

Advanced Topics in Machine Learning 6 Inference

Prof. Dr. Steffen Staab
Dr. Rafika Boutalbi
Zihao Wang
https://www.ipvs.uni-stuttgart.de/departments/ac/

Learning Objectives

Inference Methods:

- Conditional Probability Queries
 - sum product
- MAP Queries
- Variable Elimination
- Complexity Considerations
- Belief Propagation
 - Cluster Graphs
 - Cluster Graph Beliefs
 - Calibration

Disclaimer

Figures and examples not marked otherwise are taken from the book by Koller & Friedman

1 Conditional-Probability Queries

Conditional Probability Queries

- Evidence: E = e
- Query: a subset of random variables Y

Task: compute
$$P(Y|E=e) = \frac{P(Y,e)}{P(e)}$$

- Typical applications
 - medical diagnoses
 - diagnosis for car maintenance
 - pedigree (blood type) analysis

Tractability

Bad News

- The following are all NP-hard:
- Given a PGM P_{Φ} , a variable X and a value x from X, compute:
 - $P_{\Phi}(X = x)$
 - $P_{\Phi}(X = x) > 0$
 - Find some *p* such that

$$P_{\Phi}(X = x \mid E = e) - p < 0.5.$$

for some given observation E=e

Good News

 Practical problems often do not exhibit this worst case difficulty

Inference using Graphs and Factors

Joint Distribution Chain Rule

$$\phi_C(C)\phi_D(C,D)\phi_I(\overline{I})\phi_G(G,I,D)$$
 •

 $\bullet \ \phi_{S}(S,I)\phi_{L}(L,G)\phi_{J}(J,L,S)\phi_{H}(H,G,J)$

Note that in Bayesian Networks we have exactly one factor (representing the conditional probability table) per node X: $\phi_{\scriptscriptstyle X}$

Sum Product: Bayes Network Example

$$P(\boldsymbol{J}) = \underbrace{\tilde{P}(\boldsymbol{J})}_{C,D,I,G,S,L,H} \begin{pmatrix} \phi_C(C)\phi_D(C,D)\phi_I(I)\phi_G(G,I,D) \bullet \\ \phi_S(S,I)\phi_L(L,G)\phi_J(J,L,S)\phi_H(H,G,J) \end{pmatrix}$$

Note that **in Bayesian Networks** we have exactly one factor (representing the conditional probability table) per node X: ϕ_X

Sum Product: Markov Network Example

$$\widetilde{P}(\underline{D}) = \sum_{A,B,C} \begin{pmatrix} \phi_1(A,B)\phi_2(B,C) \bullet \\ \phi_3(C,D)\phi_4(D,A) \end{pmatrix}$$

$$P(D) = \frac{1}{Z}\widetilde{P}(D)$$

renormalization

Given Evidence

$$\mathbf{W} = \left\{ X_1, \dots, X_n \right\} - \mathbf{Y} - \mathbf{E}$$

Query for
$$Y$$
 given observation $E = e$: $\phi_4(D, A)$

$$P(Y | E = e) = \frac{P(Y, E = e)}{P(E = e)}$$

$$P(Y, E = e) = \sum_{i=1}^{n} P(Y, W, E = e) = \frac{d^{1}}{d^{1}}$$

$$= e)$$

$$=\sum_{W}\frac{1}{Z}\prod_{k}\phi_{k}(D_{k},E=e)$$
 with $D_{k}=\operatorname{scope}(\phi_{k})$

100

100

$$b^1$$

 $\phi_1(A,B)$

$$\phi_2(B,C)$$

$$c^{0}$$
 10 c^{1} c^{0}

05.12.21

Evidence: Reduced Factors

$$V = \{X_1, \dots, X_n\} - Y - E$$

Query for
$$\boldsymbol{Y}$$
 given observation $\boldsymbol{A} = \boldsymbol{a}^0$

