Apply linear regression on "Mileage prediction" after implementing PCA

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

In [2]: df = pd.read_csv('Cars_mileage.csv')

In [3]: | df.describe()

Out[3]:

	НР	MPG	VOL	SP	WT
count	81.000000	81.000000	81.000000	81.000000	81.000000
mean	117.469136	34.422076	98.765432	121.540272	32.412577
std	57.113502	9.131445	22.301497	14.181432	7.492813
min	49.000000	12.101263	50.000000	99.564907	15.712859
25%	84.000000	27.856252	89.000000	113.829145	29.591768
50%	100.000000	35.152727	101.000000	118.208698	32.734518
75%	140.000000	39.531633	113.000000	126.404312	37.392524
max	322.000000	53.700681	160.000000	169.598513	52.997752

In [4]: df.head()

Out[4]:

	HP	MPG	VOL	SP	WT
0	49	53.700681	89	104.185353	28.762059
1	55	50.013401	92	105.461264	30.466833
2	55	50.013401	92	105.461264	30.193597
3	70	45.696322	92	113.461264	30.632114
4	53	50.504232	92	104.461264	29.889149

```
In [6]: df.tail()
Out[6]:
                                      SP
             HP
                     MPG VOL
                                                WT
             322
                 36.900000
                                169.598513 16.132947
         76
                            50
             238
                 19.197888
                            115 150.576579 37.923113
         78
             263 34.000000
                            50 151.598513 15.769625
             295 19.833733
                               167.944460 39.423099
             236 12.101263
                           107 139.840817 34.948615
In [7]: df.shape
Out[7]: (81, 5)
In [8]: df.columns
Out[8]: Index(['HP', 'MPG', 'VOL', 'SP', 'WT'], dtype='object')
In [9]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 81 entries, 0 to 80
         Data columns (total 5 columns):
              Column Non-Null Count Dtype
              ΗP
          0
                      81 non-null
                                       int64
              MPG
                      81 non-null
                                       float64
          1
          2
              V0L
                      81 non-null
                                       int64
          3
              SP
                      81 non-null
                                       float64
              WT
                      81 non-null
                                       float64
         dtypes: float64(3), int64(2)
         memory usage: 3.3 KB
```

```
In [11]: #missing_data =
    df.isnull()
```

Out[11]:

	HP	MPG	VOL	SP	WT
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
76	False	False	False	False	False
77	False	False	False	False	False
78	False	False	False	False	False
79	False	False	False	False	False
80	False	False	False	False	False

81 rows × 5 columns

```
In [13]: from sklearn.model_selection import train_test_split
A_train, A_test, B_train, B_test= train_test_split(A,B, test_size = 0.3)
```

```
In [14]: from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
A_train = sc.fit_transform(A_train)
B_test = sc.transform(A_test)
```

```
In [15]: from sklearn.decomposition import PCA
    pca = PCA(n_components = 2)
    A_train = pca.fit_transform(A_train)
    A_test = pca.transform(A_test)
```

