UNIVERSIDADE FEDERAL DORIO GRANDE DO SUL INSTITUTO DE INFORMÁTICA

INF01112 2020/1

Trabalho 1 - Pesquisa, identificação e medição de desempenho de CPUs

Nome: Eduardo Fantini	Identificação: 00313339	Turma: U
 mais informação do que é pedido nes itens desejados. Lembre-se de sempre indicar a unida Preencha as respostas com cor dife Se utilizar sistema operacional que n 	ção e medida de desempenho da CPU go ste relatório. Procure, na informação mo ade de medida utilizada, quando for o ca erente da pergunta (e.g em vermelho o a contemple o software de benchmark RL e o nome deve ser colocado no início cação.	strada, os so. ou azul) indicado,
PARTE 1 - Estado atual do de	esenvolvimento de microprocessadore	s
Passo 1 – Arquitetura Intel Core		
Com a arquitetura Core, a Intel introduz Pesquise nos sites da Intel ou no Manual da maio de 2020) e descreva o que significam também o URL final ou a página do manua um site da Intel, e separe a propaganda dos	a Arquitetura Intel (disponível do Mood n as extensões abaixo. Para cada uma d al utilizada (Observação: <i>utilize sempre</i>	lle, versão de lelas, indique
• Extensões AESNI: Instruções específica	as para criptografia e decriptografia no	padrão AES
URL/página do Manual: Página 51 do manu	ual	
 Extensões FMA: Fused-Multiply0Add. de vetores com 256 bits e floats de 256 	Instruções específicas para multiplica bits.	ção e adição
URL/página do Manual: Página 141 do mar	nual	
• Extensões AVX: Advanced Vector Ext vetores de 256 bits e floats de 256 bits.		ão suporte a
URL/página do Manual: Página 51 do manu	ual	
 Extensões AVX2: Advanced Vector Extense e transmissão de dados, deslocamente 		

memória.

URL/página do Manual: Página 141 do manual.

 Extensões AVX-512: Advanced Vector Extensions 512. Adiciona instruções semelhantes as das extensões AVX e AVX2, porém lidando com 512 bits.

URL/página do Manual: Página 142 do manual.

Passo 2 – Processadores Intel

Atualmente, a Intel caracteriza seus processadores por um número. Acesse o site da Intel, em http://ark.intel.com, e preencha a tabela a seguir (coloque "NI" se a informação não estiver disponível):

Modelo	Frequência	Cache	Número de	Número de	TDP	Litografia
Modelo	Base (GHz)	(MB)	Núcleos	Threads	(Watts)	(nm)
Atom C3758R	2.4	16	8	8	26	NI
Celeron G5905	3.5	4	2	2	58	NI
Pentium Gold G6400TE	3.2	4	2	4	35	NI
Core i3-7100E	2.9	3	2	4	35	NI
Core i5-L16G7	1.4	4	5	5	NI	NI
Core i7-10700K	3.8	16	8	16	125	NI
Core i9-9980XE	3	24.75	18	36	165	NI
Xeon Platinum 9222	2.3	71.5	32	64	250	NI
Itanium 9760	2.66	32	8	16	170	NI

Passo 3 – Processadores AMD

3.3 Acesse o site da AMD em http://products.amd.com/en-us/ no link "Desktop Processors", e preencha a tabela a seguir (coloque "NI" se a informação não estiver disponível):

Modelo	Frequência	Cache	Cache	Número de	Número de	TDP	CMOS
Modelo	Base (GHz)	L2 (MB)	L3 (MB)	Núcleos	Threads	(Watts)	(nm)
Athlon Gold 3150G	3.5	2	4	4	4	65	12
Ryzen 3 2300X	3.5	2	8	4	4	65	12
Ryzen 5 4600G	3.7	3	8	6	16	65	7
Ryzen 9 3900	3.1	6	64	12	24	65	7
Ryzen Threadripper PRO 3955WX	3.9	8	64	16	32	280	7

PARTE 2 - Identificação e medida de desempenho de CPU

Passo 1 – Identificação do processador

Instale e execute o programa **SiSoftware Sandra 2020**, disponível no Moodle da disciplina. Selecione a aba "Hardware" e a seguir o item "Processors" e informe:

Processor

1.1 Model (copie todo string): Intel(R) Core(TM) i7-8550 CPU @ 1.80GHz_____

1.2 Name (copie todo string): KBL/CFL-U/Y (KabyLake/CoffeeLake ULV) Core/M v7+ 2C 14nm 1-3GHz
120 1 11001
1.3 Minimum/Maximum/Turbo Speed: 2GHz - 2GHz
1.4 Cores per Processor: 2 Units 1.5 Threads per Core (se disponível): N/A
1.5 Threads per Core (se disponível): N/A
1.6 Multiplier: 42x
1.6 Multiplier: 42x 1.7 Min/Max/Turbo Multiplier: 20x-20x 1.0 Fig. 1 100 Multiplier: 20x-20x
1.8 Front-Side Bus Speed: 100 MHz
1.10 Rated Power (TDP): 1.11 Maximum Physical/Virtual Addressing: 39-bit / 48-bit
1.11 Maximum Physical/Virtual Addressing: 39-011/48-011
1.12 Native Page Size: 4kB
1.13 Large Page Size: 2MB 1.14 Cache L1 Data 32 KBytes 8-way 64 bytes Line Size 1.15 Cache L1 Instr 32KBytes 8-way 64bytes Line Size 1.16 Cache L2 256 KBytes 4-way 64 bytes Line Size 1.17 Cache L3 8 MBytes 16-way 64 bytes Line Size
1.15 Cache L1 Instr 32KBytes 8-way 64bytes Line Size
1.16 Cache L2 256 KBytes 4 -way 64 bytes Line Size
1.17 Cache L3 8 MBytes 16-way 64 bytes Line Size
Passo 2 – Medida de desempenho
Selecione a aba "Benchmark" e depois o item "Processor Arithmetic". Execute o teste (certifique-se que nenhum outro programa está ativo durante o teste - nem sequer mova o mouse!!) e informe (<i>Lembre de indicar o tipo do teste e a unidade de medida !!)</i> :
2.1 Dhrystone Integer (Indique se ALU, SSE, SSE2, SSE3, AVX, etc): AVX2 - 63.87GIPS 2.2 Whetstone Single-float (Indique se FPU, SSE, SSE2, SSE3, AVX, etc): AVX/FMA - 28.27GFLOPS 2.3 Whetstone Double-float (Indique se FPU, SSE, SSE2, SSE3, AVX, etc): AVX/FMA 23.84GFLOPS
2.4 Performance vs. Speed (Integer, per MHz): 15.27MIPS/MHz
2.4 Performance vs. Speed (Integer, per MHz): 15.2/MIPS/MHz 2.5 Performance vs. Speed (Single-Float, per MHz): 6.76MFLOPS/MHz 2.6 Performance vs. Speed (Double-Float, per MHz): 5.70MFLOPS/MHz
2.6 Performance vs. Speed (Double-Float, per MHz): 5.70MFLOPS/MHz
Repita o teste uma segunda vez e informe novamente:
2.7 Dhrystone Integer (indique a extensão, como acima): AVX2 - 60.62GIPS
2.8 Whetstone Single-float (indique a extensão, como acima): AXV/FMA - 28.25GFLOPS 2.9 Whetstone Double-float (indique a extensão, como acima): AVX/FMA - 23.88GFLOPS
2.9 Whetstone Double-float (flidique à extensão, como acima). AVA/FWA - 25.880FLOFS
Repita o teste uma terceira vez e informe novamente:
2.10 Dhrystone Integer (indique a extensão, como acima): AVX2 63.4GIPS
2.11 Whetstone Single-float (indique a extensão, como acima): AVX/FMA 28.11GFLOPS
2.12 Whetstone Double-float (indique a extensão, como acima): AVX/FMA 23.67GFLOPS
· · · · · · · · · · · · · · · · · · ·
2.13 Os valores obtidos em cada execução são exatamente iguais ou existem variações? Como você explica isto? Existem leves variações
2.14 Qual o objetivo de um teste Dhrystone? Testar a eficiência do processador em realizar operações com inteiros.

2.15 Qual o objetivo de um teste Whetstone? Testar a eficiência do processador em realizer operações com floats.
Passo 3 – Influência do conjunto de instruções
Selecione o ícone de opções (canto inferior esquerdo), desabilite o uso dos conjuntos de instruções adicionais (SSE2, SSE3, SSE4, AVX, AVX2, FMA e todas as demais) e repita o benchmark: 3.1 Dhrystone Integer (indique a extensão, como acima): ALU - 24.87GIPS 3.2 Whetstone Single-float (indique a extensão, como acima): FPU - 14.17GFLOPS 3.3 Whetstone Double-float (indique a extensão, como acima): FPU - 13.35GFLOPS
3.4 O uso de extensões (SSE, SSE2, SSE3, etc) afeta o desempenho do processador? Para quais testes? Melhora ou piora? Afeta em todos os testes, apresentando melhora significativa
Passo 4 – Influência de vários núcleos Selecione o ícone de opções (canto inferior esquerdo), habilite todos os conjuntos de instruções, desabilite multi-thread e hyper-thread e repita o benchmark (<i>Importante: para que as alterações na configuração tenham efeito é preciso reiniciar a sessão do benchmark!</i>): 4.1 Dhrystone Integer (indique a extensão, como acima): AVX2 - 32.59GIPS
 4.2 Whetstone Single-float (indique a extensão, como acima): AVX/FMA - 14.47GFLOPS 4.3 Whetstone Double-float (indique a extensão, como acima): AVX/FMA - 12.12GFLOPS
Selecione o ícone de opções (canto inferior esquerdo), habilite o uso de multi-thread (mas mantenha desabilitado hyper-thread) e repita o benchmark(<i>Importante: para que as alterações na configuração tenham efeito é preciso reiniciar a sessão do benchmark!</i>): 4.4 Dhrystone Integer (indique a extensão, como acima): AVX2 - 31.82GIPS 4.5 Whetstone Single-float (indique a extensão, como acima): AVX/FMA - 14.2GFLOPS 4.6 Whetstone Double-float (indique a extensão, como acima): AVX/FMA - 12GFLOPS
Selecione o ícone de opções (canto inferior esquerdo), habilite o uso de hyper-thread (mas desabilitado multi-thread) e repita o benchmark(<i>Importante: para que as alterações na configuração tenham efeito é preciso reiniciar a sessão do benchmark!</i>): 4.7 Dhrystone Integer (indique a extensão, como acima): AVX2 - 32.45GIPS 4.8 Whetstone Single-float (indique a extensão, como acima): AVX/FMA - 15.16GFLOPS 4.9 Whetstone Double-float (indique a extensão, como acima): AVX/FMA - 12.47GLOPS
4.10 Em termos de desempenho, qual o mais efetivo, multi-thread ou hyper-thread? Como você explica os resultados medidos (por exemplo, em função das características do seu processador)? Multi-thread se mostrou mais efetivo nos testes.