## Monopolistic Screening with Buyers Who Sample

Nicolas Pastrian

July 25, 2023

University of Pittsburgh

### Motivation

• Consumers are exposed to a huge variety of products

#### **Motivation**

- Consumers are exposed to a huge variety of products
- Computational constraints make it impossible for them to have access and evaluate all available alternatives

#### Motivation

- Consumers are exposed to a huge variety of products
- Computational constraints make it impossible for them to have access and evaluate all available alternatives
- This impacts how sellers determine their product line and pricing decisions

#### Goal

- Study a problem of product line design with informational frictions
- Build a simple model that
  - considers limited computational capacity of consumers
  - captures the tradeoff of increasing variety for the seller
- Focus on the design dimension of this problem

### Goal

- Study a problem of product line design with informational frictions
- Build a simple model that
  - considers limited computational capacity of consumers
  - captures the tradeoff of increasing variety for the seller
- Focus on the design dimension of this problem

#### What I do

- $\Rightarrow$  I propose a model in which buyers cannot evaluate all available alternatives presented by the seller
- $\Rightarrow$  Instead, they only sample some of the alternatives
- ⇒ The main question is how the optimal menu/mechanism looks like here

Model: Mussa and Rosen (1978) + boundedly rational buyers  $\downarrow$  unknown menu + sampling

```
Model: Mussa and Rosen (1978) + boundedly rational buyers \downarrow unknown menu + sampling
```

 $\bullet \ \, {\sf Screening \ menu} \, + \, {\sf buyers \ observe \ menu \ entries \ at \ random}$ 

```
Model: Mussa and Rosen (1978) + boundedly rational buyers \downarrow unknown menu + sampling
```

• Screening menu + buyers observe menu entries at random

Single sample  $\Rightarrow$  optimal menu has size 1

• "Noise" could reduce variety

Model: Mussa and Rosen (1978) 
$$+$$
 boundedly rational buyers  $\downarrow$  unknown menu  $+$  sampling

• Screening menu + buyers observe menu entries at random

Single sample  $\Rightarrow$  optimal menu has size 1

"Noise" could reduce variety

Two samples  $\Rightarrow$  optimal menu has size  $\neq 2$ 

ullet Number of samples eq number of offers in general

Model: Mussa and Rosen (1978) 
$$+$$
 boundedly rational buyers  $\downarrow$  unknown menu  $+$  sampling

• Screening menu + buyers observe menu entries at random

Single sample  $\Rightarrow$  optimal menu has size 1

• "Noise" could reduce variety

Two samples  $\Rightarrow$  optimal menu has size  $\neq$  2

ullet Number of samples eq number of offers in general

All results are up to measure zero cases

One seller and a continuum of buyers

One seller and a continuum of buyers

#### Seller:

- Produces good of quality q at cost  $q^2/2$
- Designs a finite menu of quality-price pairs ("offers")

One seller and a continuum of buyers

#### Seller:

- Produces good of quality q at cost  $q^2/2$
- Designs a finite menu of quality-price pairs ("offers")

### Buyers:

- Private valuation  $\theta \in \{\theta_L, \theta_H\}$  with  $\theta_H > \theta_L > 0$
- Fraction  $\alpha$  has high valuation  $\theta_H$

One seller and a continuum of buyers

#### Seller:

- Produces good of quality q at cost  $q^2/2$
- Designs a finite menu of quality-price pairs ("offers")

### Buyers:

- Private valuation  $\theta \in \{\theta_L, \theta_H\}$  with  $\theta_H > \theta_L > 0$
- Fraction  $\alpha$  has high valuation  $\theta_H$
- $\rightarrow$  If a buyer with valuation  $\theta$  accepts an offer (q,p) then he gets payoff  $\theta q-p$  while the seller gets  $p-q^2/2$

One seller and a continuum of buyers

#### Seller:

- Produces good of quality q at cost  $q^2/2$
- Designs a finite menu of quality-price pairs ("offers")

### Buyers:

- Private valuation  $\theta \in \{\theta_L, \theta_H\}$  with  $\theta_H > \theta_L > 0$
- Fraction  $\alpha$  has high valuation  $\theta_H$
- ightarrow If a buyer with valuation heta accepts an offer (q,p) then he gets payoff heta q p while the seller gets  $p-q^2/2$
- ightarrow If the buyer rejects the offer then both get zero

- Buyers will be boundedly rational and unable to observe (nor conjecture) the menu offered by the seller
- Instead they will sample offers from the menu uniformly at random

- Buyers will be boundedly rational and unable to observe (nor conjecture) the menu offered by the seller
- Instead they will sample offers from the menu uniformly at random
- The number of samples is fixed

