Big Mountain Resort Recommendations

Pricing and Potential Facility Changes

Agenda

- Problem Identification
- ☐ Recommendations & Key Findings
- Modeling Results
- Analysis
- ☐ Summary & Conclusion

Problem Identification

- → How can Big Mountain Resort increase revenue for next season?
 - ♦ Change pricing strategy to develop a fair ticket price
 - Current strategy is to charge a premium above the average price of resorts in its market
 - Big Mountain is possibly not capitalizing on its facilities as much as it could
 - Consider changes that will cut costs or support an even higher ticket price
 - Remove facilities that do not add enough value to the ticket price
 - Add facilities that will support an increase to ticket price

Recommendations & Key Findings

- → Big Mountain should increase the ticket price to \$85.48 for next season
 - \$0.88 of the increase will go to support the operating costs of the additional lift
 - The remainder of the increase, \$3.60, will go towards charging the visitors for the facilities Big Mountain offers
 - This will be a conservative increase and should not upset the regular visitors
- → Big Mountain should consider making the following changes to their facilities:
 - Closing down the least used run
 - Increase the vertical drop by adding a run to a point 150 feet lower down, this will require the installation of an additional chair lift
- → The following elements were the most important in predicting the ticket price based on the selected model:
 - ♦ Number of fast four person chairs
 - Number of Runs in resort.
 - ◆ Total area covered by snow making machines
 - Vertical change in elevation from the summit to the base

Modeling Results

- → The pricing model used to predict Big Mountain's ticket price is a random forest model.
 - This model was more accurate and had less variability when compared to the linear model.
- → The modeled price for Big Mountain is \$95.87.
 - The model's predicted price, on average, is expected to be within \$10.39 of a resort's actual price based on all the data used from the other US resorts
 - ◆ A critical assumption in the model is that other resorts are accurately setting their prices according to what the market supports
- → To be conservative, I recommend to set next season's ticket price to \$85.48
 - ♦ I believe Big Mountain should reevaluate their ticket price yearly to ensure they are charging a fair price for the facilities they offer
 - ♦ Big Mountain should not increase their price to the predicted price of the model
 - Big Mountain should monitor the expected number of visitors and tickets sold for next season to see if the price increase had a significant impact on expected ticket sales

Analysis

- → In the random forest model the following features were most important in predicting the ticket price:
 - ♦ The number of fast four person chairs
 - Most resorts have none and Big Mountain has 3. There are resorts with more but it is rare.
 - ◆ The number of runs on the resort
 - Big Mountain is doing well in its number of runs. Some resorts have more but not many.
 - Total area covered by snow making machines
 - Big Mountain is among the resorts with the largest amount of skiable terrain.
 - Vertical change in elevation from the summit to the base
 - Big Mountain is doing well for vertical change but there are quite a few resorts with a greater drop. I
 recommend Big Mountain considers increasing the vertical change.
- → These features were also important in the linear regression model.

Analysis (continued)

- → I modeled the following 4 potential scenarios Big Mountain is reviewing to either cut costs or increase revenue:
 - Permanently closing down up to 10 of the least used runs
 - I recommend at least closing down 1 of the least used runs because it didn't change the predicted ticket price.
 - I would also consider closing down 5 or 8 of the least used runs depending on how much operating costs is saved by closing these runs. Closing 3-4 and 6-7 runs would yield a similar ticket price when compared to 5 and 8, respectively.
 - Increase the vertical drop by adding a run to a point 150 feet lower down but requiring the installation of an additional chair lift to bring skiers back up, without additional snow making coverage
 - I would recommend this change if the operating cost of the additional lift per ticket is less than \$1.99 because this change supports an increase in ticket price of \$1.99
 - Same as the bullet above, but adding 2 acres of snow making cover
 - I would not recommend this change as it supports the same increase in ticket price as above
 - ♦ Increase the longest run by 0.2 mile to boast 3.5 miles length, requiring an additional snow making coverage of 4 acres
 - I would not recommend this change as it did not support an increase to ticket price

Summary & Conclusion

- → I recommend increasing the ticket price to \$84.58
 - ♦ The model supports an increase to Big Mountain's ticket price to \$95.87
 - Compared to other resorts, Big Mountain is doing well for the four features classified as important from the model
 - The one feature Big Mountain can improve on to be more competitive is the vertical drop offered
- → From the potential changes Big Mountain is considering, I recommend closing the least used run and adding 150 ft to the vertical drop
 - Closing more runs might be appropriate but I would need to know the operating costs to determine the optimal amount of runs Big Mountain should close to maximize profits
- → Considerations for future:
 - Key data points that could help build a better model is the expected visitor counts and operating costs of each resort