Fondamenti Matematici per l'Informatica: Teoremi e Dimostrazioni

Aymane Chabbaki

II semestre 2018/2019

Indice

1	Insiemi		2
	1.1	Teorema del Buon ordinamento	2
	1.2	Seconda forma del Principio di Induzione	2
2	Numeri		
	2.1	Divisione Euclidea	9
	2.2	Rappresentazione binaria dei naturali in base arbitraria	4
	2.3	Esistenza ed unicità del Massimo Comune Divisore	6
	2.4	Esistenza ed unicità del Minimo Comune Multiplo	8
	2.5	Teorema Fondamentale dell'Algebra	
3	RSA		11
	3.1	Teorema Cinese del Resto	11
	3.2	Teorema di Fermat-Eulero	
	3.3	Teorema Fondamentale della Crittografia RSA	
4	Grafi		15
	4.1	Equivalenze tra congiungibilità per cammini e passeggiate	15
	4.2	Congiungibilità è una relazione di equivalenza	
	4.3	Relazione fondamentale tra gradi e numero di lati di un grafo finito	
	4.4	Teorema di caratterizzazione degli alberi finiti	
		Teorema esistenza alberi di copertura	

1 Insiemi

1.1 Teorema del Buon ordinamento

ENUNCIATO:

• L'insieme totalmente ordinato (\mathbb{N}, \leq) è **ben ordinato**.

DIMOSTRAZIONE:

- \bullet Sia A un sottoinsieme di $\mathbb N$ senza minimo.
- Devo provare che $A \neq \emptyset$ o equivalentemente $B := \mathbb{N} \setminus A = \mathbb{N}$
- Proviamo per induzione che vale $\forall n \in \mathbb{N}, \underbrace{\{0, 1, \dots, n\} \subset B}_{P(n)}$
- n = 0 (base dell'induzione)
 - $\{0\} \subset B \iff 0 \in B$
 - Questo è vero, cioè $0 \in B$, altrimenti se $0 \in \mathbb{N} \setminus B = A \Longrightarrow 0 = min(A)$ e questo è impossibile perchè A non ha minimo.
 - Dunque $0 \in B$
- $n \Longrightarrow n+1$
- Assumiamo che $\{0, 1, \dots, n\} \subset B$ per qualche $n \in \mathbb{N}$ (ipotesi induttiva)
- Devo provare che anche $\{0,1,\ldots,n,n+1\}\subset B$
 - $-n+1 \notin A$ altrimenti (n+1)=min(A) visto che tutti gli altri elementi precedenti stanno in B.
 - Questo è impossibile perchè A non ha minimo.
 - Dunque $n+1 \in B \Longrightarrow \{0, 1, \dots, n, n+1\} \subset B$
- A è vuoto e \mathbb{N} è ben ordinato.
- *C.V.D.*

1.2 Seconda forma del Principio di Induzione

ENUNCIATO:

- Sia $\{P(n)\}_{n\in\mathbb{N}}$ una famiglia di affermazioni (**proposizioni**) indicizzate su \mathbb{N} .
- Supponiamo che:
 - 1. P(0) è vera (base dell'induzione).
 - 2. $\forall n > 0$, $(P(k) \text{ è vera } \forall k < n) \implies (P(n) \text{ è vera})$
- Allora P(n) è vera $\forall n \in \mathbb{N}$.

- $A := \{ n \in \mathbb{N} \mid P(n) \text{ è falsa} \}$
- Supponiamo per assurdo che $A \neq \emptyset$.
- Grazie al Teorema di buon ordinamento di (\mathbb{N}, \leq) si ha che $\exists n := min(A)$
- Chiaramente $0 \notin A$ poichè P(0) è vera.
- Inoltre se k < n, allora $k \notin A$ in quanto n = min(A), ma allora dalla (2) segue che P(n) è vera e quindi $n \notin A$, contraddicendo il fatto che $n \in A$.
- C.V.D.

2 Numeri

2.1 Divisione Euclidea

ENUNCIATO:

• Siano $n, m \in \mathbb{Z}$ con $m \neq 0$, allora esistono unici $q, r \in \mathbb{Z}$ tali che:

$$\begin{cases} n = m \cdot q + r \\ 0 \le r < |m| \end{cases}$$

DIMOSTRAZIONE ESISTENZA:

- Supponiamo che $n \ge 0$ e m > 0:
 - Procediamo per induzione su $n \geq 0$ per dimostrare che se m > 0 allora $\exists q, r \in \mathbb{N}$, tale che: $\begin{cases} n = m \cdot q + r \\ 0 \leq r < m \end{cases}$
 - -n=0 (base dell'induzione).

$$\begin{cases} n = 0 = ? \cdot m + ? = 0 \cdot m + 0 \\ 0 \le 0 < m \end{cases}$$

