SORBONNE UNIVERSITY

Fondement de l'algorithmique algébrique

MU4IN902

Instructors: Prof. Vincent Neiger

Hayato Ishida

Ver.1.0

Contents

1	Intr	roduction	4		
	1.1	Ring and Field	4		
	1.2	Complexity	4		
	1.3	Matrices	5		
	1.4	Polynomials	5		
2	Euclid's division and GCD				
	2.1	Algebraic structure	7		
	2.2	Division algorithm for polynomials in $\mathbb{K}[x]$	10		
	2.3	Euclidean algorithm	11		
3	Finite field 14				
	3.1	Integer $\mathbb Z$	14		
	3.2	Polynomial $\mathbb{K}[x]$	14		
	3.3	Building a finite field	15		
4	Formal Power Series 10				
	4.1	Introduction	16		
	4.2	Inversion	18		
	4.3	Polynomial division with a reminder: fast algo	22		
5	Fast	t Polynomial Evaluation and Interpolation	28		
	5.1	Introduction	28		
		5.1.1 Multipoint evaluation	28		
		5.1.2 Interpolation	29		
	5.2	Fast multipoint evaluation	29		

	5.3	Fast Interpolation	31
6	Gue	essing Linear Recurrence Relations	32
	6.1	The Berlekamp-Massey algorithm	32
	6.2	Sparse Matrix	32
		6.2.1 Multiplication	33
		6.2.2 Other computation	33
		6.2.3 The Wiedemann algorithm	34
7	Uni	variate and Bivariate Results	35
8	Stru	ictured linear algebra	36
9	Erro	or Correcting Codes; decoding algorithm	37

1 Introduction

1.1 Ring and Field

Rough definition: Field is a set F with two operations $(+, \times)$ with "usual" properties (e.g. a(b+c) = ab + ac, a(bc) = (ab)c etc...). And every element has an inverse. If one of the elements does not have an inverse, it is a ring.

- So, elements in the field can be inverted except 0.
- Every element $a \in F$ has an opposite for +, these act on b s.t. a + b = 0. This is true for all rings and fields.
- Therefore, invertibility is about "×"

Remark 1.1

Ring ← Field

Examples

- \mathbb{R} the set of real numbers (field). \mathbb{Q} rational (field). \mathbb{C} complex (field).
- \mathbb{Z} integers is not a field, thus a ring. Why?

This is because 2 is not invertible. For instance, there is no $x \in \mathbb{Z}$ s.t. 2x = 1.

- $\mathbb{Z}/p\mathbb{Z}$ is a field. In general, $a \in \{1, ..., p-1\}$, there are u, v s.t. au + pv = 1, so $au = 1 \mod p$.
- $\mathbb{Z}/4\mathbb{Z}$ is not a field, why? \rightarrow because 2 is not invertible.

1.2 Complexity

In this course, we manipulate algebraic objects. For instance, polynomials (ring), matrices (field), and more. Complexity measures the efficiency of algorithms. Algebraic complexity is counting

the number of operations in the base ring and field.

The complexity here does not take into account of ...

- all memory-related operations
- the size of the elements in the base ring or field. (e.g. : addition of polynomials of degree $\leq d$ in $\mathbb{Q}[x]$, algebraic complexity is O(d) and ignore the size of the rational coefficients.
- *You should be familiar with the complexity from MODEL.

1.3 Matrices

For a field \mathbb{K} or denote by $\mathbb{K}^{m \times n}$ the set of $m \times n$ matrices over \mathbb{K} .

Recall: Not a ring because??

It is represented as a two-dimensional array with rows and columns. $A = (a_{ij}) \in \mathbb{K}^{m \times n}$ where $0 \le i \le m$ and $0 \le j \le n$.

Addition

Complexity is O(m n), operations in \mathbb{K} .

Multiplication

Multiplication of $A \in \mathbb{K}^{m \times n}$ by $B \in \mathbb{K}^{n \times p}$

- Naive algorithm : O(m n p)
- Strassen's algorithm (recall form MODEL) has complexity $O(n^{\log_2(7)})$ where m = n = p
- As an alternative, there is a lot of work on matrix multiplication algorithms. The best performance today is $O(n^{2.37})$ but for the moment it is impractical.

1.4 Polynomials

For a field \mathbb{K} or a ring \mathbb{R} , the sets $\mathbb{K}[x]$, $\mathbb{R}[x]$ are those of polynomials in one variable x.

$$\mathbb{K}[x] = \{P = P_0 + P_1 x + P_2 x^2 + \dots + P_d x^d\}$$
 in \mathbb{K} . (same for \mathbb{R})

They are represented as a one-dimensional array $[P_0, P_1, P_2,, P_d]$.

Addition

of two polynomials in $\mathbb{R}[x]$ of degree $\leq d$ has a complexity O(d) operations in \mathbb{R} .

