Optimal Control Theory

Dynamic Programming

Principle of Optimality

Optimal path for a multistage decision process

$$J_{\scriptscriptstyle ae}^* = J_{\scriptscriptstyle ab} + J_{\scriptscriptstyle be}$$

If a-b-e is the optimal path from a to e, then b-e is the optimal path from b to e.

Bellman's principle of optimality (1962)

An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision.

(ex) Candidates for optimal paths from b to f

$$C^*_{\it bcf} = J_{\it bc} + J^*_{\it cf}$$

$$C_{\it bdf}^* = J_{\it bd} + J_{\it df}^*$$

$$C^*_{\scriptscriptstyle bef} = J_{\scriptscriptstyle be} + J^*_{\scriptscriptstyle ef}$$

Optimal decision at point b

 $\min_{c,d,e} \left\{ C_{bcf}^*, C_{bdf}^*, C_{bef}^* \right\}$

Dynamic Programming

Computational procedure which extends the above decision-making concept to sequences of decisions

Principle of Optimality

Routing Problem

(notation)

 α is the current state (intersection).

 u_i is an allowable decision (control) elected at the state α . In this example i can assume one or more of the values 1, 2, 3, 4, corresponding to the headings N, E, S, W.

 x_i is the state (intersection) adjacent to α which is reached by application of u_i at α .

h is the final state.

 $J_{\alpha x_i}$ is the cost to move from α to x_i .

 $J_{x,h}^{*}$ is the *minimum* cost to reach the final state h from x_{i} .

 $C_{ax_i}^*$ is the minimum cost to go from α to h via x_i .

 $J_{\alpha h}^{*}$ is the minimum cost to go from α to h (by any allowable path).

 $u^*(\alpha)$ is the optimal decision (control) at α .

 $C^*_{cdh} = J_{cd} + J^*_{dh} = \text{minimum cost to reach } h \text{ from } c \text{ via } d$ $C^*_{cfh} = J_{cf} + J^*_{fh} = \text{minimum cost to reach } h \text{ from } c \text{ via } f.$

$$J_{ch}^* = \min\{C_{cdh}^*, C_{cfh}^*\}$$

= $\min\{15, 8\}$
= 8
 $u^*(c) = f$

$$J_{fh}^* = J_{fg} + J_{gh}^*$$

= 3 + 2
= 5.

$$J_{eh}^* = \min \{J_{eh}, [J_{ef} + J_{fh}^*]\}$$

Calculating backward from h

Routing Problem

Current intersection	Heading	Next intersection	Minimum cost from α to h via x _i	Minimum cost to reach h from a	Optimal heading at α
α	u_i	x_i	$J_{\alpha x_t} + J_{x_th}^* = C_{\alpha x_th}^*$	J_{ah}^*	$u^*(\alpha)$
g	N	h	2 + 0 = 2	2	N
ſ	E	g	3 + 2 = 5	5	E
e	E	h	8 + 0 = 8		
	S	f	2 + 5 = 7	7	S
d	Е	e	3 + 7 = 10	10	Е
с	N	d	5 + 10 = 15		
	E	f	3 + 5 = 8	8	E
ь	Е	c	9 + 8 = 17	17	E
a	Е	d	8 + 10 = 18	18	E
	S	ь	5 + 17 = 22		

- Optimal Control Problem (scalar)
 - Differential equation

$$\frac{d}{dt}[x(t)] = ax(t) + bu(t)$$

$$0.0 \le x(t) \le 1.5 \qquad -1.0 \le u(t) \le 1.0$$

$$J = x^2(T) + \lambda \int_0^T u^2(t) dt$$

Difference equation

$$\frac{x(t + \Delta t) - x(t)}{\Delta t} \approx ax(t) + bu(t)$$

$$\Rightarrow x(t + \Delta t) = [1 + a \Delta t]x(t) + b \Delta t u(t)$$

$$t = 0, \Delta t, \dots, (N-1) \Delta t \qquad t = k \Delta t,$$

$$x(k) \equiv x(k\Delta t)$$

$$\Rightarrow x(k+1) = [1 + a \Delta t]x(k) + b \Delta t u(k)$$

$$J = x^{2}(N \Delta t) + \lambda \left[\int_{0}^{\Delta t} u^{2}(0) dt + \int_{\Delta t}^{2 \Delta t} u^{2}(\Delta t) dt + \cdots \right] + \int_{(N-1) \Delta t}^{N \Delta t} u^{2}([N-1] \Delta t) dt,$$

$$J = x^{2}(N) + \lambda \Delta t \left[u^{2}(0) + u^{2}(1) + \cdots + u^{2}(N-1) \right] = x^{2}(N) + \lambda \Delta t \sum_{k=0}^{N-1} u^{2}(k).$$

$$J = x^{2}(N) + \lambda \Delta t \left[u^{2}(0) + u^{2}(1) + \cdots + u^{2}(N-1) \right]$$

= $x^{2}(N) + \lambda \Delta t \sum_{k=0}^{N-1} u^{2}(k)$.

(Ex)
$$a = 0$$
, $b = 1$, $\lambda = 2$, $T = 2$, $\Delta t = 1$, $N = 2$
 $x(k + 1) = x(k) + u(k)$; $k = 0, 1$
 $J = x^2(2) + 2u^2(0) + 2u^2(1)$
 $0.0 \le x(k) \le 1.5$; $k = 0, 1, 2$
 $-1.0 \le u(k) \le 1.0$; $k = 0, 1$.

