Zasięg elementarnego systemu transmisji światłowodowej, Budżet mocy, Q factor

Jak oszacować zasięg? - ograniczenie od tłumienia

np.
$$BER = 1.10^{-9}$$
 wymaga $\frac{S}{N} = 15.6 \, dB$

$$S = R \cdot P_{\lambda NAD} \cdot 10^{-z\alpha/10}$$

N znamy (np. MAX3760 \rightarrow I_{NSK} = 70 nA) lub szacujemy:

$$N = J_N \sqrt{B_N} \quad ; B_N \approx 0.75...1 \frac{1}{T} \; ; \; J_N \approx 2...5 \frac{pA}{\sqrt{Hz}}$$

Możemy też mieć podaną czułość układu odbiorczego, czyli minimalną moc wymaganą dla BER < 10^{-9} lub 10^{-12} ; np. czułość $-33\text{dBm}~\rightarrow~P_{MIN}\!\!=\!\!0.5\mu\text{W}$

Jak oszacować zasięg? - ograniczenie od dyspersji

$$\Delta t \approx \sqrt{\Delta t_{MOD}^2 + \Delta t_{CHR}^2}$$

$$\Delta t_{CHR} = zD_{CHR}\Delta\lambda$$

$$\Delta t_{MOD} = z\frac{0.44}{B_{MOD}}$$

$$B_{3dBel} \approx \frac{1}{T}$$
; $B_{3dBel} \iff B_{1.5dBopt} \approx \frac{0.31}{\Delta t}$

Możemy też mieć podaną maksymalną skumulowaną dyspersję chromatyczną światłowodu, przy której dyspersyjna deformacja sygnału docierającego do odbiornika jest niewielka (ang. *dispersion tolerance*);

np. dispersion tolerance 1500ps/nm

przy dysp. jednostkowej 17 ps/(nm km) → zasięg > 90 km

Uwaga: dispersion tolerance jest cechą nadajnika, a nie odbiornika!!!

Parametry źródeł

PARAMETRY ŹRÓDEŁ – LED (HISTORIA)

ТҮР	DŁ. FALI	SZEROK. SPEKTR.	MOC W ŚWIATŁ. 9/125 μm	MOC W ŚWIATŁ. 50/125 μm	MOC W ŚWIATŁ. 62,5/125 μm	PASMO MOD.
1A225	880 nm	40 nm	2,5 μW	90 μW	150 μW	50 MHz
1A345	1320 nm	120 nm		17 μW	50 μW	160MHz

PARAMETRY ŹRÓDEŁ - LASERY

TYP	DŁ. FALI	SZEROKOŚĆ SPEKTR.	MOC W ŚWIATŁ.	CZAS NARAST./ OPADANIA
V850	830860 nm	0,85 nm RMS	200 μW (MM)	0,175 ns
VCSEL			•	
D370	12701350 nm	2 nm RMS	1 mW (SM)	0,25 ns
MQW, FP				
D571	15201570 nm	0,2 nm	2 mW (SM)	0,25 ns
MQW, DFB				

Parametry światłowodów

PARAMETRY ŚWIATŁOWODÓW WIELOMODOWYCH GRADIENTOWYCH

DŁUGOŚĆ FALI:	TŁUMIENIE	PASMO PRZENOSZ. (od dyspersji modowej)	
850 nm	3,0 dB/km	500 MHz*km	100 ps/nm*km
1300 nm	1,0 dB/km	600 MHz*km	<10 ps/nm*km

PARAMETRY ŚWIATŁOWODÓW JEDNOMODOWYCH STANDARDOWYCH G625

DŁUGOŚĆ FALI:	TŁUMIENIE	WSP. DYSPERSJI CHROMATYCZNEJ	
1300 nm	0,4 dB/km	<3,5 ps/nm*km	
1550 nm	0,2 dB/km	17 ps/nm*km	

PARAMETRY ŚWIATŁOWODÓW JEDNOMODOWYCH O MODYFIKOWANEJ DYSPERSJI np. G655 i inne

DŁUGOŚĆ FALI:	TŁUMIENIE	WSP. DYSPERSJI CHROMATYCZNEJ	
1550 nm	0,2 dB/km	-55 ps/nm*km	

Parametry fotodiod i zintegrowanych modułów odbiorczych

PARAMETRY FOTODIOD PIN

DŁ.FALI	850 nm	1300nm	1550nm
CZUŁOŚĆ	0,45 A/W	0,9 A/W	1,0 A/W
PASMO PRZEN.	3 GHz	3 GHz	3 GHz

PARAMETRY MODUŁÓW ODB.