Multiplication:

- Naive algorithm : $O(d^2)$ operations in $\mathbb R$ Karatsuba (recall from MODEL) : $O(d^{\log_2(3)}) \approx O(d^{1.584})$ operations in $\mathbb R$
- For alternative FFT (again, recall from MODEL) : $O(d \log(d) \log \log(d))$

2 Euclid's division and GCD

- A|B means A divides B. Meaning there is no reminder (and A and B are polynomials here)

2.1 Algebraic structure

Definition 2.1

 \mathbb{K} field

$$f \in \mathbb{K}[x] \Rightarrow f = a_0 + a_1 x + \dots + a_n x^n \text{ with } a_i \in \mathbb{K}$$

n = deg(F)

- Roots : $\alpha \in \mathbb{K}s.tf(\alpha) = 0$

Lemma 2.0

 α is a root of $f\iff (x-\alpha)|f$, in other word $f\in\mathbb{K}[x]$ and $\alpha\in\mathbb{K}s.t\ f(\alpha)=0$, the (X-a)|f

Lemma 2.0

f has degree n, then f has at most n roots.

Definition 2.1: Algebraic closure

- $\overline{\mathbb{K}}$ is the algebraic closure of K if :
- $\mathbb{K} \subset \overline{\mathbb{K}}$
- $-\forall f \in \bar{\mathbb{k}} [x], f \text{ has exactly } degf \text{ roots in } \bar{\mathbb{k}}.$

Example:

 $\mathbb C$ is algebraic closed.

 $\mathbb{R} \subset \mathbb{C}$ and $\mathbb{Q} \subset \mathbb{C}$ are algebraic closure.

But, \mathbb{R} is not $\to x^2 + 1$ has 0 roots in \mathbb{R} .

Definition 2.2: Recalling a definition of ring

Let R a set equipped with two binary operation s.t $(R, +, \times)$. It is said to be a ring if the followings hold \rightarrow

- R, +) commutative group with neutral 0_R (what is 0_R means ???) - × has a neutral element 1_R and is associative

$$a \times b \times c = (a \times b) \times c = a \times (b \times c)$$

 $- \times$ is distributive with respect to +.

$$a(b+c) = ab + ac$$

Example:

 \mathbb{Z} , $\mathbb{K}[x]$, \mathbb{R} , \mathbb{C} , but \mathbb{N} is not a ring because $-1 \in \mathbb{N}$.

Proposition 2.1

$$f = a_0 + \dots + a_n x^n$$
 with $a_i \in \mathbb{R}, \mathbb{R}[x]$

if R is a ring so is R[x]

Definition 2.3: Monic Polynomial

Monic polynomial is a polynomial with a leading coefficient equal to 1.

Example

- Monic polynomial : x + 1, $x^2 7x + 99$, $x^{1000} + x^{99} 10000$
- Polynomial that are not monic : $5x^{99} + 4$, $8x^3 + x^2 7x + 0$

Definition 2.4: Quotient ring

Let *R* be a ring and $f \in R[x]$ be monic. Also, $s, t \in R[x]$.

- We say that s and t are equivalent modulo $f \iff s \equiv t \mod f$, if f divides s t.
- The set of classes of equivalences is denoted by $R[x]/\langle f \rangle$ and is called quotient ring.

Example:

$$x^2 + x + 1 \equiv 1 \mod x + 1$$
, since $x^2 + x + 1 = x(x + 1) + 1$

2.2 Division algorithm for polynomials in $\mathbb{K}[x]$

Definition 2.5: Euclidean domain

 \mathbb{R} is a Euclidean domain if there exists a Euclidean division (and R is an integral domain).

```
Algorithm 1: Polynomial Division Algorithm

Input: Two polynomials A = a_m X^m + \cdots + a_0 and B = b_n X^n + \cdots + b_0 in \mathbb{K}[X].

Output: Two polynomials Q = q_{m-n} X^{m-n} + \cdots + q_0 and R = r_p X^p + \cdots + r_0 in \mathbb{K}[X] such that A = BQ + R and P = \deg R < \deg B = n.

R := A, Q = 0, b = \operatorname{lc}(B)

While \deg R \ge \deg B do

a := \operatorname{lc}(R)

Q := Q + \frac{a}{b} X^{\deg R - \deg B}

R := R - \frac{a}{b} X^{\deg R - \deg B} B

Return (Q, R)
```

Proposition 2.2

On input *A* and *B* in $\mathbb{K}[x]$ with degree *m* and *n*, with m > n. Polynomial division algorithm perform O(n(m-n)) arithmetic operation in \mathbb{K} .

```
Algorithm 1: Polynomial Division Algorithm

Input: Two polynomials A = a_m X^m + \cdots + a_0 and B = b_n X^n + \cdots + b_0 in \mathbb{K}[X].

Output: Two polynomials Q = q_{m-n} X^{m-n} + \cdots + q_0 and R = r_p X^p + \cdots + r_0 in \mathbb{K}[X] such that A = BQ + R and p = \deg R < \deg B = n.

R := A, Q = 0, b = \lg(B)

While \deg R \ge \deg B do

a := \lg(R)

Q := Q + \frac{a}{b} X^{\deg R - \deg B}

R := R - \frac{a}{b} X^{\deg R - \deg B} B

Return (Q, R)
```

Remark 2.1

- (1) If \mathbb{K} is just a ring, the algorithm works if and only if B is monic.
- (2) $A \equiv R \mod B \rightarrow \text{Euclidean division allows to perform operations in } \mathbb{K}[x]/(B)$.

$$A_1 + A_2 \equiv R_1 + R_2 \mod B$$

$$A_1 \times A_2 \equiv R_1 \times R_2 \mod B$$

2.3 Euclidean algorithm

Definition 2.6

R Euclidean domain and $a, b \in \mathbb{R}$, g is a gcd of a and b : g = gcd(a, b)

if : $g \in R$

g|a

g|b

any common divisor of aandb divides g.