Optimal Control Problem

$$x(k + 1) = x(k) + u(k);$$
 $k = 0, 1$
 $J = x^{2}(2) + 2u^{2}(0) + 2u^{2}(1)$
 $0.0 \le x(k) \le 1.5;$ $k = 0, 1, 2$
 $-1.0 \le u(k) \le 1.0;$ $k = 0, 1$

- Quantization: x(k) = 0.0, 0.5, 1.0, 1.5, u(k) = -1.0, -0.5, 0.0, 0.5, 1.0

(Principle of optimality)

$$C_{kN}^*(x(k), u(k)) = J_{k, k+1}(x(k), u(k)) + J_{k+1, N}^*(x(k+1)),$$

$$J_{kN}^*(x(k)) = \min_{u(k)} [C_{kN}^*(x(k), u(k))].$$

(Backward computation)

$$k = N - 1, N - 2, \dots, 2, 1$$

If x(0) = 1.5, => $u^*(0) = -0.5$, $u^*(1) = -0.5$, $J^* = 1.25$

Table 3-2 COSTS OF OPERATION OVER THE LAST STAGE

Current	Control	Next state	Cost		Minimum cost	Optimal control applied at $k = 1$
x(1)	u(1)	x(2) = x(1) + u(1)	$x^2(2) + 2u^2(1) =$	$=J_{12}(x(1), u(1))$	$J_{12}^*(x(1))$	u*(x(1), 1)
1.5	0.0	1.5	$(1.5)^2 + 2(0.0)^2 =$	2,25		
	-0.5	1.0	$(1.0)^2 + 2(-0.5)^2 =$	1.50	$J_{12}^*(1.5) = 1.50$	u*(1.5, 1) = -0.5
	-1.0	0.5	$(0.5)^2 + 2(-1.0)^2 =$	2.25	1001	
1.0	0.5	1.5	$(1.5)^2 + 2(0.5)^2 =$	2.75		
	0.0	1.0	$(1.0)^2 + 2(0.0)^2 =$	1.00		
	-0.5	0.5	$(0.5)^2 + 2(-0.5)^2 =$	0.75	$J_{12}^{*}(1.0) = 0.75$	u*(1.0, 1) = -0.
	-1.0	0.0	$(0.0)^2 + 2(-1.0)^2 =$	2.00	117 (CT 10 (E.E.) (CT 17 (CT 1	
0.5	1.0	1.5	$(1.5)^2 + 2(1.0)^2 =$	4.25		
	0.5	1.0	$(1.0)^2 + 2(0.5)^2 =$	1.50		
	0.0	0.5	$(0.5)^2 + 2(0.0)^2 =$	0.25	$J_{12}^*(0.5) = 0.25$	u*(0.5, 1) = 0.0
	-0.5	0.0	$(0.0)^2 + 2(-0.5)^2 =$	0.50		
0.0	1.0	1.0	$(1.0)^2 + 2(1.0)^2 =$	3.00		
	0.5	0.5	$(0.5)^2 + 2(0.5)^2 =$	0.75		
	0.0	0.0	$(0.0)^2 + 2(0.0)^2 =$	0.00	$J_{12}^*(0.0) = 0.00$	u*(0.0, 1) = 0.0

Table 3-3 COSTS OF OPERATION OVER THE LAST TWO STAGES

Current state	Control	Next state	$J_{01}(x(0))$	r trial v	alue $u(+J_{12}^*)$	x(1)) =	Minimum cost over last two stages	Optimal control applied at $k = 0$
x(0)	u(0)	x(1) = x(0) + u(0)	$2u^2(0) + .$	$J_{12}^*(x(1)$	$)=C_{0}$	$_{02}^{*}(x(0), u(0))$	$J_{02}^*(x(0))$	u*(x(0), 0)
1.5	0.0	1.5	2(0.0)2 +	1.50	-	1,50		
	-0.5	1.0	$2(-0.5)^2 +$	0.75	-	1.25	$J_{02}^*(1.5) = 1.25$	u*(1.5, 0) = -0.5
	-1.0	0.5	$2(-1.0)^2 +$	0.25	-	2.25		
1.0	0.5	1.5	2(0.5)2 +	1.50		2.00		
	0.0	1.0	$2(0.0)^2$ +	0.75	100	0.75	(0.75)	(0.0
	-0.5	0.5	$2(-0.5)^2 +$	0.25	200	0.75	$J_{02}^{-}(1.0) = \{0.75\}$	$u*(1.0, 0) = \begin{cases} 0.0 \\ -0.5 \end{cases}$
	-1.0	0.0	$2(-1.0)^2$ +	0.00	=	2.00		
0.5	1.0	1.5	2(1.0)2 +	1.50		3.50		
	0.5	1.0	2(0.5)2 +	0.75	200	1.25		
	0.0	0.5	$2(0.0)^2 +$	0.25	-	0.25	$J_{0.2}^*(0.5) = 0.25$	u*(0.5, 0) = 0.0
	-0.5	0.0	$2(-0.5)^2 +$	0.00	-	0.50		
0.0	1.0	1.0	2(1.0)2 +	0.75	-	2.75		
	0.5	0.5	2(0.5)2 +	0.25	***	0.75		
	0.0	0.0	$2(0.0)^2 +$	0.00	-	0.00	$J_{0.2}^{8}(0.0) = 0.00$	u*(0.0, 0) = 0.0

