Report for Deep Learning (CS541)_Homework1:

1g, -1 1l, -1 avoid using loop 1n -1

Report By:

Swapneel Dhananjay Wagholikar (WPI ID: 257598983)

Anuj Pradeep Pai Raikar (WPI ID: 181758784)

Solution to Question 1:

All the codes for this Python and Numpy Warm-up Exercises are given in python file. Respective comments are also written in the code. Please check.

Solution to Question 2(a):

Required age regressor is trained using Linear Regression. (Find codes and comments in python file)

Below formula is used for finding weights w in linear regression (X tr, Y tr) function.

$$\mathbf{w} = \left(\mathbf{X}\mathbf{X}^{ op}
ight)^{-1}\mathbf{X}\mathbf{y}$$
 where $\mathbf{x} = \left[egin{array}{ccc} \mathbf{x}_{1}^{(1)} & \dots & \mathbf{x}_{n}^{(n)} \\ & & \end{array}
ight]$

Below formula is used for finding mean square error.

$$f_{\text{MSE}}(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} (\hat{y}^{(i)} - y^{(i)})^2$$

Mean Square Error (fMSE) is computed for both training set and testing set separately. The results are:

a. $cost fMSE on the training set Dtr = \frac{50.465284361134664}{1}$

b. cost fMSE on the testing set Dte = $\frac{268.7927887195447}{1}$

Solution to Question 3(a):

Required Probability Distributions are plotted using functions matplotlib.pyplot.hist with density=True and scipy.stats.poisson. Please check the below graphs.

Empirical Probability Distribution of the Data included in PoissonX.npy:

Probability Distributions of a Poisson random variable with rate parameter 2.5:

Probability Distributions of a Poisson random variable with rate parameter 3.1:

Probability Distributions of a Poisson random variable with rate parameter 3.7:

Probability Distributions of a Poisson random variable with rate parameter 4.3:

By visually inspecting above plots, we can infer that probability distribution of a Poisson random variable with rate parameter 3.7 is most consistent with the empirical distribution of the data.

Solution to Question 3(b):

Given function for normal distribution is:

$$P(y \mid x) = \mathcal{N}\left(\mu = x^2, \sigma^2 = \left(2 - \frac{1}{1 + e^{-x^2}}\right)^2\right)$$

In general, the graph of normal distribution is:

(i) By looking at above graph, we can tell that corresponding value of y will be larger if the standard deviation is less. Therefore, to have the larger value of y, we need our variance (σ^2) to be smaller.

As per our given normal distribution function, we can see that if we increase the value of x, the value of variance is decreasing. (i.e. $x \uparrow$, $\sigma^2 \downarrow$)

Explanation: When $x\uparrow$, $(1 + e-x2) \downarrow$

Therefore, (1/(1 + e-x2)) \uparrow

Therefore, $((2-(1/(1+e-x2)))^2)$

(i.e. $x\uparrow$, $\sigma^2\downarrow$)

Hence, with the large magnitude of x, corresponding value of y tend be larger.

(ii) By looking at above graph, we can tell that the graph is more bulky with large value of variance. Therefore, uncertainty in the value of y is directly correlated to variance. Hence, to have the larger value of uncertainty, we need our variance (σ^2) to be larger.

As per our given normal distribution function, we can see that if we decrease the value of x, the value of variance is increasing. (i.e. $x \downarrow$, $\sigma^2 \uparrow$)

Explanation: When $x \downarrow$, $(1 + e - x2) \uparrow$

Therefore, $(1/(1 + e-x2)) \downarrow$

Therefore, $((2-(1/(1+e-x2)))^2)$

(i.e. $x \downarrow$, $\sigma^2 \uparrow$)

Hence, with the small magnitude of x, uncertainty in the corresponding value of y tend be larger.

Solution to Question 4:

Please find all the re-	auired 4 proofs in below	part of PDF (Scanned cop	v in legible handwriting)

a.4(a) To prove: $\nabla_{\mathbf{z}}(\mathbf{z}^{\mathsf{T}}\mathbf{a}) = \nabla_{\mathbf{z}}(\mathbf{a}^{\mathsf{T}}\mathbf{z}) = \mathbf{a}$ where, $\nabla_{x} = \frac{12f}{3x_1}$, $x = \begin{bmatrix} x_1 \\ 3x_2 \end{bmatrix}$, $y = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ Proof 1 Vz (zTa) $= \sqrt{x} \left[x_1 x_2 \dots, x_n \right] \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ = 7, 2, a, + 2, a, + x, an ... / which will be the same result for $\nabla_{\mathbf{x}}$ (aTz) 2[2191+2202+ + 2nan 221 2 [2/a, + 2/a2+ ··· + 2nan] 22 d[xqaqt 22azt + 2nan] 7xn

$$= \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ \nabla_{\mathbf{z}} (\mathbf{z}^{\mathsf{T}} \mathbf{a}) = \nabla_{\mathbf{z}} (\mathbf{a}^{\mathsf{T}} \mathbf{z}) = \mathbf{a} \end{bmatrix}$$
Hence, proved.

