Function Antiderivative
$$e^{ax}$$
 Tyte previous e^{ax} $\frac{1}{a}e^{ax}$ $e \times ample _{1} = a = -2$

$$\frac{1}{x} \quad \ln|x| \qquad \Rightarrow Se^{2x} d \times = -\frac{1}{2}e^{-2x} + C$$

$$\frac{1}{\sqrt{1-(ax)^{2}}} \quad \frac{1}{a}\sin^{-1}(ax)$$

$$\frac{1}{1+(ax)^{2}} \quad \frac{1}{a}\tan^{-1}(ax)$$
We will cover this formula
$$b^{ax} \quad \ln(x) \quad \frac{1}{a \ln b}b^{ax}, b > 0, b \neq 1$$
(Understand how to quickly derive this formula)
$$X = e^{ax} \quad \ln(x) \quad \frac{1}{a \ln b}b^{ax}, b > 0, b \neq 1$$
(Understand how to quickly derive this formula)

Example 3.1:

Evaluate the following indefinite integral:

$$\int (2\tan x + 1)\sec^2(x)dx = \int 2\tan x \cdot \sec^2(x)dx + \int 2\tan x \cdot \sec^2(x)dx + \int \int 2\tan x \cdot \sec^2(x)dx + \int \int 2\tan x \cdot \sec x dx + \int \int 2\tan x \cdot \sec x dx = \tan x + \int \int 2\tan x \cdot \sec x dx = \tan x \cdot \sec x dx = \tan x \cdot \sec x dx$$

d Sec2x] = 2 Secx. d Secx]

= tanx+Sec2x+C

Example 3.2:

Evaluate the following indefinite integral:

Example 3.2:

Evaluate the following indefinite integral:

$$\int \frac{dx}{\sqrt{16-x^2}} = \int \frac{dx}{\sqrt{$$

plain storm.

Example 3.3:

How would you find a formula for the following indefinite integral?

$$\int \frac{dx}{x^2 - x + 1}$$

-> make it look like a tap!(...) aptide mutive

Section 5.1-5.3: Area under the curve and the definite integral

Math 1552 lecture slides adapted from the course materials
By Klara Grodzinsky (GA Tech, *School of Mathematics*, Summer 2021)

Learning Goals

- Understand how to partition an interval
- Draw a picture to approximate the area under the curve with a given number of rectangles
- Compute the Upper and Lower sums
- Calculate the midpoint estimate

geometric interprotution: **Basic Methodology** • <u>Idea</u>: Find the area bounded by a function f(x), the lines x=a, x=b, and the x-baxis.

Riemann Sums

• <u>Idea</u>: Find the area bounded by a function f(x), the lines x=a, x=b, and the x-axis.

• <u>Procedure</u>: Break the interval [a,b] into n subintervals, and draw a rectangle in each subinterval.

• Summing the areas of the rectangles will approximate the area under the curve.

Defining Sigma Notation

We denote the next (finite) sum of terms by:

$$\sum_{i=1}^{n} a_{i} = \widehat{a}_{1} + \widehat{a}_{2} + ... + \widehat{a}_{n}$$
 (Practice some sums - examples)
$$E \times 1 : \sum_{i=1}^{n} A_{i} = A_{1} + A_{2} + ... + A_{n}$$
 (Practice some sums - examples)
$$E \times 1 : \sum_{k=0}^{n} A_{i} = A_{1} + A_{2} + ... + A_{n}$$
 (Practice some sums - examples)
$$E \times 1 : \sum_{k=0}^{n} A_{i} = A_{1} + A_{2} + ... + A_{n}$$
 (Practice some sums - examples)
$$E \times 1 : \sum_{k=0}^{n} A_{i} = A_{1} + A_{2} + ... + A_{n}$$
 (Practice some sums - examples)
$$E \times 1 : \sum_{k=0}^{n} A_{i} = A_{1} + A_{2} + ... + A_{n}$$
 (Practice some sums - examples)
$$E \times 1 : \sum_{k=0}^{n} A_{i} = A_{1} + A_{2} + ... + A_{n}$$
 (Practice some sums - examples)

Riemann Sums (cont.)

Upper estimate: use rectangles that over-approximate the area

Riemann Sums (cont.)

Lower estimate: use rectangles that under-approximate the area

Example 1: We've sept this antide watrice

before: Sf(x)dx = ton 1/x + E

Find the upper and lower sums for the function

$$D_f(x) = \frac{2}{x^2 + 1}$$

on the interval [-1,2] with n=6 subintervals.

$$=\frac{1}{Z}\left(f(-1/2)+f(0)+f(0)\right)$$

$$f(x) = \frac{1}{1 + x^2}$$

V_f= - (1-1/4+1+1+1+1+1-1+1/4+1+1) + 1 -> Phyginto (alculato) Dlower estimate (Le)

LF = 2 Mi. DX $= \frac{1}{4} \left(\frac{1}{4} - \frac{1}{4} \right) + \frac{3}{4} + \frac{3}{4}$ $= \frac{1}{4} \left(\frac{1}{2} + \frac{1}{4} - \frac{1}{2} \right) + \frac{3}{4} + \frac{3}{4} + \frac{3}{4}$ Pullouther the commons.

-> Lephorand-ching?

$$f(x) = \frac{1}{x^2 + 1}$$

As we take rectangles of smaller and smaller width, and then add in more of them to fill up the interval evenly, we get close to the area under the smooth curve.

Key idea: We will compute a definite integral by writing down a Riemann sum for the area approximation and then take a limit as the size width of the rectangles tends to zero.

definite, integral fx/dx

Midpoint Estimate

<u>Idea:</u> Go for the middle ground approximation (value in between). Plug in the midpoint of each subinterval.

On the subinterval $[x_{i-1}, x_i]$,

the midpoint is: $\frac{x_{i-1} + x_i}{2}$

and the midpoint sum is:

$$M_f = \sum_{i=1}^n f\left(\frac{x_{i-1} + x_i}{2}\right) \Delta x$$

Example 2:

Find a midpoint estimate to the area from Example 1.

Recall: We want to approximate the area underneath the function

midpoints (Xi-1+Xi for each [Xi-11Xi]) -> 1=1,2,3,4,5,6 1=1,2,3,4,5,6 1=3,4,-1/4,1/4,3/4,5/4,7/4

 $M_f = \frac{1}{2} (f(-3/4) + f(-1/4) + f(-1/4) + f(-1/4)$ + f(3/4)+f(5/4) + F(7/4) -> Lplug-and-chug>co