- Dunque basta prendere n = 0 e r = 0.
- Supponiamo ora che $n > 0, k < m \implies n$.
- Assumiamo l'asserto vero $\forall k < n$, cioè $\exists q', r' \in \mathbb{N}$ tc. $k = q' \cdot m + r'$ e $0 \le r' < m$ (**ipotesi induttiva**).
- Se n < m basta prendere q = 0 e r = n.
- Se $n \ge m$ poniamo $k := n m < n \implies 0 \le k < n$.
- Grazie all'ipotesi induttiva esistono $q', r' \in \mathbb{N}$ $tc: \begin{cases} k = q' \cdot m + r' \\ 0 \le r' < m \end{cases}$
- $-n m = k = q' \cdot m + r', \ 0 \le r' < m$
- Ma allora $n=k+m=m\cdot q+r'+m=(q'+1)m+r'$, vale anche per $n\implies \forall\, n\geq 0$ è vera.
- Supponiamo ora n < 0 e m > 0:
 - Per il caso precedente si ha che esistono $q,r \in \mathbb{Z}$ tali che: $\begin{cases} -n = q \cdot m + r \\ 0 \le r < n \end{cases}$
 - E quindi n = (-q)m r.
 - Se r = 0 allora -q è il quoziente e r = 0 è il resto.
 - Se 0 < r < m:

$$n = (-q)m - m + m - r = (-q - 1)m + (m - r)$$

 $con 0 < m - r < m = |m|$

- Sia $n \in \mathbb{Z}$ e m < 0:
 - Per i due casi precedenti esistomo $q, r \in \mathbb{Z}$ tali che

$$n = q(-m) + r = (-q)m + r$$

 $con 0 < r < -m = |m|$

3

DIMOSTRAZIONE UNICITÀ:

- Supponiamo esistano $q, q', r, r' \in \mathbb{N}$ tale che: $q' \cdot m + r' = n = q \cdot m + r$ con $0 \le r', r < m$
- Cioè:

$$q' \cdot m + r' = q \cdot m + r$$
$$q' \cdot m - q \cdot m = r - r'$$
$$(q' - q) \cdot m = r - r'$$

 $\bullet\,$ Supponiamo che $r' \geq r$ e passando ai moduli si ha:

$$|q' - q| m = |r - r'| = r - r' < m$$

$$|q' - q| |m| < |m| \iff |q' - q| m < m$$

$$\iff |q' - q| < 1$$

$$\iff |q' - q| = 0$$

$$\iff q' - q = 0$$

$$\iff q' = q$$

• Visto che q' = q si ha che:

$$q'm + r' = n = qm + r \implies r' = r$$

• C.V.D.

2.2 Rappresentazione binaria dei naturali in base arbitraria

ENUNCIATO:

- Sia $b \in \mathbb{N}$, $b \ge 2$.
- Allora ogni $n \in \mathbb{N}$ è rappresentabile, in **modo unico**, in base b. Ovvero $\exists ! \{\varepsilon_i\}_{i \in \mathbb{N}}$ tale che $\varepsilon_{i \in I_b} \forall i \in \mathbb{N}$ la successione $\{\varepsilon_i\}_{i \in \mathbb{N}}$ è definitivamente nulla e vale:

$$n = \sum_{i=0}^{\infty} \varepsilon_i \cdot b^i = (\cdots \varepsilon_2 \cdot \varepsilon_1 \cdot \varepsilon_0)_b$$

DIMOSTRAZIONE ESISTENZA:

- \bullet Procediamo per induzione (2° forma) su n:
 - -n=0 (base dell'induzione)
 - Poniamo $\varepsilon_i = 0 \ \forall i \in \mathbb{N}$. Vale:
 - 1. $\{\varepsilon_i\}_{i\in\mathbb{N}}$ è definitivamente nulla.
 - 2. $\varepsilon_i = 0 \in I_b \ \forall i \in \mathbb{N}$

$$3. \ n = 0 = \sum_{i \in \mathbb{N}}^{\infty} 0 \cdot b^i$$

- $-n > 0, \forall k < n \implies n$
- Eseguiamo la divisione euclidea di n per b:

$$n = q \cdot b + r, \quad q, r \in \mathbb{N}$$

$$0 < r < b \quad (\iff r \in I_b)$$

- Dico che q < n:

- * Se q = 0, allora q = 0 < n
- * Se $q \neq 0$ allora: $0 < q < q \cdot b + r = n$, quindi segue che q < n
- Applicando l'ipotesi induttiva con k=q si ha quindi che esiste $\{\zeta_i\}_{i\in\mathbb{N}}$ con $\zeta_{i\in I_b}$ definitivamente nulla e $q=\sum_{i=0}^{\infty}\zeta_i\cdot b^i$
- Si ha:

$$n = q \cdot b + r = \sum_{i=0}^{\infty} (\zeta_i \cdot b^i) \cdot b + r$$
$$= r + \sum_{i=0}^{\infty} \zeta_i \cdot b^{i+1}$$
$$= r + \sum_{i=1}^{\infty} \zeta_{i-1} \cdot b^i$$

$$\implies r \in I_b \in \zeta_{i-1} \in Ib \ \forall i \geq 1$$

- Definiamo:
 - * $\varepsilon_0 = r$
 - $* \varepsilon_i = \zeta_{i-1} \ \forall i > 1$

$$\implies \{\varepsilon_i\}_{i\in\mathbb{N}} \ \text{\`e definitivamente nulla e } \varepsilon_{i\in I_b} \forall i\in\mathbb{N} \ \Longrightarrow \ n=\varepsilon_0+\sum_{i=1}^\infty \varepsilon_i \cdot b^i = \sum_{i=0}^\infty \varepsilon_i \cdot b^i$$

- Dunque esiste una scrittura in base $b \ \forall n \in \mathbb{N}$
- C.V.D.

