

Decision Analytics

Lecture 16: Backtracking search

Constraint Programming

 Constraint Programming (CP) is a paradigm for solving combinatorial constraint satisfaction and constrained optimisation problems using a combination of modelling, propagation, and search

Constraint Programming

- Constraint Programming (CP) is a paradigm for solving combinatorial constraint satisfaction and constrained optimisation problems using a combination of modelling, propagation, and search
- This lecture is about backtracking search, which very closely linked with constraint propagation

Constraint propagation

- The outcome of constraint propagation is a tightened network N = (X, D, C)
- Unless all domains have become instantiated in this process, i.e. $|D(x_i)| = 1$ for all variables x_i , we need to find the solution by trying out all remaining instantiations
- The number of remaining valid instantiations is $\prod_i |D(x_i)|$, which in general is exponential in the number of variables
- As we have seen, bringing the number of remaining instantiations down (for instance by enforcing higher order consistencies) is also exponential in runtime and/or space requirements
- Therefore, we are looking for a compromise in terms of constraint propagation performance and search performance
- As this problem is NP-hard, there is no known "rule" how this can be achieved

The search tree for the knapsack problem

We explored the following concepts:

- Initial state
- Valid state

Invalid state

Final state

Non-final state

Best state

Decision making

$$w_2 = 2kg$$
$$v_2 = \$1$$

 $w_3 = 3kg$ $v_3 = 1

$$w_1 = 9kg$$
$$v_1 = \$1$$

Branching constraints

- How can we formalise this consistent with the concepts from constraint propagation?
- In every node of the search tree we need to make a decision what variable we want to explore further and what value we want to assign during this exploration
- More generally, we need to decide on a **branching constraint** b that we want to explore by looking at the network $N' = (X, D, C \cup \{b\})$ and see if it can be tightened to a fully instantiated network
- Note, that a generic constraint does not need to be limited to just 1 variable, nor does it need to be assigning only 1 value to that variable
- This decision making process is called a branching strategy

Branching strategy

- Every node in the tree is defined by the sequence of branching constraints $p = \{b_1, ..., b_j\}$, which is the path of length j from the root to the node
- We call b_i the branching constraint **posted** at level i
- A node $p=\{b_1,\dots,b_j\}$ is extended by adding the branches $p\cup \{b_{j+1}^1\},\dots,p\cup \{b_{j+1}^k\}$
- As we are usually trying to find a solution in each of the branches in sequence, we try to apply an **ordering heuristic** to make sure that the most promising branch is explored first

$$w_1 = 9kg$$
$$v_1 = $1$$

 $w_1 = 9kg$

 $v_1 = 1

$$w_3 = 3kg$$
$$v_3 = \$1$$

$$w_3 = 3kg$$
$$v_3 = \$1$$

$$w_1 = 9kg$$
$$v_1 = \$1$$

Branching strategy

- In practice most branching strategies post unary constraints only, i.e. a single variable $x_i \in X$ is chosen to be explored further
- The second decision is then how to restrict the domain $D(x_i)$ of the variable
- Popular decision strategies are for this are
 - Enumeration: create branches for each value in the domain $D(x_i)=\{v_1,\ldots,v_k\}$ $b_{j+1}^1=\{x_i=v_1\},\ldots,b_{j+1}^k=\{x_i=v_k\}$
 - Binary choice points: branch into the assignment of a variable to a value ν vs. the assignment to every other value

$$b_{j+1}^1 = \{x_i = v\}$$
 $b_{j+1}^2 = \{x_i \neq v\}$

 Domain splitting: branch into two sub-branches covering a portion of the domain each

$$b_{j+1}^1 = \{x_i \le v\}$$
 $b_{j+1}^2 = \{x_i > v\}$

Obviously, all these three strategies are equivalent for SAT problems

Variable ordering heuristics

- The first branching decision for posting unary constraints is which variable to choose
- A common choice is to look at the size of the domain $|D(x_i)|$ and select the variable with the
 - Smallest remaining domain size, which is the one that probably has the highest chance of being reduced to either 0 or 1
 - Largest remaining domain size, which is the one that needs to be broken down first in order to track down the solution
 - The lowest lower/highest upper bound, which are the ones that could prevent consistencies from propagating further
- As with all heuristics, none is provably superior to the other and it depends on the application

Branching strategy

 The OR Tools provide some limited control mechanism over the branching strategy heuristics for selected variables

```
CHOOSE_FIRST
CHOOSE_LOWEST_MIN
CHOOSE_HIGHEST_MAX
CHOOSE_MIN_DOMAIN_SIZE
CHOOSE_MAX_DOMAIN_SIZE
```

```
SELECT_MIN_VALUE
SELECT_MAX_VALUE
SELECT_LOWER_HALF
SELECT_UPPER_HALF
```

Thank you for your attention!