§ 2.5 实例: 时间序列问题

- 一、中国居民人均消费模型
- 二、时间序列问题

一、中国居民人均消费模型

例2.5.1 考察中国居民收入与消费支出的关系。

GDPP: 人均国内生产总值(1990年不变价)

CONSP: 人均居民消费(以居民消费价格指数(1990=100)缩减)。

表 2.5.1 中国居民人均消费支出与人均 GDP (元/人)

年份	人均居民消费	人均GDP	年份	人均居民消费	人均GDP	
	CONSP	GDPP		CONSP	GDPP	
1978	395.8	675.1	1990	797.1	1602.3	
1979	437.0	716.9	1991	861.4	1727.2	
1980	464.1	763.7	1992	966.6	1949.8	
1981	501.9	792.4	1993	1048.6	2187.9	
1982	533.5	851.1	1994	1108.7	2436.1	
1983	572.8	931.4	1995	1213.1	2663.7	
1984	635.6	1059.2	1996	1322.8	2889.1	
1985	716.0	1185.2	1997	1380.9	3111.9	
1986	746.5	1269.6	1998	1460.6	3323.1	
1987	788.3	1393.6	1999	1564.4	3529.3	
1988	836.4	1527.0	2000	1690.8	3789.7	
1989	779.7	1565.9				

该两组数据是1978~2000年的**时间序列数据** (time series data);

前述收入-消费支出例中的数据是**截面数据** (cross-sectional data)。

1、建立模型

拟建立如下一元回归模型

$$CONSP = C + \beta GDPP + \mu$$

采用Eviews软件进行回归分析的结果见下表

表 2.5.2 中国居民人均消费支出对人均 GDP 的回归(1978~2000)

LS // Dependent Variable is CONSP

Sample: 1978 2000

Included observations: 23

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	201.1071	14.88514	13.51060	0.0000	
GDPP1	0.386187	0.007222	53.47182	0.0000	
R-squared	0.992709	Mean depe	Mean dependent var		
Adjusted R-squared	0.992362	S.D. depen	S.D. dependent var		
S.E. of regression	33.26711	Akaike info	o criterion	7.092079	
Sum squared resid	23240.71	Schwarz cr	iterion	7.190818	
Log likelihood	-112.1945	F-statistic		2859.235	
Durbin-Watson stat	0.550288	Prob(F-stat	istic)	0.000000	

一般可写出如下回归分析结果:

$$\widehat{CONSP} = 201.107 + 0.3862GDPP$$

(13.51) (53.47)

R²=0.9927 F=2859.23 DW=0.5503

2、模型检验

 $R^2 = 0.9927$

T值: C: 13.51, GDPP: 53.47

临界值: t_{0.05/2}(21)=2.08

斜率项: 0<0.3862<1, 符合绝对收入假说

3、预测

2001年: GDPP=4033.1(元) (90年不变价)

点估计: $CONSP_{2001}$ =201.107 + 0.3862×4033.1 = 1758.7 (元)

2001年实测的CONSP(1990年价):1782.2元,

相对误差:-1.32%。

2001年人均居民消费的预测区间

人均GDP的样本均值与样本方差:

$$E(GDPP)=1823.5$$
 $Var(GDPP)=982.04^2=964410.4$

在95%的置信度下, E(CONSP₂₀₀₁)的预测区间为:

1758 .7 ± 2.306 ×
$$\sqrt{\frac{23240 .71}{23 - 2} \times (\frac{1}{23} + \frac{(4033 .1 - 1823 .5)^2}{(23 - 1) \times 964410 .4})}$$

 $=1758.7\pm40.13$

或: (1718.6,1798.8)

同样地,在95%的置信度下,CONSP₂₀₀₁的预测区间为:

$$1758.7 \pm 2.306 \times \sqrt{\frac{23240.71}{23-2} \times (1 + \frac{1}{23} + \frac{(4033.1 - 1823.5)^2}{(23-1) \times 964410.4}})$$

 $=1758.7\pm86.57$

或 (1672.1, 1845.3)

二、时间序列问题

上述实例表明,时间序列完全可以进行类似于截面数据的回归分析。

然而,在时间序列回归分析中,有两个需注 意的问题:

第一,关于抽样分布的理解问题。

能把表2.5.1中的数据理解为是从某个总体中抽出的一个样本吗?

第二,关于"伪回归问题"(spurious regression problem)。

可决系数R²,考察被解释变量Y的变化中可由解释变量X的变化"解释"的部分。

这里"解释"能否换为"引起"?

在现实经济问题中,对时间序列数据作回归,即使两个变量间没有任何的实际联系,也往往会得到较高的可决系数,尤其对于具有相同变化趋势(同时上升或下降)的变量,更是如此。

这种现象被称为"伪回归"或"虚假回归"。