GEANT4 GPU Port:

Test Report

Stuart Douglas – dougls2 Matthew Pagnan – pagnanmm Rob Gorrie – gorrierw Victor Reginato – reginavp

Contents

1	Intr	oducti	ion	2
	1.1	Purpo	ose of the Document	2
	1.2	Scope	of the Testing	2
	1.3	Organ	nization	2
	1.4	Usabil	lity Testing	2
	1.5	Robus	stness	2
2	Mo	dule U	Init Testing	3
	2.1	Use of	f Automated Testing	3
		2.1.1	Overview	3
		2.1.2	Generating Test Results	3
		2.1.3	Analyzing Test Results	3
	2.2	Gener	cal variables used for Unit Testing	3
	2.3	Note a	about Performance testing	4
	2.4	= (ove	erloaded assignment operator)	4
		2.4.1	Method Signature	4
		2.4.2	Test Description	4
		2.4.3	Test Inputs	5
		2.4.4	Results	5
		2.4.5	Performance	5
	2.5	GetPo	${ m pint}$	5
		2.5.1	Method Signature	5
		2.5.2	Test Description	5
		2.5.3	Test Inputs	5
		2.5.4	Test Results	6
		2.5.5	Performance	6
	2.6	$\operatorname{Get} X$		6
		2.6.1	Method Signature	6
		2.6.2	Test Description	6
		2.6.3	Test Inputs	6
		2.6.4	Test Results	7
		2.6.5	Performance	7
	2.7	GetY		7
		2.7.1	Method Signature	7
		2.7.2	Test Description	7
		2.7.3	Test Inputs	7
		2.7.4	Test Results	8
		2.7.5	Performance	8
	2.8	GetXs		8
		2.8.1	Method Signature	8
		2.8.2	Test Description	8
		2.8.3		8

	2.8.4	Test Results										. 9
	2.8.5	Performance										. 9
2.9	GetEn	ergy										. 9
	2.9.1	Method Signature										. 9
	2.9.2	Test Description										. 9
	2.9.3	Test Inputs										. 9
	2.9.4	Test Results										. 10
	2.9.5	Performance										. 10
2.10	SetDat	5a										. 10
	2.10.1	Method Signature										. 10
	2.10.2	Test Description										. 10
	2.10.3	Test Inputs										. 10
	2.10.4	Test Results										. 11
	2.10.5	Performance										. 11
2.11	SetEne	ergy										. 11
	2.11.1	Method Signature										. 11
	2.11.2	Test Description										. 11
	2.11.3	Test Inputs										. 11
	2.11.4	Test Results										. 12
	2.11.5	Performance										. 12
2.12	SetXse	ec										. 12
	2.12.1	Method Signature										. 12
		Test Description										
	2.12.3	Test Inputs										. 12
	2.12.4	Test Results										. 13
	2.12.5	Performance										. 13
2.13	Set X											. 13
	2.13.1	Method Signature										. 13
	2.13.2	Test Description										. 13
	2.13.3	Test Inputs										. 13
	2.13.4	Test Results										
	2.13.5	Performance										. 14
2.14	SetY											. 14
	2.14.1	Method Signature										. 14
		Test Description										
	2.14.3	Test Inputs										. 14
	2.14.4	Test Results										. 15
	2.14.5	Performance										
2.15	Init .											. 15
	2.15.1	Unit Tests										. 15
		Accuracy										
		Performance										
2.16		eLin										
	_	Method Signature										
		\sim										

