Photonics

R. Baets - E. Bente

Semiconductor light sources – Part A

Optical properties of semiconductors

Photonics

Semiconductor materials in photonics

- Semiconductor materials form the basis for:
 - Light emitting diodes (LED)
 - Diode lasers
 - Optical detectors and Solar cells
- Semiconductor materials:
 devices for efficient conversion from electricity to light and vice versa.
- Semiconductor energy level structure:
 different from atoms, ions / molecules Discrete levels
 - → crystalline solid state: high number of discrete levels wide energy range
 - Difference in achieving population inversion pumping mechanism.

Content

- (Part A) Semiconductor materials
 - Energy level structure
 - Electrons and hole distribution over the energy levels
 - Optical gain, loss, refractive index
- (Part B) Role of pn-junctions and heterojunctions
- (Part C) Semiconductor light sources: Light emitting diode
- (Part D) Semiconductor light sources: Laser diode

Concepts semiconductor physics and devices

Assumption you know from: 5ECB0 Electronic circuits 1

Concepts assumed known:

- Electrons and holes
- Intrinsic and doped semiconductors
- Donor and acceptor concentration
- Electron and hole mobility
- Electron and hole diffusion

Concepts assumed to be new in this course:

- Bandgap
- Valence and conduction band
- Electron and hole recombination
- Electron and hole lifetime
- Direct and indirect bandgap
- Effective mass of electrons and holes
- Density of states
- Fermi level

In detail:

5XPB0 "Nanodevices and integration" B Q4 5CCA0 "Semiconductor physics and materials" M Q1

Semiconductors - chemical composition

- Covalent bonds: fill the last shell \rightarrow 8 electrons
- Group IV semiconductors: Si, Ge (4+4 e⁻)
- Binary semiconductors; two components
 - IV-IV: SiGe
 - III-V: GaAs, InP, GaN, InN (3+5 e⁻)
 - II-VI: CdTe, ZnSe,... $(2+6 e^{-})$
- Ternary semiconductors
 - III-V:Al_{1-x}Ga_xAs,
- Quaternary semiconductors

$$\blacksquare$$
 III-V:In_{1-x}Ga_xAs_{1-y}P_y, ...

	IIIa	IVa	Va	VIa
	В	С	N	0
IIb	Al	Si	P	S
Zn	Ga	Ge	As	Se
Cd	In	Sn	Sb	Те

Section of periodic system of elements

Typical crystal structure III-V semiconductors

The size of the unit cell of the crystal structure is characterized by a single number:

the lattice constant

 Given the crystal structure and the lattice constant one can calculate the position of each atom.

Energy band structure semiconductor

- The band diagram of the crystal: an isolator.
- Energy bands formed by a large number of discrete bound states for electrons in the material. (Quasi-continuum)
- Conduction band: no electrons at Temperature = 0 K
- The Valence band: states completely filled at T = 0 K

Photonics

Energy band structure semiconductor

- In semiconductor: Bandgap E_g relatively small: thermal energy excites a few electrons from Valence band to the Conduction band
- At T > 0 Electrons in conduction band:
 some conductivity (<u>highly temperature dependent</u>)
 -> semiconductor
- Electrons promoted to the conduction band:
 <u>open position</u> in the Valence band
 Provides conductivity:
 - Hole
 - = Quasi-particle positively charged

Only consider the top of VB and bottom of CB

Carrier concentrations in intrinsic semiconductors

- Electrons and holes are named: charge carriers; or for short carriers
- Concentration electrons in conduction band: n_i
- ullet Concentration holes in valence band: p_i

Intrinsic = pure material

Electrons promoted to conduction band-> a hole in the valence band:

$$n_i = p_i \qquad n_i \cdot p_i = n_i^2$$

 The electrons and holes created by temperature will be neglected when <u>optical properties</u> of intrinsic materials are discussed

Electrons: Effective mass, density of states conduction band

- Model: Electrons in CB and holes in VB **move** as free particles (compare with 3D cube quantum model)
- The difference with a free particle is the mass:
 - The electrons have an **effective mass** m_n^*
 - The **effective mass** depends on the material e.g. in GaAs: $m_n^* = 0.067 \times m_0$ (m₀ is rest mass electron)
- Lowest energy levels/states for electrons in CB
 - **Density** of states for electrons $g_c(E)$ in CB (similar to 3D cube)

$$g_c(E) = \frac{4\pi (m_n^*)^{3/2}}{h^3} \sqrt{E - E_c} \quad E - E_c > 0$$

- # of states per unit volume in CB in a small energy interval at ΔE energy $E:~g_c(E)\cdot \Delta E$
- # of states per unit volume in CB between energy E_1 and energy E_2 : $\int_{E}^{E_2} g_c(E) \cdot dE$ 10

Holes: Effective mass, density of states valence band

- The holes in the valence band each have an **effective mass** m_p^*
- Highest energy levels/states for holes in valence band
 - Density of states for holes in VB (similar to 3D cube)

$$g_v(E) = \frac{4\pi (m_p^*)^{3/2}}{h^3} \sqrt{E_v - E} \qquad E_v - E > 0$$

ullet # of states per unit volume in the VB in a small energy interval at ΔE energy $E:~g_{m v}(E) \cdot \Delta E$

