PAGE: 1

44

RAW SEQUENCE LISTING PATENT APPLICATION US/09/502,426

DATE: 03/01/2000 TIME: 16:40:56

Input Set: I502426.RAW

This Raw Listing contains the General Information Section and up to first 5 pages. ENTERED

```
<110> APPLICANT: AZPIROZ, Ricardo
           CHOE, Sunghwa
 2
           FELDMANN, Kenneth
 3
     <120> TITLE OF INVENTION: DWF4 POLYNUCLEOTIDES, POLYPEPTIDES AND USES THEREOF
 4
 5
     <130> FILE REFERENCE: 2225-0001
     <140> CURRENT APPLICATION NUMBER: US/09/502,426
 6
 7
     <141> CURRENT FILING DATE: 2000-02-11
     <150> EARLIER APPLICATION NUMBER: 60/119,657
     <151> EARLIER FILING DATE: 1999-02-11
 9
     <150> EARLIER APPLICATION NUMBER: 60/119,658
10
     <151> EARLIER FILING DATE: 1999-02-11
11
12
     <160> NUMBER OF SEQ ID NOS: 18
     <170> SOFTWARE: PatentIn Ver. 2.0
13
     <210> SEO ID NO 1
14
     <211> LENGTH: 6888
15
     <212> TYPE: DNA
16
     <213> ORGANISM: Arabidopsis sp.
17
18
     <400> SEQUENCE: 1
19
           atgtgggtat tatattgttg ggttcggttt gagctacaat ataaatttcg tgtttctggt 60
20
           tattctgttc acatgatttg agtttggttc tcaatttgga ttccaagata attaaatatt 120
           aaaattcatt taaaatattt acaagtaatt aattatcttt acattgtatt gttataacaa 180
21
22
           aatatctatc tttggtatat gagaaaatat ggagtttgga atttataata ataaaggaaa 240
23
           taatcgattc catttggttg gattacacag ttaagttttt gtgtttcttt tgttatatgt 300
           atatgagtaa atcaaaaaga gtattgattg aagtgtaaac atatttcgtt atgaccccca 360
24
25
           aaaaaaaaa aaaaacaaac aaacaaaccc ccccccqat atagtttttg gttctggatt 420
26
           aggtttattt gatcataatt acatgcatca tttctttgat tactatgaag attttcttac 480
27
           caattaaaat ttcgaattca tatctcttga ttattaaatt aaatacgagt gtgaatatcc 540
28
           gtttatcgat cactccaatc atgattatga ttcttgtgct aatccagcaa attattaaca 600
29
           agagtattga gaaaaaaccg aaaataagaa aagggaaaga gtagtgaccc atggagtatg 660
30
           tgaataatta tcaaagagaa taagagatga caaccaaaag gttgtggaat aatggtccct 720
           gccagettte teteacaate aatategace etatttggat tttetggata ttegttaaaa 780
31
32
           tttgcgataa cgattgtgaa aaatatttta tttgttagct gatctcaata ttatgttcca 840
33
           ggtatttgca taatcttctg tttaaagcat attttgtctt tctttttgtt tcgtttctct 900
           taactatata ttatcgcgga tatatgataa caatgatata tcacaaaaca attgtctggg 960
34
35
           accattttga ataaactttt teteaaacat taegggacae tggaetegae eettaaaata 1020
36
           cqattttaca qcqtcactaq ttqaqattac taqcataaaq cataaaqqac ccqttcaaqc 1080
37
           tatttataca aagttacaaa ctgaatatag cttgaaatcc tttagaaaat tttggaatta 1140
38
           ccggttgtta tgtaaatata gatttagtgg taaacaaata tgttaatcaa ttagtggtca 1200
39
           acatatacat aatteettae agaaaaaaca aacttaagag aagttaacat ateeatatat 1260
40
           gggtatgcta tacctttcac gtatgctata ctagagacta aagaatagtt atgtgatgtc 1320
41
           gataaatgaa attcacacgc gtggtaataa ttatgggacc gtatgttacg atcactgcaa 1380
42
           atatcattct tggttggtca acaataaaaa caaaaacaag aaaaaaagaa aacgattttt 1440
43
           cttggattcc attcaatgat ctaaaatgca tagatctttt gggttacagt ttcgaagtcc 1500
```

