International Trade: Lecture 8

Specific Factors Model (i)

Carlos Góes¹

¹George Washington University

Fall 2025

- When some of the factors are fixed, we have diminishing marginal returns to scale

- When some of the factors are fixed, we have diminishing marginal returns to scale
- Important, since over SR factors do not necessary adjust automatically

- When some of the factors are fixed, we have diminishing marginal returns to scale
- Important, since over SR factors do not necessary adjust automatically
- Saw that in GE, prices (wages, rents) adjust to marginal products

- When some of the factors are fixed, we have diminishing marginal returns to scale
- Important, since over SR factors do not necessary adjust automatically
- Saw that in GE, prices (wages, rents) adjust to marginal products
- So changes in policy changes in income

- When some of the factors are fixed, we have diminishing marginal returns to scale
- Important, since over SR factors do not necessary adjust automatically
- Saw that in GE, prices (wages, rents) adjust to marginal products
- So changes in policy changes in income
- Corollary: changes induce distributional concerns

- The Ricardo-Viner model analyzes trade when
 - Most resources cannot move costlessly across industries
 - Industries differ in the factors of production they demand

- The Ricardo-Viner model analyzes trade when
 - Most resources cannot move costlessly across industries
 - Industries differ in the factors of production they demand
- Labor is mobile across sectors, but other factors are immobile
 Example: Land is highly utilized in agriculture and mining, and largely specific

- The Ricardo-Viner model analyzes trade when
 - Most resources cannot move costlessly across industries
 - Industries differ in the factors of production they demand
- Labor is mobile across sectors, but other factors are immobile
 Example: Land is highly utilized in agriculture and mining, and largely specific
- Trade affects the income distribution within countries.
 Gains from trade are unevenly distributed

- Number of factors of production: 3 (labor L, land T, capital K)

- Number of factors of production: 3 (labor L, land T, capital K)
- Mobility of factors of production: Labor is mobile across sectors capital and land are sector specific (immobile)

- Number of factors of production: 3 (labor L, land T, capital K)
- Mobility of factors of production: Labor is mobile across sectors capital and land are sector specific (immobile)
- Number of sectors (goods): 2
 - Food output Y_A uses T and L
 - Manufacturing output Y_M uses K and L

- Number of factors of production: 3 (labor L, land T, capital K)
- Mobility of factors of production: Labor is mobile across sectors capital and land are sector specific (immobile)
- Number of sectors (goods): 2
 - Food output Y_A uses T and L
 - Manufacturing output Y_M uses K and L
- Perfect competition; no trade costs

- Number of factors of production: 3 (labor L, land T, capital K)
- Mobility of factors of production: Labor is mobile across sectors capital and land are sector specific (immobile)
- Number of sectors (goods): 2
 - Food output Y_A uses T and L
 - Manufacturing output Y_M uses K and L
- Perfect competition; no trade costs
- Key force: Differences in sector specific endowments

- Production with sector-specific factors land *T* and capital *K*:

$$\begin{split} \max_{L_{i,M},K_i} \quad & P_M \times Z_{i,M} \times K_i^{\beta_i} L_{i,M}^{1-\beta_i} - w_i L_{i,M} - r_{i,M} K_i \\ \max_{L_{i,A},T_i} \quad & P_A \times Z_{i,A} \times T_i^{\beta_i} L_{i,A}^{1-\beta_i} - w_i L_{i,A} - r_{i,A} T_i \end{split}$$

Production with sector-specific factors land T and capital K:

$$\begin{split} \max_{L_{i,M},K_i} \quad & P_M \times Z_{i,M} \times K_i^{\beta_i} L_{i,M}^{1-\beta_i} - w_i L_{i,M} - r_{i,M} K_i \\ \max_{L_{i,A},T_i} \quad & P_A \times Z_{i,A} \times T_i^{\beta_i} L_{i,A}^{1-\beta_i} - w_i L_{i,A} - r_{i,A} T_i \end{split}$$

