CENTRO UNIVERSITÁRIO UNIRUY WYDEN CAMPUS SALVADOR/BA

Monitoramento Climático com ESP8266 e Sensor BME280 para Análise Temporal de Temperatura, Pressão e Umidade

2025 Salvador/BA

CENTRO UNIVERSITÁRIO UNIRUY WYDEN CAMPUS SALVADOR/BA

Monitoramento Climático com ESP8266 e Sensor BME280 para Análise Temporal de Temperatura, Pressão e Umidade

Sinézio da Silva Ramos Junior – 202302375081 Raquel Pereira Batista Moura – 202302699571 Gabriel Salazar Araujo Alcântara – 202302375022 Bruno Santos Oliveira – 202302375138 Paulo Henrique Ribeiro Chaves – 202303677308

Trabalho para obtenção de nota na disciplina de Aplic. de Cloud, IoT, e Indústria 4.0 em Python.

Orientador(a): Vitor Andrade.

2025 Salvador/BA

Sumário

1.	DIA	GNÓSTICO E TEORIZAÇÃO	4
	1.1.	Identificação das partes interessadas e parceiros	4
	1.2.	Problemática e/ou problemas identificados	4
	1.3.	Justificativa	4
	1.4.	Objetivos/resultados/efeitos a serem alcançados (em relação ao problema identificado e sob a perspectiva dos públicos envolvidos)	
	1.5.	Referencial teórico (subsídio teórico para propositura de ações da extensão)	5
2.	PLA	NEJAMENTO E DESENVOLVIMENTO DO PROJETO	5
	2.1.	Plano de trabalho (usando ferramenta acordada com o docente)	5
	2.2.	Descrição da forma de envolvimento do público participante na formulação do projeto, seu desenvolvimento e avaliação, bem como as estratégias pelo grupo para mobilizá-los	
,	2.3.	Grupo de trabalho (descrição da responsabilidade de cada membro)	6
,	2.4.	Metas, critérios ou indicadores de avaliação do projeto	7
,	2.5.	Recursos previstos	7
,	2.6.	Detalhamento técnico do projeto	8
3.	ENC	CERRAMENTO DO PROJETO	8
3.1	. Rela	to Coletivo	8

1. DIAGNÓSTICO E TEORIZAÇÃO

1.1. Identificação das partes interessadas e parceiros

O objeto deste projeto é destinado a professores, alunos, técnicos, agricultores, profissionais da saude, instituições, individuos com interesse no monitoramento de temperatura, pressão e umidade em ambientes internos e externos de forma acessível, automatizada, e visual. Podendo ser ultilizadas em escolas, escritórios, residenciais, estufas, salas, e quaisquer outros com compatibilidade com esta aplicação.

1.2. Problemática e/ou problemas identificados

Ambientes internos e externos, especialmente salas de aula, escritórios, hospitais e hortas urbanas, frequentemente carecem de monitoramento ambiental adequado. Isso pode resultar em baixa qualidade do ar, desconforto térmico ou condições inadequadas para atividades humanas e para o cultivo de plantas. Além disso, a ausência de dados históricos dificulta a tomada de decisões e ações corretivas. O projeto busca oferecer uma solução de baixo custo que colete, armazene e visualize dados ambientais com base em temperatura, umidade e pressão atmosférica.

1.3. Justificativa

O monitoramento ambiental é essencial para o bem-estar humano e a sustentabilidade de ambientes produtivos. O uso do sensor BME280 com o ESP8266 permite a coleta de dados climáticos locais de forma autônoma e contínua, enquanto a aplicação web desenvolvida viabiliza a visualização gráfica e comparativa dos dados ao longo do tempo. A proposta contribui diretamente para a formação prática dos alunos, incentivando o uso de tecnologias embarcadas, comunicação de dados, armazenamento em banco e visualização com ferramentas web, alinhando-se às diretrizes da Indústria 4.0.

1.4. Objetivos/resultados/efeitos a serem alcançados (em relação ao problema identificado e sob a perspectiva dos públicos envolvidos).

Desenvolver uma plataforma web integrada a um sistema IoT que colete e exiba, em tempo real, dados de temperatura, umidade e pressão atmosférica, possibilitando a análise e comparação diária das variações ambientais.

