This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

15 200 LU 01 100 SU; +++ up to 200 LU 01 1000 SU;	25 E E E E E E E E E E E E E E E E E E E	*		11 A A A 81 BT A A A A A A A A A A A A A A A A A A	+ 12 + 13 + 13 + 13 + 13 + 13 + 13 + 13	
Figure 1. Inninunogenocity of HIV- and HCV- derived minigenes in HLA transgenic animals. Magnitude of CTL responses are stared as follows: + up to 2 LU (Lytic Units) or 10 SV (Secretory Units); ++up to 200 LU or 100 SU; +++ up to 200 LU or 1000 SU; ++++ up to 200 LU or 1000 SU; +++++++++++++++++++++++++++++++++++		‡ 84401 # 84401	7	4	572 500 100 100 100 100 100 100 100 100 100	
nunogenodity of HIV- and HCV- c 71. responses are stured as follows: n 200 LU or 1000 SU. Magnitude rep	Pd.488 Pd.774 2.3 2.2 4.3 Vyr.cz E.0 (2.0)	# # # # # # # # # # # # # # # # # # #	1812 132 1550 1551 2011 1789	# # # # # # # # # # # # # # # # # # #	2 MSS BW	++ # # + # # # # # # # # # # # # # # #
Magnifinds of C	1961	Hapanay Papanay	HACES	Magnitude Fraquency		Magnitude Frequency 1

HIV pol 303 function peptides comprise either 10 amino acids from the N-terminal eptitope and 5 amino acids from the C-terminal eptitope or 5 amino acids from the N-terminal eptitope and 10 amino acids from the C-terminal eptitope. <u>GPGPG</u> HIV pol 335 HIV pol 303 HIV gag 171 | HIV pol 335 HIV gag 171 Figure 22. Synthetic polypeptides encoding HIV-derived HTL epitopes HIV pol 711 HIV pot 711 functional peptides* spacer optimized polyepticpe HTL polyapitopa

FIG. 2a

FIG. 2b

a: HIV-FT

r		A*0201	A*0201	A*1101	A*1101	A*0201	A*1101	B*0701	A*1101	A*8201	44444
L	signal	Pol 448	Pol 774	Pal 874	Pol 98	Vpr 62	Pol 930	Pol 893	7	Pol 498	A4101
		€0	62	10	26	19	20	458	27	192	Pol 929
			•	,							
		A*1101	B*0701	A*1101	A*0201	A*1101	A*0201	A*1101	A*0201		
	L	Pol 931	Env 250	Pol 971	Nef 221	Nef 100				B*0701 Env 259	A*0201 Env 134
		8	100	28	16	0	167	3	67	423	102

b: HBV-specific multiepitope constructs

HBV.1X

	A*1101	A*0201		A*0201	A*0201	A*0201	A*0201	A*1101	A*1101	A*0201	
eignal	Pol 149	PADRE core 18	C ₁	pol 562	pol 551	pol 455	env 185	core 141	pol 665	env 335	!

C1= either W. Y. L. K. R. C. N or G

FIG. 3

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

Vpr 59

Pol 772

FIGULE 10

```
200
                                 Longth
9
9
9
 Sequence
 VLABAMSQV
                                                      ABCDB
 ILKEPVHGV
 TLNFPISPI
 SLLNATDIAV
                                 10
 QMAVFIHNFK
                                 10
                                                                   202
 VTVYYGVPVWK
                                 11
                                                      F
 FPVRPQVPL
                                 9
                                                      G
 YPLASERSLF
                                 10
                                                      H
 VIYQYMDDLY
                                 10
                                                      1
 IYQEPFKNL
                                 9
                                                      J
 IWOCŞOKLI
                                 9
                                                      K
AKCNOTAFSWQRMYI
                 C+1 ranking
                                 N-1 ranking
                2.20
                                 0.64
                2.00
                                 1.00
                2.00
                                 0.00
                1.80
                                 1.33
                1.50
                                 0.00
                1.33
                                 1.21
                1.33
                                 1.00
                1.33
                                0.00
                                                              204
                1.20
                                0.00
                1.20
                                0.00
                1.17
                                1.57
                1.00
                                0.00
                1.00
                                0.75
                0.86
                                0.50
L
                0.75
                                2.20
V
                0.00
                                1.19
D
H
                0.00
                                0.00
                0.00
                                0.00
E
                0.00
                                0.00
                0.00
                                0.00
Motif Specification
XXXX(FY)XX(LIMV)
XXXX(FY)XXX(LIMV)
XXXXXXXXXXX(LIMV)
X(LM)XXXXXXXV
                                          206
X(LM)XXXXXXXV
X(LMVT)XXXXXX(KRY)
X(LMVT)XXXXXXX(KRY)
XPXXXXXX(LIMVF)
XPXXXXXXXX(LIMVF)
```

MaxInsertions={enter value here} 208

OutputToScreen=yes/no 210

OutputToFile=yes/no 212

MinimumAccepted={enter value here} 214

MaxDuplicateFunctionValues={enter value here} 216

MaxSearchTime (min.)={enter value here} 218

Exhaustive=yes/no 220

NumStochasticProbes={enter value here} 222

MaxHitsPerProbe={enter value here} 224

RandomProbeStart=yes/no 226

FIGURE 11B

Junctional Analyzer run on Saturday, February 26, 2000 09:06:28 pm.

The following non-zero AA weights will be used.

AA	N-1 rank	ing C+1 ranking	
A	1.21	1.33	_ \
C F	1.00	2.00	\
F	1.00	1.83	,
G	1,83	1.80	
1 .	0.60	0.88	· /
K	0.64	2.20	f
L	2,20	0.75	(
M T	0.00	1.00	> 204
N	0.00	2.00	(~~'
Q R S T	0.00	1.20	\$
R	1.67	1.17	• 1
\$	0.00	1.33	· 1
	0.00	1.50	j.
V	1.19	0.00	}
W	0.00	1.20	,
Y	0.75	1.00	

The following 10 motif specifications will be used to search for junctionals.

Cou	nt Motif Specification	į
1	XXXX(FY)XX(LIMV)	7
2	XXXX(FY)XXX(LIMV)	}
3	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	•/
4	XXXXXXXXX(LIMV)	/
5	X(LM)XXXXXXX	(.
6 .	X(LM)XXXXXXXV	7.206
7	X(LMVT)XXXXXX(KRY)	1
8	X(LMVT)XXXXXXX(KRY)	1
9	XPXXXXXX(LIMVF)	·]
10	XPXXXXXX(LIMVF))

Code	Peptide	Length	
Α	VLAEAMSQV	9	$\hat{}$
В	ILKEPVHGV	9)
C	TLNFPISPI	ğ	1
Ð,	SLLNATDIAV	10	/
E	QMAVFIHNFK	10	-
F	VTVYYGVPVWK	11	202
·G .	FPVRPQVPL	9	LUL
Н	YPLASLRSLF	10	
1	VIYQYMDDLY	10	1
J	IYQEPFKNL	9	1
K	IWGCSGKLI	ğ	<i>]</i>

Maxinsertions = 4 (208)

FIGURE 13A

OutputToScreen = No

OutputToFile = Yes

MinimumValueAccepted = 0

MaxDuplicateFunctionValues = 50

SearchTime = 5

NumStochastleProbes = 10

MaxHitsPerProbe = 25

RandomProbeStart = Yes

Col. 1 Code 1	Col. 2	Col. 3 12	Col. 4 13	Col. 5	Col. 6 Code 2	Col. 7	Col. 8	Col. 9 C+N	Col. 10	Col. 11
AAAAAAABBBBBBBBBBCCCCCCCCC	000000000000000000000000000000000000000	A	A A AAA	LLLLRRR GRGRRRGRRGGGRRLRRRRRRR	BCDEFGH-JKACDEFGH-JKABDEFGH-JK	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	2.20 2.20 2.20 1.57 1.57 1.57 1.33 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	4.40 4.40 4.40 3.14 3.14 3.14 2.86 3.14 2.66 3.14 3.14 2.66 3.14 3.14 2.66 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14	0000210100000110101001000	8.80 8.80 8.80 8.80 1.57 3.14 6.28 2.39 5.32 6.28 6.28 6.28 6.28 6.28 2.66 3.14 6.28 2.66 5.32 5.32 5.32 4.40 3.14 4.40 3.14 3.14 6.28 3.14 6.28 6.28

FIGURE 13B

Code 1	11	12	13	14	Code 2	C	N	C+N	J	MaxFunc
Ď	Ç Ç Ç			Ļ	A	2.00	2.20	4.40	0	8.80
Ď	Š			Ŀ	B	2.00	2.20	4.40	0	8.80
Ä	Č.		•	<u>ا</u>	C E F G H	2.00	2.20	4.40	0	8.80
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	00000000000000000		•	L.		2.00	2.20	4.40	0	08.8
ž	Č			R	Ę	1.80	1.83	2.89	Ō	4.79
ň	č	Α	Α	Ĝ	2	2.00	1.67 1.83	3.14	Ö	6.28 5.32
Ď	č	^	. ^	ï	. 7	2.00 2.00	2.20	2.66	0	5.32
Б	č	Α		L G	j	2.00	1.83	4.40 2.88	. 1	4.40
Б	·Č			Ř	ĸ	2.00	1,00 4 F7	3.14	0	5.82
E	Č	Α	Α	Ĺ	Â	2.00	1.57 2.20	4.40	ŏ	6.28 8.80
E	·C	Α	Α	. L	В	2.00	2.20	4.40	ŏ	8.80
E	C	A	Α	L	C	2.00	2,20	4.40	ŏ	8.80
E	Ç	Ą	Α	L	KABCDFG	2.00	2.20	4.40	0	8.80
E	Č	Ý		R	F	2:00	1.57	3.14	Ŏ	6.28
, E	Č	Ą		R R	G	2.00	1.57	3.14	0	6.28
E =	Č	A •	Á	, R	H .	2.00 2.00	1.57 2.20	3.14	0	6.28
E .	Č	A	Ą	L R R	1	2.00	2.20	4.40	Q	08.8
Ē	č	Â		R	ĸ	2.00	1.57	3.14	0	6.28
·F	ĸ	•		i.	Ä	2.00 2.20	1.57 2.20	3.14 4.84	. 0 1	6.28
F	ĸ	Α	Α	Ğ	В	2.20	1,33	2.93	1	4.84 2.93
F	K	A	Α	G	C D	2.20	1.33	2.93	ó	5.8 5
F	K K K	A A A	Α	LGGGGGGR	D	2.20 2.20	1.33 1.33	2.93	ŏ	5.85
F	K	A	Α	G	Ë	2.20	1.23	2.93	0	5.85a
E	K	A A A	ě	G	Ğ	2.20	1,33 1,33	2.93	1	2.93"
F.	K K K	A		G	Ĥ	2.20 2.20	1.33	2.93	1	2.93
r `	K	Α.	Ą	G	!	2.20	1.33	2.93	1	2.93
r E	ľ			R	J K	2.20 2.20	1.57	3.45	1 0	3.45
6	C	Α		B V	Ä	2.20 2.00	1.57 1.57	3.45	0	6.91 3.14
Ğ	č	Â		R R	B	2.00	1.57	3.14 3.14	1	3.14
Ğ	č	Ä	•	R	č	2.00 2.00	1.57	3.14 3.14	2	1.57 3.14
Ğ	Č			R L	ä	2.00	2.20	4.40	1	3.14 4.40
G	C	Α	.*	R	Ε	2.00	1.57	3.14	ż	1.57
.G	C ·			L	F	2.00 2.00	2.20	4.40	2 4	1.10
Ğ	Č.	_	_	Ğ R	Ĥ	2.00	1.33	2.6 6	0	5.32
G	C	Ą	Ą	R	Į.	2.00	1.57	3.14	2	1.57
G	Č	A	A	R R G	·J	2.00	1.57	3.14	1	3.14
G	Č	A	A	K	K	2.00	1.57	3.14	0	6.28
Й Н	Č .	A A	A A	G .	A B	2.00 2.00	1.33	2.66	Q	5.32
H .	č	Α .	^	G .	6	2.00 2.00	1.33	2.66	1	2.66
, หื	č	A A		Ğ	O Q	2.00 2.00	1,33 1,33	2.66	0	5.32
'n	č	Â	Α	Ğ	Ĕ	2.00	1.33	2.66 2.66	0	5.32 5.32
й	č	Ä	Ä	Ğ	Ē	2.00	1.33	2.66	1	2. 6 6
H	Ć	•		Ŕ	Ġ	2.00	1.57	3.14	i	2.00 3.14
Н	C	Α	A	G	. 1	2.00 2.00	1.33	2.66	i	2.66
H	x00000000000000000000	Α		G R G G	J	2.00	1.33	2.86	i	2.66
Н	C	A	A	G	K	2.00	1.33	2.66	Ò	5.32

Code 1	11	12	13	14	Code 2	С	N	ОНИ	J	MaxFunc
¥4666666666666666666666666666666666666	オオオオオオオオオオオオオオオオオオオオ	AAAAA AAAAAAAA AA	AA AAA A AA	O O O O O O O O O O O O O O O O O O O	ABCDEFGHJKABCDEFGH-KA	2.20 2.20 2.20 2.20 2.20 2.20 2.20 2.20	1.93 1.83 1.33 1.33 1.33 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57	2.93 2.93 2.93 2.93 2.93 2.93 2.93 2.93	010001100100121010	5.85 2.93 5,85 6.85 6.85 2.93 3.45 5.85 6.91 3.45 6.91 3.45 1.73 3.45 6.91 3.45 6.91
メメガメオオオオオスにに	メメメのメメメメ	A A	A A	L L L R R L R	ABCDEFGH-J	2.20 2.20 2.20 2.20 2.20 1.80 2.20 2.20 2.20	2.20 2.20 2.20 2.20 1.57 1.33 1.57 2.20	4.84 4.84 4.84 4.85 2.39 3.45 4.84 3.45	0 0 0 0 1 0 1	9.66 9.68 9.68 9.68 9.68 3.45 4.79 6.91 4.84

Junctional Analyzer took 142.77 seconds.