• # of states per unit volume in the VB between energy E_1 and energy E_2 : $\int_{E_1}^{E_2} g_v(E) \cdot dE$

Electrons and holes: energy, momentum and wavelength

ullet electrons in CB moving through crystal as free particles with effective mass m_n^* :

Momentum:
$$|\vec{p}| = m_n^* \cdot |\vec{v}| = \hbar \cdot k = \frac{h}{\lambda}$$

All energy over E_c is kinetic energy

Energy:
$$E - E_c = \frac{1}{2} m_n^* v^2 = \frac{p^2}{2 \cdot m_n^*} = \frac{\hbar^2 k^2}{2 \cdot m_n^*}$$

• holes in VB moving through crystal as free particles with effective mass m_p^* :

Momentum:
$$|\vec{p}| = m_p^* \cdot |\vec{v}| = \hbar \cdot k = \frac{h}{\lambda}$$

All energy below E_c is kinetic energy

Energy:
$$E_v - E = \frac{1}{2} m_p^* v^2 = \frac{p^2}{2 \cdot m_p^*} = \frac{\hbar^2 k^2}{2 \cdot m_p^*}$$

Light absorption in semiconductors

- Photon energy << Bandgap: little absorption</p>
- Photon energy ~ Bandgap: large increase in absorption
 - Electrons from valence band are excited to conduction band

k-vector of the electron stays the same.

- Conservation of momentum
- Direct bandgap:

Minimum CB at same k value as maximum VB in E-k diagram

Generation/recombination of excess carriers

- Carrier concentrations can be made much higher than thermal equilibrium values → excess carriers
- <u>Excess</u> electrons fill the states in the CB from the bottom of the CB
 <u>Excess</u> holes fill the states in the VB from the top of the VB
- Origin of excess carriers:
 - Injection of carriers (current, using diode structure)
 - Absorbing photons $h \nu \ge E_g$
- Excess carrier concentrations (electrically neutral) $\delta n = \delta p$
- No thermal equilibrium between CB and VB population however:
 - thermal equilibrium within CB and VB (quasi equilibrium)

Excess electron-hole recombination

Recombination:

The non-equilibrium situation will relax to equilibrium.

- Recombination rate for excess electrons and holes is the same
- -> lifetime of excess electrons and holes is the same

Excess electron-hole recombination processes – non radiative

- Recombination electron and hole
 - Non-radiative processes
 - At crystal defects (contaminations, lattice defects, surfaces)
 - These create states in the bandgap (trap states)
 - Three carrier collisions
 - Energy transferred to a different electron or hole:
 Auger recombination
 - A phonon (lattice vibration): via defects or surface states
 - Total nonradiative recombination rate U_{nr} # recombinations m⁻³s⁻¹

Excess electron-hole recombination processes - radiative

- Energy released with spontaneous recombination event
 - As a photon: \rightarrow <u>radiative</u> recombination U_r
- Radiative processes
- Spontaneous recombination and emission of photon
- <u>Stimulated recombination</u> and emission of a photon

k-vector of the electron and hole

must be the same – direct band gap

- Total recombination rate $U = U_r + U_{nr}$
- Lifetime of electron/hole: average time that a charge carrier stays in an excited state before recombining
 - Recombination process with shortest lifetime dominates

$$U \sim \frac{1}{\tau_{p,n}}$$

Direct and indirect bandgap - recombination of carriers

Direct bandgap transition

Radiative recombination usually dominates

Indirect bandgap transition

- Radiative recombination improbable: photon can not take mismatch in k (momentum)
- Difference in k-vector is compensated by phonon or third particle.
- Non-radiative processes dominate recombination in indirect bandgap semiconductors: e.g. Si

Types of semiconductor

- Classification according to
 - Chemical composition
 - single element, binary, ternary, ... semiconductors
 - Band structure
 - Direct or indirect bandgap, size of bandgap
 - Doping
 - Intrinsic, p or n-type doping, control of conductivity by electrons or holes

Bandgap – lattice constant – semiconductors

Böer, K.W., Pohl, U.W. (2023). Bands and Bandgaps in Solids. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-031-18286-0_8

Lattice constant: size of cube shaped unit cell in the crystal

Ternary material on lines between binary materials

Light absorption in semiconductors

Direct band structure: sudden increase of absorption

Indirect band structure: slow increase of absorption

Ge 0.66 eV => 1879 nm

Ge is close to direct bandgap

Intrinsic semiconductor – excess electrons in the CB

- We now know the where the energy levels are. Question: which levels in the CB will excess electrons occupy?
 - Thermal distribution within CB (quasi equilibrium)

Probability of finding an energy level occupied at energy E:

$$f_c(E) = \frac{1}{\exp\left(\frac{E - E_{Fn}}{k_B T}\right) + 1}$$
 (Fermi-Dirac distribution, eq.10.19)

 E_{Fn} is the **quasi-Fermi** energy for the CB

Number of electrons in the CB per unit volume per unit energy:

$$N(E) = f_c(E) \cdot g_c(E)$$

Total number of electrons in the CB per unit volume in thermal equilibrium:

$$\delta \mathbf{n} = \int_{E_c}^{\infty} f_c(E) \cdot g_c(E) \cdot dE$$
Neglect intrinsic carrier concentration

