Relatório do T1 DCC091 2019.1

Solução de IoT

Braulio Silva Mendes Lucas¹, João Victor Dutra Balboa¹.

¹Departamento de Ciência da Computação – Universidade Federal de Juiz de Fora (UFJF) – Juiz de Fora/MG – Brazil

{brauliolucas, jbalboa}@ice.ufjf.br

Abstract. The Internet of Things (IoT) field is recently used in troubleshooting several areas. The work in question consists in the development of a solution for noise, temperature and humidity management in different environments. Its purpose is to help people's welfare and the proper functioning of the activities carried out in these places.

Resumo. O campo da Internet das Coisas (IoT) é ultimamente utilizado na solução de problemas de diversas áreas. O trabalho em questão consiste no desenvolvimento de uma solução de gerenciamento de ruído, temperatura e umidade em diferentes ambientes. Seu intuito é auxiliar no bem-estar das pessoas e no funcionamento adequado das atividades realizadas nestes locais.

1. Visão Geral do Trabalho

O conforto oferecido por um local é diretamente ligado ao rendimento das pessoas que neste realizam atividades. Além disso, suas características influenciam até mesmo na saúde. Uma pesquisa realizada pela (MONSTER, 2014), concluiu que 42% dos entrevistados nos Estados Unidos deixaram o emprego devido a um ambiente estressante e, 61% destes acreditam que este estresse pode ter sido a causa de uma doença.

Grande parcela do estresse é gerada pelo nível de ruído (FOLHA DE SÃO PAULO, 2001), que é alto em muitos lugares, inclusive escritórios. Em relação a satisfação das pessoas com o ambiente de trabalho, (SUNDSTROM et. Al, 1994) mostra em seu estudo que 54% de funcionários entrevistados disseram ser incomodados com frequência por barulho.

Além do estresse, o barulho também afeta os indivíduos de diferentes formas. Dependendo do tempo de exposição e do nível, este ruído pode causar casar insônia, depressão, ganho de peso e até mesmo doença cardíaca (TERRA, 2014).

Os níveis de ruído para conforto acústico são definidos pela (ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 1987) através da NBR 10152, como mostra a figura 1.

Locais	dB(A)	NC
Hospitais		
Apartamentos, Enfermarias, Berçários, Centros cirúrgicos	35-45	30-40
Laborátorios, Áreas para uso do público	40-50	35-45
Serviços	45-55	40-50
Escolas		
Bibliotecas, Salas de música, Salas de desenho	35-45	30-40
Salas de aula, Laboratórios	40-50	35-45
Circulação	45-55	40-50
Hotéis Apartamentos	35-45	30-40
Restaurantes, Salas de Estar	40-50	35-45
Portaria, Recepção, Circulação	45-55	40-50
Totalia, Necepção, Oliculação	45-33	40-30
Residências		
Dormitórios	35-45	30-40
Salas de estar	40-50	35-45
Auditórios		
Salas de concertos, Teatros	30-40	25-30
Salas de conferências, Cinemas, Salas de uso múltiplo	35-45	30-35
Restaurantes	40-50	35-45
For Military		
Escritórios Salas de reunião	30-40	25-35
Salas de reuniao Salas de gerência, Salas de projetos e de administração	30-40	30-40
Salas de gerencia, Salas de projetos e de administração Salas de computadores	45-65	40-60
Salas de mecanografia	50-60	45-55
Calab do modal logical d	30 00	45-55
Igrejas e Templos (Cultos meditativos)	40-50	35-45
Locais para esporte		
Pavilhões fechados para espetáculos e atividades esportivas	45-60	40-55

Notas: a) O valor inferior da faixa representa o nível sonoro para conforto, enquanto que o valor superior significa o nível sonoro aceitável para a finalidade.

b) Níveis superiores aos estabelecidos nesta Tabela são considerados de desconforto, sem necessariamente implicar risco de dano à saúde (ver Nota a do Capítulo 1).

Figura 1: Níveis de ruído para conforto acústico (NBR 10152).