 $\propto \sum_{k}^{k} \prod_{k}^{k} \phi_{k}^{\prime}(D_{k}^{\prime})$

$$=a^{0}$$

$$P(Y | A = a^0) = \frac{P(Y, A = a^0)}{P(A = a^0)}$$

$$=a^0$$

$$=a^0$$

$$P(Y, a^0) = \sum_{W} P(Y, W, A = a^0) =$$

$$=\sum_{W}\frac{1}{Z}\prod_{k}\phi_{k}(D_{k},A=a^{0})=$$

with reduced factors
$$\phi_k'$$
 and their scopes D_k' renormalize

05.12.21

 $\phi_1(A,B)$

$$\phi_2(B,C)$$

$$c^0 = 100$$

$$c^0$$
 10 c^1 c^0

 $\phi_4(D,A)$

100

100

Sum Product

$$W = \left\{ X_1, \dots, X_n \right\} - Y - E$$

$$P(Y | E = e) = \frac{P(Y, E = e)}{P(E = e)}$$

$$P(Y, E = e) = \sum_{W} \frac{1}{Z} \prod_{k} \phi'_{k}(D'_{k})$$

$$P(E = e) = \sum_{W} \frac{1}{Z} \prod_{k} \phi'_{k}(D'_{k})$$

Easier: only compute $\sum_{k} \frac{1}{Z} \prod_{k} \phi_k'(D_k')$ and renorm

In general:

Computing a partition
function is hard!

Must sum over all
possible assignments!

Renormalization

Compute
$$\frac{P(Y,e)}{P(e)} = \frac{\phi^*}{\alpha}$$

Procedure Cond-Prob-VE (

Algorithm 9.2 Using Sum-Product-VE for computing conditional probabilities

```
\mathcal{K}, \quad \text{// A network over } \mathcal{X}
Y, \quad \text{// Set of query variables}
E = e \quad \text{// Evidence}

1   \Phi \leftarrow \text{ Factors parameterizing } \mathcal{K}
2   Replace each \phi \in \Phi by \phi[E = e]
3   Select an elimination ordering \prec )
4   Z \leftarrow = \mathcal{X} - Y - E
5   \phi^* \leftarrow \text{Sum-Product-VE}(\Phi, \prec, Z)
6   \alpha \leftarrow \sum_{y \in Val(Y)} \phi^*(y)
7   \mathbf{return} \ \alpha, \phi^*
```

Overview: Algorithms to Compute Conditional Probability

- Push summations into factor product
 - dynamic programming: Variable elimination
- Message passing over a graph
 - belief propagation
 - variational approximations
- Random sampling instantiations
 - Markov Chain Monte Carlo (MCMC)
 - Importance sampling

2 Maximum A-Posteriori (MAP) Queries

Maximum a Posteriori (MAP)

- Evidence: E = e
- Query: <u>all</u> other variables $\textbf{\textit{Y}}, \textbf{\textit{Y}} = \left\{ \mathbf{X}_1, ..., \ \mathbf{X}_{\mathbf{n}} \right\} \textbf{\textit{E}}$
- Task: compute

$$MAP(Y|E=e) = \operatorname{argmax}_{y} P(Y=y|E=e)$$

Note: There may be more than one possible solution

- Typical Applications
 - Message decoding: most likely transmitted message
 - Image segmentation: most likely segmentation

MAP≠**Max over Marginals**

Joint distribution

•
$$P(a^0, b^0) = 0.04$$

• $P(a^0, b^1) = 0.36$
• $P(a^1, b^0) = 0.3$

$$P(a^1, b^1) = 0$$

•
$$MAP(A) = a^1$$
, $P(a^1) = 0.6$

•
$$MAP(B) = b^1$$
, $P(b^1) = 0.66$

•
$$MAP(A, B) = (a^0, b^1), P(a^0, b^1) = 0.36$$

$$MAP(A \mid B = b^1) = a^0, \ P(A \mid B = b^1) = \frac{0.36}{0.36 + 0.3} = \frac{6}{11}$$

Tractability

Bad News

- The following are all NP-hard:
- Given a PGM P_{Φ} ,
 - find a joint assignment x with highest probability $P_{\Phi}(x)$
 - i.e. $E = \{ \}$
 - decide if there is an assignment x such that $P_{\Phi}(x)>p$

Good News

 Practical problems often do not exhibit this worst case difficulty

Max Product

$$Y = \{X_1, ..., X_n\} - E$$

 $\operatorname{argmax}_{C,D,I,G,S,G,L,J,H} \phi_C(C) \phi_D(C,D) \phi_I(I) \phi_G(G,I,D)$ •

• $\phi_S(S, I)\phi_L(L, G)\phi_J(J, L, S)\phi_H(H, G, J)$

Max Product

$$P(Y | E = e) = \frac{P(Y, E = e)}{P(E = e)} \propto P(Y, E = e)$$

$$P(Y, E = e) = \frac{1}{Z} \prod_{k} \phi'_{k}(D'_{k})$$

$$\propto \prod_k \phi_k'(D_k')$$

$$\operatorname{argmax}_{y} P(Y = y \mid E = e) = \operatorname{argmax}_{y \in Y} \prod_{k} \phi'_{k}(D'_{k})$$

P(E = e) is constant in this task

 $\phi_k'(D_k')$ reduced relative to E=e

Overview: Algorithms to Compute MAP

- Push maximization into factor product
 - Variable elimination
- Message passing over a graph
 - max-product belief propagation
- Integer programming
- For some networks: graph-cut methods
- Combinatorial search

MAP is a discrete optimization task!

