$[width = .9]../media/tikz/Snowflake.png\ center$

The Emergence of Order

Ryan & James

November 11, 2020

1 Introduction

- Looked at the emergence of patterns from natural and iterative processes.
- This lead to an investigation of fractals mostly

2 Definition of a Fractal

- Shapes with a complex structure
- Tend to exhibit self-similarity
 - Although they may not!

2.1 Examples of Fractals

To motivate the concept, here are some fractals we generated in our investigation:

• Self-Similar Fractals

$$\mathbf{B} \leftarrow \begin{bmatrix} \mathbf{B} & \mathbf{Z} & \mathbf{B} \\ \mathbf{Z} & \mathbf{B} & \mathbf{Z} \\ \mathbf{B} & \mathbf{Z} & \mathbf{B} \end{bmatrix}$$

where:

- B = [1]
- Z = [0]

media/vicsek_fractal.gif

$$\mathbf{B} \leftarrow \begin{bmatrix} \mathbf{B} & \mathbf{B} & \mathbf{B} \\ \mathbf{B} & \mathbf{Z} & \mathbf{B} \\ \mathbf{B} & \mathbf{B} & \mathbf{B} \end{bmatrix}$$

media/sierpinski_carpet.gif

• Can also use the Chaos Game

[width=.9]media/chaos $_q ame/1$

[width=.9]media/chaos $_q$ ame/2

[width=.9]media/chaos $_q ame/3$

[width=.9]media/chaos_qame/4

[width=.9]media/chaos $_q$ ame/5

[width=.9]media/chaos $_qame/6$

[width=.9]media/chaos $_q$ ame/7

[width=.9] media/chaos_q ame/8 media/sierpinsky_triangle_chaos.gif

• and sometimes thay just fall out of otherwise simple math:

$$z \leftarrow z^2 + c$$

• What follows is an illustration of all the points that converge to zero for values on the circle:

$$z \leftarrow z^2 + e^{i\frac{9k}{2}}$$

media/julia_sets.gif

2.2 Generating Fractals

- Matrices and Iteration
- Drawing them
- Chaos Game
- Recurrence

2.3 Mandelbrots Definition

- Defined it as:
- Later went back on this
- Efforts have been made to more clearly define it.

2.4 The Fractal Dimension

- 3 Defining Dimension
- 3.1 Hausdorff Measure
- 3.2 Hausdorff Dimension
- 4 My fractal if I have time
- 5 Measuring the Dimension of a non-self-similar Fractal