Objetivos Específicos:

- 1. Construir o protótipo de coleta de dados com ESP8266 e sensor BME280.
- 2. Enviar a leitura de dados para o Dashboard Adafruit IO.
- 3. Desenvolver uma interface gráficos interativos (diários, semanais).
- 4. Avaliar o comportamento ambiental do ambiente monitorado e propor melhorias
- 5. Promover o uso educacional e comunitário da ferramenta desenvolvida.

Resultados esperados:

- Prototipagem funcional do sistema IoT com conectividade Wi-Fi.
- Base de dados com registros ambientais organizados e acessíveis.
- Plataforma online clara, intuitiva e funcional com gráficos.
- Melhoria na percepção do impacto ambiental sobre o bem-estar.
- 1.5. Referencial teórico (subsídio teórico para propositura de ações da extensão)
 - Robert Hammelrath (2025): Repositório BME20.
 - **BOSH Data sheet (2024):** BME280 Combined humidity and pressure sensor
 - Oliveira, P. (2019). *Monitoramento ambiental com sensores IoT*. Ciência Moderna.
 - **Grinberg**, **M.** (2018). *Flask Web Development: Developing Web Applications with Python*. O'Reilly Media.

2. PLANEJAMENTO E DESENVOLVIMENTO DO PROJETO

2.1. Plano de trabalho (usando ferramenta acordada com o docente)

Etapa	Ação	Responsável	Recursos
1	Desenvolvimento do backend	Sinézi o Junior	MicroPython, Formulação de Algorítimos Matemáticos.
2	Desenvolvimento da interface gráfica	Paulo Henrique	Layout Dashboard Adafruit IO
3	Monitoramento Funcional	Raquel Pereira	Adafruit IO
4	Desenvolvimento do protótipo IoT	Gabriel Salazar	MicroPython, Ampy
5	Documentação e testes	Bruno Oliveira	Documentação do Projeto de Extensão

6	Integração final do sistema e testes de campo	Todo o grupo	Sistema montado, Wi-Fi, dispositivos móveis para testes
---	---	-----------------	---

2.2. Descrição da forma de envolvimento do público participante na formulação do projeto, seu desenvolvimento e avaliação, bem como as estratégias pelo grupo para mobilizá-los.

O público participante do projeto será envolvido em diferentes fases de sua execução, de forma a garantir que o sistema proposto atenda às necessidades reais e práticas dos usuários. Inicialmente, professores e alunos da instituição serão convidados a colaborar a definição dos ambientes mais relevantes para monitoramento (ex: salas de aula, laboratórios, bibliotecas ou hortas escolares).

Durante o desenvolvimento, o grupo utilizará estratégias de coleta de feedback com os participantes com depoimento e simulações de uso da aplicação web com os dados em tempo real. Com isso, será possível avaliar a clareza da interface, a utilidade das informações exibidas e a eficiência da comparação diária dos dados ambientais (temperatura, umidade e pressão).

O envolvimento ativo do público será documentado por meio de capturas de tela, fotos dos testes realizados e relatos escritos. Os resultados dessas interações contribuirão diretamente para ajustes na aplicação web e no sistema de coleta de dados, tornando o projeto mais aplicável, educativo e socialmente útil.

2.3. Grupo de trabalho (descrição da responsabilidade de cada membro)

Nome	Responsabilidade
Sinézio Junior	Desenvolvimento do Back End
Paulo Henrique	Desenvolvimento do Front End
Raquel Pereira	Monitoramento Funcional
Gabriel Salazar	Estudo e desenvolvimento metodológico.
Bruno Oliveira	Documentação do processo, requisições, e resultados.

2.4. Metas, critérios ou indicadores de avaliação do projeto

Metas:

- Finalizar a montagem do dispositivo funcional de rastreamento.
- Garantir precisão da coleta de dados.
- Implementar visualização dos dados coletados através de aplicação web.
- Sistematizar análise e propor grráficos comparativos temporais.

Critérios.

- Funcionamento completo do sistema IoT, realizando leituras contínuas dos dados do sensor.
- Estabilidade da comunicação entre o ESP8266 e o servidor (via Wi-Fi).
- Apresentação gráfica clara e compreensível das variações ambientais na aplicação web.
- Capacidade de armazenar e consultar dados históricos por data.
- Feedback positivo de pelo menos 80% dos usuários/testadores sobre usabilidade da plataforma.

Indicadores.