tctacaagcg tgtaaccatc tgcaactatt aaattgcttt ctttaatgca tctttaacat 1560

PAGE: 2 RAW SEQUENCE LISTING DATE: 03/01/2000

PATENT APPLICATION US/09/502,426 TIME: 16:40:56

Input Set: I502426.RAW

45 atttattgtt agttggaatt taataagagc gaacttgtaa cattacaata tttatattag 1620 46 atactagtat gtgattattc caaatacata ctttggatgt ttaaacttaa tcttgtttct 1680 47 tcctacggta taaatattaa tcatcgaggt aaaaaaagtt ttgtcttatt ttcgcgatgc 1740 48 atgaaggata aacctaatga ctttaatttt ttgaaaatgt aaccctttta ctcatagatt 1800 aattaccgta tgtttttgtt gccataatga cagcctctac aactgtgata gtcaattttt 1860 49 50 tctgcaaata ttaaattagg aattcaatgc tactatcaat agaagaaaca gctgagtatt 1920 acattttaat ttaaagacaa aatttttgaa aaatgttata atttctaaca atattattaa 1980 51 52 aatatgatgc ctataatgta tttcctatgt tcttaaaata ttttttttta tatttagtta 2040 53 taaatacatt atgaaccaat aatagttggt gaattcaaat atctccatta atattttttg 2100 aaatctacaa attattaata tttagtcaat aacaatgcat agaaagttcc aaaaaaaatt 2160 54 ttgttaacag aaacttccaa atttttttt tttatggaac aagaaataac agatagaaaa 2220 55 ctattttgtt gtggaatgga agtagtaata tacattaagc aaattttaaa aaattatata 2280 56 57 agoctatacg ogotoaaagt atgttatota gtaggtgtaa ttaataatgo atggtgogat 2340 58 tcagaattgg gacaacaatg aaaacggaat taaaatatta actttaaaat aaataaaaat 2400 59 ttgagtaaat gtgttttctg actattgagg ggcaaaaaaa agacaatgcc aaaagtctac 2460 60 qqqtttqact qtccaqttcq qtaataatct aataactctq tctttqaccq cacqctcqtq 2520 taggggtcct tctgacattt tcactgttct acccctactc gtgagcccac ccttttccca 2580 61 62 tatcctaagg gtaattttgg aaatcccaat ttaaaccgat tgagaccgta ccggacttcc 2640 tgggattctg ctggagcatt tatcaaaaat tattagcacg aatgggttta ttaatttaaa 2700 63 64 aactcacaac ttgatcagat aaaatttcat aaacactttt acgatggatt cgtacgatct 2760 65 atctaatgac ttttttttt ctaccacggt ggatgaaagt tatagtacta ttagccagag 2820 66 acaattgatt atagatatat ccattaatcc atgatattta tgatataaat agctgttaaa 2880 67 ctatttcagc atcgcagctt tctgcaactt ttgtttttaa tttaagagtt taataaataa 2940 68 aagtattaaa