

SEQUENCE LISTING

<11> Takami, Eriko
<12> Murayama

<13> Antidiabetic Preparation

<16> 1381-1120PUS1

<14> 11 017,471

<141> 2000-11-23

<15> 61 242,561

<151> 2000-11-23

<160> 19

<17> PatentIn Ver. 2.1

<210> 1

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 1

gaccacgtsc csggcattg

18

<210> 2

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 2

gtctctgstgg ccsjtsacsc gsac

24

<210> 3

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 3

ggcaatgtt tttttttttt ac

22

<210> 4

<211> 25

<212> DNA

<213> Artificial Sequence

<101>
<102> Description of Artificial Sequence: Synthetic
oligonucleotide

二

00110 > 0
00111 > 1
00112 > 2
00113 > 3
00114 > DNA
00115 > Artificial Sequence

<221>
<223> Description of Artificial Sequence: Synthetic oligoribonucleotide

三

```
<211> 6  
<211> 24  
<212> DNA  
<213> Artificial Sequence
```

<221>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 6
atcgcccccgtt ccttgtttggc catg

24

```
<211> 7  
<211> 22  
<211> DNA  
<211> artificial sequence
```

<221>
<222> Description of Artificial Sequence: Synthetic
Oligonucleotide

22

--

4220
4221 * Description of Artificial Sequence: Synthetic
oligonucleotide

4400.0

20

<210>
<213> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 9
stgcacccctg gttccgttggc ca

22

<210> 11
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 10
atcgaccggc cctgtttggc catg

24

<210> 11
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide

<400> 11
catctgcagc gtgatcgtgg cagcttgta g

31

<210> 12
<211> 401
<212> DNA
<213> Streptomyces coelicolor

<400> 12
ggcaggacg gcccgtaccc agaacccggtc accgccttc ggtatccagc tgaccggaa 60
cgggtcttc accctggcc ggtggacaag cgcacatggc acggcaatg cggtttgttc 120
gatcgatgg gatcggaag cagaattgtat caaaaactact gtttcggca tgggttcccc 180
ccaggaatca tgtatgcgg agctgttctg tatgcgcggaa cgttaagata cagactjago 240
gtttttttt atatccttc cgggggagac atgaacaagg aggcaaggat ggccaaagg 300
gacggggcga tccgcacggc gcagacgatc stggacggcg cggcgcggat ttccgagaag 360
cagggttacc aagctgccac gatcacggag atccctcaagg t 401

<210> 13
<211> 401
<212> DNA
<213> Streptomyces coelicolor

<400> 13
accttggatc tccgtgtat cgtggcagct tggtagccct gtttctcgaa gacctgcggc 60
gggggttcca jjatcgatgg ccgggtgggg atcgccgggt ctgtttggc catgcctggc 120
tttttgttca tttttttttt gggaggata gaaaaaaaaac cgatcgatgt gtatcttaac 180
gttcggcgtt atayaacage tggcgtatcaat atgattctg gggggggatcc atggccggaa 240
cagtatttt jatcaattttt ggtttccgtat ccaactcgat cgaacaaacc gatcgccgg 300
ttccgtatggc gtttgcggc acggacccggg tggaggacgc gttcccgjtr ajctggataac 360
cgaagggggg tttatcggttc tgggttacccg ccgtttatggc t 401

<210> 14
<211> 57
<212> PRT
<213> Streptomyces coelicolor

<400> 14
Met Pro Glu Ala Val Val Leu Ile Asn Ser Ala Ser Arg Ala Asn Ser
1 5 10 15

Ile Glu Gln Thr Ala Leu Pro Val Pro Met Ala Leu Val His Arg Thr
21 25 31

Arg Val Gln Asp Ala Phe Pro Val Ser Trp Ile Pro Lys Gly Gly Asp
35 40 45

Arg Phe Ser Val Thr Ala Val Leu Pro
50 55

<210> 15
<211> 37
<212> PRT
<213> Streptomyces coelicolor

<400> 15
Met Ala Lys Gln Asp Arg Ala Ile Arg Thr Arg Gln Thr Ile Leu Asp
1 5 10 15

Ala Ala Ala Gln Val Phe Glu Lys Gln Gly Tyr Gln Ala Ala Thr Ile
20 25 30

Thr Glu Ile Leu Lys
35

<210> 16
<211> 215
<212> PRT
<213> Streptomyces coelicolor

<400> 16
Met Ala Lys Gln Asp Arg Ala Ile Arg Thr Arg Gln Thr Ile Leu Asp
1 5 10 15

