COSC-302

EXAM 2 REVIEW

by Tyler Senter

Overview

Graphs

- Undirected vs. Directed
- Weighted vs. Unweighted
- · Cyclic vs. Acyclic
- Dense vs. Sparse
 - Implementation

Disjoint Sets

Algorithms

- Breadth-First vs. Depth-First Searches
 - Implementation
- Dijkstra's Shortest Path
- Topological Sorting

Overview (cont.)

Algorithms (cont.)

- Minimum Spanning Trees
 - Prim
 - Kruskal
- Maximum Flow: Edmond-Karp's Breadth-First Search
 - Min-cut
- Floyd-Warshall's Shortest Path
- Computational Costs

Dynamic Programming

Graphs – Undirected vs. Directed

Undirected

A vertex can be visited by any of its adjacent vertices

Directed

A vertex can only visit vertices with a direct connection

Graphs – Unweighted vs. Weighted

Unweighted

 There is no difference in cost for visiting different vertices

Weighted

 A cost exists between vertices; represents time, distance, money, etc.

Graphs – Cyclic vs. Acyclic

Cyclic Graphs

 Contain at least one cycle, meaning a DFS may reach an ancestor (vertex colored black)

Acyclic Graph

· Contain no cycles

Example

Example

Graphs - Dense vs. Sparse

Dense Graphs

Definition

- The number of edges for each vertex is close to the maximal number of edges
- $V \ll E < V^2$

Implementation

 Adjacency matrix – mapping between every pair of vertices marking whether or not an edge exists

Sparse Graphs

Definition

- The number of edges for each vertex is close to the minimal number of edges
- $V < E \ll V^2$

Implementation

 Adjacency lists – array containing all vertices each vertex is adjacent to

Example: Facebook

 Facebook has an estimated 2.5 billion accounts, with an average of 338 friends per account.

Disjoint Sets

Disjoint Sets track different, non-overlapping elements in a "universe"

Useful for generating mazes (Lab 6) by starting with each cell as its own set and merging (union) until every cell is in the same set (find)

Operations

- Union/merge take two unconnected sets and combine them
- Find Locate the set containing a particular value

Algorithms – Breadth-First Search

Algorithm

- 1. Let Q be a queue
- 2. Add source to Q
- 3. While Q is not empty
 - 1. Let v be front of Q, remove front of Q
 - 2. Process v
 - 3. If v has not been visited
 - 1. Mark v as visited
 - 2. For every vertex j adjacent to v:
 - 1. Push j onto Q
 - 3. Go to 3

A B C D E F G H

Algorithms – Depth-First Search

Algorithm

- 1. Let S be a stack
- 2. Add source to S
- 3. While *S* is not empty
 - 1. Let v be top of S, remove front of S
 - 2. Process v
 - 3. If v has not been visited
 - 1. Mark v as visited
 - 2. For every vertex j adjacent to v:
 - 1. Push j onto S
 - 3. Go to 3

Algorithms – BFS and DFS Traversals

Algorithms - Dijkstra's Shortest Path

Guaranteed to find the shortest (least weighted) path between two vertices

- Works for directed and undirected graphs
- · Does not work with negative weights

Algorithm

- · Color all vertices white
- Set distance(source) = 0, distance(other) = ∞
- 1. Find white vertex v with the lowest distance
- 2. For each white vertex adjacent to w,
 - 1. Calculate distance: $d_{new} = distance(v) + weight(v, w)$
 - 2. If $d_{new} < \text{distance}(w)$,
 - 1. Set distance(w) = d_{new}
- 3. Color v black
- 4. Repeat to 1

Algorithm ends when no white vertices exist

Algorithms – Dijkstra's SP (Undirected)

Source = A							
	A	В	С	D	E	F	G
init	0	∞	∞	∞	∞	∞	∞
0		1	∞	∞	∞	∞	∞
1			4	3	2	∞	∞
2			4	3		5	∞
3			4			5	4
4						5	4
5						5	
							4

The source vertex is always a distance of 0
All other vertices start with distance ∞ since we don't know a path
Vertex B has the shortest distance, so we look at the adjacent vertices
Vertex E has the shortest total distance
Vertex <i>D</i> has the shortest total distance
Vertex C has the shortest total distance
Vertex G has the shortest total distance

