Sétima Lista de Exercícios Cálculo II - Engenharia de Produção

(extraída do livro CÁLCULO - vol 2, James Stewart)

Cálculo Vetorial

- 1) Determine o campo vetorial gradiente de f.
 - a) $f(x,y) = \ln(x+2y)$
 - b) $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$
 - c) $f(x,y) = x^2 y$
- 2) Faça uma correspondência entre as funções f e os desenhos de seus campos vetoriais gradientes.

b)
$$f(x,y) = x(x+y)$$

c)
$$f(x,y) = (x+y)^2$$

d)
$$f(x,y) = \sin \sqrt{x^2 + y^2}$$

3) Calcule a integral de linha, onde C é a curva dada.

a)
$$\int_C y^3 ds$$
, $C: x = t^3, y = t, 0 \le t \le 2$

b)
$$\int_C xy^4 ds$$
, C é a metade direita do círculo $x^2 + y^2 = 16$

c)
$$\int_C (x^2y^3-\sqrt{x})\ dy, \quad C$$
é o arco da curva $y=\sqrt{x}$ de $(1,1)$ a $(4,2)$

d) $\int_C xy \ dx + (x-y) \ dy, \quad C$ consiste nos segmentos de reta de (0,0) a (2,0) e de (2,0), a (3,2)

e)
$$\int_C xy^3 ds$$
, $C: x = 4\sin t$, $y = 4\cos t$ e $z = 3t$, $0 \le t \le \frac{\pi}{2}$

f)
$$\int_C xe^{yz} ds$$
, C é o segmento de reta de $(0,0,0)$ a $(1,2,3)$

g)
$$\int_C x^2 y \sqrt{z} \, dz$$
, $C: x = t^3, y = t, z = t^2, 0 \le t \le 1$

h) $\int_C (x+yz)\ dx+2x\ dy+xyz\ dz$, C consiste nos segmentos de reta de (1,0,1) a (2,3,1) e de (2,3,1) a (2,5,2)

1

- 4) Calcule a integral de linha $\int_C F \cdot dr$, onde C é dada pela função vetorial r(t).
 - a) $F(x,y) = xy \mathbf{i} + 3y^2 \mathbf{j}$, $r(t) = 11t^4 \mathbf{i} + t^3 \mathbf{j}$, $0 \le t \le 1$
 - b) $F(x, y, z) = \sin x \, \mathbf{i} + \cos y \, \mathbf{j} + xz \, \mathbf{k}, \quad r(t) = t^3 \, \mathbf{i} t^2 \, \mathbf{j} + t \, \mathbf{k}, \, 0 \le t \le 1$
- 5) Calcule a integral de linha $\int_C F \cdot dr$, onde $F(x,y) = e^{x-1} \mathbf{i} + xy \mathbf{j}$ e C é dada por $r(t) = t^2 \mathbf{i} + t^3 \mathbf{j}$, $0 \le t \le 1$
- 6) Determine se F é ou não um campo vetorial conservativo. Se for, determine uma função f tal que $F = \nabla f$.
 - a) $F(x,y) = (2x 3y) \mathbf{i} + (-3x + 4y 8) \mathbf{j}$
 - b) $F(x,y) = e^x \sin y \mathbf{i} + e \cos y \mathbf{j}$
 - c) $F(x,y) = (ye^x + \sin y) \mathbf{i} + (e^x + x\cos y) \mathbf{j}$
 - d) $F(x,y) = (\ln y + 2xy^3) \mathbf{i} + (3x^2y^2 + \frac{x}{y}) \mathbf{j}$
- 7) A figura mostra o campo vetorial $F(x,y) = \langle 2xy, x^2 \rangle$ e três curvas que começam em (1,2) e terminam em (3,2).
 - a) Explique por que $\int_C F \cdot dr$ tem o mesmo valor para as três curvas.
 - b) Qual é esse valor comum?

