Wire Outline

- Introduction
- Interconnect Modeling
 - Wire Resistance
 - Wire Capacitance
- Wire RC Delay
- ☐ Crosstalk
- □ Wire Engineering
- Repeaters

Introduction

- ☐ Chips are mostly made of wires called *interconnect*
 - In stick diagram, wires set size
 - Transistors are little things under the wires
 - Many layers of wires
- □ Wires are as important as transistors
 - Speed
 - Power
 - Noise
- Alternating layers run orthogonally

Layout of Two Stage Pipelined Delta

Example

1 μm

Intel 90 nm Stack

Intel 45 nm Stack

[Thompson02]

[Moon08]

Wire Geometry

- \square Pitch = w + s
- □ Aspect Ratio: AR = t/w
 - Old processes had AR << 1
 - Modern processes have AR ≈ 2

Pack in many skinny wires

Layer Stack

- AMI (On) Semiconductor 0.6 μm process has 3 metal layers
 - M1 for within-cell routing
 - M2 for vertical routing between cells
 - M3 for horizontal routing between cells
- ☐ Modern processes use 6-10+ metal layers
 - M1: thin, narrow ($< 3\lambda$)
 - High density cells
 - Mid layers
 - Thicker and wider, (density vs. speed)
 - Top layers: thickest
 - For V_{DD}, GND, clk

Lumped Element Models

- Wires are a distributed system
 - Approximate with lumped element models

N segments

- \Box 3-segment π -model is accurate to 3% in simulation
- □ L-model needs 100 segments for same accuracy!
- T model is harder to be solved
- \Box Use single segment π -model for Elmore delay

Multi-segment Models

Wire Resistance

$$R = \frac{\rho}{t} \frac{l}{w} = R_{\square} \frac{l}{w}$$

- \square R_{\square} = sheet resistance (Ω/\square)
 - − □ is a dimensionless unit(!)
- Count number of squares

 $-R = R_{\square} * (# of squares)$

Choice of Metals

- ☐ Until 180 nm generation, most wires were aluminum
- Contemporary processes normally use copper
 - Cu atoms diffuse into silicon and damage FETs
 - Must be surrounded by a diffusion barrier

Metal	Bulk resistivity ρ (μΩ • cm)
Silver (Ag)	1.6
Copper (Cu)	1.7
Gold (Au)	2.2
Aluminum (Al)	2.8
Tungsten (W)	5.3
Titanium (Ti)	43.0

Typical Sheet Resistance

☐ Sheet resistance for 180nm process with Aluminum interconnect

Table 4.7 Sheet resistances		
Layer	Sheet Resistance (Ω /□)	
Diffusion (silicided)	3-10	
Diffusion (unsilicided)	50-200	
Polysilicon (silicided)	3-10	
Polysilicon (unsilicided)	50-400	
Metal1	0.08	
Metal2	0.05	
Metal3	0.05	
Metal4	0.03	
Metal5	0.02	
Metal6	0.02	

Contacts Resistance

- \Box Contacts and vias also have 2-20 Ω
- Use many contacts for lower R
 - Many small contacts for current crowding around periphery

Copper Issues

- ☐ Copper wires diffusion barrier has high resistance
- ☐ Copper is also prone to *dishing* during polishing
- ☐ Effective resistance is higher

$$R = \frac{\rho}{\left(t - t_{\text{dish}} - t_{\text{barrier}}\right)} \frac{l}{\left(w - 2t_{\text{barrier}}\right)}$$

Example

Compute the sheet resistance of a 0.17 μm thick Cu wire in a 65 nm process. Ignore dishing.

$$R_{\scriptscriptstyle \sqcap} = 0$$

 \blacksquare Find the total resistance if the wire is 0.125 μm wide and 1 mm long. Ignore the barrier layer.

$$R =$$

Example

Compute the sheet resistance of a 0.17 μm thick Cu wire in a 65 nm process. Ignore dishing.

$$R_{\Box} = \frac{1.7 \times 10^{-8} \ \Omega \Box m}{.17 \times 10^{-6} \ m} = 0.10 \ \Omega/\Box$$

 \blacksquare Find the total resistance if the wire is 0.125 μm wide and 1 mm long. Ignore the barrier layer.

$$R = (0.10 \ \Omega/\Box) \frac{1000 \ \mu \text{m}}{0.125 \ \mu \text{m}} = 800 \ \Omega$$

Wire Capacitance

- □ Wire has capacitance per unit length
 - To neighbors
 - To layers above and below

layer n-1

Capacitance Trends

- \Box Parallel plate equation: $C = \varepsilon_{ox}A/d$
 - Wires are not parallel plates, but obey trends
 - Increasing area (W, t, L) increases capacitance
 - Increasing distance (s, h) decreases capacitance
- □ Dielectric constant (permittivity)
 - $\varepsilon_{ox} = k\varepsilon_0$
 - $\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$
 - $k = 3.9 \text{ for } SiO_2$
- ☐ Processes are starting to use low-k dielectrics
 - $k \approx 3$ (or less) as dielectrics use air pockets

