- 1. (Jan-06.2) Let R be the subring of $\mathbb{Z}[x]$ consisting of all polynomials with zero x- and x^2 -coefficients.
 - (a) Show that $\mathbb{Q}(x)$ is the field of fractions of R.
 - (b) Find the integral closure of R in $\mathbb{Q}(x)$.
 - (c) Does there exist a polynomial $g(x) \in R$ such that R is generated as a ring by 1 and g(x)?
- 2. (Aug-09.2/Jan-08.2a) Let $R \subseteq S$ be commutative rings with the same 1, and assume that every element of S is integral over R.
 - (a) If $r \in R$ has an inverse in S, prove this inverse is in R.
 - (b) Suppose R is a field and $s \in S$ is regular (i.e., if sx = 0 for some $x \in S$, then x = 0). Show that s is invertible in S.
 - (c) If P is a prime ideal of S, prove that P is maximal in S iff $R \cap P$ is maximal in R.
- 3. (Jan-01.3): Let $f(x) \in \mathbb{Z}[x]$ be monic and such that $f(\alpha) = f(2\alpha) = 0$ for some $\alpha \in \mathbb{C}$.
 - (a) Show that $f(0) \neq 1$.
 - (b) If f is irreducible, prove $\alpha = 0$.
- 4. (Aug-12.5) Let R be a not necessarily commutative ring with 1, such that $x^5 = x$ for every $x \in R$.
 - (a) Show that J(R) = 0.
 - (b) Now assume R is right-Artinian. Prove that R is a direct sum of division rings.
 - (c) Let D be a division ring direct summand of R. If F is any subfield of D, show that $F = \mathbb{F}_2$, \mathbb{F}_3 , or \mathbb{F}_5 .
 - (d) Deduce that D above is isomorphic to \mathbb{F}_2 , \mathbb{F}_3 , or \mathbb{F}_5 , and conclude that R is commutative.
- 5. (Aug-04.2) Let R be a ring with 1, M be a finitely-generated (right) R-module, and $N \subset M$ a proper submodule of M.
 - (a) Prove that there exists a maximal submodule of M containing N.
 - (b) Show that N + MJ is a proper submodule of M, where J = J(R) is the Jacobson radical of R.
- 6. (Aug-06.2) Let R be a ring with 1 and N a nil ideal of R such that R/N has no zero divisors.
 - (a) Show that the only idempotents of R are 0 and 1.
 - (b) If R/N is a division ring, show that every zero divisor in R is nilpotent.

- 7. (Jan-14.1): Let R be a commutative ring and I an ideal of R.
 - (a) Show that the radical of I, rad(I), is an ideal of R. (Recall that the radical is given by the set of all elements $x \in R$ such that there exists an integer n such that $x^n \in I$.)
 - (b) Give an example of an ideal I in $\mathbb{Q}[x,y]$ such that I is non-principal but $\mathrm{rad}(I)$ is principal.
 - (c) Suppose we try to define rad(0) in $R = M_{2\times 2}(\mathbb{R})$ to be the set of all elements $r \in R$ such that there exists an integer n with $r^n = 0$. Show that this set rad(0) is not an ideal of R.
- 8. (Aug-08.2) Let $S = \mathbb{Z} \oplus \mathbb{Z}$, and $R = \{(a, b) \in S : a \equiv b \mod 6\}$.
 - (a) Show that R is a finitely-generated \mathbb{Z} -module and conclude that R is a Noetherian ring.
 - (b) Prove that the ideal $P = \{(a, 0) \in R : a \equiv 0 \mod 6\}$ is prime in R.
 - (c) If Q is a primary ideal of R with P = rad(Q), show that Q = P.
- 9. (Jan-12.2) Let R be a commutative ring with 1 and Q be a primary ideal of R. Suppose that $Q = \bigcap X_i$ is a finite intersection of the ideals X_i .
 - (a) If each X_i is prime, prove that $Q = X_j$ for some j. [Hint: Show that Q is prime.]
 - (b) If R is Noetherian and each X_i is primary, and the radicals of the X_i are distinct, prove again that $Q = X_j$ for some j.
- 10. (Aug-02.2) Let R be a commutative ring with 1 in which every proper ideal is primary.
 - (a) If P is a prime ideal and I is any ideal, show that either $I \subseteq P$ or $P = IP \subseteq I$.
 - (b) If M is a maximal ideal of R, show that M is the set of nonunits of R.
 - (c) Show that J is prime in R iff for all $r \in R$, $r^2 \in J$ implies $r \in J$.