

SEQUENCE LISTING

<110> Mata Lopez, Pedro
Mozas Alonso, Pilar
Pocovi Mieras, Miguel
Tejedor Hernandez, Diego
Mallen Perez, Miguel
Alonso Karlezi, Alberto
Reyes Leal, Gilbert
Castillo Fernandez, Sergio
Martinez Martinez, Antonio

<120> Method for detecting LDL receptor gene mutations associated with

<130> U 015859-4

<140> 10/542,937

<141> 2006-09-08

<150> ES200300206

<151> 2003-03-01

<160> 259

<210> 1

<211> 60000

<212> DNA

<213> homo sapiens

<220>

<221> gene

<223> rLDL

<220>

<221> gene

<223> n at position 35360 represents aau, aac or aat

<220>

<221> gene

<223> n at position 35361 represents aau, aac or aat

<400> 1

aaaagatgg tatatccatc aatggAACAT tatttggcctt taaaaaggaa ggaaatttc 60
actgagcata gtggtttatg cctgtaatcc cagcactttg ggaggctgag gcagggggga 120

015859-4.ST25.2011-03-31.SEQ LIST

015859-4.ST25.2011-03-31.SEQ LIST

015859-4.ST25.2011-03-31.SEQ LIST

tctagcctgg gcaaaaagagt gagactccat cgcaagaaaa aaaaaaaaaa aagctgcaag 5580
ctcgtgcctc cgggttcaag tgatttcct gcctcagcc tccaagttagc taggattata 5640
cgcgcccccc accatgcctg getaatttt gtatTTTtag tagagatgcg gtttcaccat 5700
gttggccagg ctggctcaa actcctgacc tcacgtgatc cacctgcctc ggctteccag 5760
agtgcggaa ttacaggtgt gaacccctgc gcctggccaa gaaaagtgc ttgaatgaag 5820
agtaaataga agacccagaa agaaaatgatt cgtccgagga aggtcacaga agcaacgtaa 5880
tcaagatgga aatctgactc ttcttaattt tggccagact tcccattccct ccaaagctt 5940
ccagactctt ccagatcatc ttagatattt ccagaaatca ttctgaaat ctaacttagga 6000
gtagtcgtta aacaatgtgt ttcacacaga tacaattcat aaacgatgag aagacaagga 6060
cacttcatga atgaaatttt taaggccggg tatgttggct cacgcctata atcccaggac 6120
tttggaaagac ccaggcagga ggattgttgc agtccaggag ttcaagacca gcttgggcca 6180
catagtgaga cccgtgcgt acaaaaaatt taaaaattag gtagatatgg tggtgtatgc 6240
ctcttagttt agctttttt gaggctgaag caggaggatc tcttgagccc aggagggtga 6300
gctgcaatga gctacgattt aactactaca ctccagtcg ggtgacagag aaagaggctg 6360
cctcaaaaaa ataaaaataaa aaaaataagg ccggacgcgg tggctcacgc ctgtaatccc 6420
agcacttgg gaggctgggg tggcagacc acgaggctag gagatcgagg ccattctggc 6480
caacatgatg aaacccctgc tctactgaaa acacaaaaat tagctggcg tggtggcgt 6540
tacctgttaat cccagctaci cgggaggctg aggaggaga atcacttggaa ccagggagtc 6600
agaggttgca gcgagaggag atttgtccac tgcattccag cctggcaaca gagaagact 6660
ccgtctcaaa aaagaaacaa caacagcaac aacaacaaaaaaa aaagttcggg 6720
cacggggct cacacctgtta atccctgac tttgggaggc caagggtggg agatctctg 6780
aggtcaggag ttcaagacca gcctggccaa caaacatggt gaaacccctgt ctctactaaa 6840
aatacaaaaaa gtagccgggt gtagtcccag ctactcgaa ggctgaggca ggagaatcgc 6900
ttcaacctgg gagatggaaat ttgcagtgaa ctgagattgc gccactgggt gacagagttaa 6960
gactcttgc tcaaaaaaaa aaaaagaaag aaagtttaat ttaatgattc aaataatgac 7020
ctgctcgaga gataaaatata aagtcttaacg taagagggtt atacttttc ctctgtcctg 7080
ctgtctcgc cccacctc ac ccaagtc ac aacctgtatg atcagtctcc ttccctctg 7140
gtageccccac tccccatgacc gaaccggagaa gtcatgcacc cgcataagaa ctctaaattt 7200
tttttcaaa gtccttcac tgcccaaaaa atagttctt tcatteccag gggatgtgaa 7260
agtgtctc ccaattttat ttcaacctcc cagcgttca cacatatgcc ttgcctcagc 7320
cagcttccac tgaatgcac tttccaccc tcgcgtgc tctaccgtggg aaatccgtc 7380
catecatagt ctgatttcgt tttttccaga acatctttt tttttcccc ttggAACATTc 7440
tttaagatac cicaataat gaaaccagag ggtatagage agtataatgc ggtactacaa 7500
tgtacagggg gaaatggagg ggaatatgtat atactctcc tcttgttat gcttagatgc 7560
ttctttagaaagg atatgtctaa aaggtagca gtcctggcca ggcgtggcgg ctacgcctg 7620
taatctcagc actttggat gccaacgcgg acggatcaca aggtcaggag ttcttagatca 7680
gcctgacccaa tatagtgaaa ctcatctttt actaaaaata caaaaattag ccgggtacgg 7740
tggcatgtgc ctgtiagtccc agtacttgc gaaacctgagg caggagaatc gcttgaactc 7800
gggaggcaga gtttgcgtg agccgagact gtgcattgc actgcagcc tgggtgacaga 7860
acaggactcc gtcctcaaaaaaaa aaaacaaaaaa aggtcagcag tcttaattgt cagagggcag 7920
gggacctgca tggatggag gttttccat gtgtccaccc ttggatccct tttgtttttt 7980
ttttttaaat ttttttattt tagcaaaaata gatataaaaat ttacccctttt ttttttttag 8040
acagggtctc actctgttgc ccagggttggaa gtgcagtggc atgatctgg ctactgcag 8100
ccctgtccctc ctgggttcaaa gcgatttcc tgcctcagcc tcccgagtag ctgggattac 8160
aggtgcgttgc caccatacccg ggctaattttt gtatTTTtag tagagacggg gttacgccaa 8820

015859-4.ST25.2011-03-31.SEQ LIST

gttggccaag ctggtcgcaa actcttgacc tcaagtgtac egccccctc ggcctccaa 8280
agtgcggga ttacaggcag gagccaccac gcicagccct aaaatttacc atattaacca 8340
tttcaagtt cagaggcatt aaagtatact cacatgttg ttcaactgtc accactactc 8400
acctgcagaa gttttcatc ttgcaaagtg aaaaccccat acceaattt ccgttcitcc 8460
tctcagcccc tggtaatcac tattctactt ttgtctactt ttgttatga atttgctat 8520
tctaggacct aatagaagtg gagitcaaacc tglttgtctt ttgtggctg gcttattca 8580
cccgcccta tatcccaag gtttatccat gttggaggat gcctgaattt ccttgtttt 8640
aaggctaaaf ttatfctat tatattaata tgtcatattt tglttattctt gatggacact 8700
tgggttgatt ccacccntgg ccatttgaa gaagcttcta tgtacatggt atacacatat 8760
atctttgggt ctctgttcc aatgttttg gggatatttcc agatgtggaa ttctggatt 8820
ataaggcaat tttttttt gagacagact ctgcgttgc tcgcccaggc tagaatgtgg 8880
tggtgtgate tattttttt ttttttga gatggagtct cgctctgtcg cccaggetgg 8940
agtgcagtgt cacgatctca gtcactgca agtcctccct cccagggtcg tgccattttt 9000
atgcctcage ctcccaagta gctgggacca cagccgcccc ecacceace eggctaattt 9060
tttgtttttt agtagagaca gggtttca tttttttttt ggtatggctc gatctctga 9120
ctctgtgate cgccctgcctc ggccctccaa agtgcgtggaa ttacagggct gagecactgc 9180
accggctgg tttttttttt gtcgttgc acctctgcct cccagggtca agcgattttt 9240
gtgecctcage ctccctcgeag ctgggactac aggtgtgcgc cactgtgcgc agctactttt 9300
taaaaaatata tttttttttt tttttttttt aagtctggg atacatgtac agaacgtgca 9360
ggttttttttt ataggtatac atgtgccatg gtggtttgc geacccatca accggtcate 9420
tacattttttt atttttttttt atgttccca tttttttttt tttttttttt 9480
gtttttttttt gtgtttttt tttttttttt tttttttttt tttttttttt 9540
gtctgtttttt aactcttgac cttcaagtgtat ccgcctccaa aagtgcgtgg 9600
attacaggtt tgaccacta cactcgccct tttttttttt tttttttttt 9660
tttgttatattt tttttttttt tttttttttt tttttttttt 9720
cagcaagccaa tgaggtctgt cagcacacgg ctttggcat tttttttttt tttttttttt 9780
cagctgagcc aaggcagggtt cctgttccaa cccactgca ggcacccagg tctctgtgt 9840
tactgtatgtt tttttttttt tttttttttt tttttttttt 9900
ctctgtccaa aggccaggct ctttggggca gagacctattt ccggactgag ctttgggtt 9960
aatttagagag gttagaaaaatgg gtagggacggg ggcagggtggg tttttttttt 10020
cccaccctga tttttttttt tttttttttt tttttttttt 10080
ccacagcagg attacatctt gtcactccaa tagaaagaag gcaggccacag gcccgggggtt 10140
ttttttttttt tttttttttt tttttttttt tttttttttt 10200
ggagatccag accatccctgg cttttttttt tttttttttt 10260
attaggctgg cttttttttt tttttttttt tttttttttt 10320
cggtatcacga ggtcaggaga tttttttttt tttttttttt 10380
ctaaacatac aaaaaaaaaat tttttttttt tttttttttt 10440
caggaggctg aggccaggaga tttttttttt tttttttttt 10500
actgcgcac tttttttttt tttttttttt 10560
aaaaaaaaataca aaaaaaaaaatgg cttttttttt tttttttttt 10620
ttttttttttt tttttttttt tttttttttt 10680
agatcgccacttcc tttttttttt tttttttttt 10740
acaaaaaaaaaaa aaaaaaaaaaaa cttttttttt tttttttttt 10800
gataaaaaaaaaaaa aaaaaaaaaaaa tttttttttt tttttttttt 10860
atatgttattt tttttttttt tttttttttt 10920

