

VBF Higgs to Invisible - Preapproval HIG-14-038, AN-14-243

C. Asawatangtrakuldee, J. Brooke, D. Colling, G. Davies, P. Dunne, A.M. Magnan, A. Nikitenko, J. Pela

Reminder

- For Run 1 we had two sets of triggers
 - Prompt trigger used for current published result: HIG-13-30
- Parked triggers: analysis presented today
- Motivation for parked analysis is the same
- Details in backup

Overview

- ► Reminder of prompt analysis
- Details of parked analysis
- Emphasis on changes from established prompt analysis
- Where the improvement comes from

Prompt Analysis

- Standard object definition:
- Details in backup
- Single bin counting experiment
- Signal region chosen to eliminate QCD and be above trigger turn ons
- Major backgrounds use data driven estimates:
- Z
 ightarrow
 u
 u, $W
 ightarrow \ell
 u$, QCD
- Minor backgrounds taken from MC:
- VV, W γ , $t\bar{t}$, single top
- ightharpoonup Expected limit 49% at $m_H=125{
 m GeV}$

Data driven background estimation

W:
$$N_S = N_S^{MC} \frac{N_C^{Data} - N_C^{Bkg}}{N_C^{MC}}$$

$$\text{Z: } N_{\text{S}}^{\text{Z} \rightarrow \nu\nu} = \left(N_{\text{C}}^{\text{Data}} - N_{\text{C}}^{\text{bkg}}\right) \cdot \frac{\sigma(\text{Z} \rightarrow \nu\nu)}{\sigma(\text{Z}/\gamma^* \rightarrow \mu\mu)} \cdot \frac{\epsilon_{\text{S}}^{\text{ZMC}}}{\epsilon_{\text{C}}^{\text{ZMC}}}$$

Parked Analysis Changes

Trigger

- ▶ Parked trigger efficiency has been measured including correlation between variables
 - This allows the trigger turn on region to be used

Signal region

- ▶ QCD hard to model, signal region cuts are chosen to make remaining QCD small whilst enhancing real-MET using new Min $\Delta\phi$ (jet,MET) variable
- ► The signal region has been reoptimised for the looser parked triggers
- New region uses new variable has higher signal efficiency with much less QCD

Background estimation and limit setting

- ► A top control region has been added
- lacktriangle Minor modifications made to W o au
 u background estimation method
- QCD background estimation method changed
- W γ contribution found to be modelled already by our $W \to \ell \nu$ Monte Carlo
- Remaining backgrounds very signal like in variables studied so far
- Stayed with cut and count analysis

Parked Triggers

- Use already analysed prompt trigger for run A
- ► One parked trigger for runs B and C, another for run D
- Parked trigger cuts are looser so prompt trigger not used where parked trigger is available
- All parked and prompt triggers are seeded by L1_ETM40
- Parked triggers have looser HLT thresholds
- This allows us to look at new regions of phase space and different analysis techniques
- Use prompt analysis as a base:
- e.g. same objects and MC samples

HLT

Run period	MET cut	dijet <i>p_T</i> cut	dijet mass cut
A	METnoMuons>65 GeV	DiPFJet40	MJJ800
B&C	N/A	DiJet35	MJJ700
D	N/A	DiJet30	MJJ700

Trigger efficiency

- Variables used in prompt and parked triggers are highly correlated:
 - dijet mass, METnoMU, jet 2 p_T
- In the prompt analysis correlations were neglected as we cut to ensure trigger was > 95% efficient
- For the parked analysis we use a 2D binning in dijet mass and jet 2 p_T
- MJJ: 0,600,800,900,1000,5000
- Jet 2 p_T : 30,40,50,60,1000
- ► In each bin we fit the METnoMU trigger turn on using an error function
- We then combine the turn ons from runs A, BC and D weighted by luminosity and apply this to MC events

Starting point for region choice

- ► Trigger turn ons and detector acceptance impose the following cuts:
- $\eta_{j1} \cdot \eta_{j2} < 0$, $|\eta_{j1,2}| < 4.7$, jet 1 $p_T > 50$ GeV, $\Delta \eta_{jj} > 3.6$, jet 2 $p_T > 40$ GeV, METnomu > 90 GeV, $M_{jj} > 800$ GeV
- QCD in plots is VBF enriched MC doesn't model all QCD
- ► Following cuts added due to poor data-MC agreement from QCD contamination:
- $> \frac{\textit{METnomu}}{\sigma_{\textit{METnomu}}} > 3.0, \ \mathsf{Min} \Delta \phi(\textit{all jets p}_{\textit{T}} > 30 \ \textit{GeV}, \textit{METnomu}) > 1.0, \ \textit{M}_{jj} > 1000 \ \mathsf{GeV}$

