統計的モデリング基礎④ ~最尤推定(続き)~

鹿島久嗣 (情報学科 計算機科学コース)

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

線形回帰モデルの確率的解釈

最尤推定:

データをもっともよく再現するパラメータを推定値とする

- n個のデータ $x^{(1)}, x^{(2)}, ..., x^{(n)}$ から確率モデル $f_{\theta}(x)$ のパラメータ θ を推定したい
- n個のデータが(互いに独立に)生成される確率(尤度):

$$L(\theta) = \prod_{i=1}^{n} f_{\theta}(x^{(i)})$$

・ 尤度最大になるパラメータを推定値êとする

$$\hat{\theta} = \operatorname{argmax}_{\theta} \prod_{i=1}^{n} f_{\theta}(x^{(i)}) = \operatorname{argmax}_{\theta} \sum_{i=1}^{n} \log f_{\theta}(x^{(i)})$$

-もっともデータを生成する確率が高い(「最も尤もらしい」)

実際には対数尤度

で扱うことが多い

線形回帰モデルの最尤推定:線形回帰の確率モデルを考える

- ■データ: $\mathbf{x} = (x^{(1)}, x^{(2)}, ..., x^{(n)})$ と $\mathbf{y} = (y^{(1)}, y^{(2)}, ..., y^{(n)})$ に 線形モデル: $g(x) = \beta x + \alpha$ を当てはめる
- 最小二乗法: $\ell(\alpha,\beta) = \sum_{i=1}^n \left(y^{(i)} \left(\beta x^{(i)} + \alpha \right) \right)^2$ を最小化
- 一方、線形回帰モデルに対応する確率モデルを仮定する:
 - -正規分布: $y^{(i)}$ は平均 $\beta x^{(i)} + \alpha$,分散 σ^2 の正規分布に従う
 - $-確率密度: f(y^{(i)} \mid x^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\left(y^{(i)} (\beta x^{(i)} + \alpha)\right)^2}{2\sigma^2}\right)$
 - -「平均的に」回帰直線 $y = \beta x + \alpha$ に乗るデータを生成するモデル

線形回帰モデルの最尤推定:線形回帰の確率モデルの最尤推定 = 最小二乗法

■ 線形回帰モデルに対応する確率モデルを考える:

■確率密度関数:
$$f(y^{(i)} \mid x^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - (\beta x^{(i)} + \alpha))^2}{2\sigma^2}\right)$$

• 対数尤度:
$$L(\alpha, \beta) = \sum_{i=1}^{n} \log f(y^{(i)} \mid x^{(i)})$$
 注:ここでは $y^{(i)}$ が 「再現されるべき」 $\vec{r} - \beta$
$$= -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y^{(i)} - (\beta x^{(i)} + \alpha))^2 + \text{const.}$$

対数尤度をα, βについて最大化すること(最尤推定)二乗誤差をα, βについて最小化すること(最小二乗法)

線形回帰モデルの最尤推定: 分散の最尤推定量

■ 確率密度関数:
$$f(y^{(i)} \mid x^{(i)}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y^{(i)} - (\beta x^{(i)} + \alpha))^2}{2\sigma^2}\right)$$

■ 分散については、対数尤度:

$$L(\sigma^{2}) = n \log \frac{1}{\sigma} - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y^{(i)} - (\beta x^{(i)} + \alpha))^{2} + \text{const.}$$

■ L(σ²)を最大化する最尤推定量は:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - (\beta x^{(i)} + \alpha))^2$$

※ 以上の議論は重回帰モデルの場合も同様

最尤推定の性質

最尤推定量の性質: 一致性

- 『パラメータ母の推定量としてêを得たとする(例えば最尤推定で)
- 推定量の良さはどのように評価するか?
 - -不偏性 $E[\hat{\theta}] = \theta$: 推定量の期待値が真の値に一致する
 - Eは様々な標本の採り方についての期待値を表す
 - たとえば、平均の最尤推定量は不偏性をもつが、 分散の最尤推定量はもたない
 - -一致性:標本サイズを大きくしていくと真の値に一致する:

$$\hat{\theta} \xrightarrow[n \to \infty]{} \theta$$

■ 最尤推定は、適当な条件のもと一致性をもつ

漸近正規性:

最尤推定量は漸近的に正規分布に従う

- 最尤推定量の分布は $n \to \infty$ で、真のパラメータ θ を平均とする正規分布に従う
- もう少し厳密にいうと: $\sqrt{n}(\hat{\theta} \theta)$ の分布が平均0、分散 $I(\theta)^{-1}$ の正規分布に近づく
 - $I(\theta)$ はフィッシャー情報量: $I(\theta)$ はフィッシャー情報量: $I(\theta) = -E \left[\frac{\partial^2}{\partial \theta^2} \log f(x|\theta) \right]$ $= -\int \left(\frac{\partial^2}{\partial \theta^2} \log f(x|\theta) \right) f(x|\theta) dx$
 - $n \to \infty \overline{C} \hat{\theta} \to \theta$

ポアソン回帰

最尤推定:

データをもっともよく再現するパラメータを推定値とする

- n個のデータ $x^{(1)}, x^{(2)}, ..., x^{(n)}$ から確率モデル $f_{\theta}(x)$ のパラメータ θ を推定したい
- n個のデータが(互いに独立に)生成される確率(尤度):

$$L(\theta) = \prod_{i=1}^{n} f_{\theta}(x^{(i)})$$

・ 尤度最大になるパラメータを推定値êとする

$$\hat{\theta} = \operatorname{argmax}_{\theta} \prod_{i=1}^{n} f_{\theta}(x^{(i)}) = \operatorname{argmax}_{\theta} \sum_{i=1}^{n} \log f_{\theta}(x^{(i)})$$

-もっともデータを生成する確率が高い(「最も尤もらしい」)

実際には対数 尤度で扱うこと が多い

ポアソン分布の最尤推定:

標本平均がパラメータの最尤推定量になる

• ポアソン分布:
$$f_{\lambda}(Y=y) = \frac{\lambda^{y}}{y!} \exp(-\lambda)$$

λ > 0は平均に相 当するパラメータ

■ データ: y⁽¹⁾, y⁽²⁾, ..., y⁽ⁿ⁾に対する対数尤度:

$$L(\lambda) = \sum_{i=1}^{n} \log f_{\lambda} (Y = y^{(i)}) = \log \lambda \sum_{i=1}^{n} y^{(i)} - n\lambda + \text{const.}$$

■ パラメータの最尤推定量:

$$\hat{\lambda} = \frac{\sum_{i=1}^{n} y^{(i)}}{n}$$

https://en.wikipedia.org/wiki/Poisson_distribution#/media/File:Poisson_pmf.svg

ポアソン回帰: 非負整数の回帰モデル

- 例えば、ある機械の各日の故障件数をモデル化したいとする
 - -曜日や気温などに依存して平均的な故障件数が変わるとする
- 独立変数(曜日など)に依存する回数のモデル:ポアソン回帰

$$f_{\beta}(Y = y) = \frac{\left(\exp(\beta^{T}\mathbf{x})\right)^{y}}{y!} \exp(-\exp(\beta^{T}\mathbf{x}))$$

-ポアソン分布の平均が線形モデルで表されるとする:

• ポアソン分布:
$$f_{\lambda}(Y=y) = \frac{\lambda^{y}}{y!} \exp(-\lambda)$$

• 重回帰モデル: $\lambda = \exp(\beta^T x)$

組み合わせる

ポアソン回帰の最尤推定:解析解は得られなさそう...

- ■独立変数:(x⁽¹⁾,x⁽²⁾,...,x⁽ⁿ⁾) # n日分の測定
- 従属変数: $(y^{(1)}, y^{(2)}, ..., y^{(n)})$ # n日分の故障数
- ■対数尤度(最大化問題):

$$L(\boldsymbol{\beta}) = \sum_{i=1}^{n} \log \frac{\left(\exp(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)})\right)^{y^{(i)}}}{y^{(i)}!} \exp(-\exp(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)}))$$
$$= \sum_{i=1}^{n} y^{(i)} \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)} - \sum_{i=1}^{n} \exp(\boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}^{(i)}) + \text{const.}$$

■ これを最大化するβを求めたいが、解析解は得られない

最尤推定の利点: モデリングの自動化

- ■最尤推定の利点:確率モデルの形(データの生成プロセスの仮定)を決めればモデルパラメータが自動的に決まる
 - -ただし、最後に最大化問題を解いて、パラメータ推定量を求める 必要がある
 - 離散分布、ポアソン分布、正規分布などは解析的に解が求まる
 - -線形回帰(正規分布でノイズが載る)は連立方程式(いちおう解析的な解)
 - -ただし、他の多くのモデルでは、最適化問題を数値的に解く必要がある