. 26. 26 10. n 11 FOSTOL FUEL-CL-ST HEAT 59. 89. 35. 34. 10. ۵. -27. 89. COAL 62. 0.40 0.39 0.39 ٥. 12 100TST INT-GAS-GT POWR 89. COAL 89. 10 0.27 0.29 0.39 32. 89. 38. 26. -3. 0. 0. 8. 0.27 0.27 0.40 12 IGGTST INT-GAS-GT HEAT 83. COAL 0. 33. 83. 35. 24. 0. 6 88. 10 0.27 0.29 0.40 13 UTSOAR GT-HRSG-10 POWR 26. 0. 88, RESIDUAL 88. 0. 33. 88. 38. 8. -4. 13 GTSOAR GT-HRSG-10 HEAT 81. RESIDUAL 10 0.28 0.27 0.40 0. 34. 81. 35. 23. 7. 0. 7. 88, 95. 26. 95. RESIDUAL 95. 10 0.22 0.27 0.37 14 GTACOB GT-HRSG-08 POWR 26. 49. 8. -16. 0. 10 0.25 0.20 0.39 68. RESIDUAL 14 GTACOS GT-HRSG-08 HEAT 0. 31. 68. 35. 18. 5. 0. 22. 91. 15 GTAC12 GT-HRSG-12 POWR 37. 84. RESIDUAL 10 0.31 0.31 0.42 ٥. 84. 39. 26. 8. -5. 0. 75. RESIDUAL 83. 10 0.31 0.27 0.42 15 GTAC12 GT-HRSG-12 HEAT α. 38. 75. 35. 23. 16 GTAC16 GT-HRSG-16 POWR 0. 41. 79. 35. 26. 8. G. 80. RESIDUAL 80. 10 0.34 0.32 0.44 1. 80. RESIDUAL 79. 0.34 0.32 0.44 16 GTAC16 GT-HRSG-16 HEAT 0. 80. 35. 26. 0. A. 37. 0. 84. RESIDUAL 84. 10 0.31 0.31 0.42 17 GTWC16 GT-HRSG-16 POWR 0. 81. 33. 26. 8. 3. Q. 10 0.32 0.32 0.40 17 GTWC16 GT-HRSG-16 HEAT 40. 87. 35. 27. ٥. -5. 87. RESIDUAL 81.

ISSE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 128

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28221 MW 7.50 PROCESS MILLIONS BTU/HR 35.0 PROCESS TEMP(F) 338. PRODUCT STYRENE-BUTA HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.731 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER STUX10**G= ٥. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES FUEL PROCES PROCES MW FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10×*6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR ٥. 37. 67. 21. 26. 8. 17. 0. 84. RESIDUAL 10 0.31 0.30 0.42 18 CC1626 GTST-16/26 HEAT 62. ٥. 114. 35. 43. 13. ο. -55. 114. RESIDUAL 59. 10 0.35 0.38 0.31 19 CC1622 GTST-16/22 POWR 0. 39. 68. 23. 26. 8. 14. 0. 82, RESIDUAL 82. 10 0.32 0.31 0.42 19 CC1622 GTST-16/22 HEAT 59. 104. 35. 39. 11. ٥. -41. 104. RESIDUAL 62. 10 0.36 0.37 0.34 20 CC1222 GTST-12/22 POWR 0. 39. 68. 23. 26. 14. ٥. 82. RESIDUAL 82. 10 0.32 0.31 0.43 20 CC1222 GTST-12/22 HEAT 59. 103. 35. 39. 11. Ω. -41. 103. RESIDUAL 62. 0.37 0.38 0.34 21 CC0822 GTST-08/22 POWR 0. 42. 72. 29. 26. 8. 7. 0. 79. RESIDUAL 79. 10 0.35 0.32 0.44 21 CC0822 GTST-08/22 HEAT 87. 50. 35. 31. 9. ٥. -16. 87. RESIDUAL 71. 10 0.37 0.35 0.40 22 STIG15 STIG-15-16 POWR ٥. 14. 67. 1. 26. 8. 40. ٥. 107. RESIDUAL 107. 0.11 0.24 0.33 10 22 STIG15 STIG-15-16 HEAT 0. 554. 2692. 1026. 35. 301, 0. -3126. 2692. RESIDUAL -433. 0.17 0.38 0.01 23 STIG10 STI3-10-16 POWR 0. 20. 71. 9. 26. 8. 30. ٥. 101. RESIDUAL 101. 10 0.16 0.25 0.35 23 STIG10 STIG-10-16 HEAT 0. 73. 264. 35. 95. 28. -216. 264, RESIDUAL 0. 48. 0 0.22 0.36 0.13 24 STIG1S STIG-15-16 POWR 23. ٥. 76. 16. 26. 8 22. 0. 99. RESIDUAL 99. 10 0.19 0.26 0.36 24 STIGIS STIG-15-16 HEAT 49. ٥. 166. 35. 56. 16. -94. 166. RESIDUAL 72. 10 0.23 0.34 0.21 25 DEADV3 DIESEL-ADV POWR 0. 29. 69. 15. 26. 8. 24. ٥. 93. RESIDUAL 93. 0 0.24 0.28 0.38 25 DEADV3 DIESEL-ADV HEAT 67. 0. 161. 35. 60. 18. 0. -107. 161. RESIDUAL 54. 0 0.29 0.37 0.22 26 DEADV2 DIESEL-ADV POWR 0. 32. 69. 18. 26. 8. 21. 0. 90. RESIDUAL 90. 0.26 0.29 0.39 26 DEADV2 DIESEL-ADV HEAT ٥. 63. 138. 35. 51. 15. 0. -80. 138. RESIDUAL 58, 0.31 0.37 0.25 27 DEADVI DIESEL-ADV POWR 0. 43. 69. 27. 26. 8. 9. 0. 78. RESIDUAL 78. 0.35 0.33 0.45 27 DEADVI DIESEL-ADV HEAT 0. 55. 90. ٥. 35. 33. 10. -24. 90. RESIDUAL 66. 0.38 0.37 0.39 28 DEHTPN ADV-DIESEL POWR 42. 76. 33. 26. 8 Ó. 79. RESIDUAL 0 0.35 0.33 0.44 28 DEHTPM ADV-DIESEL HEAT 0. 46. 81. 35. 27. Õ. 8. -6, 81. RESIDUAL 76. 0.36 0.34 0.43 29 DESGAS DIESEL-SGA POWR 0. 24. 71. 13. 26. 8. 26. 0. 97. DISTILLA 97. 0 0.20 0.26 0.36 29 DESGAS DIESEL-SGA HEAT 0. 66. 191. 35. 69. 20. 0. -136. 191.DISTILLA **35**. 0.26 0.36 0.18 29 DESCAS DIESEL-SCA POWR 0. 24. 71. 13. 26. 8, 26. ٥. 97. RESIDUAL 97. 0.20 0.26 0.36 29 DESGAS DIESEL-SGA HEAT 0. 66. 191. 35. 69. 20. -136. 191. RESIDUAL ٥. 55. 0 0.26 0.36 0.18

SYSTEM- PIISS-02

10 40 - 14 M > 11 N C H

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28221 MW 7.50 PROCESS MILLIONS BTU/HR 35.0 PROCESS TEMP(F) 338. PRODUCT STYRENE-BUTA HOURS PER YEAR 7900.

UTIL	ITY FUEL	COAL					W.	ASTE FU	EL EQV I	3TU*10*	*6=	O. HOT	WATER BT	U*10**6	= (3.	
		-,-,-	WASTE	FUEL	COGEN	COGEN			AUX		TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
*****			FUEL	SAVED=			PROCES		PROCES		FUEL	FUEL	TOTAL+			FACTR	
			USED	NO-NET	USED	HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				
			10**6	10**6	10**6	10**6	10**5		10**6	10**6	10**6		10**6				
			BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HR	<u> </u>	BTU/HR_				
n DESMAS	DIESEL-SOA	DUID	0.	27.	71.	16.	26.	8.	23.	٥.	94.	DISTILLA	94.	1	0.23	0.27	0.37
	DIESEL-SOA		o.	62.	159.	35.	57.	17.	0.	-100.		DISTILLA	60.			0.36	
		2011						···			04	RESIDUAL	94.	1	0.23	0.27	0.37
	DIESEL-SOA		0.	27.	71.	16.	26.	8.		0. -100.		RESIDUAL	60.	i		0.27	
O DESUAZ	DIESEL-SOA	HEAT	· o.	62,	159.	35,	57.	17.	U.	-100.	159.	RESIDUAL	60.	•	0.20	0,30	0,2
	DIESEL-SOA			43.	71.	28.	26.	8.	8.	0.		DISTILLA	79.	1			and the second second second
1 DESCA1	DIESEL-SOA	HEAT	0.	52.	87.	35.	32.	9.	0.	-18.	87.	DISTILLA	69.	1	0.37	0.36	0.40
1 DESCAT	DIESEL-SOA	POWR	0.	43.	71.	28,	26.	8.	8,	0.		RESIDUAL	79,	1	0.35	0.07	0.45
1 DESCA1	DIESEL-SOA	HEAT	0.	52.	87.	35.	32,	9,	0.	-18.	87.	RESIDUAL	69.	1_	0.37	0.36	0.40
2 GTSMAN	GT-HRSG-10	POUR	0.	34.	88.	41.	26.	8.	-7.	0.	88.	DISTILLA	88.	10	0.28	0.29	0.40
	GT-HRSG-10		ŏ.	35.	75.	35.	22.	6.	o.	11.		DISTILLA	87.	10	0.29	0.25	0.40
O-TD400	AT 0555 A0	Del ID		38.	72.	25.	26.	8.	12.	0.	9.4	DISTILLA	84.	10	0.31	0.31	0.42
	GT-85RE-08 GT-85RE-08			58. 53.	72. 101.	25. 35.	26. 36.	11.	0.	-32.		DISTILLA	68.	10	0.34		
					, ,					_							
	GT-85RE-12		<u>o.</u>	38.	71.	25.	26.	8.	<u> </u>	<u>0.</u>		DISTILLA	83.			0.31	Charles of the con-
4 GTRA12	GT-65RE-12	HEAT	О.	53.	98.	35.	35.	10.	ົ ຈ.	-30.	98.	DISTILLA	68.	10	0.35	0.36	0.36
5 GTRA16	GT-85RE-16	POWR	ο.	39.	73.	27.	26.	8.	9.	ο.		DISTILLA	83.	10		0.31	
	GT-85RE-16		٥.	50.	94.	35.	33.	10.	0.	-23.	94.	DISTILLA	71.	10	0.5	0.35	0.37
6 675205	GT-60RE-08	PAUP	0.	38.	80.	33.	26.	8.	3.	٥.	83.	DISTILLA	63.	10	0.32	0.31	0.42
	GT-60RE-08		o. o.	41.	86.	35.	27.	8.	ā.	-6.		DISTILLA	80.			0.32	
0 0111200	01 00112 00																
7 GTR212	GT-60RE-12	POWR	0.	38.	78.	30.	26.	8.		0.		DISTILLA	83.			0.31	0.4
7 GTR212	GT-60RE-12	HEAT	0.	44.	89.	35.	29.	9,	0.	-12.	89.	DISTILLA	77.	10	0.33	0.33	0.39
8 GTR216	GT-60RE-16	POWR	٥.	39.	76.	30.	26.	8.	6 .	ο.	82.	DISTILLA	82.	10	0.32	0.31	0.43
	GT-60RE-16			46.	89.	35.	30.	9.	0.	-14.	89.	DISTILLA	75.	10	0.34	0.34	0.39
a GTDUAG	GT-85RE-08	PAUP	٥.	32.	73.	21.	26.	8.	17.	0.	90.	DISTILLA	90.	10	0.26	0.29	0.39
	GT-85RE-08			52. 53.	122.	35.	43.	13.	Ö.	-54.		DISTILLA	68.	10	0.30		0.29
J GINWOO	OI COME OF	11-71	<u>~</u>														
O GTRW12	GT-85RE-12	POWR	0.	34.	70.	20.	26.			0.		DISTILLA	øī.		0.28		0.40
C GTRW12	GT-85RE-12	HEAT	0.	58.	120.	35.	44.	13.	0.	-57.	120.	DISTILLA	63.	10	0.32	0.36	0.2

٠ س

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28221 MW 7.50 PROCESS MILLIONS BTU/HR 35.0 PROCESS TEMP(F) 338. PRODUCT STYRENE-BUTA HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.731

WASTE FUEL EGV BTU*10**6= O. HOT WATER BTU*10**6= UTILITY FUEL COAL COGEN NET= ' FAIL FESR POWER HEAT COGEN COGEN COGEN AUX UTILIT TOTAL SITE WASTE FUEL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-18 25WR O. 34. 72. 22. 26. ä. 15. 0. 87. DISTILLA 87. 10 0.28 0.29 0.40 114.DISTILLA 41 GTRW16 GT-85RE-16 HEAT 35. 41. 12. 67. 10 0.32 0.36 0.31 ٥. 54. 114. 0. -47. 10 0.24 0.28 0.38 42 9TR308 GT-CORE-08 POWR 30 83. 27, 26. 8. 9. n. 92. DISTILLA 92. 42 GTR308 GT-60RE-08 HEAT 38. 106. 35. 33. 10. -23. 106.DISTILLA 83. 10 0.26 0.31 0.33 0. 0. 43 GTR312 GT-60RE-12 POWR 35. 75. 25. 26. 0 86. DISTILLA 86. 10 0.29 0.30 0.40 43 GTR312 GT-60RE-12 HEAT 35. 36. -32. 104. DISTILLA 73. 10 0.32 0.34 0.34 48. 104. 10. ٥. 25. 44 GTR316 GT-60RE-16 POWR 34. 75. 26. 8. ٥. 87. DISTILLA 87. 10 0.28 0.30 0.40 11. 35. 104. DISTILLA 10 0.31 0.34 0.34 44 GTR316 GT-60RE-16 HEAT 47. 104. 35. 10. -30. 74. 0 0.22 0.27 0.37 45 FCPADS FUEL-CL-PH POWR 67. 26. 8. 28. ٥. 95. DISTILLA 95. 11. 45 FCPADS FUEL-CL-PH HEAT 80. 206. 35. 78. 23. ~165. 206. DISTILLA 41. 0 0.28 0.38 0.17 0 0.29 0.30 0.41 46 FCMCDS FUEL-CL-MO POWR 35. 62. 14. 24. 0. 86. DISTILLA 86. 26. 8. 0 0.36 0.41 0.23 46 FCMCDS FUEL-CL-MO HEAT 84. 150. 35. 62. 18. ٥. -113. 150. DISTILLA 37.

OF POOR QUALITY

M- P1185-02

Carrenge - Name -

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28241 MW 32.00 PROCESS MILLIONS BTU/HR 30.0 PROCESS TEMP(F) 406, PRODUCT POLYESTER HOURS FER YEAR 7900.

POWER TO HEAT RATIO 3.639 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BYU-10**6= 0. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET≖ FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL. FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED USED SITE UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COOON ٥. 0. 0. 0. ٥. 35. 341. 35. RESIDUAL 376. 0 0. 0.29 0.08 1 STM141 STM-TURB-1 POWR 0. -640. 1016. 109. -853. 755. 32. ٥. 1016. RESIDUAL 1016. 0 -1.70 0.11 0.03 1 STM141 STM-TURB-! HEAT 40. 30. 0. 328. 40. RESIDUAL 368. 10 0.02 0.01 0.08 1 STM141 STM-TURB-1 POWR 0. -640. 1016. 755. 32. -853. 0 -1.70 0.11 0.03 n. 109. 1016.COAL-FGD 1016. 1 STM141 STM-TURB-1 HEAT 40. 30. 0. 8. 4. 1. 0. 328. 40. COAL-FOD 368. 10 0.02 0.01 0.08 1 STM141 STM-TURB-1 POWR ٥. -640. 1016. -853. 755. 109. 32. 0. 1016, COAL-AFB 1016. 0 -1.70 0.11 0.03 1 STM141 STM-TURB-1 HEAT 0. A. 40. 30. 4. î. 0. 328. 40. COAL-AFB 368. 10 0.02 0.01 0.08 2 STM088 STM-TURB-8 POWR 1519. RESIDUAL 1519. 0. -1143. 1519. 1182. -109. 32. -1356. Ω. 0 -3.04 0.07 0.02 2 STM088 STM-TURB-8 HEAT 5. 39. 30. 3. 1. Ó. 333. 39. RESIDUAL 371. 10 G.01 0.01 Q.08 2 STM088 STM-TURB-8 POWE 0 -3.04 0.07 0.02 0. -1143. 1519. 1182. 109. 32. -1356. 0. 1519. COAL-FGD 1519. 2 STM088 STM-TURB-8 HEAT 5. 39. 30. 3. ٥. 333. 39. COAL-FOD 371. 10 0.01 0.01 0.09 2 STM088 STM-TURB-8 POWR 109. , 0, 0. -1143. 1519. 1182. 32. -1356. 1519. COAL-AFB 1519. 0 -3.04 0.07 0.02 2 STM088 STM-TURB-8 HEAT . 0. 5. 39. 30. 3. 1. 0. 333. 39. COAL-AFB 371. 10 0.01 0.01 0.08 3 PFBSTM PFB-STMTB- POWR 613. COAL-PFB -236. 613. 405. 109. 32. -442. 0. 613. 0 -0.63 0.18 0.05 3 PFBSTM PFB-STMTB- HEAT 0. 15. 45. 30. 8. 2. 0. 316. 45. COAL-PFB 361. 10 0.04 0.02 0.08 4 TISTMT TI-STMTB-1 POWR -100. 477. 293. 109. -309 Ω. 477. RESIDUAL 477. 0 -0.27 0.23 0.06 4 TISTMT TI-STMTB-1 HEAT 21. 49. 30. 3. 0. 306. 49. RESIDUAL 355. 0.06 0.03 0.03 4 TISTMT TI-STMTB-1 POWR -100. 477. 293. 109. 32. -309. Ö. 477. COAL 477. 0 -0.27 0.23 0.06 4 TISTMT TI-STMTB-1 HEAT 21. 49. 30. 306. 49. COAL 355. 10 0.06 0.03 0.08 11. 3. ٥. 5 TIHRSG THERMIONIC POWR -400. 776. 0. 490. 109. 32. -541. 0. 776. RESIDUAL 778. 0 -1.06 0.14 0.04 5 TIHRSG THERMIONIC HEAT 0. 9. 47. 30. 47. RESIDUAL 368. 10 0.02 0.02 0.08 7. 2. ٥. 320. -541. 5 TIHRSG THERMIONIC POWR 0. -400. 776. 490. 109. 776. COAL 776. 0 -1.06 0.14 0.04 32. 0. 5 TIHRSG THERMIONIC HEAT ٥. 9. 47. 30. . 2. 320. 47. COAL 368. 10 0.02 0.02 0.08 7. ٥. 6 STIRL STIRLING-1 POWR -75. 451. 220. -223 0. 451. 0 -0.20 0.24 0.07 109. 451.DISTILLA 6 STIRL STIRLING-1 HEAT 20. 30. 15. 0. 295. 62. DISTILLA 356. 0 0.05 0.04 0.08

THE ROAS LANGOIDS

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

18SE PEG ADV DESIGN ENGR

DATE 06/08/79

1 MDUSTRY	28241 MW	32.00	PROCESS	S MILLIONS	ONS BTU/HR		30.0 PRO	PROCESS TE	TEMP(F)	406. PF	PRODUCT PO	POLYESTER	HOURS	T TH	YEAR 7	7900.	
VTILITY	TTY FUEL	COAL				POWER	10	HEAT RATIO	3.639 EQV	BTUx10xx6	£6= 0.	HOH 2	HATER BT	BTU*10x*6=	0		
·*			WASTE	FUEL	CCGEN	COGEN		COGEN	AUX	UPILIT	TOTAL S	SITE	NET*	FAIL	FESR	POWER HEAT	HEAT
			FUEL USED 10**®	SAYED= NG-NET 10**6 BTU/HR	FUEL USED 10**6 BTU/HR	PROCES HEAT 10**6 BTU/HR	PROCES POWER 10**6 BTU/HR	MW ELECT	PROCES BOILR 10**6 BTU/HR	FUEL USED 10**6 BTU/HR	FUEL F SITE U 10**6 BTU/HR	FUEL	Tetal+ ut lit 10**6 Btu/hr		L	FACTR	FACTR
6 STIRL STIRL	STIRLING-1 STIRLING-1	1 POWR	00	-75. 20.	451.	220. 30.	109.	32.	-223.	295.	451, RE 62, RE	451.RESIDUAL 62.RESIDUAL	356.	00	0.20	0.24	0.07
6 STIRL 6 STIRL	STIRLING-1 STIRLING-1	1 POWR	00	-75.	451.	30.	109. 15.	32.	-223.	295.	451, CGAL 52, CGAL	JAL JAL	451. 356.	00	-0.20 0.35	0.24	0.07
7 HEGT85	HELIUM-GT-	- POYR	o o	23,	340.	19.	109.	32.	13.	-210.	354.CGAL- 549.CGAL-	JAL-AFB	354.	-	0.06	0.32	0.08
8 HEGTED 8 HEGTED		!	0 0	-45. 12.	422. 120.	105. 30.	109,	32. 9.	-89. O.	244.	422. CGAL 120. CGAL	COAL-AFB COAL-AFB	422.	5 5	-0.12	0.26	0.03 0.08
9 HEGTOO 9 HEGTOO	HEL I UM-GT HEL I UM-GT	- POWR	00	-244.	620.	297.	109.	32.	-315. 0.	307.	620, CGAL- 63, CGAL-	JAL-AFB JAL-AFB	620. 369.	5.0	0.65	0,18	0.05
10 FOYCCL 10 FCYCCL	PUEL-CL-MO	O POWR	00	17. 32.	359. 64.	170.	109.	32.	-164.	281.	359.05AL 64.05AL	JAL JAL	359.	0.0	0.05	0.30	0.08
11 FCSTCL 11 FCSTCL	FUEL-CL-ST	T POWR	60	76.	300.	125.	109.	32.	-1111.	259.	300. CGAL 72. CGAL	COAL	331.	0 0	0.20	0.36	0.10
12 106TST 12 166TST	INT-645-6T INT-645-6T	T POWR	00	-37.	413. 67.	184.	109.	32.5	-182.	286.	413. COAL 67. COAL	COAL	413.	0.0	0.06	0.26	0.07
13 6TSGAR 13 6TSGAR	6T-HRSG-10 6T-HRSG-10	O POWR O HEAT	99	28.0	376. 73.	155. 30.	109.	32. 6.	-147.	275.	376.RE 73.RE	376. RESIDUAL 73. RESIDUAL	376.	00	0.00	0.29	0,06 0,09
14 GTACOS	6T-HPSG-08 GT-HRSG-08	B POWR	00	-28. 26.	404.	208.	109.	32.	-210. 0.	292.	404.RE 58.RE	04. RESIDUAL 58. RESIDUAL	404. 350.	00	-0.07	0.27	0.07
7 15 GTAC12 o 15 GTAC12	6T-HRSG-12 6T-HRSG-12	2 POWR 2 HEAT	òò	19.	358. 65,	166.	109.	32.	-160. 0.	279.	358.RE 65.RE	58.RESIDUAL 65.RESIDUAL	358,	00	0.03	0.31	0.08
7 16 9TAC16 7 16 6TAC16	6T-HRSG-16	6 POWR 6 HEAT	00	38. 36.	338. 70.	145.	109.	32.	-135.	270.	338.RE 70.RE	338.RESIDUAL 70.RESIDUAL	338,	00	0.10	0.32	0.09
¥ 17 GTVC16 ≤ 17 GTVC16	67-HRSG-16	6 POWR 6 HEAT	00	3 6 .	347.	140. 30.	109. 23.	32.	-130.	268.	347.RE 74.RE	347.RESIDUAL 74.RESIDUAL	347. 342.	00	0.08	0.32	0.09 0.09
RXKEFT			-							i					ı		
Non																	
*																	

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

18SE PEG ADV DESIGN ENGR REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28241 MW 32.00 PROCESS MILLIONS BTU/HR 30.0 PROCESS TEMP(F) 406. PRODUCT POLYESTER HOURS PER YEAR 7900.

POWER TO HEAT RATIO 3.639 UTILITY FUEL WASTE FUEL EQV BTU=10==6= · COAL ٥. HOT WATER BTU:10:46= ٥. WASTE COGEN COGEN COGEN AUX SITE NET= FESR POWER HEAT FUEL COGEN UTILIT TOTAL FAIL FACTR FACTR FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL* USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 301. RESIDUAL 301. 0 0.20 0.36 0.10 18 CC1626 GTST-16/26 FOWR 75. 301. 98. 109. 32. -80. Ω. n. 18 CC1626 GTST-16/26 HEAT 48. 92. 30. 33. 10. ٥. 237. 92. RESIDUAL 329. 10 0.13 0.10 0.09 0. 19 CC1622 GTST-16/22 POWR 307. 109. 109. 307, RESIDUAL 307. 0.36 0.10 C. 70. 32. -93. 0. 0 0.19 84. RESIDUAL 19 CC1622 GTST-16/22 HEAT 0. 45. 84. 30. 30. 9. α. 248. 332. 10 0.12 0.09 0.09 70. 366. RESIDUAL 306. 0.19 0.36 0.10 20 CC1222 GTST-12/22 POWR . 0. 306. 110. 109. -94 0. 0 248. 20 CC1222 GTST-12/22 HEAT 45. 83. 30. 30. n 83. RESIDUAL 332. 10 0.12 0.09 0.09 21 CC0822 GTST-08/22 POWR 329. 140. 109. ٥. 329. RESIDUAL 329. 0.12 0.33 0.09 D. 47. 32. -130. 70. RESIDUAL 339. 0.10 0.07 0.09 21 CC0822 GTST-08/22 HEAT 38. 70. 30. 23. ٥. 268. 10 31. 317. RESIDUAL 317. 0 0.16 0.34 0.09 22 STIG15 STIG-15-16 POWR 0. 59. 287. 4. 109. 32. 0. 22 STIG15 STIG-15-16 HEAT 2308. 879. 258. 0. -2406. 2308. RESIDUAL -99. 0.17 0.38 0.01 0. 475. 30. 304 . RESIDUAL 304. D 0.19 0.36 0.10 23 STIG10 STIG-10-16 POWR 304. 109. -12. 0. 0. 72. 40. 32. 226. RESIDUAL 314. 0 0.17 0.26 0.10 23 STIG10 STIG-10-16 HEAT ٥. 63. 226. 30. 81. 24. Ω. 87. 0. 326. RESIDUAL 326 0 0.13 0.34 0.09 -45. 24 STIG1S STIG-1S-16 POWR 51. 326. 69. 109. 32. 0.11 0.14 0.09 142. RESIDUAL 334. 24 STIGIS STIG-15-16 HEAT 42. 142. 30. 48. 0. 192. 0 0.22 0.37 0.10 -30. ٥. 294. RESIDUAL 294. 25 DEADV3 DIESEL-ADV POWR ٥. 82. 294. 55. 109. 32. 160. RESIDUAL 316. 0.16 0.19 0.10 25 DEADV3 DIESEL-ADV HEAT 0. 61. 160. 30. 59. 17. 0. 156. 294. 0.22 0.37 0.10 26 DEADV2 DIESEL-ADV POWR 82. 294. 75. 109. 32. -53. 0. 294. RESIDUAL 0. 204. 118. RESIDUAL 322. 0.14 0.14 0.09 26 DEADV2 DIESEL-ADV HEAT 0. 54, 118. 30, 44. 13. 0. 294. RESIDUAL 294. 0.10 -100. 0.22 0.37 27 DEADV1 DIESEL-ADV POWR 0. 82. 294. 115. 109. 32. 0. \$29. 27 DEADV1 DIESEL-ADV HEAT 0. 48. 77. 30. 28. 8. 0. 252. 77. RESIDUAL 0,13 0.09 0.09 351. RESIDUAL 351 0.07 0.31 0.09 28 DEHTPM ADV-DIESEL POWR 25. 351. 150. 109. -142. O. Ω Ο. 273. 28 DEHTPM ADV-DIESEL HEAT 0. 33. 70. 30. 22. 0. 70. RESIDUAL 343. 0.09 0.06 0.09 47. 302. DISTILLA 302. 0 0.20 0.36 0.10 29 DESCAS DIESEL-SCA FOWR 0. 74. 302. 109. 32. -20. 0. 29 DESGAS DIESEL-SGA HEAT 60. 195. 30. 70. 21. 0. 122. 195.DISTILLA 316. 0 0.16 0.22 0.09 0. 0 0.20 0.36 0.10 74. 302. 47. -20. 0. 302. RESIDUAL 302. 109. 32. 29 DESGAS DIESEL-SGA POWR 0, 122. 195. RESIDUAL 316. 0 0.16 0.22 0.09 29 DESGAS DIESEL-SGA HEAT ٥. 60. 195. 30. 70. 21. 0.

100

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 134

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 28241 MW 32.00 PROCESS MILLIONS BTU/HR 30.0 PROCESS TEMP(F) 406. PRODUCT POLYESTER HOURS PER YEAR 7900.

POWER TO HEAT RATIO 3.639 COAL WASTE FUEL EQV BTU=10==6= O. HOT WATER BTU=10==6= UTILITY FUEL FESR POWER HEAT WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FUEL FUEL TOTAL+ FACTR FACTR FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL BOILR USED USED USED NO-NET USED HEAT POWER ELECT SITE UTILIT 10**6 10**6 10**6 10xx6 10xx6 10xx6 10xx6 10xx6 10xx6 BTU/HR ETU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 302 30 DESGAZ DIESEL-SGA POWR 0. 74. 302 67. 109. 32. -43 302. DISTILLA 1 0.20 0.36 0.10 136, DISTILLA 324. 1 0.14 0.15 0.09 30 DESGA2 DIESEL-SGA HEAT 0. 53. 136 30. 49. 14. n 187. 0. 74. 302. 109. -43. 302 RESIDUAL 302. 0.20 0.36 0.10 30 DESGA2 DIESEL-SGA POWR 67. 32. 0. 30 DESGA2 DIESEL-SGA HEAT 53. 136. 30. 49. 14. O. 187. 136. RESIDUAL 324. 1 0.14 0.15 0.09 α. 302. 121. 109 -107. Ω 302. DISTILLA 302 1 0.20 0.36 0.10 31 DESGA1 DIESEL-SGA POWR ٥. 74 32. 31 DESGA1 DIESEL-SGA HEAT 45. 75. 30. 27. ٥. 257. 75. DISTILLA 332. 0.12 0.08 0.09 ٥. 8. 31 DESGA1 DIESEL-SGA POWR ٥. 74. 302. 121. 109. 32. -107. 0. 302. RESIDUAL 302. 1 0.20 0.36 0.10 257. 75. RESIDUAL 332. 0.12 0.08 0.09 31 DESGA1 DIESEL-SGA HEAT O. 45. 75. 30. 27. 8. 0. 374. 32 GTSGAD GT-HRSG-10 POWR 0. 3. 374. 171. 109. 32. -166. 0. 374. DISTILLA 0 0.01 0.29 0.08 32 GTSGAD GT-HRSG-10 HEAT 30. 66. 30. 19. 6. ٥. 281. 66. DISTILLA 347. 10 0.08 0.06 0.09 O. 33 GTRAOS GT-85RE-08 POWR 0. 71. 306 97. 109. 32. -79. Ď. 306. DISTILLA 306. 0 0.19 0.36 0.10 33 GTRAO8 GT-85RE-08 HEAT 34. 10. 0. 236. 94. DISTILLA 330. 10 0.12 0.10 0.09 0. 46. 94. 30. 34 GTRA12 GT-85RE-12 POWR 0. 305. 101. 109. -84. n 305 DISTILLA 305 0 0.19 0.36 0.10 34 GTRA12 GT-85RE-12 HEAT α. 91. 30. 32. 10. O. 240. 91 DISTILLA 330. 10 0.12 0.10 0.09 46. 35 GTRA16 GT-85RE-16 POWR 0. 313. 109. 109. 32. -93 n. 313. DISTILLA 313. 0 0.17 0.35 0.10 84 248. 86. DISTILLA 333. 10 0.11 0.09 0.09 35 GTRA16 GT-85RE-16 HEAT 85, 30. 30. 9. 0. 0. 43. 134. 109. 32. -122. 0. 341.DISTILLA 341. 0 0.09 0.32 0.09 36 GTR208 GT-60RE-08 POWR 0. 35. 341. 10 0.09 0.07 0.09 265. 341. 36 GTR208 GT-60RE-08 HEAT 0. 35. 77. 30. 24. 7. Ω.. 77.DISTILLA 331. 0 0.12 0.33 0.09 37 GTR212 GT-60RE-12 POWR ٥. 46. 331. 125. 109. 32. -111. 0. 331. DISTILLA 30. 26. 0. 259. 80. DISTILLA 339. 10 0.10 0.08 0.09 37 GTR212 GT-60RE-12 HEAT 0. 38. 80. A. 324. 121. 109. -108 324. DISTILLA 324. 0 0.14 0.34 0.09 38 GTR216 GT-60RE-16 POWR 0. 257. 80.DISTILLA 337. 10 0.11 0.08 0.09 38 GTR216 GT-60RE-16 HEAT 0. 40. 80. 30. 27. 8. 0. 0 0.17 0.35 0.10 39 GTRW08 GT-85RE-08 POWR 0, 65. 311. 82. 109. 32. -61. n. 311.DISTILLA 311. 46. 12. 0. 217. 114. DISTILLA 330. 10 0.12 0.12 0.09 39 GTRW08 GT-85RE-08 HEAT 30. 40. Ω. 114. 300. 109. 32. -61. 300. DISTILLA 300. 0 0.20 0.36 0.10 40 GTRW12 GT-85RE-12 POWR 0. 77. 82. ٥. 216. 10 0.13 0.12 0.09 110. DISTILLA 326.

40 GTRW12 GT-85RE-12 HEAT

0.

50.

110.

30.

40.

12.

٥.

18SE PEG ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28241 MW 32.00 PROCESS MILLIONS BTU/HR 30.0 PROCESS TEMP(F) 406. PRODUCT POLYESTER HOURS PER YEAR 7900.

POWER TO HEAT RATIO 3.639 ·
UTILITY FUEL COAL . WASTE FUEL EQV BTU

WASTE FUEL EQV BTUx10xx6= 0. HOT WATER BTUx10xx6= 0

			WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT		SITE	NET=	FAIL	FESR	POWER	HEAT
			FUEL	SAVED=	FUEL	PROCES	PROCES	MW	PROCES	FUEL	FUEL	FUEL	TOTAL+			FACTR	FACTR
			USED	NO-NET	USED	HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				
			10××6	10××6	10××6	10××6	10**6		10××6	10×*6	10**6		10==6				
			STU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HR	<u> </u>	BTU/HR				
41 GTRU16	GT-85RE-16	PAUR	٥.	71.	306.	89.	109.	32.	-70.	0.	208	DISTILLA	306.	~	0 10	0.00	0.10
	GT-85RE-16			47.										.0	0.19	0.36	0.10
41 GIRWIO	GI-OSKE-16	DEAT	0.	4/.	103.	30,	37.	11.	0.	226.	103.	DISTILLA	329.	10	0.13	0.11	0.09
12 GTR308	GT-60RE-08	POWR	0.	24.	352.	.8.	109,	32.	-92.	0,	352.	DISTILLA	352.	0	0.06	0.31	0.09
12 GTR308	GT-60RE-08	HEAT	٥.	32.	98.	30,	30.	9.	Œ.	247.	98.	DISTILLA	344.	10	0.09		0.09
43 GTR312	GT-60RE-12	PAUP	٥.	57.	319.	104.	109.	32.	-87.	٥.	210	DISTILLA	319.	^	0.15		
	GT-60RE-12		0.	42.	92.	30.	31.	9.								0.34	0.09
45 GIRSIZ	G1-00KE-12	DEA I	υ.	42.	92.	30.	31.	Э,	Û.	243.	92.	DISTILLA	335.	10	0.11	0.09	0.09
44 GTR316	9T-60RE-16	POWR	٥.	54.	322.	106.	109.	32.	-89	o,	322.	DISTILLA	322.	0	0.14	0.34	0.09
44 GTR316	GT-60RE-16	HEAT	0,	41.	91.	30.	31.	9,	0.	244.	91.	DISTILLA	336.	10	0.11	0,09	0.09
IS ECPANS	FUEL-CL-PH		٥.	89.	287.	49.	109.	32.	-22.	_	207	DICTILLA	297	_	0.04	0.00	
										0.		DISTILLA	287.	0	0.24	0.38	0.10
45 FUPAUS	FUEL-CL-PH	nea I	0.	68.	176.	· 30,	67.	20.	0.	132.	176.	DISTILLA	308.	0	0.18	0.22	0.10
6 FCMCDS	FUEL-CL-MO	POWR	0.	111.	265,	62.	109.	32,	-37,	0.	265,	DISTILLA	265.	0	0.30	0.41	0.11
46 FOMODS	FUEL-CL-MO	HEAT	٥.	72.	129.	30.	53.	16.	o.	175.	120	DISTILLA	304.	ā	0.19	0.17	0.10

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28242 MW 11.00 PROCESS MILLIONS BTU/HR 23.0 PROCESS TEMP(F) 274. PRODUCT NYLON-66-FIB HOURS PER YEAR 8760.

PAGE 136

POWER TO HEAT RATIO 1.632 UTILITY FUEL COAL WASTE FUEL EQV BTUx10xx6= O. HOT WATER BTUX10xx6= O. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE FESR POWER HEAT NET= FAIL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED BOILR USED HEAT POWER ELECT SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCGN NO COGON 0. ٥. ٥. ٥. ٥. ۵. 27. 117. 27. RESIDUAL 144. 0 0. 0.26 0.16 1 STM141 STM-TURB-1 POWR -134, 0. -61. 205. 137. 38. 11. ٥. 205. RESIDUAL 205. 0 -0.42 0.18 0.11 1 STM141 STM-TURB-1 HEAT 12. 34. 23. 6. 2. 0. 98. 34. RESIDUAL 132. 10 0.09 0.05 0.17 1 STM141 STM-TURB-1 POWR ٥. -61. 205. 137. 38. -134. 11. 0. 205. COAL-FGD 205. 0 -0.42 0.18 0.11 1 STM141 STM-TURB-1 HEAT 34. 12. 23. 6. 2. 0, 98. 34.COAL-FGD 132. 10 0.09 0.05 0.17 1 STM141 STM-TURB-1 POWR -61. ٥. 205. 137. 38. 11. -134 0. 205. COAL-AFB 205. 0 -0.42 0.18 0.11 1 STM141 STM-TURB-1 HEAT ٥. 12. 34. 23. 6. 2 0. 98. 34. COAL-AFB 132. 10 0.09 0.05 0.17 2 STM088 STM-TURB-8 POWR -107. 252 176. 38. -180 252. RESIDUAL 252. 0 -0.74 0.15 0.09 2 STMO88 STM-TURB-8 HEAT 10. 33. 23. 5. 0. 102. 33. RESIDUAL 10 0.07 0.04 0.17 135. 2 STMO88 STM-TURB-8 POWR 0. ~107. 252. 176. 38. 11. -180. 0. 252. COAL-FGD 252. 0 -0.74 0.15 0.09 2 STMO88 STM-TURB-8 HEAT 10. 33. 23. 5. 0. 102. 33. COAL-FGD 135. 10 0.07 0.04 0.17 2 STM088 STM-TURB-8 POWR -107. 252. 0. 176. 38. 11. -180. 0. 252. COAL-AFB 252. 0 -0.74 0.15 0.09 2 STM088 STM-TURB-8 HEAT 0. 10. 33. 23. 5. 0. 102. 33. COAL-AFB 135. 10 0.07 0.04 0.17 3 PFBSTM PFB-STMTB- POWR 0. -9. 153. 92. 38. 11. -81. 0. 153. COAL-PFB 153. 10 -0.06 0.24 0.15 3 PFBSTM PFB-STMTB- HEAT n. 18. 38. 23. 9. 3. ٥. 88. 38. COAL-PFB 126. 10 0.13 0.07 0.18 4 TISTMT TI-STMTB-1 POWR 16. 129 -56. 129, RESIDUAL 129 10 0.11 0.29 0.18 4 TISTMT TI-STMTB-1 HEAT 0. 23. 42. 23. 12. 4. ٥. 79. 42. RESIDUAL 121. 10 0.16 0.10 0.19 4 TISTMT TI-STMTB-1 POWR ٥. 16. 71. 129. 38. 11. -56. ٥. 129, COAL 129. 10 0.11 0.29 0.18 4 TISTMT TI-STMTB-1 HEAT ۵. 23. 42. 23. 12. ٥. 79. 42. COAL 121. 10 0.16 0.10 0.19 267. 5 TIHRSG THERMIGNIC POWR 0. -122. O. 179. 38. 11. -184. 267. RESIDUAL 267. 0 -0.85 0.14 0.09 5 TIHRSG THERMIONIC HEAT 34. O. 8. 23. 5. 0. 102. 34. RESIDUAL 136. 10 0.05 0.04 0.17 5 TIHRSG THERMIONIC POWR -122. 0. 267. 179. 38. 11. -184. ٠0. 267. COAL 267. 0 -0.85 0.14 0.09 5 TIHRSG THERMIONIC HEAT Ω. 8. 34 . 23. 5. 1. ۵. 102. 34. COAL 136. 10 0.05 0.04 0.17 6 STIRL STIRLING-1 POWR 6. 138 63. 38. -47 0. 138.DISTILLA 11. 138. 0 0.04 0.27 0.17 E STIRL STIRLING-1 HEAT 19. 50. 23. 14. 0. 75. 50. DISTILLA 125. 0 0.14 0.11 0.18

FN(80 BS 40 TIAMA

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

PAGE 137

INDUSTRY 28242 MW 11.00 PROCESS MILLIONS BTU/HR 23.0 PROCESS TEMP(F) 274. PRODUCT NYLON-66-FIB HOURS PER YEAR 8760.

POWER TO HEAT RATIO 1.632 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= 0. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED HEAT POWER ELECT BOILR USED UTILIT USED SITE USED 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 0. 6. 138. 63. 38. -47. ٥. 138, RESIDUAL 138. 0 0.04 0.27 0.17 11. 4. ' 6 STIRL STIRLING-1 HEAT ٥. 19. 50. 23. 14. 0. 75. 50. RESIDUAL 125. 0 0.14 0.11 0.18 6 STIRL STIRLING-1 POWR 138. 63. 138. 0. 6. 38. 11. -47. 0. 138. COAL 0.04 0.27 0.17 6 STIRL STIRLING-1 HEAT 0. 19. 50. 23. 0. 75. 50. COAL 125. 0 0.14 0.11 0.18 14. 4. 7 HEGT85 HELIUM-GT- POWR 117 29 117. COAL-AFB 117 0.19 0.32 0.20 38 0. 10 7 HEGT85 HELIUM-GT- HEAT ٥. 27. 94. 23. 30. 9. 0. 23. 94.COAL-AFB 117. 0.19 0.26 0.20 8 HEGT60 HELIUM-GT- POWR -1. 145. 53. 38. -35. ٥. 145. COAL-AFB 145. 10 -0.00 0.26 0.16 11. 8 HEGT60 HELIUM-GT- HEAT 23. 16. 0. 63. COAL-AFB 129. 10 0.10 0.13 0.18 15. 63. 5. 66. 9 HEGTOO HELIUM-GT- POWR 0. -69. 213. 109. -101. ٥. 213. COAL-AFB 213. 10 -0.48 0.18 0.11 38. 11. 9 HEGTOO HELIUM-GT- HEAT 7. 45. 23. 8. 2. 93. 45. COAL-AFB ₹38. 10 0.05 0.06 0.17 10 FCMCCL FUEL-CL-MO POWR 0. 21. 123. 59. 38. 11. -42. α. 123. COAL 123. 10 0.14 0.30 0.19 10 FCMCCL FUEL-CL-MO HEAT 0. 25. 48. 23. 15. 0. 71. 48. COAL 120. 10 0.17 0.12 0.19 4. -14. 11 FCSTCL FUEL-CL-ST POWR 93. 35. ٥. 93. COAL 93. 10 0.36 0.41 0.25 n 52. 38. 11. 11 FCSTCL FUEL-CL-ST HEAT 62. 23. 25. 0. 39. 62. COAL 101. 10 0.30 0.25 0.23 Ω 44. 7. 12 IGGTST INT-GAS-GT POWR 23. 49. 38. -30. ۵. 121. COAL 121. 10 0.16 0.31 0.19 0. 121. 11. 12 IGGTST INT-GAS-GT HEAT 25. 23. 18. ٥. 62. 57. COAL 119. 10 0.17 0.15 0.19 ٥. 57. 5. 129. 13 GTSGAR GT-HRSG-10 POWR 15. 129. 58. 38. -41. 0. 129, RES! DUAL 0 0.10 0.29 0.18 ٥. 11. 13 GTSØAR GT-HRSG-10 HEAT 51.RESIDUAL 122. 10 0.15 0.12 0.19 0. 22. 51. 23. 15. 0. 71. 139. 10 0.04 0.27 0.17 14 GTACOS GT-HRSG-08 POWR 0. 5. 139. 71. 38. 11. -56. 0. 139. RESIDUAL 14 GTACO8 GT-HRSG-08 HEAT 45. RESIDUAL 124. 10 0.14 0.10 0.18 ٥. 20. 45. 23. 12. 4. ٥. 79. 123. RESIDUAL 123. 10 0.15 0.31 0.19 15 GTAC12 GT-HRSG-12 POWR 123. 58. 38. 11 -41. 0. 120. 15 GTAC12 GT-HRSG-12 HEAT 0. 25. 49. 23. 15. 4. 0. 71. 49. RESIDUAL 10 0.17 0.12 0.19 16 GTAC16 GT-HRSG-16 POWR 0. 28. 116. 52. 38. 11. -34. ٥. 116, RESIDUAL. 116. 10 0.20 0.32 0.20 65. 52. RESIDUAL 16 GTAC16 GT-HRSG-16 HEAT 28. 23. 17. 0. 117. 10 0.19 0.14 0.20 52. 5. 17 GTWC16 GT-HRSG-16 POWR ٥. 25. 119. 48. 38. 11. -30. Ο. 119. RESIDUAL 119. 10 0.17 0.32 0.19 17 GTWC16 GT-HRSG-16 HEAT 26. 57. 23. ٥. 61. 57. RESIDUAL 118. 10 0.18 0.15 0.19 ٥. 18. 5.

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28242 MW 11.00 PROCESS MILLIONS BTU/HR 23.0 PROCESS TEMP(F) 274. PRODUCT NYLON-66-FIB HOURS PER YEAR 8760.

POWER TO HEAT RATIO 1.632 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR 95. 0. 49. 28. 38. -6. ٥. 95. RESIDUAL 11. 95. 10 0.34 0.40 0.24 18 CC1626 GTST-16/26 HEAT ٥. 46. 79. 23. 31. 9. 0. 20. 79. RESIDUAL 99. 10 0.32 0.32 0.23 19 CC1622 GTST-16/22 POWR O. 48. 96. 31. 38. 11. -9. 0. 96. RESIDUAL 96. 10 0.34 0.39 0.24 19 CC1622 GTST~16/22 HEAT 72. Ο. 43. 23. 28. 8. 0. 30. 72. RESIDUAL 101. 10 0.30 0.28 0.23 20 CC1222 GTST-12/22 POWR 49. 95. n. 31. 38. 0. 95. RESIDUAL 11. -9. 95, 10 0.34 0.39 0.24 20 CC1222 GTST-12/22 HEAT 0. 43. 71. 23. 28. 71. RESIDUAL 10 0.30 0.28 0.23 8. ٥. 30. 101. 21 CC0822 GTST-08/22 POWR 0. 44. 100. 38. 38. 11. -18. ٥. 100. RESIDUAL 100. 10 0.31 0.37 0.23 21 CC0822 GTST-08/22 HEAT 37. 60. 23. 23. 0. 7. 47. 60. RESIDUAL 107. 10 0.26 0.21 0.21 22 STIG15 STIG-15-16 POWR 0. 20. 99. 1. 38. 11. 26. 0. 124. RESIDUAL 124. 10 0.14 0.30 0.19 22 STIG15 STIG-15-16 HEAT 1769. Ο. 364. 23. 674. 198. 0. -1989. 1769. RESIDUAL -220. 0 0.17 0.38 0.01 23 STIG10 STIG-10-16 POWR Õ. 29. 105. 14. 38. 11. 11. 0, 115. RESIDUAL 115. 10 0.20 0.33 0.20 23 STIG10 STIG-10-16 HEAT 48. 0. 174. 23. 62. 18. O. -78. 174. RESIDUAL 96. 10 0.22 0.36 0.13 24 STIGIS STIG-1S-16 POWR 32. 112. 24. 38. 11. -1. 112. RESIDUAL 112. 10 0.22 0.34 0.21 24 STIG1S STIG-15-16 HEAT Ó. 32. 109. 23. 37. 11. 0. 3. 109. RESIDUAL 112. 10 0.22 0.33 0.21 25 DEADV3 DIESEL-ADV POWR 0. 43. 101. 25. 38. -2. ٥. 101.RESIDUAL 101. 0 0.30 0.37 0.23 11. 25 DEADV3 DIESEL-ADV HEAT 42. 94. 23. 35. 10. ٥. 8. 94. RESIDUAL 102. 0 0.29 0.34 0.22 0. 38. . 26 DEADV2 DIESEL-ADV POWR 43. 101. 26. 11. -3. 0. 101. RESIDUAL 101. 1 0.30 0.37 0.23 26 DEADV2 DIESEL-ADV HEAT 0. 41. 91. 23. 34. 10. 0. 12. 91. RESIDUAL 103. 1 0.29 0.35 0.22 27 DEADV1 DIESEL-ADV POWR Ō. 43. 101. 40. 38. 0.30 0.37 0.23 11. -19. 0. 101. RESIDUAL 101. 27 DEADV1 DIESEL-ADV HEAT 0. 36. 59. 23. 22. 6. 0. 49. 59. RESIDUAL 108. 1 0.25 0.20 0.21 28 DEHTPM ADV-DIESEL POWR 40. 105. 46. 38. -27. 0. 105. RESIDUAL 105. 0 0.27 0.36 0.22 11. 28 DEHTPM ADV-DIESEL HEAT 0. 33. 53. 23. 19. 6. O. 58. 53. RESIDUAL 111. 0 0.23 0.17 0.21 29 DESCAS DIESEL-SCA POWR O. 39. 104. 22. 38. 0. 105. DISTILLA 105. 0 0.27 0.36 0.22 11. 1. 29 DESGAS DIESEL-SGA HEAT n 41. 110. 23. 40. 12. 103. 0.27 ٥. -6. 110.DISTILLA Ω 0.36 0.21 29 DESCAS DIESEL-SCA POWR 0. 39. 104. 22. 38. 105. RESIDUAL 105. 0 0.27 0.36 0.22 11, 1. 0. 29 DESGAS DIESEL-SGA HEAT ٥. 41. 110. 23. 40. 12. ٥. -6. 110. RESIDUAL 103. 0 0.27 0.36 0.21

DATE 06/06/79

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 139

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28242 MW 11.00 PROCESS MILLIONS BTU/HR 23.0 PROCESS TEMP(F) 274. PRODUCT NYLON-66-FIB HOURS PER YEAR 8760.

POWER TO HEAT RATIO 1.632 UTILITY FUEL COAL WASTE FUEL EQV BTUx10**6= O. HOT WATER BTU*10**6= ٥. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR ο. 40. 104. 23. 38. 11. 0. ٥. 104. DISTILLA 104. 0.28 0.36 0.22 30 DESGA2 DIESEL-SGA HEAT 105. 0. 40. 23. 38. 11. 0. -1. 105. DISTILLA 104. 0.28 0.36 0.22 30 DESGA2 DIESEL-SGA POWR 40. 104. 0. 23. 38. 11. Ō. 0. 104. RESIDUAL 104. 0.28 0.36 0.22 30 DESGA2 DIESEL-SGA HEAT 0. 105. 40. 23. 38. 11. 0. -1. 105. RESIDUAL 104. 0.28 0.36 0.22 31 DESCA1 DIESEL-SCA POWR 40. 104 42. 38. 11. -22. 0. 104. DISTILLA 104. 0.28 0.36 0.22 31 DESGA1 DIESEL-SGA HEAT 0. 34. 57. 23. 21. 53. 57. DISTILLA 110. 0.19 0.21 0.24 31 DESGA1 DIESEL-SGA POWR 0. 40. 104. 42. 38. 11. -22. ٥. 104. RESIDUAL 104. 0.28 0.36 0.22 31 DESGA1 DIESEL-SGA HEAT ٥. 34. 57. 23. 21. 6. O. 53. 57. RESIDUAL 110. 0.24 0.19 0.21 32 GTSCAD GT-HRSG-10 POWR 0. 16. 129. 61. 38. -44. 0. 11. 129. DISTILLA 129. 10 0.11 0.29 0.18 32 GTSGAD GT-HRSG-10 HEAT O. 23. 49. 23. 14. 4. 0. 73. 49.DISTILLA 122. 0.16 0.12 0.19 33 GTRAOS GT-85RE-08 POWR 0. 39. 105. 39. 38. -19. 11. 0. 105. DISTILLA 105. 10 0.27 0.36 0.22 33 GTRAOS GT-85RE-08 HEAT 0. 34. 62. 23. 22. 7. 0. 48. 62.DISTILLA 110. 10 0.24 0.20 0.21 34 GTRA12 GT-85RE-12 POWR 40. 105. 39. 105. DISTILLA 38. -19. 0. 105. 11. 10 0.27 0.36 0.22 34 GTRA12 GT-85RE-12 HEAT 34. n. 61. 23. 22. 49. 61.DISTILLA 110. 0.24 0.20 0.21 35 GTRA16 GT-85RE-16 POWR 37. 108. 42. 38. -22. 0. 108. DISTILLA 108. 10 0.25 0.35 0.21 11. 35 GTRA16 GT-85RE-16 HEAT 0. 32. 59. 23, 21. 6. 0. 53. 59. DISTILLA 112. 10 0.22 0.18 0.21 36 GTR208 GT-60RE-08 POWR 0. 27. 117. 50. 38. 11. -31. 0. 117. DISTILLA 117. 10 0.19 0.32 0.20 36 GTR208 GT-60RE-08 HEAT 27. ٥. 54. 23. 17. 5. ٥. 63, 54.DISTILLA 10 0.19 : 0.15 0.20 117. 37 GTR212 GT-60RE-12 POWR 0. 31. 114. 46. 38. -27. 11. O. 114.DISTILLA 114. 10 0.21 0.33 0.20 37 GTR212 GT-60RE-12 HEAT C. 29. 57. 23, 19. 5. 0. 59. 57. DISTILLA 116. 10 0.20 0.16 0.20 38 GTR216 GT-60RE-16 POWR 111. 45. 38. -26. O. 111.DISTILLA 11. 111. 10 0.23 0.34 0.21 38 GTR216 GT-60RE-16 HEAT ٥. 30. 57. 23. 19. O. 58. 57. DISTILLA 114. 0.21 C.17 0.20 39 GTRW08 GT-85RE-08 POWR 107. 0. 37. 32. 38. -11. ٥. 107, DISTILLA 107. 10 0.26 0.35 0.22 11. 39 GTRW08 GT-85RE-08 HEAT 34. 76. 23. 27. 34. 76. DISTILLA 110. 10 0.24 0.24 0.21 A. ٥. 40 GTRW12 GT-85RE-12 POWR 0. 41. 103. 31. 38. 103. 11. -10. 0. 103. DISTILLA 10 0.29 0.36 0.22 40 GTRW12 GT-85RE-12 HEAT Ω. 37. 76. 23. 27. 8. 0. 31. 76.DISTILLA 107. 10 0.26 0.26 0.22

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE 140

I&SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28242 MW 11.00 PROCESS MILLIONS BTU/HR 23.0 PROCESS TEMP(F) 274. PRODUCT NYLON-66-FIB HOURS PER YEAR 8760.

POWER TO HEAT RATIO 1.632 UTILITY FUEL COAL. WASTE FUEL EQV BTU*10**6= ' O. HOT WATER BTU*10**6= ٥. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL. FUEL TOTAL + FACTR FACTR NO-NET USED USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR 0. 105. 33. 38. -12. 0. 105. DISTILLA 105. 11. 10 0.27 0.36 0.22 41 GTRW16 GT-85RE-16 HEAT ٥. 35. 72. 23. 26. 0. 72. DISTILLA 8. 37. 109. 10 0.25 0.24 0.21 42 GTR308 GT-60RE-08 POWR Ō. 23. 121. 43. 38. -23. 121.DISTILLA 11. 0. 121. 10 0.16 0.31 0.19 42 GTR308 GT-60RE-08 HEAT 0. 25. 65. 23. 20. 6. 0. 65. DISTILLA 54. 119, 10 0.17 0.17 0.19 43 GTR312 GT-60RE-12 POWR 35. 110. 38. 38. -17. 0. 110. DISTILLA 110. 10 0.24 0.34 0.21 43 GTR312 GT-60RE-12 HEAT 0. 32. 67. 23. 23. 7. 0. 46. 67. DISTILLA 113. 10 0.22 0.20 0.20 44 GTR316 GT-60RE-16 POWR ٥. 34. 111. 38. 38. 11. -18. 111.DISTILLA 111. 10 0.23 0.34 0.21 44 GTR316 GT-60RE-16 HEAT 31. ٥. 67. 23. 23. 0. 47. 67. DISTILLA 113. 10 0.21 0.20 0.20 45 FCPADS FUEL-CL-PH POWR 38. 99. 17. 38. 11. 7. ο. 106. DISTILLA 106. 0 0.27 0.35 0.22 45 FCPADS FUEL-CL-PH HEAT 52. 135. 23. 51. 15. -43. 135. DISTILLA 92. 0 0.28 0.38 0.17 46 FCMCDS FUEL-CL-MO POWR 51. 91. 21. 38. 11. 2. 0. 93. DISTILLA 93. 0 0.35 0.40 0.25 46 FCMCDS FUEL-CL-MO HEAT 55. 99. 23. 41. 12. -10. 99. DISTILLA 89. 0 0.36 0.41 0.23

SYSTEM- PI185-

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28651 MW 4.40 PROCESS MILLIONS BTU/HR 510.0 PROCESS TEMP(F) 320. PRODUCT STYRENE-MONO HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.029 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 235. HOT WATER BTU*10**6= COGEN COGEN COGEN AUX WASTE FUEL COGEN UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL TOTAL+ FACTR FACTR FUEL FUEL POWER ELECT USED NO-NET USED HEAT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COODN 235. 0. 0. ٥. ٥. 0. 600. 47. 600. COAL-FGD 647. 0 0. 0.02 0.79 1 STM141 STM-TURB-1 POWR 90. 618. RESIDUAL 10 0.07 0.02 0.83 235. 29. 62. 15. 527. ٥. 618. 4. 1 STM141 STM-TURB-1 HEAT 235. 242. 746. 510. 36. 746. RESIDUAL 0.17 124. 0. -341 405. 0.32 0.68 90. 527. 1 STM141 STM-TURB-1 POWR 235. 29. 62. 15. 4. 0. 618. COAL-FGD 618. 10 0.07 0.02 0.83 1 STM141 STM-TURB-1 HEAT 235. 242. 746. 510. 124. 36. O. -341. 746. COAL-FGD 405. 0 0.32 0.17 0.68 1 STM141 STM-TURB-1 POWR 235. 29. 90. 62. 15. 4. 527. 0. 618. COAL-AFB 618. 10 9.07 0.02 0.83 1 STM141 STM-TURB-1 HEAT 235. 242. 746. 510. 124. 36. -341. 746. COAL-AFB 405. 0.32 0.17 0.68 Ω. 2 STM088 STM-TURB-8 POWR 29 619. RESIDUAL 618. 10 0.07 0.02 0.83 235. 113. 81. 15, 4. 504. n. -247. 711. RESIDUAL 464. 0.28 0.13 0.72 2 STM088 STM-TURB-8 HEAT 235. 183. 711. 510. 94. 28. 0. O 618. COAL-FOD 10 0.07 0.02 0.83 2 STM088 STM-TURB-8 POWR 235. 29. 113. 81. 15. 4. 504. ٥. 618. 711.COAL-FGD 2 STM088 STM-TURB-8 HEAT 235. 183. 711. 510. 94. 28. 0. -247. 464. 0 0.28 0.13 0.72 2 STM088 STM-TURB-8 POWR 235. 29. 113. 81. 15. 4. 504. ٥. 618. COAL-AFB 618. 10 0.07 0.02 0.83 711, COAL-AFB 464. 0 0.28 0.13 0.72 .2 STMO88 STM-TURB-8 HEAT 235. 183. 711. 510. 28. 0. -247. 94. 618. COAL-PFB 10 0.07 0.02 0.83 29. 15. 553. 0. 618. 3 PFBSTM PFB-STMTB- POWR 235. 65. 40. 4. 0 0.38 0.23 0.61 3 PFBSTM PFB-STMTB- HEAT 235. 367. 831. 510, 191. 56. 0. -551. 831.COAL-PFB 280. 10 0.07 0.02 0.83 618. RESIDUAL 618. 4 TISTMT TI-STMTB-1 POWR 235. 29. 54. 30. 15. 564. 0 0 0.35 0.19 0.65 784. RESIDUAL 354. 4 TISTMT TI-STMTB-1 HEAT 235. 293. 549. 310. 153. 45. 235. -437. 10 0.07 0.02 0.83 4 TISTMT TI-STMTB-1 POWR 235. 29. 54. 30. 15. 4. 564. 0. 618. COAL 618. 74. -738 903, COAL 165. 0 9.42 0.28 0.56 4 TISTMT TI-STMTB-1 HEAT 235. 482. 903. 510. 251. 0. 0. 624, RESIDUAL 624. 0 0.06 0.02 0.82 5 TIHRSG THERMIONIC POWR 235. 23. 107. 70. 15. 517. 4. 5 TIHRSG THERMIONIC HEAT 235. 102. 470. 310. 2.5. -160. 705. RESIDUAL 545. 0.18 0.09 0.72 66. 19. 235. 107. 15. 517. 0. 624. COAL 624. 0.06 0.02 0.82 5 TIHRSG THERMIONIC POWR 23. 70. 4. -293. 772. COAL 480. 0.24 0.14 0.66 5 TIHRSG THERMIONIC HEAT 235. 167. 772. 510. 109. 32. 0. 569 0. 626. DISTILLA 626. 0.05 0.02 0.81 6 STIRL STIRLING-1 POWR 235. 21. 57. 27. 15. 245. 51. 235. -498. 900. DISTILLA 402. 0.27 0.19 0.57 6 STIRL STIRLING-1 HEAT 235. 564. 310. 174.

 $\langle \cdot \rangle$

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE 142

A Apple and the

1&SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28651 MW 4.40 PROCESS MILLIONS BTU/HR 510.0 PROCESS TEMP(F) 320. PRODUCT STYRENE-MONO HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.029 WASTE FUEL EQV BTU*10**6= 235. UTILITY FUEL COAL HOT WATER BTU*10**F= COGEN COGEN COGEN AUX NET= FAIL ESR POWER MEAT WASTE FUEL UTILIT TOTAL SITE FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR POWER ELECT BOILR USED SITE USED UTILIT USED NO-NET USED HEAT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 626. 235. 27. 569. 0. 626. RESIDUAL 0 0.05 0.02 0.81 6 STIRL STIRLING-1 POWR 21. 57. 15. 4. 6 STIRL STIRLING-1 HEAT 235. 245. 664. 310. 174. 51. 235. -498. 900. RESIDUAL 402. Ω 0.27 0.19 0.57 626. COAL 526. 0 0.05 0.02 0.81 6 STIRL STIRLING-1 POWR 235. 21. 57. 27. 15. 569. 0. 6 STIRL STIRLING-1 HEAT 235. 403. 1093. 510. 287. 84. 0. -850. 1093.COAL 244. 0 0.5% 0.26 0.47 637. COAL-AFB 7 HEGT'85 HELIUM-GT- POWR 235. 15. 590. ٥. 637. 10 0.03 0.02 0.80 10. 47. 9. 4. 7 HEGT85 HELIUM-GT- HEAT 235. 609. 2762. 510. 887. 260. 0. -2724. 2762. COAL-AFB 38. 0 0.19 0.32 0.18 635. 8 HEGT60 HELIUM-GT- POWR 235. 58. 19. 15. 577. 0. 635. COAL-AFB 10 0.03 0.02 0.80 12. 4. 8 HEGT60 HELIUM-GT- HEAT 1540. 510. 0. -1200. 1540. COAL-AFB 341. 0 0.19 0.26 0.33 235. 306. 399. 117. 635. CCAL-AFB 635. 10 0.03 0.02 0.80 9 HEGTOO HELIUM-GT- POWR 235. 12. 85. 43. 15. 4. 550. 0. 9 HEGTOO HELIUM-GT- HEAT -514. 1021.COAL-AFB 506. 0 0.15 0.18 0.50 235. 141. 1021. 510. 180. 53. 0. 572. 622. COAL 622. 10 -0.51 0.02 0.82 10 FCMCCL FUEL-CL-MO POWR 0. 25. 49. 23. 15. 4_ 0. 10 FCMCCL FUEL-CL-MO HEAT 546. 1075. 510. 327. 96. 0. -975. 1075. COAL 101. 10 0.22 0.30 0.47 0. 11 FCSTCL FUEL-CL-ST POWR 38 583. 0. 621.COAL 621. 10 -0.51 0.02 0.82 26. 14. 15. 4. 11 FCSTCL FUEL-CL-ST HEAT 510. 528. 155. 0. -1604. 1332. COAL -271. 0 0.34 0.40 0.38 918. 1332. n. 626. 10 -0.52 0 02 0.81 0. 626. COAL 12 IGGTST INT-GAS-GT POWR 0. 21. 50. 21. 15. 4. 576. 0. -1116. 1242. COAL 126. 0 0.19 0.30 0.41 12 IGGTST INT-GAS-GT HEAT 521. 1242. 510. 372. 109. O. 625. 10 0.05 0.02 0.82 0. 13 GTSCAR GT-HRSG-10 POWR 235. 22. 52. 23. 15. 4. 573. 625. RESIDUAL 13 GTSOAR GT-HRSG-10 HEAT 310. 206. 235. -596. 944, RESIDUAL 349. Ω 0.30 0.22 0.54 235. 298. 709. 60. 25. 622, RESIDUAL 622. 10 0.06 0.02 0.82 14 GTACOS GT-HRSG-08 POWR 235. 56. 29. 15. 4. 566. 0. 310. 235. -463. 840. RESIDUAL 377. 0 0.31 0.19 0.61 14 GTACO8 GT-HRSG-08 HEAT 235. 270. 605. 163. 46. 622. RESIDUAL 622. 10 0.06 0.02 0.82 15 GTAC12 GT-HRSG-12 POWR 235. 25. 49. 23. 15. 573. 0 -586. 900. RESIDUAL 313. 0 0.33 0.23 0.57 310. 203. 59. 235. 15 GTAC12 GT-HRSG-12 HEAT 235. 334. 664. 623. 10 0.06 0.02 0.82 16 GTAC16 GT-HRSG-16 POWR 235. 24. 46. 20. 15. 4. 576. 0. 623. RESIDUAL 67. 235. -667. 942. RESIDUAL 276. 0 0.34 0.24 0.54 16 GTAC16 GT-HRSG-16 HEAT 235. 371. 707. 310. 228. 17 GTWC16 GT-HRSG-16 POWR 235. 22. 48. 19. 15. 4. 577. ٥. 625. RESIDUAL 625. 10 0.05 0.02 0.82 1002. RESIDUAL 294. 0 0.32 0.24 0.51 767. 310. 242. 71. 235. -708. 17 GTWC16 GT-HRSG-16 HEAT 235. 353.

3 > 6

I&SE PEO ADV DESIGN ENGR

29 DESGAS DIESEL-SGA HEAT

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

**FUEL ENERGY SAVE

235.

573.

1628.

310.

588.

172.

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28651 MW 4.40 PROCESS MILLIONS BTU/HR 510.0 PROCESS TEMP(F) 320. PRODUCT STYRENE-MONO HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.029 WASTE FUEL EQV BTU*10**6= 235. HOT WATER BTU:10**6= UTILITY FUEL COAL 0. COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT WASTE COGEN FACTR FACTR FUEL FUEL TOTAL+ PROCES PROCES MW PROCES FUEL FUEL SAVED= FUEL POWER ELECT BOILR USED SITE USED UTILIT USED NC-NET USED HEAT 10**6 10**6 10**6 10**6 70**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR STU/HR BTU/HR BTU/HR BTU/HR 4. 586. 0. 625. RESIDUAL 625. 10 0.05 0.02 0.82 18 CC1626 GTST-16/26 POWR 235. 22. 39. 12. 15. 235, -1209. 1271. RESIDUAL 61. 0.36 0.32 0.40 18 CC1626 GTST-16/26 HEAT 235. 585. 1035. 310. 402. 118. 585. 624. PESIDUAL 624. 0.06 0.02 0.82 19 CC1622 GTST-16/22 POWR 235. 23. 39. 13. 15. 4. 0 106. 235, -1085, 1179. RESIDUAL 94. 0.37 0.31 0.43 19 CC1622 GTST-16/22 HEAT 235. 553. 944. 310. 362. n 624. RESIDUAL 624. 10 0.06 0.02 0.82 20 CC1222 GTST-12/22 POWR 235 23. 39. 15. 585. Ω 13. 0.37 0.31 106. 235. -1081. 91. 0.44 20 CC1222 GTST-12/22 HEAT 235. 556. 936. 310. 361. 1172. RESIDUAL 622. 0.06 0.02 0.82 21 CC0822 GTST-08/22 POWR 235. 25. 15. 4. 581. 0. 622. RESIDUAL 41. 16. 170. 0.28 235. 1027. RESIDUAL 0.38 0.50 21 CC0822 GTST-08/22 HEAT 235 477. 791. 310. 289. 85. -856. 639. 10 0.02 0.02 0.80 22 STIG15 STIG-15-16 POWR 235. 8. 39. 15. 4. 599. 0. 639. RESIDUAL 1. 2663. 235, -28345, 24081.RESIDUAL -4263. 0 9.17 0.38 0.02 22 STIG15 STIG-15-16 HEAT 235. 4910, 23846. 310. 9085. 635. 0.03 0.02 0.80 23 STIG10 STIG-10-16 POWR 235. 12. 42. 6. 15. 593. Ω. 635. RESIDUAL 0.22 0.33 0.20 246. 235. -2579. 2575. RESIDUAL -4. Ω 23 STIG10 STIG-10-16 HEAT 235. 651. 2340. 310. 840. 634. RESIDUAL 634. 10 0.03 0.02 0.80 24 STI915 STIG-15-16 POWR 235. 15. 589. n 13. 45. 212. 0.23 0.29 0.30 144. 235. -1494. 1706. RESIDUAL Ω 24 STIGIS STIG-1S-16 HEAT 235. 435. 1471. 310. 493. 63G. 0.04 0.02 0.81 0. 630. RESIDUAL O 25 DEADV3 DIESEL-ADV POWR 235. 17. 40. 9. 15. 4. 589. 0.30 0.32 0.32 62. 25 DEADV3 DIESEL-ADV HEAT 235. 585. 1381. 310 512. 150. 235. -1554. 1617.RESIDUAL 628. 0.05 0.02 0.81 588. 0. 628. RESIDUAL 26 DEADV2 DIESEL-ADV POWR 235. 19. 40. 10. 15. 4. 0.31 0.35 26 DEADV2 DIESEL-ADV HEAT 235. 559. 1220. 310. 453. 133. 235. -1368. 1456. RESIDUAL 88. 0.31 622. RESIDUAL 622. 0.06 0.02 0.82 581. 0. 27 DEADVI DIESEL-ADV POWR 235. 25. 40. 16. 15. 4. 156. 0.38 0.29 0.50 27 DEADVI DIESEL-ADV HEAT 235. 491. 793. 310. 294. 86. 235. -872. 1028, RESIDUAL 622. RESIDUAL 622. 0.06 0.02 0.82 578. n 28 DEHTPM ADV-DIESEL POWR 235. 25. 19. 15. 44. 229. 0.37 0.26 0.53 ō 28 DEHTPM ADV-DIESEL HEAT 235. 418. 719. 310. 247. 72. 235. -725. 954. RESIDUAL 632. 0.04 0.02 0.81 632, DISTILLA n 29 DESGAS DIESEL-SGA POWR 235, 15. 8. 591. Ο. 42. 15. 4. 74. 0.26 0.32 0.27 235. -1789. 172 1863. DISTILLA 29 DESGAS DIESEL-SGA HEAT 235. 573. 1628 319. 588. 591. ٥. 632. RESIDUAL 632. Ω 0.04 0.02 0.81 29 DESGAS DIESEL-SGA POWR 235. 15. 42. 8. 15.

1863. RESIDUAL

235. -1789.

74.

D

0.26 0.32 0.27

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORY 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28651 MW 4.40 PROCESS MILLIONS BTU/HR 510.0 PROCESS TEMP(F) 320. PRODUCT STYRENE-MONO HOURS PER YEAR 7900;

POWER TO HEAT RATIO 0.029 UT!LITY FUEL COAL WASTE FUEL EQV BTU\$10**6= 235. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED POWER ELECT BOILR USED HEAT SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**£ BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 235. 16. 42. 589. 9 15. 4. 0. 631.DISTILLA 631. 1 0.04 0.02 0.81 30 DESGA2 DIESEL-SGA HEAT 235. 545. 1409. 310. 509. 149. 235. -1543. 1644. DISTILLA 102. 0.28 0.31 0.31 30 DESCA2 DIESEL-SCA POWR 235. 16. 42. 589. 9. 15. 4. α. 631. RESIDUAL 631. 0.04 0.02 0.81 30 DESCIA2 DIESEL-SCIA HEAT 235. 545. 1409. 310. 509. 149. 235. -1543. 1644.RESIDUAL 102. 1 0.28 0.31 0.31 31 DESGA1 DIESEL-SGA POWR 235. 25. 42. 17. 15. 580. ٥. 622. DISTILLA 622. 1 0.06 0.02 0.82 31 DESCA1 DIESEL-SCA HEAT 235. 464. 773. 310. 279. 82. 235. -825. 1008. DISTILLA 183. 1 0.37 0.28 0.51 31 DESCAI DIESEL-SCA POWR 235. 25. 42. 580. ٥. 622. RESIDUAL 622. 17. 15. 4. 1 0.06 0.02 0.82 31 DESCA1 DIESEL-SCA HEAT 235. 464. 773. 310. 279. 82. 235 1008. RESIDUAL -825. 183. 0.37 0.28 0.51 32 GTSOAD GT-HRSG-10 POWR 235. 24. 24. 51. 15. 4. 572. ٥. 623. DISTILLA 623. 10 0.06 0.02 0.82 32 GTSØAD GT-HRSG-10 HEAT 235, 306. 310. 666. 194. 57. 235. -560. 901.DISTILLA 340. 0.32 0.22 0.57 33 GTRAOS GT-85RE-08 POWR 235. 22. 42. 15. 15. 4. 582. 0. 625. DISTILLA 625. 10 0.05 0.02 0.82 33 GTRA08 GT-85RE-08 HEAT 235. 466. 875. 310. 312. 92. 235. -929. 1110.DISTILLA 181. 0.35 0.28 0.46 34 GTRA12 GT-85RE-12 FOWR 235. 10 0.06 0.02 0.82 23. 42. 15. 7.75 4. 582. 0. 624. DISTILLA 624. 34 GTRA12 GT-85RE-12 HEAT 235. 467. 857. 310. 307. 90. 235. -912. 1093. DISTILLA 0 0.35 0.23 0.47 180. 35 GTRA16 GT-85RE-16 POWR 235. 23. 43. 16. 15. 4. 581. 0. 624 DISTILLA 624. 10 0.06 0.02 0.82 35 GTRA16 GT-85RE-16 HEAT 235. 439 825. 310. 288. 84. 235. -853. 1060. DISTILLA 207. 0 0.35 0.27 0.48 36 GTR208 GT-60RE-08 POWR 235. 23. 47. 19. 15. 4. 577. 0. 624. DISTILLA 624. 10 0.06 0.02 0.82 36 GTR208 GT-60RE-08 HEAT 235. 365. 751. 310. 240. 70. 235. -704. 986. DISTILLA 282. 0.33 0.24 0.52 37 GTR212 GT-60RE-12 POWR 235. 23. 45. 18. 15. 4. 579. O. 624. DISTILLA £24. 10 0.06 0.02 0.82 37 GTR212 GT-GORE-12 HEAT 235. 389. 781. 310. 258. 76. 235. 1016. DISTILLA 258. 0 0.33 0.25 0.50 -758. 38 GTR216 GT-60RE-16 POWR 235. 23. 45. 18. 15. 579 O 624. DISTILLA 624. 10 0.06 0.02 0.82 38 GTR216 GT-60RE-16 HEAT 235. 783. 406. 310. 264. 77. 235. 1018. DISTILLA 0 0.34 0.26 0.50 -778. 241. 39 GTRW08 GT-85RE-08 POWR 235. 19. 43. 12. 15. 585. 0. €28. DISTILLA 628. 10 0.05 0.02 0.81 39 GTRW08 GT-85RE-08 HEAT 235. 468. 1066. 310. 374. 110. 235. -1122. 1301. DISTILLA 179. 0.31 0.29 0.39 40 GTRW12 GT-85RE-12 POWR 235. 20. 41. 12. 15. 4. 586. ٥. 627. DISTILLA 627. 10 0.05 0.02 0.81 40 GTRW12 GT-85RE-12 HEAT 235. 509. 1052. 310. 383. 112. 235. *-1150. 1287. DISTILLA 0 0.33 0.30 0.40 138.

(

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 145

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28651 MW 4.40 PROCESS MILLIONS BTU/HR 510.0 PROCESS TEMP(F) 320, PRODUCT STYPENE-MONO HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0,029 HOT WATER BTU=10**6= UTILITY FUEL COAL WASTE FUEL EQV BTU×10××6≈ 235. FESR POWER HEAT WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL TOTAL+ FACTR FACTR SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL USED USED NO-NET USED HEAT POWER ELECT BOILR USED SITE UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 . 10×*6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR 0. 627. DISTILLA 627. 10 0.05 0.02 0.81 235. 20. 42. 13. 15. 4. 585. 41 GTRW16 GT-85RE-16 HEAT 235. 480. 1000. 310. 357. 105. 235. -1069. 1235.DISTILLA 167. 0 0.32 0.29 0.41 581. 18. 16. ٥. 629 DISTILLA 629. 0.04 0.02 0.81 42 GTR308 GT-60RE-08 POWR 235. 48. 15. 4. 0.27 0.25 0.44 235, 921. 310. 285. 233. -845. 1156, DISTILLA 311. 42 GTR308 GT-60RE-08 HEAT 336. 84. 235 20. O. 626. DISTILLA 626. 10 0.05 0.02 0.81 43 GTR312 GT-60RE-12 POWR 15. 15. 583. 44. 0.32 0.27 0.44 -935. 1154.DISTILLA 219. 43 GTR312 GT-60RE-12 HEAT 235, 428. 918. 310. 314. 92. 235. 10 0.05 0.02 0.81 627 DISTILLA 627. 235. 20. 582. 0. 44 GTR316 GT-60RE-16 POWR 44. 15. 15. 4. 1148.DISTILLA 228. 0.31 0.27 44 GTR316 GT-GORE-16 HEAT 235. 419. 913. 310 309. 91. 235. -920. 0 0.44 632. DISTILLA 632. 0 0.04 0.02 0.81 7. 592. 0. 45 FCPADS FUEL-CL-PH POWR 235. 15. 40. 15. 4. 2059. DISTILLA -60. 0 0.28 0.34 0.25 45 FCPADS FUEL-CL-PH HEAT 235. 707. 1824. 310, 693. 203. 235. -2119. 626. 590. 0. 626. DISTILLA 0.05 0.02 0.81 46 FCMCDS FUEL-CL-MO POWR 235. 4. 20. 36. 8. 15. 0 0.36 0.35 1566, DISTILLA -100. 0.33 46 FCMCDS FUEL-CL-MO HEAT 235. 747. 1330. 310. 548. 161. 235. -1666.

ALTERNATION OF STATE OF STATE

PAGE PRINTING SYSTEM

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

ISSE PEO ADV DESIGN ENGR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28652 MW 0.60 PROCESS MILLIONS BTU/HR

O. PROCESS TEMP(F)

O. PRODUCT CUMENE-BENZE HOURS PER YEAR 8400.

POWER TO HEAT RATIO **** O. HOT WATER BTU:10*#6= 0. WASTE FUEL EQV BTUx10xx6= UTILITY FUEL COAL FAIL FESR POWER HEAT NET= UTILIT TOTAL SITE COGEN COGEN COGEN AUX WASTE FUEL FACTR FACTR TOTAL+ PROCES FUEL FUEL FUEL SAVED= FUEL PROCES PROCES MW FUEL HEAT POWER ELECT BOILR USED USED UTILIT SITE NO-NET USED USED 10××5 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 0 0. 0.32 0. O.DISTILLA 6. 0. α. ٥. 0. 0. 0. 0. O ONOCON NO COGON 11 0.04 0.33 0. 6.RESIDUAL -4. ٥. 2. 1. 1 STM141 STM-TURB-1 POWR 6. 3. ٥. Ω. 0. O.RESIDUAL 111 0. 0. 6. ٥. ۵. 0. ٥. ٥. 1 STM141 STM-TURB-1 HEAT 11 0.04 0.33 0. 6. COAL-FGD 6. -4. ٥. 2. 1. 3. α. 6. 1 STM141 STM-TURB-1 POWR ٥. 111 0. ٥. ۵. O. COAL-FGD 6 0. ٥. 6. Ω. 0. ٥. Ø. 1 STM141 STM-TURB-1 HEAT Ω. 11 0.64 0.33 0. 6. COAL-AFB б. 0. -4. 3. 2. 1. ٥. 6. 1 STM141 STM-TURB-1 POWR 0. 111 0. 6. O. COAL-AFB 6. 0. ٥. 1 STM141 STM-TURB-1 HEAT ٥. ٥. ٥. n. Ω. 11 -0.06 0.30 0. 7. RESIDUAL -4. ٥. 2 STMO88 STM-TURB-8 POWR 0. 111 0. O. RESIDUAL Ω. α. n 0. 0. 2 STMO88 STM-TURB-8 HEAT 11 -0.06 0.30 0. 7. COAL-FGD 7. -4. 0. 2. 1. 0 -0. 7. 4. 2 STMO88 STM-TURB-8 POWR 111 0. ٥. ٥. O.COAL-FGD ٥. 6. ٥. n. ٥. G. 0. 0. 2 STMORR STM-TURB-8 HEAT 11 -0.06 0.30 0. 7. 7. COAL-AFB -4. ٥. 2. 1. ٥. -0. 7. 4. 2 STMO88 STM-TURB-8 POWR 111 0. 0. ٥. O. COAL-AFB 6. 0. 6. 0. ٥. ٥. ٥. n. ۵. 2 STMO88 STM-TURB-8 HEAT 11 0.17 0.38 0. 0. 5. COAL-PFB 5. -3. 2. 1. 3. 0, 1. 5. 3 PF8STM PFB-STMTB- POWR ٥. 111 0. 0. O. COAL-PFB 6. 0. 6, ٥. ۵. О. 0. ٥. ٥. 3 PFBSTM PFB-STMTB- HEAT 11 0.23 0.41 5. RESIDUAL 4 TISTMT TI-STMTB-1 POWR 0. 111 0. G. RESIDUAL ٥. 6. 0. α. 0. 0. Q. 0. 4 TISTMT TI-STMTB-1 HEAT 11 0.23 0.41 0. 5. COAL 5. 0. -2. 2. 5. 2. 1. 4 TISTMT TI-STMTB-1 POWR ٥. 1. O. 111 0. 0. 6. O. COAL 0. 6. ٥. Ο. ٥. ٥. 0. 4 TISTMT TI-STMTB-1 HEAT Ω. 11 -1.27 0.14 0. 15. RESIDUAL 15. ٥. -12. 2. 1. 5 TIHRSG THERMIONIC POWR -8. 15. 10. ٥. 111 0. ٥. O. RESIDUAL 6. . 6. 0. ٥. ٥. n. 5 TIHRSG THEPMIONIC HEAT ٥. a. ٥. 0. 11 -1.27 0.14 15.COAL 15. 0. 2. 1. -12. 15. 10. 0. -8. 5 TIHRSG THERMIONIC POWR 111 0. 0. O. O.COAL 6. ٥. ٥. 0. 6. 0. 0. Ο. ٥. 5 TIHRSG THERMIONIC HEAT 1 -0.04 0.31 0. 7.DISTILLA -3. -0. 6 STIRL STIRLING-1 POUR 111 0. α. 6. D. DISTILLA 0. 0. 6. 6 STIRL STIRLING-1 HEAT ο.

- NMLWAS CNIFNIED BOVG JUESANCE

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

ISSE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28652 MW 0.60 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F) 0. PRODUCT CUMENE-BENZE HOURS PER YEAR 8400.

POWER TO HEAT RATIO **** HOT WATER BTU-10-+6= COAL WASTE FUEL EQV BTU*10**6= 0. UTILITY FUEL NET= FAIL FESR POWER HEAT COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE WASTE FUEL PROCES PROCES MW TOTAL+ FACTR FACTR SAVED= FUEL PROCES FUEL FUEL . FUEL FUEL USED UTILIT USED . NO-NET USED HEAT POWER ELECT BOILR USED SITE 10**6 10**6 10**6 10**6 10xx6 10xx6 10xx6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR -0. 7. 2. 1. -3. 0. 7. RESIDUAL 7. 1 -0.04 0.31 0. 0. 3. 6 STIRL STIRLING-1 POWR ٥. ٥. 0. 6. O. RESIDUAL 6. 111 0. ٥. ٥. 6 STIRL STIRLING-1 HEAT ٥. 0. ٥. 1 -0.04 3. 2. 1. -3. 0. 7. COAL 7. 0.31 0. 6 STIRL STIRLING-1 POWR 0. -0. 7. ۵. ٥. ٥. ٥. 6. O. COAL 111 0. ٥. 0. G. Ο. 0. 6 STIRL STIRLING-1 HEAT 0. 6. COAL-AFB 8. 0.00 0.32 7 HEGT85 HELIUM-GT- POWR 0. 0. O. COAL-AFB 111 0. 0. ٥. ۵. ۵. ۵. 6. 6. 7 HEGT85 HELIUM-GT- HEAT Ω. Ω. 2. ٥. 8. COAL-AFB 8. 11 -0.24 0.26 ٥. 3. 1. -4. 8 HEGT60 HELIUM-GT- POWR 0. -2. 8. O. COAL-AFB 0. 0. 0. 6. 8 HEGT60 HELIUM-GT- HEAT ٥. 0. 0. 7. 2. -8. 0. 12. COAL-AFB 1 2. 11 -0.82 0.18 0. 9 HEGTCO HELIUM-GT- POWR 0. -5. 12. 1. O. COAL-AFB 5 111 0. 0. 0. ٥. ٥. ٥. ٥. 0. 6. 9 HEGTOO HELIUM-GT- HEAT ٥. 0. 11 -0.05 0.30 7. 3. 2. -4. 0. 7. COAL 0. 10 FCMCCL FUEL-CL-MG POWR ٥. -Q. 1. G. ٥. 6. O. COAL 6. 111 0. 0. ۵. ٥. ٥. 0. ٥. ٥. 10 FCMCCL FUEL-CL-MO HEAT 4. COAL 11 0.35 0.49 11 FCSTCL FUEL-CL-ST POWR ٥. Ō. 111 0. 0. ٥. Ō. Ō. O. COAL 6. 11 FCSTCL FUEL-CL-ST HEAT 0. 11 0.20 0.40 0. ø. 5. COAL 5. 2. 2. -2. 12 IGGTST INT-GAS-GT POWR ٥. 1. 5. 1. 111 0. ٥. 0. O. COAL 12 IGGTST INT-GAS-GT HEAT 0. 0. 0. 6. 11 -0.10 0.29 0. ٥. 7. RESIDUAL 7. 7. 3. 2. -4. 0. 1. 13 GTSCAR GT-HRSG-10 POWR -1. 0. 111 0. 0. O.RESIDUAL 6. 0. ŭ. ٥. 0. 6. 13 GTSWAR GT-HRSG-10 HEAT 0. 0. Ω. 11 -0.19 0.27 0. 8. RESIDUAL 8. 8. 4. 2. -4. 0. 14 GTACOS GT-HRSG-08 POWR 1. 0. -1. ٥. 111 0. 0. 0. 6. O. RESIDUAL 6. 0. 0. 0. ٥. ٥. 14 GTACOS GT-HRSG-OS HEAT ٥. 7. RESIDUAL 11 -0.05 0.31 15 GTAC12 GT-HRSG-12 POWR 0. -0. 111 0. a. O. O. RESIDUAL 6. Ω. 0. 6. 15 GTAC12 GT-HRSG-12 HEAT 0. 6. RESIDUAL 6. 11 0.01 0.32 0. 0. 16 GTAC16 GT-HRSG-16 POWR 0. Ω. 6. 3. 2. 1. -4. 111 0. 0. 0. O. RESIDUAL 6. 16 GTAC16 GT-HRSG-16 HEAT ٥. 11 -0.02 0.32 0. 0. 6. RESIDUAL 6. 2. -3. ٥. -0. 6. 3. 1. 17 GTWC16 GT-HRSG-16 POWR O. RESIDUAL ô. 111 0. ٥. 0. 0. 6. 17 GTWC16 GT-HRSG-16 HEAT 0. ٥. 0. 0. 0. ٥.

•

1148747

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28652 MW 0.60 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F)

O. PRODUCT CUMENE-BENZE HOURS PER YEAR 8400.

POWER TO HEAT RATIO ****

UTILITY FUEL COAL WASTE FUEL EQV BTUx10xx6= 0. HOT WATER BTUx10xx6=

02	III FUEL	CUAL					717	101L 10		510-10-		U. NO!	WAIER DI	0-100	,	J.	
			WASTE	FUEL	COGEN	COGEN	COGEN		AUX		TOTAL		NET=	FAIL	FESR	POWER	
			FUEL	SAVED=			PROCES		PROCES		FUEL	FUEL	TOTAL+			FACTR	FACT
			USED	NO-NET		HEAT		ELECT .		USED	SITE	USED	UTILIT				
				10×≭6						10××6		_	10**6				
			BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HF	}	BTU/HR		· · · · · · · · · · · · · · · · · · ·		
8 CC1626	GTST-16/26	POWR	٥.	2.	4.	١.	2.	1.	-1.	0.	4.	RESIDUAL	4.	11	0.31	0.46	ο,
8 CC1626	GTST-16/26	HEAT		õ.	ó.	٥.	ō.	Ö.		6.		RESIDUAL		111	0.	o.	õ.
				-													
	GTST-16/22			2.	4.	1,	2.	1.		٥.		RESIDUAL	4.	11	0.31	0.46	0.
9 CC1622	GTST-16/22	2 HEAT	٥.	٥.	٥.	٥.	0,	0.	0.	6.	ο.	RESIDUAL	6.	111	0.	Ο.	Ο.
0 CC1222	GTST-12/22	POWR	٥.	2.	4.	1.	2.	1.	-1.	0.	4.	RESIDUAL	4.	11	0.31	0.47	٥.
	GTST-12/22		٥.	0.	Q.	0.	0.	٥,		6.		RESIDUAL	6.	111	0.	٥.	٠٥.
					-	- "			_					,		••	
	GTST-08/22			2.	4.	1.	2.	1.		٥.		RESIDUAL	4.	11	0.31		
1 CC0822	GTST-08/22	HEAT	0.	0.	0.	0.	0.	0.	0,	6.	0.	RESIDUAL	6.	111	0.	<u>o.</u>	0.
2 STIG15	STIG-15-16	PAUR	0.	1.	5,	٥.	2.	1.	-0.	٥.	5	RESIDUAL	5.	11	0.16	0,38	٥.
	STIG-15-16			o.	a.	o.	ā.	o.		6.		RESIDUAL	6.	111	0.	0.	o.
									• •	•	•		•	• • • •	•		•
	STIG-10-16			1.	6.	1.	2.	1.	-1.	٥.		RESIDUAL	6.	11	0.11	0.36	٥.
3 ST1610	STIG-10-18	HEAT	0.	0.	٥.	٥.	٥.	ο.	0.	6.	٥.	RESIDUAL	6.	111	C.	0.	0.
4 STIG1S	ST1G-15-16	PAUP	0.	0.	6.	1.	2.	1.	-2.	٥.	6	RESIDUAL	6.	11	0.05	0.34	٥.
	ST1G-15-16		0.	0.	<u>0.</u>	o.	0.	- i.	0.	6.		RESIDUAL	6.	111	0.	0.	0.
., 0,,,,,	0.10 .0 .0		•	٠.	•	٠,	٧.	•	•	•,	٠.	MEG. JOHE	٠.	• • •	٠.	••	••
5 DEADV3	DIESEL-ADV	POWR	О.	1.	6.	2.	2.	1.	-2.	Ο,	6.	RESIDUAL	6.	11	0.14	0.37	٥.
5 DEADV3	DIESEL-ADV	HEAT	0.	٥.	0.	٥.	0.	0.	0.	6.	0.	RESIDUAL	6.	111	0.	О.	0.
C DEADYO	DIESEL-ADV	naun	_		_		•		_	_	•	RESIDUAL	6.	11	0.14	0.37	٥.
	DIESEL-ADV		0. 0.	1.	6. 0.	1. 0.	2. 0.	1.	-2, 0.	0, 6.		RESIDUAL	6.		0.14	0.37	0.
O DEMDVE	DIESEL-MOV	DEAT	0.	٥.	0.	υ.	٥,	٥.	0.	0.	0.	RESIDUAL	G,	* * * *	υ,	0.	٥.
7 DEADVI	DIESEL-ADV	POWR	0.	1.	6.	2.	2,	1.	-3.	0,	6.	RESIDUAL	6.	11	0.14	0.37	0.
	DIESEL-ADV		O.	o.	0.	0.	o.	o.	o.	6.	0.	RESIDUAL	6.	111	Ο.	٥.	0.
			_		_	_	_		_	_	_						_
	ADV-DIESEL			<u>. 1.</u>	<u>5.</u>	<u>3.</u>	· 2.		<u>-3.</u>	<u>0.</u>		RESIDUAL	<u>5.</u>	11	0.20		
8 DEHIPM	ADV-DIESEL	. HEAT	0.	٥.	٥.	٥.	0.	0.	0.	6.	U.	RESIDUAL	6.	111	0.	0.	0.
9 DESCAS	DIESEL-SOA	POWR	0.	1.	6,	2.	2.	1.	-2.	٥.	6.	DISTILLA	6.	î	0.11	0.36	0.
	DIESEL-SOA		o.	ö.	o.	ō.	ō.	o.	ō.	6.		DISTILLA	6.	111		0.	0.
													_				
	DIESEL-SOA		0,	1.	6.	2.	2.	1.	-2.	0.		RESIDUAL	6.	1	0.11	0.36	o.
9 DESGA3	DIESEL-SOA	HEAT	ο.	٥.	Ο.	٥.	Ο.	0.	٥.	6.	O.	RESIDUAL	6.	111	Ο.	Ο,	٥.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28652 MW 0.60 PROCESS MILLIONS BTU/HR

O. PROCESS TEMP(F)

O. PRODUCT CUMENE-BENZE HOURS PER YEAR 8400.

PAGE 149

POWER TO HEAT RATIO **** UTILITY FUEL WASTE FUEL EQV BTU=10**6= O. HOT WATER BTU-10**6= COAL SITE FESR POWER HEAT COGEN COGEN COGEN AUX UTILIT TOTAL NET= FAIL WASTE FUEL COGEN FACTR FACTR PROCES PROCES MW FUEL FUEL TOTAL+ FUEL SAVED= FUEL PROCES FUEL USED NO-NET USED HEAT * POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**5 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6. DISTILLA 6. 1 0.11 0.36 0. 30 DESGA2 DIESEL-SGA POWR Ø. 6. 2. 1. -1. 1. 1 -30 DESGA2 DIESEL-SGA HEAT ο. O. ٥. 0. ۵. O. 0. 6. O. DISTILLA 6. 111 0. ٥. 30 DESGA2 DIESEL-SGA POWR -1. ٥. 6. RESIDUAL 6. 1 0.11 0.36 0. 0. 6. 2. 1. 1, 1. 111 0. O. RESIDUAL 0. ٥. 30 DESGAZ DIESEL-SGA HEAT 0. O. O. 0. 0. 0. 0. 6. 6. -3 Ω. 6. DISTILLA 6. 1 0.11 0.36 Ω. 31 DESGA1 DIESEL-SGA POWR O.DISTILLA C. 31 DESGAT DIESEL-SOA HEAT 0. ٥. 0. 0. Ô. C. ٥. 6. 6. 111 0. Ω. 1 0.11 0.36 0, 31 DESGA1 DIESEL-SGA POWR 6. 2. -3. 0. 6. RESIDUAL 6. 1. 1. 31 DESGA1 DIESEL-SGA HEAT ٥. O. ۵. ٥. ٥. ٥. 0. S. O.RESIDUAL 6. 111 0. ٥. 0. 7. 11 -0.10 0.29 0. 7. DISTILLA 2. ٥. 32 GTSGAD GT-HRSG-10 POWR ٥. -1. 7. 4. 1. 6. O. DISTILLA 111 0. 0. 0. 32 GTSOAD GT-HRSG-10 HEAT 0. 0. ٥. 0. 2. -3. 0. 6. DISTILLA 6. 11 0.10 0.36 0. 33 GTRAOS GT-85RE-08 POWR 2. 1. 0. 6. 33 GTRAOS GT-85RE-08 HEAT ٥. ٥. 0. ۵. 0. 6. O. DISTILLA 6. 111 0. 0. 0. 0. ٥. 6. DISTILLA 6. 11 0.11 0.36 34 GTRA12 GT-85RE-12 POWR 0. 6. O.DISTILLA 6. 111 0. 34 GTRA12 GT-85RE-12 HEAT n. o. n. ο. ٥. 0. ٥. 6. 6. DISTILLA 11 0.08 0.35 0. -3. O. 6. 35 GTRA16 GT-85RE-16 POWR 0. 6. 2. 2. 1. 1. O. DISTILLA R 111 0 0. О. 35 GTRA16 GT-85RE-16 HEAT 0. 0. ٥. ٥. Ω. 6. 0.32 0. 6, DISTILLA 11 0. 6. 3. 2. -4. Ó. 6. 36 GTR208 GT-60RE-08 POWR ٥. 0. 1. O. DISTILLA 0. 36 GTR208 GT-60RE-08 HEAT ٥. 0. 0. 0. O. ٥. 6. 6. 111 Ο. 0. 6. DISTILLA 11 0.03 0.33 0. 37 GTR212 GT-60RE-12 POWR ۵. 6. 0. 0. 3. 2. -3. 6. 1. O.DISTILLA 6. 111 0. ٥. 0. 37 GTR212 GT-60RE-12 HEAT ٥. 0. 0. 0. O. ۵. 0. 6. 0. 0.05 0.34 **B. DISTILLA** 6. 11 6. 3. 2. -3. 38 GTR216 GT-60RE-16 POWR 0. O. DISTILLA O. 0. 0. Ō. 38 GTR216 GT-60RE-16 HEAT Ω. n. 0. B. DISTILLA 6. 11 0.09 0.35 ٥. 0. ~2. 39 GTRWOS GT-85RE-08 POWR ٥. 1. 6. 2. 2. 1. O. DISTILLA 0. 0. ٥. 6. 111 0. O. 39 GTRWO8 GT-85RE-08 HEAT ο. 6. DISTILLA 11 0.12 0.36 -2. 0. 6. n. 6. 2. 40 GTRW12 GT-85RE-12 POWR 0. 1. 2. 1. ٥. O. DISTILLA 0. 0. 111 40 GTRW12 GT-85RE-12 HEAT

٠.

4

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 150

18SE PEO ADV DESIGN ENGR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28652 MW 0.60 PROCESS MILLIONS BTU/HR

R O. PROCESS TEMP(F)
POWER TO HEAT RATIO *****

O. PRODUCT CUMENE-BENZE HOURS PER YEAR 8400.

UTILITY FUEL COAL WASTE FUEL EQV BTUx10xx6= HOT WATER BTU*10**6= COGEN COGEN COGEN AUX WASTE FUEL UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED HEAT POWER ELECT BOILR USED SITE USFD UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR 1, ' n 1. 6. 2. 2. Ο. 6. DISTILLA -2. 6. 11 0.10 0.36 0. 41 GTRW16 GT-85RE-16 HEAT ٥. ٥. 0. ٥. O.DISTILLA Ω. 0. O. 6. 6. 111 ο. 0. ٥. 42 GTR308 GT-60RE-08 POWR Ö. -0. 7. 3. 2. 1. -3. 0. 7. DISTILLA 7. 11 -0.03 0.31 ີເ. 42 GTR308 GT-60RE-08 HEAT 0, ٥. ٥. 0. 0. C. 0. 6. O. DISTILLA 6. 111 0. 0. ٥. 43 GTR312 GT-60RE-12 POWR ٥. -3. 0. 6. DISTILLA 11 0.06 0.34 43 GTR312 GT-60RE-12 HEAT 0. C. 0. 0. o. 6. O.DISTILLA 111 0. 0. 0. 44 GTR316 GT-60RE-16 POWR ٥. 6. 2. -3. 0. 6. DISTILLA 6. 11 0.06 0.34 0. 44 GTR316 GT-60RE-16 HEAT ۵. ٥. ۵. ٥. 0. 0. 6. O.DISTILLA 111 0. ٥. 45 FCPADS FUEL-CL-PH POWR 0. 1. 5. 1. 2. -1. 0. 5.DISTILLA 5. 11 0.16 0.38 ٥. 45 FCPADS FUEL-CL-PH HEAT ٥. 0. 0. 0. 0. 0. 6. O. DISTILLA 6. 111 0. 0. O. 46 FCMCDS FUEL-CL-MO POWR 5. DISTILLA 1. 5. 2. 0. 5. 11 0.22 0.41 0. 46 FCMCDS FUEL-CL-MO HEAT 0. Ο. ٥. 0. ٥. O.DISTILLA ٥. 0. 6. 6. 111 0. 0. 0.

PRINTING SYSTEM

2180

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28653 MW 6.00 PROCESS MILLIONS BTU/HR 300.0 PROCESS TEMP(F) 489. PRODUCT PHENOL-ACETO HOURS PER YEAR 8200.

PAGE 151

POWER TO HEAT RATIO 0.068 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTUX10**6= ٥. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR FUFI SAVED= FUEL USED USED NO-NET USED HEAT POWER ELECT BOILR USED SITE UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 0. 353. 353. COAL-FGD 0.05 0.72 O ONOCON NO COGO N 0. 0. C. 0. ٥. 64. 417. 0 0. 377. RESIDUAL 377. 10 0.10 0.05 0.80 1 STM141 STM-TURB-1 POWR 0. 40. 183. 135. 20. 6. 194. 0. 1 STM141 STM-TURB-1 HEAT 89. 407. 300 46. 13. 0. -78. 407. RESIDUAL 328 0 0.18 0.11 0.74 377. ٥. 10 0.10 0.05 0.80 1 STM141 STM-TURB-1 POWR 40. 183. 135, 20. 6. 194. 377. COAL-FOD 0. 1 STM141 STM-TURB-1 HEAT 0. 89. 407. 300. 46. 13. 0. -78. 407. COAL-FGD 328. 0.16 0.11 0.74 377. 10 0.10 0.05 0.80 1 STM141 STM-TURB-1 POWR ۵. 40. 183. 135. 20. 6. 194. Ō. 377. COAL-AFB 1 STM141 STM-TURB-1 HEAT 89. 407. 300. 46. 13. 0. -78. 407. COAL-AFB 328. 0.18 0.11 0.74 n. 207. 110. ۵. 377. RESIDUAL * 377. 0 0.10 0.05 0.80 2 STM088 STM-TURB-8 POWR 40 267. 20. 6. 2 STMC38 STM-TURB-8 HEAT 58. 388. 300. 30. -29. 388. RESIDUAL 359. 0.13 0.08 0.77 267. 207. 110. ٥. 377. COAL-FGD 377. 0 0.10 0.05 0.80 2 STMO88 STM-TURB-8 POWR 0. 40. 20. 6 2 STMO88 STM-TURB-8 HEAT 58. 388. 300. 30. 0. -29. 388. COAL-FGD 359. 0.13 0.08 0.77 0. 110. ٥. 377. COAL-AFB 377. 0.10 0.05 0.80 2 STMO88 STM-TURB-8 POWR 40. 267. 207. 20. 6. 0. 2 STM088 STM-TURB-8 HEAT 58. 388. 300. 30. 9. 0. -29. 388 CCAL-AFB 359. 0.13 0.08 0.77 Ο. 378. COAL-PFB 378. 10 0.09 0.05 0.79 3 PFBSTM PFB-STMTB- POWR 0. 39. 112. 74. 20. 6. 266. 0. 3 PFBSTM PFB-STMTB- HEAT 456. 300. 24. -196. 456. COAL-PFB 260. 0.26 0.18 0.66 0. 157. 83. 0. 88 290 ٥. 378. RESIDUAL 378. 10 0.09 0.05 0.79 4 TISTMT TI-STMTB-1 POWR 39 54. 20. 6. 4 TISTMT TI-STMTB-1 HEAT 219. 492. 300. 114. 34. 0. -294. 492. RESIDUAL 198. 0.31 0.23 0.61 0. 10 0.09 0.05 0.79 378. COAL 378. 4 TISTMT TI-STMTB-1 POWR 39. 88. 54. 20. 6. 290. 0. 492. COAL 198. 0.31 0.23 0.61 4 TISTMT TI-STMTB-1 HEAT 219 492. 300. 34. ٥. -294. 114. 87. 251. 0. 396. RESIDUAL. 396. 0.65 0.05 0.76 5 TIHRSG THERMIONIC POWR 21. 146. 20. 6. 502. RESIDUAL 345. 0.60 5 TIHRSG THERMIONIC HEAT 72. 502. 300. 71. 21. ٥. -157. 0.13 0.14 5 TIHRSG THERMIONIC POWR 396. 0.05 0.05 0.76 0. 21. 146. 87. 20. 6. 251. O. 396, COAL O 5 TIHRSG THERMIONIC HEAT 72. 502. 300. 71. 21. ٥. -157. 502, COAL 345. 0.13 0.14 0.60 ٥. 0.06 0.05 390. 0.77 6 STIRL STIRLING-1 POWR 0. 27 93. 48. 20. 6. 297. 0. 390. DISTILLA 589. DISTILLA 250. 0.22 0.22 0.51 6 STIRL STIRLING-1 HEAT 0. 167. 589. 300. 129. 38. 0... -339.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

1

ANY PAGE 152

I&SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28653 MW 6.00 PROCESS MILLIONS BTU/HR 300.0 PROCESS TEMP(F) 489. PRODUCT PHENOL-ACETO HOURS PER YEAR 8200.

POWER TO HEAT RATIO 0.068

UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= ٥. WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FESR POWER HEAT FAIL PROCES PROCES MW SAVED= FUEL FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 0. 27. 93. 48. 20. 6. 297. ٥. 390. RESIDUAL 390. 0.06 0.05 0.77 6 STIRL STIRLING-1 HEAT 0. 167. 589. 300. 129. 38. 0. -339. 589. RESIDUAL 250. 0.22 0.22 0.51 0 6 STIRL STIRLING-1 POWR 27. 93. 297. 390. COAL 0.06 0.05 0.77 0. 48. 20. 6. 0. 390. 129. 6 STIRL STIRLING-1 HEAT 0. 167. 589. 300. 38. ٥. -339. 589. COAL 250. 0 0.22 0.22 0.51 7 HEGT85 HELIUM-GT- POWR -7. 20 424. COAL-AFB 11 -0.02 0.05 0.71 n. 64. -6. 6 360. 0. 424. 7 HEGT85 HELIUM-GT- HEAT -3167. 343. -3167. 300. -1016. -298. 0. 3240. -3167.COAL-AFB 74. 11 -6.77 **** 4.06 8 HEGT60 HELIUM-GT- POWR 79. 20. 339. 10 -0.00 0.05 0.72 ٥. -1. 12. 6. ٥. 418. COAL-AFB 418. 8 HEGT60 HELIUM-GT- HEAT ٥. ~28. 1999 300. 518. 152. 0. -1554. 1999. COAL-AFB 445. 0 -0.01 0.26 0.15 9 HEGTOO HELIUM-GT- POWR 0. 54. 20. 6. 290. 0. 406. COAL-AFB 406. 10 0.03 0.05 0.74 11. 116. 9 HEGTOO HELIUM-GT- HEAT 648. COAL-AFB ٥. 61. 648. 300. 114. 33. 0. -292. 356. 10 0.09 0.18 0.46 67. 10 FCMCCL FUEL-CL-MO POWR 0. 34. 32. 20. 6. 316. 0. 383. COAL 383. 10 0.08 0.05 0.78 10 FCMCCL FUEL-CL-MO HEAT 321. 638. 300. 194. 57. ٥. -542. 638, COAL 96. 70 0.33 0.30 0.47 0. 11 FCSTCL FUEL-CL-ST POWR 35. 20. 6. ٥. 382. COAL 382. 10 0.08 0.05 0.79 n 56 23. 326 11 FCSTCL FUEL-CL-ST HEAT Ō. 458. 727. 300. 266. 78. -768, 727. COAL -42, 10 0.39 0.37 0.41 0. 12 IGGTST INT-GAS-GT POWR 0. 27. 77. 34. 20. 6. 313. 0. 390. COAL 390. 10 0.07 0.05 9.77 12 IGGTST INT-GAS-GT HEAT 0. 241. 677. 300. 181. 53. 0. -501. 677. COAL 176. 10 0.26 0.27 0.44 13 GTSGAR GT-HRSG-10 POWR Ω. 25. 71. 27. 20. 6. 321. 0. 392. RESIDUAL 392. 10 0.06 0.05 0.77 13 GTSOAR GT-HRSG-10 HEAT ٥. 279. . 784. 300. 227. 67. 0. -647. 784. RESIDUAL 137. 0 0.26 0.29 0.38 307. 14 GTACOB GT-HRSG-08 POWR 0. 34. 76. 39. 20. 6. 0. 383. RESIDUAL 383. 10 0.08 0.05 0.78 14 GTACOB GT-HRSG-08 HEAT 262. 582. 300. 157. ٥. -427. 582. RESIDUAL 155. 0 0.31 0.27 0.52 ٥. 46. 15 GTAC12 GT-HRSG-12 POWR 33. 67 20. 316. n 383. RESIDUAL 383. 10 0.08 0.05 0.78 -553. 15 GTAC12 GT-HRSG-12 HEAT 323. 647. 300. 0. 647. RESIDUAL 0. 197. 58. 94. 0 0.33 0.31 0.46 16 GTAC16 GT-HRSG-16 POWR 32. 27. 322. 0. 385. RESIDUAL 385. 10 0.08 0.05 0.78 ٥. 63. 20. 6. 16 GTAC16 GT-HRSG-16 HEAT ٥. 360. 713. 300. 230. 68. 0. -656. 713. RESIDUAL 57. 0.34 0.32 0.42 17 GTWC16 GT-HRSG-16 POWR ٥. 30. 65. 26. 20. 6. 322. 0. 387. RESIDUAL 387. 10 0.07 0.05 0.78 17 GTWC16 GT-HRSG-16 HEAT 341. 740. 300. 233. 68. 0. -664. 740. RESIDUAL 76. 0 0.32 0.32 0.41 POO.

L HAGE IS

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY. COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28653 MW 6.00 PROCESS MILLIONS BTU/HR 300.0 PROCESS TEMP(F) 489. PRODUCT PHENOL-ACETO YOURS PER YEAR 8200.

PAGE 153

POWER TO HEAT RATIO 0.068 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= Ω. HOT WATER BTU*10**6= 0. FESR POWER HEAT WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR O. 29. 56. 18. 20. 6. 332. ٥. 388. RESIDUAL 388. 10 0.07 0.05 0.77 482. 18 CC1626 GTST-16/26 HEAT 928. 300. -993. 928. RESIDUAL 338. 99. 0. -65. 0.34 0.36 0.32 19 CC1622 GTST-16/22 POWR 0. 31. 57. 20. 20. 6. 329. 0. 386. RESIDUAL 386. 10 0.07 0.05 0.78 19 CC1622 GTST-16/22 HEAT 454. 847. 300. ≘03. 89. -884. 847. RESIDUAL -37. 0.35 0.36 0.35 Ω. n. Ω 20 CC1222 GTST-12/22 POWR Ω 31. 57. 20. 20. 6. 329. ۵. 386. RESIDUAL 386. 10 0.07 0.05 0.78 20 CC1222 GTST-12/22 HEAT ٥. 455. 839. 300. 301. -878. 839. RESIDUAL 0.35 0.36 0.36 88. -38. 21 CC0822 GTST-08/22 POWR 0. 33. 61. 26. 20. 6. 322. 0. 384. RESIDUAL 384. 10 0.08 0.05 0.78 21 CC0822 GTST-08/22 HEAT 384. 709 300. 237. 69. ٥. -677. 709. RESIDUAL 33. 0.35 0.33 0.42 22 STIG15 STIG-15-16 POWR 0. 11. 54 1. . 20. 6. 352. ٥. 406. RESIDUAL 406. 0.03 0.05 0.74 22 STIG15 STIG-15-16 HEAT ٥. 4752, 23077. 300. 8792. 2577. 0.-27412, 23077.RESIDUAL -4335. 0.17 0.38 0.01 23 STIG10 STIG-10-16 POWR 0. 16. 57. 8. 20. 6. 344. ٥. 401. RESIDUAL 401. 0.04 0.05 0.75 23 STIG10 STIG-10-16 HEAT 0. 630. 2264. 300. 813. 238. 0. -2477. 2264. RESIDUAL -213. 0.22 0.36 0.13 24 STIG1S STIG-15-16 POWR 0. 18. 61 13. 20 6. 338. ٥. 399. RESIDUAL 399. 11 0.04 0.05 0.75 24 STIGIS STIG-1S-16 HEAT 1423. 300. 0. 421. 477. 140. 0. -1427. 1423. RESIDUAL -4. 0.23 0.34 0.21 25 DEADV3 DIESEL-ADV POWR 55. 8. 20. 6. ٥. 398. 0. 19. 343. 398. RESIDUAL 1 0.04 0.05 0.75 25 DEADV3 DIESEL-ADV HEAT 666. 1961 300. 0. -2210. 1961. RESIDUAL -249. 0. 728. 213 0.25 0.37 0.15 26 DEADV2 DIESEL-ADV POWR 55, 25. 20. 6. 0. 392. RESIDUAL 392. 0.06 0.05 0.77 0. 14. 336. 26 DEADV2 DIESEL-ADV HEAT 0. 541. 1181. 300. 438. 128. 0. -1305. 1181. RESIDUAL -124. 0.31 0.37 0.25 55. 22. 383. RESIDUAL 383. 0.08 0.05 0.78 27 DEADV1 DIESEL-ADV POWR O. 34. 20. 6. 328. 0. 27 DEADV1 DIESEL-ADV HEAT 0. 475. 767. 300. 285. 83. 0. -826. 767. RESIDUAL -58. 0.38 0.37 0.39 28 DEHTPM ADV-DIESEL POWR 27. 75. 32. 20. 6. 315. 390. RESIDUAL 390. 0.06 0.05 0.77 Ω. 28 DEHTPM ADV-DIESEL HEAT ٥. 249. 695. 300. 189. 55. O. -527. 695. RESIDUAL 168. 0.26 0.27 0.43 402. DISTILLA 29 DESGAS DIESEL-SGA POWR 15. 57. 7. 20. 6: 345. 0. 402. 0.04 0.05 0.75 Ω. 29 DESCAS DIESEL-SCA HEAT 676. 2522 300. 910. 267. 0. -2781. 2522. DISTILLA -259. 0,21 0.36 0.12 15. 57. 7. 20. 6. 345. Ο. 402. RESIDUAL 402. 1 0.04 0.05 0.75 29 DESCAS DIESEL-SCA POWR C. 2522. RESIDUAL -259. 676. 2522. 300. 910. 267. 0. -2781. 0.36 0.12 29 DESCAS DIESEL-SCA HEAT 0. 1 0.21

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28653 MW 6.00 PROCESS MILLIONS BTU/HR 300.0 PROCESS TEMP(F) 489. PRODUCT PHENOL-ACETO HOURS PER YEAR 8200.

POWER TO HEAT RATIO 0.068 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= ٥. COGEN COGEN COGEN AUX WASTE FUEL UTILIT TOTAL SITE FESR POWER HEAT NET= FAIL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 22. 57. 20. Ο. 12. 5. 338. 0. 395. DISTILLA 395. 0.05 0.05 0.76 30 DESGA2 DIESEL-SGA HEAT 528. 1364. 300. 0. 492. 144. 0. -1474. 1364. DISTILLA -111. 0.26 0.36 0.22 0. 22. 57. 20. 30 DESGA2 DIESEL-SGA POWR Ō. 12. 338. 395. RESIDUAL 6. 395. J. 05 0.05 0.76 30 DESGA2 DIESEL-SGA HEAT ٥. 528. 1364. 300. 492. 144. 0. -1474. 1364. RESIDUAL -111. 1 0.28 0.36 0.22 31 DESGA1 DIESEL-SGA POWR 34 23 20. 6. 326. G. 383. DISTILLA 383. 0.08 0.05 0.76 31 DESCA1 DIESEL-SCA HEAT Ω. 449. 748. 300. 270. 79. 0. -780. 748. DISTILLA -32. 1 0.37 0.36 0.40 31 DESCA1 DIESEL-SCA POWR 57. 23. 0. 34. 20. 6. 326. 0. 383. RESIDUAL 383. 1 0.08 0.05 0.78 31 DESGA1 DIESEL-SGA HEAT ٥. 449. 748. 300. 270. 79. 0. -780. 748. RESIDUAL -32. 1 0.37 0.36 0.40 32 GTSOAD GT-HRSG-10 POWR ٥. 31. 70. 32. 20. 6, 316. 0. 386. DISTILLA 386. 10 0.07 0.05 0.78 32 GTSØAD GT-HRSG-10 HEAT n 295. 662. 300. 193. -540. 662. DISTILLA 57. ٥. 122. 0 0.31 0.29 0.45 33 GTRA08 GT-85RE-08 POWR 25. 57. 16. 20. 334. 392. DISTILLA 0. 6. Ο. 392. 10 0.06 0.05 0.77 33 GTRAO8 GT-85RE-08 HEAT 0. 479. 1094. 300. 391. 1094. DISTILLA 115. 0. -1157. -63. 0 0.30 0.36 0.27 34 GTRA12 GT-85RE-12 POWR 57. 17 20. 6. 333. 0. 390. DISTILLA 390. 10 0.06 0.05 0.77 34 GTRA12 GT-85RE-12 HEAT 0. 474. 1018. 300. 365. 107. 0. -1075. 1018. DISTILLA -57. 0 0.32 0.36 0.29 35 GTRA16 GT-85RE-16 POWR 27. 59. 19. 20. 6. 331. 0. 390. DISTILLA 390. 10 0.07 0.05 0.77 35 GTRA16 GT-85RE-16 HEAT 300. 329. -964. 943. DISTILLA 0.32 0.35 0.32 438. 943. 96. ٥. -21. 36 GTR208 GT-60RE-08 POWR 325. O. 389. DISTILLA 389. 10 0.07 0.05 0.77 0. 28. 64. 24. 20. 6. 36 GTR208 GT-60RE-08 HEAT 0. 353. 811. 300. 259. 76. 0. -747. 811.DISTILLA 64. 0 0.30 0.32 0.37 37 GTR212 GT-60RE-12 POWR 0. 28. 62. 22. 20. 6. 327. 0. 389. DISTILLA 389. 10 0.07 0.05 0.77 37 GTR212 GT-60RE-12 HEAT 845. DISTILLA 38. 0. 379. 845. 300. 279. 82. ٥. -807. 0 0.31 0.33 0.36 389. DISTILLA 38 GTR216 GT-60RE-16 POWR 28 61 21. 20. 6 328 Ω 389. 10 0.07 0.05 0.77 853. DISTILLA 38 GTR216 GT-GORE-16 HEAT 0. 398. 853. 300. 287. 84. -834. 19. 0.32 0.34 0,35 O. 39 GTRWO8 GT-85RE-08 POWR 0. 22. 58. 14. 20. 6. 337. 0. 395. DISTILLA 395. 10 0.05 0.05 0.76 0. -1355. 39 GTRWOS GT-85RE-08 HEAT O. 478. 1294. 300. 454. 133. 1294.DISTILLA -61. 0.27 0.35 0.23 40 GTRW12 GT-85RE-12 POWR ٥. 24. 56. 14. 20. 6. 337. 0. 393. DISTILLA 393. 10 0.06 0.05 0.76 40 GTRW12 GT-85RE-12 HEAT 520. 1218. 300. 443. 130. O. -1321. 1218.DISTILLA -103. 0 0.30 0.36 0.25

18SE PEO ADV DESIGN ENGR

PAGE 154

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE 155

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

6.00 PROCESS MILLIONS BTU/HR 300.0 PROCESS TEMP(F) 489. PRODUCT PHENOL-ACETO HOURS PER YEAR 8200. INDUSTRY 28653 MW

POWER TO HEAT RATIO 0.068 UTILITY FUEL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= COAL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT WASTE FUEL PROCES PROCES MW FUEL FUEL TOTAL+ FACTR FACTR FUEL SAVED= FUEL PROCES FUEL SITE USED UTILIT NO-NET USED POWER ELECT BOILR USED USED HEAT 10**8 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 335. 0. 392. DISTILLA 392. 10 0.06 0.05 0.77 41 GTRW16 GT-85RE-16 POWR 0. 25. 57. 16. 20. 6. 0. -1172. 1108. DISTILLA -34. 0 0.30 0.36 0.27 41 GTRW16 GT-85RE-16 HEAT 0. 481. 1108. 300. 396. 116. 397. DISTILLA 42 GTR308 GT-60RE-08 POWR 20. 18. 20. 331. 0. 397. 10 0.05 0.05 0.76 0. 66. 1077. DISTILLA 0 0.23 0.31 0.28 334. -979. 98. 42 GTR308 GT-60RE-08 HEAT 0. 319. 1077. 300. 98. Ο. 391. DISTILLA 391 10 0.06 0.05 0.77 43 GTR312 GT-60RE-12 POWR 26. 60. 19. 20. 331. 0. 43 GTR312 GT-60RE-12 HEAT 418. 951. 300. 325. 0. -953. 951.DISTILLA -1. 0 0.31 0.34 0.32 330. 391. DISTILLA 391. 10 0.06 0.05 0.77 44 STR316 GT-60RE-16 POWR ٥. 26. 60. 19. 20. 6. ٥. 44 GTR316 GT-60RE-16 HEAT 409. 942. 300. 319. 94. -934. 942. DISTILLA 8. 0 0.30 0.34 0.32 0 0.05 0.05 0.76 45 FCPADS FUEL-CL-PH POWR 0. 21. 54. 9. 20. 6. 342. ٥. 396. DISTILLA 396. 45 FCPADS FUEL-CL-PH HEAT 0. -2032. 1765. DISTILLA -267. 0 0.23 0.38 0.17 0. 684. 1765. 300. 671. 197. 46 FCMCDS FUEL-CL-MO POWR 20. 339. 0. 389. DISTILLA 389. 0 0.07 0.05 0.77 ٥. 28. 50. 12. 6. 0. -1594. 1288. DISTILLA -306. 0 0.36 0.41 0.23 46 FCMCDS FUEL-CL-MO HEAT 0. 723. 1288. 300. 530. 155.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

OMPANY PAGE 156
TERNATIVES STUDY

1&SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28654 MW 0.70 PROCESS MILLIONS BTU/HR 220.0 PROCESS TEMP(F) 489. PRODUCT ETHYLBENZENE HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.011 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU:10**6= 0. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES PROCES MW FUEL SAVED= FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED USED HEAT POWER ELECT BOILR USED USED SITE UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COO ON ٥. ٥. D. 0. 259. 0. ٥. 7. 259. COAL-FOD 266. 0. 0.01 0.83 1 STM141 STM-TURB-1 POWR 0. 5. 40. 32. 221. 2. 262. RESIDUAL 1. n 262. 10 0.02 0.01 0.84 1 STM141 STM-TURB-1 LEAT 278. 220. 16. 5. 0. -44. 278. RESIDUAL 234. 0.10 0.06 0.79 1 STM141 STM-TURB-1 POWR ٥. 5. 40. 32. 2. 221. ٥. 262. COAL-FOD 1. 262. 10 0.02 0.01 0.84 1 STM141 STM-TURB-1 HEAT 0. 32. 278. 220. 16. 5. 0. -44. 278. COAL-FGD 234. 10 0.10 0.06 0.79 1 STM141 STM-TURB-1 POWR O. 5. 40. 32. 2. 221. 262. COAL-AFB 1. 0. 262. 10 0.02 0.01 0.84 1 STM141 STM-TURB-1 HEAT 32. 278. 220. 16. 5. O. -44. 278. COAL-AFB 234. 10 0.10 0.06 0.79 2 STMC88 STM-TURB-8 POWR 5. 108. 89. 154 0 262. RESIDUAL 262. 0.02 0.01 0.84 2 STMO88 STM-TURB-8 HEAT 11. 266. 220. Ō. -11. 266. RESIDUAL 255. 0.04 0.02 0.83 2 STM088 STM-TURB-8 POWR 0. 5. 108. 89. 154. 2. 0. 262. COAL-FOD 262. 11 0.02 0.01 0.84 2 STM088 STM-TURB-8 HEAT 11. 266. 220. 6. O. 2. -11. 266. COAL-FGD 255. 11 0.04 0.02 0.83 2 STM088 STM-TURB-8 POWR 5. ٥. 108. 89. 2. 154. ٥. 1. 262, COAL-AFB 262. 0.02 0.01 0.84 11 2 STM088 STM-TURB-8 HEAT 0. 11. 266. 220. 6. 2. ٥. -11. 266. COAL-AFB 255. 11 0.04 0.02 0.83 3 PEBSTM PEB-STMTB- POWR 0. 4. 18. 12. 2. 244. 1. 0. 262. COAL-PFR 262. 10 0.02 0.01 0.84 3 PFBSTM PFB-STMTB- HEAT 79. 314. 220. 43. 13. 0. -126. 314. COAL-PFB 188. 10 0.20 0.14 0.70 4 TISTMT TI-STMTB-1 POWR 5. 13. 8. 249. 0. 262. RESIDUAL 262. 10 0.02 0.01 0.84 4 TISTMT TI-STMTB-1 HEAT O. 120. 33 220. 63. 19. -190. 336. RESIDUAL 146. 0.26 0.19 0.65 4 TISTMT TI-STMTB-1 POWR 0. 5. 13. A. 2. 249. 1. 0. 262. COAL 262. 10 0.02 0.01 0.84 4 TISTMT TI-STMTB-1 HEAT 120. 0. 336. 220. 63. 19. 0. -190. 336. COAL 146. 0 0.26 0.19 0.65 5 TIHRSG THERMIONIC POWR 0. 2. 17. 10. 2. 247. 1. 0. 264, RESIDUAL 264. 10 0.01 0.01 0.83 5 TIHRSG THERMIONIC HEAT 53. ٥. 368. 220. 52. 15. ٥. -154. 368. RESIDUAL 214. 0.13 0.14 0.60 5 TIHRSG THERMIONIC POUR 0. 2. 17. 10. 2. 1. 247. 0 264. COAL 264. 10 0,01 0.01 0.83 5 TIHRSG THERMIONIC HEAT O. 53. 368. 220. 52. 15. 0. -154. 368. COAL 214. 0 0.13 0.14 0.60 6 STIRL STIRLING-1 POWR ٥. 252. 3. 11. 6. ٥. 263. DISTILLA 2'63. 0 0.01 0.01 0.84 6 STIRL STERLING-1 HEAT 0. 123. 220. 432. 25. 28. -288. 432. DISTILLA 144. 0 0.22 0.22 0.51

14SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28654 MW 0.70 PROCESS MILLIONS BTU/HR 220.0 PROCESS TEMP(F) 489. PRODUCT ETHYLBENZENE HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.011 UTILITY FUEL WASTE FUEL EQV BTU*10**6= 0. HOT WATER BTU*10**6= O. COAL UTILIT TOTAL SITE NET= FESR POWER HEAT WASTE FUEL COGEN COGEN COGEN AUX FAIL FACTR FACTR SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FUEL SITE USED UTILIT NO-NET USED HEAT POWER ELECT BOILR USED USED 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 0. 11. 6. 2. 1. 252. 0. 263. RESIDUAL 263. 0 0.01 0.01 0.84 -288. 432. RESIDUAL 144. 0 0.22 0.22 0.51 6 STIRL STIRLING-1 HEAT ٥. 123. 432. 220. 95. 28. Ο. 6 STIRL STIRLING-1 POWR 3. 11. 6. 2. 1. 252. 0. 263, COAL 263. 0 0.01 0.01 0.84 0. 432. COAL 0 0.22 0.22 0.51 6 STIRL STIRLING-1 HEAT ٥. 123. 432. 220. 95. 28. Ω. -288. 144. 267, COAL-AFB 267. 11 -0.00 0.01 0.82 7 HEGT85 HELIUM-GT- POWR 0 0. 7 HEGT85 HELIUM-GT- HEAT -2322. 252. -2322. 220. -745. -218. 2337. -2322. COAL-AFB 15. 11 -7.78 **** 14.95 ο. 257. Ω. 266. COAL-ACB 266. 10 -0.00 0.01 0.83 8 HEGT60 HEL1UM-GT- POWR -0. 9. 2. 0. 1. 1. 220. 0. -1179. 1466. COAL-AFB 287. 0 -0.01 0.26 0.15 -21. 380. 111. 8 HEGT60 HELIUM-GT- HEAT 0. 1466 2. 1. 251. ٥. 265. COAL-AFB 265. 10 0.00 0.01 0.83 9 HEGTOO HELIUM-GT- POWR 0. 6. 1. 14. -254. 475. COAL-AFB 221. 10 0.09 0.18 0.46 220. 25. 0. 9 HEGTOO HELIUM-GT- HEAT 0. 45. 475. 84. 2. 1. 254. a. 262. COAL 262. 10 0.01 0.01 0.84 10 FCMCCL FUEL-CL-MC POWR 0. 4. 8. 4. 468. CTAL 31. 10 0.33 0.30 0.47 10 FCMCCL FUEL-CL-MO HEAT 235. 468. 220. 142. 42. O. -437. 0. 10 0.02 0.01 0.84 11 FCSTCL FUEL-CL-ST POWR n. 262. COAL 262. 10 0.36 0.34 0.44 286. 498. 220. 168. 49. -519. 498. COAL -20. 11 FCSTCL FUEL-CL-ST HEAT ٥. n. 10 0.01 0.01 0.84 2. 253. n 263. COAL 263. 12 IGGTST INT-GAS-GT POWR 0. 3. 10. 5. 1. -333. 463. COAL 130. 10 0.23 0.24 0.47 12 IGGTST INT-GAS-GT HEAT 136. 463 220. 109. 32. n. 10 0.01 0.01 0.84 255. 0. 263. RESIDUAL 263. 13 GTSOAR GT-HRSG-10 POWR 0. 3. 8. 3. 2. 1. -514. 0.26 0.29 0.38 575. RESIDUAL 61. 13 GTSCAR GT-HRSG-10 HEAT 0. 205. 575. 220. 167. 49. 0. 202. RESIDUAL 253. 0. 262. 10 0.01 0.01 0.84 14 GTACO8 GT-HRSG-08 POWR 0. 4. 9. 5. 2. 1. 74. 0 0.31 G.27 0.52 427. RESIDUAL 192. 220. 115. 34. 0. -352. 14 GTACO8 GT-HRSG-08 HEAT 0. 427. 262. RESIDUAL 262. 10 0.01 0.01 0.84 15 GTAC12 GT-HRSG-12 POWR 255 n. 1. 0 0.33 0.31 0.46 475. RESIDUAL 220. 145. 42. 0. -445. 30. 15 GTAC12 GT-HRSG-12 HEAT 0. 237. 475. 263. RESIDUAL 263. 10 0.01 0.01 0.84 0. 4. 7. 3. 2. 255. 0. 16 GTAC16 GT-HRSG-16 POWR 1. 0.34 0.32 0.42 -520. 523. RESIDUAL 0 264 220. 169. 50. 16 GTAC16 GT-HRSG-16 HEAT 255. ٥. 263. RESIDUAL 263. 10 0.01 0.01 0.84 0. 3. 8. 3. 2. 17 GTWC16 GT-HRSG-16 POWR 1. 0 0.32 0.32 0.41 -526. 542. RESIDUAL ?÷. 17 GTWC16 GT-HRSG-16 HEAT ۵. 250. 542. 220. 171. 50.

PAGE 157

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 158

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28654 MW 0.70 PROCESS MILLIONS BTU/HR 220.0 PROCESS TEMP(F) 489. PRODUCT ETHYLBENZENE HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.011 WASTE FUEL EQV BTU*10**6= O. HOT WATER BTUx10xx6= 0. UTILITY FUEL COAL FAIL FESR POWER HEAT WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**5 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 256. 0. 263. RESIDUAL 24 . 11 0.01 0.01 0.84 18 CC1626 GTST-16/26 POWR 0. 3. 7. 2. 2. 1. -670. 635. RESIDUAL ~35. 0.32 0.34 0.35 18 CC1626 GTST-16/26 HEAT Ω. 301. 635. 220. 217. 64. ο. 1 2. 256. 263. RESIDUAL 0.01 0.84 19 CC1622 GTST-16/22 POWR ٥. 3. 7. 3. 1. Ω. 263. 11 0.01 -597. 580. RESIDUAL 1 0.33 0.33 0.38 19 CC1622 GTST-16/22 HEAT 283. 580. 220. 193. 0. -17. Ω. 57. 20 CC1222 GTST-12/22 POWR 3 2. 256 0 263. RESIDUAL 263. 0.01 0.01 0.84 20 CC1222 GTST-12/22 HEAT 0. 283. 574. 220. 191. 56. 0. -591. 574. RESIDUAL -16. 0.33 0.33 0.38 21 CC0822 GTST-08/22 POWR ٥. 4. 8. 4. 2. 1. 255. 0. 262. RESIDUAL 262. 11 0.01 0.01 0.84 21 CC0822 GTST-08/22 HEAT 234. 485. 220. 147. -453. 485. RESIDUAL 32. 0.33 0.30 0.45 43. 0. 2. 0. 265. 11 0.00 0.01 0.83 22 STIG15 STIG-15-16 POWR 0. 1 6. ٥. 1. 259. 265. RESIDUAL 22 STIG15 STIG-15-16 HEAT n. 3485. 16923. 220. 6448. 1890. 0.-20142. 16923.RESIDUAL -3218. 1 0.17 0.38 0.01 23 STIG10 STIG-10-16 POWR 0. 2. 7. 1. 2. 1. 258. Ó. 264 . RESIDUAL 264. 11 0.01 0.01 0.83 596. 0. -1856. 1660. RESIDUAL -195. 1 0.22 0.36 0.13 23 STIG10 STIG-10-16 HEAT 462. 1660. 220. 175. 0. 264. RESIDUAL 264. 11 0.01 0.01 0.83 24 STIG1S STIG-1S-16 POWR 2. 2 257. 0. 1044. 220. 350. 103, 0. -1086. 1044. RESIDUAL -42. 1 0.23 0.34 0.21 24 STIGIS STIG-15-16 HEAT 308. n. 25 DEADV3 DIESEL-ADV POWR n. 2. 6. 1. 2. 1. 258. 0. 264. RESIDIEL 264. 11 0.01 0.01 0.83 0.25 0.37 0.15 25 DEADV3 DIESEL-ADV HEAT 488. 1438. 220. 534 156. 0, -1660. 1438. RESIDUAL -222. 26 DEADV2 DIESEL-ADV POWR 0. 3. 6. 2. 2. 1. 257. 0. 263. RESIDUAL 263. 11 0.01 0.01 0.84 26 DEADV2 DIESEL-ADV HEAT 397. 866. 220. 321. 94. ٥. -997. 866. RESIDUAL -131. 1 0.31 0.37 0.25 Ω. 27 DEADV1 DIESEL-ADV POWR 0. 4. 6. 3. 2. 1. 256. n. 262. RESIDUAL 262. 11 0.01 0.01 0.84 -645. 563. RESIDUAL -82. 1 0.38 0.37 0.39 27 DEADV1 DIESEL-ADV HEAT Ω. 348. 563. 220. 209. 61. 0. 10 0.01 0.01 0.84 Ω 263. RESIDUAL 263. 28 DEHTPM ADV-DIESEL POWR 0.26 0.27 0.43 220. 41. 84. 28 DEHTPM ADV-DIESEL HEAT 0. 182. 510. 139. ٥. -426. 510. RESIDUAL 265. 1 0.01 0.01 0.83 29 DESGAS DIESEL-SGA POWR 0. 2. 7. 1. 2. 1. 258. ٥. 265. DISTILLA -229. 0.21 0.36 0.12 496. 1849. 220. 668. 196 -2079. 1849. DISTILLA 29 DESGAS DIESEL-SGA HEAT 7. 258. 0. 265. RESIDUAL 265. 1 0.01 0.01 0.83 29 NESGAS DIESEL-SGA POWR ٥. 2. 2. 1. 1. 496. 1849. 220. 668. 196. 0. -2079. 1849.RESIDUAL -229. 1 0.21 0.36 0.12 29 FSOA3 DIESEL-SOA HEAT \mathbf{n}

SAG SIMAMA

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

OGY ALTERNATIVES STUDY

PAGE 159

18SE PEO ADV DESIGN ENGR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28654 MW 0.70 PROCESS MILLIONS BTU/HR 220.0 PROCESS TEMP(F) 489. PRODUCT ETHYLBENZENE HOURS PER YEAR 7900.

UTILITY FUEL		COAL	POWER TO HEAT RATIO 0.011 WASTE FUEL EQV BTU*10**6= 0. HOT WATER BTU*10**6= 0.														
			WASTE			COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEA
			FUEL	SAVED=			PROCES		PROCES		FUEL	FUEL	TOTAL+			FACTR	FACT
	•		USED	NO-NET		HEAT		ELECT			SITE	USED	UTILIT				
	•			10××6						10×#6			10××6				
	·		BIU/HR	BTU/HR	BIU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTC/H	₹	BTU/HR				
O DESMA	DIESEL-SO	PAUR	0.	3.	7.	1.	2.	1.	257.	٥.	264	.DISTILLA	264.	1	0 01	0.01	0 9
	DIESEL-SO				1000.	220.	361.	106.		-1121.		DISTILLA	-121.	i		0.36	
		, ,,,,,	•	••••		,	•		٠.		, 555	. D. O. I LLA	,	•	0.20	0.00	٥. ٢
O DESCA	DIESEL-SO	POWR	0.	3.	7.	1.	2.	1.	257,	0.	264	. RESIDUAL	264.	1	0.01	0.01	0.8
O DESCA	DIESEL-SO	HEAT	٥.	387.	1000.	220,	361.	106.	ο.	-1121,	1000.	.RESIDUAL	-121.	1	0.28	0.36	0.2
			_		_	_	_	_		_							
	DIESEL-SOA			<u>4,</u> 329.	<u>7.</u> 549.	220.	2. 198.	1.		0.		DISTILLA	262.			0.01	
DESUA!	DIESEL-SUA	HEAR	υ.	329.	549.	220.	198.	58.	0.	-611.	549.	DISTILLA	-63.	1	0.37	0.36	0.4
1 DESCAT	DIESEL-SOA	POUR	٥,	4.	7.	• 3 <i>.</i>	2.	1.	256,	0,	262	RESIDUAL	262.	1	0.01	0.01	0.8
	DIESEL-SO			329.	549.	220.	198.	58.	0.	-611.		RESIDUAL	-63.	1	0.37		0.4
,										<u> </u>		, neo i bone		•	0.07	0.00	
2 GTSTAL	GT-HRSG-10	POWR	0.	4.	8.	4.	2.	1.	254.	٥.	263.	DISTILLA	263.	10	0.01	0.01	0.8
2 GTSOAD	GT-HRSG-10	HEAT	٥.	216.	485.	220.	142.	42.	٥.	-435.	485.	DISTILLA	50.	0	0.31	0.29	0.4
	GT-85RE-08				7.	2.	2.	1.	257.	0.		DISTILLA	263.	10	0.01	0.01	0.8
3 GIRAUE	GT-85RE-08	HEAT	0.	352.	803.	220.	287.	84.	٥.	-888.	803.	DISTILLA	-85.	0	0.30	0.36	0.2
A GTRA12	GT-85RE-12	PAUD	0,	3.	7.	2.	2.	1.	257.	٥.	262	DISTILLA	263.	10	0.01	0.01	0.8
	GT-85RE-12				747.	220.	267.	78.	0.	-828.		DISTILLA	-81.	10	0.32		0.2
	,								٠.	0201			• • • • • • • • • • • • • • • • • • • •	•	3,02	0,00	
5 GTRA16	GT-85RE-16	POWR	0.	3.	7.	2.	2.	1.	256.	0.	263.	DISTILLA	263 .	10	0.01	0.01	0.8
5 GTRA16	GT-85RE-16	HEAT	0.	321.	691.	220.	241.	71.	٥.	-746.	691.	DISTILLA	-55.	0	0.32	0.35	0.3
	GT-GORE-08			3.	7,	3.	2.	_1.	256.	0.		DISTILLA	263.	10		0.01	0.8
6 G1K208	GT-GORE-08	HEAT	٥.	259.	595.	220.	190.	56.	٥.	~587.	595.	DISTILLA	7.	0	0.30	0.32	0.3
7 GTR212	GT-60RE-12	PAUR	0,	3.	7.	3.	2.	1.	256.	0.	263	DISTILLA	263.	10	0.01	0.01	0.8
	GT-60RE-12		o.	278.	619.	220.	204.	6Ò.	230.	-631.		DISTILLA	-12.	•	0.31		
	· · · · · · · · · · · · · · · · · · ·	,,	٠.	-, -,			/ /	.	J ,	0011	٠,٠.			•		0.00	0
8 GTR216	GT-60RE-16	POWR	0,	3.	7.	2.	2.	. 1.	256.	0.	263.	DISTILLA	263.	10	0.01		0.8
8 GTR216	GT-GORE-16	HEAT	0.	292.	626.	220.	211.	62.	٥.	-651.	626.	DISTILLA	-26,	0	0.32	0.34	0.3
			_		_	_									_		_
	GT-85RE-08		0.		7.	2,	2.	1.	257.	0.		DISTILLA	264.		0.01		0.8
9 GIRWOS	GT-85RE-06	HEAT	0,	351.	949.	220.	333.	98.	0.	-1033.	949.	DISTILLA	-84.	0	0.27	0.35	0.2
n GTPU13	GT-85RE-12	ലെയാ	0.	3.	7.	2.	2.	1.	257.	٥.	262	DISTILLA	263.	10	0.01	0.01	0.8
	GT-85RE-12		0.		893.	220.	325.	95.		-1008.		DISTILLA	-115.		0.30		0.8
O DINAIL	. Of OUNL-12		J.	002.	050,	EEG,	JEJ.	33.	υ,	1000.	050.	DIGITECA	- 110,	U	5,50	0,50	U. Z

J. 143

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE 160

ISSE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28654 MW 0.70 PROCESS MILLIONS BTU/HR 220.0 PROCESS TEMP(F) 489. PRODUCT ETHYLBENZENE HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.011 UTILITY FUEL COAL

WASTE FUEL EQV BTUx10xx6= 0. HOT WATER BTUx10xx6=

	_							WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
								FUEL	SAVED=	FUEL	PROCES	PROCES	MM	PROCES	FUEL	FUEL	FUEL	TOTAL+			FACTR	FACTE
								USED	NO-NET	USED	HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				
								10**6	10**6	10**6	10××6	10××6		10**6	10××6	10××6		10**6				
								BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HR	<u> </u>	BTU/HR				
41	G ¹	TRW16	5 G	T-1	B5RE-	16	POWR	G.	3.	7.	2.	2.	1.	257.	0.	263.	DISTILLA	263,	10	0.01	0.01	0.84
-							HEAT	o.	353.	813.	220.	290.	85.		-899.		DISTILLA	-86.	0	0.30		0.27
12	G	TR308	3 G	T-(FORE-	08	POWR	0.	2.	8.	2.	2.	1.	256.	0.	264.	DISTILLA	264.	10	0.01	0.01	0.83
12	G	TR308	3 G	T-1	FORE-	80	HEAT	ο.	234.	790.	220.	245.	72.	٥.	-758.	790.	DISTILLA	32.	0	0.23	0,31	0.28
13	G.	TR312	2 G	T-(SORE-	12	POWR	0.	3.	7.	2.	2.	1.	256,	٥.	263.	DISTILLA	263.	10	0.01	0.01	0.84
43	G	TR312	2 G	T-1	SORE-	12	HEAT	0.	307.	698.	220.	239.	70.	٥.	-738.	698.	DISTILLA	-40.	0	0.31	0:34	0.32
44	G.	TR316	5 G	T-1	SORE-	16	POWR	٥.	3.	7.	2.	2.	1.	256,	0.	263.	DISTILLA	263.	10	0.01	0.01	0.84
44	G	TR316	<u> </u>	T-(ORE-	16	HEAT	0.	300.	691.	220.	234.	69.	0,	-725.	691.	DISTILLA	-34.	0	0.30	0.34	0.32
15	F	CPADS	3 F	UE	L-CL-	РН	POWR	0.	2.	6,	1.	2.	1.	258,	٥.	264.	DISTILLA	264.	10	0,01	0.01	0.83
45	F	CPADS	F	UE	L-CL-	РН	HEAT	.0.	501.	1294.	220.	492.	144.	0.	-1529.	1294.	DISTILLA	-235.	0	0,28	0.38	0.17
16	F	CMCDS	F	UE	L-CL-	MO	POWR	0.	3.	6.	1.	2.	¥,	257.	0.	263.	DISTILLA	263.	10	0.01	0.01	0.84
46	F	CMCDS	S F	UEI	L-CL-	MO	HEAT	0.	530.	944.	220.	389.	114.	ο.	-1208.	944.	DISTILLA	-264.	0	0.36	0.41	0.23

IESE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28691 MW 1.50 PROCESS MILLIONS BTU/HR 133.0 PROCESS TEMP(F) 574. PRODUCT METHANOL-SYN HOURS PER YEAR 7880.

PAGE 161

POWER TO HEAT RATIO 0.038 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 353. HOT WATER BTUx10xx6= COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT WASTE FUEL TOTAL+ FACTR FACTR FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 156. ٥. ٥. ٥. 156. 16. 156. COAL-FOD 172. 0 0. 0.03 0.77 O ONOCON NO COSON 0. ٥. 170. RESIDUAL 170. 11 1,00 0,03 0,78 1 STM141 STM-TURB-1 POWR 170. 3. 170. 139. 5. 2. -7. n 1 STM141 STM-TURB-1 HEAT 162. 10. 162. 133. 5. ٥. 162. RESIDUAL 163. 0.96 0.03 0.82 170. 170. 3. 170. 139. 5. ٥. 170.COAL-FGD 11 1.00 0.03 0.78 1 STM141 STM-TURB-1 POWR 2. -7. 1 STM141 STM-TURB-1 HEAT 162. 10. 162. 133. 5. Ω. 1. 162.COAL-FGD 163. 0.96 0.03 0.82 1 STM141 STM-TURB-1 POUR 170. 139. 2. -7. 170. COAL-AFB 170. 11 1.00 0.03 0.78 170. 3. 5. 0. 1 STM141 STM-TURB-1 HEAT 162. 162. 133. ٥. 162. COAL-AFB 163. 11 0.96 0.03 0.82 10. 5. 1. 1. 2 STM088 STM-TURB-8 POWR 162. 10. -675. -579 5. 837. 0. 162. RESIDUAL 162. 11 1.00 0.03 0.82 2 STMOSS STM-TURB-8 HEAT 155. 155. 133. -1. -0. 20. 155. RESIDUAL 175. 11 -0.23 -0.01 0.76 11 1.00 0.03 0.82 2 STM088 STM-TURB-8 POWR 162. 10. -675. -579. 5. 2. 837. 0. 162.COAL-FGD 162. 2 STM088 STM-TURB-8 HEAT 155. 133. -0. 0. 20. 155. COAL-FGD 175. 11 -0.23 -0.01 0.76 -2. 155. -1. 837. 162. COAL-AFB 162. 11 1,00 0.03 0.82 2 STM088 STM-TURB-8 POWR 162. 10. -675. -579. 5. 2. ٥. 2 STM088 STM-TURB-8 HEAT 133. 20. 155, COAL-AFB 175. 11 -0.23 -0.01 0.76 155. -2. 155. -1. -0. n. 163. COAL-PFB 163. 10 1.00 0.03 0.81 3 PEBSTM PEB-STMTB- POUR 9. 33. 5. 2. 117. 0. 163. 46. 3 PEBSTM PEB-STMTB- HEAT 164. 37. 184. 133. 21. 6. ٥. -48. 184. COAL-PFB 136. 10 1.00 0.11 0.72 163. 11 -0.95 0.03 0.82 132. 0. 163. RESIDUAL 4 TISTMT TI-STMTB-1 POWR 132. 10. 31. 21. 5. 4 TISTMT TI-STMTB-1 HEAT 156. 0. O. 0. ā. 156. 16. 156, RESIDUAL 172. 111 -0.00 0. 0.77 132. 163. COAL 163. 11 1.00 0.03 0.82 4 TISTMT TI-STMTB-1 POWR 163. 10. 31. 21. 5. 2. 0. 4 TISTMT TI-STMTB-1 HEAT ٥. -84. 196. COAL 112. 11 1.00 0.16 0.68 196. 196. 133. 32. 9. 61. 20. 133. α. 169. RESIDUAL 169. 10 -1.27 0.03 0.79 5 TIHRSG THERMIONIC POWR 133. 3. 36. 5. 2. 156. 156. RESIDUAL 172. 110 -0.00 0. 0.77 5 TIHRSG THERMIONIC HEAT 16. 156. О. Ω. Ω. Ο. Ω. 10 1.00 0.03 0.79 20. 133. 0. 169. COAL 169. 5 TIHRSG THERMIONIC POWR 169. 3. 36. 5 2. -89. 239. COAL 150. 0 1.00 0.14 0.56 5 TIHRSG THERMIONIC HEAT 239. 23. 239. 133. 34. 10. ٥. 1 -0.67 0.03 0.80 140. G. 166. DISTILLA 166. 6 STIRL STIRLING-1 POWR 140. 6. 27. 14. 2. 6 STIRL STIRLING-1 HEAT 156. 16. 156. DISTILLA 172. 111 -0.00 0. 0.77 156. Ω. ٥. ٥. O. O.

162 PAGE

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

ENGR

DESIGN

ADV

I &SE PEO

DATE 06/06/79

PROCESS AND ENERGY **FUEL

0.80 0.75 0.80 0.76 FACTR FACTR 0.81 0.81 0.80 0.49 0.80 0.81 0.81 0.81 0.81 POWER 0.03 0.03 .0.19 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.0 0.03 0. 8 8 ဗ္ဗ 7880. 00 00 00 ö 1.00 -0.67 -0.00 1.00 1.00 -0. -0. -0. -0.19 -0.15 -9.26 -0.05 -9.40 -0.05 9.0 9 8 FESR -9.24 99 BTU*10**6= 55 0 1 0 0 111 0 10 20 00 0 10 =-PER HGURS TOTAL+ UTILIT 10**6 166. 115. 166. 172. 178. 18. 176. 016. 30. 170. 149. 4 167. 172. 164. 172. 164. 165. 172. 165. 172. 66. **BTU/HR** WATER METHANGL -SYN 달 RESIDUAL RESIDUAL 178. COAL-AFB 176. COAL - AFB 5246. COAL - AFB 170. ĆĆAL-AFB 296. CĆAL-AFB 166. RESIDUAL 156. RESIDUAL 167. RESIDUAL 156. RESIDUAL 164. RESIDUAL 156. RESIDUAL 165. RESIDUAL 156. RESIDUAL 164. RESIDUAL 156. RESIDUAL SI TE FUEL USED 166. CGAL 248. CGAL 164. COAL 284. COAL 166. CGAL 270. CGAL 164. COAL 291. COAL 353. **BTU/HR** FUEL SITE 10**6 165. 156. PRODUCT UTILIT TOTAL 0.038 . EQV BTU*10**6= **BTU/HR** 0. ဝ် ဖွဲ့ 0. -133. 506, -147. 0, -254. -277. .0 -168. 9. 9 0 0 9.0 10**6 0 0 <u>. 6</u> FUEL USED AUX PROCES BGILR 10**6 BTU/HR 940 156. 0. 141. 0. 140. 156. 162. 147. 143. 149. 156. 145. 156. 149. 149. 156. 9 156. 47 TEMP(F) TO HEAT RATIG O WASTE FUEL 398. COGEN 46 N O u <u>4</u> or Ro 01 Kg 2 8 01 L άö 0 0 NO o io oi o ELECT PROCESS COGEN PROCES POWER 10**6 BTU/HR το. Φ -157. 5. 1359. no o 52.5 **8**6 **n** 0 ₹0 g 10 O 200 D O 60 10 0 133.0 POWER PROCES | HEAT | 10**6 BTU/HR | 14. 133. 133. 40 133. න ස 33 12 00 00 ~0 33 60 P-0 BTU/HR FUEL USED 10**6 BTU/HR 27. 17. 284. 20. 5246. 27. 16, 29. 296. 16. 23. 270. စ ဝ <u>6</u> 0 <u>ة</u> 0 0 90 MILLIONS SAVED= NG-NET 10**6 BTU/HR 6. ဖ် ဝဲ 8 2. 155 -844 9 0 59 9 0 P ę ဖ်ဝ **®** 0 ø 800 ø 0 PROCESS WASTE FUEL USED 10**6 BTU/HR 140. 156. 166. 248. 176. 353. -489. 170. 296. ဝဝ 00 00 149. 156. 145. 156. 147. 149. 156. 149. 156. 1.50 POWR HEAT POWR HEAT POWR POWR HEAT POWR HEAT POWR HEAT HEGT85 HELIUM-GT- PCWR HEGT85 HELIUM-GT- HEAT GT-HRSG-10 POWR GT-HRSG-10 HEAT GT-HRSG-08 POWR GT-HRSG-08 HEAT GT-HRSG-16 POWR GT-HRSG-16 HEAT COAL STIRLING-1 STIRLING-1 FUEL - CL -MO FUEL - CL -MO HEL I UM-GT-HEL I UM-GT-STIRLING-1 STIRLING-1 FUEL -CL -ST FUEL -CL -ST 6T-HRSG-12 6T-HRSG-12 GT-HRSG-16 GT-HRSG-16 HEL I UM-GT-HEL I UM-GT-INT-GAS-GT INT-GAS-GT 3 FUEL 28691 UTILITY HEGT60 HEGT60 GTACOB GTACOB GTAC12 GTAC16 (HEGT00 HEGT00 FCMCCL FCMCCL 166TST 166TST GTSØAR GTSØAR OTWC16 GTWC16 FCSTCL FCSTCL STIRL STIRL STIRL STIRL INDUSTRY 00 ဖ ဖ **@** @ თ თ 13 4 4 16 <u>2</u> 2 ا 5 17

OF POIN QUALTY

PAGE 163

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

18SE PEC ADV DESIGN ENGR

REPURT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28691 MW 1.50 PROCESS MILLIONS BTU/HR 133.0 PROCESS TEMP(F) 574. PRODUCT METHANOL-SYN HOURS PER YMAR 7860.

POWER TO HEAT RATIO 0.038 WASTE FUEL EQV BTUx10xx6= 353. HOT WATER BTUx10xx6= UTILITY FUEL COAL FESR POWER HEAT UTILIT TOTAL SITE NET= FAIL COGEN COGEN COGEN AUX WASTE FUEL FUEL TOTAL+ FACTR FACTR FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT USED 10**6 10**6 10**5 10**6 10**6 10**6 10**6 10**6 1.0**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 11 0.03 0.03 0.80 16. 6. 5. · 2. 150. 0. 165. RESIDUAL 165. 18 CC1626 GTST-16/26 POWR 150. 7. 156, RESIDUAL 172. 111 -0.00 0. 0.77 18 CC1626 GTST-16/26 HEAT 156. n ٥. Ο. a. 0. 156. 16. 165, RESIDUAL 155. 11 -0.00 0.03 0.81 19 CC1622 GTST-16/22 PGWR 149. 7. 16. 6. 5. 2. 149. 0. 156. 156, RESIDUAL 172. 111 -0.00 0. 0.77 19 CC1622 GTST-16/22 HEAT 156. 0. ٥. Ο. ٥. 16. ٥. 11 -0.00 0.03 0.81 0. 165. RESIDUAL 165. 20 CC1222 GTST-12/22 POWR 149. 16. 6. 5. 149. 111 -0.00 0. 20 CC1222 GTST-12/22 HEAT 156. Ω. O. α. 156. 16. 156. RESIDUAL 172. 0.77 164. 11 -0.11 0.03 0.81 147. 0. 164. RESIDUAL 21 CC0822 GTST-08/22 POWR 147. 8. 18. 8. 5. 2. 172. 111 -0.00 0. 0.77 21 CC0822 GTST-08/22 HEAT 156. 0. 0. ٥. ٥. 156. 16. 156. RESIDUAL ٥. 11 0.16 0.03 0.78 170. 2. 156. ٥. 170. RESIDUAL 22 STIG15 STIG-15-16 POWR 156. 3. 13. 0. 5. 156. RESIDUAL 172. 111 -0.00 0. 0.77 22 STIG15 STIG-15-16 HEAT 156. n. 0. 0. 0. 0. 156. 16. 0.03 0.79 169. 11 0.11 14. 2. 5. 2. 154. 0. 169. RESIDUAL 23 STIG10 STIG-10-16 POWR 154. 4. 111 -0.00 156. RESIDUAL 172. Ω 0.77 23 STIG10 STIG-10-16 HEAT 156. 0. Ö. ٥. ٥. ٥. 156. 16. 168. RESIDUAL 168. 11 0.05 0.03 0.79 Ω. 153. 24 STIG1S STIG-1S-16 POWR 153. 15. 3 5. 156. RESIDUAL 172. 111 -0.00 24 STIGIS STIG-15-16 HEAT 156. O. 0. 156. 16. 168. RESIDUAL 168. 11 0.14 0.03 0.79 155. α. 2. 5. 2. 25 DEADV3 DIESEL-ADV POWR 155. 4. 14. 156. RESIDUAL 172. 111 -0.00 0. 0.77 25 DEADV3 DIFSEL-ADV HEAT 156. 0. ٥. 0. 0. 0. 156. 16. 11 0.14 0.03 0.80 166. RESIDUAL 166. ٥. 14. 4. 5. 2. 152. 26 DEADV2 DIESEL-ADV POVR 152. 6. 156. RESIDUAL 172. 111 -0.00 0. 0.77 26 DEADV2 DIESEL-ADV HEAT ٥. 0. 156. 16. 156. 0. n. 11 0.14 0.03 0.81 164. 164. RES! DUAL 27 DEADVI DIESEL-ADV POWR 150. 9. 14. 5. 5. 2. 150. 0. 172. 111 -0.00 0. 0.77 27 DEADV1 DIESEL-ADV HEAT ٥. 0. ٥. 156. 16. 156. RESIDUAL 156. ο. Ω. 11 -0.42 0.03 0.79 167. RESIDUAL 167. α. 145. 28 DEHTPM ADV-DIESEL POWR 145. 23. 10. 5. 172. 111 -0.00 0.77 28 DEHTPM ADV-DIESEL HEAT 0. <u>a.</u> 156 16. 156, RESIDUAL 156. Ö. 1 0.11 0.03 0.79 169. DISTILLA 169. 155. Ω. 29 DESCAS DIESEL-SCA POWR 155. 3. 14. 1. 5. 2. 172. 111 -0.00 0. 0.77 156. 16. 156. DISTILLA 29 DESGAS DIESEL-SGA HEAT 156. 0. 0. 0. 0. ٥. 1 0.11 0.03 0.79 155. ٥. 169. RESIDUAL 169. 29 DESGA'S DIESEL-SGA POWR 155. 3. 14. 1. 5. 2. 156. RESIDUAL 172. 111 -0.00 0. 0.77 156. 16. 29 DESGAS DIESEL-SGA HEAT 156. ٥. 0. О. Ω.

۲

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 164

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28691 MW 1.50 PROCESS MILLIONS BTU/HR 133.0 PROCESS TEMP(F) 574. PRODUCT METHANOL-SYN HOURS PER YEAR 7880.

POWER TO HEAT RATIO 0.038

UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 353. HOT WATER BTU*10**6= 0.

COGEN COGEN COGEN AUX WASTE FUEL COGEN UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW FUEL FUEL PROCES FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10×*6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 153. 5. 14. 3. 5. 2. 153. 0. 167. DISTILLA 167. 1 0.11 0.03 0.80 30 DESGA2 DIESEL-SGA HEAT 156. 0. 0. ٥. ٥. 0. 156. 16. 156.DISTILLA 172. 111 -0.00 0. 0.77 30 DESGA2 DIESEL-SGA POWR 153. 5. 14. 3. 5. 2. 153. ٥. 167. RESIDUAL 167. 1 0.11 0.03 0,80 30 DESGA2 DIESEL-SGA HEAT 156. ٥. ٥. 0. 156. 16. 156. RESIDUAL 172. 111 -0.00 0. 0.77 31 DESGA1 DIESEL-SGA POWR 150, 9. 14. 6. 5. 2. 150. C. 164.DISTILLA 164. 1 0.11 0.03 0.81 31 DESCA1 DIESEL-SCA HEAT 156. ٥. ٥. 0. 156. 16. 156.DISTILLA 172. 111 -0.00 0. 0.77 31 DESCA1 DIESEL-SCA POWR 150. 9. 14. 6. 5. 2. 150. ٥. 164.RESIDUAL 164. 1 0.11 0.03 0.81 31 DESCA1 DIESEL-SCA HEAT 156. RESIDUAL 172. 156. 0. 0. n. ٥. 0. 156. 16. 111 -0.00 0. 0.77 32 GTSGAD GT-HRSG-10 POWR 147. 8. 18. 8. 5. 2. 147. O. 165.DISTILLA 165. 10 -0.10 0.03 0.81 32 GTSGAD GT-HRSG-10 HEAT 156. 156. 156. DISTILLA 172. ٥. 0. 0. ٥. ٥. 110 -0.00 0. 16. 0.77 33 GTRAO8 GT-85RE-08 POWR 153. 5. 14. 3. 5. 2. 153. ٥. 167. DISTILLA 167. 10 0.10 0.03 0.80 33 GTRA08 GT-85RE-08 HEAT 156. 0.77 156. ٥. ٥. ٥. ٥. 0. 16. 156.DISTILLA 172. 110 -0.00 0. 34 GTRA12 GT-85RE-12 POWR 152 152 0. 167. DISTILLA 167. 14. 10 0.11 0.03 0.80 34 GTRA12 GT-85RE-12 HEAT 156. 0. 0. 0. O. 0. 156. 16. 156. DISTILLA 172. 110 -0.00 0. 0.77 35 GTRA16 GT-85RE-16 POWR 152. 6. 15. 4. 5. 2. 152. 0. 166. DISTILLA 166. 10 0.08 0.03 0.80 35 GTRA16 GT-85RE-16 HEAT 156. 156. DISTILLA 172. 156. 0. ٥. ٥. 0. 16. 110 -0.00 0. 0.77 36 GTR208 GT-GORE-08 POWR 6. 5. 150. ٥. 166. DISTILLA 166. 10 -0.00 0.03 0.80 150. 6. 16. 2. 36 GTR208 GT-60RE-08 HEAT 156. 0. 0. 0. ٥. ٥. 156. 16. 156. DISTILLA 172. 110 -0.00 0. 0.77 37 GTR212 GT-60RE-12 POWR 150. O. 150. 7. 16. 5. 5. 2. 166. DISTILLA 166. 10 0.03 0.03 0.80 37 GTR212 GT-60RE-12 HEAT ٥. ۵. 0. 156. 16. 156. DISTILLA 172. 156, 0. Ο. 110 -0.00 0. 0.77 38 GTR216 GT-60RE-16 POUR 5. 151. n. 166.DISTILLA 151. 7. 5. 166. 10 0.05 0.03 0.80 15. 38 GTR216 GT-60RE-16 HEAT 156. 0. 0. ٥. 0. ٥. 156. 16. 156. DISTILLA 172. 110 -0.00 0. 0.77 39 GTRW08 GT-85RE-08 POWR 153. 5. 3. 5. 2. 153. ٥. 168. DISTILLA 15. 168. 10 0.09 0.03 0.79 39 GTRW08 GT-85RE-08 HEAT 156. ٥. ٥. Ο. ٥. 0. 156. 16. 156.DISTILLA 172. 110 -0.00 0. 0.77 40 GTRW12 GT-85RE-12 POWR 5. 5. 153. ٥. 167. DISTILLA 10 0.12 0.03 0.80 153. 14. 3.. 2. 167. 40 GTRW12 GT-85RE-12 HEAT 156. ٥. ٥. 0. ٥. 0. 156. 16. 156. DISTILLA 172. 110 -0.00 0. 0.77

GENERAL ELECTRIC COMPANY

COGENERATION TECHNOLOGY ALTERNATIVES STUDY

1 .

PAGE 165

I&SE PEO ADV DESIGN ENGR

REPORT 5.1
***FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 28691 MW 1.50 PROCESS MILLIONS BTU/HR 133.0 PROCESS TEMP(F) 574. PRODUCT METHANOL-SYN HOURS PER YEAR 7880.

POWER TO HEAT RATIO 0.038 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 353. HOT WATER BTU*10**6= NET= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE FESR POWER HEAT FAIL FUEL FUEL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR 152. 167. DISTILLA 2. 152. 167. 10 0.10 0.03 0.80 14. ٥. 41 GTRW16 GT-85RE-16 HEAT 156. 0. 156. 156. DISTILLA 0. ٥. 0. 0. 16. 172. 110 -0.00 0. 0.77 42 GTR308 GT-60RE-08 POWR 152. 17. 4. 5. 152. 168. DISTILLA 4. 0. 168. 10 -0.03 0.03 0.79 42 GTR308 GT-60RE-08 HEAT 156. 0. 0. ٥. 156. 16. 156. DISTILLA 172. 110 -0.00 0. 0.77 43 GTR312 GT-60RE-12 POWR 151. 15. 151. 166. DISTILLA 166. 10 0.06 0.03 0.80 6, 5. ٥. 43 GTR312 GT-60RE-12 HEAT 156. ο. ٥. 156. 16. 156. DISTILLA 172. 110 -0.00 0. 0.77 44 GTR316 GT-60RE-16 POWR 151. 6. 15. 5. 5. 2. 151. ٥. 166. DISTILLA 166. 10 0.06 0.03 0.80 44 GTR316 GT-60RE-16 HEAT 172. 156. ٥. ٥. 0. 156. 16. 156. DISTILLA 110 -0.00 0. 0.77 45 FCPADS FUEL-CL-PH POWR ٥. 0 0.16 0.03 0.80 154. 5. 13. 2. 5. 2. 154. 167. DISTILLA 167. 45 FCPADS FUEL-CL-PH HEAT 16. 156. ٥. ο. ο. Ω. ٥. 156. 156. DISTILLA 172. 110 -0.00 0. 0.77 46 FCMCDS FUEL-CL-MO POWR 0. 153. 12. 3. 5. 2. 153. 165. DISTILLA 165. 10 0.22 0.03 0.80 46 FCMCDS FUEL-CL-MO HEAT 156. 156. DISTILLA 172. 110 -0.00 0. 156. Ο. 0. 0. ٥. 0. 16. 0.77

STEM- P1185-02

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 166

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28692 MW 5.70 PROCESS MILLIONS BTU/HR 150.0 PROCESS TEMP(F) 598, PRODUCT ETHYLENE-FRO HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.130 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTUx10xx6= ٥. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL. SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COOON ٥. 0. ٥. ٥. ٥. 176. COAL-FOD Ω. 176. 61. 237. 0 0. 0.08 0.63 1 STM141 STM-TURB-1 POWR ٥. 38. -3533. -3023. 3733. 11 0.16 0.10 0.75 19. 6. 199. RESIDUAL С., 199. 1 STM141 STM-TURB-1 HEAT 0. -2. 175. 150. -1. -O. 0. 84. 175. RESIDUAL 239. 11 -0.01 -0.00 0.63 1 STM141 STM-TURB-1 POWR 0. 38. -3533. -3023. 3733. 19. 6. 0. 199.COAL-FOD 199. 11 0.16 0.10 0.75 1 STM141 STM-TURB-1 HEAT ٥. -2. 175. 150. -1. -0. 0. 64. 175.COAL-FGD 239. 11 -0.01 -0.00 0.63 38. -3533. -3023. 1 STM141 STM-TURB-1 POWR ٥. 19. 3733. 0. 6. 199. COAL-AFB 199. 11 0.16 0.10 0.75 1 STM141 STM-TURB-1 HEAT -2. 175. ٥. 150. -1. -0. ٥. 64. 175. COAL-AFB 239. 11 -0.01 -0.00 0.63 2 STM088 STM-TURB-8 POWR 38 -438 -392 19 638. 0. 199. RESIDUAL 199. 1 0.16 0.10 0.75 2 STMOBB STM-TURB-8 HEAT -15. 168. 150. -7. -2. ۵. 84. 168. RESIDUAL 252. 11 -0.06 -0.03 0.60 -2 STM088 STM-TURB-8 POWR 38. -438. -392. 19. 6. 638. ø. 199 COAL -FOD 199. 1 0.16 0.10 0.75 2 STM088 STM-TURB-8 HEAT -15. 168. 150. 168. COAL-FGD -2. ۵. 84. 252. 11 -0.06 -0.03 0.60 2 STM088 STM-TURB-8 POWR -438. 38. -392. 19. 6. 638. 0. 199. COAL-AFB 199. 1 0.16 0.10 0.75 2 STM088 STM-TURB-8 HEAT -15. 168. 150. -7. -2. O. 84. 168. COAL-AFB 252. 11 -0.06 -0.03 0.60 3 PFBSTM PFB-STMTB- POWR 0. -2. 239. 180. 19. -35. 6. O. 239. COAL-PFB 239 10 -0.01 0.08 0.63 3 PFBSTM PFB-STMTB- HEAT 27. 200. 150. ٥. 16. 5. 0. 10. 200, COAL-PFB 210. 10 0.12 0.08 0.72 4 TISTMT TI-STMTB-1 POWR 37. 146. 103. 19. 6 55. 0. 201. RESIDUAL 201. 11 0.15 0.10 0.75 4 TISTMT TI-STMTB-1 HEAT ٥. 53. 211. 150. 28. 211. RESIDUAL 11 0.20 0.13 0.71 A 0. -27. 184. 4 TISTMT TI-STMTB-1 POWR 0. 37. 146. 103. 19. s 55. 0. 201.CGAL 201. 11 0.15 0.10 0.75 4 TISTMT TI-STMTB-1 HEAT 211. 0. 53. 150. 28. 8. ٥. -27. 211. COAL 184. 11 0.20 0.13 0.71 5 TIHRSG THERMIONIC POWR 138. 75. 0. 11. 19. 6. 88. 0. 0 0.05 0.09 0.66 226. RESIDUAL 226. 5 TIHRSG THERMIONIC HEAT 276. 0. 22. 150. 39. 11. 0. -61. 276. RESIDUAL 215. 0 0.07 0.14 0.54 5 TIHRSG THERMIONIC POWR 0. 11. 138. 75. 19. 6. 88. Ω. 226. COAL 226. 0 0.05 0.09 0.66 5 TIHRSG THERMIONIC HEAT 0. 22. 276. 150. 39. 11. -61. 276. COAL 0. 215. 0 0.07 0.14 0.54 6 STIRL STIRLING-1 POWR 23. 106. 57. 19. 6. 109. ٥. 215. DISTILLA 215. 1 0.10 0.09 0.70 6 STIRL STIRLING-1 HEAT ٥. 59. 276. 150. 1 0.18 0.18 0.54 51. 15. 0. -98. 276. DISTILLA 178.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28692 MW 5.70 PROCESS MILLIONS BTU/HR 150.0 PROCESS TEMP(F) 598. PRODUCT ETHYLENE-FRO HOURS PER YEAR 7900.