In [16]: #explained_variance = pca.explained_variance_ratio_
print(A_train,A_test)

```
[[-5.05664316e-01 -6.44295420e-01]
 [-1.09690877e+00 -5.95856640e-01]
 [ 2.44851209e+00 -3.00805324e-01]
 [-2.37528992e+00 -1.01144034e+00]
 [-3.59124001e+00 8.32074840e-01]
 [ 3.24581706e+00 -2.29265880e+00]
 [-1.66287118e+00 -5.79936969e-01]
 [-2.47865384e-01 -7.88031849e-01]
 [-7.10174162e-01 1.78884326e-01]
 [ 2.65417189e+00 -6.72439400e-01]
 [-9.02820109e-01 9.15534818e-02]
 [ 1.84170772e-01 -8.47653664e-01]
 [ 1.80349802e-01 -2.16052415e-01]
  2.03487506e-01 -2.47317630e-01]
 [ 2.56334209e+00 -5.73817581e-01]
  2.01949558e+00 1.74418668e-01]
 [ 3.90063948e-03 -1.07197012e+00]
  6.94637786e-02 -5.53981520e-01]
 [-2.29764491e+00 1.67109374e+00]
 [ 1.01312990e+00 -8.20168756e-01]
 [ 1.47493047e+00 -7.88997711e-01]
 [-1.75080119e+00 -4.93468682e-01]
 [-7.77999649e-01 -5.01545225e-01]
 [-2.35361836e+00 1.58045824e+00]
 [ 7.58951977e-02 -8.54826786e-01]
 [-4.78980694e-01 -3.84712712e-01]
 [-3.56654399e+00 7.98703934e-01]
 [-2.00279427e+00 -6.55929041e-01]
 [ 3.21035928e-01 6.44220992e-01]
 [-1.44362700e+00 -3.60633135e-01]
 [ 2.07601458e+00 -1.01516206e+00]
 [-7.46397699e-01 2.27831995e-01]
 [-2.31890775e+00
                  1.69982552e+001
 [-5.00673520e-01 -5.59799671e-02]
 [-6.38318936e-01 -3.17264998e-01]
 [ 2.87419646e+00 -3.30146965e-01]
 [ 2.62150124e-02 -1.09679708e+00]
  1.91565553e+00 -4.19178125e-01]
 [-3.47104574e-01 -3.79695184e-01]
  1.78997585e+00 -6.92950042e-01]
 [ 1.38739330e+00 1.49737914e-02]
 [-6.04574461e-01 -3.89113124e-01]
 [-5.79941464e-01 -4.22398877e-01]
 [ 1.04396964e-01 8.88731064e-01]
 [-1.38703450e+00
                  2.70412533e+001
 [-1.12695902e+00 -1.10386297e-01]
 [-2.36764774e+00 -1.02176696e+00]
 [ 4.63503287e-01 -1.07498461e+00]
 [ 1.79102447e+00 2.75813259e-01]
 [-5.53521488e-01 -5.98415389e-01]
 [ 7.78805201e-01 4.54821464e+00]
  2.31669617e+00 -1.54838159e-01]
 [-1.77205581e+00 -4.56512877e-01]
 [-4.06176888e-01 -2.69940373e-01]
  4.82190967e+00
                  2.47368690e+001
 [ 2.31066855e+00
                  5.25746008e+00]] [[132.67842595 21.59705198]
 [128.49989619
                 5.8745015 ]
```

```
29.526887891
          [131.92353854
          [142.91149031 31.97539864]
          [218.67004825 94.99798286]
          [121.18933443 14.40891189]
          [ 87.83798023
                         2.57919077]
          [119.13897056 12.84667731]
          [106.66544732 17.04675613]
          [128.22492288 23.79483018]
          [117.39606235
                         4.77236897]
          [115.65764594 18.88893433]
          [ 94.80409049
                         3.75505242]
          [192.33460313 65.02275233]
          93.08477766
                         2.51652361]
          [229.04485777 102.99284254]
          [155.93545193 16.75459055]
          [176.16512157 25.76287056]
          [106.6593963
                         17.05493267]
          [112.32842865 19.51563694]
          [121.93643291 30.2286324 ]
          [142.92021329 31.96361156]
          [226.71521364 187.95240807]
          [225.07465764 94.37858592]
          [100.82295536 -8.6898909 ]]
In [17]: from sklearn.linear model import LinearRegression
         cls = LinearRegression()
         cls.fit( A_train,B_train)
         cls = LinearRegression().fit(A train,B train)
In [18]: R_square = cls.score(A_train,B_train)
         print('Coefficient of determination :',R square)
         print('intersept:', cls.intercept_)
         print('slope:', cls.coef_ )
         Coefficient of determination: 0.9572617781216625
         intersept: [117.60714286 33.69825299 98.17857143 121.74379404 32.22296451]
         slope: [[ 22.13601717 23.28923679]
          [ -4.36406452 -0.43938038]
            9.97176026 -13.30310102]
                        5.48870748]
             5.58904252
             3.32972518 -4.49934753]]
```

```
In [19]: new_cls = LinearRegression().fit(A_train, B_train)
    print('intercept:', new_cls.intercept_)
    print('slope:', new_cls.coef_ )
    y_pred = cls.predict(A_train)
    print('predicted response:', y_pred, sep= '\n')
```

```
intercept: [117.60714286 33.69825299 98.17857143 121.74379404 32.22296451]
slope: [[ 22.13601717 23.28923679]
                -0.43938038]
  -4.36406452
    9.97176026 -13.303101021
    5.58904252
                 5.48870748]
    3.32972518
                -4.49934753]]
predicted response:
[ 91.40860028
                36.18809545 101.70733516 115.38126559
                                                        33.43815032]
 79.44890502
                38.74704137 95.16720119 112.34264147
                                                        31.25152585]
 [164.80192219
                23.14495618 126.59619063 133.77759981
                                                        41.72926457]
  41.47201087
                44.50857851
                             87.94804273 102.91669754
                                                        28.86472343]
 [ 57.48978034
                49.00505874
                             51.29841138 106.23921635
                                                        16.52132836]
 [136.06233138
                20.5406472
                            161.04455257 127.3010701
                                                        53.34611199]
                             89.31177879 109.26683195
  67.29150852
                41.20994302
                                                        29.29539846]
  93.76773015
                35.12619925 106.19018453 116.03318758
                                                        34.94327005]
 [106.05279484
                36.71890059
                             88.71716868 118.7564442
                                                        29.05341697]
 [160.69933709
                22.41073226 133.59086652 132.88725045
                                                        44.08616605]
 99.75451213
                37.59799139
                             87.95792052 117.20040435
                                                        28.80489073]
 [101.94274333
                33.26696224 111.29150053 118.12060931
                                                        36.65009099]
                33.00612401 102.85114352 121.56592825
                                                        33.795574691
 [116.5676733
 [116.35170693
                32.91888689 103.49779147 121.52364024