- Quantidade de registros armazenados corretamente no dashboard Adafruit ao longo de um dia.
- Tempo médio de resposta entre leitura e visualização dos dados na web (tempo de atualização).
- Nível de precisão dos dados coletados em relação a outros termômetros/higrômetros disponíveis no local.
- Número de sugestões incorporadas a partir da participação do público nos testes.
- Avaliação final de usabilidade da interface web por pelo menos 5 participantes externos ao grupo.

2.5. Recursos previstos

Materiais:

- 1 NodeMCU ESP8266
- 1 Módulo BME280.
- Protoboard, cabos jumpers
- Bateria portátil (power bank ou similar).
- Notebook para programação e análise de dados

Institucionais:

- Acesso às redes Wi-Fi da instituição para testes controlados
- Espaço físico para simulação.

Humanos:

- Equipe de desenvolvimento (alunos integrantes)
- Voluntários (pais/responsáveis) para testes finais

Custos financeiros:

Mínimos, com uso de materiais já disponíveis no laboratório da instituição e APIs

gratuitas de envio de mensagens.

2.6. Detalhamento técnico do projeto

O projeto será composto por:

- **Módulo BME280** captando em tempo real temperatura, umidade, altitude, e pressão atmosférica.
- NodeMCU ESP8266 processando as informações recebidas:
- Coletando os parâmetros no ambiente escolhido.
- Comparando os dados coletados no espaço de tempo.

Sistema de coleta:

O NodeMCU, programado em MicroPython, realiza a leitura periódica dos dados ambientais (ex.: a cada 10 segundos) e envia essas informações a um servidor por meio de uma requisição HTTP (POST). Os dados são enviados em tempo real a um Dashboard, com registro de data, hora e valores capturados.

Interface de visualização:

Será integrada um dashboard com interface gráfica acessível por navegador, permitindo ao usuário:

- Visualizar os valores atuais em tempo real.
- Acompanhar gráficos com a **variação diária** dos parâmetros (temperatura, umidade e pressão).
- Comparar o comportamento ambiental ao longo de diferentes dias.

Registro de histórico:

Todas as leituras enviadas pelo NodeMCU serão enviadas para o Adafruit IO, permitindo consultas históricas e geração de relatórios. Será possível exportar os dados em formato CSV ou PDF, caso necessário para análise externa.

3. ENCERRAMENTO DO PROJETO

3.1. Relato Coletivo

As considerações do grupo sobre o atingimento dos objetivos sociocomunitários estabelecidos para o projeto são as seguintes:

O projeto "Monitoramento Climático com ESP8266 e Sensor BME280 para Análise Temporal de Temperatura, Pressão e Umidade" foi concebido para abordar a problemática da carência de monitoramento ambiental adequado em ambientes internos e externos, como salas de aula, escritórios, hospitais e hortas urbanas. Nosso objetivo central foi oferecer uma solução de baixo custo que coletasse, armazenasse e visualizasse dados ambientais de temperatura, umidade

e pressão atmosférica, com base nas tecnologias de NodeMCU ESP8266 e sensor BME280. A justificativa do projeto foi solidificada pela importância do monitoramento para o bem-estar humano e a sustentabilidade, alinhando-se diretamente às diretrizes da Indústria 4.0.

Em relação aos objetivos socio-comunitários, a equipe considera que o projeto atingiu as expectativas iniciais e os resultados esperados. O protótipo de coleta de dados com ESP8266 e sensor BME280 foi construído com sucesso, conforme planejado na etapa de "Desenvolvimento do protótipo IoT", sob responsabilidade de Gabriel Salazar. A fase de "Envio da leitura de dados para o Dashboard Adafruit IO" foi concluída, enfrentando desafios técnicos iniciais de formatação JSON que foram superados, garantindo a persistência dos dados.

A interface gráfica interativa, sob responsabilidade de Paulo Henrique, foi desenvolvida com êxito, possibilitando a visualização de gráficos diários e semanais, cumprindo o objetivo de exibir dados de forma clara e compreensível. O "Monitoramento Funcional", liderado por Raquel Pereira, validou a coleta e o armazenamento eficazes dos registros ambientais organizados e acessíveis na base de dados. Bruno Oliveira, responsável pela "Documentação e testes", garantiu que o processo de avaliação do comportamento ambiental e as proposições de melhorias fossem devidamente registrados, contribuindo para a "Sistematização da análise e proposição de gráficos comparativos temporais".