PAGE 167

POWER TO HEAT RATIO 0.130 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN COGEN AUX NET= FESR POWER HEAT UTILIT TOTAL SITE FAIL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 0. 23. 106. 57. 19. 6. 109. 215.RESIDUAL 0. 215. 0.10 0.09 0.70 6 STIRL STIRLING-1 HEAT 0. 59. 276. 150. 15, 0. 51. -98. 276. RESIDUAL 178. 0.18 0.18 0.54 6 STIRL STIRLING-1 POWR 0. 23. 106. 57. 19. 6. 109. 215. COAL ٥. 215. 0.10 0.09 0.70 6 STIRL STIRLING-1 HEAT 0. 59. 276. 150. 51. 15. 0. -98. 276, COAL 178. 1 0.18 0.18 0.54 7 HEGT85 HELIUM-GT- POWR -20.__ 200. 260. COAL-AFB 0. -23, 61 19. 6. ٥. 260. 11 -0.10 0.07 0.58 7 HEGT85 HELIUM-GT- HEAT -459. 175. -459. 150. -147. -43. 0. 522. -459. COAL-AFB 62. 11 -1.20 -2.37 2.41 8 HEGT60 HELIUM-GT- POWR 253. COAL-AFB a. -16. 75. 19. 6. 178. Ω. -1. 253. 11 -0.07 0.08 0.59 8 HEGT60 HELIUM-GT- HEAT-10757. 2227, -10757. 150. -2786. -817. 0. 6767, -10757, COAL-AFB -1990. 11 **** 1.40 -0.08 9 HEGTOO HELIUM-GT- POWR 0. 8. 111. 49. 19. 6. 118. 0. 229. COAL-AFB 229. 10 0.04 0.08 0.66 9 HEGTOO HELIUM-GT- HEAT 0. 25. 336. 150. 59. 17. ٥. -124. 336. COAL-AFB 212. 10 0.07 0.18 0.45 10 FCMCCL FUEL-CL-MO POWR 0. 32. 64. 30. 19. 6. 141. 205. COAL O. 205. 10 0.13 0.09 0.73 10 FCMCCL FUEL-CL-MO HEAT 160. 321. 150. 77. 98. 29. 0. -244. 321. COAL 10 0.33 0.30 0.47 11 FCSTCL FUEL-CL-ST POWR 141. 33. 64. 30. 0. 205. COAL 205. 19. 6. 11 0.14 0.10 0.73 11 FCSTCL FUEL-CL-ST HEAT 160. 315. 150. 28. ٥. -238. 315. COAL 77. 0.34 0.30 0.48 11 12 IGGTST INT-GAS-GT POWR 0. 22. 99. 51. ٥. 216. COAL 11 0.09 0.09 0.70 19. 6. 117. 216. 12 IGGTST INT-GAS-GT HEAT 64. 292. 150. 57. 17. Ω. -118. 292. COAL 174. 11 0.18 0.20 0.51 13 GTSOAR GT-HRSG-10 POWR 217. RESIDUAL 0. 20. 67. 23. 6. 150. 0. 19. 217. 10 0.09 0.09 0.69 13 GTSGAR GT-HRSG-10 HEAT 0. 135. 444. 150. 129. 102. 38. ٥. -341. 444. RESIDUAL 0.23 0.29 0.34 14 GTACOS GT-HRSG-OS POWR 37. 0. 32. 72. 133. 205. RESIDUAL 205. 19. 6. n. 10 0.14 0.09 0.73 14 GTACOB GT-HRSG-08 HEAT ٥. 131. 293. 150. 79. 23. Ω. -186. 293. RESIDUAL 107. 0.31 0.27 0.51 15 GTAC12 GT-HRSG-12 POWR 32. 0. 64. 30. 141. 0. 205. RESIDUAL 205. 10 0.14 0.09 0.73 19. 15 GTAC12 GT-HRSG-12 HEAT 162. 319. ٥. 150. 97. 29. Ω. -243. 319. RESIDUAL 76. 0.34 0.31 0.47 16 GTAC16 GT-HRSG-16 POWR 30. Ω 60. 25. 147. ٥. 207. RESIDUAL 207. 0.13 0.09 0.72 19. 6. 10 16 GTAC16 GT-HRSG-16 HEAT 0. 180. 361. -304. 150. 117. 34. 0. 361. RESIDUAL 57. 0 0.33 0.32 0.42 17 GTWC16 GT-HRSG-16 POWR 29. 62. 147. ٥. 25. 19. 6. 0. 209. RESIDUAL 209. 0.12 0.09 0.72 10 ٥. 17 GTWC16 GT-HRSG-16 HEAT 171. 369. 150. 116. 34. n. -303. 369. RESIDUAL 67. 0.32 0.32 0.41

GENERAL FLECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

5.70 PROCESS MILLIONS BTU/HR 150.0 PROCESS TEMP(F) INDUSTRY 28692 MW 598. PRODUCT ETHYLENE-FRO HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.130 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTUX10xx6= ۵. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET: FAII FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUFL FUEL TOTAL+ FACTR FACTR HEAT POWER ELECT USED NO-NET USED BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR ٥. 26. 62. 23. 19. 6. 149. ٥. 211. RESIDUAL 211. 11 0.11 0.09 0.71 18 CC1626 GTST-16/26 HFAT Ω. 168. **400** 150. 125. 400. RESIDUAL 37. ٥. -331. 70. 0.30 0.31 0.37 19 CC1622 GTST-16/22 POWR O. 27. 64 26. 19. 6. 146. o. 210. RESIDUAL 210. 0.12 0.09 0.72 19 CC1622 GTST-16/22 HEAT n. 157. 366. 150. -286. 111. 33. 0. 366. RESIDUAL 80. 1 0.30 0.30 0.41 20 CC1222 GTST-12/22 POWR 28 64 27 145. 0 209. RESIDUAL 19 6 209 0.12 0.09 0.72 20 CC1222 GTST-12/22 HEAT 0 156. 362. 150. 109. 32. ũ. -281. 362. RESIDUAL 81. 0.30 0.30 0.41 21 CC0822 GTST-08/22 POWR Ω 30. 73. 36. 19. 6. 134. 0. 207. RESIDUAL 207. 11 0.13 0.09 0.72 21 CC0822 GTST-08/22 HEAT n 126. 306. 150. 82. 24. a. -194. 306. RESIDUAL 112. 0.29 0.27 22 STIG15 STIG-15-16 POWR ٥. 11. 51. 1. 6. 19. 176. n. 227 RESIDUAL 227. 0.04 0.09 11 0.66 22 STIG15 STIG-15-16 HEAT 2376, ٥. 11538. 150. 4396. 1288. 0.-13677, 11538.RESIDUAL -2139. 0.17 0.38 0.01 23 STIG10 STIG-10-16 POWR n 15. 54. 7. 19. 222. RESIDUAL 6. 168. 0. 222. 0.06 0.09 0.68 23 STIG10 STIG-10-16 HEAT 315. 1132. ٥. 150. 407. 119. 0. -1210. ~78. 1132. RESIDUAL 0.22 0.36 0.13 24 STIG1S STIG-15-16 POWR 17 58. 12 19 162 O. 220. RESIDUAL 220 0.07 0.09 0.68 24 STIGIS STIG-15-16 HEAT o. 210. 712. 150. 239. 70. ٥. -685. 712. RESIDUAL 27. 0.23 0.34 0.21 25 DEADV3 DIESEL-ADV POWR n. 15. 52. 6. 0. 19. 6. 170. 222. RESIDUAL 222. 1 0.06 0.09 0.67 25 DEADV3 DIESEL-ADV HEAT 400. 1404. 150. n. 521. 153. 0. -1567. 1404. RESIDUAL -163. 0.22 0.37 0.11 26 DEADV2 DIESEL-ADV POWR 0. 24. 52. 13. ٥. 19. 6. 161. 213. RESIDUAL 213. 0.10 0.09 0.70 26 DEADV2 DIESEL-ADV HEAT 591. 271. 150. 219. Ο. 64. 0. -624. 591. RESIDUAL -33. 0.31 0.37 0.25 27 DEADVI DIESEL-ADV POWR Õ. 32. 52. 20. 152. 0.14 0.09 0.73 19. 6. ٥. 205 . RESIDUAL 205. 27 DEADVI DIESEL-ADV HEAT 238. 384. 0. 150. 142. 42. ٥. -384. 384. RESIDUAL -0. 0.38 0.37 0.39 28 DEHTPM ADV-DIESEL POWR 92 17 O. 41 19. 128 ٥ 220. RESIDUAL 220 6. 0.07 0.09 0.88 28 DEHTPM ADV-DIESEL HEAT 62. 336. 0. 150. 71. 21. Ō. -160. 336. RESIDUAL 176. 0.16 0.21 0.45 29 DESGAS DIESEL-SGA POWR ٥. 12. 54. 4. 19. 6. 172. ٥. 226. DISTILLA 226. 0.05 0.09 0.66 1 29 DESGAS DIESEL-SGA HEAT 440. 2059. n. 150. 743. 218. 0. -2262. 2059. DISTILLA -203. 0.18 0.36 0.07 29 DESGAS DIESEL-SGA POWR 0. 12. 54. 172. 4. 19. 6. 0. 226, RESIDUAL 226. 9.05 0.09 0.66 29 DESCAS DIESEL-SCA HEAT ٥. 440. 2059. 150. 743. 218. G. -2262. 2059, RESIDUAL -203. 0.18 0.36 0.07

PAGE 168

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 169

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28692 MW 5.70 PROCESS MILLIONS BTU/HR 150.0 PROCESS TEMP(F) 598. PRODUCT ETHYLENE-FRO HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.130 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU#10##6= 0. POWER HEAT WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 0. 21. 54. 12. 19. 6. 163. O. 216. DISTILLA 216. 1 0.09 0.09 0.69 30 DESGA2 DIESEL-SGA HEAT 0. 264. 682. 150. 246. 72. 0. -708. 682. DISTILLA -27. 0.28 0.36 0.22 30 DESGA2 DIESEL-SGA POWR Ō. 21. 54. 12. 19. 6. 163. Ö. 216. RESIDUAL 216. 0.09 0.09 0.69 30 DESGA2 DIESEL-SGA HEAT Ω. 264. 682. 150. 246. 72. 0. -708. 682. RESIDUAL -27. 1 0.28 0.36 0.22 31 DESGA1 DIESEL-SGA POWR 32 54. 22. 205 0. 19 6 151 n 205. DISTILLA 0.14 0.09 0.73 31 DESGA1 DIESEL-SGA HEAT 224. 374. 150. 135. 374. DISTILLA 0. 40. 0. -361. 13. 1 0.37 0.36 0.40 31 DESGA1 DIESEL-SGA POWR 54. 1 0.14 0.09 0.73 0. 32. 22. 19. 6. 151. ٥. 205. RESIDUAL 205. 31 DESGA1 DIESEL-SGA HEAT 135. 374 RESIDUAL 224 374. 150. 40. 0. -361. 13. 0.37 0.36 0.40 32 GTSGAD GT-HRSG-10 POWR 67. 207. 0. 30. 30. 19. 6. 141. 0. 207. DISTILLA 10 0.13 0.09 0.72 32 GTSOAD GT-HRSG-10 HEAT 0. 148. 330. 150. 96. 28. ٥. -240. 330. DISTILLA 90. 0.31 0.29 0.45 33 GTRAO8 GT-85RE-08 POWR 0. 19. 54. 11. 19. 6. 163. ٥. 218. DISTILLA 218. 0.08 0.09 0.69 33 GTRA08 GT-85RE-08 HEAT 262. 741. 150. 78. 741.DISTILLA 0.26 0.36 264. 0. -786. -25. 0.20 34 GTRA12 GT-85RE-12 POWR 0. 22. 54. 13. 19. 6. 161. 0. 216. DISTILLA 216. 10 0.09 0.09 0.70 34 GTRA12 GT-85RE-12 HEAT 0. 252. 635. 150. 227. 67. ۵. -650. 635. DISTILLA -15. 0 0.28 0.36 0.24 35 GTRA16 GT-85RE-16 PCWR 0. 15. 215. 10 0.10 0.09 0.70 23. 56. 19. 6. 159. ο. 215. DISTILLA 35 GTRA16 GT-85RE-16 HEAT 556. 150. 556. DISTILLA 0.29 0.35 0.27 227. 194. 57. 0. -546 10. 36 GTR208 GT-60RE-08 POWR 0. 21. 152. 0. 213. DISTILLA 213. 10 0.10 0.09 0.70 24. 61. 19. 6. 36 GTR208 GT-60RE-08 HEAT ٥. 176. 444. 150. 142. 42. O. -383. 444. DISTILLA 61. ٥ 0.28 0.32 0.34 37 GTR212 GT-60RE-12 FOWR 213. 0.10 0.09 0.70 Ô. 24. 59. 19. 19. 6. 154. 0. 213. DISTILLA 10 37 GTR212 GT-60RE-12 HEAT 191. 465. 150. 153. 45. 0. -418. 465. DISTILLA 46. 0.29 0.33 0.32 38 GTR216 GT-60RE-16 POWR 213. 10 0.10 0.09 0.71 ٥. 25. 58. 18. 19. 155. 0. 213. DISTILLA 6. 38 GTR216 GT-60RE-16 HEAT 202. 474. 150. 160. a. -438. 474.DISTILLA 0.30 0.34 0.32 39 GTRW08 GT-85RE-08 POWR Ο. 55. 10. 165. 0. 220. DISTILLA 220. 10 0.07 0.09 0.68 17. 19. 6. 39 GTRWOS GT-65RE-08 HEAT -20. 0.24 0.35 0.18 257. 834. 150. 293. 86. ٥. -854. 834. DISTILLA 0 217. 10 0.09 0.09 0.69 40 GTRW12 GT-65RE-12 POWR ٥. 20. 53. 164. 0. 217. DISTILLA 11. 19. 6. 40 GTRW12 GT-85RE-12 HEAT 277. 732. DISTILLA -40. 0 0.27 0.36 0.20 732. 150. 267. 78. 0. -772.

ISSE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 170

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28692 MW 5.70 PROCESS MILLIONS BTU/HR 150.0 PROCESS TEMP(F) 598, PRODUCT ETHYLENE-FRO HOURS PER YEAR 7900.

							POWE	TO HE	AT RATI	0.130					·		·····	
UTIL	ITY F	FUEL	COAL					W	ASTE FU	EL EQV I	BTU×10×	*6=	O. HOT	WATER BT	U=10==6	= (0.	
				WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
				FUEL	SAVED=		PROCES			PROCES		FUEL	FUEL	TOTAL+			FACTR	FACTR
				USED	NO-NET		HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				
				10**6	10**6	10**6	10**6	10**6		10**6	10**6	10**6		10**6				
				BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HF	<u> </u>	BTU/HR				<u></u>
41 GTRW16	GT-8	35RE-16	POWR	0.	22.	54.	13.	19.	6.	161.	0.	216	DISTILLA	216.	10	0.09	0.09	0.70
41 GTRW16				o.		628.	150.	224.	66.	0.	-640.		DISTILLA	-12.	.0	0.28		
				_ •						•		020.	0.5(.22/		•	0.20	0.00	0,14
42 GTR308	GT-6	ORE-08	POWR	0.	16.	63.	15.	19.	6.	159.	0.	221,	DISTILLA	221.	10	0.07	0.09	0.68
42 GTR308	GT-6	ORE-08	HEAT	Q,	157.	621.	150.	193.	56.	0.	-541.	621.	DISTILLA	80.	0	0,20	0.31	0.24
				_														
43 GTR312				0.		57.	17.	19.	6.	156.	<u>o.</u>		DISTILLA	213.	10		0.09	96
43 GTR312	GT-6	SORE-12	HEAT	0,	211.	498.	150.	170.	50.	0.	-471.	498.	DISTILLA	27.	0	0.30	0.34	0.30
44 GTR316	GT-6	ORE-16	POWR	0.	24.	57.	18.	19.	6.	156.	٥.	213.	DISTILLA	213.	10	0.10	0.09	0.70
44 GTR316	GT-6	ORE-16	HEAT	0.	206.	491.	150,	166.	49.	0.	-459.	491.	DISTILLA	32.	0		0.34	
				_														
45 FCPADS					20.	51,	9.	19.	6.	166.	Ο.	217.	DISTILLA	217.	0	0.08	0.09	0.69
45 FCPADS	FUEL	CL-PH	HEAT	0.	342.	882.	150.	335.	98.	٥.	-987.	882.	DISTILLA	-105.	0	0.28	0.38	0.17
46 FCMCDS	FUEL	-CL-MO	POWR	Ō.	27.	47.	11.	19.	6.	164.	0.	211.	DISTILLA	211.	0	0.11	C.09	0.71
46 FCMCDS	FUEL	-CL-MO	HEAT	0.	362.	644.	150.	265.	78.	0.	-768.		DISTILLA	-124.	ŏ	0.36		

STRANS ON FRIENDS STATES

PAGE 171

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

**FUEL ENERGY SAVED BY PROCESS AND

ENGR

IASE PEG ADV DESIGN

DATE 06/06/79

ECS

0.81 0.82 0.82 c. 82 0. 59 0.31 50 52 0.82 0.82 0.62 0.82 0.78 POWER HEAT FACTR FACTR 00 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.13 0.03 0.13 0.03 0.03 0.20 0.03 7900. ó 0.04 0.18 0.04 0.04 0.06 0.22 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0,06 FESR YEAR BTU×10**6= 0 00 00 00 00 00 000 00 00 0 0 00 20 PER FAIL HOURS NET= TOTAL+ UTILIT 10**6 BTU/HR 427. 170. 433. 426. 364. 427. 433. 220. 426. 364. 198 426. 326. 364 450. 426. 326. 426. 326. 426. WATER PREDUCT ISOPROPANOL-412. CGAL-FGD 426. RESIDUAL 486. RESIDUAL 433. DISTILLA 701 91STILLA 427. RESIDUAL 571. RESIDUAL 433.RESIDUAL 529.RESIDUAL ¥ 426. COAL-AFB 427, COAL-PFB 544, COAL-PFB 426. COAL-FOD 486. COAL-FOD 426. COAL - AFB 486. COAL - AFB 426. CGAL-FGD 464. CGAL-FGD 426. RESIDUAL 464. RESIDUAL SI TE FUEL USED 433. COAL 542. COAL 427. CGAL 588. CGAL 41. PROCES FUEL FUEL F BOILR USED SITE (10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR UTILIT TOTAL HEAT RATIO 0.035
WASTE FUEL EQV BTU*10**6= 38. -160. . -200. -373. 0. -176. -481. 0, -418. -160. -100. -100. . -299. -180. -100. 366. AUX PROCES BOILR 10**6 365. 345. 345. 298. 0. 377. 0. 298. 332. 298. 384 412. 332. 0. 332. 0. 377 4 4 350.0 PROCESS TEMP(F) 4 6 4 6 4.0 19. 32. 39.4 4 8 COGEN MW ELECT 0.40 46 4 6 4 0 4 0 COGEN PROCES POWER 10**6 BTU/HR 12. 69. 12 12 12 12. 108. 312 12.46 9 4 4 4 0 2 8 12. 12,63 POWER TO COGEN PROCES HEAT 10**6 BTU/HR 68. 350. 23. 56. 315. 56. 350. 29. 350. 68. 350. 97. 350. 40. 350. 29. 68. 350. 97. 350. 97. **BTU/HR** BTU/HR BTU/HR FUEL COGEN SAVED= FUEL NG-NET USED 49. 588. 87. 488. 87. 542. 94. 486. 129. 129. 464. 62. 544. 530. 49 660 94. 486. 94. 486. 129. 10**6 MILLIGNS . 24. 24. 17. 108. 17. 205. 252. 28G. 124. 24. 86. 17 124. 24. 24. 86. 10**6 PROCESS <u>4</u>1. BTU/HR <u>4</u> 4 41. 41. <u>4</u> 4 FUEL USED 10**6 4. 4 4 4 4 4 44 4 444 44 4-4 2 2 WAST POWR HEAT POWR HEAT POWR HEAT POWR HEAT THERMIONIC POWR STIRLING-1 POWR STIRLING-1 HEAT POWR HEAT POWR HEAT POWR N G C G G G N STM-TURB-1 POWR STM-TURB-1 HEAT POWR HEAT STM-TURB-8 POWR STM-TURB-8 HEAT 3.60 HEAT COAL THERMIONIC THERMIONIC STM-TURB-1 STM-TURB-1 STM-TURB-8 STM-TURB-8 TI-STMTB-1 TI-STMTB-1 STM-TURB-8 STM-TURB-8 PFB-STMTB-PFB-STMTB-STM-TURB-1 STM-TURB-1 TI -STMTB-1 TI -STMTB-1 ₹ UTILITY FUEL 28693 PFBSTM PFBSTM STM088 STM088 TISTMT TI HRSG TI HRSG TIHRSG TIHRSG TISTMT ONOCGN STM141 STM141 STM141 STM141 STM088 STM088 STM088 STM086 STM141 STM141 STIRL INDUSTRY 20 in in ဖြ ala က က 4 4 **~** ~ 2 0 - -

,

PAGE PRIN

0911d

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28693 MW 3.60 PROCESS MILLIONS BTU/HR 350.0 PROCESS TEMP(F) 366, PRODUCT ISOPROPANOL- HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.035 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 41. HOT WATER BTU*10**6= COGEN COGEN COGEN AUX WASTE FUEL COGEN UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW TOTAL+ PROCES FUEL FUEL FUEL FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED USED UTILIT SITE 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 23. 384. 433. RESIDUAL 433. 41. 17. 49. 12. 4. ۵. 0 0.04 0.03 0.81 230. 6 STIRL STIRLING-1 HEAT 41. 41. 701. RESIDUAL 660. 315. 166. 49. -481. 220. 0,26 0.24 0.50 6 STIRL STIRLING-1 POWR 41. 17. 23. 384. 433. 49. 12. 4. 433. COAL 0.04 0.03 9.81 0. 6 STIRL STIRLING-1 HEAT 41. 256. 734. 350. 185. 54. ٥. -539. 734. COAL 194. 0.27 0.25 0.45 7 HEGT85 HELIUM-GT- POWR 445. 38 12 406. Ω 445. COAL-AFB 10 0.01 0.03 0.79 0. -2931. 7 HEGT85 HELIUM-GT- HEAT 41. 421. 2960. 350. 279. 950. 2960. COAL-AFB 29 0 0.13 0.32 0.12 8 HEGT60 HELIUM-GT- POWR 12. 7. 47. 14. 396. 10 0.02 0.03 0.79 41. 4. ٥. 443. COAL-AFB 443. 8 HEGT60 HELIUM-GT- HEAT 1204 41. 182. 350. 312. 91. Ο. -936. 1204.COAL-AFB 268. 0 0.14 0.26 0.29 9 HEGTOO HELIUM-GT- POWR 70. 372. 441.COAL-AFB 10 0.02 0.03 0.79 41. 9. 34. 12. 4. 0. 441. 9 HEGTOO HELIUM-GT- HEAT 41. 89. 717. 350. 126; 37. Ο. -356. 717. COAL-AFB 361. 10 0,12 0.18 0.49 10 FCMCCL FUEL-CL-MO POWR 0. 20. 40. 19. 12. 389. 430. COAL 430. 10 -0.05 0.03 0.81 4. 0. 10 FCMCCL FUEL-CL-MO HEAT 375. 0. 739. 350. 225. 66. Ω. -664. 739. COAL 75. 10 0.31 0.30 0.47 11 FCSTCL FUEL-CL-ST POWR 33. 396 429. COAL 429 10 -0.05 0.03 0.82 13. 12. 11 FCSTCL FUEL-CL-ST HEAT 327. Ω. 565. 869. 350. 96. 0. -985. 869. COAL -115. 10 0.38 0.38 0.40 12 IGGTST INT-GAS-GT POWR 0. 17. 44. 19. 12. 4. 389. O. 433, COAL 433. 10 -0.06 0.03 0.81 12 IGGTST INT-SAS-GT HEAT n 305 810 350. 225 66. ٥. -665. 810.COAL 145. 10 0.25 0.28 0.43 13 GTSGAR GT-HRSG-10 POWR 41. 17. 42. 18. 12. 4. 391. 0. 433.RESIDUAL 433. 10 0.04 0.03 0.81 13 GTSØAR GT-HRSG-10 HEAT 41. 301. 743. 315. 215. 63. 41. -635. 784. RESIDUAL 149. 0 0.29 0.27 0.45 14 GTACOS GT-HRSG-08 POWR 41. 20. 45. 23. 12. 4. 384. Ď. 430. RESIDUAL 430. 10 0.05 0.03 0.81 14 GTACO8 GT-HRSG-08 HEAT 41. 275. 612. 315. 165. 48. 41. -478. 653. RESIDUAL 175. 0.31 0.25 0.54 15 GTAC12 GT-HRSG-12 POWR 390. 430. RESIDUAL 430 10 0.05 0.03 0.81 20 40 12. 15 GTAC12 GT-HRSG-12 HEAT 41. 339. 679. 315. 207. 41. -608. 720. RESIDUAL 111. 0 0.33 0.29 0.49 16 GTAC16 GT-HRSG-16 POWR 20. 38. 392. 0. 430. RESIDUAL 430. 10 0.05 0.03 0.81 41. 16. 12. 4. 16 GTAC16 GT-HRSG-16 HEAT 377. 728. 315. 235. -697. 770. RESIDUAL 73. 0.34 0.31 0.45 41. 69. 41. 17 GTWC16 GT-HRSG-16 POWR 41. 18. 39. 16. 12. 4. 393. 0. 432. RESIDUAL 432. 10 0.04 0.03 0.81 17 GTWC16 GT-HRSG-16 HEAT 358. 778. 315. 245. 72. -728. 820. RESIDUAL 92. 0.32 0.30 0.43 41. 41.

PAGE 172

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 173

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28693 MW 3.60 PROCESS MILLIONS BTU/HR 350.0 PROCESS TEMP(F) 366. PRODUCT ISOPROPANOL- HOURS PER YEAR 7900,

POWER TO HEAT RATIO 0,035 JTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 41. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED HEAT POWER ELECT BOILR USED SiTE USED USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR 41. 18. 33. 10. 12. 4. 400. ٥. 433. RESIDUAL 433. 10 0.04 0.03 0.81 18 CC1626 GTST-16/26 HEAT 41. 534. 1000. 315. 372. 109. 41. -1125. 1041, RESIDUAL -84. 0 0.35 0.36 0.34 19 CC1622 GTST-16/22 POWR 41. 19. 33. 12. 12. 4. 398. 0. 432. RESIDUAL 432. 10 0.05 0.03 0.81 19 CC1622 GTST-16/22 HEAT 41. 504. 912. 315. 335. 98. 41. -1007. 953. RESIDUAL -54. 0 0.36 0.35 0.37 20 CC1222 GTST-12/22 POWR 41. 19. 33. 12. 12. 4. 398. ٥. 431. RESIDUAL 431. 10 0.05 0.03 0.81 20 CC1222 GTST-12/22 HEAT 506. 904. 315. 333. 97. 41. -1001. 945. RESIDUAL -56. 0.36 0.35 0.37 394. 21 CC0822 GTST-08/22 POUR 41 20. 36. 15. 12. 4. 0. 430. RESIDUAL 430. 10 0.05 0.03 0.81 21 CC0822 GTST-08/22 HEAT 429. 764. 315. 41. 263. 77. 41. -784. 805. RESIDUAL 21. 0 0.36 0.33 0.43 22 STIG15 STIG-15-16 POWR 7. 32. 0. 4. 411. 0. 444.RESIDUAL 444. 10 0.02 0.03 0.79 41. 12. 22 STIG15 STIG-15-16 HEAT 4990. 24231. 315. 2706. 41.-28811. 24272.RESIDUAL -4539. 41. 9232. 0.17 0.38 0.01 23 STIG10 STIG-10-16 POWR 41. 10. 34. 5. 12. 4. 406. 0. 441 . RESIDUAL 441. 10 0.02 0.03 0.79 23 STIG10 STIG-10-16 HEAT 2377. 41. -2629. 2419. RESIDUAL -211. 41. 661. 315. 854. 250. 0 0.22 0.35 0.14 24 STIGIS STIG-15-16 POWR 37. 8. 403. ٥. 439. RESIDUAL 439. 10 0.03 0.03 0.80 41. 11. 12. 24 STIG1S STIG-15-16 HEAT 1494. 315. 501. 147. 41. -1527. 1535. RESIDUAL 9. 0.23 0.33 0.23 442. 25 DEADV3 DIESEL-ADV POWR 41. 13. 33. 7. 12. 404. 0. 437. RESIDUAL 437. 0 0.03 0.03 0.80 25 DEADV3 DIESEL-ADV HEAT 1537. 315. 570. 167. 41. -1743. 1578. RESIDUAL -165. 0 0.29 0.36 0.22 41. 616. 26 DEADV2 DIESEL-ADV POWR 41. 15. 33. 8. 12. 4. 402. 0. 435. RESIDUAL 435. 1 0.04 0.03 0.80 26 DEADV2 DIESEL-ADV HEAT 568. 1240. 315. 460. 135. 41. -1399. 1281.RESIDUAL -118. 1 0.31 0.36 0.27 41. 27 DEADV1 DIESEL-ADV POWR 41. 21. 33. 13. 12. 4. 397. 0. 430 RESIDUAL 430. 0.05 0.03 0.81 41. -896. 27 DEADV1 DIESEL-ADV HEAT 806. 847. RESIDUAL -49. 1 0.38 0.35 0.41 41. 499. 315. 299. 88. 28 DEHTPM ADV-DIESEL POWR 20. 38. 393. ٥. 430. RESIDUAL 430. 0 0.05 0.03 0.81 41. 16. 12. -713. 28 DEHTPH ADV-DIESEL HEAT 776. RESIDUAL 63. 0 0.34 0.31 0.45 41. 387. 735. 315. 240. 70. 41. 29 DESGAS DIESEL-SGA POWR 41. 11. 34. 6. 405. O. 439. DISTILLA 439. 0 0.03 0.03 0.80 12. 4. 41, -2040. 1883. DISTILLA -156. 0.25 0.35 0.19 29 DESGAS DIESEL-SGA HEAT 41. 607. 1842. 315. 665. 195. 439, RESIDUAL 6. 405. 439. 0.03 0.03 0.80 29 DESCAS DIESEL-SCA POWR 41. 11. 34. 12. 4. ο. 1883, RESIDUAL 29 DESGAS DIESEL-SGA HEAT 41. 607. 1842. 315. 665. 195. 41. -2040. -156. 0 0,25 0.35 0.19

HONEYWELL DA

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

AL ELECTRIC COMPANY PAGE 174
TECHNOLOGY ALTERNATIVES STUDY

ISSE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28693 MW 3.60 PROCESS MILLIONS BTU/HR 350.0 PROCESS TEMP(F) 366. PRODUCT ISOPROPANGL- HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.035 UTILITY FUEL COAL WASTE FUEL EQV BTUx10xx6= 41. HOT WATER BTUx10xx6= O. WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUE! PROCES PROCES MW PROCES FUEL FUEL FUFL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10==6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 41. 13. 34. 7. 12. 403. 0. 437. DISTILLA 437. 1 0.03 0.03 0.80 4. 30 DESGA2 DIESEL-SGA HEAT 41. 554, 1432. 315. 517. 151. 41. -1577. 1473. DISTILLA -104. 0.28 0.35 0.24 1 30 DESGA2 DIESEL-SGA POWR 41. 13. 34. 7. 12. 4. 403. 0. 437. RESIDUAL 437. 0.03 0.03 0.80 30 DESGA2 DIESEL-SGA HEAT 41. 554. 1432. 315. 517. 151. 41. -1577. 1473. RESIDUAL -104. 0.28 0.35 0.24 1 31 DESGA1 DIESEL-SGA POWR 20. 34 14. 12. 396. D. 430. DISTILLA 430. 0.05 0.03 0.81 31 DESCAT DIESEL-SCA HEAT 41. 786. 471. 315. 284. 83. 41. -84B. 827. DISTILLA 0.37 0.34 0.42 -21. 1 31 DESGA1 DIESEL-SGA POWR 41. 20. 34. 396. 0. 439. RESIDUAL 430. 14. 12. 4. 1 0.05 0.03 0.81 31 DESGA1 DIESEL-SGA HEAT 786 41 471. 315. 284 83. 41. -848 827. RESIDUAL -21. 0.37 0.34 0.42 32 GTSGAD GT-HRSG-10 POWR D. 41. 19. 42. 19. 12. 4. 389. 431. DISTILLA 431. 10 0.05 0.03 0.81 32 GTSOAD GT-HRSG-10 HEAT 41. 311. 684. 315. 200. 59, 41. -586, 725. DISTILLA 139. 0.31 0.28 0.48 33 GTRAOB GT-85RE-08 POWR 41. 18. 34. 12. 12. 4. 398. a. 433. DISTILLA 433. 0.04 0.03 0.81 33 GTRAO8 GT-85RE-08 HEAT 41. 479. 937. 315. 334. 41. -1007. 978. DISTILLA -29. 0.34 0.36 98. 0.34 C4 GTRA12 GT-85RE-12 POWR 41 18. 34. 12. 12. 4 398. 0. 432. DISTILLA 432. 10 0.04 0.03 0.81 34 GTRA12 GT-65RE-12 HEAT 41. 479. 910. 315. 326. 95. 41. -980. 951. DISTILLA -28. 0 0.34 0.34 0.37 35 GTRA16 GT-85RE-16 POWR 35. 397. 0. 432. DISTILLA 432. 10 0.04 0.03 0.81 41. 18. 13. 12. 4. 1. 35 GTRA16 GT-85RE-16 HEAT 41. 449. 869. 315. 303. 89. 41. -910. 210. DISTILLA 0 0.34 0.33 0.38 10 0.04 0.03 0.81 36 GTR208 GT-60RE-08 POWR 38. 15. 12. 4. 394. 0. 432. DISTILLA 432. 41. 18. 36 GTR208 GT-60RE-08 HEAT 825. DISTILLA 0 0.32 0.30 0.42 41. 371. 783. 315. 251. 73. 41. -745. 80. 395. 432. 10 0.04 0.03 0.81 37 GTR212 GT-60RE-12 POWR 41. 18. 37. 14. 12. 4. 0. 432. DISTILLA 37 GTR212 GT-60RE-12 HEAT 269. 79. 856. DISTILLA 54. 0 0.33 0.31 0.41 41. 396. 815. 315. 41. -802. 38 GTR216 GT-60RE-16 POWR 12. 395. Q. 432. DISTILLA 432. 10 0.05 0.03 0.81 41 18 36 14 38 GTR215 GT-60RE-16 HEAT 414. 315. 276. 81. 41. -823. 859. DISTILLA 36. 0 0.34 0.32 0.41 41. 818. 435. 39 GTRWO8 GT-85RE-08 POWR 12. 400. 0. 435. DISTILLA 10 0.04 0.03 0.80 15. 35. 10. 41. 4. 1177.DISTILLA 39 GTRWOS GT-85RE-08 HEAT 41. 481. 1136 315. 399. 117. 41. -1207. -30. n 0.30 0.34 0.30 10 0.04 0.03 0.81 40 GTRW12 GT-85RE-12 POWR 12. 401. 0. 434. DISTILLA 434. 41. 16. 34. 10. 4. 0 0.32 0.35 0.30 40 GTRV12 GT-85RE-12 HEAT 41. 523. 1111. 315. 404. 119. 41. -1226. 1152.DISTILLA -73.

18SE PEØ ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 175

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28693 MW 3,60 PROCESS MILLIONS BTU/HR 350.0 PROCESS TEMP(F) 366. PRODUCT ISOPROPANOL- HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.035

UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 41. HOT WATER BTU*10**6= 0. FESR POWER HEAT COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL WASTE FUEL COGEN FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR POWER ELECT BOILR USED SITE USED UTILIT USED NO-NET USED HEAT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR 10. 400. 434. DISTILLA 434. 10 0.04 0.03 0.81 41. 16. 34. 12. 4. 0. 41 GTRW16 GT-85RE-16 HEAT 1089.DISTILLA -42. 0.34 41. 492. 1048. 315. 374. 110. 41. -1131. 0.32 0.32 42 GTR308 GT-60RE-08 POWR 14. 40. 13. 397. 0. 436. DISTILLA 436. 10 0.03 0.03 0.80 41. 12. 1023. DISTILLA 0 0.26 0.30 0.34 42 GTR308 GT-60RE-08 HEAT 41. 340. 982. 315. 304. 89. 41. -913. 110. 434. DISTILLA 434. 10 0.04 0.03 0.81 43 GTR312 GT-60RE-12 POWR 16 36. 12. 12. 398 Ω 436. 950. 315. 325. -977. 992. DISTILLA 14. 0 0,31 0.33 0.35 43 GTR312 GT-60RE-12 HEAT 95. 41. 41. 44 GTR316 GT-60RE-16 POWR 41. 16. 36. 12. 12. 4. 398. ٥. 434. DISTILLA 434. 10 0.04 0.03 0.81 44 GTR316 GT-60RE-16 HEAT 320. -962. 985. DISTILLA 0.31 0.32 0.36 427. 315. 94 41. 24 41. 944. 0 0.03 0.03 0.80 405. 0. 438. DISTILLA 438. 45 FCPADS FUEL-CL-PH POWR 41. 13. 32. 5. 12. 4. 1894. DISTILLA -268. 0,37 0.18 45 FCPADS FUEL-CL-PH HEAT 41. 718. 1853. 315. 704. 206. 41. -2162. 0.28 46 FCMCDS FUEL-CL-MO POWR 7. 404. 0. 433. DISTILLA 433. 10 0.04 0.03 0.81 41. 17. 30. 12. 4. 1393. DISTILLA -309. 0 0.36 0.40 0.25 46 FCMCDS FUEL-CL-MO HEAT 41. 759. 1352. 315. 557. 163. 41. -1702.

SYSTEM- P1185-02

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

ERAL ELECTRIC COMPANY PAGE 176
N TECHNOLOGY ALTERNATIVES STUDY

18SE PEO ADV DESIGN ENGR

INDUSTRY 28694 MW 3.

3.30 PROCESS MILLIONS BTU/HR 400.0 PROCESS TEMP(F) 460. PRODUCT ETHANOL

HOURS PER YEAR 7900.

																	
UTILITY FUEL	COAL				POWE		AT RATI		BTU*10*	*6=	71. HGT	WATER BT	'U*10**6	= (0,		
		WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	RHEAT	
		FUEL	SAVED=			PROCES		PROCES		FUEL.	FUEL	TOTAL+			FACTR	FACTR	
		USED	NO-NET		HEAT		ELECT	BOILR		SITE	USED	UTILIT					
			10≭≭6 BTU/HR						10××6 ETU/HR			10××6 BTU/HR					
		BIOTIK	DIU/IIK	DIU/ nk	BIU/ NK	BIU/RK		DIU/ FIK	E I U/ NK	Б10/П	·	B1U/HK					
O ONOCON NO COO	ON	71.	٥.	٥.	٥.	٥.	٥.	471.	35.	471	. COAL-FGD	506.	0	٥,	0.02	0.79	
1 STM141 STM-TURB-1		71.	22.	148.	115.	11.		336.	o.		RESIDUAL		_		0.02		
1 STM141 STM-TURB-1	HEAT	71.	77.	517.	400.	39.	12.	0.	-88.	517.	. RESIDUAL	429.	0		0.08		
4 074544 074 2150 4							_		_								
1 STM141 STM-TURB-1 1 STM141 STM-TURB-1		71. 71.	22. 77.	148. 517.	115. 400.	11. 39.		336. 0.	0. -88.		. COAL-FGD . COAL-FGD		10	0.05		0.83 0.77	
1 3111141 3181-10KB-1	DEAT	71,	77.	317.	400.	33,	12.	Ų.	-00.	317.	. COAL-FGD	429.	U	0.15	0.00	0.77	
1 STM141 STM-TURB-1	POWR	71.	22.	148.	115.	11.	3.	336.	٥.	484	COAL-AFB	484.	10	0.05	0.02	0.83	
1 STM141 STM-TURB-1	HEAT	71.	77.	517.	400.	39.	12.	0.	-88.	517.	COAL-AFE		O	0.15	0.08	0.77	
									_								
2 STM088 STM-TURB-8 2 STM088 STM-TURB-8		<u>71.</u> 71.	22. 38.	<u>284.</u> 494.	230. 400.	11. 20.		<u>200.</u> 0.	<u>0.</u> -26.		RESIDUAL	484.	11		0.02		
2 3111066 3111-10165-6	пент	/1.	30.	494.	400,	20.	0 .	υ.	-26.	494.	RESIDUAL	468.	1	0.08	0.04	0.81	
2 STMOSS STM-TURB-8	POVR	71.	22.	284.	230.	11.	3.	200.	c.	484.	. COAL-FGD	484.	11	0.05	0.02	0.83	
2 STMO88 STM-TURB-8		71.	38.	494.	400.	20.	6.	0.	-26,		COAL-FOD		. 1	0.08		0.81	

2 STM088 STM-TURB-8		71.	22,	284.	230,	11.		200.	0.		COAL-AFB	484.	11		0.02		
2 STM089 STM-TURB-8	HEAI	71.	38.	494.	400.	20.	6.	0.	-26.	494.	COAL-AFB	468.	1	0.08	0.04	0,81	
3 PFBSTM PFB-STMTB-	POWR	71.	21.	75.	51.	11.	3.	410.	0.	485.	COAL-PEB	485.	10	0.05	0.02	0.82	
3 PFBSTM PFB-STMTB-		71.	163.	582.	400.	88.		0.	-239.		COAL-PFB	•	Ö	0.24	0.15	0.69	
4 TISTMT TI-STMTB-1		<u>71.</u>	21.	56.	<u> 36.</u>	11.	3.	429.	0.		RESIDUAL	484.	10	0.05			
4 TIS "4T TI-STMTB-1"	HEAI	71.	205.	531.	340.	108.	32.	71.	-301.	601.	RESIDUAL	301.	0	0.28	0.18	0.67	
4 TISTMT TI-STMTB-1	POUR	71.	21.	56.	36.	11.	3.	429.	٥.	484	COAL	484.	10	0.05	0.02	0.83	
4 TISTMT TI-STMTB-1		71.	241.	625.	400.	127.	37.	0.	-360.		COAL	264.	Ö	0.30		0.64	
5 TIHRSO THERMIONIC		71.	13,	80.	49,	11.	3.	413.	0.		RESIDUAL	493.	0	0.03		0.81	
5 TIHRSG THERMIONIC	HEAT	71,	88.	557.	340.	78.	23.	71.	-210.	628.	RESIDUAL	418.	0	0.14	9.12	0.64	
5 TIHRSG THERMIONIC	POUR	71.	13.	80.	49.	11.	3.	413.	0.	493	COAL	493.	0	0.03	0.02	0.81	
5 TIHRSG THERMIONIC		71.	103.	655.	400.	92.	27.	0.	-253.		COAL	402.	ŏ	0.15	0.14	0.61	
6 STIRL STIRLING-1		71.	15.	50.	25.	11.	<u> 3.</u>	441.	0.		DISTILLA		0		0.02		
6 STIRL STIRLING-1	HEAT	71,	204.	678.	340.	154.	45.	71.	-447.	749.	DISTILLA	302.	0	0.23	0.21	0.53	
		90															
•		77 27															
		(C) (C)											······································				
*		ĕ≅															
		ORIGINAL OF POOR															
		ಬ್				· · · · · · · · · · · · · · · · · · ·				·							
		Z Z															
		PAGI														=	
		日田													, _		
		' '															

PAGE 177

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

18SE PEC ADV DESIGN ENGR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28694 MW 3.30 PROCESS MILLIONS BTU/HR 400.0 PROCESS TEMP(F) 460. PRODUCT ETHANOL HOURS PER YEAR 7900.

UTILITY FUEL		COAL	WASTE FUEL EQV BTU*10**6= 71. HOT WATER BTU*10**6= 0.														
			WASTE		CEGEN				AUX	UTILIT			NET=	FAIL	FESR	POWER	
			FUEL	SAVED=		PROCES			PROCES		FUEL	FUEL	TOTAL+			FACTR	FACT
			USED	NO-NET		HEAT	POWER	ELECT	BOILR		SITE	USED	UTILIT				
			10**6			10**6				10**6		_	10**6				
			BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HF	<u> </u>	BTU/HR				
STIRL	STIRLING-1	POWR	71.	15.	50.	25.	11.	3.	441.	Q.	491.	RESIDUAL	491.	0	0.03	0.02	0.8
STIRL	STIRLING-1	HEAT	71.	204.	678.	340.	154.	45.	71.	-447.	749.	RESIDUAL	302.	.0	0,23	0.21	0.5
STIRL	STIRLING-1	POWR	71.	15.	50.	25.	11.	3.	441.	0.	491.	COAL	491.	0	0.03	0.02	0.8
	STIRLING-1		71.	240.	798.	400.	181,	53.	0,	-532.	798.	COAL	266.	0		0.23	0.5
HEGT85	HELIUM-GT-	POUR	71.	-2.	35,	-1.	11,	3.	472,	٥.	507	COAL-AFB	507.	11	-0.00	0.02	0.7
	HELIUM-GT-				10030.		-3220.	-944.				COAL-AFB	67.			****	
HERTER	HELIUM-GT-	PAUP	71.	1.	43.	8.	11.	3.	461.	٥.	504	COAL-AFB	504.	10	0.00	0.02	0 7
	HELIUM-GT-		71.	64.	2134.	400.	553 <i>.</i>	162.		-1692.		COAL-AFB	442.			0.26	
HEGTOO	HELIUM-GT-	PAUP	71.	6.	64.	30.	11.	3.	435.	٥.	400	COAL-AFB	499.	10	0 01	0.02	0.8
	HELIUM-GT-		71.	86.	854.	400.	150.	44.	0.	-434.		COAL-AFB	419.	10		0.18	
	FUEL-CL-MO		0. 0.	19. 428.	37. 849.	17. 400.	11. 258.	3. 76.	450. 0.	0. -772,		COAL COAL	487. 78.			0.02	0.4
FUILUL	FUEL-CL-MU	HEAT	<i>J.</i>	420.	649.	400.	250.	70.	0.	-1,12.	043.	COAL	70.	,0	0.30	0,30	0,-
	FUEL-CL-ST		<u>o.</u>		32.	14.	11.	3.	454.	0.		COAL	487.			0.02	
FOSTOL	FUEL-CL-ST	HEAT	0.	548.	925.	400.	321.	94.	0.	-968.	925.	COAL	-43.	10	0.34	0.35	U.4
IGGTST	INT-GAS-GT	POWR	٥.	14.	46.	21.	11.	3.	445.	0.	491.	COAL	491.			0.02	
IGGTST	INT-GAS-GT	HEAT	0.	270.	861.	400.	211.	62.	0.	-625 <i>.</i>	861,	COAL	236.	10	0.19	0.25	_0.4
GTSOAR	GT-HRSG-10	POVR	71.	14.	39.	15.	11.	3.	453,	0.	491.	RESIDUAL	491.	10	0.03	0.02	0.1
	GT-HRSG-10		71.	319.	865.	340.	251.	74.	71.	-749.		RESIDUAL	187.	0	0.27		0.4
BTACOS	GT-HRSG-08	PAUP	71.	19.	42.	22.	11.	3.	445.	ō.	487	RESIDUAL	487.	10	0.04	0.02	o . 1
	GT-HRSG-08		71.	297.	659.	340.	178.	52.		-521.		RESIDUAL	209.	ő	0.31		0.
GTACIO	GT-HRSG-12	DALID	71.	18.	37.	17.	11.	3.	450.	٥.	487	RESIDUAL	487.	10	0 04	0.02	Ω.
	GT-HRSG-12		71.	366.	735 <i>.</i>	340.	224.	66.	71.	-665 <i>.</i>		RESIDUAL	140.	0	0.33		
074010	OT UDGG 10	חמו וה		1.0	٥٣	1=		•	450	_	400	RESIDUAL	488.	10	0.04	0.02	
	GT-HRSG-16 GT-HRSG-16		71. 71.	18. 408.	35. 804.	15. 340.	11. 260.	3. 76.	453. 71.	0. ∻776.		RESIDUAL	460. 98.	0		0.02	0.4
UIMCIB	G1-1100-16	newi	<u> </u>	400.	504.	340,	200.	76.	<u> </u>	110.	3,3,				0.04	0.30	<u> </u>
GTWC16	GT-HRSG-16	POWR	71.	16.	36.	14.	11.	3.	454.	0.		RESIDUAL	489.			0.02	
GTWC16	GT-HRSG-16	HEAT	71.	387.	839.	340.	264.	77.	71.	-790.	909.	RESIDUAL	119.	0	0.32	0.29	0.4

-

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE 178

ISSE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28694 MW 3.30 PROCESS MILLIONS BTU/HR 400.0 PROCESS TEMP(F) 460. PRODUCT ETHANOL HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.028 UTILITY FUEL WASTE FUEL EQV BTU*10**6= 71. HOT WATER BTU*10**6= COAL WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR 71. 16. 32. 11. 3. 458. ٥. 490. RESIDUAL 490. 11 0.04 0.02 0.82 11. 18 CC1626 GTST-16/26 HEAT 71. 490. 1003. 340. 350. 102. 71. -1057. 1074. RESIDUAL 16. 1 0.33 0.33 0.37 19 CC1622 GTST-16/22 POWR 71. 17. 33. 12. 11. 3. 456. 0. 489, RESIDUAL 489. 0.04 0.02 0.82 11 19 CC1622 GTST-16/22 HEAT -942. 71. 461. 916. 340. 987, RESIDUAL 1 0.33 0.32 0.41 313. 92. 71. 45. 3. 0. 489. RESIDUAL 489. 11 0.04 0.02 0.82 20 CC1222 GTST-12/22 POWR 71. 17. 33. 12. 11. 456. 461. 20 CC1222 GTST-12/22 HEAT 71. 907. 340. 310. 91. -933. 978. RESIDUAL 0.34 0.32 0.41 71. 45. 21 CC0822 GTST-08/22 POWR 71. 18. 36. 16. 11. 3. 452. 0. 488. RESIDUAL 488. 11 0.04 0.02 0.82 21 CC0822 GTST-08/22 HEAT 71. 384. 767. 340. 240. 70. 71. -716. 837. RESIDUAL 122. 0.33 0.29 0.48 500. RESIDUAL 22 STIG15 STIG-15-16 POWR 71. 6. 30. ο. 11. 3. 470. 500. 11 0.01 0.02 0.80 22 STIG15 STIG-15-16 HEAT 5386. 26154. 2920. 71.-31104. 26224.RESIDUAL 71. 340. 9965. -4880. 0.17 0.38 0.02 23 ST1010 ST10-10-16 POWR 71. 9. 31. 4. 11. 3. 466. 0. 497. RESIDUAL 497. 11 0.02 0.02 0.80 23 STIG10 STIG-10-16 HEAT 71. 714. 2566. 340. 921. 270. 71. -2844. 2637. RESIDUAL -208. 0.22 0.35 0.15 1 496. 11 0.02 0.02 0.81 24 STIG1S STIG-1S-16 POWR 71 34 7. 3. 496. RESIDUAL 10. 11. 462. 0. 0.23 0.32 0.24 24 STIGIS STIG-15-16 HEAT 71. 477. 1613. 340. 541. 158. 71. -1654. 1683. RESIDUAL 29. 25 DEADV3 DIESEL-ADV POWR 5. 3. 495. RESIDUAL 495. 1 0.02 0.02 0.81 71. 11. 30. 11. 465. 0. 0.26 0:36 0.19 25 DEADV3 DIESEL-ADV HEAT 71. 728. 2058 340. 763. 224 71. -2351. 2128. RESIDUAL -222. 26 DEADV2 DIESEL-ADV POWR 71. 14. 30. 8. 11. 3. 462. 0. 492. RESIDUAL 492. 0.03 0.02 0.81 26 DEADV2 DIESEL-ADV HEAT 71. 613. 1339. 340. 497. 146. 71. -1517. 1409. RESIDUAL -108. 0.31 0.35 0.28 27 DEADVI DIESEL-ADV POVR 487. RESIDUAL 487. 0.04 0.02 0.82 71. 19. 30. 12. 11. 3. 457. 0. 27 DEADV1 DIESEL-ADV HEAT 71. 539. 870. 340. 323. 95. 71. -973. 940. RESIDUAL -33. 1 0.38 0.34 0.43 490. RESIDUAL 490. 0 0.04 0.02 0.82 28 DEHTPM ADV-DIESEL POWR 3. 451. 0 71. 16 39 17. 11. 28 DEHTPM ADV-DIESEL HEAT 71. 317. 792. 340. 227. 66. -673. 862. RESIDUAL 189. 0 0.29 0.26 0.46 71. 1 0.02 0.02 0.80 29 DESOA3 DIESEL-SOA POWR 3. Ω. 497. DISTILLA 497. 71. 9. 31. 4. 11. 466. 29 DESCAS DIESEL-SCA HEAT 274. -2888 2662. DISTILLA -226. 0.22 0.35 0.15 71. 732. 2591 340. 935. 71. 1 0.02 0.02 0.80 497. RESIDUAL 497. 3. Ö. 29 DESCAS DIESEL-SCA POWR 71. 9. 31. 4. 11. 466. 29 DESGAS DIESEL-SGA HEAT 71. 732. 2591. 340. 935. 274. 71. -2888. 2662. RESIDUAL -226. 1 0.22 0.35 0.15

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 179

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 28694 MW 3.30 PROCESS MILLIONS BTU/HR 400.0 PROCESS TEMP(F) 460. PRODUCT ETHANGL HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.028 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 71. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FESR POWER HEAT FAIL PROCES FUEL FUEL SAVED= FUEL PROCES PROCES MW FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 71. 12. 31. 7. 11. 3. 463. 0. 494. DISTILLA 494. 1 0.03 0.02 9.81 30 DESGA2 DIESEL-SGA HEAT 71. 598. 1545. 340. 558. 164. 71. -1708. 1616.DISTILLA -92. 0.28 0.35 0.25 30 DESCA2 DIESEL-SCA POWR 71. 12. 31. 7. 11. 3. 463. 0. 494. RESIDUAL 494. 0.03 0.02 0.81 30 DESCA2 DIESEL-SCA HEAT 71. 598. 1545. 340. 558. 164. 71. -1708. 1616. RESIDUAL -92. 0.28 0.35 0.25 31 DESCA1 DIESEL-SCA POWR 71 19 31 13. 11 456 0 487. DISTILLA 487 0.04 0.02 0.82 31 DESCA1 DIESEL-SCA HEAT 71. 509. 848. 340. 306. 90. -921. 71. 918. DISTILLA -3. 0.37 0.33 0.44 31 DESCA1 DIESEL-SCA POWR 71. 19. 3. 31. 13. 11. 456. ٥. 487. RESIDUAL 487. 1 0.04 0.02 0.82 31 DESCA1 DIESEL-SCA HEAT 7î. 509. 848. 340. 306. 71. 90. -921. 918. RESIDUAL -3. 0.37 0.33 0.44 32 GTSOAD GT-HRSG-10 POWR 71. 17. 39. 18. 11. 3. 450. 0. 489. DISTILLA 489. 10 0.04 0.02 0.82 32 GTSØAD GT-HRSG-10 HEAT 71. 334. 749. 340. 219. 64. 71. -648. 819. DISTILLA 171. 0.31 0.27 0.49 33 GTRAOS GT-65RE-08 POWR 71. 14. 32. 9. 11. 3. 460. ٥. 491.DISTILLA 491. 10 0.03 0.02 0.81 33 GTRAO8 GT-85RE-08 HEAT 71. 535. 1170. 340. 418. 122. 71. -1270. 1241.DISTILLA -30. 0 0.31 0.34 0.32 34_GTRA12 GT-85RE-12 POWR 71. 15. 31 10. 11 3 459. 0. 491. DISTILLA 491 0.03 0.02 0.82 34 GTRA12 GT-85RE-12 HEAT 71. 531. 1103. 340. 395. 116. 71. -1199. 1174.DISTILLA -25. 0.32 0.34 0.34 35 GTRA16 GT-85RE-16 POWR 71. 15. 32. 11. 11. 3. 458. 0. 490. DISTILLA 490. 10 0.04 0.02 0.82 35 GTRA16 GT-85RE-16 HEAT 71. 493. 1031 340. 360. 105. 71. -1089. 1102. DISTILLA 12. 0 0.32 0.33 0.36 36 GTR208 GT-60RE-08 POWR 71. 16. 35. 13. 11. 3. 455. ٥. 490. DISTILLA 490. 10 0.04 0.02 0.82 36 GTR208 GT-GORE-08 HEAT 71. 400. 899. 340. 71. 283. 84. -864. 970. DISTILLA 106. 0.31 0.30 0.41 37 CTR212 GT-60RE-12 POWR 71. 16. 34. 12. 11. 456. 0. 3. 490. DISTILLA 490. 10 0.04 0.02 0.82 37 GTR212 GT-60RE-12 HEAT 71. 429. 309. 936. 340. 91. 71. -930. 1007. DISTILLA 77. 0 0.31 0.31 0.40 38 GTR216 GT-60RE-16 POWR 71 16. 33. 12 11 3 456. 0 490. DISTILLA 490. 0.04 0.02 0.82 38 GTR216 GT-60RE-16 HEAT 71. 450. 944. 340. 318. 93. 71. -959. 1015. DISTILLA 56. 0.32 0.31 0.39 39 GTRW08 GT-85RE-08 POWR 71. 12. 32. 8. 3. 11. 461. ٥. 493. DISTILLA 493. 10 0.03 0.02 0.81 39 GTRV08 GT-85RE-08 HEAT 71. 535. 1394 340. 489. 143 71. - 1494. 1465. DISTILLA -29. 0,28 0.33 0.27 40 GTRV12 GT-85RE-12 POWR 71. 14. 31. 3. 0. 492. DISTILLA 8. 11. 461. 492. 10 0.03 0.02 0.81 40 GTRW12 GT-85RE-12 HEAT 71. 583. 1328. 71. -1475. 340. 483. 142. 1398. DISTILLA -77. 0.30 0.35 0.29

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

, PAGE 180

18SE PEO ADV DESIGN ENGR

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28694 MW 3.30 PROCESS MILLIONS BTU/HR 400.0 PROCESS TEMP(F) 460. PRODUCT ETHANOL HOURS PER

HOURS PER YEAR 7900.

UTU	ıtv	FUEL	COAL				POWE			0.028 EL EQV I	STUX10X	*6= 7	и. нот	WATER BT		= ().	
0112		1 022	OOAL						no 10									
				WASTE	FUEL	COGEN	COGEN	COGEN		AUX	UTILIT			NET=	FAIL	FESR	POWER	and the second second
				FUEL	SAVED=			PROCES		PROCES	FUEL	FUEL.	FUEL	TOTAL+			FACTR	FACTR
				USED	NO-NET		HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				
				10**6			10**6	10××6		10**6	10××6	10**6	_	10××6				
				BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HF	₹	BTU/HR				
41 OTPU10	2 61	-85RE-16	פוניאם	71.	14.	32.	9.	11.	3.	460.	0.	492	DISTILLA	492.	10	0.03	0.02	0.81
		-85RE-16		71.			340.	436.	128.		-1327.		DISTILLA	-35.	_		0.34	
41 GIRWIE	, 6,	-03KE-10	REAT	/ (.	941.	1661.	340.	430.	120.	, , ,	1027.	1232	DIOTILLA	55.	ŭ	0.51	0.07	0.0.
42 GTR308	GT	-60RE-08	POWR	71.	11.	36.	10.	11.	3.	458.	0.	495.	DISTILLA	495.	10	0.03	0.02	0.81
42 GTR308	GT	-60RE-08	HEAT	71.	363.	1179.	340.	365.	107.	71.	-1107.	1249.	DISTILLA	143.	0	0.24	0.29	0.32
<u>43 GTR312</u>									3.		<u>o.</u>		DISTILLA				0.02	
43 9TR312	: GT	-60RE-12	HEAT	71.	473.	1065.	340.	364.	107.	71.	-1103.	1136.	DISTILLA	33.	0	0.31	0.32	0.35
44 BTR316	10.3	-60RE-16	POVR	71.	15.	33.	11.	11.	3.	458.	٥.	491.	DISTILLA	491.	10	0.03	0.02	0.81
44 GTR316											-1084.		DISTILLA			0.30		
		9,,,,,,										11						
45 FCPADS	FU	JEL-CL-PH	POWR	71.	11.	30.	5.	11.	3.	465.	Ο.	494.	DISTILLA	494.	0	0.03	0.02	0,81
45 FCPADS	FU	IEL-CL-PH	HEAT	71.	775.	2000.	340.	760.	223.	71.	-2340.	2071.	DISTILLA	-269.	0	0.28	0.37	0.19
								<u> </u>										
46 FCMCDS							6.	11.	3.	463.	0.		DISTILLA		10	0.04	0.02	0.82
46 FCMCDS	FU	JEL-CL-MO	HEAT	71.	820.	1459.	340.	601.	176.	71.	-1844.	1530.	DISTILLA	-314.	0	0.36	0.39	0.26

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 181

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

3.50 PROCESS MILLIONS BTU/HR 640.0 PROCESS TEMP(F) INDUSTRY 28731 MW 598. PRODUCT AMMONIA-SYNT HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.019 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= WASTE COGEN COGEN COGEN AUX SITE UTILIT TOTAL NET= FAIL FESR POWER HEAT PROCES PROCES MW FUEL SAVED= FUEL FUEL PROCES FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COSON ٥. 37. ٥. ۵. 0. ٥. 753. 753. COAL-FOD 790. 0 0. 0.02 0.81 1 STM141 STM-TURB-1 POWR 0. -3392. 4183. 3543. 12. -3416. ٥. 4183. RESIDUAL 4183. 11 -4.29 0.00 0.15 1 \$TM141 STM-TURB-1 HEAT 755. 755. RESIDUAL Ο. 640. 2. 0. 31. 0.01 786. 0.00 0.81 1 STM141 STM-TURB-1 POWR 0. -3392. 4183. 3543. 12. 4. -3416. 0. 4183 COAL-FGD 4183. 11 -4.29 0.00 G.15 1 STM141 STM-TURB-1 HEAT 4. 755. 640. 2. 0. 31. 755, COAL-FOD 786. 11 0.01 0.00 0.81 1 STM141 STM-TURB-1 POWR -3392. 0. 4183. 3543. 12. 4. -3416. 0. 4183, COAL-AFB 4183. 11 -4.29 0.00 0.15 1 STM141 STM-TURB-1 HEAT 0. 755. 64). 4. 2. 1. 0. 31. 755. COAL-AFB 786. 11 0.01 0.00 0.81 2 STM088 STM-TURB-8 POWR 23. -334 -296 12. 1101 n. 767, RESIDUAL 767. 11 0.03 0.02 0.83 2 STMO88 STM-TURB-8 HEAT -50. 723. 640. -26. -8. ٥. 118. 723. RESIDUAL 11 -0.06 -0.03 0.76 841. 2 STM088 STM-TURB-8 POWR 0. 23. -334. -296. 12. ٥. 767. COAL-FOD 4. 1101. 767. 11 0.03 0.02 0.83 2 STM088 STI1-TURB-8 HEAT -50. 723 640 -26. 723, COAL-FGD 118. 841. 11 -0.06 -0.03 0.76 2 STM088 STM-TURB-8 POWR 0. 23. -334. -296. 12. 4. 1101. 0. 767. COAL-AFB 767. 11 0.03 0.02 0.83 2 STM088 STM-TURB-8 HEAT 723. 640. Ο. -50. -26. -8. 0. 118. 723. COAL-AFB 841. 11 -0.06 -0.03 0.76 3 PFBSTM PFB-STMTB- POWR 21. 135. 101. 0. 12. 4. 635. 0. 770. COAL-PFB 770. 10 0.03 0.02 0.83 3 PFBSTM PFB-STMTB- HEAT 0. 131. 860. 640. 76. 22. ٥. -200. 860. COAL-PFB 660. 0 0.13 0.09 0.74 4 TISTMT TI-STITE-1 POWR 60. 0. 23. 85. 12. 683 0. 768. RESIDUAL 768 11 0.03 0.02 0.83 4 TISTMT TI-STMTB-1 HEAT 242. 911. 640. 0. 128. 38. -363. 911. RESIDUAL 0. 548. 0.21 0.14 0.70 4 TISTMT TI-STMTB-1 POWR 0. 23. 85. 60. 0. 12. 4. 683. 768. COAL 768, 11 0.03 0.02 0.83 4 TISTMT TI-STMTB-1 HEAT 242. ٥. 911. 640. -363. 911. COAL 0.14 0.70 128. 38. ٥. 548. 0.21 5 TIHRSG THERMIONIC POWR 7. 0. . 85. 46. 12. 4. 699. 0. 784. RESIDUAL 784. 0 0.01 0.02 0.82 5 TIHRSG THERMIONIC HEAT 0. 93. 1177. 640. 166. -480. 1177. RESIDUAL 697. 49. 0. 0 0.07 0.14 0.54 5 TIHRSG THERMIONIC POWR 0. 7. 85. 46. 12. 4. 699. O. 784. COAL 784. 0.01 0.02 0.82 5 THRSG THERMIONIC HEAT 0. 93. 1177. 640. 166. -480. 1177, COAL 697. 49. ۵. 0 0.07 0.14 0.54 6 STIRL STIRLING-1 POWR 65. 35. 12. 711. 776. DISTILLA 776. 0.02 0.02 0.82 6 STIRL STIRLING-1 HEAT 1178. 0. 252. 640. 217. -640. 1178. DISTILLA 538. ٥. 0.18 0.18 0.54

18SE PEO ADV DESIGN ENGR

[QU U

PAGE IS

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 182

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 28731 MW 3.50 PROCESS MILLIONS BTU/HR 640.0 PROCESS TEMP(F) 598. PRODUCT AMMONIA-SYNT HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.019 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL FUEL TOTAL+ FACTR FACTR BOILR USED USED USED NO-NET USED HEAT POWER ELECT SITE UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 0. 14. 65. 35. 12. 4. 711. 0. 776. RESIDUAL 776. 1 0.02 0.02 0.82 6 STIRL STIRLING-1 HEAT 0. 252. 1178. 640. 217. 63. ٥. -640. 1178. RESIDUAL 538. 0.18 0.18 0.54 6 STIRL STIRLING-1 PCWR ٥. 14. 65. 35. 12. 711. n. 776. COAL 776. 0.02 0.02 0.82 6 STIRL STIRLING-1 HEAT 252. 1178. 640. 217. 63. -640. 1178. COAL 538. 1 0.18 0.18 0.54 7 HEGT85 HELIUM-GT- POWR 0. -14. 37. -12. 12. 767. 0. 804. COAL-AFB 804. 11 -0.02 0.01 0.80 747. -1960. 7 HEGT85 HELIUM-GT- HEAT -1960. 2003. -1960, COAL-AFB 640. -629. -184. 0. 43. 11 -1.53 **** 14.73 8 HEGT60 HELIUM-GT- POWR n. -10. 46. -1. 12. 754. 0. 800. COAL-AFB 800. 11 -0.01 0.01 0.80 8 HEGT60 HELIUM-GT- HEAT-45897. 9502. -45897. 640.-11887. -3484. 0. 37185.-45897.COAL-AFB 11 **** 1.36 -0.07 -8712. 9 HEGTOO HELIUM-GT- POWR 0. 5. 68. 30. 12. 717. 0. 785. COAL-AFB 785. 10 0.01 0.02 0.82 4. 9 HEGTOO HELIUM-GT- HEAT 0. -751. ٥. 108. 1434. 640. 252. 74. 1434. COAL-AFB 683. 0.07 0.18 0.45 10 FCMCCL FUEL-CL-MO POWR 0. 20. 39. 18. 12. 731. 0. 771. COAL 771. 10 0.02 0.02 0.83 10 FCMCCL FUEL-CL-MO HEAT 684. 0. -1265. 1371. 640. 417. 122. 1371.COAL 106. 0 0.33 0.30 0.47 0. 11 FCSTCL FUEL-CL-ST POWR 20. 39 18. 12. 731. 770.COAL 770 0.03 0.02 0.83 0. -1269. 11 FCSTCL FUEL-CL-ST HEAT 701. 1358. 640. ٥. 418. 123. 1358. COAL 89. 11 0.34 0.31 0.47 0. 777. 11 0.02 0.02 0.82 12 IGGTST INT-GAS-GT POWR 14. 59. 30. 12. 717. 777. COAL 12 IGGTST INT-GAS-GT HEAT 287. 1258 640. 253. G. -755. 1258. COAL 504. 11 0.19 0.20 0.51 10 0.02 0.02 0.82 13 GTSGAR GT-HRSG-10 POWR 13. 41. 14. 12. 4. 737. 0. 778. RESIDUAL 778. 13 GTSØAR GT-HRSG-10 HEAT 576. 1893. 640. 549. 0. -1678. 1893. RESIDUAL 215. 0 0.23 0.29 0.34 161. 14 GTACOS GT-HRSG-08 POWR 20. 44. 23. 12. 4. 726. O. 771. RESIDUAL 771. 10 0.03 0.02 0.83 0. 14 STACOS GT-HRSG-08 HEAT 0. -1016. 0 0.31 0.27 0.51 0. 558. 1249. 640. 337. 99. 1249. RESIDUAL 232. 10 0.03 0.02 0.83 15 GTAC12 GT-HRSG-12 POWR 20. 39. 12 0. 770. RESIDUAL 770. 18. 0 0.34 0.31 0.47 15 GTAC12 GT-HRSG-12 HEAT 689. 1362. 640. 415. 122. 0. -1261. 1362. RESIDUAL 101. 772. RESIDUAL 16 GTAC16 GT-HRSG-16 POWR 18. 37. 15. 12. 4. 735. ٥. 772. 10 0.02 0.02 0.83 a. 16 GTAC16 GT-HRSG-16 HEAT 767. 1542. 0. -1519. 1542. RESIDUAL 23. 0 0.33 0.32 0.42 ٥. 640. 498. 146. 17 GTWC16 GT-HRSG-16 POWR 735. ٥. 773. RESIDUAL 773. 10 0.02 0.02 0.83 0. 19. 38. 4. 15. 12. 17 GTWC16 GT-HRSG-16 HEAT 1576. RESIDUAL 0 0.32 0.32 0.41 0. 728. 1576. 640. 0. -1514. 62. 497. 146. 0 META

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

PAGE 183

INDUSTRY 28731 MW 3.50 PROCESS MILLIONS BTU/HR 640.0 PROCESS TEMP(F) 598, PRODUCT AMMONIA-SYNT HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.019 0. COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= UTILITY FUEL COGEN COGEN - AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT WASTE FUEL COGEN FUEL FACTR FACTR PROCES PROCES MW PROCES FUEL FUEL TOTAL+ FUEL SAVED= FUEL NO-NET USED POWER ELECT BOILR USED SITE USED UTILIT USED HEAT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 11 0.02 0.02 0.83 38. 12. 4. 736. 0. 774. RESIDUAL 774. 18 CC1626 GTST-16/26 POWR 0. 16. 14. 1725. RESIDUAL 56. 0.30 0.32 0.37 640. 546. 160. 0. -1669. 18 CC1626 GTST-16/26 HEAT 0. 734. 1725. 0.02 0.02 0.83 734. 0. 773. RESIDUAL 773. 11 19 CC1622 GTST-16/22 POWR 17. 39. 16. 12. 4. ٥. 1578. 484. 142. 0. -1475. 1578. RESIDUAL 103. 1 0.30 0.31 0.41 19 CC1622 GTST-16/22 HEAT 0. 688, 640. 11 0.02 0.02 0.83 773. RESIDUAL 773. 39 16. 734. 0. 20 CC1222 GTST-12/22 POWR 17. 12. 0. -1455. 1560. RESIDUAL 105. 0.31 0.31 0.41 20 CC1222 GTST-12/22 HEAT 685. 1560. 640. 477. 140. ٥. 772. 11 0.02 0.02 0.83 21. 12. 4. 728. 772. RESIDUAL 21 CC0822 GTST-08/22 POWR 0. 18. 44. 0. -1081. 1318. RESIDUAL 237. 0.30 0.27 0.49 21 CC0822 GTST-08/22 HEAT 553. 1318. 640. 358. 105. 0. 12. 752. ٥. 734. RESIDUAL 784. 11 0.01 0.02 0.82 31. 4. 22 STIG15 STIG-15-16 POWR 6. 0.-58578, 49231.RESIDUAL -9347. 0.17 0.38 0.01 22 STIG15 STIG-15-16 HEAT 0. 10138. 49231. 640. 18757. 5497. 781 . RESIDUAL 781. 11 0.01 0.02 0.82 23 STIGIO STIG-10-16 POWR 33. 4. 12. 4. 748. 0. 9. 640. 1735. 508. 0. -5383. 4830, RESIDUAL -553. 0.22 0.36 0.13 23 STIG10 STIG-10-16 HEAT 1343. 4830. ο. 780. 11 0.01 0.02 0.82 36 8 744. 0. 780. RESIDUAL 24 STIG1S STIG-1S-16 POWR 11. 12 0. -3143. -107. 0.34 0.21 24 STIGIS STIG-15-16 HEAT 897. 3036. 640. 1018. 298. 3036. RESIDUAL 0.23 1 0.01 0.02 0.82 781. 3. 749. ٥. 781. RESIDUAL 25 DEADV3 DIESEL-ADV POWR 32. 12. 4. 0. 9. 5990. RESIDUAL -917. 0.22 0.37 0.11 25 DEADV3 DIESEL-ADV HEAT 1708. 5990. 640. 2222. 651. 0. -6907. 1 0.02 0.02 0.83 32. 8. 4. 743. · 0. 776. RESIDUAL 776. 26 DEADV2 DIESEL-ADV POWR 15. 12. 0. 2520. RESIDUAL -364. 0.31 0.37 0.25 2520. 640. 935. 274. 0. -2884. 26 DEADY2 DIESEL-ADV HEAT 1155. 0.03 0.02 0.83 770. RESIDUAL 770. 27 DEADVI DIESEL-ADV POWR 20. 32. 13. 12. 4. 738. 0. 27 DEADVI DIESEL-ADV HEAT 1014. 1637. 640. 607. 178. 0. -1860. 1637. RESIDUAL -224. 1 0.38 0.37 0.39 0. 780. 1 0.01 0.02 0.82 780. RESIDUAL 28 DEHTPM ADV-DIESEL POWR 10. 57. 25 12. 723. 0. 28 DEHTPM ADV-DIESEL HEAT 263. 1433. 640. 302. 88. -906. 1433. RESIDUAL 527. 0.16 0.21 0.45 783. 1 0.01 0.02 0.82 7. 783. DISTILLA 33. 2. 12. 4. 750. 0. 29 DESGAS DIESEL-SGA POWR a. -1088. 0.18 0.36 0.07 29 DESGAS DIESEL-SGA HEAT 1879. 8786. 640. 3172. 930. 0. -9874. 8786. DISTILLA 1 0.01 0.02 0.82 783. 783. RESIDUAL 7. 33. 2. 12. 4. 0. 29 DESGAS DIESEL-SGA POWR 8786. RESIDUAL -1088. 1 0.18 0.36 0.07 29 DESGAS DIESEL-SGA HEAT 1879. 8786. 3172. 930. 0. -9874. 640

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28731 MW 3.50 PROCESS MILLIONS BTU/HR 640.0 PROCESS TEMP(F) 598. PRODUCT AMMONIA-SYNT HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.019 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU:10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ - FACTR FACTR NO-NET USED USED POWER ELECT BOILR USED USED UTILIT HEAT SITE 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 13. 33. 7. 12. 4. 744. .0. 777.DISTILLA 777. 1 0.02 0.02 0.82 308. 30 DESGA2 DIESEL-SGA HEAT 1126. 2909. 640. 1050. 0. 3244. 2909. DISTILLA -335. 0.28 0.36 0.22 30 DESGA2 DIESEL-SGA POWR 744. 777. 0.02 0.02 0.82 13. 33. 7. 12. 4. ۵. 777. RESIDUAL 30 DESCA2 DIESEL-SCA HEAT Ω. 1126. 2909. 640. 1050. 308. 0. -3244.2909, RESIDUAL -335. 0.28 0.36 0.22 31 DESCA1 DIESEL-SCA POWR 33. 13. 12 737. ۵. 770. DISTILLA 770. 0.03 0.02 0.83 31 DESGA1 DIESEL-SGA HEAT 169. 0. -1763. 0. 957. 1596. 640. 576. 1596. DISTILLA -167. 0.37 0.36 0.40 31 DESGA1 DIESEL-SGA POWR 0. 20. 33. 13. 12. 4. 737. ٥. 770. RESIDUAL 770. 1 0.03 0.02 0.83 0. -1763. 31 DESGA1 DIESEL-SGA HEAT 957. 1596 640. 576. 169 1596, RESIDUAL -167. 0.37 0.36 0.40 0. 32 GTSGAD GT-HRSG-10 POWR 0. 18. 41. 19. 12. 4. 731. 772.DISTILLA 772. 10 0.02 0.02 0.83 32 GTSOAD GT-HRSG-10 HEAT ٥. 630. 1407. 640. 411. 120. 0. -1246. 1407. DISTILLA 160. 0 0.31 0.29 0.45 33 GTRAO8 GT-85RE-08 POWR 0. 12. 33. 7. 12. 4 745. 0. 778. DISTILLA 778. 10 0.01 0.02 0.82 33 GTRAOB GT-65RE-08 HEAT ٥. 1118. 3161. 640. 1128. 331. 0. -3489. 3161.DISTILLA -328. 0 0.26 0.36 0.20 34 GTRA12 GT-85RE-12 POWR 8. 12. 744. 0. 777.DISTILLA 777. 10 0.02 0.02 0.82 13 2710. 640. 970. 284. 0. -2994. 2710. DISTILLA -284. 0 0.28 0.36 0.24 34 GTRA12 GT-85RE-12 HEAT 1075. ٥. 35 GTRA16 GT-85RE-16 POWR 0. 14. 34. ٩. 12. 4. 742. Ω 776. DISTILLA 776. 10 0.02 0.02 0.82 0 0.29 0.35 0.27 35 GTRA16 GT-65RE-16 HEAT 829. 243. 0. -2552. 2374. DISTILLA -178. 0. 968. 2374 640. 36 GTR208 GT-60RE-08 POWR 0. 12. 4. 738. 0. 775. DISTILLA 775. 10 0.02 0.02 0.83 15. 37. 13. 0. -1856. 1893. DISTILLA 0 0.28 0.32 0.34 36 GTR208 GT-60RE-08 HEAT 0. 753. 1893. 640. 606. 178. 37. 739. 775. DISTILLA 775. 10 0.02 0.02 0.83 37 GTR212 GT-60RE-12 POWR 0. 15. 36. 12. 12. 4. 0. 0. -2007. 0 0.29 0.33 0.32 37 GTR212 GT-60RE-12 HEAT 815, 1983. 640. 654. 192. 1983.DISTILLA -25. 38 GTR216 GT-60RE-16 POWR 740. 775. DISTILLA 775. 10 0.02 0.02 0.83 15. 35. 11. 12. 0. -2091. 0 0.30 0.34 0.32 38 GTR216 GT-60RE-16 HEAT 860. 2021. 640. 681. 200. 2021. DISTILLA -70. 780. DISTILLA 780. 10 0.01 0.02 0.82 39 GTRW08 GT-85RE-08 POWR 10. 34. 6. 12. 4. 746. ٥. Ω. 0. -3867. 3559. DISTILLA -307. 0 0.24 0.35 0.18 39 GTRW08 GT-85RE-08 HEAT 1098. 3559. 640. 1249. 366. 12. 745. 0. 778. DISTILLA 778. 10 0.02 0.02 0.82 40 GTRW12 GT-85RE-12 POWR O. 12. 33. 7. 4. 40 GTRW12 GT-85RE-12 HEAT 0. 1183. 3124. 640. 1137. 333. 0. -3516. 3124. DISTILLA -392. 0 0.27 0.36 0.20

1

PAGE 184

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

PAGE 185

I&SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28731 MW 3.50 PROCESS MILLIONS BTU/HR 640.0 PROCESS TEMP(F) 598. PRODUCT AMMONIA-SYNT HOURS PER YEAR 8400.

POWER TO HEAT RATIO 0.019 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU-10**6= WASTE FUEL COGEN COGEN COGEN AUX COGEN UTILIT TOTAL SITE NET= FESR POWER HEAT FAIL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED POWER ELECT BOILR USED SITE USED UTILIT HEAT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR 13. 33. 777. DISTILLA 777. 8. 12. 4. 744. ٥. 10 0.02 0.02 0.82 41 GTRW16 GT-85RE-16 HEAT 1063. 957. 280. 0. 2680. 640. 0. -2953. 2680. DISTILLA -273. 0 0.28 0.36 0.24 42 GTR308 GT-60RE-08 POWR 10. 39. 9. 12. 742. 781 DISTILLA 781. 10 0.01 0.02 0.82 42 GTR308 GT-60RE-08 HEAT 0. 670. 2651. 640. 822. 241. 0. -2531. 2651. DISTILLA 120. 0.20 0.31 0.24 43 GTR312 GT-60RE-12 - SWR 15. 35. 11. 12. 741. ٥. 775.DISTILLA 775. 10 0.02 0.02 0.83 2123. 43 GTR312 GT-60RE-12 HEAT 899. 640. 726. 213. 0. -2231. 2123. DISTILLA -109. 0 0.30 0.34 0.30 44 GTR316 GT-60RE-16 POWR 15. 35. C. 11. 12. . 4. 740. ٥. 776. DISTILLA 776. 10 0.02 0.02 0.83 44 GTR316 GT-60RE-16 HEAT 877. 2095 640. 710. 208 0. -2182. 2095. DISTILLA -87. 0 0.30 0.34 0.31 45 FCPADS FUEL-CL-PH POWR 12. 5. 778. 0 0.02 0.02 0.82 31. 12. 4. 747. 0. 778. DISTILLA 45 FCPADS FUEL-CL-PH HEAT ٥. 1459. 3765. 640. 1431. 419. 0. -4433. 3765.DISTILLA -669. 0.28 0.38 0.17 46 FCMCDS FUEL-CL-MO POWR 774. DISTILLA 774. 0. 16. 29. 7. 12. 4. 745. 0. 10 0.02 0.02 0.83 46 FCMCDS FUEL-CL-MC HEAT 0. 1543. 2747. 640. 1132. 332. 0. -3499. 2747. DISTILLA -752. 0 0.36 0.41 0.23

PRINTING SYSTEM-

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

FUEL ENERGY SAVED BY PROCESS AND ECS

REPORT 5.1

INDUSTRY 28741 MW 4.00 PROCESS MILLICHS BTU/HR 92.0 PROCESS TEMP(F) 353. PRODUCT PHOS-ACID+SU HOURS PER YEAR 7900.

POWER TO HEAT RATIC 0.148 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= UTILIT TOTAL SITE COGEN COGEN COGEN AUX FAIL FESR POWER HEAT WASTE FUEL NET= SAVED= FUEL PROCES PROCES MW PROCES FUEL , FUEL . FUEL TOTAL+ FACTR FACTR FUEL USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COOON 0. 0. 0. 0. 0. ٥. 108. 43. 108. COAL-AFB 151. 0 0. 0.09 0.61 1 STM141 STM-TURB-1 POWR 27. 79. 124. RESIDUAL 10 0.18 0.11 0.74 O. 54. 14. 45. n. 124. 136. RESIDUAL 105. 1 STM141 STM-TURB-1 HEAT 0. 46. 136. 92. 23. ٥. -31. 10 0.25 0.17 0.68 27. 79. 45. ٥. 124. COAL-FOD 10 0.18 0.11 0.74 1 STM141 STM-TURB-1 POWR 0. 54. 14. 124. 1 STM141 STM-TURB-1 HEAT 46. 136. 92. 23. 7. 0. -31. 136. COAL-FGD 105. 10 0.25 0.17 0.68 1 STM141 STM-TURB-1 POWR Ö. 27. 79. 54. 14. 45. D. 124. COAL-AFB 124. 10 0.18 0.11 0.74 4. 1 GTM141 STM-TURB-1 HEAT 46. 136. 92. 23. 7. 0. -31. 136. COAL-AFB 105. 10 0.23 0.17 0.68 ٥. 10 0.18 0.11 0.74 2 STM088 STM-TURB-8 POWR 27. 98. 70. 26. 0. 124. RESIDUAL 124. 14. 2 STMC88 STM-TURB-8 HEAT 35. 129. 92. 18. -13. 129 RESIDUAL 116. 0 0.21 0.14 0.75 124.COAL-FGD 124. 10 0.18 0.11 0.74 2 STM088 STM-TURB-8 POWR Ω. 27. 98. 70. 14. 26. 0. 2 STM088 STM-TURB-8 HEAT 129. COAL-FOD 0 0.21 0.14 0.71 35. 129. 92. 18. 0. -13. 116. Ω 2 STM088 STM-TURB-8 POWR 0. 27. 98. 70. 14. 4. 26. ٥. 124. COAL-AFB 124. 10 0.18 0.11 0.74 0 0.21 0.14 0.71 2 STM088 STM-TURB-8 HEAT ٥. -13. 129. COAL-AFB 116. 0. 35. 129. 92. 18. 5. 125. COAL-PFB 125. 10 0.17 0.11 C.74 3 PFBSTM PFB-STMTB- POWR 26. 58. 67. O. 35. 14. 3 PFBSTM PFB-STMTB- HEAT 151. COAL-PFB 82. 10 0.31 0.24 0.61 ٥. 68. 151. 92. 36. 10. 0. -69. 0. 125. RESIDUAL 125. 10 0.17 0.11 0.74 4 TISTMT TI-STMTB-1 POWR 26. 48 77. -103. 164. RESIDUAL 61. 0 0.35 0.28 0.56 4 TISTMT TI-STMTB-1 HEAT 0. 89. 164. 92. 47. 14. ٥. 10 0.17 0.11 0.74 4 TISTMT TI-STMTB-1 FOWR 26. 77. 0. 125. COAL 125. 0. 48. 27. 14. 164. COAL 61. 0 0.35 0.28 0.56 4 TISTMT TI-STMTB-1 HEAT 89. 164. 92. 47. 14. 0. -103. 0 0.13 0.10 0.70 97. 34. 0. 131. RESIDUAL 131. 5 TIHRSG THERMIONIC POWR 20. 63. 14. 4. 5 TIHRSG THERMIONIC HEAT 29. 142. 92. 20. 6. ٥. -20. ₹42. RESIDUAL 122. 0 0.17 0.14 0.65 131. 0 0.13 0.10 0.70 131. COAL 5 TIHRSG THERMIONIC POWR 0. 20. 97. 63. 14. 4. 34. 0. 0 0.17 0.14 0.65 5 TIHRSG THERMIONIC HEAT 0. 29. 142. 92. 20. 0. -20. 142. COAL 122. 132. DISTILLA 132. 0 0.13 0.10 0.70 6 STIRL STIRLING-1 POWR 0. 19. 54. 25. 14. 78. 0. 6 STIRL STIRLING-1 HEAT O. 69. 194. 92. 49. 15. 0. -112. 194. DISTILLA 82. 0 0.26 C.26 0.47

PAGE TOS

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 187

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28741 MW 4.00 PROCESS MILLIONS BTU/HR 92.0 PROCESS TEMP(F) 353. PRODUCT PHOS-ACID+SU HOURS PER YEAR 7900.

FOWER TO HEAT RATIO 0.148 UTILITY FUEL COAL WASTE FUEL EQV BTUx10xx6= Q. HOT WATER BTUX10xx6= WASTE FUEL COGEN COGEN COGEN AUX SITE NET= FESR POWER HEAT UTILIT TOTAL FAIL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR ٥. 19. 54. 25. 78. O. 132. RESIDUAL 132. 0 0.13 0.10 0.70 14. 4. 6 STIRL STIRLING-1 HEAT Ω. 69. 194. 92. 49. 15. α. -112. 194, RESIDUAL 82. 0 0.26 0.26 0.47 132. COAL 6 STIRL STIRLING-1 POWR 19. 54. 132. 0 0.13 0.10 0.70 0. 25. 14. 4. 78. 0. 6 STIRL STIRLING-1 HEAT 0. 69, 194. 92. 49. 15. 0. -112. 194.COAL 82. 0 0.26 0.26 0.47 7 HEGT85 HELIUM-GT- POWR 7. 43. 101. 144. COAL-AFB 144. 10 0.05 0.09 0.64 14. 7 HEGT85 HELIUM-GT- HEAT 0. 110. 668. 92. 214. 63. Ο. -627. 668, COAL-AFB 41. 0 0.14 0.32 0.14 8 HEGT60 HELIUM-GT- POWR 9. 53. 16. 89. 0. 142. COAL-AFB 142. 10 0.06 0.10 0.65 Ω. 14. 4. 8 HEGT60 HELIUM-GT- HEAT 0. 50. 304. 92. 79. 23. -203. 304. COAL-AFB 101. 10 0.14 0.26 0.30 9 HEGTOO HELIUM-GT- POWR 0. 10. 78. 38. 14. 4. 63. 0. 141. COAL-AFB 141. 10 0.07 0.10 0.65 9 HEGTOO HELIUM-GT- HEAT 0. 24. 187. 92. 33. 10. 0. -60. 187. COAL-AFB 127. 10 0.11 0.18 0.49 10 FCMCCL FUEL-CL-MO POWR 23. 45. 21. 83. 0. 128. COAL 128. 0. 14. 4. 10 0.15 0.11 0.72 10 FCMCCL FUEL-CL-MO HEAT 0. 99. 194. 92. 59. 17. ٥. -142. 194.COAL 52. 10 0.34 0.30 0.47 11 FCSTCL FUEL-CL-ST POWR 24. 34. 13. 93. Ω. 127. COAL 127. 10 0.16 0.11 0.72 14. 11 FCSTCL FUEL-CL-ST HEAT n 169. 243. 92. 37. 28. n -260. 243. COAL -18. 10 0.41 0.40 0.38 12 IGGTST INT-GAS-GT POWR 45. 87. ٥. 132. COAL 132. 10 0.13 0.10 0.70 ٥. 19. 18. 14. 4. 12 IGGTST INT-GAS-GT HEAT 96. 226. 92. 69. 20. Ο. -172. 226, COAL 54. 10 0.30 0.30 0.41 0. 13 GTSOAR GT-HRSG-10 POWR 47. 20. 85. 0. 132. RESIDUAL 132. 10 0.13 0.10 0.70 0. 19. 14. 4. 13 GTSOAR GT-HRSG-10 HEAT -152. 215. RESIDUAL 0 0.29 0.29 0.43 0. 88. 215. 92. 62. 18. Ο. 63. 14 GTACOS GT-HRSG-08 POWR 23. 51. 78. 128, RESIDUAL 128. 10 0.15 0.11 0.72 26, 14. 4. 0. 0. 14 GTACOB GT-HRSG-08 HEAT 0. 80. 179. 92. 48. 14. ٥. -108. 179. RESIDUAL 71. 0 0.31 0.27 0.51 10 0.15 0.11 0.72 15 GTAC12 GT-HRSG-12 POWR 22 45. 14. 4. 129. RESIDUAL 129. 15 GTAC12 GT-HRSG-12 HEAT 99. 198. 92. 60. 0. -146. 198, RESIDUAL 52. 0.33 0.31 0.46 18. 129. RESIDUAL 129. 10 0.15 0.11 0.71 16 GTAC16 GT-HRSG-16 POWR 22. 42. 18. 4. 87. 0. 14. 16 GTAC16 GT-HRSG-16 HEAT 110. 212. 92 68. 20. 0. -171. 212. RESIDUAL 41. 0.34 0.32 0.43 17 GTWC16 GT-HRSG-16 POWR 20. 43. ٥. 131 RESIDUAL 131. 10 0.13 0.10 0.70 0. 18. 14. 4. 38. 17 GTWC16 GT-HRSG-16 HEAT 105. 227. 92. 72. 21. 0. -181. 227. RESIDUAL 46. 0 0.32 0.32 0.40

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 188

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28741 MW 4.00 PROCESS MILLIONS BTU/HR 92.0 PROCESS TEMP(F) 353. PRODUCT PHOS-ACID+SU HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.148 COAL UTILITY FUEL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**5 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR 0. 20. 35. 10. 14. 4. 96. ٥. 131. RESIDUAL 131. 10 0.13 0.10 0.70 18 CC1626 GTST-16/26 HEAT 0. 177. 310. 92. 121. 36. 0. -336. 310. RESIDUAL -26. 0 0.36 0.39 0.30 19 CC1622 GTST-16/22 POWR 21. 35. 14. 95. 130. RESIDUAL 130. 10 0.14 0.10 0.71 ٥. 11. 4. 0. 19 CC1622 GTST-16/22 HEAT 0. 167. 283. 92. 109. 32. 0. -299. 283. RESIDUAL -16. 0 0.37 0.39 0.33 20 CC1222 GTST-12/22 POWR 95. 130. RESIDUAL 130. 10 0.14 0.11 0.71 12. 14. O. 20 CC1222 GTST-12/22 HEAT 0. 168. 280. 92. 109. 32. 0. -298. 280. RESIDUAL -17. 0.37 0.39 0.33 21 CC0822 GTST-08/22 POWR 0. 23. 37. 14. 14. 4. 91. Q. 128.RESIDUAL 128. 10 0.15 0.11 0.72 21 CC0822 GTST-08/22 HEAT 144. 237. 92. 87. 26. 0. -231. 237. RESIDUAL 6. 0 0.38 0.37 22 STIG15 STIG-15-16 POWR 10 0.05 0.10 0.64 0. 7. 36. 0. 14. 4. 108. ø. 144 RESIDUAL 144. 22 STIG15 STIG-15-16 HEAT ٥. 1457. 7077. 92. 2696. 790. 0. -8383. 7077, RESIDUAL -1306. 0 0.17 0.38 0.01 0. 23 STIG10 STIG-10-16 POWR 38. 5. 14. 102. ٥. 140. RESIDUAL 140. 10 0.07 0.10 0.66 11. Δ 23 STIG10 STIG-10-16 HEAT 0. 193. 694. 92. 249. 73. n. -737. 694. RESIDUAL -42. 0 0.22 0.36 0.13 24 STIG1S STIG-1S-16 POWR ٥. 12. 14. 98. n. 139. RESIDUAL 139. 10 0.08 0.10 0.66 41 9. 24 STIG1S STIG-1S-16 HEAT 0. 129. 436. 92. 146. 43. 0, ~415. 436. RESIDUAL 0 0.23 0.34 0.21 22. 37. 25 DEADV3 DIESEL-ADV POUR 0. 15. 8. 14. 4. 99. 0. 136. RESIDUAL 136. 0.10 0.10 0.68 25 DEADV3 DIESEL-ADV HEAT 0. 178. 437. 92. 162. 48. 0. -464. 437. RESIDUAL -27. 0.29 0.37 0.21 26 DEADV2 DIESEL-ADV POWR 0. 17. 37. . 9. 14. 4. 97. 0. 134. RESIDUAL 134. 1 0.11 0.10 0.69 26 DEADV2 DIESEL-ADV HEAT 166. 362. 92. 134. 39. -377. 362. RESIDUAL -15, 0.31 0.37 0.25 27 DEADV1 DIESEL-ADV POWR α. 23. 37. 14. 14. 4. 91. ۵. 128. RESIDUAL 128. 0.15 0.11 0.72 27 DEADV1 DIESEL-ADV HEAT 146. 235. 92. 87. 26. -230. 235. RESIDUAL 5. 0.38 0.37 0.39 28 DEHTPM ADV-DIESEL POWR 22. 41. 18. 14. 87. 0. 129. RESIDUAL 129. 0.15 0.11 0.72 28 DEHTPM ADV-DIESEL HEAT 0. 116. 214. 92. 71. 21. 0. -180. 214. RESIDUAL 35. 0.35 0.33 0.43 29 DESGAS DIESEL-SGA POWR n. 13. 38. 7. 14. 4. 100. 0. 138. DISTILLA 138. Ω 0.08 0.10 0.67 521. DISTILLA 29 DESGAS DIESEL-SGA HEAT Ο. 175. 521. 92. 188. 55. 0. -545. -24. 0.25 0.36 0.18 29 DESGAS DIESEL-SGA POWR 13. 38. 7. 14. 100. 0. 138. RESIDUAL 138. 0.08 0.10 0.67 ٥. 4. 29 DESGAS DIESEL-SGA HEAT 0. -545. 521. RESIDUAL -24. 0 0.25 0.36 0.18 175. 521. 92. 188. 55. Ω.

NEYWELL PAG

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28741 MW 4.00 PROCESS MILLIONS BTU/HR 92.0 PROCESS TEMP(F) 353. PRODUCT PHOS-ACID+SU HOURS PER YEAR 7900.

1

PAGE 189

POWER TO HEAT RATIO 0.148 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU-10**6= WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL TOTAL+ FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 136. DISTILLA 30 DESGA2 DIESEL-SGA PONR ٥. 15. 38. 8. 14. 4. 98. 0. 136. 0.10 0.10 0.68 30 DESGA2 DIESEL-SGA HEAT ٥. 418. 92. -429, 418. DISTILLA 162. 151. 44. ٥. -11. 0.28 0.36 0.22 30 DESGAZ DIESEL-SGA POWR ٥. 15. 38. 14. 136. RESIDUAL 136. 0.10 0.10 0.68 8. 4. 98. 0. 30 DESGA2 DIESEL-SGA HEAT Ω. 162. 418. 92. 151. 44. 0. -429. 418. RESIDUAL -11. 0.28 0.36 0.22 31 DESGA1 DIESEL-SGA POWR 23. 38. 15. 14. 90. 0. 128. DISTILLA 128. 0.15 0.11 0.72 4. 31 DESGA1 DIESEL-SGA HEAT 138. 229. 92. -216. 229. DISTILLA 0.37 0.36 0.40 n 83 13. 0.15 0.11 0.72 31 DESGA1 DIESEL-SGA POWR ٥. 23. 38. 15. 14. 90. 0. 128, RESIDUAL 128. 4. 1 31 DESGA1 DIESEL-SGA HEAT 138. 229 92. 83. 24. -216. 229, RESIDUAL 13. 0.37 0.36 0.40 32 GTSGAD GT-HRSG-10 POWR 21. 47. 22. 83. ٥. 130. DISTILLA 130. 10 0.14 0.11 0.71 ٥. 14. 4. 0.29 0.46 32 GTSOAD GT-HRSG-10 HEAT 199. DISTILLA 0.31 0. 91. 199. 92. 58. 17. 0. -139. 60. n 33 GTRA08 GT-85RE-08 POWR 0.13 0.10 0.70 0. 20. 38. 13. 14. 4. 93. 0. 131.DISTILLA 131. 10 269. DISTILLA 0 0,34 0.36 0.34 33 GTRAO8 GT-85RE-08 HEAT 28. -258. 12. 0. 139. 269. 92. 96, 0. 10 0.13 0.10 0.70 131. 34 GTRA12 GT-85RE-12 POWR ٥. 20. 38. 13. 14. 93. 0. 131.DISTILLA 34 GTRA12 GT-85RE-12 HEAT 0. 139. 262. 92. 94. 28. -251. 262. DISTILLA 12. 0 0.35 0.36 0.35 35 GTRA16 GT-85RE-16 POWR 20. 39. 14. 14. 91. 0. 130. DISTILLA 130. 10 0.14 0.10 0.71 4. 35 GTRA16 GT-65RE-16 HEAT 251 92. 88. 26. -231 251. DISTILLA 20. 0 0.34 0.35 0.37 131. 0.10 0.70 20. 43. 0. 131.DISTILLA 131. 10 0.13 36 GTR208 GT-60RE-08 PGWR ٥. 17. 14. 4. 88. 227. DISTILLA 0.32 0.32 0.41 36 GTR208 GT-60RE-08 HEAT 227. 92. 73. 21. 0. -184. 43. Λ. 108. 131.DISTILLA 131. 0.13 0.10 0.70 37 GTR212 GT-60RE-12 POWR 20. 41. 16. 14. 89. 0. 10 0. 4. 37 GTR212 GT-60RE-12 HEAT 236. 92. 78. 23, -201, 236. DISTILLA 35. O 0.33 0.33 0.39 0. 116. 0. n 130. DISTILLA 130. 10 0.14 0.10 0.71 38 GTR216 GT-60RE-16 POWR 21 40 90 16. 14 237. DISTILLA 0.34 0.34 0.39 38 GTR216 GT-60RE-16 HEAT ٥. 121. 237. 92. 80. 23. 0. -207. 30. 0. 134. DISTILLA 134. 10 0.11 0.10 0.69 39 GTRW08 GT-35RE-08 POWR O. 17. 39. 11. 14. 4. 95. 327. DISTILLA -316. 0.30 0.35 0.28 39 GTRWOS GT-85RE-08 HEAT 0. 140. 327. 92. 115. 34. 0. 11. 0 0. 133. DISTILLA 133. 0.12 0.10 0.69 40 GTRW12 GT-85RE-12 POWR 0. 18. 37. 14. 4. 96. 11. -322. 321. DISTILLA -1. 0 0.32 0.36 0.29 40 GTRV12 GT-85RE-12 HEAT 152. 321. 92. 117. 34. 0.

.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28741 MW 4,00 PROCESS MILLIONS BTU/HR 92.0 PROCESS TEMP(F) 353. PRODUCT PHOS-ACID+SU HOURS PER YEAR 7900.

PAGE 190

POWER TO HEAT RATIO 0,148 O. HOT WATER BTU*10**6= UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 0. WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL. SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED USED USED HEAT POWER ELECT BOILR USED SITE UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR ٥. 133. DISTILLA 133. 10 0,12 0.10 0.69 38. 12. 95. 41 GTRW16 GT-85RE-16 POWR ٥. 18. 14. 4. 41 GTRW16 GT-85RE-16 HEAT Ο. 143. 303. 92. 108. 32. 0, -296. 303. DISTILLA 8. 0 0.32 0.36 0.30 0. 135. DISTILLA 135. 10 0.10 0.10 0.68 42 GTR308 GT-60RE-08 POWR Ο. 15. 44. 14. 14. 4. 91. 42 GTR308 GT-60RE-08 HEAT 0. 99. 283. 92. 88. 26. Ο. -231. 283. DISTILLA 51. 0 0.26 0.31 0.33 43 GTR312 GT-60RE-12 POWR 40. 133. DISTILLA 133. 10 0.12 0.10 0.69 18. 13. 14. 93. 43 GTR312 GT-60RE-12 HEAT 0. 127. 276. 92. 94. 28. 0. -252. 276: DISTILLA 24. 0 0.32 0.34 0.33 133. 10 0.12 0.10 0.69 44 GTR316 GT-60RE-16 POWR 18. 40. 14. 14. 4. 92. ٥. 133. DISTILLA O 44 GTR316 GT-60RE-16 HEAT 0. 125. 274. 92. 93, 27. 0. -248. 274. DISTILLA 26. 0 0.31 0.34 0.34 45 FCPADS FUEL-CL-PH POWR 36. 101. 0. 137. DISTILLA 137. 0 0.09 0.10 0.67 Ο. 14. 6. 14. 4. 45 FCPADS FUEL-CL-PH HEAT 210. 206. -600. 541. DISTILLA -59. 0 0.28 0.38 0.17 0. 541. 92. 60, 0. 10 0.12 0.10 0.70 46 FCMCDS FUEL-CL-MO POWR 99. 0. 132. DISTILLA 132. 0. 19. 33. 8. 14. 4. 0 0.36 0.41 0.23 46 FCMCDS FUEL-CL-MO HEAT 222. 395. 92. 163. 48. Ο. -466. 395. DISTILLA -71.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY DATE 06/06/79

191

PAGE

0.25 POWER HEAT FACTR FACTR 0.35 0.30 0.20 0.20 0.39 0.34 0.39 0.41 0.41 0.21 0.21 0.21 0.17 0.14 0.14 0.14 0.17 0,23 0.28 0.28 0.14 0.14 2 8 7900. 00 Ö 0. -0.22 0.15 -0.52 -0.22 0.15 -0.22 0.15 0.11 0.26 -0.47 -0.52 0.26 0.10 0.23 0.11 -0.52 YEAR WATER BTU×10**6= 000 00 00 00 20 00 00 00 00 00 00 00 CARBON-BLACK HOURS PER NET= TOTAL+ UTILIT 10**6 BTU/HR 101. 101. 59. 59. 66. 81. 56. 56, 81. 56. 59 49 49. 97. 59. 200 24. RESIDUAL 81. RESIDUAL 29. RESIDUAL **19** 81. CGAL-FBD 29. CGAL-FBD 81. COAL-AFB 29. COAL-AFB 101.CGAL-F0D 28.CGAL-F0D 01.RESIDUAL 28.RESIDUAL 101. COAL-AFB 28. COAL-AFB 59. COAL-PFB 33. COAL-PFB 97. RESIDUAL 30. RESIDUAL 51. DISTILLA 43. DISTILLA 49. RESIDUAL 36. RESIDUAL SITE FUEL USED 49. CGAL 36. CGAL 97. CGAL 30. CGAL ó UTILIT TOTAL S S FUEL FUEL I USED SITE 1 10xx6 10xx6 PRODUCT BTUx10xx6= 43. 31. 3.0 20. 27. 9. ဝ ၅ 0 -20.6 29. 0 1 O 298, **ECS*** AUX PROCES BOILR 10**6 BTU/HR **FUEL ENERGY SAVED BY PROCESS AND 4.0 HEAT RATIO 0.682 -61. 0. -41. -53. -44. -61. 91-53. o -9. 40 90 -61 20.0 PROCESS TEMP(F) 4 -4. -. COGEN 4 -0.4-MW ELECT 4 4 4 4 (1 4 6 46 40 PROCES PROCES PHEAT POWER E 10**6 10**6 <u>4</u> 4 <u>4</u> 4. 4 4 047 <u>4</u> 0 4 0 4 4 <u>4</u> 00 40 40 44 40 10 POWER 20.00 20, 55 20. 72. 22.08 36. 27. 65 20, 65. 20.00 202 BTU/HR FUEL USED 10**6 BTU/HR .0. 81. 101. 81. 81. 29. 28. 101 97. 30. 97. 30. 59, 36 49 51 MILLIGNS SAVED= I NG-NET 10**6 BTU/HR 10. 0.4.0 31 -14. 10. -35. -35. -35. 7. -31. ထည် 19. 8 6 5 PROCESS FUEL USED 10**6 BTU/HR 00 000 00 0 0 00 o o 00 00 o o 0 0 00 00 WASTE 8 POWR HEAT POWR HEAT POWR HEAT POWR HEAT N G C G G G N STM-TURB-1 PGWR STM-TURB-1 HEAT POWR HEAT COAL THERMIONIC POWR STIRLING-1 POWR STIRLING-1 HEAT IRSE PEG ADV DESIGN ENGR 4 STM-TURB-8 STM-TURB-8 STM-TURB-8 STM-TURB-8 THERMI ONIC THERMI ONIC STM-TURB-1 STM-TURB-1 STM-TURB-1 STM-TURB-1 STM-TURB-8 STM-TURB-8 PFB-STMTB-PFB-STMTB-4 TISTMT TI-STMTB-1 4 TISTMT TI-STMTB-1 TI-STMT8-1 TI-STMT8-1 ξ UTILITY FUEL 28951 ONGCGN STM141 STM141 STM088 STM088 STM088 STM088 STM088 STM088 PFBSTM PFBSTM TIHRS6 TIHRS6 STM141 STM141 STM141 STM141 TISTMT TIHRS6 TIHRS6 INDUSTRY STIRL 0 -- 0 00 N N 4 0 ოო n n വവ ဖြ

PAGE PRINTING SYSTEM

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 192

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 28951 MW 4.00 PROCESS MILLIONS BTU/HR 20.0 PROCESS TEMP(F) 298. PRODUCT CARBON-BLACK HOURS PER YEAR 7900,

POWER TO HEAT RATIO 0.682 WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= UTILITY FUEL COAL NET= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE FAIL FESR POWER HEAT TOTAL+ PROCES FUEL FUEL FACTR FACTR FUEL SAVED= FUEL PROCES PROCES MW FUEL USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 51. RESIDUAL 0 0.23 0.27 0.39 6 STIRL STIRLING-1 POWR 24. 0. 51. 0. 15. 51. 14. 4 -4 6 STIRL STIRLING-1 HEAT 43. 20. 12. 3. Ω. 7. 43. RESIDUAL 50. 0 0.25 0.23 0.40 ٥. 16. ۵. 51.COAL 51. 0 0.23 0.27 0.39 6 STIRL STIRLING-1 POWR 15. 51. 24. 14. 4. ٥. -4 Q. 43. COAL 50. 0 0.25 0.23 0.40 6 STIRL STIRLING-1 HEAT 16. 43. 20. 12. 3. 7. 55. COAL-AFB 55. 10 0.16 0.25 0.36 7 HEGT85 HELIUM-GT- POWR 43. 9. 14. 13. 0. 11. 10 0.20 0.32 0.21 7 HEGT85 HELIUM-GT- HEAT 24. 94. 20. 30. 9. Ω. -51. 94. COAL-AFB 42. 8 HEGTEO HELIUM-GT- POWR 12. 53. 18. 14. 4. 2. 0. 55. COAL-AFB 55. 10 0.17 0.25 0.37 n 8 HEGT60 HELIUM-GT- HEAT 57. 20. 15. ٥. 57. COAL-AFB 54. 10 0.18 0.26 0.35 13. 4. -4. 73. 39. -23. ۵. 78. COAL-AFB 78. 10 -0.17 0.18 0.26 9 HEGTOO HELIUM-GT- POWR 0. -11. 14. 4. 7. 21. 40. COAL-AFB 60. 10 0.09 0.12 0.33 9 MESTOO HELIUM-GT- HEAT 0. 6. 40. 20. 2. Ω. 45. COAL 45. 10 0.32 0.30 0.45 10 FCMCCL FUEL-CL-MO POWR 21. 45. 21. 14. -2. ٥. 0. 4. 10 FCMCCL FUEL-CL-MO HEAT 20. 13. ٥. 42. COAL 45. 10 0.32 0.29 0.45 n 21. 42. 4. 3. 10 0.36 0.32 0.47 11 FCSTCL FUEL-CL-ST POWR 42. COAL 42. 24. 34. 13. 14. 0. 11 FCSTCL FUEL-CL-ST HEAT 20. 21. ٥. -23. 52. COAL 30. 10 0.41 0.40 0.38 36. 52. 6. 10 0.29 0.29 0.43 4. 2. ٥. 47.COAL 47. 12 IGGTST INT-GAS-GT POWR 0. 19. 45. 19. 14. 49. COAL 46. 10 0.30 0.30 0.41 12 IGGTST INT-GAS-GT HEAT 0. 21. 49. 20. 15. 4. 0. -3. 47. RESIDUAL 10 0.29 0.29 0.42 13 GTSGAR GT-HRSG-10 POWR 0. 19. 47. 21. 14. 4. -1. ٥. 47. ٥. 2. 45. RESIDUAL 47. 10 0.29 0.28 0.43 13 GTSGAR GT-HRSG-10 HEAT 13. 4. ٥. 19. 45. 20. 10 0.24 0.27 0.40 51. -7. 0. 51. RESIDUAL 51. 14 GTACO8 GT-HRSG-08 POWR 0. 16. 26. 14. 4. 10. 39. RESIDUAL 49. 10 0.26 0.22 0.41 11. 3. O. 14 GTACOB GT-HRSG-08 HEAT 17. 39. 20. 45. 10 0.32 0.31 0.45 15 GTAC12 GT-HRSG-12 POWR 21. 45. 21. 14. 0. 45. RESIDUAL 0. 43. RESIDUAL 10 0.33 0.29 0.45 13. 4. 0. 2. 45. 15 GTAC12 GT-HRSG-12 HEAT 22. 43. 20. 10 0.34 0.31 0.46 22. 42. 19. 14. 4. 2. ٥. 44. RESIDUAL 44. 16 GTAC16 GT-HRSG-16 POWR 0. 16 GTAC16 GT-HRSG-16 HEAT 15. 4. ٥. -3. 45. RESIDUAL 42. 10 0.35 0.32 0.44 45. 20. 24. 17 GTWC16 GT-HRSG-16 POWR 3. ٥. 46. RESIDUAL 46. 10 0.30 0.29 0.43 43. 18. 14. 4. 0. 20. 10 0.31 0.32 0.40 5. ٥. 50.RESIDUAL 43. 17 GTWC16 GT-HRSQ-16 HEAT 20. 16. -6. ο. 23. 50.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28951 MW 4.00 PROCESS MILLIONS BTU/HR 20.0 PROCESS TEMP(F) 298. PRODUCT CARBON-BLACK HOURS PER YEAR 7900.

PAGE 193

POWER TO HEAT RATIO 0.682 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 0. HOT WATER BTUX10xx6= ο. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10×*6 10×*6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR 0. 20. 35. 10. 14: 0. 46. RESIDUAL 46. 10 0.30 0.29 0.43 4. 11. 18 CC1626 GTST-16/26 HEAT 0. 38. 67. 20. 26. -39. 67. RESIDUAL 8. 0. 28. 0.36 0.39 0.30 19 CC1622 GTST-16/22 POWR a. 21. 35. 12. 10. ٥. 45. RESIDUAL 14. 4. 45. 10 0.32 0.30 0.44 19 CC1622 GTST-16/22 HEAT 61. RESIDUAL 36. 61. 20. 7. n. 24. 0. -31. 30. 10 0.37 0.39 0.33 20 CC1222 GTST-12/22 POWR 35. 45. RESIDUAL 21. 12. 10. 0. 45. 10 0.32 0.30 0.44 14 20 CC1222 GTST-12/22 HEAT 0. 36. 61. 20. 23. 61. RESIDUAL ٥. -31. 30. 10 0.37 0.39 0.33 21 CC0822 GTST-08/22 POWR ο. 23. 37. 0. 44. RESIDUAL 15. 14. 4. 6. 44. 10 0.34 0.31 0.46 21 CC0822 GTST-08/22 HEAT 20. 51. RESIDUAL 31. 51. 19. 6. -16. 35. 10 0.38 0.37 0.39 22 STIG15 STIG-15-16 POWR 0. 7. 36. ٥. 4. 23. 0. 59. RESIDUAL 59. 0.11 0.23 0.34 14. 10 22 STIG15 STIG-15-16 HEAT 0. 317. 1538. 20. 586. 0. -1789. 1538. RESIDUAL 172. -251. 0.17 0.38 0.01 23 STIG10 STIG-10-16 POWR 38. 5. 56. RESIDUAL ٥. 11. 14. 4. 18. 0. 56. 0.16 0.25 0.36 23 STIG10 STIG-10-16 HEAT ٥. 42. 151. 20. 54. -127. 151. RESIDUAL 24. 0.22 0.36 0.13 16. 10 24 STIG1S STIG-1S-16 POWR 12. 41. 4. 13. 54. RESIDUAL 54. 10 0.18 0.25 0.37 14. 24 STIG1S STIG-1S-16 HEAT 0. 28. 95. 20. 32. ο. -57. 95. RESIDUAL 38. 0.23 0.34 9. 10 0.21 25 DEADV3 DIESEL-ADV POWR 0. 16. 37. 9. 14. 4. 13. 0. 50. RESIDUAL 50. 0 0.24 0.27 0.40 25 DEADV3 DIESEL-ADV HEAT 37. 86. 20. -57. 86. RESIDUAL 29. 0.30 0.37 32. 0. 26 DEADV2 DIESEL-ADV POWR ٥. 17. 37. 9. 13. 0. 49. RESIDUAL 49. 0.25 0.28 0.41 14. 4. 26 DEADV2 DIESEL-ADV HEAT 36. 79. -49. 79. RESIDUAL 30. 0.31 0.37 0.25 ο. 20. 29. ٥. 27 DEADVI DIESEL-ADV POWR 0. 23. 37. 7. 0. 43. RESIDUAL 43. 0.34 0.31 14. 14. 4. 0.46 27 DEADVI DIESEL-ADV HEAT 0. 32. 51. 20. 19. 6. 0. -17. 51. RESIDUAL 34. 0.38 0.37 0.39 28 DEHTPM ADV-DIESEL POWR 0. 24. 39. 17. 14 4. 0. 43. RESIDUAL 43. 0 0.36 0.32 0.47 28 DEHTPM ADV-DIESEL HEAT O. 28. 46. 20. 16. 5. Ω. -8. 46. RESIDUAL 38. 0.38 0.35 0.43 52. DISTILLA 29 DESGAS DIESEL-SGA POWR 0. 14. 38. 8. 14. 4. 15. 0. 52. 0 0.21 0.26 0.38 29 DESCAS DIESEL-SCA HEAT O. 36: 100. 20. ۵. -70. 100. DISTILLA 30. 0 0.27 0.36 0.20 36. 11. 4. 0. 52. RESIDUAL 29 DESGAS DIESEL-SGA POWR 0. 14. 38. 8. 14. 15. 0.21 0.26 0.38 52. Ω 29 DESGAS DIESEL-SGA HEAT 36. 100. 20. 36. 11, 0. -70. 100. RESIDUAL 30. 0 0.27 0.36 0.20

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PARE 194

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28951 MW 4.00 PROCESS MILLIONS BTU/HR 20.0 PROCESS TEMP(F) 296. PRODUCT CARBON-BLACK HOURS PER YEAR 7900.

POWER TO HEAT RATIO 0.682 UTILITY FUEL COAL WASTE FUEL EQV BTU:10**6= O. HOT WATER BIUX10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUFI SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED HEAT USED POWER ELECT BOILR USED SITE USED UTILIT 10*x6 10*x6 10*x6 10*x6 10*x6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 0. 15. 38. 14. 4. 14. ٥. 52. DISTILLA 52 1 0.22 0.26 0.39 30 DESGAZ DIESEL-SGA HEAT 91. ٥. 35. 20. 33. 10. -60 91.DISTILLA ο. 31. 0.28 0.36 0.22 30 DESGA2 DIESEL-SGA POWR 15. ۵. 38. 8. 14. 4. 14. α. 52 RESIDUAL 52 0.22 0.26 0.39 30 DESGAZ DIESEL-SGA HEAT Ο. 35. 91. 20 33 10. -60. 91 RESIDUAL 31 0.28 0.36 0.22 1 31 DESGA1 DIESEL-SGA POWR 23. 38. 1 0.34 0.31 0.46 15. 14 6. n 43. DISTILLA 43. 31 DESCA1 DIESEL-SCA HEAT 30. 50. 20. 18. n. -14 50. DISTILLA 1 0.37 0.36 0.40 36. 31 DESGA1 DIESEL-SGA POWR ٥. 23. 38. 15. 43. RESIDUAL 14. 4. 6. ٥. 43 0.34 0.31 0.46 1 31 DESGAI DIESEL-SGA HEAT 30. 50. 20. 18. 5. 'n. -14 50. RESIDUAL 36. 0.37 0.36 0.40 32 GTSGAD GT-HRSG-10 POWR 19. 47. 22. -2. 14. 4. 0. 47. DISTILLA 47. 10 0.29 0.29 0.43 32 GTSOAD GT-HRSG-10 HEAT 20. 43. 20. 12. 4 . ٥. 4. 43. DISTILLA 46. 10 0.30 0.27 0.43 33 GTRAO8 GT-85RE-08 POWR n. 21. 38 14. 14. 7. 45 DISTILLA 4. 0. 45. 10 0.31 0.30 0.44 33 GTRAOS GT-85RE-08 HEAT 30. 55. 20. 20. 6. Ο. -19. 55. DISTILLA 36. 10 0.35 0.36 0.36 34 GTRA12 GT-85RE-12 POWR 21 38. 14. 14. Ω. 45.DISTILLA 45 10 0.32 0.30 0.44 Δ 34 GTRA12 GT-85RE-12 HEAT 30. 54. 20. 54. DISTILLA 19. 6. 0. -18. 36. 10 0.36 0.36 0.37 35 GTRA16 GT-85RE-16 POWR ۵. 21. 39. 15. 14. 4 6. Ω. 45.DISTILLA 45 10 0.32 0.30 0.44 35 GTRA16 GT-85RE-16 HEAT ۵. 28. 52. 20. 18. 52. DISTILLA 38. 0.35 0.35 0.38 5. 0. -14. 10 3. 36 GTR208 GT-GORE-08 POWR 0. 21. 43. 18. 14. α. 45.DISTILLA 45. 10 0.32 0.30 0.44 4. 36 GTR208 GT-60RE-08 HEAT 24. 48. 20. 15. n. -5. 48. DISTILLA 43. 10 0.33 0.32 0.42 4. 37 GTR212 GT-60RF-12 POWR 21. 17. O. 41. 14. 4. 4. Ο. 45 DISTILLA 45. 10 0.31 0.30 0.44 37 GTR212 GT-60RE-12 HEAT 25. 50. 20. 50. DISTILLA 10 0.33 0.33 0.40 D. 16. 5. Ο. -9. 41. 38 GTR216 GT-60RE-16 POWR 45. DISTILLA 10 0.32 0.30 0.45 21. 40 16. n 45 -10. 38 GTR216 GT-GORE-16 HEAT 0. 26. 50. 20. 17. 5. a. 50. DISTILLA 40. 10 0.34 0.34 0.40 39 GTRW08 GT-85RE-08 POWR ٥. 17. 39. 12. 10. ٥. 49.DISTILLA 10 0.26 0.28 0.41 14. 4. 49. 39 GTRW08 GT-85RE-08 HEAT n 30. 67. 20. 24. 7. 0. -31. 67.DISTILLA 36. 10 0.31 0.35 0.30 40 GTRW12 GT-85RE-12 POWR Ω. 18. 37. 11. 14. 10. Ω. 48. DISTILLA 0.28 0.29 0.42 4. 48. 10 40 GTRW12 GT-85RE-12 HEAT Ω 33. 67. 20. 24. 7. n -33. 67. DISTILLA 33. 10 0.33 0.36 0.30

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 28951 MW 4.00 PROCESS MILLIONS BTU/HR 20.0 PROCESS TEMP(F) 298. PRODUCT CARBON-BLACK HOURS PER YEAR 7900.

1.

PAGE 195

POWER TO HEAT RATIO 0.682 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU-10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAY FUEL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**5 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 PCWR 0. 19. 38. 12. 48. DISTILLA 14. 4. 9. 0. 48. 10 0.28 0.29 0.42. 41 GTRW16 GT-85RE-16 HEAT 64. 7. 0. 31. 20. 23. -28. 64. DISTILLA 0. 35. 0.33 0.36 0.31 42 GTR308 GT-60RE-08 POWR 16. 44. 0. 15. 50. DISTILLA 14. 4. 6. 0. 50. 0.25 0.27 0.40 42 GTR308 GT-60RE-08 HEAT ٥. 22. 58. 20. 18. 5. 0. 58. DISTILLA -14. 44. 10 0.27 0.31 0.34 43 GTR312 GT-60RE-12 POWR 19. 40. 0. 47.DISTILLA 14. 14. 8. 47. 10 0.28 0.29 0.42 43 GTR312 GT-60RE-12 HEAT 28. 59. 20. 20. -20. 59. DISTILLA 39. 0.32 0.34 0.34 7. 44 GTR316 GT-60RE-16 POWR 40. 0. 19. 14. 14. 4. 0. 48. DISTILLA 48. 10 0.28 0.29 0.42 44 GTR316 GT-60RE-16 HEAT 58. 20. 20. 6. a. -19. 58.DISTILLA 39. 10 0.32 0.34 0.34 45 FCPADS FUEL-CL-PH POWR Ο. 14. 36. 6. 4. 16. 0. 52.DISTILLA 52. 0 0.21 0.26 0.38 14. 45 FCPADS FUEL-CL-PH HEAT 0. 46. 118. 20. 118. DISTILLA 45. 13. 0. -97. 21. 0.28 0.38 0.17 46 FCMCDS FUEL-CL-MO POWR 0. 19. 33. 8. 14. 0. 48. DISTILLA 14. 4. 48. 10 0.28 0.29 0.42 46 FCHCDS FUEL-CL-MO HEAT 48. 86. 0. 20. 35. 10. 0. -68. 86. DISTILLA 18. 0 0.36 0.41 0.23

PAGE 196

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

I&SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 29111 MW 14.00 PROCESS MILLIONS BTU/HR 375.0 PROCESS TEMP(F) 470. PRODUCT SMALL-REFINE HOURS PER YEAR 8760.

POWER TO HEAT RATIO 0.127 WASTE FUEL EOV BTU*10**5= O. HOT WATER BTU*10**6= UTILITY FUEL COAL UTILIT TOTAL SITE FESR POWER HEAT WASTE FUEL COGEN COGEN COGEN AUX NET= FAIL PROCES PROCES MW PROCES FUEL FUEL FUEL. TOTAL+ FACTR FACTR SAVED= FUEL FUEL USED UTILIT NO-NET USED HEAT POWER ELECT BOILR USED SITE USED 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 0 0. ٥. 0. 441. 149. 441.COAL-FGD 590. 0.08 0.64 O ONOCGN N O C O G O N 0. 0. Ο. 497. RESIDUAL 0 0.16 0.10 0.75 407. 299. 90. ٥. 497. 1 STM141 STM-TURB-1 POWR 0. 93. 48. 14. -38. 512. RESIDUAL 474. 0 0.19 0.12 0.73 1 STM141 STM-TURB-1 HEAT 0. 117. 512. 375. 60. 18. 497. COAL-FOD 497. 0 0.16 0.10 0.75 0. 1 STM141 STM-TURB-1 POWR 93. 407. 299. 48. 14. 90. 0. 375. 60. 18. ٥. -38. 512. COAL-FGD 474. 0 0.19 0.12 0.73 1 STM141 STM-TURB-1 HEAT 117. 512. 1 STM141 STM-TURS-1 POWR 0. 93. 407. 299. 48. 14. 90. ٥. 497, COAL-AFB 497. 0 0.16 0.10 0.75 512. COAL-AFB 474. 0 0.19 0.12 0.73 1 STM141 STM-TURB-1 HEAT n 117. 512. 375. 60. 18. 0. -38. 583. RESIDUAL 583. 0 0.01 0.08 0.64 448. 48 -86. 0. 2 STM088 STM-TURB-8 POWR 583 14 24. 0 0.13 0.08 0.73 2 STM088 STM-TURB-8 HEAT ٥. 78. 488. 375. 40. 12. ۵. 488. RESIDUAL 512. 0 0.01 0.08 0.64 583, COAL-FOD 583. 2 STM088 STM-TURB-8 POWR 7. 583. 448. 48. 14. -86. ٥. 488.CCAL-FGD 512. 0 0.13 0.08 0.73 2 STM088 STM-TURB-8 HEAT 78. 488. 375. 40. 12. ۵. 24. 0 0.01 0.08 0.64 -86. 0. 583. COAL-AFB 583. 2 STM088 STM-TURB-8 POWR 7. 583. 448. 48. 14. 512. 0 0.13 0.08 0.73 2 STM088 STM-TURB-8 HEAT ٥. 78. 488. 375. 40. 12. ٥. 24. 488. COAL-AFB 500. 0 0.15 0.10 0.75 244. 500. COAL-PFB 256. 167. 0. 3 PEBSTM PEB-STMTB- POWR 90. 48. 14. 0 0.26 0.19 0.65 3 PFBSTM PFB-STMTB- HEAT ٥. 203. 573. 375. 107. 31. 0. -185. 573. COAL-PFB 388. 0 0.15 0.10 0.75 499. 4 TISTMT TI-STMTB-1 POWR 201. 122. 48. 298. 499. RESIDUAL 91. 0 0.31 0.24 0.61 281. 619. 375. 147. 43. ٥. -310. 619. RESIDUAL 309. 4 TISTMT TI-STMTB-1 HEAT 0 0.15 0.10 0.75 4 TISTMT TI-STMTB-1 POWR 298. 0. 499. COAL 499. Ω. 91. 201. 122. 48. 14. 4 TISTMT TI-STMTB-1 HEAT 281. 619. 375. 147. 43. -310. 619.COAL 309. 0.31 0.24 0.61 0 0.09 0.09 0.70 0. 539. RESIDUAL 539. 5 TIHRSG THERMIONIC POWR 0. 52. 340. 206. 48. 14. 199. 5 TIHRSG THERMIONIC HEAT 619. 375. 87. 26. ٥. -123. 619. RESIDUAL 496. 0.13 0.14 0.61 0. 94. 0.09 0.09 0.70 340. 48. 199. 0. 539. COAL 539. 5 TIHRSG THERMIONIC POWR 0. 52. 206. 14. О. -123. 619. COAL 496. 0 0.13 0.14 0.61 5 TIHRSG THERMIONIC HEAT 94. 619. 375. 87. 26. 0 0.11 0.09 0.71 528. DISTILLA 528. 6 STIRL STIRLING-1 POWR 63. 213. 107. 48. 14. 315. 0. 167. 49. 0. -373. 744 DISTILLA 371. 0.23 0.22 0.50 6 STIRL STIRLING-1 HEAT 744. 375. 219.

40 - 148>42

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

1 7

PAGE 197

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 29111 MW 14.00 PROCESS MILLIONS BTU/HR 375.0 PROCESS TEMP(F) 470, PRODUCT SMALL-REFINE HOURS PER YEAR 8760.

POWER TO HEAT RATIO 0.127 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= 0. WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 0. 63. 213. 107. 48. 14. 315. 0. 528. RESIDUAL 528. 0 0.11 0.09 0.71 6 STIRL STIRLING-1 HEAT 219. 744. 375. α. 167. 49. Ð. -373. 744. RESIDUAL 371. 0.23 0.22 0.50 6 STIRL STIRLING-1 POWR 0. 63. 213. 107. 48. 14. 315. 528, COAL 0. 528. 0 0.11 0.09 0.71 6 STIRL STIRLING-1 HEAT 0. 219. 744. 375. 167. 49. 0. -373. 744. COAL 371. 0 0.23 0.22 0.50 7 HEGT85 HELIUM-GT- POWR 0. -10. 149 -9. 48. 14. 451. ٥. 600. COAL-AFB 600. 11 -0.02 0.08 0.62 7 HEGT85 HELIUM-GT- HEAT -6413. -6413. 375. -2059. -603. 6582. -6413. COAL-AFB n. 169. 11 xxxxx xxxxx 2.21 8 HEGT60 HELIUM-GT- POWR 184. 0. 3. 32. 48. 403. 14. 0. 586, COAL-AFB 588. 10 0.00 0.08 0.64 8 HEGT60 HELIUM-GT- HEAT 2144. 0. 32. 375. 555. 163. 0. -1586. 2144. CCAL-AFB 558. 0.01 0.26 0.17 9 HEGTOO HELIUM-GT- POWR 27. 271. 0. 127. 48. 14. 292. 0. 564, COAL-AFB 564. 10 0.05 0.08 0.67 9 HEGTOO HELIUM-GT- HEAT 79. 804. 375. 0. 141. 804.COAL-AFB 41. 0. -293. 511. 10 0,09 0.18 0.47 10 FCMCCL FUEL-CL-MO POWR 79. Ö. 157. 74. 48. 14. 354. 0. 511, COAL 511. 0.09 0.73 10 0.13 10 FCMCCL FUEL-CL-MO HEAT 401. 797. 375. n. 242. 0. -608. 797. COAL 71. 189. 10 0.34 0.30 0.47 11 FCSTCL FUEL-CL-ST POWR 82. 129 53. 379. 0. 48. 508, COAL 14 0 508. 0.14 0.09 0.74 11 FCSTCL FUEL-CL-ST HEAT ٥. 582. 915. 375. 338. 99. 0. -907. 915. COAL 8. 0.39 0.37 0.41 12 IGGTST INT-GAS-GT POWR 177. 78. 0. 64. 48. 14. 350. ٥. 527. COAL 527. 10 0.11 0.09 0.71 12 IGGTST INT-GAS-GT HEAT 308. 852. 375. 230. Ω. 67. Ο. -570. 852. COAL 282. 10 0.27 0.27 0.44 13 GTSØAR GT-HRSG-10 POWR 60. 165. 48. 0. 64. 14. 366. 0. 530. RESIDUAL 530. 0 0.10 0.09 0.71 13 GTSUAR GT-HRSG-10 HEAT o. 351. 963. 375. 279. 82. 0. -723. 963. RESIDUAL 240. 0 0.27 0.29 0.39 14 GTACO8 GT-HRSG-08 POWR 177. 91. 48. 0. 80. 14. 334, 0. 511. RESIDUAL 511. 0.14 0.09 0.73 0 14 GTACO8 GT-HRSG-08 HEAT 328. 727. 375... 196. 0. 59. O. -464. 727, RESIDUAL 263. 0 0.31 0.27 0.52 15 GTAC12 GT-HRSG-12 POWR 0. 78 157 73. 48. 14. 350. 0. 512. RESIDUAL 512. 0 0.13 0.09 0.73 15 GTAC12 GT-HRSG-12 HEAT 810. 375. 403. 247. 72, O. -523. 810. RESIDUAL 187. 0 0.33 0.31 0.46 16 GTAC16 GT-HRSG-16 POWR 0. 75. 148. 62. 48. 14. 368. 0. 516. RESIDUAL 516. 0 0.13 0.09 0.73 16 GTAC16 GT-HRSG-16 HEAT 450. 888. 375. 287. 84. 0. -747. 888. RESIDUAL 141. 0 0.34 0.32 0.42 17 GTWC16 GT-HRSG-16 POWR 61. 520. ٥. 70. 152. 48. 369. ٥. 520. RESIDUAL 10 0.12 0.09 0.72 14. 17 GTWC16 GT-HRSG-16 HEAT 0. 427. 925. 375. 291. 85. 925, RESIDUAL 164. 0 0,32 0.32 0.41 0. -761.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE 198

Assessment Trade Strangers and Parkets of

ISSE PEG ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 29111 MW 14.00 PROCESS MILLIONS BTU/HR 375.0 PROCESS TEMP(F) 470. PRODUCT SMALL-REFINE HOURS PER YEAR 8760.

POWER TO HEAT RATIO 0.127 UTILITY FUEL WASTE FUEL EQV BTUx10**6= O. HOT WATER BTU*10**6= ٥. COAL WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES PROCES MW PROCES FUEL FUEL FACTR FACTR SAVED= FUEL FUEL TOTAL+ FHEI UTILIT USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED 10xx6 10xx6 10xx6 10xx6 10xx6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR 6A 130. 42. 48 14. 392 ۵. 522.RESIDUAL 522. 10 0.12 0.09 0.72 O. 0. -1190. 1168.RESIDUAL 18 CC1626 GTST-15/26 HEAT 375. 0 0.34 0.37 0.32 612. 1168. 428. 126. -21. 0. 19 CC1622 GTST-16/22 POWR 72. 132. 47. 48. 14. 386. 0. 519. RESIDUAL 519. 10 0.12 0.09 0.72 n. 577. 1066. 375. 385. 113. 0. -1053. 1066.RESIDUAL 0 0.35 0.36 0.35 19 CC1622 GTST-16/22 HEAT ٥. 14. 20 CC1222 GTST-12/22 POWR 132. 47. 48. 14 386. 0. 518. RESIDUAL 518. 0 0.12 0.09 0.72 375. 382. 0. -1044. 1057. RESIDUAL 0 0.35 0.36 0.35 20 CC1222 GTST-12/22 HEAT 578. 1057. 112. 12. n. ٥. 60 513. 0 0.13 0.09 0.73 21 CC0822 GTST-08/22 POWR n 78. 142. 48. 14. 371. 513. RESIDUAL 21 CC0822 GTST-08/22 HEAT 375. 301. 88. -791. 893. RESIDUAL 102. 0 0.35 0.34 0.42 n. 489. 893. ٥. 565. 2. O. 565. RESIDUAL 11 0.04 0.08 0.66 22 STIG15 STIG-15-16 POWR 48. 14. 439. 0. 26. 125. -5350. 1 0.17 0.38 0.01 22 STIG15 STIG-15-16 HEAT ۵. 5940. 28846. 375. 10990. 3221. 0.-34196. 28846.RESIDUAL 11 0.06 0.09 0.68 23 STIG10 STIG-10-16 POWR 14. 553. RESIDUAL 37. 133. 18. 48. 420. 0. 553. 0 1016. 0. -3027. 2830.RESIDUAL 1 0.22 0.36 0.13 23 STIG10 STIG-10-16 HEAT Ω 787. 2830. 375. 298. -197. 11 0.07 0.09 0.68 O. 548. 24 STIG1S STIG-1S-16 POWR 30. 48. 548. RESIDUAL 143. 14 406. 1 0.23 0.34 0.21 24 STIGIS STIG-1S-16 HEAT 0. -1714. 1779.RESIDUAL 65. 0. 526. 1779. 375. 596. 175. 546. 1 0.08 0.09 0.69 25 DEADV3 DIESEL-ADV POWR 21. 48. 417. ٥. 546. RESIDUAL n. 45. 129. 14. 864. 0. -2551. 2329. RESIDUAL -222. 1 0.26 0.37 0.16 25 DEADV3 DIESEL-ADV HEAT 0. 812. 2329. 375. 253. 531. 1 0.10 0.09 0.71 26 DEADV2 DIESEL-ADV POWR 33. 48. 14. 403. 0. 531. RESIDUAL 0. 59. 129. 1476.RESIDUAL -86. 1 0.31 0.37 0.25 26 DEADV2 DIESEL-ADV HEAT ٥. 676. 1476. 375. 548. 161. 0. -1562. 0.14 0.09 0.73 511. 27 DEADVI DIESEL-ADV POUR 50. 14. 382. O. 511.RESIDUAL 0 80. 129. 48. 1 0.38 0.37 0.39 27 DEADV1 DIESEL-ADV HEAT ٥. 594. 959. 375. 356. 104. ٥. -963. 959. RESIDUAL ~4. 525. 0 0.11 0.09 0.71 28 DEHTPM ADV-DIESEL POWR 170. 73. 48. 14. 355. n. 525, RESIDUAL 65. 0 0.28 0.28 0.43 28 DEHTPM ADV-DIESEL HEAT ō. 336. 872. 375. 246. 72. 0. -618 872. RESIDUAL 254. 554. 1 0.06 0.09 0.68 554. DISTILLA 48. 0. 29 DESCAS DIESEL-SCA POWR 37. 132. 17. 14. 421. -229. 29 DESGAS DIESEL-SGA HEAT 820. 2953. 375. 1066. 312. 0. -3182. 2953. DISTILLA 1 0.22 0.36 0.13 554. RESIDUAL 554. 1 0.06 0.09 0.68 14. a. 29 DESGAS DIESEL-SGA POWR 37. 132. 17. 48. 421. 1066. 0. -3182. 2953 RESIDUAL -229. 1 0.22 0.36 0.13 29 DESGAS DIESEL-SGA HEAT 820. 2953. 375. 312.

. 43

IRSE PEG ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND FCS

?

PAGE 199

Section Sectio		TR	22	22	£ 0	73 40	5 5	72	30	71 33	71 38	71	72 36	70 24	70 25	
Carrella agranta	Med Medical Colonial Sciences	POWER HEAT	9 0.70	9 0.70	0.73	0.73	0.72	0.29	00	o o	00	0.71	00	00	<u></u> 6 6	
8760.	0.	FACT	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09 0.35	0.09	0.03	0.09	0.09	0.09	
YEAR		FESR	0.09	0.09	0.13	0.13	0.12	0.10	0.11	0.11	0.11	0.11	0.11	0.09	0.30	
PER YE	BTU*10**6=	FAIL			- -		00	00	00	00	00	00	00	<u>5</u> 0	20	
HOURS P	BTU*1	+ 1-														
1	WATER	NET= TOTAL+ UTILIT 10**6 BTU/HR	539 - 69	539	511	511 29	517. 222.	530. -3.	527	526 45	525 149	525 117	523	539	50 50 50 50 50 50 50 50 50 50 50 50 50 5	
SMALL-REFINE	HOT		Z Z	OUAL	4	UAL	¥¥	EE	T A	STILLA	5 5	LLA	YIT!	۲. د د ۲	L'E	
SMALI	9.	SITE FUEL USED	539.DISTILLA 705.DISTILLA	539.RESIDUAL 705.RESIDUAL	511.DISTILLA 935.DISTILLA	511.RESIDUAL 935.RESIDUAL	DISTILLA	DISTILLA	527.DISTILLA 235.DISTILLA	DISTI	DISTILLA	525. DISTILLA 040. DISTILLA	523. DIST	539.DISTILLA 564.DISTILLA	DISTILLA	
PRØDUCT	.=9	TOTAL FUEL SITE 10**6 BTU/HR	539. 1705.	539. 1705.	511. 935.	511.	517.	530.1	527. 1235.	526. 1151.	525. 999.	525. 1040.	523. 1050.	539. 1564.	533.	
ECS** 470. PR	BTU*10**6=	UT1L1T FUEL USED 10**6 BTU/HR I	0.	0.	906.	906.	0. 605.	319.	233.	0. 106.	0. 850.	0.	0. 956.	0. 566.	0. 538.	
		ام ما		1.	'			6.	- 1	7		'.				
PROCESS AND S TEMP(F)	0 0.127 EL EQV	AUX PROCES BOILR 10**6 BTU/HR	407	407	379. 0.	379	354	3966	394	389	375	380	382	403	40 0	
	EAT RATIO WASTE FUEL	COGEN MW ELECT	14.	14.	14.	14.	14.	14.	130.	118.	14. 94.	14.	104.	14. 161.	158.	
SAVED BY PI	I	1000	48. 615.	48. 615.	48.	48.	48.	48.	48.	48 .	48. 320.	48.	48.	48. 549.	48. 540.	
l KO	WER TO	1			9				4	4	· m	6	8	10	, iù	
E	POW	COGEN PROCES HEAT 10**6 BTU/HR	375	375	375	375	375	38.	375	45 375	375.	52. 375.	375.	33.	33. 375.	
FUEL BTU/		COGEN FUEL USED 10**6 BTU/HR	132. 1705.	132.	132. 935.	132. 935.	164. 826.	134. 316.	133. 235.	137.	149. 999.	145. 040.	142. 1050.	13 6 . 564.	131. 484.	
**		1 1		1	79. 61.	79. 61.	73. 69.	60. 93. 1	9.3	5.5	å -			3.5		
		FUEL SAVED= NG-NET 10**6 STU/HR	51 660	51	561	79	73	593	588	65 545	66	66 474	497	52 593	57 645	
PROCESS		WASTE FUEL USED 10**6 BTU/HR	00	00	o o	0 0		0 0	o	0	<u>.</u>	00	o o	o o		
4.00 8	COAL		POWR	POWR HEAT	POWR	POWR	POWR HEAT	POWR HEAT	POWR HEAT	POWR HEAT	POWR	POWR HEAT	PGWR	POWR HEAT	POWR HEAT	
ME					SOA			ı	L				•			
Ξ	FUEL		DIESEL-SOA Diesel-Soa	DIESEL-SOA Diesel-Soa	DIESEL-SOA DIESEL-SOA	DIESEL-SOA DIESEL-SOA	GT-HRSG-10 GT-HRSG-10	GT-85RE-08 GT-85RE-08	GT-85RE-12 GT-85RE-12	GT-85RE-16 GT-85RE-16	GT-60RE-08 GT-60RE-08	GT-60RE-12 GT-60RE-12	GT-60RE-16 GT-60RE-16	GT-85RE-08 GT-85RE-08	GT-85RE-12 GT-85RE-12	:
291	YE!		55		1			1						1		
TRY	UTILITY		DESGA2 Desga2	DESOA2 DESO/ 2	DESCA1	DESCA1 DESCA1	GTSØAD GTSØAD	GTRA08 GTRA08	GTRA12 GTRA12	GTRA16 GTRA16	GTR208 GTR208	GTR212 GTR212	GTR216 GTR216	GTRW08 GTRW08	GTRW12 GTRW12	
INDUSTRY						- 1		t								
=			8 8	8 8	<u></u>	9.9	32	33	8 8	3 S	<u> </u>	33	9 9 9 40 ave	11 7 1 1 3 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3549 -	HONELMELI

3

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 200

I&SE PET ADV DESIGN ENGR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

	IITI			FUEL		CØAL				POWE	R TO HE	AT RATI	0 0.127 EL EQV	3TU*10*	×6=	G. HOT	WATER BT	U*10**6	= (o.	
				I OLL				eue:	Official					UTILIT			NET=	FAIL		POWER	HFAT
							WASTE FUEL	SAVED=			PROCES		PROCES		FUEL	FUEL	TOTAL+	1615	, LON	FACTR	
							USED	NO-NET		HEAT			BOILR			USED	UTILIT				
							1/SHYE	10**6	10126	10xx6	10**6		10**6	10**6	10**6		10**6				
							BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	вти/н	<u> </u>	BTU/HR				
1	GTRU1	6 6	:T-	85RE-1	6	POWR	٥.	59.	134.	37.	48.	14.	398.	٥.	532	DISTILLA	532.	10	0.10	0.09	0.71
-				85RE-1	-					375.	465.	142.	0.	-1368.	1360	DISTILLA	-8,	0	0.31	0.36	0.28
2	GTR30	8 0	T-	60RE-C	8	POWR	0.	47.	154.	44.	48.	14.	389.	0.	544	DISTILLA	544.			0.09	
				GCRE-C			å.		1316.	375.	408.	120.	٥.	-1125.	1316	DISTILLA	190.	0	0.23	0.31	0.29
13	GTR31	2 (3T-	GORE-1	2	POVIR	0.	62.	140.	44.	48.					DISTILLA		10	0.10	0.09	0.7
				60RE-1			0.	522.	1180.	375.	404.	118.	0.	-1112.	1180	DISTILLA	68.	0	0.31	0.34	0.3
4	GTR31	6 (3T-	60RE-1	6	POWR	0.	62.	141.	45.	48.					DISTILLA				0.09	
4	GTR31	6 (<u> 3T-</u>	60RE-1	6	HEAT	0.	511.	1169.	375.	396.	116,	0.	-1089.	1169	DISTILLA	80.	0	0,30	0.34	0.32
5	FCPAD	S F	FUE	L-CL-F	H	POWR	0.	49.	126.		48.					DISTILLA		_		0.09	
5	FCPAD	S F	FUE	L-CL-F	Н	HEAT	0.	855.	2206.	375.	838.	246.	0.	-2470.	2206	.DISTILLA	~264.	9	0,28	0.38	U. I
6	FCMCD	SF	FUE	L-CL-M	10	POWR	0.	65.	116.	27.	48.					DISTILLA				0.09	
6	FCMCD	S F	FUE	L-CL-N	10	HEAT	0.	904.	1609,	375.	663.	194.	0.	-1923.	1609	.DISTILLA	-313.	9	0.36	0.41	0.2
																······					· · · · · ·
				···																	
													······································								

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 29112 MW 52.00 PROCESS MILLIONS BTU/HR 1333.0 PROCESS TEMP(F) 470. PRODUCT MEDIUM-REFIN HOURS PER YEAR 8760.

PAGE 201

POWER TO HEAT RATIO 0 133 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE HET= FAIL FESR POWER HEAT SAVED= FUEL **FUEL** PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**8 10**6 10**6 10**6 10××6 BTU/HR ETU/HR ETU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCGN N O COBON 0. 0. 0. 0, 1568. 554. 1568.COAL-FGD 2123. 0. 0, 0 0. 0.08 0.63 1 STM141 STM-TURB-1 POWR 0. 346, 1559, 1148, 177. 52. 218. 1777.RESIDUAL 1777. 0 0.16 0.10 0.75 1 STM141 STM-TURB-1 HEAT 0. 1811. 1333. 206. 60. 0. -89. 1811.RESIDUAL 1721. 0 0.18 0.11 0.74 1 STM141 STM-TURB-1 POWR 346. 1559. 1148. 177. 52. 218. 0. 1777.COAL-FGD 1777. 0 0.16 0.10 0.75 1 STM141 STM-TURB-1 HEAT 1333. 401. 1811. 206. 60. ٥. -89. 1811.COAL-FGD 1721. 0 0.18 0.11 0.74 1 STM141 STM-TURB-1 POWR 346. 1559. 1148. 177. 218. 1777. 0. 52. 0. 1777, COAL-AFB 0 0.16 0.10 0.75 1 STM141 STM-TURB-1 HEAT 401. 1811. 1333. 206. 1811. CUAL-AFB 1721. Ω. 60. 0. -89. 0 0.18 0.11 0.74 2264. 1747. 177. 2 STM088 STM-TURB-8 POWR -141. -487. 0. 2264. RESIDUAL 2264 0 -0.07 0.08 0.59 52. 2 STM088 STM-TURE-8 HEAT Ο. 264. 1728. 1333. 135. 40. 0. 131. 1728.RESIDUAL 1859. 0 0.12 0.07 0.72 2 STM088 STM-TURB-8 POWR -141. 2264. 1747. 177. 0. 2264.COAL-FGD **52**. -487. 2264. 0 -0.07 0.68 0.59 2 STM088 STM-TURB-8 HEAT 264. 1728. 1333. 135. 40. 0. 131. 1728.COAL-FGD 1859. 0 0.12 0.07 0.72 2 STM088 STM-TURB-8 FOWR -141. 2264. 1747. 177. 52. -487. 0. 2264.COAL-AFB 2264. 0 -0.07 0.08 0.59 2 STM088 STM-TURB-8 HEAT 264. 1728. 1333. 135. 40. 0. 131. 1728. COAL-AFB 1859. 0 0.12 0.07 0.72 3 PFBSTM PFB-STMTB- POWR 965. 634. 177. 0. 1788. COAL-PFB 1788. 0 C.16 0.10 ٥. 335, 52. 822. 0.75 3 PFBSTM PFB-STMTB- HEAT ٥. 704. 2030. 1333. 373. 109. 0. -611. 2030, COAL-PFB 1418. 0 0.26 0.18 0.66 ٥. 4 TISTMT TI-STMTB-1 POWR 339 757 461. 177. 52. 1026. 1783. RESIDUAL 1783. 0 0.16 0.10 0.75 n 0. -1049, 4 TISTMT TI-STMTB-1 HEAT 982. 2190. 1333. 513. 150. 2190. RESIDUAL 1141. 0 0.31 0.23 0.61 757. 461. 177. 0. 1783.COAL 1783. 4 TISTMT TI-STMTB-1 POWR 0. 339. 52. 1026. 0 0.16 0.10 0.75 4 TISTMT TI-STMTB-1 HEAT 0. 982. 2190. 1333. 513. 150. 0. -1049. 2190.COAL 1141. 0 0.31 0.23 0.61 1261. 764. 177. 52. 669, O. 1930, RESIDUAL 1930. 0 0.09 0.09 0.69 5 TIHRSG THERMIONIC POWR 0. 193. 5 TIHRSG THERITIONIC HEAT 336. 2200. 1333. 309. 91. ٥. -413. 2200.RESIDUAL 1787. 0.13 0.14 0.61 5 TIHRSG THERMIONIC POWR 0. 193. 1261. 764. 177. 52. 669. 0. 1930, COAL 1930. 0.09 0.09 0.69 5 TIHRSG THERMIONIC HEAT 0. 336. 2200. 1333. 309. 91. 0. -413. 2200. COAL 1787. 0 0.13 0.14 0.61 1100. 1890, DISTILLA 1890. 0 0.11 0.09 0.71 6 STIRL STIRLING-1 POUR 233 790 398 177. 0. 0. 6 STIRL STIRLING-1 HEAT 0. 1333. 594. 174. 0. -1302. 2644.DISTILLA 1343. 0 0.23 0.22 0.50

FILLE JOKE LE FIRE

DATE 06/06/79 GENERAL ELECTRIC COMPANY PAGE 202

COGENERATION TECHNOLOGY ALTERNATIVES STUDY
1&SE PEO ADV DESIGN ENGR REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 29112 MW 52.00 PROCESS MILLIONS BTU/HR 1333.0 PROCESS TEMP(F) 470. PRODUCT MEDIUM-REFIN HOURS PER YEAR 8760.

POWER TO HEAT RATIO 0.133 HOT WATER BTU*10**6= WASTE FUEL EGV BTU*10**6= Ω UTILITY FUEL COAL 0. NET= FESR POWER HEAT COGEN COGEN COGEN AUX UTILIT TOTAL SITE FAIL WASTE FUEL COGEN PROCES FUEL FUEL FUEL. TOTAL+ FACTR FACTR FUEL. SAVED= FUEL PROCES PROCES MW BOILR USED SITE USED UTILIT USED NO-NET USED HEAT POWER ELECT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 1890. RESIDUAL 6 STIRL STIRLING-1 POWR 233. 790. 398. 177. 52. 1100. 0. 1890. 0 0.11 0.09 0.71 Ú. 6 STIRL STIRLING-1 HEAT ٥. 780. 2644. 1333. 594. 174. 0. -1302. 2644. RESIDUAL 1343. 0.23 0.22 0.50 1890. 0.11 0.09 0.71 6 STIRL STIRLING-1 POWR 233. 790. 398. 177. 52. 1100. 1890, COAL 0. 6 STIRL STIRLING-1 HEAT Ω. 780. 2644. 1333. 594. 174. 0. -1302. 2644.COAL 1343. 0.23 0.22 0.50 2159. 1 -0.02 0.08 0.62 7 HEGT85 HELLUM-GT- POWR ٥. -36. 553 -32. 177. 52. 1606. ٥. 2159. COAL-AFB 11 ***** ***** 7 HEGT85 HELIUM-GT- HEAT-22797. 1497. -22797. 1333. -7318. -2145. 0. 23422, -22797, COAL-AFB 626. 0.00 0.08 0.63 10. 685. 120. 177. 52. 1427. ٥. 2112. COAL-AFB 2112. 8 HEGT60 HELIUM-GT- POWR 0. 8 HEGT60 HELIUM-GT- HEAT 7623. 1333. 1974. 0. -5615. 7623. COAL-AFB 2008. 0.01 0.26 0.17 ٥. 115. 579, 2023, COAL-AFB 2023. 0 0.05 0.09 0.66 1008. 470. 177. 52. 1015. ٥. 9 HEGTOO HELIUM-GT- POWR 0. 100. 283. 2857. 503. 147. 0. -1017. 2857, COAL-AFB 1840. C.09 0.18 0.47 9 HEGTOO HELIUM-GT- HEAT 0. 1333. 1829. 10 0.14 0.10 0.73 177. 1245. 1829, COAL 10 FCMCCL FUEL-CL-MO POWR 294. 584. 275. 52. 0. 252. 0. -2136. 2832, COAL 696. 0 0.34 0.30 0.47 10 FCMCCL FUEL-CL-MO HEAT 1427. 2832. 1333. 861. 1817. 10 0.14 0.10 0.73 11 FCSTCL FUEL-CL-ST POWR 305. 483. 199. 177. 1334. 1817. COAL 0. -3162. 3238. COAL 75. 0.39 0.37 0.41 11 FCSTCL FUEL-CL-ST HEAT 2048. 3238. 1333. 1189. 349. 1886. 10 0.11 0.09 0.71 12 IGGTST INT-GAS-GT POWR 0. 237. 662. 293. 177. 52. 1224. 0. 1886, COAL 12 IGGTST INT-GAS-GT HEAT 1078. 3015. 1333. 808. 237. 0. -1970. 3015, COAL 1045. 0.26 0.27 0.44 1900. 0 0.11 0.09 0.70 13 GTSGAR GT-HRSG-10 POWR Ω. 223. 612. 238. 177. 52. 1288. 0. 1900. RESIDUAL 13 GTSCAR GT-HRSG-10 HEAT 1247. 3422. 1333. 992. 291. . 0. -2547. 3422. RESIDUAL 875. 0.27 0.29 0.39 Ω. 14 GTACO8 GT-HRSG-08 POWR 296. 657. 339. 177. 52. 1169. σ. 1827 RESIDUAL 1827. 0.14 0.10 0.73 0. -1626. 2584, RESIDUAL 958. 0.31 0.27 0.52 14 GTACO8 GT-HRSG-08 HEAT 0. 1165. 2584. 1333. 698. 204. 177. 1251. 0. 1833. RESIDUAL 1833. 0.14 0.10 0.73 15 GTAC12 GT-HRSG-12 POWR 290 582 269 52. 0. -2189. 2879. RESIDUAL 689. 0 0.33 0.31 0.46 2879. 257. 15 GTAC12 GT-HRSG-12 HEAT 1433. 1333. 878. 0.13 0.10 0.72 1845. RESIDUAL 1845. 16 GTAC16 GT-HRSG-16 POWR 278. 549. 232. 177. 52. 1295. 0. 3158. RESIDUAL 525. 0.34 0.32 0.42 0. -2633. 16 GTAC16 GT-HRSG-16 HEAT 1598. 3158. 1333. 1020. 299 177. 52. 1300. 0. 1863. RESIDUAL 1863. 0.12 0.10 0.72 260. 563. 228. 17 GTWC16 GT-HRSG-16 POWR 606. 0 0.32 0.32 0.41 0. -2682. 3287. RESIDUAL 17 GTWC16 GT-HRSG-16 HEAT 0. 1517. 3287. 1333. 1036. 304.

•

0.71 0.72 0.72 0.73 0.66 0.67 0.21 0.58 0.70 0.73 0.71 0.67 0.67 FACTR FACTR POWER 0.10 0.10 0,10 0.09 0.10 0.09 0.09 0.09 0.09 0.09 G.37 0.09 0.09 8760. 203 ; FESR 0.12 0.13 0.35 0.13 0.14 0.05 0.06 0.07 0.08 0.10 0.14 0.11 0.06 0.06 YEAR HOT WATER BTUx10xx6= 00 00 00 00 0 Ю PER MEDIUM-REFIN HOURS TOTAL+ UTILIT 10**6 1857. 1870. -29. 2027. -18992. 1985. -675. 1986. -790. 854. 1835. 1956. -765. 1904. 1966 254. BTU/HR 1880 0. 2027.RESIDUAL ******102538.RESIDUAL 1870. RESIDUAL 4134. RESIDUAL 1986.DISTILLA 10497.DISTILLA 1956.RESIDUAL 8280.RESIDUAL 1904.RESIDUAL 5248.RESIDUAL 1826.RESIDUAL 3409.RESIDUAL 1986. RESIDUAL 10497. RESIDUAL 1857. RESIDUAL 3773. RESIDUAL 1835. RESIDUAL 3159. RESIDUAL 1985. RESIDUAL 10060. RESIDUAL 1966. RESIDUAL 6324. RESIDUAL 1980, RESIDUAL 3100, RESIDUAL 1854. RESIDUAL 3738. RESIDUAL FUEL SITE Ö BTU/HR BTU/HR BTU/HR FUEL SITE 10××6 PRODUCT TOTAL HEAT RATIO 0.133 WASTE FUEL EQV BTU*10**6= 0. -4163. 91. 0. 0. -9045. 0. -3679. -3649. 1495. 0. 0.-11287. ö COGENERATION TECHNOLOGY ALTERNATIVES STUDY -6069. 6. -5530. .-11287. 0. -3398. -2173. 10 * * 6 -2754 470. USED AUX PROCES AND 1437. BOILR 1363. 0. 1361. 0. 1491. 1249. 1384. 0. 1425. 0. 1495. 0. 1305. 0. 1478. 0. 1348. 0. 10xx6 1561 MILLIONS BTU/HR 1333.0 PROCESS TEMP(F) GENERAL ELECTRIC COMPANY 52. 621 52. 371. 52, 11450. 52. 1111. 52. 1111. MW ELECT 52. 442. 394, 310, 52. 1059, 52. 900. 52 397 52. 571. **52**. 256. COGEN PROCES POWER 10**6 177. 39067. 177. BTU/HR BTU/HR 177. 1355. 1509. 1345. 177. 177. 177. 3072. 177. 177. 1265. 177. 3789. 177. 3789. POWER TO PROCES H 6. 1333. 65. 1333. 187. 1333. 10××6 1333. 175. 1333. 176. 1333. 223. 1333. 112, 62, 1333. 62. 1333. 77. 1333. 121, 271 BTU/HR BTU/HR 494. 486. 4134. 494. 3773. 530. 491. 10497. 493. 3738. 529. 6324. 478. 47**8**. 5248. 478. 3409. 96, 466, 21115,102538, 3100 491. 10497. 10×#6 FUEL USED FUEL SAVED= NO-NET 137. 253. 2151. 136. 2913. 136. 2913. 288. 1717. 266. 2028. 2034. 156. 1369. 157. 2885. 2405. 296. 2112. 243. PROCESS BTU/HR 0.0 00 00 00 00 00 00 00 00 00 00 00 00 0××6 WASTE FUEL USED 52,00 POWR HEAT POWR HEAT POWR HEAT POWR HEAT POWR HEAT POWR GTST-16/22 PGWR GTST-16/22 HEAT STIG10 STIG-10-16 POWR STIG10 STIG-10-16 HEAT DEADV3 DIESEL-ADV POWR DEADV3 DIESEL-ADV HEAT CGAL STIGIS STIG-1S-16 POWR STIGIS STIG-1S-16 HEAT ENGR GTST-16/26 GTST-16/26 GTST-12/22 GTST-12/22 CC0822 GTST-08/22 CC0822 GTST-08/22 ST16-15-16 ST16-15-16 DIESEL-SOA DIESEL-ADV DIESEL-ADV DI ESEL-ADV DI ESEL-ADV ADV-DIESEL ADV-DIESEL DI ESEL-SOA DI ESEL-SOA DESIGN Ξ UTILITY FUEL 29112 ADV DATE 06/06/79 CC1626 CC1626 CC1622 CC1622 CC1222 CC1222 ST1615 ST1615 DESOA3 DESOA3 DESGA3 DESGA3 DEADV2 DEADV2 DEADV1 DEADV1 DEHTPM INDUSTRY 88 18 ၈ ၈ 23 500 2 2 222 27 26 **5**3

PAGE 204

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

18SE PET ADV DESIGN ENGR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 29112 MW 52.00 PROCESS MILLIONS BTU/HR 1333.0 PROCESS TEMP(F) 470, PRODUCT MEDIUM-REFIN HOURS PER YEAR 8760.

UTIL	TY FUEL	COAL					W	ASTE FU	EL EQV I	BTU*10*	×6=	O. HOT	WATER BT	UXIUXX6	= (ο.	
			WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX		TOTAL		NET=	FAIL	FESR	POWER	
			FUEL	SAVED=			PROCES		PROCES		FUEL	FUEL	TOTAL+			FACTR	FACTE
			USED	NO-NET		HEAT		ELECT	BOILR	USED	SITE	USED	UTILIT				
				10**6					10**6	10**6	10**6	_	10**6				
			BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HF	<u> </u>	BTU/HR				
n nesmas	DIESEL-SO	PAUR	٥.	190.	491.	108.	177.	52.	1441.	٥.	1933.	DISTILLA	1933.	1	0.09	0.09	0.69
	DIESEL-SO				6059.	1333.		641.		-6281.		DISTILLA	-222.	1	0.28	0.36	0.22
												0=0101141	1000		~ ~~	0.09	
	DIESEL-SO				491.	108.	177.	52.	1441.			RESIDUAL	1933.				
DESGA2	DIESEL-SO	HEAT	Ο.	2345.	6059.	1333.	2187.	641.	0.	-6281.	6059	RESIDUAL	-222.	1	U. 26	0.36	0.2
DESCA!	DIESEL-SO	POWR	٥.	295.	491.	197.	177.	52.	1336.	٥.	1828	DISTILLA	1828.	1		0.10	
DESOA1	DIESEL-SO	HEAT	٥.	1994.	3324.	1333.	1200.	352.	٥.	-3196.	3324	DISTILLA	129.	1	0.37	0.36	0.40
				COT	401	107	177.	52.	1336.	٥.	1020	RESIDUAL	1828.	7	0 14	0.10	0.70
	DIESEL-SO				491. 3324.	197. 1333.	1200.	352.		-3196.		RESIDUAL	129.	i		0.36	
DESCAL	DIESEL-SO	HEAT	0.	1994.	3324.	1333,	1200.	302.	<u> </u>	-3130,	3024	RESTOORE	123.	<u>-</u>			
CADATA	GT-HRSG-1	POWR	٠٥.	271.	608.	276.	177.	52.	1244.	G.	1851.	DISTILLA	1851.	0		0.10	
	GT-HRSG-1					1333.	858.	251.	0.	-2126.	2937.	DISTILLA	811.	0	0.31	0.29	0.4
3 GTRAO8	GT-85RE-0	3 POWR	O.		497.	142.	177.					DISTILLA		0			
3 GTRAO8	GT-85RE-0	B HEAT	0.	2109.	4677.	1333.	1670.	489.	0.	-4663.	4677	DISTILLA	14.	0	0.31	0,36	0.2
A GTRA12	GT-85RE-1:	2 PAUR	0.	236.	496.	150.	177.	52.	1391.	٥.	1887	DISTILLA	1887.	0	0.11	0.09	0.7
	GT-85RE-1				4391.	1333.	1572.			-4358.		DISTILLA		0	0.32	0.36	0.30
							,			_				•		0.00	
5 GTRA16	GT-85RE-1	6 POWR			508.	166.	177.		1373.			DISTILLA				0.09	
5 GTRA16	GT-85RE-1	6 HEAT	0.	1939.	4091.	1333.	1428.	418.	0.	-3907.	4091	DISTILLA	184.		0.32	0.35	0.3.
C 070000	GT-60RE-0	a paup	0.	245.	554.	208.	177.	52.	1323.	٥.	1878	DISTILLA	1878.	٥	0.12	0.09	0.7
	GT-GORE-O			1568.		1333.				-2998.		DISTILLA	554.	0	0.31		
6 GINZOO	G1-OUNE-O	J MEAT	0.	,000,	0002,	10007			•								
7 GTR212	GT-GORE-1	2 POWR	0.	245.	538.	194.	177.	52.				DISTILLA	1878.			0.09	
	GT-GORE-1				3698.	1333.	1220.	358.	0.	-3259.	3698	.DISTILLA	439.	0	0.31	0.33	0.3
					200		. ~~	•	1047	^	. 1972	.DISTILLA	1873.	^	0 12	0.09	0.7
	GT-GORE-1				<u>526.</u> 3731.	188. 1333.	177. 1257.		1347.	-3375.		DISTILLA			0.32	0.34	0.3
8 GTK216	GT-GORE-1	b HEAT	0.	1766.	3/31.	1333.	123/,	369,	υ.	-3373,	3/31/	. DIOIILEA	555.	_			
9 GTRWOA	GT-85RE-0	B POWR	ο.	192.	505.	121.	177.	52.	1426.	0.	1931	DISTILLA	1931.			0.09	
	GT-85RE-0					1333.	1951.			-5543.	5559	DISTILLA	16.	0	0.27	0.35	0.2
		مت مس ند. م		······································						_		D. CT	1011	_	0 10	0.00	0.7
0 GTRW12	GT~85RE-1:	2 POWR			487.	123.	177.		1423.			DISTILLA				0.09	
GTRW12	GT-85RE-1:	2 HEAT	٥.	2293.	5273.	1333.	1920.	563.	0.	-5444.	527 3	.DISTILLA	-171.	0	0.30	0.36	0.2

18SE PEG ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 29112 MW 52.00 PROCESS MILLIONS BTU/HR 1333.0 PROCESS TEMP(F) 470. PRODUCT MEDIUM-REFIN HOURS PER YEAR 8760.

POWER TO HEAT RATIO 0.133 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU-10**6= ø. WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 20VR 219. 497. 137. 177. 52. 1407. O. 1904.DISTILLA 1904. 0 0.10 0.09 0.70 41 GTRW16 GT-85RE-16 HEAT 2127. 4833. 1333. 1725. 506. 0. -4838. 4833. DISTILLA -4. 0.31 0.36 0.28 42 GTR308 GT-60RE-08 POWR 174. 572. 163. 177 52. 1376. O. 1949. DISTILLA 1949. 0.08 0.39 0.68 42 GTR308 GT-GORE-08 HEAT 0, 1422. 4676. 1333. 1450. 425. 0. -3976. 4676.DISTILLA 701. 0.23 C.31 0.29 43 GTR312 GT-60RE-12 POUR 230 177. 1893. DISTILLA 1893. 0.11 0.09 0.70 519 165 52. 1374. 0. 43 GTR312 GT-60RE-12 HEAT 1857. 4194. 1333. 1434. 420. 0. -3928. 4194.DISTILLA 0.31 0.34 0.32 σ. 266. 44 GTR316 GT-60RE-16 POWR 0.11 0.09 0.70 229. 523. 168. 177. 52. 1371. O. 1894.DISTILLA 1894. 0 0. 44 GTR316 GT-60RE-16 HEAT 1333. 0.30 0.34 0.32 1815. 4157. 1409. 413. 0. -3849. 4157. DISTILLA 308. 45 FCPADS FUEL-CL-PH POWR 1475. 1942. 0.09 0.09 0.69 181. 467. 177. 52. 0. 1942.DISTILLA 0. 79. 45 FCPADS FUEL-CL-PH HEAT 0. -8757. -916, 0.38 0.17 0. 3038. 7841. 1333. 2980. 873. 7841.DISTILLA 0.28 46 FCMCDS FUEL-CL-MO POWR 1881.DISTILLA 1881. 0.11 0.09 0.71 0. 242. 431. 100. 177. 52. 1450. ٥. -1090. 46 FCMCDS FUEL-CL-MO HEAT 5721. 2357. 691. 0. -6811. 5721.DISTILLA 0.36 0.41 0.23 O. 3213. 1333.

PAGE 205

No skeries - Marske

PAGE 206

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

18SE PEG ADV DESIGN ENGR

DATE 06/06/79

		-	ec ec		74	6	74	73	74	.	9	-	ć	25		, –	•		v	0	4	0	90	-	60	_	C	0	
		HEA	FACT	1	0.62	0.7		0.7	0.7	0.73	0.6	0.71	C	0		9.2	0 74	0.65	0.74	0,60	0.7	0.60	0.68	0.61	0.6	0.61	0.70	0.50	
8760.		POWER HEAT	FACTR FACTR	"	0.0	0.12	<u> </u>	0.12	١.	0.12	0.08		6	0.08	6	0.08	10	0.19	0, 10	0.24	0.10	0.24		0.14	0.10	0.14	0.10	0.22	
	0.	FESR	L.		.17	-	17	6	17	-	-0.04		2	3 5			71.0		.17	.31	17	31	60	13		0.13	0.11	23	
PER YEAR	# 9 #	T.					0.	0		0	0-0	1	•	0	1 '		İ		0	0		0	0	0				0.	
	BTU*10**6=	FAIL					Ī	•						,	`	, 0		, 0	0	0	Ü	0	Ü	0		0	0	0	
HOURS	1	<u>.</u>	TOTAL+ UTILIT O**6 TU/HR	7000	4085.	3952.	4085.	3952.	4085.	3952.	5100.	4270.	0015	4270.	. 0018	4270.	4109	3255.	4099,	2617.	.66	2617.	4456.	4156.	4456.	4156.	4358.	3143.	
F1NE	WATER	NET=	TOTAL UTILI 10**6 BTU/HR	`	1 4 1 4	36	4	ĕ	4	36	10	45				4	A	8	4	56	4	26	4	4	44	4	43	31	
LARGE-REFINE	. H6T	SITE	FUEL USED		4085. RESIDUAL	RESIDUAL	COAL-FOD	4165. CGAL-FGD	4085. COAL-AFB	4165. COAL -AFB	5100. RESIDUAL	3973. RESIDUAL	CCAI - FAD	COAL-FGD	CAN LAFE	3973. COAL-AFB	4109 CCA! -PER	4665. COAL-PFB	4099. RESIDUAL	5037. RESIDUAL	JAL	JAL	RES1 DUAL	5020, RESIDUAL	COAL	JAL	4358, DISTILLA	6035.DISTILLA	
	o.	ار	FUEL SITE 10**6 BTU/HR	2570 C	085.R	4165.R	4085.C	165. C	085. C	165. ຕ	100.R	973.R	100	3973. C	7,001.8	973. CC	109 C	665.CC	099.RE	037.R	4099. COAL	5037. CGAL	4456.RE	320, RE	4456. CC	5020. CGAL	358.DI	335.DI	
PRODUCT	=9××											١.																	
470.	BTU*10**6	UTILIT	FUEL USED 10××6 BTU/HR	1343	50	-213	0	-213	0	-213	o.	297	d	297	C	297	0	-1409	0	-2421	0	-2421	0	-864	0	-864	0	-2892.	
TEMP(F)	0.141 L EQV	AUX	PRGCES BG1LR 10**6 BTU/HR	35.70	489.	Ö	489.	o	489.	ö	-1015.	o.	-1015.	0.	-1015	0	1832.	0	2302.	0.	2302.	Ö	1400.	ö	1400.	ö	2444.	o	
PROCESS TE	HEAT RATIO WASTE FUEL	- 1	MW ELECT	c	126.	146.	126.	146.	126.	146.	126.	98.	126.	98.	126	98.	126.	258.	126.	353.	126.	353.	126.	207.	126.	207.	126.	397.	
	TO	COGEN	PROCES POWER 10**6 BTU/HR	c	430.	498.	430.	493.	430.	498.	430.	335.	430	335.	430	335.	430.	881.	430.	1205.	430.	1205.	430.	706.	430.	706.	430.	1355.	
/HR 3042.0	POWER	COGEN	PRGCES HEAT 10**6 BTU/HR	c	2627.	3042.	2627.	3042.	2627.	3042.	3905.	3042.	3905.	3042.	3905	3042.	1485.	3042.	1086.	3042.	1086.	3042.	1852.	3042.	1852.	3042.	965.	3042.	
INS BTU/HR		COGEN	FUEL USED 10**6 BTU/HR	c	3596.	4165.	3596.	4165.	3596.	4165.	5100.	3973,	5100.	3973.	5100.	3973.	2277.	4665.	1798.	5037.	1798.	5037.	3056.	5020.	3056.	5020.	1914.	6035.	
MILLIONS		FUEL	SAVED= NG-NET 10**6 BTU/HR	C	938.	970.	838,	970.	838.	970.	-177.	653.	-177.	653.	-177.	653.	814.	1667.	823.	2306.	823.	2306.	466.	766.	466.	766.	564.	1780.	
PROCESS		WASTE	FUEL USED 10**6 BTU/HR	G	်ဝ _ိ	o	ö	o.	Ċ.	Ç.	0	ö	O	0	ò	ö	o	ó	0	o.	ö	Ö	ö	o.	o.	o o	0	o	
126.00	CGAL			z	POWR	HEAT	POWR	HEAT	POWR	HEAT	POWR	HEAT	QWR	HEAT	POWR	HEAT	POWR	HEAT	POWR	HEAT	POVIR	EAT	POWR	1EAT	POWR	HEAT	POWR	HEAT	
MW 12	!			. 0		- 1																- 1					- 1	1	
	FUEL			C	STM-TURB-1	STM-TURB-1	STM-TURB-1	S IM- I UKB-	STM-TURB-1	STM-TURB-1	STM-TURB-8	-TUR	STM-TURE-8	-TUR	-TUR	STM-TURB-8	PFB-STMTB-	PFB-STMTB-	TI-STMTB-1	TI-STMTB-1	TI-STMTB-1	TI -STMTB-1	THERM! ON! C	10 10 10 10 10 10 10 10 10 10 10 10 10 1	THERMI ONI C	RI41 01	STIRLING-1	STIRLING-1	
29113	1			z							ı						ı										STI	211	
STRY	UTILITY			ONGCGN	STM141	STM141	STM141	M141	STM141	STM141	STMOBB	STMO68	STMO88	M088	STMO88	STMOEB	PFBSTM	PFBSTM	TISTMT	TISTMT	TISTAT	TISTMI	TIHRSG	I HKSG	TIHRSG	TIHRSG	STIRL	SIIRL	
INDUSTRY				ō		1 5		n -	. 8	-	2 51		2 5		2		3 PF		- 1	7		4	1 S		T S			0	
	L										[1			1		- 1			1			Į		į	I	

GENERAL ELECTRIC COMPANY

COGENERATION TECHNOLOGY ALTERNATIVES STUDY

18SE PEO ADV DESIGN ENOR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

PAGE 207

INDUSTRY 29113 MW 126.00 PROCESS MILLIONS BTU/HR 3042.0 PROCESS TEMP(F) 470. PRODUCT LARGE-REFINE HOURS PER YEAR 8760.

POWER TO HEAT RATIO 0.141 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= NET= FESR POWER HEAT WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE FAIL TOTAL+ FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL FACTR FACTR UTILIT USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED 10**6 10**6 10**6 10×*6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 4358. 0 0.11 0.10 0.70 6 STIRL STIRLING-1 POWR 564. 1914. 965. 430. 126. 2444. 0. 4358. RESIDUAL 6 STIRL STIRLING-1 HEAT 1780. 6035. 3042. 1355. 397. 0. -2892. 6035. RESIDUAL 3143. 0.23 0.22 0.50 4358. 0 0.11 0.10 0.70 6 STIRL STIRLING-1 POWR 564. 1914. 965. 430. 126. 2444. Ō. 4358. COAL ٥. 6 STIRL STIRLING-1 HEAT 1780. 6035. 3042. 1355. 397. 0. -2892. 6035, COAL 3143. 0 0.23 0.22 0.50 7 HEGT85 HELIUM-GT- POWR -78. 430. 126. 3671 ٥. 5010. COAL-AFB 5010. 1 -0.02 0.09 0.61 0. -88. 1339. 0. 53530.-52024.COAL-AFB 7 HEGT85 HELIUM-GT- HEAT-52024. 3416.-52024. 3042.-16700. -4894. 1506. 11 -9.87 **** 2.02 4897. 8 HEGT60 HELIUM-GT- POWR 1660. 290. 430. 126. 3237. 0. 4897.COAL-AFB 0 0.0' 0.09 0.62 25. 8 HEGT60 HELIUM-GT- HEAT 263. 17396. 3042. 4506. 1321. 0.-12737, 17396.COAL-AFB 4660. 0.01 0.26 0.17 9 HEGTOO HELIUM-GT- POWR 242. 2443. 1140. 430. 126. 2238. ٥. 4681. COAL-AFB 4681. 0.05 0.09 0.65 0. 9 HEGTOD HELIUM-GT- HEAT 645. 6520. 3042. 1148. 336. 0. -2243. 6520. COAL-AFB 4278. 0.09 0.18 0.47 4210. 0.14 0.10 0.72 10 FCMCCL FUEL-CL-MO POUR 712. 1414. 666. 430. 126. 2796. 0. 4210, COAL 0. 0.30 0.47 10 FCMCCL FUEL-CL-MO HEAT 3256. 6462. 3042. 1964. 576. 0. -4796. 6462, COAL 1667. 0.34 0. 11 FCSTCL FUEL-CL-ST POWR 474. 430. 4181. COAL 4181. 0 0.15 0.10 0.73 0. 741. 1160. 126. 3021. Ο. 0.37 0.41 11 FCSTCL FUEL-CL-ST HEAT 4754. 7445. 3042. 2759. 809. 0. -7277. 7445. COAL 168. 0.39 2761. 4346. 0.12 0.10 0.70 12 IGGTST INT-GAS-GT POWR 577. 1584. 695. 430. 126. ٥. 4346.COAL ٥. 12 IGGTST INT-GAS-GT HEAT 6936. 3042. 1882. 0. -4539. 6936. COAL 2397. 0.27 0.27 0.44 2525. 552. 4382. 0.11 0.10 0.69 13 GTSGAR GT-HRSG-10 POWR ٥. 540. 1482. 577. 430. 126. 2899. 0. 4382. RESIDUAL 2265. 7809. RESIDUAL 2076. 0.27 0.29 0.39 13 GTSØAR GT-HRSG-10 HEAT 0. 2847. 7809. 3042. 664. 0. -5734. 4205. 0.10 0.72 14 GTACOS GT-HRSG-08 POUR 718. 1592. 821. 430. 126. 2612. 0. 4205 RESIDUAL 0.15 0. 0. -3631. 5896. RESIDUAL 2265. 0.31 0.27 0.52 14 GTACO8 GT-HRSG-08 HEAT C 2658. 5896. 3042. 1592. 467. 4221. 0 0.14 0.10 0.72 15 GTAC12 GT-HRSG-12 POWR O. 702. 1410. 653. 430. 126. 2811. 0. 4221, RESIDUAL 0. -4918. 1651. 0.33 0.31 0.46 15 GTAC12 GT-HRSG-12 HEAT 3271. 6570. 3042. 2004. 6570. RESIDUAL 1331. 4249. 0.14 0.10 0.72 16 GTAC16 GT-HRSG-16 POWR 0. 673. 562. 430. 126. 2918. Ο. 4249. RESIDUAL 16 GTAC16 GT-HRSG-16 HEAT 0. 3646. 7207. 3042. 2328. 682. 0. -5931. 7207. RESIDUAL 1276. 0.34 0.32 0.42 4233. 0 0.13 0.10 0.71 126. 2928. 0. 4293, RESIDUAL 17 GTWC16 GT-HRSG-16 POWR 0. 630. 1365. 553. 430. 17 GTWC16 GT-HRSG-16 HEAT 3462. 7502. 3042. 2363. 693. 0. -6042. 7502. RESIDUAL 1461. 0.32 0.32 0.41 0..