	2.16.2	Test Description										15
	2.16.3	Test Inputs										16
	2.16.4	Test Results										16
	2.16.5]	Performance										16
2.17	Times											16
	2.17.1	Method Signature										16
	2.17.2	Test Description										16
	2.17.3	Test Inputs										16
	2.17.4	Test Results										17
	2.17.5	Performance										17
2.18	GetXsec	eBuffer										17
	2.18.1	Unit Tests										18
	2.18.2	Accuracy										18
	2.18.3]	Performance										18
2.19	ThinOu	t										18
	2.19.1 1	Method Signature										18
	2.19.2	Test Description										18
	2.19.3	Test Inputs										19
	2.19.4	Test Results										19
	2.19.5]	Performance										19
2.20	Sample											19
	2.20.1 1	Method Signature										19
	2.20.2	Test Description										19
	2.20.3	Test Inputs										19
	2.20.4	Test Results										20
	2.20.5 1	Performance										20
2.21	SetPoin	t										20
	2.21.1	Unit Tests										20
		Accuracy										21
	2.21.3]	Performance										21
2.22		ercentBorder										21
	2.22.1	Method Signature										21
		Test Description										21
		Test Inputs										21
		Test Results										22
		Performance										22
2.23	Get50pe	ercentBorder										22
	2.23.1]	Method Signature										22
		Test Description										22
		Test Inputs										22
		Test Results										22
	2.23.5	Performance										23

3	\mathbf{Spe}	cific Sy	ystem Test	\mathbf{S}										23
	3.1	Summ	ary of Tests	Perfe	orm	ed		 						23
	3.2	Systen	n Tests Resu	ılts .			 	 						23
	3.3		n test # 39											24
		3.3.1	Accuracy				 	 						24
		3.3.2	Performance	ce			 	 						26
	3.4	Systen	n test # 40				 	 						27
		3.4.1	Accuracy				 	 						27
		3.4.2	Performance	e			 	 						28
	3.5	Systen	n test # 41				 	 						28
		3.5.1	Accuracy				 	 						28
		3.5.2	Performance	ce			 	 						30
4	Trac	ceabili	$\mathbf{z}\mathbf{y}$											30
	4.1	Requir	rements				 	 						30
	4.2		es											31
5	Cha	inges a	fter Testin	\mathbf{g}										31

Revision History

All major edits to this document will be recorded in the table below.

Table 1: Revision History

Description of Changes	Author	Date
Initial draft of document	Matt, Rob, Victor, Stuart	2016-03-18
Template of document	Matt	2016-03-15

List of Figures

Tables and figures for specific unit tests have been omitted in order to keep this document readable.

Table #	Title
1	Revision History
2	Definitions and Acronyms
3	General Unit Test Variables
52	Tests and Requirements Relationship
53	Tests and Modules Relationship

Definitions and Acronyms

Table 2: Definitions and Acronyms

Term	Description
GEANT4	Open-source software toolkit used to simulate the passage of par-
	ticles through matter
GEANT4-GPU	GEANT4 with some computations running on the GPU
GPU	Graphics processing unit, well-suited to parallel computing tasks
CPU	Computer processing unit, general computer processor well-suited
	to serial tasks
CUDA	Parallel computing architecture for general purpose programming
	on GPU, developed by NVIDIA
RHEL	Red Hat Enterprise Linux Server
OS X	Operating system developed by Apple

1 Introduction

1.1 Purpose of the Document

This document summarizes the testing and test conclusions of GEANT4-GPU. This document uses the implementation outlined in the test plan.

1.2 Scope of the Testing

1.3 Organization

In Section 4 we provide an introduction to this report. Section 5 describes the test cases which are carried out on each function. Section 6 describes system test cases that were carried out by our team. In section 7 traceability matrices to requirements and modules are documented. Section 8 provides a summary of changes made in response to the testing results.

1.4 Usability Testing

GEANT4-GPU is a back end implementation of already existing GEANT4 modules. Therefore users will not be interacting with is directly. Since there is no direct user interaction with GEANT4-GPU. There are no usability test.

1.5 Robustness

The GEANT4-GPU functions are meant to mimic the already existing GEANT4 functions. Therefore the GEANT4-GPU functions must also mimic the the robustness of the GEANT4 functions. The accuracy section for unit tests has several unit tests designed to test the robustness of the functions.

