Lógica y Computabilidad Apunte 1er Parcial

Sebastián Taboh

28 de septiembre de 2017

Este es un apunte de los temas del primer parcial de la cursada de Lógica y Computabilidad de verano de 2017, y contiene extractos de apuntes hechos por docentes de la materia así como agregados personales.

Cabe aclarar que las referencias a las guías de ejercicios son las de ese cuatrimestre y que puede haber cambios en los temas que se aborden en distintas cursadas. Además, el fin del apunte **no** es explicar los temas, es un apunte útil para llevar al parcial.

En caso de encontrar errores, por favor comunicarlo por mail a sebi_282@hotmail.com.

Índice

1.	Fun	ciones primitivas recursivas y clases PRC
	1.1.	Lista de funciones p.r.
		Demostraciones de algunas funciones p.r
		Otros resultados
2.	Fun	ciones S -computables
	2.1.	Codificación de variables y etiquetas en \mathcal{S}
		Codificación de instrucciones en $\mathcal S$
		Codificación de programas en ${\mathcal S}$
		Universalidad
		Step Counter
		Snapshot
		Macros útiles
		Otros resultados
3.		ciones no computables y conjuntos c.e
	3.1.	Conjuntos en teoría de la computabilidad
		3.1.1. Conjuntos y funciones no computables
		3.1.2. Conjuntos no c.e
		3 1 3 Conjuntos c e

1. Funciones primitivas recursivas y clases PRC

1.1. Lista de funciones p.r.

- Aritméticas
 - \bullet x+y
 - *x* * *y*
 - x^y
 - *x*!
 - $\bullet x \dot{-} y$
 - \bullet p(x)
 - $\bullet |x-y|$
 - \bullet $\alpha(x)$
 - $m\acute{a}x\{x,y\}$
 - $min\{x,y\}$
 - $\bullet \ \left\lfloor \frac{x}{y} \right\rfloor$
 - resto(x, y)
 - raiz(x, y)
 - nprimo(i)
- Pares
 - $\langle x, y \rangle$
 - *l*(*z*)
 - \bullet r(z)
- lacksquare Sobre predicados: las últimas 6 funciones son p.r. si el predicado P es p.r.
 - \bullet x = y
 - $x \leq y$
 - x < y
 - ¬P
 - \bullet $P \lor Q$
 - \bullet $P \wedge Q$
 - $\bullet y|x$
 - \bullet primo(x)
 - \bullet par(x)
 - $cantidad_P(x_1, ..., x_n, y, z)$
 - $todos_P(x_1,...,x_n,y,z)$
 - $alguno_P(x_1,...,x_n,y,z)$

- $minimo_P(x_1, ..., x_n, y, z)$
- $m\acute{a}ximo_P(x_1,...,x_n,y,z)$
- $único_P(x_1,...,x_n,y,z)$

Secuencias

- Codificación de secuencias
- \bullet |xs|
- *xs*[*i*]
- [x]: crea la lista con el elemento x
- $m\acute{a}x(xs)$: devuelve el máximo elemento de la lista
- \bullet divisores Comunes (xs, ys): da la lista de divisores comunes
- \bullet pertenece(x, xs)
- ullet subsecuencia (xs, d, h): da la subsecuencia desde el índice d hasta h
- insertar(i, x, xs): insertar en la posición i el elemento x en la lista xs y desplazar los elementos desde la posición i un lugar
- \bullet concatenar(xs, ys)
- $filtrar_P(xs)$: da la lista de los elementos de xs que cumplen el predicado P
- \bullet suma(xs)
- \bullet producto(xs)
- cuántos(x, xs): cuenta las apariciones de x en xs
- mismos(xs, ys): indica si están los mismos elementos en las mismas cantidades
- invertir(xs): invierte la lista
- \bullet ordenar(xs)