Intrinsic semiconductor - excess holes in the VB

- We now know the where the energy levels are.Question: which levels in the CB will excess electrons occupy?
 - Thermal distribution within CB (quasi equilibrium)

Probability of finding an energy level occupied at energy E:

$$f_{v}(E) = \frac{1}{\exp\left(\frac{E - E_{Fp}}{k_{B}T}\right) + 1}$$
 (Fermi-Dirac distribution, eq.10.19)
$$E_{Fp} \text{ is the } \frac{\text{quasi-Fermi}}{\text{energy for the VB}}$$

• Number of holes in the VB per unit volume per unit energy:

$$P(E) = (1 - f_v(E)) \cdot g_v(E)$$

Total number of holes in the CB per unit volume in thermal equilibrium:

$$\delta p = \int_{-\infty}^{E_c} (1 - f_v) \cdot g_v(E) \cdot dE \qquad \text{Remember} \quad \underline{\delta p = \delta n}$$

This links the two quasi-Fermi energy values E_{Fp} and E_{Fn} .

Example 14.1 - Excess electrons in GaAs

GaAs semiconductor material (intrinsic)

Bandgap:
$$E_g = 1.42 \ eV = 2.275 \cdot 10^{-19} J$$

Bottom CB: $E_c = 1.42 \ eV$

Top VB:
$$E_v = 0.0 \ eV$$
 $T = 300 \ K$

effective mass
$$m_n^* = 0.067 \cdot m_0$$

effective mass $m_p^* = 0.46 \cdot m_0$
 $m_0 = 9.1 \cdot 10^{-31} kg$

Assume e.g.

$$E_{Fn} = 1.491 \ eV$$
 $\delta n = \int_{E_c}^{\infty} f_c(E) \cdot g_c(E) \cdot dE$

numerical calculation: $\delta n = 6.16 \cdot 10^{23} \ m^{-3}$

concentration and quasi-Fermi level linked

Example 14.1 GaAs excess holes

GaAs semiconductor material (intrinsic)

Bandgap:
$$E_g = 1.42 \ eV = 2.275 \cdot 10^{-19} J$$

Bottom CB: $E_c = 1.42 \ eV$

Top VB:
$$E_v = 0.0 \ eV$$
 $T = 300 \ K$

effective mass $m_n^* = 0.067 \cdot m_0$ effective mass $m_p^* = 0.46 \cdot m_0$ $m_0 = 9.1 \cdot 10^{-31} kg$

$$\delta p = \delta n = \int_{-\infty}^{E_c} (1 - f_v(E)) \cdot g_v(E) \cdot dE$$

$$\delta p = \delta n = 6.16 \cdot 10^{23} \, m^{-3}$$

 $E_{Fp} = 0.037eV$ Just above E_v follows from:

Example 14.1 - GaAs thermal equilibrium

GaAs semiconductor material (intrinsic)

Bandgap:

$$E_g = 1.42 \ eV = 2.275 \cdot 10^{-19} J$$

<u>In thermal equilibrium</u> (no excess carriers):

$$E_{fp} = E_{fn} \quad E_f = 0.74735 \text{ eV}$$

$$n_i = \int_{E_c}^{\infty} f_c(E) \cdot g_c(E) \cdot dE$$

$$n_i = p_i = 7.7 \cdot 10^{11} \ m^{-3}$$

This is a small number compared to the total number of (outer) electrons per unit volume in the material.

Condition for optical gain: Population-inversion

- To achieve population inversion in intrinsic material
 - Conduction band strongly filled = many free excess electrons
 - Valence band relatively empty = many free excess holes
- Pumping excess carriers in material:
 - Optically
 - Electrically: p-i-n double heterojunction: in forward bias current
- CB and VB out of thermal equilibrium
 - Quasi Fermi level E_{fn} for electrons in CB
 - Quasi Fermi level E_{fp} for holes in VB
- Question? what is the concentration of excess carriers needed to achieve inversion / optical gain for a transition between levels at E_1 and E_2 with the same k

Probabilities finding excess electrons and holes

• Probability finding an electron at energy E_2 in conduction band:

$$f_c(E_2) = \frac{1}{\exp\left(\frac{E_2 - E_{Fn}}{k_B T}\right) + 1}$$

• Probability of finding a hole at energy E_1 in valence band: = probability of not finding an electron at E_1 :

$$1 - f_v(E_1) = 1 - \frac{1}{\exp\left(\frac{E_1 - E_{Fp}}{k_B T}\right) + 1}$$

Optical gain in a semiconductor- Absorption rate

Absorption rate:

$$R_{ab} = B_{12} \cdot f_v(E_1) \ g_v(E_1) \cdot \left(1 - f_c(E_2)\right) g_c(E_2) \cdot \rho_p(E_2 - E_1)$$

 B_{12} Einstein coefficient - transition probability for absorption

 $f_c(E_2)$ Fermi distribution quasi Fermi level E_{Fn}

 $f_v(E_1)$ Fermi distribution quasi Fermi level E_{Fp}

 $g_v(E_1)$ $g_c(E_2)$ Density of states valence band at E_1 , conduction band at E_2