Proposition 2.3

In R Euclidean, such a gcd always exist.

Remark : g may not be unique.

Proposition: If a = bq + r with h(r) < h(b) then, gcd(a, b) = gcd(b, r).

Complexity : $O(deg(a) \times deg(b))$

Proposition 2.4

If g = gcd(a, b) then, $\exists (u, v) \in R^2$ s.t au + bv = g and h(ug) < h(b), h(vg) < h(a) - u and v are cofactors.

Proposition 2.5

 $a, b \in R$

EEA

```
Algorithm 3: ExtendedEuclideanAlgorithm

Input: Two elements a and b in a Euclidean domain \mathcal{R} with a height function h.

Output: A gcd of a and b in \mathcal{R} together with the corresponding cofactors.

r_0 := a, u_0 := 1, v_0 := 0.

r_1 := b, u_1 := 0, v_1 := 1, i := 1

While r_i \neq 0 do

(q_i, r_{i+1}) := \text{PolynomialDivisionAlgorithm}(r_{i-1}, r_i)

u_{i+1} = u_{i-1} - q_i u_i, v_{i+1} = v_{i-1} - q_i v_i

i := i + 1

Return r_{i-1}, u_{i-1}, v_{i-1}
```

Complexity : $O(deg(a) \times deg(b))$

Application of Extended Euclidean Algorithm: Modulo inversion

If *a* and *b* are coprimers, then $\exists (u, v)/au + bv = 1$.

So, $au \equiv 1 \mod b \ bv \equiv 1 \mod a$

- u is a inverse of $a \mod b$
- v is a inverse of $b \mod a$

If $a \in \mathbb{Z}$ and au + bv = 1, then $a^{-1} \equiv u \mod n$

$$\bar{a} = a + kn, K \in \mathbb{Z} \in \mathbb{Z}/n\mathbb{Z}, \, \bar{a}^{-1} = \bar{u} = u + kn, k \in \mathbb{Z}$$

- If *n* is prime number then for all $a \in \mathbb{Z}$, gcd(a, n) = 1. So for all $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$, \bar{a}^{-1} exists.

Proposition 2.6

 $\mathbb{Z}/n\mathbb{Z}$ is a field if and only if *n* is prime.

Definition 2.7

 $P \in \mathbb{K}[x]$ is irreducible if for any $\mathbb{Q}, \mathbb{R} \in \mathbb{K}[x]$ s.t P = QR, then either $\mathbb{Q} \in \mathbb{K}$ or $\mathbb{R} \in \mathbb{K}$.

Proposition 2.7

If *P* is irreducible then $\forall \mathbb{Q} \in \mathbb{K}[x]$, gcd(P, Q) = 1

Theorem 2.3

 $\mathbb{K}[x]/(P)$ is a field if and only if P is irreducible

Remark 2.1

we can computer the inverse with Extended Euclidean Algorithm.

3 Finite field

Definition 3.1

A finite field is a field with a finite number of elements.

3.1 Integer \mathbb{Z}

- for $n \in \mathbb{Z}/0 \approx 0, ..., n − 1$ with add/ multiplication modulo n
- $a \in \mathbb{Z}/n\mathbb{Z}$ is invertible if and only if gcd(a, n) = 1
- *n* is prime \iff $\mathbb{Z}/n\mathbb{Z}$ is a field
- computing a^{-1} : run EEA to obtain 1 = au + nv

Theorem 3.1: Bezout's relation

Let $R = \mathbb{Z}orR = \mathbb{K}[x]$. If a and b in R, there exist u and v in R s.t au + bv = gcd(a, b)

Theorem 3.2

Let $R = \mathbb{Z}orR = \mathbb{K}[x]$. If a and b are coprime, then a invertible modulo b and b invertible modulo a. Thus, $\mathbb{Z}/n\mathbb{Z}$ is a field, if and only if n is a prime.

3.2 Polynomial $\mathbb{K}[x]$

(where \mathbb{K} is a field) - for $f \in \mathbb{K}[x] \setminus \{0\}$, $\mathbb{K}[x]/\langle f \rangle \approx \{P(X) \in \mathbb{K}[x]/deg(p) < deg(f)\}$ with add/multiplication mod f.

 $-P \in \mathbb{K}[x]/\langle f \rangle$: *P* is invertible if and only if gcd(p, f) = 1

- -*f* is invertible \iff $\mathbb{K}[x]/\langle f \rangle$ field.
- computing P^{-1} : run EEA to obtain 1 = pu + fv
- $\mathbb{K}[x]/\langle f \rangle$ is a field, for irreducible polynomial f.

Proof:

Suppose f irreducible, let $P \in \mathbb{K}[x]/\langle f \rangle \setminus \{0\}$. To show that P is invertible which means gcd(P,f)=1. The gcd of P and f divides both P and f. But f has only $\mathbb{K}\{0\}$ and f and f are divides. Since deg(P) < deg(f), f cannot be divisible by f, so gcd(P,f)=1.

