

Part 3: Green's Functions for Time-Dependent PDE

W5C2 Lecture 9 (Feb 6)

3.1 Green's Functions for Heat Equation

Let $\Omega \subset \mathbb{R}^n$, and consider

$$egin{cases} ext{eq:} & \partial_t u - \Delta u = f & x \in \Omega, t > 0 \ ext{BC:} & u = g & x \in \partial \Omega, t > 0 \ ext{IC:} & u(x,0) = u_0(x) & x \in \Omega \end{cases}$$

Our goal is to find a solution using a Green's function $G(x,t,y,s)=G^{x,t}(y,s)$.

Let $L=\partial_t-\Delta$, which is not self-adjoint. Its adjoint operator is $L^*=-\partial_t-\Delta$.

Let
$$-\infty < a < b < \infty$$
 and $(u,v) = \int_a^b \int_\Omega u(x,t) v(x,t) \, dx \, dt.$

Similar to (G2), by IBP,

$$h_a(Lu,v)=(u,L^*v)+\int_a^b\int_{\partial\Omega}(urac{\partial v}{\partial n}-vrac{\partial u}{\partial n})dS_y\,ds+\int_{\Omega}[uv]_a^b\,dy$$
 (Eq. 2)

Suppose u is a solution of **(1)** and $v=G^{x,t}(y,s).$ We would like

$$egin{cases} L^*G^{x,t}(y,s)=\delta_x(y)\delta_y(s)\ G^{x,t}(y,s)=0 &y\in\partial\Omega\ G^{x,t}(y,s) &s>t ext{ (causality)} \end{cases}$$
 (Eq. 3)

Causality means that hie solution at time t does not depend on data at time s > t.

Assuming (3), we get from (2) with a=0:

$$u(x,t)=\int_0^t\int_\Omega G^{x,t}(y,s)f(y,s)\,dy\,ds+\int_\Omega u_0(y)G^{x,t}(y,0)\,dy+\int_0^t\int_{\partial\Omega} grac{\partial}{\partial n}G^{x,t}(y,s)\,dS_y\,ds$$
 (Eq. 4) We need $G^{x,t}(y,s)=0$ for $y\in\partial\Omega$, otherwise we cannot compute $\int_0^t\int_{\partial\Omega} G^{x,y}rac{\partial u}{\partial n}\,dS_y\,ds$.

Because (3) is the backward heat equation, we change time variables to $\tau=t-s$, so $0\leq s\leq t\iff 0\leq \tau\leq t$ and $\partial_{\tau}=-\partial_{s},\,\delta_{t}(s)=\delta_{0}(\tau)$. (3) becomes

$$egin{cases} (\partial_{ au}-\Delta_y)G=\delta_x(y)\delta_0(au)\ G=0 & y\in\partial\Omega \ ag{Eq. 5} \ G=0 & au<0 \end{cases}$$

Due to translational invariance in time, we have G(x,t,y,s)=G(x,t-a,y,s-a) for all a. Hence we may assume G(x,t,y,s)=G(x,y,t-s).

(4) becomes

$$u(x,t)=\int_0^t\int_\Omega G(x,y,t-s)f(y,s)\,dy\,ds+\int_\Omega u_0(y)G(x,y,t)\,dy+\int_0^t\int_{\partial\Omega} g(y,s)rac{\partial G}{\partial n_y}G(x,y,t-s)\,dy\,ds$$
 (Eq. 6)

Remarks:

- 1. There is no translational invariance in x if $\partial\Omega
 eq arnothing$
- 2. **(6)** is a form of Duhamel's formula. If we denote the solution when f=0 as $u(t)=g(t)u_0$ where g(t) is a solution operator, then the general solution is $u(t)=g(t)u_0+\int_0^tg(t-s)f(s)\,ds$

Idea: ulty
$$\approx \sum_{k=0}^{N-1} u^k(t)$$
, where $u^k(t)$ is solve in (tk,t) of $\delta tu^k = \Delta u^k$ in (tk,t), tk=kst, $\Delta t = \frac{t}{N}$ which is $u^k(t) = f(tk) \cdot \Delta t$, (k>0), $u^0(0) = u_0$ if $u^k = \frac{t}{N}$ is $u^k = \frac{t}{N}$. Taking $N > \infty$ we get the integral form

3.2 Heat Kernel

Def. The <u>heat kernel</u> is the fundamental solution of the heat equation in \mathbb{R}^n , and is also the Green's function of the heat equation in \mathbb{R}^n .

