# METHOD AND APPARATUS FOR DETECTING COPY NUMBER VARIATIONS IN A GENOME

#### **Field**

Replacing the current chromosomal microarray analysis (CMA) by a novel whole genome sequencing (WGS)-based assay

#### **Abstract**

While next-generation sequencing (NGS) has been considered as a standard technology for research applications across the life sciences, the conventional molecular cytogenetic methods, such as chromosomal microarray analysis (CMA) and fluorescent in situ hybridization (FISH) still remain the standard assays for detection of chromosomal aberrations at clinical laboratories. The major challenge of NGS as a first-tier assay is a lack of reliable bioinformatics tools. Some embodiments include an NGS-based copy number variation (CNV) calling algorithm, JAX-CNV, for detection of CNVs in the clinical setting. The performance of JAX-CNV was evaluated on ten samples from patients with constitutional disorders, which were examined in parallel by the clinically validated CMA assay at our CLIA-certified laboratory. In total, JAX-CNV identified all 54 CNVs reported by the CMA assay and 13 pathogenic CNVs that were previously detected by other clinical laboratories. The result demonstrated 100% concordance between JAX-CNV and the clinical CMA assay. Moreover, JAX-CNV detected additional 210 CNVs that were not captured by the CMA. To assess the false discovery rate of JAX-CNV, we selected 19 unique genomic regions from two samples for experimental validations using the droplet digital PCR (ddPCR). Four of the 19 regions were not validated and considered as false positive. Further analysis showed that all the four regions were located in segmental duplication or simple repeat regions. We also evaluated the robustness of the JAX-CNV pipeline by generating 30x, 20x, 15x, 10x, 9x, 8x, 6x and 4x coverage sequencing data and found 100% sensitivity of the detection at the coverage of 4x when >300Kb size cutoff was applied. This study indicates that NGS when paired with JAX-CNV can replace the current CMA as a first-tier clinical assay.

# **Introduction**

Copy number variations (CNVs) have been suggested a key factor in human evolution (1, 2), genomic diversity (3–6), and disease susceptibility (7–9). In addition, copy number gains (duplications) or losses (deletions) may cause microdeletion and microduplication syndromes as well as other genetic disorders, such as Williams syndrome (10), Prader-Willi syndrome (11), Angelman syndrome (12), Smith-Magenis syndrome (13), DiGeorge syndrome (14), and Pallister Killian syndrome (15). Numerous assays have been widely used in research and clinical laboratories for detection, including fluorescence in situ hybridization (FISH), PCR-based assays, chromosomal microarray analysis (CMA) and next-generation sequencing (NGS). In 2010, CMA was suggested by the American College of Medical Genetics and Genomics as a first-tier test for patients with unexplained developmental or intellectual disability, autism spectrum disorders, and congenital anomalies (16).

Over the past decade, the advancement of NGS technologies and computational tools has brought unprecedented advances in DNA sequencing throughput, speed, and cost. NGS allows whole genome sequencing (WGS) to be a possibility for researches in life sciences and healthcare. Recently, the NGS-based noninvasive prenatal testing (NIPT) of cell-free fetal DNA in the maternal blood has become a standard screening assay for chromosomal aneuploidy (17, 18). A number of studies have examined the feasibilities and robustness of the WGS-based assays for discovering CNVs, and explored the possibility to replace the current CMA in the clinical laboratories (19–24). Although several WGS-based CNV calling algorithms (25–31) have been developed, none of them is widely accepted for pathogenic or high-risk CNV discrimination.

Rather than developing a new CNV calling algorithm, some researchers built pipelines using a combination of existing calling algorithms. Zhou *et al.* (19) combined calls from CNVnator (29) and LUMPY (26), and gave a conclusion that detecting copy number gains and losses on low-coverage NGS data outperforms array-based methods. Noll *et al.* proposed SKALD (32), which is based on consensus, filtered calls from BreakDancer (33) and GenomeSTRiP (30, 34), while Trost *et al.* (20) employed CNVnator and ERDS (31) for CNV identification. However, none of those pipelines has been validated on multiple constitutional disease samples. Since those

bioinformatics algorithm.

Docket No.: J0227.70024US00

pipelines consist of several calling algorithms and filters, replicating them can be difficult without a full release of pipelines. Moreover, using an ensemble of calling algorithms may improve accuracy, but it will add complications and thus take longer for making a diagnostic decision. Given the current limitations, it is not conceivable to meet the sensitivity, specificity, reproducibility, and speed requirements necessary for a true clinical grade pipeline without either a profound understanding of each algorithm used or the development of a brand new

Here we present a newly developed NGS-based CNV algorithm, JAX-CNV, and the best practices of CNV detection for use on WGS data. We focus on large (>50Kb) deletions and duplications that are usually implicated to cause diseases and therefore, we can make a direct comparison to CMA. Ten Coriell samples associated with 13 pathogenic CNVs were selected. In addition to the pathogenic aberrations, CMA results in identifying 54 CNVs in the test samples. JAX-CNV successfully detects the 13 pathogenic CNVs and the 54 CNVs reported by microarray. Moreover, since a greater number of copy number gains and losses are detected by JAX-CNV, droplet digital PCR (ddPCR) is performed for the two selected samples for a comprehensive experimental validation. 4 out of the 19 regions were not validated false positive. Those false calls are all located in segmental duplications or simple repeats which are difficult genomic regions to resolve (35). In addition to the high sensitivity and specificity of the algorithm, JAX-CNV is light and fast for calling CNVs. In some embodiments it2takes less than an hour to complete analyses which, in turn, will accelerate diagnostic processing and lead to faster turnaround times. The exercise of this study shows the potential of WGS as a first-tier diagnostic assay and may replace CMA in clinic when paired with JAX-CNV.

#### **Results**

#### Development of a Clinical-Grade CNV Calling Algorithm

Currently, the microarray proficiency test offered by the College of American Pathologists (CAP) requests the participating clinical laboratories to report CNVs greater than 300Kb. This size-based reporting criteria guided the development of a clinical-grade CNV calling algorithm. We selected ten constitutional disease samples from the Coriell Institute (**Table 1**) which

contained at least one pathogenic CNV >300Kb for each sample. In total, there are 13 pathogenic CNVs (11 deletions and two duplications) ranging from 107.6Kb to 47.9Mb in size. Associated disorders are DiGeorge, Williams, Cri-du-chat, Smith-Magenis, Wolf-Hirschhorn, Miller-Dieker Lissencephaly, Tetralogy Fallot, 1p deletion, and Angelman syndromes. The 13 pathogenic CNVs set up the baseline of sensitivity analysis in the study.

In order to complete a comprehensive comparative study, the ten test samples were completed on both CMA and NGS technologies. Since Affymetrix CytoScan HD (CMA-based method; Affymetrix, Santa Clara, CA) is the current clinically validated microarray platform for the discovery of chromosomal aberrations at the Jackson Laboratory for Genomic Medicine (JAX-GM), all samples were processed following the clinical standard operating procedure of JAX-GM. The microarray analysis is completed using the vendor supplied software (Material and Method: Affymetrix CytoScan HD analysis Flow). We also completed WGS on the ten test samples by Illumina paired-end technology with read length 2x150bp and coverage ~45x (Supplementary Table S1). Short reads are mapped against GRCh38 human reference genome by BWA (36) followed by JAX-CNV for CNV identification (Material and Method: NGS Analysis Flow).

For eleven CNVs greater than 300Kb (CAP standard), both CMA and JAX-CNV identify them with 100% sensitivity (**Table 1**). For the other two small duplications (107.6Kb and 148.8Kb), CMA is unable to detect the 148.8Kb duplication at 22q11.21 due to the low resolution of the array caused by limited probe coverage. JAX-GM clinical microarray platform requests at least 50 array probes to ensure the high quality of CNV identification. Coordinates of the pathogenic, CMA, and JAX-CNV CNVs against GRCh38 human reference are given in Supplementary Tables S2-S5 while the plots of the calling regions are given in Supplementary files S1-S2. As a result, JAX-CNV proficiently identifies all 13 pathogenic chromosomal aberrations while JAX-GM clinical microarray platform leaves out one of them.

#### Sensitivities Assessment Compared to CMA-Based Method

Since Affymetrix CytoScan HD is a clinically validated platform at JAX-GM, all CNVs identified by the platform should also be recalled by JAX-CNV to show the potential of WGS as

a first-tier diagnostic assay. The CNV size cutoff of the JAX-GM clinical microarray platform is >50Kb. By this criterion, 61 CNVs are reported from the ten test samples including 12 pathogenic CNVs (Supplementary Table S4). Note that a pathogenic duplication at 22q11.21 is filtered due to low resolution of the array. Among the 61 CNVs, there are four deletions and three duplications with marginal qualities, and therefore ddPCR is necessary to resolve these aberrations. ddPCR assays for the targets are designed except for a 69Kb gain at 16p13 (chr16:14961449-15030399) due to complexity of the genomic region. The region is 99.9% identical with 16\_KI270853v1\_alt that makes design a unique primer impractical. The remaining aberrations (four deletions and two duplications) are confirmed falsely detected by CMA. The most interesting falsely identified CNV is the deletion at 6p25. The region is a common duplication region. The 1000 Genomes Project (3, 37) which includes 2,504 samples shows 0.99 allele frequency of the duplication in the populations. Therefore, the deletion will be identified if a reference sample of CMA has this common duplication. After ddPCR validation, 54 CNVs including 39 deletions and 15 duplications remain (Supplementary Table S3).

JAX-CNV successfully identified all of 54 CNVs on WGS data (**Fig. 1**). The 50% reciprocal overlap is applied to evaluate CNV calls. Four deletions and two duplications do not overlap with CMA calls by 50% reciprocally, but they are in the regions either smaller or larger. The result suggests that NGS-based assay of the use of JAX-CNV is at least as accurate as CMA-based assay in sensitivity.



**Fig. 1:** The sensitivity assessment of JAX-CNV compared to calls reported by JAX-GM clinical microarray platform (CytoScan). \* denotes that JAX-CNV identifies a CNV that not 50% reciprocal overlapping with CytoScan reported one, but recovered in manual review.

#### NGS False Discovery Rate Assessment

Fig. 1 not only shows that JAX-CNV identifies the same calls as CMA, but also indicates that JAX-CNV detects greater numbers of aberrations than microarray does. JAX-CNV detects an additional 210 aberrations (Supplementary Table S4), which results in almost a five-fold increase compared to CMA calls. To evaluate the accuracy of those additional aberrations, we selected 19 unique genomic regions from two samples, GM05876 and GM09209, for experimental validation (Table 2). A 224.9Kb loss at 21p11 of GM05876 is not conclusive in the ddPCR validation (Material and Method: Droplet Digital PCR (ddPCR) Validation) due to an unclear separation of positive and negative droplet clusters. 4 others, 14 are confirmed true and four are false. The four false calls are all duplications and located at either segmental duplication or simple repeat regions which are difficult genomic regions to resolve. Two duplications are even in the same cytoband, 16p11, which is disturbed by a large segmental duplication. As a result, 4 out of 19 CNVs for GM05876 (5 overlapping with CMA, 1 ddPCR primer undesignable, 1 ddPCR inconclusive, 8 ddPCR confirmed true, and 4 ddPCR confirmed false) and 4 out of 25 CNVs for GM09209 (5 overlapping with CMA, 1 ddPCR primer undesignable, 5 unreproducible on GRCh19, 10 ddPCR confirmed true, and 4 ddPCR confirmed false) are validated as false.

It is noteworthy that CMA cannot identify those 14 CNVs (7 deletions and 12 duplications) that are called by JAX-CNV and are validated true by ddPCR. Thus, among 13 and 15 validated true calls of GM05876 and GM09209, CMA only identifies 5 for each of them. The missing rates of CMA are then 61.5% and 66.7% for GM05876 and GM09209, respectively. Unlike WGS comprehensively sequences whole genomes, CMA relies on array probes for CNV detection. In other words, an aberration cannot be identified if there are not sufficient probes in the region, such as the pathogenic duplication at 22q11.21. For those unique CNVs detected on WGS data, they all lack of sufficient array probes for CMA to call them confidently (JAX-GM clinical microarray platform requests 50 consecutive probes for reporting an aberration).

#### CNV Detection on Low-Coverage WGS

Although, NGS cost drops rapidly, the price is still a concern as WGS being the first-tier assay in clinic. To tackle this issue, we down-sample WGS data and evaluated the sensitivities of different coverages. The samples are originally sequenced by the coverages ranging from 42x to 46x. The simulation of different coverages is done by SAMBAMBA (38) on the aligned BAM files. Based on the original coverage of 42-46x, we generated 30x, 20x, 15x, 10x, 9x, 8x, 6x and 4x WGS data. JAX-CNV is then applied on the different coverage data for CNV identification.

JAX-CNV is able to get reproducible results as low as 20x; that is a 50% of the original coverage (**Table 1**). At the lower coverage of 15x, JAX-CNV cannot identify a 148.8Kb duplication at 22q11.21 of GM14164, which is also the same one that CMA cannot detect. At the coverage of 10x, JAX-CNV cannot resolve the second 107.6Kb duplication at 9p24.1 of GM13480. Duplication detection is more sensitive to sequencing coverage than deletion. For deletions, even at the coverage of 4x, JAX-CNV still consummately identifies all pathogenic ones. However, low coverage leads to more noise and affects the quality of CNV identification. Two deletions on 17p11.2 (GM20743) and 4p16.3 (GM22601) are divided into a few small pieces rather than complete CNVs (Supplementary File S1). The other impact of low coverage is that more CNVs are detected which suggests that more false positive calls may be made. In summary, the sensitivity and specificity are maintained when down-sampling to 20x. For the widely accepted CAP standard, greater than 300Kb CNVs, JAX-CNV still gets 100% sensitivity on the coverage of 4x which leads lower cost for diagnosis.

To better understand the effect of sequencing coverages, we extended the comparison of using calls from JAX-GM clinical microarray platform. There are 54 CNVs (39 deletions and 15 duplications). 100% sensitivity is reproducible at the coverage of 20x (**Fig. 2**). However, as the coverage decreases the sensitivity also decreases and more CNVs do not 50% reciprocally overlap with CMA identified CNVs. At the coverage of 8x, JAX-CNV loses ability to detect one deletion and at the coverage of 4x, the algorithm misses six deletions (**Fig. 2A**). For duplications, at the coverages of 15x, 10x, 9x, 8x, 6x, and 4x, JAX-CNV misses two, nine, ten, eight, twelve, and eleven calls, respectively (**Fig. 2B**). The missing duplications at the coverage of 8x are fewer than 9x, but this finding does not suggest that 8x is better than 9x. On the contrary, it indicates

that the read depth signal for discovering duplications on low coverage samples is unstable. As a result, the sensitivities (for all deletions and duplications) decrease from 100% (42-46x, 30x and 20x), 96% (15x), 83% (10x-8x), 77% (6x) to 68% (4x). If we classify CNVs into deletions and duplications, sensitivity of deletions is much more prominent than duplications. Even down to 4X, the sensitivity of deletion detection remains at 85% while the sensitivity of duplication detection drops to 27%. This observation is consistent with the result in pathogenic CNV identification. The sensitivity of duplication detection is worse than the sensitivity of deletion detection.



**Fig. 2:** CNV detection on nine different coverage WGS. Ori\_cov is the original sequenced coverage ranging from 42x-46x for the ten test samples. SAMBAMBA is then applied to downsample WGS from coverages 30x to 4x. The 100% sensitivity of calling CMA identified CNVs is reproducible at the coverages of 30x and 20x. Each bar is separated by >50% and not 50% reciprocal overlapping with CMA identified CNVs.

#### **Discussion**

#### **Comparison with Other WGS-Based Algorithms**

Over the past decade, several well-studied WGS-based CNV calling algorithms were invented for research purposes, such as Manta (25), Lumpy (26), Delly (27), CNVnator (29) and cn.MOPS (28). In addition, there are also combined methods, such as FusorSV (39) and MetaSV (40). We did not perform comparisons to FusorSV and MetaSV since they do not support for GRCh38 human reference genome. None of those methods was originally designed for a clinical

requirements for disease diagnosis.

