CH. 6: Dimensionality Reduction

Objectives: Reduces space complexity,
 Reduces time complexity,
 Data visualization

- Two main methods of dimensionality reduction:
 - 1) Feature selection: Choosing k < d important features,
 - 2) Feature extraction: Mapping data points from d-D to k-D space, where k < d, while preserving as many properties of the data as possible.

6.1 Feature Selection

- i) Forward search: Add the best feature at each step
 - Initially, $F = \phi$ (F: feature set)
 - At each iteration, find the best new feature using a sample $j = \arg \max_{i} P(F \cup x_i)$, where

P(): performance function

■ Add x_j to F if $P(F \cup x_i) > P(F)$

Example: Iris data (3 classes: (+, x, 0), 4 features: (F1,F2,F3,F4))

Single feature

Add one more feature to F4

Since the accuracies of (F1,F3,F4) and (F2,F3,F4) are both 0.94 smaller than 0.96.

Stop the feature selection process at (F3,F4).

ii) Backward search: Start with all features and remove one at a time.

Remove
$$x_j$$
 from F if $j = \arg\min_i E(F - \{x_i\})$
 $E()$: error function

iii) Floating search: The numbers of added and removed features can change at each step.

6.2 Feature Extraction

Graphical representation (visualization)

A data set $X = \{x_i\}_{i=1}^N$ can be represented as a set of points in a space.

The data set may possess certain properties. Feature extraction (FE) attempts to preserve or even improve the properties during an FE process.

i) Principal Components Analysis (PCA)

Data points: $\mathbf{x}_{i} = (x_{i1}, x_{i2}, \dots, x_{id})^{T}, i = 1, 2, \dots, N$

Matrix representation:
$$X = (x_1, x_2, \dots, x_N)^T = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{Nd} \end{pmatrix}$$

Mean vector:
$$\boldsymbol{\mu}_{x} = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}_{i}$$
,

Covariance matrix:
$$C_x = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \boldsymbol{\mu}_x) (\mathbf{x}_i - \boldsymbol{\mu}_x)^T$$

Let λ_i and e_i , $i = 1, \dots, d$, be the eigenvalues and eigenvectors of C_x , i.e., $C_x e_i = \lambda_i e_i$.

Suppose $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$.

Let
$$A_{d\times d} = \begin{bmatrix} \boldsymbol{e}_1 & \boldsymbol{e}_2 & \cdots & \boldsymbol{e}_d \end{bmatrix}^T$$
.

Compute $y_i = A(x_i - \mu_x), i = 1, 2, ..., N$.

y-axes corresponding to eigenvectors e's are orthogonal, i.e., uncorrelated. v_i , i=1

The variances over *y*-axes ≈ eigenvalues

For dimensionality reduction,

Let
$$A_k = [\boldsymbol{e}_1 \cdots \boldsymbol{e}_k]^T$$
, $k < d$.
$$\hat{\boldsymbol{y}} = A_k (\boldsymbol{x} - \boldsymbol{\mu}_x)$$
$$\hat{\boldsymbol{y}}_{k \times 1} = (A_k)_{k \times d} (\boldsymbol{x} - \boldsymbol{\mu}_x)_{d \times 1}$$

Let \hat{x} be the reconstruction of x from \hat{y} .

The reconstruction error $\|\boldsymbol{x}_i - \hat{\boldsymbol{x}}_i\|^2$ depends on

$$\sum_{i=k+1}^{d} \lambda_i$$
, which are relatively smaller than $\sum_{i=1}^{k} \lambda_i$.

Eigen faces for face recognition

Figure 3.23: 32 original images of a boy's face, each 321×261 pixels.

Figure 3.24: Reconstruction of the image from four basis vectors \mathbf{b}_i , $i=1,\ldots,4$ which can be displayed as images. The linear combination was computed as $q_1\mathbf{b}_1+q_2\mathbf{b}_2+q_3\mathbf{b}_3+q_4\mathbf{b}_4=0.078\,\mathbf{b}_1+0.062\,\mathbf{b}_2-0.182\,\mathbf{b}_3+0.179\,\mathbf{b}_4$.

