Improving an Exact Solution to the (I,d) Planted Motif Problem

Maria Clara Isabel Sia

October 20, 2015

Introduction DNA motif finding

- motifs are repeated sub-sequences in DNA that have some biological significance
- DNA motif finding searches for motifs over a set of DNA sequences, allowing for mismatches due to mutation
- motif finding is known as a difficult problem in computational biology and CS (proven NP-complete)

The (I,d) planted motif problem

Find a motif of length l=8 across these 5 DNA sequences, each containing the motif with at most d=2 mismatches.

```
S_1 at cactcgttctcctctaatgtgtaaagacgtactaccgacctta
```

 S_2 acgccgaccggtccgatccttgtatagctcctaacgggcatcagc

 $S_3 \quad {\tt tcctgactgcatcgcgatctcggtagtttcctgttcatcattttt}$

 S_4 ggccctcagcatcgtgcgtcctgctaacacattcccatgcagctt

 S_5 tgaaaagaatttacggtaaaggatccacatccaatcgtgtgaaag

Planted motif: ccatcgtt

Solutions to the (I,d) planted motif problem)

There are two types of methods used by motif search algorithms:

- heuristic methods (i.e. probability-based sampling, random projection) perform an iterative local search which is efficient, but not guaranteed to find all motifs
- exact methods (i.e. combinatorial search, search-space pruning) perform an exhaustive search which will find all possible motifs, at the cost of time/space efficiency

I-mers, Hamming distances, and *d*-neighborhoods

- ► /-mer
- ► Hamming distance d_H
- ► *d*-neighbor

I-mers, Hamming distances, and *d*-neighborhoods

- ► /-mer
 - sequence of length /

 $S_1 = \mathtt{atcactcgtt}$ ctcctctaatgtgtaaagacgtactaccgacctta

- ► Hamming distance d_H
- ► *d*-neighbor

I-mers, Hamming distances, and *d*-neighborhoods

- ► /-mer
- ► Hamming distance *d_H*
 - number of mismatches between I-mers x_1 and x_2

$$x_1 = \text{cgatcctt}$$
 $d_H(x_1, x_2) = 2$
 $x_2 = \text{ccatcgtt}$

► *d*-neighbor

I-mers, Hamming distances, and *d*-neighborhoods

```
▶ /-mer
\triangleright Hamming distance d_H
▶ d-neighbor
  - two I-mers x and x' are d-neighbors if d_H(x,x') < d
  N(\text{ccatcgtt}, 2) \rightarrow d-neighborhood of ccatcgtt, d=2
      = { ccatcgtt,
           acatcgtt,gcatcgtt,tcatcgtt,caatcgtt,cgatcgtt,ctatcgtt,
           ...all /-mers with 1 mismatch
           aaatcgtt,agatcgtt,atatcgtt,gaatcgtt,ggatcgtt,gtatcgtt,
           taatcgtt,tgatcgtt,ttatcgtt,acctcgtt,acgtcgtt,acttcgtt,
           ...all /-mers with 2 mismatches
```

- an exact motif search (EMS) algorithm based on the candidate generate-and-test (GT) principle
- ▶ solves the (I,d) planted motif problem for any arbitrary instance with $I \le 17$
- efficiently operates on a compact, bit-based representation of the motif search space

Generate-and-test approach

EMS-GT proceeds in two steps:

1. Generate the set C of candidate motifs: find the common d-neighbors of the first n' sequences $S_1, S_2, ..., S_{n'}$.

$$C = \mathcal{N}(S_1,d) \cap \mathcal{N}(S_2,d) \cap ... \cap \mathcal{N}(S_{n'},d)), \hspace{5mm} n' \leq n$$

2. Test every candidate $c \in C$: if a d-neighbor of c appears in each of the remaining sequences $S_{n'+1}, S_{n'+2}, ... S_n$, accept c as a motif.