Ala Ala Ala Gln Val Phe Glu Lys Gln Gly Tyr Gln Ala Ala Thr Ile
20 25 30

Thr Glu Ile Leu Lys Val Ala Gly Val Thr Lys Gly Ala Leu Tyr Phe
35 40 45

His Phe Gln Ser Lys Glu Glu Leu Ala Leu Gly Val Phe Asp Ala Gln
50 55 60

Glu Pro Pro Gin Ala Val Pro Glu Gln Pro Leu Arg Leu Gln Gln Leu
65 70 75 80

Ile Asp Met Ily Met Leu Phe Cys His Arg Leu Arg Thr Asn Val Val
85 90 95

Ala Arg Ala Gly Val Arg Leu Ser Met Asp Gin Gln Ala His Gly Leu
100 105 110

Asp Arg Arg Gly Pro Phe Arg Arg Trp His Glu Thr Leu Lys Leu
115 120 125

Leu Asn Gln Ala Lys Glu Asn Gly Glu Leu Leu Pro His Val Val Thr
130 135 140

Thr Asp Ser Ala Asp Leu Tyr Val Gly Thr Phe Ala Gly Ile Gln Val
145 150 155 160

Val Ser Gln Thr Val Ser Asp Tyr Gln Asp Leu Glu His Arg Tyr Ala
165 170 175

Leu Leu Gln Lys His Ile Leu Pro Ala Ile Ala Val Pro Ser Val Leu
180 185 190

Ala Ala Leu Asp Leu Ser Glu Glu Arg Gly Ala Arg Leu Ala Ala Glu
195 200 205

Leu Ala Pro Thr GLY Lys Asp
210 215

<210> 17

<211> 313

<212> PRT

<213> Streptomyces coelicolor

<400> 17

Met Pro Glu Ala Val Val Leu Ile Asn Ser Ala Ser Asp Ala Asn Ser
1 5 10 15

Ile Glu Gln Thr Ala Leu Pro Val Pro Met Ala Leu Val His Arg Thr
20 25 30

Arg Val Gln Asp Ala Phe Pro Val Ser Trp Ile Pro Lys Gly Gly Asp
35 40 45

Arg Phe Ser Val Thr Ala Val Leu Pro His Asp His Pro Phe Phe Ala
50 55 60

Pro Val His Gly Asp Arg His Asp Pro Leu Leu Ile Ala Glu Thr Leu
65 70 75 80

Arg Gln Ala Ala Met Leu Val Phe His Ala Gly Tyr Gly Val Pro Val
85 90 95

Gly Tyr His Phe Leu Met Thr Leu Asp Tyr Thr Cys His Leu Asp His
100 105 110

Leu Gly Val Ser Gly Glu Val Ala Glu Leu Glu Val Glu Val Ala Cys
115 120 125

Ser Gln Leu Lys Phe Arg Gly Gly Gln Pro Val Gln Gly Gln Val Asp
130 135 140

Trp Ala Val Arg Arg Ala Gly Arg Leu Ala Ala Thr Gly Thr Ala Thr
145 150 155 160

Thr Arg Phe Thr Ser Pro Gln Val Tyr Arg Arg Met Arg Gly Asp Phe
165 170 175

Ala Thr Pro Thr Ala Ser Val Pro Gly Thr Ala Pro Val Pro Ala Ala
180 185 190

Arg Ala Gly Arg Thr Arg Asp Glu Asp Val Val Leu Ser Ala Ser Ser
195 200 205

Gln Gln Asp Thr Trp Arg Leu Arg Val Asp Thr Ser His Pro Thr Leu
210 215 220
Phe Gln Arg Pro Asn Asp His Val Pro Gly Met Leu Leu Leu Glu Ala
225 230 235 240
Ala Arg Gln Ala Ala Cys Leu Val Thr Gly Pro Ala Pro Phe Val Pro
245 250 255
Ser Ile Gly Gly Thr Arg Phe Val Arg Tyr Ala Glu Phe Asp Ser Pro
260 265 270
Cys Trp Ile Gln Ala Thr Val Arg Pro Gly Pro Ala Ala Gly Leu Thr
275 280 285
Thr Val Arg Val Thr Gly His Gln Asp Gly Ser Leu Val Phe Leu Thr
290 295 300
Thr Leu Ser Gly Pro Ala Phe Ser Gly
305 310

