<u>SFWRENG 3K04 – Software Development</u>

Assignment 2

Pacemaker Simulink/DCM

Gurleen Kaur Rahi (400377038)

Yash Bhatia (400362372)

Daniel Lupas (400396848)

Varunan Varathan (400375287)

Connor Usaty (400409624)

Table of Contents

1	Intro	oduction	Error! Bookmark not defined
2	Vari	ables	Error! Bookmark not defined
	2.1		Error! Bookmark not defined
	2.2	Parameters Variables	3
	2.3	Controlled Variables	6
	2.4	Internal Variables	
3	Mod	ules	9
	3.1	Pacemaker Modes	9
	3.1.1		
	3.1.2		1
	3.1.3		12
	3.2		
	3.2.1 3.2.2		
	3.2.3		
	3.2.4	Anticipated Changes	1:
	3.3		
	3.3.1 3.3.2		
	3.4 3.4.1		
	3.4.1		
1	Desi	gn Decisions	24
	4.1		24
	4.1 4.1.1		
	4.1.2		
	4.2	Rate Adaptivity	20
	4.3	Hardware Interface	
	4.3.1	Pacing	29
	4.3.2	Sensing	
	4.4	DCM Communication	30
	4.4.1		
	4.4.2		33
5	Desc	ription of Changes	
6	Testi	ing	
	6.1	V00	
	6.2	AOO	
	6.3		
	6.4		
	6.5		
	6.6		41
	6.7		42
	6.8	VVIR	45

1. Introduction

An overview of the Simulink implementation of this Pacemaker Project, written with the end-user in mind, is found in this documentation. This documentation contains the working of ten sensing modes with the goal of creating a functional pacemaker that responds to its surroundings and operates in accordance with those responses. Depolarization of the ventricles or atria is what is meant by pacing. Sensing is the process of identifying chamber signals. Heart sensing and pacing are provided by the VVI, AAI, VVIR, and AAIR modes. The ventricles employ VVI and VVIR, whereas the atrium uses AAI and AAIR. These four modes operate on an inhibited basis, which means that when a specific activity occurs from the appropriate chamber, the pacemaker is turned off. Only the atrium and/or ventricle are pace (not sensed) by AOO, VOO, AOOR, and VOOR.

While the AOO, VOO, AAI, and VVI modes pace regardless of the patient's activity, the AOOR, VOOR, AAIR, and VVIR modes pace adaptively based on data from the onboard accelerometer.

2. <u>Variables</u>

2.1 Measured Variables

Name	Name Units/Type Description		Range
t	ms	Duration of last heartbeat	_
ATR_SIGNAL	Double	Atrial signal assessment on an ECG	0 - 1
VENT_SIGNAL	Double	Ventricle signal assessment on an ECG	0 – 1
ATR_CMP_DETECT	Boolean	Higher than threshold atrial signal voltage	{True, False}
VENT_CMP_DETECT	Boolean	Higher than threshold ventricular signal voltage	{True, False}
Accel	Double x 3	Appropriate pacemaker Accel in g in local (a,b,c)	-4 – 4
Receive Uint8 x 17		Buffer_Acceled UART	0 - 255
Buffer_Accel_status	Uint8	shows the fullness of the UART Buffer_Accel	{0, 32}

2.2 Parameters Variables

Name	Units/Type	Description	Range
ranic	Omits/Type	Description	ivange

p mode		Mode of		
p_mode		operation in	VOO,AOO,VVI,AAI,	
	int	which	DOO, VOOR, AOOR,	
	IIIt	pacemaker	VVIR, AAIR, DOOR}	
		-	VVIK, AAIK, DOOK)	
		is working		
		Lowest		
		value of the		
p_rateAdaptiveLowrateInterval	ppm	heart rate	$30 - 175 \pm 8 \text{ ms}$	
		that is		
		allowed		
		Pulse		
p atrialAmplitude	V	amplitude	$0-5\pm 12\%$	
p_atriaiAmpittude	•	delivered to	$0 - 3 \pm 1270$	
		atrium		
		Pulse		
n vontai aulan A 1' 1 -	3.7	amplitude	$0-5\pm 12\%$	
p_ventricularAmplitude	V	delivered to	$0-3 \pm 12\%$	
		ventricle		
		Minimum		
		voltage		
		value that		
p atrial sensitivity	V	classifies an	$0-5\pm 2\%$	
p_uariar_sensitivity	,	atrium	0 2 = 270	
		signal as		
		pulse		
		Minimum		
		voltage		
		value that		
	1 7		0 5 20/	
p_ventricle_sensitivity	V	classifies a	$0-5 \pm 2\%$	
		ventricle		
		signal as		
		pulse		
p atrialPulseWidth	ms	Pulse width	$1 - 30 \pm 0.2 \text{ ms}$	
F	1110	of atrium	1 00 - 012 1110	
p ventricularPulseWidth	ms	Pulse width	$1 - 30 \pm 0.2 \text{ ms}$	
p_ventileatail aise widii	1113	of ventricle	1 30 ± 0.2 1113	
		Maximum		
		rate of		
m movimum Cana a Data		detection	50 175 1 4	
p_maximumSensorRate	ppm	indicated by	$50 - 175 \pm 4 \text{ ppm}$	
		rate		
		adaptivity		
		Rate	{V-Low, Low, Med-	
p_activityThreshold	_	adaptivity's	Low, Med, Med-High,	
P_000.11, 110.01010		minimal	High, V-high}	
	<u> </u>	111111111111111111111111111111111111111	111511, 1-111511	

		4: •4	
		activity	
		level	
		Pacing	
		rate's rising time from	
p lowrateLimit	s	the lower	$10 - 50 \pm 3 \text{ sec}$
1-		rate limit to	
		the	
		maximum	
		sensor rate	
		shows	
		reaction to	(T. F.1.)
p_response	_	activity	{True, False}
		levels over	
		the cutoff	
		Maximum	
		value of the	
p_upperrateLimit	min	pacing rate	2 16 + 20
1 = 11		decrease	$2-16\pm30~\text{sec}$
		that is	
		allowed	
		Gives value	
		of general	
p_responseFactor		refractory	
1 1	ms	period	$150-500 \pm 8 \text{ ms}$
		rather than	
		specific to	
		its type	
		bpm	
		interval	
		between the	
		pacemaker's	
p_hysterisisLimit	_	pulse and	-
1 = 7		the last	
		pulse that	
		the body	
		generates	
		on its own	

2.3 Controlled Variables

Name	Units/Type	Description	Range
PACE_CHARGE_CTRL	Boolean	PWM attached to the primary capacitor	{True, False}