Signal region selection

- As in the prompt analysis we veto events with 'veto' electrons or muons
- Taus are not vetoed due to low ($\sim\!55\%)$ ID efficiency and high ($\sim\!2\text{-}3\%)$ fake rate
- Can't model QCD shape so cut hard to remove most QCD
- Can then tolerate a larger uncertainty on QCD estimation
- ▶ Remaining QCD in region $\frac{METnoMU}{\sigma_{METnoMU}} < 4$ and Min $\Delta\phi(all\ jets, METnomu) < 2.0$
- Select region $\frac{METnoMU}{\sigma_{METnoMU}} > 4$ and $Min\Delta\phi(all\ jets, METnomu) > 2.0$
- Signal contribution also large in this region of parameter space
- We blind this region and use as a basis for signal region optimisation

Signal region selection

- ► We optimise by choosing the cut values with the best 95% C.L. expected limit
- Limit calculation details later
- ▶ We scanned through jet 2 p_T , $\frac{METnoMU}{\sigma_{METnoMU}}$, Min $\Delta\phi(all\ jets\ , METnomu)$ and M_{jj}
- Best limit was found for:
 - jet 2 $p_T > 45 \text{ GeV}$
 - $\frac{METnoMU}{\sigma_{METnoMU}} > 4$
- $\mathsf{Min}\Delta\phi(\mathit{all\,jets}, \mathit{METnomu}) > 2.3$
- $M_{jj} > 1200 \text{ GeV}$
- We defined this as our "signal region"
- Discrepancy outside signal region is from QCD

Prompt vs Parked selection

► Summary of differences in signal region selection

Variable	Prompt cut	Parked cut
Lepton veto	no veto e or μ	
$\eta_{j1,2}$	<	4.7
$\eta_{j1} \cdot \eta_{j2}$	<	0
jet 1 p _T	> 50	GeV
jet 2 <i>p_T</i>	> 50 GeV	> 45 GeV
$\Delta \eta_{jj}$	> 4.2	> 3.6
M_{jj}	> 1100 GeV	> 1200 GeV
METnomu	> 130 GeV	> 90 GeV
Central jet veto	yes	no
$\Delta \phi_{jj}$	< 1.0	no cut
METnoMU σ METnoMU	no cut	> 4
$Min\Delta\phi(\mathit{all\ jets}, METnomu)$	no cut	> 2.3

Top control region

- ► Top contribution to V+jets control regions is non-negligible
- Use method used for W backgrounds in prompt analysis
- Region: signal region with lepton veto replaced with requirement for 1 tight muon and 1 tight electron
- Very few events in $e\mu$ region so also removed Min $\Delta\phi(\mathit{all\,jets},\,\mathit{METnomu})$ cut

N ^{data}	$21 \pm 4.6 (ext{stat.})$
N_C^{bkg}	$0.3 \pm 0.1 (MC\;stat.)$
N _S ^{top MC}	$5.3\pm1.3 (MC\;stat.)$
$N_C^{top\ MC}$	$24.6 \pm 4.0 (MC\;stat.)$
N ^{data} — N ^{bkg} N ^{top MC}	$0.8 \pm 0.2 (stat.) \pm 0.1 (\textit{MCstat.})$
N_S^{top}	$4.4\pm1.0 (ext{stat.})\pm1.3 (ext{MC stat.})$

$W o e \nu$

- Data-MC agreement good
- ► Same method used as for prompt analysis

	Signal region	Control region
N ^{data}	XXX	$68 \pm 8.2 ({\sf stat.})$
N ^{bkg}	N/A	$3.1 \pm 1.5 ({\sf stat.})$
N ^{WMC}	$114.6 \pm 8.9 (ext{stat.})$	$129.6 \pm 8.1 (stat.)$
$(N^{data} - N^{bkg})/N_C^{WMC}$	$0.50 \pm 0.06 ({\sf stat.}) \pm 0.03 ({\sf MC stat.})$	
Final estimate	$57.4 \pm 7.3 ({\sf stat.}) \pm 5.9 ({\sf MC stat.})$	N/A