 $\rho_p(E_2-E_1)$ Density of photons with correct energy E_2 - E_1

Spontaneous and stimulated emission rates

Spontaneous emission rate

$$R_{sp} = A_{21} \cdot f_c(E_2) \ g_c(E_2) \cdot (1 - f_v(E_1)) \ g_v(E_1)$$

 A_{21} Einstein coefficient - transition probability for spontaneous emission

Stimulated emission rate

$$R_{st} = B_{21} \cdot f_c(E_2) g_c(E_2) \cdot (1 - f_v(E_1)) g_v(E_1) \cdot \rho_p(E_2 - E_1)$$

 B_{21} Einstein coefficient - transition probability for stimulated emission

Condition for optical gain

Rate for stimulated emission > Rate for absorption $R_{st} > R_{ab}$

$$B_{21} \cdot f_c(E_2) g_c(E_2) \cdot (1 - f_v(E_1)) g_v(E_1) \cdot \rho_p(E_2 - E_1) > B_{12} \cdot f_v(E_1) g_v(E_1) \cdot (1 - f_c(E_2)) g_c(E_2) \cdot \rho_p(E_2 - E_1)$$

$$f_c(E_2) \cdot (1 - f_v(E_1)) > f_v(E_1) \cdot (1 - f_c(E_2))$$

Substituting the Fermi functions leads to the condition:

$$E_{Fn} - E_{Fp} > (E_2 - E_1) \ge E_g$$

Net optical gain when: quasi-Fermi levels are separated by more than the band gap:

inversion condition for semiconductors

- Transparency if $E_{Fn} E_{Fp} = E_g$ Gain if $E_{Fn} E_{Fp} > E_g$
 - Excess electron and hole concentration: $\delta n = \delta p = n = p \sim 2.10^{18}$ cm⁻³
- Photon energy from E_G to a bit above

Optical gain calculation - principle

Net rate of amplification is: $R_{net} = R_{st} - R_{ab}$

$$R_{net} = B_{21} \cdot g_c(E_2) g_v(E_1) \cdot (f_c(E_2) - f_v(E_1)) \cdot \rho_p(E_2 - E_1)$$

The density of states for the carriers.

Determined by material and its structure

The density of photons.

In a laser:

Determined by the

laser cavity

Structuring at the level of the electron wavelength influences the density of states

Structuring at the level of a fraction of the scale of the wavelength of light

The optical gain:
$$g_{mat} = \frac{B_{21}}{v_g} g_c(E_2) g_v(E_1) \cdot \left(f_c(E_2) - f_v(E_1)\right)$$

 v_g is the group velocity of the light

Stimulated emission in semiconductors

- Population inversion
 - Many excess holes in valence band
 - Many excess electrons in conduction band
 - No thermal equilibrium $\delta n = \delta p$
- Stimulated emission > absorption
 - Occurs when $\hbar\omega > E_G$
- Gain (for real amplifier InGaAsP structure)
 - Order of magnitude: 100 cm⁻¹
 - Much smaller than α for large photon energy

Refractive index of semiconductors

- High refractive index
 - n = 3.0 4.0
 - Large bandgap => low n
 - n = wavelength dependent (dispersion)
 - Increases with photon energy
- Refractive index peak at bandgap
 - Change in absorption also changes the refractive index (K-K)
- Example. Al_xGa_{1-x}As
 - n decreases for increasing x

Influences on optical properties of semiconductors

- Refractive index n can be influenced by
 - Temperature (thermo-optic effect)
 - Electron and hole concentration (the gain and absorption curve, plasma effect,...)
 - Static electric field (Pockels effect, Kerr effect, Stark effect)
 - \blacksquare mechanical deformation \rightarrow stress
- The bandgap also depends on these parameters: influence on absorption and hence refractive index
- Anisotropy of crystal structure
 - Properties depend on polarization and direction of light

Photonics

R. Baets - E. Bente

Semiconductor light sources – Part B

PN-junctions Light emission from pn-junctions

Content

- How to achieve high excess carrier concentrations?
 - pn-junction and heterojunctions (also useful for detectors)
- Semiconductor material systems

Doped semiconductors - n doping - in equilibrium

- Add low concentration of atoms with a weakly bound outer electron.
- Thermal equilibrium
 - electron concentration in CB up
 - Hole concentration in VB down
- Fermi-level goes up!
- Doping concentration higher than intrinsic material
 - conductivity up

$$n_0 > p_0$$

$$n_0 > p_0 \qquad n_0 \cdot p_0 = n_i^2$$

 n_i is the carrier concentration in intrinsic (undoped material)

Doped semiconductors - p doping - in equilibrium

- Add low concentration of atoms that can bind a free electron.
- Thermal equilibrium
 - electron concentration in CB down
 - Hole concentration in VB up
- Fermi-level goes down!
- Doping concentration higher than intrinsic material
 - conductivity up

$$n_0 < p_0 \qquad n_0 \cdot p_0 = n_i^2$$

Relevance of the Fermi-energy level

In thermal equilibrium the Fermi-energy is a constant in the system!