- B) Determine uma função f tal que $F = \nabla f$ e calcule $\int_C F \cdot dr$ sobre a curva C
 - a) $F(x,y) = xy^2 i + xy^2 j$
 - b) $F(x,y,z) = yz \mathbf{i} + xz \mathbf{j} + (xy+2z) \mathbf{k}$ C é segmento de reta de (1,0,-2) a (4,6,3)
 - c) $F(x, y, z) = y^2 \cos z \, \mathbf{i} + 2xy \cos z \, \mathbf{j} xy^2 \sin z \, \mathbf{k},$ $C: r(t) = t^2 \, \mathbf{i} + \sin t \, \mathbf{j} + t \, \mathbf{k}, \, 0 \le t \le \pi$
- 9) Mostre que a integral de linha $\int_C 2x \sin y \ dx + (x^2 \cos y 3y^2) \ dy$ é independente do caminho e calcule a integral onde C é qualquer caminho de (-1,0) a (5,1).
- 10) Calcule a integral de linha por dois métodos: diretamente e utilizando o Teorema de Green.
 - a) $\oint_C (x-y) dx + (x+y) dy$, C é o círculo com centro na origem e raio 2.
 - b) $\oint_C xy \ dx + x^2y^3 \ dy$, C é o triângulo com vértices (0,0), (1,0) e (1,2).

- 11) Use o Teorema de Green para calcular a integral de linha ao longo da curva dada com orientação positiva.
 - a) $\int_C e^y dx + 2xe^y dy$, C é o quadrado de lados x = 0, x = 1, y = 0 e y = 1.
 - b) $\int_C (y+e^{\sqrt{x}}) dx + (2x+\cos y^2) dy$, C é a fronteira da região englobada pelas parábolas $y=x^2$ e $x=y^2$.
 - c) $\int_C y^3 dx x^3 dy$, C é o círculo $x^2 + y^2 = 4$
- 12) Use o Teorema de Green para calcular $\int_C F \cdot dr$. (Verifique a orientação da curva antes de aplicar o teorema).
 - a) $F(x,y) = \langle \sqrt{x} + y^3, x^2 + \sqrt{y} \rangle$, C consiste no arco da curva $y = \sin x$ de (0,0) a $(\pi,0)$ e no segmento de reta $(\pi,0)$ a (0,0).
 - b) $F(x,y) = \langle e^x + x^2, e^y xy^2 \rangle$, C é a circunferência $x^2 + y^2 = 25$, orientada no sentido anti-horário.
- 13) Utilize uma das fórmulas: $A = \oint_C x \ dy = -\oint_C y \ dx = \frac{1}{2} \oint_C x \ dy y \ dx$ para achar a área sob um arco de cicloide $x = t \sin t$, $y = 1 \cos t$.
 - 14) Determine o rotacional e o divergente do campo vetorial.
 - a) $F(x, y, z) = xyz \mathbf{i} x^2y \mathbf{k}$
 - b) $F(x, y, z) = e^x \sin y \mathbf{i} + e^x \cos y \mathbf{j} + z \mathbf{k}$
 - c) $F(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}} (x \mathbf{i} + y \mathbf{j} + z \mathbf{k})$
 - d) $F(x, y, z) = < \ln x, \ln(x, y), \ln(xyz) >$
- 15) Determine se o campo vetorial é conservativo ou não. Se for conservativo, determine uma função f tal que $F = \nabla f$.
 - a) $F(x, y, z) = y^2 z^3 \mathbf{i} + 2xyz^3 \mathbf{j} + 3xy^2 z^2 \mathbf{k}$
 - b) $F(x, y, z) = 2xy \mathbf{i} + (x^2 + 2yz) vj + y^2 \mathbf{k}$
 - c) $F(x, y, z) = ye^{-x} \mathbf{i} + e^{-x} \mathbf{j} + 2z \mathbf{k}$
 - **16)** Existe um campo vetorial G em \mathbb{R}^3 tal que rot $G = \langle x \sin y, \cos y, z xy \rangle$?
 - 17) Use o Teorema de Stokes para calcular $\int \int_S rot \ F \cdot dS$.
 - a) $F(x,y,z)=x^2z^2$ **i** + y^2z^2 **j** + xyz **k**, S é a parte do paraboloide $z=x^2+y^2$ que está dentro dentro do cilindro $x^2+y^2=4$, orientado para cima.
 - b) $F(x, y, z) = xyz \mathbf{i} + xy \mathbf{j} + x^2yz \mathbf{k}$, S é formada pelo topo e pelos quatro lados (mas não pelo fundo) do cubo com vértices $(\pm 1, \pm 1, \pm 1)$, com orientação para fora.