3.3 Building a finite field

- If $K = \mathbb{Z}/p\mathbb{Z}$ and deg(f) = d then $\mathbb{Z}/p\mathbb{Z}[x]/\langle f \rangle$ is a finite field of cardinality p^d . This is because $\mathbb{Z}/p\mathbb{Z}[x]/\langle f \rangle = \{a_0 + a_1x + ... + a_{d-1}x^{d-1}, (a_0, a_1, ..., a_{d-1}) \in (\mathbb{Z}/p\mathbb{Z})^d\}$ and cardinality of $(\mathbb{Z}/p\mathbb{Z})^d$ is p^d

Theorem 3.3

A finite field must have p elements for same prime p and $d \in \{1, 2,\}$. If d = 1 then finite field is $\mathbb{Z}/p\mathbb{Z}$. If d > 1, then $\mathbb{Z}/p\mathbb{Z}$ is not a field.

- \mathbb{F}_q for $q=p^d$ is the notation for a finite field of cardinality q

III.6.

4 Formal Power Series

4.1 Introduction

Definition 4.1

From a sequence $(s_i) \in \mathbb{K}^{\mathbb{N}}$. We define the power series:

$$\sum_{i\in\mathbb{N}} s_i x^i$$

Proposition 4.1

- The set of power series is a ring which we write $\mathbb{K}[|x|]$
- Power series is an infinite sequence.

Examples:

1 + x is a power series with coefficients (1, 1, 0, 0, ..., 0, ..).

Remark 4.1

Polynomials are power series. \iff (s_i) finitely many nonzero s_i

Operations $(+, \times)$ for power series

$$(1-x)\sum_{i\in\mathbb{N}}x^i = 1 \implies 1 \cdot \sum_{i\in\mathbb{N}}x^i - x \cdot \sum_{i\in\mathbb{N}}x^i$$
$$= (1, 1, 1,, 1, ...) - (0, 1, 1, 1,, 1, ...) = (1, 0, 0, 0,, 0,)$$

- Addition: it is coefficient by coefficient.

$$\sum_{i \in \mathbb{N}} s_i x^i + \sum_{i \in \mathbb{N}} t_i x^i = \sum_{i \in \mathbb{N}} (s_i + t_i) x^i$$

- Multiplication :

$$\left(\sum_{i\in\mathbb{N}} s_i x^i\right) \left(\sum_{i\in\mathbb{N}} t_i x^i\right) = \sum_{i\in\mathbb{N}} \left(\sum_{k=0}^i s_k t_{i-k}\right) x^i$$

- 0 in $\mathbb{K}[|x|]$ is $(0 + 0x + 0x^2 + 0x^3 +)$
- 1 in $\mathbb{K}[|x|]$ is $(1 + 0x + 0x^2 + 0x^3 +)$

Remark 4.2

in $(\sum_{i\in\mathbb{N}} s_i x^i)$, x is not invertible. This can be proven by contradiction.

Examples 1:

Fibonacci sequence →

 $f_0 = 0, f_1 = 1, \quad \forall i, f_i = f_{i-1} + f_{i-2}$, then we can form:

$$S = \sum_{i \in \mathbb{N}} f_i x^i \in \mathbb{K}[|x|]$$

In this context with recurrent sequence, S is called the generating series of $(f_i)_{i \in \mathbb{N}}$.

Examples 2:

Compute

$$(1 - x - x^{2})S = \sum_{i \in \mathbb{N}} f_{i}x^{i} - \sum_{i \in \mathbb{N}} f_{i}x^{i+1} - \sum_{i \in \mathbb{N}} f_{i}x^{i+2}$$

$$= f_{0} + f_{1}x + \sum_{i \in \mathbb{N}} f_{i+2}x^{i+2} - (f_{0}x + \sum_{i+1} x^{i+2}) - \sum_{i \in \mathbb{N}} f_{i}x^{i+2}$$

$$= f_{0} + f_{1}x - f_{0}x + \sum_{i \in \mathbb{N}} (f_{i+2} - f_{i+1} - f_{i})x^{i+2} = x$$

Sometimes, you can write a series in fractions,

$$S = \frac{x}{1 - x - x^2}$$

*it doesn't make sense to evaluate power series with specific value some terminologies,

non-zero series : [1, -1, -1, 0, 0,, 0, ..]

zero series: [0, 0, 0, 0,, 0..]

infinite sequence: $\frac{1}{3} = 0.333333...$

 $\mathbb{K}[x], \quad \{k(x) = \frac{p}{\phi}, \quad \phi \neq 0, \quad p, \phi \in \mathbb{K}[x]\}$

We work with power series:

- As fraction $\frac{p}{\phi}$ of two polynomials
- As a truncated power series at precision n:

$$S = s_0 + s_1 x + s_2 x^2 + \dots + O(x^n)$$

where $O(x^n) : x^n T$ for some $T \in \mathbb{K}[|x|]$

4.2 Inversion

A power series *S* is invertible if there exists $T \in \mathbb{K}[|x|]$ such that ST = 1

Examples:

- -S = 0 is not invertible
- $-S = c \in \mathbb{K} \setminus \{0\} : S^{-1} = c^{-1}$
- $S = 1 x x^2$: invertible....why?
- -S = x: not invertible....why?
- -S = 1 x : $(1 x)^{-1} = \sum_{i \in \mathbb{N}} x^i$

Lemma 4.0

 $S = \sum_{i \in \mathbb{N}} s_i x^i$ is invertible if and only if $S_0 \neq 0$

proof: Assume $S_0 \neq 0$. Construct $U = \sum_{i \in \mathbb{N}} u_i x^i$ s.t. US = 1

Coefficient of degree $0: 1 = u_0 S_0 \rightarrow u_0 = S_0^{-1}$

Coefficient of degree 1 : 0 = $u_0S_1 + u_1S_0 \rightarrow u_1 = \frac{-u_0S_1}{S_0}$

Coefficient of degree $2:0=u_0S_2+u_1S_1+u_2S_0$

Coefficient of degree $3: 0 = u_0S_3 + u_1S_2 + u_2S_1 + u_3S_0$

.... continued

proceeding this way we get $u_2, u_3, ...$ defined uniquely.

From S at precision n, this gives $U = S^{-1}$ at precision n

Therefore, we can invert $S \in \mathbb{K}[|x|]$ known at precision n (with inverse at precision n) using $O(n^2)$ operations in \mathbb{K} .

Lemma 4.0

Let $S \in \mathbb{K}[[x]]$ be an invertible power series, and let $T = S^{-1} + O(x^n)$. Then the power series U = T + (1 - TS)T satisfies $U = S^{-1} + O(x^{2n})$

Remark 4.1

For a differentiable function F, Newton's iteration for an approximated root x_k of F(x) = 0 is (ANUM!):

$$x_{k+1} = x_k - \frac{F(x_k)}{F'(x_k)}$$

In particular, for the case of power series inversion, power series S is the root of the function $F(x) = \frac{1}{x} - S$ so:

$$x_{k+1} = x_k - \frac{F(x_k)}{F'(x_k)} = x_k + (1 - x_k S)x_k$$

Also, notice that $U = S^{-1} + O(x^{2n})$ is the Newton's iteration applied to T

Algorithm 5: Power Series Inversion via Newton iteration

Input: An integer n > 0, and a truncated series $S = s_0 + \cdots + s_{n-1}x^{n-1} + O(x^n) \in \mathbb{K}[[x]]$ at precision n.

Output: The truncated power series U at precision n which satisfies $U = S^{-1} + O(x^n)$.

If n = 1 then Return s_0^{-1}

Compute recursively the inverse *T* of $S + O(x^{\lceil n/2 \rceil})$.

Return $U := T + (1 - TS)T + O(x^n)$.

Complexity analysis:

f(n) = complexity of input precision n

$$f(n) = 1$$
 if $n = 1$ and

$$f(n) = f(\lceil \frac{n}{2} \rceil) + 2M(n) + 2n$$

Roughly....
$$f(n) = 2(M(n) + n) + 2(M(\frac{n}{2} + \frac{n}{2})) + 2(M(\frac{n}{4}) + \frac{n}{4}) + \dots = O(M(n))$$

Example 1 (Example IV 6)

With Newton's iteration, pay attention to $O(x^{\lceil n/2 \rceil})$, ignore all terms degree higher than $\lceil n/2 \rceil$. Also, $\mathbb{F}_n[\lceil x \rceil]$, which indicate that all computations are in $\mod n$,

 $S = 3 + 2x^2 + x^3 + x^7 \in \mathbb{F}_5[[x]]$

$$n = 8 (O(x^{\lceil n/2 \rceil})$$

$$S = 3 + 2x^2 + x^3 + O(x^4)$$

n = 4

$$S = 3 + O(x^2)$$

n = 1

$$T = 3^{-1} + O(x) = 2 + O(x)(2 \text{ because } 3^{-1} \mod 5)$$

now algorithm returns.... (don't forget about mod 5)

$$U = T + (1 - TS)T + O(x^{2}) = 2 + (1 - 2 \times 3)2 + O(x^{2})$$
$$= 2 + (-5)2 + O(x^{2}) = 2 + O(x^{2})$$

here, at $O(x^2)$, n = 4, $S = 3 + O(x^2)$. On the next step $O(x^4)$, use S at $O(x^4)$ and previous computation of U.

$$V = U + (1 - US)U + O(x^4) = 2 + (1 - 2(3 + 2x^2 + x^3))2 + O(x^4)$$
$$= 2 + (-5 - 4x^2 = 2x^3)2 + O(x^4) = 2 + (x^2 + 3x^3)2 + O(x^4)$$
$$2 + 2x^2 + 6x^3 + O(x^4) = 2 + 2x^2 + x^3 + O(x^4)$$

The last step, using the previous computation of V

$$W = V + (1 - VS)V + O(x^8)$$

$$= 2 + 2x^{2} + x^{3} + (1 - (2 + 2x^{2} + x^{3})(3 + 2x^{2} + x^{3} + x^{7}))(2 + 2x^{2} + x^{3}) + O(x^{8})$$

