Übungsblatt 12

- **Aufgabe 34** (2.5+2.5). (i) Zeigen Sie explizit mit der Definition der komplexen Differenzierbarkeit, dass $f_1(z) = z^2$ komplex differenzierbar ist, $f_2(z) = \bar{z}$ jedoch nicht.
- (ii) Sei $f_1(z) = \sin z$ und $f_2 = \cos z$. Es ist $\sin(\mathrm{i} x) = \mathrm{i} \sinh x$ und $\cos(\mathrm{i} x) = \cosh x$ für $x \in \mathbb{R}$. Nun folgt mit $\sin z := \sin(x + \mathrm{i} y)$ und Additionstheorem für den Sinus, dass $\sin z = \sin x \cosh y + \mathrm{i} \cos x \sin y$. Analog ist $\cos z := \cos(x + \mathrm{i} y)$. Rechnen Sie explizit nach, dass $f_1(z)$ und $f_2(z)$ die Cauchy-Riemann-Differentialgleichungen erfüllt und damit holomorph ist. Was ist $f_1'(z)$ und $f_2'(z)$?
- **Aufgabe 35** (2.5+2.5). (i) Sei $\Omega \subset \mathbb{C}$ offen und sei $f : \Omega \to \mathbb{C}$ holomorph. Zeigen Sie: Ist Re $f : \Omega \to \mathbb{R}$ eine konstante Abbildung, dann war schon f konstant.¹
 - (ii) Sei $\Omega \subset \mathbb{C}$ offen und sei $f : \Omega \to \mathbb{C}$ holomorph. Zeigen Sie: Ist $|f| : \Omega \to \mathbb{R}$ eine konstante Abbildung, dann war schon f konstant.

Aufgabe 36 ist auf der Rückseite.

Abgabe bis Mittwoch 01.02.23 8:00 Uhr online oder in den Briefkasten im Untergeschoss

 $^{^{1}\}mathrm{Das}$ gilt dann auch ganz analog für $\mathrm{Im}\,f\colon\Omega\to\mathbb{R}.$

Abbildung 1: Die blaue Kurve (einmal durchlaufen) sei durch γ_R in Durchlaufrichtung der Pfeile parametrisiert. Dabei nennen wir den Anteil der Kurve, die den Halbkreis parametrisiert α_R .

Aufgabe 36. Füllen Sie die Fehlstellen aus und führen Sie die Anweisung vom Rand aus.

Wir wollen $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ mittels komplexer Analysis berechnen. Da $(\arctan x)' = \frac{1}{1+x^2}$ ist, wissen wir sogar schon was rauskommen muss: $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \arctan x|_{-\infty}^{\infty} = \pi$. Aber das folgende Vorgehen ermöglicht auch einige andere reelle Integrale auszurechnen, wo wir oft keine Stammfunktion angeben können.

Es ist $f(z) = \frac{1}{1+z^2}$ holomorph auf $\mathbb{C} \setminus \{\underline{\hspace{1cm}}\}$. Von den Stellen, in denen f nicht holomorph ist, liegt nur $z_0 = \underline{\hspace{1cm}}$ in der oberen Halbebene. Sei $\epsilon > 0$, so dass $B_{\epsilon}(z_0)$ vollständig in der oberen Halbebene liegt.

Es ist $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \lim_{R \to \infty} \int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$. Um das rechte Integral zu berechnen, betrachten wir die Kurve γ_R wie in der Abbildung. Für R groß genug, liegt $B_{\epsilon}(z_0)$ vollständig im Inneren der von γ_R begrenzten Menge U. Sei D offen mit $\bar{U} \subset D$, so dass f auf $D \setminus B_{\epsilon}(z_0)$ ist. Dann ist nach Folgerung 2.2.3

$$\int_{\gamma_R} f(z)dz = \int_{\partial B_{\epsilon}(z_0)} f(z)dz$$

Um die rechte Seite zu berechnen, zerlegen wir $^{2}\,$

$$\frac{1}{1+z^2} = \frac{1}{z} \left(\frac{z}{z-z_0} + \frac{z}{z+z} \right).$$

Damit ist

$$\int_{\gamma_R} f(z)dz = \frac{1}{-} \int_{\partial B_{\epsilon}(z_0)} \left(\frac{-}{z - -} + \frac{-}{z + -} \right) = \frac{1}{-} \underbrace{\int_{\partial B_{\epsilon}(z_0)} \frac{-}{z - -} dz}_{\text{Beispiel}} + \underbrace{\frac{1}{-}}_{\text{nach Satz}} \underbrace{\int_{\partial B_{\epsilon}(z_0)} \frac{-}{z + -} dz}_{\text{nach Satz}}$$

Andererseits ist

$$\int_{\gamma_R} f(z)dz = \int_{-R}^R \frac{1}{1+x^2} dx + \int_{\alpha_R} f(z)dz.$$

Das heißt, wir brauchen noch $\lim_{R\to\infty}\int_{\alpha_R}f(z)dz$. Dazu wollen wir dieses Integral abschätzen:

$$\left| \int_{\alpha_R} f(z) dz \right| \leq \underline{\qquad} L(\alpha_R) = \underline{\qquad} \to \underline{\qquad} \text{ für } R \to \infty.$$

Zusammen ergibt sich somit $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \lim_{R \to \infty} \left(\int_{\gamma_R} f(z) dz - \int_{\alpha_R} f(z) dz \right) = \pi$.

 $B_{\epsilon}(z_0)$ ns Bild einzeich ren.

²Das ist eine Partialbruchzerlegung, vgl. [Analysis 1, Kap. 4.5.3].