POLITECHNIKA WARSZAWSKA Wydział Elektryczny Zakład Systemów Informacyjno-Pomiarowych	Nazwa Przedmiotu
Studia stacjonarne/niestacjonarne <u>Ok No PU</u> Kierunek	
Grupa dziek Zespół studencki Z	
Nazwisko i Imię	
1. Ritoral Adam 2. Holy Helmzelman, 2000.	Data Ocena 20.06.2023 2/8/4/5
Ip ~ 5 mA - kr=1,02	280 mA $R_{W} = 200 \text{ ks}$
	, U2) zaleves 150
3 mar = 1,2 wers	ja elektronicense elo obrobki

1. POMIARY W PODSTAWOWYM UKŁADZIE POŁĄCZEŃ Z APARATEM EPSTEINA przy f = 50Hz

1. Założenia i pomiary

Wartości stałe:

zakres $I_p = 5mA - 290 \text{ mA}, k_r = 1,022, R_w = 200 \text{ k}\Omega, B_{max} = 1,7$

1.1. Wyznaczenie charakrerystyk charakterystyk: Bmax (Hsk), Bmax (Hmax) i Pżc (Hsk) przy R=0

Właściwe dane aparatu Epsteina:

f = 50Hz

Kr = 1,022

 $Rw = 200k\Omega$

l _{1sk}	U _{2 sk}	U _{3 mes}	P _w	k _k	H _{sk}	B _{max}	P _{żc}	I1max	Hmax	P _m
Α	V	V	w		A/m	Т	W	mA	A/m	
0.0042555	1.19	1.17	0.003082	1.128974359	3.168989362	0.110709452	0.00307492	5.993	4.1951	5.66943E-05
0.007176	2.43	2.432	0.01167	1.109087171	5.343829787	0.226070562	0.011640476	10.04	7.028	0.000214673
0.01087	4.4	4.38	0.035	1.115068493	8.094680851	0.409345873	0.0349032	15.09	10.563	0.000643836
0.023	11.99	11.96	0.236	1.112784281	17.12765957	1.115467504	0.2352812	29.96	20.972	0.004341292
0.0289	14.45	14.437	0.346	1.110999515	21.5212766	1.34432906	0.344955988	39.81	27.867	0.006364775
0.0367	16.13	16.11	0.443	1.111378026	27.32978723	1.500624757	0.441699116	60.89	42.623	0.008149119
0.04908	17.104	17.07	0.5348	1.112210896	36.54893617	1.591239048	0.533337266	99.9	69.93	0.009837808
0.059	17.533	17.51	0.589	1.111458024	43.93617021	1.631150271	0.58746297	132.61	92.827	0.010834834
0.073	17.89	17.84	0.644	1.113110987	54.36170213	1.664363106	0.64239974	178	124.6	0.011846575
0.086	18.18	18.12	0.707	1.113675497	64.04255319	1.691342721	0.705347438	230	161	0.013005479
0.096	18.28	18.22	0.72	1.113655324	71.4893617	1.700646036	0.718329208	260	182	0.013244618
0.104	18.38	18.31	0.737	1.114243583	77.44680851	1.709949351	0.735310878	290	203	0.013557339

2. Wykres $B_{max}(H_{sk})$

3. Wykres $P_{\dot{z}c}(B_{max})$

4 Rysunek petli

5. Identyfikacja materiału

Blacha M4 o grubości 0.27 mm

Typowa indukcja* Typical induction*	B ₈₀₀		1	1,89	1,87	1,89	1,89	1,88	1,89	1,88	1,88	1,89	1,88
Typowa stratność* Typical core loss* (Epstein)	1,77	SH09	W/kg	1,39	1,48	1,39	1,53	1,60	1,50	1,55	1,61	1,64	1,76
	1,7T	50Hz	W/kg	1,07	1,14	1,07	1,18	1,23	1,15	1,19	1,24	1,25	1,34
	1,5T	e0Hz	W/kg	0,94	26'0	66'0	1,01	1,07	1,04	1,07	1,08	1,19	1,23
	1,5T	50Hz	W/kg	0,73	0,75	0,77	0,78	0,83	0,81	0,83	0,84	0,92	96'0
Indukcja gwarantowana Min. Induction	B ₈₀₀		1	1,80	1,80	1,80	1,80	1,80	1,80	1,80	1,80	1,80	1,80
Stratność gwarantowana Max. core loss (Epstein)	1,7T	50Hz	W/kg	1,10	1,20	1,14	1,20	1,30	1,17	1,22	1,30	1,30	1,40
	1,5T	50Hz	W/kg	0,74	0,77	0,78	08'0	0,85	0,82	0,84	0,85	0,93	96'0
Grubość Thickness mm inch			600'0	600'0	0,011	0,011	0,011	0,012	0,012	0,012	0,014	0,014	
			0,23	0,23	0,27	0,27	0,27	0,30	0,30	0,30	0,35	0,35	
Gatunek handlowy Commercial grade				ET 110-23	ET 120-23	ET 114-27	ET 120-27	ET 130-27	ET 117-30	ET 122-30	ET 130-30	ET 130-35	ET 140-35