Sistemi a tempo discreto

Gulino Giorgia January 31, 2018

Contents

1	MA	CCHINE A STATI
	1.1	Deterministica
	1.2	Output-Deterministico
	1.3	Non-Deterministico
	1.4	Non-Deterministico, Progressiva
	1.5	Equivalenza
	1.6	Raffinamento
	1.7	Bisimulazione
	1.8	Isomorfe
	1.9	Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSD
	1.10	Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSpseudo-
		nondet
	1.11	Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSND
		Simulazione per Det \rightarrow M1 da M2
		Simulazione per Output-Det
		Simulazione
		Bisimulazione per Det
		•
2	LIN	GUAGGI
	2.1	Il linguaggio K è controllabile?
	2.2	Osservabilità

1 MACCHINE A STATI

1.1 Deterministica

Solo uno stato iniziale e per ogni stato e per ogni input c'è solo 1 stato successivo. Se M2 è \mathbf{DET} allora M1 è simulata da M2 sse è equivalente a M2.

1.2 Output-Deterministico

Solo uno stato iniziale e per ogni stato e ogni coppia di I/O c'è 1 solo stato successivo. Se M2 è **Output-Det** allora M2 **simula** M1 sse M1 **raffina** M2.

Deterministico implica Output-Det, ma **non** viceversa.

1.3 Non-Deterministico

Può esserci più di uno stato iniziale e per ogni stato e ogni coppia di I/O può esserci + di uno stato successivo. Se M2 è NON-DET, M1 è **simulata** da M2 allora M1 **raffina** M2, ma non viceversa.

1.4 Non-Deterministico, Progressiva

Progressiva significa che l'evoluzione è definita per ogni ingresso, cioè la funzione è definita come: Stati x ingressi \rightarrow P(Stati x uscite)/insieme vuoto, dove P rappresenta l'insieme potenza e l'insieme vuoto impone che sia progressiva.

1.5 Equivalenza

- X Det: input[M1]=input[M2]; output[M1]=output[M2].
- X Non-det: comportamento[M1]=comportamento[M2].
- Cioè se M1 raffina m2 e viceversa.
- C'è equivalenza se c'è bisimulazione.

1.6 Raffinamento

M1 raffina M2 sse input[M1]=input[M2]; output[M1]=output[M2] e comportamento[M1] \subseteq comportamento[M2].

1.7 Bisimulazione

Bisimulazione tra M1 e M2 sse l'unione delle **simulazioni** è simmetrica e c'è **isomorfismo** tra minimize(M1) e minimize(M2).

1.8 Isomorfe

Si dicono isomorfe se hanno lo stesso numero di stati con nome uguale.

1.9 Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSD

Se M1 è det, M1 è **simulata** da M2 sse M1 è equivalente a M2, cioè se M1 raffina M2 e viceversa.

1.10 Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSpseudo-nondet

Se M2 è psuedo-non det, M1 è **simulata** da M2 sse M1 è equivalente a M2, cioè se M1 **raffina** M2.

1.11 Rel. RAFFINAMENTO/SIMULAZIONE AFSND \rightarrow AFSND

Se M2 non è deterministica, M1 è **simulata** da M2 implica M1 **raffina** M2, ma M1 raffina M2 non implica M1 **simula** M2.

1.12 Simulazione per Det \rightarrow M1 da M2

- $\forall p \in PossibiliInitialState[M1], \exists q \in PossibiliInitialState[M2], (p,q) \in S.$
- $\forall p \in Stati[M1], \forall q \in Stati[M2].$
 - if (p,q) ∈ S ⇒ ∀ x ∈ Input, ∀ y ∈ Output, ∀ p1 ∈ Stati[M1];
 - if (p1,y) ∈ PossibiliUpdates[M1](p,x) ⇒ \exists q1 ∈ Stati[M1], (q1,y) ∈ PossibiliUpdates[M2](q,x) e (p1,q1) ∈ S. (S contiene coppie di stati iniziali e coppie consultanti l'algoritmo).
 - $\forall p \in Stati[M1] \exists q \in Stati[M2] per cui \forall I/O possibili c'è corrispondenza tra I/O uguali di p e <math>(p,q) \in S$.