Let
$$\Omega=\mathbb{R}^n$$
 for $n\geq 1$.

By translational invariance in time and space, we can write $G(x,t,y,s)=\Gamma(x-y,t-s)$, where the heat kernel Γ satisfies

$$egin{cases} (\partial_t-\Delta)\Gamma(x,t)=\delta_0(x)\delta_0(t)\ \Gamma(x,t)=0 \end{cases}$$
 (Eq. 6)

We claim that the heat kernel is

$$\Gamma(x,t)=egin{cases} (4\pi t)^{-n/2}e^{-x^2/4t},x\in\mathbb{R}^n,&t>0\ 0&t\leq 0 \end{cases}$$
 (Eq. 7) where $x^2=|x|^2$ (for higher dimensions)

Let $\Gamma_t(x) = \Gamma(x,t)$, and we plot some graphs for t>0:

Note that $\Gamma_1(x)=(4\pi)^{-n/2}e^{-x^2/4}$ is a Gaussian, and $\Gamma_t(x)$ is a rescaled Gaussian with support scale \sqrt{t} and height scale $t^{-n/2}$.

Exponential decay as $|x| o\infty$: for any fixed t, $\lim_{|x| o\infty}\partial_t^m
abla_x^k \Gamma(x,t)=0$

Exponential decay as $t o 0_+$ at $x^0
eq 0$: $\lim_{(x,t) o(x^0,0)}\partial_t^m
abla_x^k \Gamma(x,t)=0$

The heat kernel is continuous everywhere except at (0,0).

Additionally, $\Gamma(x,t)=\Gamma^{(1)}(x_1,t)\cdot\Gamma^{(1)}(x_2,t)\cdot\ldots\cdot\Gamma^{(1)}(x_n,t)$ where $\Gamma^{(1)}$ is the 1D-heat kernel.

To show that the heat kernel satisfies (6):

- t>0 by direct computation
- ullet t<0 is trivial
- t=0, x
 eq 0: because all derivatives go to 0 exponentially as t o 0
- t = 0, x = 0: use definition of generalized functions (skipped)

Lemma 1.

a.
$$\int_{-\infty}^{\infty}e^{-x^2}\,dx=\sqrt{\pi}$$

b.
$$\int_{\mathbb{R}^n} \Gamma_t(x) \, dx = 1, orall t > 0$$

Proof of a):

Denote the integral as I, so

$$I^2 = \int_{\mathbb{R}^2} e^{-x^2-y^2} \, dx \, dy = \int_0^{2\pi} \int_0^\infty e^{-r^2} r \, dr \, d heta = 2\pi \int_0^\infty e^{-u^2} rac{du}{2} = \pi \implies I = \sqrt{\pi}$$

Proof of b):

Use a change of variables $y=\frac{x}{\sqrt{4t}}$, so $dy=\frac{1}{\sqrt{4t^n}}dx$

$$\int_{\mathbb{R}^n} \Gamma_t(x) \, dx = \int_{\mathbb{R}^n} \frac{1}{(4\pi t)^{n/2}} e^{-\frac{x^2}{4t}} \, dx = \int_{\mathbb{R}^n} \frac{1}{(4\pi t)^{n/2}} e^{-y^2} \sqrt{4t}^n \, dy = (\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-s^2} \, ds)^n = 1 \text{ by part a)}.$$

Lemma 2. For all R>0 and v(x,t) continuous at (0,0), we have $\lim_{t o 0^+}\int_{B_R}\Gamma(x,t)v(x,t)\,dx=v(0,0)$

The idea is that $\{\Gamma_t\}_{t>0}$ is an approximation of δ , as in $\lim_{t\to 0^+}\Gamma_t=\delta_0(x).$

Since Γ_t is concentrating to x near 0, the part in $\mathbb{R}^d \setminus B_R$ does not matter (proof skipped).

