Metarate example

This script provides examples of how the functions in this repository can be used to:

- calculate rate measures using the proportional duration summation method
- conduct a scalographic analysis
- · plot a scalogram and a difference of scalograms

The workflow used to conduct analyses for the paper "Parameters of unit-based measures of speech rate" is documented in metarate_workflow.mlx.

Two inputs are necessary:

- A table of utterance-based segmentations, with segmentation information described below. Here we use metarate_segmentdata_example.mat, which contains segmented utterances from a single speaker (F01) from the HPRC corpus and can be found in the examples subdirectory of this repository.
- A table of target variables, with duration and location information described below. Here we use data_pb_example.mat, which contains the durations of /p/ and /b/ segments from the speaker.

Add all sub-directories of the respository to the path:

```
addpath(genpath('.'));
```

Utterance segmentation

A unit-based segmentation of utterances is needed.

```
load('metarate_segmentdata_example.mat','TR');
```

Each utterance is associated with arrays of unit labels, such as phones and words:

```
list_of_phones = TR.phones{1}

list_of_phones = 1×29 cell
'sp' 'DH' 'AH0' 'B' 'ER1' 'CH' 'K ...

list_of_words = TR.words{1}

list_of_words = 1×10 cell
'sp' 'THE' 'BIRCH' 'CANOE' 'SLID' 'ON' 'T...
```

The start and end times of each unit (here relative to the beginning of the recording) must be included as well, e.g.:

```
vector_of_phone_end_times = 1×29
0.2000 0.2499 0.2898 0.3596 0.4594 0.5293 0.5991 0.6290 · · ·
```

In addition, maps between units at different levels must be included (but only if the rate measure unit is different from the target variable unit):

```
%the integer indices of phones for each word:
indices_of_phones_byword = TR.words_phone_ix{1}
```

indices_of_phones_byword = 1×10 cell

	1	2	3	4	5	6	7	8
1	1	[2,3]	[4,5,6]	[7,8,9,10]	[11,12,13	[15,16]	[17,18]	[19,20,21

Target variables

A table of target variables is needed.

```
load('data_pb_example.mat','D');
```

This table contains the duration of each phone, along with its start and end times, its midpoint, and its index (in the utterance):

```
info_target_phone = head(D(:,{'phone' 'dur' 't0' 't1' 'tmid' 'ix'}))
```

info_target_phone = 8×6 table

	phone	dur	tO	t1	tmid	ix
1	'B'	0.0698	0.2898	0.3596	0.3247	4
2	'P'	0.0898	1.4372	1.5270	1.4821	23
3	'B'	0.0998	0.2698	0.3696	0.3197	4
4	'P'	0.0898	1.9161	2.0059	1.9610	23
5	'B'	0.0798	0.2798	0.3596	0.3197	4
6	'P'	0.0898	1.9760	2.0658	2.0209	24
7	'B'	0.0299	1.0580	1.0880	1.0730	18
8	'B'	0.0599	1.1977	1.2576	1.2277	21

The table also contains information about the higher-level units that contain the phones:

```
info_word_contains_target_phone = head(D(:,{'word' 'word_t0' 'word_t1'}))
```

info_word_contains_target_phone = 8x3 table

	word	word_t0	word_t1
1	'BIRCH'	0.2898	0.5293
2	'PLANKS'	1.4372	1.8762
3	'BIRCH'	0.2698	0.6190
4	'PLANKS'	1.9161	2.4050
5	'BIRCH'	0.2798	0.5991
6	'PLANKS'	1.9760	2.4549
7	'BLUE'	1.0580	1.1977
8	'BACKGROUN	D' 1.1977	1.6667

Proportional unit count timeseries

Use the function metarate_calc_prop_durs to calculate the timeseries of proportional counts for a given type of unit, and add these to the utterances table:

Scalographic analysis

```
% data selection strategy:
% bywindow, bytarget, beginanchored, endanchored
% use 'bytarget' to specify the across-window data selection strategy
datasel = 'bytarget';

% rate ratio:
% 0: proper rate, 1: inverse rate, 2: both
invrate = 2;

T = metarate_scalographic_analysis(TR,D,...
    'unit',unit,...
    'target_exclusion',true,...
    'data_selection',datasel,...
    'inverse_rate',invrate);
```

The output of metarate_scalographic_analysis is a table that contains various information about each analysis.

