입러닝으로 Sound Event Detection

황승원

가장 '핫'한 기술 딥러닝

CNN

- CNN (Convolution Neural Network)
 - Convolution 필터

CNN

- IMAGENET
 - 이미지 인식 경연대회
 - 2011년까지는 인식률이 75%를 못 넘었었음
 - 2012년 CNN을 활용한 Alexnet 등장, 뛰어난 성능 발휘

CNN

- DCASE (Detection and Classification of Acoustic Scenes and Events)
 - 소리 인식 경연대회
 - 2013년부터 시작, 2016년 2회 대회 개최, 2017년 3회째를 맞이하고 있음
 - NMF 등의 기법에서 딥러닝을 활용한 기법으로 바뀌어나
 가는 것을 확인할 수 있음

- DCASE 2016
 - Task 1: Acoustic scene classification
 - Task 2 : Sound event detection in synthetic audio
 - Class: Clearing throat, Coughing, Door knock, Door slam, Drawer, Human laughter, Keyboard, Keys (put on table), Page turning, Phone ringing, Speech
 - Task 3: Sound event detection in real life audio
 - Task 4: Domestic audio tagging

- Baseline
 - Acoustic scene classification을 위한 basic approach
 - 2016년 Task 2의 Baseline code는 NMF(non-negative matrix factorization, 비음수행렬분해)로 되어 있음

Rank	Submission Information		Corresponding		Segment-based (overall)	
	Code	Name	Author	Affiliation	ER illi 🔺	F1 ılı
1	Komatsu	Komatsu	Tatsuya Komatsu	NEC Corporation, Japan	0.3307	80.2 %
2	Choi	Choi	Inkyu Choi	Seoul National University, South Korea	0.3660	78.7 %
3	Hayashi_1	BLSTM-PP	Tomoki Hayashi	Nagoya University, Japan	0.4082	78.1 %
4	Hayashi_2	BLSTM-HMM	Tomoki Hayashi	Nagoya University, Japan	0.4958	76.0 %
5	Phan	Phan	Huy Phan	University of Lubeck, Germany	0.5901	64.8 %
6	Giannoulis	Giannoulis	Panagiotis Giannoulis	National Technical University of Athens, Athena Research and Innovation Center, Greece	0.6774	55.8 %
7	Pikrakis	Pikrakis	Aggelos Pikrakis	University of Piraeus, Greece	0.7499	37.4 %
8	DCASE	DCASE2016_Baseline	Emmanouil Benetos	Queen Mary University of London, United Kingdom	0.8933	37.0 %
9	Vu	Vu	Toan H. Vu	National Central University, Taiwan	0.8979	52.8 %
10	Gutierrez	Gutierrez	J.M. Gutierrez- Arriola	Universidad Polit´ecnica de Madrid, Spain	2.0870	25.0 %
11	Kong	Kong	Qiuqiang Kong	University of Surrey, United Kingdom	3.5464	12.6 %

- DCASE 2017
 - Task 1: Acoustic scene classification
 - Task 2: Detection of rare sound events
 - Class: Baby crying, Glass breaking, Gunshot
 - Task 3: Sound event detection in real life audio
 - Task 4: Large-scale weakly supervised sound event detection for smart cars

- 2017 DCASE Task 2 baseline
 - MLP (multi-layer perceptron) = Deep Learning

Event-based overall metrics (onset only,t_collar=500ms)

	ER	F-score
Baby cry	0.67	72.0 %
Glass break	0.22	88.5 %
Gun shot	0.69	57.4 %
Average	0.53	72.7 %

	Submission Information	Technical	Event-based (overall / evaluation dataset)		
Rank	Code	Name	Report	ER ili	F1 ılı
1	Lim_COCAl_task2_1	1dCRNN1	Đ	0.1307	93.1 %
2	Lim_COCAl_task2_2	1dCRNN2	Ð	0.1347	93.0 %
3	Lim_COCAl_task2_3	1dCRNN3	Ð	0.1520	92.2 %
4	Lim_COCAI_task2_4	1dCRNN4	©	0.1720	91.4 %
5	Cakir_TUT_task2_2	CRNN-2	Ð	0.1733	91.0 %
6	Cakir_TUT_task2_1	CRNN-1	Ð	0.1813	91.0 %
7	Cakir_TUT_task2_4	CRNN-4	Ð	0.1867	90.3 %
8	Phan_UniLuebeck_task2_1	AED-Net	Ð	0.2773	85.3 %
9	Cakir_TUT_task2_3	CRNN-3	Ð	0.2920	86.0 %
10	Zhou_XJTU_task2_1	SLR-NMF	O	0.3133	84.2 %

어떻게 가능한가?

• 소리 데이터 = 시계열 데이터

• 어떻게 딥러닝을 적용시킨걸까??

소리 인식의 개념

소리 데이터의 특징

?

