1. Muc tiêu (Mission Objective)

Hệ thống có nhiệm vụ đo và ghi lại dữ liệu nhiệt độ từ cảm biến, sau đó truyền dữ liệu qua Wi-Fi lên nền tảng IoT (ví dụ: ThingSpeak hoặc server riêng). Dữ liệu được lưu trữ, giám sát và phân tích từ xa thông qua giao diện web hoặc ứng dụng.

2. Functional Requirement

Number	Description	Note
R1.1	Đọc được giá trị nhiệt độ từ cảm biến LM35.	
R1.2	Hiển thị nhiệt độ đo được lên LCD (định dạng: xx.x °C).	
R1.3	Kết nối với Wi-Fi thông qua module ESP8266.	
R1.4	Gửi dữ liệu nhiệt độ lên ThingSpeak server thông qua API Key.	
R1.5	Hệ thống phải đảm bảo chu kỳ gửi dữ liệu tối thiểu 15 giây/lần.	
R1.6	Lưu dữ liệu khi không có kết nối Wi-Fi.	
R1.7	Tự động đồng bộ dữ liệu bị trễ khi Wi-Fi được khôi phục.	
R1.8	Người dùng có thể xem dữ liệu nhiệt độ theo thời gian thực trên ThingSpeak.	

2.1.Đọc giá trị nhiệt độ từ cảm biến LM35

- Hệ thống phải đo được nhiệt độ môi trường xung quanh bằng cảm biến LM35.
- Vi điều khiển PIC đọc dữ liệu analog thông qua ADC (10-bit hoặc 12-bit).
- Chu kỳ đọc: định kỳ (ví dụ: 15 giây/lần, có thể cấu hình).
- Nếu tín hiệu bị lỗi (ví dụ: dây tín hiệu ngắt), hệ thống phải phát hiện giá trị bất thường (ngoài dải hợp lệ).
- Ràng buộc: LM35 xuất tín hiệu analog tuyến tính 10 mV/°C, yêu cầu nguồn tham chiếu ADC ổn đinh.

2.2. Hiển thi nhiệt đô đo được lên LCD

- Người dùng có thể quan sát trực tiếp nhiệt độ tại thiết bị.
- LCD 16x2 hiển thị định dạng xx.x °C.
- Cập nhật theo chu kỳ đọc cảm biến.
- Nếu mất tín hiệu cảm biến \rightarrow hiển thị lỗi.

- Ký tự hiển thị rõ ràng, không vượt quá độ trễ 2 giây sau khi đo.
- 2.3.Kết nối với Wi-Fi thông qua module ESP8266
 - Hệ thống phải truyền dữ liệu qua mạng Wi-Fi để kết nối Internet.
 - ESP8266 giao tiếp với PIC qua UART (AT Command hoặc firmware custom).
 - Hỗ trợ chuẩn Wi-Fi 802.11 b/g/n, 2.4 GHz.
 - Nếu Wi-Fi mất → hệ thống phải thử kết nối lại định kỳ.
 - Cấu hình Wi-Fi (SSID, Password) lưu trong bộ nhớ PIC hoặc ESP8266.
- 2.4. Gửi dữ liệu nhiệt độ lên ThingSpeak server thông qua API Key
 - Dữ liệu được truyền đến nền tảng IoT để giám sát từ xa.
 - Dữ liệu gửi bằng HTTP POST hoặc MQTT (ThingSpeak hỗ trợ).
 - Kèm API Key để xác thực người dùng.
 - Mỗi bản tin gồm: thời gian (timestamp), nhiệt độ.
 - Tuân thủ giới hạn ThingSpeak (tối thiểu 15 giây giữa 2 lần gửi).
- 2.5.Hệ thống phải đảm bảo chu kỳ gửi dữ liệu tối thiểu 15 giây/lần
 - Đảm bảo dữ liệu cập nhật kịp thời nhưng không vượt giới hạn của server.
 - PIC có bộ định thời (Timer) để điều khiển chu kỳ gửi.
 - Tần suất mặc định: 15 giây, nhưng có thể cấu hình ≥ 15 giây.
 - Nếu gửi lỗi \rightarrow thử lại sau 15 giây tiếp theo.
 - Không vi phạm policy ThingSpeak (không gửi nhanh hơn).
- 2.6.Lưu dữ liệu khi không có kết nối Wi-Fi
 - Không mất dữ liệu trong thời gian Wi-Fi gián đoạn.
 - Dữ liệu nhiệt độ lưu tạm vào EEPROM/Flash.
 - Ghi kèm timestamp (từ NTP hoặc RTC nội bộ).
 - Bộ nhớ tối thiểu phải lưu được ~ 100 bản ghi khi mất mạng dài hạn.
 - Bộ nhớ giới hạn, cần cơ chế ghi vòng tròn (FIFO).
- 2.7. Tự động đồng bộ dữ liệu bị trễ khi Wi-Fi được khôi phục

