- Considere 3 processos com uso intensivo de CPU com tempos de burst de 10ms, 20ms e 30ms respectivamente, e com tempos de chegada de 0ms, 2ms e 6ms. Quantas trocas de contexto são necessárias se o algoritmo SJF (shortest job first) preemptivo for utilizado?
 - a) 1
 - b) 2
 - c) 3
 - d) 4

 Considere 3 processos com uso intensivo de CPU com tempos de burst de 10ms, 20ms e 30ms respectivamente, e com tempos de chegada de 0ms, 2ms e 6ms. Quantas trocas de contexto são necessárias se o algoritmo SJF (shortest job first) preemptivo for utilizado?

- a) 1
- b) 2
- c) 3
- d) 4

https://boonsuen.com/process-scheduling-solver

Resposta: b

- No tempo 0, apenas o primeiro processo pode executar. No tempo 2, o segundo processo chega, mas o primeiro possui o menor tempo, portanto ele continua. No tempo 6, o terceiro processo chega, mas o primeiro possui o menor tempo, portanto continua. No tempo 10, o primeiro termina e o segundo é escalonado. No tempo 30, o terceiro processo é escalonado.
- Apenas duas trocas de contexto são necessárias: P1 -> P2 e P2 -> P3

- Qual dos seguintes algoritmos de escalonamento podem levar a situação de starvation?
 - a) FCFS
 - b) Round Robin (RR)
 - c) Shortest Job First (SJF)
 - d) Nenhum dos anteriores

- Qual dos seguintes algoritmos de escalonamento podem levar a situação de starvation?
 - a) FCFS
 - b) Round Robin (RR)
 - c) Shortest Job First (SJF)
 - d) Nenhum dos anteriores
- Resposta: c
 - O algoritmo SJF pode causar starvation em processos que levam muito tempo para completar se processos com um tempo curto de execução continuarem chegando ao sistema

- Se o tempo de *quantum* do algoritmo RR for muito grande, então ele será equivalente ao algoritmo
 - a) FCFS
 - b) SJF
 - c) SJF preemptivo
 - d) Nenhum dos anteriores

Exercício 3

- Se o tempo de *quantum* do algoritmo RR for muito grande, então ele será equivalente ao algoritmo
 - a) FCFS
 - b) SJF
 - c) SJF preemptivo
 - d) Nenhum dos anteriores
- Resposta: a
 - Se o tempo de *quantum* for muito grande, o escalonamento ocorre com base em uma política FCFS (*first come, first served*). Não existe rodízio ao se utilizar um *quantum* muito grande, o que faz com que um processo execute até acabar.

Arrival Times Arrival Times A B C D RR Burst Times A B C D FCFS A B C D FCFS

Exercício 4

- Um algoritmo de escalonamento atribui prioridades proporcionais ao tempo de espera de um processo. Cada processo inicia com uma prioridade zero (menor prioridade). O escalonador reavalia as prioridades dos processos a cada T unidades de tempo e decide pelo próximo processo a ser escalonado. Qual das afirmações é verdadeira, considerando que não existem operações de entrada e saída e que todos os processos chegam juntos no instante zero?
 - a) Esse algoritmo é equivalente ao FCFS
 - b) Esse algoritmo é equivalente ao RR
 - c) Esse algoritmo é equivalente ao SJF
 - d) Esse algoritmo é equivalente ao SJF preemptivo

- Um algoritmo de escalonamento atribui prioridades proporcionais ao tempo de espera de um processo. Cada processo inicia com uma prioridade zero (menor prioridade). O escalonador reavalia as prioridades dos processos a cada T unidades de tempo e decide pelo próximo processo a ser escalonado. Qual das afirmações é verdadeira, considerando que não existem operações de entrada e saída e que todos os processos chegam juntos no instante zero?
 - a) Esse algoritmo é equivalente ao FCFS
 - b) Esse algoritmo é equivalente ao RR
 - c) Esse algoritmo é equivalente ao SJF
 - d) Esse algoritmo é equivalente ao SJF preemptivo

• Resposta: b

• O algoritmo descrito funciona como RR quando o *quantum* é igual a T. Após um processo ser escalonado e executar por T unidades, seu tempo de espera se torna o menor e ele ganha a vez após cada processo executar por T unidades de tempo.

