Generalized Additive Models

David L Miller

Overview

- What is a GAM?
- What is smoothing?
- How do GAMs work? (Roughly)
- Fitting and plotting simple models

What is a GAM?

Generalized Additive Models

- Generalized: many response distributions
- Additive: terms add together
- Models: well, it's a model...

To GAMs from GLMs and LMs

(Generalized) Linear Models

Models that look like:

$$y_i = \beta_0 + x_{1i}\beta_1 + x_{2i}\beta_2 + ... + \epsilon_i$$

(describe the response, y_i , as linear combination of the covariates, x_{ji} , with an offset)

We can make $y_i \sim$ any exponential family distribution (Normal, Poisson, etc).

Error term ϵ_i is normally distributed (usually).

Why bother with anything more complicated?!

Is this linear?

Is this linear? Maybe?

 $lm(y \sim x1, data=dat)$

What can we do?

Adding a quadratic term?

 $lm(y \sim x1 + poly(x1, 2), data=dat)$

Is this sustainable?

- Adding in quadratic (and higher terms) can make sense
- This feels a bit ad hoc
- Better if we had a **framework** to deal with these issues?

[drumroll]

What does a model look like?

$$y_i = \beta_0 + \sum_j s_j(x_{ji}) + \epsilon_i$$

where $\epsilon_i \sim N(0, \sigma^2)$, $y_i \sim Normal$ (for now)

Remember that we're modelling the mean of this distribution!

Call the above equation the linear predictor

Okay, but what about these "s" things?

- Think s=smooth
- Want to model the covariates flexibly
- Covariates and response not necessarily linearly related!
- Want some "wiggles"

Okay, but what about these "s" things?

- Think s=smooth
- Want to model the covariates flexibly
- Covariates and response not necessarily linearly related!
- Want some "wiggles"

What is smoothing?

Straight lines vs. interpolation

- Want a line that is "close" to all the data
- Don't want interpolation –
 we know there is "error"
- Balance between interpolation and "fit"

Splines

- Functions made of other, simpler functions
- Basis functions b_k , estimate β_k
- $s(x) = \sum_{k=1}^{K} \beta_k b_k(x)$
- Makes the math(s) much easier

Design matrices

- We often write models as $X\beta$
 - X is our data
 - \blacksquare β are parameters we need to estimate
- For a GAM it's the same
 - X has columns for each basis, evaluated at each observation
 - again, this is the linear predictor

Measuring wigglyness

- Visually:
 - Lots of wiggles == NOT SMOOTH
 - Straight line == VERY SMOOTH
- How do we do this mathematically?
 - Derivatives!
 - (Calculus was a useful class afterall!)

Wigglyness by derivatives

What was that grey bit?

$$\int_{\mathbb{R}} \left(\frac{\partial^2 f(x)}{\partial^2 x} \right)^2 dx$$

(Take some derivatives of the smooth and integrate them over x)

(Turns out we can always write this as $\beta^T S \beta$, so the β is separate from the derivatives)

(Call S the penalty matrix)

Making wigglyness matter

- $\beta^T S \beta$ measures wigglyness
- "Likelihood" measures closeness to the data
- Penalise closeness to the data...
- Use a smoothing parameter to decide on that trade-off...
- Estimate the β_k terms but penalise objective
 - "closeness to data" + penalty

Smoothing parameter

Smoothing parameter selection

- ullet Many methods: AIC, Mallow's C_p , GCV, ML, REML
- Recommendation, based on simulation and practice:
 - Use REML or ML
 - Reiss & Ogden (2009), Wood (2011)

Maximum wiggliness

- We can set basis complexity or "size" (k)
 - Maximum wigglyness
- Smooths have effective degrees of freedom (EDF)
- EDF < k
- Set k "large enough"
 - Penalty does the rest

More on this in a bit...

GAM summary

- Straight lines suck we want wiggles
- Use little functions (basis functions) to make big functions (smooths)
- Need to make sure your smooths are wiggly enough
- Use a penalty to trade off wiggliness/generality

Fitting GAMs in practice

Translating maths into R

A simple example:

$$y_i = \beta_0 + s(x) + s(w) + \epsilon_i$$

where $\epsilon_i \sim N(0, \sigma^2)$

Let's pretend that $y_i \sim Normal$

- linear predictor: formula = $y \sim s(x) + s(w)$
- response distribution: family=gaussian()
- data: data=some_data_frame

Putting that together

 method="REML" uses REML for smoothness selection (default is "GCV.Cp")

What about a practical example?

Pantropical spotted dolphins

- Example taken from Miller et al (2013)
- Paper appendix has a better analysis
- Simple example here, ignoring all kinds of important stuff!

Inferential aims

- How many dolphins are there?
- Where are the dolphins?
- What are they interested in?

A simple dolphin model

- count is a function of depth
- off.set is the effort expended
- we have count data, try quasi-Poisson distribution

What did that do?

summary(dolphins_depth)

```
Family: quasipoisson
Link function: log
Formula:
count ~ s(depth) + offset(off.set)
Parametric coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -18.2344 0.8949 -20.38 \stackrel{?}{<}2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
            edf Ref.df F p-value
s(depth) 6.592 7.534 2.329 0.0224 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.0545 Deviance explained = 26.4%
-REML = 948.28 Scale est. = 145.34 n = 387
```

Plotting

- plot(dolphins_depth)
- Dashed lines indicate +/- 2 standard errors
- Rug plot
- On the link scale
- EDF on y axis

Thin plate regression splines

- Default basis
- One basis function per data point
- Reduce # basis functions (eigendecomposition)
- Fitting on reduced problem
- Multidimensional
- Wood (2003)

Bivariate terms

- Assumed an additive structure
- No interaction
- We can specify s(x,y) (and s(x,y,z,...))
- (Assuming isotropy here...)