DIMOSTRAZIONE UNICITÀ:

- Sia $n \in \mathbb{N}$ tale che:
 - 1. $\exists \{\varepsilon_i\}_{i\in\mathbb{N}}$ tale che:
 - $-\{\varepsilon_i\}_{i\in\mathbb{N}}$ è definitivamente nulla
 - $\varepsilon_{i \in I_b} \ \forall i \in \mathbb{N}$
 - $-n = \sum_{i \in \mathbb{N}} \varepsilon_i \cdot b^i$
 - 2. $\exists \{\varepsilon_i^{'}\}_{i \in \mathbb{N}}$ tale che:
 - $-\ \{\varepsilon_{i}^{'}\}_{i\in\mathbb{N}}$ è definitivamente nulla.
 - $-\ \varepsilon_{i\in I_b}^{'}\ \forall i\in\mathbb{N}$
 - $\ n = \sum_{i \in \mathbb{N}} \varepsilon_{i}^{'} \cdot b^{i}$
 - $\implies \varepsilon_{i} = \varepsilon_{i}^{'} \quad \forall i \in \mathbb{N}$
- Procediamo per induzione su $n \in \mathbb{N}$ e dimostriamo che la rappresentazione di n in base n è unica.
 - -n=0 (base dell'induzione)

$$\sum_{i \in \mathbb{N}} \varepsilon_i \cdot b^i = 0 = \sum_{i \in \mathbb{N}} \varepsilon_i' \cdot b^i$$
$$\varepsilon_i \cdot b = 0 \ \forall i \in \mathbb{N} \qquad \qquad \varepsilon_i' \cdot b = 0 \ \forall i \in \mathbb{N}$$

$$\varepsilon_{i}=0 \; \forall i \qquad \qquad \varepsilon_{i}^{'}=0 \; \forall i$$

$$\implies \varepsilon_i = \varepsilon_i' \ \forall i$$

$$\begin{split} & - n > 0, \, \forall k < n \implies n \\ & \sum_{i \in \mathbb{N}} \varepsilon_i \cdot b^i = n = \sum_{i \in \mathbb{N}} \varepsilon_i' \cdot b^i \\ & \varepsilon_0 + \sum_{i=0}^\infty \varepsilon_i \cdot b^i \qquad \varepsilon_0' + \sum_{i=0}^\infty \varepsilon_i' \cdot b^i \\ & \varepsilon_0 + \underbrace{\left(\sum_{i=1}^\infty \varepsilon_i \cdot b^{i-1}\right) \cdot b}_{q} \qquad \varepsilon_0' + \underbrace{\left(\sum_{i=1}^\infty \varepsilon_i' \cdot b^{i-1}\right) \cdot b}_{q'} \end{split}$$

– Siccome la divisione euclidea è unica $q = q' < n \implies \varepsilon_0 = \varepsilon_0'$

$$\sum_{i=1}^{\infty} \varepsilon_i \cdot b^{i-1} = q = \sum_{i=1}^{\infty} \varepsilon_i' \cdot b^{i-1} < n$$

$$\sum_{i=0}^{\infty} \varepsilon_{i-1} \cdot b^i = \quad q \quad = \sum_{i=0}^{\infty} \varepsilon_{i-1}^{'} \cdot b^i$$

- Per ipotesi induttiva $\varepsilon_{i+1} = \varepsilon'_{i+1} \ \forall i \geq 0$
- -C.V.D.

2.3 Esistenza ed unicità del Massimo Comune Divisore

ENUNCIATO:

- Siano n, m due numeri **interi** non entrambi nulli.
- ullet Si dice che un numero naturale d è il massimo comune divisore tra n e m se soddisfa:
 - 1. $d \mid n \in d \mid m$ (comune divisore)
 - 2. Se $c \in \mathbb{Z}$ tale che $c \mid n$ e $c \mid m$ allora $c \mid d$ (se esiste, allora d è il massimo tra i divisore comuni tra n e m)
- Se un tale d esiste, allora è **unico** (è il massimo comune divisore) e si indica con (n, m) = d

DIMOSTRAZIONE UNICITÀ:

- Supponiamo l'esistenza, e quindi che valgano le proprietà della definizione.
- ullet Siano d e d' due massimi comuni divisori di n e m. Allora:

$$d \mid d' \begin{cases} (1) \cos d \\ (2) \cos d' \end{cases}$$

$$d' \mid d \begin{cases} (1) \cos d' \\ (2) \cos d \end{cases}$$

- $d = \pm d'$ ma visto che sono numeri naturali si ha che d = d'
- C.V.D.

ENUNCIATO ESISTENZA MCD:

- Dati qualunque $n, m \in \mathbb{Z}$ non entrambi nulli, **esiste sempre**, ed è **unico** il massimo comune divisore tra $n \in m$.
- Dati $n, m \in \mathbb{Z}$ vale $n \mid m \iff n \mid -m \iff -n \mid m \iff -n \mid -m$

DIMOSTRAZIONE ESISTENZA:

- Possiamo supporre che $n \geq 0, m \geq 0$.
- Definiamo $S := \{ s \in \mathbb{N} \setminus \{0\} \mid s = xn + ym \text{ per qualche } x, y \in \mathbb{Z} \} \subset \mathbb{N}$
- $S=\varnothing, n^2+m^2=s$ allora grazie al Teorema di buon ordinamento di $(N,\le),$ S ammette minimo $d=min(S)\in S$
- Poichè $d \in S,$ allora d = xn + ym per qualche $x,y \in \mathbb{Z}$
- Verifichiamo che d = (n, m) (M.C.D.)
- Sia $c \in \mathbb{Z}$ tale che $c \mid n$ e $c \mid m$, ovvero $\exists k, h \in \mathbb{Z}$ tale che n = kc e m = hc
 - Vale:

$$d = xn + ym$$

$$= x(k \cdot c) + y(h \cdot c)$$

$$= (xk + yh) c$$

- $-\implies c\,|\,d$ e abbiamo dimostrato il punto (2) dell'enunciato.
- Ora proviamo il punto (1), precisamente che $d \mid n$:
 - Dobbiamo provare che il resto della divisione di n per $d \ge 0$.

