Customer No.: 26021

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1-24. (Canceled)

25. (Currently amended) The A biomedical member according to claim-21, including formed from a composite ceramic incluing: an alumina phase; and a zirconia crystal phase.

wherein a mean grain size of said zirconia crystal phase is 0.5 µm or smaller; wherein said biomedical member contains at least one selected from the group consisting of a metal phase and a metal oxide, and sintering additives;

wherein said metal phase is at least one selected from the group consisting of molybdenum, tungsten and a mixture of molybdenum and tungsten;

wherein said metal oxide is at least one selected from the group consisting of strontium oxide and yttrium oxide;

wherein 65 to 96% by weight of said alumina phase[[,]] is contained in said biomedical member;

wherein 4 to 34.4% by weight of said zirconia crystal phase and is contained in said biomedical member;

wherein said sintering additives containing contain 0.20% by weight or more silicon oxide, 0.22% by weight or more titanium oxide and 0.12% by weight or more magnesium oxide, while the total amount of silicon oxide, titanium oxide and magnesium oxide is in a range from 0.6 to 4.5% by weight.

26. (Previously presented) The biomedical member according to claim 25, wherein a mean grain size of aluminum oxide of said alumina phase is 3 μm or smaller.

- 27. (Previously presented) The biomedical member according to claim 25, wherein 70% or more of zirconium oxide of said zirconia crystal phase is tetragonal crystal.
- 28. (Currently amended) The biomedical member according to claim 25, wherein an atomic rate ratio Titanium/Magnesium of titanium oxide and magnesium oxide is in a range from 0.5 to 1.2.
- 29. (Previously presented) The biomedical member according to claim 25, wherein at least a part of the titanium oxide and magnesium oxide is dissolved in an aluminum oxide crystal so as to form a solid solution crystal, and the total amount of these materials dissolved is 0.1% by weight or more off said aluminum oxide.
- 30. (Previously presented) The biomedical member according to claim 25, wherein oxides of at least one of titanium and magnesium or composite oxide grains containing said oxides are dispersed in at least a part of said aluminum oxide crystal grains.
- 31. (Previously presented) The biomedical member according to claim 25, wherein specific wear of the sintered ceramics of said composite ceramic is 0.3×10^{10}

mm²/N or less after being subjected to accelerated aging test conducted in saturated water vapor of 121°C for 152 hours.

32. (Canceled)

33. (Currently amended) The A biomedical member according to claim 32, comprising formed from a composite ceramic including: an alumina phase; and a zirconia crystal phase,

wherein a mean grain size of said zirconia crystal phase is 0.5 µm or smaller; wherein said biomedical member contains at least one selected from the group consisting of a metal phase and a metal oxide, and sintering additives;

wherein said metal phase is at least one selected from the group consisting of molybdenum, tungsten and a mixture of molybdenum and tungsten;

wherein said metal oxide is at least one selected from the group consisting of strontium oxide and yttrium oxide;

wherein said biomedical member includes 65% by weight or more of said alumina phase, 4 to 34% by weight of said zirconia phase and 0.1 to 4% by weight of strontium oxide, while strontium forms a solid solution with part of said zirconium oxide grains;

wherein said sintering additives comprise titanium oxide, magnesium oxide and silicon oxide as the sintering additives.

34. (Currently amended) The biomedical member according to claim [[32]] 33, wherein said composite ceramics contains 0.20% by weight or more silicon oxide, 0.22% by weight or more titanium oxide and 0.12% by weight or more magnesium

Appl. No. 10/578,025

Amdt. Dated April 14, 2010

Reply to Office Action of January 14, 2010

Attorney Docket No. 81880.0145

Customer No.: 26021

oxide, while the total amount of silicon oxide, titanium oxide and magnesium oxide

is in a range from 0.6 to 4.5% by weight.

35. (Currently amended) The biomedical member according to claim [[32]]

33, wherein the aluminum oxide grains in said composite ceramics have elongated

shape observed in SEM image, mean value of the largest dimensions of said

aluminum oxide grains, namely the size along major axis thereof, is 1.5 µm or

smaller, aspect ratio that is the ratio of the major axis size to the minor axis size of

the aluminum oxide grains, namely the size along the direction perpendicular to the

major axis, is 2.5 or less and a median value between the mean minor axis size and

mean major axis size is 1 µm or less.

36-37. (Canceled)

38. (Currently amended) A method for producing a biomedical member that

is formed from a composite ceramic including an alumina phase and a zirconia

crystal phase and contains a metallic component such as, wherein said metallic

component is at least one selected from the group consisting of molybdenum,

tungsten or and a mixture of molybdenum and tungsten, or a metal oxide phase

such as, wherein said metal oxide phase is at least one selected from the group

consisting of strontium oxide or and yttrium oxide, and sintering additives,

comprising a process for mixing raw materials that contain aluminum, zirconium,

silicon, titanium, magnesium in the form of metals or compounds of metals so that

the mixture of the raw materials contains 0.20% by weight or more silicon oxide,

0.22% by weight or more titanium oxide and 0.12% by weight or more magnesium

oxide while the total amount of silicon oxide, titanium oxide and magnesium oxide

Page 6 of 10

Appl. No. 10/578,025

Amdt. Dated April 14, 2010

Reply to Office Action of January 14, 2010

Attorney Docket No. 81880.0145

Customer No.: 26021

is in a range from 0.6 to 4.5% by weight, when contents of the metals or the

compounds of the metals are converted to the contents of metal oxides, a process for

forming the mixed ceramic powder into a compact in a predetermined shape and a

process for sintering the compact at a temperature in a range from 1300 to 1500°C

thereby to obtain a sintered ceramics.

39. (Currently amended) The method for producing the biomedical member

according to claim [[28]] 38, which comprises the process for sintering of the

compact at a temperature in a range from 1300 to 1500°C in the oxidizing

atmosphere, and a process for heat treating the sintered ceramics at a temperature

at least 60°C lower than the sintering temperature in a reducing atmosphere.

40. (Currently amended) The method for producing the biomedical member

according to claim [[28]] 38, wherein hot isostatic treatment is applied at a

temperature at least 30°C lower than said sintering temperature, after sintering.

Page 7 of 10