DATA SCIENCE

Market Basket Analysis

Association Rules

Market Basket Analysis

Can we really get insight from market baskets?

Market Basket Analysis

 Provides insight into which products tend to be purchased together and which are most amenable to promotion.

- Can return
 - Actionable rules
 - Trivial rules
 - -People who buy shoes also buy socks
 - Inexplicable
 - -People who buy shirts also buy milk

Market Basket Analysis

- Cross Selling
 - Offer an associated item when the customer buys any product
- Product Placement
- Customer Behaviour
 - Based on Credit Card usage data, we may be able to detect certain purchase behaviour that can be associated with fraud
- Fraud Detection
- Pharma
 - Medical patient histories can give indications of likely complications based on certain combinations of treatments

Database Structure

Frequent Market Basket Questions

- What is the average number of orders per customer?
- What is the most common item found in a one-item order?
- What is the average number of unique items per order?
- What is the average number of items per order?

Transform the Data and form a Co-Occurrence Table

	Product A	Product B	Product C	Product D
Product A				
Product B				
Product C				
Product D				

Use Case

ID Product 1 Orange juice 2 Soda 3 Milk 4 Window cleaner 5 Detergent

Line item table

ID	Order ID	Product ID	Quantity
1	1	1	2
2	1	2	1
3	2	3	3
4	2	1	2
5	2	4	1
6	3	1	2
7	3	5	3
8	4	1	1
9	4	5	1
10	4	2	2
11	5	2	2
12	5	4	3

Order ID	Products
1	Orange juice, Soda
2	Milk, orange juice, window cleaner
3	Orange juice, detergent
4	Orange juice, detergent, soda
5	Window cleaner, soda

Find the Insights??

Product	OJ	Window Cleaner	Milk	Soda	Detergent
OJ	4	1	1	2	2
Window cleaner	1	2	1	1	0
Milk	1	1	1	0	0
Soda	2	1	0	3	1
Detergent	2	0	0	1	2

Apriori Algorithm

- FP Tree

Apriori Algorithm

Apriori Algorithm

 Apriori can be very slow as it needs to compute the support at every instance by looking at the original itemset

- We need a quicker implementation
 - FP Tree

Example – FP TREE

<u>TID</u>	Items bought
100	{f, a, c, d, g, i, m, p}
200	{a, b, c, f, l, m, o}
300	{b, f, h, j, o}
400	{b, c, k, s, p}
500	{a, f, c, e, l, p, m, n}

Example – FP TREE

<u>Item</u>	frequency
f	4
C	4
а	3
b	3
m	3
p	3

We avoided all those items that do not have the minimum support of 50% (so, a count of 3 in 5 transactions). So, d, e, g, h, l, j, k, l and n are dropped as their count is lower than 2.

Re-Order the Item Sets

TID	Items bought (orde	ered) frequent items
100	{f, a, c, d, g, i, m, p}	{f, c, a, m, p}
200	{a, b, c, f, l, m, o}	{f, c, a, b, m}
300	{b, f, h, j, o}	{f, b}
400	{b, c, k, s, p}	{c, b, p}
500	{a, f, c, e, l, p, m, n}	{f, c, a, m, p}

FP TREE

{f, c, a, m, p} {f, c, a, b, m} {f, b} {c, b, p} {f, c, a, m, p}

FP TREE

- It never breaks a long pattern of any transaction
- reduces irrelevant information—infrequent items are gone
- More frequent items are more likely to be shared and are at the top
- We keep a count at the nodes to compute support/confidence. So, no need to view the DB again.