Capacitance Formula

Capacitance of a line without neighbors can be approximated as

$$C_{tot} = \varepsilon_{ox} l \left[\frac{w}{h} + 0.77 + 1.06 \left(\frac{w}{h} \right)^{0.25} + 1.06 \left(\frac{t}{h} \right)^{0.5} \right] \approx l * C/\mu m$$

☐ This empirical formula is accurate to 6% for AR < 3.3

Diffusion & Polysilicon

- \Box Diffusion capacitance is very high (1-2 fF/ μ m)
 - Comparable to gate capacitance
 - Diffusion also has high resistance
 - Avoid using diffusion runners for wires!
- Polysilicon has lower C but high R
 - Use for transistor gates
 - Occasionally for very short wires between gates

Wire RC Delay

Estimate the delay of a 30 units inverter driving a 6 units inverter at the end of the 1 mm copper wire (0.17um thickness and 0.125um width). Assume wire capacitance is 0.2 fF/μm and that a unit-sized inverter has $R = 10 \text{ K}\Omega$ for nMOS and C = 1.0 fF.

$$\mathbf{t}_{pd} =$$

Wire RC Delay

Estimate the delay of a 30 units inverter driving a 6 units inverter at the end of the 1 mm copper wire (0.17um thickness and 0.125um width). Assume wire capacitance is 0.2 fF/μm and that a unit-sized inverter has $R = 10 \text{ K}\Omega$ for nMOS and C = 1.0 fF.

$$\mathbf{t}_{pd}$$
 = (1000 Ω)(130 fF) + (1000 + 800) Ω (100 + 6) fF = 320.8 ps

Wire Energy

□ Estimate the energy per unit length (mm) to send a bit of information (one rising and one falling transition) in a CMOS process (65 nm, Vdd=1.0v).

 \Box E = CV² = (0.2 pF/mm)(1.0 V)² = 0.2 pJ/bit/mm = 0.2 mW/(Gb/s)/mm

Repeaters

- ☐ R and C are proportional to L
- \square RC delay is proportional to L^2
 - Unacceptably great for long wires
- □ Break long wires into N shorter segments
 - Drive each one with an inverter or buffer

Repeater Design

- ☐ How many repeaters should we use?
- How large should each one be?
- ☐ Equivalent Circuit-- Wire has resistance R_w and C_w per unit length
 - Single wire segment--wire length = L/N
 - Wire Capacitance C_w*L/N, Resistance R_w*L/N
 - Inverter width 3W (nMOS = W, pMOS = 2W)
 - Gate Capacitance C'*W, Resistance R/W, C'=3C_{unit}

Repeater Results

□ Write equation for Elmore Delay

The Elmore delay of each segment is

$$t_{pd-seg} = \frac{R}{W} \left(\frac{C_w l}{N} + C'W \right) + \left(\frac{R_w l}{N} \right) \left(\frac{C_w l}{2N} + C'W \right)$$

The total delay is N times greater:

$$t_{pd} = NRC' + L\left(R_wC'W + \frac{RC_w}{W}\right) + L^2\frac{R_wC_w}{2N}$$

Take the partial derivatives with respect to N and W and set them to 0 to minimize delay:

$$\frac{\partial t_{pd}}{\partial N} = RC' - l^2 \frac{R_w C_w}{2N^2} = 0 \Rightarrow N = l \sqrt{\frac{R_w C_w}{2RC'}}$$

$$\frac{\partial t_{pd}}{\partial W} = l \left(R_w C' - \frac{RC_w}{W^2} \right) = 0 \Longrightarrow W = \sqrt{\frac{RC_w}{R_w C'}}$$

Repeater Results

□ Summary

The best length of wire between repeaters is $\frac{l}{N} = \sqrt{\frac{2RC}{R_w C_w}}$ The best number of segment, N=?

The delay per unit length is

$$\frac{t_{pd}}{l} = \left(2 + \sqrt{2}\right) \sqrt{RC'R_wC_w}$$

~40 ps/mm

in 65 nm process

The total delay of the entire length is?

The inverter nMOS transistor width is
$$W = \sqrt{\frac{RC_w}{R_wC'}}$$

Repeater Example(1)

- Determine the best distance between repeaters for a minimum pitch metal2 line in a 180 nm process for least delay. Assume the unit transistor resistance is 3 k Ω .µm, the gate unit capacitance is C=1.7 fF/µm, and the metal2 per unit length capacitance is C_w =0.21 fF/µm, resistance is R_w =0.16 Ω /µm.
 - 1) How far should the repeater be spaced?

repeaters spaced =
$$\frac{l}{N} = \sqrt{\frac{2RC'}{R_w C_w}} = \sqrt{\frac{2(3000\Omega \cdot \mu m)\left(5.1 \frac{fF}{\mu m}\right)}{\left(0.16 \frac{\Omega}{\mu m}\right)\left(0.21 \frac{fF}{\mu m}\right)}} = 950 \mu m$$

$$C'=3C=5.1 \text{ fF/}\mu\text{m}$$

Repeater Example(2)