소리 데이터의 특징

- 시계열 데이터 상태에서는
 - 어떤 소리가 들어있는지 알기 어려움
 - 그 소리가 어떤 특징을 가지고 있는지 알기 어려움

- 신호 처리를 통해 소리의 특징을 분석할 필요가 있음
 - 주파수 성분을 보면 대략적으로 파악 가능

기본적인 신호처리

- FFT
 - 주파수 성분을 알 수 있음

- But, 시간축을 잃어버림

기본적인 신호처리

• STFT와 Spectrum

기본적인 신호처리

Spectrogram

시간

• 우리의 바람

현실

- Spectro-temporal representation
 - Mel-spectral, MFCC, LPC, gammatone, subband autocorrelation 등
- Summary statistics
 - Zero crossing-rate, spectral bandwidth 등
- Dimensionality reduction
 - PCA, Feature selection 등

- 특징 추출을 위해 다양한 기법 활용해야 함
- Hyper parameter 튜닝을 잘해야 함

Feature Engineering에 필요한 노력이 큼

- CNN을 활용하여 Feature Engineering에 대한 부 담 줄이려함
 - CNN을 활용하려면 소리를 이미지로 변환해야 함

딥러닝용 특징 추출법

- Log-amplitude Mel-spectrogram + Convolution
 - Feature Engineering에 대한 부담이 크게 줄어듦
 - 특징 추출에 사람의 개입이 적음
 - 사람의 청각 특성이 반영되어 있음 (비선형성)
 - · 주파수 축 : Mel-scale을 반영
 - Amplitude : Log를 취해줌

• 사람의 귀는 소리를 비선형적으로 받아들임

- Mel 곡선은 사람의 귀 속 달팽이관의 특성을 반영함
- STFT 이후 얻어진 spectrogram의 주파수 성분을 Mel 곡선에 따라 압축

Source: wikipedia

dB

• 소리 크기도 비선형성을 나타내기 위해 log를 취해줌 (amplitude squared to dB units)

• 가장 대표적인 하이퍼 파라미터

중간 정리

DCASE 사례 분석

- DCASE 2017 Task 2
- RARE SOUND EVENT DETECTION USING 1D CONVOLUTIONAL RECURRENT NEURAL NETWORKS, Hyungui Lim, Jeongsoo Park, Yoonchang Han

Figure 1: Overall framework of the proposed method.

DCASE 사례 분석

128

mel

Mel-band: 128

Window size: 46ms

Hop-length: 23ms

also use it as the input feature of our proposed method. To extract this feature, a window is applied to an audio signal with a size of 46 ms and overlapped with half size of the window. We also apply

Mel-spectrum을
 1D-conv로 특징 추출

소리 인식의 활용 방안

- Multimedia information retrieval:
 - 환호성 등 특정 소리만 인식해 알려줌

- 비디오 auto tagging 등

소리 인식의 활용 방안

• 모니터링 / 감시:

- 총소리 / 비명소리 감지

- 차량 인식

- 충돌 감지

소리 인식의 활용 방안

보조 기술(Assistive technologies):

- 청각장애인을 위한 Sound visualization

- 낙상 감지 (Acoustic fall detection)

- 일상생활 모니터링 (Lifestyle monitering)

• 청각장애인용 소리 인식기

- 아기울음 감지기
 - 아기울음을 감지해서 사용자에게 알려줌
 - 기존 제품은 소리 크기로 감지
 - 딥러닝 기술을 활용해 오탐을 크게 줄임

- 보안/안전 소리 감지 모듈
 - 지하주차장 이상소리 감지 모듈

- 청각장애인 소리 인식기
 - 시제품 제작 중
 - 2018년 제품화 예정
- 아기울음 감지기
 - 시제품 제작 중
- 지하주차장 이상소리 감지 모듈
 - 현장 테스트 예정
- 추후, 고장 감지 등의 분야로 확대 적용해나갈 예정

소리 인식의 어려운 점

- 알고리즘만큼이나 마이크도 중요
 - SNR(signal-to-noise ratio)
 - AGC(auto gain control)

- 어떤 환경에서 사용하는지 중요
 - 실내 or 실외?
 - 작은 공간 or 큰 공간?

소리 인식의 어려운 점

• Spectrogram으로 비슷한 소리는 구분이 어려움

• 큰 소리 발생했을 때, 작은 소리를 감지하기 어려움

한계 극복 방안

- Continual Learning
 - 학습된 모델에 추가 학습

- Attention
 - 가장 특징적인 부분만 attention
 - 연산량 가소 / 정확도 향상

참고자료

- DCASE 2016 (http://www.cs.tut.fi/sgn/arg/dcase2016/index)
- DCASE 2017 (http://www.cs.tut.fi/sgn/arg/dcase2017/index)
- non-speech acoustic event detection and classification, Tuomas Virtanen and Jort F. Gemmeke

(https://sites.google.com/site/amadana0001/Home//tutorials)

 RARE SOUND EVENT DETECTION USING 1D CONVOLUTIONAL RECURRENT NEURAL NETWORKS, Hyungui Lim, Jeongsoo Park, Yoonchang Han