Now, recall the solution formula **(6)** with $G(x,y,t) = \Gamma(x-y,t)$ in \mathbb{R}^n . We get (no BC g):

$$u(x,t)=\int_0^t\int_{\mathbb{R}^n}\Gamma(x-y,t-s)f(y,s)\,dy\,ds+\int_{\mathbb{R}^n}\Gamma(x-y,t)u_0(y)\,dy$$
 (Eq. 8)

Thm. Suppose $f(x,t)\in \mathrm{BC}(\mathbb{R}^n imes[0,T])$ and $u_0(x)\in \mathrm{BC}(\mathbb{R}^n)$, where BC denotes bounded and connected. Then for 0 < t < T, u(x,t) given by (8) is C^2 in x, C^1 in t, and satisfies (1):

$$\partial_t u - \Delta u = f, \quad \lim_{t o 0^+} u(x,t) = u_0(x)$$

The PDE needs justification (skipped), and the limit to the IC is by Lemma 2.

Properties of the solution u(x,t): (when assuming f=0):

- Instantaneous smooth: $u(x,t) \in C^{\infty}_{x,t}$ for t>0
- $\bullet \ \ \text{Infinite propagation speed: } u_0(x)\geq 0, \begin{cases} u_0(x)>0 & |x|<1\\ u_0(x)=0 & |x|\geq 2 \end{cases} \text{, then } u(x,t)>0 \text{ for all } x\in \mathbb{R}^n, t>0.$

The initial localized disturbance is propagated with infinite speed.

• $u(\cdot,t)=\Gamma_t*u_0$ (convolution), and $||u(\cdot,t)||_{L^q(\mathbb{R}^n)}\leq ||\Gamma_t||_{L^1}\cdot ||u_0||_{L^q}=||u_0||_{L^q}$ (using Young's convolution inequality)

W6C1 Lecture 10 (Feb 11)

igcap Ex. Let $k(x)=rac{1}{1+x^2}$, $f(x)\in C(\mathbb{R})$, f(x)=0 for |x|>1, and $k * f(x) = \int_{-\infty}^{\infty} k(x - y) f(y) dy$

a)

Since f has compact support (zero outside of a bounded set), convolution with f is like local mixing, and k * f has the same decay property as k(x)

$$|k*f(x)| \leq rac{C}{1+x^2}$$
 for $|x|>2$

Proof:

For |y|<1, |x|>2, there exists constants such that $c_1k(x)\leq k(x-y)\leq c_2k(x)$

$$|k*f(x)| \leq \int_{-\infty}^{\infty} c_2 k(x) |f(y)| \, dy = (c_2 \int_{-\infty}^{\infty} |f(y)| \, dy) k(x)$$

Remark: if $f(y) \ge 0$, we can use $c_1k(x)$ to get a lower bound.

b)

If $\int_{-\infty}^{\infty} f(y) \, dy = 0$, we have cancellation during mixing, and we expect faster decay of k * f(x)than k(x):

$$k * f(x) = \int_{-\infty}^{\infty} k(x - y) f(y) - k(x) \int_{-\infty}^{\infty} f(y) dy$$
$$= \int_{-\infty}^{\infty} (k(x - y) - k(x)) f(y) dy$$

By MVT, k(x-y)-k(x)=-yk'(z) (or $-y\cdot \nabla k(z)$ for dim \geq 2) for some z between x-y and x

For $|y|<1<2\leq |x|$, we have $|k(x-y)-k(x)|\leq |y||k'(z)|\leq C|k'(x)|$

Hence.

$$egin{aligned} |k*f(x)| & \leq \int_{-\infty}^{\infty} c|k'(x)||f(y)|\,dy \ & = (C\int |f(y)|\,dy)|k'(x)| \leq rac{C}{|x|^3} \end{aligned}$$

3.3 Green's Functions for Domains

In a domain Ω , the Green's function G(x,y,t) satisfies (recall (5)):

$$egin{cases} (\partial_t - \Delta_y)G = \delta_x(y)\delta_0(t) \ G = 0 & y \in \partial\Omega \ G = 0 & t < 0 \end{cases}$$

If we try $G(x,y,t)=\Gamma(x-y,t)-\phi(x,y,t)$, the correction ϕ needs to satisfy (for a fixed $x\in\Omega$):

$$egin{cases} (\partial_t - \Delta_y) \phi = 0 & y \in \Omega \ \phi(x,y,t) = \Gamma(x-y,t) & y \in \partial \Omega \ \phi(x,y,t) = 0 & t < 0 \end{cases}$$

We will consider method of images and eigenfunction expansion.