- Đảm bảo dữ liệu liên tục, không mất gói khi giám sát từ xa.
- Khi Wi-Fi trở lại → hệ thống lần lượt gửi các bản ghi lưu trong EEPROM.
- Thứ tự đồng bộ: FIFO (theo thời gian đo).
- Khi bộ nhớ đầy → dữ liệu cũ nhất sẽ bị ghi đè.
- Không làm gián đoạn việc gửi dữ liệu hiện tại.
- 2.8.Người dùng có thể xem dữ liệu nhiệt độ theo thời gian thực trên ThingSpeak
 - Người dùng theo dõi dữ liệu qua giao diện IoT.
 - ThingSpeak hiển thị biểu đồ line chart theo thời gian.
 - Dữ liệu cập nhật đúng chu kỳ gửi.
 - Người dùng truy cập từ trình duyệt web hoặc app di động.
 - Yêu cầu Internet và API Key hợp lệ để xem kênh dữ liệu.
- 3. Non-functioanl Requirement

Number	Description	Note
R2.1	Độ chính xác đo nhiệt độ sai số không vượt quá ±1 °C.	
R2.2	Giao diện ThingSpeak phải hiển thị biểu đồ dữ liệu kiểu line chart.	
R2.3	Từ lúc đo đến lúc gửi dữ liệu không quá 2 giây.	
R2.4	Hệ thống phải hoạt động trong dải nhiệt độ môi trường -30 °C đến 100 °C.	
R2.5	Sử dụng nguồn một chiều 12V-1A.	
R2.6	Sử dụng giao thức HTTP/MQTT chuẩn do ThingSpeak hỗ trợ.	
R2.7	Chi phí linh kiện ít hơn 500.000VND	

- 3.1. Độ chính xác đo nhiệt độ sai số không vượt quá ± 1 °C
 - Đảm bảo dữ liệu đo có độ tin cậy cho giám sát và phân tích.
 - Cảm biến LM35 (±0.5 °C trong đải thường).
 - Cần hiệu chỉnh (calibration) ban đầu để giảm sai số hệ thống.
 - Nguồn tham chiếu ADC phải ổn định, tránh nhiễu khi đo.
- 3.2. Giao diện ThingSpeak phải hiển thị biểu đồ dữ liệu kiểu line chart
 - Người dùng dễ dàng theo dõi sự biến đổi nhiệt độ theo thời gian.
 - ThingSpeak kênh dữ liệu phải bật chế độ "Line Chart".

- Trục X: thời gian; trục Y: nhiệt độ (°C).
- Biểu đồ có thể hiển thị theo ngày, giờ hoặc thời gian thực.
- Phụ thuộc vào tính năng visualization của ThingSpeak.

3.3. Từ lúc đo đến lúc gửi dữ liệu không quá 2 giây

- Đảm bảo độ trễ thấp, dữ liệu cập nhật gần với thời gian thực.
- PIC16F887 xử lý ADC và hiển thị LCD trong < 500 ms.
- Gửi gói dữ liệu qua Wi-Fi trong < 1.5 giây (nếu mạng ổn định).
- Độ trễ có thể tăng khi mạng Wi-Fi yếu hoặc server quá tải.

3.4.Hệ thống phải hoạt động trong dải nhiệt độ môi trường -30 °C đến 100 °C

- Cho phép thiết bị hoạt động ổn định trong nhiều điều kiện môi trường.
- Linh kiện chọn loại chịu nhiệt độ công nghiệp (-40 °C \rightarrow +125 °C).
- Vỏ bảo vệ chống ẩm, bụi.
- Nguồn adapter và LCD có thể hạn chế dải hoạt động (0–70 °C), cần chọn loại phù hợp.

3.5.Sử dụng nguồn một chiều 12V-1A

- Cung cấp đủ năng lượng cho hệ thống (PIC + ESP8266 + LCD).
- Dùng adapter 12V-1A, có IC ổn áp xuống 5V và 3.3V.
- Công suất tối thiểu 12W, đủ cho các module hoạt động đồng thời.
- Cần mạch bảo vệ chống ngắn mạch, quá dòng.

3.6. Sử dụng giao thức HTTP/MQTT chuẩn do ThingSpeak hỗ trợ

- Đảm bảo khả năng tích hợp với nền tảng IoT phổ biến.
- Hệ thống hỗ trợ HTTP POST hoặc MQTT publish.
- Có khả năng thêm Header chứa API Key để xác thực.
- Giới hạn tốc độ gửi dữ liệu của ThingSpeak (≥15 giây/lần).

3.7.Chi phí linh kiện ít hơn 500.000 VND

- Đảm bảo hệ thống rẻ, dễ triển khai cho nghiên cứu/DIY.
- Tổng chi phí < 500k VND (chưa tính công lắp ráp).

- 4. Yêu cầu hệ thống (System Requirements)
- 4.1.Phần cứng (Hardware)
 - Vi điều khiển: PIC16F/18F hoặc tương tự, có khả năng giao tiếp UART/SPI/I2C.
 - Cảm biến nhiệt độ: Cảm biến số (ví dụ: DS18B20) hoặc analog (LM35).
 - Kết nối Wi-Fi: Module ESP8266 hoặc ESP01 để truyền dữ liệu lên Internet.
 - Nguồn cấp: 5V DC qua adapter hoặc USB.
 - Bộ nhớ: EEPROM/Flash để lưu trữ tạm dữ liệu khi mất kết nối mạng.

4.2.Phần mềm nhúng (Embedded Software)

- Đo lường: Đọc dữ liệu nhiệt độ định kỳ (ví dụ: mỗi 10s).
- Xử lý: Chuyển đổi dữ liệu ADC thành giá trị nhiệt độ (nếu dùng cảm biến analog).
- Ghi log: Lưu dữ liệu vào bộ nhớ tạm trước khi gửi.
- Truyền thông: Gửi dữ liệu qua Wi-Fi đến server IoT.
- Bảo mật: Hỗ trợ mã hóa cơ bản (HTTP hoặc HTTPS nếu module hỗ trợ).

4.3.Kết nối IoT (IoT Connectivity)

- Wi-Fi: Chuẩn 2.4 GHz, cấu hình qua AT command.
- Server: ThingSpeak, MQTT broker hoặc web server tự triển khai.
- Định dạng dữ liệu: JSON hoặc HTTP POST.
- Đồng bộ thời gian: Sử dụng NTP qua Wi-Fi để gắn timestamp cho dữ liệu.

4.4. Giao diện người dùng (User Interface)

Web/Úng dụng IoT:

- Hiển thị dữ liệu nhiệt độ theo thời gian thực.
- Biểu đồ dữ liệu theo ngày/giờ.
- Cảnh báo khi nhiệt độ vượt ngưỡng (qua email/app).
- Nút nhấn (nếu có): Reset kết nối Wi-Fi hoặc cấu hình lại thiết bị.

4.5. Hiệu năng (Performance)

- Độ chính xác nhiệt độ: ±0.5°C (tùy cảm biến).
- Tần suất đo và gửi: 1 lần/10s (cấu hình được).
- Độ trễ dữ liệu: < 2s (trong điều kiện Wi-Fi ổn định).

- Độ tin cậy: Hệ thống phải tự động kết nối lại khi mất Wi-Fi.
- 5. Ràng buộc (Constraints)
 - Chỉ hoạt động trong vùng có Wi-Fi.
 - Giới hạn bởi khả năng xử lý của vi điều khiển PIC.
 - Lưu trữ cục bộ chỉ mang tính tạm thời.
- 6. Khả năng mở rộng (Future Expansion)
 - Hỗ trợ nhiều cảm biến (nhiệt độ, độ ẩm, ánh sáng).
 - Tích hợp Bluetooth cho cấu hình ban đầu.
 - Hỗ trợ pin và năng lượng mặt trời cho ứng dụng di động.