Summary of MAP

- MAP: single coherent assignment of highest probability
- Maximizing over factor product
- Combinatorial optimization problem
- Many exact and approximate algorithms

3 Variable Elimination

Variable elimination in chains

$$B \qquad C \qquad D \qquad E$$

$$P(E) \propto \sum_{D} \sum_{C} \sum_{B} \sum_{A} \tilde{P}(A, B, C, D, E) =$$

$$= \sum_{D} \sum_{C} \sum_{B} \sum_{A} \phi_{1}(A, B)\phi_{2}(B, C)\phi_{3}(C, D)\phi_{4}(D, E) =$$

$$= \sum_{D} \sum_{C} \sum_{B} \phi_{2}(B, C)\phi_{3}(C, D)\phi_{4}(D, E) \sum_{A} \phi_{1}(A, B) =$$

$$= \sum_{D} \sum_{C} \sum_{B} \phi_{2}(B, C)\phi_{3}(C, D)\phi_{4}(D, E)\tau_{1}(B)$$

$$= \sum_{D} \sum_{C} \sum_{B} \phi_{2}(B, C)\phi_{3}(C, D)\phi_{4}(D, E)\tau_{1}(B)$$

Variable elimination in chains

Variable elimination in graphs

ullet Goal: P(J)

$$\sum_{L,S,G,H,I,D,C} \begin{pmatrix} \phi_C(C)\phi_D(C,D)\phi_I(I)\phi_G(G,I,D)\phi_S(S,I) \bullet \\ \bullet \phi_L(L,G)\phi_J(J,L,S)\phi_H(H,G,J) \end{pmatrix} =$$

• Eliminate:

$$C$$
, D , I , H , G , S , L

$$=\sum_{L,S,G,H,I,D} \begin{pmatrix} \phi_I(I)\phi_G(G,I,D)\phi_S(S,I)\phi_L(L,G)\phi_J(J,L,S)\phi_H(H,G,J) \bullet \\ \bullet \tau_1(D) \end{pmatrix} =$$

$$=\sum_{L,S,G,H,I} \begin{pmatrix} \phi_I(I)\phi_S(S,I)\phi_L(L,G)\phi_J(J,L,S)\phi_H(H,G,J) \bullet \\ \bullet \sum_D \phi_G(G,I,D)\tau_1(D) \end{pmatrix} =$$

$$\sum_{L,S,G,H,I} \begin{pmatrix} \phi_I(I)\phi_S(S,I)\phi_L(L,G)\phi_J(J,L,S)\phi_H(H,G,J) \bullet \\ \bullet \tau_2(G,I) \end{pmatrix} = \dots$$

Variable elimination with evidence

• Goal:

$$P(J, I = \overline{i, H = h})$$

• Eliminate:

$$P\big(J \middle| I = i, \underline{H} = h\big) \propto \propto \sum_{L, S, G, D, C} \begin{pmatrix} \phi_C(C) \phi_D(C, D) \phi_I(I) \phi_G(G, I, D) \phi_S(S, I) \bullet \\ \bullet \phi_L(L, G) \phi_J(J, L, S) \phi_H(H, G, I) \end{pmatrix}$$

Reduce factors

$$= \sum_{L,S,G,D,C} \left(\phi_C(C)\phi_D(C,D)\phi_I' \phi_G'(G,D)\phi_S'(S) \bullet \atop \bullet \phi_L(L,G)\phi_J(J,L,S)\phi_H'(G,J) \right) = \dots$$

Eventually: renormalize

using P(I = i, H = h) in the denominator

General procedure for eliminating one variable in PGM

- ullet Objective: eliminate random variable Z from factors Φ
- Do:

•
$$\Phi' = \{ \phi_i \in \Phi : Z \in \text{scope}(\phi_i) \}$$

$$\psi = \prod_{\phi_i \in \Phi'} \phi_i$$

$$\tau = \sum_{\mathcal{L}} \psi$$

•
$$\Phi = \Phi - \Phi' \cup \{\tau\}$$

General procedure for variable elimination (summary)

- Reduce all factors by evidence get a set of factors Φ
- For each non-query variable Z
 - Eliminate random variable Z from factors Φ
- Multiply all remaining factors
- Renormalize to get distribution

So far: Naive algorithm Tricks must be applied!