- Determine the best distance between repeaters for a minimum pitch metal2 line in a 180 nm process. Assume the unit transistor resistance is 3 k Ω .µm, the gate unit capacitance is C=1.7 fF/µm, and the metal2 per unit length capacitance is C_w =0.21 fF/µm, resistance is R_w =0.16 Ω /µm.
 - 1) How far should the repeater be spaced?
 - 2) How wide should the repeater transistor be?

$$W = \sqrt{\frac{RC_w}{R_w C'}} = \sqrt{\frac{\left(3000\Omega \cdot \mu m\right)\left(0.21 \frac{fF}{\mu m}\right)}{\left(0.16 \frac{\Omega}{\mu m}\right)\left(5.1 \frac{fF}{\mu m}\right)}} = 28 \mu m = Wn, Wp \approx 2Wn$$

Repeater Example(3)

- Determine the best distance between repeaters for a minimum pitch metal2 line in a 180 nm process. Assume the unit transistor resistance is 3 k Ω .µm, the gate unit capacitance is C=1.7 fF/µm, and the metal2 per unit length capacitance is C_w =0.21 fF/µm, resistance is R_w =0.16 Ω /µm.
 - 3) What is the delay per unit length (mm) of the wire delay per unit length

$$= (2 + \sqrt{2})\sqrt{RC'R_wC_w}$$

$$= (2 + \sqrt{2})\sqrt{(3000\Omega \cdot \mu m)\left(5.1\frac{fF}{\mu m}\right)\left(0.16\frac{\Omega}{\mu m}\right)\left(0.21\frac{fF}{\mu m}\right)}$$

$$= 77\frac{ps}{mm}$$

Repeater Example(4)

- Determine the best distance between repeaters for a minimum pitch metal5 line in a 180 nm process. Assume the transistor resistance is 3 k Ω .µm, the gate capacitance is C=1.7 fF/µm, and the metal5 capacitance is C_w =0.24 fF/µm, resistance is R_w =0.025 Ω /µm.
 - 1) How far should the repeater be spaced? (2260 um)
 - 2) How wide should the repeater transistor be? (W = 75um)
 - 3) What is the signal delay per unit length of the wire? (30 ps/mm)

Summary: wide upper level metal lines are faster, but take more space. Therefore, they are precious routing resource

Repeater Energy

- □ Energy / length $\approx 1.87 C_w V_{DD}^2$
 - 87% premium over unrepeated wires
 - The extra power is consumed in the large repeaters
- ☐ If the repeaters are downsized for minimum EDP:
 - Energy premium is only 30%
 - Delay increases by 14% from min delay

Crosstalk

- □ A capacitor does not like to change its voltage instantaneously.
- □ A wire has high capacitance to its neighbor.
 - When the neighbor switches from 1-> 0 or 0->1,
 the wire tends to switch too.
 - Called capacitive coupling or crosstalk.
- □ Crosstalk effects
 - Noise on nonswitching wires
 - Increased delay on switching wires

Crosstalk Delay

- ☐ Assume layers above and below on average are quiet
 - Second terminal of capacitor can be ignored
 - Model as $C_{gnd} = C_{top} + C_{bot}$
- □ Effective C_{adi} depends on behavior of neighbors
 - Miller effect
 - MCF—Miller Coupling Factor

В	ΔV	C _{eff(A)}	MCF
Constant	V_{DD}	C _{gnd} + C _{adj}	1
Switching with A	0	C_{gnd}	0
Switching opposite A	$2V_{DD}$	C _{gnd} + 2 C _{adj}	2

Crosstalk Noise

- Crosstalk causes noise on nonswitching wires
- ☐ If victim is floating:
 - model as capacitive voltage divider

$$\Delta V_{\textit{victim}} = \frac{C_{\textit{adj}}}{C_{\textit{gnd-v}} + C_{\textit{adj}}} \Delta V_{\textit{aggressor}}$$

Driven Victims

- Usually victim is driven by a gate that fights noise
 - Noise depends on relative resistances
 - Victim driver is in linear region, aggressor in saturation
 - If sizes are same, $R_{aggressor} = 2-4 \times R_{victim}$

$$\Delta V_{\text{victim}} = \frac{C_{\text{adj}}}{C_{\text{gnd-v}} + C_{\text{adj}}} \frac{1}{1+k} \Delta V_{\text{aggressor}}$$

$$k = \frac{\tau_{aggressor}}{\tau_{victim}} = \frac{R_{aggressor} \left(C_{gnd-a} + C_{adj}\right)}{R_{victim} \left(C_{gnd-v} + C_{adj}\right)}$$

Coupling Waveforms

 \Box Simulated coupling for $C_{adj} = C_{victim}$

Noise Implications

- □ So what if we have noise?
- ☐ If the noise is less than the noise margin, nothing happens to digital circuits
- Static CMOS logic will eventually settle to correct output even if disturbed by large noise spikes
 - But glitches cause extra delay
 - Also cause extra power from false transitions
- Dynamic logic never recovers from glitches
- Memories and other sensitive circuits also can produce the wrong answer

Wire Engineering

- □ Goal: achieve delay, area, power goals with acceptable noise
- ☐ Degrees of freedom:

500

1000

Pitch (nm)

1500

2000