

algebraic closure of a finite field

Canonical name AlgebraicClosureOfAFiniteField

Date of creation 2013-03-22 16:40:51 Last modified on 2013-03-22 16:40:51 Owner Algeboy (12884) Last modified by Algeboy (12884)

Numerical id 5

Author Algeboy (12884)

Entry type Derivation Classification msc 12F05 Related topic FiniteField

Related topic FiniteFieldCannotBeAlgebraicallyClosed

Fix a prime p in \mathbb{Z} . Then the Galois fields $GF(p^e)$ denotes the finite field of order p^e , $e \geq 1$. This can be concretely constructed as the splitting field of the polynomials $x^{p^e} - x$ over \mathbb{Z}_p . In so doing we have $GF(p^e) \subseteq GF(p^f)$ whenever e|f. In particular, we have an infinite chain:

$$GF(p^{1!}) \subseteq GF(p^{2!}) \subseteq GF(p^{3!}) \subseteq \cdots \subseteq GF(p^{n!}) \subseteq \cdots$$

So we define
$$GF(p^{\infty}) = \bigcup_{n=1}^{\infty} GF(p^{n!}).$$

Theorem 1. $GF(p^{\infty})$ is an algebraically closed field of characteristic p. Furthermore, $GF(p^e)$ is a contained in $GF(p^{\infty})$ for all $e \geq 1$. Finally, $GF(p^{\infty})$ is the algebraic closure of $GF(p^e)$ for any $e \geq 1$.

Proof. Given elements $x, y \in GF(p^{\infty})$ then there exists some n such that $x, y \in GF(p^{n!})$. So x+y and xy are contained in $GF(p^{n!})$ and also in $GF(p^{\infty})$. The properties of a field are thus inherited and we have that $GF(p^{\infty})$ is a field. Furthermore, for any $e \geq 1$, $GF(p^e)$ is contained in $GF(p^{e!})$ as e|e!, and so $GF(p^e)$ is contained in $GF(p^{\infty})$.

Now given p(x) a polynomial over $GF(p^{\infty})$ then there exists some n such that p(x) is a polynomial over $GF(p^{n!})$. As the splitting field of p(x) is a finite extension of $GF(p^{n!})$, so it is a finite field $GF(p^e)$ for some e, and hence contained in $GF(p^{\infty})$. Therefore $GF(p^{\infty})$ is algebraically closed.

We say $GF(p^{\infty})$ is the algebraic closure indicating that up to field isomorphisms, there is only one algebraic closure of a field. The actual objects and constructions may vary.

Corollary 2. The algebraic closure of a finite field is countable.

Proof. By construction the algebraic closure is a countable union of finite sets so it is countable. \Box

References

[1] McDonald, Bernard R., Finite rings with identity, Pure and Applied Mathematics, Vol. 28, Marcel Dekker Inc., New York, 1974, p. 48.