- Vale
$$\begin{cases} n = qd + r & \text{per qualche (unico) } q, r \in \mathbb{Z} \\ 0 \le r < d \end{cases}$$

- Se r=0, la dimostrazione è completata.
- Supponiamo che 0 < r < d. Osserviamo che:

$$r = n - qd$$

$$= n - q(xn + ym)$$

$$= n - qxn - qym$$

$$= (1 - qx)n + (-qy)m \subset S$$

- Dunque r è una **combinazione lineare** in \mathbb{Z} di n e m e sta in S.
- -r è positivo e più piccolo di d (assurdo perchè per ipotesi abbiamo preso d come il min(S) e risulterebbe che r < min(S)).
- Quindi $r = 0 \implies d$ divide n.
- In modo analogo si prova che $d \mid m$.
- *C.V.D.*

2.4 Esistenza ed unicità del Minimo Comune Multiplo

ENUNCIATO:

- Siano n, m due numeri **interi** non entrambi nulli.
- Si dice che $M \in \mathbb{N}$ è il **minimo comune divisore** tra n e m se soddisfa:
 - 1. $n \mid M \in m \mid M$ (comune multiplo)
 - 2. Se $c \in \mathbb{Z}$ tale che $n \mid c$ e $m \mid c$ allora $M \mid c$ (se esiste, allora d è il minimo tra i mutipli comuni tra n e m)
- Siano $n, m \in \mathbb{Z}$ allora **esiste** ed è **unico** il minimo comune multiplo e si indica con [n, m].
- Inoltre vale:
 - Se n=m=0, allora [n,m]=0
 - Se n e m non sono entrambi nulli, $[n,m] = \frac{n \cdot m}{(n,m)}$

DIMOSTRAZIONE UNICITÀ:

- Siano M_1 e $M_2 \in \mathbb{N}$ tali da soddisfare le proprietà del minimo comune multiplo.
- Infatti se M_1 e M_2 soddifano (1) e (2) si ha:

$$M_2 \mid M_1 \begin{cases} (1) \text{ con } M_1 \\ (2) \text{ con } M_2 \end{cases}$$

$$M_1 \mid M_2 \begin{cases} (1) \text{ con } M_2 \\ (2) \text{ con } M_1 \end{cases}$$

- $M_1 = \pm M_2$ ma visto che sono numeri naturali si ha che $M_1 = M_2$
- C.V.D.

DIMOSTRAZIONE ESISTENZA:

• Supponiamo che n e m non siano entrambi nulli. Osserviamo che $(n,m) \mid n$ e $(n,m) \mid m \iff \exists n', m' \in \mathbb{Z}$ tale che:

$$-n=n'(n,m)$$

$$-m=m'(n,m)$$

- Definiamo $M:=\frac{n\cdot m}{(n,m)}$ con $n\geq 0,\, m\geq 0$
- Dimostriamo:
 - 1. Vale:

$$M = \frac{n'(n,m) \cdot m'(n,m)}{(n,m)} = n' \cdot m'(n,m) = n \cdot m'$$
$$= n' \cdot m$$

- -M è multiplo sia di n che di m.
- 2. Sia $c \in \mathbb{Z}$ tale che $n \mid c$ e $m \mid c$, valgono:

$$(n,m) \mid n \in n \mid c \implies (n,m) \mid c \iff c = c'(n,m)$$
 per qualche $c' \in \mathbb{Z}$

- Segue che:

*
$$n \mid c \iff n'(n,m) \mid c'(n,m) \iff n' \mid c'$$

* $m \mid c \iff m'(n,m) \mid c'(n,m) \iff m' \mid c'$

Vale:

- Vale:
$$* (n', m') = \left(\underbrace{\frac{n}{(n, m)}, \frac{m}{(n, m)}}_{\text{coppia coprima (Prop. 9.12)}} \right) = 1$$

$$* n' \mid c' \in m' \mid c' \xrightarrow[\text{Teorema } 10.1]{\text{Teorema } 10.1}} n' \cdot m' \mid c' \iff \underbrace{n' \cdot m'(n, m)}_{M} \mid \underbrace{c'(n, m)}_{c}$$

$$- \implies M \mid c$$

- Abbiamo completato la dimostrazione, in quanto le proprietà (1) e (2) sono state dimostrate.
- *C.V.D.*

2.5 Teorema Fondamentale dell'Algebra

ENUNCIATO:

- Ogni numero naturale $n \geq 2$ si può scrivere come prodotto di un numero finito di primi (eventualmente ripetuti), tali che $n = p_1 \cdots p_k$
- Se esiste un'altra famiglia finita $\{q_1,\ldots,q_h\}$ di primi (eventualmente ripetuti) tale che: $n=q_1\ldots q_h$, allora k=h ed **esiste** una **bigezione** $\varphi:\{1,\ldots,k\}\longrightarrow\{1,\ldots,k=h\}$ tale che $p_i=q_{\varphi(i)}\rightarrow$ (prendo indici q, li permuto usando φ e ottengo p_i)
- Le due scritture sono permutate, cioè sono uniche a meno di ordinamento.
- In altre parole, ogni numero maggiore di 1 si scrive in modo unico a meno dell'ordine, come prodotto di numeri primi positivi.