1.13 Simulazione per Output-Det

Data M ASFND trova la macchina output-det $\det(M)$ equivalente a M. SUBSET CONSTRUCTION

- InitialState[det(M)] = PossibileInitialState[M]
- $\bullet \ States[det(M)] = InitialState[det(M)]$
- Ripeti finché nuove transizioni possono essere aggiunte a det(M). Scegli
 - $P \in States[det(M)] e(x,y) \in Input x Output$
 - Q = q \in States[M] \exists p \in P, (q,y) \in PossibleUpdates[M](p,x) Se Q \neq 0 allora States[det(M)]= States[det(M)] \cup Q Update[det(M)](p,x)=(q,y)

Raggruppa tutti gli stati iniziali, \forall coppia I/O raggruppa tutti gli stati per cui quest'ultima è Possibleupdate.

1.14 Simulazione

- Se p \in Possible InitialState[M1] e Possible InitialState[m2] = q \Rightarrow (p,q) \in S.
- Se $(p,q) \in S$ e $(p1,y) \in PossibleUpdates[M1](p,x)$ e PossibleUpdates[M2](q,x) = q.

1.15 Bisimulazione per Det

Una relazione binaria B è una bisimulazione sse:

- InitialState[M1], InitialState[M2] \in B
- \forall p \in Stati[M1], \forall q \in Stati[M2]:
 - if $(p,q) \in B \Rightarrow \forall \ x \in Input[M1], Output[M1](p,x) = Output[M2](q,x)$ (nextState[M1](p,x),nextState[M2](q,x)) ∈ B. Stati iniziali di M1 e M2 sono in relazione e ogni coppia (p,q) relazionati, \forall input producono lo stesso output e nextState Relazionati.

2 LINGUAGGI

2.1 Il linguaggio K è controllabile?

Siano K e $M = \overline{M}$ linguaggi dell'alfabeto di eventi E, con $E_{uc} \subseteq E$. Si dice che K è controllabile rispetto a M e E_{uc} se per tutte le stringhe $s \in \overline{K}$ e per tutti gli eventi $\sigma \in E_{uc}$ si ha : $s\sigma \in M \Rightarrow s\sigma \in \overline{K}$. (Equivalente a $\overline{K}E_{uc} \cap M \subseteq \overline{K}$.) Per la def di controllabilità si ha che K è controllabile sse \overline{K} è controllabile.

2.2 Osservabilità

Si considerino i linguaggi K e $M = \overline{M}$ definiti sull'alfabeto di eventi E, con $E_c \subseteq E$, $E_c \subseteq E$ e P la proiezione naturale da $E^* \Rightarrow E_0^*$.

Si dice che K è osservabile rispetto a M, E_o, E_c se per tutte le stringhe $s \in \overline{K}$ e per tutti gli eventi $\sigma \in E_c$ abbiamo:

$$(s\sigma \notin K) \land (s\sigma \in M) \Rightarrow P^{-1}[P(s)] \sigma \cap \overline{K} = \emptyset$$

L'insieme di stringhe denotato dal termine $P^{-1}[P(s)]$ $\sigma \cap \overline{K}$ contiene tutte le stringhe che hanno la medesiman proiezione di s e possono essere prolungate in K con il simbolo σ . SE tale insieme non è vuoto, allora K contiene due stringhe s e s' tali che P(s)=P(s') per cui $s\sigma \notin \overline{K}$ e s' $\sigma \in \overline{K}$. Tali due stringhe richiederebbero un'azione di controllo diversa rispetto a σ (disabilitare σ nel caso di s, abilitare σ nel caso di s'), ma un supervisore non saprebbe distinguere tra s e s' per l'osservabilità ristretta. Non potrebbe quindi esistere un supervisore che ottiene esattamente il linguaggio \overline{K} .