YSTEM" PI

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 29113 MW 126.00 PROCESS MILLIONS BTU/HR 3042.0 PROCESS TEMP(F) 470. PRODUCT LARGE-REFINE HOURS PER YEAR 8760,

POWER TO HEAT RATIO 0.141 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= NET= FAIL FESR POWER HEAT WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE **FUEL** SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL TOTAL+ FACTR FACTR FUEL USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 @C1626 GTST-16/26 POWR ٥. 614. 1169. 374. 430. 126. 3139. O. 4308.RESIDUAL 4308. 0 0.12 0.10 0.71 18 CC1626 GTST-16/26 HEAT 9508. 1025. D. 4995. 3042. 3496. 0. ~9581. 9508.RESIDUAL -73. 0 0.34 0.37 0.32 19 CC1622 GTST-16/22 POWR 0. 645. 1189. 417. 430. 126. 3089. 0. 4277, RESIDUAL 4277. 0.13 0.10 0.71 19 CC1622 GTST-16/22 HEAT 0. 4710. 8677. 3042. 3139. 920. O. -8465. 8677.RESIDUAL 212. 0 0.35 0.36 0.35 430. 651. 20 CC1222 GTST-12/22 POWR 0. 1186. 419. 126. 3085. 0. 4271.RESIDUAL 4271. 0 0.13 0.10 0.71 20 CC1222 GTST-12/22 HEAT 4724. 8599. 3042. 3118. 914. O. -8401. 8599, RESIDUAL 198. 0.35 0.36 0.35 21 CC0822 GTST-08/22 PGWR 699. 532. 430. 126. 2953. 0. 1271. O. 4224 RESIDUAL 4224. 0 0.14 0.10 0.72 21 CC0822 GTST-08/22 HEAT 3996. 7267. 3042. 2459. 721. 0. -6340. 7267.RESIDUAL 926. 0 0.35 0.34 0.42 22 STIG15 STIG-15-16 POWR 430. 126. 3562. 0. 232. 1128. 15. 0. 4690. RESIDUAL 4690. 1 0.05 0.09 0.65 22 STIG15 STIG-15-16 HEAT 0. 48185.234000. 3042. 89154. 26130. 0.*****234000.RESIDUAL -43263. 1 0.17 0.38 0.01 23 STIG10 STIG-10-16 POWR O. 4589 RESIDUAL 333. 1197. 3392. 4589. 0.07 0.09 0.66 Ο. 159. 430. 126. 23 STIG10 STIG-10-16 HEAT 6384. 22958. 3042. 8244. 2416. 0.-24420. 22958.RESIDUAL -1462. 1 0.22 0.36 0.13 Ο. 24 STIGIS STIG-15-16 POUR 379. 1283. 270. 430. 126. 3261. O. 4543.RESIDUAL 4543. 1 0.08 0.09 0.67 24 STIGIS STIG-15-16 HEAT 4264. 14431. 3042. 4837. 1418. 0.-13773. 14431. RESIDUAL 658. 0.23 0.34 0.21 25 DEADV3 DIESEL-ADV POUR 404. 1159. 187. 430. 126. 3359. O. 4518.RESIDUAL 4518. 1 0.08 0.10 0.67 25 DEADV3 DIESEL-ADV HEAT 6590, 18896. 0.-20564. 18896.RESIDUAL -1668. 3042. 7010. 2055. 1 0.26 0.37 0.16 26 DEADV2 DIESEL-ADV POWR 531. 1159. 294. 430. 126. 3233. 0. 4391. RESIDUAL 4391. 1 0.11 0.10 0.69 26 DEADV2 DIESEL-ADV HEAT 5488. 11976. 3042. 4443. 1302. 0.-12542. 11976.RESIDUAL -565. 1 0.31 0.37 0.25 453. 3046. O. 4205.RESIDUAL 42C5. 27 DEADVI DIESEL-ADV POWR 718. 1159. 430. 126. 0.15 0.10 0.72 0. -7677. 7780.RESIDUAL 27 DEADVI DIESEL-ADV HEAT 4819. 7780. 3042, 2886. 846. 104. 1 0.38 0.37 0.39 28 DEHTPM ADV-DIESEL POWR 589. 1527. 657. 430. 126. 0. 4334.RESIDUAL 4334. 0 0.12 0.10 0.70 28 DEHTPM ADV-DIESEL HEAT 2727. C. -4880. 7075.RESIDUAL 2195. 0 0.28 0.28 7075. 3042. 1992. 584. 0.43 29 DESGAS DIESEL-SGA POWR 331. 1191. 151. 430. 126. 3401. O. 4592.DISTILLA 4592. 1 0.07 0.09 0.66 29 DESGAS DIESEL-SGA HEAT 6648. 23955. 3042. 8648. 2534. 0.-25680. 23955.DISTILLA -1726, 1 0.22 0.36 0.13 29 DESGAS DIESEL-SGA POWR 331. 1191. 151. 430. 126. 0. 4592. RESIDUAL 4592. 1 0.07 0.09 0.66 29 DESGAS DIESEL-SGA HEAT 6648. 23955. 3042. 8648. 2534. 0.-25680. 23955.RESIDUAL -1726. 1 0.22 0.36 0.13

.

3

The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second

PAGE 208

1&SE PEC ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 29113 MW 126.00 PROCESS MILLIONS BTU/HR 3042.0 PROCESS TEMP(F) 470. PRODUCT LARGE-REFINE HOURS PER YEAR 6760.

POWER TO HEAT RATIO 0.141 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 0. HOT WATER BTU*10**6= 0. WASTE FUEL COGEN COGEN COGEN COGEN UTILIT TOTAL SITE **NET*** FESR POWER HEAT AUX FAIL FUEL FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10×*6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR ٥. 262 4461. 461. 1191. 430. 126. 3271. O. 4461.DISTILLA 0.09 0.10 0.68 30 DESGA2 DIESEL-SGA HEAT 5350. 13827. Ω. 3042. 4992. 1463. 0.-14255. 13827.DISTILLA -428. 0.28 0.36 0.22 126. 30 DESCA2 DIESEL-SCA POWR ٥. 461. 1191. 262. 430. 3271. O. 4461.RESIDUAL 4461. 0.09 0.10 0.68 30 DESCA2 DIESEL-SCA HEAT 0. 5350. 13827. 3042. 4992. 1463. 0.-14255, 13827, RESIDUAL -428. 0.28 0.36 0.22 31 DESGA1 DIESEL-SGA POWR 714. 1191 478 430 126 3017. 4208. DISTILLA 4208. 0.15 0.10 0.72 31 DESGA1 DIESEL-SGA HEAT 0. 4551. 7586. 3042. 2739. 803. 0. -7215. 7586. DISTILLA 372. 0.37 0.36 0.40 31 DESGA1 DIESEL-SGA POWR 714. 1191. 478. 430. 126. 3017. 0. 4208. RESIDUAL 4208. 0.15 0.10 0.72 31 DESGA1 DIESEL-SGA HEAT ٥. 4551. 7586. 3042 2739 803. 0. -7215. 7586. RESIDUAL 372. 0.37 0.36 0.40 32 GTSØAD GT-HRSG-10 POWR 657. 1472. 668. 430. 126. 2793. Λ. 4265. DISTILLA 4265. 0.13 0.10 0.71 32 GTSCAD GT-HE G-10 HEAT 2992. 6703. 3042. 1957. 574. 0. -4773. 6703. DISTILLA 1930. 0.31 0.29 0.45 33 GTRAOS GT-ESRE-OS POUR 0. 543. 1204. 343. 430. 126. 3175. Ο. 4379. DISTILLA 4379. 0.11 0.10 0.69 33 GTRAO8 GT-85RE-08 HEAT ٥. 4813. 10673. 3042. 3810. 1117. 0.-10564. 10673.DISTILLA 109. 0.31 0.36 0.29 0 34 GTRA12 GT-85RE-12 POWR 1201 365 430. 126 4351.DISTILLA 4351. 0.12 0.10 0.70 ο. 34 GTRA12 GT-85RE-12 HEAT O. 4769. 10021. 3042. 3587. 1051. O. -9867, 10021, DISTILLA 154. 0.32 0.36 0.30 35 GTRA16 GT-85RE-16 POWR 1232 401. 430. 3107. 4338. DISTILLA 4338. 0 0.12 0.10 0.70 Ω. 584. 126. Ω. 35 GTRA16 GT-65RE-16 HEAT 4425. 9335. 3042 3258. 0, -8838. 9335. DISTILLA 497. 0.32 0.35 0.33 Ο. 955. 36 GTR208 GT-60RE-08 FOWR 504. 430. 2986. 4329. 0.12 0.10 0.70 0. 593. 1343. 126. ٥. 4329. DISTILLA 36 GTR208 GT-GORE-OR HEAT 2594. 1343. α. 3579. 8106. 3042. 760. 0. -6763. 8106. DISTILLA 0.31 0.32 0.38 37 GTR212 GT-60RE-12 POWR 593. 1303. 470. 430. 3026. 4329. DISTILLA 4329. 0.12 0.10 0.70 0. 126. 0. 37 GTR212 GT-60RE-12 HEAT 1080. 0.31 0.33 0.36 0. 3843. 8440. 3042. 2785. 0. -7360. 8440.DISTILLA 816. 38 GTR216 GT-GORE-16 POWR 604 1276 456 430. 126. 3043 4318. DISTILLA 4318. 0.12 0.10 0.70 n. 38 GTR216 GT-60RE-16 HEAT 3042. 0. -7624. 0.32 0.34 0.36 0. 4031. 851**5**. 2870. 841. 8515. DISTILLA 891. 39 GTRW08 GT-85RE-08 POWR 0. 464. 1225. 294. 430. 126. 3233. O. 4458.DISTILLA 4458. 0.09 0.10 0.68 39 GTRWO8 GT-65RE-08 HEAT 0.-12572. 12687.DISTILLA 0.35 0.24 4808. 12687. 3042 1305 0.27 4453. 114. 40 GTRW12 GT-85RE-12 POWR 430. 126. 3228. O. 4409.DISTILLA 4409. 0.10 0.10 0.69 0. 514. 1181. 299. O 0.30 0.36 0.25 40 GTRW12 GT-85RE-12 HEAT 1284. 0.-12346. 12034.DISTILLA -311. n ٥. 5234. 12034. 3042, 4381.

PAGE 209

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 210

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 29113 MW 126.00 PROCESS MILLIONS BTU/HR 3042.0 PROCESS TEMP(F) 470. PRODUCT LARGE-REFINE HOURS PER YEAR 8760.

POWER TO HEAT RATIO 0.141 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR. 530. 1204. 41 GTRW16 GT~85RE~16 POWR 332. 430. 126. 3188. O. 4392.DISTILLA 4392 0 0.11 0.10 0.69 41 GTRW16 GT-85RE+ 66 HEAT 0.-10962, 11030, DISTILLA 0. 4854, 11030, 3042. 3938. 1154. 68. 0 0.31 0.36 0.28 42 GTR308 GT-60RF-08 POWR 422, 1387. 395. 430. 126. 3114. 0. 4501.DISTILLA 4501. 0 0.09 0.10 0.68 0. -8994. 10671. DISTILLA 42 GTR308 GT-60RE-08 HEAT 0. 3245, 10671. 3042. 3308. 970. 1677. 0 0.23 0.31 0.29 43 GTR312 GT-60RE-12 POWR 1257. 400. 430. O. 4366.DISTILLA 556. 4366. 0 0.11 0.10 0.70 126. 3109. 43 GTR312 GT-60RE-12 HEAT O. -8885. 9571.DISTILLA 4237. 9571. 3042. 3273. 959. 685. 0 0.31 0.34 0.32 44 GTR316 GT-60RE-16 POWR 0. 554, 1268. 407. 430. 3100. 0. 4369.DISTILLA 4369. 0 0.11 0.10 0.70 126. 44 GTR316 GT-GORE-16 HEAT 4142. 9486. Q. -8705. 9486.DISTILLA 3042. 3216. 942. 780. 0 0.30 0.34 0.32 45 FCPADS FUEL-CL-PH POWR 0. 438. 1131. 192. 430. 3353. O. 4484.DISTILLA 4484. 0 0.09 0.10 0.68 126. 45 FCPADS FUEL-CL-PH HEAT 0. 6934 17894. 3042. 6800. 1993. 0.-19906. 17994.DISTILLA -2012. 0 0.28 0.38 0.17 3293. 0. 4336.DISTILLA 0 0.12 0.10 0.70 46 FCMCDS FUEL-CL-MO POWR 0., 586, 1043. 243. 430. 4336. 126. 0. 7332, 13056. 46 FCMCDS FUEL-CL-MO HEAT 0.-15466. 13056.DISTILLA -2410. 3042. 5379. 1576. 0 0.36 0.41 0.23

PRINTING SYSTEM-

PAGE 211

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

18SE PEO ADV DESIGN FNGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 32111 MW 5.60 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F) 0. PRODUCT FLAT-GLASS HOURS PER YEAR 7500.

UTILITY' FUEL	COAL				POWER	R TO HEA		EL EQV I		¢6=	O. HOT	WATER BT	U*10**6	i= (D.	
		WASTE	FUEL	CECEN	CÜĞÊN	COGEN	COREN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEA
		FUEL	SAVED=		PROCES			PROCES		FUEL	FUEL	TOTAL+			FACTR	
	•	USED	NO-NET		HEAT			BOILR		SITE	USED	UTILIT				
			10**6					10xx6	10**6			10**6				
			BTU/HR						BTU/HR			BTU/HR		<u> </u>		
										_	DISTILLA	60.	•	٥.	0.32	0
ONOCGN N O C O	-	0.			0.	0.	0.				RESIDUAL	5 7.		0.04		
STM141 STM-TURB-		0.		_	30.	19.	6.					60.	111		0.33	
STM141 STM-TURB-	1 HEAT	0.	0.	0.	<u> </u>	0.	<u> </u>	0.	60.		RESIDUAL	<u> </u>		<u> </u>		<u></u>
STM141 STM-TURB-	1 POWR	0.	3.	57.	30.	19.	6.	-35.	О.		COAL-FGD	57.		0.04		
STM141 STM-TURB-	1 HEAT	0.	0.	0.	0.	٥.	O.	0.	60.	0.	. COAL-FGD	60.	111	٥.	0.	ο.
STM141 STM-TURB-	1 DOUB	0.	3.	57.	30.	19.	6.	-35.	0.	57	COAL-AFB	57.	11	0.04	0.33	ő.
STM141 STM-TURB-				٠, ٥.	0.	0.	õ.				COAL-AFB		111		0.	ο.
		_	_				_	44		-	DESTRUM	60	•	-0.06	0.30	0
STMOBB STM-TURB-			<u>-3.</u>	63.	34. 0.	19. 0.	<u>6.</u> 0.	<u>-41.</u> 0.	<u>0.</u>		RESIDUAL RESIDUAL		111		0.30	0.
STMOBB STM-TURB-	B HEAT	0.	0.	ο.	U.	U.	υ.	U,	80.	0.	. RESTOONE	0 5.	• • • •	٠.	•	٠.
STMO86 STM-TURB-	B POWR	٥.	-3.	63.	34.	19.	6.	-41.	0.	63	. COAL-FGD	63.	1	-0.06	0.30	0.
STM088 STM-TURB-	B HEAT	0.	0.	0.	0.	0.	0.	0.	60.	0.	.COAL-FGD	60.	111	0.	0.	_0.
STMOBB STM-TURB-		٥.	-3.	63.	34.	19.	6.	-41.	٥.	63	COAL-AFB	63.	1	-0.06	0.30	0.
STMOBE STM-TURB-		0. 0.		0.		0.	0.				COAL-AFB	•	111		0.	0.
STHOOD STH TORB	O IILAI		٠.	•								· · · · · · · · · · · · · · · · · · ·				
PFBSTM PFB-STMTB	- POWR	0.	10.	50.	24.	19.	6.	-28.	0.		. COAL-PFB			0.17		
PFBSTM PFB-STMTB	- HEAT	0.	0.	0.	0.	0.	٥.	0.	60.	0	. COAL-PFB	60.	111	ο.	0.	0.
TISTMT TI-STMTB-	1 PAUD	0.	14.	46.	20.	19.	6.	-23.	0.	46.	. RESIDUAL	46.	11	0.23	0.41	0.
TISTMT TI-STMTB-				0.	0.	0.	Ō.	0.	60.	0	RESIDUAL	60.	111	0.	0.	0.
		_		46			_	-23.	0.	AC	. COAL	46.	11	0.22	0.41	ο.
TISTMT TI-STMTB-				46.	20.	19.	6.				. COAL	60.	111	- ,	0.	o.
TISTMT TI-STMTB-	1 HEAT	0.	0.	0.	<u> </u>	0.	0.		60.	<u> </u>	. COAL					
TIHRSG THERMIONI	C POWR	0.	-76.	136.	96.	19.	6.	-113.	0.		RESIDUAL		_		0.14	
TIHRSG THERMIONI				0.	0.	0.	٥.	0.	60.	0	.RESIDUAL	60.	111	٥.	ο.	Ο.
TIHRSG THERMION	C POUR	O.	-76.	136.	96.	19.	6.	-113.	0.	136	. COAL	136.	1	-1.27	0.14	0.
TIHRSG THERMIONI					0.	o.	o.				. COAL	60.	111	O.	0.	0.
			_			••	_	-00	0.	ca	DISTILLA	62.	,	-0 04	0.31	٥.
STIRL STIRLING-				<u>62.</u> 0.	<u>26.</u> 0.	<u>19.</u>	<u>6.</u>				DISTILLA			<u>3.</u>	0.	0.
STIRL STIRLING-	HEAL	U.	U.	5.	U,	٥.	υ.	Ω.		•	, ,		• • •			-

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 32111 MW 5.60 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F)

O. PRODUCT FLAT-GLASS HOURS PER YEAR 7500.

PAGE 212

POWER TO HEAT RATIO **** UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU:10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 0. -2. 62. 26. 19. 6. -30. 0. 62. RESIDUAL 62. 1 -0.04 0.31 0. 6 STIRL STIRLING-1 HEAT 0, O.RESIDUAL 0. 0. 0. 0. 0. 0. 60. **50.** 111 0. 0. 6 STIRL STIRLING-1 POWR 0. -2. 62. 26. 19. 6. -30. Ö. 62. COAL 62. 1 -0.04 0.31 0. 6 STIRL STIRLING-1 HEAT 0. O. COAL Ο. 0. 0. ο. 0. 60. 60. 111 0. 0. 7 HEGT85 HELIUM-GT- POWR 60. 27. 19. -31, 60. COAL-AFB 60. 11 0.00 0.32 0. 6. 7 HEGT85 HELIUM-GT- HEAT ٥. 0. 0. 0. 60. O. COAL-AFB 60. 111 0. 0. 8 HEGT60 HELIUM-GT- POWR -14. 74. 32. 19. 6. -37. Ω. 74. COAL-AFB 74. 11 -0.24 0.26 0. 8 HEGT60 HELIUM-GT- HEAT O. COAL-AFB 0. ٥. 0. ٥. 0. 0. 60. 60. 111 0. 0. Ω. 9 HEGTOO HELIUM-GT- POWR ٥. -49. 109. 66. 19. 6. -77. 0. 109. COAL-AFB 109. 11 -0.82 0.18 0. 9 HEGTOO HELIUM-GT- HEAT O. ٥. ٥. ٥. 0. ٥. ٥. 60. O. COAL-AFB 60. 111 0. 0. 0. 10 FCMCCL FUEL-CL-MG POWR 0. -3. 63. 30. 19. -35. 0. 63. COAL 63. 11 -0.05 0.30 0. 6. 10 FCMCCL FUEL-CL-MO HEAT ٥. 0. 0. 0. O. COAL 111 0. 0. 0. ٥. 60. 60. 0. 0, 11 FCSTCL FUEL-CL-ST POWR 39 39. COAL 11 0.35 0.49 0. 19. -13. 11 FCSTCL FUEL-CL-ST HEAT ٥. 0. ٥. Ô. ٥. 0. 0. 60. O. COAL 60. 111 0. 0. 0. 12 IGGTST INT-GAS-GT POWR ٥. 12. 48. 15. 19. 6. -17. 0. 48. COAL 48. 11 0.20 0.40 0. O. COAL 12 IGGTST INT GAS-GT HEAT 111 0. 0. 0. 0. Ο. 0. 0. 60. 60. 13 GTSCAR GT-HRSG-10 POWR 11 -0.10 0.29 0. -6. 66. 33. 19. 6. -58. ٥. 66. RESIDUAL 66. 13 GTSCAR GT-HRSG-10 HEAT ٥. 0. 0. 0. ٥. 0. 60. O. RESIDUAL 60. 111 0. 0. 71. RESIDUAL 11 -0.19 0.27 0. 14 GTACOS GT-HRSG-08 POUR 0. -11. 71. 34. 19. 6. -40. α. 71. 14 GTACO8 GT-HRSG-08 HEAT ٥. ٥. ٥. 0. 0. ٥. 0. 69. O. RESIDUAL 60. 111 0. ٥. -38. 15 GTAC12 GT-HRSG-12 POWR 0. 63. RESIDUAL 11 -0.05 0.31 -3. 63. 19. 63. 32. 15 GTAC12 GT-HRSG-12 HEAT Ø. 0. 0. 60. O. RESIDUAL 60. 111 0. 0. 0. 0. ٥. 59. RESIDUAL 16 GTAC16 GT-HRSG-16 POWR 11 0.01 0.32 0. 0. 59. 30. 13. 6. -35. ٥. 59. 1. 16 GTAC16 GT-HRSG-16 HEAT 111 0. 0. O. RESIDUAL Ο. ٥. 0. Ο. 0. Ο. 60. 60. 11 -0.02 0.32 0. 17 GTWC16 GT-HRSG-16 POWR 61. RESIDUAL -28, ٥. 61. 0. -1. 61. 24. 19. 6. 111 0. 0. ٥. 17 GTWC16 GT-HRSG-16 HEAT O. RESIDUAL 60. ٥. 0. 0. 0. 0. 0. 0. 80.

PAGE 213

and the second s

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 32111 MW 5,60 PROCESS MILLIONS BTU/HR

O. PROCESS TEMP(F)

O. PRODUCT FLAT-GLASS HOURS PER YEAR 7500.

POWER TO HEAT RATIO **** O. HOT WATER BTU*10**6= UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT WASTE COGEN FACTR FACTR PROCES FUEL FUEL FUEL TOTAL+ FUEL SAVED= FUEL PROCES PROCES MW BOILR USED SITE USED UTILIT POWER ELECT USED NO-NET USED HEAT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 11 0.31 0.46 0. 0. 41. RESIDUAL 41. -11. 18 CC1626 GTST-16/26 POWR Ū. 18. 41. 9. 19. 6. ٥. a. ٥. ٥. 60. O. RESIDUAL 60. 111 0. 0, 18 CC1626 GTST-16/26 HEAT ٥. 0. 0. 0. 0. 41. RESIDUAL 41. 11 0.31 0.46 0. -12. 19 CC1622 GTST-16/22 POWR ٥. 18. 41. 10. 19. 6. 0. 60. O. RESIDUAL 60. 111 0. 0. 0. 19 CC1622 GTST-16/22 HEAT ٥. ٥. ٥. 0. α. ٥. 0. 41. RESIDUAL 41. 11 0.31 0.47 20 CC1222 GTST-12/22 POWR 19. 10. 19. 6. -12. 41. 60. O. RESIDUAL 60. 111 ٥. 0. 0. 0. 20 CC1222 GTST-12/22 HEAT ٥. 0. n. Ω. 11 0.31 0.46 0. -14. ٥. 41 . RESIDUAL 41. 21 CC0822 GTST-08/22 POWR 0. 18. 41. 12. 19. 6. ٥. 0. 60. O.RESIDUAL 111 Ο. α. 0. 21 CC0822 GTST-08/22 HEAT 0. ο. 0. ٥. 11 0.16 0.38 0. 19. 6. -1. ٥. 50. RESIDUAL 50. 22 STIG15 STIG-15-16 POWR g. 10. 50. 1. 0. 0. 60. O. RESIDUAL 60. 111 0. ٥. 0. 0. 0. 22 STIG15 STIG-15-16 HEAT 0. C. 0. 53. 0,11 0.36 11 0. 0. 53. RESIDUAL 23 STIG10 STIG-10-16 POWR 0. 7. 53. 7. 19. 6. -8. G. 0. 0. ٥, 60. O. RESIDUAL 60. 111 0, ٥. 0. 0. 23 STIG10 STIG-10-16 HEAT 0. О. 11 0.05 0.34 57. RESIDUAL 24 STIG1S STIG-15-16 POWR 12. 19. 6. -14. ٥. 3. 57. O. RESIDUAL 60. 111 0. 0. 0. Ō. Q. 0. 0. 60. 24 STIG1S STIG-1S-16 HEAT 0. Ω. 0. 1 0.14 G.37 O. 52. 52. 19. 19. 6. -22. 0. 52. RESIDUAL 25 DEADV3 DIESEL-ADV POWR 0. A. 60. O. RESIDUAL 60. 111 0. ٥. ٥. 0. 0. 0. 25 DEADV3 DIESEL-ADV HEAT 0. Ο. 0. 1 0.14 0.37 0. 52. RESIDUAL 52. 0. 8. 52. 13. 19. 6. -15. 0. 26 DEADV2 DIESEL-ADV POWR 60. 111 0. 0. o. 0. ٥. 0. 60. O.RESIDUAL 0. α. 26 DEADV2 DIESEL-ADV HEAT 0. Ο. 1 0.14 0.37 ٥. 52. RESIDUAL 52. 27 DEADVI DIESEL-ADV PONR 20. 19. 6. -24. 0. O. 8. 52. 60. 111 0. 0. Ω. 0. 60. O.RESIDUAL 0. 0. ٥. 0. 27 DEADVI DIESEL-ADV HEAT 0. 0. 1 0.20 0.40 0. 19. 6. -29. 48. RESIDUAL 48. 28 DEHTPM ADV-DIESEL POWR 24. 12, 48. 60. 111 0. 0. ۵. Ω. 60. O. RESIDUAL O. 28 DEHTPH ADV-DIESEL HEAT n. 0. 0. 1 0.11 0.36 0. 53. 7. -20. 0. 53. DISTILLA 29 DESGAS DIESEL-SGA POWR 53. 17. 19. 6. Đ. 0.___ 60. 111 0. 0. 0. Ο. 60. O. DISTILLA 29 DESCAS DIESEL-SCA HEAT ٥. ο. 0. 0. 1 0.11 0.36 0. 53. 7. 17. 19. 6. -20. 0. 53. RESIDUAL 29 DESCAS DIESEL-SCA POWR 0. 53. O. RESIDUAL 60. 111 0. 0. 0. 0. 60. 0. 0. 29 DESCAS DIESEL-SCA HEAT 0. 0. 0. 0.

<u>.</u>

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 32111 MW 5.60 PROCESS MILLIONS BTU/HR O. PROCESS TEMP(F)

O. PRODUCT FLAT-GLASS HOURS PER YEAR 7500.

PAGE 214

POWER TO HEAT RATIO **** UTILITY FUEL CHAI WASTE FUFL FOV BTU*10**6= O. HOT WATER BTU*10**6= 0. COGEN COGEN COGEN AUX UTILIT TOTAL SITE FESR POWER HEAT WASTE FUEL NFT= FAIL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL. FUEL TOTAL+ FACTR FACTR NO-NET USED BOILR USED UTILIT USED HEAT PGWER ELECT SITE USED 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR ٥. 7. 53. 12. 19. 6. -14. 0. 53. DISTILLA 53. 1 0.11 0.36 0. 30 DESGA2 DIESEL-SGA HEAT O. DISTILLA 0. ٥. 0. 0. 0. 60. 60. 111 0. Ω. Ω. Ω. 30 DESGA2 DIESEL-SGA POWR 7. 53. 12. 19. -14. Ō. 53. RESIDUAL 53. 1 0.11 0.36 6. 30 DESGA2 DIESEL~SGA HEAT O.RESIDUAL 0. 0. 0. 0. 0. 0. 0. 60. 60. 111 0. 0. C. 31 DESGA1 DIESEL-SGA POWR 53 19. .6. -25 ٥. 53. DISTILLA 53. 1 0.11 0.36 31 DESCA1 DIESEL-SCA HEAT 0. 0. 0. ٥. 60. O. DISTILLA 60. 111 0. 0. 31 DESCA1 DIESEL-SCA POWR ٥. 7. 53. 21. 19. 6. -25. 0. 53. RESIDUAL 53. 1 0.11 0.36 0. 31 DESCA1 DIESEL-SCA HEAT ٥. ٥. 0. ٥. 0. 60. O. RESIDUAL 6G. 111 0. 11 -0.10 0.29 32 GTSOAD GT-HRSG-10 POWR ۵. -6. 65. 35. 19. 6. -41. ٥. 65. DISTILLA 65. 0. 32 GTSØAD GT-HRSG-10 HEAT ۵. ٥. ٥. ٥. 60. O.DISTILLA 60. 111 0. O. 0. n 0. ٥. 33 GTRAOS GT-85RE-08 POWR 54. DISTILLA 54. 11 0.10 0.38 a. 6. 54. 22. 19. 6. -25. n. 0. 33 GTRAOS GT-85RE-08 HEAT ٥. 0. ٥. ٥. ٥. 0. ٥. 80. O.DISTILLA 60. 111 0. 0. 34 GTRA12 GT-85RE-12 POWR 53. DISTILLA 11 0,11 0.36 0. 0. 6. 53 22. 19. -26 0. 53. 34 GTRA12 GT-85RE-12 HEAT 60. O. DISTILLA 60. 111 0. 0. 0. 0. 0. Ο. 0. 0. 0. -27. 55. DISTILLA 35. 11 0.08 0.35 0. 35 GTRA16 GT-85RE-16 POWR 55. 23. R ٥. ٥. 5. 19. 35 GTRA16 GT-85RE-16 HEAT 0. 0. 0. ٥. 0. 0. 0. 60. O.DISTILLA 60. 111 0. 0, 0, 11 0. 36 GTR208 GT-60RE-08 POWR ٥. 0. 60. 28. 19. 6. -33. 0. 60. DISTILLA 60. 0.32 0. 36 GTR208 GT-60RE-08 HEAT 0. 0. ٥. 0. ٥. 0. ٥. 60. O. DISTILLA 60. 111 0. ٥. 0. 11 0.03 37 GTR212 GT-GORE-12 POWR 2. 26. 19. 6. -30. 0. 58.DISTILLA 58. 0.33 Ō. 0. 58. 37 GTR212 GT-60RE-12 HEAT 0. 0. Ο. ٥. 0. Э. 0. 60. O. DISTILLA 60. 111 0. 0. 0. 38 GTR216 GT-60RE-16 POWR -30. n. 57. DISTILLA 57. 11 0.05 0.34 O. 0. 38 GTR216 GT-60RE-16 HEAT 0. ō. 0. O. 0. Ö. 60. O. DISTILLA 60. 111 0. 18. 0. 54.DISTILLA 54. \$1 0.09 0.35 O. 39 GTRW08 GT-85RE-08 POWR 6. -21. ٥. 5. 54. 19. 39 GTRW08 GT-85RE-08 HEAT 0. 0. 60. O. DISTILLA 60. 111 G. 0. 0. n ٥. 0. n. Ω. 11 0.12 0.36 0. 40 GTRW12 GT-85RE-12 POWR 7. 52. 17. 19. 6. 1 -21. 0. 52. DISTILLA 52. 0. 0. 0. 60. O.DISTILLA 60. 111 G. 0. 0. 40 GTRV12 GT-85RE-12 HEAT G. 0. ٥. ٥. ٥.

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

1&SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

PAGE 215

INDUSTRY 32111 MW 5.60 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F) 0. PRODUCT FLAT-GLASS HOURS PER YEAR 7500.

POWER TO HEAT RATIO **** WASTE FUEL EQV BTU*10**6= JTILITY FUEL COAL O. HOT WATER BTU-10**6= WASTE COGEN COGEN COGEN COGEN AUX UTILIT TOTAL NET= FESR POWER HEAT SITE SAVED= FUEL . PROCES PROCES MW PROCES FUEL FUEL TOTAL+ FACTR FACTR FUEL FUEL USED NO-MET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR ٥. 6. 54. 19. 19. 6. -22. ٥. 54.DISTILLA 54. 11 0.10 0.36 0. 41 GTRW16 GT-CGRE-16 HEAT O. DISTILLA ٥. ٥. ٥. ٥. ο. α. 0. 60. 60. 111 0. υ. 42 GTR308 GT-GORE-08 POWR 0. 62. DISTILLA 11 -0.03 0.31 0. 0. -2. 62. 28. 19. 6. -33. 62. 42 GTR308 GT-60RE-08 HEAT 0. O. 0. ٥. 0. 60. O. DISTILLA 60. 111 0. 0. Ο. 0, 56. DISTILLA 11 0.06 0.34 0. 43 GTR312 GT-60RE-12 POWR 56. 21. 19, -25, 0. 56. 43 GTR312 GT-60RE-12 HEAT ٥. 0. 0. 0. 0. 0. 60. O. DISTILLA 60. 111 0. 0. 44 GTR216 GT-GORE-16 POWR 56. 22. 19. -25. 56. DISTILLA 56. 11 0.06 0.34 0. 0. 44 GTR316 GT-60RE-16 HEAT 0. ٥. α. 0. 0. 60. O. DISTILLA 60. 111 0. 45 FCPADS FUFL-CL-PH POVR 50. 9. 19. -10. ٥. 50. DISTILLA 50. 1 0.16 0.38 9. 6. 45 FCPADS FUEL-CL-PH HEAT O. DISTILLA 60. 111 0. O. ٥. ٥. ٥. 0. 60. 46 FCMCDS FUEL-CL-MO POWR 11. 0. 46. DISTILLA 46. 1 0.22 0.41 0. 0. 13. 45. 19. -13. 6. 46 FCMCDS FUEL-CL-MØ HEAT 0. ٥. อ. C. 0. ٥. ٥. 60. O. DISTILLA 60. 111 0. 0. 0.

. . . .

ISSE PEO ADV DESIGN ENGR

COGENERAL TO TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1.

INDUSTRY 32211 MW 5.10 PROCESS MILLIONS BTU/HR

O. PROCESS TEMP(F)

FUEL ENERGY SAVED BY PROCESS AND ECS

O. PRODUCT GLASS-CONTAI HOURS PER YEAR 7500.

PAGE 216

POWER TO HEAT RATIO ***** UTILITY FUEL CCAL WASTE FUEL EQV BTU:10:*6= O. HOT WATER BTU=10××6= UTILIT TOTAL SITE WASTE FUEL COGEN COGEN COGEN AUX NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR STU/HR BTU/HR BTU/HR O ONOCON NO COOON 0. ۵. 0. Ω. 54. O. DISTILLA 0.32 0. ٥. O. 0. 54. Ο Ω. 1 STM141 STM-TURB-1 POWR ٥. 2. 52. 27. 17. 5. -32. 0. 52. RESIDUAL 52. 11 0.04 0.33 0. 1 STM141 STM-TURB-1 HEAT 0. ٥. ٥. α. α. 0. 54. O.RESIDUAL 54. 111 0. 0. 1 STM141 STM-TURB-1 POWR 0. 2. 52. 27. 17. 5. -32. O. 52.COAL-FGD 52. 11 0.04 0.33 0. 1 STM141 STM-TURB-1 HEAT 0. 54. O. COAL-FGD 111 0. ٥. 0. Ο. 0. 0. 54. 0. 1 STM141 STM-TURB-1 POWR 52. 27. 17. -32. 52. COAL - AFB 11 0.04 0.33 0. ٥. 2. 5. ۵. 52. 1 STM141 STM-TURB-1 HEAT ٥. 0. ٥. ο. Ω. 54. O. COAL-AFB 54. 111 0. 0. ۵. 0. ٥. 2 STM088 STM-TURE-8 POWR -3. 57. 31. 17. 5. -37. Ω. 57. RESIDUAL 57. 1 -0.06 0.30 0. 2 STMO88 STM-TURB-8 HEAT 0. 0. 0. 0. O.RESIDUAL 111 0. 0. 0 0. 54. 54. 0. 0. 2 57 1086 STM-TURB-8 POWR -37. 57. COAL-FGD 0. -3. 57. 31. 17. 5. 0. 57. 1 -0.08 0.30 0. 2 STY DES STM-TURB-8 HEAT 0. 0. O.COAL-FGD 54. 111 0. ٥. 0. 0. 0. 0, 0. 54. 0. 5. 57. COAL-AFB 2 STMC88 STM-TURB-8 POWR -3. 57. 31. 17. -37. ٥. 57. 1 -0.06 0.30 0. ٥. 2 STMOSS STM-TURB-8 HEAT O.COAL-AFB 54. 111 0. ٥. ٥. ٥. ٥. 0. 0. 0. ٥, 54. 0. 3 PFRSTM PFB-STMTB- POWR 9. 21. 17. 5. -25. ٥. 45. COAL-PFB 45. 11 0.17 0.38 σ. 45. 0. 3 PFBSTM FFB-STMTB- HEAT Ω. Ο. 0. ο. ο. 0. 0. 54. O. COAL-PFB 54. 111 0. 0. 0. 4 TISTMT TI-STMTB-1 POWR 12. 18. 17. -21. Ω.. 42. RESIDUAL 11 0.23 0.41 4 TISTMT TI-STMTB-1 HEAT O.RESIDUAL 54. 111 0. 0. O. ٥. 0. 54. 0. 42. COAL 4 TISTMT TI-STMTB-1 POWR ۵. 12. 18. 17. -21. ٥. 42. 11 0.23 0.41 0. 42. 5 4 TISTMT TI-STMTB-1 HEAT ٥. 0. 0. 0. 0. ۵. 0. 54. O. COAL 54. 111 0. ٥. 0. 5 TIHRSG THERMIONIC POUR ~103. 0. 124. RESIDUAL 124. 1 -1.27 0.14 0. 0. -69. 124. 87, 17. 5 TIHRSG THERITIONIC HEAT 111 0. ٥. Ο. O.RESIDUAL 54. ٥, 0. G. 0. 0, 0, 0. 54. 5 TIHRSG THERMIONIC POWR 0. 124.COAL 124. 1 -1.27 0.14 0. -69. 124. 87. 17. 5. -103. 0. 5 TIHRSG THERMIONIC HEAT α. O. 0. 0. 54. O. COAL 54. 111 0. 0. 0. ٥. 0. 6 STIRL STIRLING-1 POWR 57. 24. 17. -28. 0. 57. DISTILLA 57. 1 -0.04 0.31 0.1 6 STIRL STIRLING-1 HEAT O. 0. 54. O.DISTILLA 54. 111 0. 0. 0. n 0. n.

DESIGN ENGR

I &SE PEO ADV

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
-UEL EMERGY SAVED BY PROCESS AMD

FUEL ENERGY SAVED BY PROCESS AND ECS

POTER HEAT 00 00 00 00 00 00 00 00 00 90 00 00 00 0.32 0.40 32 0.18 0.49 0.29 0.03 28 0.27 0.31 0.31 o, ö 00 ö 7500. 00 00 ö -0.02 -0.13 0. -0.19 0. -0.05 0.20 0.35 0.0 -0.05 -0.82 FESR 0.04 00 2 9 YEAP. 00 o, o o 00 WATER BTU*10xx6= ---A---- A---A---- A---A---- A---6----6----PRODUCT GLASS-CONTA! HOURS PER NET= TOTAL+ UTILIT 10××6 BTU/HR 55. 54 54. 57 54 57 35 54 54. 54 57. 57 54 RESIDUAL 99.CGAL-AFB 0.CGAL-AFB 60.RESIDUAL 0.RESIDUAL 57.RESIDUAL 0.RESIDUAL 55. RESIDUAL 0. RESIDUAL 54. COAL - AFB 0. COAL - AFB 67. COAL-AFB 0. COAL-AFB HOH 57.RESIDUAL 0.RESIDUAL 64.RESIDUAL 0.RESIDUAL SITE FUEL USED 57. COAL O. COAL 57. CCAL 0. COAL 44.CGAL 0.CGAL 35.COAL O 54. FUEL SITE 10-: x6 BTU/HR BTU*10**6= UTILIT FUEL USED 10××6 BTU/HR 54. 54, 50. 540 54. o 50 54 54. 54. ö 0.4 50 S 54 ö AUX PROCES BØ1LR 10××6 **BTU/HR** -26. 320 .35. 0. . O 32. -34. -70. 0. 200 -16. 0. 333 -28. 0. HEAT RATIO ***** -28. 28 PROCESS TEMP(F) က်ဝဲ က်ဝ 10 0 10 O 50 ທ່ວ n o 10 O COGEN MW ELECT n o ທ່ວ က် ဝ 50 n o 17.0 PROCES 17. 17.0 17. 50 0 10 70 POWER 10**6 BTU/HR 50 17. 0.7 7.0 ~ Q CHGEN 5 ö POWER COGEN PROCES I 31.0 **ETU/FIR** 24.0 27. 0 29 27. 0. 80. 20 24.0 60. 30.0 00 60 800 10××6 BTU/HR FUEL USED 10××6 BTU/HR 64. 57. 0. 57. . 0 57. 60. ö 540 50 54. 67. 0. 3 44 27 COGEN MILLIGIE SAVED= 110-NET 10**6 BTU/HR -0. -44. 110. 00 ကုပ 90 -- O -13. တပြ **φ**Ο 40 બં ૦ 00 FUEL PROCESS WASTE FUEL USED 10××8 BTU/HR 00 00 00 00 00 00 0,0 00 00 00 00 00 00 POWR POUR HEAT POMR HE & T POMR HEAT POMR HEAT POMR HEAT POWR HEAT PGWR HEAT POVIE HEAT POWR HEAT POUR POUR HEAT PGMR HEAT 5,10 HEAT COAL FUEL-CL-MG FUEL-CL-MG GT-HRSG-16 GT-HRSG-16 HEL I UM-GT-HEL I UM-GT-FUEL-CL-ST FUEL-CL-ST 1NT-6AS-GT 1NT-6AS-GT GT-HRSG-10 GT-HRSG-10 6T-HR56-08 6T-HES6-08 GT-HR36-12 GT-HRSC-12 6T-HRS9-16 OT-HRSG-16 HEL I UM-GT-HEL I UM-GT-HEL I UM-GT-HEL I UM-GT-STIRLING-1 STIRLING-1 STIRLING-1 STIRLING-1 $\frac{1}{2}$ FUEL 32211 UTILITY 6TAC12 6TAC12 GTAC16 GTAC16 GTVIC16 GTVIC16 GTSØAR GTSØAR GTAC08 GTAC08 HEGT85 HEGT85 HEGT60 HEGT60 HEGT00 HEGT00 FCMCCL FCSTCL FCSTCL 1GGTST 1GGTST STIR! STIRL INDUSTRY STIRL STIRL 10 10 9 5 5 4 4 0 0 <u>0</u> 0 17 თ თ တတ യയ 1/1 ယယ

18SE PEØ ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

**FUEL ENERGY SAVED BY PROCESS AND ECS#

ENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

INDUSTRY 32211 MW 5.10 PROCESS MILLIONS BTU/HR

O. PROCESS TEMP(F)

O. PRODUCT GLASS-CONTAI HOURS PER YEAR 7500.

POWER TO HEAT RATIO ***** UTILITY FUEL CGAL WASTE FUEL EQV BTU*10**6= ٥. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED USED HEAT POWER ELECT BOILR USED SITE UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 16 CC1626 GTST-16/26 POWR 17. 38. n. 9. 17. 5. -10. ٥. 38. RESIDUAL 38. 11 0.31 0.46 0. 18 CC1626 GTST-16/26 HEAT Ω. ٥. ٥. 0. 54. ο. ٥. ο. O. RESIDUAL 54. 111 Ο. 0. О. 19 CC1622 GTST-16/22 POWR Ο. 17. 38. 9. 17. -11. 0. 5. 38. RESIDUAL 38. 0.31 0.46 11 0. 19 CC1622 GTST-16/22 HEAT ٥. O. 0. n. 0. 0. 0. 54. O. RESIDUAL 54. 111 C. 0. ٥. 20 CC1222 GTST-12/22 POWR 17. 37 9. 17. -11, ٥. 37. RESIDUAL 5. 37. 11 0.31 0.47 ٥. 20 CC1222 GTST-12/22 HEAT 0. ٥. 0. Ω. 0. ٥. C. 54. O. RESIDUAL 54. 111 O. O. 21 CC0822 GTST-08/22 POWR 0. 17. 38. 11. 17. -13. 0. 38. RESIDUAL 38. 11 0.31 0.46 0. 21 CC0822 GTST-08/22 HEAT Ω ٥. Ω. ٥. 0. ٥. 54. O.RESIDUAL 54. 111 Ο. ວ. 0. 22 STIG15 STIG-15-16 POWR 46. 0. 9. 1. 17. 5. -1. Ο, 46. RESIDUAL 46. 11 0.16 0.38 0. 22 STIG15 STIG-15-16 HEAT Ω. Ο, О. ٥. 0. 0. ٥. 54. O. RESIDUAL 54. 111 ο. ٥. ٥. 23 STIGIO STIG-10-16 POVIR 0. 6. 48. 6. 17. 5. -8. 0. 48. RESIDUAL 48. 0.11 0.36 11 0. 23 STIG10 STIG-10-16 HEAT ٥. G. ٥. Ω. ٥. 0. ٥. 54. O.RESIDUAL 54. 111 0. ٥. ٥. 24 STIG1S STIG-15-16 POWR 52. 11. -13. 0. 52. RESIDUAL 52. 11 0.05 0.34 0. 24 STIGIS STIG-15-16 HEAT 0. O. 0. 0. n 0. 54. O.RESIDUAL 54. 111 O. O. 25 DEADV3 DIESEL-ADV POWR 7. 47. 17. 17. -20. 0. 47. RESIDUAL 47. 5. 1 0.14 0.37 0. 25 DEADV3 DIESEL-ADV HEAT ٥. n. ٥. 0. 0. 0. 54. O. RESIDUAL 54. 111 0. 0. ٥. 26 DEADV2 DIESEL-ADV POWR 7. 47. 0. 12. 17. 5. -14. ٥. 47. RESIDUAL 47. 1 0.14 0.37 0. 26 DEADV2 DIESEL-ADV HEAT ٥. 0. ٥. 0. ٥. ۵. 0. 54. O. RESIDUAL 54. 111 0. **3**. 0. 27 DEADVI DIESEL-ADV POWR o. 47. 7. 18. 17. 47. RESIDUAL 5. -22. ۵. 47. 0.14 0.37 0. 27 DEADV1 DIESEL-ADV HEAT 0. 0. 0. ο. ٥. ٥. ٥. 54. O. RESIDUAL 54. 0. 111 0. 0. 28 DEHTPM ADV-DIESEL POWR 43. 17, 11. 22. 5. -26. 0. 43. RESIDUAL 43. 1 0.20 0.40 0. 28 DEHTPM ADV-DIESEL HEAT 0. 0. 0. 0. a. 54. O.RESIDUAL 54. 111 0. 0. Ο. 29 DESGAS DIESEL-SGA POWR 0. Ω. 6, 48. 16. 17. 5 -18. 48. DISTILLA 48. 1 0.11 0.36 0. 29 DESCAS DIESEL-SOA HEAT C. ٥. ٥. O. ٥. ٥. 54. O. DISTILLA 54. 111 Ο. Ο. 0. 29 DESGAS DIESEL-STA POWR 6. 48. 0. 16. 17. 5. -18. O. 48. RESIDUAL 48. 1 0.11 0.36 0. 29 DESGAS DIESEL-SGA HEAT ٥. ۵. ٥. ۵. ۵. ۵. 54. O.RESIDUAL 54. 111 0. 0. 0.

PAGE 218

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

DATE 06/06/79

FESR POWER HEAT FACTR FACTR 00 00 00 00 0 0 00 00 00 00 00 00 00 00 3.36 0. 0.35 0. 0.32 0.33 0.36 0. 0.36 35 0.29 8 0.36 0. 0.36 0.36 0.36 00 00 ö 7500 ö 0.09 0.12 0.03 0.08 9 ი. 11 -0,10 0. 0.10 0. 0.11 0.1 0.1 0.11 00 00 PRODUCT GLASS-CONTA! HOURS PER YEAR o WATER BTU*10##6= 111 111 111 -111 FAIL NET= TOTAL+ UTILIT 10××6 BTU/HR 54. 49. 53. 50, 48 54 50. 49 54 48. 54. 54 48. 54. 54 48.DISTILLA 0.DISTILLA 54, DISTILLA 0. DISTILLA 53.DISTILLA 0.DISTILLA 52.DISTILLA 0.DISTILLA 50.DISTILLA 0.DISTILLA 60.DISTILLA 0.DISTILLA 49.DISTILLA 0.DISTILLA 49.DISTILLA 0.DISTILLA 50.DISTILLA 0.DISTILLA 48. DISTILLA 0. DISTILLA HOH 48.DISTILLA 0.DISTILLA 48. RESIDUAL O. RESIDUAL 48 RESIDUAL 0. RESIDUAL SITE FUEL USED ō **BTU/HR** FUEL SITE 10**6 TOTAL HEAT RATIO ***** WASTE FUEL EGV B1U:10**6= UTILIT FUEL USED BTU/HR BTU/HR 54. 54. 54.0 0 2 50. 54. 54. 54 50. 54. 540 Ö 54 0 2 10%#6 ECS:* ö AUX PROCES BØ1LR 10**6 23. -19. 0. -30. -19. 0. **FUEL ENERGY SAVED BY PROCESS AND -25. 28 0 23. O 120. 230 38.0 830 00 PROCESS TEMP(F) N O က် ဝဲ ເດ 0 n O 50 o 9 ß o D 0 COGEN MW ELECT က်ဝ ທວ က ဝ 10 0 IO C COGEN PROCES POWER 10**6 17. 0. 0 70 17.0 7.0 17. BTU/HR 17. [<u>~</u> 0, <u>~</u> 0 770 17. 0 19 ö POLIER COGEN PROCES I HEAT 10**6 BTU/HR တ္တံ ဝဲ 0.0 24. 26. 90 32.0 20 က္လ <u>- 0</u> 0.0 . . . 4 BTU/HR COGEN FUEL USED 10**6 BTU/HR 520 48. 53 54. 50. 48. 0. 60. 0. 90 48 80 49 o 50 48 PRUCESS MILLIONS FUEL SAYED= MO-NET 16*x6 **BTU/HR** ٧.0 90 00 00 10 O 60 0 2 10 0 (O ဖ် င ဖ် ဝ 60 60 10xx6 BTU/HR 00 00 ဝင် 30 00 00 00 00 00 00 00 00 ဝ ဝ WASTE FUEL USED POWR HEAT POWE HEA? POUR HEAT PO!/R HEAT POWR HEAT POWR HEAT POWR HEAT POUR HEAT PO!IR HEAT POME HEAT PGWR HEAT PO!!R HEAT POUR HEAT 5.10 COAL EFIOR 6T-60RE-16 6T-60RE-16 GT-85RE-12 GT-85RE-12 GT-60RE-12 GT-60RE-12 OT-85RE-08 OT-65RE-08 GT-HRSG-10 GT-HRSG-10 GT-50RE-03 GT-60KE-08 DIESEL-SOA DIESEL-SOA 8T-85RE-08 6T-85RE-08 GT-85RE-12 GT-85RE-12 GT-85RE-16 GT-05RE-16 DIESEL-SOA DIESEL-SCA CIESEL-SCA DIESEL-SOA DIESEL-SOA DESTON $\vec{\Sigma}$ FUEL 328 I &SE PEO ADV UTILITY GTRA12 (GTR216 GTR216 GTR208 GTR208 GTR212 GTR212 GTR/108 GTR/C8 GTRW12 GTRW12 GTRA16 GTRA16 GTSØAD GTSØAD GTRA08 GTRA08 DESOA2 DESOA2 DESGA1 DESGA2 DESGA2 DESØA1 DESØA1 1 NDUSTRY 38 39 39 404 35 35 33 34 36 36 37 313 31

18SE PEG ADV DESIGN ENGR

UTILITY FUEL

COAL

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 32211 MW 5.10 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F) 0. PRODUCT GLASS-CONTAI HOURS PER YEAR 7500.

POWER TO HEAT RATIO ****

WASTE FUEL EQV BTU*10**6=

FESR POWER HEAT COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL WASTE FUEL FACTR FACTR PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FUEL SAVED= FUEL USED UTILIT HEAT POWER ELECT BOILR USED SITE USED NO-NET USED 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR ETU/HR BTU/HR 11 0.10 0.36 0. -20. 0. 49. DISTILLA 49. 41 GTRW16 GT-65RE-16 POWR Ο. 6. 49. 17. 17. ο. 54. O. DISTILLA 54. 111 0. 41 GTRW16 GT-85RE-16 HEAT 0. 0. 0. 0. 0. ο. 11 -0.03 0.31 0. 17. -30. 0. 56. DISTILLA 56. 42 GTR308 GT-60RE-08 POWR C. -2. 56. 25. 0. ٥. 0. 54. O. DISTILLA 54. 111 0. 42 GTR308 GT-60RE-08 HEAT Ο. ٥. Ο. Ο. 43 GTR312 GT-60RE-12 POWR 51. 19. 17. -23. 0. 51. DISTILLA 51. 11 0.06 0.34 O.DISTILLA 54. 111 0, ٥. 0. 0. 54. 43 GTR312 GT-60RE-12 HEAT 0. 0. 0. ٥. 0. Û. 51.DISTILLA 51. 11 0.06 0.34 0. 44 GTR316 GT-50RE-16 POWR Ο. 3. 51. 20. 17. 5. -23. Ο. 54. O.DISTILLA 54. 111 0. 0. ٥. 44 GTR316 GT-60RE-16 HEAT ٥. Ο. 0. ٥. ٥. 0. 1 0.16 0.38 ٥. 45 FCPADS FUEL-CL-PH POWR Ο. 9. 46. 8. 17. 5. -9. Ο. 46. DISTILLA 46. O.DISTILLA 111 0. ο. 54. 0. 45 FCPADS FUEL-CL-PH HEAT 0. 0. ٥. 0. 0. ٥. Ο. 54. 42.DISTILLA 42. 1 0.22 0.41 0. 46 FCMCDS FUEL-CL-MO POWR 12. 42. 10. 17. 5. -12. 0. 0, 46 FCMCDS FUEL-CL-MO HEAT 0. 0. 0. Ο. ٥. 54. O. DISTILLA 54. 111 0. ٥. ο. ٥. α.

ALITYPIO RUN A MO

PAGE 220

۵.

O. HOT WATER BTU*10**6=

18SE PEG ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COMEMERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 32291 MW 1.10 PROCESS MILLIONS BTU/HR

O. PROCESS TEMP(F)

O. PRODUCT PRESS-BLOW-G HOURS PER YEAR 7500.

PACE 221

POWER TO HEAT RATIO *****

UTILITY FUEL CGAL

POWER TO HEAT RATIO *****

WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FEST:

OUT OF THE POWER TO HEAT RATIO ******

WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FEST:

1)		USED	NO-NET		HEAT	PROCES POWER	MW ELECT	PROCES BOILR	USED	SITE L	FUEL JSED	TOTAL+ UTILIT			FACTR	HEAT FACTR
ļ	 		10**6 BTU/HR		10≭≭6 BTU/HR	10**6 BTU/HR		10**6 BTU/HR		10≄⊭6 BTU/HR		10**6 BTU/HR		T	ng, gydd gyfyllyngawyrong o y	and the second second second second
	NO COGO			0.	0.	o.	0.		12.		ISTILLA	12.		0.	0.32	
1	STM-TURB-1 POV STM-TURB-1 HEA		0. 0.	11. 0.	6. 0.	4. 0.	1. 0.	-7. 0.	0. 12.		ESIDUAL ESIDUAL	11. 12.	11 111	0.04 0.	0.33 0.	o. _o.
11	STM-TURB-1 PON			11. 0.	6. 0.	4. 0.	1. 0.	-7. 0.	0. 12.		DAL-FGD	11. 12.	11 111	0.04	0.33	0, 0.
	 STM-TURB-1 POL			11.	 6.	4.	1.		0.		JAL-AFB	11.		0.04	0.33	
	STM-TURB-1 HEA			o.	õ.	õ.	o.		12.		SAL-AFB	12.	111	0.	0.	o.
	STM-TURB-6 POV			12. 0.	<u>7.</u>	<u>4.</u> 0.	<u>1.</u> 0.	-8. 0.	0. 12.		ESIDUAL ESIDUAL	12. 12.	11	-0,06 0.	0.30	0.
	STM-TURB-8 POV			12.	7.	4.	1.	-8.	٥.		JAL-FGD	12.			0.30	
	STM-TURB-8 HEA			0.	0.	0.	0.		12.		BAL-FGD	12.	111_		0	0
411	STM-TURB-8 POV STM-TURB-8 HEA		-1. 0.	12. 0.	7. 0.	. 0.	1. 0.	-8. 0.	0. 12.		DAL-AFB DAL-AFB	12. 12.	111	-0.06 0.	0.30 0.	0. 0.
11	PFB-STMTB- POW PFB-STMTB- HEA			19. 0.	5. 0.	4.	1.	-5. 0.	0. 12.		DAL-PFB	10. 12.	11	0.17	0.38	0. 0.
	TI-STHTB-1 POV		3.	9.	4.	4.	1.	-5.	0.		ESIDUAL	9.	11	0.23	0.41	0
6	TI-STITE-1 HEA		0.	0.	0.	0.	0.	0.	12.		SIDUAL	12.	111	0.	0.	0,
	TI-STMTB-1 POV TI-STMTB-1 HEA			9. 0.	4. 0.	4. 0.	1. 0.	-5. 0.	0. 12.	9.G0 0.G0		9. 12.	11 111	0,23 0.	0.41 0.	0. 0.
	THERMIONIC POL THERMIONIC HEA			27. 0.	19. 0.	4. 0.	1. 0.	-22. 0.	0. 12.		ESIDUAL ESIDUAL	27. 12.	111	-1.27 0.	0.14 0.	o. o.
71	 THERMIONIC FOR THERMIONIC HEA			27. 0.	19. 0.	4. 0.	1.	-22. 0.	0. 12.	27.00 0.00		27. 12.	11	-1.27 0.	0.14 9.	0.
	STIRLING-1 POW STIRLING-1 HEA			12.	5. 0.	<u>4.</u> 0.	1. 0.	-6. 0,	0. 12.		STILLA	12. 12.	111	-0.04 0.	0.31	0. 0.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

1.10 PROCESS MILLIONS BTU/HR. O. PROCESS TEMP(F) INDUSTRY 32291 MW O. PRODUCT PRESS-BLOW-G HOURS PER YEAR 7500.

POWER TO HEAT RATIO ***** UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= COGEN COGEN COGEN AUX WASTE FUEL COGEN UTILIT TOTAL SITE FAIL FESR POWER HEAT .NET= SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR ٥. -0. 12. 5. 4. 1. -6. ٥. 12. RESIDUAL 12. 1 -0.04 0.31 0. 6 STIRL STIRLING-1 HEAT ٥. ٥. Ο. Ω. 0. ٥. 0. O. RESIDUAL 12. 12. 111 0. 0. Ω. 6 STIRL STIRLING-1 POUR 0. -0. 12. 5. 4. 1. -6. Ō. 12. COAL 12. 1 -0.04 0.31 ٥. 6 STIRL STIRLING-1 HEAT ٥. 0. ٥. ٥. 0. ٥. 0. 12. O. COAL 12. 111 0. 0. ٥. 7 HEGT85 HELIUM-GT- POWR 12. -6 n. 12. COAL-AFB 11 0.00 0.32 7 HEGT85 HELIUM-GT- HEAT 0. a. ۵. a. 12. O. COAL-AFB 12. 111 0. 0. 0. 8 HEGTEO HELIUM-GT- POWR -3. 1. 14. 6. 4. -7. 0. 14. COAL-AFB 11 -0.24 0.26 0. 14. 8 HEGT60 HELIUM-GT- HEAT 0. 0. ٥. 0. ο. ٥. O. COAL-AFB ٥. 111 0. 0. 12. 12. 9 HEGTOO HELIUM-GT- POWR 0. -10. 21. 13. 4. 1. -15. ٥. 21.COAL-AFB 21. 11 -0.82 0.18 0. 9 HEGTOO HELIUM-GT- HEAT ٥. Ω. 0. ٥. ٥. ٥. O. COAL-AFB 12. 12. 111 0. 0. 10 FCMCCL FUEL-CL-MO POWR 0. -1. 12. 6. 4. 1. -7. α. 12. COAL 12. 11 -0.05 0.30 0. 10 FCMCCL FUEL-CL-MO HEAT 0. O. ٥. ٥. Ω. 0. O. COAL 111 0. 12. 12. ٥. ٥. 11 FCSTCL FUEL-CL-ST POWR 0. 4. -3. O 8. COAL 11 0.35 0.49 0. 11 FCSTCL FUEL-CL-ST HEAT 0. 0. 0. 0. ο. 0. 12. O. COAL 12. 111 0. ο. 12 IGGTST INT-GAS-GT POWR 0. 2. 3 4. -3. ٥. 9. COAL . 1. 9. 11 0.20 0.40 0. 12 IGGTST INT-GAS-GT HEAT ο. Ο. 0. 0. 0. 0. 0. 12. O, COAL 12. 111 0. 0.___ 0. 13 GTSCAR GT-HRSG-10 POWR e. -1. 13. 6. 4. -a. 0. 13. RESIDUAL 1. 13. 11 -0.10 0.29 0. 13 GTSØAR GT-HREG-10 HEAT ٥. 0. Q. ٥. ٥. 0. O. RESIDUAL 111 0. 12. 12. ο. 0. 14 GTACOB GT-HRSG-08 POUR 0. -2. 14. 7. 4. 1. -8. a. 14. RESIDUAL 14. 11 -0.19 0.27 0. 14 GTACOS GT-HRSG-08 HEAT Ο, 0. Ω. Ο. ٥. 0. O. RESIDUAL 111 0. 12. 12. ٥. 0. 15 GTAC12 GT-HRSG-12 POWR 0. 12. 6 -7. Ω. 12. RESIDUAL 12. 11 -0.05 0.31 15 GTAC12 GT-HR3G-12 HEAT 0. n 0. 0. 0. o. 12. O. RESIDUAL 111 0. 12. 0. 16 GTAC16 GT-HRSG-16 POWR ٥. 0. 12. 6. 4. 1. -7. ٥. 12. RESIDUAL 12. 11 0.01 0.32 0. 16 GTAC16 GT-HRSG-16 HEAT Ο. 0. 0. О. ٥. O.RESIDUAL ٥. 0. 12. 12. 111 0. 0. Ο. 17 GTWC16 GT-HRSG-16 POWR ٥. -0. 12. 5. 4. 1. ~6. ٥. 12. RESIDUAL 12. 11 -0.02 0.32 0. 17 GTVC16 GT-HRSG-16 HEAT ٥. 0. ٥. ø. 0. O.RESIDUAL ۵. O. 12. 12. 111 0. 0. n

18SE PEO ADV DESIGN ENGR

PAGE 222

PAGE 223

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

18SE PEG ADV DESIGN ENGR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 32291 MW 1.10 PROCESS MILLIONS BTU/HR

O. PROCESS TEMP(F)

O. PRODUCT PRESS-BLOW-G HOURS PER YEAR 7500.

ITU	LITY FUEL		COAL				POWE			Ö **** EL EQV∣		*6 =	o. HOT	WATER BT	U*10**6	S= 1	0.	
				WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
				FUEL	SAVED=		PROCES			PROCES	FUEL	FUEL	FUEL	TOTAL+			FACTR	FACTE
				USED	NO-NET	USED	HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				
				10**6	10**6	10**6	10**6	10**6		10**6		10**6		10**6				
				BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HF	?	BTU/HR			·	
00163	26 GTST-16.	/2C E	ഷ്യമ	0.	4.	8.	2.	4.	. 1.	-2.	٥.	£	RESIDUAL	8.	11	0.31	0.46	٥.
	26 GTST-16			0.	0.	0.	Ō.	ō.	Ö.		12.		RESIDUAL	12.	111	0.	0.	õ.
00102	.0 0131 10	/20 1	ILA I	. 0.	٥.	٥.	٥.	٠.	٠.	٠.		•						
CC162	22 GTST-16	/22 F	OWR	0.	4.	8.	2.	4.	1.	-2.	0.	8,	RESIDUAL	8.	11	0.31	0.46	0.
CC162	22 GTST-16	/22 h	IEAT	Ο.	Ο.	٥.	0,	0.	٥.	0.	12.	0.	RESIDUAL	12.	111	Ο.	ο.	0.
00122	22 GTST-12	/22 F	ะสมส	0.	4.	8.	2,	4.	1.	-2.	0.	8.	RESIDUAL	8.	11	0.31	0.47	0.
	22 GTST-12			0.	0.	0.	ō.	0.	ö.		12.		RESIDUAL	12.	111	0.	0.	ο.
00060	0 0TOT 00	,00 °	20115	_			^	_	•	-3.	0.	•	RESIDUAL	8.	11	0.31	0.46	0.
	22 GTST-08			0. 0.	4. 0.	8. 0.	2. 0.	4. 0.	1. 0.		12.		RESIDUAL	12.	111	0.31	0.40	o.
00082	22 GTST-08	122 1	TEAT	<u> </u>	<u>U.</u>	<u> </u>	<u> </u>	<u> </u>	<u>u.</u>		16.		RESTOURL	16,				
STIGI	5 STIG-15	-16 F	OWR	0.	2.	10.	0.	4.	1.	-0.	٥.	10.	RESIDUAL	10.	11	0.16	0.38	ο.
	5 STIG-15			o.	o.	o.	o.	o.	o.	o.	12.	0.	RESIDUAL	12.	111	0.	٥.	Ο.
07161	0.6710.10	16 6	200 102			10.		4.		-2.	0.	10	RESIDUAL	10.	11	0,11	0.36	_
	0 STIG-10			0. 0.	1.	0.	1. O.	4. 0.	1. G.		12.		RESIDUAL	12.	111	0.	0.30	o.
. 51161	0 STIG-10	-10 1	1EA I	υ.	0.	υ.	U,	υ.	υ,	٥.	12.	U.	RESIDUAL	12.		٥.	0.	٥.
	S STIG-1S			0.	1.	11.	2.	4.	1.		0.		RESIDUAL	11.		0.05		0.
STIG	S STIG-1S	-16 F	HEAT	0.	0.	0.	٥.	0.	c.	0.	12.	0.	RESIDUAL	12.	111	G.	0.	c.
DEADY	/3 DIESEL-	ADV F	PANAR	0.	2.	10.	4.	4.	ī.	-4.	٥.	10.	RESIDUAL	10.	11	0.14	0.37	0.
	3 DIESEL-			0.	õ.	0.	o.	o.	ò.		12.		RESIDUAL	12.	111	0.	o .	ο.
	, <u>, , , , , , , , , , , , , , , , , , </u>										· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		
DEADV	2 DIESEL-	ADV P	POWR	٥.	2.	10.	3,	4.	1.		0.		RESIDUAL	10.	11	0.14		0.
DEADV	2 DIESEL	ADV I	HEAT	. 0.	0.	0.	٥.	0.	0.	٥.	12.	ο.	RESIDUAL	12.	111	ο.	0.	ο.
DEADY	/1 DIESEL-	ADV F	-ONB	0.	2.	10.	4.	4.	1.	-5.	0.	10.	RESIDUAL	10.	11	0,14	0.37	0.
-	/1 DIESEL-			o.	o.	0.	ō,	õ.	ò.		12.		RESIDUAL	12.	111	0.	٥.	ø.
, *		'				- •			= •	- •								
	M ADV-DIE			<u>o.</u>	2.	9.	5,	4.	1.		0.		RESIDUAL	9,	11	0.20		<u>o.</u>
DEHTP	M ADV-DIE	SEL F	IEAT	0.	0.	0.	G.	0.	0.	0.	12.	0.	RESIDUAL	12,	111	٥.	0.	0.
DESCIA	3 DIESEL-	SOA F	POVR	0.	1.	10.	3.	4.	1.	-4.	٥.	10.	DISTILLA	10.	1	0.11	0.36	ο.
	3 DIESEL-			0,	o.	o.	o.	o.	o.	٥.	12.		DISTILLA	12.	111	ο.	0.	0.
															_			
	3 DIESEL-			0.	1.	10.	3.	4.	1.		0,		RESIDUAL	10.	1	0.11		0.
DESCA	3 DIESEL-	SOA F	IEAT	0.	ο.	0.	۵.	٥,	0.	٥.	12.	Ο.	RESIDUAL	12.	111	٥.	0.	ο.

18SE PEO SOV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 224

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 32291 MW 1.10 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F) 0. PRODUCT PRESS-BLOW-G HOURS PER YEAR 7500.

POLIER TO HEAT RATIO **** UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 0. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX NET= FAIL FESR POWER HEAT UTILIT TOTAL SITE FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR ٥. 10. 4. 1. -3. 10.DISTILLA 10. 1 0.11 0.36 0. 30 DESOA2 DIESEL-SOA HEAT ο. n. О. ٥, Ο. 0. 0. 12. O. DISTILLA 12. 111 0. 0. 30 DESGA2 DIESEL-SCA POWR 0. 10. 2. 4. -3. ۵. 10. RESIDUAL 10. 1 0.11 0.36 0. 30 DESGA2 DIESEL-SGA HEAT ٥. 0. ٥. 0. 0. 0. ٥. 12. O.RESIDUAL 12. 111 0. 0. 31 DESCA1 DIESEL-SCA POUR 10. ٥. 10. DISTILLA 10. 1 0.11 0.36 0. 31 DESCA1 DIESEL-SCA HEAT 0. 0. 12. O. DISTILLA 12. 111 0. ο. 31 DESCA1 DIESEL-SCA POWR 0. . 1. 10. 4. 4. 1. -5. ٥. 10. RESIDUAL 10. 1 0.11 0.36 0. 31 DESGA1 DIESEL-SGA HEAT 0. ο. 0. ٥. 12. O.RESIDUAL 12. 111 0. ٥. C. 32 GTSGAD GT-HRSG-10 POWR ٥. 13. 7. 4. 1. -8. ø. 13. DISTILLA 13. 11 -0.10 0.29 0. 32 GTSCAD GT-HRSG-10 HEAT ٥. 0. 0. 0. 0. 12. O.DISTILLA 12. 111 0. Ω. n. 33 GTRAOS GT-85RE-08 POWR O 11. 4. 4. 1. -5. 0. 11. DISTILLA 11. 11 0.10 0.36 Ω. 33 GTRA08 GT-85RE-08 HEAT 0. Ο. ٥. Ο. O. ٥. 0. 12. O. DISTILLA 12. 111 0. 0. O. 34 GTRA12 GT-85RE-12 POWR 10. ٥. 10. DISTILLA 10. 11 0.11 0.36 34 GTRA12 GT-85RE-12 HEAT 0. α. 0. O. O. 12. O.DISTILLA 12. 111 0. 0. 35 GTRA16 GT-85RE-16 POWR 0. 1. 11. 5. 4. -5. ٥. 11.DISTILLA 1. 11 0.08 0.35 0. 11. 35 GTRA16 GT-85RE-16 HEAT 0. G. 0. 0. 0. O.DISTILLA 12. 12. 111 0. ο. 36 GTR208 GT-60RE-08 POWR ٥. 12. 6. 4. 1. -7. ο. 12.DISTILLA 12. 11 0.00 0.32 0. 36 GTR208 GT-60RE-08 HEAT ο. 0. 0. ø. ٥. 0. 12. O. DISTILLA 12. 111 0. Ο. 37 GTR212 GT-60RE-12 FCUR ٥. 11. 5. 4. 1. -6. O. 11. DISTILLA 11. 11 0.03 0.33 0. 37 GTR212 GT-60RE-12 HEAT 0. Ο, 0. 0. 0. ٥. α. O.DISTILLA 12. 12. 111 0. ο. ο. 38 GTR216 GT-SORE-16 POWR 11. -6. ٥. 11.DISTILLA 11. 11 0.05 0.34 0. 38 GTR216 GT-GURE-16 HEAT n. 0. 0. O. 0. ũ. n. O.DISTILLA 12. 12. 111 0. O. 39 GTRWOS GT-85RE-08 POWR 0. ₹î. 4. 4. -4. ø. 11.DISTILLA 1. 11. 11 0.09 0.35 0. 39 GTRWOS GT-85RE-08 HEAT Ω. ο, 0. ο. ٥. 12. O.DISTILLA 12. 111 0. ο. 40 STRW12 GT-85RE-12 POWR 10. 1. 4. -4. ٥. 10. DISTILLA 10. 11 0.12 0.36 0. 40 GTRW12 GT-85RE-12 HEAT ο. ٥. ٥. Q, ٥. ٥. ٥. 12. O.DISTILLA 12. 111 0. ٥, 0.

WELL PA

NEYWE

PAGE 225

11 0,06 0.34 0.

٥.

111 0.

DATE 06/06/79

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

IESE PEO ADV DESIGN ENGR

44 GTR316 GT-60RE-16 POWR

44 GTR316 GT-GORE-16 HEAT

O.

FUEL ENERGY SAVED BY PROCESS AND ECS

O. PRODUCT PRESS-BLOW-G HOURS PER YEAR 7500. 1.10 PROCESS MILLIONS BTU/HR O. PROCESS TEMP(F) INDUSTRY 32291 MW POWER TO HEAT RATIO ***** WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU×10××6= UTILITY FUEL COAL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT WASTE FUEL PROCES FUEL FACTR FACTR SAVED= FUEL PROCES PROCES MW FUEL FUEL TOTAL+ FUEL USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR STU/HR BTU/HR BTU/HR BTU/HR BTU/HR 11 0.10 0.36 0. ٥. 11.DISTILLA 41 GTRW16 GT-85RE-16 POWR 1. 11. 4. -4. 11. 4. ١. О. O. DISTILLA 0. 12. 12. 111 0. 0. 41 GTRW16 GT-85RE-16 HEAT ٥. Ο. ٥. 0. ٥. 0. 11 -0.03 0.31 12. DISTILLA 12. 0. 42 GTR308 GT-60RE-08 POWR -0. 12. 5. -6. 1. O.DISTILLA 12. 111 0. ٥. 0. 42 GTR308 GT-60RE-08 HEAT Ο. 0. Ο. 0. 0. 0. 12. 11 0.06 0.34 0. 0. 11.DISTILLA 43 GTR312 GT-60RE-12 POVR 11. 11. 111 0. 43 GTR312 GT-60RE-12 HEAT . 0. 0. ā. 12. O. DISTILLA 12.

1 0,16 0.38 0. -2. ٥. 10.DISTILLA 10. 45 FCPADS FUEL-CL-PH POWR 2. 10. 2. 4. 1. 45 FCPADS FUEL-CL-PH HEAT 0. ٥. ٥. 0. O. 12. O.DISTILLA 12. 111 9. Ο. Ω. 11 0.22 0.41 0. 46 FCMCDS FUEL-CL-MO POWR 2. -2. ۵. 9. DISTILLA 9. O.DISTILLA 111 0. 0. 46 FCMCDS FUEL-CL-MO HEAT ٥. 0. ٥. 0. ٥. 0. 12. 12. 0.

1.

0.

4.

G.

-5.

α.

12.

11.DISTILLA

O. DISTILLA

11.

12.

4.

0.

11.

0.

1.

0.

AGE PRINTING SYSTE

NIGG BUYG TIBMABNOT

18SE PEG ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 227

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 32411 MW 20.32 PROCESS MILLIONS BTU/HR O. PROCESS TEMP(F) O. PRODUCT CEMENT HOURS PER YEAR 7920.

POWER TO HEAT RATIO **** HOT WATER BTU*10**6= 0. COAL WASTE FUEL EQV BTU*10**6= ٥. UTILITY FUEL FESR POWER HEAT COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL WASTE FUEL FUE . FUEL TOTAL+ FACTR FACTR FUEL SAVED= FUEL PRUCES PROCES MW PROCES FUEL USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10 *6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR -9. 225. 94. 69. 20. -111. 0. 225. RESIDUAL 225. 1 -0.04 0.31 0. n. O. RESIDUAL 6 STIRL STIRLING-1 HEAT 0. ٥. 0. ٥. 0. ٥. 217. 217. 111 0. ٥. 0. ٥. 1 -0.04 0.31 6 STIRL STIRLING-1 POWR 225. 69. 20. -111. Ο. 225. COAL 225. 0. 0. -9. 94. O. COAL 217. 111 0. 0. 0. 6 STIRL STIRLING-1 HEAT 0. Ο. 0. 0. 0. 0. 0. 217. 0.00 0.32 ٥. 7 HEGT85 HELIUM-GT- POWR 0. 216.COAL-AFB 216. 11 216. 97. 69. 20. -114 7 HEGT85 HELIUM-GT- HEAT ٥. 0. 0. 0. O. 0. 0. 217. O. COAL-AFB 217. 111 0. 0. Ũ. 268. COAL-AFB 8 HEGT60 HELIUM-GT- POWR -51. 268. 115. 69. 20. -135. ٥. 268. 11 -0.24 0.26 0. 8 HEGTEO HELIUM-GT- HEAT 0. 0. O. ٥. 0. 217. O. COAL-AFB 217. 111 0. ٥. 11 -0.82 ٥. 238. 20. -280. ٥. 394. COAL-AFB 394. 0.18 9 HEGTOO HELIUM-GT- POWR -177.394. 69. O. COAL-AFB 217. 111 ٥. 0. ٥. 9 HEGTOO HELIUM-GT- HEAT Ω 0. .0. 0. 0. 0. 0. 217. 0.50 10 FCMCCL FUEL-CL-MO POWR 109, 69. -128. 0. 228. COAL 228. 11 -0.05 0. o. -11. 228. 20. O. COAL 217. ٥. o. 10 FCMCCL FUEL-CL-MO HEAT ٥. 0. 0. 0. 0. ٥. 0. 217. 111 0.35 11 FOSTCL FUEL-CL-ST POWR 76. 141 41. 69. 20 -48 n. 141.COAL 141. 11 0.49 217. O. COAL 217. 111 0. 0. 11 FOSTOL FUEL-SL-ST HEAT 0. 0. 0. 0. 0. o. 173. 11 0.20 0.40 0. 173. COAL 12 IGGTST INT-GAS-GT POWR 43. 173. 54. 69. 20. -63. 0. O. COAL 217. 111 0 0. Ω. 12 IGGTST INT-GAS-GT HEAT 0. 0. 0. 0. 0. 0. 217. 0. 0. 239. RESIDUAL 239. 1 -0.10 0.29 13 GTSOAR GT-HRSG-10 POWR Ο. -22. 239. 118. 69. 20. -139. O. RESIDUAL 13 GTSOAR GT-HRSG-10 HEAT 0. 0. 0. 0. 0. 0. n. 217. 217. 111 0. 0. 0. 257. 69. 257. RESIDUAL 1 -0.19 0.27 0. 14 GTACOS GT-HRSG-OS POVIR O. -40. 257. 123. 20. -145. 0. 14 GTACO8 GT-HRSG-08 HEAT ٥. 0. ٥. 0. 0. 0. 0. 217. O. RESIDUAL 217. 111 0. 0. 0. -138. 227. RESIDUAL 1 -0.05 O. 227. 0.31 15 GTAC12 GT-HRSG-12 POWR -11. 227. 117. 69. 20. 0. 0. 0. 217. O. RESIDUAL 217. 111 0. 15 GTAC12 GT-HRSG-12 HEAT 0. -127. ٥. 215. RESIDUAL 215. 1 0.01 0.32 0. 16 GTAC16 GT-HRSG-16 POWR 2. 215. 108. 69. 20. 0. 0. 217. O.RESIDUAL 217. 111 0. ٥. 16 GTAC16 GT-HRSG-16 HEAT 0. 0. 0. 0. 220. 1 -0.02 0.32 0. 220. 20. -103. ٥. 220. RESIDUAL 17 GTWC16 GT-HRSG-16 POWR 0. -3. 88. 69. O. RESIDUAL 217. 111 0. 0. 0. 17 GTWC16 GT-HRSG-16 HEAT 0. 0. 0. 0. 0. 0. 0. 217.

18SE PEG ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

	UTIL	ΙΤΥ	FUEL	CØAL				POWE			C *****		*6 =	о. нат	WATER ST	U*10**6	j= (o.	
						FUEL	COGEN	COGEN					TOTAL	CITE	NET=	FAIL	EESD	POWER	NEV.
					FUEL	SAVED=			PROCES		PROCES		FUEL	FUEL	TOTAL+	- FAIL	reak	FACTR	
					USED	NO-NET		HEAT	POWER		BOILR		SITE	USED	UTILIT				
					10**6	10**6	10**6	10**6	10**6			10**6			10**6				
					BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR	· · · · · · · · · · · · · · · · · · ·	BTU/HR	BTU/HR	BTU/H	₹	BTU/HR				
30	DESGA2	DI	ESEL-SO	A POWR	0.	25.	192.	42.	69.	20.	~50.	0.	192.	DISTILLA	192.	1	0.11	0.36	٥.
	DESOA2				0.	0.	0.	o.	o.	o.	0.	217.		DISTILLA	217.	111		0,	o.
20	DESGA2	DI	TOEL -CO	N DAUD		25.	192.	42.	69.	20.	-50.	0.	102	RESIDUAL	192.	1	0.11	0.36	0.
-	DESOA2					25. 0.	192.	42.	0.	20. 0.	-30. 0.	217.		RESIDUAL	217.	111		0.36	o.
30	DESONE	ווט	SEL-SU	4 NEEL	0.	0.	0.	0.	0.	0.	0.	217.	0.	MEGI DOAL	£17.		٧.	. A	٠.
	DESCA1				ð.	25.	192.	77.	69.	20.	-91.	0.		DISTILLA	192.		0.11		
31	DESCA1	DI	ESEL-SO	A HEAT	0.	0.	0.	0.	0.	0.	0.	217.	0.	DISTILLA	217.	111	0.	ο.	0.
31	DESGA1	DI	ESEL-SØ	POWR	0.	25.	192.	77.	69.	20.	-91.	٥.	192.	RESIDUAL	192.	1	0.11	0.36	٥.
31	DESOA1	DII	SEL-SO	A HEAT	0.	0.	0,	0.	0.	0.	0.	217.	0.	RESIDUAL	217.	111	0.	<u>c.</u>	0.
	ATA#15				_			400	•••		151	•		D. CT. 1 1 4	007	•	-0.10		٥.
	GTSGAD				0. 0.	-21. 0.	237. 0.	128. 0.	69. 0.	20. 0.	-151. 0.	0. 217.		DISTILLA DISTILLA	237. 217.	. 111	-0.10	0.29	o.
36	GISOND	Gi	*HK3G-11	DEAL	0.	0.	Ο.	0.	0.	u.	0.	E17.	0.	DISTILLA	217.		0.	٠.	•
33	ETRA08	GŢ	-85RE-0	POWR	0.	22.	√194.	78.	69.	20.	-92.	0.		DISTILLA	194.	1		0.36	0,
33	GTRA08	GT	-85RE-0	HEAT	0.	0.	0.	0.	0.	0.	0.	217.	0.	DISTILLA	217.	111	٥.	0.	0.
34	GTRA12	GT	-85RF-1:	POUR	0.	23.	194.	79.	69.	20.	-93.	0.	194.	DISTILLA	194.	1	0.11	0.36	О.
	GTRA12				0.	0.	0.	0.	0.	0.	0.	217.	0.	DISTILLA	217.	181	0.	C.	0.
25	GTRA16	GT.	- 250t' - 1	e DAUD	0.	18.	199.	84,	69.	20.	-99.	٥.	100	DISTILLA	199.	1	0.08	0.35	0.
	GTRA16				0.	0.	0.	0.	0.	0.	0.	217.		DISTILLA	217.	111		0.	0.
																	_		
	GTR208					0.	217.	102.	69.	20.	-120.			DISTILLA	217.	-	0.	0.32	
36	GTR208	GT	-60RE-0	HEAT	0.	0.	0.	0.	٥.	0.	0.	217.	0.	DISTILLA	217.	111	0.	0.	0.
37	GT5212	GT	-60RE-1	2 POWR	0.	7.	210.	94.	69.	20.	-111.	o.	210.	DISTILLA	210.	1	0.03	0.33	٥.
37	GTR212	GT	-60RE-1	2 HEAT	0.	0.	0.	٥.	0.	0.	0.	217.	O.	DISTILLA	217.	111	Ο,	0.	٥.
38	GTR218	GT	-60RE-10	S PAUR	0.	11.	206.	92.	69.	20.	-108.	0.	206	DISTILLA	206.	1	0.05	0.34	0.
	GTR216				 0.	0.	0.	0,	0.	<u> 20.</u> 0.	0.	217.		DISTILLA	217.	111	0.00	0.	ο.
																_		0.05	_
	GTRW08					19.		65.	69.	20.	-77.	0.		DISTILLA	198.	_		0.35	
39	GTRW08	GT	-85RE-0	HEAT	<u> </u>	0.	0.	0.	0.	0.	0.	217.	0.	DISTILLA	217.	111	<u> </u>	0.	0.
40	STRW12	GT	-85RE-1:	2 POWR	ο.	26.	190.	63.	69.	20.	-75.	٥.	190.	DISTILLA	190.	1	0.12	0.36	0.
	GTRW12					9.		0.	o.	0.	o.	217.		DISTILLA	217.	111		0.	0.

18SE PEC ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 231

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 32412 MW 27.09 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F) 0. PRODUCT CEMENT HOURS PER YEAR 7920.

POWER TO HEAT RATIO **** WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= UTILITY FUEL COAL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT WASTE FUEL PROCES PROCES MW FUEL. SAVED= FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O.DISTILLA 289. 289. 0 0. 0.32 0. CONCCONNO COGON 0. ٥. 0. 0. 0. 0. 0. G. 277. RESIDUAL 277. 1 0.04 0.33 0. 1 STM141 STM-TURB-1 POWR 0. 12. 277. 143. 92. 27. -168. 1 STM141 STM-TURB-1 HEAT 289. O. RESIDUAL 289. 111 0. ٥. ٥. 0. 0. Ο. 0. 0. 277. 92. -168. ٥. 277. CCAL-FGD 277. 1 0.04 0.33 0. 1 STM141 STM-TURB-1 POWR 12. 143. 27. O. COAL-FGD 289. 111 0. 1 STM141 STM-TURB-1 HEAT 0. 0. ٥. О. ٥. ٥. 289. 0. ٥. 1 STM141 STM-TURB-1 POWR 277, COAL-AFB 277. 1 0.04 0.33 D. 12. 277. 143. 92. 27. -168. 0. O. COAL-AFB 289. ٥. 0. 1 STM141 STM-TURB-1 HESS 0. ٥. 0. ο. ٥. Ü. 289. 111 0. 0. 305. RESIDUAL 305. 1 -0.06 0.30 0. 2 STM088 STM-TURB-8 POWR -16. 305. 167. -196. 2 STM068 STM-TURB-8 HEAT 0. ō. O. O. ۵. 0. 289. O. RESIDUAL 289. 111 0. 0. 1 -0.06 0.30 0. 2 STM088 STM-TURB-8 POWR -16. 305. 167. 92. 27. -196. ٥. 305. COAL-FOD 305. 2 STMOSS STM-TURB-8 HEAT n. 289 O. COAL-FOD 289. 111 0. 0. 0. Ο. ٥. ٥. 0. ٥. 1 -0.06 0.30 C. 2 STM088 STM-TURB-8 POWR 0. -16. 305. 167. 92. 27. -196. ٥. 305, COAL-AFB 305. 2 STM088 STM-TURB-8 HEAT O. COAL-AFB 289. 111 0. 0. 0. ٥. 0. 289. ٥. О. 3 PFBSTM PFB-STMTB- POWR 92. 0. 241. COAL-PFB 241. 1 0.17 0.38 0. 48. 241. 114. 27. -134. O. COAL-PFB 3 PFBSTM PFB-STMTB- HEAT Ο. 0. Ũ. 0. 0. 0. 289. 289. 111 0. G. 0. 27. 223. RESIDUAL 1 0.23 0.41 0. 4 TISTMT TI-STMTB-1 POWR 66. 223. 95. 92. -112. 0. 223. 4 TISTMT TI-STMTB-1 HEAT 0. ٥. Ω. 289. O. RESIDUAL 289. 111 0. 0. ٥. 0. O. 27. -112. Ω. 223. COAL 223. 1 0.23 0.41 0. 4 TISTMT TI-STMTB-1 POWR 66. 223. 95. 92. 4 TISTMT TI-STMTB-1 HEAT 0. O. COAL 289. 111 0. 0. ۵. 0. ٥. O. ٥. 289. -546. ٥. 657. RESIDUAL 657. 1 -1.27 0.14 0. 5 TIHRSG THERMIONIC FOWR -368. 657. 464. 92. 27. & TIHRSG THERMIONIC HEAT ٥. 289. O. RESIDUAL 289. 111 0. ٥. 0 Ο. ٥. 0. ٥. 0. 0. 657. 657. COAL 1 -1.27 0.14 5 TIHRSG THERMIONIC POWR -368. 657. 464. 92. -546, 0. O. COAL 289. ٥. 5 TIHRSG THERMIONIC HEAT O. 289. 111 0. 0. 0. 0. 0. ٥. 0. 300. 1 -0.04 0.31 6 STIRL STIRLING-1 POWR -12. 300. 125. 92. 27. -147. 0. 300. DISTILLA 0. 289. O. DISTILLA 289. 111 0. ົວ. 6 STIRL STIRLING-1 HEAT ñ. 0. ο. o. Ö.

RECEDING PACE BLANC FOR FRIMEN

ノーに

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPURT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 32412 MW 27.09 PROCESS MILLIONS BTU/HR

O. PROCESS TEMP(F)

O. PRODUCT CEMENT

HOURS PER YEAR 7920.

PAGE 233

POWER TO HEAT RATIO ***** UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= COGEN COGEN COGEN AUX WASTE FUEL COGEN UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT . FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR NO-NET USED USED HEAT POWER ELECT BOILR USED USED SITE UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR 200. 0. 89. 45. 92. 27. -53. σ. 200. RESIDUAL 200. 1 0.31 0.46 0. 18 CC1626 GTST-16/26 HEAT 0. 0. 0. 0. Ο. 289. O. RESIDUAL 0. 289. 111 0. G. n. 19 CC1622 GTST-16/22 POWR 0. 89. 200. 50. 92. 27. -59. 0. 200 RESIDUAL 200. 1 0.31 0.46 0. 19 CC1622 GTST-16/22 HEAT 0. 0. ٥. Ο. 0. O. RESIDUAL ٥. 0. 289. 289. 111 0. Ο. 0. 20 CC1222 GTST-12/22 POWR 91. 198 50. 92. -58. 27. 0. 198. RESIDUAL 198. 1 0.31 0.47 0. 20 CC1222 GTST-12/22 HEAT ٥, Ο, n. 0. 0. 289. O. RESIDUAL 289. 111 0. ٥. 0. 21 CC0822 GTST-08/22 POWR 88. 200. 59. -70. 0. 200. RESIDUAL 92. 27. 200. 1 0.31 0.46 0. 21 CC0822 GTST-08/22 HEAT O. ٥. 0. ο. ٥. 289. O. RESIDUAL 0. 289. 111 0. Ο. ٥. 22 STIG15 STIG-15-16 POWR 243. 0. 46. 3. 92. 27. -4. ٥. 243. RESIDUAL 243. 1 0.16 0.38 0. 22 STIG15 STIG-15-16 HEAT 0. 0. ٥. О. ٥. ٥. 0. 289. O. RESIDUAL 289. 111 0. O. 0. 23 STIG10 STIG-10-16 POUR ο. 31. 257. 34. 92. . 27. -40. Ö. 257. RESIDUAL 257. 0.11 0.36 Ο. 23 STIG10 STIG-10-16 HEAT 0. 0. ٥. 0. Ο. Ο. 0. 289. O. RESIDUAL 289. 111 0. 0. 0. 24 STIG1S STIG-1S-16 POWR 276 13. 58 92 -68 276. RESIDUAL 0. 276. 1 0.05 0.34 24 STIG1S STIG-1S-16 HEAT 0. 0. 289. 0. ο. Ο. 0. O. RESIDUAL 289. 111 0. O. 0. 25 DEADV3 DIESEL-ADV POWR ٥. 40. 249. 90. 92. 27. -105. 0. 249. RESIDUAL 249. 1 0.14 0.37 0. 25 DEADV3 DIESEL-ADV HEAT 0. 0. 0, 0. ٥. 0. 0. 289. O. RESIDUAL 289. 111 0. ٥. 26 DEADV2 DIESEL-ADV POWR 0. 40. 249. 63. 92. 27. -74. 0. 249. RESIDUAL 249. 1 0.14 0.37 0. 26 DEADV2 DIESEL-ADV HEAT Ο. 0. ٥. Ο. 0. 0. 0. 289. O. RESIDUAL 289. 111 ο. 0. 27 DEADVI DIESEL-ADV POVR 0. 40. 249. 97. 92, 27. -115. ٥. 249. RESIDUAL 249. 0.14 0.37 0. 1 27 DEADV1 DIESEL-ADV HEAT Ο. 0. 0. ٥. ٥. ٥. 0. 289. O. RESIDUAL 289. 111 0. 0. 0. 28 DEHTPH ADV-DIESEL POWR 58. 230. 117. -138. 0. 230. RESIDUAL 230. 92. 0.20 0.40 0. 28 DEHTPM ADV-DIESEL HEAT 0. O. Ω. 0. 0. O. RESIDUAL 289. 289. 111 Ω. 0. 29 DESGAS DIESEL-SGA POWR 0. 33. 256. 83. 92. 27. -98. ٥. 256. DISTILLA 256. 1 0.11 0.36 0. 29 DESCAS DIESEL-SCA HEAT 0. 0. ٥. 0. ٥. 0. 289. O.DISTILLA 289. 111 0. ٥. 29 DESCAS DIESEL-SCA POWR 0. 33. 256. 83. 92. 27. -98. ٥. 256. RESIDUAL 256. 1 0.11 0.36 0. 29 DESGAS DIESEL-SGA HEAT Ó. 0. 0. 0. 0. 0. 289. O. RESIDUAL 289. 111 0. 0. ٥.

PRECEDING PAGE BLANK NOT FIRE

- 19

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 32412 MW 27.09 PROCESS MILLIONS BTU/HR

O. PROCESS TEMP(F)

O. PRODUCT CEMENT

HOURS PER YEAR 7920,

PAGE 235

POWER TO HEAT RATIO ***** WASTE FUEL EGV BTU*10**6= O. HOT WATER BTU*10**6= UTILITY FUEL COAL WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR FUEL SAVED= FUEL NO-NET USED POWER ELECT BOILR USED SITE USED UTILIT USED HEAT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 27. -107. 1 0.10 0.36 0. 259. DISTILLA 259. 41 GTRW16 GT-85RE-16 POWR 0. 30. 259. 91. 92. ٥. 289. O.DISTILLA 289. 111 0. 0. 41 GTRW16 GT-85RE-16 HEAT Ο. 0. Ο. 0. Ο. 0, ٥. 1 -0.03 0.31 0. 298. DISTILLA 298. 42 GTR308 GT-60RE-08 POWR σ. -9. 298. 134, 92. -157. ٥. O. DISTILLA 289. 111 0. 42 GTR308 GT-GORE-08 HEAT Ο. ٥. Ο. 0. 0. 289. 0. 0. Ο. Ο. 270. DISTILLA 270. 1 0.06 0.34 43 GTR312 GT-60RE-12 POWR 270. 103. 92. -121. 0. 19. 289. 0. ٥. Ο. Ο. Ö. O. DISTILLA 289. 111 0. 0. 43 GTR312 GT-60RE-12 HEAT 0. ٥. 273. 1 0.06 0.34 0. 273. 105. 92. 27. -123. 0. 273. DISTILLA 44 GTR316 GT-60RE-16 POWR 0. 16. ø. 289. O. DISTILLA 289. 111 0. 0. 44 GTR316 GT-GORE-16 HEAT 0. ٥. ٥. 0. ٥. 243. 1 0,16 0.38 0. 45 FCPADS FUEL-CL-PH POWR 46. 243. 41. 92. 27. -49. 0. 243, DISTILLA 0. 45 FCPADS FUEL-CL-PH HEAT 0. ٥. 289. O. DISTILLA 289. 111 0. 0. 0. 0. 0. 0. 0. 1 0.22 0.41 0. 224 DISTILLA 224. 46 FCMCDS FUEL-CL-MO POVR 224. 52. 92. 27. -61. o. 0. 46 FCMCDS FUEL-CL-MO HEAT 0. 285. O. DISTILLA 289. 111 0. 0. 0. 0. 0. 0. o. 0.

P1185-02

RINTING SYSTEM

HONEYWE

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

									nroc =	40/53	۰	DADUCT OCH	MENT	USTIC	S PER Y	EAD -	7020	
IND	DUSTRY	32413 MW	13.54	PROCES	S MILLIC	ONS BTU						RODUCT CEM	JEN I	HUUN	S FER I	EAR A	/920.	## v · ·
							POVE		AT RATIO								_	
	UTILI	TY FUEL	COAL					W	ASTE FU	EL EQV I	BTU*10*	*6= O.	HOT	WATER BT	U*10**6	= (Э.	
				WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	XUA	UTILIT	TOTAL SI	ITE	NET=	FAIL	FESR	POWER	HEA
				FUEL.	SAVED=			PROCES		PROCES		FUEL FU	UEL	TOTAL+			FACTR	FACT
				USED	NO-NET		HEAT		ELECT				SED	UTILIT				
				10**6	10**6	10**6	10**6	10**6			10**6			10**6				
				BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HR		BTU/HR				
	07101	CTIDLING-	06110	0,	-6.	150.	63.	46.	14.	-74.	٥.	150.RES	SIDUAL	150.	1	-0.04	0.31	٥.
		STIRLING-		o.		0.	0.	٠. ٥.	0.	ίο.	144.		SIDUAL	144.	111		o,	o.
0	SIIKL	STIRLING	I DEAT	U.	0.	0.	٥,	.	٠.									
6	STIRL	STIRLING-	POWR	0.	-6.	150.	63.	46.	14.	-74.	0.	150.00/		150.	-	-0.04		0.
6	STIRL	STIRLING-	HEAT	0.	٥.	0.	0.	0.	Ο.	0.	144.	0.00	AL	144.	111	Ο.	ο.	0.
-	LIEGERE	11E1 11M 0±	DOUD		_	144.	64.	46.	14.	-76.	٥.	144.00	AI -AFR	144.	11	0.00	C.32	٥.
		HELIUM-GT		<u>0.</u> 0.	<u>0.</u> 0.	0.	0.	0.	0.	0.	144.		AL-AFB	144.	111		0.	0.
•	HEG 100	HELLION GI	1 Harris	٥.	٥.	٥.	٠.	٠.	•	٠.	• • • •					•		
8	HEGT60	HELIUM-GT	POWR	0.	-34.	178.	77.	46,	14.	-90.	Ο.			178.			0.26	
		HELIUM-GT		0.	0.	0.	0.	0,	0.	0,	144.	0.00	AL-AFE	144.	111	0	0.	0.
														000		-0.00	0 10	^
_		HELIUM-GT		. 0.		263.	159.	46.			0.			263. 144.	111		0.18	0.
9	HEGT00	HELTUNI-GT	- HEAT	О.	0.	0.	0.	ο.	0.	0.	144.	0.00	AL-AFB	144.	111	υ.	0.	٥.
10	ECMCCI	FUEL-CL-MC	Detto	0.	-8.	152.	73.	46,	14.	-86.	0.	152.COA	AL	152.	11	-0.05	0.30	0.
		FUEL-CL-MC				0.	0.	Õ.			144.			144.	111	0.	Ο.	٥.
	1 011002	TOLL OL TI	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	•	•	-											_
11	FCSTCL	FUEL-CL-S	POWR	0.	50.	94.	27.	46.	14.	-32.	0.	94.CO/		94,			0.49	
11	FCSTCL	FUEL-CL-S	HEAT	0.	0.	O.	0.	0.	0,	0.	144.	0.00/	AL	144.	111	0.	0.	ο.
								40		40	0.	116.00/	A i	116.	11	0.20	0.40	n.
		INT-GAS-G				116. 0.	36. 0.	46. 0.		-42. 0.	144.	0.00/		144.	111		0.	o.
12	IGGIST	INT-GAS-G	HEAT	0.	<u>U.</u>	<u> </u>	<u>U.</u>				144.	<u> </u>						
13	GTSMAR	GT-HRSG-16	PAME	0.	-15.	159.	79.	46.	14.	-93.	0.	159.RES	SIDUAL	159.	1	-0.10	0.29	0.
		GT-HRSG-1				0.	0.	٥.		0.	144.	0.RE	SIDUAL	144.	111	Ο.	ο.	٥,
		GT-HRSG-0				171.	82.	46.						171.		-0.19	0.27 0.	0.
14	GTAC08	GT-HRSG-0	HEAT	0.	0.	Ο.	ο.	0,	0.	Œ.	144.	U, KES	SIDUAL	144.	111	U.	٥.	υ,
	OTABLE	OT UPON 1		_	-7.	152.	78.	46.	14.	-92.	0.	152.RES	SIDUAL	152.	11	-0.05	0.31	0.
		GT-HRSG-1:		<u>0.</u>	<u>-7.</u>	152.	0.	0.	0.	0.	144.		SIDUAL	144.	111	0.	0.	0.
13	GINGIZ	GI-INGG-I	- HEAT	σ.	٥.	٧.	٧.	٧.	٠.									
16	GTAC16	GT-HRSG-1	POUR	0.	1.	143.	72.	46.	14.					143.			0.32	
		GT-HRSG-1						0.	0.	0.	144.	O.RES	SIDUAL	144.	111	<u>o.</u>	0.	0,
										••	./=	447 55	C 1 DU 1 A 1	147	11	-0.02	0.32	0
		GT-HRSG-1				147.								147. 144.	111		0,32	0.
17	GTVC16	GT-HRSG-1	6 HEAT	ο.	ο.	٥.	0.	0.	0.	Ο.	144.	U. KE	SIDUAL	144.	* * *	٠.	٠,	⊸.

PAGE 239

COGENERATION TECHNOLOGY ALTERNATIVES STUDY

18SE PEO ADV DESIGN ENGR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 32413 MW 13.54 PROCESS MILLIONS BTU/HR

O. PROCESS TEMP(F)

O. PRODUCT CEMENT

HOURS PER YEAR 7920.

UTII	.ITY FUEL	CGAL				POWE			0 ***** EL EQV I		*6=	О. НОТ	WATER BT	Ux10xx6	 S= ().	
	, 1022	OOAL	WASTE	FUEL	COGEN	CØGEN		COGEN		UTILIT			NET=	FAIL		POWER	HFAT
			FUEL USED	SAVED= NO-NET	FUEL		PROCES		PROCES BOILR	FUEL	FUEL SITE	FUEL USED	TOTAL+ UTILIT		, con	FACTR	
			10**6		10**6	10**6	10**6		10**6	10**6 BTU/HR	10**6		10**6 BTU/HR				•
30 DESMA	DIESEL-SØA	PAUR		16.	128.	28.	46.	14.	-33.	0.		.DISTILLA		1	0.11	0.36	0
,	DIESEL-SOA		ŏ.	ő.	0.	o.	ŏ.	٠ ٥ .	o.	144.		DISTILLA	144.	111		0.	o.
	DIESEL-SOA				128.	28.	46.	14.	-33.	0.		RESIDUAL			0.11	0.36	6.
	2 DIESEL-SOA				0.	0.	0.	Q.	0.			.RES!DUAL		111		0.	0.
	DIESEL-SØA		0. 0.	16. 0.	<u>128.</u> 0.	<u>51,</u> 0,	<u>46.</u> 0.	14. 0.	<u>-60.</u> 0.	0. 144.		<u>DISTILLA</u> DISTILLA		111	0.11	0.36	0.
	DIESEL-SOA		0.	16.	128.	51,	46.	14.		0.		RESIDUAL	128.	111		0.36 0.	0.
	DIESEL-SOA		0.	0.	0.	0.	0.	0.	0.	144.		RESIDUAL	144.			-	0.
	O GT-HRSG-10 O GT-HRSG-10		0. 0.	-14. 0.	158. 0.	85. 0.	46. 0.	14. 0.	-100. 0.	0. 144.		DISTILLA DISTILLA	158. 144.	111	-0.10 0.	0.29 0.	0. 0.
i	GT-85RE-08		0.	15.	129.	52.	46.	14.	-61.	0.		DISTILLA	129. 144.	111			
	GT-85RE-08		0.	0.	0.	0,	. 0.	0,	0,	144.		DISTILLA				0.	0.
	2 GT-85RE-12 2 GT-85RE-12		<u>0.</u> 0.	<u>15.</u> 0.	129. 0.	<u>53.</u> 0.	<u>46.</u> 0.	14. 0.	<u>-62.</u> 0.	0. 144.		DISTILLA DISTILLA	129. 144.	111	0.11	0.36	0.
	GT-85RE-16		0.	12.	132.	56.	46.	14.				DISTILLA	132.	11			
	GT-85RE-16		0.	0.	0.	0.	0.	0.	0.	144.		DISTILLA	144.	111		0.	0.
	GT-GORE-08 GT-GORE-08		0. 0.	0. 0.	144. 0.	68. 0.	46. 0.	14. 0.	-80. O.	0. 144.		DISTILLA DISTILLA	144. 144.	111	0. 0.	0.32 0.	0. 0.
	GT-60RE-12		0.	4. 0.	140. 0.	63. O.	46. 0.	14. 0.	-74. 0.	0. 144.		DISTILLA DISTILLA	140. 144.	11 111	0.03	0.33	0. 0.
38 GTR216	GT-60RE-16	POWR	0.	7.	137.	61.	46.	14.	-72.	0.		DISTILLA	137.	11	0.05	0.34	٥.
38 GTR216	GT-60RE-16	HEAT	0.	0.	0.	0.	0.	0.	0.	144.	0.	DISTILLA	144.	111	0.	0.	0.
	GT-05RE-08 GT-85RE-08		0.	13. 0.	132. 0.	43. 0.	4€. 0.	14. 0.	-51. 0.	0. 144.		DISTILLA DISTILLA	132. 144.	11 111		0.35 0.	0. 0.
	GT-85RE-12		0. 0.	17. 0.	127. 0.	42. 0.	46. 0.	14. . ú.	-50. 0.	0. 144.		DISTILLA Distilla	127 <i>.</i> 144.	11 111	0.12 0.	0.36	0. 0.

WELLAUD ECOT EN

~ 64

18SE PEG ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
***FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 32414 MW 6.77 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F)

O. PRODUCT CEMENT

HOURS PER YEAR 7920.

PAGE 241

UTIL	ITY FUEL	CØAL				POWE	R TO HE	AT RATI	6 ***** EL EQV	BTU*10*	*6= 0. HO	WATER BY	ru*10*#6	i= (o.	
			WASTE	FUEL	COGEN	COGEN		COGEN			TOTAL SITE	NET=	FAIL	FESR	POWER	R HEAT
			FUEL.	SAVED=			PROCES		PROCES		FUEL FUEL	TOTAL+			FACTR	FACT
			USED	NO-NET		HEAT		ELECT	BOILR		SITE USED	UTILIT				
				10**6						10**6		10**6				
			BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HR	BTU/HR				
a austoau			^	_	^	^	O.	٥.	0.	72.	O.DISTILLA	72.	0	Ο.	0.32	0
	N O C O G STM-TURB-1		0. 0.	0. 3.	0. 69.	0. 36.	23.		- •	72. 0.			11			
	STM-TURB-1		0.	3. 0.	09, 0.	30. Q.	23. 0.	ó.		72,			111		0.	o.
1 3111141	3111-10105-1	пси	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u></u>	<u>v.</u>		O. NEGI BOAL	<u> </u>				
1 STM141	STM-TURB-1	POWR	0.	3.	69.	36.	23.	7.	-42.	0.	69. COAL-FG	69.	11	0.04	C.33	Ο.
	STM-TURB-1		o.	õ.	0.	0.	0.	o.	ο.	72.	O. COAL-FGE	72.	111	ο.	0. 1	Ο.
	STM-TURB-1			3.	69.	36.	23.	7.		Ο.	69. COAL-AFE		11	0.04		0.
1 STM141	STM-TURB-1	HEAT	0.	٥.	G.	0.	Ο.	0.	0,	72.	O.COAL-AFE	72.	111	ο.	0.	0.
			_			40		-	40		76. RESTOUAL	. 76.	•	-0.06	0.30	•
	STM-TURB-8			<u>-4.</u> 0.	<u>76.</u> 0.	<u>42.</u> 0.	<u>23.</u>	7. 0.	<u>-49.</u> 0.	<u>0.</u> 72.	O.RESIDUAL		111		0.30	0.
2 5111038	STM-TURB-8	FILAI	U.	0.	σ.	υ.	U.	U.	u.	12.	U. RESTOURL	. /2.	***	Ο.	0.	٥.
2 STMORR	STM-TURD-8	PANS	0.	-4.	76.	42.	23.	7.	-49.	٥.	76.COAL-FO	76.	1	-0.06	0.30	٥.
	STM-TURB-8			0.	0.	0.	- O.	Ö.		72.	O. COAL-FGI		111		0.	ο. '
	<u> </u>		<u></u>	·												
2 STM088	STM-TURB-8	POWR	0.	-4.	76.	42.	23.			0.	76.COAL-AFE			-0.06		
2 STM088	STM-TURB-8	HEAT	0,	Ο.	0.	ο.	٥.	o.	Ó.	72.	O.COAL-AFE	72,	111	٥.	0.	Ο,
															0.38	
	PFB-STITB-			12.	60.	29.	23.	7.		0.			111		0.38	0. 0.
3 PERSTA	PFB-STMTB-	HEAT	0.	ο.	0.	٥.	٥.	0.	0.	72.	O. COAL-PFE	, /2.	111	0.	υ.	υ,
4 TIOTHT	TI OTHER S	Dello	^	17	56.	24.	23.	7.	-28.	0.	56.RESIDUAL	_ 56.	11	0.23	0.41	٥.
	TI-STMTB-1				0.	0.	0.			72.	Q. RESIDUAL		111		0.	Ō.
4 1131111	11-311116-1	HEAT	٠.	0.	٥,	٠.	٠.	٥.	٠.	,	01112012011		,	- -	- •	
4 TISTMT	TI-STNTB-1	POVR	0.	17.	56.	24.	23.	7.	-28.	0.	56.COAL	56,	11	0.23	0.41	٥.
	TI-STMTB-1					Ο.	0.	0.		72.	O. COAL	72.	111	0.	O.	0.
																_
5 TIHRSG	THERMIONIC	POWR	0.		164.	116.	23.			o.				-1.27		٥.
5 TIHRSG	THERMIONIC	HEAT	0.	ο.	0.	0.	٥.	0.	0.	72.	O.RESÌDUAL	. 72.	111	Ο.	Ο.	٥.
					401				10=		104 004	164		-1,27	0.14	0.
	THERMIONIC				164.	116.	23.					164. 72.	111		0.14	0.
5 TIHRSG	THERMIONIC	HEAT	0.	0.	0.	0.	0.	0.	0.	72.	U. CUAL	<i>(</i> 2.	111	٥.	٠.	٠.
G CTIP	STIRLING-1	ಎನಟಲ	0.	-3.	75,	31.	23.	7.	-37.	ο.	75.DISTILL	75.	1	-0.04	0.31	Ο.
	STIRLING-1						<u> </u>			72.			111		0.	0.
OSITIVE	OTIMATINO"	HEAT	0.	J .	٥.	J.	٠.	٠.	٠.	,	• • • • • • • • • • • • • • • • • • • •					

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 32414 MW 6

18SE PEO ADV DESIGN ENGR

W 6.77 PROCESS MILLIONS BTU/HR

O. PROCESS TEMP(F)

O. PRODUCT CEMENT

HOURS PER YEAR 7920.

PAGE 243

POWER TO HEAT RATIO **** UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL. TOTAL+ FACTR FACTR USEO NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR O. 22. 50. 50. RESIDUAL 11. 23. -13. 0. 7. 50. 11 0.31 0.46 0. 18 CC1626 GTST-16/26 HEAT 0. 0. Ο. ٥. 0. Ο. Ο. O. RESIDUAL 72. 72. 111 0. 0. 19 CC1622 GTST-16/22 POWR O. 22. 50. 13. 23. 7. -15. 0. 50. RESIDUAL 50. 11 0.31 0.46 19 CC1622 GTST-16/22 HEAT ٥. 0. 0. 0. ο. 0. 0. 72. O. RESIDUAL 72. 111 0. ٥. 0. 20 CC1222 GTST-12/22 POWR 23. 50. 12. 23. 0. -15. 50. RESIDUAL 50. 11 0.31 0.47 0. 20 CC1222 GTST-12/22 HEAT a. ٥. 0. ۵. 0. Ω. 72. O. RESIDUAL 72. 111 0. 0. 0. 21 CC0822 GTST-08/22 POWR 0. 22. 50. 15. 23. 7. -17. 0. 50. RESIDUAL 50. 11 0.31 0.46 0. 21 CC0822 GTST-08/22 HEAT Ω. 0. 0. ٥. Ο. 0. 72. O. RESIDUAL 72. 111 0. ٥. 22 STIG15 STIG-15-16 POWR 0. 61. Ο. 12. 1. 23. 7. ~1. 61. RESIDUAL 11 0.16 0.38 0. 61, 22 STIG15 STIG-15-16 HEAT ٥. 0. 0. ۵. 0. O. RESIDUAL 0. 72, 72. 111 0. 0. 0. 23 STIG10 STIG-10-16 POWR 0. 9, 8. 64. 23. -10, 7. 0. 64. RESIDUAL 64. 11 0.11 0.36 0. 23 STIG10 STIG-10-16 HEAT 0, 0. n. ٥. 0. ٥. 72. O.RESIDUAL 72. 111 0. 0. ٥. 24 STIGIS STIG-1S-16 POWR 69. ٥. 15. 23. -17 69. RESIDUAL 69. 11 0.05 0.34 0. 24 STIG1S STIG-1S-16 HEAT ٥. Ο. 0. 0. ٥. 72. O. RESIDUAL 72. 111 0. 0. 0. ٥. 25 DEADV3 DIESEL-ADV POWR 23. 0. 10. 62. 22. 7. -26. 62. RESIDUAL 1 0.14 0.37 0. 62. 25 DEADV3 DIESEL-ADV HEAT ۵. 0. 0. 0. 72. O. RESIDUAL 111 0. ٥. 0. 72. 0. Ο. 26 DEADV2 DIESEL-ADV POWR 0. 10. 62. 23. 0. 16. 7. -19. 62. RESIDUAL 62. 1 0.14 0.37 0. 26 DEADV2 DIESEL-ADV HEAT Ο. ٥. ٥. 0. 0. 0. 72. O. RESIDUAL 72. 111 0. 0. 0. 27 DEADVI DIESEL-ADV POUR Ω. 10. 62. 24. 23. 7. -29. Ō. 62. RESIDUAL 62. 1 0.14 0.37 0. 27 DEADVI DIESEL-ADV HEAT 0. 0. 0. Ο. ο. G. RESIDUAL 0. Ο. 72. 72. 111 0. 0. 0. 28 DEHTPM ADV-DIESEL POWR 15. 58. 29. 0. 23. -35. 58. RESIDUAL 58. 1 0.20 0.40 0. 28 DEHTPH ADV-DIESEL HEAT 0. 0. Ο, 0. 0. Ö. 0. 72. O. RESIDUAL 72. 111 0. 0. O. 29 DESGAS DIESEL-SGA POWR O. 8. 64. 21. -25. 0. 23. 7. 64. DISTILLA 64. 1 0.11 0.36 0. 29 DESGAS DIESEL-SGA HEAT 0. 0. О. Ο. 0. 0. 0. 72. O.DISTILLA 72. 111 0. ٥. 29 DESGAS DIESEL-SGA POWR 0. 8. 64. 21. 23. 7. -25. 0. 64. RESIDUAL 64. 1 0.11 0.36 0. 29 DESGAS DIESEL-SGA HEAT Ω. C. ٥. 0. ٥. 72. O.RESIDUAL ٥. 72. 111 0. 0. 0.

~ 4

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 32414 MW 6.77 PROCESS MILLIONS BTU/HR

O. PROCESS TEMP(F)

O. PRODUCT CEMENT

HOURS PER YEAR 7920.

PAGE 245

POWER TO HEAT RATIO ***** WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= 0. UTILITY FUEL COAL 0. FAIL FESR POWER HEAT COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= WASTE FUEL FACTR FACTR PROCES FUEL FUEL FUEL TOTAL+ FUEL. SAVED= FUEL PROCES PROCES MW POWER ELECT BOILR USED SITE USED UTILIT NO-NET USED HEAT USED 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10××6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 65. DISTILLA 65. 11 0.10 0.36 0. 41 GTRW16 GT-85RE-16 POWR Ο. 7. 65, 23. 23. 7. -27. 0. O. DISTILLA 72. 111 0. 41 GTRV16 GT-85RE-16 HEAT ٥. 0. 0. О. ٥. 0. 72. . 0. 75. 11 -0.03 0.31 0. 42 GTR308 GT-GORE-08 POWR -2. 75. 33. 23. 7. -39. O. 75. DISTILLA 0. O. DISTILLA 72. 111 0. Ω. 0. 72. Ο. ٥. Ο. 42 GTR308 GT-60RE-08 HEAT 0. ٥. 0. 0. 0. 68. DISTILLA 68. 11 0.06 0.34 43 GTR312 GT-60RE-12 POWR 68. 26. O. DISTILLA 72. 111 0. 0. 43 GTR312 GT-60RE-12 HEAT Ω. 0. 0. ٥. 0. 0. 72. 44 GTR316 GT-60RE-16 POWR 68. 26. 23. 7. -31. ٥. 68. DISTILLA 68. 11 0.06 0.34 0. ٥. 4. O. DISTILLA 72. 72. 111 Ο. 0. 44 GTR316 GT-60RE-16 HEAT 0. 1 0.16 0.38 0. 45 FCPADS FUEL-CL-PH POWR 61. 10. 23. 7. -12. ٥. 61.DISTILLA 61. 0. î1. O. DISTILLA 72. 111 0. n. 72. ٥. 45 FCPADS FUEL-CL-PH HEAT 0. ٥. 0. ٥. ٥. ٥. 0. 56. 0.22 0.41 0. 46 FCMCDS FUEL-CL-MO POWR 13. 23. 7. -15. 0. 56. DISTILLA ٥. 16. 56. 72. 111 0. 0. ٥. ٥. 0. 72. O. DISTILLA 46 FCMCDS FUEL-CL-MO HEAT ٥. ٥. 0. ٥. O.

SYSTEM- PIRS-02

EYWELL PAGE PRINTING

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE 247

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33121 MW 60.00 PROCESS MILLIONS BTU/HR 93.0 PROCESS TEMP(F) 448. PRODUCT SPECIAL-STEE HOURS PER YEAR 6700.

POWER TO HEAT RATIO 2.201 UTILITY FUEL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= COAL WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR -138. 887. 442. 205. 60. -410. 0. 887. RESIDUAL 887. 0 -0.18 0.23 0.10 О. 6 STIRL STIRLING-1 HEAT 57. 187. 93. 187. RESIDUAL 692. 0.08 0.06 0.13 0. 43. 13. 0. 505. 6 STIRL STIRLING-1 POWR -138. 887. 442. 205. 60. -410. 0. 887. COAL 887. 0 -0.18 0.23 0.10 187. COAL 692. 0 0.08 0.06 0.13 6 STIRL STIRLING-1 HEAT 0. 57. 187. 93. 43. 13. ٥. 505. 7 HEGT85 HELIUM-GT- POWR 638 -11. 761.COAL-AFB 761 1 -0.02 0.27 0.12 -12. 205. 60. 123. 7 HEGT85 HELIUM-GT- HEAT -5162. 93. -5162. 93. -1657. -486. 0. 5817. -5162. COAL-AFB 656. 11 -6.77 -2.53 0.14 8 HEGT60 HELIUM-GT- POWR -41. 790. 160. 205. 60. -79. C. 790. COAL-AFB 790. 0 -0.06 0.26 0.12 8 HEGT60 HELIUM-GT- HEAT 22. 460. 93. 119. 35. 0. 267. 460. COAL-AFB 727. 10 0.03 0.16 0.13 9 HEGTOO HELIUM-GT- POWR -414. 1163. 548. 205. 60. -535. 0. 1163. COAL-AFB 1163. 0 -0.55 0.18 0.08 0. 9 HEGTOO HELIUM-GT- HEAT ٥. 21. 198. 93. 35. 10. 0. 531. 198. COAL-AFB 729. 10 0.03 0.05 0.13 10 FCMCCL FUEL-CL-MO POVR 76. 673. 317. 205. 60. -264. 673. COAL 673. 10 0.10 0.30 0.14 0. 0. 10 FCMCCL FUEL-CL-MO HEAT 100. 452. 197. COAL 650. 10 0.13 0.09 0.14 197. 93. 60. 18. 0. 11 FCSTCL FUEL-CL-ST POWR 166. 583. 249. 205 60. -184. 0. 583, COAL 583. 10 0.22 0.35 0.16 O'. 0.17 0.12 0.15 11 FCSTCL FUEL-CL-ST HEAT 131. 217. 93. 76. 22. <u>401.</u> 217. COAL 618. n. -69. 376. 205. 60. -333. a. 818.COAL 818. 10 -0.69 0.25 0.11 12 IGGTST INT-GAS-GT POWR 0. 818. 0.07 0.14 12 IGGTST INT-GAS-GT HEAT 65. 202. 93. 51. 15. 482. 202. COAL 684. 10 0.09 0. O. 43. 706. 281. 205. 60. - 221. 0. 706. RESIDUAL 706. 0 0.06 0.29 0.13 13 GTSØAR GT-HRSG-10 PØWR 0. 0.12 0.10 0.14 234. RESIDUAL 662. ñ 93. 13 GTSCAR GT-HRSG-10 HEAT 0. 87. 234. 68. 20. 0. 428. 758. 0 -0.01 0.27 0.12 758. 391. 205. 60. -351. 758. RESIDUAL 14 GTACOS GT-HRSG-08 POWR 0. -9. n. 668. 0.07 0.14 14 GTACOB GT-HRSG-08 HEAT 81. 180. 93. 49. 14. 0. 488. 180. RESIDUAL 0.11 0.10 0.31 0.14 15 GTAC12 GT-HRSG-12 POWR 671. 311. 205. 60. -256. 0. 671 RESIDUAL 671 78. 0.13 0.09 0.14 15 GTAC12 GT-HR3G-12 HEAT 93. 61. 448. 201. RESIDUAL 649. 100. 201. 18. 0. 0.15 0.32 0.15 634. 269. 205. 60. -207. 0. 634. RESIDUAL 634. 0 16 GTAC16 GT-HRSG-16 POWR 0. 115. 16 GTAC16 GT-HRSG-16 HEAT 111. 219. 93. 71. 21. 0. 418. 219. RESIDUAL 638. 0.15 0.11 0.15 0.13 0.32 0.14 -201. 650. RESIDUAL 650. 17 GTVC16 GT-HRSG-16 POWR 0. 99. 650. 263. 205. 60. 0. 643. 0.14 0.17 0.14 17 GTWC16 GT-HRSG-16 HEAT 229. 93. 72. 414. 229, RESIDUAL 0. 106. 21. 0.

18SE PEO ADV DESIGN ENGR

40 GTRW12 GT-85RE-12 HEAT

159.

358.

93.

130.

38.

0.

233.

358. DISTILLA

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

PAGE 249

0 0.21 0.22 0.16

591.

INDUSTRY 33121 MW 60.00 PROCESS MILLIONS BTU/HR 93.0 PROCESS TEMP(F) 448. PRODUCT SPECIAL-STEE HOURS PER YEAR 6700.

POVER TO HEAT RATIO 2,201 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= ο. FESR POWER HEAT WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR FUEL BOILR USED USED USED NO-NET USED HEAT POWER ELECT SITE UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESCA2 DIESEL-SCA POWR 0. 182. 567. 125. 205. 60. -37. 0. 567. DISTILLA 567. 1 0.24 0.36 0.16 30 DESGAZ DIESEL-SGA HEAT 0. 164. 423. 93. 153. 45. 0. 163. 423. DISTILLA 586. 0.22 0.26 0.16 30 DESCA2 DIESEL-SCA POWR 182. 567. 125. 205. -37. O. 567. RESIDUAL 567. 0.24 0.36 0.16 0. 60. 30 DESCA2 DIESEL-SCA HEAT 164. 423. 93. 153. 45. 0. 163. 423. RESIDUAL 586. 0.22 0.26 0.16 0. 31 DESGA1 DIESEL-SGA POWR 182 567. 227. 205 60. -158 Ο. 567. DISTILLA 567. 0.24 0.36 0.16 31 DESGA1 DIESEL-SGA HEAT 139. 232. • 84. 25. Ο. 378. 232. DISTILLA 610. 0.19 0.14 0.15 93. 567. 567. 227. 205. -158. 567. RESIDUAL 1 0.24 0.36 0.16 31 DESGA1 DIESEL-SMA POWR 0. 182. 60. 0. 31 DESGA1 DIESEL-SGA HEAT 232. RESIDUAL 610. 139 232. 93. 84 25. 0. 378 0.19 0.14 0.15 701. 0.06 0.29 0.13 32 GTSGAD GT-HRSG-10 POWR 48. 701. 319. 205. 60. -266. 0. 701.DISTILLA 32 GTSOAD GT-HRSG-10 HEAT 453. 205. DISTILLA 658. 0.12 0.09 0.14 92. 205. 93. 60. 18. 0. 573. 33 GTRA08 GT-35RE-08 POWR 176. 573. 170. 205. -91. Ö. 573. DISTILLA 0.23 0.36 0.16 60. 604. 0.19 0.19 0.15 33 GTRA08 GT-85RE-08 HEAT 146. 313. 93. 112. 33. 0. 290. 313 DISTILLA 572 34 GTRA12 GT-85RE-12 POWR 572. 179 -101 572. DISTILLA 0.24 0.36 0.16 177 205 60. 0 34 GTRA12 GT-85RE-12 HEAT 145. 297. 93. 106. 31. 0. 308. 297. DISTILLA 605. 0.19 0.18 0.15 0.22 0.35 0.16 35 GTRA16 GT-85RE-16 POWR Ω. 163. 587. 196. 205. 60. -121. 0. 587. DISTILLA 587. 278. DISTILLA 615. 0.18 0.16 0.15 35 GTRA15 GT-85RE-16 HEAT 135. 278. 93. 97. 28. 0. 336. n. 36 GTR208 GT-60RE-08 POWR 109. 640. -178. ٥. 640. DISTILLA 640. 0.15 0.32 0.15 0. 244. 205. 60. 244.DISTILLA 640. 0.15 0.12 0.15 36 GTR208 GT-60RE-08 HEAT Ω. 109. 244. 93. 78. 23. 0. 396. 620. 0.17 0.33 0.15 37 GTR212 GT-60RE-12 POWR 0. 129. 620. 227. 205. 60. -158. O. 620. DISTILLA 93. Ö. 378. 254. DISTILLA 632. 0 0.16 0.13 0.15 37 GTR212 GT-GORE-12 HEAT 254. 25. 0. 117. 84. 38 GTR216 GT-60RE-16 POWR 607. -150 n 607. DISTILLA 607. 0 0.19 0.34 0.15 142 221 205 60. 256. DISTILLA 626. 0.16 0.14 0.15 38 GTR216 GT-60RE-16 HEAT 123. 256. 93. 25. Ο. 370. 0. 86. 0 2,22 0.35 0.16 39 GTRV08 GT-85RE-08 POWR 166. 583. 145. 205. 60. -61. 0. 583. DISTILLA 583. 374. DISTILLA 604. 0 0.19 0.22 0.15 39 GTRW08 GT-85RE-08 HEAT 146. 374. 93. 131. 38. 0. 229. 0 0.25 0.36 0.17 40 GTRW12 GT-85RE-12 POWR 187. 562, 146. 205. 60. -63. 0. 562. DISTILLA 562.

PAGE BLANK NOT FILMED

-

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

PAGE 251

INDUSTRY 33251 MW 280.00 PROCESS MILLIONS BTU/HR 912.0 PROCESS TEMP(F) 448, PRODUCT INTOR-STEEL HOURS PER YEAR 6700.

UTILITY FUEL	COAL				POWE			Ø 1.048 EL EQV		×6= 5	29. HOT	WATER BI	TU*10**6	5= 1	o.		
		WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FFSR	POWER	HFAT	
		FUEL	SAVED=			PROCES		PROCES		FUEL	FUEL	TOTAL+		1 (.010	FACTR		
		USED	NO-NET		HEAT		ELECT		USED	SITE	USED	UTILIT					
		10**6	10**6						10**6			10**6					
		BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BYU/HR	BTU/HR	BTU/H	R	BTU/HR					
0.0050000000000000000000000000000000000		500	•	_	_					1.000			_				
O ONOCON NO COO		529.				0.		1073.			. COAL-FGD			0.		0.22	
1 STM141 STM-TURB-1 1 STM141 STM-TURB-1			-7209.	1192.	8622. 912.	955. 101.	280. 30.	-907			, RESIDUAL		_		80.0		
1 STRIAL STRICTURE-1	HEAT	529.	197.	1196.	912.	101.	30.	0.	2670.	1192	.RESIDUAL	3862.	<u> </u>	0.06	0.03	0.24	_
1 STM141 STM-TURB-1	POWR	529.	-7209.	11268.	8622.	955.	280.	-9071.	٥.	11268	. COAL-FGE	11268.	0	-2.04	0.08	0.08	
1 STM141 STM-TURB-1				1192.		101.	30.				. COAL-FGE	3862.			0.03		
1 STM141 STM-TURB-1			-7209.			955.		-9071.			. COAL-AFE	11268.	0		0.08		
1 STM141 STM-TURB-1	HEAT	529.	197.	1192.	912.	301.	30.	0.	2670.	1192	. COAL-AFE	3862.	0	0.06	0.03	0.24	
2 STMO88 STM-TURB-6	PAUD	520	-15597.	10656	15750	955.	280	-17459.	•	10656	. RESIDUAL	19656.	_	-4 42	0.03	0.05	
2 STMOBS STM-TURB-8				1138.	912.	55.	16.	0.			. RESIDUAL	3951.	<u>o</u>	0.03	0.03	_0.03	
2 on loss on rong s	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	020.		1100.	3.2.	٠٠.		٧.	2010.	1,00	. NEO I DONE	03011	·	0.00	5,01	0.20	
2 STMO88 STM-TURB-8	POWR	529.	-15597.	19656.	15752.	955.	280.	-17459.	٥.	19656	. COAL,-FGD	19656.	0	-4.42	0.05	0.05	
2 STNORB STIT-TURB-6	HEAT			1138.	912.	55.	16.	0.	2813.	1138	. COAL -FOD	3951,	Ð	0.03	G. 01	0.23	
2 STM088 STM-TURB-8			-15597.			955.		-17459.			.COAL-AFB				0.05		
2 STMOBB STM-TURB-6	HEAT	529.	108.	1138.	912.	55.	16.	C.	2810.	1:38	. COAL-AFB	3551.	0	0.03	5.01	0.23	
3 PFBSTM PFB-STMTB-	POUR	520	-1968.	6026.	4098.	955.	280	-3748.	0.	6026	. COAL-PFB	6026.		-0 56	0.16		
3 PFBSTM PFB-STMTB-				1341.	912.	213.	62.				. COAL-PFB	3662.		0.11			
		020.			0.2.	L (0.	· ·	•	LOLIT	,,,,,		300 2.	•	•	0.00	0,20	
4 TISTMT TI-STMTB-1	POVR	0.	-492,	4550,	2881.	955.	280.	-2316.	0.	4550	. RESIDUAL	4550.	0	-0.29	0.21	0.20	
4 TISTMT TI-STMTB-1	HEAT	529.	293.	730.	462.	153.	45.	529.	2507.	1259	.RESIDUAL	3766.	0	0.08	0.04	0.24	
									_				_				
4 TISTMT TI-STMTB-1						955.		-2316.	0.		. COAL	4550.			0.21		
4 TISTMT TI-STMTB-1	HEA	529.	578.	1441.	912.	302.	89.	0.	2040.	1441	.COAL .	3481.		0,16	0.09	0.26	
5 TIHRSG THERMIONIC	POWR	'n	-2732.	6790.	4178.	955.	280	-3842.	0.	6790	. RESIDUAL	6790.	0	-0.92	0.14	0.13	
5 TIHRSG THERMIONIC				751.	462.	106.	31.	529.			. RESIDUAL	3936.			0.03		
					,		• • • • • • • • • • • • • • • • • • • •	J					•	,	,		
5 TIHRSG THERMIONIC	POWR	529.	-2732.		4178.	955.	280.	-3842.	0.	6790	. COAL	6790.	0	-0.77	0.14	0.13	•
5 TIHRSG THERMIONIC	HEAT	529.	242.	1482.	912.	209.	61.	0.	2334.	1482	. COAL	3816.	0	0.07	0.05	0.24	
C STIPL STIPLING	500	_	٠.	4100	0001	6 55	000	1000	_	44.00	0.07	44.00	_				
6 STIRL STIRLING-1 6 STIRL STIRLING-1				413 9 . 928.	2061. 462.	955. 214.	280. 63.	-1352. 529.			.DISTILLA .DISTILLA	4139. 3773.			0.23		
G STIKE STIKEING-1	HEAT	529.	200.	320.	402.	۷۱۹.	53.	529.	2310.	1437	.DISTILLA	3//3.	U	0.08	9.06	0.24	

IRSE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

PAGE 253

INDUSTRY 33251 MW 280.00 PROCESS MILLIONS BTU/HR 912.0 PROCESS TEMP(F) 448. PRODUCT INTGR-STEEL HOURS PER YEAR 6700.

!	TY FUEL	COAL				POWE			0 1.046 EL EGV	BTU*10*	×6= 5	29. HOT	WATER B	TU*10**6	= (),	
·			WASTE	FUEL	CUGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL		_POWER	
			FUEL USED 10**6	SAVED= NO-NET 10**6	USED	HEAT		MW ELECT	PROCES BOILR 10**6		FUEL SITE 16**6	FUEL USED	TOTAL+ UTILIT 10**6			FACTR	FACTR
				BTU/HR				·		BTU/HR		<u> </u>	BTU/HR				prints :
18 CC1626	GTST-16/26	POWR	4.	1344.	2711.	909.	955.	280.	4.	0.	2715	.RESIDUAL	2715,	0	0.23	0.35	0.34
18 CC1626	GTST-16/26	HEAT	529.	683.	1378.	462.	486.	142.	52 9.	1467.	1908	RESIDUAL	3375,	0	C.19	0.14	0.27
19 CC1622	GTST-16/22	POWR	0.		2766.	1015.	955.	280.	-121.	0.		RESIDUAL				0.35	
19 CC1622	GTST-16/22	HEAT	529.	643.	1259.	462.	435.	127.	529.	1627.	1789	RESIDUAL	3415.	0	0.18	0.13	0.27
	GTST-12/22			1296.	2763.	1024.	955.	280.	-132.	0.		RESIDUAL				0.35	The state of the state of
20 CC1222	GTST-12/22	HEAT	529.	644.	1247.	462.	<i>4</i> 31.	126.	529.	1638.	1776	RESIDUAL	3414.	0	0.18	0.13	0.27
	GTST-08/22				3000.	1316.	955.	280.		.0		RESIDUAL	3000.			0.32	
21 000822	GTST-08/22	HEAL	529.	538.	1053.	462.	335.	98.	529.	1937,	1363	. RESIDUAL	3520.		0, 15	0.10	0.26
	STIG-15-16 STIG-15-16				2508. 35538.	33.	955. 13540.	280. 3968.				.RESIDUAL .RESIDUAL		_		6.27 0.38	0,26 0,03
22 311615	3116-13-16	FIEA (529.	7310:	30036,	402.	13340.	3900.	J29.	-35327.							
	STIG-10-16 STIG-10-16		529. 529.	740. 970.		353. 462.	935. 1252.	280. 367.	658. 529.	0. -927.		.RESIDUAL .RESIDUAL	3319. 3089.	, 1	0.21	0.29	0.27 0.23
											•						
	<u>\$71G-15-16</u> \$71G-15-16			842. 648.	2650. 2192.	601. 462.	955. 735.	280. 215.	366. 529.	<u>0.</u> 690.		.RESIDUAL .RESIDUAL			0.19	0.30	0.28
									,			-		-			
	DIESEL-ADV		529. 529.	926. 976.	25 75 . 271 3 .	439. 462.	955. 1006.	280. 295.	55 7 . 529.	0. -160.		.RESIDUAL .RESIDUAL	3132. 3083.			0.31	0.29 0.28
							· · · · · · · · · · · · · · · · · · ·	······································					00.70				
	DIESEL-ADV					654. 462.	955. 675.	280. 198.				.RESIDUAL .RESIDUAL				0.33 0.21	0.32
				1400	007E	1007	OFF		*10		0575	RESIDUAL	2575.	1	0 27	0.37	0.35
	DIESEL-ADV DIESEL-ADV		0. 529.		2575. 1182.	1007. 462.	955. 438.	280. 128.		0. 1616.		RESIDUAL		i		0.37	
28 DELITOM	ADV-DIESE!	ഉവര	0.	787.	3272.	1403.	955.	280.	-577.	0.	3272	. RESIDUAL	3272.	n	0.07	0.29	n.28
	ADV-DIESEL ADV-DIESEL				1078.	462.	315.	92.	529.			RESIDUAL		0		0.09	0.25
20 DESGV3	DIESEL-SOA	PAUP	529.	763	2646.	361.	955.	280.	649.	0.	3205	.DISTILLA	3295.	n	0.22	0.29	0.28
	DIESEL-SOA			978.		462.	1224.	359.	529.	<u>-838.</u>		DISTILLA				0.31	
29 DESMA2	DIESEL-SØA	POMP	529.	763.	2646.	361.	955.	280.	649.	0.	3295	. RESIDUAL	3295.	O	0.22	0.29	€ 28
	DIESEL-SOA					462.	1224.	359.				RESIDUAL				0.31	-
													<u></u>			il an a, mortuit	

BLANK NOT FILLIS

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

PAGE 255

18SE PFO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33251 MW 280.00 PROCESS MILLIONS BTU/HR 912.0 PROCESS TEMP(F) 448. PRODUCT INTER-STEEL HOURS PER YEAR 6700.

POWER TO HEAT RATIO 1.048

UTILITY FUEL . COAL WASTE FUEL EQV BTU*10**6= 529. HOT WATER BTU*10**6= 0.

	WASTE.	TUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
	FUEL	SAVED=	FUEL.	PROCES	PROCES	MW	PROCES	FUEL	FUEL	FUEL	TOTAL+			FACTR	FACTR
	USED	NO-NET	USED	HEAT	PONER	ELECT	BOILR	USED	SITE	USED	UTILIT				
	10**6	10**6	10**6	10**6	10**6		10**6	10**6	10**6		10**6				
	BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HP	₹	BTU/HR				
41 GTRW16 GT-85RE-16 POWR	187.	1195.	2676.	753.	955.	280.	187.	0.	2860	DISTILLA	2863.	0	0.24	0.33	0.32
41 GTRW16 GT-85RE-16 HEAT	529,	733.	1642.	462.	586.	172.	529.	1154.	2171.	DISTILLA	3325.	0	0.21	0.18	0.27
42 GTR308 GT-GORE-08 POWR	12.	965.	3082.	902.	955.	280.	12.	0.	3094	DISTILLA	3094.	0	0.13	0.31	G. 29
42 GTR308 GT-GORE-08 HEAT	529.	494.	1579.	462.	489.	143.	529.	1456.	2108	DISTILLA	3564.	0	0.14	0.14	0.26
														7	
43 GTR312 GT-60RE-12 POWR	19.	1246.	2793.	896.	955.	280.	19.	0.	2812.	DISTILLA	2812.	0	0.21	0.34	0.32
43 GTR312 GT-GORE-12 HEAT	529.	643.	1441.	462.	493.	144.	529.	1446.	1970.	DISTILLA	3416.	0	0.18	0.14	0.27
44 GTR316 GT-60RE-16 POWR	1.	1240.	2818.	911.	955.	230.	1.	0.	2819.	DISTILLA	2819.	0	0.20	0.34	0.32
44 GTR316 GY-GORE-16 HEAT	529.	628.	1429.	462.	484.	142.	529.	1472.	1958.	DISTILLA	3430.			0.14	
													-	and the second second	• *
45 FCPADS FUEL-CL-PH POWR	529.	974.	2514.	427.	955.	280.	570.	0.	3084	DISTILLA	3084.	0	0.28	0.31	0.30
45 FCPADS FUEL-CL-PH HEAT	529.	1053.	2718.	462.	1033.	303.	529.	-242.	3247	DISTILLA	3005.	0	0.28	0.32	0.28
													_ ,		
46 FCMCDS FUEL-CL-MO POUR	437.	1302.	2319.	540.	955.	280.	437.	C.	2756.	DISTILLA	2756.	0	0.34	0.35	0.33
46 FCMCD3 FUEL-CL-MO HEAT	529.	1114.	1983.	462.	817.	239.	529.	433.	2512.	DISTILLA	2945.	O	0.32		0.31
				•	- • • •						,	•			

18SE PET ADV DESIGN ENGR

17 GTWC16 GT-HRSG-16 HEAT

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33254 MW 40,00 PROCESS MILLIONS BTU/HR 91.0 PROCESS TEMP(F) 448, PRODUCT MINI-STEEL HOURS PER YEAR 6700.

PAGE 257

POWER TO HEAT RATIO 1.500 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= ٥. HOT WATER BTU*10**6= COGEN COGEN COGEN AUX WASTE FUEL UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR POWER ELECT BOILR USED USEL NO-NET USED HEAT SITE USED UTILIT 10**6 10**6 10*#6 10**6 10**6 10××6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR -58. 591. 294. 136. 40. -239. ٥. 591. RESIDUAL 591. 0 -0.11 0.23 0.15 n 6 STIRL STIRLING-1 HEAT 183. RESIDUAL 56. 183. 91. 42. 12. 0. 295. 477. 0 0.11 0.09 0.19 ο. 6 STIRL STIRLING-1 POWR 0. -58. 591. 294. 136. 40. -239. 0. 591. COAL 591. 0 -0.11 0.23 0.15 6 STIRL STIRLING-1 HEAT 183. COAL 0 0.11 0.09 0.19 O. 56. 163. 91. 42. 12. ວ. 295. 477. 7 HEGT05 HELIUM-GT- POWR -8 425. -B. 136. 40. 116. o. 541.COAL-AFB 541. 11 -0.01 0.25 0.17 7 HEGT85 HELIUM-GT- HEAT -5051. 91. -1621. 0. 5493. -5051.COAL-AFB 11 -9.29 -3.67 0.21 91. -5051. -475. 442. 8 HEGT60 HELIUM-GT- POWR Ο. 7. 527. 107. 136. 40. -18. 0. 527, COAL-AFB 527. 10 0.01 0.26 0.17 8 HEGT60 HELLUM-GT- HEAT 450. COAL-AFB 10 0.04 0.23 0.18 450. 91. 117. 34. 0. 62. 512. n 21. 9 HEGTOO HELIUM-GT- POWR -242. 775. 365. 136. 40. -322. ٥. 775. COAL-AFB 775. 10 -0.45 0.18 0.12 ο. 10 0.04 0.07 0.18 9 HEGTOO HELIUM-GT- HEAT 20. 193. 91. 34. 10. 320. 193. COAL-AFB 513. n Ο. 10 FCMCCL FUEL-CL-MO POWR 0. 85. 449. 212. 136. 40. -142. Ō. 449 COAL 449. 10 0.16 0.30 0.20 10 FCMCCL FUEL-CL-MO HEAT 193. COAL 436. 0.18 0.13 0.21 97. 193. 91. 59. 17. ٥. 243. 0. 388. 10 0.27 0.35 0.23 11 FCSTCL FUEL-CL-ST POWR 145. 388. 166. 136. 40. -88 ٥. 388. COAL 11 FOSTOL FUEL-CL-ST HEAT 126. 213. 91. 75. 22. O. 193. 213. COAL 406. 10 0.24 0.18 0.22 n. -188. 545. COAL 545. 10 -0.02 0.25 0.17 12 IGGTST INT-GAS-GT POWR Ο. -12. 545. 251. 136. 40. ٥. 12 IGGTST INT-GAS-GT HEAT 198. 91. 50. 15. 0. 272. 198. COAL 470. 10 0.12 0.11 0.19 64. O. 471. 0 0.12 0.29 0.19 471. 167. 136. 40. -113. 0. 471. RESIDUAL 13 GTSØAR GT-HRSG-10 POWR 0. 63. 13 GTSGAR GT-HRSG-10 HEAT 229. 91. 66. 19. 0. 219. 229. RESIDUAL 448. 0 0.16 0.15 0.20 Ο. 86. -200. 505 RESIDUAL 505. 0 0.05 0.27 0.18 14 GTACOB GT-HRSG-08 FOWR 28. 505. 261. 136. 40. 0. 0. 14 GTACOS GT-HRSG-08 HEAT 80. 176. 91. 48. 14. ٥. 278. 176. RESIDUAL 454. 10 0.15 0.10 0.20 ٥. 207. -137. 447. RESIDUAL 447. 0 0.16 0.31 0.20 15 GTAC12 GT-HRSG-12 POWR 86 447. 136 40. 0. 91. 239. 197. RESIDUAL 436. 0 0.18 0.14 0.21 15 GTAC12 GT-HR3G-12 HEAT 98. 197. 60. 18. 0. 136. 0.21 0.32 0.22 423. 179. 40. -104. 0. 423. RESIDUAL 423. 16 GTAC16 GT-HRSG-16 POWR 111. 0. 210. 215. RESIDUAL 424. 0.20 0.16 0.21 16 GTAC16 GT-HRSG-16 HEAT 109. 215. 91. 69. 20. 0. 100. 433. 176. 136. -100. ٥. 433. RESIDUAL 433. 0.19 0.32 0.21 17 GTWC16 GT-HRSG-16 POWR 40. 0.

205.

n

225. RESIDUAL

430.

0 0.19 0.16 0.21

Ω.

104.

225.

91.

71.

21.

فمنتهشته فدأتته فريادها

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33254 MW 40.00 PROCESS MILLIONS BTU/HR 91.0 PROCESS TEMP(F) 448. PRODUCT MINI-STEEL HOURS PER YEAR 6700.

UTILITY FUEL COAL

POWER TO HEAT RATIO 1.500

WASTE FUEL EQV BTU*10**6=

HOT WATER BTU*10**6=

i= 0.

PAGE 259

٠,		* * *		COAL					141	ASIE FU	EL EUV I	31U*1U*	¥6=	U, HOT	WATER BY	U*10**6	;= (3.		
					WASTE	FUEL	COGEN			COGEN		UTILIT			NET=	FAIL	FESR	POWER	R HEAT	
					FUEL	SAVED=			PROCES		PROCES		FUEL	FUEL	TOTAL+			FACTR	FACTR	
					USED	NO-NET 10**6		HEAT	POWER	ELECT	BOILR		SITE	USED	UTILIT					
					RTII/HR	BTU/HR	RTII/HP	10**8	DTHIND			10**6			10**6					
					D 1 (37) 11(BIOTIN	DIOTIK	B10/nk	DIO/HK		BTU/HR	BIU/IIR	BIU/HR	<u> </u>	BTU/HR					
30 DESC	A2	DIE	SFL-SØA	POWR	0.	146.	378.	83.	136.	40.	9.	٥.	387	DISTILLA	387.	*	0 27	0.35	0 00	
30 DESC						160.	414.	91.	149.	44.	0.	-40.		DISTILLA	367. 374.			0.35		
												-,-,	.,,,,,	J. J. 1 LLA	0,4.	•	0,20	0.30	U. Z.Z.	
30 DESC					0.		378.	83.	136.	40.	9.	٥.	387.	RESIDUAL	387.	1	0.27	0.35	0.23	
30 DESG	A2	DIE	SEL-SØA	HEAT	ο.	160.	414.	91.	149.	44.	0.	-40.	414.	RESIDUAL	374.	1			0.22	
01 0500		~-~		50115	_															
31 DESC					<u>0.</u>	155. 136.	378.	152.	136.	40.	<u>-71.</u>	0.		DISTILLA	378.			0.36		
VI DESU	,,, i	UIE.	OL L-CUA	FIERI	U.	130.	227.	91.	82.	24.	0.	170.	227.	DISTILLA	397.	1	0.26	0.21	0.23	1
31 DESC	A1	DIE	SEL-SOA	POWR	ړ0	155.	378.	152.	136.	40.	-71.	٥.	278	RES I DUAL	276			0.00		1
31 DESC					Õ.	136.	227.	91.	82.	24.	0.	170.		RESIDUAL	378. 397.	i		0.36		1
								<u>~</u>			<u>_</u>	170.		KEGIDONE	337.		0,26	0.21	_0.23	
32 GTSO					0.	66.	467.	213.	136.	40.	-143.	0.	467.	DISTILLA	467.	٥	0.12	0.29	0.19	
32 GTSO	AD	GT-I	IRSG-10	HEAT	0.	90.	200.	91.	58.	17.	0.	244.		DISTILLA	444.			0.13		
00 0704																				
33 GTRA					0.	151.	382.	114.	136.	40.	-27.	٥.		DISTILLA	382.	0	0.28			
33 GTRA	US	91-6	35KE-08	HEAI	0.	142.	306.	91.	109.	32.	٥.	85.	306.	DISTILLA	391.	0	0.27	0.28	0,23	
34 GTRA	12	GT-1	350E-12	PAUR	0.	152.	381.	120.	100	40	0.4	•								
34 GTRA	12	ST-E	15RF-12	HEAT	0.	142.	290.	91.	136. 104.	<u>40.</u> 30.	-34. 0.	102.		DISTILLA DISTILLA	381. 392.			0.36		
	-	-, ,		,	٠.		250.	51.	104.	30.	Ο.	102.	230.	DISTILLA	392.	U	0.27	0.27	0.23	
35 GTRA					0.	142.	391.	131.	136.	40.	-47.	٥.	391.	DISTILLA	391.	o	0.27	0.35	0.23	
35 GTRA	16	<u> 3T-8</u>	351:E-16	HEAT	0.	132.	272.	91.	95,	28.	0.	130.		DISTILLA	402.			0.24	0.23	
															··					
36 GTR2	08	3T-6	50RE-08	POWR	0.	107.	427.	163.	136.	40,	-84.	0.		DISTILLA	427.	0	0.20	0.32	0.21	
36 GTR2	UB I	3] - E	00KE-08	HEAT	ο.	107.	239.	91,	76.	22.	0.	188.	239.	DISTILLA	427.	0	0.20	0.18	0.21	
37 GTR2	12	3T-C	ORE-12	POUR	0.	120.	414.	151.	100					* · * * · · · · ·						
37 GTR2					0.	115.	248.	91.	136. 82.	40. 24.	-71. 0.	0. 170.		DISTILLA DISTILLA	414.			0.33		
		- • •		,,,,,,	٠,	1.0.	270.	31,	UZ,	24.	Ű.	iru.	240.	DISTILLA	419.	O	0.22	0.20	0.22	
38 GTR2	16 (3T-6	ORE-16	POWR	0.	129.	405,	147.	136.	40.	-66.	٥.	405	DISTILLA	405.	0	0.24	0.34	0 22	
38 GTR2	16 (3T-6	OPE-16	HEAT	Ō.	120.	250.	91.	84.	25.	0.	163.		DISTILLA	413.			0.34	0.22	
							-	•							7,0,	3	J. 20	3,20	J. E.E.	1
39 GTRW					0.	145.	389.	97.	136.	40.	*	٥.	389.	DISTILLA	389.	0	0.27	0.35	0.23	ı
39 GTRU	03 (3T-5	GRE-03	HEAT	0.	143.	366.	91.	129.	38,		25.	366.	DISTILLA	391.		0.27			
40 GTRW	10 1	3T	cor_ac	DELLE	^	150	A7E	^7		4.0	_	_								
40 GTRW	10 1	71 " C	10KE-12	PUNK	0. 0.	159. 155.	375. 350.	97 <i>.</i>	136.	40.	~8.	0.		DISTILLA	375 <i>.</i>		0.30	0.36	0.24	I
- O GIRM	12 (>1 − C	1015-15	HEA!	U,	135.	350.	91.	127.	37.	. 0.	28.	350.	DISTILLA	378.	0	0.29	0.34	0.24	ı
·																				•

2

GEHERAL ELECTRIC COMPANY COSENERATION TECHNOLOGY ALTERNATIVES STUDY

DATE 06/05/79

POWER HEAT 0 0 00 00 00 00 ပ် ပ ပ်ပြ 00 000 00 00 00 0.14 0.30 0. 6 0.38 0. 0.41 0.32 0.33 0. 0.33 0. 0,33 0. S 0 0 00 6 8400. Ö 00 00 ö -1.27 0.23 8 -0.06 0.23 0.04 90 0.17 0.04 -0.06 FESR 8 00 0 Ö 0 00 YEAR 000 WATER BTUx10xx6= y-c1 A-1-1-A-1-1-A-1-1-A-1-1-111 Ö ---PER FAIL HOURS 221. 264. 601. 264. 601. 275. TOTAL+ UTILIT 10**6 BTU/HR 264. 204. 279. 264. **279.** 264. 253. 279. 264. 253. 264. 253 264 NET# COPPER-SMELT 275. DISTILLA 0. DISTILLA O.DISTILLA 253.RESIDUAL O.RESIDUAL 221, COAL-PFB 0, COAL-PFB 601.RESIDUAL 0.RESIDUAL 279.CGAL-FGD 0.CGAL-FGD 279.CGAL-AFB 0.CGAL-AFB 253.CGAL-FGD 0.CGAL-FGD 253. COAL - AFB 0. COAL - AFB 早 204. RESIDUAL 0. RESIDUAL 279.RESIDUAL O, RESIDUAL 601.COAL 0.COAL SITE FUEL USED 204. COAL 0. COAL Ö, BTU/HR BTU/HR BTU/HR TOTAL FUEL SITE 10xx6 PRODUCT HEAT RATIO *****
WASTE FUEL EQV BYU*10**6= 0. 264. 0. 264. 264. UTILIT FUEL USED 10xx6 0. 0. Ö 264. 264. 0. 264. 0, 264. 264. 0 264 ECS*3 -154. -135. AUX PROCES BOILR 10**6 -180. o. -123. 0. -103. 0. 500. 0 500. -103. -154. -180. SAVED BY PROCESS AND -154. -180. 0. PROCESS TEMP(F) 50.0 50 53 ις Ο . 0 , O 25. 50 25.0 ö 25 MY ဝ်ရုံဝ 50 COGEN PROCES POWER 10**5 B 0 . O 85. 0 35.0 . O 85. O . 0 85 C . 0 . G BTU/HR . 0 85. 85 ö 2 ö POWER CGGEN PROCES HEAT 10**6 BTU/HR 87. 425, 425. 115. **FUEL ENERGY 131. 153. 0. 53. 9.0 Ö 131.0 Ö Ö 153. 131 BTU/HR 275. 601. 0. ö 10××6 ETU/HR 279. 0. 221. 0. 204. 0. 253. 0. 279. 204 o 253, 253. 0. 601 279. COGEN FUEL USED ø MILLIONS .337. SAVED= NO-NET 10**6 -337. 0. Ö **BTU/HR** 60. 44 -15. 0 -15 0 Ö 9 = 9 က်ဝ 8 = 0 O PROCESS 00 00 00 **ETU/HR** 00 00 00 ဝ်ဝ 00 000 00 00 ဝဝဲ WASTE FUEL USED 10xx6 STIRLING-1 POWR STIRLING-1 HEAT POYR HEAT POMR HEAT POWR POUR HEAT THERMIONIC FOWR POWR HEAT POWR HEAT O N POWR HEAT POWR HEAT PGWR HEAT STMOSS STM-TURB-8 POUR STMOSS STM-TURS-8 HEAT 80 CGAL 18SE PEG ADV DESIGN ENGR 24. STM-TURB-1 F STM-TURB-1 F THERMIONIC THERMIONIC STII-TURB-8 STII-TURB-8 STM-TURB-8 STM-TURB-8 TI-STMTB-1 TI-STMTB-1 TI-STIITB-1 STM-TURB-1 STM-TURB-1 STH-TURB-1 STH-TURB-1 PFB-STMTB-PFB-STMTB-TI-STMTB-1 Ě FUEL 33311 UTILITY TIHRS6 TIHRS6 PFBSTM PFBSTM TIHRS6 TIHRS0 STM088 STM088 TISTMT TISTMT TISTMT ONOCGN PSTM141 STM088 STM088 STM141 STM141 STM141 STM141 STIRL INDUSTRY വവ ဖ io io က က 4 Ина друч

PRECEDING PAGE GLANK NOT FILMED

HOMELMEP

PAGE 263

18SE PEO ADV DESIGN ENGR

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33311 MW 24.86 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F)

O. PRODUCT COPPER-SMELT HOURS PER YEAR 8400.

		.ITY FUEL	COAL				PöWE			0 ***** EL EQV	BTU≈10≭	*6=	C. HOT	WATER BI	TU×10××6	i= (0.	
				WASTE	FUE	COGEN	COGEN	COGEN			UTILIT			NET=	FAIL		POWER	- WEAT
1				FUEL	SAYED=			PROCES		PROCES		FUEL	FUEL	TOTAL+	FAIL	FESI	FACTR	
l				USED	NO-NET		HEAT		ELECT	BOILR		SITE	USED	UTILIT			[AU	ravin
					10**6						10**6			10**6				
L				BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR			BTU/HR		₹	BTU/HR				

11		GTST-16/26						85.		-49,			RESIDUAL		1			0.
18	CC1626	GTST-16/26	5 HEAT	0.	ο.	Ο.	0.	ο.	٥.	0.	264.	٥.	RESIDUAL	264.	111	٥.	Ο.	0.
-	201600	OTOT 16 (6	- DOI:															
		: GTST-16/22 : GTST-16/22						85.					RESIDUAL		11		,	0.
13	COIDEE	0131-10/22	2 DEAT	0.	0.	0.	.o.	0.	ο.	٥.	264.	U.	RESIDUAL	264,	111	Ο.	ο.	0.
20	CC1222	GTST-12/22	2 POUR	0.	83.	181.	45.	85.	25.	-53.	٥.	181	RESIDUAL	181.	1	0.31	0.47	٥.
		GTST-12/22						0.	0.	0.			RESIDUAL		111		0.47	0.
		-	• • • • • • • • • • • • • • • • • • • •	• •	•											٠.	٠.	· ·
21	CC0822	GTST-08/22	2 POWR	0.	81.	183.	54.	85.	25.	-64.	0.	183.	RESIDUAL	183.	:	0,31	0.46	0.
21	CC0822	GTST-08/22	2 HEAT	0.	0.	<u>o.</u>	0.	0,	0.	0.	264.	٥.	RESIDUAL		111		0.	o.
-				•														
33		STIG-15-16						85.	25.				RESIDUAL			0.16		
22	STIG15	STIG-15-16	3 HEAT	0.	0.	Ο,	ο.	ο.	٥.	0.	264.	0.	RESIDUAL	264.	111	٥.	Ο.	ο.
1	671616	STIG-10-16	- DOLLO						^F			200	-FO: DUAL	200				-
		STIG-10-16 STIG-10-16					31.	85.		-37.			RESIDUAL		1	0.11	0.36	0.
20	211010	2110-10-10) HEMI	0.	υ.	٥.	0.	٥.	0.	0.	264.	υ.	RESIDUAL	264.	111	0.	G.	0.
24	STIGIS	STIG-15-16	s POWR	G.	12.	252.	53 <i>.</i>	85.	25.	-63.	٥.	252	RESIDUAL	252.	1	0.05	0.34	n
		STIG-15-16				0.	0.	<u> </u>	0.	03.	264.		RESIDUAL		111	<u> </u>	0.	_ <u>o</u> .
-		• • • • • • • • • • • • • • • • • • • •	, ,,	••		*-	• •	~.		~ .					, , .	٠,	٠.	٠.
25	DEADVS	DIESEL-ADV	/ POVR	0.	36.	228.	82.	85,	25.	-97.	0.	228.	RESIDUAL	228.	1	0,14	0.37	0.
25	DEADV3	DIESEL-ADV	/ HEAT	c.	0.	0.	<u> </u>	0.	0.	0.	264.	0.	RESIDUAL	264.	111	0	0.	ο.
1																		
		DIESEL-ADV					58.	85.	25.	-68.			RESIDUAL			0,14		
26	DEADV2	DIESEL-ADV	/ HEAT	0.	0.	0.	٥.	0,	٥,	0.	264.	٥,	RESIDUAL	264.	111	Ο.	Ο.	0.
1-27	DEADUS	SIESEL ADI	· DOLLD							105			220120141					
		DIESEL-ADV					89.	85.	25.		0.		RESIDUAL		1	0.14	0.37	
	DEADY:	DIESEE-MOV	/ MEAI	0.	ο.	0.	Ο.	٥.	ο.	0.	264.	U.	RESIDUAL	264.	111	u.	Ο.	0.
28	DEHTPM	ADV-DIESEL	PUMB	0.	54.	211.	107.	85.	25.	-126.	٥.	211	RESIDUAL	211.	1	0.20	0.40	0.
		ADV-DIESEL						0.	0.		264.		RESIDUAL		111	G. 23	0.40	0.
		ne				7.	- -	•.				~ -		E		•	•	0.
29	DESGA3	DIESEL-SOA	A POWR	0.	30.	234.	76.	85.	25.	-90.	0.	234.	DISTILLA	234.	1	0.11	0.36	0.
29	DESGAS	DIESEL-SOA	4 HEAT	0.	0.	0.	0.	٥.	0.	0.	264.	٥.	DISTILLA	264.	111		0.	0.
•																		
		DIESEL-SOA						85.			0.		RESIDUAL		1	0.11	0.36	
29	DESCA3	DIESEL-SOA	1 HEAT	0.	0.	0.	ο.	ο.	٥.	0.	264.	٥.	RESIDUAL	264.	111	0.	0.	Ο.
<u>, </u>																		
퇴																		

IRSE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 265

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33311 MW 24.80 PROCESS MILLIONS BTU/HR O. PROCESS TEMP(F) O. PRODUCT COPPER-SMELT HOURS PER YEAR 8400.

UTI	ILIT	Y FUEL	COAL				POWE		AT RATI ASTE FU		BTU×10×	×6= (о, нот	WATER BT	U×10××6	i= (o.	
				WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX_	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
				FUEL	SAYED=	FUEL	PROCES	PROCES	MW	PROCES	FUEL	FUEL	FUEL	TOTAL+			FACTR	FACTR
				USED	NO-NET	USED	HEAT	POWER	ELECT	BOILR	USED	SITE	USED	UTILIT				
				10××6	10*×6	10××6	10××6	10××6		10××6	10××6	10**6		10××6				
				BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR	BTU/HR	BTU/HR	····	BTU/HR			and the second beautiful and the	en e
A1 STRUE	16 6	T-85RE-1	6 POUR	٥.	27.	237.	83.	85.	25.	-98.	ο.	237.1	DISTILLA	237.	1	0.10	0.36	0.
		T-85RE-1				0.	o.	٥.	o.	o.			DISTILLA	264.	111	٥.	0.	o.
42 GTR30	18 6	T-60RE-0	R PAUR	0.	-9.	273.	122.	85.	25.	-144.	0.	273 1	DISTILLA	273.		-0.03	0.31	0.
		T-GORE-O				0,	0.	0,	o.	o.			DISTILLA	264.	111		o.	ō.
40 07001		· · COSE 1		_	17.	0.17	0.4	0.0	25.		0.	047	DISTILLA	247.	•	0.00	0.34	0.
		T-60RE-1				247. 0.	94.	85,	25.	-111. 0.			DISTILLA	264.	111	0.06	0.34	-0.
43 GIR31	12 5	T-60RE-11	Z MEAT	o,	υ.	u.	Ű.	0.	u.	U.	204.	0.1	DISTILLA	204.	111	٥.	υ.	0.
44 GTR31	16 G	T-60RE-1	6 POUR	0.	15.	250.	96.	85.	25.	-113.	0,	250.1	DISTILLA	250.	1	0.06	0.34	ο.
44 GTR31	16 G	T-60RE-1	6 HEAT	0.	0.	٥.	0.	0.	۵.	0.	264.	1.0	DISTILLA	264.	111	0.	0	0.
45 FCPAF	ns F	UEL-CL-PI	H POWR	٥.	42.	223.	38.	85.	25.	-45.	o.	223.1	DISTILLA	223.	1	0.16	0.38	٥.
		UEL-CL-PI				0.	٥.	0.	٥.	0.	261.	0.1	DISTILLA	264.	111	0.	0.	0.
46 - CMCF	OS F	UEL-CL-11	1 POUR	0.	59.	205.	48.	85.	25.	-56.	0.	205.0	DISTILLA	205,	1	0.22	0.41	0.
		UEL-CL-IK		0.		0.	0.	0.	0.	0.	264.	0.1	DISTILLA	264.	111	О.	0.	o.
																		

IESE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

PAGE 267

INDUSTRY 33312 MW 25.80 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F) O. PRODUCT COPPER-SMELT HOURS PER YEAR 8400

	UTIL	.IT	TY FUEL		COAL					ER TO HE		UEL EQV		/ * 6=	O. HOT	WATER BT	[U*10**	6= '	0.	
						WASTE	FUEL_	COGEN	COGEN	COGEN	COGEN	AUX	UTILI7	T TOTAL	SITE	NET=	FAIL	FESP	R POWER	R HEF
_						FUEL	SAVED=	= FUEL	PROCES	S PROCES	S MW	PROCES	FUEL	FUEL.	FUEL	TOTAL+	· · · · · · · · · · · · · · · · · · ·		FACTR	
						USED	NO-NET		HEAT		ELECT			SITE	USED	UTILIT				
									10**6				10××6			10×±6				
		—				BTU/HR	BTU/HR	BTU/HR	R BTU/HR	. BTU/HR	<u> </u>	BTU/HR	R BTU/HR	. BTU/HF	<u>R</u>	BTU/HR				
			STIRLING-												.RESIDUAL			-0.04		
6	STIRL	S	STIRLING-	-1 /	HEAT	0.	0.	. 0.	. 0.	. 0.	. 0.	. 0.	. 275.	0	RESIDUAL	275.		0,	Ο.	٥,
			STIRLING-								. 26.	140.	. o.	. 286	. COAL	286.		-0.04	0.31	0.
6	STIRL	S	STIRLING-	-1 '	HEAT	ο.	0.	. 0.			. 0.	. 0.	275.		. COAL	275.		ο.	0.	o.
			HEL I UM-GT												. COAL-AFB				0.32	٥.
7	HEGT85	Н	HELIUM-GT	f- 1	HEAT	0.	0.	. 0.	. 0.	. 0.	. 0.			0	. COAL-AFB	275.	111	0.	0.	0.
			HEL I UM-GT				-65.	340.	. 146.	. 88.	. 26.	172.	. o.	. 340	. COAL-AFB	340.	11	-0.24	0.26	ο.
8	HEGT60	<u>; H</u>	HEL I UM-GT	<u>r-</u> '	HEAT										. COAL-AFB			o,	0.	<u> </u>
9	HEGT00	Œ	HELIUM-GT	Τ-	POWR	e o.	-225.	500.	. 302.	. 88.	. 26.	356,	. 0.	500	COAL-AFB	500.	11	-0.82	2 0.18	٥.
			HELIUM-GT								_				. COAL-AFB			0.	0.	o.
10	FCMCCL	_ F	FUEL-CL-M	MO	POWR	0.	-14.	290.	139.	. 88.	. 26.	163.	0.	290	. COAL	290,	11	-0.05	0.30	ō.
			FUEL-CL-M		,										. COAL	275.		0.	0.	õ.
11	FCSTCL	- <u>F</u>	FUEL-CL-S	ST_	POWR	. 0.	96.	179.	51.	. 88.	. 26.	61.	ο.	. 179	. COAL	179.	11	0.35	0.49	٥.
			FUEL-CL-S												. COAL	275.			0.	G.
12	IGGTST	1	INT-GAS-G	ΘT	POVR	· 0.	55.	220.	68.	. 83.	. 26.	80.	ο.	220	. COAL	220.	11	0.20	0.40	٥.
			INT-GAS-G	-											. COAL	275.		0.	0.	
13	GTSØAR	. e	GT-HRSG-1	10	POWR	. 0.	-28.	304.	150,	. 8 8.	. 26.	176.	0.	304	.RESIDUAL	304.	1	-0.10	0.29	0.
			GT-HE:3G-1												.RESIDUAL		-	o.	0.	o.
14	GTAC08	· e	GT-HRSG-0	08	POWR	0.	-51.	326.	. 157.	. 88,	, 26.	184.	0.	326	RESIDUAL	326.		-0.19	0.27	Ō.
			GT-HRSG-0							-					.RESIDUAL			0.	o.	o.
			GT-HRSG-1				-14.	289.	149.	. 88.	. 26.	<u>-175.</u>	0.	289	.RESIDUAL	289.	3	-0.05	0.31	ο.
			GT-HRSG-1									0.			. RESIDUAL			0.	0.	0.
16	GTAC16	. e	GT-HRSG-1	16	POWR	0.	3.	273.	137,	. 88,	26,	161.	0.	273	RESIDUAL	273.	1	0.01	0.32	o.
			GT-HRSG-1												.RESIDUAL			0.01	0.32	<u>0.</u>
17	GTUC16		ST-HRSG-1	16	PAMB	0.	-4.	279.	112,	88.	. 26.	131,	0.	270	. RESIDUAL	279.	1	-0.02	0.32	n
			31 - MK39- 1 3T - HRSG - 1												RESIDUAL			0.02	0.32	ο.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33312 MW 25.80 PROCESS MILLIONS BTU/HR O. PROCESS TEMP(F) O. PRODUCT COPPER-SMELT HOURS PER YEAR 8400.

	UTILI	TY	FUEL		COAL				POWE	R TO HE		EL EQV I		k6=	O. HOT	WATER BT	U*10**6	= () .	
						WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POVER	HEA
						FUEL	SAVED=			PROCES		PROCES		FUEL.	· FUEL	TOTAL+			FACTR	FACT
						USED	NO-NET		HEAT		ELECT	BOILR	USED	SITE	USED	UTILIT				
									10**6			10**6	10**6	10**6		10**6				
									BTU/HR				BTU/HR		₹•	BTU/HR				
								244	- 4		26.	-63.	0.	244	.DISTILLA	244.	1	0.11	0.36	n
	DESGA2					0.	31.	244.	54.	88.	20. 0.	-63. 0.	275.		DISTILLA	275.	111		0.	o.
וכ	DESCA2	DIE	SEL-	SUA	HEAT	0.	0.	0.	0.	0.	υ.	u.	2/5.	U	, DISTILLA	275.		٥.	٠.	٥.
5 1	DESOA2	DIE	SEL-	SØA	POWR	0.	31.	244.	54.	88.	26.	-63.	0.		RESIDUAL	244.	1	0.11	0.36	0.
)	DESØA2	DIE	ESEL-	SOA	HEAT	0.	٥.	0.	0.	Ō.	Ο.	0.	275.	0	.RESIDUAL	275.	111	0.	Ο.	0.
	DESOA1	015		C (TA	DAUD	0.	31.	244.	98.	88.	26.	-115.	٥.	244	.DISTILLA	244.	1	0.11	0.36	٥.
	DESCA1					0.	<u> </u>	0.	0.	0.	· 0.	O.	275.		DISTILLA	275.	111	0.	0.	0.
	DECOM	٠. ـ		0011		٠.	•	•									_			_
1 1	DESØA1	DIE	SEL-S	SØA	POWR	٥.	31.	244.	98.	88.			0.		.RESIDUAL	244.	1		0.36	
1_1	DESCA1	DIE	SEL-	SØA	HEAT	0.	0.	0.	0.	0.	0.	<u>0.</u>	275.	0	.RESIDUAL	275.	111	0.	0.	0.
					50.15	•	00		162.	88.	26.	-191.	٥.	201	.DISTILLA	301,	•	-0 10	0.29	0
-	BTSCAD					0.	-26. 0.	301. 0.	0.	0.	20. 0.	0,			DISTILLA	275.	111		0.	õ.
2 (GTSCAD	G1-	- Filt SG	- 10	HEAT	0.	v.	u.	0.	٥,	v.	0.	. 270.	·	.DIOTILEA	2.0.		•		•
3 (GTRA08	GT-	85RE	-08	POWR	0.	29.	247.	100.	88.	26.	-117.	0.		DISTILLA	247.	1		0.36	0.
3 (GTRA08	GT-	85RE	-08	HEAT	0.	0.	٥.	0.	0.	0.	0,	275.	0	.DISTILLA	275.	111	Ο.	٥.	٥.
1 4	GTRA12	GT.	. 25DE	-12	PAUD	0.	29.	246.	101.	88.	26.	-119.	٥.	246	.DISTILLA	246.	1	0.11	0.36	o.
	GTRA12					0.	<u> </u>	<u> </u>	o.	O.	0.	0.	275.		DISTILLA	275.	111	0.	0.	٥.
					_~	_		250	107	00	06	-126.	· o.	252	DISTILLA	252.	1	0.08	0.35	n.
	GTRA16		-			0.	23.	252.	107. 0.	88. O.	26. 0.	0.	275.		DISTILLA	275.	111		0.	o.
5 (GTRA16	GT-	-85RE	-16	HEAT	0.	0.	0.	<u>u,</u>	<u> </u>	<u> </u>	<u> </u>	2/3.		.DISTILLA		<u></u>			
	GTR208	GT-	- GORE	-08	PAUR	· o.	٥.	275.	130.	88.	26.	-153.	٥.	275	.DISTILLA	275.	1	ο.	0.32	Ο.
	GTR208					o.	Ö.	0.		o.	o.	٥.	275.	0	.DISTILLA	275.	111	ο.	0	٥.
7 (GTR212	GT-	-GORE	-12	POWR	0.		267.	119.	88.	26.	-140.	0,		.DISTILLA	267.	. 1	0.03	0.33	0.
7 (GTR212	GT-	-GORE	-12	HEAT	0.	0.	0.	0.	٥.	0.	٥.	275.	. 0	.DISTILLA	275.	111	0.	υ.	U.
3 4	GTR216	GT-	-60RF	-16	POWR	ο.	14.	261.	117.	88.	26.	-137.	٥.		.DISTILLA	261.	1	0.05		0.
	GTR216					Ö.	Ö.	0.	Ō.	0.	O.	0.	275.	0	.DISTILLA	275.	111	0.	0.	0.
	070000	^*	0505	00	Della	_	24	251.	83.	88.	26.	-97.	0.	251	.DISTILLA	251.	1	0.09	0.35	٥.
	GTRWO8					0. 0.	24. 0.	251. 0.	03. 0.	0.	0.	0.	275.		DISTILLA		111		o.	ō.
	G LIZIA O.B.	01-	SOILE	- 08	HEAL	<u>u.</u>			<u> </u>	<u>~·</u>		<u>~_</u>					······································		······································	
) 1	GTRW12	GT-	-85RF	-12	POWR	٥.	33.	242.	81.	88.	26.	-95.	· 0.	242	.DISTILLA		1	0.12		
	GTRW12					o.	o.	0.		0.	0.	0.	275.	0	. DISTILLA	275.	111	Ο.	Ο.	0.

EYWELL PA

ISSE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

FUEL ENERGY SAVED BY PROCESS AND ECS

PAGE 271

REPORT 5.1

INDUSTRY 33313 MW 28.50 PROCESS MILLIONS BTU/HR O. PROCESS TEMP(F) O. PRODUCT COPPER-SMELT HOURS PER YEAR 8400.