Interpolation

(ex) quantization
$$x(k) = 0.0, 0.5, 1.0, 1.5, u(k) = -1.0, -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0$$

fine grid => increased memory

- Linear interpolation

$$J_{12}^*(1.25) = 0.68750 + \frac{1}{2}[1.50000 - 0.68750]$$
 $J_{12}^*(0.75) = 0.18750 + \frac{1}{2}[0.68750 - 0.18750]$ $= 0.43750$

Table 3-4 Costs of operation over the last two stages for x(0) = 1.50

Current state	Control	Next state	Minimum cost over last two stages for trial value $u(0)$ $J_{01}(x(0), u(0)) + J_{12}^*(x(1)) =$	Minimum cost over last two stages	Optimal control applied at $k = 0$
x(0)	u(0)	x(1) = x(0) + u(0)	$2u^{2}(0) + J_{12}^{*}(x(1)) = C_{02}^{*}(x(0), u(0))$		$u^*(x(0), 0)$
1.50	0,00	1.50	$2(0.00)^2 + 1.50000 = 1.50000$		
	-0.25	1.25	$2(-0.25)^2 + 1.09375 = 1.21875$		
	-0.50	1.00	$2(-0.50)^2 + 0.68750 = 1.18750$	$J_{0.2}^*(1.5) = 1.18750$	u*(1.5, 0) = -0.5
	-0.75	0.75	$2(-0.75)^2 + 0.43750 = 1.56250$	04.	(, .,
	-1.00	0.50	$2(-1.00)^2 + 0.18750 = 2.18750$		

(Q) 3-4. The discrete approximation to a nonlinear continuously operating system is given by

$$x(k + 1) = x(k) - 0.4x^{2}(k) + u(k)$$

The state and control values are constrained by

$$0.0 \le x(k) \le 1.0$$

 $-0.4 \le u(k) \le 0.4$.

Quantize the state into the levels 0, 0.5, 1, and the control into the levels -0.4, -0.2, 0, 0.2, 0.4. The performance measure to be minimized is

$$J = 4|x(2)| + \sum_{k=0}^{1} |u(k)|.$$

(a) Use dynamic programming with linear interpolation to complete the tables shown below.

x(0)	$J_{0,2}^*(x(0))$	$u^*(x(0), 0)$
0.0		
0.5		
1.0		

x(1)	$J_{1,2}^*(x(1))$	u*(x(1), 1)
0.0		
0.5		
1.0		

(b) From the results of part (a) find the optimal control sequence $\{u^*(0), u^*(1)\}\$ and the minimum cost if the initial state is 1.0.

- Optimal Control Problem (vector)
 - State equation

$$\dot{\mathbf{x}}(t) = \mathbf{a}(\mathbf{x}(t), \mathbf{u}(t))$$

$$\stackrel{\mathbf{x}(t + \Delta t) - \mathbf{x}(t)}{\Delta t} \approx \mathbf{a}(\mathbf{x}(t), \mathbf{u}(t)) \quad \mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \, \mathbf{a}(\mathbf{x}(t), \mathbf{u}(t))$$

$$\stackrel{\mathbf{x}(k + 1) = \mathbf{x}(k) + \Delta t \, \mathbf{a}(\mathbf{x}(k), \mathbf{u}(k)),}{\mathbf{x}(k + 1) \triangleq \mathbf{a}_D(\mathbf{x}(k), \mathbf{u}(k)).}$$

- Performance measure

$$J = h(\mathbf{x}(t_f)) + \int_0^{t_f} g(\mathbf{x}(t), \mathbf{u}(t)) dt$$

$$\Rightarrow J = h(\mathbf{x}(N \Delta t)) + \int_0^{\Delta t} g dt + \int_{\Delta t}^{2 \Delta t} g dt + \cdots + \int_{(N-1) \Delta t}^{N \Delta t} g dt$$

$$\Rightarrow J \approx h(\mathbf{x}(N)) + \Delta t \sum_{k=0}^{N-1} g(\mathbf{x}(k), \mathbf{u}(k)),$$

$$\Rightarrow J = h(\mathbf{x}(N)) + \sum_{k=0}^{N-1} g_{D}(\mathbf{x}(k), \mathbf{u}(k))$$

Optimal control law

$$\mathbf{u}^*(\mathbf{x}(0), 0), \mathbf{u}^*(\mathbf{x}(1), 1), \ldots, \mathbf{u}^*(\mathbf{x}(N-1), N-1)$$

Recurrence relation

$$(\text{stage } N + 1) \triangleq \mathbf{a}_{D}(\mathbf{x}(k), \mathbf{u}(k)).$$

$$J = h(\mathbf{x}(N)) + \sum_{k=0}^{N-1} g_{D}(\mathbf{x}(k), \mathbf{u}(k)).$$

$$(\text{stage } N-7) \qquad J_{NN}(\mathbf{x}(N)) \triangleq h(\mathbf{x}(N)).$$

$$(\text{stage } N-7) \qquad J_{N-1, N}(\mathbf{x}(N-1), \mathbf{u}(N-1)) \triangleq g_{D}(\mathbf{x}(N-1), \mathbf{u}(N-1)) + h(\mathbf{x}(N)).$$