1.2. Demostraciones de algunas funciones p.r

- $\mathbf{p}(x)$
- |x-y|
- \blacksquare [x]: crea la lista con el elemento x
- $\mathbf{m} \, m \, ax(xs)$: devuelve el máximo elemento de la lista

$$m\acute{a}x(xs) = \min_{t \le xs} \bigg((\forall \ j)_{\le |xs|} (xs[j] \le t) \bigg)$$

- $\qquad pertenece(x,xs) = (\exists i)_{\leq |xs|} \ (1 \leq i \land xs[i] = x)$
- \blacksquare subsecuencia (xs, d, h): da la subsecuencia desde el índice d hasta h

$$subsecuencia(xs,d,h) = (d \le h) * \prod_{i=0}^{h-d} p_{d+i}^{xs[d+i]} + (d > h) * []$$

• insertar(i, x, xs): insertar en la posición i (i en rango) el elemento x en la lista xs y desplazar los elementos desde la posición i un lugar

$$insertar(i, x, xs) = (1 \le i \le |xs|) * \left(\prod_{j=1}^{i-1} p_j^{xs[j]}\right) * p_i^x * \prod_{j=1}^{|xs|-i+1} p_{i+j}^{xs[i-1+j]}$$

 \blacksquare inserción Ordenada(xs,x): toma una lista ordenada y un elemento y lo inserta ordenadamente

$$inserci\'onOrdenada(xs,x) = insertar \Big(\min_{t \le |xs|} (xs[t+1] \ge x), x, xs \Big)$$

 \bullet concatenar(xs, ys)

$$concatenar(xs, ys) = concatenar'(ys, xs)$$
$$concatenar'(ys, []) = ys$$
$$concatenar'(ys, [x_1, ..., x_n]) = x_1 : (concatenar'(ys, [x_2, ..., x_n]))$$

Hay que ver que (:) (la función que agrega un elemento al principio de la lista) es p.r.

$$: (x, xs) = 2^{x} * \prod_{i=1}^{|xs|} p_{i+1}^{xs[i]}$$

Otra forma:

$$concatenar(xs, ys) = \min_{t \leq \prod_{i=1}^{|xs|+|ys|} p_i^{máx\{máx(xs), máx(ys)\}}} \left(|t| = |xs| + |ys| \right)$$

$$\wedge subsecuencia(t, 1, |xs|) = xs$$

$$\wedge subsecuencia(t, |xs| + 1, |t|) = ys$$

• $filtrar_P(xs)$: da la lista de los elementos de xs que cumplen el predicado P en el mismo orden en el que aparecían en xs (aunque haya repetidos)

$$filtrar_{P}([]) = []$$

$$filtrar_{P}([x_{1},...,x_{n}]) = P(x_{1}) * \left(x_{1} : \left(filtrar_{P}([x_{2},...,x_{n}])\right)\right) + \alpha(P(x_{1})) * filtrar_{P}([x_{2},...,x_{n}])$$

Otra forma:

$$\begin{split} \mathit{filtrar}_P(xs) &= \min_{t \leq \mathrm{cota} \dot{\mathbb{U}} \mathrm{til}(xs)} \bigg(todos_P(t,1,|t|) \\ &\quad \wedge \mathit{cantidad}_P(xs,1,|xs|) = |t| \\ &\quad \wedge (\forall \ j)_{\leq |t|} (\mathit{cu\'{a}ntos}(t[j],xs) = \mathit{cu\'{a}ntos}(t[j],t)) \bigg) \end{split}$$

lacktriangledown cota $\dot{U}til(xs)$: devuelve una cota que generalmente es útil :P

$$\cot a \text{ } \textit{Util}(xs) = \prod_{i=1}^{|xs|} p_i^{\max(xs)}$$

 \blacksquare suma(xs): devuelve la suma de los elementos de la lista

$$suma(xs) = \sum_{i=1}^{|xs|} xs[i]$$

 \blacksquare producto(xs): devuelve el producto de los elementos de la lista

$$producto(xs) = \prod_{i=1}^{|xs|} xs[i]$$

 \bullet cuántos(x, xs): cuenta las apariciones de x en xs

$$cu\'antos(x,xs) = cantidad_P(xs,x,1,|xs|)$$
 donde $P(xs,z,t) = (xs[t] = z)$ es p.r.