*it is in precision of $O(x^8)$, thus you don't have to consider terms about x^8

$$= 2 + 2x^{2} + x^{3} + (1 - 6 - 10x - 5x^{3} - 4x^{4} - 4x^{5} - x^{6} - 2x^{7})(2 + 2x^{2} + x^{3}) + O(x^{8})$$

now you have to remind yourself and consider that it is in mod 5

$$= 2 + 2x^{2} + x^{3} + (x^{4} + x^{5} + 4x^{6} + 3x^{7})(2 + 2x^{2} + x^{3}) + O(x^{8})$$

$$= 2 + 2x^{2} + x^{3} + (2x^{4} + 2x^{5} + 8x^{6} + 6x^{7} + 2x^{6} + 2x^{7} + x^{7}) + O(x^{8})$$
$$= 2 + 2x^{2} + x^{3} + 2x^{4} + 2x^{5} + 4x^{7} + O(x^{8})$$

4.3 Polynomial division with a reminder: fast algo.

The best algorithm known is based on Newton's inversion of power series.

Theorem 4.3

Given (A, B) polynomials of degree $m \ge n \ge 0$, we can compute a Euclidean division A = BQ + R, deg(R) < n in O(M(m - n)) + M(n) operations in \mathbb{K} .

*division cost roughly the same as a multiplication for polynomials.

Idea of fast polynomial division:

- With two polynomials A with degree m and A with degree n, we want to find polynomials Q and R s.t. A = BQ + R, with deg(R) < deg(B) = n.
- $\underline{m} \ge \underline{n}$, otherwise the solution is (Q, R) = (0, A) in other word A = 0 + A
- The idea of this algorithm is to exploit the gap between deg(R) and deg(A) = deg(BQ) = m, thus gap = $m deg(R) \ge m n + 1$.

We reverse the equality to put the gap in the low-degree coefficients:

$$x^{m}A(x^{-1}) = x^{m}B(x^{-1})Q(x^{-1}) + x^{m}R(x^{-1})$$

Also, we can rewrite the solution of division as

$$\frac{A}{B} = Q + \frac{R}{B}$$

Because deg(R) < deg(B), with $x \to \infty$, $\frac{R(x)}{B(x)} = 0$

Therefore Q corresponds to the asymptotic expansion of $\frac{A}{B}$ at infinity (∞). Hence, one can obtain Q by computing the Taylor expansion at infinity of the fraction $\frac{A}{B}$.

• To adapt above approach of an expansion at ∞ , we can cange variable $y \leftarrow x^{-1}$, thus:

$$\frac{A(x^{-1})}{B(x^{-1})} = Q(x^{-1}) + \frac{R(x^{-1})}{B(x^{-1})}$$

Then, multiply each side by x^{m-n} ($\frac{x^m}{x^n}$) to ensure that we only manipulate polynomials in numerators and denominators:

$$\frac{x^m A(x^{-1})}{x^n B(x^{-1})} = x^{m-n} Q(x^{-1}) + \frac{x^m R(x^{-1})}{x^n B(x^{-1})}$$

Here, deg(Q) = m - n and $x^n B(x^{-1})$ is invertible as a power series. (By assumption, B is nonzero.)

• Since deg(R) < n and $m \ge n$, the polynomial $x^m R(x^{-1}) = x^{m-n+1} x^{n-1} R(x^{-1})$ has valuation at least m-n+1 which is grater than the degree of polynomial $x^{m-n} Q(x^{-1})$. Thus expansion of $\frac{x^m A(x^{-1})}{x^n B(x^{-1})}$ at precision m-n+1 will give us all coefficients of the polynomial $x^{m-n} Q(x^{-1})$, from which we can deduce to Q. Then R = A - BQ

FastPolynomialDivisionAlgorithm(A, B)

Input: Polynomials *A* and *B* in $\mathbb{K}[x]$ with *B* nonzero.

Output: Polynomials (Q, R) in $\mathbb{K}[x]$ such that A = BQ + R and $\deg(R) < \deg(B)$.

- 1. Let $m = \deg(A)$ and $n = \deg(B)$
- 2. If m < n, return (0, A)
- 3. Compute the reversals $\tilde{A} = x^m A(1/x)$ and $\tilde{B} = x^n B(1/x)$ (this step does not require any arithmetic operation in \mathbb{K})
- 4. Compute $\tilde{Q} = \tilde{A}/\tilde{B} \mod x^{m-n+1}$ by inverting a formal power series and performing a power series multiplication, both at precision m-n+1
- 5. Deduce Q by reverting the coefficients of \tilde{Q}
- 6. Deduce R by computing A BQ
- 7. Return (Q, R)

$$A(x) = a_0 + a_1 x + 1_2 x^2 + \ldots + a_m x^m$$

$$A(1/x) = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \ldots + \frac{a_m}{x^m} \to \tilde{A} = a_m + a_{m-1}x + \ldots + a_0x^m$$

* multiplication of power series is same as polynomial multiplication

Example (Problem IV 9)

Compute a division of A/B where

$$A = 2 + x^3 + x^9$$
 $B = 2 + 2x + x^3$ in $\mathbb{F}_3[|x|]$

Compute reversals \tilde{A} and \tilde{B} . It is easier if you write coefficient on a array such that,

$$A = [2, 0, 0, 1, 0, 0, 0, 0, 0, 1]$$
 $B = [2, 2, 0, 1]$

and then inverse the order.

