Experiment-10

Title of experiment: magnetic susceptibity of para magnetic material.

Objectives: To determine the magnetic Susceptibity of fava magnetic material. Using Quinck's method.

observation:

Table: - 1

calibration of electromagnet:

3/20	Corrent(I)	ragget flux (B)	
1	0.0	0	
2	0.5	-13.2	
3	1.0	-27.1	
4	1.5	-39.3	
5	2.0	-51.5	
6	2.5	-60.9	
7	3.0	70.3	
8	3.5	-79.0	
9	4.0	-87.7	

Density of Solution, Psol = Pwater [may of solution]

- -> Pwater = 1000 kg/m3
- Mays of empty specific growity bottle, m, =17-066 gmy
 - man of Specific gravity bottle with Salt solution mg= 44.280 gms
 - -> was of specific gravity bottle with water,

 m2 = 40.849gms

Table: 2

Height of Solution for different magnetic flom.

S/No	Corrent	Pogratic Plum B	β	Meniscus Position for B=0, (a)	Menisous Position for B = 0, b	Change in height h=b-a
1	1	-27.1	734.41	1.02	1-235	0.215
2	2	-51.5	265215	1.02	1.15	0.13
3	3	-70.3	4942.09	1.02	1.14	0.12
4	4	-87.9	7691-29	1.02	1.13	0.11

Calculations's

$$B = -27 \cdot B = 734.41$$

 $b = 6-a = 1.235 - 1.02 = 0.215$

2)
$$B = -51.5 =$$
 $B^{V} = 2652.25$
 $b = b - \alpha = 1.15 - 1.02 = 0.13$

3)
$$B = -70.3 \Rightarrow B' = 4942.09$$

 $h = b - a = 1.14 - 1.02 = 0.12$

4)
$$B = -87.9 = 78^{V} = 7691.29$$

 $b = b-a = 0.13 - 1.02 = 0.11$

$$B' = \frac{734.41 + 2652.25 + 4942.09 + 7691.29}{4}$$

$$B' = 4005.01$$

$$h = 0.215 + 0.13 + 0.12 + 0.11 = 6.14375$$

Suspectability $x_{SOI} = 2\mu_0 P_{SOI} 9h$, $\mu_0 = 4\pi \times 10^{-7}$. $y_{SOI} = \frac{m_3 - m_1}{m_2 - m_1} = \frac{4\mu \cdot 280 - 17.0668}{40.8\mu 93 - 17.0668}$. $x_{SOI} = 2x 4x3.14 \times 10^{-7} \times 1.448 \times 9.8 \times 0.14375$

4005.01

= 0.0101153189 x 10-7.

= 1.0115 x10-9 g/cm3.

Result:

Suspectability of Mnsoy . H20 is 1.01153 x10-9 g/cm3