$$W \rightarrow \mu \nu$$

- ▶ Data-MC agreement good
- ► Same method used as for prompt analysis

	Signal region	Control region
N ^{data}	XXX	$300 \pm 17.3 ({\sf stat.})$
N ^{bkg}	N/A	$12.7 \pm 4.6 ({ m stat.})$
N ^{WMC}	$142.1 \pm 10.1 ({\sf stat.})$	$401.1 \pm 15.1 ({\sf stat.})$
$(N^{data} - N^{bkg})/N_C^{MC}$	$0.72 \pm 0.04 ({\sf stat.}) \pm 0.03 ({\sf MC stat.})$	
Final estimate	$101.8\pm6.1(ext{stat.})\pm8.3(ext{MC stat.})$	N/A

$$Z \rightarrow \nu \nu$$

- ► Data-MC agreement good for limited statistics
- Same method used as for prompt analysis

	Signal region	Control region
N ^{data}	XXX	$18 \pm 4.2 (stat.)$
N ^{bkg}	N/A	$0.2 \pm 0.1 (stat.)$
$N^{MC}(EWK)$	$7.9 \pm 0.2 (extit{stat.})$	$6.0 \pm 0.2 (stat.)$
$N^{MC}(QCD)$	$29.5 \pm 3.0 (stat.)$	20.7 ± 2.5(stat.)
$\frac{N^{data} - N^{bkg}}{N^{MC}(EWK) + N^{MC}(QCD)}$	$0.67 \pm 0.16 (stat.) \pm 0.06 (MCstat.)$	
FinalN ^{Z$\rightarrow \nu \nu$} estimate	$157.3 \pm 37.6 (\textit{datastat.}) \pm 18.2 (\textit{MCstat.})$	N/A

$W \to \tau \nu$ control region

- Control regions for other W backgrounds:
- signal region with lepton veto replaced with a requirement for a single lepton
- For $W \to \tau \nu$ there are not enough events in this region:
- in prompt analysis we removed the central jet veto (CJV)
- CJV no longer used, so we remove the Min $\Delta \phi$ (all jets, METnomu) cut
- ► This leads to QCD contamination so we require:
- $\mathsf{Min}\Delta\phi(\mathit{leading}\,2\,\mathit{jets},\,\mathit{METnomu}) > 1.0$
- m_T of the lepton-MET system $> 20~{
 m GeV}$
- No tau veto in signal region so small overlap, signal contamination is < 1%</p>

$W \to \tau \nu$ control region

- ► Difference in weight between control region and signal region cuts used to estimate error
- Measured in $W \to \mu \nu$ which has enough events to see data driven weight variation with Min $\Delta \phi({\it all jets}, {\it METnomu})$ cut
- weight changes by 20% when loosening cut from 2.3 to 1.0.
- We add a 20% systematic on the $W \to au
 u$ background

N ^{data}	$76\pm 8.7 (stat.)$	
$N_C^{\bar{b}kg}$	$11.3 \pm 4.6 (MCstat.)$	
NMC	122.6 ± 8.8 (MCstat.)	
N _C	$81.0 \pm 6.4 (MCstat.)$	
N ^{data} _ N ^{bkg}	$0.80\pm0.11(ext{stat.})\pm0.08(ext{MC stat.})$	
N_S^W	$98.0 \pm 13.2 (stat.) \pm 12.6 (MCstat.)$	

QCD background estimation: Shape

- Other background methods estimate unreconstructed contribution from reconstructed
- For QCD use MET near reconstructed jets to model MET from unreconstructed/mismeasured jets
- Use region with low Min∆φ(all jets, METnomu) but high Min∆φ(leading jets, METnomu)
- $\mathsf{Min}\Delta\phi(\mathit{all\,jets},\, \mathit{METnomu}) < 1.0$
- $\mathsf{Min}\Delta\phi(\mathit{leading jets},\,\mathit{METnomu}) > 1.0$
- ► Has good shape agreement with enriched QCD MC
- Use shape from this region

QCD background estimation: Normalisation

- MET significance and min $\Delta\phi(\textit{METnomu}, \mathsf{all}\ \mathsf{jets})$ correlated
- Cannot use ABCD to normalise
- Normalisation shows strong dependence on cut variables
- Norm 2 and 3 have large signal contamination
- Norm 3 also has low stats and odd because we forbid jets recoiling against significant met
- Fit normalisation variation in norm 1
- ► Check consistency in norm 2 and 3

