Notes (Rev 1): Complex sesqui-linear tensor and wedge product operations

Shane W. D.

10/3/2025

Abstract

Notes regarding differential geometric definition of a complex sesquilinear tensor product and wedge product operation, and definitions, and equivalency of exterior derivative outcome on a dyadic object between the two systems under hermitian constraints.

Sesquilinear *人* and *⊗*

We distinguish notations:

$$\omega^{\mu} \wedge \omega^{\nu}$$
 (standard wedge), $\omega^{\mu} \wedge \omega^{\nu}$ (sesquilinear wedge), $\omega^{\mu} \otimes \omega^{\nu}$ (standard tensor product), $\omega^{\mu} \otimes \omega^{\nu}$ (sesquilinear tensor product).

Two-form translation.

$$\omega^{\mu} \wedge \omega^{\nu} \quad \omega^{\mu} \wedge \omega^{\nu*}$$

Two-legged object for the tensor product (analogous).

$$\boxed{\omega^{\mu} \circledast \omega^{\nu} \quad \omega^{\mu} \otimes \omega^{\nu*}}$$

Sesquilinearity on two-legged objects For scalars $a, b \in \mathbb{C}$ and one-forms α, β :

$$(a \alpha) \curlywedge (b \beta) = ab (\alpha \curlywedge \beta), \qquad (a \alpha) \circledast (b \beta) = ab (\alpha \circledast \beta).$$

Three-legged A object

Define with alternating conjugation:

$$\alpha \land \beta \land \gamma \leftrightarrow \alpha \land \beta^* \land \gamma$$
,

linear in slots 1 and 3, conjugate-linear in slot 2. Coefficient rule:

$$(a\alpha) \curlywedge (b\beta) \curlywedge (c\gamma) = (ab^*c)(\alpha \curlywedge \beta \curlywedge \gamma).$$

Associativity in the Sesquilinear Wedge

Issue. Binary-only & breaks associativity:

$$(\alpha \curlywedge \beta) \curlywedge \gamma \longleftrightarrow (\alpha \land \beta^*) \land \gamma, \qquad \alpha \curlywedge (\beta \curlywedge \gamma) \longleftrightarrow \alpha \land (\beta \land \gamma^*).$$

Rescue rule (alternating conjugation). Define the 3-ary operation by

$$\alpha \land \beta \land \gamma := \alpha \land \beta^* \land \gamma$$
,

and rebracket via

$$\alpha \curlywedge (\beta \curlywedge \gamma) \; \mapsto \; \alpha \land (\beta \curlywedge \gamma)^* \; \equiv \; \alpha \land \beta^* \land \gamma.$$

Result.

$$(\alpha \curlywedge \beta) \curlywedge \gamma \equiv \alpha \curlywedge (\beta \curlywedge \gamma) \equiv \alpha \curlywedge \beta \curlywedge \gamma,$$

so associativity holds up to the alternating-slot conjugation convention.

Sesquilinear Tensor Product *

Binary translation.

$$\alpha \circledast \beta \leftrightarrow \alpha \otimes \beta^*$$
.

n-ary definition (even-slot conjugation). For one-forms $\alpha_1, \ldots, \alpha_n$,

$$\alpha_1 \circledast \cdots \circledast \alpha_n := \alpha_1 \otimes \alpha_2^* \otimes \alpha_3 \otimes \alpha_4^* \otimes \cdots$$
 (stars on slots 2, 4, 6, ...).

Coefficient pull-out. For scalars $a_k \in \mathbb{C}$,

$$(a_1\alpha_1)\circledast \cdots \circledast (a_n\alpha_n) = (a_1a_2^*a_3a_4^*\cdots)\alpha_1\circledast \cdots \circledast \alpha_n.$$

Rebracketing (associativity convention). Any parenthesized product is reinterpreted via the *n*-ary rule above:

$$(\cdots((\alpha_1 \circledast \alpha_2) \circledast \alpha_3) \cdots \circledast \alpha_n) \equiv \alpha_1 \circledast \cdots \circledast \alpha_n.$$

Conjugation toggle.

