

Panel Fotovoltaico IUSASOL

Energía Solar

Actualmente es una de las energías renovables más desarrolladas y usadas en todo el mundo.

Básicamente consiste en aprovechar la energía producida por el sol y convertirla en energía útil por el ser humano, ya sea para calentar algo o producir electricidad principalmente.

Para generar energía solar fotovoltaica (electricidad), se usan las celdas solares que se encargan de transformarla en energía eléctrica.

¿Cómo es el proceso de captación?

Los módulos o colectores fotovoltaicos están formados por dispositivos semiconductores tipo diodo que, al recibir radiación solar, se excitan y provocan saltos electrónicos, generando una pequeña diferencia de potencial en sus extremos.

El acoplamiento en serie de varios de estos fotodiodos permite obtención de voltajes mayores en configuraciones muy sencillas y aptas para alimentar dispositivos electrónicos.

¿Cómo funciona?

La energía solar que llega al panel, se convierte en energía eléctrica que pasa por un inversor de corriente que convierte de corriente continua a corriente alterna y así podemos aprovecharla en casa.

Corriente Directa / Corriente Alterna

• Corriente directa (CD): también llamada corriente continua (CC), se refiere al flujo continuo de carga eléctrica a través de un conductor entre dos puntos de distinto potencial, que no cambia de sentido con el tiempo.

+ V_O t

•Corriente alterna (CA): es la corriente eléctrica en la que la magnitud y el sentido varían cíclicamente, se refiere a la forma en la cual la electricidad llega a los hogares y a las industrias.

¿Tipos de paneles?

Mono Cristalino 14 a 23% Nota: Más eficiente. Rígido.

Poli Cristalino 13 a 17% Nota: eficiente., más común Menos área por watt. Rígido.

CIGS 12% a 14% Nota: No utiliza silicón. Puede ser más flexible

Telurio de Cadmio 10% a 11% Nota: No utiliza silicón. Rígido

Película delgada de Si 6% a 11% Nota: Utiliza relativamente poco silicón. Puede ser flexible

Características del Sistema de Paneles IUSASOL

- 1.- Panel fotovoltaico policristalino
- 2.- Inversor de corriente
- 3.- Cable
- 4.- Bases y tornillería
- 5.- Manual de instalación

1.- Panel fotovoltaico Policristalino

Con una planta automatizada y el mejor talento mexicano, contamos con una capacidad de producción de 500MWs anuales de paneles policristalinos de 250 Wp.

Modelo	PV - 01 - 250
Dimensiones	993 mm (W) x 1,668 mm (L) x 46,2 mm (H)
Peso	Aprox. 19 kg.
Celdas Solares	60 celdas en serie (6x10 matriz)
Cables y conector	Cable de 4 mm de sección (12 WG) con conector MC4 resistente a la intemperie. Certificado IP68, IEC certificada (UL, listed)
Caja de conexión	3 diodos de bypass para prevenir la pérdida de potencia por sombra parciaol
Construcción	Frontal: Vidrio de Alta transmisividad, texturado y templado 3.2 mm (EN-12150) Encapsulante: EVA Back Sheet: film resistente a la intemperie
Marco	Aluminio anodizado tipo 6063, con toma de tierra

Características Eléctricas

Comportamiento en STC: Irradiancia 1,000 W/m2, temperatura de célula 25° C, AM, 1,5.

Modelo	PV - 01 - 250	
Potencia nominal (Pmax)	250 W	
Tensión en circuito abierto (Voc)	37,8 V	
Corriente de cortocircuito (Isc)	8,75 A	
Tensión en el punto de máxima potencia (Vmax)	30.6 V	
Corriente en el punto de máxima potencia (Imax)	8,17 A	
Eficiencia	15,1%	
Tolerancia de potencia (% Pmax)	0/+3%	

Características Eléctricas

Comportamiento en STC: Irradiancia 800 W/m2, TONC, temperatura ambiente 20° C, AM, 1,5; velocidad del viento 1 m/s

Modelo	PV - 01 - 250	
Potencia nominal (Pmax)	182 W	
Tensión en circuito abierto (Voc)	34,61 V	
Corriente de cortocircuito (Isc)	7,13 A	
Tensión en el punto de máxima potencia (Vmax)	27,42 V	
Corriente en el punto de máxima potencia (Imax)	6,62 A	

Características Operativas

Modelo	PV - 01 - 250
Operación nominal de la célula	46° +-2
Temperatura de operación	-40° - 85° C
Tensión máxima de sistema	DC 1,000 V (IEC) DC 600 V (UL)
Corriente máxima inversa	15 A
Coeficiente de temperatura (Pmax)	-0,44% K
Coeficiente de temperatura (Voc)	-0,334% K
Coeficiente de temperatura (Isc)	0,048% K

¿Ventajas?

ALTA CALIDAD

- -I EC 61215 e IEC 61730
- UL listed (UL 1703), Class C Fire Rating
- Tolerancia Potencia de Salida +3/-0%
- Test de carga mecánica (5,400 Pa) (IEC)
- Ammonia Corrosion Resistance Test
- IEC 61701 (Test niebla salina)

MONTAJE RÁPIDO Y ECONÓMICO

- -Se entrega listo para la conexión
- Conectores certificados y resistentes a la intemperie IEC (UL)
- 3 diodos bypass integrados

GARANTÍA IUSASOL

- -5 años de garantía en defecto de producto
- 10 años garantizando el 90% de la potencia mínima
- 25 años garantizando el 80% de la potencia mínima

La energía eléctrica generada por el panel ayuda a disminuir el consumo cobrado por CFE. De ésta manera, ahorras y contribuyes a mejorar el medio ambiente, generando energía de manera limpia y en tu propia casa.

2.- Micro Inversor de Corriente

Microinversor IUSA, Diseñado específicamente para interconexiones en el sistema de distribución mexicano. Ofrece una alternativa económica, segura y fácil de instalar. Con 127 V AC mayor eficiencia para 250 Wp.

Micro Inversor de corriente CC/CA para Modulo Fotovoltaico M-I 250

Este inversor permite conectar un módulo fotovoltaico a una instalación eléctrica para utilizar la energía generada dentro de la misma sin utilizar baterías ni regulador de acuerdo a las normas vigentes.

Funcionamiento del Micro Inversor

Recoge la energía generada por un módulo fotovoltaico, la inyecta a la red mediante un proceso de sincronización.

Se insertan los conectores del módulo fotovoltaico tipo (clavija) al inversor y de éste a la línea y el neutro del centro de carga aterrizado, el cable de tierra al sistema de tierras local.

El Micro inversor de corriente cc/ca para módulo fotovoltaico M-I 250, máxima la producción de energía colectada por el módulo fotovoltaico, debido a que cada Micro inversor de corriente CC/CA para módulo fotovoltaico M-I 250 está conectado individualmente a un módulo fotovoltaico, esta configuración individual maximiza el MPPT (Máximo Power Point Tracker), asegurando la máxima potencia extraída por el inversor al módulo fotovoltaico, debido a que este baja su rendimiento cuando se ve afectado por algún sombreado, suciedad y por una mala orientación.

Los módulos fotovoltaicos deben estar orientados hacia el sur con una inclinación de 20° para garantizar la recolección de la máxima de radiación solar a lo largo del día.

Características

MICROINVERSOR DE CORRIENTE CC / CA PARA MODULO FOTOVOLTAICO M-I 250 Especificaciones técnicas de la entrada CC.					
Tensión de entrada de funcionamiento	Vcc	20	46		
Tensión de funcionamiento (MPPT)	Vcc	20	46		
Máxima tensión de entrada	Vcc		52		
Máxima corriente de corto circuito	A		15		
Máxima corriente de entrada	A		8.3		
Protección por derivación a tierra	mA		1000		

Características

Especificaciones técnicas de la salida CA.					
Máxima potencia de la salida	W		250		
Factor de potencia permitido		0.95			
Rango de tensión de salida CA:		•			
_ En sistema monofásico	V~	90	140		
Máxima corriente de salida	Α		1.7		
Frecuencia	Hz	59.31	60.7		
Eficiencia	%	91			
Eficiencia MPPT	%		99.5		
Distorsión armónica máxima	%		5		

Características

Protección por limites de frecuencia

Protección por sobre voltaje en la red eléctrica
Protección por ausencia de voltaje en la red eléctrica

Protección por sobre corriente

Conector: MC4 para el panel.

Refrigeración: sin ventilador

Dimensiones:(Ancho x Largo x Espesor):216.5mm X 342.1mm X 55.8 mm

Ventajas

Basado en la tecnología IUSA, el Micro inversor M-I 250 incorpora las últimas innovaciones en electrónica de potencia y microchips personalizados para ofrecer:

- Mayor eficiencia
- Máxima potencia
- Instalación simple

El Micro inversor M-I 250 IUSA cuenta con los dispositivos necesarios para sincronizar el sistema de generación local con el sistema de generación de la CFE.

El Inversor M-I 250 IUSA puede operar en paralelo con el sistema eléctrico nacional sin causar fluctuación de tensión mayor a +/-5% de los niveles de tensión del Sistema Eléctrico Nacional en el punto de interconexión.

Incorpora las últimas innovaciones en electrónica de potencia y microchips personalizados para ofrecer la más alta eficiencia del mercado y una amplia gama de características de rendimiento patentados que maximizan el rendimiento de los módulos solares.

Beneficios

- Evita consumo de combustibles fósiles
- El costo de generación es estable y fijo a lo largo del tiempo reduciendo riesgos asociados a la volatilidad de precios de combustibles
- -Reduce el impacto ambiental
- -Impulsa el desarrollo sustentable
- Libera capacidad de generación de CFE
- Libera capacidad de transmisión de CFE
- Evita perdidas de transmisión en la red al generarse de manera distribuida - Elegible para Bonos de Carbono

Incentivos Fiscales

- Los contribuyentes del ISR podrán depreciar el 100% de la inversión en un solo ejercicio.

3.- Cable

10 mts. cable multiconductor TC THHN (3x12) AWG.

4.- Bases y Tornillería

Fabricada con plásticos 100% reciclados, que disminuye el impacto ambiental al mismo tiempo que reduce el costo de la instalación. Actualmente cuenta con instalaciones en distintos puntos alrededor del país.

