Compito Esperimentazioni I A 17 Aprile 2007

(1.0) 1. Determinare, con approssimazione del 5% e dell'1%, i valori delle seguenti operazioni:

 $(64/343)^{1/3}$: $\sqrt{23}$ 23/11;

(2.5) 2. Il raggio di curvatura R di una superficie sferica viene misurato utilizzando uno sferometro. Si ricorda che, se si indica con a la distanza tra i piedini dello sferometro e con h la "freccia", il raggio di curvatura R viene determinato dalla relazione:

a viene misurato direttamente, mentre la freccia h viene invece determinata sottraendo al valore h_s misurato sulla superficie sferica il valore h_0 misurato sulla superficie piana di riferimento.

Si determini la migliore stima del valore vero e dell'incertezza di misura del raggio di curvatura R, supponendo che le misure dirette di a, h_0 e h_s siano:

 $d = (30.0 \pm 0.2)mm$

 $h_0 = (1.92 \pm 0.06) mm$

 $h_{\rm s} = (0.92 \pm 0.04) mm$

(2.5) 3. Due grandezze fisiche y e x sono legate tra di loro dalla relazione: y = A + Bx

I risultati di alcune misure delle grandezze y e x sono i seguenti (l'incertezza relativa sulla misura di x è $1 \cdot 10^{-5}$):

x(s)	11	12	14	15	18	19
y(mm)	251	288	333	350	426	452
$\Delta y (mm)$	12	10	9	7	6	5

Determinare graficamente A e B, dando anche una stima della loro incertezza.

(0.5) 4. Determinare il numero di cifre significative dei risultati delle seguenti misure della grandezza fisica z (Δz indica l'incertezza di misura):

> $1729.3 \cdot 10^{-3}$ Z

 $273.964 \cdot 10^{-5}$ 307.23

16576789

 Δz

 $3 \cdot 10^{-7}$ $2 \cdot 10^{-1}$

 4.10^{4}

- (0.5) 5. Determinare la migliore stima del valore vero e dell'incertezza di misura della seguente serie di misure: 10.01 10.00 9.97 9.96 9.99
- (1.0) 6. Il peso del liquido contenuto in un picnometro fino al segno di affioramento viene misurato più volte utilizzando una bilancia elettronica, che ha errore di sensibilità 1 mg_p. Le misure ottenute (per il peso del liquido + il peso del picnometro) espresse in g_p, sono le seguenti:

15.726

15 730

Il peso del picnometro, sempre misurato con la stessa bilancia elettronica, risulta essere (10.728±0.001)g_p. Si determini la migliore stima del valore vero e dell'incertezza di misura del peso del liquido contenuto nel picnometro..

(1.0) 7. Si consideri la relazione

$$p = \sqrt[3]{\frac{gR^2T^2(1-\varepsilon^2)^3}{4\pi^2}},$$

dove g è l'accelerazione di gravità, R una distanza e T un tempo. Si determinino le dimensioni fisiche della grandezza p, le sue unità di misura nel S.I. e nel C.G.S., ed il fattore di conversione tra di loro $(S.I. \rightarrow C.G.S.)$.

(1.0) 8. Calcolare il valore della seguente funzione, nei punti indicati, con una approssimazione relativa di 10^{-3} .

 e^x in x = 0.1 e in x = 0.2.