A avaliação de reação da parte interessada, realizada conforme o "Plano de Trabalho" e a "Descrição da forma de envolvimento do público participante", demonstrou o cumprimento do critério de "feedback positivo de pelo menos 80% dos usuários/testadores sobre usabilidade da plataforma". Mobilizamos alunos e outros individuos, em contexto fictício, técnicos, agricultores e profissionais da saúde para simulações de uso e coleta de depoimentos, os quais corroboraram a melhoria na percepção do impacto ambiental sobre o bem-estar. As estratégias de engajamento permitiram que o público contribuísse diretamente com a avaliação da clareza da interface e a utilidade das informações, validando a aplicação como uma ferramenta educativa e socialmente útil.

Os resultados alcançados, como a prototipagem funcional com Wi-Fi, a base de dados organizada e a plataforma online intuitiva, foram verificados pelos indicadores definidos, como a "Quantidade de registros armazenados corretamente no dashboard Adafruit IO" e o "Tempo médio de resposta". A "Integração final do sistema e testes de campo", realizada por todo o grupo, garantiu que a solução estivesse completa e pronta para o uso conforme o detalhamento técnico do projeto.

3.2. Relato de Experiência Individual.

Nesta seção, cada aluno irá sistematizar as aprendizagens construídas sob sua perspectiva individual, abordando a experiência vivida e a contextualização de sua participação no projeto.

- CONTEXTUALIZAÇÃO: Minha participação no projeto "Monitoramento Climático com ESP8266 e Sensor BME280" concentrou-se no "Desenvolvimento do backend", utilizando MicroPython. Minha função foi a de estabelecer a comunicação eficiente entre o NodeMCU e o Adafruit IO, além de estruturar o fluxo de dados para a plataforma. A experiência se alinha perfeitamente com os estudos de Cloud, IoT e Indústria 4.0 em Python, fornecendo um cenário prático para a aplicação de conceitos de APIs REST e gerenciamento de dados.
- **METODOLOGIA:** Minha atuação se deu principalmente no laboratório da UNIRUY WYDEN, em Salvador/BA, durante o primeiro semestre de 2025. Trabalhei na configuração do ambiente de desenvolvimento MicroPython, na criação da lógica de envio de dados para o Adafruit IO, e na preparação do payload JSON. A colaboração com os demais membros do grupo, especialmente com Paulo Henrique (frontend) e Gabriel (protótipo IoT), foi contínua para assegurar a interoperabilidade do sistema.
- RESULTADOS E DISCUSSÃO: Minha expectativa era solidificar conhecimentos em integração IoT e desenvolvimento de backend. O vivido, no entanto, apresentou um desafio significativo com o erro "HTTP Status 400: The data sent could not be parsed as valid JSON" durante o envio dos dados para o Adafruit IO. Essa dificuldade me levou a uma depuração aprofundada da estrutura do JSON e do endpoint correto para envio em grupo de feeds, o que resultou em um aprendizado valioso sobre a especificidade das APIs. A superação desse obstáculo, após múltiplas tentativas de formatação, trouxe uma grande satisfação e a certeza da robustez da solução. A facilidade foi a clareza da documentação do requests em MicroPython, enquanto a maior dificuldade foi isolar a causa exata do erro de parsing JSON, que exigiu paciência e testes iterativos. Recomendo para futuros projetos a atenção meticulosa à documentação das APIs de terceiros para evitar retrabalho com formatação de dados.
- REFLEXÃO APROFUNDADA: A teoria sobre comunicação de dados em redes IoT e arquitetura de sistemas distribuídos foi intensamente aplicada e testada. A necessidade de otimizar o envio de dados, considerando as limitações do ESP8266 e a estrutura esperada pelo Adafruit IO, reforçou a importância da eficiência e do consumo de recursos em sistemas embarcados, conceitos amplamente discutidos na disciplina.
- CONSIDERAÇÕES FINAIS: Este projeto expandiu minhas habilidades em desenvolvimento backend e integração IoT. Há um vasto potencial para trabalhos futuros, como a implementação de lógicas de alerta personalizáveis (e-mail, SMS) para condições ambientais críticas e a exploração de persistência de dados em um banco de dados local no ESP8266 antes do envio para a nuvem. Em termos de pesquisa, o estudo comparativo de diferentes protocolos de comunicação (MQTT vs.

HTTP) para eficiência em IoT seria relevante. Soluções tecnológicas alternativas para o backend poderiam incluir o uso de frameworks mais leves ou de micros-serviços para escalabilidade.

