Linear Regression

Outline

- Linear Regression with One Variable
- Multiple Linear Regression
- Polynomial Regression
- Regression Practical Considerations

Some of slides are based on the slides from

https://www.deeplearning.ai/courses/machine-learning-specialization/

Linear Regression with One Variable

ML: learn a Function that minimizes the cost

- Start with random function parameters
- Repeat intelligent guessing/approximation of the Function parameters such that the difference between the Predicted Output the Actual Output is reduced
 - i.e., minimize a Cost function a.k.a loss, or error function

Linear Regression with One Variable

regression with one variable aka Univariate linear regression

- Regression: Predict continuous output value (e.g., price)
- Linear regression is used to predict the value of a variable based on the value of another variable(s)
- Linear regression fits a straight line that minimizes the discrepancies between predicted and actual output values

Training	set of
housing	prices

Size in feet ² (x)	Price (\$) in 1000's (<i>y</i>)
2104	460
1416	232
1534	315
852	178
•••	•••

Notation:

m = Number of training examples

x = "input" variable / features

y = "output" variable / "target" variable

 $(x^{(i)}, y^{(i)})$ – the *i*th training example

$$x^{(1)} = 2104$$

$$x^{(2)} = 1416$$

$$y^{(1)} = 460$$

Training Set Learning Algorithm Y hat Size of **Estimated** house price

How do we represent f?

$$f(x) = wx + b$$

w, b are parameters (coefficients)to learn from the training set

- Given a training set, **learn a function** f so that f(x) is a "good" predictor for the corresponding value of y
- Find w, b parameters that minimize the error between predicted and actual values (i.e., minimize $\frac{1}{m}\sum_{i=1}^{m}(\hat{y}_i-y_i)^2$ for all dataset instances)

Univariate Linear Regression - Model Representation

$$f(x) = wx + b$$

- w is the slope of the line
- b is the y-intercept of the line

How to choose w and b?

Idea: Find w and b so that f(x) is close to y for our training examples (x, y)

Find w, b: $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$

Cost (mean squared error)

Function:

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^2$$

Goal: minimize J(w, b)

With m = number of training examples

$$f(x) = wx$$

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^2$$
$$= \frac{1}{2m} (0^2 + 0^2 + 0^2) = 0$$

For simplicity, let us assume our optimization objective is to $\underset{w,b}{\text{minimize}} J(w)$, thus, b = 0

slides\regression.xlsx

$$f(x) = wx$$

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^2$$

$$= \frac{1}{2m} ((0.5 - 1)^2 + (1-2)^2 + (1.5-3)^2)$$

$$= \frac{1}{2 \times 3} (3.5) = \frac{3.5}{6} = 0.58$$

For simplicity, let us assume our optimization objective is to minimize J(w), thus, b = 0

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^{2}$$
$$= \frac{1}{2m} (1^{2} + 2^{2} + 3^{2})$$
$$= \frac{1}{2 \times 3} (14) = \frac{14}{6} = 2.3$$

For simplicity, let us assume our optimization objective is to minimize J(w), thus, b = 0

J(w)

- The fact that the cost function squares the error ensures that the 'error surface' is **convex** like a soup bowl.
- It will always have a minimum that can be reached by following the **gradient** (i.e., the slope)
- Minimizing the cost function yields optimal values of w and b

08.regression\02_cost_function.py

Gradient descent algorithm

Want to find w and b that minimize the cost function J

$$\underset{w,b}{\operatorname{minimize}} \boldsymbol{J}(\boldsymbol{w},\boldsymbol{b})$$

- 1. Initialize the values of \mathbf{w} and \mathbf{b} to some arbitrary values (say 0, 0)
- 2. Calculate the predicted values of \mathbf{y} using the current values of \mathbf{w} and \mathbf{b}
- 3. Calculate the gradients of the cost function with respect to w and b
- 4. Update the values of **w** and **b** using the gradients and a learning rate

Learning Rate

$$\omega = \omega - \omega \frac{\partial}{\partial w} J(w,b)$$

Derivative of the Cost Function w.r.t w

 $\omega = b - \alpha \frac{\partial}{\partial b} J(w,b)$

5. Repeat steps 2-4 until convergence (i.e., until the cost function converges to a minimum)

Gradient descent algorithm

Gradient descent utilizes the partial derivative of the cost function with respect to \mathbf{w} and \mathbf{b} to update \mathbf{w} and \mathbf{b} parameters

