Arquitectura de computadores I

Memoria interna

Tipos de memoria semiconductora

Tipo de memoria	Categoria	¿Borrable?	Mecanismo de escritura	Volatibilidad
Memoria de acceso aleatorio (RAM)	Memoria de lectura y escritorua	Electricamente, a nivel de byte	Electricamente	Volatil
Memoria de solo lectura (ROM)	Memoria de solo lectura	No es posible	Mascaras	
ROM Programable (PROM)			Electricamente	No volatil
Borrable PROM (EPROM)	Principalmente memoria de lectura	Luz UV, nivel de chip		
Electricamente borrable PROM (EEPROM)		Electricamente a nivel de byte		
Flash memory		Electricamente a nivel de bloque		

Memoria semiconductora

- RAM
 - Acceso aleatorio
 - —Lectura/Escritura
 - —Volatil

Almacenamiento temporal

-Estática o dinámica

Operación de celda de memoria

Ram dinámica (DRAM)

- Bits almacenados como carga en capacitores
- Necesita refrescarse mientras se encuentra encendida
- Construcción simple
- Más pequeña por bit
- Menos costosa
- Más lenta
- Escencialmente análoga
 - Nivel de carga determina valor

Estructura RAM dinámica

Operación de la DRAM

- La linea de direcciones está activa cuando un bit es leido o escrito
- Lectura
 - Linea de direcciones es elegida
 - Se enciende el transistor
 - Envia carga desde el capacitor a un amplificador
 - Compara con valores de referencia de 0 y 1
 - La carga del capacitor debe ser restaurada
- Escritura
 - Voltaje por bit de linea
 - Alto para un 1 y bajo para un 0
 - Entonces la señal de direcciones
 - Transfiere la carga al capacitor

RAM estática

- Bits almacenados en switches
- No requiere refresco
- Construcción más compleja
- Más grande por bit
- Más costosa
- No necesita refrescar circuitos
- Más rápida
- Es el modelo de memoria Cache

Estructura RAM estática

Operación RAM estática

- Arreglo de transistores establece estado lógico
- Estado 1
 - −C₁ alto, C₂ bajo
 - $-T_1 T_4$ off, $T_2 T_3$ on
- Estado 0
 - −C₂ alto, C₁ bajo
 - $-T_2 T_3$ off, $T_1 T_4$ on
- Lineas de direcciones van conectadas a T₅
 y T₆ que actuan como switches
- Escritura: Aplica valor de B y B
- Lectura valor está en B

SRAM vs DRAM

- Ambas volátiles
 - Requieren estar encendidas para preservar datos
- Celda dinámica
 - -Simple de construir y más pequeña
 - -Más densa
 - —Menos costosa
 - Necesita refresco
 - -Unidades de memorias más grandes
- Estática
 - —Más rápida
 - -Memoria Cache

Memoria de sólo lectura (ROM)

- Almacenamiento permanente
 - —No volátil
- Microprogramado
- Programas del sistema (BIOS)
- Tablas de funciones

Tipos de ROM

- Escrita en fábrica
 - —Más costosa
- Programable (Una vez)
 - -PROM
 - —Se requiere hardware especializado
- Mayormente de lectura
 - —Proglamable borrable (EPROM)
 - Borrable por UV
 - —Electricamente borrable (EEPROM)
 - Toma más tiempo escribir que leer
 - —Memoria flash
 - Borrable electricamente

Organización

- Un chip de 16MB puede ser organizado como 1MB de palabras de 16 bits
- Un chip tiene 16 lotes de 1MB
- Un chip de 16MB puede ser organizado como un arreglo de 2048 x 2048 x 4bit
 - -Reduce el número de pines de direcciones
 - Multiplexa las direcciones de filas y columnas
 - 11 pins para direcciones (2¹¹=2048)
 - Agregar un pin para manejar la capacidad x4

Refresco

- El circuito de refresco está incluido en el chip
- Deshabilita el chip
- Toma tiempo
- Reduce el rendimiento de la memoria

16 Mb DRAM $(4M \times 4)$

Chips

Corrección de errores

- Error de hardware
 - —Defecto permanente
- Error de software
 - Aleatorio, no destructivo
- Se detecta utilizando codificación Hamming

Corrección de errores

Paridad

- Se agrega un bit de paridad al final, si es 1 el número de 1s es impar y si es 0 es par
- Ejemplo: Dirección 010101, el número de 1's es 5, por lo que el dato se codifica así: 0101011
- Dos entre cinco
 - —Cada bloque de 5 bits, tiene exactamente 2 unos
 - —Ejemplo: Dirección 01110.., se codifica como 0110010..
- Repetición
 - Se repite cada bit n veces

Codificación Hamming

- Se añaden bits para detección de error
- Por ejemplo, en un código de 7 bits hay 7 posibles bits de error, por lo que se necesita 3 bits de control ya que 2³ permite evaluar 7 posibilidades
- Permite saber cual es el bit del error.

Función de corrección de errores

Organización avanzada de DRAM

- Grandes memorias
 - Contienen estructuras más pequeñas
 - Las direcciones de memoria son estructuradas para cada una de las estructuras
 - —Se conectan las señales de reloj y las de control de la memoria a todas las estructuras

SDRAM

Gracias

¿Preguntas?

Hasta aqui tema primer parcial.

Próxima clase: Memoria externa