Outros fatores relacionados ao bem-estar são a temperatura e a umidade. Uma pesquisa do *CareerBuilder*, conduzida por (LORENZ, 2015), revelou que 53% dos trabalhadores dizem ser menos produtivos quando trabalham em um local considerado por estes muito frio e 71% em um local muito quente.

De acordo com a Norma Regulamentadora (NR17)(BRASIL, 2007) da Consolidação das Leis do Trabalho (CLT), o índice de temperatura efetiva no ambiente de trabalho deve estar entre 20°C e 23°C. Já a umidade relativa do ar não deve ser inferior a 40%. Além destas, existem outras normas, como a ISO 9241 (INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, 2010), na qual

estes valores se diferem ligeiramente, estando a temperatura ideal entre 20°C e 24°C no verão, 23°C e 26°C no inverno e a umidade entre 40 e 80 por cento.

O trabalho em questão consiste no desenvolvimento de uma solução *IoT* que auxilia no controle das condições acima descritas (temperatura, umidade e ruído) em um local, seja esse uma empresa, universidade, dentre outros.

Para isso foram utilizados um microcontrolador (MCU), programado em Arduino; um sensor digital de temperatura e umidade (DHT11); um sensor detector de som (*high sensitivity*); uma *protoboard* de 400 pontos; 3 *leds*; e 6 *jumpers* macho.

A solução se resume na coleta de dados dos sensores, tratamento destas (e.g. conversão de valores analógicos para decibéis) e envio através de MQTT para a plataforma *ThingsBoard*¹ (plataforma *open-source* de *IoT* para gerenciamento e visualização de dados). Seu código está disponível no *GitHub*².

Foi desenvolvida uma lógica que emite um sinal, por meio de *led*, sempre que alguma grandeza medida está fora do intervalo ou limite aceitável em cada ambiente, de acordo com as normas NR17 e NBR 10152.

O sistema é executado no *browser* e permite que o usuário defina o local no qual se encontra (Figura 2), feito isso, são selecionados os limites, já definidos pelas normas. Como existem 3 *leds*, cada um serve de "alarme" para uma grandeza (temperatura, umidade e ruído), sendo que quando ela ultrapassa este limite, seu respectivo *led* é aceso. A umidade e temperatura possuem limites mínimo e máximo, já o ruído, apenas máximo.

Ruido, Temperatura e Umidade
DCC091 - IoT - 2019.1
Alunos: Braulio Silva Mendes Lucas Joao Victor Dutra Balboa
Escolha o ambiente para leitura dos valores:
Biblioteca Sala de Aula Apartamento Escritorio Restaurante

Figura 2: Interface da solução (escolha do ambiente).

¹ https://thingsboard.io/

² <u>https://github.com/Jvbalboa/IoT</u>

2. Teste e Resultados

2.1. Teste

Foram feitos testes da solução em dois ambientes:

- Restaurante Universitário da UFJF, onde os níveis de temperatura devem estar entre 20°C e 23°C, umidade superior a 40% e ruído até 40 decibéis para o conforto acústico, com limite de 50.
- Biblioteca do ICE, na qual os níveis de temperatura e umidade aceitáveis se mantém e, o de ruído máximo cai para 35 decibéis para o conforto e 45 de limite.

As medições foram realizadas às 18:40 no restaurante e 19:00 na biblioteca. Os resultados estão registrados na próxima seção.

2.2 Resultados

A Figura 3 mostra o gráfico de ruído medido no RU da UFJF. Neste é possível perceber uma variação onde os valores correspondentes se encontram entre o limite de conforto e o limite total aceitável, com alguns picos mais constantes ultrapassando o limite aceitável e outros poucos decaindo para a região de conforto auditivo.

Figura 3: Gráfico com valores de ruído medidos no Restaurante Universitário.

Em relação a temperatura, a medição mostrou um índice bem acima do regulamentado (diferença de 4°C), ainda mais considerando o horário de medição. A temperatura foi de 27°C, enquanto o limite é de 23°C (Figura 4).

Figura 4: Gráfico com valores de temperatura medidos no Restaurante Universitário.