Docket No.: J0227.70024US00

setting, which requires extraordinary sensitivity and specificity. For research purposes, sacrificing specificity for the maintenance of sensitivity is expedient as to not miss any potential CNVs. Nevertheless, reporting hundreds, or even thousands, of chromosomal aberrations is impractical for diagnosis due to the pressure of turnaround time in the clinic. Thus without careful clinical considerations, the sensitivity and specificity of those tools cannot meet the

For the 13 pathogenic CNVs used as a baseline for the current study, calling algorithms Manta, Lumpy, Delly, CNVnator and cn.MOPS identify 6, 6, 10, 13 and 4, respectively (Supplementary Table S7). It can be seen that read-depth-based algorithms, such as JAX-CNV and CNVnator, have relative high sensitivities. Other algorithms that use paired-end, split-read or combinations clearly show the weakness of low sensitivity of identifying those pathogenic chromosomal aberrations. For clinical applications, we expect that all reported variations are pathologically meaningful and a reasonable number of reported CNVs. JAX-CNV performs well in this respect. In contrast, Manta, Lumpy and Delly identify more than tens of thousands CNVs, which bring difficulties of decision making if using them for pathological diagnosis. The assessment of existing algorithms addresses an issue of using research-purpose algorithms in the clinic and suggests the necessity of tailored CNV algorithms.

#### **Robustness Test**

A clinical-grade pipeline not only requires high sensitivity and specificity, but also exceptional stableness and robustness. To perform a robustness test, we applied JAX-CNV on 934 samples from the Taiwan BioBank (TWB. https://www.twbiobank.org.tw/new\_web\_en/index.php). The read length is Illumina 2x151bp and coverage is ~30x. JAX-CNV is light and easy to run. For each sample, JAX-CNV requests 4.5G memory and can finish CNV detection in one hour without any program failures. The stableness and robustness of the algorithm are thus shown on those 934 samples.

For each sample, we also have data from the Affymetrix customized TWB genotype 653K array for comparative analyses. Due to the lack of nonpolymorphic copy-number probes in the TWB genotype array, its capacity of CNV detection is less sensitive than JAX-GM clinical microarray

platform. Thus, from TWB genotype array, we selected high confident CNVs that have more than 200 array probes and analyzed segments larger than 50Kb (Supplementary Table S8). JAX-CNV recalls 94.7% deletions and 83.9% duplications. Note that due to the lack of nonpolymorphic copy-number probes, there may be some false positive CNVs reported by the TWB genotype array, which will reduce the overlap with the result from NGS-based calling results. However, the high stableness, robustness, and efficiency of JAX-CNV can be seen from this experiment.

#### **Conclusions and Ramifications**

Chromosomal abnormalities involved in pathogenic diagnosis are not limited to CNVs, but other structural variants (SVs) as well including translocations and inversions. To identify those pathogenic translocations and inversions, we will develop new modules in the current pipeline. Detecting translocations and inversions is more difficulty than detecting CNVs. We cannot rely solely on read depth signal, which is the major signal we used for our current CNV caller. The paired-end alignment distance and orientation will be considered for identifying translocations and inversions. Breakpoints of inversions have been shown to likely be associated with deletions, which increases the difficulty to detect them. However, Dong *et al.* (41) show the potential to detect them on WGS data. Thus, we believe with a careful design and our knowledge of SVs, our pipeline will become a comprehensive SV caller for clinical applications.

We have developed a NGS-based CNV caller, JAX-CNV, which shows the potential of NGS replacing CMA as a first-tier diagnostic assay. The assessment on the ten constitutional disease samples shows 100% sensitivity that outperforms other calling algorithms. Besides, JAX-CNV is easy to run and so fast that it can complete calling CNVs for a 30x coverage sequenced sample in one hour. JAX-CNV meets the sensitivity, specificity, reproducibility, and speed requirements necessary in the clinic, and shows its potential to replace CMA-based methods as a first-tier diagnostic assay.

#### **Material and Methods**

#### Affymetrix CytoScan HD Analysis Flow

CNV microarray analysis was performed by the cytogenetics laboratory at JAX-GM, using the Affymetrix Cytoscan HD platform. The array consists of 2,696,550 probes that include 743,304 SNP probes and 1,953,246 nonpolymorphic copy-number probes. The average probe spacing for RefSeq genes is 880 bp, and 96% of genes are represented. DNA labeling, slide hybridization, washing, and scanning were performed following the manufacturer's protocol. CEL files were generated from scanned array image files by Affymetrix GeneChip Command Console software and were imported into Affymetrix Chromosome Analysis Suite (ChAS v3.3) software. Copy number data files (CYCHP files) were generated using Affymetrix CytoScan HD Array version NA36 (hg38) as a reference. Data were analyzed using the following filtering criteria: greater than 50Kb with a minimum of 50 consecutive markers.

#### NGS Analysis Flow

#### **Pre-process**

**Fig. 3A** shows the complete flow of WGS data analysis. The pre-process steps for a reference genome, such as GRCh19 or GRCh38, include BWA (*36*) index (v0.7.15) and JELLYFISH (*42*) count (v2.2.6). BWA index creates required files for BWA alignment that is the next step while JELLYFISH count calculates the counts of each 25-mer genome widely and generates k-mer DB. One of our developed modules takes k-mer DB and converts it to a FASTA-format log2 (25-mer) file. For example, if a 25-mer has only one position in the genome, the log2(1) is zero. For converting the zero to an ASCII code, we add 34 to make an ASCII code "(34 in decimal) represent zero. BWA index, JELLYFISH count, and k-mer DB converting may take 190, 105, and 403 minutes, respectively.

#### **Alignment**

Once the paired-end FASTQ files of a sample are received, FASTQC (v0.11.5) and BWA mem (v0.7.15) are applied for quality control and alignment either against GRCh19 or GRCh38. The

BAM is then generated by BWA as the alignment result is followed by SAMTOOLS (43) to sort alignments by coordinates. The resultant sorted BAM is the input file of JAX-CNV.

#### **CNV** calling

The first step of CNV calling is coverage calculation. JAX-CNV uses the log2(25-mer) FASTA-format file from the pre-process steps to scan the unique genome regions for each autosomal chromosome. A region is considered a unique genome region when each 25-mer count is one and the size of the region is larger than 20Kb. For each chromosome, we calculated a coverage based on 20 unique genome regions in the chromosome. We then applied the interquartile range to filter outlier coverages and calculated an overall coverage of the sequenced sample. Comparing the coverage of each chromosome with the overall coverage, we are able to detect aneuploidies. For those aneuploidies, we will not detect any smaller CNVs on the respective chromosomes in the further steps.

Once the overall coverage is calculated, we then scanned the BAM file by shifting bins (default size of a bin is 50bp and is user adjustable by --bin) for read depth calculation (**Fig. 3B**). According to the overall coverage as the baseline (at 50% percentile), the read depth of each bin can be translated to a percentile, from 0% to 180%. For example, if the overall coverage is 50 and a read depth of a bin is 100, the percentage tile of a bin will be 100% (100 / 50 \* 50%; **Fig. 3C**). Then, a hidden Markov model (HMM) with a Poisson distribution of read depth is applied to convert the percentile of each bin to one of the five CNV statuses: CN=0 (loss), CN=1 (loss), CN=2 (normal), CN=3 (gain) and CN>3 (gain) (**Fig. 3D**). Afterwards, if the CNV statuses of two adjacent bins, we merge the bins (**Fig. 3E**).

Since the default bin size is set to 50bp, frequent CNV status oscillation will happen as shown in **Fig. 3E**. Using larger bin sizes, we can resolve the oscillation, but this change decreases the sensitivity as well. To maintain high sensitivity, we suggest 50bp as the bin size. Therefore, a merge step is then necessary to mitigate status oscillation. If the status' length is shorter than 5Kb then it will be absorbed by the previous status (**Fig. 3F**). This observation shows that the resolution of JAX-CNV is 5Kb. The status consolidation may be so aggressive that a region consists of too many other statuses. To resolve this, if the original status of the region covers less

than 80% in length, the merging will stop and reinstate the original statuses (**Fig. 3G**). After recognition of a complex region and the cease of merging, the CNV classifications are then sorted by their respective lengths (**Fig. 3H**). From the longest to the shortest, each CNV status will scan other statuses downstream and upstream by coordinates for further merging (**Fig. 3I**). This step allows larger CNVs to cross normal status and to merge smaller CNVs nearby. A larger CNV has more ability to cross normal statuses and merge others. Candidate CNVs are then generated.

For each candidate CNV, we divided it into ten regions of equal length. Each region is assigned a uniqueness value corresponding to the count of unique k-mer. Starting with the first region, we filtered it if the uniqueness value is low (percentage of unique k-mers is lower than 60% by default; user adjustable by --unique\_kmer). Once we cannot filter, we stopped (**Fig. 3J**). The same procedure was performed from the last region to the first one as well. We reported CNVs in a BED-format file when the remaining regions are larger than 45Kb.

**Fig. 3:** (A) The flow of CNV detection comprises of three major steps, pre-processing, alignment and CNV calling. (B-J) The details of Poisson distribution, hidden Markov model (HMM), CNV merging and CNV filtering.



#### **BAM**

A BAM file (.bam) is the binary version of a SAM file. A SAM file (.sam) is a tab-delimited text file that contains sequence alignment data. These formats are described on the SAM Tools web site: http://samtools.github.io/hts-specs/.

Alignments look like the view below.



#### **Coverage**

The coverage is for each position in genome, how many alignments cover it.

#### **Repetitive Region**

As researchers estimate, there are approximate 50% of genomic regions are repetitive ones. Repetitive regions have similar sequences to other regions. For those regions, alignments may be not so confident since we will have several regions to place alignments and we don't know which one is correct. The k-mer FASTA is the file to tell how repetitive (or on the contrary how unique) a position in genome is.

#### **Converter**

Input: k-mer DB generated by JellyFish

Output: k-mer FASTA

The input is k-mer DB generated by JellyFish (k is 25 in our pipeline). K-mer DB is an encrypted lookup table that denotes how many times a sequence (with 25 letters/basepairs/nucleotides) appears. So, then for the first 25 basepairs in FASTA (ref), the lookup table illustrates how many times this sequence appears in the genome. Once we finish the first 25 basepairs, we move to the second 25 basepairs and repeat the actions until the end of the genome.

For example, if a 25-mer has only one position in the genome, the log2(1) is zero. For converting the zero to an ASCII code, we add 34 to make an ASCII code "(34 in decimal) represent zero.

" is kept in the output.

FASTA format: https://en.wikipedia.org/wiki/FASTA format

ASCII code: http://www.pld.ttu.ee/~marek/PA\_R4/ascii.html

#### **Coverage Calculation**

Input: k-mer FASTA and BAM

Output: a vector of coverages for all chromosome and an overall coverage

As we described in "what is repetitive region", we like to use unique (not repetitive) regions to calculate the coverage. So, one of the inputs of this module is k-mer FASTA generated by "Converter" to find unique regions.

A region is considered a unique genome region when each 25-mer count is one and the size of the region is larger than 20Kb. For each chromosome, we calculated a coverage based on 20 unique genome regions in the chromosome.

Once we identify the unique region, we check the alignments for coverage calculation so we need BAM as input as well. Figure 3B is showing an example of coverage in BAM.

We then applied the interquartile range to filter outlier coverages and calculated an overall coverage of the sequenced sample. Comparing the coverage of each chromosome with the

overall coverage, we are able to detect aneuploidies. For those aneuploidies, we will not detect

any smaller CNVs on the respective chromosomes in the further steps.

Notice that the coverage calculation is done for each chromosome so this allows us to detect

whole chromosome duplications or deletions (aneuploidies).

interquartile range: <a href="https://en.wikipedia.org/wiki/Interquartile\_range">https://en.wikipedia.org/wiki/Interquartile\_range</a>

**ReadDepthScanning** 

Input: BAM

Output: a vector of read depth (coverage) of each bin

Once the overall coverage is calculated, we then scanned the BAM file by shifting bins (default

size of a bin is 50bp and is user adjustable by --bin) for read depth calculation (Fig. 3B).

**Poisson Distribution** 

Input: a vector of read depth (coverage) of each bin and an overall coverage (as the baseline)

Output: a vector of percentile of read depth of each bin

According to the overall coverage as the baseline (at 50% percentile), the read depth of each bin

can be translated to a percentile, from 0% to 180%. For example, if the overall coverage is 50

and a read depth of a bin is 100, the percentage tile of a bin will be 100% (100 / 50 \* 50%; Fig.

3C).

**HMM (Hidden Markov Model)** 

Input: a vector of percentile of read depth of each bin

Output: a vector of CNV status with regions sizes (sorted by coordinates)

Then, a hidden Markov model (HMM) with a Poisson distribution of read depth is applied to

convert the percentile of each bin to one of the five CNV statuses: CN=0 (loss), CN=1 (loss),

CN=2 (normal), CN=3 (gain) and CN>3 (gain) (**Fig. 3D**).

6602335 2

Now, for each bin (50bp) we assign a CNV status to it. If the adjacent bin assigned the same statuses, then we merge them together. Please notice that the regions are sorted by coordinates naturedly since we always process from the beginning to the end of the genome.

Afterwards, if the CNV statuses of two adjacent bins, we merge the bins (**Fig. 3E**).

#### **CNV Merging**

Input: a vector of CNV status with regions sizes (sorted by coordinates)

Output: a vector of CNV candidate regions

Since the default bin size is set to 50bp, frequent CNV status oscillation will happen as shown in **Fig. 3E**. Using larger bin sizes, we can resolve the oscillation, but this change decreases the sensitivity as well. To maintain high sensitivity, we suggest 50bp as the bin size. Therefore, a merge step is then necessary to mitigate status oscillation. If the status' length is shorter than 5Kb then it will be absorbed by the previous status (**Fig. 3F**). This observation shows that the resolution of JAX-CNV is 5Kb. The status consolidation may be so aggressive that a region consists of too many other statuses. To resolve this, if the original status of the region covers less than 80% in length, the merging will stop and reinstate the original statuses (**Fig. 3G**). After recognition of a complex region and the cease of merging, the CNV classifications are then sorted by their respective lengths (**Fig. 3H**). From the longest to the shortest, each CNV status will scan other statuses downstream and upstream by coordinates for further merging (**Fig. 3I**). This step allows larger CNVs to cross normal status and to merge smaller CNVs nearby. A larger CNV has more ability to cross normal statuses and merge others. Candidate CNVs are then generated.

#### **CNV Filtering**

Input: a vector of CNV candidate regions and k-mer FASTA

Output: a vector of CNV regions (final result)

For each candidate CNV, we divided it into ten regions of equal length. Each region is assigned a uniqueness value corresponding to the count of unique k-mer.

The k-mer information is from k-mer FASTA.

Starting with the first region, we filtered it if the uniqueness value is low (percentage of unique k-mers is lower than 60% by default; user adjustable by --unique\_kmer). Once we cannot filter, we stopped (**Fig. 3J**). The same procedure was performed from the last region to the first one as well. We reported CNVs in a BED-format file when the remaining regions are larger than 45Kb.

BED format: https://useast.ensembl.org/info/website/upload/bed.html

#### **Droplet Digital PCR (ddPCR) Validation**

Droplet Digital PCR (ddPCR) assays were performed to examine the accuracy of the genomic aberrations detected by the JAX-GM clinical microarray platform and JAX-CNV. The customized assays were designed using Primer3Plus (44) based on hg38 assembly. All primer pairs were tested for their uniqueness across the human genome using In-Silico PCR from UCSC Genome Browser. A BLAT (45) search was also performed at the same time to make sure all primer candidates have only one hit in the human genome. Lastly, the NCBI 1000 Genome Browser was used to check if there were any SNPs in the primer or probe-binding region. All primers and probes used in this study were listed in Supplementary Table S6.