$$= g_{D}(\mathbf{x}(N-1), \mathbf{u}(N-1)) + J_{NN}(\mathbf{x}(N)).$$

$$= g_{D}(\mathbf{x}(N-1), \mathbf{u}(N-1)) + J_{NN}(\mathbf{a}_{D}(\mathbf{x}(N-1), \mathbf{u}(N-1))).$$

$$J_{N-1, N}^{*}(\mathbf{x}(N-1)) \triangleq \min_{\mathbf{u}(N-1)} \{g_{D}(\mathbf{x}(N-1), \mathbf{u}(N-1)) + J_{NN}(\mathbf{a}_{D}(\mathbf{x}(N-1), \mathbf{u}(N-1))).$$

$$(\text{stage } N-2) \qquad J_{N-2, N}^{*}(\mathbf{x}(N-2)) = \min_{\mathbf{u}(N-2)} \{g_{D}(\mathbf{x}(N-2), \mathbf{u}(N-2)) + J_{N-1, N}^{*}(\mathbf{a}_{D}(\mathbf{x}(N-2), \mathbf{u}(N-2))).$$

$$(\text{stage } N-3) \qquad J_{N-3, N}^{*}(\mathbf{x}(N-3)) = \min_{\mathbf{u}(N-3)} \{g_{D}(\mathbf{x}(N-3), \mathbf{u}(N-3)) + J_{N-2, N}^{*}(\mathbf{a}_{D}(\mathbf{x}(N-3), \mathbf{u}(N-3))).$$

$$(\text{stage } N-k) \qquad J_{N-K, N}^{*}(\mathbf{x}(N-K)) = \min_{\mathbf{u}(N-K)} \{g_{D}(\mathbf{x}(N-K), \mathbf{u}(N-K)) + J_{N-(K-1), N}^{*}(\mathbf{a}_{D}(\mathbf{x}(N-K), \mathbf{u}(N-K))).$$

- Computational Procedure
 - Recurrence equation

$$J_{N-K, N}^{*}(\mathbf{x}(N-K)) = \min_{\mathbf{u}(N-K)} \{ g_{D}(\mathbf{x}(N-K), \mathbf{u}(N-K)) + J_{N-(K-1), N}^{*}(\mathbf{a}_{D}(\mathbf{x}(N-K), \mathbf{u}(N-K))) \}$$

$$K = 1 \rightarrow 2 \rightarrow \cdots \rightarrow N$$

Optimal control

$$\mathbf{u}^*(\mathbf{x}(N-K), N-K)$$

$$K = 1 \rightarrow 2 \rightarrow \cdots \rightarrow N$$

$$\mathbf{u}^*(\mathbf{x}(N-K), N-K)$$
 $K=1 \rightarrow 2 \rightarrow \cdots \rightarrow N$ Stage $(t)=N-1 \rightarrow \cdots \rightarrow 1 \rightarrow 0$

Grid of admissible state values

- Characteristics
 - 1) global (absolute) minimum
 - 2) curse of dimensionality

for high-dimensional system, the storage locations (memory) become prohibitive

3) offline control law / infinite horizon

- Discrete Linear Regulator Problems Analytical Results
 - Linear time-varying system

$$\mathbf{x}(k+1) = \mathbf{A}(k)\mathbf{x}(k) + \mathbf{B}(k)\mathbf{u}(k)$$

Performance measure: regulator

$$J = \frac{1}{2}\mathbf{x}^{T}(N)\mathbf{H}\mathbf{x}(N) + \frac{1}{2}\sum_{k=0}^{N-1} \left[\mathbf{x}^{T}(k)\mathbf{Q}(k)\mathbf{x}(k) + \mathbf{u}^{T}(k)\mathbf{R}(k)\mathbf{u}(k)\right]$$

H and $\mathbf{Q}(k)$ are real symmetric positive semi-definite $n \times n$ matrices.

12

 $\mathbf{R}(k)$ is a real symmetric positive definite $m \times m$ matrix.

Recurrence equation

$$\begin{split} J_{NN}(\mathbf{x}(N)) &= \tfrac{1}{2}\mathbf{x}^T(N)\mathbf{H}\mathbf{x}(N) = J_{NN}^*(\mathbf{x}(N)) \triangleq \tfrac{1}{2}\mathbf{x}^T(N)\mathbf{P}(0)\mathbf{x}(N) \\ J_{N-1,N}(\mathbf{x}(N-1), \mathbf{u}(N-1)) &= \tfrac{1}{2}\mathbf{x}^T(N-1)\mathbf{Q}\mathbf{x}(N-1) + \tfrac{1}{2}\mathbf{u}^T(N-1)\mathbf{R}\mathbf{u}(N-1) + \tfrac{1}{2}\mathbf{x}^T(N)\mathbf{P}(0)\mathbf{x}(N), \\ &= \tfrac{1}{2}\mathbf{x}^T(N-1)\mathbf{Q}\mathbf{x}(N-1) + \tfrac{1}{2}\mathbf{u}^T(N-1)\mathbf{R}\mathbf{u}(N-1) + \tfrac{1}{2}[\mathbf{A}\mathbf{x}(N-1) + \mathbf{B}\mathbf{u}(N-1)]^T\mathbf{P}(0)[\mathbf{A}\mathbf{x}(N-1) + \mathbf{B}\mathbf{u}(N-1)] \\ J_{N-1,N}^*(\mathbf{x}(N-1)) &\triangleq \min_{\mathbf{u}(N-1)} \left\{ J_{N-1,N}(\mathbf{x}(N-1), \mathbf{u}(N-1)) \right\} \\ &\longleftrightarrow \frac{\partial J_{N-1,N}}{\partial \mathbf{u}(N-1)} = \mathbf{0} \quad \text{and} \quad \frac{\partial^2 J_{N-1,N}}{\partial \mathbf{u}^2(N-1)} > 0 \text{ (positive definite)} \quad \therefore \mathbf{J} \text{ is convex function} \\ &\longleftrightarrow \frac{\partial J_{N-1,N}}{\partial \mathbf{u}(N-1)} = \mathbf{R}\mathbf{u}(N-1) + \mathbf{B}^T\mathbf{P}(0)[\mathbf{A}\mathbf{x}(N-1) + \mathbf{B}\mathbf{u}(N-1)] = \mathbf{0}. \\ &\frac{\partial^2 J_{N-1,N}}{\partial \mathbf{u}^2(N-1)} = \mathbf{R} + \mathbf{B}^T\mathbf{P}(0)\mathbf{B} \quad \text{: positive definite} \\ &\longleftrightarrow \mathbf{u}^*(N-1) = -[\mathbf{R} + \mathbf{B}^T\mathbf{P}(0)\mathbf{B}]^{-1}\mathbf{B}^T\mathbf{P}(0)\mathbf{A}\mathbf{x}(N-1) \\ &\triangleq \mathbf{F}(N-1)\mathbf{x}(N-1). \end{split}$$

