

Ireland For what's next

Computational approaches for the therapeutic target discovery to ameliorate muscle wasting during aging and disease

Msc Karen Guerrero Vazquez

Dr. Katarzyna Whysall Dr. Pilib O Broin

~3 -8 % Loss of muscle mass per decade

MicroRNA (miRNAs)

MicroRNA (miRNAs)

Objective

- Create independent models and a common model of miR:target interactions in muscle loss during aging and critical illness based on differentially expressed (DE) miRs and genes
- Identification or shortlisted microRNAs as candidates for therapeutics targets against sarcopenia.

Carole J. Proctor & Katarzyna Goljanek-Whysall, 2017, Using computer simulation models to investigate the most promising microRNAs to improve muscle regeneration during ageing

How to start

My Experiments

Target	Type	N. Experiments	Healthy	Non healthy
mRNA	RNAseq	3	3	0
	Microarray	4	2	2
miRNA	Microarray	2	2	0
	miRSeq	1	0	1

Expression during age

Expression during age

Age

Experiments

GEO number	Samples	Min Age	Max Age	Reference
GSE152558	5	41	85	Tharakan, R., Ubaida-Mohien, C., Piao, Y., Gorospe, M., & Ferrucci, L. (2021).
GSE164471	53	34	80	Tumasian III, R. A., Harish, A., Kundu, G., Yang, J. H., Ubaida- Mohien, C., Gonzalez-Freire, M., & Ferrucci, L. (2021).
GSE157585	136	19	>65	Kulkarni, A. S., Peck, B. D., Walton, R. G., Kern, P. A., Mar, J. C., Windham, S. T., & Peterson, C. A. (2020).
GSE87105	16	30	78	Mercken, E. M., Capri, M., Carboneau, B. A., Conte, M., Heidler, J., Santoro, A., & de Cabo, R. (2017)
GSE23527	36	29	76	Drummond, M. J., McCarthy, J. J., Sinha, M., Spratt, H. M., Volpi, E., Esser, K. A., & Rasmussen, B. B. (2011)

1)GSE152558 2)GSE164471 3)GSE157585 4)GSE87105 5)GSE23527

Differentially Expressed Genes

Experiment	Evaluation	Regulation	Genes
GSE152558	MO	UP	8
GSE152558	MO	Down	9
GSE157585	YO	UP	9
GSE157585	YO	Down	73
GSE164471	YO	UP	5
GSE164471	YM	UP	2
GSE164471	MO	UP	6
GSE164471	YO	Down	8
GSE164471	YM	Down	2
GSE164471	MO	Down	11
GSE23527	YO	Up	1
GSE23527	YO	Down	5
GSE875105	OY	Down	88
GSE875105	MO	Up	6
GSE875105	OY	Up	18

Old vs Young (up or down)

- MYH8
- HCN1

GSE875105

446 genes 1.2k edges

446 genes 2k miRNAs 3.5 edges

5 miRNAs 146 genes 163 edges

Differentially expressed?

Questions?

Acknowledgements

This presentation has emanated from research conducted with the financial support of Science Foundation Ireland under Grant number [18/CRT/6214]