ATR_PACE_CTRL	Boolean	Atrium ring attached to the primary capacitor	{True, False}
VENT_PACE_CTRL	Boolean	Ventricle ring attached to the primary capacitor	{True, False}
ATR_GND_CTRL	Boolean	Atrium ring attached to the ground	{True, False}
VENT_GND_CTRL	Boolean	Ventricle ring connected to ground	{True, False}
Z_ATR_CTRL	Boolean	Circuit with an impedance coupled to the atrium ring	{True, False}
Z_VENT_CTRL	Boolean	Circuit with an impedance coupled to the ventricle ring	{True, False}
PACING_REF_PWM	Percent	Percentage reference PWM needed for primary capacitor	0–100
ATR_CMP_REF_PWM	Percent	For the atrium signal comparator, use reference PWM.	0–100
VENT_CMP_REF_PWM	Percent	For the ventricle signal comparator, use reference PWM.	0–100
s_paceStart	Boolean	Output will be paceStart regardless of Atrium or Ventricle	{True, False}
s_atrialPaceStart	Boolean	Commencement of atrial pulse	{True, False}
s_ventricularPaceStart	Boolean	Commencement of ventricular pulse	{True, False}
s_AOORState	Boolean	Commencement of AOOR state	{True, False}
s_AOOState	Boolean	Commencement of AOO state	{True, False}
s_VOORState	Boolean	Commencement of VOOR state	{True, False}
s_VOOState	Boolean	Commencement of VOO state	{True, False}
s_AAIRState	Boolean	Commencement of AAIR state	{True, False}
s_AAIState	Boolean	Commencement of AAI state	{True, False}

s_VVIRState	Boolean	Commencement of VVIR state	{True, False}
s_VVIState	Boolean	Commencement of VVI state	{True, False}
s_currentState	Boolean	Refers to the current state	0-5
s_offState	Boolean	States are turned off	{True, False}

2.4 Internal Variables

Name	Units/Typ	Descriptio	Danga
Name	e	n	Range
h_atrial_pulse_detect	Boolean	Pulse detection that happens in atrium	{True, False}
h_ventricle_pulse_detect	Boolean	Pulse detection that happens in ventricle	{True, False}
s_atrialPaceStart	Boolean	Atrium signal pacing gets signalled	{True, False}
s_ventricular_PaceStart	Boolean	Ventricle signal pacing gets signalled	{True, False}
MODES_SENSOR_RATE_Rang e	ppm	Shows rate adaptivity in the range from minimum to maximum	p_rateAdaptiveLowrateInterv al – p_maximumSensorRate

3. Modules

a. Pacemaker Modes

i. VOO/AOO/VOOR/AOOR

1. Description

One chamber is paced at the specified rate in the VOO, AOO, VOOR, and AOOR modes. The different types of variables that were used for these four modes are listed in the table below.

2. Types of Variables

As seen below, we only used measured and internal variables. There were no Programmable Parameters and Controlled Variables used for these modes.

3.1.1.2.1 Measured Variables

Name	Units/Type Description		Range
		The duration of time	
t	ms	period measured from the	_
		previous pulse.	

3.1.1.2.2 <u>Programmable Parameters</u>

There were no Programmable Parameters used for these modes.

3.1.1.2.3 <u>Controlled Variables</u>

Name	Units/Type	Description	Range
s_AOORState	Boolean	Commencement of AOOR	{True, False}
		state	
s_AOOState	Boolean	Commencement of AOO	{True, False}
		state	
s_VOORState	Boolean	Commencement of VOOR	{True, False}
		state	
s_VOOState	Boolean	Commencement of VOO	{True, False}
		state	

3.1.1.2.4 Internal Variables

Name	Units/Type	Description	Range
AOO_VOO_pace	Boolean	Pacing for either AOO or VOO starts to happen	{True, False}
MODES_SENSOR_RATE	ppm	Indicates the sensor rate for different modes	p_rateAdaptiveLowrateInterval - p_maximumSensorRate
PACE_RATE_INC	ppm/sec	Increase in the pacing rate	0 – 14.5

PACE_RATE_DEC	RATE_DEC ppm/sec		0 – 1.3	
CURR_PACE_RATE	ppm	Current pacing rate	30 – 175 ppm	

3.1.1.3 Requirements

Source	Case	Conc	lition	Activity	End Activity	Destination State	Start Activity
START	N/A	N/A		N/A	N/A	PACING_RATE	CURR_PACE_RATE = MODES_SENSOR_RATE
PACING_RATE	N/A	MODES_SENS OR_RATE > CURR_PACE_R ATE MODES_SENS OR_RATE ≤ CURR_PACE_R ATE	CURR_PACE_R ATE + PACE_RATE_I NC * t > MODES_SENS OR_RATE CURR_PACE_R ATE + PACE_RATE_I NC * t \leq MODES_SENS OR_RATE CURR_PACE_R ATE - PACE_RATE_D EC * t \leq MODES_SENS OR_RATE CURR_PACE_R ATE - PACE_RATE_D EC * t \leq MODES_SENS OR_RATE URR_PACE_R ATE - PACE_RATE_D EC * t \leq MODES_SENS OR_RATE_D EC * t \leq MODES_SENS OR_RATE	CURR_PACE_RA TE = MODES_SENSOR _RATE CURR_PACE_RA TE += PACE_RATE_INC * t CURR_PACE_RA TE = MODES_SENSOR _RATE CURR_PACE_RA TE = MODES_SENSOR _RATE CURR_PACE_RA TE -= PACE_RATE_DE C * t	N/A	RATE_UPDATE D	AOO_VOO_pace = True
RATE_UPDATED	N/A	after(60/ CURR_PA	ACE_RATE, sec)	N/A	t = elapsed(sec)	PACING_RATE	on after(1, msec): AOO_VOO_pace = False

3.1.1.4 <u>Anticipated Changes</u>

A possible change that we can do is to combine the logic of these four modes with VVI/AAI/VVIR/AAIR modes to modify the behavior of detecting pulses.

3.1.2 VVI/AAI/VVIR/AAIR

3.1.2.2 Description

In these four modes, pacing occurs in a chamber at a specified rate, however, they are inhibited by the sensed pulses in the same chamber.

3.1.2.3 <u>Types of Variables</u>

As seen below, we only used measured and internal variables. There were no Programmable Parameters and Controlled Variables used for these modes.

3.1.2.3.1 Measured Variables

Name	Units/Type	Description	Range
		The duration of time	
t	ms	period measured from the	_
		previous pulse.	

3.1.2.3.2 <u>Programmable Parameters</u>

There were no Programmable Parameters used for these modes.

