

Spatial Processing: A convolution introduction

Isail Salazar, Fabio Martínez

Biomedical Imaging, Vision and Learning Laboratory. BivL²ab
Motion Analysis and Computer Vision. MACV
Universidad Industrial de Santander

September 21, 2018

Spatial and frequency domain

- Spatial domain techniques: Direct manipulation of image pixels (intensity values).
- Frequency domain techniques: Manipulation of Fourier transform or Wavelet transform of an image

Spatial domain

Frecuency domain

This class is about spatial domain!

LSI Systems: Linear Shift-Invariant

Any LSI system can be characterized in the spatial domain by a single function h(x, y), i.e., the system's impulse response.

$$f(x,y) \rightarrow h(x,y) \rightarrow g(x,y)$$
 $g(x,y) = f(x,y) * h(x,y)$

LSI Systems: Linear Shift-Invariant

- Any LSI system can be characterized in the spatial domain by a single function h(x, y), i.e., the system's impulse response.
- It can be shown that the input/output relationship of a LSI system is given by the convolution operation:

$$f(x,y) \to h(x,y) \to g(x,y)$$
 $g(x,y) = f(x,y) * h(x,y)$

2D Convolution

$$g(x,y) = f(x,y) * h(x,y)$$

$$g(x,y) = \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} f(x,y)h(u-x,v-y), \text{ where } h(x,y) \text{ is a } n \times m \text{ kernell}$$

2D Convolution

1,	1,0	1,	0	0
0,×0	1,	1,0	1	0
0,	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

2D Convolution: spatial filtering

- ► The impulse response can also be used to design systems with a given effect on the images.
- Examples: image denoising, image enhancement, feature extraction

What is a filter?

- ► Filters: combine the pixel of actual position with their neighbors
 - **Blurring:** compute the average intensity of block pixels

MEAN FILTER

Mean Filter

- Replace each pixel by average of pixel + neighbors
- For 3x3 neighborhood:

$$I'(u,v) \leftarrow \frac{p_0 + p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8}{9}$$

Mean Filter

$$I'(u,v) \leftarrow \frac{p_0 + p_1 + p_2 + p_3 + p_4 + p_5 + p_6 + p_7 + p_8}{9}$$

$$H(i,j) \, = \, \left[\begin{array}{ccc} \frac{1/9}{1/9} & \frac{1/9}{19} & \frac{1/9}{9} \\ \frac{1/9}{1/9} & \frac{1/9}{19} & \frac{1/9}{1} \end{array} \right] \, = \, \frac{1}{9} \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \right] \underbrace{\hspace{2cm} \text{Filter operation can be expressed as a matrix Example: averaging filter}}_{\text{Example: averaging filter}}$$

Filter matrix also called filter mask H(i,j)

Mean Filter

Go to Notebooks and enjoy !!

Original

GAUSSIAN FILTER

Weighted Mean Filters

A special configuration is achieved by weighting each of the pixel in the windows according to the spatial location!

Pixel closer at center are more important

1/16	² / ₁₆	1/16	
² / ₁₆	⁴ / ₁₆	² / ₁₆	
¹ / ₁₆	² / ₁₆	¹ / ₁₆	

Gaussian Filter

$$G_{\sigma}(r) = e^{-\frac{r^2}{2\sigma^2}}$$
 or $G_{\sigma}(x, y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$

- where
 - σ is width (standard deviation)
 - r is distance from center

0	1	2	1	0
1	3	5	3	1
2	5	9	5	2
1	3	5	3	1
0	1	2	1	0

Gaussian filter

We can extend the same concept!..

- Smoothing: + coefficients (weighted average). E.g box, gaussian
- Difference filters: + and weights. E.g. Laplacian

DERIVATIVE FILTERS

Derivative Filters

Recall that we can compute derivative of discrete function as

$$\frac{df}{du}(u) \; \approx \; \frac{f(u\!+\!1) - f(u\!-\!1)}{2} \; = \; 0.5 \cdot \left(f(u\!+\!1) - f(u\!-\!1)\right)$$

Can we make linear filter that computes central differences

$$H_x^D \ = \ \begin{bmatrix} -0.5 & \mathbf{0} & 0.5 \end{bmatrix} \ = \ 0.5 \cdot \begin{bmatrix} -1 & \mathbf{0} & 1 \end{bmatrix}$$

x-Derivative of Image using Central Difference

*
$$[-0.5 \quad \mathbf{0} \quad 0.5] =$$

y-Derivative of Image using Central Difference

$$* \begin{bmatrix} -0.5 \\ \mathbf{0} \\ 0.5 \end{bmatrix} =$$

Prewitt and Sobel Filters

Prewitt Operator

$$H_x^P = \begin{bmatrix} -1 & 0 & 1 \\ -1 & \mathbf{0} & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad H_y^P = \begin{bmatrix} -1 & -1 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Written in separable form
$$\longrightarrow H_x^P = \begin{bmatrix} 1 \\ \mathbf{1} \\ 1 \end{bmatrix} * \begin{bmatrix} -1 & \mathbf{0} & 1 \end{bmatrix} \quad \text{and} \quad H_y^P = \begin{bmatrix} 1 & \mathbf{1} & 1 \end{bmatrix} * \begin{bmatrix} -1 & \mathbf{0} & 1 \end{bmatrix}$$

Sobel Operator

$$H_x^S = \begin{bmatrix} -1 & 0 & 1 \\ -2 & \mathbf{0} & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad H_y^S = \begin{bmatrix} -1 & -2 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Prewitt and Sobel Filters

Median Filters

Median Filter

 Much better at removing noise and keeping the structures

$$I'(u,v) \leftarrow \text{median} \{I(u+i,v+j) \mid (i,j) \in R\}$$

Median Filter

Removing noise with Median Filter

Original Image with Salt-and-pepper noise

Linear filter removes some of the noise, but not completely. Smears noise

Median filter salt-and-pepper noise and keeps image structures largely intact. But also creates small spots of flat intensity, that affect sharpness

Thank you for your attention ...

...It's time to wake up ... famarcar@uis.edu.co