$$J_{N-1,N}^*(\mathbf{x}(N-1)) = \frac{1}{2}\mathbf{x}^T(N-1)\{[\mathbf{A} + \mathbf{BF}(N-1)]^T\mathbf{P}(0)[\mathbf{A} + \mathbf{BF}(N-1)] + \mathbf{F}^T(N-1)\mathbf{RF}(N-1) + \mathbf{Q}\}\mathbf{x}(N-1)$$

$$\triangleq \frac{1}{2}\mathbf{x}^T(N-1)\mathbf{P}(1)\mathbf{x}(N-1).$$

- Discrete Linear Regulator Problems Analytical Results
 - Recurrence equation (continued)

$$\mathbf{u}^*(N-2) = -[\mathbf{R} + \mathbf{B}^T \mathbf{P}(1)\mathbf{B}]^{-1} \mathbf{B}^T \mathbf{P}(1) \mathbf{A} \mathbf{x}(N-2)$$

$$\triangleq \mathbf{F}(N-2) \mathbf{x}(N-2),$$

$$J_{N-2,N}^*(\mathbf{x}(N-2)) = \frac{1}{2}\mathbf{x}^T(N-2)\{[\mathbf{A} + \mathbf{BF}(N-2)]^T\mathbf{P}(1)[\mathbf{A} + \mathbf{BF}(N-2)] + \mathbf{F}^T(N-2)\mathbf{RF}(N-2) + \mathbf{Q}\}\mathbf{x}(N-2)$$

$$\triangleq \frac{1}{2}\mathbf{x}^T(N-2)\mathbf{P}(2)\mathbf{x}(N-2)$$

$$\mathbf{u}^*(N-K) = -[\mathbf{R} + \mathbf{B}^T \mathbf{P}(K-1)\mathbf{B}]^{-1} \mathbf{B}^T \mathbf{P}(K-1) \mathbf{A} \mathbf{x}(N-K)$$

$$\triangleq \mathbf{F}(N-K) \mathbf{x}(N-K)$$

$$J_{N-K,N}^*(\mathbf{x}(N-K)) = \frac{1}{2}\mathbf{x}^T(N-K)\{[\mathbf{A} + \mathbf{BF}(N-K)]^T\mathbf{P}(K-1)[\mathbf{A} + \mathbf{BF}(N-K)] + \mathbf{F}^T(N-K)\mathbf{RF}(N-K) + \mathbf{Q}\}\mathbf{x}(N-K)$$

$$\triangleq \frac{1}{2}\mathbf{x}^T(N-K)\mathbf{P}(K)\mathbf{x}(N-K)$$

Linear time-varying system

$$\mathbf{u}^{*}(N-K) = -[\mathbf{R}(N-K) + \mathbf{B}^{T}(N-K)\mathbf{P}(K-1)\mathbf{B}(N-K)]^{-1} \\ \times \mathbf{B}^{T}(N-K)\mathbf{P}(K-1)\mathbf{A}(N-K)\mathbf{x}(N-K) \\ \triangleq \mathbf{F}(N-K)\mathbf{x}(N-K) \\ J_{N-K,N}^{*}(\mathbf{x}(N-K)) = \frac{1}{2}\mathbf{x}^{T}(N-K)\{[\mathbf{A}(N-K) \\ + \mathbf{B}(N-K)\mathbf{F}(N-K)]^{T} \\ \times \mathbf{P}(K-1)[\mathbf{A}(N-K) + \mathbf{B}(N-K)\mathbf{F}(N-K)] \\ + \mathbf{F}^{T}(N-K)\mathbf{R}(N-K)\mathbf{F}(N-K) \\ + \mathbf{Q}(N-K)\}\mathbf{x}(N-K) \\ \triangleq \frac{1}{2}\mathbf{x}^{T}(N-K)\mathbf{P}(K)\mathbf{x}(N-K).$$

$$K = N \longrightarrow J_{0,N}^*(\mathbf{x}_0) = \frac{1}{2}\mathbf{x}_0^T \mathbf{P}(N)\mathbf{x}_0$$