Ex 1. IBVP in
$$\mathbb{R}^n_{\scriptscriptstyle \perp} imes (0,\infty)$$
, $n\geq 1$

Ex 1. IBVP in
$$\mathbb{R}^n_+ imes (0,\infty)$$
, $n\geq 1$
$$\begin{cases} u_t-\Delta u=f & x\in\mathbb{R}^n_+,\quad t>0\\ u|_{t=0}=u_0 & \text{(Eq. 9)}\\ u|_{x_n=0}=0 \end{cases}$$

Similar to the Laplace equation in \mathbb{R}^n_+ , denote the reflection point as $ilde x=(x',-x_n)$ if $x=(x',x_n)$ and let $\phi(x, y, t) = \Gamma(y - \tilde{x}, t).$

The singularity $(ilde{x},0)$ is outside if $x_n>0$.

Check:

$$(\partial_t - \Delta_y)\phi = 0 \quad y \in \Omega$$

$$\phi(x,y,t)=\Gamma(x-y,t)$$
 $y\in\partial\Omega$ (because $|x-y|=| ilde{x}-y|$ when $y_n=0$)

$$\phi(x, y, t) = 0 \quad t < 0$$

Hence,
$$G(x, y, t) = \Gamma(x - y, t) - \Gamma(\tilde{x} - y, t)$$

The solution formula is

$$u(x,t)=\int_{\mathbb{R}^n_+}G(x,y,t)u_0(y)\,dy+\int_0^t\int_{\mathbb{R}^n_+}G(x,y,t-s)f(y,s)\,dy\,ds$$

Remark: we don't know an explicit formula for Green's function of heat equation in a disk.

 $iggrap \mathbf{Ex}$ **2.** (finite rod) Consider 0 < x < L, t > 0:

$$egin{cases} u_t - u_{xx} = 0 \ u(0,t) = u(L,t) = 0 \ u(x,0) = u_0(x) \end{cases}$$

The method of images does not work here, so we try eigen function expansion.

The eigenfunctions of ∂_x^2 with 0-BC (Dirichlet) are:

$$\phi_n(x) = \sin rac{n\pi x}{L}, \lambda_n = -(rac{n\pi}{L})^2, n \in \mathbb{N}$$

Try
$$G(x,y,t) = \sum_{n=1}^{\infty} g_n(x,t) \phi_n(y)$$
 with $x,y \in (0,L)$

We need
$$(\partial_t - \Delta_y)G = \delta_x(y)\delta_0(t)$$

$$\implies \sum_{n=1}^{\infty} (\partial_t + (rac{n\pi}{L})^2) g_n(x,t) \phi_n(y) = \delta_x(y) \delta_0(t)$$

Using Fourier trick $\int_0^L \phi_n \phi_k \, dy = egin{cases} rac{L}{2} & n=k \\ 0 & n
eq k \end{cases}$, we get

$$(\partial_t + (rac{n\pi}{L})^2)g_n(x,t) = rac{2}{L}(\delta_x(y)\delta_0(t),\phi_n(y)) = rac{2}{L}\phi_n(x)\delta_0(t)$$

For t < 0, we require $g_n(x,t) = 0$.

For t>0 , we have the ODE $(\partial_t+(rac{n\pi}{L})^2)g_n=0\implies g_n(x,t)=c(x)e^{-(rac{n\pi}{L})^2t}$

We determine c(x) be a jump condition:

$$rac{2}{L}\phi_n(x)=\int_{0^-}^{0^+}rac{2}{L}\phi_n(x)\delta_0(t)\,dt=\int_{0^-}^{0^+}(\partial_t g_n+(rac{n\pi}{L})^2g_n)\,dt=[g_n]_{0^-}^{0^+}=c(x)$$

Hence,

$$g_n(x,t)=rac{2}{L}\phi_n(x)e^{-(rac{n\pi}{L})^2t}$$

$$G(x,y,t) = \sum_{n=1}^{\infty} rac{2}{L} \phi_n(x) e^{-(rac{n\pi}{L})^2 t} \phi_n(y)$$

Remarks (Lecture 11 Feb 13)

For a given $u_0(x)$ defined on [0, L], first do an odd extension to [-L, L], then do a periodic extension to \mathbb{R} .