FIGURE 13D

FIGURE 14A

Responses to PICTL2

Responses to PfCTL3

peptide/IFA

FIGURE 14B

라마 음 Ped 556 음 Ped 556 음 Ped 576 음 Ped 571 음 Ped 571 음 Ped 574 음 Ped 574 음 Ped 515 음 Pal 6 Pal 256 8 Pal 578 8 Pal 575 8 Pal 575 8 Pal 576 8 Pal 575 8 Pal 575 8 Pal 576 8 Pal 575 8 Pal 576 8 EP HIV-1043 EP HIV-1043

Pel 711 | 9 | Grs 171 | 9 | Pel 335 | 9 | Pel 303

FIGURE 17

EP-HIV-1090
MGMQVQIQSLFLLLLWVPGSRGKLVGKLNWAGAAILKEPVHGVNAACPKV8FEPIKIPIHYCAPA
KAKFVAAWTLKAAAKAFPVRPQVPLGAAKLTFLCVTLGAAAVLABAMSQVKVYLAWVPAHKG
AAAAIFQSSMTKKTTLFCASDAKNIPYNFQSQGVVKHPVHAGPIANVTVYYGVPVWKKAAAQMA
VFIHNFKNAAAYPLASLRSLFNLTFGWCFKLNRILQQLLFINAKIQNFRVYYRKAAVTIKIGGQLKK
VPLQLPPLKAMTNNPPIPV

HIV-CPT
MGMQVQIQSLFLLLLWVPGSRGIPIHYCAPAKAAKIQNFRVYYRKAAVIIKIGGQLKKAKFVAAW
TLKAAAKVPLQLPPLKAIFQSSMTKKLTPLCVTLGAQMAVFIHNFKGAKVYLAWVPAHKNAIPYN
PQSQGVVKAILKEPVHGVGAAALTFGWCFKLNAVLAEAMSQVNRILQQLLFINAAACPKVSFEPI
KVTVYYGVPVWKKAAHPVHAGPIANAAAYPLASLRSLFNAAATTLFCASDAKNKLVGKLNWAN
AAAFPVRPQVPLNMTNNPPIPV

FIGURE 18A

HIV-FT
MQVQIQSLFLLLLWVPGSRGKLVGKLNWAMASDFNLPPVAIFQSSMTKVTIKIGGQLKRILQQLLF
MQVQIQSLFLLLLWVPGSRGKLVGKLNWAMASDFNLPPVAIFQSSMTKVTIKIGGQLKRILQQLLF
IMAVFIHNFKIPYNPQSQGVVTTLFCASDAKILKEPVHGVQMAVFIHNFKGAAVFIHNFKRCPKVSF
EPIKIQNFRVYYRLTFGWCFKLQVPLRPMTYKMTNNPPIPVTVYYGVPVWKVLABAMSQVIPIHY
CAPAKLTPLCVTL

FIGURE 18B

HIV-TC
MGMQVQIQSLFILILWVPGSRGYWQATWIFEWKAIFQSSMTKKVYLAWVPAHKNAACPKVSFE
MGMQVQIQSLFILILWVPGSRGYWQATWIFEWKAIFQSSMTKKVYLAWVPAHKNAACPKVSFE
PIKHPVHAGPIANLTFGWCFKLNKMIGGIGGFIKFRDYVDRFYKAAARILQQLLFINTTIFCASDAK
NQMVHQAISPRGAKLVGKLNWAGAAAIYETYGDTWKAAQVPLRPMTYKGAAAVTIVDVGDAY
NAAARYIKDQQLLNTLNFPISPINMTNNPPIPVNAPYNTPVFAIKAAAVPLQLPPLKAAIPYNPQSQ
GVVKALIQLTVWGIGAAILKEPVHGVNAAAFPISPIETVKVWKBATTTLFKAAAVTIKIGGQLKKI
GVVKALIQLTVWGIGAAILKEPVHGVNAAAFPISPIETVKVWKBATTTLFKAAAVTIKIGGQLKKI
YQEPFKNIKAAAVLABAMSQVNLVGPTPVNIGAAAEVNIVTDSQYKAAAIPIHYCAPAKAVIYQY
MDDLYKAAAQMAVFHNFKNAATYQIYQEPFKPYNEWTLELKAKIQNFRVYYRKAFPVRPQVPL
GAAAIWGCSGKLIKVMIVWQVDRNAAKAACWWAGIKAKFVAAWTLKAAAKLTPLCVTLNAAM
ASDFNLPPVKSLLNATDIAVNVTVYYGVPVWKKAAAAIIRILQQLKRAMASDFNLNAAAYPLASL

ATGGGGATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGATCTAGA GGATACTGGCAAGCTACTTGGATTCCAGAATGGAAAGCTATCTTTCAATCCTCAATGACGAAG AAGGTATACCTGGCATGGGTCCCAGCACACAAGAACGCCGCTTGCCCAAAGGTGTCCTTTGAA OCCATTA A A CACCCAGTGCACGCAGGCCAATAGCGAATTTGACATTCGGGTGGTGCTTCAAA CTAAACAAAATGATCGGCGGCATTGGAGGCTTTATCAAGTTTAGAGATTACGTGGACCGATTC TATAAAGCCGCTGCCCGTATACTCCAGCAGCTACTATTCATCAACACCACTCTCTTCTGCGCTT CAGACGCTAAGAACCAAATGGTACACCAAGCCATAAGCCCTAGAGGAGCCAAGCTCGTAGGG AAATTAAATTGGGCGGGTGCAGCAGCAATCTACGAGACTTACGGCGATACCTGGAAAGCAGC CCAGGTTCCGTTACGCCCAATGACCTATAAAGGCGCAGCAGCAGTAACAGTTCTAGATGTAGG CCCAATTAGCCCGATAAACATGACAAATAACCCACCAATTCCCGTCAATGCTCCCTACAACAC TCCAGTATTCGCAATCAAAGCCGCTGCTGTCCCCCTGCAGCTCCCTCTGAAAGCTGCGAT ACCITACAACCCACAGAGCCAAGGTGTTGTCAAAGCACTGCTTCAGCTAACAGTTTGGGGAAT TGGTGCTGCAATTCTAAAAGAGCCAGTTCATGGGGTTAAOGCCGCCGCCTTCCCAATCAGTCC TATTGAGACTGTGAAAGTATGGAAAGAAGCCACACACACTTTTTAAGGCAGCCGCAGTTA CAATTAAAATAGGGGGCCAACTTAAGAAAATATACCAGGAACCTTTCAAGAATCTCAAAGCC GCTGCAGTGCTCGCCGAGGCTATGTCACAGGTGAATTTGGTCGGACCAACACCCGTAAACATC GGAGCCGCAGCCGAAGTGAACATAGTCACCGACTCACAGTACAAAGCCGCTGCAATACCCAT ACATTATTGTGCTCCCGCAAAGGCCGTGATCTATCAATATATGGACGACCTGTATAAGGCCGC CGCGCAGATGGCAGTCTTTATCCACAACTTTAAAAACGCAGCTACTTATCAGATCTACCAGGA ACCATTCAAACCGTACAATGAGTGGACCTTGGAACTAAAGGCCAAAATTCAGAACTTCAGGG TATATTATAGAAAAGCATTTCCAGTGAGGCCCCAGGTGCCTCTGGGTGCCGCAGCAATATGGG GATGTTCTGGAAAACTGATCAAGGTGATGATTGTATGGCAAGTGGACAGAAATGCAGCTAAG GCAGCCTGTTGGTGGCAGGTATAAAAGCAAAGTTCGTGGCAGCATGGACGCTTAAAGCAGC CGCAAAACTCACTCTCTCTGCGTGACACTTAATGCAGCCATGGCCTCTGATTTCAACCTTCCC CCTGTAAAATCCCTGCTTAATGCGACAGATATCGCAGTCAACGTAACAGTATATTATGGCGTG CCAGTCTGGAAAAAAGCCGCCGCGCCCATAATTCGGATACTGCAGCAGCTGAAAAAGAGCTAT GGCGAGTGACTTCAACCTGAATGCGGCCGCCTACCCCTTGGCATCGTTAAGGTCACTATTTTG

FIGURE 18C

HCY.1 MGMQVQIQSLFLLLLWVPGSRGLLFNILGGWVDLMGYIFLVYLVAYQATVILAGYGAGVRLIVFP DLGVHMWNFISGIYLLPRGPRLYLVTRHADVVLVGGVLAALLFLLLADAFLLLADARVWMNRL IAFACTCGSSDLYLSAFSLHSYGVAGALVAFKLPGCSFSIFKTSERSQPRLIFCHSKRKFWAKHMW NFIPFYGKAIRMYVGGVEHRQLFTFSPRRRLGVRATRKVGIYLLPNRAKFVAAWTLKAAA*

HCV.2
MGMQVQIQSLFILLLWVPGSRGDLMGYIPLVAKFVAAWTLKAAALLFLLLADALIFCHSKKKQLF
TFSPRRYLVTRHADVYLLPRRGPRLCTCGSSDLYHMWNFISGIFWAKHMWNFAKFVAAWTLKAA
AILAGYGAGVYLVAYQATVGVAGALVAFKIPFYGKAIRMYVGGVBHRVLVGGVLAAFLLLADA
RVLPGCSFSIFAKFVAAWTLKAAAKTSERSQPRRLGVRATRKRLIVFPDLGVWMNRLIAFALSAFS
LHSYLLFNILGGWVVGIYLLPNR*

HCY.3:1 MGMQVQIQSLFLLLLWVPGSRGYLVAYQATVAKFVAAWTLKAAALLFLLLADALIFCHSKKKYL VTRHADVLGFGAYMSKCTCGSSDLYHMWNFISGIFWAKHMWNF*

GAATTCGCCGCCACCATGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCTGTGGGTGCCGGATCCAGAGGATACCTCGTCGCCTACCAGGCCACTGTGGCTAAATTCGTGGCAGCCTGGACACTGAAAGCTGCAGCTCTGCTCTTCCTGCTCCTGGCCGATGCACTCATCTTCTGCCATTCCAAGAAAAAGTATCTGGTCACCAGACATGCTGACGTGCTGGGGGTTTGGCGCCTACATGAGCAAGTGCACCTGTGGCAGCTCCGACCTGTATCACATGTGGAACTTTATTTCTGGAATCTTTTGGGCCCAAGCACATGTGGAACTTTATTTCTGGAATCTTTTTGGGCCCAAGCACATGTGGAATTTCTGAAAGCTT

FIGURE 18D

HCY.3s2 MGMQVQIQSLFLLLWVPGSRGVLVGGVLAAAKFVAAWTLKAAAFLLLADARVLSAFSLHSYIL AGYGAGVWMNRLIAFAIPFYGKAIVAGALVAFKVGIYLLPNR*

HCV3x2(-3) MGMQVQIQSLFLLLLWVPGSRGVLVGGVLAAAKFVAAWTLKAAAFLLLADARVLSAFSLHSYIL AGYGAGVWMNRLIAFA*

GAATTCGCCGCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCTGTGG GTGCCCGGATCCAGAGGAGTCCTGGTGGGCGGCGTCCTGGCCGCTAAGTTTGTCGCTGCT TGGACACTGAAGGCAGCCGCTTTCCTGCTCCTGGCAGACGCCAGGGTGCTGTCTGCCTTCAGC CTCCACTCCTACATCCTCGCAGGGTATGGCGCAGGCGTGTGGATGAATCGGCTGTT GCCTGAGGATCC

HCV.3:3 MGMQVQIQSLFLLLLWVPGSRGDLMGYIPLVAKFVAAWTLKAAARLGVRATRKLLFNILGGWV RMYVGGVEHRRLIVFPDLGVGVAGALVAFKLPGCSFSIFKTSERSQPRQLFTFSPRRYLLPRRGPRL

GAATTCGCCGCCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCTTGGGTGCCCGGATCCAGAGGAGACCTGATGGGCTACATCCCTCTCGTGGCCAAGTTTGTGGCAGCTTGGACCCTGAAAGGCCGCTGCCAGACTGGGAGTGCGCGCTACACGGAAACTCCTGTTTAACATCCTGGGAGGGTGGGGTGCGGAGACTCGTGGCAGCGCACCAGAAGGCTCATTGTCTTTCCAGATCTCGGCGTGGGCGTCGCAGGCGCACTCGTGGCCTTCAAACTGCCAGGGTGCAGCTTCAGCATTTTCAAGACCTCCGAACGCTCCCAACCCAGACAGCTGTTCACTTTCTCTCCTCGGAGGTATCTGCTGCCAGACGCGGACCCAGACGCTGTAAAGCTT

HCY_PC3

 ${\tt MGMQVQIQSLFLILLWVPGSRGLLFNILGGWVKAKFVAAWTLKAAALADGGCSGGAYRLIVFPD} \\ {\tt LGVKFWAKHMWNFIGVAGALVAFKKQLFTFSPRR*}$

GAATTCGCCGCCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCCTGTGG GTGCCCGGATCCAGAGGACTGCTCTTCAACATCCTGGGCGGATGGGTGAAGGCCAAGTTCGTG GCTGCCTGGACCCTGAAGGCTGCCGCTCTGGCCGACGGGGGATGCAGCGGGGGGAGCTTACAG GCTCATTGTCTTTCCCGATCTCGGAGTCAAATTTTGGGCAAAGCACATGTGGAATTTCATCGG GGTGGCCGGAGCCCTGGTCGCTTTTAAAAAGCAGCTCTTCACCTTCTCCCCAAGACGGTGAGG TACC