015859-4.ST25.2011-03-31.SEQ LIST

015859-4.ST25.2011-03-31.SEQ LIST

ctgggattac aggcgigagc caccatgccc agcccgtaa ttatccaat ttgaccttga 13680
caetgagccct gccaagiagg ticaagcatt ttagtgccc cttacaggt tggaaagct 13740
aatttatctg tccaaggccg aattctgaaa ctgagtcata actgccaaaa attcttatca 13800
tcaatttctt ctctgggtt gggcacagtg gtcatgcct gttaagccag caatttgaga 13860
ggcatcaiga tgcaagagga agaggattga gtgaagctag gagttggga ccagccctggg 13920
caacatagtg agaccccatc tataaaaaaa aattaaaaat tagttggca tggtggtc 13980
ctctgttgtt cctagctatt caggaggctg aggtggagg attccttgag cccagggtt 14040
acgctgcaga gagctgtgat cacgcccactg cagtcaccc tgagtgcacag ctggaaataa 14100
tgatfaataaa ataataaata attatttaaa aaattataat aaaaataatt aaaaattat 14160
tttccctgtat taatctttt ttttgtcctt ctgagagttc aattttgtccc ttttcgtt 14220
ggtcctctag gtttccctaa aatctgtctg agagggttgc actgcctgcc aaagtcagtt 14280
tgcaaaaatcc cagagaaaatc cagcttattt ctgggggaac cgccaaagact gcccagccct 14340
gtgtgggggtt caggaagtt tcacatgtt gcctttttgg caagaggctt ctggcaaccc 14400
catgagtcctt caaagagactt caattctaaa agtttgtctc caccagctt ctgtggctt 14460
ggggttcaag ticaacigtg aaagccctgt ttttgtttaa ttttgttttgg agggagagga 14520
aaccgcctt ctgttttgtc aacictctt ctaagggga gaaatcaata tttacgttcca 14580
gactccaggat tccgtacaa ttgatttttca agatgtttat acicagccaa aggccggatc 14640
ccacaaaaca aaaaataattt ttttgtctgt acttttgtga agattttat taaaatccctg 14700
attgatcaatgtt gtcattttagg tgattggaa taacaatgtt aaaaacaatata acaacgaaag 14760
gaagctaaaa atctatacac aatccctaga aaggaaaagg caaatataga aagtgccgga 14820
agttccccaaatc atttttagttt ttttcctttt gaggcagaga ggacaatggc attaggctt 14880
tggaggatct tggaaaggctg ttgttacatct tctgtggaca acaacagcaa aatgttaaca 14940
gtttaaacatc gagaatttc aggaggatct ttcaagaatgtt gctttccaa ttttgagggg 15000
gctgtcagctc ttccacccggag accccaaatc aacaaatcaa gtcgcctgtcc ctggcgacac 15060
tttcgaagga ctggagtggtt aatcagatgt tcaacgggtt aaaaagccgtt gtcacatcg 15120
ccgttcgaaa ctccctctt tgcagtggagg tgaagacatt tggaaatcac cccactgcaa 15180
actctccccctt ctgttagaaa cctcacatttgc aatgtgttca aatgtgttgg gcccggatgt 15240
caatcgccggg aagccagggtt tttccagcttag gacacagcag gtcgtgttcc gggcgccggac 15300
actgcctggc agaggctacg agc atg ggg ccc tgg ggc tgg aaa ttg cgc 15350

Met Gly Pro Trp Gly Trp Lys Leu Arg

-21-20 -15

tgg acc gtc gcc ttg ctc ctc gcc gcg ggg act gca g gtaaggctg 15400

Tip Thr Val Ala Leu Leu Leu Ala Ala Gly Thr Ala

z10 *z5* *z1* *z0*

ctccaggcgc cagaataggt tgagagggag cccccggggg gcccttggga attttttt 15460
ttgggtacaa ataactcactc catccctggg agacitgtgg ggtaatggca cggggcctt 15520
cccaaacggc tggagggggc gctggagggg ggcgcgtgagg ggagcgcgag ggctgggagg 15580
agtctgaggg atttaaggga aacggggcac cgctgtcccc caagtctcca cagggtgagg 15640
gaccgcac tctttgagac ggagtctagc tctgtcgecc aggatggagt gcagtggcac 15700
gatctcagct cactgcaacc tccgcctccc gggtttaagc gagtctccctc tctcaggcctc 15760
ccgaatagct gggattacag gcgcacaacc accacgccecg cttaattttt gtattttttag 15820
tagagacggg ttttcaccat ttggccagg ctggtctcga accccgacct caggtgatct 15880
gcgc当地点 gctgggatta caggcgtcag ccacccgcgec eggcceggac cctcttcctt 15940
aactcgagc tgggttgtgg gacctccagl cttaaaaacaa gggatcactc ccaccccgcc 16000
cttaagtctct tctggggcgc agggcactg gagacccggta tgcctcggct ggaggtcace 16060

015859-4.ST25.2011-03-31.SEQ LIST

015859-4, ST25, 2011-03-31, SEQ LIST

015859-4.ST25.2011-03-31.SEQ LIST

015859-4.ST25.2011-03-31.SEQ LIST

Ala Gly Asp Arg Cys Glu

5

aga aac gag ttc cag tgc caa gac ggg aaa tgc atc tcc tac aag tgg 26062

Arg Asn Glu Phe Gln Cys Gln Asp Gly Lys Cys Ile Ser Tyr Lys Trp

10 15

20

gtc tcc gat ggc gag get gag tcc cag gat ggc tct gat gag tcc cag 26110

Val Cys Asn Gly Ser Ala Glu Cys Gln Asn Gly Ser Asp Glu Ser Gln

76

30

35

999 acn toc tot naactccc ttggccatc statccattt atttttataa 26160

Glo The Guy Law

10

tagagacagg gctcgccat gtggccagg ctggcttiga atttcgtggc tcaagtgtac 26220
ccgtttccctc aaccctccaa atgtcttggg ttacagucac caccctgtgc ctgttgacaca 26280

015859-4.ST25.2011-03-31.SEQ LIST

attcttaacc ctttitttgai gatggcggct ggaaaagtgg ccagggatt ttgaigtatt 26340
 caatcatgaa ttaggaggig gggagagaat gaaitatigg agcttccct aaagccatta 26400
 aatggcicta ttgtttttc aattgtatgt aattcacat aacatgaaat taaccagctc 26460
 agtggcatta atacatctgc aatgtgtgtg ggcaccacc tctatctgt tccaaaactt 26520
 tgcataaccc aatgtctttt tttttttt ttttgagac ggagtcttgt tccatcaccc 26580
 aggctggagt gcagtggtgt gatctcagct cactgcaacc tccgcctccc aggtcacgc 26640
 ctttcctcg ctccgcctc ccgagtagct gggactacag gcaccctcca ccacatccgg 26700
 ctaatttttt gtatctttt tagagatggg gttagccgg atggctcga 26760
 tttctgtacc tctgtatcca cctgcctccg ctcccaaag tgctggcatt acaggcgtga 26820
 gcccacatgc ccggctattt tttttttt agagatggag tctaattttt tggccaggc 26880
 tggagtcctcg tggtaaccate atacitact gcaagcttga cctcttggc tcaagtgtatt 26940
 ctcttgcctc gaactccaa agtaftgggta ttagagggtgt gagecaccgc actcagecta 27000
 atgtccagg tttacaacaatccat tttttttt tttttttt tttttttt tttttttt 27060
 gcttggccgg gcacaatggc ttgtgtctgt agtcccagct acttgggagg ctgaggcaga 27120
 aaggcagaaa gattgcitta taaagcccag gagtttggg gccacctggg tggcatagct 27180
 agacccatctc tctaaaaaat aagtaataaa taaaatattttt tttttttt 27240
 tttttttt tttttttt tgagacggag tcttgctctg tggccaggc tggagtgca 27300
 tggcggcata tcagtcact gcaagctgtg ctccctgggt tcatgcattt ctccgcctc 27360
 agecccccga gtatctggta ctacaggcgc ccactaccac gcccacatc tttttttt 27420
 ttttagtaga gatggggttt caccacgtta gccaggatgg tctcaatctc ctgacccctgt 27480
 gatcccccag cttaggcctc cccaaatgtt gggattacag gctgtggcca ctgagccgc 27540
 cccatatagtt tttttttt tttttttt aaatgggaga ccaggcaatgg tggctcatgc 27600
 cttagaatccc agcaattttgg gaagctgagg taggcccattt acttggggcc atgagtttga 27660
 gaccaggctt ctcaacatga tggaaacttctt atctctacta aaaaaaaaaa tgggatttagg 27720
 tcaggcacgg tggctcacac ctgtatcccc agcactttca gaggccgagg caggaggatc 27780
 atgaggcgtt gggatcgaga ccatccctggc taacacgggtt aaaccccgcc tctactaaaa 27840
 aaataaaaaa aattagccag gctgtggggc ggggtgcctgt agtcccagct actcaggagg 27900
 ctgaggcagg agaattggcgtt gaaaccgggaa ggcggagctt gcaatgtgc 27960
 cactgtactc cagccctgggc gacagagcaa gactctgtt caaaaaaaaa aaaaaaaaaatg 28020
 ggattgacat tctcttcaaa gtttgggtt ttttttttgc aaagacaggaa tggcaaggc 28080
 cagtgggtt ttttttttgc ttttttttgc acggagctc actctgcccac ccaggctgg 28140
 gtgtcaatggc aggtatctgg ctccacgcctt ccctcccttc ccagggtttt gtttgc 28200
 tgcctcagcc tcccgatgtt ctggactac aggtgtccgc caccacaccc aactatttt 28210
 ttttttttgc ttttttttgc ttttttttgc ttttttttgc ttttttttgc ttttttttgc 28320
 ctcaatgtgtt ccaccgcctt tgccctccca aatgtgtggg attacaggcg tgagccactg 28380
 tgctcgccctt ctttttttgc ttttttttgc ttttttttgc ttttttttgc ttttttttgc 28440

tct gtc acc tgc aaa tcc ggg gac ttc agc tgt ggg ggc cgt gtc aac 28488
 Ser Val Thr Cys Lys Ser Gly Asp Phe Ser Cys Gly Gly Arg Val Asn