 \blacksquare mismos(xs, ys): indica si están los mismos elementos en las mismas cantidades

$$\mathit{mismos}(xs,ys) = \Big(|xs| = |ys| \land \ (\forall i)_{\leq |xs|}(\mathit{cu\'antos}(xs[i],xs) = \mathit{cu\'antos}(xs[i],ys))\Big)$$

1.3. Otros resultados

Se sigue del Ejercicio 5 de la Práctica 1 que:

Sea $f: \mathbb{N} \to \mathbb{N}$ una función p.r., $A \subset \mathbb{N}$ un conjunto finito, y g una función total tal que $g(x) = f(x) \ \forall \ x \notin A$, entonces g es p.r.

2. Funciones S-computables

Definición: Una función (parcial) $f: \mathbb{N}^m \to \mathbb{N}$ es \mathcal{S} -parcial computable si existe un programa P tal que $f(r_1, ..., r_m) = \Psi_P^{(m)}(r_1, ..., r_m)$ para todo $(r_1, ..., r_m) \in \mathbb{N}^m$. La función f es \mathcal{S} -computable si es parcial computable y total.

Teorema: Si $p: \mathbb{N}^{n+1} \to \{0,1\}$ es un predicado computable entonces $\min_{t} p(x_1,...,x_n,t)$ es parcial computable y $(\exists t) p(x_1,...,x_n,t)$ es parcial computable.

Teorema: La clase de funciones computables es una clase PRC.

Corolario: Toda función primitiva recursiva es computable.

2.1. Codificación de variables y etiquetas en $\mathcal S$

Ordenamos las variables

$$Y, X_1, Z_1, X_2, Z_2, \dots$$

y las etiquetas

$$A, B, C, ..., Z, AA, AB, ..., AZ, BA, ...$$

Escribimos #(V) para la posición que ocupa la variable en la lista. Ídem para #(L) con la etiqueta L. Las posiciones empiezan desde 1.

2.2. Codificación de instrucciones en S

Codificamos a la instrucción I con $\#(I) = \langle a, \langle b, c \rangle \rangle$ donde

- 1. si I tiene etiqueta L, entonces a = #(L), si no a = 0
- 2. si la variable mencionada en I es V entonces c = #(V) 1
- 3. si la instrucción I es
 - a) $V \leftarrow V$ entonces b = 0
 - b) $V \leftarrow V + 1$ entonces b = 1
 - c) $V \leftarrow V 1$ entonces b = 2
 - d) if $V \neq 0$ goto L' entonces b = #(L') + 2

En resumen, codificamos

- $\blacksquare [L] V \leftarrow V \text{ como } \langle \#(L), \langle 0, \#(V) 1 \rangle \rangle$
- $\bullet [L] V \leftarrow V + 1 \operatorname{como} \langle \#(L), \langle 1, \#(V) 1 \rangle \rangle$
- [L] IF $V \neq 0$ GOTO L' como $\langle \#(L), \langle \#(L') + 2, \#(V) 1 \rangle \rangle$

donde #(V), #(L) y #(L') indican las posiciones de V, L y L' en las enumeraciones correspondientes (#(L) es 0 si la instrucción no tiene etiqueta).

2.3. Codificación de programas en S

Un programa P es una lista (finita) de instrucciones $I_1, ..., I_k$. Codificamos al programa P con

$$\#(P) = [\#(I_1), ..., \#(I_k)] - 1$$

La instrucción final de un programa no puede ser $Y \leftarrow Y$.