The ddPCR reactions were created following the Bio-Rad QX200<sup>TM</sup> system manufacturer protocol. A total of 10ng DNA template was mixed with a 2X ddPCR SuperMix for Probes (no dUTP), *Hind*III-HF enzyme (2U/reaction) (New England BioLabs, MA, USA), 20X primer/probe, (both FAM and HEX-labeled probes) and water to a final volume of 20 μL. Each reaction mixture was then loaded into the sample well of an eight-channel droplet generator cartridge. A volume of 70 μl of droplet generation oil was loaded into the oil well for each channel and covered with a gasket. The cartridge was placed into the Bio-Rad QX200<sup>TM</sup> Droplet Generator. After the droplets were generated in the droplet well, 40 μl was transferred into a 96-well PCR plate and then heat-sealed with a foil seal. PCR amplification was performed using a C1000 Touch thermal cycler with the following conditions for CNV detection: enzyme activation at 95°C for 10 minutes, denaturation and extension at 94°C for 30 seconds and 60°C for 1 minute for a total of 40 cycles, enzyme deactivation at 98°C for 10 minutes, finished with a 4°C hold. Once completed, the 96-well PCR plate was loaded on the QX200<sup>TM</sup> Droplet Reader.

All experiments had at least two normal controls, and a no-template control (NTC) with water. All samples and controls were run in duplicate, and data from any well with less than 8,000 droplets was treated as failed QC and excluded for downstream analysis. Analysis of the ddPCR data was utilized with QuantaSoft<sup>TM</sup> software.

- -21-
- G. H. Perry et al., Diet and the evolution of human amylase gene copy number variation. Nat. 1. Genet. 39, 1256-1260 (2007).
- 2. J. A. Bailey et al., Recent segmental duplications in the human genome. Science. 297, 1003–7 (2002).
- 1000 Genomes Project Consortium, A global reference for human genetic variation. *Nature*. **526**, 3. 68-74 (2015).
- P. H. Sudmant et al., An integrated map of structural variation in 2,504 human genomes. Nature. 4. **526**, 75–81 (2015).
- 5. R. Redon et al., Global variation in copy number in the human genome. Nature. 444, 444–54 (2006).
- 6. M. Zarrei, J. R. MacDonald, D. Merico, S. W. Scherer, A copy number variation map of the human genome. Nat. Rev. Genet. 16, 172–183 (2015).
- 7. C. Lee, S. W. Scherer, The clinical context of copy number variation in the human genome. Expert Rev. Mol. Med. 12 (2010), p. e8.
- 8. S. A. McCarroll, D. M. Altshuler, Copy-number variation and association studies of human disease. Nat. Genet. 39, S37–S42 (2007).
- 9. K. Inoue, J. R. Lupski, Molecular Mechanisms for Genomic Disorders. Annu. Rev. Genomics Hum. Genet. 3, 199-242 (2002).
- 10. G. Merla, N. Brunetti-Pierri, L. Micale, C. Fusco, Copy number variants at Williams–Beuren syndrome 7q11.23 region. Hum. Genet. 128, 3–26 (2010).
- 11. Y. Chen et al., Copy number variations at the Prader-Willi syndrome region on chromosome 15 and associations with obesity in whites. *Obesity (Silver Spring)*. **19**, 1229–34 (2011).
- J. Clayton-Smith, T. Webb, X. J. Cheng, M. E. Pembrey, S. Malcolm, Duplication of 12. chromosome 15 in the region 15q11-13 in a patient with developmental delay and ataxia with similarities to Angelman syndrome. J. Med. Genet. 30, 529–31 (1993).
- L. Potocki et al., Molecular mechanism for duplication 17p11.2— the homologous 13. recombination reciprocal of the Smith-Magenis microdeletion. *Nat. Genet.* **24**, 84–87 (2000).
- P. J. Scambler, The 22q11 deletion syndromes. Hum. Mol. Genet. 9, 2421–6 (2000). 14.
- R. Schubert, R. Viersbach, T. Eggermann, M. Hansmann, G. Schwanitz, Report of two new 15. cases of Pallister-Killian syndrome confirmed by FISH: tissue-specific mosaicism and loss of i(12p) by in vitro selection. Am. J. Med. Genet. 72, 106–10 (1997).
- D. T. Miller et al., Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical 16. Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies. Am. J. Hum. Genet. 86, 749-764 (2010).
- 17. P. Benn et al., Position statement from the Aneuploidy Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis. *Prenat. Diagn.* **33**, 622–629 (2013).

- 18. American College of Obstetricians and Gynecologists Committee on Genetics, Committee Opinion No. 545. *Obstet. Gynecol.* **120**, 1532–1534 (2012).
- 19. B. Zhou et al., J. Med. Genet., in press, doi:10.1136/jmedgenet-2018-105272.
- 20. B. Trost *et al.*, A Comprehensive Workflow for Read Depth-Based Identification of Copy-Number Variation from Whole-Genome Sequence Data. *Am. J. Hum. Genet.* **102**, 142–155 (2018).
- 21. Z. Dong *et al.*, Low-pass whole-genome sequencing in clinical cytogenetics: a validated approach. *Genet. Med.* **18**, 940–948 (2016).
- 22. R. Truty *et al.*, Prevalence and properties of intragenic copy-number variation in Mendelian disease genes. *Genet. Med.*, 1 (2018).
- 23. A. C. Noll *et al.*, Clinical detection of deletion structural variants in whole-genome sequences. *npj Genomic Med.* **1**, 16026 (2016).
- 24. X. Zhu *et al.*, Identification of copy number variations associated with congenital heart disease by chromosomal microarray analysis and next-generation sequencing. *Prenat. Diagn.* **36**, 321–327 (2016).
- 25. X. Chen *et al.*, Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. *Bioinformatics*. **32**, 1220–1222 (2016).
- 26. R. M. Layer, C. Chiang, A. R. Quinlan, I. M. Hall, LUMPY: a probabilistic framework for structural variant discovery. *Genome Biol.* **15**, R84 (2014).
- 27. T. Rausch *et al.*, DELLY: structural variant discovery by integrated paired-end and split-read analysis. *Bioinformatics*. **28**, i333–i339 (2012).
- 28. G. Klambauer *et al.*, cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. *Nucleic Acids Res.* **40**, e69 (2012).
- 29. A. Abyzov, A. E. Urban, M. Snyder, M. Gerstein, CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. *Genome Res.* **21**, 974–984 (2011).
- 30. R. E. Handsaker *et al.*, Large multiallelic copy number variations in humans. *Nat. Genet.* **47**, 296–303 (2015).
- 31. M. Zhu *et al.*, Using ERDS to Infer Copy-Number Variants in High-Coverage Genomes. *Am. J. Hum. Genet.* **91**, 408–421 (2012).
- 32. A. C. Noll *et al.*, Clinical detection of deletion structural variants in whole-genome sequences. *npj Genomic Med.* **1**, 16026 (2016).
- 33. X. Fan, T. E. Abbott, D. Larson, K. Chen, *Curr. Protoc. Bioinforma.*, in press, doi:10.1002/0471250953.bi1506s45.
- 34. R. E. Handsaker, J. M. Korn, J. Nemesh, S. A. McCarroll, Discovery and genotyping of genome structural polymorphism by sequencing on a population scale. *Nat. Genet.* **43**, 269–76 (2011).
- 35. J. Monlong et al., Human copy number variants are enriched in regions of low mappability.

- Nucleic Acids Res. 46, 7236–7249 (2018).
- 36. H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics*. **25**, 1754–1760 (2009).
- 37. P. H. Sudmant *et al.*, An integrated map of structural variation in 2,504 human genomes. *Nature*. **526**, 75–81 (2015).
- 38. A. Tarasov, A. J. Vilella, E. Cuppen, I. J. Nijman, P. Prins, Sambamba: fast processing of NGS alignment formats. *Bioinformatics*. **31**, 2032–4 (2015).
- 39. T. Becker *et al.*, FusorSV: an algorithm for optimally combining data from multiple structural variation detection methods. *Genome Biol.* **19**, 38 (2018).
- 40. M. Mohiyuddin *et al.*, MetaSV: an accurate and integrative structural-variant caller for next generation sequencing. *Bioinformatics*. **31**, 2741–2744 (2015).
- 41. Z. Dong *et al.*, Identification of balanced chromosomal rearrangements previously unknown among participants in the 1000 Genomes Project: implications for interpretation of structural variation in genomes and the future of clinical cytogenetics. *Genet. Med.* **20**, 697–707 (2018).
- 42. G. Marçais, C. Kingsford, A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. *Bioinformatics*. **27**, 764–770 (2011).
- 43. H. Li *et al.*, The Sequence Alignment/Map format and SAMtools. *Bioinformatics*. **25**, 2078–9 (2009).
- 44. A. Untergasser *et al.*, Primer3Plus, an enhanced web interface to Primer3. *Nucleic Acids Res.* **35**, W71-4 (2007).
- 45. W. J. Kent, BLAT--the BLAST-like alignment tool. *Genome Res.* **12**, 656–64 (2002).

Table 1: The comparison of Affymetrix CytoScan HD and JAX-CNV. The ten samples are selected associated with 13 pathogenic.

|             |                                            |                           |                               | JAX-CNV             |     |     |     |     |    |    |    |    |
|-------------|--------------------------------------------|---------------------------|-------------------------------|---------------------|-----|-----|-----|-----|----|----|----|----|
| Coriell IDs | Clinical<br>Disorder                       | Pathogenic CNV            | Affymetrix<br>CytoScan HD     | Ori_cov<br>(42-46x) | 30x | 20x | 15x | 10x | 9x | 8x | 6x | 4x |
| GM05876     | DiGeorge<br>Syndrome                       | 22q11.21 (1.4Mb loss)     | 0                             | 0                   | О   | О   | О   | О   | 0  | 0  | 0  | О  |
| GM09209     | Miller-Dieker<br>Lissencephaly<br>Syndrome | 17p13.3 (5.9Mb loss)      | О                             | О                   | 0   | 0   | 0   | О   | О  | О  | О  | О  |
| GM11516     | Angleman<br>Syndrome                       | 15q11.2q13.1 (7Mb loss)   | 0                             | 0                   | О   | О   | О   | О   | 0  | 0  | О  | О  |
| GM13480     | Williams<br>Syndrome                       | 7q11.23 (1.6Mb loss)      | 0                             | 0                   | О   | О   | О   | О   | 0  | О  | О  | О  |
|             | Syndrome                                   | 9p24.1 (107.6Kb gain)     | О                             | О                   | О   | О   | О   |     |    |    |    |    |
| GM14164     | Tetralogy<br>Fallot                        | 13q14.2 (47.9Mb loss)     | О                             | О                   | О   | О   | О   | О   | О  | О  | О  | О  |
|             | Tunot                                      | 22q11.21 (148.8Kb gain)   | poor/low<br>probe<br>coverage | О                   | 0   | 0   |     |     |    |    |    |    |
| GM16593     | Cri-du-chat<br>Syndrome                    | 5p15.3 (14.7Mb loss)      | 0                             | 0                   | О   | О   | О   | О   | 0  | 0  | 0  | О  |
|             | Syndrome                                   | 14q24.3 (2.7Mb loss)      | 0                             | 0                   | О   | О   | О   | О   | О  | О  | О  | О  |
| GM20375     | Angleman<br>Syndrome                       | 15q11.2q13.1 (4.9Mb loss) | О                             | О                   | О   | О   | 0   | О   | О  | О  | О  | 0  |
| GM20743     | Smith-Magenis<br>Syndrome                  | 17p11.2 (2.1Mb loss)      | 0                             | 0                   | О   | О   | О   | О   | 0  | 0  | О  | *  |
| GM22569     | 1p deletion<br>Syndrome                    | 1p36.33 (5.5Mb loss)      | 0                             | 0                   | О   | О   | О   | О   | 0  | 0  | О  | О  |
| GM22601     | Wolf-<br>Hirschhorn<br>Syndrome            | 4p16.3 (25.0Mb loss)      | О                             | О                   | 0   | 0   | О   | О   | О  | О  | О  | *  |

Note: O: denotes CNVs captured by the algorithm/method. \*: CNVs are not 50% reciprocal overlapping, but recovered in manual review. Shadowed cells mean no call.

Table 2: ddPCR validation for NGS unique CNVs of GM05876 and GM09209.

| Cytoband | Type | Size (Kb) | Samples           | Validated | Remark                        |
|----------|------|-----------|-------------------|-----------|-------------------------------|
| 1p31     | loss | 55.3      | GM05876           | TRUE      |                               |
| 1p36     | gain | 53.9      | GM05876 & GM09209 | TRUE      |                               |
| 1p36     | gain | 68        | GM05876           | TRUE      |                               |
| 2p22     | gain | 45.1      | GM05876 & GM09209 | FALSE     | Overlap with a SEGDUP         |
| 3q26     | loss | 114.2     | GM09209           | TRUE      |                               |
| 5q35     | loss | 52.3      | GM05876 & GM09209 | TRUE      |                               |
| 6p25     | gain | 50.4      | GM05876 & GM09209 | TRUE      |                               |
| 6p22     | loss | 86.4      | GM09209           | TRUE      |                               |
| 12p11    | gain | 57.7      | GM05876           | TRUE      |                               |
| 12p13    | loss | 87        | GM05876 & GM09209 | TRUE      |                               |
| 14q11    | gain | 185.6     | GM09209           | TRUE      |                               |
| 14q21    | loss | 54.3      | GM09209           | TRUE      |                               |
| 15q11.2  | gain | 84        | GM05876           | TRUE      |                               |
| 15q11.1  | gain | 91.3      | GM09209           | TRUE      |                               |
| 16p12    | gain | 68.95     | GM09209           | TRUE      |                               |
| 16p11    | gain | 59.4      | GM05876 & GM09209 | FALSE     | Overlap with a simple repeats |
| 16p11    | gain | 53.3      | GM05876 & GM09209 | FALSE     | Overlap with a simple repeats |
| 19p11    | gain | 50.3      | GM05876 & GM09209 | FALSE     | Overlap with a SEGDUP         |
| 21p11    | loss | 224.9     | GM05876           | NA        | Not conclusive                |

# **Supplementary Tables**

<u>S1</u>

|         | Illu        | mina 2x150 | OPE sequencing      |                   |
|---------|-------------|------------|---------------------|-------------------|
| Sample  | ReadCount   | ReadLength | EstimatedInsertSize | EstimatedCoverage |
| GM05876 | 460,314,950 | 150bp PE   | 371                 | 46                |
| GM09209 | 455,583,105 | 150bp PE   | 397                 | 46                |
| GM11516 | 443,070,763 | 150bp PE   | 390                 | 44                |
| GM13480 | 422,056,408 | 150bp PE   | 383                 | 42                |
| GM14164 | 459,003,616 | 150bp PE   | 375                 | 46                |
| GM16593 | 459,768,472 | 150bp PE   | 381                 | 46                |
| GM20375 | 454,985,153 | 150bp PE   | 388                 | 46                |
| GM20743 | 440,830,304 | 150bp PE   | 388                 | 44                |
| GM22569 | 447,600,481 | 150bp PE   | 392                 | 45                |
| GM22601 | 448,272,730 | 150bp PE   | 383                 | 45                |

|         | Pathogo    | enic CNV | oordin coordin | ates       |      |
|---------|------------|----------|----------------|------------|------|
| Sample  | Chromosome | Begin    | End            | Length     | Type |
| GM05876 | chr22      | 18890273 | 20324382       | 1,434,110  | DEL  |
| GM09209 | chr17      | 150720   | 5918781        | 5,768,062  | DEL  |
| GM11516 | chr15      | 23370621 | 28300455       | 4,929,835  | DEL  |
| GM13480 | chr7       | 73245561 | 74727754       | 1,482,194  | DEL  |
|         | chr9       | 5098561  | 5206183        | 107,623    | DUP  |
| GM14164 | chr13      | 47227949 | 95062722       | 47,834,774 | DEL  |
|         | chr22      | 18888903 | 19037700       | 148,798    | DUP  |
| GM16593 | chr5       | 7554151  | 22285853       | 14,731,703 | DEL  |
|         | chr14      | 78435797 | 81133167       | 2,697,371  | DEL  |
| GM20375 | chr15      | 24215968 | 27830148       | 3,614,181  | DEL  |
| GM20743 | chr17      | 16836955 | 18819510       | 1,982,556  | DEL  |
| GM22569 | chr1       | 690077   | 6272609        | 5,582,533  | DEL  |
| GM22601 | chr4       | 65773    | 25980331       | 25,914,559 | DEL  |

