

Statistika

Contoh 1: Nilai

Student	English	Mathematics
Α	10	11
В	8	10
С	9	12
D	12	10
E	10	6
F	7	3
G	10	10
Н	9	7
1	14	17
J	11	14

Contoh 2: Tinggi Badan

Ukuran Penyebaran Data

- The goal is to obtain a measure of how spread out the scores are in a distribution.
- Central tendency describes the **central point** of the distribution, and variability describes how the scores are **scattered around that central point**.
- Together, central tendency and variability are the two primary values that are used to describe a
 distribution of scores.
- Computing a measure of **variability is important** because without it, a measure of central tendency provides an **incomplete description** of a distribution.
- Two distributions can have the same means, yet be extremely different.

Rentang Data (Jangkauan)

$$R = x_t - x_r$$

R = Rentang

 $x_t = Data terbesar$

 $x_r = Data terkecil$

Contoh

50, 50, 50, 60, 60, 70, 70, 80, 60, 70

$$R = 80 - 50 = 30$$

50, 20, 50, 60, 90, 70, 70, 80, 60, 30

$$R = 90 - 20 = 70$$

50, 50, 50, 60, 60, 60, 80, 50, 60, 60

$$R = 80 - 50 = 30$$

Jangkauan Interquartil

$$Q = Q_3 - Q_1$$

Q =Jangkauan Interkuartil

 $Q_3 = \text{kuartil ke-3}$

 Q_1 = kuartil pertama

Varians dan Standar Deviasi

Varians populasi : σ^2

Standar deviasi : σ

Varians sampel: s²

Standar deviasi : s

Contoh

$$70, 80, 80, 90, 60, 100$$

 $\bar{x} = 80$

Simpangan mahasiswa no.1 : 80 - 70 = 10

Simpangan mahasiswa no.6 : 100 - 80 = 20

Simpangan: jarak data ke rata-rata

Rumus Populasi

Varians populasi

Standar deviasi

$$\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n}$$

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n}}$$

Rumus Sampel

Varians sampel

Standar deviasi

$$s^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{n - 1}$$

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

Data berkelompok

Varians sampel

Standar deviasi

$$s^{2} = \frac{\sum f_{i}(x_{i} - \bar{x})^{2}}{n - 1}$$

$$s = \sqrt{\frac{\sum f_i(x_i - \bar{x})^2}{n - 1}}$$

Latihan

Di bawah ini merupakan data banyaknya kunjungan mahasiswa ke perpustakaan. Tentukan Rentang, Standar Deviasi, dan Varian dari data tersebut!

Student	Number of Visits to the Library Last Week (x_i)	
1	0	
2	2	
3	5	
4	5	
5	7	
6	10	
7	14	
8	14	
9	20	
10	30	