 $q_i = \mathbf{i}^T \mathbf{e}_i,$ i = 1, 2, 3, 4

ii) Feature Embedding (FE)

FE places d-D data points in a k-D space (k < d) such that pairwise similarities in the new space respect the original pairwise similarities.

Let $X_{N\times d}$ be data matrix, λ_i and w_i be the eigenvalues and eigenvectors of correlation matrix $(X^TX)_{d\times d}$ of features, i.e., $(X^TX)w_i = \lambda_i w_i$. Multiply both sides X, $X(X^TX)w_i = (XX^T)Xw_i = \lambda_i Xw_i$, i.e., λ_i , Xw_i are eigenvalues and eigenvectors of similarity matrix $(XX^T)_{N\times N}$ of instances.

Let $v_i = Xw_i$, $i = 1, \dots, k$ (< d) corresponding to k leading eigenvalues, which form the coordinates of the new space.

Since v_i are the eigenvectors of similarity matrix $(XX^T)_{N\times N}$. Pairwise similarities between instances will be preserved in the new space.

iii) Factor Analysis (FA)

- In PCA, from the original features x_i , $i = 1, \dots, d$ to form a new set of features $z_j = \sum_{i=1}^d w_{ji} x_i$, $j = 1, \dots, k$ For dimension reduction, k < d. Mathematically, $z = W^T(x - \mu)$.
- In FA, a set of unobservable (latent) factors z_j , $j=1,\dots,k$ that combine to generate x_i , $i=1,\dots,d$. $x_i=\sum_{j=1}^k v_{ij}z_j$, $i=1,\dots,d$. Mathematically, $x-\mu=Vz$.

Given a sample $X = \{x^t\}_{t=1}^N$, $x = (x_1, x_2, \dots, x_d)$, find a small number of factors z_i , $i = 1, \dots, k$ (k < d), s.t. each x_i can be written as a weighted sum of z_i , $x_i - \mu_i = v_{i1}z_1 + v_{i2}z_2 + \dots + v_{ik}z_k + \varepsilon_i$, $i = 1, \dots, d$ In vector-matrix form, $x - \mu = Vz + \varepsilon$.

where z_i : latent factors $(\sim N(0,1), \operatorname{Cov}(z_i, z_j) = 0, i \neq j)$ $v_{ij}: \text{ factor loadings}$ $\mathcal{E}_i: \text{ errors } (E[\mathcal{E}_i] = 0, \operatorname{Var}(\mathcal{E}_i) = \psi_i,$ $\operatorname{Cov}(\mathcal{E}_i, z_j) = 0, \ \forall i, j$ $\operatorname{Cov}(\mathcal{E}_i, \mathcal{E}_j) = 0, \ i \neq j).$

Example: Let s_c , s_e , s_m , s_p and s_{ch} be the score variables of Chinese(c), English(e), Mathematics(m), Physics(p), and Chemistry(ch), respectively, which are observable. Let z_m , z_i and z_o be the talent variables of memory(m), inference(i), organization(o), which are latent.

Specifically, given the scores of a student

$$s_c = 78$$
, $s_e = 82$, $s_m = 94$, $s_p = 89$, $s_{ch} = 92$,

what are **loadings** v_{ij} (i = c, e, m, p, ch; j = m, i, o)

of **factors** Z_m , Z_i and Z_o of the student?

$$s = (s_c \ s_e \ s_m \ s_p \ s_{ch}), \ s_i = \sum_{j \in \{m, i.o\}} v_{ij} z_j \ (i = c, e, m, p, ch)$$

Two uses of factor analysis:

- i) Knowledge extraction,
- ii) Dimensionality reduction

Knowledge Extraction – Given X and Z, find V

From $x - \mu = Vz + \varepsilon$, for simplicity, let $\mu = 0$,

$$\Rightarrow x = Vz + \varepsilon$$
.

$$\Sigma = \text{Cov}(x) = \text{Cov}(Vz + \varepsilon) = \text{Cov}(Vz) + \text{Cov}(\varepsilon)$$

$$= V \operatorname{Cov}(z) V^{T} + \psi = V I V^{T} + \psi = V V^{T} + \psi$$

$$(:: z_i \sim N(0,1), \operatorname{Cov}(z_i, z_j) = 0, i \neq j, :: \operatorname{Cov}(z) = I)$$

 ψ : diagonal matrix with ψ_i on the diagonals.

Ignoring ψ , $\Sigma = VV^T$.

Let S be the estimator Σ of sample X, $S = VV^T$.

Spectral decomposition of *S*:

$$S = E\Lambda E^{T} = (E\Lambda^{1/2})(E\Lambda^{1/2})^{T} = VV^{T},$$

$$\therefore V = E\Lambda^{1/2}$$

Dimensionality Reduction – Given X, find Z

Let
$$z_j = \sum_{i=1}^d w_{ji} x_i$$
, $j = 1, \dots, k$

$$z_1 = \sum_{i=1}^d w_{1i} x_i = w_{11} x_1 + w_{12} x_2 + \dots + w_{1d} x_d$$

$$z = \sum_{i=1}^{d} w_i \quad x_i = w_i \quad x_i + w_i \quad x_i + w_i \quad x_i = w_i \quad x_i =$$

$$\begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_k \end{pmatrix}_{k \times 1} = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1d} \\ w_{21} & w_{22} & \cdots & w_{2d} \\ \vdots & \vdots & \ddots & \ddots \\ w_{k1} & w_{k2} & \cdots & w_{kd} \end{bmatrix}_{k \times d} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix}_{d \times 1}$$

In vector-matrix form, $z = W^T x$.

Given a sample
$$X = \{x^t\}_{t=1}^N, z^i = W^T x^i, i = 1, \dots, N$$

In matrix form,
$$Z_{N\times k} = X_{N\times d}W_{d\times k}$$
.

Solve for
$$W = (X^T X)^{-1} X^T Z$$

 $S = X^T X$ is the estimated covariance matrix Σ of sample X.

$$S = VV^T$$
, $V = E\Lambda^{1/2}$.

$$x - \mu = Vz + \varepsilon$$
. Ignore μ and ε , $\Rightarrow x = Vz$.

$$xz^{T} = Vzz^{T}$$
. Given a sample $X = \{x^{t}\}_{t=1}^{N}$,

$$x^{i}z^{T} = Vz^{i}(z^{i})^{T} = V, i = 1, \dots, N.$$

In matrix form, $X^TZ = V$.

$$W = (X^T X)^{-1} X^T Z = S^{-1} V = (VV^T)^{-1} V, \quad V = E\Lambda^{1/2}$$

 $Z = XW.$

iv) Matrix Factorization (MF)

G defines k new factors in terms of the attributes of data X.

F defines instances in terms of the new factors in G.

Objective: solve X = FG for $F = G^+X$

v) Linear Discriminant Analysis (LDA)

- -- Find a low dimension space such that when data are pojected onto it, the examples of different classes are as well separated as possible.
- □ In 2-Class (*d*-D to 1-D) case, find a direction *w*, such that when data are projected onto *w*, the examples of different classes are well-separated.

