ИЛИ vs Исключающее ИЛИ

X	У	$x \vee y$	x + y
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	0

- $ightharpoonup \overline{x} = 1 + x$.
- ightharpoonup Если xy = 0, то $x \lor y = x + y$.
- ightharpoonup Если xy=1, то $x\vee y=1$ и x+y=0. Поэтому,

$$x \lor y = x + y + xy$$

для всех \boldsymbol{x} и \boldsymbol{y} .

▶ СДНФ=сокр. ДНФ=тупик. ДНФ=миним. ДНФ

$$x + y = \overline{x}y \vee x\overline{y}$$
.

Общие свойства

V	+
$x \lor 0 = x$	x + 0 = x
$x \vee \overline{x} = 1$	$x + \overline{x} = 1$
Коммутативность	Коммутативность
$x \lor y = y \lor x$	x + y = y + x
Ассоциативность	Ассоциативность
$(x \vee y) \vee z = x \vee (y \vee z)$	(x+y)+z=x+(y+z)
Дистрибутивность	Дистрибутивность
$x(y \lor z) = xy \lor xz$	x(y+z)=xy+xz

Отличия

V	+
$x \lor x = x$	x + x = 0
$x \lor 1 = 1$	$x + 1 = \overline{x}$
Дистрибутивность	
$x \vee yz = (x \vee y) \cdot (x \vee z)$	$1+0\cdot 1=1\neq 0=(1+0)\cdot (1+1)$
Двойственность	
$\overline{x \vee y} = \overline{x} \cdot \overline{y}$	
$\overline{xy} = \overline{x} \vee \overline{y}$	

Дизъюнкции элементарных конъюнктов без отрицаний

- Конъюнкция монотонная функция. Поэтому элементарные конъюнкты без отрицаний — монотонные функции.
- Дизъюнкция монотонная функция. Поэтому дизъюнкции нескольких элементарных конъюнктов без отрицаний — монотонные функции.

Суммы элементарных конъюнктов без отрицаний

Определение. Многочленом Жегалкина называется сумма нескольких элементарных конъюнктов без от отрицаний.

Примеры. 0, 1,
$$xy$$
, 1 + x , $x + y$, $x + y + xy$, 1 + $x + xy + xyz$, ...

Теорема. Любая булева функция $f: B^n \to B$ представляется в виде многочлена Жегалкина, причем единственным образом

Доказательство существования. Представим f в СДН Φ

$$f(x_1, x_2, \ldots, x_n) = \bigvee_{(\sigma_1, \sigma_2, \ldots, \sigma_n) \in B^n: f(\sigma_1, \sigma_2, \ldots, \sigma_n) = 1} x_1^{\sigma_1} \cdot x_2^{\sigma_2} \cdots x_n^{\sigma_n}.$$

Заметим, что при $(\sigma_1,\sigma_2,\ldots\sigma_n) \neq (\sigma'_1,\sigma'_2,\ldots\sigma'_n)$ имеем

$$(x_1^{\sigma_1} \cdot x_2^{\sigma_2} \cdots x_n^{\sigma_n}) \cdot (x_1^{\sigma_1'} \cdot x_2^{\sigma_2'} \cdots x_n^{\sigma_n'}) = 0.$$

Теорема. Любая булева функция $f: B^n \to B$ представляется в виде многочлена Жегалкина, причем единственным образом

Доказательство существования (продолжение). Поэтому,

$$f(x_1, x_2, \ldots, x_n) = \sum_{(\sigma_1, \sigma_2, \ldots, \sigma_n) \in B^n: f(\sigma_1, \sigma_2, \ldots, \sigma_n) = 1} x_1^{\sigma_1} \cdot x_2^{\sigma_2} \cdots x_n^{\sigma_n}.$$

Таким образом, достаточно доказать, что любой элементарный конъюнкт $X_1^{\sigma_1} \cdot X_2^{\sigma_2} \cdots X_n^{\sigma_n}$ представляется в виде многочлена Жегалкина.

