Fine Mapping Benchmark

```
https://github.com/gaow/mvarbvs/tree/master/dsc
May 9, 2018
```

Benchmark status

Data-set

Genotype

- A GTEx sample region (FMO2) of size N=698, P=7492
- A GUEVADIS sample region of size N=698, P=1001
- Parameters to "trim" P, eg from 7492 also to, say, 1001

Phenotype

- The original GTEx Throid and Lung expression for the GTEx sample region
 - should have around 3 eQTLs
- A simple simulated GUEVADIS expression data from DAP-g paper
 - 91 LD blocks

Simulation themes

Univariate

- Simple point mass + rnorm() simulation, as in DAP-g paper
- Point mass + mixture of normal, as in ASH paper
 - spiky, near-normal, flat-top, skew, big-normal, bimodal

Multivariate

- Column-wise stacking of univariate simulations
- Point mass + mixture of multivariate normal, as in MASH paper
 - All "canonical" prior covariances
 - Have to provide grid

About LD

There are mechansim to

- Plot save LD heatmap for input data
- Put signals to the most "LD-convoluted" blocks
- Ensure signals are from independent LD blocks
- Permute & break LD structure?

Fine-mapping methods

From Stephens Lab

- varbvs
- susie
- M&M ASH

From the field

- DAP-g
- FINEMAP
- CAVIAR

Each with multiple module "flavors" (parameters)

Single-replicate diagnosis

- When avaiable, compare scattered plots of \tilde{eta} or \hat{eta} vs eta plots
- Show PIP and log10BF
- ...
- Customized diagnostic plots for SSE methods: susie and M&M.

Still working on unifying output from methods and annotate with eg LD info.

Cross-replicate evaluation

Next to-do:

- Power vs false positive: ROC
- Point signal level: PIP / Ifsr
- Set signal level: cluster PIP

LD situation

GUEVADIS sample

Trimmed GTEx sample (to the size of GUEVADIS sample)

Simple GUEVADIS simulation

Simple GUEVADIS simulation

Figure 1: Simple GUEVADIS simulation

varbvs

Figure 2: varbvs

susie

Figure 3: susie

FINEMAP

DAP

CAVIAR

GTEx with MASH "simple het"

covariance

Trimmed GTEx, response 1

Figure 4: Simulated GTEx tissue 1

Trimmed GTEx, response 2

Figure 5: Simulated GTEx tissue 2

varbvs, response 1

Figure 6: varbvs

varbvs, response 2

Figure 7: varbvs

susie, response 1

Figure 8: susie

susie, response 2

Figure 9: susie

M&M, response 1

Figure 10: M&M

M&M, response 2

Figure 11: M&M