Relational Algebra (Part I)

R & G, Chapter 4

Databases: the continuing saga

- What we have learned:
 - Conceptually model data needs using ER diagrams
 - Translate ER diagrams to relational schemas
 - Create schemas and insert records into relational tables

We're almost ready to use SQL to query it, but first...

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for optimization.
- Query Languages != programming languages!
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:

<u>Relational Algebra</u>: More operational, very useful for representing execution plans.

<u>Relational Calculus</u>: Let users describe what they want, rather than how to compute it. (Non-procedural, <u>declarative</u>.)

We only cover Relational Algebra in CS442

Relational Algebra: 5 Basic Operations

Unary operators (only one table as input)

- 1. Selection (σ)
- 2. Projection (π)

Set operations (two compatible tables as input)

- 3. Set-difference ()
- 4. Union (U)

Non-set operation (two tables as input)

5. Cross-product operation (X)

Since each operation returns a relation, operations can be composed!

Projection (π)

- Projection (π) : pick certain *columns* (i.e., attributes) for output
- Notation: $\pi_{A1, A2...Ak}(r)$
 - r: a relational table;
 - $-A_1, ..., A_k$: attributes in the output
- Output: return attributes A₁, ..., A_k in r
- Outputs may contain duplicate records. (How do they arise?)

Projection Examples

Sid	Sname	Rating	Age
28	Yuppy	9	35
31	Lubber	8	55
44	Guppy	5	35
58	Rusty	10	35

Sailor

$$\pi_{\text{sname,rating}}(Sailor)$$

Sname	Rating
Yuppy	9
Lubber	8
Guppy	5
Rusty	10

$\pi_{age}(Sailor)$

Age	
35	
55	
35	
35	

Selection (σ)

- Selection (σ): pick certain rows that satisfy specific conditions for output
- Notation: $\sigma_p(r)$
 - r: a relational table
 - p: *selection condition*
 - predicates:

```
<attribute> op <attribute> (e.g., salary < bonus)
OR
<attribute> op <constant> (e.g., name = `smith')
(op: <, <=, =, \neq, >=, >)
```

- Connectives of predicates: ∧ (and) and ∨ (or)
 - E.g.: name = 'Smith' ∧age = 20

Selection (O)

- Output of *selection* operator $\sigma_{\mathbf{p}}(\mathbf{r})$
 - Schema: the same as the schema of the input relation r
 - Instance:
 - It outputs the records that satisfy the selection condition.
 - Question: does the selection results contain duplicates?

Selection (σ) Example

Sid	Sname	Rating	Age
28	Yuppy	9	35
31	Lubber	8	- 55 -
44	Guppy	5	35—
58	Rusty	10	35

 $\sigma_{\text{rating}>8}(S2)$

Order between Selection (σ) and Projection (π)

- Projection π is always placed before selection σ .
- Format (put σ closest to r, and π farthest from r)

$$\pi_{A1, A2...Ak} \sigma_p(r)$$

• Evaluation order: selection σ first, projection π last.

Example of Selection (σ) and Projection (π) Together

Sid	Sname	Rating	Age
28	Yuppy	9	35
31	Lubber	8	55
44	Guppy	5	35
E 0	Ducty	10	
58	Rusty	10	35

$\sigma_{\text{rating}>8}(S2)$

Sname	Rating
Yuppy	9
Rusty	10

$$\pi_{\text{sname,Rating }\sigma_{\text{rating}}>8}(S2)$$

Example (I)

Bid	Bname	Color
101	Interlake	Blue
102	Interlate	Red
103	Clipper	Green
104	Marine	red

Boats

 Write the relational algebra expression to find the color of the boat named "Marine"

Example (II)

Sid	Sname	Rating	Age
22	Dustin	7	45
31	Lubber	8	55
58	Rusty	10	35

Sailor

- Write the relational algebra expression to find the name of the sailors whose rating is at least 8.
- Write the relational algebra expression to find the name and rating of the sailors whose rating is at least 8 and whose age is at most 40. 14

Union (U) and Set-Difference (-)

- Set operations take two input relations R1 and R2
- R1 and R2 must be <u>union-compatible</u>:
 - Union-compatible = same schema
 - Same number of attributes;
 - Corresponding attributes have the same data type.

Union (U)

• Notation: $R \cup S$

- Returns a relation instance containing all tuples that in either R or S (or both)
- Symmetry of U: R U S = S U R

Sid	Sname	Rating	Age	
22	Dustin	7	45	
31	Lubber	8	55	
58	Rusty	10	35	
S1				

Sid	Sname	Rating	Age
28	Yuppy	9	35
31	Lubber	8	55
44	Guppy	5	35
58	Rusty	10	35

Sid	Sname	Rating	Age
22	Dustin	7	45
31	Lubber	8	55
58	Rusty	10	35
28	Yuppy	9	35
44	Guppy	5	35

S1 U S2

S2

Set Difference (-)

- Notation: R S
- returns a relation instance containing all tuples that in R but not S.

Sid	Sname	Rating	Age
22	Dustin	7	45.0
31	Lubber	8	55.5
58	Rusty	10	35.5
S1			

Sid	Sname	Rating	Age
28	Yuppy	9	35.0
31	Lubber	8	55.5
44	Guppy	5	35.0
58	Rusty	10	35.5

S2

Sid	Sname	Rating	Age	
22	Dustin	7	45.0	
S1 – S2				

Sid	Sname	Rating	Age
28	Yuppy	9	35.0
44	Guppy	5	35.0

$$S2 - S1$$

Q1: Is there any duplicate in the set difference result?

Q2: Is the set difference (-) operator symmetric (i.e., R- S = S-R)?

Cross-Product (X) Operator

- Notation: R X S
- Output:
 - Schema: the attributes of R followed by the attributes of S, in order.
 - If R and S contain the same attribute A, the output schema includes both R.A and S.A
 - Instances in the output:
 - A Cartesian product of R and S
 - Pair each tuple of R with each tuple of S.
- S and R DO NOT have to be compatible
- Question: Will there be any duplicate in the crossproduct result?

Cross Product Example

Sid	Bid	day
22	101	10/10/96
58	103	11/12/96

R

Sid	Sname	Rating	Age
22	Dustin	7	45
31	Lubber	8	55
58	Rusty	10	35

S

Cross-Product

 Assume S contains n1 rows, and k1 attributes, and R contains n2 rows, and k2 attributes

• Questions:

- How many attributes are in S X R?
- How many tuples are in S X R?

Summary

Operator	# of input instances	Duplicates in output	Union- compatible	Symmetric
Projection	1	Υ	N/A	N/A
Selection	1	N	N/A	N/A
Union	2	N	Υ	Υ
Set difference	2	N	Υ	N
Cross- product	2	N	N	Υ