Теорема. Любая булева функция $f: B^n \to B$ представляется в виде многочлена Жегалкина, причем единственным образом

Доказательство существования (продолжение). Без ограничений общности можно считать, что

$$\sigma_1 = 0, \sigma_2 = 0, \dots, \sigma_k = 0, \sigma_{k+1} = 1, \sigma_{k+2=1}, \dots, \sigma_n = 1.$$

 $X_1, X_2, \ldots X_k$

$$x_1^{\sigma_1} \cdot x_2^{\sigma_2} \cdots x_n^{\sigma_n} = \overline{x}_1 \cdot \overline{x}_2 \cdots \overline{x}_k \cdot x_{k+1} \cdot x_{k+2} \cdots x_n = = (1+x_1) \cdot (1+x_2) \cdots (1+x_k) \cdot x_{k+1} \cdot x_{k+2} \cdots x_n = = \sum_K K \cdot x_{k+1} \cdot x_{k+2} \cdots x_n$$
, где суммирование проводится по всем конъюнктам K без отрицаний от переменных

Доказательство единственности. Пусть $N=2^{2^n}$ и f_1,f_2,\ldots,f_N — все булевы функции от n аргументов. Пусть G_i — количество различных многочленов Жегалкина функции f_i , $i=\overline{1,N}$. В силе доказанного $G_i\geq 1$, $i=\overline{1,N}$. Тогда для количества G всех многочленов Жегалкина от n аргументов имеем

$$G = \sum_{i=1}^{N} G_i \ge \sum_{i=1}^{N} 1 = N = 2^{2^n} = G,$$

поскольку всего существует только 2^n конъюнктов без отрицаний, каждый из которых может входить или не входить в многочлен.

Доказательство единственности. Пусть $N=2^{2^n}$ и f_1,f_2,\ldots,f_N — все булевы функции от n аргументов. Пусть G_i — количество различных многочленов Жегалкина функции f_i , $i=\overline{1,N}$. В силе доказанного $G_i\geq 1$, $i=\overline{1,N}$. Тогда для количества G всех многочленов Жегалкина от n аргументов имеем

$$G = \sum_{i=1}^{N} G_i \ge \sum_{i=1}^{N} 1 = N = 2^{2^n} = G,$$

поскольку всего существует только 2^n конъюнктов без отрицаний, каждый из которых может входить или не входить в многочлен. Поэтому, $G_i = 1$ для каждого $i = \overline{1, N}$, то есть каждая f_i имеет только один многочлен Жегалкина.

Пример

Χ	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
f	0	1	1	1	1	1	1	0

Пример

Χ	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
Z	0	1	0	1	0	1	0	1
f	0	1	1	1	1	1	1	0
Ī	1	0	0	0	0	0	0	1

$$f = 1 + \overline{f} = 1 + (\overline{x}\,\overline{y}\,\overline{z} \lor xyz) = 1 + \overline{x}\,\overline{y}\,\overline{z} + xyz = 1 + (1+x)(1+y)(1+z) + xyz = 1 + (1+x+y+z+xy+xz+yz+xyz) + xyz = x+y+z+xy+xz+yz$$

Формула для многочлена Жегалкина

$$f(x_{1},...,x_{n}) = \sum_{(\sigma_{1},...,\sigma_{n})} f(\sigma_{1},...,\sigma_{n}) x_{1}^{\sigma_{1}} \cdots x_{n}^{\sigma_{n}} =$$

$$= \sum_{(\sigma_{1},...,\sigma_{n})} f(\sigma_{1},...,\sigma_{n}) (x_{1} + \overline{\sigma_{1}}) \cdots (x_{n} + \overline{\sigma_{n}}) =$$

$$= \sum_{(\sigma_{1},...,\sigma_{n})} \sum_{(\tau_{1},...,\tau_{n}) \geq (\sigma_{1},...,\sigma_{n})} f(\sigma_{1},...,\sigma_{n}) x_{1} \widehat{\tau}_{1} \cdots x_{n} \widehat{\tau}_{n} =$$

$$= \sum_{(\tau_{1},...,\tau_{n})} \sum_{(\sigma_{1},...,\sigma_{n}) \leq (\tau_{1},...,\tau_{n})} f(\sigma_{1},...,\sigma_{n}) x_{1} \widehat{\tau}_{1} \cdots x_{n} \widehat{\tau}_{n} =$$

$$= \sum_{(\tau_{1},...,\tau_{n})} x_{1} \widehat{\tau}_{1} \cdots x_{n} \widehat{\tau}_{n} \sum_{(\sigma_{1},...,\sigma_{n}) \leq (\tau_{1},...,\tau_{n})} f(\sigma_{1},...,\sigma_{n}).$$