[First Name Initial]. Last Name

- 4.e Consider the Language L = w—w Start and an a and has at most one b The language l is the intersection of two simpler languages L_1 and L_2 . no $L_1 = w$ —w starts with a and $L_1 = w$ —w has at most one b Let M be the DFA and M_1 and M_2 be and DFAs that recognizes L_1 and L_2 .
 - below is given DFA of M_1 [12pt]article tikz

• below is given DFA of M_2

- 4.f Consider the language L = w—w has an odd number of A's and ends with b. the language L is the intersection of two simpler languages say L_1 and L_2 . Now $L_1 = w$ —w has an odd number of a's and $L_2 = w$ —w end with a b let M be be DFA that recognizes L and M_1 and M_2 be the DFA that recognizes L_1 and L_2
 - below is given DFA of M_1 tikz

• below is given DFA of M_2

D:20201006080818Z 1 of 3

6.A Language L w—w begins with 1 and ends with 0

- 16.A Constructing equivalent DFA for the given NFA:
 - 1) $Q^1 = p(Q)$ where Q^1 is the subset of all sets of Q. so $Q^1 = \emptyset, (1), (2), (1, 2)$
 - 2) $q^{'}_{0}=q_{0}$ where q_{0} is the start state in NFA. here $q^{'}_{0}=1$
 - 3) $F' = R \in Q'$ R contain an accept state of NFA the machine M accepts the possible states where the NFA is present in the accept state.
 - 4) the state diagram for the equivalent DFA is as follows.

- 28.A Given regular expression $R = a(abb) * \cup b$ now we convert this regular expression into NFA by following steps
 - 1) NFA for A

2) NFA for B

3) NFA for (abb)*

4) NFA for $a(abb^*) \cup b$

29.B Consider the language $A_2 = www-w \cup a, b *$

assume A^2 is a regular language. and let p be the pumping length given by the pumping lemma. By pumping lemma, this string can be divided into three pieces xyz such that —xy—; p, —y— \downarrow 0 and xy'z $\cup A^2 \downarrow 0$.

let aabaabaab be the string that belongs to A^2 . the pumping length of the string is 2. to satisfy the conditions of the pumping lemma, x = a, y = a, z = baabaab. so $S = aabaabaab = \left(\frac{a}{x}\right)\left(\frac{baabaab}{z}\right)$

pump the middle part such that xy'z (i¿0). for i = 2 the y becomes aa. the string after pumping is aaabaabaab. so S = (a) (a)' (baabaab) = $\frac{a}{x} \frac{aa}{y} \frac{baabaab}{z}$

the string aaabaabaab is not element of A_2 it is a contradiction. so the pumping lemma is violed therefore A^2 is not a regular language.

60 C_k is the language consisting of all strings that contains an a exactly k places from the right hand end. let N be the NFA with K+1 states that recognizes C_k 1) the state diagram of NFA N is followsL

2) the formal description of NFA

Similar to a DFA, the formal definition of NFA is: (Q, E, q_0, F) , where

Q is a finite set of all states

E is a finite set of all symbols of the alphabet

: $Q \times E \rightarrow Q$ is the transition function from state to state

 q_0 Q is the start state, in which the start state must be in the set Q

F Q is the set of accept states, in which the accept states must be in the set Q