Nome do Aluno: Raquel Pereira Batista Moura – 202302699571

- CONTEXTUALIZAÇÃO: Minha responsabilidade no projeto foi o
 "Monitoramento Funcional", o que implicou em validar a coleta, o
 processamento e o armazenamento dos dados ambientais pelo sistema.
 Meu foco era garantir a integridade e a consistência dos dados desde a
 leitura do sensor até sua disponibilidade para a visualização no Adafruit
 IO e na aplicação web.
- METODOLOGIA: Atuei em todas as fases do projeto, com maior intensidade nas etapas de desenvolvimento e integração final do sistema. Minha metodologia envolveu a verificação contínua dos dados recebidos do sensor, a validação da sua precisão em comparação com outros instrumentos e a confirmação de que estavam sendo corretamente registrados no dashboard do Adafruit IO. Trabalhei em estreita colaboração com Sinézio para depurar problemas de envio de dados e com Gabriel para entender as características das leituras do sensor.
- RESULTADOS E DISCUSSÃO: Minha expectativa era que o fluxo de dados seria linear, mas a realidade dos desafios de integração me surpreendeu. A principal descoberta foi a importância de uma validação de dados em múltiplos pontos da cadeia de IoT, desde a leitura bruta do sensor até a chegada ao dashboard. Senti-me desafiada, especialmente quando a pressão e a altitude não atualizavam inicialmente no Adafruit IO, mesmo com os dados sendo impressos corretamente no terminal do NodeMCU. A superação desses problemas, através da depuração colaborativa, foi muito gratificante. As facilidades foram a visibilidade que o Adafruit IO oferecia para os feeds, enquanto as dificuldades residiram na identificação do ponto exato da falha na transmissão, que exigiu um olhar atento aos logs e status HTTP. Recomendo a implementação de testes unitários para cada etapa do fluxo de dados.
- **REFLEXÃO APROFUNDADA:** A prática de monitoramento funcional consolidou minha compreensão sobre a arquitetura de sistemas IoT e a interdependência de seus componentes. A teoria de integridade de dados e validação de sistemas foi diretamente aplicada, reforçando a criticidade de cada elo na cadeia de valor da informação em tempo real. A experiência mostrou que um sistema só é eficaz se todos os seus módulos funcionam em perfeita sintonia.
- CONSIDERAÇÕES FINAIS: O monitoramento funcional é crucial para a confiabilidade de qualquer sistema IoT. Perspectivas futuras incluem a automatização de testes de integração e a implementação de dashboards de monitoramento de desempenho do próprio sistema. Em termos de pesquisa, a análise da latência na transmissão de dados em diferentes condições de rede seria interessante. Soluções tecnológicas

alternativas poderiam envolver o uso de ferramentas de automação de testes (como Pytest para Python) e plataformas de monitoramento de infraestrutura (como Grafana) para uma visão mais abrangente.

Nome do Aluno: Gabriel Salazar Araujo Alcântara – 202302375022

- CONTEXTUALIZAÇÃO: Minha responsabilidade principal no projeto foi o "Estudo e desenvolvimento metodológico", com foco no protótipo IoT. Isso incluiu a pesquisa sobre o sensor BME280, a montagem física do dispositivo e a programação inicial do NodeMCU ESP8266 em MicroPython para a aquisição precisa dos dados de temperatura, umidade, pressão e altitude.
- **METODOLOGIA:** Minha atuação ocorreu nas fases de diagnóstico, teorização e planejamento e desenvolvimento. Realizei a montagem física do protótipo, a instalação das bibliotecas MicroPython no NodeMCU e a escrita do código para a leitura do sensor BME280. Testes de bancada foram cruciais para validar a leitura correta e para calibrar o sensor, especialmente a função de altitude, que inicialmente estava lendo o ponto de orvalho. O ampy foi a ferramenta essencial para o upload do código e monitoramento direto no terminal do NodeMCU.
- RESULTADOS E DISCUSSÃO: A expectativa era que a leitura do sensor fosse direta, mas descobri a complexidade das calibrações e compensações de dados que o BME280 exige. A principal descoberta foi a importância de corrigir a leitura da altitude, que estava erroneamente configurada para o ponto de orvalho (sensor.dew_point em vez de sensor.altitude), causando a não atualização desse dado no Adafruit IO. Senti uma mistura de frustração e satisfação durante a depuração, especialmente quando os dados não eram lidos corretamente no terminal, mas a correção desse detalhe trouxe um alívio e a validação do protótipo. As facilidades foram a disponibilidade de exemplos de código para MicroPython e a clareza da documentação do BME280, enquanto a maior dificuldade foi isolar problemas de hardware versus software, exigindo paciência e testes sistemáticos. Recomendo a atenção redobrada à folha de dados do sensor e a validação cruzada dos valores com outros instrumentos desde as primeiras etapas.
- REFLEXÃO APROFUNDADA: O processo de desenvolver o protótipo IoT me permitiu ver a teoria dos sistemas embarcados em ação. A compreensão dos registradores do sensor e dos algoritmos de compensação, que pareciam complexos no papel, tornou-se tangível ao programar o NodeMCU. A experiência reforçou a importância de um bom entendimento do hardware subjacente para um desenvolvimento de software eficaz em IoT e a necessidade de depuração minuciosa em cada etapa do fluxo de dados.
- CONSIDERAÇÕES FINAIS: O protótipo é a base física do projeto, e sua estabilidade é crucial. Futuras melhorias poderiam incluir a adição de módulos de energia eficientes para operação autônoma prolongada, explorando soluções de gerenciamento de bateria. Em termos de pesquisa, aprofundar a otimização do consumo de energia do ESP8266