2 Module Unit Testing

2.1 Use of Automated Testing

2.1.1 Overview

2.1.2 Generating Test Results

Our unit testing system is semi-automated. A program (GenerateTestResults) was written which first initializes several G4ParticleHPVector objects from data files included with Geant4 of varying numbers of entries, including the creation of one G4ParticleHPVector with 0 entries. After the vectors have been initialized, the unit-tested methods are tested with a variety of input values. These cover edge cases (i.e. negative index for array, index greater than number of elements etc.) as well as more "normal" cases. The result is then written to the results text file foFor methods that are computationally intensive, the runtimes of the method are recorded and output to a separate

2.1.3 Analyzing Test Results

Due to the nature of this implementation we need to recompile GEANT4-GPU from GPU to CPU in order to get the CPU results to compare against the GPU results. We have a unit test file which preforms all our unit tests and writes the results into a file. The user will then have to manually recompile GEANT4-GPU with GPU acceleration off. Once the unit test file is run again another results file is generated. The comparing of the results is automated by feeding them to an application that we created that will compare the test results against each other. The program outputs a summary of any differences between the two results, if there are any.

2.2 General variables used for Unit Testing

The following are variables that are used for multiple unit tests. Instead of defining them again for each unit test they are defined here only once. Other variables used for specific unit tests will be defined in their respective unit test sections

For all unit tests:

Table 3: General Unit Test Variables

Name #	Type	Value
n	G4double	number of entries in the G4ParticleHPVector
r1	G4double	-1.0
r2	G4double	0.0
r3	G4double	0.00051234
r4	G4double	1.5892317
r5	G4double	513.18
vec0	G4ParticleHPVector	0 entries
vec1	G4ParticleHPVector	80 entries
vec2	G4ParticleHPVector	1509 entries
vec3	G4ParticleHPVector	8045 entries
vec4	G4ParticleHPVector	41854 entries
vec5	G4ParticleHPVector	98995 entries
vec6	G4ParticleHPVector	242594 entries

2.3 Note about Performance testing

Tests on vectors A - F all behave the same. Showing accuracy for vectors A - F does not provide any extra useful information. Therefore only unit tests on vector D will be shown in the Unit Tests and Accuracy sections. Unit test interfaces for the other vectors will be omitted from this document in order to make it more readable. The unit tests were still performed on the other vectors. These unit tests on vectors of different length are done to show how increasing the size of the vector increases the execution time of some functions

2.4 = (overloaded assignment operator)

2.4.1 Method Signature

G4ParticleHPVector & operator = (const G4ParticleHPVector & right)

2.4.2 Test Description

Create a new, temporary G4ParticleHPVector object and assign the current vector to it. Output the data and the integral from the new vector.

2.4.3 Test Inputs

Table 4: Unit Tests - = (overloaded assignment operator)

Test #	Inputs right
1	Current vector

2.4.4 Results

Table 5: Test results - = (overloaded assignment operator)

Test 4		Test Result											
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6						
1	Pass	Pass	Pass	Pass	Pass	Pass	Pass						

2.4.5 Performance

The following graph was generated from the recorded times from the unit tests.

2.5 GetPoint

2.5.1 Method Signature

const G4ParticleHPDataPoint GetPoint(G4int i)

2.5.2 Test Description

Returns the G4ParticleHPDataPoint at index i in the current vector. The x and y values of the point are outputted.

2.5.3 Test Inputs

Table 6: Unit Tests - GetPoint

Test #	Inputs i
2	-1
3	0
4	n/2
5	n-1
6	n

2.5.4 Test Results

Table 7: Test Results – GetPoint

TD			Te	st Res	ult		
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
2	Pass	Pass	Pass	Pass	Pass	Pass	Pass
3	Pass	Pass	Pass	Pass	Pass	Pass	Pass
4	Pass	Pass	Pass	Pass	Pass	Pass	Pass
5	Pass	Pass	Pass	Pass	Pass	Pass	Pass
6	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.5.5 Performance

2.6 GetX

2.6.1 Method Signature

G4double GetX(G4int i)

2.6.2 Test Description

Returns the energy at index ${\tt i}$ in the current vector. The ${\tt x}$ value of the point are outputted.

2.6.3 Test Inputs

Table 8: Unit Tests - GetX

Test #	Inputs i
7	-1
8	0
9	n/2
10	n-1
11	n

2.6.4 Test Results

Table 9: Test Results – GetX

TD 4 //	Test Result						
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
7	Pass	Pass	Pass	Pass	Pass	Pass	Pass
8	Pass	Pass	Pass	Pass	Pass	Pass	Pass
9	Pass	Pass	Pass	Pass	Pass	Pass	Pass
10	Pass	Pass	Pass	Pass	Pass	Pass	Pass
11	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.6.5 Performance

2.7 GetY

2.7.1 Method Signature

G4double GetY(G4int i)

2.7.2 Test Description

Returns the xSec at index \mathtt{i} in the current vector. The \mathtt{y} value of the point are outputted.

2.7.3 Test Inputs

Table 10: Unit Tests - GetY

Test #	Inputs
12	-1
13	0
14	n/2
15	n-1
16	n

2.7.4 Test Results

Table 11: Test Results – GetY

	Test Result						
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
12 13 14	Pass	Pass	Pass	Pass	Pass Pass Pass	Pass	Pass
15 16					Pass Pass		

2.7.5 Performance

2.8 GetXsec

2.8.1 Method Signature

G4double GetXsec(G4int i)

2.8.2 Test Description

Returns the xSec at index \mathtt{i} in the current vector. The \mathtt{y} value of the point are outputted.

2.8.3 Test Inputs

Table 12: Unit Tests - GetXsec

Test #	Inputs i
17	-1
18	0
19	n/2
20	n-1
21	n

2.8.4 Test Results

Table 13: Test Results – GetXsec

Tost #	Test Result						
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
17	Pass	Pass	Pass	Pass	Pass	Pass	Pass
18	Pass	Pass	Pass	Pass	Pass	Pass	Pass
19	Pass	Pass	Pass	Pass	Pass	Pass	Pass
20	Pass	Pass	Pass	Pass	Pass	Pass	Pass
21	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.8.5 Performance

2.9 GetEnergy

2.9.1 Method Signature

G4double GetEnergy(G4int i)

2.9.2 Test Description

Returns the energy at index ${\tt i}$ in the current vector. The ${\tt x}$ value of the point are outputted.

2.9.3 Test Inputs

Table 14: Unit Tests - GetEnergy

Test #	Inputs
22	-1
23	0
24	n/2
25	n-1
26	n

2.9.4 Test Results

Table 15: Test Results – GetEnergy

Test #	# Test Result						
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
22	Pass	Pass	Pass	Pass	Pass	Pass	Pass
23	Pass	Pass	Pass	Pass	Pass	Pass	Pass
24	Pass	Pass	Pass	Pass	Pass	Pass	Pass
25	Pass	Pass	Pass	Pass	Pass	Pass	Pass
26	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.9.5 Performance

2.10 SetData

2.10.1 Method Signature

void SetData(G4int i, G4double x, G4double y)

2.10.2 Test Description

Sets the energy and xSec at index i in the current vector.

2.10.3 Test Inputs

Table 16: Unit Tests - SetData

Tost #		Input	s
Test #	i	х	У
27	-1	r1, r2, r3, r4, r5	r1, r2, r3, r4, r5
28	0	r1, r2, r3, r4, r5	r1, r2, r3, r4, r5
29	n/2	r1, r2, r3, r4, r5	r1, r2, r3, r4, r5
30	n-1	r1, r2, r3, r4, r5	r1, r2, r3, r4, r5
31	n	r1, r2, r3, r4, r5	r1, r2, r3, r4, r5

2.10.4 Test Results

Table 17: Test Results – SetData

Track //	Test Result						
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
27	Pass	Pass	Pass	Pass	Pass	Pass	Pass
28	Pass	Pass	Pass	Pass	Pass	Pass	Pass
29	Pass	Pass	Pass	Pass	Pass	Pass	Pass
30	Pass	Pass	Pass	Pass	Pass	Pass	Pass
31	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.10.5 Performance

2.11 SetEnergy

2.11.1 Method Signature

void SetEnergy(G4int i, G4double e)

2.11.2 Test Description

Sets the energy at index i in the current vector.