 $(\alpha_1 \circledast \cdots \circledast \alpha_n)^* \leftrightarrow \alpha_1^* \otimes \alpha_2 \otimes \alpha_3^* \otimes \alpha_4 \otimes \cdots$ (stars swap to the opposite parity slots).

Basis example.

$$\omega^{\mu} \circledast \omega^{\nu} \circledast \omega^{\rho} \leftrightarrow \omega^{\mu} \otimes (\omega^{\nu})^* \otimes \omega^{\rho}.$$

Exterior Derivative of a Dyadic One-Form

We consider the sesquilinear dyad

$$\omega^{\alpha}\omega^{\dagger\beta} := \omega^{\alpha} \circledast \omega^{\beta},$$

and compare two rules for computing its exterior derivative.

Rule A (plain Leibniz for \circledast). By the dyadic analogy $X \circledast Y \sim XY^{\dagger}$, we take

$$d(X \circledast Y) = (dX) \circledast Y + X \circledast dY.$$

Applying to $\omega^{\alpha} \circledast \omega^{\beta}$ gives

$$d(\omega^{\alpha}\omega^{\dagger\beta}) = (d\omega^{\alpha}) \circledast \omega^{\beta} + \omega^{\alpha} \circledast d(\omega^{\beta})^{\dagger}.$$

Using

$$d\omega^{\mu} = -\Lambda^{*\mu}{}_{\rho\gamma} \,\omega^{\rho} \, \, \downarrow \, \omega^{\gamma},$$

we obtain

$$\boxed{d(\omega^{\alpha}\omega^{\dagger\beta}) = -\Lambda^{*\alpha}{}_{\rho\gamma} (\omega^{\rho} \curlywedge \omega^{\gamma}) \circledast \omega^{\beta} - \Lambda^{\beta}{}_{\rho\gamma} \omega^{\alpha} \circledast (\omega^{\rho} \curlywedge \omega^{\gamma}).} \quad (A)$$

Rule B (graded Leibniz for *). Alternatively, one may impose the graded sign rule for degree 1 objects:

$$d(X \circledast Y) = (dX) \circledast Y - X \circledast dY.$$

Applying to $\omega^{\alpha} \circledast \omega^{\beta}$ gives

$$d(\omega^{\alpha}\omega^{\dagger\beta}) = -\Lambda^{*\alpha}{}_{\rho\gamma} (\omega^{\rho} \curlywedge \omega^{\gamma}) \circledast \omega^{\beta} + \Lambda^{*\beta}{}_{\rho\gamma} \omega^{\alpha} \circledast (\omega^{\rho} \curlywedge \omega^{\gamma}).$$
(B)

Compatibility. Equations (A) and (B) differ only in the second term. Rule A has $-\Lambda^{\beta}{}_{\rho\gamma}$, while Rule B has $+\Lambda^{*\beta}{}_{\rho\gamma}$. However:

- the antisymmetry of \curlywedge enforces contraction with $\Lambda_{\left[\rho\gamma\right]},$ and
- in this framework the connection is Hermitian (purely imaginary), so $\Lambda^{*\beta}{}_{[\rho\gamma]} = -\Lambda^{\beta}{}_{[\rho\gamma]}$.

Thus the two results coincide, and both rules give the same final expression:

$$d(\omega^{\alpha}\omega^{\dagger\beta}) = -\Lambda^{*\alpha}{}_{\rho\gamma} (\omega^{\rho} \curlywedge \omega^{\gamma}) \circledast \omega^{\beta} - \Lambda^{\beta}{}_{\rho\gamma} \omega^{\alpha} \circledast (\omega^{\rho} \curlywedge \omega^{\gamma}).$$

Conclusion. For dyads of one-forms, the plain and graded Leibniz rules for \circledast are *compatible* under the Hermitian connection assumption.