45	50	55	
cgc	tgc	att	cct cag ttc tgg agg tgc gat ggc caa gtg gac tgc gac 28536
Arg	Cys	Ile	Pro Gln Phe Trp Arg Cys Asp Gly Gln Val Asp Cys Asp
60	65	70	75
aac	ggc	tca	gac gag caa ggc tgt c gtaagtgtgg ccctgcctt 28581

015859-4, ST25, 2011-03-31, SEQ LIST

Asn Gly Ser Asp Glu Gln Gly Cys

80

Pro Pro Lys Thr Cys Ser Gln Asp Glu Phe Arg Cys

85

90

95

015859-4.ST25.2011-03-31.SEQ LIST

cac gat ggg aag tgc atc tct cgg cag ttc gtc tgt gac tca gac cgg 31077
 His Asp Gly Lys Cys Ile Ser Arg Gln Phe Val Cys Asp Ser Asp Arg
 100 105 110
 gac tgc ttg gac ggc tca gac gag gcc tcc tgc ccg gtg ctc acc tgt 31125
 Asp Cys Leu Asp Gly Ser Asp Glu Ala Ser Cys Pro Val Leu Thr Cys
 115 120 125
 ggt ccc gcc agc ttc cag tgc aac agc tcc acc tgc atc ccc cag ctg 31173
 Gly Pro Ala Ser Phe Gln Cys Asn Ser Ser Thr Cys Ile Pro Gln Leu
 130 135 140
 tgg gcc tgc gac aac gac ccc gac tgc gaa gat ggc tgc gat gag tgg 31221
 Trp Ala Cys Asp Asn Asp Pro Asp Cys Glu Asp Gly Ser Asp Glu Trp
 145 150 155
 ccg cag cgc tgt agg ggt ctt tac gtg ttc caa ggg gac agt agc ccc 31269
 Pro Gln Arg Cys Arg Gly Leu Tyr Val Phe Gln Gly Asp Ser Ser Pro
 160 165 170 175
 tgc tgc gcc ttc gag ttc cac tgc cta agt ggc gag tgc ate cac tcc 31317
 Cys Ser Ala Phe Glu Phe His Cys Leu Ser Gly Glu Cys Ile His Ser
 180 185 190
 agc tgg cgc tgt gat ggt ggc ccc gac tgc aag gac aaa tct gac gag 31365
 Ser Trp Arg Cys Asp Gly Gly Pro Asp Cys Lys Asp Lys Ser Asp Glu
 195 200 205
 gaa aac tgc g gtatggcg ggccagggtg ggggcgggc gtcctatcac 31415
 Glu Asn Cys
 210
 ctgtccccctgg gtccccccag gtgtggaca tgcagtgatt taggtgccga agtggattc 31475
 caacaacatg ccaagaaaagt attccccattt catgttttgtt tctttttttt cttttttttc 31535
 ttattttgtt ttttgagatg gagtcact ctgtgatttt tttcatctct aaatttceta 31595
 cateccatatg gccaccatga ggccccaggc tgcccgatgg ttgcgtttag tttattggga 31655
 aatcacttgtt tggaaggcgc tggtttgtttt ttgttttttg tttgttttgtt tttgtttttt 31715
 gttttgagac ggaggctcgc tctgtcgcca gggtggagtg cagtggcg atagctcac 31775
 tgcaaccctcc gttccctggg ttcaagccat tctccctgcct cagccctccca agtagegegg 31835
 attacaggca tgtgccacca cctccggcta tttttttttc tatttagtag agatggggtt 31895
 tcaccatgtt agtccaggctg gtcatgaact tttgacctca ggtgatccac cegcctcgcc 31955
 ctcaccaaagi gtcgggatia caggcgtgca ctgcgtcacc cagectttttt ttgtttttt 32015
 gagacagggtt tttgcgtca cccagggttga agtaagggtgg cactgatgtg gtctactgcg 32075
 gccttgcata ctttggctca agcgatectc tcaacttcage ctctcaagca gttggaaacca 32135
 caggcgttac caccaaggctt ggccaaattttt tttgtacaga cacaggctgg tcttgaactc 32195
 ctgggcctcaa gcaatccctcc tgccttggcc tcccaaagggtg ctgggattcc aggcatgagc 32255
 cgctgcaccc ggccaaaaggc cctgtttttttt tttctctgggt tgtctctttt tgagaaaaatc 32315
 aacacactct gtccctgtttt cca gct gtg gcc acc tgt cgc cct gac gaa 32365
 Ala Val Ala Thr Cys Arg Pro Asp Glu
 215
 ttc cag tgc tct gat gga aac tgc atc cat ggc agc cgg cag tgt gac 32413
 Phe Gln Cys Ser Asp Gly Asn Cys Ile His Gly Ser Arg Gln Cys Asp
 220 225 230 235

015859-4, ST25, 2011-03-31, SEO LIST

Gly Thr Asn Glu Cys Leu

392

gac aac aac ggc ggc tgt tcc cac gtc tgc aat gac ctt aag atc ggc 35821
Asp Asn Asn Gly Gly Cys Ser His Val Cys Asn Asp Leu Lys Ile Gly

IV

300 305 310

tac gag tgc ctg tgc ccc gac ggc ttc cag ctg gtg gcc cag cga aga 35869
Tyr Glu Cys Leu Cys Pro Asp Gly Phe Gln Leu Val Ala Gln Arg Arg

315 320 325 330

tgc gaa g gigattccg ggtggactg agccctggc cccctctgcttctgaca 35926

Cys Glu

tgccaaacc

aggagggttt catgagattc caccgtcatg gaaaaactatc attggctggc cagagtttct 36046

tcctctggg gattagtaat taagaaattt caggccgggt gcttaatccc tgtaatcccc 36106

acacaccttggg acgccgaggc gggcagatca cctgaggcg ggaggtccag accagcctga 36

ccaacatgga gaaaccccg tctactaaa aatacataaa tagccgggt tggtggtc 36226

tgcctataat cccagctact caggaggctg aggcaggaga atcacttgaa cctgggaggt 36286

ggaggttgtg gtgagccaaatgcgtgccat tgcaactccaggctgggcaac aagagtgtaaa 36340

ctccatccaa aaaaaaaaaaga aaagaaaaaaga aaaaaaaaaagaa aagaaaatttc agctgacaca 36406

gcttcacact ctgggttggc ttcccgtagt gaatgatgag gtcagggtat gactggggat 36466

gacacctggc ttttcccttg attacaatctc ccgagaggctt ggactgtctc ctggctgcct 36526

tcgaaggatgt gggttttggc ctggccccca tcgtccgtc tctagccatt gggaaugac 3658

ctccccacca agcccttttc tctctttcc ag at atc gat gag tgt cag gat 36638

Page 16

015859-4.ST25.2011-03-31.SEQ LIST

015859-4.ST25.2011-03-31.SEQ LIST

tttttgtat ttttagiaga gactgggtt caccatgtt gctaggctgg ttcgaaccc 40147
 ttagectcaa gtaatctgec tgcctcagec tcccaaacag cggggaitac aggcatgagc 40207
 cactgtcccc aaeccaaccc tggatcttt ttaacaaga caatgcgc ttttgccaca 40267
 gaacaatggg tgggtatcat gtggcccagt gtgttgcc acataactgc caggccagag 40327
 ggaaagagac ttcagactg ttcactca gatacaaatg tftgttgtgt gtgcgtgt 40387
 tctggctcta tatttgttig tttgagaca ggggtcgct ctgtactga gtcggatgt 40447
 cagtggcgca atcagatgtc actgcgcct caaactctt ggctcagttt atttccac 40507
 ttcagctcc caagtagctg gaactacagg tgaacaccac tftgcccagc taatttttt 40567
 tatttttagt agagatgagg ttcactatg ttgcccaggc tggctttgac ttcctageet 40627
 caagcaatcc fccgcctt gtcctccaaa gtgtggat tacacgtgcg agccattgcg 40687
 catggcttgt ttcttgtt ttttttgcg atggcgctc agtctgcac 40747
 ccaggctgga gtgcagtgtt gtgatcatag ctcaacttgc cttggctcaa 40807
 gcaatctct tttttttttt ttttttttgcg atggcgctc agtctgcac 40867
 aaaaatacaa aaatgtatcc aggegtgggt gtggggccct gtaatcccg ctacaccaga 40927
 ggctgaggca ggagaatcgc ttgagccigg aaggtggagg ttgcagcaag ccaagatgt 40987
 gccactgcac tccagccctt gcaacagaga cagactctgt ctcaaaaaaaa aaaaaaaaaa 41047
 acccaaaacaa gccacatttgc gatgttgggg ttcccagcag gactatttc caagccgt 41107
 ctggctgtt ttctccagaa ttcttttttgc acatttttttgc ggttttttttgc 41167
 gcttcacagc ttttttttttgc ttttttttttgc g c ttc atg tac tgg act gac tgg 41220

Gly	Phe	Met	Tyr	Trp	Thr	Asp	Trp
	510		515				

gga act ccc gcc aag atc aag aaa ggg ggc ctg aat ggt gtg gac atc 41268

Gly Thr Pro Ala Lys Ile Lys Lys Gly Leu Asn Gly Val Asp Ile
 520 525 530

tac tcg ctg gtg act gaa aac att cag tgg ccc aat ggc atc acc cta 41316
 Tyr Ser Leu Val Thr Glu Asn Ile Gln Trp Pro Asn Gly Ile Thr Leu
 535 540 545

g gtatgttcgc aggacagccg teccagccag ggccgggcac aggctggagg 41367

acagacgggg gttgtccagggt ggctctggga caagccaaag ctgttttttgc aagggttttttgc 41427
 tttttttttt tttttttttt ttttttttttgc aagggttttttgc 41487
 gagttgtccatgtt gtcgttttttgc aagggttttttgc 41547
 cctgccttccatgtt gtcgttttttgc aagggttttttgc 41607
 ttattttttttgc aagggttttttgc 41667
 aggggttttttgc aagggttttttgc 41727
 accgttttttgc aagggttttttgc 41787
 aggggttttttgc aagggttttttgc 41847
 ttcttttttttgc aagggttttttgc 41907
 gacccttttttgc aagggttttttgc 41963
 gat ctc ctc agt ggc cgc ctc tac tgg gtt gac tcc aaa ctt cac tcc 42010
 Asp Leu Leu Ser Gly Arg Leu Tyr Trp Val Asp Ser Lys Leu His Ser
 550 555 560

atc tca agc atc gat gtc aac ggg ggc aac cgg aag acc atc ttg gag 42058
 Ile Ser Ser Ile Asp Val Asn Gly Gly Asn Arg Lys Thr Ile Leu Glu
 565 570 575