3.1.2.3.3 Controlled Variables

Name	Units/Type	Description	Range
s_AAIRState	Boolean	Commencement of AAIR	{True, False}
		state	
s_AAIState	Boolean	Commencement of AAI	{True, False}
		state	
s_VVIRState	Boolean	Commencement of VVIR	{True, False}
		state	
s_VVIState	Boolean	Commencement of VVI	{True, False}
_		state	,

3.1.2.3.4 Internal Variables

Name	Iniernai variai	Description	Dango
Name	Units/Type		Range
		The pacing of	(5 5 1)
AAI_VVI_pace	Boolean	either AAI or	{True, False}
		VVI start	
		Indicates the	p rateAdaptiveLowrateInterval
MODES_SENSOR_RATE	ppm	sensor rate for	
		different modes	– p_maximumSensorRate
DACE DATE INC		Increase in the	0 145
PACE_RATE_INC	ppm/sec	pacing rate	0 – 14.5
DACE DATE DEC	,	Decrease in the	0 12
PACE_RATE_DEC	ppm/sec	pacing rate	0 – 1.3
D CC A 1	1 11	Last 25 values	4 4
Buffer_Accel	double	of Accel	-4 – 4
		Detecting the	
AW D 1 D 4 4	D 1	pulse generally	(T F 1)
AV_Pulse_Detect	Boolean	and not for the	{True, False}
		type	
		Gives value of	
		general	
D DEGRONGEE A CTOD		refractory	150 500 + 0
P_RESPONSEFACTOR	ms	period rather	$150-500 \pm 8 \text{ ms}$
		than specific to	
		its type	
CURR PACE RATE	ppm	Current pacing	30 – 175 ppm
		rate	

3.1.2.4 Requirements

Source	Condition			Condition Activities	Finished Activites	Destination State	Starting Activities
START	N/A			N/A	N/A	HOLD	CURR_PACE_RATE = MODES_SENSOR_RATE
HOLD	AV_Pulse_Detect == 1			N/A	t = elapsed(sec)	SENSING_UPD ATE	
	after(60/CURR_PACE_RATE - 0.001P_RESPONSEFACTOR+ 0.001,sec)			N/A	t = elapsed(sec)	PACING_RATE	
PACING_RA TE	after(p_p_responseFact or, msec)	MODES_SE NSOR_RAT E>	CURR_PACE_RAT E + PACE_RATE_INC	CURR_PACE_RA TE =	t += elapsed(sec)	HOLD	AAI_VVI_pace = True on after(1, msec)

	CURR_PAC E_RATE	*t> MODES_SENSOR_ RATE CURR_PACE_RAT E+ PACE_RATE_INC *t≤ MODES_SENSOR_ RATE	MODES_SENSOR _RATE CURR_PACE_RA TE += PACE_RATE_INC * t		AAI_VVI_pace = True
	MODES_SE NSOR_RAT E≤ CURR_PAC E_RATE	CURR_PACE_RAT E - PACE_RATE_DEC * t < MODES_SENSOR_ RATE	CURR_PACE_RA TE = MODES_SENSOR _RATE		
SENSING_U PDATE		CURR_PACE_RAT E - PACE_RATE_DEC *t \geq MODES_SENSOR_ RATE	CURR_PACE_RA TE -= PACE_RATE_DE C * t		N/A

3.1.2.5 <u>Possible Changes</u>

For now, there are no possible changes that we can think of doing for these modes.

3.1.3 SELECTING PARAMETERS

3.1.3.1 <u>Description</u>

To feed parameter information to the real mode logic, parameter selection parses it. The mode logic output is then routed to the appropriate signal outputs.

3.1.3.2 Types of Variables

3.1.3.2.1 Measured Variables

No measured variables were used when selecting parameters.

3.1.3.2.2 Programmable Parameters

Name	Units/Type	Description	Range
p_mode		Mode of operation	{VOO,AOO,VVI,AAI,
	int	in which pacemaker	DOO, VOOR, AOOR,
		is working	VVIR, AAIR, DOOR}
		Lowest value of the	
p_rateAdaptiveLowrateInterval	ppm	heart rate that is	$30 - 175 \pm 8 \text{ ms}$
		allowed	

3.1.3.2.3 Controlled Variables

No Controlled Variables were used when selecting parameters.

3.1.3.2.4 Internal Variables

Name	Units/Typ	Descriptio	Range
Name	e	n	Kange
		Pulse	
		detection	
h atrial pulse detect	Boolean	that	{True, False}
		happens in	
		atrium	
h syantiis and a datast	Daalaan	Pulse	(Tm., Falsa)
h_ventricle_pulse_detect	Boolean	detection	{True, False}

		4 .	
		that	
		happens in	
		ventricle	
		The pacing	
AOO VOO pace	Boolean	of either	{True, False}
7100_\00_puce	20010	AOO or	(1146, 14156)
		VOO start	
		The pacing	
AAI VVI pace	Boolean	of either	{True, False}
AAI_VVI_pace	Doolcan	AAI or	(True, raise)
		VVI start	
		Atrium	
g atrial Daga Start	Boolean	signal	(True Folge)
s_atrialPaceStart	Boolean	pacing gets	{True, False}
		signalled	
		Ventricle	
D C	D . 1	signal	(T. F.1.)
s_ventricular_PaceStart	Boolean	pacing gets	{True, False}
		signalled	
		Indicates	
		about the	
	5 1	type of	()
AV_CHAMBER	Boolean	chamber	$\{A,V\}$
		that's	
		placed next	
		Shows rate	
		adaptivity	
		in the range	
MODES_SENSOR_RATE_Rang	ppm	from	p_rateAdaptiveLowrateInterv
e	PP	minimum	al – p_maximumSensorRate
		to	
		maximum	
		Increase in	
PACE RATE INC	ppm/sec	the pacing	0 – 14.5
INCL_MIL_INC	PPIII/3CC	rate	U — 17. <i>J</i>
		Decrease in	
PACE RATE DEC	ppm/sec	the pacing	0 - 1.3
I NCL_IMIL_DLC	ppiii/sec	rate	O=1.5
		Detecting	
		_	
AV Pulsa Dataat	Boolean	the pulse	(True Folce)
AV_Pulse_Detect	Doolean	generally and not for	{True, False}
		the type	
P RESPONSEFACTOR	ms	Gives value	$150-500 \pm 8 \text{ ms}$
_		of general	

refractory	
period	
rather than	
specific to	
its type	

3.1.3.3 Requirements

	5.1.5.5 Requirements							
Mo des	MODES_SENSO R_RATE	PACE_RAT E_INC	PACE_RAT E_DEC	AV_Pulse_Detect	P_RESPONSEF ACTOR	S_atrialPac eStart	S_ventricular_P aceStart	AV_CHA MBER
AO O				X	X	AOO_VOO_pa ce	0	Atr
VO O	p_rateAdaptiveLowrate	0	0	X	X	0	AOO_VOO_pace	Vent
AAI	Interval			h_atrial_pulse_detect_Pul se_Detect	p_ap_responseFactor	AAI_VVI_pace	0	Atr
VVI	1		h_ventricle_pulse_detect Pulse Detect	p_vp_responseFactor	0	AAI_VVI_pace	Vent	
AO OR				x	X	AOO_VOO_pa ce	0	Atr
VO OR	MODES SENSOR R	PACE RATE I	PACE RATE D	X	X	0	AOO_VOO_pace	Vent
AAI R	ATE RATE NC	EC EC	h_atrial_pulse_detect_Pul se_Detect	p_ap_responseFactor	AAI_VVI_pace	0	Atr	
VVI R				h_ventricle_pulse_detect _Pulse_Detect	p_vp_responseFactor	0	AAI_VVI_pace	Vent

3.1.3.4 <u>Anticipated Changes</u>

Increase in number of modes would eventually increase the number of programmable parameters so as to accommodate for input and output signals.