DIMOSTRAZIONE: ESISTENZA FATTORIZZAZIONE

- Procediamo per induzione (di 2° forma) su $n \ge 2$:
 - -n=2 (base dell'induzione).
 - Si ha: $2=2 \rightarrow p_i$
 - -P(2) è vera.
 - $-n > 2, k < n \implies n$
 - Assumiamo per tutti i k < n sia **possibile** trovare una **fattorizzazione** in numeri primi (**ipotesi induttiva**).
 - Devo provare l'esistenza di tale fattorizzazione anche per n.
 - Se n è primo si ha che $n = n \rightarrow p_i$
 - Supponiamo che n non sia primo. Allora $\exists k_1, k_2 \in \mathbb{Z}$ tale che: $\begin{cases} 1 < k_1 < n \\ 1 < k_2 < n \end{cases}$
 - $n = k_1 \cdot k_2$
 - Per **ipotesi induttiva** $k_1 = p_1 \cdots p_k$ e $k_2 = q_1 \cdots q_h$ dove p_i e q_j sono primi.
 - -n è un prodotto di numeri primi:

$$n = p_1 \cdots p_k \cdot q_1 \cdots q_h$$

 \implies Fattorizzazione esiste sempre C.V.D.

DIMOSTRAZIONE: UNICITÀ DELLA FATTORIZZAZIONE

- Siano $p_1, \dots p_k$ e $q_1 \dots q_h$
- $p_1 \cdots p_k = n = q_1 \cdots q_h$ $k \le h$
- Procediamo per induzione su $k \ge 1$:

$$- k = 1$$

$$p_1 = q_1 \cdot q_2 \dots q_h \underset{?}{\Rightarrow} h = 1$$

 $\implies p_1 \mid q_1$ a meno di riordinare (permutare) i vari q_j

 $(p_1 \geq 2$ ed è primo, mentre q_1 è primo, dunque ha come divisori 1 e se stesso.)

$$\implies p_1 = q_1$$

- Dunque h=1 perchè $1=q_2\cdots q_h\geq 2$ è assurdo, non può essere.
- -k = k + 1
- Assumiamo che se $p_1 \cdots p_k = q_1 \cdots q_h$
- $ksh \xrightarrow{\Longrightarrow} k = h$ e a meno di riordinamento, $p_i = q_i \, \forall i = 1, \dots, k$
- Supponiamo che $p_1 \cdots p_{k+1} = q_1 \cdots q_h$ con $k+1 \le h$
- Vale:
 - * $p_{k+1} \mid p_1 \cdots p_{k+1} = q_1 \cdots q_h$ (numero primo che divide un prodotto)
 - * A meno di riordinamento, posso assumere $p_{k+1} \mid q_h = p_{k+1} = q_h$
 - * Si ha $p_1 \cdots p_{k+1} = q_1 \cdots q_h$ $\implies p_1 \cdots p_k = q_1 \cdots q_{h-1} \text{ con } k < h-1 \xrightarrow{\text{ip. ind.}} k = h-1$
- Dunque $p_i = q_i \forall i = 1, \dots, k$
- *C.V.D*.

3 RSA

3.1 Teorema Cinese del Resto

ENUNCIATO:

- Siano $a, b, n, m \in \mathbb{Z}$ con n > 0 e m > 0
- Consideriamo il seguente sistema di congruenze: (S) $\begin{cases} x \equiv a \pmod{n} \\ x \equiv b \pmod{m} \end{cases}$
- Il sistema (S) è **compatibile** (ovvero $Sol(S) \neq \emptyset$) se e solo se $(n,m) \mid a-b$
- Supponiamo che esista almeno una soluzione c, ovvero $c \in Sol(S)$
- Allora $Sol(S) = [c]_{[n,m]} = \{c + k [n,m] \subset \mathbb{Z} \mid, k \in \mathbb{Z} \}$

- 1. $Sol(S) \neq \emptyset \implies (n,m) \mid a-b$
 - Supponiamo che $Sol(S) \neq \emptyset$, ovvero $\exists c \in Sol(S)$
 - Valgono le seguenti proprietà: $\begin{cases} c \equiv a \pmod{n} \\ c \equiv b \pmod{m} \end{cases} \iff \begin{cases} c = a + kn & \text{per qualche } k \in \mathbb{Z} \\ c = b + hm & \text{per qualche } h \in \mathbb{Z} \end{cases}$
 - $\bullet \implies a + kn = b + hm \iff a b = hm kn$
 - Dunque $(n,m) \mid n \in (n,m) \mid m \implies (n,m) \mid hm kn = a b$
 - Visto che $(n,m) \mid a-b$, abbiamo dimostrato la prima implicazione del teorema.
- 2. $(n,m) \mid a-b \implies Sol(S) \neq \emptyset$
 - Supponiamo che $(n,m) \mid a-b$, cioè (1): a-b=k(n,m) per qualche $k \in \mathbb{Z}$
 - Ricordiamo che esistono $x, y \in \mathbb{Z}$ tale che (2): xn + ym = (n, m) dall'algoritmo di Euclide
 - Dalla (1) e (2) segue che:

$$a - b = k(xn + ym) = (kx)n + (ky)m$$

$$a - \underbrace{b}_{\rightarrow} = \underbrace{(kx)n}_{\leftarrow} + (ky)m$$

- Si ha che $c := a + (-kx)n = b + (ky)m \implies \begin{cases} c \equiv a \pmod{n} \\ c \equiv b \pmod{n} \end{cases}$
- Visto che c è una soluzione e sta in Sol(S), abbiamo dimostrato anche la seconda implicazione.
- 3. Resta da dimostrare che $Sol(S) = [c]_{[n,m]} (\in \mathbb{Z})$, dove $c \in Sol(S)$
 - $Sol(S) \subset [c]_{[n,m]}$ - Sia $c' \in Sol(S)$

$$- \operatorname{Perch\`e} c, c' \in Sol(S), \operatorname{valgono:} \begin{cases} c \equiv a \pmod{n} \\ c \equiv b \pmod{m} \\ c' \equiv a \pmod{n} \\ c' \equiv b \pmod{m} \end{cases} \iff \exists h, k, h', k' \in \mathbb{Z} \text{ tale che} \begin{cases} (1) \ c = a + hn \\ (2) \ c' = a + h'n \\ (3) \ c = b + km \\ (4) \ c' = b + k'm \end{cases}$$

– Effettuiamo la sottrazione tra (2) - (1) e (4) - (3), si ha:

$$c' - c = (h' - h)n$$
$$c' - c = (k' - k)m$$

$$\implies n \mid c' - c \in m \mid c' - c$$

$$\implies [n, m] \mid c' - c \Longleftrightarrow c' \equiv c \pmod{[n, m]}$$

$$\implies c' \in [c]_{[n, m]}$$

- $Sol(S) \supset [c]_{[n,m]}$
 - Sia $c' \in [c]_{[n,m]}$ ovvero $c' = c + k \, [n,m]$ per qualche $k \in \mathbb{Z}$
 - Vale:

$$\begin{split} [c']_n &= [c+k \, [n,m]]_n = [c]_n + [k]_n \cdot [[n,m]]_n \\ &= [c]_n + [k]_n \cdot [0]_n \\ &= [a]_n + [k]_n \cdot [0]_n \\ &= [a+k \cdot 0]_n \\ &= [a]_n \end{split}$$

- Dunque si ha $[c']_n = [a]_n$
- Stesso procedimento per dimostrare che $[c^\prime]_m = [b]_m$
- Poichè $Sol(S) \subset [c]_{[n,m]}$ e $[c]_{[n,m]} \subset Sol(S)$ allora $Sol(S) = [c]_{[n,m]}$ e così si conclude la dimostrazione.
- C.V.D.

3.2 Teorema di Fermat-Eulero

ENUNCIATO:

• Sia n > 0, per ogni classe α invertibile, $\alpha \in (\mathbb{Z}/n\mathbb{Z})^*$, vale:

$$\alpha^{\phi(n)} = [1]_n \in (\mathbb{Z}/n\mathbb{Z})^*$$

• Equivalentemente, per ogni $\alpha \in \mathbb{Z}$ tale che: $(\alpha,n)=1$ vale:

$$\alpha^{\phi(n)} \equiv 1 \pmod{n}$$

- Sia $\alpha \in (\mathbb{Z}/n\mathbb{Z})^*$
- Definiamo la seguente funzione:

$$L_{\alpha}: (\mathbb{Z}/_{n\mathbb{Z}})^* \longrightarrow (\mathbb{Z}/_{n\mathbb{Z}})^*$$
$$\beta \longmapsto \alpha \cdot \beta$$

- Ponendo $L_{\alpha}(\beta) = \alpha \cdot \beta \quad \forall \beta \in (\mathbb{Z}/n\mathbb{Z})^*$
- Dobbiamo dimostrare che L_{α} è una **bigezione**, poichè $(\mathbb{Z}/_{n\mathbb{Z}})^*$ è finita, è sufficente verificare che L_{α} sia **iniettiva**:
 - Prendiamo $\beta_1, \beta_2 \in (\mathbb{Z}/n\mathbb{Z})^*$ e siano $L_{\alpha}(\beta_1)$ e $L_{\alpha}(\beta_2)$

– Vogliamo dimostrare che $\beta_1 = \beta_2$:

$$L_{\alpha}(\beta_{1}) = L_{\alpha}(\beta_{2})$$

$$\alpha \cdot \beta_{1} = \alpha \cdot \beta_{2} \quad (\alpha \text{ è invertibile})$$

$$(\alpha^{-1} \cdot \alpha)\beta_{1} = (\alpha^{-1} \cdot \alpha)\beta_{2}$$

$$[1]_{n} \cdot \beta_{1} = [1]_{n} \cdot \beta_{2}$$

$$\beta_{1} = \beta_{2}$$

- L_{α} è iniettiva e surgettiva $\implies L_{\alpha}$ è una bigezione.
- Scriviamo $(\mathbb{Z}/_{n\mathbb{Z}})^* = \{\beta_1, \beta_2, \dots, \beta_k\}$ dove $k = \phi(n)$

$$\implies \beta_1 \cdot \beta_2 \cdots \beta_k = L_{\alpha}(\beta_1) \cdot L_{\alpha}(\beta_2) \cdots L_{\alpha}(\beta_k)$$