015859-4.ST25.2011-03-31.SEQ LIST

015859-4.ST25.2011-03-31.SEQ LIST

Asp Lys Val Phe Trp Thr Asp
595 600

atc atc aac gaa gcc att ttc agt gcc aac ege etc aca ggt tcc gat 45265
Ile Ile Asn Glu Ala Ile Phe Ser Ala Asn Arg Leu Thr Gly Ser Asp

605 610 615
gtc aac ttg ttg gct gaa aac cta ctg tcc cca gag gag atg gtt ctc 45313
Val Asn Leu Leu Ala Glu Asn Leu Leu Ser Pro Glu Asp Met Val Leu

ttc cac aac ctc acc cag cca aga g gtaagggtgg gtcagcccc 45358
Phe His Asn Leu Thr Gln Pro Arg

cccccccaac ctgtaaacct ccttgtggaa acctctgaaat gttctggaaa ttctctggaaat 45418
ctcttggtat agctgtatgtat ctcgttccctg ccctgactcc gttcttcttg ccccaag 45474
gga gtg aac tgg tgt gag agg acc acc ctg agc aat ggc ggc tgc cag 45521
Gly Val Asn Trp Cys Glu Arg Thr Thr Leu Ser Asn Gly Gly Cys Gln
645 650 655

645 650 655
tat ctg tgc ctc cct gcc ccg cag atc aac ecc cac tcg ccc aag tt 45569
Tyr Leu Cys Leu Pro Ala Pro Gln Ile Asn Pro His Ser Pro Lys Phe
660 665 670

acc tgc gcc tgc ceg gac ggc atg ctg ctg gcc agg gac atg agg agc 45617
Thr Cys Ala Cys Pro Asp Gly Met Leu Leu Ala Arg Asp Met Arg Ser

675 680 685
tgc etc aca g gtgtggcaca cgccttgttt ctgcgttcctg tgicctccaa 45667

015859-4.ST25.2011-03-31.SEQ LIST

aatctcccit ttgaacaaca acaaataaca atatgaccca gacgtggtgg ctcacacccgt 46327
 tggccccagc tactcgggag gctgagggtgt gaggattgt tgagccagg aggtcaaggc 46387
 tacagagagc tataatcaca ccacttact ccagcctggg ggacaaagtg aaaccctgtc 46447
 taaaaaaaac aaaaaaaagaa aaaggaaaaaa gaaacaatac gatcacaaag tagatattca 46507
 tagtgttat ttccagttact cttttttttt ttttttgagac ggagtcttgc 46567
 tcgttgtcccc aggctggagt gcagtggcac gatcttgct cactgcagec tctgcctccc 46627
 aggtcaaggc gcttggctca ctgcaaccc tcgcctctgg gtcaagcgc ttcttcgtcc 46687
 tcagccccc ctagtagctgg gactataggc acgttccact acgcccacgt aatttttgt 46747
 atttttttagt agagatgggg ttcaactatg ttggccagga tggtctcgat ctccgtacct 46807
 cgtgatctgc ctgccttggg ctcccaaagt gttgggattt tgggcatgag ccactgcacc 46867
 tggccctttt tttttttt ttttgagatgg agtttcgttc ttgttgtcccc ggctggagtg 46927
 caatgggttg atctcggttc actgeaacct ctgcctctgg gttcaagea attctcttcgc 46987
 ctccagctcc cgagtagctg ggattacagg cacctgcac cacccctggc taatttttgt 47047
 acittttagta gagacgggggt ttccatgt tggtctcgatgt ggttcaaac tccgtacctc 47107
 aggtgtatcca cccacccctgg ctcccaaagg tttctgggat acagacatga gccaccggc 47167
 ctggccgtgt ctggccctttt ttagttttt tttttttt ttttgagacag 47227
 agtcttactc ctgcgtccag ctggaggatgc agcgggtgcga tgcgtgcga ctgcaagctc 47287
 egccccccggg gttcatgcca ttctccgtcc tcagccctct gaggtagctgg gactgcaggc 47347
 gcccggccact acgccccggct acitttttgt atattttagta gagatgggat tttactgtgt 47407
 tagccaggat ggttctcgat tccgtactt gtatccgccc cccctggcc tcccaaagtg 47467
 ctgggattac aggtgttgc caccatgcca ggctttttt tttttttt ttttgagac 47527
 ggagtcitgc tctgtcgcccc aggtggagt gcagtgcctt gatctctcgat cactgcacc 47587
 tccacttcccc aggttcacgc cattctccag ctccagccctc ccaagtagct gagactacag 47647
 gggcccgcca ccacactcgg ctaattttt tttttttt tttttttt tttttttt tttttttt ttttgagac 47707
 tttttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt ttttgagac 47767
 aagtgttggg attaaaggta tgagccaccc tggctgggtgt gggccaccc tggccggctg 47827
 agccacccctea cccagcttaa gecactgtgc ctggccgtat tttggactttt tttttttt tttttttt ttttgagac 47887
 tattataataat tttttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt ttttgagac 47947
 ccacccctgtc tttttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt ttttgagac 48007
 tgggtttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt ttttgagac 48067
 accacaccctt gctaattttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt ttttgagac 48127
 gaccaggtta gttttttttt tttttttt tttttttt tttttttt tttttttt tttttttt tttttttt ttttgagac 48187
 aggttcaatgg agacttccgtt ctttggccgc acaccatgtgaa gggccggctg caggcaegtg 48247
 gcaactcagaa gacgttttattt tttttttt tttttttt tttttttt tttttttt tttttttt ttttgagac 48301

Glu Ala Glu Ala Ala Val Ala Thr

695 700

cag gag aca tcc acc gtc agg cta aag gtc aca gca gcc gta agg 48349
 Gln Glu Thr Ser Thr Val Arg Leu Lys Val Ser Ser Thr Ala Val Arg

705 710 715

aca cag cac aca acc acc cga cct gtt ccc gac acc tcc cgg ctg cct 48397
 Thr Gin His Thr Thr Arg Pro Val Pro Asp Thr Ser Arg Leu Pro

720 725 730

ggg gcc acc cct ggg etc acc acg gtg gag ata gtg aca atg tct cac 48445
 Gly Ala Thr Pro Gly Leu Thr Thr Val Glu Ile Val Thr Met Ser His

735 740 745

015859-4.ST25.2011-03-31.SEQ LIST

caa g gtaaagactg ggccctccct aggccctct tcacccagag acgggtccct 48499
Gln
750
tcagtgccca cgaacatttt ggtcaegaga tggagttccag gtgtcgctt cactcccttg 48559
ctgaccctctt ctcaacttggg ccgtgtgtct ctggccctc agttcccta tctgtaaagt 48619
gggtctaata acagtcttgc ccctcttgc aaggattaaa tggccaaat catatgaggg 48679
gccaggctct tcaggctctt ggtccaaaaa gtcagccacg caccgtgtgg gtccaaaaat 48739
tttatcaagg cacattcggtt gcctcagctt caggcatctg cccaaaaagg ccaggactaa 48799
ggcaaggaga gggagggatt cctcagtaact cagctttca cagaggctcc aaaaggctaa 48859
ggaatccagt aacgttttaa cacaattttt caattttttt ttttgagacg gagtttgtct 48919
cttgttgcgg aggctggagt geagtggcac gatctcggtt cactcaacc tetgtgtccc 48979
gggttcaage gatttcttgc ctctagtc ecgagtagctt gggattacag gcaigcgcca 49039
ccacgtctgg ctaattttgtt atttttagta cagaaggggc ttctctgttg gtctggctgg 49099
tcgtgaactc tcaaccctcag gtgagccacc ecgcctgagcc teccaaagtgt ctgggattac 49159
agggtgtgagc eaccaegectt ggcctttttt tttagagacaga gtctcgctct cgccccatgtct 49219
gtactgcagt gacgcagctt gggcicacitg taacctccgc ttcccttgcggtt caagtgttac 49279
ttctggccca gecctccatg tagagtagctt gggattacag gecacccgcca ccaigctgg 49339
ctaaatcttgc catitttagi agagatgggg tticacagig ttggccaggc 1gg1ctcaaa 49399
cttctgaccc caagtcatctt gcttgccttgc gcccctgcca agtgtggta ttatagatgt 49459
gagccacccgc gcctggccata cagtttattt ttgggtggctt cacacctgtta atctcagcac 49519
tttgggaggc caaggtggga gaatggcttg agccctaggat ttcaagtcctt gcttggccaa 49579
catagcaaga ccctatcttctt aciacaaaat aaataataaa taaaacttaat ttttcttctt 49639
taaaaacccaa ctattcaaca tggcaatgca atatattaaa aaaattttt ttttcttctt 49699
aacggagctt ctcaetgtca cccgggctgg agtgcagtttgc gcccatttttgc tctcaactgca 49759
acctccgcctt cccagggtcca agtgattctc ctgttttcagc ctccctggat gctgggatttt 49819
caggeaccca ccaccatacc cagctaataat ttttgcattttt ttagtagaga tggggtttca 49879
ctatgttggg caggctggc tggaaactctt gacccctgttttgc tctggccggat gatggcgcc 49939
ctcccaaaatgtt gctggggattt gcaaggcatgtt gcccctgttttgc ecagccaaaaat tttttttttt 49999
ttttttttt tgggacacggg ttcacatgtt tttttttttt tttttttttt 50059
atggctcaact gcaagcccttcaaa cctccctggg ctcaggtgttgc tttttttttt 50119
ggtagctggg actacaggca tgagccacca cacccageta attttttttt 50179
agacagggtt tcaacttgc gcccagactt gtccttaactt ccagggttca aagcgtatgtc 50239
ccaccttgc tttttttttt tttttttttt tttttttttt 50299
ttgtggctca tttttttttt tttttttttt 50359
gtcaggagttt cttttttttt tttttttttt 50419
caaaaattttt tttttttttt 50479
ttttttttt 50539
actccagctt cttttttttt 50599
ttttttttt 50659
ttttttttt 50719
aaaattttt 50779
atattaaagg tttttttttt 50839
cgggagactt tttttttttt 50899
atctctttttt 50959
gtttttttt 51019