Included in the output is the partial correlation (rho), the p-value of the partial correlation, the rate measure used, the target variable name, the data selection strategy, the target exclusion parameter, the ratio expression (1 for inverse, 0 for proper), the number of tokens in the analysis, the number for which the rate measure was non-finite, the number for which an NaN value was observed, and the total number of valid tokens in the analysis:

head(T(:,{'rho' 'pval' 'rate_measure' 'target' 'scale' 'center'}))

a	ns	=	8×	6	†a	h1	ρ
a	113	_	\circ	U		DT	$\overline{}$

	rho	pval	rate_measure	target	scale	center
1	-0.1467	0.0001	'words'	'phone'	0.0500	-0.4750
2	-0.0975	0.0072	'words'	'phone'	0.0500	-0.4500
3	-0.1104	0.0023	'words'	'phone'	0.1000	-0.4500
4	-0.0435	0.2310	'words'	'phone'	0.0500	-0.4250
5	-0.1006	0.0055	'words'	'phone'	0.1000	-0.4250
6	-0.1473	0	'words'	'phone'	0.1500	-0.4250
7	-0.0776	0.0326	'words'	'phone'	0.0500	-0.4000
8	-0.1145	0.0016	'words'	'phone'	0.1000	-0.4000

head(T(:,{'data_selection' 'target_exclusion' 'inverse_rate'}))

ans = 8×3 table

	data_selection	target_exclusion	inverse_rate
1	'bytarget'	1	0
2	'bytarget'	1	0
3	'bytarget'	1	0
4	'bytarget'	1	0
5	'bytarget'	1	0
6	'bytarget'	1	0
7	'bytarget'	1	0
8	'bytarget'	1	0

head(T(:,{'N_tokens' 'N_inf' 'N_nan' 'N_valid'}))

ans = 8×4 table

	N_tokens	N_inf	N_nan	N_valid
1	762	3	0	759
2	762	1	0	761

	N_tokens	N_inf	N_nan	N_valid
3	762	0	0	762
4	762	2	0	760
5	762	0	0	762
6	762	0	0	762
7	762	2	0	760
8	762	1	0	761

Plotting scalograms

First prepare the scalographic information for plotting:

The function prep_scalographs generates a structure (with one element for each scalograph) with the centers (XX), scales (YY), and scalogram values (ZZ).

```
SC = prep_scalographs(T,G)
```

```
ax = stf([1 1],[0.10 0.15 0.01 0.10]); %makes a figure with one axis
handles = plot_scalographs(SC,ax);
```


Plotting a difference scalogram

First, let's conduct separate scalographic analyses on the /p/ and /b/ phones from our example dataset:

```
% make separate data tables
D_p = D(ismember(D.phone, {'P'}),:);
D_b = D(ismember(D.phone, {'B'}),:);
%conduct scalographic analyses
T_p = metarate_scalographic_analysis(TR,D_p,...
    'unit','words',...
    'target_exclusion',true,...
    'data_selection','bytarget',...
    'inverse_rate',0);
T_b = metarate_scalographic_analysis(TR,D_b,...
    'unit','words',...
    'target_exclusion',true,...
    'data_selection','bytarget',...
    'inverse_rate',0);
%rename target fields and combine:
T_p.target = repmat({'phone_p'},height(T_p),1);
T_b.target = repmat({'phone_b'},height(T_b),1);
T = [T_p; T_b];
```

Now let's prepare all three scalograms and plot:

