

Nome:

Electromagnetismo A MIECom

Exame	про	
-------	-----	--

1) 2) 3)		verdadeiras forem indicadas. Em todas as Q existe sempre pelo		
pon em	 Considere um plano infinito uniformemente carregado com nto P a uma distância d do plano. Das seguintes afirmações, rel P, indique a(s) verdadeira(s):	ativas à direcção e sentido do vector campo eléctrico d P gaussiana esférica. Das seguintes opções, indique o(s) e. , ainda no seu interior.		
Q3.	As seguintes afirmações, indique a(s) verdadeira(s): Numa associação de resistências em paralelo, o que caracteriza a ligação é o facto da cada resistência ser percorrida pela mesma corrente eléctrica. Numa associação de resistências em paralelo, a resistência equivalente é maior que qualquer uma das resistências individuais. Numa associação de resistências em paralelo, o que caracteriza a ligação é o facto de todas as resistências estarem submetidas à mesma diferença de potencial eléctrico. A potência dissipada numa resistência, por efeito Joule, vale o produto do quadrado da intensidade da corrente que a percorre pelo valor dessa resistência.			
Q4.	 Relativamente ao circuito da figura ao lado, e após fecharmos a corrente I₂ é, inicialmente, máxima. em regime estacionário, o valor da diferença de potencia condensador é R₂·I₃ a corrente I₁ é constante no tempo. a corrente I₂ é constante no tempo. 			
Q5	 Das seguintes afirmações, indique a(s) verdadeira(s): A força magnética sobre uma carga em movimento é deper A força magnética sobre uma carga em movimento na direcção do seu deslocamento. A força magnética exercida sobre um fio percorrido por u do fio. O campo magnético criado por um fio rectilíneo infinito uma distância r é paralelo a esse fio. 	ão depende da velocidade da carga, contudo altera ma corrente eléctrica é independente do comprimento		

Q6. Um electrão move-se horizontalmente para uma tela, segundo a linha a tracejado, devido a uma força magnética causada por um campo magnético. Das seguintes opções, relativas à direcção para a qual aponta o campo magnético, indique a(s) verdadeira(s):

| sai perpendicularmente da página. | para a parte de superior da página. | para a parte inferior da página. | o campo magnético está ao longo da trajectória curvilínea.
Q7. Das seguintes opções, relacionadas com o movimento de um íman relativamente a uma espira circular, indique a(s) verdadeira(s) para que a corrente representada no anel (ver figura) tenha o sentido indicado:
| o íman entra na espira da esquerda para a direita, em que A é o pólo sul. | o íman entra na espira da esquerda para a direita, em que A é o pólo norte. | a espira e o íman devem estar parados, um em relação ao outro, em que A é o

P1 – A figura ao lado mostra 3 cargas pontuais que inicialmente estão infinitamente separadas. Calcule a energia potencial do sistema dessas cargas quando reagrupadas e dispostas nos vértices de um triângulo equilátero de lado 0,5 m.

pólo norte.

nenhuma das anteriores.

- **P2** Considere o circuito representado na figura ao lado. Calcule:
 - a) A capacidade equivalente entre A e B.
 - b) A carga armazenada em cada condensador quando V_{AB} =200 V.
 - c) Nas condições anteriores, determine a energia total armazenada no circuito eléctrico.

P3 – No circuito eléctrico de corrente contínua da figura ao lado, em equilíbrio, calcule as correntes $I_1,\ I_2$ e $I_3.$ Calcule também $V_{AC}.$

P4 – Um elemento aquecedor, feito de fio de carbono de 0,5 mm de diâmetro, está projectado para operar a 220 V e a uma potência de 1500 W.

- a) Admitindo que a resistividade do fio permanece constante e igual ao seu valor a 20 °C (3,5×10⁻⁵ Ωm), achar o comprimento do fio que deve ser usado.
- b) Admita, agora, que há variação da resistividade com a temperatura. Qual é a potência dissipada pelo elemento aquecedor da parte a) quando for aquecido a 1200 °C? Tenha em conta que o coeficiente de temperatura de resistividade do carbono é de 5×10⁻⁴ °C⁻¹.

P5 – A bobina rectangular da figura ao lado consiste num enrolamento com 75 espiras, sendo percorrida por uma corrente de 4,4 A. Um campo magnético horizontal de 1,8 T é dirigido ao longo da parte positiva do eixo dos *yy'*. A espira pode rodar livremente em torno do eixo dos *zz'*.

- a) Calcule o valor do torque (momento de forças) magnético que é exercido na espira.
- b) Justifique se o ângulo de 35° aumenta ou diminui.

0.70 m / B B O.50 m

espiras

P6 – Um solenóide com 2 cm de raio e 10 cm de comprimento é constituído por um enrolamento de 7 espiras nas quais flui uma corrente eléctrica contínua de 3 A.

- a) Represente na figura ao lado a direcção do campo magnético no ponto P, situado no eixo do solenóide e junto a uma das extremidades do mesmo, e calcule o respectivo módulo desse campo magnético no interior do solenóide.
- b) Suponha agora que uma bobina externa com 15 espiras e raio de 10 cm envolve o solenóide anterior. Nestas condições, se a corrente no solenóide interno variar no tempo conforme I =3·sin(120t) (A), qual será a expressão temporal da *fem* induzida na bobine externa? Represente num esquema esta experiência, indicando todas as correntes eléctricas, *fem* induzida e campos magnéticos relevantes.