<u>S3</u>

| Affyme  | trix CytoSc | an HD re  | ported CN | V coordina | tes  |
|---------|-------------|-----------|-----------|------------|------|
| Sample  | Chromosome  | Begin     | End       | Length     | Type |
| GM05876 | chr8        | 39368816  | 39529433  | 160,618    | DEL  |
|         | chr8        | 46980782  | 47094982  | 114,201    | DEL  |
|         | chr17       | 46135457  | 46215376  | 79,920     | DUP  |
|         | chr19       | 20413299  | 20537899  | 124,601    | DEL  |
|         | chr22       | 18929329  | 20325138  | 1,395,810  | DEL  |
| GM09209 | chr6        | 94776948  | 94861597  | 84,650     | DEL  |
|         | chr8        | 39389578  | 39529433  | 139,856    | DEL  |
|         | chr17       | 150732    | 5977916   | 5,827,185  | DEL  |
|         | chr17       | 46110125  | 46215376  | 105,252    | DUP  |
| GM11516 | chr14       | 105780376 | 106771352 | 990,977    | DEL  |
|         | chr15       | 23102646  | 28770762  | 5,668,117  | DEL  |
|         | chr17       | 46135457  | 46215376  | 79,920     | DUP  |
| GM13480 | chr7        | 72532206  | 72842895  | 310,690    | DUP  |
|         | chr7        | 73179193  | 74881821  | 1,702,629  | DEL  |
|         | chr9        | 5106684   | 5228343   | 121,660    | DUP  |
|         | chr10       | 46417570  | 46583083  | 165,514    | DUP  |
|         | chr17       | 36097968  | 36150098  | 52,131     | DUP  |
|         | chr21       | 23120390  | 23267071  | 146,682    | DEL  |
|         | chr22       | 22027193  | 22916199  | 889,007    | DEL  |
| GM14164 | chr5        | 12578472  | 12678806  | 100,335    | DEL  |
|         | chr13       | 47228260  | 95060365  | 47,832,106 | DEL  |
|         | chr17       | 46135457  | 46215376  | 79,920     | DUP  |
| GM16593 | chr1        | 91674697  | 92240952  | 566,256    | DUP  |
|         | chr5        | 7554150   | 22290079  | 14,735,930 | DEL  |
|         | chr7        | 65191248  | 65630056  | 438,809    | DEL  |
|         | chr8        | 39389578  | 39529433  | 139,856    | DEL  |
|         | chr11       | 55606698  | 55674829  | 68,132     | DEL  |
|         | chr14       | 78433830  | 81133860  | 2,700,031  | DEL  |
|         | chr14       | 105780448 | 106393766 | 613,319    | DEL  |
|         | chr22       | 22374765  | 22868186  | 493,422    | DEL  |
| GM20375 | chr7        | 69265509  | 69671863  | 406,355    | DUP  |
|         | chr7        | 101325081 | 101498586 | 173,506    | DUP  |
|         | chr8        | 136665652 | 136850192 | 184,541    | DEL  |
|         | chr15       | 23370621  | 28300455  | 4,929,835  | DEL  |
|         | chr18       | 72124126  | 72203343  | 79,218     | DEL  |
|         | chr22       | 22217466  | 22509323  | 291,858    | DEL  |
| GM20743 | chr1        | 248473949 | 248631917 | 157,969    | DEL  |
|         | chr2        | 51127356  | 51290637  | 163,282    | DEL  |
|         | chr7        | 45220233  | 46021123  | 800,891    | DUP  |
|         | chr8        | 39389578  | 39529433  | 139,856    | DEL  |

| Sample  | Chromosome | Begin     | End       | Length     | Type |
|---------|------------|-----------|-----------|------------|------|
|         | chr8       | 136664977 | 136850192 | 185,216    | DEL  |
|         | chr10      | 46400351  | 46583083  | 182,733    | DUP  |
|         | chr11      | 55606698  | 55685520  | 78,823     | DEL  |
|         | chr14      | 105757249 | 105862093 | 104,845    | DEL  |
|         | chr17      | 16708434  | 18839821  | 2,131,388  | DEL  |
| GM22569 | chr1       | 914086    | 6279099   | 5,365,014  | DEL  |
|         | chr6       | 161981973 | 162032707 | 50,735     | DEL  |
|         | chr11      | 55606542  | 55685520  | 78,979     | DEL  |
|         | chr17      | 46110125  | 46215376  | 105,252    | DUP  |
| GM22601 | chr4       | 68453     | 25980239  | 25,911,787 | DEL  |
|         | chr11      | 55606542  | 55685520  | 78,979     | DEL  |
|         | chr11      | 134283980 | 134347316 | 63,337     | DEL  |
|         | chr17      | 46135457  | 46215376  | 79,920     | DUP  |
|         | chr19      | 20412520  | 20537899  | 125,380    | DEL  |

# JAX-CNV reported CNV coordinates

-7-

|           | I                                                                 | 1                                                                                                                                          | 01111                                                                                                                                       | 01111                                                                                                                                      | 00200                                       | 0111 00    | oi umates | 1                                                |                                                                         |
|-----------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------|-----------|--------------------------------------------------|-------------------------------------------------------------------------|
|           |                                                                   |                                                                                                                                            |                                                                                                                                             |                                                                                                                                            | į l                                         |            | Overlap_  |                                                  |                                                                         |
|           |                                                                   |                                                                                                                                            |                                                                                                                                             |                                                                                                                                            | Typ                                         |            | w_CytoSc  |                                                  |                                                                         |
| Sample    | Chromosome                                                        | Begin                                                                                                                                      | End                                                                                                                                         | Length                                                                                                                                     | e                                           | Pathogenic | an        | ddPCR Validated                                  | Remark                                                                  |
| GM05876   | chr1                                                              | 16594859                                                                                                                                   | 16649399                                                                                                                                    | 54,541                                                                                                                                     | DUP                                         |            |           | TRUE                                             |                                                                         |
|           | chr1                                                              | 16881249                                                                                                                                   | 16949249                                                                                                                                    | 68,001                                                                                                                                     | DUP                                         |            |           | TRUE                                             |                                                                         |
|           | chr1                                                              | 72289349                                                                                                                                   | 72348449                                                                                                                                    | 59,101                                                                                                                                     | DEL                                         |            |           | TRUE                                             |                                                                         |
|           | chr2                                                              | 37730949                                                                                                                                   | 37776099                                                                                                                                    |                                                                                                                                            | DUP                                         |            |           | FALSE                                            |                                                                         |
|           |                                                                   |                                                                                                                                            |                                                                                                                                             | 45,151                                                                                                                                     |                                             |            |           |                                                  |                                                                         |
|           | chr5                                                              | 180949949                                                                                                                                  | 181004499                                                                                                                                   | 54,551                                                                                                                                     | DEL                                         |            |           | TRUE                                             |                                                                         |
|           | chr6                                                              | 296099                                                                                                                                     | 382499                                                                                                                                      | 86,401                                                                                                                                     | DUP                                         |            |           | TRUE                                             |                                                                         |
|           |                                                                   |                                                                                                                                            |                                                                                                                                             | 159,15                                                                                                                                     |                                             |            |           |                                                  |                                                                         |
|           | chr8                                                              | 39374599                                                                                                                                   | 39533749                                                                                                                                    | 1                                                                                                                                          | DEL                                         |            | TRUE      |                                                  |                                                                         |
|           |                                                                   |                                                                                                                                            |                                                                                                                                             | 105,80                                                                                                                                     |                                             |            |           |                                                  |                                                                         |
|           | chr8                                                              | 46989499                                                                                                                                   | 47095299                                                                                                                                    | 1                                                                                                                                          | DEL                                         |            | TRUE      |                                                  |                                                                         |
|           |                                                                   | 46514199                                                                                                                                   | 46561699                                                                                                                                    |                                                                                                                                            | DUP                                         |            | IKUL      | C                                                |                                                                         |
|           | chr10                                                             |                                                                                                                                            |                                                                                                                                             | 47,501                                                                                                                                     |                                             |            |           | Cannot degin primers                             |                                                                         |
|           | chr12                                                             | 31849049                                                                                                                                   | 31910299                                                                                                                                    | 61,251                                                                                                                                     | DUP                                         |            |           | TRUE                                             |                                                                         |
|           | chr12                                                             | 9482449                                                                                                                                    | 9569499                                                                                                                                     | 87,051                                                                                                                                     | DEL                                         |            |           | TRUE                                             |                                                                         |
|           | chr15                                                             | 22224249                                                                                                                                   | 22308299                                                                                                                                    | 84,051                                                                                                                                     | DUP                                         |            |           | TRUE                                             |                                                                         |
|           | chr16                                                             | 22613649                                                                                                                                   | 22699449                                                                                                                                    | 85,801                                                                                                                                     | DUP                                         |            |           | FALSE                                            |                                                                         |
|           | chr16                                                             | 33569079                                                                                                                                   | 33626049                                                                                                                                    | 56,971                                                                                                                                     | DUP                                         |            |           | FALSE                                            |                                                                         |
|           | chr17                                                             | 46135949                                                                                                                                   | 46219599                                                                                                                                    | 83,651                                                                                                                                     | DUP                                         |            | TRUE      | TALSE                                            |                                                                         |
|           | CHI 1 /                                                           | 40133949                                                                                                                                   | 40219399                                                                                                                                    |                                                                                                                                            | DUP                                         |            | IKUE      |                                                  |                                                                         |
|           |                                                                   | 20445010                                                                                                                                   | 20525::::                                                                                                                                   | 122,15                                                                                                                                     |                                             |            | mp.r.r    |                                                  |                                                                         |
|           | chr19                                                             | 20413049                                                                                                                                   | 20535199                                                                                                                                    | 1                                                                                                                                          | DEL                                         |            | TRUE      |                                                  |                                                                         |
|           | chr19                                                             | 24334199                                                                                                                                   | 24385529                                                                                                                                    | 51,331                                                                                                                                     | DUP                                         |            |           | FALSE                                            |                                                                         |
|           |                                                                   |                                                                                                                                            |                                                                                                                                             | 224,98                                                                                                                                     |                                             |            |           |                                                  |                                                                         |
|           | chr21                                                             | 9607449                                                                                                                                    | 9832429                                                                                                                                     | 1                                                                                                                                          | DUP                                         |            |           | Not conclusive                                   |                                                                         |
|           | V2.1                                                              | 7007117                                                                                                                                    | 7002.27                                                                                                                                     | 1,450,3                                                                                                                                    | 201                                         |            |           | Tior conclusive                                  |                                                                         |
|           | chr22                                                             | 18900699                                                                                                                                   | 20351049                                                                                                                                    | 51                                                                                                                                         | DEL                                         | TRUE       | TRUE      |                                                  |                                                                         |
| G) (00200 |                                                                   |                                                                                                                                            |                                                                                                                                             |                                                                                                                                            |                                             | IKUE       | IKUE      | TID LIE                                          |                                                                         |
| GM09209   | chr1                                                              | 16595499                                                                                                                                   | 16662299                                                                                                                                    | 66,801                                                                                                                                     | DUP                                         |            |           | TRUE                                             |                                                                         |
|           | chr2                                                              | 37730499                                                                                                                                   | 37776099                                                                                                                                    | 45,601                                                                                                                                     | DUP                                         |            |           | FALSE                                            |                                                                         |
|           |                                                                   |                                                                                                                                            |                                                                                                                                             | 114,20                                                                                                                                     |                                             |            |           |                                                  |                                                                         |
|           | chr3                                                              | 162794399                                                                                                                                  | 162908599                                                                                                                                   | 1                                                                                                                                          | DEL                                         |            |           | TRUE                                             |                                                                         |
|           | chr5                                                              | 180949049                                                                                                                                  | 181003749                                                                                                                                   | 54,701                                                                                                                                     | DEL                                         |            |           | TRUE                                             |                                                                         |
|           | chr6                                                              | 296099                                                                                                                                     | 382499                                                                                                                                      | 86,401                                                                                                                                     | DUP                                         |            |           | TRUE                                             |                                                                         |
|           |                                                                   | 29881499                                                                                                                                   | 29931899                                                                                                                                    |                                                                                                                                            | DEL                                         |            |           | TRUE                                             |                                                                         |
|           | chr6                                                              |                                                                                                                                            |                                                                                                                                             | 50,401                                                                                                                                     |                                             |            |           | IRUE                                             |                                                                         |
|           | chr6                                                              | 94776149                                                                                                                                   | 94871299                                                                                                                                    | 95,151                                                                                                                                     | DEL                                         |            | TRUE      |                                                  |                                                                         |
|           |                                                                   |                                                                                                                                            |                                                                                                                                             | 155,35                                                                                                                                     |                                             |            |           |                                                  |                                                                         |
|           | chr8                                                              | 39374549                                                                                                                                   | 39529899                                                                                                                                    | 1                                                                                                                                          | DEL                                         |            | TRUE      |                                                  |                                                                         |
|           | chr12                                                             | 9482449                                                                                                                                    | 9569499                                                                                                                                     | 87,051                                                                                                                                     | DEL                                         |            |           | TRUE                                             |                                                                         |
|           |                                                                   |                                                                                                                                            |                                                                                                                                             | 185,60                                                                                                                                     |                                             |            |           | _                                                |                                                                         |
|           | chr14                                                             | 19771049                                                                                                                                   |                                                                                                                                             |                                                                                                                                            | 1                                           |            |           |                                                  |                                                                         |
|           | CIII 14                                                           |                                                                                                                                            | 10056640                                                                                                                                    | 1 1                                                                                                                                        | DIID                                        |            |           | TDIE                                             |                                                                         |
|           | 1 14                                                              |                                                                                                                                            | 19956649                                                                                                                                    | 1 54.261                                                                                                                                   | DUP                                         |            |           | TRUE                                             |                                                                         |
|           | chr14                                                             | 41140099                                                                                                                                   | 41194459                                                                                                                                    | 54,361                                                                                                                                     | DEL                                         |            |           | TRUE                                             |                                                                         |
|           | chr15                                                             | 41140099<br>20331469                                                                                                                       | 41194459<br>20422849                                                                                                                        | 54,361<br>91,381                                                                                                                           | DEL<br>DUP                                  |            |           | TRUE<br>TRUE                                     |                                                                         |
|           |                                                                   | 41140099<br>20331469<br>14961449                                                                                                           | 41194459<br>20422849<br>15030399                                                                                                            | 54,361                                                                                                                                     | DEL<br>DUP<br>DUP                           |            |           | TRUE TRUE Cannot degin primers                   |                                                                         |
|           | chr15                                                             | 41140099<br>20331469                                                                                                                       | 41194459<br>20422849                                                                                                                        | 54,361<br>91,381                                                                                                                           | DEL<br>DUP                                  |            |           | TRUE<br>TRUE                                     |                                                                         |
|           | chr15<br>chr16                                                    | 41140099<br>20331469<br>14961449                                                                                                           | 41194459<br>20422849<br>15030399                                                                                                            | 54,361<br>91,381<br>68,951                                                                                                                 | DEL<br>DUP<br>DUP                           |            |           | TRUE TRUE Cannot degin primers                   | Not overlan                                                             |
|           | chr15<br>chr16                                                    | 41140099<br>20331469<br>14961449                                                                                                           | 41194459<br>20422849<br>15030399                                                                                                            | 54,361<br>91,381<br>68,951<br>59,401                                                                                                       | DEL<br>DUP<br>DUP                           |            |           | TRUE TRUE Cannot degin primers                   | Not overlap                                                             |
|           | chr15<br>chr16<br>chr16                                           | 41140099<br>20331469<br>14961449<br>22640049                                                                                               | 41194459<br>20422849<br>15030399<br>22699449                                                                                                | 54,361<br>91,381<br>68,951<br>59,401<br>113,80                                                                                             | DEL<br>DUP<br>DUP<br>DUP                    |            |           | TRUE TRUE Cannot degin primers                   | with HG19                                                               |
|           | chr15<br>chr16<br>chr16                                           | 41140099<br>20331469<br>14961449<br>22640049<br>32552199                                                                                   | 41194459<br>20422849<br>15030399<br>22699449<br>32665999                                                                                    | 54,361<br>91,381<br>68,951<br>59,401<br>113,80                                                                                             | DEL DUP DUP DUP DUP                         |            |           | TRUE TRUE Cannot degin primers TRUE              |                                                                         |
|           | chr15<br>chr16<br>chr16<br>chr16<br>chr16                         | 41140099<br>20331469<br>14961449<br>22640049<br>32552199<br>33572719                                                                       | 41194459<br>20422849<br>15030399<br>22699449<br>32665999<br>33632299                                                                        | 54,361<br>91,381<br>68,951<br>59,401<br>113,80<br>1<br>59,581                                                                              | DEL DUP DUP DUP DUP DUP                     |            |           | TRUE TRUE Cannot degin primers TRUE FALSE        | with HG19                                                               |
|           | chr15<br>chr16<br>chr16                                           | 41140099<br>20331469<br>14961449<br>22640049<br>32552199                                                                                   | 41194459<br>20422849<br>15030399<br>22699449<br>32665999                                                                                    | 54,361<br>91,381<br>68,951<br>59,401<br>113,80                                                                                             | DEL DUP DUP DUP DUP                         |            |           | TRUE TRUE Cannot degin primers TRUE              | with HG19<br>result                                                     |
|           | chr15<br>chr16<br>chr16<br>chr16<br>chr16                         | 41140099<br>20331469<br>14961449<br>22640049<br>32552199<br>33572719                                                                       | 41194459<br>20422849<br>15030399<br>22699449<br>32665999<br>33632299                                                                        | 54,361<br>91,381<br>68,951<br>59,401<br>113,80<br>1<br>59,581                                                                              | DEL DUP DUP DUP DUP DUP                     |            |           | TRUE TRUE Cannot degin primers TRUE FALSE        | with HG19<br>result                                                     |
|           | chr15<br>chr16<br>chr16<br>chr16<br>chr16                         | 41140099<br>20331469<br>14961449<br>22640049<br>32552199<br>33572719                                                                       | 41194459<br>20422849<br>15030399<br>22699449<br>32665999<br>33632299                                                                        | 54,361<br>91,381<br>68,951<br>59,401<br>113,80<br>1<br>59,581                                                                              | DEL DUP DUP DUP DUP DUP                     |            |           | TRUE TRUE Cannot degin primers TRUE FALSE        | with HG19<br>result                                                     |
|           | chr15<br>chr16<br>chr16<br>chr16<br>chr16                         | 41140099<br>20331469<br>14961449<br>22640049<br>32552199<br>33572719                                                                       | 41194459<br>20422849<br>15030399<br>22699449<br>32665999<br>33632299                                                                        | 54,361<br>91,381<br>68,951<br>59,401<br>113,80<br>1<br>59,581                                                                              | DEL DUP DUP DUP DUP DUP                     |            |           | TRUE TRUE Cannot degin primers TRUE FALSE        | with HG19<br>result                                                     |
|           | chr15<br>chr16<br>chr16<br>chr16<br>chr16<br>chr16<br>chr16       | 41140099<br>20331469<br>14961449<br>22640049<br>32552199<br>33572719<br>33632299                                                           | 41194459<br>20422849<br>15030399<br>22699449<br>32665999<br>33632299<br>33692419                                                            | 54,361<br>91,381<br>68,951<br>59,401<br>113,80<br>1<br>59,581<br>60,121                                                                    | DEL DUP DUP DUP DUP DUP DUP                 |            |           | TRUE TRUE Cannot degin primers TRUE FALSE        | with HG19<br>result  Not overlap<br>with HG19                           |
|           | chr15 chr16 chr16 chr16 chr16 chr16 chr16 chr16                   | 41140099<br>20331469<br>14961449<br>22640049<br>32552199<br>33572719<br>33632299<br>33764649                                               | 41194459<br>20422849<br>15030399<br>22699449<br>32665999<br>33632299<br>33692419                                                            | 54,361<br>91,381<br>68,951<br>59,401<br>113,80<br>1<br>59,581<br>60,121<br>65,601<br>5,837,9                                               | DEL DUP DUP DUP DUP DUP DUP DUP             | TRUE       | TRUE      | TRUE TRUE Cannot degin primers TRUE FALSE        | with HG19<br>result  Not overlap<br>with HG19                           |
|           | chr15 chr16 chr16 chr16 chr16 chr16 chr16 chr16 chr17             | 41140099<br>20331469<br>14961449<br>22640049<br>32552199<br>33572719<br>33632299<br>33764649<br>141699                                     | 41194459<br>20422849<br>15030399<br>22699449<br>32665999<br>33632299<br>33692419<br>33830249<br>5979599                                     | 54,361<br>91,381<br>68,951<br>59,401<br>113,80<br>1<br>59,581<br>60,121<br>65,601<br>5,837,9<br>01                                         | DEL DUP DUP DUP DUP DUP DUP DUP DUP         | TRUE       | TRUE      | TRUE TRUE Cannot degin primers TRUE FALSE        | with HG19<br>result  Not overlap<br>with HG19                           |
|           | chr15 chr16 chr16 chr16 chr16 chr16 chr16 chr17 chr17             | 41140099<br>20331469<br>14961449<br>22640049<br>32552199<br>33572719<br>33632299<br>33764649<br>141699<br>46087949                         | 41194459<br>20422849<br>15030399<br>22699449<br>32665999<br>33632299<br>33692419<br>33830249<br>5979599<br>46135899                         | 54,361<br>91,381<br>68,951<br>59,401<br>113,80<br>1<br>59,581<br>60,121<br>65,601<br>5,837,9<br>01<br>47,951                               | DEL DUP DUP DUP DUP DUP DUP DUP DUP DUP     | TRUE       | TRUE      | TRUE TRUE Cannot degin primers TRUE FALSE        | with HG19<br>result  Not overlap<br>with HG19                           |
|           | chr15 chr16 chr16 chr16 chr16 chr16 chr16 chr17 chr17 chr17       | 41140099<br>20331469<br>14961449<br>22640049<br>32552199<br>33572719<br>33632299<br>33764649<br>141699<br>46087949<br>46135899             | 41194459<br>20422849<br>15030399<br>22699449<br>32665999<br>33632299<br>33692419<br>33830249<br>5979599<br>46135899<br>46204219             | 54,361<br>91,381<br>68,951<br>59,401<br>113,80<br>1<br>59,581<br>60,121<br>65,601<br>5,837,9<br>01<br>47,951<br>68,321                     | DEL DUP | TRUE       |           | TRUE TRUE Cannot degin primers TRUE  FALSE FALSE | with HG19<br>result  Not overlap<br>with HG19                           |
|           | chr15 chr16 chr16 chr16 chr16 chr16 chr16 chr17 chr17             | 41140099<br>20331469<br>14961449<br>22640049<br>32552199<br>33572719<br>33632299<br>33764649<br>141699<br>46087949                         | 41194459<br>20422849<br>15030399<br>22699449<br>32665999<br>33632299<br>33692419<br>33830249<br>5979599<br>46135899                         | 54,361<br>91,381<br>68,951<br>59,401<br>113,80<br>1<br>59,581<br>60,121<br>65,601<br>5,837,9<br>01<br>47,951                               | DEL DUP DUP DUP DUP DUP DUP DUP DUP DUP     | TRUE       | TRUE      | TRUE TRUE Cannot degin primers TRUE FALSE        | with HG19<br>result  Not overlap<br>with HG19                           |
|           | chr15 chr16 chr16 chr16 chr16 chr16 chr16 chr17 chr17 chr17       | 41140099<br>20331469<br>14961449<br>22640049<br>32552199<br>33572719<br>33632299<br>33764649<br>141699<br>46087949<br>46135899             | 41194459<br>20422849<br>15030399<br>22699449<br>32665999<br>33632299<br>33692419<br>33830249<br>5979599<br>46135899<br>46204219             | 54,361<br>91,381<br>68,951<br>59,401<br>113,80<br>1<br>59,581<br>60,121<br>65,601<br>5,837,9<br>01<br>47,951<br>68,321<br>50,311           | DEL DUP | TRUE       | TRUE      | TRUE TRUE Cannot degin primers TRUE  FALSE FALSE | with HG19 result  Not overlap with HG19 result                          |
|           | chr15 chr16 chr16 chr16 chr16 chr16 chr16 chr17 chr17 chr17 chr19 | 41140099<br>20331469<br>14961449<br>22640049<br>32552199<br>33572719<br>33632299<br>33764649<br>141699<br>46087949<br>46135899<br>24335899 | 41194459<br>20422849<br>15030399<br>22699449<br>32665999<br>33632299<br>33692419<br>33830249<br>5979599<br>46135899<br>46204219<br>24386209 | 54,361<br>91,381<br>68,951<br>59,401<br>113,80<br>1<br>59,581<br>60,121<br>65,601<br>5,837,9<br>01<br>47,951<br>68,321<br>50,311<br>192,79 | DEL DUP | TRUE       | TRUE      | TRUE TRUE Cannot degin primers TRUE  FALSE FALSE | Not overlap with HG19 result  Not overlap with HG19 result  Not overlap |
|           | chr15 chr16 chr16 chr16 chr16 chr16 chr16 chr17 chr17 chr17       | 41140099<br>20331469<br>14961449<br>22640049<br>32552199<br>33572719<br>33632299<br>33764649<br>141699<br>46087949<br>46135899             | 41194459<br>20422849<br>15030399<br>22699449<br>32665999<br>33632299<br>33692419<br>33830249<br>5979599<br>46135899<br>46204219             | 54,361<br>91,381<br>68,951<br>59,401<br>113,80<br>1<br>59,581<br>60,121<br>65,601<br>5,837,9<br>01<br>47,951<br>68,321<br>50,311           | DEL DUP | TRUE       | TRUE      | TRUE TRUE Cannot degin primers TRUE  FALSE FALSE | with HG19 result  Not overlap with HG19 result                          |

