The 60 complex arxiv: 1009, 5025 & arxiv: 1108.5386
Topological Quantum Field Theories are some of the nicest invariants of manifolds.
An Baldimansional TOFT associates
n-manifolds mm> vector spaces 粗豆 +>> 豆(豆)
(mH)-manifolds un linear maps M: 5, -> 5, -> 7(M): 2(2,) -> 2(2)
(Sometimes not all n+1 manifolds are allowed; when M must be a mapping cylinder use say we have a (n+5)-dimensional TQFT.)
(n+s)-dimensional TOFT.)

The nicest TOFTs one the fully extended ones, which we can compute by decomposing our munifolds into smaller pieces. We associate to (n-1)-manifolds uns categories (n-2)-manifolds uns 2-categories O-manifolds ~ n-categories and at each level have a formula $Z(\overline{Q}) = Z(\overline{Q}) \otimes Z(\overline{Q})$ $M_1 \times M_2$ $M_1 \times M_2$ which translates gluing of manifolds into an algebraic operation.

In fact, the Cobordism Hypothesis of Baez and Dolon roughly says: (fully extended ME-TOFIS) & (n-categories with duals) This has since been mude precise, and proved, by Lune. Today, I want to show you an explicit construction of a filly extended TOFT from an n-category, and show that we can get more: the vector spaces Z(M") for n-manifolds are actually the O-th homology of a natural drain complex. A disklike n-category consists of

ofunctors $C_R: \{2k-ballis\}\} \longrightarrow Set$ for oskin $\{2k(x)\} \in \{2k-ballis\}\} \longrightarrow Set$ for oskin $\{2k(x)\} \in \{2k-ballis\}\} \longrightarrow \{2k-ballis\} \longrightarrow Set$ orestaction maps $\{2k(x)\} \longrightarrow \{2k(x)\} \longrightarrow Set$ Such that

orestaction isotopic homeomorphisms and dentically

or the gluing maps are startly associative.

Although gluing is strictly associative, disklike categories are 'weak'.

- . To obtain a composition on $C_i(I)$, you need a reparametrization $I \cup I \to I$ $C_i(I) \times C_i(I) \to C_i(I \cup I) \to C_i(I).$
- ensures there exists a dela comitted identity axiom

an invertible (up-to higher morphisms) morphism between them.

· At level n equations had on the nose, by the Isotopy axirom.

From a dishibe nearlegary we immediately Sotain (6)
mvariants of in-manifolds.

Given M an in-manifold, consider D(M), the poset of ball decorposition.

The manifold is a function D(M)—Septard and the TOFT shein module 13

A(M;C) = colim C

Examples

(I) $C_{k \times n}(X^k) = M_{aps}(X \rightarrow T)$ $C_n(X^n) = [X \rightarrow T]_{reld}$ and then $A(M; C) = [M \rightarrow T]_{reld}$

(2) C a fusion category $A(Z^2, C)$ is the Turaer-Viro vector space for a surface

(3) C a modular tensor category $A(M^3; C)$ is the Reshetikhin-Turaer vector space for DM.

(F) We can build a 4-category from Klovanov homology (mod 2).

What are the invariants?

What is the blob complex?

We replace columbs by handopy columits,

B*(M; C) = hocolum C.

D(M)

Let's make this much more explicit.

A k-drain of the blob complex consists of

k balls ("blobs") in W, pairuse nested or dispirit.

a compatible decomposition of W into balls,

· a labelling of the balls by n-morphisms from C.

The differential is a (signed) sum over a) ways to forget a blob

b) ways to forget an innermost blob,

gluing up its contents

It is easy to see that Ho recovers the original colimit.

Theorem (Families of diffeomorphisms act) There m are chain maps $C_*(D_i \mathcal{H}(M)) \otimes B_*(M; \mathcal{C}) \longrightarrow B_*(M; \mathcal{C})$

- · So Co Off(M) & B*(M; C) -> B* (M; C) is the obvious action.
- · compatible with gluing (up to homotopy)
- · and in fact uniquely (up-to-homotopy) determined by these conditions.

