Sugarcane Production Analysis....

Importing libraries and reading the data

```
import pandas as pd
In [1]:
          import seaborn as sns
          from matplotlib import pyplot as plt
          df=pd.read csv("List of Countries by Sugarcane Production.csv")
In [2]:
          df.head()
In [3]:
Out[3]:
                                                                                                             Yield (Kg/
             Unnamed:
                                                   Production
                                                                Production per Person
                                                                                              Acreage
                         Country
                                    Continent
                                                       (Tons)
                                                                                            (Hectare)
                                                                                                               Hectare)
                                                                                 (Kg)
                                        South
          0
                      0
                                                   768.678.382
                                                                            3.668,531
                                                                                            10.226.205
                                                                                                                75.167,5
                            Brazil
                                      America
          1
                      1
                                                                                             4.950.000
                            India
                                         Asia
                                                   348.448.000
                                                                              260721
                                                                                                                70.393,5
          2
                      2
                                                   123.059.739
                                                                                                                73.459,1
                           China
                                         Asia
                                                                               88287
                                                                                             1.675.215
          3
                        Thailand
                                                                                                                65.442,2
                                         Asia
                                                    87.468.496
                                                                            1.264,303
                                                                                             1.336.575
                         Pakistan
                                         Asia
                                                    65.450.704
                                                                              324219
                                                                                             1.130.820
                                                                                                                 57.879
```

Data preprocessing

df.head()

In [6]:

```
df.shape
In [4]:
        (103, 7)
Out[4]:
        df["Production (Tons)"] = df["Production (Tons)"].str.replace(".","")
In [5]:
        df["Production per Person (Kg)"] = df["Production per Person (Kg)"].str.replace(".","")
        df["Acreage (Hectare)"] = df["Acreage (Hectare)"].str.replace(".","")
        df["Yield (Kg / Hectare)"] = df["Yield (Kg / Hectare)"].str.replace(".","").str.replace("
        C:\Users\HP\AppData\Local\Temp\ipykernel 6232\1067177181.py:1: FutureWarning: The defaul
        t value of regex will change from True to False in a future version. In addition, single
        character regular expressions will *not* be treated as literal strings when regex=True.
          df["Production (Tons)"] = df["Production (Tons)"].str.replace(".","")
        C:\Users\HP\AppData\Local\Temp\ipykernel 6232\1067177181.py:2: FutureWarning: The defaul
        t value of regex will change from True to False in a future version. In addition, single
        character regular expressions will *not* be treated as literal strings when regex=True.
          df["Production per Person (Kg)"] = df["Production per Person (Kg)"].str.replace
        (".", "") .str.replace(", ", ".")
        C:\Users\HP\AppData\Local\Temp\ipykernel_6232\1067177181.py:3: FutureWarning: The defaul
        t value of regex will change from True to False in a future version. In addition, single
        character regular expressions will *not* be treated as literal strings when regex=True.
          df["Acreage (Hectare)"] = df["Acreage (Hectare)"].str.replace(".","")
        C:\Users\HP\AppData\Local\Temp\ipykernel 6232\1067177181.py:4: FutureWarning: The defaul
        t value of regex will change from True to False in a future version. In addition, single
        character regular expressions will *not* be treated as literal strings when regex=True.
         df["Yield (Kg / Hectare)"] = df["Yield (Kg / Hectare)"].str.replace(".","").str.replace
        (",",".")
```

Out[6]:	ı	Jnnamed: 0	Country (Continent	Production (Tons)	Production per Person (Kg)	Acreage (Hectare)	Yield (Kg / Hectare)	
	0	0	Brazil	South America	768678382	3668.531	10226205	75167.5	
	1	1	India	Asia	348448000	260721	4950000	70393.5	
	2	2	China	Asia	123059739	88287	1675215	73459.1	
	3	3	Thailand	Asia	87468496	1264.303	1336575	65442.2	
	4	4	Pakistan	Asia	65450704	324219	1130820	57879	
In [7]:	df.	tail()							
Out[7]:	Unname		l: Country	Continent	Production (Tons)	Production per Person (Kg)	Acreage (Hectare)	Yield (Kg / Hectare)	
	98	9	8 Lebanon	Asia	97	16	3	28386.4	