1171	.ITY FUEL	COAL				POWE		AT RATIO	Ø ****			O. HÔT	WATER BT	File 1 Over	e-	o.	
Olic	III PUEL	CUME					W	ASIE FOI	th Edv i								
·			WASTE			COGEN					TOTAL		NET=	FAIL		POWER	
			FUEL	SAVED=	_		PROCES		PROCES		FUEL	FUEL	TOTAL+			FACTR	FACTR
			USED	NO-NET 10**6		HEAT		ELECT		10**6	SITE	USED	UTILIT 10**6				
				R BTU/HR				٠		BTU/HR			BTU/HR				
			BIU/na	BIOTER	B I U/ FIK	B10/Fit	BIOTER		B I U / Fit	BTO/TIK	D 1 U/ III	<u> </u>	BIOTER				
-O ONOCON	ing co	9 0 N	0.	. О.	0.	0.	າງ.	0.	О.	304.	. 0	.DISTILLA	304.	0	0.	0.32	໑.
	STM-TURB-1											. RESIDUAL		_	0.04		
	STM-TURB-1											. RESIDUAL		111	0.	0.	0.
							***								***************************************		
	STM-TURB-											. COAL-FOD		_	0.04		
1 STM141	STM-TURB-	1 HEAT	ο.	ο.	ο.	ο,	0.	0.	0.	304.	0	. COAL-FGD	304,	111	О.	0.	0.
	STM-TURB-											. COAL-AFB		1	0.04 0.	0.33 0.	
1 518141	STM-TURB-	HEAT	0.	. 0.	0.	ο.	0.	0.	0.	304.	U,	. COAL-AFB	304.	111	U.	υ.	0.
2 STMOBB	STM-TURB-	o PAME	0.	-17.	321.	175.	97.	29.	-206.	0.	321	. RESIDUAL	321.	1	-0.06	0.30	٥.
	STM-TURB-											. RESIDUAL			0.	0.	0.
Lonico	0111 10115	<i>)</i> 1160.	٠.	٠.	· ·	•	•	•			•	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••••	• • •	••		•
2 STM068	STM-TURB-	8 POWR	0.	-17.	321.	175.	97.	29.	-206.	0.	321	. COAL-FOD	321,	1	-0.06	0.30	o.
	STIM-TURB-											. COAL-FGD		111	0.	0.	0.
								~									-
	STM-TURB-											. COAL-AFB				0.30	
2 STM088	STM-TURB-8	8 HEAT	ο.	. 0.	ο.	0.	ο.	0.	ο.	304.	0	. COAL-AFB	304.	111	Ο.	ο.	0.
												- DED	054				
	PFB-STMTB											. COAL-PFB		-	0.17	0.38	-
3 Presim	PFB-STMTB	- HEAT	0.	· 0.	0.	0,	ο.	0.	0.	304.	U,	. COAL-PFB	304.	111	U,	U.	0.
4 TISTMT	TI-STMTB-1	1 DAUD	0.	70.	234.	100.	97.	29.	-118.	0.	234	. RESIDUAL	234.	1	0.23	0.41	٥.
	TI-STMTB-1											RESIDUAL		111		0.	_ .
4 1131111	11-211110	1 HEAT	0.	٥.	٥.	٥.	٠,	٠.	٠.	JU4.	٠.	MEGIDONE	· · · · · · · · · · · · · · · · · · ·	• • • •	٠.	•	0.
4 TISTMT	TI-STMTB-1	1 POWR	0.	70.	234.	100.	97.	29.	-118.	0.	234	. COAL	234.	1	0.23	0.41	0.
Į.	TI-STHTB-1											. COAL	304.		r.	0.	0.
5 TIHRSG	THERMIONIC	C POWR	0.	-337.	691.	489.	97.	29.	-575.	ο.		. RESIDUAL				0.14	
5 TIHRS9	THERMIONIC	C HEAT	0.	0.	0.	0.	0.	0.	0.	304.	0	. RESIDUAL	304.	111	0.	ο.	0.
	THERMIONIC											. COAL	691.		-1.27		
5 TIHRSG	THERMIONIC	S HEAT	ΰ.	. 0.	0.	0.	0.	0.	0.	304.	O.	. COAL	304.	111	0.	ο,	0.
C CTIC	071D: 1N0	1 DAVID		10	216	100	o⇒,	20	-165	•	216	DISTILLA	316.	1	-0 04	0.31	n
	STIRLING-1	I POWK	0.									DISTILLA			0.	0.	<u> </u>
		LIEAT		•	^				n	201							
6 SIIKL	STIRLING-	1 HEAT	0.	. 0.	0.	0.	0.	0.	0.	304.	0	DISTILLA	304.	111	0.	U.	0.

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33313 MW 28.50 PROCESS MILLIONS BTU/HR

O. PROCESS TEMP(F)

O. PRODUCT COPPER-SMELT HOURS PER YEAR 8400.

PAGE 273

POWER TO HEAT RATIO **** UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= 0. 0. WASTE FUEL COGEN COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW FUEL PROCES FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED POWER ELECT HEAT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR 0. 93. 211. 48. 97. 29. -56. 0. 211. RESIDUAL 211. 0.31 0.46 18 CC1626 GTST-16/26 HEAT 0. 0. 0. · 0. 0. 0. 0. 304. O. RESIDUAL 304. 111 0. ٥. 19 CC1622 GTST-16/22 POWR 0. 93. 211. 53. 97. 29. -62. a. 211. RESIDUAL 211. 1 0.31 0.46 Ω. 19 CC1622 GTST-16/22 HEAT 0. 0. 0. 0. ٥. 0. 0. 304. O. RESIDUAL 304. 111 0. ٥. 0. 20 CC1222 GTST-12/22 POWR 95. 208 52. 97. 29. -61 0. 268. RESIDUAL 208. 0.31 0 47 0. 20 CC1222 GTST-12/22 HEAT 0. 0. 0. ٠Û. 0. 0. 0. 304. O. RESIDUAL 304. 111 0. o. 0. 21 CC0822 GTST-08/22 POWR 0. 93. 211. 62. 97. 29. -73. 0. n 211. RESIDUAL 211. 1 0.3: 0.46 21 CC0822 GTST-08/22 HEAT O. O. n. 0. 0. 0. 0. 304. O. RESIDUAL 304. 111 0. 0. 0. 22 STIG15 STIG-15-16 POWR 0. 49. 255. 3. 97. 29. -4. 0. 255. RESIDUAL 255. 0.16 0.38 0. 1 22 STIG15 STIG-15-16 HEAT ٥. 0. 0. 0. 0. 0. 0. 304. O. RESIDUAL 304. 111 0. 0. 0. 23 STIG10 STIG-10-16 POVR 0. 33. 271. 36. 97. 29. -42. 0. 271. RESIDUAL 271. 0.11 0.36 Ō. 23 STIG10 STIG-10-16 HEAT 0. 0. 0. 0. ٥. ٥. ٥. 304. O.RESIDUAL 304. 111 C. 0. Ù. 24 STIG1S STIG-1S-16 POWR 290 61. 97 29 n 290. RESIDUAL 290. 0.05 0.34 24 STIGIS STIG-15-16 HEAT O. 0. ٥. 0. 0. 304. 0. 0. O. RESIDUAL 304. 111 0. O. O. 25 DEADV3 DIESEL-ADV POWR 97. 42. 262. 94. 29. -111. 0. 262. RESIDUAL 262. 0.14 0.37 ٥. 25 DEADV3 DIESEL-ADV HEAT 0. 0. 0. ٥. 0. 0. 304. O. RESIDUAL 304. 111 0. ٥. 0. 26 DEADV2 DIESEL-ADV POWR 67. 97. ٥. 42. 262. 29. -78. 0. 262. RESIDUAL 262. 0.14 0.37 0. 26 DEADV2 DIESEL-ADV HEAT 0. 0. 0. 0. O. 0. 0. 304. O. RESIDUAL 304. 111 Ο. 0. 0. 27 DEADV1 DIESEL-ADV POWR 262. 102. 97, 262. RESIDUAL 262. 0.14 0. 42. 29. -121. ٥. 0.37 0. 27 DEADV1 DIESEL-ADV HEAT 0. ٥. 0. 0. ٥. 0. ٥. 304. O. RESIDUAL 304. 111 ٥. 0. 0. 28 DEHTPM ADV-DIESEL POWR 242. 123. 97. -145. 0. 242. RESIDUAL 242. 0.20 O. 62. 29. 0.40 Ω 28 DEHTPM ADV-DIESEL HEAT 0. 0. O. 0. 0. 304. O. RESIDUAL 304. 0. 0. 111 ٥. o. 0. 29 DESGAS DIESEL-SGA POWR 269. 88. 97. -103. 0. 269. DISTILLA 269. ٥. 35. 29. 0.11 0.36 0. 1 29 DESGAS DIESEL-SGA HEAT ٥. O. DISTILLA 304. 0. 304. 111 0. Ο. Ĵ. Ο. 0. 0. ٥. 0. 29 DESGAS DIESEL-SGA POWR 269. 88. 97. 29. -103. 0. 269. RESIDUAL 269. 0.36 0. 0. 35. 0.11 1 0. 304. O. RESIDUAL 304. 29 DESUAS DIESEL-SOA HEAT 0. ٥. 0. ٥. 0. 111 0. 0. 0. 0.

PRINTING SYSTEM- P1185-02

103

18SE PEG ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

PAGE 275

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33313 MW 28.50 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F) O. PRODUCT COPPER-SMELT HOURS PER YEAR 8400. POWER TO HEAT RATIO **** UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= COGEN COGEN COGEN AUX WASTE FUEL UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES PROCES MW FUEL SAVED= FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR 272. 0. 31. 95. 97. 29. -112. ٥. 272. DISTILLA 272. 1 0.10 0.36 0. 41 GTRW16 GT-85RE-16 HEAT 0. ٥. 0. Ο. 0. ٥. 0. 304. O.DISTILLA 304. 111 0. 0. 42 GTR308 GT-60RE-08 POWR -10. 314. 0. 141. 97. 29. -166. 0. 314. DISTILLA 314. 1 -0.03 0.31 0. 42 GTR308 GT-60RE-08 HEAT Ο. ٥. 0. ٥. Ο. . 0. 0. 304. O. DISTILLA 364. 111 0. 0. 0. 43 GTR312 GT-60RE-12 POWR ٥. 20. 284. 109. 97. 29. -128. ٥. 284. DISTILLA 284. 1 0.06 0.34 0. 43 GTR312 GT-GORE-12 HEAT Ô. 0. ٥. 0. 304. O. DISTILLA 304. 111 0. 0. 44 GTR316 GT-60RE-16 POWR 0. 17. 287. 110. 97. 29. -130. ٥. 287. DISTILLA 287. 1 0.06 0.34 0. 44 GTR316 GT-60RE-16 HEAT 0. C. 0. 0. 304. O.DISTILLA 0. 304. 111 0. 0. 45 FCPADS FUEL-CL-PH POWR 0. 256. 48. 44. 97. 29. -51. ٥. 256. DISTILLA 256. 1 0.16 0.38 0. 45 FCPADS FUEL-CL-PH HEAT 0. 0. 0. 0. 0. 304. O.DISTILLA 304. 111 0. IS. 0. 46 FCMCDS FUEL-CL-MO POWR 236. 55. 97. 29. -65. 0. 236. DISTILLA 236. 1 0.22 0.41 Ō. 46 FCMCDS FUEL-CL-MO HEAT 0. 0. 0. 304. O. DISTILLA 304. 111 0. 0. O. T ÄG

YWELL PAGE PRINTING SYSTEM- PITES

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33314 MW 10.10 PROCESS MILLIONS BTU/HR 40.0 PROCESS TEMP(F) 364. PRODUCT COPPER-SMELT HOURS PER YEAR 7620.

PAGE 277

POWER TO HEAT RATIO 0.862 WASTE FUEL EQV BTU*10**6= UTILITY FUEL COAL. HOT WATER BTU*10**6= 0. WASTE FUEL CCGEN COGEN COGEN COGEN AUS UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL PROCES PROCES MW FIRCUS FUEL FUEL TOTAL+ FUEL FUEL FACTR FACTR USED NO-NET USED HEAT POWER ELECT BAILR USED SITE USED UTILIT 10**6 10**6 10**6 10==6 10××6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 0. 18. 137. 65. 10. -29. 137. RESIDUAL 137. 0.12 0.25 0.29 34. 0. 6 STIRL STIRLING-1 HEAT 0. 84. RESIDUAL 125. 0. 29. 84. 40. 21. 6. 41. 0.19 0.17 0.32 6 STIRL STIRLING-1 POUR 18. 137. 10. -29, 0. 137, COAL 137. 0.12 0.25 0.29 0. 65. 34. 6 STIRL STIRLING-1 HEAT 29. 84, COAL 125. 0.19 C. 84. 40. 21. 6. 0. 41. 0 0.17 0.32 0.29 7 HEGT85 HELIUM-GT- POWR 16. 107. 13. 34. 10. 32. 0. 139. COAL-AFB 139. 10 0.10 0.25 7 HEGT85 HELIUM-GT- HEAT 0. 48. 330. 40. 106. 31. Ο. -223. 330, COAL-AFB 107. 0. 3 0.32 0.12 8 HEGT60 HELIUM-GT- POWR 20. 133. 10. 0. 134. COAL-AFB 10 0.13 0.26 0.30 0. 39. 34. 1. 134. 8 HEGT60 HELIUM-GT- HEAT 0. 21. 137. 40. 35. 10. 0. -3. 137, COAL-AFB 134. 10 0.13 0.26 0.29 0.18 0.20 9 HEGTOO HELIUM-GT- POUR 196. 10. -66. 0. 196. COAL-AFB 196. 10 -0.27 0. -41. 96. 34. 9 HEGTOO HELLUM-GT- HEAT 0.07 0.10 0. 10. 82. 40. 14. 4. D. 63. 82. COAL-AFB 145. 10 0.28 10 FCMCCL FUEL-CL-MO POUR 0.30 0. 41. 113. 54. 34. 10. -16. 0. 113. COAL 113. 10 0.27 0.35 10 FCMCCL FUEL-CL-MO HEAT ٥. 43. 84. 40. 26. 8. D. 27. 84. COAL 112. 10 0.28 0.23 0.36 11 FOSTOL FUEL-CL-ST POWR 60. 91 37. 10. 0. 95. COAL 0.38 0.36 0.42 0. 34. 4. 11 FOSTOL FUEL-CL-ST HEAT 0. 65. 100. 40. 38. 11. D. -10. 100. COAL 90. 0.39 0.38 0.40 124, COAL 12 IGGTST INT-GAS-GT POWR ٥. 31. 124. 53. 34. 10. -16. 0. 124. 10 0.20 0.28 0.32 12 IGGTST INT-GAS-GT HEAT 0. 35. 93. 40. 26. 8. Ю. 93. COAL 120. 10 0.23 0.22 13 GTSØAR GT-HRSG-10 POWR O. 119. RESIDUAL 0.23 0.29 0. 36. 119. 50. 34. 10. -12. 119. 0 0.34 13 GTSCAR GT-HRSG-10 HEAT 0. 38. 94. 40. 27. 8. 0. 22. 94. RESIDUAL 117. 10 0.25 0.23 0.34 27. 10 0.18 0.27 14 GTACO8 GT-HRSG-OS POWR 128. 34. -30. 0. 128. RESIDUAL 128. 0.31 0. 66. 10. 14 GTACO8 GT-IIRSG-08 HEAT 78. RESIDUAL 120. 10 0.23 0.18 0.33 0. 35. 78. 40. 21. 6. 0. 42. 0.35 15 GTAC12 GT-HRSG-12 POWR 10. -15. 0. 113. RESIDUAL 113. 10 0.27 0.31 0 42. 113. 52. 34 0.28 0.24 0.36 15 GTAC12 GT-HRSG-12 HEAT 0. 43. 86. 40. 26. 8. 0. 26. 86. RESIDUAL 112. 10 10 0.31 0.32 0.3/ 16 GTAC16 GT-HRSG-16 POWR 0. 48. 107. 46. 34. 10. -7. 0. 107. RESIDUAL 107. 16 GTAC16 GT-HRSG-16 HEAT 48. 92. 40. 30. 0. 14. 92. RESIDUAL 107. 10 0.31 0.28 0.37 ۵. 9. 0. 109 . RESIDUAL 109. 10 0.29 0.32 0.37 17 GTWC16 GT-HRSG-16 POWR 45. 109. 44. 34. 10. -5. 17 GTVC16 GT-HRSG-16 HEAT 46. 99. 40. 31. 9. 0. 10. 99. RESIDUAL 109. 10 0.29 0.29 0.37

18SE PEC ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 270

REPORT 5.1

FUEL ENERGY SAVED BY FROCESS AND ECS

INDUSTRY 33314 MW 10.10 PROCESS MILLIONS BTU/HR 40.0 PROCESS TEMP(F) 364. PRODUCT COPPER-SMELT HOURS PER YEAR 7620.

POWER TO HEAT RATIO 0.862 WASTE FUEL EQV BTU*10**6= HOT WATER BTU*1C**6= 0. UTILITY FUEL COAL WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT PROCES FUEL FUEL TCTAL+ FACTR FACTR PROCES PROCES MW FUEL FUEL SAVED= FUEL BOILR USED USED SITE UTILIT USED NO-NET USED HEAT POWER ELECT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SOA POWR 0. 37. 95. 21. 34. 10. 22. 0. 118. DISTILLA 118. 1 0.24 0.29 0.34 182, DISTILLA 0.28 0.26 0.22 30 DESGA2 DIESEL-SGA HEAT 0. 70. 182. 40. 66. 19. 0. -97. 84. 0.24 0.29 0.34 30 DESGA2 DIESEL-SGA POWR 0. 37. 95. 21. 34. 10. 22. 0. 118. RESIDUAL 118. 1 0.28 0.36 0.22 182, RESIDUAL 30 DESGAZ DIESEL-SGA HEAT 66. 19. 0. -97. 84. 0. 70. 182. 40. 31 DESGA1 DIESEL-SGA POWR 95. 34. 10. 97.DISTILLA 97. 1 0.37 0.35 0.41 0. 57. 38. 0. 0.37 0.36 0.40 31 DESCAI DIESEL-SCA HEAT -5, 100, DISTILLA 95. 0. 60. 100. 40. 36. 11. 34. 0. 97. RESIDUAL 97. 1 0.37 0.35 0.41 31 DESCA1 DIESEL-SCA POWR 0. 57. 95. 38. 10. 2. 31 DESCAL DIESEL-SCA HEAT -5. 100. RESIDUAL 95. 0.37 0.36 0.40 0. 60. 100. 40. 36. 11. 0. 10. ~17. O. 118. DISTILLA 118. 10 0.24 0.29 0.34 32 GTSOAD GT-HRSG-10 POWR 0. 37. 118. 54. 34. 0.22 0.35 32 GTSOAD GT-HRSG-10 HEAT 28. 87. DISTILLA 115. 10 0.26 39. 87. 40. 25. 7. C. Ω. 33 GTRAOS GT-85RE-08 POWR 49. 97. 33. 34. 10. 9. ٥. 105. DISTILLA 105. 10 0.32 0.33 0.38 0. 10 0.34 0.36 0.34 119.DISTILLA 33 GTRA08 GT-85RE-08 HEAT 0. -25. 94. 0. 61. 119. 40. 42. 12. 10. 0. 104. DISTILLA 104. 10 0.33 0.33 0.38 34 GTRA12 GT-85RE-12 POWR 0. 51. 96. 33. 34. 0.35 0.36 0.35 12. -21. 115. DISTILLA 94. 10 34 GTRA12 GT-05RE-12 HEAT 0. 61. 115. 40. 41. 10. 5. 0. 104. DISTILLA 104. 10 0.33 0.33 0.39 35 GTRA16 GT-05RE-16 POWR 0. 51. 99. 36. 34. 10 0.34 0.35 0.35 -12. 110. DISTILLA 98. 35 GTRA16 GT-SSRE-16 HEAT 57. 110. 40. 38. 11. 0. 0, 108. 10 0.30 0.32 0.37 36 GTR208 GT-60RE-08 POUR 0. 47. 108. 43. 34. 10. -4. 0. 108. DISTILLA 108. 0.30 0.30 0.37 0. 99. DISTILLA 36 GTR208 GT-CORE-08 HEAT 47. 99. 40. 32. 9. 0. 104, DISTILLA 104. 10 0.33 0.33 0.38 37 GTR212 GT-60RE-12 POWR 0. 50. 104. 40. 34. 10. -0. 0. ٥. 103. DISTILLA 104. 10 0.32 0.33 0.38 37 GTR212 GT-60KE-12 HEAT 50. 103. 40. 34. 10. 1. 0. 103. 10 0.33 0.33 0.39 38 GTR216 GT-60RE-16 POWR 52. 102 39. 34. 10. 0. 103. DISTILLA -2. 104. DISTILLA 102. 0.34 0.34 0.39 38 GTR216 GT-GORE-16 YEAT 104. 40. 35. 10. 0. 0. 53. 10 0.27 0.30 0.35 98. 27. 34. 10. 15. 0. 113.DISTILLA 113. 39 GTRW08 GT-85RE-08 POWR 0. 42. -50. 144.DISTILLA 10 0.30 0.35 0.28 39 GTRVIOS GT-SSRE-OS HEAT 51. 15. 0. 94. 0. 61. 144. 40. 10 0.29 0.31 0.36 45. 95. 27. 34. 10. 15. ٥. 110. DISTILLA 110. 40 GTRW12 GT-85RE-12 POWR 0. -53. 141.DISTILLA 88. 10 0.32 0.36 0.28 40 GTRV12 GT-85RE-12 HEAT 141. 40. 51. 15. 0. 66.

7

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

18SE PEO ADV DESIGN ENGR

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33315 MW 18.50 PROCESS MILLIONS BTU/HR 60.0 PROCESS TEMP(F) 36G, PRODUCT COPPER-SMELT HOURS PER YEAR 7620.

PAGE 281

POWER TO HEAT RATIO 1.052 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 0. HOT WATER BTU*10**6= 0. WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR O ONOCON NO COGON 0. 0. 0. 0. 0. 71. 197. 71. COAL-AFB 268. 0. 0.24 0.22 1 STM141 STM-TURB-1 POWR -216. 484.RESIDUAL 0 -0.81 0.13 0.12 0. 484. 348. 63. 19. -339. 0. 484. 1 STM141 STM-TURB-1 HEAT 21. 83. 60. 3. D. 163. 83. RESIDUAL 247. 10 0.08 0.04 0.24 11. 1 STM141 STM-TURB-1 POWR 0. -216. 484. 348. 63. 19. -339. ٥. 484. COAL-FGD 484. 0 -0.81 0.13 0.12 1 STM141 STM-TURB-1 HEAT 21. 83. COAL-FGD 0. 83. 60. 11. 3. 0. 163. 247. 10 0.08 0.04 0.24 1 STM141 STM-TURB-1 POWR -216. -339. 484. 348. 63. 19. 0. 484. COAL-AFB 484. 0 -0.81 0.13 0.12 1 STM141 STM-TURB-1 HEAT 21. 10 0.08 0.04 0.24 0. 83. 60. 11. 3. ₽. 163. 83. COAL-AFB 247. 2 STM088 STM-TIRB-8 POWR -393 661 499 0. 63. 19. -516 661. RESIDUAL 661 0 -1.47 0.10 0.09 2 STM088 STM-TURB-8 HEAT 80. RESIDUAL 0. 15. 80. 60. 8. 2. 0. 174. 253. 0.06 0.03 0.24 2 STM088 STM-TURB-8 POWR -393. 661. 499. 0. 0 -1.47 0.10 0.09 0. 63. 19. -516. 661.COAL-FOD 661. 2 STM088 STM-TURB-8 HEAT 15. 80. 60. D. 174. 80. COAL-FGD 253. 10 0.06 0.03 0.24 8. 2 STM088 STM-TURB-8 POWR 0. -393. 661. 499. 63. 19. -516. 0. 661.COAL-AFB 661. 0 -1.47 0.10 0.09 2 STM088 STM-TURE-8 HEAT 15. 80. 60. 80. COAL-AFB 253. 10 0,06 0.03 0.24 0. 8. 2. 174. 3 PFBSTM PFB-STMTB- POWR -50. 318. 205, 19. -170. 0. 318, COAL-PFB 318. 0 -0.19 0.20 0.19 0. 63. 3 PFBSTM PFB-STMTB- HEAT 0. 35. 93. 60. 19. 5. D. 139. 93. COAL-PFB 233. 10 0.13 0.08 0.26 4 TISTMT TI-STMTB-1 POWR 254 63. -107. O. 254. RESIDUAL 254. 0.05 0.25 0.24 0. 14. 151. 19. 4 TISTAT TI-STATE-1 HEAT 48. 101. 0. 119. 101. RESIDUAL 220. 10 0.18 0.11 0.27 0. 60. 25. 7. 254. -107. Ω. 254, COAL 254. 0 0.05 0.25 0.24 4 TISTMT TI-STMTB-1 POWR 151. 63, 19. Ω. 14. 4 TISTMT TI-STRITB-1 HEAT 101.COAL 220. 0. 43. 101. 60. 25. 7. D. 119. 0.18 0.11 0.27 5 TIHRSG THERMIONIC POWR 449. RESIDUAL -181. 449. 290. 63. 19. -270. 0. 449. 0 -0.67 0.14 0.13 5 TIHRSG THERMIONIC HEAT O. 19. 93. 60. 13. 4. 156. 93. RESIDUAL 249. 0.07 0.05 0.24 5 TIHRSG THERMIONIC POWR 0.14 0.13 O. -181. 449. 290. 63. 19. -270. 0. 449, COAL 449. 0 -0.67 5 TIHRSG THERMIONIC HEAT 0. 19. 93. o. 156. 93. COAL 249. 0.07 0.05 0.24 60. 13. 4. 6 STIRL STIRLING-1 POWR 251. 120. 0. 251.DISTILLA 251. 0 0.06 0.25 0.24 n. 17. 63. 19. -70. 6 STIRL STIRLING-1 HEAT 44. 126. O. 126. DISTILLA 224. 0 0.16 0.14 0.27 0. 60. 32. 9. 98.

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 283

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33315 MW 18.50 PROCESS MILLIONS BTU/HR 60.0 PROCESS TEMP(F) 366. PRODUCT COPPER-SMELT HOURS PER YEAR 7620.

	UTIL	i TY	FUEL	COAL				POVE		AT RATI			×6=	0. HOT	WATER BT	U*10**6	z ().	ntico minant promotyti cerny cerninia :
					WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
					FUEL	SAVED=			PROCES		PROCES		FUEL	FUEL	TOTAL+			FACTR	FACTR
					USED	NO-NET 10**6		HEAT 10**6		ELECT	BOILR	USED 10**6	SITE	USED	UTILIT				
				•	10**6	BTU/HR					10**6	BTU/HR			BTU/HR				
					DIOTIK	BIOTHK	DIOZIK	BIOTHK	D TO/ FIR		BIOTIN	BIOTIK	B10/11	<u> </u>	BIOTIK				SURPLE HOLDS CONTROL OF
18	CC1626	GT:	ST-16/26	POWR	٥.	91.	169.	53.	63.	19.	8.	٥.	177	. RESIDUAL	177.	10	0.34	0.36	0.34
18	CC1626	GTS	ST-16/26	HEAT	0.	102.	190.	60.	71.	21.	Ο.	-24.	190	. RESIDUAL	166.	0	0.35	0.37	0.32
						· · · · · · · · · · · · · · · · · ·									·····				
11			ST-16/22				172.	59.	63.	19.	1.	٥.		.RESIDUAL	173.		0.36		0.35
19	CC1622	GTS	ST-16/22	HEAT	0.	96.	174.	60.	64.	19.	Ο,	-2.	174	.REDIDUAL	172.	10	0.36	0.37	0.35
	001000	OT.	T 10/00	D6: 1D	_	98.	170	60	-	10	0.	0.	170	. RESIDUAL	172.	•	0.00	0.37	0.35
			ST-12/22 ST-12/22		<u>0.</u> 0.		172. 172.	60. 60.	63. 63.	19. 19.	· 0.	-1.		. RESIDUAL	171.		0.36		0.35
20	COIZZZ	010	31 12/22	HEAL	0.	50.	172.	ου.	03.	13,	0.		176	. NEOIDOAL	.,,,	•	0.00	0.0.	0.00
21	CC0822	GTS	ST-08/22	POVR	0.	85.	183.	76.	63.	19.	-18.	0.	183	. RESIDUAL	183.	0	0.32	0.34	0.33
21	CC0855	GTS	ST-08/22	HEAT	0.	82.	146.	60.	50.	15.	Ο.	41.	146	. RESIDUAL	186.	0	0.31	0.27	0.32
			IG-15-16		0.		166.	2.	63.	19.	68.	0.		.RESIDUAL	234.			0.27	0.26
22	STIG15	ST	IG-15-16	HEAT	ο.	950.	4615.	60.	1758.	515.	٥,	-5298.	4615	.RESIDUAL	-683.	0	0.17	0.38	0.01
	CTIOIO	CT.	10 10 10	DOI ID		40	176			- 10	40	0.	210	. RESIDUAL	219.	10	0.10	0.29	0.27
			IG-10-16 IG-10-16				176. 453.	23. 60.	63. 163.	19. 48.	43. 0.	-311.		. RESIDUAL	142.	10	0.15		0.27
20	311010	311	10 10	IILA	٥.	120.	400,	00.	100,	40.	Ų,	511.	400	, NEGIDOAL	1 7 6 4	•	U. L.L	0.00	00
24	STIGIS	STI	IG-1S-16	POWR	0.	56.	188.	40.	63.	19.	24,	0.	212	RESIDUAL	212.	10	0.21	0.30	0.28
			IG-15-16		Ō.		285.	60.	95.	28.	0.	-101.		. RESIDUAL	184.	0	0.23	0.34	0.21
11 -			ESEL-ADV				170.	35.	63.	19.	30.	0.		.RESIDUAL	200.	_	0.25		0.30
25	DEADV3	DIE	ESEL-ADV	HEAT	0.	117.	293.	60.	109.	32.	0,	-142.	293	RESIDUAL	151.	0	0.29	0.37	0.20
	DEADWO		-051 451	DOUD	^	70	170	40	60	••		0.	100	. RESIDUAL	190.	1	0.29	0 22	0.32
			ESEL-ADV ESEL-ADV		0. 0.	78. 108.	170. 236.	43. 60.	63. 88.	19. 26.	20. 0.	-77.		. RESIDUAL	160.	1			
20	DEADVE	011	SEL-ADV	DEAT	0.	100.	230.	00.	30.	٤٠,	0,		200	, NEO ; DOAL		•	0.01	0.07	0.20
27	DEADV1	DIE	SEL-ADV	POVR	0.	98.	170.	67.	63.	19.	-8.	0.	170	RESIDUAL	170.	1	0.36	0.37	0.35
E1			ESEL-ADV		0.	95.	153.	60.	57.	17.	0.	19.	153	.RESIDUAL	. 173.	1	0.35		0.35
-																			
			/-DIESEL				193.	83.	63.	19.	-27,	0.		RESIDUAL	193.			0.33	
28	DEHTPM	ADI	/-DIESEL	HEAT	0.	74.	140.	60.	46.	13.	0.	54.	140	.RESIDUAL	194.	0	0.27	0.24	0.31
-	DECGAO			D4115	_	E.C.	175	20	-	• •	25	٥.	212	.DISTILLA	210.	_	0.21	0.20	0.29
			ESEL-SOA ESEL-SOA		0. 0.	58. 116.	17 5 . 351.	30, 60.	63. 127.	19. 37.	35. 0.			DISTILLA	210. 152.	0			
29	DESUNS	UIL	LUCI_TOUA	FILAT	<u> </u>	110.	301.	50.	161.	37.		-133.	331	. DIGITELA	102.		<u> </u>	0.56	
20	DESCAR	DIF	ESEL-SOA	POUR	0.	58.	175.	30.	63.	19.	35,	٥.	210	. RESIDUAL	210.	0	0.21	0.30	0,29
71 — -			ESEL-SOA		o.		351.	60.	127.	37.	0.	-199.		RESIDUAL	152.	Ŏ	0.25		0.17
L											-								

· 54

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33315 MW 18.50 PROCESS MILLIONS BTU/HR 60.0 PROCESS TEMP(F) 366. PRODUCT COPPER-SMELT HOURS PER YEAR 7620.

PAGE 285

POWER TO HEAT RATIO 1.052 0. HOT WATER & 'V*10**6= WASTE FUEL EQV BTU*10**6= UTILITY FUEL COAL FAIL FESR POWER HEAT COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= WASTE FUEL FUEL TOTAL+ FACTR FACTR PROCES FUEL FUEL SAVED= FUEL PROCES PROCES MW FUEL USED UTILIT POWER ELECT BOILR USED SITE USED NO-NET USED HEAT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR STU/HR BTU/HR BTU/HR 10 0.31 0.34 0.32 8. 0. 135. DISTILLA 185. 41 GTRW16 GT-85RE-16 POWR 177. 53. 63. 19. ٥. 83. 200. DISTILLA 0 0.32 0.36 0.30 0. -25, 174. 71. 21. 41 GTRW16 GT-85RE-16 HEAT 94. 200. 60, 0, 0 0.24 0.31 6.29 204. 65. 63. 19. -6. ٥. 204. DISTILLA 42 GTR308 GT-60RE-08 POWR 0. 64. 204. 10 0.24 0.29 0.30 187. DISTILLA 203. 0. 16. 58. 17. 42 GTR308 GT-60RE-08 HEAT 0. 65. 187. 60. 10 0.31 0.34 0.33 185. DISTILLA 185. 185. 61. 63. 19. -1. G. 43 GTR312 GT-60RE-12 POWR 83. 0.33 0.32 181.DISTILLA 185. 10 0.31 62. 18. 0. 4. 60. 43 GTR312 GT-60RE-12 HEAT 0. 83. 181. 10 0,30 0.34 0.32 62. 63. 19. -3. ۵. 186. DISTILLA 186. 186. 82. 44 GTR316 GT-60RE-16 POWR ٥. 10 0.30 0.33 0.32 180. DISTILLA 187. 61. 18. 0. 60. 44 GTR316 GT-50RE-16 HEAT 81. 180. 0 0.24 0.31 0.29 63. 19. 37. ٥. 203. DISTILLA 203. 166. 28. 45 FCPADS FUEL-CL-PH POWR 0. 64. 0 0.28 0.38 0.17 353.DISTILLA 131. 134. 39. О. -222. 45 FCPADS FUEL-CL-PH HEAT 137. 353. 60. 0. 0.32 0.35 0.33 182. DISTILLA 182. 29. 0. 86. 153. 36. 63. 19. 46 FCMCDS FUEL-CL-MO POWR 0. 258. DISTILLA 123. 0 0.36 0.41 0.23 106. 31. 0. -134. 145. 258. 60. 46 FCMCDS FUEL-CL-MO HEAT 0. SAIDING To R BLANK 3 F

METRYS SKITNING BAST IN BY

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

1

PAGE 287

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33316 MW 16.00 PROCESS MILLIONS BTU/HR 60.0 PROCESS TEMP(F) 366. PRODUCT COPPER-SMELT HOURS PER YEAR 7620.

POWER TO HEAT RATIO 0.910 UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= ٥. HOT WATER BTU*10**6= ٥. COGEN COGEN COGEN COGEN WASTE FUEL AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT SAVED= FUEL FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10×*6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR 25. ٥. 217. RESIDUAL 0 0.10 0.25 0.28 0. 217. 103. 55. 16. -51. 217. 6 STIRL STIRLING-1 HEAT 126. RESIDUAL 0. 44. 126. 60. 32. 9. 0. 72. 197. 0.18 0.16 0.30 6 STIRL STIRLING-1 POWR 25. 217. 103. ο. 217. COAL 217. 0.10 0.25 0.28 a. 55. 16. -51. 6 STIRL STIRLING-1 HEAT O. 44. 126. 60. 32. 9. 0. 72. 126. COAL 197. 0.18 0.16 0.30 7 HEGT85 HELIUM-GT- POWR 24 170 20 55. 47. ο. 217. COAL-AFB 217. 10 0.10 0.25 0.28 16. 7 HEGT85 HELIUM-GT- HEAT 0. 72. 507. 60. 163. 48. Ω. -338. 507, COAL-AFB 169. 10 0.12 0.32 0.12 8 HEGT60 HELIUM-GT- POWR n. 30. 211. 61. 55. 16. -1. O. 211. COAL-AFB 211. 10 0.13 0.26 0.28 8 HEGT60 HELIUM-GT- HEAT ο. 31 206. 60 53. 16. 0. 206. COAL-AFB 210. 10 0.13 0.25 0.29 4 9 HEGTOO HELIUM-GT- POWR o. -69. 310. 151. -108. 310.COAL-AFB 310. 10 -0.29 0.18 0.19 0. 55. 16. 9 HEGTOO HELIUM-GT- HEAT ٥. 15. 123. 60. 22. 6. ٥. 103. 123. COAL-AFB 226. 10 0.06 0.10 0.27 10 FCMCCL FUEL-CL-MO POWR 55. -29. 180. COAL 180. 0.26 0.30 0.33 62. 180. 85. 16. 0. 10 0. 10 FCMCCL FUEL-CL-MO HEAT D. 64. 127. 60. 39. 11. 0.. 50. 127, COAL 177. 10 0.27 0.22 0.34 11 FCSTCL FUEL-CL-ST POWR 147. COAL 147. 145 0. 10 0.39 0.37 0.41 0. 94 58. 55. 16. 2. 11 FCSTCL FUEL-CL-ST HEAT 97. 149. 0. -5. 149. COAL 144. 10 0.39 0.38 0.40 0. 60. 56. 16. 12 IGGTST INT-GAS-GT POWR 45. 196. 85. 55. -29. ٥. 196. COAL 196. 10 0.19 0.28 0.31 0. 16. 12 IGGTST INT-GAS-GT HEAT 52. 139. ٥. 50. 139. COAL 189. 10 0.22 0.20 0.32 0. 60. 39. 11. 13 GTSØAR GT-HRSG-10 POWR 53. 188. 80. 55. 16. -23. ٥. 188. RESIDUAL 188. 0 0.22 0.29 0.32 0. 13 GTSØAR GT-HRSG-10 HEAT 57. 141. 60. 0. 42. 141. RESIDUAL 184. 0.24 0.22 0.33 · 0. 41. 12. 202. RESIDUAL 202. 0.16 0.27 0.30 14 GTACOS GT-HRSG-OS FOWR -52. 0. 0. 39. 202. 104. 55. 16. 14 GTACO8 GT-HRSG-08 HEAT 0. 72. 117. RESIDUAL 189. 0.22 0.17 0.32 0. 52. 117. 60. 31. 9. 10 179. RESIDUAL 179. 15 GTAC12 GT-HRSG-12 POWR 62. 179 83. 16. -27. 0. 0.26 0.31 0.34 15 GTAC12 GT-HRSG-12 HEAT 129. 47. 129. RESIDUAL 177. 10 0.27 0.22 0.34 ٥. 65. 60. 39. 12. 0. -15. 0. 169. RESIDUAL 169. 0.30 0.32 0.35 16 GTAC16 GT-HRSG-16 POWR 0. 72. 169. 73. 55. 16. 139. RESIDUAL 169. 16 GTAC16 GT-HRSG-16 HEAT 72. 139. 60. 45. 13 0. 31. 10 0.30 0.26 0.35 -12. Ο. 173. RESIDUAL 173. 10 0.28 0.32 0.35 17 GTWC16 GT-HRSG-16 POWR 0. 68. 173. 70. 55. 16. 0, 25. 148. RESIDUAL 173. 10 0.28 0.27 0.35 17 GTWC16 GT-HRSG-16 HEAT 0. 68. 148. 60. 47. 14.

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

18SE PEG ADV DESIGN ENGR

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33316 MW 16.00 PROCESS MILLIONS BTU/HR 60.0 PROCESS TEMP(F) 366. PRODUCT COPPER-SMELT HOURS PER YEAR 7620.

UTILITY FUEL		COAL	•	POWER TO HEAT RATIO 0.910 WASTE FUEL EQV BTU*10**6= 0. HOT WATER BTU*10**6= 0.														
_				WASTE		COGEN			COGEN			TOTAL		NET=	FAIL	FESR	POWER	and the second second
				FUEL	SAVED=			PROCES		PROCES		FUEL	FUEL	TOTAL+			FACTR	FACTR
				USED	NO-NET		HEAT		EI,ECT		USED	SITE	USED	UTILIT				
					10**6			10**6			10**6		,	10**6 BTU/HR				
				BIU/HR	BTU/HR	BIU/HR	BTU/HR	BIU/HK		BIU/HR	BTU/HR	BIU/HK		BIU/HK				
n	DESMA2	DIESEL-S	MA PAWE	2 O.	59.	151.	33.	5 5.	16.	31.	٥.	183.	DISTILLA	183.	1	0.24	0.30	0.33
_		DIESEL-S				273.	60.	98.	29.	Ö.	-137.		DISTILLA	136.	i		0.36	
•												_						
0	DESGA2	DIESEL-S	OA POWE	0.	59.	151.	33.	55.	16.	31.	0.	183.	RESIDUAL	183.	1		0.30	
0	DESGA2	DIESEL-S	OA HEAT	o.	106.	273.	60.	98.	29.	0.	-137.	273.	RES I DUAL	136.	1	.0.28	0.36	0.22
_							•				_						2 2	
		DIESEL-S				151.	<u>61.</u>	<u>55.</u>	16.	-1.	0,		DISTILLA	151. 151.	1	0.37	0.36	
1	DESUAT	DIESEL-S	UA HEAT	0.	90.	150.	60.	54.	16.	0.	2.	150.	DISTILLA	131.	1	0.37	0.36	0.40
1	DESMAI	DIESEL-S	av bene	R 0.	90.	151.	61.	55.	16.	-1.	٥.	151	RES I DUAL	151.	1	0.37	0.36	0.40
		DIESEL-S				150.	60.	54.	16.	o.	2.		RESIDUAL	151.	i		0.36	
•	DECONT		<u> </u>								- -				···			
2	GTSØAD	GT-HRSG-	10 POWE	₹ 0.	54 <i>.</i>	187.	86.	5 5,	16.	-31.	0.	187.	DISTILLA	187.	0		0.29	
2	GTSCAD	GT-HRSG-	10 HEAT	г о.	59.	130.	60.	38.	11.	Ο.	52.	130.	DISTILLA	182.	10	0.25	0.21	0.33
		· · · · · · · · · · · · · · · · · · ·																
		GT-85RE-				153.	51.	55.	16.		0.		DISTILLA	163.	0		0.33	
33	GTRAOS	GT-85RE-	OS HEAT	г о.	91.	178.	60.	64.	19.	0.	-28.	176.	DISTILLA	150.	U	0.34	0,36	0,34
	GTPA12	GT-85RE-	12 PAUL	R 0.	80.	152.	53.	55.	16.	8.	٥.	161.	DISTILLA	161.	0	0.33	0.34	0.37
		GT-CURE-				173.	60.	62.	18.		-23.		DISTILLA	150.		0.34		
_	011111111	0. 002	12 11211	•	• • • • • • • • • • • • • • • • • • • •			7.5.										
35	GTRA16	GT-85RE-	16 POWE	₹ 0.	81.	156.	57.	5 5.	16.	4.	0.	160.	DISTILLA	160.			0.34	
5	GTRA16	GT-SERE-	16 HEAT	0.	86.	166.	60.	58.	17.	0.	-10.	166.	DISTILLA	156.	0	0.34	0.35	0.36
											_				_			
		GT-GORE-				171.	69.	55.	16.		0.		DISTILLA	171.	-	0.29	0.32	
6	GTR208	GT-GORE-	O8 HEAT	г о.	71.	149.	60.	48.	14.	0.	21.	149.	DISTILLA	171.	U	0.29	0.28	0.30
-	OTDOLO	GT-60RE-	10 DOLU	₹ 0.	76.	165.	64.	55.	16.	-5.	0.	165	DESTILLA	165.		0.31	0.33	0.36
		GT-GORE-				155.	64. 60.	51.	15.	-	11.		DISTILLA	166.			0.31	
• •	OINZIZ	OT OOKE	16 1164	0.	70.	100.	00.	01.		٠.	• • • •	,,,,,			•	• • • • • • • • • • • • • • • • • • • •		
88	GTR216	GT-GORE-	16 POWE	₹ 0.	79.	162.	62.	55.	16.	-3.	0.	162.	DISTILLA	162.	0	0.33	0.34	
_		GT-GORE-				156.	60.	53.	15.	0.	6.	156.	DISTILLA	162.	0	0.33	0.32	0.37
													<u> </u>					
		GT-85RE-				156.	43.	55.	16.		0.		DISTILLA	175.			0.31	
9	GTRV08	GT-85RE-	OB HEAT	0.	92.	216.	60.	76.	22.	0.	<u>-67'.</u>	216.	DISTILLA	150.	. 0	0.30	0.35	U. 28
_	OTD::4 0	AT	10 500		~> ◆	150	40	**	16.	21.	ο.	171	DISTILLA	171.	10	0.29	0.32	0.35
		GT-85RE-				150. 212.	43. 60.	55. 77.	23.		-70.		DISTILLA	141.	Ô		0.36	
J	GIKW12	GT-85RE-	IZ MEA	ro.	100.	616.	60.	//.	٤٥,	٥.	70.	C12.	J. G. I LLA		•			

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 291

REPORT 5.1'
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33341 MW 756.00 PROCESS MILLIONS BTU/HR O. PROCESS TEMP(F) O. PRODUCT ALUMINUM HOURS PER YEAR 8760.

POWER TO HEAT RATIO ***** UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= COGEN COGEN COGEN AUX NET= FAIL FESR POWER HEAT WASTE FUEL UTILIT TOTAL SITE PROCES FUEL TOTAL+ FACTR FACTR FUEL SAVED= FUEL PROCES PROCES MW FUEL UTILIT USED NO-NET USED HEAT POWER ELECT BOILR USED SITE 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 0 0. 0.32 0. 8061. O. DISTILLA 8061. O ONOCON NO COGON Ω. Ω. ٥. 1 STM141 STM-TURB-1 POWR 340. 7721. 3983. 2579. 756. -4686. O. 7721.RESIDUAL 7721. 1 0.04 0.33 0. 0 1 STM141 STM-TURB-1 HEAT 8061. ٥. 0. 0. 0. 0. 8061. O. RESIDUAL 111 0. 1 STM141 STM-TURB-1 POWR ٥. 340. 7721. 3983. 2579. 756. -4686. 0. 7721.COAL-FGD 7721. 1 0.04 0.33 0. 1 STM141 STM-TURB-1 HEAT O.COAL-FGD 8061. 111 0. 0. 0. ٥. ٥. 0. ٥. 0. 8061. 1 STM141 STM-TURB-1 POWR 340. 7721. 3983. 2579. 756. -4686. n. 7721. COAL-AFB 7721 1 0.04 0.33 0. 8061. 0. 8061. O. COAL-AFB 111 C. 0. 1 STM141 STM-TURB-1 HEAT ٥. ٥. 0. 0. 0. Ο. O. 8510.RESIDUAL 2 STM088 STM-TURB-8 POWR -449. 8510. 4654. 2579. 756. -5476. 8510. 1 -0.06 0.30 0. 8061. 111 0. 0. O.RESIDUAL 8061. Ω. 2 STMO88 STM-TURB-8 HEAT ٥. Ο. Ω. n. Ο. 8510. 1 -0.06 0.30 0. 8510. 4654. 2579. 756. -5476. 0. 8510.COAL-FGD 2 STM088 STM-TURB-8 POWR -449. 8061. O. COAL-FGD 8061. 111 0. 0. 2 STN088 STM-TURB-8 HEAT 0. ٥. ٥. Ο. 0. 1 -0.06 0.30 0. 2 STM088 STM-TURB-8 POWR -449. 8510. 4654. 2579. 756. -5476. 0. 8510.COAL-AFB 8510. 2 STM088 STM-TURB-8 HEAT 0. ٥. 0. 8061. O. COAL-AFB 8061. 111 0. 0. 0. Ο. 0. 1 0.17 0.38 3 PEBSTM PEB-STMTB- POUR 1331. 6730. 3185. 2579. 756. -3747. 0. 6730.COAL-PFB 6730. 0. 0. 8061. O. COAL-PFB 8061. 111 0. 3 PFBSTM PFB-STMTB- HEAT 0. 0. 0. 0. Ω. 0. 6217. 2662. 2579. 756. -3131. O. 6217.RESIDUAL 6217. 1 0.23 0.41 0. 4 TISTMT TI-STMTB-1 POWR 1844. 0. 8061. O. RESIDUAL 8061. 111 0. 0. 4 TISTMT TI-STMTB-1 HEAT 0. 0. 0. ٥. 0. 2579. 756. -3131. 0. 6217.COAL 6217. 1 0.23 0.41 0. 4 TISTMT TI-STMTE-1 POWR 0. 1844. 6217. 2662. 8061. 4 TISTMT TI-STMTB-1 HEAT 8061. O. COAL 111 0. Ο. 0.-10272, 18333, 12963. 2579. 756. -15251. 0. 18333.RESIDUAL 18333. 1 -1.27 0.14 5 TIHRSG THERMIONIC POWR 0. 8061. O. RESIDUAL 8061. 111 0. 0. 5 TIHRSG THERMIONIC HEAT 0. 0. 0. Ο. ο. 756, -15251. O. 18333.COAL 18333. 1 -1.27 0.14 0. 5 TIHRSG THERMIONIC POWR 0.-10272, 18333, 12963. 2579. 8061. O. COAL 8061. 111 0. 5 TIHRSG THERMIONIC HEAT Ο. 0. ٥. 0. Ο. O. 756. -4115. O. 8383.DISTILLA 8383. 1 -0.04 0.31 0. -322. 8383. 3497. 2579. 6 STIRL STIRLING-1 POWR O. DISTILLA 8061. 111 0. 0. 8061. Ο. 6 STIRL STIRLING-1 HEAT ٥. Ο. 0. ο.

I&SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 293

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 33341 MW 756.00 PROCESS MILLIONS BTU/HR O. PROCESS TEMP(F) O. PRODUCT ALUMINUM HOURS PER YEAR 8760.

3				-					PANE	R TO HE	AT DATE	· • •••••								
		UTIL	TY FUE	EL	COAL				, one.					*6=	O. HOT	WATER BT	U*10**6	= 0).	
,						WASTE	FUEL	COGEN	COGEN	COGEN	COGEN	AUX	UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	HEAT
,				•••		FUEL	SAVED=	FUEL	PROCES	PROCES	MW	PROCES		FUEL	FUEL	TOTAL+			FACTR	
ا جَ						USED	NO-NET		HEAT		ELECT			SITE	USED	UTILIT				
- I									10**6 BTU/HR				10**6			10**6				
7						B I U/ Fire	BIOTHK	BIU/HR	BTU/HR	BIU/HR		BIU/HR	BTU/HR	BIU/H	K	BTU/HR				
٥	18	CC1626	GTST-1	6/26	POWR	0.	2473.	558 8 .	1263.	2579.	756.	-1486.	0.	5588	. RESIDUAL	5588.	1	0.31	0.46	٥.
·2		CC1626				0.	0.	0.	0.	0.	0.		8061.		. RESIDUAL	8061.	111		0.	o.
																				
3		CC1622				0.		5584.	1398.	2579.		-1645,	0.		. RESIDUAL	5584.		0.31		
3	19	661622	6131-1	6/22	HEAT	0.	٥.	0.	0,	0.	0.	0.	8061.	C	RESIDUAL	8061.	111	٥.	Ο.	0.
7	20	CC1222	GTST-1	2/22	POWR	ο.	2531.	5529.	1382.	2579	756	-1626.	n	5529	. RESIDUAL	5529.	1	0.31	0.47	0
- 1		CC1222				٥.		0.	0.	0.	0.	0.			. RESIDUAL	8061.	111		0.47	_0. _0.
											. ,	•	• •	_				•		- •
		CC0822					2469.		1653.			-1945.			.RESIDUAL	5592.			0.46	
	21	CC0822	6181-0	18/22	HEAT	0.	0.	0.	0.	0.	0.	0.	8061.	0	RESIDUAL	8061.	111	0.	0.	0.
I	22	STIG15	STIG-1	5-16	PriWR	0.	1291.	6770.	88.	2579.	756.	-104.	'n	6770	RESIDUAL	6770.	1	0.16	0.38	0.
		STIG15				o.	0.	0,,0.	0.	0.	730.		8061.		. RESIDUAL	8061.	111		0.36	0.
				_										_		333.7		•	•	· ·
1		STIG10				0.	878.	7183.	952.	2579.		-1120.		7183	RESIDUAL	7183.		0.11	0.36	0.
	23	STIGIO	STIG-1	0-16	HEAT	0.	0.	0.	0.	ο.	0.	0.	8061.	0	RESIDUAL	8061.	111	Ο.	0.	0.
Î	24	STIGIS	STIG-1	9-16	DAUD	٥.	366.	7695.	1622.	2579.	750	-1908.	^	JCOE	050101141	7005				_
ľ		STIGIS				0.	0.	7093.	. 0.	23/9.	730.	0,			RESIDUAL RESIDUAL	7695. 8061.	• 111	0.05	0.34	0.
						•	٠.	٠.	٠.	V.	٠.	٠,	0001.	•	. KEO! DOAL	0001.		U .	0.	0.
	-	DEADV3				0.	1108.	695 3 ,	2502.	2579.	756.	-2943.	0.	6953	RESIDUAL	6953.	1	0.14	0.37	0.
~	25	DEADV3	DIESEL	-ADV	HEAT	0.	0.	0.	0.	0.	0.	0.	8061.	0	RESIDUAL	· 8061.	111	0.	0.	0.
9	26	DEADV2	DIECEL	- ADV	DOLLD	•	1100	COF 0	1700	0570		0070	_				_			_
8		DEADV2		– -		0.	1108. 0.	695 3. 0 .	1766. 0.	2579. 0.	/56. 0.	-2078. 0.	0. 8061.		RESIDUAL RESIDUAL	6953 <i>.</i> 8061.	111	0.14	0.37 0.	0. 0.
1			171 1	. AUV	HEA L	0.	٥.	٥.	٥.	υ.	0.	0.	6061.	0.	RESTOURL	6061.	111	U.	υ.	υ.
1	27	DEADV1	DIESEL	-ADV	POWR	0.	1108.	695 3 .	2719.	2579.	756.	-3198.	0.	6953	RESIDUAL	6953.	1	0.14	0.37	0.
Į.	27	DEADV1	DI ESEL	-ADV	HEAT	0.	0.	0.	0.	0.	0.	0.	8061.	0.	RESIDUAL	8061.	111	0.	0.	0.
S						_							_							
5		DEHTPM DEHTPM				0.	1631.		3274.	2579.		-3852.			RESIDUAL	6429.		0.20		
Z	20	PLHITI	WDA-DI	EOCL	nea i	. U.	0.	0.	0.	0.	٥.	0.	8061.	U.	RESIDUAL	8061.	111	0.	0.	0.
팃	29	DESGA3	DIESEL	-SØA	POVR	ο.	915.	7145.	2328.	2579.	756.	-2739.	0.	7145	DISTILLA	7145.	1	0.11	0.36	0.
2	29	DESCA3	DIESEL	-SØA	HEAT	0.		0.	0.	0.	Ö.	Ò.			DISTILLA	8061.	111		0.	o.
0													_							
0		DESGA3				0.	915.	7145.				-2739.			RESIDUAL	7145.		0.11	0.36	
ā	29	DESGA3	いしにかにし	-50A	nea i	ο.	Ο.	0.	0.	0.	0.	0.	8061.	O.	RESIDUAL	8061.	111	U.	0,	Ο.
11																				

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

PAGE 295

18SE PEG ADV DESIGN ENGR

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

UTIL	TY FUEL	-	COAL				POVE			C ***** EL EQV I		*6=	о. нот	WATER BT	U*10**6	j= (0.	
· · · · · · · · · · · · · · · · · · ·						COGEN					UTILIT	TOTAL	SITE	NET=	FAIL	FESR	POWER	R HEAT
	•	•		FUEL USED	SAVED= NO-NET			PROCES		PROCES		FUEL	FUEL	TOTAL +			FACTR	FACTE
						10 ≈ ∗6	HEAT			BOILR 10**6		SITE	USED	UTILIT 10**6				
				BTU/HR	BTU/HR	BTU/HR	BTU/HR	BTU/HR		BTU/HR				BTU/HR				
GTRW16	GT-85RE	-16	POWR	0.	835.	72 25 .	2531	2579	756	-2978.	0	7225	DISTILLA	7225.		0 10	0.36	
GTRW16				õ.			0,		0.				DISTILLA		111		0.36	0. 0.
														0001.		٥.	0.	0.
2 GTR308				0.						-4392.			DISTILLA				0.31	0.
GTR308	GT-60RE	-08	HEAT	0.	0.	0.	0.	0.	0.	٥.	8061.	0.	DISTILLA	8061.	111	Ο,	0.	ο.
GTR312				0.	519.	7542.	2878.	2579.	756.	-3386.	0.	7542.	DISTILLA	7542.	1	0.06	0,34	٥.
GTR312	GT-GORE	-12	IEAT	0.	0.	0.	0.	0.	0.	0.	8061.	0.	DISTILLA	8061.	111		0.	Ŭ.
GTR316	GT-60RE	-16	POWR	0.	452.	7609.	2925.	2579.	756.	-3441.	٥.	7609.	DISTILLA	7609.	1	0.06	0.34	n
GTR316	GT-60RE	-16	IEAT	0.	0.	0.	0.	0.	0.		8081.		DISTILLA			0.	0.	o.
FCPADS	FUEL -CL	-PH 1	-นเกม	n	1273	6788.	1154	2579.	756	-1358.	0	6790	DISTILLA	6788.		0.10	0.00	
FCPADS				ŏ.		o.	0.	0.	0.		8061.		DISTILLA		111		0.38 0.	0. 0.
FCMCDS	FUEL-CL	-MO I	POVR	0.	1600.	6261.	1459.	2579.	756.	-1716.	0.	6261	DISTILLA	6261.		0 22	0.41	
FCMCDS	FUEL-CL	-MO I	HEAT .	0.	٥.	ο.	ο.						DISTILLA			0.		ŏ.
					<u> </u>													
					PREC													
					CE DANS						•							

18SE PEØ ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33342 MW 378.00 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F) 0. PRODUCT ALUMINUM HOURS PER YEAR 8760.

POVER TO HEAT RATIO **** WASTE FUEL EQV BTU*10**6= UTILITY FUEL COAL HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POVER HEAT SAVED= FUEL TOTAL+ PROCES PROCES MW PROCES FUEL FUEL FUEL **FUEL** FACTR FACTR HEAT USED NO-NET USED POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10×*6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 6 STIRL STIRLING-1 POWR -161. 4192. 1749. 1290. 378. -2057. 4192. RESIDUAL 4192. 1 -0.04 0.31 ٥. 6 STIRL STIRLING-1 HEAT O. RESIDUAL 4030. 0, n. n. n. 0. 0. 0. 4030. 111 0. 6 STIRL STIRLING-1 POWR -161. 4192. 1749. 1290. 378. -2057. 4192. COAL 4192. 1 -0.04 0.31 0. 0. 6 STIRL STIRLING-1 HEAT 4030. O. COAL 4030. 111 0. 0. ٥. 7 HEGTS5 HELIUM-GT- POWR 13. 4018. 1795. 1290. 378. -2112. 4018, COAL-AFB 4018. 1 0.00 0.32 0. 7 HEGTS5 HELIUM-GT- HEAT 4030. O. COAL-AFB ٥. 4030. 111 0. 378. -2517. 8 HEGTGO HELIUM-GT- POWR -949. 4980. 2140. 1290. 4980, COAL-AFB 4980. 1 -0.24 0.26 0. Ω. 8 HEGT60 HELIUM-GT- HEAT 0. n. Ω. n. 0. 0. 4030. O. COAL-AFB 4030. 111 0. 0. 0. 0. -3298. 7328. 378. -5211. 9 HEGTOO HELIUM-GT- POWR 4429. 1290. ٥. 7328, COAL-AFB 7328. 1 -0.82 0.18 0. 9 HEGTOO HELLUM-GT- HEAT O. 0. Ω. 4030. O. COAL-AFB 4030. 111 0. Ω. 0. n. α. a. 10 FCMCCL FUEL-CL-MO POWR -212. 4243. 2029. 1290. 378. -2387. 4243. COAL 1 -0.05 0. 4243. 0.30 0. 10 FCMCCL FUEL-CL-MO HEAT 0. Ο. O. 4030. O. COAL 4030. 111 0. Ω ٥. Ο. ٥. 0 Ω. 11 FCSTCL FUEL-CL-ST POWR 1408 2622. 753 1290 378. -886 2622, COAL 2622. 1 0.35 0.49 Ω. O. 11 FCSTCL FUEL-CL-ST HEAT 4030. O. COAL 4030. Q. 0. 0. Ο. ึก 0 o. Ō. 0. 111 n 12 IGGTST INT-GAS-GT POWR 806. 3224. 1000. 1290. 378. -1176. 3224, COAL 3224. 1 0.20 0.40 0. 0. 0. 12 IGGTST INT-GAS-GT HEAT Ó. 4030. O. COAL 4030. 111 0. 0. 0. 0. 0. 0. 0. ٥. 378. -2585. 13 GTSGAR GT-HRSG-10 POWR -417. 4447. 2197. 1290. Ó. 4447. RESIDUAL 4447. 1 -0.10 0.29 0. 13 GTSOAR GT-HRSG-10 HEAT 4030. O. RESIDUAL 4030. 0. Ο. Ω. ٥. Ο. 0. 0. Ο. 111 0. ο. 4777. 2294. 4777. RESIDUAL 4777. 1 -0.19 14 GTACO8 GT-HRSG-08 POWR -746. 1290. 378. -2699. 0. 0.27 0. 14 GTACOS GT-HRSG-08 HEAT Ø. 0. 0. ٥. ٥. ٥. 4030. O. RESIDUAL 4030. 111 0. 0. 0. 4229 378. -2568 0. 4229, RESIDUAL 4229. 15 GTAC12 GT-HRSG-12 POUR -198 2182. 1290 1 -0.05 0.31 4030. 15 GTAC12 GT-HEGG-12 HEAT 0. 0. Ō. ٥. 0. O. RESIDUAL 4030. 0. 0. 111 16 GTAC16 GT-HRSG-16 POWR 37. 3993. 2005. 1290. 378. -2359. 0. 3993. RESIDUAL 3993. 1 0.01 0.32 0. 16 GTAC16 GT-HRSG-16 HEAT O. RESIDUAL 4030. ٥. 111 0. 17 GTVC16 GT-HRSG-16 POWR 4094. 1634. 378. -1922. 0. 4094. RESIDUAL 4094. 1 -0.02 0.32 0. 0. -64. 1290. 17 GTVC16 GT-HRSG-16 HEAT 0. ٥. 0. ٥. ٥. ٥. 4030. O. RESIDUAL 4030. 111 0. ٥.

14

PAGE 297

18SE PEØ ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
***FUEL ENERGY SAVED BY PROCESS AND ECS**

·

INDUSTRY 33342 MW 378.00 PROCESS MILLIONS BTU/HR 0. PROCESS TEMP(F) 0. PRODUCT ALUMINUM HOURS PER YEAR 8760.

PAGE 299

POWER TO HEAT RATIO ***** UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= O. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET≃ FESR POWER HEAT FAIL PROCES PROCES MW FUEL. SAVED= FUEL PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 30 DESGA2 DIESEL-SGA POWR 0. 458. 3573. 378. 3573. 786. 1290. -925. 0. 3573. DISTILLA 1 0.11 0.36 0. 30 DESCA2 DIESEL-SCA HEAT Ω. 0. 0. 0. 0. ٥. 0. 4030. O.DISTILLA 4030. 111 0. 30 DESGA2 DIESEL-SGA POWR 0. 458. 3573. 786. 1290. 378. -925. ο. 3573. RESIDUAL 3573 1 0.11 0.36 30 DESGA2 DIESEL-SGA HEAT 0. 0. 0. 0. 0. 0. O. RESIDUAL 4030. 0. 4030. 111 0. 0. 31 DESCA1 DIESEL-SCA POWR 458. 3573. 1433 1290. 378. ~1685. 0. 3573. DISTILLA 3573. 1 0.11 0.36 31 DESGA1 DIESEL-SOA HEAT 0. 0. 0. 0. 0. ٥. 0. 4030. O. DISTILLA 4030. 111 0. 0. 31 DESCA1 DIESEL-SCA POWR 3573. 1433. 1290. 458. 378. -1685. 0. 3573. RESIDUAL 3573. 1 0.11 0.36 0. 31 DESGA1 DIESEL-SGA HEAT ۵. a. 0. 0. 0. 0. 4030. O. RESIDUAL 4030. 111 0. 0. ٥. 1 -0.10 0.29 32 GTSCAD GT-HRSG-10 POWR -386. 4417. 2380. 1290. 378. -2800. 0. 4417. DISTILLA 4417. ο. 32 GTSCAD GT-HRSG-10 HEAT 0. 0. ٥. ٥. ٥. ٥. 4030. O. DISTILLA 4030. 111 0. ٥. 33 GTRADS GT-SSRE-OS POWR n. 418. 3613. :459. 1290. 378. -1716. ο. 3613. DISTILLA 3613. 1 0.10 0.36 33 GTRAOS GT-85RE-08 HEAT 0. O. DISTILLA 4030. 111 0. ο. 0. 0. 0. ٥. ٥. 4030. 0. n. 34 GTRA12 GT-85RE-12 POWR 428 1477. 1290. 378. -1737. 3603. DISTILLA 3603. 1 0.11 0.36 3603. n 34 GTRA12 GT-85RE-12 HEAT 0. a. ٥. 0. 0. 0. 0. 4030. O. DISTILLA 4030. 111 0. 0. 35 GTRA16 GT-85RE-16 POWR 335. 3696. 1571. 1290. 378. -1848. 3696. DISTILLA 3696. 1 0.08 0.35 0. 0. 0. 35 GTRA16 GT-85RE-16 HEAT O.DISTILLA 4030. 111 4030. 0. 0. ٥. ٥. Ο. 0. Ω. ٥. 36 GTR208 GT-60RE-08 POWR 1903. 1290. 378. -2239. 4030. DISTILLA 4030. 0.32 0. 0. 0. 4030. 0. 1 0. 36 GTR208 GT-60RE-03 HEAT 0. 0. ٥. 0. ٥. ٥. ٥. 4030. O. DISTILLA 4030. 111 0. 0. 0. 37 GTR212 GT-GORE-12 POWR ٥. 122. 3908. 1749. 1290. 378. -2058. 3908. DISTILLA 3908 0.03 6.33 Õο. 37 GTR212 GT-GORE-12 HEAT 4030. O. DISTILLA 4030. Ω 0. 0. ٥. 0. 111 38 GTR216 GT-60RE-16 POWR 0. 203. 3827. 1709. 1290. 378. -2010. 3827. DISTILLA 3827. 0.05 0.34 38 GTR216 GT-60RE-16 HEAT 4030. 4030. 0. Ω. n. O. ο. 0. O. DISTILLA 111 1 0.09 0.35 0. 39 GTRWO8 GT-85RE-08 POWR 0. 356. 3674. 1213. 1290. 378. -1427. 0. 3674.DISTILLA 3674. 39 GTRWOS GT-05RE-08 HEAT 0. 4030. O. DISTILLA 4030. 0. 0. Ο. 0. 111 C. 0. Ο, 40 GTRV12 GT-85RE-12 POWR 0. 487. 3543. 1180. 1290. 378. -1388. Ò. 3543. DISTILLA 3543. 1 0.12 0.36 0. 40 GTRV12 GT-85RE-12 HEAT 0. ٥. ٥. 4030. O. DISTILLA 4030. 0. 0. 0. 0. ٥. 111 0. 0.

ONEYWELL

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1
FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33343 MW 153.00 PROCESS MILLIONS BTU/HR 0. PRO

O. PROCESS TEMP(F)

O. PRODUCT ALUMINUM

HOURS PER YEAR 8760,

PAGE 301

POWER TO HEAT RATIO ***** UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT WASTE FUEL COGEN FACTR FACTR SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FUEL BOILR USED SITE USED UTILIT USED NO-NET USED HEAT POWER ELECT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 0. 0.32 0. 0. ٥. 1631. O. DISTILLA 1631. 0 0. O ONOCON NO COGON 0. ٥. 0. n. 1 STM141 STM-TURB-1 POWR 0. 1563. 806. 522. 153. -948. 0. 1563.RESIDUAL 1563. 1 0.04 0.33 0. 69. O.RESIDUAL 1631. 111 0. 0. 1 STM141 STM-TURB-1 HEAT 0. Ο. σ. 1631. Ο. 0. 0. ٥. 1 STM141 STI1-TURB-1 POWR ٥. 69. 1563. 806. 522. 153. -948. 0. 1563. COAL-FGD 1563. 1 0.04 0.33 0. 1 STM141 STM-TURE-1 HEAT ٥. 0. 1631. O. COAL-FGD 1631. 111 0. 0. 0. ٥. ٥. 0. Ο. Θ. 1 STM141 STM-TURB-1 POWR 69. 1563. 806. 522. 153. -948. 0. 1563. COAL-AFB 1563. 0.04 0.33 0. 0. 1631. 111 0. 1 STM141 STM-TURB-1 HEAT 0. n 0. 0. Ο. 0. O. 1631. O. COAL-AFB Ω. 2 STM088 STM-TURB-8 POWR -91. 1722 942 522 153. -1108. 0. 1722. RESIDUAL 1722 1 -0.06 0.30 O O. RESIDUAL 1631. 111 2 STM088 STM-TURB-6 HEAT 0. 0. 1631. Ω. Ω. 2 STM088 STM-TURB-8 POWR -91. 1722. 942. 522. 153. -1108. 0. 1722, COAL-FGD 1722. 1 -0.06 0.30 0. O. 2 STMOSS STH-TUPB-8 HEAT O. COAL-FGD 1631. 111 0. 0. O. 0. 0. 0. ٥. 0. 1631. 2 STM088 STM-TURB-8 POWR 0. -91. 1722. 942. 522. 153, -1108. 0. 1722. COAL-AFB 1722. 1 -0.06 0.30 0. 2 STM088 STM-TURB-8 HEAT O. COAL-AFB 1631. 111 0, 0. ٥. 0. ٥. ٥. ٥. 0. ٥. O. 1631. 3 PEBSTM PEB-STMTB- POWR 1362. 645. 522. 153. -758. 0. 1362. COAL-PFB 1362. 0.17 0.38 0. 0. 269. 3 PFBSTM PFB-STNTB- HEAT 0. ٥. ٥. ο. 1631. O. COAL-PFB 1631. 111 0. 0. ٥. 4 TISTMT TI-STMTB-1 POWR 1258 539 522. 153. -634. 1258, RESIDUAL 1258 0.23 0.41 373. 111 4 TISTMT TI-STMTB-1 HEAT 0. O. 1631. O. RESIDUAL 1631. 0. 0. 539. 522. 153. -634. 0. 1258.COAL 1258. 1 0.23 0.41 0. 4 TISTMT TI-STMTB-1 POWR 373. 1258. n 1631. 1631. 111 0. 0. 4 TISTMT TI-STMTB-1 HEAT 0. 0. 0. 0. 0. 0. 3710. 1 -1.27 0.14 5 TIHRSG THERMIONIC POWR 0. -2079.3710. 2624. 522. 153. -3087. ٥. 3710. RESIDUAL 0. 5 TIHRSG THERMIONIC HEAT O. RESIDUAL 1631. 111 0. 0. 0. 0. ٥. 0. 0. 0. 0. 1631. 5 TIHRSG THERMIONIC POUR 2624. 522. 153. -3087. 3710.COAL 3710. 1 -1.27 0.14 0. 0. -2079. 3710. 0. 111 0. 5 TIHRSG THERMIONIC HEAT 0. 0. 0. 0. 0. 0. 1631. O. COAL 1631. 0. 0. 1697. 708. 522. 153. -833. 1697.DISTILLA 1697. 1 -0.04 0.31 6 STIRL STIRLING-1 POWR -65. 1631. O.DISTILLA 111 6 STIRL STIRLING-1 HEAT 0. 0. 0. 0. 1631. Ω.

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1 **FUEL ENERGY SAVED BY PROCESS AND ECS**

INDUSTRY 33343 MW 153,00 PROCESS MILLIONS BTU/HR

O. PROCESS TEMP(F)

O. PRODUCT ALUMINUM

HOURS PER YEAR 8760.

PAGE 303

POWER TO HEAT RATIO **** UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= HOT WATER BTU*10**6= UTILIT TOTAL WASTE FUEL COGEN COGEN COGEN COGEN AUX SITE NET= FAIL FESR POWER HEAT FUEL SAVED= FUEL PROCES PROCES NW PROCES FUEL FUEL FUFL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED USED SITE UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 18 CC1626 GTST-16/26 POWR ٥. 500. 1131. 256. 522. 153. -301. ٥. 1131. RESIDUAL 1131. 1 0.31 0.46 0. 18 CC1626 GTST-16/26 HEAT 0. 0. ٥. Ω. O. Э. 1631. O. RESIDUAL ٥. 1631. ٥. 111 0. ٥. 19 CC1622 GTST-16/22 POWR o. 501. 1130. 283. -333. 522. 153. ٥. 1130, RESIDUAL 1130. 0.31 0.46 O. 19 CC1622 GTST-16/22 HEAT ٥. O. ٥. 0. 0. ٥. Ω. 1631. O. RESIDUAL 1631. 111 C. ο. 0. 20 CC1222 GTST-12/22 POWR 1119. 280. 512. 522. 153. -329. ٥. 1119. RESIDUAL 1119. 1 0.31 0.47 n 20 CC1222 GTST-12/22 HEAT 0. C. 0. 1631. C. RESIDUAL 1631. 111 0. 21 CC0822 GTST-08/22 POWR 500. 1132. 335. 522. 153. -394. O. 1132.RESIDUAL 1132. 1 0.31 0.46 0. 21 CC0822 GTST-08/22 HEAT 0. 0. 0. 1631. O. RESIDUAL 1631. 111 0. n. O. 0. 22 STIG15 STIG-15-16 POWR 0. 261. 1370. 18. 522. 153. -21. ٥. 1370. RESIDUAL 1370. 1 0.16 0.38 0. 22 STIG15 STIG-15-16 HEAT 0. 0. 0. 0. 0. 0. ٥. 1631. O. RESIDUAL 1631. ο. O. ۵. 111 23 STIG10 STIG-10-16 POWR 193. 0. 178. 1454. 522. 153. -227. 0. 1454 . RESIDUAL 1454. 0.11 0.36 0. 1 23 STIG10 STIG-10-16 HEAT 0. 0. ٥. 0. 0. 0. 0. 1631. O. RESIDUAL 1631. 111 0. ٥. ٥. 24 STIG1S STIG-1S-16 POWR 74 1557. 328. 522. 153. -386. 0. 1557. RESIDUAL 1557. 0.05 0.34 0. 24 STIGIS STIG-15-16 HEAT Ο. O. o. 0. 0. 0. 1631. O. RES! DUAL 1631. 111 ۵. O. 25 DEADV3 DIESEL-ADV POWR 224. 1407. 506. 522. 153. -596. 0. 1407. RESIDUAL 1407. 1 0.14 0.37 0. 25 DEADV3 DIESEL-ADV HEAT 0. e. 0. 0. 1631. 0. 0. 1631. O. RESIDUAL 111 0. 0. 0. 26 DEADV2 DIESEL-ADV POUR 0. 224. 1407. 357. 522. 153. -420. 1407, RESIDUAL 1407. 0. 1 0.14 0.37 0. 26 DEADV2 DIESEL-ADV HEAT 0. 0. 0. 0. 0. 0. ٥. 1631. O. RESIDUAL 1631. 111 0. 0. O. 27 DEADVI DIESEL-ADV POWR 224. 1407. 550. 522. 153. -647. 0. 1407. RESIDUAL 1407. 0.37 0.14 œ. 27 DEADV1 DIESEL-ADV HEAT ٥. 0. 0. 0. 0. 0. 1631. Q. RESIDUAL 1631. 0. 111 0. 0. 0. 28 DEHTPM ADV-DIESEL FOUR 330 1301. 663 522. 153. -779. ٥. 1301.RESIDUAL 1301. 0.20 0.40 0. 28 DEHTPM ADV-DIESEL HEAT o. 0. o. 0. 0. 1631. O. RESIDUAL 1631. Ō. 111 Ō. 29 DESGAS DIESEL-SGA POWR 471. 522. 1446.DISTILLA ٥. 185. 1446. 153. -554. Ο. 1446. 1 0.11 0.36 n. 29 DESOAS DIESEL-SOA HEAT ο. 0. 0. 0. 0. C. 0. 1631. O. DISTILLA 1631. 111 0. ٥. 0. 29 DESGAS DIESEL-SGA POWR 0. 185. 471. -554. 1446.RESIDUAL 1446. 522. 153. ٥. 1446. 1 0.11 0.36 0. 29 DESCAS DIESEL-SCA HEAT 0. 0. Ο. ٥. C. 0. 0. 1631. O. RESIDUAL 1631. 111 0. 0. ٥.

18SE PEO ADV DESIGN ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.1

FUEL ENERGY SAVED BY PROCESS AND ECS

INDUSTRY 33343 MW 153.00 PROCESS MILLIONS BTU/HR

0. PROCESS TEMP(F)

O. PRODUCT ALUMINUM

HOURS PER YEAR 8760.

PAGE 305

POWER TO HEAT RATIO ***** UTILITY FUEL COAL WASTE FUEL EQV BTU*10**6= 0. HOT WATER BTU*10**6= WASTE FUEL COGEN COGEN COGEN AUX UTILIT TOTAL SITE NET= FAIL FESR POWER HEAT FUEL. SAVED= FUEL PROCES PROCES MW PROCES FUEL FUEL FUEL TOTAL+ FACTR FACTR USED NO-NET USED HEAT POWER ELECT BOILR USED SITE USED UTILIT 10**6 10**6 10**6 10**6 10**6 10**6 10**6 10**6 BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR BTU/HR 41 GTRW16 GT-85RE-16 POWR 169. 1462. 512. 522. 153. -603. 0. 1462.DISTILLA 1462. 1 0.10 0.36 0. 41 GTRW16 GT-85RE-16 HEAT 0. ٥. ٥. 0. Ο. 0. 1631, O.DISTILLA 1631. 111 0. 0. 42 GTR308 GT-60RE-08 POWR -53. 1684. 756. 522. 153. -889. 1684.DISTILLA O. 1684. 1 -0.03 0.31 O. 42 GTR308 GT-60RE-08 HEAT 0. ٥. 0. 0. ٥. ٥. ٥. 1631. O. DISTILLA 1631. 111 0. ٥. ٥. 43 GTR312 GT-60RE-12 POWR 105. 1526 582 522 -685. 153. 0. 1526. DISTILLA 1526. 0.06 0.34 0. 43 GTR312 GT-60RE-12 HEAT 0. O. 0. 0. Ο. 0. 1631. O. DISTILLA 1631. 111 0. 0. 44 GTR316 GT-60RE-16 POWR 91. 1540. 592. 522. 153. -696. O. 1540.DISTILLA 1540. 1 0.06 0.34 0. 44 GTR316 GT-60RE-16 HEAT 0. ٥. 0. Ο. 0. 1631. O. DISTILLA 1631. 111 0. 0. 0. 45 FCPADS FUEL-CL-PH POWR 0. 258. 1374. 234. 522. 1374. DISTILLA 153. -275. ٥. 1374. 1 0.16 0.38 0. 45 FCPADS FUEL-CL-PH HEAT 0. ٥. ٥. 0. 0. O. DISTILLA 1631. 1631. 111 0. ٥. 46 FCMCDS FUEL-CL-MO POWR Ō. 364. 1267. 295. 522. 153. -347. 0. 1267. DISTILLA 1267. 1 0.22 0.41 0. 46 FCMCDS FUEL-CL-MO HEAT 0. 0. Ο. Ο. 0. 1631. Ο. ٥. O. DISTILLA 1631. 111 0. 0. 0. P.C

COAL-FIRED NOCOGENERATION PROCESS BOILER

5.2 - SUMMARY OF FUEL SAVED BY TYPE AND ECONOMICS

DATE 06/07/, 1&SE-PEO-ADV-DES-ENGR

PROVINCE CALL PROVINCE CALL PROVINCE CALL PROVINCE				FUEL US	E IN BT	U=10**6-														-	
COST								CUGEN*				M&O	POVER	FESR	CAPITAL	NORM	\$/KW	ROI	LEYL	NORM	WRTH
01000000	ECS	PROCS	DISTIL R	ESIDL	CUAL	DISTIL	RESIDL	COAL					/HEAT		COST	COST					
STHI41 10101 0.	OUGCC	1010			100																
STHI41 10101 0. 0. 84. 0. 24 42. F 10. 10. 1.08 0.25 0.44 16.2 1.32 275.2 28 4.3 0.71 160 27111101 0. 0. 0. 84. 0. 24 42. A 10. 10. 0.96 0.25 0.44 12.5 1.01 211.6 999 4.7 0.63 164 STHO86 10101 0. 80. 20. 055. 105. 105. 10. 8. 0.54 0.25 0.33 7.4 0.60 132.5 999 4.3 0.71 160 STHO86 10101 0. 6. 94. 0. 18. 32. F 10. 8. 10.20 0.25 0.33 14.9 1.22 266.6 31 4.6 0.76 165 STHO86 10101 0. 6. 94. 0. 18. 32. F 10. 8. 10.20 0.25 0.33 14.9 1.22 266.6 31 4.6 0.76 165 STHO86 10101 0. 6. 94. 0. 18. 32. F 10. 8. 10.20 0.25 0.33 14.9 1.22 266.6 31 4.6 0.76 165 STHO86 10101 0. 6. 94. 0. 18. 32. F 10. 8. 10.20 0.25 0.33 14.9 1.22 266.6 31 4.6 0.76 165 STHO86 10101 0. 6. 94. 0. 18. 32. F 10. 8. 10.92 0.25 0.39 11.8 0.99 209.8 999 4.2 0.70 154 155 150 150 150 150 150 150 150 150 150									F												
STHING 10101 0. 0. 84. 0. 24. 42. A 10. 10. 0.95 0.25 0.44 12.5 1.01 211.6 999 3.7 0.63 164 STHORE 10101 0. 60. 20. 055. 105. 10. 8. 0.54 0.25 0.33 7.4 0.60 132.5 999 3.7 0.63 164 STHORE 10101 0. 6. 94. 0. 18. 32. F 10. 8. 1.02 0.25 0.33 14.9 1.22 266.6 31 4.6 0.78 150 STHORE 10101 0. 6. 94. 0. 18. 32. F 10. 8. 1.02 0.25 0.33 14.9 1.22 266.6 31 4.6 0.78 150 STHORE 10101 0. 0. 95. 0.25 0.41 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.									E .												
STHOGE 10101 O. 60. 20. 055. 105. 10. 8. 0.54 0.25 0.39 7.4 0.60 122.5 699 4.3 0.71 165 STHOGE 10101 O. 6. 94. 0. 18. 32. F 10. 8. 1.02 0.25 0.39 14.9 1.22 266.6 31 4.4 6. 0.75 165 STHOGE 10101 O. 6. 94. 0. 18. 32. F 10. 8. 1.02 0.25 0.33 11.8 0.96 209.8 999 4.2 0.70 158 159 150 101 0. 0. 0. 655. 0. 25. 41. 10. 10. 10. 1.59 0.25 0.44 20.8 16.9 351.2 10 5.3 0.88 169 PFBSTH 10101 O. 0. 106. 0. 37. 62. 10. 15. 1.45 0.25 0.48 19.9 1.62 304.3 17 4.4 0.74 160 175 175 170 101 0. 122. 0. 097. 126. 10. 15. 1.45 0.25 0.48 19.9 1.62 304.3 17 4.4 0.74 160 175 175 170 101 0. 122. 0. 097. 126. 10. 10. 10. 1.27 0.25 0.48 19.9 1.62 304.3 17 4.4 0.74 160 175 175 170 101 0. 0. 122. 0. 097. 126. 10. 10. 10. 1.27 0.25 0.48 19.9 1.62 304.3 17 4.4 0.74 160 175 175 170 101 0. 0. 122. 0. 097. 126. 10. 10. 10. 1.27 0.25 0.28 20.5 1.67 381.1 0 6.6 1.10 13 175 171 101 0. 0. 0. 122. 0. 097. 126. 10. 10. 10. 1.27 0.25 0.23 20.5 1.67 381.1 0 6.6 1.10 13 175 175 170 101 0. 0. 0. 126. 0. 49. 52. 88. 10. 5. 1.01 0.25 0.23 20.5 1.67 381.1 0 6.6 1.10 13 168 175 175 175 175 175 175 175 175 175 175														-							
STHO08 10101 0. 6. 94. 0. 18. 32. F 10. 8. 1.02 0.25 0.33 14.9 1.22 265.6 31 4.6 0.79 150 511006 1010 0. 6. 94. 0. 18. 32. A 10. 8. 0.92 0.25 0.33 14.9 1.22 265.6 31 4.6 0.79 150 511006 1010 0. 6. 94. 0. 18. 32. A 10. 8. 0.92 0.25 0.33 11.8 0.95 0.98 99.8 99.8 99.8 1.20 7.07 154 155 11.1 0.1 0.1 1.59 0.25 0.44 12.8 0.95 1.69 351.2 10 5.3 0.88 169 169 171 171 171 171 171 171 171 171 171 17																			THE COLUMN TWO IS NOT THE OWNER.	The second secon	principal and a second
FRESTH 10101 0. 6. 6. 94. 0. 18. 32. A 10. 8. 0.92 0.25 0.33 11.8 0.96 20.8 909 4.2 0.70 154 PRESTH 10101 0. 0. 0. 65. 0. 25. 41. 19. 10. 15. 1.59 0.25 0.44 20.8 1.69 351.2 10 5.3 0.88 169 PRESTH 10101 0. 102. 106. 0. 37. 62. 10. 15. 1.45 0.25 0.48 19.9 1.62 304.3 17 4.4 0.74 160 TISTMT 10101 0. 77. 38. 052. 88. 10. 15. 1.45 0.25 0.19 29.6 2.41 499.5 0. 80. 1.34 143 TISTMT 10101 0. 77. 38. 052. 88. 10. 15. 1.01 0.25 0.23 20.5 1.67 381.1 0 6.6 1.10 136 TISTMT 10101 0. 0. 0. 65. 0. 25. 41. 10. 10. 15. 1.01 0.25 0.23 20.5 1.67 381.1 0 6.6 1.10 136 TISTMT 10101 0. 70. 126. 0. 49. 62. 10. 20. 2.15 0.25 0.44 41. 4. 3.79 698.9 0 7. 9 1.92 168 118 118 118 110 10 0. 74. 663. 050. 62. 10. 2. 0. 84 0.25 0.58 1.57.1 4.65 600.9 0 8.6 1.44 160 TISTMT 10101 0. 4. 101. 0. 21. 25. 10. 20. 2.15 0.25 0.84 0.81.5 1.57.1 4.65 600.9 0 8.6 1.44 160 TISTMT 10101 0. 4. 101. 0. 21. 25. 10. 8. 1.76 0.25 0.38 1.81.1 0.9 2798.3 0 8.9 1.49 143 STIRL 10101 128. 0. 0. 118. 25. 126. 10. 10. 10. 0.77 0.25 0.15 11.1 0.91 173.1 -26 6.5 1.09 153 STIRL 10101 0. 128. 0. 0. 118. 25. 126. 10. 10. 10. 0.77 0.25 0.15 11.1 0.91 173.1 -999 5.7 0.95 149 STIRL 10101 0. 128. 0. 0103. 126. 10. 10. 10. 0.70 0.25 0.25 0.15 11.1 0.91 173.1 -26 6.5 1.09 153 STIRL 10101 0. 128. 0. 0103. 126. 10. 10. 10. 0. 0.70 0.25 0.25 0.15 11.1 0.91 173.3 999 5.7 0.95 149 STIRL 10101 0. 0. 128. 0. 0. 179. 0. 57. 55. 10. 10. 10. 10. 0. 0.77 0.25 0.15 11.1 0.91 173.3 999 5.7 0.95 149 STIRL 10101 0. 0. 128. 0. 0. 57. 55. 10. 10. 10. 10. 0. 0.77 0.25 0.25 0.15 11.1 0.91 173.3 999 5.7 0.95 149 STIRL 10101 0. 0. 0. 129. 0. 57. 55. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10									F												
FFBSTH 10101 0. 0. 65. 0. 25. 41. 10. 10. 1.59 0.25 0.44 20.8 1.69 361.2 10 5.3 0.88 69 FFBSTH 10101 0. 10. 10. 0. 0. 106. 0. 37. 62. 10. 15. 1.45 0.25 0.48 19.9 1.62 304.3 17 4.4 0.74 160 115TMT 10101 0. 122. 0. 0. -97. 126. 10. 10. 1.27 0.25 0.19 29.6 2.41 499.5 0. 8.0 1.34 43 115TMT 10101 0. 0. 65. 0. -52. 88. 10. 5. 1.01 0.25 0.23 0.23 0.5 1.67 381.1 0. 6.6 1.10 136 1.10 136 1.10 1.10 0. 0. 0. 126. 0. 0. 45. 41. 10. 10. 1.96 0.25 0.44 41.4 3.37 698.9 0. 7.9 1.92 168 115TMT 10101 0. 0. 126. 0. 49. 62. 10. 20. 2.15 0.25 0.51 57.1 4.65 600.9 0. 8.6 1.44 160 111KSG 10101 0. 74. 63. 0. -50. 62. 10. 20. 2.15 0.25 0.51 57.1 4.65 600.9 0. 8.6 1.44 160 111KSG 10101 0. 74. 63. 0. -50. 62. 10. 20. 0.84 0.25 0.31 48.1 3.92 798.3 0. 8.9 1.49 143 315.5 0. 6.7 1.12 112	STMORE	3 1010°	1 0.	6.	94.																
FFBSTM 10101 0.						0.															
TISTNT 10101 0, 77, 38, 0, -52, 88, 10, 5, 1, 01 0, 25 0, 23 20, 5 1, 67 381, 1 0 6, 6 1, 10 138 115 115 110 101 0, 0, 65, 0, 25, 41, 10, 10, 1, 96 0, 25 0, 44 41, 4, 3, 37 698, 9 0 7, 9 1, 32 168 115 111 1010 1 0, 0, 0, 126, 0, 49, 62, 10, 20, 21, 10, 20, 21, 10, 20, 25, 0, 15 17, 1 4, 65 800, 9 0 8, 6 1, 44 160 111 111 111 111 111 111 111 111 111													0.25						- pg-1-11-1		
TISINT 10101 0. 0. 65. 0. 25. 41. 10. 10. 10. 1.96 0.25 0.44 41.4 3.37 698.9 0 7.9 1.92 168 11SINT 10101 0. 0. 126. 0. 49. 62. 10. 20. 2.15 0.25 0.51 57.1 4.55 680.9 0 7.9 1.92 168 11SINT 10101 0. 74. 63. 050. 62. 10. 2. 0. 84 0.25 0.08 17.5 1.455 680.9 0 6.67 1.14 12 12 11SINT 10101 0. 4. 101. 0. 21. 25. 10. 8. 1.76 0.25 0.08 17.5 1.455 880.9 0 6.7 1.12 112 11SINT 10101 128. 0. 0128. 25. 126. 10. 10. 0. 77 0.25 0.15 11.1 0.91 173.1 -26 6.9 1.49 143 143 111 110101 128. 0. 0128. 25. 126. 10. 10. 0. 77 0.25 0.15 11.1 0.91 173.1 -26 6.9 1.9 183 11SINI 10101 80. 9. 3180. 115. 95. 10. 6. 0.70 0.25 0.15 11.1 0.91 173.3 999 5.7 0.95 150 151 11.1 0.10 1 0. 128. 0. 0103. 126. 10. 10. 0.77 0.25 0.15 11.1 0.91 173.3 999 5.7 0.95 150 151 11.1 0.10 1 0. 128. 0. 0103. 126. 10. 10. 0.77 0.25 0.25 0.15 11.1 0.91 173.3 999 5.7 0.95 150 151 11.1 0.10 1 0. 128. 0. 0103. 126. 10. 10. 0.77 0.25 0.25 0.15 11.1 0.91 173.3 999 5.7 0.95 150 151 11.1 0.10 1 0. 10. 0. 10. 0. 0. 102. 025. 24. 10. 10. 0. 0. 70 0.25 0.32 1.9 1.0 0.91 173.3 999 5.7 0.95 150 151 11.1 0.10 1 0. 0. 0. 102. 025. 24. 10. 10. 10. 0.70 0.25 0.32 1.9 1.70 178.3 999 5.7 0.95 150 151 11.1 0.10 1 0. 0. 0. 179. 0. 55. 55. 10. 23. 14.4 0.25 0.32 21.9 1.70 340.5 9 5.5 0.92 155 151 151 1010 1 0. 0. 0. 179. 0. 55. 24. 10. 10. 10. 1.44 0.25 0.32 21.9 1.70 340.5 9 5.5 0.92 155 151 151 1010 1 0. 0. 0. 123. 0. 55. 2. A 10. 10. 1.6. 0. 0.0 18. 35.4 2.88 500.5 0.76 18.27 137 HEGT65 1010 1 0. 0. 123. 0. 55. 2. A 10. 10. 1.6. 0. 0. 0. 0. 10. 0. 0. 10. 0. 0. 10. 0. 10. 0. 10. 0. 10. 0. 10. 0. 10. 0. 10. 0. 10. 0. 0. 10. 0. 0. 10. 0. 0. 10. 0. 0. 0. 0. 10. 0. 0. 0. 0. 0. 0. 0.														0.19	29.6	2.41		0			
TISMT 10101																		-	6.6	1.10	136
TIHRSG 10101 0. 74. 63. 050. 62. 10. 2. 0.84 0.25 0.08 17.5 1.43 345.5 0 6.7 1.12 112 TIHRSG 10101 0. 4. 101. 0. 21. 25. 10. 8. 1.76 0.25 0.31 48.1 3.92 798.3 0 8.3 1.49 143 STIRL 10101 128. 0. 0128. 25. 126. 10. 10. 0.77 0.25 0.15 11.1 0.91 173.1 -26 6.5 1.09 153 STIRL 10101 80. 9. 3180. 15. 95. 10. 6. 0.70 0.25 0.20 9.3 0.76 160.7 999 5.7 0.95 149 153 STIRL 10101 0. 128. 0. 0103. 126. 10. 10. 0.77 0.25 0.15 11.1 0.91 173.1 -26 6.5 1.09 153 STIRL 10101 0. 89. 31. 065. 95. 10. 6. 0.70 0.25 0.20 9.3 0.76 160.7 999 5.7 0.95 149 173 173 174 175 175 175 175 175 175 175 175 175 175																				the state of the state of	
TIHRS 10101 0. 4, 101, 0. 21, 25, 10, 8, 1,76 0,25 0,31 48,1 3,92 798,3 0 8,9 1,49 143 STIRL 10101 128, 0. 0128, 25, 126, 10, 10, 0,77 0,25 0,18 11,1 0,91 173,1 -26 6,5 1,09 183 STIRL 10101 0. 128, 0. 0103, 126, 10, 10, 0,77 0,25 0,15 11,1 0,91 173,3 999 5,7 0,95 149 STIRL 10101 0. 128, 0. 0103, 126, 10, 10, 0,77 0,25 0,15 11,1 0,91 173,3 999 5,7 0,95 149 STIRL 10101 0. 89, 31, 066, 95, 10, 6, 0,70 0,25 0,20 9,3 0,76 160,7 999 5,7 0,95 150 STIRL 10101 0. 0, 0. 102, 0. 25, 24, 10, 10, 1,44 0,25 0,32 21,9 1,78 340,5 9, 5,5 0,92 155 STIRL 10101 0. 0, 0. 179, 0. 57, 55, 10, 23, 143 0,25 0,38 28,1 2,29 323,2 9, 5,0 0,83 137 HEGTB5 10101 0. 0, 0. 123, 0. 25, 2, 4 10, 10, 1,69 0,25 0,30 28,1 12,29 323,2 9, 5,0 0,83 137 HEGTB5 10101 0. 0, 0. 123, 0. 25, 2, 4 10, 10, 1,69 0,25 0,18 35,4 2,86 500,5 0, 7,6 1,27 137 HEGTB0 10101 0. 0, 0. 122, 0. 25, 4, A 10, 10, 1,69 0,25 0,19 34,0 2,76 484,4 0, 12,8 2,14 113 HEGTB0 10101 0. 0, 122, 0. 25, 4, A 10, 10, 1,66 0,25 0,19 34,0 2,76 484,4 0, 12,8 2,14 113 HEGTB0 10101 0. 0, 122, 0. 25, 3, A 10, 10, 1,66 0,25 0,19 34,0 2,76 484,4 0, 12,4 139 HEGTB0 10101 0. 0, 122, 0. 25, 3, A 10, 10, 1,66 0,25 0,19 34,0 2,76 484,4 0, 1,4 139 HEGTB0 10101 0. 0, 124, 0. 34, 5, A 10, 10, 1,66 0,25 0,19 34,0 2,76 484,4 0, 7,4 1,22 139 HEGTB0 10101 0. 0, 124, 0. 34, 5, A 10, 10, 1,66 0,25 0,19 34,0 2,76 484,4 0, 7,4 1,24 139 HEGTB0 10101 0. 0, 251, 0. 34, 5, A 10, 10, 1,76 0,25 0,29 33,4 2,72 419,9 0 6,9 1,15 2120 HEGTB0 10101 0. 0, 250, 0, 63, -34, 10, 10, 11, 10, 10, 1,00 0,0																		_			. ,
STIRL 10101 128. 0. 0128. 25. 126. 10. 10. 0.77 0.25 0.15 11.1 0.91 173.1 -26 6.5 1.09 183 STIRL 10101 80. 9. 3180. 15. 95. 10. 6. 0.70 0.25 0.20 9.3 0.76 160.7 999 5.7 0.95 149 STIRL 10101 0. 128. 0. 0103. 126. 10. 10. 0.77 0.25 0.15 11.1 0.91 173.3 999 5.7 0.95 149 STIRL 10101 0. 89. 31. 065. 95. 10. 6. 0.70 0.25 0.15 11.1 0.91 173.3 999 5.7 0.95 149 STIRL 10101 0. 0. 102. 0. 25. 24. 10. 10. 10. 10. 25. 0.32 21.9 1.78 340.5 95.5 0.92 155 STIRL 10101 0. 0. 179. 0. 57. 55. 10. 23. 1.49 0.25 0.38 28.1 2.29 323.2 9 5.0 0.83 137 HEG185 10101 0. 0. 179. 0. 57. 55. 10. 23. 1.49 0.25 0.38 28.1 2.29 323.2 9 5.0 0.83 137 HEG185 10101 0. 0. 531. 0. 150. 14. A 10. 61. 3.34 0.25 0.38 28.1 2.29 323.2 9 5.0 0.83 137 HEG185 10101 0. 0. 531. 0. 150. 14. A 10. 61. 3.34 0.25 0.24 91.7 7.46 482.4 0 12.8 2.14 113 HEG180 10101 0. 0. 122. 0. 25. 4. A 10. 10. 1. 16. 0.25 0.12 91.7 7.46 482.4 0 12.8 2.14 113 HEG180 10101 0. 0. 278. 0. 74. 12. A 10. 30. 2.12 0.25 0.24 91.7 7.46 482.4 0 12.8 2.14 113 HEG100 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1. 56 0.25 0.19 34.0 2.76 484.4 0 7.4 1.24 139 HEG100 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1. 56 0.25 0.19 31.2 2.54 444.5 0 9.1 1.52 120 HEG100 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1. 56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEG100 10101 0. 0. 0. 124. 0. 35. 34. 10. 10. 1. 56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEG100 10101 0. 0. 0. 211. 0. 2555. 10. 10. 10. 1.72 0.25 -0.39 29.0 2.36 474.6 0 8.5 1.43 107 FCMCCL 10101 0. 0. 0. 208. 0. 2583. 10. 10. 10. 1.72 0.25 -0.39 29.0 2.36 474.6 0 8.5 1.43 107 FCNTCL 10101 0. 0. 0. 220. 0. 2594. 10. 10. 10. 1.61 0.25 0.10 29.0 29.0 2.36 474.6 0 8.5 1.42 73 FCNTCL 10101 0. 0. 0. 359. 0. 102. 28. 10. 10. 10. 1.61 0.25 0.27 0.99 2.35 448.2 0 8.5 1.43 107 FCNTCL 10101 0. 0. 0. 359. 0. 102. 28. 10. 10. 10. 1.61 0.25 0.25 0.29 2.35 448.2 0 8.5 1.42 73 FCNTCL 10101 0. 0. 0. 359. 0. 102. 28. 10. 10. 0. 10. 0. 10. 0. 0. 0. 0. 0. 0. 118. 0. 093. 126. 10. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0																					
STIRL 10101 80. 9. 3180. 15. 95. 10. 6. 0.70 0.25 0.20 9.3 0.76 160.7 999 5.7 0.95 130 STIRL 10101 0. 128. 0. 0103. 126. 10. 110. 0.77 0.25 0.15 11.1 0.91 173.3 999 5.7 0.95 150 STIRL 10101 0. 89. 31. 065. 95. 10. 6. 0.70 0.25 0.20 9.3 0.76 160.7 999 5.2 0.96 147 STIRL 10101 0. 0. 102. 0. 25. 24. 10. 10. 10. 1.44 0.25 0.32 21.9 1.78 340.5 9 5.5 0.92 155 STIRL 10101 0. 0. 179. 0. 57. 55. 10. 23. 1.49 0.25 0.38 28.1 2.29 323.2 9 5.0 0.83 137 HEGTBS 10101 0. 0. 123. 0. 25. 2 A 10. 10. 1.69 0.25 0.18 35.4 2.88 500.5 0 7.6 1.27 137 HEGTBS 10101 0. 0. 531. 0. 150. 14. A 10. 61. 3.34 0.25 0.38 28.1 2.29 323.2 9 5.0 0.83 137 HEGTBS 10101 0. 0. 531. 0. 150. 14. A 10. 61. 3.34 0.25 0.38 28.1 2.29 323.2 9 5.0 0.83 137 HEGTBS 10101 0. 0. 531. 0. 150. 14. A 10. 61. 3.34 0.25 0.24 91. 7 7. 46 482.4 0 7.4 1.24 139 HEGTBS 10101 0. 0. 0. 122. 0. 25. 4. A 10. 10. 1.66 0.25 0.19 34.0 2.76 484.4 0 7.4 1.24 139 HEGTBO 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.65 0.25 0.19 34.0 2.76 484.4 0 7.4 1.24 139 HEGTBO 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGTBO 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGTBO 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGTBO 10101 0. 0. 154. 0. 34. 5. A 10. 14. 1.41 0.25 0.20 33.4 2.72 419.9 0 6.9 1.15 126 FCMCLL 10101 0. 0. 211. 0. 2585. 10. 10. 1.72 0.25 0.40 29.8 2.43 480.1 0 8.5 1.44 710 FCMCLL 10101 0. 0. 208. 0. 2583. 10. 10. 10. 1.72 0.25 0.40 29.8 2.43 480.1 0 8.5 1.44 710 FCMCLL 10101 0. 0. 208. 0. 2583. 10. 10. 10. 1.72 0.25 0.40 29.8 2.43 480.1 0 8.5 1.44 710 FCMCLL 10101 0. 0. 0. 355. 0. 72 -49. 10. 26. 2.09 0.25 0.09 40.3 3.28 476.4 0 8.5 1.43 107 FCMCLL 10101 0. 0. 208. 0. 2583. 10. 10. 10. 1.72 0.25 0.40 29.8 2.43 480.1 0 8.5 1.43 107 FCMCLL 10101 0. 0. 208. 0. 2583. 10. 10. 10. 1.72 0.25 0.40 29.8 2.43 480.1 0 8.5 1.43 107 FCMCLL 10101 0. 0. 208. 0. 2583. 10. 10. 10. 1.72 0.25 0.25 0.09 40.3 3.28 476.4 0 8.5 1.43 107 FCMCLL 10101 0. 0. 208. 0.							-											-			
STIRL 10101 0. 128. 0. 0103. 126. 10. 10. 0.77 0.25 0.15 11.1 0.91 173.3 999 5.7 0.95 150 STIRL 10101 0. 89. 31. 065. 95. 10. 6. 0.70 0.25 0.20 9.3 0.76 160.8 999 5.2 0.96 147 STIRL 10101 0. 0. 102. 0. 25. 24. 10. 10. 10. 1.44 0.25 0.32 21.9 1.78 340.5 9 5.5 0.92 157 STIRL 10101 0. 0. 179. 0. 57. 55. 10. 23. 1.43 0.25 0.32 21.9 1.78 340.5 9 5.5 0.92 157 STIRL 10101 0. 0. 123. 0. 25. 2.4 10. 10. 10. 1.69 0.25 0.38 28.1 2.29 323.2 9 5.0 0.83 137 HEGTES 10101 0. 0. 531. 0. 150. 14. A 10. 61. 3.34 0.25 0.24 91.7 7.46 482.4 0 12.8 2.14 113 HEGTEO 10101 0. 0. 531. 0. 150. 14. A 10. 61. 3.34 0.25 0.24 91.7 7.46 482.4 0 12.8 2.14 113 HEGTEO 10101 0. 0. 278. 0. 74. 12. A 10. 10. 1.66 0.25 0.19 34.0 2.76 484.4 0 7.4 1.24 139 HEGTEO 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.66 0.25 0.19 34.0 2.76 484.4 0 7.4 1.24 139 HEGTEO 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.66 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGTEO 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGTEO 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGTEO 10101 0. 0. 122. 0. 2585. 10. 10. 11. 1.56 0.25 0.09 31.2 2.54 444.5 0 7.0 1.17 138 HEGTEO 10101 0. 0. 289. 0. 6334. 10. 10. 1.72 0.25 0.09 40.3 3.28 476.4 0 8.5 1.44 71 FCNICL 10101 0. 0. 269. 0. 6334. 10. 26. 2.09 0.25 0.09 40.3 3.28 476.4 0 8.5 1.44 71 FCNICL 10101 0. 0. 359. 0. 6334. 10. 26. 2.09 0.25 0.09 40.3 3.28 476.4 0 8.5 1.42 73 FCSTCL 10101 0. 0. 359. 0. 102. 20. 10. 42. 2.65 0.25 0.27 50.3 4.09 478.2 0 8.4 1.41 113 169TST 10101 0. 0. 335. 0. 7249. 10. 10. 1.61 0.25 0.25 0.09 40.3 3.28 476.4 0 8.5 1.43 107 FCSTCL 10101 0. 0. 335. 0. 7249. 10. 10. 1.61 0.25 0.25 0.60 40.4 3.29 412.3 0 8.2 1.43 107 FCSTCL 10101 0. 1.66 0. 20. 0. 2594. 10. 10. 1.61 0.25 0.25 0.60 40.4 3.29 412.3 0 8.2 1.43 107 FCSTCL 10101 0. 1.66 0. 20. 0. 2594. 10. 10. 10. 1.61 0.25 0.25 0.60 40.4 3.29 412.3 0 8.2 1.43 107 FCSTCL 10101 0. 126 0. 0. 66. 102. 10. 10. 10. 0.60 0.25 0.25 0.60 40.4 3.29 412.3 0 8.2 1.43 107 FCSTCL 10101 0																					CONTRACTOR OF THE PARTY OF THE
STIRL 10101 0 89. 31 0 -65. 95. 10. 6. 0.70 0.25 0.20 9.3 0.76 160.8 999 5.2 0.96 147 STIRL 10101 0. 0. 102. 0. 25. 24. 10. 10. 1.44 0.25 0.32 21.9 1.78 340.5 9 5.5 0.92 155 STIRL 10101 0. 0. 179. 0. 57. 55. 10. 23. 1.43 0.25 0.38 28.1 2.29 323.2 9 5.0 0.92 155 162 1010 0. 0. 123. 0. 25. 2. 4 10. 10. 1.69 0.25 0.18 35.4 2.88 500.5 0 7.6 1.27 137 166761 1010 0. 0. 531. 0. 150. 14. A 10. 61. 3.34 0.25 0.24 91.7 7.46 482.4 0 12.8 2.113 166760 10101 0. 0. 122. 0. 25. 4. A 10. 10. 1.65 0.25 0.19 34.0 2.76 484.4 0 7.4 1.24 139 166760 10101 0. 0. 122. 0. 25. 3. A 10. 30. 212 0.25 0.19 34.0 2.76 484.4 0 7.4 1.24 139 166700 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.19 34.0 2.76 484.4 0 7.4 1.24 139 166700 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.19 34.0 2.76 484.4 0 7.0 1.17 138 166700 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 166700 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 166700 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 166700 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.76 0.25 0.20 33.4 2.72 419.9 0 6.9 1.15 126 1600 10101 0. 0. 211. 0. 2565. 10. 10. 1.72 0.25 0.00 33.4 2.72 419.9 0 6.9 1.15 126 1600 10101 0. 0. 211. 0. 2565. 10. 10. 1.72 0.25 0.09 40.3 3.28 476.4 0 8.5 1.43 107 107 107 107 107 107 107 107 107 107																					
STIRL 10101 0. 0. 102. 0. 25. 24. 10. 10. 1.44 0.25 0.32 21.9 1.78 340.5 9 5.5 0.92 155 STIRL 10101 0. 0. 179. 0. 57. 55. 10. 23. 1.43 0.25 0.38 28.1 2.29 323.2 9 5.0 0.83 137 HEGT65 10101 0. 0. 123. 0. 25. 2. A 10. 10. 1.69 0.25 0.18 35.4 2.88 500.5 0 7.6 1.27 137 HEGT65 10101 0. 0. 531. 0. 150. 14. A 10. 61. 3.34 0.25 0.24 91.7 7.46 482.4 0 12.8 2.14 113 HEGT60 10101 0. 0. 122. 0. 25. 4. A 10. 10. 1.66 0.25 0.19 34.0 2.76 484.4 0 7.4 1.24 139 HEGT60 10101 0. 0. 278. 0. 74. 12. A 10. 30. 2.12 0.25 0.19 34.0 2.76 484.4 0 7.4 1.24 139 HEGT00 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.66 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGT00 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.29 33.4 2.72 149.9 0 6.9 1.15 126 FCMCCL 10101 0. 0. 124. 0. 34. 5. A 10. 10. 1.72 0.25 0.20 33.4 2.72 149.9 0 6.9 1.17 136 FCMCCL 10101 0. 0. 268. 0. 6334. 10. 2565. 10. 10. 1.72 0.25 0.09 40.3 3.28 476.4 0 8.5 1.49 107 FCSTCL 10101 0. 0. 208. 0. 2583. 10. 10. 1.73 0.25 -0.39 29.0 2.36 474.6 0 8.5 1.49 107 FCSTCL 10101 0. 0. 208. 0. 2583. 10. 10. 1.73 0.25 -0.39 29.0 2.36 474.6 0 8.5 1.42 73 FCSTCL 10101 0. 0. 359. 0. 102. 28. 10. 10. 1.73 0.25 -0.39 29.0 2.36 474.6 0 8.5 1.43 107 FCSTCL 10101 0. 0. 359. 0. 220. 0. 2584. 10. 10. 1.61 0.25 -0.47 28.9 2.35 448.2 0 8.4 1.41 113 HGGTST 10101 0. 0. 0. 335. 0. 7249. 10. 29. 1.64 0.25 0.25 0.27 50.3 4.09 478.2 0 8.4 1.41 113 HGGTST 10101 0. 0. 0. 335. 0. 7249. 10. 29. 1.64 0.25 0.47 28.9 2.35 448.2 0 8.5 1.43 64 HGGTST 10101 0. 0. 0. 335. 0. 7249. 10. 29. 1.64 0.25 0.25 0.47 28.9 2.35 448.2 0 8.5 1.43 150 GTACOB 10101 0. 0. 126. 0. 093. 126. 10. 10. 0. 66 0.25 0.25 0.27 50.3 4.09 478.2 0 8.4 1.41 113 HGTACOB 10101 0. 0. 63. 35. 058. 90. 10. 6. 0.69 0.25 0.25 0.30 9.4 0.76 159.0 999 5.0 0.83 150 GTACOB 10101 0. 0. 66. 24. 066. 102. 10. 7. 0.67 0.25 0.25 1.8 0.80 157.8 999 5.0 0.83 150 GTACOB 10101 0. 66. 24. 064. 109. 10. 66 0.25 0.30 9.4 0.76 159.0 999 5.0 0.83 164 GTACOB 10101 0. 66. 0. 064. 109. 10. 60. 0.05 0.25 0.30 10.1 0.32 162.8 999 4.8 0.81 167																					
STIRL 10101 0. 0. 179. 0. 57. 55. 10. 23. 1.49 0.25 0.38 28.1 2.29 323.2 9 5.0 0.83 137 HEGRES 10101 0. 0. 123. 0. 25. 2. A 10. 10. 1.69 0.25 0.18 35.4 2.88 500.5 0 7.6 1.27 137 HEGRES 10101 0. 0. 531. 0. 150. 14. A 10. 61. 3.34 0.25 0.24 91.7 7.46 482.4 0 12.8 2.14 113 HEGRES 10101 0. 0. 0. 122. 0. 25. 4. A 10. 10. 10. 1.69 0.25 0.19 34.0 2.76 482.4 0 7.4 1.24 139 HEGRES 10101 0. 0. 0. 122. 0. 25. 4. A 10. 10. 10. 1.66 0.25 0.19 34.0 2.76 484.4 0 7.4 1.24 139 HEGRES 10101 0. 0. 0. 122. 0. 25. 3. A 10. 10. 1.66 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGRES 10101 0. 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGRES 10101 0. 0. 0. 154. 0. 34. 5. A 10. 10. 1.56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGRES 10101 0. 0. 0. 211. 0. 2585. 10. 10. 14. 1.41 0.25 0.20 33.4 2.72 419.9 0 6.9 1.15 126 FCMCCL 10101 0. 0. 0. 211. 0. 2585. 10. 10. 14. 1.41 0.25 0.20 33.4 2.72 419.9 0 6.9 1.15 126 FCMCCL 10101 0. 0. 0. 259. 0. 6334. 10. 26. 2.09 0.25 0.09 40.3 3.28 476.4 0 8.5 1.43 107 FCSTCL 10101 0. 0. 0. 208. 0. 2583. 10. 10. 17.73 0.25 -0.39 29.0 2.36 474.6 0 8.5 1.43 107 FCSTCL 10101 0. 0. 0. 359. 0. 102. 28. 10. 42. 2.65 0.25 0.27 39.3 4.09 476.2 0 8.4 1.41 113 166TST 10101 0. 0. 0. 359. 0. 102. 28. 10. 42. 2.65 0.25 0.27 39.3 4.09 476.2 0 8.4 1.41 113 166TST 10101 0. 0. 0. 359. 0. 102. 28. 10. 42. 2.65 0.25 0.27 50.3 4.99 476.2 0 8.4 1.41 113 166TST 10101 0. 0. 0. 359. 0. 102. 28. 10. 42. 2.65 0.25 0.27 10.6 0.86 166.2 999 5.0 0.85 1.43 64 110 10. 10. 10. 10. 10. 10. 10. 10. 10.																					
HEGT85 10101 0. 0. 123. 0. 25. 2. A 10. 10. 1.69 0.25 0.18 35.4 2.88 500.5 0 7.6 1.27 137 HEGT85 10101 0. 0. 531. 0. 150. 14. A 10. 61. 3.34 0.25 0.24 91.7 7.46 482.4 0 12.8 2.14 113 HEGT60 10101 0. 0. 122. 0. 25. 4. A 10. 10. 1.65 0.25 0.19 34.0 2.76 484.4 0 7.4 1.24 139 HEGT60 10101 0. 0. 122. 0. 25. 4. A 10. 10. 1.65 0.25 0.19 34.0 2.76 484.4 0 7.4 1.24 139 HEGT60 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGT00 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGT00 10101 0. 0. 154. 0. 34. 5. A 10. 14. 1.41 0.25 0.20 33.4 2.72 419.9 0 6.9 1.15 126 FMCCL 10101 0. 0. 211. 0. 2585. 10. 10. 12. 0. 12. 0.25 0.40 29.8 2.43 483.1 0 8.6 1.44 71 FCNCCL 10101 0. 0. 208. 0. 2585. 10. 10. 1.72 0.25 0.40 29.8 2.43 483.1 0 8.6 1.44 71 FCSTCL 10101 0. 0. 208. 0. 2583. 10. 10. 12. 2.65 0.25 0.29 32.4 25.1 4.09 478.2 0 8.4 1.41 113 169TST 10101 0. 0. 335. 0. 22. 28. 10. 42. 2.65 0.25 0.27 50.3 4.09 478.2 0 8.4 1.41 113 169TST 10101 0. 0. 335. 0. 7249. 10. 29. 16.4 0.25 0.25 0.47 28.9 2.35 448.2 0 8.4 1.41 113 169TST 10101 0. 0. 335. 0. 7249. 10. 29. 16.4 0.25 0.25 0.27 50.3 4.09 478.2 0 8.4 1.41 113 169TST 10101 0. 118. 0. 093. 126. 10. 10. 10. 1.61 0.25 0.47 28.9 2.35 448.2 0 8.5 1.43 64 1.41 113 169TST 10101 0. 0. 335. 0. 7249. 10. 29. 1.64 0.25 0.25 0.27 50.3 4.09 478.2 0 8.4 1.41 113 169TST 10101 0. 126. 0. 91. 24. 066. 102. 10. 7. 0.67 0.25 0.25 0.21 8.8 0.8 155.0 999 5.3 0.88 158 158 150 150 0. 126. 0. 0102. 126. 10. 10. 0. 0.68 0.25 0.25 0.21 8.3 0.88 149.7 999 5.0 0.84 151 0.00 0. 126. 0. 0102. 126. 10. 10. 0. 0.68 0.25 0.25 0.27 8.8 0.72 153.2 999 4.8 0.80 155 0.74 10101 0. 0. 66. 24. 062. 102. 10. 7. 0.65 0.25 0.25 0.25 0.25 8.8 0.72 153.2 999 4.8 0.81 150 0.74 10101 0. 106. 0. 69. 17. 0. 64. 109. 10. 10. 0. 66. 0.25 0.30 0.94 0.76 159.0 999 4.8 0.81 167 0.74 10101 0. 108. 0. 68. 0. 60. 0. 64. 109. 10. 0. 66. 0.25 0.30 0.94 0.76 159.0 999 4.7 0.79 158 0.00 1001 0. 108. 0. 084. 126. 10. 10. 0. 0. 0.05 0.25									,												
HEGT65 10101 0. 0. 531. 0. 150. 14. A 10. 61. 3.34 0.25 0.24 91.7 7.46 482.4 0 12.8 2.14 113 HEGT60 10101 0. 0. 122. 0. 25. 4. A 10. 10. 1.66 0.25 0.19 34.0 2.76 484.4 0 7.4 1.24 139 HEGT60 10101 0. 0. 0. 278. 0. 74. 12. A 10. 30. 2.12 0.25 0.24 55.1 4.49 476.1 0 9.1 1.52 120 HEGT00 10101 0. 0. 122. 0. 25. 3. A 10. 10. 15.66 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGT00 10101 0. 0. 122. 0. 25. 3. A 10. 10. 15.66 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGT00 10101 0. 0. 154. 0. 34. 5. A 10. 10. 1.56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGT00 10101 0. 0. 211. 0. 2565. 10. 10. 1.72 0.25 -0.40 29.8 2.43 483.1 0 8.6 1.44 71 FONCOL 10101 0. 0. 269. 0. 6334. 10. 26. 2.03 0.25 0.09 40.3 3.28 476.4 0 8.5 1.43 107 FCSTCL 10101 0. 0. 269. 0. 6334. 10. 26. 2.03 0.25 0.09 40.3 3.28 476.4 0 8.5 1.43 107 FCSTCL 10101 0. 0. 359. 0. 102. 28. 10. 42. 2.65 0.25 0.27 50.3 4.09 476.2 0 8.4 1.41 113 166TST 10101 0. 0. 220. 0. 2594. 10. 10. 1.73 0.25 -0.47 28.9 2.35 448.2 0 8.5 1.43 64 126 10101 0. 0. 0. 335. 0. 7249. 10. 10. 10. 1.61 0.25 0.22 10.6 0.86 166.2 999 5.3 0.88 158 GTSOAR 10101 0. 118. 0. 093. 126. 10. 10. 10. 1.61 0.25 0.25 10.6 0.86 166.2 999 5.3 0.88 158 GTSOAR 10101 0. 126. 0. 066. 102. 10. 7. 0.67 0.25 0.25 10.6 0.86 166.2 999 5.0 0.84 151 GTACOB 10101 0. 126. 0. 075. 126. 10. 10. 0. 68 0.25 0.18 9.6 0.78 152.0 999 5.0 0.83 150 GTACOB 10101 0. 126. 0. 087. 126. 10. 10. 0. 68 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 150 GTACOB 10101 0. 0. 66. 24. 062. 102. 10. 7. 0.65 0.25 0.25 0.30 9.4 0.76 159.0 999 4.9 0.83 150 GTACOB 10101 0. 0. 66. 24. 062. 102. 10. 7. 0.65 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 165 GTACOB 10101 0. 66. 0. 69. 17. 126. 10. 10. 10. 0. 60. 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 165 GTACOB 10101 0. 108. 0. 081. 126. 10. 10. 0. 60. 0.25 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 165 GTACOB 10101 0. 108. 0. 081. 126. 10. 10. 0. 60. 0.25 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 165 GTACOB 10101 0. 0. 60. 0. 081. 126. 10. 10. 0. 60. 0.25 0.25 0.25 9.8 0.80 157.0 999	HEGT85	5 10101	1 0.						A												
HEGTGO 10101 O. O. 122. O. 25. 4. A 10. 10. 1.66 0.25 0.19 34.0 2.76 484.4 O 7.4 1.24 139 HEGTGO 10101 O. O. 278. O. 74. 12. A 10. 30. 2.12 0.25 0.24 55.1 4.49 476.1 O 9.1 1.52 120 HEGTGO 10101 O. O. 122. O. 25. 3. A 10. 10. 1.56 0.25 0.19 31.2 2.54 44.5 O 7.0 1.17 138 HEGTGO 10101 O. O. 154. O. 34. 5. A 10. 10. 1.56 0.25 0.19 31.2 2.54 44.5 O 7.0 1.17 138 HEGTGO 10101 O. O. 154. O. 34. 5. A 10. 14. 1.41 0.25 0.20 33.4 2.72 419.9 O 6.9 1.15 126 FCMCCL 10101 O. O. 211. O. 25. -65. 10. 10. 1.72 0.25 -0.40 29.8 2.43 483.1 O 8.6 1.44 71 FCNCCL 10101 O. O. 269. O. 63. -34. 10. 26. 2.03 0.25 0.09 40.3 3.28 476.4 O 8.5 1.43 107 FCSTCL 10101 O. O. 208. O. 25. -83. 10. 10. 1.73 0.25 0.39 29.0 2.36 474.6 O 8.5 1.43 107 FCSTCL 10101 O. O. 359. O. 102. 26. 10. 42. 2.65 0.25 0.27 50.3 4.09 476.2 O 8.4 1.41 113 HEGTST 10101 O. O. 220. O. 25. -94. 10. 10. 1.61 0.25 0.27 50.3 4.09 476.2 O 8.4 1.41 113 HEGTGO 10101 O. O. 335. O. 72. -49. 10. 10. 1.61 0.25 0.27 50.3 4.09 476.2 O 8.5 1.43 64 HEGTST 10101 O. 0. 335. O. 72. -49. 10. 10. 1.61 0.25 0.25 0.27 50.3 4.09 476.2 O 8.5 1.43 64 HEGTGO 10101 O. 118. O. O. -93. 126. 10. 10. 0.71 0.25 0.22 10.6 0.86 166.2 999 5.3 0.88 158 GTACOB 10101 O. 126. O. O. -66. 102. 10. 7. 0.67 0.25 0.22 10.6 0.86 166.2 999 5.3 0.88 154 GTACOB 10101 O. 66. 24. O. -62. 102. 10. 7. 0.65 0.25 0.27 8.8 0.72 153.2 999 4.9 0.83 156 GTACIS 10101 O. 66. 24. O. -64. 109. 10. 6. 0.66 0.25					531.		150.														
HEGTGO 10101 0. 0. 278. 0. 74. 12. A 10. 30. 2.12 0.25 0.24 55.1 4.49 476.1 0 9.1 1.52 120 HEGTGO 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGTGO 10101 0. 0. 154. 0. 34. 5. A 10. 14. 1.41 0.25 0.20 33.4 2.72 419.9 0 6.9 1.15 126 FCMCCL 10101 0. 0. 211. 0. 2585. 10. 10. 10. 1.72 0.25 -0.40 29.8 2.43 463.1 0 8.6 1.44 71 FCMCCL 10101 0. 0. 259. 0. 6334. 10. 26. 2.09 0.25 0.09 40.3 3.28 476.4 0 8.5 1.43 107 FCSTCL 10101 0. 0. 208. 0. 2583. 10. 10. 17.3 0.25 -0.39 29.0 2.36 474.6 0 8.5 1.42 73 FCSTCL 10101 0. 0. 359. 0. 102. 26. 10. 42. 2.65 0.25 0.27 50.3 4.09 478.2 0 8.4 1.41 113 160 TST 10101 0. 0. 220. 0. 2594. 10. 10. 10. 1.61 0.25 -0.47 28.9 2.35 448.2 0 8.5 1.43 64 160 TST 10101 0. 0. 335. 0. 7249. 10. 29. 1.64 0.25 0.06 40.4 3.29 412.3 0 8.2 1.37 99 (TSOAR 10101 0. 118. 0. 093. 126. 10. 10. 0.71 0.25 0.25 0.24 9.6 0.78 162.0 999 5.3 0.88 158 GTSOAR 10101 0. 126. 0. 0102. 126. 10. 10. 0. 7. 0.67 0.25 0.24 9.6 0.78 162.0 999 5.3 0.88 158 GTAC12 10101 0. 126. 0. 0102. 126. 10. 10. 0. 68 0.25 0.21 8.3 0.68 149.7 999 4.9 0.83 150 GTAC12 10101 0. 86. 24. 062. 102. 10. 7. 0.65 0.25 0.27 8.8 0.72 153.2 999 4.8 0.80 155 GTAC16 10101 0. 86. 24. 062. 102. 10. 7. 0.66 0.25 0.27 8.8 0.72 153.2 999 4.8 0.80 155 GTAC16 10101 0. 89. 17. 064. 109. 10. 0. 68 0.25 0.25 0.20 10.4 0.76 159.0 999 5.0 0.83 160 GTAC16 10101 0. 89. 17. 064. 109. 10. 0. 68 0.25 0.25 0.28 10.4 0.76 159.0 999 4.7 0.79 158 GTMC16 10101 0. 89. 17. 064. 109. 10. 0. 66. 0.25 0.20 10.4 0.76 159.0 999 4.8 0.80 155 GTMC16 10101 0. 89. 17. 064. 109. 10. 0. 66. 0.25 0.20 10.4 0.76 159.0 999 5.0 0.83 165 GTMC16 10101 0. 89. 17. 064. 109. 10. 0. 60. 0.25 0.28 10.4 0.76 159.0 999 5.0 0.83 165 GTMC16 10101 0. 108. 0. 60. 0. 60. 60. 0. 60. 60. 0. 60. 60								4.	Α	10.	10.	1.65	0.25		-	2.76	484.4	0			
HEGTOO 10101 0. 0. 122. 0. 25. 3. A 10. 10. 1.56 0.25 0.19 31.2 2.54 444.5 0 7.0 1.17 138 HEGTOO 10101 0. 0. 154. 0. 34. 5. A 10. 14. 1.41 0.25 0.20 33.4 2.72 419.9 0 6.9 1.15 126 FCMCCL 10101 0. 0. 211. 0. 2585. 10. 10. 10. 1.72 0.25 -0.40 29.8 2.43 483.1 0 8.6 1.44 71 FCMCCL 10101 0. 0. 269. 0. 6334. 10. 26. 2.09 0.25 0.09 40.3 3.28 476.4 0 8.5 1.43 107 FCSTCL 10101 0. 0. 208. 0. 2583. 10. 10. 1.73 0.25 -0.39 29.0 2.36 474.6 0 8.5 1.42 73 FCSTCL 10101 0. 0. 359. 0. 102. 28. 10. 42. 2.65 0.25 0.25 0.27 50.3 4.09 478.2 0 8.4 1.41 113 166 166 1010 0. 0. 335. 0. 102. 28. 10. 42. 2.65 0.25 0.25 0.27 50.3 40.9 478.2 0 8.5 1.43 64 166 17 1010 0. 0. 335. 0. 7249. 10. 10. 10. 1.61 0.25 -0.47 28.9 2.35 448.2 0 8.5 1.43 64 166 17 1010 0. 0. 335. 0. 7249. 10. 29. 1.64 0.25 0.06 40.4 3.29 412.3 0 8.2 1.37 99 GTSOAR 10101 0. 91. 24. 066. 102. 10. 7. 0.67 0.25 0.22 10.6 0.86 166.2 999 5.0 0.84 151 GTACOS 10101 0. 126. 0. 0102. 126. 10. 10. 0. 0.68 0.25 0.16 9.6 0.78 165.0 999 5.0 0.84 151 GTACOS 10101 0. 126. 0. 058. 90. 10. 6. 0.63 0.25 0.21 8.3 0.68 149.7 999 5.0 0.83 164 GTAC12 10101 0. 106. 0. 062. 102. 10. 7. 0.65 0.25 0.27 8.8 0.72 153.2 999 4.8 0.80 155 GTAC16 10101 0. 106. 0. 064. 109. 10. 10. 0.66 0.25 0.30 9.4 0.76 159.0 999 5.0 0.83 164 GTAC16 10101 0. 106. 0. 064. 126. 10. 10. 0. 0.68 0.25 0.30 9.4 0.76 159.0 999 5.0 0.83 165 GTMC16 10101 0. 108. 0. 064. 126. 10. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0																	476.1	0		1.52	
FCMCCL 10101 0. 0. 211. 0. 2565. 10. 10. 10. 1.72 0.25 -0.40 29.8 2.43 463.1 0 8.6 1.44 71 FCMCCL 10101 0. 0. 269. 0. 6334. 10. 26. 2.03 0.25 0.09 40.3 3.28 476.4 0 8.5 1.43 107 FCSTCL 10101 0. 0. 208. 0. 2583. 10. 10. 11.73 0.25 -0.39 29.0 2.36 474.6 0 8.5 1.42 73 107 FCSTCL 10101 0. 0. 359. 0. 102. 28. 10. 42. 2.65 0.25 0.27 50.3 4.09 470.2 0 8.4 1.41 113 166TST 10101 0. 0. 220. 0. 2594. 10. 10. 1.61 0.25 -0.47 28.9 2.35 448.2 0 8.5 1.43 64 166TST 10101 0. 0. 335. 0. 7249. 10. 10. 1.61 0.25 -0.47 28.9 2.35 448.2 0 8.5 1.43 64 166TST 10101 0. 118. 0. 093. 126. 10. 10. 10. 1.61 0.25 0.22 10.6 0.86 166.2 999 5.3 0.88 158 GTSOAR 10101 0. 91. 24. 066. 102. 10. 7. 0.67 0.25 0.22 10.6 0.86 166.2 999 5.3 0.88 158 GTSOAR 10101 0. 126. 0. 0102. 126. 10. 10. 0.68 0.25 0.24 9.6 0.78 162.0 999 5.4 0.90 154 GTAC08 10101 0. 126. 0. 0610.2 126. 10. 10. 0.68 0.25 0.21 8.3 0.68 149.7 999 4.9 0.83 150 GTAC12 10101 0. 112. 0. 087. 126. 10. 10. 0. 60. 0.63 0.25 0.21 8.3 0.68 149.7 999 4.9 0.83 150 GTAC12 10101 0. 112. 0. 062. 102. 102. 10. 7. 0.67 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 164 GTAC12 10101 0. 66. 24. 062. 102. 10. 7. 0.65 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 164 GTAC16 10101 0. 106. 0. 69. 17. 0. 64. 109. 10. 10. 0.69 0.25 0.30 10.1 0.32 162.8 999 4.8 0.80 155 GTAC16 10101 0. 106. 0. 69. 17. 064. 109. 10. 10. 0.69 0.25 0.30 10.4 0.85 162.9 999 5.0 0.83 165 GTMC16 10101 0. 108. 0. 64. 126. 10. 10. 0. 66. 0.25 0.30 10.4 0.85 162.9 999 5.0 0.83 165														,		2.54	444.5			1.17	7 138
FCNICCL 10101 0. 0. 269. 0. 6334. 10. 26. 2.09 0.25 0.09 40.3 3.28 476.4 0 8.5 1.43 107 FCSTCL 10101 0. 0. 208. 0. 2583. 10. 10. 11.73 0.25 -0.39 29.0 2.36 474.6 0 8.5 1.42 73 FCSTCL 10101 0. 0. 359. 0. 102. 26. 10. 42. 2.65 0.25 0.27 50.3 4.09 478.2 0 8.4 1.41 113 167 167 107 10. 0. 0. 220. 0. 2594. 10. 10. 10. 1.61 0.25 -0.47 28.9 2.35 448.2 0 8.5 1.43 64 166 167 107 10. 0. 0. 335. 0. 7249. 10. 29. 1.64 0.25 0.06 40.4 3.29 412.3 0 8.2 1.37 99 167 107 10. 0. 118. 0. 093. 126. 10. 10. 0.71 0.25 0.22 10.6 0.86 166.2 999 5.3 0.88 158 167 107 10. 0. 91. 24. 066. 102. 10. 7. 0.67 0.25 0.24 9.6 0.78 162.0 999 5.0 0.84 151 107 10. 0. 126. 0. 0102. 126. 10. 10. 0.68 0.25 0.26 9.6 0.78 162.0 999 5.0 0.84 151 107 10. 0. 126. 0. 0102. 126. 10. 10. 0.68 0.25 0.26 9.6 0.78 162.0 999 5.0 0.83 150 167 107 10. 0. 126. 0. 087. 126. 10. 10. 0.68 0.25 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 164 167 10. 0. 10. 0.68 0.25 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 164 167 10. 0. 10. 0. 66. 0.63 0.25 0.25 0.27 163.2 999 4.8 0.80 155 167 10. 0. 1				٠.																	
FCSTCL 10101 0. 0. 208. 0. 2583. 10. 10. 1.73 0.25 -0.39 29.0 2.36 474.6 0 8.5 1.42 73 FCSTCL 10101 0. 0. 359. 0. 102. 26. 10. 42. 2.65 0.25 0.27 50.3 4.09 476.2 0 8.4 1.41 113 166TST 10101 0. 0. 220. 0. 2594. 10. 10. 10. 1.61 0.25 -0.47 28.9 2.35 448.2 0 8.5 1.43 64 166TST 10101 0. 0. 335. 0. 7249. 10. 29. 1.64 0.25 0.06 40.4 3.29 412.3 0 8.2 1.37 99 GTSOAR 10101 0. 118. 0. 093. 126. 10. 10. 0.71 0.25 0.22 10.6 0.86 166.2 99 5.3 0.88 158 GTSOAR 10101 0. 91. 24. 066. 102. 10. 7. 0.67 0.25 0.24 9.6 0.78 162.0 999 5.0 0.84 151 GTAC08 10101 0. 126. 0. 0102. 126. 10. 10. 0.68 0.25 0.16 9.6 0.78 155.0 999 5.4 0.90 154 GTAC12 10101 0. 112. 0. 058. 90. 10. 6. 0.63 0.25 0.21 8.3 0.68 149.7 999 4.9 0.83 150 GTAC12 10101 0. 112. 0. 087. 126. 10. 10. 0.68 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 164 GTAC12 10101 0. 16. 0. 66. 24. 062. 102. 10. 7. 0.65 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 164 GTAC12 10101 0. 10. 0. 66. 24. 062. 102. 10. 7. 0.65 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 164 GTAC12 10101 0. 106. 0. 081. 126. 10. 10. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0																					
FCSTCL 10101 0. 0. 359. 0. 102. 28. 10. 42. 2.65 0.25 0.27 50.3 4.09 478.2 0 8.4 1.41 113 16GTST 10101 0. 0. 220. 0. 2594. 10. 10. 10. 1.61 0.25 -0.47 28.9 2.35 448.2 0 8.5 1.43 64 16GTST 10101 0. 0. 335. 0. 7249. 10. 29. 1.64 0.25 0.06 40.4 3.29 412.3 0 8.2 1.37 99 17. 066. 102. 10. 10. 0.71 0.25 0.22 10.6 0.86 166.2 999 5.3 0.88 158 158 158 159 159 159 159 159 159 159 159 159 159																		_			
IGGTST 10101 0. 0. 220. 0. 25. -94. 10. 10. 1.61 0.25 -0.47 28.9 2.35 448.2 0 8.5 1.43 64 IGGTST 10101 0. 0. 335. 0. 72. -49. 10. 29. 1.64 0.25 0.06 40.4 3.29 412.3 0 8.2 1,37 99 GTSOAR 10101 0. 118. 0. 0. -93. 126. 10. 10. 0.71 0.25 0.22 10.6 0.86 166.2 999 5.3 0.88 158 GTSOAR 10101 0. 91. 24. 0. -66. 102. 10. 7. 0.67 0.25 0.24 9.6 0.78 162.0 999 5.0 0.84 151 GTAC08 10101 0. 126. 10. 10. 0.68 0.25 0.21 8.3 0.68 </td <td></td>																					
16GTST 10101 0. 0. 335. 0. 72. -49. 10. 29. 1.64 0.25 0.06 40.4 3.29 412.3 0 8.2 1.37 99 GTSOAR 10101 0. 118. 0. 0. -93. 126. 10. 10. 0.71 0.25 0.22 10.6 0.86 166.2 999 5.3 0.88 158 GTSOAR 10101 0. 91. 24. 0. -66. 102. 10. 7. 0.67 0.25 0.24 9.6 0.78 162.0 999 5.0 0.84 151 GTAC08 10101 0. 126. 0. 0. -102. 126. 10. 10. 0.68 0.25 0.16 9.6 0.78 155.0 999 5.4 0.90 154 GTAC08 10101 0. 63. 35. 0. -58. 90. 10. 6. 0.63 0.25 0.21 8.3 0.68 </td <td></td> <td>-</td> <td></td> <td></td> <td></td>																		-			
GTSOAR 10101 0. 118. 0. 093. 126. 10. 10. 0.71 0.25 0.22 10.6 0.86 166.2 999 5.3 0.88 158 GTSOAR 10101 0. 91. 24. 066. 102. 10. 7. 0.67 0.25 0.24 9.6 0.78 162.0 999 5.0 0.84 151 GTACOB 10101 0. 126. 0. 0102. 126. 10. 10. 0.68 0.25 0.16 9.6 0.78 155.0 999 5.4 0.90 154 GTACOB 10101 0. 63. 35. 058. 90. 10. 6. 0.63 0.25 0.21 8.3 0.68 149.7 999 4.9 0.83 150 GTAC12 10101 0. 112. 0. 087. 126. 10. 10. 0.68 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 164 GTAC12 10101 0. 86. 24. 062. 102. 10. 7. 0.65 0.25 0.27 8.8 0.72 153.2 999 4.8 0.80 155 GTAC16 10101 0. 106. 0. 081. 126. 10. 10. 0.69 0.25 0.27 8.8 0.72 153.2 999 4.8 0.80 157 GTAC16 10101 0. 89. 17. 064. 109. 10. 10. 0.69 0.25 0.30 10.1 0.32 162.8 999 4.8 0.81 167 GTAC16 10101 0. 108. 0. 084. 126. 10. 10. 0.70 0.25 0.28 10.4 0.85 162.9 999 5.0 0.83 165																					
GTSOAR 10101 0. 91. 24. 066. 102. 10. 7. 0.67 0.25 0.24 9.6 0.78 162.0 999 5.0 0.84 151 GTACOB 10101 0. 126. 0. 0102. 126. 10. 10. 0.68 0.25 0.16 9.6 0.78 155.0 999 5.4 0.90 154 GTACOB 10101 0. 63. 35. 058. 90. 10. 6. 0.63 0.25 0.21 8.3 0.68 149.7 999 4.9 0.83 150 GTAC12 10101 0. 112. 0. 087. 126. 10. 10. 0.68 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 164 GTAC12 10101 0. 86. 24. 062. 102. 10. 7. 0.65 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 164 GTAC16 10101 0. 106. 0. 081. 126. 10. 10. 0.69 0.25 0.27 8.8 0.72 153.2 999 4.8 0.80 155 GTAC16 10101 0. 89. 17. 064. 109. 10. 10. 0.69 0.25 0.30 10.1 0.32 162.8 999 4.8 0.81 167 GTAC16 10101 0. 108. 0. 084. 126. 10. 10. 0.70 0.25 0.28 10.4 0.85 162.9 999 5.0 0.83 165			· •																		
GTACOB 10101 O. 126. O. 0102. 126. 10. 10. 0.68 0.25 0.16 9.6 0.78 155.0 999 5.4 0.90 154 GTACOB 10101 O. 63. 35. O58. 90. 10. 6. 0.63 0.25 0.21 8.3 0.68 149.7 999 4.9 0.83 150 GTAC12 10101 O. 112. O. 087. 126. 10. 10. 0.68 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 164 GTAC12 10101 O. 86. 24. O62. 102. 10. 7. 0.65 0.25 0.27 8.8 0.72 153.2 999 4.8 0.80 155 GTAC16 10101 O. 106. O. 081. 126. 10. 10. 0.69 0.25 0.30 10.1 0.32 162.8 999 4.8 0.81 167 GTAC16 10101 O. 89. 17. O64. 109. 10. 8. 0.66 0.25 0.30 9.4 0.76 159.0 999 4.7 0.79 158 GTMC16 10101 O. 108. O. 084. 126. 10. 10. 0.70 0.25 0.28 10.4 0.85 162.9 999 5.0 0.83 165																					
GTACO8 10101 0. 63. 35. 058. 90. 10. 6. 0.63 0.25 0.21 8.3 0.68 149.7 999 4.9 0.83 150 GTAC12 10101 0. 112. 0. 087. 126. 10. 10. 0.68 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 164 GTAC12 10101 0. 86. 24. 062. 102. 10. 7. 0.65 0.25 0.27 8.8 0.72 153.2 999 4.8 0.80 155 GTAC16 10101 0. 106. 0. 081. 126. 10. 10. 0.69 0.25 0.30 10.1 0.32 162.8 999 4.8 0.81 167 GTAC16 10101 0. 89. 17. 064. 109. 10. 8. 0.66 0.25 0.30 9.4 0.76 159.0 999 4.7 0.79 158 GTMC16 10101 0. 108. 0. 084. 126. 10. 10. 0.70 0.25 0.28 10.4 0.85 162.9 999 5.0 0.83 165	GTAC08	10101	1 0.				•														
GTAC12 10101 0. 112. 0. 087. 126. 10. 10. 0.68 0.25 0.25 9.8 0.80 157.8 999 5.0 0.83 164 GTAC12 10101 0. 86. 24. 062. 102. 10. 7. 0.65 0.25 0.27 8.8 0.72 153.2 999 4.8 0.80 155 GTAC16 10101 0. 106. 0. 081. 126. 10. 10. 0.69 0.25 0.30 10.1 0.32 162.8 999 4.8 0.81 167 GTAC16 10101 0. 89. 17. 064. 109. 10. 8. 0.66 0.25 0.30 9.4 0.76 159.0 999 4.7 0.79 158 GTMC16 10101 0. 108. 0. 084. 126. 10. 10. 0.70 0.25 0.28 10.4 0.85 162.9 999 5.0 0.83 165	GTAC08	10101				0.															
GTAC12 10101 0. 86. 24. 062. 102. 10. 7. 0.65 0.25 0.27 8.8 0.72 153.2 999 4.8 0.80 155 GTAC16 10101 0. 106. 0. 081. 126. 10. 10. 0.69 0.25 0.30 10.1 0.32 162.8 999 4.8 0.81 167 GTAC16 10101 0. 89. 17. 064. 109. 10. 8. 0.66 0.25 0.30 9.4 0.76 159.0 999 4.7 0.79 158 GTMC16 10101 0. 108. 0. 084. 126. 10. 10. 0.70 0.25 0.28 10.4 0.85 162.9 999 5.0 0.83 165								126.													
GTAC16 10101 0. 106. 0. 081. 126. 10. 10. 0.69 0.25 0.30 10.1 0.32 162.8 999 4.8 0.81 167 GTAC16 10101 0. 89. 17. 064. 109. 10. 8. 0.66 0.25 0.30 9.4 0.76 159.0 999 4.7 0.79 158 GTMC16 10101 0. 108. 0. 084. 126. 10. 10. 0.70 0.25 0.28 10.4 0.85 162.9 999 5.0 0.83 165										10.	7.	0.65	0.25	0.27							
GTWC16 10101 0. 108, 0. 084, 126, 10, 10, 0.70 0.25 0.28 10.4 0.85 162.9 999 5.0 0.83 165															10.1	0.32	162.8	999	4.8	0.81	167
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,									•										4.7		
GTWC16 10101 0. 95, 13. 071, 113, 10, 8. 0.68 0.25 0.28 9.9 0.80 161.1 999 4.9 0.62 155																					
	GTWC16	10101	. O.	95.	13.	Ο.	-71.	113.		10.	8.	0.68	0.25	0.28	9.9	0.80	161.1	999	4.9	0.62	. 155

GENERAL ELEC.RIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

										S'015	56	=====			A 20 er 2			
	200.00						COGEN**			1130	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WRT
CS 1	PROUS	DISTIL F	ESIDE	COAL	DISHE	RESIDL	COAL	REOD MW	POWER MW		ZHEAT RATIO		COST *10**6	COST	EQVL	(%)	CHRE	ENRG
C1626	10101	0.	100.	0.	0.	-76.	126.	10.	10.	0,80	0.25	0.33	10.7	0.87	166.8		4.9	0.82 17
C1626	10101	Ο.	124.	0.	Ο.	-89.	159.	10.	14.	0,86	0.25	0.36	12.1	0.98	170.9	999	5.0	0.84 16
C1622	10101	Ο.	98.	ο.	ο.	-74.	126.	10.	10.	0.79	0.25	0.35	10.4	0.84	164.0	999	4.8	0.80 17
C1622	10101	0.	113.	O.	0.	-62.	148.	10.	13.	0.83	0.25	0.37	11.3	0.92	167.9	999	4.8	0.81 16
C1222	10101	0.	98.	0.	0.	-73.	126.	10.	10.	0.78	0.25	0.35	10.1	0.82	160.2	999	4.7	0.79 17
C1222	10101	0.	112.	0.	o.	-81.	148.	10.	13.	0,82	0.25	0.37	11.0	0.90	163.3	999	4.8	0.80 16
C0822	10101	0.	94,	ο.	0.	-69.	126.	10.	10.	0.78	0.25	0.37	10.2	0.83	164.9	999	4.6	0.77 17
CC0822	10101	0.	<u>95</u> .	0.	0.	-70.	127.	10.	10.	0.79	0.25	0.38	10.3	0.84	165.1	999	4.6	0.77 16
STIG15	10101	0.	132.	0.	0.	-107.	126.	10.	10.	0.81	0.25	0.12	10.7	0.87	146.1	939	5.8	0.97 14
STIG15	10101	0.	2846.	0.	٥.	-2067.	2 653.	10.	318.	5,91	0.25	0.17	97.7	7.95	112.4	0	42.2	7.06 22
STIGIO	10101	0.	124.	0.	О.	-99.	126.	10.	10.	0.77	0.25	0.18	10.2	0.83	144.5	999	5.4	0.91 15
TIGIO	10101	0.	279.	٥.	0.	-207.	285.	10.	29.	1.09	0.25	0.22	16.0	1.30	137.8	0	7.3	1.23 13
STIGIS	10101	0.	120.	0.	٥.	-96.	126.	10.	10.	0.76	0.25	0.20	10.0	0.82	144.0	999	5.3	0.89 15
STIGIS	10101	٥.	176.	0.	0,	-133.	185.	10.	17.	0.89	0.25	0.23		1.00	142.6	0	6.0	1.00 14
EADV3	10101	0.	110.	o.	ο.	-86.	126.	10.	10.	0.82	0.25	0.27	13.3	1.08	198.5	46	5.4	0.91 15
DEADV3	10101	0.	159.	o.	0.	-117.	185.	10.	17.	0.94	0.25	0.30	16.6	1.36	205.4	5	6.0	1.00 14
EHTPM	10101	٥.	97.	0.	0.	-73.	126.	10.	10.	0.84	0.25	0.35	13.0	1.06	212.9	101	5.1	0.85 16
EHTPM	10101	Ο,	88.	10.	٥.	-64.	116.	10.	9.	0.82	0.25	0.34	12.5	1.02	210.6		5.0	0.84 15
ESØA3	10101	116.	٥.	0.	-116.	25.	126.	10.	10.	0.84	0.25	0.23	13.9	1.13	203.3	0	6.4	1.08 15
DESGA3	10101	186.	٥.	0.	-186.	48.	205.	10.	20.	1.08	0.25	0.27	21.3	1.74	239.9	0	8.2	1.37 14
DESOA3	10101	Ö.	116.	0.	0.	-91.	126.	10.	10.	0.84	0.25	0.23	13.9	1.13	203.3	18	5.7	0.95 15
DESCA3	10101	٥.	186.	o.	ο.	-138.	205.	10,	20.	1.08	0.25	0.27	21.3	1.74	239.9	0	7.0	1.17 13
STSGAD	10101	117.	Ò.	ο.	-117.	25.	126.	10.	10.	0.67	0.25	0.22	9.3	0.76	149.0	0	5.8	0.98 16
TSGAD	10101	79.	8.	27.	-79.	17.	99.	10.	7.	0.64	0.25	0.24	8.4	0.69	146.2	999	5.3	0.89 15
TRAUS	10101	98.	Ō.	0.	-98.	25.	126.	10.	10.	0.72	0,25	0.34	11.0	0.90	173.8	999	5.4	0.90 17
TRA08	10101	102.	٥.	Ο.	-102.	26.	131.	10.	11.	0.73	0.25	0.35	11.3	0.92	174.9	999	5.4	0.91 16
TRA12	10101	98.	0.	0.	-98.	25.	126.	10.	10.	0.72	0,25	0.35	11.0	0.89	174.1	999	5.4	0.90 17
TRA12	10101	101.	٥.	0.	-101.	26.	130.	10.	113	0.72	0.25	0.36	11.2	0.91	175.1	999	5.4	0.90 16
TRA16	10101	98.	0.	0.	-98.	25.	126.	10.	10.	0.72	0.25	0.35	11.3	0.92	180.0	999	5.4	0.91 17
STRA16		97.	O.	1.	-97.	24.	125.	10.	10.	0.72	0.25	0.35	11.2	0.92	179.8		5.4	0.90 16
TR208	10101	107.	Ö.	o.	-107.	25.	126.	10.	10.	C.70	0.25	0.29	10.4		165.5		5.6	0.94 16
TR208	10101	89.	4.	14.	-89.	20.	112.	10.	8.	0.68	0.25	0.29	9.8	0.80	163.0		5.4	0.90 15
TR212		103,	0.	0.	-103.	25.	126.	10,	10.	0.71	0.25	0.31	10.7	0.87	169.3		5.5	0.93 17
TR212		92.	3.	9.	-92.	22.	117.	10.	9.	0.69	0.25	0.31	10.3	0.84	167.5		5.4	0.91 16
TR216		101.	o.	o.	-101.	25.	126.	10.	10.	0.71	0.25	0.33	10.9	0.89	173.6		5.5	0.92 17
TR216		92.	2.	7.	-92.	22.	118,	10,	9.	0.70	0.25	0.32	10.6	0.86	171.9		5.4	0.90 15
TRW08		107.	Ō,	ō.	-107.	25.	126.	10.	10.	0.72	0.25	0.29	11.1	C. 90	168.8		5.7	0.96 16
TRW08		125.	Õ.	o.	-125.	32.	149,	10.	13.	0.76	0.25	0.31	12.2	0.99	170.9	-6	6.0	1.00 15
TRW12		104.	Ŏ.	o.	-104.	25.	126.	10.	10.	0.72	0.25	0.31	11.1		170.7		5.6	0.94 16
TRW12		124.	o.	o.	-124.	32.	152.	10.	13.	0.77	0.25	0.33	12.3		173.4		5.9	0.99 15
TRW16		104.	Ö.	Ō.	-104.	25.	126.	10.	10.	0.73	0.25	0.31	11.4	0.93	175.3		5.6	0.94 16
TRW16		118.	o.	o.	-118.	30.	145.	10.	12.	0.76	0.25	0.33	12.3		177.8		5.8	0.98 15
	10101	110.	Õ.	o.	-110.	25.	126.	10.	10.	0.71	0.25	U. 27	10.6			999	5.8	0.96 16
														~. ~~			~.~	

DATE 06/07/7. I&SE-PEG-ADV-DES-ENGR

GENERAL ELEC. XIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

1...F 3

1							OCOGEN -	COGEN**	POWER	COGEN	M&D	POWER		CAPITAL	NORM	\$/KW ROI	LEVL	NORM V	∦RTH
EC	:5	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL	CHRG	ENRG	
I									MW	MW		RATIO		*10**6		(%)			
G1	R312	1010	1 103	. 0.	0.	-103.	25.	126.	10.	10.	0.71	0.25	0.31	10.7	0.87	164.8 999	5.5	0.93	171
G1	R312	10101	1 109	. 0.	0.	-109.	27.	133.	10.	11.	0.72	0.25	0,32	11.0	0.89	165.6 999	5.6	0.94	161
GI	R316	1010	1 104	. 0.	0.	-104.	25.	126.	10.	10.	0.72	0.25	0.31	11.0	0.89	169.4 999	5.6	0.93	170
G1	<u>R316</u>	1010	1 108	<u>. o.</u>	0.	-108.	26.	132.	10.	11	0.73	0.25	0.32	11.3	0.92	170.2 999	5.6	0.94	160
FC	PADS	10101	1 115	. 0.	٥.	-115.	25.	126.	10.	10.	1.53	0.25	0.23	11.7	0.95	171.3 -60	6.9	1.15	164
FC	PADS	10101	1 218	. 0.	0.	-218.	59.	243.	10.	24.	3.02	0.25	0.28	19.6	1.60	199.7 0	10.2	1.71	152
FC	MCDS	10101	1 104	. 0.	0.	-104.	25.	126.	10.	10.	1.47	0.25	0.31	12.1	0.99	186.9 -62	6.4	1.08	171
FC	MCDS	1010	1 159	. 0.	0.	<u>-159.</u>	47.	201	10.	19	2.37	0.25	0.36	17.4	1.42	214.9 0	8.2	1.37	160
1				•															

2.1

ORIGI OF PC
NAL F OR QI
AGD IS

-----FUEL !SE IN BTU*10**6-----

RINTING SYSTEM- P1185

WELL PAGE PRINTING

													·				
				FUEL US						_							
				ION CAS						msd	POWER	FESR	CAPITAL	NORM	S/KW ROI	LEVL	NORM WRTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EGVL	CHRG	ENRG
ONGCO	N 10102	0.	74.	729.	0.	0.	0.	E SO	<u> MM</u>	1.52	0.25		*10**6	1.00	7/8.4 O	21.6	1.00 80
12	N 10102 1 10102	-	602.	729.	0.	-529.	726.	F 30		0.98	0.25	ΰ,	25.2	0.75	107.7 999		
11	1 10102		1.	604.	0.	73.	124.					0.25	19.0			20.6	
15	1 10102	-	1.	604.	0.	73. 73.		A 30		2.01	0.25 G.25	0.25	34.5 29.8	1.37	195.9 36 169.1 69	16.0 15.4	
	8 10102		<u>591.</u>	61.	0.	-518.	667.	30		1.95 0.93	0.25	0.23	17.2	0.68	102.2 -6	21.8	
II	8 10102		18.	634.	o.	55.	94.			1.89	0.25	0.19	32.1	1.27	191.5 37	17.3	
н	8 10102		18.	634.	o.	55.	94.			1.75	0.25	0.19	23.4	0.93	139.2 999	16.3	· · · · · · · · · · · · · · · · · · ·
1	M 10102		Ö.	606.	o.	74.	123.	30	30.	3.12	0.25	0.15	42.4	1.68	239.1 17	17.9	
	10102		0.		0.	111.	186.	30		3, 13	0.25	0.31	41.0	1.63	209.0 24	16.0	
16	T 10102		606.	0,	Õ.	-532.	729.	30		2.40	0.25	0.24	65.9	2.61	371.3 0	27.2	
31.	T 10102		728.	0.	o.	-581.	972.	30		3.11	0.25	0.35	101.7	4.03	477.0 0	29.8	
11	T 10102		0.	606.	o.	74.	123.	30		3.78	0.25	0.24	91.4	3.63	515.1 2	23.9	
	T 10102		0.	728.	0.	146.	244.	30		4.45	0.25	0.35	128.5	5.09	602.4 2	25.2	
11	9 10102		627.	38.	õ.	-553.	691.	30		2.52	0.25	0.17	84.9	3.37	470.5 0	30.8	
TIHRS	G 10102	ο.	11.	654.	ō.	62.	75.	30		3.72	0.25	0.17	108.6	4.31	601.8 0	27.3	
STIRL	10102	657.	0.	0.	-657.	74.	729.	30	30.	1.43	0.25	0.18	28.9	1.14	149.8 0	27.9	•
STIRL	10102	887.	٥.	0.	-887,	170.	1051.	30	69.	1.71	0.25	0.27	46.9	1.86	180.6 0	31.0	
STIRL	10102	0.	657.	0.	٥.	-584.	729.	30.	30.	1.43	0.25	0.18	28.9	1.15	149.9 0	23.6	1.09 152
STIRL	10102	0.	887.	٥.	Ο,	-717.	1051.	30.	69.	1.71	0.25	0.27	47.0	1.86	180.8 0	25.2	1.17 135
STIRL	10102	0.	0,	657.	· 0.	74.	71.	30	30.	2.85	0.25	0.18	54.2	2.15	281.6 10	19.7	0.91 133
STIRL	10102		0.	887.	0.	170.	165.	30	69.	3.40	0.25	0.27	82.1	3.26	315.9 7	19.8	0.91 119
II	5 10102		ο.	722.	Ο.	74.	7.	A 30,	30.	3.34	0.25	0.10	75.4	2.99	356.6 1	23.7	1.10 122
	5 10102	٠.	ο.	1941.	ο.	448.	41.			7.47	0.25	0.20	199.4	7.91	350.7 0	33.6	
	0 10102		0.	716.	<u> </u>	74.	12.		30.	3.27	0.25	0.11	72.4	2.87	344.8 2	23.2	
11 .	0 10102	- •	0.	1183.	o.	220.	37.			4.65	0.25	0.18	119.5	4.74	344.8 0	26.5	
\$1	10102		٥.	719.	٥.	74.	10.			3.13	0.25	0.10	67.1	2.66	318.9 3	22.5	
11	0 10102		0.	812.	0.	103.	14.		. — .	3.05	0.25	0.13	72.5	2.87	304.6 3	22.4	
	_ 10102	<u></u>	<u>o.</u>	631.	<u>0.</u>	74.	98.	30		3.52	0.25	0.21	64.3	2.55	348.0 5	21,3	
	_ 10102		0.	864.	0.	189.	250,	30.		4.87	0.25	0.34	88.8	3.52	351.1 6	20,6	
н .	10102		0.	624.	0.	74.	104.	30		3.43	0.25	0.22	62.3	2.47	340.6 6	20.9	•
n ·	10102		0.	1074.	0.	307.	435.	30.		6.12	0.25	0.41	111.0	4.40	352.8 7	19.0	
	T 10102 T 10102		<u>0.</u>	659.	<u>0,</u>	74. 216.	70.	30	30. 88.	2.85	C. 25	0.18	60.0	2.38	310.6 7	20.6	
1	R 10102		652.	1001.			205.	30.		3.06	0.25	0.30	87.3	3.46	297.5 8	18.9	
	R 10102		926.	0.	0. 0.	-578. -733.	729. 1129.	30.		1.21 1.30	0.25	0.19	22.9	0.91	119.8 -23 124.6 0	22,6	
-{	3 10102		926. 633.	0. 0.	0.	-733. -560.	729.	30. 30.	30.	1.30	0.25 0.25	0.30	33,8 21,0	1.34 0.83	124.6 0 113.2 -7	22.8 21.8	
	3 10102	0.	801.	0.	0.	-646.	1003.	30		1.07	0.25	0.21	25.3	1.00	107.9 999	20.9	
	2 10102	0.	633.	0. 0.	0. 0.	-540. -560.	729.	30		1.18	0.25	0.21	21.7	0.86	116.8 -9	20.9	
	2 10102	0.	876.	0.	0.	-684.	1125.	30		1.20	0.25	0.33	30.1	1.19	117.4 15	21.0	
	5 10102	0.	635.	0.	0.	-561.	729.	30.	30.	1.23	0.25	0.33	23.8	0.94	128.0 -21		1.03 158
	10102	0.	929.	0.	0.	-714.	1205.	30.		1.31	0.25	0.35	34.2	1.36	125.8 8	21.3	
Ł	5 10102	o.	653,	0.	0.	-579.	729.	30.	30.	1.23	0.25	0.33	23.7	0.94	123.6 -32	22.7	
	5 10102	o.	1015.	0. 0.	o.	- 785.	1252.	30.		1.30	0.25	0.13	33.0	1.31	111.1 0	22.6	
1		٥.		٠.	٠.			JU.	5 4.		J. LJ	3.31	00.0			22.0	
			·					·									

GENERAL ELEC...IC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

-----FUEL USE IN BTUx10xx6-----**COGENERATION CASE** **NOCOGEN - COGEN** POWER COGEN MSD POWER FESR CAPITAL NORM \$/KW ROI LEVL NORM WRTH PROCS DISTIL RESIDL COAL DISTIL RESIDL COAL /HEAT COST COST EQVL CHRG ENRG POWER MW MW RATIO #10##6 **(X)** CC1626 10102 n. 653. a. Ω. -579 729. 30 1.43 0.25 0.19 27.1 1.08 141.9 0 23.4 1.08 154 30. CC1626 10102 n. 1373. n. 0. -989. 1767. 30. 157. 1.83 0.25 0.36 48.3 1.91 120.0 0 23.7 1.09 124 143.2 CC1622 10102 646. 0. -572. 729. 30. 30. 1.42 0.25 0.19 27.1 1.07 Ω 23.1 1.07 154 n n. CC1622 10102 n. 1251. n. n. -905. 1640 30. 141 1.86 0.25 0.37 49.1 1.95 133.9 n 23.1 1.07 126 CC1222 10102 0. -571. 729. 30. 1.41 0.25 0.20 26.5 1.05 140.1 O 23.0 1.06 155 644. 0. 30. Ω. CC1222 10102 1242. -897. 1636. 1.82 0.25 0.37 46.3 1.84 127.3 O 22.5 1.04 127 0. 0. 0. 30. 141, CC0822 10102 0.25 0.21 26.2 1.04 141.0 0 22.7 1.05 157 0. 633. 0. 0. -360. 729. 30. 30. 1.40 CC0822 10102 0.38 117.9 20.7 1049. -773. 1407 1.53 0.25 36.3 1.44 11 0.96 137 0. 0. 0. 30. 113. 125.8 STIG15 10102 0. 747. 0. ٥. -673. 729. 30. 30. 1.59 0.25 0.07 27.5 1.09 n 26.2 1.21 142 0.-22902. 3522. 0.25 34.16 93.2 0 415.1 19.18 517 STIG15 10102 31538. 0. 29396. 30. 51.42 0.17 861.5 STIG10 10102 723. 0. O. -649. 729. 30. 30. 1.49 0.25 0.10 26.5 1.05 125.0 0 25.3 1.17 145 n. STIG10 10102 3094 0. 0. -2296. 3156 30. 326. 4.83 0.25 0.22 94.6 3.75 104.3 0 50.2 2.32 116 26.0 124.5 24.9 STIG1S 10102 ٥. 712. ٥. 0. -638. 729. 30. 30. 1.48 0.25 0.11 1.03 1.15 147 STIG1S 10102 a. 1945. Ω. 0. -1476-2051. 30. 191. 3.08 0.25 0.23 55.2 2.19 96.9 n 35.8 1.65 114 **DEADV3 10102** ٥. 683. ٥. 0. -609. 729. 30. 30. 1.60 0.25 0.15 35.9 1.42 179.3 0 25.3 1.17 144 DEADV3 10102 1760 0. Ω. -1291 2054 30 191. 3.82 0.25 0.30 125.1 4.96 242.5 n 38.4 1.78 115 ٥. **DEHTPM 10102** -552. 30. 0.22 32.B 1,30 178.7 0 23.2 1.07 153 0. 626. อ. 0. 729. 30. 1.57 0.25 69.4 **DEHTPM 10102** o. -708. 0.38 2.75 250.3 n 24.8 0. 947. 0. 1280. 30. 97. 2.38 0.25 1.15 133 DESGA3 10102 -700. 74. 729. 30. 30. 1.73 0.25 0.13 40.8 1.62 199.0 O 31.0 1.43 146 700. ۵. ٥. 176.2 6.99 535. 2273. 5.14 291.8 n 62.5 2.89 133 DESOA3 10102 -2061. 30. 218. 0.25 0.27 2061. n. 1.62 1.22 140 DESOA3 10102 0. 700. ۵. -626. 729. 30. 30. 1.73 0.25 0.13 40.8 199.0 26.4 176.2 291.8 O 49.0 2.26 117 0. -1525. 0.25 5.99 DESOA3 10102 ۵. 2061. 2273. 30. 218. 5.14 0.27 20.4 108.7 -47 26.1 1.21 166 **GTSOAD 10102** 640. ٥. -640. 74. 729 30. 30. 1,15 0.25 0.20 0.81 GTS0AD 10102 875. -875. 184. 1097. 30. 75. 1.10 0.25 0.32 26.3 1.04 102.5 0 26.8 1.24 154 GTRA08 10102 147.8 1.27 158 647. 0. 0. -647. 74. 729. 30. 30. 1.34 0.25 0.19 28.0 1.11 GTRA08 10102 0. -1134. 291. 1457. 30. 119. 1.62 0.25 0.35 45.0 1.78 135.4 30.4 1.41 139 1134 Ο. 1.26 158 GTRA12 10102 645. 0. -645. 74. 729. 30. 30. 1.35 0.25 0.20 28.3 1.12 149.6 27.3 0. GTRA12 10102 287. 30. 117. 1.63 0.25 0.36 45.7 1.81 139.9 n 30.2 1.39 139 0. -1115. 1443. 1115. 0. GTRA16 10102 729. 30. 1.29 0.25 0.20 26.1 1.03 138.2 27.0 1.25 160 644. 0. Ω. -644. 74. 30. 0.35 146.4 30.1 1 39 140 GTRA16 10102 1075. 0. 0. -1075. 270. 1385. 30. 110. 1.64 0.25 46.1 1.83 n 127.0 135 26.8 1.24 162 74. 30. 1.24 0.25 0.20 24.0 0.95 GTR208 10102 645. 0. 0. -645. 729. 30. 127.7 28.8 1.33 145 GTR208 10102 982 -982 226 1238. 30. 92 1.39 0.25 0.33 36.8 1.45 n 129.8 193 26.9 1.24 161 GTR212 10102 -646. 729 30. 30. 1.26 0.25 0.19 24.6 0.97 646. 0. ٥. 74. GTR212 10102 0. -1022. 99. 1.46 0.25 0.33 39.5 1.57 131.9 Û 29.4 1.36 143 1022. 0. 242. 1294. 30. GTR216 10102 643. Ω. Ο. -643 74. 729. 30. 30. 1.27 0.25 0.20 25.3 1.00 134.0 999 26.9 1.24 161 140.6 29.4 1.36 142 GTR216 10102 1024 0. -1024248. 1313. 30. 101 1.53 0.25 0.34 42.2 1.67 0. 30. 28.3 1.31 155 GTRY08 10102 ٥, -672. 74. 729. 30 1.35 0.25 0.16 27.9 1.11 141.8 0 672. ٥. 47.1 GTRV:08 10102 1385. O. 0. -1385. 349. 1652. 30. 142. 1.70 0.25 0.31 1.87 116.0 0 35.3 1.63 133 0.17 1.29 156 GTRW12 10102 0. -665. 74. 729 30. 30. 1.34 0.25 27.9 1.11 143.5 a 28.0 665. 0. 1.72 0. -1370 1.89 118.8 ۵ 34.2 1.58 134 GTRW12 10102 359. 1683 30. 146. 0.25 0.33 47.7 1370. O. 28.0 GTRW16 10102 -663. 74. 729. 30, 30. 1.36 0.25 0.17 28.5 1.13 146.5 O 1.30 156 663. ٥. Ο. 124.0 0 33.6 1.55 134 0. -1306. 335. 1604. 30. 137. 1.70 0.25 0.33 47.5 1.88 GTRW16 10102 1306. 28.0 1,29 158 1.25 0.25 0.15 24.0 0.95 120.8 166 729. 30. GTR308 10102 679. 0. -679. 74. 30. 1.54 139 GTR308 10102 1193. 0. -1193. 266. 1372 30. 108. 1.42 0.25 0.27 36.9 1.46 105.6 0 33.4

L PAGE PRINTIN

GENERAL ELEC...IC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY

REPORT 5.2
SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

cs i	PROCS D	**CGGE	ENERATI	ON CAS		COGEN .		POWER	COGEN POWER MV	0811	POWER /HEAT RATIO		CAPITAL COST *10**6		\$/KW EQVL	RØI (%)	LEVL CHRG	NORM ENRG	WRTH
TR312 TR316 TR316	10102 10102 10102 10102		0. 0. 0.	0. 0. 0.	-662. -1205. -663. -1198.	74. 296. 74. 292.	729. 1474. 729. 1459.	30. 30. 30. 30.	30. 121. 30. 119.	1.56	0.25 0.25 0.25 0.25	0.32 0.17 0.32	27.0 41.1 27.7 42.3	1.63 1.10 1.68	139.4 116.4 142.5 120.5	0 0 0	32.1 27.9 32.3	1.28 1.48 1.29 1.49	136 157 138
CPADS CMCDS	10102 10102 10102 10102	663.	0. 0. 0.	0. 0.	-698. -2412. -663. -1760.	74. 659. 74. 521.	729. 2688. 729. 22 27.	30. 30. 30. 30.	30. 269. 30. 212,	4.02 28.02 3.84 21.00	0.25 0.25		34.1 154.0 35.3 132.4	6.11 1.40	166.8 217.9 181.9 256.7	0 0 0	86.2 31.2	1.50 3.99 1.44 2.96	161 155
	. ,				20 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1													· · · · · · · · · · · · · · · · · · ·	
			•						,										
								· · · · · · · · · · · · · · · · · · ·											
						f	•							***************************************	-				c- w.
-																			
																			•
				***											· 			 	
														<u> </u>			· · · · · · · · · · · · · · · · · · ·		ente#50-jea
	·						· · · · · · · · · · · · · · · · · · ·		·				<u></u>					·	

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

-----FUEL USE IN BTU*10**6-----**COGENERATION CASE** **NOCOGEN - COGEN** POWER COGEN M&D POWER FESR CAPITAL NORM \$/KW ROI LEVL NORM WRTH **ECS** PROCS DISTIL RESIDL COAL DISTIL RESIDL COAL REQD POWER /HEAT COST COST EQVL CHRG **ENRG** MW RATIO *10**6 MW ONGCGN 20111 0. 33. 16. ٥. ο. 0. 2. 0. 0.19 0. 1.6 1.00 189.2 0.7 1.00 80 0.28 STM141 20111 n. 36. 0. 0. -3. 16. 0.36 0.28 0.26 2.02 299.4 1.34 155 2. 2. 3.2 0 1.0 STM141 20111 37. Ο. -3. 17. 1.93 ۵. ٥. 2. 2. 0.29 0.28 0.28 3:0 280.5 Ω 0.9 1.23 145 STM141 20111 33 -20. F 532.0 0 0 36 0. 0.57 0.28 0.26 5.6 3.59 0 1.3 1.84 159 STM141 20111 33. -19. F 0. 0. 37. Q. 1.61 145 2. 2. 0.46 0.28 0.28 5.2 3.30 480.0 1.2 STM:41 20111 0. 0. 36. 0. 33. -20. A 2. 2. 0.51 0.28 0.26 5.1 3.27 484.9 0 1.68 156 STM141 20111 0. 0. 37. 0. 33. -19. A 2. 2. 0.40 0.28 0.23 4.6 2.94 427.7 O 1.44 143 1.0 STM088 20111 36. -3 14. 0.28 0.28 0.23 2.6 1.65 252.9 1.17 140 STM088 20111 Õ. 1. 37. ٥. 32. -21. F 2. 2. 0.44 0.28 0.23 4.7 3.01 459.7 1.55 139 STM088 20111 37. 32. 420.4 n. 1. n. -21. A 2. 2. 0.38 0.28 0.23 4.3 2.75 0 1.0 1.41 137 PFBSTM 20111 36. ٥. 33. ٥. ٥. -20. 2. 2. 0.61 0.28 0.26 7.1 4.51 667.4 0 1.5 2.11 163 PFBSTM 20111 0. 41. 0. 36 -16. 0.47 0.28 0.33 6.8 4.36 571.9 0 1.84 152 TISTMT 20111 α. 36. ۵. α. -3. 16. 2. 2. 0.53 0.28 0.26 8.7 5.54 B18.2 Ω 2.39 167 TISTMT 20111 3.03 177 0. 44. 0. 0. -7. 32. 2. 0.56 0.28 0.37 8.32 999.8 0 4. 13.0 2.2 TISTMT 20111 ο. Ω. 36. Ω. 33. -20. 2. 2. 0.79 0.28 0.26 12.2 7.80 1151.3 Ω 2.3 3.12 183 -12. TISTMT 20111 0 0 38 0.28 0.37 10.57 1270.2 0 44. n 0.77 16.5 3.65 191 TIHRSG 20111 0. 37. 4. O. -4 12. 2. 0.40 0.28 0.17 10.2 6.54 987.4 ā 2.46 145 1. TIHRSG 20111 n 39. ٥. 32. -23. 2. 0.57 0.28 8.44 1275.0 0 3.02 157 1. 1. 0.17 13.2 2.2 STIRL 20111 0.21 38. 0. ٥. -38. 33. 16. 2. 2. 0.34 0.28 2.7 1.71 236.9 0 1.34 153 1.0 STIRL 20111 0. 40. 2.09 53. 0. -53 39. 0.28 0.28 0.32 3.3 210.4 n 1.0 1.35 143 STIRL 20111 0. 0. -5. 16. 2. 0.28 0.21 2.7 237.1 0 1.25 151 38. 0. 2. 0.34 1.71 0.9 STIRL 20111 0. 0. -13. 39, 2. 5. 0.28 2.09 210.7 0 1.23 140 53, Ω. 0.28 0.32 3.3 0.9 STIRL 20111 0. ٥. 38. ۵. 33. -23. 2. 2. 0.57 0.28 0.21 5.7 3.66 508.2 0 1.3 1.85 153 STIRL 20111 3.74 376.6 0 0. 0 53. 0. 40 -14. 0.45 0.28 0.32 1.61 140 HEGT85 20111 929.3 O 0. ٥. 40. ٥. 33. -24. A 2. 2. 0.62 0.28 0.19 10.8 8.91 2.0 2.71 164 1-9T85 20111 0. ٥. 64. 43. -15. A 2. 0.65 0.28 0.31 17.8 11.37 950.8 0 2.7 3.66 174 **HEGT60 20111** 6.79 0. 0. 42. 0. 33. -26. A 2. 2. 0.62 0.28 0.13 10.6 856.3 0 2.0 2.69 157 HEGT60 20111 0.59 0.28 0.20 15.2 9.70 820.3 3.26 157 63. 0. 40. -24. A **HEGTOO 20111** ٥. 0. 43. 0. 33. -27. A 2. 2. 0.55 0.28 0.12 9.5 6.08 757.3 2.43 150 **HEGTOO 20111** 707.5 O. 46. 34. -27. A 2. 2. 0.42 0.28 0.14 9.6 6.13 2.26 137 n. Ω. 1.6 **FCMCCL 20111** n. n. 38. Ω 33. -22. 2. 2. 0.61 0.28 0.23 9.3 5.94 839.5 1.8 2.49 165 FCMCCL 20111 Ω. 0. 50. 0. 39 -14. 0.54 0,28 0.34 11.7 7.50 793.8 0 1.9 2.66 162 FCSTCL 20111 33. -21. 2. 0.67 0.28 0.24 9.1 5.78 827.3 Ö 2.52 167 0. 0. 37. 0. 2. 1.8 FCSTCL 20111 0. ٥. 48. -0. 2. 8. 0.73 0.28 0.42 15.2 9.70 790.3 0 2.4 3.32 173 66. n **IGGTST 20111** 0. ٥. 33. -24. 2. 0.73 0.28 0.19 9.5 6.07 822.4 n 2.69 166 Ο. 39. 2. 2.0 IGGTST 20111 42 0.71 0.28 0.31 13.2 8.45 738.0 n 0. -14. 2.3 3.11 164 Ω. 61 O 0.28 2.14 294.2 1.35 148 **GTSGAR 20111** 0. 39. ٥. 0. -6. 16. 2. 2. 0.33 0.21 3.3 GTSØAR 20111 -14. 37. 2. 0.26 0.28 0.31 4.0 2.56 259.4 0 1.33 137 0. 53. 0. 0. 4. 1.0 1,88 GTAC08 20111 0.22 264.4 -5. 0,28 2.9 n 1.26 150 0. 38. ٥. 0. 16. 2. 2. 0.32 0.9 227.1 GTAC08 20111 -10. 0.23 0.28 0.31 2.01 n 1.15 141 O 47 0 0 31 3.1 GTAC12 20111 -5. 2. 0.28 0.23 1.89 266.6 1.26 150 0. 38. 0. 0. 16. 0.32 3.0 0.9 GTAC12 20111 1.20 141 0. 51. ٥. ٥. -11. 37. 2. 5. 0.25 0.28 0.34 3.5 2.21 232.0 0 0.9 0 1.28 150 GTAC16 20111 38. ٥. 0. -5. 16. 0.32 0.28 0.23 3.0 1.95 274.5 0.9

HONEVWELL DAG

DATE 06/07/7_ 18SE-PEO-ADV-DES-ENGR

 						Line 1 Origina													
1															~ ~~				
							COGEN**			08M	POWER	FESR	CAPITAL		\$/KW	KOI	LEVL	NORM 1	AKIH
ECS	PROCS	DISTIL R	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	ŀ
								MiA	MW		RATIO		*10**6			(%)			
GTAC1	6 20111	0.	53.	0.	٥.	-13.	42.	2.	5.	0.26	0.28	0.35	3.8	2.45	244.5	0	0.9	1.27	
GTWC1	6 20111	0.	39.	0,	0.	-6.	16.	2.	2.	0.33	0.28	0.20	3.3	2.10	285.3	0	1.0	1.34	147
GTWC1	6 20111	0.	60.	٥.	0.	-18.	45.	2.	5.	0.28	0.28	0.31	4.3	2.75	247.4	O	1.0	1.40	134
CC162	6 20111	Ο.	39.	Ο.	0.	-6.	16.	2.	2.	0.40	0.28	0.20	3.4	2.18	297.3	0	1.1	1.47	149
CC162	6 20111	0.	84,	0.	0.	-31.	81.	2.	10.	0.44	0.28	0.37	6.3	4.04	257.1	0	1.4	1.89	134
CC162	2 20111	0.	39.	0.	0.	-6.	16.	2.	2.	0.39	0.28	0.21	3.2	2.06	284.4	0	1.0	1.43	151
	2 20111		76,	0.	o.	-26.	73.	2.	9.	0.41	0.28	0.38	5.6	3.60	252.4	0	1.3	1.74	135
	2 20111		39,	o.	o.	-6.	16.	2.	2.	0.39	0.28	0.21	3.1	2.01	277.8	0	1.0	1.41	151
	2 20111		76.	0.	0.	-26.	73.	2.	9.	0.41	0.28	0.38	5.4	3.45	243.3	ō	1.2	1.70	
-	2 20111		38.	o.	Ğ.	-5.	16.	2.	2.	0.39	0.28	0.22	3.3	2.09	294.4	ŏ	1.0	1.42	
	2 20111	_	64.	o.	0.	-18.	59.	2.	7.	0.38	0.28	0.39	4.9	3.13	261.3	ŏ	1.1	1.58	
	5 20111		45.	0.	o.	-12.	16.	2.	2.	0.35	0.28	0.07	3.5	2.23	262.4	ŏ	1.1	1.46	
	5 20111		1846.	0.	0.	-1312.	1693.	2.	206.	2.64	0.28	0.17		41.49	120.1	Ö		18.83	
	0 20111		44.	0.	o.	-11.	16.	2.	2.00.	0.34	0.28	0.10	3.3	2.12	258.3	ő	1.0	1.41	
	0 20111		181.	o.	0. 0.	-106.	157.	2.	19.	0.50	0.28	0.10	8.9	5.70	168.0	ŏ	2.0	2.75	1
	S 20111		43.	o.	0.	-100.	16.	2.	2.	0.34	0.28	0.12	3.2	2.07	257.1	ŏ	1.0	1.39	1
					0.	-58.	92.	2.		0.39	0.28		6.1	3.93	184.3	_	1.5	2.00	
	S 20111		114.	0.					11.			0.23		2.82		Ö	1.3		
	3 20111		39.	0.	0.	-6.	16.	2.	2.	0.38	0.28	0.20	4.4		385.1	_		1.57	
	3 20111		72.	0.	0.	-25.	64.	2.	8.	0.40	0.28	0.36	7.1	4.52	335.1	0	1.4	1.93	
	M 20111		<u>37.</u>	0.	0.	-4.	16.	2.	2.	0.40	0.28	0.24	4.3	2.78	400.9	0	1.1	1.56	
	M 20111		55.	o.	0.	-12.	48.	2.	6.	0.38	0.28	0.40	6.0	3.82	374.1	0	1.2	1.70	
	3 20111		٥,	o.	-40.	33.	16.	2.	2.	0.35	0.28	0.19	3.3	2.11	284.1	0	1.1	1.48	
[:	3 20111		O.	0.	-76.	48.	66.	2.	8.	0.40	0.28	0.33	7.2	4.57	322.0	0	1.6	2.16	
	3 20111		40.	0.	0.	<u>-7.</u>	16.	2.	2.	0.35	0.28	0.19	3.3	2.11	284.1	0	1.0	1.38	
DESGA	3 20111	0.	76 <i>.</i>	0.	ο.	-28.	66.	2,	8.	0.40	0.28	0.33	7.2	4.57	322.0	0	1.4	1.98	
GTSOA	D 20111	38.	ο.	0.	-38.	33.	16.	2.	2.	0.32	0.28	0.22	2.9	1.83	256.2	0	1.0	1.34	
GTSOA	D 20111	50.	ο.	Ο.	-50.	39.	35 <i>.</i>	2.	4.	0.24	0.28	0.32	3.2	2.03	214.9	0	0.9	1.28	
GTRAO	8 20111	39.	0.	0.	-39.	33.	16	2.	2	0.33	0.28	0.21	3.5	2.25	311.5	0	1.1	1.47	
GTRAO	8 20111	64.	0.	0.	-64.	45.	55.	2.	7.	0.30	0.28	0.36	5.2	3.34	279.7	0	1.2	1.68	139
GTRA1	2 20111	38.	0.	ο.	-38.	33 <i>.</i>	16.	2.	2.	0.33	0.28	0.21	3.4	2.19	304.3	0	1.1	1.45	151
	2 20111		Q.	0.	-63.	44.	54.	2.	7.	0.30	0.28	0.36	5,1	3.28	278.4	0	1.2	1.66	140
GTRA1	6 20111	38.	0.	o.	-38.	33.	16.	2.	2.	0.33	0.28	0.21	3.5	2.26	314.1	0	1.1	1.47	151
	6 20111		0.	0.	-61.	44.	51.	2.	6.	0,30	0.28	0.36	5.2	3.34	292.6	0	1.2	1.67	141
	8 20111		o.	o.	-38.	33.	16.	2.	2.	0.33	0.28	0.21	3.3	2.09	290.4	0	1.0	1.42	151
	8 20111		õ.	o.	-56.	41.	43.	2.	5.	0.27	0.28	0.34	4.2	2.69	256.3	0	1.1	1.48	141
	2 20111		Õ.	o.	-39.	33.	16.	2.	2.	0.33	0.28	0.21	3.4	2.14	296.8	0	1.0	1.44	151
	2 20111		0.	0.	-58.	42.	46.	2.	6.	0.28	0.28	0.34	4.5	2.90	265.2	0	1.1	1.55	-
	6 20111		0,	o.	-38.	33,	16.	2.	2.	0.33	0.28	0.22	3.4	2.17	301.6	ŏ	1.0	1.44	
	6 20111			0.	-58.	42.	47.	2.		0.29	0.28	0.35	4.7	3.01	275.3	ŏ	1.1	1.57	
	8 20111	40.	0.	0.	-40.	33.	16.	2.	2.	0.34	0.28	0.18	3.6	2.30	304.7	ŏ	1.1	1.51	
	8 20111		0.	0.	-78.	48.	66.	2.	8,	0.34	0.28	0.31	5.9	3.78	258.9	Ö	1.4	1.92	
	2 20111		0.	0.	-40.	33.	16.	2.	2.	0.34	0.28	0.19	3.6	2.29	308.0	ŏ	1.1	1.50	
							68,	2.	8.	0.34	0.28	0.13	6.0	3.84	264.4	ő	1.4	1.91	
	2 20111		0.	0.	-78. -40	49.		2.	2.	0.34	0.28	0.19	3.7	2.35	316.5	Ö	1.1	1.52	
GIRWI	6 20111	40.	0.	0.	-40.	33.	16.		<u> </u>	0.34	٠. ۵٥	J. 13		2.33	310.3	<u>~</u>	1.1	1.56	
~																			- 7

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

FAGE

				-FUEL U	ISE IN B	TU×10××6-													
ECS	PROCS	**C		TION CA	SE** **! DISTII	NOCOGEN - RESIDL	COGEN**	POWER REQD	COGEN POWER	M&D	POWER /HEAT	FESR	CAPITAL	NORM	\$/KW EQVL	ROI	LEVL CHRO	NORM ENRG	WRTH
								MW	MW		RATIO		*10**6			(%)			
GTRW16	2011	74	. 0.		74	47.	64.	2.	8.	0.34	0.28	0.33	6.0	3.86	277.2	0	1.4	1.90	136
GTR308	20111	1 41	. o <i>.</i>	. 0	i. –41.	. 33,	16.	2.	2.	0.33	0.28	0.17	3.3	2.13	280.6	0	1.1	1.46	146
GTR308	20111	66	. 0.	. 0	-66	43.	5 0.	2.	6.	0.29	0.28	0.28	4.6	2.96	238.1	0	1.2	1.66	134
GTR312	20111	1 40	. 0.		-40	33.	16.	2.	2.	0.33	0.28	0.19	3.4	2.19	295.2	0	1.1	1.47	7 148
GTR312	20111	69	. 0.	. 0	-69	45.	57.	2.	7.	0.31	0.28	0.32	5.1	3.26	251.9	0	1.3	1.72	2 135
GTR316	20111	I 40	. 0.	. 0	-40	33.	16.	2.	2.	0.34	0.28	0.19	3.5	2.26	304.3	0	1.1	1.49	148
GTR316	20111	l 69	. 0.	. 0	-69	45.	5 6.	2.	7.	0.31	0.28	0.32	5.3	3.39	263,7	0	1.3	1.76	136
FCPADS	20111	40	. 0.	. 0	-40	33.	16.	2.	2.	0.32	0.28	0.19	3.0	1.92	258.7	0	1.0	1.36	149
FCPADS	2011	81	. 0.	. 0	81	50.	74.	2.	9.	0.46	0.28	0.35	6.0	3.80	249.6	0	1.5	2.06	138
FCMCDS	20111	1 40	. с.	. 0	-40	33.	16.	2.	2.	0.32	0.28	0.18	3.2	2.03	271.7	G	1.0	1.41	148
FCMCDS	2011	103	. 0.	. 0	-103	59.	102.	2.	12.	0.59	0.28	0.26	8.8	5.60	290.4	0	2.0	2.71	144

DATE 06/07/75 I&SE-PEC-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

-----FUEL USE IN BTU*10**6-----**COGENERATION CASE** **NOCOGEN - COGEN** POWER COGEN M8D POWER FESR CAPITAL NORM \$/KW ROI LEVL NORM WRTH COST EQVL CHRG DISTIL RESIDL COAL /HEAT COST ENRG ECS PROCS DISTIL RESIDL COAL REQD POWER *10**6 RATIO MW MW **ONOCGN 20261** 0. 0.14 0.41 0. 1.0 1.00 252.1 0.4 ٥. 16. 11. 0. 0. 0. 0 1.00 80 STM141 20261 ٥. -2. 0.22 0.41 0.24 1.9 1.96 380.5 0 0.6 1.29 141 0. 18. 3. 8. 1. 1. STM141 20261 0. 1. 20. 0. 15. -9, F 1. 1. 0.34 0.41 0.24 3.0 3.19 617.6 D 0.8 1.72 143 STM141 20261 n. 20. n 15. -9. 0.29 0.41 0.24 2.9 3.05 591.4 0 0.7 1.59 140 O. 0.19 1.6 1.65 337.1 0 0.5 1.22 134 STM088 20261 0. 17. 4. -1. 6. 1. 1. 0.21 0.41 587.9 0 STM088 20261 ٥. 1. 20. 0. 15. -10. F 1. 0.33 0.41 0.19 2.8 2.89 0.7 1.65 135 1. 579.6 STM088 20261 0.41 0.19 2.7 2.84 0 1.55 133 0. 1. 20. ٥. 15. -10. A 1. 0.28 0.7 **PFBSTM 20261** Ο. 0. 18. 0. 16 0.42 0.41 0.32 4.4 4.64 828.0 Ω 1.0 2.19 172 -8. **PFBSTM 20261** ٥. 0. 19. 0. 16. -7. 1. 1. 0.34 0.41 0.33 4.2 4.41 771.0 Δ 0.9 1.95 157 6.53 1162.5 ٥ 2.72 181 TISTMT 20261 0. 18. 0. 0. -2. 11. 0.40 0.41 0.32 6.2 1.2 1. 1. 7.4 7.74 1239.7 0 TISTMT 20261 0. 20. 0. 0. -3. 15. 1. 0.37 0.41 0.37 1.3 2.91 179 **TISTMT 20261** 0. 18. 0. 16. -8. 0.59 0.41 0.32 8.4 8.78 1563.5 0 1.6 3.52 199 0.37 9.4 9.82 1573.6 0 3.56 194 **TISTMT 20261** 0. 0. 20. 0. 17. -6. 1. 2. 0.51 0.41 1.6 6.07 1221.6 2.33 136 **TIHRSG 20261** 0. 18. 5. 0. -2. 5. 1. 1. 0.25 0.41 0.14 5,8 0 1.0 TIHRSG 20261 7.5 7.83 1576.7 ٥. 2. 21. 0. 15. -11. 1. 0.37 0.41 0.14 ٥ 1.3 2.91 149 STIRL 20261 20. 0. 0. -20. 16. 11. 0.25 0.41 0.27 1.6 1.68 278.1 Ω 0.6 1.35 160 1.67 224.0 0 1.21 151 STIRL 20261 24. 0. 0. -24. 18. 18. 1. 2. 0.19 0.41 0.33 1.6 0.5 0.27 278.2 0 0.6 1.28 158 STIRL 20261 0. 20. 0. 0. -4. 11. 1. 1. 0.25 0.41 1.6 1.68 STIRL 20261 0. 24. 0. 0. -6, 18. 1. 0.19 0.41 0.33 1.6 1.67 224.2 0 0.5 1.11 149 STIRL 0.27 20261 0. 0. 20. 0. 16. -9. 0.42 0.41 3.5 3.65 603.8 ٥ 0.9 1.95 162 STIRL 20261 0. 24. 0. 18. -6. 1. 2. 0.31 0.41 0.33 3.2 3.32 446.0 0 0.7 1.58 148 0. HEGT85 20261 C. 0. 20. 0. 16. -10. A 1. 1. 0.45 0.41 0.25 7.5 7.80 1256.3 0 1.4 3.02 179 HEGT85 20261 ٥. ۵. 27. ٥. 19. -6. A 1. 0.39 0.41 0.32 9.8 10.22 1221.1 0 1.5 3.38 179 7.67 1113.1 HEGT60 20261 22. 16. -12. 0.45 0.41 0.16 7.3 0 3.01 168 n 9.19 1035.4 3.15 162 HEGT60 20261 0. 0. 29. 0. 18. -11. A 1. 2. 0.37 0.41 0.20 8.8 0 **HEGTOO 20261** 0. 1. 23. 0. 16. -12. A 1. 1. 0.27 0.41 0.13 5.5 5.80 891.9 0 1.0 2.20 134 FCMCCL 20261 0. Ď. 19. 0. 16. -9. 1. 0.44 0.41 0.28 6.2 6.50 1092.1 0 1.2 2,72 176 FCMCCL 20261 0.35 0.41 0.34 7.13 1006.6 2.62 167 0. 0. 23. Ω 18 -6. 6.8 0 FCSTCL 20261 0. ٥. 19. 0. 16. -8. 1. 1. 0.51 0.41 0.29 6.1 6.42 1096.8 Ö 1.3 2.84 181 FCSTCL 20261 0. 0. 30. ٥. 22. -0. 4. 0.48 0.41 0.42 8.8 9.22 1000.7 0 1.5 3.32 183 1. **IGGTST 20261** ٥. ٥. 21. ٥. 16. -10. 1. 0.56 0.41 0.24 6.6 6.88 1094.1 0 1.4 3.09 180 1. **IGGTST 20261** 0. 0. 28. 0 19. -7. 0.50 0.41 0.31 8.0 8.33 970.2 0 1.4 3.23 175 377.6 1.42 154 11. 0.25 2.2 2.33 **GTSÖAR 20261** 0. 20. 0. 0. -4. 1. 1. 0.24 0.41 0 0.6 GTSGAR 20261 0. 24. 0. 0. -6. 17. 1. 2. 0.18 0.41 0.31 2.3 2.46 331.6 0 0.6 1.29 143 GTAC08 20261 Ο. 20. Ó. -3. 11. 0.23 0.41 0.27 1.9 1.96 325.8 0 0.6 1.29 156 0. 1. 1. 1.12 145 GTAC08 20261 14. 0.16 0.41 0.31 1.8 1.89 285.6 0 0.5 0. 22. n. n -4. GTAC12 20261 0. 19. O. 0. -3. 11. 1. 1. 0.24 0.41 0.28 1.9 1.99 333.9 0 0.6 1.31 157 GTAC12 20261 23. ٥. -5. 17. 2. 0.17 0.41 0.34 2.0 2.05 287.1 0 0.5 1.16 147 0. 0. 1. GTAC16 20261 ٥. -3. 11. 0.41 0.28 2.0 2.07 347.1 0 0.6 1.34 157 0. 19. 0. 1. 1. 0.24 1.22 147 GTAC16 20261 0. 25. n -6. 19. 0.18 0.41 0.35 2.2 2.26 300.6 0 0.5 GTWC16 20261 α. 20. o. 0. -4. 11. 1. 1. 0.25 0.41 0.24 2.2 2.29 365.9 0 0.6 1.42 153 -8. 1. 0.19 0.41 0.31 2.5 2.62 313.5 0 0.6 1.35 142 GTWC16 20261 ٥. 27. ٥. 0. 21. 3.