Repeat until convergence {

$$w = w - \alpha \frac{1}{m} \sum_{i=1}^{m} (\hat{\mathbf{y}}^{(i)} - y^{(i)}) \cdot x^{(i)}$$

$$\frac{\partial J}{\partial w}$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (\hat{\mathbf{y}}^{(i)} - \mathbf{y}^{(i)})$$

$$\frac{\partial J}{\partial b}$$

(simultaneously update w and b)

Derivative 101

- Source https://www.mathsisfun.com/calculus/derivatives-introduction.html
- Derivatives: it is all about slope!

We can find an **average** slope between two points

average slope =
$$\frac{24}{15}$$

Derivative = slope at a point

- Fill in this slope formula: $\frac{\Delta y}{\Delta x} = \frac{f(x+\Delta x) f(x)}{\Delta x}$
- Simplify it as best we can
- Then make Δx shrink towards zero.

Example

The slope formula is:
$$\frac{f(x+\Delta x) - f(x)}{\Delta x}$$

Use
$$f(x) = x^2$$
:
$$\frac{(x+\Delta x)^2 - x^2}{\Delta x}$$

Expand
$$(x+\Delta x)^2$$
 to $x^2+2x \Delta x+(\Delta x)^2$:
$$\frac{x^2+2x \Delta x+(\Delta x)^2-x^2}{\Delta x}$$

Simplify (x² and -x² cancel):
$$\frac{2x \Delta x + (\Delta x)^2}{\Delta x}$$

Simplify more (divide through by Δx): $2x + \Delta x$

Then, as Δx heads towards 0 we get: 2x

Result: the derivative of x^2 is 2x

$$\frac{d}{dx}x^2 = 2x$$

In other words, the slope at x is 2x

Interpretation of Derivative

- So what does $\frac{d}{dx}x^2 = 2x$ mean?

- It means that, for the function x², the slope or "rate of change" at any point is **2**x
- So, when x=2 the slope is 2x = 4
- Or when x=5 the slope is 2x = 10, and so on

The Impact of Partial Derviative

• For simplicity, let us assume our optimization objective is to minimize J(w), thus, b = 0

Learing Rate $w = w - \alpha \frac{dJ(w)}{dw}$ $= w - \alpha \text{ (Positive Number)}$

Decrease \boldsymbol{w} by a certain value

The Impact of Partial Derviative

• For simplicity, let us assume our optimization objective is to minimize J(w), thus, b = 0 w,b

$$w = w - \alpha \frac{dJ(w)}{dw}$$
$$= w - \alpha (Negative Number)$$

Increase \boldsymbol{w} by a certain value

The Impact of Partial Derviative

• For simplicity, let us assume our optimization objective is to minimize J(w), thus, b = 0

$$w = w - \alpha \frac{dJ(w)}{dw}$$
$$= w - \alpha (Zero)$$

w remains the same, hence, gradient descent converges

The Impact of Learning Rate

What happens if α is too small?

$$= w - (Too Small Number) \frac{d J(w)}{dw}$$

w changes only a tiny bit on each step, hence, gradient descent will render slow (will take more time to converge)

$$w = w - \alpha \frac{dJ(w)}{dw}$$

$$= w - (Too Large Number) \frac{dJ(w)}{dw}$$

What happens if α is too large?

The Impact of Learning Rate

We can set α between 0 and 1 (say, 0.1, or a little more or less, hence, not very small or very large)

$$w = w - \alpha \, \frac{d J(w)}{dw}$$

α remains fix. As we approach the minimum, gradient descent will automatically start taking smaller steps (i.e., w will start changing at a slower pace because the derivative will become less steep)

Visualizing gradient descent algorithm

$$f(x) = wx + b$$

J(w,b)

The optimal values of w and b are in the center of the inner most 'circle' of the Contour Plot