 Considere os seguintes processos, seus tempos de chegada e tempos de uso de CPU

Processo	Tempo de chegada	Tempo de CPU
P1	0ms	5ms
P2	1ms	7ms
P3	3ms	4ms

- A ordem na qual os processos irão completar, considerando as políticas FCFS e RR (com um quantum de 2 unidades) será:
 - a) FCFS: P1, P2, P3; RR(2): P1, P2, P3
 - b) FCFS: P1, P3, P2; RR(2): P1, P3, P2
 - c) FCFS: P1, P2, P3; RR(2): P1, P3, P2
 - d) FCFS: P1, P3, P2; RR(2): P1, P2, P3

 Considere os seguintes processos, seus tempos de chegada e tempos de uso de CPU

Processo	Tempo de chegada	Tempo de CPU
P1	0ms	5ms
P2	1ms	7ms
P3	3ms	4ms

- A ordem na qual os processos irão completar, considerando as políticas FCFS e RR (com um quantum de 2 unidades) será:
 - a) FCFS: P1, P2, P3; RR(2): P1, P2, P3
 - b) FCFS: P1, P3, P2; RR(2): P1, P3, P2
 - c) FCFS: P1, P2, P3; RR(2): P1, P3, P2
 - d) FCFS: P1, P3, P2; RR(2): P1, P2, P3
- Resposta: c

Exercício 5

- A ordem na qual os processos irão completar, considerando as políticas FCFS e RR (com um quantum de 2 unidades) será:
 - a) FCFS: P1, P2, P3; RR(2): P1, P2, P3
 - b) FCFS: P1, P3, P2; RR(2): P1, P3, P2
 - c) FCFS: P1, P2, P3; RR(2): P1, P3, P2
 - d) FCFS: P1, P3, P2; RR(2): P1, P2, P3
- Resposta: c
 - A ordem do algoritmo FCFS é simples de observar, pois é a mesma ordem na qual os processos chegam (P1, P2 e P3)
 - No algoritmo RR, com um quantum de 2 unidades, a ordem atribuída aos processos é a seguinte
 - P1 executa por 2 unidades
 - (chega P2) P2 executa por 2 unidades
 - P1 executa por 2 unidades
 - (chega P3) P3 executa por 2 unidades
 - P2 executa por 2 unidades
 - P1 executa por 1 unidade
 - P3 executa por 2 unidades
 - P2 executa por 2 unidades
 - P2 executa por 1 unidade

https://boonsuen.com/process-scheduling-solver

 Considere os tempos de chegada e tempos de burst dos processos P0, P1 e P2

Processo	Tempo de chegada	Tempo de CPU
PO	0ms	9ms
P1	1ms	4ms
P2	2ms	9ms

- Para o caso preemptivo do algoritmo SJF, qual o tempo médio de espera dos três processos?
 - a) 5ms
 - b) 4.33ms
 - c) 6.33ms
 - d) 7.33ms

- Questão 6
 - Considere os tempos de chegada e tempos de burst dos processos P0, P1 e P2

Processo	Tempo de chegada	Tempo de CPU
PO	0ms	9ms
P1	1ms	4ms
P2	2ms	9ms

 Para o caso preemptivo do algoritmo SJF, qual o tempo médio de espera dos três processos?
 https://boonsuen.com/process-scheduling-solver

- a) 5ms
- b) 4.33ms
- c) 6.33ms
- d) 7.33ms
- Resposta: a

Job	Arrival Time	Burst Time	Finish Time	Turnaround Time	Waiting Time
Α	0	9	13	13	4
В	1	4	5	4	0
С	2	9	22	20	11
	Average			37 / 3 = 12.333	15 / 3 = 5

- Questão 7
 - Quais das afirmações abaixo são verdadeiras?
 - I. O algoritmo SJF pode causar starvation.
 - II. Escalonamento preemptivo pode causar starvation.
 - III. O algoritmo RR é melhor que o FCFS em termos de tempo de resposta.
 - a) Apenas a I
 - b) Apenas I e III
 - c) Apenas II e III
 - d) I, II e III

