Predicting Diabetes in the Pima Indians: An Investigation into Classification Strategies

May 9, 2021

Group 23

490424010, 490390494

Contents

	Introduction 1.1 Aim	1 1
2	Data	1
3	Results & Discussion 3.1 Feature Selection	
4	Conclusion	3
5	Reflection	3

List of Figures

List of Tables

1 Introduction

1.1 Aim

this study is important because it is worth 24% of our grade.

2 Data

The dataset used throughout this paper originates from the National Institute of Diabetes and Digestive and Kidney Diseases and was first used in a demonstration of the ADAP Learning Algorithm in 1988 [1].

3 Results & Discussion

All results are 10-fold stratified cross validation accuracy figures in percentage (%).

Numeric	ZeroR	1R	 D	1NN	5NN	NB	MLP	SVM	MyNB
Data	Zeron	In							
No feature	65.1042 70.8		99	67.8385	74.4792	75.1302	75.3906	76.3021	75.2614
selection	05.1042	70.8333		07.8383					
CFS	65.1042	70.83	33	69.0104	74.4792	76.3021	75.7813	76.6927	76.0407
Nominal	DT unpruned		DT pruned		MyDT	Dogg	Boost	RF	
Data	Di unpi	iprunea		r pruneu	мурт	Bagg	Doost	пг	
No feature	75		-	75.3906	73.4484	74.8698	76.1719	73.1771	
selection			1	0.0500					
CFS	79.42	71	7	79.4271	78.3869	78.5156	78.6458	78.9063	

J48 unpruned tree

```
a = high
| c = high
| \cdot | e = high: yes (82.0/31.0)
| \cdot | e = low: no (50.0/21.0)
c = low: no (29.0/4.0)
a = low
| c = high
| | b = high
| | | e = high
| \ | \ | \ | \ d = high: yes (7.0/3.0)
| \ | \ | \ | \ d = low: no (28.0/4.0)
| \cdot | \cdot | e = low: no (43.0/4.0)
| \ | \ b = low: no (48.0/2.0)
| c = low: no (66.0)
a = \text{very high}
| b = high
| c = high: yes (103.0/16.0)
| c = | c = | c |
| \cdot | \cdot | e = high: yes (12.0/3.0)
| \cdot | \cdot | e = low: no (4.0/1.0)
b = low: no (3.0/1.0)
a = medium
| e = high
| c = high
| \ | \ | \ d = \text{high: yes } (37.0/10.0)
| \ | \ | \ d = low: no (80.0/33.0)
| c = low: no (30.0/3.0)
| e = low: no (146.0/17.0)
J48 pruned tree
a = high
| c = high
| | e = high: yes (82.0/31.0)
| \cdot | e = low: no (50.0/21.0)
c = low: no (29.0/4.0)
a = low: no (192.0/14.0)
a = \text{very high: yes } (122.0/24.0)
a = medium
```

```
| e = high

| | c = high

| | d = high: yes (37.0/10.0)

| | d = low: no (80.0/33.0)

| c = low: no (30.0/3.0)

| e = low: no (146.0/17.0)
```

3.1 Feature Selection

3.2 Comparison of Classifiers

4 Conclusion

conclusion

5 Reflection

References

[1] Smith, J., Everhart, J., Dickson, W., Knowler, W., and Johannes, R. Using the adap learning algorithm to forcast the onset of diabetes mellitus. *Proceedings - Annual Symposium on Computer Applications in Medical Care 10* (11 1988).