Module 2.3: Permutations MCIT Online - CIT592 - Professor Val Tannen

LECTURE NOTES

Permutations

Let A be a non-empty set with n elements, that is, |A| = n. A **permutation** of A is an ordering of the elements of A in a row, i.e., a sequence of **all** the elements of A, **without repetition**.

The length of a permutation of A is n.

Example:

The set $\{x, 2, a\}$ has six permutations:

Sequences built from $\{x, 2, a\}$ that are **not** permutations: aa2

Partial permutations

Again consider a non-empty set A with n elements. Let $1 \le r \le n$.

A partial permutation of r out of the n elements of A consists of picking r of the elements of the set and ordering them in a row, i.e., a sequence of length r, without repetition, whose elements are from the set A.

Example:

Here are the partial permutations of 2 out of the 3 elements of $\{x, 2, a\}$:

$$x^{2}$$
, x^{2} , x^{3} , x^{4} , x^{2} , x^{3} , x^{4} , x^{2} , x^{2} , x^{3} , x^{4} , x^{2} , x^{2} , x^{3} , x^{4} , x^{2} , x

Sequences built from $\{x, 2, a\}$ that are **not** partial permutations of 2 out of the 3 elements: aa a x2a

Examining the two definitions we have given, we see that a partial permutation of n out of the n elements of a set A is the same as a permutation of A!

Counting partial permutations

Problem. Let A be a non-empty set with n elements (i.e., $|A| = n \ge 1$) and let 1 < r < n.

How many partial permutations of r out of the n elements of A are there?

Answer. We can construct such a partial permutation in r steps, filling its positions, numbered $1, 2, \ldots, r$, consecutively:

- (1) Pick an element of A to put in position 1. Can be done in n ways.
- (2) Pick one of the remaining elements to put in position 2. In n-1 ways.
- (r) Pick one of remaining n-(r-1) elements to put in position r. In n-(r-1)=n-r+1 ways.

By the multiplication rule the answer is $n \cdot (n-1) \cdots (n-r+1)$. This is a product of r factors.

Factorial

We computed the number of partial permutations of r out of n as:

$$n \cdot (n-1) \cdot \cdot \cdot (n-r+1)$$

Note that this number depends only on n and r, and not on the set whose elements we use (as long as there are n of them).

Now take r = n. This gives the number of permutations of n elements. And there is a notation for this:

$$n! = n \cdot (n-1) \cdot \cdot \cdot 2 \cdot 1$$

read "the **factorial** of n".

We will use the factorial notation to shorten expressions.

For example, the number of partial permutations of r out of n

$$n\cdot (n-1)\cdots (n-r+1) = rac{n\cdot (n-1)\cdots (n-r+1)\cdot (n-r)\cdots 1}{(n-r)\cdots 1} = rac{n!}{(n-r)!}$$

Quiz

Let p be the number of permutations of 6 elements, and let q be the number of partial permutations of 3 out of 6 elements. What is p/q?

- A. 2
- B. 3
- C. 6

Answer

Let p be the number of permutations of 6 elements, and let q be the number of partial permutations of 3 out of 6 elements. What is p/q?

- A. 2 Incorrect. Since p = 6! and $q = \frac{6!}{3!}$, $\frac{p}{q} \neq 2$.
- B. 3 Incorrect. Since p = 6! and $q = \frac{6!}{3!}$, $\frac{p}{q} \neq 3$.
- C. 6 Correct. Since p = 6! and $q = \frac{6!}{3!}$, p divided by q is 3! = 6.

Counting words with restrictions I

Consider the set of letters $\{a, b, c, d, e, f, g, h\}$.

- (a) How many possible permutations are there of these letters?
- (b) How many among the permutations of these letters contain the contiguous sequence *abc*?

Answer. Part (a): The set has 8 elements hence there are 8! permutations.

Part (b): A permutation of $\{a, b, c, d, e, f, g, h\}$ in which a, b, c appear in consecutive positions can be constructed as follows:

- (1) Pick three consecutive positions for a, b, c. Can be done in 6 ways.
- (2) Pick a permutation of $\{d, e, f, g, h\}$ and place it in the remaining 8-3=5 positions. This can be done in 5! ways.

By the multiplication rule the total number of ways is $6 \cdot 5!$.

Counting words with restrictions II

Alternative answer. Part (b):

We can construct a desired permutation differently.

Consider the set of 6 letters: $\{x, d, e, f, g, h\}$

Construct a permutation of $\{x, d, e, f, g, h\}$. For example: edhxfg.

Next, replace in this permutation the letter x with the string abc. In the example: edhabcfg.

(Any permutation with a, b, and c in consecutive positions can be transformed into a permutation of $\{x,d,e,f,g,h\}$ by replacing the portion abc with x. Thus, counting the desired permutations is the same as counting the permutations of $\{x,d,e,f,g,h\}$.)

There are 6! of these. And indeed $6! = 6 \cdot 5!$.

