Week 2

ANALYSIS OF ALGORITHMS

Measuring performance:

- Example of validating SIM cards against Aadhaar data.
 - Naive approach takes thousands of years
 - Smarter solution takes a few minutes.
- Two main resources of interest
 - · Running time how long the algorithm takes
 - o Space memory management
- · Time depends on processing power
 - Impossible to change for given hardware
 - Enhancing hardware has only a limited impact at a practical level
- Storage is limited by available memory
 - · Easier to configure, augment
- Typically, we focus on time rather than space.

Analysis of time dependence:

- 1. Input Size:
 - o Running time depends on input size.
 - Larger arrays will take longer to sort.
 - o Measure time efficiency as function of input size
 - Input size *n*
 - Running time t(n)
 - Different input of size n may take different amounts of time

Example 1: SIM cards v/s Aadhaar Cards

- $\it n pprox 10^9$ number of cards
- Naive algorithm: $t(n) \approx n^2$
- Clever algorithm: $t(n) \approx n \log_2 n$
 - log₂n- number of times you need to divide n by 2 to reach 1

$$\circ \log_2(n) = k \Rightarrow n = 2^k$$

Example 2: Video game

- · Several objects on screen
- · Basic step: find closest pair of objects.
- ullet n objects naive algorithm is n^2
 - o For each pair of objects, compute their distance
 - o Report minimum distance across all pairs.
- There is a clever algorithm that takes time nlog₂n
- High resolution gaming console may have 4000x2000 pixels.
 - \circ 8 x 10^6 points 8 million
- Suppose we have 100,000 = 1×10^5 objects.
- Naive algorithm takes 10^{10} steps
 - 1000 seconds, or 16.7 minutes in Python.
 - · Unacceptable response time!
- log₂100,000 is under 20, so nlog₂n takes a fraction of a second.

Orders of magnitude

- When comparing t(n), focus on orders of magnitude
 - · Ignore constant factors
- $f(n) = n^3$ eventually grows faster than $g(n) = 5000n^2$
 - For small values of n, f(n) < g(n)
 - After n = 5000, f(n) overtakes g(n)
- · Asymptotic complexity
 - What happens in the limit, as n becomes large
- Typical growth functions
 - Is t(n) proportional to $log n, ..., n^2, n^3, ..., 2^n$?
 - Note: log*n* means log₂n by default
 - Logarithmic, polynomial, exponential...
- ▼ The red colour line is called the "feasibility line"

Orders of magnitude

Input size	Values of $t(n)$						
	log n	n	$n \log n$	n ²	n^3	2 ⁿ	n!
10	3.3	10	33	100	1000	1000	10 ⁶
100	6.6	100	66	10^{4}	10^{6}	10 ³⁰	10 ¹⁵⁷
1000	10	1000	104	10^{6}	10 ⁹		
104	13	10^{4}	10 ⁵	$(10^8).$	10^{12}		
10^{5}	17	10^{5}	10 ⁶	10 ¹⁰			
10 ⁶	20	10^{6}	10 ⁷	10^{12}			
10 ⁷	23	10^{7}	10 ⁸				
108	27	10 ⁸	10 ⁹				
10 ⁹	30	10 ⁹	10^{10}				
10 ¹⁰	33	10 ¹⁰	1011				D + 100 +

Measuring running time

- Analysis should be independent of the underlying hardware
 - o Don't use actual time
 - Measure in terms of basic operations
- Typical basic operations
 - Compare two values
 - Assign a value to a variable
- Exchange a pair of values?

$$(x,y) = (y,x)$$
 $t = x$
 $x = y$
 $y = t$

- o If we ignore constants, focus on orders of magnitude, both are within a factor of 3.
- Need not be very precise about defining basic operations.

What is the input size?