- Buyers will be boundedly rational and unable to observe (nor conjecture) the menu offered by the seller
- Instead they will sample offers from the menu uniformly at random
- The number of samples is fixed
- ullet Outside option (0,0) is always available for consumers

- Buyers will be boundedly rational and unable to observe (nor conjecture) the menu offered by the seller
- Instead they will sample offers from the menu uniformly at random
- The number of samples is fixed
- Outside option (0,0) is always available for consumers
- Since duplicating all offers makes no difference, I focus on menus with minimum size

## **Timing**

Seller designs menu

,

Buyers sample from the menu

1

Buyers decide whether to accept one of the sampled offers

# Seller's problem with a single sample

ullet Given a menu of size m, each offer will be observed with probability 1/m

## Seller's problem with a single sample

- Given a menu of size m, each offer will be observed with probability 1/m
- Since each buyer only draw a single sample, the only comparison they make is with their outside option of rejecting the offer

## Seller's problem with a single sample

- Given a menu of size m, each offer will be observed with probability 1/m
- Since each buyer only draw a single sample, the only comparison they make is with their outside option of rejecting the offer
- This implies that only "participation" constraints are relevant

## Main result with a single sample

#### **Theorem**

Consider the single sample problem with two valuations. The optimal menu includes a single offer.

## Main result with a single sample

#### **Theorem**

Consider the single sample problem with two valuations. The optimal menu includes a single offer.

 Hence, in an environment with a single sample, the effective variety offered is reduced

## **Sketch of proof:**

- Step 1: only "efficient" offers are included in the menu:  $(\theta, \theta^2)$  for some  $\theta$ 
  - No incentive compatibility constraints since only single offer is observed each time
  - If offer with quality q is drawn, for which last type accepting is  $\theta$ , optimal to price it at  $p=\theta q$
  - ullet Then, if offer is accepted by  $heta' \geq heta$ , optimal to match efficient quality provision for heta

## **Sketch of proof:**

- Step 1: only "efficient" offers are included in the menu:  $(\theta, \theta^2)$  for some  $\theta$ 
  - No incentive compatibility constraints since only single offer is observed each time
  - If offer with quality q is drawn, for which last type accepting is  $\theta$ , optimal to price it at  $p=\theta q$
  - Then, if offer is accepted by  $\theta' \geq \theta$ , optimal to match efficient quality provision for  $\theta$
- Step 2: given that only offers of this form are offered optimal menu is determined by a linear problem
  - Solution involves assigning all mass to "best" offer only

















(a)  $\alpha < \hat{\alpha}$ : optimal menu offers only  $q = \theta_L$  (red). All buyers accept the offer.



**(b)**  $\alpha > \hat{\alpha}$ : optimal menu offers only  $q = \theta_H$  (red). Only buyers with valuation  $\theta_H$  accept the offer.

### Seller's problem with two samples

- For a menu of size m, buyers will observe a single offer i with probability  $1/m^2$ , and two offers j and k with probability  $2/m^2$
- Since more than one alternative would be evaluated with positive probability (unless all offers are identical), there would be relevant incentive compatibility constraints to satisfy now
- This makes the characterization of the optimal menu challenging
- To guarantee existence, I assume that there is a limit M on the size of the menu the seller could design, and consider the case in which M is large

# Results with two samples

#### Lemma

Consider the problem with two samples. Suppose that the optimal menu contains only two offers  $(q_a, p_a)$  and  $(q_b, p_b)$ . Then, for M large enough, the expected profits from menus  $\{(q_a, p_a)\}$  and  $\{(q_b, p_b)\}$  must be the same.



#### **Proposition**

Consider the problem with two samples and two valuations. Suppose M is large enough, Then, the optimal menu does not contain only two offers.

#### **Intuition behind Lemma**

- Fix  $(q_a, p_a)$  and  $(q_b, p_b)$
- Let  $R_i$  the value generated for the seller if buyers observe i = a, b, ab
- Let x the probability a is drawn
- Consider the following problem for the seller

$$\max_{x} x^{2}R_{a} + (1-x)^{2}R_{b} + 2x(1-x)R_{ab}$$

• If exists, the interior solution is

$$x^* = \frac{1}{1 + \frac{R_{ab} - R_b}{R_{ab} - R_a}}$$

• Note,  $x^* = 1/2 \iff R_a = R_b$ 

#### **Intuition behind Lemma**

- A necessary condition is  $R_{ab} > \max\{R_a, R_b\}$  (i.e., there must be gains from using a menu)
- Assume  $R_a \ge R_b$
- Starting from a menu only containing **a**, including **b** induces...