aggagcataa cgaggcaaca aaagtaatga acacggagaa acaaaagcca 3000 69 tgaageteat tggttagttt aagettaata agaagatttt attaaatttt aatgaegatg 3060 70 ataacaatta tattttctga cttctttaaa accccctctt acaaacagaa gctccctttt 3120 71 tcagtagaag tccgattccc aatcttaaag acaaagccat tagaaagaga aagtgagtga 3180 72 gagagagaga gaaactagct ccatgttcga aacagagcat catactctct tacctcttct 3240 73 tetteteeca tegettttgt etettettet ettettgatt etettgaaga gaagaaatag 3300 74 aaaaaccaga ttcaatctac ctccgggtaa atccggttgg ccatttcttg gtgaaaccat 3360 75 cggttatctt aaaccgtaca ccgccacaac actcggtgac ttcatgcaac aacatgtctc 3420 76 caagtaaaca acaacatctt ccaaaaactc aaaaaaataa atcctctgtt tttgaaattt 3480 77 gactaatgtt gtttatttta caggtatggt aagatatata gatcgaactt gtttggagaa 3540 78 ccaacgatcg tatcagctga tgctggactt aatagattca tattacaaaa cgaaggaagg 3600 79 ctctttgaat gtagttatcc tagaagtata ggtgggattc ttgggaaatg gtcgatgctt 3660 80 gttcttgttg gtgacatgca tagagatatg agaagtatct cgcttaactt cttaagtcac 3720 81 gcacgtetta gaactattet acttaaagat gttgagagae ataetttgtt tgttettgat 3780 tettggeaac aaaactetat tttetetget caagacgagg ccaaaaaggt ttttattttt 3840 82 83 atcttttatt ttgctaaatt tttttgttta tgaatcttta gagtttctaa cttttttttt 3900 84 tttaattgaa cagtttacgt ttaatctaat ggcgaagcat ataatgagta tggatcctgg 3960 85 agaagaagaa acagagcaat taaagaaaga gtatgtaact ttcatgaaag gagttgtctc 4020 86 tgctcctcta aatctaccag gaactgctta tcataaagct cttcaggtac atttattttt 4080 87 88 aaaatatcta aaatggttgt gtagtcacga gcaacgatat tgaagttcat tgagaggaaa 4200 89 atggaagaga gaaaattgga tatcaaggaa gaagatcaag aagaagaaga agtgaaaaca 4260 90 gaggatgaag cagagatgag taagagtgat catgttagga aacaaagaac agacgatgat 4320 91 cttttgggat gggttttgaa acattcgaat ttatcgacgg agcaaattct cgatctcatt 4380 92 cttagtttgt tatttgccgg acatgagact tcttctgtag ccattgctct cgctatcttc 4440 93 ttcttgcaag cttgccctaa agccgttgaa gagcttaggg taagataatt ataacagcac 4500 94 aagttaatta ctaccaaatt gttacgtatt atataagtta ttatagaatt attctattag 4560