3.2 Rate Adaptivity

3.2.1 <u>Description</u>

Based on the activity detected by the on-board accelerometer, the rate adaptivity module provides the appropriate pace. In accordance with the rate adaptivity factors, it also determines the pace at which changes.

3.2.2 Types of Variables

3.2.2.1 Measured Variables

Name	Units/Type	Description	Range
Accel	Double x 3	Appropriate pacemaker Accel in g in local (a,b,c)	-4 – 4

3.2.2.2 Progammable Parameters

Name	Units/Type	Description	Range
		Lowest value of the	
p_rateAdaptiveLowrateInterval	ppm	heart rate that is	$30 - 175 \pm 8 \text{ ms}$
		allowed	
		Maximum rate of	
p_maximumSensorRate	ppm	detection indicated by	$50 - 175 \pm 4 \text{ ppm}$
		rate adaptivity	

p_activityThreshold	_	Rate adaptivity's minimal activity level	{V-Low, Low, Med-Low, Med, Med-High, High, V-high}
p_lowrateLimit	S	Pacing rate's rising time from the lower rate limit to the maximum sensor rate	$10 - 50 \pm 3 \text{ sec}$
p_response	_	shows reaction to activity levels over the cutoff	{True, False}
p_upperrateLimit	min	Maximum value of the pacing rate decrease that is allowed	$2 - 16 \pm 30 \text{ sec}$

3.2.2.3 Controlled Variables

There are no Controlled Variables for Rate Adaptativity.

3.2.2.4 Internal Variables

Name	Units/Type	Description	Range
PACE RATE INC	ppm/sec	Increase in the	0 – 14.5
TACE_RATE_INC	ppin/sec	pacing rate	0 – 14.5
PACE RATE DEC	ppm/sec	Decrease in the	0 - 1.3
TACE_RATE_BEC	ppin/sec	pacing rate	0 – 1.3
		Indicates the	p_rateAdaptiveLowrateInterval
MODES_SENSOR_RATE	ppm	sensor rate for	- p maximumSensorRate
		different modes	- p_maximumsensorkate
Buffer Accel	double	Last 25 values	-4 – 4
Bullel_Accel	double	of Accel	-4 – 4
PEAK TO PEAK SIG	double	Peak to peak of	0 - 4
FEAK_IO_FEAK_SIG	double	activity signal	0 – 4

3.2.3 Requirements

5.2.5 Itequirentes			
Variable	Value		
PEAK_TO_PEAK_SIG	max(Buffer_Accel) - min(Buffer_Accel)		
DACE DATE INC	(p_maximumSensorRate- p_rateAdaptiveLowrateInterval) /		
PACE_RATE_INC	p lowrateLimit		
DACE DATE DEC	(p_maximumSensorRate – p_rateAdaptiveLowrateInterval) / (60		
PACE_RATE_DEC	* p_upperrateLimit)		
Overdaiving Action	4 * p_response * (p_PEAK_TO_PEAK_SIG –		
Overdriving_Action	p_activityThreshold)		
MODES SENSOR RATE	min(p_maximumSensorRate,		
MODES_SENSOR_RATE	max(p_rateAdaptiveLowrateInterval, Overdriving_Action))		

3.2.4 Possible Changes

Change in the design for rate adaptivity requires modifying this document a lot as all the previous requirements will be changed.

3.3 Hardware Interface

3.3.1 Pacing

3.3.1.1 <u>Description</u>

In addition to controlling which level to charge the pacing capacitor at and which chamber to pace, the pacing module also keeps an eye on the pace start and AV choose lines.

3.3.1.2 Types of Variables

3.3.1.2.1 Measured Variables

There were no measured variables used in this section.

3.3.1.2.2 Programmable Parameters

Name	Units/Type	Description	Range
p_atrialAmplitude	V	Pulse amplitude delivered to atrium	$0 - 5 \pm 12\%$
p_ventricularAmplitude	V	Pulse amplitude delivered to ventricle	$0 - 5 \pm 12\%$
p_atrialPulseWidth	ms	Pulse width of atrium	$1 - 30 \pm 0.2 \text{ ms}$
p_ventricularPulseWidth	ms	Pulse width of ventricle	$1-30\pm0.2\ ms$

3.3.1.2.3 Controlled Variables

Name	Units/Type	Description	Range
PACE_CHARGE_CTRL	Boolean	PWM attached to the primary capacitor	{True, False}
ATR_PACE_CTRL	Boolean	Atrium ring attached to the primary capacitor	{True, False}
VENT_PACE_CTRL	Boolean	Ventricle ring attached to the primary capacitor	{True, False}
ATR_GND_CTRL	Boolean	Atrium ring attached to the ground	{True, False}
VENT_GND_CTRL	Boolean	Ventricle ring connected to ground	{True, False}
Z_ATR_CTRL	Boolean	Circuit with an impedance coupled to the atrium ring	{True, False}
Z_VENT_CTRL	Boolean	Circuit with an impedance coupled to the ventricle ring	{True, False}
PACING_REF_PWM	Percent	Percentage reference PWM needed for primary capacitor	0–100

3.3.1.2.4 Internal Variables

Name	Units/Type	Description	Range
s_atrialPaceStart	Boolean	Commencement of atrial	{True, False}
		pulse	
s_ventricular_PaceStart	Boolean	Commencement of	{True, False}
		ventricular pulse	
AV CHAMBER	Boolean	Indicates about the type of	(A V)
AV_CHAMBER	Doolean	chamber that's placed next	$\{A, V\}$