Adding a term

- Add a surface for location (x and y)
- Just use + for an extra term

Summary

summary(dolphins_depth_xy)

```
Family: quasipoisson
Link function: log
Formula:
count \sim s(depth) + s(x, y) + offset(off.set)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
           edf Ref.df F p-value
s(depth) 6.804 7.669 1.461 0.191
s(x,y) 23.639 26.544 1.358 0.114
R-sq.(adj) = 0.22 Deviance explained = 49.9%
-REML = 923.9 Scale est. = 79.474 n = 387
```

Plotting

plot(dolphins_depth_xy, scale=0, pages=1)

- scale=0: each plot on different scale
- pages=1: plot together

Plotting 2d terms... erm...

```
plot(dolphins_depth_xy, select=2, cex=2, asp=1, lwd=2)
```


select= picks which smooth to plot

Let's try something different

plot(dolphins_depth_xy, select=2, cex=2, asp=1, lwd=2, scheme=2)

- scheme=2 much better for bivariate terms
- vis.gam() is much more general

More complex plots

```
par(mfrow=c(1,2))
vis.gam(dolphins_depth_xy, view=c("depth","x"), too.far=0.1,
phi=30, theta=45)
vis.gam(dolphins_depth_xy, view=c("depth","x"),
plot.type="contour", too.far=0.1,asp=1/1000)
```


Fitting/plotting GAMs summary

- gam does all the work
- very similar to glm
- s indicates a smooth term
- plot can give simple plots
- vis.gam for more advanced stuff

Prediction

What is a prediction?

- Evaluate the model, at a particular covariate combination
- Answering (e.g.) the question "at a given depth, how many dolphins?"
- Steps:
 - 1. evaluate the s(...) terms
 - 2. move to the response scale (exponentiate? Do nothing?)
 - 3. (multiply any offset etc)

Example of prediction

- in maths:
 - Model: count_i = $A_i \exp(\beta_0 + s(x_i, y_i) + s(Depth_i))$
 - Drop in the values of x, y, Depth (and A)
- in R:
 - build a data. frame with x, y, Depth, A
 - usepredict()

```
preds <- predict(my_model, newdat=my_data, type="response")</pre>
```

(se.fit=TRUE gives a standard error for each prediction)

Back to the dolphins...

Where are the dolphins?

(ggplot2 code included in the slide source)

Prediction summary

- Evaluate the fitted model at a given point
- Can evaluate many at once (data.frame)
- Don't forget the type=... argument!
- Obtain per-prediction standard error with se.fit

What about uncertainty?

Without uncertainty, we're not doing statistics

Where does uncertainty come from?

- β : uncertainty in the spline parameters
- λ : uncertainty in the smoothing parameter
- (Traditionally we've only addressed the former)
- (New tools let us address the latter...)

Parameter uncertainty

From theory:

$$\beta \sim N(\hat{\beta}, V_{\beta})$$

(caveat: the normality is only approximate for non-normal response)

What does this mean? Variance for each parameter.

In mgcv: vcov(model) returns V_{β} .

What can we do this this?

- confidence intervals in plot
- standard errors using se.fit
- derived quantities? (see bibliography)

The Ipmatrix, magic, etc

For regular predictions:

$$\hat{\boldsymbol{\eta}}_{p} = L_{p}\hat{\boldsymbol{\beta}}$$

form L_p using the prediction data, evaluating basis functions as we go.

(Need to apply the link function to $\hat{oldsymbol{\eta}}_{
m p}$)

But the L_p fun doesn't stop there...

[[mathematics intensifies]]

Variance and Ipmatrix

To get variance on the scale of the linear predictor:

$$V_{\hat{\boldsymbol{\eta}}} = L_p^T V_{\hat{\boldsymbol{\beta}}} L_p$$

pre-/post-multiplication shifts the variance matrix from parameter space to linear predictor-space.

(Can then pre-/post-multiply by derivatives of the link to put variance on response scale)

Simulating parameters

• β has a distribution, we can simulate

Uncertainty in smoothing parameter

- Recent work by Simon Wood
- "smoothing parameter uncertainty corrected" version of $V_{\stackrel{\wedge}{\beta}}$
- In a fitted model, we have:
 - \$Vp what we got with vcov
 - \$Vc the corrected version
- Still experimental

Variance summary

- Everything comes from variance of parameters
- Need to re-project/scale them to get the quantities we need
- mgcv does most of the hard work for us
- Fancy stuff possible with a little maths
- Can include uncertainty in the smoothing parameter too

Okay, that was a lot of information

Summary

- GAMs are GLMs plus some extra wiggles
- Need to make sure things are just wiggly enough
 - Basis + penalty is the way to do this
- Fitting looks like glm with extra s() terms
- Most stuff comes down to matrix algebra, that mgcv sheilds you from
 - To do fancy stuff, get inside the matrices

COFFEE