Max-Flow Min-Cut

Outline for Today

Max-Flow Min-Cut

Background Ford-Fulkerson Algorithm

Max-Flow Min-Cut

Last time

Last time graphs were undirected and unweighted.

We talked about global min-cuts by Karger's Algorithm

• A cut is a partition of the vertices into two nonempty

Today

- Graphs are directed and edges have "capacities" (weights)
- We have a special "source" vertex s and "sink" vertex t.
 - s has only outgoing edges*
 - t has only incoming edges*

An s-t cut

is a cut which separates s from t

An s-t cut

is a cut which separates s from t

- An edge crosses the cut if it goes from s's side to t's side.
- The cost (or capacity) of a cut is the sum of the capacities of the edges that cross the cut.

A minimum s-t cut is a cut which separates s from t with minimum capacity.

Question: how do we find a minimum s-t cut?

Example where this comes up

- 1955 map of rail networks from the Soviet Union to Eastern Europe.
 - Declassified in 1999.
 - 44 edges, 105 vertices
- The US wanted to cut off routes from suppliers in Russia to Eastern Europe as efficiently as possible.
- In 1955, Ford and
 Fulkerson at the RAND
 corporation gave an
 algorithm which finds the
 optimal s-t cut.

Schriver 2002

Flows

- In addition to a capacity, each edge has a flow
 - (unmarked edges in the picture have flow 0)
- The flow on an edge must be less that its capacity.
- At each vertex, the incoming flows must equal the outgoing flows.

Flows

- The value of a flow is:
 - The amount of stuff coming out of s
 - The amount of stuff flowing into t
 - These are the same! —

Because of conservation of flows at vertices,

stuff you put in

stuff you take out.

11

A maximum flow is a flow of maximum value.

• This example flow is pretty wasteful, I'm not utilizing the capacities very well.

That's the same as the minimum cut in this graph!

A maximum flow is a flow of maximum value.

• This one is maximal; it has value 11.

Theorem

Max-flow min-cut theorem

The value of a max flow from s to t

is equal to

the cost of a min s-t cut.

Intuition: in a max flow, the min cut better fill up, and this is the bottleneck.

Proof outline

- Lemma 1: \max flow \leq \min cut.
 - Proof-by-picture
- Lemma 2: max flow ≥ min cut.
 - Proof-by-algorithm, using a "Residual graph" G_f
 - Sub-Lemma: t is not reachable from s in $G_f \Leftrightarrow f$ is a max flow.
 - ← first we do this direction:
 - Claim: If there is a path from s to t in G_f , then we can increase the flow in G.
 - Hence we couldn't have started with a max flow.
 - ⇒ for this direction, proof-by-picture again.

This claim actually gives us an algorithm: Find paths from s to t in G_f and keep increasing the flow until you can't anymore.

Proof of Min-Cut Max-Flow Theorem

Lemma 1:

 For ANY s-t flow and ANY s-t cut, the value of the flow is at most the cost of the cut.

Proof of Min-Cut Max-Flow Theorem

Lemma 1:

- For ANY s-t flow and ANY s-t cut, the value of the flow is at most the cost of the cut.
- Hence max flow ≤ min cut.

- That was proof-by-picture.
- See the notes for proof-by-proof.
 - You are **not** responsible for proof-by-proof on the final.

Proof of Min-Cut Max-Flow Theorem

Lemma 1:

- For ANY s-t flow and ANY s-t cut, the value of the flow is at most the cost of the cut.
- Hence max flow ≤ min cut.
- The theorem is stronger:
 - max flow = min cut
 - Need to show max flow ≥ min cut.
 - Next: Proof by algorithm!

5-min Break

Proof of Max-Flow Min-Cut Theorem I

Ford-Fulkerson algorithm

- Usually we state the algorithm first and then prove that it works.
- Today we're going to just start with the proof, and this will inspire the algorithm.

Outline of algorithm:

- Start with zero flow
- We will maintain a "residual graph" G_f
- A path from s to t in G_f will give us a way to improve our flow.
- We will continue until there are no s-t paths left.

Tool: Residual networks

Tool: Residual networks

Lemma:

• t is not reachable from s in $G_f \Leftrightarrow f$ is a max flow.

Example: t is reachable from s in this example, so not a max flow.

Lemma:

• t is not reachable from s in $G_f \Leftrightarrow f$ is a max flow.

To see that this flow is not maximal, notice that we can improve it by sending one more unit more stuff along this path:

Example: t is reachable from s in this example, so not a max flow.

Now update the residual graph...

Lemma:

• t is not reachable from s in $G_f \Leftrightarrow f$ is a max flow.

To see that this flow is not maximal, notice that we can improve it by sending one more unit more stuff along this path:

Example:

Now we get this residual graph:

Lemma:

• t is not reachable from s in $G_f \Leftrightarrow f$ is a max flow.

Example:

Now we get this residual graph:

Now we can't reach t from s.

So the lemma says that f is a max flow.

Let's prove the Lemma

• t is not reachable from s in $G_f \Leftrightarrow f$ is a max flow.

t is not reachable from s in $G_f \Leftrightarrow f$ is a max flow.

- Suppose there is a path from s to t in G_f .
 - This is called an augmenting path.
- Claim: if there is an augmenting path, we can increase the flow along that path.

 we will come back to this in a second.
- This results in a bigger flow
 - so we can't have started with a max flow.

if there is an augmenting path, we can increase the flow along that path.

• In the situation we just saw, this is pretty obvious.