3.3.1.3 Requirements

3.3.1	.5	<u>Requirements</u>	T			
Source	Case	Condition	Condition Activities	Finished Activitie s	Destination State	Starting Activities
START	N/A	N/A	N/A	N/A	Y_c22Charged	VENT_GND_CTRL=False Z_VENT_CTRL=False Z_ATR_CTRL=False ATR_GND_CTRL=False
Y_c22Charged	N/A	s_ventricular_PaceStart == False AND s_atrialPaceStart == False	N/A	N/A	Buffer_Accel	VENT_PACE_CTRL=False ATR_PACE_CTRL=False PACE_CHARGE_CTRL=True AV_BLOCK_CTRL=True
Buffer_Accel	N/A	s_atrialPaceStart == True	N/A	N/A	Y_atriumPaced	N/A
		s_ventricular_PaceStart == True	N/A	N/A	Y_ventriclePaced	N/A
y_atriumPaced	N/A	after(p_atrialPulseWidth)	N/A	N/A	Discharge_21_Atr	PACE_CHARGE_CTRL=False VENT_PACE_CTRL=False VENT_GND_CTRL=False ATR_GND_CTRL=False ATR_PACE_CTRL=True
Y_initialDischarg e	N/A	N/A	N/A	N/A	Y_c22Charged	ATR_PACE_CTRL=False ATR_GND_CTRL=True
Y_ventriclePaced	N/A	after(p_ventricularPulseWidth)	N/A	N/A	Discharge_21	PACE_CHARGE_CTRL=False ATR_PACE_CTRL=False ATR_GND_CTRL=False VENT_GND_CTRL=False VENT_PACE_CTRL=True
Y_initialDischarg e	N/A	N/A	N/A	N/A	Y_c22Charged	VENT_PACE_CTRL=False; VENT_GND_CTRL=True;

3.3.1.4 Possible Changes

Some modifications in configuration will occur when any change in hardware will be made.

3.3.2 Sensing

3.3.2.1 Description

When natural cardiac pulses are recognized, the sensor module analyzes the signal, sets the values of the reference capacitors, and outputs pulses.

3.3.2.2 <u>Types of Variables</u>

3.3.2.2.1 Measured Variables

5.5.2.2.1 Weastiful variables				
Name	Units/Type	Description	Range	
ATR_CMP_DETECT	Boolean	Higher than threshold atrial signal voltage	{True, False}	
VENT_CMP_DETECT	Boolean	Higher than threshold ventricular signal voltage	{True, False}	

3.3.2.2.2 Programmable Parameters

Name	Units/Type	Description	Range
		Minimum voltage value that	
p_atrial_sensitivity	V	classifies an atrium signal as	$0 - 5 \pm 2\%$
		pulse	
		Minimum voltage value that	
p_ventricle_sensitivity	V	classifies a ventricle signal	$0 - 5 \pm 2\%$
		as pulse	

3.3.2.2.3 Controlled Variables

Name	Units/Type	Description	Range	
		For the atrium signal		
ATR_CMP_REF_PWM	Percent	comparator, use reference	0-100	
		PWM.		
		For the ventricle signal		
VENT CMP REF PWM	Percent	comparator, use reference	0–100	
		PWM.		
LEAD CENCE CIDCLIT	Daalaan	Lead-connected sensing	(Tm., E.1.,)	
LEAD_SENSE_CIRCUIT	Boolean	circuit	{True, False}	

3.3.2.2.4 Internal Variables

Name	Units/Type	Description	Range
h_atrial_pulse_detect	Boolean	Pulse detection that happens in atrium	{True, False}
h_ventricle_pulse_detect	Boolean	Pulse detection that happens in ventricle	{True, False}

3.3.2.3 Requirements

Variable	Value
h_atrial_pulse_detect	ATR_CMP_DETECT
h_ventricle_pulse_detect	VENT_CMP_DETECT
ATR CMP REF PWM	p_atrial_sensitivity / (5 V) * 100 %
VENT CMP REF PWM	p_ventricle_sensitivity / (5 V) * 100 %
LEAD_SENSE_CIRCUIT	1

3.3.2.4 <u>Possible Changes</u>

Configuration will have to be modified if the any change is made in the hardware design.

3.4 DCM Communication

3.4.1 Data Input

3.4.1.1 <u>Description</u>

In order to update the pertinent variables on the pacemaker, the communication-Data Input module watches the UART Receive signal for messages from the DCM.

3.4.1.2 <u>Types of Variables</u>

3.4.1.2.1 Measured Variables

Name	Units/Type	Description	Range
Receive	Uint8 x 17	Buffer_Acceled UART	0 - 255
Buffer_Accel_status	Uint8	shows the fullness of the UART Buffer Accel	{0, 32}

3.4.1.2.2 Programmable Parameters

Name	Units/Type	Description	Range
p_mode		Mode of operation	{VOO,AOO,VVI,AAI,
	int	in which pacemaker	DOO, VOOR, AOOR,
		is working	VVIR, AAIR, DOOR}
		Lowest value of the	
p_rateAdaptiveLowrateInterval	ppm	heart rate that is	$30 - 175 \pm 8 \text{ ms}$
		allowed	
		Delay that is caused	
p_AV_delay	ms	between ventricle	$70 - 300 \text{ ms} \pm 8 \text{ ms}$
		and atrial signals	
p atrialAmplitude	V	Pulse amplitude	$0 - 5 \pm 12\%$
p_atriaiAmpirtude	v	delivered to atrium	$0 - 3 \pm 1270$
		Pulse amplitude	
p_ventricularAmplitude	V	delivered to	$0 - 5 \pm 12\%$
		ventricle	
		Minimum voltage	
p atrial sensitivity	V	value that classifies	$0 - 5 \pm 2\%$
p_atrial_sensitivity	•	an atrium signal as	0 5 ± 270
		pulse	
		Minimum voltage	
p ventricle sensitivity	V	value that classifies	$0 - 5 \pm 2\%$
p_ventifete_sensitivity	,	a ventricle signal as	0 3 = 270
		pulse	
p atrialPulseWidth	ms	Pulse width of	$1 - 30 \pm 0.2 \text{ ms}$
F_441441 4456 ** 14411	1110	atrium	1 00 0.2 1110
p ventricularPulseWidth	ms	Pulse width of	$1 - 30 \pm 0.2 \text{ ms}$
p_ventriculari aise vitati	1115	ventricle	1 30 = 0.2 ms
p_vp_responseFactor	ms	Refractory time	$150-500 \pm 8 \text{ ms}$
rh_respenses mesor		period of ventricle	
p_ap_responseFactor	ms	Refractory time	$150-500 \pm 8 \text{ ms}$
1		period of atrium	
		Maximum rate of	
p_maximumSensorRate	ppm	detection indicated	$50 - 175 \pm 4 \text{ ppm}$
		by rate adaptivity	

p_activityThreshold	_	Rate adaptivity's minimal activity level	{V-Low, Low, Med- Low, Med, Med-High, High, V-high}
p_lowrateLimit	S	Pacing rate's rising time from the lower rate limit to the maximum sensor rate	$10 - 50 \pm 3$ sec
p_response	_	shows reaction to activity levels over the cutoff	{True, False}
p_upperrateLimit	min	Maximum value of the pacing rate decrease that is allowed	$2 - 16 \pm 30 \text{ sec}$

3.4.1.2.3 Controlled Variables

There were no controlled variables used in this section.