Normalisation variation

Jet met dphi

MET significance

QCD background estimation: Result and systematics

Factor	Extrapolation	Extrapolation
	mindphi> 2.5	metsig> 4
0.17 ± 0.02	0.014 ± 0.008	0.05 ± 0.04
0.12 ± 0.01	0.013 ± 0.004	0.01 ± 0.01
0.24 ± 0.03	0.03 ± 0.01	0.55 ± 0.06
0.06 ± 0.01	-	0.01 ± 0.02
0.5 ± 0.1	0.21 ± 0.11	-
	0.17 ± 0.02 0.12 ± 0.01 0.24 ± 0.03 0.06 ± 0.01	$\begin{array}{c cccc} & \text{mindphi} > 2.5 \\ \hline 0.17 \pm 0.02 & 0.014 \pm 0.008 \\ 0.12 \pm 0.01 & 0.013 \pm 0.004 \\ 0.24 \pm 0.03 & 0.03 \pm 0.01 \\ 0.06 \pm 0.01 & - \end{array}$

- Good agreement in mindphi extrapolations
- Norm 3 agreement in metsig is poor
- As norm 3 has low statistics and is an odd region: drop
- ▶ Use envelope of norm 1 scale factors
- Final prediction: $N_S^{QCD}=17\pm14$

Results

Background	$N_{est} \pm (stat) \pm (syst)$
Z o u u	$157.3 \pm 37.6 \pm 38.3$
$W o \mu u$	$101.8 \pm 6.1 \pm 11.9$
W o e u	$57.4 \pm 7.3 \pm 7.0$
W o au u	$98.0 \pm 13.2 \pm 25.4$
top	$4.4 \pm 1.0 \pm 1.4$
VV	$3.8 \pm 0.0 \pm 0.7$
QCD multijet	$17\pm0\pm14$
Total Background	$439.7 \pm 41.0 \pm 55.8$
Signal(VBF) 100% BF	$273.4 \pm 0.0 \pm 31.2$
Signal(ggH) 100% BF	$22.6 \pm 0.0 \pm 15.6$

Signal Region Control Plots

Systematics

- Uncertainties considered are mostly the same as the prompt analysis
- Changes are:
- Top background now data driven so has data stat. error
- New W
 ightarrow au
 u extrapolation error
- QCD background error procedure now as described above
- \blacktriangleright We are reevaluating the $Z/\gamma^* \to \mu\mu$ to $Z \to \nu\nu$ with aMC@NLO
- Waiting on MC jobs, very quick to update results

Systematics

► The size of each uncertainty is given as a percentage of total signal/background

Source	Total background	Signal
Control region data stat.	9.30	0.00
$Z/\gamma^* o \mu\mu$ to $Z o u\nu$ extrapolation	7.16	0.00
MC stat.	5.54	3.82
Jet energy scale	4.94	10.70
W ightarrow au u control region extrapolation	4.46	0.00
Lepton ID efficiency	3.22	0.00
QCD normalisation	3.18	0.00
Jet energy resolution	2.86	1.81
Unclustered energy scale	2.28	1.64
Pileup weight	0.95	1.56
Luminosity	0.02	2.60
Theory Uncertainty	0.01	5.14

Expected limits

- Used Higgs combine package with Asymptotic CLs method
- Performed a single bin counting experiment
- Analysis blind so have expected limits only
- ▶ 95% C.L. Median limit on B(H \rightarrow inv.) for $m_H = 125$ GeV is: 38%
- ► Prompt paper expected limit was 49%

Source of gain

- Expected limits from prompt and parked analyses have been obtained from the prompt and parked data
- ggH signal and UES uncertainty not included
- This explains 2% difference in parked cuts parked trigger number
- Data driven top control region used for both prompt and parked cuts
- ▶ Prompt trigger weights ignore correlations in turn on part of parked cut region

	Prompt trigger	parked trigger
Prompt cuts	45%	46%
Parked cuts	47%	40%

Interpretation

- \blacktriangleright Prompt cuts limits \sim same as old card with both prompt and parked trigger
- slight difference as paper limit had extra $W\gamma$
- ► The parked cuts give a worse limit with prompt trigger than with parked trigger
- Improvement comes from using the new phase space made available by the parked trigger