$$egin{aligned} u(x,t) &= \int_{-\infty}^{\infty} \Gamma(x-y,t) u_0 ilde{(}y) \, dy \ &= \sum_{n \in \mathbb{Z}} egin{cases} \int_0^L \Gamma(x-y-2nL,t) u_0(y) \, dy \ -\int_{-L}^0 \Gamma(x-y-2nL,t) u_0(-y) \, dy \end{cases} \ &= \sum_{n \in \mathbb{Z}} \int_0^L (\Gamma(x-y-2nL,t) - \Gamma(x+y-2nL,t)) u_0(y) \, dy \ &= \int_0^L G(x-y,t) u_0(y) \, dy \end{aligned}$$

where
$$G(x,t) = \sum_{n \in \mathbb{Z}} [\Gamma(x-y-2nL,t) - \Gamma(x+y-2nL,t)]$$

Source: Haberman (11.3.36) p. 533

3.4 BVPs of Heat Equation

Consider (1) with nonzero BC, $g \neq 0$.

By considering $\tilde{u}=u-v$ where v solves **(1)** for data f, u_0 and g=0, we may assume f=0, $u_0=0$, and focus on (with $u=\tilde{u}$)

$$egin{cases} u_t-\Delta u=0 & x\in\Omega,\quad t>0\ u|_{t=0}=0 & ext{(Eq. 10)}\ u|_{x_n=0}=g(x',t) \end{cases}$$

Recall (2), the heat equation version of (G2):

$$h(Lu,v)=(u,L^*v)+\int_a^b\int_{\partial\Omega}(urac{\partial v}{\partial n}-vrac{\partial u}{\partial n})dS_y\,ds+\int_{\Omega}[uv]_a^b\,dy$$
 (2)

If u is a solution of **(10)** and v(y,s)=G(x,y,t-s),

We get $u(x,t)=-\int_0^t\int_{\partial\Omega}g(y,s)rac{\partial G}{\partial n_y}(x,y,t-s)\,dy\,ds=\int_0^t\int_{\partial\Omega}P(x,y,t-s)\,dy\,ds$ where $P(x,y,t)=-rac{\partial}{\partial n_u}G(x,y,t)|_{y\in\partial\Omega}$ is the Poisson kernel for the heat equation.

 $igcap \mathbf{E} \mathbf{x}$ 3. In $\Omega = R^n_+$, (10) becomes

$$egin{cases} u_t-\Delta u=0 & x\in\mathbb{R}^n_+, \quad t>0 \ u|_{t=0}=0 \ u|_{x_n=0}=g(x',t) \end{cases}$$

By **Ex 1**, the Green's function is $G(x,y,t)=\Gamma(x-y,t)-\Gamma(ilde x-y,t)$ where $x=(x',x_n)$ and $ilde x=(x',x_n)$ $(x', -x_n).$

We have $n_y=-(0,\dots,1)$ and $-rac{\partial}{\partial n_y}=\partial_{y_n}$

The Poisson kernel is

$$egin{aligned} P(x,y,t) &= -rac{\partial}{\partial n_y} G(x,y,t)|_{y_n=0} \ &= \partial_{y_n} (\Gamma(x-y,t) - \Gamma(ilde{x}-y,t))|_{y_n=0} \ &= -\partial_{x_n} \Gamma(x-y,t) - \partial_{x_n} \Gamma(ilde{x}-y,t)|_{y_n=0} \ &= -2\partial_{x_n} \Gamma(x-y,t) \end{aligned}$$

For example, when n=2, we have $\Gamma(x,y)=rac{1}{4\pi t}e^{-rac{x^2}{4t}}$ and $-2\partial_{x_2}\Gamma(x,t)=rac{x_2}{t}rac{1}{4\pi t}e^{-rac{x^2}{4t}}$

The solution is $u(x,t)=\int_0^t\int_{-\infty}^\infty rac{x_2}{4\pi(t-s)^2}e^{-rac{(x_1-y_1)^2+x_2^2}{4(t-s)}}g(y_1,s)\,dy_1\,ds$

Remark: when $\Omega = \mathbb{R}^n_+$, the Poisson kernel is

- Laplace equation: $2\partial_n\Phi(x)$
- Heat equation: $-2\partial_n\Gamma(x,t)$

They would have the same sign if we chose $-\Delta\Phi=\delta_0(x)$

Exercise: find Green's function and Poisson kernel in $\mathbb{R}^n_+ imes \mathbb{R}$ with Neumann BC.