$$\tilde{A} = 1 + x^6 + 2x^9$$
 $\tilde{B} = 1 + 2x^2 + 2x^3$

m = 9, n = 3, thus precision is m - n - 1 = 7 $O(x^7)$

Compute $\tilde{Q} = \tilde{A}/\tilde{B} = \tilde{A}\tilde{B}^{-1}$. First, compute inverse of $\tilde{B} \to \tilde{B}^{-1}$

$$S = 1 + 2x^2 + 2x^3 + O(x^7)$$

n = 7 meaning $O(x^{\lceil 7/2 \rceil})$

$$S = 1 + 2x^2 + 2x^3 + O(x^4)$$

n=4

$$S = 1 + O(x^2)$$

n = 2

$$S = 1 + O(x)$$

n = 1

$$S = 1^{-1} + O(x) = 1 + O(x)$$

Return \tilde{B}^{-1}

$$U = T + (1 - ST)T + O(x^{2}) = 1(1 - 1 \times 1)1 + O(x^{2}) = 1 + O(x^{2})$$

$$V = U + (1 - US)U + O(x^4) = 1 + (1 - 1(1 + 2x + 2x^3)1 + O(x^4)) = 1 + (1 - 1 - 2x^2 - 3x^3)1 + O(x^4)$$

Reminder, computations are in mod 3!!

$$T = V + (1 - VS)V + O(x^7) = 1 + x^2 + x^3 + (1 - (1 + x^2 + x^3)(1 + 2x^2 + 2x^3))(1 + x^2 + x^3) + O(x^7)$$

$$= 1 + x^{2} + x^{3} + (1 - (1 + 2x^{2} + 2x^{3} + x^{2} + 2x^{4} + 2x^{5} + x^{3} + 2x^{5} + 2x^{6}))(1 + 2x^{2} + 2x^{3}) + O(x^{7})$$

$$= 1 + x^{2} + x^{3} + (1 - 1 - 3x^{2} - 3x^{3} - 2x^{4} - 4x^{5} - 2x^{6})(1 + x^{2} + x^{3}) + O(x^{7})$$

$$= 1 + x^{2} + x^{3} + (x^{4} + 2x^{5} + x^{6})(1 + 2x^{2} + x^{3}) + O(x^{7})$$

$$= 1 + x^{2} + x^{3} + x^{4} + x^{6} + 2x^{5} + x^{6} + O(x^{7})$$

$$= 1 + x^{2} + x^{3} + x^{4} + 2x^{5} + 2x^{6} + O(x^{7})$$

Thus,

$$\tilde{B}^{-1} = 1 + x^2 + x^3 + x^4 + 2x^5 + 2x^6$$

now, compute $\tilde{A}\tilde{B}^{-1}$

$$\tilde{A}\tilde{B}^{-1} = (1 + x^6 + 2x^9)(1 + x^2 + x^3 + x^4 + 2x^5 + 2x^6)$$
$$= 1 + x^2 + x^3 + x^4 + 3x^6 = 1 + x^2 + x^3 + x^4 + 2x^5$$

Write down coefficient in array, [1, 0, 1, 1, 1, 2] then deduce Q by reverting $\tilde{Q}=\tilde{A}\tilde{B}^{-1}$

$$Q = 2x + x^2 + x^3 + x^4 + x^6$$

Next, compute R = A - BQ

$$BQ = (x^3 + 2x + 2)(2x + x^2 + x^3 + x^4 + x^6) = 2x^4 + x^5 + x^6 + x^2 + 2x^3 + 2x^4 + 2x^5 + x + 2x^2 + 2x^3 + 2x^4 + 2x^6 + 2x^7 + x^7 + x^9 + 2x^8 +$$

$$= x + x^3 + x^9$$

$$R = (x^9 + x^3 + 2) - (x^9 + x^3 + x) = 2 - x = 2x + 2$$

Final step is necessary because $\mathbb{F}_3[|x|]$. The solution is :

$$(Q,R) = (2x + x^2 + x^3 + x^4 + x^6, 2x + 2)$$

5 Fast Polynomial Evaluation and Interpolation

5.1 Introduction

There are two main questions we want to solve in this chapter.

Question 1: (Multipoint evaluation)

- Input: n elements $x_0, ..., x_{n-1} \in \mathbb{K}$
- Input: Polynoimial $P = p_{n-1}x^{n-1} + \ldots + p_0 \in \mathbb{K}[x]$ of degree less than n.
- How to efficiently compute $y_i = P(x_i)$ for $0 \le i < n$?

Question 2 (Interpolation)

- Input: n pairwise distinct element $x_0,, x_{n-1} \in \mathbb{K}$
- Input: Polynoimial $P=p_{n-1}x^{n-1}+\ldots+p_0\in\mathbb{K}[x]$ of degree less than n.
- How to efficiently compute a polynomial $P = p_{n-1}x^Pn 1 + \ldots + p_0 \in \mathbb{K}[x]$ s.t. $P(x_i) = y_i$ for all $0 \le i < n$

5.1.1 Multipoint evaluation

The very naive algorithms take 2n multiplications and n addition. This should never be used. Instead of this algorithm, a less naive algorithm which is the Horner scheme is recommended. This take n multiplications and n addition.

