Peut-on apprendre avant la fin d'un épisode?

Peut-on apprendre avant la fin d'un épisode?

Pour accélérer l'apprentissage

• Pour gérer le cas de tâches continues (épisode infini)

Peut-on apprendre avant la fin d'un épisode?

Pour accélérer l'apprentissage

• Pour gérer le cas de tâches continues (épisode infini)

- a.k.a. « Bootstrapping »
- « Prediction »

```
Input: the policy \pi to be evaluated Algorithm parameter: step size \alpha \in (0,1] Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0 Loop for each episode:

Initialize S
Loop for each step of episode:

A \leftarrow \text{action given by } \pi \text{ for } S
Take action A, observe R, S'
V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S)\right]
S \leftarrow S'
until S is terminal
```

- a.k.a. « Bootstrapping »
- « Control » on policy

```
Sarsa (on-policy TD control) for estimating Q \approx q_*

Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in S^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma Q(S',A') - Q(S,A)]

S \leftarrow S'; A \leftarrow A';

until S is terminal
```

- a.k.a. « Bootstrapping »
- « Control » off policy

```
Q-learning (off-policy TD control) for estimating \pi \approx \pi_*

Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s,a), for all s \in \mathbb{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \big[ R + \gamma \max_a Q(S',a) - Q(S,A) \big]
S \leftarrow S'
until S is terminal
```

- a.k.a. « Bootstrapping »
- « Control » off policy safer

Expected Sarsa Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in \mathbb{S}^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A. observe R. S' $Q(S,A) \leftarrow Q(S_t,A_t) + \alpha \Big[R_{t+1} + \gamma \sum_a \pi(a|S_{t+1})Q(S_{t+1},a) - Q(S_t,A_t) \Big]$ until S is terminal

- a.k.a. « Bootstrapping »
- « Control » off policy (better)

```
Double Q-learning, for estimating Q_1 \approx Q_2 \approx q_*
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q_1(s,a) and Q_2(s,a), for all s \in S^+, a \in A(s), such that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       Choose A from S using the policy \varepsilon-greedy in Q_1 + Q_2
       Take action A, observe R, S'
       With 0.5 probability:
           Q_1(S, A) \leftarrow Q_1(S, A) + \alpha \left(R + \gamma Q_2(S', \operatorname{arg\,max}_a Q_1(S', a)) - Q_1(S, A)\right)
       else:
           Q_2(S, A) \leftarrow Q_2(S, A) + \alpha \left(R + \gamma Q_1(S', \operatorname{arg\,max}_a Q_2(S', a)) - Q_2(S, A)\right)
       S \leftarrow S'
   until S is terminal
```

Planning And Learning

- Pouvoir réaliser plusieurs round d'apprentissage entre les steps!
- Dyna-Q!

```
Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s \in \mathbb{S} and a \in \mathcal{A}(s)
Loop forever:

(a) S \leftarrow \text{current} (nonterminal) state
(b) A \leftarrow \varepsilon\text{-greedy}(S,Q)
(c) Take action A; observe resultant reward, R, and state, S'
(d) Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
(e) Model(S,A) \leftarrow R,S' (assuming deterministic environment)
(f) Loop repeat n times:
S \leftarrow \text{random previously observed state}
A \leftarrow \text{random action previously taken in } S
R,S' \leftarrow Model(S,A)
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
```

Planning And Learning

- Pouvoir réaliser plusieurs round d'apprentissage entre les steps!
- Dyna-Q+! (Pour contrer les changements dans l'environnement et les départs malchanceux)
- $0 \le k \le 1$
- τ est le nombre de steps depuis lequel l'action A n'a pas été effectuée dans l'état S il faut donc le voir comme $\tau(s,a)$

```
Initialize Q(s,a) and Model(s,a) for all s \in \mathbb{S} and a \in \mathcal{A}(s)

Loop forever:

(a) S \leftarrow \text{current} (nonterminal) state
(b) A \leftarrow \varepsilon\text{-greedy}(S,Q)
(c) Take action A; observe resultant reward, R, and state, S'
(d) Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma \max_a Q(S',a) - Q(S,A)]
(e) Model(S,A) \leftarrow R,S' (assuming deterministic environment)
(f) Loop repeat n times:
S \leftarrow \text{random previously observed state}
A \leftarrow \text{random action previously taken in } S
R,S' \leftarrow Model(S,A)
Q(S,A) \leftarrow Q(S,A) + \alpha [R + \kappa \sqrt{\tau} + \gamma \max_a Q(S',a) - Q(S,A)]
```