

CHALMERS UNIVERSITY OF THECHNOLOGY

Antenna toolbox

REFERENCE MANUAL

Author: Oleg Iupikov

 $\begin{array}{c} 26\text{-}06\text{-}2018 \\ \text{(first edit: } 21\text{-}08\text{-}2015) \end{array}$

Radiation field processing

1.1 Field structure

To store a radiation field from an antenna, we use a MATLAB structure with specially named fields. We will refer to such specially crafted structure as *Field structure*.

An example of a typical Field structure is shown below. The field is stored in the spherical grid (Field.GridType='spherical') with $181~\theta$ -points and $361~\phi$ -points. This is a far-field (Field.NearFar='far') of a Y-oriented linear-polarized source (Field.Ludwig3RefPhi=pi/2). The field vectors are decomposed into the Ludwig 3rd polarization components (Field.Polarization='ludwig3').

The detailed description of the structure fields is given in Table 1.1 below.

Table 1.1: Fields of the Field structure

GridType

Default:

'spherical'

Type of the coordinate system in which the field points are defined. It can be one of the following strings:

- 'spherical' spherical coordinate system (R, θ, ϕ) . Point coordinates are stored in the corresponding structure fields R (for near-field only), THETA and PHI
- 'rectangular' rectangular coordinate system (X, Y, Z). Point coordinates are stored in the corresponding structure fields x, y and z. Often field is defined in a plane, and in this case the coordinate z is absent.
- 'AZE1' azimuth-elevation coordinate system (Az, El, R). Point coordinates are stored in the corresponding structure fields, AZ, EL and R (for near-field only).

If field GridType is absent, the 'spherical' grid is considered.

GridSymmetry

Default:

'unsymmetrical'

Used only in conjunction with GridType = 'spherical'.

GridSymmetry shows how points are distributed in the polar θ -cuts (i.e. constant ϕ , varying θ).

Can take one of the following values:

- 'symmetrical' θ -cuts are symmetrical about the pole, i.e. $-\theta_{\text{max}} \leq \theta \leq +\theta_{\text{max}}$ for each $\phi = \phi_0$. To cover whole sphere θ and ϕ should span angles $-180^{\circ} \leq \theta \leq 180^{\circ}$ and $0^{\circ} \leq \phi < 180^{\circ}$.
- 'unsymmetrical' θ -cuts are asymmetrical about the pole, i.e. $0^{\circ} \leq \theta \leq +\theta_{\max}$ for each $\phi = \phi_0$. To cover whole sphere θ and ϕ should span angles $0^{\circ} \leq \theta \leq 180^{\circ}$ and $0^{\circ} \leq \phi < 360^{\circ}$.
- 'custom' all other cases.

If field GridSymmetry is absent, the 'unsymmetrical' grid is assumed by some functions. However, it is not recommended to omit this field.

R, [m] (optional)
THETA, [rad]
PHI, [rad]

OR

```
X , [m]
Y , [m]
z , [m] (optional)
```

OR

```
AZ , [rad]
EL , [rad]
R , [m] (optional)
```

Coordinates of the field points in the coordinate system specified in GridType.

Coordinates are defined as a grid

The coordinate grid can be regular or irregular (both are generated by MAT-LAB meshgrid function).

A regular grid (the most common case) should be generated as:

```
    for GridType = 'spherical':
        [PHI THETA R] = meshgrid(PhiFirst:PhiStep:PhiLast,
        ThetaFirst:ThetaStep:ThetaLast, RFirst:RStep:RLast);
        Note that R is absent for a far-field.
```

- for GridType = 'rectangular':

 [Y X Z] = meshgrid(YFirst:YStep:YLast, XFirst:XStep:XLast,

 ZFirst:ZStep:ZLast); Note that z is absent for a field in a plane
 grid.
- for GridType = 'AzEl':
 [EL AZ R] = meshgrid(ElFirst:ElStep:ElLast,
 AzFirst:AzStep:AzLast, RFirst:RStep:RLast);
 Note that R is absent for a far-field.

Coordinates are defined as arbitrary points

Alternatively, arbitrary points can be provided. In this case these structure fields contain just vectors, and <code>GridSymmetry</code> must be 'arbitrary'. Nevertheless this is a very general format, it is not supported by most of the toolbox functions (unless updated :)). Therefore it is strongly recommended to use grids as described above.

Ε

Values of the electric field components¹. The format of E depends on how the observation points/directions are defined. There are two formats:

1) When points are stored in a grid

In general E is 6-D array:

Field.E(iCoor1, iCoor2, iComp, iExcit, iFreq, iCoor3),

where

iCoor1 first coordinate of the grid (see <u>Remark 1</u>)

iCoor2 second coordinate of the grid (see <u>Remark 1</u>)

icoor3 third coordinate of the grid (see <u>Remark 1</u> and <u>Remark 2</u>)

iComp component of the field (see Polarization field of the struc-

ture)

iExcit index of the excitation. This allows to store several E-fields in

a single structure. For example, these fields can be radiation patterns of an antenna array for different excitation scenarios; or they can be embedded element patterns of an array or other

 ${\it multiport\ antenna,\ etc.}$

iFreq index of the frequency from Freq structure field.