4 Computational Complexity of Variable Elimination

Sources of computational complexity

- Z to be eliminated
- Multiplications: factor product

$$\psi_k(X_k) = \prod_{i=1}^{m_k} \phi_i$$

Additions: marginalization

$$\tau_k(X_k - \{Z\}) = \sum_Z \psi_k(X_k)$$

Z in scope of m_k factors

in round k

Scope:

Each new row comes from $m_k - 1$ multiplications

Scope:

A, B

S	CO	p	ϵ

	, , _		_	_	_	
a^1	b^1	0.5		E	3, C	
a^1	b^2	0.8		b^1	c^1	
a^2	b^1	0.1	\longrightarrow	b^1	c^2	
a^2	b^2	0	\longrightarrow	b^2	c^1	
a^3	b^1	0.3		b^2	c^2	
a^3	b^2	0.9				

•		
0.5		
0.7		
0.1		
0.2		
	'	

 $N_k(m_k-1)$ multiplications to create $\psi_k(\pmb{X}_k)$

A, B, C			
a^1	b^1	c^1	$0.5 \cdot 0.5 = 0.25$
a^1	b^1	c^2	$0.5 \cdot 0.7 = 0.35$
a^1	b^2	c^1	$0.8 \cdot 0.1 = 0.08$
a^1	b^2	c^2	$0.8 \cdot 0.2 = 0.16$
a^2	b^1	c^1	$0.1 \cdot 0.5 = 0.05$
a^2	b^1	c^2	$0.1 \cdot 0.7 = 0.07$
a^2	b^2	c^1	0.0.1 = 0
a^2	b^2	c^2	0.0.2 = 0
a^3	b^1	c^1	$0.3 \cdot 0.5 = 0.15$
a ³	b^1	c^2	0.3.0.7 = 0.21
a ³	b^2	c^1	0.9.0.1 = 0.09
a^3	b^2	c^2	$0.9 \cdot 0.2 = 0.18$

Factor Marginalization $\tau_k \big(X_k - \{Z\} \big) = \sum \psi_k(X_k)$

				_
a^1	b^1	c^1	0.25	
a^1	b^1	c^2	0.35	1
a^1	b^2	c^1	0.08]
a^1	b^2	c^2	0.16	}
a^2	b^1	c^1	0.05	
a^2	b^1	c^2	0.07	1
a^2	b^2	c^1	0]
a^2	b^2	c^2	0	
a^3	b^1	c^1	0.15	
a^3	b^1	c^2	0.21]
a^3	b^2	c^1	0.09]
a^3	b^2	c^2	0.18	

a^1	c^1	0.33
a^1	c^2	0.51
a^2	c^1	0.05
a^2	c^2	0.07
a^3	c^1	0.24
a^3	c^2	0.39

Each of the N_k rows is added once

$$N_k = |\operatorname{Val}(X_k)|$$
 rows

Complexity of variable elimination

- 1. Start with *m* factors, *n* random variables
 - m ≤ n for Bayesian networks
 - $1 \le m \le 2^n 2$ for Markov networks
- 2. At each elimination step generate 1 new factor au_k
 - At most n elimination steps
 - Total number of factors: $m^* \le m + n$
- 3. Number of Operations
 - Let $N = \max N_k$ be the size of the largest factor
 - Multiplications: $\sum_{k} N_{k}(m_{k}-1) \leq N \sum_{k} \left(m_{k}-1\right) \leq N m^{*}$
 - Additions: $\sum_{k} N_k \leq Nn$

But: size of N?

Size of Largest Factor

$$N_k = Val(X_k) = O(d^{r_k})$$

$$d = \max_{k} |Val(X_k)|$$

$$\cdot r_k = X_k$$

Exponential in the size of largest factor!