3.4.1.2.4 Internal Variables

Name	Units/Type	Description	Range
Received_Code	uint8	Last received Received_Code from DCM	1–5

3.4.1.3 Requirements

Buffer_Accel_status	Receive(1)	Parameters	Received_Code
0	1	Receive(2:17)	Pagaiya(1)
U	X	no change	Receive(1)
32	X	no change	X

3.4.1.4 Possible Changes

Reconfiguration will be required if any change in the hardware is made as the requirements would be different.

3.4.2 Data Output

3.4.2.1 Description

To transmit the pacemaker's serial number, echo parameter data, or atrial/ventricular signal data to the DCM, the communications-Data output module regulates the UART UART BUFFER ACCEL signal.

3.4.2.2 Variables

3.4.2.2.1 Measured Variables

Name	Units/Type	Description	Range
ATR_SIGNAL	Double	Atrial signal assessment on an ECG	0 - 1

VENT_SIGNAL Double	Ventricle signal assessment on an ECG	0 - 1
--------------------	---------------------------------------	-------

3.4.2.2.2 Programmable Parameters

3.4.2.2.2 Programme Name	Units/Type	Description	Range
p mode		Mode of operation	{VOO,AOO,VVI,AAI,
r	int	in which pacemaker	DOO, VOOR, AOOR,
		is working	VVIR, AAIR, DOOR}
		Lowest value of the	, ,
p rateAdaptiveLowrateInterval	ppm	heart rate that is	$30 - 175 \pm 8 \text{ ms}$
11		allowed	
		Delay that is caused	
p AV delay	ms	between ventricle	$70 - 300 \text{ ms} \pm 8 \text{ ms}$
		and atrial signals	
1 . 1 . 1	X 7	Pulse amplitude	0 5 + 120/
p_atrialAmplitude	V	delivered to atrium	$0 - 5 \pm 12\%$
		Pulse amplitude	
p_ventricularAmplitude	V	delivered to	$0 - 5 \pm 12\%$
		ventricle	
		Minimum voltage	
n atrial consitivity	V	value that classifies	$0 - 5 \pm 2\%$
p_atrial_sensitivity	·	an atrium signal as	$0-3\pm 2/6$
		pulse	
		Minimum voltage	
p ventricle sensitivity	V	value that classifies	$0 - 5 \pm 2\%$
p_ventrete_sensitivity	,	a ventricle signal as	0 3 ± 270
		pulse	
p atrialPulseWidth	ms	Pulse width of	$1 - 30 \pm 0.2 \text{ ms}$
P_uniun unse ++ rum	1115	atrium	1 30 = 0.2 ms
p ventricularPulseWidth	ms	Pulse width of	$1 - 30 \pm 0.2 \text{ ms}$
P_ · · · · · · · · · · · · · · · · · · ·	1110	ventricle	1 00 0.2 1115
p_vp_responseFactor	ms	Refractory time	$150-500 \pm 8 \text{ ms}$
F_ F_ 00F 00000		period of ventricle	
p_ap_responseFactor	ms	Refractory time	$150-500 \pm 8 \text{ ms}$
1_1_1		period of atrium	
		Maximum rate of	50 155 . 4
p_maximumSensorRate	ppm	detection indicated	$50 - 175 \pm 4 \text{ ppm}$
		by rate adaptivity	(37.1 1 34.1
		Rate adaptivity's	{V-Low, Low, Med-
p_activityThreshold	_	minimal activity	Low, Med, Med-High,
		level	High, V-high}
n lovemetal insit	95.5	Pacing rate's rising	10 50 + 2
p_lowrateLimit	sec	time from the lower	$10 - 50 \pm 3 \text{ sec}$
		rate limit to the	

		maximum sensor	
		rate	
		shows reaction to	
p response	_	activity levels over	{True, False}
1 - 1		the cutoff	, ,
		Maximum value of	
n same amot all insit		the pacing rate	2 16 + 20
p_upperrateLimit	mın	decrease that is	$2 - 16 \pm 30 \text{ sec}$
		allowed	

3.4.2.2.3 Controlled Variables

Name	Units/Type	Description	Range
UART_BUFFER_ACCEL	Uint8 x 16	UART escape Buffer_Accel	0–255

3.4.2.2.4 Internal Variables

Name	Units/Type	Description	Range
Received_Code	uint8	Last received Received_Code from DCM	1–5

3.4.2.3 Requirements

	110000000000000000000000000000000000000
Received_Code	UART_BUFFER_ACCEL
0	Serial Digit
1	X
2	Parameters
3	[ATR_SIGNAL, 0]
4	[VENT_SIGNAL, 0]
5	[ATR_SIGNAL, VENT_SIGNAL]

3.4.2.4 <u>Possible Changes</u>
Reconfiguration will be required if any change in the hardware is made as the requirements would be different.

4 Design Decisions

4.1 Pacemaker Modes

Figure 1: Pacing Modes Subsystem

The pacemaker's primary logic is contained in three Stateflow charts, which mostly interact with abstracted variables to successfully accomplish hardware concealing. For AOO, VOO, AOOR, and VOOR modes, there is a single Stateflow chart; for AAI, VVI, AAIR, and VVIR modes, but only one is active at any given moment. With the exception of input and output signal routing (which is managed by 4.1.4 Parameter Selection), all of the grouped modes are implemented in essentially the same way. Because Received Code is reduced, sharing Stateflow charts facilitates improved maintainability.

In every mode, when pacing, the current pacing rate is adjusted at the appropriate rate based on the duration of the previous waiting interval if the rate reported by the sensor differs from the current pacing rate. It is assumed that the rate of change is linear in time. The higher rate limit was determined to have

no purpose in these modes and was therefore omitted from this design as maximum sensor rate is defined as being independently programmable from the upper rate limit. On the appropriate out signal, a 1 ms pulse indicates that pacing should start. The hardware interface is informed of the expected level of the next pacing by the AV choose signal.

4.1.1 AOO/VOO/AOOR/VOOR

Figure 2: AOO/VOO/AOOR/VOOR Stateflow chart

Since they don't need to sense the heart, the AOO, VOO, AOOR, and VOOR modes just alternate between pacing and non-pacing states.

4.1.2 AAI/VVI/AAIR/VVIR

Figure 3: AAI/VVI/AAIR/VVIR Stateflow chart

The XOO modes' structure is comparable to that of the AAI, VVI, AAIR, and VVIR modes. Additionally, if a spontaneous pulse is detected after the refractory period (during which spontaneous pulses are ineffective), it is possible to avoid the pacing condition. To make sure the pacemaker does not pace

excessively if the heart is beating at precisely the present pacing rate on its own, an extra millisecond is added to the wait period.

