ELEC 3035: Lab 3 — Autonomous systems

Lecturer: Ivan Markovsky

1.	Phase plane For a random second order continuous-time system (choose random A and C matrices), plot (on the same figure) a few state trajectories, starting from different initial conditions. Repeat for different random systems.
2.	Interpretation of the eigenvalues and eigenvectors Find i) analytically and ii) using Matlab's function eig, the eigenvalues and eigenvectors of the matrix
	$A = \begin{bmatrix} 0.5 & 1 \\ 0 & 0.9 \end{bmatrix}.$
	Find i) analytically and ii) using Matlab, the state trajectory of the system $\sigma x = Ax$ (discrete-time) starting from initial conditions:
	(a) $x(0) = v_1$, where $Av_1 = 0.5v_1$ and $ v_1 = 1$, (b) $x(0) = v_2$, where $Av_2 = 1.1v_2$ and $ v_2 = 1$, (c) $x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
	Plot the resulting trajectories in the phase plane. Comment on the results. \Box
3.	<i>Harmonic oscillator</i> Find the response of the harmonic oscillator of page 4 from Lecture 3 to initial condition $x_{\text{ini}} = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\top}$, i) analytically, and ii) using Matlab. Make sure that the results are equivalent.
4.	Companion form Using rss, generate a 5th order continuous-time random system. Convert the state space representation, returned by rss, to companion form, i) using the function canon, ii) by computing the characteristic polynomial of the A matrix, using poly. Is the system stable? Check this in two different ways: i) by computing the eigenvalues of A , using the function eig, ii) by computing the roots of the characteristic polynomial, using the function roots.
5.	Cayley-Hamilton theorem Verify numerically the Cayley-Hamilton theorem for a random square matrix A.