|          |                |           |                     |             |            |            | Ola            |                 |        |
|----------|----------------|-----------|---------------------|-------------|------------|------------|----------------|-----------------|--------|
|          |                |           |                     |             | Tron       |            | Overlap_       |                 |        |
| Sample   | Chromosome     | Begin     | End                 | Length      | Typ<br>e   | Pathogenic | w_CytoSc<br>an | ddPCR Validated | Remark |
| Sample   | Cili omosome   | Degili    | Ella                | 112,37      | е          | ramogenic  | an             | dur CK vanuateu | Kemark |
| GM11516  | chr1           | 143586149 | 143698524           | 6           | DEL        |            |                |                 |        |
| GWITISTO | chr1           | 16600739  | 16664099            | 63,361      | DUP        |            |                |                 |        |
|          | chr1           | 16881099  | 16949099            | 68,001      | DUP        |            |                |                 |        |
|          | chr1           | 72290049  | 72348349            | 58,301      | DEL        |            |                |                 |        |
|          | chr2           | 37730949  | 37775999            | 45,051      | DUP        |            |                |                 |        |
|          | -              |           |                     | 171,25      |            |            |                |                 |        |
|          | chr2           | 88860699  | 89031949            | 1           | DEL        |            |                |                 |        |
|          | chr5           | 110226349 | 110278459           | 52,111      | DEL        |            |                |                 |        |
|          | chr5           | 180949099 | 181004049           | 54,951      | DEL        |            |                |                 |        |
|          |                |           |                     | 125,85      |            |            |                |                 |        |
|          | chr6           | 256649    | 382499              | 1           | DUP        |            |                |                 |        |
|          | chr6           | 78257549  | 78327799            | 70,251      | DEL        |            |                |                 |        |
|          | chr11          | 55597999  | 55681159            | 83,161      | DEL        |            |                |                 |        |
|          | chr12          | 9482349   | 9580799             | 98,451      | DEL        |            |                |                 |        |
|          | chr14          | 105776399 | 105867899           | 91,501      | DEL        |            |                |                 |        |
|          | abul 4         | 105001000 | 105001520           | 110,44      | DET        |            |                |                 |        |
|          | chr14<br>chr14 | 105881099 | 105991539           | 54 251      | DEL<br>DEL |            |                | 1               | +      |
|          | CHT14          | 106027699 | 106082049           | 54,351      | DEL        |            |                | 1               | +      |
|          | chr14          | 106188399 | 106323149           | 134,75      | DEL        |            |                |                 |        |
|          | CIII 14        | 100100333 | 100323149           | 260,35      | DEL        |            |                |                 |        |
|          | chr14          | 106369449 | 106629799           | 1           | DEL        |            |                |                 |        |
|          | VIII 1         | 100307477 | 100027177           | 185,16      |            |            |                |                 | 1      |
|          | chr14          | 19771439  | 19956599            | 1           | DUP        |            |                |                 |        |
|          | chr15          | 20351994  | 20422749            | 70,756      | DUP        |            |                |                 |        |
|          |                |           |                     | 4,852,8     |            |            |                |                 |        |
|          | chr15          | 23381859  | 28234739            | 81          | DEL        | TRUE       | TRUE           |                 |        |
|          | chr16          | 14955899  | 15030849            | 74,951      | DUP        |            |                |                 |        |
|          | chr16          | 22613699  | 22699449            | 85,751      | DUP        |            |                |                 |        |
|          |                |           |                     | 277,20      |            |            |                |                 |        |
|          | chr16          | 33562749  | 33839949            | 1           | DUP        |            |                |                 |        |
|          | chr17          | 46135849  | 46220099            | 84,251      | DUP        |            | TRUE           |                 |        |
|          | chr21          | 10420409  | 10482744            | 62,336      | DUP        |            |                |                 |        |
|          | chr21          | 10663639  | 10739119            | 75,481      | DUP        |            |                |                 |        |
|          | chr21          | 9591514   | 9784309             | 192,79<br>6 | DUP        |            |                |                 |        |
| GM13480  | chr1           | 16597524  | 16654899            | 57,376      | DUP        |            |                |                 |        |
| GW113460 | CIII I         | 10397324  | 10034699            | 170,55      | DUF        |            |                |                 |        |
|          | chr2           | 88865049  | 89035599            | 170,55      | DEL        |            |                |                 |        |
|          | chr3           | 162827599 | 162908649           | 81,051      | DEL        |            |                |                 |        |
|          | chr4           | 34778249  | 34827699            | 49,451      | DEL        |            |                |                 |        |
|          | chr6           | 296099    | 382449              | 86,351      | DUP        |            |                |                 |        |
|          |                |           |                     | 317,70      |            |            |                |                 |        |
|          | chr7           | 72532649  | 72850349            | 1           | DUP        |            | TRUE           |                 |        |
|          |                |           |                     | 1,294,5     |            |            |                |                 |        |
|          | chr7           | 73302949  | 74597464            | 16          | DEL        | TRUE       | TRUE           |                 |        |
|          | 1.0            | 2027/5/2  | 20522512            | 159,20      | DET        |            |                |                 |        |
|          | chr8           | 39374549  | 39533749            | 1 122 25    | DEL        |            |                |                 | 1      |
|          | chr9           | 5098099   | 5221240             | 133,25<br>1 | DUP        | TRUE       | TRUE           |                 |        |
|          | chr10          | 46513999  | 5231349<br>46561649 | 47,651      | DUP        | INUE       | INUE           |                 | +      |
|          | chr14          | 105786549 | 105864299           | 77,751      | DEL        |            |                |                 |        |
|          | chr14          | 105780349 | 105804299           | 75,651      | DEL        | 1          |                |                 | +      |
|          | VIII 1         | 1030042)) | 100,00,00           | 185,60      |            |            |                |                 | 1      |
|          | chr14          | 19771049  | 19956649            | 1           | DUP        |            |                |                 |        |
|          | chr15          | 20332429  | 20429449            | 97,021      | DUP        |            |                |                 |        |
|          | chr15          | 22255249  | 22302994            | 47,746      | DUP        |            |                |                 |        |
|          | chr15          | 87281629  | 87328699            | 47,071      | DEL        |            |                |                 |        |
|          | chr16          | 14955399  | 15030399            | 75,001      | DUP        |            |                |                 |        |
|          | chr16          | 22613699  | 22699349            | 85,651      | DUP        |            |                |                 |        |
|          | chr17          | 36109499  | 36157099            | 47,601      | DUP        |            | TRUE           |                 |        |
|          | chr18          | 60595899  | 60645999            | 50,101      | DUP        |            |                |                 |        |
|          | chr19          | 24330399  | 24384009            | 53,611      | DUP        |            |                |                 |        |

