JC13 Rec'd PCT/PTO 15 APR 2005

SEQUENCE LISTING

<110> Bayer HealthCare AG Golz, Stefan Bruggemeier, Ulf Geerts, Andreas											
<120> Diagnostics and Therapeutics for Diseases Associated with Human G-Protein Coupled Receptor 14 (GPR14)											
<130> LeA 36 365											
PCT/EP2003/011393 2003-10-15											
EP02023767.3 2002-10-24											
<160> 5											
<170> PatentIn version 3.3											
<210> 1 <211> 1170 <212> DNA <213> Homo sapiens											
<400> 1 atggcgctga ccccgagtc cccgagcagc ttccctgggc tggccgccac cggcagctct 60											
gtgccggagc cgcctggcgg ccccaacgca accctcaaca gctcctgggc cagcccgacc 120											
gagcccagct ccctggagga cctggtggcc acgggcacca ttgggactct gctgtcggcc 180											
atgggcgtgg tgggcgtggt gggcaacgcc tacacgctgg tggtcacctg ccgctccctg 240											
cgtgcggtgg cctccatgta cgtctacgtg gtcaacctgg cgctggccga cctgctgtac 300											
ctgctcagca tccccttcat cgtggccacc tacgtcacca aggagtggca cttcggggac 360											
gtgggctgcc gcgtgctctt cggcctggac ttcctgacca tgcacgccag catcttcacg 420											
ctgaccgtca tgagcagcga gcgctacgct gcggtgctgc ggccgctgga caccgtgcag 480											
cgccccaagg gctaccgcaa gctgctggcg ctgggcacct ggctgctggc gctgctgctg 540											
acgctgcccg tgatgctggc catgcggctg gtgcgccggg gtcccaagag cctgtgcctg 600											
cccgcctggg gcccgcgcgc ccaccgcgcc tacctgacgc tgctcttcgc caccagcatc 660											
gcggggcccg ggctgctcat cgggctgctc tacgcgcgcc tggcccgcgc ctaccgccgc 720											
tcgcagcgcg cctccttcaa gcgggcccgg cggccggggg cgcgcgcgct gcgcctggtg 780											
ctgggcatcg tgctgctctt ctgggcctgc ttcctgccct tctggctgtg gcagctgctc 840											
gcccagtacc accaggcccc gctggcgccg cggacggcgc gcatcgtcaa ctacctgacc 900											
acctgcctca cctacggcaa cagctgcgcc aaccccttcc tctacacgct gctcaccagg 960											
aactaccgcg accacctgcg cggccgcgtg cggggcccgg gcagcggggg aggccggggg 1020											
cccgttccct ccctgcagcc ccgcgcccgc ttccagcgct gttcgggccg ctccctgtct 1080											
tcctgcagcc cacagcccac tgacagcctc gtgctggccc cagcggcccc ggcccgacct 1140											
gcgcccgagg gtcccagggc cccggcgtga 1170											

<210> 2 <211> 389

<213> Homo sapiens

<400> 2

Met Ala Leu Thr Pro Glu Ser Pro Ser Ser Phe Pro Gly Leu Ala Ala 1 5 10 15

Thr Gly Ser Ser Val Pro Glu Pro Pro Gly Gly Pro Asn Ala Thr Leu 20 25 30

Asn Ser Ser Trp Ala Ser Pro Thr Glu Pro Ser Ser Leu Glu Asp Leu 35 40

Val Ala Thr Gly Thr Ile Gly Thr Leu Leu Ser Ala Met Gly Val Val 50 60

Gly Val Val Gly Asn Ala Tyr Thr Leu Val Val Thr Cys Arg Ser Leu 65 70 75 80

Arg Ala Val Ala Ser Met Tyr Val Tyr Val Val Asn Leu Ala Leu Ala 85 90 95

Asp Leu Leu Tyr Leu Leu Ser Ile Pro Phe Ile Val Ala Thr Tyr Val . 100 105 110

Thr Lys Glu Trp His Phe Gly Asp Val Gly Cys Arg Val Leu Phe Gly 115 120

Leu Asp Phe Leu Thr Met His Ala Ser Ile Phe Thr Leu Thr Val Met 130 135 140

Ser Ser Glu Arg Tyr Ala Ala Val Leu Arg Pro Leu Asp Thr Val Gln 145 150 155 160

Arg Pro Lys Gly Tyr Arg Lys Leu Leu Ala Leu Gly Thr Trp Leu Leu 165 170 175

Ala Leu Leu Thr Leu Pro Val Met Leu Ala Met Arg Leu Val Arg 180 185 190

Arg Gly Pro Lys Ser Leu Cys Leu Pro Ala Trp Gly Pro Arg Ala His 195 200 205

Arg Ala Tyr Leu Thr Leu Leu Phe Ala Thr Ser Ile Ala Gly Pro Gly 210 215 220

Leu Leu Ile Gly Leu Leu Tyr Ala Arg Leu Ala Arg Ala Tyr Arg Arg 225 230 235 240

Ser Gln Arg Ala Ser Phe Lys Arg Ala Arg Arg Pro Gly Ala Arg Ala 245 250 255 Page 2

Leu Ar	g Leu	Val 260	Leu	Gly	Ile	Val	Leu 265	Leu	Phe	Trp	Ala	Cys 270	Phe	Leu			
Pro Pho	275	Leu	Trp	Gln	Leu	Leu 280	Ala	Gln	Tyr	His	G]n 285	Ala	Pro	Leu	•		
Ala Pro 290		Thr	Ala	Arg	Ile 295	val	Asn	Tyr	Leu	Thr 300	Thr	Cys	Leu	Thr			
Tyr Gly 305	y Asn	Ser	Cys	Ala 310	Asn	Pro	Phe	Leu	Tyr 315	Thr	Leu	Leu	Thr	Arg 320			
Asn Ty	r Arg	Asp	Нis 325	Leu	Arg	Gly	Arg	va1 330	Arg	Gly	Pro	Gly	Ser 335	Gly			
Gly Gly	y Arg	Gly 340	Pro	val	Pro	Ser	Leu 345	Gln	Pro	Arg	Ala	Arg 350	Phe	Gln			
Arg Cy	s Ser 355	Gly	Arg	Ser	Leu	Ser 360	Ser	Cys	Ser	Pro	Gln 365	Pro	Thr	Asp			
Ser Le		Leu	Ala	Pro	Ala 375	Ala	Pro	Ala	Arg	Pro 380	Ala	Pro	Glu	Gly			
Pro Arg	g Ala	Pro	Ala														
<210> <211> <212> <213>	3 21 DNA Homo	sap [.]	iens														
<400> 3 tggcctccat gtacgtctac g												21					
<210> 4 <211> 21 <212> DNA <213> Homo sapiens																	
<400> 4 gaagtgccac tccttggtga c													21				
<210> <211> <212> <213>	5 24 DNA Homo	sap	iens														
<400> cctgct	5 cagc	atcc	cctt	ca t	cgt											24	