Generate-and-test approach

$$(1,d) = (8,2)$$

- \mathcal{S}_1 atcactcgttctcctctaatgtgtaaagacgtactaccgacctta
- S_2 acgccgaccggtccgatccttgtatagctcctaacgggcatcagc
- S_3 tcctgactgcatcgcgatctcggtagtttcctgttcatcattttt

- S_4 ggccctcagcatcgtgcgtcctgctaacacattcccatgcagctt
- S_5 tgaaaagaatttacggtaaaggatccacatccaatcgtgtgaaag

Bit-based efficiency strategies

- ▶ *I*-mer enumeration scheme
- Bit-based representation of sets
- Bit-array compression
- Recursive neighborhood generation

Bit-based efficiency strategies

► /-mer enumeration scheme EMS-GT maps an /-mer to a 2/-bit binary number by replacing each character with two bits (a=00, c=01, g=10, t=11).

```
aaaaa aaaac aaaag ..., tacgt tacta ... 0000000000, 0000000001, 0000000010, ..., 1100011011, 1100011100, ... \hookrightarrow 0 \qquad \hookrightarrow 1 \qquad \hookrightarrow 2 \qquad \hookrightarrow 795 \qquad \hookrightarrow 796
```

- ▶ Bit-based representation of sets
- ► Bit-array compression
- Recursive neighborhood generation

Bit-based efficiency strategies

- ▶ /-mer enumeration scheme
- Bit-based representation of sets The motif search space includes all 4^I I-mers that can be formed with Σ = {a, c, g, t}. To represent sets in this space, EMS-GT assigns each I-mer a bit flag:

$$\textit{Flags}[\ 795\] = \left\{ \begin{array}{ll} 1 & \text{if tacgt is a member of the set,} \\ 0 & \text{otherwise.} \end{array} \right.$$

- ► Bit-array compression
- Recursive neighborhood generation

Bit-based efficiency strategies

- ▶ /-mer enumeration scheme
- Bit-based representation of sets
- ► Bit-array compression EMS-GT stores 4^l bit flags as an array of $\frac{4^l}{32}$ 32-bit integers.

Ex. the flag for tacgt is in int index $\frac{795}{32} = 24$, at bit (795 mod 32) = 27.

```
27
23 00000011100001000100100000110011
24 001101111100000000011100000011100
25 11111001011001000011111100000011
```

Recursive neighborhood generation

Bit-based efficiency strategies

- ▶ /-mer enumeration scheme
- ▶ Bit-based representation of sets
- ► Bit-array compression
- ▶ Recursive neighborhood generation To generate a *d*-neighborhood, EMS-GT recursively generates each *d*-neighbor, then finds and sets its bit flag.

Generating a *d*-neighbor changes up to *d* characters in x, with 3 alternatives per change (ex. $c \rightarrow a$, g or t); thus,

I-mer x will have
$$\sum_{i=0}^{d} {l \choose i} 3^i$$
 possible d-neighbors.

Key observations

(I, d)	Neighborhood size		
9,2	351		
11,3	4,983		
13,4	66,378		
15,5	853,569		
17,6	10,738,203		

▶ *I*-mer neighborhoods grow very quickly with (*I*,*d*), meaning that EMS-GT must spend more time locating and setting bits in its main bit-array.

Methods

Research objectives

The main objectives of this research are:

- To develop a speedup technique for EMS-GT that takes advantage of distance-related patterns in the search space;
- 2. To evaluate the speedup technique with regard to improvement in runtime; and
- 3. To evaluate the improved version of the EMS-GT algorithm against state-of-the-art motif search algorithms.

Methods

Work summary

To fulfill these objectives, we:

- investigated repeating block patterns in EMS-GT's bit-based representation of an *I*-mer neighborhood;
- designed a more efficient bit-setting procedure that sets bits according to these block patterns; and
- ► measured EMS-GT's performance on synthetic data for "challenging" (*I*,*d*): (9,2), (11,3), (13,4), (15,5) and (17,6).

Key observation

A 4^I-bit array N_x representing an I-mer neighborhood can be divided into consecutive 4^k-bit blocks, and each block will conform to one of (k+2) patterns.

Key observation

A 4^I-bit array N_x representing an I-mer neighborhood can be divided into consecutive 4^k -bit blocks, and each block will conform to one of (k+2) patterns.

Ex.
$$x = \text{acgtacgtacgt}$$
, $d = 6$, $k = 5$
Block size $= 4^5 = 1024 = 32 \times 32$

Block patterns in the neighborhood of acgtacgtacgt

In terms of prefix and suffix

acgtacg

x's prefix y of length (l-k) determines which patterns apply to which blocks.

tacgt

x's suffix z of length k determines the structure of the (k + 2) patterns.

In terms of prefix and suffix

- ▶ A 4^I-bit array N_x representing an I-mer neighborhood
- ► can be divided into consecutive 4^k-bit blocks,
- ▶ and each block will conform to one of (k + 2) patterns.

