Roll. Number: BSEF18A504

Exam in Computer Networks (Open Book)

- Take printout of this paper and solve using pen in your own handwriting. If you are unable to print, then solve on plain paper using Question Numbers.
- Take Picture of your answers and combine them into a single PDF file (Free online tools available). The file name should be your Roll Number. Upload solution on Google Class room before the deadline. 15-11-2020, 11:55pm.
- Make sure that all questions are in the ascending order.
- Avoid needless and irrelevant details as it may result in the deductions of points. Try to elaborate your knowledge and avoid copying the lecture slides.

Good Luck!!

Section I

Section 1		
Q.1 Multiple Choice Questions		(20 p)
1) In Bipolar AMI encoding, we need to assure at least any 7 bits?	baud rate (signäls) to transmit
any voice.		
a) 9		
b) 14 c) 7		
d) 11		
e) A, Band D f) C and D	·	
g) All of the Above		7
2) schemes require more bandwidth but as requirement on clock synchronization.	re based on Bipolar AMI t	o reduce
a) Manchester	38	
b) B8ZS		
c) NRZ-I		
d) HDB3		
e) A, B and D		
n B and D		
g) All of the above		
3) One of the main advantages of packet switching is:		
a) High multiplexing gain	*	
b) Simplified network		

c) No media reservation required

Name:	Muhar	nmad	Ayslan		141.534	Roll.	Number: 851	F18A504
	d) All	of the Abo	ve					
	Manchest smit any		g for Ethernet,	we need to assure	e at least	16	_ baud rate (s	ignals)
	f) Ca	Band D nd D of the Abo	ve					
5) Whi	ich of th	e following	services use T	CP?				
	f) car	TP TP and d	ve					
6) Swit	tch chec	ks the first	64 bytes and tl	hen forwards fram	nes in Fragm	nent	tremode.	
,	b) Stor	-Through re and Forv gment Free ne of the ab						
. ,	TP ant topo		s the broadcas	t storms and MAG	C Database ins	tabilit	y problem in	the
	a) STF b) CSM c) TDM d) FDM	MA/CD MA						
8) The	wireless	networks o	exhibit followi	ng characteristics	as compared t	to the	wired networ	ks:
	b) Hig c) Incr	h loss rate h jitter eased delay of the abov						

9) Lower frequency will result in increased as compared to the higher frequency levels.

Name: Muhammad Arslan

Roll. Number: BSEF18AS04

- /
- a) increased range
- b) more attenuation
- c) shorter antenna
- d) None of the above
- 10) The DoD model (also called the TCP/IP stack) has four layers. Which layer of the DoD model is equivalent to the Network layer of the OSI model?
 - a) Application
 - b) Host-to-Host
 - c) Internet
 - d) Network Access

Section II

Note: Attempt all questions

c) What is the main difference between "Aloha" and "Slotted-Aloha"?

ALOHA

- In Pure Aloha, any station can transmit data at any time
- Maximum efficiency = 18.4%
- Does to reduces the no. of collisions
- Vulnerable time = 2xTt
- Time is continuous is not globally synchronaized

SLOTTED - ALOHA

- . In slotted Aloha, any station can transmit data only at beginning of any time slot.
- · Maximum efficiency = 36.8%
- reduces the no. of collisions thus doubles half efficiency.
- · Vulnerable time = Tt
- Time is discrete and globally synchronaized.

d) What are the main differences between Circuit and Packet Switching?

CIRCUIT SWITCHING

- "Bandwidth allocation" (Reservation of resources)
- Low multiplexing gain
- Intelligent network Simple hosts

SWITCHING PACKET

- · No reservation needed (Packets can get lost, Store & Forward)
- . High multiplexing gane
- . Intelligent hosts Simple network
- · All packets use same path. | · Packets travel independently.

e) Differentiate between ASK, FSK and PSK.

- It's complexity is simple
- of noise is Poor.
- It's bit rate suitable upto. It's bit rate suitable upto 100 bits/sec

- It's error probability is high . It's error probability is low
 - . It's complexity is moderately complex.
- . It's performance in presence . It's performance in presence of noise is better than ASK
 - about 1200 bits/sec

- It's noise immunity is low. It's noise immunity is high . It's noise immunity is high
 - . It's error probability is low
 - . It's complexity is very complex.
 - · It's performance in presence of noise is better than FSK
 - · It's bit rate suitable for high bit rates.

Roll. Number: BSFF18A504

(10 p)3.