015859-4.ST25.2011-03-31.SEQ LIST

gagtttggaga ccagccctggc caacatgggt aaaccccgctc tctactaaaaa atacaaaaat 51079
 tagccaggcg tggtggcagg tgccctgtaat cccagctaci cgggaggctg aagcacgaga 51139
 atcgcgttgaat tccaggaggc ggaggttgca gtgagctgag attgcctat tgcactccag 51199
 cctggaggac aagagtgaaa ctccattccc ctctgcaaag aaaaggaaata ttatcagatt 51259
 cctaagctt ttggctcccc ctttagttt ggggctgggg tggtgagttt ctgacctggc 51319
 ctcactgtcc tccctggatg tgatgagacc caggtgtggg tcaggatgtc attcgttgt 51379
 ccaccagagg gcgc(ccaaac tgcttttgagc tgctgggaaa tggtgctct agacttttag 51439
 caaacaaaca aaaaaaaaaatg gcacatcgcc aaatttccaga ccattttttt tttttttt 51499
 ttgggttcca gagtagctga aatcttttgtt cagttacaag caggataaaa tggaaactgc 51559
 ctgggagagg ctgagaaacc ttttttgtt ggggaggtgg ggcactgtca gaattaaatcg 51619
 ctteacagac cagcccatcc aggactccctc aaatttggca aaaaagccat tcattttttt 51579
 attcattttt gtagagacga gggggatctg gcttatattgc ctatattttt ctcaattcc 51739
 tggccctcaag tgatcccttgc ctatattttt actaatgtgc tgctttttt ggcattttttt 51799
 accgtgeeta gctctatgtgg acttggaaatg ttgcctttttt cagggtttttt atgtttttt 51859
 gcccagggtcc acttggatgg ttcctttttt cttttttttt cttttttttt tttttttttt 51919
 agttttttttt gtagatgtca ggacaaatcg ctctttttttt attcaaccccttcc accctttttt 51979
 ttgtttttttt cttttttttt tttttttttt tttttttttt 52039
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 52099
 gtggtgcgtt ctccatccc cgcaaccccttgc tttttttttt tttttttttt tttttttttt 52159
 cagcccttcttgc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 52219
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 52279
 gcaaccccttgc cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 52339
 ggcctttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 52399
 ggcgcgttcttgc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 52459
 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 52519
 agttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 52579
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 52639
 caaaatatgc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 52699
 ttgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 52759
 gttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 52819
 aggcttgcgttcttgc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 52879
 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 52939
 accttgcataaaatgc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 52999
 ttgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 53059
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 53117

Ala Leu

750

ggc gac gtt gct ggc aga gga aat gag aag aag ccc agt agc gtg agg 53165
 Gly Asp Val Ala Gly Arg Gly Asn Glu Lys Lys Pro Ser Ser Val Arg

755 760 765

gct ctg tcc att gtc etc ccc atc g tttttttttt tttttttttt tttttttttt 53210

Ala Leu Ser Ile Val Leu Pro Ile

770 775

cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 53270
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 53330

015859-4.ST25.2011-03-31.SEQ LIST

Val Leu Leu Val Phe Leu Cys Leu Gly

380

gtc ttc ctt cta tgg aag aac tgg cgg ctt aag aac atc aac agc atc 54690
Val Phe Leu Leu Trp Lys Asn Trp Arg Leu Lys Asn Ile Asp Ser Ile

Var. Five Leaf Lett. Tip Lett. Wys. Fish. Tip. Aug. Lett. Ely.
785 790 795 800

785 790 795 800
aac ttt ggc aac ccc atc tat cag aag aac aca gaa tat gag ctc ccc 54738

Aac Rho Acp Acp Pro Val Tyr Glu Lys Thr Thr

Asn Thr Asp Asn Pro Val Iyl Gln Lys Thr Thr Gln Asp Gln Val Iys
805 810 815

att.tac.oce.spa.sag.oce.oce.tac.sag.tac.sag.tac

all tgc cat aac tag gac ggc lac age lac ccc tgg gigagglgacc 34/84
Ile Cys His Asn Gln Asn Gly Tyr Ser Tyr Pro Ser

Leu Cys His Asn Gln Asp Gly Tyr Ser Tyr Pro Ser
820 825

at least one gene

ccccccggaa agccaggagcc cttggcggtt cccctccgcgt tggaggcata tgatcccaaa 54844

aagcaaaatag agagtcccaat cagaatgggtt caggggcaaag aaagtcuaaaa ggatgtcaga 550
660

aaaaatccaa aaaatttagcc aggccgtggga tttggcgcctt gtaatccccag ttcacgggg 552

ggcaggagaa tcaccgtggc tcaggatgtca agaccaggctt gggcaggcaca gcaagacccc 354
.....
.....

atcgtcgcaa aaaataaaaaa ttggcccgag tggttttttg agcgcccttgtt tccaggtaat 55504

Page 35

Page 25

015859-4.ST25.2011-03-31.SEQ LIST

agggagggta aggccaggagg attgttttgc gctaaaggtag gagaatggaa ctgcagtgc 55564
ttgtgtatgc gicactgegc tecagccigg gtgacagagc aagcccttgt ctcctaaaaa 55624
aaaaaaaaaaa ttcaagaag ggtttccaga gggccaggag ggaggaaaggg agaggaggtg 55684
ttttttttt ttgtttttt gagacagagt ctctctctgt cacccagggt 55744
ggagtgcagt gctgtatct tggctactg caactctgc ctccctgggt caagcaattc 55804
ttatgcctca gccicagcc cctgagttgc tgggattaca acactatgcc cgggtatatt 55864
ttgtttttt agtagagacg aggtttgcgc atgttgcaca gactggctc gaactctga 55924
cctcaagtga tccacccgccc ttggcttccc cacgtgttgc gattgcaggc gtgagccact 55984
gccccccct tgatctttac acaaggggtt tagggtaggtt agccttcctt gaaccaggag 56044
aacagccctgt gcgaaggccc tgaggcttgc ccgttgcctgt tgggttttagt gcccttttagt 56104
ctggagcaaa cagagagagg gttaaaaagg caggaggctt ccaggcagggt ttgtcagagc 56164
tttgtggcc actggggagg acitggctt ttgccttgcag agcgggtggga agtgaactgaa 56224
tccggacttc accgttccctt tctggcggtt ctgtggggaa catgtttttt gatcaggctg 56284
ggggaggctg ccaggccccag gaggtgagaa gttagttggcc tecagccctgt ttccctgaat 56344
gtctggactga tagttttccgc ttgtttaccat ttgttgcag aag cag atg gtc agt 56399

Arg Gln Met Val Ser

830

ctg gag gat gac gtg geg tgaacatcg ccggaggcc cgcccgcc 56447
Leu Glu Asp Asp Val Ala

835

839

cagaaccctt cctgagacct cgccggccit gtttaitca aagacagaga agaccaaaggc 56507
attgcctgcc agagcttgtt tttatataatt tattcatctg ggaggecagaa caggcttcgg 56567
acagtgccta tgcaatggct tgggttggga ttttggtttc ttcttctct cgtgaaggat 56627
aagagaaaaca ggcccgaaaa gaccaggatg acacccat ttcttcaggc gaagtttga 56687
gttctctcc accgtgacac aatctcaaa catggaagat gaaaggggag gggatgtcag 56747
gcccagagaa gcaagtggct ttcaacacac aacagcagat ggcaccaacg ggacccctg 56807
gcctgcctc atccaccaat ctctaaagcca aacccctaaa ctctaggatc aacgtttta 56867
ctcttctat gcaagccctg cttagacagcc aggttagect ttgcctgtc accccogaat 56927
catgacccac ccagtgctt tcgaggtggg ttgttacctt ctttaagcca ggaaaggat 56987
tcatggcgtc ggaaatgtat tggttgaatc cgtgggtggca ccgagaccaa actcattcac 57047
caaattatgc cacttccag aggeagagcc tgagtcaatc gtacccctta atatttatata 57107
agtgcctigag acacceggat accttggccg tgaggacacg ttgcctgtcac ccaggtgtgg 57167
ctgtcaggac accagccctgg tgccttccatc cccgacccctt acccacttcc atccctgtgg 57227
tctcttgcat ctttcactg tcaagatgtt acacgtgtt catttggcat ttgtgttatt 57287
attttgcact gtgttgttgc ggttggatc ccaggccagg gaaagccctg 57347
gtcaatgtat gcccggacaa gagaggggca ggttgcacccg gacttcaaaag ccgtgategt 57404
gaatatacgat aacttgcattt gtcgttta tgcctccca ctatgtcctt ccacttctat 57467
gcaaatgcctt ccaagccattt cacttccccca atcttgttgtt tgatgggtat gtgtttaaaa 57527
catgcacggt gaggccgggc gcagtggctc acgcctgtaa tcccaactt tggggaggcc 57587
gaggccgggtt gatcatgagg tcagggatc gagaccatcc tggcttaacac gtgaaacccc 57647
gtctctacta aaaatataaaa aaattagccg ggcgtgttgg cgggcacccgt tagtccctt 57707
tactcgggag gctgaggcag gagaatgtt tgaacccggg aagcggagat tgcagtgtgagc 57767
cgagatgtcg ccactgcagt ccgcgttgtt gcctggccga cagagcggaga ctcgtctca 57827
aaaaaaaaaaa aaaaaaaaaaa accatgcatg gtgcattcgc agcccatgge ctctggccag 57887
gcattggcag gctgagggtt gaggatgtt tgagctcagg catttggagc tgcgtgtgagc 57947

015859-4.ST25.2011-03-31.SEQ LIST

tatgattatgcactgttttccagcggggcaacatagtaagaccccaictcctaaaaaa 58007
tgaatitggc cagacacagg tgcctcaegc ctgtaatccc agcacttgg gaggttgagc 58067
tggatcactt gagtccagga gtgtggagacc aggccctgagc aacaaagegca gatccccatc 58127
ctacaaaaac caaaaagtta aaaatcgct gggtacgggt gcacgtgcct gtgtatcccg 58187
ctacttggga ggctgaggca ggaggatcgc ctgagcccag gaggtggagg ttgcagttag 58247
ccatgtcga gccacatgcac tccagcctgg gcaacagatg aagaccctat ttcagaaata 58307
caactataaa aaaataaaata aatccctcag tctggatcgt ttgcgggac ttccaggatc 58367
ttctgaaatc gcccgtttac tggtgcactg atgtccggag agacatgtac agcccccgtc 58427
agactccgc gtgaagatgt cacaagggat tggcaatgt ccccaaggac aaaacactgt 58487
gtcccccca gtgcaggaa ccgtgataag ccttctgtt ttcggagcac gtaaatgegt 58547
ccctgtacag atagtgggaa ttttttgta tggtgcact ttgtatattt gtgtaaactg 58607
ttatcactta tatatatata tatacacaca tatataaaa atctatattt ttttgcacaa 58667
cctggatgtt gtatttgtt actgtactt ctccggggccc tttttttttt gttttttttt 58727
ctgaaatgcc ttttttttat gtacaaagat tttttgcacg aactggactg tgtgcaaege 58787
tttttggag aatgtatgttcccggttgcactg tttttttttt tttttttttt 58847
tttttaaaccc actgtataga aggttttttgcactgatgt tttttttttt tttttttttt 58907
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 58967
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 59027
tggcatgate tcggcatact gcaagctccg cttcccaagg tcaagcaattt ctccgttcc 59087
agectcccta gtatgttgcactt tttttttttt tttttttttt 59147
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 59207
cicggcgtcac tgcaagctctt gttttttttt tttttttttt tttttttttt tttttttttt 59267
agtagctggg gccacaggcg cttccgttcc 59327
tagtacagac ggggtttcac catgttgcactt tttttttttt tttttttttt 59387
ccacccgtt ccgttccca aagtgttgcactt tttttttttt tttttttttt 59447
acgcttaattt tttttttttt tttttttttt tttttttttt tttttttttt 59507
tggcgttgcactt tttttttttt tttttttttt tttttttttt 59567
agccctccgtca gtaacgtggca ctacaggcactt tttttttttt tttttttttt 59627
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 59687
gatccaccccg tttttttttt tttttttttt tttttttttt tttttttttt 59747
ccttagcctgg cttttttttt tttttttttt tttttttttt tttttttttt 59807
tggttttttt tttttttttt tttttttttt tttttttttt tttttttttt 59867
tacagggtttt tttttttttt tttttttttt tttttttttt tttttttttt 59927
ctcccccaggaa gaaggaccca gaaggggaaag acicccagaa tttttttttt tttttttttt 59987
ccgtggcgtt cca 60000

<210> 2

<211> 24

<212> DNA

<213> artificial sequence

<220>

<223> Ex1F

<400> 2

015859-4.ST25.2011-03-31.SEQ LIST

cacattgaaa tgcgttaat gacg	24
<210> 3	
<211> 24	
<212> DNA	
<213> artificial sequence	
<220>	
<223> Ex1R	
<400> 3	
ctattctggc gcctggagca agcc	24
<210> 4	
<211> 24	
<212> DNA	
<213> artificial sequence	
<220>	
<223> Ex2F	
<400> 4	
tttagagagacc ctttcttcctt ttcc	24
<210> 5	
<211> 20	
<212> DNA	
<213> artificial sequence	
<220>	
<223> Ex2R	
<400> 5	
gcataatcatg cccaaagggg	20
<210> 6	
<211> 24	
<212> DNA	
<213> artificial sequence	
<220>	