• Typically a natural parameter

- Size of a list/array that we want to search or sort
- Number of objects we want to rearrange
- Number of vertices and number of edges in a graph
 - Separate parameters
- Numeric problems? Is *n* a prime?
 - Magnitude of *n* is not the correct measure.
 - · Arithmetic operations are performed digit by digit
 - Addition with carry, subtraction with borrow, multiplication, long division ...
 - Number of digits is a natural measure of input size
 - Same as $\log_b n$, when we write n in base b

Which inputs should we consider?

- Performance varies across input instances
 - By luck, the value we are searching for is the first element we examine in an array
- · Ideally, want the "average" behavior
 - Difficult to compute
 - Average over what? Are all inputs equally likely?
 - Need a probability distribution over inputs
- Instead, worst case input
 - Input that forces algorithm to take longest possible time
 - Search for a value that is not present in an unsorted list
 - Must scan all elements
 - o Pessimistic worst case may be rare
 - Upper bound for worst case guarantees good performance

Summary:

- Two important parameters when measuring algorithm performance
 - Running time, memory requirement (space)
 - Mainly focus on time
- Running time t(n) is a function of input size n
 - Interested in orders of magnitude
 - Asymptotic complexity, as *n* becomes large
- · From running time, we can estimate feasible input sizes
- We focus on worst case inputs

- o Pessimistic, but easier to calculate than average case
- Upper bound on worst case gives us an overall guarantee on performance

▼ COMPARING ORDERS OF MAGNITUDE

Upper Bounds

- f(x) is said to be O(g(x)) if we can find constants c and x_0 such that c.g(x) is an upper bound for f(x) for x beyond x_0
- $f(x) \le cg(x)$ for every $x \ge x_0$

Examples:

- 1. 100n + 5 is $O(n^2)$
- $100n + 5 \le 100n + n = 101n$, for $n \ge 5$
- $101n \le 101n^2$
- Choose $n_0 = 5$, c = 101

$$\Rightarrow$$
 \forall $n \geq n_0$ (i.e 5) $100n \leq 101n^2$

Alternatively,

- $100n + 5 \le 100n + 5n = 105n$ for $n \ge 1$
- $105n \le 105n^2$
- Choose $n_0 = 1$, c = 105

$$\Rightarrow \forall n \geq n_0 \text{ (i.e 1) } 100n \leq 105g(x)$$

Choice of n_0 , c not unique.

- 2. $100n^2 + 20n + 5$ is $O(n^2)$
- $100n^2 + 20n + 5 \le 100n^2 + 20n^2 + 5n^2$, for n ≥ 1
- $100n^2 + 20n + 5 < 125n^2$, for n > 1
- Choose $n_0 = 1$, c = 125
- · What matters is the highest term
 - \circ 20*n* + 5 is dominated by 100 n^2
- n^3 is not $O(n^2)$
 - \circ No matter what c we choose, cn^2 will be dominated by n^3 for $n \geq c$

30 1 /

Useful properties:

- If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$
- Proof
 - ∘ $f_1(n) \le c_1g_1(n)$ for $n > n_1$
 - \circ f₂(n) \leq c₂g₂(n) for $n > n_2$
 - Let $c_3 = \max(c_1, c_2) = \max(n_1, n_2)$
 - \circ For $n \geq n_3$, $f_1(n) + f_2(n) \leq c_1 g_1(n) + c_2 g_2(n) \leq c_3 (g_1(n) + g_2(n)) \leq 2 c_3 (max(g_1(n), g_2(n)))$
- Algorithm has two phases:
 - Phase A takes time $O(g_A(n))$
 - $\circ \ \ Phase \ B \ takes \ time \ O(g_B(n))$
- Algorithm as a whole takes time $max(O(g_A(n), g_B(n)))$

Least efficient phase is the upper bound for the whole algorithm

Lower Bounds

- f(x) is said to be $\Omega(g(x))$ if we can find constants c and x_0 such that cg(x) is a lower bound for f(x) for x beyond x_0
 - \circ f(x) \geq cg(x) for every x \geq x₀
- n^3 is $\Omega(n^2)$
 - $n^3 > n^2$ for all n, so $n_0 = 1$, c = 1
- Typically we establish lower bounds for a problem rather than an individual algorithm
 - \circ If we sort a list by comparing elements and swapping them, we require $\Omega(n\log n)$ comparisons.
 - This is **independent** of the algorithm we use for sorting.

