ELECTROPHYSIOLOGICA LASSESSMENT OF NERVE AND MUSCLE HYPEREXCITABILITY

CON YIANNIKAS

Peripheral Nerve Hyperexcitability

- Spontaneous and continuous muscle fibre activity of peripheral nerve origin.
- Neuromyotonia represents the more severe phenotype of generalized PNH.
- Fasciculation cramp syndrome at the other end.
- Acquired often associated with voltage gated potassium channel antibodies.
- Clinical and/or electrical features may be seen in number of other conditions affecting peripheral nerves

Syn	dromes of Peripheral Nerve	Hyperexcitability
Autoantibody mediated (Voltage gated potassium Channel Antibodies VGKC)	Non Immune mediated	Fasiculation Cramp Syndrome
Isolated	Genetic Hereditary Neuropathies Schwartz-Jampel syndrome Episodic Ataxia I KCNA1 Gene mutations	With VGKC antibodies Without VGKC antibodies
Paraneoplastic Thymoma(MG/NMG) Small cell Lung Ca Hodgkins Lymphoma Plamacytoma (IgM PP)	Acquired neuropathies Chronic Inflammatory Demyelinating Polyneuropathy Guillaine Barre Syndrome Multifocal motor neuropathy	
Associated with other Autoimmune Disorders MG without thymoma Coeliac Disease Pernicious Amnaemia Hyper thyroidism Hypothyroidism Rheumatoid Disease SLE Systemic Sclerosis Penicillamine induced Diabetes	Drugs Oxaliplatin Gold Toxins Focal Neuropathies/Plexopathies/ Radiculopathies Entrapment Post Irradiation	

MYOKYMIA

Brainstem Irradiation

onitor								C	ascades						
			L'ABE	POLLB	REVÍS						L ABO	POLLE	REVIS		- 1
								1							
								ł	-	1	f	7		- 1	100ms 200µ
								ł							
								ł							
	_					-	100ms 200µ	v							
								-							
								╬							
								ł							
								╢							
-															4
11		F2 est			¥ F4		- I				Mon			umm. 1	

MS Facial Myokymia

RNS- After discharges and

Afterdischarges

Frequency dependant

- 1Hz stimulation greater specifity less sensitive
- 3-5 Hz Sensitivity above 80% but less specific

Electromyography

Spontaneous discharges seen

- Fasciculations
- Myokymia
- Neuromyotonia
- Cramps
- Continuous motor unit activity.

MYOKYMIA

MYOKYMIA

MYOKYMIA -Mechanism

Generated by Distal Motor Axons

- By a primarily axonal process or by segmental demyelination with secondary axonal dysfunction.
- spontaneous discharge could initiate volleys of activity or afferent fibers could directly stimulate efferent fibers in the vicinity of the lesion and produce a self-perpetuating reverberating circuit.

 Transaxonal ephaptic excitation occurs peripherally after focal nerve damage leads to formation of an artificial synapse.

Ephaptic communication

NEUROMYOTONIA

NEUROMYOTONIA

FEATURES

- ☐ Spontaneous firing of single Motor Unit
- ☐Firing rate 100-300Hz
- □Long continuous or brief bursts
- ☐ Thought to be distal axon in origin

NEUROMYOTONIA

Frequency related to nerve

MUSCLE HYPEREXCITABILITY

 Clinical manifestations most commonly seen in muscular dystrophies and nondystrophic myotonias (channelopathies).

DM1 and DM2 are inherited muscle disorders

associated with weakness and other dystrophic features in addition to myotonia

MUSCLE HYPEREXCITABILITY

 NDMs, muscle hyperexcitability results in muscle "stiffness" during voluntary movement because of delayed skeletal muscle relaxation caused by repetitive muscle fiber action potentials (myotonia)

Myotonia may occur electrically without clinical symptoms.