Uncertainty impact table - impacts larger than 0%

Expected limit with:	All Nuisances: 37.8%	No Nuisances: 14.3%
Nuisance	Removal effect (relative %)	Addition effect (relative %)
$Z \rightarrow \nu \nu$ data stat.:	-12.4%	65.8%
$Z \rightarrow \nu \nu$ extrapolation:	-8.3%	53.5%
JES:	-6.5%	12.2%
W o au u extrapolation:	-4.1%	24.5%
$Z \rightarrow \nu \nu$ MC stat.:	-2.6%	24.5%
W o au u MC stat.:	-1.5%	12.2%
W ightarrow au u data stat.:	-1.5%	13.6%
QCD normalisation:	-1.5%	7.5%
$W ightarrow \mu u$ MC stat.:	-1.0%	6.1%
Muon ID efficiency:	-0.5%	6.8%
Tau ID efficiency:	-0.5%	5.5%
W ightarrow e u data stat.:	-0.5%	4.8%
$W ightarrow \mu u$ data stat.:	-0.5%	3.4%
W ightarrow e u MC stat.:	-0.5%	3.4%
Electron ID efficiency:	0.0%	0.6%
PU weight:	0.0%	0.6%

Summary

- ▶ New cut based analysis presented with less QCD and higher signal efficiency
- Can then accept remaining QCD estimate with large error
- Made possible by looser parked trigger thresholds
- ► Full cut based analysis presented
 - Expected limit 38%
 - Improved from 49% for prompt analysis
- We request preapproval from the Higgs PAG

Backup

Available on the CMS information server

Documentation HIG-14-038

AN-14-243

CMS NOTE AN-14-243

Head Id: 269377 Archive Id: 266572:269470M Archive Date: 2014/11/27 Archive Tae: trunk

Search for a Higgs boson decaying to invisible final states

Chavanit Asawatanetrakulder², lim Brooke³, David Colline¹, Gavin Davies¹, Patrick Dunne¹, Anne-Marie Marman¹, Alexander Nikitenko¹, and loao Pela¹

> 1 Imperial College London (UK) 2 Peking University, Beijing (China) 3 University of Bristol (UK)

> > Abstract

In this note, investigations are made into improving the analysis for the search of a Hiers boson produced by Vector-Boson Fusion and decaying to invisible particles. compared to what was published in HIG-13-030 with the 8 TeV dataset, and in view of preparing for 13 TeV. The parked triggers are used instead of the prompt ones, which allow a small increase in statistics due to different requirements at HLT, in particular no requirement on the MET and looser thresholds on the jets pT. An improved cutbased selection is presented, with better rejection of the QCD multijet background. A BDT-based selection is also investigated. Both approaches are optimised in terms of expected 95%CL limits on the branching ratio of Higgs to invisible.

P. Dunne, A.-M. Magnan Search for a Higgs boson decaying to invisible final states

PDFKeywords: CMS, physics, Higgs boson, invisible

DRAFT

CMS Physics Analysis Summary The content of this note is intended for CMS internal use and distribution only

> 2014/12/02 Head Id: 269965 Archive Id: 269969P Archive Date: 2014/12/02 Archive Tae: trunk

CMS PAS HIG-14-038

Search for invisible decays of Higgs bosons in the vector boson fusion production mode

> The CMS Collaboration Abstract

A search for invisible decays of Higgs bosons in the vector boson fusion (VBF) pro duction mode is carried out using data recorded in 2012 at a centre-of-mass energy of 8 TeV by the CMS detector corresponding to an integrated luminosity of 19.2 inverse femtobams. Limits are set on the production cross section times invisible branchine fraction, as a function of the Hiers boson mass. Assuming standard model Hiers boson cross sections and acceptances, the observed (expected) upper limit on the invisible branching fraction at my = 125 GeV is found to be 0.XX(0.38) at 95% confidence

Search for invisible decays of Higgs bosons in the vector boson fusion pro-PDFKeywords: CMS, physics, Higgs

Why Higgs to Invisible?