Remark 1

Meaning of iCoor1, iCoor2 and iCoor3 depends on the GridType, i.e.

GridType	(iCoor1, iCoor2, iCoor3)
'spherical'	(iTheta, iPhi, iR)
'rectangular'	(iX, iY, iZ)
'AzEl'	(iAZ, iEL, iR)

Remark 2

Please note that index of the 3rd grid coordinate is in the last dimension of \mathbb{E} , since it is absent in most practical cases, such as far-fields or a field on a planar grid.

2) When points are stored as arbitrary points

In this case for any GridType the dimensions are:

Field.E(iPt, iComp, iExcit, iFreq),

where iPt is index of the observation point.

Polarization

Specifies what field components are stored in E. It can have one of the following values:

Polarization	iComp meaning
'rectangular'	iComp = 1 - x-component of the field;
	iComp = 2 - y-component of the field;
	iComp = 3 - z-component of the field.
'spherical'	iComp = 1 - r-component of the field;
	$iComp = 2 - \theta$ -component of the field;
	$iComp = 3 - \phi$ -component of the field.
	Note that for a far-field r -component of the field is
	zero, but these useless values are still stored in the
	structure (because the r -component corresponds to
	iComp = 1). I.e. size(Field.E, 3) = 3 always. This
	is done for compatibility reasons.
'ludwig3'	iComp = 1 - Co-component of the field;
	iComp = 2 - Xp-component of the field; iComp = 3 - r-component of the field.
	_
	Note that for a far-field r-component of the field is
	zero, and there is no sense to keep it in the structure. Therefore size(Field.E, 3) = 2 for a far-field.
	·
	Additionally, Polarization = 'ludwig3' requires to
	specify Ludwig3RefPhi field of the structure.
	The second definition from Appendix A is used to describe the Ludwig3 field components.
'circular'	iComp = 1 - RH-component of the field;
	iComp = 2 - LH-component of the field;
	iComp = 3 - r-component of the field.
	Note that for a far-field r -component of the field is
	zero, and there is no sense to keep it in the structure.
	Therefore size (Field.E, 3) = 2 for a far-field.

Ludwig3RefPhi [rad]

This angle describes polarization of the field source, and equal to ξ in Appendix A (see, in particular, Fig. A.2). It is used only in conjunction with Polarization = 'ludwig3'.

For example, if the far-field source is X-oriented dipole, the co-polar unit vector coincides with the X-axis of the field coordinate system CoorSys for the broadside direction ($\theta=0$), and it coincides with the x'-axis for all directions (see Fig. A.2). In this case $\xi=\text{Ludwig3RefPhi}=0$. Then, the co-polar component is stored in $\mathbf{E}(:,:,1,:,:)$ and the cross-polar component is in $\mathbf{E}(:,:,2,:,:)$. If we now change the $(\widehat{\mathbf{co}},\widehat{xp})$ -basis by executing Field = ConvertFieldPolarization(Field, 'ludwig3', 90), $\xi=\text{Ludwig3RefPhi}$ will become equal to $\pi/2$, which means that vectors $\widehat{\mathbf{co}}$ and \widehat{xp} are 90° rotated in the primed coordinate system. Since our real co-polarized vector (radiated by the X-oriented dipole) coincides with x'-axis, its complex magnitude will be stored in $-\mathbf{E}(:,:,2,:,:)$ (note the "-" sign), and the complex magnitude of the radiated cross-polarized vector – in $\mathbf{E}(:,:,1,:,:)$.

Freq , [Hz]	Freq contains the frequency corresponding to the field stored in this structure. It can be a vector if there are several fields stored in E. The condition length (Field.Freq) == size (Field.E, 5) must be always satisfied.		
NearFar	Shows if a near-field of far-field is stored in the structure. Can take one of the values:		
(optional)	NearFar	Description	
	'near'	A near-field stored in E	
Default: 'far'	'far'	A far-field stored in E.	
		In this case 3rd component (r -component) is absent in 'ludwig3' and 'circular' polarization notations. The 'spherical' notation always contains r -component (= 0), but it is ignored in functions.	
CoorSys			

It worth to note that nevertheless the structure format supports storage of both far- and near-fields, most of the functions in this toolbox are designed to work only with far-fields. Therefore, some fields of the structure are omitted in most cases.