                                                        34.01328995]
                22.7637869 131.37315746 132.92090512
 [160.98555383
                                                        43.33999392]
                24.80840781 115.99618808 133.98817378
 [166.37280945
                                                        38.1625596
                34.15223298 112.47799442 115.88186449
 [ 92.7281216
                                                        37.05911867]
 [106.24298746
                33.63851719 106.24091969 119.09138755
                                                        34.94681519]
 [105.66493354
                42.99107781
                             53.03627844 118.07430368
                                                        17.053606931
 [120.93269945
                29.63725477 119.19204776 122.90455377
                                                        39.28663293]
                27.60823136 123.38234074 125.65666552
 [131.88107458
                                                        40.68405254]
 [ 67.35886875
                41.55568279
                             87.28466547 109.24998653
                                                        28.61356482]
                             97.09265224 114.6426859
  88.70472376
                37.31386279
                                                        31.88906576]
 [102.31507248
                43.27517305
                             53.68385775 117.26399389
                                                        17.27503131]
  99.37889682
                33.74263556 110.30722723 117.47608136
                                                        36.32183745]
  98.04475256
                35.95759086
                             98.52016285 116.95517505
                                                        32.35904662]
                             51.98861064 106.19408027
  57.25926878
                48.91194627
                                                        16.7537066
  57.99716785
                42.72677874
                             86.93307746 106.94988911
                                                        28.50546273]
 [139.7170149
                32.01417342
                             92.8097278
                                         127.07401807
                                                        30.39335179]
 77.25212028
                40.15678949
                             88.58060809 111.69589157
                                                        29.03869714]
 [139.91948763
                25.0844337
                            132.38489457 127.7748002
                                                        43.70308944]
 [106.39090384
                36.8554758
                             87.70480047 118.82264874
                                                        28.71256998]
                             52.44202869 118.11316506
 [105.86340005
                43.07124605
                                                        16.85353324]
 [105.22049452
                35.90782103
                             93.93068228 118.63825079
                                                        30.80773261]
                             96.03401635 116.43482761
 [ 96.08844427
                36.62331802
                                                        31.52502336]
 [173.54153412
                21.30013429 131.23134787 135.99572012
                                                        43.27869475]
 92.64387189
                34.0657601
                            113.03078361 115.87031252
                                                        37.24512454]
 [150.24978806
                25.52238727 122.8573981 130.14972817
                                                        40.487599041
 [101.080819
                35.37987036
                             99.76845123 117.71977603
                                                        32.77558226]
                26.19115155 125.24616586 127.94464508
 [141.09180133
                                                        41.30091522]
                27.6369999
                            111.81412697 129.58018096
 [148.66723301
                                                        36.77523063]
  95.16212454
                36.50762361
                             97.32631104 116.22907357
                                                        31.96065288]
  94.93220117
                36.41474874
                             98.01474912 116.18405267
                                                        32.19243816]
 [140.61594403
                32.85216691
                             87.39671381 127.20525795
                                                        28.57186779]
 [149.88073833
                38.56322143
                             48.37414353 128.83375214
                                                        15.4377212
 [ 90.08994594
                             88.40928627 114.83929405
                                                        28.96716698]
                38.66487646
 [ 41.40067908
                44.47976486
                             88.16162485 102.90273019
                                                        28.93663286]
 [102.83168855
                32.14782188 117.10114388 118.43405758
                                                        38.6030324 ]
 [163.67677159
                25.7609197
                            112.36906644 133.26776426
                                                        36.94560408]
 [ 91.41774399
                36.37678846 100.61976822 115.36561189
                                                        33.07236888]
```

```
      [240.77123584
      28.30110056
      45.43927141
      151.06038912
      14.3521735
      ]

      [165.28350655
      23.65607426
      123.33993793
      133.84204609
      40.63359677
      ]

      [67.74904848
      41.63220169
      86.58109262
      109.33403313
      28.37651574
      ]

      [102.32929904
      35.58944164
      97.71931693
      117.99203041
      32.08506265
      ]

      [281.95529825
      11.56823855
      113.35379194
      162.27099603
      37.14862149
      ]

      [291.19837442
      21.30432152
      51.27948169
      163.5148793
      16.26171572
      ]
```

```
In [20]: #missing_data.head(5)
    df.plot('MPG','WT')
    A = df.iloc[: , 0:80].values
    B = df.iloc[: , :].values
```



```
In [ ]:
```