DŁ.FALI: 850 nm lub 1300/1550 nm
CZUŁOŚĆ: -2040 dBm
PASMO PRZENOSZENIA: do 10 GHz

Szumowe i pasmowe ograniczenia zasięgu transmisji

Przyjęte dane liczbowe:

MM I ok.	$\alpha = 3 \text{dB/km}$	$P_{LAS} = 200 \mu W$	$\Delta \lambda = 0.85$ nm	$d_{CHR} = -100 \text{ps/nmkm}$	$B_{MOD} = 500MHz*km$
SM II ok.	α =0,4dB/km	$P_{LAS} = 1mW$	$\Delta \lambda = 2nm$ $\Delta \lambda = 0.2nm$	$d_{CHR} = 3.5 ps/nmkm$	
SM III ok.	α =0,2dB/km	$P_{LAS} = 1 \text{mW}$	$\Delta \lambda = 0.2$ nm	$d_{CHR} = 17 ps/nmkm$	

Problem: co zrobić, gdy potrzebujemy transmitować dalej?

Budżet mocy łącza

STRATY + ZAPAS (!) (margines) < BUDŻET

Pytanie: jak uwzględnić wzmacniacze optyczne?

Uwaga: - weryfikacja łącza pod względem budżetu nie obejmuje ew. ograniczeń dyspersyjnych!!! - możemy ew. uwzględnić *dispersion penalty*

Zadanie domowe

Znaleźć (najtańsze) moduły SFP do łącza o nast. parametrach:

- prędkość transmisji 2,5 Gb/s
- światłowód standardowy jednomodowy, 55 km
- po drodze 12 spawów o tłumieniu do 0.05 dB
- po drodze 5 "patchcordów" ze złączami o tłumieniu do 0,5 dB
- po drodze 2 przełączniki optyczne o tłumieniu do 1,5 dB
- zapas budżetu 5 dB

Możliwe punkty startowe:

www.finisar.com www.fcnet.pl www.atel.com.pl

Q factor - uogólnienie S/N

$$BER = \frac{1}{4} \left[erfc \left(\frac{m_1 - u_{TH}}{\sqrt{2}\sigma_1} \right) + erfc \left(\frac{u_{TH} - m_0}{\sqrt{2}\sigma_0} \right) \right]$$

gdzie:
$$erfc(x) = \frac{2}{\pi} \int_{x}^{\infty} e^{-t^2} dt$$

$$Q = \frac{m_1 - m_0}{\sigma_1 + \sigma_0}$$

jeżeli:
$$\frac{m_1 - u_{TH}}{\sigma_1} = \frac{u_{TH} - m_0}{\sigma_0}$$
 (optymalny próg komparacji)

$$BER = \frac{1}{2} \operatorname{erfc} \left(\frac{Q}{\sqrt{2}} \right)$$

Określanie parametru Q na podstawie diagramu oczkowego

Pomiar oscyloskopem:

- -w którym miejscu układu mierzyć?
- gdzie podłączyć wyzwalanie?

Pogadanka:
Jak przesłać jednym światłowodem kilka Tb/s?

Multipleksacja falowa Wavelength-division Multiplexing - WDM

	ITU Grid: C-Band, 100 GHz Spacing						
Channel	Frequency	Wavelength		Channel	Frequency	Wavelength	
(#)	(GHz)	(nm)		(#)	(GHz)	(nm)	
1	190100	1577.03		37	193700	1547.72	
2	190200	1576.20		38	193800	1546.92	
3	190300	1575.37		39	193900	1546.12	
4	190400	1574.54		40	194000	1545.32	
5	190500	1573.71		41	194100	1544.53	
6	190600	1572.89		42	194200	1543.73	
7	190700	1572.06		43	194300	1542.94	
8	190800	1571.24		44	194400	1542.14	
9	190900	1570.42		45	194500	1541.35	
10	191000	1569.59		46	194600	1540.56	
11	191100	1568.11		47	194700	1539.77	

DWDM to nie tylko technologia multipleksacji, ale też filozofia budowy rozległej sieci

ROADM - reconfigurable optical add-drop multiplexer