4.2 Rate Adaptivity

Figure 4a: Rate Adaptivity System

Figure 5b: Rate Adaptivity Subsystem

A_x, a_y, and a_z are the appropriate Accels in the local x, y, and z axes, respectively, and the activity level is intep_responseFactorreted as the peak-to-peak amplitude of the entire accelerometer signal, or $\sqrt{(a_x^2+a_y^2+a_z^2)}$. By taking 25 second samples of the accelerometer's signal and deducting the minimum from the maximum of the Buffer_Accel, one may determine the amplitude. It is assumed that the relationship between the sensor-indicated rate and the amount that the activity level exceeds the activity threshold is linear. The activity level can be freely adjusted between 0 and 4 units by experiment. The seven activity levels were therefore mapped to 0.5 and 3.5, respectively, with V-Low and V-High being equally dispersed throughout that range. The slope of the response level (in ppm/activity unit) when activity surpasses the threshold is therefore equal to the response factor multiplied by 4. The indicated rate from the sensor is then compared to both the maximum and lower rate limits; if it exceeds the maximum or falls short of the former, it is adjusted to the correct value.

It is expected that the pace of increase and decline in pace rate is linear in time. For comprehensive equations, see 4.2.3.

4.3 Hardware Interface

Figure 5a: Hardware Interface subsystem

Figure 6b: Hardware Interface Input Variables

Figure 7c: Hardware Interface Ouput Pins

The pacemaker's IN and OUT variables are abstracted by the hardware interface as a response factor, making it simple to transfer the pacemaker's primary functionality to any hardware device. This guarantees that the logic describing how the chosen instructions should be carried out on the hardware would be the only modifications that are required. In order to output 1 ms pulses when atrial/ventricular signals surpass their respective sensitivities, the hardware interface only has to accept 1 ms pulsed pace atrium/ventricle signals and an atrial-ventricular level selector signal.

4.3.1 Pacing

Figure 8: Pacing Stateflow chart

When a pulse is detected on the S_atrialPaceStart or S_ventricular_PaceStart lines, the pacing module detects it and waits in a Buffer_Accel state. Then, it sets the relevant flags to pace the heart. Flags are set to start charging the pacing capacitor again and discharging the blocking capacitor after a delay equal to the pulse width. As a precaution against looping caused by a non-deasserted pacing signal pulse, the Buffer Accel state is used.

4.3.2 Sensing

Figure 9: Sensing Subsystem

To identify natural pulses, the sensing module routes the flags to the variables h_atrial_pulse_detect and h_ventricular_pulse_detect, and sets the proper PWMs for the atrial and ventricular reference capacitors.

4.4 DCM Communication

Figure 10a: Communications Subsytems

Figure~11b:~Communications~Subsytems~for~DCM~Communication

For all external communication, the DCM Communication module is responsible. Like the hardware interface, it interacts with the particular IN and OUT variables while presenting abstracted variables to the system. This design selected UART communication.

4.4.1 In

Figure 12: Communications In Stateflow chart

When the Buffer_Accel_status indicates that it is full, the In module reads the Receive Buffer_Accel and, according on the Received_Code received, either updates the parameter data or transmits data to the DCM.

4.4.2 Out

Figure 13: Communications Out Stateflow chart

Only upon receiving a Received_Code of a number between 1 and 16 (both inclusive) does the out module become active. As described in 4.4.2.3, data is transmitted via UART.

5 Description of Changes

A. We performed the following actions to add Rate adaptivity:

- 1. With the same inputs and outputs, every previously implemented mode (AOO, VOO, AAI, and VVI) was retained. The new input source for the lowrateLimit is the only difference.
- 2. Another subsystem that was in charge of implementing Rate Adaptivity received the lowrateLimit. The subsystem did not alter the lowrateLimit whether the modes were AXX or VXX. The Rate Adaptivity algorithm was used to adjust the lowrateLimit based on Accelerometer data if the modes were AXXR or VXXR.
- 3. We used a linear function to apply the acceleration to a pulse in bpm. For this algorithm, the maximum value was the maximumSensorRate, and the minimum was the lowrateLimit.
- 4. ActivityThreshold, Reaction Time, Response Factor, and Recovery Time were included as input variables.

B. We did the following to introduce hysteresis:

- 1. This modification had no effect on AOO/AOOR or VOO/VOOR.
- 2. The AAI/AAIR and VVI/VVIR subsystems saw a total modification in the stateflow.
- 3. The system detects if hysteresis was turned on when it detects a "sensed" or natural pulse. If so, it would not wait for the lowrateLimit time, but for the hysteresisLimit time. If the pacemaker had only pulsated, this would not occur because in that case the wait time would always be lowrateLimit.
- 4. Every output is same. It was necessary to add more inputs to the AAI/AAIR and VVI/VVIR modes. Hysteresis and its Limitation.

C. We carried out the following actions to add UART Communications:

- 1. We removed every single constant block that controlled our variables. It was possible to create a UART system that output variables as UINT8 or UINT16 variables. This subsystem was in charge of sending egram data to the dcm, making adjustments to the pacemaker, and repeating data from the pacemaker back to the dcm.
- 2. Before being reinserted into the variables of the current system, the outputs were transformed to the appropriate units and data types.
- 3. This subsystem needed the following inputs: the device id, VENT_SIGNAL, and ATR_SIGNAL. Each and every output had customizable parameters.

6 Testing

6.1 AOO

Chamber paced: Atrium Chamber sensed: N/A Response to Sensing: N/A

Test Cases:

a) Natural Atrium: **OFF** | Natural Ventricle: **OFF**

Only one test case—in which the ventricle and atrium are both nonfunctional—can show that our pacemaker is functioning correctly in AOO mode because we are not sensing any chambers.

Graph representing artificial pulse from HeartView

6.2 VOO

Chamber paced: Ventricle Chamber sensed: N/A Response to Sensing: N/A

Test Cases:

a) Natural Atrium: OFF | Natural Ventricle: OFF

Only one test case—in which the ventricle and atrium are both nonfunctional—can show that our pacemaker is functioning correctly in VOO mode as well because we are not sensing any chambers.

Graph representing artificial pulse from HeartView

6.3 AAI

Chamber paced: Atrium Chamber sensed: Atrium Response to Sensing: Inhibited

Test Cases:

a) Natural Atrium: **ON**, Pulse Width: **1ms** | Natural Ventricle: **OFF** | Heart Rate: **30bpm**

Because the heart beats every 2000 milliseconds and the pacemaker is designed to maintain a heart rate of 60 beats per minute, which is a pulse after every 1000

milliseconds, the pacemaker is expected to create a pulse at very low heat rate and low pulse width. The graph below illustrates how our pacemaker fills the gap by sending a pulse every 1000 ms.

