Tutoreal - 06 I) what do you mean by wendulum spanning tree ? Mineruen spanning tree & a subart of ordges of a connected edge-weighted underected graph that connects all the vertices together without only cycles and with minimum possible edge Applications -1) consider in stations are to be unked using a link between any two stations involves a cast The Edeal solution would be to exteract a subgraph termed as wellum cost spounding tree. 1) Designing LAN in suppose you wont to construct highways or rablead sponning several cities, then we can use concept of MOT w raying pipelenel connecting offshore dulling sites, sieferiers and consumer markets 2) Anolyze time and space complexity of Poren, roushed, perketra and relimon ford algorithm TRUE complexity of Prents Algo. - O(181 kg/VI)

space complexity of Point's Algo. - O(1)

True complexity of Koushol's Algo. - O(1)

space complexity of Koushol's Algo. - O(1)

space complexity of Koushol's Algo. - O(1) True complexity of Diffestra's Also. - OCU2)
space complexity of Diffestra's Also. - OCU2)

TPME	amo	lexity	of	Belleran	Dord's	opl	OCK)
space	uemen	lex ty	of	sellman	1 fords	do -	O(E)

Apply southal and form's Algo. On given greph to complete MeT of the weight.

	7 6 2 5					
	KHUNDAL'S ALGORITHMA	PARM's Algorithm				
	0 v 0					
	V (∓ ∂	weight = 4+ 8+2+4+2				
	5 6 2 \	+7+9+3				
	2 8 2 \	= 37				
	0 1 4 /					
	2 9 4 /					
	6 8 6 X					
_	2 3 7 1					
	7 8 7 X					
	0780					
_	1 2 8 X					
_	4391					
	4 5 10 X					
	1 7 11 X					
	3 5 14 X					
	$(1) \qquad (2) \qquad (3)$	3)				

weight = 1+2+2+4+ 4+7+6+9 = 37 They a directed weighted graph, you are also given the shortest path from a source vertex's' to a destination vertex o't', Does the shortest path remain some in tollowing cases:

I paight of every edge & increased by 10 units.

The shortest path may change. The reason is that there may be different up. of edges in different path paths from 'z' to't'. for eq-lot the shortest path of wight is and has edges. Let thore we musther path with 2 edges of total weight zs. The weight of shortest paths is increased by 2"10 and becomes is to wight of other path is increased by 2"10 of becomes 26+20 so, the shortest path charges to other path with weight as 4s.

If we multiply all edges weight by 10, the shortest path decompt change. The season is that weight a decompt change. The season is that weight of all paths from "2" to t' gets multiplied by some unth. The up. of edges of path doesn't mother.

-RANKA DATE