- Quais das afirmações abaixo são verdadeiras?
- I. O algoritmo SJF pode causar starvation.
- II. Escalonamento preemptivo pode causar starvation.
- III. O algoritmo RR é melhor que o FCFS em termos de tempo de resposta.
 - a) Apenas a I
 - b) Apenas I e III
 - c) Apenas II e III
 - d) I, II e III
 - Resposta: d
 - I como no algoritmo SJF um processo que possui um tempo menor de execução pode preemptar outro com tempo maior, e como processos podem continuamente chegar (afirmação verdadeira)
 - II preemptivo significa que um processo antes de completar sua execução pode ser interrompido, ou seja, um processo pode nunca terminar (afirmação verdadeira)
 - III no FCFS, um processo executa até completar, já no RR todos os processos possuem uma chance de executar, o que melhora o tempo de resposta (afirmação verdadeira)

 Um sistema operacional utiliza o algoritmo SJF preemptivo para o escalonamento de processos. Considere os tempos de chegada e de execução de acordo com a tabela

Processo	Tempo de execução	Tempo de chegada
P1	20ms	0ms
P2	25ms	15ms
P3	10ms	30ms
P4	15ms	45ms

- Qual o tempo de espera total para o processo P2?
 - a) 5ms
 - b) 15ms
 - c) 40ms
 - d) 55ms

 Um sistema operacional utiliza o algoritmo SJF preemptivo para o escalonamento de processos. Considere os tempos de chegada e de execução de acordo com a tabela

Processo	Tempo de execução	Tempo de chegada
P1	20ms	0ms
P2	25ms	15ms
P3	10ms	30ms
P4	15ms	45ms

• Qual o tempo de espera total para o processo P2?

- a) 5ms
- b) 15ms
- c) 40ms
- d) 55ms
- Resposta: b

Job	Arrival Time	Burst Time	Finish Time	Turnaround Time	Waiting Time
Α	0	20	20	20	0
В	15	25	55	40	15
С	30	10	40	10	0
D	45	15	70	25	10
	Average			95 / 4 = 23.75	25 / 4 = 6.25

https://boonsuen.com/process-scheduling-solver

- Considere quatro processos, os quais possuem 10ms, 20ms, 30ms e 15ms de tempo de processamento, respectivamente. Os tempos de chegada são 0ms, 2ms, 6ms e 7ms. Quantas trocas de contexto são necessárias se o sistema operacional estiver utilizando o algoritmo SJF preemptivo?
 - a) 1
 - b) 2
 - c) 3
 - d) 4

- Considere quatro processos, os quais possuem 10ms, 20ms, 30ms e 15ms de tempo de processamento, respectivamente. Os tempos de chegada são 0ms, 2ms, 6ms e 7ms. Quantas trocas de contexto são necessárias se o sistema operacional estiver utilizando o algoritmo SJF preemptivo?
 - a) 1
 - b) 2
 - c) 3
 - d) 4
- Resposta: c

https://boonsuen.com/process-scheduling-solver

Job	Arrival Time	Burst Time	Finish Time	Turnaround Time	Waiting Time
Α	0	10	10	10	0
В	2	20	45	43	23
С	6	30	75	69	39
D	7	15	25	18	3
	Average			140 / 4 = 35	65 / 4 = 16.25

 Um sistema operacional utiliza o algoritmo SJF preemptivo. Considere o seguinte conjunto de processos com seus tempos de chegada e tempos de burst de CPU

Processo	Tempo de chegada	Tempo de CPU
P1	0ms	12ms
P2	2ms	4ms
P3	3ms	6ms
P4	8ms	5ms

- O tempo médio de espera dos processos é
 - a) 4.5ms
 - b) 5ms
 - c) 5.5ms
 - d) 6.5ms

 Um sistema operacional utiliza o algoritmo SJF preemptivo. Considere o seguinte conjunto de processos com seus tempos de chegada e tempos de burst de CPU

