EXERCÍCIOS 14.1

- No Exemplo 2 consideramos a função W = f(T, v), onde W era o índice de sensação térmica ocasionado pelo vento, T, a temperatura real e v, a velocidade do vento. A representação numérica foi fornecida pela Tabela 1.
 - (a) Qual o valor de f (−15, 40)? Qual seu significado?
 - (b) Descreva em palavras o significado da questão "Para quais valores de v é verdade que f(-20, v) = -30?". Em seguida, responda à questão.
 - (c) Descreva o significado da questão "Para quais valores de T vale f(T, 20) = -49?". Em seguida, responda à questão.
 - (d) Qual o significado da função W = f(-5, v)? Descreva o comportamento dessa função.
 - (e) Qual o significado da função W = f(T,50)? Descreva o comportamento dessa função.
- 2. O indice I de temperatura-umidade (ou simplesmente humidex) é a temperatura aparente do ar quando a temperatura real é T e a umidade relativa é h, de modo que podemos escrever I = f(T, h). A tabela seguinte com valores de I foi extraída de uma tabela do Environment Canada.

TABELA 3 Temperatura aparente como função da temperatura e da umidade

			Umida	ide relati	va (%)		
	T	20	30	40	50	60	70
Temperatura real (°C)	20	20	20	20	21	22	23
	25	25	25	26	28	30	32
	30	30.	31	:34	36	38	41
	35	36%	39	42	-45	48	51
	40	43	47	51	55	59	63

- (a) Qual é o valor de f (35, 60)? Qual é o seu significado?
- (b) Para que valor de h temos f(30, h) = 36?
- (c) Para que valor de T temos f(T, 40) = 42?
- (d) Qual o significado de I = f(20, h) e I = f(40, h)? Compare o comportamento dessas duas funções de h.
- Verifique que, para a função de produção de Cobb-Douglas $P(L, K) = 1.01L^{0.75}K^{0.25}$

discutida no Exemplo 3, a produção dobrará se as quantidades de trabalho e a de capital investido forem dobradas. Determine se isto também é verdade para uma função de produção genérica

$$P(L, K) = bL^{\alpha}K^{1-\alpha}$$

 O índice de sensação térmica W discutido no Exemplo 2 foi modelado pela seguinte função:

$$W(T, v) = 13.12 + 0.6215T - 11.37v^{0.16} + 0.3965Tv^{0.36}$$

Verifique quão próximo este modelo está dos valores da Tabela 1 para alguns valores de T e v.

- A altura das ondas h em mar aberto depende da velocidade do vento v e do intervalo de tempo t no qual está ventando com a mesma velocidade. Os valores da função h = f(v, t), dados em pés, são apresentados na tabela a seguir.
 - (a) Qual é o valor de f (80, 15)? Qual é o seu significado?
 - (b) Qual o significado da função h = f (60, t)? Descreva seu comportamento.
 - (c) Qual o significado da função h = f(v, 30)? Descreva seu comportamento.

William Committee of	and the second
Duração (horas.

v	5	10	15	20	30	40	50
20	0,6	0.0	0,6	0.6	0.6	0,6	0,0
30	1.2	1.3	1,5	1.5	1,5	1,6	1,6
40	1.5	2.2	2,4	2.5	2.7	2,8	2.8
60	2.8	4.0	4,9	5.2	5.5	5.8	5,9
80	4.3	6.4	7.7	8.6	9.5	10,1	10,2
100	5.8	8,9	11,0	12,2	13.8	14,7	15,3
120	7.4	11.3	14,4	16.6	19.0	20.5	21,1

- 6. Seja $f(x, y) = \ln(x + y 1)$.
 - (a) Calcule f (1, 1).
 - (b) Calcule f (e, I).
 - (c) Determine e esboce o domínio de f.
 - (d) Determine a imagem de f.
- 7. Seja $f(x, y) = x^2 e^{3xy}$.
 - (a) Calcule f (2,0).
 - (b) Determine o domínio de f.
 - (c) Determine a imagem de f.
- Determine e esboce o domínio da função $f(x, y) = \sqrt{1 + x y^2}$. Qual é a imagem de f?
- 9. Seja $f(x, y, z) = e^{\sqrt{z-x^2-y^2}}$.
 - (a) Calcule f (2, -1, 6).
 - (b) Determine o domínio de f.
 - (c) Determine a imagem f.
- 10. Seja $g(x, y, z) = \ln(25 x^2 y^2 z^2)$.
 - (a) Calcule g(2, -2, 4).
 - (b) Determine o domínio de g.
 - (c) Determine a îmagem de g.
- 11-20 Determine e faça o esboço do domínio da função.
- $H. f(x, y) = \sqrt{x + y}$
- 12. $f(x, y) = \sqrt{xy}$
- 13. $f(x, y) = \ln(9 x^2 9y^2)$
- 14. $f(x, y) = \sqrt{y x} \ln(y + x)$