para aplicações de longo prazo e a resiliência do sensor em diferentes condições ambientais seria interessante. Soluções tecnológicas alternativas para o hardware poderiam envolver o uso de ESP32 para maior capacidade de processamento e mais GPIOs, ou sensores com diferentes protocolos de comunicação (ex: LoRa para maior alcance em ambientes rurais).

Nome do Aluno: Bruno Santos Oliveira – 202302375138

- CONTEXTUALIZAÇÃO: Minha função principal no projeto foi a "Documentação do processo, requisições e resultados", além da coordenação dos testes. Isso significou acompanhar de perto todas as etapas do desenvolvimento, desde a concepção até os testes finais, garantindo que o roteiro de extensão fosse preenchido de forma clara e abrangente, e que o projeto estivesse alinhado com os "Objetivos/resultados/efeitos a serem alcançados" e as "Metas, critérios ou indicadores de avaliação".
- METODOLOGIA: Participei ativamente das fases de planejamento, desenvolvimento e, crucialmente, no encerramento do projeto. Minha metodologia envolveu a criação de um plano de documentação, registro de reuniões, acompanhamento do progresso de cada membro e a compilação dos resultados. Realizei testes de usabilidade da aplicação web, coletando feedback do público participante (professores, alunos) através de formulários e depoimentos, conforme as "Estratégias para mobilizá-los". A sistematização da análise e a proposição de gráficos comparativos temporais foram responsabilidades compartilhadas que exigiram a compreensão de todos os componentes do sistema.
- **RESULTADOS** E **DISCUSSÃO**: A expectativa era de que a documentação seria um processo contínuo e orgânico. O vivido confirmou isso, mas também revelou a necessidade de uma comunicação constante e eficiente entre os membros da equipe para capturar todas as informações relevantes, especialmente as dificuldades técnicas e suas soluções (como os desafios de depuração no envio de dados). A principal descoberta foi a importância de uma documentação detalhada para a rastreabilidade do projeto e para a identificação rápida de pontos de melhoria e lições aprendidas. Senti-me responsável por garantir a coerência e a integridade das informações. As facilidades incluíram a colaboração aberta da equipe e o uso de ferramentas de comunicação, enquanto as dificuldades foram gerenciar as atualizações e garantir que todos os aspectos do projeto estivessem devidamente registrados em meio ao ritmo de desenvolvimento e depuração. Recomendo a adoção de ferramentas colaborativas de documentação mais robustas desde o início do projeto para centralizar e versionar as informações.
- REFLEXÃO APROFUNDADA: A teoria da gestão de projetos, da qualidade e da comunicação eficaz foi diretamente aplicada na minha função de documentador e testador. A avaliação do comportamento ambiental do ambiente monitorado e a promoção do uso educacional e

comunitário da ferramenta foram aspectos que me conectaram mais profundamente com os objetivos sociais do projeto, como a "Melhoria na percepção do impacto ambiental sobre o bem-estar". A importância da documentação para a validação e a disseminação de conhecimento, bem como para a avaliação dos critérios e indicadores de sucesso, foi um aprendizado prático inestimável.

