Specimen assessment materials Higher tier Unit 2 Stage 2 mark scheme

No	Working	Answer	Mark	Notes
1	2.4 + 1.9 = 4.3	0.215	2	M1 correct order of evaluation
	20 20			A1 cao
2 (a)	$ADB = 48^{\circ}$	96	2	B1 48
	$BAD = 180^{\circ} - 36^{\circ} - 48^{\circ}$			B1 cao
	Or			
	$ACE = 36^{\circ}$ $BAD = 180^{\circ} - 36^{\circ} - 48^{\circ}$			
	BAD - 180 - 30 - 48			
(b)	$ADB = 48^{\circ}$ (Corresponding angles)	Correct reasons	1	B1 Both reasons (oe)
	$BAD = 180^{\circ} - 36^{\circ} - 48^{\circ}$ (Angle sum of a			
	triangle)			
3	D = 220 - 40	72	3	M1 for use of S D
	$S = \frac{220 - 40}{2.5}$			M1 for use of $S = \frac{D}{T}$
	2.5			A1 for $\frac{180}{2.5}$
				$\frac{\text{A1 for }}{2.5}$
				A1 for 72

No	Working	Answer	Mark	Notes
4 (a)		7^{13}	1	B1 cao
(b)	$\begin{vmatrix} \frac{3^{28}}{3^{26}} = 3^2\\ 3^2 \times 3^x = 9 \end{vmatrix}$	0	2	$M1 \frac{3^{28}}{3^{26}} = 3^2$
	$3^2 \times 3^x = 9$			A1 cao
5		5.12 × 10 ¹¹	2	M1 evidenced by 5.12 A1 cao
6 (a)		$2x^2 + 6x$	2	B2 $2x^2 + 6x$ cao (B1 $2x^2$ or B1 $6x$ seen)
(b)		(y-6)(y+1)	2	B2 (B1 $(y + a)(y + b)$ with $ab = -6$)
7	$360^{\circ} - 45^{\circ} - 2 \times 90^{\circ}$	135°	2	M1 recognition of <i>OSPA</i> as a quadrilateral with angles <i>S</i> and <i>A</i> being right angles A1 cao

No	Working	Answer	Mark	Notes
8	$x(x+5)+(x+1)^2$		3	M1 split into 2 parts with at least one
	$=x^2+5x+x^2+2x+1$			correct expression for one of the parts
	$2x^2 + 7x + 1 = 21$			A1 $x^2 + 5x$ or $x^2 + 2x + 1$
	$2x^2 + 7x - 20 = 0$			A1 for fully correct working leading to the
				given answer OR
	OR			M1 split into 2 parts with at least one
	(2x+1)(x+1)+4x			correct expression for one of the parts
	$=2x^2+3x+1+4x$			A1 $2x^2 + 3x + 1$ or $4x$
	$2x^2 + 7x + 1 = 21$			A1 for fully correct working leading to the
	$2x^2 + 7x - 20 = 0$			given answer
				OR
				M1 difference of 2 parts with at least one
	OR			correct expression for one of the parts
	(2x+1)(x+5)-4(x+1)			$A12x^2 + 11x + 5$ or $4x + 4$
	$=2x^2+11x+5-4x-4$			A1 for fully correct working leading to the
	$2x^2 + 7x + 1 = 21$			given answer
	$2x^2 + 7x - 20 = 0$			

No	Working	Answer	Mark	Notes
9	Difference = $n^2 - n$ = $n(n-1)$ Given $n > 2$, this is the product of 2 integers, neither of which is one Hence not prime Or If n is even then so is n^2 Hence, $n^2 - n$ is even, so not prime If n is odd then so is n^2	Answer	Mark 3	M1 Difference = $n^2 - n$ A1 $n(n-1)$ A1 for fully correct reasoning leading to convincing proof of the statement M1 consideration of even and odd cases A1 even case A1 odd case
	Hence, $n^2 - n$ is even, so not prime			