FIGURE 18E

HGY.PC4 MGMQVQIQSLFLLLLWVFGSRGRLGVRATRKKAKFVAAWTLKAAAKTSERSQPRNLPGC8F8IFN DLMGYIPLVKYLLPRRGPRLNTLCGFADLMGYRMYVGGVEHR*

HCY.2431(1P)
MGMQVQIQSLFLLLLWVPGSRGVLVGGVLAAAFLLLADARVLSAFSLHSYILAGYGAGVWMNRL
IAFAGAAARLGVRATRKKAAAKTSERSQFRNLPGCSFSIFNDLMGYIPLVKYLLPRRGPRLNTLCG
IAFAGAAARLGVRATRKKAAAKTSERSQFRNLPGCSFSIFNDLMGYIPLVKYLLPRRGPRLNTLCG
FADLMGYRMYVGGVEHRKLLFNILGGWVKAAALADGGCSGGAYRLIVFPDLGVKFWAKHMWN
FIGVAGALVAFKKQLFTFSPRRNGYLVAYQATVAAALLFLLLADALIFCHSKKKYLVTRHADVLG
FGAYMSKCTCGSSDLYHMWNFISGIFWAKHMWNFKAAAAKFVAAWTLKAAA

GAATTCGCCGCCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCTGTGG OTGCCCGGCTCCAGAGGAGTCCTGGTGGGCGGCGCTCCTGGCAGCCGCTTTCCTGCTCCTGGCA GACGCCAGGGTGCTGCCTTCAGCCTCCACTCCTACATCCTCGCAGGGTATGGCGCAGGC GTGTGGATGAATCGGCTGATCGCCTTTGCCGGCGCTGCCGCAAGGCTGGGCGTGAGAGCCACC TTTCAGCATCTTTAATGACCTCATGGGGTACATTCCACTGGTGAAGTATCTGCTCCCCAGACGG GGAGTCGAACACAGAAAACTGCTCTTCAACATCCTGGGCGGATGGGTGAAGGCTGCCGCTCT GGCCGACGGGGGATGCAGCGGGGGGGGGGGGTTACAGGCTCATTGTCTTTCCCGATCTCGGAGTCAA ATTTTGGGCAAAGCACATGTGGAATTTCATCGGGGTGGCCGGAGCCCTGGTCGCTTTTAAAAA GCAGCTCTTCACCTTCTCCCCAAGACGGAACGGATACCTCGTCGCCTACCAGGCCACTGTGGC TGCAGCTCTGCTCCTGCCCGATGCACTCATCTTCTGCCATTCCAAGAAAAAGTAT CTGGTCACCAGACATGCTGACGTGCTGGGGGTTTGGCGCCTACATGAGCAAGTGCACCTGTGGC AGCTCCGACCTGTATCACATGTGGAACTTTATTTCTGGAATCTTTTGGGCCAAGCACATGTGG **AATTITAAGGCCGCAGCAGCTAAATTCGTGGCAGCCTGGACACTGAAAGCAGCTGCATGAGG** ATCC

FIGURE 18F

HCYA312(1P)
MGMQVQIQSLFLLLLWVPGSRGRLGVRATRKKAAAKTSBRSQPRNLPGCSFSIFNDLMGYIPLVK
YLLPRRGPRLNTLCGFADLMGYRMYVGGVEHRKLLFNILGGWVKAAALADGGCSGGAYRLIVFP
DLGVKFWAKHMWNFIGVAGALVAFKKQLFTFSPRRNGYLVAYQATVAAALLFLLLADALIFCHS
KKKYLVTRHADVLGFGAYMSKCTCGSSDLYHMWNFISGIFWAKHMWNFKKAAAVLVGGVLAA
AFLLLADARVLSAFSLHSYILAGYGAGVWMNRLIAFANAAAKFVAAWTLKAAA*

GAATTCGCCGCCACCATGGGAATGCAGGTGCAGATCCAAAGCCTGTTTCTGCTCCTCTGTGG GTGCCCGGCTCCAGAGGAAGGCTGGGCGTGAGAGCCACCCGGAAGAAGGCTGCCGCTAAAAC AAGCGAGCGCTCCCAGCCCAGGAACCTGCCTGGATGCTCTTTCAGCATCTTTAATGACCTCAT GGGGTACATTCCACTGGTGAAGTATCTGCTCCCCAGACGGGGCCCTCGCCTGAACACTCTCTG TGGATTTGCTGATCTGATGGGGTACAGGATGTATGTCGGCGGAGTCGAACACAGAAAACTGCT CTTCAACATCCTGGGCGGATGGGTGAAGGCTGCCGCCTCTGGCCGACGGGGGATGCAGCGGCG GAGCTTACAGGCTCATTGTCTTTCCCGATCTCGGAGTCAAATTTTGGGCAAAGCACATGTGGA ATTTCATCGGGGTGGCCGGAGCCCTGGTCGCTTTTAAAAAGCAGCTCTTCACCTTCTCCCCAA GACGGAACGGATACCTCGTCGCCTACCAGGCCACTGTGGCTGCAGCTCTGCTCTTCCTGCTCC TGGCCGATGCACTCATCTTCTGCCATTCCAAGAAAAGTATCTGGTCACCAGACATGCTGACG TGCTGGGGTTTGGCGCCTACATGAGCAAGTGCACCTGTGGCAGCTCCGACCTGTATCACATGT GGAACTTTATTTCTGGAATCTTTTGGGCCAAGCACATGTGGAATTTTAAGAAAGCCGCTGCAG TCCTGGTGGCGCGCCTCCTGGCAGCCGCTTTCCTGCTCCTGGCAGACGCCAGGGTGCTGTCTG CCTTCAGCCTCCACTCCTACATCCTCGCAGGGGTATGGCGCAGGCGTGTGGATGAATCGGCTGA TCGCCTTTGCCAATGCTGCAGCTAAATTCGTGGCAGCCTGGACACTGAAAGCAGCTGCATGAG GATCC

<u>AOSI.K</u> MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVKFLLSLGIH LYMDDVVLGYGLSRYVARLFLLTRILTISTLPBTTVVRRQAFTFSPTYKWLSLLVPFV

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCGGGTCCAGA GGACACACCTGTGGAAGGCCGGAATCCTGTATAAGGCCAAGTTCGTGGCTGCCTGGACCCTG AAGGCTGCCGCTTTCCTGCCTAGCGATTTCTTTCCTAGCGTGAAGTTCCTGCTGTCCCTGGGAA TCCACCTGTATATGGATGACGTGGTGCTGGGAGTGGGACTGTCCAGGTACGTGGCTAGGCTGT TCCTGCTGACCAGAATCCTGACCATCTCCACCCTGCCAGAGACCACCGTGGTGAGGAGGCAGG CCTTCACCTTTAGCCCTACCTATAAGTGGCTGAGCCTGCTGGTGCCCTTTGTGTGA

HBY.1 MGMQVQIQSLFLLLLWYPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVFLLSLGIHL YMDDVVLGVGLSRYVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKWLSLLVPFVIPIPSSWAFTP ARVTGGVFKVGNFTGLYLPSDFFPSVTLWKAGILYKNVSIP,WTHKLVVDFSQFSRSAICSVVRRAL

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGGTCCAGA
GGACACACCCTGTGGAAGGCCGGAATCCTGTATAAGGCCAAGTTCGTGGCTGCCTGGACCCTG
AAGGCTGCCGCTTTCCTGCCTAGCGATTTCTTTCCTAGCGTGTTCCTGCTGTCCCTGGGAATCC
ACCTGTATATGGATGACGTGTGCTGGGAGTTGGGAATCCCAGGTACCAGGAATCCTGACCAGAATCCTGACCACCTGCCAGAGACCACCGTGGTGAGGAGGCCT
TCACCTTTAGCCCTACCTATAAGTGGCTGAGCCTGCTGGTGCCCTTTGTGATCCCTATCCCTAG
CTCCTGGGCTTTCACCCCAGCCAGGGTGACCGGAGAGAGTGTTTAAGGTGGAAACTTCACCGG
CCTGTATCTGCCCAGCGATTTCTTTCCTAGCGTGACCCTGTGGAAGGCCGGGATCCTGTACAA
GAATGTGTCCATCCTTGGACCCACAAGCTGTGTGGTGGACTTTTCCCAGTTCAGCAGATCCGC
TATCTGCTCCGTGGTGAGGAGAGCTCTGATGCCACTGTATCTGA

FIGURE 18G

HBY.2 MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVNFLLSLGIH LYMDDVVLGVGLSRYVARLFLLTRILTISTLPBTTVVRRQAFTFSPTYKGAAAWLSLLVPFVNIPIP SSWAFKTPARVTGGVFKVGNFTGLYNLPSDFFPSVKTLWKAGILYKNVSIPWTHKGAALVVDFSQ FSRNSAICSVVRRALMPLYACI

PICTL1 MQVQIQSLFLLLLWVPGSRGILSVSSFLFVNAAAQTNFKSLLRNLPSENERGYKAAALLACAGLAY KKAAAAKFVAAWTLKAAAKAFMKAVCVEVNAAASFLFVEALFNATPYAGEPAPFKAAAKYKLA TSVLKAGVSENIFLKNAAAYFILVNLLIKAGLLGVVSTV

PICTL 2 MQVQIQSLFLLLLWVPGSRGFVEALFQBYNAAAKYLVIVFLINALACAGLAYKKFYFILVNLLKA ALFFIIFNKNAAAKFVAAWTLKAAAKFILVNLLIFHNFQDBBNIGIYKLPYGRTNLKAAAVLLGGV GLVLNFLIFFDLFLVKAVLAGLLGVV

ATGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGATCCAGA GGATTCGTGGAGGCCCTGTTTCAGGAATACAACGCCGCTGCAAAGTATCTCGTCATCGTGTTC CTGATCAATGCTCTGGCATGCGCCGGCCTCGCTTACAAAAAGTTTTACTTCATTCTGGTCAACC TGCTCAAGGCCGCTCTGTTCTTTATCATTTTCAATAAAAACGCCGCAGCTAAGTTTGTGGCCGC ATGGACCCTGAAGGCCGCTGCAAAATTCATCCTCGTGAATCTGCTCATTTTTCACAACTTCCA GACGAGGAAAATATCGGAATTTATAAGCTGCCCTACGGGAGGACAAACCTGAAAGCCGCTGC AGTCCTGCTCGGCGGAGTGGGGCTGCTCAATTTTCTGATCTTCTTTGATCTGTTCCTGGTG

FIGURE 18H

PRTL3 MQVQIQSLFLLLLWVPGSRGVFLIFFDLFLNAAAPSDGKCNLYKAAAVTCGNGIQVRKLFHIFDGD NBIKAHVLSHNSYBKNYYGKQENWYSLKKILSVFFLANAAAKFIKSLFHIFKAAALYISFYFIKAKF VAAWTLKAAAKAAAYYIPHQSSLKAAAGLIMVLSFL

PICTI/HTI/N)
MQVQIQSLFLLLLWVPGSRGSSVFNVVNSSIGLIMVLSFLGPGPGLYISFYFILVNLLIFHINGKIIKN
MQVQIQSLFLLLLWVPGSRGSSVFNVVNSSIGLIMVLSFLGPGPGLYISFYFILVNLLIFHINGKIIKN
SEGPGPGPDSIQDSLKESRKLSGPGPGVLAGLLGVVSTVLLGGVGLVLGPGPGLPSENERGYYIPHQ
SSLGPGPGQTNFKSLLRNLGVSENIFLKGPGPGFQDEENIGIYGPGPGKYLVIVFLIFFDLFLVGPGP
GKFIKSLFHIFDGDNEIGPGPGKSKYKLATSVLAGLLGPGPGLPYGKTNLGPGPGRHNWVNHAVPL
AMKLIGPGPGMRKLAILSVSSFLFVEALFQEYGPGPGVTCGNGIQVRGPGPGMNYYGKQENWYSL
KKGPGPGPSDGKCNLYADSAWENVKNVIGPFMKAVCVEVGPGPGKILSVFFLALFFIIFNKGPGPG
HVLSHNSYEKGPGPGKYKIAGGIAGGLALLACAGLAYKFVVPGAATPYAGEPAPF

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGATCCAGA GGAAGTAGTGTGTCAATGTTGTGAACTCATCAATTGGTCTGATCATGGTGCTGAGCTTTCTCG GGCCAGGGCCAGGATTATATTTCTTTCTACTTCATCCTTGTCAACCTGTTAATATTCCACAT TAACGGCAAAATAATAAAGAACAGTGAAGGCCCTGGGCCTGGGCCTGACTCGATCCAGGATT CTCTAAAAGAATCGAGGAAGCTCTCCGGACCAGGCCCTGGTGTACTCGCCGGGTTGCTGGGA GTAGTTAGCACAGTGCTGTTAGGAGGCGTCGGCCTCGTCTTAGGACCTGGACCAGGTCTGCCG TCCGAAAACGAAAGAGGATACTACATACCTCACCAGAGCAGCCTCGGCCCAGGCCCCGGACA AACCAATTTCAAATCCCTCTTGCGAAATCTAGGAGTGAGCGAGAACATATTTCTTAAAGGACC CGGTCCCGGCTTCAGGACGAGGAGAATATAGGTATTTACGGTCCAGGACCTGGAAAATACCT AGTGATCGTATTCCTAATTTTTTTGACCTATTTCTGGTGGGCCCAGGTCCCGGAAAGTTCATT AAATCACTCTTCCACATTTTTGACGGAGATAACGAGATAGGACCCGGTCCCGGGAAATCAAA GTACAAACTAGCCACTTCAGTGCTGGCCGGCCTTCTAGGGCCGGGCCCAGGGCTCCCCTATGG AAAGACAAATCTTGGCCCCGGTCCAGGACGGCACAACTGGGTGAATCATGCGGTTCCATTGG CCATGAAACTAATOGGGCCCGGTCCAGGCATGCGCAAACTTGCAATTCTAAGCGTAAGTTCAT TTCTGTTCGTAGAGGCACTGTTTCAAGAATATGGCCCAGGACCTGGCGTCACATGTGGGAATG GGATCCAGGTGAGAGGACCGGGACCTGGTATGAACTATTACGGTAAACAGGAAAATTGGTAC TOCCIGAAAAAGGGTCCAGGCCCCGGCCCCTCAGATGGTAAGTGCAACCTGTATGCTGACTCA GCATGGGAGAACGTAAAAAATGTAATAGGCCCATTCATGAAGGCAGTTTGTGTCGAAGTCGG ACCAGGCCCAGGAAAAATACTTTCTGTCTTCCTAGCTCTCTTCATCATCATCTTCAACAAG GGACCAGGCCAGGTCACGTGTTATCCCATAACTCTTATGAAAAAGGGCCAGGACCTGGGAA ATACAAAATCGCAGGAGGGATCGCCGGCGGGGCTAGCGTCCTTGCCTGCGCAGGCTTGGCTTA CAAATTCGTTGTACCAGGAGCTGCAACACCCTATGCAGGAGAACCTGCCCCATTTTGAAGATC TGC

