Step-1

Given that a_1, a_2 and b are orthogonal vectors. We have to find A^TA and A^Tb , and the projection of b onto the plane of a_1, a_2

Step-2

Write
$$A = \begin{bmatrix} a_1 & a_2 \end{bmatrix}$$
 and $A^T = \begin{bmatrix} a_1^T \\ a_2^T \end{bmatrix}$

$$A^{T}A = \begin{bmatrix} a_1^{T} \\ a_2^{T} \end{bmatrix} \begin{bmatrix} a_1 & a_2 \end{bmatrix}$$

$$= \begin{bmatrix} a_1^T a_1 & a_1^T a_2 \\ a_2^T a_1 & a_2^T a_2 \end{bmatrix}$$

Step-3

As a_1, a_2 are orthogonal

$$\Rightarrow a_1^T a_2 = 0 = a_2^T a_1$$

$$A^{T} A = \begin{bmatrix} a_1^{T} a_1 & 0 \\ 0 & a_2^{T} a_2 \end{bmatrix}$$
Therefore

Step-4

And

$$A^{T}b = \begin{bmatrix} a_1^{T} \\ a_2^{T} \end{bmatrix} b$$

$$= \begin{bmatrix} a_1^T b \\ a_2^T b \end{bmatrix}$$

Since a_1 , a_2 and b are orthogonal

$$\Rightarrow a_1^T b = 0, a_2^T b = 0$$

$$A^T b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Therefore

Step-5

The projection of b onto the plane of a_1 and a_2

=
$$Pb$$
, where $P = A(A^TA)^{-1}A^T$