Aufgabe H30

1) Die Sprache ist kontextfrei, folgende CFG beschreibt diese Sprache:

$$S \rightarrow aSb \mid A \mid B$$

$$A \rightarrow aAa \mid M$$

$$B \rightarrow bBb \mid M$$

$$M \rightarrow bMa \mid \epsilon$$

2) Angenommen L_2 sei kontextfrei. Dann muss das Pumpinglemma für kontextfreie Sprachen gelten:

Sei $n \in \mathbb{N}$, $z \in L_2$ mit $z = a^{2^n}$ und $|z| = 2^n \ge n$. Dann muss es eine Zerlegung von z in uvwxy geben mit:

- $(1) |vwx| \leq n$
- (2) |vx| > 0
- (3) $uv^iwx^iy \in L_2 \forall i \in \mathbb{N}$

Betrachte i = 2:

$$|uv^2wx^2y| = |uvwxy| + |v| + |x| = |z| + |vx| \le 2^n + n < 2^{n+1}$$

Damit ist $uv^2wx^2y\not\in L_2$ also gilt das Pumpinglemma nicht und L_2 ist nicht kontextfrei.

- 3) Diese Sprache ist nicht kontextfrei. Angenommen sie sei kontextfrei. Dann muss das Pumpinglemma für kontextfreie Sprachen gelten: Sei $n \in \mathbb{N}$, $z \in L_2$ mit $z = (ab)^n ac(bc)^n$ und $|z| = 2 \cdot n + 4 \ge n$. Dann muss es eine Zerlegung von z in uvwxy geben mit:
 - $(1) |vwx| \leq n$
 - (2) |vx| > 0
 - $(3) z_i = uv^i w x^i y \in L_2 \forall i \in \mathbb{N}$

Da alle Worte in L_3 eine Länge des Vielfaches von 2 sind, muss |vx| auch ein Vielfaches von 2 sein. Dadurch werden für alle i eine gerade Anzahl an Buchstaben hinzugefügt (i > 1) oder gelöscht(i = 0) (oder für i = 1 unverändert).

Betrachte i = 4: $[m = 0.5 \cdot |z| = n + 1]$

Wenn Terminale links von dem ersten c hinzugefügt werden, ist $z_3 \notin L_3$, da es mind. ein $w_j = a$ gibt, sodass $w_{j+m} = w_j = a$.

Wenn Terminale rechts von dem ersten c hinzugefügt werden, ist $z_3 \notin L_3$, da m-Positionen rechts von dem ersten c ebenfalls ein c stehen wird.

Wenn das erste c mit in vx steht, gelten Fall 1 und Fall 2 trotzdem.

Damit gilt das Pumping-Lemma nicht und L_3 ist nicht kontextfrei.

Aufgabe H31

Tutorium 11

a) Kellerautomat für L:

b) Zu zeigen: Wort w wrd vom PDA angenommen $\Leftrightarrow w \in L$.

" \Leftarrow " Sei w ein beliebiges Wort aus L. Dann gilt: w = uv mit $3 \cdot |u|_a = |v|_b + |v|_c \vee |u|_c = 2 \cdot |v|_a$. Falls $3 \cdot |u|_a = |v|_b + |v|_c$ gilt, dann wird w angenommen, da q_1 u so erstellt, dass jedes mal wenn a hinzufefügt wird, drei a's auf

den Keller abgelegt werden. q_3 erstellt v dann so, dass jedes mal, wenn ein b oder ein c gelesen wird, ein a vom Keller genommen wird. Da der Keller am Ender leer ist, wird das Wort dann in q_5 angenommen.

Falls $|u|_c = 2 \cdot |v|_a$ gilt, dann wird w angenommen, da q_2 u so erstellt, dass jedes mal, wenn ein c gelesen wird, ein c auf den Kellerspeicher abgelegt wird. q_3 erstellt dann v so, dass jedes mal wenn ein a gelesen wird, zewei dieser c vom Keller gelöscht werden. Da der Keller am Ende dann leer ist, wird das Wort dann in q_5 angenommen.

"⇒" Sei w ein beliebiges Wort, dass vom PDA angenommen wird. Dann wurde w entweder in q₁ und q₃ oder in q₂ und q₄ erstellt. Falls w in q₁ und q₃ erstellt wurde, gilt 3 · |u|a = |v|b + |v|c für w = uv, denn in q₁ wird sichergestellt, dass jedes mal in u ein a hinzugefügt wird, drei a's auf den Keller abgelegt werden, welche dann in q₃ durch b's oder c's gelöscht werden. Falls w inq₂ und q₄ erstellt wurde, gilt |u|c = 2 · |v|a für w = uv, denn in q₃ wird sichergestellt dass jedes mal wenn ein c gelesen.

denn in q_2 wird sichergestellt, dass jedes mal, wenn ein c gelesen wird, ein c auf dem Keller abgelegt wird. Zwei dieser c's werden dann in q_4 verbraucht, wenn ein a gelesen wird.

Somit ist die Korrektheit und Vollständigkeit des Automaten bewiesen.

Aufgabe H32 Für jede Kontextfreie Sprache gibt es eine Kontextfreie Grammatik. Sei L diese Kontextfreie Sprache. Falls $\epsilon \not\in L$:

Wandle CFG(L) in die Greibachsche Normalform um. Sei S das Startsymbol der Grammatik. Erstelle dann einen ϵ -freien Kellerautomaten mit genau 3 Zuständen (q_0, q_1, q_2) , der akzeptiert, wenn der Keller leer ist: Füge Produktionsregeln der Form $S \to x$, wobei x ein Terminal ist, als Transition von q_0 zu q_2 hinzu, ohne den Keller zu verändern: $x, \Sigma_0 \mid \Sigma_0$. Füge Produktionsregeln der Form $S \to xM$, wobei x ein Terminal ist und M eine nichtleere Menge von Nichtterminalen ist, als Transition von q_0 zu q_1 hinzu, die wie folgt aussehen: $x, \Sigma_0 \mid M\Sigma_0$.

Alle restlichen Produktionsregeln werden wie folt eingefügt:

Sei $X \to x$, wobei x ein Terminal und $X \in N \setminus \{S\}$ ein Nichtterminal ist. Da dies also bei einem Ableitungsbaum die letzte Ableitung darstellen kann, muss es eine Transition von q_1 zu q_2 geben: $x, X\Sigma_0 \mid \Sigma_0$. Zudem muss es auch eine Schleife um q_1 geben: $x, XV \mid V$, wobei V eine Variable ist.

Formale Systeme, Automaten, Prozesse Übungsblatt 9 Tutorium 11

Tim Luther, 410886 Til Mohr, 405959 Simon Michau, 406133

Sei $X \to xM$, wobei x ein Terminal, $X \in N \setminus \{S\}$ ein Nichtterminal und M eine nichtleere Menge an Nichtterminalen ist, füge eine Schleife an q_1 ein: $x, XV \mid MV$.

Damit kann man alle kontextfreien Sprachen, die ϵ nicht enthalten, auch mithilfe der veränderten Übergangsfunktion darstellen.

Über die kontextfreien Sprachen, die auch ϵ erhalten, kann man den Startzustand q_0 ebenfalls als Startzustand markieren.

Damit verändert sich die Menge der Sprachen, die den leeren Keller akzeptieren, nicht.