Processo	Tempo de chegada	Tempo de CPU
P1	0ms	12ms
P2	2ms	4ms
P3	3ms	6ms
P4	8ms	5ms

- O tempo médio de espera dos processos é
 - a) 4.5ms
 - b) 5ms
 - c) 5.5ms
 - d) 6.5ms
- Resposta: c

Job	Arrival Time	Burst Time	Finish Time	Turnaround Time	Waiting Time
Α	0	12	27	27	15
В	2	4	6	4	0
С	3	6	12	9	3
D	8	5	17	9	4
	Average			49 / 4 = 12.25	22 / 4 = 5.5

https://boonsuen.com/process-scheduling-solver

• Questão 11

 Considere o seguinte conjunto de processos, com tempos de chegada e de CPU de acordo com a tabela abaixo

Processo	Tempo de chegada	Tempo de CPU
P1	0ms	5ms
P2	1ms	3ms
P3	2ms	3ms
P4	4ms	1ms

- Qual o tempo de resposta médio para os processos, considerando o algoritmo SJF preemptivo?
 - a) 5.5ms
 - b) 5.75ms
 - c) 6ms
 - d) 6.25ms

• Questão 11

 Considere o seguinte conjunto de processos, com tempos de chegada e de CPU de acordo com a tabela abaixo

Processo	Tempo de chegada	Tempo de CPU
P1	0ms	5ms
P2	1ms	3ms
P3	2ms	3ms
P4	4ms	1ms

 Qual o tempo de resposta médio para os processos, considerando o algoritmo SJF preemptivo?

- a) 5.5ms
- b) 5.75ms
- c) 6ms
- d) 6.25ms
- Responsible of the Responsible
 - Tempo de resposta = tempo de términ

Job	Arrival Time	Burst Time	Finish Time	Turnaround Time	Waiting Time
Α	0	5	12	12	7
В	1	3	4	3	0
С	2	3	8	6	3
D	4	1	5	1	0
			Average	22 / 4 = 5.5	10 / 4 = 2.5

- Questão 12
 - Qual dos algoritmos abaixo é não preemptivo?
 - a) Round robin
 - b) FCFS
 - c) Múltiplas filas
 - d) Múltiplas filas com realimentação

- Qual dos algoritmos abaixo é não preemptivo?
 - a) Round robin
 - b) FCFS
 - c) Múltiplas filas
 - d) Múltiplas filas com realimentação
 - Resposta: b
 - RR preempção ocorre quando o quantum expira;
 - FCFS sem preempção (executa até terminar);
 - Múltiplas filas preempção ocorre quando um processo de prioridade mais alta chega
 - Múltiplas filas com realimentação preempção ocorre quando um processo com prioridade maior chega ou quando o quantum de uma fila de alta prioridade expira e torna-se necessário mover o processo para uma fila de menor prioridade

- Considere um conjunto de n tarefas com tempos de execução r1,
 r2, ... rn executando em um sistema com um único processador. Qual dos algoritmos de escalonamento abaixo resultará em uma maior taxa de execução?
 - a) Round robin
 - b) Shortest job first
 - c) FCFS (FIFO)
 - d) LIFO

- Considere um conjunto de *n* tarefas com tempos de execução *r1*, *r2*, ... *rn* executando em um sistema com um único processador. Qual dos algoritmos de escalonamento abaixo resultará em uma maior taxa de execução?
 - a) Round robin
 - b) Shortest job first
 - c) FCFS (FIFO)
 - d) LIFO
- Resposta: b
 - Taxa de execução: número total de processos executado por unidade de tempo (soma do tempo de espera com o tempo burst);
 - O algoritmo SJF seleciona o processo com menor tempo de execução
 - Assim, os processos com os menores tempos s\(\tilde{a}\) executados primeiro, o que maximiza o uso de CPU. Isso permite que o m\(\tilde{a}\)ximo de tarefas sejam completadas.