The pn-junction

- p-type semiconductor: high concentration of holes p
- n-type semiconductor:high concentration of electrons n
- typical doping density : $10^{17}/\text{cm}^3 10^{19}/\text{cm}^3$

 N_a acceptor doping concentration N_d donor doping concentration

Balance between diffusion forces and electric field

Built-in potential barrier of the pn-junction

No applied voltage – thermal equilibrium => Fermi-level is constant

$$V_{bi} = |\phi_{Fn}| + |\phi_{Fn}|$$

$$V_{bi} = \frac{kT}{e} ln \left(\frac{N_a N_d}{n_i^2} \right)$$

 n_i is the carrier concentration in intrinsic (undoped material)

 N_a is the p doping concentration

 N_d is the n-doping concentration

Charge distribution and electric field in the depletion region

• Relation between potential $\phi(x)$, charge density $\rho(x)$ and electric field E(x):

$$\frac{d^2\phi(x)}{dx^2} = -\frac{\rho(x)}{\epsilon_S} = -\frac{dE(x)}{dx}$$

The amount of charge at both sides of the junction is equal:

$$N_d x_n = N_a x_p$$

Potential in the pn-junction

The electrical potential φ across the junction (proportional to energy of positive unit charge)

$$V_{bi} = |\phi(x = x_n)| = \frac{2}{2\varepsilon_S} \left(N_d x_n^2 + N_a x_p^2 \right)$$

The energy of electrons across the junction (energy of negative unit charge) in the CB and VB

band bending

pn-junction - Reverse and Forward bias

I-V characteristic of a pn-junction

Shockley-equation

$$J = J_S \left[exp \left(\frac{eV_a}{k_B T} \right) - 1 \right]$$

$$J_S = e \left(\frac{D_n n_{p0}}{L_n} + \frac{D_p p_{n0}}{L_p} \right)$$

- J_S is the ideal saturation current density
- D_n, D_p electron, hole diffusion coefficient
- L_n, L_p electron, hole diffusion length
- n_{p0} thermal equilibrium electron concentration in p doped region
- \bullet p_{n0} thermal equilibrium hole concentration in n doped region

Current density in pn-junction under forward bias

• Depletion layer $(-x_p \text{ to } x_n)$: carriers move fast due to strong electric field constant current density + high speed -> low carrier density

Current density in pn-junction under forward bias

• p-region (x < -x_p): injected excess electrons recombine with majority holes over region of length \sim L_n \gg W

Current density in pn-junction under forward bias

• n-region (x < -x_p): injected excess holes recombine with majority electrons over region of length \sim L_p \gg W

Light emission and gain in pn-junction?

- Excess electron-hole recombination mainly in p or n region
 - Doping (p and n) increases absorption significantly!
 - The free carriers can absorb light
 - ideally: Recombination in undoped (intrinsic) material
- Recombination spreads out over diffusion length
 - difficult to achieve sufficient concentration of excess carriers to achieve transparency and gain
- Solution: use the double heterostructure

Heterojunction – single

- Heterojunction: two different materials => different bandgap $E_{g1} > E_{g2}$
 - Current carried by electrons on n-side
 by holes on the p-side
 holes are stopped at pn-junction by potential barrier
 electrons are injected into the p region
 - Recombination on the side with the smallest bandgap
 - Light not absorbed on n-side
 - Light generated in doped material (absorption) over diffusion length

Photonics

Double heterojunction - carrier confinement

- Heterojunction: two different materials => different bandgap $E_{g1} > E_{g2}$
- Double heterojunction pin-structure:
 - middle layer has smallest bandgap
 - middle layer is undoped intrinsic materialthin (e.g. 100nm)
 - Holes injected into middle layer from p-doped layer
 - Electrons injected into middle layer from n-doped layerhigh concentration of excess carriers
 - Electrons and holes captured in potential well in Material 2
 - Recombination, light generation in thin middle layer that is undoped (intrinsic)
 - Doped layers are transparent to light generated in middle layer.

Double heterostructure - waveguiding

- Heterojunction: two different materials => different bandgap $E_{\rm g1}$ > $E_{\rm g2}$
- Material with higher band gap -> lower refractive index -> Heterojunction structure forms <u>a waveguide</u>!

Example GaAs –
$$Al_xGa_{1-x}As$$

 E_g GaAs = 1.424 eV => λ = 871 nm

Semiconductor materials for heterojunctions

Materials with different bandgap stacked

->
same lattice constant
required for growth of
single crystalline
materials

Materials growth is started from primary or binary semiconductors

Böer, K.W., Pohl, U.W. (2023). Bands and Bandgaps in Solids. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-031-18286-0_8

GaAs-AlGaAs

(5) (PDF) III-V compounds for solar cell applications (researchgate.net)

- Lattice constant GaAs AlGaAs only 0.12% difference
- Material $Al_xGa_{1-x}As$ has direct bandgap for 0 < x < 0.45
- Important for 870 720nm
 e.g. pump diodes at 808 nm

One Ångstrom (Å) = 10^{-10} meter

GaN-AIN-InN

- Quarternary semiconductors cover surface in diagram
- Material system GaN Ga_xIn_{1-x}N for solid state lighting
- Most efficient for 400-390 nm

(Extracted from E. F. Schubert, Light-Emitting Diodes. Cambridge University Press, 2006).

