Controlling Epidemics and Economics Activity in Interacting Communities

May 23, 2021

We consider an SAIR model between two communities. Define the following variables for community i.

- $S_i(t)$ is the number of susceptible at time t.
- $A_i(t)$ is the number of infected at time t but asymptomatic total population in community.
- $I_i(t)$ is the number of infected but symptomatic.
- $R_i(t)$ is the number recovered from infection.
- $D_i(t)$ is the number of deaths from the infection.
- Let $W_i(t) := S_i(t) + A_i(t) + R_i(t)$ be the number of active members available for economic activity in community i.

At time t, there are $L_{ij}(t)$ meetings between members of community i and community j. Each meeting is an economic activity and generates an economic good. Furthermore in each meeting, we assume there are M_i members of community i and M_j members of community j. One motivation is a 'service community' in the neighbourhood of a more affluent community. The service could correspond to

Each i-j meeting results in an infection with rate p_{ij} . $L_{ij}(t)$ is a control variable. The infected population does not participate in the economic activity. The following o.d.e.s can be written about this interaction. For the discrete time versions of the

following, replace $\dot{S}(t) = S(t+1) - S(t)$, etc.

$$\dot{S}_i(t) = -\sum_{j=1}^2 p_{ij} L_{ij}(t) \frac{A_j(t)}{W_j(t)} = -\sum_{j=1}^2 \lambda_{ij}(t) \frac{A_j(t)}{W_j(t)}$$
(1)

$$\dot{A}(t) = \sum_{j=1}^{2} \lambda_{ij}(t) \frac{A_j(t)}{W_j(t)} - (\nu_i(t) + \mu_i(t)A_i(t))$$
(2)

$$\dot{I}_i(t) = \nu_i(t)A_i(t) - \xi_i(t)I_i(t) \tag{3}$$

$$\dot{R}_i(t) = \mu_i(t)A_i(t) + \xi_i(t)I_i(t) \tag{4}$$

$$\dot{D}_i(t) = \delta_i(t)I_i(t) \tag{5}$$

If δ is significantly small, we can assume it to be zero to obtain a population conserving model like i. We will assume $\lambda_{ij}(t)$ and $\nu_i(t)$ are controllable and $\mu_i(t)$ and $\xi(t)$ are exogenous.

The following are the kinds of optimisations that the different communities may seek over the period (0,T).

• Community 1, denoted by C_1 . is sparse, $p_{11}(t)$ is low, just needs to maintain low levels of activity involving 1-1 meetings. It needs 1-2 meetings for 'convenience'. It wants to keep its infections low. It can control $L_{11}(t), L_{12}(t)$ and possibly the testing parameter, $\nu_1(t)$

$$\min \max I_1(t) \tag{6}$$

subject to

$$F_1(L_{11}(t)) > a_{11}$$

 $F_{12}(L_{12}(t) > a_{12})$

Alternatively, it could have the objective of maximising convenience resulting form 1-2 meetings while keeping infections below a threshold.

Here $F_1(\cdot), F_{12}(\cdot)$ are increasing functions and a_{11} and a_{12} are given constants.

• Community 2, denoted by C_2 , is dense, $p_{ij}(t)$ is high and it needs high levels of L_{22} and $L_{21} = L_{12}$ for economic sustenance. It wants to keep infection/hospitalisation levels manageable. It can control only $L_{22}(t)$

$$\max \min G_{11}(L_{11}(t)) + G_{21}(L_{12}(t)) \tag{7}$$

subject to

$$I_2(t) < b_{22}$$

Here G_{11} and G_{21} are increasing functions and b_{22} is a constant.

• The Government has the objective of reducing hospitalisations in C_2 and overall deaths. It can control by putting upper limits on $L_{ij}(t)$.

$$\min \max H_1(I_1(t)) + H_2(I_2(t)) \tag{8}$$

Here H_1 and H_2 are costs of hospitalisation and the cost of possible deaths. Government may also increase testing in C_2 which can result in leaky isolation. This needs a bit more work.

The constants could also be known functions of time.