Visualizing gradient descent algorithm

- The contour plot shows J(w, b) over a range of w and b. The cost levels are represented by the rings
- The red crosses is the **path of gradient descent**. The path makes steady progress toward its goal. The initial steps are much larger than the steps near the goal.
- The optimal values of w and b are in the center of the inner most 'circle' of the Contour Plot

Different modes of gradient descent

- Batch Gradient Descent (BGD): Each iteration of gradient descent uses all the training examples
 - It provides a precise estimate of the gradient but can be computationally expensive, especially for large datasets
- Stochastic Gradient Descent (SGD): only a random sample from the dataset is used to compute the gradient in each iteration
 - It is computationally more efficient
 - However, it introduces more noise in the parameter updates, leading to more oscillations in the convergence path
- Mini-Batch Gradient Descent: divides the dataset into small mini-batches and computes the gradient using a mini-batch in each iteration
 - This approach combines the efficiency of stochastic gradient descent with the stability of batch gradient descent

Multiple Linear Regression

Linear Regression with multiple variables

Multiple features (variables)

Size (feet²)	Number of bedrooms		Number of floors	Age of home (years)	Price (\$1000)	
	1					
2104		5	1	45	460	
1416	A	3	2	40	232	\
1534	$\langle 1 \rangle$	3	2	30	315	\
852	$ \ $	2	1	36	178	
Y	h I	\				> W
		7)			ルミナー	7 %

Notation:

n = number of features

 $x_i = j^{th}$ feature

 $\vec{\mathbf{x}}^{(i)}$ = features of i^{th} training example

 $x_{j}^{(i)}$ = value of feature j in i^{th} training example

Multiple Linear Regression - Model Representation

Univariate Linear Regression: f(x) = wx + b

Multiple Linear Regression:

$$f(x) = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$

Example $f(x) = 0.1 \chi_1 + 4 \chi_2 + 10 \chi_3 + -2 \chi_4 + 80$ size # bedrooms #floors years price

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n + b$$

$$\overrightarrow{w} = [w_1 \ w_2 \ w_3 \dots w_n] \quad \text{parameters} \quad \text{of the model}$$

$$b \quad \text{is a number}$$

$$vector \quad \overrightarrow{\chi} = [\chi_1 \ \chi_2 \ \chi_3 \dots \chi_n]$$

$$f_{\overrightarrow{W},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b = w_1 X_1 + w_2 X_2 + w_3 X_3 + \cdots + w_n X_n + b$$

$$dot product$$

Multiple Linear Regression - Model Representation

Parameters and features

$$\overrightarrow{w} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix}$$
 $n = 3$
b is a number

 $\vec{x} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$ linear algebra: count from 1

code: count from 0

Without vectorization

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

$$f = w[0] * x[0] + w[1] * x[1] + w[2] * x[2] + b$$

Without vectorization

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \left(\sum_{j=1}^{n} w_j x_j\right) + b$$

Vectorization

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

$$f = np.dot(w, x) + b$$

Multiple Linear Regression - Model Representation

Previous notation

Vector notation

Model

$$w_1, \cdots, w_n$$
 b

$$f_{\overrightarrow{\mathbf{W}},b}(\overrightarrow{\mathbf{x}}) = w_1 x_1 + \dots + w_n x_n + b$$

Cost function
$$J(w_1, \dots, w_n, b)$$

$$J(w_1,\cdots,w_n,b)$$

$$\overrightarrow{\mathbf{w}} = \begin{bmatrix} w_1 & \cdots & w_n \end{bmatrix}$$

$$b$$

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

$$\mathbf{dot} \quad \mathbf{product}$$

$$J(\overrightarrow{\mathbf{w}},b)$$

Gradient descent

repeat {
$$w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(w_1, \cdots, w_n, b)$$

$$b = b - \alpha \frac{\partial}{\partial b} J(w_1, \cdots, w_n, b)$$
 }

repeat {
$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\overrightarrow{w}, b)$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b)$$
}