Tight bounds

- F(x) is said to be $\Theta(g(x))$ if it is both O(g(x)) and $\Omega(g(x))$
 - $\circ~$ Find constants c_1, c_2, x_0 such that $c_1 g(x) \leq f(x) \leq c_2 g(x)$ for every $x \geq x_0$
- n(n-1)/2 is $\Theta(n^2)$
 - Upper bound:
 - ullet n(n-1)/2 = n^2 /2 n/2 $\leq n^2$ /2 for all n \geq 0; c_1 = 1/2
 - Lower bound:
 - n(n-1)/2 = n^2 /2 n/2 $\geq n^2$ /2 (n/2 x n/2) $\geq n^2$ /4 for all n \geq 2; c_2 = 1/4
 - \circ Choose $n_0 = 2$, $c_1 = 1/4$, $c_2 = 1/2$

Summary

- f(n) is O(g(n)) means g(n) is an upper bound for f(n)
 - Useful to describe asymptotic worst case running time
- f(n) is $\Omega(g(n))$ means g(n) is a lower bound for f(n)
 - o Typically used for a problem as a whole, rather than an individual algorithm
- f(n) is $\Theta(g(n))$: matching upper and lower bounds
 - We have found an optimal algorithm for a problem

▼ CALCULATING COMPEXITY - EXAMPLES

Calculating complexity

- Iterative programs
- Recursive programs

Iterative programs

EXAMPLE 1:

Find the maximum element in a list

- Input size is legth of the list
- · Single loop scans all elements
- Always takes *n* steps
- Overall time is O(n)

```
def maxElement(L):
    maxval = L[0]
    for i in range(len(L)):
        if L[i] > maxval:
            maxval = L[i]
        return maxval
```

EXAMPLE 2:

Check whether a list contains duplicates

- · Input size is length of the list
- Nested loop scans all pairs of elements
- A duplicate may be found in the very first iteration
- Worst case no duplicates, both loops ran fully
- Time is: (n 1) + (n 2) + ... + 1 = n(n 1)/2
- Overall time is $O(n^2)$

```
def noDuplicates(L):
    for i in range(len(L)):
        for j in range(i + 1,len(L)):
        if L[i] == L[j]:
            return False
    return True
```

EXAMPLE 3:

Matrix multiplication

· Matrix is represented as list of lists

Input matrices have size m x n, n x p

- Output matrix is m x p
- Three nested loops
- Overall time is $O(mnp) O(n^3)$ if both are $n \times n$

```
def matrixMultiply(A,B):
    (m,n,p) = (len(A), len(B), len(B[0]))
    c = [[0 for i in range(p) ]
        for j in range(m) ]
    for i in range(m):
        for j in range(p):
        for k in range(n):
        c[i][j] = c[i][j] + A[i][k] * B[k][j]
    return c
```

EXAMPLE 4

Number of bits in binary representation of *n*

- log n steps for n to reach 1
- For number theoretic problems, input size is number of digits
- · This algorithm is linear in input size

```
def numberOfBits(n):
    count = 1
    while n > 1:
        count = count + 1
        n = n // 2
    return count
```