2.11.3 Test Inputs

Table 18: Unit Tests - SetEnergy

Test #	Inputs			
	i	е		
32	-1	r1, r2, r3, r4, r5		
33	0	r1, r2, r3, r4, r5		
34	n/2	r1, r2, r3, r4, r5		
35	n-1	r1, r2, r3, r4, r5		
36	\mathbf{n}	r1, r2, r3, r4, r5		

2.11.4 Test Results

Table 19: Test Results – SetEnergy

Test #							
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
32	Pass						
33	Pass						
34	Pass						
35	Pass						
36	Pass						

2.11.5 Performance

2.12 SetXsec

2.12.1 Method Signature

void SetXsec(G4int i, G4double e)

2.12.2 Test Description

Sets the xSec at index i in the current vector.

2.12.3 Test Inputs

Table 20: Unit Tests - SetXsec

Test #	Inputs			
Test #	i	е		
37	-1	r1, r2, r3, r4, r5		
38	0	r1, r2, r3, r4, r5		
39	n/2	r1, r2, r3, r4, r5		
40	n-1	r1, r2, r3, r4, r5		
41	n	r1, r2, r3, r4, r5		

2.12.4 Test Results

Table 21: Test Results – SetXsec

Track //	Test Result							
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6	
37	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
38	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
39	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
40	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
41	Pass	Pass	Pass	Pass	Pass	Pass	Pass	

2.12.5 Performance

2.13 SetX

2.13.1 Method Signature

void SetX(G4int i, G4double e)

2.13.2 Test Description

Sets the energy at index i in the current vector.

2.13.3 Test Inputs

Table 22: Unit Tests - SetX

Test #	Inputs					
Test #	i	е				
42	-1	r1, r2, r3, r4, r5				
43	0	r1, r2, r3, r4, r5				
44	n/2	r1, r2, r3, r4, r5				
45	n-1	r1, r2, r3, r4, r5				
46	n	r1, r2, r3, r4, r5				

2.13.4 Test Results

Table 23: Test Results – SetX

Toot #	Test Result							
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6	
42	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
43	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
44	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
45	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
46	Pass	Pass	Pass	Pass	Pass	Pass	Pass	

2.13.5 Performance

2.14 SetY

2.14.1 Method Signature

void SetY(G4int i, G4double e)

2.14.2 Test Description

Sets the xSec at index i in the current vector.

2.14.3 Test Inputs

Table 24: Unit Tests - SetY

Test #	Inputs			
Test #	i	е		
47	-1	r1, r2, r3, r4, r5		
48	0	r1, r2, r3, r4, r5		
49	n/2	r1, r2, r3, r4, r5		
50	n-1	r1, r2, r3, r4, r5		
51	n	r1, r2, r3, r4, r5		

2.14.4 Test Results

Table 25: Test Results – SetY

Tost #	Test Result							
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6	
47	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
48	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
49	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
50	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
51	Pass	Pass	Pass	Pass	Pass	Pass	Pass	

2.14.5 Performance

2.15 Init

2.15.1 Unit Tests

Table 26: Unit Tests

Test #	Code	Description
52 53	Empty.Init() D.Init()	Init an empty Vector Init a Vector

2.15.2 Accuracy

Table 27: Accuracy

Test #	Status
52	Pass
53	Pass

2.15.3 Performance

2.16 SampleLin

2.16.1 Method Signature

G4double SampleLin()

2.16.2 Test Description

Performs samples of the vector with a linear interpolation scheme.

2.16.3 Test Inputs

Table 28: Unit Tests - SampleLin

Test #	Inputs N/A
54	N/A

2.16.4 Test Results

Table 29: Test Results – SampleLin

Toot #			Tes	st Res	ult		
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
54	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.16.5 Performance

2.17 Times

2.17.1 Method Signature

void Times(G4double factor)

2.17.2 Test Description

Multiplies every element in the vector by factor.