<210> 18

<211> 262

<212> PRT

<213> Streptomyces coelicolor

<400> 18

Met Arg Ala His Gly Thr Arg Tyr Gly Arg Pro Leu Glu Gly Lys Thr
1 5 10 15

Ala Leu Val Thr Gly Gly Ser Arg Gly Ile Gly Arg Gly Ile Ala Leu
20 25 30

Arg Leu Ala Ala Asp Gly Ala Leu Val Ala Val His Tyr Gly Ser Ser
35 40 45

Glu Ala Ala Ala Arg Glu Thr Val Glu Thr Ile Arg Ser Ser Gly Gly
50 55 60

Gln Ala Leu Ala Ile Arg Ala Glu Leu Gly Val Val Gly Asp Ala Ala
65 70 75 80

Ala Leu Tyr Ala Ala Phe Asp Ala Gly Met Gly Glu Phe Gly Val Pro
85 90 95

Pro Glu Phe Asp Ile Leu Val Asn Asn Ala Gly Val Ser Gly Ser Gly
100 105 110

Arg Ile Thr Glu Val Thr Glu Glu Val Phe Asp Arg Leu Val Ala Val
115 120 125

Asn Val Arg Ala Pro Leu Phe Leu Val Gln His Gly Leu Lys Arg Leu
130 135 140

Arg Asp Gly Gly Arg Ile Ile Asn Ile Ser Ser Ala Ala Thr Arg Arg
145 150 155 160

Ala Phe Pro Glu Ser Ile Gly Tyr Ala Met Thr Lys Gly Ala Val Asp
165 170 175

Thr Leu Thr Ile Ala Leu Ala Arg Gln Leu Gly Glu Arg Gly Ile Thr
180 185 190

Val Asn Ala Val Ala Pro Gly Phe Val Glu Thr Asp Met Asn Ala Arg
195 200 205

Arg Arg Gln Thr Pro Glu Ala Ala Ala Ala Leu Ala Ala Tyr Ser Val
210 215 220

Phe Asn Arg Ile Gly Arg Pro Asp Asp Ile Ala Asp Val Val Ala Phe
225 230 235 240

Leu Ala Ser Asp Asp Ser Arg Trp Ile Thr Gly Gln Tyr Val Asp Ala
245 250 255

Thr Gly Gly Thr Ile Leu
260

<210> 19

<211> 4346

<212> DNA

<213> *Streptomyces coelicolor*

<400> 19

gtcga	gacgacg	gggtcggtt	cgtacgc	ccgtactcg	tteccggca	ccgggcaccg	60
gttct	gegtct	cgatgacg	ccgcatacg	gacgtcggt	ggcggtctct	gatagtgagc	120
ggcccc	cccg	ggggcacg	catcgacgt	catctccac	tgcccggcc	aaaagtgagc	180
accgc	accgc	ggacgtgac	ccatggagg	gcaacgtcc	cggacggatc	acccttggct	240
tcggcc	aaag	gtttccggt	ggccggcc	ccagatcgj	aacggcttgg	cgggccggcc	300
cgta	acttcc	cgacgg	gcacgac	ccgccttggcc	cccgcccgct	ccgcgtcg	360
gtctcc	cagg	aacg	cgacgg	cgatactc	cggagcatct	gtcgccg	420
cgctcc	cagg	cccag	cgaaac	tgaccggccc	agcacctcg	agagccg	480
cg	tctgtc	ctgg	cggtgt	tcgccttgg	ccggacacgc	gtgtacggcc	540
ccgg	ggccgg	gtc	agtgccc	tgaccggcc	tcccgctg	cgacgcaggc	600
aa	cgggg	gtc	cggtaca	gcccggac	tcgcgtcg	cgggcgcca	660
gg	ac	ttgg	atgat	ccgcgtcg	gaccggatgg	ccccggactc	720
gcgt	acgg	cccg	ctgttt	ccgcgtcg	ccgcgtcg	cgccccgttc	780
cccc	accc	cg	cggtgt	ccgcgtcg	ccgcgtcg	cgccgcggc	840
ccgc	aaaa	ac	gttca	ccgcgtcg	ccgcgtcg	ccgcggcac	900
cccg	ttgg	gg	ccgcgtcg	ccgcgtcg	ccgcgtcg	agacctcgac	960
gtt	gggg	gt	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccggacccgt	1020
ccgg	cccg	gt	ccgcgtcg	ccgcgtcg	ccgcgtcg	tcacaagaat	1080
cact	cg	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	tatgaggg	1140
aggc	agg	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgggtgttc	1200
agcc	gggg	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	tcgtatgtcc	1260
cggt	accc	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	1320
agc	acgg	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	jacggcacga	1380
agg	gggg	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	agcagcatgc	1440
ccgg	ta	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	acccggatgc	1500
gcba	cgt	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	1560
ccgg	gggg	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	1620
ccgg	at	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	1680
ccgg	ccgt	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	1740
gg	actt	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	1800
ccgg	ttgg	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	1860
ccgg	gggg	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	1920
ccgg	gggg	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	1980
ccgg	gggg	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	2040
tgg	at	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	2100
cat	gt	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	2160
tcc	tat	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	2220
gat	ccgg	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	2280
ccaa	gggt	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	2340
cttc	atgg	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	2400
aa	agg	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	2460
ctgt	ccgg	cc	ccgcgtcg	ccgcgtcg	ccgcgtcg	ccgtggatcc	2520