$$= (\alpha \cdot \beta_1) \cdot (\alpha \cdot \beta_2) \cdots (\alpha \cdot \beta_k)$$

$$= \alpha^k \cdot (\beta_1 \cdot \beta_2 \cdots \beta_k)$$

$$= \alpha^{\phi(n)} \cdot (\beta_1 \cdot \beta_2 \cdots \beta_k)$$

$$\Rightarrow (\beta_1 \cdot \beta_2 \cdots \beta_k)(\beta_k^{-1} \cdot \beta_{k-1}^{-1} \cdots \beta_1^{-1}) = \alpha^{\phi(n)} \cdot (\beta_1 \cdot \beta_2 \cdots \beta_k)(\beta_k^{-1} \cdot \beta_{k-1}^{-1} \cdots \beta_1^{-1})$$

$$\Rightarrow (\beta_1 \cdot \beta_2 \cdots \beta_k)(\beta_k^{-1} \cdot \beta_{k-1}^{-1} \cdots \beta_1^{-1}) = \alpha^{\phi(n)} \cdot (\beta_1 \cdot \beta_2 \cdots \beta_k)(\beta_k^{-1} \cdot \beta_{k-1}^{-1} \cdots \beta_1^{-1})$$

$$\Rightarrow [1]_n = \alpha^{\phi(n)}$$

- Visto che $[1]_n = \alpha^{\phi(n)}$ abbiamo dimostrato il teorema.
- C.V.D.

3.3 Teorema Fondamentale della Crittografia RSA

ENUNCIATO:

- Sia n > 0 e sia $c \in \mathbb{N} \setminus \{0\}$ tale che $(c, \phi(n)) = 1$ $(\exists [c]_{\phi(n)}^{-1})$
- E sia $d \in \mathbb{N}$, d > 0 con $d \in [c]_{\phi(n)}^{-1}$
- $\bullet\,$ Allora P_c è una procedura bigettiva e $P_c^{-1}=P_d$

$$(\mathbb{Z}/_{n\mathbb{Z}})^* \xrightarrow{P_c} (\mathbb{Z}/_{n\mathbb{Z}})^*$$

$$\alpha \longmapsto \alpha^c$$

$$(\mathbb{Z}/_{n\mathbb{Z}})^* \longleftarrow \xrightarrow{P_d} (\mathbb{Z}/_{n\mathbb{Z}})^*$$

 $\beta^d \longleftarrow P_d \longrightarrow \beta$

DIMOSTRAZIONE:

- Devo provare: $P_d \circ P_c = id_{(\mathbb{Z}/n\mathbb{Z})^*} = P_c \circ P_d \ \forall \ \alpha \in (\mathbb{Z}/n\mathbb{Z})^*$
- Poichè $d > 0, d \in [c]_{\phi(n)}^{-1}$ si ha:

$$[d]_{\phi(n)} \cdot [c]_{\phi(n)} = [1]_{\phi(n)}$$
$$cd \equiv 1 \pmod{\phi(n)}$$

• Per definizione di congruenza:

$$cd = 1 + h \phi(n)$$
 per qualche $h \in \mathbb{N}$ (con $cd > 0$ e $h > 0$)

• Quindi:

$$P_d(P_c(\alpha)) = P_d(\alpha^c) = (\alpha^c)^d$$

$$= \alpha^{cd}$$

$$= \alpha^{1+h\phi(n)}$$

$$= \alpha^1 \cdot \left(\alpha^{\phi(n)}\right)^h$$

$$= \alpha \cdot [1]^h_{\phi(n)}$$

$$= \alpha \cdot [1]_{\phi(n)}$$

$$= \alpha$$

• *C.V.D*.

4 Grafi

4.1 Equivalenze tra congiungibilità per cammini e passeggiate

ENUNCIATO:

- Sia G = (V, E) e siano $v, w \in V$ (non necessariamente distinti).
- \bullet v e w sono **congiungibili** per **passeggiata** in G **se** e **solo se** lo sono per **cammini**.
- Cioè, sono congiungibili se esiste una passeggiata (cammino) $P \in G$, $P = (V_0, \dots, V_k)$ tale che il vertice di partenza sia v e quello di arrivo sia w.

DIMOSTRAZIONE:

- (=) Ovvio in quanto per definizione il cammino è una passseggiata, allora se sono congiungibili per cammino lo sono anche per passseggiata.
- \Rightarrow) Supponiamo che esista una passeggiata $P = (V_0, \dots, V_k)$ in G tale che $V_0 = v$ e $V_k = w$.
 - Indichiamo con \mathbb{P} l'insieme di tutte le passeggiate Q in G che partono da v e arrivano in w.
 - Per ipotesi $P \in \mathbb{P} \neq \emptyset$
 - Dunque $A := \{ \ell(Q) \in \mathbb{N} \mid Q \in \mathbb{P} \} \neq \emptyset$
 - Poichè (N, \leq) è **ben ordinato** (ordinamento totale e ogni sottoinsieme ammette minimo) ∃ $min(A) = \ell(P_0)$ (passeggiata con il minor numero di lati da v a w).
 - Segue che $\exists P_0 \in \mathbb{P}$ tale che:
 - * P_0 è una passeggiata in G che parte da v e arriva in w.
 - * $\ell(P_0) \le \ell(Q) \ \forall \ Q \in \mathbb{P}$
 - Proviamo che P_0 è un **cammino**.
 - Scriviamo P_0 esplicitamente:

$$P_0 = (y_0, y_1, \dots, y_h)$$
 dove $y_0 = v$ e $y_h = w$

- Se P_0 non fosse un cammino esisterebbero $i, j \in \{0, 1, \dots, h\}$ tali che $i \neq j, i < j$ e $y_i \leq y_j$

