Deviation from kink dynamics

#1D #twokinks

We've found that, if the oscillations are slow and positive, the deviation from the model for kinks dynamics (with **no** mass **M**) must be of order $\sim \epsilon^2$ (or smaller).

$$\partial_t d = f(C(t),d) + O(\epsilon^2)$$

To check this, we have to measure the deviation of the experimental value of $\partial_t d$ from f(C(t), d) for different values of $T \sim \epsilon^{-1}$.

Notice: As the term $O(\epsilon^2)$ will depend, somehow, on C,d we should make those measurement at fixed values of C and d.

Resumee

The correction to the kink dynamics scales **linearly** in $\frac{1}{T}$ instead than quadratically $\frac{1}{T^2}$

- Resumee
- · Measure of the deviation
- Power-law decay
- Conclusion

Measure of the deviation

We measure the deviation by considering the trajectory $(-\partial_t d, C)(t)$ and we measure the deviation at a fixed value $C = \tilde{C}$. As we have two distances of the experimental trajectory from the model, we compute their **average**. We compute it by considering the part of the trajectory associated to a period different from the first one, to eliminate the initial dynamics (we choose

the 3rd period).

Power-law decay

There is a power law relation of the variation with $\frac{1}{T}$, but the power is 1, instead of 2 as expected!

Averaged deviation of the experimental trajectory $-\partial_t d(C)$ respect to the kinks dynamics model at C=0.9 $C(t) = 1 + 0.2\sin(2\pi t/T)$

Deviation from the model $\sim T^{-0.9561837671897875}$

Conclusion

We verified that the deviation from the kink dynamics model is $\sim T^{-1}$ instead of $\sim T^{-2}$ as expected.