12.2 Logarithmic Functions

Definition 12.2.1 (Logarithm)

For
$$x > 0$$
, $b > 0$, $b \neq 1$, $y = \log_b(x) \equiv b^y = x$

Circle Trick

$$y = \log_b(x)$$

Example 12.2.1

Write each of the following in exponential form.

$$1. \ 3 = \log_7(x)$$

2.
$$2 = \log_{\mathbf{b}} (25)$$

3.
$$y = \log_4(26)$$

Example 12.2.2

Write each exponential as a logarithm.

- 1. $2^5 = x$
- 2. $b^3 = 27$
- 3. $e^{y} = 33$

Example 12.2.3

Evaluate.

- 1. $\log_{10}(100) =$
- $2. \log_3(3) =$
- $3. \log_{36}(6) =$

Basic Log Properties

- $1. \, \log_{\mathfrak{b}}(\mathfrak{b}) = 1$
- $2. \log_{\mathfrak{b}} (1) = 0$
- 3. $\log_b (b^x) = x$
- $4. b^{\log b(x)} = x$

Example 12.2.4

Evaluate.

- 1. $\log_7(7) =$
- 2. $\log_8(1) =$
- 3. $\log_7(7^8) =$
- 4. $3^{\log_3(15)} =$

Graphs of $\log_b(x)$

- Domain: $\mathbb{Z}^+ = (0, \infty)$
- Range: $\mathbb{R} = (-\infty, \infty)$
- ullet Logarithmic functions always have two guaranteed points: (1,0) and $(\mathfrak{b},1)$.
- \bullet The y-axis is a horizontal asymptote.
- If b > 1, it is an *increasing* function.
- If 0 < b < 1, it is a decreasing function.

Example 12.2.5

Find the domain of each log function.

1.
$$h(x) = \log_4(x - 5)$$

2.
$$g(x) = \log_6 (2x - 4)$$

3.
$$f(x) = \log_3 (6 - 4x) + 3$$

Special Logs

- 1. Common Log
 - Base 10
 - $\bullet \ \log \left(x \right) = \log_{10} \left(x \right)$

- 2. Natural Log
 - Base e
 - $\ln(x) = \log_e(x)$

Example 12.2.6

Find each of the following values:

1.
$$\log(1000) =$$

$$2. \ln (50 =$$