- **15.** $f(x, y) = \sqrt{1 x^2} \sqrt{1 y^2}$
- **16.** $f(x, y) = \sqrt{y} + \sqrt{25 x^2 y^2}$
- 17. $f(x,y) = \frac{\sqrt{y-x^2}}{1-x^2}$
- **18.** $f(x, y) = \arcsin(x^2 + y^2 2)$
- 19. $f(x, y, z) = \sqrt{1 x^2 y^2 z^2}$
- **20.** $f(x, y, z) = \ln(16 4x^2 4y^2 z^2)$
- 21-29 Esboce o gráfico da função.
- **21.** f(x, y) = 3
- **22.** f(x, y) = y
- **23.** f(x,y) = 10 4x 5y **24.** $f(x,y) = \cos x$

- **25.** $f(x, y) = y^2 + 1$ **26.** $f(x, y) = 3 x^2 y^2$ **27.** $f(x, y) = 4x^2 + y^2 + 1$ **28.** $f(x, y) = \sqrt{16 x^2 16y^2}$
- **29.** $f(x, y) = \sqrt{x^2 + y^2}$
- 30. Faça uma correspondência entre a função e seu gráfico (indicado por I-VI). Dê razões para sua escolha.
 - (a) f(x, y) = |x| + |y|
- (b) f(x, y) = |xy|
- (c) $f(x, y) = \frac{1}{1 + x^2 + y^2}$
- (d) $f(x,y) = (x^2 y^2)^2$
- (e) $f(x, y) = (x y)^2$
- (f) f(x, y) = sen(|x| + |y|)

31. É mostrado um mapa de contorno da função f. Use-o para estimar o valor de f(-3,3) e f(3,-2). O que você pode dizer sobre a forma do gráfico?

32. Dois mapas de contorno são mostrados na figura. Um é de uma função f cujo gráfico é um cone. O outro é de uma função g cujo gráfico é um paraboloide. Qual é qual? Por quê?

- 33. Localize os pontos A e B no mapa da Montanha Solitária (Figura 12). Como você descreveria o terreno perto de A? E perto de B?
- 34. Faça um esboço do diagrama de contorno da função cujo gráfico é mostrado.

35-38 Um mapa de contorno de uma função é mostrado. Use-o para fazer um esboço do gráfico da f.

36.

39-46 Faça o mapa de contorno da função mostrando várias curvas de nível.

39.
$$f(x, y) = (y - 2x)^2$$

40.
$$f(x, y) = x^3 - y$$

41.
$$f(x, y) = y - \ln x$$

42.
$$f(x, y) = e^{y/x}$$

43.
$$f(x,y) = ye^x$$

44.
$$f(x, y) = y \sec x$$

45.
$$f(x, y) = \sqrt{y^2 - x^2}$$

46.
$$f(x, y) = y/(x^2 + y^2)$$

47-48 Faça o esboço do mapa de contorno e do gráfico da função e compare-os.

47.
$$f(x, y) = x^2 + 9y^2$$

48.
$$f(x, y) = \sqrt{36 - 9x^2 - 4y^2}$$

49. Uma placa fina de metal, localizada no plano xy, tem temperatura T(x, y) no ponto (x, y). As curvas de nível de T são chamadas isotérmicas porque todos os pontos em uma isotérmica têm a mesma temperatura. Faça o esboço de algumas isotérmicas se a função temperatura for dada por

$$T(x, y) = 100/(1 + x^2 + 2y^2)$$

 Se V(x, y) é o potencial elétrico de um ponto (x, y) do plano xy, as curvas de nível de V são chamadas curvas equipotenciais, porque nelas todos os pontos têm o mesmo potencial elétrico. Esboce algumas curvas equipotenciais de

$$V(x, y) = c/\sqrt{r^2 - x^2 - y^2}$$
, onde c é uma constante positiva.

§ 51-54 Use um computador para traçar o gráfico da função utilizando vários pontos de vista. Imprima a que, em sua opinião, oferece a melhor visão. Se seu programa também produz curvas de nível, trace o mapa de contorno da mesma função e compare.