DATE: 03/01/2000 TIME: 16:40:56 RAW SEQUENCE LISTING PAGE: 3

PATENT APPLICATION US/09/502,426

Input Set: I502426.RAW

95	aatatacgat gaaaaaagta tgtatattta attgtcacta attttatgtt tattgattta 4	4620
96	tacttttgaa ggaagagcat cttgagatcg cgagggccaa gaaggaacta ggagagtcag	4680
97	aattaaattg ggatgattac aagaaaatgg actttactca atgtgtatgt tactatcatt	4740
98	ctcattattt attctatgtt catatgattt atgatgaaac caaaattatt gattttttt 4	
99	ttggtgtgtg tgaaggttat aaatgaaact cttcgattgg gaaatgtagt taggtttttg	4860
100	catcgcaaag cactcaaaga tgttcggtac aaaggtaaaa ctttacgtac aaaattttta	
101	aataatgaaa tooggaatat tgaaatotta ttggatgaaa aatattaaaa taatttacat	
102	ttottaatgt tggaaaaaag gatacgatat cootagtggg tggaaagtgt taccggtgat s	
103	ctcagccgta catttggata attctcgtta tgaccaacct aatctcttta atccttggag !	
104	atggcaacag gtaaataaaa agtttctctc gttaactatc gaaaattagt gtatagtttt !	
105	ttcatctatt gcatgaatag atacgtccta cgtgatttac ctatctatag atactatacg s	
106	agaactatta atctggcaaa aactttttat tattattatc tttcaagtta gatcttaaca s	
107	cgtcatggat cattgatcac atgaaagcat ataaattaaa aataagagag agaaagagac S	
108	gtgttggtgt aagtgtacgt gaagacaatt aattagtagg atggtatgtc tttaatgacg s	
109	taggagetge ctaaatatte ttataategt gacegttgat ttattattag teaeggettt !	
110	gatacaattt aagatttgac ggacgatggt accacggctt tgacggatct cacacgcccg !	
111	atgacttgta cgtgcgttag attctgccac gttgactggt tttaatactt agatttataa !	
112	ctctattaat tataacaact atcaaatcgg cgaattagag aaatatacta tatagtatta 5	
113	ttatgattat tatgagataa tactttatga aataagataa taatggtagt catgatgtta !	
114	tagtgagtgg ggaaggtaag aggtggtgag agatgattaa tgaccccacg tggtgtggtg	
115	ccaacaagca cgtgttcttc ttcctttttt cttcccaact tctttttttg ggggtttatt 5	
116	gtgatttata aaatcggttt gtcgtttttt tttgtgacga gcagcaaaac aacggagcgt 5	
117	categicagg aagtggtagt tittegaegt ggggaaacaa ctacatgeeg tittggaggag s	
118	ggccaaggct atgtgctggt tcagagctag ccaagttaga aatggcagtg tttattcatc (
119	atctagttct taaattcaat tgggaattag cagaagatga tcaaccattt gcttttcctt (
120	ttgttgattt tcctaacggt ttgcctatta gggtttctcg tattctgtaa aaaaaaaaa (
121	agatgaaagt attittatic tettettitt tittigataa tittaaatea tittittige (
122	ccaatgatat ataaaaattt ggataaataa tattattgga tattcgtttt ttagttcggg (
123	tttgagaaaa gggtttcgac tttcgaaagt ggacgatgta tatagattgg gagctaggtt (
124	gagtetttgg acatttgtat tggatgttgt tgattattag tgtcgacact attaaacett (
125	aaatgggctt tctataaggc ccaattatat tacgattata acaaagtgac aacttttact (
126	togtttttga toogaagcaa taacaaattg toaaatacca aacacaagaa ttatgtaaac (
127	actcgtgtgt gtctagtggg aaatcattgg gctggagact gaacatcaga acacaagaaa 6	
128	cotgtcaatt atggatacac otoctatgac ggtttccaaa otttatottg attottatog (
129	tgttacattg acacaagag ttaggtgtca aaaggactaa atgaataaca atagctctca 6	
130	ggataagaag gttcataaaa tggtttcttt attttgagaa gaaagagaga ggagctttta (
131	ctgtttcttg ggtcctattc ctttaaatga gagggtttcg tttttacttc ttctatctca 6	
132	tcatctttag gatcctcttc tagacgagta aagtaatcct cgttaccaag caatggtctc 6	
133		5888
134	<210> SEQ ID NO 2	3000
135	<211> LENGTH: 513	
136	<212> TYPE: PRT	
137	<213> ORGANISM: Arabidopsis sp.	
138	<400> SEQUENCE: 2	
139	Met Phe Glu Thr Glu His His Thr Leu Leu Pro Leu Leu Leu Pro	
140	1 5 10 Let let let let rio	
141		
141	Ser Leu Leu Ser Leu Leu Leu Phe Leu Ile Leu Leu Lys Arg Asn 20 25 30	
142		
143	Arg Lys Thr Arg Phe Asn Leu Pro Pro Gly Lys Ser Gly Trp Pro Phe 35 40 45	
744	35 40 45	