EXAMPLE 5

Towers of Hanoi

- Three pegs A, B, C
- Move n disks from A to B, use C as transit peg
- Never put a larger disk on a snaller one Recursive Solution:
- Move *n* 1 disks from A to C, use B as transit peg
- Move larger disk from A to B
- Move n 1 disks from C to B, use A as transit peg Recurrence:
- M(n) number of moves to transfer n disks
- M(1) = 1
- M(n) = M(n 1) + 1 + M(n 1) = 2M(n 1) + 1Unwind and solve:
- M(n) = 2M(n-1) + 1= $2(2M(n-2) + 1) + 1 = 2^2M(n-2) + (2+1)$ = $2^2(2M(n-3) + 1) + (2+1) = 2^3M(n-3) + (4+2+1)$

```
...
= 2^{k} M(n-k) + (2^{k}-1))
...
= 2^{n-1} M(1) + (2^{n-1}-1)
= 2^{n-1} + 2^{n-1} - 1 = 2^{n} - 1
```

Summary

- · Iterative programs
 - Focus on loops
- Recursive programs
 - Write and solve a recurrence
- Need to be clear about accounting for "basic" operations

▼ SEARCHING IN A LIST

Search problem

- Is value v present in list 1 ?
- Naive solution scans the list
- Input size *n*, the length of the list
- Worst case is when v is not present in 1
- Worst case complexity is O(n)

```
def naivesearch(v,1):
  for x in 1:
    if v == x:
      return True
  return False
```

Searching a sorted list

- What if 1 is sorted in ascending order?
- Compare v with the midpoint of 1
 - o If midpoint is v, the value is found
 - If v less than midpoint, search the first half
 - o If v greater than midpoint, search the second half
 - Stop when the interval to search becomes empty

```
def binarysearch(v,1):
  if l == []:
```

```
return False
m = len(1)//2
if v == l[m]:
    return True
if v < l[m]:
    return binarysearch(v, l[:m])
else:
    return binarysearch(v, l[m+1:])</pre>
```

Binary search

- How long does this take?
 - Each call halves the interval to search
 - Stop when the interval becomes empty
- log n number of times to divide n by 2 to reach 1
 - 1 // 2 = 0, so next call reaches empty interval
- O(log n) steps

Alternative calculation

- T(n): the time to search a list of length n
 - If n = 0, we exit, so T(n) = 1
 - If n > 0, T(n) = T(n//2) + 1
- **Recurrence** for T(n)
 - \circ T(0) = 1
 - \circ T(n) = T(n//2) + 1, n > 0
- Solve by "unwinding"

•
$$T(n) = T(n//2) + 1$$

= $(T(n//4) + 1) + 1 = T(n//2^2) + 1 + 1$
...
= $T(n//2^k) + 1 + ... + 1$
= $T(1) + k$, for $k = \log n$
= $(T(0) + 1) + \log n = 2 + \log n$

Summary

- Search in an unsorted list takes time O(n)
 - Need to scan the entire list
 - Worst case is when the value is not present in the list
- For a sorted list, binary search takes time O(log n)
 - · Halve the interval to search each time

In a sorted list, we can determine that v is absent by examing just log n values!

SELECTION SORT

Sorting a list

- · Sorting a list makes many other computations easier
 - Binary search
 - Finding the median
 - Checking for duplicates
 - Building a frequency table of values
- How do we sort a list?
- Eg: You are the TA for a course
 - Instructor has a pile of evaluated exam papers
 - Papers in random order of marks
 - Your task is to arrange the papers in descending order of marks
- Strategy 1
 - Scan the entire pile and find the paper
 - Move this paper to a new pile
 - Repeat with the remaining papers
 - Add the paper with the next minimum marks to the second pile each time
 - Eventually, the new pile is sorted in descending order

Selection sort

- · Select the next element in sorted order
- · Append it to the final sorted list
- Avoid using a second list
 - Swap the minimum element into the first position
 - Swap the second minimum element into the second position
 - o ..
- · Eventually the list is rearranged in place in ascending order

```
def Selectionsort(L):
    n = len(L)
    if n < 1:
        return L
    for i in range(n):
        # Assume L[:i] is sorted - called invarient
        mpos = i
        # mpos: position of minimum in L[i:]
        for j in range(i+1, n):</pre>
```

```
if L[j] == L[mpos]:
    mpos = j
# L[mpos]: smallest value in L[i:]
# Exchange L[mpos] and L[i]
(L[i], L[mpos]) = (L[mpos], L[i])
# Now L[:i+1] is sorted
return L
```