Suppose three devices A, B and C in a CDMA network with the following 8-bit orthogonal codes:

A = 10101010

B = 11001100

C = 10010110

The transmission power of B is twice as compared to A and C. Perform all the steps to send and detect 00 for Sender A, 10 for Sender B and 0X for Sender C (where X means that the sender doesn't transmit in this interval).

terval).

$$A = 10101010$$
 $B = 11001100$
 $transmit$
 $transmit$
 $transmit$
 $transmit$
 $transmit$
 $transmit$
 $transmit$

$$A = \{10101010\} = \{+1, -1, +1, -1, +1, -1, +1, -1\}$$

$$B = \{11001100\} = \{+1, +1, -1, -1, +1, +1, -1, -1\}$$

$$C = \{10010110\} = \{+1, -1, -1, +1, -1, +1, -1\}$$

Transmitted data

	1								
1	A = 0	-1	+1	- 1	+1	-1	+1	-1	+1
1	B = 1	+1	+1	-1	-1	+1	+1	-1	-1
	C = 0	- 1	+1	+1	-1	+1	-1	-1	+1
1	Signals(S)	-1	+3	-1	- 1	+1	+1	-3	+1

Detection: -

B:
$$-1 - 3 - 1 + 1 + 1 - 1 - 3 - 1 = -8$$
B: $-1 + 3 + 1 + 1 + 1 + 1 + 3 - 1 = 8$

$$v + 3 + 2 + 2 + 1 + 1 + 3 - 1 = 8$$

$$6: +8 \Rightarrow 1$$

Name: Muhammad Arslan

Roll. Number: BSEF18AS04

2nd INTERVAL

A = O	- 1	+1	-1	+1	- 1	+1	-1	+1
B = 0	-1	- 1	+1	+1	-1	<u>- 1</u>	+1	+1
C = X	Idle		,					
Signals(S)	-2	0	0	+2	-2	Ó	٥	+2

Detection:-

$$A: -2 0 0 -2 -2 0 0 -2 = -8 \Rightarrow 0$$

$$B: -2 0 0 -2 -2 0 0 -2 = -8 \implies 0$$

$$C: -2 0 0 +2 -2 0 0 +2 = 0 \implies \text{Nothing } (x)$$

Hence, Results are:-

4. C: transmitted
$$\rightarrow$$
 0x while detected \rightarrow 0x (10 p)

Draw the MAC header (frame) of IEEE 802.11. Explain all the fields (bit patterns) like Frame Control, TO DS, and From DS bits with the help of table.

Scanned with CamScanner

Name: Muhammad Arslan

Roll. Number: BSEF18AS04

- MAC FRAME:- OF IEEE 802.11 :-

The MAC Layer frame consists of 9 fields. The following figure shows the basic structure of an IEEE 802.11, MAC data frame along with the content of the frame control field.

Frame Contral	Duration /ID	Address 1	Address 2	Address 3	\$C	Address 4	Data	CRC.
2 bytes	2 bytes -	6 bytes	6 bytes	6 bytes	2 bytes	6 bytes	0-2312 bytes	4 bytes

Protocol Vevision	Type		DS				Power Mgmt			CONTRACT N
2 bits	2 bits	4 bits	1 bit	1 bit	1 bit	1 bit				

Structure 802.11 MAC Frame IEEE

. Frame Control (FC):-

It's 2 bytes long field which defines type of frame & Some control information. Various fields present in FC are:-

- It's a 2 bit long field which indicates the current 1) Version:protocol version which is fixed to be 0 for now.
- It's a 2 bit long field which determines the function of 2) Type:frame i.e. management (00), control (01) or data (10). The value 11 is reserved.
- It's a 4 bit long field which indicates subtype of the 3) Subtype:frame like 0000 for association request, 1000 for beacon.
- It's a 1 bit long field which set indicates that destination 4) To DS:frame is for DS (distribution system).
- 5) From DS:-It's a 1 bit long field 7 which when set indicates frame coming from as.

Roll. Number: BSEF18ASO4

6) More frag (More Fragments):-

It's 1 bit long field which when set to 1 means frame is followed by other fragments.

7) Retry:-

It's a 1 bit long field, if the current frame is a retransmission of an earlier frame, this bit is set to 1.

8) Power Mgmt (Power Management):-

It's 1 bit long field, which indicates the mode of a station after successful transmission of a frame. Set to 1 the field indicates that the station goes into power-save mode. If the field is set to 0, the station stays active.

9) More data:-

It's 1 bit long field which is used to indicates a reciever that a sender has more data to send than the current frame. This can be used by an access point to indicate to a station in power-save mode that more packets are buffermed or it can be used by q station to indicate to an access point after being polled that more polling is necessary as the station has more data ready to transmit.

- It's 1 bit long field which indicates that the standard 10) WEP:sequrity mechanism of 802.11 is applied.
- It's 1 bit long field, if this bit is set to 1 the 11) Order:recieved frames must be prossessed in strict order.