Muscle Hyperexcitability

Muscle Disorder	Clinical and Electrical Myotonia	Electrical Myotonia
Muscular Dystrophy		
DM1 and DM2	+	
Myofibrillary myopathies	+	
Muscle Channelopathies	+	
Non Dystrophic myotonia (MC, PMC, PAM)		
Hyperkalemic Periodic Paralysis	+	
Metabolic myopathies		
Acid Maltase deficiency		+
Debrancher deficiency		+
McArdles disease		+

Muscle Hyperexcitability

Muscle Disorder	Clinical and Electrical Myotonia	Electrical Myotonia
Toxic Myopathies		
Statin myopathy		+
Colchicine myopathy		+
Endocrine myopathies		
Hypohyroidism		+
Inflammatory myopathies		
Polymyositis		+
Dermatomyositis		+

Percussion Myotonia Thumb

Percussion Myotonia

Eyelid myotonia

Genetics of Myotonia

	Inheritance	Gene	Channel
Dystrophic			
DM1	AD	19q- CGT	Chloride
DM2	AD	3q - CCGT	Chloride
Non-Dystrophic			
dMC (Thomsens)	AD	7q - CLCN-1	Chloride
rMC (Beckers)	AR	7q - CLCN-1	Chloride
PMC	AD	17q - SCN4A	Sodium
PAM	AD	17q- SCN4A	Sodium
HyperPP	AD	17q- SCN4A	Sodium

Clinical Phenotypes

	Myotonia	Exercis e	Cold	Weaknes s	Muscle Hyper	Eyelid s	Potassiu m Sensitive
rMC	Severe	Better	No effect	Transient	Yes	Occ	No
dMC	Mild	Better	No effect	No	Yes	Occ	No
PMC	Severe	Worse	Worse	Transient	Occ	Yes	No
PAM	Mild	No Effect	No or delayed effect	No	No	Yes	Yes
HyperP P	Electrical	After exercis e	No Effect	Transient	No	No	Elevated levels

Paramyotonia Congenita

Lid Lag sign

Deterioration with cold

Myotonia Congenita

Electrophysiological Features

- Nerve Conduction Studies
 - □CMAP amplitude is normal at rest if the temperature is normal.
 - □After cooling (23 degrees)
 - □Amplitude, duration and area tend to increase in patients with DM1 and MC.
 - □ Amplitude and area is reduced and duration increased with PC.
 - □Small during attack of HyperPP

Nerve Conduction Studies

- Post exercise after potentials (PAP)
 - Following 10 sec of sustained exercise
 - Most PMC
 - -Occ MC

Short Exercise Test

Method

Supramax CMAPs recorded at base line

- 10 seconds of sustained contraction of the ADM.
- CMAPs are recorded 2 seconds after exercise and then every 10 seconds for a total of 60 seconds

Control

Ex. 25 10 s 20 s 30 s40 s 50 s60 s

PMC

Sustained reduction in CMAP amplitude

This pattern becomes worse with repetition and cooling.

This pattern may be seen with PAM

MC (warming up)

Initial postexercise CMAP decrement, which repairs by 60 seconds

Less pronounced on subsequent trials.

This amplified by cooling

Long Exercise Test

Baseline M wave at rest

5 minutes strong isometric contraction every 30 sec 3-4 sec rest

- -M wave 2 sec after exercise
- -1, 2,3,4, 5 min
- -After that every 5 minutes for 45 min

Of no further use in NDM –useful to differentiat from PP.

LET

HyperPP

Initial increase in the CMAP followed by a significant decrement with time (greater than 30%)

HypoPP (a calcium channel disorder)
Decrement without an initial increment.

Repetitive Stimulation

10Hz RS

- At room To, patients with AR MC and DM exhibit a decrement in CMAPamp that is more pronounced with cooling
- PC exhibited a decrement only with cooling.

• 3 Hz RS

 PC after exercise a decrease of CMAPamp with persistence of PAPs

Electromyography- Myotonia

Myotonia

Myotonia Patterns

DM1

- More distal than proximal
- Waxing and waning
- Easily elicitable

DM2

- Proximal and distal
- Waning pattern
- Less easily elicitable

NDM

- Proximal and distal
- Profuse and easily elicitable

Electromyograp	hy of	muscle	channel	opathies

Disease	EMG				
	Spont	Vol			
Dystrophic					
DM1	Myotonia-Waxing/ Waning Distal	Myopathic			
DM2	Myotonia -Waning Proximal	Mild Myopathic			
Non Dystrophic					
MC CICN1)	Myotonia Better with exercise	Normal- occasional Myopathic in rMC			
PC (SCN4)	Myotonia Worse with exercise	Normal			
PAM(SCN4)	Myotonia	Normal			
Periodic Paralysis					
HyperKPP	Myotonia	Inc Inser Fib/Sharp waves Polyphasic units			
НуроКРР	Nil	Normal or Myopathic			

Protocol for evaluation of myotonia

Syndromes of electromyographic silence as a manifestation of clinical hyperexcitability.