Analysis of selection sort

- · Correctness follows from the invariant
- Efficiency
 - Outer loop iterates *n* times
 - Inner loop: *n i* steps to find minimum in L[i:]
 - \circ T(n) = n + (n 1) + ... + 1
 - \circ T(n) = n(n + 1)/2
- T(n) is $O(n^2)$

Summary

- · Selection sort is an intuitive algorithm to sort a list
- Repeatedly find the minimum (or maximum) and append to sorted list
- Worst case complexity is $O(n^2)$
 - o Every input takes this much time
 - No advantage even if list is arranged carefully before sorting

INSERTION SORT

Sorting a list

- Consider same example of TA as before Strategy 2
- Move the first paper to a new pile
- Second paper
 - Lower marks than first paper? Place below first paper in new pile
 - o Higher marks than first paper? Place above the first paper in new pile
- Third paper
 - Insert into correct position with respect to first two
- Do this for the remaining papers
 - Insert each one into correct position in the second pile

Insertion sort

- · Start building a new sorted list
- Pick next element and insert it into the sorted list
- An iterative formulation
 - Assume L[:i] is sorted
 - Insert L[i] in L[:i]

```
def InsertionSort(L):
    n = len(L)
    if n < 1:
        return L
    for i in range(n):
        # Assume L[:i] is sorted
        # Move L[i] to correct position is L
        j = i
        while(j > 0 and L[j] < L[j-1]):
        (L[j], L[j-1]) = (L[j-1], L[j])
        j = j-1
        # Now L[:i+1] is sorted
    return L</pre>
```

- A recursive formulation
 - Inductively sort L[:i]
 - Insert L[i] in L[:i]

```
def Insert(L,v):
    n = len(L)
    if n == 0:
        return [v]
    if v >= L[-1]:
        return L + [v]
    else:
        return Insert(L[:-1],v) + L[-1:]

def ISort(L):
    n = len(L)
    if n < 1:
        return L
    L = Insert(ISort(L[:-1]), L[-1])
    return L</pre>
```

In python, there are 2 types of sorts:

- 1.sort() which is an in-place sort (iterative)
- 12 = sorted(1) which creates a new sorted list I1 (recursive)

Analysis of iterative insertion sort

- · Correctness follows from the invarient
- Efficiency
 - Outer loop iterates *n* times
 - Inner loop: i steps to insert L[i] in L[:i]
 - \circ T(n) = 0 + 1 + ... + (n 1)
 - \circ T(n) = n(n 1)/2
- T(n) is $O(n^2)$

Analysis of recursive insertion

- For input of size *n*, let
 - \circ TI(n) be the time taken by Insert
 - TS(n) be the time taken by Isort
- First calculate TI(n) for Insert
 - \circ TI(0) = 1
 - \circ TI(n) = TI(n 1) + 1
 - Unwind to get TI(n) = n
- Set up a recurrence for TS(n)
 - TS(0) = 1
 - TS(n) = TS(n-1) + TI(n-1)
- Unwind to get 1 + 2 + ... + n 1

Summary

- Insertion sort is another intuitive algorithm to sort a list
- Create a new sorted list
- · Repeatedly insert elements into the sorted list
- Worst case complexity is $O(n^2)$
 - $\circ\;\;$ Unlike selection sort, not all cases take time n^2
 - If list is already sorted, Insert stops in 1 step
 - Overall time can be close to O(n)

MERGE SORT

Beating the $O(n^2)$ barrier

- Both selection and insertion sort take time $\mathrm{O}(n^2)$
- This is infeasible for n > 10000
- How can we bring the complexity below $O(n^2)$? Strategy 3