Complexity and Elimination Order

Eliminate A first

$$\psi_k(\{A, B_1, \dots B_k\}) = \prod_{i=1}^k \phi_{\{A, B_i\}}$$

• size of first new factor is exponential in \boldsymbol{k}

• Eliminate the B_i first

$$\bullet \psi_i\Big(\big\{A,B_i,C\big\}\Big) = \phi_{\big\{A,B_i\big\}}\phi_{\big\{C,B_i\big\}}$$

$$\tau_i(\{A,C\}) = \sum_{B_i} \psi_i(\{A,B_i,C\})$$

Effort may depend a lot on ordering of elimination!

Finding Elimination Orderings

- Finding the best elimination ordering is NP hard
- However: greedy search using heuristic cost function
 - at each point, eliminate node with smallest cost
 - for this purpose:
 analyse (dynamic) graph structure
 - Possible cost functions:

Analysing the graph structure is key to understanding the costs of variable elimination. Many more details are in the book about this.

- min-neighbors: #neighbors in current graph (smallest lactor)
- min-weight: weight (#values) of factor formed
- min-fill: minimize number of newly created dependencies (creating τ s)
- aggregations of these

5 Belief Propagation in Trees

Message Passing

- A local view of sum-product computations
- Messages inform about local computations

Cluster Graphs

- A graphical view of factor-manipulations
- Result:
 - exact for tree-shaped cluster graphs
 - approximation for arbitrary cluster graphs

What is a cluster graph?

- Undirected graph such that:
 - nodes are clusters $C_i \subseteq \{X_1...X_n\}$
 - edge between C_i and C_j implies that **sepset** $S_{i,j} \subseteq C_i \cap C_j$, $S_{i,j} \neq \emptyset$
- Given set of factors Φ , we assign each ϕ_k to exactly one cluster $C_{\alpha(k)}$ such that $scope(\phi_k) \subseteq C_{\alpha(k)}$
- Define $\psi_i(C_i) = \prod \phi_k$ $k:\alpha(k)=i$

Example Cluster Graph

- Clusters $C_1 \dots C_7$
 - $C_1 = \{C, D\}, C_2 \subseteq \{D, I, G\}, \dots$
 - Edge (1,2): $\{D\} \subseteq C_1 \cap C_2$,
 - Edge (2,3): $\{G,I\} \subseteq C_2 \cap C_3$
- Factors:

$$\phi_{C}(C)\phi_{D}(C,D)\phi_{I}(I)\phi_{G}(G,I,D)\phi_{S}(S,I)\phi_{L}(L,G)\phi_{J}(J,L,S)\phi_{H}(H,G,J)$$

2: *D, I, G*

Factor assignmer

$$\psi_1 = \phi_C \phi_D$$
...

3: *G, I, S*

Message Passing to Root 5 $\begin{bmatrix} \delta_{4\to 5}(G,J): \\ \Sigma_H \psi_4(C_4) \end{bmatrix}$ 1: C,D 2: D,I,G 3: G,I,S 5: G,J,L,S 4: G,H,J $\begin{bmatrix} \delta_{1\to 2}(D): \\ \Sigma_C \psi_1(C_1) \end{bmatrix}$ $\begin{bmatrix} \delta_{2\to 3}(G,I): \\ \Sigma_D \psi_2(C_2) \times \delta_{1\to 2} \end{bmatrix}$ $\begin{bmatrix} \delta_{3\to 5}(G,S): \\ \Sigma_I \psi_3(C_3) \times \delta_{2\to 3} \end{bmatrix}$

Alternative cluster graph:

What does it mean to pass a message?

- Idea: compute local sum-product under outside influence
 - aggregate messages from other nodes
 - weave in local information
 - sum product
 - pass on to nodes where this information does not come from $\begin{array}{c} \delta_{4\to 5}(G,J):\\ \Sigma_H\psi_4(C_4) \end{array}$ 1: C,D 2: D,I,G 3: G,I,S 5: G,J,L,S 4: G,H,S 4: G,H,S 5: G,J,L,S 5: G,J,L,S 4: G,H,S 5: G,J,L,S 6: G,J,L,S 6: G,J,L,S 7: G,J,L,S 6: G,J,L,S 7: G,J,L,S 8: G,J,L,S 8: G,J,L,S 9: G,J,L,S

What does it mean to pass a message?