W6C2 Lecture 11 (Feb 13)

3.5 Green's Functions for Wave Equations

The wave equation in $\Omega \subset \mathbb{R}^n$ is

$$\begin{cases} \partial_t^2-c^2\Delta u=f & x\in\Omega, t>0\\ u=g & x\in\partial\Omega & \text{(Eq. 11)}\\ u=u_0, \partial_t u=u_1 & t=0 \end{cases}$$

where c > 0 is the wave speed.

The Green's function $G(x,t,y,s)=G^{x,t}(y,s)$ solves for a fixed x,t:

$$\left\{egin{aligned} (\partial_s^2-c^2\Delta y)G=\delta_x(y)\delta_t(s) & y\in\Omega,s\in\mathbb{R}\ G=0 & y\in\partial\Omega & ext{(Eq. 12)}\ G=0 & s>t \end{aligned}
ight.$$

where the last line is due to causality.

Translation invariance in t gives G(x,t,y,s)=G(x,t-s,y,0).

The linear differential operator for the wave equation $L=\partial_t^2-c^2\Delta$ is self-adjoint ($L^*=L$).

Recall that
$$(u,v)=\int_a^b\int_\Omega u(x,t)v(x,t)\,dx\,dt.$$

The wave equation version of Green's identity is

$$egin{aligned} (u,Lv) &= (Lu,v) \ &+ c^2 \int_a^b \int_{\partial\Omega} -u rac{\partial v}{\partial n} + v rac{\partial u}{\partial n} \, ds \, dt ext{ (Eq. 13)} \ &+ \int_{\Omega} [uv_t - u_t v]_{t=a}^b \, dx \end{aligned}$$

If u is a solution of (11), and $v(y,s)=G^{x,t}(y,s)$ solves (12), then (13) with a=0 becomes (using causality)

$$egin{aligned} u(x,t)&=\int_0^t\int_\Omega G^{x,t}(y,s)f(y,s)\,dy\,ds\ &-c^2\int_0^t\int_{\partial\Omega}g\,rac{\partial G^{x,t}}{\partial n}\,dS_y\,ds\ &+\int_\Omega(u_1G^{x,t}-u_0\partial_sG^{x,t})(y,0)\,dy \end{aligned}$$
 (Eq. 14)

Note that $\partial_s G^{x,t}(y,0) = -\partial_t G(x,t,y,0)$ because $G^{x,t}(y,s) = G(x,t-s,y,0).$

3.6 Fundamental Solution for Wave Equation in \mathbb{R}^n

When $\Omega = \mathbb{R}^n$, we have translation invariance in both x and t.

G(x,t,y,s)=G(x-y,t-s,0,0)=K(x-y,t-s) where K(x,t)=G(x,t,0,0) is the fundamental solution.

By **(12)** for $\Omega = \mathbb{R}^n$:

$$egin{cases} (\partial_t^2-c^2\Delta)K=\delta_0(x)\delta_0(t) & x\in\mathbb{R}^n, t\in\mathbb{R}\ K(x,t)=0 & t<0 \end{cases}$$
 (Eq. 15)

From (14) with t=0:

$$egin{cases} K(x,0)=0\ \partial_t K(x,0)=\delta_0(x) \end{cases}$$
 (Eq. 16)

The solution u of (11) is given by (14):

$$u(x,t)=\int_0^t\int_{\mathbb{R}^n}G^{x,t}(y,s)f(y,s)\,dy\,ds+\int_{\mathbb{R}^n}(u_1G^{x,t}-u_0\partial_sG^{x,t})(y,0)\,dy.$$

In terms of the fundamental solution, this becomes

$$u(x,t)=\int_0^t\int_{\mathbb{R}^n}K(x-y,t-s)f(y,s)\,dy\,ds+\int_{\mathbb{R}^n}u_1K(x-y,t)+u_0\partial_tK(x-y,t)\,dy$$
 (Eq. 17)

Notice the sign change where $\partial_s = -\partial_t$.

We can solve K(x,t) using Laplace transforms for n=1,2,3. Fourier transform is also useful.

Case 1: \mathbb{R}^1

We first consider $\Omega=\mathbb{R}$, n=1.

We have $K_{tt}-c^2K_{xx}=0$ for $x\in\mathbb{R}, t>0$.