Given a sample

$$X = \{\boldsymbol{x}^t, r^t\}_{t=1}^N \text{ s.t.}$$

$$r^t = \begin{cases} 1 & \text{if } \boldsymbol{x}^t \in C_1 \\ 0 & \text{if } \boldsymbol{x}^t \in C_2 \end{cases}$$

Means:

$$m_{1} = \frac{\sum_{t} \mathbf{w}^{T} \mathbf{x}^{t} r^{t}}{\sum_{t} r^{t}} = \mathbf{w}^{T} \mathbf{m}_{1}, \ m_{2} = \frac{\sum_{t} \mathbf{w}^{T} \mathbf{x}^{t} (1 - r^{t})}{\sum_{t} (1 - r^{t})} = \mathbf{w}^{T} \mathbf{m}_{2}$$

Scatters:

$$S_1^2 = \sum_t (\mathbf{w}^T \mathbf{x}^t - m_1)^2 r^t, \ S_2^2 = \sum_t (\mathbf{w}^T \mathbf{x}^t - m_2)^2 (1 - r^t)$$

□ Find w that maximizes $J(w) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$ ---- (A)

$$(m_1 - m_2)^2 = (\mathbf{w}^T \mathbf{m}_1 - \mathbf{w}^T \mathbf{m}_2)^2$$

$$= \mathbf{w}^T (\mathbf{m}_1 - \mathbf{m}_2) (\mathbf{m}_1 - \mathbf{m}_2)^T \mathbf{w} = \mathbf{w}^T S_B \mathbf{w}$$
where $S_B = (\mathbf{m}_1 - \mathbf{m}_2) (\mathbf{m}_1 - \mathbf{m}_2)^T$

(Between-class scatter matrix)

$$s_{1}^{2} = \sum_{t=1}^{N} (\mathbf{w}^{T} \mathbf{x}^{t} - \mathbf{m}_{1})^{2} r^{t} = \sum_{t=1}^{N} \mathbf{w}^{T} r^{t} (\mathbf{x}^{t} - \mathbf{m}_{1}) (\mathbf{x}^{t} - \mathbf{m}_{1})^{T} \mathbf{w}$$

$$= \mathbf{w}^{T} S_{1} \mathbf{w}, \quad \text{where} \quad S_{1} = \sum_{t=1}^{N} r^{t} (\mathbf{x}^{t} - \mathbf{m}_{1}) (\mathbf{x}^{t} - \mathbf{m}_{1})^{T}$$
Similarly,
$$s_{2}^{2} = \mathbf{w}^{T} S_{2} \mathbf{w}$$

$$\text{where} \quad S_{2} = \sum_{t=1}^{N} (1 - r^{t}) (\mathbf{x}^{t} - \mathbf{m}_{2}) (\mathbf{x}^{t} - \mathbf{m}_{2})^{T}$$

$$s_{1}^{2} + s_{1}^{2} = \mathbf{w}^{T} S_{1} \mathbf{w} + \mathbf{w}^{T} S_{2} \mathbf{w} = \mathbf{w}^{T} (S_{1} + S_{2}) \mathbf{w} = \mathbf{w}^{T} S_{W} \mathbf{w}$$

$$\text{where} \quad S_{W} = S_{1} + S_{2} \quad \text{(Within-class scatter matrix)}$$

$$(A) \Rightarrow J(w) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2} = \frac{w^T S_B w}{w^T S_W w}$$
$$= \frac{w^T (m_1 - m_2)(m_1 - m_2)^T w}{w^T S_W w}$$

$$\frac{dJ(w)}{dw} = \frac{d}{dw} \left(\frac{w^{T}(m_{1} - m_{2})(m_{1} - m_{2})^{T} w}{w^{T} S_{W} w} \right) \quad (d\left(\frac{f}{g}\right) = \frac{gdf - fdg}{g^{2}})$$

$$= w^{T} S_{W} w \frac{2w^{T}(m_{1} - m_{2})(m_{1} - m_{2})}{\left(w^{T} S_{W} w\right)^{2}} - \frac{w^{T}(m_{1} - m_{2})(m_{1} - m_{2}) w}{\left(w^{T} S_{W} w\right)^{2}} 2w^{T} S_{W}$$