RAW SEQUENCE LISTING
PATENT APPLICATION US/09/502,426 DATE: 03/01/2000 TIME: 16:40:56 PAGE: 4

Input Set: I502426.RAW

													•			
145	Leu	Gly	Glu	Thr	Ile	Gly	Tyr	Leu	Lys	Pro	Tyr	Thr	Ala	Thr	Thr	Leu
146		50					55					60				
147	Gly	Asp	Phe	Met	Gln	Gln	His	Val	Ser	Lys	Tyr	Gly	Lys	Ile	Tyr	Arg
148	65					70					75					80
149	Ser	Asn	Leu	Phe	Gly	Glu	Pro	Thr	Ile	Val	Ser	Ala	Asp	Ala	Gly	Leu
150					85					90					95	
151	Asn	Arg	Phe	Ile	Leu	Gln	Asn	Glu	Gly	Arg	Leu	Phe	Glu	Cys	Ser	Tyr
152		_		100					105	•				110		-
153	Pro	Arq	Ser	Ile	Gly	Gly	Ile	Leu	Gly	Lys	Trp	Ser	Met	Leu	Val	Leu
154		·	115		-	-		120	-	-	-		125			
155	Val	Gly	Asp	Met	His	Arq	Asp	Met	Arq	Ser	Ile	Ser	Leu	Asn	Phe	Leu
156		130	-			•	135					140				
157	Ser	His	Ala	Arg	Leu	Arq	Thr	Ile	Leu	Leu	Lys	Asp	Val	Glu	Arq	His
158	145			•		150					155	-				160
159	Thr	Leu	Phe	Val	Leu	Asp	Ser	Trp	Gln	Gln	Asn	Ser	Ile	Phe	Ser	Ala
160					165	-		-		170					175	
161	Gln	Asp	Glu	Ala	Lys	Lys	Phe	Thr	Phe	Asn	Leu	Met	Ala	Lvs	His	Ile
162		•		180	•	-			185					190		
163	Met	Ser	Met	Asp	Pro	Gly	Glu	Glu	Glu	Thr	Glu	Gln	Leu	Lys	Lys	Glu
164			195	•		•		200					205	•	-	
165	Tyr	Val	Thr	Phe	Met	Lys	Gly	Val	Val	Ser	Ala	Pro	Leu	Asn	Leu	Pro
166	•	210				•	215					220				
167	Gly	Thr	Ala	Tyr	His	Lys	Ala	Leu	Gln	Ser	Arq	Ala	Thr	Ile	Leu	Lvs
168	225			-		230					235					240
169	Phe	Ile	Glu	Arg	Lys	Met	Glu	Glu	Arq	Lys	Leu	Asp	Ile	Lys	Glu	Glu
170				-	245				,	250		-		•	255	
171	Asp	Gln	Glu	Glu	Glu	Glu	Val	Lys	Thr	Glu	Asp	Glu	Ala	Glu	Met	Ser
172	-			260				•	265		-			270		
173	Lys	Ser	Asp	His	Val	Arq	Lys	Gln	Arq	Thr	Asp	Asp	Asp	Leu	Leu	Gly
174	•		275			_	-	280			_	_	285			-
175	Trp	Val	Leu	Lys	His	Ser	Asn	Leu	Ser	Thr	Glu	Gln	Ile	Leu	Asp	Leu
176	-	290		-			295					300			-	
177	Ile	Leu	Ser	Leu	Leu	Phe	Ala	Gly	His	Glu	Thr	Ser	Ser	Val	Ala	Ile
178	305					310		-			315					320
179	Ala	Leu	Ala	Ile	Phe	Phe	Leu	Gln	Ala	Cys	Pro	Lys	Ala	Val	Glu	Glu
180					325					330		_			335	
181	Leu	Arg	Glu	Glu	His	Leu	Glu	Ile	Ala	Arg	Ala	Lys	Lys	Glu	Leu	Gly
182				340					345			_	=	350		_
183	Glu	Ser	Glu	Leu	Asn	Trp	Asp	Asp	Tyr	Lys	Lys	Met	Asp	Phe	Thr	Gln
184			355					360					365			
185	Cys	Val	Ile	Asn	Glu	Thr	Leu	Arg	Leu	Gly	Asn	Val	Val	Arg	Phe	Leu
186		370					375					380				
187	His	Arg	Lys	Ala	Leu	Lys	Asp	Val	Arg	Tyr	Lys	Gly	Tyr	Asp	Ile	Pro
188	385					390					395	_	_	_		400
189	Ser	Gly	Trp	Lys	Val	Leu	Pro	Val	Ile	Ser	Ala	Val	His	Leu	Asp	Asn
190		-	_	_	405					410					415	
191	Ser	Arg	Tyr	Asp	Gln	Pro	Asn	Leu	Phe	Asn	Pro	Trp	Arg	Trp	Gln	Gln
192				420					425			_	_	430		
193	Gln	Asn	Asn	Gly	Ala	Ser	Ser	Ser	Gly	Ser	Gly	Ser	Phe	Ser	Thr	Trp
194			435					440					445			

