Welcome to CHE 384T: Computational Methods in Materials Science

Random Walk Diffusion

LeSar Ch. 2, App. B7, C5, I2-I3

Announcements

HW 1 report due 09/12, 5pm to Canvas

Programming day 2: 09/06

Programming Days (approximately every other Friday):

L3	 F Aug 30 	Installation/set up; Jupyter, Modules and packages, environments What is object oriented programming? Why Python? global v local variables, manipulating lists and arrays, operators, (formatting strings), sets, tuples, lists, dictionaries, dataframes	
 L5 	 F Sep 6 	conditions, loops, functions, classes and objects	
L12	F Sep 20 	opening a github account, testbeds, measuring speed and optimizing code, C libraries, documentation/sphinx, PEP8	
L18	F Oct 4	ASE calculators	
L24	F Oct 18	Python extras: list comprehension, exception handling decorators, lambda functions, regular expressions Peer sharing of Python tricks	
6	F Nov 1	DFT tutorial: convergence, scf, relaxation, band structure l advanced: phonon calculation, magnetic materials, surface properties	

Approximate Schedule and Reading list for CHE384T

L1	Intro to the Course	Ch. 1, Appendix A
L2, L5	Random Walk Diffusion	Ch. 2, Appendix B7, C5, I2-I3
L7, L8	Intro to crystal structure, defect in materials	Appendix B1-B5
L10	Simulating finite systems	Ch. 3
L11, L13 L14	Interatomic potentials	Ch. 5
L16-L22	Molecular dynamics	Ch. 6, Appendix I4 Appendix G
L23, L25	Monte Carlo	Ch. 7, Appendix C4, D1-D4
L25-L32	Electronic structure and DFT	Ch. 4, Appendix F, Supplemental reading
L34	Materials informatics	
L35	Kinetic Monte Carlo	Ch. 9
L37	Monte Carlo as mesoscale Cellular automata	Ch. 11
L38	Quantum computing	

Lecture Outline

What is diffusion Examples of diffusion in materials science

Connection with continuum description

Random Walk model for Diffusion

Coding considerations:

Random number generators Binning probability distributions

Fick's First and Second Law

Fick's first law:
$$J = -D \nabla C_i$$

* diffusivity

Fick's second law: $\frac{\partial C_i}{\partial t} = +D_i \nabla^2 C_i$

Example: Silicon wafer processing

Intentional incorporation of impurities (e.g., boron, phosphorous)

Step 1: Steady-state gas diffusion or ion implantation

$$\frac{C(x_1t)-C_0}{C_S-C_0}=1-erf\left(\frac{x}{\sqrt{4Dt}}\right)$$

Step 2: Drive-in process (higher temperature)

$$C(x,t) = \frac{2Cs}{\pi} \sqrt{\frac{Dptp}{Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$$
depend
on step 1

Types of Diffusion

Vacancy diffusion

Interstitial diffusion

Factors that affect diffusion: Diffusion coefficient

Collective motion of lithium with crystal lattice

Intercalation of lithium in novel cathode materials

Developing a model

"Science and Statistics." George E.P. Box (1976)

"All models are wrong, but some are useful."

2.3 Parsimony

Since all models are wrong the scientist cannot obtain a "correct" one by excessive elaboration. On the contrary following William of Occam he should seek an economical description of natural phenomena. Just as the ability to devise simple but evocative models is the signature of the great scientist so overelaboration and overparameterization is often the mark of mediocrity.

2.4 Worrying Selectively

Since all models are wrong the scientist must be alert to what is importantly wrong. It is inappropriate to be concerned about mice when there are tigers abroad.

Simplifications of the Random Walk Model

- Reduced dimensionality (to 2D or 1D)
- Simplification of the crystal structure
- Model the hops the atoms take as random (for a particular atom)

Random walk diffusion: an atomic model for diffusion

Rules for the random walker:

- divide time into nt discrete steps spaced by Δt time, where nt is an integer and Δt is a number
- can only move 1 space at each time step
- equal and random probability of moving up, down, left, right

Random walk diffusion: an atomic model for diffusion

Random walk diffusion: a small simulation

https://rwd2d-mercury.runmercury.com/

Connection between Random Walk and Diffusivity

1D case

$$X_n = X_{n-1} + \Delta X$$

$$\Delta x = \begin{cases} 1 \\ -1 \end{cases}$$

$$\langle X_n \rangle = \langle X_{n-1} + \Delta X \rangle = \langle X_{n-1} \rangle + \langle \Delta X \rangle$$

$$\langle x_n^2 \rangle = \langle x_{n-1}^2 + 2x_{n-1} + 2x_{n-1} + 4x^2 \rangle$$

$$= \langle x_{n-1}^2 \rangle + \langle 6x^2 \rangle$$

$$D = \frac{90f}{\nabla x_s}$$

$$\langle x_0^2 \rangle = 0$$

 $\langle x_1^2 \rangle = \Delta x^2$
 $\langle x_1^2 \rangle = 2\Delta x^2$
 $\langle x_2^2 \rangle = n\Delta x^2$