Write K(x,t)=f(x-ct)+g(x+ct) as the sum of two waves with velocities $\pm c$.

The condition K(x,0)=0 imposes g(x)=-f(x), so K(x,t)=f(x-ct)-f(x+ct).

Hence,

$$egin{aligned} \partial_t K(x,0) &= -c(f'(x-ct)+f'(x+ct))ig|_{t=0} \ &= \delta_0(x) \ f'(x) &= -rac{1}{2c}\delta_0(x) \ f(x) &= -rac{1}{2c}H(x)+c_1 \end{aligned}$$

where H(x) is the Heaviside step function.

$$K(x,t)=rac{1}{2c}[H(x+ct)-H(x-ct)]=rac{1}{2c}\mathbf{1}_{[-ct,ct]}$$

The support of K(x,t) is [-ct,ct] which is expanding at speed c. Also, K(x,t)=K(-x,t).

In the solution formula (17), we need $\partial_t K$:

$$\partial_t K(x,t) = rac{1}{2}[H'(x+ct)+H'(x-ct)] = rac{1}{2}[\delta(x+ct)+\delta(x-ct)]$$

The solution u(x,t) assuming f=0 for simplicity is

$$egin{aligned} u(x,t) &= \int_{\mathbb{R}^n} u_1(y) K(x-y,t) + u_0(y) \partial_t K(x-y,t) \, dy \ &= rac{1}{2c} \int_{x-ct}^{x+ct} u_1(y) \, dy + rac{1}{2} [u_0(x+ct) + u_0(x-ct)] \end{aligned}$$

We recover d'Alembert's formula.

Exercise: find the Green's function for $\Omega=(0,\infty)$ by the method of images.

Case 2: \mathbb{R}^3

Since the equation $(\partial_t^2-c^2\Delta)K(x,t)=\delta_0(x)\delta_0(t)$ is rotationally symmetric, we expect $K(x,t)=\hat{K}(\rho,t)$ for $\rho=|x|$. For clarity let's drop the hat and write $K(\rho,t)$.

The equation for t > 0 becomes

$$\partial_t^2 - c^2(K_{
ho
ho} + rac{2}{
ho}K_
ho) = 0 \quad (
ho, t > 0)$$

Try a solution of the form $K=h
ho^a.$

$$K_
ho = h'
ho^a + ah
ho^{a-1}$$

$$K_{
ho
ho} = h''
ho^a + 2ah'
ho^{a-1} + a(a-1)h
ho^{a-1}$$

In
$$\mathbb{R}^n$$
: $\Delta_{\mathrm{rad}}=K_{
ho
ho}+rac{n-1}{
ho}K_{
ho}=
ho^a[h''+rac{2a+n-1}{
ho}h'+rac{a(a-1+n-1)}{
ho^2}h]$

The dream is that 2a+n-1=0=a-1+n-1. For n=3 this means that a=-1.

Hence $K=rac{h}{
ho}$, and we need $rac{1}{
ho}(\partial_t^2 h - c^2 h")=0.$

Try a sum of moving waves: $K(x,t)=rac{f(
ho-ct)+g(
ho+ct)}{
ho}$.

IC **(16)** gives g(x) = -f(x) like before, so

$$\partial_t K(x,0) = -rac{c}{a}(f'(
ho-ct)+f'(
ho+ct))_{t=0} = -rac{2c}{a}f'(
ho) = \delta_0(x)$$

$$egin{aligned} 1 &= \int_{x \in \mathbb{R}^3, |x| < 1} \delta_0(x) \, dx \ &= \int_0^1 -rac{2c}{
ho} f'(
ho) 4\pi
ho^2 d
ho \ &= -8\pi c \int_0^1 f'(
ho)
ho \, d
ho \ &= 8\pi c \int_0^1 f(
ho) \, d
ho \end{aligned}$$

We can take $f(\rho) = \frac{1}{4\pi c}\delta(\rho)$, noting that $\int_0^1 \delta(\rho)\,d\rho = \frac{1}{2}$.

 $K(x,t)=rac{1}{4\pi c
ho}[\delta(
ho-ct)-\underline{\delta(
ho+ct)}]$ where the second δ is cancelled because ho+ct>0 always.

