M 383: Assignment 7

Nathan Stouffer

Problem. Let A be the set defined by the equations $f_1(x) = 0$, $f_2(x) = 1$, ..., $f_n(x) = 0$, where $f_1, ..., f_n$ are continuous functions defined on the whole line. Show that A is closed. Must A be compact?

Proof. We first show that A is closed. Given a function f^k , let $D_k = \{x \mid f^k(x) = 0\}$. Then we can say that $A = \bigcup_{i=1}^n D_i$. So A is union of a finite number of sets. If each D_k is closed, then A (a finite intersection of closed sets) must also be closed.

Let's now verify that every D_k is closed. Pick an arbitrary $D_k = \{x \mid f^k(x) = 0\}$. Now consider the result (from exercise 4.1.5 problem 1) that a function f defined on a closed domain is continuous if and only if the inverse image of every closed set is a closed set. f^k is a continuous function (by hypothesis) defined on the closed set \mathbb{R} , so we can equivalently say that the inverse image of every closed set is a closed set. Since $\{0\}$ is a closed set, the inverse image of $\{0\}$ under f^k is closed. But the inverse image is $\{x \mid f^k(x) = 0\}$ which is D_k . Therefore D_k is closed which implies that A is closed.

It is not necessarily the case that A is compact. We already know A is necessarily closed so let's find a counterexample where A is not bounded (since then A will not be compact). Suppose we have f^1 be the constant function $f^1: x \mapsto 0$. Then $D_1 = \{x \mid f^1(x) = 0\} = \mathbb{R}$ which is not bounded. Therefore A is not necessarily compact.

Problem. Give a definition of $\lim_{x\to\infty} f(x) = y$. Show that this is true if and only if for every sequence $x_1, x_2, ...$ of points in the domain of f such that $\lim_{n\to\infty} x_n = +\infty$, we have $\lim_{n\to\infty} f(x_n) = y$.

Proof. We define $\lim_{x\to\infty} f(x)$ (for functions with unbounded positive domain) to be $y\in\mathbb{R}$ such that for all m there exists n such that for all x>n ($x\in\mathbb{R}$) we have |y-f(x)|<1/m. We now show that this is the case if and only if every sequence of points in the domain with a limit of $+\infty$ has $\lim_{n\to\infty} f(x_n)=y$.

First suppose that y is a real number such that for every m there exists n such that for all x>n we have |y-f(x)|<1/m. Then we would like to show every sequence $x_1,x_2,...$ in the domain of f with $+\infty$ as a limit has $\lim_{n\to\infty} f(x_n)=y$. The sequence $x_1,x_2,...\to +\infty$ so for every $a\in\mathbb{N}$ there exists an index b such that for all $j\geq b$ we have $x_j>a$. But then taking a=n we have $|y-f(x_j)|<1/m$ for all $j\geq n$. In the limit $j\to\infty$, we have $|y-f(x)|\leq 1/m$ which satisfies $\lim_{n\to\infty} f(x_n)=y$.

Now suppose that every sequence of points in the domain of f such that $\lim_{x\to\infty} x_n = +\infty$, we have $\lim_{n\to\infty} f(x_n) = y$. We want to show that $\lim_{x\to\infty} f(x) = y$. By Theorem 4.1.1, what we just said is equivalent to claiming that $\lim_{x\to\infty} f(x)$ exists. Further, the theorem states that every sequence $f(x_1), f(x_2), \ldots$ has a common limit and that common limit the limit of the function. Therefore $\lim_{x\to\infty} f(x) = y$.

Problem. Give an example of a continuous function with domain \mathbb{R} such that the inverse image of a compact set is not compact.

Proof. Consider the example I gave in Problem 2 where f is the constant function that takes every real number to 0. Certainly f is continuous and the compact set 0 has $\mathbb R$ for an inverse image under f. Although $\mathbb R$ is closed, it is not bounded so $\mathbb R$ is not compact.

Problem. Show that a function that satisfies a Lipschitz condition is uniformly continuous.

Proof. Suppose we have some function f such that $|x-x_0|<1/Mm$ implies that $|f(x)-f(x_0)|<1/m$ for some constant M, is f uniformly continuous? The function f is uniformly continuous if for all m, there exists a n such that $|x-x_0|<1/n$ implies that $|f(x)-f(x_0)|<1/m$ for all $x,x_0\in D$ satisfying $|x-x_0|<1/n$. From the fact that f satisfies a Lipschitz condition, we can gather that $|f(x)-f(x_0)|\leq M|x-x_0|$. Then we can just take n=Mm to satisfy uniform continuity: $|f(x)-f(x_0)|< M|x-x_0|=M*1/Mm=1/m$. Therefore f must also be uniformly continuous.