|          | •            | •         | •                    | ı           |            | 1            | 1        | _               | _      |
|----------|--------------|-----------|----------------------|-------------|------------|--------------|----------|-----------------|--------|
|          |              |           |                      |             |            |              | Overlap_ |                 |        |
| G 1 .    | CI           | n t       | F . 1                | T 41.       | Тур        | D. 41        | w_CytoSc | LIDOD W.P.L.    | D 1    |
| Sample   | Chromosome   | Begin     | End                  | Length      | e          | Pathogenic   | an       | ddPCR Validated | Remark |
|          | chr21        | 10420329  | 10482734             | 62,406      | DUP        |              |          |                 |        |
|          | chr21        | 10655109  | 10734804             | 79,696      | DUP        |              |          |                 |        |
|          | chr21        | 23120299  | 23268549             | 148,25<br>1 | DEL        |              | TRUE     |                 |        |
|          | CHIZI        | 23120299  | 23208349             | 192,78      | DEL        |              | IKUE     |                 |        |
|          | chr21        | 9591559   | 9784339              | 192,78      | DUP        |              |          |                 |        |
|          | CIIIZI       | 9391339   | 9704339              | 864,70      | DUF        |              |          |                 |        |
|          | chr22        | 22035099  | 22899799             | 1           | DEL        |              | TRUE     |                 |        |
| GM14164  | chr1         | 16591449  | 16656834             | 65,386      | DUP        |              | TROL     |                 |        |
| GMITTIOT | chr1         | 16878799  | 16954249             | 75,451      | DUP        |              |          |                 |        |
|          | chr1         | 72289999  | 72348549             | 58,551      | DEL        |              |          |                 |        |
|          | CIII I       | 12207777  | 72340347             | 201,40      | DEL        |              |          |                 |        |
|          | chr2         | 88832799  | 89034199             | 1           | DEL        |              |          |                 |        |
|          | chr3         | 162827599 | 162914099            | 86,501      | DEL        |              |          |                 |        |
|          |              |           |                      | 110,35      |            |              |          |                 |        |
|          | chr5         | 12578199  | 12688549             | 1           | DEL        |              | TRUE     |                 |        |
|          | chr5         | 180948999 | 181003649            | 54,651      | DEL        |              |          |                 |        |
|          | chr6         | 297149    | 382449               | 85,301      | DUP        |              |          |                 |        |
|          | chr6         | 29881524  | 29932124             | 50,601      | DEL        |              |          |                 |        |
|          | chr6         | 78257499  | 78327549             | 70,051      | DEL        |              |          |                 |        |
|          | chr11        | 55597999  | 55684399             | 86,401      | DEL        |              |          |                 |        |
|          |              |           |                      | 15,842,     |            |              |          |                 |        |
|          | chr13        | 47226699  | 63069399             | 701         | DEL        | TRUE         | TRUE     |                 |        |
|          |              |           |                      | 31,985,     |            |              |          |                 |        |
|          | chr13        | 63074949  | 95060649             | 701         | DEL        | TRUE         | TRUE     |                 |        |
|          |              |           |                      | 101,94      |            |              |          |                 |        |
|          | chr15        | 20339709  | 20441649             | 1           | DUP        |              |          |                 |        |
|          | chr15        | 22226799  | 22308299             | 81,501      | DUP        |              |          |                 |        |
|          | chr16        | 14953999  | 15030449             | 76,451      | DUP        |              |          |                 |        |
|          | chr16        | 22613699  | 22699499             | 85,801      | DUP        |              |          |                 |        |
|          | chr17        | 36109499  | 36157099             | 47,601      | DUP        |              |          |                 |        |
|          | chr17        | 46135449  | 46230599             | 95,151      | DUP        |              | TRUE     |                 |        |
|          | chr19        | 24330449  | 24384599             | 54,151      | DUP        |              |          |                 |        |
|          | chr21        | 10414449  | 10483929             | 69,481      | DUP        |              |          |                 |        |
|          | chr21        | 10666119  | 10740309             | 74,191      | DUP        |              |          |                 |        |
|          |              |           |                      | 192,79      |            |              |          |                 |        |
|          | chr21        | 9591514   | 9784309              | 6           | DUP        |              |          |                 |        |
|          | chr22        | 18947749  | 19025599             | 77,851      | DUP        | TRUE         |          |                 |        |
|          | chr22        | 22798299  | 22883899             | 85,601      | DEL        |              |          |                 |        |
|          |              |           |                      | 113,82      |            |              |          |                 |        |
| GM16593  | chr1         | 143586629 | 143700454            | 6           | DEL        |              |          |                 |        |
|          | chr1         | 16594299  | 16657209             | 62,911      | DUP        |              |          |                 |        |
|          | chr1         | 248575999 | 248634899            | 58,901      | DEL        |              |          |                 |        |
|          | chr1         | 72300349  | 72348799             | 48,451      | DEL        |              |          |                 |        |
|          | _1_1         | 01674240  | 02220040             | 565,60      | Dive       |              | TDITE    |                 |        |
|          | chr1         | 91674349  | 92239949             | 1 45 201    | DUP        |              | TRUE     |                 | +      |
|          | chr2         | 37730899  | 37776099             | 45,201      | DUP        |              |          | -               | +      |
|          | ohr?         | 88862299  | 90092540             | 221,25      | DET        |              |          |                 |        |
|          | chr2<br>chr2 | 90035649  | 89083549<br>90118649 | 83,001      | DEL<br>DEL |              |          | -               | +      |
|          | chr2         | 90035649  | 90118649             | 57,601      | DEL        |              |          |                 | +      |
|          | chr4         | 68574374  | 68625699             | 51,326      | DEL        |              |          |                 | +      |
|          | chr4<br>chr5 | 180949099 | 181004849            | 51,326      | DEL        |              |          |                 | -      |
|          | CHIS         | 100949099 | 101004849            | 14,740,     | DEL        |              |          |                 | -      |
|          | chr5         | 7553899   | 22293999             | 14,740,     | DEL        | TRUE         | TRUE     |                 |        |
|          | chr6         | 296499    | 382549               | 86,051      | DUP        | INUE         | TRUE     | 1               | +      |
|          | chr6         | 29881634  | 29931914             | 50,281      | DEL        |              |          |                 | +      |
|          | CIIIO        | 27001034  | 47731714             | 234,24      | DEL        |              |          | 1               | +      |
|          | chr7         | 65228249  | 65462489             | 254,24      | DEL        |              | TRUE     |                 |        |
|          | CIII /       | 03220243  | 03402403             | 159,05      | PEL        |              | IKUE     |                 | +      |
|          | chr8         | 39374649  | 39533699             | 139,03      | DEL        |              | TRUE     |                 | 1      |
|          | chr10        | 46519349  | 46564699             | 45,351      | DUP        |              | 111.02   |                 | 1      |
|          |              | .002/01/  |                      |             |            | <del> </del> | <b></b>  | +               | +      |
|          | chr11        | 55597949  | 55681109             | 83,161      | DEL        |              | TRUE     |                 |        |

|            |                  |                      |                      |             |            |             | Oronlan              |                  |             |
|------------|------------------|----------------------|----------------------|-------------|------------|-------------|----------------------|------------------|-------------|
|            |                  |                      |                      |             | Тур        |             | Overlap_<br>w_CytoSc |                  |             |
| Sample     | Chromosome       | Begin                | End                  | Length      | e e        | Pathogenic  | an                   | ddPCR Validated  | Remark      |
| Sumple     | CIII OIIIOSOIIIC | Degin                | ZHu                  | 126,13      |            | 1 utilogeme | uii                  | dai Oit vandatea | Tterriur It |
|            | chr14            | 105864299            | 105990434            | 6           | DEL        |             |                      |                  |             |
|            | chr14            | 106019899            | 106083349            | 63,451      | DEL        |             |                      |                  |             |
|            | chr14            | 41139599             | 41194454             | 54,856      | DEL        |             |                      |                  |             |
|            |                  |                      |                      | 2,700,1     |            |             |                      |                  |             |
|            | chr14            | 78433499             | 81133649             | 51          | DEL        | TRUE        | TRUE                 |                  |             |
|            | chr15            | 20351979             | 20422749             | 70,771      | DUP        |             |                      |                  |             |
|            | chr15            | 22225499             | 22308299             | 82,801      | DUP        |             |                      |                  |             |
|            | chr15            | 23371249             | 23428174             | 56,926      | DEL        |             |                      |                  |             |
|            | chr16            | 14954299             | 15030599             | 76,301      | DUP        |             |                      |                  |             |
|            | chr16            | 22613699             | 22699449             | 85,751      | DUP        |             |                      |                  |             |
|            | chr21            | 10413199             | 10484839             | 71,641      | DUP        |             |                      |                  |             |
|            |                  |                      |                      | 192,79      |            |             |                      |                  |             |
|            | chr21            | 9591514              | 9784309              | 6           | DUP        |             |                      |                  |             |
|            |                  |                      |                      | 519,15      |            |             |                      |                  |             |
| ~~~~       | chr22            | 22387349             | 22906499             | 1           | DEL        |             | TRUE                 |                  |             |
| GM20375    | chr1             | 16878299             | 16954349             | 76,051      | DUP        |             |                      |                  |             |
|            | chr1             | 248574599            | 248634849            | 60,251      | DEL        |             |                      |                  |             |
|            | chr2             | 37731049             | 37776099             | 45,051      | DUP        |             |                      |                  | 1           |
|            |                  | 00007040             | 00022400             | 144,65      | DEI        |             |                      |                  |             |
|            | chr2             | 88887849             | 89032499             | 1 54 901    | DEL        |             |                      |                  | 1           |
|            | chr5             | 180948999            | 181003799            | 54,801      | DEL        |             |                      | -                | 1           |
|            | chr5             | 97712149<br>78257549 | 97760549             | 48,401      | DEL<br>DEL |             |                      |                  | 1           |
|            | chr6             | /825/549             | 78328499             | 70,951      | DEL        |             |                      |                  |             |
|            | ober7            | 101257400            | 101402940            | 135,44<br>1 | DUP        |             | TRUE                 |                  |             |
|            | chr7             | 101357409            | 101492849            | 412,65      | DUP        |             | IRUE                 |                  |             |
|            | chr7             | 69256799             | 69669449             | 1           | DUP        |             | TRUE                 |                  |             |
|            | CIII /           | 09230199             | 09009449             | 182,10      | DUF        |             | INUE                 |                  |             |
|            | chr8             | 136668099            | 136850199            | 102,10      | DEL        |             | TRUE                 |                  |             |
|            | CIIIO            | 130000099            | 130630199            | 159,15      | DEL        |             | TRUE                 |                  |             |
|            | chr8             | 39374599             | 39533749             | 1           | DEL        |             |                      |                  |             |
|            | chr10            | 46514149             | 46561549             | 47,401      | DUP        |             |                      |                  |             |
|            | CIII 10          | 10311117             | 10501515             | 108,48      | DOI        |             |                      |                  |             |
|            | chr14            | 105883799            | 105992279            | 1           | DEL        |             |                      |                  |             |
|            | chr14            | 106027849            | 106082099            | 54,251      | DEL        |             |                      |                  |             |
|            |                  |                      |                      | 203,22      |            |             |                      |                  |             |
|            | chr14            | 106116799            | 106320019            | 1           | DEL        |             |                      |                  |             |
|            |                  |                      |                      | 185,56      |            |             |                      |                  |             |
|            | chr14            | 19771039             | 19956599             | 1           | DUP        |             |                      |                  |             |
|            | chr14            | 41139999             | 41194584             | 54,586      | DEL        |             |                      |                  |             |
|            | chr15            | 20332229             | 20429049             | 96,821      | DUP        |             |                      |                  |             |
|            | chr15            | 22224199             | 22308299             | 84,101      | DUP        |             |                      |                  |             |
|            | 1                |                      |                      | 4,979,5     |            |             |                      |                  | 1           |
|            | chr15            | 23367599             | 28347149             | 51          | DEL        | TRUE        | TRUE                 |                  |             |
|            | chr15            | 34431349             | 34517974             | 86,626      | DEL        |             |                      |                  |             |
|            | chr16            | 14960149             | 15030449             | 70,301      | DUP        |             |                      |                  |             |
|            | chr16            | 22613699             | 22699449             | 85,751      | DUP        |             |                      |                  |             |
|            | chr18            | 72123849             | 72196149             | 72,301      | DEL        |             | TRUE                 |                  |             |
|            | chr19            | 24330449             | 24381179             | 50,731      | DUP        |             |                      |                  |             |
|            | chr21            | 10412599             | 10483789             | 71,191      | DUP        |             |                      |                  | 1           |
|            | chr21            | 10653949             | 10734274             | 80,326      | DUP        |             |                      |                  | 1           |
|            | 1                |                      |                      | 192,79      |            |             |                      |                  |             |
|            | chr21            | 9591514              | 9784309              | 6           | DUP        |             |                      |                  | 1           |
|            |                  | 2225555              | 2200/                | 551,64      |            |             |                      |                  |             |
|            | chr22            | 22353359             | 22904999             | 1           | DEL        |             |                      |                  | -           |
| C) 1007.10 | , ,              | 1.42506656           | 1.42700.424          | 113,77      | DEI        |             |                      |                  |             |
| GM20743    | chr1             | 143586659            | 143700434            | 6           | DEL        |             |                      | -                | 1           |
|            | chr1             | 16600809             | 16664199             | 63,391      | DUP        |             |                      | -                | 1           |
|            | chr1             | 16900899             | 16949049             | 48,151      | DUP        |             |                      | -                | 1           |
|            | chr1             | 248584099            | 248634849            | 50,751      | DEL        |             |                      | -                | 1           |
|            | chr1             | 72300699             | 72348499             | 47,801      | DEL        |             |                      |                  | 1           |
|            | Cardo            | 51120200             | 51202140             | 162,85      | DEI        |             | TRIE                 |                  |             |
|            | chr2             | 51129299<br>88863199 | 51292149<br>88947399 | 84,201      | DEL<br>DEL |             | TRUE                 |                  | +           |
|            | CIIIZ            | 00003177             | 0074/377             | 04,201      | DEL        |             | L                    |                  |             |