Two definitions of Ludwig3 Field components

If we assume that the radiating antenna is X-polarized, then according to the Ludwig's 3rd definition the primed coordinate system can defined for every direction as

$$\hat{x}' = \hat{\theta}\cos\phi - \hat{\phi}\sin\phi$$

$$\hat{y}' = \hat{\theta}\sin\phi + \hat{\phi}\cos\phi$$

$$\hat{z}' = \hat{r}$$
(A.1)

This coordinate system is depicted in Fig. A.1.

Figure A.1: Co- and Xp- basis vectors definition 1 (as in Per-Simon's book)

If we consider an antenna pattern measurement setup, the axis \hat{z}' points to the probe, and axis \hat{x}' is parallel to the probe polarization axis. In such setup the co-polarization unit vector \widehat{co} will be aligned with the \hat{x}' axis (Fig. A.1a)

Now the cross-polarization unit vector \widehat{xp} should be defined. Since it must be orthogonal to both \widehat{co} and \widehat{r} , only two possible possibilities exist:

- 1. **Definition 1** (see Fig. A.1(a,b)): $\widehat{xp} \times \widehat{co} = \hat{r}$. This definition is used in the Kildal's book [1]. According to it, for x-polarized sources $\widehat{co} = \hat{x}'$ and $\widehat{xp} = -\hat{y}'$; for y-polarized sources $\widehat{co} = \hat{y}'$ and $\widehat{xp} = \hat{x}'$ (see also [1, p.24]).
- 2. **Definition 2** (see Fig. A.2(a,b)): $\widehat{co} \times \widehat{xp} = \hat{r}$. This definition is used in GRASP and in many other publications, e.g. [2], so it is more commonly used. According to it, for x-polarized sources $\widehat{co} = \hat{x}'$ and $\widehat{xp} = \hat{y}'$; for y-polarized sources $\widehat{co} = \hat{y}'$ and $\widehat{xp} = -\hat{x}'$.

In order to define the arbitrary linear polarization of the radiated field, it is convenient to introduce the double-prime coordinate system which is rotated at angle ξ about z-axis of the primed coordinate system, see Fig. A.1c and Fig. A.2c. In this case the angle ξ is chosen such that the field polarization

Figure A.2: Co- and Xp- basis vectors definition 2 (as in GRASP and many articles)

vector is parallel to the axis \hat{x}'' . I this case for the ideal linear polarization the cross-polar component is equal to zero.

In practice the angle ξ is determined only for the boreside direction to correct the probe polarization misalignment in a measurement setup, and then this angle is used for all other directions where the radiation pattern have been measured.

Below we show the co- and cross-polar components of the field are related to the spherical components for the arbitrary polarized source.

Definition 1

It can be seen from the Fig. A.1c that

$$\widehat{\boldsymbol{co}} = \widehat{\boldsymbol{x}}' \cos \xi + \widehat{\boldsymbol{y}}' \sin \xi$$

$$\widehat{\boldsymbol{xp}} = \widehat{\boldsymbol{x}}' \sin \xi - \widehat{\boldsymbol{y}}' \cos \xi$$
(A.2)

If we substitute (A.1) into (A.2), we get

$$\widehat{\boldsymbol{co}} = \widehat{\boldsymbol{\theta}} \cos(\phi - \xi) - \widehat{\boldsymbol{\phi}} \sin(\phi - \xi)$$

$$\widehat{\boldsymbol{xp}} = -\widehat{\boldsymbol{\theta}} \sin(\phi - \xi) - \widehat{\boldsymbol{\phi}} \cos(\phi - \xi)$$
(A.3)

Definition 2

In the same way, with the help of Fig. A.2c we can write

$$\widehat{\boldsymbol{co}} = \widehat{\boldsymbol{x}}' \cos \xi + \widehat{\boldsymbol{y}}' \sin \xi
\widehat{\boldsymbol{xp}} = -\widehat{\boldsymbol{x}}' \sin \xi + \widehat{\boldsymbol{y}}' \cos \xi$$
(A.4)

and if we substitute (A.1) into (A.4), we get

$$\widehat{\boldsymbol{co}} = \widehat{\boldsymbol{\theta}} \cos(\phi - \xi) - \widehat{\boldsymbol{\phi}} \sin(\phi - \xi)$$

$$\widehat{\boldsymbol{xp}} = \widehat{\boldsymbol{\theta}} \sin(\phi - \xi) + \widehat{\boldsymbol{\phi}} \cos(\phi - \xi)$$
(A.5)

Bibliography

- [1] P.-S. Kildal. Foundations of Antenna Engineering A Unified Approach for Line-Of-Sight and Multipath. Kildal Antenn AB, 2015.
- [2] Allen C. Newel and Greg Hindman. Antenna spherical coordinate systems and their application in combining results from different antenna orientations. Technical report, Nearfield Systems Incorporated, 1999. https://www.nearfield.com/aboutus/documents/1999ESTEC_AN_GH_Antenna_Spherical_Coordinate_Systems_and_Application_in_Combining_Result_000.pdf.