2.17.3 Test Inputs

Table 30: Unit Tests - Times

Test #	Inputs factor
55	r1
56	r2
57	r3
58	r4
59	r5

2.17.4 Test Results

Table 31: Test Results – Times

Tost #	Test Result							
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6	
55	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
56	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
57	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
58	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
59	Pass	Pass	Pass	Pass	Pass	Pass	Pass	

2.17.5 Performance

2.18 GetXsecBuffer

Table 32: General Unit Test Variables

Name	\mathbf{Size}	Description
emptyBuff	0	Array with no queries
singleBuff	1	Array with a single query
$\operatorname{smallbuff}$	50	Array with a small number of queries
normalBuff	1000	Array with a moderate number of queries
largeBuff	10000	Array with a large amount of queries
$\operatorname{negBuff}$	50	Array of queries with negative values
zeroBuff	50	Array of queries with values of zero
highBuff	50	Array of queries with values larger than the highest energy in the vector

2.18.1 Unit Tests

Table 33: Unit Tests

Test #	Code	Description
60	D.GetXsecBuffer(normalBuff, -1)	buffer with a negative size
61	Empty.GetXsecBuffer(emptyBuff, 0)	Empty buffer of xSec queries to an empty vector
62	Empty.GetXsecBuffer(normalBuff, 1000)	Normal buffer of xSec queries to an empty vecto
63	D.GetXsecBuffer(emptyBuff, 0)	Empty buffer of xSec queries
64	D.GetXsecBuffer(smalllBuff, 50)	Small number of queries
65	D.GetXsecBuffer(normalBuff, 1000)	Normal case
66	D.GetXsecBuffer(highBuff, 10000)	Large number of queries
67	D.GetXsecBuffer(negBuff, 1000)	Buffer of negative xSec queries
68	D.GetXsecBuffer(emptyBuff, 1000)	Buffer of zeros
69	D.GetXsecBuffer(highBuff,0)	Buffer of high valued xSec queries

2.18.2 Accuracy

Table 34: Accuracy

Test #	Status
60	Pass
61	Pass
62	Pass
63	Pass
64	Pass
65	Pass
66	Pass
67	Pass
68	Pass
69	Pass

2.18.3 Performance

2.19 ThinOut

2.19.1 Method Signature

void ThinOut(G4double precision)

2.19.2 Test Description

Removes any element from the vector whose neighbor is closer than precision.

2.19.3 Test Inputs

Table 35: Unit Tests - ThinOut

Test #	Inputs factor
70	r1
71	r2
72	r3
73	r4
74	r5

2.19.4 Test Results

Table 36: Test Results – ThinOut

Toot 4	Test Result							
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6	
70	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
71	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
72	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
73	Pass	Pass	Pass	Pass	Pass	Pass	Pass	
74	Pass	Pass	Pass	Pass	Pass	Pass	Pass	

2.19.5 Performance

2.20 Sample

2.20.1 Method Signature

G4double Sample()

2.20.2 Test Description

Performs samples of the vector according to interpolation its interpolation scheme.

2.20.3 Test Inputs

Table 37: Unit Tests - Sample

Test #	Inputs N/A
75	N/A

2.20.4 Test Results

Table 38: Test Results – Sample

Togt #	Test Result						
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
75	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.20.5 Performance

2.21 SetPoint

2.21.1 Unit Tests

- "rPoint" is a random G4ParticleHPDataPoint
- "nPoint" is a negative G4ParticleHPDataPoint
- "zPoint" is a zero G4ParticleHPDataPoint

Table 39: Unit Tests

Test $\#$	Code	Description
76	Empty.SetPoint(-1, rPoint)	Set a point at a negative index of an empty vector
77	Empty.SetPoint(0, rPoint)	Set a point at a the first index of an empty vector
78	Empty.SetPoint(1, rPoint)	Set a point at an index out of bounds of an empty vector
79	D.SetPoint(-1, rPoint)	Set a point at a negative index
80	D.SetPoint(0, rPoint)	Set a point at a the first index
81	D.SetPoint(n/2, rPoint)	Set a point at an index within the vector
82	D.SetPoint(n-1, rPoint)	Set a point at the last index
83	D.SetPoint(n, rPoint)	Set a point at an index our of bounds
84	D.SetPoint(0, nPoint)	Set a negative point
85	D.SetPoint(0, zPoint)	Set a zero point

