- (1) Show that there is no set V such that every set is a member of V.
- (2) Show that (x, y) = (a, b) iff x = a and y = b.
- (3) Suppose R is an equivalence relation on A. For each $a \in A$, define the R-equivalence class of a by $[a] = \{b \in A : aRb\}$. Show that $\{[a] : a \in A\}$ is a partition of A. Furthermore, show that for every partition \mathcal{F} of A, there is an equivalence relation S on A such that \mathcal{F} is the set of all S-equivalence classes.
- (4) Suppose $X \subseteq \omega$ satisfies $0 \in X$ and $(\forall y \in X)(y \cup \{y\} \in X)$. Show that $X = \omega$.
- (5) Let (L, \prec) be a linear ordering. Prove the following.
 - (a) (L, \prec) is a well-ordering iff there is no sequence $\langle x_n : n < \omega \rangle$ in L such that $(\forall n < \omega)(x_{n+1} \prec x_n)$.
 - (b) (L, \prec) is a well-ordering iff for every $A \subseteq L$, (A, \prec) is isomorphic to an initial segment of (L, \prec) .
- (6) Suppose (X, \prec_1) and (Y, \prec_2) are well-orderings. Then exactly one of the following holds.
 - (a) $(X, \prec_1) \cong (Y, \prec_2)$.
 - (b) For some $x \in X$, $(\operatorname{pred}(X, \prec_1, x), \prec_1) \cong (Y, \prec_2)$.
 - (c) For some $y \in Y$, $(\operatorname{pred}(Y, \prec_2, y), \prec_2) \cong (X, \prec_1)$.

Furthermore, in each of the three cases, the isomorphism is unique.

- (7) Suppose X is a nonempty set and F is a choice function on $\mathcal{P}(X) \setminus \{\emptyset\}$. Let (X, \prec_1) and (X, \prec_2) be two well-orderings satisfying $(\forall y \in X)(F(X \setminus \mathsf{pred}(X, \prec_k, y))) = y$ for $k \in \{1, 2\}$. Show that $(\forall a, b \in X)(a \prec_1 b \iff a \prec_2 b)$.
- (8) Let $f: \mathcal{P}(\omega) \setminus \{\emptyset\} \to \omega$ be defined by $f(X) = \min(X)$. Call a well-ordering (A, \prec) f-directed iff $A \subseteq \omega$ and for every $x \in A$,

$$f(\omega \setminus \operatorname{pred}(A, \prec, x)) = x$$

Describe all f-directed well-orderings.

- (9) Show that if $\alpha < \beta$ are ordinals, then there is an ordinal γ such that $\alpha + \gamma = \beta$. (**Hint**: $\gamma = \mathsf{type}(\beta \setminus \alpha, \in)$).
- (10) Suppose α, β, γ are ordinals and $\alpha + \beta = \alpha + \gamma$. Show that $\beta = \gamma$.
- (11) Suppose $\alpha \cdot \alpha = \beta \cdot \beta$. Show that $\alpha = \beta$.

- (12) Show that there is an uncountable chain in $(\mathcal{P}(\omega), \subseteq)$. (**Hint**: Identify ω with the set of rationals \mathbb{Q} and for each real number x, consider $\{r \in \mathbb{Q} : r < x\}$).
- (13) Suppose $f: \mathbb{R} \to \mathbb{R}$ is additive and a = f(1).
 - (a) Show that f(0) = 0.
 - (b) Show that for every $x \in \mathbb{R}$, f(-x) = -f(x).
 - (c) Show that for every $x \in \mathbb{Q}$, f(x) = ax.
- (14) Let $H \subseteq \mathbb{R}$ be a Hamel basis.
 - (a) Show that every nonzero $x \in \mathbb{R}$ can be uniquely written as

$$x = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

where $x_1 < x_2 < \cdots < x_n$ are in H and $a_1, a_2, \dots a_n$ are nonzero rational numbers. Uniqueness means the following: Suppose

$$x = a_1x_1 + a_2x_2 + \dots + a_nx_n = b_1y_1 + b_2y_2 + \dots + a_my_m$$

where $x_1 < x_2 < \cdots < x_n$ and $y_1 < y_2 < \cdots < y_m$ are in H and $a_1, \ldots, a_n, b_1, \ldots, b_m$ are nonzero rationals. Show that m = n and for every $1 \le k \le n$, $x_k = y_k$ and $a_k = b_k$.

