DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL

MTH6312 - MÉTHODES STATISTIQUES D'APPRENTISSAGE

Devoir nº 3 - Automne 2018

Date de remise : 9 novembre avant 23h55 (en pdf dans Moodle)

DIRECTIVES:

- ✓ Inclure dans votre rapport le code R que vous avez utilisé.
- ✓ Dans votre code R le germe utilisé dans les questions de ré-échantillonnage est votre matricule, c'est-à-dire set.seed(matricule).
- ✓ Lors de la correction, il sera tenu compte de la clarté des démarches ainsi que la qualité de la présentation du rapport.

QUESTION Nº 1 (10 points). Considérons de nouveau le contexte et les données de la question nº 2 du devoir nº 2 (voir fichier *Equipement.csv* sur le site du cours). Les données sont de la forme $\{(\mathbf{x}_i, y_i), i = 1, \dots, 250\}$, où $\mathbf{x}_i = (x_{i1}, x_{i2})^{\top}$, x_{i1} étant la mesure de X_1 , x_{i2} celle de X_2 , et y_i représente l'état réel de l'équipement lors de la i^e observation. Deux modalités sont utilisées pour y_i : (D) présence d'anomalies, ou (N) absence d'anomalies.

Pour les données décrites ci-dessus, après avoir déterminé le degré de flexibilité approprié de chaque méthode, on veut sélectionner la meilleure méthode de classification parmi): le KNN, la régression logistique, l'analyse discriminante linéaire et l'analyse discriminante quadratique.

a) KNN.

- 1. En utilisant la technique de validation croisée *«LOOCV»* sur les 250 observations, estimer le taux d'*erreur test* pour différentes valeurs (une dizaine) du nombre de voisins, *k*.
- 2. Reprendre la question ci-dessus en utilisant une des techniques de validation croisée *«5-Fold CV»* ou *«10-Fold CV»* de votre choix. Justifier brièvement votre choix.
- 3. Compte tenu des résultats ci-dessus, quelle valeur du nombre de voisins k devrait-on utiliser pour la classification des données du contexte par le KNN? Justifier brièvement.

b) Régression logistique.

Dans les équations suivantes $p(\mathbf{x})$ représente $p(\mathbf{x}; \boldsymbol{\beta}) = P(Y = D \mid X = \mathbf{x})$, la probabilité que l'individu soit en défaut de paiement étant donné son revenu x_1 et le montant dû x_2 .

On envisage deux modèles de régression logistique dont les équations sont :

Modèle 1:
$$\ln\left(\frac{p(\mathbf{x})}{1-p(\mathbf{x})}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$
Modèle 2:
$$\ln\left(\frac{p(\mathbf{x})}{1-p(\mathbf{x})}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2.$$

- 1. En utilisant la technique de validation croisée *«LOOCV»* sur les 250 observations, estimer le taux d'*erreur test* pour chacun des 2 modèles.
- 2. Reprendre la question ci-dessus en utilisant une des techniques de validation croisée *«5-Fold CV»* ou *«10-Fold CV»* de votre choix. Justifier brièvement votre choix.
- 3. Compte tenu des résultats ci-dessus, lequel des 2 modèles de régression logistique devraiton utiliser pour la classification des données du contexte? Justifier brièvement.

c) Analyse discriminante.

- 1. En utilisant la technique de validation croisée «LOOCV» sur les 250 observations, estimer le taux d'erreur test de l'analyse discriminante linéaire (LDA) et celui de l'analyse discriminante quadratique (QDA).
- 2. Reprendre la question ci-dessus en utilisant une des techniques de validation croisée *«5-Fold CV»* ou *«10-Fold CV»* de votre choix. Justifier brièvement votre choix.
- 3. Compte tenu des résultats ci-dessus, laquelle des deux analyses discriminantes devrait-on utiliser pour la classification des données du contexte? Justifier brièvement.

d) Résumé graphique et comparaison des méthodes.

Tracer le nuage des 250 points (2 couleurs de votre choix) et ajouter au graphique les courbes (trois en tout, similaires à celles de la figure 5.7 page 185 dans ISL) séparant les deux classes dans chacun des cas suivants :

- le KNN (avec la valeur optimale retenue du nombre de voisins *k*).
- le modèle de régression logistique retenu (parmi les deux);
- l'analyse discriminante retenue (LDA ou QDA).

QUESTION Nº 2 (5 points). On dispose d'un échantillon de 48 observations obtenues lors de prélèvements par carottage dans un contexte d'exploration pétrolière (voir données rock, disponibles dans R). Les données sont de la forme $\{\mathbf{x}_i = (x_{i1}, x_{i2}, x_{i3}, x_{i3})^{\top}, i = 1, ..., 48\}$. On considère que chaque $\mathbf{x}_i, i = 1, ..., 48$ est une observation d'un vecteur aléatoire $X = (X_1, X_2, X_3, X_4)^{\top}$ dont la distribution de probabilité exacte est inconnue. Considérer $X_1 = \text{area}, X_2 = \text{peri}, X_3 = \text{shape}, X_3 = \text{perm}$.

On s'intéresse à l'estimation du paramètre θ (la corrélation) défini par

$$\theta = \text{corr} \left(\log |X_1 - 3X_2|, \max \{250X_3, X_4\} \right).$$

En utilisant la technique de ré-échantillonnage «Bootstrap» (fonction boot ()) avec 2000 répétitions :

- a) Donner une estimation ponctuelle $\hat{\theta}$.

 Donner ensuite une estimation du biais et une estimation de l'écart type (erreur-type) de $\hat{\theta}$.
- **b)** Déduire des résultats qui précèdent un intervalle de confiance pour θ au niveau de confiance 95%. Commenter brièvement.

QUESTION Nº 3 (5 points). Exercice 7 page 262 ISL (An Introduction to Statistical Learning)