- Specific Factors model is also called the Ricardo-Viner model

Production with sector-specific factors land T and capital K:

$$\begin{split} \max_{L_{i,M},K_i} \quad & P_M \times Z_{i,M} \times K_i^{\beta_i} L_{i,M}^{1-\beta_i} - w_i L_{i,M} - r_{i,M} K_i \\ \max_{L_{i,A},T_i} \quad & P_A \times Z_{i,A} \times T_i^{\beta_i} L_{i,A}^{1-\beta_i} - w_i L_{i,A} - r_{i,A} T_i \end{split}$$

- Specific Factors model is also called the Ricardo-Viner model
 - In common with Ricardo: Labor productivity differs across sectors

Production with sector-specific factors land T and capital K:

$$\begin{aligned} \max_{L_{i,M},K_i} & P_M \times Z_{i,M} \times K_i^{\beta_i} L_{i,M}^{1-\beta_i} - w_i L_{i,M} - r_{i,M} K_i \\ \max_{L_{i,A},T_i} & P_A \times Z_{i,A} \times T_i^{\beta_i} L_{i,A}^{1-\beta_i} - w_i L_{i,A} - r_{i,A} T_i \end{aligned}$$

- Specific Factors model is also called the Ricardo-Viner model
 - In common with Ricardo: Labor productivity differs across sectors
 - Viner: Specific factor endowments determine labor productivity

Production with sector-specific factors land T and capital K:

$$\max_{L_{i,M},K_i} P_M \times Z_{i,M} \times K_i^{\beta_i} L_{i,M}^{1-\beta_i} - w_i L_{i,M} - r_{i,M} K_i$$

$$\max_{L_{i,A},T_i} P_A \times Z_{i,A} \times T_i^{\beta_i} L_{i,A}^{1-\beta_i} - w_i L_{i,A} - r_{i,A} T_i$$

- Specific Factors model is also called the Ricardo-Viner model
 - In common with Ricardo: Labor productivity differs across sectors
 - Viner: Specific factor endowments determine labor productivity
 - Implication: Unit labor requirements change with labor employment

Decreasing Marginal Returns

Figure: Decreasing returns to scale in labor

Optimality conditions

- At their optimal points, factor prices equal their marginal (revenue) product for labor...

$$P_{M} \times MPL_{i,M} = P_{M} \times \frac{\partial Y_{i,M}}{\partial L_{i,M}} = w_{i}$$

 $P_{A} \times MPL_{i,A} = P_{A} \times \frac{\partial Y_{i,A}}{\partial L_{i,A}} = w_{i}$

Optimality conditions

- At their optimal points, factor prices equal their marginal (revenue) product for labor...

$$P_M \times MPL_{i,M} = P_M \times \frac{\partial Y_{i,M}}{\partial L_{i,M}} = w_i$$

 $P_A \times MPL_{i,A} = P_A \times \frac{\partial Y_{i,A}}{\partial L_{i,A}} = w_i$

- ... and for labor and capital, respectively:

$$P_{M} \times MPK_{i,M} = P_{M} \times \frac{\partial Y_{i,M}}{\partial K_{i,M}} = r_{i,M}$$

 $P_{A} \times MPT_{i,A} = P_{A} \times \frac{\partial Y_{i,A}}{\partial T_{i,A}} = r_{i,A}$

Marginal Products and Factor Prices

Figure: Labor market equilibrium: intuition

Supply of Factors of Production

- Total labor can be distributed for the production of either good, such that:

$$\underbrace{L_{i,A}}_{\text{labor used in production of }A} + \underbrace{L_{i,M}}_{\text{labor used in production of }M} \leq \underbrace{L_{i}}_{\text{total labor available in }i}$$