Experimental motivation

- Current measurements of the 125 GeV Higgs boson are compatible with Standard Model (SM) expectations
 - large uncertainties can still accommodate significant beyond the SM (BSM) properties
- Additional Higgs bosons with exotic decays are not excluded

Theoretical motivation

- ▶ Many BSM theories predict Higgs boson decays to invisible final states:
 - e.g. SUSY, extra dimensions, fourth-generation neutrinos
- ▶ These final state particles are often dark matter candidates

Data Samples

Dataset/JSON	Int. Lumi $[pb^{-1}]$
/MET/Run2012A-22Jan2013-v1/AOD	889
/VBF1Parked/Run2012B-22Jan2013-v1/AOD	3871
/VBF1Parked/Run2012C-22Jan2013-v1/AOD	7152
/VBF1Parked/Run2012D-22Jan2013-v1/AOD	7317
Total analysed	19229
Cert_190456-208686_8TeV_22Jan2013ReReco_Collisions12_JSON.txt	19789

MC Samples-1

Dataset	σ [pb]	No. of Events	Eq. $\int L [fb^{-1}]$
$(Z ightarrow u u) + ext{jets } (50 < ext{HT} < 100 ext{ GeV})$	381.2	4040980	10.6
(Z ightarrow u u) + jets (100 < HT < 200 GeV)	160.3	4416646	27.6
$(Z \rightarrow \nu \nu)$ + jets (200 < HT < 400 GeV)	41.49	5055885	122
$(Z \rightarrow \nu \nu)$ + jets (400 < HT < ∞ GeV)	5.274	1006928	191
$(W \rightarrow l \nu)$ + jets (inclusive)	37509(NNLO)	76102995	2.03
$(W \rightarrow l \nu) + 1$ jet	5400	23141598	42.9
$(W \rightarrow l \nu) + 2 \text{ jet}$	1750	34044921	19.5
$(W \rightarrow l\nu) + 3$ jet	519	15539503	29.9
$(W \rightarrow l\nu) + 4$ jet	214	13382803	62.5
$(Z/\gamma \rightarrow II) + \text{jets (MII} > 50)$	3503.71(NNLO)	30459503	8.7
$(Z/\gamma \rightarrow II) + 1$ jets (MII > 50)	561	24045248	42.9
$(Z/\gamma \rightarrow II) + 2 \text{ jets (MII} > 50)$	181	21852156	121
$(Z/\gamma \rightarrow II) + 3 \text{ jets (MII} > 50)$	51.1	11015445	216
$(Z/\gamma \rightarrow II) + 4 \text{ jets (MII} > 50)$	23.04	6402827	278
EWK $(Z/\gamma \rightarrow II) + 2$ jets	0.888	2978717	3354
EWK $(W^+ \rightarrow l\nu) + 2$ jets	6.48	8996164	1388
EWK $(W^- o l u) + 2$ jets	4.09	5994018	1466

MC Samples-2

Dataset	σ [pb]	No. of Events	Eq. $\int L$ [fb ⁻¹]
WW	54.838(NLO)	10000431	182
WZ	33.21(NLO)	10000283	301
ZZ	17.654(NLO)	9799908	555
$W\gamma$	461.6	4802358	10.4
tt + jets	245.8(NNLO)	6923750	28.2
t (t-channel)	56.4(NLO)	3758227	66.6
t (tW-channel)	11.1(NLO)	497658	44.8
t (s-channel)	3.79(NLO)	259961	68.6
\bar{t} (t-channel)	30.7(NLO	1935072	63.0
\bar{t} (tW-channel)	11.1(NLO)	493460	44.5
\bar{t} (s-channel)	1.76(NLO)	139974	79.5

Objects

PFMET

- Ignore muons
- ► Type0+1 corrections
- Smeared PFMET for MC

AK5 PFJets

- ► L1FastJet+L2+L3(+L2L3Residual) JEC
- "Loose" PF Jet ID
- Cleaned with veto leptons
- ► "Loose" PU jet ID
- Smeared jet collection for MC (JER is smeared to match data)

Veto leptons

- loose+PFiso muons $p_T > 10$ GeV, $|\eta| < 2.1$
- veto+PFiso electrons $p_T > 10$ GeV, $|\eta| < 2.4$

Tight leptons

As veto leptons but "tight" ID and $p_T > 20 \text{ GeV}$

Hadronic taus

- $ightharpoonup p_T > 20 \text{ GeV}, \ |\eta| < 2.3, d_Z < 0.2 \text{ cm}$
- ► Tight ID, discriminant "byTightCombinedIsolationDelta-BetaCorr3Hits"
- ► Efficiency ~0.55, fake rate 0.02(barrel),0.03(endcap)