•		Unnamed: 0	Country	Continent	Production (Tons)	Production per Person (Kg)	Acreage (Hectare)	Yield (Kg / Hectare)
	98	98	Lebanon	Asia	97	16	3	28386.4
	99	99	Djibouti	Africa	53	51	NaN	NaN
	100	100	Singapore	Asia	50	9	2	25
	101	101	Samoa	Oceania	12	6	1	11949.8
	102	102	Syria	Asia	1	0	0	83034.2

Checking the Null value and removing it

```
In [8]: | df.isnull().sum()
                                           0
         Unnamed: 0
Out[8]:
         Country
         Continent
         Production (Tons)
         Production per Person (Kg)
         Acreage (Hectare)
         Yield (Kg / Hectare)
         dtype: int64
         df[df["Acreage (Hectare)"].isnull()]
In [9]:
                                                                                               Yield (Kg/
Out[9]:
             Unnamed:
                                             Production
                                                        Production per Person
                                                                                  Acreage
                       Country Continent
                                                 (Tons)
                                                                       (Kg)
                                                                                 (Hectare)
                                                                                                 Hectare)
                                                                        51
         99
                    99
                        Djibouti
                                   Africa
                                                    53
                                                                                     NaN
                                                                                                    NaN
         df=df.dropna().reset index().drop("index",axis=1)
In [10]:
In [11]:
         df.isnull().sum()
                                           0
         Unnamed: 0
Out[11]:
         Country
                                           0
         Continent
                                           0
         Production (Tons)
         Production per Person (Kg)
         Acreage (Hectare)
         Yield (Kg / Hectare)
         dtype: int64
```

```
df.head()
In [13]:
                                                                                               Yield (Kg/
Out[13]:
                                      Production
                                                    Production per Person
                                                                                Acreage
            Country
                       Continent
                                          (Tons)
                                                                   (Kg)
                                                                               (Hectare)
                                                                                                 Hectare)
                           South
         0
               Brazil
                                       768678382
                                                               3668.531
                                                                               10226205
                                                                                                  75167.5
                         America
               India
                                                                                4950000
         1
                                       348448000
                                                                 260721
                                                                                                  70393.5
                            Asia
         2
                                       123059739
                                                                 88287
                                                                                                  73459.1
              China
                            Asia
                                                                                1675215
         3 Thailand
                                        87468496
                                                               1264.303
                                                                                                  65442.2
                            Asia
                                                                                1336575
         4 Pakistan
                            Asia
                                        65450704
                                                                 324219
                                                                                1130820
                                                                                                   57879
          df.rename(columns= {"Production (Tons)": "Production(Tons)"}, inplace = True)
In [14]:
          df.rename(columns= {"Production per Person (Kg)": "Production per person(Kg)"}, inplace
          df.rename(columns= {"Acreage (Hectare)": "Acreage (Hectare)"}, inplace = True)
          df.rename(columns= {"Yield (Kg / Hectare)": "Yield(Kg/Hectare)"}, inplace = True)
In [ ]:
In [15]:
          df.nunique()
                                         102
         Country
Out[15]:
         Continent
                                            6
         Production (Tons)
                                         102
         Production per person(Kg)
                                         101
                                         101
         Acreage (Hectare)
         Yield(Kg/Hectare)
                                         102
         dtype: int64
         df.dtypes
In [16]:
         Country
                                          object
Out[16]:
         Continent
                                          object
         Production (Tons)
                                         object
         Production per person(Kg)
                                         object
         Acreage (Hectare)
                                         object
         Yield (Kg/Hectare)
                                         object
         dtype: object
         df["Production(Tons)"]=df["Production(Tons)"].astype(float)
In [17]:
          df["Production per person(Kg)"]=df["Production per person(Kg)"].astype(float)
          df["Acreage(Hectare)"]=df["Acreage(Hectare)"].astype(float)
          df["Yield(Kg/Hectare)"]=df["Yield(Kg/Hectare)"].astype(float)
          df.dtypes
In [18]:
         Country
                                           object
Out[18]:
         Continent
                                           object
         Production (Tons)
                                          float64
                                          float64
         Production per person(Kg)
         Acreage (Hectare)
                                         float64
         Yield(Kg/Hectare)
                                         float64
         dtype: object
          df.duplicated().sum()
In [19]:
Out[19]:
```