$InP - In_{1-x}Ga_xAs_{1-y}P_{1-y}$

- Quarternary semiconductors cover surface in diagram
- Notice X and Y axis exchanged
- Material system InP $In_{1-x}Ga_xAs_{1-y}P_{1-y}$ for tele and data communication
- Wavelengths from 1200 1640 nm can be realized lattice matched to InP

$GaSb - Ga_xIn_{1-x}As_ySb_{1-y}$

Origin: Chegg.com

- Quarternary semiconductors cover surface in diagram
- System GaSb Ga_xIn_{1-x}As_ySb_{1-y} for gas detection – remote sensing
- Wavelengths from 2000 3000 nm can be realized lattice matched to GaSb
 - Sb = Antimony

Next: semiconductor-based devices

Photonics

R. Baets - E. Bente

Semiconductor light sources - Part C

LED's

Photonics

Semiconductor light sources

- LEDs
 - Lighting
 - Displays
 - Short range communication (fibre free space (LiFi)
- Laser diodes
 - Pump laser (e.g. for TiSa laser, fibre laser)
 - BluRay-player, PC-mouse, supermarket checkout
 - Optical communications fibre free space
 - LIDAR
 - Medical applications
 - Lighting
 - Manufacturing (e.g. soldering)

Radiative recombination in LED

- light emission: photon energy ~ just over bandgapcolor depends on material composition
 - => spontaneous emission spectrally wide, determined by distribution of carriers over the ban
- Internal efficiency η_i
 - Fraction of electron hole pairs that recombine to produce a photon – material crystal quality
 - Can be close to 100% for infrared LEDs
 - Efficiency cab decrease at shorter wavelengths (green, blue)
 GaN blue LED can achieve 90%

 $GaAs_{1-x}P_x$ → IR, red to green Nitrides → green to blue, UV

LED-materials

λ (nm)	Color	Material	Application
1000-1600	IR	$In_xGa_{1-x}As_yP_{1-y}$	fiber communication
850-900	IR	GaAs	remote control
650	red	GaAs ₆₀ P ₄₀ , InGaP	displays
620	orange	GaAs ₃₅ P ₆₅ :N, InAlGaP	displays
590	yellow	GaAs ₁₅ P ₈₅ :N	displays
570	green	GaP:N	displays
280-500	Blue/UV	InGaN	lighting – displays

Typical LED output spectra

After Toyoda Gosei Corp., 2000 (rpi.edu)

Internal quantum efficiency

• Definition η_i : the number of emitted photons per e-h pair U_r e-h recombination rate per unit volume for radiative recombination U total e-h recombination rate per unit volume

• Photon flux Φ_i generated in volume V in which e-h recombine

$$\Phi_i = U_r V$$
 \longrightarrow $\Phi_i = \eta_i GV$

- G: electron-hole generation per time- and volume unit F Current injection I: $G = I/(e \cdot V)$
- lacksquare steady state situation: total recombination rate $\,=\,$ injection rate $\,G\,=\,U\,$

Photonics

Semiconductor light sources

Extraction efficiency (1)

- Extraction efficiency η_e
 - emission to substrate
 - total internal reflection
 - reflection on top-electrode
 - mostly < 1%
- Lambertian emitter:
 - isotropic radiation in LED
 - strong refraction on a flat surface

External quantum-efficiency η_{ex} = ratio between number of photons leaving the LED and number of injected electrons

$$\eta_{ex} = \eta_e \eta_i$$

$$\Phi_0 = \eta_e \Phi_i = \eta_e \eta_i \frac{I}{e} = \eta_{ex} \frac{I}{e}$$

with I the current through the pn junction $\Phi_0\,$ the number of photons per second emitted

Extraction efficiency (2)

 Improving extraction: integrate LED in transparent polymer material with high refractive index and curved surface

less TIR

Works as collimating lens

Often used in display LEDs

Thin GaN LED structure

From: Optical Design for LED Solid-State Lighting A guide Ching-Cherng Sun and Tsung-Xian Lee

- Substrate can be sapphire (Al₂O₃), SiC
 Special techniques are applied to deal with lattice mismatch (16% for Al₂O₃).
- LED can be bonded to silicon or metal substrate for good thermal and electrical conductivity
- Surface texture to reduce TIR effects
- Fluorescent phosphor can be applied to top change colour of light

Photonics

Ways to generate white light

From: Optical Design for LED Solid-State Lighting A guide Ching-Cherng Sun and Tsung-Xian Lee

 Phosphor on top of LED – inorganic photoluminescent material (fluorescence – excitation blue / UV - emission longer wavelengths)

Mid-power SMD LED

Sideways emitting LED

- LED in waveguide structure: part of the light is guided by waveguide
- Light has a long path though active, light generating material must be above transparency
- There can be no cavity (as with laser diodes): mirror effect of facets needs to be suppressed
- Much larger radiance:
 - Same extraction efficiency
 - Small radiating surface
- Superluminescent operation high current
 - =>Stimulated emission is important
 - => Amplification of spontaneously emitted light
 - narrower spectrum
 - higher efficiency