• Every edge on the path in G_f was a **forward edge**, so increase the flow on all the edges.

**aka, an edge indicating how much stuff can still through through through the edges.

if there is an augmenting path, we can increase the flow along that path.

- But maybe there are backward edges in the path.
 - Here's a slightly different example of a flow:

I changed some of the weights and edge directions.

if there is an augmenting path, we can increase the flow along that path.

- But maybe there are backward edges in the path.
 - Here's a slightly different example of a flow:

Now we should NOT increase the flow at all the edges along the path!

 For example, that will mess up the conservation of stuff at this vertex. I changed some of the weights and edge directions.

if there is an augmenting path, we can increase the flow along that path.

In this case we do something a bit different:

if there is an augmenting path, we can increase the flow along that path.

In this case we do something a bit different:

Then we'll update the residual graph:

Still a legit flow, but with a bigger value!

if there is an augmenting path, we can increase the flow along that path.

- increaseFlow(path P in G_f , flow f):
 - x = min weight on any edge in P
 - **for** (u,v) in P:
 - if (u,v) in E, $f'(u,v) \leftarrow f(u,v) + x$.
 - if (v,u) in E, $f'(v,u) \leftarrow f(v,u) x$
 - return f'

Check that this always makes a bigger (and legit)

flow!

claim:

if there is an augmenting path, we can increase the flow along that path.

- increaseFlow(path P in G_f , flow f):
 - x = min weight on any edge in P
 - **for** (u,v) in P:
 - if (u,v) in E, $f'(u,v) \leftarrow f(u,v) + x$.
 - if (v,u) in E, $f'(v,u) \leftarrow f(v,u) x$

Check that this always makes a bigger (and legit)

This is f^{\prime}

That proves the claim

t *is* reachable from s in $G_f \Rightarrow f$ *is not* a max flow. t *is not* reachable from s in $G_f \Leftarrow f$ *is* a max flow. Converse-negative propositions are equivalent

If there is an augmenting path, we can increase the flow along that path

Question: When do we stop the process?

i.e., if there is no longer an augmenting path to increase the flow, does it mean that we have reached the maximum flow?

5-min Break

Proof of Max-Flow Min-Cut Theorem II

Lemma:

 \Rightarrow now this direction \Rightarrow

t is not reachable from s in $G_f \Leftrightarrow f$ is a max flow.

- Suppose there is not a path from s to t in G_f .
- Consider the cut given by:

{things reachable from s}, {things not reachable from s}

Lemma:

 \Rightarrow now this direction \Rightarrow

t is not reachable from s in $G_f \Leftrightarrow f$ is a max flow.

- Suppose there is not a path from s to t in G_f .
- Consider the cut given by:

t lives here

{things reachable from s}, {things not reachable from s}

- The flow from s to t is **equal** to the cost of this cut.
 - Similar to proof-by-picture we saw before:
 - All of the stuff has to cross the cut.
- thus: this flow value = cost of this cut \geq cost of min cut \geq max flow

Lemma:

\Rightarrow now this direction \Rightarrow

t is not reachable from s in $G_f \Leftrightarrow f$ is a max flow.

- Suppose there is not a path from s to t in G_f .
- Consider the cut given by:

t lives here

{things reachable from s}, {things not reachable from s}

- The flow from s to t is **equal** to the cost of this cut.
 - Similar to proof-by-picture we saw before:
 - All of the stuff has to cross the cut.
- thus: this flow value = cost of this cut \geq cost of min cut \geq max flow

We've proved:

• t is not reachable from s in $G_f \Leftrightarrow f$ is a max flow

- This inspires an algorithm:
- Ford-Fulkerson(G):
 - $f \leftarrow$ all zero flow.
 - $G_f \leftarrow G$
 - while t is reachable from s in G_f
 - Find a path P from s to t in G_f
 - $f \leftarrow increaseFlow(P, f)$
 - update G_f
 - return f

// eg, use BFS

What have we learned?

- Max s-t flow is equal to min s-t cut!
- The Ford-Fulkerson algorithm can find the maxflow/min-cut.
 - Repeatedly improve your flow along an augmenting path.
- How long does this take???

Theorem

- If you use BFS, the Ford-Fulkerson algorithm runs in time **O(nm²).**Doesn't have anything to do with the edge weights!
- We will skip the proof in class.
 - You can check it out in the notes if you are interested.
 - It will **not** be on the exam.

• Basic idea:

- The number of times you remove an edge from the residual graph is O(n).
 - This is the hard part
- There are at most m edges.
- Each time we remove an edge we run BFS, which takes time O(n+m).
 - Actually, O(m), since we don't need to explore the whole graph, just the stuff reachable from s.

Recap

- Today we talked about s-t cuts and s-t flows.
- The Min-Cut Max-Flow Theorem says that minimizing the cost of cuts is the same as maximizing the value of flows.
- The Ford-Fulkerson algorithm does this!
 - Find an augmenting path
 - Increase the flow along that path
 - Repeat until you can't find any more paths and then you're done!

Recap

- Today we talked about s-t cuts and s-t flows.
- The Min-Cut Max-Flow Theorem says that minimizing the cost of cuts is the same as maximizing the value of flows.
- The Ford-Fulkerson algorithm does this!
 - Find an augmenting path
 - Increase the flow along that path
 - Repeat until you can't find any more paths and then you're done!

Acknowledgement: Part of the materials are adapted from Virginia Williams and David Eng's lectures on algorithms. We appreciate their contributions.