gcaggcggcac	ggtgtcgatc	ggcgaggacc	cttcgttgc	tggcacgaga	cactcttgaa	2646
gttgtgtgaac	caggccaaagg	agaacggtga	gttgtgtgc	catgtggta	ccacccgactc	27000
ggccgtatcc	taatgtggggca	ctttccgggg	gatacaggta	gttgtttcaga	ccgttccggaa	2750
ctaccaggac	cttggaaacatc	gttacgggtt	gttgttttttt	ccatccctgc	ccggccatggc	28200
ggttttttcc	gttgttggggc	ctgtcgatct	cttcggggag	ccggggggcc	gttgtttgggg	2830
cgaaatggca	ccggccgggg	aggactgacc	ggcggaaagg	ccggccgggg	tacccggggc	29400
ccgtggccgg	ggggggccgg	ggggccgggt	acggggccgg	ccgggggggg	gttgttttgg	30200
ccctgggttcc	gaaggcgtggg	gggttttttt	atccgttttt	cttgttttttt	gggtttttgg	30600
ccgggtatcc	acccgtgagt	gttggggggc	agaaaaggcc	ccatccgtgg	gttgttttttt	31200
ggttttttgg	tgggggttgg	ccgggggtt	gggggggggt	ccgggggggg	ctccgggggg	31800
tggggggccgg	gttgtttttat	gtttttttcc	acggaaaccc	ggggccgggg	gttgttttttt	32400
atccccccgtt	ccccccatgtt	ccctgggggg	gggggggttt	gggttttttt	ccggccatcc	33000
gttccatcggt	atccgtatgg	ctttggggaa	gggggggggg	tggggggaga	ccggatgttt	33600
atgtatccggc	ccgggttcgg	ccgttttttt	atccgttttt	ggccatccggaa	ccgggggtgg	34200
ccggacgttga	ccggggacccag	ttgggttcaag	acccatccgg	tgttttttttt	gttgttttttt	34800
gagccgttga	ccggccgggtt	gtttcccccgg	atccgttttt	ggggggggac	ttggaaatcc	35400
ccccatccgg	ccggggaaac	ccggggatgg	gggggggggt	ccggccggac	ccggggatcc	36000
ggccggatgg	ccaaatgggg	ccggccgggt	ccggggatgg	tccgggggtt	ctccatccgg	36600
ggccggatgg	tgttgttttt	gtggaaatgg	ccggggggcc	ccggccgggg	ccggccgggg	37200
ggatataccgg	gttgttttttt	ccggggggcc	ccggggatcc	ggggggggtt	ccggatccgg	37800
gttgtttttat	acccgtttcc	atccgttttt	atccatccgg	ccgggggtgg	tggggggacc	38400
atggggggccg	cttggggccgtt	ccggatccgg	gtccacaccc	acccgttttt	ccgttccggcc	39000
ggggccgggtt	ggggccgggtt	gggggggtgg	ccggatccgg	ggggggggcc	ccggggaaaccc	39600
ccggccgggtca	gggggttttttt	gttgttttttt	ccggccgggg	ccggccgggg	accggacccgg	40200
tccggggatgg	gggttccacc	ccggccatcc	ttccatccgg	ccggatccgg	ctcgtaacccg	40800
taccagagcc	ccgttccggcc	gggttttttt	ttccatccgg	ccggatccgg	ccggccggcc	41400
tttgcgcagg	ggccggaaaggc	gggggggggt	ccggccgggg	ccggccgggg	ggccgggggtcg	42000
aaacggccgg	ccggccgggg	ccagggtttcc	tccaggacgt	ctagacccgc	caacccggccc	42600
tgccggccagg	ccggccacgg	ccggccgggg	ttccggcggt	ccggccggcc	ggccggaggcc	43200
agcgacgcgt	agagccgcgc	gggttttttt	ccggccgggt	ccggccggcc	ggccggaggcc	4346