FIGURE 18I

PG3
MGMQVQlQslflllwvpgsrgfmkavcvevnvtcgnglqvrkglimvlsflnaalfhifdgdn
mgmqvqlqslflllwvpgsrgfmkavcvevnvtcgnglqvrkglimvlsflnaalfhifdgdn
eikaallacaglaykksflfvbalfnaapsdgkcnlykaaqtnfkellrnlpsenergykaagvs
eniflknaayfilvnllikaaailsvssflfvntpyagepapfkaaakyklatsvlkaavfliffdl
flnyyiphqsslkaagllgnvstvgavllggvglvlnlacaglaykkakfikslfhifkaafyfil
vnllkafliffdlflvkalffiifnknyygkqenwyslkfvbalfqeynaaakfvaawtlkaaak
vnllkafliffdlflvkalffiifnknyygkqenwyslkfvbalfqeynaaakfvaawtlkaak
ilsvfflanavlagllgnvnfqdeenigiykaaalyisfyfikafilvnllifhnaalpygrtnlkaa
hvlshnsyeknaaakylvivfli

GCCGCCACCATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCC GGATCCAGAGGATTTATGAAAGCTGTCTGTGTAGAGGTGAATGTAACATGCGGTAACGGAAT TCAGGTGAGAAAGGGACTCATCATGGTACTCAGCTTTCTGAACGCAGCCCTGTTCCACATCTT TGACGGAGACAATGAAATCAAAGCCGCATTGCTCGCCTGTGCCGGACTAGCCTATAAAAAAGA GTTTOCTTTTCGTTGAAGCACTATTTAACGCAGCACCCAGTGACGGTAAATGCAACCTATATA AAGCAGCTCAGACTAATTTCAAAAGCCTGTTAAGAAATCTGCCCTCAGAGAATGAAAGGGGT TACAAAGCCGCCGGCGTGTCCGAGAATATTTTCCTGAAGAACGCCGCTGCTTATTTTATACTC CATATGOGGGGGGGGCTCCTTTCAAGGCTGCAGCAAAATACAAGCTTGCCACATCAGTAT AGTCTTAAAGCAGCCGGGCTACTGGGGAACGTCTCTACTGGGGGGCCGTCTTACTTGGAGGA GTTGGCCTCGTGTTGAACCTCGCGTGCGCAGGTCTGGCCTACAAAAAAGCGAAATTCATCAAG TCTCTGTTCCACATTTTTAAAGCCGCATTCTATTTCATACTAGTGAACCTTCTCAAAGCTTTCCT GATCTTCTTCGATCTATTCCTCGTAAAAGCGCTATTCTTCATTATCTTTAACAAAAATTATTAC **GGCAAGCAAGAAATTGGTACTCACTCAAGTTTGTAGAAGCTCTGTTCCAGGAATACAACGCC** GCTGCTAAATTCGTTGCAGCTTGGACCCTGAAAGCAGCTGCAAAGATCCTATCGGTCTTCTTC TOGCTAATGCCGTATTAGCAGGACTTCTAGGCAACGTGAACTTTCAAGACGAAGAGAATATAG GCATCTACAAAGCCGCAGCACTGTACATTCATTCTACTTCATCAAGGCCTTCATACTGGTCAA CCTTCTGATATTCATAATGCAGCACTGCCATATGGGAGAACCAACTTGAAAGCGGCCCACGT GTTGAGCCACAACTCCTACGAGAAGAACGCCGCCGCGAAATATCTCGTCATTGTCTTCCTGAT TTGA

<u>TB.1</u> MQVQIQSLFLLLLWVPGSRGRMSRVTTFTVKALVLLMLPVVNLMIGTAAAVVKALVLLMLPVGA GLMTAVYLVGAAAMALLRLPVKRMFAANLGVNSLYFGGICVGRLPLVLPAVNAAAAKFVAAWT LKAAAKAAARLMIGTAAAGFVVALIPLVNAMTYAAPLFVGAAAAMALLRLPLV

ATGCAGTGCAGATCCAGAGCCTGTTTCTĞCTCCTCTGTGGGTGCCCGGATCCAGAGGAAGG
ATGAGCAGAGTGACCACATTCACTGTCAAGGCCCTGGTGCTCCTGATGCTCCCGTCGTGAAC
CTGATGATCGGCACCGTGCAGCCGTCGTGAAAGCTCTCGTCCTGCTGCTCATGCTCCTGCGGCTGCCA
GCAGGCTGATGACAGCCGTGTACCTGGTGGGGCTGCAGCCATGGCCCTCCTGCGGCTGCA
GTGAAGCGCATGTTTGCTGCAAATCTGGGAGTCAACTCCCTCTATTTCGGGGGCATTTGCGTG
GGAAGGCTGCCCTCGTGCTGCTGCTGTGAATGCAGCCGCTGCCAAATTTGTCGCCGCTTGG
ACTCTGAAGGCAGCCCTAAGGCCGCTGCAAGACTGATGATCGGGACCGCCGCTGCCGGCTT
CGTGGTCGCCCTGATTCCCCTGGTGAACGCCATGACATACGCAGCTCCTCTGTTTGTGGGAGC
CGCTGCAGCCATGGCACTGCCACTGGTGTAA

FIGURE 18J

BCLA2 #90 MQVQIQSLFLLLLWVPGSRGIMIGHLVGVNRLLQBTELVNAKVABIVHFLNAKVFGSLAFVNAYL SGANLNVGAAYLQLVFGIEVNAAAKFVAAWTLKAAAKAAAVVLGVVFGINSMPPPGTRVNAAA ATVGIMIGVNAKLCPVQLWV

ATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCCTGTGGGTGCCCGGGTCCAGAGGAATT
ATGATCGGCCATCTGGTGGGCGTCAACAGACTGCTGCAGGAAACCGAGCTGGTGAATGCCAA
GGTGGCCGAAATTGTGCACTTTCTCAACGCAAAGGTGTTTGGTTCCCTGGCTTTTGTCAATGCC
TATCTGAGCGGCGCTAACCTCAACGTCGGAGCCGCCTACCTCCAGCTGGTCTTCGGCATCQAG
GTCAACGCTGCTGCAAAATTCGTGGCAGCTTGGACCCTCAAGGCTGCAGCAAAGGCTGCCGCC
GTCGTGCTCGGAGTGGTGTTCCGGGATCAACTCTATGCCACCTCCCGGGACTAGGGTCAATGCT
GCCGCCGCAACAGTGGGAATCATGATTGGGGTGAATGCCAAACTGTGCCCAGTGCAACTGTG
GGTGTGA

BCL A2 #88 MQVQIQSLFLLLLWVPGSRGVVLGVVFGINAAAAKFVAAWTLKAAAKVAEIVHFLNAYLSGANL NYGAAYLQLVFGIEVNIMIGHLVGVNRLLQBTELVNAKVFGSLAFVNAKLCPVQLWVNAAAATV GIMIGVNSMPPPGTRV

BCL A2 #63
MQVQIQSLFLLLLWVPGSRGKLCPVQLWVNAAAATVGIMIGVNIMIGHLVGVNRLLQETELVNA
KVAEIVHFLNAKVFGSLAFVNAYLSGANLNVGAAYLQLVFGIEVNAAAKFVAAWTLKAAAKAA
AVVLGVVFGINSMPPFGTRV

FIGURE 18K

Prostate.1.
LTFFWLDRSVKAAAVLVHPQWVLTVKAAALLQERGVAYIKAALLLSIALSVNPLVCNGVLQGVK
AAIMYSAHDTTVKAAAFLTFKKLQCVNAMMNDQLMFLNAGLPSIFVHPVKAAALGTTCYVGAAI
LLWQPIFVNFLRPRSLQCVKAFLTLSVTWIGVNALLYSLVHNLGAATLMSAMTNL

ATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGGTCCAGAGGATTG
ACATTTTTTTGGCTGGATAGATCGGTTAAGGCTGCAGCGTGCTTGTTCATCCCAGTGGGTCT
TGACCGTAAAGGCTGCCGCGCGCTGCTACAAGAAAGAGGGGTCGCATACATCAAAGCTGCTCTC
CTCTTGAGTATTGCGCTAAGTGTAAACCCGCTAGTTTGTAATGGGGTGTTACAAGGTGTGAAA
GCGGCGATTATGTACAGTGCCCACGACACTACCGTAAAAGCAGCCGCTTTCCTGACCCCAAAA
AAACTCCAATGCGTGAACGCAATGATGAATGATCAGCTGATTTTTTAAACGCTGGCTTACCT
TCTATACCGGTTCATCCAGTCAAGGCCGCGCATTGGGTACGACGTGTTATGTTGGAGCAGCG
ATACTTCTTTGGCAGCCCATACCAGTAAATTTTTTAAGACCTAGATCCTTACAATGCGTCAAAG
CATTCCTTACACTCTCAGTAACTTGGATCGGAGTCAATGCTCTGCTATATAGCCTCGTACACAA
CTTGGGCGCGGCCACACTTATGAGTGCAATGACGAATTTAGCTAAGTTCGTGGCGCGCCTGGAC
TCTAAAGGCCGCAGCA

HIV-1043
MEKVYLAWVPAHKGIGGGPGPGQKQITKIQNFRVYYRGPGPGWEFVNTPPLVKLWYQGPGPGYR
KILRQRKIDRL1DGPGPGQHLLQLTVWGIKQLQGPGPGGEIYKRWIILGLNKIVRMYGPGPGQGQM
VHQAISPRTLNGPGPGIKQFINMWQEVGKAMYGPGPGWAGIKQEFGIPYNPQGPGPGKTAVQMA
VFIHNFKRGPGPGSPAIFQSSMTKILEPGPGPGEVNIVTDSQYALGIIGPGPGHSNWRAMASDFNLPP
GPGPGAETFYVDGAANRETKGPGPGGAVVIQDNSDIKVVPGPGPGFRKYTAFTIPSINNE

ATGGAGAAGGTGTACCTGGCCTGGGTTCCAGCCCACAAGGCATCGGGGGAGGGCCCGGACC TGGGCAGAAACAGATCACCAAGATCCAGAACTTCCGGGTATACTACCGGGGACCTGGTCCAG GTTGGGAGTTTGTGAACACACCCCCTTAGTAAAGCTCTGGTACCAGGGCCCCGGTCCCGGAT ACCGTAAAATCCTGAGGCAAAGAAAGATAGATCGCCTCATTGATGGCCCGGGCCCAGGCCAG CACCTTCTGCAGCTTACAGTGTGGGGAATTAAACAGCTGCAGGGCCCGGGGGCCCCGGGGGGGAA **AATTTATAAAAGGTGGATCATTCTGGGTCTGAACAAGATCGTCCGCATGTATGGCCCTGGACC** CGGACAGGGGCAGATGGTCCACCAAGCAATCAGCCCTCGAACCTTGAATGGACCGGGCCCAG GAATCAAGCAATTCATTAACATGTGGCAAGAAGTTGGTAAGGCTATGTACGGTCCCGGCCCTG GATGGGCAGGGATAAAACAGGAGTTTGGAATCCCTTACAATCCCCAGGGTCCTGGGCCAGGT AAAACGGCAGTGCAGATGGCCGTGTTCATTCATAATTTTAAGCGGGGCCCTGGACCTGGCAGC CCAGCTATATTTCAAAGTTCGATGACCAAAATCTTGGAGCCCGGCCCAGGGCCGAGGCCGAAGT GAACATTGTCACAGATTCTCAGTATGCCCTCGGCATCATAGGGCCCGGACCAGGGCATTCCAA TTGGOGCGCCATGGCGTCTGACTTTAATCTACCTCCTGGGCCAGGCCCTGGCGCGGAAACTTT CTATGTGGACGCGCTGCAAACAGGGAGACTAAGGGACCCGGACCCGGCGCGCTGTAGTCA TTCAGGACAACTCAGACATCAAGGTGGTTCCCGGTCCAGGCCCCGGGTTCAGAAAGTATACCG CCTTCACTATTCCGTCCATCAACAATGAGTGA

FIGURE 18L

HIV-1043 PADRE
MEKVYLAWVPAHKGIGGGPGPGQKQITKIQNFRVYYRGPGPGWBFVNTPPLVKLWYQGPGPGYR
KILRQRKIDRLIDGPGPGQHLLQLTVWGIKQLQGPGPGGEIYKRWIILGLNKIVRMYGPGPGQGM
VHQAISPRTLNGPGPGIKQFINMWQBVGKAMYGPGPGWAGIKQEFGIPYNPQGPGPGKTAVQMA
VFHNFKRGPGPGSPAIFQSSMTKILEPGPGPGBVNIVTDSQYALGIIGPGPGHSNWRAMASDFNLPP
GPGPGAETFYVDGAANRBTKGPGPGGAVVIQDNSDIKVVPGPGPGFRKYTAFTIPSINNBGPGPGA
KFVAAWTLKAAA

