МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов.

Студент гр. 0383	Куликов А. В.
Преподаватель	Ефремов М. А.

Санкт-Петербург 2021

Цель работы.

Изучить представление и обработку целых чисел, организацию ветвящихся процессов на языке Ассемблера.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a, b, i) и i2 = f2(a, b, i);
- b) значения результирующей функции res = f3(i1, i2, k), Где функции f1, f2, f3:

Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Выполнение работы.

В ходе выполнения работы были использованы инструкции cmp, jle, jge, jl, jg, jne, je, использованные для реализации ветвления и сравнения веденных чисел.

Все возможные варианты работы кода программы приведены в Табл.1.

Табл.1

				таол.т
Значения	Результат вычисления	Результат	Результат вычисления	Прим.
a, b, i, k	i1	вычисления і2	res	
a = 1	11 (hex) = 17 (dec)	16 (hex) = 22 (dec)	27 (hex) = 39 (dec)	Верно
b = 0				
i = -5 k				
= 0				
a = 1	11 (hex) = 17 (dec)	16 (hex) = 22 (dec)	11 (hex) = 17 (dec)	Верно
b = 0				
i = -5 k				
= 1				
a = -1	2 (hex) = 2 (dec)	6 (hex) = 6 (dec)	8 (hex) = 8 (dec)	Верно
b = 10 i				
= 2 k				
= 0				
a = -	FFEA(hex) = -22 (dec)	12 (hex) = 18 (dec)	FFEA (hex) = -22 (dec)	Верно
1				•
b =-				
1 i = -2				
k = -7				

Выводы.

В ходе лабораторной работы были изучены представление и обработка целых чисел и организация ветвящихся процессов в языке Ассемблера.

ПРИЛОЖЕНИЕ А

Тексты исходных файлов программ

lab3.asm

AStack SEGMENT STACK
DW 12 DUP(?)

AStack ENDS

DATA SEGMENT

a DW 0

bDW0i

DW 0 k

DW 0 i1

DW 0 i2

DW 0

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

Main PROC FAR

push DS sub AX,

AX push AX

mov AX, DATA

mov DX, AX mov a,

0 mov b, 0 mov i, 0 mov k, 0

mov cx, a sub cx, b cmp cx, 0 jle L1

;a > b ;i1 = -(4 * i + 3) $mov cx, i \quad shl cx, 1$ $shl cx, 1 \quad add cx, 3$ $neg cx \quad mov i1,$ cx

;i2 = -(6 * i + 8)mov cx, i shl cx, 1
add cx, i add cx, 4
shl cx, 1 neg cx mov
i2, cx

jmp L2 ;a <= b L1:

;i1 = 6 * i - 10

mov cx, i

shl cx, 1 add cx,
i shl cx, 1
sub cx, 10 mov i1,
cx

```
;i2 = 9 - 3 * (i - 1)
      mov cx, i
shl cx, 1
            add
cx, i neg cx
add cx, 12
      mov i2, cx
      L2:
      cmp k, 0
jne L3
      ;k == 0
      cmp i1, 0
      jl i10
      cmp i2, 0
      jl i20
      jmp endf3
      i10:
      neg i1
      cmp i2, 0
jg endf3
      i20:
```

endf3:

mov ax, i1 add

neg i2

ax, i2 jmp endmain

;k != 0

L3:

mov cx, i1

sub cx, i2 cmp

cx, 0 jl Li1

mov AX, i2

jmp endmain

Li1: mov

AX, i1 jmp

endmain

endmain:

ret

Main ENDP

CODE ENDS

END Main

приложение б

Тексты файлов диагностических сообщений программ

lab3.lst

MICROSOFT (R) MACRO ASSEMBLER VERSION 5.10 11/25/21 04:25:1

PAGE 1-1

0000 ASTACK SEGMENT STACK 0000 000C[DW 12 DUP(?)

????

]

