UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA MAT02214 - ESTATÍSTICA GERAL 1

ÁREA 3

FORMULÁRIO

(cont.) Variáveis aleatórias

• Se *X* é **variável aleatória (v.a.) contínua**, então o valor esperado (média) e a variância de *X*, são, respectivamente:

$$\mu = \mathrm{E} \, [X] = \int_{-\infty}^{\infty} x f(x) \, dx \quad \mathrm{e} \quad \sigma^2 = \mathrm{Var} \, [X] = \mathrm{E} \, [(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx = \mathrm{E} \, [X^2] - \mu^2,$$

em que f(x) é a função densidade de probabilidade (fdp) de X e $\mathbb{E}[X^2] = \int_{-\infty}^{\infty} x^2 f(x) dx$.

- ★ Se X assumir apenas valores em um intervalo $S_X \subset \mathbb{R}$, as expressões acima tornam-se $E[X] = \int_{S_X} x f(x) dx$, $Var[X] = \int_{S_X} (x \mu)^2 f(x) dx$ e $E[X^2] = \int_{S_X} x^2 f(x) dx$.
- Seja X uma variável aleatória, então $F(x) = \Pr(X \le x)$ é a **função de distribuição acumulada** (fda) de X.
 - ★ $F(x) = \int_{-\infty}^{x} f(u) du$, se X é v.a. contínua.

Distribuições de probabilidade

Na Tabela 1 considere:

- Para as distribuições Normal e t-Student, π representa o valor 3, 14
- Para as distribuições Qui-quadrado e t-Student, $\Gamma(u) = \int_0^\infty x^{u-1} e^{-x} dx$.

Tabela 1: Distribuição de probabilidade, média e variância.

Variáveis aleatórias contínuas			
Uniforme(α , β)	$\frac{1}{\beta - \alpha}, \alpha \le x \le \beta.$	$\frac{\alpha+\beta}{2}$	$\frac{(\beta - \alpha)^2}{12}$
Exponencial(λ)	$\lambda e^{-\lambda x}, x > 0, \lambda > 0.$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$Normal(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty, -\infty < \mu < \infty, \sigma^2 > 0.$	μ	σ^2
Normal(0, 1)	$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}, -\infty < x < \infty.$	0	1
Qui – quadrado(v)	$\frac{1}{2^{\nu/2}\Gamma(\nu/2)}x^{\frac{\nu}{x}-1}e^{\frac{x}{2}}, x \ge 0, \nu > 0.$	ν	2ν
t-Student(v)	$\frac{\Gamma((\nu+1)/2)}{\Gamma(\nu/2)\sqrt{\pi\nu}} \left(1 + \frac{x^2}{\nu}\right)^{-(\nu+1)/2}, -\infty < x < \infty, \nu > 0.$	$0 \ (v > 1)$	$\frac{v}{v-2} \ (v > 2)$

Vetores Aleatórios

• Se X e Y são duas v.a. discretas, então as funções massa de probabilidade marginas são dadas por

$$p(x) = \sum_{y} p(x, y) e p(y) = \sum_{x} p(x, y).$$

em que $p(x, y) = P([X = x] \cap [Y = y])$ é a **função massa de probabilidade conjunta** do vetor aleatório discreto (X, Y).

• Se X e Y são duas v.a. contínuas, então as funções densidade de probabilidade marginas são dadas por

$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy e f(y) = \int_{-\infty}^{\infty} f(x, y) dx.$$

em que f(x, y), para $P(a \le x \le b, c \le y \le d) = \int_a^b \int_c^d f(x, y) dx dy$, é a **função densidade de probabilidade conjunta** do vetor aleatório contínuo (X, Y).

• A **covariância** entre *X* e *Y* é dada por

$$Cov(X, Y) = E[(X - EX)(Y - EY)],$$

ou

$$Cov(X, Y) = E[XY] - E(X)E(Y),$$

se E(X), E(Y), Var(X) e Var(Y) existem e são finitas.

• A **correlação** entre *X* e *Y* é dado por

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}},$$

se E(X), E(Y), Var(X) e Var(Y) existem e são finitas.

• A **esperança condicional** de Y dado X = x é definida por

$$\star$$
 $E(Y|X=x) = \sum_{y} y \times P(Y=y|X=x)$, se X e Y são v.a. discretas,

em que $P(Y = y | X = x) = \frac{P(X = x, Y = y)}{P(X = x)}$ é a função massa de probabilidade condicional de Y = y dado X = x, para p(x) = P(X = x) > 0

ou

$$\bigstar$$
 $E(Y|X=x) = \int_{-\infty}^{\infty} y \cdot f_{Y|X}(y|x)$ se X e Y são v.a. contínuas.

em que $f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$ é a função densidade de probabilidade condicional de Y = y dado X = x, para f(x) > 0.

• A variância condicional de Y dado que X = x é dada por

$$Var(Y|X = x) = E\{[Y - E(Y|x)]^2 | X = x\}.$$