015859-4.ST25.2011-03-31.SEQ LIST

<223> Ex3F

<400> 6

ttectttgag tgacagttca atcc

24

<210> 7

<211> 24

<212> DNA

<213> artificial sequence

<220>

<223> Ex3R

<400> 7

gataggctca atagcaaagg cagg

24

<210> 8

<211> 24

<212> DNA

<213> artificial sequence

<220>

<223> Mut191-2F

<400> 8

acagttcaat ccgttctttt ctct

24

<210> 9

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> Ex4AF

<400> 9

gtggtctcggtt ccatccatcc

20

<210> 10

<211> 20

<212> DNA

015859-4.ST25.2011-03-31.SEQ LIST

<213> artificial sequence

<220>

<223> Ex4ARF

<400> 10

agccatcttc gcagtgggg

20

<210> 11

<211> 22

<212> DNA

<213> artificial sequence

<220>

<223> Mut 509insCR

<400> 11

cgagccatct tcgcgtcg ag

22

<210> 12

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> Ex4BF

<400> 12

cccccaagctg tggcctgcg

20

<210> 13

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> Ex4BR

<400> 13

cgcggccacc ctggccggcc

20

015859-4.ST25.2011-03-31.SEQ LIST

<210> 14
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> Ex6F

<400> 14

tcttccttcc tctctctggc 20

<210> 15
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> Ex6R

<400> 15

tctgcaagcc gcctgcaccc 20

<210> 16
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> MutC255GF

<400> 16

ctctggcttc acagtgacac gc 23

<210> 17
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> Mut E291XR

015859-4.ST25.2011-03-31.SEQ LIST

<400> 17

gcacccgagac tcaccgcaat

20

<210> 18

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> Ex7F

<400> 18

ggcgaaggga tgggtagggg

20

<210> 19

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> Ex7R

<400> 19

gttgcctatgt caggaagcg

20

<210> 20

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> Ex9F

<400> 20

ccccctgacct cgctcccccgg

20

<210> 21

<211> 20

<212> DNA

<213> artificial sequence

015859-4.ST25.2011-03-31.SEQ LIST

<220>

<223> Ex9R

<400> 21

gctgcaggca gggcgacgc

20

<210> 22

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> Ex10F

<400> 22

atgccctctt ctcctccgtc

20

<210> 23

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> Ex10R

<400> 23

agccccicagc gtcgtggata

20

<210> 24

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> Mut1432delGF

<400> 24

gggacatcca ggcccccgcc

20

<210> 25

015859-4.ST25.2011-03-31.SEQ LIST

<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> Ex11F

<400> 25

tctccccccg ccctccagcc 20

<210> 26
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> Ex11R

<400> 26

gctgggacgg ctgtccctgcg 20

<210> 27
<211> 20
<212> DNA
<213> artificial sequence

<220>
<223> Ex13F

<400> 27

gtcatcttcc ttttgtcccg 20

<210> 28
<211> 30
<212> DNA
<213> artificial sequence

<220>
<223> Ex13R

<400> 28

015859-4.ST25.2011-03-31.SEQ LIST

ttccacaagg aggttcaag gttggggggg

30

<210> 29

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> MutH635NR

<400> 29

acctttggc tgggtcaggt tct

23

<210> 30

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> Ex14F

<400> 30

aaatttctgg aatcttcgg

20

<210> 31

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> Ex14R

<400> 31

gcagagagag gtcaggagg

20

<210> 32

<211> 22

<212> DNA

<213> artificial sequence

<220>

<223> Ex15F

015859-4.ST25.2011-03-31.SEQ LIST

<400> 32

gaagggcctg cagcacgtgg ca

22

<210> 33

<211> 19

<212> DNA

<213> artificial sequence

<220>

<223> Ex15R

<400> 33

tagggagggc ccagtcattt

19

<210> 34

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> Ex17F

<400> 34

gggtctctgg tctcgaaaaac

20

<210> 35

<211> 22

<212> DNA

<213> artificial sequence

<220>

<223> Ex17R

<400> 35

ggctctggct ttcttagagag gg

22

<210> 36

<211> 23

<212> DNA

<213> artificial sequence

015859-4.ST25.2011-03-31.SEQ LIST

<220>

<223> probe

<400> 36

cgggtcggga cactgcctgg cag

23

<210> 37

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 37

cgggtcggga ccctgtcctgg cag

23

<210> 38

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 38

ctgccaggca gtgtccccgac ccg

23

<210> 39

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 39

ctgccaggca gggtccccgac ccg

23

015859-4.ST25.2011-03-31.SEQ LIST

<210> 40
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 40

atgcatttcc cgtcttggca ctg 23

<210> 41
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 41

gatgcatttc cctcttggca ctg 23

<210> 42
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 42

gatgcatttc ccgtcttggc actgg 25

<210> 43
<211> 25
<212> DNA
<213> artificial sequence

015859-4.ST25.2011-03-31.SEQ LIST

<220>

<223> probe

<400> 43

agatgcattt ccccttggc actgg

25

<210> 44

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 44

tgtctttct gttagtgtcg tcacc

25

<210> 45

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 45

gtcttttcgt tctggtgtcg tcacc

25

<210> 46

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 46

cgtcttcgtc tgttagtgtct gtcacct

27

015859-4.ST25.2011-03-31.SEQ LIST

<210> 47
<211> 27
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 47

tgtctttctt gtcgtgtctt gtcaccc 27

<210> 48
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 48

ggccgtgtca accgctgcatt tcc 23

<210> 49
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 49

gccgtgtcaa cccgtgcatt c 21

<210> 50
<211> 25
<212> DNA
<213> artificial sequence

<220>

015859-4.ST25.2011-03-31.SEQ LIST

<223> probe

<400> 50

aggaatgcag cgtttgacac ggccc

25

<210> 51

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 51

gaggaatgca gcgtttgaca cggcccc

27

<210> 52

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 52

agctgtgggg gccgtgtcaa ccg

23

<210> 53

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 53

agctgtgggg gcgtgtcaac cgc

23

015859-4.ST25.2011-03-31.SEQ LIST

<210> 54
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 54

cggttgacac ggcccccaca gct

23

<210> 55
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 55

gcgggtgaca cgcccccaca gct

23

<210> 56
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 56

caaggctgtc gtaagtgtgg c

21

<210> 57
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

015859-4.ST25.2011-03-31.SEQ LIST

<400> 57

gcaaggctgt cgtaagtgtg gcc

23

<210> 58

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 58

caaggctgtc gttaagtgtg gcc

23

<210> 59

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 59

aaggctgtcg ttaagtgtgg c

21

<210> 60

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 60

gacaacgacc ccgactgcga agatg

25

<210> 61

015859-4.ST25.2011-03-31.SEQ LIST

<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 61

gacaacgacc cccgactgcg aagat 25

<210> 62
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 62

acaacgaccc cgactgcgaa gat 23

<210> 63
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 63

acaacgaccc cgactgcga aga 23

<210> 64
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

015859-4.ST25.2011-03-31.SEQ LIST

<400> 64

gcccccaactc atccgagcca tct

23

<210> 65

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 65

gcccccaactc acccgagcca tct

23

<210> 66

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 66

tgcggccact catccgagcc atctt

25

<210> 67

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 67

tgcggccact cacccgagcc atctt

25

<210> 68

<211> 23

015859-4.ST25.2011-03-31.SEQ LIST

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 68

ccagctggcg ctgtgatggt ggc

23

<210> 69

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 69

ccagctggcg ccgtgatggt ggc

23

<210> 70

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 70

tccagctggc gcgtgatgg tggcc

25

<210> 71

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

015859-4.ST25.2011-03-31.SEQ LIST

<400> 71

tccagctggc gccgtgatgg tggcc

25

<210> 72

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 72

ctgcaaggac aaatctgacg aggaa

25

<210> 73

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 73

ctgcaaggac aactgcggta tggc

25

<210> 74

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 74

actgcaagga caaatctgac gagggaaa

27

<210> 75

<211> 27

015859-4.ST25.2011-03-31.SEQ LIST

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 75

actgcaagga caactgcggc atggcg

27

<210> 76

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 76

caaatctgac gaggaaaact gcggc

25

<210> 77

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 77

caaatctgac gacaaatctg acgag

25

<210> 78

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 78

015859-4.ST25.2011-03-31.SEQ LIST

acaaaatctga cgaggaaaaac tgccgtta 27

<210> 79
<211> 27
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 79

acaaaatctga cgacaaaatct gacgagg 27

<210> 80
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 80

gggtccctcg cagagtgtca ctg 23

<210> 81
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 81

gggtccctcg ccgagtgtca ctg 23

<210> 82
<211> 25
<212> DNA

015859-4.ST25.2011-03-31.SEQ LIST

<213> artificial sequence

<220>

<223> probe

<400> 82

tgggtccctc gcagagtgtc actgt

25

<210> 83

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 83

tgggtccctc gccgagtgtc actgt

25

<210> 84

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 84

aacccatcaa agagtgcggt gag

23

<210> 85

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 85

015859-4.ST25.2011-03-31.SEQ LIST

aacccatcaa atagtgcgg gag

23

<210> 86

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 86

gaacccatca aagagtgcgg tgagt

25

<210> 87

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 87

gaacccatca aatagtgcgg tgagt

25

<210> 88

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 88

tcactctcggt gccccttacca

20

<210> 89

<211> 21

<212> DNA

<213> artificial sequence

015859-4.ST25.2011-03-31.SEQ LIST

<220>

<223> probe

<400> 89

tcactctcggtt accccatacc a

21

<210> 90

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 90

cactctcggtt accccatacc c

20

<210> 91

<211> 19

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 91

cactctcggtt accccatacc c

19

<210> 92

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 92

acgagttgcgtt gtgcgcggac ggctt

25

015859-4.ST25.2011-03-31.SEQ LIST

<210> 93
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 93

acgaggccct gtacgccccac ggctt 25

<210> 94
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 94

cgagtgcccg tgccggacg gct 23

<210> 95
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 95

cgagtgccctg tacgccccacg gct 23

<210> 96
<211> 24
<212> DNA
<213> artificial sequence

015859-4.ST25.2011-03-31.SEQ LIST

<220>

<223> probe

<400> 96

gcgaagatgc gaaggtgait ccgg

24

<210> 97

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 97

ggccccagcga agatttccgg gtggg

25

<210> 98

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 98

agcgaagaatcg cgaagggtgat ttccggg

27

<210> 99

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 99

tggcccagcg aagatttccg ggtggga

27

015859-4.ST25.2011-03-31.SEQ LIST

<210> 100
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 100

tgaagaagag gtaggcgatg g

21

<210> 101
<211> 21
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 101

cggtttgtga agacgatgga g

21

<210> 102
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 102

gtgaagaaga ggtaggcgat gga

23

<210> 103
<211> 23
<212> DNA
<213> artificial sequence

015859-4.ST25.2011-03-31.SEQ LIST

<220>

<223> probe

<400> 103

ccggtttgt aagacgttgg agc

23

<210> 104

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 104

cicccatcgcc tacctcttc tcacc

25

<210> 105

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 105

ctcccatcgcc taactcttc tcacc

25

<210> 106

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 106

gctccatcgcc ctacccttc ttccatca

27

015859-4.ST25.2011-03-31.SEQ LIST

<210> 107

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 107

gctccatcgc ctaactcttc ttaccca

27

<210> 108

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 108

tgcgggttgg tgaagaagag gtagg

25

<210> 109

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 109

gtgccgggttg gtgagaagag gtagg

25

<210> 110

<211> 27

<212> DNA

<213> artificial sequence

<220>

015859-4.ST25.2011-03-31.SEQ LIST

<223> probe

<400> 110

gtgccggttg gtgaagaaga ggttagc

27

<210> 111

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 111

cgtgccggtt ggtgagaaga ggttagc

27

<210> 112

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 112

caatagaatc tactggtctg acctg

25

<210> 113

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 113

caatagaatc tagtggtctg acctg

25

015859-4.ST25.2011-03-31.SEQ LIST

<210> 114

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 114

gcaatagaat ctactggtct gaccctgt

27

<210> 115

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 115

gcaatagaat ctatgggtct gaccctgt

27

<210> 116

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 116

ggccccccgac gggctggctg tggac

25

<210> 117

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

015859-4.ST25.2011-03-31.SEQ LIST

<400> 117

ggecccegac ggctggctgt ggact

25

<210> 118

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 118

gtccacagcc agcccgtcgg gggcc

25

<210> 119

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 119

agtccacagc cagccgtcgg gggcc

25

<210> 120

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 120

gcgggagttc cccagtcagt ccagt

25

<210> 121

015859-4.ST25.2011-03-31.SEQ LIST

<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 121

gcgggagttc cctatcgagt ccagt 25

<210> 122
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 122

cgggagttcc ccagtcagtc cag 23

<210> 123
<211> 23
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 123

cgggagttcc ctatcgatgc cag 23

<210> 124
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

015859-4.ST25.2011-03-31.SEQ LIST

<400> 124

ctgtccccag aggatatggt tcctc

25

<210> 125

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 125

cgtccccag agaatatggt tcctc

25

<210> 126

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 126

tgtccccaga ggatatggtt ctc

23

<210> 127

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 127

tgtccccaga gaatatggtt ctc

23

<210> 128

<211> 23

015859-4.ST25.2011-03-31.SEQ LIST

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 128

tggttcttccacaaccc acc

23

<210> 129

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 129

tggttcttccacaaccc acc

23

<210> 130

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 130

atggttcttccacaacct caccc

25

<210> 131

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

015859-4.ST25.2011-03-31.SEQ LIST

<400> 131

atggttctct tcaacaacct caccc

25

<210> 132

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 132

gctgacccttt agecctgacgg tggat

25

<210> 133

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 133

agctgaccctt tagctgacgg tggat

25

<210> 134

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 134

agctgaccctt tagctgacgg gtggatg

27

<210> 135

<211> 27

015859-4.ST25.2011-03-31.SEQ LIST

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 135

gagctgacct ttagctgacg gtggatg

27

<210> 136

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 136

tgcctcctgt ctccctttgc ctg

23

<210> 137

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 137

tgcctcctgg ggctttgcc tgg

23

<210> 138

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 138

015859-4.ST25.2011-03-31.SEQ LIST

gtgctcctcg tcctcccttg ccgg	25
<210> 139	
<211> 25	
<212> DNA	
<213> artificial sequence	
<220>	
<223> probe	
<400> 139	
gtgcicctcg gggcttttgc ctggg	25
<210> 140	
<211> 25	
<212> DNA	
<213> artificial sequence	
<220>	
<223> probe	
<400> 140	
gactcacagc acgttcctg ggact	25
<210> 141	
<211> 25	
<212> DNA	
<213> artificial sequence	
<220>	
<223> probe	
<400> 141	
gactcacagc acatctccctg ggact	25
<210> 142	
<211> 23	
<212> DNA	
<213> artificial sequence	