- Supply of land *T* and capital is inelastic, so in equilibrium each sectors uses all endowment of specific factor:

$$\underbrace{T_i}_{\substack{\mathsf{land}}} = \underbrace{\bar{T}_i}_{\substack{\mathsf{land}}}, \qquad \underbrace{K_i}_{\substack{\mathsf{capital}}} = \underbrace{\bar{K}_i}_{\substack{\mathsf{capital}}}$$
demand supply demand supply

- Sources of income:

- Sources of income:
 - supply their time for wage w_i , earn labor income w_iL_i ;

- Sources of income:
 - supply their time for wage w_i , earn labor income w_iL_i ;
 - rent land to agricultural producers and earn income $r_{i,A}T_i$;

- Sources of income:
 - supply their time for wage w_i , earn labor income w_iL_i ;
 - rent land to agricultural producers and earn income $r_{i,A}T_i$;
 - rent capital to manufacturing producers and earn income $r_{i,M}K_i$.

- Sources of income:
 - supply their time for wage w_i , earn labor income $w_i L_i$;
 - rent land to agricultural producers and earn income $r_{i,A}T_i$;
 - rent capital to manufacturing producers and earn income $r_{i,M}K_i$.

$$I_i = w_i \bar{L}_i + r_{i,A} T_i + r_{i,M} K_i$$

- Sources of income:
 - supply their time for wage w_i , earn labor income $w_i L_i$;
 - rent land to agricultural producers and earn income $r_{i,A}T_i$;
 - rent capital to manufacturing producers and earn income $r_{i,M}K_i$.

$$I_i = w_i \bar{L}_i + r_{i,A} T_i + r_{i,M} K_i$$

- Preferences over goods $Q_{i,A}$, $Q_{i,M}$, given prices P_A , P_M , maximizing:

$$\max_{\{Q_{i,A},Q_{i,M}\}} U_i(Q_{i,A},Q_{i,M}) \equiv Q_{i,A}^{\alpha_i}Q_{i,M}^{1-\alpha_i} \qquad s.t. \quad P_AQ_{i,A} + P_MQ_{i,M} = I_i$$

- Whats the solution for this maximization problem?

Demand

- Whats the solution for this maximization problem?
- Cobb-Douglas: demand = constant share of income; decreasing in price:

$$Q_{i,A} = \alpha_i \frac{I_i}{P_A}, \qquad Q_{i,M} = (1 - \alpha_i) \frac{I_i}{P_M}$$

Demand

- Whats the solution for this maximization problem?
- Cobb-Douglas: demand = constant share of income; decreasing in price:

$$Q_{i,A} = \alpha_i \frac{I_i}{P_A}, \qquad Q_{i,M} = (1 - \alpha_i) \frac{I_i}{P_M}$$

 We can also show that, at optimal choices, prices equal the marginal rate of substitution?

$$-MRS_{i,AM} = -\frac{\partial U_i/\partial Q_{i,A}}{\partial U_i/\partial Q_{i,M}} = -\frac{\alpha_i}{1-\alpha_i} \frac{Q_{i,M}}{Q_{i,A}} = -\frac{P_A}{P_M}$$
(1)

Demand

- Whats the solution for this maximization problem?
- Cobb-Douglas: demand = constant share of income; decreasing in price:

$$Q_{i,A} = \alpha_i \frac{I_i}{P_A}, \qquad Q_{i,M} = (1 - \alpha_i) \frac{I_i}{P_M}$$

 We can also show that, at optimal choices, prices equal the marginal rate of substitution?

$$-MRS_{i,AM} = -\frac{\partial U_i/\partial Q_{i,A}}{\partial U_i/\partial Q_{i,M}} = -\frac{\alpha_i}{1-\alpha_i} \frac{Q_{i,M}}{Q_{i,A}} = -\frac{P_A}{P_M}$$
(1)

- What is intuition here?