$$= \frac{2w^{T}(m_{1} - m_{2})(m_{1} - m_{2})}{w^{T} S_{W} w} - \frac{w^{T}(m_{1} - m_{2})(m_{1} - m_{2}) w}{\left(w^{T} S_{W} w\right)^{2}} 2w^{T} S_{W}$$

$$= 2 \frac{w^{T}(m_{1} - m_{2})}{w^{T} S_{W} w} \left((m_{1} - m_{2}) - \frac{w^{T}(m_{1} - m_{2})}{w^{T} S_{W} w} S_{W} w \right) = 0 - - - (B)$$
Let
$$\frac{w^{T}(m_{1} - m_{2})}{w^{T} S_{W} w} = c. \quad (B) \Rightarrow c\left((m_{1} - m_{2}) - cS_{W} w \right) = 0$$

$$\Rightarrow w = c S_{W}^{-1}(m_{1} - m_{2}).$$

Example:

□ In n > 2 Class (d-D to k-D) case,

Within-class scatter matrix:

$$S_W = \sum_{i=1}^n S_i, \text{ where } S_i = \sum_t r_i^t (\mathbf{x}^t - \mathbf{m}_i) (\mathbf{x}^t - \mathbf{m}_i)^T$$
$$r_i^t = 1 \text{ if } \mathbf{x}^t \in C_i \text{ and } 0 \text{ otherwise}$$

Between-class scatter matrix:

$$S_B = \sum_{i=1}^{n} N_i (\mathbf{m}_i - \mathbf{m}) (\mathbf{m}_i - \mathbf{m})^T, \ \mathbf{m} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{m}_i, \ N_i = \sum_{t} r_i^t$$

Let $W_{d \times k}$ be the projection matrix from the d-D space to the k-D space (k < d), then

$$(W^T S_W W)_{k \times k}$$
, $(W^T S_B W)_{k \times k}$: projections of $(S_W)_{d \times d}$, $(S_B)_{d \times d}$

A spread measure of a scatter matrix is its determinant.

Find W such that
$$J(W) = \frac{|W^T S_B W|}{|W^T S_W W|}$$
 is maximized.

The determinant of matrix $A_{n \times n}$ is the product of its eigenvalues, i.e., $|A| = \lambda_1 \cdot \lambda_2 \cdot \cdots \cdot \lambda_n$.

$$J(W) = \frac{\left| W^{T} S_{B} W \right|}{\left| W^{T} S_{W} W \right|} = \frac{\left| \lambda_{1}^{B} \cdot \lambda_{2}^{B} \cdot \dots \cdot \lambda_{k}^{B} \right|}{\left| \lambda_{1}^{W} \cdot \lambda_{2}^{W} \cdot \dots \cdot \lambda_{k}^{W} \right|} = \frac{\left| \lambda_{1}^{B} \cdot \lambda_{2}^{B} \cdot \dots \cdot \lambda_{k}^{B} \right|}{\left| \lambda_{1}^{W} \cdot \lambda_{2}^{W} \cdot \dots \cdot \lambda_{k}^{W} \right|}$$

$$= \left| \left| (\lambda_{1}^{W} \cdot \lambda_{2}^{W} \cdot \dots \cdot \lambda_{k}^{W})^{-1} (\lambda_{1}^{B} \cdot \lambda_{2}^{B} \cdot \dots \cdot \lambda_{k}^{B}) \right|$$

$$= \left| \left| W^{T} S_{W} W \right|^{-1} \left| W^{T} S_{B} W \right| = \frac{\left| (W^{T} S_{W} W)^{-1} (W^{T} S_{B} W) \right|}{\left| AB \right| = \left| A \right| B}$$

$$= \frac{d}{dW} \left| (W^{-1} S_{W}^{-1} (W^{T})^{-1} W^{T} S_{B} W \right| = \frac{d}{dW} \left| (W^{-1} S_{W}^{-1} S_{B} W) \right| = 0.$$

The solution of W is formed by the k largest eigenvectors of $S_W^{-1}S_B$.