Our fundamental solution in \mathbb{R}^3 is $K(x,t)=rac{1}{4\pi c|x|}\delta(|x|-ct).$

This is a distribution, not a function, supported in the cone |x| = ct.

Solution formula (Kirchoff's formula):

Assume f=0 for simplicity. By (14),

$$egin{aligned} u(x,t) &= \int_{\mathbb{R}^3} u_1(y) K(x-y,t) + u_0(y) \partial_t K(x-y,t) \, dy \ &= \int_{|y-x| = ct} rac{u_1(y)}{4\pi c^2 t} \, dS_y + \partial_t (\int_{|y-x| = ct} rac{u_0(y)}{4\pi c^2 t} \, dS_y) \end{aligned}$$

Remark: The value of u at (x,t) only depends on the values of the data u_0,u_1 on the sphere $\{y\in\mathbb{R}^3:|y-x|=ct\}$.

Huygens' principle (\mathbb{R}^3 only)

A concentrated source at location x_0 and time t_0 only influences the position x at a later time t if $|x-x_0|=c(t-t_0)$.

Remark: (alternative approach in \mathbb{R}^3) we can solve the solution formula directly, and then extract the fundamental solution. See Fritz John PDE 5.1a p. 126-129.

Method of Descent (from 3D to 2D)

In 2D, the wave equation is $(\partial_t^2 - \Delta_2)u = 0$, $u|_{t=0} = u_0$, $\partial_t u|_{t=0} = u_1$.

For t>0, think of $u=u(x_1,x_2,x_3,t)$ and $u_j=u_j(x_1,x_2,x_3),\quad j=0,1$ with no dependence on x_3 . In 3D, the wave equation is $(\partial_t^2-\Delta_3)u=0$ for t>0.

By the 3D Kirchoff formula,

 $u(x,t)=\int_{|y-x|=ct}rac{u_1(y)}{4\pi c^2t}\,dS_y+\partial_t(\int_{|y-x|=ct}rac{u_0(y)}{4\pi c^2t}\,dS_y)=I_1+\partial_tI_0$, where both u_1 and u_0 have no dependence in y_3 .

Let's write $x_3 = 0, x = (x', 0), y = (y', y_3)$.

$$c^2t^2 = |y - x|^2 = |y' - x'|^2 + y_3^2$$

Hence
$$y_3=\pm h(y')$$
 where $h(y')=\sqrt{c^2t^2-|y'-x'|^2}$.

The sphere |y-x|=ct in \mathbb{R}^3 is the graph $y_3=\pm h(y'),\quad y'\in\mathbb{R}^2.$

For such a graph $y_3=h(y)$, the area element (MATH 317) is

$$dS = \sqrt{1 + |\nabla h(y')|^2} dy'$$

For our h,

$$egin{aligned}
abla h &= rac{1}{2h}(-2(y'-x')) \ |
abla h| &= rac{|y'-x'|}{h} \ 1 + |
abla h|^2 &= rac{c^2t^2}{h^2} \ dS &= rac{ct}{h}dy' \end{aligned}$$

$$egin{aligned} I_1 &= \int_{|y-x|=ct} rac{u_1(y)}{4\pi c^2 t} dS \ &= 2 \int_{|y'-x'| \leq ct} rac{u_1(y')}{4\pi c^2 t} rac{ct}{h(y')} \, dy' \ &= \int_{|y'-x'| \leq ct} rac{u_1(y')}{2\pi c \sqrt{c^2 t^2 - |y'-x'|^2}} \, dy' \ &= \int_{\mathbb{R}^2} K(x-y',t) u_1(y') \, dy' \end{aligned}$$

We conclude that:

$$K(x,t) = rac{\mathbf{1}_{|x| < ct}}{2\pi c \sqrt{c^2 t^2 - |x|^2}}$$
 in \mathbb{R}^2 .

The solution formula ($\underline{\text{Poisson's Formula}}$) for the wave equation in \mathbb{R}^2 is

$$u(x,t)=I_1+\partial_t I_0$$
 where

$$egin{aligned} I_j(x,t) &= \int_{|y-x| \leq ct} rac{u_j(y)}{2\pi c \sqrt{c^2 t^2 - |y-x|^2}} \, dy \ &= \int_{\mathbb{R}^2} K(x-y,t) u_j(y) \, dy, \quad j=0,1 \end{aligned}$$

W7 Reading Break

No classes due to reading break.