$$Equation \ 1: rac{1}{V_o} = rac{K_m}{V_{max}*[S]} + rac{1}{V_{max}}$$

$$Equation~2:E+S \stackrel{\mathrm{k}_1}{\underset{\mathrm{k}_{-1}}{\Longrightarrow}} ES \stackrel{\mathrm{k}_2}{ o} E+P$$

$$Equation \ 3: K_m = rac{k_{-1} + k_2}{k_1}$$

MICHAELIS-MENTEN STEADY STATE DERIVATION

$$E + S \stackrel{\mathbf{k}_1}{\Longrightarrow} ES \stackrel{\mathbf{k}_2}{\Longrightarrow} EP \stackrel{\mathbf{k}_3}{\Longrightarrow} E + P \qquad (8.17)$$

Assuming Transformation of ES to EP is Rate Limiting:

aka: k_1, k_{-1} , and $k_3 >> k_2$

 k_{cat} = rate constant of rate-determining step (substrate to product)

$$E + S \stackrel{\mathrm{k_1}}{\rightleftharpoons} ES \stackrel{\mathrm{k_{\mathrm{cat}}}}{\longrightarrow} E + P$$
 (8.18)

$$\therefore Velocity = k_{cat} * [ES]$$
 (8.19)

When $k_{cat} << k_{-1}$,

Equalibrium Dissociation Constant:

$$K_S = rac{k_{-1}}{k_1} = rac{[E] * [S]}{[ES]}$$