Connection between Random Walk and Diffusivity

$$D = \frac{1}{6t} \langle R^2 \rangle \quad \text{(in 3D)} \qquad \qquad \langle R^2 \rangle \sim \mathbf{t}$$

For the random walk model

$$|\overline{R}_{n}|^{2} = \overline{R}_{n}.\overline{R}_{n} = (\overline{r}_{1} + \overline{r}_{2} + \overline{r}_{3} + \dots + \overline{r}_{n})(\overline{r}_{1} + \overline{r}_{2} + \overline{r}_{3} + \dots + \overline{r}_{n})$$

$$= \sum_{k=1}^{n} \overline{r}_{k}^{2} + 2 \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} \overline{r}_{k}.\overline{r}_{j}^{2} + \overline{r}_{k}^{2} + \overline{r}_{k}^{2}$$

Statistics of the Random Walk Model: End-to-end distribution

1D case

Statistics of the Random Walk Model: End-to-end distribution

$$\mathcal{P}(n_{tot}, q) = \frac{1}{2}^{n_{tot}} \frac{n_{tot}!}{(\frac{n_{tot}+q}{2})!(\frac{n_{tot}-q}{2})!}$$

$$I(x_n) = \left(\frac{3}{2\pi na^2}\right)^{1/2} \exp\left(-\frac{3}{2} \frac{x_n^2}{na^2}\right)$$

$$Z_{R^2} > Gaussian$$

Statistics of the Random Walk Model: End-to-end distribution

$$P(R_n) = I(x_n)I(y_n)I(z_n)$$

$$Convert Spherical polar coord$$

$$Id^3r = \int r^2 sino dr dodp$$

$$P(R_n) = \left(\frac{3}{3\pi ra^2}\right)^3 4\pi R_n^2 \exp\left(-\frac{3R_n^2}{2\pi a^2}\right)$$

Coding considerations:

Binning distributions

Discretizing continuous functions Appendix I.3

Choose n_{bin}

$$\Delta = \frac{R_n^{max} - R_n^{min}}{n_{bin}}$$

Random Number Generator

Appendix I.2

To reproduce a "random" result, pick a consistent *seed*

Python:

numpy.random.rand(...): generates (pseudo-)random number over [0,1)

numpy.ceil(...): round to next highest integer

User chooses *nt* = number of time steps

Concept

Variable, integer

Python Representation

nt

Objective

User chooses *nt* = number of time steps

Keep track of position of random walker at each time step.

Let's assume it starts at the origin.

Concept

Variable, integer

Array (list of items) e.g., [3, 4.5, 8, -1]

 $2D \rightarrow x$ and y coordinate for each position

Python Representation

nt

Use the library numpy, shorthand is np:

```
x = np.zeros(nt+1)
y = np.zeros(nt+1)
```

Objective

User chooses *nt* = number of time steps

Keep track of position of random walker at each time step. Let's assume it starts at the origin.

Specify how the position changes at each time step.

Concept

Variable, integer

Array (list of items) e.g., [3, 4.5, 8, -1]

 $2D \rightarrow x$ and y coordinate for each position

Python Representation

nt

Use the library numpy, shorthand is np:

```
x = np.zeros(nt+1)
y = np.zeros(nt+1)
```

```
delx =
np.array([?,?,?,?])
dely =
np.array([?,?,?,?])
```

Objective

User chooses nt = number of time steps

Keep track of position of random walker at each time step.

Let's assume it starts at the origin.

Specify how the position changes at each time step.

Save each new position of the diffusion path

Concept

Variable, integer

Array (list of items) e.g., [3, 4.5, 8, -1]

 $2D \rightarrow x$ and y coordinate for each position

i.e., access a specific element "zero index"

Python Representation

nt

Use the library numpy, shorthand is np:

```
x = np.zeros(nt+1)
y = np.zeros(nt+1)
```

Objective

Repeat for *nt* times

Encode the random number to a change in position of the random walker

Concept

for loop range function

Generate a (pseudo)-random number

Python Representation

```
Input:
    for i in range(3):
        print(i)
Output:
    0
1
2
```

```
np.floor(4* np.random.rand(nt))
```

Generate random number b/t 0 and 1

Random number b/t 0 and 4

Random integer: 0, 1, 2, 3