Data/MC reweighting

- ► We apply the following reweightings of the MC to match the data:
- Trigger efficiency
- Lepton efficiency: ID and isolation
- Pileup distribution

Other approaches investigated and run 2 prospects

Initial investigations

- ▶ Planned to define a loose pre-selection and model QCD shape
- Several options for analysis strategy:
- Rectangular cuts and counting experiment
- Rectangular cuts and shape experiment
- MVA and counting experiment
- MVA and shape experiment
- Due to trigger conditions no appropriate QCD control region found details later

Run 2 prospects

- ▶ Prescaled looser control triggers planned to enable better QCD control region
- ► Will reinvistigate shape analysis and MVA

Software framework strategy

Prompt analysis

- ► Two frameworks: Analyses A and B
- independent ntuples and analysis code

Parked analysis

- ▶ Insufficient manpower to maintain and develop two frameworks
- Moved to one fully developed framework
- New framework is development of analysis B and uses same ntuples
- Synchronised yields in signal and control regions between new framework and old analyses A and B
- Repeated expected limit calculation from HIG-13-030 analysis with the new framework and parked data
- Agrees with HIG-13-030 to within 2%, which is good given rereco, and change of global tag and triggers

Software cross check

- ► Starting point region numbers also cross-checked in alternate software
- Agreement is better than 0.5%

Signal efficiency as a function of PU

Signal efficiency as a function of PU

Veto muons in signal MC

- ▶ Veto muons don't have a dz or dxy cut
- ► Concern that we would be vetoing muons from a different vertex
- ► Muon veto efficiency turns out to be very high:
 - ${\sim}10$ signal MC events with a veto muon out of ${\sim}55000$
- nvetomuons doesn't seem correlated with PU

Effect of $Z/\gamma^* \to \mu\mu$ to $Z \to \nu\nu$ uncertainty

Uncertainty/%	Median expected limit/%
20	37.79
10	35.64
9	35.45
5	34.86
0	34.67

Trigger efficiency error

- ▶ Bin used with largest uncertainty picked for each run period
- Worst case scenario assumed of all bins having this uncertainty gives 2.3% uncertainty
- Error cancels in all data driven backgrounds
- Only affects signal and VV
- ► Small compared to other uncertainties and doesn't affect limit
- Treated as negligible

Trigger efficiency-Run A-1

Trigger efficiency-Run A-2

Trigger efficiency-Run BC-1

Trigger efficiency-Run BC-2

Trigger efficiency-Run D-1

Trigger efficiency-Run D-2

QCD options tried

Several methods tried to model QCD

Standard MC

- doesn't have enough events

Private VBF+MET enriched QCD MC sample

- Can only enrich in events with real met
- Can't model met from mismeasurement

Data-driven shape using different jet pairs in the event

- Jet kinematics are very biased
- Ordering in p_T and angle have been tried
- Reweighting individual distributions to fix others has been tried

VBF enriched QCD MC

 $ightharpoonup \sum E_{\perp}(\vec{\nu}) > 40 \; GeV$

MC Filter: Dijet Filter

- Select jets with:
 - $ho_{\perp} > 20 \; GeV$
 - ▶ $|\eta| < 5.0$
- From selected jets at least one pair with:
 - ► m_{jj} > 700 GeV
 - $ightharpoonup \Delta \eta > 3.2$

There 2 distict populations of events: real and fake met.

Sample	Ev. Gen.	Filter Eff.	Events	XS [pb]	Eq. Lumi. $[fb^{-1}]$
QCD-Pt-80to120	39376000000	0.000049	1614416	1033680	38.09
QCD-Pt-120to170	7000000000	0.000283	2051000	156293.3	44.79
QCD-Pt-170to300	1375000000	0.000987	1391500	34138.15	40.28
QCD-Pt-300to470	80000000	0.002659	207840	1759.549	45.47
QCD-Pt-470to600	25000000	0.004127	104675	113.8791	219.53

BDT Study

- ► Had a quick look at MVA analysis
- Started from cut based signal region
- Only region with negligible QCD
- ► Best expected limit obtained 37%
 - Does not take into account any increased systematic
- Therefore unlikely to be worthwhile
- New variables could make MVA worthwile
- Ability to model QCD would enable looser starting selection which may make MVA worthwhile

No systematics limits

- ▶ Prompt limit with no systematics 16.6%
- ▶ Parked limit with no systematics 14.3%