df=df.drop("Unnamed: 0",axis=1)

In [12]:

Univariate Analysis

in [20]:	df	head()					
ut[20]:		Country	Continent	Production(Tons)	Production_per_person(Kg)	Acreage(Hectare)	Yield(Kg/Hectare)
	0	Brazil	South America	768678382.0	3668.531	10226205.0	75167.5
	1	India	Asia	348448000.0	260721.000	4950000.0	70393.5
	2	China	Asia	123059739.0	88287.000	1675215.0	73459.1
	3	Thailand	Asia	87468496.0	1264.303	1336575.0	65442.2
	4	Pakistan	Asia	65450704.0	324219.000	1130820.0	57879.0

How many countries from each continent produces the sugarcane?

In [23]:	df.describe()
----------	---------------

Out[23]:		Production(Tons)	Production_per_person(Kg)	Acreage(Hectare)	Yield(Kg/Hectare)
	count	1.020000e+02	102.000000	1.020000e+02	102.000000
	mean	1.850372e+07	112952.435755	2.498981e+05	52628.078431
	std	8.419149e+07	176651.341929	1.137003e+06	30504.676683
	min	1.000000e+00	0.000000	0.000000e+00	10.000000
	25%	6.251875e+04	3671.910000	1.104000e+03	29072.025000
	50%	1.440044e+06	25572.500000	1.655800e+04	54108.950000
	75%	6.426824e+06	146384.750000	8.047400e+04	73282.700000
	max	7.686784e+08	951087.000000	1.022620e+07	129049.300000

Checking for Outliers

```
In [24]: plt.figure(figsize= (10,8))
   plt.subplot(2,2,1)
    sns.boxplot(df["Production(Tons)"])
   plt.title("Production(Tons)")
   plt.subplot(2,2,2)
   sns.boxplot(df["Production_per_person(Kg)"])
   plt.title("Production_per_person(Kg)")
   plt.subplot(2,2,3)
   sns.boxplot(df["Acreage(Hectare)"])
   plt.title("Acreage(Hectare)")
```

```
plt.subplot(2,2,4)
sns.boxplot(df["Yield(Kg/Hectare)"])
plt.title("Yield(Kg/Hectare)")
plt.show()
```


we have outliers in the data but outliers are required here as it shows the countries which has maximum production.

Distribution of Data in the Columns

```
plt.figure(figsize=(10,10))
In [25]:
         plt.subplot(2,2,1)
         sns.distplot(df["Production(Tons)"])
         plt.title("Production(Tons)")
         plt.subplot(2,2,2)
         sns.distplot(df["Production per person(Kg)"])
         plt.title("Production per person(Kg)")
        plt.subplot(2,2,3)
         sns.distplot(df["Acreage(Hectare)"])
         plt.title("Acreage(Hectare)")
         plt.subplot(2,2,4)
         sns.distplot(df["Yield(Kg/Hectare)"])
         plt.title("Yield(Kg/Hectare)")
        plt.show()
        C:\Users\HP\AppData\Local\Temp\ipykernel 6232\2750422772.py:3: UserWarning:
```