- Message: $\delta_{\mathrm{from} o \mathrm{to}}(\mathrm{scope})$ is a factor with origin & target that share " scope
 - Example:
 - 1. $\delta_{1\to 2}(D)$ sends $\sum_C \psi_1(C_1) = \sum_C \phi_C(C)\phi_D(C,D)$ which is a factor with scope D
 - 2. $\delta_{2\to 3}(G,I)$ sends $\sum_{D} \psi_2(C_2) \times \delta_{1\to 2}(G,I)$ which is a factor with scope I,G $\delta_{4\to 5}(G,J)$:
 - 3. $\delta_{3\to 5}(G,S)$ sends $\sum_{I} \psi_3(C_3) \times \delta_{2\to 3}(G,S)$ which is a factor with scope G root cluster
 - $\{1.16CJOG, S\}$ sends (G_4) which is a 3aGOJ, With scope $(G_5:JG,J,L,S)$ (G_4) which is a 3aGOJ, With scope $(G_5:JG,J,L,S)$
 - 5. belief $\beta_5(G, J, S, L)$ $\frac{\overline{\overline{\delta}}_{3 \to 5}(G, S)\delta_4}{\delta_{1 \to 2}(D):}$ $\Sigma_C \psi_1(C_1)$ $\Sigma_D \psi_2(C_2) \times \delta_{1 \to 2}$ $\Sigma_L \psi_3(C_3) \times \delta_{2 \to 3}$

What happened?

General:

$$\delta_{i \to j} = \sum_{C_i - S_{i,j}} \psi_i \prod_{k \in (\text{neighbor}(i) - \{j\})} \delta_{k \to j}$$
 factor product
$$\text{marginalization (sum)}$$
 variable elimination

Belief $\beta_r(C_r)$

- Let r index the root cluster
 - ullet with C_r being the random variables in that cluster
 - $\beta_r(C_r)$ being computed as indicated on the previous slide
- Then:

$$\beta_r(C_r) = \sum_{\mathcal{X} - C_r} \tilde{P}_{\Phi}(\mathcal{X})$$

evidence may be provided by working with reduced factors

- Bayesian network: $\beta_r(C_r) = P_{\mathcal{B}}(C_r)$
- Markov network: $\beta_r(C_r) = \widetilde{P}_{\Phi}(C_r)$ with partition function defined by sum of all entries in $\beta_r(C_r)$

Compute posterior over every random variable

Naive: separately for each random variable / for each cluster

Upward and Downward Pass

Better: compute for different roots simultaneously

6 Belief Propagation in Graphs

Generalization to Arbitrary Cluster Graphs

- No longer guarantees soundness
- The following properties have to hold (as they had to hold before):
 - 1. Family Preservation
 - 2. Running Intersection Property

Family Preservation

• Given set of factors Φ , we assign each ϕ_k to exactly one cluster $C_{\alpha(k)}$ such that $\mathrm{scope}(\phi_k) \subseteq C_{\alpha(k)}$

Mentioned before!

Running Intersection Property

• For each pair of clusters C_i and C_j and a variable $X\in C_i\cap C_j$, there exists a unique path between C_i and C_j for which all clusters and sepsets contain X

Running Intersection Property: Existence

• For each pair of clusters C_i and C_j and a variable $X\in C_i\cap C_j$, there exists a unique path between C_i and C_j for which all clusters and sepsets

Running Intersection Property: Uniqueness

• For each pair of clusters C_i and C_j and a variable $X\in C_i\cap C_j$, there exists a unique path between C_i and C_j for which all clusters and sepsets

- Trivial for a tree!
- Non-trivial for a general graph!

Always holds in a tree!

Running Intersection Property: Uniqueness

• For each pair of clusters C_i and C_j and a variable $X\in C_i\cap C_j$, there exists a unique path between C_i and C_i for which all clusters and sepsets

Running Intersection Property: Uniqueness

• For each pair of clusters C_i and C_j and a variable $X \in C_i \cap C_j$, there exists a unique path between C_i and C_j for which all clusters and sepsets

There is always a Cluster Graph: Bethe cluster graph

Information between different clusters is passed through univariate marginal distributions.

Interactions between variables are lost during propagations.