- Dunque possiamo definire una nuova passeggiata $P \supset P_1 = (y_0, y_1, \dots, y_i, y_{j+1}, y_{j+2}, \dots, y_h$ in cui sono stati tolti tutti i vertici tra v_i e v_j
- In particolare si ha che:

$$\ell(P_1) = \ell(P_0) - (j - i) < \ell(P_0) \le \ell(P_1)$$

- Ma ciò è impossibile in quanto avevamo dimostrato come P_0 fosse il minimo dei cammini possibili.
- Abbiamo dimostrato che P_0 è un cammino.
- *C.V.D.*

4.2 Congiungibilità è una relazione di equivalenza

ENUNCIATO:

• La relazione di essere **congiungibili** (per passeggiata o per cammino) è di **equivalenza** sui vertici di un grafo.

DIMOSTRAZIONE:

- G = (V, E) grafo.
- $v, w \in V, v \sim w$ se $v \in w$ sono **congiungibili** in G.
- $v, w, z \in V$, affinchè sia una relazione deve soddisfare le tre proprietà:
 - 1. Riflessiva:
 - $-v \sim v \ \forall v \in V$? Vero in quanto $\exists P = (v)$ che è una passeggiata da v in v.
 - 2. SIMMETRICA:
 - Supponiamo $v \sim w$, ovvero $\exists (V_0, V_1, \dots, V_k)$ passeggiata (dove $V_0 = v$ e $V_k = w$). $\Longrightarrow (V_k, V_{k-1}, \dots, V_0)$ passeggiata in G (dove $V_k = w$ e $V_0 = v$). $\Longrightarrow w \sim v$
 - 3. Transitiva:
 - Supponiamo $v \sim w$ e $w \sim z$, dunque esistono due passeggiate in G tali che:
 - $* P_1 = (v_0 = v, v_1, \dots, v_n = w)$
 - $* P_2 = (y_0 = w, y_1, \dots, y_h = z)$

- Si può dunque definire una terza passeggiata in G:

$$(v_0 = v, v_1, \dots, v_k = w = y_0, y_1, \dots, y_h)$$

 $\implies v \sim z$

• *C.V.D.*

4.3 Relazione fondamentale tra gradi e numero di lati di un grafo finito

ENUNCIATO:

• Sia G = (V, E) un grafo finito, allora:

$$\sum_{v \in V} deg_G(v) = 2|E|$$

- Siano (v_1, \ldots, v_n) i **vertici** di G e siano (e_1, \ldots, e_k) i **lati** di G.
- Per ogni $i \in \{1, \ldots, n\}$ e per ogni $j \in \{1, \ldots, k\}$, definiamo $m_{i,j} \in \{0, 1\}$ come segue:

$$m_{i,j} \begin{cases} 0 \text{ se } v_i \neq e_j \\ 1 \text{ se } v_i = e_j \end{cases}$$

- Prendiamo un piano cartesiano: lungo le x scorre l'indice i e lungo le y scorre l'indice j.
- Vale allora:

$$\sum_{j=1}^{k} \left(\sum_{i=1}^{n} m_{i,j} \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{k} m_{i,j} \right)$$

- Dove il primo membro ha il seguente significato:
 - $-\sum_{i=1}^{n} m_{i,j}$ è il numero di vertici di un lato, che è sempre 2 (la j è bloccata).
 - $-\sum_{j=1}^{k} \left(\sum_{i=1}^{n} m_{i,j}\right)$ si sommano k volte $(j \in \{1, \ldots, k\})$ il numero di vertici per ciascun lato.
 - Si ottiene quindi che il primo membro può essere riscritto come:

$$\sum_{j=1}^{k} \left(\sum_{i=1}^{n} m_{i,j} \right) = 2k$$

- Mentre il secondo membro ha il seguente significato:
 - $-\sum_{j=1}^{\kappa} m_{i,j}$ è la somma dei numeri su una colonna, posto fisso i per via della sommatoria che precede questa.
 - $-\sum_{i=1}^n \left(\sum_{j=1}^k m_{i,j}\right)$ risulta essere la somma dei valori ottenuti sommando i valori di ciascuna colonna.
 - Ma la prima sommatoria non è altro che la sommatoria di 1 se un lato entra o esce da un determianto i-esimo vertice, o 0 se ciò non accade.
 - Questa somma non è altro che il numero di lati che incontrano tale vertice.
 - Si può quindi scrivere il primo membro in questo modo:

$$\sum_{i=1}^{n} \left(deg_G(v_i) \right)$$

• Dunque si ha che:

$$\sum_{j=1}^{k} \left(\sum_{i=1}^{n} m_{i,j}\right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{k} m_{i,j}\right)$$

$$\sum_{j=1}^{k} 2 = \sum_{i=1}^{n} deg_G(v_i)$$

$$2k = \sum_{i=1}^{n} deg_G(v_i)$$

$$2|E| = \sum_{i=1}^{n} deg_G(v_i)$$

- \bullet C.V.D
- 4.4 Lemma delle strette di mano
- 4.5 Teorema di caratterizzazione degli alberi finiti
- 4.6 Teorema esistenza alberi di copertura