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

```
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
 sns.distplot(df["Production(Tons)"])
C:\Users\HP\AppData\Local\Temp\ipykernel 6232\2750422772.py:6: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
 sns.distplot(df["Production per person(Kg)"])
C:\Users\HP\AppData\Local\Temp\ipykernel 6232\2750422772.py:9: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
 sns.distplot(df["Acreage(Hectare)"])
C:\Users\HP\AppData\Local\Temp\ipykernel 6232\2750422772.py:12: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn v0.14.0.
Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
 sns.distplot(df["Yield(Kg/Hectare)"])
```


Bivariate Analysis

Which country produces most amount of sugarcane in tons

```
df new=df[ ["Country", "Production(Tons)"] ]
In [26]:
         print(df new)
                          Production (Tons)
                 Country
                               768678382.0
         0
                 Brazil
                               348448000.0
                   India
         2
                   China
                               123059739.0
         3
               Thailand
                                 87468496.0
         4
                                 65450704.0
               Pakistan
         97
                                      394.0
                   Spain
                Lebanon
                                       97.0
                                       50.0
              Singapore
```

100 Samoa 12.0 101 Syria 1.0

[102 rows x 2 columns]

In [27]: df_new["Production(Tons)_percent"] = df_new["Production(Tons)"]*100/df_new["Production(Tons)"]
df_new

C:\Users\HP\AppData\Local\Temp\ipykernel_6232\114540126.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

df_new["Production(Tons)_percent"] = df_new["Production(Tons)"]*100/df_new["Production
(Tons)"].sum()

Out[27]: Country Production(Tons) Production(Tons)_percent

	,	` ,	` /=1
0	Brazil	768678382.0	4.072729e+01
1	India	348448000.0	1.846200e+01
2	China	123059739.0	6.520138e+00
3	Thailand	87468496.0	4.634389e+00
4	Pakistan	65450704.0	3.467809e+00
•••			
97	Spain	394.0	2.087551e-05
98	Lebanon	97.0	5.139401e-06
99	Singapore	50.0	2.649176e-06
100	Samoa	12.0	6.358022e-07
101	Syria	1.0	5.298352e-08

102 rows × 3 columns

In [28]: df[["Country", "Production(Tons)"]].set_index("Country").sort_values("Production(Tons)",

Out[28]: <Axes: xlabel='Country'>


```
In [29]: ax = sns.barplot(data = df.head(15), x= "Country", y = "Production(Tons)")
    ax.set_xticklabels(ax.get_xticklabels(),rotation =90)
    plt.show()
```


Among all the countries, Brazil,India and China are the leading producers of sugarcane.

Which country has the most Area(Hectares)?

```
In [30]: df_hectare=df.sort_values("Acreage(Hectare)", ascending=False).head(15)
ax = sns.barplot(data = df_hectare, x= "Country", y ="Acreage(Hectare)")
ax.set_xticklabels(ax.get_xticklabels(), rotation =90)
plt.show()
```


Which country has the highest yield(Kg/Hectare)

```
In [31]: df_yield=df.sort_values("Yield(Kg/Hectare)", ascending=False).head(15)
ax = sns.barplot(data = df_yield, x= "Country", y = "Yield(Kg/Hectare)")
ax.set_xticklabels(ax.get_xticklabels(),rotation = 90)
plt.show()
```


Guatamala has the highest yield(kg/hectare

Which country has highest per person production?

32]:	df	.head()					
32]:		Country	Continent	Production(Tons)	Production_per_person(Kg)	Acreage(Hectare)	Yield(Kg/Hectare)
	0	Brazil	South America	768678382.0	3668.531	10226205.0	75167.5
	1	India	Asia	348448000.0	260721.000	4950000.0	70393.5
	2	China	Asia	123059739.0	88287.000	1675215.0	73459.1
	3	Thailand	Asia	87468496.0	1264.303	1336575.0	65442.2
	4	Pakistan	Asia	65450704.0	324219.000	1130820.0	57879.0
	ax ax	=sns.ba	rplot(data = icklabels(ax	df_person, x	on_per_person(Kg)", as ="Country", y= "Produ els(),rotation=90)		

