Homework 10 Quantum Information

Cheng-Ching Lin
June 24, 2018

1 QFT I

1.1

1.2

We can write down the general form of DFT.

$$\hat{x}_j = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{-i\frac{2\pi}{N}kj} x_k = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega_N^{kj} x_k$$

Assume r divides N, and also assume that

$$x_k = \begin{cases} 1, & \text{if} \quad k = 0 \mod r \\ 0, & \text{otherwises} \end{cases}$$

Therfore, the entries \hat{x}_j of the vector Ux is

$$\hat{x}_j = \frac{1}{\sqrt{N}} \sum_{k=0 \mod r}^{N-r} e^{-i\frac{2\pi}{N}kj} = \frac{1}{\sqrt{N}} \sum_{k=0 \mod r}^{N-r} \omega_N^{kj}$$

In this case, the largest magetude is

$$\frac{1}{\sqrt{N}} \sum_{k=0 \mod r}^{N-r} e^{-i\frac{2\pi}{N}kj} = \frac{1}{\sqrt{N}} \frac{N}{r} = \frac{\sqrt{N}}{r}$$

If N = 100 and r = 20, the result will be Figure 1.

2 QFT II

2.1

$$\begin{split} \|A\| &= \frac{\|A\,|\psi\rangle\|}{\||\psi\rangle\|} = \frac{\sqrt{\langle\psi|\,A^\dagger A\,|\psi\rangle}}{\sqrt{\langle\psi|\psi\rangle}} \\ \|UA\| &= \frac{\sqrt{\langle\psi|\,A^\dagger U^\dagger U A\,|\psi\rangle}}{\sqrt{\langle\psi|\psi\rangle}} = \frac{\sqrt{\langle\psi|\,A^\dagger A\,|\psi\rangle}}{\sqrt{\langle\psi|\psi\rangle}} = \|A\| \\ \|AU\| &= \frac{\sqrt{\langle\psi|\,U^\dagger A^\dagger A U\,|\psi\rangle}}{\sqrt{\langle\psi|\psi\rangle}} = \frac{\sqrt{\langle\psi|\,UU^\dagger A^\dagger A U U^\dagger\,|\psi\rangle}}{\sqrt{\langle\psi|\psi\rangle}} = \frac{\sqrt{\langle\psi|\,A^\dagger A\,|\psi\rangle}}{\sqrt{\langle\psi|\psi\rangle}} = \|A\| \end{split}$$

Figure 1: In the case of N = 100 and r = 20.

2.2

$$\begin{split} \|U - \mathbb{1}\| &= \sqrt{\left\langle \psi | \left(U^\dagger - \mathbb{1} \right) (U - \mathbb{1}) | \psi \right\rangle} = \sqrt{\left\langle \psi | U^\dagger U - U^\dagger - U + \mathbb{1} | \psi \right\rangle} \\ &= \sqrt{\left\langle \psi | - U^\dagger - U + 2 \mathbb{1} | \psi \right\rangle} = \sqrt{\left\langle \psi | - \begin{pmatrix} 1 & 0 \\ 0 & e^{-i\phi} \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix} | \psi \right\rangle + 2} \\ &= \sqrt{-2 - 2\cos\phi + 2} \approx \sqrt{\phi^2} = \mathcal{O}(\phi) \end{split}$$

2.3

Let
$$U_j=A,\,U_>=U_L\cdots U_{j+1},$$
 and $U_<=U_{j-1}\cdots U_1,$ so
$$\|U-U'\|=\|U_>AU_<-U_>U_<\|$$

From 2.1, we can rewrite the formula into

$$||U_>AU_< - U_>U_<|| = ||A - \mathbb{1}|| = ||U_i - \mathbb{1}||$$

2.4

Let
$$U_a = U_L \cdots U_{j+1}$$
, $U_b = U_{j-1} \cdots U_{k+1}$, and $U_c = U_{k-1} \cdots U_1$, thus
$$\|U - U''\| = \|U_j U_b U_k - Ub\|$$
$$= \|U_i U_b U_k - U_b U_k + U_b U_k - Ub\| \le \|(U_i - 1) U_b U_k\| + \|U_b (U_k - 1)\| \le \|U_i - 1\| + \|U_k - 1\|$$

2.5

The phase gate $R_s = \begin{pmatrix} 1 & 0 \\ 0 & e^{2i\pi/2^s} \end{pmatrix}$ will be close to identity if s is large. It doesn't too much change when $s \gg \log n$. Thus, we will take out $\mathcal{O}(\log n)$ gates which $s \gg \log n$. We only keep $\mathcal{O}(\log n)$ gates for each qubit, $\mathcal{O}(n \log n)$ gates in the quantum circuits.

We suppose U is the quantum circuit with $\mathcal{O}(n \log n)$ gates, and also we suppose $s \geq \log n^2$, therefore

$$||U_{FT(n)} - U|| \ge n||\begin{pmatrix} 1 & 0 \\ 0 & e^{i2\pi/2^{\log n^2}} \end{pmatrix} - 1|| = n||\begin{pmatrix} 1 & 0 \\ 0 & e^{i2\pi/n^2} \end{pmatrix} - 1|| = \mathcal{O}(\frac{1}{n})$$

3 Finding the period in the "hard" case

3.1

Because $0 \le k < r$, and $j \in [0, 1, \dots, L-1]$, by pigeonhole principle, every k must have at least one j such that

$$|j - k\frac{L}{r}| \le \frac{1}{2}$$

Therefore, there are at least r goof j's that satisfied the condition.

3.2

If $\exp(i2\pi rj/L) = 1$, then $c_j = m$

$$Prob(j) = \frac{|c_j|^2}{mL} = \frac{m^2}{mL} = \frac{m}{L}$$

On the other side, if $\exp(i2\pi rj/L) \neq 1$, then

$$c_j = \frac{1 - \exp(i2\pi r m j/L)}{1 - \exp(i2\pi r j/L)}$$

Also because

$$|1 - e^{i\theta}| = |-2ie^{i\theta/2}\sin(\theta/2)| = |2\sin(\theta/2)|$$

Thus,

$$Prob(j) = \frac{|c_j|^2}{mL} = \frac{1}{mL} \left| \frac{1 - \exp(i2\pi rmj/L)}{1 - \exp(i2\pi rj/L)} \right|^2 = \frac{1}{mL} \left| \frac{\sin(\pi rmj/L)}{\sin(\pi rj/L)} \right|^2$$

3.3

Suppose good j can be written as

$$j = k\frac{L}{r} + h$$

For $|h| \leq \frac{1}{2}$. All good j's need to be satisfy this condition:

$$|j - k\frac{L}{r}| \le \frac{1}{2}$$

$$\Rightarrow |k\frac{L}{r} + h - k\frac{L}{r}| = |h| \leq \frac{1}{2}$$

Therefore, we can always write good j's as $k \frac{L}{r} + h$. In order words, for every good j, there exists an integer $0 \le k < r$ and $|h| \le \frac{1}{2}$ such that

$$j = k\frac{L}{r} + h$$

3.4

if h = 0, $j = k \frac{L}{r}$ and then

$$\exp(i2\pi r j/L) = \exp(ik2\pi) = 1$$

It means that

$$Prob(j) = \frac{m}{L} \ge \frac{\frac{L}{r}}{L} = \frac{1}{r}$$

3.5

If $h \neq 0$, $j = k \frac{L}{r} + h$ and then

$$\exp(i2\pi r j/L) = \exp(i2\pi r h/L) \neq 1$$

Therefore,

$$Prob(j) = \frac{1}{mL} \left| \frac{1 - \exp(i2\pi rmj/L)}{1 - \exp(i2\pi rj/L)} \right|^2 = \frac{1}{mL} \left| \frac{1 - \exp(i2\pi rmh/L)}{1 - \exp(i2\pi rh/L)} \right|^2 = \frac{1}{mL} \left| \frac{\sin(\pi rmh/L)}{\sin(\pi rh/L)} \right|^2$$

3.6

We know that $0 \le |h| \le \frac{1}{2}$ and $0 < \frac{r}{L} \le 1$. Because m equals to $\lfloor \frac{L}{r} \rfloor$ or $\lceil \frac{L}{r} \rceil$, we rewrite the range of m as

$$\frac{L}{r} - \frac{1}{2} \le m \le \frac{L}{r} + \frac{1}{2}$$

Now we times $\frac{r}{L}$.

$$1 - \frac{r}{2L} \le m\frac{r}{L} \le 1 + \frac{r}{2L}$$
$$\Rightarrow \frac{1}{2} \le m\frac{r}{L} \le \frac{3}{2}$$

Finally, we times |h|.

$$\Rightarrow 0 \le m \frac{r}{L} |h| \le \frac{3}{4} < \frac{4}{5}$$

We can rewrite the range as

$$0 \leq \frac{r}{L}|h| < m\frac{r}{L}|h| \leq \frac{3}{4} = \frac{1}{2} + \frac{1}{4} < \frac{4}{5}$$

It means that $\sin\left(m\pi\frac{r}{L}|h|\right) = \sin\left(\pi(m\frac{r}{L}|h|-\frac{1}{2})\right) \leq \sin\left(\frac{\pi}{4}\right)$ Therefore, the range of Prob(j) is

$$\begin{split} \frac{1}{mL} |\frac{\frac{3\pi mhr}{4L}}{\frac{\pi hr}{L}}|^2 &< \frac{1}{mL} |\frac{\sin(\pi rmh/L)}{\sin(\pi rh/L)}|^2 < \frac{1}{mL} |\frac{\pi mhr}{\frac{L}{L}}|^2 \\ \Rightarrow \frac{1}{mL} |\frac{3m}{4}|^2 &< \frac{1}{mL} |\frac{\sin(\pi rmh/L)}{\sin(\pi rh/L)}|^2 < \frac{1}{mL} |\frac{4m}{3}|^2 \\ \Rightarrow \frac{9m}{16L} &< \frac{1}{mL} |\frac{\sin(\pi rmh/L)}{\sin(\pi rh/L)}|^2 < 1 < \frac{16m}{9L} \end{split}$$

Thus,

$$Prob(j) > \frac{9m}{16L} \geq \frac{m}{2L}$$

3.7

4 Simulating Shor's algorithm

4.1

The general form of $|\psi_3\rangle$ (only consider first register) is

$$|\psi_3\rangle = \frac{1}{\sqrt{m}} \sum_{k=0}^{m-1} |kr + s\rangle$$

I use the Python to find the x of $f(x) = 9 = x^7 \mod 11$. There are 12 components satisfying this condition(m = 12), and r = 11. Thus, we can write down $|\psi_3\rangle$.

$$|\psi_3\rangle = \frac{1}{\sqrt{12}} \sum_{k=0}^{11} |11k + 3\rangle$$

4.2

Figure 2: The figure of j v.s. $|b_j|^2$

The first four j's for which $|b_j|^2$ peaks are

$$\begin{cases} j=0 & |b_j^2|=0.09375 \\ j=18 & |b_j^2|=0.08346 \\ j=37 & |b_j^2|=0.07189 \\ j=55 & |b_j^2|=0.09109 \end{cases}$$

This is my code of DFT, and the result is refB.

```
def DFT():
        blist = []
        b = []
        s = 3
        r = 11
        L = 128
        m = 12
        for jdx in range (0,127):
                 ansj = cmath.exp(2j*s*math.pi*jdx/L)
                 for kdx in range(3,124,11):
                         ansk += cmath.exp(2j*math.pi*r*kdx*jdx/L)
                         ans = ansk*ansj/math.sqrt(L*m)
                 blist.append(pow(abs(ans),2))
                 if pow(abs(ans), 2) > 0.06:
                         print (jdx)
                         print (pow(abs(ans),2))
                b.append(jdx)
        plt.plot(b, blist)
        plt.xlabel("j")
        plt.ylabel("|bj|^2")
        plt.show()
```

4.3

To find the correct order, we use "continued fractions" to $\frac{j}{L}$. In these three cases, the continued fractions are

$$\begin{aligned} \frac{102}{128} &= [0,1,3,1,12] \\ \frac{13}{128} &= [0,9,1,5,2] \\ \frac{39}{128} &= [0,3,3,1,1,5] \end{aligned}$$

The number in the bracket is partial quotients. We can find the fractions $\frac{c}{r}$ which are close to $\frac{j}{L}$ by them. the way to find it is. However, the fractions must satisfy two conditions.

$$\begin{split} r &\leq N \\ |\frac{j}{L} - \frac{c}{r}| &\leq \frac{1}{2L} \\ \Rightarrow |\frac{j}{128} - \frac{c}{r}| &\leq \frac{1}{256} \end{split}$$

We believe r will be the answer if above are satisfied. In our cases, there are only two fractions satisfied.

$$|\frac{102}{128} - \frac{8}{10}| = \frac{1}{320} < \frac{1}{256}$$
$$|\frac{13}{128} - \frac{1}{10}| = \frac{1}{640} < \frac{1}{256}$$

Therefore, j = 102 and j = 13 can give the correct order.