

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 1 of 21

Go Back

Full Screen

Close

Quit

ML- MACHINE LEARNING

XI. Regularization

FERNEY BELTRAN
MIGUEL VILLAMIL
SANTIAGO CARVAJAL

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 2 of 21

Go Back

Full Screen

Close

Quit

Overfitting

OVERFITTING IS THE PRODUCTION OF AN ANALYSIS THAT CORRESPONDS TOO CLOSELY OR EXACTLY TO A PARTICULAR SET OF DATA, AND MAY THEREFORE FAIL TO FIT ADDITIONAL DATA OR PREDICT FUTURE OBSERVATIONS RELIABLY. [OXFORDDICTIONARIES]

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 3 of 21

Go Back

Full Screen

Close

Quit

Housing Prices Example

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 4 of 21

Go Back

Full Screen

Close

Quit

Housing Prices Example

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 5 of 21

Go Back

Full Screen

Close

Quit

Housing Prices Example

Gradient descent

Regularized logistic...

Gradient descent

Home Page

Title Page

Page 6 of 21

Go Back

Full Screen

Close

Quit

Classification Example

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 7 of 21

Go Back

Full Screen

Close

Quit

Classification Example

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 8 of 21

Go Back

Full Screen

Close

Quit

Classification Example

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 9 of 21

Go Back

Full Screen

Close

Quit

Deal with Overfitting:

Two Options:

- 1. Reduce number of features
- 2. Regularization
 - -Keep all the features
 - -Reduce magnitude or values of parameters

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 10 of 21

Go Back

Full Screen

Close

Quit

Cost Function

If we have over fitting in our hypothesis function we can reduce the weight for some terms in our function by increasing the cost.

Suppose we penalize and make θ_3 , θ_4 really small.

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}) (x^{(i)} - y^{(i)})$$

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 11 of 21

Go Back

Full Screen

Close

Quit

Cost Function

Small values for parameters $\theta_0, \theta_0, \theta_1, \theta_2, ..., \theta_n$

- "Simpler" hypothesis
- Less prone to overfitting

Housing:

- Features: $x_1, x_2, ..., x_{100}$
- Parameters: $\theta_0, \theta_0, \theta_1, \theta_2, ..., \theta_n$

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}) (x^{(i)} - y^{(i)})$$

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 12 of 21

Go Back

Full Screen

Close

Quit

Cost Function

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{i})^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2}) \right]$$

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 13 of 21

Go Back

Full Screen

Close

Quit

Cost Function

In regularized linear regression, we choose to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{i}); 2 + \lambda \sum_{j=1}^{n} \theta_{j}^{2}) \right]$$

What happen if we set λ to a large number (e.g $\lambda = 10^{10}$)?

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 14 of 21

Go Back

Full Screen

Close

Quit

Cost Function

What happen if we set λ to a large number (e.g $\lambda = 10^{10}$)?

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{i}); 2 + \lambda \sum_{j=1}^{n} \theta_{j}^{2}) \right]$$

- Algorithm works fine; setting λ to be large can't hurt it.
- Algorithm fails to eliminate overfitting.
- Algorithm results in underfitting. (Fails to fit even training data).
- Gradient descent will fail to converge.

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 15 of 21

Go Back

Full Screen

Close

Quit

Regularized linear regression

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 16 of 21

Go Back

Full Screen

Close

Quit

1. Regularized linear regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 17 of 21

Go Back

Full Screen

Close

Quit

2. Gradient descent

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha$$
 $\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$ $(j = 0, 1, 2, 3, \dots, n)$

 $\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 18 of 21

Go Back

Full Screen

Close

Quit

Regularized logistic regression

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 19 of 21

Go Back

Full Screen

Close

Quit

Regularized logistic regression

Cost function:

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))\right]$$

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 20 of 21

Go Back

Full Screen

Close

Quit

4. Gradient descent

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha \qquad \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$(j = 0, 1, 2, 3, \dots, n)$$

Gradient descent

Regularized logistic . . .

Gradient descent

Home Page

Title Page

Page 21 of 21

Go Back

Full Screen

Close

Quit

References

- Machine Learning Andrew Ng Stanford University Coursera https://www.coursera.org/learn/machine-learning/home/week/3
- https://github.com/hammadshaikhha/Math-of-Machine-Learning-Course-by-Siraj/blob/master/Regularization %20in%20Linear%20Regression/Regularization% 20in%20Linear%20Regression.ipynb
- https://medium.com/coinmonks/regularization-of-linear-models-with-sklearn-f88633a93a2
- https://scikit-learn.org/stable/auto_examples/model_selection /plot_underfitting_overfitting.htmlsphx-glr-auto-examplesmodel-selection-plot-underfitting-overfitting-py
- https://bigdata-madesimple.com/how-to-run-linear-regression-in-python-scikit-learn/
- https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a