Graph representing natural and artificial pulse from HeartView

b) Natural Atrium: **ON**, Pulse Width: **10ms** | Natural Ventricle: **OFF** | Heart Rate: **30bpm**

The pacemaker is expected to generate a pulse when the pulse width is increased to 10 ms while maintaining the same heart rate. This is because there is a gap of more than 1000 ms between two consecutive pulses. The graph below illustrates how our pacemaker accomplishes the same thing by supplying the pulse needed to fill the gap in time.

Graph representing natural and artificial pulse from HeartView

c) Natural Atrium: **ON**, Pulse Width: **1ms** | Natural Ventricle: **OFF** | Heart Rate: **50bpm**

A pacemaker is intended to produce an artificial pulse when our heart rate is slightly below the natural rate but the pulse width is insufficient to achieve the natural rate, which is 60 beats per minute or one pulse every 1000 milliseconds. It is evident from the graph below that our pacemaker compensates for the delay.

it is evident from the graph below that our pacemaker compensates for the delay

Graph representing natural and artificial pulse from HeartView

d) Natural Atrium: **ON**, Pulse Width: **10ms** | Natural Ventricle: **OFF** | Heart Rate: **60bpm**

A pacemaker should not produce an artificial pulse when the heart rate is below normal but the pulse width is sufficient to fill the gap. Our pacemaker isn't giving our heart an extra pulse, as the graph below illustrates.

Graph representing natural pulse from HeartView

6.4 VVI

Chamber paced: Ventricle Chamber sensed: Ventricle Response to Sensing: Inhibited

Test Cases:

a) Natural Atrium: **OFF** | Natural Ventricle: **ON**, Pulse Width: **1ms** | Heart Rate: **30bpm**

The pacemaker's pulse should be generated frequently enough to sustain a normal heart rate even at very low heart rates.

The graph below shows that our pacemaker generates artificial pulses when it has been more than 1000 milliseconds since the last pulse, which aids in sustaining a normal heart rate of 60 beats per minute or a pulse every 1000 milliseconds.

Graph representing natural and artificial pulse from HeartView

b) Natural Atrium: **OFF** | Natural Ventricle: **ON**, Pulse Width: **10ms** | Heart Rate: **30bpm**

High pulse width cannot fill the void left by a low heart rate; therefore, a pacemaker is needed to ensure that the heart is beating properly. It is evident from the graph below that our pacemaker keeps the heart operating normally by giving it artificial pulses.

Graph representing natural and artificial pulse from HeartView

c) Natural Atrium: OFF | Natural Ventricle: ON, Pulse Width: 1ms | Heart Rate: 50bpm

A pacemaker is supposed to activate and start sending pulses to the heart when the heart is beating somewhat slower than usual but the pulse width is not wide enough to make up for the difference. We may observe from the graph below that our pacemaker performs as planned.

Graph representing natural and artificial pulse from HeartView

d) Natural Atrium: **OFF** | Natural Ventricle: **ON**, Pulse Width: **10ms** | Heart Rate: **60bpm**

A pacemaker shouldn't be used when the patient's heart rate is slightly below normal and their pulse width is sufficient to close the gap.

The graph below shows that our pacemaker is not causing the heart to beat artificially.

Graph representing natural pulse from HeartView

6.5 AOOR

Chamber paced: Atrium Chamber sensed: N/A Response to Sensing: N/A

Rate Modulation

Heartview signals: Natural Atrium: OFF | Natural Ventricle: OFF

a) No Activity sensed

Pace to Atrium with an LRL of 60 ppm if no activity is detected above the threshold.

Increase LRL within a 10-second response time and a 2-minute recuperation time after detecting Activity above Threshold.

Result: Passed

6.6 VOOR

Chamber paced: Ventricle Chamber sensed: N/A Response to Sensing: N/A

Rate Modulation

Heartview signals: Natural Atrium: OFF | Natural Ventricle: OFF

a) No Activity sensed

Pace to Ventricle with an LRL of 60 ppm if no activity is detected above the threshold.

b) Activity Sensed

Increase LRL after 10 seconds of detecting Activity above Threshold and within 2 minutes of recovering from it.

Result: Passed

6.7 AAIR

Chamber paced: Atrium Chamber sensed: Atrium Response to Sensing: Inhibited

Rate Modulation

Test Cases:

a) No activity

Heartview signals: Natural Atrium: On | PW: 1ms | Heart rate: 30Bpm

DCM signals:

The pacemaker's job is to fill the gap in heart rate while we are in AAIR mode, with no activity, and when the heart rate is lower than normal. Our pacemaker functions in the same way, as seen by the graph below.

Graph representing artificial and natural pulse from HeartView

b) Physical activity

Heartview signals: Natural Atrium: On | PW: 1ms | Heart rate: 30Bpm

Compared to normal, our pacemaker beats more frequently while we are physically active.

Graph representing artificial and natural pulse from HeartView

c) No activity

Heartview signals: Natural Atrium: On | PW: 1ms | Heart rate: 60Bpm

A pacemaker is not meant to provide an extra pulse while the heart is beating naturally and there is no physical activity. The graph below makes it evident that our pacemaker functions in the same way.

Graph representing artificial and natural pulse from HeartView

d) Physical activity

Heartview signals: Natural Atrium: On | PW: 1ms | Heart rate: 60Bpm

The purpose of a pacemaker is to add a second pulse to account for physical activity when the patient's heart is beating regularly. The graph below makes it evident that our pacemaker functions the same way.

Graph representing artificial and natural pulse from HeartView

6.8 VVIR

Chamber paced: Ventricle Chamber sensed: Ventricle Response to Sensing: Inhibited

Rate Modulation

Test Cases:

a) No activity

Heartview signals: Natural Ventricle: On | PW: 1ms | Heart rate: 30Bpm

The pacemaker's job is to provide a pulse to fill the gap when it is in the VVIR mode, there is no activity, and the heart rate is lower than normal. The graph below shows that our pacemaker functions in the same way.

Graph representing artificial and natural pulse from HeartView

b) Physical activity

Heartview signals: Natural Ventricle: On | PW: 1ms | Heart rate: 30Bpm

Our pacemaker beats more frequently during physical activity than it does during rest.

Graph representing artificial and natural pulse from HeartView

c) No activity

Heartview signals: Natural Ventricle: On | PW: 1ms | Heart rate: 60Bpm

A pacemaker is not meant to provide an extra pulse while the heart is beating naturally and there is no physical activity. The graph below makes it evident that our pacemaker functions in the same way.

Graph representing artificial and natural pulse from HeartView