LED Modulation bandwidth

Transfer of current variation to light variation (Response)

$$R(f) = \frac{\Delta P}{\Delta I} = \frac{R(0)}{\sqrt{1 + 4\pi^2 f^2 \tau^2}}$$

with ΔI the modulation amplitude of the electrical current (sinusoidal at frequency f) and ΔP the amplitude of the modulation of the optical power f_2

electrical 3 dB bandwidth

$$R(f_{3dB}) = \sqrt{0.5}$$
 $f_{3dB} = \frac{1}{2\pi\tau}$

- with τ the lifetime of the carriers: In semiconductors: $\tau \sim \text{ns} => f_{3dB} = 50 - 100 \text{ MHz}$
- In practice often the capacity of the LED also limits the bandwidth

LEDs vs. laserdiodes

- LEDs
 - Low radiance
 - Low modulation bandwidth
 - Broad spectrum (sometimes that is good)
 - + cheaper
 - + reliable (up to 100,000h lifetime)
 - + efficiency and size compared to other lighting technology
 - + good in applications where low time coherence is important (no speckle)

Excercise: LED

- consider a double hetero junction LED n-InP/InGaAs/p-InP with the following properties:
- bandgap InP: 1.3 eV InGaAs: 0.8 eV
- radiative carrier lifetime τ =1.20 ns
- Area 1x1mm²
- Recombination takes place in the 100nm thick InGaAs layer
- extraction efficiency $\eta_e = 0.05$, internal efficiency $\eta_i = 0.25$
- What is the emission wavelength λ_0 (vacuum wavelength)?
- What is the 3db bandwidth f_{3db}?
- What is the radiant excitance Me of the LED at 100mA current?

Photonics

R. Baets - E. Bente

Semiconductor light sources - Part D

Laser diodes

Double heterojunction-laser - example GaAs-AlGaAs

• Thin active GaAs layer $(0.2 \mu m)$ intrinsic material; cladding p/n-doped

- Active layer:
 - higher refractive index → optical confinement
 - lower $E_{gap} \rightarrow charge confinement$
 - high population inversion at optical mode position
- Resonator
 - Cleaved facets at ends act as mirrors
 - Light in waveguide
- → Typical current density for transparency (500 A/cm²)

Double heterojunction-laser - example GaAs-AlGaAs

threshold= 10-20 mA

Example - current for transparency in GaAs laser (1)

Estimate current: GaAs transparent for light at $\lambda = 835 \ nm$. GaAs semiconductor material (intrinsic)

Bandgap: $E_g = 1.42 \ eV \rightarrow \lambda_g = 873 \ nm$

Bottom CB: $E_c = 1.42 \ eV$

Top VB: $E_{v} = 0.0 \ eV$ $T = 300 \ K$

Condition gain: $E_{Fn} - E_{Fp} \ge E_{ph}$

Transparency at: $E_{Fn} - E_{Fp} = E_{ph} = E_2 - E_1$

Calculate (excess) carrier concentration for transparency: Find E_{Fn} and $E_{Fp} = E_{Fn} - E_{ph}$ such that:

$$\delta n = \int_{E_c}^{\infty} f_c(E) \cdot g_c(E) \cdot dE = \delta p = \int_{-\infty}^{E_c} (1 - f_v(E)) \cdot g_v(E) \cdot dE$$

Calculation numerical for exact solution
Using approximations analytical solution possible.

Example - current for transparency in GaAs laser (2)

Solution for is $E_{Fn} = E_g + 0.09236 \ eV = 1.51236 \ eV \Rightarrow E_{Fp} = E_{Fn} - E_{ph} = 0.02752 \ eV$

$$\delta p = \delta n = 8.53 \cdot 10^{23} \, m^{-3}$$

Example - current for transparency in GaAs laser (3)

Excess carrier concentration in GaAs semiconductor material $\delta p = \delta n = 8.53 \cdot 10^{23} \ m^{-3}$ (intrinsic) needed for transparency:

If carrier lifetime is : $\tau = 5 \cdot 10^{-9}$ s (usually this is not known accurately)

In steady state: $\frac{\delta n}{\tau} = 1.71 \cdot 10^{32} \ m^{-3} s^{-1}$ Injected carriers needed to reach $\delta p = \delta n$

Injected current: $I_T = \frac{\delta n}{\tau} \cdot Volume \cdot e = 8.2 \, mA$ Volume= 0.2 µm x 5 µm x 300 µm = 3·10⁻¹⁶ m³

Current density needed for transparency:

$$J_T = \frac{I_T}{l_{GaAs} \cdot w_{GaAs}} \cdot Volume \cdot e = 547 \frac{A}{cm^2}$$

Amplification

• Simple phenomenological expression for amplification g(J) at peak gain wavelength λ_p as a function of electrical injection current density

$$g(J) = \alpha \left(\frac{J}{J_T} - 1 \right)$$

- I = I J = injected current density
- $I_T = I_T = I_T$
- α = absorption without injection