Algorithms – Topological Sort

Basic Idea

- Sort vertices based off of indegree number of "dependencies"
- Can find the critical path for a directed, acyclic graph

2	3	5	7	8	9	10	11
1	0	0	0	2	2	2	2
1		0	0	1	2	1	2
1			0	1	2	1	1
1				0	2	1	0
1					1	1	0
0					0	0	
					0	0	
						0	
3	5	7	8	11	2	9	10

Algorithms – Topological Sort (cont.)

Pseudocode:

- 1. Add vertices to indegree 0 to queue Q
- 2. While Q is not empty
 - 1. Let vertex v equal to the front of Q
 - 1. For each vertex w adjacent to v:
 - 1. Decrement indegree of w
 - 2. If indegree(w) == 0
 - 1. Add w to back of Q
 - 3. If dist(v) + weight(w, v) > dist(w)
 - 1. $\operatorname{dist}(w) = \operatorname{dist}(v) + \operatorname{weight}(w, v)$
 - 2. vlink(w) = v

Algorithms – Prim (MST)

Pseudocode:

- 1. Color all vertices white
- 2. dist(source) = 0, $dist(others) = \infty$
- 3. While non-white vertices exist:
 - 1. Select v as min. distance white vertex
 - Color v black
 - 3. For every white vertex w adjacent to v
 - 1. if dist(w) > weight(v, w)
 - 1. $\operatorname{dist}(w) = \operatorname{weight}(v, w)$
 - 2. Return to 3.3
 - 4. Return to 3

Algorithms – Kruskal (MST)

Algorithm

- Make each vertex its own set inside a disjoint set
- Sort edges by weight
- For each edge (v, w) by order of weight:
 - If $find(v) \neq find(w)$:
 - union(v, w)

Algorithms – Edmonds-Karp (MF)

Algorithms – Edmonds-Karp (MC)

Min Cut =
$$f(A, D) + f(C, D) + f(E, G)$$

= 3 + 1 + 1

Algorithm

- Starting at the source, go through the graph until you reach a full edge (where flow = capacity)
- "Mark off" these edges

Calculation

- To calculate the minimum cut, add the flows of all of these "marked off" edges
- If the Max Flow equals the Min Cut, you have found the true Max Flow

Algorithms – Floyd-Warshall (SP)

Purpose

Computes shortest path between every pair of vertices

Basic Idea

- Pick two vertices i and j
- \circ There will either exist a path k between i and j, or there will not

Pseudocode

- 1. $D = [w_{ij}]$
- 2. For every positive integer k where k < N
 - 1. For every positive integer i where i < N
 - 1. For every positive integer j where j < N
 - 1. If D[i][j] > D[i][k] + D[k][j]
 - 1. D[i][j] = D[i][k] + D[k][j]
 - 2. L(i,j) = L(k,j)

$$L(i,j) = \begin{cases} -1 & i = j \text{ or } w_{ij} = \infty \\ i & \text{otherwise} \end{cases}$$

Computational Costs

Name	Туре	Cost
Disjoint Sets	Add Set	O(n)
	Union/Find	$O(\alpha(n))\sim O(1)$
BFS	Search	O(V+E)
DFS	Search	O(V+E)
Dijkstra	SP	$O(V^2)$
Topological Sort	Sort	O(V+E)
Prim	MST	$O(V^2)$
Kruskal	MST	$O(E \log V)$
Edmonds-Karp	MF	$O(VE^2)$
Floyd-Warshall	SP	$O(V^3)$

Dynamic Programming

Used to make code more efficient, both in time complexity and memory usage/lookup

Steps:

 Identify recursive solution with overlapping subproblems

Use memoization (cache results for reuse)

- 3. Use iteration instead of recursion
- 4. Reduce cache size
- 5. Return to recursion
 - 1. Less efficient, but makes code more elegant

Those who cannot remember the past are condemned to repeat it.

-Dynamic Programming

Shortest Path

Minimum Spanning Tree Maximum Flow

MST