PAGE: 5 RAW SEQUENCE LISTING DATE: 03/01/2000 PATENT APPLICATION US/09/502,426 TIME: 16:40:56

Input Set: I502426.RAW

195		Gly Asn Asn Tyr Met Pro Phe Gly Gly Pro Arg Leu Cys Ala Gly									
196		450 455 460									
197		Ser Glu Leu Ala Lys Leu Glu Met Ala Val Phe Ile His His Leu Val									
198		465 470 475 480									
199		Leu Lys Phe Asn Trp Glu Leu Ala Glu Asp Asp Gln Pro Phe Ala Phe									
200		485 490 495									
201		Pro Phe Val Asp Phe Pro Asn Gly Leu Pro Ile Arg Val Ser Arg Ile									
202		500 505 510									
203		Leu									
204		SEQ ID NO 3									
205		LENGTH: 24									
206		TYPE: DNA									
207		ORGANISM: Artificial Sequence									
208		FEATURE:									
209		OTHER INFORMATION: Description of Artificial Sequence: primer D40VERF									
210	<400>	SEQUENCE: 3									
211		atgttcgaaa cagagcatca tact 24									
212		SEQ ID NO 4									
213		LENGTH: 21									
214		TYPE: DNA									
215		ORGANISM: Artificial Sequence									
216		FEATURE:									
217		OTHER INFORMATION: Description of Artificial Sequence: primer D4PRM									
218	<400>	SEQUENCE: 4									
219		cctcgatcaa agagagaga a 21									
220	<210>	SEQ ID NO 5									
221		LENGTH: 29									
222		TYPE: DNA									
223	<213>	ORGANISM: Artificial Sequence									
224		FEATURE:									
225		OTHER INFORMATION: Description of Artificial Sequence: primer D4RTF									
226	<400>	SEQUENCE: 5									
227		ttcttggtga aaccatcggt tatcttaaa 29									
228		SEQ ID NO 6									
229		LENGTH: 26									
230		TYPE: DNA									
231		ORGANISM: Artificial Sequence									
232		FEATURE:									
233		OTHER INFORMATION: Description of Artificial Sequence: primer D4RTR									
234	<400>	SEQUENCE: 6									
235		tatgataagc agttcctggt agattt 26									
236		SEQ ID NO 7									
237		LENGTH: 21									
238		TYPE: DNA									
239		ORGANISM: Artificial Sequence									
240		FEATURE:									
241		OTHER INFORMATION: Description of Artificial Sequence: primer D4F1									
242	<400>	SEQUENCE: 7									
243	.	cgaggcaaca aaagtaatga a 21									
244	<210>	SEQ ID NO 8									

Please Note:

PAGE: 6

VERIFICATION SUMMARY DATE: 03/01/2000 PATENT APPLICATION US/09/502,426 TIME: 16:40:56

Input Set: I502426.RAW

1. The second of the second of

Line ? Error/Warning Original Text