CC1626 20261

0.

20.

0.

-4.

11.

1.

0.32

0.41

0.24

2.3

2.43

390.5

0

0.7

1.62 157

		000			E IN BTL		COGEN	POWER	COGEN	O&M	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRT
ECS	PROCS	DISTIL R		COAL	DISTIL		COAL	REGD	POWER MW		./HEAT		COST *10**6	COST	EQVL	(%)	CHRG	ENRG	•
CC162	6 2026	0.	38.	0.	0.	-14.	37.	1.	5.	0.31	0.41	0.37	3.7	3.84	325.9	0	0.8	1.90	144
	2 2026		20.	o.	O.	-4.	11.	1.	1.	0.31	0.41	9.26	2.2	2.27	369.9	0	0.7	1.56	15
	2 2026	-	35.	0.		-12.	33,	1.	4.	0.30	0.41	0.38	3.2	3.35	312.4	0	0.8	1.73	140
	2 2026		20.	o.	o.	-4.	11.	1.	1.	0.31	0.41	0.26	2.1 '	2.20	359.9	0	0.7	1.54	15
	2 2026		35.	Ō.	0.	-12.	33.	1.	4.	0.29	0.41	0.38	3.1	3.21	301.2	0	0.8	1.69	14
-	2 2026		19.	0.	o.	-3.	11.	1.	1.	0.31	0.41	0.28	2.2	2.31	386.9	0	0.7	1.56	16
CC082	2 2026	i o.	29.	0.	Ο.	-8.	27.	1.	3.	0.28	0.41	0.39	2.9	2.99	332.3	0	0.7	1.60	15
STIGI	5 20261	١ ٥.	24.	٥.	0.	-8	11.	1.	1	0.28	0.41	0.09	2.4	2.54	338.6	0	0.7	1.61	13
STIGI	5 2026	0.	846.	0.	0.	-601.	776.	1.	94.	1.38	0.41	9.17	29.4	30.76	118.6	0	6.4	14.38	39
	0 2026		23.	ο.	0.	-7.	11.	1.	1.	0.27	0.41	0.13	2.3	2.39	332.3	0	0.7	1.54	14
STIGI	0 2026	i o.	83.	o.	0.	-49.	72.	1.	9,	0.33	0.41	0.22	5.1	5.37	211.0	0	1.1	2.57	12
STIGI	\$ 2026	0.	23.	0.	0.	-7.	11.	1.	1	0.26	0.41	0.15	2.2	2.32	329.8	0	0.7	1.51	14
STIGI	3 2026	0.	52.	٥.	0.	-27.	42.	1.	5.	0.26	0.41	0.23	3.6	3.74	233.8	0	0.9	1.90	
DEAD V	3 2026	0.	20.	0.	0.	-4.	11.	1.	1.	0.29	0.41	0.26	3.1	3.22	525.7	0	0.8	1.72	
DEADV	3 2026	١ ٥.	31.	Ο.	0.	-10.	28.	1.	3.	0.27	0.41	0.37	4.2	4.38	459.0	0	0.8	1.89	
DEHTE	M 2026	0	19.	0.	0.	-3.	11	1.	1.	0.31	0.41	0.30	3.0	3.17	548.2	0	0.8	1.72	16
DEHTF	M 2026	0.	25.	0.	0.	-6.	22,	1.	3.	0.27	0.41	0.40	3.7	3.85	502.1	O	0.8	1.74	
DESCA	3 2026	20.	0.	0.	-20.	16.	11.	1.	1.	0.27	0.41	0.24	2.0	2.13	341.0	0	. 0.7	1.50	
DESCA	3 2026	1 32.	٥.	0.	-32.	21.	28,	1.	3.	0.24	0.41	0.35	3.2	3.31	335.3	0	0.8	1.74	
DESCA	3 2026	0.	20.	0.	0.	-4.	11.	1.	1.	0.27	0.41	0.24	2.0	2.13	341.0	<u> </u>	0.6	1.43	
DESOA	3 2026	0.	32.	0.	Ο.	-11.	28.	1.	3.	0.24	0.41	0.35	3.2	3.31	335.3	O	0.7	1.61	
GTSOA	D 20261	20.	٥.	Ο.	-20.	16.	11.	1.	1.	0.23	0.41	0.27	1.8	1.92	318.5	0	0.6	1.37	
GTSOA	D 2026	23.	Ο.	٥.	-23.	18.	16.	1.	2.	Q.17	0.41	0.32	1.8	1.91	269.7	0	0.5		
GTRAC	8 2026	l 20.	0.	0.	-20.	16.	11.	<u>!.</u>	1	0.26	0.41	0.26	2.4	2.51	411.0	<u> </u>	0.7	1.55	
GTRAC	8 2026	29.	٥.	Ο.	-29.	20.	25.	1.	3.	0.21	0.41	0.36	3.1	3.19	356.9	0	0.7	1.61	
GTRA 1	2 2026	20.	0.	0.	-20.	16.	11.	1.	1.	0.25	0.41	0.26	2.3	2.41	397.0	0	0.7	1.53	
GTRA1	2 2026	29.	٥.	0.	-29.	20.	25.	1.	3.	0.20	0.41	0.36	3.0	3.09	348.7	0	0.7		
GTRA1	6 2026	20.	0.	0.	-20.	16.	11.	1.	1.	0.25	0.41	0.26	2.4	2.50	410.8	<u> </u>	0.7	1.55	
GTRA 1	6 2026	28.	0.	0.	-28.	20.	23.	1.	3.	0.20	0.41	0.36	3.0	3.14	366.8	0	0.7	1.59	
GTR20	8 2026	20.	0.	0.	-20.	16.	11.	1.	1.	0.25	0.41	0.26	2.2	2.28	374.5	0	0.7	1.48	
GTR20	8 2026	26.	0.	0.	-26.	19.	20.	1.	2.	0.19	0.41	0.34	2.4	2.55	324.5	0	0.6		
	2 2026		0.	0.	-20.	16.	<u> </u>	1.	1	0.25	0.41	0.26	2.2	2.35	384.6	0	0.7	1.51	* +-
	2 2026		0.	0.	-27.	19.	21.	1.	3.	0.19	0.41	0.34	2.6	2.75	334.9	0	0.7	1.47	
	6 2026		0.	Ο.	-20.	16.	11.	1.	1.	0.25	0.41	0.26	2.3	2.38	391.5	0	0.7	1.51	
	6 2026		0.	0.	-27.	19.	22.	1.	3.	0.20	0.41	0.35	2.7	2.83	345.0	0	0.7		
	8 2026		0.	0.	<u>-21.</u>	16.	<u> </u>	1.	<u> </u>	0.26	0.41	0.22	2.5	2.58	399.3	<u> </u>	0.7	1.61	
-	8 2026		0.	0.	-36.	22.	30.	1.	4.	0.23	0.41	0.31	3.5	3.64	332.3	0	0.8	1.83	
	2 2026		Ο.	0.	-21.	16.	11.	1.	1.	0,26	0.41	0.23	2.5	2.58	405.1	0	0.7	1.60	
	2 2026		0.	0.	-36.	22.	31.	1.	4.	0.23	0.41	0.33	3.5	3.70	339.3	0	0.8	1.83	
	6 5056		<u>0.</u>	0.	-21.	16.	11.	<u> </u>	<u> </u>	0,26	0.41	0.23	2.5_	2.65	417.4	<u> </u>	0.7		
	6 2026		· 0.	o.	-34.	22.	29.	1.	4.	0.23	0.41	0.33	3.6	3.72	356.1	0	0.8	1.82	
GTR30			0.	0.	-21.	16.	11.	1.	1.	0.25	0.41	0.21	2.2	2.33	358.5	0	0.7	1.54	
GTR30	8 2026	i 30.	٥.	0.	-30.	20.	23.	1.	3.	0.20	0.41	0.28	2.7	2.81	301.2	0	0.7	1.56	
GTR31	2 2026	21.	0.	0.	-21.	16.	11.	1.	<u> </u>	0.26	0.41	0.23	2.3	2.44	384.7	0_	0.7	1.56	_15

tagE 12

DATE 06/07/75 I&SE-PEC-ADV-DES-ENGR

																			
l .				FUEL US	E IN BT	J*10**6-													
Ħ		**CCG	ENERAT	ION CAS	E** **N	COGEN -	COGEN**	POWER	COGEN	M&O	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRTH
ECS	PPACE	DISTIL R		COAL		RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL	• • •	CHRG	ENRG	
E.03	FROUS	DISTIL K	COIDE	COME	DIGITE	WEGIDE	COME							0001	LUVL		CHIAG	LITTO	
								MW	MW		RATIO		*10**6			(X)			
GTR31	2 2026	1 32.	0.	0.	-32.	21.	26.	1.	3.	0.21	0.41	0.32	3.0	3.14	322.7	0	0.7	1.64	143
GTR31	6 2026	1 21.	ο.	0.	-21.	16.	11.	1.	1.	0.26	0.41	0.23	2.4	2.53	398.0	0	0.7	1.58	154
1	6 2026		o.	o.		21.	26,	1	3.	0.21	0.41	0.32	3.1	3.27	338.4	ñ	0.8	1.68	143
				7.7			20,	• •	Ψ,				7.7.7						
FCPAD	S 2026	1 20.	Ο.	0.	-20.	16.	11.	1.	1.	0.23	0.41	0.25	1.8	1.93	312.7	0	0.6	1.37	156
FCPAD	S 2026	34.	อ.	0.	-34.	22.	31.	1.	4.	0.23	0.41	0.36	2.7	2.83	274.8	0	0.7	1.58	145
FCMCD	S 20261	1 21.	0.	0.	-21.	16.	11.	1.	1.	0.23	0.41	0.23	2.0	2.10	329.3	0	0.6	1.43	153
FCMCD	\$ 2026	1 47.	Ο.	0.	-47.	27.	47.	1.	6.	0.31	0.41	0.36	4.2	4.43	306.0	0	1.0	2.20	143

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

						U*10**6~ CCCGEN				CAGEN	G&M	POWER	EEGD	CAPITAL	NORM	\$/KW ROI	LEVL	NORM WRT
ECS F	PROCS	DISTIL F				RESIDL	COAL	~ ~	REQD	POWER	Odri	/HEAT	FESK	COST	COST	EQVL	CHRG	ENRG
		U.U.L.		JUAL	J1011L	NEGIDE	JUAL		MW	MW		RATIO		*10**6	CO31	EGVL (5		ENKO
DNOCON			70.	1009.	0.	0.	٥.	F	29.	0.	2.16		0.	42.8	1.00	188.6		1.00 8
STM141		- •	890.	0.	Ο.	-820.	1009.		29.	29.	1.57	0.15	0.18	29.6	0.69	113.3 -11	25.1	1.05 16
STM141	20461	Ο.	1008.	0.	0.	-866.	1252.		29.	58.	1.29	0.15	0.28	28.1	0.66	95.0 999	24.0	0.97 15
STM141	20461	0.	0.	890.	0.	70.	120.	F	29.	29.	3.04	0.15	0.18	51.9	1.21	199.0 27	21.1	0.85 14
STM141	20461	Ο.	0.	1008.	0.	142.	244.	F	29.	58.	2.90	0.15	0.28	59.0	1.38	199.7 25	18.8	0.76 13
STM141	20461	0.	0.	890.	0.	70.	120.	Α	29.	29.	2.83	0.15	0.18	43.4	1.01	166.6 999		0.80 14
STM141	20461	0.	0.	1008.	ο.	142.	244.	Α	29.	58.	2.57	0.15	0.28	41.8	0.98	141.4 999		
880MT8	20461	0.	890.	0.	o.	-820.	1009.	• •	29.	29.	1.44	0.15	0.18	24.9	C. 58	95.5 -7		
880MT8	20461	0,	959.	0.	0.	-847.	1152.		29.	46.	1.23	0.15	0.24	25.8	0.60	91.8 -2		0.98 16
880MT			0.	890.	o.	70.	120.	F	29.	29.	2.56	0.15	0.18	51.1	1.19	196.0 30		0.84 14
880MT			Õ.	959.	o.	112.	192.	-	29.	46.	2.73	0.15	0.24	55.5	1.30	197.4 28		
830MT			0.	890.	o.	70.	120.	Å	29.	29.	2.60	0.15	0.18	42.0	0.98	161.1 999		
880MT		0.	0.	959.	0.	112.	192.		<u>29.</u>	46.	2.49	0.15	0.24	40.5	0.95	144.1 999		
FBSTM			0.	891.	0.	70.	118.	^	29. 29.	46. 29.								
PESTM			0. 0.								3.40	0.15	0.17	52.3	1.22	200.4 24	21.5	0.87 14
FISTMT				1118.	0.	207.	349.		29.	84.	4.23	0.15	0.33		1.37	176.7 29		
		<u>o.</u>	892.	0.	<u> </u>	-822.	1009.		29.	29.	2.56	0.15	0.17		1.62	265.1 C		
TISTMT		0.	1220.	0.	0.	-955.	1665.		29.	108.	4.45	0.15	0.37		3.52	422.0		
ISTMT			0.	892.	o.	70.	117.		29.	29.	4.09	0.15	0,17	95.5	2.23	365.0 1	26.9	1.08 13
ISTMT			0.	1220.	0.	266.	445.		29.	108.	6.28	0.15	0.37	189.7	4.43	530.4	31.6	1.27 12
TIHRSG		0.	<u>915.</u>	0.	0.	-845.	1009.		29.	29	3.14	0.15	0.15	97.4	2.27	363.2	35.4	1.42 14
TIHRSG		0.	971.	0.	0.	-873.	1104.		29.	40.	3.46	0.15	0.19	119.8	2.80	420.7 C	37.7	1.52 13
FIHRSG	20461	0.	Ο.	915.	Ο.	70.	95.		29,	29.	4.89	0.15	0.15	132.0	3.08	492.3	31.9	1.28 13
FIHRSG	20461	Ο.	0.	971.	0.	98.	133.		29.	40.	5.05	0.15	0.19	152.7	3.56	536.4	33.3	1.34 12
STIRL	20461	940.	0.	0.	-940.	70.	1009.		29.	29.	1.74	0.15	0.13	38.3	0.89	139.2 -79	33.5	1.35 15
STIRL	20461	1457.	0.	0.	-1457.	290.	1745.		29.	118.	2.54	0.15	0.28	75.9	1.77	177.8 C	39.8	1.60 13
STIRL	20461	0.	940.	0.	٥.	-870.	1009.		29.	29.	1.74	0.15	0.13		0.90	139.3 -38	28.4	1.14 15
STIRL	20461	0.	1457.	Ο.	0.	-1168.	1745.		29.	118.	2.55	0.15	0.28	76.0		176.1	31.9	1.28 12
STIRL	20461	Ō.	0.	940.	o.	70.	69.		29.	29.	3.30	0.15	0.13		1.50	233.9 10	23,2	0.93 13
	20461	0.	Ō.	1457.	0.	290.	287.	· · · · · · · · · · · · · · · · · · ·	29.	118.	5.05	0.15	0.28			314.1 4	25.9	1.04 11
EGT85		Ö.	o.	981.	o.	70.	28.	Δ	29.	29.	3.61		0.09			283.5 2	26.1	1.05 12
EGT85		o.	Ö.	2424.	0.	559.	224.		29.	228.	8.43		0.24			328.7	37.1	1.49 9
IEGT60		0.	· 0.	983.	0.	70.	26.		29. 29.	220 <i>.</i> 29.	3.58		0.09			275.2 2		
EGT60		0.	0.	1734.	0.	323.	122.		<u>29.</u> 29.	132.	5.89		0.20				25.9	1.04 12
EGT00		0.	0. 0.	991.	0.	323. 70.	122.		29. 29.								31.3	1.26 10
		- •								29. CC	3.55		0.08			262.7		1.03 12
EGT00		0.	0.	1271.	0.	161.	43.	A	29.	66.	4.03		0.14			267.3 1	26.9	1.08 11:
CMCCL		0.	0.	916.	<u>0.</u>	70.	93.		29.	29.	3.85	0.15	0.15			280.0 5		1.00 13
CMCCL		0.	0.	1386.	0.	303.	403.		29.	123.	6.56	0.15	0.34		2.93	308,9 4	25.3	1.02 11
CSTCL		0.	0.	909.	0.	70.	100.		29.	29.	3.74		0.16			271.1 6	24.4	0.98 13
CSTCL		ο.	0.	1800,	0.	534 .	764.		29.	218.	8.55	0.15	0.42	163.2	3.81	309.4 6	22.9	0.92 10
GGTST		0.	0.	940.	0.	70.	69,		29.	29.	3.31	0.15	0.13	69.0	1.61	250.3 7	24.1	0.97 13
GGTST	20461	0.	0.	1679.	0.	383.	379.		29.	156.	4.25	0.15	0.31	128.9	3.01	262.1 7	22.5	0.90 10
		_		_	_		1000											
STSOAR	20461	0.	931.	0.	0.	-861.	1009.		29.	29.	1.52	0.15	0.14	32.2	0.75	118.0 -18	27.3	1.10 15

TO THE TELEVISION OF THE PERSON OF THE PERSO

				FUEL US	E IN BT	U*10**6						······································	**************************************					The state of the s
		CO	GENERAT	ION CAS	E **N	OCOGEN	- COGEN**	POWER	COGEN	M3D	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WRTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD MW	POWER MW		/HEAT		COST *10**6	COST	EQVL	(%)	CHRG	ENRG
GTAC	8 2046	0.	920.	0.	0.	-850,	1009.	29.	29.	1.48	0.15	0.15	30.4	0.71	112.9		26.8	1.08 160
GTAC	8 2046	0.	1296.	0.	0.	-1044.	1617.	29.	103.	1.50	0.15	0.31	39,2	0.92	103.3	-13	25.5	1.02 142
GTAC	2 2046	ο.	917.	٥.	0.	-847.	1009.	29.	29.	1.49	0.15	0.15	31.0	0.72	115.5	-15	26.8	1.08 159
GTAC	2 2046	0.	1395.	0.	0,	-1089.	1799.	29.	125.	1.68	0.15	0.34	46.2	1.08	113.1	0	25.4	1.02 136
GTAC1	6 2046	0.	917.	0.	0.	-847.	1009.	29.	29.	1.50	0.15	0.15	31.8	0.74	118.4	-16	26.9	1.08 159
GTAC1	6 2046	Ο.	1468.	0.	Ο.	-1127.	1916.	29.	139.	1.93	0,15	0.35	55.7	1.30	129.5	0	26.2	1.06 131
GTWC	6 2046	I 0.	938.	0.	0.	-868.	1009.	29.	29.	1.51	0,15	0.13	31.7	0.74	115.5	-18	27.4	1.10 157
	6 2046		1634.	0.	0.	-1264.	2014.	29.	151.	1.80	0.15	0.31	49.6	1.16	103.6	0	27.6	
	26 2046		936.	0.	0.	-866.	1009.	29.	29.	1.61	0.15	0.13	32.0	0.75	116.6	-19	27.5	1.11 157
CC 162	26 2046	0.	2302.	0.	0.	-1638.	2999.	29.	271.	2.76	0.15	0.37	78.3	1.83	116.1	0	29.6	1.19 119
CC 162	22 2046	0.	929.	Ο.	٥.	-859.	1009.	29.	29.	1.60	0.15	0.14	31.9	0.74	117.2		27.4	1.10 158
CC162	22 2046	0.	2095.	0.	0.	-1496.	2781.	29.	244.	2.71	0.15	0.38	79.2	1.85	129.0	0	28.7	1.16 120
-	22 2046		928.	0.	٥.	-858.	1009.	29.	29.	1.59	0.15	0.14	31.3	0.73	115.1	-17	27.3	1.10 158
CC122	22 2046	0.	2082.	0.	0.	-1464.	2779.	29.	244.	2.63	0.15	0.38	74.2	1.73	121.7	0	27.8	1.12 121
	22 2046		918.	0.	0.	-84 8 .	1009.	29.	29.	1.59	0.15	0.15	31.2	0.73	115.9		27.0	1.09 159
	22 2046		1759.	0.	0.	<u>-1276.</u>	2394.	29.	197.	2.26	0.15	0.39	61.2	1.43	118.7	2	25.4	1.02 126
	5 2046		1027.	0.	Q.	-957.	1009.	29.	29.	1.79	0.15	0.05	35.4	0,83	117.6	-38	30.2	1.22 147
	5 2046		50692.	0.		-36811.	47249.	29.	5661.	73.68	0.15		1371.1	32.00	92.3	0		23.23 619
	0 2046		1004.	0.	o.	-934.	1009.	29.	29,	1.71	0.15	0.07	34.4	0.80	117.0		29.4	1.19 149
	0 2046		4974.	0.	0.	-3690.	5073.	29.	523.	6.80	0.15	0.22	145.3	3.39	99.7	0_	66.1	2.66 125
	S 2046		993.	0.	٥.	-924.	1009.	29.	29.	1.63	0.15	0.08	30.7	0.72	105.6	-22	28,7	1.16 153
	S 2046		3126.	0.	0.		3297.	29.	307.	4.45	0.15	0.23	91.2	2.13	99,6	0	46,7	1.88 115
	/3 20461		959.	0.	0.	-889.	1009.	29.	29.	1.79	0.15	0.11	41.0	0.96	145.9		29.2	1.17 149
	/3 2046		2594.	0.	<u> </u>	<u>-1902.</u>	3091.	29.	<u> 282.</u>	5.36	0.15	0.31	182.6	4.26	240.2	0_	48.3	1.94 117
	PM 20461		904.	0.	0.	-834.	1009.	29.	29.	1.82	0.15	0.16	40.3	0.94	152.0	-46	27.8	1.12 155
_	PM 20461		1499.	0.	0.	-1106.	2092.	29.	160.	3.45	0.15	0.40	107.7	2.51	245.1	0	30.7	1.24 125
	3 20461		0.	0.	-975.	70.	1009.	29.	29.	1.91	0.15	0.10	45.7	1.07	159.8	0	35.4	1.43 151
	3 2046		0.	<u> </u>	<u>-2995.</u>	777.	3377.	29.	<u>317.</u>	7.19	0.15	0.28	254.2	5.93	289.6	0	78.2	3.15 139
	3 2046		975.	0.	0.	-905.	1009.	29.	29.	1.91	0.15	0.10	45.7	1.07	159.8	0	30.1	1.21 146
	3 2046		2995.	0.	. 0.	-2218.	3377.	29.	317.	7.19	0.15	0.28	254.2	5.93	289.6	0	62.0	2.50 123
	ND 20461		0.	0.	-922.	70.	1009.	29.	29.	1.46	0.15	0.15	29.8	0.70	110.3		31.7	1.28 165
	ND 20461		0.	<u>0.</u>	<u>-1384.</u>	290.	1746.	29.	118.	1.53	0.15	0.32	40.1 33.1	0.94	99.0		32.8	1.32 146 1.30 162
	08 20461		0.	0. 0.	-927.	70.	1009.	29. 29.	29.	1.53 2.35	0.15 0.15	0.14	71.0	1.66	121.7 138.5	-41	37.8	1.52 133
-	08 20461		0.		-1750.	449.	2278.		183. 29.				33.3		122.7	_	32.3	1.30 162
	20461		0. 0.	0. 0.	-925.	70. 445.	1009.	29. 29.	182.	1.54	0.15 0.15	0.14	70.3	1.64	138.7	-41	37.3	1.50 133
	2 2016		<u>0.</u>	0.	-1730. -925.	70.	2266.	29. 29.	29.	2.33 1.56	0.15	0.36	34.0	0.79	125.6	-44	32.4	1.30 162
	6 20461					70. 420.	1009.	29. 29.	171.	2.35	0.15	0.14	71.3	1.66	145.2	-44	37.4	1.51 133
-	6 20461		0.	0. 0.	-1675.	420. 70.	2182.		29.	1.51	0.15	0.14	32.0	0.75	118.1	_	37.4	1.29 163
	08 20461		0. 0.	0. 0.	-926. -1538.	70. 354.	1009. 1960.	29. 29.	29. 144.	1.95	0.15	0.14	32.0 56.1	1.31	124.6	-3/	35.5	1.43 138
	08 20461 2 20461		0.	<u>0.</u> 0.	-1538. -927.	70.	1009.	<u>29.</u> 29.	29.	1.52	0.15	0.34	32.6	0.76	119.9	-39	32.3	1.30 162
					-927. -1603.	70. 380.		29. 29.	29. 155.	2.07	0.15	0.14	60.7	1.42	129.3	-39	36.4	1.46 136
-	2 2046		0.	0.			2048.			1.54	0.15		33.2	6.78	129.3	_	32.3	1.30 162
	6 20461		0.	0.	-924.	70.	1009.	29.	29,			0.14		1.52		-41	36.5	1.47 135
וצאוט	6 2046	1605.	0.	<u> </u>	-1605.	389.	2077.	29.	158.	2.18	0.15	0.35	65.0	1.52 .	130.2		30.3	1.4/ 130

DATE 06/07/79 1&SE-PEC-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

				FUEL US	E IN BT	U*10**6-												
		C	OGENERAT	ION CAS	E **N	CCCGEN -	COGEN**	POWER	COGEN	M30	POWER	FESR	CAPITAL	NORM		ROI	LEVL	NORM WRTH
ECS	PROCS	DISTIL	RES! DL.	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG
1								MW	MW		RATIO		*10**6			(%)		emany and an arrangement (see)
GTRWO	8 2046	952	. 0.	0.	-952.	70.	1009.	29.	29.	1.53	0.15	0.12	32.9	0.77		-43	33.0	
GTRWO	8 2046	2143	. 0.	0.	·-2143.	541.	2585.	29.	220.	2.44	0.15	0.31	73.0	1,70	116.3	0	44.0	1.77 130
GTRW1	2 2046	945	. 0.	٥.	-945.	70.	1009.	29.	29.	1.53	0.15	0.12	32.9	0.77		-42	32.8	1,32 161
GTRW1	2 2046	1 2132	. 0.	0.	-2132.	558.	2643.	29,	227.	2.47	0,15	0.33	74.3	1,73	118.9	0_	42.7	1.72 130
GTRV/1	6 2046	944	. 0.	0.	-944.	70.	1009.	29.	29.	1.55	0.15	0.12	33.4	0, 78	120.9	-44	32.9	1.32 160
GTRWI	6 2046	1 2042	. 0.	0.	-2042.	524.	2530.	29.	214.	2.46	0.15	0.33	74.2	1.73	124.0	0	42.2	1.70 130
GTR30	8 2046	956	. 0.	0.	-956.	70.	1009.	29.	29.	1.52	0.15	0.11	32.1	0.75	114.5	-41	33.0	1.33 160
GTR30	8 2046	1 1826	. 0.	0.	-1826.	407.	2137.	29.	166.	2.07	0.15	0.28	59. 5	1.39	111.2	o_	41.1	1.66 132
GTR31	2 2046	944	. 0.	0.	-944.	70.	1009.	29.	29.	1.51	0.15	0.13	32.1	0.75	116.1	-40	32.7	1.32 161
GTR31	2 2046	1899	. 0.	0.	-1839.	467.	2338.	29.	190.	2.19	0,15	0.32	63.9	1.49	114.8	0	40.2	1.62 132
GTR31	6 2046	944	. 0.	0.	-944.	70.	1009.	29.	29.	1,53	0.15	0.12	32.7	0.76	118.3	-42	32.8	1.32 161
GTR31	6 2046	1 1888	. 0.	0.	-1888.	460.	2316.	29.	188.	2.24	0.15	0.32	6 5.9	1.54	119.2	0	40.5	1.63 132
FCPAD	\$ 2046	980	. 0.	0.	-980.	70.	1009.	29.	29.	3.73	0.15	0.09	42.7	1.00	148.7	999	37.1	1.49 154
FCPAD	S 2046	1 3876	. 0.	· o.	-3876.	1059.	4320.	29.	432.	38.13	0.15	0.28	244.7	5.71	215.4	0	116.6	4.69 177
FCMCD	\$ 2046	1 947	. 0.	0.	-947.	70.	1009.	29.	29.	3.59	0.15	0.12	43.9	1.02		999	36.1	1.45 156
FCMCD	S 2046	1 2828	. 0.	0.	-2828,	838.	3579.	29.	342.	28.67	0.15	0.36	210.2	4.91	253.7	0	86.4	3.48 159

______**₹**

£.

- -

DATE 06/07/75 I&SE-PEC-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

													01017**	Man	- 21/15	201		NASDA:	1 10 T
							COGEN**			Mad		FESR	CAPITAL	NORM	\$/KW	KOI	LEVL	NORM	WRIH
ECS	PROCS	DISTIL R	ESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST *10**6	COST	EGVL	(3)	CHRG	ENRG	*
								MW	MW		0.05		20.6	1.00	198.2	6	5.5	1.00	80
	20631		12.	316.	0.	0,	0. F	5.	٥.	1.13	0.05	0. 0.10	11.7	0.57	107.1	-1	5.2	0.94	
	20631		297.	0.	0.	-285.	316.	5.	5.	0.89			16.3	0.79	120.4		5.1	0.93	
	20631		384.	0.	0.	-319.	495.	5.	27.	0.87	0.05	0.31	26.6	1.29	243.1	999	6.3	1.14	
STM141		0.	<u>0.</u>	297.	0.	12.	20. F	<u> </u>	<u>5.</u>	1.67	0.05	0.10	29.2	1.42	216.4	- 4	5.6	1.01	
	20631		0.	384.	0.	65.	111. F	5.	27.	1.53	0.05	0.37	25.1	1.22	229.3	Ô	6.0	1.10	
STM141			0.	297.	o.	12.	20. A	5.	5.	1.57 1.27	0.05	0.10	21.3	1.03	157.5	79	4.4	0.80	
	20631		0.	384.	0.	65.	111. A	5 .	27. 5.	0.89	0.05	0.10	11.5	0.56	105.3	-1	5.2	0.94	
	20631		<u> 297.</u>	<u>0.</u>	<u> 0.</u>	<u>-285.</u>	316.	<u>5.</u>		0.63	0.05	0.28	14.7	0.72	$\frac{103.3}{114.7}$	999	5.1	0.92	
	20631		362.	.0	0.	-310.	450.	5.	21.	1.68	0.05	0.10	26.6	1.29	243.0	0	6.3	1.15	
	20631		0.	297. 362.	0.	12. 51.	20. F 88. F	5. 5.	5. 21.	1.46	0.05	0.10	27.2	1.32	211.9	5	5.5	1.00	
	20631	_	o.		0.	12.	20. A	5. 5.	21. 5.	1.58	0.05	0.10	25.0	1.21	228.5	ŏ	6.0	1.10	
	20631	<u> </u>	<u>0.</u>	297.	<u>0.</u> 0.	51.	88. A		21.	1.23	0.05	0.28	20.3	0.99	158.0		4.5	0.82	
	20631		0. 0.	362. 297.	0. 0.	12.	19.	5. 5.	2:. 5.	1.61	0.05	0.09	26.3	1.28	240.8	0	6.2	1.13	
	20631		o.	434.	0.	94.	159.	5. 5.	38.	1.86	0.05	0.37	34.8	1.69	232.4	2	6.0	1.03	
	20631	0. 0.	297.	434. D.	0.	-285.	316.	5. 5.	5.	1.13	0.05	0.09	22.2	1.08	203.3	õ	6.6	1.19	
	20631		427.	0,	0.	-342.	596.	<u>5.</u>	39.	2.48	0.05	0.37	72.4	3.52	480.9	-	12.6	2.28	
	20631		0.	297.	0.	12.	19.	5.	5 .	1.87	0.05	0.09	36.1	1.75	329.8	0	7.5	1.37	
	20631		0.	481.	o.	121.	203.	5.	5 0.	3.50	0.05	0.40	105.9	5.15	648.2	ŏ	14.9	2.71	
	20631		301.	φ.	o.	-289.	316.	5.	5.	1.26	0.05	0.08	29.5	1.44	267.4	Õ	7.4	1.35	
	20631	<u> </u>	348.	0.	 0.	-313.	<u>395.</u>	5.	14.	1.97	0.05	0.19	57.8	2.81	464.6	0	11.0	2.00	132
	20631		0.	301.	o.	12.	16.	5.	5.	2.09	0.05	0.08	46.3	2.25	419.3	0	8.9	1.61	138
	20631		o.	367.	Ö.	45.	61.	5.	18.	2.79	0.05	0.22	85.1	4.14	654.3	0	13.3	2.41	135
STIRL	20631		ő.	0.	-305.	12.	316.	5.	5.	0.89	0.05	0.07	14.3	0.70	126.0	-12	6.2	1.13	152
STIRL	20631		<u> </u>	0.	-522.	104.	625.	5.	42.	1.44	0.05	0.28	31.4	1.53	178.9	0	8.8	1.60	123
STIRL	20631		305.	·0,	0.	-293.	316.	5.	5.	0.89	0.05	0.07	14.3	0.70	128.0	-5	5.5	1.00	148
STIRL	20631		522.	0.	o.	-418.	625.	5.	42.	1.44	0.05	0.28	31.4	1.53	179.2	0	7.6	1,39	117
STIRL	20631	- •	o.	305.	o.	12.	11.	5.	5.	1.59	0.05	0.07	26.9	1.31	241.2	0	6.2	1.13	136
STIRL	20631		0,	569.	0.	132.	131.	5.	54.	2.43	0.05	0.31	62.4	3.03	320.0	0	9.3	1.69	
	20631	- •	o.	312.	o.	12.	5. A	5.	5.	1.62	0.05	0.05	32.9	1.60	289.1	0	7.0		
	20631		o.	1031.	0.	255.	102. A	5.	104.	4.24	0.05	0.26	133.9	6.51	412.8	0	18.4		
	20631		o.	312.	0.	12.	4. A	5.	5.	1.62	0.05	0.05	32.5	1.58	285.4	0	7.0		
	20631	0.	0.	716.	0.	147.	56. A	5.	60.	2.98	0.05	0.22	90.0	4.38	387.9	0	13.4	2.43	
HEGT00	20631	О.	0.	313.	٥.	12.	3. A	5.	5.	1.63	0.05	0.04	32.0	1.55	280.0	0	6.9	1,26	
HEGTOO	20631	0.	0.	504.	0.	73.	20. A	5.	30.	2.04	0.05	0.16	57.2	2.78	336.0	0	9,6		
FCMCCI.	20631	0,_	0.	377.	٥.	.12.	-51	5.	5.	1.69		-0.15	33.4	1.62	302.2	<u> </u>	7.6		
	20631		0.	633.	٥.	138.	108.	5.	56.	2.81	0.05	0.28	70.9	3.45	382.3	0	11.1	2.01	
FCSTCL	20631	0.	٥.	376.	0.	12.	-60.	5.	5.	1.72		-0.15	32.5	1.58	294.4	0	7.5		
_	20631		ο.	822.	0.	244.	273.	5.	100.	3.67	0.05	0.39	92.1	4.48	382.4	0	12.6		
	20631		0.	381.	0.	12.	-65、	<u>5.</u>	5.	1.75		-0.16	31.6	1.54	282.8	0	7.5		
	20631		0.	767.	0.	175.	97.	5.	71.	2.60	0.05	0.26	71.5	3.47	318.0	0	10.7	1.95	
3TSØAR	20631		303.	0.	0.	-292.	316.	5. 3.	5. 44.	0.84 1.16	0.05 0.05	0.07 0.31	13.7 23.5	0.66 1.14	122.9 134.5	-3 0	5.4 6.4	0.98	
	20631	0.	519.	0,	0.	-411.	640.										n. 4		

### FUEL USE IN BILL 102#6						=::=:															
FROM PROFIT RESIDE COAL DISTIL RESIDE COAL PROPRIE PROFIT																					
STACOB 20631 O. 301. O. 0290. 316. S. 5. 0.82 O.05 O.08 13.1 O.64 118.4 -2 S. 3 O.96 ISTACOB 20631 O. 301. O. 0274. 579. S. 37. 1.05 O.05 O.08 O.08 123.9 -17 S. 8 1.05 ISTACOB 20631 O. 301. O. 0274. 579. S. 37. 1.05 O.05 O.08 O.08 ISTACOB 20631 O. 301. O. 0289. 316. S. 5. 0.62 O.05 O.09 O.09 ISTACOB 20631 O. 301. O. 0289. 316. S. 5. 0.62 O.05 O.09 ISTACOB 20631 O. 301. O. 0289. 316. S. 5. 0.62 O.05 O.09 ISTACOB 20631 O. 301. O. 0280. 316. S. 5. 0.62 O.05 O.09 ISTACOB 20631 O. 301. O. 0280. 316. S. 5. 0.62 O.05 O.09 ISTACOB 20631 O. 301. O. 0283. 316. S. 5. 0.62 O.05 O.09 ISTACOB 20631 O. 304. O. 0283. 316. S. 5. 0.62 O.05 O.09 O.07 ISTACOB 20631 O. 304. O. 0283. 316. S. 5. 0.62 O.05 O.09 O.07 ISTACOB 20631 O. 304. O. 0283. 316. S. 5. 0.62 O.05 O.09 O.07 ISTACOB 20631 O. 304. O. 0283. 316. S. 5. 0.69 O.05 O.07 ISTACOB 20631 O. 304. O. 0283. 316. S. 5. 0.69 O.05 O.07 ISTACOB 20631 O. 304. O. 0283. 316. S. 5. 0.69 O.05 O.07 ISTACOB 20631 O. 304. O. 0283. 316. S. 5. 0.69 O.05 O.07 ISTACOB 20631 O. 304. O. 0283. O.05 O.09 O.05 O.07 ISTACOB 20631 O. 304. O. 0283. O.05 O.09 O.05 O.07 ISTACOB 20631 O. 304. O. 0283. O.05 O.09 O.05 O.07 ISTACOB 20631 O. 304. O. 0283. O.05 O.09 O.05 O.09 O.07 ISTACOB 20631 O. 304. O. 0283. O.05 O.09 O.05 O.09 O.07 ISTACOB 20631 O. 304. O. 0283. O.05 O.09 O.05 O.09 O.07 ISTACOB 20631 O. 304. O.05 O.09		_										тем		FESR				ROI			ARTH
6TACOB 20631 0 . 301. 0 . 0290 . 316. 5 . 5 . 0 . 82 . 0 . 0 . 0 . 0 . 8 13 . 1 . 0 . 64 . 116 . 4 - 2 . 5 . 3 . 0 . 96 151 . 10 . 64 . 116 . 4 - 2 . 5 . 3 . 0 . 96 151 . 10 . 60 . 31 . 10 . 10 . 10 . 12 . 12 . 12 . 12 . 1	ECS	F	ROCS	DISTIL	RESIDL	COAL	DISTIL	. RESIDL	COAL							COST	EOVL		CHRG	ENRG	
GTACI2 20631 0. 464. 0. 0974. 579. 5. 37. 1.05 0.05 0.31 19.6 0.95 123.9 -17 5.8 1.05 25 GTACI2 20631 0. 301. 0. 0289. 316. 5. 5. 0.82 0.05 0.08 13.1 0.64 118.3 -2 5.3 0.96 151 GTACI2 20631 0. 301. 0. 0290. 316. 5. 5. 0.82 0.05 0.08 13.2 0.64 118.6 -2 5.3 0.96 151 GTACI2 20631 0. 301. 0. 0290. 316. 5. 5. 0.82 0.05 0.08 13.2 0.64 119.6 -2 5.3 0.96 151 GTACIA 20631 0. 301. 0. 0290. 316. 5. 5. 0.82 0.05 0.08 13.2 0.64 119.6 -2 5.3 0.96 151 GTACIA 20631 0. 526. 0. 0404. 686. 5. 5. 0. 1.20 0.05 0.08 13.2 0.64 119.6 -2 5.3 0.96 151 GTACIA 20631 0. 526. 0. 0404. 686. 5. 5. 0. 1.20 0.05 0.08 13.2 0.64 119.6 -2 5.3 0.96 151 GTACIA 20631 0. 585. 0. 0293. 316. 5. 5. 0.89 0.05 0.08 13.2 0.65 122.0 -3 5.4 0.97 1430 100 100 100 100 100 100 100 100 100 1																					
GTAC12 20631 0, 499 0, 0, -289, 316, 5, 8, 0,82 0.05 0,08 13.1 0,64 118.3 -2 5,3 0,96 151 17616 20631 0, 301, 0, 0, -290, 316, 5, 5, 0,82 0.05 0,08 13.2 0,64 119.6 -2 5,3 0,96 151 17616 20631 0, 526, 0, 0, -404, 686, 5, 55, 0,10, 0,08 0,08 13.2 0,64 119.6 -2 5,3 0,96 151 17616 20631 0, 526, 0, 0, -404, 686, 5, 55, 0,10, 0,05 0,38 24,8 1.20 140.4 0, 6.3 1.41 124 17616 20631 0, 526, 0, 0, -404, 686, 5, 55, 0,10, 0,05 0,35 24,8 1.20 140.4 0, 6.3 1.41 124 17616 20631 0, 585, 0, 0, -453, 721, 5, 54, 1.22 0,05 0,31 24,9 1.21 128,7 0, 6.6 12.0 79 149 149 149 149 149 149 149 149 149 14																					
GTAC16 20631 0, 499, 0, 0, -390, 644, 5, 45, 1,13 0,05 0,34 22,3 1,08 132,2 0 6,0 1,09 124 6TAC16 20631 0, 301, 0, 0, -290, 316, 5, 5, 0,36 0,05 0,03 13,2 0,64 119,6 -2 5,3 0,96 1517 6TAC16 20631 0, 526, 0, 0, -404, 686, 5, 50, 1,20 0,05 0,03 24,8 1,20 140,4 0 6,3 1,14 124 6TWC16 20631 0, 394, 0, 0, -459, 721, 5, 54, 1,22 0,05 0,03 0,05 0,07 13,5 0,66 121,0 -3 5,4 0,97 149 6TWC16 20631 0, 585, 0, 0, -459, 721, 5, 54, 1,22 0,05 0,03 0,05 0,07 13,4 0,65 120,1 -4 5,4 0,97 149 6TWC16 20631 0, 394, 0, 0, -459, 721, 5, 54, 1,22 0,05 0,31 24,9 1,21 128,7 0 6,6 1,20 120 000 000 000 000 000 000 000 000 0																					
GTAC16 20631 0. 301. 0. 0290. 316. 5. 5. 0.92 0.05 0.08 13.2 0.64 119.6 -2 5.3 0.96 151 07AC16 20631 0. 526. 0. 0404. 686. 5. 50. 1.20 0.05 0.05 124.8 1.20 140.4 0 6.3 1.14 124 07WC16 20631 0. 304. 0. 0293. 316. 5. 5. 0.83 0.05 0.07 13.5 0.66 121.0 -3 5.4 0.97 149 07WC16 20631 0. 585. 0. 0453. 721. 5. 5. 5. 0.83 0.05 0.07 13.5 0.66 121.0 -3 5.4 0.97 149 07WC16 20631 0. 304. 0. 0293. 316. 5. 5. 5. 0.83 0.05 0.07 13.5 0.66 121.0 -3 5.4 0.97 149 07WC16 20631 0. 304. 0. 0293. 316. 5. 5. 5. 0.89 0.05 0.07 13.4 0.65 120.1 -4 5.4 0.99 150 07WC16 20631 0. 304. 0. 0293. 316. 5. 5. 0.89 0.05 0.07 13.4 0.65 120.1 -4 5.4 0.99 150 07WC16 20631 0. 303. 0. 0292. 316. 5. 5. 0.89 0.05 0.08 13.1 0.64 118.2 -3 5.4 0.99 150 07WC16 20631 0. 303. 0. 0292. 316. 5. 5. 0.89 0.05 0.08 13.1 0.64 118.2 -3 5.4 0.99 150 07WC16 20631 0. 303. 0. 0292. 316. 5. 5. 0.89 0.05 0.08 13.1 0.64 118.2 -3 5.4 0.99 150 07WC16 20631 0. 304. 0. 0536. 996. 5. 57. 0.89 0.05 0.08 34.6 1.68 142.6 0. 7.6 1.99 151 07WC16 20631 0. 304. 0. 0536. 996. 5. 57. 0.89 0.05 0.08 34.6 1.68 142.6 0. 7.6 1.99 151 07WC16 20631 0. 304. 0. 0290. 316. 5. 5. 5. 0.89 0.05 0.08 0.08 34.6 1.68 142.6 0. 7.6 1.99 151 07WC16 20631 0. 304. 0. 0. 0290. 316. 5. 5. 5. 5. 0.89 0.05 0.08 0.08 34.6 1.68 142.6 0. 7.6 1.99 151 07WC16 20631 0. 304. 0. 0. 0308. 316. 5. 5. 5. 0.89 0.05 0.08 0.08 34.6 1.68 142.6 0. 7.6 1.99 151 07WC16 20631 0. 316. 0. 0. 0. 0. 0457. 857. 5. 71. 1.43 0.05 0.08 0.08 34.6 1.68 142.6 0. 7.6 1.99 151 07WC16 20631 0. 316. 0. 0. 0. 0308. 316. 5. 5. 5. 5. 0.89 0.05 0.08 0.09 12.0 0.64 112.0 -3 5.4 0.99 151 07WC16 20631 0. 316. 0. 0. 0. 0. 316. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.																					
GTAC16 20631 0 . 526. 0 . 0404. 686. 5 . 50 . 1.20 0.05 0.35 24.8 1.20 140.4 0 6.3 1.14 124 6TWC16 20631 0 . 304. 0 . 0233 . 315. 5 . 5 . 0.80 0.05 0.07 13.5 0.66 121.0 -3 5.4 0.97 124 6TWC16 20631 0 . 304. 0 . 0233 . 316. 5 . 5 . 0.89 0.05 0.07 13.5 0.66 121.0 -3 5.4 0.97 120 0.05 0.05 0.05 0.31 24.9 1.21 128.7 0 6.6 1.20 120 0.05 0.05 0.05 0.05 0.05 0.07 13.4 0.65 120.1 -4 5.4 0.09 120 0.05 0.05 0.05 0.07 13.4 0.65 120.1 -4 5.4 0.09 120 0.05 0.05 0.05 0.07 13.4 0.65 120.1 -4 5.4 0.09 120 0.05 0.05 0.05 0.07 13.4 0.65 120.1 -4 5.4 0.09 120 0.05 0.05 0.05 0.07 13.4 0.65 120.1 -4 5.4 0.09 120 0.05 0.05 0.05 0.07 13.4 0.65 120.1 -4 5.4 0.09 120 0.05 0.05 0.07 13.4 0.65 120.1 -4 5.4 0.09 120 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.																					
GTWC16 20631 0. 304. 0. 0233. 316. 5. 5. 0.83 0.05 0.07 13.5 0.66 121.0 -3 5.4 0.97 149 0.07 140 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.					•							-									
STMFIGE 20691 0. 585. 0. 0493. 721. 5. 54. 1.22 0.05 0.31 24.9 1.21 128.7 0 6.6 1.20 12																		_	6.3		
CC16262 20631																		-			
CC1622 20631 0. 824. 0597. 1074. 5. 97. 1.64 0.05 0.37 38.0 1.70 132.5 0 7.9 1.43 125 126 126 126 126 136 13 10 13 10 13 125 10 7.9 1.43 125 126 126 126 126 136 13 10 13 1																		0		1.20	120
CC1622 20631																		-			
CC1622 20631 0, 750, 0, 0, -536, 996, 5, 87, 1, 61 0, 05 0, 38 34, 6 1, 68 142, 6 0 7, 6 1, 39 125 (C1222 20631 0, 746, 0, 0, -531, 995, 5, 87, 1, 58 0, 05 0, 08 13, 0 0, 63 117, 0 -3 5, 4 0, 98 151 (C1222 20631 0, 746, 0, 0, -531, 995, 5, 87, 1, 58 0, 05 0, 08 13, 0 0, 63 117, 0 -3 5, 4 0, 98 151 (C1222 20631 0, 746, 0, 0, -531, 995, 5, 87, 1, 58 0, 05 0, 08 13, 2 9, 1, 60 136, 7 0 7, 4 1, 34 126 (C0822 20631 0, 630, 0, 0, -457, 857, 5, 71, 1, 43 0, 05 0, 39 28, 1 1, 37 135, 8 0 6, 6 1, 20 126 (C0822 20631 0, 630, 0, 0, -457, 857, 5, 71, 1, 43 0, 05 0, 39 28, 1 1, 37 135, 8 0 6, 6 1, 20 126 (C0822 20631 0, 630, 0, 0, -308, 316, 5, 5, 71, 1, 43 0, 05 0, 39 28, 1 1, 37 135, 8 0 6, 6 1, 20 126 (C0822 20631 0, 18154, 0, 0, -13183, 16921, 5, 2027, 20, 00 0, 05 0, 17 510, 6 24, 82 95, 6 0 128, 0 23, 25 620 (C0822 20631 0, 18154, 0, 0, -13183, 16921, 5, 2027, 20, 00 0, 05 0, 17 510, 6 24, 82 95, 6 0 128, 0 23, 25 620 (C0822 20631 0, 18154, 0, 0, -13183, 16921, 5, 2027, 20, 00 0, 05 0, 17 510, 6 24, 82 95, 6 0 128, 0 23, 25 620 (C0822 20631 0, 1310, 0, 0, -13183, 16921, 5, 2027, 20, 00 0, 05 0, 07 7 510, 6 24, 82 95, 6 0 128, 0 23, 25 620 (C0822 20631 0, 1781, 0, 0, -13183, 16921, 5, 2027, 20, 00 0, 05 0, 07 7 510, 6 24, 82 95, 6 0 128, 0 23, 25 620 (C0822 20631 0, 1781, 0, 0, -13183, 16921, 5, 2027, 20, 00 0, 05 0, 07 7 510, 6 24, 82 95, 6 0 128, 0 23, 25 620 (C0822 20631 0, 1781, 0, 0, -13183, 16921, 5, 2027, 20, 00 0, 05 0, 05 0, 07 7 510, 6 24, 82 95, 6 0 128, 0 23, 25 620 (C0822 20631 0, 1781, 0, 0, -13183, 16921, 5, 5, 5, 0, 83 0, 05 0, 00 177 510, 6 24, 82 95, 6 0 128, 0 23, 25 620 (C0822 20631 0, 1781, 0, 0, -13183, 16921, 1781, 0								•				• • • •		0.37	35.0			0	7.9	1.43	125
CC1222 20631																		_			
CC1222 22631																					
CC0822 20631 0. 301, 0. 0290. 316, 5. 5. 0.69 0.05 0.08 13.2 0.64 119.2 -3 5.4 0.98 151 CC0822 20631 0. 630. 0. 0457. 857. 5. 71, 1.43 0.05 0.39 28.1 1.37 135.8 0 6.6 1.20 128 151 151 152 2031 0. 319, 0. 0308, 316, 5. 5. 0.91 0.05 0.03 16.3 0.79 140.2 -10 5.9 1.07 141 STIG15 20631 0. 18154, 0. 013183 16921, 5. 2027. 20.00 0.05 0.17 510.6 24.82 95.6 0 128.0 23.25 620 STIG10 20631 0. 315, 0. 0304, 316, 5. 5. 0.83 0.05 0.04 13.1 0.64 113.8 -4 5.4 0.98 157 1610 20631 0. 1791, 0. 01321, 1817, 5. 187, 2.56 0.05 0.22 56.7 2.76 104.2 0 14.9 2.70 129 121 121 120 120 120 120 120 120 120 120																		-			
CCOB622 20581 0														0.38				_	7.4	1.34	126
STIGIS 20631 0. 319. 0. 0308. 316. 5. 5. 0.91 0.05 0.03 16.3 0.79 140.2 -10 5.9 1.07 141 151 161 161 161 161 161 161 161 161 16							- ,					0.89	0.05	0.08	13.2	0.64	119.2	-3	5.4	0.98	151
STIG15 20631														0.39		1.37	135.8	0	6.6	1.20	126
STIG10 20631					319.	0.	٥.	-308,	316,	5.	5.	0.91	0.05	0.03	16.3	0.79	140.2	-10	5.9	1.07	141
STIG10 20631												20.00	0.05	0.17	510.6	24.82	95.6	0	128.0	23.25	620
STIGIS 20631 0. 314. 0. 0302. 316. 5. 5. 0.83 0.05 0.04 13.0 0.63 113.8 -4 5.4 0.98 147 DEADV3 20631 0. 308. 0. 0285. 1181. 5. 110. 1.90 0.05 0.23 39.1 1.90 111.7 0 10.6 1.93 117 DEADV3 20631 0. 308. 0. 0286. 316. 5. 5. 0.92 0.05 0.06 16.3 0.79 145.0 -9 5.8 1.05 145 DEADV3 20631 0. 308. 0. 0286. 316. 5. 5. 0.92 0.05 0.06 16.3 0.79 145.0 -9 5.8 1.05 145 DEADV3 20631 0. 329. 0. 0681. 1107. 5. 101. 2.51 0.05 0.31 70.2 3.41 238.3 0 13.2 2.39 130 DEHTIFIN 20631 0. 299. 0. 0287. 316. 5. 5. 0.95 0.05 0.09 16.2 0.79 147.4 -8 5.7 1.04 148 DEHTIFIN 20631 0. 537. 0. 0396. 749. 5. 57. 1.80 0.05 0.40 42.8 2.08 238.3 0 8.4 1.52 127 DESONA 20631 311. 0. 0311. 12. 316. 5. 5. 0.91 0.05 0.05 0.65 15.5 0.75 136.8 -15 6.4 1.17 148 DESONA 20631 1072. 0. 01072. 278. 1209. 5. 113. 3.19 0.05 0.28 96.0 4.67 285.3 0 19.7 3.57 151 DESONA 20631 0. 311. 0. 0299. 316. 5. 5. 0.91 0.05 0.28 96.0 4.67 285.3 0 19.7 3.57 151 DESONA 20631 0. 1072. 0. 0794. 1209. 5. 113. 3.19 0.05 0.28 96.0 4.67 285.3 0 17.2 3.13 140 GTSCAD 20631 302. 0. 0302. 12. 316. 5. 5. 0.82 0.05 0.08 12.9 0.63 116.3 -9 5.9 1.08 154 GTRADB 20631 303. 0. 0303. 12. 316. 5. 5. 0.82 0.05 0.08 12.9 0.63 116.3 -9 5.9 1.08 154 GTRADB 20631 303. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 12.9 0.63 116.3 -9 5.9 1.08 154 GTRADB 20631 303. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 12.9 0.63 116.3 -9 5.9 1.08 154 GTRADB 20631 303. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRADB 20631 302. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 32.0 1.56 155.5 0 8.7 1.57 129 GTRADB 20631 303. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRADB 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRADB 20631 303. 0. 0500. 151. 782. 5. 61. 1.37 0.05 0.36 32.0 1.56 155.5 0 8.7 1.57 129 GTRADB 20631 303. 0. 0500. 151. 782. 5. 61. 1.37 0.05 0.36 32.0 1.56 124.5 -10 6.1 1.10 153 GTRADB 20631 303. 0. 0500. 151. 782. 5. 61. 1.37 0.05 0.36 32.0 1.56 124.5 -10 6.1 1.1	STI	G10	20631	0.	315.	0.	0.	-304.	316.	5.	5.	0.83	0.05	0.04	13,1	0.64	113.8	-4	5.4	0.98	146
STIGIS 20631 0. 1120. 0. 0850. 1181. 5. 110. 1.90 0.05 0.23 39.1 1.90 111.7 0 10.6 1.93 117 DEADV3 20631 0. 308. 0. 0296. 316. 5. 5. 0.92 0.05 0.06 16.3 0.79 145.0 -9 5.8 1.05 145 DEADV3 20631 0. 929. 0. 0681. 1107. 5. 101. 2.51 0.05 0.31 70.2 3.41 238.3 0 13.2 2.39 130 DEHTPM 20631 0. 299. 0. 0287. 316. 5. 5. 0.95 0.05 0.09 16.2 0.79 147.4 -8 5.7 1.04 148 DESOA3 20631 311. 0. 0311. 12. 316. 5. 5. 0.91 0.05 0.06 16.3 0.79 145.0 -9 5.8 1.05 145 DESOA3 20631 311. 0. 0311. 12. 316. 5. 5. 0.91 0.05 0.09 16.2 0.79 147.4 -8 5.7 1.04 148 DESOA3 20631 1072. 0. 01072. 278. 1209. 5. 113. 3.19 0.05 0.05 1.55 0.75 136.8 -15 6.4 1.17 148 DESOA3 20631 0. 311. 0. 01072. 278. 1209. 5. 113. 3.19 0.05 0.28 96.0 4.67 285.3 0 19.7 3.57 151 DESOA3 20631 0. 1072. 0. 0794. 1209. 5. 113. 3.19 0.05 0.28 96.0 4.67 285.3 0 17.2 3.13 140 GTSOAD 20631 302. 0. 0302. 12. 316. 5. 5. 0.82 0.05 0.08 12.9 0.63 116.3 -9 5.9 1.08 154 GTSOAD 20631 303. 0. 0496. 104. 626. 5. 42. 1.07 0.05 0.32 20.0 0.97 119.1 -67 5.9 1.08 154 GTRA08 20631 302. 0. 0627. 161. 816. 5. 5. 0.83 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.10 153 GTRA12 20631 302. 0. 0627. 161. 816. 5. 5. 0.83 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.10 153 GTRA12 20631 302. 0. 0620. 159. 811. 5. 5. 5. 0.83 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.10 153 GTRA12 20631 302. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.5 1.57 1.29 GTRA12 20631 302. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.5 1.57 1.29 GTRA12 20631 302. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.5 1.57 1.59 GTRA16 20631 302. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.5 1.57 1.59 GTRA16 20631 302. 0. 0620. 159. 811. 5. 65. 0.83 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.10 153 GTRA16 20631 302. 0. 0500. 151. 782. 5. 61. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.5 1.54 129 GTRA16 20631 302. 0. 0500. 151. 782. 5. 61. 1.37 0.05 0.38 13.5 0.66 122.8 -10 6.1 1.10 153 GTRA16 20631 302. 0. 0500. 151. 782. 5. 5. 0.83 0.05 0.08 13.5							0.	-1321.	1817.		187.	2.56	0.05	0.22	56.7	2.76	104.2	0	14.9	2.70	129
DEADV3 20631 0. 308. 0. 0296. 316. 5. 5. 0.92 0.05 0.06 16.3 0.79 145.0 -9 5.8 1.05 145 DEADV3 20631 0. 929. 0. 0681. 1107. 5. 101. 2.51 0.05 0.31 70.2 3.41 238.3 0 13.2 2.39 130 DEHTFM 20631 0. 299. 0. 0297. 316. 5. 5. 0.95 0.05 0.09 16.2 0.79 147.4 -8 5.7 1.04 148 DEHTFM 20631 0. 537. 0. 0396. 749. 5. 57. 1.80 0.05 0.40 42.8 2.08 238.3 0 8.4 1.52 127 DESOA3 20631 311. 0. 0311. 12. 316. 5. 5. 0.91 0.05 0.05 15.5 0.75 136.8 -15 6.4 1.17 148 DESOA3 20631 1072. 0. 01072. 278. 1209. 5. 113. 3.19 0.05 0.28 96.0 4.67 285.3 0 19.7 3.57 151 DESOA3 20631 0. 311. 0. 0299. 316. 5. 5. 0.91 0.05 0.28 96.0 4.67 285.3 0 19.7 3.57 151 DESOA3 20631 302. 0. 0302. 12. 316. 5. 5. 0.82 0.05 0.08 12.9 0.63 116.3 -9 5.9 1.08 154 GTRA08 20631 303. 0. 0496. 104. 626. 5. 42. 1.97 0.05 0.32 20.0 0.97 119.1 -67 5.9 1.26 130 GTRA08 20631 302. 0. 0627. 161. 816. 5. 5. 6. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRA08 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRA16 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRA16 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRA16 20631 302. 0. 0502. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.10 153 GTRA16 20631 302. 0. 0502. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.10 153 GTRA16 20631 302. 0. 0502. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRA16 20631 303. 0. 0502. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.10 153 GTRA16 20631 303. 0. 0502. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRA16 20631 303. 0. 0502. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRA16 20631 303. 0. 0502. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRA16 20631 303. 0. 0502. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.66 121.7 -10 6.0 1.10 153 GTRA28 20631 303. 0. 0502. 12. 316. 5. 5. 0.83 0.05 0.08 13.5 0.66 121.7 -10 6.0 1.10 1												0.83	0.05	0.04	13.0	0.63	113.8	-4	5.4	0.98	147
DEADV3 20631 0. 929. 0. 0. -681. 1107. 5. 101. -2.51 0.05 0.31 70.2 3.41 238.3 0 13.2 2.39 130 DEHTFM 20631 0. 299. 0. 0. -287. 316. 5. 5. 0.95 0.09 16.2 0.79 147.4 -8 5.7 1.04 148 DESDAG 20631 311. 0. 0. -311. 12. 316. 5. 5. 0.91 0.05 0.40 42.8 2.08 238.3 0 8.4 1.52 127 DESDAG 20631 311. 0. 0. -311. 12. 316. 5. 5. 0.91 0.05 0.05 15.5 0.75 136.8 -15 6.4 1.17 148 DESDAG 20631 0. 1072. 0. 0. -299. 316. 5. 5. 0.91 0.						0.				5.		1.90	0.05	0.23	39.1	1.90	111.7	0	10.6	1.93	117
DEHTPM 20631						٥.	Ο.	-296.	316.	5.	5.	0.92	0.05	0,06	16.3	0.79	145.0	-9	5.8		
DEHTPM 20631 0. 537. 0. 0396. 749. 5. 57. 1.80 0.05 0.40 42.8 2.08 238.3 0 8.4 1.52 127 DESORA 20631 311. 0. 0311. 12. 316. 5. 5. 0.91 0.05 0.05 15.5 0.75 136.8 -15 6.4 1.17 148 DESORA 20631 1072. 0. 01072. 278. 1209. 5. 113. 3.19 0.05 0.28 96.0 4.67 285.3 0 19.7 3.57 151 DESORA 20631 0. 311. 0. 0299. 316. 5. 5. 0.91 0.05 0.05 15.5 0.75 136.8 -8 5.7 1.04 145 DESORA 20631 0. 1072. 0. 0794. 1209. 5. 113. 3.19 0.05 0.28 96.0 4.67 285.3 0 19.7 3.57 151 DESORA 20631 0. 1072. 0. 0794. 1209. 5. 113. 3.19 0.05 0.28 96.0 4.67 285.3 0 17.2 3.13 140 GTSGAD 20631 496. 0. 0302. 12. 316. 5. 5. 0.82 0.05 0.08 12.9 0.63 116.3 -9 5.9 1.08 154 GTRA08 20631 303. 0. 0496. 104. 626. 5. 42. 1.07 0.05 0.32 20.0 0.97 119.1 -67 5.9 1.26 130 GTRA08 20631 302. 0. 0627. 161. 816. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRA12 20631 620. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.10 153 GTRA12 20631 620. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 32.0 1.56 155.5 0 8.4 1.53 129 GTRA16 20631 303. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 32.0 1.56 155.5 0 8.4 1.53 129 GTRA16 20631 303. 0. 0600. 151. 782. 5. 61. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.4 1.53 129 GTRA16 20631 303. 0. 0502. 12. 316. 5. 5. 0.84 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.11 153 GTRA16 20631 303. 0. 0500. 151. 782. 5. 61. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.4 1.53 129 GTRA16 20631 303. 0. 0500. 151. 782. 5. 61. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.5 1.54 129 GTRA12 20631 551. 0. 0503. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 121.7 -10 6.0 1.10 153 GTR208 20631 551. 0. 0503. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 121.7 -10 6.0 1.10 153 GTR208 20631 551. 0. 0503. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 121.7 -10 6.0 1.10 153 GTR208 20631 303. 0. 0503. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 121.7 -10 6.0 1.10 153 GTR208 20631 551. 0. 0503. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 121.7 -10 6.0 1.10 153 GTR212 20631 574. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.34 25.2 1.22 137.0 0 7.7 1.								-681.			101.	2.51	0.05	0.31	70.2	3.41	238.3	0	13.2	2.39	130
DESORAS 20631 311. 0. 0311. 12. 316. 5. 5. 0.91 0.05 0.05 15.5 0.75 136.8 -15 6.4 1.17 148 DESORAS 20631 1072. 0. 01072. 278. 1209. 5. 113. 3.19 0.05 0.28 96.0 4.67 285.3 0 19.7 3.57 151 DESORAS 20631 0. 1072. 0. 0794. 1209. 5. 113. 3.19 0.05 0.28 96.0 4.67 285.3 0 19.7 3.57 151 DESORAS 20631 0. 1072. 0. 0794. 1209. 5. 113. 3.19 0.05 0.28 96.0 4.67 285.3 0 17.2 3.13 140 GTSGAD 20631 302. 0. 0302. 12. 316. 5. 5. 0.82 0.05 0.08 12.9 0.63 116.3 -9 5.9 1.08 154 GTRADS 20631 303. 0. 0496. 104. 626. 5. 42. 1.97 0.05 0.32 20.0 0.97 119.1 -67 5.9 1.26 130 GTRADS 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRADS 20631 627. 0. 0620. 159. 811. 5. 66. 1.40 0.05 0.36 32.0 1.56 155.5 0 8.7 1.57 129 GTRA12 20631 620. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.38 30.7 1.49 150.5 0 8.4 1.53 129 GTRA16 20631 302. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 30.7 1.49 150.5 0 8.4 1.53 129 GTRA16 20631 303. 0. 0620. 151. 782. 5. 61. 1.37 0.05 0.36 31.1 1.51 150.5 0 8.4 1.53 129 GTRA16 20631 551. 0. 0551. 127. 702. 5. 52. 1.22 0.05 0.34 25.2 1.22 137.0 0 7.7 1.40 128 GTR212 20631 551. 0. 0551. 127. 702. 5. 52. 1.22 0.05 0.34 25.2 1.22 137.0 0 7.7 1.40 128 GTR212 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 121.7 -10 6.0 1.10 153 GTR212 20631 574. 0. 0503. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 121.7 -10 6.0 1.10 153 GTR212 20631 551. 0. 0551. 127. 702. 5. 52. 1.22 0.05 0.34 25.2 1.22 137.0 0 7.7 1.40 128 GTR212 20631 574. 0. 0503. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 121.8 -10 6.1 1.10 153 GTR212 20631 574. 0. 0503. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 122.8 -10 6.1 1.10 153 GTR212 20631 574. 0. 0503. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 122.8 -10 6.1 1.10 153 GTR212 20631 574. 0. 0503. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 122.8 -10 6.1 1.10 153 GTR212 20631 574. 0. 0503. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 122.8 -10 6.1 1.10 153 GTR212 20631 574. 0. 0503. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 122.8 -10	DEH	TPM	20631	0.	299.	0.		-287.	316.	5.	5.	0.95	0.05	0.09	16.2	0.79	147.4	~8	5.7	1.04	148
DESGA3 20631 1072. 0. 0. -1072. 278. 1209. 5. 113. 3.19 0.05 0.28 96.0 4.67 285.3 0 19.7 3.57 151 DESGA3 20631 0. 311. 0. 0. -299. 316. 5. 5. 0.91 0.05 0.05 15.5 0.75 136.8 -8 5.7 1.04 145 DESGA3 20631 0. 1072. 0. 0. -794. 1209. 5. 113. 3.19 0.05 0.28 96.0 4.67 285.3 0 17.2 3.13 140 GTSGAD 20631 302. 0. 0. -302. 12. 316. 5. 5. 0.82 0.05 0.08 12.9 0.63 116.3 -9 5.9 1.08 15. GTRA08 20631 303. 0. 0. -303. 12. 316. 5. 5.	DEH	TPM	20631	0.	537.	0.	0.	-396.	749.	5.	57.	1.80	0.05	0.40	42.8	2.08	238.3	0	8.4	1.52	127
DESORA 20631	DES	QV3	20631	311.	0.	0.	-311.	12.	316.	5.	5.	0.91	0.05	0.65	15.5	0.75	136.8	-15	6.4		
DESGA3 20631 0. 1072. 0. 0794. 1209. 5. 113. 3.19 0.05 0.28 96.0 4.67 285.3 0 17.2 3.13 140 GTSGAD 20631 302. 0. 0302. 12. 316. 5. 5. 0.82 0.05 0.08 12.9 0.63 116.3 -9 5.9 1.08 154 GTRA08 20631 303. 0. 0496. 104. 626. 5. 42. 1.07 0.05 0.32 20.0 0.97 119.1 -67 5.9 1.26 130 GTRA08 20631 303. 0. 0627. 161. 816. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRA12 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.10 153 GTRA12 20631 302. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 32.0 1.56 155.5 0 8.7 1.57 129 GTRA12 20631 302. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 30.7 1.49 150.5 0 8.4 1.53 129 GTRA16 20631 302. 0. 0302. 12. 316. 5. 5. 0.84 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.10 153 GTRA16 20631 302. 0. 0600. 151. 782. 5. 61. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.5 1.54 129 GTR208 20631 303. 0. 0600. 151. 782. 5. 61. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.5 1.54 129 GTR208 20631 303. 0. 0551. 127. 702. 5. 52. 1.22 0.05 0.34 25.2 1.22 137.0 0 7.7 1.40 128 GTR212 20631 303. 0. 05574. 136. 733. 5. 56. 1.27 0.05 0.08 13.6 0.66 121.7 -10 6.0 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 122.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.38 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.38 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8							-1072.	278.	1209.		113.	3.19	0.05	0.28	96.0	4.67	285.3	0	19.7	3.57	151
GTSGAD 20631 302. 0. 0302. 12. 316. 5. 5. 0.82 0.05 0.08 12.9 0.63 116.3 -9 5.9 1.08 154 GTSGAD 20631 496. 0. 0496. 104. 626. 5. 42. 1.07 0.05 0.32 20.0 0.97 119.1 -67 5.9 1.26 130 GTRA08 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRA12 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.50 153 GTRA12 20631 302. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 30.7 1.49 150.5 0 8.4 1.53 129 GTRA16 20631 302. 0. 0302. 12. 316. 5. 5. 0.84 0.05 0.08 13.8 0.67 123.9 -11 6.1 1.11 153 GTRA16 20631 600. 0. 0600. 151. 782. 5. 5. 0.84 0.05 0.08 13.0 0.68 125.9 -11 6.1 1.11 153 GTR208 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.5 0.66 121.7 -10 6.0 1.10 153 GTR208 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.5 0.66 121.7 -10 6.0 1.10 153 GTR208 20631 303. 0. 0551. 127. 702. 5. 52. 1.22 0.05 0.34 25.2 1.22 137.0 0 7.7 1.40 128 GTR212 20631 303. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.38 27.0 1.31 14.6 0 8.0 1.45 128 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.34 27.0 1.31 141.6 0 8.0 1.45 128 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.40 128 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.40 1253 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.40 1253 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.40 1253 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.40 1253 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.40 1253 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.40 1253 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 5. 0.83 0.05 0.08 13.7	DES	OA3	20631	0.	311.	0.	0.	-299.	316.	5.	5.	0.91	0.05	0.05	15.5	0.75	136.8	-8	5.7	1.04	145
GTSØAD 20631 496. 0. 0496. 104. 626. 5. 42. 1.97 0.05 0.32 20.0 0.97 119.1 -67 5.9 1.26 130 GTRA08 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRA08 20631 627. 0. 0627. 161. 816. 5. 66. 1.40 0.05 0.36 32.0 1.56 155.5 0 8.7 1.57 129 GTRA12 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.10 153 GTRA16 20631 302. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 30.7 1.49 150.5 0 8.4 1.53 129 GTRA16 20631 600. 0600. 151. 782. 5. 61. 1.37 0.05 0.36 30.7 1.49 150.5 0 8.5 1.54 129 GTR208 20631 503. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.5 0.66 121.7 -10 6.0 1.10 153 GTR208 20631 551. 0. 0551. 127. 702. 5. 52. 1.22 0.05 0.34 25.2 1.22 137.0 0 7.7 1.40 128 GTR212 20631 303. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.08 13.6 0.66 121.8 -10 6.1 1.10 153 GTR212 20631 302. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.08 13.6 0.66 122.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0502. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 122.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153					1072.	0.	0.	-794.	1209.	5.	113.	3.19	0.05	0.28	96.0			0	17.2		
GTRA08 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 124.5 -10 6.1 1.10 153 GTRA08 20631 627. 0. 0627. 161. 816. 5. 66. 1.40 0.05 0.36 32.0 1.56 155.5 0 8.7 1.57 129 GTRA12 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.10 153 GTRA12 20631 620. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 30.7 1.49 150.5 0 8.4 1.53 129 GTRA16 20631 302. 0. 0302. 12. 316. 5. 5. 0.84 0.05 0.08 14.0 0.68 125.9 -11 6.1 1.11 153 GTRA16 20631 600. 0. 0600. 151. 782. 5. 61. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.5 1.54 129 GTR208 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.5 0.66 121.7 -10 6.0 1.10 153 GTR212 20631 303. 0. 0551. 127. 702. 5. 52. 1.22 0.05 0.34 25.2 1.22 137.0 0 7.7 1.40 128 GTR212 20631 574. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.34 27.0 1.31 141.6 0 8.0 1.45 128 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153	GTS	CAD	20631	302.	٥.	٥.	-302.	12.	316.	5.	5.	0.82	0.05	0.08	12.9	0.63	116.3	-9		1.08	154
GTRA08 20631 627. 0. 0627. 161. 816. 5. 66. 1.40 0.05 0.36 32.0 1.56 155.5 0 8.7 1.57 129 GTRA12 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.10 153 GTRA12 20631 302. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 30.7 1.49 150.5 0 8.4 1.53 129 GTRA16 20631 302. 0. 0302. 12. 316. 5. 5. 0.84 0.05 0.08 14.0 0.68 125.9 -11 6.1 1.11 153 GTRA16 20631 600. 0. 0600. 151. 782. 5. 61. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.5 1.54 129 GTR208 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.5 0.66 121.7 -10 6.0 1.10 153 GTR212 20631 303. 0. 0551. 127. 702. 5. 52. 1.22 0.05 0.34 25.2 1.22 137.0 0 7.7 1.40 128 GTR212 20631 303. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.34 27.0 1.31 141.6 0 8.0 1.45 128 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153	GTS	OAD	20631	496.	0,	0.	-496.				42.	1.97		0.32							
GTRA12 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.8 0.67 123.9 -10 6.1 1.10 153 GTRA12 20631 620. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 30.7 1.49 150.5 0 8.4 1.53 129 GTRA16 20631 302. 0. 0302. 12. 316. 5. 5. 0.84 0.05 0.08 14.0 0.68 125.9 -11 6.1 1.11 153 GTRA16 20631 600. 0. 0600. 151. 782. 5. 61. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.5 1.54 129 GTR208 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.5 0.66 121.7 -10 6.0 1.10 153 GTR212 20631 303. 0. 0551. 127. 702. 5. 52. 1.22 0.05 0.08 13.5 0.66 122.8 -10 6.1 1.10 153 GTR212 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 122.8 -10 6.1 1.10 153 GTR212 20631 574. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153	GTR	A08	20631	303.	Ō.	0.	-303.	12.	316.	5.	5.	0.83	0.05	0.08	13.8	0.67		-10	6.1		
GTRA12 20631 620. 0. 0620. 159. 811. 5. 65. 1.37 0.05 0.36 30.7 1.49 150.5 0 8.4 1.53 129 GTRA16 20631 302. 0. 0302. 12. 316. 5. 5. 0.84 0.05 0.08 14.0 0.68 125.9 -11 6.1 1.11 153 GTRA16 20631 600. 0. 0600. 151. 782. 5. 61. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.5 1.54 129 GTR208 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.5 0.66 121.7 -10 6.0 1.10 153 GTR208 20631 551. 0. 0505. 127. 702. 5. 52. 1.22 0.05 0.34 25.2 1.22 137.0 0 7.7 1.40 128 GTR212 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 122.8 -10 6.1 1.10 153 GTR212 20631 302. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.34 27.0 1.31 141.6 0 8.0 1.45 128 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153	GTR	80A	20631	627.	0.	Ο.	-627.	161.	816.	5.	66.	1.40	0.05	0.36				_	8.7	1.57	129
GTRA16 20631 302. C. 0302. 12. 316. 5. 5. 0.84 0.05 0.06 14.0 0.68 125.9 -11 6.1 1.11 153 GTRA16 20631 600. 0. 0600. 151. 782. 5. 61. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.5 1.54 129 GTR208 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.5 0.66 121.7 -10 6.0 1.10 153 GTR208 20631 551. 0. 0551. 127. 702. 5. 52. 1.22 0.05 0.34 25.2 1.22 137.0 0 7.7 1.40 128 GTR212 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 122.8 -10 6.1 1.10 153 GTR212 20631 574. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.34 27.0 1.31 141.6 0 8.0 1.45 128 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153	GTR.	A12	20631	302.	0.	Ö.	-302.	12.	316.	5.	5.	0.83	0.05	0.08	13.8	0.67	123.9	-10	6.1	1.10	153
GTRA16 20631 600. 0. 0600. 151. 782. 5. 61. 1.37 0.05 0.36 31.1 1.51 156.8 0 8.5 1.54 129 GTR208 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.5 0.66 121.7 -10 6.0 1.10 153 GTR208 20631 551. 0. 0551. 127. 702. 5. 52. 1.22 0.05 0.34 25.2 1.22 137.0 0 7.7 1.40 128 GTR212 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 122.8 -10 6.1 1.10 153 GTR212 20631 574. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.34 27.0 1.31 141.6 0 8.0 1.45 128 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153	GTR	A12	20631	620.	0.	0.	-620.	159.	811.		65.	1.37	0.05	0.36	30.7	1.49	150.5	0	8.4	1.53	129
GTR208 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.5 0.66 121.7 -10 6.0 1.10 153 GTR208 20631 551. 0. 0551. 127. 702. 5. 52. 1.22 0.05 0.34 25.2 1.22 137.0 0 7.7 1.40 128 GTR212 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 122.8 -10 6.1 1.10 153 GTR212 20631 574. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.34 27.0 1.31 141.6 0 8.0 1.45 128 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153	GTR	A16	20631	302.	C.	0.	-302.	12.	316.	5.	5.	0.84	0.05	0.08	14.0	0.68	125.9	-11	6.1	1.11	153
GTR208 20631 551. 0. 0551. 127. 702. 5. 52. 1.22 0.05 0.34 25.2 1.22 137.0 0 7.7 1.40 128 GTR212 20631 303. 0. 0303. 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 122.8 -10 6.1 1.10 153 GTR212 20631 574. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.34 27.0 1.31 141.6 0 8.0 1.45 128 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153	GTR.	A16	20631	600.	Ο.	0.	-600.	151.	782.	5.	61.	1.37	0.05	0.36	31.1	1.51	156.8	0	8.5	1.54	129
GTR212 20631 303, 0. 0303, 12. 316. 5. 5. 0.83 0.05 0.08 13.6 0.66 122.8 -10 6.1 1.10 153 GTR212 20631 574, 0. 0574, 136, 733, 5. 56. 1.27 0.05 0.34 27.0 1.31 141.6 0 8.0 1.45 128 GTR216 20631 302, 0. 0302, 12. 316, 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153	GTR	208	20631	303.	ο.	0.	-303.	12.	316.	5.	5.	0.83	0.05	0.08	13.5	0.66	121.7	-10	6.0	1.10	153
GTR212 20631 574. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.34 27.0 1.31 141.6 0 8.0 1.45 128 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153	GTR	208	20631	551.	0.	0.	-551.	127.	702.	5.	52.	1.22	0.05	0.34	25.2	1.22	137.0	Q	7.7	1.40	128
GTR212 20631 574. 0. 0574. 136. 733. 5. 56. 1.27 0.05 0.34 27.0 1.31 141.6 0 8.0 1.45 128 GTR216 20631 302. 0. 0302. 12. 316. 5. 5. 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153													0.05					-10	6.1		
GTR216 20631 302, 0, 0, -302, 12, 316, 5, 5, 0.83 0.05 0.08 13.7 0.67 123.8 -10 6.1 1.10 153	GTR	212	20631	574.	o.	o.	-574.	136.	733.		56.	1.27	0.05	0.34	27.0	1.31	141.6	0	8.0	1.45	128
	GTR	216	20631		o.	o.	-302.		316.	5.	5.	0.83	0.05	0.08	13.7	0.67	123.8	-10	6.1	1.10	153
											57.	1.31							8.1	1.48	128
																·					

DATE 06/07//_ 1&SE-PEO-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REFORT 5.2

SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

			F	WEL US	E IN BT	J*10**6-												
ECS	PROCS	**COGE DISTIL RE		ON CASI	E=* **M DISTIL	OCOGEN - RESIDL	COGEN≃≭ COAL	POVER REQD MW	COGEN POWER MW	МВО	POWER /HEAT RATIO		CAPITAL COST *10**6	NORM	\$/KW ROI EQVL	LEVL CHRG	NORM ENRG	WRTH
GTRWO	3 20631	307.	0.	0.	-307.	12.	316.	5.	5.	0.84	0.05	0.06	13.9	0.68	123.7 -11	6.1	1.11	151
GTRYIO	3 20531	767.	0.	σ.	-757.	194,	926.	5.	79.	1.44	0.05	0.31	32.2	1.57	130.3 0	9.6	1.75	128
GTRW1:	2 20631	306.	0.	0.	-306.	12.	316.	5.	5.	0.83	0.05	0.07	13.9	0.68	124.0 -11	6.1	1.11	152
GTRW12	2 20631	764.	0.	Ο.	-764.	200.	946.	5.	81.	1.45	0.05	0.33	32.7	1.59	133.0 0	9.5	1.72	129
GTRW16	20631	306.	Ŭ.	٥.	-306.	12.	316.	5.	5.	0.84	0.05	0.07	14.1	0.68	125.7 -11	6.1	1.11	151
GTRW10	5 20631	731.	٥.	ο.	-731.	188.	906.	5.	77.	1.44	0.05	0.33	32.7	1.59	138.2 0	9.4	1.70	128
GTR308	3 20631	307.	٥.	0.	-307.	12.	316.	5.	5,	0.83	0.05	0.06	13.6	0.66	120.6 -10	6.1	1.11	152
GTR30	3 20631	654.	0.	0.	-654.	146.	765.	<u> 5.</u>	59.	1.28	0.05	0.28	26.7	1.30	124.9 0	8.7	1.58	124
GTR312	2 20631	305.	0.	0.	-305.	12.	316.	5.	5.	0.83	0.05	C. 07	13,6	0,66	122.0 -10	6.1	1.10	152
GTR312	2 20631	680,	٥.	0.	-630.	167.	837.	5.	68.	1.33	0.05	0.32	28.5	1.39	128.6 0	8.7	1.58	127
GTR316	5 20631	306.	O,	ο.	-306.	12.	316.	5.	5,	0.84	0.05	0.07	13.8	0.67	123.7 -11	6.1	1.11	152
GTR31	5 20631	676,	0.	0.	-676.	165.	829.	5.	67.	1.35	0.05	0.32	29.4	1.43	133.1 0	8.9	1.61	127
FCPADS	20631	311.	o.	٥.	-311.	12.	316.	5.	5.	0.92	0.05	0.05	14.6	0.71	128.6 -14	6.4	1.15	149
FCPADS	3 20631	1388.	0,	0.	-1388.	379.	1547.	5,	155.	7.61	0.05	0.28	93.2	4.53	217.1 0	25.1	4.55	176
FCMCDS	20631	306.	0.	٥.	-306,	12.	316.	€.	5.	0.91	0.05	0.07	14.8	0.72	132.3 -13	6.3	1.14	151
FCMCDS	20631	1013.	0.	٥.	-1013.	300.	1282.	5.	122.	5.96	0.05	0.36	80.4	3.91	251.9 0	19.5	3.54	162

1 HGE 19

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLCGY ALTERNATIVES STUDY
REPORT 5.2
SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

DATE 06/07/?_ 1&SE-PEG-ADV-DES-ENGR

								***		K 3000		_	******			-	-	****	_	794	-		N. Aug				7		-	-	7-	- 700	Relation	*											
		WRTH		6	200	, r	, K	137	147	140	153	135	138	144	138	149	146	143	142	131	128	161	145	127	40	41	56	38	62	1 0	200	1 69	40	31	7	22	37	2	53	04	57	47	57	44 56	
		NORM W	ENRO		5 5	. c	200	0.87	0.92	0.79	0.95	B	0,80	ó	0.92	1,41	1.69	.45	1,65	1.59	1.59	1.20	1.28	1.04	.03	8	0.89	 	20.1	000	1.23	1.26	1.25	1.29	1.24	1,35	1.26	1.29	.08		1.02	0.97		1.03	
		LEVL	CFIRG	,	, e	. 4	4	3.8	0.4	3,4			3,55		- 61	6. 1	7.3	6.3						ម្ចា	KO V	4	a	•		•	• 1		5.4			5.9		- 41	4.6	*	4.4	4.2		4 4 vi ro	
		R01	•	3	9 6	000	167	12	10	54	660	13	56	N	6	Ω .	0	0	0	0	0	93	0	44	0	i)	0	5 (5 C) C	0	0	0	0	0	0	0	0	0	o ;	ဥ	17	N C	67	
			EQVL	4		o		æ	ø	ø	o	ဖ	4		358.8	- 1	io e	6 0	4	ر		•	- 1	182.6			- 1				1		-	~	ú	Ģ	oi .	_		_	•	.	ά (ι	66.0 -(
		NORM	cast		9 6					.39 2	- 1			18	N.				-				- 1	8			- 1				1			08 544				- 1				- 1	- •	.01	
			ú	,	- C	0	_	-	_		٩	_	_	N ·	6	Ņ.	4.	4	'n	٠,	T .	geo (- ·	- •	- (7	7 6	7 6) K	9	, C	n	4	N	in	N.	4		- (ο ,	-	> ←		
		CAPITAL	K 108	-1	•		•	١.	٠	0	5.9	11.4	ල ග	13.4	15.3	n .		26.3	42.0	700	33.7	7.0	10.9	0.0	D (9.0	4,0	A . C	5.6	20.00	22.2	23.6	21.3	28.9	20.6	37.4	20,8	30.7	ه د	D) (9,0	6.7	ָס ס ס	7.0	
		FESR								0,28	• 1	•			•		*		- 1			0.20		0.20	2,0	0,70	200	2 6	 	000	0.11	0.14	0.21	0.34	0.22	0.42	0,18	0.31) - (200	0,20	5 6	7.0	0.24	
		POWER	RATIO	0 24						0.24									0.24		0,24	0.24	0.24	2.24	2 0	20.0			20.0				0,24	•	2,24		*	• 1			2 6	20.0	2 6	0.24	
		OEM		63	.63		.07	. 86	.98	: n	.46	85		o (-1		· [500	9 0	77.		8	50.0 0.0	0 u	3 6	300				.14	66.	.25	- [77.	, ii	2 .	, 4 ,	, 43 FE	2 4	.03	
		COGEN	i ja	Q	.	œ.	6.		٠																			. 0		7.				9	ن		 							9.	
	,												,	•				•							_					_					•	N	•	7		- `	•	-	-	: -	
	:	* POWER	35	A 6) a -	O (0	ù	o u	o u	2 4	9 (0 4	ט ם	٥	o u	ט כ	o w	2	φ	9	9	9	Ġ.	(g) (١٥	o e	ه م	ט מ	٥	ė u	i u	ė u	ه اه	<u>ن</u> د	ဖ်	
		COGENE) C	0.				32.		32.					. F. 1	217		מי	144		151		151	. 101. 245	0						4. A		20.	23.		9.4	. 6			151.		151	235	51.	
	- 9	١ _		o,	-	<u>ო</u>	5.	ດ ເ	o o		-	n w		. 70		, IC					•						21	46.	5.	42.	15.	•		. D											
	BTUx10xx6	**NOCCOEN	1		-	-		•	-,					- (1				- (*.	7 - 1	•		- 7	-117	-147		- 4		. 4	_	4	-	2	- 1	4	- 1	-	מ כ	1	. r.	-117			. 4	·	
	-			0	0	0	0	0 (5 6	o c		o c	o c) c	C	C	Ö	c	C	c	-120	100		ò	d	ò	o	o	ò	0	ö	o (o c	ء اد	; c	.	òc	٥	c	; c	Ċ	6	Ö	ö	
- 1	JEL USE	**COGENERATION CASE** TIL RESIDL CGA! DIS		151.	ö	o į	125.	132.	200	, ,	120.	126.	126	146	0	ď	126.	159	7	133		ċ	c	Ö	132	190.	133.	201.	145.	226,	147.	165.	, to t	130	, no.	136,	. 6		d	· c	; c	o	ö	ö	
	FUEL	EKATIC IDL	ľ	1	125.	132.	0	<u>.</u>	ò			; c	; c	d	126.	159.	o	Ö	129.		ic	S d	132	90.	o	ö	o.	o O	o.	Ö	o'	o (<i>i</i> c	jc	; c	; c	; c	34	89	32	69	31	82.	31.	
	1 2 0 0 0	FRUGGENERA DISTIL RESIDL		o.	· 0		j c				ic	; c	Ö	0	0	0	0	Ö				90.			o.	Ö,	o.	o,	٥.	ö	o (; c) c	; c	0					0.		
	1 1	DIS			,	,		+-						-	_			-	_		132												_		_									-	
		PROCS		_	- 2082	28087	7907	7007	900		!				ł.	2082	2085	2082	2085	20821		20821	2082	20821	20821					ı		2002	20821	20821	20821	20821	20821	20021	20821	20821	20821	20821	20821	20821	
		ECS		ONOCEN	STM141	01E14	STM141	STM141	STMIA	STM088	STMJ88	STMOBB	PFBSTM	PFESTM	TISTMT	TISTMT	THSTMT	TISTMT	TIHRSB	TIHRSB	STIRL	STIRL	STIRL	STIRE	STIRL	STIRL	HEGT85	HEGT85	HEGT 60	HEGT60	HE5100	1000	FCMCCI	FCSTCL	FCSTCL	IGGTST	166TST	GTSØAR	GTSCAR	GTACO8	GTAC08	GTAC12	GTAC12	GTAC16	

OF POOR OF MARK

DATE 06/07//_ 1&SE-PEC-ADV-DES-ENGR

		·····																	
										~~					* ""				
500	5566						COGEN**			MBD	POWER	FESR	CAPITAL		\$/KW	ROI	LEVL	NORM W	IRTH
ECS	PROCS	DISTIL F	KESTUL	CGAL	DISTIL	RESIDL	COAL	REOD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
GTAC16	20221	0.	192.	0,	0.	-147.	250.	MW	MW	0.51	0.24	0.35	*10**6	1.42	178.7	(X) 5	4.3	1.00	140
GTWC16			136.	o.	0.	-121.	250. 151.	6.	18.		0.24		10.0	1.06	188.1	0	4.6	1.06	
GTWC16			213.		0.	-165.	263,	6. 6.	6.	0.56 0.54		0.18	7.5			o o	4.7		
CC1626			135.	0. 0.	0.	-120.			20.		0.24	0.31	10.7	1.51	170.5	-		1.08	
CC1626			300.	0.	0.	-120. -214.	151. 391.	<u>6.</u> 6.	6.	0.65 0.81	0.24	0.18	7.7	1.08	193.6 176.9	0	4.7 5.2	1.09	
CC1622			134.	0.	o.	-119.	151.	6.	35. 6.	0.64	0.24	0.37	15,6 7.4	1.04	188.4	ŏ	4.7	1.07	. — .
CC1622			273.		0.	-195.	363.	6.	32.	0.76	0.24	0.13	14.6	2.07	182.7	õ	5.0	1.15	
CC1222			134.	o.	o.	-119.	151.	6.	52. 6.	0.74	0.24	0.19	7.2	1.02	184.4	ŏ	4.6	1.07	
CC1222			272.	0.	0.	-194.	363.	6.	32.	0.75	0.24	0.38	14.0	1.97	175.4	0	4.9	1.12	
CC0822			131.	Ö.	o.	-117.	151.	6.	6.	0.64	0.24	0.21	7.4	1.04	191.4	ŏ	4.6	1.06	
CC0822			230.	Ö.	o.	-166.	312.	6.	26.	0.69	0.24	0.39	12.1	1.72	180.3	ĭ	4.5	1.04	
STIG15			154.	o.	o.	-140.	151.	6.	6.	0.62	0.24	0.07	7.7	1.09	170.0	ò	5.1	1.19	
STIG15		0,	6615.	0.	O.	-4804.	6166.	6.	739.	10.73	0.24	0.17		27.78	101.4	0		18.14	
STIG10			150.	o.	Ö.	-135.	151.	6.	6.	0.60	0.24	0.10	7.4	1.04	167.9	ŏ	5.0	1.15	
STIG10			649.		o.	-482.	662.	6.	68.	1.27	0.24	0.22	22.7	3.21	119.4	ŏ	9.8	2.25	
STIGIS	20821	0.	147.	0.	0.	-133.	151.	6.	6.	0.60	0.24	0.11	7.2	1.02	167.3	999	4.9	1.13	
STIGIS	20821	0.	408.	0.	0.	-310.	430.	6.	40.	0.92	0.24	0.23	15.4	2.18	129.1	0	7.2	1.65	
DEADV3	20821	ο.	132.	0.	٥.	-118.	151.	6.	6.	0.64	0.24	0.20	9.4	1.33	242.6	0	4.8	1.11	151
DEADV3	20821	0.	231.	Ο.	Ο.	-169.	307.	6.	25.	0.77	0.24	0.37	17.5	2.47	258.7	0	5.3	1.21	129
DEHTPM			128.	0.	0,	-114.	151.	6.	6.	0.67	0.24	0.22	9.4	1.32	248.6	0	4.7	1.09	154
DEHTPM	20321	0.	196.	0.	0.	-144.	273.	6.	21.	0.74	0.24	0.40	15.0	2.12	262.1	0	4.8	1.10	137
DESØA3		134.	0,	Ο.	-134.	15.	151.	6.	6.	0.63	0.24	0.19	8.8	1.25	225.7	0	5.5	1.27	155
DESCA3		235.	0.	ο.	-235.	61.	305.	6.	25.	0.87	0.24	0.36	21.3	3.01	308.6	0	7.2	1.65	135
DESCA3			134.	0.	0.	<u>-119.</u>	151.	6.	6.	0.63	0.24	0.19		1.25	225.7	0	4.8	1.10	
DESGA3			235.	ø.	0.	-174.	305.	6.	25.	0.87	0.24	0.36	21.3	3.01	308.6	0	5.9	1.36	
GTSØAD		132.	0,	o.	-132.	15.	151.	6.	6.	0.54	0.24	0.20	6.7	0.94	171.9	-70	5,1	1.18	
GTSØAD		181.	o.	0.	-181.	38.	228.	6.	15.	0.45	0.24	0.32	8.0	1.14	151.8	0	5.2		
GTRA08		133.	0.	0.	<u>-133.</u>	15.	151.	6.	6.	0.57	0.24	0.19	7.9	1.12	202.1	0	5.3	1.23	
GTRA08		228.	0.	0.	-228.	59 .	297.	6.	24.	0.60	0.24	0.36	13.0	1.83	193.8	0	6.0	1.38	
GTRA12		133.	0.	0.	-133.	15.	151.	6.	6.	0.57	0.24	0.20	7.8	1.11	201.0	0	5.3	1.22	
GTRA12		226.	0.	0.	-226.	58.	296.	6.	24.	0.60	0.24	0.36	13,1	1.85	197.3	0	5.9	1.37	
GTRA16		133.	0.	<u>0.</u> 0.	<u>-133.</u>	15.	151	6.	6.	0.58	0.24	0.20	8.1	1.14	207.5	0	5.3	1.23	-
GTRA16 GTR208		219. 133.	O. O.	0.	-219. -133.	55. 15.	285. 151.	6. 6.	22. 6.	0.60. 0.56	0.24 0.24	0.36	13.3 7.5	1.87 1.06	207.0	0	6.0 5.3	1.37 1.22	
GTR208		201.	0.	0.	-133. -201.		256.	6.	19.	0.56	0.24	0.20	7.5 10.5			0	5.3 5.6	1,22	
GTR212		133.	0. 0.	0. 0.	-201. -133.	46. 15.	256. 151.	6.	19. 6.	0.53	0.24	0.34	7.6	1.49	179.3 195.6	0	5.8 5.3	1.29	
GTR212		209.	0.	0.	-209.	50.	267.	6.	20.	0.55	0.24	0.19	11.4	1.61	186.0	0	5.7	1.33	
GTR216		133.	0. 0.	0.	-133.	15.	267. 151.	6.	20. 6.	0.55	0.24	0.34	7.8	1.10	199.9	0	5.3	1.22	
GTR216		209.	o.	0.	-209.	51.	271.	6.	21.	0.57	0.24	0.35	12.0		195.6	0	5.8	1.33	
GTRW08		139.	o.	0.	-139.	15.	151.	6.	6.	0.58	0.24	0.16	8.0	1.13	197.1	Ö	5.5	1.27	
GTRW08		280.	0.	0.	-280.	71.	337.	6.	29.	0.66	0.24	0.31	14.4	2.03	175.2	0	6.9	1.60	
GTRW12		137.	o.	o.	-137.	15.	151.	6.	6.	0.58	0.24	0.17	8.0	1.13	199.0	ŏ	5.5	1.26	
GTRW12		278.	o.	o.	-278.	73.	345.	6.	30.	0.66	0.24	0.33	14.6	2.06	179.1	ŏ	6.8	1.57	
GTRW16		137.	ິນ.		-137.	15.	151.	6.	6,	0.58	0.24	0.17	8.2	1.16	204.2	ŏ	5.5	1.26	
								-			~ - +7				· · · ·	_ _			

DATE 06/07/7-18SE-PEC-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

1 AGE 21

<u> </u>																			
				FUEL US	E IN BT	U*10**6-													
l		**C0	GENERAT:	ION CAS	E** **N	OCOGEN -	COGEN**	POVER	COGEN	M&D	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM !	WRTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQU	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
								MW	MW		RATIO		*10**6			(%)			
GTRW16	20821	267.	0.	0.	-267.	68.	330.	6.	23.	0.66	0.24	0.33	14.6	2.07	187.2	0	6.7	1.55	133
GTR308	20821	139,	` o.	Ο.	-139.	15.	151.	6.	6.	0.57	0.24	0.16	7.6	1.07	185.4	O	5.5	1.26	155
GTR308	20821	238.	0.	0.	-238.	53.	279.	6.	22.	0.57	0.24	0.28	11.5	1.62	164.6	0	6.4	1.48	136
GTR312			0.	0.	<u>-137,</u>	15.	151.	6.	6.	0.57	0.24	0.17	7.7	1.09	191.7	0	5.4	1.25	156
GTR312	20821	248.	0,	0.	-248.	61.	305.	6.	25.	0.60	0.24	0.32	12.5	1.76	171.5	0	6.3	1.46	136
GTR316	2082	1 137.	Ο,	0.	-137.	15.	151,	6.	. 6.	0.58	0.24	0.17	7.9	1.12	197.2	Ò	5.4	1.26	155
GTR316	20821	246.	٥,	٥.	-246,	60,	302.	6.	24.	0.61	0.24	0.32	12.9	1.83	178.9	Õ	6.4	1.48	135
FCPADS	20821	133.	0.	0.	-133.	15.	151.	6.	6.	0.92	0.24	0.20	7.6	1.07	195.4	ŏ	5.6		
FCPADS	20821	240.	0.	0.	-240.	66.	321.	6.	27.	2.52	0.24	0.38	16.7		237.1	ō	8.2	1.89	
FCMCDS	20821	137.	٥.	0.	-137.	15.	151.	6.	6.	0.91	0.24	0.17	8.2	1.16	203.4	ŏ	5.8		
FCMCDS	20821	369.	0.	0.	-369.	109.	467.	6.	45.	3.91	0.24	0.36	29.3		270.6	ŏ	12.0	2.77	
1																•			

TILLE TO THE TOTAL TO THE

GENERAL ELECIRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.2
SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

DATE 06/07/'.~ | &SE~PEG-ADV-DES-ENGR

													700	inden		T													T				1				
H 08	26	36 36 36	4	40	64	56	643	33.5	9 6	41	132	46	137	200	202	133	135	129	159	2 K	128	136	113	224	126	66	127	501	200	1 2 4	2 -	134	110	156	128		
X C	98			77 1	T1		. 96.	. 6	20.	5.2	16.	.34	1.75	ָ מַמָּ	20.0	1	5	.67	.27	94.	3 %	0.	90.	9 9	22.	. 84	2	.32		62.	- 6	3.5		1.08			
NORM ENRG	- 0 	~ C				1 0					0			,				4	0	4.	 o «	. 4	9	— \ თ. (ρα		9			-			ia) <u> </u>	, , .		
	9					6.	œ.	ທ່ເ	n O	, w	'n	6	10.	.	<u>.</u>	5	o	0	8	o (9 1	- 60	9	2	9 7	=	7.	∞ 1	7	6 0 (~ 0	7 0	1	. W) (~		
RG!	6 N	20	٠ -	666	~	-3	ĸ	23	28	ກ ດ ກ	1 0	0	0	0 (0 0	o	0	0	-30	O	ر د	o (1	၂	0	0 0												
KW GVL 7.5	9 9 9	CU C	? 5	T	~	Ø	0	>		- u) -	٠ ٩	9		(i۷	- 10	3.7		m t		- 1 -		423.0	2	400.7	•	424.9			ဗွ် ဗွ			147.7	:	
100	8 C							19 2	- 1				62 6			-				ł	74		1			10 4	<u>.</u>	_	_	_		** 1	2		7 9	2	
NORM COST		• •	 N C	- 0		• •		1:1	-1	0 +			3.6	'n	4	•		٠		٠,			" _ '		٠	•	i				•	4	-	ni (-	
APITAL COST 10××6	- œ	• •	٠		*	•1.	0		15.0	4 (٠	٠ -	8			-1	പ് •		40		0.0		2 5			0 4			27.0				26.3	ლ (•	. i	
₹0.×		-			-											-				9	N	(o)	١		16 1		വ്					õ	2	62	2 5	8	
FESR 0	0.16	• •		0.16	•	+1	•	0	* 1	~ ·	0	0 0	9 0	0	Ö. 3	0.1	0		- c	0.2	0.	0.0				ö						0.			0		
≥ M F	<u> </u>		-	 				5 6	-	*****	120 1	5.73		0.13	-	0, 13	-		0.13	-	-	-	- -	2 6	0.13		 			-	_	_	_	Τ.		٦.	
7	76 0.									1			1				ľ			1			- 1		4.42	- 1				ı.			- 1				
ادةا	000		ı٠	-	•	*1	 			0	-	سر		-	ď	<u>, -</u>	-	<u>-</u>	<u>-</u> (٥	Ö	ö	-		- 4	-	તં -			- 0	- 1	- 0		-	0	0	
COGEN POWER	် ဖ်	0 0	10.		10.	اف	۲.	, o	: ₆	7.	છ	16.	9	V	; ;	6	10.	<u>ن</u>		, o	9	25.	و	23	96	9	8	۽ م	ه ف	٥		46.	6	32.	ø,	31.	
1 1		ى ئا ئ	9	. 0		9.	. 6			9	9	9.	9	u d			9	9.	9	9		9	9		9 0	9	9	0	<u>.</u> و	اه		, (c	. 6	9	9	9	
POW REQ								1. 1	L d																< ∢	: ⋖	4	⋖ .	⋖								
l; ž	0. r <u>2</u> 37.	58. 56.		26. A	ď.	37.	9	· .	36.	: .		65.	237.		. K	. 7	68.	16.	.92	37.	224.	967	14.	59.		; -	-4.	_:	તં	500	96.	. oz	100	72	. თ	441.	
- COGE	Q)	ัล `		, ,,	•	23	Q						2	r															<u>.</u>	<i>:.</i>				· ~	
ا ا ما	0. -196.	-201.	2 2	15.	24.	-196.	-197.	12		0 4		9 8	-196	-221	20 8	ָ ט מ	-217	15	24	15	29	-273	15	62	- C	15	94	15	40	15	73	7:	7 1	78	100-	-290	
3TU×1 *NOCC 1L RE							١.	ö.		o c				· •					; o	22.			; d	0.	٠ د		o	ö	o.	0	ö			j		, ,	
USE IN BTU																				-222	ကို	•														• 13	
	237.	o i	211.	226.	226	0	o	211.	215.	211.	0.00	050.	0 !	0.	211.	273.	o c	. 6	242	0	o o	o c	2000	335.	240,	1018.	504	236	320	217	333	215	404	223	9/8	00	
**CGGENERATION (TIL RESIDL CGA)													; <u>.</u>	3.	ö.	o.	_	si c			o.	ر ن ن		6	o.			i d		0	o.	o O	<u>,</u>	0		222. 366.	
GENERA RESIDL	15	226		0 (o c	2.5	215	;				-	2	273	_	_	221	24				22	332												7	พัต	
*CGGE	0 0		0				٥	, ci	ο.	0		0		Ö	0	o.	0	0	o c	222.	335.	ö	o 0	0	0	o (ء اد	; c	Ġ	ö	o.	ó	o.	Ö	o (
**CO											_	. .			_	,		,	, ,			-	= :	_ -	=	=	= =				150	: 5	5	10	5	5 5	
PRØCS	22601	22601	22601	22601	22601	22501	7220	22601	22601	2260	22601	22601	22561	2250	22601	22601	22601	22601	22601	2260	22601	22601	22601	2220	22601		22601				22601	2260	22601	. 1	1	22601	
	1_	_ ,_	-	_			- 1	SIMOSS		- 1		PFBSTM	PFBSTM	TISTAT	TISTMT	TISTMT	TIHRSG	TIHRSG	TIHRSG	CTIRE	STIRL	STIRL	STIRL	STIRL	HEGT85	HEGT85	HEGT 60	HEGICO			FOMOCI	FCSTCL	FCSTCL	IGGTST	IGGTST	GTSÖAR GTSÖAR	
ECS	ONO	SIM14 STM14	STM14	STM14	STM14	STS	SIP	S T	STS	ST	STI	PF	H	-	F	Ë	Ξ	F	Fi	- 5	STS	ST	ST	S	, 포	뽀	=	# : n=	9 1	<u> </u>		. L	Ĭ.	=	Ę	0 G	51151

7

DATE 06/07/72 1&SE-PEG-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

					- X X X LI	31:1313F N	- COGEN**	POUFR	COGEN	MBD	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WKI
CS F	PROCS	DISTIL				RESIDL		REQD	POWER	5 4	/HEAT	. 201,	COST	COST	EQVL	.,	CHRG	ENRG	,,,,,,,,,
	,,,,,,,	D.O	(LOIDE	JOHL	0.0		002	MW	MW		RATIO		*10**6			(%)			
TACO8	22601	0.	217.	0.	0.	-202.	237.	6.	6.	0.66	0.13	0.14	9.1	0.67	142.6	-9	6.5	1.04	159
TACO8	22601	۰.0	308.	٥.	0.	-248.	386.	6.	24.	0.62	0.13	0.31	12.3	0.91	136.9	-6	6.3		
TAC12	22501	0.	217.	٥.	0.	-202.	237.	6.	6.	0.66	0.13	0.14	9.1	0.67	142.8	-9	6.6		
TAC12	22601	0.	340.	0.	0.	-265.	435.	٤.	30.	0.68	0.13	0.33	14.4	1.07	144.7	0	6.4		
TAC16	22601	0.	218.	0.	0.	-203.	237.	6.	6.	0.67	0.13	0.14	9.3	0.69	145.6	-10	6.6		
TAC16	22601	ο.	363.	Ο.	0.	~279.	468 .	6.	34.	0.73	0.13	0.34	16.4	1.21	153.8	0	6.6		
TWC16	22601	Ο.	221.	0.	0.	-206.	237.	6.	6.	0.68	0.13	0.12	9.6	0.71	148.1		6.7		
TWC16	22601	0.	391.	0.	0.	-302.	482.	6.	36.	0.75	0.13	0.32	16.5	1.22	144.0	o_	7.1	1.13	
C1626	22601	0.	221.	0.	ο.	-206.	237.	6.	6.	0.76	0.13	0.12	9.7	0.72	149.0		6.8	1.09	
C1626	22601	0.	516.	٥.	Ο.	-374,	659.	6,	58.	1.05	0.13	0.36	22.4	1.66	148.0	0	7.8		
C1622	22601	Ο,	220.	ο.	Ο.	-205.	237.	6.	6.	0.75	0.13	0.13	9.4	0.70	145.9		6.8		
C1622	22601	0.	470.	C.	0.	-343.	612.	6.	52.	1.01	0.13	0.36	21.6	1.60	156.5	0	7.4		
C1222	22601	0.	220.	0.	0,	-204.	237.	6.	6.	0.74	0.13	0.13	9.2	0.68	143.1	-12	6.7	1.07	
C1222	22601	Ο.	466.	ο.	٥.	-340.	610.	6.	52.	0.99	0.13	0.37	20.5	1.52	149.8	0	7.2		
C0822	22601	0.	217.	Ο.	ο.	-202.	237.	6.	6.	0.75	0.13	0.14	9.4	0.70	147.3		6.7		
C0822	22601	0.	394.	0.	0.	-293.	524.	6.	41.	0.89	0.13	0.37	17.4	1.29	150.6		6.7		
TIG15	22601	٥.	241.	. O.	ο.	-225.	237.	6.	6.	0.72	0.13	0.05	9.6	0.71	136.5		7.2		
TIG15	22601	0.	12154.	0.	ο.	-8826.	11328.	6.	1357.	18.28	0.13	0:17		25.61	96.9		135.9		
STIGIO		0.	236.	Ο.	Ο.	-220.	237.	6.	6.	0.70	0.13	0.07	9.3	0.69	134.9		7.0		
TIGIO		0.	1192.	0.	0.	-885.	1216.	<u>6.</u>	126.	2.02	0.13	0.22	39.8	2.95	114.0	0_	16.1		
TIGIS		٥.	233,	٥.	0.	-218.	237.	6.	_6.	0.70	0.13	0.07	9.8	0.68	134.6		7.0		
STIGIS		٥.	750.	٥.	ο.	-569.	790.	6.	74.	1.36	0.13	0.23	24.2	1.80	110.3	0	11.2		
EADV3		Ο.	228.	0.	o.	-213.	237.	6.	6.	0.77	0.13	0.09	12.1	0.90	180.9		7.2		
EADV3		<u> </u>	733.	<u> 0.</u>	<u> </u>	<u>-538.</u>	840.	<u>6.</u>	80.	1.84	0.13	0.29	53.4	3.96	248.5	0_	13.5		
EHTPM			217.	o.	0.	-202.	237.	6.	6.	0.81	0.13	0.14	12.2	0.90	191.7		7.0	1.12	
EHTPM		0.	368.	0.	0.	-279.	483.	6.	36.	1.16	0.13	0.36	28.0	2.07	259.6	- 5	8.1 8.4		
ESOA3		232.	0.	0.	-232.	15.	237.	6.	6.	0.76	0.13	0.08	11.6	0.86	171.2	-55	22.3		
ESCA3		870.	0.	<u> </u>	<u>-870.</u>	226.	942.	<u>6.</u>	92.	2.43	0.13	0.25	75.9 11.6	5.63 0.86	297.4 171.2		7.3		
ESGA3		0.	232.	0.	0.	-217.	237.	6.	6.	0.76 2.43	0.13	0.08	75.9	5.63	297.4	-30	17.8		
ESUA3		0.	870,	0.	0.	-644.	942.	6.	92. 6.	0.66	0.13	0.25	8.8	0.65	137.5	_	7.7		
TSOAD		219.	0.	0,	-219.	15.	237.	6. 6.	29.	0.64	0.13	0.13	12.8		128.5		8.2		
TSOAD		341.	<u> </u>	<u>0.</u>	-341.	72. 15.	<u>426.</u> 237.	<u>6.</u>	<u>29.</u> 6.	0.68	0.13	0.12	10.0	0.74	154.2		7.9		160
TRAO8		221.	0.	٥.	-221. -456.	117.	237. 578.	6.	48.	0.89	0.13	0.12	21.4	1.59	160.1	0	9.9		7 130
TRAO8		456,	0.	0,	-456. -220.	117.	237.	6.	40. 6.	0.68	0.13	0.13	9.9	0.74	153.8	_	7.9		-
TRA12		220.	0. 0.	0. 0.	-220. -445.	115.	237. 569.	6.	47.	0.89	0.13	0.13	21.6	1.60	165.2		9.7		
TRA12		445.	<u> </u>	<u> </u>	-220.	115.	237.	6.	6.	0.69	0.13	0.13	10,2	0.76	158.0		7.9		
STRA16		220. 427.	o. o.	0. 0.	-427.	107.	545.	6.	44.	0.89	0.13	0.34	21.7		173.7	0	9.7		
TR208		220.	0.	o.	-220.	15.	237.	6.	6.	0.68	0.13	0.13	9.6	0.71	148.7	_	7.8	_	
TR208		387.	0.	a.	-387.	89.	484.	6.	36.	0.76	0.13	0.32	17.1	1.26	150.3		9.0		
TR212		220.	0.	0.	-220.	15.	237.	6.	6.	0.68	0.13	0.13	9.8	0.72	151.2		7.8		
STR212		403.	o.	0.	-403.	96.	506.	6.	39 <i>.</i>	0.80	0.13	0.33	18.4	1.37	156.1	0	9.2		
TR216			0.		-220.	15.	237.	6.	6.	0.68	0.13	0.13	9.9	0.73	153.7		7.8		
	22601	404.	0.	0.	-404.	98.	514.	6.	40.	0.83	0.13	0.34	19.6	1.45	165.3		9.3		

SO ROAD LIBWYRNOH

INGE 24

DATE 06/07/72 18SE-PEG-ADV-DES-ENGR

			F	FUEL US	E IN BT	U*10**6-													
1		**C(DGENERATI	ION CAS	E** **N	OCOGEN -	COGEN**	POWER	COGEN	M&D	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM W	RTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
								MM	MW		RATIO		*10**6			(%)			
GTRWO	3 22601	226	0.	0.	-226.	15.	237.	6.	6.	0.69	0.13	0.10	10.1	0.75	152.2	-31	8.0	1.28	158
GTRWO	22601	555.	0.	Ο.	- 5 55,	140.	654.	6.	57.	0.96	0.13	0.30	23.2	1.72	142.5	0	11.5	1.84	128
GTRW12	22601	224.	ο.	0.	-224.	15.	237.	6.	6.	0.69	0.13	0.11	10.1	0.75	153.3	-30	8.0	1.27	158
GTRW12	22601	545.	C.	0.	-545.	143.	6 63.	6.	58.	0.96	0.13	0.32	23.4	1.73	146.4	0	11.1	1.77	129
GTRWIE	22601	224	0.	0.	-224.	15.	237.	6.	6.	0.69	0.13	0.11	10.3	0.75	156.7	-32	8.0	1.28	158
GTRW16	22601	517.	ο.	٥.	-517.	133.	630.	6.	54.	0.95	0.13	0.32	23.2	1.72	153.4	0	10,9	1.74	129
GTR308	22601	228	Ο.	Ο.	-228.	15.	237.	6.	6.	0.68	0.13	0.10	9.7	0.72	145.1	-29	8.0	1.28	158
GTR308	22601	480	0.	0,	-480.	107.	544.	6.	44.	0.83	0.13	0.26	18.9	1.40	134.2	0	10.8	1.72	128
GTR312	22601	223	α,	0.	-223.	15.	237.	6.	6.	0.68	0.13	0.11	9.8	0.72	149.3	-28	7.9	1.27	159
GTR312	2 22601	. 472.	О.	Ο.	-472.	116.	574.	6.	47.	0.85	0.13	0.32	19.7	1.46	142.1	0	10.1	1.62	130
GTR318	22601	224.	О.	ο.	-224.	15 <i>.</i>	237.	6.	6.	0.69	0.13	0.11	10.0	0.74	152.8	-29	8.0	1.27	159
GTR316	22601	469.	0.	0.	-469.	114.	5 68.	6.	47.	0.87	0.13	0.31	20.3	1.51	147.9	0	10.2	1.63	129
FCPADS	22601	230.	0.	0.	-230.	15.	237.	6,	6.	1.04	0.13	0.09	10.3	0.77	153.0	-40	8.5	1.36.	157
FCPADS	22601	929.	о.	0.	-929.	254.	1036.	6.	104.	8.93	0.13	0.28	61.2	4.54	224.8	0	27.2	4.35	171
FCMCDS	22601	223	o.	٥.	-223.	15.	237.	6.	6.	1.01	0.13	0.11	10.6	0.79	162.0	-39	8.3	1.33	159
FCMCDS	22601	678	Ο.	0.	-678.	201.	858.	6.	82.	6.75	0.13	0.36	52.6	3.90	264.5	0	20.3	3.23	155

DATE 06/07// I&SE-PEO-ADV-DES-ENGR

		* * COO	MERAT			J×10**6-	COGEN**	POUEP	COGEN	Ø8M	POWER	FFSP	CAPITAL	NORM	S/KW	ROI	LEVL	NORM	URTH
ECS	PROCS	DISTIL RI			DISTIL	_	COAL	REGD	POWER	Odii	/HEAT	LON	COST *10**6	COST		(%)	CHRG	ENRG	MICTO
ONOCGN	24211	0.	4.	12.	0.	0.	0.	2.	0.	0.21		0.	1.8	1.00	174.4	0	0.6	1.00	80
STM141	24211	0.	0.	0.	ο.	4.	12.	2.	2.	0.38	0.17	0.99	3.3	1.81	270.3	0	0.7	1.18	245
STM141	24211	0.	1.	ο.	Ο.	3.	14.	2.	2.	0.30	0.17	0.95	3.1	1.70	248.5	5	0.6	1.00	225
STM141	24211	0.	0.	0.	0.	4.	12. F	2.	2.	0.62	0.17	0.99	6.1	3.38	503.5	0	1.3	2.05	256
STM141	24211	0.	0.	1.	0.	4.	13. F	2.	2.	0.49	0.17	0.95	5.5	3.02	441.9	0	1.1	1.70	232
STM141	24211	0.	٥.	0.	o.	4.	12. A	2.	2.	0.56	0.17	0.99	5.5	3.06	456.4	G	1.2	1.85	252
STM141	24211	o.	0.	1.	0	4.	13. A	2.	2.	0.42	0.17	0.95	4.8	2.65	386.8	Ŏ	0.9		
STM088	24211	o.	1.	2.	0.	3.	10.	2.	1.	0.29	0.17	0.81	2.6	1.45	222.7	6	0.6		
STM088	24211	٥.	1.	2.	٥.	3.	10. F	2.	1.	0.47	0.17	0.81	5.0	2.76	422.4	0	1.1	1.68	
STMOSS		o.	i.	2.	· o.	3.	10. A	2.	i.	0.41	0.17	0.81	4.5	2.48	379.7	ŏ	0.9		
PFBSTM		0.	ò.	0.	o.	4.	12.	2.	2.	0.67	0.17	0.98	7.5	4.16	617.2	ō		2.36	
PFBSTM		õ.	Ö.	6.	o.	7.	17.	2.	3.	0.53	0.17	0.80	7.3	4.02	526.0	ŏ		1.97	
TISTMT		Ö.	20.	0.	0.	-16.	12.	2.	2.	0.53	0.17 -		8.4	4.64	688.3	- ö	1.7		
TISTMT		o.	0.	o.	ő.	4.	12.	2.	2.	0.81	0.17	0.98	12.2	6.77		ŏ	2.1		
TISTMT		o.	0.	10.	o.	9.	21.	2.		0.83		0.76		10.01		ŏ	2.6		
TIHRSG		o.	36.	Ö.	o.	-33.	12.	2.	2.	0.52	0.17 -		11.0		859.0	ŏ	2.2		
TIHRSG		0.	0.	3.	0.	4.	10.	2.	2.	0.78	0.17	0.83	15.0	8.33		0	2.4		
TIHRSG		o.	o.	5. 5.	0.	5.	11.	2.	2.	0.67		0.75	16.0	8.90		ő	2.4	3.84	
STIRL	24211	20.	o.	o.	-20.	4.	12.	2.	2.	0.35	0.17		2.9		225.1	Ö	1.0	1.62	
STIRL	24211	0.	20.	o. o.	0.	-16.	12.	2.	2.		0.17 -		2.9	1.62	225.2	Ö		1.52	
STIRL	24211	0.	0.	3.	0.	4.	9.	2.	2.	0.61		0.81			489.0				
STIRL	24211	0.	o.	22.	0.	12.	17.	2.	5.	0.50	0.17	0.56	6.3 6.7	3.51 3.71	360.7	0	1.3	2.08	
HEGT85		0. 0.	0.	7.	0.	4.	5. A	2.	3. 2.	0.66	0.17	0.53			747.3	6	1.9		
													10.7			-		2.98	
HEGT85 HEGT60		<u> </u>	0.	<u>177.</u> 7.	<u> </u>	<u>50.</u>	<u>-8. A</u> 5. A	<u>2.</u> 2.	20. 2.	1.46 0.65		0.19		23.47	663.4 734.2			9.19 2.90	
												0.57	10.3	5.73		-	1.8		
HEGT60		0.	0.	58.	0.	18.	4. A	2.	8.	0.79		0.28			717.4	0	3.0		
HEGTOO		0.	0.	6.	0.	4.	6. A	2.	2.	0.62		0.60	9.7	5.36	693.3	0	1.7		
HEGTOO		<u> </u>	0.	20.	0.	8.	6. A	<u>2.</u>	3.	0.51		0.41	11.7	6.46	651.8	0	1.8		
FCMCCL		0.	0.	63.	0.	14.	-17.	2.	6.	0.65	0.17 -		13.8	7.63	741.5	0	2.3		
FCSTCL		0.	0.	75.	0.	21.	-6.	2.	8.	0.83		0.16	16.5	9.13	746.3	0	2.7		
IGGTST		0.	0.	70.	0.	14.	-22.	2.	6.	0.75	0.17 -		14.2	7.88	691.8	0	2.5		
GTSCAR		0.	18.	0.	<u>0.</u>	<u>-14.</u>	12.	2.	2.	0.34	0.17 -		3.4	1.89	264.0		1.0		
GTACO8		0.	19.	0.	0.	-15.	12.	2.	2.	0.33	0.17 -		3.1	1.71	245.8	0	0.9		
GTAC12		0.	17.	0.	0.	-13.	12.	2.	2.	0.33	0.17 -		3.1	1.70	243.8	0	0.9		
GTAC16		0.	16.	0.	0.	-12.	12.	2.	2.	0.33	0.17		3.1		248.0	0	0.9		
GTWC16		<u>0.</u>	16.	0.	<u>0.</u>	-13.	12.	2.	2.	0.34	0.17 -		3.3	1.85	259.6	0	0.9	1.48	
CC1626		0.	14.	Q.	0.	-10.	12.	2.	2.	0.40		0.15	3.4	1.88	263.9	0	1.0		
CC1622		o.	14.	0.	ο.	-10.	12.	2.	2.	0.40		0.14	3.2	1.80	254.0	0	0.9	1.51	
CC1222		Ο.	14.	Ο.	Ο.	-10.	12.	2,	2.	0.39		0.14	3.2	1.75	247.9	0	0.9		
CC0822		0.	15.	<u> </u>	<u> </u>	<u>-11.</u>	12.	2.	2.	0.40		0.08	3.3		261.4	0		1.54	
STIG15		0.	13.	0.	0.	-10.	12.	2.	2.	0.35		0.16	3.5	1.92	243.1	0		1.45	
STIG10	24211	٥.	14.	0.	٥.	-11.	12.	2.	2.	0.35	0.17	0.11	3.3	1.84	239.5	0	0.9	1.44	141
															238.8				

. .JE 26

DATE 06/07/72 1&SE-PEG-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

-----FUEL USE IN BTU*10**6-----**COGENERATION CASE** **NOCOGEN - COGEN** POWER COGEN O&M POWER FESR CAPITAL NORM \$/KW ROI LEVL NORM WRTH /HEAT COST COST EQVL CHRG ENRG PROCS DISTIL RESIDE COAL DISTIL RESIDE COAL REGD POWER ECS *10**6 RATIO MW MW **DEADV3 24211** Ο. -10. 0.39 0.17 0.14 4.5 2.47 333.3 n 1.1 1.69 145 0. 14. 0. 12. 2. 2. 0.41 0.17 0.04 2.50 358.3 1.1 1.76 134 4.5 0 **DEHTPM 24211** Ο. -12. 0. 15. 0. 12. 2. 1.0 1.55 144 1.89 249.8 DESOA3 24211 Ο. -14. 4. 12. 2. 2. 0.36 0.17 0.11 3.4 Ω 14. 0. 0.11 DESOA3 24211 0. 0. -10. 12. 0.36 0.17 3.4 1.89 249.8 0.9 1.48 142 0. 14. 0.33 0.17 -0.10 3.0 1.66 236.4 a 1.0 1.53 119 2. GTSOAD 24211 18. 0. 0. -18. 4. 12. 2. 0.10 274.0 0.34 0.17 3.5 1.95 0 1.0 1.54 142 GTRA08 24211 ٥. 0. -14. 12. 2. 2. 14. 0.34 G.17 1.90 268.3 Ω 1.0 1.52 142 9TRA12 24211 0. -14. 12. 2. 2. 0.11 3.4 14. Ο. 0.34 0.08 3.5 1.96 276.0 O 1.0 1.55 139 0.17 GTRA16 24211 15. 0. 0. -15. 12. 2. 0.34 0.17 0.00 3.3 1.85 260.2 0 1.0 1.55 130 ٥. 12. 2. GTR208 24211 16. 0. -16. 0.34 0.17 0.03 3.4 1.88 264.8 Ω 1.0 1.55 133 ٥. -16. 12. 2. 2. GTR212 24211 16. 0. 0.34 0.17 0.05 1.89 267.7 Ω 1.0 1.55 136 GTR216 24211 ٥. -15. 12. 2. 2. 3.4 15. ٥. 0.35 0.17 0.09 3.6 1.98 271.1 1.0 1.57 140 GTRW08 24211 0. -15. 12. 1.98 273.6 n 1.0 1.55 144 GTRW12 24211 14. 0. 0. -14. 12. 2. 2. 0.35 0.17 0.12 3.6 0.17 0.10 2.03 280.5 0 1.C 1.57 142 0. 12. 2. 2. 0.35 3.7 GTRW16 24211 14. 0. -14. 1.86 252.3 1.0 1.58 126 0.34 0.17 -0.03 n ٥. 12. 2. 3.4 GTR308 24211 17. ũ. -17. 0.06 265.4 1.0 1.55 137 GTR312 24211 15. ٥. -15. 12. 0.34 0.17 3.5 1.91 n 0.34 0.06 272.3 n 1.0 1.57 136 0. 12. 2. 2. 0.17 3.5 1.97 GTR316 24211 15. ٥. -15. 1.75 234.5 0 0.9 1.48 149 0.35 0.17 0.16 3.2 2. 2. FCPADS 24211 13. 0. 0. -13. 12. 1.78 247.4 0.9 1.45 156 FCMCDS 24211 12. 0. -12. 12. 0.35 0.17 0.22 3.2 0

PRINTING SYSTEM- P1185-02

DATE 06/07/72 1 &SE-PEG-ADV-DES-ENGR

					E IN BTU					CUCEN	O&M	POWER	FESP	CAPITAL	NORM	\$/KW	PA1	LEVL	NORM	UPTL
ECS	PROCS	DISTIL RE			DISTIL		COAL		REQD MW	POWER MW	Odri	/HEAT	FESK	COST *10**6	COST		(%)	CHRG	ENRG	WILLE
NOCGN	24361	Ö.	7.	25.	0.	0.	0,	Δ	3.	0.	0.58	0.14	0.	6.5	1.00	252.8		2.0	1.0	Ö 80
	24361	Ö.	ò.	0.		7.	25.	•	3.	3.	0.51	0.14	0.99	5.3	0.81	181.0		1.1		5 248
TM141		o.	1.	o.		7.	26.		3.	3.	0.42	0.14	0.97	5.0	0.77	169.6		1.0		9 235
	24361	õ.	Ď.	o.	o.	7.	24.	F	3.	3.	0.88	0.14	0.99	10.5	1.61	357.8		2.0		2 243
TM141		0.	0.	1.		8.	25.		3.	3.	0.73	0.14	0.97	9.7	1.48	327.2		1.8		9 229
	24361	o.	o.	à.		7.	24.		3.	3.	0.79	0.14	0.99	8.7	1.34	297.4		1.7		8 244
	24361	õ.	o.	1.		8.	25.		3.	3.	0.64	0.14	0.97	7.8	1.19	263.4		1.5		4 23
	24361	Ď.	2.	8.		5.	17.	•	3.	2.	0.40	0.14	0.68	4.3	0.66	153.3	-	1.1		5 20
	24361	0.	2.	8.		5.	17.	F	3.	2.	0.70	0.14	0.68	8.8	1.35	313.3		1.9		5 19
	24361	0.	2.	8,	o.	5.	17.		3.	2.	0.61	0.14	0.68	7.3	1.12	258.3		1.6		2 19
	24361	o.	ō.	1.		7.	24.	••	3.	3.	1.03	0.14	0.97	12.9	1.98	437.1	0	2.4		3 24
	24361	o.	o.	13.	ο.	15.	35.		3.	6.	0.88	0.14	0.79	12.4	1.90	374.3	_	2.0		0 19
	24361	<u> </u>	45.	0.		-37.	<u>25.</u>		3.	3.	0.79		-0.40	14.8	2.27	503.2		3.4		
	24361	o.	~O.	1.		7.	24.		3.	3.	1.24	0.14	0.98	21.9	3.35	742.4	ă	3.6		3 24
	24361	o.	g.	22.	-	20.	45.		3. 3.	8.	1.37	0.14	0.75	34.0	5.20	949.4	ŏ	4.6		
	24361	o.	ő.	7.		7.	18.		3.	3.	1.27	0.14	9.78	26.5	4.05	844.5	_	4.2		
	24361	0.	<u> </u>	19,		12.	21.		3.	<u> </u>	1.21	0.14	0.64	32.1	4.91	922.3		4.7		
TIRL	24361	42.	a.	0.		7.	25.		3. 3.	3. 3.	0.52		0.32	5.6	0.86	180.8		2.2		
TIRL	24361	0.		0.			25. 25.		3, 3,	3. 3.	0.52		-0.32	5.6	0.86	180.9		2.0		
TIRL	24361	0. C.	42. 0.	6.	0. 0.	-35. 7.	18.		3. 3.	3. 3.	0.93	0.14	0.80	11.7	1.79	376.0		2.2		
TIRL	24361	0.	<u> </u>	54.	0.	27.	36.		<u>3.</u>	11.	0.89	0.14	0.54	15.4	2.35	340.5		2.1	1.00	
	24361	0. 0.	0. 0.	16.	0. 0.	7.	36. 9.		3. 3.	3.	1.00	0.14	0.50	17.8	2.72	522.5		3.1		6 18
	24361	0. 0.	0. 0.		0.	56.			3. 3.			0.14	0.30	45.4	6.94	516.6	-	6.4		
-	24361	0. 0.	0.	200.		7.	-13.		3. 3.	23.	1.68 0.97	0.14			2.57	505.5		3.0		
	24361	0.	0.	14. 56.	<u>0.</u> 0.	20.	11.	A	3.	<u>3.</u> 8.	0.94	0.14	0.58	16.8 22.6	3.46	493.7	- 6	3.4	1.7	
		• •						A									-			
	24361	0.	0.	159.	0.	35.	-43.		3.	14.	1.26		-0.05	26.3	4.03	565.6	0	4.6		
	24361	0.	0.	181.	0.	47.	-22.		3.	19.	1.51	0.14	0.12	30.3	4.63	571.9	-	4.9		7 11
	24361	<u> </u>	<u>o.</u>	168.	<u>o.</u>	<u>32.</u>	<u>-61.</u>		<u>3.</u>	13.	1.14	0.14		25.0	3.83	508.2		4.7		
	24361	0.	35.	. 0.		-28.	25.		3.	3.	0.49		0.10	6.0	0.92	192.5		1.9		6 11
	24361	0.	38.	0.	0.	-31.	25,		3.	3.	0.48		0.19	5.5	0.85	183.6		1.9		
	24361	0.	34.	0.	0.	-26.	2 5.		3.	3.	0.48		-0.05	5.5	0.85	182.4		1.8		
	24361	<u> </u>	32.	<u>o.</u>	0.	-24.	<u> 25.</u>		<u>3.</u>	3.	0.48	0.14	0.01	5.6	0.86	185.1		1.8		
	24361	0.	32.	o.	0.	-25.	25.		3.	3.	0.49		0.02	5.9 5.9	0.90	191.3 189.4		1.8		
	24361	o.	28.	0.	0.	-21.	25.		3.	3.	0.56	0.14	0.12		0.90			1.8		
	24361	0.	29.	0.	0.	-21.	25.		3.	3.	0.55	0.14	0.10	5.7	0.87	184.1		1.8		0 14
	24361	0.	29.	<u>o.</u>	<u> 0.</u>	<u>-21.</u>	25.		3.	<u> 3. </u>	0.55	0.14	0.10	5.5	0.85	180.0		1.8		0_14
	24361	0.	31.	0.	0.	-24.	25.		3.	3.	0.55	0.14	0.03	5.7	0.87	187.3		1.6		
	24361	0.	27.	0.	0.	-20.	25.		3.	3.	0.51	0.14	0.16	5.9	0.90	175.4		1.7		7 14
	24361	0.	29.	0.	0.	-21.	25.		3,	3.	0.50	0.14	0.11	5.7	0.87	173.2		1.7		7 14
	24361	<u> 0.</u>	<u>31.</u>	0.	0.	-23.	25.		3.	<u>3.</u>	0.50	0.14	0.05	5.6	0.86	172.8		1.8		
	24361	ø.	28.	0.	0.	-20.	25.		3.	3.	0.55	0.14	0.14	7.5	1.15	234.3		2.0		9 14
	24361	Ο.	33.	ο.	ο.	-26.	25.		3,	3.	0.59		0.03	7.8	1.19	253.3	0	2.1		7 12
SECRAG	24361	28.	0.	0.	-28.	7.	25.		3.	3.	0.53	0.14	0.11	6.5	0.99	198.4	-2	2.0	1.00	A 14

...GE 28

DATE 06/07// I&SE-PEO-ADV-DES-ENGR

				FUEL US	E IN BT	U*10**6-									·	
		C	OGENERAT	ION CAS	E **N	OCOGEN -	COGEN**	POWER	COGEN	M8D	POWER FESR	CAPITAL	NORM	\$/KW ROI	LEVL	NORM WRITH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	CUAL	REQD	POWER		/HEAT	COST	COST	EQVL	CHRG	ENRG
								MM	MW		RATIO	*10**6		(%)		
DESTA	24361	0	. 28.	Ô.	0.	-21.	25.	3.	3.	0.53	0.14 0.11	6.5	0.99	198.4 999	1.8	0.93 143
GTSOAL	24361	35	. 0.	· o.	-35.	7.	25.	3.	3.	0.48	0.14 -0.10	5.4	0.83	176.5 -5	2.0	1.00 123
	3 24361		. 0.	0.	-29.	7.	25.	3.	3.	0.49	0.14 0.10	6.1	0.94	197.1 999	1.9	0.96 144
	24361		. 0.	0.	-29.	7.	25.	3.	3.	0.49	0.14 0.11	6.1	0.93	195.7 999	1.9	0.96 144
GTRA16	24361	29	. 0.	0.	-29.	7.	25.	3.	3.	0.49	0.14 0.08	6,2	0.95	201.2 999	1.9	0.98 141
GTR208	3 24361	32	. 0.	0.	-32.	7.	25,	3.	3.	0.49	0.14 -0.00	5.9	0.90	190.4 -3	2.0	0.99 133
GTR212	24361	31	. 0.	0.	-31.	7.	25.	3,	3.	0.49	0.14 0.03	6.0	0.92	193.6 -1	2.0	0.99 136
GTR216	24361	30	. 0.	0.	-30.	7.	25	3.	3.	0.49	0.14 0.05	6.0	0.92	196.0 999	1.9	0.98 138
GTRIVO	3 24361	29	. 0.	0.	-29.	7.	25.	3,	3.	0.50	0.14 0.09	6.2	0.95	195.9 999	1.9	0.98 142
GTRW12	24361	28	. 0.	0.	-28.	7.	25.	3.	З.	0.49	0.14 0.12	€.2	0.95	197.7 999	1.9	0.96 146
GTRW16	24361	29	. 0.	0.	-29.	7.	25.	3.	3.	0.50	0.14 0.10	6.4	0.97	202.4 999	1.9	0.98 143
GTR308	24361	33	<i>.</i> 0.	0.	33.	7.	25.	3.	3.	0.49	0.14 -0.03	5.9	0.91	185.3 -7	2.0	1.01 129
GTR312	24361	30	. 0.	0.	-30.	7.	25.	3.	3.	0.49	0.14 0.06	6.0	0.92	193.1 999	1,9	0.97 140
GTR316	24361	30	. 0.	٥.	-30,	7.	25.	3,	3.	0.50	0.14 0.06	6.2	0.95	197.7 0	2.0	0.99 138
FCPADS	24361	27	. 0.	0.	-27.	7.	25.	3.	3.	0.62	0.14 0.16	5.9	0.90	183.3 -3	2.0	0.99 152
FCMCDS	24361	25	. 0.	0.	-25.	7.	25.	3.	3.	0.61	0.14 0.22	6.0	0.92	193.0 999	1.9	ର. 96 159

29
GE
-

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.2
SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

DATE 06/07/7_ 1&SE-PEO-ADV-DES-ENGR

- 1				T							*															-	Ĭ							1			ĺ		
		,	-	٦,	, ,	• •	. ,	1	_		₩,	- ,			-	-		7,5	•	•	1	-		-	109	-	7	,		•	,		•	, ,	4 :	=			
£ 0	8	0,80	9 6	200	9	0.93	0.96	0.94	1.50	0.92	1.59	1.37) e	0.87	0.85	0.77	y 9		.5	1.43	1.53	0.00	1.48	.09	0.88	0.86	1.02	0.86	0.86	1.03	0.87	- 6	0.99	0.89	0.98	0.88			
		2.0							~		3.9	-		2 2		-	3,00							2.7	2 : 2		2.5	2.1	, c		2.2			2.2	-				
	0	666	5 6	000		, ()	2	666	0	666	0	0	n (666	12	9	0 0		0	0	0	0 0	0	0	666	666	0	999	\ 666	0	666	٥٥	, ,	666	= {	666			
7.1	æ	223.3	9 K	٦ŀ٠	• •			6		8															219.5						217.7	200.0	246.8	212.6	238.8	208.5			
OST	00	2		2		2		.85	4.65	0.82	4.38 1	1.05	. 63	0.63	1.88	1.77	4.33	20.00	3.42	3.66	3.43	4.21	3.60	1.23	0.68	63	1.08	0.63	- C	1.21	0.67		1.18	0.67	1.14	0.63			
CAPITAL COST *10**6		3.3		•	٠	•	6			-	19.1	4.6	N 4	, v	8.2	7.7	18.9	12.0	12.0	16.0	14.9	4.6	15.7	5.4	9.0	. 6	4.7	2.8	ب د د د		2,9	0 c	- N	2.9	9.0	o.			
SR	0.	6: 0					- (7	0.03	0.47	0.01	0.19	0.27	0.00	20.0	0.42	0.42	0.12	20.0	0.23	0.05	0.21	9.0	17	0.06	0.03	0 0	0.0	0.0%	0.0	0.03	0.04	0.0	0.14	0.05	0.14	0.03			
WER EAT	0.46	46	46	40	9 4	ט ע ט ע	4 6	46	46	46	46	46	9 4	46	46	46	46	40	46	46	46	46	46	46	0.46	9 4 0 4	46	46	46	46	46	46	0 4	46	46	46			
ORM	٠,	0.32		•1	•	•	5 6				- 4				• •	•	0.97	**			• •				0.31				•		0.31	•	5.0	• •	0.50				
COGEN POWER MW	o.	6	oi (N.	<u>:</u> ,	<u>-</u> ;	٠,	0	4	0	2.	S	o 1	<i>i</i> c	ņ	'n.	<u>ن</u> ز	-	4 10	, ,	ĸ,	<u>.</u>		G	ö	o c	, 100	ö	n c	'n	o.	'n.	- sc	; -	'n	.			
POWER C REGD F	5	6	ر ا را	ó		o u	ດ້ແ	, L	in	, ro	3	5.	เก๋ เ	o ka	5	ů.	ب ا ب	'n	0	, (a)	S.	ا ن	o id	'n	6	i k	'n	3	ry r	, ru	5.	ر ا ا	i k	'n	Ď,	'n			
*	4		<u>د</u> د	۲		۰ <				٠.							٧٠																						
COS	0	T.	~1	1	_ `	4 4	4 0	4	16	n	50	43	eo (4 5 K	=	12	in (-12	- 60	-19	-24	6-	. 3	43	9.	4 6 5	43.0	9	43 (C) (43 0	9	43	2 K	7	43	7			
COGEN -	o	ι'n	4,	4	4.	ni c	ir		9	ဗု	9	12.	- 1	9, 9	12.	13.	12.	28.	5.5	1.2	12.	23.	5 5	-47	4	. 51.	-44	-3.	-41	-42	-4	-33.	, i	4	-36.	4.			
** **NOCGGEN DISTIL RESIDL	0	ö			. 0	.		ó	6	Ö	ö	-70.	4.		0	Ö	0	0	<i>i</i> c	; o	Ö	0.0	<i>i</i> c	; c	0	o 0		o.	o 0		0	o (o	Ö	ö			
CASE	43	28.	37.	37.	33.	6		39	22.	40.	39.	o.	39.		32.	33.	49.	107.	44.	78.	68.	89.	7.4	30	38.		0	38.	o į) 0	37.		36.	36.	o	36.			
GENERATION RESIDL COA	12	12.	œ (8	16.		2 u	15	2 0	ij	9	o.	22	9.	0	ó		0	oi c	ó	0	0.	<i>o</i> c		16.	63.	92	16.	53.	. 2	16,	47.	- q	16.	48.	16.			
**COGENDISTIL RES	c	o	ó	0	. 0	0		j	<i>i</i> c	ó	o o	70.	4	o o	0	ö	Ö,	0.	o 0	6	0	c ·	o c	<i>i</i> c	o.	o o	j c	0.	o o		o O	ó	o 0	0	o.	ó			
PROCS DI	14921	24921	24921	24921	24921	24921	24921	24021	24921	24921	14921	24921	24921	24921	12654	24921	24921	24921	24921	24921	24921	24921	24921	12674	24921	24921	24921	24921	24921	24921	24921	24921	24921	24921	24921	24921			
ECS PR	ONCCON			- 1				TISTIT		HRSG					STIRE		0	- 1	HEGTOO 2		!	١	166TST 2		f		GTACUO		9	GIACIE	. 1		626	CC1622	222	222			

				-	E IN DTI	J×10××6-													e in section
		C06					COGEN	POVER	COGEN	MSD	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRTH
ECS	PROCS	DISTIL F		COAL	DISTIL		COAL	REOD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
				•				MW	MW		RAT10		*10**6			(X)			
CC08	22 24921	0.	51.	0.	0.	-39.	43.	5.	5.	0.50	0.46	0.08	5.1	1.16	249.3	0	2.5	1.02	136
1	22 2492 1		16.	37.	ο.	-4.	6.	5.	٥.	0.36	0.46	0.05	2.9	0.65	212.2	999	2.2	0.89	113
1	15 24921		46.	ο.	Ο.	-34.	43.	5.	5.	0.51	0.46	0.17	5.6	1.29	219.6	7	2.5	0.99	144
	15 24921		154.	0.	0.	-112.	143.	<u>5.</u>	17.	0.81	0.46	0.17	10.4	2.39	182.2	0	4.1		121
	10 24921		48.	0,	٥.	-35.	43.	5.	5.	0.48	0.46	0.15	5.3	1.22	216.3	10	2.4		143
	10 24921		23.	28.	o.	-11.	15.	5.	2.	- 0.37	0.46	0.08	3.7	0.84	221.7		2,2		123
	15 24921		51.	0.	0.	-39.	43.	5.	5.	0.47	0.46	0.09	5.1	1.18	214.6	4	2.5	1.00	
	1S 2-1921		19.	<u>33.</u>	<u>0.</u>	-7.	10.	<u>5.</u>	<u> </u>	0.34	0.46	0.05	3.2	0.74	216.2		2.2	_0.89	do r
	V3 24921		46.	0.	0.	-34.	43.	5.	5,	0.53	0.46	0.17	7.2	1.66	311.6	0	2.6	1.06	
	V3 24921		20.	32.	0.	-8.	12.	5.	1.	0.39	0.46	0.07	4.5	1.03	295.0		2.4		115
-	PM 24921		55 .	0.	0.	-43.	43.	5.	5.	0.54	0.46	0.01	7.3	1.67	350.9	0	2.9	1.17	
	PM 24921 A3 24921		<u>16.</u>	38.	0.	-4.	6.	<u>5.</u>	<u>0.</u>	0.34	0.46	0.04	2.9	0.67	218.2		<u>2.</u> _	0.88	45
	43 24921 A 3 2 4921		0. 9.	0. 30.	-47. -13.	12. 3.	43. 14.	5. 5.	5.	0.51	0,46	0.15	6.5	1.50	270.7	000	2.9		143
	43 24921		47.	0.	0.	-35.	14. 43.	5. 5.	1. 5.	0.38 0.51	0.46 0.46	0.07	3.6 6.5	1.50	270.7	999 0	2.3 2.6		122
	A3 24921	0.	22.	30.	0.	-33. -10.	14.	5. 5.	1.	0.38	0.46	0.13	3.6	9.84	230.0	-	2.3	0.91	
	AD 24921		<u> </u>	0.	-58.	12.	43.	5.	5.	0.40		-0.05	4.5	1.03	216.7	9 <u>99</u>	3.0	1.19	
	AD 24921		11.	38.	-4.	1.	5.	5. 5.	o.	0.30	0.46	0.04	2.7	0.63	205.2	-	2.2	0.87	
	08 24921		o.	0.	-48.	12.	43.	5. 5.	5. 5.	0.45	0.46	0.14	5.7	1.31	265.5	393 0	2.8	1.11	
	08 24921		11.	. 36.	-6.	2.	8.	5.	1.	0.33	0.46	0.06	3.2	0.74	232.4	-	2.2	0.90	
	12 24921	48.	0.	0.	-48.	12.	43.	<u>5.</u>	5.	0.44	0.46	0.14	5.6	1.23	265.4	0	2.7		144
	12 24921		11.	36.	-6.	2.	8.	5.	1.	0.32	0.46	0.06	3.1	0.72	226.8	_	2.2		115
	16 24921		Ō.	0.	-49.	12.	43.	5.	5.	0.45	0.46	0.12	5.9	1.34	276.2	0	2.8	1.13	
GTRA	i 6 2 4921	6.	11.	35.	-6.	1.	7	5.	1.	0.32	0.46	0.05	3.1	0.72	229.1	999	2.2	0.89	
GTR2	08 24921	53.	٥.	0.	-53.	12.	43.	5.	5.	0.43	0.46	0.04	5.3	1.21	249.5	0	2.9	1.16	135
GTR2	08 24921	5.	11.	37.	-5.	1.	6.	5.	Ο.	0.31	0.46	0.04	3.0	0.58	219.2	999	2.2	0.89	112
GTR2	12 24921	52.	0.	0.	-52.	12.	43.	5.	5.	0.43	0.46	0.07	5.5	1.23	257.4	0	2.9	1.15	137
GTR2	12 24921	5.	11.	37.	-5.	1.	7.	5.	1.	0.32	0.46	0.05	3.0	0.69	222.2	999	2.2	0,89	112
	16 24921	51.	٥.	0.	-51.	12.	43.	5.	5.	0.44	0.46	0.09	5.6	1.28	264.5	0	2.8	1.14	
	16 24921		11.	37.	-5.	1.	7.	5.	1.	0.32	0.45	0.05	3.0	0.70	223.3		2.2	0.89	
	08 24921		0.	0.	-49.	12.	43.	5.	5.	0.46	0.46	0.13	5.9	1.34	259.4	0	2.8	1.13	
	08 24921		10.	35.	-8.	2	9,	<u>5.</u>	<u> </u>	0.34	0.46	0.06	3.4	0.77	235.5		2.3	0.91	
	12 24921		0.	0.	-47.	12.	43.	5.	5.	0.45	0.46	0.16	5.9	1.34	264.9	0	2.7		145
	24921		10.	35.	-7.	2.	9,	5,	1.	0,33	0.46	0.06	3.4	0.77	236.9		2.3	0.90	
	16 24921		0,	0.	-48.	12.	43.	5.	5.	0.46	0.46	0.14	6.0	1.38	274.0	0	2.8	1.12	
	6 24921		<u> 11.</u>	35,	<u>-7.</u>	2.	8.	<u>5.</u>	<u> </u>	0.33	0.46	0.06	3.4		239.0		2.3	0.90	
	08 24921		0.	0.	-55.	12.	43.	5.	5.	0.44	0.46	0.01	5.4	1.25	235.9	0	3.0	1.20	
	08 24921	7.	11.	36.	-7.	1.	7.	5.	1.	0.32	0.46	0.04	3.1	0.70	218.8		2.2	0.90	
	24921	50.	0.	0.	-50.	12.	43.	5.	5.	0.44	0.46	0.10	5.5	1.27	254.6	0	2.8	1.13	
	24921	6.	11.	36.	-6.	2	7.	<u>5.</u>	<u></u>	0.32	0.46	0.05	3.2	6.72	227.6		2.2	0.89	
	6 24921	50.	0.	0.	-50.	12.	43.	5.	5.	0.45	0.46	0.10	5.7	1.32	263.3	0	2.8	1.14	
	6 24921	6. 45	11.	36.	-6.	1.	7.	5.	1.	0.32	0.46	0.05	3.2	0.73	231.0		2.2		
	OS 24921	45.	0.	0.	-45. -13	12.	43.	5.	5.	0.82	0.46	0.19	5.5	1.25	234.3	0	3.0	1.20	
FUPA	OS 24921	12.	9.	30.	-12.	3.	13.	5.	<u> </u>	0.42	0.45	0.08	3.4	0.78	218.1	333	2.3	0.94	1 24

FAGE 31

DATE 06/07/75 1&SE-PEG-ADV-DES-ENGR

		DIST	*COG	ENERAT ESIDL	CO	CASE AL.	** **i Distii	NOCOGE RESI	EN - IDL		POWER REQD MW	POWER MW	M&0	/HEAT		CAPITAL COST *10**6	COST	EQVL	(%)	CHRG	ENRG	
FCMCDS FCMCDS			41. 9.	ું. 10.		0. 33,	-41 -9		12. 3.	43. 11.	5. 5.	5. 1.		0.46 0.46		5.6 3.3	1.29 0.75	260,9 223.0			1.15 0.90	
<u> </u>																						
	· - ·			,																	·	
														······································				# 124 1. TT.		· · · · · · · · · · · · · · · · · · ·		
	·											, , , , , , , , , , , , , , , , , , , 	1.1.1.						•	······································		
			-							-	•									- **/		
······································		· 		· · · · · ·			***************************************	*	·	· · · · · · · · · · · · · · · · · · ·								· · · James · · · · · · · · · · · · · · · · · · ·				
													······································								·	
								<u>,,,</u>				· · · · · · · · · · · · · · · · · · ·	*								·	
	,,		· · · · · · · · · · · · · · · · · · ·	···········		··-								<u>,</u>				1,47, 340		, <u>.</u>	<u> </u>	-
															~~~~							-
		·										·						J=				
			 -							· · · · · · · · · · · · · · · · · · ·	25,4				· · · · · · · · · · · · · · · · · · ·							

ECS	PROCS	**COO DISTIL F		ION CAS		RESIDL	COGEN		POVER REQD MW	COGEN POWER MW	Mag	POWER /HEAT RATIO		CAPITAL COST *10**6	NORM		ROI	LEVL	NORM ENRG	WRTH
ONOCGN	26212	0.	123.	975.	0.	0.	0.	F	50.	0.	2.51	0.22	0.	47.9	1.00	178.0	.0	33.9	1.00	0 80
STM141	26212	0.	761.	23.	Ü.	-638.	952.		50.	47.	1.41	0.22	0.29	32.3	0.67	9 9.5	999	28.9	0.8	5 162
STM141	26212	0.	7.	777.	ο.	116.	198.	F	50.	47.	3.20	0.22	0.29	61.3	1.28	188.9	42	24.1	0.7	1 142
STM141	26212	0.	<u>7.</u>	777.	0.	116.	198.	Α	50.	47.	2.93	0.22	0.29	42.6	0.89	131.4	999	21.8	0.64	1 149
	26212		741.	129.	0.	-618.	846.		50.	34.	1.24	0.22	0.21	25.6	0.54	82.9	999	30.6	0.90	158
	26212		39,	831.	0.	84.	144.	F	50.	34.	2.99	0.22	0.21	57.3	1.20	185.5	43	26.7	0.79	9 134
	26212		39.	831.	Ο.	84.	144.	Α	50.	34.	2.83	0.22	0.21	41.0	0.86	132.7	999	24.8	0.73	3 141
FBSTM	26212	Q.	<u> </u>	772.	0.	123.	203.		50.	50.	4.84	0.22	0.30	63.2	1.32	191.5	34	25.4	0.75	5 154
	26212	O.	Ο.	883.	0.	188.	311.		50.	77.	5.13	0.22	0.36	60.9	1.27	168.3	49	22.2	0.66	5 148
	26212		771.	0.	0.	-648.	975.		50.	50.	3.57	0.22	0.30	105.8	2.21	321.3	0	38.6	1.14	1 153
	26212	0.	824.	٥.	Ο.	-670.	1082.		50.	63.	3.90	0.22	0.33	118.8	2.48	344.3	J	39.4	1.16	145
	26212	0.	0.	<u>771.</u>	0.	123.	204.		50.	5 0.	5.58	0.22	0.30	140.2	2.93	425.9	4	34.4		2 146
	26212	0.	0.	987.	0.	251.	418.		50.	102.	6.85	0.22	0.40	202.1	4.22	514.9	4	36.1	1.00	5 138
	26212	Ο.	791,	159.	0.	-668.	816.		50.	31.	3.40	0.22	0.14	105.5	2.20	328.3	0	43.5		124
	26212	0.	0.	856.	Ο.	122.	119.		50.	50.	6.06	0.22	0.22	179.8	3.75	507.9	0	40.7		126
STIRL	26212	862.	0.	0.	-862.	123.	975.		50.	50.	2.22	0.22	0.22	53.6	1.12	150.7	0	-10.2	1.19	159
STIRL	26212		Ο.	0.	-1006.	182.	1175.		50.	74.	2.48	0.22	0.26	63.2	1.32	158.7	0	42.1	1.24	1 149
STIRL	26212		862.	0.	Ο.	-739.	975.		50.	50 .	2.22	0.22	0.22	53.7	1.12	150.8	0	34.2	1.01	154
STIRL	26212	О.	1006.	0.	Ο.	-824.	1175.		50.	74.	2.48	0.22	0.26	63.3	1.32	158.9	0	35.2	1.04	1 144
STIRL	26212	0.	0.	862.	0.	123.	113.		50.	50.	4.41	0.22	0.22	91.5	1.91	256.9	12	29.4	0.87	7 139
STIRL	26212	Ο.	٥.	1262.	0.	296.	274.		50.	121.	5.79	0.22	0.31	150.0	3.13	313.1	7	30.7	0.90	123
	26212	ο.	٥.	1022.	ο.	123.	-47.	Α	50.	50.	5.20	0.22	0.07	120.7	2.52	299.4	2	36.4	1.07	121
	26212	0.	Ο,	6244.	ο.	1522.	-584.	Α	50.	621.	23.37	0.22	0.13	652.2	3.62	337.3	0	94.5	2.79	106
	26212	0.	<u>0,</u>	998.	6.	123.			50.	50.	5.08	0.22	0.09	115.1	2.40	290.8	3	35,2	1.04	1 123
	26212	0.	٥.	2331.	0.	500.	-94.		50.	204.	8.72	0.22	0.15	213.3	4.45	271.2	0	43.3	1.28	95
	26212	o.	0.	977.	ο.	123.	-2.		5 0.	50.	4.76	0.22	0.11	109.7	2.10	258.3	6	33.0	0.97	7 127
	26212	0.	, 0,	1244.	Ο.	202.	-3.	A	50.	82.	5.11	0.22	0.14	117.0	2.44	250.1	5	33.6	0.99	114
	26212	<u> </u>	<u>0,</u>	1166.	0.	123,	<u>-191.</u>		50.	<u>50.</u>	5.36	0.22		96.8	2.02	283.2	0_	36.8	1.09	109
	26212	0.	٥.	1648.	٥.	360.	122.		50.	147.	8.45	0.22	0.23	142.4	2.98	295.0	4	34.7	1.02	2 112
	26212	0.	0.	1155.	0.	123.	-150.		50.	50.	5.37	0.22		101.8	2.13	300.7	0	37.1		109
	26212	0.	0.	1978.	0.	547.	418.		50.	223.	10.26	0.22	0.33	172.5	3.60	297.6	7	30.9		108
	26212	<u> </u>	0.	1216.	<u>o</u>	123.	<u>~241.</u>		<u>50.</u>	50,	4.02	0.22		89,1	1.86	249.9	<u> </u>	35.5		
	26212	0.	G.	1843.	0.	330.	-6.		50.	155.	4.50	0.22	0.17	137.8	2.88	255.1	6	32.1		102
	26212	0.	860,	0.	0.	-737.	975.		50.	50,	1.79	0.22	0.22	39.9	0.83	112.3		32.3	-	161
	26212	0.	1132.	0.	0.	-896.	1355.		50.	96.	2.04	0.22	0.29	48.3	1.01	110.9		32.8		149
	26212	<u> </u>	814,	<u> </u>	0.	-691.	975.		<u>50.</u>	<u>50.</u>	1.71	0.22	0.26	37.1	0.77	108.5		30.5		167
	26212	0.	933.	0.	0.	-752.	1171.		50.	74.	1.80	0.22	0.31	40.1	0.84	106.5	-	29.9	•	
	26212	0.	819.	0.	0.	-696,	975.		50.	50.	1.75	0.22	0.25	38.5	0.80	112.2		30.8		165
	26212	0.	1034.	0.		-807.	1324.		5 9.	92.	1.96	0.22	0.33	45.9	0.96	113.0		30.2		155
	26212	<u> </u>	824.	<u> </u>	0.	-702,	975.		<u>50.</u>	50.	1.78	0.22	0.25	39.9	0.83	115.7		31.2		164
	26212	0.	1110.	0.	0.	-852.	1427.		50.	105.	2.10	0.22	0.34	50.9		118.8	87	30.7		152
	26212	0.	848.	0.	0.	-726.	975.		50.	50.	1.77	0.22	0.23	39.1		111.0		31.8		162
HWC16	26212	Ο.	1186.	0.	0.	-918.	1464.		50.	110.	2.05	0.22	0.32	48,6	1.02	107.8	999	31.9	0.94	1 150