|          |                |                      |           |                  |            |              | 0              |                 |          |
|----------|----------------|----------------------|-----------|------------------|------------|--------------|----------------|-----------------|----------|
|          |                |                      |           |                  | Tron       |              | Overlap_       |                 |          |
| Sample   | Chromosome     | Begin                | End       | Length           | Тур        | Pathogenic   | w_CytoSc<br>an | ddPCR Validated | Remark   |
| Sample   | chr2           | 88947399             | 89037399  | 90,001           | e<br>DEL   | ramogenic    | an             | durck validated | Kelliark |
|          | chr3           | 195694799            | 195749999 | 55,201           | DUP        |              |                |                 |          |
|          | chr5           | 180948949            | 181003699 | 54,751           | DEL        |              |                |                 |          |
|          | CIII           | 100940949            | 181003099 | 125,35           | DEL        |              |                |                 |          |
|          | chr6           | 256599               | 381949    | 123,33           | DUP        |              |                |                 |          |
|          | chr6           | 78257549             | 78330249  | 72,701           | DEL        |              |                |                 |          |
|          | CIIIO          | 70237317             | 70330219  | 803,05           | DEE        |              |                |                 |          |
|          | chr7           | 45219199             | 46022249  | 1                | DUP        |              | TRUE           |                 |          |
|          |                |                      |           | 182,15           |            |              | -              |                 |          |
|          | chr8           | 136668049            | 136850199 | 1                | DEL        |              | TRUE           |                 |          |
|          |                |                      |           | 155,15           |            |              |                |                 |          |
|          | chr8           | 39374649             | 39529799  | 1                | DEL        |              | TRUE           |                 |          |
|          |                |                      |           | 114,05           |            |              |                |                 |          |
|          | chr10          | 46218849             | 46332899  | 1                | DUP        |              |                |                 |          |
|          | chr10          | 46514049             | 46561649  | 47,601           | DUP        |              |                |                 |          |
|          | chr11          | 55597999             | 55681474  | 83,476           | DEL        |              | TRUE           |                 |          |
|          |                |                      |           | 100,05           |            |              |                |                 |          |
|          | chr12          | 9482399              | 9582449   | 1                | DEL        |              |                |                 |          |
|          |                |                      |           | 117,20           | _          |              |                |                 |          |
|          | chr14          | 105776449            | 105893649 | 1                | DEL        |              | TRUE           |                 |          |
|          |                | 40=====              | 100       | 185,24           |            |              |                |                 |          |
|          | chr14          | 19770959             | 19956199  | 1                | DUP        |              |                |                 |          |
|          | chr16          | 14960499             | 15030349  | 69,851           | DUP        |              |                |                 |          |
|          | chr16          | 22613699             | 22699449  | 85,751           | DUP        |              |                |                 |          |
|          | chr16          | 32557719             | 32655099  | 97,381           | DUP        |              |                |                 |          |
|          | chr16          | 33613199             | 33693104  | 79,906           | DUP        |              |                |                 |          |
|          | chr16          | 33763779             | 33830699  | 66,921           | DUP        |              |                |                 |          |
|          | 1 17           | 1,0052540            | 10201200  | 1,538,8          | DEI        | TDITE        | TDITE          |                 |          |
|          | chr17          | 16852549             | 18391399  | 51               | DEL        | TRUE         | TRUE           |                 |          |
|          | chr17<br>chr17 | 18624499<br>18763999 | 18721299  | 96,801           | DEL<br>DEL | TRUE<br>TRUE | TRUE           |                 |          |
|          |                | 10413249             | 18824119  | 60,121           | DUP        | IKUE         | TRUE           |                 |          |
|          | chr21          | 10413249             | 10483809  | 70,561<br>192,79 | DUP        |              |                |                 |          |
|          | chr21          | 9591514              | 9784309   | 6                | DUP        |              |                |                 |          |
|          | CIIIZI         | 9391314              | 9704309   | 111,62           | DOI        |              |                |                 |          |
| GM22569  | chr1           | 143585799            | 143697424 | 6                | DEL        |              |                |                 |          |
| GITIZZOO | chr1           | 16594299             | 16662299  | 68,001           | DUP        |              |                |                 |          |
|          | chr1           | 16880799             | 16948949  | 68,151           | DUP        |              |                |                 |          |
|          |                |                      |           | 5,463,0          |            |              |                |                 |          |
|          | chr1           | 818499               | 6281549   | 51               | DEL        | TRUE         | TRUE           |                 |          |
|          |                |                      |           | 199,70           |            |              |                |                 |          |
|          | chr2           | 88832849             | 89032549  | 1                | DEL        |              |                |                 |          |
|          | chr6           | 161977199            | 162033149 | 55,951           | DEL        |              | TRUE           |                 |          |
|          | chr6           | 296649               | 382499    | 85,851           | DUP        |              |                |                 |          |
|          | chr11          | 55598049             | 55664099  | 66,051           | DEL        |              | TRUE           |                 |          |
|          | chr12          | 9480799              | 9580649   | 99,851           | DEL        |              |                |                 |          |
|          |                |                      |           | 186,95           |            |              |                |                 |          |
|          | chr14          | 105895199            | 106082149 | 1                | DEL        |              |                |                 |          |
|          | chr14          | 106276549            | 106325049 | 48,501           | DEL        |              |                |                 |          |
|          | chr15          | 20343919             | 20422429  | 78,511           | DUP        |              |                |                 |          |
|          | chr16          | 14954499             | 15030649  | 76,151           | DUP        |              |                |                 |          |
|          | chr16          | 22632849             | 22699449  | 66,601           | DUP        |              |                |                 |          |
|          | chr16          | 32546974             | 32632249  | 85,276           | DUP        |              |                |                 |          |
|          | chr16          | 33572059             | 33626149  | 54,091           | DUP        |              |                |                 |          |
|          | chr16          | 33626149             | 33689959  | 63,811           | DUP        |              |                |                 |          |
|          | chr16          | 33763419             | 33829299  | 65,881           | DUP        |              |                |                 |          |
|          | -117           | 46007040             | 46201000  | 203,95           | DID        |              | TDIIC          |                 |          |
|          | chr17          | 46087949             | 46291899  | 57.241           | DUP<br>DUP |              | TRUE           |                 | +        |
|          | chr19          | 24330449             | 24387689  | 57,241           | DUP        |              |                |                 |          |
|          | chr21          | 10412549             | 10483784  | 71,236           | DUP        |              |                |                 |          |
|          | chr21          | 10663669             | 10739134  | 75,466           | אַטע       |              |                |                 | -        |
|          | chr21          | 9591514              | 9784309   | 192,79<br>6      | DUP        |              |                |                 |          |
|          | chr22          | 22817949             | 22899699  | 81,751           | DEL        |              |                |                 |          |
|          | CIIIZZ         | 2201/747             | ムムロフフロブブ  | 01,/31           | DEL        |              |                | 1               | J        |

|         |            |           |           |                |     |            | Overlap_ |                 |        |
|---------|------------|-----------|-----------|----------------|-----|------------|----------|-----------------|--------|
|         |            |           |           |                | Typ |            | w_CytoSc |                 |        |
| Sample  | Chromosome | Begin     | End       | Length         | e   | Pathogenic | an       | ddPCR Validated | Remark |
| GM22601 | chr1       | 16591449  | 16662299  | 70,851         | DUP |            |          |                 |        |
|         | chr1       | 16882149  | 16949149  | 67,001         | DUP |            |          |                 |        |
|         | chr2       | 37730799  | 37776099  | 45,301         | DUP |            |          |                 |        |
|         |            |           |           | 198,85         |     |            |          |                 |        |
|         | chr2       | 88833099  | 89031949  | 1              | DEL |            |          |                 |        |
|         |            |           |           | 114,40         |     |            |          |                 |        |
|         | chr3       | 162794349 | 162908749 | 1              | DEL |            |          |                 |        |
|         | 1 4        | 60000     | 0520404   | 8,460,5        | DEI | EDITE      | TDIE     |                 |        |
|         | chr4       | 68899     | 8529484   | 86             | DEL | TRUE       | TRUE     |                 |        |
|         | chr4       | 9479999   | 25092900  | 16,502,<br>901 | DEL | TRUE       | TRUE     |                 |        |
|         | chr5       |           | 25982899  |                | DUP | IKUE       | IRUE     |                 |        |
|         |            | 176128599 | 176226349 | 97,751         |     |            |          |                 |        |
|         | chr6       | 296099    | 382499    | 86,401         | DUP |            | TDIE     |                 |        |
|         | chr11      | 134281899 | 134344549 | 62,651         | DEL |            | TRUE     |                 |        |
|         | chr11      | 49691599  | 49737699  | 46,101         | DEL |            | TDIE     |                 |        |
|         | chr11      | 55597949  | 55681604  | 83,656         | DEL |            | TRUE     |                 |        |
|         | chr14      | 105883599 | 106504399 | 620,80         | DEL |            |          |                 |        |
|         | chr15      | 22224999  | 22308299  | 83,301         | DUP |            |          |                 |        |
|         | chr16      | 14963199  | 15030399  | 67,201         | DUP |            |          |                 |        |
|         | chr16      | 22621049  | 22700149  | 79,101         | DUP |            |          |                 |        |
|         | chr16      | 32555149  | 32645299  | 90,151         | DUP |            |          |                 |        |
|         | chr16      | 32555149  | 33626149  | 49,051         | DUP |            |          |                 |        |
|         | chr16      | 33626149  | 33688219  | 62,071         | DUP |            |          |                 |        |
|         | chr16      | 33764659  | 33830499  | 65,841         | DUP |            |          |                 |        |
|         | chr17      | 36109449  | 36157249  | 47,801         | DUP |            |          |                 |        |
|         | chr17      | 46135949  | 46204189  | 68,241         | DUP |            | TRUE     |                 |        |
|         | CIII I /   | T0133343  | 70204103  | 124,85         | DOL |            | IKUE     |                 |        |
|         | chr19      | 20413049  | 20537899  | 124,03         | DEL |            | TRUE     |                 |        |
|         | chr19      | 24330449  | 24384029  | 53,581         | DUP |            | IKOL     |                 |        |
|         | chr21      | 10414449  | 10483974  | 69,526         | DUP |            |          |                 |        |
|         | chr21      | 10663759  | 10739179  | 75,421         | DUP |            |          |                 |        |
|         | VIII 2 1   | 10003737  | 10/3/1//  | 192,79         | D01 |            |          |                 |        |
|         | chr21      | 9591514   | 9784309   | 6              | DUP |            |          |                 |        |

The sensitivity comparison of using Affymetrix CytoScan HD reported CNVs

-13-

|                     | CytoScan (Cols 2-3)                 |                                  | JGM NG             | S                |                  |                |                |                |               |                |               | Other SV/CNV Algorithms |                |                |                  |              |
|---------------------|-------------------------------------|----------------------------------|--------------------|------------------|------------------|----------------|----------------|----------------|---------------|----------------|---------------|-------------------------|----------------|----------------|------------------|--------------|
| Coriell<br>IDs      | Raw<br>Calls<br>Total<br>(gain/loss | After<br>ddPCR<br>Validatio<br>n | Original<br>42-46x | 30x              | 20x              | 15x            | 10x            | 9 <sub>X</sub> | 8x            | 6x             | 4x            | Manta                   | Lumpy          | Delly          | CNVna<br>tor     | cn.M<br>OPS  |
| GM05876             | 8(3/5)                              | 5(1/4)                           | 5(1/4)             | 5(1/4)           | 5(1/4)           | 4(0/4)         | 4(0/4)         | 4(0/4)         | 4(0/4)        | 4(0/4)         | 2(0/2)        | 5(1/4)                  | 5(1/4)         | 5(1/4)         | 5(1/4)           | 0(0/0)       |
| GM09209             | 5(2/3)                              | 4(1/3)                           | 4(1/3)             | 4(1/3)           | 4(1/3)           | 4(1/3)         | 4(1/3)         | 3(0/3)         | 3(0/3)        | 3(0/3)         | 3(1/2)        | 3(1/2)                  | 3(1/2)         | 4(1/3)         | 4(1/3)           | 1(0/1)       |
| GM11516             | 3(1/2)                              | 3(1/2)                           | 3(1/2)             | 3(1/2)           | 3(1/2)           | 2(0/2)         | 2(0/2)         | 2(0/2)         | 2(0/2)        | 2(0/2)         | 2(0/2)        | 3(1/2)                  | 3(1/2)         | 3(1/2)         | 3(1/2)           | 1(0/1)       |
| GM13480             | 7(4/3)                              | 7(4/3)                           | 7(4/3)             | 7(4/3)           | 7(4/3)           | 7(4/3)         | 3(0/3)         | 4(1/3)         | 5(2/3)        | 3(0/3)         | 3(0/3)        | 7(4/3)                  | 7(4/3)         | 7(4/3)         | 7(4/3)           | 1(0/1)       |
| GM14164             | 3(1/2)                              | 3(1/2)                           | 3(1/2)             | 3(1/2)           | 3(1/2)           | 3(1/2)         | 2(0/2)         | 2(0/2)         | 2(0/2)        | 2(0/2)         | 2(0/2)        | 3(1/2)                  | 3(1/2)         | 3(1/2)         | 3(1/2)           | 1(0/1)       |
| GM16593             | 9(1/8)                              | 8(1/7)                           | 8(1/7)             | 8(1/7)           | 8(1/7)           | 8(1/7)         | 8(1/7)         | 8(1/7)         | 8(1/7)        | 7(0/7)         | 7(0/7)        | 8(1/7)                  | 8(1/7)         | 8(1/7)         | 8(1/7)           | 3(0/3)       |
| GM20375             | 7(2/5)                              | 6(2/4)                           | 6(2/4)             | 6(2/4)           | 6(2/4)           | 6(2/4)         | 4(0/4)         | 4(0/4)         | 3(0/3)        | 4(0/4)         | 4(0/4)        | 6(2/4)                  | 6(2/4)         | 6(2/4)         | 6(2/4)           | 1(0/1)       |
| GM20743             | 10(2/8)                             | 9(2/7)                           | 9(2/7)             | 9(2/7)           | 9(2/7)           | 9(2/7)         | 9(2/7)         | 8(1/7)         | 9(2/7)        | 8(1/7)         | 6(1/5)        | 9(2/7)                  | 9(2/7)         | 8(2/6)         | 9(2/7)           | 3(0/3)       |
| GM22569             | 4(1/3)                              | 4(1/3)                           | 4(1/3)             | 4(1/3)           | 4(1/3)           | 4(1/3)         | 4(1/3)         | 4(1/3)         | 4(1/3)        | 4(1/3)         | 3(1/2)        | 4(1/3)                  | 4(1/3)         | 4(1/3)         | 4(1/3)           | 2(0/2)       |
| GM22601             | 5(1/4)                              | 5(1/4)                           | 5(1/4)             | 5(1/4)           | 5(1/4)           | 5(1/4)         | 5(1/4)         | 5(1/4)         | 5(1/4)        | 5(1/4)         | 5(1/4)        | 5(1/4)                  | 5(1/4)         | 5(1/4)         | 5(1/4)           | 1(0/1)       |
|                     |                                     |                                  |                    |                  |                  | 52(13/         | 45(6/3         | 44(5/3         | 45(7/3        | 42(3/3         | 37(4/3        | 53(15/                  | 53(15/         | 53(15/         | 54(15/           | 14(0/1       |
| Total               | 61(18/43)                           | 54(15/39)                        | 54(15/39)          | 54(15/39)        | 54(15/39)        | 39)            | 9)             | 9)             | 8)            | 9)             | 3)            | 38)                     | 38)            | 38)            | 38)              | 4)           |
| Sensitivit<br>y (%) |                                     |                                  | 100(100/1<br>00)   | 100(100/1<br>00) | 100(100/1<br>00) | 96(87/<br>100) | 83(40/<br>100) | 83(33/<br>100) | 83(47/<br>97) | 77(20/<br>100) | 68(27/<br>85) | 98(100/<br>97)          | 98(100/<br>97) | 98(100/<br>97) | 100(100<br>/100) | 26(0/3<br>6) |