Fisher Discriminant Analysis with Kernels, S. Mika, G. Ratsch, J. Weaton, B. Scholkopf, and K.R. Muller, IEEE, 1999.

vi) Laplacian Eigenmaps (LE)

Let \mathbf{x}^r and \mathbf{x}^s be any two out of N data instances and b_{rs} is their similarity. Find \mathbf{y}^r and \mathbf{y}^s that $\min \sum_{r,s} \|\mathbf{y}^r - \mathbf{y}^s\|^2 b_{rs}$, i.e., two similar instances

(large b_{rs}) should be close in the new space

(small
$$\|\mathbf{y}^r - \mathbf{y}^s\|$$
). Define $b_{rs} = \exp\left[-\frac{\|\mathbf{x}^r - \mathbf{x}^s\|^2}{2\sigma^2}\right]$

if x^r and x^s are in the predefined neighborhood, and 0 otherwise, i.e., only local similarities are cared.

Consider the 1-D new space

$$\sum_{r,s} \|\mathbf{y}^{r} - \mathbf{y}^{s}\|^{2} b_{rs} = \frac{1}{2} \sum_{r,s} (y_{r} - y_{s})^{2} b_{rs}$$

$$= \frac{1}{2} \left(\sum_{r,s} b_{rs} y_{r}^{2} - 2 \sum_{r,s} b_{rs} y_{r} y_{s} + \sum_{r,s} b_{rs} y_{s}^{2} \right)$$

$$= \frac{1}{2} \left(\sum_{r} d_{r} y_{r}^{2} - 2 \sum_{r,s} b_{rs} y_{r} y_{s} + \sum_{s} d_{s} y_{s}^{2} \right) \quad (d_{r} = \sum_{s} b_{rs}, d_{s} = \sum_{r} b_{rs})$$

$$= \sum_{r} d_{r} y_{r}^{2} - \sum_{r} \sum_{s} b_{rs} y_{r} y_{s} = \mathbf{y}^{T} D \mathbf{y} - \mathbf{y}^{T} B \mathbf{y}$$

$$= \mathbf{y}^{T} (D - B) \mathbf{y} = \mathbf{y}^{T} L \mathbf{y},$$

where $B = [b_{rs}]$, $D = \text{diag}[d_r]$, L : Laplacian matrixy: N-D vector, $y_r : \text{ the new coordinate of } x^r$.

The solution to $\min\{y^T L y\}$ subject to ||y|| = 1

$$\approx \frac{d(\mathbf{y}^T L \mathbf{y})}{d\mathbf{y}} = 0 \text{ subject to } ||\mathbf{y}|| = 1$$

$$\approx Ly = 0$$
 subject to $||y|| = 1$

The method of Lagrange multipliers

Error:
$$E = ||Ly - \mathbf{0}||^2 = ||Ly||^2 = y^T (L^T L) y$$

Constraint:
$$\|\mathbf{y}\| = 1$$

Minimize
$$F(\mathbf{y}) = \mathbf{y}^T (\mathbf{L}^T \mathbf{L}) \mathbf{y} + \lambda (\|\mathbf{y}\|^2 - 1)$$

where λ : Lagrange multiplier

Let
$$\frac{dF(y)}{dy} = 2(L^T L)y + 2\lambda y = \mathbf{0}$$

We obtain $(L^T L) y = -\lambda y$

The solution y is an eigenvector of L^TL with eigenvalue $-\lambda$

The associated error $E = \mathbf{y}^T (L^T L) \mathbf{y} = -\lambda \mathbf{y}^T \mathbf{y} = -\lambda$

The y with the smallest λ is the least square error solution of Ly = 0.