- (b) Let $f: H \to \mathbb{R}$. Show that there is a unique additive function $g: \mathbb{R} \to \mathbb{R}$ such that $f \subseteq g$.
- (15) Suppose $f: \mathbb{R} \to \mathbb{R}$ satisfies: For every $x, y \in \mathbb{R}$, f(x+y) = f(x)f(y).
 - (a) Show that either f is identically zero or range $(f) \subseteq \mathbb{R}^+$.
 - (b) Suppose f is continuous and not identically zero. Show that $f(x) = a^x$ for some a > 0.
- (16) Show that there is a discontinuous function $f: \mathbb{R} \to \mathbb{R}$ such that f(x+y) = f(x)f(y) for every $x, y \in \mathbb{R}$.
- (17) Prove the following.
 - (a) For every ordinal α , $|\alpha| \leq \alpha$.
 - (b) If κ is a cardinal and $\alpha < \kappa$, then $|\alpha| < \kappa$.
 - (c) There is an injection from X to Y iff $|X| \leq |Y|$.
 - (d) There is a surjection from X to Y iff $|Y| \leq |X|$.
 - (e) There is a bijection from X to Y iff |X| = |Y|.

- (18) Prove the following.
 - (a) $|\mathbb{R}^{\omega}| = \mathfrak{c}$.
 - (b) $|C(\mathbb{R})| = \mathfrak{c}$ where $C(\mathbb{R})$ is the set of all continuous functions from \mathbb{R} to \mathbb{R} .
 - (c) Let A be the set of all real numbers which are roots of some polynomial equation with rational coefficients. Show that $|A| = \omega$.
- (19) Suppose (P, \preceq) is a partial ordering in which every countable chain has an upper bound. Must P have a maximal element?
- (20) Use Zorn's lemma to show that $\mathbb{R}^+ = (0, \infty)$ can be partitioned into two nonempty sets that are both closed under addition.
- (21) Is there a subset $X \subseteq \mathbb{R}^2$ that meets every circle at 2 points?
- (22) Show that there is a subset $X \subseteq \mathbb{R}^2$ that meets every circle at 3 points.
- (23) Suppose that the set of propositional variables $\mathcal{V}ar$ is uncountable. Use Zorn's lemma to show the following: Let S be a set of propositional formulas such that every finite subset of S is satisfiable. Then S is satisfiable. **Hint**: Apply Zorn's lemma to (\mathcal{F}, \subseteq) where \mathcal{F} is the set of all functions h such that $dom(h) \subseteq \mathcal{V}ar$, range $(h) \subseteq \{0, 1\}$ and for every finite $F \subseteq S$, there exists a valuation $val : \mathcal{V}ar \to \{0, 1\}$ such that $h \subseteq val$ and every formula in F is true under val.
- (24) Let ϕ be a propositional formula in which \neg does not occur. Show that ϕ is satisfiable.
- (25) Show that the axiom of extensionality is not a logically valid \mathcal{L}_{ZFC} -sentence.
- (26) Show that $(\forall x)(\forall y)(x+y=y+x)$ is not a logically valid \mathcal{L}_{PA} -sentence.
- (27) Let \mathcal{L} be a first order language and T be an \mathcal{L} -theory. Assume $T \vdash \phi$ and $T \vdash (\phi \implies \psi)$. Show that $T \vdash \psi$.
- (28) Let \mathcal{L} be a first order language and T be an \mathcal{L} -theory. Assume $T \vdash \phi_1$ and $T \vdash \phi_2$. Show that $T \vdash (\phi_1 \land \phi_2)$.
- (29) Let \mathcal{L} be a first order language. Call a set S of \mathcal{L} -sentences deductively closed if S contains every logical axiom of \mathcal{L} and whenever ϕ and $(\phi \Longrightarrow \psi)$ are in S, ψ is also in S. Show that for any \mathcal{L} -theory T, the set of theorems of T is the smallest set of \mathcal{L} -sentences that is deductively closed.
- (30) Describe all substructures of $(\mathbb{Z}, <)$ and $(\mathbb{Z}, +)$.
- (31) Describe all elementary submodels of $(\mathbb{Z}, <)$ and $(\mathbb{Z}, +)$.
- (32) For each $n \ge 1$ and $\mathcal{L} = \emptyset$. Give an example of a consistent \mathcal{L} -theory T such that for every model $\mathcal{M} \models T$, |M| = n.