- · Divide the list into two halves
- · Separately sort the left and right half
- · Combine the two sorted halves to get a fully sorted list

Combining 2 sorted lists

- Combine two sorted lists A and B into a single sorted list C
 - Compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till you exhaust A and B
- Merging A and B

Merge Sort

- Let n be the length of L
- Sort A[:n//2]
- Sort A[n//2:]
- Merge the sorted halves into B
- How do we sort A[:n//2] and A[n//2:]?
 - Recursively, same strategy!

After sorting

Divide and Conquer

- Break up the problem into disjoint parts
- Solve each part separately
- · Combine the solutions efficiently

Merging sorted lists

- Combine 2 sorted lists A and B into C
 - ∘ If A is empty, copy B into C
 - ∘ If B is empty, copy A into C
 - Otherwise, compare first elements of A and B
 - Move the smaller of the two to C
 - Repeat till all elements of A and B have been moved

```
def merge(A,B):
    (m,n) = (len(A), len(B))
    (C,i,j,k) = ([],0,0,0)
    while k < m+n:
        if i == m:
            C.extend(B[j:])
        k = k + (n-j)
        elif j == n:
            C.extend(A[i:])
        k = k + (n-1)</pre>
```

```
elif A[i] < B[j]:
    C.append(A[i])
    (i,k) = (i+1,k+1)
else:
    C.append(B[j])
    (j,k) = (j+1,k+1)
return C</pre>
```

Merge Sort

- To sort A into B, both of length n
- If $n \le 1$, nothing to be done
- Otherwise
 - Sort A[:n//2] into L
 - ∘ Sort A[n//2:] into R
 - Merge L and R into `B

```
def mergesort(A):
    n = len(A)
    if n <= 1:
        return A
    L = mergesort(A[:n//2])
    R = mergesort(A[n//2:])
    B = merge(L,R)
    return B</pre>
```

Summary

- Merge sort using divide and conquer to sort a list
- Divide the list into two halves
- · Sort each half
- Merge the sorted halves
- Next, we have to check that the complexity is less than $\mathrm{O}(n^2)$

ANALYSIS OF MERGE SORT

Analysing merge

- Merge A of length m, B of length n
- Output list c has length m + n
- In each iteration we add (at least) one element to C
- Hence merge takes time O(m + n)
- Recall that $m + n \le 2(\max(m,n))$
- If $m \approx n$, merge take time O(n)

Analysing mergesort

- Let T(n) be the time taken for input of size n
 - For simplicity, assume $n = 2^k$ for some k
- Recurrence
 - T(0) = T(1) = 1• T(n) = 2T(n/2) + n
 - Solve two subproblems of size *n*/2
 - Merge the soultions in time n/2 + n/2 = n

$$T(n) = 2[2T(n/4) + n/2] + n$$

$$= 2^{2}T(n/2^{2}) + 2n = 2^{3}T(n/2^{3}) + 3n$$

$$.$$

$$.$$

$$= 2^{k}T(n/2^{k}) + kn$$

- When $k = \log n$, $T(n/2^k) = T(1) = 1$
- $T(n) = 2^{logn} T(1) + (log n)n = n + nlog n$
- $T(n) = O(n \log n)$

Summary

- Merge sort takes time O(nlog n) so can be used to effectively on large inputs
- Variations on merge are possible
 - Union of two sorted lists discard duplicates, if A[i] == B[j] move just one copy to
 c and increment both i and j
 - Intersection of two sorted lists when A[i] == B[j], move one copy to C, otherwise discard the smaller of A[i], B[j]
 - List difference elements in A but not in B
- · Merge needs to create a new list to hold the merged elements
 - No obvious way to effectively merge two two lists in place
 - Extra storage can be costly
- · Inherently recursive
 - Recursive calls and returns are expensive