Vector representation of X, y and w

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

$$\overrightarrow{\mathbf{W}} \bullet \overrightarrow{\mathbf{X}} = \begin{bmatrix} w_0 \\ w_1 \\ \dots \\ w_n \end{bmatrix} \begin{bmatrix} x_0^{(0)} & x_1^{(0)} & \cdots & x_n^{(0)} \\ x_0^{(1)} & x_1^{(1)} & \cdots & x_n^{(1)} \\ \dots & \dots & \dots & \dots \\ x_0^{(m-1)} & x_1^{(m-1)} & \cdots & x_n^{(m-1)} \end{bmatrix} = \begin{bmatrix} w_0 x_0^{(0)} + w_1 x_1^{(0)} + \cdots + w_n x_n^{(0)} \\ w_0 x_0^{(1)} + w_1 x_1^{(1)} + \cdots + w_n x_n^{(1)} \\ \dots & \dots & \dots \\ w_0 x_0^{(m-1)} + w_1 x_1^{(m-1)} + \cdots + w_n x_n^{(m-1)} \end{bmatrix}$$

Dot product operation

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$$

Dot product operation

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b} = \sum_{i=0}^{n-1} a_i b_i$$

$$\mathbf{a} \cdot \mathbf{b} = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = [a_0b_0 + a_1b_1 + a_2b_2 + a_3b_4]$$

$$\mathbf{a}^{T}\mathbf{b} = \begin{bmatrix} a_{0} \\ b_{1} \\ a_{2} \\ a_{3} \end{bmatrix} a_{1} a_{2} a_{3} \end{bmatrix} \begin{bmatrix} b_{0} \\ b_{1} \\ b_{2} \\ b_{3} \end{bmatrix} = [a_{0}b_{0} + a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{4}]$$
transform

Gradient Descent

One feature

repeat {

$$w = w - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$
$$\frac{\partial}{\partial w} J(w,b)$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$
simultaneously update w, b

repeat { $w = w - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$ \vdots $\frac{\partial}{\partial w} J(w,b)$ \vdots $w_{n} = w_{n} - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_{1}^{(i)}$ \vdots $\frac{\partial}{\partial w_{n}} J(\overrightarrow{w},b)$ $w_{n} = w_{n} - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_{n}^{(i)}$ $b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) - \mathbf{y}^{(i)} \right)$

simultaneously update

 w_j (for $j = 1, \dots, n$) and b

n features ($n \ge 2$)

Polynomial Regression

- When the relationship between the set of features and the target variable is not linear then we need to use polynomial regression of some degree
 - The degree of the polynomial is usually a hyperparameter of the model

$$f(x) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

= $w_1(size) + w_2(size)^2 + w_3(size)^3 + b$

$$x_1 = (size)$$

$$x_2 = (size)^2$$

$$x_3 = (size)^3$$

- Polynomial regression is a special type of multiple regression whose independent variables are powers of variable X
- It is used to approximate a curve with unknown functional form
- For each additional power of X added to the model, the regression line will have one more bend

$$f(x) = w_1(size) + w_2(size)^2 + b$$

$$f(x) = w_1(size) + w_2\sqrt{(size)} + b$$

Training Polynomial Regression Model

- Add Polynomial Features then train a Linear Regression Model
- For example, if we have two features then our new features will be: x_1 , x_2 , x_1x_2 , x_1^2 , x_2^2 , and the features matrix will be:

$$X = \begin{pmatrix} 1 & x_{11} & x_{12} & x_{11}x_{12} & x_{11}^2 & x_{12}^2 \\ 1 & x_{21} & x_{22} & x_{21}x_{22} & x_{21}^2 & x_{22}^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & x_{n1}x_{n2} & x_{n1}^2 & x_{n2}^2 \end{pmatrix}$$

- Scikit-learn provides the transformer <u>PolynomialFeatures</u>
 that creates the features matrix consisting of all the
 polynomial combinations of the features up to a **specified**degree
- Then we can use the created features matrix to train a linear regression model

- We can treat the powers of x: x, x², ..., x^d, as distinct independent variables
 - Then, polynomial regression becomes a special case of multiple linear regression, since the model is still linear in the parameters that need to be estimated

Therefore, we can find the optimal parameters w
using gradient descent

Regression Practical Considerations

Gradient descent in practice:

- Debugging Learning rate
- Feature Scaling
- Regularization
- Regression Evaluation

Learning rate:

Gradient descent not working

Use smaller α

- For sufficiently small α , J(w) should decrease on every iteration
- If lpha is too small, gradient descent can be slow to converge
- If α is too large: J(w) may not decrease on every iteration; may not converge

To choose α , try

..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...

