DM 19

D'après Mines-Ponts PSI 2020 Mathématiques 2

Caractérisation et exponentielle de matrices normales

Notations

— n désigne un entier naturel non nul.

- \mathcal{M}_n désigne l'espace vectoriel des matrices carrées réelles de taille (n, n) dont la matrice unité est notée I_n .
- E_n désigne l'espace vectoriel des matrices réelles de taille (n,1) (matrices colonnes). On le munit de son produit scalaire usuel et de la norme (euclidienne) associée définis par :

$$(X|Y) = {}^{\operatorname{t}}XY \quad \text{et} \quad ||X|| = \sqrt{{}^{\operatorname{t}}XX}.$$

- Pour $A \in \mathcal{M}_n$, on note ^tA, la transposée de A (la notation A^T est aussi acceptée).
- S_n (respectivement A_n) désigne le sous-espace vectoriel de \mathcal{M}_n constitué des matrices symétriques (respectivement antisymétriques) de \mathcal{M}_n .
- $\mathcal{O}_n = \{A \in \mathcal{M}_n, A^{\dagger}A = I_n\}$ est le groupe orthogonal d'ordre n.
- $SO_n = \{A \in O_n, \det(A) = 1\}$ est le groupe spécial orthogonal d'ordre n.
- Pour tout $\theta \in \mathbb{R}$, on note $R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ et $S(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$. On rappelle que $SO_2 = \{R(\theta), \ \theta \in \mathbb{R}\}$ et $O_2 = SO_2 \cup \{S(\theta), \ \theta \in \mathbb{R}\}$.

Définition 1 Une matrice A de \mathcal{M}_n est dite **normale** lorsqu'elle commute avec sa transposée, c'est-à-dire lorsque A $^tA = {}^tAA$.

Définition 2 Une matrice $A \in \mathcal{M}_n$ est dite **orthogonalement semblable à** $B \in \mathcal{M}_n$ s'il existe $Q \in \mathcal{O}_n$ tel que $B = {}^{t}QAQ$. (On pourra noter en abrégé : A est ORTS à B.)

Objectifs

— Dans un premier temps, ce problème vise à établir que, pour une matrice $A \in \mathcal{M}_n$, les quatre conditions suivantes sont équivalentes :

1

- (C_1) Il existe un polynôme P à coefficients réels tel que ${}^{t}A = P(A)$.
- (C_2) La matrice A est normale.
- (C₃) Pour tout $X \in E_n$, $||^{t}AX|| = ||AX||$.

- (C_4) La matrice A est orthogonalement semblable à une matrice diagonale par blocs, dont chaque bloc diagonal est :
 - soit de taille (1,1),
 - soit de taille (2,2) du type $rR(\theta)$, où $(r,\theta) \in \mathbb{R}_+^* \times \mathbb{R}$.
- Dans un second temps, on caractérise l'exponentielle d'une telle matrice.

I. Question préliminaire

- 1. Démontrer que la relation **ORTS** est une relation d'équivalence sur \mathcal{M}_n .
- 1.
bis (cette questions est un peu plus difficile et peut être admise dans un premier temps)
 Soit f un endomorphisme d'un endomorphisme d'un \mathbb{R} espace vectoriel de dimension finie.
 - (a) Démontrer qu'il existe un polynôme P de degré 1 ou 2 tel que P(f) n'est pas inversible (on pourra considérer un diviseur du polynôme minimal de f).
 - (b) En considérant un vecteur $x \in \ker P(f)$ démontrer qu'il existe un sous espace stable par f de dimension 1 ou 2.

II. Exemples

- 2. Montrer que les éléments de S_n vérifient les conditions (C_1) , (C_2) , (C_3) et (C_4) , et que ceux de A_n vérifient les conditions (C_1) , (C_2) et (C_3) .
- 3. Montrer que les éléments de \mathcal{O}_n vérifient les conditions (C_1) , (C_2) et (C_3) .
- 4. Dans cette question seulement, on suppose n=2. Montrer que les matrices rT, où r>0 et $T\in\mathcal{O}_2$, vérifient les conditions (C₁) et (C₄).

III. Deux premières implications

Soit $A \in \mathcal{M}_n$.

- 5. Montrer que si A vérifie la condition (C_1) , alors A vérifie la condition (C_2) .
- 6. Montrer que si A vérifie la condition (C_2) , alors A vérifie la condition (C_3) .

