# Cómo configurar un pin de FPGA en modo pull-up-pull-down con Vivado

Creador: David Rubio G.

Entrada: <a href="https://soceame.wordpress.com/2024/10/28/como-configurar-un-pin-de-fpga-en-modo-pull-up-pull-down-con-vivado/">https://soceame.wordpress.com/2024/10/28/como-configurar-un-pin-de-fpga-en-modo-pull-up-pull-down-con-vivado/</a>

Blog: <a href="https://soceame.wordpress.com/">https://soceame.wordpress.com/</a>

GitHub: <a href="https://github.com/DRubioG">https://github.com/DRubioG</a>

Fecha última modificación: 23/02/2025

Si has llegado aquí, ya sabrás cuál es el funcionamiento de una resistencia de *pull-up* y/o de *pull-down*. Bien pues ahora te voy a comentar como se consigue configurar los pines de una FPGA para que estén por defecto en *pull-up* o en *pull-down*, y así puedas ahorrarte colocar resistencias.

# Configuración

Para configurar un pin en modo *pull-up/pull-down*, hay dos métodos:

• *Mediante restricciones (constraints)* en el XDC. Para ello se tiene que utilizar la restricción de *PULLTYPE* como *PULLUP* o *PULLDOWN*.

set\_property PULLTYPE <PULLUP o PULLDOWN> [get\_ports puerto];

• O mediante *atributos en el código*. Para ello se utiliza el atributo PULLTYPE.

```
attribute PULLTYPE: string;
attribute PULLTYPE of puerto : signal is "<PULLUP o PULLDOWN>";
```

**NOTA**: si se quiere hacer colisionar una restricción en el XDC con un atributo en el código, **gana** la restricción.

Si el pin no se configura como *pull-up* o *pull-down*, queda de la siguiente forma. Donde se puede ver que hay dos resistencias desactivadas.



Si se configura como **PULL-UP,** Vivado solo configura la resistencia superior. Se puede ver que la marca en azul.



Y si se configura como **PULL-DOWN**, configura la resistencia en azul.



**NOTA**: solo por curiosidad, el bloque cuadrado que no marca Vivado es el buffer de salida, el que marca al lado es el de salida, y el de arriba es el pin.

# **Ejemplo**

Hacemos la demostración con un pequeño ejemplo.

Imaginemos que queremos leer el valor de varios pines de entrada con un ILA, pero los queremos configurados la mitad en pull-up y la otra mitad en pull-down (al estar en los pines en vacío o en el aire, se puede ver mejor su funcionamiento).

Para ello con este pequeño código. (comentada está la otra opción para configurar un pull-up)

```
ses coll
 library IEEE;
 use IEEE.STD_LOGIC_1164.ALL;
) entity test is
         clk : in std_logic;
         input : in std_logic_vector(7 downto 0)
end test;
) architecture Behavioral of test is
) COMPONENT ila_0
 PORT (
     clk : IN STD_LOGIC;
     probe0 : IN STD_LOGIC_VECTOR(7 DOWNTO 0)
END COMPONENT :
 --attribute PULLTYPE: string;
--attribute PULLTYPE of input : signal is "PULLUP";
 begin
   ila : ila_0
 PORT MAP (
     clk => clk,
     probe0 => input
);
end Behavioral;
```