DATE 06/07/75

							- COGEN**		COSEN	MSD	POWER	FFSD	CAPITAL	NORM	\$7KW	ROT	LEVL	NORM	WRTH
ECS	DOGGC	DISTIL				RESIDL	COAL	REOD	POWER	OGII	/HEAT	· Lon	COST	COST	EQVL	1201	CHRO	ENRG	A
=63	PRUCS	DISTIL	RESIDE	COAL	DISTIL	RESIDE	COAL	MM	MM		RATIO		*10**6	000.		(%)	0.11.0		
201626	26212	2 0.	851.	0.	0.	-729.	975.	50.	50.	1.98	0.22	0.22	42.9	0.90	121.5		32.6	0.96	160
	26212		1555.	ä.	o.	-1132.	1983.	50.	173.	2.58	0.22	0.35	61.3	1.28	109.6	10	32.9		139
	26212		839.	o.	o.	-717.	975.	50.	50.	1.98	0.22	0.24	43.4	0.91	124.1		32.3	0.95	
	26212		1418.	o.	o.	-1037.	1841.	50.	155.	2.55	0.22	0.36	62.5	1.31		12	32.2	0.95	
	26212		837.		0.	-714.	975.	50.	50.	1.96	0.22	0.24	42.3	88.0		999	32 1	0,95	162
	26212		1407.	o.	õ.	-1027.	1834.	50.	155.	2.51	0.22	0.36	59.5	1.24	115.4	17	31.6	0.93	143
	26212		818.	o.	o.	-696.	975.	50.	50.	1.86	0.22	0.25	38.4	0.80	111.9	999	31.0	0.92	166
	26212		1189.	o.	o.	-887,	1575.	50.	123.	2.26	0.22	0.37	51.0	1.07	112.9	63	29.9	0.88	151
	26212		1006.	0.	0.	-883.	975,	50.	50.	2.32	0.22	0.08	43.7	0.91	109.8	-42	37.7	1.11	146
	26212		36923.	o.		-26812.		50.	4123.	62.10	0.22	0.17	1012.1	21.14	92.7	0	507.1	14.97	413
-	26212		966.	o.	o.	-843.	975,	50.	50.	2.14	0.22	0.12	42.2	0.88	109.2	-24	36.1	1.07	150
	26212		3623.	0.	٥.	-2688.	3695.	50.	381.	6.13	0.22	0.22	115.5	2.41	99.2	0	64.8	1.91	115
	26212		947.	0.	0.	-825.	975.	50.	50.	2.15	0.22	0.14	41.5	0.87	108.8	-18	35.5		152
	26212		2277.		٥.	-1728.	2401.	50.	224.	4.21	0.22	0.23	75.4	1.57	97.8	0	48.1		123
	3 26212		914.	٥.	0.	-791.	975,	50.	50.	2.38	0.22	0.17	60.4	1.26	162.7	0	36.7		147
DEADY:	26212	2 0.	2342.	0.	0.	-1717.	2655.	50,	255.	5.48	0.22	0.29	175.2	3.66	221.9	0	55,8	1.65	manufacture .
DEHTP	1 26212	2 0.	823.	0.	0.	-701.	[.] 975.	50.	50.	2.41	0.22	0.25	59.3	1.24	171.9	5	33.8		156
DEHTP	1 26212	2 0.	1120.	ø.	0.	-857 <i>.</i>	1446.	50.	107.	3.34	0.22	0.34	92.8	1.94	215.1	0	36.2	1.07	
DESOA:	3 26212	942.	. 0.	O,	-942.	123.	975.	50.	50.	2.59	0.22	0.14	68. <u>6</u>	1.43	180.7	0	45.1		147
	26212		0.	0.	-2807.	728.	3003.	50.	297.	7.37	0.22	0.25	248.5	5.19	268,3	0_	90.8		132
	26212		942.	٥.	0.	-820.	975.	50,	50,	2.59	0.22	0.14	68.6	1.43	180.7	0	38.6		143
	3 26212		2807.		٥.	-2079.	3003.	50.	297.	7.37	0.22	0.25	248.5	5.19	268.3	0	71.5	2.11	
	26212		٥.		-832.	123.	975.	50.	50.	1.70	0.22	0.24	36.4	0.76	104.8		36.7	1.08	
	26212		0.	0.	-1042.	219.	1297.	<u>50,</u>	89.	1.85	0.22	0.31	41.6	0.87	101.8		37.7		Parameters.
	26212		0,		-854.	123.	975.	50.	50.	1.90	0.22	0.22	44.7	0.93		-58	38.6		163
	26212		0.	-	-1428.	366.	1791.	50.	149.	2.61	0.22	0.34	69.7	1.46	133.6	- 60	44.2		146
	26212		0.		-847.	123.	975.	50.	50.	1.91	0.22	0.23	45.2	0.94		-62	38.4	1.13	
	26212		0.	<u> </u>	-1386.	<u>357.</u>	1759.	50.	145.	2.57	0.22	0.34	68.2	1.42	133.7	0	43.2 58.5	1.27	163
	26212		٥.		-845.	123.	975.	50.	50.	1.94	0.22	0.23	46.2	0.97		-83 0			148
	25212		0,	0.	-1325.	332.	1677.	50.	135.	2.57	0.22	0.34	68.5	1.43	139.3	_	42.8 37.7		166
	26212		0.	-	-846.	123.	975.	50.	50.	1.79	0.22	0.23	39.9 51.6		113.5	20	40.3	1,19	
	26212		0.	<u> </u>	-1194.	275.	1484.	<u>50.</u>	112.	2.13	0.22	0.32	40.7	0.85	115.8	-30	37.8		166
	26212		o.		-847.	123.	975.	50.	50.	1.81	0.22	0.23		1.14	117.2	-30	40.9		153
	2 26212		o.	0.	. – . – .	294.	1551.	50.	120.	2.21	0,22	0.33	54.8 41.8	0.87		-34	37.8		166
-	26212		0.	0.	-842.	123.	975.	50.	50.	1.83 2.30	0.22	0.23	58.1	1.21	123.9	-34	40.9	1.21	
	26212		<u> </u>	<u> </u>		302.	1576. 975.	50, 50,	123. 50.	1,90	0.22	0.19	44.2	0.92	121.2	-§5	40.0		160
	26212		٥,	٥.	-892,	123. 437.	975. 2026.	50.	178.	2.69	0.22	0.30	71.3	1.49	116.8	C	50.2		140
	26212		0.		-1731. -877.	123.	2026. 975.	50. 50.	50.	1.89	0.22	0.20	44.2	0.92		-61	39.4		161
	26212		0. 0.	0. 0.	-1693.	443.	975. 2048.	50. 50.	181.	2.70	0.22	0.32	71.7	1.50	119.6	ò	48.4	1.43	
	26212				-1693. -874.	123.	975.	50.	50.	1.91	0.22	0.32	44.9	0.94	125.0		39.4	1.16	
	26212		0. 0.			410.	975. 1936.	50. 50.	167.	2.49	0.22	0.32	63.7	1.33	111.5		46.3	1.37	
	26212		0.		-1397. -907.	123.	975.	50.	50.	1.88	0.22	0.17	43.0	0.90	116.5		40.4	1.19	
	26212		0.		-1496.	333.	1681.	50.	136.	2.25	0.22	0.26	54.9	1.15	101.3	ő	47.4	1.40	
217300	26212	1490.	<u> </u>	<u>v.</u>	1430.	333,	1001.		100.	<u> </u>	- 1 In to	<u> </u>							

DATE 06/07/75 18SE-PEG-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

	PROCS D	**COGE	NERATIO	N CASE OAL	IN BTU = * **!:0 DISTIL -869.	COGEN -	COGEN**	POWER	COGEN POWER MW 50.	08M	POWER /HEAT RATIO 0.22		CAPITAL COST *10**6	COST	\$/KW EOVL	(%)	38.9	ENRG	5 16:
GTR312 GTR316 GTR316 FCPADS	26212 26212 26212 26212 26212	1448. 870. 1438. 924.	0. 0. 0.	0. 0. 0.	-1448. -870. -1438.	356. 123. 350. 123. 771.	1756. 975. 1738. 975. 3146.	50. 50. 50. 50.	145. 50. 143. 50. 314.	2.27 1.89 2.31	0.22 0.22 0.22	0.31 0.21 0.31 0.16	56.0 43.8 57.3 57.1 189.6	1.17 0.91 1.20 1.19	106.1 122.1 109.1 152.6	0 -54 0 0	39.1 44.2 47.3 109.2	1.30 1.15 1.30 1.40 3.22	5 16 5 14 5 15 2 15
FCMCDS	26212 26212 26212	865.	0. 0.	Ο.	-865. -2060.	123. 610.	975. 2607.	50. 50.	50. 249.	6.39 26.14	0.22	0.21	59.1	1.24	165.6 232.2	0	45.0	1.33 2.42	3 16
							•				•			-					
									•										
						Company of the Compan										~	<u> </u>		
•					•														
										Support of the suppor									

ONOCON 26 STM141 26 STM141 26 STM141 26 STM141 26 STM141 26 STM141 26 STM088 26 STM088 26 STM088 26 FFBSTM 26 FFBSTM 26 FFBSTM 26 TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		697. 697. 0. 575. 615. 576. 576. 576. 576. 579. 716. 0. 578. 799. 0. 34. 628. 686.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	71. 71. 71. 71. 71. 203632. 71.	0. 697. 779. 122. 164. 695. 121. 118. 253. 697. 892. 119. 338. 697. 663.	F F A A	REQD MW 29. 29. 29. 29. 29. 29. 29. 29. 29. 29.	COGEN POLIER MW 0. 29. 39. 29. 39. 29. 29. 29. 29. 29. 29. 29. 53. 29. 29. 29. 53. 29. 25.	2.15 1.40 1.17 3.00 2.75 2.94 2.50 1.10 2.58 2.42 3.70 4.26 2.67 3.39 4.27 5.79	/HEAT RATIO 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	0. 25 0.30 0.25 0.30 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	CAPITAL COST *10**6 40.7 24.4 24.2 48.8 52.2 43.6 37.0 21.9 48.8 35.6 51.1 52.2 73.7 101.2 99.7 169.3 98.0	COST 1.00 0.60 0.59 1.20 1.28 1.07 0.91 0.54 1.20 0.87 1.26 1.28 1.81 2.48 2.45 4.16		(X) 0 999 909 40 35 104 999 42 909 28 39 0 3	24.1 21.6 20.7 10.5 17.4 17.9 15.5 21.1 18.1 16.2 28.3 30.4 25.3 27.9	0.86 16 0.77 15 0.72 14 0.74 15 0.64 15 0.69 14 0.69 14 0.67 14 1.18 15 1.26 14 1.16 15
ONOCON 26 STM141 26 STM141 26 STM141 26 STM141 26 STM141 26 STM141 26 STM088 26 STM088 26 STM088 26 FFBSTM 26 FFBSTM 26 FFBSTM 26 TISTMT 26 TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	71. 575. 615. 0. 0. 0. 575. 1. 1. 0. 0. 578. 676. 0. 703. 614.	697. 0. 0. 575. 615. 576. 576. 576. 579. 716. 0. 578. 799. 0. 34. 623.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0504520. 71. 96504. 71. 71. 153507547. 71. 203632.	0. 637. 779. 164. 122. 164. 695. 121. 118. 253. 637. 892. 119. 338. 697. 663.	F A A	29. 29. 29. 29. 29. 29. 29. 29. 29. 29.	MW 0. 29. 39. 39. 29. 29. 29. 29. 29. 29. 62. 29. 53. 29.	1.40 1.17 3.00 2.75 2.94 2.50 1.10 2.58 2.42 3.70 4.26 2.67 3.39 4.27 5.79	RATIO 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	0.25 0.30 0.25 0.30 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	*10**6 40.7 24.4 24.2 48.8 52.2 43.6 37.0 21.9 48.8 35.6 51.1 52.2 73.7 101.2 99.7 169.3	1.00 0.60 0.59 1.20 1.28 1.07 0.91 0.54 1.20 0.87 1.26 1.28 1.28 1.28 1.248 2.45 4.16	193.6 100.0 94.4 199.5 203.9 178.3 144.6 89.7 200.1 145.9 208.2 182.7 300.3 369.2 406.6 546.1	999 909 40 35 104 999 42 939 28 39 0 0	24.1 21.6 20.7 10.5 17.4 15.5 21.1 16.5 19.5 16.5 28.3 30.4 25.3 27.9	1.00 8 0.90 17 0.86 16 0.77 15 0.72 16 0.74 15 0.64 14 0.88 16 0.75 14 0.69 14 0.67 14 1.18 15 1.26 14 1.05 14
STM141 26 STM141 26 STM141 26 STM141 26 STM141 26 STM141 26 STM088 26 STM088 26 STM088 26 STM088 26 FFBSTM 26 FFBSTM 26 TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STHRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	575. 615. 0. 0. 0. 575. 1. 1. 0. 0. 578. 676. 0. 703. 614.	0. 0. 575. 615. 575. 615. 2. 576. 579. 716. 0. 0. 578. 799. 0. 34. 628.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	-504. -520. 71. 96. 71. 96. -504. 71. 71. 153. -507. -547. 71. 203. -632. -543.	697. 779, 122. 164. 122. 1695. 121. 121. 118. 253. 697. 892. 119. 338. 697. 663.	F A A	29. 29. 29. 29. 29. 29. 29. 29. 29. 29.	0, 29, 39, 29, 39, 29, 29, 29, 29, 52, 53, 29,	1.40 1.17 3.00 2.75 2.94 2.50 1.10 2.58 2.42 3.70 4.26 2.67 3.39 4.27 5.79	0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	0.25 0.30 0.25 0.30 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	40.7 24.4 24.2 48.8 52.2 43.6 37.0 21.9 48.8 35.6 51.1 52.2 73.7 101.2 99.7 169.3	0.60 0.59 1.20 1.28 1.07 0.54 1.20 0.87 1.26 1.28 1.28 1.248 2.45 4.16	100.0 94.4 199.5 203.9 178.3 144.6 89.7 200.1 145.9 208.2 182.7 300.3 369.2 406.6 546.1	999 909 40 35 104 999 42 939 28 39 0 0	21.6 20.7 18.5 17.4 17.9 15.5 21.1 18.5 19.5 16.2 28.3 30.4 25.3 27.9	0.90 17 0.86 16 0.77 15 0.72 14 0.74 15 0.64 14 0.88 16 0.75 14 0.69 14 0.67 14 1.18 15 1.26 14 1.05 14
STM141 26 STM141 26 STM141 26 STM141 26 STM141 26 STM088 26 STM088 26 STM088 26 STM088 26 FFBSTM 26 FFBSTM 26 TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	575. 615. 0. 0. 0. 575. 1. 1. 0. 0. 578. 676. 0. 703. 614.	0. 0. 575. 615. 575. 615. 2. 576. 579. 716. 0. 0. 578. 799. 0. 34. 628.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	-504. -520. 71. 96. 71. 96. -504. 71. 71. 153. -507. -547. 71. 203. -632. -543.	697. 779, 122. 164. 122. 1695. 121. 121. 118. 253. 697. 892. 119. 338. 697. 663.	F A A	29. 29. 29. 29. 29. 29. 29. 29. 29. 29.	29. 39. 29. 39. 29. 29. 29. 29. 29. 62. 29. 53. 29.	1.40 1.17 3.00 2.75 2.94 2.50 1.10 2.58 2.42 3.70 4.26 2.67 3.39 4.27 5.79	0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	0.25 0.30 0.25 0.30 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2	24.4 24.2 48.8 52.2 43.6 37.0 21.9 48.8 35.6 51.1 52.2 73.7 101.2 99.7 169.3	0.60 0.59 1.20 1.28 1.07 0.54 1.20 0.87 1.26 1.28 1.28 1.248 2.45 4.16	100.0 94.4 199.5 203.9 178.3 144.6 89.7 200.1 145.9 208.2 182.7 300.3 369.2 406.6 546.1	999 909 40 35 104 999 999 42 939 28 39 0 0	21.6 20.7 18.5 17.4 17.9 15.5 21.1 18.5 19.5 16.2 28.3 30.4 25.3 27.9	0.90 17 0.86 16 0.77 15 0.72 14 0.74 15 0.64 14 0.88 16 0.75 14 0.69 14 0.67 14 1.18 15 1.26 14 1.05 14
STM141 26 STM141 26 STM141 26 STM141 26 STM141 26 STM088 26 STM088 26 STM088 26 FFBSTM 26 FFBSTM 26 FFBSTM 26 TISTMT 26 TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	615. 0. 0. 0. 575. 1. 0. 0. 578. 676. 0. 703. 614. 0.	0. 575, 615. 575. 615. 2. 576. 579. 716. 0. 578. 799. 0. 34. 628.	0. 0. 0. 0. 0. 0. 0. 0. 0.	-520. 71. 96. 71. 96504. 71. 71. 153507547. 71. 203632.	779, 122. 164. 122. 164. 695. 121. 121. 118. 253. 637. 892. 119. 338. 697. 663.	F A A	29. 29. 29. 29. 29. 29. 29. 29. 29. 29.	39. 29. 39. 29. 29. 29. 29. 62. 29. 53. 29.	1.17 3.00 2.75 2.94 2.50 1.10 2.58 2.42 3.70 4.26 2.67 3.39 4.27 5.79	0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	0.30 0.25 0.30 0.25 0.25 0.25 0.25 0.25 0.36 0.36 0.25	24.2 48.8 52.2 43.6 37.0 21.9 48.8 35.6 51.1 52.2 73.7 101.2 99.7 169.3	0.59 1.20 1.28 1.07 0.91 0.54 1.20 0.87 1.26 1.28 1.28 2.45 4.16	94.4 199.5 203.9 178.3 144.6 89.7 200.1 145.9 208.2 182.7 300.3 369.2 406.6 546.1	909 40 35 104 999 999 42 999 28 39 0	20.7 10.5 17.4 17.9 15.5 21.1 18.1 16.5 19.5 16.2 28.3 30.4 25.3 27.9	0.86 16 0.77 15 0.72 14 0.74 15 0.64 15 0.69 14 0.69 14 0.67 14 1.18 15 1.26 14 1.16 15
STM141 26 STM141 26 STM141 26 STM141 26 STM086 26 STM088 26 STM088 26 PFBSTM 26 PFBSTM 26 PFBSTM 26 TISTMT 26 TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 575. 1. 1. 0. 0. 578. 676. 0. 703. 614.	575. 615. 575. 615. 2. 576. 576. 579. 716. 0. 578. 799. 0. 34. 623.	0. 0. 0. 0. 0. 0. 0. 0. 0.	71. 96. 71. 96504. 71. 71. 153507547. 71. 203632.	122. 164. 122. 164. 695. 121. 118. 253. 637. 892. 119. 338. 697. 663.	F A A	29. 29. 29. 29. 29. 29. 29. 29. 29. 29.	29. 39. 29. 29. 29. 29. 29. 53. 59. 83.	3.00 2.75 2.94 2.50 2.58 2.42 3.70 4.26 2.67 3.39 4.27 5.79	0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	0.25 0.30 0.25 0.30 0.25 0.25 0.25 0.36 0.36 0.25 0.34 0.25	48.8 52.2 43.6 37.0 21.9 48.8 35.6 51.1 52.2 73.7 101.2 99.7 169.3	1.20 1.28 1.07 0.91 0.54 1.20 0.87 1.26 1.28 1.81 2.48 2.45 4.16	199.5 203.9 178.3 144.6 89.7 200.1 145.9 208.2 182.7 300.3 369.2 406.6 546.1	40 35 104 999 999 42 999 28 39 0	10.5 17.4 17.9 15.5 21.1 18.1 16.5 19.5 16.2 28.3 30.4 25.3 27.9	0.77 15 0.72 14 0.74 15 0.64 16 0.88 16 0.75 14 0.69 14 0.67 14 1.18 15 1.26 14 1.16 15
STM141 26 STM141 26 STM141 26 STM086 26 STM088 26 STM088 26 STM088 26 PFBSTM 26 PFBSTM 26 TISTMT 26 TISTMT 26 TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 575. 1. 0. 0. 578. 676. 0. 703. 614.	615. 575. 615. 2. 576. 576. 579. 716. 0. 578. 799. 0. 34. 623.	0. 0. 0. 0. 0. 0. 0. 0. 0.	96. 71. 96504. 71. 71. 153507547. 71. 203632.	164. 122. 164. 695. 121. 121. 118. 253. 637. 892. 119. 338. 697. 663.	F A F A	29. 29. 29. 29. 29. 29. 29. 29. 29. 29.	39. 29. 39. 29. 29. 29. 29. 53. 29. 83.	2.75 2.94 2.50 1.10 2.58 2.42 3.70 4.26 2.67 3.39 4.27 5.79 3.14	0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	0.30 0.25 0.30 0.25 0.25 0.25 0.36 0.25 0.34 0.25 0.40	52.2 43.6 37.0 21.9 48.8 35.6 51.1 52.2 73.7 101.2 99.7 169.3	1.28 1.07 0.91 0.54 1.20 0.87 1.26 1.28 1.81 2.48 2.45 4.16	203.9 178.3 144.6 89.7 200.1 145.9 208.2 182.7 300.3 369.2 406.6 546.1	35 104 999 999 42 939 28 39 0 0	17.4 17.9 15.5 21.1 18.1 16.5 19.5 28.3 30.4 25.3 27.9	0.72 14 0.74 15 0.64 14 0.88 16 0.75 14 0.69 14 0.67 15 1.18 15 1.26 14 1.05 14
STM141 26 STM141 20 STM008 26 STM008 26 STM008 26 STM008 26 STM088 26 STM088 26 FFBSTM 26 FFBSTM 26 TISTMT 26 TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 575. 1. 1. 0. 0. 578. 676. 0. 703. 614.	575. 615. 2. 576. 579. 716. 0. 578. 799. 0. 34. 623.	0. 0. 0. 0. 0. 0. 0. 0.	71. 96. -504. 71. 71. 153. -507. -547. 71. 203. -632. -543.	122. 164. 695. 121. 121. 118. 253. 697. 892. 119. 338. 697. 663.	A A F A	29. 29. 29. 29. 29. 29. 29. 29. 29.	29. 39. 29. 29. 29. 62. 29. 53. 29. 83.	2.94 2.50 1.10 2.58 2.42 3.70 4.26 2.67 3.39 4.27 5.79	0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	0.25 0.30 0.25 0.25 0.25 0.36 0.25 0.34 0.25 0.40	43.6 37.0 21.9 48.8 35.6 51.1 52.2 73.7 101.2 99.7 169.3	1.07 0.91 0.54 1.20 0.87 1.26 1.28 1.81 2.48 2.45 4.16	178.3 144.6 89.7 200.1 145.9 208.2 182.7 300.3 369.2 406.6 546.1	104 999 999 42 999 28 39 0 0	17.9 15.5 21.1 18.1 16.5 19.5 28.3 30.4 25.3 27.9	0.74 15 0.64 14 0.88 16 0.75 14 0.69 14 0.67 14 1.18 15 1.26 14 1.05 14
STM141 20 STM088 26 STM088 26 STM088 26 PFBSTM 26 PFBSTM 26 TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0. 0. 0. 0.	0. 575. 1. 1. 0. 0. 578. 676. 0. 0. 703. 614. 0.	615. 2. 576. 576. 579. 716. 0. 578. 799. 0. 34. 623.	0. 0. 0. 0. 0. 0. 0. 0.	96. -504. 71. 71. 71. 153. -507. -547. 71. 203. -632. -543.	164. 695. 121. 121. 118. 253. 697. 892. 119. 338. 697. 663.	A F A	29. 29. 29. 29. 29. 29. 29. 29. 29.	39. 29. 29. 29. 62. 29. 53. 29. 83.	2.50 1.10 2.58 2.42 3.70 4.26 2.67 3.39 4.27 5.79	0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	0.30 0.25 0.25 0.25 0.36 0.25 0.34 0.25 0.40	37.0 21.9 48.8 35.6 51.1 52.2 73.7 101.2 99.7 169.3	0.91 0.54 1.20 0.87 1.26 1.28 1.81 2.48 2.45 4.16	144.6 89.7 200.1 145.9 208.2 182.7 300.3 369.2 406.6 546.1	999 999 42 999 28 39 0 0	15.5 21.1 10.1 16.5 19.5 16.2 28.3 30.4 25.3 27.9	0.64 14 0.88 16 0.75 14 0.69 14 0.67 15 1.18 11 1.26 14 1.05 14
STM088 26 STM088 26 STM088 26 STM088 26 PFBSTM 26 PFBSTM 26 TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0. 0. 0. 0.	575. 1. 1. 0. 0. 578. 676. 0. 0. 703. 614. 0.	2. 576. 576. 579. 716. 0. 0. 578. 799. 0. 34. 628.	0. 0. 0. 0. 0. 0. 0.	-504. 71. 71. 71. 153507547. 71. 203632.	695. 121. 121. 118. 253. 637. 892. 119. 338. 697. 663.	F A	29. 29. 29. 29. 29. 29. 29. 29.	29. 29. 29. 29. 62. 29. 53. 29. 83.	1.10 2.58 2.42 3.70 4.26 2.67 3.39 4.27 5.79	0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	0.25 0.25 0.25 0.25 0.36 0.25 0.34 0.25 0.40	21.9 48.8 35.6 51.1 52.2 73.7 101.2 99.7 169.3	0.54 1.20 0.87 1.26 1.28 1.81 2.48 2.45 4.16	89.7 200.1 145.9 208.2 182.7 300.3 369.2 406.6 546.1	999 42 999 28 39 0 0	21.1 18.1 16.5 19.5 16.2 28.3 30.4 25.3 27.9	0.88 16 0.75 14 0.69 14 0.67 14 1.18 15 1.26 14 1.05 14
STM088 .26 STM088 26 PFBSTM 26 PFBSTM 26 TISTMT 26 TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0. 0. 0. 0.	1. 1. 0. 0. 578. 676. 0. 0. 703. 614.	576. 576. 579. 716. 0. 0. 578. 799. 0. 34. 628.	0. 0. 0. 0. 0. 0. 0.	71. 71. 71. 153. -507. -547. 71. 203. -632. -543.	121. 121. 118. 253. 637. 892. 119. 338. 697. 663.	Α	29. 29. 29. 29. 29. 29. 29.	29. 29. 62. 29. 53. 29. 83.	2.58 2.42 3.70 4.26 2.67 3.39 4.27 5.79	0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	0.25 0.25 0.25 0.36 0.25 0.34 0.25 0.40	48.8 35.6 51.1 52.2 73.7 101.2 99.7 169.3	1.20 0.87 1.26 1.28 1.81 2.48 2.45 4.16	200.1 145.9 208.2 182.7 300.3 369.2 406.6 546.1	42 999 28 39 0 0 3	18.1 16.5 19.5 16.2 28.3 30.4 25.3 27.9	0.75 14 0.69 14 0.61 15 0.67 14 1.18 15 1.26 14 1.05 14
STM088 26 PFBSTM 26 PFBSTM 26 TISTMT 26 TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214 6214	0, 0, 0, 0, 0, 0, 0, 0, 0,	1. 0. 0. 578. 676. 0. 0. 703. 614.	576. 579. 716. 0. 0. 578. 799. 0. 34. 628.	0. 0. 0. 0. 0. 0. 0.	71. 71. 153. -507. -547. 71. 203. -632. -543.	121. 118. 253. 637. 892. 119. 338. 697. 663.	Α	29. 29. 29. 29. 29. 29. 29.	29. 29. 62. 29. 53. 29. 83.	2.42 3.70 4.26 2.67 3.39 4.27 5.79 3.14	0.16 0.16 0.16 0.16 0.16 0.16 0.16	0.25 0.36 0.25 0.34 0.25 0.40	35.6 51.1 52.2 73.7 101.2 99.7 169.3	0.87 1.26 1.28 1.81 2.48 2.45 4.16	145.9 208.2 182.7 300.3 369.2 406.6 546.1	999 28 39 0 0 3	16,5 19.5 16.2 28.3 30.4 25.3 27.9	0.69 14 0.81 15 0.67 14 1.18 15 1.26 14 1.05 14 1.16 15
PFBSTM 26 PFBSTM 26 TISTMT 26 TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0. 0.	0. 0. 578. 676. 0. 0. 703. 614.	579. 716. 0. 0. 578. 799. 0. 34. 628.	0. 0. 0. 0. 0. 0.	71. 153. -507. -547. 71. 203. -632. -543.	118. 253. 637. 892. 119. 338. 697. 663.		29. 29. 29. 29. 29. 29.	29. 62. 29. 53. 29. 83.	3.70 4.26 2.67 3.39 4.27 5.79 3.14	0.16 0.16 0.16 0.16 0.16 0.16	0.25 0.36 0.25 0.34 0.25 0.40	51.1 52.2 73.7 101.2 99.7 169.3	1.26 1.28 1.81 2.48 2.45 4.16	208.2 182.7 300.3 369.2 406.6 546.1	28 39 0 0 3 2	19.5 16.2 28.3 30.4 25.3 27.9	0.81 15 0.67 14 1.18 15 1.26 14 1.05 14 1.16 15
PFBSTM 26 TISTMT 26 TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0. 0.	0. 578. 676. 0. 0. 703. 614.	716. 0. 0. 578. 799. 0. 34. 628.	0. 0. 0. 0. 0. 0.	153. -507. -547. 71. 203. -632. -543.	253. 637. 892. 119. 338. 697. 663.		29. 29. 29. 29. 29.	62. 29. 53. 29. 83.	4.26 2.67 3.39 4.27 5.79 3.14	0.16 0.16 0.16 0.16 0.16	0.36 0.25 0.34 0.25 0.40	52.2 73.7 101.2 99.7 169.3	1.28 1.81 2.48 2.45 4.16	182.7 300.3 369.2 406.6 546.1	39 0 0 3 2	16.2 28.3 30.4 25.3 27.9	0.67 14 1.18 11 1.26 14 1.05 14 1.16 13
TISTMT 26 TISTMT 26 TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0. 0.	578. 676. 0. 0. 703. 614.	0. 0. 578. 799. 0. 34. 628.	0. 0. 0. 0. 0.	-507. -547. 71. 203. -632. -543.	637. 892. 119. 338. 697. 663.		29. 29. 29. 29.	29. 53. 29. 83. 29.	2.67 3.39 4.27 5.79 3.14	0.16 0.16 0.16 0.16 0.16	0.25 0.34 0.25 0.40	73.7 101.2 99.7 169.3	1.81 2.48 2.45 4.16	300.3 369.2 406.6 546.1	0 0 3 2	28.3 30.4 25.3 27.9	1.18 1: 1.26 14 1.05 14 1.16 1:
TISTMT 26 TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26	6214 6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0.	676. 0. 0. 703. 614. 0.	0. 578. 799. 0. 34. 628.	0. 0. 0. 0.	-547. 71. 203. -632. -543.	892. 119. 338. 697. 663.		29. 29. 29. 29.	53. 29. 83. 29.	3.39 4.27 5.79 3.14	0.16 0.16 0.16 0.16	0.34 0.25 0.40	101.2 99.7 169.3	2.48 2.45 4.16	369.2 406.6 546.1	0 3 2	30.4 25.3 27.9	1.26 14 1.05 14 1.16 13
TISTMT 26 TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26	6214 6214 6214 6214 6214 6214	0. 0. 0. 0. 0.	0. 0. 703. 614. 0.	578. 799. 0. 34. 628.	0. 0. 0. 0.	71. 203. -632. -543.	119. 338. 697. 663.		29. 29. 29.	29. 83. 29.	4.27 5.79 3.14	0.16 0.16 0.16	0.25 0.40	99,7 169.3	2.45 4.16	406.6 546.1	3	25. 3 27.9	1.05 14 1.16 13
TISTMT 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26	6214 6214 6214 6214 6214	0. 0. 0. 0.	0. 703. 614. 0.	799. 0. 34. 628.	0. 0. 0.	203. -632. -543.	338. 697. 663.		29. 29.	83. 29.	5.79 3.14	0.16	0.40	169.3	4.16	546.1	2	27.9	1.16 1:
TIHRSG 26 TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26	6214 6214 6214 6214	0. 0. 0.	703. 614. 0.	0. 34. 628.	0. 0. 0.	-632. -54 3 .	697. 66 3 .		29.	29.	3.14	0.16							
TIHRSG 26 TIHRSG 26 TIHRSG 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26	6214 6214 6214	0. 0. 0.	614. 0.	34. 628.	0. 0.	-543.	663.						റ റമ	98.0	0 41	277 2		05 0	1.45 1:
TIHRSG 26 TIHRSG 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26	6214 6214	0. 0.	Ο.	628.	0.				~~	25			0.90		2.41	3//.3	0	35.0	4 - TO 11
TIHROG 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26	6214	0.				71.			29.	20.	2.92	0.16	0.16	88.9	2.18	351.6	0	32.1	1.33 13
TIHROG 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26	6214		0.	686	_		69.		29.	29.	4.97	0.16	0.18	131.9	3.24	507.6	0	30.4	1.26 13
STIRL 26 STIRL 26 STIRL 26 STIRL 26 STIRL 26				000.	0.	96.	93.		29.	39.	5.07	0.16	0.22	149.5	3.67	540.1	0	31.5	1.31 12
STIRL 26 STIRL 26 STIRL 26 STIRL 26	6214	631.	0.	0.	-631.	71.	697.		29.	29.	1.74	0.16	0.18	38.4	0.94	147.3	-62	29.4	1.22 15
STIRL 26 STIRL 26 STIRL 26	6214	817.	o.	o.	-817.	148.	954.		29.	60.	2.09	0.16	0.26	50. 5	1.24	160.3	0	32.0	
STIRL 26 STIRL 26	6214	0.	631.	o.	0.	-560.	697.		29.	29.	1.74	0.16	0.18	38.4	0.94	147.4	-22	25.1	1.04 15
STIRL 26	6214	o.	€17.	ō.	o.	-669.	954.		29.	60.	2.09	0.16	0.26	50.6	1.24	160.5	0	26.3	1.09 14
	6214	o.	O.	631.	o.	71.	66.		29.	29.	3.38	0.16	0.18	64.1	1.57	245.6	13	21.3	
	6214	ŏ.	o.	1020.	o.	232.	214.		29.	94.	4.67	0.16	0.30	117.4	2.88	313.3	6	22.5	
HEGT85 26		0.	a.	724.	o.	71.	-27.		29.	29.	3.79	0.16	0.06	82.1	2.02	285.0	2	25.5	
HEGT85 26		0.	0.	4901	0.	1190.	-457.		29.	485.	18.23	0.16	0.13		11.97	322.3	ō	69.4	2.68 10
HEGT60 26		0.	0.	710.	0.	71.	-13.		29.		3.73	0.16	0.08	79.3	1.95	279.4	3	24.9	1,04 12
HEGT60 26		0.	0.	1840.	0.	391,	-73.		29.	159.	7.23	0.16	0.05	179.2	4.40	291.4	o o	34.0	
HEGTOO 26			0.	638.	0.	71.	-/3. -1.		29. 29.	29.	3.67	0.16	0.13	75.6	1.86	269.5	4	24.2	
		0.			0.	71. 158.			29. 29.	29. 64.		0.16	0.09	98.3	2.41	268.7	2	25.6	1.06 11
HEGTOO 26		<u>0.</u>	<u>o.</u>	990.			-2.		4		4.25				1.80		- 6	27.5	
FCMCCL 26		0.	0.	862.	0,	71.	-165,		29.	29.	4.02		-0,12	73.4	2.92	290.7 315.0	-	26.3	1.09 10
FCMCCL 26		0.	G.	1283.	0.	282.	113.		29.	115.	6.89	0.16	0.23	119.0			2		
FCSTCL 26		0.	o.	655.	0.	71.	-158.		29,	29.	3.92	0.16		71.2	1.75	284.1	o	27.0	
FCSTCL 26		<u>o.</u>	0.	1562.	<u>o.</u>	436.	357.		<u>29.</u>	178.	8.45	0.16	0.34	145.3	3.57	317.6	5	23.4	0.97 10
IGĢTST 26		٥.	٥.	890.	0.	71.	-193.		29.	29.	3.32		-0.16	68.4	1.68	262.1	ō	26.7	1.11 19
IGGTST 26		o.	0.	1456,	0.	304.	22,		29.	124.	3.87	0.16	0.18	115.4	2.83	270.4	5	24.0	
GTSØAR 26		0.	630.	ο.	Ο.	-559.	697.		29.	29.	1.49	0.16	0.18	31.4	0.77	120.7	-5	24.1	1.00 1
GTSOAR 26		0	920.	0.	0.	-728.	1101.		<u> 29.</u>	78.	1.76	0.16	0.29	40.0	0.98		-20	24.5	
GTACO8 26		0.	603.	0.	٥.	-532.	697.		29.	29.	1.44	0.16	0.21	29.5	0.72	116.8		23.0	
GTACO8 26	C214	0.	758,	0.	٥.	-611 <i>.</i>	951.		29.	60.	1.50	0.16	0.31	30.8	0.76	103.3		21.9	
GTAC12 26	9614	ο.	606.	ο.	Ο.	-535.	697.		29.	29.	1.46	0.16	0.21	30.2	0.74	119.3	993	23.2	0.96 16

PTLAJO 400 TOLA

7

DATE 06/07/79 1&SE-PEG-ADV-DES-ENGR

													· · · · · · · · · · · · · · · · · · ·						
					_					Ø014	DC# 150	r.c.b	010171	NACH	A 11/11	DG!		3107034	
1	55000						- COGEN**			0811		FESR	CAPITAL	NORM	\$/KW	RUI		NORM	WRIH
ECS	PROCS	DISTIL	RESTUL	CUAL	DISIIL	RESIDL	CUAL	REGD MW	POVER		/HEAT		COST *10**6	CU3 !	EQVL	(%)	CHRG	ENRG	
OTAC	12 26214	1 0.	840.	0.	0.	-656.	1075.	29.	<u>M₩</u> 75.	1.64	0.16	0.33	35.6	0.87	110.5		22.1	0.02	2 152
	16 2621		609.	0.	0.	-538.	697.	29. 29.	73. 29.	1.48	0.16	0.33	31.1		122.1	-	23.4		7 152
	16 26214		902.	0.	0.	-692.	1160.	29.	85.	1.75	0.16	0.34	39.8		117.0		22.6		1 147
11	16 26214		623.	o.	0.	-552.	697.	29.	29.	1.48	0.16	0.19	30.9		119.6		23.8	0.99	
J	16 2621		964.	0.	0.	-746.	1189.	29.	89.	1.73	0.16	0.32	38.2	0.94	106.7		23.8		3 145
15	26 2621		625.	o.	o.	-554.	697.	29.	29.	1.58	0.16	0.19	31.1	0.76	120.2	-5	24.0	1.00	160
H	26 2021		1276.	0.	0.	-926.	1632.	29.	143.	2.26	0.16	0.36	51.7	1.27	115.0	0	24.8	1.03	132
CC16	22 2621	1 0.	618.	0.	0.	-547.	697.	29.	29.	1.56	0.16	0.20	31.1	0.76	121.1	-2	23.8	0.99	161
CC16	22 26214	1 0.	1163.	0.	0.	-848.	1514.	29.	129.	2.23	0.16	0.36	52.3	1.29	125.6	4	24.1	1.00	134
CC12	22 26214	1 0.	616.	0.	0.	- 545.	697.	29.	29.	1.57	0.16	0.20	30,5		118.8	- 1	23.7		162
B	22 26214			ο.	0.	-840.	1510.	29.	128.	2.19	0.16	0.37	49.7		120.1	9	23.6		3 136
	22 26214		606.	0.	0.	-534.	697.	29.	29.	1.56	0.16	0.21	30.3	0.74	119.6		23.3		7 164
li .	22 2621			0.	0.	-725.	1297.	29.	102.	1.92	0.16	0.37	40.3	0,99	111.5		21.9		145
12	15 2621			0.	0.	-643.	697.	29.	29.	1.82	0.16	0.07	34.5	0.85	120.9		27.3		146
63	15 2621		30000.	o.		-21785.		29.	335¢.	50.80	0.16	0.17		20.30	93.2	.0			
·	10 2621		691.	<u>0.</u>	<u> </u>	-620.	697.	<u> 29.</u>	29.	1.63	0.16	0.10	30.3	0.75	109.0		26.0		3 152
lF .	10 2621			0.	0.	-2184.	3002.	29.	310.	5.18	0.16	0.22	97.2	2.39	103.6	- 10	50.9		2 117
11	15 26214		681.	0.	0. 0.	-610.	697.	29.	29.	1.64 3.48	0.16 0.16	0.11	29.9 59.4	0.74 1.46	108.7 96.1	- 13	25.6 36.7		6 154 2 120
	1S 26214 V3 26214		1850, 661.	0.	0.	-1404. -590.	1951. 697.	29. 29.	182. 29.	1.77	0.16	0.23	40.5	0.99	150.1	-	26.3		150
	/3 26214		1903.	0.	0.	-1395.	2157.	<u>29.</u>	207.	4.56	0.16	0.29	141.9	3.49	224.1	ő	43.2		116
	M 2621		609.	0.	o.	538.	697.	29.	29.	1.87	0.16	0.21	41.8	1.03	164.5	ŏ	24.9		156
	M 2621		910.		0.	-696.	1175.	29.	87.	2.81	0.16	0.34	74.7	1.83	218.0	ŏ	27.2		
1 1	3 2621		0.	Ö.	-678.	71.	697.	29.	29.	1.90	0.16	0.12	45.2	1.11	164.8	ō	32.1		150
!	13 25214		0.	0.	-2281.	592.	2440.	29.	241.	6.10	0.16	0.25	201.6	4.95	270.8	0	71.6	2.98	134
H	A3 26214		678.	o.	٥.	-607.	697.	29.	29.	1.90	0.16	0.12	45.2	1.11	164.8	0	27.4	1.14	146
DESO	43 26214	1 0.	2281.	0.	0.	-1689.	2440.	29.	241.	6.10	0.16	0.25	201.6	4.95	270.8	0	55.9	2.32	2 118
GTSO	ND 26214	1 614.	0.	0.	-614.	71.	697.	29.	29.	1.43	0.16	0.20	29.0	0.71	113.3	-21	27.5		
	D 26214		0.	0.	-847.	178.	1054.	29.	72.	1.55	0.16	0.31	32.0	0.79	98.9		28.2		159
GTRA	08 26214	4 626.	Ο,	0.	-626.	71.	697.	29.	29.	1.51	0.16	0.18	32.3	0.79	124.6		28.4		164
	08 2621 ₄		ο.	ο.	~1160.	. 298.	1455.	29.	121.	2.10	0.16	0.34	51.8	1.27	124.7	0	33.1		142
	12 2621		0.	0.	-623.	71.	697.	29.	29.	1.51	0.16	0.19	32.5	0.80	126.0		28.3		164
	2621		0.		—	290.	1429.	29.	118.	2.10	0.16	0.34	52.3	1.28	128.8	0	32.5		143
	16 2621		0.	0.	-621.	71.	697.	29.	29.	1.53	0.16	0.19	33.3	0.82	129.2		28.3		164
.1	16 20214		0.	0.	~1076.	270.	1363.	29.	110.	2.10	0.16	0.34	52.4	1.29	133.9	0	32.2		1 144
	08 2621/		<u> </u>	<u>0.</u>	-622.	71.	697.	29.	29.	1.48	0.16	0.19	31.3	0.77	121.2	-26	28.1		7 165 7 150
	08 26214		0. 0.	O. O.	-970. -622.	223. 71.	1206. 6 97.	29. 29.	91. 29.	1.84 1.50	0.16 0.16	0.32	42.7 31.8	1.05 0.78	118.7 123.3	_	30.7 28.2		7 165
	1 2 26214 12 26214		0. 0.	u. 0.	-1009.	239.	1260.	29. 29.	29. 98.	1.91	0.16	0.19	45.4	1.12	122.3	-20	31.2		148
1	16 2621		0.	ο.	-1009. -619.	239. 71.	697.	29. 29.	29.	1.51	0.16	0.33	43.4 32.5	0.80	126.2		28.1		7 164
	6 2621		0.	0.		245.	1280.	29.	100.	1.98	0.16	0.34	48.2	1.18	129.2	<u> </u>	31.2		147
1	08 2621		0.	0.	-649.	71.	697.	29.	29.	1.51	0.16	0.16	32.2	0.79	121.0	-	29.2		
	08 26214		0.	0.		355.	1646.	29.	145.	2.18	0. î ê	0.30	53.7	1.32	110.1	Ö	38.1		137
1	2621		o.	0.	-640.	71.	697.	29.	29.	1.50	0.16	0.17	32.2	0.79	122.1	-	28.9		162
1																			

DATE 06/07/75 !&SE-PEG-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

INGE 37

:c s	PROCS		GENERATION RESIDL CO	Y CAS	E** **!	U*10**6- COGEN - RESIDL	COGEN**	POWER REOD MW	COGEN POVER MW	СВИ	POVER /HEAT RATIO	FESR	CAPITAL COST *10**6	NORM COST	\$/KW EQVL	ROI		NORM V ENRG	IRTH
TRW16	26214 26214	638	. О.	Ο.		360. 71.	1664. 697.	29. 29.	147. 29.	2.18 1.52	0.16	0.17	54.0 32.7	0.80	112.8		28.9		162
	26214 26214			0.	-1297. -658.	333. 71.	1573. 697.	29. 29.	136. 29.	2.16 1.50	0.16 0.16	0.32	53. 5 31.4		117.2 116.8	-33	35.7 29.4	1.48	
TR312	26214 26214	635		О.		271. 71.	1366. 697.	29. 29.	110. 29.	1.90 1.49	0.16 0.16	0.26 0.17	43.6 31.3	0.77	100.9 119.6	0 -29	36.2 28.6	1.51 1.19	163
	26214 26214			- €. - • • • • • • • • • • • • • • • • • • •	-1177. -⁄636.	289. 71.	1427. 697.	29. 29.	118. 29.	1.97 1.50	0.16	0.3t 0.17	46.7 32.0		111.1	0 -31	33.7 28.7	1.40	
	26214 26214			ີ່ ບໍ່. ວ.	-1169. -667.	285. 71.	1412. 697.	29. 29.	116. 29.	2.00 4.23	0.16 0.16	0.31	47.9 38.6		114.4	0 144	33.9 33.3	1.41	
	26214 26214			0. ē.		627. 71.	2557. 697.	29. 29.	255 <i>.</i> 29.	28.29	0.16 0.16	0.28	153.7 39.8		205.5	0 196	86.5 32.0	3.59 1.33	
CMCDS	25214	1674	. O.	0.	-1674.	496.	2118.	29.	202.	21.30	0.16	0.36	133.2		235.2	0	64.5	2.68	148
			· · · · · · · · · · · · · · · · · · ·		····				 					·	·				
																	-		
	· · · · · · · · · · · · · · · · · · ·				-					······································	-				···- <u>-</u>				

SE PRINTING SYSTEM- PILSE-02

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.2
SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

DATE 06/07/79 1&SE-PEG-ADV-DES-ENGR

- Name: 2																					:		met 20	-	1		-	-	7		-		T		-		7	-	-	-	1		** 3	NOTES (1
NORM WRTH	i	.00 80	. 98	0.78 134	2 2	 	0,04 1,00	- ·	99.	- •	•	- •	-;•	1.21 132	- ,		- -	1.44 142	_ '	. 17	. 92	0.92 119	-		-	1,42 95		1.09 111	0	0.98 123	66.	0.93 116	1 66	0.91 114	- ,	1.09 137		0.97 149	.03	,	•	1.01 138	1.06 158	_	
1	CHIRG EF	16.4		ດ ເ		- c	ก		N		•	٠	-!	50 to 10			21.4	23.7		ო.	N			•	1	23.3		17.8	9		<u>ر</u>	oi (2	ص 0	17.6	17.9	•	16.0	თ	ú	•	16.6	17.4	17.4	
\$/KW ROI	\ \ '		o.	213.0 34	1	n a		ه د			<u>س</u>	æ,	9	ŅI	- (_	4	٠	ıo.	ın.	7.	ດ.	ဖ	322.3 0	2			1 28.3	- 1	379.8 5	0	383.0 6	0	318.7 7		0	ဖ	15.9 999	-		8	.7	б .	Ö	
NORM		. 00	. 63	1.30 21	500	3 6		D (.65		8	08.	.46	4.81	က က က		3	_ ,			.97	2.90 3	. 84	.77	.73		.54	90	. 42	3.46 3	.35	.17	.30	3.24	. 86	.25	. 79	_	. 81	. 16	. 84	1.32 1:	_	1	
CAPITAL	CØST *10**6	20.8	13.1	27.1	0.6	- ·	- 62.	18.5	34.3	32.6	51.7	79.2	72.2	100.3	69.69	89.6	21.6	34.4	21.6	34.4	41.0	60.5	59.3	245.2	56.9	110.3	53.0	60.5	50.4	72.2		87.0	. 1		œ.	26.1	Ġ.	20.3				7		26.7	
FESR		ö	0.21	2.2					41	0.29		•	• 1	0.33		٠	9	. 26	. 16	. 26	. 16	. 26	, 05	. 12	. 07	. 13	.08	Ξ	20	34		0.40	• 1		0.1%		•	0.31			9			0.32	
POWER	/HEAT	١.	0.55	0.22	•	2 6	•	•	• •	0.55	•	•	•	0.25	•	•		•	•		•1	0.25	•	•	•	•	•	0.55	۰۱	0.25	•	•	•								•		٠	0.22	
G&M		1.30	0.79	1.66	•	0.78	1.56	•	•	2.55	•		٠.	3.56	٠	3.12	1.18	1.34	1.18	1.34	2.32	2.64	2.73	9.43	2.67	4.33		2.57	•	3.96	•	•	•	٠	1.03	•	٠	06.0	1.00	1.01	1.01	1.11	1.02	1.09	
COGEN	POVER MW	0.	18	18.	9		<u>.</u>	<u>.</u>	20.	30.	50.	40.	20.	40	8	50.	20.	48.	50°.	48.	20.	48.	20.	244.	50	80.	80	35.	20.	58,	8	87.	20.	.09	89	62.	80.	47.	20.	59.	20.	67.	20	9	
POWER	REGID	20.	20.	20.	20.	50.	50.	50.	20.	8	20	20	20.	20.	50.	50.	20.	89	80	20.	20.	20.	20.	20.	20.	20,	20.	20.	20.	20.	80.	20.	20.	20.	8 9	20.	80.	20.	20.	20.	20.	20.	20.	80.	
COGEN**	CO:AL	0.	510.	76. F	ان	തെ	55. F	ι. Ω	81.	120.	525.	688.	82.	162.	522.	47.	525.	751.	525.	751.	45.	108.	G	-230. A	6	-37. A	-1. A	-1. A	65.	187.	69	301.	45.	134.	525.	966.	525.	749.	525.	847.	525.	913.	525	936.	
1 1	RES I DL	0	-389.	44	44.	-382.	35.	32.	49.	73.	-395.	-428.	49.	97.	-427.	48.	49.	117.	-431.	-527.	49.	117.	49.	599.	49.	197.	49.	80.	49.	142.	49.	213.	49.	148.	-430.	-573.	-412.	-481.	-414.	-516.	-416.	-545.	-426.	-587.	
IN BTU	DISTIL RESIDL	0	ö	o	0	o (ö	ö	0.	<u>.</u>	ó	o.	ö	0	0	ö	-480.	-643.	o.	0	ö	o.	0	o.	ö	0.	ö	0	0	0.	0	0	ö	ö	o.	ó	0	0.	0	o O	0	O	Ġ	ö	
COGENERATION CASE **NUCOGEN	כמער ם	525.	15.	449.	449.	57.	471.	471.	444.	485.	o.	ö	444.	525.	რ	479.	o.		ö	o.	480.	643.	544.	2597.	535.	1056.	526.	629.	461.	649.	456.	775.	481.	723.	o.	o.	0	0.	0	0	Ó	o	i c	; c	
NERAT!	SIDL	49	439.	ū.	3	431.	17.	17.	0.	c ·	444.	525.	0.	0.	476.	<u></u>	0.	0	480.	643,	ó	o.	0	Ö	0	o	0	0	ö	o.	ó	o.	ö	0.	479.	724.	461.	597.	463.	661.	465	710	475	759.	:
#*CO@E	DISTIL RESIDL	6	0	ö	0	o o	0	ö	o.	٥.	ö		0	0.	<u>.</u>	o.	480.	643.	ö	o	o	o.	0	Ö	Ö	o.	Ö	o.	ö	0.	ö	0	0	o.	o.	o.	0	0	o	ó	ċ	c	; c	j c	.
	PROCS D	26216	2621				2621		1 26216	ŀ	26216	. 25216	26216	1		3 26216	26216	26216	26216	26216	26216	26216		2621	2621	2621	2621	2621		١.				l.	2621	26216	2621	1			2621	2621	2621	2621	3
	ECS	NECENO	STM141	STM141	STM141	STMOBE	STM088	STMOSB	PFBSTM	PFBSTM	TISTMT	TISTMT	TISTMT	TISTMT	TIHRSG	TIHRSG	STIRL	STIRL	STIRL	STIRL	STIRL	STIRL	HEGT85	HEGT85	HEGTEO	HEGT60	HEGTOO	HEGTOO	FCMCCL	FCMCCL	FCSTCL	FCSTCL	IGGTST	IGGTST	GTSÖAR	GTSOAR	6TAC08	GTACOB	GTAC12	6TAC12	GTAC16	GTAC16	GTWC18		

DATE 06/07/79 1&SE-PEG-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERHATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

							- COGEN**			Ø8M	POWER	FESR	CAPITAL		\$/KW R		
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EOVL	CHRG	ENRG
						<u>-</u>		MW	MM		RATIO		*10**6			(%)	
CC1626	26216	0.	476.	0.	0.	-427.	525.	20.	20.	1.12	0.22	0.17	17.8	0.85	127.7 -		
CC1626	26216	0.	991.	Ο.	0.	-722.	1262.	20.	110.	1.50	0.22	0.35	35.7	1.71	123.0	0 18.	
CC1622	26216	0.	471.	. 0.	Ο.	-422.	525.	20.	20.	1.11	0.22	0.18	17.7	0.85	127.8 -		
CC1622	26216	0.	904.	0.	0.	-662.	1171.	20.	99.	1.46	0.22	0.36	<u>35.6</u>	1.71	134.4	0 17.	the second second second second second
CC1222	26216	0.	470.	٥.	0,	-421.	525.	20.	20.	1.10	0.22	0.18	17.2	0.82	124.7 -		
CC1222	26216	0.	896,	0.	0.	~655 .	1167.	20.	98.	1.43	0.22	0,36	33.7	1.62	128.3	0 17,	
CC0822	26216	0.	463.	٥.	ο.	-414.	525.	20.	20.	1.10	0.22	0.19	17.2	0.82	126.7 -		
CC0822	26216	0.	757.	0.	<u> </u>	-566.	1002.	20.	78.	1.26	0.22	0.37	27.9	1.34	126.0	<u>8 16.</u>	
STIGIS	26216	0.	538.	٥.	0.	-488.	525.	20.	20.	1.31	0.22	0.06	22.1	1.06	140.3	0 20.	
STIG15	26216	0.	23615.	٥.	0.	-17148.	22011.	20.	2637.	39.96	0.22	0.17		31,24	94.1		7 19,64 52
STIGIO	26216	0.	522.	0.	Ο.	-473.	525.	20.	20.	1.16	0.22	0.09	18.4	0.88	120.6 -		
STIGIO	26216	0.	2317.	0.	0.	-1719.	2363.	20.	244.	3.83	0.22	0.22	72.6	3.48	107.0	0 38.	
STIGIS	26216	0.	514.	0.	0.	-465.	525.	20.	20.	1.16	0.22	0.10	18.1	0.87		43 18.	4 .
STIGIS	26216	o.	1456.	0.	Ο.	-1105.	1536.	20.	143.	2.51	0.22	0.23	44.3	2.13	103.9	0 27.	
DEADV3	26216	0.	501.	Ο.	Ο.	-452,	525 .	20.	20.	1.24	0.22	0.13	24.3	1.17	165.9	0 19.	
DEADVS	26216	0.	1498.	0.	0.	-1098.	1698	20.	163.	3.32	0.22	0.29	106.9	5,13	243.5	0 32.	
DEHTPM	26216	0.	465.	0.	0.	-416.	525.	20.	20.	1.28	0.22	0.19	23.9	1.15	175.4	0 18.	
DEHTPM	26216	0 .	717.	Ο.	Ο.	-54 8 .	925.	20.	69.	1.92	0.22	0.34	53.4	2.56	254.4	0 20.	
DESCAC	26216	512.	٥.	0.	-512.	49.	525.	20.	20.	1.33	0.22	0.11	27.6	1.33	184.0	0 23.	
DESCIAC	26216	1796.	0.	0.	-1796.	466.	1921.	20.	190.	4.54	0.22	0.25	154.0	7.39	292.6	0 55.	
DESGAS	26216	0.	512.	Ο.	G.	-463.	525.	20.	20.	1.33	0.22	0.11	27.6	1.33	184.0	0 19.	
DESCAS	26216	0.	1796.	Ο.	٥.	-1330.	1921.	20.	190.	4.54	0.22	0.25	154.0	7.39	232.6	0 42.	
GTSGAD	26216	468.	٥.	Ο.	-468.	. 49.	525.	20.	20.	0.98	0.22	0.18	16.1	0.77	117.3 -		
GTSGAL	26216	667 <i>.</i>	0.	0.	-667.	140.	830.	20.	57.	0.94	0.22	0.31	21.3	1.02	109.0 9		
GTRAGE	26216	477.	0.	0.	-477.	49.	525 <i>.</i>	20.	20.	1.04	0.22	0.17	18.6	0.89	133.3 -		
GTRAD8	26216	913.	0.	٥.	-913.	234.	1145.	20.	96.	1.41	0.22	0.34	38.1	1.83	142.2	0 25.	
	26216		Ο.	ο.	-474.	49.	525.	20.	20.	1.04	0.22	0.17	18.7	0.90	134.9 -		
	26216		0.	0.	-887.	228.	1125.	20.	93.	1.36	0.22	0.34	36.2	1.74	139.5	0 24.	
	26216		0.	0.	-473.	49.	525.	20.	20.	1.06	0.22	0.18	19.3	0.93	139.4 1		
	20216		0.	ο.	-847.	213.	1073,	20.	87.	1.35	0.22	0.34	36.4	1.75	146.5	0 24.	
	26216		0.	ο.	-474.	49.	525.	20.	20.	1.02	0.22	0.18	17.8	0.86	128.5 -		
	26216		0.	<u>0.</u>	<u>-764.</u>	<u> 176.</u>	949.	20.	72.	1.13	0.22	0.32	28.3	1.36	126.6	0 22. 72 20.	
-	26216		0.	0.	-474.	49.	52 5 .	20.	20.	1.03	0.22	0.17	18.2	0.88	131.3 -	0 23.	
• • • • • • •	26216		0.	0.	-794.	188.	992.	20.	77.	1.20	0.22	0.33	30.6	1.47 0.90	135.2 -		
	26210		0.	0.	-472.	49.	525.	20,	20.	1.04	0.22	0.18	18.7	1.57	140.3	02 20. 0 23.	
	26210		<u>o,</u>	0.	-797.	<u> 193.</u>	1008.	20.	<u>79.</u>	1.25	0.22	0.34	32.8	0.89		92 21.	
_	26216		0.	0.	-492.	49.	525.	20.	20.	1.05	0.22	0.14	18.6	1.82	116.8	0 28.	
	26216		0.	0.		279.	1296.	20.	114.	1.43	0.22	0.30	37.9	0.89	130.5 -		
	26216		0,	0,	-486.	49.	525.	20.	20.	1.04	0.22	0.15	18.6	1.83	120.2	0 27.	
	26216		<u>0.</u>	<u> </u>		283.	<u> 1310.</u>	20.	116.	1.44	0.22	0.32	38.1	0.91	134.0 1		and the same of th
	26216		0.	0.	-485.	49.	525.	20.	20.	1.05	0.22	0.16	19.0	1.81	125.9	0 26.	
_	26210		0.	0.	-1021.	262.	1239.	20.	107.	1.41	0.22	0.32	37.7	0.86	122.9 -		and the second s
	26215		0.	0.	-498.	49.	525.	20.	20.	1.03	0.22	0.13	17.9 31.2	1.50	111.2	0 27.	
GTR308	26216	957.	0.	0.	-957.	213.	1075.	20.	<u>87.</u>	1.24	0.22	0.26	31.2	1.50	*****	<u> </u>	- 1.0 7.13

ORIGI: AL PAGE DE PORTUTY

, AGE

DATE 06/07/75 1&SE-PEO-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

------FUEL USE IN BTU*10**6-----**COGENERATION CASE** **NOCOGEN - COGEN** POWER COGEN POWER FESR CAPITAL NORM \$/KW ROI LEVL NORM WRTH MBO ECS PROCS DISTIL RESIDL COAL DISTIL RESIDL COAL REQD POWER COST COST EQVL CHRG ENRG /HEAT MW RATIO *10**6 MW GTR312 26216 483. -483. 525. 1.03 21.0 O. 0. 49. 20. 20. 0.22 0.16 18.0 0.86 126.9 -70 1.28 161 GTR312 26216 926. Ο. -926. 228. 1123. 1.53 117.6 25.2 1.53 136 0 20. 93. 1.25 0.22 0.31 31.9 0 GTR316 26216 483. -483. 49. 525. 21.1 1.28 160 Ο. 0. 20. 20. 1.04 0.22 0.16 18.4 0.89 130.2 -82 GTR316 26216 920. Ο. -920. 224. 1112. 20. 1.28 0.22 0.31 32.9 1.58 122.1 25.4 1.54 136 91. -505. FCPADS 26216 0. O. 49. 525. 2.90 0.12 23.0 155.6 24.2 1.48 155 505. 20. 20. 0.22 1.10 0 FCPADS 26216 1806. O. 0. -1806. 493. 2012. 20. 201. 21.96 0.22 0.28 116.5 5.59 220.1 0 66.8 4.96 163 FCMCDS 26216 Ο. 525. 481. 0. -481. 49. 2.77 0.22 1.14 168.6 20. 20. 0.16 23.8 0 23:3 1.12 158 FCMCDS 26216 1667. 1318. 0. -1318. 390. 16.44 0.22 0.36 258.8 20. 159. 99.9 4.79 49.4 3.60 150

rAGE 41

cs	PROCS DE	**@0G	ENERATI	ON CASI			COGEN**	POWER REQD	POWER	osm	POWER /HEAT	FESR	CAPITAL	NORM COST	S/KW EQVL		LEVL CHRG	NORM ENRG	WRT
Neicen	26217		77.	472.				MW	MW	~ ~~	RATIO		*10**6		005 0	<u>(%)</u>			
	26217	Ø.,	307.	472. 176.	0.	0. -221	D. F		0.	0.97		0.	14.8	1.00	235.3	0	16.5		
					0.	-231.	296.	31.	10.	0.62	0.58	0.12	9.2	0.62	123.5	-2	16.3		
	26217	0.	53.	431.	0.	24.	41. F		10.	1.22	0.58	0.12	18.6	1.25	249.3	30	14.7		
	26217	<u>0.</u>	<u>53.</u>	431.	<u>0.</u>	24.	<u>41. A</u>		10.	1.09	0.58	0.12	13.9	0.94	186.8		14.1	0.85	
	26217	0.	303.	200.	0.	-226.	272.	31.	7.	0.59	0.58	0.08	8.2	0.55	114.8	-8	16.8		
	26217	0.	60.	443.	0.	17.	29, F		7.	1.16	0.58	0.08	17.1	1.15	240.8	34	15.2		
	26217	0.	60.	443.	0.	17.	29. A		7.	1.05	0.58	0.08	13.1	0.88	184.5	999	14.7	0.89	9 110
	26217	<u>o.</u>	36.	405.	<u> </u>	41.	67.	<u> </u>	17.	1.73	0.58	0.20	22.9	1.54	274.1	22	14.0	0.85	12
	26217	٥.	330.	72.	ο.	-253.	400.	31.	23.	1.76	0.58	0.27	53.1	3.58	588.3	0	19.8	1.20	132
	26217	Ο.	22.	380.	О.	55 .	92.	31.	23.	2.50	0.58	0.27	67.5	4.55	747.4	2	18.1	1.10	120
	26217	Ο.	331.	161.	Ο.	-255.	311.	31.	12.	1.48	0.58	0,10	47.5	3.20	571.6	0	21.5	1.30	110
	26217	0.	48.	444.	0,	29.	28.	31.	12.	2.19	0.58	3.10	61.0	4.11	734.5	0	20.2	1.22	10
TIRL		384.	7.	24.	-384.	69.	448.	31.	28.	0.92	0.58	0.24	20.9	1.41	186.1	0	18.5	1.12	14
TIRL	26217	Ο.	391.	24.	Ο.	-314.	448.	31.	28.	0.92	0.58	0.24	21.0	1.41	186.4	13	15.8	0.96	
TIRL	26217	Ο.	7.	408.	Ο.	69.	64.	31.	28.	1.75	0.58	0.24	36.2	2.44	322.2	15	13.3	0.81	12
EGT85	26217	0.	0.	502.	<u> </u>	77.	29. A	31.	31.	2.92	0.58	0.09	68.5	4.62	466.0	0	19.2		
IEGT85	26217	0.	jo.	1548.	0.	357.	-137. A	31.	146.	6.38	0.58	0.12	169.9	11.44	374.5	ō	30.0	1.82	-
IEGT60	26217	Ο.	o.	487.	Ο.	77.	-14. A		31.	2.75	0.58	0.11	63.5	4.28	445.3	1 .	18.2		
IEGT60	26217	٥.	Ο.	630.	Ο.	117.	-22. A		48.	2.97	0.58	0.13	76.6	5.16	415.0	ò	19.2		
IEGTOO	26217	0.	29.	473.	0.	47.	-1. A		19.	1.78	0.58	0.09	41.9	2.83	382.0	4	16.8	1.02	
CMCCL	26217	0.	0.	371.	0.	77.	101.	31.	31.	2.77	0.58	0.32	49.4	3.33	454.8	8	14.8	0.90	-
CMCCL	26217	٥.	ο.	387.	ο.	84.	111.	31.	34.	2.65	0.58	0.34	49.7	3.35	438.6	9	14.4	0.87	
	26217	o.	0,	365.	Ö.	77.	108.	31.	31.	2.85	0.58	0.34	50.0	3.37	467.9	8	14.9	0.90	
	26217	Ĉ.	٥.	455.	o.	123.	173.	31.	50.	3.20	0.58	0.39	59.0	3.98	442.6	ğ	14.1	0.86	
	26217	Ō.	0.	404.	O.	77.	68.	31.	31.	2.06	0.58	0.26	46.9	3.16	395.7	<u> </u>	14.4	0.87	Contract of
	26217	Ö.	Õ.	424.	Ö.	85.	75.	31.	35.	1.85	0.58	0.27	46.9	3.16	377.1	10	13.9	0.84	
	26217	Õ.	400.	0.	o.	-323.	472.	31.	31.	0.92	0.58	0.27	17.5	1.18	149.4	40	15.0	0.91	
	26217	Ö.	432.	o.	o.	-342.	516.	31.	37.	0.79		0.29	17.8		141.1	39	14.8	0.90	
	26217	0.	363.	26.	ŏ.	-287.	446.	31.	28.	0.67	0.58	0.29	13.8	0.93	132.4		14.0	0.85	
	26217	· 0.	374.	0.	ŏ.	-297.	472.	31.	31.	0.87	0.58	0.32	16.1	1.09	147.1		14.0	0.85	
	26217	o.	394.	o.	o.	-308.	505.	31.	35.	0.74	0.58	0.33	16.2	1.09	140.2		13.7	0.83	
	26217	o.	378.	o.	0.	-301.	472.	31.	31.	0.93	0.58	0.31	17.4	1.17	156.9	56	14.3	0.87	
	26217	0.	423.	0.	<u> 0.</u>	-325.	544.	31.	40.	0.81	0.58	0.34	18.5	1.24	148.9	45	14.0	0.85	
	26217	0. 0.	393.	0.	0.	-325. -316.	472.	31.	31.	0.93	0.58	0.28	17.2	1.16	149.7	49	14.8	0.89	
	26217	0.	452.	o.	0.	-350.	558.	31.	42.	0.81	0.58	0.32	18.4	1.24	138.6	49 38	14.5	0.88	
	26217	0.	396.	0.	0.	-330. -319.	472.	31.	31.				18.1		-				
	26217	0.	582.	0.	0.	-319. -426.	737.	31.	64.	1.10	0.58	0.28		1.22	156.5	27	15.2	0.92	
	26217									1.12	0.58	0.35	24.1	1.63	141.5	14	15.2	0.92	
		٥.	388.	0.	0.	-311. -200	472.	31.	31.	1.08	0.58	0.29	18.1	1.22	159.4	31	14.9	0.90	
	26217	0.	531.	0.	0,	-390.	684.	31.	57 .	1.07	0.58	0.35	23.4	1.58	150.5	17	14.8	0.90	- , .
	26217	<u> </u>	<u> 386.</u>	<u> </u>	0.	<u>-310.</u>	472.	<u>31.</u>	31.	1.07	0.58	<u>€.30</u>		.1.17	153.9	39	14.8	0.89	
	26217	0.	526.	0.	0.	-387.	682.	31.	57.	1.05	0.58	0.36	22.2	1.49	143.9	20	14.6	0.88	
	26217	o.	375.	0.	0.	-298.	472.	31.	31.	1.04	0.58	0.32	16.9	1.14	154.3	56	14.3	0.87	
C0822	26217	Ο.	444.	Ο.	Ο.	-334.	585.	31.	45.	0.94	0.58	0.36	18.7	1.26	143.7	40	13.9	0.84	15

DATE 06/07/75 18SE-PEG-ADV-DES-ENGR

							- COSEN**		COGEN	MBO	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRT
ECS	PROCS	DISTIL				RESIDL		REGD	POWER		/HEAT		COST *10**6	COST	EQVL	(女)	CHRG .		
	26217		491.	0.	0.	-415.	472.	31.	31.	1.32	0.58	0.11	18.8	1.26	130.3	0		1.11	14
	26217			0.	0.	-10222.	13121.	31.	1572.	24.36	0.58	0.17		26.68	96.0	ŏ	197.5		
STISTO	26217	o.	466.	٥.	0.	-390.	472.	31.	31.	1.19	0.58	0.15	17.7	1.19	129.3	ō		1.05	
	26217		1381.	0.	0.	-1025.	1409.	31.	145.	2.46	0.58	0.22	44.5	3.00	109,9	Ö		1,65	
	26217		455.	٥.	٥.	-378.	472.	31.	31.	1.18	0.58	0.17	17,1		128.3	Ō	16.9	CONTRACTOR CONTRACTOR	
	26217		868.	ο.	0.	-659.	915.	31.	85.	1.64	0.58	0.23	27.0		106.3	ō	20.6		
	26217		434,	0,	0.	-357.	472.	31.	31.	1.28	0.58	0.21	26.7	1.80	209.8	ō	17.3	+ + + + + + + + + + + + + + + + + + + +	
	26217		893.	0.	0.	-65 5 .	1012.	31.	97.	2.16	0.58	0.29	64.6		247.0	ō	23.5		
	26217		377.	0.	0.	-300.	472.	31.	31.	1.31	0.58	0.31	27.4	1.85	248.1	10	15.7		
	26217		427.	٥.	٥.	-327.	551.	31.	41.	1.29	0.58	0.34	32.4		258.8	8	15.9	0.96	
	26217		0,	٥.	-452.	77.	472.	31.	31.	1.42	0.58	0.18	31.8		240.5	Ō	21.7		
	26217		0.	0.	-1070.	278.	1145.	31.	113.	2.90	0.58	0.25	92.8	6.25	296.0	0	36.9	2.23	
	26217		452.	٥.	٥.	-375.	472.	31.	31.	1.42	0.58	0.18	31.8	2.14	240.5	0	18.6	The state of the state of the state of	an again.
	26217		1070.	Ο.	٥,	-793.	1145.	31.	113.	2.90	0.58	0.25	92.8	6.25	296.0	0	29.5	1.79	
	26217		0.	0.	-383.	77.	472.	31.	31.	0.82	0.58	0.30	14.7	0.99	130.6	-24	16.7	1.01	
	26217		0.	0.	-397.	83.	494.	31,	34.	0.70	0.58	0.31	14.4	0.97	124.1	-10	16.6	1.00	
	26217		0.	0.	-396.	77.	472.	31.	31.	1.00	0.58	0.28	19.1	1.28	164.3	0	17.9	1.08	-
	26217	-	٥.	0.	-544.	140.	683.	31.	57.	0.98	0.58	0.34	24.3	1.64	152.5	0	19.0	1.15	
	26217		. 0.	ο.	-392.	77.	472.	31.	31.	1.01	0.58	0.29	19.3	1.30	168.1	0	17.7	1.07	
	26217		0.	0.	-529.	136.	671.	31.	5 5.	0.99	0.58	0.34	24.5	1.65	158.2	0	18.7		
	26217		0.	0.	-391.	77.	472.	31.	31.	1.02	0.58	0.23	20.1	1.35	175.2	0	17.8	1.08	15
	26217		٥.	0.	-505.	127.	639.	31.	52,	0.98	0.58	0.34	24.6	1.66	166.4	0	18.6	1.12	: 15
	26217		0.	0.	-391.	77.	472.	31.	31.	0.95	0.58	0.29	17.7	1.19	154.1	0	17.5	1.06	16
	26217		<u>o.</u>	0.	-455.	105.	566.	31.	43	0.83	0.58	0.32	19.2		144.1	0	17.7	1.07	15
	26217	392.	o.	0.	-392.	77.	472.	31.	31.	0.97	0.58	0.29	18.3	1.24	159.8	0	17.6	1.06	16
	26217		٥.	0.	-473.	112.	591.	31.	46,	88.0	0.58	0.33	20.8	1.40	149.7	0	18.0	1.09	15
	26217		0.	0.	-389.	-	472,	31.	31.	0.99	0.58	0.29	19.1	1.29	167.6	0	17.6	1.06	16
	26217		<u> .</u>	0.	<u>-475.</u>	115.	601.	31.	47.	0.91	0.58	0.34	22.1		158.8	0	18.0	1.09	15
	26217	420.	0.	o.	-420.	77.	472,	31.	31.	1.02	0.58	0.23	19.0		154.4	0	18.8	1.14	15
	26217		٥.	0.	-660.	166.	773.	31.	68.	1.06	0.58	0.30	26.2		135.4	0	21.4	1.30	14
	26217		0.	0.	-411.	77.	472.	31.	31.	1.01	0.58	0.25	19.0		157.8	0	18.4	1.11	
	26217		<u>0.</u>	0.	<u>-646.</u>	169.	781.	31.	69.	1.06	0.58	0.32	26.3		139.3	0	20.7	1,26	14!
	26217		0.	0.	-409.	77.	472.	31.	31.	1.02		0.26	19.5		163.1	0	18.4	1.11	15
	26217		0.	ο.	-609.	156.	738.	31.	64.	1.04		0.32	26.1		146.1	0	20.3	1.23	14
	26217		0.	0.	-430.	77.	472.	31.	31.	0.98		0.22	18.0		142.9	0	19.0	1.15	
	26217	570.	0.	<u>o.</u>	<u>-570.</u>	127.	641.	31.	<u>52.</u>	0.92		0.26	21.4		128.0	0	20.6	1.24	
	26217		0.	o.	-406.	77.	472.	31.	31.	0.98		0.26	18.0		151.3	0	18.1	1.09	16
	26217		0.	0.	-552.	136,	670.	31.	55.	0.93		0.31	22.0		135.9	0	19.3	1.17	
	26217		0.	0.	-407,	77.	472.	31.	31.	0.99		0.26	18.6		156.4	0		1.10	
	26217	548.	0.	<u>0.</u>	-548,	134.	663.	31.	54.	0.95		0.31	22.7		141.4	0	19.4	1.17	
	26217		0.	€.	-440.	77.	472.	31.	31.	3.95		0.20	24.9		192.9	0	23.1	1.40	15
	26217		0.	o.	-1076.	294.	1200.	31.	120.	13.18		0.28	70.3		223.0	0	43.7	2.65	14
	26217		0.	٥.	-403.	77.	472.	31.	31.	3.74		0.27	25.8		218.4	0		1.31	
CMCDS	26217	785.	٥.	٥.	-785.	233.	994.	31.	95.	9.88	0.58	0.36	60.4	4.07	262.5	0	33.4	2.02	3:

DATE 06/07/79 1&SE-PEO-ADV-DES-FNGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

					SE IN BTU SE** **NO					COGEN	MBO	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRTH
ECS	PROCS	DISTIL				RESIDL	COAL	•	REQD MW	POWER		/HEAT		COST *10**6	COST		(%)	CHRG	ENRO	
NOCGN	26218	0.	37	. 410.	C.	0.	0.	F	15.	0.	1.14	0.21	0.	17.9	1.03	213.0	0	13.0	1.00	80
	26218		345	. 11.	0.	-308.	400.		15.	14.	0.71	0.21	0.20	11.2	0.62	111.5	-2	12.8	0.98	157
TM141	26218	0.	3	. 353.	ο.	34.	58.	F	15.	14.	1.44	0.21	0.20	22.9	1.28	228.4	32	10.4	0.80	134
<u> TM141</u>	26218	0.	3	<u>. 353.</u>	0.	34.	58.	Α	15.	14.	1.29	0.21	0.20	16.8	0.94	167.4	999	9.6	0.74	140
	26218		339			-302.	367.		15.	10.	0.67	0.21	0.15	10,0	0.56	104.4	-9	13.4	1.03	152
	26218		. 13	. 369.	C.	24.	41.	F	15.	10.	1.36	0.21	0.15	21.1	1.18	221.1	35	11.1	0.85	120
	26218		. 13	. 369.	ο.	24.	41.	A	15.	10.	1.25	0.21	0.15	15.8	0.88	165.8	999	10.4	0,80	134
	26218				0.	<u>37.</u>	<u>61.</u>		15.	15	2.21	0.21	0.22	29.3	1.63	285,8	13	11.6	0.89	14:
	1 26218		-			56.	92.		15.	23.	2.12	0.21	0.28	27.8	1.55	248.4	20	10.4	0.80	137
	26218		349			-312.	410.		15.	15.	1.69	0.21	0.22	42.6	2.38	416.7	0	17.0	1.30	146
	26218		414			-339.	540.		15.	31.	2.13	0.21	0.33	66.2	3.70	546.1	0	18.9	1.45	140
<u> ISTM1</u>	26218	0.	0	<u>. 349.</u>	0.	37.	61.		15.	15.	2.67	0.21	0.22	59.9	3.34	585.5	0	15.3	1.18	136
	26218		_			75.	126.		15.	31.	3.04	0.21	0.33	84.0	4.69	692.8	0	16.4	1.26	132
	26218					-338.	410.		15.	15.	1.88	0.2î	0.16	57.9	3.23	527.6	0	19.4	1,49	
	26218					-340.	415.		15.	16.	1.80	0.21	0.17	58,8	3.28	531.4	0	19.4	1.49	
	26218				0.	<u>37.</u>	36.		<u> 15.</u>	15.	2.83	0.21	0.16	75.3	4.20	686.4	o	17.6	1.35	132
	26218		_			38.	37.		15.	16.	2.66	0.21	0.17	75.5	4.21	681.9	0	17.4	1.34	
TIRL	26218		-			37.	410.		15.	15.	1.02	0,21	0.16	17.2	0.96	156.1	159 .	16.9	1.30	150
TIRL	26218					93.	597.		15.	38.	1.13	0.21	0.26	27.6	1.54	183.9	0	18.8	1.44	142
TIRL	26218					-339.	<u>410.</u>		15.	15.	1.02	0.21	0.16	17.2	0.96	156.2	-61	14.3	1.10	153
TIRL	26218		511			-419.	597,		15.	38.	1.13	0.21	0.26	27.6	1.54	184.1	0	15.3	1.17	
TIRL	26218			. 376.		37.	34.		15.	15.	2.00	0.21	0.16	33.8	1.89	307.0	8	12.2	0.94	
STIRL	262:8		0		٥.	93.	86,		15.	38.	2.21	0.21	0.26	48.9	2.73	326.5	7	12.0	0.92	115
	26218			424.	0.	37.	<u>-14.</u>		<u> 15.</u>	15.	2.32	0.21	0.05	49.2	2.75	395.8	0		1.16	
	26218		0			476.	-183.		15.	194.	7.92	0.21	0.12		1.62	344.5	0	32.3	2.48	98
	26218		-			37.	-7.		15.	. 15.	2.27	0.21	0.07		2.64	387.3	0	14.8	1.14	
	26218		-	-		156.	-29.	A	15.	64.	3.66	0.21	0.13	93. 8	5,23	381.3	0	19.2	1.48	
	26218		. 0.		0.	37.	<u>-1.</u>	<u>A</u>	15.	15.	2.18	0.21	0.08	44.2	2.46	367.0	0_	14.2	1.09	123
	26218		0			63.	-1.	Α	15.	26.	2.18	0.21	0.11	51.4	2.87	351.1	0	14.5	1.11	111
	. 26218		_			37.	49.		15.	15.	2.37	0.21	0.19	42.1	2.35	396.9	3	13.4	1.03	
	. 26218		_			113.	149.		15.	46.	3.31	0.21	0.34	6ĩ.1	3.41	404.7	4	13.2	1.02	
	26218				0.	37.	52.		15.	15.	2.37	0.21	0.20	41.0	2.29	390.6	4	13.3	1.02	
	. 26218		-			167.	235,		15.	68.	4.01	0.21	0.40	73.1	4.08	408.3	5	12.7	0.97	. ,
	26218					37.	33.		15.	15.	2.11	0.21	0.16		2.26	365.7	4	13.3	1.02	
	26218		-			115.	104.		15.	47.	2.17	0.21	0,28	57.3	3.20	343.3	6	12.4	0.95	
	26218					-339.	410.		15.	15.	0.91	0.21	0.16	15.1	0.84	137.0		14.0	1.07	
	26218					-455.	689.		15.	49.	0.94	0.21	0.29	22.0	1.23	130.7	0	14.3	1.10	
	26218					-325.	410.		15.	15.	0.87	0.21	0.19	13.9	0.77	130.6		13.4	1.03	
	26218					-382.	595.		15.	38.	0.79	0.21	0.31	17.1	0.95	122.9		12.7	0.98	
	26218		363		0.	-326.	410.		15.	15.	0.88	0.21	0.19		0.79	132.7		13.5	1.03	Name of Contract o
	26218					-410.	673.		15.	47.	0.88	0.21	0.33	20.2	1.13	131.2	11	12.9	0.99	
	26218					-328.	410.		15.	15.	0.89	0.21	0.18	14.6	0.81	136.4		13.6	1.04	
TANIC	26218	0.	564	ο.	0.	-433.	726.		15.	53.	0.96	0.21	0.34	23.1	1.29	139.6	1	13.2	1.01	127

Miles Light

0 40 - 148 > 420 H

DATE 96/07/75 1&SE-PEC-ADV-DES-ENGR

						-												
							- COGEN**			M80		FESR	CAPITAL		\$/KW ROI	LEVL	NORM W	RIF
ecs	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REOD	POWER		/HEAT		COST	COST	EGVL	CHRG	ENRG	
								MW	MW		RATIO		*10**6	~ ~~	(%) 135.6 -19			15
	6 26218		372.				410.	15.	15.	0.90	0.21	0.17	14.8	0.83		13.8 13.9		-
	6 26218		603.		0.	-466.	744.	15.	56.	0,96	0.21		22.6	1.26 0.83		14.0		-
	6 26218		373.		0.	-337.	410.	15.	15.	1.00	C. 21 0. 21	0.16	14.9 29.9	1.67	136.2 -24 130.8 0	14.7		
	6 26218		781,	<u> </u>	0.	<u>-570.</u>	992.	15.	<u>86.</u>	1.31					135.4 -20	13.9		
	2 26218		370.		0.		410.	15.	15.	0.99	0.21	0.17	14.7	0.82 1.64				
	2 26216		712.		0.		921.	15.	77.	1.27	0.21	0.36	29.5			14.2		
	2 26218		369.			-332.	410.	15.	15.	0.98	0.21	0.17	14.3	0.80	132.2 -18	13,8		
	2 26218		706,	<u>0.</u>	<u>o.</u>	-518.	918.	<u> 15.</u>	77.	1.25	0.21	0.36	27.9	1.56	134.9 0	13.9		-
	2 26218		363.				410.	15.	15.	0.98	0.21	0.19	14.4	0.80	134.9 -16	13.6		
	2 26218		597.				787.	15.	61.	1.10	0.21	0.36	23.3	1.30	133.5 6	13.0		
	5 26218		419.		- •	-383.	410.	15.	15,	1.04	0.21	0.06	14.9	0.83	121.2 -41	15.4		
	5 26216		18769.	0.		<u>-13629.</u>	17494.	<u> 15.</u>	2096.	32.03	0.21	0.17		29.06	94.7 0		19.73	
	0 2621		407.				410.	15.	15.	0.98	0.21	0.09	14.3	0.80	120.0 -31	14.9		
	0 26218		1842.		0.		1878.	15.	194.	3.07	0.21	0.22	55.3	3.09	102.5 0	30,5		
	S 26218		402.	-		-365.	410.	15.	15.	0.98	0.21	0.10	14.1	0.79	119.7 -27	14.8		
	S 2621		1157.		0.	-879.	1221.	15.	114.	2.12	0.21	0.23	37.3	2.08	109.9 0	22.3		
	3 26218		392.				410.	15.	15.	1.11	0.21	0.12	21.1	1.18	184.1 0	15.3		-
DEADV	3 26218	8 Ö.	1190.	ο.	0.		1350.	15.	129.	2.74	0.21	0.29	85.5	4.77	245.0 0	25.9		
DEHTP	M 26218	в о.	365.	G.	٥.	-328.	410.	15.	15.	1.10	0.21	0.18	19.0	1.06	177.9 0	14.2		
DEHTP	M 26218	в о.	569.	0.	0.	<u>-436.</u>	735.	<u> 15.</u>	<u>55.</u>	1.61	0.21	0.34	42.8	2.39	256.7 0	15.9		****
DESCA	3 26218	B 400.	0.	0.		37.	410.	. 15.	15.	1.11	0.21	0.10	20.9	1.16	177.9 0	18.3		
DESCA	3 26216	B 1427.	0.	0.	-1427.		1527.	15.	151.	3.71	0.21	0.25	123.0	6.86	294.1 0	43.8		
DESON	3 26218	з о.	400.	. o.	0.		410.	15.	15.	1.11	0.21	0,10	20.9	1.16	177.9 0	15.5		
DESCA	3 26216	<u>o.</u>	1427.	0.	0.		1527.	15.	151.	3.71	0.21	0.25	123.0	6.86	294.1 0	33.9		
GTSØA	D 26218	367.	0.	0.	-367.	37.	410.	15.	15.	0.87	0.21	0.18	13.5	0.75	125.1 -37	16.0		_
GTSOA	D 26210	3 530.	0.	0.	-530.	111.	659.	15.	45.	0.82	0.21	0.31	17.9	1.00	115.4 999	16.7		-
GTRAO	8 26218	374.	0,	ο.	-374.	37.	410.	15.	15.	0.92	0.21	0.16	15.5	0.87	142.0 -66	16.6		
GTRAO	8 26218	3 726.	0.	0.	-726.	186.	910.	15.		1.22	0.21	0.34	32.2	1.79	151.3 0	20.0		
GTRA1	2 26218	372.	0.	0.	-372.	37.	410.	15.	15.	0.92	0.21	0.17	15.6	0.87	143.3 -66	16.5		
GTRA1	2 26218	3 705.	0.	0.	-705.	181.	894,	15.	74.	1.17	0.21	0.34	30.4	1.70	147.4 0	19.4		
GTRA1	6 26218	371.	0.	0.	-371.	37.	410.	15.	15.	0.93	0.21	0.17	16.1	0.90	148.0 -79	16.5	1.27	16
GTRA1	6 26218	673.	0.	0.	-673.	169.	853.	15.	69.	1.17	0.21	0.34	30.6	1.71	155.0 0	19.2		
GTR20	8 26218	3 371.	0.	0.	-371,	37.	410.	15.	15.	0.90	0.21	0.17	14.9	0.83	136.8 -53	16.4	1.26	16
GTR20	8 26216	607.	0.	0.	-607.	140.	754.	15.	57.	0.99	0.21	0,32	23.8	1.33	134.0 0	18.1	1.39	14
GTR21	2 26218	3 372.	ο.	0.	-372.	37.	410.	15.	15.	0.91	0.21	0.17	15.2	0.85	139.8 -59	16.4	1.26	16
	2 26218		0.	_0.	-631.	150.	788.	15.	61.	1.04	0.21	0.33	25.7	1.44	139.2 0	18.5	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM	14
	6 2621		0.	0.	-370.	37.	410.	15.	15.	0.92	0.21	0.17	15.6	0.87	143.4 -64	16.4	1.26	16
	6 2621		0.	ο.	-634.	153,	801.	15.	63.	1.09	0.21	0.34	27.5	1.53	148.1 0	18.5	1.42	13
	8 26216		ο.	0.	-385.	37.	410.	15.	15.	0.92	0.21	0.14	15.6	0.87	138.2 -75	17.0	1.31	15
	8 26216		o.		-880.	222.	1030.	15.	90.	1.25	0.21	0.30	32.1	1.79	124.7 0	23.0	1.76	13
	2 26218		Ō.				410.	15.	15.	0.92	0.21	0.15	15.6	0.87	139.7 -72	16.8	1,29	16
	2 26216		o.		-861.	225.	1041.	15.	92.	1.25	0.21	0.32	32.3	1.80	128.2 0	22.0	1.69	13
	6 26218		õ.		-380.	37.	410.	15.	15.	0.93	0.21	0.15	16.0	0.89	143.4 -81	16.8	1.29	15
	6 26210		o.			208.	984.	15.	85.	1.23	0.21	0.32	32.0	1.78	134.4 0	21.5	1.65	13
<u></u>		<u> </u>	<u></u>															

FAGE 45

DATE 06/07/79 1&SE-PEC-ADV-DES-ENGR

GENERAL ELEUTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

ECS	PROCS	DISTIL				RESIDL	COGEN**	REQD	POWER	M&D	POWER /HEAT		CAPITAL	NORM			LEVL CHRG	NORM ENRO	WRIH
TRIOR	26218	3 390.	0.	0	390.	37.	410.	MW 15.	MW 15.	0.91	0.21	0.13	*10**6 15.0	0.84	131.4	(X) -65	17.1	1 21	159
	26218		• .				854.	15,	69.	1.08	0.21	0.13	26.4	1.47	118.3	_	21.9		134
	26218					37.	410.	15.	15,	0.91	0.21	0.15	15.1	0.84	135.8		16.7		
	26218					181.	893.	15.	74.	1.10	0.21	0.31	27.0	1.51	125.4	ö	20.1		136
	26218					37.	410.	15.	15.	0.92	0.21	0.15	15.5	0.86	139.4		16.7		:20
	2621						883.	15.	73.	1.12	0.21	0.31	27.9	1.56	130.3		20.3		135
	2621					37.	410.	15.	15.	2.26	0.21	0.12	17.6	0.98	151.7		18.9		157
	26218				1435.	392.	1599.	15.	160.	17.50	0.21	0.28	93.0	5.19	221.0		53.0		163
	2621				377.		410.	15.	15.	2.16	0.21	0.16	18.1	1.01	163.9			1.40	
	2621					310.	1325.	15.	126.	13.12		0.36	80.0	4.47	260.8	0		3.01	
						· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·								-	····	
									•										

DATE 06/07/79 | Lase-Pec-ADV-des-engr

						U×10××6-			CRCEN	MSD	SAUCO	FESR	CAPITAL	NORM	\$/KW ROI	LEVL	NORM WRTH
ECS	PROCS	DISTIL R				RESIDL	COAL	* POWER REGD	POWER	OPLI	/HEAT	rear	COST	COST	EQVL	CHRG	ENRG
	, ,,,,,,,,,	0.0:1L N	010_	JOAL	J. 10 . 1 C		JUNE	MW	MW		RATIO		*10**6	0001	(%)		
онасен	28001	0.	80.	1561.	0.	٥.	O.		·	3.18	0.10	0.	€0.1	1.00	158.4 C	44.6	1.00 80
STM141	,	o.	1425.	٥.		-1345.	1561.	33.	33.	1.92	0.10	0.13	38.4	0.64	92.0 -23	51.5	
STM141	28001	o.	1529.	o.		-1385.	1774.	33.	58.	1.66	0.10	0.20	39.8	0.66	88.9 -19	49.4	1.11 154
STM141	28001	٥.	٥,	1425.	ο.	80.	136.	= 33.	33.	4.40	0.10	0.13	77.7	1.29	186.1 22	39.2	0.88 137
STM141	26001	0.	٥.	1529.	٥.	143.	245.	= 33.	58.	4.00	0.10	0.20	76.0	1.27	169.7 35	35.3	0.79 130
STM141	28001	ο.	٥.	1425.	0.	80.	136.	4 33.	33.	4.17	0.10	0.13	62.9	1.05	150.6 122	37.3	0.84 14
STM141	28001	٥.	٥.	1529.	٥.	143.	245.	A 33.	58.	3.88	0.10	0.20	58.1	0.97	129,6 999	33.2	0.74 13
STM088	28001	0.	1425.	0.	0.	-1345.	1561.	33.	33.	1.84	0.10	0.13	36.8	0.61	88.1 -21	51.2	1.15 163
STMOSS	28001	0.	1458.	0,	0.	-1356.	1629.	33,	41.	1.56	0.10	0.16	36.2	0,60	84.8 -19	50.3	1.13 15
STMOSS	28001	ø.	٥.	1425.	0.	80.	136.	33.	33.	4.27	0.10	0.13	76.6	1.28	183.6 24	38.9	
STM088		0.	٥.	1458.	0.	100.	171. i		41.	3.72	0.10	0.16	71.1	1.18	166.5 41	36.7	
STM088	28001	0.	0.	1425.	0.	80.	136.		33	4.12	0.10	0.13	58.9	0.98	141.1 999	38.8	The state of the s
STMOBE		Ο.	٥.	1458.	٥.	100,	171.		41.	3.74	0.10	0.16	56.1	0.93	131.2 999	35.1	
PFBSTM		0.	0.	1430.	0.	80.	131.	33.	33.	5.20	0.10	0.13	78.2	1.30	186.5 19	40.1	0.90 13
PFBSTM		٥.	٥.	1710.	0.	244.	401.	33.	99.	6.81	0.10	0.27	75.2	1.25	150.0 43	33.0	
TISTMT		<u> </u>	1428.	0.	ე.	-1349.	1561.	33.	33.	3.26	0.10	0.13	92.1	1.53	219.9 0	58.7	
TISTMT		0.	1850.	٥.	0.	-1520.	2399.	33.	135.	5.95	0.10	0.32	205.8	3.43	379.8 0	66.5	
TISTMT		Q.	0,	1428.	U.	80.	133.	33.	33.	5.74	0.10	0.13	134.1	2.23	320.5 2	46.7	
TISTMT		0.	0.	1850.	0.	330.	549	33.	135.	8.74	0.10	0.32	258.9	4.31	477.7 2	50.3	
TIHREG		o	1483.	<u>0.</u>	<u> </u>	-1404.	1561.	33.	<u>33.</u>	3.79	0.10	0.10	117.4	1.95	270.0 0	63.5	
TIHRSG		0.	1703.	0.	0.	-1531.	1871.	23.	70.	5.19	0.10	0.17	184.9	3.08	370.4 0	71.4	1.60 125
TIHRSG		0,	o.	1483.	0.	80.	77.	33,	33.	€.52	0.10	0.10	166.7	2.78	383.6 0	52.0	
TIHRSG		0.	٥.	1703.	0.	172.	167.	33.	70.	7.90	0.10	^.17	234.8	3.91	470.3 0	57.2	
STIRL	28001	1487.	<u>o.</u>	<u> </u>		80.	1561.	33.	33.	2.28	0.10	0.09	55,1	0.92	126.5 158	66.2 78.3	
STIRL	28001	2305.	0.	o.	-2306. 0.	418.	2692.	33.	170.	3.71	0.10	0.26	117.8	1.96 0.92	174.4 0 126.5 -86	78.3 55.5	
STIRL	28001 28001	o. o.	1487. 2306.	0. 0.	0.	-1407. -1888.	1561. 2692.	33. 33.	33. 170.	2.28 3.71	0.10	0.26	55.1 118.0	1.96	174.6 0	61.8	
STIRL	28001	0.	2306.	1487.	0.	~1888. 80.	2 0 92.	33. 33.	33.	4.82	0.10	0.09	97.7	1.63	224.2 9	42.7	
STIRL	28001	0.	0.	2306.	0.	418.	385.	33. 33.	170.	7.92	0.10	0.26	210.4	3.50	311.4 5	44.9	1.01 99
HEGT85		0.	o.	1592.	0.	80.	-31. <i>i</i>		33.	5.13	0.10 0.10	0.03	111.6	1.86	239.4	46.7	
HEGT85		0.	0.	9304.	0.	2147.	-823.		875.	31.64	0.10	0.12		13.88	305.8 0	123.5	
HEGT50		0.	a.	1576.	0.	80.	-15.		33.	5.08	0.10	0.04	108.5	1.81	235.0 2	46.0	1.03 122
HEGTEC		0.	0.	3785.	0.	705.	-132.		287.	11.55	0.10	9.13	272.1	4.53	245.3 0	59.5	1.33 79
HEGTOO		0.	Ö.	1562.	o.	80.	-1.		33.	5.05	0.10	0.05		1.74	227.9 3	45.2	
HEGTOO		0.	o.	2252.	o.	285.	-4.		116.	6.75	0.10	0.11	149.4	2.49	225.3 2	47.6	
FCMCCL		o.	a.	1456.	õ.	80.	105.	33.	33.	5.55	0.10	0.11	106.7	1.78	250.0 5	44.3	
FCMCCL		0.	0.	2324.	0.	508.	670.	33.	207.	11.53	0.10	0.34	183.4	3.05	269.4 8	39.5	
FCSTCL		õ.	ä.	1449.	ŏ.	80.	112.	33,	33.	5.45	0.10	0.12	104.7	1.74	246.5 6	43,9	
FCSTCL		õ.	ů.	2732.	ä.	739,	1037.	33.	302.	13.72	0.10	0.39	217.9	3.63	272.2 9	34.0	
IGGTST		o.	o.	1490.	õ.	80.	71.	33.	33.	4.65	0.10	0.09	99.6	1.66	228.1 7	40.3	
IGGTST		0.	ō.	2546.	0.	509.	451.	33.	207.	5.63	0.10	0.27	178.8	2.98	239.7 9	37.2	
GTSOAR		õ.	1486.	0.	Ö.	-1406.	1561.	33.	33.	2.04	0.10	0.09	48.8	0.81	112.2 -45	54.5	
	28001	õ.	2594.	õ.	o.	-2053.	3104.	33.	220.	2.88	0.10	0.29	88.6		116.6 0		1.28 119

DATE 06/07/79 18SE-PEG-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

				FUEL HE	E IN DY	11-106-											·········		
							COGEN**		CECEN	Cam	POWER	EESD	CAPITAL	NORM	\$/KW	POI	LEVL	NORM	URTH
ECS	PPMCS	DISTIL				RESIDL	COAL	REGD	POWER	Odi	/HEAT	LON	COST	COST	EQVL		CHRG	ENRG	*****
EUS	PROCS	DISILE	KESIDL	COAL	DISTIL	. RESIDE	COAL	MW	MW		RATIO		*10**6	0031	COAL	(X)		Linto	
OTACO	8 28001	0.	1456.	0.		-1376.	1561.	33.	33.	1.91	0.10	0.11	43.5	0.72	101.9			1.19	3 57
			2138.	0.		~1723.	2683.	33. 33.	169.	2.22	0.10	0.31	64.0	1.07	102.2	0	49.5		
	8 28001										0.10	0.11	47.6	0.79	111.3		53.5		
	2 28001		1459.	0.		-1379.	1561.	33.	33.	2.00	0.10	0.33	77.1	1.28	111.0	- 30	49,9		
	2 28001		2370.	<u> 0.</u>	<u> </u>		3033.	<u>33.</u>	212.	2.57					113.2		53.8		
	6 28001		1463.	0.		-1383.	1561,	33.	33.	2.02	0.10	0.11	48.5	0.81					
	6 28001		2544.	0.	0.		3271.	33.	241.	2.86	0.10	0.34	88.3	1.47	118.4	0	51.1		122
	6 28001		1479.	0.	Ç.		1561.	33.	33.	2.02	0.10	0.10	48.3	0.80	111.4			1.22	
	6 28001		2718.	<u>o.</u>	0.		_33%5	33.	<u> 251.</u>	2.73	0.10	0.32	82.4	1.37	103.5	- 0	<u>53.9</u>		
	6 28001		1481.	0.			1561.	33.	33.	2.12	0.10	0.10	48.3	0.80	111.2		54.6		
-	6 28001		3490.	0.		~2556.	4422.	33 ,	381.	3.66	0.10	0.35	108.3	1.80	105.9	0	56.1	1.26	
	2 28001		1474.	ο.	0.		1561.	33.	33.	2.12	0.10	0.10	48.3	0.50	111,9		54.3		
	2 28001		3184.	0.	0.		4105.	<u>33.</u>	342.	3.68	0,10	0.36	114.1	1.90	122.2	0	54.8		
	2 28001		1472.	0.	o.		1561.	33.	33.	2.11	0.10	0.10	47.6	0.79	110.4		54.2		
	2 28001		3157.	ο.	ο.	~232 2 .	4089.	33.	340.	3.57	0.10	0.36	106.4	1.77	115.1	0	53.4		
CODE	2 26001	0.	1460.	0.	σ.	-1380.	1561.	33.	33 <i>.</i>	2.10	0.10	0.11	47.3	0.79	110.7	-41	53.7		
CCOE :	2 23001	0.	2668.	0.	0.	-20 <u>0</u> 7,	3506.	33.	269.	2.95	0.10	0.36	83.6	1.39	107.0	0	49.1		
STIGI	5 28001	0.	1581.	0.	٥.	-1501.	1561.	33.	33.	2.31	0.10	0.04	48.5	0,81	104.7		57.8		
STIGI	5 28001	0.	84615.	٥.	0.	-61444.	78863.	33.	9449.	142.09	0.10	0.17	2270.3	37.79	91.6	0	1173.3	26.32	696
STIGI	0 28001	0.	1555,	0.	0.	-1475.	1561.	33.	33.	2.19	0.10	0.05	47.5	0.79	104.2	-49	56.8	1.27	150
STIGI	0 26901	0.	8302.	0.	0.	-6159.	8468	33.	874.	11.72	0.10	0.22	222.1	3.70	91.3	0	129.5	2.91	129
STIG	\$ 28001	0.	1543.	0.	0.	-1463.	1561.	33.	33.	2.20	0.10	0.06	47.0	0.78	104.0	-46	56.3	1.26	151
STIG1	S 28001	0,	5218.	0.	0.	-3961.	5503.	33.	513.	7.50	0.10	0.23	136.2	2.27	89.1	0	91.0	2.04	117
DEADV	3 28001	0.	1521.	٥.	0.	-1441.	1561.	33,	33.	2.39	0.10	0.07	60.7	1.01	136.2	999	57.3		
DEADV	3 28001	0.	5366.	0.	o.	-3935.	6085.	33.	584.	9.83	0.10	0.29	352.1	5.86	223.9	0	106.5	2.39	120
DEHTP	1 28001	0.	1462,	0.	č.	-1383.	1561.	33.	33.	2.49	0.10	0.11	62.2	1.04	145.2	0	55.7	1.25	149
DEHTP	M 28001	0.	2567.	0.	0.	-1964.	3314.	33.	246.	5.55	0.10	0.34	185.2	3.08	246.1	C	63.7	1.43	115
DESCA	3 28601	1540.	0.	0.	-1540.	80.	1561.	33.	33.	2.52	0.10	0.06	66.0	1.10	146.3	0	69.6	1.56	150
	3 28001		õ.	0.		1669.	6883.	33.	681.	14.00	0.10	0.25	516.0	8.59	273.7	0	188.7	4.23	158
	3 28001		1540.	Q.			1561.	33.	33.	2.52	0.10	0.06	66.0	1.10	146.3	0	58,6	1.31	143
	3 28001		6433.	Ö,	Ö.		6883.	33.	681.	14.00	0,10	0.25	516.0	8.59	273.7	O	142.4	3.19	132
	D 28001		0.	0.		80,	1561.	33.	33.	1.97	0.10	0.11	46.2	0.77	107.4	-67	64.2	1.44	161
-	28001		0.		-2388.	501.	2972.	33	204.	2.33	0.10	0.31	67.3	1.12	96.2	O	68.0	1.52	136
	8 28001		ö.	0.		80.	1561.	33.	33.	2.05	0.10	0.10	49.8	0.83	114.8	-89	65.2	1.46	159
	8 26001		ŏ.	o.		839.	4104.	. 33,	342.	3.87	0.10	0.34	126.2	2.10	131.7	0	82.3		
	2 28001		o.	o.		80.	1561.	33.	33.	2.06	0.10	0,10	50.1	0,83	115.8	-90	65.1	1,46	
	2 26001		o.		-3177.	818.	4031.	33,	333.	3.79	0.10	0.34	123.2	2.05	132.3	Õ	80.0		
	6 26001		0.	0.		80.	1561.	33.	33.	2.08	0.10	0.10	51.0	0.85	117.8		65.1	1,46	
-	6 28001		0.	0.	2 2 2 7 7	761.	3843.	33.	310.	3.79	0.10	0.34	123.7	2.06	139.1	Õ	79.2		
	8 28001		o.	0.		80.	1561.	33. 33.	33.	2.03	0.10	0.10	48.7	0.81	112.6	-		1.45	
-			0.		-2736.	629.	3401.	33.	257.	3.08	0.10	0.32	96.3	1.60	120.2	Ď	74.8		
	8 28001 2 28001		0.	ο.			1561.	33.	33.	2.04	0.10	0.10	49.3	0.82	113.9		65.0		the same of the same of
							3553.	33. 33.	275.	3,28	0.10	0.33	104.0	1.73	124.7	õ	76.3		
-	2 28001		. Ö.	0.		575 .					0.10	0.10	50.1	0.83	115.9	_	64.9		
	6 28001		0.	0.		80.	1561.	33.	33.	2.06		0.34			133.4	-03	76.4		
GIRZI	6 28001	2357.	0.	<u> </u>	-2857.	<u>692.</u>	3611.	<u>33,</u>	282.	3.48	0.10	U. 34	111.7	1.00	133.4		70.4	1./1	;

PILLA JO HOOF TO

r #GE

DATE 06/07/79 I&SE-PEG-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS.

-------FUEL USE IN BTU*10**6-----**COGENERATION CASE** **NOCOGEN - COGEN** POWER COGEN POWER FESR CAPITAL NORM \$/KW ROI LEVL NORM WRTH PROCS DISTIL RESIDL COAL DISTIL RESIDL COAL REGD POWER /HEAT COST COST EQVL CHRG ENRG RATIO *10**6 MW MW GTRW08 28001 1507. 0. -1507. 80. 1561. 33. 33. 2.05 0.10 0.08 49.7 0.83 112.4 -91 66.2 1.48 157 0.10 0.30 2.12 109.4 0 96.3 2.16 130 GTRW08 28001 0. -3966. 1001. 4644. 408. 3.95 127.2 3966. 33. 65.3 1.48 158 GTRW12 28001 1497. 0. -1497. 80. 1561. 33. 33. 2.05 0.10 0.09 49.6 0.83 113.1 -89 0. GTRW12 28001 3880. 0. -3880. 1015. 4593. 33. 414. 3.97 0.10 0.32 128.0 2.13 112.6 0 91.9 2.06 130 GTRW16 26001 0. -1495. 80. 1561. 33. 33. 2.06 0.10 0.09 50.2 0.64 114.6 -93 65.8 1.46 158 1495. 0. ~3659. 4438. 33. 383. 0.10 0.32 2.11 118.1 0 89.3 2.00 129 GTRW16 28001 3659. 939. 3.91 126.6 GTR308 20001 1517. 0. -1517. 80. 1561. 33. 33. 2.04 0.10 0.08 48.8 0., 81 109.7 -86 66.4 1.49 157 0.10 0.26 1,60 95.6 0 90.8 2.04 129 GTR308 28001 3429. 0. -3429. 764. 3852. 33. 312. 3.13 96.1 111.5 -83 GTR312 28001 1492. 0. -1492. 80. 1561. 33. 33. 0.10 0.09 48.7 0.81 65.5 1.47 159 GTR312 28001 3319. ٥. 0. -3319. 816. 4025. 33. 333. 3.24 0.10 0.31 100.8 1.68 103.6 0 82.8 1.86 130 GTR316 28001 1493. 0. -1493. 80. 1561. 33. 33. 2.04 0.10 6.09 49.4 0.82 112.9 -87 65.6 1.47 158 0. GTR316 28001 3296. 0. -3296. 803. 3983. 33. 327. 3.31 0.10 0.31 103.5 1.72 107.2 0 83.3 1.87 129 FCPADS 28001 1528. Ο. 0. -1528. 80. 1561. 33. 33. 5.29 0.10 0.07 58.8 0.98 131.3 999 71.2 1.60 154 ٥. 0. -6471.33. 721. 6.32 200.4 9 233.7 5.24 190 FCPADS 28001 6477 1767. 7211. 80.02 0.10 0.28 379.9 FCMCDS 28001 0. -1489. 33. 33. 5.06 0 10 0.09 59.8 1.00 137.1 999 69.6 1.56 156 1489. 0. 80. 1561. FCMCDS 28001 4721. 0. -4721. 1398. 5974. 33. 570. 60.04 0.10 0.36 340.4 5.66 246.0 0 171.6 3.85 166

		**00	IGENERAT	TION CAS	Exx xxN	OCOGEN -	COGEN	××	POWER	COGEN	O&M	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM W	IRTH
ECS	PROCS		RESIDL			RESIDL	COAL		REQD	POWER		/HEAT		COST	COST	EGVL		CHRG	ENRG	
ONE YOU	- 00000		100	4454					MW	MW		RATIO		*10**6			(%)			
	28002 28002				0.	0.	0.	F	77.	0.	3.09	0.25	0.	58.4	1.00	160.7	0	58.4	1,00	80
	28002				0. 0.	-1327 <i>.</i> 137.	1700. 235,	_	77. 77.	56.	1.63	0.25 0.25	0.18	38.7	0.66	90.1	-9	59.6	1.02	
	28002		52. 52.	1639.	0.	137.	235, 235.		77. 77.	56. 56.	3.88 3.76	0.25	0.18	73.8	1.26	172.0		46.1	0.79	
	28002			313.	0.		1561.		77.	39.	1.53	0.25	0.18	56.6 35.1	0.97	131.7 85.8		44.1	0.76	
	28002				o. 0.	96.	164.	=	77.	39. 39.	3.61	0.25	0.13	69.0	1.18	168.6		62.7 49.8	1.07	
	28002				õ.	96.	164.		77.	39.	3.63	0.25	0.13	54.6	0.93			49.6		
	28002				0.	189.	311.	^	77.	77.	6.53	0.25	0.13	77.6	1.33	169.4	43	43.8		
	28002				0.	234.	384.		77.	95,	6.58	C. 25	0.27	73.0	1.25	152.1	61	41.1	0.70	
	28002		•		o.		1874.		77.	77.	4.70	0.25	0.24	146.6		321.0	0	70.2		
	28002	-		-	o.	-1456.	2299.		77.	129.	5.77	0.25	0.32	199.1	3.41	383.3	ő	73.3	1.26	
	26005				o.	189.	315.		77.	77.	7.32	0.25	0.24	191.8		420.0	6	55.9	0.97	
	28002				0.	316.	526.		77.	129.	8.47	0.25	0.32	250.4	4.29	482.3	5	57.9	0.99	and the same of
	28002				Ö.		1793.		77.	67.	5.03	0.25	0.16	178.8		373.6	ŏ	79.3		
	28002					165.	160.		77.	67.	7.65	0.25	0.16	227.1		474.7	ŏ	65.7	1.13	
STIRL	28002	1699.	0.		-1699.	189.	1874.		77.	77.	2.84	0.25	0.18	74.4		149.5	ō	77.1	1.32	
STIRL	28002	2209.	O,	0,	-2209.	400.	2579.		77.	163,	3.57	0.25	0.26	113.0	1.94	174.6	0	84.4	1.45	-
STIRL	28002	0.	1699.	О.	0.	-1509.	1874.		77.	77.	2,85	0.25	0.18	74.5		149.6	ō.	64.8	1.11	
STIRL	28002	0.	2209.	0.	0.	-1809.	2579.		77.	163.	3.58	0.25	0.26	113.2		174.8	ō	68.5	1,17	
STIRL	28002	0.	0.	1699.	0.	189.	175.		77.	77.	5.87	0.25	0.18	129.1	2.21	259.4	12	50.9	0.87	132
STIRL	28002	0.	0.	2209.	0.	400.	370.		77.	163.	7.62	0.25	0.26	201.7	3.45	311.6	8	52.4	0.90	118
	28002		٥.	1946.	٥.	189.	-73.	Α	77.	77.	6.80	0.25	0.06	157.8	2.70	276.6	3	5 9. 9	1.03	117
	28002	ο.	٥.		ο.	2057.	-789.		77.	839.	30.59	0.25	0.12	808.8	13.85	309.6	0	129.0	2.21	91
	28002	0.		1909.	0.	189.	<u>-35.</u>		77.	77.	6.63	0.25	0.07	149.9		267.9	5	58.2		ee .
	28002	0.			ο.	675.	-126.		77.	275.	11.17	0.25	0.13	263.9		248.4	1	66.7	1.14	
	28002	0.			o.	189.	-3.		77,	77.	6.22	0.25	0.09	130.9		238.0	8	55.1	0.94	
	28002				o,	273.	-4.	Α	77.	111.	6.53	0,25	0.11	144.9		229.1	7	55.2	0.95	
	28002	<u> </u>	<u> </u>	1624.	<u>0.</u>	189.	250.		<u>77.</u>	<u>77.</u>	7.40	0.25	0.21	134.2		281.9	10	52.3	0.90	-
	28002	0.			0.	∉37.	642.		77.	198.	11.12	0.25	0.34	177.8		272.4	11	47.5	0.81	
	28002	0.			0.	189.	266.		77.	77.	7.14	0.25	0.22	131.8		279.7	11	51.5	0.88	
	28002	0.	0.		0.	708.	994.		77.	289.	13.23	0.25	0.39	211.2		275.2	12	42.2	0.72	
	28002	0.	<u>. 0,</u>	1706.	<u>2.</u>	189.	168.		77.	77.	5.19	0.25	0.17	125.3		250.7	12	50.6	0.87	
	28002 28002	0.			0.	487.	432.		77.	199.	5.39	0.25	0.27	169.7		237.4	13	44.7	0.77	
	28002	0. 0.	1695. 2486.	0. 0.		-1506. -1967.	1874. 2974.		77. 77.	77.	2.30	0.25 0.25	0.18	56.5 85.9		113.8	-62 0	62.3 64.0	1.07, 1.10	
-	28002	0.	1625.	0. 0.		-1967. -1436.	1874.		77.	211. 77.	2.80 2.11	0.25	0.29	49. 5		104.0	-10	59.1	1.10	
	28002	0.	2048.	0.	0.		2571.		77.	152.	2.16	0.25	0.31	62.0	1.06	103.3	44	56.8	0.97	
	28002		1632.	0.		-144 3 .	1874.		77.	77.	2.16	0.25	0.31	52.8		110.3		59.8	1.02	
	28002	0.	2271.			-1773.	2906.		77.	203.	2.49	0,25	0.33	74.6		112.1	10	57.3	0.98	
	28002	0.	1641.	0.	0.	-1451.	1874.		77.	203. 77.	2.49	0.25	0.33	74.6 54.9		114.1		60.3	1.03	
	28002	<u>o.</u>				-1871.	3134.		77.	231.	2.78	0.25	0.34	85.4		119.5	5	58.4		139
	28002	0.		0.		-1489.	1874.		77.	77.	2.21	0.25	0.19	53.0		107.8	_	61.3	1.05	
	28002					-2015.	3214.		77.	240.	2.66	0.25	0.32	79.9		104.7	Õ	61.1	1.05	
2, 5010	20002	0.	LUUU.	٥.	٠.	20.0.	IJS 1 → .			£70.	2.00	J. LJ	J, UE		• /		•	V		

GENERAL ELEGFRIC COMPANY COGEMERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECCNOMICS

DATE 05/07/79 18SE-PEO-ADV-DES-ENGR

-	-	*	7	S																						-	-	-		-	Metal Metal	40		7		-		T		Classic.		-				T	
i	WRTH		157	126	128	1 100	000	ָ ֓֞֝֞֝֞֝֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֡֓֓֡֓֡֓֓֓֡֓֡֓֡֓֡	9 6	7 7	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	147	. I.		7	143	113	7.70) () () ()	2 5	4 6	200	0 0	0 !	200	701	160	132	161	136	091	37	2 6	121	140	161	139	158	131	٠ د د	2 6	150	200) ki	136	2	
	MORA MORA MORA	פאאופ	1.06	.08	1,03	5		3 6	36	0,0	- , 4	17.46	. 0	7			6	-			0.40	3.60		S	1.23	7.20	1.27	. 5	1.27	1.48	7.57	. 46	2 6	200		26	1.42	3	1 74			200				2	
1	LEVL	- 1	6.19	62.9	67,5	61.2		- 0	ָ ֓֞֝֞֝֞֝֝֓֞֝֓֞֝֓֓֓֞֝֓֓֓֞֝֓֡֓֓֓֡֓֞֝֓֡֓֞֝֓	30.0	125.0) C	122.0	2 2 2		9 0	11113	2 72	7 0		90.	300,-	72.0	145,8	71.9	74.5	74.6	88.4	73.9	86.2	73.9	85,4	2, C	700.0	9 0	73.50	82.6	76.4	101			37.0	, r.		- u	200	
1	RGI	8	-44	0	20 20 20 20 20 20 20 20 20 20 20 20 20 2	36.	3 C	ָ ֖֖֖֓֞֞֞֞֞֞֞	, ,	- 6	555	֓֞֞֞֜֞֟֝֟֝֟֝֟֟֝֞֟֟ ֓֓֞֓֞֓֞֓֞֓֓֞֞֞֞֞֞֓֓֞֞֞֞֞֡	- -	- 50	3 0	o c) C	0) ¢	•	5 (5	> (0 (-69	0	666	0	666	0	666 6	0 ;	4 6	2	- c	900	}	100	2) a	9 0		n c) q	2)	
	*/¥	EGVL	109,3	104.7	0, 60	110.5		9 6	0.00	9	24.8		2 0	07.0		, R. C. R. C	224 1	170 0	0.070	4.010	185.3	2/3.0	185.	273.8	102.2	97.2	119.0	133.1	117.1	133.7	120.4	140.5	-,-:	0.00	200	117.5	134 8	108 B	0 0) c		2.0	2 0		0.4.	30,,	
	NOR I	Cas	.92	94.	0.0	000	, ,	2 6	, , ,	?	5 6		ָהָ טְּטְּ מַנְי	8	0 0	, d		9	, c	3 (9			47		12	<u>.</u>	60.		9	Ö		3	אָל מי	9,6	9 6	1 4	9 Q	, .	 	2	2 5	ž.	- 6 - 6		?	
	CAPITAL	cos:			55.3		9 6		200	0 0	190	/ · / / ·	20.0		101.1	27.70	237 F	200	100.4	6.77	98.9	494./	98.9	494.7	49.5		58.8		57.5		59.0			0 1		57.4	1001	100.1 ER 7	200.0	20.01	00.00	124.2	20.0	0.221	24.0	33.	
	FESR		18	35	9,19	2	n (9.0	- v	9	.07	N 		11	- ¢	2 .	- 0			40.	2	S	7.	. 25	80	.31	.18	34	91,	.34	6.	34	6.	35.	n ç	5 6		7	<u>.</u> 6	9 1	- 6	32.	<u> </u>	35	0.14	92.	
1	~ .	/HEAT RATIO	.25	.25	0.25	3 4	3 6	U F	O I	2	12.1	S I	3 6	Cy C	3 6	3 6	, , , ,	3 2	, c	S,	22	52	52	,25	.25	.25	. 25		. 25		. 25	.25	521	32	ν, Ο Ε	, c	3 K	S	S C	น เก็	ָ נְצְׁ	22	S i	ប្តីខ្ព	0 K	522	
	ORM F	₹	37	20	8 g	000	9 6	2 C	2) to	2	0.0	N	n (30	- 6	n •	7 4	2		S.	46	45	46	45	2	56	.35	.77	35	68	36	68	. 25 25	88	D (n c	, כ ני	30	200	20.0	S (98	۵, e	- (a	2 K	.05	
		œ _		,							•	-	,											•													_		_	_	_				_		
	R COGEN	POSE F	77	365		350	: }	326	: i	22	7.	. 905	: 6	20		֖֓֞֟֝֓֞֟֟֓֓֓֟֟֓֓֓֓֓֟֟֓֓֓֓֓֓֟֓֓֓֓֟֓֓֓֟֓֓֓֟֓֓			•	23		. 65		. 65	7	190	7	. 32	7.	. 33	7					יוֹ מַ ע		77		ກີ ຕິ		39		32	. 77.	23	
1 1 1 1	*	REGD ₹	77	77	77		`	77	? !		77	77	?!	7	> !	\)		?!	11	7.3	77	73	77	77	77	77	77	77	77	77	77	77	77	\ \ !)	· r		` [> 1	77	77	77	<u>`</u>	<u> </u>	72	
		COAL	1874.		1874.		╮.			3360.	1874.	75570,	1874.	8114	18/4	52/3.	18/4.	2630.	1874.	3176.			1874.		1874.	2848	1874.	3933.	1874.	3863.	1874.	3583.	1874.	3258.	1874.	3405.	10/4,	3460.	18/4	4450	1874.	4496.	1874.	4252.	1874.	3691.	
BTU*10**6-	**NGCCGEN -	RESIDL	-1496.	-2449.	-1477.	-2241.	-14/3.	-2225.	-1444.	-1923.	-1731.	58875.	-1670.	-2065-	-1642.	-3795,	-1589.	-3//	-1450.	-1882,	189.	1599.	-1634,	-4565.	189.	480.	189.	804.	189.	783.	189.	730,	189.	603.	189,	647.	-53.	663.	189.	959,	189.	973.	189.	900	189.	732.	
	**	DISTIL	o	o,	o o	5		o ·	o :	9.	ö	Ö	o ·	-		o (0	Ċ,	-1823.	-6164.	ö	o,	-1653.	-2288.	-1696.	-3135.	-1676.	-3044.	-1673.	-2909.	-1674.	-2621.	-1675,	-2726.	-1558.	-2737.	-1746.	-3800.	-1722.	-3718.	-1717.	-3506.	-1769.	-3286.	
L USE IN	CASE	ب	o	0	6	O	· 0	<u>.</u>	o ·	0	o.	ö	o ·	0	Ď,	o ·	o o	ö	ö				ó	,			١.	9			0						,					Ö			ö		
FUEL	**COGENERATION	RESIDL CGA	1685.	3344.	1666.	3051.	1662.	3025,	1634.	2556.	1921.	81077.	1859.	7955.	1831.	5000.	1779.	5142.	1639.	2460.	ó	Ö	1823.	5164.	0	ó	0	Ö	Ö	ò	o.	o o	o,	o.	o	ò	D	Ö	o ·	ö	ö	o,	o,	ö	Ġ	o,	
1 1 1	*COGE	IL RES	١,	o					٠	o.		σο ,			ö		o (823.	64,	က		1653.	2288.	1686.	3135.	1676.	3044.	1673.	2009.	:674.	2621.	1675.	2726.	1658.	2737.	1746.	3800.	1722.	3718.	1717,	3506.	1769	286.	
		018	200	20	02	27	25	20	8	20	02	25	02	202	02	02	202	202	205		-	9	2	202																							
		PRØCS	5 28	28										10 28002				. t		PM 28002	43 28002	A3 28002	A3 20032				1				1			- 1				- 1			12 28602	2			Ø	2	
		ECS	50162	cc1626	CC1622	CC1622	cc1222	CC1222	cc0822	CC0822	STIGIS	ST161	ST1610	ST1610	STIGIS	STIGIS	DEADV3	DEADV3	DEHTPM	DEHTPM	DESGAS	DESOA3	DESGA3	DESGAS	GTSØAD	GTSGAD	GTEADS	GTRADB	GTRA12	GTRA12	GTEA16	GTRA16	6TR208	GTR208	GIE212	GTR21	GTR216	GTR21	STR408	S GTRWOB	I GTRV12	GTRW1	S GTRW16			ਜ਼ GTR308	a .

3

PAGE 51

DATE 06/07/79 I&SE-PEG-ADV-DES-ENGR

										au									
		DISTIL F		COAL	DISTIL		CÖGEN**		POVER MW	O&M	POWER /HEAT RATIO	•	CAPITAL COST *10**6	COST	\$/KW EQVL	(%)	CHRG		
TR312			0. 0.		-1710. -3180.	189. 782.	1874. 3857.	77. 77.	77. 319.		0.25 0.25		54.0 97.7	0.92	107.8	134 0		1.28 1.52	
TR316	28002	2 1712.	Ο.	ο.	-1712.	189.	1874.	77.	77.	2.27	0.25	0.17	55 <i>.</i> 1	0.94	109.9		75.0	1.28	16
STR316		2 3158. 2 1795.	<u>0,</u> 0.		-3158. -1795.	<u>770.</u> 189.	3816. 1874.	77.	314. 77.		0.25		100.4		108.5	<u> </u>		1.53	
FCPADS			0. 0.		-6200.		6909.	77. 77.		10.23 76.70	0.25 0.25	0.13 0.28	81.2 354.3	1.39 6.24	154.4 200.5	0	233.3	1.52 4.00	
		1704.	0.		-1704.	189.	1874.	77.	77.	9.71	0.25	0.17	84.3	1.44	168.7	0	85,2	1.46	15
FCMCDS	28003	2 4524.	0,	0.	-4524.	1340.	5725.	<u>77,</u>	546.	57.55	0.25	0.36	326.4	5.59	246.3		173.8	2.98	149
				· · · · · · · · · · · · · · · · · · ·														21	
																		•	
		-,												 			************		
-													•						
																			
						•													
								<u>, </u>	····										
		· · · · · · · · · · · · · · · · · · ·								-0									
	_		_		_									_	_				
	•												· · · · · · · · · · · · · · · · · · ·						

Continue							U×10××6- OCOGEN -				COGEN	MSO	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRTH
0MOCGN 28003 0, 238, 1912. 0. 0. 0. F 97, 0. 2.88 0.35 0, 54.4 1.00 166.7 0 62.2 1.00 135 MINI 41 28003 0, 1431. 385. 01193. 1527. 97, 50. 1.54 0.35 0.16 35.9 0.66 93.0 -9 63.2 1.05 MINI 41 28003 0, 115. 1701. 0. 123. 211. F 97, 50. 3.61 0.35 0.16 68.5 1.26 177.7 44 51.2 0.8 SIMI 41 28003 0, 115. 1701. 0. 123. 211. F 97, 50. 3.61 0.35 0.16 68.5 1.26 177.7 44 51.2 0.8 SIMI 41 28003 0, 1407. 511. 01169, 1403. 97, 50. 3.40 0.35 0.16 55.0 0.97 137.3 599, 49.4 0.75 1700. 0. 152. 1755. 0. 01169, 1403. 97, 35. 1.44 0.35 0.11 84.6 0.60 88.5 -15 65.9 1.00 1700. 0. 152. 1755. 0. 01169, 1403. 97, 35. 1.44 0.35 0.11 84.6 0.60 88.5 -15 65.9 1.00 1700. 0. 152. 1755. 0. 01169, 1403. 97, 35. 1.44 0.35 0.11 84.6 0.60 88.5 -15 65.9 1.00 1700. 0. 152. 1755. 0. 01169. 1403. 97, 35. 1.44 0.35 0.11 84.6 0.60 88.5 -15 65.9 1.00 1700. 0. 152. 1755. 0. 01169. 1403. 97, 35. 1.44 0.35 0.11 84.6 0.60 88.5 -15 65.9 1.00 1700. 0. 152. 1755. 0. 01169. 1403. 97, 35. 1.44 0.35 0.11 84.6 0.60 88.5 -15 65.9 1.00 1700. 0. 152. 1755. 0. 0. 01169. 1403. 97, 35. 1.44 0.35 0.11 84.6 0.60 88.5 -15 65.9 1.00 1700. 0. 152. 1755. 0. 01277. 1912. 97, 35. 0.30 0.35 0.26 68.0 1.25 157.5 66 44.5 0.77 1171. 1715THT 28003 0, 1515. 0. 01277. 1912. 97, 97. 57. 0. 35. 0.30 0.35 0.26 68.0 1.25 157.5 66 44.5 0.77 1171. 1715THT 28003 0, 1592. 0. 01308. 2065. 97, 116. 5.34 0.35 0.32 183.1 3.36 392.4 0 72.1 1.17 1175THT 28003 0, 1592. 0, 284. 473. 97, 116. 7.82 0.35 0.32 183.1 3.36 392.4 0 72.1 1.17 1175THT 28003 0, 0. 1592. 0, 284. 473. 97, 116. 7.82 0.35 0.35 0.32 230.5 4.24 493.9 6 58.4 0.95 115THT 28003 0, 0. 1592. 0, 284. 473. 97, 116. 7.82 0.35 0.35 0.34 184.0 3.0 3.91 184.0 184.	ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL		REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
STMINI 28003 0. 1431. 385. 01193. 1527. 97. 50. 1.54 0.35 0.16 35.9 0.66 93.0 -9 63.2 1.0 15. 1701. 0. 123. 211. F 97. 50. 3.49 0.35 0.16 65.5 1.26 177.7 44 51.2 0.65 171.1 1.1 1.1 1.1 1.2 0.65 171.1 1.1 1.1 1.2 0.65 171.1 1.1 1.2 0.65 171.1 1.1 1.2 0.65 171.1 1.1 1.2 0.65 171.1 1.1 1.2 0.65 171.1 1.1 1.2 0.65 171.1 1.1 1.2 0.65 171.1 1.1 1.2 0.65 171.1 1.1 1.2 0.65 171.1 1.1 1.2 0.65 171.1 1.1 1.2 0.65 171.1 1.1 1.2 0.65 171.1 1.1 1.2 0.65 171.1 1.1 1.2 0.65 171.1 1.1 1.1 1.2 0.65 171.1 1.1 1.1 1.2 0.65 171.1 1.1 1.1 1.2 0.65 171.1 1.1 1.1 1.2 0.65 171.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1					·		<u> </u>			MW	MV		RATIO		*10**6			(%)			
STMIHI 28003 0. 115. 1701. 0. 123. 211. F 97. 50. 3.61 0.35 0.16 63.5 1.26 177.7 44 51.2 0.85 STMIHI 28003 0. 1407. 510. 01169. 1403. 97. 50. 3.40 0.35 0.16 53.0 0.97 137.3 999 49.4 0.75 STMO08 28003 0. 1407. 510. 01169. 1403. 97. 35. 1.44 0.35 0.11 32.6 0.60 88.5 -15 65.9 1.05 STMO08 28003 0. 152. 1765. 0. 86. 147. F 97. 35. 3.77 0.35 0.11 64.0 1.18 174.1 45 65.4 0.85 STMO08 28003 0. 152. 1765. 0. 86. 147. K 97. 35. 3.37 0.35 0.11 64.0 1.18 174.1 45 65.4 0.85 STMO08 28003 0. 152. 1765. 0. 86. 147. K 97. 35. 3.37 0.35 0.11 64.0 1.18 174.1 45 65.4 0.85 STMO08 28003 0. 152. 1765. 0. 86. 147. K 97. 35. 3.37 0.35 0.11 64.0 1.18 175.5 66 44.5 0.75 STMO08 28003 0. 1515. 0. 01277. 1912. 97. 97. 50.8 0.35 0.30 163.8 0.12 175.5 66 44.5 0.75 STMO08 28003 0. 1515. 0. 01277. 1912. 97. 97. 50.8 0.35 0.30 163.8 0.10 1369.9 0.71.1 1.17 1151117 28003 0. 1592. 0. 01308. 2065. 97. 116. 5.34 0.35 0.30 163.8 0.30 1368.9 0.71.1 1.17 1151117 28003 0. 0. 1532. 0. 284. 473. 97. 116. 7.82 0.35 0.30 163.8 0.30 1368.9 0.71.1 1.17 1151117 28003 0. 0. 1532. 0. 284. 473. 97. 116. 7.82 0.35 0.30 122.9 9.91 479.6 6 58.4 0.95 115117 28003 0. 1557. 302. 01318 1611.4 97. 60. 4.65 0.35 0.30 163.8 0.30 1369.9 6.65 0.95 111 115117 28003 0. 0. 1532. 0. 284. 473. 97. 116. 7.82 0.35 0.30 122.9 9.91 479.6 6 58.4 0.95 111 115117 28003 0. 0. 1532. 01632. 01318 1611.4 97. 60. 4.65 0.35 0.14 164.4 9.30 282.5 0. 611.1 1.3 15117 28003 1.0 1557. 302. 01632. 01318 1611.4 97. 60. 4.65 0.35 0.14 164.4 9.30 282.5 0. 611.1 1.3 15117 28003 1.0 1557. 0. 2.94 179. 116. 117. 117. 117. 117. 117. 117. 117						Ο.		0.	F	97.	0.	2.86		0.	54.4	1.00			62.2	1.00	8
STMIAI 28003 0. 115. 1701. 0. 123. 211. A 97. 50. 3.49 0.35 0.16 53.0 0.97 137.3 999 49.4 0.75				1431.		O.	-1193.			97.	50.	1.54	0.35	0.16	35.9		93.0	-9	63.2	1.02	2 14
STMOBB 26003 0. 1407. 510. 01169. 1403. 97. 35. 1.44 0.35 0.11 32.6 0.60 88.5 -15 65.9 1.05 STMOBB 26003 0. 152. 1765. 0. 88. 147. F 97. 35. 3.37 0.35 0.11 64.0 1.18 174.1 45 54.4 0.85 STMOBB 26003 0. 152. 1765. 0. 88. 147. F 97. 35. 3.37 0.35 0.11 51.1 0.94 138.9 999 53.1 0.85 STMOBB 26003 0. 1515. 0. 210. 345. 97. 85. 0.37 0.35 0.11 51.1 0.94 138.9 999 53.1 0.85 STMOBB 26003 0. 1515. 0. 0. 1-127. 1912. 97. 97. 85. 0.30 0.35 0.26 68.0 1.25 157.5 66 44.5 0.85 STMOBB 26003 0. 1515. 0. 0. 1-127. 1912. 97. 97. 85. 0.30 0.35 0.26 68.0 1.25 157.5 66 44.5 0.85 STMOBB 26003 0. 1592. 0. 01308. 2665. 97. 116. 5.4 0.35 0.30 163.8 3.01 368.9 0 71.1 1.15 STMT 26003 0. 1592. 0. 0. 284. 397. 97. 97. 7.72 0.35 0.30 163.8 3.01 368.9 0 71.1 1.15 STMT 26003 0. 1557. 302. 0. 1318. 1611. 97. 60. 4.65 0.35 0.32 1803. 3.94 479.6 6 58.4 0.95 THRSG 26003 0. 1557. 302. 0. 1318. 1611. 97. 60. 4.65 0.35 0.32 2803. 4.24 493.9 6 58.4 0.95 THRSG 26003 0. 90. 1768. 0. 148. 144. 97. 60. 4.65 0.35 0.14 260.9 3.84 466.1 0. 69.2 1.1 STIRL 26003 1692. 0. 0. 1-1692. 238. 1912. 97. 97. 3.02 0.35 0.14 264.4 3.02 382.5 0 81.1 1.2 STIRL 26003 1692. 0. 0. 1-1695. 359. 2318. 97. 147. 97. 3.02 0.35 0.21 82.2 1.51 165.8 0 77.8 1.25 STIRL 26003 0. 1692. 0. 0. 1-1625. 378. 2318. 97. 147. 3.02 0.35 0.26 101.9 1.87 175.2 0 81.6 1.2 STIRL 26003 0. 1692. 0. 0. 1-1625. 378. 2318. 97. 147. 3.02 0.35 0.26 101.9 1.87 175.2 0 81.6 1.2 STIRL 26003 0. 1692. 0. 0. 1-1625. 378. 331. 97. 147. 0.70 0.35 0.26 101.9 1.87 175.2 0 81.6 1.2 STIRL 26003 0. 1692. 0. 0. 1-1625. 378. 331. 97. 147. 0.70 0.35 0.26 101.9 1.87 175.2 0 81.6 1.2 STIRL 26003 0. 0. 1985. 0. 0. 0. 146871. 97. 97. 6.19 0.35 0.21 143.5 2.64 289.5 12 52.6 0.85 THR. 26003 0. 0. 1985. 0. 0. 359. 333. 97. 147. 0. 19. 0. 350. 0.25 142.5 2.83 269.0 7 59.7 0.95 11.8 STIRL 26003 0. 0. 1985. 0. 0. 359. 333. 97. 147. 0. 0. 350. 0. 0. 148. 0. 14						0.				97.	50.	3.61	0.35	0.16	68.5	1.26	177.7	44	51.2	0.82	12
STMOBB 26003 0 152. 1765 0 86. 147, A 97. 35. 3.37 0.35 0.11 64.0 1.18 174.1 45 54.4 0.85 17408 26003 0 152. 1765 0 86. 147, A 97. 35. 3.37 0.35 0.11 51.1 0.94 138.9 999 53.1 0.85 17408 26003 0 152. 1765 0 0 167. 1912. 97. 97. 35. 3.37 0.35 0.11 51.1 0.94 138.9 999 53.1 0.85 17408 26003 0 1515. 0 0 -1277. 1912. 97. 97. 5.08 0.35 0.26 68.0 1.25 157.5 66 44.5 0.71 171 171 171 18003 0 1592. 0 0 -1308. 2065. 97. 116. 5.34 0.35 0.30 1638. 3.01 368.9 0 71.1 1.71 171 171 171 171 171 171 171 1									<u>A</u>			3.49	0.35	0.16	53.0				49.4	<u> </u>	13
STMORD 28003 0. 152. 1765. 0. 86. 147. A 97. 35. 3.37 0.35 0.11 51.1 0.94 138.9 999 53.1 0.87 PRSTM 28003 0. 28. 1567. 0. 210. 345. 97. 85. 6.33 0.35 0.26 68.0 1.25 157.5 66 44.5 0.77 11STMT 28003 0. 1592. 0. 01277. 1912. 97. 97. 5.08 0.35 0.30 163.8 -3.01 368.9 0 71.1 1.15TMT 28003 0. 0. 1592. 0. 01308. 2065. 97. 116. 5.34 0.35 0.32 183.1 3.36 392.4 0 72.1 1.15TMT 28003 0. 0. 1592. 0. 284. 473. 97. 167. 7.22 0.35 0.30 212.9 3.91 479.6 6 58.8 0.35 11STMT 28003 0. 0. 1592. 0. 284. 473. 97. 116. 7.22 0.35 0.30 212.9 3.91 479.6 6 58.8 0.95 11STMT 28003 0. 0. 1592. 0. 284. 473. 97. 116. 97. 60. 4.65 0.35 0.32 230.5 4.24 493.9 6 58.4 0.95 11HRSG 28003 0. 90. 1766. 0. 148. 144. 97. 60. 4.65 0.35 0.14 164.4 3.02 382.5 0 81.1 1.35 11HRS 28003 0. 90. 1766. 0. 148. 144. 97. 60. 4.65 0.35 0.14 164.4 3.02 382.5 0 81.1 1.35 11HR 28003 1652. 0. 01692. 238. 1912. 97. 97. 3.02 0.35 0.32 218.9 34. 486.1 0 69.2 1.1 11HRSG 28003 1652. 0. 01692. 238. 1912. 97. 97. 3.02 0.35 0.26 82.9 1.51 165.8 0 77.8 1.25 11HR 28003 1652. 0. 01692. 238. 1912. 97. 97. 3.02 0.35 0.26 182.2 1.51 166.0 0 65 C 1.05 11HR 28003 1.05 0. 1995. 0. 01652. 1918. 1912. 97. 97. 3.02 0.35 0.26 182.2 1.51 166.0 0 65 C 1.05 11HR 28003 0. 1692. 0. 01652. 1918. 97. 147. 3.27 0.35 0.26 101.9 1.67 175.2 0 81.6 1.35 11HR 28003 0. 0. 1965. 0. 01625. 1918. 97. 147. 3.27 0.35 0.26 101.9 1.67 175.4 0 67.3 1.05 11HR 28003 0. 0. 1965. 0. 399. 333. 97. 147. 6.91 0.35 0.26 180.6 3.32 210.5 10.5 227.0 0.85 11HR 28003 0. 0. 1965. 0. 399. 333. 97. 147. 6.91 0.35 0.26 180.6 3.32 210.5 10.5 227.0 0.85 11HR 28003 0. 0. 1965. 0. 399. 333. 97. 147. 0.95 0.26 180.6 3.32 210.5 10.5 227. 0.85 11HR 28003 0. 0. 1965. 0. 399. 333. 97. 147. 0.95 0.26 180.6 3.32 210.5 10.5 227. 0.85 11HR 28003 0. 0. 1965. 0. 399. 333. 97. 147. 0.95 0.35 0.26 180.6 3.32 210.5 10.5 227. 0.85 11HR 28003 0. 0. 1965. 0. 399. 333. 97. 147. 0.95 0.35 0.26 180.6 3.32 210.6 0.0 1804. 0. 1804. 0. 1804. 0. 1804. 0. 1804. 0. 1804. 0. 1804. 0. 1804. 0. 1804. 0. 1804. 0. 1804. 0. 1804. 0. 1804. 0.					510.	Ο.	-1169.	1403.		97.	35.	1.44	0.35	0.11	32.6	0.60	88.5	-15	65.9	1.06	14
PRESID 26003 0. 28. 1567. 0. 210. 345. 97. 85. 6.03 0.35 0.26 68.0 1.25 157.5 66 44.5 0.7. IISTHI 28003 0. 1515. 0. 01277. 1912. 97. 97. 5.08 0.35 0.30 163.8 3.01 368.9 0 71.1 1.1 IISTHI 28003 0. 1592. 0. 01308. 2665. 97. 116. 5.34 0.35 0.32 183.1 3.36 392.4 0 72.1 1.16 IISTHI 28003 0. 0. 1515. 0. 238. 397. 97. 97. 7.72 0.35 0.30 212.9 3.91 479.6 6 58.8 0.9 IISTHI 28003 0. 0. 1557. 302. 0. 284. 473. 97. 116. 7.82 0.35 0.30 212.9 3.91 479.6 6 58.8 0.9 IISTHI 28003 0. 90. 1579. 302. 01318. 1611. 97. 60. 4.65 0.35 0.14 208.9 3.84 486.1 0 69.2 1.1 IISTRI 28003 1. 90. 1568. 0. 148. 144. 97. 60. 7.05 0.35 0.14 208.9 3.84 486.1 0 69.2 1.1 IISTRI 28003 1905. 0. 01865. 359. 2318. 97. 47. 3.27 0.35 0.30 2.6 101.9 1.87 175.2 0 81.6 1.3 IISTRI 28003 0. 1692. 0. 01463. 1912. 97. 97. 47. 3.27 0.35 0.26 101.9 1.87 175.2 0 81.6 1.3 IISTRI 28003 0. 1692. 0. 01685. 1912. 97. 97. 147. 3.27 0.35 0.26 102.0 1.87 175.4 0 67.3 1.0 IISTRI 28003 0. 1692. 0. 01685. 1912. 97. 97. 147. 3.27 0.35 0.26 102.0 1.87 175.4 0 67.3 1.0 IISTRI 28003 0. 1692. 0. 01685. 1912. 97. 97. 147. 3.27 0.35 0.26 102.0 1.87 175.4 0 67.3 1.0 IISTRI 28003 0. 0. 1692. 0. 288. 221. 97. 97. 147. 6.91 0.35 0.26 102.0 1.87 175.4 0 67.3 1.0 IISTRI 28003 0. 0. 1692. 0. 288. 221. 97. 97. 147. 6.91 0.35 0.26 102.0 1.87 175.4 0 67.3 1.0 IISTRI 28003 0. 0. 0. 1692. 0. 288. 221. 97. 97. 147. 6.91 0.35 0.21 182.3 1.37 193.6 4 63.0 1.0 IISTRI 28003 0. 0. 0. 1985. 0. 359. 333. 97. 147. 6.91 0.35 0.21 183.5 2.64 289.5 12 52.6 0.85 IISTRI 28003 0. 0. 0. 1985. 0. 359. 333. 97. 147. 6.91 0.35 0.26 102.0 1.87 175.4 0 67.3 1.0 IISTRI 28003 0. 0. 0. 1985. 0. 359. 333. 97. 147. 6.91 0.35 0.26 102.0 1.87 175.4 0 67.3 1.0 IISTRI 28003 0. 0. 0. 1985. 0. 359. 333. 97. 147. 6.91 0.35 0.26 102.0 1.87 175.4 0 67.3 1.0 IISTRI 28003 0. 0. 0. 1985. 0. 359. 333. 97. 147. 6.91 0.35 0.26 102.0 1.87 175.4 0 67.3 1.0 IISTRI 28003 0. 0. 0. 1985. 0. 359. 333. 97. 147. 6.91 0.35 0.26 102.0 1.87 175.4 0 67.3 1.0 IISTRI 28003 0. 0. 0. 1985. 0. 359. 333. 97. 1				. — .	1765.	0.	86.	147.	F	97.	35.	3.37	0.35	0.11	64.0	1.18	174.1	45	54.4	0,88	3 11:
TISTHT 28003 0. 1515. 0. 01277. 1912. 97. 97. 5.08 0.35 0.30 163.8 3.01 368.9 0 71.1 1.1 TISTHT 28003 0. 1592. 0. 01308. 2965. 97. 116. 5.34 0.35 0.32 183.1 3.36 392.4 0 72.1 1.10 TISTHT 28003 0. 0. 1515. 0. 238. 397. 97. 97. 7.72 0.35 0.30 212.9 3.91 479.6 6 58.8 0.91 TISTHT 28003 0. 0. 1592. 0. 284. 473. 97. 116. 7.82 0.35 0.30 212.9 3.91 479.6 6 58.8 0.91 TISTHT 28003 0. 0. 1592. 0. 284. 473. 97. 116. 7.82 0.35 0.30 212.9 3.91 479.6 6 58.8 0.91 TISTHT 28003 0. 90. 1768. 0. 148. 144. 97. 60. 7.05 0.35 0.14 164.4 3.02 382.5 0 81.1 1.3 TISTHT 28003 0. 90. 1768. 0. 148. 144. 97. 60. 7.05 0.35 0.14 164.4 3.02 382.5 0 81.1 1.3 TISTHT 28003 19.2 0. 01692. 238. 1912. 97. 97. 3.02 0.35 0.21 82.2 1.51 165.8 0 77.8 1.25 11RL 28003 1985. 0. 01695. 359. 2316. 97. 147. 3.27 0.35 0.26 101.9 1.67 175.2 0 81.6 1.3 TISTHT 28003 0. 1692 0. 01625. 3718. 97. 97. 3.02 0.35 0.21 82.3 1.51 166.0 0 65.2 1.0 STIRL 28003 0. 1692 0. 01625. 3718. 97. 147. 3.27 0.35 0.26 102.0 1.87 175.4 0 67.3 1.00 STIRL 28003 0. 1692 0. 238. 221. 97. 97. 6.19 0.35 0.26 102.0 1.87 175.4 0 67.3 1.00 STIRL 28003 0. 0. 1692 0. 238. 221. 97. 97. 6.29 0.35 0.21 143.5 2.64 289.5 12 52.6 0.85 STIRL 28003 0. 0. 1895. 0. 2004 0. 23891. A 97. 97. 7.28 0.35 0.26 180.6 3.32 310.5 10 52.7 0.85 HEGTBS 28003 0. 0. 1895. 0. 2004 0. 23891. A 97. 97. 7.28 0.35 0.26 180.6 3.32 310.5 10 52.7 0.85 HEGTBS 28003 0. 0. 1801. 0. 184877.9 A 97. 77. 28 0.35 0.07 172.4 3.17 293.6 4 63.0 1.00 HEGTBS 28003 0. 0. 1957. 0. 23845. A 97. 97. 6.85 0.35 0.09 154.2 2.83 269. 7 59.7 0.98 HEGTBO 28003 0. 0. 1959. 0. 2358. 0. 607114. A 97. 247. 10.27 0.35 0.11 134.3 2.47 236.4 10 55.8 0.95 HEGTBO 28003 0. 0. 1878. 0. 238. 315. 97. 97. 7.6 0.5 0.5 0.5 0.11 134.3 2.47 236.4 10 55.8 0.95 HEGTBO 28003 0. 0. 1899. 0. 2454. A 97. 100. 6.01 0.35 0.11 134.3 2.47 236.4 10 55.8 0.95 HEGTBO 28003 0. 0. 1878. 0. 238. 315. 97. 97. 7.6 0.5 0.5 0.5 0.11 134.3 2.47 236.4 10 55.8 0.95 HEGTBO 28003 0. 0. 1878. 0. 238. 318. 97. 97. 7.7 6.05 0.5 0.5 0.11 134.3 2.49 241.3 10 65				152.	1765.	0.	86.	147.	Å	97.	35.	3.37	0.35	0.11	51.1	0.94	138.9	999	53.1	0.85	12
TISTHT 28003 0 . 1592 0 . 01308 2065 97 . 118 . 5.34 0.35 0.32 183.1 3.38 392.4 0 72.1 1.15 1187 128003 0 . 0 . 1515 0 . 238 . 397 . 97 . 97 . 772 0.35 0.30 212.9 3.91 479.6 6 58.8 0.92 1187 1187 28003 0 . 0 . 1592 0 . 284 473 97 . 16 . 7.82 0.35 0.32 230.5 4.24 493.9 6 58.4 0.9 1187 28003 0 . 1597 . 302 01318 1611 . 97 . 60 . 4.65 0.35 0.14 164.4 3.02 382.5 0 81.1 1.3 . 17 . 17 . 18 . 18 . 18 . 18 . 18 . 18					1567.	0.	210.	345.			86.	6.03	0.35	0.26	68.0	1.25	157.5	66	44.5	0.72	13
TISTMY 28003 0. 0. 1595. 0. 238. 397. 97. 97. 7.72 0.35 0.30 212.9 3.91 479.6 6 58.4 0.95 TISTMY 28003 0. 0. 1592. 0. 284. 473. 97. 16. 7. 82 0.35 0.30 220.5 4.24 493.9 6 58.4 0.95 TIHRSG 28003 0. 1557. 302. 01318. 1611. 97. 60. 4.65 0.35 0.14 164.4 3.02 382.5 0. 81.1 1.3 TIRL 28003 1692. 0. 0. 1768. 0. 148. 144. 97. 60. 7. 05 0.35 0.14 128.9 3.84 486.1 0. 69.2 11.3 TIRL 28003 1692. 0. 01862. 338. 1912. 97. 97. 3.02 0.35 0.21 82.2 1.51 165.8 0. 77.8 1.25 TIRL 28003 1905. 0. 01855. 359. 2318. 97. 147. 3.27 0.35 0.26 101.9 1.67 175.2 0. 81.6 1.3 TIRL 28003 0. 1692. 0. 01453. 1912. 97. 97. 3.02 0.35 0.26 101.9 1.67 175.2 0. 81.6 1.3 TIRL 28003 0. 1692. 0. 01625. 278. 97. 147. 3.27 0.35 0.26 101.9 1.67 175.2 0. 81.6 1.3 TIRL 28003 0. 1695. 0. 01625. 278. 97. 147. 3.27 0.35 0.26 102.0 1.87 175.4 0. 65.3 1.0 STIRL 28003 0. 1692. 0. 238. 221. 97. 97. 61.9 0.35 0.25 182.3 1.51 166.0 0. 65.2 1.0 STIRL 28003 0. 0. 1692. 0. 238. 221. 97. 97. 6.19 0.35 0.25 182.3 1.51 166.0 0. 65.2 1.0 STIRL 28003 0. 0. 1955. 0. 359. 333. 97. 147. 6.91 0.35 0.25 180.6 3.32 310.5 10. 52.7 0.85 STIRL 28003 0. 0. 0. 1905. 0. 359. 333. 97. 147. 6.91 0.35 0.25 180.6 3.32 310.5 10 52.7 0.85 STIRL 28003 0. 0. 1905. 0. 359. 333. 97. 147. 6.91 0.35 0.25 180.6 3.32 310.5 10 52.7 0.85 STIRL 28003 0. 0. 1905. 0. 23891. A 97. 97. 7.28 0.35 0.07 172.4 3.17 293.6 4 63.0 1.0 STIRL 28003 0. 0. 1905. 0. 23891. A 97. 97. 7.28 0.35 0.07 172.4 3.17 293.6 4 63.0 1.0 STIRL 28003 0. 0. 1905. 0. 23891. A 97. 97. 7.56. 50. 35 0.35 0.12 749.6 13.77 319.4 0 124.6 2.0 STIRL 28003 0. 0. 1957. 0. 23891. A 97. 97. 7.6 50. 0.35 0.12 749.6 13.77 319.4 0 124.6 2.0 STIRL 28003 0. 0. 1957. 0. 23845. A 97. 97. 6.65 0.35 0.35 0.13 244.7 4.50 256.3 3 66.7 1.0 STIRL 28003 0. 0. 1915. 0. 23844. A 97. 100. 6.01 0.35 0.13 124.7 4.50 256.3 3 66.7 1.0 STIRL 28003 0. 0. 1939. 0. 2454. A 97. 100. 6.01 0.35 0.35 0.13 124.7 4.50 256.3 3 66.7 1.0 STIRL 28003 0. 0. 0. 1598. 0. 238. 34. 49. 97. 77. 77. 77. 77. 77. 77. 77. 77. 7						0.		1912.		97.	97.	5.08	0.35	0.30	163.8	3.01	368.9	0	71.1	1.14	14
TISTHY 28003 0 0 1557 302 0 -1318 1611 97 60 4.65 0.35 0.32 230.5 4.24 493.9 6 58.4 0.9 1HRS6 28003 0 1557 302 0 -1318 1611 97 60 4.65 0.35 0.14 164.4 3.02 382.5 0 81.1 1.3 11HRS6 28003 0 90 1768 0 148 144 97 60 7.05 0.35 0.14 164.4 3.02 382.5 0 81.1 1.3 11HRS6 28003 1692 0 0 -1692 238 1912 97 97 30.2 0.35 0.21 82.2 1.51 165.8 0 77.8 1.25 171RL 28003 1955 0 0 -1985 359 2318 97 147 3.27 0.35 0.26 101.9 1.87 175.2 0 81.6 1.3 171RL 28003 1955 0 0 1965 0 0 -1453 1912 97 97 30.2 0.35 0.21 82.3 1.51 165.6 0 76 81.6 1.3 171RL 28003 0 1692 0 0 -1453 1912 97 97 30.2 0.35 0.21 82.3 1.51 166.0 0 65.2 1.00 171RL 28003 0 0 1965 0 0 -1692 0 238 221 97 97 97 3.02 0.35 0.21 82.3 1.51 166.0 0 65.3 1.00 171RL 28003 0 0 0 1692 0 238 221 97 97 97 3.02 0.35 0.21 82.3 1.51 166.0 0 65.3 1.00 171RL 28003 0 0 0 1692 0 238 221 97 97 97 3.02 0.35 0.21 143.5 2.64 289.5 12 52.6 0.8 166.0 183 184 184 184 184 184 184 184 184 184 184				1592.	0.	0.	-1308,			97.	116.	5.34		0.32				O	72.1	1.16	13
THRISG 20003 0, 1557, 302, 0, -1318, 1611, 97, 60, 4,65 0,35 0,14 2089, 3.84 486,1 0, 692, 1,1 1,31 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1				0.		0.				97.	97.	7.72	0.35	0.30	212.9		479.6	6	58.8	0.95	13
TIHRS 28003	TISTMT	28003	3 0.			0.		473.		97.	116.	7.82	0.35	0.32	230.5	4.24	493.9	6	58.4	0.94	13
STIRL 28003 1692 0 0 -1692 238 1912 97 97 3.02 0.35 0.21 82.2 1.51 165.8 0 77.8 1.25 STIRL 28003 1905 0 0 -1985 359 2318 97. 147. 3.27 0.35 0.26 101.9 1.87 175.2 0 81.6 1.35 STIRL 28003 0 1692 0 0 -1453 1912 97 97 3.02 0.35 0.21 82.3 1.51 166.0 0 65.5 1.05 STIRL 28003 0 1985, 0 0 -1625 1718 97 147. 3.27 0.35 0.26 102.0 1.87 175.4 0 67.3 1.05 STIRL 28003 0 1985, 0 0 -1625 1718 97 147. 3.27 0.35 0.26 102.0 1.87 175.4 0 67.3 1.05 STIRL 28003 0 0 0 1692 0 238 221 97 97 97 6.19 0.35 0.21 143.5 2.64 289.5 12 52.6 0.85 STIRL 28003 0 0 0 1895 0 359 333 97. 147. 6.91 0.35 0.21 143.5 2.64 289.5 12 52.6 0.85 STIRL 28003 0 0 0 1805 0 0 2004 0 238 -91 A 97 97 97 7. 7.28 0.35 0.06 102.0 1.87 175.4 0 67.3 1.05 STIRL 28003 0 0 0 8010 0 1848 -70.9 A 97 97 7. 7.28 0.35 0.07 172.4 3.17 293.6 4 63.0 1 0.05 HEGT65 28003 0 0 0 8010 0 1848 -70.9 A 97 97 7. 7.28 0.35 0.07 172.4 3.17 293.6 4 63.0 1 0.05 HEGT60 28003 0 0 0 3258 0 607 -114 A 97 97 97 6.55 0.35 0.09 154.2 2.83 289.0 7 59.7 0.95 HEGT60 28003 0 0 0 1939 0 245 -4 A 97 97 6.25 0.35 0.12 244.7 4.50 256.3 3 66.7 1.07 HEGT00 28003 0 0 0 1939 0 245 -4 A 97 100. 6.10 0.35 0.11 135.4 2.49 241.3 10 56.3 0.91 FCMCCL 28003 0 0 0 1598 0 238 315. 97 97 7.76 0.35 0.13 244.7 4.50 256.3 3 66.7 1.07 HEGTO 28003 0 0 0 1598 0 238 315. 97 97 7.76 0.35 0.26 133.0 2.44 284.0 13 52.1 0.85 FCMCCL 28003 0 0 0 1578 0 238 334 97 97 7.76 0.35 0.26 133.0 2.44 284.0 13 52.1 0.85 FCMCCL 28003 0 0 0 1578 0 238 334 97 97 7.76 0.35 0.25 133.0 2.44 284.0 13 52.1 0.85 FCMCCL 28003 0 0 0 1578 0 238 334 97 97 7.76 0.35 0.25 133.0 2.44 284.0 13 52.1 0.85 FCMCCL 28003 0 0 0 1578 0 238 334 97 97 7.76 0.35 0.25 133.0 2.44 284.0 13 52.1 0.85 FCMCCL 28003 0 0 0 1578 0 238 334 97 97 7.76 0.35 0.25 133.0 2.44 284.0 13 52.1 0.85 FCMCCL 28003 0 0 0 1578 0 238 334 97 97 7.76 0.35 0.25 133.0 2.44 284.0 13 52.1 0.85 FCMCCL 28003 0 0 0 1578 0 0 238 334 97 97 7.76 0.35 0.25 135.0 22 23.2 14 1.34 11.1 9 2 24.0 14 1.2 14 1.2 14 1.2 14 1.2 14 1.2 14 1.2 14 1.2 14 1.2 14 1.2 14 1.2 14 1.2 14 1.2 14 1.2 14 1.2 14 1.2 14 1.2 14 1.2				1557.	302.	0.	-1318.	1611.		97.	60.	4.65	0.35	0.14	164.4	3.02	382.5	0	81.1	1.31	115
STIRL 28003 1905 0 0 -1985 359 2318 97 147 3.27 0.35 0.26 101.9 1.87 175.2 0 81.6 1.3 STIRL 28003 0 1692 0 0 0 -1453 1912 97 97 3.02 0.35 0.26 102.0 1.87 175.2 0 81.6 1.3 STIRL 28003 0 1985 0 0 0 -1625 1.06 STIRL 28003 0 1985 0 0 0 -1625 1.06 STIRL 28003 0 0 1692 0 238 221 97 97 6.19 0.35 0.26 102.0 1.87 175.4 0 67.3 1.00 STIRL 28003 0 0 1985 0 359 333 97 147 6.99 0.35 0.26 102.0 1.87 175.4 0 67.3 1.00 STIRL 28003 0 0 0 1985 0 359 333 97 147 6.99 0.35 0.26 102.0 1.87 175.4 0 67.3 1.00 STIRL 28003 0 0 0 1985 0 359 333 97 147 6.99 0.35 0.26 102.0 1.87 175.4 0 67.3 1.00 STIRL 28003 0 0 0 1985 0 359 333 97 147 6.99 0.35 0.26 102.0 1.87 175.4 0 67.3 1.00 STIRL 28003 0 0 0 2004 0 238 -91. A 97. 97 7.28 0.35 0.07 172.4 3.17 293.6 4 63.0 1.01 HEGT65 28003 0 0 0 8010 0 1848 -769 A 97. 97 7.28 0.35 0.07 172.4 3.17 293.6 4 63.0 1.01 HEGT60 28003 0 0 1957 0 238 -45. A 97. 97 6.85 0.35 0.09 154.2 2.83 269.0 7 53.7 0.96 HEGT60 28003 0 0 1916 0 238 -4. A 97. 97 6.25 0.35 0.09 154.2 2.83 269.0 7 53.7 0.96 HEGT00 28003 0 0 0 1916 0 238 -4. A 97. 97 6.25 0.35 0.13 244.7 4.50 256.3 3 66.7 1.00 HEGT00 28003 0 0 0 1999 0 2454. A 97. 97 6.25 0.35 0.11 135.4 2.49 241.3 10 56.3 0.91 HEGT00 28003 0 0 0 1598 0 238 315. 97 97 7.76 0.35 0.35 0.26 133.0 2.44 284.0 13 52.1 0.86 FCMCCL 28003 0 0 0 2501 0 437 577 97 7.76 0.35 0.35 0.30 195.1 3.59 283.1 13 44.4 0.75 FCSTCL 28003 0 0 0 2352 0 637 893 97 260 12.09 0.35 0.39 195.1 3.59 283.1 13 44.4 0.97 GTSGTC 28003 0 0 0 1598 0 0 0 138 315 97 97 7.76 0.35 0.27 137.6 2.55 297.6 12 52.1 0.86 FCMCCL 28003 0 0 0 1599 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TIHRSG	28003	30.	90.	1768.	0.	148.	144.		97.	60.	7.05	0.35	0.14	208.9	3.84	486.1	0	69.2	1.11	11
STIRL 28003	STIRL	28003	3 1692.	0.	0.	-1692.	238.	1912.		97.	97.	3.02	0.35	0.21	82.2	1.51	165.8	0	77.8	1.25	15
STIRL 28003	STIRL	28003	1985.	0.	<u> </u>	-1985.	359.	2318.		97.	147.	3.27	0.35	0.26	101.9	1.87	175.2	0	81.6	1.31	14:
STIRL 28003 0. 0. 1692. 0. 238. 221. 97. 97. 6.19 0.35 0.21 143.5 2.64 289.5 12 52.6 0.85 STIRL 28003 0. 0. 1935. 0. 359. 333. 97. 147. 6.91 0.35 0.26 180.6 3.32 310.5 10 52.7 0.85 HEGT85 28003 0. 0. 2004. 0. 23891. A 97. 97. 7.28 0.35 0.07 172.4 3.17 293.6 4 63.0 1.07 HEGT85 28003 0. 0. 8010. 0. 184875.9 A 97. 754. 28.13 0.35 0.12 749.6 13.77 319.4 0 124.6 2.01 HEGT60 28003 0. 0. 1957. 0. 23845. A 97. 97. 6.65 0.35 0.09 174.2 2.83 289.0 7 59.7 0.95 HEGT60 28003 0. 0. 1957. 0. 23845. A 97. 97. 6.25 0.35 0.11 135.4 2.49 241.3 10 56.3 0.91 HEGT00 28003 0. 0. 1916. 0. 2384. A 97. 97. 6.25 0.35 0.11 135.4 2.49 241.3 10 56.3 0.91 HEGT00 28003 0. 0. 1939. 0. 2454. A 97. 10. 6.01 0.35 0.11 134.3 2.47 236.4 10 55.8 0.91 FCMCCL 28003 0. 0. 1598. 0. 238. 315. 97. 97. 7.76 0.35 0.11 134.3 2.47 236.4 10 55.8 0.91 FCMCCL 28003 0. 0. 1578. 0. 238. 315. 97. 97. 7.76 0.35 0.21 134.3 3.24 240.0 13 52.1 0.86 FCMCCL 28003 0. 0. 1578. 0. 238. 334. 97. 97. 7.76 0.35 0.27 137.6 2.53 297.6 12 52.1 0.86 FCSTCL 28003 0. 0. 1578. 0. 238. 334. 97. 97. 7.61 0.35 0.27 137.6 2.53 297.6 12 52.1 0.86 FCSTCL 28003 0. 0. 1578. 0. 238. 334. 97. 97. 7.61 0.35 0.27 137.6 2.53 297.6 12 52.1 0.86 FCSTCL 28003 0. 0. 0. 2352. 0. 637. 893. 97. 260. 12.09 0.35 0.21 123.0 2.26 246.8 15 50.0 0.75 16GTST 28003 0. 0. 0. 2352. 0. 637. 893. 97. 260. 12.09 0.35 0.27 137.6 2.53 297.6 12 52.1 0.86 FCSTCL 28003 0. 0. 0. 2352. 0. 637. 893. 97. 260. 12.09 0.35 0.27 155.7 2.86 242.5 14 46.4 0.71 16GTST 28003 0. 0. 0. 1340. 0. 0. 1360. 1912. 97. 97. 2.26 0.35 0.27 155.7 2.86 242.5 14 46.4 0.71 16GTST 28003 0. 11.11.1 11.4 999 61.8 0.96 175004 28003 0. 12.09 0. 1360. 0. 0. 1360. 1912. 97. 97. 2.26 0.35 0.25 53.5 0.98 113.5 999 59.1 0.99 174.01 11.1 11.1 11.1 11.1 11.1 11.1 11.1	STIRL	28003	0.	1692	0.	0.	-1453.	1912.		97.	97.	3.02	0.35	0.21	82.3	1.51	166.0	0	65 ර	1.06	14
STIRL 28003 C. 0. 1985. O. 359. 333. 97. 147. 6.91 0.35 0.26 180.6 3.92 310.5 10 52.7 0.88 HEGT85 28003 O. 0. 2004. O. 23891. A 97. 97. 7.28 0.35 0.07 172.4 3.17 293.6 4 63.0 1.01 HEGT85 28003 O. 0. 8010. O. 1848709. A 97. 754. 28.13 0.35 0.12 749.6 13.77 319.4 O 124.6 2.01 HEGT60 28003 O. 0. 1957. O. 23845. A 97. 97. 6.85 0.35 0.09 154.2 2.83 269.0 7 53.7 0.98 HEGT60 28003 O. 0. 3258. O. 607114. A 97. 97. 6.85 0.35 0.09 154.2 2.83 269.0 7 53.7 0.98 HEGT00 28003 O. 0. 1916. C. 2384. A 97. 97. 6.25 0.35 0.11 135.4 2.49 241.3 10 56.3 0.91 HEGT00 28003 O. 0. 1939. O. 2454. A 97. 97. 6.25 0.35 0.11 135.4 2.49 241.3 10 55.8 0.91 HEGT00 28003 O. 0. 1598. O. 238. 315. 97. 97. 7.76 0.35 0.26 133.0 2.44 284.0 13 52.1 0.84 FCMCCL 28003 O. 0. 1598. O. 238. 315. 97. 97. 7.76 0.35 0.26 133.0 2.44 284.0 13 52.1 0.84 FCSTCL 28003 O. 0. 1578. O. 238. 334. 97. 97. 7.61 0.35 0.34 164.3 3.02 280.2 12 49.0 0.75 FCSTCL 28003 O. 0. 1578. O. 238. 334. 97. 97. 7.61 0.35 0.27 137.6 2.53 297.6 12 52.1 0.84 FCSTCL 28003 O. 0. 2352. O. 637. 893. 97. 97. 7.61 0.35 0.27 137.6 2.53 297.6 12 52.1 0.84 IGGTST 28003 O. C. 1701. O. 238. 211. 97. 97. 4.95 0.35 0.27 137.6 2.53 297.6 12 52.1 0.84 IGGTST 28003 O. C. 1701. O. 238. 211. 97. 97. 4.95 0.35 0.27 155.7 2.86 246.8 15 50.0 0.81 IGGTST 28003 O. 1667. O. 01449. 1912. 97. 97. 97. 2.10 0.35 0.29 73.1 1.34 111.7 2 62.6 1.01 IGGTST 28003 O. 1667. O. 01449. 1912. 97. 97. 2.26 0.35 0.29 73.1 1.34 111.7 2 62.6 1.01 IGGTACOB 28003 O. 1599. O. 01360. 1912. 97. 97. 2.10 0.35 0.35 0.35 0.99 107.4 999 59.4 0.94 IGTACOB 28003 O. 1600. O. 01380. 1912. 97. 97. 2.20 0.35 0.35 0.35 1.35 1.05 106.2 167 56.9 0.94 IGTACOB 28003 O. 1600. O. 01483. 2310. 97. 146. 2.02 0.35 0.35 0.35 0.35 1.30 11.3 13.5 999 59.1 0.95 IGTACOB 28003 O. 1600. O. 01483. 2310. 97. 146. 2.02 0.35 0.35 0.35 0.35 1.30 107.4 999 59.4 0.94 IGTACOB 28003 O. 1600. O. 01481. 2810. 97. 97. 2.20 0.35 0.35 0.35 1.30 107.4 111.4 999 59.5 0.95 IGTACOB 28003 O. 1600. O.	STIRL	28003	3 0.	1985.	O.	Ο.	-1625.	≥ 18.		97.	147.	3.27	0.35	0.26	102.0	1.87	175.4	0 -	67.3	1.08	138
HEGT165 28003	STIRL	28003	3 O.	.0.	1692.	Ο.	238.	221.		97.	97.	6.19	0.35	0.21	143.5	2.64	289.5	12	52.6	0.85	132
HEGT60 28003	STIRL	28003	G.	0.	1985.	0.	359.	333.		97.	147.	6.91	0.35	0.26	180.6	3.32	310.5	10	52.7	0.85	12
HEGTEG 28003 O. 0. 8010. 0. 1848769. A 97. 754. 28.13 0.35 0.12 749.6 13.77 319.4 0 124.6 2.01 HEGTEG 28003 O. 0. 1957. O. 23845. A 97. 97. 6.85 0.35 0.09 154.2 2.83 269.0 7 59.7 0.96 HEGTEG 28003 O. 0. 3258. O. 607114. A 97. 247. 10.27 0.35 0.13 244.7 4.50 256.3 3 66.7 1.02 146.6 28003 O. 0. 1916. C. 2384. A 97. 97. 6.25 0.35 0.11 135.4 2.49 241.3 10 56.3 0.91 MEGTOG 28003 O. 0. 1939. O. 2454. A 97. 100. 6.01 0.35 0.11 135.4 2.49 241.3 10 56.3 0.91 MEGTOG 28003 O. 0. 1598. O. 238. 315. 97. 97. 7.76 0.35 0.26 133.0 2.44 284.0 13 52.1 0.84 FCMCCL 28003 O. 0. 1598. O. 238. 315. 97. 97. 7.76 0.35 0.26 133.0 2.44 284.0 13 52.1 0.84 FCMCCL 28003 O. 0. 1578. O. 238. 334. 97. 97. 7.61 0.35 0.27 137.6 2.53 297.6 12 52.1 0.84 FGSTCL 28003 O. 0. 2352. O. 637. 893. 97. 260. 12.09 0.35 0.39 195.1 3.59 283.1 13 44.4 0.71 16GTST 28003 O. 0. 2352. O. 637. 893. 97. 260. 12.09 0.35 0.27 137.6 2.53 297.6 12 52.1 0.84 16GTST 28003 O. C. 1701. O. 238. 211. 97. 97. 4.95 0.35 0.27 137.6 2.53 297.6 12 52.1 0.84 16GTST 28003 O. 0. 6. 2192. O. 438. 388. 97. 179. 5.00 0.35 0.27 155.7 2.86 242.5 14 46.4 0.75 GTSCAR 28003 O. 1667. O. C. 1449. 1912. 97. 97. 4.95 0.35 0.22 155.7 2.86 242.5 14 46.4 0.75 GTACOB 28003 O. 1599. O. 01768. 2673. 97. 190. 2.45 0.35 0.29 73.1 1.01 111.7 99 61.8 0.95 GTACOB 28003 O. 1599. O. 01360. 1912. 97. 97. 2.26 0.35 0.25 53.5 0.99 113.5 99 59.1 0.95 GTACOB 28003 O. 1600. O. 01483. 2310. 97. 146. 2.02 0.35 0.35 0.25 53.5 0.99 113.5 999 59.1 0.95 GTACOB 28003 O. 1600. O. 01483. 2310. 97. 146. 2.02 0.35 0.35 0.35 0.99 113.5 999 59.1 0.95 GTACOB 28003 O. 1600. O. 01369. 1912. 97. 97. 2.21 0.35 0.25 53.5 0.99 113.5 999 59.1 0.95 GTACOB 28003 O. 1600. O. 01369. 1912. 97. 97. 2.20 0.35 0.35 0.35 0.39 137.3 1.05 106.2 167 56.9 0.95 GTACOB 28003 O. 1600. O. 01681. 2816. 97. 207. 2.58 0.35 0.35 0.35 1.40 104.4 999 59.5 0.95 GTACOB 28003 O. 1619. O. 01681. 2816. 97. 207. 2.58 0.35 0.35 0.30 130.4 104.4 999 59.5 0.95 GTACOB 28003 O. 1666. O. 01681. 2816. 97. 207. 2.58 0.35 0.35 0.	HEGT85	28003	3 0.	0.	2004.	0.	238.	-91.	A	97.	97.	7.28	Q.35	0.07	172.4	3.17	293.6	4	63.0	1.01	110
HEGTGO 28003	HEGT85	28003	3 0.	0.	8010.	0.	1848.			97.	754.	28.13	0.35	0.12	749.6	3.77	319.4	0	124.6	2.01	88
HEGTOO 28003	HEGT60	28003	ະ ວ.	0.	1957.	0.	238.	-45.	Α	97.	97.	6.85	0.35	0.09	154.2	2.83	269.0	7	59.7	0.96	115
HEGTOO 28003	HEGT60	28003	0.	0.	3258.	0.	607.	-114.	Α	97.	247.	10.27	0.35	0.13	244.7	4.50	256.3	3	66.7	1.07	99
FCMCCL 28003	HEGTOO	28003	0.	0,	1916.	C.	238.	-4.	A	97.	97.	6.25	0.35	0.11	135.4	2.49	241.3	10	56.3	0.91	12
FCMCCL 28003 O. 0. 2001. O. 437. 577. 97. 178. 10.16 0.35 0.34 164.3 3.02 280.2 12 49.0 0.75 FCSTCL 28003 O. 0. 1578. O. 238. 334. 97. 97. 7.61 0.35 0.27 137.6 2.53 297.6 12 52.1 0.84 FCSTCL 28003 O. 0. 2352. O. 637. 893. 97. 260. 12.09 0.35 0.39 195.1 3.59 283.1 13 44.4 0.71 166TST 28003 O. C. 1701. O. 238. 211. 97. 97. 4.95 0.35 0.21 123.0 2.26 246.8 15 50.0 0.81 166TST 28003 O. 6. 2192. O. 438. 388. 97. 179. 5.00 0.35 0.27 155.7 2.86 242.5 14 46.4 0.71 166TST 28003 O. 1687. O. C1449. 1912. 97. 97. 2.26 0.35 0.22 55.1 1.01 111.4 999 61.8 0.95 0TSOAR 28003 O. 1233. G. O1768. 2673. 97. 190. 2.45 0.35 0.29 73.1 1.34 111.7 2 62.6 1.01 0TACOB 28003 O. 1599. O. O1360. 1912. 97. 97. 2.11 0.35 0.26 50.3 0.92 107.4 999 58.4 0.94 0TACOB 28003 O. 1540. O. 01483. 2310. 97. 146. 2.02 0.35 0.25 53.5 0.98 113.5 999 59.1 0.95 0TAC12 28003 O. 1608. O. 01369. 1912. 97. 97. 2.20 0.35 0.35 0.30 68.6 1.26 114.8 26 57.4 0.92 0TAC12 28003 O. 1619. O. 01380. 1912. 97. 97. 2.20 0.35 0.35 0.25 53.5 0.98 113.5 999 59.1 0.95 0TAC12 28003 O. 1619. O. 01380. 1912. 97. 97. 2.21 0.35 0.25 53.6 0.99 113.1 999 59.5 0.96 0TAC16 28003 O. 1619. O. 01681. 2816. 97. 97. 2.21 0.35 0.25 53.6 0.99 113.1 999 59.5 0.96 0TAC16 28003 O. 1666. O. 016127. 1912. 97. 97. 2.16 0.35 0.23 74.0 1.36 107.9 10 60.8 0.98 0TWC16 28003 O. 2340. O. 01810. 2888. 97. 216. 2.49 0.35 0.32 74.0 1.36 107.9 10 60.8 0.98 0TWC16 28003 O. 2340. O. 01810. 2888. 97. 216. 2.49 0.35 0.32 74.0 1.36 107.9 10 60.8 0.98 0TWC16 28003 O. 2340. O. 01810. 2888. 97. 216. 2.49 0.35 0.32 74.0 1.36 107.9 10 60.8 0.98 0TWC16 28003 O. 2340. O. 01810. 2888. 97. 216. 2.49 0.35 0.32 74.0 1.36 107.9 10 60.8 0.98 0TWC16 28003 O. 2340. O. 01810. 2888. 97. 216. 2.49 0.35 0.32 74.0 1.36 107.9 10 60.8 0.98 0TWC16 28003 O. 2340. O. 01810. 2888. 97. 216. 2.49 0.35 0.32 74.0 1.36 107.9 10 60.8 0.98 0TWC16 28003 O. 2340. O. 01810. 2888. 97. 216. 2.49 0.35 0.32 74.0 1.36 107.9 10 60.8 0.98 0TWC16 28003 O. 2340. O. 01810. 2888. 97. 216. 2.49 0.35 0.35 0.32 74.	HEGTOO	28003	3 0.	0.	1939.	Ο.	245.	-4.	Α	97.	100.	6.01	0.35	0.11	134.3	2.47	236.4	10	55.8	0.90	111
FCSTCL 28003	FCMCCL	28003	3 0.	0.	1598.	ο.	238.	315.		97.	97.	7.76	0.35	0.26	133.0	2.44	284.0	13	52.1	0.84	139
FCSTCL 28003	FCMCCL	28003	0.	ο.	2001.	0.	437.	577.		97.	178.	10.16	0.35	0.34	164.3	3.02	280.2	12	49.0	0.79	129
FCSTCL 28003	FCSTCL	28003	0.	0.	1578.	0.	238.	334.		97.	97.	7.61	0.35					12		0.84	~ ~
IGGTST 28003 0. 6. 2192. 0. 438. 388. 97. 179. 5.00 0.35 0.27 155.7 2.86 242.5 14 46.4 0.75 GTSGAR 28003 0. 1687. 0. 0. -1449. 1912. 97. 97. 2.26 0.35 0.22 55.1 1.01 111.4 999 61.8 0.95 GTSGAR 28003 0. 2233. 0. 0. -1768. 2673. 97. 190. 2.45 0.35 0.29 73.1 1.34 111.7 2 62.6 1.01 GTAC08 28003 0. 1599. 0. 0. -1360. 1912. 97. 97. 2.11 0.35 0.26 50.3 0.92 107.4 999 58.4 0.94 GTAC12 28003 0. 1508. 0. 0. -1483. 2310. 97. 146. 2.02 0.35 0.25	FCSTCL	28003	0.	0.	2352.	О.	637.	893.		97.	260.	12.09	0.35	0.39	195.1	3.59	283.1		44.4	0.71	12
IGGTST 28003 O. £ 192. O. 438. 388. 97. 179. 5.00 0.35 0.27 155.7 2.86 242.5 14 46.4 0.75 GTSUAR 28003 O. 1687. O. C. -1449. 1912. 97. 97. 2.26 0.35 0.22 55.1 1.01 111.4 999 61.8 0.95 GTSUAR 28003 O. 2233. G. O. -1768. 2673. 97. 190. 2.45 0.35 0.29 73.1 1.34 111.7 2 62.6 1.01 GTAC03 26003 O. 1599. O. 0. -1360. 1912. 97. 97. 2.11 0.25 0.26 50.3 0.92 107.4 999 58.4 0.94 GTAC12 28003 O. 1540. O. 0. -1483. 2310. 97. 146. 2.02 0.35 0.35 0.98 113.5 999 59.1 0.92	IGGTST	28003	в О.	С,	1701.	0.	238.	211.		97.	97.	4.95	0.35	0.21	123.0	2.26	246.8	15	50.0	0.81	133
GTSUAR 28003	IGGTST	28003	0.	<u> </u>	2192.	O.	438.	388.		97.	179.	5.00	0.35				242.5	14	46.4	0.75	12
GTSCAR 28003	GTSUAR	28003	0.	1687.	0.	C.	-1449.	1912.		97.	97.	2.26	0.35			1.01		999	61.8	0.99	
GTACOB 28003	GTSCAR	28003	0.	2233.	G.	ο.	-1768.	2673.		97.	190.	2.45	0.35							1.01	14:
GTACOB 26003	GTACO8	28003	0.	1599.	0.	ο.	-1360.	1912.		97.		2.11						999		0.94	
G7AC12 28003	GTACO8	28003	0.	1340.	0.	0.	-1483.	2310.		97.	146.	2.02	0.35	0.31	57.3	1.05	106.2	167	56.9	0.92	15
G7AC12 28003	GTAC12	26003	0.	1608.	0.	0.	-1369.	1912.		97.	97.	2.20	0.35	0.25	53.5	0.98			59.1	0,95	16
GTAC16 28003	GTAC12	28003	0.			o.				97.										0.92	
GTAC16 28003																				0.96	
GTWC16 28003																				0.94	
GTWC16 28003						0.														0.98	
				1674.	o.			1912.		97.	97.	2.42	0.35	0.22	55.7		113.6	22	61.8	0.99	
																					_