Demand Choices in Autarky

Optimality conditions

 Implication: at the optimal point, marginal rate of transformation = relative price:

$$-\frac{MPL_{i,A}}{MPL_{i,M}} = \underbrace{\frac{\partial Y_{i,M}}{\partial Y_{i,A}}}_{\text{slope of PPF}} = -\frac{P_M}{P_A}$$

Optimality conditions

 Implication: at the optimal point, marginal rate of transformation = relative price:

$$-\frac{MPL_{i,A}}{MPL_{i,M}} = \underbrace{\frac{\partial Y_{i,M}}{\partial Y_{i,A}}}_{\text{slope of PPF}} = -\frac{P_M}{P_A}$$

Quantity of manufacturing, $Q_{i,M}$, $Y_{i,M}$

Optimality conditions

 Implication: at the optimal point, marginal rate of transformation = relative price:

$$-\frac{MPL_{i,A}}{MPL_{i,M}} = \underbrace{\frac{\partial Y_{i,M}}{\partial Y_{i,A}}}_{\text{slope of PPF}} = -\frac{P_M}{P_A}$$

Why is the PPF belly shaped?

Quantity of manufacturing, $Q_{i,M}$, $Y_{i,M}$

Production + Demand Choices in Autarky

- Recall the labor market resource constraint:

$$L_{i,A} + L_{i,M} = \bar{L}_i \iff L_{i,M} = \bar{L}_i - L_{i,A}$$

- Recall the labor market resource constraint:

$$L_{i,A} + L_{i,M} = \bar{L}_i \iff L_{i,M} = \bar{L}_i - L_{i,A}$$

- In other words, labor is either allocated to manufacturing or to agriculture (trade off)

- Recall the labor market resource constraint:

$$L_{i,A} + L_{i,M} = \bar{L}_i \iff L_{i,M} = \bar{L}_i - L_{i,A}$$

- In other words, labor is either allocated to manufacturing or to agriculture (trade off)
- Also, recall the equilibrium condition for labor:

$$P_M \times MPL_{i,M} = P_M \times \frac{\partial Y_{i,M}}{\partial L_{i,M}} = w_i$$

 $P_A \times MPL_{i,A} = P_A \times \frac{\partial Y_{i,A}}{\partial L_{i,A}} = w_i$

- Recall the labor market resource constraint:

$$L_{i,A} + L_{i,M} = \bar{L}_i \iff L_{i,M} = \bar{L}_i - L_{i,A}$$

- In other words, labor is either allocated to manufacturing or to agriculture (trade off)
- Also, recall the equilibrium condition for labor:

$$P_M \times MPL_{i,M} = P_M \times \frac{\partial Y_{i,M}}{\partial L_{i,M}} = w_i$$

 $P_A \times MPL_{i,A} = P_A \times \frac{\partial Y_{i,A}}{\partial L_{i,A}} = w_i$

- Implication: equilibrium wage w_i^* will be the point that equalizes marginal revenue

$$P_M \times MPL_{i,M} = P_A \times MPL_{i,A}$$

From Marginal Product to Marginal Revenue

- What is the marginal product of labor?

From Marginal Product to Marginal Revenue

- What is the marginal product of labor?
- Extra output generated by hiring one additional worker

From Marginal Product to Marginal Revenue

- What is the marginal product of labor?
- Extra output generated by hiring one additional worker
- If you sum over the marginal product of every worker, step by step, you get...
 Total Output = MP of first worker + MP of second worker + ... + MP of last worker

First worker's contribution to total revenue....

Second worker's contribution to total revenue....

Third worker's contribution to total revenue....

Sum of L_M workers contributions to total revenue....

Distribution of income: Preliminaries

- Workers are paid: $L_{i,M}w_i + L_{i,A}w_i = \bar{L}_iw_i$
- Capitalists are paid: $r_{i,M}K_i = P_MY_{i,M} L_{i,M}w_i$
- Landowners are paid: $r_{i,A}T_i = P_AY_{i,A} L_{i,A}w_i$

Distribution of income: Diagram

