Total variation in image $\frac{1}{2}(x_i - M_T)^2$ My = any intensity Within cluster variation

£ £ w; (x:-w;)² u; = mean intensity (; Between cluster variation = total variation - within chater variation = \(\(\text{\formal} \) - \(\text{\formal} \) \($= \sum_{i=1}^{34} x_{i}^{2} - 2x_{i} n_{i} + n_{i}^{2} - \sum_{j=1}^{34} \sum_{i=1}^{34} x_{i}^{2} - 2w_{i}^{2} x_{i}^{2} + n_{j}^{2} v_{i}^{2}$ $= \sum_{i=1}^{34} x_{i}^{2} - 2n_{i} \sum_{j=1}^{34} x_{i}^{2} + \sum_{j=1}^{34} \sum_{i=1}^{34} x_{i}^{2} + \sum_{j=1}^{34} \sum_{j=1}^{34} x_{i}^{2} + \sum_{j=1}^{34} \sum_{j=1}^{34} x_{i}^{2} + \sum_{j=1}^{$ $= -\sum_{i=1}^{k} t_{i}^{2} + \sum_{i=1}^{k} 2t_{i} m_{i}^{2} m_{i}^{2} - \sum_{i=1}^{k} t_{i}^{2} m_{i}^{2}$ $= * \frac{K}{2}(-t; (M;) + 2t; M; MT - t; M;^{2})$ $= - \frac{K}{2}(-t; (M;) + 2t; M; MT - t; M;^{2})$