^{*}Those two questions are inverse to each other

Horner scheme

:

5.1.2 Interpolation

The first approach for interpolation is to rely on the Lagrange. In conclusion, it takes $O(n^2)$ in \mathbb{K} .

Lagrange interpolation: https://youtu.be/WCGKqJrf4N4

5.2 Fast multipoint evaluation

Computing $y_i = P(x_i)$ for $0 \le i < n \to P \mod (x - x_i)$ for $0 \le i < n$. We consider $n = 2^k$ for simplicity.

- First, compute $A = \prod_{i=0}^{n-1} (x x_i)$ and a corresponding subproducts tree.
- Second, compute $P \mod (x x_i)$ for $0 \le i < n$ by exploiting the subproducts tree

subproducts tree

Proposition 5.1

Building the subproducts tree from its leaves to to its root yield all the polynomials indicated in its nodes in a total of O(M(n)log(n)) operation in \mathbb{K}

Proposition 5.2

Recall that we assume deg(P) < n. Having computed the suibproducts tree computing all the remainders in the remainders tree from its root to its leaves uses O(M(n)log(n)) operation in \mathbb{K}

Algorithm 6: Fast multipoint evaluation

Input: An integer n > 0, a polynomial $P \in \mathbb{K}[x]$ of degree < n, and x_0, \ldots, x_{n-1} in \mathbb{K} .

Output: $P(x_0), ..., P(x_{n-1}).$

Compute the subproducts tree of $x_0, ..., x_{n-1}$.

Compute the remainders tree of P with respect x_0, \ldots, x_{n-1} , using the subproducts tree.

Return the remainders at the leaves of the remainders tree.

Theorem 5.1

Fast polynomial multipoint evaluation can be performed in O(M(n)log(n)) operations in \mathbb{K} .

5.3 Fast Interpolation

:

6 Guessing Linear Recurrence

Relations

6.1 The Berlekamp-Massey algorithm

:

6.2 Sparse Matrix

Definition 6.1

A sparse representation of a matrix is such that only nonzero entries are stored.

Definition 6.2: Sparse Matrix

A sparse matrix is a matrix with many (most) coefficients that are zero.

*There are no specific numbers of zero to be sparse matrix

You can possibly compute matrix computations faster by taking into account that a matrix is sparse.

Data representation

You can use i, j coefficients for all non-zero coefficients.

For example,
$$M = \begin{bmatrix} \alpha_1 & 0 & \dots & 0 \\ \alpha_2 & \vdots & & \vdots \\ \vdots & \vdots & & \vdots \\ \alpha_n & 0 & \dots & 0 \end{bmatrix}, \begin{array}{c} 0, 0, \alpha_1 \\ 1, 0, \alpha_2 \\ 2, 0, \alpha_3 \end{array}, \rightarrow \text{representation of size } O(n) \\ \vdots \\ n-1, 0, \alpha_n \end{array}$$

6.2.1 Multiplication

Product of two sparse matrices is not necessary sparse.

Given a matrix with m nonzero entries, stored with a sparse representation, its product with a vector requires O(m) operations in the base field. Recall that for $n \times n$ dense matrix, multiplication can be done $O(n^{2.38})$ with Coppersmith–Winograd algorithm.

Given two matrices A and B, with both size of $n \times n$ and we assume that the number of non-zero entries in those matrices are at most m_A , m_B . The naive algorithm of matrix multiplication can take some advantage of sparsity since the product of any element from A and B will be zero if either the corresponding entry in A or B is zero. Let, \overline{a}_k and \overline{b}_k be a number of non-zeror element in kth col (resp. row) of matrix A and B. In particular,

$$\sum_{k=1}^{n} \overline{a}_k = m_A \text{ and } \sum_{k=1}^{n} \overline{b}_k = m_B$$

Then the number of multiplications in the base ring that one does in the naive matrix multiplication AB is

$$\sum_{k=1}^{n} \overline{a}_k \overline{b}_k \le \left(\sum_{k=1}^{n} \overline{a}_k\right) \left(\sum_{k=1}^{n} \overline{b}_k\right) \le m_A m_B$$

Note that one should also consider the number of additions, and that the details of such a naive sparse matrix multiplication algorithm will be highly dependent on the chosen sparse representation format.

6.2.2 Other computation

Addition

 $A, B \in \mathbb{K}^{n \times n}$ with m_A, m_B non-zero entries.

A + B in $O(m_A + m_B)$ operations and A + B has $\leq m_A + m_B$ non-zero entries.

Matrix-vector multiplication

 $A \in \mathbb{K}^{n \times n}$ with m_A non-zero entries, and $V \in \mathbb{K}^n$ (dense). AV in $O(m_A)$ operations.

Computing multiplication of dense and sparce matrices

 $A \in \mathbb{K}^{n \times n}$ with m_A non-zero entries, and $B \in \mathbb{K}^{n \times n}$ (dense). Multiplication can be done in $O(m_a, n)$, faster than multiplication of dense matrices.

PLU decomposition

A sparse matrix can have a dense PLU decomposition. Example on the lecture note.

6.2.3 The Wiedemann algorithm

:

7 Univariate and Bivariate Results

8 Structured linear algebra

9 Error Correcting Codes; decoding algorithm