Esercitazione Sistemi Digitali

06/12/2022

Esercizio 1- Traccia

Minimizzare il seguente automa con stato iniziale T0:

- 1 Realizzare la rete sequenziale relativa all'automa minimo ottenuto con flip flop di tipo SR
- 2 Mostrare il diagramma temporale in corrispondenza della stringa di input 1100101.

Nota: Stati e output variano quando clock passa da 1 a 0

Soluzione 1 (1)

 Notare che gli stati T5 e T6 sono irraggiungibili da T0, possono quindi essere rimossi

	<i>T</i> 1	Χ			
	<i>T</i> 2	Χ	X		
•	<i>T</i> 3	Χ	Х		
	<i>T</i> 4	Χ	(0,3)(1,4)	Χ	Х
		<i>T</i> 0	<i>T</i> 1	<i>T</i> 2	<i>T</i> 3

T2 e T3 possono quindi essere rappresentati con unico stato

	0	1
S0 (T0)	S3/0	S2/0
S1 (T1)	S1/1	S0/1
S2 (T2+T3)	S1/0	S2/1
S3 (T4)	S3/1	S2/1

Soluzione 1 (2)

Codifichiamo gli stati nel seguente modo:

S0=00

S1=01

S2=10

S3=11

 Scriviamo la tabella degli stati futuri con le funzioni di eccitazione dei Flip Flop

x Q1 Q0	Q1' Q0'	z	S1 R1	SO RO
0 0 0	1 1	0	1 0	1 0
0 0 1	0 1	1	0 -	- 0
0 1 0	0 1	0	0 1	1 0
0 1 1	1 1	1	- 0	- 0
1 0 0	1 0	0	1 0	0 -
1 0 1	0 0	1	0 -	0 1
1 1 0	1 0	1	- 0	0 -
1 1 1	1 0	1	- 0	0 1

Soluzione 1 (3)

 $Q_1 Q_0$

$$S1 = \bar{Q1}\bar{Q0}$$

$$R1 = \bar{x}Q1\bar{Q0}$$

Soluzione 1 (4)

$$S0 = \bar{x}$$

$$R0 = x$$

Soluzione 1 (5)

$$z = Q0 + xQ1$$

Soluzione 1 (6)

Soluzione 1 (7)

Esercizio 2- Traccia

- Progettare la rete **combinatoria** che ha sulle linee di ingresso la codifica binaria di un intero x, $0 \le x \le 7$, e sulle linee di uscita la codifica binaria di $y=y_4y_3y_2y_1y_0=3x+2$, usando una ROM
 - 1 Realizzare tabella di verità della funzione descritta
 - 2 Disegnare circuito utilizzando una ROM
 - $oldsymbol{3}$ Scrivere forma canonica POS di y_3 e forma canonica SOP di y_4
 - 4 Definire espressione per y_2 con sole porte NAND (Suggerimento: Iniziare minimizzando y_2 usando mappa di Karnaugh)

Soluzione 2 (1)

Tabella che descrive la funzione:

x2 x1 x0	y5 y4 y3 y2	y1
0 0 0	0 0 0 1	0
0 0 1	0 0 1 0	1
0 1 0	0 1 0 0	0
0 1 1	0 1 0 1	1
1 0 0	0 1 1 1	0
1 0 1	1 0 0 0	1
1 1 0	1 0 1 0	0
1 1 1	1 0 1 1	1

ROM:

Soluzione 2 (2)

Tabella che descrive la funzione:

- Forma POS y_3 : (x2+x1+x0)(x2+ \bar{x} 1 + x0)(x2 + \bar{x} 1 + \bar{x} 0)(\bar{x} 2 + x1 + \bar{x} 0)
- Forma SOP $y_4 : \bar{x2}x1\bar{x0} + \bar{x2}x1x0 + x2\bar{x1}\bar{x0}$

 $y_2 = x1x0 + \bar{x1}\bar{x0}$

Soluzione 2 (3)

•
$$y_2 = x1x0 + \bar{x1}\bar{x0} = x1x0 + \overline{x1} + x0$$
 De N

De Morgan su $x\bar{1}x\bar{0}$

$$\underline{x1x0 + \overline{x1 + x0}} = \underline{x1x0(x1 + x0)} =$$

De Morgan su $x1x0 + \overline{x1 + x0}$

•
$$\overline{\overline{x1x0}}(x1+x0) = (\overline{\overline{x1x0}})(\overline{\overline{x1x0}})$$

De Morgan su x1 + x0

•
$$(\overline{x1x0})(\overline{x1x0}) = (\overline{x1x0})(\overline{(\overline{x1x1})(\overline{x0x0})}))$$

Definizione NOT con porte NAND su $\bar{x1}, \bar{x0}$

Esercizio 3- Traccia

Analisi rete fino alla scrittura dell'automa senza output:

- 1 Scrivere le espressioni booleane associate alle entrate dei FF
- 2 Usare assiomi algebra di Boole (specificando quali) e altri operatori logici per semplificare l'espressione ottenuta per D_0
- \bigcirc Scrivere in forma canonica disgiuntiva l'espressione ottenuta nel punto 1 per D_0
- 4 Scrivere la tabella degli stati futuri
- 5 Ricavare dalla tabella l'automa senza output assumendo che inizialmente entrambi i flip flop contengano valore 0

