Two Checks of our solution
1) What is the total induced charge on the surface of the sphere?
Compute the induced charge density and show that its integral gives the right value
Uses:
$\int_{-1}^{1} P_{\varrho}(x) P_{\varrho}(x) dx = 2 \delta_{\varrho}$ $= 2 \delta_{\varrho}$
2) Also check that as r -> R the limit that the ring approaches the surface
is what you expect ie, a ring of negative charge, Sitting on the surface of the sphere
of the sphere

.

A. worked example pg.4
· The total induced charge on the surface of the sphere should be:
$-Q = -\lambda (2\pi\alpha)$
The induced charge 111 = n.E
Now with 1 = t and r = ro find; doit
$ \frac{\sigma = \frac{\partial \mathcal{Y}}{\partial r} = -\frac{Q}{4\pi R^2} \sum_{k} \frac{P_k(x) P_k(x)}{P_k(x)} \frac{(2l+1)}{(R)} \left(\frac{E_q}{R}\right)}{\frac{1}{R}} $
used $\lambda a = Q/2TT$
So integrating $Q_{ind} = \int R^2 d\Omega = R^2 \int dx \int d\phi = R^2 \int dx d\phi$
$= 2\pi R^{2} \int_{-1}^{1} \left[\frac{Q}{4\pi R^{2}} \sum_{k} \frac{P_{k}(x) P_{k}(x)}{\sqrt{R}} (x) \left(\frac{1}{R} \right)^{k} \right]$
Q ind = -Q Only l=0 contributes

A worked example pg. 3
The interaction energy :
$U_{int} = \frac{1}{2} \int_{3} \rho(\vec{r}) \Phi_{ind}(\vec{r})$
Where
$\overline{\Phi}_{ind} = \overline{\Phi}(\overrightarrow{r}) - \overline{\Phi}(\overrightarrow{r})$
potential w. out sphere
potential Just a ring of charge with sphere
$U_{0} = \frac{1}{2} \int_{0}^{\infty} p(r) \frac{\mathbf{T}}{2} (r)$
Van Compute To
is the energy requirem to
except Space.
$y_{out} = \binom{R}{r}$ instead of $y_{out} = \binom{R}{r} - \binom{r}{R}$
So
A. \
$\frac{\overline{P}}{P} = \sum_{k} \frac{\lambda_{k}}{2R} \frac{P_{k}(x) P_{k}(x)}{\left(\frac{\Gamma_{k}}{R}\right)^{k} \left(\frac{\Gamma_{k}}{\Gamma_{k}}\right)^{k+1}}$
and
$\frac{\Phi}{\ln d} = \Phi - \Phi = \sum_{n=1}^{\infty} \frac{\lambda_n P(x) P(x)}{2R} \left(\frac{r_n}{R}\right) \left(\frac{r_n}{R}\right) \left(\frac{r_n}{R}\right)$
·
$= \frac{\sum -\lambda a P_{\ell}(x) P_{\ell}(x) \left(\frac{\Gamma}{D^2}\right)^{\ell}}{2R} \leftarrow regular$

	A worked example pg.6	
	So Uint is using \(\lambda \)	a = Q/211
	$V_{int} = \frac{1}{2} \int_{\Gamma^2} d(\cos\theta) d\phi$	Q 1 S(r-r) S(cos0-cos0)
		χ Φ _{ind} (Γ,θ)
	Uint = I Q Ind (ro, Po)	_
-	$\frac{U_{\text{int}} = -Q^2}{8\pi R} \frac{\int P_{\ell}(x_0)}{2}$	$\frac{2}{R}$

Force