- 18) Use o Teorema de Stokes para calcular $\int_C F \cdot dr$. Em cada caso, C é orientada no sentido anti-horário quando vista de cima.
 - a) $F(x,y,z) = (x+y^2) \mathbf{i} + (y+z^2) \mathbf{j} + (z+x^2) \mathbf{k}$, C é o triângulo com vértices $(1,0,0), (0,1,0) \in (0,0,1).$
 - b) $F(x, y, z) = yz \mathbf{i} + 2xz \mathbf{j} + e^{xy} \mathbf{k}$, C é a circunferência $x^2 + y^2 = 16$, z = 5.

RESPOSTAS:

- 1)
- a) $\nabla f(x,y) = \frac{1}{x+2y} \mathbf{i} + \frac{2}{x+2y} \mathbf{j}$ b) $\nabla f(x,y,z) = \frac{x}{\sqrt{x^2+y^2+z^2}} \mathbf{i} + \frac{y}{\sqrt{x^2+y^2+z^2}} \mathbf{j} + \frac{z}{\sqrt{x^2+y^2+z^2}} \mathbf{k}$ c) $\nabla f(x,y) = 2x \mathbf{i} \mathbf{j}$
- 2)
- (a) III
- (b) IV
- (c) II
- (d) I
- - a) $\frac{1}{54}(145^{3/2} 1)$ b) 1638, 4 c) $\frac{243}{8}$ d) $\frac{17}{3}$ e) 320 f) $\frac{1}{12}\sqrt{14}(e^6 1)$ g) $\frac{1}{5}$ h) $\frac{97}{3}$

- 4)
- a) 45 b) $\frac{6}{5} \cos 1 \sin 1$
- 5) $\frac{11}{8} \frac{1}{8}$
- a) $f(x,y) = x^2 3xy + 2y^2 8y + K$
- b) $f(x,y) = e^x \sin y + K$
- c) $f(x,y) = ye^x + x\sin y + K$
- d) $f(x,y) = x \ln y + x^2 y^3 + K$
- **7**) 16

- a) $f(x,y) = \frac{1}{2}x^2y^2$ b) $f(x,y,z) = xyz + z^2$ c) $f(x,y,z) = xy^2 \cos z$ $\int_C F \cdot dr = 2$ $\int_C F \cdot dr = 77$
- 9) $25 \sin 1 1$
- 10)
- a) 8π b) $\frac{2}{3}$

- 11)
- a) e 1 b) $\frac{1}{3}$ c) -24π

- **12**)
- a) $\frac{4}{3} 2\pi$ b) $\frac{625}{2}\pi$
- **13)** 3π
- 14)
- a) rot $F = -x^2 \mathbf{i} + 3xy \mathbf{j} xz \mathbf{k}$ div F = yz

- b) $rot \ F = 0$ $div \ F = 1$ c) $rot \ F = 0$ $div \ F = \frac{2}{\sqrt{x^2 + y^2 + z^2}}$ d) $rot \ F = <\frac{1}{y}, -\frac{1}{x}, \frac{1}{x}>$ $div \ F = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$

- **15**)
- a) $f(x, y, z) = xy^2z^3 + K$ b) $f(x, y, z) = x^2y + y^2z + K$
- c) Não conservativo
- **16)** Não
- **17)** a) 0 b) 0
- **18)** a) 1 b) 80π