015859-4.ST25.2011-03-31.SEQ LIST

<220>

<223> probe

<400> 142

actcacagca cgtctccctgg gac

23

<210> 143

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 143

actcacagca catcicctgg gac

23

<210> 144

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 144

ccatcggtggc agcgaaactc gtc

23

<210> 145

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 145

atgcacttcc cacgtccctgg gag

23

<210> 146

<211> 21

015859-4.ST25.2011-03-31.SEQ LIST

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 146

catcggtggca gcgaaaactcg t

21

<210> 147

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 147

tgcacttccc acgtcttggg a

21

<210> 148

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 148

cattggggaa gagcctcccc

20

<210> 149

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 149

015859-4.ST25.2011-03-31.SEQ LIST

20

gcctgcaagg ggtgaggccg

<210> 150

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 150

actggcatca gcacgtgacc

20

<210> 151

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 151

cgtgtgtcta tccggccacc

20

<210> 152

<211> 20

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 152

gegcttctt gccgtgacca

20

<210> 153

<211> 23

<212> DNA

<213> artificial sequence

<220>

015859-4.ST25.2011-03-31.SEQ LIST

<223> primer

<400> 153

cctgtccagg agaaaaagtg aac

23

<210> 154

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 154

cagtagcgtg agggctctgt caa

23

<210> 155

<211> 19

<212> DNA

<213> artificial sequence

<220>

<223> primer

<400> 155

ctgggggacc ggccggcg

19

<210> 156

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 156

tgtcaagctg ggtgctgagg cag

23

<210> 157

<211> 23

<212> DNA

015859-4.ST25.2011-03-31.SEQ LIST

<213> artificial sequence

<220>

<223> probe

<400> 157

tgtcaagctg gttgctgagg cag

23

<210> 158

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 158

gtcaagctgg gtgttgaggc a

21

<210> 159

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 159

gtcaagctgg ttgttgaggc a

21

<210> 160

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 160

ggccctcgca agagtgtcac tgt

23

015859-4.ST25.2011-03-31.SEQ LIST

<210> 161

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 161

ggteccctegec actgtgagag cca

23

<210> 162

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 162

gtccctcgca gagtgtaact g

21

<210> 163

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 163

gtccctcgca ctgtgagagc c

21

<210> 164

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> probe

015859-4.ST25.2011-03-31.SEQ LIST

<400> 164

ccgtcgaaaa cctggatgtc t 21

<210> 165

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 165

cccgtcgggg tcgtggatgtc t 21

<210> 166

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 166

cccgtcgggg gcctggatgt ctc 23

<210> 167

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 167

ccccgtcgaaa gtcgtggatgt ctc 23

<210> 168

<211> 25

<212> DNA

<213> artificial sequence

015859-4.ST25.2011-03-31.SEQ LIST

<220>

<223> probe

<400> 168

ccggtttgt aagaagaggt aggcg

25

<210> 169

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 169

cgttggatga agaaagaggt aggcg

25

<210> 170

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 170

gcgggttgtt gaagaagagg taggcga

27

<210> 171

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 171

ccggtttgt aagaaagagg taggcga

27

<210> 172

<211> 23

015859-4.ST25.2011-03-31.SEQ LIST

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 172

actggaagct ggccggacca cag

23

<210> 173

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 173

gcactggaag ctgggaccac agg

23

<210> 174

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 174

ctgtggtecc gccagttcc agt

23

<210> 175

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 175

cctgtggtcc cagttccag tgc

23

015859-4.ST25.2011-03-31.SEQ LIST

<210> 176

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 176

gcgggagttc cccagtcgt c

21

<210> 177

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 177

gcgggagttc accagtcagt c

21

<210> 178

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 178

ggcgaggatc cccagtcag tcc

23

<210> 179

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

015859-4.ST25.2011-03-31.SEQ LIST

<400> 179

ggcgggagtt caccagttag tcc

23

<210> 180

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 180

ccccatcggt aaggcgccgc cgg

23

<210> 181

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 181

ccccatcggt aggcgccgc cgg

23

<210> 182

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 182

ccggcccgcg cttaaccgtat ggg

23

<210> 183

<211> 23

<212> DNA

<213> artificial sequence

015859-4.ST25.2011-03-31.SEQ LIST

<220>

<223> probe

<400> 183

ccggccccgcttaccgtatgg

23

<210> 184

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 184

gaaaagaggc tggcccaccc tt

23

<210> 185

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 185

gaaaagaggc ttctccatgg ccg

23

<210> 186

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 186

aaaagaggct ggcccaaccc t

21

<210> 187

<211> 21

015859-4.ST25.2011-03-31.SEQ LIST

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 187

aaaagaggct ttccttgcc c

21

<210> 188

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 188

cgccttcccg tgcacaccca cagcc

25

<210> 189

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 189

cgccttcccg tgcacaccca cagcc

25

<210> 190

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 190

ggctgtgggt gaggcacggga aggcg

25

015859-4.ST25.2011-03-31.SEQ LIST

<210> 191
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 191

ggctgtgggt gaccacggga aggcg 25

<210> 192
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 192

actatctcca ccgtggtgag cccag 25

<210> 193
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 193

actatctcca ccatggtgag cccag 25

<210> 194
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

015859-4.ST25.2011-03-31.SEQ LIST

<400> 194

ctgggctcac cacgggtggag atagt

25

<210> 195

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 195

ctgggctcac catggtgaggatagt

25

<210> 196

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 196

gggctctgtc cattgtcctc cccat

25

<210> 197

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 197

gggctctgtc cactgtcctc cccat

25

<210> 198

<211> 25

<212> DNA

<213> artificial sequence

015859-4.ST25.2011-03-31.SEQ LIST

<220>

<223> probe

<400> 198

atggggagga caatggacag agccc

25

<210> 199

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 199

atggggagga cagtggacag agccc

25

<210> 200

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 200

tgcaacatgg cttagagactg ccggg

25

<210> 201

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 201

tgcaacatgg ctggagactg ccggg

25

<210> 202

<211> 23

015859-4.ST25.2011-03-31.SEQ LIST

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 202

gcaacatggc tagagactgc cgg

23

<210> 203

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 203

gcaacatggc tggagactgc cgg

23

<210> 204

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 204

tgctgaigac ggtgtcatag gaa

23

<210> 205

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 205

tgctgatgac gatgtcatag gaa

23

015859-4.ST25.2011-03-31.SEQ LIST

<210> 206

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 206

gctgatgacg gtgtcatagg a

21

<210> 207

<211> 21

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 207

gctgatgacg atgtcatagg a

21

<210> 208

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 208

tccaaacttc actccatctc aag

23

<210> 209

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

015859-4.ST25.2011-03-31.SEQ LIST

<400> 209

tccaaacctc agtccatctc aag

23

<210> 210

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 210

cgtgagatgg agtgaagttt gga

23

<210> 211

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 211

cttgagatgg actgaagttt gga

23

<210> 212

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 212

ggcaaggatgga ctgcgacaac ggctc

25

<210> 213

<211> 25

<212> DNA

<213> artificial sequence

015859-4.ST25.2011-03-31.SEQ LIST

<220>

<223> probe

<400> 213

gccaaggatggaa ctacgacaac ggctc

25

<210> 214

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 214

gagcccggtgtt cgcagtcac ttggc

25

<210> 215

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 215

gagcccggtgtt cgttagtcac ttggc

25

<210> 216

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 216

ctgctggcca gggacatgag gagct

25

<210> 217

<211> 25

015859-4.ST25.2011-03-31.SEQ LIST

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 217

ctgctggcca ggtacatgag gagct

25

<210> 218

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 218

agtcctcat gtccctggcc agcag

25

<210> 219

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 219

agtcctcat gtacctggcc agcag

25

<210> 220

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 220

ctgccgcgg cggggactgc aggtt

25

015859-4.ST25.2011-03-31.SEQ LIST

<210> 221
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 221

ctcgccgccc cgaggactgc aggta 25

<210> 222
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 222

tacctgcagt cccggccgcg gcgag 25

<210> 223
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 223

tacctgcagt ctcggccgcg gcgag 25

<210> 224
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

015859-4.ST25.2011-03-31.SEQ LIST

<400> 224

gaccatcttg gaggatgaaa agagg

25

<210> 225

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 225

gaccatcttg gacgatgaaa agagg

25

<210> 226

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 226

cctttttca tcctccaaga tggtc

25

<210> 227

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 227

cctttttca tcgtccaaga tggtc

25

<210> 228

<211> 27

<212> DNA

<213> artificial sequence

015859-4.ST25.2011-03-31.SEQ LIST

<220>

<223> probe

<400> 228

gttttcctcg tcagatttgt ccitgca

27

<210> 229

<211> 27

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 229

gttttcctcg tcacatttgt ccitgca

27

<210> 230

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 230

tttccctgt cagattgtc ctgc

25

<210> 231

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 231

tttccctgt cacattgtc ctgc

25

<210> 232

<211> 25

015859-4.ST25.2011-03-31.SEQ LIST

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 232

tgtccttgc agtcggggcc acta

25

<210> 233

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 233

tgtccttgc agacggggcc accat

25

<210> 234

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 234

tgtccttgca gtcggggcca cca

23

<210> 235

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 235

tgtccttgca gacggggcca cca

23

015859-4.ST25.2011-03-31.SEQ LIST

<210> 236

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 236

agccccatcg cgtgagggt ctgtc

25

<210> 237

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 237

agccccatcg cgagagggt ctgtc

25

<210> 238

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 238

gacagagccc tcacgctact gggct

25

<210> 239

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

015859-4.ST25.2011-03-31.SEQ LIST

<400> 239

gacagageccc ttcgtact gggct

25

<210> 240

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 240

tcgccttgc cctcgccgct gcggg

25

<210> 241

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 241

tcgccttgc ccccgccgct gcggg

25

<210> 242

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 242

cccgccgctt cgaggagcaa ggcga

25

<210> 243

<211> 25

<212> DNA

<213> artificial sequence

015859-4.ST25.2011-03-31.SEQ LIST

<220>

<223> probe

<400> 243

cccgccggcgg cggggagcaa ggcga

25

<210> 244

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 244

acggctacag ctacccctcg gtgag

25

<210> 245

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 245

cggctacagc tacccctcg gtgag

25

<210> 246

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 246

ctcaccgagg ggttagctgta gccgt

25

<210> 247

<211> 25

015859-4.ST25.2011-03-31.SEQ LIST

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 247

ctcacccgagg gggtagctgt agccg

25

<210> 248

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 248

cccaggagac gtgcgtgag tcccc

25

<210> 249

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 249

cccaggagac gtactgtgag tcccc

25

<210> 250

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 250

ggggactcac agcacgtc tcctgg

25

015859-4.ST25.2011-03-31.SEQ LIST

<210> 251
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 251

ggggactac agtaacgttc ctggg 25

<210> 252
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 252

cgtccccatcg gtaagcgcgg gccgg 25

<210> 253
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

<400> 253

cgtccccatcg gtcagcgcgg gccgg 25

<210> 254
<211> 25
<212> DNA
<213> artificial sequence

<220>
<223> probe

015859-4.ST25.2011-03-31.SEQ LIST

<400> 254

ccggccccgcg cttaccgatg gggag

25

<210> 255

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 255

ccggccccgcg ctgaccgatg gggag

25

<210> 256

<211> 24

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 256

ccagtacatg aagctggtgg gaga

24

<210> 257

<211> 25

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 257

tcgttatctt ggcctgggaa cagag

25

<210> 258

<211> 23

<212> DNA

<213> artificial sequence

015859-4.ST25.2011-03-31.SEQ LIST

<220>

<223> probe

<400> 258

cagtacatga agctgggtggg agg

23

<210> 259

<211> 23

<212> DNA

<213> artificial sequence

<220>

<223> probe

<400> 259

cttgcatttg gcctggggac aga

23

015859-4.ST25.2011-03-31.SEQ LIST