• CONSIDERAÇÕES FINAIS: A documentação bem-feita e os testes rigorosos são vitais para a longevidade e replicabilidade de qualquer projeto de extensão. Perspectivas futuras incluem a criação de manuais de usuário mais detalhados e guias de implantação passo a passo para a comunidade, facilitando a adoção. Em termos de pesquisa, o estudo da aceitação de tecnologias IoT em comunidades e a avaliação do impacto socioambiental de longo prazo do projeto seriam tópicos relevantes. Soluções tecnológicas alternativas poderiam envolver o uso de plataformas de gerenciamento de projetos mais sofisticadas (como Trello ou Jira) para auxiliar na organização da documentação e no rastreamento de tarefas e testes.

Nome do Aluno: Paulo Henrique Ribeiro Chaves – 202303677308

- CONTEXTUALIZAÇÃO: Minha contribuição para o projeto "Monitoramento Climático com ESP8266 e Sensor BME280" concentrou-se no "Desenvolvimento da interface" do Dashboard Adafruit IO. Minha responsabilidade foi transformar os dados coletados pelo sensor e armazenados no Adafruit IO em uma experiência visual clara e interativa para o usuário final.
- **METODOLOGIA:** A experiência foi desenvolvida em Salvador/BA e envolveu a criação de protótipos de interface, a integração com as APIs do backend para buscar os dados do Adafruit IO, e a implementação dos gráficos interativos (diários, semanais) conforme o objetivo de "Desenvolver uma interface gráficos interativos". O público envolvido incluiu os membros da equipe para testes internos e, posteriormente, os usuários externos para avaliação de usabilidade e coleta de "Feedback positivo de pelo menos 80% dos usuários/testadores".
- RESULTADOS E DISCUSSÃO: A expectativa era criar uma interface funcional e esteticamente agradável, que fosse clara e compreensível, atendendo ao critério de "Apresentação gráfica clara e compreensível das variações ambientais". O vivido confirmou que a usabilidade é primordial, e a simplicidade na apresentação de dados complexos foi um desafio interessante. A principal descoberta foi a versatilidade do Dashboard Adafruit IO para criar visualizações dinâmicas e a importância do feedback do usuário para refinar o design, tornando os "Resultados esperados" (Plataforma online clara, intuitiva e funcional com gráficos) uma realidade. Senti-me bastante motivado ao ver os dados brutos ganharem vida em gráficos claros e informativos.

- **REFLEXÃO APROFUNDADA:** A teoria de design de interface do usuário (UI/UX) e a visualização de dados foram os pilares práticos do meu trabalho. A necessidade de transformar grandes volumes de dados ambientais em gráficos compreensíveis e interativos refletiu diretamente os princípios de storytelling com dados e a importância de um "Nível de precisão dos dados coletados" na sua apresentação. A experiência reforçou a importância de pensar na jornada do usuário e na forma como a informação é consumida para que o projeto possa "Promover o uso educacional e comunitário da ferramenta desenvolvida".
- CONSIDERAÇÕES FINAIS: A interface gráfica é a porta de entrada do usuário para o sistema, e seu sucesso depende da clareza e interatividade. Futuras melhorias poderiam incluir a adição de funcionalidades de zoom e filtro nos gráficos para uma análise mais detalhada, além de um painel de controle personalizável para diferentes tipos de usuários. Em termos de pesquisa, a avaliação da percepção do usuário sobre a relevância dos dados visualizados e a eficácia da ferramenta na tomada de decisões ambientais seria interessante. Soluções tecnológicas alternativas para o frontend poderiam ser frameworks JavaScript mais robustos como React ou Vue.js para aplicações de maior escala, oferecendo mais ferramentas para a construção de interfaces complexas e reativas.

4. Anexos;

Figura 1: Aba "Feeds" na plataforma Adafruit IO. Autor: Grupo 3 Iot.2025.1

Figura 2: Aba "Dashboards" na plataforma Adafruit IO. Autor: Grupo 3 lot.2025.1

Figura 3:Gráfico de umidade e temperatura na aba "Dashboard/siryuscloud" na plataforma Adafruit IO. Autor: Grupo 3 Iot.2025.1

Figura 4: Gráficos de Altitude e Pressão na aba "Feeds" na plataforma Adafruit IO. Autor: Grupo 3 Iot.2025.1

Figura 5: Verificação de integridade no envio para o Adafruit IO. Autor: Grupo 3 Iot.2025.1