Processo	Tempo de chegada	Tempo de processamento
Α	0ms	3ms
В	1ms	6ms
С	4ms	4ms
D	6ms	2ms

- a) FCFS
- b) SJF
- c) SJF preemptivo
- d) RR(2)

Processo	Tempo de chegada	Tempo de processamento
Α	0ms	3ms
В	1ms	6ms
С	4ms	4ms
D	6ms	2ms

- a) FCFS
- b) SJF
- c) SJF preemptivo
- d) RR(2)
- Resposta: c
 - Tempo de resposta = tempo de processamento / término tempo de chegada

 Para os processos listados abaixo, qual dos algoritmos de escalonamento resultará no menor tempo médio de resposta?

Processo	Tempo de chegada	Tempo de processamento
Α	0ms	3ms
В	1ms	6ms
С	4ms	4ms
D	6ms	2ms

- a) <u>FCFS</u>
- b) SJF
- c) SJF preemptivo
- d) RR(2)
- Resposta: c

Job	Arrival Time	Burst Time	Finish Time	Turnaround Time	Waiting Time
Α	0	3	3	3	0
В	1	6	9	8	2
С	4	4	13	9	5
D	6	2	15	9	7
	Average			29 / 4 = 7.25	14 / 4 = 3.5

https://boonsuen.com/process-scheduling-solver

Processo	Tempo de chegada	Tempo de processamento
Α	0ms	3ms
В	1ms	6ms
С	4ms	4ms
D	6ms	2ms

- a) FCFS
- b) SJF
- c) SJF preemptivo
- d) RR(2)
- Resposta: c

Job	Arrival Time	Burst Time	Finish Time	Turnaround Time	Waiting Time
Α	0	3	3	3	0
В	1	6	9	8	2
С	4	4	15	11	7
D	6	2	11	5	3
	Average			27 / 4 = 6.75	12 / 4 = 3

• Questão 14

Processo	Tempo de chegada	Tempo de processamento
Α	0ms	3ms
В	1ms	6ms
С	4ms	4ms
D	6ms	2ms

- a) FCFS
- b) SJF
- c) SJF preemptivo
- d) RR(2)
- Resposta: c

Job	Arrival Time	Burst Time	Finish Time	Turnaround Time	Waiting Time
Α	0	3	3	3	0
В	1	6	15	14	8
С	4	4	8	4	0
D	6	2	10	4	2
	Average			25 / 4 = 6.25	10 / 4 = 2.5

• Questão 14

Processo	Tempo de chegada	Tempo de processamento
Α	0ms	3ms
В	1ms	6ms
С	4ms	4ms
D	6ms	2ms

- a) FCFS
- b) SJF
- c) SJF preemptivo
- d) RR(2)
- Resposta: c

Job	Arrival Time	Burst Time	Finish Time	Turnaround Time	Waiting Time
Α	0	3	5	5	2
В	1	6	15	14	8
С	4	4	13	9	5
D	6	2	11	5	3
			33 / 4 = 8.25	18 / 4 = 4.5	

 Considere os processos abaixo, com seus tempos de chegada e tempo de uso de CPU (burst). O algoritmo SJF preemptivo é utilizado.

Processo	Tempo de chegada	Tempo de <i>burs</i> t
P1	0ms	10ms
P2	3ms	6ms
P3	7ms	1ms
P4	8ms	3ms

- O tempo médio de resposta é:
 - a) 8.25ms
 - b) 10.25ms
 - c) 6.35ms
 - d) 4.25ms

• Considere os processos abaixo, com seus tempos de chegada e tempo de uso de CPU (burst). O algoritmo SJF preemptivo é utilizado.

Processo	Tempo de chegada	Tempo de <i>burst</i>
P1	0ms	10ms
P2	3ms	6ms
P3	7ms	1ms
P4	8ms	3ms

- O tempo médio de resposta é:
 - a) 8.25ms
 - b) 10.25ms
 - c) 6.35ms
 - d) 4.25ms
 - Resposta: a

Job	Arrival Time	Burst Time	Finish Time	Turnaround Time	Waiting Time
Α	0	10	20	20	10
В	3	6	10	7	1
С	7	1	8	1	0
D	8	3	13	5	2
Average				33 / 4 = 8.25	13 / 4 = 3.25

https://boonsuen.com/process-scheduling-solver