$$\mathbf{F}(N-K) = -[\mathbf{R}(N-K) + \mathbf{B}^{T}(N-K)\mathbf{P}(K-1)\mathbf{B}(N-K)]^{-1}$$

$$\times \mathbf{B}^{T}(N-K)\mathbf{P}(K-1)\mathbf{A}(N-K)$$

$$\mathbf{P}(K) = [\mathbf{A}(N-K) + \mathbf{B}(N-K)\mathbf{F}(N-K)]^{T}\mathbf{P}(K-1)$$

$$\times [\mathbf{A}(N-K) + \mathbf{B}(N-K)\mathbf{F}(N-K)]$$

$$+ \mathbf{F}^{T}(N-K)\mathbf{R}(N-K)\mathbf{F}(N-K) + \mathbf{Q}(N-K) \qquad \mathbf{P}(0) = \mathbf{H}$$

$$\mathbf{P}(0) \to \mathbf{F}(N-1) \to \mathbf{P}(1) \to \mathbf{F}(N-2) \to \cdots \to \mathbf{P}(N) \to \mathbf{F}(0)$$

(Ex)
$$\mathbf{x}(k+1) = \begin{bmatrix} 0.9974 & 0.0539 \\ -0.1078 & 1.1591 \end{bmatrix} \mathbf{x}(k) + \begin{bmatrix} 0.0013 \\ 0.0539 \end{bmatrix} u(k)$$

$$J = \frac{1}{2} \sum_{k=0}^{N-1} \left[0.25x_1^2(k) + 0.05x_2^2(k) + 0.05u^2(k) \right] \qquad \rightarrow \qquad \mathbf{H} = \mathbf{0}, \qquad \mathbf{Q} = \begin{bmatrix} 0.25 & 0.00 \\ 0.00 & 0.05 \end{bmatrix}, \text{ and } R = 0.05.$$

$$N = 200$$

Continuous-Time System

$$\dot{\mathbf{x}}(t) = \mathbf{a}(\mathbf{x}(t), \mathbf{u}(t), t)$$

$$J = h(\mathbf{x}(t_f), t_f) + \int_{t_f}^{t_f} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) d\tau$$

Cost minimization

$$J^*(\mathbf{x}(t), t) = \min_{\substack{\mathbf{u}(t) \\ t \leq x \leq t t}} \left\{ \int_{t}^{t} g(\mathbf{x}(\tau), \mathbf{u}(\tau), \tau) d\tau + h(\mathbf{x}(t_f), t_f) \right\}$$

$$= \min_{\substack{\mathbf{u}(t) \\ t \leq x \leq t t}} \left\{ \int_{t}^{t+\Delta t} g d\tau + \int_{t+\Delta t}^{t t} g d\tau + h(\mathbf{x}(t_f), t_f) \right\}. \qquad \text{(subdividing interval)}$$

$$= \min_{\substack{\mathbf{u}(t) \\ t \leq x \leq t + \Delta t}} \left\{ \int_{t}^{t+\Delta t} g d\tau + J^*(\mathbf{x}(t+\Delta t), t+\Delta t) \right\} \qquad \text{(principle of optimality)}$$

$$= \min_{\substack{\mathbf{u}(t) \\ t \leq x \leq t + \Delta t}} \left\{ \int_{t}^{t+\Delta t} g d\tau + J^*(\mathbf{x}(t), t) + \left[\frac{\partial J^*}{\partial t} (\mathbf{x}(t), t) \right] \Delta t + \left[\frac{\partial J^*}{\partial \mathbf{x}} (\mathbf{x}(t), t) \right]^T \left[\mathbf{x}(t+\Delta t) - \mathbf{x}(t) \right] + \text{terms of higher order} \right\}$$

$$= \min_{\mathbf{u}(t)} \left\{ g(\mathbf{x}(t), \mathbf{u}(t), t) \Delta t + J^*(\mathbf{x}(t), t) + J^*(\mathbf{x}(t), t) \Delta t + J^*T(\mathbf{x}(t), t) \left[\mathbf{a}(\mathbf{x}(t), \mathbf{u}(t), t) \right] \Delta t + o(\Delta t) \right\}$$

$$= \min_{\mathbf{u}(t)} \left\{ g(\mathbf{x}(t), t) \Delta t + \min_{\mathbf{u}(t)} \left\{ g(\mathbf{x}(t), \mathbf{u}(t), t) \Delta t + J^*T(\mathbf{x}(t), t) \left[\mathbf{a}(\mathbf{x}(t), \mathbf{u}(t), t) \right] \Delta t + o(\Delta t) \right\}$$

$$= 0 = J^*T(\mathbf{x}(t), t) \Delta t + \min_{\mathbf{u}(t)} \left\{ g(\mathbf{x}(t), \mathbf{u}(t), t) \Delta t + J^*T(\mathbf{x}(t), t) \left[\mathbf{a}(\mathbf{x}(t), \mathbf{u}(t), t) \right] \Delta t + o(\Delta t) \right\}$$

$$0 = J_t^*(\mathbf{x}(t), t) \Delta t + \min_{\mathbf{u}(t)} \left\{ g(\mathbf{x}(t), \mathbf{u}(t), t) \Delta t + J_x^{*1} \right\}$$

$$0=J_t^*(\mathbf{x}(t),t)+\min_{\mathbf{u}(t)}\left\{g(\mathbf{x}(t),\mathbf{u}(t),t)+J_{\mathbf{x}}^{*T}(\mathbf{x}(t),t)\left[\mathbf{a}(\mathbf{x}(t),\mathbf{u}(t),t)\right]\right\}$$

$$J^*(\mathbf{x}(t_f),\,t_f)=h(\mathbf{x}(t_f),\,t_f)$$

- Continuous-Time System (continued)
 - Hamiltonian \mathcal{H}

$$\mathcal{H}(\mathbf{x}(t),\mathbf{u}(t),J_{\mathbf{x}}^*,t) \triangleq g(\mathbf{x}(t),\mathbf{u}(t),t) + J_{\mathbf{x}}^{*T}(\mathbf{x}(t),t)[\mathbf{a}(\mathbf{x}(t),\mathbf{u}(t),t)]$$
$$\mathcal{H}(\mathbf{x}(t),\mathbf{u}^*(\mathbf{x}(t),J_{\mathbf{x}}^*,t),J_{\mathbf{x}}^*,t) = \min_{\mathbf{u}(t)} \mathcal{H}(\mathbf{x}(t),\mathbf{u}(t),J_{\mathbf{x}}^*,t),$$

Hamilton-Jacobi-Bellman (HJB) equation

$$0=J_t^*(\mathbf{x}(t),t)+\min_{\mathbf{u}(t)}\left\{g(\mathbf{x}(t),\mathbf{u}(t),t)+J_{\mathbf{x}}^{*T}(\mathbf{x}(t),t)\left[\mathbf{a}(\mathbf{x}(t),\mathbf{u}(t),t)\right]\right\}$$

$$\qquad \qquad \Box \gt$$

$$0 = J_t^*(\mathbf{x}(t), t) + \mathcal{H}(\mathbf{x}(t), \mathbf{u}^*(\mathbf{x}(t), J_x^*, t), J_x^*, t)$$

(cf. discrete time case)

$$J_{N-K, N}^{*}(\mathbf{x}(N-K)) = \min_{\mathbf{u}(N-K)} \{g_{D}(\mathbf{x}(N-K), \mathbf{u}(N-K)) + J_{N-(K-1), N}^{*}(\mathbf{a}_{D}(\mathbf{x}(N-K), \mathbf{u}(N-K)))\}$$

(Ex) A first order system $\dot{x}(t) = x(t) + u(t)$

$$\dot{x}(t) = x(t) + u(t)$$

$$J = \frac{1}{4}x^{2}(T) + \int_{0}^{T} \frac{1}{4}u^{2}(t) dt.$$

- Hamiltonian $\mathscr{H}(\mathbf{x}(t), \mathbf{u}(t), J_x^*, t) \triangleq g(\mathbf{x}(t), \mathbf{u}(t), t) + J_x^{*T}(\mathbf{x}(t), t)[\mathbf{a}(\mathbf{x}(t), \mathbf{u}(t), t)]$ $g = \frac{1}{4}u^2(t) \quad \alpha = x(t) + u(t)$ $\Longrightarrow \mathscr{H}(\mathbf{x}(t), u(t), J_x^*, t) = \frac{1}{4}u^2(t) + J_x^*[x(t) + u(t)],$

Minimization of Hamiltonian

$$\frac{\partial \mathcal{H}}{\partial u} = \frac{1}{2}u(t) + J_x^*(x(t), t) = 0$$

$$u^*(t) = -2J_x^*(x(t), t) \quad (\star)$$

- HJB equation

$$0 = J_t^*(\mathbf{x}(t), t) + \mathcal{H}(\mathbf{x}(t), \mathbf{u}^*(\mathbf{x}(t), J_x^*, t), J_x^*, t) \qquad J^*(\mathbf{x}(t_f), t_f) = h(\mathbf{x}(t_f), t_f)$$

$$(\bigstar) \qquad 0 = J_t^* + \frac{1}{4}[-2J_x^*]^2 + [J_x^*]x(t) - 2[J_x^*]^2 \qquad J^*(\mathbf{x}(T), T) = \frac{1}{4}x^2(T)$$

$$= J_t^* - [J_x^*]^2 + [J_x^*]x(t). \quad (\bigstar \bigstar)$$

Assume $J^*(x(t), t) = \frac{1}{2}K(t)x^2(t)$ then $J^*_x(x(t), t) = K(t)x(t)$ $J^*_t(x(t), t) = \frac{1}{2}K(t)x^2(t)$

$$(\bigstar \bigstar) \qquad \bigcirc 0 = \frac{1}{2} \dot{K}(t) x^{2}(t) - K^{2}(t) x^{2}(t) + K(t) x^{2}(t)$$

$$\qquad \boxed{\frac{1}{2} \dot{K}(t) - K^{2}(t) + K(t) = 0} \qquad K(t_{f}) = \frac{1}{2}$$

- Optimal control

$$u^*(t) = -2K(t)x(t)$$

(Q) The first-order linear system

$$\dot{x}(t) = -10x(t) + u(t)$$

is to be controlled to minimize the performance measure

$$J = \frac{1}{2}x^2(0.04) + \int_0^{0.04} \left[\frac{1}{4}x^2(t) + \frac{1}{2}u^2(t) \right] dt.$$

The admissible state and control values are not constrained by any boundaries. Find the optimal control law by using the Hamilton-Jacobi-Bellman equation.

Continuous Linear Regulator

$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t)$$

$$J = \frac{1}{2}\mathbf{X}^{T}(t_{f})\mathbf{H}\mathbf{x}(t_{f}) + \int_{t_{0}}^{t_{f}} \frac{1}{2} \left[\mathbf{X}^{T}(t)\mathbf{Q}(t)\mathbf{x}(t) + \mathbf{u}^{T}(t)\mathbf{R}(t)\mathbf{u}(t)\right] dt$$

Hamiltonian

$$\mathscr{H}(\mathbf{x}(t),\mathbf{u}(t),J_{\mathbf{x}}^*,t)=\tfrac{1}{2}\mathbf{x}^T(t)\mathbf{Q}(t)\mathbf{x}(t)+\tfrac{1}{2}\mathbf{u}^T(t)\mathbf{R}(t)\mathbf{u}(t)+J_{\mathbf{x}}^{*T}(\mathbf{x}(t),t)\cdot\left[\mathbf{A}(t)\mathbf{x}(t)+\mathbf{B}(t)\mathbf{u}(t)\right]$$

Minimization of Hamiltonian

$$\frac{\partial \mathscr{H}}{\partial \mathbf{u}}(\mathbf{x}(t), \mathbf{u}(t), J_{\mathbf{x}}^*, t) = \mathbf{R}(t)\mathbf{u}(t) + \mathbf{B}^T(t)J_{\mathbf{x}}^*(\mathbf{x}(t), t) = \mathbf{0}. \quad \rightarrow \quad \mathbf{u}^*(t) = -\mathbf{R}^{-1}(t)\mathbf{B}^T(t)J_{\mathbf{x}}^*(\mathbf{x}(t), t)$$

$$\frac{\partial^2 \mathscr{H}}{\partial \mathbf{u}^2} = \mathbf{R}(t) \quad \text{Positive definite}$$

HJB equation

$$0 = J_t^* + \frac{1}{2}\mathbf{x}^T\mathbf{Q}\mathbf{x} - \frac{1}{2}J_{\mathbf{x}}^{*T}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^TJ_{\mathbf{x}}^* + J_{\mathbf{x}}^{*T}\mathbf{A}\mathbf{x} \qquad J^*(\mathbf{x}(t_f), t_f) = \frac{1}{2}\mathbf{x}^T(t_f)\mathbf{H}\mathbf{x}(t_f)$$
Let $J^*(\mathbf{x}(t), t) = \frac{1}{2}\mathbf{x}^T(t)\mathbf{K}(t)\mathbf{x}(t)$
then $0 = \frac{1}{2}\mathbf{x}^T\dot{\mathbf{K}}\mathbf{x} + \frac{1}{2}\mathbf{x}^T\mathbf{Q}\mathbf{x} - \frac{1}{2}\mathbf{x}^T\mathbf{K}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^T\mathbf{K}\mathbf{x} + \mathbf{x}^T\mathbf{K}\mathbf{A}\mathbf{x}$

$$0 = \frac{1}{2}\mathbf{x}^T\dot{\mathbf{K}}\mathbf{x} + \frac{1}{2}\mathbf{x}^T\mathbf{Q}\mathbf{x} - \frac{1}{2}\mathbf{x}^T\mathbf{K}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^T\mathbf{K}\mathbf{x} + \frac{1}{2}\mathbf{x}^T\mathbf{K}\mathbf{A}\mathbf{x} + \frac{1}{2}\mathbf{x}^T\mathbf{A}^T\mathbf{K}\mathbf{x}$$

$$0 = \dot{\mathbf{K}}(t) + \mathbf{Q}(t) - \mathbf{K}(t)\mathbf{B}(t)\mathbf{R}^{-1}(t)\mathbf{B}^T(t)\mathbf{K}(t) + \mathbf{K}(t)\mathbf{A}(t) + \mathbf{A}^T(t)\mathbf{K}(t)$$
Ricatti equation $\mathbf{K}(t_f) = \mathbf{H}$

Optimal control

$$\mathbf{u}^*(t) = -\mathbf{R}^{-1}(t)\mathbf{B}^T(t)\mathbf{K}(t)\mathbf{x}(t)$$

(Q) (Simulation)

It is desired to determine the control law that causes the plant

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -x_1(t) - 2x_2(t) + u(t)$$

to minimize the performance measure

$$J = 10x_1^2(T) + \frac{1}{2} \int_0^T \left[x_1^2(t) + 2x_2^2(t) + u^2(t) \right] dt.$$

The final time T is 10, and the states and control are not constrained by any boundaries. Find the optimal control law by

(a) Integrating the Riccati equation (3.12-14) with an integration interval of 0.02.

$$\mathbf{0} = \dot{\mathbf{K}}(t) + \mathbf{Q}(t) - \mathbf{K}(t)\mathbf{B}(t)\mathbf{R}^{-1}(t)\mathbf{B}^{T}(t)\mathbf{K}(t) + \mathbf{K}(t)\mathbf{A}(t) + \mathbf{A}^{T}(t)\mathbf{K}(t),$$
(3.12-14)

$$\mathbf{K}(t_f) = \mathbf{H}.$$

(b) Plot the optimal control $u^*(t), x_1^*(t), x_2^*(t),$

$$\mathbf{u}^*(t) = -\mathbf{R}^{-1}(t)\mathbf{B}^T(t)\mathbf{K}(t)\mathbf{x}(t)$$