Feature Scaling: divide the input values by the range (i.e. the maximum value minus the minimum value) of the input variable, resulting in a new range of just 1.

The idea: Make sure features are on a similar scale. So that the gradient descent converges faster.

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$
 $x_2 = \frac{\text{number of bedrooms}}{5}$

Rule-of-thumb: Get every feature into approximately $-1 \le x_i \le 1$ range, $-0.5 \le x_i \le 0.5$, or other similar small ranges.

Mean normalization

• Replace x_i to make features have approximately zero mean: $x_i = \frac{x_i - \mu_i}{s_i}$

Where μ_i is the **average** of all the values for feature (i) (in the training set) and s_i is the standard deviation.

e.g.,

$$x_1 = \frac{size - 1000}{400}$$
 (average size of the houses is 1000, and standard deviation is 400)

$$x_2 = \frac{\#bedrooms - 2}{3}$$
 (average # of bedrooms is 2, and the standard deviation 3)

Regularization

The problem of overfitting

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned function may fit the training set very well $\int_{-\infty}^{\infty} \int_{i=1}^{\infty} (h_w(x^{(i)}) - y^{(i)})^2 \approx 0$) but fail to generalize to new examples (predict prices on new examples)

Addressing overfitting:

```
x_1 =  size of house x_2 =  no. of bedrooms x_3 =  no. of floors x_4 =  age of house x_5 =  average income in neighborhood x_6 =  kitchen size \vdots
```


Addressing overfitting:

Options:

- 1. Reduce number of features.
 - Manually select which features to keep
 - Use feature selection algorithm
- 2. Regularization.
 - \circ Keep all the features, but reduce magnitude/values of parameters w_j
 - \circ Works well when we have a lot of features, each of which contributes a bit to predicting y

Regularization

Cost function

Intuition

Suppose we penalize and make w_3 , w_4 really small

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})^2 + 1000 w_3^2 + 1000 w_4^2$$

$$w_3 \approx 0$$
, $w_4 \approx 0$

Regularization

Small values for parameters $w_1, w_2, ..., w_n$

- "Simpler/smoother" function
- Less prone to overfitting

Housing:

- Features: $x_1, x_2, ..., x_{100}$
- Parameters: $w_1, w_2, ..., w_{100}$

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})^2$$

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j^2 \right]$$

$$\min_{w} J(w)$$

Lasso (L1) Regularization

$$\frac{1}{2m} \sum_{i=1}^{m} (y - Xw)^{2} + alpha \sum_{j=1}^{p} |w_{j}|$$

Ridge (L2) Regularization

$$\sum_{i=1}^{n} (y - Xw)^{2} + alpha \sum_{j=1}^{p} w_{j}^{2}$$

Regularized linear regression

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j^2 \right]$$

$$\min_{w} J(w)$$

Gradient descent

Repeat {
$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$w_j = w_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (f_w(x^{(i)}) - y^{(i)}) x_j^{(i)} - \frac{\lambda}{m} w_j \right]$$

 $\frac{\partial}{\partial w_0}J(w)$

$$(j=1,2,3,\ldots,n)$$
 $\frac{\partial}{\partial w_j}J(w)$ "Regularized"

$$\begin{cases} (j = 1, 2, 3, \dots, n) & \frac{\partial}{\partial w_j} J(w) \text{ "Regularized"} \end{cases}$$

$$w_j = w_j \left(1 - \alpha \frac{\lambda}{m}\right) - \alpha \frac{1}{m} \sum_{i=1}^m \left(f_w(x^{(i)}) - y^{(i)}\right) x_j^{(i)}$$

$$1 - \alpha \frac{\lambda}{m} < 1$$

Regression Evaluation

- Performance measured by
 - Mean Squared Error (MSE)

$$MSE = \frac{1}{n}\sum (y - \hat{y})^2$$

Root-Mean-Squared-Error (RMSE)

$$RMSE = \sqrt{\frac{(y - \hat{y})^2}{n}}$$

Mean-Absolute-Error (MAE)

$$MAE = \frac{1}{n} \sum |y - \widehat{y}|$$

...others