Es. Sistemi Digitali 06/12/2022

14/23

Soluzione 3 (1)

$$D_0 = (\bar{x}\bar{y_1})y_0 + (\bar{x}y_1)\bar{y_0} + (x\bar{y_1})\bar{y_1} + +(xy_1)x = \bar{x}y_0\bar{y_1} + \bar{x}\bar{y_0}y_1 + x\bar{y_1} + xy_1$$

$$J_1 = \bar{y_0}x$$

$$K_1 = \overline{\bar{y_0}x}$$

Semplificazione D_0 :

Proprietà distributiva-

$$\bar{x}y_0\bar{y_1} + \bar{x}\bar{y_0}y_1 + x\bar{y_1} = \bar{x}(y_0\bar{y_1} + \bar{y_0}y_1) + x(\bar{y_1} + y_1) =$$

Elemento neutro e elemento

complementare-=
$$\bar{x}(y_0\bar{y_1} + \bar{y_0}y_1) + x =$$

Definizione XOR-= $\bar{x}(y_0 \oplus y_1) + x$

Soluzione 3 (2)

 D_0 in forma canonica disgiuntiva:

$$\bar{x}y_0\bar{y_1} + \bar{x}\bar{y_0}y_1 + x\bar{y_1} + xy_1 =$$

$$= \bar{x}y_0\bar{y_1} + \bar{x}\bar{y_0}y_1 + x\bar{y_1}(y_0 + \bar{y_0}) + xy_1(y_0 + \bar{y_0}) =$$

$$\bar{x}y_0\bar{y_1} + \bar{x}\bar{y_0}y_1 + x\bar{y_1}y_0 + x\bar{y_1}\bar{y_0} + xy_1y_0 + xy_1\bar{y_0}$$

Tabella stati futuri:

\mathbf{Q}_1	\mathbf{Q}_0	x	J_1	K ₁	$\mathbf{D_0}$	Q ₁ '	Q ₀ '
0	0	0	0	1	0	0	0
0	0	1	1	0	1	1	1
0	1	0	0	1	1	0	1
0	1	1	0	1	1	0	1
1	0	0	0	1	1	0	1
1	0	1	1	0	1	1	1
1	1	0	0	1	0	0	0
1	1	1	0	1	1	0	1

Soluzione 3 (3)

In base ai valori di Q_1 e Q_0 :

• *S*₀: (0,0)

• *S*₁: (0,1)

• *S*₂: (1,0)

• *S*₃: (1,1)

Stato Presente	x	Stato Futuro
S_0	0	S_0
S_0	1	S ₃
S_3	0	S_0
S_3	1	S_1
\mathbf{S}_1	0	S_1
\mathbf{S}_1	1	S_1

Soluzione 3 (4)

Non essendo S_2 raggiungibile da S_0 :

Esercizio 4- Traccia

Analisi rete fino alla scrittura dell'automa senza output:

- 1 Scrivere le espressioni booleane associate alle entrate dei FF
- 2 Scrivere in forma canonica congiuntiva l'espressione ottenuta per D₀ specificando assiomi algebra di Boole usati
- \bigcirc Scrivere in forma canonica disgiuntiva l'espressione ottenuta per J_1
- 4 Scrivere la tabella degli stati futuri
- 5 Ricavare dalla tabella l'automa senza output assumendo che inizialmente entrambi i flip flop contengano valore 0

Soluzione 4 (1)

$$D_0 = y_1 + \bar{x}y_0$$
 $J_1 = (\bar{x}\bar{y_0})y_1 + (x\bar{y_0})y_0 = \bar{y_0}\bar{x}y_1 + x\bar{y_0}$
 $K_1 = xy_0$

- Semplificazione D_0 : Proprietà distributiva- $y_1 + \bar{x}y_0 = (y_1 + \bar{x})(y_1 + y_0) =$ Elemento complementare-= $(y_1 + \bar{x} + y_0\bar{y_0})(y_1 + y_0 + x\bar{x}) =$ Proprietà distributiva-= $(x + y_0 + y_1)(\bar{y_0} + y_1 + \bar{x})(\bar{x} + y_0 + y_1)(\bar{x} + y_0 + y_1) =$ Idempotenza-= $(x + y_0 + y_1)(\bar{y_0} + y_1 + \bar{x})(\bar{x} + y_0 + y_1)$
- J_1 in forma normale disgiuntiva: $\bar{y_0}\bar{x}y_1 + x\bar{y_0} = \bar{y_0}\bar{x}y_1 + x\bar{y_0}(y_1 + \bar{y_1}) = \bar{y_0}\bar{x}y_1 + x\bar{y_0}y_1 + x\bar{y_0}\bar{y_1}$

Soluzione 4 (2)

Tabella stati futuri:

\mathbf{Q}_1	Q_0	X	J_1	K ₁	$\mathbf{D_0}$	Q ₁ '	Q ₀ '
0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	1
0	1	1	0	1	0	0	0
1	0	0	1	0	1	1	1
1	0	1	1	0	1	1	1
1	1	0	0	0	1	1	1
1	1	1	0	1	1	0	1

Soluzione 4 (3)

In base ai valori di Q_1 e Q_0 :

• *S*₀: (0,0)

S₁: (0,1)
S₂: (1,0)

• S₃: (1,1)

Stato Presente	x	Stato Futuro
S_0	0	S_0
S_0	1	S_2
S_2	0	S_3
S_2	1	S ₃
S_3	0	S ₃
S_3	1	S_1
S_1	0	S_1
S_1	1	S_0

Soluzione 4 (4)