# The numbers of CNVs not 50% reciprocal overlapping with Affymetrix CytoScan HD results, but still in the regions.

|             | CytoSca                                  | n                            | JGM NGS            |        |        |         |        |                |        | Other SV/CNV Algorithms |        |          |          |         |              |             |
|-------------|------------------------------------------|------------------------------|--------------------|--------|--------|---------|--------|----------------|--------|-------------------------|--------|----------|----------|---------|--------------|-------------|
| Coriell IDs | Raw<br>Calls<br>Total<br>(gain/<br>loss) | After<br>ddPCR<br>Validation | Original<br>42-46x | 30x    | 20x    | 15x     | 10x    | 9 <sub>X</sub> | 8x     | 6x                      | 4x     | Manta    | Lumpy    | Delly   | CNVn<br>ator | cn.M<br>OPS |
| GM05876     | Í                                        |                              | 0(0/0)             | 0(0/0) | 0(0/0) | 0(0/0)  | 0(0/0) | 0(0/0)         | 0(0/0) | 0(0/0)                  | 0(0/0) | 1(0/1)   | 1(0/1)   | 0(0/0)  | 0(0/0)       | 0(0/0)      |
| GM09209     |                                          |                              | 0(0/0)             | 0(0/0) | 0(0/0) | 0(0/0)  | 0(0/0) | 0(0/0)         | 0(0/0) | 0(0/0)                  | 1(0/1) | 0(0/0)   | 1(1/0)   | 0(0/0)  | 0(0/0)       | 1(0/1)      |
| GM11516     |                                          |                              | 1(0/1)             | 1(0/1) | 1(0/1) | 1(0/1)  | 1(0/1) | 1(0/1)         | 1(0/1) | 0(0/0)                  | 0(0/0) | 1(0/1)   | 0(0/0)   | 0(0/0)  | 1(0/1)       | 0(0/0)      |
| GM13480     |                                          |                              | 1(1/0)             | 1(1/0) | 1(1/0) | 2(2/0)  | 0(0/0) | 1(1/0)         | 1(1/0) | 0(0/0)                  | 0(0/0) | 4(3/1)   | 4(3/1)   | 3(3/0)  | 1(1/0)       | 0(0/0)      |
| GM14164     |                                          |                              | 0(0/0)             | 0(0/0) | 0(0/0) | 0(0/0)  | 0(0/0) | 0(0/0)         | 0(0/0) | 0(0/0)                  | 0(0/0) | 1(0/1)   | 1(0/1)   | 1(0/1)  | 0(0/0)       | 1(0/1)      |
| GM16593     |                                          |                              | 1(0/1)             | 1(1/1) | 1(1/1) | 2(0/2)  | 3(1/2) | 3(1/2)         | 3(1/2) | 1(0/1)                  | 2(0/2) | 4(1/3)   | 4(1/3)   | 3(1/2)  | 2(0/2)       | 1(0/1)      |
| GM20375     |                                          |                              | 1(0/1)             | 1(0/1) | 1(0/1) | 3(2/1)  | 0(0/0) | 0(0/0)         | 0(0/0) | 1(0/1)                  | 1(0/1) | 1(0/1)   | 2(1/1)   | 1(0/1)  | 1(0/1)       | 1(0/1)      |
| GM20743     |                                          |                              | 2(1/1)             | 2(1/1) | 2(1/1) | 2(1/1)  | 3(2/1) | 2(1/1)         | 3(2/1) | 3(1/2)                  | 4(1/3) | 3(1/2)   | 4(1/3)   | 2(1/1)  | 1(0/1)       | 2(0/2)      |
| GM22569     |                                          |                              | 0(0/0)             | 0(0/0) | 0(0/0) | 0(0/0)  | 0(0/0) | 1(1/0)         | 1(1/0) | 0(0/0)                  | 0(0/0) | 3(1/2)   | 3(1/2)   | 2(1/1)  | 0(0/0)       | 1(0/1)      |
| GM22601     |                                          |                              | 0(0/0)             | 0(0/0) | 0(0/0) | 0(0/0)  | 0(0/0) | 0(0/0)         | 0(0/0) | 0(0/0)                  | 0(0/0) | 1(0/1)   | 1(0/1)   | 1(0/1)  | 1(0/1)       | 1(0/1)      |
| Total       |                                          |                              | 6(2/4)             | 6(2/4) | 6(2/4) | 10(5/5) | 7(3/4) | 8(4/4)         | 9(5/4) | 5(1/4)                  | 8(1/7) | 19(6/13) | 21(8/13) | 13(6/7) | 7(1/6)       | 8(0/8)      |

| Region  | Туре | Left Primer          | Right Primer         | Internal Probe              |
|---------|------|----------------------|----------------------|-----------------------------|
| 1p31    | DEL  | CAGTCTGTTACCTGGTTCAC | GAGGTAATGGTAGGGTGCTA | CAAAGGCCTGAGCTTGGGAA        |
| 1p36    | DUP  | AGAAGCAGCCTCAGCAAT   | CTCAGTGGTTTCTGGTCTTC | ATCTGGGTGGCAGAACTTG         |
| 1p36    | DUP  | ACAGACAATGGAACAAGCAA | GGGAACTCTGAAATCCTTGG | ATGGGAGCAAGTCCTTTGCC        |
| 2p22    | DUP  | TATCTCTCATTGCCTCCGAA | CAAGGTGAGCAGAACATAGG | CTCACTGCTGAAATGATGAGGTC     |
| 3q26    | DEL  | TTGTGCTGTATCCTCCAAAC | CACTCCACCTGGTTACATTC | TGGAGTTGGGTTCAACGTGG        |
| 5q35    | DEL  | TGATAAAGGCGTCAAGGTTC | CTAGATAATGACAGCCAGCG | AGGGTAAAGGTGCTGCTTTGG       |
| 6p25    | gain | GAGGGAGTTCATGTGGTAGA | AAGTAAGTGGAAGGAGTGGT | AGGTGTTTGCCTCTGAAGCC        |
| 6p25    | gain | TGCTAGAAAGGTCCAAGTCT | TGCTGGAAACAACTGTCAAT | CCAGTTGCTGTTTGACCTGGA       |
| 6p25    | gain | ATATGCCTTTAGAGGGAGCA | CTCCGCATGTACTTATTCCC | AACCCAAGGCTGACACAGTG        |
| 6p22    | DEL  | CGACTCCTCCAAGGAAG    | CACTTGAGGGCTCCTTG    | TGCCTTCCTAGACACTGGTGTTA     |
| 12p11   | Gain | AATGCTTGTCCTCTGTAACG | TTAAATCACACTGCCATCCC | CCCTATTGGGATCTGGGCTAGT      |
| 12p13   | DEL  | GGGATAGGACACAGATGGAT | CTTATTCCCTTAACCCGCAG | AGCTGATTGCAGGTGCTTCC        |
| 14q11   | DUP  | CTAACAGAGCAGCATCACAA | TAAAGCAGCAAGATACAGCC | ACTCCTGCAGCCTAAGACAT        |
| 14q21   | DEL  | TCTGTGTTGTGTTGGATGTC | GTGCTGCTGGTTCTCTTATT | ACCTGGAAGTTCCCTAGGCA        |
| 15q11.2 | DUP  | TGTCTTAGGCTGAGTCTACC | AAACTCAAGGGCTCTAATGC | TCCAATATCCATCTTCTCATTCTTCCT |
| 15q11.1 | DUP  | ATTGAACTGACAGCCAACAA | GCCTTACAGAGAACAGACAC | CTGCCTGAACGAAGCTCATCT       |
| 16p12   | DUP  | GCCACTATAACCTTTCCCAC | CAAGGACTCGCAAATTCTCT | CAGCATCCATCTCCAGTAACTTG     |
| 16p11   | DUP  | CCAACAGAGTGAGACTGTC  | TGCAGAGGAGAACGTCATT  | TGCTAGGGTTCATGCCACAC        |
| 16p11   | DUP  | GTTCATCACTTAAGCACCTG | ATCGGCAATTATGCAGAAGA | CGTGTTCCAGTCCAGTATCCC       |
| 19p11   | DUP  | ACCAGATGACACTAAGGGAA | CAGGAGAAACTCAGCCAAAT | AAAGAACCTACTAGAAATGTCGGG    |
| 21p11   | DEL  | TCTCTGACTTCCTGGTTCAA | ATTAGTTGGGCATGATGGTG | AGCCTCCTGAGTAGCTGGGA        |

# Comparison of other CNV calling algorithms on pathogenic CNVs

| Sample  | Length     | Type          | Manta  | Lumpy  | Delly   | CNVnator | cn.MOPS |
|---------|------------|---------------|--------|--------|---------|----------|---------|
| GM05876 | 1 424 110  | DEI           |        |        |         |          |         |
| GM05876 | 1,434,110  | DEL           | 0      | 0      | 0       | 0        |         |
| GM09209 | 5,768,062  | DEL           |        |        | 0       | 0        |         |
| GM11516 | 4,929,835  | DEL           |        | О      | 0       | 0        | 0       |
| GM13480 | 1,482,194  | DEL           |        |        | 0       | 0        | 0       |
|         | 107,623    | DUP           |        |        |         | 0        |         |
| GM14164 | 47,834,774 | DEL           | О      | О      | 0       | 0        |         |
|         | 148,798    | DUP           |        |        |         | 0        |         |
| GM16593 | 14,731,703 | DEL           | 0      | О      | 0       | *        |         |
|         | 2,697,371  | DEL           |        |        |         | 0        |         |
| GM20375 | 3,614,181  | DEL           | *      | *      | 0       | 0        | 0       |
| GM20743 | 1,982,556  | DEL           | О      |        | 0       | 0        |         |
| GM22569 | 5,582,533  | DEL           |        |        | 0       | 0        |         |
| GM22601 | 25,914,559 | DEL           | О      | 0      | 0       | *        | *       |
|         |            | Total<br>CNVs | 28,228 | 51,406 | 408,522 | 4,086    | 3,500   |

Note: O: denotes CNVs captured by the algorithm/method. \*: CNVs are not 50% reciprocal overlapping, but recovered in manual review. The plots are given in Supplementary files S1-S2.

<u>S8</u>

-16-

# Comparison of TWB Genotype Array and JAX-CNV on Taiwan BioBank Samples

|              | Deletion       |                  | Duplication    |                  |  |
|--------------|----------------|------------------|----------------|------------------|--|
|              | # Probes > 200 | # Probes 100-200 | # Probes > 200 | # Probes 100-200 |  |
| SNP Array    | 19             | 46               | 56             | 113              |  |
| NGS recalled | 18             | 32               | 47             | 71               |  |
| Rate (%)     | 94.7           | 69.6             | 83.9           | 62.8             |  |

# Development of a Next Generation Sequencing (NGS)-Based Platform for Detection of Copy Number Variations (CNVs) Associated with Constitutional Disorders

Wan-Ping Lee, Qihui Zhu, Silvia Liu, Eliza Cerveira, Mallory Ryan, Adam Mil-Homens, Lauren Bellfy, CZ Zhang, Charles Lee The Jackson Laboratory for Genomic Medicine, Farmington, CT

#### **ABSTRACT**

Chromosomal abnormalities are known to be associated with a large number of constitutional disorders. Conventional cytogenetic analyses, such as karyotyping and fluorescence in situ hybridization (FISH), have been traditionally used for the detection of chromosomal aberrations in the clinic. Since 2010 chromosomal microarray (CMA) has replaced conventional cytogenetic analysis as the first-tier cytogenetic diagnostic test. As the advancement of NGS technologies, it is conceivable to replace the conventional and outdated molecular cytogenetic methods. However, the barrier is stable and robust bioinformatics tools. We then developed a new one to meet the requirement for clinical applications.

The newly developed NGS-based tool has been tested on ten Coriell samples associated with 13 known pathogenic CNVs, ranging from 107.6Kb to 47.9Mb. Preliminary results show 100% sensitivity, calling all 13 pathogenic CNVs. Interestingly, by using NGS technologies our pipeline is able to detect an additional 25 to 40 CNVs per sample which is a near six-fold increase in detection when compared to CMA resolution. The false discovery rates of using human reference genomes GRCh37 and GRCh38 are 89% and 100% respectively.

#### MILESTONES OF JGM CLIA SV PIPELINE

| 1 | >300kb DELs/DUPs (sensitivity >99.9%; no false positive)       |                                       |
|---|----------------------------------------------------------------|---------------------------------------|
| 2 | >50kb DELs/DUPs (sensitivity >99.9%; FDR < 20%)                | DEL: deletion:                        |
| 3 | >50kb DELs/DUPs (sensitivity >99.9%; FDR < 2-5%)               | DUP: duplication;                     |
| 4 | >100kb INVs/TRAs (sensitivity >99.9%; FDR < 2-5%) ETA: 06/2018 | INV: inversion;<br>TRA: translocation |
| 5 | >50kb INVs/TRAs (sensitivity >99.9%; FDR < 2-5%) ETA: 09/2018  | TTV t. translocation                  |



#### TEST SAMPLES & THEIR ASSOCIATED PATHOGENIC CNVS

Ten reference samples were selected as a benchmark and the 13 associated pathogenic CNVs were confirmed and reported by the Coriell Institute for Medical Research. The sizes of CNVs range from 107.6Kb to 47.9Mb while types are two gains and 11 losses.

| Cartall IDa | Clinian Diagram                      | Patho        | Pathogenic CNV |         |  |  |  |
|-------------|--------------------------------------|--------------|----------------|---------|--|--|--|
| Coriell IDs | Clinical Disorder                    | Location     | Туре           | Size    |  |  |  |
| GM05876     | DiGeorge Syndrome                    | 22q11.21     | Loss           | 1.4Mb   |  |  |  |
| GM13480     | Williams Syndrome                    | 7q11.23      | Loss           | 1.6Mb   |  |  |  |
| GIVI 15400  | Williams Syndrome                    | 9p24.1       | Gain           | 107.6Kb |  |  |  |
| GM16593     | Cri-du-chat Syndrome                 | 5p15.3       | Loss           | 14.7Mb  |  |  |  |
| GIVI 10595  |                                      | 14q24.3      | Loss           | 2.7Mb   |  |  |  |
| GM20743     | Smith-Magenis Syndrome               | 17p11.2      | Loss           | 2.1Mb   |  |  |  |
| GM22601     | Wolf-Hirschhorn Syndrome             | 4p16.3       | Loss           | 25.0Mb  |  |  |  |
| GM09209     | Miller-Dieker Lissencephaly Syndrome | 17p13.3      | Loss           | 5.9Mb   |  |  |  |
| GM14164     | Tetralogy Fallot                     | 13q14.2      | Loss           | 47.9Mb  |  |  |  |
| OW14104     | retalogy r allot                     | 22q11.21     | Gain           | 148.8Kb |  |  |  |
| GM22569     | 1p deletion Syndrome                 | 1p36.33      | Loss           | 5.5Mb   |  |  |  |
| GM11516     | Angleman Syndrome                    | 15q11.2q13.1 | Loss           | 7.0Mb   |  |  |  |
| GM20375     | Angleman Syndrome                    | 15q11.2q13.1 | loss           | 4.9Mb   |  |  |  |



#### SEQUENCING COVERAGE EFFECT

Two duplications are missing when we downsampled the sequencing coverage. Obviously duplication detection is more sensitive to sequencing coverage. Low coverage sequencing data leads to more noise and challenges of CNV detection.



#### FALSE DISCOVERY RATE ESTIMATION

To estimate false discovery rate of our newly developed NGS-based CNV algorithm, we validated the four CNVs of GM05876 that are only detected by the NGS-based approach. Three of them are detected on both GRCh37 and GRCh38 while one is only detected on GRCh37. The one detected on GRCh37 is confirmed as false by Droplet Digital PCR (ddPCR).

| Location | Туре | Size (Kb) | GRCh37 | GRCh38 | ddPCR<br>Validation |
|----------|------|-----------|--------|--------|---------------------|
| 1p31     | Loss | 55.3      | Yes    | Yes    | TRUE                |
| 4q35     | Gain | 140.5     | Yes    | No     | FALSE               |
| 5q35     | Loss | 52.3      | Yes    | Yes    | TRUE                |
| 12p11    | Gain | 57.7      | Yes    | Yes    | TRUE                |

# CYTOSCAN VS. NGS-BASED DETECTION GRCh37 VS. GRCh38 EFFECT

All CytoScan calling CNVs can be recalled by the newly developed NGS-based CNV algorithm.

GRCh38 as a more complete human reference genome and using it can help for filtering false CNVs.



#### CONCLUSIONS

- We developed a new CNV detector for the detection of chromosomal aberrations for pathological diagnosis due to no NGS-based tool was designed for clinical application.
- The sensitivity of the newly developed NGS-based tool is better than CytoScan (Considering Chromosomal Microarray CMA based) that is a standard assay at JGM CLIA which proves the potential of NGS as a firsttier cytogenetic diagnostic assay.

www.jax.org

### **CLAIMS**

1. A computer implemented method for detecting copy number variations in a genome, comprising:

Docket No.: J0227.70024US00

scanning at least one genome region to identify at least one autosomal chromosome;

performing a read depth calculation;

converting the read depth to a percentile representative of a coverage of each chromosome;

applying a hidden Markov model and a Poisson distribution to the percentile to provide at least one copy number variation status; and

filtering the at least one copy number variation status to identify at least one copy number variation in the genome.

2. A non-transitory computer readable storage medium, having computer readable instructions stored thereon that, when executed by a processor, cause the processor to execute a method to detect copy number variations in a genome, the method comprising the steps of:

scanning at least one genome region to identify at least one autosomal chromosome;

performing a read depth calculation;

converting the read depth to a percentile representative of a coverage of each chromosome;

applying a hidden Markov model and a Poisson distribution to the percentile to provide at least one copy number variation status; and

filtering the at least one copy number variation status to identify at least one copy number variation in the genome.