Math 239 - Tutorial 7

Mar 13, 2013

1. Prove that, if G is connected, then any two longest paths have a vertex in common.

Solution. Assume the contrary, i.e. assume that there are two longest paths P_1 and P_2 that don't have a vertex in common, and let their length be k. Take the shortest path P that has one endpoint in $V(P_1)$ and the other in $V(P_2)$ and name its endpoints $v \in V(P_1)$ and $w \in V(P_2)$ and its length $l \geq 1$. As G is connected, there is such a path, and as the length of P was chosen to be minimal, v is its only vertex in $V(P_1)$ and w the only vertex in $V(P_2)$: Assume there is another vertex $x \in V(P_1)$ along P, then the path segment from x to w would be a shorter path with endpoints in $V(P_1)$ and $V(P_2)$, contradicting the minimal length. Similarly there is no other vertex $y \in V(P_2)$ apart from w. Note that v divides P_1 up into two parts, let the longer one of the parts be Q_1 , and note that it has length at least $\lceil \frac{k}{2} \rceil$. Similarly w divides P_2 up into two parts, name the longer one Q_2 and its length is at least $\lceil \frac{k}{2} \rceil$. Then the new path $Q_1 P Q_2$ (the path obtained by attaching these three paths together) has length at least $\lceil \frac{k}{2} \rceil + l + \lceil \frac{k}{2} \rceil \ge 2 \lceil \frac{k}{2} \rceil + 1 \ge k + 1$. But this contradicts the maximality of P_1 and P_2 , so the assumption that they had no vertex in common must be wrong.

2. Let G be a graph with p vertices and every vertex of G has degree at least (p-1)/2. Prove that G is connected.

Solution. Let $x \in V(G)$ and N(x) be the set of neighbours of x. Let $S = V(G) - (N(x) \cup \{x\})$. As we have that $|N(x)| \ge (p-1)/2$, then $|S| \le p - (p-1)/2 - 1 = (p-1)/2$, therefore each $z \in S$ is adjacent to at least one neighbour of G. Hence any vertex is connected to x and we obtained that G is connected.

- 3. Prove that if every vertex of a graph G has degree at least 3, then G contains a cycle of even length.
 - **Solution.** Let P be a longest path in G. Let v be an end vertex of P. All neighbours of v are in P otherwise, we could add a neighbour of v to P to make P longer. Suppose a neighbour w of v is at an odd distance from v in the path. Then taking the path in P from v to w (which has an odd number of edges) and adding the edge from v to w gives an even cycle.
 - Now suppose no neighbour of v is at an odd distance from v in the path. Then there are two neighbours of v, say u and w, that are both at an even distance from v. Then the path in P from u to w (which has an even number of edges) and the edges uv and vw gives an even cycle.
- 4. A forest is a graph with no cycles. Let G be a graph, a maximal spanning forest T is a spanning subgraph of G that is a forest, and that is maximal with respect to the number of edges. Show that if k is the number of components of G, then |E(T)| = |V(G)| k.

Solution. Let T be a maximal spanning forest of G. Let G_1, \ldots, G_k be the components of G. For any $i = 1, \ldots, k$ let T_i be the induced subgraph of T by $V(G_i)$. Observe that T_i is acyclic and is a spanning subgraph of the connected graph G_i . As T was edge maximal, T_i must be a spanning tree of G_i . Thus we know that $|E(T_i)| = |V(G_i)| - 1$. Observe that for $i \neq j$, there are no T_iT_j -edges. Therefore $|E(T)| = \sum_{i=1}^k |E(T_i)| = \sum_{i=1}^k |V(G_i)| - 1 = |V(G_i)| - k$.

5. Prove that every tree is bipartite.

Solution. By induction. If tree T has only one vertex, then the result is clearly true (Take $(\{v\}, \emptyset)$ as the bipartition). Suppose any tree with $k \geq 1$ vertices is bipartite. Let T be a tree with k + 1 vertices. Since $k+1 \geq 2$, T has a leaf v. By induction, T-v is bipartite, with bipartition (A, B). Since

v is a leaf, it has exactly one neighbour, w. We may assume that $w \in A$. Then setting $B := B \cup \{v\}$ gives a partition (A, B) of V(T), where no pair of vertices in the same part of the partition is adjacent. Thus T is bipartite.

6. Prove that the only k-regular trees for any k are K_1 (with k=0) and K_2 (with k=1).

Solution. Assume we have such a k-regular tree T on n vertices for some k and n. Recall that by Theorem 5.1.5 a tree T on n vertices has exactly n-1 edges. Further recall that by Theorem 4.3.1,

$$2|E(T)| = \sum_{v \in V(T)} \deg(v)$$

Expanding this equation using our knowledge about the number of edges and k-regularity, we get:

$$2n-2=2|E(T)|=\sum_{v\in V(T)}\deg(v)=\sum_{v\in V(T)}k=kn$$

By transforming the equation formed by the term at the very left and right, we get that (2-k)n=2. As k and n are non-negative integers, this means that either 2-k=2 and n=1 or 2-k=1 and n=2. In the first case we get k=0 and n=1 and the corresponding graph is K_1 , in the second case we get k=1 and n=2 and the corresponding graph is K_2 .

Note: A shorter proof to this is using the knowledge from class that any tree on at least 2 vertices has a leaf. So for a tree on at least 2 vertices to be k-regular, k must be 1. But then the graph can only be a number of disjoint copies of K_2 , meaning it is not connected and thus not a tree if it has more than 2 vertices.