2.21.2 Accuracy

Table 40: Accuracy

Test #	Status
76	Pass
77	Pass
78	Pass
79	Pass
80	Pass
81	Pass
82	Pass
83	Pass
84	Pass
85	Pass

2.21.3 Performance

2.22 Get15percentBorder

2.22.1 Method Signature

G4double Get15percentBorder()

2.22.2 Test Description

Returns the integral from each data point to the last data point and returns the first one within 15% of the last data point.

2.22.3 Test Inputs

Table 41: Unit Tests - Get15percentBorder

Test #	Inputs N/A
86	N/A

2.22.4 Test Results

Table 42: Test Results – Get15percentBorder

Toot 4	Test Result						
Test #	vec0	vec1	vec2	vec3	vec4	vec5	vec6
86	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.22.5 Performance

2.23 Get50percentBorder

2.23.1 Method Signature

G4double Get50percentBorder()

2.23.2 Test Description

Returns the integral from each data point to the last data point and returns the first one within 50% of the last data point.

2.23.3 Test Inputs

Table 43: Unit Tests - Get50percentBorder

Test #	Inputs N/A
87	N/A

2.23.4 Test Results

Table 44: Test Results – Get50percentBorder

Test #	Test Result						
	vec0	vec1	vec2	vec3	vec4	vec5	vec6
87	Pass	Pass	Pass	Pass	Pass	Pass	Pass

2.23.5 Performance

3 Specific System Tests

3.1 Summary of Tests Performed

System tests will be performed by running the sample code packaged with the GEANT4 installation. The Hadr04 example will be run with different materials (i.e water, uranium) and number of events. The values and conditions that are changed per test are detailed in the table below.

Table 45: System Tests

Test #	Initial State	Inputs	Outputs	Description
88	Fresh start up	Events = 2000 Material = Water	Same output as non-GPU GEANT4	HADR04 no changes
89	Fresh start up	Events = 2000 Material = Uranium	Same output as non-GPU GEANT4	HADR04 – basic example
90	Fresh start up	Events = 600 Material = Water	Same output as non-GPU GEANT4	HADR04 – Shorter test
91	Fresh start up	Events = 600 Material = Uranium	Same output as non-GPU GEANT4	HADR04 – Shorter test
92	Fresh start up	Events = 20000 Material = Uranium	Same output as non-GPU GEANT4	HADR04 – Long simulation stress Test
93	Fresh start up	$\begin{aligned} \text{Events} &= 0 \\ \text{Material} &= \\ \text{Uranium} \end{aligned}$	Same output as non-GPU GEANT4	HADR04 – no runs, Edge case

3.2 System Tests Results

This section will summarize all of the results from running tests 39 through 44. Each test has an accuracy section as well as a performance section. The accuracy of the

results will be based on how well the values generated on the GPU match up with the values generated on the CPU. The performance metrics used will include user, system and real time required to run each system test.

3.3 System test # 39

This test simply runs the Hadr04 example on both the GPU and the CPU without changing the source files. The code for this example is bundled with the GEANT4 installation.

3.3.1 Accuracy

Table 46: Accuracy Test #39

Data	CPU Values	GPU Values	Difference
Process Calls			
hadElastic	NA	NA	NA
nCapture	NA	NA	NA
neutronInelastic	NA	NA	NA
Parcours of incident neutron			
collisions	NA	NA	NA
track length	NA	NA	NA
time of flight	NA	NA	NA
Generated particles			
C14			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
O16			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
O17			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
O18			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Alpha			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Deuteron			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Gamma			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Proton			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
	25		

3.3.2 Performance

Table 47: Performance Test #39

Type	CPU Time	GPU Time
User	NA	NA
Real	NA	NA
System	NA	NA

3.4 System test # 40

This test simply runs the Hadr04 example on both the GPU and the CPU without changing the source files. The code for this example is bundled with the GEANT4 installation.