DATE 06/07/79 I&SE-PEO-ADV-DES-ENGR

							COGEN**		COGEN	MSD	POWER	FESR	CAPITAL	NORM	\$/KW	RÕI	LEVL	NORM WRTH
ECS	PROCS	DISTIL				RESIDL	COAL	REOD	POWER	Q Q/1	/HEAT		COST	COST	EQVL	,,,,,,	CHRG	ENRG
								MW	MW		RATIO		*10**6			(%)		
CC162	6 28003	0.	3005.	٥.	0.	-2201.	3807.	97.	328.	3.27	0.35	0.35	95.0	1.74	107.8	4	62.6	1.01 133
	2 28003		1651,	Ο.	0.	-1412.	1912.	97.	97.	2.44	0.35	0.23	57.6	1.06	119.1	21	61.3	0.99 157
	2 28003		2741.	Ο.	0.	-2019.	3534.	97.	295.	3.23	0.35	0.36	97.5	1.79	121.4	7	61.2	0.98 136
	2 28003		<u> 1646.</u>	<u> </u>	<u> </u>	<u>-1408.</u>	1912.	97.	97.	2.42	0.35	0.23	55.8	1.03	115.7	51	60.9	0.98 158
	2 28003		2718.	0.		~1999.	3520.	97.	293.	3.15	0.35	0.36	91.3	1.68	114.6	9	60.0	0.97 137
	2 28003		1610.			-1371.	1912.	97.	97.	2.28	0.35	0.25	50.5	0.93	107.0		59.0	0.95 162
-	2 28003	-	2297.	0.		~1728.	3019.	97.	232.	2,61	0.35	0.36	71.9	1.32	106.9	24	56.3	0.91 146
	5 28003 5 28003		1971. 72846.	<u>0.</u> 0.		-1733. -52898.	<u>1912.</u> 67898.	97. 97.	97. 9134.	3.32 122.67	0.35	0.08	61.5	1.13 36.02	91.8	<u> </u>	72.6	1.17 142
	0 28003		1894.	0. 0.		-5269 6 .	1912.	97. 97.	97.	2.89	0.35	0.17	55,5	1.02	100.1	_	69.1	1.11 147
	0 28003		7147.	0.		-5302	7290.	97.	752.	10.23	0.35	0.22	193.4	3.55	92.3	999	125.9	2.03 112
	\$ 28003		1858.	0.		-1620.	1912.	97. 97.	97.	2.89	0.35	0.14	54.1	1.00	99.4	_	67.8	1.09 150
	\$ 28003		4492.	0.	0.		4738.	97.	441.	6.71	0.35	0.23	124.6	2.29	94.6	0	93.4	1.50 117
	3 28003		1792.	Ö.		-1554.	1912.	97.	97.	3.31	0.35	0.17	92.4	1.70	176.0	à	70.2	1.13 142
-	3 28003		4620.	o.	Ö,		5238.	97.	502.	8.86	0.35	0.29	315.2	5.79	232.8	ŏ	107.4	1.73 115
DEHTE	M 28003	0.	1617.	ี ข.	Ο.	-1379.	1912.	97.	97.	3.40	0.35	0.25	93.4	1.72	197.2	0	64.8	1.04 150
DEHTE	14 28003	0.	2210.	0.	0.	-1691.	2853.	97.	212.	4.87	0.35	0.34	160.0	2.94	247.0	0	69.0	1.11 136
DESCA	3 28003		Ο.	٥.	-1848.	238.	1912.	97.	97.	3.71	0.35	0.14	108.3	1.99	199.9	0 -	87.3	1.41 142
DESOA	3 28003	5539.	Ο.	0.	-5539.	1437.	5925.	97.	586.	12.17	0.35	0.25	445.1	8.18	274.2	0	176.6	2.84 132
	3 28003		1848.	0.		-1610.	1912.	97.	97.	3.71	0.35	0.14		1.99	199,9	0	74.0	1.19 137
	3 26003		5539.	0.	0.		5925.	97.	586.	12.17	0.35	0.25	445.1	8.18	274.2	0	136.8	2.20 116
	D 28003		o.	Ω.		238.	1912.	97.	97.	2.11	0.35	0.24	49.5	0.91	103.3		71.2	1.15 166
	D 28003		0.	o.		432.	2559.	97.	176.	2.11	0.35	0.31	60.1	1.10	99.8	0	72.8	1.17 156
	8 28003		<u> </u>	<u> </u>		238.	1912.	<u>97.</u>	97.	2.42	0.35	0.22	61.2	1.12	124.5	<u> </u>	74.3	1.20 160
	8 28003 2 28003		0. 0.		-2816.	723. 238.	3533. 1912.	97. 97.	295. 97.	3.46 2.38	0.35 0.35	0.34	111.0 59.9	2.04 1.10	134.5	0	73.7	1.37 140 1.19 161
	2 28003		0.	0.	-1663. -2735.	704.	3470.	97. 97.	287.	3.37	0.35	0.23	107.7	1.98	134.3	0	83.2	1.34 142
	6 28003		0.	0.		238.	1912	97.	207. 97.	2.48	0.35	0.23	63.8	1.17	131.2	Ö	74.0	1.19 160
	6 28003		<u> </u>	- 0,		656.	3309.	97.	267.	3.37	0.35	0.34	108.2	1.99	141.3	- 6	82.5	1.33 143
-	8 28003		o.	0.	-1660.	238.	1912.	97.	£07.	2.26	0.35	0.23	55.4	1.02	113.8	999	73.0	1.17 163
	8 28003		· 0.	Ö.		542.	2928.	97.	221.	2.63	0.35	0.32	79.6		115.4	ō	78.0	1,26 149
-	2 28003		č.	ō.	-1662.	238.	1912.	97.	97.	2.30	0.35	0.23	56.7		116.4	0	73.2	
	2 28003		Ō,	ō.		581.	3059.	97.	237.	2.79	0.35	0.33	85.8	1.58	119.6	0	79.3	1.28 147
	6 26003		0.	0.	-1652.	238.	1912.	97.	97.	2.35	0.35	0.23	58.8	1.08	121.5	0	73.1	1.18 162
GTR21	6 28003	2459.	0.	0.	-2459.	596.	3108.	97.	243.	2,96	0.35	0.34	92.3	1.70	128.1	0	79.3	1.28 146
	8 28003		0.	0.		238.	1912.	97.	97.	2.34	0.35	0.19	57.5	1.06	112.0	0	76.8	1.24 158
	8 28003	- ,	0.	0.		861.	3998.	97.	351.	3,53	0.35	0.30	111.9	2.06	111.9	0	97.3	1.57 135
	2 25003		0.	0.		238.	1912.	97.	97.	2,33	0.35	0.20	57.4	1.06	113.9	0	75.6	1.22 159
	2 28003		0.	0.		874.	4040.	97.	356.	3,54	0.35	0.32	112.7		115.1	0	93.5	1.50 136
	6 28003		0,		-1715.	238.	1912.	<u>97.</u>	97.	2.36	0.35	0.20	58.5	1.08	116.5	<u> </u>	75.5	
	6 28003		0.	0.	:	808,	3820.	97.	33 0.	3.29	0.35	0.32	103.3		111.9	0	90.2	
	8 28003		0.		-1780	238.	1912.	97.	97.	2,30	0.35	0.17	55.7 86.1	1.02	106.8 99.6	999	77.7 92.7	1.25 157
	8 28003 2 28003		0.		-2952. -1706.	658. 238.	3316. 1912.	97. 97.	268. 97.	2.85 2.28	0.35 0.35	0.26	86.1 55.4	1.58 1.02	110.9	_	74.8	1.49 141 1.20 161
GIRSI	£ 20003	1/06.	0.	<u> </u>	-1700.	230,	1916.	97.	9/.	2.20	9.33	J. E1	33.4	<u> </u>	110.3	333	<u> </u>	1,20 101

DATE 06/07/79 I&SE-PEO-ADV-DES-E#GR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECCHOMICS

FAGE 54

GTR312 20003 2857. 0, 02887. 702. 3465. 97. 286. 2.89 0.35 0.31 88.2 1.62 105.3 0 85.5 1.38 6TR316 20003 1708. 0, 01708. 238. 1912. 97. 97. 2.31 0.35 0.21 56.7 1.04 113.3 0 75.0 1.21 GTR316 20003 2038. 0, 028036. 691. 3429. 97. 282. 2.95 0.35 0.31 90.7 1.67 109.1 0 86.0 1.38 6CPAID 270733 1812. 0, 01812. 238. 1912. 97. 97. 12.29 0.33 0.16 86.0 1.58 182.0 0 92.2 1.48 6CPAID 270730 1812. 0, 01812. 238. 1912. 97. 97. 12.29 0.33 0.16 86.0 1.58 182.0 0 92.2 1.48 6CPAID 270730 1698. 0, 01828. 238. 1912. 97. 97. 11.69 0.35 0.28 327.9 6.03 200.9 0 29.3 1.48 6CPAID 270730 1698. 0, 01828. 288. 1912. 97. 97. 11.69 0.35 0.28 327.9 6.03 200.9 0 29.3 1.48 6CPAID 270730 1698. 0, 01828. 288. 1912. 97. 97. 11.69 0.35 0.28 327.9 5.03 200.9 0 29.3 1.22 37. 491. 31.09 0.35 0.35 299.7 5.51 251.6 0 162.7 2.62	ECS	PROCS	**CC	GENERAT	COAL	E** **N DISTIL	OCOGEN -	COGEN**	POWER REGD MW	POWER MW	68M	/HEAT	I	CAPITAL COST *10**6	COST	EQVL	(%)	LEVL CHRG	ENRG	
	GTR316 GTR316 FCPADS FCPADS FCMCDS	2800 2800 2800 2800 2800	3 1708. 3 2838. 3 1812. 3 5571. 3 1698.	0. 0. 0. 0.	0. 0. 0. 0.	-1708. -2838. -1812. -5571. -1698.	238. 691. 238. 1521. 238.	1912. 3429. 1912. 6208. 1912.	97. 97. 97. 97. 97.	97. 282. 97. 620. 97.	2.31 2.95 12.29 68.95 11.63	0.35 0.35 0.35 0.35 0.35	0.21 0.31 0.16 0.28 0.21	56.7 90.7 86.0 327.9 89.5	1.04 1.67 1.58 6.03 1.64	113.3 109.1 162.0 200.9 179.8	0 0 0	75.0 86.0 92.2 215.3 87.4	1.21 1.38 1.48 3.46 1.41	160 143 151 153 155
					* **															
											-, 0 - , - , - , - ,			•						ries re-
				<u> </u>					*							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		etti da eta eta eta escaria e	· · · · · · · · · · · · · · · · · · ·	小屋 C "分本"
			***************************************					_							*					PARAMETER SERVICE
							\					- im laker			 					
			<u> </u>		. .							•			,					
					***************************************			,	<u>, , , , , , , , , , , , , , , , , , , </u>			· · · · · · · · · · · · · · · · · · ·	<u>,</u>		2					
	· · · · · · · · ·	ŧ			·		ar a							· · · · · · · · · · · · · · · · · · ·				**		
							<u> </u>				-									APE - BAN-MANAGE

						U*10**6-				0.5051	<i>a</i>	200.00		010154	Name		0.01	a girt >4	NIME .	
ECS	PPMCS	DISTIL		COAL		IOCOGEN - RESIDL	COGEN	XX		POWER	osi4	POWER		CAPITAL		\$/KW	ROI	LEVL	NORM I	WRTH
		D1311E	RESTUE	COAL	DIGITE	. NESTOL	COAL		REGD MW	MW		/HEAT		*10**6	COST	EQVL	(X)	CHRG	ENRO	
	2812		294.	1297.	O.	0.	O.	F	120.	0.	1.20	1,55	0.	18.9	1.00	207.1	0	48.1	1.00	80
STM141	2812	10.	635.	835.	0.	-340.	462.		120.	18.	0.75	1.55	0.08	12.5	0.66	110.4	999	47.3	0.98	124
STM141	2812	Ι Ο,	249.	1220.	0.	45.	77.	F	120.	18.	1.56	1.55	0.08	25.3	1.34	223.9	35	44.5	0.92	104
	28121		249.	1220.	0.	45.	77.	Α	120.	18.	1.40	1.55	0.08	18.5	0.98	163.7	999	43.6	0.91	111
	3 2812		628.	872.	0.	-333.	425.		120.	14.	0.72	1.55	0.06	11.2	0.59	104.6	-4	48.0	1.00	122
	3 2812				0.		58.		120.	14.	1.47	1.55	0.06	23.4	1.24	217.8	36	45.4	0.94	101
_	28121				0.		58.	Α	120.	14.	1.35	1.55	0.06	17.5	0.93	163.0	999	44.6	0.93	108
	1 28121		2 25.	<u> 1181.</u>	0,	70.	<u>116,</u>		120.	28.	2.32	1.55	0.12	30.4	1.61	242.2		43.3	0.90	109
	28121		668.	677.			620.		120.	37.	2.31	1.55	0.15	72.8	3.85	533.0	0	51.6	1.07	106
	28121		202.	1144.	0.	92,	153.		120.	37.	3.30	1.55	0.15	92.2	4.87	674.9	4	48.6	1.01	102
	28121		658.	848.	0.	-364.	449,		120.	17.	1.89	1.55	©. 0 5	61.9	3.27	522.3	0	54.7		
	28121		253.	1253.	0.	41.	44.		120.	17.	2.80	<u>1,55</u>	0.05	79.5	4.20	669.9	0	<u>52.5</u>		and the same of
STIRL	28121		190.	635.	-563.	105.	662.		120.	43.	1.21	1.55	0,13	30.3	1.60	183.5	Ð	51.1	1.06	
STIRL	28121		753.	635.	0.	-459.	662.		120.	43.	1.22	1.55	0.13	30.3	1.60	183.7	11	47.1	0.98	
STIRL	28121		190.	1198.	0.	105.	99.	_	120.	43.	2.37	1.55	0.13	53.0	2.80	321.0		43.4	0.90	
	28121		<u>o.</u>	1348.	0.	294.		<u>A</u>	120.	120.	6.08	1.55	0.15	154.6	8.17	391.5	5	47.0		-
	28121		0.	1661.	0.		-66,		120.	156.	6.74	1.55	0.16	178.6	9.44	366.9	4	48.8	1.01	
	26121		138.	1301.	0.		-4.		120.	64.	3.66	1.55	0.10	93.7	4.95	381.5	6 .	47.3	0.98	
	28121		227.		0.	68.	3.	A	120.	28.	2.29	1.55	0.04	54.0	2.85	344.1	5	48.0	1.00	
	28121		172.	1135.	<u> </u>	122.	<u>162.</u>		120.	50.	3.54	1.55	0.18	64.8	3.43	395.7	11	43.7		
	28121	- •	100.	1021.	0.	195.	276.		120.	79.	4.42	1.55	0.30	80.2	4.24	398.0	14	38.9	0.81	
	28121		157.	1169.	0.	137.	128.		120.	56.	2.33	1.55	0.17	62.6	3.31	333,2		41.8	0.87	
	28121		780.	557.	0.	-485.	740.		120.	52.	0.97	1.55	0.16	23.2	1.22	129.0		44.6	0.93	
	28121		710.	<u>650.</u>	<u> </u>	<u>-416.</u>	647.		120.	41.	0.82	<u>1.55</u>	0.15	18.2	0.96	120.2		44.6	0.93	
	28121		739.	567.	0.	-444.	730.		120.	51.	0.92	1.55	0.18	21.5	1.14	128,8		43.4	0.90	
	28121		761.	513.	0.	-467.	784.		120.	53.	1.00	1.55	0.20	24.5	1.29	137.4	57	42.8	0.89	
	28121		801.	488.	0.	-507.	808.		120.	61.	1.00	1.55	0.19	24.0	1.27	125.0	57	43.3	0.90	
	<u>28121</u> 26121		929. 876.	• 168. 249.	0.	-63 5 . -582.	1129.		120.	<u> 100.</u>	1.42	1.55	0.31	33.1	1.75	128.5	38	38.9	0.81	
	28121		670.	249. 252.	0.	-562. -576.	1048. 1045.		120.	90.	1.37	1.55	0.29	32.8	1.73	139.6	37	39.6	0.82	
	28121		791.	399.	0. 0.	-376. -497.	898.		120. 120.	89. 71.	1.35 1.19	1.55 1.55	0,29 0,25	31.1 25.9	1.64 1.37	133.3	42 57	39.3	0.82	
	28121		1370.	0.	0.	-1076.	1297.		120.	120.	2.97	1.55		25.5 45.9	2.43		0	40.7 50,2	0.85	
	28121			0.			19000.		120.	2276.	34.93	1.55	0.14	565.4	25.89	114.5 94.7	- 6	301.7		
	28121		1274.	0.	0, 0.	-980.	1297.		120.	120.	2.49	1.55	0.17	42.5	2, 25	113.9	10	46.4	6.27 0.96	
	28121		2000.	0.	0.		2040.		120.	210.	3.38	1.55	0.20	42.5 62. 8	3.32	107.2	0	54.1	1.12	
	28121		1230.	0.	0.	-936.	1297.		120.	120.	2.33	1.55	0.22	39.5	2.09	107.2	16	44.5	0.93	
	28121		1257.	0.	0.		1326.		120.	124.	2.26	1.55	0.23	39.7	2.10	107.7	16	44.5	0.93	
	28121		1134.	0.	0.	-840.	1297.		120.	120.	2.76	1.55	0.23	81.0	4.28	243.8	7	46.4	0.96	
	28121		1222.	0.	0.	-896.	1403.		120.	133.	2.80	1.55	0.29	87.7	4.63	244.8	6	47.3	0.98	
	28121	- •	761.	485.	0.	-467.	812.		120.	61.	1.70	1.55	0.23	46.1	2.43	255.0	13	44.9	0.93	
	28121		0.	0.	-1202.	294.	1297.		120.	120.	3.31	1.55	0.24	101.0	5.34	286.8	13	59.5	1.24	mile on a
	28121		o.	0.	-1449.	376.	1571.		120.	153.	3.77	1.55	0.24	124.9	6.60	294.0	ŏ	65.3	1.36	
	28121		1202.	0.	0.	-908.	1297.		120.	120.	3.77	1.55	0.24	101.0	5,34	286.8	1	51.1	1.06	
		J ,	1602.	٥.	J .	500.	1237,		120.	120.	0,01	1.55	U + 24	,	J, J4	200.0	•	J1.1	,	, 55

AL BANGE

PAGE 56

DATE 06/07/79 183E-PEC-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

						SU!	MARY OF		SAVED B		& ECON	OMICS						
				FUEL US	F IN BT	11*10**6-												CONTRACTOR AND
4		**C(COGEN-*		COGEN	M30	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WRTH
ECS	PROCS		RESIDL			RESIDL		REOD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG
								MW	MW		RATIO		*10**6			(%)		
DESCA	3 28121	0	, 1449.	0.	0.	-1073.	1571.	120.	153.	3.77	1.55	0.26	124.9	6.60	294.0	0	55.2	1,15 123
GTSMA	D 28121	572.	. 174	584.	-572.	120.	713.	120.	49.	0.86	1.55	0.16	19.0	1.00	113.3	999	47.8	0.99 134
GTRAO	8 28121	762	. 99.	330.	-762.	196.	967.	120.	89.	1,26	1.55	0.25	33.4	1.77	149.6	11	45,9	0.97 136
GTRA1	2 28121					192.	953.	120.	78.	1.22	1.55	0.25	31.9	1.68	146.0	13_	46.5	0.97 136
	6 28121		. 115.		-715.	179.	912.	120.	73.	1.22	1.55	0.24	32.1	1.70	153.2	11	47.0	
	8 28121		. 145.	486.	-648.	149.	811.	120.	61.	1,03	1.55	0.20	25.1	1.33	132.3	11	47.6	0.99 133
	2 28121				-674.	160.	847.	120.	65.	1.09	1.55	0.21	27.1	1.43	137.3	11	47.4	0.99 134
	<u>6 23121</u>				<u>-676.</u>	164.	860.	120.	67.	1,13	1.55	0.22	29.0	1.53	<u>146.3</u>	11	47.2	0.98 133
	8 28121				-927.	234.	1095.	120.	95.	1.29	1.55	0.25	33.5	1.77	123.2	5	48.0	
	2 28121				-912.	239.	1111.	120.	97.	1.30	1.55	0.27	33.8	1.79	126.5	11	46,9	
	6 28121				-865.	222.	1055.	120.	90.	1.28	1.55	0.26	33.5	1.77	132.4	9	47.3	
	8 28121				-802.	<u> 179.</u>	910.	120.	73.	1.12	1.55	0.18	27.5	1.45	<u>116.9</u>	<u> </u>	49.5	
	2 28121				-791.	194.	962.	120.	79,	1.14	1.55	0.23	28.5	1.51	123.2	10	47.5	
	6 28121				-786.	191.	953.	120.	78.	1.17	1.55	0.23	29.5	1.56	127.9	7	47.8	
	S 28121					294.	1297.	120.	120.	13.64	1.55	0.26	74.0	3.91	215.0	0	65,9	
	S 28121				<u>-1559.</u>	426.	1737.	120.	174.	19.18	1.55	0.28	100.9	5.33	220.9	0_	78,4	
H	S 28121				-1033.	294,	1297.	120.	120.	12.79	1.55	0.35	78.0	4.12	257.5	0	60.2	
FCMCD	S 28121	1137	. 0.	0.	-1137.	337.	1439.	120.	137.	14.36	1.55	0.36	86.6	4.58	259.8	0	63,2	1.31 144
<u></u>																·		
1																		
ļ	······································		·							***************************************			· · · · · · · · · · · · · · · · · · ·					

RINTING SYSTEM- PI188-02

AC LIMMARKE

						U*10**6- OCOGEN -			WER CO	EN OS	м	POWER	FESR	CAPITAL	NORM	S/KW	ROI	LEVL	NORM	WRTH
ECS I	PROCS	DISTIL :			-	RESIDL	COAL	RE	QD PO		••	/HEAT	. 20,1	COST *10**6	COST	EQVL	(%)	CHRG	ENRO	******
ONOCGN	28191	Ō,	74.	1402.	0.	0.	0.		30.		89	0.11	0.	55.7	1.00	164.8	0	38.2	1.00	80
STM141	28191	o.	1275.	Ο.	0.	-1200.	1402.		30.	10. 1.	73	0.11	0.14	34.8	0.62	93.1	-19	43.2	1.13	3 163
STM141	28191	0.	1291.	0.	o.	-1207.	1436.		30.	5. 1.	48	0.11	0.15	33.8	0.61	89.2	-17	42.6	1.11	154
STM141	28191	0.	0.	1275.	0.	74.	. 127.	F	30.	3.	93	0.11	0.14	70.8	1.27	189.7	22	33.5	0.88	3 138
STM141	28191	0.	0.	1291.	0.	85.	145.	F	30.	5. 3.	46	0.11	0.15	66.0	1.19	174.4	36	32.0	0.84	1 130
STM141			0.	1275.	0.	74.	127.					0.11	0.14	51.8		138.7		31.2		2 144
STM141			0.	1291.	0.	85.	145.					0.11	0.15	50.7	0.91	134.0		30.2		135
STM088			1258.	85.	0.	<u>-1184.</u>	1317.					0.11	0.09	30.1	0.54	83.4		44.4		149
STM088			25.	1318.	0.	49.	84.					0.11	0.09	61.2	1.10	169.5		34.3		124
STM088			25.	1318.	0.	49.	84.				19	0.11	0.09	48.5	0.87	134.3		32.9		129
PFBSTM			0.	1283.	0.	74.	119.					0.11	0.13	65.4	1.17	173.9	28	33.8		140
PFBSTM			0.	1452.	0.	171.	274.				68	0.11	0.23	65.7	1.18	154.4	44_	<u>30.3</u>		131
TISTMT			1278. 1561.	0. 0.	0. 0.	-1204. -1320.	1402.				26	0.11	0.13	92.9	1.67 3.21	247.9	0	51.1		1 143
TISTMT			0.	1278.	. 0.	74.	1962. 123.					0.11		178.6 132.5	2.38	390.4 353.8	8	57.9		2 129
TISTMT			0.	1561.	, U.	242.	401.				50 59	0.11	0.13	225.3	4.05	492.5	Ö	41.8		130
TIHRSG			1373.	0.	0.	-1299.	1402.				53 61	0.11	0.07	111.4	2.00	276.9	- 6	56.0	*************	7 135
TIHRSG			1647.	ວ. ວ.	0.	-1480.	1711.					0.11	0.12	180.1	3.23	373.1	Ď.	65.7		121
TIHRSG			0.	1373.	o.	74.	28.					0.11	0.07	150.8	2.71	374.6	č	45.9		123
TIHRSG		o.	o.	1647.	Ö.	167.	64.					0.11	0.12	228.7	4.11	473.8	ŏ	53.6		110
STIRL	28191	1343.	0.		-1343.	74.	1402.			0. 2.	21	0.11	0.09	53.2	0.96	135.2	999	56.5	1.48	155
STIRL	28191	1917.	٥.	0.	-1917.	299.	2155.		30. 12	2. 3.	16	0.11	0.22	97.8	1.76	174.1	0	65.8	1.72	130
STIRL	28191	0.	1343.	α.	0.	-1268.	1402.		30.	0. 2.	21	0.11	0.09	53.2	0.96	135.3	119	47.6	1.24	
STIRL	28191	0.	1917.	0.	0.	-1618.	2155.		30. 12			0.11	0.22	97.9		174.4	0	53.0	1.39	
STIRL	28191	0.	0.	1343.	0.	74.	59.		30.	0. 4.	53	0.11	0.09	93.4		237.4	6	37.5		129
STIRL	28191	-	0.	1917.	0.	298.	238.			2. 6.		0.11	0.22	174.8	3.14	311.2	3	40.8		103
HEGT60			٥.	1485.	0.	74.	-84.					0.11 -		103.9		238.8	0	41.6	1.09	
HEGT60		0.	<u>o.</u>	6901.	0.	1285.	<u>-1447.</u>			4. 20.		0.11		508.6	9.14	251.5	0	101.2		
HEGTOO			0.	1421.	0.	74.	-19.			10. 4.	-		0.04	98.4	1.77	236.2	1	39.7		123
HEGTOO			0.	2121.	0.	268.	-70.					0.11	0.09	142.1	2.57	230.3	0	43.4	1.13	
FCMCCL			0.	1305.	0.	74.	97.			0. 5.		0.11	0.12	99.5	1.79	260.3	4	38.5		131
FCMCCL			<u> 0.</u>	2085.	0.	<u>456.</u>	<u>593.</u>			6. 10.		0.11	0.33	169.3	3.C4 1.77	277.2	5	35.5 38.3		132
FCSTCL			0.	1299.	0.	74.	103.			0. 5.		0.11	0.12	98.3 190.4		281.1	3	38.3		103
FCSTCL 169TST			0. 0.	2311. 1341.	0. 0.	590. 74.	817. 60.			;1. 11. ;0. <i>≢.</i>	. —	0.11	0.09	94.1	1.69	239.3	6	37.8		129
IGGTST			0. 0.	2151.	0. 0.	74. 393.	319.					0.11	0.25	151.4		240.1	8	34.2		98
GTSØAR			1350.	0.	0.	-1276.	1402.					0.11	0.09	42.8	0.77	108.1	-35	46.3		153
GTSØAR			2577.	Ö.	0.		2951.						0.26	87.7	1.53	116.2	0	52.9		116
GTACO8			1303.	o.	0.		1402.			0. 1.		0.11	0.12	40.8		106.7		44.7		157
GTACO8			1900.	Q.	0.		2388.					0.11	0.31	58.9		105.8		42.0		132
GTAC12			1307.	0.		-1233.	1402.					0.11	0.11		0.74	108.2		44.9		157
	28191		2114.	0.		-1650.	2704.					0.11	0.33	70.8	1.27	113.3	0	42.6		126
GIACIZ																				

TILLALLO STOOL SEC

											····						*
	DD #						COGEN**			osm	POWER		CAPITAL				NORM WR
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REOD	POWER		/HEAT		COST	COST		CHRG	ENRG
								MW	MW		RATIO		*10**6		()		ernetiste vinterit
	28191		2332.	0.		-1791.	2966.	30.	221.	2.70	0.11	0.33	82.5	1.48	120.7		
	28191		1324,	o.		-1250.	1402.	30.	30.	1.84	0.11	0.10	42.1	0.76	108.5 -31		
	2819		2416.	Ç.		-1869.	2984.	30.	223.	2.54	0.11	0.32	76.0	1.36	107.3		
	28191		1330,	<u> </u>		-1256.	1402.	30.	30.	1.94	0.11	0.10	41.9	0.75	107.5 -34		1.20 1
	5 28191		2949.	0.		-2196.	3673.	30.	307.	3.18	0.11	0.33	91.8	1.65	106.2		-
	28191		1323.	0.		-1248.	1402.	30.	30,	1.93	0.11	0.10	42.0	0.75	108.3 ~33	45.6	
	28191		2693.	0.		-2019.	3411.	30.	275.	3.14	0.11	0.34	94.1	1.69	119.2	47.1	1.23 7
	2 28191		<u> 1321.</u>	0.	<u>o.</u>		1402,	30.	30,	1.92	0.11	0.10	41.3	0.74	106.7 -32	45.5	
	28191		2667.	Q.		-1998.	3392.	30.	273.	3.06	0.11	0.34	88.2	1.58	112.8	,	
	28191		1310.	0.		-1235.	1402.	30.	30,	1.92	0.11	0.11	41.1	0.74	107.0 -30		
	28191		2253.	0.		-1732.	2900.	30.	213.	2.53	0.11	0.34	69,1	1.24	₹04.7 (
	1 28191		<u> 1342.</u>	0.		-1268.	1402.	30.	30.	2,41	0.11	0.09	59.3	1.07	150.9	48.4	The second secon
	1 26191		2269,	0.	Ο.		2621.	30.	179.	5.05	0.11	0.26	166.7	3.00	250.8	61.9	1.62 11
	28191		0.		~1318.	74.	1402.	30.	30.	1.79	0.11	0.11	40.2	0.72	104.0 -52	53.9	1.41 16
	28191		0,		-2162.	454.	2672.	30.	185.	2.18	0.11	0.31	62.6	1.12	98.8		
	3 28191		0.	0.	<u>-1350.</u>	74.	1402.	30.	30.	1.95	0.11	0.09	46.9	0.84	118.5 -88		
	28191		0.	0.	-3622.	929.	4264.	30.	379.	4.18	0.11	0.30	137.3	2.47	129.3	84.6	2.21 12
	28191		0.	0.	-1343.	74.	1402.	30.	30.	1.88	0.11	0.09	43.8	0.79	111.4 -68	55.2	1.44 15
	28191		0,	ο.		864.	4047.	30.	353.	3.91	0.11	6,32	127.5	2.29	129.5		
	28191		0,	0.	-1339.	74.	1402.	30.	30	1.90	0.11	0.09	44.6	0.80	113.7 -71		
	28191		0.	0.		778.	3759.	30.	317.	3.83	0.11	0.32	125.1	2.25	137.5		
	28191		0.	6.		74.	1402.	30.	30.	1.85	0.11	0.09	42.6	0.76	108.7 -61		
	3 28191		0,		-2660.	612.	3201.	30.	250.	3.02	0.11	0.30	94.1		120.7		
	28191		<u>o.</u>	0.	-1336,	74.	1402.	30.	30.	1.86	0.11	0.09	43.1	0.77	110.1 -64		
	28191		0.	o.	-2772.	657.	3354.	30.	268.	3 22	0.11	0.31	101.6	1.83	125.1		
	28191		0,	0.	-1333.	74.	1402.	30.	30.	1.88	0.11	0.10	43.B	0.79	112.1 -6		
	28191		0,	o.		678.	3424.	30.	277.	3.42	0.11	0.32	109.7	1.97	133.6	, - , -	
	28191		<u>0.</u>	0.	-1368.	74.	1402.	30.	30.	1.95	0.11	0.07	46.7	0.84	116.5 -89		
	28191		0.	0.	-4275.	1078.	4763,	30.	440.	4.12	0.11	0.27	132.9	2.39	106.1		
	28191		٥.	o.		74.	1402.	30.	30.	1.95	0.11	0.08	46.7	0.84	117.5 -87		
	28191		0.		-4012.	1050.	4667.	30.	428.	4.03	0.11	0.30	130.3	2.34	110.8		
	28191		<u>o.</u>	0.	-1351.	74.	1402.	30.	30.	1.96	0.11	0.08	47.2	0.85	119.3 -91		
	28191		0,	o.	-3641,	934.	4281.	30.	381.	3.89	0.11	0.30	125.7	2.26	117.8		2,18 13
	20191		0,	o.		74.	1402.	30.	30.	1.86	0.11	0.07	42.6	0.77	105.5 -66		
	28191		0,	٥.		790.	3797.	30.	322.	3.34	0.11	0.23	104.0	1.87	100.2		
	28191		0.	0.	-1343.	74.	1402.	30.	30.	1.85	0.11	0.09	42.5	0.76	108.0 -62		1.44 15
	28191		0.	0,	-3115.	766.	3716.	30.	312.	3.11	0.11	0.31	96.3	1.73	105.5		
	28191		, 0,	0.		74.	1402.	30.	30.	1.86	0.11	0.09	43.1	0.78	109.5 -65		
	28191		0.		-3085.	752.	3670,	30.	307.	3.17	0.11	0.30	98.8	1.78	109.3		
	28191		0,		-1371.	74.	1402.	30.	30.	4.74	0.11	0.07	54.8	0.99	136.5 999		
	28191		0.	0.	-5765.	1574.	6424.	30.	642.	66,90	0.11	0.28	339.4	6.10	200.9		
	28191		0.	ο.		74.	1402.	30.	30.	4.55	0.11	0.10	55.8	1.00	142.7 999	58.9	1.54 15
FCMCDS	26191	4206.	0,	0.	-4206.	1246.	5323.	30.	508.	50.30	0.11	0.36	304.0	5.46	246.7	145,2	3.80 16

DATE 06/07/79 1&SE-PEG-ADV-DES-ENGR

GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

							·												
						J*10**6-													
		**C0G	ENERAT	ION CASI		COGEN -					MBO	POWER	FESR	CAP: TAL	NORM	S/KW	ROI	LEVL	NORM WRT
ECS I	PROCS D	ISTIL F	RESIDL	CCAL	DISTIL	RESIDL	COAL			POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG
									1W	MW		RATIO		*10**6			(%)		
ONGCGN	28192	0. (149.	2804.	ο.	0.	٥.	F	61.	Ο.	5.16	0.11	0.	110.4	1.00	163.3	0	75.7	1.00 6
STM141	28192	Ο.	2550,	Ο.	ο.	-2402.	2804.		61.	61.	2.59	0.11	0.14	60. 3	0.55	81.5		84.7	1.12 16
STM141	28192	ο.	2584.	ο.	ο.	-2415.	2874.		61.	69.	2.23	0.11	0.15	60.0	0.54	79.2		83.7	1,10 15
STM141	23192	0.	0.	2550.	0.	149,	254.		61.	61.	6.46	0.11	0.14	125.7	1.14	168.2	44	<u>63.9</u>	The state of the s
STM141	28192	Ο.	Ο.	2534.	Ο.	169.	290.	-	61.	69.	6.10	0.13	0.15	128.5	1.16	169.7	41	62.8	0.83 13
STM141	28192	Q.	Ο,	2550.	Ο.	149.	254.		61.	61.	6.21	0.11	0.14	96.0	0.87	128.4		60,4	0.80 14
STM141	28192	Ο.	0.	2584.	Ο.	169.	290.	Α	61.	69.	5.78	0.11	0.15	92.2	0.84	121.6		58.6	0.77 13
STM088	28192	0.	<u> 2518.</u>	170,	0.	<u>-2369.</u>	<u> 2635.</u>		<u>61.</u>	40.	2,12	0.11	0.09	54.0	0.49	74.8		87.5	
STMO88		ο.	51.	2637.	ο.	98.	167.		61.	40.	5,66	0.11	0.09	120.1	1.09	166.1	47	67.5	-
STM088	28192	ο.	56 gr	2637.	Ο.	98.	167.	Α	61.	40.	5.58	0.11	0.09	89.0			999	64.1	0.85 13
PFBSTM		ο.	o.	2567.	ο.	149.	238.		61.	61.	8.09	0.11	0.13	115.6		153.8	99	54.7	0.85 14
PFBSTM		0.	0.	2906.	0.	343.	549.		61.	140.	10.37	0.11	0.23	117.2	1.06	137.7		58.1	0.77 13
TISTMT		ο.	2558.	ο.	ο.	-2410.	2804.		61.	61.	5,15	0.11	0.13	159.1	1.44	212.2	c	98.1	1.30 14
TISTMT		0.	3124.	0;	Q.	-2641.	3926.		61.	197.	9.84	0.11	0.29	354.3	3.21	387.0	e	115.0	
TISTMT		ο.	ο.	2558.	Ο.	149.	246.		61.	61.	8.99	0.11	0.13	227.1	2.06	303.0	4	77.5	
	28192	0.	0.	3124.	0.	484.	802.		61.	197,	14.34	0.11	0.29	447.9		489.2	0	90.8	
	28192	٥.	2748.	٥.	0.	-2599.	2804.		61.	61.	5.88	0.11	0.07	193.4	1.75	240.2	0	107.6	1.42 13
	28192	0.	3296,	О.	ο.	-2962.	3423.		61.	136.	9.71	0.11	0.12	359.6	3.26	372.3		131.1	1.73 12
TIHRSG		C.	ο.	2748.	٥.	149.	57.		61.	61.	9,94	0.11	0.07	262.8	2.38	326.4	0	85.6	
<u>tihrsg</u>		0.	0.	3296.	0,	333.	127.		61.	<u> 136.</u>	14.58	0.11	0.12	457.0		473.2	0	106.5	
STIRL	28192	2686.	0.	0.	-2686.	149.	2804.		61.	61.	3.62	0.11	0.09	100.1	0.91	127.1	132	111.6	1.47 15
STIRL	28192	3836.	0,	Ό,	-3836.	599.	4312.		61.	244.	5.71	0.11	0.22	191.9		170.7	0	130.6	1.73 13
STIRL	28192	0.	2686.	0.	0.	-2538.	2804.		61.	61.	3.62	0.11	0.09	100.1	0.91	127.2		93.7	
STIRL	28192	<u> </u>	3836.	0.	<u> </u>	-3237.	4312.		<u>61.</u>	244.	5.72	0.11	0.22	192.1	1.74	170.9	<u> </u>	105.0	1.39 12
STIRL	28192	0,	0.	2686.	٥.	149.	118.		61.	61.	7.78	0.11	0.09	176.1	1.59	223.7	9	72.5	0.96 12
STIRL	28192	0.	0.	3836.	0.	599.	476.	_	61.	244.	12.33	0.11	0.22	344.6	3.12	306.5	3	80.1	1.06 10
HEGT60		0,	0.	2972.	0.	149.	-167.		61.	61	8.21		-0.01	187.0	1.69	214.8	0	79.5	1.05 11
HEGT60		0.	0.	13809.	0.	2571.		<u> </u>		1048.	40.06			1017.5	9.22	251.4	<u> </u>	201.9	2.67 8
HEGT00		O.	0.	2843.	0.	149.	-39.		61.	61.	7.77	0.11	0.04	167. 6	1.52	201.2	6	74.8	0.99 12 1.05 9
HEGT00		٥.	0.	4244.	٥.	537.	-140.	A	61.	219.	10.80	0.11	0.09	234.2	2.12	188.3	2	79.3	
FOMOCL		0,	0.	2611.	0.	149.	193.		61.	61.	8.62	0.11	0.12	172.6	1.56	225.5	8	72.6 62.9	
FCMCCL		0.	<u> </u>	4172.	0.	912.	<u> 1187.</u>		<u>61.</u>	372.	18.31	0.11	0.33	283.0	2.56	231.5	10		
FCSTCL	-	0.	0.	2599.	0,	149.	206.		61.	61.	8.49	0.11	0.12	170.7	1.55	224.1	9	72.1	0.95 10
FCSTCL		ο,	Q.	4625.	O.	1180.	1634.		61.	481.	20.58	0.11	0.38	318.2		234.8	11	56.3	0.74 10
IGGTST		0.	0.	2684.	0.	149.	120.		61.	61.	6.91	0.11	0.09	160.6	1.45	204.2	11	70.8	0.94 13 0.85 9
IGGTST		0.	0.	4304.	0.	787.	638.		61.	321.	8.34	0.11	0.25	279.1	2.53	221.3	9	64.3	
GTSCAR		0.	2701.	0.	0,	-2552.	2804.		61.	61.	2.98	0.11	0.09	79.2	0.72		-30	91.3	1.21 is
GTSOAR		0.	5157.	0.	Q,	-4082.	5906.		61.	438.	4.78	0.11	0.26	157.5	1.43	104.2	0	103.1	1.36 11
	28192	Ο.	2608.	0.	ο,	-2460.	2804.		61.	61.	2.89	0.11	0.12	75.6·	0.69	99.0	_	88.1	1.16 15
GTACO8		0.	3803.	0.	0.	-3065.	4778.		61.	301.	3.50	0.11	0.31	109.6	0.99	98.3		82.5	
GTAC12		0,	2615.	0.	0.	-2467.	2804.		61.	61.	2.93	0.11	0.11	77.4	0.70	101.0	-25	88.5 83.6	
	20102	0.	4229.	0.	٥.	-3302.	5411.		61.	378.	4 I O		(1 7272	132.6	1.20	***/ []	0	0.5 h	1.10 12
GTAC12 GTAC16		0.	2631.	o.	0.	-2482.	2804.		61.	61.	4.10 2.97	0.11 0.11	0.11	79.1		102.6	_	89.2	

√∕

							COGEN==		COGEN	MSO	POVER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRT
ECS	PROCS	DISTIL	_			RESIDL	COAL	REQD MW	POWER MW		/HEAT		COST *10**6	COST	EQVL	(%)	CHRG	ENRG	
TACLE	28192	2 0.	4667.	0.	0.	-3583.	5934.	61.	442.	4.80	0.11	0.33	159.4	1.44	116.6	0	88.1	1.16	12
	28192			0.		-2502.	2804.	61.	61.	2.94	0.11	0.10	77.8	0.70	100.1	-27	89.6	1.18	3 15
	28192		•			-3740.	5971.	61.	446.	4.33	0.11	0.32	140.0	1.27	98.8	0	89.7	1.18	12
	28192		2661.	o.	o.	-2513.	2804.	61.	61.	3.05	0.11	0.10	77.6	0.70	99.5	-29	90.2	1.19	15
	28192			0.		-4394.	7351.	61.	614.	5.31	0.11	0.33	166.5	1.51	96,3	0	93.9	1.24	1 11
	28192			o.		-2498.	2804.	61,	61.	3.06	0.11	0.10	78.5	0.71	101.2	-29	89.9		
-	28192			Ö.	ō.		6824.	61.	550.	5.23	0.11	0.34	170.1	1.54	107.7	0	91.1	1.20	12
	28192		2643.	o.	õ.	-2495.	2804.	61.	61.	3.04	0.11	0.10	77.3	0.70	99.8	-28	89.6	1.18	3 15
	28192			0.	0.		6787.	61.	546.	5.05	0.11	0.34	157.8	1.43	100.9	0	88.9	1.17	7 12
	28192			0.	0.		2804.	61.	61.	3,02	0.11	0.11	76.2	0.69	99,3	_	88.8		
	28192		4509.	0.	0.	-3465.	5802.	61.	426.	4.27	0.11	0.34	129.4	1.17	97.9	ō	83.1	1.10	
	28192		2685.	0.	0.	-2537.	2804.	61.	61.	4.06	0.11	0.09	115.4	1.05	146.6	ā	95.7		
	28192			0.	0.		5245.	61.	358.	9.35	0.11	0,26	328.7	2.98	247.1	0	122.6		
	28192		4540.	0.	-2637.	149.	2804.	61.	61,	2.87	0.11	0.11	74.9	0.68	96.9	_	106.5		
	28192		0.		-4327.	908.	5347.	61.	370.	3.79	0.11	0.31	119.8	1.09	94.5	ā	115.2		
	28192		0.		-2702.	149.	2804.	61.	61.	3.09	0.11	0.09	84.3		106.5	-	110.0		
	28192		0.			1860.	8533.	61.	758.	7.19	0.11	0.30	249.4	2.26	117.4	0	165.4		
	28192		Q.			149.	2804.	61.	61.	3.02	0.11	0.09	81.5	0.74	103.6		109.1	1.44	
	28192		0.	0.	-6723.	1730.	8098.	61.	705.	6.78	0.11	0.32	234.0	-	118.8	ő	154.2		
	28192		Ο.	0.	-2679.	149.	2804.	61.	61.	3.06	0.11	0.09	82.8	0.75	105.4		109.0		
				0.		1557.	7521.	61.	635.	6.51	0.11	0.32	224.0	2.03	123.1		147.5	1.95	
	28192		٥.			149.	2804.	61.	61.	2.97	0.11	0.09	79.1	0.72	101.0	_	108.3		
	28192		٥.	0.		1224.	2604, 6406,	61.	499.	5.10	0.11	0.30	169.7	1.54	108.8	0	133.7		
	28192		0, 0,	0.	-5323. -2673.	149.	2804.	61.	433. 61.	2.99	0.11	0.09	80.0	0.72	102.2	-	108.4		
	<u>26192</u> 28192		0.			1316.	6711.	61.	536.	5,39	0.11	0.31	180.7	1.64	111.2	0	136.3		
				0.		149.	2804.	61.	61.	3.02	0.11	0.10	81.4	0.74	104.1	_	108.4		
	28192		0.				6852.	61.	554.	5.78	0.11	0.32	196.2		119.5	0	137.2		
	28192		٥.			1358.	2804,	61.	61.	3.78	0.11	0.07	83.5	0.76	104.1		111.2		
	28192		<u>ŏ.</u>	<u>0.</u> 0.		149. 2158.	9531.	61.	880.	7,06	0.11	0.27	241.9	2.19	96.5	0	189.0		
	28192		٥.			149.	2804.	61.	61.	3.07	0.11	0.08	83.5	C. 76	105.0	_	110.3		
	28192		o.				9338,	61.	856.	6.72	0.11	0.30	229.0	2.07	97.3	õ	172.6		
	28192		0,	0.		2100. 149.	2804.	61.	61.	3.09	0.11	0.08	84.3		105.4	-	110.1	1.45	
	28192		<u>o.</u>	0.						6.48	0.11	0.30	220.7	2.00	103.3	0	162.3		
	28192		0.			1870.	8566.	61.	762.		0.11	0,30	78.9	0.71	97.7		111.3		
	28192		g.			149.	2804.	61.	61.	2.98			180.5	1.63	86.8	ő	172.1		
	28192		0.			1580.	7597.	61,	644.	5.46	0.11	0.23	78.6	0.71	99.8		108.8		
	28192		0,			149.	2804.	61.	61.	<u>2.95</u>				1.57	94.7		143.6		_
	28192		0.			1532.	7437.	61.	625.	5.23	0.11	0.31	173.0	0.72	101.0	-	108.9		
	28192		0.			149.	2804.	61.	61.	2.98	0.11	0.09	79.6	1.61	95.5	-54	144.3		
	28192					1504.	7343.	61.	613.	5.36	0.11	0.30	178.2	-		_			
	28192		<u>o,</u>		-2742.	149.	2804.	<u>51.</u>	61.	8.84	0.11	0.07	103.0	0.93	128.2		119.2		-
		2 11535.	٥.		-11535.		12855.	61.		133.06	0.11	0.28	659.3	5.97	195.0	0	391.2		
	28192		o.		-2671.	149.	2804.	61.	61.	8.47	0.11	0.10	105.2	0.95	134.4		116.5		
FCMCDS	23192	8416.	ο,	***		2492.	10651.	5 1.	1016.	99.62	0.11	0.36	578.8	5.24	234.7	0	286.5	3.78	5 15
				~~~~~													***************************************		
				انت بد	Ê														
				2000 2000 2000 2000 2000 2000 2000 200	<b>3</b>														
				<i>≈</i> ∴	Ş														
				~~ .<	-		_												

					e in btu e** **no					COGEN	1130	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRTH
ECS	PROCS	DISTIL R	ESIDL	COAL	DISTIL	RESIDL	COAL		REQD	POVER MW		/HEAT		COST *10**6	COST	EQVL	(%)	CHRG	ENRG	
ONOCGN	28212	0,	10.	276.	٥.	0.	0,	F	4.	Ο,	1.04	0.07	O.	16.1	1.00	225.5	0	8.3	1.00	80
STM141	28212	0.	260.	٥.	0.	<b>~2</b> 50.	276.		4.	4.	0.80	0.07	0.09	9.7	€. 11°	128.0	-18	9.7	1.16	159
STH141	28212	0.	286,	Ο.	ο.	-260.	331.		4.	11.	0.65	0.07	0.20	9.8	0.51	117.4	-13	9,1	1.09	148
STM141	28212	0.	0,	260.	0.	10.	17.	F	4,	4.	1,58	0.07	0.09	21.7	1.35	285.0	2	8.5	1.02	135
STM141	28212	0.	٥.	286.	0.	26.	44.	F	4.	11.	1.30	0.07	0.20	20.1	1.25	239,6	21	7.2	0.87	124
STM141	28212	. 0.	٥.	260,	Ο.	10.	17.	A	4.	4.	1.48	0.07	0.09	19.7	1.22	258.4	8	8.2	0.98	136
STM141	28212	0.	ο.	286.	Ο.	26.	44.	Α	4.	11.	1.16	0.07	0.20	14.9	0.93	177.6	999	6.5	0.78	129
STH088	28212	0.	260.	٥.	0.	-250,	276.		4.	4.	0.80	0.07	0.09	9.4	0.59	123.9	-17	9.7		
<b>STM088</b>	28212	0.	273.	0.	0.	-255.	304.		4.	7.	0.62	0.07	0.15	8.7	0.54	109.1		9.2		153
STM088			٥.	260.	٥.	10.	17.	F	4.	4,	1.57	0.07	0.09	21.4	1.33	280.8	3	8.4		135
STM088			٥.	273.	o.	18,	31.		4.	7.	1.23	0,07	0.15	18.5	1.15	231.4	26	.7.4		128
STM088			o,	260.	0.	10.	17.		4.	4.	1.48	0.07	0.09	18.9	1.17	248.2	11	8.1		137
ST11088			0.	273.	0.	18.	31.		4.	7.	1,12	0.07	0.15	14.0	0.87	175.4		6.8		133
PFBSTM			Ď.	260,	ō.	10.	16.	• •	4.	4.	1.60	0.07	0.09	21.9	1.36	287.1	2	8.5	1.02	
PFBSTM			o.	320.	Õ.	45.	74.		4.	18.	1.86	0.07	0.27	24.6	1.53	262.5	12	7.4		115
TISTMT			260.	0.	0.	-250.	276.		4.	4.	1.03	0.07	0.09	19.7	1.23	258.8	ā	11.0	1.32	
TISTMT			346.	0.	0.	-285.	447.		4.	25.	1.89	0.07	0.32	57.8	3.59	570.2	ŏ	14,6	1.75	
TISTMT		- •	o.	260.	o,	10.	16.		4.	4.	1.79	0.07	0.09	32.1	2.00	421.9	Ö.	9.8	1.18	
TISTMT			a.	346.	o.	61.	101.		4.	25.	2.69	0.07	0.32	73.5	4.57	724.4	ŏ	12.7	1.53	
TIHRSG			269.	a.	õ.	-259,	276.		4.	4.	1.11	0.07	0.06	25.6	1.59	324.5	ŏ	11.9	1.43	
TIHRSG			331.	<u> </u>	0.	-297.	356.		4.	14.	1.65	0.07	0.15	53.3	3,31	549.5	0	15.4	1.85	
TIHRSG			0.	269,	ο.	10.	7.		4.	4.	1.92	0.07	0.06	39.2	2.44	497.1	ŏ	10.9	1.31	
TIHRSG			o.	331.	ο.	33.	25.		4.	14.	2.43	0.07	0.15	68.4	4.25	705.6	õ	13.8	1.66	
STIRL	28212		o.	0.	-268.	10.	276.		4.	4.	0.75	0.07	0.06	10.4	0.65	132.9	-	11.8	1.41	
STIRL	28212		0.	0.	-422.	72.	485.		4.	29.	0.98	0.07	0.24	22.8	1.42	184.8	0	14.1	1.70	
STIRL	26212		268.	0.	0.	-258.	276.		4.	4.	0.75	0.07	0.06	10.4	0.65	132.9	_	9.9	1.19	
STIRL	28212		422.	0.	0.	-349.	485.		4.	29.	0.73	0.07	0.24	22.9	1.42	185.0	_0	11.3	1.35	
STIRL	28212		0.	268.	0.	10.	9.		4.	4.	1.47	0.07	0.06	21.6	1.34	275.0	3	8.4	1.01	
STIRL	28212		0.	422.	0,	72.	63.		4.	29,	1.90	0.07	0.24	40.5	2.52	327.7	4	8.7		96
HEGT60			0.	282.	0.	10.	-5.		4.	4.	1.53	0.07	0.02	27.3	1.70	330.5	ō	9.4	1.13	
HEGT60			0.	890.	0.	166.	-92,		4.	68.	3.81	0.07	0.08	27.3 97.8	6,08	374.8	Ö	17.8	2.14	
HEGTO0			0.	278.	0.	100.	-92.		4.	4.	1.52	0.07	0.03	26.5		326.2	Ö	9.3	1.11	
				435.	0.	55.	<del>-1.</del>		$\frac{4.}{4.}$	22.	1.97	0.07	0.10	46.6		365.6	<del>- ö</del> -	11.1	1.33	-
HEGTOO FCMCCL			0.					A			1.60	0.07	0.10	46.6 27.1	1.68		0	9.2	1.33	
			0.	263.	0.	10.	13.		4.	4.			-							
FCMCCL			٥.	439.	0.	96.	126.		4.	39.	2.90	0.07	0.34	54.4	3.38	423.4	1	9.9		
FOSTOL			0.	263.	<u> </u>	10.	14.		4.	4.	1.63	0.07	0.08	26.5	1.65	344.7	<u> </u>	9.2	1.10	
FCSTCL			0.	511.	0.	138.	193.		4.	56.	3.48	0.07	0.39	64.1	3.98	427.8	3	9.6		107
EGGTST			0,	268.	o.	10.	9.		4.	4,	1.62	0.07	0.06	26.3	1.64	335.7	0	9.2	1.11	
IGGTST			0.	476.	٥.	94.	83.		4.	38.	1.97	0.07	0.27	50.6	3.15	362.5	.2	9.3	1.12	
GTSCAR			268.	<u>o.</u>	.0.	-258.	276.		4.	4.	0.70	0.07	0.06	10.0		127.9		9.9	1.18	
GTSGAR			510.	٥.	o.	-403.	599.		4.	43.	0.87	0.07	0.28	20.1	1.25	134.4	.0	10.8	1.30	
<b>GTACO8</b>	28212	0.	263.	ο.	Ο.	-254.	276 <i>.</i>		4.	4.	0.69	0.07	0.08	9.6	0.59	123.9		9.6	1.16	
GTAC08		0.	401.	0.	0.	-323,	504.		4.	32.	0.72	0.07	0.31	15.1	0.94	128.3		9.1	1.09	

DATE 06/07/79 18SE-PEO-ADV-DES-ENGR

#### GENERAL ELECTPIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

													040:54:	A COUNTY	•	D# :	1 274	NAME TIPE	<b>*</b> (:
500	55665						COGEN**			тем	POWER	FESR	CAPITAL COST	NORM	S/KW EQVL	KOI	LEVL CHRG	NORM WR	ŧН.
ECS	PROCS	DISTIL	RESIDL.	COAL	DISTIL	RESIDL	COAL	REQD MW	POWER MW		/HEAT		*10**6	COS 1	EUVL	(%)	Unke	ENKG	
GTAC12	2 28212	2 0.	264.	0.	0.	-254.	276.	4.	4,	0.68	0.07	0.08	9.5	0.59	123.1	-17	9.7	1.16 15	58
	2 28212			o.	o.	-349.	572.	4.	40.	0.80	0.07	0.33	17.8	1.11	136.1	Ö	9.3		
	28212			o.	õ.	-255.	276.	4.	4.	0.68	0.07	0.08	9.6	0.60	124.4	-17	9.7	1.16 15	57
-	28212		486.	õ.	o.	-373.	621.	4.	46.	0.87	0.07	0.34	20.5	1.27	144.2	٥	9.7	1,16 12	21
GTWC16	28212	2 0,	266.	0.	٥.	-256.	276.	4.	4.	0.69	0.07	0.07	9.9	0.62		-18	9.8	1.17 15	
GTWC18	28212	20.	511.	٥.	Ο,	-395.	631.	4.	47.	0.87	0.07	0.32	20.1	1.25	134.0	0	10.1	1.22 12	
CC1626	28212	2 0.	267.	0.	ο.	-257.	276.	4.	4.	0.76	0.07	0.07	9.6	0.61		-19	9,9	1.19 1	
CC1628	28212	20.	653,	0.	0.	-479.	826.	4.	<u>71.</u>	1.19	0.07	0.35	26.1	1.62	136.6	0	10.9		
	2 28212			o.	D.	-256.	276.	4.	4.	0.75	0.07	0.07	9.6	0.59		-18	9.8	1.18 15	
	28212			0.	0.	-440.	767.	4.	64.	1.14	0.07	0.35	25.5	1.59	146.0	0	10.4		
	2 28212				0.	-256.	276.	4.	4.	0.75	0.07	0.07	9.4	0.58	120.9	-18 0	9.8	1.17 15	
	2 28212		<u>591.</u>	<u> 0.</u>	<u>0.</u> 0.	-435. -254.	764. 276.	4.	<u>63.</u> 4.	0.76	0.07	0.36	24.2 9.6	1.50 0.60	124.0		9.8	· · · · · · · · · · · · · · · · · · ·	
	2 28212			0. 0.	υ. Ω.	-254. -376.	275. 655.	4.	50.	1.00	0.07	0.36	20.3	1.26	138.8	- 10	9.4		
	2 28212 5 28212		, ,	0.	υ. 0.	-376. -269.	276.	4.	<del>50</del> .	0.72	0.07	0.03	9.7	0.60		-21	10.2		
	5 28212			0.			14842.	4.	1778.	27.14	0.07	0.17		27.50	94.8	Ö		25.77 66	
	2821			0.	0.	-266.	276.	4.	4.	0.70	0.07	0.04	9.5	0.59	117.7		10.0		
	28212		_	o.	o.	-1159.	1593.	4.	164.	2.69	0.07	0.22	48.8	3.04	106.7	0	. 24.3	2.92 13	32
	28212				o.	-264.	276.	4.	4.	0.70	0.07	0.04	9.4	0.59	117.5	-19	10.0	1.20 15	54
	5 26212		982.	o.	0.	-745.	1036.	4.	96.	1.79	0.07	0.23	29.7	1.84	103.1	0	16.8	2.02 12	20
	3 28212		272.	Ö.	0,	-263.	276.	4.	4.	0.78	0.07	0.05	12.3	0.76	153.7	-30	10.3		
DEADV:	3 28212	2 0.	1142.	٥.	0.	~837.	1263.	4.	124.	2.64	0.07	0.27	82.1	5,10	245.3	0	22.8		_
DEHTPI	1 28212	20.	256.	0.	٥.	-256.	276.	4.	4.	0.82	0.07	0.07	12.7	0.79	162.8		10.2		
	1 28212			<u>o.</u>	0.	-378.	597.	4.	43.	1.42	0.07	0.31	36.7	2.28	259.1		12.4		
	3 28212				-275.	10.	276.	4.	4.	0.75	0.07	0.04	11.3	0.70		-43	12.1	1.46 15	
	3 28212			-	-1405.	365.	1464,	4.	149.	3.66	0.07	0.23	121.1	7.53	294.2	-26	40.7 10.2		
	3 28212				0.	-265.	276.	4.	4.	0.75 3.66	0.07 0.07	0.04	11.3 121.1	0.70 7.53	294.2	-20	31.2		
	28212			<u>0.</u>	<u>0.</u> -265.	<u>-1041.</u> 10.	1464. 276.	4.	149. 4.	0.68	0.07	0.07	9.4	0.58	120.3		11.5		
	0 28212 0 28212			u, 0.	-255. -454.	95.	562.	4.	39.	0.75	0.07	0.31	15.9	0.99	119.8		12.6		
- ,	3 28212				-454. -268.	10.	276.	4.	39. 4.	0.69	0.07	0.06	10.2	0.63	129.5		11.7		
-	3 28212		0.	o.	-667.	171.	816.	4,	70.	1.16	0.07	0.32	30.0	1.87	153.6	O	16.4		
	28212				-267,	10.	276.	4.	4.	0.69	0.07	0.07	10.1	0.63	129.0	-33	11.6	1.40 16	61
	2 28212			ā.	-638,	164.	793.	4.	67.	1.10	0.07	0.33	28.1	1.75	150.4	0	15,6	1.88 13	31
-	28212			٥.	-267.	10,	276.	4.	4.	0.70	0.07	0.07	10.3	0.64	131.7	-34	11.7		
GTRA16	28212	602.	0.	0.	-602.	151.	749.	4.	62 <i>.</i>	1.09	0.07	0.33	28.0	1.74	158.7	0	15,3		
	28212				-267.	10.	276.	4,	4.	0.69	0.07	0.07	9.9	0,62	126.7	-32	11.6		
	3 <b>2</b> 8212			O,	<b>-533</b> .	123.	654.	4.	50.	0.91	0.07	0.31	21.6	1.34	138.0	0	14.1	1.70 13	
	28212			٥.	-267.	10.	276.	4.	4.	0.69	0.07	0.07	10.0	0.62	128.1		11.6		
	28212		0.	<u>0.</u>	-555,	132.	684.	4.	54.	0.96	0.07	0.32	23.3	1.45	143.3	-*2	14.4		
	28212		0.	0.	-266.	10.	276.	4.	4.	0.69	0.07	0.07	10.1	0.63 1.55	129.3 152.2	-33 0	11.6 14.5		
	28212		0.	٥.	<b>-5</b> 58,	135,	696.	4.	55. 4.	1.00 0.70	0.07 0.07	D.33	24.9 10.2	0.64	129.2	-35	11.8		
	3 28212			٥.	-271. -801.	10.	276. 920.	4.	82.	1.18	0.07	0.29	29.9	1.86	127.4	-35	19.0		
GIKWUR	28212	<u> 801.</u>	0,	0.	-801.	202.	920.		02,	1.10	3.07	<u> </u>	<u> </u>	<u> </u>	: = / - 7				

PAGE 63

DATE 06/07/79 1&SE-PEG-ADV-DES-ENGR

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

				FUEL US	E IN BT	U*10**6-												
		**C	DGENERAT	ION CAS	E** **H	OCOGEN -	COGEN**	POWER	COGEN	МВО	POWER		CAPITAL	NORM	\$/KW ROI	LEVL	NORM WE	RTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REOD	POWER		/HEAT		COST	COST	EQVL	CHRG	ENRG	
								MM	MW		RATIO		*10**6		(%)			
GTRWI	2 28212	269	. 0,	0.	-269.	10.	276.	4.	4.	0.70	0.07	0.06	10.2	0.64	129.8 -34	11,7	1.41 1	
GTRW1	2 28212	773	. 0.	0.	<i>-</i> 773.	202.	920.	4.	82.	1.17	0.07	0.31	29.8	1.85	131.7 0	17.9	2.15 1	134
GTRW1	6 28212	269	. 0.	0.	-269,	10.	276.	4.	4.	0.70	0.07	0.06	10.4	0.65	132.1 -35	11.7	1.41 1	159
	5 28212			0.		185.	861.	4.	75.	1.15	0.07	0.31	29.3	1.82	138.8 0	17.2	2.07 1	132
	8 28212			0.	-272.	10.	276.	4.	4.	0.69	0.07	0.05	9.9	0.62	124.8 -34	11.8	1.42 1	160
GTR30	8 28212	687	. o.	o.	-687.	153.	756.	4.	62.	1.02	0.07	0.24	24.3	1.51	121.0 0	17.8	2.14 1	129
GTR31	2 28212	2 268	. o.	o.	-268.	10.	276.	4.	å.	0.69	0.07	0.06	10.0	0.62	127.8 -33	11.7	1.40 1	16
GTR31	2 28212	2 639	. 0.	٥.	-639.	157.	769.	4.	64	1.01	0.07	0.31	24.4	1.51	130.2 0	15.7	<u>1.89 1</u>	131
GTR31	6 28212	268	. 0.	٥.	-268.	10.	276.	4.	4.	0.70	0.07	0.06	10.2	0.64	130.0 -34	11.7	1.41 1	160
GTR31	6 28212	2 634	, ο.	٥.	-634.	154.	760.	4.	63.	1.03	0.07	0.31	25.2	1.56	135.4 0	15.8	1.90 1	131
	\$ 28212			o.	-272.	10.	276.	4.	4.	1.00	0.07	0.05	10.5	0.65	131.8 -39	12.2	1.46 1	159
	\$ 28212			٥.	-1218.	333.	1357.	4.	136.	14.73	0.07	0.28	79.4	4.93	222.5 0	43.0	5.16 1	190
	S 28212			0.	-268.	10.	276.	4.	4.	0.97	0.07	0.07	10.7	0.66	136.3 -38	12.0	1.44 1	160
	\$ 28212		•	٥.	-888.	263.	1124.	4.	107.	11.05	0.07	0.36	68.2	4.24	261.8 0	31.3	3.76 1	167

· Chillian

.

DATE 06/07/79 I&SE-PEG-ADV-DES-ENGR

					E IN BTU			* P	CWFR	COREN	Ø&M	POWER	FESR	CAPITAL	NORM	\$/KW	Rai	LEVL	NORM	WRT
cs	PROCS	DISTIL R				RESIDL	COAL			POWER	0011	/HEAT	LOI	COST	COST		NO!	CHRG	ENRG	MIX ( )
				·					MW	MW		RATIO		*10**6			(%)			
	28213		154.	452.	Ο.	Ο.	٥.		55.	0.		11.73	0.	1.2	1.00	219.6	0	17.6	1.00	
	28213		154.	447.		-1.	4.		55.	1.		11.73	0.01	1.9	1.53	304.1	0	17.6	1.00	
	28213		134.	468.	o.	20.	-17.		55.	1.		11.73	0.01	3.2	2.68	530.4	1	17.6		
	28213		134.	<u>468.</u>	<u> </u>	20.		<u> </u>	<u>55.</u>	1		11.73	0.01	3.0	2.50	495.0	4_	<u> 17.6</u>	1.00	
	28213		154.	449.	ο.	-0.	2.		<b>55</b> .	Ο.		11.73	0.00	1.6	1.28	266.1	0	17.6	1.00	
	28213		134.	469.	0.	19.	~18.	-	55.	Ο.		11.73	0.00	2.9	2.43	503.8	0	17.6	1.01	
	28213		134.	469.		19.	-18.	A	55.	ο.		11.73	0.00	2.8	2.34	484.6	3	17.6	1.00	
	28213		132.	466.	0.	21.	<u>-15.</u>		55 <i>.</i>	1		11.73	0.01	4.6	3.78	664.5	1_	17.7	<u>1.01</u>	
	28213		156.	439.	Ο.	-3.	13.		55.	2.		11.73	0.02	8.4		1130.4	0	18.3	1.04	
	28213		131.	464.	0.	23.	-13.		55 <i>.</i>	2.		11.73	0.02	10.7		1445.6	0	18.4	1.05	
	28213		158.	443.	0.	-5.	9.		55.	1.		11.73	0.01	8.2		1073.4	0	18.3		
	28213		132.	469.	0.	21.	-17.		<u>55.</u>			11.73	0.01	10.6	8.72	1386.0	0	18.5	1.05	5 5
STIRL	28213		130.	434.	-32.	24.	18.		55.	2.		11.73	0.02	2.0	1.66	213.2	0	17.6	1.00	) B
STIRL	28213		162.	434.	Ο.	-8.	18.		<b>5</b> 5.	2.		11.73	0.02	2.0	1.66	213.5	16	17.4	0.99	-
STIRL	28213		130.	466.	Ο.	24.	-14.		<b>55</b> .	2.	0.36	11.73	0.02	3.9	3.21	413.3	10	17.4	0.99	9 7
IEGT60	28213	0.	120.	481.	0.	34.	-30.	<u> </u>	<u>55.</u>	6.	0.73	11.73	0.01	17.8	14.69	767.0	0	18.9	1.07	7 6
	28213		131.	471.	Ο.	23.	-20.	A	55,	2.	0.38	11.73	0.01	7.7	6.38	775.3	0	18.0	1.02	2 6
CMCCL	28213	0.	127.	461.	Ο.	26.	-9.		<b>5</b> 5.	З.	0.49	11.73	0.03	8.9	7.35	895.0	1 .	17.8	1.02	S 60
CSTCL	28213	0.	125.	457.	Ο.	28.	-6.		55.	4.	0.60	11.73	0.04	9.9	8.19	906.2	1	17.9	1.02	2 6
<u>GGTST</u>	28213	0.	129.	465,	<u> </u>	25.	<u>-14.</u>		55.	3.	0.54	11.73	0.02	8.8	7.30	868.7	0	18.1	1.03	3 6
TSGAR	28213	Ο.	167.	423.	0.	-13.	28.		55.	3.	0.23	11.73	0.02	3.3	2.72	278.7	10	17.4	0.99	78
TAC08	28213	0.	160,	431.	C.	-6.	20.		<b>55</b> .	2.	0.19	11.73	0.02	2.4	1.97	262.1	18	17.3	0.99	9 81
TAC12	26213	0.	162,	426.	Ο.	-8.	25.		55.	3.	0.21	11.73	0.03	2.6	2.18	260.4	17	17.3	0.98	8
TAC16	28213	0	164.	422.	0.	<del>-</del> 10.	29.		55.	4.	0.22	11.73	0.03	3.0	2.45	268.8	16	17.3	0.98	8 8
TWC16	28213	Ο.	165.	422.	Ο.	-12.	30.		55.	4.	0.23	11.73	0.03	3.3	2.71	283.9	12	17.3	0.99	79
C1626	28213	Ο.	170,	411.	Ο.	-17.	40.		55.	5.	0.34	11.73	0.04	4.0	3.26	283.2	10	17.4	0.99	9 79
C1622	28213	Ο,	168.	415.	Ο.	-14.	36.		55.	4.	0.32	11.73	0.04	3.5	2.88	273.3	11	17.3	0.99	9 80
C1222	28213	0.	167.	416.	0.	-14.	36.		55,	4.	0.31	11.73	0.04	3.3	2.71	260.5	12	17.3	0.99	9 8
	28213		163,	424.	0.	-9.	28.		55.	3.	0.29	11.73	0.03	3.0	2.49	283.2	12	17.4	0.99	80
	28213		204.	368.	Ο.	-50.	84.		55.	10.	0.45	11.73	0.06	8.4	6.91	304.0	4	17.7	1.01	8
	28213		164.	425.	Ο.	-11.	26.		55,	3.	0.32	11.73	O, 03	4.8	4.00	443.2	2	17.7	1.01	72
	28213		104.	350.	-117.	49.	102.		55.	12.		11.73	0.06	10.9	8.98	316.3	0	18.8	1,07	
	28213	Ο,	222.	350.	0.	-68.	102.		55.	12.	0.53	11.73	0.06	10.9	8.98	316.3	0	18.0	1.03	3 8
	26213	35.	127.	427.	~35.	26.	25.		55.	3.	0.20	11.73	0.03	2.5	2.04	240.0	7	17.5	1.00	82
TRA08	28213	54.	121.	405.	-54.	33.	46.		5 <b>5</b> .	6.	0.28	11.73	0.04	4.6	3.78	289.8	2	17.7	1.01	79
TRA12	28213	51.	122.	408.	-51.	32.	44.		<u>55.</u>	5.		11.73	0.04	4.3	3.59	290.5	3	17.6	1.00	
TRA16	28213	48.	123.	411.	-48.	31.	40.		55.	5.	0.27	11.73	0.04	4.3	3.59	309.6	2	17.6	1.01	71
TR208	28213	42.	125.	419.	-42.	28.	32.		5 <b>5</b> .	4.	0.24	11.73	0.03	3.4	2.81	277.0	3	17.6	1.00	79
TR212	28213	44.	125.	417.	-44.	29.	35,		55.	4.	0.24	11.73	0.03	3.7	3.03	286.7	3	17.6	1.00	7
TR216	28213	44.	124.	416.	-44.	29.	36		<b>55</b> .	4.	0.25	11.73	0.03	3.8	3.15	296.0	3_	17.6	1.00	7
TRW08	28213	64.	119.	397.	-64.	35.	54.		55.	7.		11.73	0.04	5.1	4.21	270.6	C	17.8	1.02	2 80
TRW12	28213	62.	119.	398.	-62.	35.	54.		55.	7.	0.30	11.73	0.05	5.1	4.19	281.1	0	17.7	1.01	80
TRW16	28213	57.	120.	403.	-57 <i>.</i>	33.	49.		55.	6.	0.29		0.04	5.0	4.12	299.5	0	17.7	1.01	79

DATE 06/07/79 1&SE-PEG-ADV-DES-ENGR

						U*10**6- OCOGEN -			COGEN	Ø8M	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM V	√RTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD MW	POWER MW		/HEAT		COST *10**6	COST	EQVL	(%)	CHRG	ENRO	
<b>GTR308</b>	28213	55	. 123.	411.	-55.	31,	41.	55.	5.	0.26	11.73	0.03	4.0	3.28	247.7	0	17.8	1.02	79
<b>GTR312</b>	28213	50	. 123.	410.	-50,	31.	41.	55.	5.	0.26	11.73	0.04	4.1	3.36	278.7	2	17.7	1.01	79
GTR316	28213	49	. 123.	411.	-49.	31.	40.	55.	5.	0.26	11.73	0.04	4.2	3.50	292.3	0	17.7	1.01	79
FCPADS	28213	94	. 109.	365.	-94.	45.	86.	55.	10.	1.20	11.73	0.06	7.0	5.80	254.7	0	18.8	1.07	85
FCMCDS	28213	69	. 115.	383.	-69,	39.	68.	55.	8.	0.91	11.73	0.06	5.9	4.90	295.1	0	18.2	1.03	83
				•															•

		**000	SENERAT	TON CAS	E** **N	OCOGEN -	COGEN**	POWER	COGEN	1130	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM W
cs		DISTIL				RESIDL		REGD MW	POWER MW		/HEAT	_	COST *10**6	COST		( <b>X</b> )	CHRG	ENRG
	28221		18.	103.	0.	0.	0. A	8.	٥.	0.43		0.	4.2	1.00	350.2	0	3.9	1.00
	28221		63.	44,	Ο.	-45.	<b>59</b> .	8.	2.	0.32	0.73	0.12	3.4	0.81	235.5	999	3.8	0.98
	28221		13.	94.	Ο.	5.	9. F	8.	2.	0.54	0.73	0.12	6.1	1.45	421.6	11	3.7	0.95
	28221	<u>0.</u>	<u>13.</u>	94.	<u>o,</u>	<u> </u>	<u>9. A</u>		2.	0.48	0.73	0.12	5.3	1.26	363.8	_23_	3.5	0.91
	28221	0.	62.	49.	0.	-44.	54.	8.	2.	0.31	0.73	0.09	2.9	0.70	212.0	-1	3,8	0.99
	28221		15.	96,	0.	4.	7. F	8.	2.	0.52	0.73	0.09	5.6	1.33	403,5	11	3.7	
	28221		15.	96.	ø.	4.	7. A	8.	2.	0.46		0.09	5.0	1.18	357.3	24	3.6	0.93
	23221	0.	10.	89.	0.	8.	14.	<u>8.</u>	3.	0.63	0.73	0.19	8.1	1.91	496.8	9	3.7	0.95
	28221		67.	24.	0.	-49.	79.	8.	5.	0.66	0.73	0.25	16.0	3.80	909.0	0	5.0	1.30
	28221		7.	84.	0.	11.	19.	8.	5.	0.92	- 1	0.25	20,4		1158.0	0	5.0	1.30
	28221		66.	43.	0.	-48.	59.	8.	2.	0.51		0.09	13.8	3.28	883.7	0	5.1	1.33
	28221	0.	<u> 13.</u>	97.	0.	<u>5.</u>	6.	<u> </u>	2.	0.75	0.73	0.09	17.9		1140.8	o_	5,2	1.35
TIRL	28221	74.	5.	15.	-74.	14.	87.	8.	6.	0.33		0.22	4.4	1.05	203.2	0	4.0	1.04
STIRL	28221 28221	0.	79.	15.	o.	-61.	87.	8.	6.	0.33		0.22	4.4	1.05	203.4		3.5	0.91
STIRL	28221 28221	0,	5.	90.	0.	14.	13.	8.	6.	0.57		0.22	7.6	1.80	349.9	17	3.2	0.83
	28221	<u>0.</u> 0.	<u>0.</u> 0.	<u>106.</u> 219.	0.	<u>18.</u>	-3. A	<u>8.</u>	8.	1.14	0.73	0.13	24.2	5.74	780.8	0	<u>5.5</u>	1.44
	28221				0.	51.	-9. A	8.	21.	1.57	0.73	0.16		10.07	662.0	0	7.4	1.93
	28221	0. 0.	0. 0.	103.	0.	18.	-0. A	8.	8.	1.00		0.15	21.9	5.18	723.3	0	5.1	1.32
	28221	0. 0.	9.	111. 102.	0. 0.	21. 9.	-1. A O. A	8. 8.	8.	0.90		0.15	22.5	5.33	694.0	0	5.0	1.30
	29221	0.	2.	81.	0.	16.	21.	8.	<u>4.</u> 7.	0.59	0.73	0.08	12.9 15.3	3.06	624.1	0	4.3	1.13
	28221	o.	0.	77.	o.	18.	26.	8.	8.	1.08		0.37	17.2	3.63 4.06	708.3 761.9	4	4.0	1.04
	28221	o.	e.	89,	0.	25.	20. 35.	8.	10.	1.02		0.40	18.5	4.39	712.1	2	4.3	1.11 1
	28221	o.	1.	87.	g.	17.	16.	8.	7.	0.81		0.27	15.9	3.76	655.0	3	4.1	1.07
	28221	0,	82.	5.	0.	-64.	98.	8.	<del></del>	0.32		0.28	5.4	1.27	226.1	29	3.4	0.88
	28221	o.	73.	17.	Õ.	-55.	85.	8.		0.28		0.25	4.1	0.97	204.9		3.3	0.86
	28221	o.	77.	6.	o.	-59.	96.	8.	7.	0.30		0.31	4.6	1.09	208.8		3.2	0.83
	26221	0.	80.	o.	o.	-61.	103.	8.	8.	0.36		0.34	5.2	1.24	223.9	42	3.2	0.83
	26221	0,	80,	0.	0.	-62.	104.	8.	8.	0.32		0.34	5.2	1.22	219.5	48	3.2	0.82
	28221	0,	84.	o.	Ö,	-65.	103.	8.	8.	0.40		0.31	3.7	1.35	231.7	24	3.4	0.89
	28221	0.	87.	o.	Ō.	-67,	107.	8.	8.	0.33		0.32	5.6	1.33	221.4	28	3.3	0.86
	28221	0.	84.	o,	o.	-66.	103.	8.	ē.	0.55		0.31	6.3		257.3	11	3.7	0.95
C1526	26221	0.	114.	0.	0.	-83.	145.	8,	13.	0.50		0.35	7.6	1.80	228.2	9	3.6	0.95 1
C1622	28221	0.	82.	c.	Ō.	-64.	103.	8.	8.	0.53		0.32	6.0	1.42	249.2	15	3.6	0.92
C1622	28221	0.	104.	C.	0.	-76.	134.	8.	11.	0.47		0.36	6.9	1.62	226.2	14	3.5	0.90
C1222	28221	0.	82.	0,	0.	-64,	103.	8.	8.	0.53	0.73	0.32	5.8	1.37	240.8	18	3.5	0.91 1
C1222	28221	0.	103.	0.	0.	-75.	134.	8.	11.	0.46	0.73	0.37	6.5	1.55	217.3	16	3.4	0.89 1
C0822	28221	٥.	79.	ο,	0.	-61.	103.	8.	8.	0.51		0.35	5.8	1,36	247.8	21	3.4	0.88
C0822	28221	Ο.	87.	ο.	0.	-65.	115.	8.	9.	0.43		0.37	5.9	1.39	230.2	24	3.3	0.85
TIG15	28221	0.	107.	0.	0.	-89.	103	8.	8.	0.57		0.11	6.7	1.58	212.5	Ö	4.4	1.13
TIGIS	28221	0.	2692.	0.	0.	-1955.	2509.	8.	301.	5.3!	0.73	0.17		21.34	114.3	ō		10.06 2
TIGIO	.28221	0.	101.	0.	ο.	-83.	103.	8.	8.	0.53	0.73	0.16	6.2	1.47	208.8	Ö	4.1	1.06 1
TIGIO	28221	Ο,	264.	٥.	0.	-196,	269.	8.	28.	0.73		0.22	11.7	2.77	151.3	ō		1.52 1

		**CCG	ENERAT	ION CAS	E** **N	COGEN -	COGEN**	POWER	COGEN	O&M	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRTH
CS	PROCS	DISTIL R	ESIDL	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRO	
								MW	MW		RATIO		*10**6			(%)			
	\$ 28221		99.	0.	0.	-80.	103.	8.	8.	0.52	0.73	0.19	5.9	1.41	205.8	0	4.0	1.03	146
	8 28221		166.	0.	٥.	-126.	175.	8.	16.	0.54	0.73	0.23	8.0	1.90	165.2	0	4.6	1.18	131
	3 28221		93.	0.	0,	-74.	103.	8.	8.	0.57	0.73	0,24	8.4	1.98	308.3	O	4.1	1.07	
	3 28221		161.	0.	<u> </u>	<u>-118.</u>	185.	<u>8.</u>	18.	0.60	0.73	0.29	12.4	2.94	262.5	0	4.7	1.23	
	4 28221		79.	0.	0.	-60.	103.	8.	8.	0.53	0.73	0.35	7.8	1.85	339.1	10	3.6	0.94	
	4 28221		81.	0.	0.	-62.	107.	8.	8.	0.46	0.73	0.36	7.8	1.85	327.1	11	3.5	0.92	
	3 28221		0.	0.	-97.	18.	103.	8.	8.	0.57	0.73	0.20	8.3	1.96	292.0	0	4.9	1.26	
	3 28221		0.	0.	<u>-191.</u>	50.	207.	8.	20.	0.75	0.73	ΰ.26	17.4	4.13	310.8	o	7.0	1.82	
	3 28221		97.	٥.	0.	-78.	103.	8.	8.	0.57	0.73	0.20	8.3	1.96	292.0	0	4.2	1.10	
	3 28221 D 28221		191.	0.	0,	-142.	207.	8.	20.	0.75	0.73	0.26	17.4	4.13	310.8	0	5.8	1.50	
			3.	9.	-75.	16.	94.	8.	6.	0.29	0.73	0.29	4.2	1.00	190.9		3.7	0.96	
	B 28221 B 28221		<u>, o,</u>	<u> </u>	-84.	18.	103.	8.	<u> </u>	0.46	0.73	0.31	6.5	1.53	264.7	0	4.1	1.06	2.70
			0.	0.	-101.	26.	128.	8.	11.	0.38	0.73	0.34	7.1	1.69	241.9	0	4.1	1.07	
	2 28221		0.	0.	-83.	18.	103.	8,	8,	0.45	0.73	0.32	6.4	1.52	264.7	0	4.0	1.05	
	2 28221		0.	o.	-98.	25.	126,	8.	10.	0.38	0.73	0.35	7.0	1.66	244.0	0	4.1	1.06	
	6 28221	83.	<u>o.</u>	0.	<u>-83.</u>	18.	103.	8.	8.	0.45	0.73	0.32	6.7	1.58	275.5	0_	4.1	1.06	
	5 28221		, 0,	0,	-94.	24.	120.	8.	10.	0.38	0.73	0.35	7.1	1.68	257.3	0	4.1	1.05	
	8 28221		0.	0.	-83.	18.	103.	8.	8.	0.40	0.73	0.32	5.7	1.35	235.8	0	3.9	1.02	
	8 28221	86.	٥.	0.	-86.	20.	107.	8.	8.	0.33	0.73	0.32	5.7	1.34	225.2	5	3.9	1.00	,
	2 28221	83.	<u> </u>	0,	-83.	18.	103.	<u>8.</u>	<u> </u>	0.43	0.73	0.32	6.0		248.4	o	4.0	1.03	
	2 28221 3 28221		o.	0.	-89.	21.	112.	8.	9.	0.35	0.73	0.33	6.1	1.44	233.5	0	3.9	1.02	
	28221 3 28221	82.	o.	0.	-82.	18.	103.	8.	8.	0.43	0.73	0.32	6.2		258.8	0	4.0	1.03	
	3 28221	89.	0.	0.	-89,	22.	114.	8.	9.	0.36		0.34	6.4	1.51	243.4	0	3.9	1.02	
	3 28221	90.	<u>o.</u>	<u> </u>	-90.	18.	103.	8.	8.	0.48	0.73	0.26	6.7		254.9	0	4.3	1.13	
		122.	0.	0.	-122.	31.	145.	8.	13.	0.42		0,30	8.0	1.90	223.2	0	4.7	1.21	
	2 28221 2 28221	87.	0.	0.	-87.	18.	103.	8.	8.	0.48	0.73	0.28	6.7	1.58	261.0	0	4.3	1.11	
		120.	0.	0.	-120.	32.	147.	8.	13.	0.42		0.32	8.1		229.2	0	4,5	1.18	
	28221	87.	0.	<u> </u>	<del>-87.</del>	18.	103.	<u>8,</u>	8	0.48		0.28	6.9		270.0		4.3	1.11	
	28221	114.	0.	0.	-114.	29.	139.	8.	12.	0.42	0.73	0.32	8.1	1.91	241.0	O	4.5	1.16	
	28221	92.	o.	0.	-92.	18.	103.	8.	8.	0.45	0.73	0.24	6.1		225.9	0	4.3	1.12	
	3 28221 2 28221	106.	0.	0.	-106.	24.	120.	8.	10.	0.37	0.73	Ű. 26	6.4		205.3	0	4.4	1.14	
		86.	<u> </u>	<u> </u>	-86.	18.	103.	<u>          8.    </u>	<u>         8.                           </u>	0.45	0.73	0.29	6.2		245.6	<u> </u>	4.2		
	28221	104.	٥.	0.	-104.	26.	127.	8.	10.	0.38		0.32	6.8		221.0	0	4.2	1.10	
	28221	87.	0		-87.	18.	103.	8.	8.	0.46		0.28	6.5		255.0	0	4.2	1.09	
	28221	104.	٥.	٥.	-104.	25.	126.	8.	10.	0.38	0.73	0.31	7.0		231.2	0	4.3	1.11	
	28221	95.	0.	<u>0.</u>	<u>-95.</u>	18.	103.	8.	8.	1.06		0.22	6.7		239.7	0	5.1	1.33	
	28221	206.	0.	0.	-206.	56.	229.	8.	23.	2.51		0.28	14.5	3.44	240,6	0	8.5	2.20	
	28221	86.	0,	0.	-86.	18.	103.	8.	8.	1.01		0.29	6.9		274.1	0	4.8	1.24	
SMCDS	28221	150.	Ο.	٥.	-150.	44.	190.	8.	18,	1.90	0.73	0.36	12.4	2.92	280.7	0	6.6	1.70	150

		**C00	SENERAT	TON CAS	E** **N(	COGEN -	COGEN**	POWER	COGEN	O&M	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WR
ECS	PROCS	DISTIL I				RESIDL	COAL	REQD	POWER		/HEAT		COST	COST			CHRG	ENRG	
								MW	MW		RATIO		*10**6			(%)			
Nacev	28241	0.	114.	263.	ຶ່ນ.	0.	٥.	32.	0.	0.21	3.64	0.	1.8	1.00	174.4	0	11.1	1.00	0
TM141	28241	0.	116.	252.	0.	-2,	10.	32.	1.	0.30	3.64	0.02	2.9	1.59	242.5	7	11.1	1.00	0
M141	28241	0.	75.	293.	0.	38.	-30. F	32.	1.	0.49	3.64	0.02	5.2	2.87	437.7	6	11.1	0.99	9
TM141	28241	0.	75.	293.	Ο.	38,	-30. A	32.	1.	0.43	3.64	0.02	4.5	2.52	383.4	10	10.9	0.98	3
TM088	28241	0.	115.	256.	0.	-1,	7.	32,	1.	0.28	3.64	0.01	2.4	1.35	215.7	5	11.1	1.00	0
STMOSE	28241	0.	76.	295.	Ο,	37.	-32. F	32.	1.	0.47	3.64	0.01	4.7	2.61	417.4	6	11.1	1.00	0
<b>STM088</b>	28241	ο.	76.	295.	0.	37.	-32. A	32.	1.	0.42	3.64	0.01	4.2	2.35	375.7	9	11.0	0.99	3
	28241		73.	289.	0.	41.	-26.	32.	2.	0.56	3.64	0.04	7.0	3.86	524.4	6	11.1	0.99	
	28241		119.		0.	-6.	27.	32.	3.	0.58	3,64	0.06	13.6	7.55	951.2	ō	12.2		
	28241		70.		o.	43.	-22.	32.	3.	0.82	3.64	0.06	17.4		1214.7	ŏ	12.2		_
	28241		121.		o.	-7.	16.	32.	2.	0.47	3.64	0.02	12.7		912.1	ŏ	12.3		
	28241		74.	294.	Ö.	40.	-31.	32.	2.	0.70	3.64	0.02	16.4		1177.6	ŏ	12.4		
STIRL	28241		68.		-62.	46.	36.	32.	4,	0.30	3.64	0.05	3.7	2.05	204.6	0	11.3		
STIRL	28241		129.		0.	-16.	36.	32.	4.	0.30	3.64	0.05	3.7	2.05	204.8	14	10.9		
STIRL	28241		68.	288.	0.	46.	-26.	32.	4.	0.51	3.64	0.05	6.5	3.62	361.8	12	10.5		•
	28241		56.	308.	0.	58.	-45. A	32.	9.	0.95	3.64	0.03		3.21	677.8	0	12.5		
	28241		71.		0.	43.	-36. A	32.	3.	0.55	3.64	0.02	11.9	6.58	647.0	0	11.6		
	28241		65.		0.	49.	-30. A	32.	S. 6.	0.73	3.64	0.02	13.8	7.64	740.9	4.	11.3		
	28241		60.		0.	49. 54.	-9.	32. 32.	8.	0.73	3.64	0.12	15.9	8.79	740.5	4	11.2		_
	28241		66.	287.	0.	48.	-25.	32. 32.		0.73							11.5		
	26241		136.	<u>207.</u> 212.	0.	-22.	<u>-23.</u> 51.	32.	<u>5.</u> 6.	0.73	3.64 3.64	0.06	13.7	7.60	695.1	12			
	28241			212. 225.	0.							0.08	5.0	2.79	235.4		10.8		
	28241		125. 129.	223. 215.	0.	-12.	38.	32.	. <b>5</b> .	0.26	3.64	0.07	3.8	2.08	220.1	20	10.7		
		-				-15.	48.	32.	6.	0.28	3.64	0.09	4.2	2.33	221.8	20	10.6		
	28241		<u>132.</u>	208.	0.	<u>-19.</u>	54.	32.	<u>7.</u>	0.30	3.64	0.10	4.7	2.63	231.1	18	10.5		_
	26241		136.	207.	0.	-22.	56.	32.	7.	0.31	3.64	0.09	5.1	2.84	236.3	15	10.6		_
	28241		147.		0.	-33.	80.	32.	10.	0.45	3.64	0.13	6.4	3.54	236.5	13	10.5		
	28241		141.		0.	-27.	72.	32.	9.	0.42	3.64	0.12	5.7	3.18	232.7	15	10.5		
	28241		141.	<u>191.</u>	0.	<u>-27.</u>	72.	32.	<u> </u>	0.42	3.64	0.12	5.4	3.02	222.9	16	10.5		-
	28241		132.	207.	0.	-18.	56.	32.	7.	0.39	3.64	0.10	4.9	2.71	237.0	16	10.6		
	28241		317.		0.	-204.	263.	32.	32.	1.08	3.64	0.16	14.8	8.22	159.4	0	11.8		
	28241		2308.	0.	0.	-1640.	2116.	32.	258.	4.60	3.64	0.17		2.56	113.5	0	37.8		
	28241		246.	67.	0.	<u>-133,</u>	196.	32.	24.	0.66	3.64	0.17	10.5	5.80	157.8	8	10.8		
	28241		187.		0.	-73.	115.	32.	14.	0.49	3.64	0.11	7.2	3.99	172.7	9	10.8		
	28241		195.	120.	0.	-82.	142.	32.	17.	0.60	3,64	0.16	12.3	6.81	262.6	6	10.9		
	26241		133.	210.	0.	-19.	52.	32.	6.	0.43	3.64	0.09	7.2	3.97	348.6	7	11.0		
	28241	195,	28.	94.	<u>-195.</u>	86.	169.	32.	21.	0.76	3.64	0.16	17.7	9.82	310.6	<u> </u>	13.0		
	26241		223.		0.	-109.	169.	32.	21.	0.76	3.64	0.16	17.7	9.82	310.6	1	11.7		
	28241		65.	217.	-66.	49.	46.	32.	6.	0.27	3.64	0.08	3.9	2.16	202.9	9	11.0		
	28241		54.	182.	-94.	59,	<b>81</b> .	32.	10.	0.37	3.64	0.12	6.8	3.77	246.5	5	11.1		
	28241	91.	<u>55.</u>	185.	-91.	59.	78.	32.	10.	0.36	3.64	0.12	6.7	3.69	250.6	6_	11.1	1.00	no Sele
	28241	86.	57.		-86.	57.	72.	32.	9.	0.36	3.64	0.11	6.7	3.71	265.6	5	11.2		
TR208	28241	77.	61.	204.	-77.	53.	59.	32.	7.	0.32	3.64	0.09	5.3	2.92	234.9	5	11.1	1.00	)
	28241	80.	60.	200.	-80.	54.	63.	32.	8.	0.33	3.64	0.10	5.7	3.14	243.3	5	11.1	1.00	)

DATE 06/07/79 I&SE-PET-ADV-DES-ENGR

				FUEL US	E IN BT	U*10**6-													
		**C(	<b>IGENERAT</b>	TON CAS	E** **N	OCOGEN -	COGEN**	POWER	COGEN	MBO	POWER	FESR	CAPITAL	NORM		ROI	LEVL	NORM !	WRTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EOVL		CHRG	ENRG	
								MW	WW		RATIO		*10**6			(%)			
GTR216	28241	80.	59.	198.	-80.	55.	65.	32.	8.	0.34	3.64	0.11	5.9	3.29	252.9	5	11.1	1.00	
GTRWOS	28241	114.	50.	167.	-114.	64.	96.	32.	12.	0.41	3.64	0.12	7.6	4.23	229.2	0	11.4	1.02	101
GTRW12	28241	110.	50.	166.	-110.	64.	96.	32.	12,	0.40	3.64	0.13	7.6	4.23	236.7	3	11.2	1.01	103
GTRW16	28241	103.	52.	174.	-103.	62.	88.	32.	11.	0.40	3.64	0.13	7.6	4.19	250.5	3	11.3	1.01	101
GTR308	28241	98.	57.	190.	-98.	57.	73.	32.	9.	0.35	3.64	0.09	6.1	3.36	211.5	0	11.5	1.03	97
GTR312	28241	92.	56.	187.	-92.	58.	76.	32.	٥.	0.36	3.64	0.11	6.3	3.47	232.1	4	11.2	1.00	99
GTR316	28241	91.	56.	188.	-91.	58.	74.	32.	9.	D.36	3.34	0.11	6.5	3.60	242.9	3	11.2	1.01	99
FCPADS	28241	176.	30.	101.	-176.	83.	161.	32.	20.	2.16	3.64	0.18	12.4	6.85	239.1	0	13.4	1.21	113
FCMCDS	28241	129	. 40.	135.	-129.	73.	128.	32.	16.	1.64	3.64	0.19	10.7	5.95	284.6	0	12.3	1.10	111

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.2
SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

DATE 06/07/79 1&SE-PEG-ADV-DES-ENGR

						3																						- 3400 :			3				T	to the		. couré	L.		-	T
	WRTH		80	3 6	92	66	87	88	96	103	101	8	2 ;	4 (	¥ 5	· ·	96	83	103	121	00	-	<u>-</u>	ر ا	9 5	60	27	28	23	21	83	10	20	24	17	36	26	33	22	16	22	
	NORTH ENRO		1.00	96.0	0.94	0.98	0.97	0,95	0.96	1.16	1.17	. 17	5	2 6			.13	90.	. 02	96.0	. 04	. 92	50.	. 89	20.00	.86	.85	0.85	_	01.	.83		26	. 69	.92	,	***	.0.	10.	. 97		
-		- 1	တ္ စ	٥,	ဖ	Ì	Φ.		7	.7	<u></u>	<b>B</b>	•	n u	9 (4	ភា	٠.	8	0,	8	<b></b>	ıv i	ָה ה		i K	ָ מ מ	0	2	٠ 0	<u>س</u> ا	O.	i it	9	0	5	.7	_	0	1 0	O (	<b>5</b>	
	CHRG			. T	Ī	4					<u>ග</u> (				7 7			,		4	י מו	4 ,	4,	4 4	4 4	4	4	4	4	ល	28	T IC	4	4	4	'n	ιń	Ď.	ທີ	4	Ť	
	2 J	5	a c	· ~	8 12	6 12	9	,-	2	<b>.</b>			0 G	•		•		<b>.</b>	æ	5	4 1			N C	2 2	5	16	}		0 (	1			_ ,	=	0	O	4	4	¢	٥	
	S/KW EQVL		192.	485	434.	254.	464.	•	581	1013.1	1288.8	996.	- î	4	378.		820.8	713.7	803.	802.	751.5	261.2	2000	246.	250.6	260.1	254.7	245.3	263.9	209.5	2000	170.0	186.7	303.6	380.7	320.9	317.2	320.9	317.2	216.6	. 103	
	COST		00.1		2.88	•	2.93		4.28	9.13	0.34	0.00	000		3.67	5.38	3.95	3.17	7.48	.50	3 50	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3 6	- N	2.75	. 94	. 51	.36	2	2 3	4 A B				. 86		•	+1	.68	50.	٠٥٥.	
		××e	ဂ္		4	41	ю.	- 1		4 (	-			,	9	4 1	2	4	41		۰ د	n c			. N	Ö	3	<b>-</b> - ∣		e e	?	9		5	8	_	_	9	9 (	N 6	?	
		*10×	- n	4	4	αi ,	4 4	4 (	9	<u> </u>	<u>.</u>	2 5		6	io.	23.	15.	ດ໌ ຸ	= ;	4 5	ų c	ກໍຕ	i c	9 6	4		Š	က် ·	4,1		٠ ١٠	8		•	S.		0		10.	? K	;	
8	これの出		0.0	0.09	• 1	٠		36	-1	•	. c			٠.	0.14				0.17				1 1		٠,	0.32	+1		•	4 6		0.25	0.25	0.29		٠	•	•	72.0			
021	/HEAT	FAT 10	. 63	.63	.63	63		2 6	200	9 6	3 6	3 6			.63	- 1	. 63	63	83		3 6	3 6				. 63		63		200					93	-	63		200	_	,	
			29.62	47	41	27	0 4 6	יי יי	200	76	000	53	27 1	27 1	46 1	90	64 1	45	29	200	200	3 6	24	25	27 1	43 1	40	0 70	- ·	704	55	57 1.	43 1.	45 1.		20	51	<u>.</u>		30 1		
Nac		C		ö	Ö	ສ໌ ຕ		٠	jc	i c	o c	Ġ	o	0	0	o.	O	D	5 0	2	ċ	0.23	o		•		•!				٠ ١٠		0.4	•	0.0	٠		•				
CAGEN	POWER	<u>₹</u>	i oi	તં	તું.	,-		- 6	5		<u>,</u>	i	4	4	4	6	i (	, i	j r	i ia	4	4	4	5.	Š.	ດ໌ ເ	80	, c	: -	198.	=	18.	<u>-</u>	10	<i>i</i> :	_ :	<u>.</u>	- 9	<u>,</u> 4	,		
Prantin	REGD	A -				, ,-			-	-		-	<u>:</u>	=	=		- -:	: - ;	: :		=	: <u>-</u>	<u>-</u>	11.		<b>,</b>					-	11.	<u>.</u>		-:	<u>:</u> ;				· _		
11				L.	4	u	٠ ﴿	:								⋖	∢ <	<																								
COGFN**	COAL	C	- T	-19	5		- 2	-16	200	-12	12	-23	33.	33.	-17	-21.	4 6	9 6	· -	-15	36.	29.	36.	40.	43.	73	S C	, r	5 6	1622.	90.	150.	88.	84.	5.0	מ	, n n	9	34.	53,		
0**6	RESIDL	0	ام ن	32.	36.	; <del>;</del>		34	-6	36.	4	31.	37.	-13.	37.	96	, , ,		45.	40.	-13.	6-	-11,	-13.	-17.	6	-24.	-17.	-70.	258.	-61.	102.	-56.	-42.	. Z			. 72	37.	43.		
**COGENERATION CASE** **NOCOGEN	IL RE		0			. 0	Ö	o.	0						<u>.</u>		<u>.</u>	• _	• _•											Ξ.		Ŧ	ĩ				7			•		
N * * * * * * * * * * * * * * * * * * *	DISTIL			•						0	Ü	0	-50	0	0 0		<i>.</i>	o c	0		0	0	٥	0	o o	<b>o</b> c		0 6	0	0	0	0	0 0	2	ָר בּי בי	٠.	-		-49	-62		
**COGENERATION CASE** **NOCOGEN	CÖAL	90.	75.	10.	200	= :	111.	106.	61.	103.	79.	113.	57.	57.	108.	1 2	11.	103	92.	105.	55.	61.	54.	50.	47.		36	36.	0	0	0		ni u	آر	; c	; c	ċċ	o	56.	37.		
FUE	ار چ	4	57.		56.	23.	23.	20.	60.	18.	58.	24.	17.	٠,	· 4		; <u>-</u>		6	4			5.						·				•				••	<u>.</u>				
GENER	RES I DL	D.	, co	N U	5	N	O	2	9	_	S.	Ö	<b></b> (	٠,	<u> </u>	,	2.2	16.	. •,	14	69	63	65	67	7 6	200	78	7.5	124.	1769		4.5	- 0 - 0	98	) C	· C	105	110	17	Ξ		
- 100 * - *	STIL	0	0 0		o	0	ö	o	o.	o.	ó	٥	50.				ö	0	0	o.	0	0	o	ö			o	0	0	0	ဝဲ	o c	<i>.</i>	d	105.	110		0	49.	62.		
	PROCS DISTIL	28242	275	28242	28242	28242	28242	342	342	342	:42	742	N 0	<u> </u>	7 0	42	72	42	42	42	72	42	27	7 C	4 2 71 0	) (\ 	12	42	22	12	លិខ	i c	īō	12			0	2	2	<u> </u>		
	PRŒ	z	<del>-</del> -			_		ĺ				6 28242			5 28242	,			ا.			8 28242	1	28242			ĺ			- 1	28242			1					28	28242		
,	ECS	ONGCGN	STM14	STM141	STMOBB	STMO83	STMO88	PFESTM	TISTMI	TISTM	TIHRSG	THRSG	STIBL	71101 71101	HEGTAS	HEGT60	HEGTOO	FCMCCL	FCSTCL	GGTST	GTSOAR	GTAC08	0 : AC   Z	GIACIE	CC1626	C(1622	CC1222	CC0822	STIG15	ST1615	S11610	STIGITS	DEADV3	DEHTPM	<b>DESCA3</b>	DESUAS	DESCAS	DESGAS	GTSØAD	TRAOB		
					<u> </u>									-		<u></u>	_						1,			_		_			0	, U	18	-		T2	۸s			(D . N I	Na.	Ē

3

DATE 06/07/79 1&SE-PEG-ADV-DES-ENGR

		**C		TION CAS		J*10* <b>*6</b> - COGEN -		POWER	COGEN	M80	POWER	FESR	CAPITAL	NORM	S/KW	ROI	LEVL	NORM	WRTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRO	
								MW	MW		RATIO		*10**6			(%)			
GTRA12	28242	61	. 11	37.	-61.	43.	53.	11.	6.	0.30	1.33	0.24	5.0	3.30	279.8	8	4.8	0.97	7 122
GTRA16	28242	59	. 12	, 41.	-59.	42.	50.	11.	6.	0.30	1.63	0.22	5, 1	3.36	294,4	7	4.8	0.98	120
GTR208	28242	54	. 14.	. 48.	-54.	40.	42.	11.	5.	0.27	1.63	0.19	4.1	2.70	258.2	8	4.8	0.9	3 117
GTR212	28242	57	. 14	45,	-57.	40.	45	11.	5.	0.28	1.63	2.20	4.4	2.91	267.2	7	4.8	0.98	118
3TR216	28242	57	. 13.	. 44.	-57.	41.	46.	11.	6.	0.28	1.63	0.27	4.6	3.02	277.2	8	4.8	0.98	3 115
GTRWOS	3 28242	? 76	, 8,	. 26.	-76.	46.	64.	11.	8.	0.33	1.63	0.24	5.8	3.81	260.4	4	5,0	1.01	123
GTRW12	28242	? 76	. 7.	24.	-76.	47.	66.	11.	8.	0.33	1.63	0.26	5.9	3.87	266.3	5	4.9	1.00	125
STRW16	28242	72	8.	2 <b>8.</b>	-72.	46.	62.	11.	8	0.33	1.63	0.25	5.9	3.88	279.4	5_	4.9	1.00	123
GTR308	26242	65	. 12	42.	-65.	42.	49.	11.	6.	0.29	1.63	0.17	4.6	2.99	238.7	1	5.0	1.02	2 116
<b>GTR312</b>	28242	. 67	. 11.	35.	-67.	44.	<b>5</b> 5.	11.	7.	0.30	1.63	0.22	5.0	3.27	254.2	5	4.9	0.99	121
STR316	28242	. 67	. 11.	36.	-67.	43.	54.	11.	7.	0.31	1.63	0.21	5.2	3.40	266.2	4	4.9	1.00	120
FCPADS	28242	106	. 0.	. 0.	-106.	54.	90.	11.	11.	1.47	1.63	0.27	8.0	5.25	257.2	0	6.5	1.31	142
FCPADS	28242	135	. 0.	0.	-135.	64.	124.	11.	15.	1.82	1.63	0.28	9.7	6.39	245.5	0	7.3	1.49	134
FCMCDS	28242	93	. 0.	0.	-93.	54.	90.	11.	11.	1.36	1.63	0.35	8.1	5.34	297.8	0	5.9	1.19	150
FCMCDS	26242	99	. 0.	Θ.	-99.	56.	98.	11.	12.	1.38	1.63	0.33	8.4	5.53	291.6	0	5.9	1.21	139

		**CØGi	ENERAT	ION CASI	E** **NO	COGEN -	COGEN	**	POWER	COGEN	O&M	POWER	FESR	CAPITAL	NORM	\$/KW ROI	LEVL	NORM	WRT
cs	PROCS	DISTIL R				RESIDL	COAL		REQD MW	POWER MW		/HEAT RATIO		COST *10**6	COST	EQVL (%)	CHRG	ENRG	
NOCGI	28651	0.	11.	401.	0.	0.	0.	F	4.	0.	1.73	0.03	0.	29.1	1.00	165.7 0	12.3		
TM141	28651	Ο.	382.	ο.	Ο.	-372.	401.		4.	4.	1.17	0.03	0.07	20.1	0.69	111.0 -18	14.3		7 15
	28651	Ο.	511.	0.	ο.	-422.	664.		4.	36.	1.09	0.03	0.32	22.0	0.76	100.7 -5	12.3		
	28651	0.	<u>0.</u>	<u>3</u> 82.	0.	<u> </u>	18.	<u>_F_</u>	4.	4	2.31	0.03	0.07	<u> 35.6</u>	1.22	196.7 1	12.5		
TM141		٥.	0.	511.	o.	89.	153.		4.	36.	2.29	0.03	0.32	40.1	1.38	183.2 21	9.3		6 10
TM141		ο.	Q.	382.	0.	11.	18.		4.	4.	2.22	0.03	0.07	33.9	1.16	187.5 5	12.3		
	28651	Ο.	Ο.	511.	o.	89.	153.	Α	4.	36.	2.22	0.03	0.32	34.0	1.17	155.3 44	8.6		
	28651	<u> </u>	382.	0,	0.	-372.	401.		4,	4.	1.18	0.03	0.07	19.9	0.68	109.9 -18	14.3		
	28651	ο.	475.	0.	0.	-408.	591.		4.	28.	1.03	0.03	0.28	20.0	0.69	95.9 -7	12.6		
	28651	o.	0.	382.	0.	11.	18.	•	4.	4.	2.33	0.03	0.07	35.8	1.23	197.8 1	12.6		2 13
	28651	0.	0.	475.	0.	6 <b>8</b> .	116.		4.	28.	2.15	0.03	0.28	37.3	1.28	179.3 22	9.9		0 1
	<u>28651</u>	<u> </u>	<u> 0.</u>	382.	0.	<u> </u>		<u> </u>	4.	4.	2.25	0.03	0.07	34.0	1.17	187.6 5	12.3		
	28651	0.	0.	475.	0.	68.	116.	Α	4.	28.	2.15	0.03	0.28	32.7	1.12	157.0 45	9.4		
	1 28651	0.	0.	383.	0.	11.	18.		4.	4.	2.28	0.03	0.07	34.4	1.18	189.8 3	12.4		
	1 28651	0.	0.	595.	0.	137.	230.		4.	56.	3.66	0.03	0.38	47.3	1.62	194.2 15	9.3		
	28651	<u>o.</u>	<u> 383.</u>	<u> </u>	<u>0,</u>	-372.	401.		4.	4.	1.36	0.03	0.07	28.7	0.99	<u>158.5 999</u>	15.5		
	28651	o.	549.	0.	0.	-439.	732.		4.	45.	3.00	0.03	0.35	87.3	3.00	379.8 0	20.8		
	28651	Ο.	O.	383.	o.	11.	18.		4.	4.	2.46	0.03	0.07	43.9	1.51	242.5 0	13.6		
	26651	Ο.	О.	668.	Ο.	181.	302.		4.	74.	5.16	0.03	0.42	150.8	5.18	569.9 0	20.0		
	28651	0.	389.	0.	0.	<u>-378.</u>	401.		4.	4.	1.50	0.03	0.06	36.2	1.24	197.8 0	16.5		
	28651	Ο.	470.	٥.	Ο.	-422.	524.		4.	19.	2.51	0.03	0.18	74.2	2.55	359.2 0	21.1		
	28651	ο.	0.	389.	0.	11.	12.		4.	4.	2.66	0.03	0.06	53.2	1.83	291.2 0	14.9		
THRSE		ο.	Ο.	537.	ο.	78.	89.		4.	32.	4.36	0.03	0.24	128.6	4.42	568.2 0	22.2		
TIRL	28651	391.	<u>o.</u>	0.	<u>-391.</u>	11	401.		4.	4.	1.16	0.03	0.05	22.8	0.78	124.2 -42	17.3		1 1
TIRL	28651	664.	0.	ο.	-664.	125.	784.		4.	51.	1.84	0.03	0.27	42.4	1.46	160.8 0	21.2		
TIRL	28651	ο.	391.	ο.	0.	-380.	401.		4.	_4.	1.16	0.03	0.05	22.8	0.78	124.2 -25	14.8		
TIRL	28651	0.	664.	ο.	ο.	-539,	784.		4.	51.	1.84	0.03	0.27	42.4	1.46	160.9 0	16.9		
TIRL	28651	<u> </u>	0.	<u>391.</u>	<u>0.</u>	11.	10.		4.	4.	2,23	0.03	0.05	36.7	1.26	200.3 0	12.6		
TIRL	28651	Ο.	Ο.	858.	0.	206.	197.		4.	84.	4.04	0.03	0.32	100.6	3.45	314.1 2	14.4		
	28651	Ο.	Ο.	401.	0.	11.	-0.		4.	4.	2.21	0.03	0.03	40.0	1.37	214.4 0	13.2		
	28651	Ο.	Ο.	2527.	ο.	637.	-29.		4.	260.	9.72	0.03	0.19	256.2	8.80	316.5 0	33.0		
	28651	0.	0.	400.	<u>0,</u>	<u> </u>	1,	<u> A</u>	4.	4.	2.21	0.03	0.03	39.7	1.36	213.0 0	13.2		
EGT60		0.	0.	1305.	0.	287.	20.		4.	117.	5.63	0.03	0.19	144.0	4.94	319.1 0	22.5		
	28651	o.	0.	400.	0.	11.	1.		4.	_4.	2.23	0.03	0.03	39.3	1.35	211.2 0	13.2		
	23651	o.	0.	785.	0.	129.	12.	Α	4.	53.	3.60	0.03	0.15	85.2	2.93	284.9 0	17.1		
	<u> 28651</u>	0.	<u> </u>	622.	0.	11.	<u>-221.</u>		4.	4.	2.38		<u>-0.51</u>	43.2	1.48	237.1 0	17.5		
	20651	0.	0.	1075.	0.	235.	76.		4.	96.	5.78	0.03	0.22	104.2	3.58	330,8 0	18.6		-
	. 28651	o.	0.	621.	0,	11.	-220.		4.	4.	2.40		-0.51	42.4	1.45	232.9 0	17.5		
	28651	o.	0.	1332.	0.	380.	303.		4.	155.	7.23	0.03	0.34	129.9	4.46	332.7 1	16.4		
	28651	0.	<u>o.</u>	626.	<u> </u>	<u> </u>	-225.		<u>4.</u>	<u>4.</u>	2.35	0.03		40.6	1.39	221.2 0	17.3		
	28651	0.	0.	1242.	0.	267.	18.		4.	109.	3.46	0.03	0.19	101.1	3.47	277.7 0	16.3		
	28651	Ο.	<b>3</b> 90.	o.	o.	-379.	401.		4.	4.	1.09	0.03	0.05	21.3	0.73	116.1 -20	14.5		
TSCAF	28651	0.	709.	0.	0.	-561.	859,		4.	60.	1.51	0.03	0.30	32.0	1.10	115.6 0	15.1	1.2	<b>2</b> 17

				<b>5</b> 11 <b>5</b> 1															,
							COCCHE		OGOEN	oem	POWER	FEGD	CAPITAL	NORM	\$/KW	261	LEVL	NORM I	URTH
						OCOGEN -				OGIT	/HEAT		COST	COST	EGVL	NO.	CHRG	ENRG	M16111
ECS	PROCS	DISTIL	RESTUL	COAL	DISTIL	RESIDL	COAL	REOD MW	POWER		RATIO		*10**6	0031	EGVE	(%)	Oimo	2,1110	
GTAC08	28651	0.	387.	0.	0.	-376.	401.	4.	4.	1.08	0.03	0.05	20.7	0.71	113.8	-19	14.4	1.17	151
GTAC08			605.	õ.	ō.	-487.	757.	4.	48.	1.35	0.03	0.31	26.6	0.91	108.2	-27	13.6	1.11	125
GTAC12			387.	o.	0.	-376.	401.	4.	4.	1.07	0.03	0.06	20.7	0.71	113.5	-18	14.4	1.17	151
GTAC12	-		664.	0.	0.	-519.	852.	4.	59.	1.45	0.03	0.33	30.4	1.04	115.3	0	13.7		
GTAC16			387.	٥.	0.	-376.	401.	4,	4.	1.07	0.03	0.06	20.8	0.72	114.2	-19	14.4	1.17	151
GTAC16			707.	0.	0.	-543.	914.	4.	67.	1.55	0.03	0.34	33.7	1,16	122.1	0	14.0	1.14	123
GTWC16			390.	٠. ٥.	0.	-373.	401.	4.	4.	1.08	0.03	0.05	21.1	0.72	115.3	-20	14.5		
GTWC16			767.	٥.	0.	-593.	946.	4.	71.	1.55	0.03	0.32	33.0	1.13	112.5	0	15.0		
CC1626			390.	0.	0.	-379.	401.	4.	4.	1.14	0.03	0.05	20.9	0.72	113.9	-21	14.6		
CC1626	28651	1 O.	1035.	٥.	0.	-747.	1332.	4.	118.	2.00	0.03	0.36	43.3	1.49	116.3	0	15.7		
CC1622	28651	I 0.	389,	٥.	0.	-378.	401.	4.	4.	1.14	0.03	ົນ. 06	20.6	0.71	112.8		14.5		
CC1622	28651	I 0.	944.	٥.	0.	-683.	1236.	4.	106.	1.96	0.03	0.37	43.3	1.49	125.3	0_	15.2		
CC1222	2865	0.	388.	٥.	0.	-378.	401.	4.	4.	1.13	0.03	0.06	20.5	0.70	112.0	_	14.5		
CC1222	28651	0.	936.	٥.	٥.	-677.	1233.	4.	106.	1.93	0.03	0.37	41.3	1.42	120.3	0	14.8		
CC0822	28651	1 0.	387.	٥.	٥.	-375.	401.	4,	4.	1.14	0.03	0.06	20.7	0.71	113.3		14.5		
CC0822	28651	1 0.	791.	0.	0.	-584.	1060.	4.	<u>85.</u>	1.75	0.03	0.38	35.3	1.21	117.5	0_	13.7		
STIG15	2865	0.	404.	٥.	٥,		401.	4.	4.	1.10	0.03	0.02	20.8	0.71	110.9	-	14.9		
STIGIS	28651	1 O.		0.			22226.	4.	2663.	39.42	0.03	0.17		22.73	93.8	0		25.17	
STIGIO	28651	i 0.	400.	٥,	0.	-389,	401.	4.	4.	1.09	0.03	0.03	20.6	0.71	110.4		14.8		
STIGIO	26951	10.	2340.	0.	0.		2386.	4.	246.	4.22	0.03	0.22	79.0	2.71	104.6	0	<u>35.7</u>		
STIGIS	28651	1 0.	398.	0.	0.		401.	4.	4,	1.09	0.03	0.03	20.5	0.70	110.3		14.7		
STIGIS			1471.	ο.	٥.		1551.	4.	144.	2.92	0.03	0.23	50.6	1.74	101.1	0	25.0	2.03	
DEADVS			394.	0.	0.	-384.	401.	4.	4,	1.19	0.03	0.04	24.7	0.85	134.1	-34 0	15.1 27.8		
DEADVS			<u> 1381.</u>	0,	<u> </u>		1598.	4.	150.	3.56	0.03	0.30	105.4	3.62	136.3		14.9		
DEHTPM			386.	٥.	0.		401.	4.	4.	1.23	0.03	0.06	24.8	0.85 2.06	215.0	-33	17.0		
DEHTPM			719.		0.	-541.	959.	4.	72.	2.38	0.03	0.37	60.1 23.9	0.82	128.8	-	17.7		
DESCAS			٥.		-397.	11.	401.	4.	4. 172.	1.17 4.63	0.03	0.04	146.5	5.03	268.2	0	46.8		
DESMAG			0.	<u>o.</u>	<u>-1628.</u>	422.	1779.	4.	4.	1.17	0.03	0.04	23.9	0.82	128.8		15.1	1.23	
DESGAS			397.				401.	4.	172.	4.63	0.03	0.26	146.5	5.03	268.2		36.3		
DESGA3			1628.	0.	0.		1779.	4.	4.	1.07	0.03	0.06	20.5	0.70	112.3	4	16.9		
GTSOAD			0.		-388.	11,	401. 832.	4. 4.	57.	1.39	9.03	0.32	27.5	0.94	104.0		18.1	1.47	
GTSOAD			<u> </u>	<u>0,</u>	-666. -389.	140. 11.	401.	4.	4.	1.08	0.03	0.05	21.4	0.74	117.0		17.1	1.39	
GTRA08			0.		-359. -875.	224.	1116.	4.	92.	1 32	0.03	0.35	43.1	1.48	132.6	ā	21.3		
GTRAOS			0.	0. 0.	-389.	11.	401.	4.	4.	. , , , , , , , , , , ,	0.03	0.06	21.3	0.73	116.7	-	17.0		
GTRA12			o.		-857.	221.	1103.	4.	90.	78	0.03	0.35	41.6	1.43	129.9	o	20.8		
GTRA12			<u>, o</u> ,	<u>0,</u>	-389.	11.	401.	4.	4.	1.09	0.03	0.06	21.5	C 74	117.8		17.1	1.39	
GTRA16			0,	0.	-309. -825.	207.	1057.	4.	84.	1.78	0.03	0.35	41.9	1.44	134.9	Õ	20.7		
GTRA16			0.		-389.	11.	401.	4.	4.	1.08	0.03	0.06	21.1	0.72	115.4	-	17.0		
GTR208			0.	U. O.	-309. -751.	173.	943.	4.	70.	1.58	0.03	0.33	34.2	1.17	118.4	0	19.6		
GTR208			<u>0.</u> 0.		-389.	11.	401.	4.	4.	1.08	0.03	0.06	21.2	0.73	116.1		17.0		
GTR212					-781.	185.	985.	4.	76.	1.64	0.03	0.33	36.5	1.29	122.4	ō	20.0		
GTR212			0.		-389.	11.	401.	4.	4.	1.08	0.03	0.06	21.3	0.73	116.6	-	17.0		
GTR216			0.	0.		190.	1000.	4.	77.	1.69	0.03	0.34	38.6		129.3		20.0		
GTR216	2865	1 783.	0.	<u> </u>	- / 63.	130.	1000.	<u></u> :	<del></del>		<del></del>								

MAGE 74

DATE 06/07/79 1&SE-PEG-ADV-DES-ENGR

		**C	OGENERAT:	ION CASI	Exx xxIII	OCOGEN -	COGEN**	POWER	COGEN	MSD	POVER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM W	RTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REGD	POVER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
								MW	MW		RATIO		*10**6			(%)			
STRVIOS	28651	393	. 0.	0.	-393.	11.	401.	4.	4.	1.09	0.03	0.05	21.5	0.74	116.7	-36	17.2		
STRHOS	28651	1066	. 0.	. 0.	-1066.	269.	1265.	4.	110.	1.86	0.03	0.31	43.1	1.48	113.1	0	24.8		134
STRW12	28651	392	. с.	0.	-392.	11.	401.	4.	4.	1.08	0.03	0.05	21.5	0.74	116.9	-35	17.1		154
STRW12	28651	1052	. 0.	o.	-1052.	<u>275.</u>	1286.	4.	112.	1.86	0.03	0.33	43.6	1.50	115.5	0	23.8		135
GTRW16	28651	391	. 0.	٥.	-391.	11.	401.	4.	4.	1.09	0.03	0.05	21.5	0.74	117.9	-36	17.2	1.39	
GTRW16	28651	1000	. 0.	٥.	-1000.	257.	1224.	4.	105.	1.85	0.03	0.32	43.3	1.49	119.7	0	23.4		134
GTR308	28651	394	. 0.	0.	-394.	11.	401.	4.	4.	1.08	0.03	0.04	21.2	0.73	114.7	-35	17.2		
GTR308	28651	921	. 0.	0.	-921.	205.	1052.	4.	84.	1.67	0.03	0.27	36.5	1.25	107.9	0	23.5		131
GTR312	28651	391	, 0.	٥.	-391.	11.	401.	4.	4.	1.08	0.03	0.05	21.2	0.73	115.7	-35	17.1	1.39	
GTR312	22651	918	. 0.	٥.	-918.	<b>2</b> 26.	1120.	4.	92.	1.70	0.03	0.32	37.9	1.30	112.2	0	22.1		133
GTR316	28651	391	. 0.	ο.	-391.	11.	401.	4.	4.	1.09	0.03	0.05	21.4	0.74	116.8	-35	17.1		154
GTR318	28651	913	. 0.	0.	·-913.	222.	1109.	4.	91.	1.72	0.03	0.31	38.9	1.34	115.7	0_	22.2		133
FCPADS	28651	396	. 0.	0.	-396.	11.	401.	4,	4.	1.43	0.03	0.04	23.0	0.79	124.3	-46	17.8		
FCPADS	28651	1824	. 0.	0.	-1824.	498.	2032.	4.	203.	21.50	0.03	0.28	124.1	4.26	205.6	O	62.6		190
FCMCDS	28651	391	. o.	0.	-391.	11.	401.	4.	4.	1.41	0.03	0.05	23.2	0.80	126.4	-46	17.6		
FCMCDS	26651	1330	. ο.	٥.	-1330.	394.	1684.	4.	161.	16.24	0.03	0.36	107.5	3.69	234.2	0	45.9	3.73	168

GENERAL ELECIRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.2
SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

		4	FUEL USE IN BTU*10**6	IN BTU	*10xx6-											1		
	**C06!	ENERATI	**COGENERATION CASE** **NOCCOGEN	** **NG	COGEN -	COGENER	POWER	COGEN	ORM	POWER	FESR	CAPITAL	NOR M	S/KW R	ROI LE	LEVL N	NORM VA	WRTH
ECS PROCS D	PROCS DISTIL RESIDL		COAL	DISTIL	RESI DL	CØAL	REGD	POWER		/HEAT		COST	COST	EQVL	ਲ ਹ		چ وچ	
ONPCRN 28653	c	15	402	c	C	T .			1.27	0.07		20.5	00	5	0	Ι,	00	80
	o	377.	Ö	ö	-362.	402.	φ.	ω,	•	0.07	0.10	12.4	0.60	112.0 -	19	3.5	1,18	90
<del></del>	o	407.	ö	Ö	-374.	463.	φ.	13.	0.75	•	0.18	ď	.58	۲.	14		1.11	51
STM141 28653	0.	0	377.	0.	15.	25. F	6,	6.	1.92	•		•1	.36	0	2	'n	00	32
-	0.	0.	407.	o O	33.	56. F	9	13.	1.58	•	0.18	'n		^	23	0.0	0.87	56
STM141 28653	o ,	Ö	377.	o.	13.		ø.	9	1.80			4.	.20	_	13	o,	. 96 .	37
STM141 26653	ö	ö	407.	o.	33.		6	13.	1.41	•	•	18.2	. 89	ŋ	66	0	7.79	32
STM088 28653	0	377.	0.	0	-362.	402.	Ó	.9	- 11	•	•		.58	-	18	'n	. 17.	61
	0	388.	o.	0.	-367.	424.	9	6	0.71	0.07	•	10.7		<b>t</b> «.	14	on.	. 12	55
	o.	o.	377.	o	35		9.	Ó	1.87	•	•	27.1		(?)	7	<u>ښ</u>	. 99 .	33
	ö	o	388.	ö	21.	37. F	9	6	1.48		•	23.3		(3	29	O 61	. 89 .	28
	Ö		377.	o.	15.	,	θ,	9	1.76	-1	- 1	22.7	***	10	24	6	. 93	38
	ö	0	389.	0.	21.		ထဲ	<u>თ</u>	•		*	17.1		10	66	4	. 92	34
	o,	o.	378.	ö		24.	ဖ်	6	•		•	28.1		_	4	œ́	1.01	34
_	ó	ò	456.	o	60.	97.	9	24.	2.37	0.07	•	30.8		10	13		3.88 1	17
TISTMT 26653	0.	378.	0	0.	-363.	402.	9	6.	• 1	- •1	•	26.7	- 1	N	-	5.4	. 34	44
TISTMT 28653	0.	492.	o.	o.	-409.	628.	6,	34.	•				. 65	ø	0	9,9	. 73 1	2
TISTMT 28653	ó	ö	378.	ö	15.	24.	9	9	٠	0.07	•	42.9		80		3.4	. 17 1	30
	ö	ö	492.	o .	82.	137.	6	34.	3.39	•	0.31	95.0		659.4	0	7.0	.47 1	72
	ე.	396.	0.	o.	-381.	402.	9	9	٠١	•	- +1		. 66	ď		6.8	•	36
	ö	502.	ö	ö	-451.	523.	Ġ.	2		0.07	•	72.8		O	N.	 	-	5
	ö	o.	396.	Ö	15.	9.	œ.	9		٠	٠	٠	533	σ,	<u>,</u> ,	<b>0</b> .	-	24
Ģ	ö	ö	502.	ö	<u>.</u>	21.	9	21.	•	•		93.2	.54	0	,	0 0	,	90
	390.	0.	0	-390,		402.	ۏ	9.	٠,	•	•	14.2	1	4		6.7	<b>"</b> "	29
,	589.	0.	0	-589.	93.	663.	œ,	38.	1.25		•	31.3	53		OI ·	-	•	53
	ö	390.	ò	ö	-376.	402.	ဖ	0	•	0.07	•	•		n i	_ ,	<b>7</b>	,	53
,	o.	583,	Ö	ö	-496.	663.	6	38.	•		0.25	31.4		<u> </u>	,	6.1	.40	9 2
	0	0	390.	ó,	13.	12.	و	9.	•	٠.	• 1	28.5	.33	o]ı	-	٥.	-	2
	o,	o	589.	o.	93.	_	ý	38.	٠	,	•	54.7		١ ج	_ '	4.6	•	96
	ö	ö	418.	o ·	15.		9	9	•	٠	•	35.7		n e	- (	٠ ا رو	_	2 .
	o ·	ö	1999.	o (	372.	-400. A	ဖ်	152.	•	٠	٠	73.2		9	m •	~ I	•	- T
	Ö.	Ö	406.	0	Ċ.	1	ė.	٥	•1	•	•	34.0	8	1	- *		-	
_	ö	o (	648.	တ် (		-21. A	o (	33	2.6	0.07	60.0	61.0 26.30	8, 01 10, 5	320.4	 - c		500	۵ C
	· •	; ;	500		-	- :	ò	į	•		٠	1 6	, ,			, c	• •	9 6
FUNCEL 28653		o o	638.		- C.S.	195	ه ف		•		•	;		? "	u c	, v		3 2
TCS ICL 20033	0	5	707	ò	101	267	ė	70.	• 1	٠l	•	•	3	9		0 0	1	055
	o c			; c			š ų	وَ د	•	٠	•	) - 0 0		900. 000.	, -	•	2	000
	o (	ò	390.	j o	, 	· · ·	ه نو	j ç	•	٠	٠	- 0		) C	ء د	, , ,		3 6
	, ,		٥//٠				<u>.</u>	0	•	٠	9.00	n	- F	9	י -	; <del>,</del>	?	, 6
	0	392.	Ö	0	-3//	402.	ا ف	٥.	•1	· i	•	•	٠.	٥	9	· [	300	30
	<u>.</u>	784.	<u>.</u>	o 0	-621.	900.	<u>ن</u> د	67.	1.12	0.07	0.26	27.6	5.34	120.0 120.0	- r	ין ת יו ת		ה ת ה
		383.			-30B.	402.	، ن	؛ م	,		•	· 6	•	, ,	,			9 0
GTACOB 28853	ö	582.	o	ö	-469.	731.	9	46.	•	0.07	*	ZO. C	) n .	2.71	20	, ,	-	07
																		-

										m					A 444 5		
-00	20000	**C0G	EMERAT	ION CASE			- COGEN**			osm		FESR	CAPITAL	NORM	\$/KW ROI	LEVL	NORM WRT
ECS	PROGS	DISTIL R	ESIUL	CUAL	DISTIL	RESIDE	COAL	REQD MW	POWER		/HEAT		COST *10**6	COST	EQVL (%)	CHRG	ENRG
3TAC12	28653	Ō.	383.	0.	٥.	-369.	402.	6.	6.	0.85	0.07	0.08	13.7	0.67	122.1 -22	13.7	1,19 15
	28353		647.	o.	0.	-505.	828.	6.	58.	1.00	0.07	0.33	23.8	1.16	125.6 0	13.0	1,13 12
	23653		385.	õ.	o.	-370.	402.	6.	6.	0.85	0.07	0.08	13.9		123.2 -23	13.8	1.20 15
	28653		713.	ő.	õ.	-548.	907.	`6.	68.	1.11	0.07	0.34	27.7		132.6 0	13.7	1.19 12
	28353		387.	0.	0.	-372.	402.	6.	6.	0.86	0.07	0.07	14.2	0.69	125.1 -25	13.9	1.21 15
	28653		740.	o.	o.	-572.	914.	6.	68.	1.08	0.07	0.32	26.3	1.28	121.3 0	14.1	1.23 12
	28353		388,	o.	o.	-373.	402.	6.	6.	0.93	0.07	0.07	14.0	0.68	122.9 -26	14.0	
	28653		928.	o.	Ô.	-685.	1167.	6.	99.	1.43	0.97	0.34	33.4	1.63	122.9 0	15.1	1.31 11
	28653		386.	0.	0.	-372.	402.	6.	6.	0.92	0.07	0.07	13.7		121.2 -25	13.9	1.21 15
	28653		847.	o.	o.	-629.	1083.	6.	89.	1.39	0.07	0.35	33.2		133.7 0	14.5	1.26 11
CC1222	28653	0.	386.	a.	o.	-371.	402.	6.	6.	0.92	0.07	0.07	13.5		119.5 -24	13.9	
CC1222	28659	0.	839.	o.	o.	-623.	1078.	6.	88.	1.36	0.07	0.35	31.4	1.53	127.7 0	14.2	
CC0822	28653	0.	384.	o.	0.	-369.	402.	6.	6.	0.93	0.07	0.08	13.7		122.0 -24	13.9	
	28653		709.	o.	ō.	-539.	923.	6.	69.	1.20	0.07	0.35	26.0	1.27	125.2 0	13.2	
DELITP	1 28653	0.	390.	o.	o.	-375.	402.	6.	ъ.	1.04	0.07	0.06	18.1	0.88	158.3 -57	14.6	1.27 14
DEHTPI	1 28653	0.	695.	o.	0.	-559.	808.	6.	55.	1.89	0.07	0.26	52.6	2.56	258.3 0	18.8	1.64 11
TSOAL	28653	386.	0.	0.	-386.	15.	402.	6.	6.	0.84	0 07	0.07	13.5	0.66	119.1 -39	16.4	1.42 16
<b>STSØA</b> L	28653	662.	o.	٥.	-662.	139.	818.	6.	57.	0.93	0.07	0.31	21.2		109.4 0	17.8	1.55 13
<b>STRAGE</b>	28653	392.	ο.	ο.	-392.	15.	402.	6.	6.	0.86	0.07	0.06	14.4	0.70	125.7 -45	16.7	1.45 15
30A.4TE	28653	1094.	0.	0.	-1094.	281.	1293.	6.	115.	1.55	0.07	0.30			133.5 0	25.5	
STRA12	28653	390.	0.	0.	-390.	15.	402.	6.	6.	0.86	0.07	0.06	14.4		125.9 -45	16.7	1.45 15
STRA12	28653	1018.	0.	ο.	-1018.	262.	1230.	6.	107.	1.47	0.07	0.32	40.0		134.1 0	23.8	2.07 132
STRA16	23653	390.	٥.	Ο.	-390.	15.	402.	6.	6.	0.87	0.07	0.07	14.7	0.71	128.5 -46	16.7	1.45 15
STRA16	28653	943.	0.	0.	-943.	236.	1144.	6.	96.	1.44	0.07	0.32	39.3	1.91	142.2 0	22.9	1.99 130
TR208	28653	389.	Ō.	0.	-389.	15.	402.	6.	6.	0.86	0.07	0.07	14.1	0.69	123.9 -43	16.6	1.44 159
3TR208	28653	811.	О.	0.	-811.	186.	977.	6.	76.	1.17	0.07	0.30	29.6	1.44	124.5 0	20.7	1.80 130
3TR212	28653	389.	0.	٥.	-389.	15.	402.	6.	6.	0.86	0.07	0.07	14.3	0.70	125.3 -44	16.6	1.44 159
	28653		0.	0.	-845.	200.	1024.	6.	82.	1.24	0.07	0.31	32.0	1.56	129.2 0	21.2	1.84 130
	28653		ō.	0.	-389.	15.	402.	6.	6.	0.86	0.07	0.07	14.4	0.70	126.5 -44	16.6	1.44 159
3TR216	28653	853,	ο.	Ο.	-853.	207.	1045.	6.	84.	1.30	0.07	0.32	34.4	1.68	137.8 0	21.3	1.85 129
STRNOS	28653	395.	٥.	ο.	-395.	15.	402.	6.	6.	0.86	0.07	0.05	14.5	0.71	125.3 -47	16.9	1.47 157
STRHOS	28653	1294.	0,	0.	-1294.	326.	1446.	6.	133.	1.57	0.07	0.27	42.1	2.05	111.0 0	29.3	2.54 136
	28653		٥.	0.	-393.	15.	402.	6.	6.	0.86	0.07	0.06	14.5	0.71	126.1 -46	16.8	1.46 158
	28653		Ο.	٥.	-1218.	319.	1419.	6.	130.	1.54	0.07	0.30	41.3		115.7 0	27.0	2.34 13
	28653		o.	٥.	-392.	15.	402.	6.	6.	0.87	0.07	0.06	14.7		128.3 -47	16.8	1.46 15
	28633		0.		-1108.	284.	1305.	6.	116.	1.48	0.07	0.30	39.8		122.7 C	25.4	2.21 13
	28653		0.	0.	-397.	15.	402.	6.	<b>5</b> .	0.86	0.07	0.05	14.2	0.69	122.0 -45	16.9	1.47 15
	28553		0.	ο.	-1077.	240.	1156.	6.	98.	1.32	0.07	0.23	33.7	1.64	106.7 0	26.9	2.34 13
	28653		0.	Ο.	-391.	15.	402.	6.	6.	0.86	0.07	0.06	14.3	0.70	124.7 -44	16.6	1.45 15
	20653		0.	0.	-951.	234.	1136.	6.	95.	1.28	0.07	0.31	32.6		116.9 0	22.6	1.96 13
	28653		0.	٥.	-391.	15.	402.	6.	6.	0.86	0.07	0.06	14.5	0.71	126.7 -45	16.7	1.45 15
	28653		0.	ο.	-942.	230.	1122.	6.	94.	1.30	0.07	0.30	33,5	1.63	121.4 0	22.7	1.97 13
	28653		Ο,	ο.	-396.	15.	402.	. 6.	6.	1.35	0.07	0.05	15.3	0.74	131.7 -57	17.4	1.52 153
CPADS	28653	1765.	0.	٥.	-1765.	482.	1967	6.	197.	21.02	0.07	0.28	113.7	5.54	219.9 0	61.5	5.34 19

NORM WRTH ENRG 3.90 169 17.2 LEVL CHRG \$/KW RGI EQVL 136.4 NORM 0.76 CAPITAL COST *10**6 15.6 POWER FESR /HEAT RATIO 0.07 0.07 0.07 0.36 GENERAL ELECTRIC COMPANY
COGEMERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.2
SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS 1.31 Ø&™ 15. 0. -389. 00 DATE 06/07/79 18SE-PEG-ADV-DES-ENGR FCMCDS 26653 389. FCMCDS 28653 1288. ECS HONELMELL SO-ESTIN -MATEYS DNITHING 30A9

### GENERAL ELECTRIC COMPANY COGEMERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

-----FUEL USE IN BTU*10**6-----POWER FESR CAPITAL NORM \$/KW ROI LEVL NORM WRTH **COGENERATION CASE** **NOCOGEN - COGEN** POWER COGEN MBD COST COST EQVL CHRG ENRG ECS PROCS DISTIL RESIDL COAL DISTIL RESIDL COAL REQD POWER /HEAT *10**6 MV RATIO (%) MW 220.8 **ONOCGN 28654** 0. 2. 265. ٥. 0. 0. F 1. 0. 1.07 0.01 0. 16.7 1.00 7.4 1.00 80 STM141 28654 ٥. -260. 0.72 0.01 0.02 0.50 109.0 -17 9.1 1.23 157 Ο. 262. 0. 265. 8.4 1. 1. 8.8 STM141 28654 0. 278. ο. 0. -266. 298. 0.62 0.01 0.10 8.6 0.51 105.5 -15 1.19 121 5. 1. 257.9 1.07 130 STM141 28654 n 0. 262 0. 2. 3. 1.46 0.01 0.02 19.8 1.18 8.0 STM141 28654 0. 278. ٥. 12. 20. F 1.24 0.01 -0.1018.6 1.11 228.6 7.1 0.97 0. 1. 5. STM141 28654 262. 1.40 0.01 0.02 19.1 249.5 1.06 130 О. 0. 0. 2. 3. A 1. 1. 1.14 O 7.8 STM141 28654 0.81 166.4 999 0.87 101 Ο. 0. 278. ٥. 12. 20. A 5. 1.10 0.01 0.10 13.6 6.5 1. PFBSTM 28654 244.7 1.05 130 0 262. 0. 2. 3. 1.35 0.01 0.02 18.8 1.12 0 7.8 O PFBSTM 28654 0.20 252.6 0.01 23.2 1.39 0.99 97 0. 314. 0. 31. 13. 1.77 Ο. 48. 1. 135.1 -22 1.26 152 TISTMT 28654 0. 262. Ο. ٥. -260. 265. 1. 1. 0.72 0.01 0.02 10.4 0.62 9.4 TISTMT 28654 55.5 3.31 563.5 336. 0. -291. 411. 1.83 0.01 0.26 n 14.2 1.92 112 C. Ο. 1. 19. TISTMT 28654 262 2 3. 1.41 0.01 0.02 21.2 1.26 276.0 Ω 8.1 1.09 129 n 0. n TISTMT 28654 718.9 0. 0. 336. ٥. 45. 75. 1. 19. 2.60 0.01 0.26 70.8 4.23 0 12.6 1.70 104 -262. TIHRSG 28654 264. 0. Û. 265. 1. 0.69 0.01 0.01 11.3 0.67 146.0 -25 3.5 1.28 149 n. 1. TIHRSG 28654 368. ο. 0. -331. 383. 15. 1.77 0.01 0.13 57.7 3.45 535.0 0 15.8 2.13 100 1. TIHRSG 28654 1.34 8.2 1.11 127 0 264 0. 2. 1.38 0.01 0.01 22.4 289.4 n TIHRSG 28G54 368. 0. 37. 15. 15. 2.60 0.01 0.13 74.0 4.42 686.5 0 14.1 1.90 0. ٥. 1. STIRL 28654 0. Ο. -263. 2. 265. 0.64 0.01 0.01 9.0 0.54 116.8 -28 10.9 1.47 160 263. 1. 1. STIRL 28654 0. -432. 68. 486. 28. 1.00 0.01 0.22 23.2 1.39 183.7 0 13.7 1.85 121 432. 0. 1. STIRL 28654 265. 0.01 9.0 0.54 115.8 -18 9.2 1.24 0. 263. Ο. 0. -261. 1. 0.64 0.01 STIRL 28654 28. 1.00 0.01 1.39 184.0 0 10.9 1.48 a. 432. 0. 0. -364. 486. 1. 0.22 23.3 STIRL 28654 1.30 0.01 0.01 19.4 1.16 252.0 0 7.7 1,05 129 0. 0. 263. Ο. 2. 1. 1. 1. STIRL 28654 0. 0. 432. Ο. 68. 55. 1. 28. 1.91 0.01 0.22 41.2 2.46 325.4 0 8.5 1.15 92 **HEGT60 28654** -2. 1.23 -0.00 19.0 1.13 243.1 0 1.04 128 0. 0. 266. Ο. 2. 1 0.01 HEGT60 28654 0.01 139.1 8.31 323.7 0 24.8 3.34 0. ٥. 1466. Ο. 273. -294. Α 1. 111. 5.43 -0.01**HEGT00 28654** Ð. 0. 265. 0. 2. -O. A 1. 1. 1.23 0.01 0.00 18.9 1.13 242.9 0 7.7 1.04 129 2.96 356.3 0 11.0 1.49 **HEGT00 28654** 0. 475. ٥. 60. -15. A 25. 2.07 0.01 0.09 45.6 n. 1. FCMCCL 28654 1.28 279.7 1.09 128 n 0. 262 0. 2 2 1. 1. 1.31 0.01 0.01 21.5 Ω 8.1 9.6 1.30 105 FCMCCL 28654 0. 468. 0. 102. 133. 1. 42. 3.00 0.01 0.33 57.0 3.40 415.8 0 n. 1.09 128 FCSTCL 28654 262. ٥. 2. 2. 1. 1.35 0.01 0.02 21.4 1.28 278.7 0 8.1 0. 0. 1. 1.29 108 FCSTCL 28654 49. 3.31 0.01 0.36 61.6 3.68 421.7 0 9.6 0. 493. 0. 121. 165. n. 1. 1.09 128 **IGGTST 28654** n 0. 263 0. 2. 1 1. 1. 1.38 0.01 0.01 20.8 1.24 269.0 0 8.1 **IGGTST 28654** 32. 1.91 0.01 0.23 48.4 2.89 356.6 0 9.3 1.26 78. 58. 0. 0. 463. 0. 1. GTSØAR 28654 O. 0. -262. 265. 1. 0.60 0.01 0.01 8.3 .0.5C 107.6 -16 9.0 1.22 156 263. 1. n. 1.31 11.0 **GTSØAR 28654** 0.93 130.1 0 1.48 118 0. 575. ο. 0. -455. 660. 1. 49. 0.01 0.26 21.9 GTAC08 28654 -261. 265. 0.59 0.01 0.01 8.2 0.49 106.4 -16 9.0 1.21 156 262 0. 0, n. 127.0 -52 8.6 1.17 124 GTAC08 28654 ο. -344. 536. 34. 0.74 0.01 0.31 15.9 0.95 0. 427. 0. 1. 0.49 105.6 -16 9.0 1.21 157 GTAC12 28654 262. 0. Ο. -261. 265. 1. 1. 0.59 0.01 0.01 8.1 0.01 0.33 18.8 1.12 134.9 n 8.8 1.19 124 GTAC12 28654 475. ٥. Ο. -371. 607. 1. 42. 0.83 105.7 -16 9.0 1.21 156 0.49 GTAC16 28654 263 0. 0. -261. 265. 0.59 0.01 0.01 8.1 50. 21.8 1.30 142.1 0 9.3 1.26 122 GTAC16 28654 0. 523. Q. 0. -402. 665. 0.92 0.01 0.34 9.0 1.22 156 GTWC16 28054 0. 263. 0. ٥. -261. 265. 1. 1. 0.59 0.01 0.01 8.3 0.49 107.5 -16 9.7 1,31 122 670. 50. 0.90 0.01 0.32 21.0 1.26 132.3 GTWC16 28654 542. 0. 0. -420. 1. Ω.

# GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

													-						
	•			FUEL US	E IN BT	U*10**6-												<del></del>	
					E** **N	OCOGEN -	COGEN**	POWER	COGEN	oam	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRTH
ECS	PROCS	DISTIL R	ESIDL	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
							•	MW	MW		RATIO		*10**6			(光)			
	1 28654		263,	О.	o.		265.	1.	1.	0.66	0.01	0.01	9.3	0.55		-19	9.2	1.24	153
	1 28654		510.	0.	0.	-410,	<b>5</b> 93.	1.	41.	1.49	0.01	0.26	38.9	2.32	260.2	0	13.0	1,75	5 113
	28654		0.	٥.	-263.	2.	265.	1.	1.	0.59	0.01	0.01	8.1	0.48	105.2	-25	10.7	1.44	1 162
	28654		<u> </u>	<u> </u>	-485.	102.	600.	<u> </u>	42.	0.78	0.01	0.31	16.8	1.00	118.3	999	12.2	<u>1.65</u>	i 135
	28654		0.	٥.	-263.	2.	265.	1.	1.	0.59	0.01	0.01	8.3	0.50		-26	10.7	1.45	5 161
	28654		0.	o.	-803.	206.	948.	1,	84.	1.28	0.01	0.30	34.0	2.03	144.7	0	18.0	2.42	138
	28654		0.	0.	-263.	2.	265.	1.	1.	0.59	0.01	0.01	8.3	0.49		-26	10.7		162
	28654		<u> </u>	<u> </u>	<u>-747.</u>	192.	902.	<u>1.</u>	78.	1.21	0.01	0.32	31.6	1.89	144.3	0_	16.7	2.25	
	28654		0.	0.	-263.	2.	265.	1.	1.	0.59	0.01	0.01	8.3	0.50		-26	10.7	1.45	
	28654		٥.	0.	-691.	173.	839.	1.	71.	1.19	0.01	0.32	31.0	1.85	153.2	0	16.0		
	28654		0.	0.	-263.	2.	265.	1.	1.	0.59	0.01	0.01	8.2	0.49		-26	10.7		5 162
	28554		<u> </u>	<u>o.</u>	-595.	137.	717.	<u>_1.</u>	56.	0.97	0.01	0.30	23.4	1.40	134.4	0_	14.3		<u>1</u> 33
	2 28654		0.	0.	~263.	2.	265.	1.	1.	0.59	0.01	0.01	8.3	0.49			10.7		
	28654		0.	0.	-619.	147.	751.	1.	60.	1.03	0.01	0.31	25.3	1.51	139.5	0	14.7		
	28654		0.	0.	-263,	2.	265.	1.	1.	0.59	0.01	0,01	8.3	0.49		-26	10.7	1.45	
	28654		<u>o.</u>	<u>o.</u>	-626,	152.	766.	<u> </u>	62.	1.08	0.01	0.32	27.2	1.62	148.2	0	14.8	2.00	
	28654		0.	0.	-264.	2.	265,	1.	1.	0.59	0.01	0.01	8.3	0.50		-26	10.8	1.45	
	28654		0.	o.	-949.	239.	1060.	1.	98.	1.30	0.01	0.27	33.7	2.01	121.0	0.	20.6		
	28654		0.	o.	-263.	2.	265.	1.	1.	0.59	0.01	0.01	8.4	0.50		-26	10.8	1.45	
	23654		<u>0.</u>	<u> </u>	-893,	234.	1041.		95.	1.28	0.01	0.30	33.0	1.97	126.2	0	19.0	2.56	
	28654		0.	0.	-263.	2.	265.	1.	1.	0.59	0.01	0.01	8.4	0.50	109,0	-26	10.8	1.45	
	28654		0.	0.	813.	208.	957.	1.	85.	1.23	0.01	0.30	31.9	1.90	134.0	0	17.8	2.41	
	28654		0.	o.	-264.	2.	265.	1.	τ.	0.59	0.01	0.01	8.2	0.49		-26	10.8	1.45	
	28654		<u> </u>	<u>o.</u>	-790.	176.	848.		72.	1.10	0.01	0.23	26.8	1.60	116.0	0	18.8	2.54	
	28654		0.	0.	-263.	2.	265.	1.	_1.	0.59	0.01	0.01	8.3	0.50	107.7	-26	10.7	1.45	
-	28654		0,	0.	-698.	171.	833.	1.	70.	1.06	0.01	0.31	26.0	1.55	127.3	O	15.8	2.13	
	28654		0.	o.	-263.	2.	265.	1.	1.	0.59	0.01	0.01	8.4	0.50		-2€	10.7	1.45	
	28654		<u> </u>	0.	-691.	168.	822.	1.	69.	1.03	0.01	0.30	26.8		132.4	0	15.9	2.14	
	28654		0.	0.	-264.	2.	265.	1.	1.	0.63	0.01	0.01	9.0	0.54		-28	10.9	1.47	
	28654	+	0.	0.	-1294.	353.	1442.	1.	144.	15.00	0.01	0.28	84.3	5.03	222.2	0	43.3	5.85	
	28654		٥.	Ο.	-263.	2.	265.	1.	1.	0.62	0.01	0.01	9.0	0.54	116.8	-28	10.8	1.46	160
CMCDS	28654	944.	0.	0.	-944.	280.	1195.	<u> </u>	114.	11.26	0.01	0.36	72.3	4.32	261.4	0	31.5	4.25	179

PAGE PRINTING SYSTEM. P

:

DATE 06/07/79 1&SE-PEO-ADV-DES-ENGR

FCMCDS 28691

12.

-12.

#### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

-----FUEL USE IN BTU*10**6-----POWER FESR CAPITAL NORM \$/KW ROI JEVI NORM WRTH **COGENERATION CASE** **NOCOGEN - COGEN** POWER COGEN MBD COST. EQVL CHRG COST ENRG PROCS DISTIL RESIDE COAL DISTIL RESIDE COAL REOD POWER /HEAT RATIO *10**6 (%) MM MW 2.6 1.00 80 0. F 0.81 0.04 0. 12.0 1.00 262.8 0 ONOCGN 28691 Ō. 4. 12. 0. ۵. 2. 0. 1.32 332.5 0 3.0 1.15 252 0. 2. 1.24 0.04 1.00 15.9 PFBSTM 28691 0. 0. 0. 4. 12. 2. 297.1 0.83 212 PFBSTM 28691 Ω. ٥. O. ٥. 15. 49. 2. 6. 1.24 0.04 1.GO 16.0 1.33 12 2.1 1.93 469.7 n 3.; 1.49 252 12. 1.32 0.04 1.00 23.3 TIHRSG 28691 0. 0. 0. 4. 0. 4.46 2.43 219 767.7 0 6.2 TIHRSG 28691 ٥. Ω. 0. 24. 81. 2. 10. 1.94 0.04 1.00 53.8 0. 1.42 342.9 0 2.9 1.14 250 HEGT00 28691 0. 0. ٥. 0. 4. 12. A 2. 2. 1.09 0.04 1.00 17.1 409.4 2.8 1.10 187 HEGT00 28691 0. n. O. 37. 125. A 2. 15. 1.49 0.04 1.00 35.5 2.95 4 ٥. 478.4 0.04 -0.05 39.9 3.31 Ω 6.9 2.67 91 FCMCCL 28691 0. 284 0. 62. -76. 25. 2.06 ٥. 138.9 999 GTS0AR 28691 Ο. 18. 0. 0. -14. 12. 2. 2. 0.54 0.04 - 0.106.8 0.56 1.8 0.68 125 0.04 - 0.196.5 0.54 135.2 999 1.8 0.68 116 GTAC08 28691 O. 0. -15. 12. 2. 2. 0.53 0. 19. 0.04 -0.05 0.53 134.0 999 1.7 0.66 132 GTAC12 28691 17. 0. Ω. -13. 12. 2. 2. 0.526.4 0. 0.04 0.01 6.54 134.4 999 0.65 139 GTAC16 28691 0. 0. -12 12. 2. 0.52 6.5 0. 16. 0.04 -0.02 0.55 138.3 999 1.7 0.66 135 GTWC16 28691 O. ٥. -13. 12. 2. 2. 0.53 6.7 0. 16. 0.53 132.2 999 0.71 128 Ο. 12. 2. 2. 0.52 0.04 -0.10 6.4 1.8 0. -18. 4. GTSØAD 28691 18. 4. 12. 139.1 999 0.68 150 GTRA08 28691 0. 0. -14. 2. 2. 0.53 0.04 0.10 6.8 9.57 1.8 14. 0.53 0.04 0.11 6.7 0.56 138.3 999 1.7 0.68 151 -14. 12. 2. GTRA12 28691 14. 0. 0. 140.9 999 0.69 148 -15. 12. 2. 2. 0.53 0.04 0.08 6.9 0.57 1.8 GTRA16 28691 0. 4. 15. 0. 2. 2. 0.53 0.04 -0.00 6.7 0.56 137.8 999 1.8 0.70 138 GTR208 28691 16. ٥. ٥. -16. 4. 12. 2. 0.53 0.04 0.03 6.8 0.56 138.9 999 1.8 0.70 142 GTR212 28691 0. ٥. -16. 4. 12. 2. 16. 0.53 0.04 0.05 6.8 0.56 139.4 999 1.8 0.69 144 12. 2. 2. GTR216 28691 15. 0. 0. -15. 139.7 999 0.69 148 0.53 0.04 0.09 6.9 0.57 1.8 GTRW08 28691 15. ٥. 0. -15. 12. 2. 2. 2. 2. 0.53 0.04 0.12 6.9 0.57 140.6 999 1.8 0.68 152 0. -14. 12. GTRW12 28691 14. ٥. 0.58 143.0 999 1.8 0.69 150 12. 2. 2. 0.53 0.04 0.10 7.0 GTRW16 28691 14. 0. 0. -14. 0.04 -0.03 0.55 135.0 999 1.8 0.71 135 0.53 6.7 GTR308 28691 17. 0. -17. 12. 2. 139.9 999 0.69 146 12. 2. 2. 0.53 0.04 0.06 6.8 0.57 1.8 GTR312 28691 15. 0. 0. -15. 0.53 0.70 144 12. 2. 2. 0.04 0.06 6.9 0.57 141.9 999 1.8 0. -15. GTR316 28691 15. 0. 0.62 0.04 0.16 7.0 0.58 142.2 999 1.8 0.71 157 2. 2. **FCPADS 28691** 13. 0. 0. -13. 12. 1.8 0.69 165 12. 0.60 0.04 0.22 7.0 0.58 145.0 999

GENERAL ELECTRIC COMPANY
COGENERATION TECHNÓLOGY ALTERNATIVES STUDY
REPORT 5.2
SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

	1		احتدي	T			T			-				7						-		•												,										
Ε	80	27	35	24	7	ლ გე	3 6		r (5)	12	90	39	9	20 00	200	2	56	64	4 R - 1	5 6	58	53	58	28	200	j K	53	59	128	26	5 K	133	157	129	2 7	159								
WRTH	0	9	 	- 0	ان د س		_ -	7 0	) A	1 00	1	•	.07	- -		50	-1	- •			1												1.34											
NORM ENRG	1 •	•		5								_		- -		- ,	-	<u>.</u>		- 0	- ا	Q	÷	ä	- •		_	Γ	_	<b>,</b>		•		"	•	•								
	0.7	6.7	o (	0 A.0	2.5	8.0	න <mark>.</mark>	10 C	9 6	n (c			7.5				7.8	8	_	3 t	-1	5.2	-	- 4						9.	• 1		6	•	•	n (4)	1							
LEVL				-	_		-													•		-								_		, c	0		~ 6	א כ								
R01	30	Ξ	0 (	0	0	0	0	۰ ٥	- 9	) 	-12	=	-12	0	4 0												2	-36	_	-40		י י	4		•	י האס								
\$/KW EQVL				0 4						9 6	0 0	დ	45.3	7.7	16.7				30.0	39.5	30.0	47.8			١.		20. ak		57.0		-1		56.3	•	ni .	2 Z Z 2 Z Z	;						í	
	25	27		5/2			69	4	•	·- •			•		•	•	-	_		_	_		_	_	-	- '	<b></b>	-		-			_		(	 								
NGRM	- 1	. 24	•	3.57		•	*1	•	•	•	• 1		0.67	1.0	0.66	22.63		0.6	9	0.4	2 6	ر بـ د د	9	Ö	0.7	4	0 •	-   c	. 6	0.7	2.3	0.4	, o	2.0			. 1							
TAL	او			<b>10</b>			١		د م	₹ (	ם ר	- σ	) <b> </b> ~	8	6	, ,	ı o	2	9	EO.	~	ם ונ	) «	0	6	ø	4 (	, u	) Œ	ω	2	r. (	? G	3	2	٠i,	1							
2.8	¥ I			46.										-1		6		1 .	<u>5</u>	o,	8	, <u>c</u>	ν	26	6	18	oi (	S C	, <u>.</u>	5 0	30	ත් <u>(</u>	S G	56	6	22	א							
_	*	•	NO.	07	2 🔼	<u> 4</u>	7	၉	<u>ლ</u>	<u>ი</u>	2	च ;;	. 4	34	2	ღ :	ر ا	2	3	80	92	5 C	υ C	<u>ာ</u> တ	0	28	23	52	<u> </u>	200	24	60	\ \ \ \ \	8	20	50	2							
FESR	- 1	•	0.0	• !		0	0	0	ö	0	0	- \ - c		0	o	0	; c	o	0	ö	Ö	0 0		C	0	ö	ö	اه	<u>.</u>		0	0	0 0	, 0		Ψ,								
POWER /HEAT	ATIO.			5																							3.13	- -			-	-	0.13		Ţ.,	-	-							
84	ı			0				ı						9		73 0																												
O&M	- 1	•	1.2	1.46	- c	•	6	1.5	2.2	0.6	0.8	0.0	ο ¢	သေ	0.6	0.7	9 6	) C	0	0.0	1.	9.0	- 6	٥ ر د د	- 0	0	0.6	0	0.0	o c	;	0.0	= (	5 -	0	0	0							
									·•				·	:		_:		<u>.</u>				· ·						2	<u>.</u>	٠.		9	٠. ص		9				•					
COGEN	₹	<b>O</b> k	o (0	=	<u>.</u> و	- « -	-	9	53	9	38	φ (	N G	. 6	3	3	۶ ۳	3		, w	2		<u>ن</u>		ה	4		4	- ; 	4	æ		~	Œ		N)								•
l ~	- 1			9		u a		ی د	9	9	ڧ	6			9	ω.	ဖ် (	اه		, w	6	6.	<u>.</u>	ဖ် (	ه ام	<b>.</b>	6	9	9	ဖ် (	0	6	9	0	عاد	6	9				İ			
11	Σ																																											
EN.	,		; e	70.	რ			1			. 9	3.	367.	, -	-		<u>ب</u>	9			<u> </u>	23.	24.	33.	644.	2 d	223.	545.	23.	61.		23.	818.	23	9	٠ ٢	23.							
CGGE	5		- 6	27	•	'	1	-	- 0	2 6	48	22	8	, .	4 0	4	ő	4	N <	ž 6	ico	2	7	ii i	ة اق	ŭ ir	) Ñ	Ωi	O	Ω.	Na	0	œ	01	-	<b>1</b> (0	u							
16	7	o.	ณ่ ต		4	28.	4 6	13.	. 7	5 8		91.	36.	. 6	-249.	7.	-195.	286.	4 6	2 5	- G	14.	63.	14	9:	- 6 - 6	. 4	0	14.	15.	4 6	7	92.	4.5	<u>.</u>	38.	14.							
CASE** **NOCOGEN	1537			-248		•••			•	100	i ö	-191	-236	-191	י לי	-277	7	7			-					•	-			_	•		_											
IN BTU ** **NO		0	o o		o.	ö	<i>.</i>	0				0	ö	o o	٥	ö	ö	Ö	-207.	-330.	-27.10.	-216.	-635.	-215.	-556.	-213.	-444.	-465	213.	-474.	-220.	-034.	-732.	-216.	-628.	227	213							
Z	2																		,,	γ`		1	· Ŧ	ï		,	. 1			,	١.	<u>'</u>	٠.			' '								
**COGENERATION CASE	اِ	223	207.	5 C	226.	276.	229.	336.	2020	- C	ó	o	ö	o ·	o		0	o	Ö	o (			Ö	o	0	o (	o c	óc	0	0	0		0	0	0	D C	0							
FUEL	COAL	100	14			``							_	_																	•		<u>.</u>		ا۔	<u>.</u>	: :							
**COGENERATION	<u>_</u>	14	(i	226. 276	0	ö	o	o	o o	; o		205	293	202	319	207	209	369	0	0	0 (		0	0	0	0	0 0	<b>&gt;</b> C		0	0	°	<b>-</b>	0	0	0 (	0							
SGEN	RES															_• _	• _	ا •_		<u>.</u>	_;		·	: .:			<u>.</u> .	× .	ا			-	٠,		9	<u>.</u> .	- ო							
× ×	<u> </u>	0	0	0 0	0	0	0	0	0	0 (	<b>D</b> (		0	0	0	0 0	0	0	207	330	218	741	0 10	215	556	213	444	213	455	474	220	834	2 6	21.2	62	22	213							
	018	6	0	ol c	20 0	N C	Ø	Ç.	ŭ	ğ,	<u>N</u> 9	2 2	ı M	Ö	32	<u>ر</u> ر	, c	i Q	22	32	20	2 5	N 0	מ מ מ מ	1 0	25	92	200	2 2	4 G	35	25	26	1 6	35	92	202							
	PROCS DISTIL RESIDL	2869	28692	28692	2860	2869	2869	2855	2865	2865	2855	2002	2565	2869	286	2869	000	2865	2869	286	286	236	2000	0 0	286	286	286	286	286	2 60	286	286	280	286	286	286	3 28692 2 28692							
	盃	- 1		386	500	330										GTAC16	618618 674618	GTWC16	GTSOAD	GTSCAD	GTRA08	ထု(	N C	GIRAIC	GTRA16	GTR208	GTR208	GTR212	GTR212	GIRZID	GTRW08	GTRW08	GTRW12		GTRW16	GTR308	GTR308 GTR312							ı
	ECS	NECENO	PFBSTM	TIHRSG	TIMESE	TIHRSG	HEGT00	HEGTOO	FCMCCL	FCMCCL	GTSGAR	GISOAR	GTAC08	GTAC12	<b>GTAC1</b>	GTA	ב ב	3 2	GTS	GTS	GTR	GTR	GTKAI	ב ב	GTR	GTR	GTR	GTF	_ 1							L.			<u></u>		<u></u>	- AF	NE	<del></del>
					<u>.l.</u>			_	<u></u>																				_ z	0-	991	ld	-M	31	s A 9	9	re i 🚣 i	NING		, <del>,</del> a	. , ,			~,,

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

cs I	PROCS		OGENERATI RESIDL			COGEN - RESIDL	COGEN** COAL	POWER REQD MW	COGEN POWER MW	M&D	POWER /HEAT RATIO	FESR	CAPITAL COST *10**6	NORM	\$/KW EQVL	RØ1		NORM V ENRG	IRTH
TR312	28692	498	. 0.	0.	-498.	122.	586.	6.	50.	€.87		0.30	20.3	1.56	139.5		12.5	1.80	129
	28692			0.		14.	223.	6.	6.	3.67	0.13	0.10		0.74	154.5			1.32	
	28692			0.		120.	577.	6.	49.	6.89	0.13	0.30	20.9	1.61	145.5	0	12.5	1.80	
	28692			<u> 0.</u>		14.	223.	<u>6.</u>		1.09	0.13	0.08		0.75	154.2		9.8	1.41	
	- 28692 - 28692			0. 0.		241. 14.	983. 223.	6. 6.	98. 6.	10.30	0.13 0.13	0.28	58.1 10.1	4.46 0.77	224.6 163.0	-46	30.6 9. <b>5</b>		
	28692			ŏ.		191.	815.	6.	78.	7.74		0.36	50.1		265.6	ő	22.6	3.25	
		,																	
				·			· · · · · · · · · · · · · · · · · · ·						·						

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

				FUEL USE					<b>CUEP</b>	OBOEN	O&M	POWER	EEGP	CAPITAL	NORM	\$/KW	PAI	LEVL	NORM WRTH
505	DDGOC			ION CASE			COAL		EQD	POWER	OGM	/HEAT	FESR	COST	COST	EQVL	KO1	CHRG	ENRO
ECS	PROUS	DISTIL F	ESIDE	COAL	DISTIL	RESTUL	COME		MW	MW		RATIO		*10**6	000.		<b>(X)</b>	Oi ii C	L.1,1,0
ONOCGI	1 28693	0,	9.	400.	0.	0.	0.		4.	Q.	1.38	0.04	0.	22.7	1.00	188.3	0	11.1	1.00 80
	28693		385.	0.	o.	-376.	400.		4.	4.	0.96	0.04	0.06	13.7	0.60	109.3	-20	13.5	1.21 156
STM14	28693	0.	445.	0.	0.	-400.	523.		4.	19.	0.86	0.04	0.22	15.6	0.69	109.6	-17	12.6	
STM14	28693	B O	0.	385.	0.	9.	15.	F	4.	4.	1.94	0.04	0.06	28.6	1.26	229.4	0_	11.5	Annual Contract of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of the Party of
STM14	28693	3.	0.	445.	0.	46.	78.	F	4.	19.	1.75	0.04	0.22	29.1	1.28	204.0	19	9.6	0.86 109
STM14	28693	0.	ο.	385.	0.	9.	15.	A	4.	4.	1.85	0.04	0,06	26.9	1.18	215.3	4	11.2	1.01 133
STM14	28693	8 0.	ο.	445.	0.	46.	78.	A	4.	19.	1.57	0.04	0.22	20.7	0.91	145.4		8.5	0.76 115
STMOSE	3 28693	0.	385.	0.	0.	-376.	400.		4.	4.	0.94	0.04	0.06	12.2	0.54	97.9		13.3	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
STMOS	28693	3 0.	423.	0.	0.	-391.	477.		4.	13.	0.82	0.04	0.17	13.9	0.61		-16	12.8	1.15 138
STMOS	8 28693	0.	0.	- 385.	0.	9.	15.		4.	4.	1.96	0.04	0.06	28.9	1.27	231.0	0	11.5	1.04 132
STMOS	8 28693	<b>0</b> .	0.	423.	0.	32.	54.	F	4.	13.	1.64	0.04	0.17	26.9		197.6	22	9.9	
	28693		0.	385.	0.	9.		A	4.	4.	1.88	0.04	0.06	26.7	1.18	214.0	3	11 2	
	3 28693		٥.	423.	0.	32.	54.	Α	4.	13.	1.5:	0.04	0.17	19.6	0.86	144.2		9.0	
	1 28693		O.	386.	0.	9,	15.		4.	4.	1.92	0.04	0.08	27.9	1.23	223.2	0	11.4	1.02 133
PFBST	1 28693	<b>3</b> 0.	٥.	503.	Ο.	78.	127.		4.	32	2.65	0.04	0.29	35.0	1.54	219.5	12	9.7	
	T 28693		385.	0.	0.	~377.	400,		4.		1.21	0,04	0.06	25.0	1.10	200.2	<u> </u>	<u> 15.0</u>	
	7 28693		530.	0.	0.	-435.	687.		4.	39.	2.71	0.04	0.32	81.2	3.57	485.3	0	20.3	
	T 28693		٥.	385.	ο.	9,	15.		4.	4.	2.09	0.04	0.06	36.9	1.62	295.0	0	12.5	
TISTM	T 28693	3 0.	٥.	547.	Ο,	105.	175.		4.	43.	3.82	0.04	0.34	109.0	4.80	631.8	3	17.6	
	3 28693		392.	0.	0.	-383.	400.		4.	<u>4.</u>	1.22	0.04	0.04	27.6	1.21	217.4	0_	15.4	1.38 140
	3 28693		488.	0.	0.	-438.	536.		4.	20,	2.36	0.04	0.17	72.9	3.21	470.5	0	21.1	1.89 109
	3 28693		0.	392.	0.	. 9.	_9.		4.	4.	2.21	0.04	0.04	43.7	1.93	345.0	0	13.5	
	3 28693	-	o.	501.	0.	55.	53.		4.	22.	3.40	0.04	0.18	98.7	4.35	621.7	0	19.0	
STIRL	28693		<u> </u>	<u>o.</u>	<u>-392.</u>	9,	400.		4.	<u>4.</u>	0.99	0.04	0.04	18.2	0.80	143.0		16.7 20.5	1.85 122
STIRL	28693		0.	٥.	-660.	120.	771.		4.	49.	1.59	0.04	0.25	37.2	1.64	181.2	-26	14.2	
STIRL	28693		392.	0.	0.	-383.	400.		4.	4.	0.99	0.04	0.04	18,2	0.80	143.1	-36	16.3	
STIRL	28693		660.	0.	0.	-541.	771.		4.	49.	1.59	0.04	0.26	37.3	1.64	181.4	0	11.4	1.03 130
STIRL	28693		<u>0.</u>	392.	0.	<u>9.</u>	8.		4.	<u>4.</u>	1.82	0.04	0.04	28.8 68.8	1.27 3.03	320.3	2	12.5	
STIRL	28693		0.	692.	0.	133.	123.		4.	54.	2.92	0.04 0.04	0.27	32.6	1.43	250.1	0	12.3	1.09 125
	5 28693		0.	404.	0.	9.	-3.		4.	4.	1.82	0.04	0.13		11.85	310.3	ŏ	37.9	
	5 28693		0.	2919.	0.	683.	-262.		4.	279. 4.	1.82	0.04	0.13	32.3	1.42	248.5	ŏ	12.0	
	28693		<u> </u>	402.	<u>0.</u>	9. 224.	-2,		4.	<u>4.</u> 91.	4.69	0.04	0.14	121.0	5.33	343.0	- 6	21.2	
	0~28693		0.	1163.	0.		-42. -0.			4.	1.83	0.04	0.02	31.9	1.40	246.2	õ	12.0	
	28693		٥.	400.	0.	. 9.	-0. -1.		4. 4.	37.	2.78	0.04	0.12	66.3	2.92	315.9	ŏ	15.1	1.36 83
	28693		0.	675.	0.	91. 9.	-30.	^	4.	37. 4.	1.94		-0.05	34.3	1.51	272.3	ŏ	12.9	
	28693		<u>o.</u>	430.	0. 0.	162.	172.		4.	66.	4.28	0.04	0.31	79.4	3.49	366.3	<del>- ŏ</del>	14.1	1.26 101
	28693		0.	739.	0.	9.	-29.		4.	4.	1.97		-0.05	33.7	1.48	268.3	ŏ	12.9	
•	28693		0.	429.	0. 0.	235.	-29. 289.		4.	96.	5.13	0.04	0.38	94.2	4.15	369.8	ž	13.2	
•	L 28693		٥.	869.	0. 0.	235. 9.	-33.		4.	96. 4.	1.96		-0.06	32.8	1.44	258.0	ō	12 8	
	T 28693		<u>0.</u> 0.	433. 810.	0.	162.	102.		4.	66.	2.64	0.04	0.25	72.7	3.20	306.1	2	12.6	
	T 28693				0.	-383.	400.		4.	4.	0.93	0.04	0.04	17.3	0.76	136.5		14.0	
	R 28693		392.	0.	0.	-303. -588.	889.		4.	63.	1.30	0.04	0.29	28.5	1.25	123.9	Ö	14.8	
SISUAI	R 28693	3 0.	743.	0.	υ.	- 500.	905.		⊶.	<b>U</b> 3.		J. 54	~ , 5-7				•	,	

י ובוואינע)

### GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

-----FUEL USE IN BTU*10**6-----POWER FESR CAPITAL NORM \$/KW ROI **COGENERATION CASE** **NOCOGEN - COGEN** POWER COGEN LEVL NORM WRTH **ECS** PROCS DISTIL RESIDE COAL DISTIL RESIDE REQD /HEAT COST COST EQVL CHRG **ENRG** COAL POWER MW RATIO *10**6 (%) MW GTAC08 28693 389. α. -380. 400. 0.92 0.04 0.05 16.8 0.74 133.8 -28 13.9 1.25 150 0. 0. 4. 4. GTAC08 28693 0. 612. n. ٥. -493. 768. 48. 1.13 0.04 0.31 22.5 0.99 117.7 118 12.9 1.16 123 4. **GTAC12 28693** Ω. 389. n. -380. 400. 0.92 0.04 0.05 16.8 9.74 133.4 -28 13.9 1.25 150 n 4. 4. GTAC12 28693 679 -530 869. 1.24 0.04 0.33 26.5 1.17 **\$25.6** O 0. 0. 0. 4 61 13.1 1.18 122 GTAC16 28693 389. 0. -380. 400. 0.92 0.04 0.05 16.9 0.74 134.2 -29 13.9 1.25 150 0. 0. 4. 4. 0.34 GTAC16 28693 -559. 30.1 1.32 133.3 Ω ٥. 728. 0. n. 937. 69. 1.34 0.04 13.5 1.22 121 GTWC16 28693 -382. 0.93 0.76 135.7 -30 391. 400. 0.04 0.04 17.2 14.0 1.26 149 0. 0. n 4. 4. GTWC16 28693 0. 778. 0. 0. -602 961 72 1.33 0.04 0.32 29.1 1.28 121.0 n 14.3 1.29 121 CC1626 28693 391, -383. 400. 0.04 0.04 16.9 0.75 133.7 0. 0. 0. 4. 0.99 -32 14.1 1.27 150 CC1626 28693 0. 1000. -732. 1266. 1.72 0.04 0.35 37.5 1.65 123.1 n 15.3 0. n 109. 1.37 121 CC1622 28693 ð. 390. 0. 0. -382. 400. 4. 4. 0.98 0.04 0.05 16.7 0.74 132.3 -30 14.0 1.26 150 CC1622 28693 912. -671 134.0 O. 0. 0. 1176. 98 1.68 0.04 0.36 37.4 1.65 n 14.7 1.32 121 CC1222 28693 0.73 131.2 -30 390. ۵. ٥. -381. 400. 4. 4. 0.98 0.04 0.05 16.6 14.0 1.26 151 CC1222 28693 0. 904. ٥. -665. 1171. 97. 1.65 0.04 0.36 35.5 -1.56 128.3 14.3 1.29 122 4. CC0822 28693 Ω. 389. ٥. -380. 400. 4. 4. 0.99 0.04 0.05 16.8 0.74 133.1 -30 14.0 1.26 151 CC0822 28693 764 -575 1004 77 0.04 0.36 29.7 1.31 126.1 0 13.2 1:19 123 n 1.47 STIG15 28693 0. 402. 0. -394. 400. 4. 4. 0.94 0.04 0.02 16.9 0.74 130.1 -32 14.3 1.29 147 STIG15 28693 24231. 0.-17595. 0.04 29.53 94.3 0. 0. 22585. 4. 2706. 39.86 0.17 671.0 314.1 28.24 744 STIG10 28693 0. 399. ٥. -391. 400. 4. 4. 0.9% 0.04 0.02 16.7 0.74 129.4 -30 14.2 1.27 148 STIG10 28693 0. 2377 0 -1764 2425 4 250 4.04 0.04 0.22 75.9 3.34 107.0 0 35.4 3 18 13A STIG1S 28693 0. 398. ٥. -389. 400. 4. 4. 0.93 0.04 0.03 16.6 0.73 129.3 -30 14.1 1.27 148 STIG1S 28693 1494. 1576. 0.23 47.1 2.07 104.6 0. 0. -1134.147. 2.73 0.04 24.5 2.20 122 4. **DEADV3 28693** 0. 396. 0. 0. -387. 400. 4. 4. 1.02 0.04 0.63 20.1 0.88 156.7 -57 14.5 1.3 145 **DEADV3 28693** 241.2 0. 1537 0 0. -1127 1742 4 167 3.62 0.04 0.29 111.5 4.91 29.7 2.67 129 **DEHTPM 28693** ۵. 389. ٥. -380. 400. 1.06 0.04 0.05 20.2 0.89 160.5 14.4 1.29 146 n. 4. 4 249.5 **DEHTPH 28693** 0. 735. Ω. 0. -562. 949. 4. 70. 2.18 0.04 0.34 56.8 2.50 17.1 1.54 117 **DESGA3 28693** ٥. -398. 9. 400. 4. 4. 1.00 0.04 0.03 19.1 0.84 148.2 -73 17.0 1.53 151 398. 0. DFS@A3 28693 1842 -1842 478 1971 195. 4.87 0.04 0.25 159.8 7.04 289.6 0 4.65 170 0. 0. 4 51.7 DESOA3 28693 -389. 400. 0.84 148.2 1.30 146 n. 398. 0. n. 4. 4. 1.00 0.04 0.03 19. 14.4 DESOA3 28693 -1364. 7.04 269.6 3.58 143 0. 1842. 0. ٥. 1971. 4. 195. 4.87 0.04 0.25 159.8 'n 39.8 GTGCAD 28893 -390. 400. 0.73 131.9 390. 9. 0.92 0.04 0.05 16.7 16.4 1.48 156 0. n 4. 4. -46 GTSCAD 20693 951 1.04 111.0 684 0 0 -684 144 4 59 1.17 0.04 0.31 23.6 n 17.7 1.59 133 GTRA08 28693 0.77 137.6 -52 1.49 155 391. -391. 9. 400. 0.04 0.04 17.4 16.6 ٥. 0. 4. 4. 0.93 GTRA03 28693 -937. 1175. 1.79 141.8 21.7 1.95 133 937. 0. 0. 240. 4. 98. 1.64 0.04 0.34 40.7 1.49 155 GTRA12 28693 391. 0. ο. -391. 9. 400. 4. 4. 0.92 0.04 0.04 17.4 0.76 137.2 -51 16.5 GTRA12 28693 -910 1.71 139.3 21.0 1.89 133 910 0 0 234 1154 4 95 . 59 0.04 0.34 38.8 0 GTRA16 23693 17.6 0.77 138.7 1.49 155 391. ٥. 0. -391. 9. 400. 4. 4. 0.93 0.04 0.04 -52 16.6 GTRA16 28693 869. 0. G. -869 218. 1101. 4. 89, 1.59 0.04 0.34 39.0 1.72 146.1 0 20.8 1.87 132 GTR208 28693 391. 0. Ω. -391. 9. 400. 4. 4. 0.92 0.04 0.04 17.2 0.76 135.7 -50 16.5 1.48 155 GTR208 28693 783. -783 180. 974 0.32 30.8 1.35 127.3 19.5 1.75 132 0. n 4. 73. 1.37 0.04 0 GTR212 23693 391. 0. 0. -391. 9. 400. 4. 4. 0.93 0.04 0.04 17.3 0.76 136.5 -50 16.5 1.49 155 GTR212 28593 -815. 1018. 79. 0.33 131.8 19.9 1.79 132 815. ٥. 0. 193. 4. 1.43 0.04 33.1 1.46 Ω GTR216 28693 391. 0. 0. -391. 9. 400. 4. 4. 0.93 0.04 0.05 17.4 0.76 137.2 -51 16.5 1.49 155 GTR216 28693 -818. 1034 1.49 0.04 0.34 1.55 140.2 20.0 1.79 132 818 198. 35.3

DATE 06/07/79 18SE-PEG-ADV-DES-ENGR

		_	OGENERAT				- 17	POVER	COGEN	M&D	POWER	FESR	CAPITAL	NORM	\$/KW ROI	LEVL	NORM WRT
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL	CHRG	ENRG
								MW	MW		RATIO		*10**6		(\$)		
	28693			o.	-394.	9.	400.	4.	4.	0.93		0.04	17.5	0.77	137.3 -53	16.7	
	28693	1136		0.	-1136.	287.	1330.	4.	117.	1.67	0.04	0.30	40.5	1.78	117.3 0	25.3	
STRW12	! <b>2</b> 869 <b>3</b>	393	. o.	0.	-393.	9.	400.	4.	4.	0.93	0.04	0.04	17.5	0.77	137 6 -53	16.6	1.50 15
STRW12	28693	1111	0.	0.	-1111.	291.	1344.	4.	119.	1.68	0.04	0.32	40.7	1.79	120.6 0	24.1	2.17 13
STRW16	28693	393	. 0.	0.	-393.	9.	400.	4.	4.	0.93	0.04	0.04	17.7	0.78	138.9 -54	16.6	1.50 15
STRWIE	28693	1048	. 0.	ο.	-1048.	269.	1271.	4.	110.	1.65	0.04	0.32	40.2	1.77	126.1 0	23.5	2.11 13
TR308	28693	395	. 0.	0.	-395.	9.	400.	4.	4.	0.93	0.04	0.03	17.2	0.76	134.7 -51	16.7	1.50 15
3TR308	28693	982	. 0.	0.	-982.	219.	1103.	4.	89.	1.48	0.04	0.26	33.6	1.48	112.2 0	24.0	2.16 13
3TR312	28693	392	. 0.	0.	-392.	9.	400.	4.	4.	0.93	0.04	0,04	17.3	0.76	136.3 -51	16.6	1.49 15
	28693			0.	-950.	234.	1153.	4.	95.	1.49	0.04	0.31	34.4	1.51	118.4 0	21.9	1.97 13
	28693			Ö.	-393.	9.	400.	4.	4.	0.93	0.04	0.04	17.5	0.77	137.5 -52	16.6	1.49 15
	28693			ó.		230.	1141.	4.	94.	1.51	0.04	0.31	35.4	1.56	122.6 0	22.0	1.98 13
	28693			0.	-396.	9.	400.	4.	4.	1.20	0.04	0.03	18.4	0.81	143.2 -65	17.1	1.54 15
	28693			ő.		506.	2065.	4.	206.	21.59	0.04	0.28	121.2	5.33	218.4 0	62.7	5.64 20
	28693	_		o.	-392.	9.	400.	4.	4.	1.17	0.04	0.04	18.5	0.81	145.8 -65	16.9	1.52 15
	28693			0.		400.	1711.	4.	163.	16.25	0.04	0.36	104.5	4.60	256.0 0	45.8	4.12 17
- CHICIDS	20023	1302	<u> </u>	<u> </u>	<u>-130€.</u>	400.		4,	300.	10.25	0.04	0.30	104.5	4.00	200.0 0	40.0	4.16 1/

		**C0G	ENERAT	ION CASE	E** **M6	COGEN -	<ul><li>COGEN**</li></ul>	POWER	COSEN	Ø8M	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WRT
cs	PROCS	DISTIL R			DISTIL		COAL	REQD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG
								MW	MW		RATIO		*10**6			(%)		
NOCGI	N 28694	O.	8.	427.	0.	0.	0. F	3.	0.	1.50	0.03	0.	24,8	1.00	179.9	0	11.9	1.00 8
TM14	1 20694	0.	413.	Ο.	٥.	-405.	427.	3.	3,	1.03	0.03	0.05	14.7	0.59	103,7		14.5	1.22 15
TM141	1 28694	Ο.	446.	Ο.	٥.	-418.	495.	3.	12.	0.86	0,03	0.15	15.0	0.61	<b>99.</b> 3	-17	13.8	1,16 13
TM141	1 28694	0.	0.	413.	0.	8.	14. F	3.	3.	2.11	0.03	0.05	31.6	1.27	222.6	0	12.4	1.05 13
TM14	1 28694	0.	0.	446.	0.	28.	48. F	3.	12.	1.78	0.03	0.15	29.1	1.17	191.9	18	10.9	0.92 11
TM14	1 28694	Ο.	٥.	413.	Ο.	8.	14. A	3.	3.	2.01	0.03	0.05	28.8	1.16	203.0	1	12.0	1,01 13
TM141	1 28694	Ο.	٥.	446.	٥.	28.	40. A	3.	12.	1.59	0.03	0.15	20.3	0.82	133.8		9.7	
FBST	M 28694	0.	0.	414.	0.	8.	13.	3.	3.	2.07	0.60	0.05	30.2	1.22	212.4	0	12.2	
	M 28694	0.	Ο,	512.	٥.	63.	100.	3.	26.	2.76	0.03	0.24	35.3	1.42	207.1	10	11.0	0.93 10
	T 28694	Ο.	414.	o.	o.	-406,	427.	3.	3.	1.28	0.03	0.05	26.8	1.08	188.6	0	16, 1	1.35 14
	T 28694	0.	531.	0.	٥.	-454.	659.	3.	32.	2.73	0.03	0.28	80.8	3.26	458.6	0,		
	T 28694	0.	<u>0.</u>	414.	0.	8.	13.	3.	3.	2.23	0.03	0.05	39.9	1.61	280.8	0	13.4	1.13 12
	T 28694	o.	0.	<b>5</b> 54.	0.	91.	150.	3.	37.	3.95	0.03	0.30	112.6	4.54	615.2	0	19.2	1.62 10
	9 28694	Ο.	423.	o.	0.	~414.	427.	3.	3.	1.30	0.03	0.03	30.3	1.22	209.8	0	16.6	1.40 •13
	9 28694	Ο.	557.	ο.	0.	-501.	589.	3.	23.	2.61	0.03	0.14	81.1	3.27	440.7	0	23.6	1.99 10
	3 28694	0.	<u>o.</u>	423.	0,	8.	<u>5.</u>	3.	3.	2.29	0.03	0.03	44.4	1.79	307.3	0	14.1	1.19 12
HRS		Ο.	0.	585.	0.	66.	37.	3.	27.	3.89	0.03	0.15	113.8	4.59	592.3	0	21.6	1.82 9
IRL	28694	420.	0.	0.	-4,20.	8.	427.	3.	3.	1.04	0.03	0.03	19,5	0.79	135.8		17.9	1.51 15
TIRL.	28694	678.	Ο.	Ο.	-678.	111.	771.	3.	45.	1.66	0.03	0.23	38.9	1.57	177.1	0	22.0	1.86 12
TIRL	28694	0.	420.	0.	0.	-412.	427.	3	<u> </u>	1.04	0.03	0.03	19.5	0.79	135.8			1.28 14
TIRL	28694	Ο.	678.	0.	0.	-567.	771.	3.	45.	1.65	0.03	0.23.	38.9	1.57	177.3	0	17.6	1.49 11
TIRL	28694	٥.	0.	420.	Ο.	8.	7.	3.	3.	1.94	0.03	0.03	31.2	1.26	216.6	0	12.2	
TIRL	28694	0.	Ο.	727.	ο.	130.	109.	3.	<b>5</b> 3.	3.09	0.03	0.25	73.5	2.96	314.4	0	13.9	1.17 9
	0 28694	0.	0.	434.	0.	8.	-7. A		3.	1.91	0.03	0.00	33.6	1.35	227.3	<u> </u>	12.8	1.08 12
	28694	o.	0.	2063.	0.	397.	-333. A		162.	7.19	0.03	0.03	181.3	7.31	290.0	0	32.3	2.72 9
	0 28694	Ο.	Ο,	429.	Ο.	8.	-2. A		3,	1.92	0.03	0.01	33.2	1.34	226.6	0	12.7	
	28694	Ο.	٥,	783.	Ο.	108.	-22. A		44.	3.15	0.03	0.10	75.1	3.03	300.2	0	16.9	1.43 8
	_ 28694	0.	0.	487.	0.	8.	-60.	3.	3.	2.04	0.03		36.3	1.46	254.2	0		1.20 11
	28694	٥.	0.	849.	0.	186.	172,	3.	76.	4.78	0.03	0.30	87.8	3.54	352.7	0	15.5	
CSTAL		٥.	0.	487.	0.	8.	-59.	3.	3.	2.09		-0.12	36.0	1.45	252.4	0	14.2	
CE ,	2000-	0.	0.	925.	0.	231.	247.	3.	94.	5.35	0.03	0.34	97.0	3.91	357.5	1	15.0	1.26 10
ē€	28694	0.	0.	491.	0.	8.	-64.	3.	3.	2.07	0.03		35.0	1.41	242.9	0	14.1	1.19 11
G_	28694	o.	0.	861.	0.	152.	47.	3.	62.	2.69	0.03	0,19	74.2	2.99	294.2	0	14.6	1.23 8
TS	28594	o.	421.	0.	0.	-413.	427.	3.	_3.	0.97	0.03	0.03	18.3	0.74	127.1		15.0	1.26 14
	R 28594	0.	865.	0.	o.	-685.	1004.	3.	74.	1.51	0.03	0.27	34.5	1.39	125.7	0	17.2	
	3 23694	<u> </u>	416.	<u> </u>	<u> </u>	-408.	427.	3.	3.	0.96	0.03	0.04	17.9	0.72	125.3		14.8	1.25 15
	3 28694	0.	659.	0.	0.	-531.	828.	3.	52.	1.22	0.03	0.31	24.5	0.99	114.7		13.8	1.17 12
	2 28694	0.	417.	0.	0.	-409.	427.	3.	3.	0.95	0.03	0.04	17.8	0.72	124.8		14.8	1.25 15
	28694	0.	735.	0.	0.	-574.	939.	3.	66.	1.34	0.03	0.33	28.8	1.16	122.2	0	14.1	1.19 12
	28694	<u>0.</u>	418.	0.	<u>0.</u>	-409.	427.	<u>3.</u>	3.	0.95	0.03	0.04	17.9		125.4		14.8	1.25 15
	5 28694	0.	804.	0.	0.	-617.	1025.	3.	76.	1.46	0.03	0.34	33.0	1.33	128.9	0	14.8	1.25 12
	5 28694	٥.	419.	o.	o.	-411.	427.	3.	_3.	0.96	0.03	0.04	18.2		126.9		14.9	1.26 14
(WC16	5 28694	Ο.	839.	О.	Ο.	-649.	1036.	3.	77.	1.43	0.03	0.32	31.4	1.26	117.7	0	15.3	1.29 12

TYPE & ECCINOMICS GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 FUEL SAVED BY SUMMARY OF DATE 06/07/79 | ASE~PEG-ADV-DES-ENGR

NORM WRTH ENRG 2. 30 2. 30 2. 30 2. 30 4. 49 1.49 2.07 1.50 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 2002 LEVL CHRG 84-0 0 - 46 0 0 - 40 0 0 - 40 -48 -47 60.00 5 151.8 246.6 1123.6 1128.0 1128.0 1128.8 1127.2 1127.2 1127.7 1127.7 1127.7 1127.7 1127.7 129.2 125.5 127.2 120.5 120.5 132.6 135.1 135.1 135.1 135.1 135.1 135.1 135.1 135.1 135.1 135.1 135.1 \$/KW EOVL NORM 0.088 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 CAPITAL COST *10xx6 6621.8 662.33 662.33 662.33 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 663.34 FESR ORM COSEN, POVER COGEN** POWER COAL REGD F ------FUEL USE IN BTU*10xx6-----427. 946. 946. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. 927. **COGENERATION CASE** **NOCOGEN -DISTIL RESIDL COAL DISTIL RESIDL 200. 157. 157. 157. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 200. 0.0 -418.0 -1719.1 -1720.1 -420.1 -420.1 -420.1 -420.1 -421.1 -421.1 -421.1 -421.1 -421.1 -421.1 -1179. -421. -1065. -1056. -424. -2000. -420. 418. 429. 420. 420. 420. 420. 420. 420. 420. 422. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 423. 424. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. 425. DEHTPM 28694
DEHTPM 28694
GTSGAD 28694
GTRA08 28694
GTRA12 28694
GTRA12 28694
GTRA12 28694
GTRA12 28694
GTRA16 28694
GTR212 28694
GTR212 28694
GTR212 28694
GTR212 28694
GTR212 28694
GTR212 28694
GTR216 28694
GTR216 28694
GTR216 28694
GTR312 286994
GTRV18 286994
GTRV18 286994
GTRV18 286994
GTRV18 286994
GTRV18 286994
GTRV18 286994
GTRV18 286994
GTRV18 286994
GTRV16 286994
GTRV16 286994
GTRV16 286994
GTRV16 286994
GTRV17 286999 PROCS

87

PAGE

ONEXMELL PAGE PRINTING SYSTEM

					E IN BT	UX TUX X 6 ·			UNEB	CAREN	Ø&M	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRT
cs	PROCS	DISTIL F				RESIDL	COAL	R	EQD	POWER	Odij	/HEAT	LOK	COST	COST	EQVL		CHRG	ENRG	Witt
NACCN	28731	0.	9.	782.	0.	0.	0.		MW 4.	MW O.	2.22	0.02	0.	<u>*10**6</u> 42.0	1.00	190.5	( <u>%)</u>	21.3	1.00	0 8
	26731	0.	9. 0.	770.	0.	9.	12.	г	4.	4.	2.77	0.02	0.03	40.2	0.96	178.3		20.8	0.98	-
	28731	0.	0.	860.	0.	55.	76.		4.	22.	3.72	0.02	0.03	42.3	1.01	168.1	-	19.9	0.94	
	28731	0.	784.	0.00	o.	-775.	782.		4.	22. 4.	1.49	0.02	0.13	34.9	0.83	151.8		29.1	1.37	
	28731	<u> </u>	1177.	0.	0.	-1058.	1152.		4.	49,	3.96	0.02	0.07	138.6	3.30	401.6	0	45.8	2.16	
	28731	0.	0.	784.	0.	9.	-2.		4.	49. 4.	3.03	0.02	0.01	61.6	1.46	268.1	ŏ	23.6	1.11	
	28731	0.	0.	1177.	0.	119.	-26.		4.	49.	5.95	0.02	0.07	176.4	4.20	511.1	ŏ	37.2		
	28731	0.	0. 0.	785.	0.	9.	-3.	Α	4.	49. 4.	2.64	0.02	0.01	49.7	1.18	215.9	ő	21.9	1.03	
	28731	0.	0.	1434.	<u>ΰ.</u>	181.	-74.		4.	74.	4.71	0.02	0.07	108.4	2.58	258.1	<u> </u>	28.2	1.33	
	28731	o.	0.	771.	υ. ΰ.	9.	11.	^	4.	74. 4.	2.83	0.02	0.02	55.5	1.32	245.8	ő	22.7	1.07	
	28731	0.	o.	1371.	o.	300.	385.		4.	122.	7.25	0.02	0.33	124.5	2.96	309.8	4	22.4	1.05	
	28731	0.	778.	0.	0.	-769.	782.		4.	4.	1.25	0.02	0.02	26.8	0.64	117.5	•	27.8	1.31	
	28731	<u>0.</u>	1893.	0.	0.	-1498.	2074.		4.	161.	2.18	0.02	0.23	63.6	1.51	114.7	0	36.2	1.70	
	28731	0. 0.	771.	0.	0.	-1490. -762.	782.		4.	4.	1.24	0.02	0.23	26.3	0.63	116.5	_	27.6	1.30	
	28731	0.	1249.	0.	0.	-1006.	1564.		4.	99.	1.47	0.02	0.03	28.3 38.4	0.63	104.9		25.2	1.19	
	28731	0.	770.		0.	-762.	782.		4.	99, 4,	1.23	0.02	0.03	26. <b>3</b>	0.62	116.3		27.5	1.30	
	28731	0.	1362.	<u>0.</u> 0.	0.	-1063.	1753.		4.	122.	1.66	0.02	0.34	45. <b>5</b>	1.08	114.1	-20	25.2		
			772.			-76 <b>3</b> .	782.				1.23			26.4	0.63	116.5		27.6	1.30	
	28731	0.		0.	0.				4. 4.	4.		0.02	0.02		1.37		0	27.6	1.30	
	28731	0.	1542.	0.	0.	-1184.	1951.			146.	1.99	0.02		57.6		127.5	_			
	28731	<u> </u>	773.	<u>o.</u>	<u>0.</u>	-764.	782.		4.	4.	1.24	0.02	0.02	<u> 26.6</u>	0.63	117.6	0	27.7	1.29	
	28731	0.	1576.	0.	0.	-1219.	1948,		4.	146.	1.77	0.02	0.32	48.6	1.16	105.1	-	27.5		
	28731	772.	0.	0.	-772.	9.	782.		4.	4.	1.23	0.02	0.02	26.1	0.62	115.4	-41 0	32.9	1.55	
	28731	1407.	0.	0.	-1407	295.	1741.		4.	120.	1.61	0.02	0.31	43.3	1.03	105.1	_	36.2	1.70	
	28731	778.	0.	0,	<u>-778:</u>	9.	782.	<del> </del>	4.	4.	1.24	0.02	0.01	26.8	0.64 2.73	117.5 123.9	-43 0	70.6	3.32	
	28731	3161.	0.	0.	-3161.	811.	3468.		4.	331.	3.58		0.26	114.8			_			
	28731	777.	0,	0.	-777.	9.	782.		4.	4.	1.24	0.02	0.02	26.8	0.64	117.5		33.2	1.56	
	28731	2710.	0.	0.	-2710.	697.	3087.		4.	284.	3.29	0.02	0.28	104.7	2.49	131.8	0,	61.4	2.89	
	28731	776.	<u>0.</u>	<u> </u>	-776.	9.	782.		4.	4.	1.24	0.02	0.02	27.0		118.5		33.2	2.60	
	28731	2374.	0,	0.	-2374.	596.	2747.		4.	243.	2.97	0.02	0.29	98.3		134.0	0	55.3	1.56	
	28731	775.	0.	0.	-775.	9.	782.		4.	4.	1.24	0.02	0.02	26.6 66.8		117.2		33.1		
	28731	1893.	0.	0.	-1893.	435.	2211.		4.	178.	2.26	0.02	0.28	66.8	1.59	120.5	- 43	46.5	2.19	
	28731	775.	<u>0.</u>	<u>0.</u>	<u>-775.</u>	9.	782.		4.	4.	1.24	0.02	0.02	26.7	0.64	117.7		33.1	1.50	
	28731	1983.	0.	0.	-1983.	470.	2327.		4.	192.	2.41	0.02	0.29	72.4	1.72	124.7	- 43	47.8	2.25	
	28731	775.	0.	0.	-775.	9.	782.		4.	4.	1.24	0.02	0.02	26.8	0.64	118.0		33.1	1.56	
	28731	2021.	0.	0.	-2021.	489.	2392.		4.	200.	2.57	0.02	0.30	78.6	1.87	132.7	- 43	48.5	2.28	
	28731	780.	<u>0.</u>	0.	-780.	9.	782.		4.	4.	1.24	0.02	0.01	26.9	0.64	117.7		33.3	1.57	
	28731	3559.	0.	0.	-3559.	898.	3759.		4.	366.	3.56	0.02	0.24	112.8	2.68	108.1	- 40	78.4	3.69	
	28731	778.	0.	0.	-778.	9,	782.		4.	4.	1.24.		0.02	26.9	0.64	118.1	-43	33.2	1.56	
	28731	3124.	0.	0.	-3124.	817.	3489.		4.	333.	3.16	0.02	0.27	97.9	2.33	107.0	.0	66.5	3.13	
	26731	777.	<u>o.</u>	0.	-777.	9.	782.		4.	4.	1.24	0.02	0.02	27.1	0.64	119.0		33.2		-
-	26731	2680.	0.	0.	-2680.	688.	3055.		4.	280 .	2.94	0.02	0.28	91.0	2.16	115.8	0	59.2	2.79	
	28731	781.	Ο,	ο.	-781.	9.	782.		4.	4.	1.24	0.02	0.01	26.6	0.63	116.3		33.3		7 15
TR308	28731	2651.	0.	0.	-2651.	591.	2730.		4.	241.	2.56	0.92	0.20	75.8	1.80	97.5	0	63.8	3.00	3 14

DATE 06/07/79 I&SE-PEG-ADV-DES-ENGR

cs i	PROCS		NERATI	ION CAS	E** **NO DISTIL		- COGEN**		COGEN POWER MW	orm	POWER /HEAT RATIO		CAPITAL COST *10**6	NORM COST	\$/KW I EQVL			NORM ENRG	
TR312 TR316 TR316	28731 28731 28731 28731	2123. 776. 2095.	0. 0. 0.	0. 0.	-2123. -776. -2095.	9, 522. 9, 510.	782. 2500. 782. 2462.	4. 4. 4. 4.	4. 213. 4. 208.	2.39 1.24 2.43	0.02 0.02 0.02 0.02	0.30 0.02 0.30	26.8 70.9 26.9 72.8	0.64 1.73	117.8 114.0 118.6 118.6	0 -43 0	48.8 33.1 48.9	1.56 2.30 1.56 2.30	0 13 6 15 0 13
CPADS	28731 28731 28731 28731	3765. 774.	0. 0. 0.	О.	-778. -3765. -774. -2747.	9. 1028. 9. 813.	782. 4195. 782. 3476.	4. 4. 4.	4. 419. 4. 332.			0.02	28.9 237.6 29.1 204.4	0.69	126.8 215.4 128.1 253.9	0	130.9 33.6	1.59 6.16 1.56 4.46	6 214 8 15
			<del></del>	<del></del>												· · · · · · · · · · · · · · · · · · ·			
															•				
		-									•			<u> </u>					
	<del></del>																		
	<del></del>											·····		<del></del>	·				
			<del></del>	<del></del>		·			<del></del>										
											•								
							•												
										<u> </u>	i ja								
					***************************************			***************************************			r				•				

cs	PROCS	**COG DISTIL R		ION CASE COAL	E** **NC DISTIL	COGEN - RESIDL	COGEN*	RE	WER COG QD POW W M	ER	POWER /HEAT RATIO		CAPITAL COST *10**6	NORM	\$/KW EGVL	ROI (%)	LEVL CHRG	NORM ENRG	WRT
NOCGN	28741	0.	10.	141.	0.	0.	0.	Α	4.	0. 0.66	0.15	0.	7.4	1.00	232.0	0	4.5	1.00	80
TM141	28741	0.	124.	Ο.	0.	-114.	141.		4.	4. 0.62	0.15	0.18	6.7	0.91	183.4		4.9		157
TM141	28741	٥.	136.	Ο.	ο.	-119.	165.		4.	7. 0.49	0.15	0.25	6.6	0.89	165,3	-13	4.6	1.02	
TM141	26741	ο.	0.	124.	0.	10.	17.	F	4.	4. <u>1.1</u> 1	0.15	0.18	13.7	1.86	376,4	2	4.7	1.04	
TM141	28741	0.	0.	136.	0.	17.	29.	F	4.	7. 0.88	0.15	0.25	12.4	1.69	312.0	12	4.0	0.89	
TM141	28741	Ο.	ο.	124.	0.	10.	17.	Α	4.	4, 1.03	0.15	0.18	12.3	1.67	336.6	6	4.4	0.99	9 14
Ti1141	28741	Ο.	٥.	136.	ο.	17.	29.	Α	4.	7. 0.76	0.15	0.25	9.9	1.34	247.8	25	3.6	0.80	
880MT	28741	0.	124.	0.	0.	-114.	141.		4.	4. 0.60	0.15	0.18	6.2	0.85	171.2	-23	4.8	1.08	-
<b>580MT</b>	28741	0.	129.	0.	0.	-116.	151.		4.	5. 0.46	0.15	0.21	5.8	0.79	153.1	-9	4.6	1.02	2 15
TM088	28741	0.	0.	124.	Ο.	10.	17.	F	4.	4. 1.07	0.15	0.18	13.0	1.77	356.9	4	4.6	1.02	2 13
взонта	28741	ο.	٠٥.	129.	ο.	13.	22.	F	4.	<b>5</b> . 0.84	0.15	0.21	11.4	1.55	301.5	12	4.0	0.89	3 13
	28741	ο.	0.	124.	ο.	10.	17.	Α	4.	4. 1.00	0.15	0.18	11.4	1.55	313.4	8	4.3	0.96	3 14
330MT	28741	0.	0.	129.	0.	13.	22.	A	4.	5. 0.75	0.15	0.21	9.3	1.26	245.1	27	3.7	0.82	2 13
FBSTM	28741	0.	0.	125.	0.	10.	16,		4.	4. 1.17	0.15	0.17	14.8	2.01	405.7	Q	4.8	1.08	3 13
	28741	o.	o.	151.	٥.	26.	43.		4. 1	0. 1.13	0.15	0.31	15.5	2.11	350.2	8	4.2	0.93	3 12
	28741	o.	125.	σ.	0.	-115.	141.		4.	4. 0.85	0.15	0.17	16.2	2.21	444.7	0	6.2	1.38	3 14
	28741	0.	164.	0.	0.	-131.	220.		4. 1	4. 1.19	0.15	0.35	33.7	4.58	699.8	0	7.8	1.74	1 13
	28741	0.	0.	125.	Ο.	10.	16.		4.	4, 1.37	0.15	0.17	24.3	3.30	665.2	0	6.1	1.36	13
	28741	o.	0.	164.	o.	33.	56.		-	4. 1.68	0.15	0.35	42.8	5.82	889.0	0	7.3	1.63	3 13
	28741	Ö.	131.	o.	o.	-121.	141.			4. 0.94	0,15	0.13	23.0	3.12	597.7	0	7.1	1.59	13
	28741	0.	142.	0.	0.	-127.	156.			6. 0.94	0.15	0.17	28.3	3.85	683.4	0	7.7	1.71	13
	28741	õ.	0.	131.	o.	10.	10.			4. 1.46	0.15	0.13	31.7	4.31	825.8	0	7.1	1.58	13
	28741	o.	o.	142.	o.	14.	15.		4.	6. 1.38	0.15	0.17	36.5	4.96	880.6	0	7.4	1.64	1 12
TIRL	28741	132.	o.	o.	-132.	10.	141.		4.	4. 0.57	0.15	0.13	6.7	0.91	173.8	-89	5.9	1.32	2 150
TIRL	28741	194.	0.	0.	-194.	36.	227.		4. 1	5. 0.59	0.15	0.26	10.9	1.49	192.3	0	5.7	1.49	13
TIRL	28741	Ö.	132.	o.	0.	-122.	141.		4.	4. 0.57	0.15	0.13	6.7	0.91	173.9	-42	5.1	1.13	3 15
TIRL	28741	0.	194.	o.	o.	-159.	227.		4. 1	5. 0.59	0.15	0.26	11.0	1.49	192.6	0	5.4	1.21	12
TIRL	28741	o.	0.	132.	o.	10.	9.		4.	4. 1.05	0.15	0.13	13.7	1.86	354.7	1	4.7	1.05	5 13
TIRL	28741	0.	0.	194.	0.	36.	33.			5. 1.05	0.15	0.26	18.6	2.53	326.8	6	4.3	0.97	7 11
	28741	o.	o.	144.	o.	10.	-3.	Α	4.	4. 1.17	0.15	0.05	21.6	2.93	511.6	O	5.9	1.32	2 12
	28741	o.	0.	6ତଃ.	o.	154.	-44.		4. 6	3. 3.40	0.15	0.14	93.6	12.72	478.2	0	13.9	3.11	
	28741	o.	õ.	142.	o.	10.	-1.			4. 1.16	0.15	0.06	20.9	2.85	502.7	0	5.8	1.29	12
	28741	o.	0.	304.	0.	57.	-6.			3. 1.76	0.15	0.14	45.8	6.23	514.6	0	8.3	1.85	
	28741	o.	o.	141.	O.	10.	õ.			4. 1.13	0.15	0.07	19.9	2.70	480.8	0	5.6	1.28	5 12
	28741	õ.	o.	187.	o.	24.	ā.			0. 1.10	0.15	0.11	25.7	3.49	468.3	0	6.0	1.33	3 10
	28741	Ö.	o.	128.	o.	10.	13.	- •	- •	4. 1.18	0.15	0.15	19.2	2.61	510.7	0	5.4	1.22	2 13
	28741	0.	0.	194.	0.	42.	56.			7. 1.56	0.15	0.34	30.4	4.13	533.6	0	5.7	1.28	3 11
	28741	o.	o.	127.	0.	10.	14.			4. 1.21	0.15	0.16	18.6	2.53	499.2	0	5.4	1.20	13
	26741	o.	o.	243.	-	70.	99.			8. 2.00	0.15	0.41	38.0	5.17	535.3	1	5.8	1.30	11
	28741	0.	0.	132.	o.	10.	9.			4. 1.22	0.15	0.13	18.8	2.56	488.4	Ó	5.5		
	28741	0.	0.	226.	0.	49.	47.			0. 1.34	0.15	0.30	31.2	4.23	470.0	ō	5.6	1.26	
	28741	0.	132.	0.	0.	-122.	141.			4. 0.54	0.15	0.13	6.9	0.94	180.1		5.1	1.13	
	. 20141	٠.	102.	J.	σ.	155.	1-71.		<del>-,</del> ,	<b>⊸</b> ,		J U	<b>~</b> · · <del>~</del>				<b></b> •	1.17	

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.2
SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

DATE 06/07/73 1&SE-PEO-ADV-DES-ENGR

	į																																			· -	•			
WRTH	1	900	500	35	<b>8</b> 6	0 C	2 7	25	9	23	- F	202	24	24	۵ ر د	46	22	7 6	4	16	4 % & %	9	45	4 8	60	9	0 K	20	28	2 6	22	32	356	- 29	9	[				ı
	1	ທີ່ເ	ດ	S	0 6	۵ ۵	•	•	•	٠ د د د	1	11	N	6		- 60	٦,				A	_	9	- <b>-</b> -	ω.	4 6	- ר	· • ·	9 6	, co		-			. <del></del>					
NORM		 0 c		-	- ,		<u>_</u>	-	2.5	- ·		-	_	-	<u>.</u>	- <del>-</del>	(i)	_ «	1.22	0	1.18	• •	4.6	- 6	2	- C	2.6	(C)	9 0	9 10	£.		ر بن بر	. n		İ				
1		<b>თ</b> (	, 0	7	on 0	D C	<b>a</b>	_	۲.	, <b>7</b>	4 0	) <b>ო</b>	0	6	4 • )	- හ	္ပါ	n o	1 4	8	ကယ	, m	D .	4 -	~		n (1		_ 0	)	6	9	on ≪	) ຫ	0					
LEVL	1	4	4	4	4.4	4 K	พ	r.	10 I	R) R	D K	່ກ	'n	4		, ro	=	o a	'n	•	n in		•			•1		'n	-1			[	ດ ແ		ا و					
2	5	אָר מי	123		N N	4.0		-73	o į	-47	-30	0	4.00	9	; c	-52		440 0	0	0	00	0		0	-53	0	200	136	Doo		-94	0	უ c _	129	0					
\$/KW EQVL	- 1	ด์ เ	٠.	2	- 1	. 00	Į,	-	- (	0 9	0	9.	-	- 1	-	. (1)	- 1	Ó 00		7	- ^	^	4	. 4	<u>ه</u> (	٠,١	<u>.</u> س		4 4	4	_	4	N C	ຸດ	3	i				
₩ E		150	169	164	173	17.	167	183	173	175	17.	171	178	175	0 0	162	711	126	220	252	235 264	193	301	308	163	147	183	184	9 8	198			2 2 2	183	188	i				
NORM		<u>~                                    </u>	Ņ	6	יו פ	<u> </u>		l			-					56	- 1			- 1			i	. ن	en i	-		. <b>(</b> 0 )	×α	<b>.</b>	e	9	4 00	) IO	80	i			;	
28		o, -													j a	00					• •	0	•1	٠.	•	٠,	• •	6.0	ч.		•	•	) (C	9	7					
A.	او														•	u											_	-	1		_			_					,	
CAPITAL	٥l	0 0 4 C	• •	•1		٠.	•	. •	•	0. 4 0. 4	٠, ٠			• [		9.0	-			- 1		7.8	. i	6.0	9.0	-1		6.0	٠.	. 4	•		0 0 0 4	.0	- 1					
80	×				-	•	1	,		**		-			0	) (	N	•		8	-	, ,	4	4			-	• •	-		_	-	- ;:		=					
FESR	ļ	2 5	10	33	5 5	3 (	32	13	36	2 6	4	37	13	88	2 5	0	22	9 8	0	62	ი iი	8	200	9 <b>(</b> 2)	4:	25	. A	2	0 4	34	<u>ල</u>	35	2 E	4	34		!			
i	-	0	0	9	<b>o</b> c	0	0	0	0 0	) C		ö	ö	o	o	0	0		0	0		0	0	0	0	5 0	; ;	0	) C	; ;	o	0		0	0					
POWER /HEAT		0.13	5	5	o F	ប៊	15	15	<u>ا</u> ت	<u>ن</u> ا	2 20	12	ប្រ	S i	ت ت	2 12 1	2		10	2	ច ស	ខ	C I	<u> </u>	មា	U M	ច្ច	10	U R	10	<u>ا</u>	S	0 10	10	5				j	
B = 1	Z (		ö	o		i o	ó	0	o 0		io	0	Ö	o	ò c	90	5	<i>i</i> o	ö	o	<b>5</b> 0	0	o	Ö	0	o c	9 0	0			o	0		0	0		i			
Σ		22	23	20	א מ	20	55	61	81	22	90	92	61	9 6	0 g	26	0 4	9 0	25	8	0 5 0 5	9	0	8 8	25	2 7	1 K	70	S K	2 12	24	26	6 G	7 7	15					
OSM	- 1	0	•													0.																					ĺ			i
zœ					٠																				_															
COGEN	₹.	4 4	4	18	4 ¢	4	2	4 (	36	4 6	4	32	4	7 20	1 0	4 (	2/2	1 6	4	48	4 2	4	ဂ္ဂ	9	4!	1	28	4.8	0 4	26	4	<u>~</u>	4 8	4	23.					
یم ا											$\rfloor$ .								_																					
W C	₹ E	4 4	4	4	1 4	4	4	4 .	4 4	1 4	4	4	4	4 2	4	4	4 4	1 4	4	4	4	4	4	4	4,	4 4	4	4.	4	4	4.	4	1 4	4	4					
3	1																																							
OGEN**			_			·			· -			٠.	<u>.</u> .	. l		:	-		_:.			_•			٠.		٠ ـ:		. .	;			٠							
COG		224	4	22	1 6	14	28	4 5	2 4	3,1	4	370	4	5 5	5596	141	Š :	46	14	496	280	141	9	561	141	7 7 7	340	141	14	318	141	283	296	141	300					
١,								_				_			. "					1																				
*10**CCGEN	9	4	6	200	-163	2	92	-121	3 6	40	-120	-205.	9	2 2	30	-131.	000	1 O	26.	321	63.	9.5	S a	386.	<u>.</u> ;	i c	69	9.0	9	63	0.0	22	56.	0.	52					
700 X	ľ	•	1		. 1	ì		; `	1	1		ï	7	-	-5	1		9	<u> </u>		7	•	- -	. 6															į	
BTU*10** **NGCOGEN T1L RESID	c		o (	٥	. 0	ò	Ö	o 0	o	o	0	ö	0	s c		600	c	; o	0	o c		38.	- -				თ	- ;	30.		<del>-</del> 1			o.						
IN BT																						-138	ñ		-130	131	-269	-131	-130	-251	-131	-22/	2 8	-130	-23			1		
CASE**			<u>.</u>							: .		<u>.</u>	<u>.</u> .		: _:	۔ ئـ :		: <u>-</u> :	<u>.</u> .	ا.	<u></u>	<u>.</u> .	. _		<u>.</u>													!		
7 7 X		, 0	•		, .				<i>,</i>	0		U,	0 0	٦		00	٦	, 0	0 (	2 0	0	0 0	٦	0	00		0	00	٥١٥	0	0 (	D	0	0	9					
**COGENERATION CASE** **NOCOGEN - DISTIL RESIDL COAL DISTIL RESIDL							4																			١														1
P. P.	ac	79.	8	800	2 2	31.	27	ا ا		83	30.	90	9 19	44	77	140	30	36.	36.	50	4	0 0	38.0	21.	o 0		0	o c	Ö	ö	o 0	o c	90	o.	0					
ESI			,,		- (0	_	8	- (	, <del>-</del>	- (1		N.	<b>-</b> (	٦,	70	(	9	. 4	- 1	4 -	- 01		-	· ro																
**COGENER	c		0	5 C		o.	0	o c	o c	0	0	0	0 0						0			æ -	- 0	0				<del>,.</del> ,	و ان		· .	ا		Ġ.	7.					
** STI																				-		138	, ביי ה	-	130	131	269	13	130	22	e 6	7/2	236	130	(C)				1	
	-		<b>.</b> .	_ _		_					_	<b>,</b>	<b>,</b> ,	_ _		<b>-</b> -	- -		<del>,</del> .	_ _		<b></b> _		_		_	_		_ _	_				_						
PRØCS	874	874	87	874	874	874	874	874	874	874	2874	874	874	874	874	28741	374	2874	2874	977	2874	26741	874	2874	28741	28741	28741	28741	28741	8741	<b>∼</b> r	374	3741	~	8741				į	
98	C	00	0 0	nlu	N	W							N Ó	110	Ñ	900	100	Ñ	44 6	10	101		1			1			. [		o c	1	1 (1)	Ø	25					
	10	Ó	5 8	3 2	5	ទ	5	020	CC1622	162	122	122	0.67	101	161	ST1610	0	STIGIS	DEADV3	DEMTPM	DEHTPM	DESGAS	DESOA3	DESCA3	GTSØAD	GTRA08	<b>GTRA08</b>	GTRA12 GTBA12	GTRA16	GTRA16	GTR208	GTR212	212	2	3216				ļ	
ທ	O	¥	₹ 4	() o	•		۰۱۰												~ ~	-1-		-/ "	6126	/								تما ا سا	. 1	LE	45. 1					
ECS	GTACO	GTACO	9TAC1	GTAC1	GTAC16	GTWC1	GTWC1	3 5	S	88	ပ္ပ	ည	ט נ	STS	ST	ST	ST	ST	ם נ		B	ם מ	밁	DE	6	0	<u>6</u>	GT.	OT.	5	5	טפ	GTRZ	6	9TR					

								MARY OF		SAVED BY	IYPE	& ECON	001103							
								COGEN**			mso	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM 1	WRTH
ECS	PROCS	DISTIL	RESIDL	CQA	L	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
									MM	MW-		RATIO		*10**6			(元)			
	3 28741	134	. 0	•	٥.	-134.	10,	141.	4.	4.	0.55		0.11	7.2	0.98	183.4		6.0		
	3 28741	327	. 0		ο.	-327.	82.	384.	4.	34.	0.71	0.15	0.30	15.9	2.16	166.0		8.5		
	2 28741	133	. 0		ο.	-133.	10.	141.	4.	4.	0.55	0.15	0.12	7.2	0.98	184.9		6.0		
	28741	321			0.	-321.	84.	389	4.	34.	0.71	0.15	0.32	16.0	2.18	170.6		8.2		
	28741	133	. 0	•	ο.	-133.	10.	141.	4.	4.	0.55	0.15	0.12	7.4	1.00	189.3		6.0		
GTRW16	28741	303	. 0		٥.	-303,	78.	369,	4.	32.	0.70	0.15	0.32	15.9	2.16	179.2		8.0		
GTR308	3 28741	135	. 0		٥.	-135.	10.	141.	4.	4.	0.54	0.15	0.10	6.9	0.94	173.5	116	6.0		153
GTR30	23741	283	. 0		0.	-283.	63.	319.	4.	26.	0.62	0.15	0.26	12.8	1.75	<u>155.0</u>	0	8.0		
GTR312	28741	133	. 0		0.	-133.	10.	141.	4.	4.	0.54	0.15	0.12	7.0	0.95	179.9	127	5.9		
GTR312	28741	276	. 0		Ο.	-276.	68.	335.	4.	28.	C. 63	0.15	0.32	13.4	1.82	165.5	O	7.5	1.66	128
GTR316	26741	133	. 0		Ο.	-133.	10.	141.	4.	4.	0.55	0.15	0.12	7.2	0.97	184.3	183	6.0	1.33	154
GTR316	28741	274	0	•	0.	-274.	67.	332.	4.	27.	0.64	0.15	0.31	13.9	1.89	172.6	o	7.5	1.68	127
FCPADS	28741	137	. 0	•	Ο.	-137.	10.	141.	4.	4.	0.83	0.15	0.09	7,1	0.96	175.8	187	6.4	1.43	153
FCPADS	28741	541	. 0		Ο.	-541.	148.	603,	4.	60.	6.39	0.15	0.28	36.5	4.96	230.1	0	19.0	4.25	167
FCMCDS	28741	132	. 0		ο.	-132.	10.	141.	4.	4.	0.80	0,15	0.12	7.2	0.98	186.1	999	6.2	1.39	156
FCHCDS	28741	395	. 0		Ο.	-395.	117.	500.	4.	48.	4.80	0.15	0.36	31.1	4.23	269.1	0	14.0	3.13	152
																		•		

				FUEL US	E IN BT	U*10**6-				<del></del>								<del></del>	<del></del>
				TON CAS	E** **N	OCOGEN -	COGEN**	POWER	COGEN	08M	POWER	FESR	CAPITAL	NORM		ROI	LEVL	NORM	WRTH
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	CCAL	REQD	POWER		THEAT		COST	COST	EQVL		CHRG	ENRG	
ONIGOON	LOGOE							MW	MW	~	RATIO		<u>*10**6</u>			(%)			
ONOCON STM141			33. 36.			0. -2.	0. 12,	4.	0.	0.18 0.27	0.68 0.68	0. 0.15	1.4	1.00	202.3	0 8	2.2		
STM141			6.	50.		27.	-17. F	4.	1.	0.43	0.68	0.15	2.6 4.4	3.13	506.9	6	2.2		
STM141			6.	50. 50.	0.	27. 27.	-17. A		1.	0.43	0.68	0.15	4.4	2.84	460.0	9	2.1	0.94	
STMOSE			<u> </u>			-2.	9.	4.	1:	0.26	0.68	0.11	2.2	1.56	265.6	9	2.2		
STMOB			7.			26.	-19. F		i.	0.42	0.68	0.11	4.0	2.85	484.1	6	2.2		
STMOBE			7.			26.	-19. A		i.	0.37	0.68	0.11	3.7	2.65	451.5	8	2.1	0.95	
PEBSTN	1 28951	0.	4.	47.	0.	29.	-14.	4.	2.	0.48	0.68	0.22	5.9	4.21	613.4	5	2.2		
TISTMI	2895	0.	38.	9.	0.	-5.	24.	4.	3.	0.49	0,68	0.29	11.0	7.89	1055.5	0	3.0	1.37	131
TISTM	2895	١ ٥.	3.	44.	0.	31.	-12,	4.	3.	0.69	0.68	0.29	14.0	10.03	1342.7	0	3.1	1.41	130
TIHRS	28951	0.	37.	23.	0.	-3.	10.	4.	1.	0.36	0.68	0.10	9.1	6.51	1032.4	0	3.0	1.36	101
TIHRS			7.		0.	27.	-20	4.	1	0.53	0.68	0.10	11.7		1333.1	0	3.1	1.42	101
STIRL	2895		1.			32.	28.	4.	3.	0.25	0.68	0.25	2.7	1.92	211.2	3	2.2		
STIRL	28951		45.			-11,	28.	4.	3.	0.25	0.68	0.25	2.7	1.92	211.4	17	2.0		
STIRL	2895		1.			32.	-15.	4.	3.	0.42	0.68		5.0	3.55	390.2	12	1.9	0.84	
HEGT 85			0,	<u> </u>	<u>o.</u>	33	-23, A		<u>4.</u>	0.79	0.68	0.16		11.13	956.9	0	3.4	1.53	
HEGTES			0.			45.	-21. A		9.	0.89	0.68	0.20		16.70	849.9	0	4.1	1.85	
HEGT60			0. 0.	55. 57.		33. 34.	-22. A -22. A	4.	4. 4.	0.68 0.59	0.68 0.68	0.17 0.18		10.05 10.19	875.4	0	3.1	1.40	
HEGTO			5.	57. 56.	0.	34. 29.	-22. A	4.	4. 2.	0.39	0.68	0.10	8.6	6.16	843.8 741.1	0	2.6		
FCMCCL			1.	~		33.	- <u>23. A</u>	4.	4.	0.56	0.68	0.32	10.3	7.42	838.2	- 2	2.5	1.12	
FCSTCL			o.			33.	-10.	4.	4.	0.79	0.68	0.36	11.3	8.12	911.1	ō	2.8	1.24	
FCSTCL			0.			39.	-2.	4.	6.	0.74	0.68	0.41	12.9	9.25	838.9	ĭ	2.7	1.20	
IGGTS1			o.	47.	ŏ.	33.	-14.	4.	4.	0.73	0.68	0.29	11.4	8.18	827.7	ò	2.8	1.26	
IGGTS1			0.			34.	-13.	4.	4.	0.64	0.68	0.30	11.3	8.14	791.5	Ĭ	2.7	1.20	-
GTSOAF			46.			-12.	31.	4.	4.	0.24	0.68	0.29	3.6	2.57	270.9	12	2.0	0.89	
<b>GTACOS</b>	28951	٥.	41.	7.	0.	-8.	25.	4.	3.	0.21	0.68	0.26	2.7	1.97	240.1	19	1.9	0.86	133
GTAC12	28951	0.	43.	1.	0.	-10.	31.	4.	4.	0.23	0.68	0.33	3.0	2.18	242.5	19	1.8	0.83	138
GTACTE	2895	0.	44.	0.	0.	-10.	33,	4.	4.	0.30	0.68	0.34	3.4	2.47	268.3	14	1.9	0.87	150
GTAC16	28951	0.	45.	0.	0.	-11.	35,	4.	4.	0.24	0.68	0.35	3.4	2.42	254.4	17	1.8	0.83	139
GTWC16			46.	Ο.		-13.	33,	, 4,	4.	0.32	0.68	0.30	3.8	2.73	281.0	10	2.1	0.93	
GTWC16			50.	<u> </u>	0.	<u>-15.</u>	38.	4.	5.	0.25	0.68	0.31	3.8	2.72	261.5	12	2.0		
CC1626			46.	0.		-13.	33.	4.	4.	0.43	0.68	0.30	4.2	3.03	312.0	5	2.2		
CC1656			67.	0.		-25.	63.	4.	8.	0.40	0.68	0.36	5.3	3.82	270.8	5	2.2	1.01	
CC1622			45.	0.	0.	-12.	33.	4.	4.	0.42	0.68	0.32	4.0	2.84	297.9	7	2.2	0.97	
CC1622			61.	0.	0.	<u>-21.</u>	<u>57.</u>	4.	<u>7.</u>	0.37	0.68	0.37	4.7	3.39	263.7		2.1	0.95	-
CC1222			45. 61.	0, 0.	0. 0.	-12. -20	33.	4.	4.	0.42 0.37	0.68	0.32 0.37	3,8 4,5	2.74 3.23	288.6 253.8	7	2.1 2.1	0.96 0.94	
CC0855					0. 0.	-20.	56.	4.	7.	0.37	0.68	0.37	4.5 3.9	2.78	303.6	9	2.1	0.94	
000322			44. 51.	0. 0.	0. 0.	-10. -14.	33. 45.	4. 4.	4. 6.	0.41	0.68	0.34	3.9 4.1	2.75	274.3	10	2.1	0.90	
STIGIS			59.	0.	0.	-25.	33.	4.	4.	0.43	0.68	0.11	4.5	3.19	258.3	- 10	2.6	1.17	Mary Street
STIGIS			1538.	0.	0.	-1094.	1410.	4.	172.	3.19	0.68	0.17		36.63	113.3	ă		10.01	
STIGIC			56.	o.		-22.	33.	4.	4.	0.40	0.68	0.16	4.1	2.96	253.3	ŏ	2.4	1.10	
511010		J.	55.	٥.	٥.		00.	⊸.	٦.	0.70	5.00	5, .5	771	_, ~~	_00.0	_	_, ¬		

l													•						
ĺ		*# <b>C</b> OG'	ENERAT	JON CAS	<b>汇** **</b> M	IOCOGEN -	- COGEN**	POVER	COGEN	MBB	POWER	FESR	CAPITAL	NORM			LEVL	NORM WRTH	
ECS	PROCS	DISTIL R	ESIDL	COAL	DISTIL	L RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EGVL		CHRG	ENRG	
								MW	MW		RATIO		*10**6			(%)			
STIG	10 2895	1 0.	151.	. 0.	0.	88.	130.	4.		0.52	0.68	0.22	7.8	5.61	176.9		3.5	1.58 109	-
STIG	15 2895	1 0.	54.	. О.	0.	21.	33.	4.	4.	0.39	0.68	0.18	4.0	2.84	249.8	0	2.4	1.07 139	
STIG	15 2895	1 0.	95.	. 0.	Ö.	48.	77.	4.		0.39	0.68	0.23	5.4	3.88	194.6	0	2.7		
DEAD	/3 2895	1 0.	50.			17.	33.	4.	4.	0.43	0.68	0.24	5.7	4.07	385.5		2.5		
	V3 2895		86.	. 0,	0.		76.	4.		0.43	0.68	0.30	7.9	5.66	314.6		2.8		*******
1	PM 2895		43.				33.	4.		0.42	0.68	0.36	5.3	3.81	425.5	-	2.2		
	PM 2895		46.			· · ·	39.	4.	5.	0.35	0.68	0.38	5.4	3.89	401.6		2.1	0.95 139	
	A3 2895		0.				33.	4.		0.41	0.68	0.21	4.8	3.42	310.5		2.8		
	43 2895		0.				87.	4.		0.48	0.68	0.27	9.3	6.70	318,3		3.8	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	(America)
lt l	A3 2895		52.				33.	4.	4.	0.41	0.68	0.21	4.8	3.42	310.5		2.4		
	A3 2895		100.				87.	4.	-	0.48	0.68	0.27	9.3	6.70	318.3		3.1	1.42 120	
13	AD 2895		1.				30.	4.	4.	0.22	0.68	0.30	2.8	2.01	224.6		2.1	0.96 140	
	08 2895		o.				33.	4.		0.35	0.68	0.31	4.3	3.07	321.5		2.4		
łł.	08 2895		o.				47.	4.		0.28	0.68	0.35	4.7	3.37	290.6		2.4	1.08 140	
	12 2895		0.				33.	4.	4.	0.35	0.68	0.32	4.2	3.01	317.2		2.4		
ii	12 2895		o.				47.	4.	6.	0.23	0.68	0.36	4.6	3.30	288.9		2.4		
	16 2835		0.				33.	4.		0.35	0.68	0.32	4.4	3.12	329.6		2.4		
l F	16 2895		0.				44.	4.	5.	0.28	0.68	0.35	4.7	3.35	304.3		2.4	1.07 140	
	08 2895		o.				33.	4.		0.32	0.68	0.32	3.8	2.71	285.5	1	2.3		
	08 28951		0.				33. 37.	4.	-	0.32	0.68	0.32	3.8	2.69	267.5	-	2.2		
	12 2895		0.				33.	4.		0.33	0.68	0.31	4.0	2.85	299.2		2.3		
	12 2895		0.				40.	4.	-	0.33	0.68	0.33	4.0	2.90	276.8		2.3		
3	16 2895		0.				33.	4.	4.	0.33	0.68	0.33	4.1	2.92	309.5	5	2.3		
II.	16 2895		0.		-50.		40.	4.	<b>5</b> .	0.33	0.68	0.34	4.2	3.01	286.8	2	2.3		
	08 2895		0.				33.	4.	4.	0.37	0.68	0.26	4.5	3.19	311.1	0	2.6		
	08 28951		0.				57.	4.	7.	0.37	0.68	0.31	5.3	3.83	269.9		2.7		
	12 28951		0.				37. 33.	4.	4.	0.36	0.68	0.31	4.5	3.19	317.9	ŏ	2.5		
	12 2895		0.				58.	4.	7.	0.30	0.68	0.33	5.4	3.13	276.3		2.7		
	16 2895		0.				33,	4.		0.37	0.68	0.28	4.6	3.29	328.6	- 6	2.5		
I	16 2895		0.				55.	4.	7.	0.31	0.68	0.33	5.4	3.88	290.3	ő	2.6		
1	08 28951		a.				33.	4.	4.	0.34	0.68	0.35	4.0	2.86	274.1	Ö	2.5	1.13 143	
	08 28951		0.		•				4. 5.	0.34	0.68	0.23	4.2	3.00	246.2	ő	2.5		
	12 2895						<u>43.</u> 33.	4.	4.	0.35	0.68	0.28	4.1	2.97	298.3		2.5		~
	12 28951		0.					4.	4. 6.	0.33	0.68	0.32	4.6	3.26	264.5	Ö	2.5 2.5		
1			0.				48.	4.	-							_			
1	6 28951		0.				33.	4.	4.	0.35	0.68	0.28	4.3	3.10	309.8	0	2.5	1.12 145	
	6 28951		<u>o.</u>				48.	<u>4.</u>	6.	0.29	0.68	0.32	4.7	3.40	277.0		2.5		
	OS 28951		0.				33.	4.	4.	0.65	0.68	0.21	4.0	2.90	264.1	0	2.9		
1	OS 28951		٥.				108.	4.	13.	1.47	0.68	0.28	8.6	6.15	249.0	0	4.9		
	OS 28951		0.				33.	4.	4.	0.62	0.68	0.28	4.2	2.98	298.3	0	2.7		
FCMC	OS 28951	<u>1 86.</u>	0.	<u> </u>	-86.	<u>. 49.</u>	<u>85.</u>	4.	10.	1.12	0.68	0.36	7.3	5.21	289.0	0	3.7	1.69 141	
1																			7

		**C0G	ENERAT	ION CASI	E** **M(	COGEN -	· COGEN**	POWER	COGEN	M80	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRTH
ECS	PROCS	DISTIL		COAL.		RESIDL		REQD MW	POWER MW		/HEAT		COST *10**6	COST		(太)	CHRG	ENRG	
	29111	,	34.	556.	0.	0.	0. F		0.	1.47	0.13	0.	23.8	1.00	183.9	0	16.9	1.00	
	29111		497.	Ο.	Ο.	-463.	<b>5</b> 56.	14.	14.	1.05	0.13	0.16	15.1	0.64	103.7		18.5	1.09	
	29111		512.	О.	o.	-469.	586,	14.	18.	0.88	0.13	0.19	15.9	0.67	106.1		18.2		-
	29111		<u> 0.</u>	497.	0.	34.	59. F	<u>14.</u>	14.	2.21	0.13	0.16	33.4	1.40	229.2	<u> 17</u>	<u> 15.0</u>		3 139
	29111		o.	512.	٥.	43.	74. F	14.	18.	1.63	0.13	0.19	29.8	1.25	198.9	32	13.8		2 132
	29111	o.	o.	497.	ο.	34.	59. A	14.	14.	2.05	0.13	0.16	26.3	1.10	180.2	59	14.1		3 143
	29111	o.	0.	512.	o.	43.	74. A	14.	18.	1.66	9.13	0.19	21.1	C:89	140.8		12.7		5 133
	29111		494.	19.	<u>0.</u>	<u>-459,</u>	537.	14.	12.	0.83	0.13	0.13	<u> 14.1</u>	0.59	98.6		18.7		152
	29111	o.	6.	507.	0.	29.	49. F	14.	12.	1.72	0.13	0.13	27.5	1.16	192.4	38	14.5		
	29111	o.	6.	507.	o.	29.	49. A	14.	12.	1.60	0.13	0.13	19.9	0.84	139.2		13.6		
	29111	0.	0.	500.	0.	34.	56.	14.	14.	2.64	0.13	0.15	35.9	1.51	244.7	11	15.8		
	29111	<u> </u>	0.	573.	<u>o</u> .	<u>77.</u>	126.	14.	31.	2.89	0.13	0.26	35.9	1.51	213.9	19	13.9		
	29111	0.	499.	0.	0.,	-465.	<b>5</b> 56.	14.	14.	1.80	0.13	0.15	44.4	1.87	303.6	0	22.5		
	29111		619.	0.	O.	-513.	794.	14.	43.	2.77	0.13	0.31	89.1	3.75	490.9	0	26.3		
	29111	Ο.	ο.	.499.	Ο.	34.	57.	14.	14.	3.03	0.13	0.15	65.6	2.76	448.7	0	19.4	1.14	
	29111	<u> </u>	0.	619.	0.	106.	175.	14.	43,	3,99	0.13	0.31	112.8	4.75	622.1	<u> </u>	21.8		
	29111		<b>5</b> 39.	Ο.	Ο.	-504.	<b>556</b> .	14.	14.	2.07	0.13	0.09	58.8	2.47	372.5	0	25.4	1.50	-
	29111	0.	619.	Ο.	Ο.	-556.	651.	14.	26.	2.52	0.13	0.13	85.2	3.58	469.9	Ο.	28.9	1.71	
	29111	Ο.	Ο.	539.	ο.	34.	17.	14.	14.	3.39	0.13	0.09	82.4	3.46	521.9	G	22,3	1.32	
	29111		0.	619.	0.	63.	32	14.	26.	3.77		0.13	109.0	4.58	601.1	0	24.7		
STIRL	29111	528.	0.	0.	-528.	34.	556.	14.	14.	1.20	0.13	0.11	22.1	0.93		149	24.1	1.43	
STIRL	29111	744.	0.	Ο.	-744.	120.	843.	14.	49.	1.49	0.13	0.23	39.3	1.65	180.1	0	27.6	1.63	
STIRL	29111	Ο.	528.	0.	Ο.	-493.	556.	14.	14.	1.20	0.13	0.11	22. t	0.93	142.8	-77	20.4	1.20	15
STIRL	29111	0.	744.	_0.	0.	-624.	843.	14.	49.	1.49	0.13	0.23	39.3	1.65	180.3	0	22.3		
TIRL	29111	0.	0.	528.	0.	34.	28.	14.	14.	2.39	0.13	0.11	41.3	1.74	267.0	7	16.5	0.98	
TIRL	29111	٥.	ο.	744.	Ο.	120.	99.	14.	49.	2.99	0.13	0.23	69.4	2.92	318.3	5	17.0	1.00	10
IEGT60	29111	0.	٥.	588.	Ο.	34.	-32. A	14.	14.	2.61	0.13	0.00	52.3	2.20	303.5	0	19.1	1.13	3 11
IEGT60	29111	0.	Ο,	2144.	0.	399.	-367. A	14.	163.	7.44	0.13	0.01	182.0	7.65	289.6	0	36.7	2.17	7 7
IEGT00	29111	0.	0.	564.	0.	34.	-7. A	14.	14.	2.55	0.13	0.05	49.6	2.09	300.4	0	18.3	1.08	3 12
IEGT00	29111	Ο.	٥.	894.	Ο.	102.	-22. A	14.	41.	3.10	0.13	0.09	72.0	3.03	305.5	0	20.2	1.19	9
CMCCL	29111	Ο.	0.	511.	О.	34.	45.	14.	14.	2.72	0.13	0.13	48.4	2.04	323.3	3	17.5	1.04	1 13
CMCCL	29111	0.	0.	797.	0.	174.	227.	14.	71.	4.75	0.13	0.34	83.8	3.52	358.9	4	17.2	1.02	2 10
	29111	0.	0.	508.	0.	34.	48.	14.	14.	2.72	0.13	0.14	47.4	1.99	318.3	3	17.4	1.03	3 13
CSTCL	29111	Ο.	o.	915.	0.	243.	<b>3</b> 39.	14.	99.	5.57	0.13	0.39	97.4	4.10	363.3	6	16.1	0.95	5 10
GGTST	29111	Ο.	0.	527.	٥.	34.	30.	14.	14.	2.46	0.13	0.11	46.5	1.95	301.2	3	17.3	1.02	2 12
	29111	Ο.	o.	852.	Ο.	165.	143.	14.	67.	2.71	0.13	0.27	74.9	3.15	299.8	6	16.0	0.94	1 10
	29111	Ō.	530.	0.	0.	-496.	<b>5</b> 56.	14.	14.	1.13	0.13	0.10	21.9	0.92		-71	20.3	1.20	15
	29111	Ö.	963.	o.	o.	-762.	1113.	14.	82.	1.32	0.13	0.27	34.3	1.44	121.7	0	21.9	1.29	12
	29111	o.	511.	Ö.	o.	-476.	556.	14.	14.	1.03	0.13	0.14	17.7	0.74	118.3	-24	19.2	1.13	15
	29111	0.	727.	ō.	o.	-586.	913.	14.	58.	1.01	0.13	0.31	23.5	0.99	110.3		17.8	1.05	13
	29111	Ō.	512.	o.	O.	-478.	556.	14.	14.	1.10	0.13	0,13	20.9	0.88		-44	19.6	1.16	15
	29111	o.	810.	ο.	õ.	-632.	1036.	14.	72.	1.14	0.13	0.33	28.2	1.19	118.9	Ó	18.1	1.07	
<b></b>		<b>-</b> .		٠.															

							080CN##		OCCEN	e e M	POWER	EESB	CAPITAL	NORM	\$/KW	RAI	LEVL	NORM W	RTL
							COGEN**			oem	/HEAT	reak	COST	COST	EQVL	KO1		ENRG	KIF
ECS	PROCS	DISTIL	RESIDL	CGAL	DISTIL	RESIDL	COAL	REGD MW	POWER MW		RATIO	•	*10**6	Ç031	EdiAF	(%)	CHINO	ENING	
STAC1	29111	0.	888.	0.	0.	-682.	1132.	14.	84.	1.27	0.13	0.34	32.8	1.38	126.1	0	18.9	1.11	
GTWC1	5 29111	0.	520.	0.	Ο.	-486.	556.	14.	14.	1.12	0.13	0.12	21.5			-58	20.0	1.18	
GTWC1	5 29111	0.	925.	0.	0.	-715.	1142.	14.	85.	1.23	0.13	0.32	30,8	1.30	113.7	0	19.5	1.15	
CC162	5 29111	0.	522.	0.	Ο.	-488.	556.	14.	14.	1.21	0.13	0.12	21.6	0.91	141.2	-76		1.19	
	29111		1168.	0.	0.	-861.	1472.	14.	126.	1.69	0.13	0.34	41.8	1.76	122.0	0	20.9	1.23	118
	2 29111		519.	0.	0.	-484.	556.	14.	14.	1.20	0.13	0.12	21.4	0.90	140.5	-67	20.0	1.18	153
	2 29111		1066.	o.	o.	-790.	1367.	14.	113.	1.60	0.13	0.35	39.9	1.68	127.6	0	19.9	1.18	120
	2 29111		518.	o.	o.	-484.	556.	14.	14.	1.20	0.13	0.12	21.0	0.88	138.3	-58	20.0	1.18	153
	2 29111		1057.	0.	0.	-782.	1360.	14.	112.	1.57	0.13	0.35	37.7	1.59	121.8	O	19.5	1.15	12
	2 29111		513.		o.	-479.	556.	14.	14.	1.20	0.13	0.13	21.1	0.89	140.1	-56	19.8	1.17	154
	2 29111		893.		o.	-677.	1165.	14.	88.	1.37	0.13	0.35	31.0		118.5	0	18.2	1.07	
	1 29111		525.	o.	0.	-491.	556.	14.	14.	1.37	0.13	0.11	27.6		179.2	Ö	21.0	1.24	
	1 29111		872.	0.	0.	-696.	1032.	14.	72.	2.26	0.13	0.28	65.5	2.76	256.4	Ŏ	25.3	1.49	
	29111		0,2.		-517.	34.	556.	14.	14.	1.09	0.13	0.12	20.2	0.85	133.5		23.4	1.38	
			0.		-826.	173.	1022.	14.	71.	1.06	0.13	0.31	25.0	1.05	103.2	ò	24.5	1.45	
	0 29111 3 29111				-530.	34.	556.	14.	14.	1.14	0.13	0.10	22.3	0.94	143.9	_	24.2	1.43	
			<u>0.</u> 0.			338.	1571.	14.	138.	1.87	0.13	0.31	54.2	2.28	140.7	0	34.0	2.01	
	8 29111						556.	14.		1.14	0.13	0.11	22.4	0.94	144.8	_	24.1	1.42	
	2 29111		¢.		-527.	34. 318.	1505.	14.	14. 130.	1.72	0.13	0.32	48.7	2.05	134.4	0	31.7	1.87	
	2 29111		Ú.						130.	1.15	0.13	0.32	22.8	0.96	148.2		24.1	1.42	
	6 29111		<u>o.</u>		-526.	34.	556.	14.	118.	1.69	0.13	0.32	48.0	2.02	142.2	0	30.7	1.82	
	5 29111		0.	-		289.	1408.	14.		1.12	0.13	0.32	21.7	0.91	140.	-	23.9	1.41	
	3 29111		0.		-525.	34.	556.	14.	14.				36.9		125.9	0	28.2	1.67	
	3 29111		0.		-999.	230.	1211.	14.	94.	1.39	0.13	0.31				-		1.41	
	2 29111		0.	<u> </u>	-525.	34.	<u>556.</u>	14.	14.	1.13	0.13	0.11	22.0		143.0 130.1		23.9 28.8	1.70	
	2 29111		0.			247.	1267.	14.	101.	1.47	0.13	0.31	39.7	1.67		· 0			
	5 29111		0.		-523.	34.	556.	14.	14.	1.14	0.13	0.11	22.3		145.4		23.9	1.41	
	5 29111		0.		-1050.	254.	1292.	14.	104.	1.54	0.13	0.32	42.6		138.5	0	28.9	1.71	
	<u> 29111</u>		0.		-539.	34.	<u>556.</u>	14.	14.	1.14	0.13	0.09	22.4	0.94	141.7		24.6	1.45	
GTRNO	8 29111		0.	о.	-1564.	395.	1762.	14.	161.	1.98	0.13	0.27	57.2	2.41	124.9	0	39.4	2.33	
	2 29111		0.	ο.	-533.	34.	556.	14.	14.	1.14	0.13	0.10	22.4	0.94	143.1		24.3	1.44	
GTRW1:	2 29111	1484.	0.	0.		388.	1741.	14.	158.	1.79	0.13	0.30	49.9	2.10	114.7	C	35.8	2.12	
STRWI	5 29111	532.	0.		-532 <i>.</i>	34	556.	14.	14.	1,15	0.13	0.10	22.7	0.95	145.8		24.3	1.44	
GTRW1	6 29111	1360.	0.	0.		349.	1609.	14.	142.	1.73	0.13	0.31	48.4	2.03	121.4	0	34.0	2.01	
GTR30	8 29111	544.	0.	0.	<del>-</del> 544.	34.	<b>556</b> .	14.	14.	1.13	0.13	0.08	21.8	0.92	136.7		24.7	1.46	
GTR30	8 29111	1316.	0.	о.	-1316.	293.	1422.	14.	120.	1.49	0.13	0.23	39.0	1.64	101.1	O	35.6	2.11	
	2 29111		0.	0.	-529,	34.	556.	14.	14.	1.13	0.13	0.10	21.8	0.92	141.0	136	24.1	1.42	
	2 29111		0.	0.	-1180.	290.	1412.	14.	118.	1.50	0.13	0.31	40.3	1.69	116.5	0	30.8	1.82	
	6 29111		o.		-529.	34.	556.	14.	14.	1.14	0.13	0.10	22.2	0.94	143.4	160	24.1	1.43	
	6 29111		o.		-1169.	285.	1395.	14.	116.	1.53	0.13	0.30	41.4	1.74	120.7	0	30,9	1.83	12
	5 29111		o.		-542.	34.	556.	14.	14.	2.45	0.13	0.08	24.7	1.04	155.8	0	26.2	1.55	15
	3 29111		0.		-2206.	602.	2458.	14.	246.	27.73	0.13	0.28	141.3	5.94	218.6	0	81.9	4.84	18
	5 29111		0.			34.	556.	14.	14.	2.35	0.13	0.11	25.2	1.06	164.0	O	25.5	1.51	15
	3 29111 3 29111		o.			477.	2037.	14.	194.	20.74	0.13	0.36	121.2	5.10	257.0	ŏ		3.54	
CHUD	2 63111	1009.	υ.	· · · · · ·	1003.	4///	2007,				5	J. <b>J.</b>		3. <b></b>		_			

		**C0	GENERAT	ION CASI	E** **N	OCOGEN -	<ul> <li>COGEN</li> </ul>	**	POVER	COGEN	osm (	POVER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM WRT
ECS	PROCS	DISTIL				RESIDL			REOD	POWER		/HEAT		COST	COST	EQVL		CHRO	ENRG
									MW	MW		RATIO		*10**6			<b>(X)</b>		
Nace	N 29112	2 0.	128.	1995.	0.	0.	0.	F	52.	٥.	3.85	0.13	0.	77.5	1.00	168.7	0	58.8	1.00 8
STM14	1 29112	2 0.	1777.	0.	Ο.	-1649.	1995.		52.	52.	2.08	0.13	0.16	44,9	0.58	86.2	-14	63.6	1,08 16
STM14	1 29112	0.	1811.	0.	0.	-1663.	2064.		52.	60.	1.80	0.13	0.18	44.0	0.57	83.0	-12	62.6	1.06 15
STM14	1 29112	0.	0.	1777.	0.	128.	218.	F	52.	52.	4.99	0.13	0.16	90.4	1.17	173.6	48	47.6	0.81 14
STM14	29112	0.	0.	1811.	0.	148.	253.	F	52,	60.	4.69	0.13	0.18	93.8	1.21	176.7	43	46.6	0.79 13
TM14	1 29112	. 0.	Ο.	1777.	0.	128.	218.	Α	52.	52.	4.87	0.13	9.16	72.0	0.93	138.4	999	45.5	0.77 14
	1 29112		٥.	1811.	0.	148.	253.	Α	52.	60.	4.50	0.13	0.18	69. <b>6</b>	0.90	131.2	999	, 43.8	0.75 13
	3 29112		1758.	101.	<u> </u>	-1630.	1894.		52.	40.	1.69	0.13	0.12	39.8	0.51	78.7	-15	65.2	1.11 15
	8 29112		30.	1829.	0.	97,	167.	F	52.	40.	4.36	0.13	0,12	87.7	1.13	173.3	48	50.0	0.85 12
80MT	3 29112	. 0.	30.	1829.	0.	97.	167.	Α	52.	40.	4.20	0.13	0.12	61.3	0.79	121.0	999	46.9	0.80 13
	4 29112		ο.	1788.	O.	128.	207.		52.	52.	6.57	0.13	0.16	91.5	1.18	174.7	38	49.5	0.84 14
	1 29112		0.	2030.	0.	268.	436.		52.	109.	7.86	0.13	0.26	84.8	1.09	142.5	103	43.0	0.73 13
	7 29112		1783.	0.	0.	-1656.	1995.		52.	52.	4.21	0.13	0.16	126.0	1.63	241.1	0	74.7	1.27 14
TISTM'	r 29112	0.	2190.	٥.	0.	-1821.	2803.		52.	150.	6.71	0.13	0.31	234.2	3.02	364.9	Õ	81.9	1.39 13
TI STM	T 29112	0.	0.	1783.	0.	128.	212.		52.	52.	7.18	0.13	0.16	177.6	2.29	339.8	4	59.4	1.01 13
ISTM	T 29112	0.	0.	2190.	ο.	369.	613.		52.	150.	9.91	0.13	0.31	294.5	3.80	458.9	3	62.4	1.06 12
THRS	3 29112	0.	1930.	0.	0.	-1803.	1995.		52.	52.	4.95	0.13	0.09	160.8	2.07	284.4	0	83.4	1.42 13
THRS	3 29112	0.	2200.	ø.	0.	-1977.	2313.		52.	91.	6.28	0.13	0.13	226.2	2.92	351.0	0	92.4	1.57 12
HRS	3 29112	. o.	0.	1930.	0.	128.	65.		52.	52.	8.09	0.13	0.09	213.4		377.4	Õ	66.9	1.14 12
THRS	3 29112	· 0.	0.	2200.	0.	222.	113.		52.	91.	9.61	0.13	0.13	286.8		444.9	Ŏ	73.5	1.25 11
TIRL	29112	1890.	0.	0.	-1890.	128.	1995.		52.	52.	2.92	0.13	0.11	76.7	0.99	138.6		84.8	1.44 15
TIRL	29112	2644.	ο.	o.	-2644.	427,	2997.		52.	174.	4.15	0.13	0.23	133.8		172.7	0	96.9	1.65 13
TIRL	29112	0.	1890.	0.	0.	-1762.	1995.		52.	52.	2.92	0.13	0.11	76.8		138.7	-	71.3	1.21 14
TIRL	29112	0.	2644.	Ο.	0.	-2218.	2997.		52.	174.	4.15	0.13	0.23	134.0		173.0	0	77.9	1.32 12
TIRL	29112	0.	0.	1890.	0.	128.	105.		52.	52.	6.06	0.13	0.11	130.0		234.8	10	54.8	0.93 13
TIRL	29112	0.	Ö.	2644.	0.	427.	353.		52.	174.	8.92	0.13	0.23	239.3		308.7	5	58.4	0.99 10
EGT6	29112	0.	o.	2112.	o.	128.	-117.	A	52.	52.	6.64	0.13	0.00	147.7		238.7	ī	61.7	1.05 11
	29112		o.	7623.	ō.	1419.		Ä	52.	579.	22.61	0.13	0.01	545.7		244.3	ò	116.1	1.98 7
	29112		o.	2023.	0.	128.	-28.		52.	52.	6.25	0.13	0.05	130.7		220.4	6	57.8	0.98 12
	29112		ŏ.	2857.	Õ.	361.	-79.		52.	147.	8.12	0.13	0.09	176.8		211.2	3	60.8	1.03 10
	29112		o.	1829.	õ.	128.	167.	••	52.	52.	6.95	0.13	0.14	131.1		244.7	9	55.3	0.94 13
	29112		Ŏ.	2832.	o.	619.	808.		52.	252.	13.65	0.13	0.34	212.3		255.8	10	49.1	0.83 10
	29112		o.	1817.	<u> </u>	128.	178.		52.	52.	6.79	0.13	0.14	128.9		242.0	10	54.7	0.93 13
	29112		ő.	3238.	õ.	855.	1193.		52.	349.	15.82	0.13	0.39	245.9		259.1	11	43.0	0.73 10
	29112		o.	1886.	o.	128.	109.		52.	52.	5.43	0.13	0.11	121.7		220.3	12	53.8	0.92 13
	29112		o.	3015.	٥.	581.	497.		52.	237.	6.38	0.13	0.26	206.4		233.6	11	47.7	
	29112		1900.	0.	0.	-1772.	1995.		52.	52.	2.36	0.13	0.11	58.3		104.7		69.1	1.17 15
	29112		3422.	ö.	o.	-2709.	3956.		52.	291,	3.50	0.13	0.27	110.6		110.3	0	75.9	1.29 12
	3 29112		1827.	Ö.	0.	-1699.	1995.		52.	52.	2.28	0.13	0.14	55.1	_	103.0	-	66.3	1,13 16
	3 29112		2584.	0.		-2082.	3247.		52. 52.	204.	2.57	0.13	0.31	76.3		100.8		62.1	1.06 13
	2 29112		1833.	0.		-1706.	1995.		52. 52.	52.	2.37	0.13	0.31	56.6			<del>-25</del>	66.7	1.13 15
	29112		2879.	0. 0.		-2248.						0.13	0.14	92.2			-25		
							3681.		52.	257.	2,99					109.3	-	62.9	1.07 13
175016	29112	0,	1845.	ο.	U.	-1717.	1995.		52.	52.	2.34	0.13	0.13	58.1	0.75	107.4	-21	67.3	1.14 15

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.2
SURMARY OF FUEL SAVED BY TYPE & ECONOMICS

DATE 06/07/75 18SE-PEG-ADV-DES-ENGR

86

PAGE

			- 1							1																					-	_					1			7		-			-
	WRIH			22	126	157	119	157	120	2 2	159	129	148	77	2 F	160	128	19	28	9 9	2 0	32	62	30	19	9 6	, E	50	3	9	9 6	2 6	61	ල ස	- C	20	81	27	0						
	NORM I		- 1.		1.14										.46		N.			af .					.39	_	27	3	111	=	2 4	5	40	~ ·	 		5	.52	۳ ۵						
				ן ני	. 17	2	თ <b>(</b>	ָת מי	ח נס	. 6	0	О	0	ے د م	? <del></del>		``		- ,	٦ ٠			-	_	<b></b> .						א הא	- N		- ·		8	4	م	n n						
	LEVL	SH2	_			- 1		•					- 1		86.1		ľ	-		- [*			ı	-		-	-	83,	124,	83		125	82.	107	107	6	265.	•	Ŋ						
	<b>8</b> 0		5	-27	0	-3	0 0		-28 C	0	-26	0	0	و 1	0	-65	0	် ရှိ	ָ ֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֩֞֞֞֞֞֝֓֡֓֓֞֝	200	-59	0	-61	0	9 0	7,0	0	92-	0	9	- 29 - 29	0	53	o ş	5 C	. 65	<b>(3)</b>	0	>						
	#X/\$	EavL	c	9	0	is.	4 4	; <	4 0	S	e,	n (	N	? 5	98.0	S	0	٦ C	٠,	1 4	1	~	N	φ.		- 10	<u>-</u>	ģ	n	m		o.	က	n a	4.6	9	æ 1	44.5 51.5	,						
	NORM	OST	99	74	25	74	75	25		1			- 1		60.	ı				1			1			-	١.	_	-	-	,					-	~ ·	, ,	u						
	AL	<b>.</b>	-	· 0	-	o).	- c	; <b>-</b>	- o		ප් .	<u>.</u>	- -	Ö	-	Ö	Ni (	٠ د		2	0	=	0	- 6	> -	. 0	2.0	0	0 0	0,0	0.7	1.6	0.7	- C		0.	<u>ن</u> (	- K	•						
	CAPITA	COST	2 :	57	97.2	57.3	57.9	32.0	56.8	23.5	56.1	94.0	25.0	54.4	84.3	59.8	9.5	, 100 100 100 100 100 100 100 100 100 100	61.4	53.5	58.2	9.3	59.0	, c	N 0	52.5	59.3	32,5		20.0	0	0.0	7.0	, 00	3.3	رايم	<u>.</u>	, r	•						
	FESR (	•					-		•	-	4 n		1		31	- 1							ľ		-		-	,	_		08	_	-	. 87	=	<b>~</b>	2 - 2 -	- 10	3						
		-, C	0	0	0 (		່ດ	O	0	o (	o d	j c	o	o	o (	o)	j c	0	0	0	0	0	2	, c	0	•		•	•	• 1	0		+1	-	0,3	9	N -	- 6							
	POWER	PATI	ci.			.1		٠.	0.13					_	0.13	- I •			-	-	-	<b>,</b> ,			. 13		-				3.13				. 13										
	ORM		49	.32	<u>{</u>	1 6	4	18	43	સ્ ક	7 6	3 6	63	26	80	5	- 6	8	43	87	32	2 5	20	, Q	8	46	18	n -	- 6	9	9	<u>`</u>	<u> </u>	Ó	CJ :	- 0			- 1						
			8	N	e c	Ų P	Ń	4	2	4.0	vi e	6	9	તં	તાં ત	الا	, d	4	તં	4	તં (	ຕ່ເ	ie	ď	4	2	4 (	v s	. 0	4	2	4 (	٥	o,	4	100		72.3							
	COGEN	3	299.	52.	304.	442	52.	397.	52.	394.	3.0	25.0	256.	52.	251.	700	200	461.	52.	418.	525.	333. 533.	353	52.	369.	52.	572.	מאלים מאלים		506.	52.	42 72 73 75 75	420.	52.	413.	36.	52.	591.							
	POWER		1						- 1						50 10 10 10 10 10 10 10 10 10 10 10 10 10	- 1			- 1														i			i									
į į																												-					1"	•/	., .	, L.	, <b>K</b> )	K)							
	COGEN** COAL		1023.	995.	995.	200.	995.	828.	995.	963	115,	995.	668.	995.	1995	586	995	351.	995.	004.	999.	995	305.	995.	594.	995.	264.				395.	200	20.	95.		38	95.	40.							
*e	 1	- 1				١.	•		.[							Ι.											- ۵	- (9	÷	5	6 K	χ <u>-</u>	25	u,	24 -	111	ന	a							<u> </u>
GENERATION CASE IN BTUX10**6	**************************************		-242	-1/30	-174	-3049	-1730	-2800	-1727	-1707	-2398	-1752	-2473	128	128	1200	128	1130	128	1026	A17	128	877	128.	904	227	1207	1380	128	1240	1028	128	1031.	128.	128.	2142	123.	1694.							
N BTU			o 0		0	0	o 0					e.	ن و	651.	. 66	77.	37.	91.	70	. ac		73.	.86	73.	33.	. 0	2 =	73.	24.	33.	20 42		74.	<u>4</u> i	2 5		_:	_:							
SE 1	**************************************													1001-	-1899	-4677	-1837	-4391	7901	-18091	-3552	-1873	-3698	-1873	-3731	- 5550	-1911	-5273	-1904	-4833	-1949	-1893	-4194	-1894	192	-784	18	-572							
JEL U	CGAL		0 0	9 0	0	0	0 0	<b>o</b> c	9	0	0	0	0 0	o c	0	o	o ·	o 0		o c	ó	0	o	o ·	o 0		i o	ö	Ö	o o		ö	0		i d	o.	0	o							
FL	14 10			37.	0.	Ž.		25	. 80		. 69	0	o c		0	0.	<b>.</b>				0	0	o .					ď		o;		0	. 0		: -:		<u>.</u> .	•							
**COGENEDATION CASE	RESI		3158	3287	1670	4134	3773	1000	3738	1835	3159	∞ •	310								_							_			, 0			<b>&gt;</b> C	0	0	0 (	0							
C	PROCS DISTIL RESIDE	(	<b>o</b> c	ö	o	<u>.</u>		j c	jo	o.	ö	ö	95. U	2937.	1899.	4677.	1887.	1882	4091	1878.	3552.	1878.	598.	18/3.	931	5559	1911.	5273.	1904.	633.	676.	693.	4194.	4157	942.	41.	881.								
	DI S	c	v N	Ň	2	N C	u a	1 (1)	10	N	<b>~</b> (	NC	- 	. (J	01	۸۱ ،	N C	u 0			Δ.								- 1	۷ ←	- 4	-		- 4		~	- 9	()				-			
	PROCE	i c	2911	G	2911	282	2911	2911	2911	2911	2911	1162	291	2911	2911	2911	200	29112	2911:	20112	29112	29112	20112	20110	29112	29112	29112	91	518				29112		•	91	5	_							
		010	စ		929	0000						- 1			ı											ļ			1			[					N C	o O							
	ECS	GTACI	GTW	GTW	် ပြ	3 6	CC1622	င္ပင္	CC1222	000	CCUBSS	DENTEN	GTSOAD	GTSCAD	GTRAOB	GIKAOB	STE	GTRA16	GIRA	GTR208	GTR208	GTR212	G T R	GTROSS	GTRIVOS	GTRWOB	<b>GTRW12</b>	GTRW12	GTELLIC	GTR308	GTR308	GTR31	GTRAIR	GTR316	FCPADS	FCPADS		5							
				-				-0417								-				•						<u></u>			- 20	) <del>-</del> g	811	a.	-W3					NIE	 	3 9 ¥	<u>u 1</u>	KEF	EAA	NO	н-

3

		**COG	ENERAT	IOM CASI	E** **N	CCOGEN -	COGEN*	* POW	R COGEN	M&O	POWER	FESR	CAPITAL	NORM	\$/KW ROI		NORM WRTH
ECS	PROCS	DISTIL R	ESIDL	COAL	DISTIL	RESIDL	COAL	REQ MW	MW		/HEAT		COST *10**6	COST	EQVL (%		ENRG
ONOCGN	29113	0.	309.	4613.	0.	0.	0.			7.69	0.14	Q.	167.8	1.00	160.0 0	134.5	
STM141	29113	0.	4085,	0.	0.	-3776.	4613.	12		3.75	0.14	0.17	100.3	0.60	83.8 -14	144.8	
STM141	29113	٥.	4165.	0.	0.	-3807.	4777.	12		3.30	0.14	0.19	96.1	0.57	78.7 -12		
	29113	0.	0.	4085.	0.	309.	529.			9.65	0.14	0.17	202.1	1.20	168.8 45	107.3	
	2911 <b>3</b>	Ο.	0.	4165.	Ο.	358.		F 12		9.50	0.14	0.19	206.5	1.23	169.2 44	104.9	
	29113	0.	o.	4085.	0.	309.		A 12		9.51	0.14	0.17	150.5	0.90	125,7 999	101.4	
	29113	Ο.	0.	4165.	0.	358.	612.			9.10	0.14	0.19	145.2	0.87	119.0 999	97.8	
	29113	0.	4041.	229.	<u>o.</u>	-3732.	4385.	12		3.00	0.14	0.13	84.5	0.50	72.6 -15	148.1	THE R. P. LEWIS CO., LANSING, MICH. 497-1409.
	29113	o.	68.	4201.	0.	241.	412.			8.49	0.14	0.13	182.0	1.08	156.3 82	111.1	
	29113	0.	58.	4201.	0.	241.	412.			8.70	0.14	0.13	137.8	0.82	118.4 999	106,5	
	29113	o.	0.	4109.	0.	309.	505.	12		12.85	0.14	0.17	174.4	1.04	144.9 179	107.7	
	29113	<u>o.</u>	0.	4665.	0.	633.	1034.	12		17.06	0.14	0.26	191.1	1.14	139.8 78	<u>97.3</u>	
	29113	٥.	4099.	0.	0.	-3790.	4613.	12		7.71	0,14	0.17	251.8	1.50	209.6 0	165.6	
	29113	0.	5037.	0.	0.	-4172.	6477.	12		15.39	0.14	0.31	566.8	3.38	383.9 0	191.3	
	29113	ø.	٥.	4099.	0.	309.	514.	12		13.55	0.14	0.17	352.7	2.10	293.6 8	127.6	
	29113	<u> </u>	<u> </u>	5037.	0.	866.	1440.	12		22.61	0.14	0.31	715.0	4.26	484.3 3	147.2	
	29113	0.	4456.	0.	0.	-6147.	4613.	12		10.45	0.14	0.09	368.9	2.20	282.5 0		
	29113	Ο.	5020.	0.	0.	-4512.	5278.	12		14.47	0.14	0.13	545.4	3.25	370.8 0		
	29113	Ο.	ο.	4456.	٥.	309.	157.	12		17.30	0.14	0.09	496.2	2.96	380.0		
	29113	0.	0.	5020.	0.	508.	259.	12		21.96	0.14	0.13	693.2	4.13	471.3 0		
STIRL	29113		Ο.	o.	-4358.	309.	4613.	12		5.52	0.14	0.11	167.0	1.00	130.8 999	193.4	
STIRL	29113		ο.	ą.	-6035.	974.	6840.	12		8.19	0.14	0.23	284.5	1.70	160.9 0	219.1	
STIRL	29113	Ο,	4358.	o.	o.	-4049.	4613.	12		5.52	0.14	0.11	167.2	1.00	130.9 999		
STIRL	29113	0.	6035.	<u>o.</u>	<u> </u>	-5061.	6840.	12		8.20	0.14	0.23	284.9	1.70	161.1 0	175.7	
STIRL	29113	٥.	0.	4358.	0.	309.	255.	12		12.33	0.14	0.11	295.2	1.76	231.2 11	124.1 130.8	
STIRL	29113	٥.	0.	6035.	Û.	974.	805.	12		18.69	0.14	0.23	524.2	3.12	296.4 6 199.8 5	134.4	
	29113	o.	0.	4897.	0.	309.	-264.			12.73	0.14	0.01	286.7	1.71	199.8 <b>5</b> 251.0 0	270.1	
	29113	0.	<u>o.</u>	17396.	<u> </u>		-2976.			51.49	0.14		1279.6	7.63			
	29113	0.	0.	4681.	0,	309.	-67.			12.09	0.14	0.05	256.3	1.53	185.8 11	126.4 137.4	
	29113	0.	0.	6520.	0.	825.	-180.			17.45	0.14	0.09	387.4	2.31	202.8 4		
	29113	0.	0.	4210.	0.	309.	403.	12		14.12	0.14	9.14	272.8 367.0	2.19	193.8 16	96.7	
	29113	<u> </u>	<u>0.</u>	6462.	0.	<u>·1412.</u>	1844.	12		27.43	0.14	0.34	269.6	1.61	220.1 13	120.9	
	29113	0.	0.	4181.	0.	309.	432.	12		13.65	0.14	0.15	430.9	2.57	197.5 17	79.4	
	29113	0.	0.	7445.	0.	1983.	2772.	12		32.01	0.14	0.39	430.9 255.8	1.52	200.9 15	119.0	
	29113		0.	4346.	0.	309.	268.	12		10.27	0.14	0.12		2.50	206.4 13	700.8	
	29113	0.	0.	6936.	<u> </u>	1353.	1172.	12		12.06	0.14	0.27	419.5 129.3	0.77	100.7 -34	157.7	
	29113	0.	4382.	0.	0.	-4073.	4613.	12		4.44	0.14	0.11		1.36	99.9 0	170.9	
	29113	0.	7809.	o.	o.	-6182.	9028.	12		6.70	0.14	0.27	228.6		93.6 -21	150.3	
	29113	٥.	4205.	٥.	0.	-3896.	4613.	12		4.08	0.14	0.15	115.4	0.69			
	29113	0.	<u>5896.</u>	<u> </u>	0.		7410.	12		4,71	0.14	0.31	153.0	0,91	88.6 -21	139.9 151.2	
	29113	٥.	4221.	0.	0.	-3912.	4613.	12		4.17	0.14	0.14	119.2	0.71	96.4 -23		
	29113	0.	6570.	0.	0,	-5129.	8400.	12		5.63	0.14	0.33	188,3	1.12	97.8 0	141.6	
STAC16	29113	0.	4249.	0.	0.	-3940.	4613.	12	5. 126.	4.33	9.14	0.14	125.8	0.75	101.0 -27	153.0	1,14 150

				1.001 040		14710/80/8	- 06058	DOUGES	040CM	MSO	POWER	EECP	CAPITAL	NORM	\$/KW ROI	LEVL	NORM	UPT
ECS	DDGGG					RESIDL	- COGEN**	REGD	POWER	Oeli	/HEAT	FESK	COST	COST		CHRG	ENRG	14 K. I.
EUS	PROUS	DISTIL F	(ESTDL	COAL	DISTIL	KESTDE	COME	MM	MW		RATIO		*10**6	0001	(%)	0,1110		
STACIO	29113	0.	7207.	0.	0.	-5534.	9180.	126.	682.	6.58	0.14	0.34	225.1	1.34	106.6 0	147.5	1.1	Õ 12
	29113		4293.	0.	0.	-3984.	4613.	126.	126.	4.23	0.14	0.13	121.6	0.73	96.7 -26	153.9		4 15
	29113		7502.	o.	o.	-5804.	9265.	126.	693.	5.75	0.14	0.32	191.3	1.14	87.0 0	150.4	1 - 1	2 12
	5 29113		4308.	o.	0.	-3999.	4613.	126.	126.	4.38	0.14	0.12	122.1	0.73	96.7 -29	154.9	1.1	5_15
	29113	~~	9508.	0.	0.	-6996.	11991.	126.	1025.	7.86	0.14	0.34	258.3	1.54	92.7 0	157.0		
CC1622	2 29113	3 0.	4277.	Ο.	0.	~3968.	4613.	126.	126.	4.43	0.14	0.13	125.3	0.75	100.0 -30	154.3		
CC1622	2 29113	3 0.	8677.	0.	0.	-6421.	17137.	126.	920.	8.02	0.14	0.35	275.7	1.64	108.4 0	153.7		
001222	<u> 29113</u>	3 0.	4271.	0.	0.	<b>-3</b> 962.	4613.	126,	126.	4.40	0.14	0.13	122.9	0.73	98.2 -28	153. <b>8</b>		
CC1222	2 29113	0.	8599,	0.	Ο.	-6358.	11082.	126.	914.	7.75	0.14	0.35	256.0	1.53	101.6 0	150.1		2 12
	2 29113		4224.	ο.	o.	-3915.	4613.	126.	126.	4.35	0.14	0.14	120.5	0.72	97.4 -25	152.0		
	2 29113		7267.		0.	-5499.	9495.	126.	721.	6.24	0.14	0.35	199.4	1.19	93.6 0	139.1		3 13
	1 29113		<u> 4334.</u>	0.	<u> </u>	<u>-4025.</u>	<u>4613.</u>	126.	<u> 126.</u>	6.23	0.14	0.12	192.4	1.15	151.5 0	164.6		
	1 29113		7075.	0.	0.		8371.	126.	584.	13.41	0.14	0.28	483.4	2.88	233.2 0 93.6 <b>-5</b> 0	197.3 183.1		7 11 6 16
	29113		0.	0.	-4265.	309.	4613.	126.	126.	4.12	0.14	0.13	117.0	0.70	93.6 <b>-5</b> 0 82.8 999	193.5		
	29113		o.	0. 0.	-6703.	1407. 309.	8288.	126. 126	574. 126.	5.00 4.51	0.14 0.14	0.31 0.11	162.7 132.9	0.97 0.79	103.6 -73	189.6		
	3 29113		<u>0.</u>		<u>-4379.</u> -10673.	2739.	4613. 12748.	126.	1117.	10.13	0.14	0.11	361.2	2.15	115.5 0	264.8		
	29113	3 10673. 3 4351.	0. 0.	0.		309.	4613.	126.	126.	4.42	0.14	0.12	129.4	0.77	101.5 -66	188.0		
		3 10021.	o.		-10021.	2578.	12217.	126.	1051.	9.72	0.14	0.32	345.6	2.06	117.7 0	250.4		6 12
	5 29113		0.	0.	-4338.	309.	4613.	126.	126.	4.47	0.14	0.12	131.6	0.78	103.5 -69	187.8		
	5 <b>2</b> 9113		0.	0.		2342.	11419.	126.	955.	9.50	0.14	0.32	338.1	2.02	123.6 0	242.2		0 12
	3 29113		o.			309.	4613.	126.	126.	4.42	0.14	0.12	129.2	0.77	101.8 -65	187.2	1.3	9 16
	29113		Ö.			1864.	9820.	126.	760.	7.21	0.14	0.31	248.5	1.48	104.6 0	221.8	1.6	5 13
	29113		0.	o.	-4329.	309.	a613.	126.	126.	4 36	0.14	0.12	126.7	0.76	99.9 -62	186.8	1.3	9 16
GTR212	29113	8440.	0.	0.	-8440.	2002.	10280.	126.	816.	7.74	0.14	0.31	269.0	1.60	108.8 0	226.2	1.6	8 13
STR216	5 29113	3 4318.	0.	Ο.	-4318.	309.	4613.	126.	126.	4.42	0.14	0.12	129.5	0.77	102.3 -65	186. <b>8</b>		9 16
GTR216	3 29113	8515.	0.	0.	-8515.	2063.	10484.	126.	841.	8.32	0.14	0,32	292.2	1.74	117.1 0	227.2		9 13
<b>GTRW08</b>	3 29113	4458.	0.			309.	4613.	126.	126.	4.37	0.14	0.09	127.0	0.76	97.2 - 67	191.9		3 16
STRWO	3 29113	12687.	0.	a.	-12687.	3201.	14294.	126.	1305.	9.65	0.14	0.27	347.3	2.07	93.4 0	393.6		6 13
	2 29113		0.			309.	4613.	126.	126.	4.36	0.14	0.10	126.9	0.76	98.2 -65	190.0		1 16
		12034.	٥,		-12034.	3149.	14119.	126.	1284.	9.53	0.14	0.30	335.3	2.00	95.1 0	280,8		9 13
	6 29113		<u> </u>		-4392.	309.	<u>4613.</u>	126.	126.	4.44	0.14	0.11	130.2	G.78	101.2 -69 98.5 0	189.8 265.6		1 16 7 13
		11030.	0.		-11030.	2830.	13054.	126.	1154.	9.07	0.14	0.31	318.3	1.90	98.5 0 92.2 -62	192.9		3 16
	8 29113		0.		-4501.	309.	4613.	126. 126.	126. 970.	4.25 7.60	0.14 0.14	0.09	121.6 259.9	0.72 1.55	83.1 Ú	281.2		
		3 10671.	0.		-10671.	2378.		126.	126.	4.27	0.14	0.23	123.2	0.73	96.3 -59	187.8		
	2 29113		<u>o.</u>		<u>-4366.</u> -9571.	309. 2353.	4613. 11455.	126.	959.	7.59	0.14	0.31	261.4	1.56	93.2 0	240.5		9 13
	2 29113 5 29113		0. 0.			2353. 309.	4613.	126.	126.	4.31	0.14	0.31	124.8	0.74	97.5 -61	188.1		0 10
	5 29113		0.				11316.	126.	942.	7.79	0.14	0.30	269.4	1.61	96.9 0	241.6		0 1
	5 29113 5 29113		o.		-9436. -4484.	309.	4613.	126.	126.	17.46	C. 14	0.09	170.6	1.02	129.8 999	210.6		
		17894.	<u>0.</u>		-17894.	4887.	19941.	126.	1993.	219.61	0.14		1007.8	6.01	192.2 0	647.3		
	5 29113		o.			309.	4613.	126.	126.	16.62	0.14	0.12	175.4	1.05	138.1 0	204.5		2 15
		3 13056.	Ö.		-13056.		16522.			163.96	0.14	0.36	860.1	5.25	230.0 0	473.4		2 15

DATE 06/07/79 1&SE-PEC-ADV-DES-ENGR

			DENERAT				COGEN**		COGEN	MBD	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRT
		DISTIL				RESIDL	COAL	REQD MW	POWER MW	Odii	/HEAT	LON	COST *10**6	COST		(X)	CHRG	ENRG	wicti
DNOCGN			147.	602.	0.	0.	. O. A	60.	o.	0.65	2.20	0.	7.4	1.00	230.9	0	18.5		-
STM141			261.	468,	Ο.	-114.	134.	60.	3.	0.45	2.20	0.03	5.4	0.73	152.1	-12	18.7		1 10
STM141			140.	589.	0.	7.	13. F	60.	3.	0.80	2.20	0.03	10.8	1.46	302.9	7	18.4	1.00	8 0
<u>STM141</u>	33121	0.	140.	<b>5</b> 89.	0.	7.	13. A	60.	3	0.70	2.20	0.03	8.5	1.15	238.7	27	18.0	0.98	3 9
<b>STM088</b>	33121	0.	259.	479.	0.	-112.	123.	60.	2.	0.42	2.20	0.01	4,6	0.63	136.7	-13	18.8	1.02	2 10
<b>STM088</b>	33121	Ο.	143.	595.	0.	4.	7. F	60.	2.	0.76	2.20	0.01	9.8	1.33	289.3	3	18.5	1.00	8 0
STM088	33121	0.	143,	595.	Ο.	4.	7. A	60,	2.	0.67	2.20	0.01	7.9	1.07	233.3	30	18.2	0.99	9 9
PFBSTM	33121	0.	132.	577.	0.	16.	25	60.	6,_	1.00	2.20	0.05	13.8	1.86	344.8	7	18.3	0.99	9 9
TISTHT	33121	0.	272.	419.	0.	-125.	183.	60.	9.	1.09	2.20	0.08	30.3	4.09	704.0	0	21.1	1.14	1 9
TISTMT	33121	0.	125.	565.	0.	22.	37.	60.	9.	1.53	2.20	0.08	38.7	5.22	899.2	0	20.9	1.13	3 8
TIHRSG	33121	0.	283.	441.	0.	-136.	161.	60.	6.	0.98	2.20	0.03	29.8	4.02	671.8	Ô	21.7	1.17	
TIHRSG			132.	593.	0.	15,	9.	60.	6.	1.43	2.20	0.03	38.3	5.18	865.4	ŏ	21.6	1.17	
STIRL	33121		116.	389.	-187.	31.	213.	60.	13.	0.57	2.20	0,08	10.5	1.42	191.5	ō	19.5		
STIRL	33121		303.	389.	0.	-156.	213.	60.	13.	0.57	2.20	0,08	10.5	1.42	191.7	6	18.4	1.00	
STIRL	33121	٥.	116.	576.	٥.	31,	26.	60,	13.	1.01	2.20	0.08	17.9		327.9	10	17.8		
HEGT60	33121	0.	62.	666.	٥.	86.	-64. A	60.	35.	2.28	2.20	0.03	61.4	8.29	455.3	Ô	21.9		
1EGTOD	33121	0.	122.	606.	0.	25.	-4. A	60.	10.	1.11	2.20	0.03	26.7	3.60	460.9	0	19.6		
FCMCCL			104.	546.	o.	43.	56.	50.	18.	1.50	2.20	0.13	30.7	4.15	531.2	4.	18.6	1.01	
FCSTCL			92.	526.	Ď.	55.	76.	60.	22.	1.75	2.20	0.17	34.3	4.63	538.1	5	18.3		
IGGTST			111.	573.	0.	36.	29.	60.	15.	1.25	2,20	0.09	28.1		473.7	3	18.9		
GTSUAR			332.	329.	Ō.	-185.	273.	60.	20.	0.56	2.20	0.12	11.4	1.54	165.7	16	17.8	0.96	
GTAC08			292.	376.	Õ.	-145.	227.	60.	14.	0.46	2.20	0.11	8.3	1.13	157.9	67	17.5	0.95	
GTAC12			304.	345.	Ö.	-157,	257.	60.	18.	0.50	2,20	0.13	9.7	1.30	164.0	36	17.3		
GTAC16			316.	322.	Ö.	-168.	280.	60.	21.	0.55	2.20	0.15	11.1		172.3	26	17.2		
GTWC16			325.	319.	0.	-177.	283.	60.	21.	0.56	2.20	0.14	11.3	1.52	167.6	23	17.4	0.94	
CC1626			354.	258.	o.	-207.	344.	60.	29.	0.75	2.20	0.18	13.7	1.85	168.7	18	17.1	0.92	
CC1622			338.	282.	o.	-190.	320.	60.	26.	0.71	2.20	0.17	12.9	1.74	173.2	19	17.1	0.93	
CC1222			336.	284.	õ.	-188.	318.	60.	25.	0.70	2.20	0.17	12.2		165.8	22	17.1	0.92	_
CC0822			311.	330.	0.	-163.	272.	60.	20.	0.64	2.20	0.14	10.5	1.42	169.0	26	17.3	0.94	
DEADV3			548.	5.	o.	-400.	597.	60.	59.	1.46	2.20	0.26	40.1	5.42	250.8	3	19.2	1.04	
DEHTPM			319.	340.	0.	-171.	262.	60.	19.	0.80	2.20	0.12	17.0		267.2	4	18.6	1.01	
DESOA3			0.	0.	-586.	147.	602.	60.	60.	1.87	2,20	0.22	51.1	6.91	298.1	ō	24.8	1.34	
DESCA3		682.	0.	0.	-682.	177.	702.	60.	72.	1.99	2.20	0.22	59.8	8.08	299.3	<del>- ö</del>	26.8		
DESCA3			586 <i>.</i>	0.	0.	-438.	602.	60,	60.	1.87	2.20	0.22	51.1		298.1	ö	21.5	1.17	
DESCAS			682.	0.	o.	-505.	702.	60.	72.	1.99	2.20	0.22	59.8	8.08	299.3	õ	23.0		
GTSGAD		205.	104.	349.	-205.	-505. 43.	253.	60.	18.	0.48	2.20	0.12	8.8	1.19	146.4	4	18.5		
STRAO8			67.	224.	-313.	80.	378.	60.	33.	0.71	2.20	0.12	16.0	2.16	174.6	<del>-</del>	18.8	1.02	
		313.	-		-297.		378. 365.			0.71	2.20	0.19	15.8	2.13	181.3	2	18.7	1.01	
GTRA12			71.	237.		76.		60.	31.	0.70	2.20	0.19				2			
GTRA16			77.	259.	-278.	70.	343.	60.	28.				15.7	2.12	192.2	•	18.8	1.02	
GTR208		244.	91.	305.	-244.	<u>56.</u>	297.	60.	<u>23.</u>	0.58	2.20	0.15	12.1	1.63	168.6	<u> </u>	18.7		and the second
GTR212		254.	87.	291.	-254.	60.	311.	60.	25.	0.61	2.20	0.16	13.0		175.0	0	18.7		
GTR216	33121 33121		85. <b>53</b> .	285. 177.	-256. -374.	62. 94.	317.	60.	25.	0.63	2.20	0.16 0.19	13.8	1.87	184.2 158.3	1	18.7 19.3		
							425.	60.	38.	0.76	2.20		17.4	2.34					

DATE 06/07/79 I&SE-PEO-ADV-DES-ENGR

### GENERAL ELECIRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2

s i	PROCS		IERATI	ON CAS	E** **N6	COGEN -	COGEN**			M&O	/HEAT RATIO		CAPITAL COST *10**6	COST	EQVL	(%)	CHRG	ENRG	
RW16	33121 33121 33121 33121	358. 330. 318. 290.	54. 62. 76. 76.	179. 209. 256. 254.	-358. -330. -318. -290.	94. 85. 71. 71.	423. 393. 347. 348.	60. 60. 60.	38. 35. 29. 29.	0.74 0.66	2.20 2.20 2.20 2.20	0.20 0.13	17.2 16.9 13.9 13.9	2.33 2.28 1.87 1.87	174.0 148.7	0	18.9 19.6	1.02 1.03 1.06 1.02	124 119
R316 PADS PADS	33121 33121 33121 33121	288. 540. 547. 399.	77. 0. 0. 29.	258. 0. 0. 97.	-288. -540. -547.	70. 147. 149. 118.	344. 602. 610. 505.	60. 60. 60. 60.	29. 60. 61. 48.	0.66 5.62 5.64	2.20 2.20 2.20 2.20	G. 17 O. 28 O. 28	14.3 36.3 36.8 31.4	1.94 4.90 4.98	170.2 229.1 229.9 268.9	0	18.9 25.6 25.7	1.02 1.39 1.39 1.22	122 146 135
																	·		
								-								-			<del></del>
			<u> </u>												-				
																			<del>_</del>
												·							••••
												•							
			<del></del>		·									•	· · · · · · · · · · · · · · · · · · ·			-	
			<del></del>		<del></del>		<del></del>		<del></del>			· · · · · · · · · · · · · · · · · · ·	<del>*</del>	·					
<del></del>	· 		<del></del>						<u></u>							<del>2 - 2n</del>	····		
			·					<del></del>		-	<del>-, -, </del>								

		**066	SEMEDAT	TON CAS	Eww wwki	SCACEN -	COGEN**	DAUCO	OGOEN	es H	DALICO	FFCF	0401741	Nen	e ////	D# 1		NIGEORE S	
ECS	PROCS	DISTIL	RESIDL	COAL		RESIDL	COAL	REOD	POWER	MSO	POWER /HEAT	FESK	CAPITAL	COST	\$/KW EQVL		LEVL CHRG	NORM I	WKIH
NOCCH	33251	0.	687.	2842.	0.	0.	0, F	MW	MW_	2.64	RATIO		*10**6	1 00	160 0	(3)			
	33251	0.	1276.	2056.	o.	- <b>5</b> 90.	787.	280. 280.	0.	2.64	1.05	0.	53.1	1.00	168.8	0	88.3	1.00	
	33251	Ö.	614.	2718.	o.	73.	124. F		30. 30.	1.41	1.05	0.06	31.6	0.60	90.6		85.6		
	33251	Ö.	614.	2718.	0.	73. 73.	124. A			3.13	1.05	0.06	62.1	1.17	177.9	31	83.8		
	33251	0.	1256.	2166.	0.	-569.	677.	280. 280.	30. 16.	2.78	1.05	0.06	42.3	0.80	121.0		81.3		
	33251	0.	647.	2774.	0.					1.31	1.05	0.03	28.1	0.53	84.3	-1	87.2		
	33251	0.	647.	2774.	0.	40.	68. F		16.		1.05	0.03	57.6	1.08	172.6	34	85,8	0.97	
	33251	Ü.	534.			40.	68. A		16.	2.67	1.05	0.03	40.1	0.76	120.2		83.7	0.95	
	33251	0.		2599.	<u> </u>	153.	243.	280.	<u>62.</u>	4.80	1.05	0.11	62.0	1.17	157.8	54	79.1	0.90	market and the second
			1306.	1930,	0.	-620.	912.	280.	45.	3.78	1.05	0.08	113.0	2.13	306.3	0	94.4	1.07	
	33251	0.	469.	2482.	0.	217.	360.	280.	89.	6.99	1.05	0.16	211.4	3.98	500.8	3	92.1	1.04	
	33251	٥.	1362.	2045.	0.	-675.	798.	280.	31.	3.60	1.05	0.03	111.7	2.10	297.7	0	97.9	1.11	91
	33251	0.	<u>537.</u>	2750.	<u>0.</u>	150.	92.	280.	61.	6.88	1.05	0.07	210.7	3.97	485,0	0	99.6	1.13	-
TIRL	33251	928.	533.	1784.	-928.	154.	1059.	280.	63.	2.58	1.05	0.08	65.9	1.24	154.2	0	93.3	1.06	
TIRL	33251	0.	1460.	1784.	0.	-774.	1059.	280.	63,	2.58	1.05	0.08	65.9	1.24	154.4	6	88.2	1.00	
TIRL	33251	0.	383.	2584.	0.	304.	259.	280.	124.	6.16	1.05	0.16	167.2	3.15	311.6	9	82.5	0.93	110
	33251	<u> </u>	0,	3355.	0.	687.	-512. A		280.	11.27	1.05	0.05	279.5	5.27	245.6	5_	89.0	1.01	107
	33251	o.	0.	3982.	o.	840.	-627. A		342.	13.86	1.05	0.05	376.5	7.09	284.8	1	101.3	1.15	97
	33251	0.	442.	<b>2</b> 886.	٥.	245.	-44. A		100.	5.53	1.05	0.06	134.2	2.53	236.4	7 ·	86.4	0.98	99
	33251	o.	264.	2818.	0.	423.	24.	280.	172.	8.67	1.05	0.13	160.3	3.02	282.7	9	81.6	0.92	109
	33251	0.	147.	2627.	0.	539.	215.	280.	220.	9.73	1.05	0.21	179.1	3.37	286.5	11	75.3	0.85	118
	33251	0.	329.	3087.	0.	357.	-245.	280.	146.	4.63	1.05	0.03	142.1	2.68	244.2	9	83.1	0.94	98
	33251	Ο.	1607.	1488.	0.	-920.	1355,	280.	99.	2.26	1.05	0.12	55.1	1.04	111.2	999	83.1	0.94	125
TACOS	33251	Ο.	1408.	1717.	Ο.	-722.	1125.	280.	71.	1.97	1.05	0.11	45.5	0.86	108.9	999	82.5	0,93	125
	33251	0.	<u> 1466.</u>	1566.	0.	<del>-779</del> .	1276.	280.	89.	2.13	1.05	0.14	51.2	0.96	114.3	999	81.1	0.92	128
	33251	ο.	1523.	1452.	ο.	-837.	1391.	280.	103.	2.28	1.05	0.16	56.5	1.06	119.0	178	80.4	0.91	129
TWC16	33251	0.	1568.	1435.	0.	-882.	1407.	280.	105.	2.22	1.05	0.15	53.8	1.01	109.9	999	80.7	0.91	129
C1626	33251	0.	2711.	0.	٥.	-2024.	2842.	280.	280.	3.09	1.05	0.23	86.4	1.63	108.6	22	78.5	0.89	145
C1626	33251	_ 0.	1716.	1130.	٥.	-1029.	1713.	280.	142.	2.60	1.05	0,19	61.4	1.16	109.8	63	78.3	0.89	134
C1622	33251	0.	1633.	1252.	0.	-947.	1550.	280.	127.	2.57	1.05	0.18	62.2	1.17	118.8	53	79.3	0.90	
C1222	33251	0.	1623.	1262.	ο.	-937 <i>.</i>	1581.	280.	126.	2.53	1.05	0.18	59.6		114.5	73	79.0	0.89	
C0822	33251	٥.	1499.	1492.	o.	-812.	1351.	260.	98.	2.24	– –	0.15	49.5		106.8		80.1	0.91	
EADV3	33251	0.	2503.	٥.	o.	-1916.	2842.	280.	280.	6.14	1.05	0.26	198.4		216.1	4	90.5	1.03	
EF.DV3	33251	0.	2713.	0.	o.	-1990.	2965.	280.	295.	6.37	1.05	0.26	207.3		218.1		92.1	1.04	
EHTPM	33251	ο.	1538.	1542.	õ.	-851.	1301.	280.	92.	3.49		0.13	97.2		206.4	5	88.4	1.00	
ESOA3	33251	2766.	0.	o.	-2766.	687.	2842.	280.	280.	7.31		0.22	244.0		252.7	õ	115.7	1.31	
ESOA3	33251	3390.	ō.	o.	-3390.	880.	3488.	280.	359.	8.85		0.22	303.5		264.2	o -		1.47	
	33251	0.	2766.	0.	0.	-2079.	2842.	280.	280.	7.31		0.22	244.0		252.7	<del>-</del> ö	100.5	1.14	
	33251	o.	3390.	0.	a.	-2510.	3488.	280.	359.	8.85		0.22	303.5		264.2	ŏ	111.3	1.26	
	33251	1016.	473,		-1016.	213.	1257.	280.	87.	2.04		0.13	47.2		104.2	-	87.2		
	33251	2676.	0.		-2676.	687.	2842.	280.	280.	3.61		0.24	107.8		130.8	999 0	95.0	1.08	
	33251	1555.	288.		-1555.	399.	1880.	280.	163.	2.92		0.20	79.3		129.8	-6	88.0	1.00	
	33251	2669.	200.		-2669.	687.	2842.	280.	280.	3.59		0.24	108.2		133.9	Ö	94.7	1.07	
	33251	1474.	307.		-1474.	379.			155.	2.65						8			
HANIZ	33231	14/4.	307.	1023.	14/4.	3/3,	1813.	280.	100.	2.03	1.05	0.20	76. <b>9</b>	1.45	131.0	0	87.3	0.99	133

DATE 06/07/7⊌ 1&SE-PEG-ADV-DES-ENGR

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

				FUEL US	E IN BT	U*10**6-													
		**COG	ENERAT	ION CASI	E** **N	acagen -	COGEN**	POWER		M&D	POWER		CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	WRTH
ECS	PROCS	DISTIL R	ESIDL	COAL	DISTIL	RESIDL	COAL	REQD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
								MW	MW		RATIO		*10**6			(%)	·····		***
GTRA16	33251	1382.	340.	1138.	-1382.	347.	1704.	280.	141.	2.82	1.05	0.19	76.4	1.44	136.5	6	87.9	1.00	
<b>GTR208</b>	33251	1212.	408.	1366 <i>.</i>	-1212.	279.	1477.	280.	114.	2.34	1.05	0.15	58.3	1.10	114.2	16	87.6	0.99	
<b>GTR212</b>	33251	1261.	388.	1297.	-1261.	299.	1545.	280.	122.	2.43	1.05	0.17	61.5	1.16	117.1	14	87.4	0.99	
GTR216	33251	1271.	379.	1268.	-1271.	308.	1574.	280.	126.	2.52	1.05	0.17	64.9	1.22	123.1	12	87.2		2000
GTRW08	33251	2722.	0.	0.	-2722.	687.	2842.	280.	280.	3.35	1.05	0.23	94.4	1.78	107.4	0	94.6		147
<b>GTRW08</b>	33251	1859.	218.	729.	-1859.	469.	2113.	280.	191.	2.98	1.05	0.21	80.4	1.51	114.9	0	89.9		2 134
GTRW12	33251	2625.	Ο.	Ο.	-2625.	687.	2842.	280.	280.	3.33	1.05	0.26	94.1	1.77	110.9	0	91.7		1 150
GTRW12	33251	1778,	222.	742.	-1778.	465.	2101.	280.	190.	2.96	1.05	0.22	79.9	1.51	118.2	6_	87.8	0.99	
GTRWIE	33251	2676.	Ο.	0.	-2676.	687.	2842.	280.	280.	3.36	1.05	0.24	96. <b>8</b>	1.82	115.3		93.5		5 148
GTRW16	33251	1642.	265.	889.	-1642.	421.	1954.	280.	172.	2.72	1.05	0.21	70.9	1.34	111.4	10	87.2		
GTR308	33251	3062.	0.	O.	-3082.	687.	2842.	280.	280.	3.04	1.05	0.13	88.9	1.67	98.0	0	104.5		139
GTR308	33251	1579.	335.	1121.	-1579.	352.	1721.	280.	143.	2.50	1.05	0.14	62.4	<u>1.18</u>	<u> 101.1</u>	0	<u>91.5</u>		1 130
GTR312	33251	2793.	0.	Ο.	-2793.	687.	2842.	280.	280.	3.01	1.05	0.21	87.9	1.66	106.6	0	95.7		3 146
<b>GTR312</b>	2 <b>3</b> 3251	1441.	333.	1113.	-1441.	<b>354</b> .	1729.	280.	144.	2.47	1.05	0.18	62'. 1	1.17	107.5	15	87.0		135
GTR316	33251	2818.	Ο.	Ο.	-2818.	687.	2842.	280.	280.	2.99	1.05	0.20	90.4	1.70	109.5	0	96.7		145
<b>GTR316</b>	<b>3325</b> 1	1429.	339.	1134.	-1429.	348.	1709.	280.	142.	2.50	1.05	0.18	63.3	1.19	110.3	<u> 11</u>	87.5		134
FCPADS	33251	2555.	0.	0.	-2555.	687.	2842.	280.	280.	25.99	1.05	0.28	177.7	3.35	196.6	0	121.1		7 150
FCPADS	33251	2718.	Ο.	O.	-2718.	742.	3028.	280.	303.	27.97	1.05	0.28	189.7	3.57	199.4	0	125.7		2 140
FCMCDS	<b>3</b> 3251	2319.	٥.	0.	-2319.	687.	2842.	280.	280.	24.59	1.05	0.34	188.0	3.54	232.8	O	113.7		155
<b>FCMCDS</b>	33251	1983,	99.	333.	-1983.	587.	2509.	280.	239.	21,25	1.05	0.32	165.5	3.12	224.8	0_	<u> 108.4</u>	1.23	141

ORIGINAL PAGE IS

GENERAL ELECTRIC COMPANY
COGENERATION TECHNOLOGY ALTERNATIVES STUDY
REPORT 5.2
SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

DATE 06/07/79 I&SE-PEG-ADV-DES-ENGR

-	1	-		T	NA 1867 758	-		÷		-	. ]	<u></u>			7=	_			eri in perili	-	-	-	===	<b>-</b>															Ť	Т	
WRTH	90	110	92	200	0 00	83	98	66	96	88	86		2 2	97	90	111	118	103	124	966	130	128	133	132	200	136	126	118	136	130	123	131	136	130	131	132	132				
NORM WI	00	0.0	.99	200	000	98	. 99				.23	50	2 0	. 26	60.	<u>.</u>	66.0	0.0	95	50	90	. 92	90	060	000	20	6.	0				00.	20.	5 6	.02	.02	.02				
			9,0						۲.		1		-	-	4									-			80	4	, ,			.3	9.	ن « د د	2	, ro	<b>1</b> 0				
LEVL	13	13	5 3	2 5	2 5	13	13	135	50	9	9	4 6	5 6	19	14		8	13	2 5	10	20	12	= :	7 -	- 2	4	5	13	17	N -	0	13	5	2 5	13	5	13				
ROI	90	-12	<b>~!</b>	12		30	7	٥	0 (	0 (	٥	<b>)</b>		0	0	4	io (	6	16	9 6	56	23	18	19	22	,	0	4	0	<b>o</b> c	0	2	- (	N -	0	0	-				
\$/KW EQVL			304.9	-1					_		-1	4					-		-			1 -	_		-1			- 1		-			_		., .						
NORM	1		55								1							- 1	23 23	u ç	49	52			1			- 1				1			1		- 1				
	-		<u>.</u>	•			٠,		•	•	•1	•				•		٠.	<u>.</u> ,			1 •	•	<u>.</u>	٠,		•	•	4.	•		٠.	•	•	., .	•					
CAPITAL COST	7.3		10.6	-1						•	-1	•	•		• •	•	•	-1		•		١.	•		-1			-1	٠.	•				•	4 .		. 1				
		4	8 6	4 5	2 0	20	22	11	<u> (</u>	10 i	3			04	2	13	24	2	9 1	n q	0 0	19	23.53	2.2	2 6	2 10	26	17	20	א מ	2 2	17	27	27	202	20	ຄ				
R FESR	1 -	0	0 0	j	9	Ö	o	0	o o	o (	٥	<u> </u>	<i>i</i> c	9	o	ö	o ·	o	<i>o</i> 0	<i>-</i>	; 0	o	ö	o 0	٥	9	ö	Ö	o (	o 0	9 0	0	Ö	o c	jo	0	0				
POWER /HEAT	1 50	1.50	1.50	O L		C)	S	വ	1.50	n n	ווטו	ດທ	ש כו	50	S) IS	S	ID :	S)	io i		מוכ	S	S I	. 50	ល្យ៥	200	S	(C)	l CI	S I	. 50	S	1.50	io i	1.50	1.50	1.50				
ORM	عا	4	. 79	이'	4 L	. "	, ຫຸ	١.	•	•	•1	•	•	•	٠,	•	•	-1	•	•		١,	•	•	•		٠,	•	.47	•		١.	•	•	·I ·		. !				
															-																			00							
COGEN POWER	E C	) M	e (	2	v	1 0	9	6	0	9	9	<u>ה</u> ל	, t	3.4	2	17	22	13	6:	2 0	8 -	2	28	25	3	- 4 0 C	58	18	40	71	2 7	17	32	8	200	24	52				
E 0	1	. 0	9.	40;	5.0	7	40.	40.	40.	40.	40	. 40	. 6	. 6	40.	40.	40.	40.	40.	. 6	40.	40.	40.	40.	90.	9 6	40.	40.	40.	40.	9 6	40.	40.	40.	40		40.				ı
EN** P	٩		ıL ·	- 1		. 4									4																										ı
CGG	C	131.	12.	2	120.		24.	179.	36.	157.	o l	209.	200	9 6	4	55.	74.	28.	267.	222,	274	277.	337.	313.	311.	435	584.	256.	435.	687.	687	248.	370.	357.	291	304	310.				
	6	. S	~ 1		. 5	. 4		22.	52.	33.	15.	30.	, o	, 20 20 20 20 20 20 20 20 20 20 20 20 20 2	24.	12.	54.	36.	81.		 	74.	33.	36.	24.		98.	58.	98.		326.	12.	79.	33.	55		61.				
OCCOEN RESIDE		+		١,	7			-	22	-1			- `			•		- 1	Ĩ,		165	-	-2	-186	- 184	1303	-392	-		<del>-</del> (	2 4		•	, .							İ
** **N	c	ó	Ö	ö	o c	ċ	ò	o	o.	Ö	1	-183.			o	ö	o.	Ö	o 0	o , c	ò	0	o.	٠ د	o		Ö	0	-424.	-668.		-200.	-306.	-290.	-239	-248	-250.				
ASE*	S.			5	က် ထွ	. 0	·-	.99	0	.8.				408	0	δ	361.	77.	169.	4 2		8	. 98	23.	7		òò	.6	ö			68.			45						
CGAL	A	3	423	42	315	7	4	25	4	0	45	N C	Ň.	2 4	4	ĕ	36	407	- 7	N .		15	0,	13		-		17				100		,		-	1				
**COGENERATION CASE** **NOCOGEN TIL RESIDL COAL DISTIL RESIDL	AQ	210.	ത	91.	208.		83.	220.	76.	231.	83.	68.		. 20	74.	56.	44	63.	279.	240.	263	272.	301.	284.	283.	758.	534.	266.	0.	o ;	424.	56.	19.	23	300	. 0	37.				<u> </u>
COGEN L RES				9			; o	0.	o.	o.	0.	ტ ი			0	٥.	o.	0.				0	٥.	. 0	9.				4.	0		0		ė (	N O	n œ	.				
**CC DISTIL		_			_	_	_					0					•												424	699		20	30	290	23	3 6	25				
PRØCS D	3254	3254	33254	3254	33254	23052	33254	3254	3254	3254	3254	3254	32204	32534	33254	3254	13254	33254	33254	33254	33254 23254	3254	13254	33254	33254	33254	33254	33254	33254	33254	33254	33254	33254	33254	32554	3050	33254				
	1			ı							3							- 1											1			ı		~		ه ه	100				
ECS	ONGCON	STM1	STM141	SIMI	STMOBB	STMORB	PFBSTM	TISTMT	TISTMT	工工	TIHRSB	STIRL	21.5	1 - N	HEGT00	FCMCCL	FCSTCL	.991	GTSØAR	GTACOB	GTACIE	GTWC16	CC1626	100	CC1222		DEADV3	DEHTPM	DESOA3	DESCAS	DESCAS	GTSCAD			GTRAILE		G TR				

## GENERAL ELECTRIC COMPANY COGENERATION TECHNOLOGY ALTERNATIVES STUDY REPORT 5.2 SUMMARY OF FUEL SAVED BY TYPE & ECONOMICS

**PAGE 106** 

				FUEL US	E IN BT	U*10**6-													
		**C	GENERAT.	ION CAS	E** **N	OCOGEN -	COGEN**	POWER	COGEN	MSO	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM	<b>VRTH</b>
ECS	PRCICS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REOD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
								MW	MW		RATIO		*10**6			<u>(%)</u>			
GTRW08	33254	4 366	. 6.	19.	-366.	92.	416.	40.	38.	0.75	1.50	0.27	17.1	2.34	159.3	0	14.1	1.06	136
STRW12	33254	4 350	. 6.	22.	-350.	92.	414.	40.	37.	0.75	1 . 50	0.29	17.0	2.32	165.3	0	13.7	1.03	138
GTRW16	33254	4 323	. 15.	51.	-323.	83.	385.	40.	34.	0.73	1.50	0.27	16.6	2.27	175.2	0	13.7	1.04	136
<b>GTR308</b>	33254	4 311	. 29.	<u>96.</u>	-311.	69.	339.	40.	28.	0.65	1.50	0.18	13.6	1.86	149.6	0	14.4	1.09	129
<b>GTR312</b>	33254	1 284	. 28.	95.	-284.	70.	341.	40.	28.	0.64	1.50	0.24	13.6	1.87	154.1	0	13.5	1.02	134
<b>GTR316</b>	33254	4 261	. 30.	99.	-281.	69.	337.	40.	28.	0.65	1.50	0.23	14.1	1.93	171.3	0	13.7	1.03	133
<b>FCPADS</b>	33254	1 394	. 0.	0.	-394.	98.	435.	40.	40.	3.96	1,50	0.26	26.2	3.59	227.0	0	18.5	1.40	148
<b>FCPADS</b>	33254	4 535	. o.	0.	-535.	146.	597.	40.	60	5.52	1.50	0.28	35.8	4.90	228.4	0	22.3	1.68	141
FCMCDS	33254	4 348	. 0.	0.	-348.	98.	435.	40.	40.	3.71	1,50	0.35	27.4	3.75	269.1	0	17.0	1.28	155
<b>FCMCDS</b>	33254	4 391	. 0.	٥.	-391.	116.	494.	40.	47.	4.17	1.50	0.36	30.8	4.22	269.3	0	18.0	1.36	146

ECS	PROCS	*			ION CAS	E IN BTU E** **NO DISTIL	COGEN -				COGEN POVER MW	O&M	POWER /HEAT RATIO	FESR	CAPITAL COST *10**6	NORM COST	\$/KW EQVL	ROI	LEVL CHRG	NORM WI	RTH
DNGCGI	1 33314	1	0.	25.	130.	0.	0.	0.	A	10.	0.	0.45	0.86	0.	4.6	1.00	330.6	0	4.7	1.00	80
	1 33314		0.	75.	<b>65</b> .	0.	-50.	65.		10.	2.	0.34	0.86	0.09	3.6	0.79	221.1	999	4.6	0.99	124
STM14	1 33314	1	Ο.	20.	121.	Ο.	5.	9.	F	10.	2.	0.57	9.86	0.09	6.6	1.44	402.4	10	4.5	0.97	109
TM14	1 <b>3</b> 3314	1	0.	20,	121.	0.	5.	9.	Α	10.	2	0.50	0.86	0.09_	5,6	1.23	343.1	23	4.3	0.93	112
STMOSS	3 33314	1	٥.	74.	71.	Ο.	-49.	59.		10.	2.	0.32	0.86	0.06	3.1	C. 68	199.0	-4	4.6	1.00	122
	3 33314	-	Ο.	21.	124.	0.	4.	6.	F	10.	2.	0.54	0.86	0.06	6.0	1.31	385.1	9	4.6	0.98	104
TMOB	3 33314	1	Ο.	21.	124.	Ο.	4.	6.	Α	10.	2.	0.48	6.86	0.06	5.2	1.15	336.8	24	4.4	0.95	107
FBSTI	1 33314	1	0	16.	115.	0.	9.	<u> </u>		10.	4.	0.66	0.86	0.15	8.6	1.89	472.4	8	4.5	0.96	116
	r 33314		0.	80.	43.	0.	-55.	87.		10.	5.	0.70	0.86	0.21	17.3	3.80	878.3	0	6.0	1.28	123
ISTM	r 33314	ŧ	Ο.	13.	110.	0.	12.	20.		10.	5.	0.98	0.86	0.21	22.1	4.85 1	1119.7	0	6.0	1.28	120
HRSC	33314	1	٥.	80.	62.	0.	-56.	68.		10.	3.	0.56	0.86	0.08	15.4	3.38	849.8	0	6.1	1.31	102
THRS	33314	1	0.	19,	124.	0.	6	6.		10.	3.	0.82	0.86	0.08	19.9	4.36	1096.9	0	6.2	1.33	99
TIRL	33314	1	84.	10.	32.	-84.	15.	98.		10.	6.	0.35	0.86	0.19	5.0	1.09	201.3	0	4.9	1.04	140
TIRL	33314	1	Ο.	93.	32.	0.	-69.	98.		10.	6.	0.35	0.86	0.19	5.0	1.09	201.6	61	4.3	0.93	13
TIRL	33314	1	Ο.	10.	116.	0.	15.	14.		10.	6.	0.61	0.86	0.19	8.4	1.84	341.6	16	4.0	0.85	12
EGT8	5 33314	1	0	0.	139.	0.	25.	-9.	Α	10.	10.	1.34	0.86	0.10	29.6	6.48	725.0	0	6.8	1.45	123
EGT8	33314	1	0.	0.	330.	0.	76.	-28.	A	10.	31.	2.06	0.86	0.13	56.8	12.46	587.6	0	9.8	2.11	111
EGT60	33314	1	0.	0.	134.	0.	25.	-4.	Α	10.	10.	1.11	0.86	0.13	26.1	5.73	663.5	0.	6.1	1.31	124
EGT60	33314	1	Ο.	Ο.	137.	٥.	25.	-4.	Α	10.	10.	1.03	0.86	0.13	26.1	5.73	651.9	0	6.0	1.29	
EGTO	33314	1	0.	14.	130.	٥.	10.	-0.	Α	10.	4.	0.64	0.86	0.07	14.3	3.14	597.7	0	5.2	1.12	102
CMCCL	33314	ı	Ō.	6.	106.	0.	18.	24.		10.	8.	0.87	0.86	0.28	16.9	3.70	680.5	3	4.8	1.04	-
CSTCL	. 33314	1	Ο.	0.	95.	0.	25.	35,		10.	10.	1.18	0.86	0.38	19.9	4.36	712.5	4	4.9	1.05	152
CSTCL	33314	ı	0.	Ο,	100.	ο.	27.	38.		10.	11.	1.08	0.86	0.39	20.0	4.39	685.8	4	4.7	1.02	141
GGTS	33314	•	0.	6.	113.	0.	19.	17.		10.	8.	0.86	0.86	0.23	17.0	3.74	627.2	3	5.0	1.07	123
TSOAF	33314	1	0.	99.	17.	0.	· -75.	113.		10.	8.	0.35	0.86	0.25	6.0	1.32	218.6	24	4.2	0.90	141
TACOE	3 33314	ı	0.	87.	32.	0.	-63.	98.		10.	6.	0.30	0.86	0.23	4.6	1.01	201.9	999	4.1	0.88 1	142
TAC12	33314		0.	92.	20.	0.	-67.	110.		10.	8.	0.32	0.86	0.28	5.2	1.14	205.4	72	4.0	0.85	146
TACLE	33314	!	0.	96.	11.	Ο.	-71.	119.		10.	9.	0.34	0.86	0.31	5.8	1.28	215.3	39	3.9	0.84	148
TWC16	33314	ı	0.	101.	8.	0.	-76.	122.		10.	9.	0.36	0.86	0.29	6.3	1.37	216.3	27	4.0	0.87	145
C1626	33314	1	Ο.	105.	Ο.	0.	-80.	130.		10.	10.	0.59	0.86	0.32	7.4		240.2	13	4.3	0.92	
C1626	33314	i	Ο.	127.	0.	ο.	-93.	161.		10.	14.	0.52	0.86	0.35	8.1	1.79	218.7	12	4.3	0.91	146
C1622	2 33314		0.	103.	0.	0.	78	130.		10.	10.	0.57	0.86	0.34_	7.0	1.54	233.5	17	4.2	0.90	159
	2 33314		0.	116.	0.	0.	-85.	150.		10.	12.	0.49	0.86	0.36	7.4	1.62	217.6	17	4.1	0.88	149
C1222	33314	I	0.	102.	0.	O.	-78.	130.		10.	10.	0.56	0.86	0.34	6.7	1.48	224.9	19	4.1	0.89	160
C1222	33314	ļ	Ο.	115.	ο.	Ο.	-85.	149.		10.	12.	0.49	0.86	0.36	7.0	1.54	208.9	20	4.0	0.86	150
	33314		0.	98.	2.	0.	-73.	128.		10.	10.	0.45	0.86	0.35	6.3	1.37	220.1	29	3.9	0.84	
	33314		0.	136.	0.	0.	-111.	130.		10.	10.	0.65	0.86	0.12	7.9	1.74	198.8	0	5.3	1.13	
	33314		o.	3077,	0.	0.	-2234.	2868.		10.	344.	5.82	0.86	0.17		21.88	110.6	Ō	43.0	9.21	
	33314		o.	128.	ο.	0.	-103.	130.		10.	10.	0.59	0.86	0.17	7.3	1.61	195.2	0	4.9	1.05	
	33314	-	ŏ.	302.	ā.	Ö.	-224.	308.		10.	32.	0.79	0.86	0.22	12.9	2.83	145.9	Ö	6.7	1.44	
	33314		Ö.	124.	0.	0.	-100.	130.	-	10.	10.	0.58	0.86	0.20	7.0	1.53	191.7	Ť	4.8	1.02	
	33314		Ŏ.	190.	Õ.	Õ.	-144.	200.		10.	19.	0.58		0.23	8.8	1.94	159.1	ò	5.3	1.13	
	33314		o.	117.	Ö.	o.	-93.	130.		10.	10.	0.63		0.24	9.8		285.1	ŏ	4.9	1.06	
		-				. ••	<b>J</b> .			. • •	. • •				-·•			_			-

DATE 06/07/79 18SE-PEG-ADV-DES-ENGR

	•						COGEN**			msd	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM 1	WRTH
ECS	PROCS	DISTIL R	ESIDL	COAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
								MM	MW		RATIO	3 66	*10**6			(%)			
	33314		194.	0.		-143.	221.	10.	21.	0.68	0.86	0.29	14.8	3.25	260.5	0	5.7		
	1 33314		96.	9.		-71.	121.	10.	9.	0.49	0.86	0.32	8.5	1.87	312.2	11	4.3	0.93	
	33314		0.	o.	-123.	25.	130.	10.	10.	0.66	0.86	0.20	10.6	2.32	292.3	G	6.0	1.28	
	3 33314		0.	<u> </u>	-233.	60,	249.	10.	25.	0.86	0.86	0.25	21.1	4.62	308.8	o_	8.4	1.61	
	33314		123.	0.		-98.	130.	10.	10.	0.66	0.86	0.20	10.6	2.32	292.3	0	5.2	1.11	
	3 33314		233.	ο.	0.	-172.	249.	10.	25.	0.86	0.86	0.25	21.1	4.62	308.8	0	7.0	1.50	
	33314		7.	22.	-87.	18.	108.	10.	7.	0.31	0.86	0.26	4.8	1.05	187.4	69	4.6	0.98	
	33314		0.	0.	-105.	25.	130.	10.	10.	0.50	0.86	0.32	7.7	1.68	248.8	0	4.9	1.05	-
	3 33314		0.	ο.		30.	149.	10.	12.	0.42	0.86	0.34	8.1	1.77	231.8	0	4.9	1.05	
-	2 33314		Ο,	٥.	-104.	25.	130.	10.	10.	0.49	0.86	0.33	7.6	1.68	250.7	0	4.8	1.04	
GTRA12	2 33314	115.	0.	ο.	-115.	30.	146.	10.	12.	0.41	0.86	0.35	8.0	1.75	235.6	٥	4.8	1.03	
GTRA16	33314	104.	0,	0.	-104.	25.	130.	10.	10,	0.49	0.86	0.33	7.9	1.73	260.3	0	4.8	1.04	
GTRA16	33314	110.	0.	0.	-110.	28.	140.	10.	11.	0.41	0.86	0.34	8.0	1.76	248.7	1	4.8	1.03	150
GTR208	3 33314	99,	2.	6.	-99.	23,	124.	10.	9.	0.36	0.86	0.30	6.4	1,39	218.3	6	4.5	1.00	149
GTK212	33314	103.	0.	1.	-103.	25.	129.	10.	10.	0.38	0.86	0.32	6.9	1.50	226.3	6	4.6	1.00	
GTR216	33314	103.	0.	0.	-103.	25.	130.	10.	10.	0.43	0.86	0.33	7.2	1.59	239.9	4	· 4.7	1.01	
GTR216	33314	i 104.	0.	0.	-104.	25.	131.	10.	10.	0.39	0.86	0.34	7.2	1.57	236.0	5	4.6	1.00	
<b>GTRVIO8</b>	33314	113.	٥.	0.	-113.	25.	130.	10.	10.	0.53	0.86	0.27	7.9	1.74	239.6	0	5.2	1.12	
<b>GTRW08</b>	33314	144.	0.	0.	-144.	36.	169.	10.	15.	0.46	0.86	0.30	9.0	1.98	213.9	0	5.5	1.17	
GTRW12	33314	110.	0.	0.	-110.	25.	130.	10.	10.	0.52	0.86	0.29	7.9	1.74	246.2	0	5.1	1.09	156
GTRW12	33314	141.	0.	0.	-141.	37.	170.	10.	15.	0.46	0.86	0.32	9.1	1.99	220.0	0	5.3	1.14	146
GTRW16	33314	109.	Ο.	ο.	-109.	25.	130.	10.	10,	0.52	0.86	0.29	8.2	1.79	254.7	0	5.1	1.09	156
GTRW16	33314	133.	0.	٥.	-133.	34.	161.	10.	14.	0.45	0.86	0.32	9.0	1.98	231.7	0	5,3	1.13	
GTR308	33314	116.	0.	0.	-116.	25.	130.	10.	10.	0.48	0.86	0.25	7.2	1.57	210.3	0	5.2	1.11	153
GTR308	33314	124.	0.	0.	-124.	28.	140.	10.	11.	0.40	0.86	0.26	7.2	1.58	197.9	0	5.2	1.11	143
<b>GTR312</b>	33314	109.	0.	٥.	-109.	25.	130.	10.	10.	0,49	0.86	0.30	7.3	1.61	230.3	0	4,9	1.06	
GTR312	33314	121.	0.	0.	-121.	30.	146.	₹0.	12.	0.41	0,66	0.31	7.5	1.66	213.6	0	5.0	1.06	146
GTR316	33314	109.	0.	٥.	-109.	25.	130.	10.	10.	0.49	0.86	0.30	7.6	1.67	239.1	0	5.0	1.07	157
GTR316	33314	120.	0.	0.	-120.	29.	145.	10.	12.	0.41	0,86	0,31	7.8	1.72	223,3	O	5.0	1.07	147
	33314		o,	0.		25.	130.	10.	10.	1.32	0.86	0.23	8.5	1.86	241.9	0	6.3	1.35	153
FCPADS	33314		o.	o.	-235.	64.	262.	10.	26.	2.77	0,86	0.28	15.4	3.59	237.6	0	9.7	2.07	14:
	33314		ā.	o.		25.	130.	10.	10.	1.24	0.86	0.30	8.6	1.88	272.0	0	5.8	1.25	160
	33314		Ō.	0.		51.	217.	10.	21.	2.09	0.86	0.36	14.0		277.4	0	7,5	1.61	151

DATE 06/07/79 1&SE-PEG-ADV-DES-ENGR

						U*10*#6- DCOGEN -		PELICE	COOEN	MBD	POWER	EEGD	CAPITAL	NORM	S/KW	RGI	LEVL	NORM WR
cs I	PROCS	DISTIL I		COAL.		RESIDL	COAL	REGD	POWER	OGN	/HEAT	FESK	COST *10**6	COST		(%)	CHRG	ENRG
MACCAL	33315	0.	45.	222.	0.	0.	0. /	MW 19.	MW O.	0.54	1.05	0.	5.7	1.00	277.9	0	7.7	\$.00
	33315		121.	126.	0.	-76.	97.	19.	3.	0.39	1.05	0.08	4.6	0.80	188.7	-3	7.7	
	33315		38.	209.	0.	8.	13. F		3. 3.	0.68	1.05	0.08	8.6	1.50	353.7	11	7.5	0.96 1
			38.	209.	0.	8.	13. /		3. 3.	0.60	1.05	0.08	7.1	1.24	290.7	26	7.2	
	<u>33315</u> 33315		119.	134.	0.	-74.	89.	19.	<u> </u>	0.38	1.05	0.06	4.0	0.69	171.2	-7	7.8	1.01 1
			40.	213.	o. o.	-/4. 5.	9. F		2.	0.65	1.05	0.06	7.9	1.38	339.2	10	7.6	0.98 1
	33315					5. 5.	9. /		2.	0.58	1.05	0.06	6.7	1.16	285.8	27	7.4	0.95 1
	33315		40.	213.				19.	5.	0.83	1.05	0.13	11.1	1.94	407.1	9	7.4	0.95 1
	33315		32.	201.	<u>0.</u>	<u>13.</u> -83.	<u>22.</u> 131.	19.	<del></del>	0.88	1.05	0.18	23.3	4.05	788.0		9.5	1.23 1
	33315	-	128.	92.				19.	7.	1.24	1.05	0.18	29.7		1004.2	ŏ	9.3	1.21 1
	33315		27.	193.		18.	30.				1.05	0.10	20.8	3.61	763.0	ő	9.8	1.27
	33315		129.	120.	0.	-84.	102.	19.	4.	0.72	1.05			4.66	984.2	ŏ	9.7	1.26
	33315		<u>36.</u>	<u>213.</u>	0.	9.	9.	<u>19.</u>	<u>4.</u> 9.	1.05	1.05	0.07	26.8 7.2	1.26	196.6	- 6	8.2	
STIRL	33315		23.	76.		23.	147.	19.		0.45		0.16		1.26	196.9	19	7.4	0.96 1
STIRL	33315		148.	76.	0.	-103.	147.	19.	9.	0.45	1.05	0.16	7.3	2.27	354.6		7.4 6.9	
STIRL	33315		23.	201.		23.	21.	19.	9.	0.80	1.05	0.16	13.1		627.5	12	10.5	
	33315		<u>o,</u>	240.	<u>0.</u>	45.	<u>-17. /</u>		19.	1.87	1.05	0.10	44.1	7.67		0		
	33315	-	o.	507.	0.	117.	-45. /		48.	2.78	1.05	0.12		13.40	518.1 576.9	Ö.	14.1 9.3	1.83 1
	33315		7.	230.	0.	38.	-7.		16.	1.35	1.05	0.12	34,9	6.07		_		
	33315		30.	223.	0.	16.	-0. /		6.	0.83	1.05	0.06	19.1	3.32	530.2	0	. 8.4	1.09
	33315		<u> 18.</u>	186.	<u> 0.</u>	28.	<u>37.</u>	19.	<u> 1ĵ.</u>	1.14	1.05	0.24	22.4	3.90	604.0	5_	7.8	1.01 1
	33315		5.	166.	٥.	40.	<b>57</b> .	19.	16.	1.41	1.05	0.36	26.6	4.63	608.9	6	7.4	0.95 1
	33315		18.	198.	0.	28.	25.	19.	11.	1.04	1.05	0.20	22.2	3.87	546.4	4	7.8	1.02 1
	33315		157.	53.		-112.	169.	19.	12.	0.43	1 - 05	0.21	8.0	1.40	193.5		7.1	0.92 1
	33315		139.	76.	<u> </u>	-94.	146.	<u> 19.</u>	9.	0.37	1.05	0.20	6.1	1.07	179.6		7.0	
	33315		146.	<b>57</b> .		-101.	165.	19.	12.	0.40	1.05	0.24	7.0	1.22	184.5	50	6.8	0.88 1
	33315		152.	44.		-107.	178.	19.	13.	0.43	1.05	0.27	7.9	1.37	194.2	33	6.7	0.87 1
STWC16	33315	0.	160.	39.	٥.	-115.	183.	19.	14.	0.44	1.05	0.25	8.3	1.45	191.5	26	6.8	0.89 1
C1626	33315	0.	<u> 177.</u>	0.		-132.	222.	19.	19.	0.71	1.05	0.34	10.6	1.65	204.4	17	6.8	0.88 1
	33315		190.	0.		-139.	241.	19.	21.	0.63	1.05	0.35	10.8	1.88	194.2	17	6.7	0.87 1
C1622	33315	0.	173.	0.	٥.	-127.	222.	19.	19.	0,64	1.05	0.36	10.1	1.75	198.7	21	6.5	0.84 1
C1622	33315	Ο.	174.	0.	٥.	-128.	224.	19.	19.	0.60	1.05	0.36	10.0	1.74	196.3	22	6.5	
201222	33315	0.	172.	0.	<u> </u>	-126.	222.	19.	19.	0.62	1.05	<u>0.36</u>	9.6	1.66	189.7	24	6.4	0.83 1
	33315		172.	0.		-127.	223.	19.	19.	0.59	1.05	0.36	9.5	1.65	188.3	25	6.4	0.83 1
C0822	33315	Ο.	155.	31.	0.	-109.	191.	19.	15.	0.54	1.05	0.31	8.3	1.45	195.6	29	6.6	
STIG15	33315	Ο.	234.	٥.	٥.	-188.	222.	19.	19.	0.88	1.05	0.13	11.6	2.02	169.8	0	8.6	
3TIG15	33315	0.	4615,	0.	0.	-3351.	4302.	19.	515.	8.40	1.05	0.17		25.39	107.9	<u> </u>	64.3	
3T1G10	33315	0.	219.	0.	0.	-174.	222.	19.	19.	0.79	1.05	0.18	10.7	1.86	166.8	0	8.0	
STIG10	33315	0.	453.	0.	0.	-336.	462.	19.	48.	1.03	1.05	0.22	17.4	3.02	131.0	0	10.3	
STIGIS	33315	Ο.	212.	0.	0.	-167.	222.	19.	19.	0.76	1.05	0.21	10.1	1.76	162.9	5	7.7	1.00 1
STIGIS	33315	٥.	285.	0.	0.	· -216.	300	19.	28	0.75	1.05	0.23	11.9	2.06	142.2		8.2	
	33315		200.	0.	0.	-154.	222.	19.	19.	0.82	1.05	். 25	14.7	2.56	251.7	3	7.9	
			293.	0.	0.	-215.	332.	19.	32.	0.91	1.05	0.29	22.0	3.83	256.3	0	9.0	1.17 1
DEADV3	. <b></b>														270.7	12		0.93 1

				FUEL US	E IN BT	U*10**6-													
il		**C0	IGENERAT	TON CAS	E** **N	OCOGEN -	COGEN**	POWER	COGEN	M&D	POWER	FESR	CAPITAL	NORM	\$/KW	ROI	LEVL	NORM V	иRTН
ECS.	PROCS	DISTIL	RESIDL	CUAL	DISTIL	RESIDL	COAL	REGD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
<b></b>					·			MW	MW		RATIO		*10**6			(%)			
11	<b>13</b> 33315		0.	Ο.	-210.	45.	222.	19.	19.	0.91		0.21	17.9	3.11	290.0	0	9.9		
11	<b>\3</b> 33315		Ο.	ο.	-351.	91.	375.	19.	37.	1.17		0.25	31.3	5.45	304.8	0	13.1	1.70	
11	13 33315		210.	0.	ο.	-165.	222.	19.	19.	0.91		0.21	17.9	3.11	290.0	0	8.6	1.12	
	33315		351.	0.	0.	-260.	375.	19.	37.	1.17		0.25	31.3	5.45	304.8	0	10.9	1.42	
	ND 33315		18.	60.	-130.	27.	162.	19.	11.	0.38		0.22	6.4	1.11	167.0	17	7.6	0.99	
8	08 33315		0.	Ο.	-177.	45.	222.	19.	19.	0.57		0.34	10.8	1.88	208.4	5	7.7	1.00	
1	08 33315		o.	o.	-178.	46.	224.	19.	19.	0.52		0.34	10.8	1.87	206.0	5	7.7	1.00	
11	2 33315		<u>1.</u>		-173.	45.	220.	19.	18.	0.52		0.34	10.7	1.86	210.8		7.6		
11	6 33315		4.	13.	-166.	42.	210.	19.	17.	0.52		0.32	10.8	1.88	222.3	5	7.7	1.00	
11	08 33315		11.	37.	-149.	34.	185.	19.	14.	0,45		0.26	8.5	1.48	194.4	4	7.7	1.00	
1	2 33315		9.	29.	-155.	37.	194.	19.	15.	0.47		0.28	9.2	1.59	201.6	5	7.7	1.00	
	6 33315		<u>8.</u>	26.	-156.	38.	197.	19.	15.	0.48		0.29	9.6	1.68	211.2	5_	7.7	1.00	
	8 33315		o.	Q.	-192.	45.	222.	19.	19.	0.65		0.28	11.4	1.98	202.3	0	8.4	1.08	
	08 33315		Q.	o.	-216.	55.	253.	19.	22.	0.57		0.30	12.0	2.08	188.5	0	8.5	1.10	
11	2 33315		0.	0.	-186.	45.	222.	19.	19.	0.65		0.30	11.4	1.98	208.5	0	8.2	1.06	
	2 33315		<u>0.</u>	0.	-212,	55.	256.	19.	23,	0.57		0.32	12.0	2.09	194.0	<u> </u>	8.3	1.08	
H	6 33315		ο.	0.	-185.	45.	222.	19.	19.	0.64		0.31	11.6	2.03	214.9	0	8.2	1.06	
1	6 33315		0.	0.	-200.	51.	242.	19.	21.	0.56		0.32	11.9	2.08	204.1	0 .	8.2	1.06	
11	8 33315		4.	12.	-167.	42.	210.	19.	17.	0.50		0.24	9.6	1.67	175.6	0	8.3	1.08	
1	2 33315		1.	<u> </u>	<u>-181.</u>	44.	220.	19.	18.	0.50		0.31	10.0	1.74	188.6	3	7.8	1.01	
0	6 33315		2.	5.	-180.	44.	217.	19.	18.	0.51		0.30	10.4	1.80	196.9	1	7.9	1.02	
11	6 33315		0.	0.	-203.	45.	222.	19.	19.	2.20		0.24	13.7	2.38	229.4	0	10.6	1.37	•
13	S 33315		0.	0.	-353.	96.	393.	19.	39,	4.09		0.28	24.0	4.18	232.1	0	15.0	1.94	
1	S 33315			<u> </u>	-182.	<u>45.</u>	222.	<u> 19.</u>	19.	2.07		0.32	14.2	2.47	266.9	<u> </u>	9.7	1.26	
FCMCE	S 33315	258.	ο.	Ο.	-258.	76.	326.	19.	31.	3.09	1.05	0.36	20.7	3.60	274.3	0	11.8	1.53	149

<b>9</b>
JGJ) PO
110 14
AG
K 52

					E IN BIO	J*10**6-				CACEN	Ø&M	POWER	EECP	CAPITAL	NORM	\$/KW	PA1	LEVL	NORM	UPTU
ECS I	DBBOC I	DISTIL F	-	-		RESIDL		* *		POWER	UGIT	/HEAT		COST		EQVL	KUI	CHRG	ENRG	WKIN
:03 1	RUUS	DISITE P	ESIUL	COAL	DISTIL	KESIDE	COAL		REQD					*10**6	COST	EUVL	(%)	Critic	CINKO	
MECEN	33316	0.	39.	202.	0.	0.	Ō.	_	MW 16.	MW O.	0.54	0.91	0.	5.7	1.00	277.9	0	7.0	- 1 00	3 8
	33316	0.	115.	105.	0.	~76.	97.	~	16.	3.	0.34	0.91	0.09	3.7 4.6	0.80	188.7	-3	7.0	1.00	
	33316	0.	31.	189.	0.	8.	13.	_	16.	3. 3.	0.68	0.91	0.09	4.6 8.6	1.50	353.7	11	6.7	0.96	
TM141	-	0.	31.	189.	0.	8.		Ā	16.	3.	0.60	0.91	0.09	7.1	1.24	290.7	26	6.5	0.93	
880MT		<u> </u>	113.	113.	0.	<del>-74.</del>	69.		16.	2.	0.38	0.91	0.06	4.0	0.69	171.2	<del>-7</del>	7.1	1.01	-
STMOSS		0.	34.	193.	0. 0.	5.	9.	_	16.	2.	0.65	0.91	0.06	7.9	1.38	339.2	10	6.8	0.98	
880MT		0.	34.	193.	0.	5.	9.		16.	2.	0.58	0.91	0.06	7.9 6.7	1.16	285.8	27	6.6	0.95	
PERSTI		o.	26.	180.	0.	13.	22.	~	16.	5.	0.83	0.91	0.15	11.1	1.94	407.1	9	6.6	0.95	
FISTIT		0.	122.	71.	0.	-83.	131.		16.	<del>- 3.</del> 7.	0.88	0.91	0.13	23.3	4.05	788.0	0	8.7	1.25	
FISTMT		o.	21.	172.	Ö.	18.	30.		16.	7.	1.24	0.91	0.20	29.7		1004.2	ŏ	8.6	1.23	
TIHRSG		0.	123.	100.	o.	-84.	102.		16.	4.	0.72	0.91	0.08	20.8	3.61	763.0	ŏ	9. 1	1.30	
TIHRSG		0.	30.	193.	0.	9.	9.		16.	4.	1.05	0.91	0.08	26. <b>8</b>	4.66	984.2	Ö	9.0	1.29	
STIRL	33316	126.	16.	<u> </u>	-126.	23.	147.		16.	9.	0.45	0.91	0.18	7.2	1.26	196.6	- 6	7,5	1.07	-
STIRL	33316	0.	142.	55,	-120.	-103.	147.		16.	9. 9.	0.45	0.91	0.18	7.2	1.26	196.9	19	6.7	0.95	
STIRL	33316	0.	16.	181.	0. 0.	23.	21.		16.	9. 9.	0.45	0.91	0.18	13.1	2.27	354.6	12	6.2	0.88	
HEGT85		0.	0.	217.	0. 0.	23. 39.	~15.	Δ	16.	16.	1.75	0.91	0.10	40.5	7.05	637.3	0	9.6	1.38	
EGT85		0.	0.	507.	<u> </u>	117.	~45.		16.	48.	2.78	0.91	0.12		13.40	518.1	- 6	13.7	1.96	
HEGT60		o.	1.	209.	0.	38.	-7.		16.	16.	1.35	0.91	0.13	34.9	6.07	576.9	ŏ	8.5	1.22	
EGT00		0.	24.	202.	o.	16.	-o.		16.	6.	0.83	0.91	0.06	19.1	3.32	530.2	ő	7.7	1.10	
CMCCL		o.	12.	165.	o. o.	28.	37.	^	16.	11.	1.14	0.91	0.27	22.4	3.90	604.0	5	7.0	1,01	
CSTCL		0.	0.	147.	<u> </u>	<u> </u>	<u>55.</u>		16.	16.	1.50	0.91	0.39	26.7	4.65	621.2	-5	6.8	0.98	
CSTCL		o.	õ.	149.	Ö.	40.	57.		16.	16.	1.41	0.91	0.39	26.6	4.63	608.9	6	6.7	0.96	
GGTST		o.	11.	177.	Ö.	28.	25.		16.	11.	1.04	0.91	0.22	22.2	3.87	546.4	4	7.1	1.02	
TSOAR		o.	151.	33.	Ö.	-112.	169.		16.	12.	0.43	0.91	0.24	8.0		193.5	22	6.4	0.91	
TAC08		0.	133.	56.	Ö.	-94.	146.		16.	9.	0.37	0.91	0.22	6.1	1.07	179.6	149	6.2	0.89	
STAC12		o.	140.	36.	o.	-101.	165.		16.	12.	0.40	0.91	0.27	7.0	1.22	184.6	50	6.0	0.86	
STAC16		õ.	146.	24.	ő.	-107.	176.		16.	13.	0.43	0.91	0.30	7.9	1.37	194.2	33	5.9	0.85	
TWC16		Ď.	154.	19.	o.	-115.	183.		16.	14.	0.44	0.91	0.28	8.3	1.45	191.5	26	6.1	0.87	
C1626		0.	163.	0.	0.	-124.	202.		16.	16.	0.71	0.91	0.32	10.0		210.4	15	6.3	0.90	
001626		o.	190.	o.	Ö.	-139.	241.		16.	21.	0.63	0.91	0.35	10.8	1.88	194.2	14	6.2	0.89	
C1622		o,	159.	Õ.	o.	-120.	202.		16.	16.	0.68	0.91	0.34	9.7	1.68	207.5	18	6.1	0.88	
C1622		o.	174.	o.	o.	-128.	224.		16.	19.	0.60	0.91	0.36	10.0	1.74	196.3	19	6.0	0.86	
C1222		Ö.	158.	ō.	o.	-119.	202.		16.	16.	0.67	0.91	0.34	9.2	1.61	199.6	20	6.1	0,87	-
01222		o.	172.	Ŏ.	o.	-127.	223.		16.	19.	0.59	0.91	0.36	9.5	1.65	188.3	21	5.9	0.85	
C0822		o.	149.	11.	o.	-109.	191.		16.	15.	0.54	0.91	0.34	8.3	1.45	195.6	29	5.9	0.84	
TIGIS		o.	212.	o.	o.	-172.	202.		16.	16.	0.82	0.91	0.12	10.8		173.7	ő	7.8	1,12	
TIGIS		Ō.	4615.	0.	0.	-3351.	4302.		16.	515.	8.40	0.91	0.17		25.39	107.9	ō	63.9	9,14	
STIGIO		o.	199.	o.	o.	-160.	202.		16.	16.	0.75	0.91	0.18	10.0		170.9	Õ	7.3	1.05	
TIGIO		o.	453.	Ö.	o.	-336,	462.		16,	48.	1.03	0.91	0.22	17.4		131.0	Ö	9.8	1.41	
TIGIS		o.	193.	o.	o.	-154.	202.		16.	16.	0.72	0.91	0.20	9.5		167.7	3	7.1	1.01	
TIGIS		Ō.	285.	Ō.	Ō.	-216.	300.		16.	28.	0.75	0.91	0.23	11.9	2.06	142.2	<del></del>	7.8	1,11	
						-143.	202.		16.	16.	0.78	0.91	0.24	13.3	2.31	248.2	ž	7.2	1.03	
EADV3	33316	0.	182.	٥.	٥.	- 143.	EUE.		10.	10.	0.70	U. 31	U . Z.4	13.5			-	7.6	1.00	, ,

							COGEN**			Msd	POWER	FESR	CAPITAL	NORM		ROI	LEVL	HORM	
ECS	PROCS	DISTIL	RESIDL	COAL	DISTIL	RESIDL	COAL	REOD	POWER		/HEAT		COST	COST	EQVL		CHRG	ENRG	
							<del></del>	MW	MW		RATIO		*10**6			(%)		-	ri mat- ye
DEHTPM			146.				161.	16.	13.	0.60	0.91	0.31	11.1	1.93	270.7	12	6,4		
DESCAS			0.			39.	202.	16.	16.	0.85	0.91	0.21	16.0	2.78	284.6	0	9.0	1.29	
DESCAS			0.			91.	375.	16.	37.	1.17	0.91	0.25	31.3	5.45	304.8	O	12.7		
<u>DESCAS</u>			191.	<u> </u>	<u> </u>	<u>-152.</u>	202.	<u>16.</u>	16.	0.85	0.91	0.21	16.0	2.78	284.6	0	7.8		an and the state of the last
DESGAS			351.	ο.		-260.	375.	16.	37.	1.17	0.91	0.25	31.3	5.45	304.8	0	10.5	1.50	
GTSØAD			12.	40.	-130.	27.	162.	16.	11.	0,38	ข.91	0.25	6.4	1.11	167.0	17	6.9	0.99	
GTRA08			ο.		-163.	39.	<b>2</b> 02.	16.	16.	0.61	0.91	0.32	10.4	1.81	218.0	0	7.2	1.04	
GTRA08			<u>o.</u>	0.	-178.	46.	224.	16.	19.	0.52	0.91	0.34	10.8	1.87	205.0	0	7.3	1.04	
GTRA12			٥.		-161.	39.	202.	16.	16.,	0.60	0.91	0.33	10.4	1.82	221.2	1	7.2		
GTRA12			Ο.	0.	-173.	45.	220.	16.	18.	0.52	0.91	0.34	10.7	1.86	210.8	1	7.2		
GTRA16			Ο.	0.	-160.	39.	202.	16.	16.	0.59	0.91	0.34	10.8	1.87	229.2	1	7.2	1.03	3 15
	33316	·	0.	0.	-166.	42.	210.	16.	17	0.52	0.91	0.34	10.8	1.88	222.3	2_	7.1	1.02	2 14
	33316		5.	16.	-149.	34.	185.	16.	14.	0.45	0.91	0,29	8.5	1.48	194.4	4	7.0	1.00	
GTR212			2.	8.	-155.	37.	194.	16.	15.	0.47	0.91	0.31	9.2	1.59	201.6	5	7.0	1.00	) 14
GTR216			1.	5.	-156.	38.	197.	16.	15.	0.48	0.91	0.33	9.6	1.68	211.2	5	7.0	1.00	
GTRW08			0.	0.	-175.	39.	202	16.	16.	0.64	0.91	0.27	10.7	1.86	208.4	0	7.7	1.11	1 15
GTRI/08			ο.	0.	-216.	55 <i>.</i>	253.	16.	22.	0.57	0.91	0.30	12.0	2.08	188.5	0	8.1	1.16	5 14
GTRW12			ο.	0.	-171.	39.	<b>2</b> 02.	16.	16.	0.64	0.91	.G. 29	10.7	1.86	214.2	0	7.6	1.08	3 15
GTRW12	33316	212.	ο.	0.	-212.	55.	256.	16.	23.	0.57	0.91	0.32	12.0	2.09	194.0	0	7.9	1.13	3 14
GTRW16	33316	169.	0,	0,	-169.	39.	202.	16.	16.	0.64	0.91	0.30	11.0	1.91	221.5	0_	7.6	1.08	3 15
GTRW16	33316	200.	0.	0.	-200.	51.	242.	16.	21.	0.56	0.91	0.32	11.9	2.08	204.1	0	7.7	1.13	! 14
GTR308			ο.	٥.	-180.	39.	202.	16.	16.	0.57	0.91	0.25	9.7	1.68	182.7	0	7:7	1.10	
GTR308	33316	187.	0.	0.	-187.	42.	210.	16.	17.	0.50	0.91	0,26	9.6	1.67	175.6	0	7.7	1.10	) 14
<u> </u>	33316	168.	0.	0.	-168.	39.	202.	16.	16.	0.59	0.91	0,30	9.8	1.71	200.0	0	7.3	1.05	<u> 5 15</u>
GTR312	33316	181.	0.	0.	-181.	44.	220.	16.	18.	0.50	0.91	0.31	10.0	1.74	188.6	0	7.3	1.05	5 14
GTR316	33316	168.	ο.	٥.	-168.	39.	202.	16.	16.	0.60	0.91	0.30	10.2	1.78	207.5	0	7.4	1.06	3 15
GTR316	33316	180.	0.	0.	-180.	44.	217.	16.	18.	0.51	0.91	0.31	10.4	1.80	196.9	0	7.4	1.00	
<b>FCPADS</b>	33316	186.	0.	С.	-186.	39.	202.	16.	16.	1.95	0.91	0.23	12.4	2.16	228.3	_0_	9.6	1.37	7 15
FCPADS	33316	353.	0.	0.	-353.	96.	393.	16.	39.	4.09	0.91	0.23	24.0	4.18	232.1	0	14.5	2.08	3 14
FCMCDS	33316	6. 167.	0.	0.	-167.	39.	202.	16.	16.	1.85	0.91	0.31	12.9	2.24	263.7	0	8.9	1.27	/ 15
<b>FCMCDS</b>	33316	258.	Ο.	0.	-258.	76.	<b>3</b> 26.	16.	31.	3.09	0.91	0.36	20.7	3.60	274.3	0	11.4	1.63	3 15