

WHAT IS CLAIMED IS:

1. A receive method in a communication system, comprising the steps of:

5 receiving a receive signal converted into
a carrier band;
generating a quadrature signal from said
receive signal;
compensating orthogonality error and gain
0 imbalance for said receive signal and said
quadrature signal; and
converting said receive signal and said
quadrature signal into first complex frequency band
signal by first analytic sine wave, said first
5 analytic sine wave being a complex signal including
cosine wave as the real components and including
sine wave as the imaginary components.

20

2. The receive method as claimed in claim 1, said step of compensating orthogonality error and gain imbalance comprising the steps of:

25 dividing said quadrature signal into
divided quadrature signals;
 assigning weight to each of said divided
quadrature signals;
 adding said receive signal to one of said
30 divided quadrature signals.

35 3. The receive method as claimed in claim
1, said step of compensating orthogonality error and
gain imbalance comprising the steps of:

assigning weight to each of said quadrature signal and said receive signal; and adding said quadrature signal and said receive signal.

5

4. The receive method as claimed in claim
10 2, further comprising the step of:
 converting, after said step of
 compensating, said receive signal and said
 quadrature signal into second complex frequency band
 signal by second analytic sine wave, said second
15 analytic sine wave being a complex signal including
 cosine wave as the real components and including
 sine wave as the imaginary components.

20

5. The receive method as claimed in claim
4, wherein said weight is determined according to
 said second complex frequency band signal converted
25 by said second analytic sine wave.

30 6. The receive method as claimed in claim
2, further comprising the step of:
 estimating a desired signal on the basis
 of said first complex frequency band signal
 converted by said first analytic sine wave.

35

7. The receive method as claimed in claim
3, further comprising the step of:
estimating a desired signal on the basis
5 of said first complex frequency band signal
converted by said first analytic sine wave.

10

8. The receive method as claimed in claim
6, said weight is determined according to said
desired signal and said first complex frequency band
signal.

15

9. The receive method as claimed in claim
20 7, said weight is determined according to said
desired signal and said first complex frequency band
signal.

25

10. The receive method as claimed in claim
6, further comprising the steps of:
detecting a difference signal on the basis
30 of said first complex frequency band signal, a
predetermined signal and said desired signal;
determining said weight according to a
complex frequency band signal and said difference
signal.

35

X012280 - 55298862

11. The receive method as claimed in claim
7, further comprising the steps of:

5 detecting a difference signal on the basis
of said first complex frequency band signal, a
predetermined signal and said desired signal;
determining said weight according to a
complex frequency band signal and said difference
signal.

10

12. The receive method as claimed in claim
15 6, further comprising the steps of:

sampling said first complex frequency band
signal at symbol rate;
detecting a difference signal according to
a predetermined signal, a sampled signal and said
20 desired signal; and

determining said weight according to a
complex frequency band signal and said difference
signal, and controlling said sampled signal to be a
predetermined sampling phase.

25

13. The receive method as claimed in claim
30 7, further comprising the steps of:

sampling said first complex frequency band
signal at symbol rate;
detecting a difference signal according to
a predetermined signal, a sampled signal and said
35 desired signal; and

determining said weight according to a
complex frequency band signal and said difference

TO22381-55293860

signal, and controlling said sampled signal to be a predetermined sampling phase.

5

14. A receive method in a communication system, comprising the steps of:
receiving a receive signal converted into
10 a carrier band;
performing analog quasi-coherent detection
on said receive signal and outputting in-phase and
quadrature signals;
performing analog-to-digital conversion on
15 said in-phase and quadrature signals;
dividing said in-phase and quadrature
signals into first in-phase and quadrature signal
and second in-phase and quadrature signal;
converting said first in-phase and
20 quadrature signal into a complex baseband signal by
a first analytic signal, and converting said second
in-phase and quadrature signal into a complex
baseband signal by a second analytic signal;
applying said first in-phase and
25 quadrature signal to a first low-pass filter, and
applying said second in-phase and quadrature signal
to a second low-pass filter;
applying said first in-phase and
quadrature signal passed through said first low-pass
30 filter and said second in-phase and quadrature
signal passed through said second low-pass filter to
an adaptive interference canceler; and
removing interference components included
in said first in-phase and quadrature signal and
35 said second in-phase and quadrature signal.

002298552998868

15. The receive method as claimed in claim
14, wherein said adaptive interference canceler
5 separates desired frequency band components and
interference signal components, by using
orthogonalization coefficients, from an input signal
in which said desired frequency band components and
said interference signal components are mixed.

10

16. The receive method as claimed in claim
15 15, wherein said adaptive interference canceler
estimates said orthogonalization coefficients
according to changes of orthogonality in said analog
quasi-coherent detection.