ATGGAGAAGGTGTACCTGGCCTGGGTTCCAGCCCACAAAGGCATCGGGGGAGGGCCCGGACC TGGGCAGAAACAGATCACCAAGATCCAGAACTTCCGGGTATACTACCGGGGACCTGGTCCAG TADECCCTOECCCODED ACCTOECT TO AAATO ATTCCCACCACAAAD TO TTO AD DOTTO ACCGTAAAATCCTGAGGCAAAGAAAGATAGATCGCCTCATTGATGGCCCGGGCCCAGGCCAG AATTTATAAAAGGTGGATCATTCTGGGTCTGAACAAGATCGTCCGCATGTATGGCCCTGGACC **GAATCAAGCAATTCATTAACATGTGGCAAGAAGTTGGTAAGGCTATGTACGGTCCCGGCCCTG** TODACCODETICATED DACCOTA ACTITICA ACTITION DO ALA ALA DE DACE DACE TO ACTITION DE LA CALITA DEL CALITA DE LA CALITA DEL CALITA DE LA CALITA DEL CALITA DE LA CALITA DEL CALITA DE LA CALITA DE LA CALITA DEL CALITA DE LA CALITA D **AAAACGGCAGTGCAGATGGCCGTGTTCATTCATAATTTTAAGCGGGGCCCTGGACCTGGCAGC** CCAGCTATATTTCAAAGTTCGATGACAAAACTTTGGAGCCGGCCCAGGGCCGGCGCGAAGT TTGGCGCGCCATGGCGTCTGACTTTAATCTACCTCCTGGGCCAGGCCCTGGCGCGGAAACTTT TTCAGGACACTCAGACATCAAGGTGGTTCCCGGTCCAGGCCCCGGGTTCAGAAAGTATACCG CCTTCACTATTCCGTCCATCAACAATGAGGGCCCCGGCCCAGGTGCCAAGTTCGTGGCTGCCT GGACCCTGAAGGCTGCCGCTTGA

HIV 75mer

EKYYLAWYPAHKGIGGPGPGQGQMVHQAISPRTLNGPGPGSPAIFQSSMTKILEPGPGPGFRKYTA FTIPSINNB

GAGAAGGTGTACCTGGCCTGGGTGCCCACAAGGGAATCGGAGGACCTGGCCTGGACA GGGACAGATGGTGCACCAGGCCATCAGCCCTAGGACCCTGAACGGACCTGGACCTGGAAGCC CTGCCATCTTCCAGAGCAGCATGACCAAGATCCTGGAGCCCGGACCTGGACCTGGATTCAGGA AGTACACCGCCTTCACCATCCCCAGCATCAACAACGAGTGA

FIGURE 18M

PHTL
MQVQIQSLFLLLLWVPGSRGRHNWVNHAVPLAMKLIGPGPGKCNLYADSAWENVKNGPGPGKS
KYKLATSVLAGLLGPGPGQTNFKSLLRNLGVSEGPGPGSSVFNVVNSSIGLIMGPGPGVKNVIGPF
MKAVCVEGPGPGMNYYGKQENWYSLKKGPGPGGLAYKFVVPGAATPYGPGFGPDSIQDSLKESR
KLNGPGPGLLIPHINGKIIKNSEGPGPGAGLLGNVSTVLLGGVGPGPGKYKIAGGIAGGLALLGPGP
GMRKLAILSVSSFLFV

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGATCCAGA
GGAAGGCACAACTGGGTGAATCATGCTGTGCCCTGGCTATGAAGCTGATCGGCCCTGGACC
AGGGAATGCAACCTCTACGCAGACAGCGCCTGGGAGAACGTCAAGAATGGCCCCGGACCTG
GGAAATCCAAGTATAAGCTCGCTACCTCTGTGCTGGCAGGCCTGGCCCAGGACCTG
AGACAATTTCAAAAGCTGCTCAGAAACCTGGGAGTGTCCGAGGGGCCTGGCCCAGGATCT
AGCGTCTTTAATGTGGTCAACTCCTCTATTGGGCTCATCATGGGACCCGGACCTGGGGTGAAA
AATGTCATTGGCCCATTCATGAAGCCGTGTGTGTCGAAGAACCCGGGCCTGGCCAGGACTGGCTTA
CAAGTTTGTGGTCCCAGGGGCAGCCACTCCCTATTGGGCCTGGGCCAGGCCCGATTCCATCA
GGACTCTCTCAAAGAGAGCCGGAAACTGAACGACCCGGGCCTGGACTGCTCATTTTCCACAT
CAATGGCAAAATTATCAAGAACAGCAGGGGCCGGCCTGGACTGCTCATTTTCCACAT
TGTCCACCGTCCTGCTCGGCCGAGTGGGCCAGGCCCGAACTGCTGGACGG
ATGCCACCGTCCTGCTCGGCCGAAGTGGGCCAGGCCCAAACTGGCTATTCTCTCT
GTCTCCAGCTTTCTGTTTGTGTGA

FIGURE 18N

Protein	Sequence	Restriction .	_
HIV gag 386	VLABAMSQV	HLA-A2	•
HIV gag 271	MTNNPPIPV	HLA-A2	
HIV pol 774	MASDFNLPPV	HLA-A2	
HIV pol448	KLVGKLNWA	HLA-A2	
HIV pol 163	LVGPTPVNI	HLA-A2	
HIV pol 498	ILKEPVHGV	HLA-A2	
HIV pol 879	KAACWWAGI	HLA-A2	
HIV pol 132	KMIGGIGGFI	HLA-A2	
HIV pol 772	RAMASDENL	HLA-A2	
HIV pol 183	TLNFPISPI	HLA-A2	
THIV env 184	KLTPLCVTL	HLA-A2	
HIV env 651	LLOLTYWGI	HLA-A2	
HIV env 163	SLLNATDIAV	HLA-A2	
HIV nef 221	LTFGWCFKL	HLA-A2	
HIV vpr 59	AIIRILOOL	HLA-A2	
HIV vpr 62	RILOQLLFI	HLA-A2	
HIV pol 929	OMAVFIHNFK	HLA-A3	
HIV pol 722	KVYLAWVPAHK	HLA-A3	
HIV pol 971	KIONFRVYYR	HLA-A3	
HIV pol 347	AIFOSSMTK	HLA-A3	
HIV pol 98	VTIKIGGQLK	HLA-A3	
HIV env 61	TILFCASDAK	HLA-A3	
HIV env 47	VTVYYGVPVWK	HLA-A3	
HIV nef 100	QVPLRPMTYK	HLA-A3	
HIV vif 7	VMIVWQVDR	HLA-A3	
HIV gag 162	QMVHQAISPR	HLA-A3	
HIV gag 545	YPLASLRSLF	HLA-B7	
HIV gag 237	HPVHAGPIA	HLA-B7	
HIV pol 186	FPISPIETV	HLA-B7	
HIV pol 893	IPYNPQSQGVV	HLA-B7	
HIV env 259	IPIHYCAPA	HLA-B7	
HIV env 250	CPKVSFEPI	HLA-B7	
HIV nef 94	FPVRPQVPL	HLA-B7	
HIV rev 75	VPLQLPPL	HLA-B7	
HIV pol 684	EVNIVTDSQY	HLA-A1	•
HIV gag 317	FRDYVDRFY	HLA-A1	
HIV pol 368	VIYQYMDDLY	HLA-A1	
HIV pol 295	VTVLDVGDAY	HLA-A1	
HIV pol 533	IYQEPFKNL	HLA-A24	
HIV pol 244	PYNTPVFAI	HLA-A24	
HIV pol 530	TYQIYQEPF	HLA-A24	
HIV pol 597	YWQATWIPEW	HLA-A24	
HIV env 681	IWGCSGKLI	HLA-A24	
HIV env 671	RYLKDQQLL	HLA-A24	

FIGURE 19A

Protein	Sequence	Restriction
HIV env 55	VWKEATTTLF	HLA-A24
HIV vpr 46	IXELACDIM	HLA-A24
HIV vpr 14	PYNEWTLEL	HLA-A24
HIV gag 298	KRWIILGLNKIVRMY	HLA-DR
HIV pol 596	WEFVNTPPLVKLWYQ	HLA-DR
HIV pol 956	QKQITKIQNFRVYYR	HLA-DR
HIV pol 712	KVYLAWVPAHKGIGG	HLA-DR
HIV gag 294	GEIYKRWIILGLNKI	HLA-DR
HIV pol 711	EKVYLAWVPAHKGIG	HLA-DŔ
HIV env 729	OHLLQLTVWGIKQLQ	HLA-DR
HIV gag 171	QGQMVHQAISPRTLN	HLA-DR
HIV pol 835	SPAIFQSSMTKILEP	HLA-DR
HIV env 566	IKQFINMWQEVGKAMY	HLA-DR
HIV pol. 303	FRKYTAFTIPSINNE	HLA-DR
HIV pol 758	HSNWRAMASDFNLPP	HLA-DR
HIV pol 915	KTAVQMAVFIHNFKR	HLA-DR
HIV vpu 31	YRKILRORKIDRLID	HLA-DR3
HIV pol 874	WAGIKQEFGIPYNPQ	HLA-DR3
HIV pol 674	EVNIVTDSQYALGII	HLA-DR3
HIV pol 619	AEIFYVDGAANRETK	HLA-DR3
HIV pol 989	GAVVIQDNSDIKVVP	HLA-DR3
HCV NS4 1812	LLFNILGGWV	HLA-A2
HCV NS1/E2 728	FLLLADARV	HLA-A2
HCV NS4 1590	YLVAYQATV	HLA-A2
HCV NS5 2611	RLIVFPDLGV	HLA-A2
HCV CORE 132	DLMGYIPLV	HLA-A2 HLA-A2
HCV N\$4 1920	WMNRLIAFA	HLA-A2
HCV NS4 1666	VLVGGVLAA	HLA-A2
HCV NS4 1769	HMWNFISGI	HLA-A2
HCV NS4 1851	ILAGYGAGV YLLPRRGPRL	HLA-A2
HCV CORE 35	LLFLLLADA	HLA-A2
HCV NS1/E2726 HCV LORF 1131	YLVTRHADV	HLA-A2
	KTSBRSOPR	HLA-A3
HCV CORE 51 HCV CORE 43	RLGVRATRK	HLA-A3
HCV ENV1 290	ÖLFTFSPRR	HLA-A3
HCV NS1/E2 632	RMYVGGVEHR	HLA-A3
HCV NS3 1396	LIFCHSKKK	HLA-A3
HCV NS4 1863	GVAGALVAFK	HLA-A3
HCV NS4 1864	VAGALVAFK	HLA-A3
HCV NS3 1262	LGFGAYM9K	HLA-A3
HCV Core 169	LPGCSFSIF	HLA-B7
HCV NS5 2922	LSAFSLHSY	HLA-A1
HCV NS3 1128	CTCGSSDLY	HLA-A1
HCV NS5 2180	LTDPSHITA	HLA-A1

FIGURE 19B

Protein .	Sequence	Restriction
HCV Core 126	LTCGFADLMGY	HLA-A1
HCV N83 1905	LADGGCEGGAY	HLA-A1
	FWAKHMWNF	HLA-A24
HCV NS5 2875	RMILMTHFF	HLA-A24
HCV N85 2639	VMGSSYGF	HLA-A24
HCV NS4 1765	FWAKHMWNFI	HLA-A24
P. falciparum SSP2-230	FMKAVCVBV	HLA-A2
P. falciparum EXP1-83	GLLGYV8TV	HLA-A2
P. falciparum CSP-7	ILEVESFLEV	HLA-A2
P. falciparum LSA1-94	OTNFKSLLR	HLA-A3
P. falciparum LSA1-105	GVSENIFLK	HLA-A3
P. falciparum 65P2-522	LLACAGLAYK	HLA-A3
P. falciparum SSP2-539	TPYAGEPAPF	HLA-B7
P. falciparum LSA1-1663	LPSENERGY	HLA-A1
P. falciparum EXP1-73	KYKLATSVL	HLA-A24
P. falciparum CSP-12	SFLFVEALF	HLA-A24
P. falciparum LSA1-10	YFILVNLLI	HLA-A24
P. falciparum SSP2-14	FLIFFÓLFLV	HLA-A2
P. falciparum EXP1-80	YLAGLLGVV	HLA-A2
P. falciparum EXP1-91	VLLGGVGLVL	HLA-A2
P. falciparum SSP2-523	LACAGLAYK	HLA-A3
P. falciparum EXP1-10	ALFFIIFNK	HLA-A3
P. falciparum LSA1-11	FILVNLLIEH	HLA-A3
P. falciparum SSP2-126	LPYGRTNL	HLA-B7
P. falciparum CSP-15	FVEALFQEY	HLA:A1
P. falciparum LSA1-1794	FODEENIGIY	HLA-A1
P. fakiparum LSA1-9	FYFILVNLL	HLA-A24
P. falciparum SSP2-8	KYLVIVFLI	HLA-A24
P. falciparum CSP-394	GLIMYLSFL	HLA-A2
P. falciparum EXP1-2	KILSVFFLA	HLA-A2
P. falciparum CSP-344	VTCGNGIQVR	HLA-A3
P. falciparum LSA1-59	HVLSHNSYEK	HLA-A3
P. falciparum SSP2-207	PSDGKCNLÝ	HLA-A1
P. falciparum LSA1-1671	YYIPHQSSL	HLA-A24
P. falciparum LSA1-1876	KFIKSLFHIF	HLA-A24
P. falciparum SSP2-13	VFLIFFDLFL	HLA-A24
P. falciparum LSA1-1881	LFHIFDGDNBI	HLA-A24
P. falciparum CSP-55	YYGKQENWYSL	HLA-A24
P. falciparum LSA1-5	LYISFYFI	HLA-A24
P. falciparum CSP-2	MRKLAILSVSSFLFV	HLA-DR
P. falciparum CSP-53	MNYYGKQENWYSLKK	HLA-DR
P. falciparum CSP-375	SSVFNVVNSSIGLIM	HLA-DR
P. falciparum SSP2-61	RHNWVNHAVPLAMKLI	HLA-DR
P. falciparum SSP2-165	PDSIQDSLKESRKLN	HLA-DR3
P. falciparum SSP2-211	KCNLYADSAWENVKN	HLA-DR3