3.4.1 Accuracy

Table 48: Accuracy Test #40

Data	CPU Values	GPU Values	Difference
Process Calls			
hadElastic	NA	NA	NA
nCapture	NA	NA	NA
neutronInelastic	NA	NA	NA
Parcours of incident neutron			
collisions	NA	NA	NA
track length	NA	NA	NA
time of flight	NA	NA	NA
Generated particles			
U235			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
U238			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
U239			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Gamma			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Neutron			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA

3.4.2 Performance

Table 49: Performance Test #40

Type	CPU Time	GPU Time
User	NA	NA
Real	NA	NA
System	NA	NA

3.5 System test # 41

This test simply runs the Hadr04 example on both the GPU and the CPU without changing the source files. The code for this example is bundled with the GEANT4 installation.

3.5.1 Accuracy

Table 50: Accuracy Test #41

Data	CPU Values	GPU Values	Difference
Process Calls			
hadElastic	NA	NA	NA
nCapture	NA	NA	NA
neutronInelastic	NA	NA	NA
Parcours of incident neutron	1		
collisions	NA	NA	NA
track length	NA	NA	NA
time of flight	NA	NA	NA
Generated particles			
O16			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
O17			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
O18			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Alpha			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Gamma			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA
Proton			
# of particles	NA	NA	NA
Emean	NA	NA	NA
Range	NA	NA	NA

3.5.2 Performance

Table 51: Performance Test #41

		• • • • • • • • • • • • • • • • • • • •
Type	CPU Time	GPU Time
User	NA	NA
Real	NA	NA
System	NA	NA

4 Traceability

The following section is used to highlight the relations of implemented test cases to requirements and modules. In doing so, we hope to draw clear reasoning upon the inclusion of such tests.

4.1 Requirements

Below is a traceability table outlining test cases and the requirements they are related to:

Table 52: Tests and Requirements Relationship

Test #	Description	Requirement
1	Performance test of	Req. # 4 (Speed and Latency)
	functions	
2	InitializeVector	Req # 5 & 6 & 7 (Precision & Reliability
		& Robustness)
3	SettersandGetters	Req $\#$ 5 & 6 & 7 (Precision & Reliability
		& Robustness)
4	GetXSec	Req $\#$ 5 & 6 & 7 (Precision & Reliability
		& Robustness)
5	ThinOut	Req # 5 & 6 & 7 (Precision & Reliability
		& Robustness)
6	Merge	Req # 5 & 6 & 7 (Precision & Reliability
		& Robustness)
7	Sample	Req # 5 & 6 & 7 (Precision & Reliability
		& Robustness)
8	GetBorder	Req # 5 & 6 & 7 (Precision & Reliability
		& Robustness)

9	Integral	Req # 5 & 6 & 7 (Precision & Reliability & Robustness)
10	Times	Req # 5 & 6& 7 (Precision & Reliability & Robustness)
11	Assignment	Req # 5 & 6 & 7 (Precision & Reliability & Robustness)
12	System Test	Req # 1 & 2 & 8 & 11 (Adjacent Systems & Access)

4.2 Modules

Similarly, the following is a traceability table explicitly relating test cases to modules:

Table 53: Tests and Modules Relationship

Test #	Description	Module
1	Performance test of	G4ParticleVector
	functions	
2	InitializeVector	G4ParticleVector
3	SettersandGetters	G4ParticleVector
4	GetXSec	G4ParticleVector
5	ThinOut	G4ParticleVector
6	Merge	G4ParticleVector
7	Sample	G4ParticleVector
8	GetBorder	G4ParticleVector
9	Integral	G4ParticleVector
10	Times	G4ParticleVector
11	Assignment	G4ParticleVector
12	System Test	G4NeutronHPDataPoint &
		G4ParticleVector & CMake Files

5 Changes after Testing