Exploratory Data Analysis (EDA) and Data Visualization

Rafiq Islam

2024-11-08

Table of contents

The Dataset]
Discriptive Statistics]
Feature Engineering										 							,

In this Exploratory Data Analysis and Visualization notebook, we want to explore the 911 call data from Kaggle.com

The Dataset

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv('911.csv')
```

Discriptive Statistics

We first check the data information to see the number of observations, datatype, memory usages etc.

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 105957 entries, 0 to 105956

Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	lat	105957 non-null	float64
1	lng	105957 non-null	float64
2	desc	105957 non-null	object
3	zip	92735 non-null	float64
4	title	105957 non-null	object
5	timeStamp	105957 non-null	object
6	twp	105924 non-null	object
7	addr	105957 non-null	object
8	е	105957 non-null	int64

dtypes: float64(3), int64(1), object(5)

memory usage: 7.3+ MB

A first look of the data

df.head()

_				
	lat	lng	desc	zip
0	40.297876	-75.581294	REINDEER CT & DEAD END; NEW HANOVER; Station	19525.0
1	40.258061	-75.264680	BRIAR PATH & WHITEMARSH LN; HATFIELD TOWNSHIP	19446.0
2	40.121182	-75.351975	HAWS AVE; NORRISTOWN; 2015-12-10 @ 14:39:21-St	19401.0
3	40.116153	-75.343513	AIRY ST & SWEDE ST; NORRISTOWN; Station 308A;	19401.0
4	40.251492	-75.603350	CHERRYWOOD CT & DEAD END; LOWER POTTSGROVE; S	NaN

Some data related questions. For example,

• What are the top 10 zipcodes for 911 calls?

```
df.zip.value_counts().head(10)
```

```
zip
19401.0 7445
19464.0 7122
19403.0 5189
19446.0 5060
19406.0 3404
19002.0 3238
```

```
      19468.0
      3202

      19454.0
      2984

      19090.0
      2832

      19046.0
      2779
```

Name: count, dtype: int64

• What are the top 10 twonships for the 911 calls?

```
df.twp.value_counts().head(10)
```

twp									
LOWER MERION	9069								
ABINGTON	6403								
NORRISTOWN	6265								
UPPER MERION	5551								
CHELTENHAM	4882								
POTTSTOWN	4448								
UPPER MORELAND	3658								
LOWER PROVIDENCE	3435								
PLYMOUTH	3371								
HORSHAM 3142									
Name: count, dtype:	int64								

Feature Engineering

Sometimes creating new features from the existing features helps understand the data better. For example, for this dataset, we can create a new column called Reason for emergency 911 call.

```
df['reason'] = df.title.apply(lambda title: title.split(':')[0])
df.head(3)
```

	lat	lng	desc	zip	tit
0	40.297876	-75.581294	REINDEER CT & DEAD END; NEW HANOVER; Station	19525.0	EN
1	40.258061	-75.264680	BRIAR PATH & WHITEMARSH LN; HATFIELD TOWNSHIP	19446.0	EN
2	40.121182	-75.351975	HAWS AVE; NORRISTOWN; 2015-12-10 @ 14:39:21-St	19401.0	Fi

what are top reasons for the emergency calls?

df.reason.value_counts()

reason

EMS 52515 Traffic 37505 Fire 15937

Name: count, dtype: int64

visualization of the reason column

```
sns.countplot(x=df.reason, hue=df.reason, palette='viridis')
```


The timeStamp column contains time information year-month-day hour:minute:second format but in string value/object. So we can convert this column to obtain new features.

```
df['timeStamp'] = pd.to_datetime(df.timeStamp)
time = df.timeStamp.iloc[0]
```

/tmp/ipykernel_3594/1994586768.py:1: UserWarning:

Could not infer format, so each element will be parsed individually, falling back to `dateut

Let's create new features called hour, month, and day of the calls.

	lat	lng	zip	twp	е	reason	month	day	hour	title
0	40.297876	-75.581294	19525.0	NEW HANOVER	1	EMS	12	Thursday	17	EM
1	40.258061	-75.264680	19446.0	HATFIELD TOWNSHIP	1	EMS	12	Thursday	17	EM
2	40.121182	-75.351975	19401.0	NORRISTOWN	1	Fire	12	Thursday	14	Fire

Now that we have almost a clean dataset, we can analyze the reason column based on the days of the week or months of a year.

```
sns.countplot(x='day', data= df, hue='reason', palette='viridis')
plt.legend(bbox_to_anchor=(1.05,1), loc=2, borderaxespad=0.0)
```


For the month column

```
sns.countplot(x='month', data= df, hue='reason', palette='viridis')
plt.legend(bbox_to_anchor=(1.05,1), loc=2, borderaxespad=0.0)
```


To create a time series data

```
df['date'] = df['timeStamp'].apply(lambda time: time.date())
df.groupby('date').count()['twp'].plot()
```


Now to see for each reason

```
start_date = pd.to_datetime('2019-01-01')

df['date'] = pd.to_datetime(df['date'])

fig = plt.figure(figsize=(7.9,6))

ax1 = fig.add_subplot(311)

df[(df['reason'] == 'Traffic') & (df['date'] >= start_date)].groupby('date').count()['twp'].groupby('date').count()['twp'].groupby('date').count()['twp'].groupby('date').count()['twp'].plot

ax2 = fig.add_subplot(312)

df[(df['reason'] == 'Fire') & (df['date'] >= start_date)].groupby('date').count()['twp'].plot

ax3 = fig.add_subplot(313)

df[(df['reason'] == 'EMS') & (df['date'] >= start_date)].groupby('date').count()['twp'].plot

plt.tight_layout()
```


Share on

You may also like