

Al Box

Towards Universal Sequence Representation Learning

for Recommender Systems

Yupeng Hou^{1†}, Shanlei Mu^{1†}, Wayne Xin Zhao¹, Yaliang Li², Bolin Ding², Ji-Rong Wen¹ ¹Renmin University of China & ²Alibaba Group

Most Recommenders are not Transferable

* New Domains / Platforms

cannot help

Model on a **New** Domain

w/ different item IDs

How to develop transferable recommendation models? 😉

Inspired by Large Pre-trained Models

Pre-trained Sequential Recommender?

- Same data format;
- Large corpus;

..., but what if we obtain universal item representations?

Describe Items via Natural Language

Challenges

* Textual representations are not directly suitable for recommendation tasks;

* How to learn from multiple domains?

Overall Framework of UniSRec

Sequence Encoding & Multi-Domain Pre-training

T2: augmented CL

Negative instances are from multiple domains for fusion & adaptation.

Same as SASRec \rightarrow

Universal Sequence

Representation Pre-training

ground-truth

next item

Seq-Item Contrastive Task ←

various scenarios

3 Fine-tuning on Target Domains / Platforms

Inductive:

- Many new items;
- Do not use item IDs;

Transductive:

- Few new Items;
- Can use item IDs;

Only tune parameters in item encoding module.

Fine-tuning be able to recommend new items Behavior Encoder (parameters fixed)

Parameter-Efficient

item text + IDs

Benchmark for Pre-trained Recommenders

Scientific, Pantry, Arts, Instruments, Office

Online Retail in UK

Experiments

Dataset	Metric	SASRec	FDSA	$\mathrm{UniSRec}_t$	UniSRec $_{t+ID}$
Online Retail	Recall@10 NDCG@10 Recall@50 NDCG@50	0.1460 0.0675 0.3872 0.1201	0.1490 0.0719 0.3802 0.1223	0.1449 0.0677 0.3604 0.1149	0.1537* 0.0724 0.3885 0.1239*

Performances improv. w/o any shared users or items between the pre-training (Amazon) & downstream (Online Retail in UK) platforms.

Pre-training on 5 domains > any 1 domain.

Significant improvements on cold-start items.

'UniSRec'

Capture and transfer semantic patterns.

Code implemented by RecBole are publicly available: github.com/RUCAIBox/UniSRec