Después configuramos el siguiente XDC, donde la mitad está en *pull-up* y la otra mitad en *pull-down*.

```
set_property -dict { PACKAGE_PIN D5 IOSTANDARD LVCMOS33 } [get_ports {input[0]}];
set_property -dict { PACKAGE_PIN G5 IOSTANDARD LVCMOS33 } [get_ports {input[1]}];
set_property -dict { PACKAGE_PIN G7 IOSTANDARD LVCMOS33 }
                                                               [get_ports {input[2]}];
set_property -dict { PACKAGE_PIN G8 IOSTANDARD LVCMOS33 } [get_ports {input[3]}];
set_property -dict { PACKAGE_PIN E5 IOSTANDARD LVCMOS33 } [get_ports {input[4]}];
set_property -dict { PACKAGE_PIN E6 IOSTANDARD LVCMOS33 } [get_ports {input[5]}];
set_property -dict { PACKAGE_PIN D6 IOSTANDARD LVCMOS33 } [get_ports {input[6]}];
set_property -dict { PACKAGE_PIN G6 IOSTANDARD LVCMOS33 } [get_ports {input[7]}];
set_property PULLTYPE PULLDOWN [get_ports input[0]];
set_property PULLTYPE PULLDOWN [get_ports input[1]];
set_property PULLTYPE PULLDOWN [get_ports input[2]];
set_property PULLTYPE PULLDOWN [get_ports input[3]];
set_property PULLTYPE PULLUP [get_ports input[4]];
set_property PULLTYPE PULLUP [get_ports input[5]];
set_property PULLTYPE PULLUP [get_ports input[6]];
set_property PULLTYPE PULLUP [get_ports input[7]];
```

Si ahora generamos el bitstream, lo grabamos en la FPGA y leemos el valor que lee el ILA. Se puede ver que la mitad de los pines el ILA los lee a nivel alto (*los que están en pull-up*) y la otra mitad a nivel bajo (*los que están en pull-down*)



## **NOTA Final**

Existe un tercer estado que es el estado KEEPER (*«mantenedor«*), que permite dejar configurado el pin en el estado en estado anterior. Para ello Vivado lo que hace es activar las dos resistencias a la vez.



Lo que ocurre con este estado es que para empezar a funcionar la línea está a nivel alto.



Si una de las líneas se pone a nivel bajo, la línea cambia a nivel bajo y se queda a nivel bajo, no vuelve a nivel alto como si fuera un *pull-up*.



Y si esa misma línea se vuelve a poner a nivel alto, la línea se mantiene a nivel alto, aunque quites el nivel alto de la entrada. No vuelve a nivel bajo como si fuera un *pull-down*.



Para configurar se hace como un *pull-up* o un *pull-down*, pero utilizando el atributo **KEEPER**.

```
attribute PULLTYPE: string;
attribute PULLTYPE of input : signal is "KEEPER";
set_property -dict { PACKAGE_PIN D5 IOSTANDARD LVCMOS33 } [get_ports {input[0]}];
set_property -dict { PACKAGE_PIN G5 IOSTANDARD LVCMOS33 }
                                                                     [get_ports {input[1]}];
set_property -dict { PACKAGE_PIN G7 IOSTANDARD LVCMOS33 }
                                                                     [get_ports {input[2]}];
set_property -dict { PACKAGE_PIN G8 IOSTANDARD LVCMOS33 }
                                                                     [get_ports {input[3]}];
set_property -dict { PACKAGE_PIN E5 IOSTANDARD LVCMOS33 } [get_ports {input[4]}];
set_property -dict { PACKAGE_PIN E6 IOSTANDARD LVCMOS33 } [get_ports {input[5]}];
set_property -dict { PACKAGE_PIN D6 IOSTANDARD LVCMOS33 } [get_ports {input[6]}];
set_property -dict { PACKAGE_PIN G6 IOSTANDARD LVCMOS33 } [get_ports {input[7]}];
set_property PULLTYPE KEEPER [get_ports input[0]];
set_property PULLTYPE KEEPER [get_ports input[1]];
set_property PULLTYPE KEEPER [get_ports input[2]];
set_property PULLTYPE KEEPER [get_ports input[3]];
set_property PULLTYPE KEEPER [get_ports input[4]];
set_property PULLTYPE KEEPER [get_ports input[5]];
set_property PULLTYPE KEEPER [get_ports input[6]];
set_property PULLTYPE KEEPER [get_ports input[7]];
```

## Parte 2

https://soceame.wordpress.com/2025/02/01/como-configurar-un-pin-de-fpga-en-modo-pull-up-pull-down-con-vivado-part-2/