LE Algorithm: Given N points $x_i \in \mathbb{R}^d$, $i = 1, \dots, N$

1. Put an edge e_{ii} between nodes n_i and n_i if

$$\|\mathbf{x}_{i} - \mathbf{x}_{j}\| < \varepsilon.$$
2. Weight the edge by $b_{ij} = \exp\left(-\frac{\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2}}{t}\right)$

3. For each connected component of G, compute eigenvalues λ and eigenvectors y of L, i.e., $Ly = \lambda y$, where L = D - B, D: diagonal matrix, $d_{ii} = \sum_{i} b_{ji}$. Let \mathbf{y}_{i} , $i = 0, \dots, k-1$ be the solutions of (A), ordered from small to large eigenvalues.

Example: Iris data

LE lead to denser data than MDS.

Laplace Eigenmaps for Dimensionality Reduction and Data Representation, M. Belkin, Neural Computing, 15, pp. 1373-1396, 2003.

ix) Canonical Correlation Analysis (CCA)

- □ Given a sample $X = \{x^t, y^t\}_{t=1}^N$, both x and y are inputs, e.g., (1) acoustic information and visual information in speech recognition, (2) image data and text annotations in image retrieval application.
- Take the correlation of (x^t, y^t) into account while reducing dimensionality to a joint space, i.e., find two vectors w and v s.t. when x is projected along w and y is projected along v, their correlation ρ is maximized, where

$$\rho = \frac{\text{Cov}(w^T x, v^T y)}{\sqrt{\text{Var}(w^T x)} \sqrt{\text{Var}(v^T y)}}$$

$$= \frac{w^T \text{Cov}(x, y) v}{\sqrt{w^T \text{Var}(x) w} \sqrt{v^T \text{Var}(y) v}} = \frac{w^T S_{xy} v}{\sqrt{w^T S_{xx} w} \sqrt{v^T S_{yy} v}}$$

where Covariance matrices:

$$S_{xx} = \text{Var}(\mathbf{x}) = E[(\mathbf{x} - \boldsymbol{\mu}_x)^2]$$

$$S_{yy} = \text{Var}(\mathbf{y}) = E[(\mathbf{y} - \boldsymbol{\mu}_y)^2]$$

Cross-covariance matrices:

$$S_{xy} = \text{Cov}(\mathbf{x}, \mathbf{y}) = E[(\mathbf{x} - \boldsymbol{\mu}_x)(\mathbf{y} - \boldsymbol{\mu}_y)^T]$$

$$S_{yx} = \text{Cov}(\mathbf{y}, \mathbf{x}) = E[(\mathbf{y} - \boldsymbol{\mu}_{y})(\mathbf{x} - \boldsymbol{\mu}_{x})^{T}]$$

Let
$$\frac{\partial \rho}{\partial w} = 0$$
 and $\frac{\partial \rho}{\partial v} = 0$

Solutions: w is an eigenvector of $S_{xx}^{-1}S_{xy}S_{yy}^{-1}S_{yx}$; v is an eigenvector of $S_{yy}^{-1}S_{yx}S_{xx}^{-1}S_{xy}$.

Choose (w, v) with largest eigenvalues as the solution. $\therefore \rho \propto \text{shared eigenvalue of } \lambda_w \text{ and } \lambda_v$

Look for k pairs (w_i, v_i) , $i = 1, \dots, k$ Let $W = [w_1, w_2, \dots, w_k]$, $V = [v_1, v_2, \dots, v_k]$ $\mathbf{r}^t = W^T \mathbf{x}^t$, $\mathbf{s}^t = V^T \mathbf{y}^t$. $(\mathbf{r}^t, \mathbf{s}^t)$: lower-dimensional representation of $(\mathbf{x}^t, \mathbf{y}^t)$. Canonical Correlation Analysis: An Overview with Application to Learning Methods, D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, Neural Computation, 16, 2004.

vi) Isometric Feature Mapping (Isomap)

-- Estimates the geodesic distance and applies multidimensional scaling for dimensionality reduction.