51.
$$f(x, y) = e^{-x^2} + e^{-2y^2}$$

52.
$$f(x, y) = (1 - 3x^2 + y^2)e^{1-x^2-y^2}$$

53.
$$f(x, y) = xy^2 - x^3$$
 (sela do macaco)

54.
$$f(x, y) = xy^3 - yx^3$$
 (sela do cachorro)

55-60 Faça uma correspondência entre a função (a) e seu gráfico (indicado por A-F na página 828), (b) e seus mapas de contorno (indicado por I-VI). Justifique sua escolha.

55.
$$z = \text{sen}(xy)$$

56.
$$z = e^t \cos y$$

57.
$$z = \text{sen}(x - y)$$

58.
$$z = \sin x - \sin y$$

59.
$$z = (1 - x^2)(1 - y^2)$$

59.
$$z = (1 - x^2)(1 - y^2)$$
 60. $z = \frac{x - y}{1 + x^2 + y^2}$

61-64 Descreva as superfícies de nível da função.

61.
$$f(x, y, z) = x + 3y + 5z$$

62.
$$f(x, y, z) = x^2 + 3y^2 + 5z^2$$

63.
$$f(x, y, z) = x^2 - y^2 + z^2$$

64.
$$f'(x, y, z) = x^2 - y^2$$

65-66 Descreva como o gráfico de q é obtido a partir do gráfico de f.

65. (a)
$$g(x, y) = f(x, y) + 2$$

(b)
$$g(x, y) = 2f(x, y)$$

(c)
$$g(x, y) = -f(x, y)$$

(d)
$$g(x, y) = 2 - f(x, y)$$

66. (a)
$$g(x, y) = f(x - 2, y)$$

(b)
$$g(x, y) = f(x, y + 2)$$

(c)
$$g(x, y) = f(x + 3, y - 4)$$

67-68 Utilize um computador para traçar o gráfico da função, utilizando vários pontos de vista e tamanhos de janela. Imprima aquela que apresente melhor os "picos e vales". Você acha que essa função tem um valor máximo? Você poderia identificar os pontos do gráfico correspondentes aos "máximos locais"? E aos "mínimos locais"?

67.
$$f(x, y) = 3x - x^4 - 4y^2 - 10xy$$

68.
$$f(x, y) = xye^{-x^2-y^2}$$

69-70 Utilize um computador para traçar o gráfico da função, usando vários pontos de vista e tamanhos de janela. Comente o comportamento da função no limite. O que acontece quando x e y se tornam muito grandes? O que acontece quando (x, y) se aproxima da origem?

69.
$$f(x,y) = \frac{x+y}{x^2+y^2}$$
 70. $f(x,y) = \frac{xy}{x^2+y^2}$

70.
$$f(x, y) = \frac{xy}{x^2 + y}$$

71. Utilize um computador para estudar o comportamento da família de funções $f(x, y) = e^{(x^2+y^2)}$. Como a forma da função é afetada por uma mudança do valor de c?

72. Use um computador para investigar a familia de superfícies

$$z = (ax^2 + by^2)e^{-a^2-y^2}$$

Como a forma do gráfico depende dos números a e b?

73. Use um computador para investigar a família de superfícies $z = x^2 + y^2 + cxy$. Em particular, você deve determinar os valores de transição para os quais a superfície muda de um tipo de superfície quádrica para outro.

74. Esboce o gráfico das funções

$$f(x, y) = \sqrt{x^2 + y^2}$$

$$f(x, y) = \ln \sqrt{x^2 + y^2}$$

$$f(x, y) = \sin(\sqrt{x^2 + y^2})$$

$$f(x, y) = \sin(\sqrt{x^2 + y^2})$$

$$f(x, y) = \frac{1}{\sqrt{x^2 + y^2}}$$

Em geral, se q é uma função de uma variável, como obter o gráfico de

$$f(x, y) = g(\sqrt{x^2 + y^2})$$

a partir do gráfico de q?

75. (a) Mostre que, tomando logaritmos, a função geral de Cobb--Douglas $P = bL^aK^{1-a}$ pode ser expressa como

$$\ln \frac{P}{K} = \ln b + \alpha \ln \frac{L}{K}$$

- (b) Se tomarmos x = ln(L/K) e y = ln(P/K), a equação da parte (a) se tornará uma equação linear y = αx + ln b. Utilize a Tabela 2 (do Exemplo 3) para fazer uma tabela de valores de
- $\ln(L/K)$ e $\ln(P/K)$ para os anos de 1899-1922. Use então um computador ou calculadora gráfica para achar, pelo método dos mínimos quadrados, a reta de regressão pelos pontos $(\ln(L/K), \ln(P/K))$.
- (c) Deduza que a função de produção de Cobb-Douglas é P = 1.01L^{0,75}K^{0,25}.

Gráficos e Mapas de Contorno para os Exercícios 55-60