Lasing condition

- Mirrors: facets cleaved along crystal planes
- Reflectivity value $R = \left(\frac{n-1}{n+1}\right)^2$ e.g. GaAs (n=3.6) => R=0.32
- Gain compensates resonator losses
 - Light scattering loss in the amplifier: α_s loss per unit length
 - Transmission of the cleaved facets (mirror reflectivities R_1 , R_2)
- Threshold condition gain: $g_{th} = \frac{1}{2L} \ln \left(\frac{1}{R_1 R_2} \right) + \alpha_S$ See exercise laser Ch13

define
$$\alpha_m \equiv \frac{1}{2L} \ln \left(\frac{1}{R_1 R_2} \right)$$
 Mirror losses expressed as "loss per unit length"

$$g_{th} = \alpha_r \equiv \alpha_m + \alpha_S$$
 all cavity losses: α_r

• Threshold current density: $g_{th} = \alpha_r = \alpha \left(\frac{J_{th}}{J_T} - 1 \right) \Rightarrow J_{th} = \frac{\alpha_r + \alpha}{\alpha} J_T$

material absorption

Laser diode characteristics (1)

Photon flux in the laser Φ with the current $i = J \cdot A$

$$\Phi = \begin{cases} \eta_{in} \frac{i - i_{th}}{e} & i > i_{th} \\ 0 & i < i_{th} \end{cases} \quad \begin{array}{l} i_{th} = J_{th} \cdot A & \text{Compare with (13.1)} \\ \text{Compare with (13.1)} \\ \text{Internal quantum efficiency } \eta_{in} \end{cases}$$

$$i_{th} = J_{th} \cdot A$$
 Compare with (13.36)

Internal laser power

$$P = \eta_{in}(i-i_{th})rac{h v}{e}$$
 collecting light through both mirrors

Extraction efficiency

$$\eta_e = \frac{\alpha_m}{\alpha_m + \alpha_S} = \frac{\alpha_m}{\alpha_r} = \frac{1}{\alpha_r 2L} ln \left(\frac{1}{R_1 R_2}\right)$$

Emitted power

$$P_0 = \eta_d (i - i_{th}) \frac{h\nu}{e}$$

with $\eta_d = \eta_{in}\eta_e$ the external differential quantum efficiency

Laser diode characteristics (2)

Differential efficiency

$$\Re_d = \frac{dP_0}{di} = \eta_d \frac{h\nu}{e}$$

Global efficiency

$$\eta = \frac{P_0}{P_{el}} = \eta_d \left(1 - \frac{i_{th}}{i} \right) \frac{h\nu}{eV}$$

with

$$P_{el} = i \cdot V$$

(optical output power ratio to electrical input power i·V)

Example graph optical output power vs electrical input power.

https://www.newport.com/t/laser-diode-technology

Question

https://www.newport.com/t/laser-diode-technology

- Assume the data presented are from a GaAs laser
 - Calculate the transparency current and current density for this laser.
 - Comment on the difference between the transparency and threshold current. Discuss possible causes for the difference?

Modes in the DH-laser

- Cavity formed by waveguide
 - → no Gaussian beams
 - → output beam quality depends on waveguide
- Lateral-transversal modes:Often possible to isolate one mode
 - dimensions → V parameter
 - Index contrast
- Longitudinal modes:
 - short cavity → large mode spacing
 - Band structure → broad gain spectrum
 - → Still multiple modes
 - → use filters / dispersive elements

VCSEL

- Vertical cavity surface emitting laser
 - Make the cavity very short-> mode spacing larger than gain bandwidth->only one longitudinal mode is supported.

- Advantages:
 - compact very short cavity
 - low threshold
 - wafer testable
 - cheaper
 - dense 2D arrays
 - circular light beam fibre coupling
 - single frequency low noise
- Difficulties:
 - high reflectivity mirrors
 - series resistance in mirror
 - current flow guiding

Semiconductor lasers vs. other

Semiconductor

- Band structure
- Semiconductor cavity with flat mirrors
- Very small dimensions (<mm)
- Diffraction limited beam, but large divergence angle (good spatial coherence)
- Multiple longitudinal modes (bad temporal coherence)
- Energy consumption to make laser transparent

Gas/Solid-state lasers

- Discrete levels
- Separate spherical mirrors
- Bulky (cm-m)
- Smaller diffraction angle
- Can easily be made single mode
- High power applications (kW)
- High peak power
- Smallest linewidths

Photonics

Advantages of laser diodes

- Compact (can be packaged as electronic component)
- Simple electrical pumping: low currents / voltages
- Large modulation bandwidth (GHz) (short photon/gain lifetime)
- High efficiency (10%-50%)
- Large gamma of materials: different wavelengths
- Tunable

VCSEL: problem

VCSEL:

Vertical Cavity Surface Emitting Laser

- Semiconductor laser $l_0=850$ nm
- Gain area: Quantum Wells (L=2l/n)
- Mirror: Distr. Bragg Reflector $(R_{1/2}=0.999)$
- injection efficiency η_{in} =0.8
- scattering α_s in MQW area

Wanted:

- \mathbf{g}_0 for threshold neglecting scattering loss
- maximum scattering loss α_s in the gain area for an output power of 1mW when pumping 4mA above threshold
- what is g_0 and max α_s if the front mirror is only reflecting R_1 =0.99