FIGURE 19C

The falm .	Sequence	Restriction
Protein Comp age	VKNVIGFFMKAVCVB	HLA-DR
P. falciparum 8SP2-223	KYKIAGGIAGGLALL	HLA-DR
P. falciparum 63P2-509	GLAYKFVVPGAATPY	HLA-DR
P. falciparum 6SP2-527		HLA-DR
P. falciparum EXP1-71	KEKYKLATEVLAGLL	HLA-DR
P. falciparum EXP1-82	AGLIGNVSTVLLGGV	HLA-DR
P. falciparum LSA1-16	LLIFHINGKIIKNSE	HLA-DR
P. falciparum LSA1-94	QTNFKSLLRNLGVSE	
HBV core 18	FLPSDFFPSV	HLA-A2
HBV env 183	FLITRILTI	HLA-A2
· HBV env 935	WLSLLVPFV	HLA-A2
HBV pol 455	GLSRYVARL	HLA-A2
HBV pol 538	YMDDVVLGV	HLA-A2/A1
HBV pol 773	ILRGTSFVYV	HLA-A2
HBV pol 562	FLLSLGIHL	HLA-A2
HBV pol 642	ALMPLYACI	HLA-A2
HBV env 998	GLSPTVWLSV	HLA-A2
HBV core 141	STLPETTVVRR	HLA-A3
HBV pol 149	HILWKAGILYK	HLA-A3/A1
HBV pol 150	TLWKAGILYK	HLA-A3
HBV pol 388	LVVDFSQFSR	HLA-A3
HBV pol 47	NVSIPWTHK	HLA-A3
HBV pol 531	SAICSVVRR	HLA-A3
HBV pol 629	KVGNFTGLY	HLA-A3/A1
HBV pol 665	QAFTFSPTYK	HLA-A3
HBV core 19	LPSDFFPSV	HLA-B7
HBV env 313	IPIPSSWAF	HLA-B7
HBV pol 354	TPARVTGGVF	HLA-B7
TB	RMSRVTTFTV	HLA-A2
TB	ALVLLMLPVV	HLA-A2
TB	LMIGTAAAVV	HLA-A2
` T B	ALVLLMLPV	HLA-A2 HLA-A2
ТВ	GLMTAVYLV	HLA-A2
TB	MALLRLPV	HLA-A2
ТВ	RMFAANLGV	HLA-A2
TB	SLYFGGICV	HLA-A2
ТВ	RLPLVLPAV	HLA-A2
ТВ	RLMIGTAAA	HLA-A2
TB	FVVALIPLV	HLA-A2
TB	MTYAAPLFV	HLA-A2
TB.	AMALLRLPLV	
· p53 139	KLCPVQLWV	HLA-A2
CEA 687	ATVGIMIGV	HLA-A2
CEA 691	IMIGHLVGV	HLA-A2
Her2/neu 689	RLLQETELV	HLA-A2
MAGE3 112	kvaeivhfl.	HLA-A2

FIGURE 19D

Theatelm	Sequence	Restriction
Protein ·	VVLGVVFGI	HLA-A2
Her2/neu 665	SMPPPGTRV	HLA-A2
p53 149	LTFFWLDRSV	HLA-A2
PAP.21.T2	TLMSAMTNL	HLA-A2
PAP.112	IMYSAHDTTV	HLA-A2
PAP.284	GLPSIPVHPV	HLA-A2
PSM.288.V10	LLQERGVAYI	HLA-A2
PSMA41	LLYSLVHNL	HLA-A2
PSM.4691.2	MMNDQLMFL	HLA-A2
P8M.663	FLTLSVTWIGV	HLA-A2
PSA.8.V11	ALGTICYV	HLA-A2
PSA.143.V8	FLTPKKLQCV	HLA-A2
PSA.161	LLLSIALSV	HLA-A2
HuK2AL2	VLVHPQWVLTV	HLA-A2
HuK2.53.V11	FLRPRSLQCV	HLA-A2
HuK2.165 HuK2.216.V11	PLVCNGVLQGV	HLA-A2

FIGURE 19E

Figure 20A

ID# Bpitope Sequence Conservation restriction	Prototype Binding 3.5 9.8 5.4 55.9 6.4 7.8 12.9	XRN ¹ 5 4 4 3 5
924.07 core 18 FLPSDFFPSV 45 A2 777.03 env 183 FLL/TRILTI 80 A2 1013.01 env 335 WLSLLVPFV 100 A2 1168.02 pol 455 GLSRYVARL 55 A2 1090.77 pol 538 YMDDVVLGV 90 A2/A1 927.11 pol 562 FLLSLGIHL 95 A2 927.15 pol 642 ALMPLYACI 95 A2	3.5 9.8 5.4 55.9 6.4 7.8	
777.03 env 183 FLL/TRILTI 80 A2 1013.01 env 335 WLSLLVPFV 100 A2 1168.02 pol 455 GLSRYVARL 55 A2 1090.77 pol 538 YMDDVVLOV 90 A2/A1 927.11 pol 562 FLLSLGIHL 95 A2 927.15 pol 642 ALMPLYACI 95 A2	9.8 5.4 55.9 6.4 7.8	5 4 4 3 5
1013.01 env 335 WLSLLVPFV 100 A2 1168.02 pol 455 GLSRYVARL 55 A2 1090.77 pol 538 YMDDVVLOV 90 A2/A1 927.11 pol 562 FLLSLGIHL 95 A2 927.15 pol 642 ALMPLYACI 95 A2	5,4 55.9 6 <i>A</i> 7.8	4 4 3 5 3
1168.02 pol 455 GLSRYVARL 55 A2 1090.77 pol 538 YMDDVVLOV 90 A2/A1 927.11 pol 562 FLLSLGIHL 95 A2 927.15 pol 642 ALMPLYACI 95 A2	55.9 6 <i>A</i> 7.8	4 3 5 3
1090.77 pol 538 YMDDVVLGV 90 A2/A1 927.11 pol 562 FLLSLGIHL 95 A2 927.15 pol 642 ALMPLYACI 95 A2	6 <i>A</i> 7.8	3 · 5 3
927.11 pol 562 FLI.SLGIHL 95 A2 927.15 pol 642 ALMPLYACI 95 A2	7.8	5 3
927.15 pol 642 ALMPLYACI 95 A2		3
	12.0	
A A A A A A A A A A A A A A A A A A A		. 4
1083.01 core 141 STLPETTVVRR 95 A3/A11	735 / 4.5	4
1147.16 pol 149 HTLWKAGILYK 100 A3/A1	15.4 / 15.6	5
1069.15 pol 150 TLWKAGILYK 100 A3/A11	2.1 / 33	2
1069.20 pol 388 LVVDFSQFSR 100 A3/A11	6875 / 17	3 ,
1069.16 pol 47 NVSIPWTHK 100 A3/A11	174/117	3
1090.11 pol 531 SAICSVVRR 95 A3/A11	2189/29	3
1142.05 pol 629 KVGNFTGLY 95 A3/A1	58/365	2
1090.10 pol 665 QAFTFSFTYK 95 A3/A11	249/8	3
988.05 core 19 LPSDFFPSV 45 B7	3026.8	4
1145.04 env 313 IPIFSSWAF (00 B7	42.3	4
1147.04 pol 354 TPARVTGGVF 90 B7	13,2	2
1147.02 pol 429 HPAAMPHLL 100 B7	56.6	4
1039.06 env 359 WMMWYWGPSLY 85 A1	16.3	3
1448.01 core 419 DLLDTASALY 75 A1	2.3	3
1373.88 core 137 LTFGRETVLEY 75 A1	80.0	3
1090.07 pol 415 LSLDVSAAFY 95 A1	6.0	3
20.0271 pol 392 SWPKFAVPNL 95 A24	2.1	
1373:56 env 332 RFSWLSLLVPF 100 A24	12.0	2
1373.07 core 117 BYLVSFGVW 90 A24	16.0	2
1069.23 pol 745 KYTSFPWLL 85 A24	1.0	3

XRN = Cross binding, number of HLA types in the supertype panel of 5 for which significant binding as detected

 Core
 Pol
 Pol</t HBY2 EpiGene Pol 149 \$ Figure 2018 HBV 2A

HBV 2B

HLA-A3 Epitope

Figure 20D

HBY-2

10

15

MGMQVQIQBLFLLLHVPGBRGHTLHKAGILYKAKFVAAHTLKAAAFLPBDFFPBVNFLLBLGIHLYMDDVVL GVGLBRYVARLFLLTRILTIBTLPBTTVVRRQAFTFBPTYKGAAAHLBLLVPFVNIPIPBBHAFKTPARVTGG VFKVGNFTGLYNLPBDFFPBVKTLHKAGILYKNVBIPHTHKGAALVVDF8QFBRNBAICBVVRRALMPLYACI

Figure 20E

HBV-2A

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFP8VNFLLSLGIHLYMDDVVL GVGLSRYVARLFLLTRILTISTLPETTVVRRQAFTFSPTYKGAAAWLSLLVPFVNIPIPSSWAFKTPARVTGG VFKVGNFTGLYNLPSDFFPSVKTLWKAGILYKNVSIPWTHKGAALVVDFSQFSRNSAICSVVRRKAWMMYWG PSLYKKYTSFPWLLNAHPAAMPHLLKAAADLLDTASALYNAAARFSWLSLLVPFNAASWPKFAVPNLKLTFGR ETVLEYKALSLDVSAAFYGAAEYLVSFGVWGAALMPLYACI

TGTGGAAGGCCGGAATCCTGTATAAGGCCAAGTTCGTGGCTGCCTGGACCTGAAGGCTGCCGCTTTCCTGCC 25 TAGCGATTTCTTTCCTAGCGTGAACTTCCTGCTGTCCCTGGGAATCCACCTGTATATGGATGACGTGGTGCTG GGAGTGGGACTGTCCAGGTACGTGGCTAGGCTGTTCCTGCTGACCAGAATCCTGACCATCTCCACCCTGCCAG GTGTTTAAGGTGGGAAACTTCACCGGCCTGTATAACCTQCCCAGCGATTTCTTTCCTAGCGTGAAGACCCTGT TTO A EDTE DETECT TO ED SE A CANDADA A CANDADA A CANDADA A CANDADA A CANDADA CANDADA A CANDADA TTCCCAGTTCAGCAGAAATAGCGCCATCTGTTCGGTCGTGAGAAGGAAAGCCTGGATGATGTGGTACTGGGGT CCTAGTCTGTATAAGAAGTACACCTCATTCCCATGGCTCTTGAATGCCCATCCCGCTGCAATGCCACCTGC TTANAGCTGCGGCGGATCTGCTGGACACACCCTCAGCTTTATATATGCTGCAGCAAGATTCTCCTGGTTGTC 35 **GAGACAGTACTTGAATACAAAGCACTAAGCCTTGACGTGTCAGCAGCACTTCTACGGAGCAGCAGAATATCTAG** TATCTTTTGGGGTCTGGGGCGCAGCCCTCATGCCTCTATACGCCTGCATTTGA

Figure 20F

HBV-2B

MGMQVQIQSLFLLLLWVPGSRGHTLWKAGILYKAKFVAAWTLKAAAFLPSDFFPSVNFLLSLGIHLYMDDVVL GVGLSRYVARLFLL/TRILTISTLPETTVVRRQAFTFSPTYKGAAAWLSLLVPFVNIPIPSSWAFKTPARVTGG 5 VFKVGNFTGLYNLPSDFFPSVKTLWKAGILYKNVSIPWTHKGAALVVDFSQFSRNSAICSVVRRKEYLVSFGV WGLSLDVSAAFYNAAAKYTSFPWLLNAHPAAMPHLLKAAADLLDTASALYNSWPKFAVPNLKLTFGRETVLBY KAAWMMYYWGPSLYKAAARFSWLSLLVPFGAAALMPLYACI

CONTOTTTO DO STORARPTO CARDETO DE TECHTORADO DO BALATATO TO TAADO CO DO BALADO TO 10 TAGCGATTTCTTCCTAGCGTGAACTTCCTGCTGTCCCTGGGAATCCACCTGTATATGGATGACGTGGTGCTG GACTOTATOTATO ADTOTATION OF THE TOTATION OF TH AGRICACOTGGTGAGGAGGCAGGCCTTCACCTTTAGCCCTACCTATAAGGGAGCCGCTGCCTGGCTGAGCCT 15 TTCCCAGTTCAGCAGAAATTCAGCAGTTCTTTGTTCGCTGAGAAGAAGAAGAAGAAGAAGAAGAGTTGTTTCATTTGCCGTC TARACICACCCAGCTGCAATGCCGCATCTACTGAAAGCAGCGCTGACCTCTAGACACTGCCTCCTCTCT **GTACAACTCTTGGCCCAAGTTTGCCGTGCCTAATCTCAAGTTGACCTTCGGTAGAGAGACAGTCTTAGAATAC** 20 200ATT2DET22T2TTDBA42ET2D22DAAATATET2T222AEDEGTAATETGTATAEGTGGTGAAAA