20

17. A receiver in a communication system,
comprising:
25 a receiving part which receives a receive
signal converted into a carrier band;
 a generating part which generates a
quadrature signal from said receive signal;
 a compensating part which compensates
30 orthogonality error and gain imbalance for said
receive signal and said quadrature signal; and
 a first converting part which converts
said receive signal and said quadrature signal into
first complex frequency band signal by first
35 analytic sine wave, said first analytic sine wave
being a complex signal including cosine wave as the
real components and including sine wave as the

002290-55288860

imaginary components.

5

18. The receiver as claimed in claim 17,
said compensating part comprising:

a dividing part which divides said
quadrature signal into divided quadrature signals;

10 an assigning part which assigns weight to
each of said divided quadrature signals;

an adding part which adds said receive
signal to one of said divided quadrature signals.

15

19. The receiver as claimed in claim 17,
said compensating part comprising:

20 an assigning part which assigns weight to
each of said quadrature signal and said receive
signal; and

an adding part which adds said quadrature
signal and said receive signal.

25

20. The receiver as claimed in claim 18,
30 further comprising:

a second converting part which converts
said receive signal and said quadrature signal,
which are compensated, into second complex frequency
band signal by second analytic sine wave, said
35 second analytic sine wave being a complex signal
including cosine wave as the real components and
including sine wave as the imaginary components.

P03200-5529860

5 21. The receiver as claimed in claim 20,
further comprising a first control part which
determines said weight according to output from said
second converting part.

10

15 22. The receiver as claimed in claim 18,
further comprising:
 an estimating part which estimates a
desired signal on the basis of output from said
first converting part.

20

25 23. The receiver as claimed in claim 19,
further comprising:
 an estimating part which estimates a
desired signal on the basis of output from said
first converting part.

30

35 24. The receiver as claimed in claim 22,
further comprising a second control part which
determines said weight according to output from said
estimating part and output from said first
converting part.

T02240 * 55298860

5 25. The receiver as claimed in claim 23,
further comprising a second control part which
determines said weight according to output from said
estimating part and output from said first
converting part.

10

15 26. The receiver as claimed in claim 22,
further comprising:

 a detecting part which detects a
difference signal on the basis of said first complex
frequency band signal, a predetermined signal and
said desired signal;

20 20. a determining part which determines said
weight according to a complex frequency band signal
and said difference signal.

25

 27. The receiver as claimed in claim 23,
further comprising:

30 a detecting part which detects a
difference signal on the basis of said first complex
frequency band signal, a predetermined signal and
said desired signal;

 35. a determining part which determines said
weight according to a complex frequency band signal
and said difference signal.

09888655 · 092204

28. The receiver as claimed in claim 22,
further comprising:

5 a sampling part which samples said first
complex frequency band signal at symbol rate;

 a detecting part which detects a
difference signal according to a predetermined
signal, a sampled signal and said desired signal;

10 and

 a determining part which determines said
weight according to a complex frequency band signal
and said difference signal, and controlling said
sampled signal to be a predetermined sampling phase.

15

29. The receiver as claimed in claim 23,
20 further comprising:

 a sampling part which samples said first
complex frequency band signal at symbol rate;

 a detecting part which detects a
difference signal according to a predetermined
25 signal, a sampled signal and said desired signal;
and

 a determining part which determines said
weight according to a complex frequency band signal
and said difference signal, and controlling said
30 sampled signal to be a predetermined sampling phase.

35 30. A receiver in a communication system,
comprising:

 a receiving part which receives a receive

098865 092255 092255 092255

signal converted into a carrier band;

an analog quasi-coherent detector which performs analog quasi-coherent detection on said receive signal and outputting in-phase and quadrature signals;

an analog-to-digital converter which performs analog-to-digital conversion on said in-phase and quadrature signals;

a dividing part which divides said in-phase and quadrature signals into first in-phase and quadrature signal and second in-phase and quadrature signal;

a first converting part which converts said first in-phase and quadrature signal into a complex baseband signal by a first analytic signal, and a second converting part which converts said second in-phase and quadrature signal into a complex baseband signal by a second analytic signal;

a first low-pass filter which removes high frequency band components from said first in-phase and quadrature signal to, and a second low-pass filter which removes high frequency band components from said second in-phase and quadrature signal;

an adaptive interference canceler which receives said first in-phase and quadrature signal passed through said first low-pass filter and said second in-phase and quadrature signal passed through said second low-pass filter, and removes interference components included in said first in-phase and quadrature signal and said second in-phase and quadrature signal.

35

31. The receiver as claimed in claim 30,
said adaptive interference canceler including a part

which separates desired frequency band components
and interference signal components, by using
orthogonalization coefficients, from an input signal
in which said desired frequency band components and
5 said interference signal components are mixed.

10 32. The receiver as claimed in claim 31,
 said adaptive interference canceler including an
 adaptive controller which estimates said
 orthogonalization coefficients according to changes
 of orthogonality in said analog quasi-coherent
15 detector.

20

25

30

35

102290-55298868