Paraguay has the highest per person production

In [34]: df.corr()

C:\Users\HP\AppData\Local\Temp\ipykernel_6232\1134722465.py:1: FutureWarning: The defaul t value of numeric_only in DataFrame.corr is deprecated. In a future version, it will de fault to False. Select only valid columns or specify the value of numeric_only to silence this warning.

df.corr()

Out	12/	
out	[]+]	

	Production(Tons)	Production_per_person(Kg)	Acreage(Hectare)	Yield(Kg/Hectare)
Production(Tons)	1.000000	0.015000	0.997550	0.132812
Production_per_person(Kg)	0.015000	1.000000	0.012557	0.017999
Acreage(Hectare)	0.997550	0.012557	1.000000	0.113433
Yield(Kg/Hectare)	0.132812	0.017999	0.113433	1.000000

In [35]: sns.heatmap(df.corr(), annot = True, cmap="Greens")

C:\Users\HP\AppData\Local\Temp\ipykernel_6232\642961471.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

sns.heatmap(df.corr(), annot = True, cmap="Greens")

Out[35]: <Axes: >

Do countries with highest land produce more sugarcane?

```
In [36]: sns.scatterplot(data = df, x = "Acreage(Hectare)", y = "Production(Tons)", hue = "Contin
Out[36]: <Axes: xlabel='Acreage(Hectare)', ylabel='Production(Tons)'>
```


Analysis for Continent

In [37]:	df	head()					
Out[37]:		Country	Continent	Production(Tons)	Production_per_person(Kg)	Acreage(Hectare)	Yield(Kg/Hectare)
	0	Brazil	South America	768678382.0	3668.531	10226205.0	75167.5
1		India	Asia	348448000.0	260721.000	4950000.0	70393.5
	2	China	Asia	123059739.0	88287.000	1675215.0	73459.1
	3 T		Asia	87468496.0	1264.303	1336575.0	65442.2
	4	Pakistan	Asia	65450704.0	324219.000	1130820.0	57879.0

In [38]: df_continent=df.groupby("Continent").sum()

721930425.0

Asia

C:\Users\HP\AppData\Local\Temp\ipykernel_6232\1663322524.py:1: FutureWarning: The defaul t value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, nume ric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

10608319.0

1171871.4

25

df continent=df.groupby("Continent").sum()

In [39]: df_continent["number_of_countries"] = df.groupby("Continent").count()["Country"]
 df_continent

Out[39]: Production(Tons) Production_per_person(Kg) Acreage(Hectare) Yield(Kg/Hectare) number_of_countries

Continent

Africa 89681472.0 2332636.293 1439089.0 2142107.5 38

1857769.303

Europe	5823.0	536.000	71.0	131870.9	2
North America	173995947.0	3796081.508	1581983.0	1082602.4	22
Oceania	36177574.0	28593.605	490909.0	162419.1	4
South America	865588126.0	3505531.738	11369236.0	677192.7	11

Which continent produce the maximum sugarcane?

```
In [40]: df_continent["Production(Tons)"].sort_values(ascending = False).plot(kind = "bar")
```

Out[40]: <Axes: xlabel='Continent'>


```
In [41]: df_continent["Production(Tons)"].plot(kind = "pie", autopct = "%.2f%%")
    plt.title('Production Distribution by Continent')
    plt.show()
```

Production Distribution by Continent

In [42]: df_continent.corr()

Out[42]:

	Production(Tons)	Production_per_person(Kg)	Acreage(Hectare)	Yield(Kg/Hectare)	nun
Production(Tons)	1.000000	0.522211	0.994897	0.091201	
Production_per_person(Kg)	0.522211	1.000000	0.463215	0.542961	
Acreage(Hectare)	0.994897	0.463215	1.000000	0.111166	
Yield(Kg/Hectare)	0.091201	0.542961	0.111166	1.000000	
number_of_countries	0.109244	0.540086	0.132817	0.989712	

In []: