

MOTORISATIONS DES SYSTEMES

Durée de l'épreuve : deux heures

- Les supports de cours estampillés ESME SUDRIA sont autorisés.
- Le matériel autorisé comprend toutes les calculatrices de poche, y compris les calculatrices programmables alphanumériques ou à écran graphique, à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante. Les téléphones sont interdits pendant l'épreuve.
 - Les réponses seront communiquées sur feuilles de copie, tous les calculs seront justifiés.

Composition du sujet : 5 pages (présentation, questionnement, documents).

Propulseur maritime par POD:

(Propulsion Orientation Direction)

Mise en situation :

Figure 1. Propulsions maritimes.

cherche dimensionner On à motorisation de la propulsion d'un navire d'exploration des zones polaires supprimant le traditionnel moteur Diesel avec plusieurs lignes d'arbres connectés aux hélices (voir comparatif figure 1). La solution envisagée est une propulsion par deux moteurs asynchrones. Ils sont connectés directement aux deux hélices des POD. L'alimentation électrique du navire est produite par deux turbines à gaz entrainant mécaniquement quatre alternateurs dont la puissance totale est suffisante pour recouvrir les besoins énergétiques de la propulsion et des équipements scientifiques.

Hypothèses simplificatrices:

- La propulsion doit permettre de naviguer à 15 nœuds (1 nœud = 0,514 m.s⁻¹),
- La tension produite par les alternateurs est parfaitement sinusoïdale,
- Au point nominal, les deux POD ont la même puissance,

BAUDOIN F. 1/6

1. Motorisation du POD :

1. \triangleright A partir du graphique ci-dessous déterminer la force de résistance à l'avancement F_{ran} si la vitesse nominale est 15 nœuds.

Figure 2. Force de résistance à l'avancement de la carène en fonction de la vitesse linéaire du navire.

- 2. \geq A partir de la force de résistance à l'avancement et de la vitesse linéaire nominale, calculer la puissance propulsive nominale P_{pn} .
- 3. \bowtie A 15 nœuds, la fréquence de rotation des hélices des POD est N_{rnh} : 170 trs.min⁻¹. Calculer le couple nominal sur une hélice C_{nh} .
- 4. A Calculer la puissance utile nominale P_{un} d'un moteur de POD.
- 5. \trianglerighteq Les caractéristiques nominales du moteur asynchrone sont disponibles dans le tableau 3 ci-dessous. Calculer la puissance absorbée nominale P_{an} du moteur.
- 6. A Calculer le courant efficace nominal In du moteur. Déterminer le diamètre du câble.
- 7. \geq Calculer la fréquence nominale du champ tournant statorique N_{sn} . En déduire la vitesse de rotation du champ tournant statorique Ω_{sn} .
- 8. A Calculer le nombre de paires de pôles p du moteur.

BAUDOIN F. 2/6

Fréquence de rotation nominale (trs.min ⁻¹):	170				
Couple utile maximal (kNm):	380				
Rendement nominal (%):	95,8				
Glissement nominal (%):	0,975				
Tension simple efficace nominale (kV):	3				
Fréquence nominale (Hz):	14,3				
Densité de courant (A.mm ⁻²)	5				
Température maximale des enroulements (°C):	122				
Facteur de puissance :	0,889				
Diamètre du stator (mm):	1870				
Entrefer (mm):	4				
Longueur du moteur (m):	2,5				
Volume du moteur (m ³):	7,83				
	Ventilation				
	Transfert thermique				
Refroidissement:	vers l'eau de mer				
	par les parois du				
	POD.				
Tableau 3. Caractéristiques nominales du moteur asynchrone envisagé pour le POD.					

9. \geq Les pertes fer de la machine au point nominal sont $P_{Fenom} = 43$ kW. En émettant l'hypothèse que la tension aux bornes de R_{pFe} soit identique à la tension simple nominale, calculer R_{pFe} .

Figure 4. Schéma monophasé étoile équivalent.

- 10. ≥ Les pertes Joules statoriques sont de 145 kW au point nominal. Calculer R_s.
- 11. \ge Les pertes Joules rotoriques sont de 84 kW au point nominal, calculer I'_R avec R'_R = 49.7 m Ω .

2. Onduleur du moteur asynchrone :

L'onduleur utilisé est conforme à la figure 5. La machine asynchrone fonctionne à son point nominal. La modulation utilisée est du type RSCE, ici on assimilera chaque tension simple Va_N à Vc_N à une fonction sinusoïdale dont la valeur efficace correspond à la tension efficace nominale de la tension simple.

BAUDOIN F. 3/6

Figure 5. Onduleur d'un des moteurs du POD.

- 2.1. Déterminer la valeur maximale du courant supportée par un IGBT.
- 2.2. Déterminer la valeur minimale de la tension U permettant d'atteindre le point nominale de la machine asynchrone.
- 2.3. Déterminer la tension maximale supportée par un IGBT.
- 2.4. A partir de la figure 6, déterminer le nombre réel d'IGBT à placer en série et éventuellement en parallèle afin de constituer un des IGBT figurant sur le schéma de l'onduleur figure 5.

- Ultra low-loss, rugged SPT⁺ chip-set
- Smooth switching SPT' chip-set for good EMC
- Industry standard package
- High power density
- AlSiC base-plate for high power cycling capability
- AIN substrate for low thermal resistance
- Recognized under UL1557, File E196689

Maximum rated values

Parameter	Symbol	Conditions	min	max	Unit
Collector-emitter voltage	Vces	V _{GE} = 0 V		4500	V
DC collector current	lc	Te = 85 °C		1200	Α
Peak collector current	I _{CM}	t _o = 1 ms, T _c = 85 °C		2400	Α
Gate-emitter voltage	V _{GES}		-20	20	V
Total power dissipation	Ptot	T _c = 25 °C, per switch (IGBT)		10500	W
DC forward current	lF			1200	Α
Peak forward current	I _{FRM}			2400	Α
Surge current	I _{FSM}	$V_R = 0 \text{ V}, T_{vj} = 125 \text{ °C},$ $t_p = 10 \text{ ms}, \text{ half-sinewave}$		9000	Α
IGBT short circuit SOA	t _{psc}	V _{CC} = 3400 V, V _{CEMCHP} ≤ 4500 V V _{GE} ≤ 15 V, T _V ≤ 125 °C		10	μs
Isolation voltage	V _{isol}	1 min, f = 50 Hz		7400	V
Junction temperature	Τνj			150	°C
Junction operating temperature	T _{vj(op)}		-50	125	°C
Case temperature	Tc		-50	125	°C
Storage temperature	T _{stg}		-50	125	°C
Mounting torques	Ms	Base-heatsink, M6 screws	4	6	
	M _{t1}	Main terminals, M8 screws	8	10	Nm
	M _{t2}	Auxiliary terminals, M4 screws	2	3	

Figure 6. Caractéristiques d'un IGBT potentiellement exploitable pour l'onduleur.

BAUDOIN F. 4/6

3. Contraintes environnementales :

Le navire est pris dans la glace à l'arrêt, les hélices sont bloquées, le moteur asynchrone est mis directement sous alimentation nominale. On donne $N'_R = 8.9$ mH.

- 3.1. \geq En négligeant la présence de R_{pFe} et L_s , calculer la valeur efficace du courant I_{Sdn} dans cette situation.
- 3.2.
 Quelles sont les conséquences de ce démarrage rotor bloqué sur la mécanique du navire, la machine asynchrone et l'onduleur ?
- 3.3. Reproposer une solution afin de remédier aux conséquences évoquées à la question précédente.

BAUDOIN F. 5/6

Corrigé Propulseur maritime par POD:

1. Motorisation du POD :

- 12. $F_{ran} = 1295.06 \text{ kN}$.
- 13. P_{pn} = 9,98 MW.
- 14. $C_{nh} = 280438 \text{ kNm}$.
- 15. $P_{un} = 4,99 \text{ MW}.$
- 16. $P_{an} = 5.2 \text{ MW}.$
- 17. $I_n = 650 \text{ A. } D_{c\hat{a}ble} = 12.9 \text{ mm.}$
- 18. $N_{sn}=858$ tr.min⁻¹ si p=1 (glissement beaucoup trop grand), $N_{sn}=171,6$ tr.min⁻¹ si p=5 (glissement correct), $\Omega_{sn}=17,97$ rad/s.
- 19. p = 5.
- 20. R_{pFe} = 628 Ω.
- 21. $R_s = 0.114 \Omega$.
- 22. $I'_R = 750,6$ A.

2. Onduleur du moteur asynchrone :

- 2.1. $Imax_{IGBT} = 919,2 A$.
- 2.2. U = 7349 V.
- 2.3. $Umax_{IGBT} = 7349 \text{ V}.$
- 2.4. Il faut deux IGBT en séries.

3. Contraintes environnementales :

- 3.4. I_{Sdn} = 3744,4 A.
- 3.5. mécanique du navire : rupture de la mécanique (pales, accouplements, clavettes), machine asynchrone : pertes Joules prohibitives, destruction des isolants, onduleur : surintensité, destruction des IGBT.
- 3.6. Il est impératif de maitriser le couple et l'intensité dans la machine asynchrone. Il faut alors mettre en place un contrôle du couple, une régulation et une limitation des grandeurs associées (commande vectorielle).

BAUDOIN F.