$$D = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_N \\ \mathbf{x}_1 & d_{11} & d_{12} & \cdots & d_{1N} \\ d_{21} & d_{22} & \cdots & d_{2N} \\ \cdots & \cdots & \cdots & \cdots \\ \mathbf{x}_N & d_{N1} & d_{N2} & \cdots & d_{NN} \end{pmatrix}$$

Multidimensional Scaling (MDS):

Given distance matrix $D = [d_{rs}]_{N \times N}$,

1. Calculate $B = [b_{rs}]_{N \times N}$, where

$$b_{rs} = \frac{1}{2}(d_{r \cdot}^2 + d_{\cdot s}^2 - d_{\cdot \cdot}^2 - d_{rs}^2), d_{r \cdot}^2 = \frac{1}{N} \sum_{s} d_{rs}^2,$$

$$d_{\cdot s}^2 = \frac{1}{N} \sum_{r} d_{rs}^2, d_{\cdot \cdot \cdot}^2 = \frac{1}{N^2} \sum_{r} \sum_{s} d_{rs}^2$$

2. Find the spectral decomposition of *B*,

$$B = E\Lambda E^{T}$$
.

3. For dimensionality reduction, discard from Λ the p small eigenvalues and from E the corresponding eigenvectors to form Λ' and E', respectively.

4. Find
$$Z_{(N-p)\times(N-p)} = E'\Lambda'^{1/2}$$
.

* The coordinates of the points are the rows of Z.

vii) Locally Linear Embedding (LLE)

-- Recovers global nonlinear structure from locally linear fit.

1. Given \mathbf{x}^r and its neighbors $\mathbf{x}^s_{(r)}$, find W_{rs} by

minimizing the error function
$$E(W \mid X)$$

$$\min_{W_{rs}} E(W \mid X) = \sum_{r} \left\| x^{r} - \sum_{s} W_{rs} x_{(r)}^{s} \right\|^{2}$$

subject to $W_{rr} = 0$, $\forall r$ and $\sum W_{rs} = 1$.

2. Find new coordinates z^r that respect the constraints

given by
$$W_{rs}$$
,
$$\min_{z^r} E(Z|W) = \sum_{r} \left\| z^r - \sum_{s} W_{rs} z_{(r)}^s \right\|^2$$
subject to $E[z] = 0$, $Cov(z) = I$

Dim(z-space) < Dim(x-space)

Nonlinear Dimensionality Reduction by Locally Linear Embedding, S.T. Roweis and L.K. Saul, Science, 290, 2000.

viii) t-Distributed Stochastic Neighbor Embedding

-- Position the data points in the new space such that local neighborhood statistics are as similar as possible

The probability that x^s is a neighbor of x^r

$$p_{s|r} = \frac{\exp[-\|\mathbf{x}^r - \mathbf{x}^s\|^2 / 2\sigma_r^2]}{\sum_{l \neq r} \exp[-\|\mathbf{x}^r - \mathbf{x}^s\|^2 / 2\sigma_r^2]}$$

t-SNE is the symmetrized version of SNE by

defining
$$p_{rs} = \frac{p_{s|r} + p_{r|s}}{2N}$$

The probability in the lower-dimensional space is calculated as

$$q_{rs} = \frac{(1 + \|z^{l} - z^{m}\|^{2})^{-1}}{\sum_{l \neq r} \sum_{m \neq l} (1 + \|z^{l} - z^{m}\|^{2})^{-1}} (t - \text{distribution})$$

The aim is to learn z^r so that for all pairs (r,s), q_{rs} can be as close as possible to p_{rs}

Gradient descent for finding optimal z^r :

- 1. Start from small random z^r
- 2. Update iteratively in the direction that decreases the KL distance in small steps

KL distance between the probability distributions P and Q, from which p_{rs} and q_{rs} are drawn

$$KL(P \parallel Q) = \sum_{r} \sum_{s} p_{rs} \log \frac{p_{rs}}{q_{rs}}$$