 $\text{Halt}(x,y): \mathbb{N}^2 \to \{0,1\}$ es verdadero sii el programa con número y y entrada x no se indefine.

$$HALT(x,y) = \begin{cases} 1 & \text{si } \Psi_P^{(1)}(x) \downarrow \\ 0 & \text{si no} \end{cases}$$

2.4. Universalidad

Para cada n > 0 definimos, dado un programa P tal que #(P) = e,

$$\Phi^{(n)}(x_1,...,x_n,e)=\Psi_P^{(n)}(x_1,...,x_n)=$$
salida del programa e con entrada $x_1,...,x_n$

Teorema: Para cada n > 0 la función $\Phi^{(n)}$ es parcial computable.

2.5. Step Counter

Definimos

 $\mathrm{STP}^{(n)}(x_1,...,x_n,e,t)=\mathrm{el}$ programa e termina en t o menos pasos con entrada $x_1,...,x_n$

Teorema: Para cada n > 0, el predicado $STP^{(n)}(x_1, ..., x_n, e, t)$ es p.r.

2.6. Snapshot

Definimos

 $SNAP^{(n)}(x_1,...,x_n,e,t) = representación de la configuración instantánea del programa <math>e$ con entrada $x_1,...,x_n$ en el paso t

= $\langle \text{número de instrucción, lista de valores de las variables} \rangle$ en el paso t de la ejecución del programa e con entrada $(x_1, ..., x_n)$ donde el orden de las variables en la lista es $Y, X_1, Z_1, X_2, Z_2, ...$

Teorema: Para cada n > 0, el predicado SNAP⁽ⁿ⁾ $(x_1, ..., x_n, e, t)$ es p.r.

2.7. Macros útiles

- $V_i \leftarrow k$
- $V_i \leftarrow V_j + k$
- IF $V_i = 0$ Goto L
- ullet Goto L
- IF $r(V_1,...,V_n)$ GOTO L donde $r:\mathbb{N}^n\to\{0,1\}$ es un predicado p.r.
- IF $r(V_1, ..., V_n)$ THEN P ELSE Q donde P y Q son dos programas autocontenidos con etiquetas disjuntas y $r: \mathbb{N}^n \to \{0,1\}$ es un predicado p.r.
- WHILE $r(V_1, ..., V_n)$ P donde P y Q son dos programas autocontenidos con etiquetas disjuntas y $r: \mathbb{N}^n \to \{0,1\}$ es un predicado p.r.

2.8. Otros resultados

Se sigue del Ejercicio 5 de la Práctica 2 que:

Sean $f: \mathbb{N} \to \mathbb{N}$ una función biyectiva y S-computable (total) y $g, h: \mathbb{N} \to \mathbb{N}$ con h S-computable tales que

$$f \circ g = h$$

Entonces g es computable.

3. Funciones no computables y conjuntos c.e

Teorema de la Forma Normal: Sea $f: \mathbb{N}^n \to \mathbb{N}$ una función parcial computable. Entonces existe un predicado p.r. $P: \mathbb{N}^{n+1} \to \mathbb{N}$ tal que

$$f(x_1, ..., x_n) = l\left(\min_{z} P(x_1, ..., x_n, z)\right)$$

Teorema: Una función es parcial computable si se puede obtener a partir de las funciones iniciales por un número finito de aplicaciones de

- composición,
- recursión primitiva y
- minimización

Teorema: Una función es computable si se puede obtener a partir de las funciones iniciales por un número finito de aplicaciones de

- composición,
- recursión primitiva y
- minimización propia ($\min_t q(x_1, ..., x_n, t)$ donde siempre existe al menos un t tal que $q(x_1, ..., x_n, t)$ es verdadero)

Teorema del Parámetro: Para cada n,m>0 hay una función p.r. inyectiva $S_m^n:\mathbb{N}^{n+1}\to\mathbb{N}$ tal que

 $\Phi_y^{(n+m)}(x_1,...,x_m,u_1,...,u_n) = \Phi_{S_m^n(u_1,...,u_n,y)}^{(m)}(x_1,...,x_m)$