- Rippling muscle disease
 - Mutations in the CAV3 gene although antibody mediated cases have been described.
 - ☐ Stretching the muscle causes visible ripples to spread across the muscle, lasting 5 to 20 seconds.
 - ☐ They may experience fatigue, cramps, or muscle stiffness, especially after exercise or in cold temperatures.
 - EMG may show myopathic changes but electrical activity at the time of the ripple is silent and is most likely mechanical in origin

Electrical Silence

Myoedema

- Classical sign of hypothyroid myopathy
- Mounding of muscle tissue occurring after a light pressure stimuli.

 It is due to prolonged muscle contraction caused by delayed calcium reuptake by sarcoplasmic reticulum, following local

Electrical Silence

Mcardles Disease

- □ Affects the contractile mechanism because of lack of phosphorylase which is involved in the breakdown of muscle glycogen to glucose-6-phosphate.
- ☐ The most prominent symptom is painful exertional cramp.
- ☐ The EMG during a cramp following exercise is silent and is a contracture due to shortage of ATP during exercise.

Conclusion

- "We are still confused,
- But on a much higher level "
- Winston Churchill

Recessive Myotonia Congenita

Transient weakness

Episodes of collapse with sudden movements

Severe myotonia

Complex Repetitive Discharges

COMPLEX REPETITIVE DISCHARGES

- Spontaneous potentials from groups of muscles fibres
- Repetitive regular and almost synchronous
- Not from the same motor unit
- Ephaptic activation of groups of adjacent fibres
- Number of fibres activated may vary and continue until circuit complete and repeats itself.

CRD

- Each spike is a single muscle fibre
- Regular
- Abrupt onset and cessation
- Configuration may change during it.
- Firing rate 3-40Hz
- Shape variable 3-10 spikes
- Duration brief up to 50ms amplitude 500uV

CRD Generation

CRD: Change in Configuration

Simple Iterative Discharge (SID)

Neuromuscular disorders with myotonia

Muscular dystrophies:

- Myotonic dystrophy type 1 and 2
- Myofibrillar myopathies¹

Muscle channelopathies:

- Nondystrophic myotonia (myotonia congenita, paramyotonia congenita, sodium channel myotonia)
- Hyperkalemic periodic paralysis

Metabolic myopathy:

- Acid maltase deficiency^{2,2,3}
- Debrancher deficiency^{a,4}
- McArdle disease (myophosphorylase deficiency)^{a,4}

Toxic myopathies:

- Chloroquine/hydroxychloroquine myopathy^{5,6}
- Statin myopathy⁷
- Colchicine myopathy⁸

Endocrine myopathies:

Hypothyroidism⁴

Inflammatory myopathies^{a,4}

- Polymyositis
- Dermatomyositis
- a Electrical myotonia without clinical myotonia.

Classification of ion channels

Channel	Muscle	Gene
Sodium channel	Hypokalemic periodic paralysis	SCN ₄ A
	Hyperkalemic periodic paralysis	SCN ₄ A
	Paramyotonia congenita	SCN ₄ A
	Potassium-aggravated myotonia	SCN ₄ A
Chloride channel	Myotonia congenita:	CLCN1
	Thomsen's (AD) and Becker's (AR)	
Calcium channel	Hypokalemic periodic paralysis	CACNA ₁ S
Potassium channel	Andersen's syndrome	KCNJ ₂
	Hypokalemic periodic paralysis	KCNE3
	Hyperkalemic periodic paralysis	KCNE3

Amplitude and Frequency variation

Doublets

Doublets

Triplets

10 ms 200 uV 2

Bursts

Neuromyotonia burst pattern

Axonal excitability studies

Kiernan and Bostock 2001

- Excitability normal
- Fast Potassium channels not nodal and antibodies have no effect.
- Site of ectopic generator probably at motor terminals or adjacent nodes where K channel blockade leads to superexcitability.