MECH345 MODERN INSTRUMENTATION AND EXPENRIMENTATION

LAB REPORT #1

SARAVANA KUMAR PHILLIP NAGARAJAN W1409905

TASK: 1

A)Oscilloscope connected with Function Generator:

Purpose: To measure the voltage and frequency with the oscilloscope for different settings in function generator.

Frequency (Function	Amplitude (Function	Voltage (Oscilloscope)
Generator)	Generator)	(volt/div)
500 Hz	1 (Vpp)	2.2 V
1000 Hz	1 (Vpp)	2.2 V
1500 Hz	1 (Vpp)	2.2 V

Result: We can see that for different values of frequency in the function generator, we are getting the same value of voltage in the oscilloscope.

B) Oscilloscope connected with DC power supply:

For different values in the function genrator, the DC power supply shows the same value (straight line) of voltage in the oscilloscope.

TASK 2:

AC Signal Measurement

- NI compactDAQ 9215 is connected in parallel with the oscilloscope.
- Select values for "sampling rate" and "number of samples" in the LabView for a time varying signal.
- Fixed value for function generator as given, Frequency = 1000 Hz, Amplitude = 5 Vpp

• Below are the graphs which shows for different sampling rate and samples.

GRAPHS:

Rate: 500 Number of Samples: 50

Rate: 3752 Number of Samples: 50

Rate: 3752 Number of Samples: 2000

Rate: 500 Number of Samples: 2000

Rate: 2000 Number of Samples: 200

Rate: 2000 Number of Samples: 2000

Observation:

- We can see that with increasing sample values, the sine waves formed in the graph increases with respect to time. Whereas when the sample decreases, the wave form decreases.
 - i.e. **Number of samples** ↑↑(increase), then **Amplitude** ↑↑(increase)
- We also observe that, when the sampling rate increases, the peak to peak value in the graph also increases with respect to time.
 - i.e. **Sampling rate** \(\frac{1}{2}\)(increase), then **Peak to peak** \(\frac{1}{2}\)(increase)

Task 3

Resistance/Power Measurement across a potentiomenter w/ Function Generator

- Fixed value for function generator as given, Frequency = 100 Hz, Amplitude = 3 Vpp
- We can select the value for "sampling rate" and "number of samples" in the LabView.

Function Generator (3VPP) Current

Task 4

Find the maximum power output of a function Generator

- The power dissipation is calculated by adding the function in LabView across the two resistors.
- Tune the potentiometer to set the resistance.
- The suggested resistance value of the potentiometer are 20, 40, 60, 80, 100, 150 and 200 ohms.

Potentiometer Resistance = 20 ohm

Potentiometer Resistance = 40 ohm

Potentiometer Resistance = 100 ohm

From the graph, we can see that maximum power occurs at resistance 50 ohms.