0018 ASTACK ENDS

0000 DATA SEGMENT

 0000
 0000
 A DW 0

 0002
 0000
 B DW 0

 0004
 0000
 I DW 0

 0006
 0000
 K DW 0

 0008
 0000
 II DW 0

000A 0000 I2 DW 0 000C DATA ENDS

; КОД ПРОГРАММЫ CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:ASTACK

; ГОЛОВНАЯ ПРОЦЕДУРА

0000 MAIN PROC FAR 0000 1E PUSH DS

0001 2B C0 SUB AX, AX

0003 50 PUSH AX

0004 B8 ---- R MOV AX, DATA 0007 8B D0 MOV DX, AX

0009 C7 06 0000 R 0000	MOV A, 0	
000F C7 06 0002 R 0000	MOV B, 0	
0015 C7 06 0004 R 0000	MOV I, 0	
001B C7 06 0006 R 0000	MOV K, 0	
0021 8B 0E 0000 R	MOV CX, A	
0025 2B 0E 0002 R	SUB CX, B	
0029 83 F9 00	CMP CX, 0	
002C 7E 29	JLE L1	
0020 7112)	JEE ET	
	;A>B	
	;I1 = -(4 * I + 3)	
002E 8B 0E 0004 R	MOV CX, I	
0032 D1 E1	SHL CX, 1	
0034 D1 E1	SHL CX, 1	
0036 83 C1 03	ADD CX, 3	
0039 F7 D9	NEG CX	
003B 89 0E 0008 R	MOV I1, CX	
	;I2 = -(6 * I + 8)	
003F 8B 0E 0004 R	MOV CX, I	
0043 D1 E1	SHL CX, 1	
0045 03 0E 0004 R	ADD CX, I	
0049 83 C1 04	ADD CX, 4	
004C D1 E1	SHL CX, 1	
· · ·	ASSEMBLER VERSION 5.10	11/25/21
04:25:1		
	PAGE 1-2	
004E F7 D9	NEG CX	
0050 89 0E 000A R	MOV I2, CX	
0000 07 01 00011 II	112 , 12, 611	

JMP L2

0054 EB 27 90

 $A \leq B$

0057 L1:

II = 6 * I - 10

0057 8B 0E 0004 R MOV CX, I

005B D1 E1 SHL CX, 1

005D 03 0E 0004 R ADD CX, I

0061 D1 E1 SHL CX, 1

0063 83 E9 0A SUB CX, 10

0066 89 0E 0008 R MOV I1, CX

;I2 = 9 - 3 * (I - 1)

006A 8B 0E 0004 R MOV CX, I

006E D1 E1 SHL CX, 1 0070 03 0E 0004 R ADD CX, I 0074 F7 D9 NEG CX

0076 83 C1 0C ADD CX, 12 0079 89 0E 000A R MOV I2, CX

007D L2:

007D 83 3E 0006 R 00 CMP K, 0

0082 75 2A JNE L3

K == 0

0084 83 3E 0008 R 00 CMP I1, 0

0089 7C 0A JL I10

008B 83 3E 000A R 00 CMP I2, 0

0090 7C 0E JL I20

0092 EB 10 90 JMP ENDF3

0095 I10:

0095 F7 1E 0008 R NEG I1

0099 83 3E 000A R 00 CMP I2, 0

009E 7F 04 JG ENDF3

00A0 I20: 00A0 F7 1E 000A R NEG I2

00A4 ENDF3:

00A4 A1 0008 R MOV AX, I1 00A7 03 06 000A R ADD AX, I2

00AB EB 1A 90 JMP ENDMAIN

K != 0

00AE L3:

00AE 8B 0E 0008 R MOV CX, I1 00B2 2B 0E 000A R SUB CX, I2 00B6 83 F9 00 CMP CX, 0

MICROSOFT (R) MACRO ASSEMBLER VERSION 5.10 11/25/21

04:25:1

PAGE 1-3

00B9 7C 06 JL LI1

00BB A1 000A R MOV AX, I2 00BE EB 07 90 JMP ENDMAIN

00C1 LI1:

00C1 A1 0008 R MOV AX, I1

00C4 EB 01 90 JMP ENDMAIN

00C7 ENDMAIN:

00C7 CB RET 00C8 MAIN ENDP 00C8 CODE ENDS

END MAIN

MICROSOFT (R) MACRO ASSEMBLER VERSION 5.10 11/25/21

04:25:1

SYMBOLS-1

SEGMENTS AND GROUPS:

NAME LENGTH ALIGN COMBINE CLASS

ASTACK	00C8 PAR		ΙE	
NAME	TYPE	VALUE	ATTR	
A L WOI	RD 0000) DATA		
B L WOI	RD 0002	2 DATA		
ENDF3 I				
I L WOR I1 L WOR I10 L NEA I2 L WOR I20 L NEA K L WOR L NEA L WOR	RD 0000 RR 0093 RD 0000 AR 0000	8 DATA 5 CODE A DATA .0 CODE 6 DATA		
L1 L NEA L2 L NEA		7 CODE D CODE		
L3 L NEA	AR 00A	E CODE		
LI1 L NEA	AR 00C	1 CODE		
MAIN	F PROC	0000 COD	E LENGTH = 00	0C8

@CPU TEXT 0101H
@FILENAME TEXT L

TEXT LAB3

@VERSION TEXT 510

119 SOURCE LINES 119 TOTAL LINES 23 SYMBOLS

48058 + 461249 BYTES SYMBOL SPACE FREE

- 0 WARNING ERRORS
- 0 SEVERE ERRORS