A umidade foi a única que se manteve dentro dos limites durante o tempo de medição, que foi de cerca de 30 minutos, apesar do gráfico mostrar apenas 1 minuto. É o que mostra a Figura 5.

Figura 5: Gráfico com valores de umidade medidos no Restaurante Universitário.

A Figura 6 mostra os *leds* de controle indicando desconformidades em relação ao ruído e à temperatura na restaurante. O *led* vermelho é referente à temperatura e o verde, ruído. Já o verde apagado no meio, controla os níveis de umidade.

Figura 6: Leds de controle no Restaurante.

Já na biblioteca, as medições mostraram valores melhores em relação às normas, exceto na temperatura, que manteve média de 27°C. As Figuras de 7 a 9 mostram os resultados neste ambiente.

Figura 7: Gráfico com valores de ruído medidos na Biblioteca.

Figura 8: Gráfico com valores de temperatura medidos na Biblioteca.

Figura 9: Gráfico com valores de umidade medidos na Biblioteca.

Como neste segundo ambiente apenas a temperatura estava em inconformidade, o *led* vermelho foi o único a acender (Figura 10).

Figura 10: Leds de controle na Biblioteca.

3. Conclusão

A solução mostrou nos testes e resultados o seu auxílio e necessidade no controle dos níveis de temperatura, umidade e ruído nos ambientes, já que existem vários índices fora dos limites estipulados. Ela facilita o trabalho de quem faz esse gerenciamento, pois evita o desperdício de tempo com a medição manual e pode ser utilizada em diferentes locais. Além disso, já possui registrados os valores aceitáveis pelas normas.

Por fim, as ferramentas utilizadas permitem integração com sistemas de arcondicionado e umidificadores de ar por meio da rede (funcionalidade não implementada), podendo assim o usuário, com a adição de código, controlá-los de forma automática. Portanto, é possível a modificação desta de acordo com as necessidades do usuário (e.g. a adição de um *led* em uma biblioteca para alertar o excesso de ruído).

Referências

Associação Brasileira de Normas Técnicas (1987), "Níveis de ruído para conforto acústico", NBR 10152, http://www.joaopessoa.pb.gov.br/portal/wp-content/uploads/2015/02/NBR 10152-1987-Conforto-Ac stico.pdf, junho de 2019.

Brasil (2007). "NR 17: Ergonomia (117.000-7)" Normas Regulamentadoras, http://www.trtsp.jus.br/geral/tribunal2/LEGIS/CLT/NRs/NR 17.html, junho de 2019.

Folha de São Paulo (2001), "Barulho causa estresse e dor de cabeça", https://www1.folha.uol.com.br/fsp/cotidian/ff1108200117.htm?utm_source=blog&utm_campaign=rc_blogpost, junho de 2019.

International Organization for Standardization (2010), "Ergonomics of human-system interaction", ISO 9241, https://www.iso.org/standard/52075.html, junho de 2019.

- Lorenz M. (2015) "How much does temperature affect your productivity?", CarrerBuilder, https://www.careerbuilder.com/advice/how-much-does-temperature-affect-your-productivity, junho de 2019.
- Monster (2014), "Dangerously Stressful Work Environments Force Workers to Seek New Employment", https://www.monster.com/about/a/dangerously-stressful-work-environments-force-workers-to-seek-new-empl4162014-d3126696?utm-source=blog&utm-campaign=rc-blogpost, junho de 2019.
- Sundstrom, E., Town, J. P., Rice, R. W., Osborn, D. P., & Brill, M, (1994) "Office Noise, Satisfaction, and Performance" Environment and Behavior, 26(2), 195–222, https://doi.org/10.1177/001391659402600204, junho de 2019.
- Terra (2014), "Barulhos demais podem causar doença cardíaca e ganho de peso", <a href="https://www.terra.com.br/vida-e-estilo/saude/bem-estar/barulhos-demais-podem-causar-doenca-cardiaca-e-ganho-de-peso,bfef4b79d0886410VgnVCM3000009af154d0RCRD.html?utm_source=blog&utm_campaign=rc_blogpost, junho de 2019.