Generalized Belief Propagation Algorithm

Given factors Φ , cluster graph with clusters $\{C_1, ..., C_l\}$:

- 1. Assign each factor $\varphi_k \in \Phi$ to exactly one cluster $C_{\alpha(k)}$
- 2. Construct potentials $\psi_i(C_i) = \prod_{k: \alpha(k)=i} \phi_k$
- 3. Initialize all messages to be unit factor $oldsymbol{1}$
- 4. Repeat
 - Select edge (i, j) and pass message

$$\delta_{\mathbf{i} \to \mathbf{j}} \Big(S_{i,j} \Big) = \sum_{C_i - S_{i,j}} \psi_i \prod_{k \in (\text{neighbors}(i) - \{j\})} \delta_{\mathbf{k} \to i}$$

5. Compute belief
$$\beta_i(C_i) = \psi_i \prod_{k \in \text{neighbors}(i)} \delta_{k \to i}$$

Figure 11.C.1 — Example of behavior of BP in practice on an 11×11 Ising grid. (a) Percentage of messages converged as a function of time for three different BP variants. (b) A marginal where both variants converge rapidly. (c-e) Marginals where the synchronous BP marginals oscillate around the asynchronous BP marginals. (f) A marginal where both variants are inaccurate.

Calibration

Cluster beliefs:

$$\beta_i(C_i) = \psi_i \prod_{k \in \text{neighbors}(i)} \delta_{k \to i}$$

• A cluster graph is calibrated if every pair of adjacent clusters C_i , C_j agree on their sepset $S_{i,j}$:

$$\sum_{C_i - S_{i,j}} \beta_i (C_i) = \sum_{C_j - S_{i,j}} \beta_j (C_j)$$

70

Does Convergence imply Calibration?

. Convergence:
$$\delta_{i o j}^{(t)} \Big(S_{i,j} \Big) = \delta_{i o j}^{(t+1)} \Big(S_{i,j} \Big)$$

$$\delta_{i \to j}^{(t+1)} \Big(S_{i,j} \Big) = \sum_{C_i - S_{i,j}} \left(\psi_i \prod_{k \in (\text{neighbors}(i) - \{j\})} \delta_{k \to i}^{(t)} \right) = \sum_{C_i - S_{i,j}} \frac{\beta_i \Big(C_i \Big)}{\delta_{j \to i}^{(t)}}$$

With
$$\delta_{i \to j}^{(t)} = \delta_{i \to j}^{(t+1)} \Longrightarrow \qquad \delta_{i \to j}^{(t)} \left(S_{i,j}\right) \delta_{j \to i}^{(t)} \left(S_{i,j}\right) = \sum_{C_i - S_{i,j}} \beta_i \left(C_i\right)$$

Likewise:

$$\delta_{j\to i}^{(t)}\left(S_{i,j}\right)\delta_{i\to j}^{(t)}\left(S_{i,j}\right) = \sum_{C_i-S_{i,j}}\beta_j\left(C_j\right)$$

$$\Longrightarrow \sum_{C_i - S_{i,j}} \beta_i(C_i) = \sum_{C_j - S_{i,j}} \beta_j(C_j)$$

Reparameterization

$$\beta_i(C_i) = \psi_i \prod_{k \in \text{neighbors}(i)} \delta_{k \to i}$$
 $\mu_{i,j}(S_{i,j}) = \delta_{i \to j}(S_{i,j}) \delta_{j \to i}(S_{i,j})$

$$\frac{\prod_{i} \beta_{i}(C_{i})}{\prod_{i,j} \mu_{i,j}(S_{i,j})} = \frac{\prod_{i} \beta_{i}(C_{i})}{\prod_{i,j} \delta_{i \to j}(S_{i,j}) \delta_{j \to i}(S_{i,j})} = \frac{\prod_{i} \psi_{i} \prod_{j \in \text{neighbors}(i)} \delta_{j \to i}}{\prod_{i,j} \delta_{i \to j}} = \prod_{i} \psi_{i} = \tilde{P}(\Phi)$$

Message passing does not delete information. Message passing reparameterizes the factors.

Summary

- Cluster graphs must satisfy two properties
 - ullet family preservation: allows Φ to be encoded
 - running intersection: connects all information about any variable, but without feedback loops
- Bethe cluster graph is often the first default
 - Richer cluster graph structures can offer different tradeoffs wrt computational cost and preservation of dependencies
- Cluster graph beliefs represent an alternative, calibrated parameterization of the original unnormalized density

Thank you!

Steffen Staab

E-Mail Steffen.staab@ipvs.uni-stuttgart.de
Telefon +49 (0) 711 685e be defined
www.ipvs.uni-stuttgart.de/departments/ac/

Universität Stuttgart Analytic Computing, IPVS Universitätsstraße 32, 50569 Stuttgart