Figure 21A

				HLA	Prototype	
ID#	Epitope	Sequence	Conservation	restriction	Binding	XRN
924.07	core 18	FLP8DFFPSV	45	A2	3,5	5
777.03	env 183	FLLTRILTI	80	A2	9.8	<i>3</i>
1013.01	env 335	WLSLLVPFV	100	A2	5.4	4
927.11	pol 562	FLLSLGIHL	95	A2	7.8	
1090.77	pol 538	YMDDVVLGV	90	A2/A1	6.4	5
1083.01	core 141	STLPETTVVRR	95	A3/A11	735 / 4.5	4
1147.16	pol 149	HTLWKAGILYK	100	A3/A1	15.4 / 15.6	-
1090.11	pol 531	SAICSVVRR	95	A3/A11	2189/29	,
1090.10	pol 665	QAFTFSPTYK	95	A3/A11	249 / 8	3
1145.04	anv 313	IPIPSSWAF	100	B7	42.3	3
1147.04	pol 354	TPARVTOGVF	90	B7	13.2	4
1147.02	pol 429	HPAAMPHILL '	100	B7	· 56.6	2
1147.05	pol 530	FPHCLAFSYM	95	. B7	58.5	4
1039.06	env 359	WMMWYWGPSLY	85	Al	16.3	•••••
1448.01	core 419	DILDTASALY	75	Al	2.3	3
1373.88	core 137	LTFGRETVLEY	75	Al .		3
1090.07	pol 415	LSLDVSAAFY	95	Al	80.0	3
20.0271	pol 392	SWPKFAVPNL	95	A24	6.0	3
1373.56	env 332	RFSWLSLLVPF	100	A24 A24	2.1	2
1373,07	core 117	BYLVSFGVW	90	+	12.0	2
1069.23	pol 745	KYTSFPWLL		A24	16.0	2
	hor (-12	ARTADIA TILA	85	A24	1.0	3

•

¥
71
5
m
1

歪	8	A3	Z	745	A24	•	•				
8	137	A1	Z	415	A1				•		
Core Core Pol	429 149 183 415 745 332 354 117 538 419 530 359 531 562 313 335 18 137 665	A2	3								
Buv	335	A2		_	A2						
Env Env	313	181	Pol Core Pol Core Bary	149 18 530 332 392 665 531 183 313 359 354 562 137 429 141 335	A3						
Poi	562	A2	Pol	429	B 3						
Pol	531	A3	8	137	A1					,	
Env	359	A1 A3	Pol	562	A2						
Pol	530	B)	Pol	354	. B .						
Pol Buy Pol Core Pol Core Pol	419	A1	Env Pol Pol Pol Env Env Pol	359	A1						
Poi	538		Env	313	B7				•		
Š	117	A2 A1 A24 A24 B7 A24 A2	·BEA	183	.A2					,	
150	354	B7	Pol	531	A3						
Birv	332	A24	Pol	665	A3						
Pol	745	A24	Pol	392	A24 A24 A3 A3 .A2						
Pol	415	A1	Env	332							
Pol Env	183		Pol	530	B7						
Pol	149	A3	Pol Core Pol	18	₹			·			
_		B7			A3						
Core	141	£A		419	A1	•	•				
8			Pol Core Core	538 117 419	A2 A24 A1						
Pol		A24			F		٠				
			,	~							
A 10 / NOTE	77 %			HBV 2115						r	
8				#	٠			•			
											-

. .

.

.

Figure 21D

HBY-21A

MGMQVQiqslfililnvpgsrgswpkfavfnlkaaakfvaawtlkaaakstlpbttvvrrkhpaamphllka
aahtlwkagilykkaplitriltigalsldvbaafynaaakytsfpwllnaaarpswlsllvpfnaatparvt
GGVFKAABYLVSFGVWGAAAYMDDVVIGVNDLLDTASALYNAAAFPHCLAFSYMKAAAWMWYWGPSLYKAAS
AICSVVRRKNFLLSLGIHLNIPIPSSWAFKAAWLSLLVPFVNAFLPSDFFPSVKLTFGRETVLEYKQAFTFSP
TYK

atgggaatgcaggtgcagatccagagcctgtttctgctcctgtgggtgcccggggtccagaggatcttggc CTARATTCGCAGTGCCARACCTTARAGCCGCGGCTGCTARGTTCGTAGCTGCCTGGACACTARAGGCCGCCGC TAAGAGCACACTGCCAGAGACCACCGTGGTCCGGCGAAAGCATCCAGCCGCAATGCCCCACTTGCTCAAAGCA 10 GAGCTCTGTCACTCGACGTTTCTGCTGCCTTCTACAACGCGGCGCGCAAAATACACTAGCTTTCCATGGCTACT CAACGCAGCCGCCAGATTTTCTTGGCTATCACTACTGGTGCCATTTAATGCAGCAACACCTGCTAGAGTGACT GGCGGCGTCTTTAAAGCAGCCGAGTACTTGGTGAGCTTTGGCGTCTGGGGTGCAGCGGCATATATGGATGATG TAGTGTTAGGGGTGAACGACCTCCTGGACACAGCCAGTGCGCTGTACAATGCAGCTGCATTCCCGCATTGCCT 15 AGCCTTCAGTTATATGAAAGCAGCCTGGATGATGTGGTACTGGGGACCGTCCCTTTATAAAGCAGCTTCA GCAATCTGTTCCGTTGTGAGAAAAAAACTTTTTACTCTCCCTCGGTATTCACCTGAACATTCCCATCCCTT CCTCATGGGCATTCAAAGCCGCTTGGCTGAGTCTACTCGTACCTTTCGTTAATGCATTTCTGCCCAGCGACTT TTTCCCCTCGGTAAAACTGACATTCGGACGCGAAACAGTCCTTGAATATAAGCAGGCCTTCACGTTCTCACCA 20 ACCTATAAATGA

Figure 21E

HBV-21B

25

MGMQVQIQSLFLLLLWYPGSRGYMDDVVLGVNAAAEYLVSFGVWNDLLDTASALYGAAHTLWKAGILYKKAFL PSDFFPSVKAFPHCLAFSYMKAARFSWLSLLVPFNAASWPKFAVPNLKAAAQAFTFSPTYKNAAASAICSVVR RKAFLLTRILTINIPIPSSWAFKAAWMWYWGPSLYKAAATPARVTGGVFKAANFLLSLGIHLNLTFGRETVL BYKHPAAMPHLLKAASTLPETTVVRRKWLSLLVPFVNAAAAKFVAAWTLKAAAKLSLDVSAAFYNAAAKYTSF PWLL

ATGGGAATGCAGGTGCAGATCCAGAGCCTGTTTCTGCTCCTCTGTGGGTGCCCGGGTCCAGAGGATACATG ATGACGTTGTGTGGGGGTTAATGCAGCGCAGAATATCTCGTGTCATTCGGCGTCTGGAACGACCTGTTGGA CACTGCATCTGCTCTGTACGGTGCAGCCCATACCCTGTGGAAGGCCGGAATCCTCTACAAAAAAGGCATTCCTA 30 CCTAGCGACTTTTTTCCTTCAGTGAAAGCCTTCCCACATTGCCTAGCATTCTCGTATATGAAAGCGGCTAGGT TCTCATGGCTTAGTCTTCTAGTACCTTTCAATGCCGCCTCCTGGCCCAAATTCGCCGTACCAAATCTAAAAGC GGCCGCGAGGCCTTTACATTCTCTCCGACTTATAAAATGCAGCAGCCTCCGCTATTTGTAGCGTCGTCGCGC CGAAAGGCCTTCCTGCTAACCCGGATTTTGACGATAAACATCCCCATCCCTTCTAGCTGGGCTTTCAAAGCAG CATGGATGATGTGGTACTGGGGTCCCAGCTTATACAAAGCTGCGGCAACCCCCAGCAAGAGTGACAGGGGGGCGT 35 GAGTATAAACACCCAGCAGCTATGCCGCACCTACTCAAAGCCGCTTCAACACTCCCAGAAACAACTGTAGTGA GGAGAAAATGGCTCTCCCTGCTTGTCCCATTGTCAACGCCGCCGCCGCTAAGTTTGTGGCCGCTTGGACACT TAAGGCTGCAGCAAAGTTGTCACTTGATGTTAGTGCAGCGTTCTATAACGCAGCTGCAAAATACACTTCCTTT 40 CCCTGGCTGCTGTGA

Figure 22A

				HLA	Prototype	
· ID#	Epitope	Sequence	Conservation	restriction	Binding	XRN
924.07	core 18	FLPSDFFPSV	45	A2	3.5	5
777.03	env 183	FLLTRIČTI	80	A2	9.8	4
1013.01	onv 335	WLSLLVPFV	100	- A2	5.4 · ·	· 4
1168.02	pol 455	GLSRYVARL	55	A2 ·	55.9	3
1090.77	pol 538	YMDDVVLOV	90	A2/A1	6.4	5
927.11	pol 562	FLLSLGIHL	95	A2	7.8	33
1083.01	core 141	STLPETTVVRR	95	A3/A11	735 / 4.5	4
1147.16	pol 149	HTLWKAGILYK	100	A3/A1	15.4 / 15.6	5
1069.20	pol 388	LVVDFSQFSR	100	A3/A11	6875 / 17	3
1069.16	pol 47	NVSIPWTHK	100	A3/A11	174 / 117	3
1090.11	pol 531	SAICSVVRR	95	A3/A11	2189/29	3
1090.10	pol 665	QAFTFSPTYK	95	A3/A11	249/8	. 3
988.05	corci19	LPSDFFPSV	45	B7	3026.8	4
T145.04	env 313	IPIPSSWAF	100	B7	42,3	4
1147.04	pol.354	TPARVIGOVF	90	B7	13.2	2
1147.02	pol 429	HPAAMPHILL	100 '	B7	56.6	. 4
1147.05	pol 530	FPHCLAFSYM	95	B7	<i>5</i> 8.5	5
1359.01	pol 640	YPALMPLYACI	95	· 187	1393.4	3
1039.06	env 359	WMMWYWQP8LY	85	A1	16.3	3
1448.01	core 419	DLLDTASALY	75	A1 .	2.3	3
1373.88	core 137	LTFGRETVLEY	75 .	A1	80.0	3
1373.78	pol 166	ASFCGSPY	100	A1	247.0	3
1090.07	pol 415	LSLDVSAAFY	95	A1	6.0	3
1069.08	env 249	ILLLCLIFLL	100	Al	192.0	1
20.0269	env 236	RWMCLRRFII	95	A24	11.0	3
20.0271	pol 392	SWPKFAVPNL	95	A24	2.1	2
1373.56	env 332	RFSWLSLLVPF	100	A24	12.0	2
1373.38	core 101	LWFHISCLTF	85	A24	6.7	3
1373.07	core 117	EYLVSFGVW	90	A24	16.0	2
1069.23	pol 745	KYTSFPWLL	. 85	A24	1.0	3

Figure 22B

 Pol Env Core Env Core Env Pol Fol Pol Pol Pol Pol Core Core Core Core Pol Env Env Pol E Eury Poi Poi Corre Poi Poi 183 392 149 419 665 47 A2 A24 A3 A1 A3 A3 HBV 30B

A3 A2 A3 B7 A24 A1 A2 A24 B7 A2 A24 B7 A24 B
 Pol
 Pol
 Env
 Pol
 Env
 Pol
 Env
 Pol
 Env
 Fol
 Env
 Core Core

 562
 745
 332
 530
 388
 249
 149
 359
 640
 335
 182
 313
 117
 19

 A2
 A24
 A24
 B7
 A3
 A1
 A3
 A1
 B7
 A2
 A2
 B7
 A2
 B7
 Pol 562

HBV 30C

Figure 22D

HBV-30B

. 5

MGMQVQIQSLFLLLLMVPGSRGFLLTRILTINAAASHPKFAVPNLKAAAHTLWKAGILYKKADLLDTASALYN
QAPTFSPTYKGAAANVSIPWTHKGAAAFLLSLGIHLNIPIPSSWAFKAAALWFHISCLTFKAAAILLLCLIFL
LNAAAYPALMPLYACINAHPAAMPHLLKAAASFCGSPYKAAGLSRYVARLNKYTSFPWLLNFLPSDFFPSVKA
FPHCLAFSYMKABYLVSFGVWNAALTFGRSTVLSYKAAALPSDFFPSVKAYMDDVVLGVNLVVDSSQFSRNAA
ARWMCLRRFIINAARFSWLSLLVPFNAATFARVIGGVFKAAWLSLLVPFVNSAICSVVRRKAKFVAAWTLKAA
AKWMWYWGPSLYKAASTLPSTTVVRRKLSLDVSAAFY

atgggaatgcaggtccagatacagagcttgttcctcctcctgctttgggtcccggatcaaggggtttcctcc TAACCOGCATCCTGACAATTAACGCCGCAGCCTCCTGGCCAAAATTTGCCGTGCCAAATCTCAAGGCAGCTGC 10 ACACACTATGGAAAGCAGGGATACTGTACAAGAAAGCCGATCTGCTAGACACAGCGTCTGCGTTGTACAAC CAGGCTTTACTTTCTCTCCTACATATAAAGGCGCAGCTGCAAACGTGAGTATCCCTTGGACGCACAAAGGAG CCGCTGCCAACTTCTTACTGTCCCTGGGCATCCATCTAAATATCCCTATTCCTTCATCCTGGGCATTTAAAGC AGCCGCCTTATGGTTCCACATAAGTTGTCTGACCTTCAAAGCCGCAGCAATCCTGCTCCTTTGCCTCATTTTC TTACTAAACGCCGCTGCCTATCCAGCTCTTATGCCATTGTACGCATGTATCAACGCCCACCCGCAGCAATGC CCCACCTCCTTAAAGCTGCCGCCAGTTTCTGCGGTTCTCCTTATAAAGCAGCAGGGCTGTCCAGATACGTAGC GCCTTCCCTCATTGTCTGGCCTTTAGCTACATGAAGGCTGAATATTTGGTATCCTTCGGCGTGTGGAATGCGG CACTGACATTTGGAAGGGAGACAGTGCTCGAGTACAAAGCCGCCGCACTACCCTCGGACTTCTTCCCATCGGT Caragettacatggacgatgtagtceteggcgttaacttagtagtggactttteteaatttecagaaacgca 20 GCGGCCAGATGGATGTGCCTTCGGCGTTTTATAATAAACGCCGCTCGATTCAGCTGGCTATCACTCCTAGTTC CATTIAATGCAGCTACACCCGCACGGGTGACAGGTGGAGTTTTCAAGGCAGCGTGGCTTCACTGCTTGTGCC ATTIGIGAACTCAGCTATTIGCTCAGTAGTGAGAAGGAAGGCAAAATTCGTCGCTGGACTCTCAAAGCT OCCECAAAGTGGATGATGTGGTATTGGGGACCGAGCTTGTACAAAGCGGCCTCTACTCTGCCAGAAACTACCG TAGTGAGAAGAAACTGAGCCTGGACGTCAGCGCGGCATTCTACTGA