$$\nabla_{\mathbf{z}} (\mathbf{z}^{\mathsf{T}} \mathbf{A} \mathbf{z}) = (\mathbf{A} + \mathbf{A}^{\mathsf{T}}) \mathbf{z}$$

4 (b) To prove $\nabla_{\mathbf{z}}$ (z)		= (A	+ A ^T) z		
where, $\nabla_{x} =$	ラチョンス ラチョスカ ラテカスカ	, 2=	21 22 :: !	, A_	[a11 a12 a a21 i an1 any	

Proof: $\nabla_{\mathbf{x}} (\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x})$ $= \nabla_{\mathbf{x}} \left[\sum_{i=0}^{n} x_i a_{i1} \sum_{i=1}^{n} x_i a_{i2} \dots \sum_{i=1}^{n} x_i' a_{in} \right]$ $= \sqrt{2} \sqrt{\frac{2}{1}} \frac{2}{1} \frac{2}{1} \frac{1}{1} + 2 \frac{2}{1} \frac{2}{1} \frac{1}{1} \frac{1}{1$ $2a_{11}z_{1}+(a_{12}+a_{21})z_{2}$ + $(a_{1n}+a_{n1})z_{n}$ $(a_{12}+a_{21})z_{1}+2a_{22}z_{2}$ +...+. (a,+a,)x,+2a,22 x2 Hence Proved $\nabla_{\mathbf{x}} (\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}) = (\mathbf{A} + \mathbf{A}^{\mathsf{T}}) \mathbf{x}$

Q4 (c) To prove: $\nabla_{\mathbf{z}}(\mathbf{z}^{\mathsf{T}}\mathbf{A}\mathbf{z}) = 2\mathbf{A}\mathbf{z}$ where A is any nxn symmetrix matrix Proof As per the proof of 046), we know that $\nabla_{\mathbf{x}}(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}) = (\mathbf{A}+\mathbf{A}^{\mathsf{T}})\mathbf{x}$ But, when A is a symmetric matrix, $\Rightarrow A = A^T$ $\nabla_{\mathbf{x}}(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}) = (\mathbf{A} + \mathbf{A}^{\mathsf{T}})\mathbf{x} = 2\mathbf{A}\mathbf{x}$ $\Rightarrow \nabla_{\mathbf{x}}(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}) = 2\mathbf{A}\mathbf{x}$ Hence, proved Q.4 (d) To prove: $\nabla_{\mathbf{x}}\left[\left(\mathbf{A}\mathbf{x}+\mathbf{b}\right)^{\mathsf{T}}\left(\mathbf{A}\mathbf{x}+\mathbf{b}\right)\right]=2\mathbf{A}^{\mathsf{T}}\left(\mathbf{A}\mathbf{x}+\mathbf{b}\right)$ where, & is column vector b is const column vector A is nxn symmetric matrix $: \nabla_{\mathbf{x}} \left[(\mathbf{A}\mathbf{x} + \mathbf{b})^{\mathsf{T}} (\mathbf{A}\mathbf{x} + \mathbf{b}) \right]$ $= \sqrt{x} \left[x^{T}A^{T}(Ax+b) + b^{T}(Ax+b) \right]$ $= \nabla_{\mathbf{z}} \left[\mathbf{x}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{x}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{b} + \mathbf{b}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{b}^{\mathsf{T}} \mathbf{b} \right]$ $= \nabla_{x} (x^{T}(A^{T}A)x) + \nabla(x^{T}(Ab)) + \nabla((b^{T}AT)x)$ $\dots (A = A^T)$

= 2ATAx + Ab + Ab + O

= 2A(Az+b)

= $2A^{T}(Ax+b)$

 $[\cdot \cdot \nabla_{\mathbf{z}} [(\mathbf{A}\mathbf{x} + \mathbf{b})^{\mathsf{T}} (\mathbf{A}\mathbf{x} + \mathbf{b})] = 2\mathbf{A}^{\mathsf{T}} (\mathbf{A}\mathbf{x} + \mathbf{b})$

.... (as $A = A^T$)

··· Hence, proved