Teorema de la Recursión: Si $g: \mathbb{N}^{n+1} \to \mathbb{N}$ es parcial computable, existe un e tal que

$$\Phi_e^{(n)}(x_1, ..., x_n) = g(e, x_1, ..., x_n)$$

Corolario: Si $g: \mathbb{N}^{n+1} \to \mathbb{N}$ es parcial computable, existen infinitos e tal que

$$\Phi_e^{(n)}(x_1, ..., x_n) = g(e, x_1, ..., x_n)$$

Proposición: Sea h parcial computable. Hay infinitos e tales que $\Phi_e(x) = h(e)$.

Teorema del Punto Fijo: Si $f: \mathbb{N} \to \mathbb{N}$ es computable, existe un e tal que $\Phi_{f(e)} = \Phi_e$.

3.1. Conjuntos en teoría de la computabilidad

Teorema: Sean A, B conjuntos de una clase PRC \mathcal{C} . Entonces $A \cup B$, $A \cap B$ y \overline{A} están en \mathcal{C} .

Definición: Un conjunto A es computablemente enumerable (c.e) cuando existe una función parcial computable $g: \mathbb{N} \to \mathbb{N}$ tal que

$$A = \{x : g(x) \downarrow\} = Dom(g)$$

Definición: Un conjunto A es co-c.e. si \overline{A} es c.e.

Teorema: Si A es computable entonces es c.e.

Teorema: Si A y B son c.e. entonces $A \cup B$ y $A \cap B$ también son c.e.

Teorema: A es computable sii $A y \overline{A}$ son c.e.

Definición: Definimos $W_n = \{x : \Phi_n(x) \downarrow\} = \text{dominio del } n\text{-\'esimo programa}.$

Teorema: Un conjunto A es c.e. sii existe un n tal que $A = W_n$.

Teorema: $K = \{n : n \in W_n\} = \{n : \Phi_n(n) \downarrow\} = \{n : \text{HALT}(n,n)\}$ es c.e. pero no computable.

Teorema: Si A es c.e., existe un predicado p.r. $P:\mathbb{N}^2\to\mathbb{N}$ tal que

$$A = \{x : (\exists t)P(x,t)\}\$$

Teorema: Si $A \neq \emptyset$ es c.e., existe una función p.r. $f: \mathbb{N}^2 \to \mathbb{N}$ tal que

$$A = \{f(0), f(1), f(2), ...\}$$

Teorema: Si $f: \mathbb{N} \to \mathbb{N}$ es parcial computable, $A = \{f(x): f(x) \downarrow\}$ es c.e.

Teorema: Si $A \neq \emptyset$, son equivalentes:

- 1. *A* es c.e.
- $2.\ A$ es el dominio de una función parcial computable.
- 3. A es la imagen de una función p.r.
- 4. A es la imagen de una función computable.
- 5. A es la imagen de una función parcial computable.

Definición: $A \subseteq \mathbb{N}$ es un conjunto de índices si existe una clase \mathcal{C} de funciones $\mathbb{N} \to \mathbb{N}$ parciales computables tal que $A = \{x : \Phi_x \in \mathcal{C}\}.$

Teorema de Rice: Si $A \subseteq \mathbb{N}$ es un conjunto de índices, $A \neq \emptyset$, A no es computable.

3.1.1. Conjuntos y funciones no computables

- $\{x: \Phi_x \text{ tiene dominio infinito}\}$
- $\{x: \Phi_x \text{ es primitiva recursiva}\}$
- $K = \{x : HALT(x, x)\}$
- $Tot = \{x : \Phi_x \text{ es total}\}$
- HALT(x,y)

3.1.2. Conjuntos no c.e.

- $\blacksquare \ \overline{K} = \{x : \Phi_x(x) \uparrow\}$
- \blacksquare Tot

3.1.3. Conjuntos c.e.

 $\blacksquare K$