In terms of prefix and suffix

A 4^I-bit array N_x representing an I-mer neighborhood The distance between two I-mers is the sum of the distances between their prefixes and between their suffixes; therefore,

$$N_x[x'] = \begin{cases} 1 & \text{if } d_H(y, y') + d_H(z, z') \leq d, \\ 0 & \text{otherwise.} \end{cases}$$
 for $x' = y'z'$.

This means we set a bit iff $d_H(z, z') \le d - d_H(y, y')$.

- ► can be divided into consecutive 4^k-bit blocks,
- ▶ and each block will conform to one of (k + 2) patterns.

In terms of prefix and suffix

- \triangleright A 4¹-bit array N_{\times} representing an 1-mer neighborhood
- ► can be divided into consecutive 4^k-bit blocks, Blocks in N_x for x=acgtacgtacgt, k=5:

```
Block 0: bit flags for aaaaaaaaaaa - aaaaaaattttt
Block 1: bit flags for aaaaaaacaaaa - aaaaaacttttt
...
Block 1,734: bit flags for acgtacgaaaaa - acgtacgtttt
...
Block 16,833: bit flags for ttttttgaaaaa - tttttttttt
Block 16,834: bit flags for tttttttaaaaa - tttttttttt
```

The *I*-mers in each block all have the same prefix. Blocks all follow the same sequence of suffixes (aaaaa - ttttt).

▶ and each block will conform to one of (k + 2) patterns.

In terms of prefix and suffix

- \triangleright A 4¹-bit array N_x representing an 1-mer neighborhood
- ► can be divided into consecutive 4^k-bit blocks,
- ▶ and each block will conform to one of (k+2) patterns. We set a bit iff $d_H(z,z') \le d d_H(y,y')$; $0 \le d_H(z,z') \le k$, therefore there are (k+2) ways to set bits in a block:

```
For blocks where: we set bits for: d-d_H(y,y')<0 \qquad \text{no suffixes} \\ d-d_H(y,y')=0 \qquad \text{suffix } z \text{ only} \\ d-d_H(y,y')=1 \qquad \text{suffixes with up to 1 mismatch with } z \\ d-d_H(y,y')=2 \qquad \text{suffixes with up to 2 mismatches with } z \\ \dots \qquad \dots \\ d-d_H(y,y')=k-1 \qquad \text{suffixes with up to } k-1 \text{ mismatches with } z \\ d-d_H(y,y')=k \qquad \text{suffixes with up to } k \text{ mismatches with } z \text{ (all suffixes)}
```

Block patterns in the neighborhood of acgtacgtacgt

$$d_H(y, prefix) = d - 4$$

Generate and apply patterns

To generate N_x for I-mer x = yz in blocks, we perform two steps:

1. From z, generate P, the set of (k+1) non-empty block patterns.

2. From y, recursively generate each d-neighbor y', find the block that has y' as its prefix, and apply $P[d - d_H(y, y')]$.

Results

Performance improvement with speedup technique

(I, d)	Without speedup	With speedup, k=5	% reduction
	N(x,d)	N(y,d)	
9,2	351	66	81.2%
11,3	4,983	693	86.1%
13,4	66,378	7,458	88.8%
15,5	853,569	81,921	90.4%
17,6	10,738,203	912,717	91.5%

Reduction in neighborhood size without vs. with speedup

Results

Performance improvement with speedup technique

(I, d)	Without speedup	With speedup, $k=5$	% reduction
(9,2)	0.06 s	0.11 s	-
(11,3)	0.22 s	0.20 s	6.7%
(13,4)	1.98 s	1.04 s	47.5%
(15,5)	25.06 s	15.51 s	38.1%
(17,6)	308.61 s	175.85 s	43.0%

Average performance for 20 synthetic datasets per (I,d) instance

Results

Performance against PMS8 and qPMS9

(I, d)	PMS8	qPMS9	EMS-GT	% reduction
(9,2)	0.74 s	0.47 s	0.11 s	76.6%
(11,3)	1.58 s	1.06 s	0.20 s	81.1%
(13,4)	5.39 s	4.52 s	1.04 s	77.0%
(15,5)	36.45 s	24.63 s	15.51 s	37.0%
(17,6)	3.91 min	1.96 min	2.93 min	_

Average performance for 20 synthetic datasets per (I,d) instance

Conclusions