- 1. (*Dataset: Climate.xlsx*) There has been a lot of press recently about *climate change* and CO₂ emissions₁. The data series for this problem contains data on *Global CO₂ Equivalent Emissions* (Giga-tons of CO₂ per year) from 1900 2016. The 2015 Paris Agreement pledge was to lower emissions by at least 26 percent below 2005 levels by 2025.
- a. Create a solid time series model for this data and include your final output here. Briefly list the steps you took to come to this model.

ANS:

I plot the time series for CO2, all Dicky-Fuller T-statistics indicate that the series is not stationary.

I take 1 difference and noted that all Dicky-Fuller T-statistics indicate a stationary so I(1) is considered. ACF graph indicates that MA() term can go upward to MA(10) and PACF graph indicates that AR() term can go upward to AR(1).

I also try I(2) but its PACF graph indicates over differencing so I narrow down the model to I(1).

I run ARIMA model group based on the narrowed down parameters and obtain the following top candidate models:

					***	60.6	200		
Report	Graph	Model	DF	Variance	AIC	SBC	RSquare	-2LogLH	Weights .2 .4 .6
-		— ARIMA(1, 1, 1)	113	0.3839529	221.33543	229.59620	0.998	215.33543	0.265969
-		— ARI(1, 1)	114	0.3924584	222.71454	228.22172	0.998	218.71454	0.133463
-		— IMA(1, 1)	114	0.3928017	222.81599	228.32317	0.998	218.81599	0.126862
▼ 🗐		— ARIMA(1, 1, 2)	112	0.3858666	222.87169	233.88605	0.998	214.87169	0.123378
▼ 🗐		— ARIMA(1, 1, 3)	111	0.3849018	223.59703	237.36498	0.998	213.59703	0.085848
-		— IMA(1, 3)	112	0.3927687	224.79868	235.81304	0.998	216.79868	0.047076
▼ 🔲		— IMA(1, 2)	113	0.396271	224.81362	233.07439	0.998	218.81362	0.046725
-		— I(1)	115	0.4034704	224.90176	227.65535	0.998	222.90176	0.044711
-		— ARIMA(1, 1, 4)	110	0.3883917	225.59033	242.11188	0.998	213.59033	0.031688
▼ 🔳		— IMA(1, 4)	111	0.3952822	226.50739	240.27534	0.998	216.50739	0.020033
▼ 🗐		— ARIMA(1, 1, 5)	109	0.3887639	226.73073	246.00586	0.998	212.73073	0.017917
▼ 🗐		- IMA(1, 10)	105	0.3742986	227.10164	257.39113	0.998	205.10164	0.014884
- (11)		ADIMAN(1 1 6)	100	0.2005224	227 02161	240.05022	0.000	211 02161	0.000070

The top 3 models – ARIMA(1,1,1), ARIMA(1,1,0), and ARIMA(0,1,1) have comparable prediction performance and satisfactory residual plots but all parameters of ARIMA(1,1,1) are significant as 1% level of significant (the other two models do not) so I decide ARIMA(1,1,1) is the best model.

b. Calculate a prediction for 2025 if the emissions trend continues the same way.

ANS: 59.56 Giga-tons of CO2 per year.

c. What is a 95% interval for your above prediction? Do you think there is a chance to meet the Paris Agreement pledge if steps aren't taken?

ANS: Interval: 64.46 - 54.67 Giga-tons of CO2 per year. At 95% interval, there is no chance to meet the goal, as the lower band of the prediction is still much higher than the CO2 level in 2005(45.35 Giga-tons of CO2 per year).

2. (*Dataset: Unemployment.xlsx*) The following variables represent the Help Wanted Index and Unemployment Rate in the USA form the years 1969 through 2000.

HWI: National help wanted index

UNRATE: Unemployment rate %

a. Based on just the top Time Series plot in JMP, do either of these series look stationary?

ANS: No. The values of both series seem to come back to the mean but it does not look like they have a constant variance.

- b. Use our standard statistical procedures to determine if the HWI variable is stationary.
- i. Include here your basic output results (no graphs are necessary here) and your decision.
- ii. If your series is NOT stationary, what do you need to do to fix it? Prove that your modification creates stationarity.

ANS:

HW1 is not stationary as all of its Dicky-Fuller T-statistics do not pass the 1% significant threshold.

It can be made stationary by taking 1 difference, I(1). All Dicky-Fuller T-statistics pass 1% significant threshold and indicate stationary.

c. Use our standard statistical procedures to determine if the *UNRATE* variable is stationary.

- i. Include here your basic output results (no graphs are necessary here) and your decision.
- ii. If your series is NOT stationary, what do you need to do to fix it? Prove that your modification creates stationarity.

ANS:

UNRATE is not stationary as all of its Dicky-Fuller T-statistics do not pass the 1% significant threshold.

It can be made stationary by taking 1 difference, I(1). All Dicky-Fuller T-statistics pass 1% significant threshold and indicate stationary.

- d. Now create a simple regression model using *UNRATE* to predict *HWI* without any modifications, but be sure to include a constant.
- i. What is your regression equation?
- ii. Test this model for the possibility of *cointegration* and report your statistical results. What do you determine?

ANS:

The equation is:

HW1 = 109.83 - 4.92*UNRATE

I investigate the residual's time series of the model:

Dicky-Fuller T-statistics indicate a non-stationary so there may not be a cointegration between both series.

3. (*Dataset: PlantExpenditures.xlsx*) The goal of this question is to use a *distributed lag*, or *dynamic regression* model to determine the parameters of the long and short-run impact of manufacturing sales (*Sales*, in billions of seasonally adjusted dollars) on the investment in equipment (*Expend*, also in billions of seasonally adjusted dollars).

a. Use the *Koyck Approach* to estimate the parameters you need. What is your output for this model?

ANS:

I run the regression model Expend ~ lag(Expend,1) + Sales, and obtain the following result:

The estimated lambda for Koyck is 0.27. The estimated alpha is -15.1/(1-0.27) = -20.68

Both median lag and mean lag indicate that incorporating only 1 lag period is enough. The estimated model is:

$$Expend = -20.68 + 0.63 * Sales + (0.63 * 0.27) * lag(Sales, 1)$$

b. What is the short-run impact of a one-unit (one billion dollar) increase in Sales?

ANS: From the equation above one unit increased in Sales resulted in 0.63 unit increased in Expend.

c. What is your long-run demand function for expenditures?

ANS:

The estimated total impact is 0.63/(1-0.27) = 0.86, so the long-run function is:

$$Expend = -20.68 + 0.86 * Sales$$

d. How many lags of Sales would you suggest including? (Explain why)

ANS:

From a., the estimated lambda is 0.27

The number of lag used can be calculated from Median Lag and Mean Lag

For Median Lag, the estimated Median Lag =
$$-\frac{\ln(2)}{\ln(0.27)} = 0.53$$

For Mean Lag, the estimated Mean Lag =
$$\frac{0.27}{1-0.27}$$
 = 0.37

Both approaches indicate that all changes can be accounted by incorporating just one lag period, so, only 1 lag of Sales is sufficient.