Figure 22E

HBV-30C

MGMQVQIQSLFLLLLMVPGSRGFLLSLGIHLNAAAKYTSFPWLLNAAARFSWLSLLVPFNAAFPHCLAFSYMK
AALVVDFSQFSRGAILLLCLIFLLNAAAHTLNKAGILYKKAWMMYYMGPSLYKAYPALMPLYACIGAAAWLSL

30 LVPFVNFLLTRILTINIPIPSSWAFKAAAEYLVSFGVWNLPSDFFPSVKFLPSDFFPSVKDLLDTASALYNSW
PKFAVPNLKAAASAICSVVRRKLSLDVSAAFYNAAAKPVAAWTLKAAAKAANVSIPWTHKGAAGLSRYVARLN
AAASTLPETTVVRRKHPAAMPHLLKAAARWCLRRFIINASFCGSPYKAAYMDDVVLGVNALWFHISCLTFKA
AATPARVTGGYFKAAALTFGRETVLBYKQAFTFSPTYK

ATGGGAATGCAGGTGCAAATACAGTCTCTCTCTTTTGCTTCTCTGGGTTCCAGGATCACGGGGCTTCTTGC TTAGCTTGGGCATCCACCTAAATGCTGCTGCAAAATACACATCTTTTCCTTGGCTCCTTAATGCCGCCGCTAG 35 GTTTTCATGGCTGAGTCTGCTAGTACCTTTCAATGCGGCTTTCCCACATTGCCTAGCTTTTAGCTATATGAAA GCTGCTTTAGTCGTGGACTTTTCACAGTTTAGCAGAGGAGCAATCCTGCTGCTATGTCTGATATTCCTTCTAA ACGCAGCAGCCCACACTCTGGAAAGCTGGTATCCTTTACAAGAAAGCCTGGATGATGTGTATTGGGGACC TTAGTACCGTTTGTCAACTTCTATTAACCAGAATCCTGACGATTAATATTCCGATCCCAAGTTCCTGGGCAT TCAAAGCAGCGGGGAGTATCTGGTTTCATTIGGCGTATGGAACCTGCCAAGCGACTTCTTTCCTTCTGTTAA GTTCCTCCCCTCCGATTTCTTTCCATCGGTGAAAGACCTCCTTGATACCGCGAGCGCTCTGTACAACTCGTGG CCARAATTCGCAGTCCAAACCTAAAAGCCGCCGCCAGTGCCATTTGTTCCGTGGTAAGGAGAAAATTATCAC AGCAGCAAATGTATCAATACCCTGGACCCACAAGGGTGCAGCCGGGCTGTCTAGGTATGTGGCGAGGCTAAAC GCCGCCGCCTCAACACTGCCTGAGACTACTGTCGTGAGACGCAAACACCCTGCCGCAATGCCCACCTGCTGA CGCTTACATGGACGATGTGGTCCTCGGAGTGAATGCCCTCTGGTTCCATATCAGCTGCCTGACATTCAAGGCA TGGARTATAAGCAGGCCTTCACATTCTCCCCAACATACAAGTGA

Figure 23A

Figure 23C

HBY-CL

- MQVQIQBLFLLLLWYPGBRGFLLBLĞIHLMAAKYTBFPWLLMAAARFBWLBLLVPFMAAFPHCLAFBYMKAA LVVDF8QFBRGAILLLCLIFLLMAAAHTLWKAGILYKKAWMMYWGPBLYKAYPALMPLYACIGAAAWLBLLV PFVNFLLTRILTIMAAAIPIPBBWAFKAAABYLV8FGVWNLPBDFFPBVKAAAFLPBDFFPBVKAAADLLDTA BALYNBWPKFAVPNLKAAABAICBVVRRKLBLDV8AAFYMAAAKFVAAMTLKAAAKAANV8IPWTHKGAAGLB RYVARLMAAABTLPBTTVVRRKHPAAMPHLLKAAARWMCLRRFIIMABFCGBPYKAAYMDDVVLGVNALWFHI BCLTFKAAATPARVTGGVFKAAALTPGRBTVLBYKQAFTF8PTYK
- 10 · TTAGCTTGGGCATCCACCTAAATGCTGCTGCAAAATACACATCTTTCCTTTGCTCCTCAATGCCGCCGGTAG CARAPTATGETTGAGTTGAGTTGAGTTTGAGTTTGAGTTTGAGTTGAGTTGAGTTGAGTTGAGTTGAGTTTTGAGTTTTGAGTTTTGAGTTTTGAGTTTGAGTTTGAGTT GCTGCTTTAGTCGTGGACTTTTCACAGTTTAGCAGAGGAGCAATCCTGCTGCTATGTCTGATATTCCTTCTAA 15 TTAGTACCOTTTGTCAACTTCTATTAACCABACTCTAADACTAACTTTAACACTTTCCCAACTT CCTGGGCATTCAAAGCAGCGGGGGGTATCTGGTTTCATTTGGGGTATGGAAGCTGCCAAGCGACTTCTTTCC TICTGTTAAGGCCGCTGCTTTCCTCCCCTCGATTTCTTTCCATCGGTGAAAGCCGCTGCCGACCTCCTTGAT GTTCCGTGGTAAGGAGAAATTATCACTCGACGTGTCCGCAGCATTTTATAACGCTGCTGCAAAGTTTGTCGC 20 CTGTCTAGGTATGTGGCGAGGCTAAACGCCGCCGCCTCAACACACGCGAGACTACTGTCGTGAGAGACGAAAC TTCTTTCTGTGGGTCACCCTACAAGCCGCTTACATGGACGATGTGGTCCTCGGAGTGAATGCCCTCTGGTTC

CACTGACTTTCGGTCGGGAAACTGTATTGGAATATAAGCAGGCCTTCACATTCTCCCCAACATACAAGTGA

													-														•					-				
	-	_							-1			٦							٠,٠٠									••;		-					•	•
8	Й	8	· Ş	E	Ħ	ត្ត រ៉	5 8	3	2	충	£ £	ᆔ				*	<i>‡</i> ,	÷			4	-				-										
•		_	•	•		•	- •		- 1	_																										
	47	=	5		r				_	9 9 (ĮQ.	ı																							•	
Ì	3	Ę	. 5	ξ.	ş	•	• •	•	E	薯	ğ ·	۳																								
									Ì			-																								
ğ	3	8 8	3 .	. 12	۴	8	3 5	6	z		, g	.1																								
×	÷2	₽,	4.	44	¥	40 (2 ¥	H	*		. 53	-																								
					•	٠.			•			_[•	
ĕ	겉	8	3 6	Ħ	£	5	6	8	젊	٠	· •	톍	•						•								•			٠						•
•		•	•			•	•	•	i			1			٠٠.						•				•	•								-		
4 0 -	1 0	(2)	,		_	9	9 6		0		ま	2																								
8	£	₽ ;	5 6	: 8	8	8	9 . 5	, Y	Ñ	•	. g	톍																								
									:			ı																								
E	8	40 }	1 6	3 5	ž		8	1 4	2		. •	됨																								
_	_				N	•	• • •	•	-		•	٩		•																						
_	_			•						~	- T	- 1																	•				•			
¥	缸	O.		₹ ₹	R	•	B Š	1 7	•	뙲	3 를	8																								
									3			-	•				•						•													
6		B	. ;	: 9	g	엁	•	. 8	١.,			8																							:	
63		8	•	•	4	ā		40	'			7																								
								_			_	_[•								
g	g	•	9 :	= 4	3	Ş	Ě	ă	ğ	٠	. 8																									
ŀ		•					•	•	- 1		_	ì																			•					
L	Ħ	20	+ 1	a 8	40	¥	9 ,	. 3		8	智慧	~																								
A	#	51 .	G (4 Z	•	n	9 .	9 =	2	13	KI E	٦																								
٦			_	_							~ 4																									
Ιğ	8	۵	£ (8 £	Ħ	7	8 8	3 8	H	á	K	á																								
											8 Q	I																		•						
ŀ	٠	4	•		٠		•		•	8	B 4	Ø																								
										٠		1					٠																			
L	_	Ŀ	10	n 0		102	e f	2 5		8		8																								
٦,	4	ĸ	ξ,	•	42	85	# 1	2.0	5 00	8	to A	8																								
									_	Ľ	~ ~	-			•																	•			÷	
ន្ត្រ	ŧ	•	# (b ¢	: 8	묾	B S	3 1	3 6	×	63	18								•																
-	-						-			┝	<u> </u>	{	}					4																		
15	÷	\$	a	0 E	d	•	١- ١	6 4	۸.	8		7		•																					,	
B	-	8	2	i i	1	F	10	R P	R	3	18	R																							•	
1	2	Ē	5	6 1	8	ā			ğ	9	H S	8																								
ľ	. •		-	J [. 4	•	a (- 4	1		٦,	ŀ											•												
١										8		ı																								
ă						<u> </u>				Þ				•																						1
																	′				•															
																								•											·	٠
																																			:	

'n

Figure 24C

HBY-HTL

MGTBFYYVPBALMPADGPGPGLCQVFADATFTGWGLGPGPGRHYLHTLWKAGILYKGPGPGPHHTALRQAILC
WGBLMTLAGPGPGBBRLVVDFBQFBRGNGPGPGPFLLAQFTBAICBVVGPGPGLVPFVQWFVGLBPTVGPGPG
LHLYBHPIILGPRKIGPGFGBBRLBWLBLDVBAAFGFGPGLQBLTNLLBBNLBWLGPGPGAGFFLLTRILTIP
QBGPGPGVBFGVWIRTPPAYRPPNAPIGPGFGVGPLTVNEKRRLKLIGPGPGKQCFRKLPVNRPIDWGPGPGA
ANWILRGTBFYYVPGFGPGKQAFTFSFTYKAFLCGPGPGAKFVAAWTLKAAA

ATGGGAACTTCTTTTGTGTATGTCCCTTCCGCTCTGAACCCAGCAGACGGACCGGGCCTGGCCTGTGCCAGG 10. GCAGAGGAAACGGACCCGGCCCTGGGCCTTTTCTGCTGGCTCAGTTTACATCTGCTATTTGTTCTGTCGG CCCCGGCCCGGACTCGTGCCTTTCGTGCAGTGGTTCGTGGGACTGTCCCCTACAGTCGGGCCCGGCCCAGGG 15 CAGTCCGGACCAGGACCAGGAGTCAGTTTCGGGGTGTGGATCAGGACCCCTCCTGCTTATAGACCACCAATG CTCCAATCGGCCCGGCCCTGGCGTCGGCCACTGACCGTGAATGAGAAGCGCCGGCTGAAGCTGATCGGCCC 20 GCCAACTGGATTCTCAGGGGAACAAGCTTCGTCTACGTGCCGGGCCGGACAAGAAGCAGGCACTTTACCT TCTCTCCCACTTACAAGGCCTTCCTCTGTGGGCCAGGCCCCGGCGCCAAGTTTGTGGCAGCATGGACCCTCAA AGCCGCTGCCTGA

Figures 25A-B

Figures 26A-B

Figures 27A-B

В.

Figures 28A-B

Figures 29A-B

Figure 30

Figure 31

Figures 32A-B

Figures 33A-B

Composition of HBV poly-epitope Vaccine

F16.34

FIG. 35 A

un-optimized epitope string) Detection of HBV AOSIb

F16, 35B

(processing optimized epitope string) Detection of HBV AOSIb2

F16,35C

FIG. 35D

plasmid	No inhibitor	with inhibitor	Fold Increase (aver.)
Fluorescent Protein	30%	35%	•
(no epitopes control)	34%	33%	T.T
HRV AOCIN fileion	%5	12%	·
	4.4	8%	T•7
HRV AOCIBO fucion	%7	10%	C L
HOSDI ZUICOV ACII	1.2%	9.9	5.5

i)

F16.35F

GCR-3697 Immunogenicity Data

		CTL response (SU)					
HLA		2 x PVP Immunization			CT Pre-treatment		
Supertype	Epitope	Freq.	GeoMean	X/+	Freq.	GeoMean	X/+
HLA-A2	core 18	12/12	199.3	2.1	4/4	288.9	1.3
	env 183	12/12	171.2	2.8	4/4	401.2	1.4
	env 335	12/12	86.4	2.3	4/4	153.6	1.7
	pol 455	12/12	120.4	1.8	4/4	411.3	1.8
	pol 538	12/12	149.9	3.2	4/4	148.1	2.2
	pol 562	12/12	266.2	2	4/4	353.3	1.5
HLA-A3	core 141	6/6	94.4	1.4	12/12	167.6	1.4
	pol 149	6/6	103	2.2	12/12	386.7	1.5
	pol 655	5/6	10.1	2.3	12/12	108	3.6
	pol 388	0/6			0/12		
	pol 47	0/6			3/12	3.2	1.1
	pol 531	1/6	3.9		2/12	5.5	1
HLA-A24	env 236	. 1/6	22.6		2/11	23.4	1.2
	pol 392	5/6	78.1	1.5	10/11	54.8	2.2
	env 332	2/6	16.7	1.1	3/11	25.6	1.6
	core 101	1/6	37		0/11		
	core 117	3/6	34.4	1.9	2/11	27.4	3
	pol 745	2/6	51.2	1.3	1/11	32.6	
HLA-B7	pol 530	6/6	292.4	3.1	3/6	177	1.3
	pol 640	4/6	76.5	1.7	5/7	104.6	1.8
	core 19	3/6	12	2.5	2/7	8.8	1.6
	env 313	0/6	0	0	6/6	323.1	2.9
	pol 354	0/6	0	0	4/6	351.5	3.2
	pol 429	2/6	13.7	1.1	1/6	1.4	

FIG. 38

FIG. 39