(33) Let $\mathcal{L} = \mathcal{L}_{PA} \cup \{c\}$ where c is a new constant symbol. Let $\mathsf{Primes} = \{2, 3, 5, 7, \dots\}$ be the set of all primes numbers. For each $p \in \mathsf{Primes}$, let "p divides c" denote the \mathcal{L} -sentence $(\exists y)(S^p(0) \cdot y = c)$. For each $X \subseteq \mathsf{Primes}$, let T_X be the \mathcal{L} -theory

$$T_X = TA \cup \{(p \text{ divides } c) : p \in X\} \cup \{\neg (p \text{ divides } c) : p \in \mathsf{Primes} \setminus X\}$$

where $TA = Th(\omega, 0, S, +, \cdot)$ denotes true arithmetic.

- (a) Show that T_X is consistent for every $X \subseteq \mathsf{Primes}$.
- (b) Show that TA has continuum many pairwise non-isomorphic countable models.
- (34) Show that $(\mathbb{Q}, <)$ is an elementary submodel of $(\mathbb{R}, <)$.
- (35) Show that every countable linear ordering $(L, <_L)$ is isomorphic to (A, <) for some $A \subseteq \mathbb{Q}$.
- (36) Let $\mathcal{L} = \{ \prec \}$ where \prec is a binary relation symbol. Let T be the \mathcal{L} -theory obtained by replacing Axiom (6) of DLO (Slide 142) with the following

$$(\exists y)(\forall x)(y \prec x \lor y = x)$$

Show that T is ω -categorical and therefore complete. Use this to also show that for every \mathcal{L} -sentence ϕ

$$T \vdash \phi \iff (\mathbb{Q}_{>0}, <) \models \phi$$

where $\mathbb{Q}_{\geq 0}$ is the set of all non-negative rationals.

- (37) Let $W \subseteq \omega$ be nonempty. Show that W is c.e. iff there exists a computable function $f: \omega \to \omega$ such that range(f) = W.
- (38) Let $W \subseteq \omega$ be infinite. Show that W is c.e. iff there exists an injective computable function $f: \omega \to \omega$ such that range(f) = W.
- (39) Let $W \subseteq \omega$ be an infinite c.e. set. Show that W has an infinite computable subset.
- (40) Let $W \subseteq \omega$ be nonempty. Show that W is c.e. iff there exists a computable $A \subseteq \omega^2$ such that $W = \{n \in \omega : (\exists m)((n,m) \in A)\}.$
- (41) Suppose $X \subseteq \omega$ is numeralwise representable in PA. Show that X is computable.
- (42) Let $E \subseteq \omega$ be a non-computable c.e. set. Show that E is definable in $\mathcal{N} = (\omega, 0, S, +, \cdot)$ but not numeralwise representable in PA.
- (43) Do the Exercise on the last slide (180) of notes.