Examples

- · B*(s'; e) is the Hochschild complex; rotation around s' g'us the cyclic differential
- * votation along vational slopes on T_2 giving a degree -vaising map $HB_*(T^2; C) \to HB_{*+}(T^2; C)$

Sketch define BT_{rr} , total complex of $BT_{ij} = C_{ij}(i-blob diagrams)$ BT_{rr} has an brows action of $C_{rr}DrH$ the inclusion $B_{rr} = BT_{rr}DCBT_{rr}$ is a homotopy equivalence Sketch $B_{rr} = B_{rr}U$ (blobs smaller than an open cover U) $BT_{rr} = BT_{rr}U$ $BT_{rr}(B^{rr})$ is contractible (acyclic in positive degrees)

The blob complex reflects triangulated structure in the n-catagony & which the TOFT invariant misses.

Khovanor homology assocrates a vector space to a link in the boundary of the 4-ball.

Resolutions of a crossing are related by an exact triangle

O(Kh(X))Kh(=) Kh()()

House in a general 4-manifold this structure disappears. H survives on the blob complex, and gives a spectral squence perhaps allowing us to compute examples.

9

Generalized Deligne conjecture

The 'surgery cylinder operad': SCM,N

- $\cdot \partial M_i = \partial N_i = E_i$
- · mapping cylindes between.
- · SCM, N has a natural topology.

Write $hom_i = Hom_{B_*(E_i)}(B_*(M_i) \rightarrow B_*(N_i)).$

Theorem There are a collection of many maps

 $C_*(SC_{M,N}) \otimes Nom_i \longrightarrow hom_o$

giving an action of the operad up to otherent homotopy.

Specialising to n=1, N:=M:=I, this gives the Deligne conjecture: The little discs great acts on Hochschild cochains.

(Even at n=1 there more here:

$$(S' \rightarrow B_*(...)(B_*(---) \rightarrow B_*(M))$$

To state the next theorems, we tirst need the notion of (
'An disklike n-contegories'
as before, but
· En(X;c) is a chain complex, not a vector space
· the action of diffeomorphisms of balls lifts to
$C_*(D_i\mathcal{H}(X^n))\otimes C_n(X) \longrightarrow C_n(X)$
Theorem With Mak-manifold, Ea disklike in-category.
the association $X \xrightarrow{rk} B_*(M \times X; C)$
defines an Am disklike (n-k) category, which
we call $B_{H}(M)$ (or $e(M)$, depending on
we call $B_{\#}(M)$ (or $E(M)$, depending on what we want to emphasize what we want to emphasize $A_{\#}(M)$ is a module over $B_{\#}(M)$.
Theorem If N=N,UNz
$\mathcal{B}_{*}(\mathcal{N}) = \mathcal{B}_{*}(\mathcal{N}_{1}) \otimes \mathcal{B}_{*}(\mathcal{N}_{2})$
Sketch: prove a much more general fibre product formula
Sketch: prove a much more general fibre product formula Bx((())
B* () Recells labelled by order (n-b) modules Prove this usering 'small blobs', acyclic models, and a somewhat technoical against! Theorem Deline the fundamental(o,n)-groupoid of $T: T^{\leq n}_{oo}(T)(X^n) = C_*(Maps(X \to T))$
Prove this users small blobs, acyclic modds, and a somewhat technolical agament!
Theorem Define the fundamental(o,n)-groupoid of $T: T_{\infty}^{\leq n}(T)(X) = C_{+}(Maps(X \to T))$
Then B*(S; To(T)) =.c. CaMaps(S -> T)
Corollary Hoch*(C* SZT) ~ Hoch*(# T*(T)) ~ B*(6'; T*(T)) ~ C*(LT)