IV. La condition (C_3) implique la condition (C_4)

Dans cette question seulement, on suppose n=2 et soit $A=\begin{bmatrix} a & c \\ b & d \end{bmatrix} \in \mathcal{M}_2$ vérifiant la condition (C₃).

7. Montrer que c = b ou bien $(b \neq 0 \text{ et } c = -b \text{ et } a = d)$.

On pourra utiliser, par exemple, les vecteurs $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ et $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ de E_2 .

En déduire que A vérifie la condition $(\mathbf{C_4})$.

Dans toute la suite de cette partie, on se donne $A \in \mathcal{M}_n$ vérifiant la condition (C₃).

- 8. Montrer que pour tout réel λ , la matrice $A \lambda I_n$ vérifie (C₃).
- 9. En déduire que A et ^tA ont les mêmes sous-espaces propres et qu'ils sont deux à deux orthogonaux.
- 10. En utilisant la question précédente, déterminer une condition nécessaire et suffisante sur la matrice A pour qu'elle soit diagonalisable.
- 11. Pour $n \ge 3$, montrer que A est orthogonalement semblable à une matrice du type $\begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}$, où $A_1 \in \mathcal{M}_p$ et $A_2 \in \mathcal{M}_{n-p}$ vérifient $(\mathbf{C_3})$, avec $p \in \{1, 2\}$.

 On pourra commencer par montrer que toute matrice orthogonalement semblable à A vérifie $(\mathbf{C_3})$.
- 12. Montrer que si A vérifie la condition (C_3) , alors A vérifie la condition (C_4) .

V. La condition (C_4) implique la condition (C_1)

Soit $Z = \{z_1, \ldots, z_n\}$ une famille de n complexes deux à deux distincts.

13. Établir l'existence d'un unique polynôme P de $\mathbb{C}_{n-1}[X]$ tel que :

$$\forall k \in \{1, \dots, n\}, \quad P(z_k) = \overline{z_k}.$$

On suppose de plus que, pour tout $k \in \{1, ..., n\}$, $\overline{z_k} \in Z$. Montrer alors que le polynôme P est réel.

Soient $(r, \theta) \in \mathbb{R}_+^* \times \mathbb{R}$ et $P \in \mathbb{R}[X]$ tels que $P(re^{i\theta}) = re^{-i\theta}$.

- 14. Montrer que $P(rR(\theta)) = {}^{t}(rR(\theta))$. Lorsque $\sin \theta \neq 0$, on pourra utiliser la division euclidienne de P par le polynôme caractéristique χ de la matrice $rR(\theta)$ de \mathcal{M}_2 .
- 15. Montrer que si $A \in \mathcal{M}_n$ vérifie la condition $(\mathbf{C_4})$, alors A vérifie la condition $(\mathbf{C_1})$.

VI. Applications

- 16. Soit $M \in M_n(\mathbb{R})$ une matrice normale. En utilisant le théorème démontré dans les parties précédentes établir l'équivalence des propriétés suivantes :
 - (a) M est antisymétrique
 - (b) Le spectre de M est inclus dans $i\mathbb{R}$
 - (c) les blocs de la condition (C_4) de taille (1,1) sont nuls et et ceux de taille (2,2) sont de la forme

$$\begin{pmatrix} 0 & -a \\ a & 0 \end{pmatrix}$$

- 17. De manière analogue, parmi les matrices normales, caractériser par leur spectre et leur forme réduite celles qui sont orthogonales.
- 18. Montrer que l'ensemble \mathcal{E}_n constitué des matrices normales de \mathcal{M}_n est un fermé de \mathcal{M}_n et que si $A \in \mathcal{E}_n$ la matrice exp A est aussi dans \mathcal{E}_n .

3

19. Démontrer, à l'aide des résultats précédents que $\exp(A_n) = \mathcal{SO}_n$. La restriction de exp à A_n est elle injective?

On note \mathcal{S}_n^{++} l'ensemble des matrices symétriques de \mathcal{M}_n à valeurs propres strictement positives, et \mathcal{F}_n l'ensemble des matrices B de \mathcal{M}_n vérifiant les conditions :

- les valeurs propres négatives de B sont de multiplicité paire,
- il existe $S \in \mathcal{S}_n^{++}$ et $T \in \mathcal{SO}_n$ telles que B = ST = TS.
- 20. Démontrer que toute matrice normale est la somme d'une matrice symétrique et d'une matrice antisymétrique qui commutent.
- 21. Démontrer que $\exp(\mathcal{E}_n) = \mathcal{F}_n$ et que la décomposition B = ST = TS est unique.

FIN DU PROBLÈME