"Gain" 
$$R_a o R_{ab}$$
"Loss"  $R_a o R_b$ 

- x\* balances this tradeoff
  - If **b** drawn with small probability ε, more likely to observe {a, b} instead of **b** only ⇒ overall gain from including **b**
  - If  $R_a = R_b$ , no cost of including **b**, so optimal to maximize prob. of  $\{a, b\}$
  - If R<sub>a</sub> > R<sub>b</sub>, then costly to include b and having both with same probability is too costly ⇒ optimal to "bias" toward a

# From Lemma to Proposition and beyond

• For two valuations and two samples, I could show that never optimal to set  $\bf a$  and  $\bf b$  such that  $R_a=R_b$  (up to a very specific set of parameters)

# From Lemma to Proposition and beyond

- For two valuations and two samples, I could show that never optimal to set  $\bf a$  and  $\bf b$  such that  $R_a=R_b$  (up to a very specific set of parameters)
- Lemma doesn't depend on binary valuations
- It could be extended beyond 2 samples directly

# From Lemma to Proposition and beyond

- For two valuations and two samples, I could show that never optimal to set a and
   b such that R<sub>a</sub> = R<sub>b</sub> (up to a very specific set of parameters)
- Lemma doesn't depend on binary valuations
- It could be extended beyond 2 samples directly
- Extending the proposition to a more general structure is still work in progress

# Heterogeneity in sample sizes

- What if there are consumers with one and two samples at the same time?
- It can be shown that the problem is qualitatively similar to the case in which all consumers have two samples
- Hence there is little loss on considering all consumers having the same sample size

# **Extension: Submenus with a single sample**

- Consider the possibility of offering small menus instead of single alternatives on each draw.
- A mechanism is now a collection of (sub)menus of quality-price pairs.
- Each submenu has a limited size S.
- Valuations are distributed over an interval  $[\theta_L, \theta_H]$  according to some distribution F.
- We consider the case in which buyers sample only once.

### **Extension: Submenus with a single sample**

#### **Proposition**

Consider the environment with finite-size submenus and a single sample. Suppose Assumption 1 holds. Then, the optimal mechanism uses a single submenu.

- Same intuition as in main theorem:
  - No IC implies each submenu must be optimal given submenu's size
  - Resulting problem is again a linear problem
  - Hence, solution involves maximizing the probability of the best option (i.e., submenu).

### **Extension: Submenus with a single sample**

#### **Proposition**

Consider the environment with finite-size submenus and a single sample. Suppose Assumption 1 holds. Then, the optimal mechanism uses a single submenu.

- Same intuition as in main theorem:
  - No IC implies each submenu must be optimal given submenu's size
  - Resulting problem is again a linear problem
  - Hence, solution involves maximizing the probability of the best option (i.e., submenu).

**Assumption 1:** The optimal mechanism under full-consideration and a menu of size up to S is unique.

#### Related literature

- Product line design and pricing: Mussa and Rosen (1978), Villas-Boas (2004),
   Doval and Skreta (2022), Garrett et al (2019), Sandmann (2023)
- Revenue maximization with samples: Dhangwatnotai et al (2015), Babaioff et al (2018), Daskalakis and Zampetakis (2020), Fu et al (2021)
- Sampling/S(1) equilibrium: Osborne and Rubinstein (1998, 2003), Spiegler (2006), García-Echeverri (2021)
- Search: Weitzman (1979), Burdett and Judd (1983), Doval (2018), Ursu et al (2021), Safonov (2022), Fershtman and Pavan (2022)

#### **Concluding remarks**

- I presented a model in which a seller interact with boundedly rational buyers which cannot observe the menu designed by her and instead get samples from it
- I showed that the optimal menu when buyers have access to a single sample involves including a single offer, matching the best contract for one type of buyers
- ullet In the case of two samples, I showed that the optimal menu cannot contain only two alternatives, each sampled with probability 1/2

#### **Concluding remarks**

- I presented a model in which a seller interact with boundedly rational buyers which cannot observe the menu designed by her and instead get samples from it
- I showed that the optimal menu when buyers have access to a single sample involves including a single offer, matching the best contract for one type of buyers
- ullet In the case of two samples, I showed that the optimal menu cannot contain only two alternatives, each sampled with probability 1/2

#### What is next?

- ⇒ Full characterization for more than two samples
- $\Rightarrow$  Study the effect of competition on the seller's problem
- ⇒ Allow the seller to use targeted menus/ads
- $\Rightarrow$  Applications: taxes and social insurance systems

#### **Concluding remarks**

- I presented a model in which a seller interact with boundedly rational buyers which cannot observe the menu designed by her and instead get samples from it
- I showed that the optimal menu when buyers have access to a single sample involves including a single offer, matching the best contract for one type of buyers
- ullet In the case of two samples, I showed that the optimal menu cannot contain only two alternatives, each sampled with probability 1/2

# Thanks!

nrpastrian.github.io nip59@pitt.edu